icpc 算法模板

Catch-22

2023 年 5 月 3 日

目录

1	数学	4
	1.1 求逆元	4
	1.2 扩展欧几里德算法	4
	1.3 BSGS	5
	1.4 筛法	6
	1.5 分解质因数 (预处理因子)	8
	1.6 组合数	10
	1.7 卡特兰数 (catalan)	11
	1.8 容斥原理	12
	1.9 数论分块	13
	1.10 Möbius 反演	13
	1.11 高斯消元	14
	1.12 Miller Rabin 素数测试	15
	1.13 FFT	16
_	*6+R4±+6	10
2	数据结构	18
	2.1 (带权) 并查集	18 18
	2.2 Sparse Table	19
	2.4 树状数组	20
	2.5 线段树	20
	2.6 可持久化线段树	25
	2.7 线段树合并	29
	2.8 DSU on tree	32
	2.9 树链剖分	34
	2.10 珂朵莉	37
	2.11 CDQ 分治	
	2.12 莫队	
3	图论	43
	3.1 spfa	43
	3.2 dijkstra	44
	3.3 最小生成树	46
	3.4 kruskal 重构树	47
	3.5 二分图匹配	49
	3.6 强连通分量缩点	50
	3.7 无向图的双连通分量	52
	3.8 lca	55
	3.9 2-SAT	56
	3.10 基环树	57
	3.11 树哈希	59

	3.12 dinic	60
4	动态规划	61
	4.1 背包	61
	4.2 数位 dp	63
	4.3 换根 dp	63
	4.4 数据结构优化 dp	65
	4.5 斜率优化 dp	65
5	字符串	67
	5.1 字符串 Hash	67
	5.2 Trie	69
	5.3 KMP	70
	5.4 Z-algorithm	70
	5.5 AC 自动机	71
	5.6 SA	74
	5.7 SAM	76
	5.8 Manacher	78
6	其他	79
	6.1 glibc 内置函数	79
	6.2int128 读写	80
	6.3 大整数运算	80
	6.4 整数二分	83
	6.5 单调栈	83
	6.6 单调队列	84
	6.7 矩阵快速幂	84
	6.8 MEX	85
	6.9 GospersHack	85
	6.10 C++17-STL	86
	6.11 pbds	90
	6.12 一此结论	ດວ

1 数学

1.1 求逆元

注意考虑 x 是 mod 倍数的情况

```
11 qpow(11 a, 11 b) {
       11 \text{ res} = 1;
       while(b) {
3
            if(b & 1) res = res * a % mod;
            a = a * a \% mod;
            b >>= 1;
       return res;
   }
9
   11 inv(11 x) { return qpow(x, mod - 2); }
11
12
   const int N = 1e6 + 10;
13
   // 线性递推求逆元 [1, n] 的所有数关于 p 的逆元
14
   int inv[N];
15
   void init_inv () {
       int n, p;
17
       cin >> n >> p;
       inv[0] = 0, inv[1] = 1;
19
       for (int i = 2; i <= n; i++)</pre>
            inv[i] = (11)(p - p / i) * inv[p % i] % p;//为了保证大于零加了个 p
21
22
       return 0;
23
   }
24
```

1.2 扩展欧几里德算法

bezout 定理: 设 a,b 为正整数,则关于 x,y 的方程 ax+by=c 有整数解当且仅当 c 是 $\gcd(a,b)$ 的倍数。

```
返回结果: ax + by = gcd(a,b) 的一组解 (x, y) 时间复杂度: \mathcal{O}(nlogn)
```

```
1  //拓欧解线性同余方程 a*x=b(mod m)
2  #include <bits/stdc++.h>
3  using namespace std;
4  using ll = long long;
5  int a, b, m, n;
6
7  int exgcd(int a, int b, int &x, int &y) {
8    if(b == 0) {
9         x = 1, y = 0;
10         return a;
11    }
12  int d = exgcd(b, a % b, y, x);
```

```
y -= a/b * x;
13
        return d;
14
   }
15
16
   int main() {
17
        int x, y;
18
        cin >> n;
19
        while(n -- ) {
20
            cin >> a >> b >> m;
21
            int d = exgcd(a, m, x, y); // d = gcd(a, m)s
22
            if(b % d != 0) puts("impossible"); //bezout 定理: 有解的条件, gcd(a, m) | b
23
            else printf("%lld\n", (ll)x * (b/d) % m);
24
        }
25
        return 0;
26
27
   }
   1.3 BSGS
        find smallest non-negative x s.t. a^x = b \mod p, or -1 (assume 0^0 = 1)
   // find smallest non-negative x s.t. a^x = b \mod p, or -1(assume 0^0 = 1)
   int babyStepGiantStep(int a, int b, int p) {
        a %= p; b %= p;
        if (p == 1 | | b == 1) return 0;
4
        int cnt = 0, t = 1;
5
        for (int g = __gcd(a, p); g != 1; g = __gcd(a, p)) {
6
            if (b % g) return -1;
            p /= g;
8
            ++cnt;
            b /= g;
10
            t = 1LL * t * (a / g) % p;
11
            if (b == t) return cnt;
12
        }
13
        std::map<int, int> mp;
14
        int m = ceil(std::sqrt(p));
15
        int base = b;
16
        for (int i = 0; i != m; ++i) {
17
            mp[base] = i;
18
            base = 1LL * base * a % p;
19
20
        base = powMod(a, m, p);
21
        for (int i = 1; i <= m; ++i) {
22
            t = 1LL * t * base % p;
23
            if (mp.count(t))
24
                return (1LL * i * m - mp[t]) % p + cnt;
25
        }
26
```

return -1;

