

MEASUREMENT/TECHNICAL REPORT FCC Part 15 Subpart C

Issued: May 19, 2009

Shinkawa Sensor Technology, Inc.

of the Applicant:

4-22 Yoshikawa Kogyodanchi Higashi-hiroshima, Hiroshima

739-0153 JAPAN

Test Item:

Wireless sensor

Identification:

SD-1M1, SD-1M2

Serial No.:

FCC ID:

XBNSD-1M

Sample Receipt Date:

April 13, 2009

Test Specification:

FCC Part 15 Subpart C, 15.249

Date of Testing:

May 14 and 15, 2009

Test Result:

PASS

Report Prepared by:

Cosmos Corporation

2-3571 Ohnogi, Watarai-cho, Watarai-gun, Mie, Japan 516-2102

Phone: +81-596-63-0707

Fax: +81-596-63-0777

Tested by:

O Itogawa Engineer

May 19, 2009

Date

Reviewed by:

Y. Kawahara, Deputy General Manager

May 19, 2009

Date

Notes

- 1. This report should not be reproduced except in full, without the written approval of Cosmos Corporation.
- 2. All measurement data contained in this report may have uncertainty. A judgment for the limitation should be taken into the count.
- 3. The report in this report apply only to the sample tested.

List of	Contents	Page
1. Descr	iption of Equipment Under Test	
1.1 Pr	oduct Description	ឮ
1.2 An	tenna Description	ឮ
1.3 Ac	companied Peripherals Description	្ម
2. Genera	I Information	4
2.1 Te	st Methodology	4
2.2 Te	st Facility	4
2.3 Tr	aceability	4
	ry of Test Results	
4. Test Co	nfiguration	5
4.1 1	5. 249 (a) The Field Strength of Emissions	5
4.2 1	5. 207 AC Power Conducted Emission	<i>6</i>
4.3 T	est Mode	6
5. Measur	ement Result	7
5.1 1	5. 249(a) The Field Strength of Emissions	7
5.1.1	Setting Remarks	
5.1.2	Minimum Standard	8
5.1.3	Result	8
5.1.4	Measured Data	
5.2 1	5. 207 AC Power Conducted Emission	27
5.2.1	Setting Remarks	27
5.2.2	Minimum Standard	
5.2.3	Result	
5.2.4	Measured Data	
5.3 1	5. 247(d) Band Edge Measurement	
5.3.1	Setting Remarks	
5.3.2	Minimum Standard	
5.3.3	Result	
5.3.4	Measured Data	
	5. 215 (c) 20 dB Bandwidth	
	tup Photo (Radiated Emission)	
	tup Photo (Conducted Emission)	
	Test Measurement Instruments	
	iated Emission Measurement	
7.2.AC	rower Conducted Emission Weasurement	36

1. Description of Equipment Under Test

1.1 Product Description

Manufacturer : Shinkawa Sensor Technology, Inc. Model (referred to as the EUT) : SD-1M1 Nominal Voltage : DC 12V : O-QPSK Type of Modulation Mode of Operation : \square duplex \square 1/2 duplex \boxtimes simplex \square other :
Stand-alone Combined Equipment The type of the equipment ☐ Plug –In Card ☐ Other (Module Unit) : ☑ Integral ☐ external ☐ Other The type of the antenna :

AC mains

Dedicated AC adapter (The type of power source V) □ DC Voltage □ Battery The type of battery (if applicable) : N/A Type of Operation : ☐ Continuous ☐ Burst ☒ Intermittent : ☐ Available ☒ N/A Stand by Mode : Wireless data collector Intended functions The bandwidth of the IF filters : N/A Method of Communication Link : Software to make maximum speed transmitting The operating frequency band : 2405 to 2480 MHz The thermal limitation :-20∼70°C

1.2 Antenna Description

No.	Type Name	Gain	Antenna Type	Remarks
1	SNB-103	Less than 2.15dBi	λ/4	Originally Integrated.

1.3 Accompanied Peripherals Description

No.	Equipment Name	Manufacturer	Type Name	Serial Number	Remarks
1					

2. General Information

2.1 Test Methodology

All measurement subject to the present report was carried out according to the procedures in ANSI C63.4: 2003.

2.2 Test Facility

All measurement was performed in the following facility;

Cosmos Corporation EMC Lab. Ohnogi

(2-3571 Ohaza-iwatachi, Ohnogi, Watarai-cho, Watarai-gun, Mie-ken 516-2102, Japan) The test firm has been filed since March 7, 2008 under CFR 47 Part.2.948.

2.3 Traceability

The calibration of measurement equipment used in the test subject to the present report is designed and operated to ensure that the measurement is traceable to national standards of measurement or equivalent abroad.

