<110> Balint, Robert F. Her, Jeng-Horng KaloBios, Inc.

<120> Interaction-Activated Proteins

<130> 021167-000700US

<140> US 09/526,106

<141>2000-03-15

<150> US 60/124,339

<151> 1999-03-15

<150> US 60/135,926

<151> 1999-05-25

<150> US 60/175,968

<151>2000-01-13

<160>26

<170> PatentIn Ver. 2.1

<210>1

<211>789

<212> DNA

<213> Escherichia coli

<220>

<221> CDS

<222>(1)..(789)

<223> TEM-1 beta-lactamase

<400>1

cac cca gaa acg ctg gtg aaa gta aaa gat gct gaa gat cag ttg ggt His Pro Glu Thr Leu Val Lys Val Lys Asp Ala Glu Asp Gln Leu Gly 1 5 10 15

gca cga gtg ggt tac atc gaa ctg gat ctc aac agc ggt aag atc ctt Ala Arg Val Gly Tyr Ile Glu Leu Asp Leu Asn Ser Gly Lys Ile Leu 20 25 30

96

48

gag agt ttt cgc ccc gaa gaa cgt ttt cca atg atg agc act ttt aaa

144

Glu Ser Phe Arg Pro Glu Glu Arg Phe Pro Met Met Ser Thr Phe Lys 35 40 45	
gtt ctg cta tgt ggc gcg gta tta tcc cgt att gac gcc ggg caa gag Val Leu Leu Cys Gly Ala Val Leu Ser Arg Ile Asp Ala Gly Gln Glu 50 55 60	192
caa ctc ggt cgc cgc ata cac tat tct cag aat gac ttg gtt gag tac Gln Leu Gly Arg Arg Ile His Tyr Ser Gln Asn Asp Leu Val Glu Tyr 65 70 75 80	240
tca cca gtc aca gaa aag cat ctt acg gat ggc atg aca gta aga gaa Ser Pro Val Thr Glu Lys His Leu Thr Asp Gly Met Thr Val Arg Glu 85 90 95	288
tta tgc agt gct gcc ata acc atg agt gat aac act gcg gcc aac tta Leu Cys Ser Ala Ala Ile Thr Met Ser Asp Asn Thr Ala Ala Asn Leu 100 105 110	336
ctt ctg aca acg atc gga gga ccg aag gag cta acc gct ttt ttg cac Leu Leu Thr Thr Ile Gly Gly Pro Lys Glu Leu Thr Ala Phe Leu His 115 120 125	384
aac atg ggg gat cat gta act cgc ctt gat cgt tgg gaa ccg gag ctg Asn Met Gly Asp His Val Thr Arg Leu Asp Arg Trp Glu Pro Glu Leu 130 135 140	432
aat gaa gcc ata cca aac gac gag cgt gac acc acg atg cct gta gca Asn Glu Ala Ile Pro Asn Asp Glu Arg Asp Thr Thr Met Pro Val Ala 145 150 155 160	480
atg gca aca acg ttg cgc aaa cta tta act ggc gaa cta ctt act cta Met Ala Thr Thr Leu Arg Lys Leu Leu Thr Gly Glu Leu Leu Thr Leu 165 170 175	528
get tee egg caa caa tta ata gae tgg atg gag geg gat aaa gtt gea Ala Ser Arg Gln Gln Leu Ile Asp Trp Met Glu Ala Asp Lys Val Ala 180 185 190	576
gga cca ctt ctg cgc tcg gcc ctt ccg gct ggc tgg ttt att gct gat Gly Pro Leu Leu Arg Ser Ala Leu Pro Ala Gly Trp Phe Ile Ala Asp 195 200 205	624
aaa tct gga gcc ggt gag cgt ggg tct cgc ggt atc att gca gca ctg Lys Ser Gly Ala Gly Glu Arg Gly Ser Arg Gly Ile Ile Ala Ala Leu 210 215 220	672

