Fraud is bad. Don't commit no fraud

Data Import

```
In []: import pathlib
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import numpy as np
from scipy.stats import mannwhitneyu
from scipy.stats import chi2_contingency
In [2]: # original file:
# https://www.kaggle.com/datasets/dhanushnarayananr/credit-card-fraud/downLoad?datasetVersionNumber=1
url = 'card_transdata.csv'
df_fraud = pd.read_csv(url)
```

Exploratory Data Analysis

Data Qualick Check-list

- Check for Missing Data
- Check for Duplicates
- Validate Data Types
- Explore Unique Values
- Handle Outliers
- Cross-Validate Against External Sources
- Examine Summary Statistics
- Check for Data Skewness
- Visualize the Data

Missing Data Check

```
In [3]: # Check for missing data and overall dataset overview
        df_fraud.info()
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 1000000 entries, 0 to 999999
       Data columns (total 8 columns):
                                             Non-Null Count
        # Column
                                              -----
        0 distance_from_home
                                             1000000 non-null float64
        distance from last transaction 1000000 non-null float64
        2 ratio_to_median_purchase_price 1000000 non-null float64
3 repeat_retailer 1000000 non-null float64
4 used_chip 1000000 non-null float64
                                       1000000 non-null float64
        5 used_pin_number
        6 online_order
7 fraud
                                              1000000 non-null float64
                                             1000000 non-null float64
       dtypes: float64(8)
       memory usage: 61.0 MB
```

Duplicate Data Check

```
In [4]: # As seen above, there are no missing values. Are there duplicates?
duplicates = df_fraud[df_fraud.duplicated()]
duplicates.shape

Out[4]: (0, 8)
In [5]: # There are no duplicates either. Good news so far!
```

Validate Data Types

```
In [6]: # Let's check that all the variables are correct data types.
# Let's see first few rows for each.
```

```
df_fraud.head(5)
            distance_from_home distance_from_last_transaction ratio_to_median_purchase_price repeat_retailer used_chip used_pin_number online
         0
                      57.877857
                                                   0.311140
                                                                                1.945940
                                                                                                              1.0
         1
                      10.829943
                                                   0.175592
                                                                                1.294219
                                                                                                    1.0
                                                                                                                               0.0
         2
                       5.091079
                                                   0.805153
                                                                                0.427715
                                                                                                    1.0
                                                                                                              0.0
                                                                                                                               0.0
         3
                       2.247564
                                                   5.600044
                                                                                0.362663
                                                                                                              1.0
                                                                                                                               0.0
         4
                      44.190936
                                                   0.566486
                                                                                2.222767
                                                                                                    1.0
                                                                                                              1.0
                                                                                                                               0.0
 In [7]: # In the df_fraud.head(5) above, it follows that
         # 'distance_from_home', 'distance_from_last_transaction', 'ratio_to_median_purchase_price' are floats
         # The rest of the variables 'repeat_retailer', 'used_chip', 'used_pin_number', 'online_order', 'fraud' appear to be
         # categorical/ let's confirm this by calculating the number of unique values for each variable that is not continuous.
         # If a variable has only a few unique values, its categorical
         Exploring Unique Values
 In [8]: df_categorical = df_fraud[['repeat_retailer', 'used_chip', 'used_pin_number', 'online_order', 'fraud']]
         for var in df_categorical:
             print(df_categorical[var].value_counts())
             print('\n')
        repeat_retailer
       1.0 881536
        0.0 118464
       Name: count, dtype: int64
       used chip
       0.0
             649601
       1.0
             350399
       Name: count, dtype: int64
       used_pin_number
       0.0
              899392
             100608
       1.0
       Name: count, dtype: int64
       online_order
       1.0
              650552
        0.0
              349448
       Name: count, dtype: int64
        fraud
       9.9
              912597
       1.0
              87403
       Name: count, dtype: int64
 In [9]: # The above confirms that variables 'repeat_retailer', 'used_chip', 'used_pin_number', 'online_order', 'fraud'
         # are binary, categorical variables with only possible classes 0 or 1. this is essentially a 0/1 label encoding already done
         # we could convert them to object variables but its better to convert them into integers
         # converting binary categorical variables to integers is a common and efficient practice, especially
         # when the variables naturally represent binary states (0 or 1).
         # This facilitates numerical operations and saves memory compared to using object variables.
         df_fraud[['repeat_retailer', 'used_chip', 'used_pin_number', 'online_order', 'fraud']] = \
         df_fraud[['repeat_retailer', 'used_chip', 'used_pin_number', 'online_order', 'fraud']].astype(int)
In [10]: # Lets check the data types after again after the conversion:
         df_fraud.dtypes
```

```
Out[10]: distance_from_home
                                                float64
          distance_from_last_transaction
                                                float64
          ratio_to_median_purchase_price
                                                float64
          repeat_retailer
                                                  int32
          used chip
                                                  int32
          used_pin_number
                                                  int32
          online_order
                                                  int32
          fraud
                                                  int32
          dtype: object
In [11]: # Now, let's take a look at the target variable, fraud to see the breakdown of classes (fraud vs non-fraud)
          fraud_cases = pd.DataFrame(df_fraud['fraud'].value_counts())
          fraud_cases['Percentage'] = round(df_fraud'].value_counts(normalize=True) * 100, 2)
fraud_cases = fraud_cases.rename(columns={'fraud': 'Claims'})
          fraud_cases
```