3. Summary of Test Results

Section	Test Item	Limit	Result
15. 207	AC Power Conducted Emission	See 5.2.2	Pass
15. 215 (c)	20 dB Bandwidth		Pass
15. 247 (d)	Band Edge Measurement	See 5.3.2	Pass
15. 249 (a)	The Field Strength of Emissions	See 5.1.2	Pass

Note: Model SD-1M1 and SD-1M2 have same RF circuit.

We chose and measured Model SD-1M1 representatively.

4. Test Configuration

	Instrument	Model		Cable	Length	Shield
Α	EUT	SD-1M1	a	DC Power Cord	2.0 m	×
В	Antenna		b	Antenna Cable	0.05 m	0

4.1 15. 249 (a) The Field Strength of Emissions

Non-conductive table, 0.8m high

4.2 15. 207 AC Power Conducted Emission

Non-conductive table, 0.8m high

4.3 Test Mode

In test configurations above, EUT makes continuous RF transmitting with maximum power.

5. Measurement Result

5.1 15. 249(a) The Field Strength of Emissions

5.1.1 Setting Remarks

- The data lists in "5.1.4 Measured Data" list the significant emission frequencies, measured levels, correction factor (includes cable and antenna corrections), the corrected reading, plus the limit.
- In the frequency range between 30MHz to 25 GHz (as 10th harmonics), the Electric Field Strength is measured in accordance with ANSI C63.4: 2003 and CISPR22: 1997.
- The test setup is made in accordance with ANSI C63.4: 2003.
- The antenna is measured at 1-4m height.
- The EUT is placed on the non-conductive table in the center of turntable. The height of this table is 0.8m.
- The distance between equipment and antenna is 3 m.
- The measurement is carried out with both horizontal and vertical antenna polarization.
- · The highest radiation from the equipment is recorded.
- By varying the configuration of the test sample and the cable routing, it is attempted to maximize the emission.
- The test receiver with Quasi Peak and Average detector is in compliance with CISPR 16-1.
- The spectrum analyzer is set-up as following;

(Frequency range : 30 - 1000 MHz)

✓ Resolution bandwidth
 ✓ Video bandwidth
 ✓ Detector function
 ✓ Trace Mode
 ∴ Max Hold

(Frequency range : Above 1000 MHz)

✓ Resolution bandwidth : 1 MHz
 ✓ Video bandwidth : 1 MHz
 ✓ Detector function : Peak
 ✓ Trace Mode : Max Hold

· EMI Test Receiver analyzer is set-up as following;

✓ IF bandwidth : 120 kHz (Quasi-Peak Detector) ✓ IF bandwidth : 1 MHz (Average Detector)

• See test configuration figure 4.1.

5.1.2 Minimum Standard

(a) Except as provided in paragraph (b) of this section, the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Fundamental	Field strength of fundamental	Field strength of harmonics
frequency	(microvolts/meter)	(microvolts/meter)
902-928 MHz	50	500
2400-2483.5 MHz	50	500
5725-5875 MHz	50	500
24.0-24.25 GHz	250	2500

5.1.3 Result

EUT complies with the requirement.

Uncertainty of measurement result: \pm 3.28 dB

Temperature, Humidity : Refer to each data table

Note: All measurements was performed with supply voltage varied $\pm 15\%$, but all results were same. Therefore the data with rated voltage shall be recorded in this report.

5.1.4 Measured Data

$30 \mathrm{MHz}$ to $1 \mathrm{GHz}$, $\mathrm{CH}~00$

Memo : RBW:30M~1GHz (120kHz)

LIMIT : FCC Part15 C 15. 249 (3m) 30MHz-26. 5GHz

-TEPT0-DV/RE Ver 1.80.0020

: RBW:30M~1GHz (120kHz)

$30\mathrm{MHz}$ to $1\mathrm{GHz},\,\mathrm{CH}$ 00

: SD-1M1 : None : O. Itogawa : DC12V Model Name Serial No. Operator Power Supply Job No Temp./Humi. Condition Remark : CJ09-082296E : 24°C/32% : TX CH00(2405MHz)

LIMIT : FCC Part15 C 15. 249 (3m) 30MHz-26. 5GHz

<< QP DATA >>

Memo

No	Freq.		Ant. Fac	Loss	Gain	Result	Limit	Margin	Pola.	Height	Angle	Ant	Comment
	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[H/V]	[cm]	[deg]	Туре	
1 2 3 4	39. 185 207. 249 699. 454 40. 036	23. 0 22. 1 23. 8 31. 9	14. 9 19. 3 11. 7	4. 2 5. 9 8. 9 4. 2	28. 4 27. 6 28. 5 28. 4	10. 7 15. 3 23. 5 19. 4	54. 0 54. 0	43. 3 38. 7 30. 5 34. 6	Hori. Hori. Vert.	100 100 100 100	0 0 0	BC BC LP BC	
5 6	40. 036 207. 530 702. 299	22. 1	14. 9	4. 2 5. 9 9. 0	28. 4 27. 6 28. 5	19. 4 15. 3 23. 6	54. 0	34. 6 38. 7 30. 4	Vert.	100	0 0 0	BC BC LP	