// https://www.luogu.com.cn/problem/P4195

27 28

1.4 筛法

筛质数

```
#include<bits/stdc++.h>
   using namespace std;
   using ll = long long;
   const int N = 1e7 + 10;
   // minp[i] 为 i 的最小素因子 http://oj.daimayuan.top/course/10/problem/733
   int primes[N], pcnt, minp[N]; // 可用于 Log 级别分解质因数
   bool vis[N]; //合数 true
   int n, q;
   //linear
   void get_prime(int n) {
10
     for(int i = 2; i <= n; i ++) {
11
         if(!vis[i]) primes[ ++ pcnt] = i, minp[i] = i;
12
          for(int j = 1; j <= pcnt && i * primes[j] <= n; ++ j) {</pre>
13
              vis[i * primes[j]] = 1;
14
                minp[primes[j] * i] = primes[j];
                if(i % primes[j] == 0) break;
16
         }
17
        }
18
   }
19
20
   //about linear :0(nloglogn)
21
   bool isprime[N];
22
   inline void getprime(int n) {
        for (int i = 2; i <= n; i++) isprime[i] = 1;</pre>
24
        for (int i = 2; i <= n; i++) {
25
            if(isprime[i]) {
26
                primes[++pcnt] = i;
27
                if((ll)i*i<=n)
28
                for (int j = i * i; j <= n; j+=i){</pre>
                    isprime[j] = 0;
30
                }
31
32
            }
33
        }
   }
34
        筛欧拉函数
   #include <bits/stdc++.h>
   using namespace std;
2
   /*phi compute
   根据给定 n 计算 phi(n) O(agrt(n))
   核心公式 phi(n) = n*(1-1/p1)*(1 - 1/p2)*...
   int get_phi(int n) {
        int res = n;
9
        for (int i = 2; i <= n / i; i++) {
10
```

```
if(n % i == 0) {
11
                 res = res / i * (i - 1); // res *= (1 - 1/n)
12
                 while(n % i == 0)
                                     n /= i;
13
            }
14
15
        if(n > 1) res = res / n * (n - 1);
16
        return res;
17
   }
18
19
   using ll = long long;
20
   const int N = 1e6 + 10;
21
22
   int phi[N], prime[N];
23
   bool vis[N]; //合数 true
24
25
   void sel_phi(int n) {
26
        int cnt = 0;
27
        phi[1] = 1;
28
        for (int i = 2; i <= n; i ++) {</pre>
29
            if(!vis[i]) {
30
                 prime[cnt++] = i;
31
                 phi[i] = i - 1;
32
            }
33
            for (int j = 0; prime[j] <= n / i; j ++) {</pre>
34
                 vis[prime[j] * i] = true;
35
                 if(i % prime[j] == 0) {
36
                     phi[i * prime[j]] = phi[i] * prime[j];
37
                     break;
38
                 }
39
                 else
40
                     phi[prime[j] * i] = phi[i] * (prime[j] - 1);
41
            }
42
        }
43
   }
44
45
46
   简短的 nLog(n) 时间求 phi[]
47
   vector<int> phi(n + 1);
48
   iota(phi.begin(), phi.end(), 0);
49
   for (int i = 1; i <= n; i ++) {
50
        for (int j = i; j <= n; j += i) {
51
            phi[j] -= phi[i];
52
53
   }
54
55
        筛莫比乌斯函数
   #include <bits/stdc++.h>
   using namespace std;
   const int N = 50010;
```

```
int mu[N], p[N]; // p 为素数数组
   bool flg[N];
   void init() {
        int tot = 0; mu[1] = 1;
        for (int i = 2; i < N; ++i) {</pre>
            if (!flg[i]) {
                 p[++tot] = i;
10
                 mu[i] = -1;
11
            }
12
            for (int j = 1; j <= tot && i * p[j] < N; ++j) {</pre>
13
                 flg[i * p[j]] = 1;
14
                 if (i % p[j] == 0) {
15
                     mu[i * p[j]] = 0;
16
                     break;
17
18
                 }
                mu[i * p[j]] = -mu[i];
19
            }
20
        }
21
        // 常用 mu 前缀和
22
        // for (int i = 1; i <= N; ++i) mu[i] += mu[i - 1];
23
   }
24
```

