Problèmes de Synthèse : Limites et Continuité

Baccalauréat Scientifique

Problème 1 : Étude complète d'une fonction rationnelle

Soit la fonction f définie par :

$$f(x) = \frac{x^3 - 3x + 2}{x^2 - 4}$$

1. Domaine de définition

- (a) Déterminer l'ensemble de définition \mathcal{D}_f de f.
- (b) Factoriser le numérateur et le dénominateur.

2. Limites et asymptotes

- (a) Calculer les limites aux bornes de \mathcal{D}_f .
- (b) Déterminer les éventuelles asymptotes verticales, horizontales et obliques.
- (c) Étudier la position de la courbe par rapport à ses asymptotes.

3. Continuité et prolongement

- (a) Étudier la continuité de f sur \mathcal{D}_f .
- (b) Peut-on prolonger f par continuité aux points exclus? Si oui, définir ce prolongement.
- (c) Étudier la dérivabilité du prolongement.

4. Théorème des valeurs intermédiaires

- (a) Montrer que l'équation f(x) = 1 admet exactement trois solutions réelles.
- (b) Déterminer un encadrement d'amplitude 0.01 de la solution dans $[2, +\infty[$.

5. Bijection réciproque

- (a) Montrer que f réalise une bijection de]-2,0[sur un intervalle J à préciser.
- (b) Justifier que f^{-1} est dérivable sur J et calculer $(f^{-1})'(\frac{1}{2})$.

Problème 2 : Fonction avec paramètres et exponentielle

Soit la fonction g définie par :

$$g(x) = \begin{cases} ae^{-1/x^2} & \text{si } x > 0\\ bx + c & \text{si } x \le 0 \end{cases}$$

où a, b, c sont des réels.

1. Continuité en 0

- (a) Déterminer les relations entre a, b, c pour que g soit continue en 0.
- (b) Montrer que si g est continue en 0, alors elle est continue sur \mathbb{R} .

2. Dérivabilité en 0

- (a) Donner les conditions pour que g soit dérivable en 0.
- (b) Montrer que si g est dérivable en 0, alors b = c = 0.
- 3. Étude pour b = c = 0 On suppose b = c = 0 et a = 1.
 - (a) Calculer la dérivée de g sur \mathbb{R}^* .
 - (b) Montrer que g est de classe C^{∞} sur \mathbb{R} .
 - (c) Démontrer que $g^{(n)}(0) = 0$ pour tout $n \in \mathbb{N}$.

4. Théorème de la bijection

- (a) Montrer que g réalise une bijection de $\mathbb R$ sur un intervalle I à préciser. item Étudier la continuité et la dérivabilité de g^{-1} .
- 5. Limites et croissance comparée
 - (a) Calculer $\lim_{x \to +\infty} x^5 g(x)$.
 - (b) Montrer que $\lim_{x\to 0} \frac{g(x)}{x^n} = 0$ pour tout $n \in \mathbb{N}$.

Problème 3 : Fonction trigonométrique et périodicité

Soit la fonction $h(x) = \frac{\sin x}{x}$ pour $x \neq 0$ et h(0) = 1.

1. Continuité et dérivabilité

- (a) Montrer que h est continue sur \mathbb{R} .
- (b) Étudier la dérivabilité de h en 0.

2. Variations et extremums

- (a) Calculer la dérivée de h sur \mathbb{R}^* .
- (b) Dresser le tableau de variations sur $[0, 2\pi]$.
- (c) Déterminer les extremums locaux de h.

3. Intégrale et aire On pose $H(x) = \int_0^x h(t)dt$.

- (a) Montrer que H est bien définie sur \mathbb{R} .
- (b) Calculer $\lim_{x \to +\infty} H(x)$.
- (c) Montrer que $|H(x)| \le 2$ pour tout $x \in \mathbb{R}$.

4. Équation fonctionnelle

- (a) Montrer que h n'est pas périodique.
- (b) Résoudre l'équation h(x) = h(2x) sur \mathbb{R}^* .

5. Théorème de Rolle

- (a) Montrer que l'équation h'(x) = 0 admet une infinité de solutions.
- (b) En appliquant le théorème de Rolle à xh(x), montrer que l'équation $\tan x = x$ admet une solution dans chaque intervalle $]k\pi, (k+\frac{1}{2})\pi[$ pour $k \ge 1$.

Problème 4 : Problème de synthèse avec valeur absolue

Soit la fonction $k(x) = \frac{|x^2-1|}{x-2}$.

1. Domaine et expression

- (a) Déterminer le domaine de définition.
- (b) Donner une expression de k sans valeur absolue.

2. Limites et continuité

- (a) Étudier les limites aux bornes du domaine.
- (b) Étudier la continuité sur \mathcal{D}_k .
- (c) Prolonger par continuité si possible.

3. Asymptotes

- (a) Déterminer les asymptotes à la courbe.
- (b) Étudier la position relative par rapport aux asymptotes.

4. Dérivabilité

- (a) Étudier la dérivabilité en x = 1.
- (b) Calculer la dérivée sur chaque intervalle.

5. Théorème des valeurs intermédiaires généralisé

- (a) Montrer que k réalise une bijection de $]-\infty,-1[$ sur un intervalle à déterminer.
- (b) Montrer que l'équation k(x) = m admet toujours au moins une solution pour m > 0.
- (c) Pour quelles valeurs de m y a-t-il exactement trois solutions?

6. Étude de fonction composée Soit $m(x) = k(e^x)$.

- (a) Déterminer le domaine de définition.
- (b) Calculer $\lim_{x \to -\infty} m(x)$.
- (c) Étudier la continuité et la dérivabilité de m.