⁻TEPTO-DV/RE Ver 1.80.0020

$30\mathrm{MHz}$ to $1\mathrm{GHz}$, CH 07

: CJ09-082296E : 24°C/32% : TX CH07 (2440MHz) : : SD-1M1 : None : O. Itogawa : DC12V Model Name Serial No. Job No Temp./Humi. Condition Operator Power Supply

Memo : RBW:30M~1GHz(120kHz)

LIMIT : FCC Part15 C 15. 249 (3m) 30MHz-26. 5GHz

-TEPTO-DV/RE Ver 1.80.0020

$30\mathrm{MHz}$ to $1\mathrm{GHz}$, CH 07

: CJ09-082296E : 24°C/32% : TX CH07(2440MHz) Model Name Serial No. Operator Power Supply : SD-1M1 : None : O. Itogawa : DC12V Job No Temp./Humi. Condition Remark

: RBW:30M~1GHz(120kHz)

LIMIT : FCC Part15 C 15. 249 (3m) 30MHz-26. 5GHz

<< QP DATA >>

No	Freq.	Reading	Ant. Fac	Loss	Gain	Result	Limit	Margin	Pola.	Height	Angle	Ant	Comment
	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[H/V]	[cm]	[deg]	Туре	
1	39. 400	22. 9	11.8	4. 2	28. 4	10. 5	54. 0	43. 5	Hori.	100	0	BC	
2	132. 921	23. 7	11.1	5. 3	28. 0	12. 1	54. 0	41.9	Hori.	100	0	BC	
3 4	819. 238 39. 089	24. 3 30. 8	20. 0 11. 9	9. 5 4. 2	28. 2 28. 4	25. 6 18. 5	54. 0 54. 0	28. 4 35. 5	Hori. Vert.	100 100	0	LP BC	
5	134. 870	23. 7	11. 3	5. 3	28. 0	12. 3	54. 0 54. 0	41. 7	Vert.	100	0	BC	
6	819. 238	24. 3	20. 0	9. 5	28. 2	25. 6	54. 0	28. 4		100	0		
							•						
ŀ													
				•									

⁻TEPTO-DV/RE Ver 1.80.0020

$30\mathrm{MHz}$ to 1GHz, CH F

Job No Temp./Humi. Condition Remark : CJ09-082296E : 24°C/32% : TX CHOF (2480MHz) Model Name Serial No. : SD-1M1 : None : 0. Itogawa : DC12V

Operator Power Supply

Memo : RBW:30M~1GHz (120kHz)

LIMIT : FCC Part15 C 15.249 (3m) 30MHz-26.5GHz

⁻TEPTO-DV/RE Ver 1.80.0020

$30\mathrm{MHz}$ to $1\mathrm{GHz}$, CH F

: SD-1M1 : None : O. Itogawa : DC12V Model Name Serial No. Operator Power Supply Job No Temp./Humi. Condition : CJ09-082296E : 24°C/32% : TX CHOF(2480MHz)

Remark

: RBW:30M~1GHz (120kHz) Memo

LIMIT : FCC Part15 C 15.249 (3m) 30MHz-26.5GHz

<< QP DATA >>

No	Freq.		Ant. Fac	Loss	Gain	Result	Limit	Margin	Pola.	Height		Ant	Comment
	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[H/V]	[cm]	[deg]	Type	
1	39. 540	22. 9	11.8	4. 2	28. 4	10.5	54. 0	43. 5		100	0	BC	
2	77. 001 422. 044	23. 7 22. 6		4. 7 7. 5	28. 2 28. 4	9. 4 18. 4	54. 0 54. 0	44. 6 35. 6	Hori. Hori.	100 100	0	BC LP	
4	39. 540	30. 2		4. 2	28. 4	17. 8	54. 0	36. 2	Vert.	100	0		
5	77. 001	23.8	9. 2	4. 7	28. 2	9. 5	54. 0	44. 5	Vert.	100	0	BC	
6	422. 044	22.6	16. 7	7. 5	28. 4	18. 4	54. 0	35. 6		100	0		
l													
ł													
J													
J													
1										1 1			1

⁻TEPT0-DV/RE Ver 1.80.0020

5.1.4 Measured Data (Continued)

1GHz to 18GHz, CH 00

Memo : RBW:1GHz ∼ (1MHz)

LIMIT : FCC Part15 C 15. 249 (3m) 30MHz-26. 5GHz

$1\mathrm{GHz}$ to $18\mathrm{GHz}$, CH 00

: SD-1M1 : None : O. Itogawa : DC12V Model Name Serial No. Job No. Temp/Humi Condition : CJ09-082296E : 24°C/32% : TX CH00(2405MHz)