Out[11]: count Percentage

fraud

0	912597	91.26
1	87403	8.74

Cross-Validate Against External Sources

```
In [12]: # Fraud is rare! The 4%-8% fraud rate is typical for this type of datasets

# for example: Nilson Report 2022: https://nilsonreport.com/
# "The global credit card fraud claim rate was 4.25% in 2021, with total losses of $31.3 billion.
# This represents a decrease of 1.6% from the 2020 fraud claim rate of 4.41%."

# Lets make a pie chart to vizualize the proportion of fraud vs non-fraud cases:

# Proportion of fraud claims
fig, ax = plt.subplots(figsize=(4, 3))
fraud_proportion = df_fraud['fraud'].value_counts(normalize=True)
fraud_proportion.plot.pie(labels=['Non-fraud', 'Fraud'], autopct='%1.1f%%', ax=ax, colors=['lightgreen', 'pink']) # Specify t

# Remove y-axis Label
ax.set_ylabel('')

plt.title('Proportion of Fraud Claims After Balancing')
plt.show()
```

Proportion of Fraud Claims After Balancing

Summary Statistics

```
In [13]: # let's now look at the summary statistics of the continuous variables:
    df_fraud[['distance_from_home', 'distance_from_last_transaction', 'ratio_to_median_purchase_price']].describe()
```

Out[13]: distance_from_home distance_from_last_transaction ratio_to_median_purchase_price count 1000000.000000 1000000.000000 1000000.000000 26.628792 5.036519 1.824182 mean 65.390784 25.843093 2.799589 std min 0.004874 0.000118 0.004399 25% 3.878008 0.296671 0.475673 50% 9.967760 0.998650 0.997717 **75**% 25.743985 3.355748 2.096370 max 10632.723672 11851.104565 267.802942

In [14]: # Now let's look at the mean values of continuous variables in the dataset for fraud and no-fraude cases

means_by_fraud = df_fraud.groupby('fraud')[['distance_from_home', 'distance_from_last_transaction', 'ratio_to_median_purchase_
pd.DataFrame(round(means_by_fraud, 2))

Out[14]: distance_from_home distance_from_last_transaction ratio_to_median_purchase_price

fraud			
0	22.83	4.30	1.42
1	66.26	12.71	6.01

In [15]: # note the difference in the mean values of each of the three variables in fraud vs non-fraud cases
There is a higher mean value of each of the three variables in fraud cases
In other words, fraud when it happens tend to be associated with larger distance from home,
larger distance from last transaction, and a larger ratio-to-median purchase price.

Checking for Data Skewness. Dealing with outliers

Distribution of log_distance_from_home

Distribution of log_distance_from_last_transaction

Distribution of log_ratio_to_median_purchase_price


```
In [17]: #filtering the outliers based on 2 STD from the mean for the log-transformed values
    original_cols = ['distance_from_home', 'distance_from_last_transaction', 'ratio_to_median_purchase_price']

# Set a threshold
    threshold = 2

# Create a copy of the original DataFrame
    df_fraud_filtered = df_fraud.copy()

# Iterate through each column and filter outliers
for col in original_cols:
    mean_value = df_fraud[col].mean()
    std_dev = df_fraud[col].std()

# Filter outliers based on the threshold
    df_fraud_filtered = df_fraud_filtered[(df_fraud_filtered[col] - mean_value).abs() <= threshold * std_dev]

df_fraud_filtered.head()</pre>
```

Out[17]:		distance_from_home	distance_from_last_transaction	ratio_to_median_purchase_price	repeat_retailer	used_chip	used_pin_number	online
	0	57.877857	0.311140	1.945940	1	1	0	
	1	10.829943	0.175592	1.294219	1	0	0	
	2	5.091079	0.805153	0.427715	1	0	0	
	3	2.247564	5.600044	0.362663	1	1	0	
	4	44.190936	0.566486	2.222767	1	1	0	
	4							

In [18]: # dataset size before filtering
 df_fraud.shape

Out[18]: (1000000, 11)

