Facultat d'Informàtica de Barcelona Universitat Politècnica de Catalunya

Real-Time Systems

3d-Earliest Deadline First

Antonio Camacho Santiago antonio.camacho.santiago@upc.edu

3d-Earliest Deadline First

Objective

To understand Earliest Deadline First (EDF) schedulers...

To design Earliest Deadline First schedulers...

To analyze Earliest Deadline First ...

To evaluate the pros and cons of Earliest Deadline First schedulers...

```
at design stage:
  nothing to do (just check feasibility)

at runtime each Sys_Tick:
  for each active task
    dispatch the task with shorter absolute deadline
```

EDF scheduler

At run-time, absolute deadlines of active tasks are checked and priorities are online modified

$$\forall t, \tau_i, \tau_j : d_i < d_j \Rightarrow P_i > P_j$$

It can also be used the following rule saying that priorities are assigned proportionally to the inverse of the absolute deadline

$$P_i \propto \frac{1}{d_i}$$

Note that absolute deadline is $d_i = \phi_i + kT_i + D_i$ where ϕ_i is the initial phase, k is a positive integer, T_i is the task period and D_i is the relative deadline

At each system tick, the scheduler looks for the existing active tasks to dispatch the task with higher priority. Thus, preemption is allowed at each system tick

More details can be found in S.K.Baruah, L. E: Rosier and R. R Howell, "Algorithms and complexity concerning the preemptive scheduling of periodic, real-time tasks on one processor," Journal of Real Time Systems, n. 2, 1990

Requisites

The approach for the earliest deadline first scheduler is based on periodic tasks as follows:

1 microprocessor

Tasks may arrive at any time

The WCET for each task is known, fitted and less than its deadline

Deadlines of each task are less or equal to their periods

Periodic (simple feasibility test) or aperiodic tasks (processor demand test)

EDF for no precedence among tasks or EDF* when precedence exists

Tasks can be preempted

RT kernel uses dynamic priorities

The schedulability analysis tries to know in advance if all the release times for each task occurs before its deadline.

EDF-Periodic tasks $T_i = D_i$

3d-Earliest Deadline First

Typical periodic task set with $T_i = D_i$

Task τ _i	Computing time c _i (ms)	Period T _i = Deadline D _i (ms)			
τ_1	1	3			
τ_2	1	4			
τ_3	1.5	5			

EDF-Periodic tasks $T_i \le D_i$

3d-Earliest Deadline First

Periodic task set with $T_i \le D_i$

Task τ _i	Computing time c _i (ms)	Deadline D _i (ms)	Period T _i (ms)		
τ_1	2	4	6		
τ_2	2	5	8		
τ_3	3	7	9		

EDF-Aperiodic tasks

3d-Earliest Deadline First

Aperiodic tasks with different arrival times

Task τ _i	Computing time c _i (ms)	Deadline d _i (ms)	Arrival a _i time (ms)
τ_1	1	2	0
τ_2	2	5	0
τ_3	2	4	2
τ_4	2	10	3
τ ₅	2	9	6

time (ms)

EDF*-precedence constraints

3d-Earliest Deadline First

Until now EDF has no precedence constraints. In case $\tau_A \rightarrow \tau_B$ then EDF becomes EDF*

POSTPONE SUCCESSOR ARRIVAL TIME:

$$a_B^* = a_A + C_A$$

ADVANCE DEADLINE OF PRECESSOR:

$$d_A^* = d_B - C_B$$

Check feasibility of the new task set

EDF*-precedence constraints

3d-Earliest Deadline First

Until now EDF has no precedence constraints. In case $\tau_A \rightarrow \tau_B$ then EDF becomes EDF*

Generic approach for complex precedence paths:

Transform a set J of dependent tasks into a set J* of independent tasks

Arrival time modification:

- 1 For all root nodes, set $a_i^* = a_i$
- 2 Select a task τ_i such that all its immediate predecessors have been modified, else exit.

