Lab06-Universal Programs

CS363-Computability Theory, Xiaofeng Gao, Spring 2015

- * Please upload your assignment to FTP or submit a paper version on the next class.

 * Name:_____ StudentId: _____ Email: _____
- 1. Show that there is a decidable predicate Q(x, y, z) such that
 - (a) $y \in E_x$ if and only if $\exists z. Q(x, y, z)$
 - (b) if $y \in E_x$ and Q(x, y, z), then $\phi_x((z)_1) = y$.
- 2. Show that there is a total computable function k(x) such that for any x, $\phi_{k(x)} = c_{\neg M(x)}$, where M is a decidable predicate and $\phi_x = c_M$.
- 3. Show that there is a total computable function s(x,y) such that for all $x,y, E_{s(x,y)} = E_x \cup E_y$.
- 4. Prove the equivalent of example 5 in Chapter 5-3.1 for the operations of substitution and minimalisation, namely:
 - (a) Fix $m, n \geq 1$; there is a total computable function $s(e, e_1, \dots, e_m)$ such that (in the notation of theorem 2.2) $\phi_{s(e,e_1,\dots,e_m)}^{(n)} = Sub(\phi_e^{(m)}; \phi_{e_1}^{(n)}, \phi_{e_2}^{(n)}, \dots, \phi_{e_m}^{(n)})$.
 - (b) Fix $n \geq 1$; there is a total computable function k(e) such that for all e, $\phi_{k(e)}^{(n)}(\mathbf{x}) \simeq \mu y(\phi_e^{(n+1)}(\mathbf{x},y)=0)$. (We could extend the notation of theorem 2.2 in the obvious way and write $\phi_{k(e)}^{(n)} = Min(\phi_e^{(n+1)})$.)