1.5 分解质因数 (预处理因子)

```
//acwing 867
   #include <bits/stdc++.h>
   using namespace std;
   const int N = 1e6 + 10;
   vector<pair<int, int>> pfac[N];
   //预处理质因数(当需要经常 1~N 所有数的质因数时候)
   void init() {
      for (int i = 2; i < N; i ++) {
          if(pfac[i].size()) continue;
10
          for (int j = i; j < N; j += i) {
11
              int t = j, cnt = 0;
12
              while(t\%i == 0) t/= i, cnt ++;
              pfac[j].push_back({i, cnt});
15
      }
16
17
   }
18
   //根号 n 算法 (n 为数值大小)
19
22
   //Log(n) 算法 利用最小质因数筛
   //先用欧拉筛筛出一定数值内的所有数字的质因子
   //同时维护一个 minp[i] 表示 i 的最小质因子
```

```
//用的时机: 一般求 n 个数每个数的质因子
   //
                且数值域大于预处理质因子所能承受范围 >1e5,
27
                而又小于线性筛所能承受范围
28
   // http://oj.daimayuan.top/course/10/problem/733 例题(需要稍加改进)
29
   int primes[N], minp[N], vis[N];
30
   void get_prime(int n) {
31
        int pcnt = 0;
32
       for(int i = 2; i <= n; i ++) {</pre>
33
          if(!vis[i]) primes[ ++ pcnt] = i, minp[i] = i;
34
          for(int j = 1; j <= pcnt && i * primes[j] <= n; ++ j) {</pre>
35
              vis[i * primes[j]] = 1;
36
                minp[primes[j] * i] = primes[j];
37
                if(i % primes[j] == 0) break;
38
          }
39
        }
40
   }
41
42
   void decompose_log(int n) {
43
        int cnt = 0;
44
       while (n > 1) {
45
            int t = minp[n];
46
            int cnt = 0;
47
            while (n \% t == \emptyset) {
48
                cnt++;
49
                n /= t;
50
            }
51
            printf("%d %d\n", t, cnt);
52
       }
53
   }
54
55
   vector<int> divisors[N + 10];
56
   // 预处理因子:
57
   void init() {
58
       // N 1e5 左右
59
        for (int i = 1; i <= N; i ++) {
60
            for (int j = 1; j <= i / j; j ++) {
61
                if(i % j == 0) {
62
                    divisors[i].push_back(j);
63
                    if(j*j!=i) { // j*j 一定不会爆 int, 因为时间复杂度为 nsqrt(n)
64
                        divisors[i].push_back(i / j);
65
                    }
66
                }
67
            }
68
       }
69
   }
70
71
   int main() {
72
        int n; cin >> n;
73
       while(n --) {
74
```

1.6 组合数

1.
$$C_n^m = C_n^{n-m}$$

2.
$$C_n^m = C_{n-1}^m + C_{n-1}^{m-1}$$

3.
$$C_n^0 + C_n^1 + \cdots + C_n^n = 2^n$$

4.
$$lucas: C_n^m \equiv C_n^{m \mod p} * C_{n/p}^{m/p}$$

多重集组合数:

设 $S = \{n_1 \cdot a_1, n_2 \cdot a_2, \dots n_k \cdot a_k\}$ 是一个由 n_1 个 a_1, n_2 个 a_2, \dots, n_k 个 a_k 组成的多重集。设 $n = \sum_{i=1}^k n_i$,对于任意整数 $r \leq n$,从 S 中取出 r 个元素组成一个多重集 (不考虑顺序),产生的不同多重集的数量为:

$$C_{k+r-1}^{k-1} - \sum_{i=1}^{k} C_{k+r-n_i-2}^{k-1} + \sum_{1 \le i < j \le k} C_{k+r-n_i-n_j-3}^{k-1} - \dots + (-1)^k C_{k+r-\sum_{i=1}^{k} n_i - (k+1)}^{k-1}$$

多重集排列数:

多重集 $S = \{n_1 \cdot a_1, n_2 \cdot a_2, \cdots n_k \cdot a_k\}$ 生成的排列是 $\frac{(\sum_{i=1}^k n_i)!}{n_i! \cdot n_i!}$

```
//求组合数的几种方法
   //不确定的时候都开 Long Long
   #include <bits/stdc++.h>
   using namespace std;
   using ll = long long;
   const int mod = 1e9 + 7, N = 1e6 + 10;
   //C(a, b) a \perp b \top
   /*1. 依照定义 适用于 a, b 很小的时候(几十)*/
   int C(ll a, int b) /* a \perp b \top */{\{}
10
       if(a < b) return 0;</pre>
11
       int up = 1, down = 1;
12
       for (ll i = a; i > a - b; i -- ) up = i % mod * up % mod; //up *= i
13
       for (int j = 1; j \le b; j ++) down = (11)j * down % mod; // down *= j
14
       return (11)up * qpow(down, mod - 2) % mod; // (up/down)
15
   }
16
17
   /*2. 递推 杨辉三角 a, b 在 2000 这个数量级 */
18
   //0(N^2) 1e6~1e7
19
   void init() {
20
       for (int i = 0; i < N; i ++)
21
           for (int j = 0; j \le i; j ++)
22
```

```
if(!j) C[i][j] = 1;
23
               else C[i][j] = (C[i - 1][j] + C[i - 1][j - 1]) \% mod;
24
   }
25
26
   //最常用
27
   /*3. 预处理 fac[], invfac[]*/
28
29
    * //调用:
30
    * 1LL * fac[b] * invfac[a] % mod * invfac[b - a] % mod;
31
    */
32
   // O(N) 1e6 左右 看 N 大小
33
   int fac[N], invfac[N];
34
   void init() {
35
       fac[0] = 1;
36
       for (int i = 1; i < N; i ++) fac[i] = (11)fac[i - 1]*i% mod;
37
       invfac[N - 1] = qpow(fac[N - 1], mod - 2);
38
       for (int i = N - 2; i >= 0; i --)
39
           invfac[i] = (ll)invfac[i + 1] * (i + 1) % mod;
40
41
   }
42
   /*4. Lucas 定理 当 a, b 的值特别大 如 1e9 以上...1e18 等 */
43
   int C(int a, int b) {
44
       int res = 1;
45
       for (int i = 1, j = a; i <= b; i ++, j --) {
46
           res = (11)res * j \% p;
47
           res = (11)res * binpow(i, p - 2) % p;
48
49
       return res;
50
   }
51
52
   ll lucas(ll a, ll b) {//p 为质 (模) 数
53
       if(a 
54
       return (11)C(a % p, b % p) * lucas(a / p, b / p) % p;
55
   }
56
```