Vizualizing the Data

```
In [21]: # We already know that there is a difference in the mean values of the continuous variables in fraud vs non-fraud scenarios.
         # lets vizualize these differences with bar plots
         for col in df_fraud_filtered.columns:
             if col in ['distance_from_home', 'distance_from_last_transaction', 'ratio_to_median_purchase_price']:
                 # Set the figure size
                 plt.figure(figsize=(4, 3))
                 # Set the seaborn style to 'darkgrid'
                 sns.set_style('darkgrid')
                 # Create a violin plot using Seaborn with the log-transformed y-axis
                 sns.barplot(data=df_fraud, x='fraud', y=col, palette='Set2', hue='fraud')
                 # Set title and labels
                 plt.title(f'Bar Plot of {col} by Fraud')
                 plt.xlabel('Fraud (0: No, 1: Yes)')
                 plt.ylabel(f'{col}')
                 # Show the plot
                 plt.show()
```


Bar Plot of distance_from_last_transaction by Fraud

Bar Plot of ratio_to_median_purchase_price by Fraud


```
In [22]: # Let's also plot the continuous variables using violin-plots to better see the distribution and spread
         # of the variables.
         # we will use log-transformed y-values for better vizualization:
         for col in df_fraud_filtered.columns:
             if col in ['log_distance_from_home', 'log_distance_from_last_transaction', 'log_ratio_to_median_purchase_price']:
                 # Set the figure size
                 plt.figure(figsize=(6, 3))
                 # Set the seaborn style to 'darkgrid'
                 sns.set_style('darkgrid')
                 # Create a violin plot using Seaborn with the log-transformed y-axis
                 \verb|sns.violinplot(data=df_fraud_filtered, x='fraud', y=col, palette='Set2', hue='fraud')| \\
                 # Set title and labels
                 plt.title(f'Violin Plot of {col} by Fraud')
                 plt.xlabel('Fraud (0: No, 1: Yes)')
                 plt.ylabel(f'{col}')
                 # Show the plot
                 plt.show()
```

