

Aislador

analógico

Introducción

Esta nota presenta un circuito amplificador de aislamiento útil en sistemas industriales de prueba y medición, instrumentación y sistemas de comunicación. Los diseños incluyen amplificadores de respuesta unipolares y bipolares.

El aislamiento galvánico es deseable y a menudo esencial en muchos sistemas que requieren aislación galvánica. El aislamiento incluye sensores industriales, transductores médicos, y fuentes de alimentación conmutadas alimentadas por la red.

Los sensores industriales incluyen termopares, galgas extensiométricas, y transductores de presión. Proporcionan señales de seguimiento a un sistema de control de procesos. Dado su bajo nivel de CC y/o CA, la señal debe medirse con precisión en presencia de alta ruido de modo común.

Funcionamiento

El IL300 consiste en un emisor LED AlGaAs de alta eficiencia acoplado a dos fotodiodos independientes. El fotodiodo (pines 3 y 4) proporciona una señal de retroalimentación que controla la corriente al emisor LED (pines 1 y 2). Este fotodiodo proporciona una fotocorriente, I_{P1}, que es directamente proporcional al flujo incidente del LED. Esta operación *linealiza* el flujo de salida del LED y elimina del LED la dependencia del tiempo y la temperatura.

El aislamiento galvánico entre la entrada y la salida es proporcionado por un segundo Fotodiodo (pines 5 y 6) ubicado en el lado de salida del optoacoplador. La corriente de salida, I_{P2}, de este fotodiodo replica con precisión la fotocorriente generada por el fotodiodo. La figura siguiente muestra el esquema eléctrico del IL300.

Figura 1: esquema del IL300

Ganancia K₁

La ganancia se define como la relación de la fotocorriente, I_{P1} , a la corriente de la unidad LED, I_F . Se llama K_1 , y se describe en la ecuación siguiente.

$$k_1 = \frac{I_{p1}}{I_F}$$

Ganancia de salida K2

La figura 1 muestra que el flujo óptico del LED también es recibido por un fotodiodo ubicado en el lado de salida (pines 5 y 6) del optoacoplador. Este detector está rodeado por un material de aislamiento óptico transparente de alta tensión. La construcción del optoacoplador separa a los leds en 0,4 mm. El material garantiza que el acoplador tenga un transitorio de sobretensión de 8000 V de pico. K₂, la ganancia de salida (directa) se define como la relación de la corriente de fotodiodo de salida, I_{P2}, y la corriente del LED, I_F. K₂ es se muestra en la ecuación siguiente:

$$k_2 = \frac{I_{p2}}{I_F}$$

La ganancia directa, K_2 , tiene las mismas características que la ganancia, K_1 . La corriente y la temperatura son idénticas en cada led.

Ganancia de transferencia K₃

La ganancia de entrada/salida del IL300 se denomina ganancia de transferencia, K_3 . La ganancia de transferencia se define como la ganancia de salida, K_2 , dividido por la ganancia K_1 , como se muestra en la ecuación siguiente:

$$k_3 = \frac{k_2}{k_1}$$

Figura 2: hoja de datos IL300

Amplificador unipolar (DC)

La etapa de entrada consta de un amplificador, U1, que controla la corriente del LED. El fotodiodo es operado con polarización de tensión cero. Esto se logra conectando el ánodo y el cátodo de los fotodiodos directamente a la entrada inversora y no inversora de U1. La corriente es linealmente proporcional a la tensión de entrada, $I_{P1} = V_{in}/R_1$. La fotocorriente, resultante de la emisión del LED, mantiene la tensión en la entrada inversora de U1 igual a cero. La fotocorriente de salida, I_{P2} , resulta del flujo incidente suministrado por el LED. La magnitud de la corriente de salida está determinada por la ganancia de transferencia de salida, K_2 . La tensión de salida es proporcional a la salida fotocorriente I_{P2} . La tensión de salida es igual al producto de la fotocorriente de salida por la salida del amplificador de transimpedancia, R_2 .

