

Pancreatic Lipase Inhibitory and Antioxidant Activities of *Zingiber* officinale Extracts

Jong-Sup Bae¹ and Tae Hoon Kim^{2†}

¹College of Pharmacy, Kyungpook National University, Daegu 702-701, Korea

²Department of Herbal Medicinal Pharmacology, Daegu Haany University, Gyeongsan 712-715, Korea

생강 추출물의 pancreatic lipase 저해 및 항산화 활성

배종섭¹·김태훈^{2†} ¹경북대학교 약학과, ²대구한의대학교 한약재약리학과

Abstract

Ginger (Zingiber officinale) is a well-known herb that is widely consumed as spice for the flavoring of foods. As part of our continuing search for bioactive materials, the *in vitro* pancreatic lipase inhibition and antioxidant properties of an aqueous ethanolic extract of Z. officinale were investigated. The total phenolic content was determined using a spectrophotometric method. The antioxidant efficacies of the extract was studied with radical scavenging assays using DPPH and ABTS⁺ radicals. Further more, the antiobesity effect of the extract was evaluated by porcine pancreatic lipase assay. In particularly, the pancreatic lipase inhibitory activity of the ethyl acetate (EtOAc)-soluble portion from Z. officinale was significantly higher than that of the other solvent-soluble portions. The results suggest that Z. officinale may have therapeutic potential that may be useful in development of an anti-obesity agent or its precursors.

Key words: Zingiber officinale, pancreatic lipase inhibition, antioxidant activity, DPPH, ABTS+

서 론

소득수준의 향상 및 산업의 발달로 인하여 식생활, 식습관 등 라이프스타일이 빠르게 서구화됨에 따라 만성질환이나 성인병환자가 급격히 증가하고 있는 실정이며, 그 원인 중의 하나가 비만으로 알려져 있다. 비만은 섭취에너지와 소비에너지의 불균형에 의한 에너지 대사이상으로서, 결과적으로 지방세포에 중성지방이 과도하게 축적된 상태로 정의되며 비만의 가장 큰 원인은 고에너지나 고지방을 함유한 음식의 섭취 및 운동 부족으로 인한 체중의 증가나 체내지방 축적이지만, 최근에는 신경내분비 계통의 이상, 약물, 유전적 요인 및 생화학적 이상반응에 의해서도 유발되는 것으로 보고되고 있다(1,2). 비만은 단순히 외형상의 문제뿐만 아니라 체중 증가와 더불어 고혈압, 제 2형 당뇨병, 고혈압, 심장질환, 뇌졸중, 관절염, 동맥경화, 암 등의 심각

한 성인병을 유발할 확률이 높아지는 것이 잘 알려져 있다 (3.4). 비만치료의 일반적인 원칙으로서는 식사 및 운동이 가장 적절한 방법이나 최근에는 식욕억제제, 열 생산 촉진 제, 지방흡수 억제제의 개발이 진행되어 항비만약의 유용 성이 주목을 받고 있으며, 그중에서도 지방분해효소 저해 제(pancreatic lipase inhibitor)가 관심을 받고 있다. Pancreatic lipase는 triglyceride를 2-monoacylglycerol과 fatty acid로 분 해하는 key enzyme으로 작용한다(5). 대표적인 pancreatic lipase inhibitor는 Streptomyces toxitricini로부터 유래된 lipstatin의 유도체인 tetrahydrolipstatin (orlistat)으로서, 현 재 항비만 의약품으로서 시판중이며 섭취된 지방의 약 30% 를 저해할 정도로 효능이 가장 우수한 것으로 알려져 있다 (6,7). 그러나 이와 같은 효능에도 불구하고 orlistat은 위장 장애, 과민증, 담즙분비장애, 지용성 비타민 흡수억제 등의 부작용이 있는 것으로 알려져 있다(8). 최근에는 천연소재 로부터 pancreatic lipase 저해제 개발을 위한 연구가 활발하 게 진행 되고 있으며(9), 길경(Platycodin grandiflorum), 세 이지(Salvia officinalis), 우롱차로부터 지방분해 효소를 억

*Corresponding author. E-mail: skyey7@dhu.ac.kr Phone: 82-53-819-1371, Fax: 82-53-819-1272 제하는 활성성분이 보고되었다(10). 본 연구팀도 천연물 유래의 항비만 선도물질 개발의 일환으로 천연소재 및 천연 물에 생물전환기법을 적용하여 pancreatic lipase 저해제를 분리하여 그 효능에 대해 보고하였다(11-13).

