Методы машинного обучения Многомерная линейная регрессия и метод главных компонент

Bopoнцов Константин Вячеславович www.MachineLearning.ru/wiki?title=User:Vokov вопросы к лектору: voron@forecsys.ru

материалы курса: github.com/MSU-ML-COURSE/ML-COURSE-21-22 орг.вопросы по курсу: ml.cmc@mail.ru

ВМК МГУ • 26 сентября 2023

Содержание

- Многомерная линейная регрессия
 - Метод наименьших квадратов
 - Многомерная линейная регрессия
 - Сингулярное разложение
- Регуляризация
 - L₂-регуляризация: гребневая регрессия
 - L₁-регуляризация: лассо Тибширани
 - Негладкие регуляризаторы
- Метод главных компонент
 - Постановка задачи и основная теорема
 - Метод главных компонент для линейной регрессии
 - Обобщения

Метод наименьших квадратов (МНК)

- X объекты (часто \mathbb{R}^n); Y ответы (часто \mathbb{R} , реже \mathbb{R}^m); $X^\ell = (x_i, y_i)_{i=1}^\ell$ обучающая выборка; $y_i = y(x_i), \ y: X \to Y$ неизвестная зависимость;
- $a(x) = f(x, \alpha)$ модель зависимости, $\alpha \in \mathbb{R}^p$ вектор параметров модели.
- Метод наименьших квадратов (МНК):

$$Q(\alpha, X^{\ell}) = \sum_{i=1}^{\ell} w_i (f(x_i, \alpha) - y_i)^2 \to \min_{\alpha},$$

где w_i — вес, степень важности i-го объекта.

 $Q(\alpha^*, X^{\ell})$ — остаточная сумма квадратов (residual sum of squares, RSS).

Многомерная линейная регрессия

 $f_1(x), \ldots, f_n(x)$ — числовые признаки;

Модель многомерной линейной регрессии:

$$f(x,\alpha) = \sum_{j=1}^{n} \alpha_j f_j(x), \qquad \alpha \in \mathbb{R}^n.$$

Матричные обозначения:

$$F_{\ell \times n} = \begin{pmatrix} f_1(x_1) & \dots & f_n(x_1) \\ \dots & \dots & \dots \\ f_1(x_\ell) & \dots & f_n(x_\ell) \end{pmatrix}, \quad y_{\ell \times 1} = \begin{pmatrix} y_1 \\ \dots \\ y_\ell \end{pmatrix}, \quad \alpha_{n \times 1} = \begin{pmatrix} \alpha_1 \\ \dots \\ \alpha_n \end{pmatrix}.$$

Функционал квадрата ошибки:

$$Q(\alpha, X^{\ell}) = \sum_{i=1}^{\ell} (f(x_i, \alpha) - y_i)^2 = \|F\alpha - y\|^2 \to \min_{\alpha}.$$

Нормальная система уравнений

Необходимое условие минимума в матричном виде:

$$\frac{\partial Q(\alpha)}{\partial \alpha} = 2F^{\mathsf{T}}(F\alpha - y) = 0,$$

откуда следует нормальная система задачи МНК:

$$F^{\mathsf{T}}F\alpha = F^{\mathsf{T}}y,$$

где $F^{\mathsf{T}}F$ — матрица размера $n \times n$.

Решение системы:
$$\alpha^* = (F^{\mathsf{T}}F)^{-1}F^{\mathsf{T}}y = F^+y$$
.

Значение функционала:
$$Q(\alpha^*) = \|P_F y - y\|^2$$
,

где
$$P_F = FF^+ = F(F^{\mathsf{T}}F)^{-1}F^{\mathsf{T}}$$
 — проекционная матрица.

Геометрическая интерпретация МНК

Линейная оболочка столбцов матрицы $F=(f_1,\ldots,f_n)$, $f_j\in\mathbb{R}^\ell$:

$$\mathscr{L}(F) = \left\{ \sum_{j=1}^{n} \alpha_{j} f_{j} \mid \alpha \in \mathbb{R}^{n} \right\}$$

 $P_F=F(F^{\mathsf{T}}F)^{-1}F^{\mathsf{T}}$ — проекционная матрица P_Fy — проекция вектора $y\in\mathbb{R}^\ell$ на подпространство $\mathscr{L}(F)$ $(I_\ell-P_F)y$ — проекция y на его ортогональное дополнение

МНК — это опускание перпендикуляра в \mathbb{R}^ℓ из y на $\mathscr{L}(F)$

Сингулярное разложение

Произвольная $\ell \times n$ -матрица представима в виде сингулярного разложения (singular value decomposition, SVD):

$$F = VDU^{\mathsf{T}}.$$

Основные свойства сингулярного разложения:

