目录

1	背包	包问题														1									
	1.1	应用场景															1								
	1.2	01 背包															1								
		1.2.1	C)1 같	旨包	塘	片	₹.																	1
		1.2.2	K	犬态	÷ .																				1
		1.2.3	K	犬态	转	移	方	程																	1
		1.2.4	5	实现	Ţ.																				1
	1.3	完全背	旨包	J																					2
		1.3.1	j	完全	背	包约	持	点																	2
		1.3.2	K	犬态	÷ .																				2
		1.3.3	K	犬态	转	移	方	程																	2
		1.3.4	5	实现].																				2
	1.4	多重背	旨包	J																					3
		1.4.1	1	多重	背	包约	持	点																	3
		1.4.2	K	犬态	÷ .																				3
		1.4.3	K	犬态	转	移	方	程																	3
		1.4.4	1	弋码	实	现																			3
	1.5	题目																							4
		1.5.1	I	HDI	J 2	60:	2 .																		4
		1.5.2	F	OJ	1 20	063	; .																		4
		1.5.3	F	OJ	J 17	787	,																		4
		1.5.4	J	JVA	A 6	74																			4
		1.5.5	J	JVA	1	47																			4
		156	F	HDI	T 4	508	8												_	_			_		4

1 背包问题

1.1 应用场景

给定 n 种物品和一个背包。物品 i 的重量是 w_i ,其价值为 v_i ,背包的容量为 C。应该如何选择装入背包中的物品,使得装入背包中物品的总价值最大?

1.2 01 背包

1.2.1 01 背包特点

给定 n 种物品和一个背包 (**每个物品只能选取一个**)。物品 i 的重量是 w_i ,其价值为 v_i ,背包的容量为 C。应该如何选择装入背包中的物品,使得装入背包中物品的总价值最大?

1.2.2 状态

dp[i][j] 表示在只能从 1-i 个物品中选择物品并且背包容量大小为 j 的情况下, 所能获得的最大价值。

1. 限制条件

- 只能选择物品 1~i
- 选择物品的总重量不能超过 j

1.2.3 状态转移方程

```
dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]] + v[i]);
```

1.2.4 实现

1. 初始化

```
int n,m; //n表示物品个数, m表示背包容量
for (int i = 0;i<= m;i++)
dp[0][i] = 0;
```

2. 01 背包

(a) 通过使用二维数组实现

```
for (int i = 1;i <= n ;i++){
    for (int j = 0 ;j<=m ;j++){
        dp[i][j] = dp[i-1][j];
        if (j-w[i]>=0)
            dp[i][j] = max(dp[i][j],dp[i-1][j-w[i]]+v[i]);
    }
}
```

(b) 通过使用一维数组实现

```
for (int i = 1;i <= n ;i++){
    for (int j = m ;j>=0 ;j--){
        if (j-w[i]>=0)
            dp[j] = max(dp[j],dp[j-w[i]]+v[i]);
    }
}
```

1.3 完全背包

1.3.1 完全背包特点

给定 n 种物品和一个背包 (**每个物品选取无限个**)。物品 i 的重量是 w_i ,其价值为 v_i ,背包的容量为 C。应该如何选择装入背包中的物品,使得装入背包中物品的总价值最大?

1.3.2 状态

dp[i][j] 表示在只能从 1-i 个物品中选择物品并且背包容量大小为 j 的情况下,所能获得的最大价值。

1. 限制条件

- 只能选择物品 1~i
- 选择物品的总重量不能超过 j

1.3.3 状态转移方程

```
dp[i][j] = max(dp[i-1][j], dp[i][j-w[i]] + v[i]);
```

1.3.4 实现

1. 初始化

```
int n,m; //n表示物品个数, m表示背包容量
for (int i = 0; i<= m; i++)
dp[0][i] = 0;
```

- 2. 完全背包
 - (a) 通过使用二维数组实现

(b) 通过使用一维数组实现

```
for (int i = 1;i <= n ;i++){
    for (int j = 0 ;j<=m ;j++){
        if (j-w[i]>=0)
            dp[j] = max(dp[j],dp[j-w[i]]+v[i]);
    }
}
```

1.4 多重背包

1.4.1 多重背包特点

给定 n 种物品和一个背包 (**每个物品选取有限个**)。物品 i 的重量是 w_i ,其价值为 v_i ,每个物品可以取 k_{i} 个,背包的容量为 C。应该如何选择装入背包中的物品,使得装入背包中物品的总价值最大?

1.4.2 状态

dp[i][j] 表示在只能从 1-i 个物品中选择物品并且背包容量大小为 j 的情况下, 所能获得的最大价值。

- 1. 限制条件
 - 只能选择物品 1~i
 - 选择物品的总重量不能超过 j

1.4.3 状态转移方程

```
dp[i][j] = \max(dp[i-1][j], \ dp[i-1][j-w[i]] \ + \ v[i], \ dp[i-1][j-w[i]*2] \ + \ v[i]*2, \dots, dp[i-1][j-w[i]*2] \ + \ v[i
```

1.4.4 代码实现

1. 初始化

```
int n,m; //n表示物品个数, m表示背包容量
for (int i = 0; i<= m; i++)
dp[0][i] = 0;
```

- 2. 多重背包
 - (a) 通过使用二维数组实现

```
for (int i = 1;i <= n ;i++){
  for (int j = 0 ;j<=m ;j++){
    dp[i][j] = dp[i-1][j];</pre>
```

```
for (int z = 1; z \le k[i]; z + +)
                     if (j-w[i]*z>=0)
                        dp[i][j] = max(dp[i][j],dp[i-1][j-z*w[i]]+z*v[i]);
                     else
                         break;
             }
         }
     (b) 通过使用一维数组实现
         for (int i = 1; i \le n ; i++){
             for (int j = m ; j >= 0 ; j --) {
                 for (int z = 1; z \le k[i]; z++)
                     if (j-w[i]*z>=0)
                        dp[j] = max(dp[j],dp[j-z*w[i]]+z*v[i]);
                     else
                         break;
             }
         }
1.5 题目
1.5.1 HDU 2602
1.5.2 POJ 2063
1.5.3 POJ 1787
1.5.4 UVA 674
1.5.5 UVA 147
1.5.6 HDU 4508
```