$$\frac{V_{out}}{V_{in}} = \frac{k_2 R_2}{k_1 R_1}$$

Figura 3: Aislador acoplado en DC

La ecuación anterior muestra que la transferencia del amplificador, la ganancia es independiente de la corriente directa del LED. La relación K_2/K_1 se reduce a la ganancia de transferencia K_3 . La siguiente ecuación muestra que la ganancia del amplificador compuesto es igual al producto K_3 , multiplicada por la relación entre la salida y las resistencias de entrada.

$$\frac{V_{out}}{V_{in}} = k_3 \frac{R_2}{R_1}$$

Procedimiento de diseño

El diseño de este amplificador es un proceso de tres pasos. Dado primero el rango de la señal de entrada y el manejo de la corriente de salida de U1, la resistencia de entrada R1 se puede determinar usando las siguientes características:

Op amp (TL-072)

 $I_{out} = \pm 15 \, mA$

IL300

 $K_1 = 0.012$

 $K_2 = 0.012$

 $K_3 = 1.0$

Segundo paso:

El segundo paso es determinar la fotocorriente I_{P1} , como resultado de la oscilación máxima de la señal de entrada. Esta corriente es el producto de la corriente del controlador LED, I_F , por la transferencia de la ganancia, K_1 . Para este ejemplo, el $I_{out\ max}$ es igual a la mayor señal de corriente del LED, es decir, $I_F = I_{out\ máx}$.

$$I_{p1} = k_1 I_{out max}$$

$$I_{p1} = 0.012 15 mA$$

$$I_{p1} = 180 \mu A$$

$$R_1 = \frac{V_{in}}{I_{p1}}$$

$$R_1 = \frac{1 V}{180 \mu A} = 5.6 k\Omega$$

Tercer paso:

El tercer paso en este diseño es determinar el valor de la resistencia R_2 del amplificador de salida. R_2 es fijado por la ganancia tensión deseada, y la transferencia del IL300 K_3 . Dado K_3 = 1.0 y un V_{out}/V_{in} requerido G = 1, se puede determinar el valor de R_2 .

$$R_2 = \frac{R_1 G}{k_3}$$

$$R_2 = \frac{5.6 \ k\Omega \ 1}{1} = 5.6 \ k\Omega$$

Figura 4: Circuito resultante

Aislación bipolar (AC)

Muchas aplicaciones requieren que el amplificador de aislamiento responda a las señales bipolares. La señal de polarización, Vref1, se aplica a la entrada inversora a través de R₃. U1 fuerza suficiente corriente del LED para generar una tensión a través de R₃ que satisface la entrada diferencial de U1. El amplificador U2, está configurado como amplificador de transimpedancia. El offset V_{ref2}, se utiliza para compensar la polarización introducida en el amplificador.

Figura 5: Configuración de alterna

Procedimiento de diseño:

Al igual que el amplificador unipolar, dimensionar R_3 es el primer paso en el diseño. El valor específico de la resistencia se establece mediante la entrada rango de tensión, tensión de referencia y salida máxima corriente l_{out} , del amplificador operacional. Este valor de resistencia también afecta al ancho de banda y estabilidad del amplificador. La red de entrada de R_1 y R_2 forma un divisor de tensión. U2 está configurado como un amplificador inversor. La función de transferencia es la siguiente:

$$\frac{V_{out}}{V_{in}} = \frac{k_3 R_4 R_2}{R_3 (R_1 + R_2)}$$

La relación entre V_{ref1} y V_{ref2} está dada por:

$$V_{ref2} = \frac{V_{ref1} R_4}{R_3}$$

R₃ está dada por:

$$R_3 = \frac{0.5 \, V_{in \, max} + V_{ref1}}{I_F \, k_1}$$

El valor de R4 está determinado por:

$$R_4 = \frac{R_3 G (R_1 + R_2)}{k_3 R_2}$$

Figura 6: Circuito resultante