Birla Institute of Technology, Mesra, Patna Campus

ML-Assignment

Name-Shubham Sourabh

Roll-Btech/15044/18

Sec-CSE 6th

#Assignment-7

7. Write a program to construct aBayesian network considering medical data. Use this model to demonstrate the diagnosis of heart patients using standard Heart DiseaseData Set. You can use Java/Python ML library classes/API

Theory:-A Bayesian network is a directed acyclic graph in which each edge corresponds to a conditional dependency, and each node corresponds to a unique random variable. Bayesian network consistsof two major parts: a directed acyclic graph and a set of conditional probability distributions•The directed acyclic graph is a set of random variables represented by nodes.•The conditional probability distribution of a node (random variable) is defined for every possible outcome of the preceding causal node(s).

CODE:-

import numpy as np

import pandas as pd

import csv

from pgmpy.estimators import MaximumLikelihoodEstimator

from pgmpy.models import BayesianModel

from pgmpy.inference import VariableElimination

heartDisease = pd.read_csv('heart.csv')

heartDisease = heartDisease.replace('?',np.nan)

```
print('Sample instances from the dataset are given below')
print(heartDisease.head())
print('\n Attributes and datatypes')
print(heartDisease.dtypes)
model=
BayesianModel([('age','heartdisease'),('sex','heartdisease'),('exang','heartdisea
se'),('cp','heartdisease'),('heartdisease','restecg'),('heartdisease','chol')])
print('\nLearning CPD using Maximum likelihood estimators')
model.fit(heartDisease,estimator=MaximumLikelihoodEstimator)
print('\n Inferencing with Bayesian Network:')
HeartDiseasetest infer = VariableElimination(model)
print('\n 1. Probability of HeartDisease given evidence= restecg')
q1=HeartDiseasetest infer.query(variables=['heartdisease'],evidence={'restecg
':1})
print(q1)
print('\n 2. Probability of HeartDisease given evidence= cp ')
q2=HeartDiseasetest infer.query(variables=['heartdisease'],evidence={'cp':2})
print(q2)
```

OUTPUT:-

Learning CPD using Maximum likelihood estimators
Inferencing with Bayesian Network:

1. Probability of HeartDisease given evidence= restecg

	+
heartdisease	phi(heartdisease)
heartdisease(0)	0.1012
heartdisease(1)	0.0000
heartdisease(2)	0.2392
heartdisease(3)	0.2015
heartdisease(4)	0.4581
T	T

2. Probability of HeartDisease given evidence= cp

phi(heartdisease)
0.3610
0.2159
0.1373
0.1537
0.1321