Intelligent Systems Programming

Lecture 6: Representations of Boolean Expressions & Binary Decision Diagrams (BDDs)

Today's Program

Representations

- Boolean expressions and Boolean functions
- Desirable properties of representations of Boolean functions
- Examples: Truth tables, cCNF.

Binary Decision Diagrams

If-then-else normal form (INF)

BREAK

- Decision trees
- Ordered Binary Decision Diagrams (OBDDs)
- Reduced Ordered Binary Decision Diagrams (ROBDDs / BDDs)
- Unique Table representation

Boolean Expressions

Boolean Expressions

$$t := x \mid 0 \mid 1 \mid \neg t \mid t \land t \mid t \lor t \mid t \Rightarrow t \mid t \Leftrightarrow t$$

Precedence

$$\neg$$
, \wedge , \vee , \Rightarrow , \Leftrightarrow

- Equivalence: ≡
- Set of truth values: $B = \{0, 1\}$
- Truth assignments

e.g.
$$t [0/x, 1/y]$$

Boolean Functions

A boolean (n-ary) function

$$f: \mathbf{B}^n \rightarrow \mathbf{B}$$

Boolean expression E defines Boolean function

$$f(x_1,x_2,...,x_n) = E(x_1,x_2,...,x_n)$$

Examples

$$f(x_1,x_2) = x_1 \lor x_2$$

$$f(x_1,x_2,x_3) = x_1 \Leftrightarrow \neg x_2$$

Properties of Boolean Functions

Equality

$$f = g$$
 iff $\forall x . f(x) = g(x)$

Order of arguments matter

$$f(x,y) = x \Longrightarrow y \neq g(y,x) = x \Longrightarrow y$$

Several expressions may represent same function

$$f(x,y) = x \Rightarrow y$$

$$= \neg x \lor y$$

$$= (\neg x \lor y) \land (\neg x \lor x)$$

$$= \cdots$$

Number of Boolean Functions

Number of Boolean functions $f: \mathbf{B}^n \to \mathbf{B}$

X ₁	* * *	X_n	f
0		0	f(0,,0)
0		1	<i>f</i> (0,,1)
0		0	f(0,,0)
0		1	f(0,,1)
1		0	f(1,,0)
1		1	f(1,,1)
1		0	f(1,,0)
1		1	f(1,,1)

$$2^{(2^n)}$$

Representation of Boolean functions

Desirable properties:

- 1. Compact
- 2. Equality check easy
- 3. Evaluating truth-value of an assignment easy
- 4. Boolean operations efficient
- 5. SAT check efficient
- 6. Tautology check efficient
- 7. Canonicity: exactly one representation of each Boolean function. Solves 2, 5, and 6, why?

Compact representations are rare

- $2^{(2^n)}$ boolean functions in n variables...
 - How do we find a single compact representation for them all?
- The fraction of Boolean functions of n variables with a polynomial size in $n \to 0$ for $n \to \infty$

Curse of Boolean function representations:

This problem exists for all representations we know!

Truth tables

Compact

table size $O(2^n)$

- Equality check easy canonical
- Easy to evaluate the truth-value of an assignment log m or constant
- Boolean operations efficient linear
- SAT check efficient linear
- Tautology check efficient linear

X	У	Z	f(x,y,z)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

CNF-representation

- There exists a CNF of every expression
- Given a truth table representation of a Boolean formula, can we easily define a CNF of the formula?

X	У	Z	е
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

CNF from off-tuples

• Example CNF of *e* - use *off-tuples*

X	У	Z	е	e≡
0	0	0	0	$\neg (\neg x \land \neg y \land \neg z) \land$
0	0	1	1	
0	1	0	0	$\neg (\neg x \wedge y \wedge \neg z) \wedge$
0	1	1	1	
1	0	0	0	$\neg (x \land \neg y \land \neg z) \land$
1	0	1	1	
1	1	0	1	
1	1	1	1	