Operator Power Supply Remark

: RBW:1GHz~(1MHz)

LIMIT: FCC Part15 C 15. 249 (3m) 30MHz-26. 5GHz

<<AV DATA>>

No	Freq.	Reading	Ant. Fac	Loss	Gain	Result	Limit	Margin	Pola.	Height	Angle	Ant	Comment
	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[H/V]	[cm]	[deg]	Туре	
1	2404.514	66.9	28.1	-29.8	0.0	65.2	94.0	28.8	Hori.	189	181	HRN	AV
2	2404.562	73.3	28.1	-29.8	0.0	71.6	94.0	22.5	Vert.	105	180	HRN	AV
3	4811.117	37.1	32.1	-27.3	0.0	41.9	54.0	12.1	Vert.	100	269	HRN	AV

<<PEAK DATA>>

No	Freq.	Reading	Ant. Fac	Loss	Gain	Result	Limit	Margin	Pola.	Height	Angle	Ant	Comment
	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[H/V]	[cm]	[deg]	Туре	
1	2404.514	84.9	28.1	-29.8	0.0	83.2	114.0	30.8	Hori.	189	181	HRN	PK
2	2404.562	92.5	28.1	-29.8	0.0	90.8	114.0	23.2	Vert.	105	180	HRN	PK
3	4811 117	37.3	32 1	-27.3	0.0	42 1	74 0	32 0	Vert	100	269	HRN	PK

5.1.4 Measured Data (Continued)

1GHz to 18GHz, CH 07

Memo : $RBW:1GHz \sim (1MHz)$

LIMIT: FCC Part15 C 15. 249 (3m) 30MHz-26. 5GHz

1GHz to 18GHz, CH 07

Model Name Serial No. Operator Power Supply : SD-1M1 : None : O. Itogawa : DC12V Job No. Temp/Humi Condition Remark : CJ09-082296E : 24°C/32% : TX CH07(2440MHz)

Memo : RBW:1GHz ~ (1MHz)

LIMIT : FCC Part15 C 15.249 (3m) 30MHz-26.5GHz

<<AV DATA>>

No	Freq.	Reading	Ant. Fac	Loss	Gain	Result	Limit	Margin	Pola.	Height	Angle	Ant	Comment
	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[H/V]	[cm]	[deg]	Туре	
1	2439.549	64.7	28.2	-29.8	0.0	63.1	94.0	30.9	Hori.	160	234	HRN	AV
2	2440.505	72.7	28.2	-29.8	0.0	71.1	94.0	22.9	Vert.	114	197	HRN	AV
3	4878.948	34.9	32.2	-26.9	0.0	40.2	54.0	13.8	Vert.	107	36	HRN	AV

<<PEAK DATA>>

No	Freq.	Reading	Ant. Fac	Loss	Gain	Result	Limit	Margin	Pola.	Height	Angle	Ant	Comment
	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[H/V]	[cm]	[deg]	Туре	
1	2439.549	85.5	28.2	-29.8	0.0	83.9	114.0	30.1	Hori.	160	234	HRN	PK
2	2440.505	93.2	28.2	-29.8	0.0	91.6	114.0	22.4	Vert.	114	197	HRN	PK
3	1979 919	35.2	32.2	-26.0	0.0	40.5	74.0	33.5	Vart	107	36	HDN	DK

1GHz to 18GHz, CH F

Model Name Serial No. Job No. Temp/Humi : CJ09-082296E : 24°C/32% : TX CHOF (2480MHz) : SD-1M1 : None : 0. Itogawa

Operator Power Supply Condition : DC12V Remark

: RBW:1GHz~(1MHz)

LIMIT: FCC Part15 C 15. 249 (3m) 30MHz-26. 5GHz

⁻TEPTO-DV/RE Ver1.80.0020

1GHz to 18GHz, CH F

: CJ09-082296E : 24°C/32% : TX CH0F (2480MHz) : : SD-1M1 : None : O. Itogawa : DC12V Job No. Temp/Humi Condition Remark Model Name Serial No. Operator Power Supply

: RBW:1GHz~ (1MHz) Memo

LIMIT : FCC Part15 C 15. 249 (3m) 30MHz-26. 5GHz

<<AV DATA>>

No	Freq.	Reading	Ant. Fac	Loss	Gain	Result	Limit	Margin	Pola.	Height	Angle	Ant	Comment
	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[H/V]	[cm]	[deg]	Туре	
1	2480.446	67.0	28.2	-29.8	0.0	65.4	94.0	28.6	Hori.	119	309	HRN	AV
2	2479.594	73.7	28.2	-29.8	0.0	72.1	94.0	21.9	Vert.	104	338	HRN	AV
3	4959.063	34.7	32.3	-26.5	0.0	40.5	54.0	13.5	Vert.	100	323	HRN	AV