- ullet $\ell imes n$ -матрица $V = (v_1, \dots, v_n)$ ортогональна, $V^{\mathsf{T}} V = I_n$, столбцы v_i собственные векторы $\ell imes \ell$ -матрицы FF^{T} ;
- $oldsymbol{0}$ n imes n-матрица D диагональна, $D=\mathrm{diag}ig(\sqrt{\lambda_1},\dots,\sqrt{\lambda_n}ig)$, $\lambda_i\geqslant 0$ общие собственные значения матриц $F^{\mathsf{T}}F$ и FF^{T} .

Решение МНК через сингулярное разложение

Псевдообратная $F^+ = (F^{\mathsf{T}}F)^{-1}F^{\mathsf{T}}$, вектор МНК-решения α^* , МНК-аппроксимация целевого вектора $F\alpha^*$:

$$F^{+} = (UDV^{\mathsf{T}}VDU^{\mathsf{T}})^{-1}UDV^{\mathsf{T}} = UD^{-1}V^{\mathsf{T}} = \sum_{j=1}^{n} \frac{1}{\sqrt{\lambda_{j}}} u_{j} v_{j}^{\mathsf{T}};$$

$$\alpha^{*} = F^{+}y = UD^{-1}V^{\mathsf{T}}y = \sum_{j=1}^{n} \frac{1}{\sqrt{\lambda_{j}}} u_{j} (v_{j}^{\mathsf{T}}y);$$

$$F\alpha^{*} = P_{F}y = (VDU^{\mathsf{T}})UD^{-1}V^{\mathsf{T}}y = VV^{\mathsf{T}}y = \sum_{j=1}^{n} v_{j} (v_{j}^{\mathsf{T}}y);$$

$$\|\alpha^{*}\|^{2} = \|UD^{-1}V^{\mathsf{T}}y\|^{2} = \|D^{-1}V^{\mathsf{T}}y\|^{2} = \sum_{j=1}^{n} \frac{1}{\lambda_{j}} (v_{j}^{\mathsf{T}}y)^{2}.$$

Тождества:
$$(AB)^{-1} = B^{-1}A^{-1}$$
, $(AB)^{\mathsf{T}} = B^{\mathsf{T}}A^{\mathsf{T}}$, $\|\alpha\|^2 = \alpha^{\mathsf{T}}\alpha$

Проблема мультиколлинеарности

Если $\exists \gamma \in \mathbb{R}^n$: $F\gamma \approx 0$, то некоторые λ_j близки к нулю Число обусловленности $n \times n$ -матрицы S:

$$\mu(S) = \|S\| \|S^{-1}\| = \frac{\max\limits_{u \colon \|u\| = 1} \|Su\|}{\min\limits_{u \colon \|u\| = 1} \|Su\|} = \frac{\lambda_{\max}}{\lambda_{\min}}$$

При умножении обратной матрицы на вектор, $z = S^{-1}u$, относительная погрешность усиливается в $\mu(S)$ раз:

$$\frac{\|\delta z\|}{\|z\|} \leqslant \mu(S) \frac{\|\delta u\|}{\|u\|}$$

В нашем случае: $\alpha^* = (F^{\mathsf{T}}F)^{-1}F^{\mathsf{T}}y$, $S = F^{\mathsf{T}}F$, $u = F^{\mathsf{T}}y$, погрешности измерения признаков $f_j(x_i)$ и ответов y_i усиливаются в $\mu(F^{\mathsf{T}}F)$ раз!

Проблема мультиколлинеарности и переобучения

Если матрица $S = F^{\mathsf{T}}F$ плохо обусловлена, то:

- решение $lpha^*$ неустойчиво и плохо интерпретируемо, содержит большие по модулю $lpha_i^*$ разных знаков;
- ∥α*∥ велико;
- ullet возникает переобучение: на обучении $Q(lpha^*,X^\ell)=\|Flpha^*-y\|^2$ мало́; на контроле $Q(lpha^*,X^k)=\|F'lpha^*-y'\|^2$ велико;

Стратегии устранения мультиколлинеарности и переобучения:

- **1** регуляризация: $\|\alpha\| \to \min$;
- **2** отбор признаков: $f_1, \dots, f_n \to f_{j_1}, \dots, f_{j_m}, \ m \ll n.$
- **3** преобразование признаков: $f_1, \ldots, f_n \to g_1, \ldots, g_m, \ m \ll n$;

Гребневая регрессия (ridge regression)

Штраф за увеличение L_2 -нормы вектора весов $\|\alpha\|$:

$$Q_{\tau}(\alpha) = \|F\alpha - y\|^2 + \frac{1}{\sigma}\|\alpha\|^2,$$

где $au=rac{1}{\sigma}$ — неотрицательный параметр регуляризации.

