min - (50x, +30x2) + 0.x3 + 0.x4 max Z= 30x, +30x2 5.t. 4x1+3x2 = 120 set. 4x1+3x2+x2 = 120 241 + 42 6 50 2 x1 + x2 + x4 = 50 Έ.χ. ٥ ﴿ ١٨ X2 > 0 ۲, ×3 > 0 X4 > 0 c^Tx =) min Ax = bX > 0 E.x min z=-X1 + 2x2 - 3x2 s.t. XI +XZ +XZ EZ 71 - 12 + X3 32 - 3x, + x2 +2x3 = 5 G & EX , X X3 = X4 - X5 min -x, +2x2-3x3+0x6+0x7 min -x, +2x2-3(xxx)+0x6+0x7 5.t x1+42+ x2 + x6 = 5.t x1+42+(x4-x5+ x6 = $x_1 - x_2 + x_3 - x_1 = 2$ $x_1 - x_2 + x_0 - x_5) - x_1 = 2$ -3×1 + ×2 + 2×3 =5 - 3x1 + x2 + 2 (x4-x5 = 5 > 0 ≥ 0 χ, χ۲ **%**2 > 0 ×2 > 0 X6 > 0 44 **x**₅ 5 CX ×6 > 0 47 >0

max Z= 50x, +30x2 5.t. 4x1+3x2 = 120 241 + 42 < 50 ٥ ﴿ ١٨ X2 > 0

7=30X1+30X2 =) x2 = = - = 2x

- ①纬恒规剂问题,满足约束条件的马行城为多边形
- ②最优都从定生多边对的某一个顶点取得

- ③元马行神 > 3行城为空集

D 单纯的 simplex method
max cTx ニョリキャ南と同核 ニ 最份洋
s.t Ax=b 3 <= > 滿是行東条件 = 3付分
x 2 0)
1
E: A 是man 的矩阵,men, A向社 (rong) 为m,
B 是 A 中的 mxm 的 非等年 宋色祥 (non-singular 18) +0), 即称 B是
纬性规划问题的-组基
$A = \begin{bmatrix} 4 & 3 & 1 & 0 \\ 2 & 1 & 0 & 1 \end{bmatrix} \in \mathbb{R}^{2N} \qquad M = 2 \qquad B = \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix} B' = \begin{bmatrix} 3 & 1 \\ 1 & 1 \end{bmatrix}$
向量:矩阵B是由m午停性独立的到有量组成,B=[由 R Pm]
P. 为 B 甸 基 甸 是
[0] - a [1] - a [;
$B^{n_1} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$ $P_1 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
(麦号: 与某向量 Pj 对应的变量 xj , 放移为季多量

邓基3号: 其余的ni 称为华基委号。

基論:对于某一特定的基 B, 非基础是取 O位得到的解 な(0,0,0)→基語

基3行冠:满足非负约束条件的董辞。

引退: 名 K= Px | Ax=b, x >0 を, 別任何一点 xek, 3夷かか k的 顶层的凸组合

引望: 年恒规利 问题的马行绎 X= (x, x, ··· >w) 为基马行绎的充营会件, 是为的正公童所对友的东部列向星是绿彩铁主的。

(1100)=X x = (00 >3)

定理: 练性概划问题的基础符件 x对左子可行城的顶点

文理: 者马行域有界,线性规划问题的目标函数一定可以至其项点上 达到最优

max 2x1+3x2 max 2x1+3x2 +0-x3+0.74+0. x5 set 7, +2x2 <8 5t - 1/1 t2x2 t /s = & G4 = 16 4×1 + ×4 4×2 € 12 9x2 + xr = 12 6 & 14 $z k \sim \kappa$ 0 5 ex

X1 X2 XL X4 X5 [= [23000]

xy = f- 1/1 - 2xs 1K9-61 = 9815 = 0 - FX2

2= 2x, t3x2 6— 邦基意置 x, & 的系数是正额,因此 马将那基案是要换成基督是, 园林恒就可以诸九 x= (0,0,8,16,12)

那里生生 的 次 全次20 X1 = 3-X3+ 5x2 X1 = 3+ 5x2 20 x4 = 8+4 x3 - > > X4 = 8-245 >0 $x_5 = \min\left(\frac{d}{2}, \frac{3}{4}\right) = \varphi \implies x_{\varphi = 0}$ $\chi_1 = 2 - \chi_3 + \frac{1}{2} (4 + 2\chi_3 - \frac{1}{2} \chi_4) = \varphi - \frac{1}{2} \chi_{\varphi}$ xs = 4+2/3 - 1xx Y2=3- 安(4+>X3- ななり)=2- ラ×3+ なる (4,20,0,9) == 14-1.5x3- = 1x4 举信形表 max 2= 2x, +3x2 +0.x3+0.x4 +0.x5 4. + 82 x1+2 x2 + x3 (6= 4χ₁ + χ₄ + X5 12= 642

	Ь.	χ,	ΧΣ	Xx	Yeq	Χs	6
3	0	ン	30	0	٥	9	<i>b</i> ;
X3	8	ſ	2	ı	ð	0	1/2
γ φ	ال	φ	0	0	1	0	ı
,			-, ¬				2/45
45	12	0	[4]	0	6	1	746
	Ь.	۲,	Xx	Xx	Yep	Ys	G
 2	0	2	30	0	0	9	(3)
Xz	8,	ſ	2 0	1	ð	o <u>!</u>	8
γ φ	ال	φ	0	0	ſ	o	(3)
¥ 2	(2	0	[4]	0	6	i	
1. 5			- ~				Φ