<<PEAK DATA>>

No	Freq.	Reading	Ant. Fac	Loss	Gain	Result	Limit	Margin	Pola.	Height	Angle	Ant	Comment
	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[H/V]	[cm]	[deg]	Туре	
1	2480.446	80.9	28.2	-29.8	0.0	79.3	114.0	34.7	Hori.	119	309	HRN	PK
2	2479.594	88.1	28.2	-29.8	0.0	86.5	114.0	27.5	Vert.	104	338	HRN	PK
2	4050 063	240	20.2	_26 E	0.0	40.6	74.0	22.4	1/0.04	100	202	LIDN	DV

5.1.4 Measured Data (Continued)

18GHz to 26.5GHz, CH 00

 Model Name
 : SD-1M1
 Job No
 : CJ09-082296E

 Serial No.
 : None
 Temp/Humi
 : 23°C/31%

 Operator
 : 0.1togawa
 Condition
 : CH00 (2405MHz)

Power Supply : DC12V Remark

Memo : RBW:1MHz (1G∼)

LIMIT : FCC Part15 C 15.249 (3m) 30MHz-26.5GHz

-TEPTO-DV/Ver 1.80.0020

Note: Except for measured point, AV was within a limit.

$18\mathrm{GHz}$ to $26.5\mathrm{GHz},\,\mathrm{CH}$ 00

Model Name Serial No. Operator Power Supply : SD-1M1 : None : O. Itogawa : DC12V Job No Temp/Humi Condition Remark : CJ09-082296E : 23°C/31% : CH00 (2405MHz)

: RBW:1MHz(1G~)

LIMIT : FCC Part15 C 15.249 (3m) 30MHz-26.5GHz

<<AV DATA>>

No	Freq.	Reading	Ant. Fac	Loss	Gain	Result	Limit	Margin	Pola.	Height	Angle	Ant	Comment
	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[H/V]	[cm]	[deg]	Туре	
1	19162.900	28.6	40.3	15.9	35.3	49.5	54.0	4.5	Hori.	100	0	HRN	Freq:19162.900MHz (AV)
2	21439.590	30.0	40.5	16.9	36.5	50.9	54.0	3.1	Hori.	100	0	HRN	Freq:21439.590MHz (AV)
3	24125.250	30.4	39.9	18.1	37.3	51.1	54.0	2.9	Hori.	100	0	HRN	Freq:24125.250MHz (AV)
4	19162.900	28.5	40.3	15.9	35.3	49.4	54.0	4.6	Vert.	100	0	HRN	Freq:19162.900MHz (AV)
5	21439.590	30.0	40.5	16.9	36.5	50.9	54.0	3.1	Vert.	100	0	HRN	Freq:21439.590MHz (AV)
6	24125.250	30.5	39.9	18.1	37.3	51.2	54.0	2.8	Vert.	100	0	HRN	Freq:24125.250MHz (AV)

<<PEAK DATA>>

No	Freq.	Reading	Ant. Fac	Loss	Gain	Result	Limit	Margin	Pola.	Height	Angle	Ant	Comment
	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[H/V]	[cm]	[deg]	Туре	
1	19162.900	28.7	40.3	15.9	35.3	49.6	74.0	24.4	Hori.	100	0	HRN	Freq:19162.900MHz (PK)
2	21439.590	30.1	40.5	16.9	36.5	51.0	74.0	23.0	Hori.	100	0	HRN	Freq:21439.590MHz (PK)
3	24125.250	30.5	39.9	18.1	37.3	51.2	74.0	22.8	Hori.	100	0	HRN	Freq:24125.250MHz (PK)
4	19162.900	28.6	40.3	15.9	35.3	49.5	74.0	24.5	Vert.	100	0	HRN	Freq:19162.900MHz (PK)
5	21439.590	30.1	40.5	16.9	36.5	51.0	74.0	23.0	Vert.	100	0	HRN	Freq:21439.590MHz (PK)
6	2/125 250	30.6	20.0	10 1	27.2	51.2	74.0	22.7	Vort	100	۸	HDN	Erog:24125 250MHz (DK)

5.1.4 Measured Data (Continued)

18GHz to 26.5GHz, CH 07

 Model Name
 : SD-1M1
 Job No
 : CJ09-082296E

 Serial No.
 : None
 Temp/Humi
 : 23°C/31%

 Operator
 : 0. Itogawa
 Condition
 : CH07 (2440MHz)

 Power Supply
 : DC12V
 Remark
 :

Memo : RBW:1MHz(1G∼)

LIMIT : FCC Part15 C 15. 249 (3m) 30MHz-26. 5GHz

-TEPT0-DV/Ver 1.80.0020

Note: Except for measured point, AV was within a limit.