최근 산화적 스트레스와 관련된 각종 퇴행성 질환 및 생활 습관성 질병이 사회적 문제가 되고 있으며 그 원인이 활성산소에 기인된 것으로 알려져 있으며, superoxide, nitric oxide, nitrogen dioxide, hydroxyl, peroxynitrite 등과 같은 활성 산소 종들은 인간의 대사과정 중에 끊임없이 발생되어 노화 및 관련 질병의 주요 인자로 작용하고 있다(14). 현재 널리 사용되고 있는 항산화제로서는 butylated hydroxy anisol (BHA) 및 butylated hydroxy toluene (BHT) 등의 합성 항산화제이며, 이들을 50 mg/kg/day 이상의 고용량으로 장기간 복용 시 지질대사의 불균형과 암을 유발시킬 수 있기 때문에 사용을 제한을 권고하고 있는 실정이다(15). 이러한 합성 항산화제를 대체할 수 있는 우수한 항산화제의 개발이 요구되고 있는 실정이며, 최근에는 각종 생약추출물 등에서 보다 안전하고 항산화효과가 뛰어난 천연 항산화제를 개발하기 위한 많은 연구가 활발히 이루어지고 있다(16).

생강은 생강과(Zingiberaceae)의 건조하지 않은 뿌리줄기를 말하며 약리작용으로는 항산화, 항종양, 항염증, 혈당강하, 인슐린 분비촉진, 고지혈증예방 및 관절염 등에 효과적임이 알려져 있으며, 생강에는 gingerol류 등의 페놀성화합물과 플라보노이드, 터페노이드와 같은 화합물이 존재하며 이들 화합물이 다양한 생리활성을 나타내는 것으로보고되어져 있다(17-20). 본 연구에서는 약용식물로 부터 pancreatic lipase 저해활성 및 항산화 효능을 나타내는 천연물질을 탐색하고자 국내의 자생식물을 대상으로 활성을측정하였으며, 그중에서 우수한 저해능을 나타낸 생강의80% EtOH 추출물의 분획물에 대하여 강한 pancreatic lipase 저해능 및 항산화 효능을 확인하였기에 그 결과를 보고하고자한다.

재료 및 방법

재 료

본 실험에 시료로 사용한 신선한 생강(Zingiber officinale) 은 충남 서산에서 2008년 10월에 수확된 생강을 잘 세척하고 잘게 세절한 다음 사용하였으며, 표본시료는 본대학교의 한약재약리학과 천연물화학실험실에 보관하고 있다.

추출물의 제조 및 분획

신선한 생강 10 kg을 분쇄기로 잘게 마쇄한 후 80% ethyl alcohol (EtOH) 70 L로 3일간 3회 반복 추출한 후 얻어진 용액을 여과한 후, 감압 농축하여 얻어진 결과물(263.9 g)에 대해 pancreatic lipase 저해효능을 평가한 결과 150 µg/mL의

농도에서 32.0±2.0%의 저해능을 나타내었고, 항산화 효능의 평가로 이용된 DPPH 및 ABTS⁺ 라디칼에 대해서 62.5 μg/mL의 시험농도에서 각각 49.3±1.7과 59.8±1.8%의 소거능을 나타내었다. 추출물에 함유되어 있는 활성물질의 형태를 추정하기 위하여 농축 결과물의 일부인 70 g에 대하여 10% ethanol 3 L로 현탁하여 저극성용매인 chloroform (CHCl₃)으로 먼저 추출한 후 물층을 다시 ethyl acetate (EtOAc), n-butyl alcohol (n-BuOH)을 이용하여 각각 순차적으로 3회 분획하여 유기용매 가용부를 추출하였다. 각용매추출 분획을 감압 농축하여 건조 시킨 후 CHCl₃ 가용분획(30.3 g), EtOAc 가용분획(2.1 g), n-BuOH 가용분획(25.5 g), H₂O 가용분획(6.7 g)을 각각 얻었으며 각 분획물을 대상으로 in vitro 생리활성을 평가하였다.