Вероятностная интерпретация: априорное распределение вектора α — гауссовское с ковариационной матрицей σI_n .

Модифицированное МНК-решение (τI_n — «гребень», ridge):

$$\frac{\partial Q_{\tau}(\alpha)}{\partial \alpha} = 2F^{\mathsf{T}}(F\alpha - y) + 2\tau\alpha = 0$$
$$\alpha_{\tau}^{*} = (F^{\mathsf{T}}F + \tau I_{n})^{-1}F^{\mathsf{T}}y.$$

Преимущество сингулярного разложения: можно подбирать параметр au, вычислив SVD только один раз.

Регуляризованный МНК через сингулярное разложение

Вектор регуляризованного МНК-решения α_{τ}^* и МНК-аппроксимация целевого вектора $F\alpha_{\tau}^*$:

$$\alpha_{\tau}^* = U(D^2 + \tau I_n)^{-1}DV^{\mathsf{T}}y = \sum_{j=1}^n \frac{\sqrt{\lambda_j}}{\lambda_j + \tau} u_j(v_j^{\mathsf{T}}y);$$

$$F\alpha_{\tau}^* = VDU^{\mathsf{T}}\alpha_{\tau}^* = V\operatorname{diag}\left(\frac{\lambda_j}{\lambda_j + \tau}\right)V^{\mathsf{T}}y = \sum_{j=1}^n \frac{\lambda_j}{\lambda_j + \tau} v_j(v_j^{\mathsf{T}}y);$$

$$\|\alpha_{\tau}^*\|^2 = \|(D^2 + \tau I_n)^{-1}DV^{\mathsf{T}}y\|^2 = \sum_{j=1}^n \frac{\lambda_j}{(\lambda_j + \tau)^2} (v_j^{\mathsf{T}}y)^2.$$

 $Flpha_{ au}^*
eq Flpha^*$, но зато решение становится гораздо устойчивее.

Выбор параметра регуляризации au

Контрольная выборка: $X^k = (x'_i, y'_i)_{i=1}^k$;

$$F'_{k\times n} = \begin{pmatrix} f_1(x'_1) & \dots & f_n(x'_1) \\ \dots & \dots & \dots \\ f_1(x'_k) & \dots & f_n(x'_k) \end{pmatrix}, \quad y'_{k\times 1} = \begin{pmatrix} y'_1 \\ \dots \\ y'_k \end{pmatrix}.$$

Вычисление функционала Q на контрольных данных T раз потребует $O(kn^2 + knT)$ операций:

$$Q(\alpha_{\tau}^*, X^k) = \|F'\alpha_{\tau}^* - y'\|^2 = \left\|\underbrace{F'U}_{k \times n} \operatorname{diag}\left(\frac{\sqrt{\lambda_j}}{\lambda_j + \tau}\right) \underbrace{V^{\mathsf{T}}y}_{n \times 1} - y'\right\|^2.$$

Зависимость $Q(\tau)$ обычно имеет характерный минимум.

Регуляризация сокращает «эффективную размерность»

Сжатие (shrinkage) или сокращение весов (weight decay):

$$\|\alpha_{\tau}^*\|^2 = \sum_{j=1}^n \frac{\lambda_j}{(\lambda_j + \tau)^2} (v_j^{\mathsf{T}} y)^2 < \|\alpha^*\|^2 = \sum_{j=1}^n \frac{1}{\lambda_j} (v_j^{\mathsf{T}} y)^2.$$

Почему говорят о сокращении эффективной размерности?

Роль размерности играет след проекционной матрицы:

$$\operatorname{tr} F(F^{\mathsf{T}}F)^{-1}F^{\mathsf{T}} = \operatorname{tr} (F^{\mathsf{T}}F)^{-1}F^{\mathsf{T}}F = \operatorname{tr} I_n = n.$$

При использовании регуляризации:

$$\operatorname{tr} F(F^{\mathsf{T}}F + \tau I_n)^{-1}F^{\mathsf{T}} = \operatorname{tr} \operatorname{diag} \left(\frac{\lambda_j}{\lambda_j + \tau}\right) = \sum_{i=1}^n \frac{\lambda_j}{\lambda_j + \tau} < n.$$