Violin Plot of log_distance_from_home by Fraud

Violin Plot of log_distance_from_last_transaction by Fraud

Violin Plot of log_ratio_to_median_purchase_price by Fraud

Checking the Association between Independent Variables and The Target Variable

```
In [23]: # for the continuous variables and binary outcome,
                  # it is appropriate to use the Mann-Whitney U test for independent samples
                  # Create an empty DataFrame to store the results
                  mannwhitney_results = pd.DataFrame(columns=['Variable', 'Mann-Whitney U', 'P-value', 'Significance'])
                  for col in df_fraud_filtered.columns:
                          if col in ['distance_from_home', 'distance_from_last_transaction', 'ratio_to_median_purchase_price']:
                                  # Perform Mann-Whitney U test
                                  statistic, p_value = mannwhitneyu(df_fraud['fraud['fraud'] == 1][col], df_fraud['fraud['fraud'] == 0][col])
                                  # Determine significance and append the results to the mannwhitney_results DataFrame
                                  significance = '*' if p_value < 0.05 else ''</pre>
                                  mannwhitney_results = pd.concat([mannwhitney_results, pd.DataFrame({
                                           'Variable': [col],
                                          'Mann-Whitney U': [statistic],
                                           'P-value': [p_value],
                                          'Significance': [significance]
                                  })], ignore_index=True)
                  mannwhitney_results_sorted = mannwhitney_results.sort_values(by=['Mann-Whitney U', 'Significance'], ascending=[False, True])
                  print(mannwhitney_results_sorted)
               {\tt C:\backslash Users\backslash LANA\backslash AppData\backslash Local\backslash Temp\backslash ipy kernel\_2680\backslash 2130122949.py: 14: Future Warning: The behavior of DataFrame concatenation with the property of t
               empty or all-NA entries is deprecated. In a future version, this will no longer exclude empty or all-NA columns when determinin
               g the result dtypes. To retain the old behavior, exclude the relevant entries before the concat operation.
                mannwhitney_results = pd.concat([mannwhitney_results, pd.DataFrame({
                                                                Variable Mann-Whitney U
                                                                                                                               P-value Significance
               2 ratio_to_median_purchase_price
                                                                                     6.783310e+10
                                                                                                                     0.000000e+00
                                                                                                                    0.000000e+00
                                            distance_from_home
                                                                                        4.762976e+10
               1 distance_from_last_transaction 4.270774e+10 3.046020e-263
In [24]: # Now, let's turn to our non-continous variables. Lets plot them and evaluate the impact of is on
                  # the target variable, fraud
In [25]: # Iterate through columns in df_fraud_filtered
                  for col in df fraud filtered.columns:
                         if col in ['repeat_retailer', 'used_chip', 'used_pin_number', 'online_order']:
                                  sns.set_style('darkgrid')
```

```
# Create a DataFrame for count and percentage of fraud cases
fraud cases = pd.DataFrame(df fraud filtered.groupby([col, 'fraud']).size(), columns=['Count']).reset index()
total_counts = fraud_cases.groupby(col)['Count'].transform('sum')
fraud_cases['Percentage of Fraud'] = round(fraud_cases['Count'] / total_counts * 100, 2)
if (fraud_cases['fraud'] == 1).any():
      total_fraud_cases = fraud_cases[fraud_cases['fraud'] == 1]['Count'].sum()
       fraud_cases.loc[fraud_cases['fraud'] == 1, 'Percentage of Total Fraud Cases'] = round(fraud_cases['Count'] / total
fraud cases = fraud cases.sort values(by=['fraud', 'Percentage of Fraud', col], ascending=[False, False, True])
# Print the fraud_cases DataFrame
print('\n')
print(fraud_cases.to_string(index=False))
print('\n')
# Plot three graphs:
fig, axes = plt.subplots(1, 3, figsize=(15, 4), constrained_layout=True) # Use constrained_layout for better layout
# Plot 1: the count of fraud (both 0 and 1) for each category of a given variable
axes[0].set_title(f'Total # of Claims by {col}', fontsize=16)
sns.countplot(data=df\_fraud\_filtered, \ x=col, \ hue='fraud', \ palette='Blues', \ dodge=False, \ order=df\_fraud\_filtered[col].v' = (col, hue='fraud', hue='fraud', hue='Blues', hue='fraud', hue='fra
axes[0].set xticks([0, 1]) # Set x-axis ticks to be 0 and 1
axes[0].set_xticklabels(axes[0].get_xticks(), rotation=45) # Remove ha='right'
axes[0].set_xlabel(col.capitalize())
axes[0].set_ylabel('Count', fontsize=12)
# Plot 2: the count of fraud == 1 for each category of a given variable
axes[1].set title(f'# Fraud Claims by {col}', fontsize=16)
sns.countplot(data=df_fraud_filtered[df_fraud_filtered['fraud'] == 1], x=col, color='#4884af', dodge=False, order=df_f
axes[1].set xticks([0, 1]) # Set x-axis ticks to be 0 and 1
axes[1].set_xticklabels(axes[1].get_xticks(), rotation=45) # Remove ha='right'
axes[1].set_xlabel(col.capitalize())
axes[1].set_ylabel('Count', fontsize=12)
# Plot 3: the % of fraud == 1 for each category of a given variable
axes[2].set_title(f'% Fraud Insurance Claims by {col}', fontsize=16)
fraud_cases_subset = fraud_cases[fraud_cases['fraud'] == 1]
fraud cases subset = fraud cases subset.sort values(by='Percentage of Fraud', ascending=False) # Sort by Percentage of
sns.barplot(x=fraud_cases_subset[col], y=fraud_cases_subset['Percentage of Fraud'], color='darkred', label='Percentage
axes[2].set_xticks([0, 1]) # Set x-axis ticks to be 0 and 1
axes[2].set_xticklabels(axes[2].get_xticks(), rotation=45) # Remove ha='right'
axes[2].set_xlabel(col.capitalize())
axes[2].set_ylabel('% of Fraud', fontsize=12)
plt.show()
```



```
used_chip fraud Count Percentage of Fraud Percentage of Total Fraud Cases
       a
              1 36775
                                       6.08
                                                                        72.5
       1
              1
                 13946
                                       4.28
                                                                        27.5
              0 312218
                                      95.72
                                                                         NaN
       1
        a
              0 567961
                                      93.92
                                                                         NaN
```


