進捗報告

表 1: モデルの設定

base model	VGG19		
Optim(w)	SGD(lr=0.001, momentum=0.9)		
$Optim(\alpha)$	Adam(lr=0.001, β =(0.5, 0.999))		
Loss	Cross Entropy Loss		
dataset	cifar10		
pretrain	true		
batch size	64		
train size	25000		
valid size	25000		

表 2: GA の設定

個体数	10		
世代数	150		
選択	TD 選択		
温度	$1 \rightarrow 0.001$		
交叉	一様交叉		
交叉率	0.5 (0.5)		
変異	ガウス分布		
変異率	0.2 (0.2)		

1 今週やったこと

● TDGA の実験

2 実験

表 1, 2 にモデルと GA の設定を示した.

データ数や世代数を先週よりも大規模な設定にした. この設定は GA なしのときと同じ条件なので, GA ありなしでの比較ができる. また温度設定は高すぎたため, 低い温度設定に変更した.

3 結果

図 1 はショートカット数の平均. 温度が $1 \sim 0.01$ までは多様性があったが、0.001 に近づくにつれ全ての個

表 3: 結果

世代	accuracy(%)	edges	params(M)
50	93.92	22	22.74
100	93.82	25	22.78
150	93.97	23	22.38
GA なし A	94.02	18.2	21.50
GA なし B	93.93	9.8	20.73

図 1: 世代ごとのショートカット数

体が同じものに収束した. 温度の設定は $1 \rightarrow 0.01$ が適切だと思われる.

図 6 はテスト accuracy の平均を示す. データ数を増やしたことで, GA なしの 89% と同程度の水準まで学習できた.

表 3 は,各世代の最良個体の性能 (1 回試行) を示した表. ほとんど学習できていなかった前回に比べると, GA なしの結果に迫る性能となった. α をサンプリングする閾値 (現在 0.5) をもう少し工夫すれば, さらに伸びる可能性がある. 閾値を $0.0 \sim 1.0$ まで動かす実験をしたい.

4 今後の予定

- 最適な閾値の確認実験
- 卒論

図 6: 世代ごとの test accuracy