1.7 卡特兰数 (catalan)

- 有 2n 个人排成一行进入剧场。入场费 5 元。其中只有 n 个人有一张 5 元钞票,另外 n 人只有 10 元钞票,剧院无其它钞票,问有多少种方法使得只要有 10 元的人买票,售票处就有 5 元的钞票找零?
- 一位大城市的律师在她住所以北 n 个街区和以东 n 个街区处工作。每天她走 2n 个街区去上班。如果他从不穿越(但可以碰到)从家到办公室的对角线,那么有多少条可能的道路?
- 在圆上选择 2n 个点,将这些点成对连接起来使得所得到的 n 条线段不相交的方法数?
- 对角线不相交的情况下,将一个凸多边形区域分成三角形区域的方法数?
- 一个栈(无穷大)的进栈序列为 1,2,3,…, n 有多少个不同的出栈序列?
- n 个结点可构造多少个不同的二叉树?

• n 个 +1 和 n 个 -1 构成 2n 项 a_1, a_2, \dots, a_{2n} ,其部分和满足 $a_1 + a_2 + \dots + a_k \ge 0 (k = 1, 2, 3, \dots, 2n)$ 对与 n 该数列为?

$$catalan(n) = C_{2n}^{n} - C_{2n}^{n-1}$$
$$catalan(n) = \frac{C_{2n}^{n}}{n+1}$$

前几项 {1, 2, 5, 14, 42, 132 ... }

1.8 容斥原理

 S_i 为有限集, |S| 为 S 的大小 (元素个数), 则:

$$|\bigcup_{i=1}^{n} S_{i}| = \sum_{i=1}^{n} |S_{i}| - \sum_{1 \leq i < j \leq n} |S_{i} \cap S_{j}| + \sum_{1 \leq i < j < k \leq n} |S_{i} \cap S_{j} \cap S_{k}| + \dots + (-1)^{n+1} |S_{1} \cap \dots \cap S_{n}|$$

```
1 // 容斥原理
  // 给定素数集合 A(大小为 k), 求 [L, R] 中素数集合的任意元素的倍数的个数
   // 1<=L<=R<=10^18,1<=k<=20,2<=ai<=100
  #include <bits/stdc++.h>
  using ll = long long;
   using namespace std;
   int main() {
     ll l, r, k, f[25];
     cin >> 1 >> r >> k;
10
     for (int i = 0; i < k; i++) cin >> f[i];
11
12
     11 \text{ ans} = 0;
13
14
     for (int i = 1; i < 1 << k; i ++) {// 枚举集合中全部的非空子集
15
       11 cnt = 0, a = r, b = 1 - 1; // cnt 用来表示所取的数的个数
16
       for (int j = 0; j < k; j ++) {
17
         if(i >> j & 1) {
18
```

```
cnt++;
19
             a /= f[j], b /= f[j];
20
           }
21
         }
22
         if(cnt & 1) ans += (a - b);
23
         else ans -= (a - b);
24
      }
25
      cout << ans << endl;</pre>
26
      return 0;
27
    }
28
```

1.9 数论分块

考虑和式: $\sum_{i=1}^{n} f(i) \lfloor \frac{n}{i} \rfloor$,由于 $\lfloor \frac{n}{i} \rfloor$ 的值成一个块状分布,故可以一块一块运算。我们先求出 f(i) 的前缀和,每次以 $[l,r] = [l,\lfloor \frac{n}{\lfloor \frac{n}{i} \rfloor} \rfloor]$ 为一块分块求出贡献累加到结果中。(常配合莫反使用) 常见转换:

- $\left\lceil \frac{a}{b} \right\rceil = \left\lfloor \frac{a-1}{b} + 1 \right\rfloor$
- $a \mod b = a |\frac{a}{b}| * b$

```
1 // for(int i = st;i<=ed;i++) ans += num/i
2 ll block(ll st, ll ed, ll num) {
3    //sum(num/i i in [st,ed])
4    ll L = 0, res = 0;
5    ed = min(ed, num);
6    for (ll i = st; i <= ed; i = L + 1) {
7         L = min(ed, num / (num / i)); //该区间的最后一个数
8         res += (L - i + 1) * (num / i); //区间 [i,L] 的 num/i 都是一个值
9         // res += (s(L) - s(i-1)) * (num/i); //s(i) 为 f(i) 前缀和
10    }
11    return res;
12 }
```

1.10 Möbius 反演

μ 为莫比乌斯函数, 定义为

$$\mu(x) = \begin{cases} 1 & n = 1 \\ 0 & n$$
含有平方因子
$$(-1)^k & k \to n \text{ 本质不同的质因子个数} \end{cases}$$

性质:

$$\sum_{d|n} \mu(d) = \begin{cases} 1 & n=1\\ 0 & n \neq 1 \end{cases}$$

证: 设
$$n = \prod_{i=1}^k p_i^{c_i}, n' = \prod_{i=1}^k p_i$$

那么 $\sum_{d|n} \mu(d) = \sum_{d|n'} \mu(d) = \sum_{i=0}^k C_k^i \cdot (-1)^i = (1 + (-1))^k = 1$

反演:

形式一:

$$f(n) = \sum_{d|n} g(d) \Leftrightarrow g(n) = \sum_{d|n} \mu(d) f(\frac{n}{d})$$

证:

$$\sum_{d|n} \mu(d) f\left(\frac{n}{d}\right) = \sum_{d|n} \mu(d) \sum_{k|\frac{n}{d}} g(k) = \sum_{k|n} g(k) \sum_{d|\frac{n}{k}} \mu(d) = g(n)$$

用 $\sum_{d|n}g(d)$ 来替换 $f(\frac{n}{d})$,再变换求和顺序。最后一步变换的依据: $\sum_{d|n}\mu(d)=[n=1]$,因此在 $\frac{n}{k}=1$ 时第二个和式的值才为。此时 n=k,故原式等价于 $\sum_{k|n}[n=k]\cdot g(k)=g(n)$ 形式二:

$$f(n) = \sum_{n|d} g(d) \Leftrightarrow g(n) = \sum_{n|d} \mu(\frac{d}{n}) f(d)$$

1.11 高斯消元

```
#include<bits/stdc++.h>
    using namespace std;
    const int N = 110;
    const double eps = 1e-6;
    int n;
    double a[N][N];
    int gauss() {
        int c, r;
        for(c = 0, r = 0; c < n; c ++) {
10
            int t = r;
11
            for(int i = r; i < n; i ++)//找到首元素最大
12
                 if(fabs(a[i][c]) > fabs(a[t][c]))
13
                     t = i;
14
15
            if(fabs(a[t][c]) < eps) continue;</pre>
16
17
            for(int i = c; i <= n; i ++) swap(a[t][i], a[r][i]);</pre>
18
            for(int i = n; i >= c; i --) a[r][i] /= a[r][c];
19
            for(int i = r + 1; i < n; i ++)
20
                 if(fabs(a[i][c]) > eps)
21
                     for(int j = n; j >= c; j --)
22
                          a[i][j] -= a[r][j] * a[i][c];
23
            r ++;
24
25
        if(r < n) {
26
            for(int i = r; i < n; i ++)</pre>
27
                 if(fabs(a[i][n]) > eps)
28
                     return 2;
29
            return 1;
30
        }
31
32
        for(int i = n - 1; i >= 0; i --)
33
```

```
for(int j = i + 1; j < n; j ++)</pre>
34
                 a[i][n] -= a[i][j] * a[j][n];
35
36
        return 0;//有唯一解
37
   }
38
39
    int main() {
40
        cin >> n;
41
        for(int i = 0; i < n; i ++)</pre>
42
             for(int j = 0; j < n + 1; j ++)
43
                 cin >> a[i][j];
44
45
        int t = gauss();
46
        if(t == 0)
47
             for(int i = 0; i < n; i ++) printf("%.2f\n", a[i][n]);</pre>
48
        else if(t == 1)
49
             puts("Infinite group solutions");
50
        else puts("No solution");
51
52
        return 0;
53
   }
54
```