Chi-Square Test to check the assoication between categorical variables and the Target

```
In [26]: # As was the case with continuous variables somewhere above, let's now
# explore which categorical variables have a significant impact
# on the target variable (fraud) - we will use chi-square test

# Create an empty DataFrame to store the results
chi2_results = pd.DataFrame(columns=['Variable', 'Chi2', 'P-value', 'Significance'])

for col in df_fraud_filtered.columns:
    if col in ['repeat_retailer', 'used_chip', 'used_pin_number', 'online_order']: # Add the missing colon
        # Create a contingency table
        contingency_table = pd.crosstab(df_fraud_filtered[col], df_fraud_filtered['fraud'])

# Perform the chi-square test
    chi2, p, _, _ = chi2_contingency(contingency_table)

# Determine significance and append the results to the chi2_results DataFrame
```

```
significance = '*' if p < 0.05 else ''
                 chi2_results = pd.concat([chi2_results, pd.DataFrame({'Variable': [col], 'Chi2': [chi2], 'P-value': [p], 'Significance
                 chi2 results sorted = chi2 results.sort values(by=['Chi2'], ascending=[False])
         print(chi2_results_sorted)
       C:\Users\LLANA\AppData\Local\Temp\ipykernel_2680\490236676.py:18: FutureWarning: The behavior of DataFrame concatenation with e
       mpty or all-NA entries is deprecated. In a future version, this will no longer exclude empty or all-NA columns when determining
       the result dtypes. To retain the old behavior, exclude the relevant entries before the concat operation.
         chi2_results = pd.concat([chi2_results, pd.DataFrame({'Variable': [col], 'Chi2': [chi2], 'P-value': [p], 'Significance': [sig
       nificance]})], ignore_index=True)
                 Variable
                                 Chi2
                                              P-value Significance
             online_order 22120.854196 0.000000e+00
       2 used_pin_number 5836.507923 0.000000e+00
                used_chip 1340.234501 2.040807e-293
       1
       0 repeat_retailer 10.048080 1.525068e-03
In [27]: # Overall, only repeat_retailer did not seem to have a signficant impact on the target variable.
         Modelling
In [28]: # Lets create a copy of df_fraud and start modelling!
         df_fraud_for_modeling = df_fraud_filtered.copy()
         df_fraud_for_modeling = \
         df_fraud_for_modeling.drop(['log_distance_from_home', 'log_distance_from_last_transaction', 'log_ratio_to_median_purchase_pric
In [29]: df_fraud_for_modeling.info()
       <class 'pandas.core.frame.DataFrame'>
       Index: 930900 entries, 0 to 999999
       Data columns (total 8 columns):
```

```
0 distance_from_home
                                          930900 non-null float64
           distance_from_last_transaction 930900 non-null float64
        2 ratio_to_median_purchase_price 930900 non-null float64
                                          930900 non-null int32
        3 repeat_retailer
                                          930900 non-null int32
        4 used_chip
        5 used_pin_number
                                          930900 non-null int32
        6 online_order
                                          930900 non-null int32
           fraud
                                          930900 non-null int32
       dtypes: float64(3), int32(5)
       memory usage: 46.2 MB
In [30]: # splitting the dataset into test and training
        from sklearn.model_selection import train_test_split
        # Separating features and target variable
         X = df_fraud_for_modeling.drop('fraud', axis=1)
        y = df_fraud_for_modeling['fraud']
        # Splitting the dataset into training and testing sets
```

Non-Null Count Dtype

```
In [31]: # Important note! Since its essentially an anomaly detection analysis, its crucial that the evaluation
# metric captured both true negative and true positive. We cannot rely on overall accuracy of the model
# since even if the model gets all true-positives wrong (i.e. only correctly identifies true negatives),
# it will show an overall high score (e.g 92%)
# For this reason, our evaluation metric of choice is F1-score
```

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42, stratify=y)

Logistic Regression (no balancing)

Column

```
In [32]: # Logistic regression - baseline, without balancing

from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix

# Create a Logistic Regression model
logreg_model = LogisticRegression(max_iter=1000, random_state=42)

# Train the model on the balanced dataset
logreg_model.fit(X_train, y_train)

# Make predictions on the test set
y_pred_lg = logreg_model.predict(X_test)

# Evaluate the performance of the model
```

```
conf_matrix = confusion_matrix(y_test, y_pred_lg)
 classification_rep = classification_report(y_test, y_pred_lg)
 # Print the results
 print("\nConfusion Matrix:\n", conf_matrix)
 print("\nClassification Report:\n", classification_rep)
Confusion Matrix:
[[174643 1393]
[ 2880 7264]]
Classification Report:
              precision recall f1-score support
          0
                 0.98
                          0.99
                                    0.99
                                            176036
                 0.84
                           0.72
                                    0.77
                                            10144
                                            186180
   accuracy
                                    0.98
  macro avg
                 0.91
                           0.85
                                    0.88
                                            186180
                                    0.98
                                            186180
weighted avg
                 0.98
                           0.98
```

Decision Tree Classifier (no balancing)

```
In [33]: # Decision Tree without balancing
         from sklearn.tree import DecisionTreeClassifier
         from sklearn.metrics import classification_report, confusion_matrix
         # Create a Decision Tree model
         dt_model = DecisionTreeClassifier(random_state=42)
         # Train the model on the SMOTE dataset
         dt_model.fit(X_train, y_train)
         # Make predictions on the test set
         y_pred_dt = dt_model.predict(X_test)
         # Evaluate the performance of the model
         conf_matrix_dt = confusion_matrix(y_test, y_pred_dt)
         classification_rep_dt = classification_report(y_test, y_pred_dt)
         # Print the results
         print("\nDecision Tree Confusion Matrix:\n", conf matrix dt)
         print("\nDecision Tree Classification Report:\n", classification_rep_dt)
       Decision Tree Confusion Matrix:
        [[176033
              2 10142]]
       Decision Tree Classification Report:
                      precision recall f1-score support
                  0
                          1.00
                                   1.00
                                             1.00
                                                      176036
                                   1.00
                                                      10144
                  1
                          1.00
                                             1.00
           accuracy
                                              1.00
                                                      186180
          macro avg
                          1.00
                                   1.00
                                              1.00
                                                      186180
       weighted avg
                          1.00
                                    1.00
                                              1.00
                                                      186180
```

```
feature_importances = dt_model.feature_importances_
    sorted_features = sorted(zip(X_train.columns, feature_importances), key=lambda x: x[1], reverse=True)
    print("\nMost Important Features:")
    for feature, importance in sorted_features:
        print(f"Feature: {feature}, Importance: {importance:.3f}")

# Plot feature importance
plt.figure(figsize=(10, 6))
    sorted_importances = [importance for feature, importance in sorted_features]
    plt.bar(range(len(sorted_importances)), sorted_importances, align="center")
    plt.xticks(range(len(sorted_importances)), [feature for feature, importance in sorted_features], rotation='vertical')
    plt.xlabel("Features")
    plt.ylabel("Importance")
    plt.title("Feature Importance in Decision Tree Model")
    plt.show()
```

