Midterm 2 Version 2 Solution

Hyungmo Gu

April 4, 2020

Question 1

a.

$$100 \div 3 = 33$$
, Remainder $\mathbf{1}$
 $33 \div 3 = 11$, Remainder $\mathbf{0}$
 $11 \div 3 = 3$, Remainder $\mathbf{2}$
 $3 \div 3 = 1$, Remainder $\mathbf{0}$

 $1 \div 3 = 0$, Remainder **1**

It follows from above that the ternary representation of 100 is $(10201)_3$.

b. The largest number expressible by an n-digit binary representation is

$$\sum_{i=0}^{n-1} 2^i \tag{1}$$

Correct Solution:

$$\sum_{i=0}^{n-1} 2^i = \frac{1 - 2^{n-1+1}}{1 - 2} = 2^n - 1 \tag{1}$$

Notes:

- Noticed professor simplified solution using geometric series
- Geometric series with finite sum

$$\sum_{i=0}^{n} r^k = \frac{1 - r^{n+1}}{1 - r}, \text{ where } |r| > 1$$
 (2)

c. $f(n) \in \mathcal{O}(n)$ True $g(n) \in \Omega(n)$ False $f(n) \in \Omega(g(n))$ True $f(n) \in \Theta(g(n))$ False $g(n) \in \Theta(\log_3 n)$ False $f(n) + g(n) \in \Theta(f(n))$ True

Notes:

- Learned \sqrt{n} rises faster than $\log n$.
- Learned if $g(n) \in \Theta(f(n))$ is true then $f(n) + g(n) \in \Theta(f(n))$ is true.

Question 2

Question 3

Question 4