

Algorithmics

Dynamic programming

Vicente García Díaz – garciavicente@uniovi.es

University of Oviedo, 2016

Table of contents

Dynamic programming

- 1. Basic concepts
- 2. Examples of use
 - 1. Fibonacci series
 - 2. Combinations
 - 3. The knapsack problem (0/1)
 - 4. The problem of the change
 - 5. Cheaper travel on the river

Problems with Divide and Conquer

- The idea was to divide the original problem in subproblems and combine them to solve the original problem
 - Drawbacks:
 - Not suitable when the number of subproblems is very high and then the complexity is not polynomial
 - Not suitable when generating a number of subproblems that are repeated and therefore are solved several times in the same execution

Dynamic Programming

- The idea is to divide the original problem in subprobems and combine them to solve the original problem
 - Improvement:
 - When the number of different problems is polynomial, we can solve each subproblem once and store the solution for later use
 - The idea is to avoid calculating the same subproblem twice, usually maintaining a table of known results

Pseudocode (Divide and Conquer)

```
public static long fibonacci_dv(int n) {
  if (n==0) return 0;
  else if (n==1) return 1;
  else return fibonacci_dv(n-1) + fibonacci_dv(n-2);
}
```

Call tree (Divide and Conquer)

Pseudocode

```
public static int fibonacci pd(int n) {
  int[] f = new int[n+1]; //0, 1, 2, 3, 4, 5, 6
  f[0] = 0; f[1] = 1; //we know it
  for (int i= 2; i<n+1; i++)
      f[i] = f[i-1] + f[i-2];
  return f[n];
                                    f[2] = f[1] + f[0] = 1 + 0 = 1
                                    f[3] = f[2] + f[1] = 1+1 = 2
                                    f[4] = f[3] + f[2] = 2+1 = 3
                                    f[5] = f[4] + f[3] = 3+2 = 5
                                    f[6] = f[5] + f[4] = 5+3 = 8
```

Divide and Conquer vs Dynamic Programming

- Divide and Conquer
 - Descending technique (progressive refinement)
 - We start with the whole problem
 - We divide it into subproblems
- Dynamic Programming
 - Ascending technique
 - We start with the subproblems
 - We compose solutions until reaching the solution for the whole initial problem

Fibonacci series

Goal

Calculate the Fibonacci function

Complexity comparison

Divide & Conquer -> O(1.6ⁿ)

Dynamic Programming -> O(n)

Combinations

$$\frac{50!}{6!(50-6)!} = \frac{50!}{6!(44!)}$$
$$= \frac{50 \times 49 \times 48 \times 47 \times 46 \times 45}{6 \times 5 \times 4 \times 3 \times 2}$$
$$= 15,890,700$$

- In mathematics a combination is a way of selecting several things out of a larger group, where (unlike permutations) order does not matter
- In smaller cases it is possible to count the number of combinations
 - For example given three fruit, say an apple, orange and pear, there are three combinations of two that can be drawn from this set: an apple and a pear; an apple and an orange; or a pear and an orange

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k} \quad \text{If } 0 < k < n \qquad \binom{n}{0} = \binom{n}{n} = 1$$

Examples of use

Combinations

A possible solution with DP

$$\frac{50!}{6!(50-6)!} = \frac{50!}{6!(44!)}$$
$$= \frac{50 \times 49 \times 48 \times 47 \times 46 \times 45}{6 \times 5 \times 4 \times 3 \times 2}$$
$$= 15,890,700$$

	1					, ,
	0	1	2	3	 <i>k</i> -1	k
0	1					
1	1	1				
2	1	2	1			
3	1	3	3	1		
<i>n</i> -1					C(n-1,k-1) +	C(n-1,k)
n						$\mathbf{C}(n,k)$

- Complexity?
 - o(n*k)

Goal

- n objects and a backpack to transport them
- Each object i=1,2,...n has a weight of w_i and a value of v_i
- The backpack can carry a total weight not exceeding W
- The idea is to maximize the value of objects, while respecting the weight limitation
- Objects cannot be fragmented; we take an entire object or we leave it

Data for a specific problem

- Number of objects: n=3
- Weight limit of the backpack: W=10

Object	1	2	3
w_i	6	5	5
v_i	8	5	5

Strategy (I)

- Table V
 - Rows: i objects
 - Columns: maximum weight of the backpack
- V[i,j] → maximum value of the items we would carry
 - We include only until object i for each case
 - The weight limit is j
- Solution to our problem V[n,W] → V[3,10]

Strategy (II)

Function that calculates values in the matrix:

$$V(i, j) = \begin{cases} -\infty & \text{if } j < 0 \\ 0 & \text{if } i = 0 \& j \ge 0 \\ \max(V(i-1, j), V(i-1, j-w_i) + v_i) & \text{other case} \end{cases}$$

- i, is the number of objects we try to put in the backpack
- j, is the maximum weight of the backpack

Table values

• For n=3 (objects), W=10 (maximum load)

Maximum weights

Table values. Cell out

• For n=3 (objects), W=10 (maximum load)

Maximum weights

$$V[i,j]$$
 $Max(V(i-1,j),V(i-1,j-w_i)+v_i)$

Table values. Cell in

• For n=3 (objects), W=10 (maximum load)

Maximum weights

	j	0	1	2	3	4	5	6	7	8	9	10	
Objects	1	0 -	0_	0	0	0	0_						
	2	0	0	0	0	0	5		Obj.		1	2	3
	3	0	0	0	0	0	/		Wi		6	5	5
							/		v_i		8	5	5
	$V[i,j] \qquad Max(V(i-I,j),V(i-I,j-w_i)+v_i)$										- -v _i)		

The problem of the change (I)

- Design an algorithm to pay a certain amount of money, using the fewest possible coins
- Example:
 - We have to pay €2.89
 - Solution: 1 coin of €2, 1 coin of 50 cents, 1 coin of 20 cents, 1 coin of 10 cents, 1 coin of 5 cents, 2 coins of 2 cents
 - → Optimal solution ②
- Greedy heuristic: Take the coin of the biggest possible value without exceeding what we have left to return > It does not work for all the cases

The problem of the change (II)

- Can you do it (using the dynamic programming technique)??
- Key differences with "Knapsack problem"
 - Main methods:
 - float knapsack01(int maxWeight, float[]benefits, int[]weights)
 - int change(int amount, int[]coins)
 - Now we don't look for the greatest value, we look for the smallest
 - We need to sort the coins from the smallest to the biggest (the first one should have a value of 1)

Cheaper travel on a trip

- We are in a river that has n docks
- In each of them you can rent a boat for going to any other dock downstream (it is impossible to go upstream)
- There is a fee table that indicates the cost of traveling from dock i to to dock j (i<j)
- It may happen that a trip from i to j is more expensive than a succession of shorter trips, in which case we would take a boat from i to a dock k first and a second boat to go from k to j
- Our problem is to design an efficient algorithm to determine the minimum cost for each pair of docks i, j (i<j)
 - Indicate, in function of n, the time used by the algorithm

Try the quizz

https://www.gocongr.com/en-US/p/4759638

Bibliography

JUAN RAMÓN PÉREZ PÉREZ; (2008) *Introducción al diseño y análisis de algoritmos en Java*. Issue 50. ISBN: 8469105957, 9788469105955 (Spanish)

