#### Lecture 2

# **Polar Coordinates: Curve sketching**

Text book chapter: 11.4

 Replace the following polar equation with equivalent cartesian equation.

$$1 r^2 = 4r\sin(\theta)$$

$$2 r = 4tan(\theta)sec(\theta)$$

**3** 
$$r^2 \sin(2\theta) = 2$$

• Replace the following polar equation with equivalent cartesian equation.

$$2 r = 4tan(\theta)sec(\theta)$$

**3** 
$$r^2 \sin(2\theta) = 2$$

$$Ans: x^2 + (y-2)^2 = 4$$

 Replace the following polar equation with equivalent cartesian equation.

$$1 r^2 = 4r\sin(\theta)$$

$$2 r = 4tan(\theta)sec(\theta)$$

**3** 
$$r^2 \sin(2\theta) = 2$$

$$Ans: x^2 + (y-2)^2 = 4$$

**a** Ans: 
$$x^2 = 4y$$

4□ > 4□ > 4□ > 4□ > 4□ > 4□

 Replace the following polar equation with equivalent cartesian equation.

$$1 r^2 = 4r\sin(\theta)$$

$$2 r = 4tan(\theta)sec(\theta)$$

**3** 
$$r^2 \sin(2\theta) = 2$$

$$Ans: x^2 + (y-2)^2 = 4$$

**4** Ans: 
$$x^2 = 4y$$

$$Ans xy = 1$$



#### Polar Curves

The graph of a polar equation  $r = f(\theta)$  consists of all points that have at least one polar representation  $(r, \theta)$ , whose coordinates satisfy the equation.

1. What curve is represented by the polar equation r = 4?

2. Sketch the polar curve  $\theta = 1$ .

#### Polar curve

The curve r = 4 represents the circle with center O and radius 4.



#### polar curve

The curve  $\theta = 1$  is the straight line that passes through O and makes an angle of 1 radian with the polar axis.



#### Polar curve sketching

Example 1: Sketch the curve with polar equation  $r = 2\cos(\theta)$ . (b) Find a Cartesian equation for this curve.

### Polar curve sketching

Example 1: Sketch the curve with polar equation  $r = 2\cos(\theta)$ . (b) Find a Cartesian equation for this curve.

#### The table:

| $\theta$ | $r = 2\cos\theta$ |
|----------|-------------------|
| 0        | 2                 |
| $\pi/6$  | $\sqrt{3}$        |
| $\pi/4$  | $\sqrt{2}$        |
| $\pi/3$  | 1                 |
| $\pi/2$  | 0                 |
| $2\pi/3$ | -1                |
| $3\pi/4$ | $-\sqrt{2}$       |
| $5\pi/6$ | $-\sqrt{3}$       |
| $\pi$    | -2                |
|          |                   |



4□ ト 4 □ ト 4 亘 ト 4 亘 り 9 ○ ○

## Example 1b

To convert the given equation to a Cartesian equation, we use the following:

$$x = r\cos(\theta) = r^2/2$$

which gives:  $2x = r^2 = x^2 + y^2$  or  $x^2 + y^2 - 2x = 0$  Or the equation is

$$(x-1)^2 + y^2 = 1$$

which represent a circle with center (1,0) and radius 1.

Sketch the curve  $r = 1 + \sin(\theta)$ . We first sketch the graph in cartesian coordinates.



We see that, as  $\theta$  increases from 0 to  $\pi/2$ , r (the distance from O) increases from 1 to 2. So, we sketch the corresponding part of the polar curve as follows:



# Example 2 Cont.



Putting together the various parts of the curve, we sketch the complete curve as shown next. It's called the cardioid.



E ▶ 4 E ▶ 9 Q @

#### Polar Curves: Cardioids



#### Limacons



$$A: c + d \sin \theta (c > d)$$
  $B: c + d \cos \theta (c < d)$ 