총페놀성 화합물 함량 평가

총 페놀성 화합물의 함량은 Folin-Denis 방법(21)에따라 측정하였으며, 추출물 혹은 분획물을 1 mg/mL 농도로 조제한 후, 75 mL의 증류수가 함유된 100 mL의 메스 플라스크에 1 mL를 넣고 잘 혼합하여 Folin-Denis 시액 5 mL와 탄산나트륨 포화용액 10 mL를 차례로 넣은 다음 증류수로 100 mL 용량으로 채운다. 이것을 잘 혼합하여 실온에서 30분 방치한후, UV/VIS 분광광도계로 725 nm에서 흡광도를 측정하였으며, 표준물질은 gallic acid를 이용하여 표준곡선을 작성하여 양을 환산하였다.

Pancreatic lipase 저해활성 측정

Pancreatic lipase 저해활성 측정은 Kim 등(22)이 행한 방법을 변형하여 실시하였다. 즉 enzyme buffer (10 mM MOPS, 1 mM EDTA, pH 6.8)에 porcine pancreatic lipase를 0.5 g/200 mL의 농도로 4℃를 유지하면서 용해한 후 4000 rpm으로 원심 분리를 하여 상층액을 사용하여 169 uL Tris buffer (100 mM Tris-HCl, 5 mM CaCl₂, pH 7.0) 와 6 uL enzyme buffer를 흔합한다. 샘플은 DMSO로 용해하여 최종 농도가 3%가 되도록 한 후 다양한 농도로 희석하여 사용한다. 기질용액으로 p-nitriphenyl butyrate (p-NPB)을 10 mM 이 되게 DMF에 용해한 후 enzyme과 sample을 먼저 37℃에서 15분 동안 shaking incubation 시킨 후 기질을 첨가 하여 37℃에서 30분 동안 shaking incubation 시킨 후 405 nm에서 ELISA reader를 이용하여 흡광도를 측정하였다. Pancreatic lipase 저해활성은 시료용액의 첨가군과 무첨가군의 흡광도 감소율로 나타내었다.

DPPH 라디칼소거능 측정

전자공여능은 Blois 방법(23)에 따라 측정하였다. 각 시료용액에 2 mL에 0.2 mM의 희석한 1,1-diphenyl-2-picrylhydrazyl (DPPH) 용액 1 mL을 넣고 교반한 후 30분간 방치한 다음 517 nm에서 흡광도를 측정하였다. 전자공여능은 시료용액

의 첨가군과 무첨가군의 흡광도 차이를 백분율로 나타내 었다.

ABTS⁺ 라디칼 소거능 측정

생강 추출물의 2,2'-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical 소거능을 Re 등(24)의 방법을 변형하여 다음과 같이 측정하였다. 7 mM ABTS (in water)와 2.45 mM $K_2O_8S_2$ 동량을 혼합 후 실온, 암소에서 16시간 방치하여 라디칼의 생성을 유도한 후 ABTS $^+$ 라디칼 용액을 희석하여 734 nm에서 흡광도 값이 $1.2\sim1.3$ 정도가 되도록 희석하여 사용하였다. 희석한 ABTS $^+$ 라디칼 용액 980 μ L 와 생약 추출액 20 μ L을 혼합하여 실온에서 15분간 반응시킨후 734 nm에서 흡광도를 측정하였다. 이때 대조물질로는 1 mM 농도의 L-ascorbic acid를 사용하였으며 결과는 시료를 처리하지 않은 군에 대한 %로 표시하였다.

통계처리

각 실험은 최소 3번 이상 검정하였고, 실험 결과는 평균± 표준오차로 표시하였고, non-paired Student's t test로 검정하여 P값이 5% 미만일 때 통계적으로 유의 한 것으로 판정하였다.

결과 및 고찰

총페놀 화합물 함량

생강추출물 및 각 분획물에 함유하고 있는 총페놀성 화합물의 함량을 Table 1에 나타내었으며, EtOAc 분획물이 1 g당 95.0 mg의 페놀성 화합물을 함유하는 것으로 나타났으며, CHCl₃ 분획물이 82.0 mg, n-BuOH 분획물이 86.5 mg의 페놀성 화합물의 함량이 확인되었다. 또한 H₂O층에서는 1 g당 20.6 mg의 상대적으로 낮은 페놀 함류량을 나타내는 것으로 분석되었다. 최근 생강을 함수 acetone 및 methanol의 혼합용액으로 추출하여 총페놀성 화합물을 정량한 결과약 40.0 mg/g의 비율로 함유됨이 보고되어져있으며(25), 생강 EtOAc 가용부에 존재하는 항산화 및 세포보호효과를 나타내는 페놀성 화합물이 동정되어(26,32), 이들 phenol성화합물의 존재가 시사되어졌다.