Most Important Features:

Feature: ratio_to_median_purchase_price, Importance: 0.629

Feature: distance_from_home, Importance: 0.267

Feature: distance_from_last_transaction, Importance: 0.036

Feature: online_order, Importance: 0.026 Feature: used_chip, Importance: 0.018 Feature: repeat_retailer, Importance: 0.013 Feature: used_pin_number, Importance: 0.012

Feature Importance in Decision Tree Model


```
In [51]: from sklearn.model_selection import cross_val_score

# Perform 5-fold cross-validation
cv_scores = cross_val_score(dt_model, X_train, y_train, cv=5, scoring='f1')

# Print the cross-validation scores
print("Cross-Validation Scores:", cv_scores)

# Print the mean and standard deviation of the scores
print(f"Mean F1: {cv_scores.mean():.3f}")
print(f"Standard Deviation: {cv_scores.std():.3f}")
```

Cross-Validation Scores: [0.99981512 0.99981517 0.99975351 0.99969199 0.99950696]

Mean F1: 1.000

Standard Deviation: 0.000

Additional Models

Random Forest Classifier (no balancing)

```
In [34]: # Logistic Regression didnt perform all that great. However, Deciion Tree did.
# At this point, we want to see which other model can achieve the same result:
# Random Forest without balancing

from sklearn.ensemble import RandomForestClassifier
# Create a Random Forest model
```

```
rf model = RandomForestClassifier(random state=42)
         # Train the model on the balanced dataset
         rf_model.fit(X_train, y_train)
         # Make predictions on the test set
         y_pred_rf = rf_model.predict(X_test)
        # Evaluate the performance of the model
         # accuracy_rf = accuracy_score(y_test_balanced, y_pred_rf)
        conf_matrix_rf = confusion_matrix(y_test, y_pred_rf)
         classification_rep_rf = classification_report(y_test, y_pred_rf)
         # Print the results
         print("\nRandom Forest Confusion Matrix:\n", conf_matrix_rf)
         print("\nRandom Forest Classification Report:\n", classification_rep_rf)
        print(f'Size of the x-train, y-train, x-test, y-test: {len(X_train), len(y_train), len(X_test), len(y_test)}')
        Random Forest Confusion Matrix:
        [[176036
                     91
              3 10141]]
       Random Forest Classification Report:
                      precision recall f1-score support
                          1.00 1.00
                  0
                                            1.00 176036
                  1
                          1.00 1.00
                                            1.00
                                                     10144
           accuracy
                                             1.00
                                                     186180
                          1.00
                                   1.00
                                             1.00
                                                     186180
          macro avg
       weighted avg
                          1.00
                                   1.00
                                             1.00
                                                     186180
       Size of the x-train, y-train, x-test, y-test: (744720, 744720, 186180, 186180)
        XGBoost (no balancing)
In [35]: # XGBoost without balancing:
         import xgboost as xgb
        # Create an XGBoost model
         xgb model = xgb.XGBClassifier(random state=42)
        # Train the model on the training set
        xgb_model.fit(X_train, y_train)
         # Make predictions on the test set
         y_pred = xgb_model.predict(X_test)
        # Evaluate the performance of the model
         conf_matrix = confusion_matrix(y_test, y_pred)
         classification_rep = classification_report(y_test, y_pred)
        # Print the results
         print("\nConfusion Matrix:\n", conf matrix)
        print("\nClassification Report:\n", classification_rep)
       Confusion Matrix:
        [[175815 221]
        [ 197 9947]]
       Classification Report:
                      precision recall f1-score support
                  0
                          1.00
                                   1.00
                                             1.00
                                                     176036
                          0.98
                                   0.98
                                             0.98
                                                     10144
                  1
                                             1.00
                                                     186180
           accuracy
                          0.99
                                   0.99
                                             0.99
                                                     186180
          macro avg
       weighted avg
                          1.00
                                   1.00
                                             1.00
                                                     186180
         [[True Negative (TN) False Positive (FP)]
```