$18\mathrm{GHz}$ to $26.5\mathrm{GHz}$, CH 07

Model Name Serial No. Operator Power Supply : SD-1M1 : None : O. Itogawa : DC12V Job No Temp/Humi Condition : CJ09-082296E : 23°C/31% : CH07 (2440MHz)

Remark

Memo : RBW:1MHz(1G~)

LIMIT : FCC Part15 C 15.249 (3m) 30MHz-26.5GHz

<<av data>>

No	Freq.	Reading	Ant. Fac	Loss	Gain	Result	Limit	Margin	Pola.	Height	Angle	Ant	Comment
	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[H/V]	[cm]	[deg]	Туре	
1	19207.010	28.6	40.3	16.0	35.3	49.6	54.0	4.4	Hori.	100	0	HRN	Freg:19207.010MHz (AV)
2	21980.940	31.1	40.6	17.1	36.3	52.5	54.0	1.5	Hori.	100	0	HRN	Freq:21980.940MHz (AV)
3	24025.050	30.2	39.9	18.1	37.3	50.9	54.0	3.1	Hori.	100	0	HRN	Freq:24025.050MHz (AV)
4	19207.010	28.5	40.3	16.0	35.3	49.5	54.0	4.5	Vert.	100	0	HRN	Freq:19207.010MHz (AV)
5	21980.940	31.2	40.6	17.1	36.3	52.6	54.0	1.4	Vert.	100	0	HRN	Freq:21980.940MHz (AV)
6	24025.050	30.3	39.9	18.1	37.3	51.0	54.0	3.0	Vert.	100	0	HRN	Freq:24025.050MHz (AV)

<<PEAK DATA>>

No	Freq.	Reading	Ant. Fac	Loss	Gain	Result	Limit	Margin	Pola.	Height	Angle	Ant	Comment
NO	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[H/V]	[cm]	[deg]	Туре	Comment
1	19207.010	28.7	40.3	16.0	35.3	49.7	74.0	24.3	Hori.	100	0	HRN	Freq:19207.010MHz (PK)
2	21980.940	31.2	40.6	17.1	36.3	52.6	74.0	21.4	Hori.	100	0	HRN	Freq:21980.940MHz (PK)
3	24025.050	30.3	39.9	18.1	37.3	51.0	74.0	23.0	Hori.	100	0	HRN	Freq:24025.050MHz (PK)
4	19207.010	28.6	40.3	16.0	35.3	49.6	74.0	24.4	Vert.	100	0	HRN	Freq:19207.010MHz (PK)
5	21980.940	31.3	40.6	17.1	36.3	52.7	74.0	21.3	Vert.	100	0	HRN	Freq:21980.940MHz (PK)
6	24025.050	30.4	30.0	10.1	37.3	51.1	74.0	22.0	Vort	100	۸	HDN	Erog:24025 050MHz (DK)

5.1.4 Measured Data (Continued)

18GHz to 26.5GHz, CH F

 Model Name
 : SD-1M1
 Job No
 : CJ09-082296E

 Serial No.
 : None
 Temp/Humi
 : 23°C/31%

 Operator
 : 0. Itogawa
 Condition
 : CH0F (2480MHz)

 Power Supply
 : DC12V
 Remark
 :

Memo : RBW:1MHz (1G∼)

LIMIT : FCC Part15 C 15. 249 (3m) 30MHz-26. 5GHz

-TEPT0-DV/Ver 1.80.0020

Note: Except for measured point, AV was within a limit.

$18\mathrm{GHz}$ to $26.5\mathrm{GHz}$, CH F

Model Name Serial No. Operator Power Supply Job No Temp/Humi Condition Remark : CJ09-082296E : 23°C/31% : CH0F (2480MHz) : SD-1M1 : None : 0. Itogawa : DC12V

Memo : RBW:1MHz(1G~)

LIMIT : FCC Part15 C 15.249 (3m) 30MHz-26.5GHz

<<AV DATA>>

No	Freq.	Reading	Ant. Fac	Loss	Gain	Result	Limit	Margin	Pola.	Height	Angle	Ant	Comment
NO	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[H/V]	[cm]	[deg]	Туре	Comment
1	20012.030	28.7	40.1	16.2	36.0	49.0	54.0	5.0	Hori.	100	0	HRN	Freq:20012.030MHz (AV)
2	21391.470	30.1	40.5	16.9	36.5	51.0	54.0	3.0	Hori.	100	0	HRN	Freq:21391.470MHz (AV)
3	23968.910	30.2	39.9	18.1	37.3	50.9	54.0	3.1	Hori.	100	0	HRN	Freq:23968.910MHz (AV)
4	20012.030	28.7	40.1	16.2	36.0	49.0	54.0	5.0	Vert.	100	0	HRN	Freq:20012.030MHz (AV)
5	21391.470	30.1	40.5	16.9	36.5	51.0	54.0	3.0	Vert.	100	0	HRN	Freq:21391.470MHz (AV)
6	23968.910	30.3	39.9	18.1	37.3	51.0	54.0	3.0	Vert.	100	0	HRN	Freq:23968.910MHz (AV)

