数字图像处理

第9章

形态学图像处理

前章小结

- > 编码基本概念和理论基础
 - ▶数据冗余-编码冗余、像素冗余、心理冗余
 - ▶ 图象编码的模型-信源编码、信道编码
 - ▶ 信息编码的基本概念-平均码长的极限
- > 简单编码方法
 - ▶哈夫曼编码、算术编码、LZW编码
 - ▶位平面编码-游程编码、边界跟踪编码
- > 预测编码方法
 - > 无损预测编码-预测器选择
 - ▶ 有损预测编码-量化器选择
- > 变换编码方法
 - > 变换方式选择、子图尺寸
 - ▶比特分配-分区编码、阈值编码

本章主要内容

- 形态学基本概念
- 腐蚀与膨胀
- 开操作和闭操作
- 击中或击不中变换
- > 二值图像形态学基本算法

本章基本要求

- ▶ 腐蚀与膨胀
- > 二值图像形态学运算

- ▶1.形态学(morphology)处理基本概念
 - ▶用具有一定形态的结构元素去量度和提取图像中的对应形状,达到对图像分析和识别的目的
 - ▶数学基础:集合论
 - ▶基本运算: 膨胀、腐蚀、开启、闭合、击中、击 不中
 - ▶处理对象:二值图像、灰度图像

▶2.基本集合论知识-定义

- ▶集合: 具有某种性质的、确定的、有区别的事物全体 (A,B,...,Φ)
- ▶元素: 构成集合的每个事物 (a,b,c...)

 $a \in A$, $a \notin B$

▶子集: A的元素都属于B, 称A为B子集

 $A \subseteq B$, $B \supseteq A$

▶并集: 由A和B所有元素组成的集合

 $A \cup B$, $x \in A \cup B \Leftrightarrow x \in A \overrightarrow{\boxtimes} x \in B$

▶交集: 由A和B公共元素组成的集合

 $A \cap B$, $x \in A \cap B \Leftrightarrow x \in A \mathbb{H} x \in B$

▶补集: A的补集定义为

 $A^c = \big\{ x \mid \ x \not\in A \big\}$

▶位移: A用x=(x₁,x₂)位移,定义为

 $(A)_{x} = \{ y \mid y = a + x, a \in A \}$

▶映像: A的映像定义为

 $\hat{A} = \left\{ x \mid x = -a, a \in A \right\}$

▶差集: 两个集合的差,定义为

$$A - B = \{x \mid x \in A, x \notin B\} = A \cap B^c$$

▶3.集合运算示例

邻域和连通(邻接)

4-邻域与4-连通

互为4邻域的两个像素叫4-连通(邻接)。

8-邻域与8-连通

互为8邻域的两个像素叫8-连通(邻接)。

像素的连接

对于二值图像中具有相同值的两个像素A和B,所有和A、B具有相同值的像素系列 $p_0(=A), p_1, p_2, \cdots, p_n(=B)$ 存在,并且 p_{i-1} 和 p_i 互为4-/8-连通,那么像素A 和B叫做4-/8-连接。

▶位移: A用b=(b1, b2)位移,记为(A)z,定义为:

$$(A)_z = \{ y \mid y = a + b, a \in A \}$$

 \triangleright 映像: A的映像记为 \hat{A} ,定义为:

$$\hat{A} = \{ w \mid w = -a, a \in A \}$$

二值形态学中的运算对象是集合。设A为图像集合,B为结构元素,数学形态学运算是用B对A进行操作。二值形态学中两个最基本的运算——腐蚀与膨胀。

▶1.膨胀

➤ 定义: A用结构元素B进行膨胀运算为

$$A \oplus B = \left\{ x \mid \left[\left(\hat{B} \right)_x \cap A \right] \neq \phi \right\} \overrightarrow{\otimes} A \oplus B = \left\{ x \mid \left[\left(\hat{B} \right)_x \cap A \right] \subseteq A \right\}$$

▶膨胀结果与结构元素B的形状及B的原点有关

▶膨胀应用: 图像目标断裂的桥接

11

▶膨胀应用举例(背景白色为0,字体黑色为1)

原始图像

Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company's software may recognize a date using "00" as 1900 rather than the year 2000.

膨胀图像

Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company's software may recognize a date using "00" as 1900 rather than the year 2000.