$$3 \operatorname{Set} a_i^* = \max \left\{ a_i, \max_{\mathsf{\tau}_k \to \mathsf{\tau}_i} (a_k^* + C_k) \right\}$$

4 Repeat from line 2.

Deadline modification

- 1 For all leaves, set $d_i^* = d_i$
- 2 Select a task τ_i such that all its immediate successors have been modified, else exit.

$$3 \operatorname{Set} d_i^* = \min \left\{ d_i, \min_{\mathsf{T}_k \to \mathsf{T}_i} (d_k^* - C_k) \right\}$$

4 Repeat from line 2.

Online test for accepting a new task

3d-Earliest Deadline First

How to online check if a new task can be scheduled at runtime?

Let J be the set of current guaranteed task Let J_{new} be the new task that has arrived To accept J_{new} U J = J' must be schedulable J' is schedulable iff $\forall i = 1, 2, ..., n$: $f_i \leq d_i$

Task τ _i	Computing time c _i (ms)	deadline d _i (ms)	Arrival time a _i (ms)
τ_1	4	11	0
τ_2	2	9	3
τ_2	4	10	1
τ_{new}	2	8	4

where $f_i = \sum_{k=1}^n c_k$, being c_i the remaining Worst Case Execution Time of task J_i The online test consists of checking the n-conditions at the arrival times, ordering the tasks by increasing deadlines

There is no space to accommodate the new task (green) without missing deadline for task 1

time (ms)

Online test for accepting a new task

3d-Earliest Deadline First

How to online check if a new task can be scheduled at runtime?

$$t = 0, J_1: C_1(0) = 4 \le 11 - 0 = d_1 - t$$

$$t = 1, J_3: C_3(1) = 4 \le 10 - 1 = d_3 - t$$

$$J_1: C_3(1) + C_1(1) = 4 + 3 = 7 \le 10$$

$$t = 3, J_2: C_2(3) = 2 \le 9 - 3 = d_2 - t$$

Task τ _i	Computing time c _i (ms)	deadline d _i (ms)	Arrival time a _i (ms)
τ_1	4	11	0
τ_2	2	9	3
τ_3	4	10	1
τ_{new}	2	8	4

$$J_1: C_2(3) + C_3(3) + C_1(3) = 2 + 2 + 3 \le 11 - 3 = d_1 - t$$

 J_3 : $C_2(3) + C_3(3) = 2 + 2 \le 10 - 3 = d_3 - t$

$$t = 4, J_4: C_4(4) = 2 \le 8 - 4 = d_4 - t$$

$$J_2$$
: $C_4(4) + C_2(4) = 2 + 1 \le 9 - 4 = d_2 - t$

$$J_3$$
: $C_4(4) + C_2(4) + C_3(4) = 2 + 1 + 2 \le 10 - 4 = d_3 - t$

$$J_1: C_4(4) + C_2(4) + C_3(4) + C_1(4) = 2 + 1 + 2 + 3 = 8 \ge 7 = 11 - 4 = d_1 - t \rightarrow \text{Not feasible (as shown in the plot)}$$

For periodic tasks with $D_i = T_i$ check feasibility as

That's all folks!!
$$U_{\text{total}} = \sum_{i=1}^{n} U_i \le 1$$
 (necessary and sufficient condition)

For periodic tasks with $D_i < T_i$ check feasibility using processor demand as

$$L \ge \sum_{i=1}^{n} \left(\left\lfloor \frac{L - D_i}{T_i} \right\rfloor + 1 \right) C_i$$
 (necessary and sufficient condition)

Note that condition $L \ge \sum_{i=1}^n \left| \frac{L}{T_i} \right| C_i$ based on processor demand analysis is the same as $U_{\text{total}} = \sum_{i=1}^n U_i \le 1$ when $D_i = T_i$