	į.					
•						
		ggt aag eec tee eg Gly Lys Pro Ser A 230	rg Ile Val			720
		ict atg gat gaa c Γhr Met Asp Glu A 245		g Gln Ile Ala		768
	Ala Ser Leu I	att aag cat tgg le Lys His Trp 60				789
	<210> 2 <211> 263 <212> PRT <213> Esche	richia coli				
	<220> <223> TEM-	1 beta-lactamase				
	<400> 2 His Pro Glu 7	Γhr Leu Val Lys V 5	al Lys Asp 10	Ala Glu As	p Gln Leu Gly 15	
	-	Gly Tyr Ile Glu Le 20	eu Asp Leu 25	Asn Ser Gly	y Lys Ile Leu 30	·
	Glu Ser Phe A	Arg Pro Glu Glu A	arg Phe Pro 10	Met Met Se	-	
	Val Leu Leu 50	Cys Gly Ala Val I 55	Leu Ser Arg	g Ile Asp Ala 60	a Gly Gln Glu	
	Gln Leu Gly	Arg Arg Ile His T	yr Ser Gln .	Asn Asp Let 75	ı Val Glu Tyr 80	
	Ser Pro Val T	hr Glu Lys His Le 85	eu Thr Asp 90	Gly Met Th	r Val Arg Glu 95	
	=	Ala Ala Ile Thr Mo 100	et Ser Asp 2 105	Asn Thr Ala	Ala Asn Leu 110	
	Leu Leu Thr	Thr Ile Gly Gly Pr 12	•	Leu Thr Ala 125		

Asn Met Gly Asp His Val Thr Arg Leu Asp Arg Trp Glu Pro Glu Leu 130 135 140 Asn Glu Ala Ile Pro Asn Asp Glu Arg Asp Thr Thr Met Pro Val Ala 155 145 150 Met Ala Thr Thr Leu Arg Lys Leu Leu Thr Gly Glu Leu Leu Thr Leu 165 170 Ala Ser Arg Gln Gln Leu Ile Asp Trp Met Glu Ala Asp Lys Val Ala 180 185 190 Gly Pro Leu Leu Arg Ser Ala Leu Pro Ala Gly Trp Phe Ile Ala Asp 195 200 205 Lys Ser Gly Ala Gly Glu Arg Gly Ser Arg Gly Ile Ile Ala Ala Leu 210 215 220 Gly Pro Asp Gly Lys Pro Ser Arg Ile Val Val Ile Tyr Thr Thr Gly 235 225 230 Ser Gln Ala Thr Met Asp Glu Arg Asn Arg Gln Ile Ala Glu Ile Gly 245 250 255 Ala Ser Leu Ile Lys His Trp 260 <210>3 <211>5 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: linker <400>3 Gly Gly Gly Ser 1 5 <210>4 <211>15 <212> PRT

<213> Artificial Sequence

```
<220>
<223> Description of Artificial Sequence: flexible linker
<400>4
Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser
                5
                                  10
                                                     15
<210>5
<211>6
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:hexa-histidine
   tag
<400> 5
His His His His His
 1
               5
<210>6
<211>5
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: flexible linker
   of variable length
<220>
<221> REPEAT
<222>(1)..(5)
<223> (G-4S)-x, amino acids 1-5 may be repeated an
   undefined number of times
<400>6
Gly Gly Gly Ser
                5
<210>7
<211> 267
```

<212> PRT

<213> Es	cnericni	a con						
<220> <223> Ne	comycin	phospho	otransfer	ase II (NPTII)			
<400> 7 Met Gly S 1	Ser Ala I	ile Glu G 5	iln Asp	Gly Let 10	ı His Al	a Gly Se	er Pro A	Ma
Ala Trp V	al Glu A	Arg Leu	Phe Gly	Tyr As 25	sp Trp A		Gln Thr 30	Ile
Gly Cys S	Ser Asp . 35	Ala Ala	Val Phe 40	Arg Le	eu Ser A	la Gln G 45	ily Arg	Pro
Val Leu F 50	he Val l	Lys Thr	Asp Leu 55	ı Ser Gl	y Ala Lo		Glu Leu	Gln
Asp Glu A	Ala Ala	Arg Leu 70	Ser Trp	Leu Al	la Thr Ti 75	hr Gly V	al Pro	Cys 80
Ala Ala V		Asp Val 85	Val Thr	Glu Al		rg Asp T	Trp Leu 95	Leu
Leu Gly (Glu Val 1 100	Pro Gly (Gln Asp	Leu Le 105	eu Ser S		eu Ala 10	Pro
Ala Glu L	ys Val S 115	Ser Ile M		Asp Ala 120	Met Ar		eu His ' 25	Thr
Leu Asp I	Pro Ala 1 130	Thr Cys	Pro Phe 135	_	is Gln A	la Lys H 140	lis Arg	Ile
Glu Arg A 145	Ala Arg	_	Met Glı 150	ı Ala G	•	/al Asp	Gln As _l	p Asp
Leu Asp (160	Glu Glu	His Gln 165	Gly Leı	ı Ala Pı	o Ala G 170	lu Leu F	he Ala	Arg 175
Leu Lys A		Met Pro 180	Asp Gly	Glu A		Val Val '	Thr His 190	
Asp Ala C	Cys Leu 195	Pro Asn		Val Gla 200	u Asn G		he Ser 205	Gly