<<PEAK DATA>>

	J 41 D/11/0/												
No	Freq.	Reading	Ant. Fac	Loss	Gain	Result	Limit	Margin	Pola.	Height	Angle	Ant	Commont
NO	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[H/V]	[cm]	[deg]	Туре	Comment
1	20012.030	28.8	40.1	16.2	36.0	49.1	74.0	24.9	Hori.	100	0	HRN	Freq:20012.030MHz (PK)
2	21391.470	30.2	40.5	16.9	36.5	51.1	74.0	22.9	Hori.	100	0	HRN	Freq:21391.470MHz (PK)
3	23968.910	30.3	39.9	18.1	37.3	51.0	74.0	23.0	Hori.	100	0	HRN	Freq:23968.910MHz (PK)
4	20012.030	28.8	40.1	16.2	36.0	49.1	74.0	24.9	Vert.	100	0	HRN	Freq:20012.030MHz (PK)
	21391.470	30.2	40.5	16.9	36.5	51.1	74.0	22.9	Vert.	100	0	HRN	Freq:21391.470MHz (PK)
- 6	23968 910	30.4	39.9	18 1	37.3	51.1	74.0	22.9	Vert	100	0	HRN	Freg:23968 910MHz (PK)

5.2 15. 207 AC Power Conducted Emission

5.2.1 Setting Remarks

- · Configure the EUT System in accordance with ANSI C63.4-2003.
- Non-conductive board (10mm thick) for EUT and non-conductive table (80cm high) for personal computer were used.
- Other power cord of support equipment is connected to another LISN to isolate its emission from the measured emission of EUT.
- The measuring port of LISN for support equipment was terminated by the 50Ω
- · Activate the EUT System and run the software prepared for the test, if necessary.
- Refer to test configuration figure 4.2.

5.2.2 Minimum Standard

15. 207 (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 $\mu\text{H}/50$ ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency of Emission (MHz)	Conducted I	imit (dBuV)
	Quasi-peak	Average
0.15-0.5	66 to 56 *	56 to 46 *
0.5-5	56	46
5-30	60	50

^{*} Decreases with the logarithm of the frequency.

5.2.3 Result

EUT complies with the requirement.

Uncertainty of measurement $\pm 2.26 \text{ dB}$ Temperature, Humidity $\pm 24^{\circ}\text{C}$, 38 %

5.2.4Measured Data

Measured Value Table

: CJ09-082296E : 24°C/38% Model Name : SD-1M1 Job No : None : 0. Itogawa : DC12V Temp/Humi Condition Serial No. Operator : Operated

Power Supply Remark

: RBW:9kHz (150k-30MHz) Memo

LIMIT : FCC 15.207(QP) FCC 15.207(AV)

-TEPTO-DV/CE Ver1.50.0128

Measured Value Table

Model Name Serial No. Operator Power Supply : SD-1M1 : None : O. Itogawa : DC12V Job No Temp/Humi Condition Remark : CJ09-082296E : 24°C/38% : Operated

Memo : RBW:9kHz(150k-30MHz)

LIMIT : FCC 15.207(QP) FCC 15.207(AV)

<< QP/AV DATA >>

C WI/NV DAIN //	Manain	i i
	Margin QP AV	Phase Comment
[MHz] [dBuV] [dBuV] [dB] [dBuV] [dBuV] [dBuV] [dBuV]	[dB] [dB]	Triase Confinerit
1 0.20330 5.0 0.0 10.1 15.1 10.1 63.5 53.5		La
2 0.33700 -0.8 -5.2 10.1 9.3 4.9 59.3 49.3		La
3 0.73270 -0.6 -5.1 10.1 9.5 5.0 56.0 46.0		
4 2.65750 -0.6 -5.0 10.2 9.6 5.2 56.0 46.0		
5 7.59600 1.6 -3.0 10.5 12.1 7.5 60.0 50.0		
6 21.50900 5.2 -0.7 11.1 16.3 10.4 60.0 50.0		
7 0.22900 -0.4 -4.7 10.1 9.7 5.4 62.5 52.5 8 0.32920 -0.7 -5.1 10.1 9.4 5.0 59.5 49.5		
9 0.76285 -0.5 -4.8 10.1 9.6 5.3 56.0 46.0	1	
10 2.25450 -0.5 -4.8 10.1 9.6 5.3 56.0 46.0	1	
11		
12 21.11700 4.6 -0.9 11.0 15.6 10.1 60.0 50.0		
	İ	
	l I	

⁻TEPTO-DV/CE Ver1.50.0128

5.3 15. 247(d) Band Edge Measurement

5.3.1 Setting Remarks

- EUT directly connects to the spectrum analyzer via calibrated coaxial cable and 10 dB attenuator.
- The loss of the coaxial cable is maximum 1 dB.
- The emission at the band edge is measured by using the marker function of spectrum analyzer.
- The peak of the in-band emission is measured by using the marker to peak function of spectrum analyzer.
- This measurement is repeated in both side of the spectrum.
- The spectrum analyzer is set-up as following;

✓ Frequency Span : 30MHz

✓ Resolution bandwidth : 300kHz (1% of frequency span)

✓ Video bandwidth :> RBW
 ✓ Sweep : Auto
 ✓ Detector function : Peak
 ✓ Trace Mode : Max Hold

- Where bandedge spectrum is too rough to find precise edge point, larger RBW i.e.
 1MHz, 3MHz shall be applied as severer condition.
- See test configuration figure 4.2.