Регуляризация по L_1 -норме для отбора признаков

LASSO — Least Absolute Shrinkage and Selection Operator

$$\|F\alpha - y\|^2 + \mu \sum_{j=1}^n |\alpha_j| \to \min_{\alpha} \quad \Longleftrightarrow \quad \begin{cases} \|F\alpha - y\|^2 \to \min_{\alpha}; \\ \sum_{j=1}^n |\alpha_j| \leqslant \varkappa; \end{cases}$$

T. Hastie, R. Tibshirani, J. Friedman. The Elements of Statistical Learning. 2017.

Сравнение L_2 (Ridge) и L_1 (LASSO) регуляризации

Типичный вид зависимости весов $lpha_j$ от селективности μ

B LASSO с увеличением μ усиливается отбор признаков

Геометрическая интерпретация отбора признаков

Сравнение регуляризаторов по различным L_p -нормам:

Метод главных компонент (Principal Component Analysis, PCA)

$$f_1(x),\ldots,f_n(x)$$
 — исходные числовые признаки; $g_1(x),\ldots,g_m(x)$ — новые числовые признаки, $m\leqslant n$;

Требование: старые признаки $f_j(x)$ должны линейно восстанавливаться по новым признакам $g_s(x)$:

$$\hat{f}_j(x) = \sum_{s=1}^m g_s(x)u_{js}, \quad j=1,\ldots,n, \quad \forall x \in X,$$

как можно точнее на обучающей выборке x_1, \ldots, x_ℓ :

$$\sum_{i=1}^{\ell} \sum_{j=1}^{n} (\hat{f}_{j}(x_{i}) - f_{j}(x_{i}))^{2} \to \min_{\{g_{s}(x_{i})\}, \{u_{js}\}}$$

Задача преобразования признаков (feature transformation) — это задача обучения без учителя, тут нет ответов y_i

Матричные обозначения

Матрицы «объекты-признаки», старая и новая:

$$F_{\ell \times n} = \begin{pmatrix} f_1(x_1) & \dots & f_n(x_1) \\ \dots & \dots & \dots \\ f_1(x_\ell) & \dots & f_n(x_\ell) \end{pmatrix}; \quad G_{\ell \times m} = \begin{pmatrix} g_1(x_1) & \dots & g_m(x_1) \\ \dots & \dots & \dots \\ g_1(x_\ell) & \dots & g_m(x_\ell) \end{pmatrix}.$$

Матрица линейного преобразования новых признаков в старые:

$$\underset{n \times m}{U} = \begin{pmatrix} u_{11} & \dots & u_{1m} \\ \dots & \dots & \dots \\ u_{n1} & \dots & u_{nm} \end{pmatrix}; \qquad \hat{F} = GU^{\mathsf{T}} \overset{\mathsf{XOTUM}}{\approx} F.$$

Найти: сразу и новые признаки G, и преобразование U:

$$\sum_{i=1}^{\ell} \sum_{i=1}^{n} (\hat{f}_{j}(x_{i}) - f_{j}(x_{i}))^{2} = \|GU^{\mathsf{T}} - F\|^{2} \to \min_{G,U},$$

Основная теорема метода главных компонент

Теорема

Если $m \leqslant \operatorname{rk} F$, то минимум $\|GU^{\mathsf{T}} - F\|^2$ достигается, когда столбцы U — это с.в. матрицы $F^{\mathsf{T}}F$, соответствующие m максимальным с.з. $\lambda_1, \ldots, \lambda_m$, а матрица G = FU.

При этом:

- $oldsymbol{0}$ матрица U ортонормирована: $U^{\mathsf{T}}U = I_m$;
- $oldsymbol{Q}$ матрица G ортогональна: $G^{\mathsf{T}}G = \Lambda = \mathsf{diag}(\lambda_1, \ldots, \lambda_m)$;

Связь с сингулярным разложением

Если взять m = n, то:

- ② представление $\hat{F} = GU^{\mathsf{T}} = F$ точное и совпадает с сингулярным разложением при $G = V\sqrt{\Lambda}$:

$$F = GU^{\mathsf{T}} = V\sqrt{\Lambda}U^{\mathsf{T}}; \quad U^{\mathsf{T}}U = I_{m}; \quad V^{\mathsf{T}}V = I_{m}.$$

 \odot линейное преобразование U работает в обе стороны:

$$F = GU^{\mathsf{T}}; \quad G = FU.$$

Поскольку новые признаки некоррелированы ($G^{\mathsf{T}}G = \Lambda$), преобразование U называется декоррелирующим (или преобразованием Карунена–Лоэва).