Balancing. Oversampling the minority class

[False Negative (FN) True Positive (TP)]]

```
In [36]: # Applying SMOTE to oversample the minority class cases:
#!pip install imbalanced-learn
```

```
In [37]: y_train_smote.value_counts()
Out[37]: fraud
         0 704143
         1 704143
         Name: count, dtype: int64
         Logistic Regression (AFTER balancing)
In [38]: # Logistic Regression after applying SMOTE:
         from sklearn.linear_model import LogisticRegression
         \textbf{from} \  \, \textbf{sklearn.metrics} \  \, \textbf{import} \  \, \textbf{accuracy\_score}, \  \, \textbf{classification\_report}, \  \, \textbf{confusion\_matrix}
         # Create a Logistic Regression model
         logreg_model = LogisticRegression(max_iter=1000, random_state=42)
         # Train the model on the balanced dataset
         logreg_model.fit(X_train_smote, y_train_smote)
         # Make predictions on the test set
         y_pred = logreg_model.predict(X_test)
         # Evaluate the performance of the model
         conf_matrix = confusion_matrix(y_test, y_pred)
         classification_rep = classification_report(y_test, y_pred)
         # Print the results
         print("\nConfusion Matrix:\n", conf_matrix)
         print("\nClassification Report:\n", classification_rep)
        Confusion Matrix:
         [[166139 9897]
         [ 319 9825]]
        Classification Report:
                       precision recall f1-score support
                   0
                           1.00 0.94
                                              0.97
                                                       176036
                                                       10144
                           0.50 0.97
                                              0.66
                   1
                                                0.95 186180
            accuracy
           macro avg 0.75 0.96
                                               0.81
0.95
                                                       186180
        weighted avg
                          0.97
                                     0.95
                                                       186180
         Decision Tree (AFTER balancing)
```

from imblearn.over sampling import SMOTE

X_train_smote, y_train_smote = smote.fit_resample(X_train, y_train)

smote = SMOTE(random state=42)

```
In [39]: # Decision Tree after SMOTE:
         from sklearn.tree import DecisionTreeClassifier
         from sklearn.metrics import classification_report, confusion_matrix
         # Create a Decision Tree model
         dt_model = DecisionTreeClassifier(random_state=42)
         # Train the model on the SMOTE dataset
         dt_model.fit(X_train_smote, y_train_smote)
         # Make predictions on the test set
         y_pred_dt = dt_model.predict(X_test)
         # Evaluate the performance of the model
         conf_matrix_dt = confusion_matrix(y_test, y_pred_dt)
         classification_rep_dt = classification_report(y_test, y_pred_dt)
         # Print the results
         print("\nDecision Tree Confusion Matrix:\n", conf_matrix_dt)
         print("\nDecision Tree Classification Report:\n", classification_rep_dt)
```

```
Decision Tree Confusion Matrix:
[[175998 38]
     2 10142]]
Decision Tree Classification Report:
             precision recall f1-score support
                      1.00
                                 1.00
                                        176036
                                         10144
                1.00
                      1.00
                                 1.00
         1
                                 1.00
                                        186180
   accuracy
                                        186180
                1.00 1.00
                                 1.00
  macro avg
weighted avg
                1.00
                         1.00
                                 1.00
                                        186180
```

Random Forest (AFTER balancing)

```
In [40]: # Random Forest after applying SMOTE
         # Create a Random Forest model
         rf_model = RandomForestClassifier(random_state=42)
         # Train the model on the balanced dataset
         rf_model.fit(X_train_smote, y_train_smote)
         # Make predictions on the test set
         y pred rf = rf model.predict(X test)
         # Evaluate the performance of the model
         # accuracy_rf = accuracy_score(y_test_balanced, y_pred_rf)
         conf_matrix_rf = confusion_matrix(y_test, y_pred_rf)
         classification_rep_rf = classification_report(y_test, y_pred_rf)
         # Print the results
         print("\nRandom Forest Confusion Matrix:\n", conf matrix rf)
         print("\nRandom Forest Classification Report:\n", classification_rep_rf)
        Random Forest Confusion Matrix:
        [[176007
                   291
             2 10142]]
       Random Forest Classification Report:
                      precision recall f1-score support
                  0
                          1.00
                                  1.00
                                             1.00
                                                     176036
                          1.00
                                   1.00
                                             1.00
                                                      10144
                                             1.00
                                                     186180
           accuracy
                          1.00
                                   1.00
                                             1.00
                                                     186180
          macro avg
       weighted avg
                          1.00
                                   1.00
                                             1.00
                                                     186180
```

XGBoost (AFTER balancing)

```
In [41]: # XGBoost After SMOTE:
import xgboost as xgb

# Create an XGBoost model
xgb_model = xgb.XGBClassifier(random_state=42)

# Train the model on the training set
xgb_model.fit(X_train_smote, y_train_smote)

# Make predictions on the test set
y_pred = xgb_model.predict(X_test)

# Evaluate the performance of the model
conf_matrix = confusion_matrix(y_test, y_pred)
classification_rep = classification_report(y_test, y_pred)

# Print the results
print("\nConfusion Matrix:\n", conf_matrix)
print("\nClassification Report:\n", classification_rep)
```

```
Confusion Matrix:
[[175801 235]
   46 10098]]
Classification Report:
             precision
                       recall f1-score support
                1.00
                      1.00
                                 1.00
                                        176036
                0.98
                        1.00
                                 0.99
                                         10144
         1
                                        186180
   accuracy
                                 1.00
                0.99
                        1.00
                                  0.99
                                        186180
  macro avg
weighted avg
                1.00
                         1.00
                                 1.00
                                        186180
```

