Mr. Dorsey Dawson recently stole \boldsymbol{X} grams of gold from ACME Jewellers. He is now on a train back home. To avoid getting caught by the police, he has to convert all the gold he has into paper money. He turns into a salesman and starts selling the gold in the train.

There are N passengers who have shown interest in buying the gold. The i^{th} passenger agrees to buy a_i grams of gold by paying v_i dollars. Dawson wants to escape from the police and also maximize the profit. Can you help him maximize the profit?

Note: The i^{th} passenger would buy **exactly** a_i grams if the transaction is successful.

Input Format

The first line contains two space separated integers, N and X, where N is the number of passengers who agreed to buy and X is the stolen amount of gold (in grams).

N lines follow. Each line contains two space separated integers - v_i and a_i , where v_i is the the value which the i^{th} passenger has agreed to pay in exchange for a_i grams of gold.

Constraints

- $1 \le X \le 5000$
- $1 < N < 10^6$
- all v_i 's and a_i 's are less than or equal to 10^6 and greater than 0.

Output Format

If it's possible for Dorsey to escape, print the maximum profit he can enjoy, otherwise print Got caught!.

Sample Input 0

4 10

460 4

590 6 550 5

590 5

Sample Output 0

1140

Explanation 0

Selling it to passengers buying 4 grams and 6 grams would lead to 1050 dollars whereas selling it to passengers buying 5 grams gold would lead to 1140 dollars. Hence the answer.

Sample Input 1

4 9

100 5

120 10

300 2 500 3

Sample Output 1

Got caught!

Explanation 1

There is no way to sell all 9 grams of gold.