▶ 2.腐蚀

ightharpoonup 定义: $A\Theta B = \{x \mid [(B)_x \subseteq A]\}$ 为A用结构元素B进行腐蚀的运算

拿B的原点和A上的点一个一个地对比,如果B上的所有点都在A的范围,则B的原点对应的点保留,否则将该点去掉。

- ▶ 2.腐蚀
 - ▶腐蚀的应用:去除图像中不需要部分(噪声、毛刺)
 - ▶示例中最大方框15X15,采用的结构元素为13X13全1

▶3.腐蚀与膨胀的对偶

$$(A\Theta B)^c = A^c \oplus \hat{B}$$

$$(A \oplus B)^c = A^c \Theta \hat{B}$$

 A^{c}

B

 $A^c\Theta\hat{B}$

 $A^c \oplus \hat{B}$

 A^{c}

B

A+B

A-B

▶1.思路

- > 腐蚀使目标变小,膨胀使目标变大
- ▶腐蚀-膨胀:去掉毛刺,恢复目标尺寸
- ▶膨胀-腐蚀:填充空洞,恢复目标尺寸

▶ 2. 开操作:

$$A \circ B = (A \Theta B) \oplus B$$

- ➤ 定义: 采用结构元素B对A先腐蚀再膨胀
- ▶作用:通过去除细小突出物,断开狭窄的间断来平滑目 标

▶3.闭操作:

$$A \bullet B = (A \oplus B)\Theta B$$

- ➤ 定义:采用结构元素B对A先膨胀再腐蚀
- ▶作用:通过填充小孔洞,消弥狭窄间断和细长鸿沟来平 滑目标

16

▶4.几何解释

- ➤ 开操作:结构元素沿目标的内边界滚动,B中的点所能达到的A的边界的最近点
- ➤ 闭操作:结构元素沿目标的外边界滚动, B中的 点所能达到的A的边界的最近点

开操作

闭操作

▶ 5.运算示例

目标A

开操作(分解示例)

闭操作(分解示例)

▶ 6.开操作与闭操作的对偶

$$(A \circ B)^c = (A^c \bullet \hat{B})$$

$$(A \bullet B)^c = (A^c \circ \hat{B})$$

▶7.开操作性质

- $1.A \circ B$ 是A的子集合 (子图)
- 2. 如果C是D的子集,则 $C \circ B$ 是 $D \circ B$ 的子集
- 3. $(A \circ B) \circ B = A \circ B$

▶8.闭操作性质

- 1.A是A B 的子集合(子图)
- 2. 如果C是D的子集,则 $C \bullet B$ 是 $D \bullet B$ 的子集
- 3. $(A \bullet B) \bullet B = A \bullet B$

▶9.应用举例 去除指纹图噪声,开操作-闭操作

原始图像 第1步: 腐蚀 第2步: 膨胀

第3步:膨胀

第4步: 腐蚀

一个物体的结构可以由物体内部各种成分之间的关系来确定。为了研究物体(在这里指图像)的结构,可以逐个地利用其各种成分(例如各种结构元素)对其进行检验,判定哪些成分包括在图像内,哪些在图像外,从而最终确定图像的结构。

击中/击不中变换主要用于判断、检测物体内部的成分,确定图像的结构。

设有两幅图像A和B,如果 $A \cap B \neq \varphi$,那么称B击中A,其中 φ 是空集合的符号;否则,如果 $A \cap B = \varphi$,那么称B击不中A。

(a) B击中A;

(b) B击不中A

B

▶1.思路

- ▶ 对于多个目标构成的图像,以某一目标为结构元素进行 腐蚀操作,能保留比该目标大的对象
- > 如何只保留该目标,这是一个形状检测的问题

▶2.定义

- ▶检测对象为X,X包围在小窗口W中,(W-X)为背景
- ▶图像A经X腐蚀,可以检测比X大的目标
- ➤图像A的补集经 (W-X) 腐蚀,能检测比 (W-X) 小的目标
- ▶综合可以检测目标X
- \Rightarrow 若 $B_1=X$, $B_2=(W-X)$, 击中-击不中变换数学表达为 $A \circledast B = (A \Theta B_1) \cap (A^c \Theta B_2)$ 或 $A \circledast B = (A \Theta B_1) (A \oplus \hat{B}_2)$

- ▶3.操作图解
 - ➤ 图像A有三个目标 ➤ A图中寻找B目标位置

> A经H腐蚀结果

➤ A补集经M 腐蚀

▶最终结果求交集

2024-05-09 数字图象处理-第9章 24

▶4.目标检测举例

$$B_{1} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}, B_{2} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

>需要检测水平3像素长线段,定义

2024-05-09 数字图象处理-第9章 25

实施击中或击不中变换的步骤如下:

- 1.对给定的图像应用击中模板的腐蚀操作。腐蚀操作只保留与击中模板完全匹配的像素点(前景)。
- 2.对给定的图像的补集(反转图像)应用击不中模板的腐蚀操作
- 。腐蚀操作只保留与击不中模板完全匹配的像素点(背景)。
- 3.将两次腐蚀操作的结果进行逻辑与(AND)操作,得到最终的 击中或击不中变换结果。