Эффективная размерность выборки

Упорядочим с.з. $F^{\mathsf{T}}F$ по убыванию: $\lambda_1 \geqslant \ldots \geqslant \lambda_n \geqslant 0$.

Эффективная размерность выборки — это наименьшее целое <math>m, при котором

$$E_m = \frac{\|GU^{\mathsf{T}} - F\|^2}{\|F\|^2} = \frac{\lambda_{m+1} + \dots + \lambda_n}{\lambda_1 + \dots + \lambda_n} \leqslant \varepsilon.$$

Критерий «крутого склона»: находим m: $E_{m-1}\gg E_m$:

Решение задачи НК в новых признаках

Заменим $F_{\ell \cdot m}$ на её приближение $G_{\ell \cdot m} \cdot U^{\mathsf{T}}_{m \cdot n}$, предполагая $m \leqslant n$:

$$\|G\underbrace{U^{\mathsf{T}}\alpha}_{\beta} - y\|^2 = \|G\beta - y\|^2 \to \min_{\beta}.$$

Связь нового и старого вектора коэффициентов:

$$\beta = U^{\mathsf{T}}\alpha; \qquad \alpha = U\beta.$$

Решение задачи наименьших квадратов относительно β (единственное отличие — m слагаемых вместо n):

$$\beta^* = D^{-1}V^{\mathsf{T}}y; \qquad \alpha^* = UD^{-1}V^{\mathsf{T}}y = \sum_{j=1}^{m} \frac{1}{\sqrt{\lambda_j}} u_j(v_j^{\mathsf{T}}y);$$
$$G\beta^* = VV^{\mathsf{T}}y = \sum_{j=1}^{m} v_j(v_j^{\mathsf{T}}y);$$

Спектральный метод наименьших квадратов

- 1. Построить SVD-разложение, упорядочить $\lambda_1\geqslant \cdots\geqslant \lambda_n$
- 2. Отделить n-m наименьших с. з. от нуля: $\lambda_i':=\lambda_j+\delta_j$

Частные случаи:

- $\lambda_i' := \lambda_i + \tau$ гребневая регрессия
- ullet $\lambda_i':=\lambda_j+\infty[j>m]$ метод главных компонент
- ullet $\lambda_j' := \lambda_j + au[j > m]$ нечто промежуточное
- 3. Применить формулы SVD для модификации МНК-решения:

$$\alpha^* = \sum_{j=1}^n \frac{1}{\sqrt{\lambda_j}} u_j(v_j^{\mathsf{T}} y) \qquad \longrightarrow \qquad \alpha^* = \sum_{j=1}^n \frac{\sqrt{\lambda_j}}{\lambda_j'} u_j(v_j^{\mathsf{T}} y)$$

$$F\alpha^* = \sum_{j=1}^n v_j(v_j^{\mathsf{T}} y) \qquad \longrightarrow \qquad F\alpha^* = \sum_{j=1}^n \frac{\lambda_j}{\lambda_j'} v_j(v_j^{\mathsf{T}} y)$$

Задачи низкорангового матричного разложения

- Понижение размерности в задачах регрессии/классификации
- Генерация новых признаков
- Формирование сжатого представления данных

Дано: матрица
$$F=(f_{ij})_{\ell \times n}, \ (i,j) \in \Omega \subseteq \{1..\ell\} \times \{1..n\}$$

Найти: матрицы $G=(g_{is})_{\ell imes m}$ и $U^{\mathsf{T}}=(u_{sj})_{m imes n}$ такие, что

$$\|F - GU^{\mathsf{T}}\|^2 = \sum_{(i,j) \in \Omega} \left(f_{ij} - \sum_{s} g_{is} u_{sj} \right)^2 \to \min_{X,Y}$$

Дополнительные ограничения, вынуждающие отказаться от SVD:

- неквадратичная функция потерь
- ullet неотрицательное матричное разложение: $g_{is}\geqslant 0$, $u_{sj}\geqslant 0$
- ullet разреженные данные: $|\Omega| \ll \ell n$

Резюме в конце лекции

- Многомерная линейная регрессия
 - через сингулярное разложение
- Три приёма против мультиколлинеарности и переобучения
 регуляризация, отбор и преобразование признаков
- L₂-регуляризация, она же гребневая регрессия
 тоже через сингулярное разложение
- L_1 -регуляризация (LASSO) и др. негладкие регуляризаторы регулируемый отбор признаков
- Метод главных компонент задача матричного разложения
 — снова через сингулярное разложение
- Другие методы матричных разложений и их приложения
 в следующем семестре