Phe Ile Asp Cys Gly Arg Leu Gly Val Ala Asp Arg Tyr Gln Asp Ile

Ala Leu Ala Thr Arg Asp Ile Ala Glu Glu Leu Gly Gly Glu Trp Ala 230 Asp Arg Phe Leu Val Leu Tyr Gly Ile Ala Ala Pro Asp Ser Gln Arg 245 250 Ile Ala Phe Tyr Arg Leu Leu Asp Glu Phe Phe 260 <210>8 <211>18 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: CD40-binding Trxpep <400>8 Cys Gly Pro Lys Glu Leu Arg Ile Gly Gly Arg Pro Arg Arg Pro Gly 5 10 15 Pro Cys <210>9 <211>18 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: CD40-binding Trxpep <400>9 Cys Gly Pro Glu Gly Gln Gly Gly Val Ala Val Gly Gly Val Gly Gly 5 10 15 Pro Cys <210>10 <211>16

```
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: CD40-binding
   Trxpep
<400>10
Cys Gly Pro Ala Lys Arg Ala Asp Val Glu Phe Ser Leu Glu Pro Gly
                                    10
<210>11
<211>21
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: CD40-binding
   Trxpep
<400>11
Ala Lys Pro Cys Gly Gln Gln Ser Ile His Leu Gly Gly Val Phe Glu
                                  10
Leu Gln Pro Gly Ala
            20
<210>12
<211>18
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: CD40-binding
   Trxpep
<400> 12
Cys Gly Pro Lys Ser Ala Gly Lys Gly Arg Lys Asp Arg Arg Lys Gly
1
                5
                                    10
                                                        15
Pro Cys
<210> 13
```

```
<211 > 19
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: CD40-binding
   Trxpep
<400> 13
Cys Gly Pro Pro Arg Thr Arg Val Asn His Gln Gly Gln Lys Thr Arg
                 5
                                    10
                                                        15
Gly Pro Cys
<210>14
<211>18
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: CD40-binding
   Trxpep
<400> 14
Cys Gly Pro Ala Gly Ala Ile Arg His Glu His Arg Gln Gly Leu Gly
                                   10
Pro Cys
<210>15
<211>23
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: CD40-binding
   Trxpep
<400> 15
Leu Val Thr Leu Glu Asn Gly Lys Gln Leu Thr Val Lys Arg Gln Gly
1
                  5
                                                         15
Leu Tyr Tyr Ile Tyr Ala Gln
           20
```

```
<210> 16
<211>18
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: CD40-binding
   Trxpep
<400> 16
Cys Gly Pro Asp Thr Gly Leu Glu Thr Asp Ala Ala Asp Ala Ser Gly
                5
                                    10
                                                        15
Pro Cys
<210>17
<211>18
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: CD40-binding
   Trxpep
<400> 17
Cys Gly Pro Arg Arg Val Arg Glu Thr Val Ala Val Glu Ser Ser Gly
                 5
                                    10
Pro Cys
<210>18
<211>18
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: CD40-binding
   Trxpep
<400> 18
Cys Gly Pro Pro Cys Ala Thr Phe Glu Glu Ala Lys Ser Asn Gln Gly
                5
                                                       15
```

```
Pro Cys
<210>19
<211>18
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: CD40-binding
   Trxpep
<400> 19
Glu Thr Lys Lys Glu Asn Ser Phe Glu Met Gln Lys Gly Asp Gln Asn
                                    10
Pro Gln
<210>20
<211>18
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: CD40-binding
   Trxpep
<400> 20
Cys Gly Pro Gly Arg Glu Ser Arg Gly Arg Cys Tyr Thr Pro Ser Gly
                                    10
                                                       15
Pro Cys
<210>21
<211>18
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: CD40-binding
   Trxpep
<400>21
```

```
Thr Asp Pro Ser Gln Val Ser His Gly Thr Gly Phe Thr Ser Phe Gly
                                   10
Leu Leu
<210>22
<211>18
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: CD40-binding
   Trxpep
<400> 22
Cys Gly Pro Asn Thr Pro Asp Glu Glu Met Ala Pro Gln Ala Pro Gly
                                    10
Pro Cys
<210>23
<211>18
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: CD40-binding
   Trxpep
<400> 23
Cys Gly Pro Val Val His Ile Lys Thr Asn Glu Gln Ala Ala Pro Gly
                 5
                                                      15
Pro Cys
<210>24
<211>18
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: CD40-binding
```

```
Trxpep
<400> 24
Cys Gly Pro Val Ala Glu Glu Pro Ala Gly Gly Ala Gly Arg Pro Gly
                 5
                                   10
                                                       15
Pro Cys
<210>25
<211>9
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:Her-2/neu
   Tyr1068 phosphorylation substrate peptide
<400> 25
Pro Val Pro Glu Tyr Ile Asn Gln Ser
                5
<210>26
<211>5
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:short flexible
   linker
<400> 26
Pro Gly Ser Gly Gly
<210>27
<211>263
<212> PRT
<213> Escherichia coli
<220>
<223> N-terminal beta-lactamase fragment
```