5.3.2 Minimum Standard

In any 100kHz bandwidth outside the frequency band in which the transmitter is operating, emissions shall be at least 20 dB below the fundamental emission or shall not exceed the following field strength limits. Emissions falling in the restricted bands of 15.205 shall not exceed the following field strength limits:

Frequency of Emission (MHz)	Limit of the band edge spurious emission (dBµV)			
Below 2,400.0	Peak	Average		
Above 2,483.5	74	54		

5.3.3 Result

EUT complies with the requirement.

Uncertainty of measurement result: $\pm 2.6 \text{ dB}$ Temperature, Humidity : 24°C , 40%

5.3.4 Measured Data

The band edge emissions are calculated as following;

(Horizontal)

CH	Pmax	Pav	Pdev	c.f.	Ebe	Eav	Limit(Ebe)	Limit(Eav)	Margin(Ebe)	Margin(Eav)
00 (2405 MHz)	90.54	69.54	43.10	-1.7	45.7	24.7	74.0	54.0	28.3	29.3
0F (2480 MHz)	90.06	69.44	39.09	-1.7	49.3	28.7	74.0	54.0	24.7	25.4

(Vertical)

CH	Pmax	Pav	Pdev	c.f.	Ebe	Eav	Limit(Ebe)	Limit(Eav)	Margin(Ebe)	Margin(Eav)
00 (2405 MHz)	95.75	75.27	45.40	-1.7	48.7	28.2	74.0	54.0	25.4	25.8
0F (2480 MHz)	96.26	75.13	41.29	-1.7	53.3	32.1	74.0	54.0	20.7	21.9

NOTE Vertical and Horizontal were measured and Vertical was confirmed as the worst.

 P_{max} : Maximum peak power of the fundamental.

Pav : Average of the fundamental.

 P_{dev} : The amplitude delta between the peak power and the band

edge emission.

E_{be} : Band edge emission.

E_{av} : Average of the band edge emission.

5.4 15. 215 (c) 20 dB Bandwidth

6. Photos

6.1 Setup Photo (Radiated Emission)

30 MHz - 1 GHz

 $1~\mathrm{GHz}\text{-}18~\mathrm{GHz}$

Cosmos Corporation

6.1 Setup Photo (Continued)

 $18~\mathrm{GHz} - 26.5~\mathrm{GHz}$

Close up photo

Cosmos Corporation

6.2 Setup Photo (Conducted Emission)

Cosmos Corporation

7. List of Test Measurement Instruments

7.1 Radiated Emission Measurement

Instruments	Manufacturer	Model / Type	Serial No.	Calibration Date Next Calibration
Programmable AC/DCPower Source	NF Corporation	ES18000W	425779	Confirmed Before Test
EMI Test Receiver	ROHDE& SCHWARZ	ESIB40	100211	February, 2009 February, 2010
Biconical Antenna (30to 300MHz)	SCHWARZBECK	VHBB9124(Balun) BBA9106(Elements)	9124-311	September,2008 September,2009
LogPeriodic Antena (300MHz to1GHz)	SCHWARZBECK	UHALP9108A	645	September,2008 September,2009
Horn Antenna	SCHWARZBECK	BBHA9120D	443	September,2008 September,2009
Horn Antenna	ETS LINDGREN	3160-08	00033782	September,2008 September,2009
Horn Antenna	ETS LINDGREN	3160-09	00034723	September,2008 September,2009

7.2 AC Power Conducted Emission Measurement

Instruments	Manufacturer	Model / Type	Serial No.	Calibration Date Next Calibration
Spectrum Analyzer	ADVANTEST CORPORATION	R3132	140501174	July,2008 July,2010
EMI Test Receiver	ROHDE& SCHWARZ	ESCS30 100335		August,2008 August,2009
Artificial-Mains Network	KYORITSU CORPORATION	KNW-341C 8-1659		July,2008 July,2009
Transient Limiter	AGILENT TECHNOLOGIES	11947A	3107A03745	October,2008 October,2009
RF Selector	Techno Science Japan Corp.	RFM-E221	3148	Confirmed Before Test
AC Power Source	LEADER ELECTRONICS CORP.	LPS-163A	5060010	