Table 1. Total phenolic contents of ethanolic extract and organic solvent fractions of Zingiber officinale

Samples	Extraction Yield (g/100 g)	Phenolic Contents (mg/g) ^a
80% EtOH ext.	1.1	66.4±0.5
CHCl ₃ layer	0.5	82.0±0.3
EtOAc layer	0.03	95.0±0.2
n-BuOH layer	0.4	86.5±0.3
H ₂ O layer	0.1	20.6±0.3

^{a)}Data represent the mean \pm SD three replications. Values with different letters are significantly different at the levels of p<0.05 by non-paired Student's t test.

Pancreatic lipase 저해활성

비만은 당뇨, 암, 심장병 및 뇌졸중 등의 질병과 밀접한 연관성이 알려져 있어 비만의 예방 및 치료와 관련된 소재 개발의 필요성이 강조되어 지고 있는 실정이다. 시판중인 비만치료제로서 orlistat(상품명:xenical)은 triglyceride를 분 해하는 췌장의 지방분해 효소인 lipase에 비가역적인 결합 을 하여 불활성화 시킴으로서 triglyceride 및 cholesterol의 흡수를 감소시킴과 동시에 배설 시키는 기작으로 항비만 작용을 하지만 복부고통, 설사 등의 부작용이 문제시되고 있어(27), 이들 부작용이 없는 천연 항비만 소재 개발을 위한 연구가 활발하게 이루어지고 있다(28). 전통 약용식물 로부터 항비만 선도물질개발을 위해 pancreatic lipase 저해 활성을 평가한 결과, 신선한 생강의 80% ethanol 추출물에 대하여 용매의 극성에 따라 CHCl3, EtOAc, n-BuOH로 순차 분획하여 얻어진 각 유기용매 가용분획에 대하여 pancreatic lipase를 이용한 실험을 통해 생리활성을 평가하였다. 그 결과 생강 80% ethanol 추출물의 지방분해효소에 대한 저해 능은 250 µg/mL의 농도에서 32.0±1.7%의 저해활성을 나타 내었으며, 유기용매 분획 중 EtOAc층의 경우, 15.6 μg/mL의 농도에서 에서 시판비만 치료제인 orlistat의 93.2±0.7%의 저해율보다 강한 98.0±0.7% 저해능을 확인하였다. 또한 생 강의 주성분으로 잘 알려져 있는 6-gingerol의 경우 같은 농도에서 16.2±0.5%의 낮은 저해능을 나타내었다.

최근 비만관련 천연물 유래 선도물질 개발을 위해 pancreatic lipase 저해 효능을 가지는 천연 저해제가 주목 받고 있으며 다수의 생약추출물에 대해서 pancreatic lipase 저해능을 평가하여 회잎나무(Euonymus alatus), 주니퍼베 리(Juniperus communis), 측백나무(Thuja orientalis), 붓순나 무(Illicum religiosum), 돌배나무(Pyrus pyrifolia) 등에서 IC₅₀이 45.0 μg/mL 이하의 강한 활성을 나타냄이 보고되었 으며(29), 무환자나무(Sapindys rarak)로부터 분리된 사포 닌, 사과의 procyanidin류 및 인삼 ginsenoside류에서 강한 pancreatic lipase 저해능을 나타냄을 확인하였다(30,31). 생 강의 EtOAc 추출물의 경우 Table 2에서 나타낸 것 처럼 15.6 µg/mL의 저농도에서 시판 항비만 치료제인 orlistat보 다 강한 98.5±0.7%의 매우 우수한 효능을 나타내었다. 생강 에는 diarylheptanoid류 등의 화합물이 다수 존재하는 것이 알려져 있으며, 생강의 지표성분인 6-gingerol의 경우 15.6 ug/ml에서 16.2±0.5%의 상대적으로 낮은 저해율을 나타낸 점과 이전의 본 연구 팀에서 얻어진 pancreatic lipase저해활 성 물질인 phenolic diol류 및 유사 구조의 활성물질의 존재 가 추정되며(13,32), 향후 식의약품 소재개발을 위한 구체 적인 자료 수립을 위하여 효소활성을 나타내는 성분들에 대해 활성유도 분획법(activity-guided isolation)에 따라 활 성물질을 추적 및 분리하는 연구를 수행 중에 있다.