<400> 2

His Pro Glu	Thr Leu Val 5	Lys Val L	ys Asp Ala 10	Glu Asp Glr	Leu Gly
Ala Arg Val	Gly Tyr Ile (20		sp Leu Asn 25	Ser Gly Lys 30	Ile Leu
Glu Ser Phe	Arg Pro Glu	Glu Arg I 40	Phe Pro Me	t Met Ser Thi 45	Phe Lys
Val Leu Leu 50	Cys Gly Ala	Val Leu (Ser Arg Ile	Asp Ala Gly 60	Gln Glu
Gln Leu Gly 65	Arg Arg Ile 70	His Tyr S	er Gln Asn 75	Asp Leu Val	Glu Tyr 80
Ser Pro Val	Thr Glu Lys 85	His Leu T	hr Asp Gly 90	Met Thr Val	Arg Glu 95
Leu Cys Ser	Ala Ala Ile 7 100	Γhr Met So 10:	-	Thr Ala Ala 110	Asn Leu
Leu Leu Thr 115	Thr Ile Gly	Gly Pro Ly 120	ys Glu Leu	Thr Ala Phe 125	Leu His
Asn Met Gly 130	Asp His Va	l Thr Arg 135	Leu Asp Ai	rg Trp Glu Pr 140	o Glu Leu
Asn Glu Ala 145	Ile Pro Asn 150	Asp Glu A	Arg Asp Thi 155	Thr Thr Pro	Val Ala 160
Met Ala Thr	Thr Leu Arg 165	Lys Leu	Leu Thr Gl	y Glu Leu Le	u Thr Leu 175
Ala Ser Arg	Gln Gln Leu 180		rp Met Glu 85	Ala Asp Lys 190	Val Ala
Gly Pro Leu 195	Leu Arg Ser	Ala Leu I 200	Pro Ala Gly	Trp Phe Ile 2	Ala Asp
Lys Ser Gly 2	•	Arg Gly S 215	•	Ile Ile Ala A 220	la Leu
Gly Pro Asp 225	Gly Lys Pro 230	_	le Val Val I 235	le Tyr Thr T	nr Gly 240
Ser Gln Ala	Γhr Met Asp	Glu Arg	Asn Arg Gl	n Ile Ala Glu	Ile Gly

245 250 255

Ala Ser Leu Ile Lys His Trp 260

60417946 v1