1.12 Miller Rabin 素数测试

```
1 //loj143 prime test
  #include <bits/stdc++.h>
   using namespace std;
   using ull = unsigned long long;
   using ll = long long;
   /* 0(sqrt(n))
   bool is_prime(ll x)
       if(x < 2) return false;
       for(ll i = 2; i <= x / i; ++i)
10
           if(x \% i == 0) return false;
       return true;
   }
13
   */
   //常常是大素数测试, 要用到 int128
   inline ll qmul(ll a, ll b, ll p) { return (ll)((__int128)a * b % p); }
   11 qpow(11 a, 11 b, 11 p) {
       11 \text{ res} = 1;
18
19
       while(b) {
           if(b & 1) res = qmul(res, a, p);
20
           a = qmul(a, a, p);
           b >>= 1;
22
23
       return res;
   }
```

```
const int test_time = 8;
26
27
   bool mr_test(ll n) {
28
        if(n < 3 || n % 2 == 0) return n == 2;
29
        11 \ a = n - 1, \ b = 0;
30
        while(a % 2 == 0) a /= 2, ++b;
31
32
        for (int i = 1, j; i <= test_time; ++i) {</pre>
33
            11 x = rand() \% (n - 2) + 2, v = qpow(x, a, n);
34
            if(v == 1) continue;
35
            for (j = 0; j < b; ++j) {
36
                if(v == n - 1) break;
37
                v = qmul(v, v, n);
38
            }
39
            if(j >= b) return 0;
40
        }
41
        return 1;
42
   }
43
44
   int main() {
45
        srand(time(0));
46
        11 x;
47
        while(cin >> x) {
48
            if(mr_test(x)) puts("Y");
49
            else puts("N");
50
        }
51
        return 0;
52
   }
53
   1.13 FFT
   #include <bits/stdc++.h>
   #include <any>
   #define rep(i, a, b) for (int i = (a); i <= (b); i ++)
   using namespace std;
   namespace FFT {
   const double PI = acos(-1);
   using C = complex<double>;
   vector<int> rev;
   vector<C> roots{C(0, 0), C(1, 0)};
   void dft(vector<C>& a) {
11
12
        int n = (int)a.size();
        if ((int)rev.size() != n) {
13
            int k = __builtin_ctz(n) - 1;
            rev.resize(n);
15
            for (int i = 0; i < n; ++i) {
                rev[i] = rev[i >> 1] >> 1 | (i & 1) << k;
```

}

```
}
19
        if ((int)roots.size() < n) {</pre>
20
            int k = __builtin_ctz(roots.size());
21
            roots.resize(n);
22
            while ((1 << k) < n) {
23
                 C = polar(1.0, PI / (1 << k));
24
                 for (int i = 1 << (k - 1); i < (1 << k); ++i) {
25
                     roots[2 * i] = roots[i];
26
                     roots[2 * i + 1] = roots[i] * e;
27
                 }
28
            ++k;
29
            }
30
31
        for (int i = 0; i < n; ++i) if (rev[i] < i) {</pre>
32
            swap(a[i], a[rev[i]]);
33
34
        for (int k = 1; k < n; k *= 2) {
35
            for (int i = 0; i < n; i += 2 * k) {
36
                 for (int j = 0; j < k; ++j) {
37
                     auto u = a[i + j], v = a[i + j + k] * roots[k + j];
38
                     a[i + j] = u + v;
39
                     a[i + j + k] = u - v;
40
41
                 }
            }
42
        }
43
   }
44
    void idft(vector<C>& a) {
45
      int n = (int)a.size();
46
      reverse(a.begin() + 1, a.end());
47
      dft(a);
48
      for (auto& x: a) x /= n;
49
   }
50
   } // namespace FFT
51
52
53
    vector<int> mul(const vector<int> &A, const vector<int> &B) {
54
      int n = max(A.size(), B.size()), tot = max(1, n * 2 - 1);
55
      int sz = 1 << __lg(tot * 2 - 1);</pre>
56
      vector<complex<double>>> C(sz);
57
      for (int i = 0; i < A.size(); ++i) C[i].real(A[i]);</pre>
58
      for (int i = 0; i < B.size(); ++i) C[i].imag(B[i]);</pre>
59
      FFT::dft(C);
60
      for (auto &x : C) x *= x;
61
      FFT::idft(C);
62
      vector<int> ans(A.size() + B.size() - 1);
63
      for (int i = 0; i < ans.size(); ++i) ans[i] = int(C[i].imag() / 2 + 0.2);</pre>
64
      return ans;
65
   }
66
67
```

```
int main() {
68
69
      cin.tie(nullptr)->sync_with_stdio(false);
70
      int n, m;
71
      cin >> n >> m;
72
      vector<int> a(n + 1), b(m + 1);
73
      for (auto &x: a) cin >> x;
74
      for (auto &x: b) cin >> x;
75
      auto c = mul(a, b);
76
      for (auto &x: c) cout << x << '';
77
      cout << '\n';</pre>
78
        std::any a = 34;
79
        return 0;
80
81
82
   }
```

2 数据结构

2.1 (带权) 并查集

```
struct DSU {
        vector<int> f, siz;
2
        DSU(\textbf{int} \ n) \ : \ f(n), \ siz(n, \ 1) \ \{ \ iota(f.begin(), \ f.end(), \ \emptyset); \ \}
        int leader(int x) {
            while (x != f[x]) x = f[x] = f[f[x]];
            return x;
        }
        // int Leader(int x) { // 带权并查集
8
               if(x == f[x]) return x;
                int \ rt = Leader(f[x]); //这和下面一行顺序很重要
10
        //
                d[x] += d[f[x]]; //可以改成 d[x] \stackrel{\wedge}{=} d[fa[x]], 根据权值意义的需要修改
        //
11
        //
               return f[x] = rt;
12
        // }
13
        bool same(int x, int y) { return leader(x) == leader(y); }
14
        bool merge(int x, int y) {
15
            x = leader(x);
16
            y = leader(y);
            if (x == y) return false;
18
            siz[x] += siz[y];
19
20
            f[y] = x;
            return true;
21
22
        int size(int x) { return siz[leader(x)]; }
23
24
   };
```