Table 2. Inhibitory effects of the ethanolic extracts of Z. officinale and its CHCl₃, EtOAc-, n-BuOH-, and H₂O-soluble portions against pancreatic lipase

Concentration(µg/mL)	_	Inhibition (%) ²					
	250	125	62.5	31.3	15.6	(μg/mL)	
80% EtOH ext.	32.0±1.7	15.2±1.3	6.5±0.8	3.5±0.8	2.1±1.0	> 250	
CHCl ₃ layer	89.2±1.5	73.7±2.2	31.8±1.3	12.0±0.8	5.6±1.1	84.8±3.5	
EtOAc layer	99.7±1.3	99.6±1.5	99.2±1.3	99.0±1.6	98.0±0.7	< 15.6	
n-BuOH layer	75.5±1.7	60.4±1.2	51.3±0.8	39.3±1.1	11.4±0.6	68.4±11.9	
H ₂ O layer	14.3±0.8	13.4±0.5	8.1±0.6	7.6±0.6	5.3±0.9	> 250	
6-Gingerol	41.9±1.3	30.4 ± 1.2	25.3±0.9	19.7±0.8	16.2±0.5	> 250	
Orlistat ^b	98.2±1.6	98.0±1.7	97.7±1.2	95.3±0.6	93.2±0.7	0.2±0.1	

^{a)}Data represent the mean±SD three replications. Values with different letters are significantly different at the levels of p<0.05 by non-paired Student's t test.

DPPH 라디칼 소거활성

DPPH는 생체 내에 존재하는 라디칼은 아니지만 그 자체 가 홀수전자를 갖고 있어 517 mm에서 강한 흡광도를 나타 낸다. 따라서 항산화능이 있는 물질과 반응하게 되면 안정 한 형태로 돌아가면서 흡광도 값이 감소한다(33). Table 3에 서 나타낸 것처럼 생강 80% ethanol 추출물 및 각 유기용매 분획에 대해서 라디칼 소거능을 평가한 결과, 62.5 ug/mL의 농도에서 MeOH 추출물이 49.2±0.7%의 라디칼 소거능을 나타내었으며, 특히, CHCl₃ 가용부의 62.5 μg/mL의 농도에 서는 62.7±1.2%의 매우 우수한 라디칼 소거능을 나타내었 으며, 이는 positive control로서 천연 항산화 성분으로 잘 알려져 있는 (+)-catechin과 같은 농도에서 비교한 결과이 다. EtOAc 가용부의 125 μg/mL의 농도에서 56.5±1.4%, 62.5 µg/mL의 농도에서 40.5±1.2%의 라디칼 소거능을 나타 내었고, 다음으로 n-BuOH 가용부 및 H2O 층에서 비교적 약한 라디칼 소거능을 확인하였다. DPPH 라디칼 소거 활성 과 총 페놀성 화합물의 함량사이에는 밀접한 상관관계가 있다는 보고(34)에 근거하여 생강의 항산화 활성과 페놀성 화합물의 연관성을 평가한 결과, Table 1 및 3에서 나타낸 것처럼, DPPH 라디칼 소거능은 페놀성 화합물의 함량이 상대적으로 높은 EtOAc층(95.0±0.2 mg/g)에서 가장 높은 것을 확인하였고, 이는 생강의 항산화 활성은 생강 추출물에 존재하는 6-gingerol 등의 gingerol류 화합물, shogaol류및 phenolic ketone류와 같은 페놀성 화합물이 관여할 가능성을 시사하였다(35).

ABTS⁺ 라디칼 소거능 측정

Re의 방법을 변형하여 7 mM ABTS와 2.45 mM K₂O₈S₂ 동량을 혼합한 후, 실온, 암소에서 16시간 방치하여 라디칼 의 생성을 유도한 후, ABTS⁺ 라디칼 소거능을 측정하였다 (24). 그 결과 Table 4에서 보는 것처럼 생강 80% ethanol 추출물의 62.5 μg/mL 농도에서는 59.7±0.8%의 ABTS⁺ 라디칼 소거능을 나타냄을 알 수 있었으며, 각 분획물중에서도 특히 CHCl₃ 및 *n*-BuOH 가용부의 62.5 μg/mL의 농도에서 87.9±1.5 및 87.5±1.7%의 매우 우수한 라디칼 소거능을 나타내었으며, 같은 농도에서 positive control인 L-ascorbic

Table 3. DPPH radical scavenging activity of the ethanolic extracts of Z. officinale and its CHCl₃, EtOAc-, n-BuOH-, and H₂O-soluble portions