CNF from off-tuples

• Example CNF of *e* - use *off-tuples*

X	У	Z	е	e ≡
0	0	0	0	$(\neg \neg x \lor \neg \neg y \lor \neg \neg z) \land$
0	0	1	1	
0	1	0	0	$(\neg \neg x \lor \neg y \lor \neg \neg z) \land$
0	1	1	1	
1	0	0	0	$(\neg x \lor \neg \neg y \lor \neg \neg z) \land$
1	0	1	1	
1	1	0	1	
1	1	1	1	

CNF from off-tuples

• Example CNF of *e* - use *off-tuples*

X	У	Z	е	e <i>≡</i>
0	0	0	0	$(x \vee y \vee z) \wedge$
0	0	1	1	
0	1	0	0	$(x \vee \neg y \vee z) \wedge$
0	1	1	1	
1	0	0	0	$(\neg x \lor y \lor z)$
1	0	1	1	
1	1	0	1	
1	1	1	1	

cCNF

- The special CNF-representations produced from offtuples are canonical and called cCNF
- Are cCNF minimum size CNF representations?
 - Hint: look at representation of False
- Easy accessibility?

Binary Decision Diagrams

If-then-else operator

The if-then-else Boolean operator is defined by

$$x \rightarrow y_1, y_0 \equiv (x \wedge y_1) \vee (\neg x \wedge y_0)$$

We have

$$(x \rightarrow y_1, y_0) [1/x] \equiv (1 \land y_1) \lor (0 \land y_0) \equiv y_1$$

 $(x \rightarrow y_1, y_0) [0/x] \equiv (0 \land y_1) \lor (1 \land y_0) \equiv y_0$

• What is $x \rightarrow 1$, 0 equivalent to? And $x \rightarrow 0$, 1?

If-then-else operator

- All operators in propositional logic can be expressed using only → operators with
 - $-\rightarrow$ expressions, 0 and 1 for y_1 and y_0
 - tests on un-negated variables
 - Variables only as tests
- What are if-then-else expressions for
 - $-x, \neg x$
 - $-x \wedge y$
 - $-x\vee y$
 - $-x \Rightarrow y$

If-then-else Normal Form (INF)

An *if-then-else* Normal Form (INF) is a Boolean expression build entirely from the if-then-else operator and the constants 0 and 1 such that all test are performed only on un-negated variables

 Proposition: any Boolean expression t is equivalent to an expression in INF

Proof:

 $t \equiv x \rightarrow t[1/x], t[0/x]$ (Shannon expansion of t)

Apply the Shannon expansion recursively on *t*. The recursion must terminate in 0 or 1, since the number of variables is finite

Expression t with 4 variables: $t = x_1, x_2, x_3, x_4$ $t_0 = t[0/x_1]$ $t_1 = t[1/x_1]$

$$t \equiv X_1 \rightarrow t_1, t_0$$

Expression *t* with 4 variables:

t

 X_1, X_2, X_3, X_4

 $t_1 = t[1/x_1]$

$$t_0 = t[0/x_1]$$

$$t_{00} = t_0 [0/x_2]$$

$$t_{01} = t_0 [1/x_2]$$

$$t_{10} = t_1[0/x_2]$$

$$t \equiv X_1 \rightarrow t_1, t_0$$

 $t_0 \equiv X_2 \rightarrow t_{01}, t_{00}$
 $t_1 \equiv X_2 \rightarrow t_{11}, t_{10}$

 $t_1 = X_2 \rightarrow t_{11}, t_{10}$

 $t_{01} \equiv X_3 \rightarrow t_{011}, t_{010}$

 $t_{10} \equiv X_3 \rightarrow t_{101}, t_{110}$

• Example: $t = (x_1 \land y_1) \lor (x_2 \land y_2)$

• Shannon expansion of t in order x_1, y_1, x_2, y_2

$$t \equiv x_1 \rightarrow t_1, t_0$$

- Example: $t = (x_1 \land y_1) \lor (x_2 \land y_2)$
- Shannon expansion of t in order x_1, y_1, x_2, y_2