2.2 Sparse Table

时间复杂度 $\mathcal{O}(1)$,空间复杂度 $\mathcal{O}(nlogn)$ 静态区间查询可重复贡献信息,如"区间最值"、"区间按位和"、"区间按位或"、"区间 GCD"

```
//f[i][j] 表示左闭右开 [i, i + 2^{j}) 的最大值
   template<class T,
        class Cmp = std::less<T>>
3
   struct RMQ {
       const int n; // 从零开始
5
       const Cmp cmp;
6
        std::vector<std::vector<T>> a;
        RMQ(const std::vector<T> &init) : n(init.size()), cmp(Cmp()) {
            int lg = std::__lg(n);
            a.assign(n, std::vector<T>(lg + 1));
10
            for (int j = 0; j <= lg; j++) {</pre>
11
                for (int i = 0; i + (1 << j) <= n; i++) {
12
                    a[i][j] = (j == 0 ? init[i] : std::min(a[i][j - 1], a[i + (1 << (j - 1))][j]
13
                    \hookrightarrow -1], cmp));
14
                }
            }
15
       }
16
       // 左闭右开
17
       T rangeMin(int 1, int r) {
18
            int k = std::__lg(r - 1);
19
            return std::min(a[l][k], a[r - (1 << k)][k], cmp);</pre>
20
       }
21
   };
22
   2.3 01Trie
   #include <bits/stdc++.h>
   using namespace std;
   const int N = 1e5 + 10, M = N * 31;
   int a[N];
   int son[M][2], idx;
   void insert(int x) {
        int p = 0;
        for (int i = 30; i >= 0; --i) {
            int u = ((x>>i) & 1);
10
            if(!son[p][u]) son[p][u] = ++idx;
            p = son[p][u];
12
       }
13
   }
14
   // 集合内和 x 异或的最大值
   int query(int x) {
16
17
     int p = 0, res = 0;
     for (int i = 30; i >= 0; --i) {
18
       int u = (x >> i) & 1;
19
        if(son[p][u ^ 1]) p = son[p][u ^ 1], res |= (1 << i);
20
        else p = son[p][u];
21
            // 集合内和 x 异或的最小值
22
```

// if(son[p][u]) p = son[p][u];

```
// else res |= (1 << i), p = son[p][u ^ 1];
24
      }
25
        return res;
26
    }
27
28
    int main() {
29
        int n, res = 0;
30
        cin >> n;
31
        for(int i = 0; i < n; i++) cin >> a[i];
32
        for(int i = 0; i < n; i++) {</pre>
33
             insert(a[i]);
34
             res = max(res, query(a[i]));
35
36
        cout << res;</pre>
37
        return 0;
38
    }
39
```

2.4 树状数组

```
1 // fenwich-tree 写区间修改,区间查询
  //记录两个数组 b[i] = a[i] - a[i - 1]; c[i] = i * b[i];
   // a[1~x] = \sum_{i=1}^{x} \sum_{j=1}^{i}b[j]
   // = \sum_{i=1}^{x} (x-i+1)*b[i]
   // = (x+1) \sum_{i=1}^{x} b[i] - \sum_{i=1}^{x} i*b[i]
   #include <bits/stdc++.h>
   #define rep(i, a, b) for (int i = (a); i <= (b); i ++)
   using namespace std;
   using ll = long long;
   template<typename T/*, class OP = plus<T>*/>
   struct fenwick {
13
       int n;
       // const OP op;
15
       vector<T> c;
16
       fenwick(int _n) : n(_n), c(_n + 1, 0)/*, op(OP())*/ {}
       void add(int x, T v) {
           for (int i = x; i <= n; i += i & -i) {
                c[i] += v; // c[i] = op(c[i], v)
20
           }
21
22
       T sum(int x) {
23
24
           T res{};
           for (int i = x; i; i -= i \& -i) {
25
                res += c[i];
27
            return res;
       }
   };
```

```
31
   int main() {
32
        ios::sync_with_stdio(false);
33
        cin.tie(nullptr);
34
        int n, m;
35
        cin >> n >> m;
36
        vector<int> a(n + 1);
37
        fenwick<ll> t1(n), t2(n); //维护 b[i], b[i] * i 的前缀和
38
        rep(i, 1, n) cin >> a[i];
39
        rep(i, 1, n) {
40
            int b = a[i] - a[i - 1];
41
            t1.add(i, b);
42
            t2.add(i, 111 * b * i);
43
        }
44
        auto preSum = [&](int x) {
45
            return t1.sum(x)*(x + 1) - t2.sum(x);
46
        };
47
        while(m --) {
48
            int op, 1, r, d;
49
            cin >> op >> 1 >> r;
50
            if(op == 2) {
51
                 cout << preSum(r) - preSum(1 - 1) << '\n';</pre>
52
            }
53
            else {
54
                 cin >> d;
55
                 t1.add(l, d);
56
                 t2.add(l, 111* 1 * d);
57
                 t1.add(r + 1, -d);
58
                 t2.add(r + 1, 111 * (r + 1) * -d);
59
60
61
        return 0;
62
   }
63
```

