

FFX DENOISER REFLECTIONS

DOMINIK BAUMEISTER
TOBIAS FAST

REFLECTION DENOISER

- Based on industry leading algorithm
- High performant spatiotemporal denoisers
- Tile Classifier to skip non reflective areas
- Temporal Variance Guided Tracing
- Support for D3D12 and Vulkan
- Shaders written in HLSL utilizing SM 6.0 wave-level operations

Tile Classification

Stochastic Reflections

Denoise

Tile Classification

Stochastic Reflections Spatial Denoise

Temporal Reprojection

Gaussian Blur

Tile Classification

Stochastic Reflections

Spatial Denoise

Temporal Reprojection

Gaussian Blur

Indirect Args

INPUTS

App side surfaces

- Depth
- Per pixel motion vectors
- Normals for current and last frame
- Roughness for current and last frame
- Cleared reflection target
- Noisy Reflections

ROUGHNESS + HISTORY

MOTION VECTORS

TILE CLASSIFICATION

TILE CLASSIFICATION

Per Pixel Decision Pipe:

- Do we have to run a denoiser for this pixel?
 - Is non-mirror reflection
 - And is roughness within threshold
- Do we have to trace a ray for this pixel?
 - Is mirror reflection
 - Or has temporal variance
 - Or is roughness within threshold and survives variable rate decision
- Do we have to copy the result to neighbors?
 - Is base ray
 - And neighbor needs denoiser
 - And neighbor does not shoot a ray itself
- Local prefix sum to compact rays
- Increment Ray Counter and append pixel coordinates and copy information to Ray List

variable rate: samples per quad

TILE CLASSIFICATION

Per Tile Decision Pipe:

- 8x8 Tiles matches denoiser granularity
- Do we have to run a denoiser on that tile?
 - Any pixel required a non-mirror ray?
- Set Tile Meta Data accordingly

STOCHASTIC REFLECTIONS

SPATIAL DENOISE

SPATIAL DENOISE

SPATIAL DENOISE - APPROACH

- 16 samples of Halton Sequence (2,3) discretized to 7x7 region
- Mirror sequence based on position within a quad
- Edge stopping weight based on normal
- Gaussian weight based on depth difference
- Accumulate all radiance values
- Normalize using accumulated weights

SPATIAL RESULT

- Accumulate history in ping pong buffer
- Use two different reprojection techniques to find history values:
 - Surface reprojection using motion vectors
 - Hit reprojection using ray lengths for parallax reprojection
- Clip history values to 3x3 neighborhood to fight ghosting
- Blend new values with history values based on confidence
 Edge stopping functions use history normal and history roughness
- Use difference of old ping pong buffer to new result to estimate temporal variance

- Surface reprojection
 - Very rough surfaces
 - Use motion vectors to find history value

Surface reprojection breaks on very reflective surfaces

- Hit reprojection
 - Very shiny surfaces
 - Use parallax reprojection to find history value
 - Extend ray from camera to surface by the distance to the hit point
 - Reproject that world position back to the last frame
 - Project to screen space to see where it ended up last frame

Hit reprojection breaks on very rough surfaces

- Can still get ghosting artifacts
- Thus, clip history values to 3x3 region:
 - Calculate standard deviation
 - Create box around new radiance value using standard deviation
 - Extend box further to allow for some leeway

box in color space using scaled standard deviation

TEMPORAL RESULT

GAUSSIAN BLUR

GAUSSIAN BLUR

GAUSSIAN

- Goal is to get rid of remaining spatial noise
- Edge aware Gaussian blur in 5x5 region
- For performance reasons the edge stopping function is only done on roughness values

FINAL RESULT

SOURCE

- GPUOpen FFX Denoiser Product Page https://gpuopen.com/FidelityFX-Denoiser
- GitHub <u>https://github.com/GPUOpen-Effects/FidelityFX-Denoiser</u>
- GPUOpen FFX SSSR Product Page Sample Application https://gpuopen.com/FidelityFX-SSSR

REFERENCES

- Frostbite presentations on Stochastic Screen Space Reflections
 https://www.ea.com/frostbite/news/stochastic-screen-space-reflections
- EA Seed presentation on Hybrid Real-Time Rendering <u>https://www.ea.com/seed/news/seed-dd18-presentation-slides-raytracing</u>
- SVGF
 https://cg.ivd.kit.edu/publications/2017/svgf/svgf_preprint.pdf
- Playdead Games Temporal Reprojection Clipping https://github.com/playdeadgames/temporal