Concentration (µg/mL)	_	Inhibition (%) ^a					
	250	125	62.5	31.3	15.6	(μg/mL)	
80% EtOH ext.	78.3±1.8	67.2±1.5	49.2±0.7	34.3±0.8	20.2±1.1	63.9±1.5	
CHCl3 layer	86.3±1.7	73.0±2.0	62.7±1.2	31.5±0.7	12.2±1.0	52.7±4.6	
EtOAc layer	79.1±1.5	56.5±1.4	40.5±1.2	26.9±1.3	14.6±0.8	88.6±5.4	
n-BuOH layer	68.3±1.3	40.7±1.1	25.8±0.8	17.1±1.0	8.0±0.7	152.7±4,6	
H ₂ O layer	12.3±0.7	5.6±0.6	4.2±0.7	2.1±0.8	2.0±0.8	> 250	
6-Gingerol	96.7±1.1	95.1±1.1	93.8±0.8	90.3±0.9	75.8±0.7	< 15.6	
(+)-Catechin ^b	96.0±1.2	95.0±1.5	94.7±1.1	94.0±0.5	93.0±0.7	< 15.6	

a)Data represent the mean±SD three replications. Values with different letters are significantly different at the levels of p<0.05 by non-paired Student's t test.

b)Orlistat was used as a positive control.

b)(+)-Catechin was used as a positive control.

acid의 94.7±1.3% 저해능과 비교하였을 때도 거의 동등한 효능을 나타내었다. 또한 EtOAc 가용부의 125 μg/mL의 농도에서 96.6±1.5%, 62.5 μg/mL의 농도에서 75.7±1.9%의라디칼 소거능을 나타내었고, 다음으로 H₂O층에서 상대적으로 약한 효능을 나타내었다. Table 1에서 나타낸 것처럼총페놀성 함량이 82.0±0.3 (g/mg)으로 나타난 CHCl₃층에대해서도 ABTS[†] 라디칼 소거 활성물질의 존재가 시사되었으며 이들 활성물질의 동정이 필요하다고 사료된다.

성분에 대한 기초자료로 이용될 수 있을 것으로 사료된다.

감사의 글

본 연구는 2009년 한국산업단지공단 지원에 의해 수행된 연구과제결과의 일부로서 이에 감사드립니다.

Table 4. ABTS⁺ radical scavenging activity of the ethanolic extracts of Z. officinale and its CHCl₃, EtOAc-, n-BuOH-, and H₂O-soluble portions

Concentration (µg/mL)	Inhibition (%) ^a					IC ₅₀
	250	125	62.5	31.3	15.6	(µg/mL)
80% EtOH ext.	97.4±1.9	93.1±1.7	59.7±0.8	33.0±0.8	27.1±1.2	42.7±6.1
CHCl ₃ layer	98.4±1.8	94.1±2.1	87.9±1.5	62.3±0.8	53.5±1.1	< 15.6
EtOAc layer	99.5±2.0	96.6±1.5	75.7±1.9	42.7±1.3	19.1±0.8	35.3±1.3
n-BuOH layer	99.6±1.2	99.1±1.6	87.5±1.7	64.7±1.7	36.6±0.8	21.9±0.3
H ₂ O layer	96.3±0.9	67.5±1.5	39.0±2.1	19.2±0.7	9.0±0.7	28.3±5.3
6-Gingerol	99.8±1.5	99.1±1.3	98.9±0.7	92.8±1.3	75.8 ± 1.3	< 15.6
L-Ascorbic acid ^b	99.7±1.3	99.0±1.7	94.7±1.3	94.0±0.7	93.0±0.6	< 15.6

a)Data represent the mean±SD three replications. Values with different letters are significantly different at the levels of p<0.05 by non-paired Student's t test.