$$t \equiv x_1 \rightarrow t_1, t_0$$

$$t_0 \equiv y_1 \rightarrow t_{01}, t_{00}$$

$$t_1 \equiv y_1 \rightarrow t_{11}, t_{10}$$

- Example: $t = (x_1 \land y_1) \lor (x_2 \land y_2)$
- Shannon expansion of t in order x_1, y_1, x_2, y_2

$$t \equiv x_1 \rightarrow t_1, t_0$$

$$t_0 \equiv y_1 \rightarrow t_{01}, t_{00}$$

$$t_1 \equiv y_1 \rightarrow 1, t_{10}$$

- Example: $t = (x_1 \land y_1) \lor (x_2 \land y_2)$
- Shannon expansion of t in order x_1, y_1, x_2, y_2

$$t \equiv x_{1} \to t_{1}, t_{0}$$

$$t_{0} \equiv y_{1} \to t_{01}, t_{00}$$

$$t_{1} \equiv y_{1} \to 1, t_{10}$$

$$t_{01} \equiv x_{2} \to t_{011}, 0$$

$$t_{00} \equiv x_{2} \to t_{001}, 0$$

$$t_{10} \equiv x_{2} \to t_{101}, 0$$

Decision Tree

• Example: $t = (x_1 \land y_1) \lor (x_2 \land y_2)$

• Shannon expansion of t in order x_1, y_1, x_2, y_2

$$t \equiv x_{1} \to t_{1}, t_{0}$$

$$t_{0} \equiv y_{1} \to t_{01}, t_{00}$$

$$t_{1} \equiv y_{1} \to 1, t_{10}$$

$$t_{01} \equiv x_{2} \to t_{011}, 0$$

$$t_{00} \equiv x_{2} \to t_{001}, 0$$

$$t_{10} \equiv x_{2} \to t_{101}, 0$$

$$t_{011} \equiv y_{2} \to 1, 0$$

$$t_{001} \equiv y_{2} \to 1, 0$$

$$t_{101} \equiv y_{2} \to 1, 0$$

$$t = x_1 \rightarrow (y_1 \rightarrow 1, (x_2 \rightarrow (y_2 \rightarrow 1, 0), 0)),$$

 $(y_1 \rightarrow (x_2 \rightarrow (y_2 \rightarrow 1, 0), 0), (x_2 \rightarrow (y_2 \rightarrow 1, 0), 0))$

Decision Tree

• Example: $t = (x_1 \land y_1) \lor (x_2 \land y_2)$

• Shannon expansion of t in order x_1, y_1, x_2, y_2

$$t \equiv x_{1} \to t_{1}, t_{0}$$

$$t_{0} \equiv y_{1} \to t_{01}, t_{00}$$

$$t_{1} \equiv y_{1} \to 1, t_{10}$$

$$t_{01} \equiv x_{2} \to t_{011}, 0$$

$$t_{00} \equiv x_{2} \to t_{001}, 0$$

$$t_{10} \equiv x_{2} \to t_{101}, 0$$

$$t_{011} \equiv y_{2} \to 1, 0$$

$$t_{001} \equiv y_{2} \to 1, 0$$

$$t_{101} \equiv y_{2} \to 1, 0$$

$$t = x_1 \rightarrow (y_1 \rightarrow 1, (x_2 \rightarrow (y_2 \rightarrow 1, 0), 0)),$$

 $(y_1 \rightarrow (x_2 \rightarrow (y_2 \rightarrow 1, 0), 0), (x_2 \rightarrow (y_2 \rightarrow 1, 0), 0))$

Decision Tree

• Example: $t = (x_1 \land y_1) \lor (x_2 \land y_2)$

• Shannon expansion of t in order x_1, y_1, x_2, y_2^t

$$t \equiv x_1 \rightarrow t_1, t_0$$

$$t_0 \equiv y_1 \rightarrow t_{01}, t_{00}$$

$$t_1 \equiv y_1 \rightarrow 1, t_{10}$$

$$t_{01} \equiv x_2 \rightarrow t_{011}, 0$$

$$t_{011} \equiv y_2 \rightarrow 1, 0$$

$$t = x_1 \rightarrow (y_1 \rightarrow 1, (x_2 \rightarrow (y_2 \rightarrow 1, 0), 0)),$$

