

# The Status Quo of Prompt Engineering

Greg DeCarlo
The future is now
<a href="https://linktr.ee/mrinreality">https://linktr.ee/mrinreality</a>

## Agenda

Intro to Prompt Engineering

Prompting Discoveries

Prompting Techniques

Prompt Engineering

Agentic Engineering

Additional Research

Final tips & takeaways

## Intro to Prompt Engineering

#### What is Prompt Engineering?

 Prompt engineering is the process of structuring an instruction that can be interpreted and understood by a generative Al model. A prompt is natural language text describing the task that an Al should perform.

#### Why is Prompt Engineering Important?

Ensures AI models perform tasks accurately.
 Enhances the effectiveness and efficiency of AI systems. Critical for developing advanced AI capabilities.



## Prompting Discoveries



#### **In-Context Learning**

In-context learning is enabled by a model's ability to temporarily learn from prompts. It is an emergent property of large language models.

Increases the model's efficacy at different rates in larger models compared to smaller ones.

Reference: <u>Emergent Abilities of Large Language</u> <u>Models</u>



#### **Emergent Abilities**

Temporary Nature: Unlike training and finetuning, in-context learning carries temporary contexts or biases.

The result of "mesa-optimization" within transformer layers, described as a form of meta-learning or "learning to learn."

Reference: What Can Transformers Learn In-Context?

## Prompting Techniques



#### **Zero-Shot Prompting**

LLMs are provided with a task without any prior examples.

Shows that models can reason step-by-step without prior examples.

Reference: Finetuned Language Models Are Zero-Shot Learners



#### **Few-Shot Prompting**

LLMs are given a few examples of a task before being asked to perform it.

Improves performance in tasks where providing some context is necessary.

Reference: <u>Language Models are Few-Shot</u> <u>Learners</u>

## Prompt Engineering



#### **Chain-of-Thought (CoT) Prompting**

Technique allowing LLMs to solve problems in intermediate steps before giving a final answer.

Improves reasoning by mimicking a train of thought. Effective for tasks requiring logical thinking and multistep solutions.

Reference: Chain-of-Thought Prompting Elicits
Reasoning in Large Language Models



#### Chain-of-Symbol (CoS) Prompting

Assists LLMs with spatial reasoning in text using random symbols.

Enhances reasoning and performance by interpreting spacing in text.

Reference: <u>Chain-of-Symbol Prompting Elicits Planning</u> in Large Language Models

## Agentic Engineering



#### **Self-Consistency Decoding:**

Performs several chain-of-thought rollouts and selects the most reached conclusion.

Enhances the consistency and reliability of the model's reasoning.

Reference: Self-Consistency Improves Chain of Thought Reasoning in Language Models



#### **Generated Knowledge Prompting**

First prompts the model to generate relevant facts, then uses those facts to complete the prompt.

Increases completion quality by conditioning on relevant information.

Reference: Generated Knowledge Prompting for Commonsense Reasoning

## Agentic Engineering (cont.)



#### **Prompt Chaining**

Combines multiple prompts in sequence to guide the model through complex tasks.

Allows for more structured and comprehensive responses by breaking down tasks into smaller, manageable parts.

Reference: Prompt Chaining



#### Tree of Thoughts (ToT)

Generalizes chain-of-thought by generating multiple possible next steps and evaluating them.

Uses methods like breadth-first and beam search to solve problems with deliberate, structured steps.

#### References:

- <u>Large Language Model Guided Tree-of-Thought</u>
- Tree of Thoughts: Deliberate Problem Solving with Large Language Models

### Additional Research



#### **Maieutic Prompting**

Similar to Tree-of-Thought, prompts the model to explain parts of its explanation recursively.

Enhances logical consistency and improves performance on complex reasoning tasks.

Reference: <u>Maieutic Prompting: Logically</u>
<u>Consistent Reasoning with Recursive</u>
<u>Explanations</u>



#### Least-to-Most Prompting

Prompts the model to first list sub-problems, then solve them in sequence.

Allows for complex problem solving by breaking down tasks into simpler steps.

Reference: <u>Least-to-Most Prompting Enables</u> <u>Complex Reasoning in Large Language Models</u>

## Additional Research (cont.)



#### **Complexity-Based Prompting**

Performs multiple chain-of-thought rollouts, selects the longest chains, and then the most reached conclusion.

Enhances multi-step reasoning by considering the most complex and thoughtful chains of reasoning.

Reference: <u>Complexity-Based Prompting for</u> <u>Multi-Step Reasoning</u>



#### **Self-Refinement**

Prompts the model to solve a problem, critique its solution, and then solve the problem again considering the critique.

Iteratively improves the quality of the solution through self-feedback.

Reference: Self-Refine: Iterative Refinement with Self-Feedback

## Future Directions and Challenges

#### **Future Directions**

- Advancements in Techniques: Continued development of new prompting methods like Tree of Thoughts and Maieutic Prompting
- Improved Model Capabilities: Enhancements in model size and complexity to handle more sophisticated prompts
- Integration with Other Al Technologies: Combining prompting techniques with other Al advancements for more robust applications
- Challenges: Handling Ambiguity: Ensuring prompts are understood accurately despite inherent ambiguities in natural language
- **Bias and Fairness:** Addressing biases that may arise from the pre-training dataset or the prompts themselves
- Scalability: Managing the computational resources required for larger models and more complex prompting techniques



## Thank you

Greg DeCarlo

The future is now

https://linktr.ee/mrinreality