요 약

신선한 생강을 80% EtOH로 침지 추출하여 얻어진 추출 물을 CHCl3, EtOAc, n-BuOH로 순차 용매 분획하였고, pancreatic lipase 저해활성, DPPH 및 ABTS⁺ radical 소거능 을 평가하였다. Pancreatic lipase 저해활성을 측정한 결과, EtOAc층의 15.6 μg/mL의 실험 농도에서 에서 대조군인 orlistat보다 강한 98.0±0.7% 저해능을 확인하였으며, 생강 의 주성분으로 잘 알려져 있는 6-gingerol의 경우 같은 농도 에서 16.2±0.5%의 상대적으로 낮은 저해능을 나타내었다. DPPH 라디칼 소거능은 페놀성 화합물의 함량이 상대적으 로 높은 EtOAc층의 125 µg/mL의 농도에서 56.5±1.4%, 62.5 ug/mL의 농도에서 40.5±1.2%의 라디칼 소거능을 확인하 였고, 이는 생강의 항산화 활성은 생강 추출물에 존재하는 6-gingerol 등과 같은 페놀성 화합물이 관여함을 시사하였 다. 또한 총페놀성 함량이 g당 82.0±0.3 mg으로 나타난 CHCl3층에 대해서도 ABTS + 라디칼 소거 활성물질의 존재 가 시사되었으며, pancreatic lipase, DPPH 및 ABTS⁺ 라디칼 소거활성물질의 동정을 진행 중에 있으며, 향후 이들 활성 물질의 활성 기작에 대한 연구가 필요하다고 사료된다. 또 한 본 연구결과는 보다 우수한 pancreatic lipase 저해능을 가지는 새로운 선도화합물 발굴을 위한 기초자료로 이용될 수 있을 뿐만 아니라 국내에 자생하는 생강의 식물 화학적

참고문헌

- Bray GA, Popkin BM (1998) Dietary fat intake dose affect obesity. Am J Clin Nutr, 68, 1157-1173
- Bray GA, Popkin BM (1999) Dietary fat affects obesity rate. Am J Clin Nutr, 70, 572-573
- Freedman DS, Serdula MK, Perey CA, Whitle L (1997) Obesity levels of lipids and glucose, and smoking among Navajo adolescents. J Nutr, 127, 2120-2127
- Rexrode KM, Manson JE, Hennekens CH (1996) Obesity and cardiovascular disease. Curr Opin Cardiol, 11, 490-495
- Bitou N, Nimomiya M. Tsjita T, Okuda H (1999) Screening of lipase inhibitors from marine algae. Lipids, 34, 441-445
- Drent ML, Larsson I, William-Olsson T, Quaade F, Czubayko F, Von Bergmann K, Strobel W, Sjotro L, Van der Veen EA (1995) Orlistat (RO 18-0647), a lipase inhibitor, in the treatment of human obesity: a multiple dose study. Int J Obesity, 19, 221-226
- 7. Hadvay P, Lengsfeld H, Wolter H (1988) Inhibition of pancreatic lipase in vitro by covalent inhibitor tetrahydrolipstatin. Biochem J, 256, 357-361

b)L-Ascorbic acid was used as a positive control.

- 8. Peter C, Williams G (2001) Drug treatment of obesity: from past failures to future successes?. Br J Clin Pharmacol, 51, 13-25
- Yamamoto M, Shimura Y, Iyoh M Egawa, S Ionue (2000)
 Anti-obesity effects of lipase inhibitor CT-II, an extract from edible herbs, Nomame Herba, on rats fed a high-fat diet. Int J Obesity, 24, 758-764
- Birari RB, Bhutani KK (2007) Pancreatic lipase inhibitors from natural sources: unexplored potential. Drug Discov Today, 12, 879-889
- Lee EM, Lee SS, Chung BY, Cho JY, Lee IC, Ahn SR, Jang SJ, Kim TH (2010) Pancreatic lipase inhibition by C-glucosidic flavones isolated from *Eremochloa* ophiuroides. Molecules, 15, 8251-8259
- Hong JY, Shin SR, Bae MJ, Bae JS, Lee IC, Kwon OJ, Jung JW, Kim YH, Kim TH (2010) Pancreatic lipase inhibitors isolated from the leaves of cultivated mountain ginseng (*Panax ginseng*). Korean J Food Preserv, 17, 727-732
- Kim TH, Kim JK, Ito H, Jo C (2011) Enhancement of pancreatic lipase inhibitory activity of curcumin by radiolytic transformation. Bioorg Med Chem Lett. 21, 1512-1514
- Shim JS, Kim SD, Kim TS, Kim KN (2005) Biological activities of flavonoid glycosides isolated from *Angelica* keiskei. Korean J Food Sci Technol, 37, 78-83
- Branen AL (1975) Toxicology and biochemistry of butylated hydroxy anisole and bytylated hydroxytoluane.
 J Oil Chem Soc, 52, 59-62
- Masaki H, Sakaki S, Atsumi T, Sakurai H (1995)
 Active-oxygen scavenging activity of plants extracts. Biol Pharm Bull, 18, 162-166
- Huang CN, Horng JS, Yin MC (2004) Antioxidative and antiglycative effects of six organosulfur compounds in low-density lipoprotein and plasma. J Agric Food Chem, 52, 3674-3678
- Young HY, Luo YL, Cheng HY, Hsieh W.C, Liao JC, Peng WH. (2005) Analgesic and anti-inflammatory activities of [6]-gingerol. J Ethnopharmacol, 96, 207-210
- Katiyar SK, Agarwal R, Mukhtar H (1996) Inhibition of tumor promotion in SENCAR mouse skin by ethanol extract of *Zingiber officinale* rhizome. Cancer Res, 56, 1023-1030
- Shanmugam KR, Ramakrishna CH, Mallikarjuna K, Sathyavelu R (2010) Protective effect of ginger in alcohol-induced renal damage and antioxidant enzymes in male albino rats. Ind. J Exp Biol, 4, 143-149