Artificial Neural Network (AFTER balancing)

```
In [42]: # NN model applied after SMOTE
                       import tensorflow as tf
                       from tensorflow.keras.models import Sequential
                       from tensorflow.keras.layers import Dense
                       from sklearn.model_selection import train_test_split
                       from sklearn.metrics import confusion_matrix, classification_report
                       from tensorflow.keras.callbacks import EarlyStopping
                       # Split the data into training and validation sets
                       X_train_split, X_val_split, y_train_split, y_val_split = \
                       train_test_split(X_train_smote, y_train_smote, test_size=0.2, random_state=42)
                       # Define early stopping callback
                       early_stopping_callback = EarlyStopping(monitor='val_loss', patience=3)
                       # Create a Sequential model
                       model = Sequential()
                       # Add layers to the model
                       model.add(Dense(128, input_dim=X_train_smote.shape[1], activation='relu'))
                       model.add(Dense(64, activation='relu'))
                       model.add(Dense(1, activation='sigmoid'))
                       # Compile the model
                       model.compile(loss='binary crossentropy', optimizer='adam', metrics=['accuracy'])
                       # Train the model on the training set with validation data
                       model.fit (X\_train\_split.values, \ y\_train\_split.values, \ epochs=20, \ batch\_size=64, \ validation\_data=(X\_val\_split.values, \ y\_val\_split.values, \ y\_
                       # Evaluate the performance of the model
                       conf_matrix = confusion_matrix(y_test, y_pred)
                       classification_rep = classification_report(y_test, y_pred)
                       # Print the results
                       print("\nConfusion Matrix:\n", conf_matrix)
                       print("\nClassification Report:\n", classification_rep)
```

WARNING:tensorflow:From C:\Users\LLANA\AppData\Local\Programs\Python\Python311\Lib\site-packages\keras\src\losses.py:2976: The name tf.losses.sparse_softmax_cross_entropy is deprecated. Please use tf.compat.v1.losses.sparse_softmax_cross_entropy instead.

WARNING:tensorflow:From C:\Users\LLANA\AppData\Local\Programs\Python\Python311\Lib\site-packages\keras\src\backend.py:873: The name tf.get_default_graph is deprecated. Please use tf.compat.v1.get_default_graph instead.

WARNING:tensorflow:From C:\Users\LLANA\AppData\Local\Programs\Python\Python311\Lib\site-packages\keras\src\optimizers__init__. py:309: The name tf.train.Optimizer is deprecated. Please use tf.compat.v1.train.Optimizer instead.

Epoch 1/20

weighted avg

1.00

1.00

1.00

186180

WARNING:tensorflow:From C:\Users\LLANA\AppData\Local\Programs\Python\Python311\Lib\site-packages\keras\src\utils\tf_utils.py:49 2: The name tf.ragged.RaggedTensorValue is deprecated. Please use tf.compat.v1.ragged.RaggedTensorValue instead.

WARNING:tensorflow:From C:\Users\LLANA\AppData\Local\Programs\Python\Python311\Lib\site-packages\keras\src\engine\base_layer_ut ils.py:384: The name tf.executing_eagerly_outside_functions is deprecated. Please use tf.compat.v1.executing_eagerly_outside_functions instead.

```
v: 0.9918
Epoch 2/20
v: 0.9961
Epoch 3/20
17604/17604 [============= ] - 50s 3ms/step - loss: 0.0105 - accuracy: 0.9964 - val loss: 0.0062 - val accuracy
y: 0.9978
Epoch 4/20
y: 0.9941
Epoch 5/20
y: 0.9979
Epoch 6/20
v: 0.9976
Epoch 7/20
y: 0.9964
Epoch 8/20
v: 0.9984
Epoch 9/20
v: 0.9982
Epoch 10/20
17604/17604 [=============== ] - 53s 3ms/step - loss: 0.0066 - accuracy: 0.9977 - val_loss: 0.0133 - val_accurac
y: 0.9966
Epoch 11/20
y: 0.9977
y: 0.9961
Confusion Matrix:
[[175801
    235]
 46 10098]]
Classification Report:
     precision
         recall f1-score
               support
   0
      1.00
         1.00
             1.00
               176036
   1
      0.98
         1.00
             0.99
               10144
             1.00
               186180
 accuracy
      0.99
         1.00
             0.99
               186180
 macro avg
```