最终的击中或击不中变换结果中,仅保留与击中模板完全匹配 并且与击不中模板完全不匹配的像素点(前景),其余像素点 被置为背景。**这种变换可以应用于字符识别、几何形状检测、 纹理分析等各种图像处理应用中**。

▶ 1.边界提取

 \triangleright 集合A的边界表示为 $\beta(A)$,可经过以下运算得到

$$\beta(A) = A - (A\Theta B)$$

▶ 其中: B为一个适当的结构元素

> 举例

2. 区域填充

给定区域内一点,可采用种子填充。

设A表示图像,含有的区域具有8连通的边界点。从区域边界内一点p开始,将 1 赋给p作为灰度,按下列过程填充整个区域。 X_k 和A的并集包含被填充的集合和它的边界。

$$X_k = (X_{k-1} \oplus B) \cap A^c$$
 $k = 1,2,3,\cdots$

这里 $X_0 = p$,结构元素为B,结束条件 $X_k = X_{k-1}$ 。

实现:

$$X_k = (X_{k-1} \oplus B) \cap A^c \quad k = 1,2,3,\cdots$$

填充实验

去噪后图像

填充后图像

> 3.细化

- ▶ 集合A经结构元素B细化, 定义为 $A \otimes B = A (A \otimes B) = A \cap (A \otimes B)^c$
- > 它通过击中-击不中变换来实现
- ▶ 击中-击不中用于检测目标,细化的过程就是将需要消除的目标检出 并剔除
- \blacktriangleright 结构元素是一个集合 $B = \{B^1, B^2, B^3, \dots, B^n\}$
- > 用结构元素序列定义的细化为

$$A \otimes \{B\} = \left(\left(\cdots\left(\left(A \otimes B^{1}\right) \otimes B^{2}\right)\cdots\right) \otimes B^{n}\right)$$

>细化运算示例 模板为从八个方向减薄边界

▶4. 粗化

- ▶ 粗化是细化的对偶过程,定义为 $A \odot B = A \cup (A \circledast B)^c$
- \blacktriangleright B是合适的结构元素,与细化一样,粗化处理也定义为一系列操作 $A \odot \{B\} = \left(\left(\cdots \left((A \odot B^1) \odot B^2 \right) \cdots \right) \odot B^n \right)$
- ➤ 用于粗化的结构化元素与细化处理的有关结构元素形式相同,但**0**和 **1**要互换。
- > 实际应用中,粗化过程多采用细化的对偶方式来完成
 - ▶ 即:对集合背景细化,结果求补
 - > 算法图解

- ▶1.膨胀
- ▶ 2.腐蚀

>其中

- ▶3.膨胀和腐蚀的对偶

$$(f\Theta b)^{c}(s,t) = (f^{c} \oplus \hat{b})(s,t)$$
$$f^{c} = -f(x,y)$$
$$\hat{b} = b(-x,-y)$$

▶二值图像和 灰度图像 膨胀过程 比较

2024-05-09 数字图象处理-第9章 35

▶4.膨胀腐蚀应用举例

▶5.开操作和闭操作

> 开操作

$$f \circ b = (f \Theta b) \oplus b$$

▶闭操作

$$f \bullet b = (f \oplus b)\Theta b$$

▶对偶性

$$(f \bullet b)^c = f^c \circ \hat{b} \qquad -(f \bullet b) = -(f \circ \hat{b})$$

▶6.开闭操作的性质

$$1, f \circ b \mid f$$

$$1, f \rfloor (f \bullet b)$$

2,如果 f_1 _ f_2 则 $(f_1 \circ b)$ _ $(f_2 \circ b)$

2,如果 f_1 _ f_2 则 $(f_1 \bullet b)$ _ $(f_2 \bullet b)$

$$3, (f \circ b) \circ b = f \circ b$$

$$3, (f \bullet b) \bullet b = f \bullet b$$

 e_r r表示e的域是r的域的子集,且对e的域内的任何(x,y) 有 $e(x,y) \le r(x,y)$

- ▶7.灰度形态学应用
 - ▶梯度
 - ▶膨胀-腐蚀操作

$$g = (f \oplus b) - (f \Theta b)$$

➤Top-hat变换

$$h = f - (f \circ b)$$

▶原图与开运算结果图之差,顶帽运算往往用来分离比 临近点亮一些的斑块

> 平滑与梯度

> 交替顺序开-闭操作的平滑结果

➤ Top-hat

形态学应用

本章小结

- 形态学基本概念
- ▶ 腐蚀与膨胀
- 开操作和闭操作
- ▶ 击中或击不中变换
- > 二值图像形态学基本算法
- > 灰度形态学