Processor demand criterion: In any interval, the computation demanded by the task set must be no greater than the available time.

$$g(t_1, t_2) = \sum_{\substack{r_{i,k} \ge t_1, \\ d_{i,k} \le t_2}} C_i$$

The set of tasks is feasible if in any interval of time, the processor demand does not exceed the available time

$$\forall t_1, t_2: g(t_1, t_2) \le t_1 - t_2$$

Problem: how to perform the test. Solution: find instances of τ_i contributing in $[t_1, t_2]$

$$g(t_1, t_2) = \sum_{i=1}^{n} \eta_i(t_1, t_2) C_i = \sum_{i=1}^{n} \max \left(0, \left\lfloor \frac{t_2 + T_i - D_i}{T_i} \right\rfloor - \left\lceil \frac{t_1}{T_i} \right\rceil \right) C_i$$

Assumption: initial phase $\forall i$: ϕ_i =0

$$g(0,L) = \sum_{i=1}^{n} \eta_i(0,L) C_i = \sum_{i=1}^{n} \left[\frac{L + T_i - D_i}{T_i} \right] C_i$$

where L is the final time interval. Schedulability is ensured iff $g(0,L) \leq L$

Processor Demand Analysis

The test with assumption ϕ_i =0 is simplified for D_i = T_i

$$g(0,L) = \sum_{i=1}^{n} \left\lfloor \frac{L}{T_i} \right\rfloor C_i \le L$$

How many test need to be analyzed for L? The function g(0,L) is stepwise constant between two deadlines. Therefore, check only at deadline intervals. Moreover check along the hyperperiod.

A set of tasks with ϕ_i =0, $D_i \le T_i$ is EDF-feasible iff

$$g(0,L) \le L$$
 with $D = \{d_k | d_k \le \min(H, L^*)\}$
$$H = \operatorname{lcm}(T_1, T_2, \dots, T_n)$$

$$L^* = \frac{\sum_{i=1}^n (T_i - D_i) U_i}{1 - U}$$

Processor Demand Analysis

3d-Earliest Deadline First

Processor utilization

$$U = \sum_{i=1}^{n} U_i = \frac{2}{6} + \frac{2}{8} + \frac{3}{9} = \frac{11}{12} \le 1$$

$$H = \text{lcm}(T_1, T_2, \dots, T_n) = 72$$

$$L^* = \frac{\sum_{i=1}^{n} (T_i - D_i) U_i}{1 - U} = 25$$

Task τ _i	Computing time c _i (ms)	Deadline D _i (ms)	Period T _i (ms)
τ_1	2	4	6
τ_2	2	5	8
τ_3	3	7	9

Conditions should be evaluated at

$$D = \{d_k | d_k \le \min(H, L^*)\} \le 25 = \{4, 5, 7, 10, 13, 16, 21, 22, 25\}$$

Test is
$$g(0,L) = \sum_{i=1}^{n} \left\lfloor \frac{L+T_i-D_i}{T_i} \right\rfloor C_i \le L$$

L	4	5	7	10	13	16	21	22	25
g(0,L)	2	4	7	9	11	16	18	20	23
Test <i>g(0,L)</i> ≤ <i>L</i>	OK								

EDF scheduler

Pros:

The earliest deadline first scheduler is based on dynamic priorities configured at runtime according to the absolute deadline of each task

Sufficient condition for $T_i = D_i$ and periodic tasks $U_{\text{total}} \leq 1$

For aperiodic tasks, check demand processor criterion

Optimality: among all the algorithms, EDF is optimal in terms of feasibility

if some feasible schedule exists, EDF will find it. EDF minimizes the maximum latency.

Note that EDF is not optimal in systems where no preemption is allowed

Cons:

EDF is not provided by any commercial RTOS!

It is less predictable and less controllable when trying to reduce response time

It requires higher overhead compared with fixed priorities schedulers

During overload, all tasks can miss their deadline (domino effect)