 $(y_1 \rightarrow (x_2 \rightarrow (y_2 \rightarrow 1, 0), 0), (x_2 \rightarrow (y_2 \rightarrow 1, 0), 0))$

Reduction I: Substitute Identical Subtrees

- Example: $t = (x_1 \land y_1) \lor (x_2 \land y_2)$
- Shannon expansion of t in order x_1, y_1, x_2, y_2

$$t = x_1 \rightarrow t_1, t_0$$

$$t_0 = y_1 \rightarrow t_{01}, t_{01}$$

$$t_1 = y_1 \rightarrow 1, t_{01}$$

$$t_{01} = x_2 \rightarrow t_{011}, 0$$

$$t_{011} = y_2 \rightarrow 1, 0$$

Result: an Ordered Binary Decision Diagram (OBDD)

Reduction II: remove redundant tests

- Example: $t = (x_1 \land y_1) \lor (x_2 \land y_2)$
- Shannon expansion of t in order x_1, y_1, x_2, y_2

$$t = x_1 \rightarrow t_1, t_{01}$$
 $t_1 = y_1 \rightarrow 1, t_{01}$
 $t_{01} = x_2 \rightarrow t_{011}, 0$
 $t_{011} = y_2 \rightarrow 1, 0$

Result: a Reduced Ordered Binary Decision Diagram (ROBDD) [often called a BDD]

Reductions

Uniqueness requirement

Non-redundant tests requirement

Canonicity of ROBDDs

• Canonicity Lemma: for any function $f: \mathbf{B}^n \to \mathbf{B}$ there is exactly one ROBDD u with a variable ordering $x_1 < x_2 < ... < x_n$ such that $f_u = f(x_1,...,x_n)$

Proof (by induction on *n*)

Read on your own!

Practice

What are the ROBDDs of

- -x
- -1
- -0
- $-x \wedge y$

order x, y

$$-(x \Longrightarrow y) \land z$$

order x, y, z

Size of ROBDDs

- ROBDDs of many practically important Boolean functions are small
- Do all functions have polynomial ROBDD size?
 NO
 - ROBDDs do not escape the curse of Boolean function representation

Size of ROBDDs

- The size of an ROBDD depends heavily on the variable ordering
- Example: $t = (x_1 \land y_1) \lor (x_2 \land y_2)$
- Build ROBDD of t in order x_1, x_2, y_1, y_2

Size of ROBDDs

The size of an ROBDD depends heavily on the variable ordering

$$(x_1 \wedge y_1) \vee (x_2 \wedge y_2) \vee ... \vee (x_n \wedge y_n)$$

$$x_1 < y_1 < x_2 < y_2 < \dots < x_n < y_n$$

$$x_1 < x_2 < \dots < x_n < y_1 < x_2 < \dots < y_n$$

BDD construction

What we just saw:

- 1. Make a Decision Tree of the Boolean expression

Uniqueness

Non-redundant tests

Next week:

Reduce the decision tree to a BDD while building it

Unique Table Representation

Node Attributes

```
unique node identifier {0,1,2,3,...}
```

- *i* variable index $\{1,2,...,n,n+1\}$
- I node identifier of low
- h node identifier of high

Represent Unique Table by two tables T and H

$$T: u \rightarrow (i,l,h)$$
 H is the inverse of T:

$$H: (i,l,h) \rightarrow u$$
 $T(u) = (i,l,h) \iff H(i,l,h) = u$

Primitive Operations on T and H

$$T: u \mapsto (i, l, h)$$

$$init(T)$$

$$u \leftarrow add(T, i, l, h)$$

$$var(u), low(u), high(u)$$

initialize T to contain only 0 and 1 allocate a new node u with attributes (i, l, h) lookup the attributes of u in T

$$H: (i, l, h) \mapsto u$$

$$init(H)$$

$$b \leftarrow member(H, i, l, h)$$

$$u \leftarrow lookup(H, i, l, h)$$

$$insert(H, i, l, h, u)$$

initialize H to be empty check if (i, l, h) is in Hfind H(i, l, h)make (i, l, h) map to u in H