Примерный вариант (теория).1

- 1. Записать правую разностную производную первого порядка. Указать ее порядок точности. $(2 \, \textit{балла})$
- 2. Сформулировать необходимое и достаточное условие того, что квадратурная формула является формулой Гаусса. (*3 балла*)
- 3. Описать метод неопределенных коэффициентов для получения формул численного дифференцирования. (*4 балла*)
- 4. Записать расчетные формулы семейства методов Рунге-Кутты 2-го порядка. Привести пример метода Рунге-Кутты 2-го порядка и дать его геометрическую интерпретацию. (4 балла)

¹ Максимальное количество баллов - 13 баллов, минимальное - 8 баллов

Примерный вариант (практика).1

1. Вычислить приближенно первую производную функции $y=2x+\sqrt[4]{x}$ в точке x=1 с помощью разностной формулы, имеющей второй порядок аппроксимации.

					-	-	-	
x	1	2	3					(4 балла
y(x)	3	5,189	7,316					(4 балла

2. Используя правило Рунге повысить порядок точности численного дифференцирования функции $y=2x+\sqrt[4]{x}$ в точке x=3 с использованием центральной разностной производной.

3. Вычислить определенный интеграл $\int_{1/2}^{2} (3x-6) \, dx$, использую квадратурную форму- y трапеций. При расчетах использовать равномерную сетку x_i ,

(4 балла)

4. С использование квадратурной формулы центральных прямоугольников и правила Рунге приближенно вычислить $\int\limits_{1}^{1}x^{2}\,dx$ с шагом h=1 и s=1/2. (5 баллов)

5. Построить квадратурную формулу наивысшей алгебраической точности (метод Гаусса) для $\int\limits_0^2 f(x)\,dx$ при n=2. (5 баллов)

i = 0, 1, 2, 3.

¹Максимальное количество баллов - 22 баллов, минимальное - 13 баллов