- Gao X, Bjor, L, Trajkovski V, Uggla M (2000) Evaluation of antioxidant activities of rosehip ethanol extracts in different test system. J Sci Food Agri, 80, 2021—2027
- Kim JH, Kim HJ, Park HW, Youn SH, Choi DY, Shin CS (2007) Development of inhibitors against lipase and alpha-glucosidase from derivatives of monascus pigment. FEMS Microbiol Lett, 276, 93-98
- 23. Blois MS (1958) Antioxidant activity determination by the use of a stable free radical. Nature, 181, 1199-1200
- Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying and improved ABTS radical cation decolorization assay. Free Radic Biol Med, 26, 1231-1237
- 25. Rababah TM, Hettiarachchy NS, Horax R (2004) Total phenolics and antioxidant activities of fenugreek, green tea, black tea, grape seed, ginger, rosemary, gotu kola, and ginkgo extracts, vitamin E, and tert-butylhydroquinone. J Agric Food Chem, 52, 5183-5186
- 26. Tao QF, Xu Y, Lam RYY, Schneider B, Dou H, Leung PS, Shi SY, Zhou CX, Yang LX, Zhang RP, Xiao YC, Stöckigt J, Zeng S, Cheng CHK, Zhao Y (2008) Diarylheptanoids and a monoterpenoid from the rhizomes of *Zingiber officinale*: Antioxidant and cytoprotective properties. J Nat Prod, 71, 12-17
- Cooke D, Bloom S (2006) The obesity pipeline: current strategies in the development of anti-obesity drugs. Nat Rev Drug Discov, 5, 919-1200
- Birari RB, Bhutani KK (2007) Pancreatic lipase inhibitors from natural sources: unexplored potential. Drug Discov Today, 12, 879-889
- Kim HY, Kang MH (2005) Screening of Korean medicinal plants for lipase inhibitory activity. Phytother Res, 19, 359-361
- Sugiyama H, Akazome Y, Shoji T, Yamaguchi A, Yasue M, Kanda T, Ohtake Y (2007) Oligomeric procyanidins in apple polyphenol are main active components for inhibition of pancreatic lipase and triglyceride absorption.
 J Agric Food Chem, 55, 4604-4609
- 31. Liu W, Zheng Y, Han L, Wang H, Saito M, Ling M, Kimura Y, Feng Y (2008) Saponins (Ginsenosides) from stems and leaves of *Panax quinquefolium* prevented high-fat diet induced obesity in mice. Phytomedicine, 15, 1140-1145
- 32. Ma J, Jin X, Yang Li, Liu Z (2004) Diarylheptanoids from the rhizomes of *Zingiber officinale*. Phytochemistry, 65, 1137-1143
- 33. Torel J, Gillard J, Gillard P (1986) Antioxidant activity

- of flavonoids and reactivity with peroxy radical. Phytochemistry, 25, 383-385
- 34. Wang SY, Chang HN, Lin KT, Lo CP, Yang NS, Shyur LF (2003) Antioxidant properties and phytochemical characteristics of extracts from *Lactuca indica*. J Agric Food Chem, 26, 1506-1512
- 35. Dugasania S, Pichikac MR, Nadarajahc VD, Balijepalli MK, Tandra S, Korlakunta JN (2010) Comparative antioxidant and anti-inflammatory effects of [6]-gingerol, [8]-gingerol, [10]-gingerol and [6]-shogaol. J Ethnopharmacology, 127, 515-520

(접수 2010년 12월 6일 수정 2011년 4월 6일 채택 2011년 4월 15일)