2.5 线段树

```
#include <bits/stdc++.h>

using namespace std;

struct Info {
};

Info operator+(const Info& a, const Info& b) {
}

struct Tag {
};
```

```
void apply(Info &a, Tag b) {
14
   }
15
16
   void apply(Tag &a, Tag b) {
17
   }
18
19
   template <typename Info, typename Tag,
20
            typename Merge = plus<Info>>
21
   struct SegmentTree {
22
        const int n;
23
        const Merge merge;
24
        vector<Info> info;
25
        vector<Tag> tag;
26
        SegmentTree(int n) : n(n), merge(Merge()),
27
                 info(4 << __lg(n)), tag(4 << __lg(n)) {}
28
        SegmentTree(vector<Info> init) : SegmentTree(init.size()) {
29
            function<void(int, int, int)> build = [&](int p, int l, int r) {
30
                 if (r - 1 == 1) {
31
                     info[p] = init[1];
32
                     return;
33
                 }
34
                 int m = (1 + r) / 2;
35
                 build(2 * p, 1, m);
36
                 build(2 * p + 1, m, r);
37
                 pull(p);
38
            };
39
            build(1, 0, n);
40
41
        void pull(int p) {
42
            info[p] = merge(info[2 * p], info[2 * p + 1]);
43
44
        void apply(int p, const Tag &v) {
45
            ::apply(info[p], v);
46
            ::apply(tag[p], v);
47
48
        void push(int p) {
49
            apply(2 * p, tag[p]);
50
            apply(2 * p + 1, tag[p]);
51
            tag[p] = Tag();
52
53
        void modify(int p, int l, int r, int x, const Info &v) {
54
            if (r - 1 == 1) {
55
                 info[p] = v;
56
                 return;
57
            }
58
            int m = (1 + r) / 2;
59
            push(p);
60
            if (x < m) {
61
                 modify(2 * p, 1, m, x, v);
62
```

```
} else {
63
                 modify(2 * p + 1, m, r, x, v);
64
             }
65
             pull(p);
66
67
         void modify(int p, const Info &v) {
68
             modify(1, 0, n, p, v);
69
70
         Info rangeQuery(int p, int l, int r, int x, int y) {
71
             if (1 >= y | | r <= x) {
72
                 return Info();
73
             }
74
             if (1 >= x \&\& r <= y) {
75
                 return info[p];
76
77
             }
             int m = (1 + r) / 2;
78
             push(p);
79
             return merge(rangeQuery(2 * p, 1, m, x, y), rangeQuery(2 * p + 1, m, r, x, y));
80
81
         Info rangeQuery(int 1, int r) {
82
             return rangeQuery(1, 0, n, 1, r);
83
84
         void rangeApply(int p, int l, int r, int x, int y, const Tag &v) {
85
             if (1 >= y || r <= x) {
86
                 return;
87
             }
88
             if (1 >= x \&\& r <= y) {
89
                 apply(p, v);
90
                 return;
91
             }
92
             int m = (1 + r) / 2;
93
             push(p);
94
             rangeApply(2 * p, l, m, x, y, v);
95
             rangeApply(2 * p + 1, m, r, x, y, v);
             pull(p);
97
98
         void rangeApply(int 1, int r, const Tag &v) {
99
             return rangeApply(1, 0, n, l, r, v);
100
         }
101
    };
102
103
    int main() {
104
         return 0;
105
    }
106
         扫描线: (面积)
    //p1502 线段树扫描线算法
    #include<bits/stdc++.h>
    using namespace std;
    using ll = long long;
```

```
const 11 N = 1e4 + 10;
   struct L {
        ll x, y1, y2;
        11 c;
        //当左矩形的右边界与右矩形的左边界重合时,该线上的点应属于能被两个窗户都能看见的状态所以先加
        bool operator<(const L &rhs) const { return x == rhs.x ? c < rhs.c : x < rhs.x; }</pre>
10
   }line[2 * N];
11
12
   11 n, w, h, m;
13
   11 b[2 * N]; //离散化前的 y 轴
14
15
   struct node {
16
        11 1, r;
17
        11 maxv, add;
18
   } t[8 * N];
19
20
21
   void pushdown(ll p) {
22
        node &root = t[p], &nl = t[p << 1], &nr = t[p << 1 | 1];
23
        if(root.add) {
24
            nl.add += root.add, nl.maxv += root.add;
25
            nr.add += root.add, nr.maxv += root.add;
26
            root.add = 0;
27
        }
28
   }
29
30
   void pushup(ll p) {
31
        t[p].maxv = max(t[p << 1].maxv, t[p << 1 | 1].maxv);
32
   }
33
34
   void modify(ll p, ll l, ll r, ll c) {
35
        if(t[p].1 >= 1 && t[p].r <= r) {
36
            t[p].maxv += c;
37
            t[p].add += c;
38
            return;
39
        }
40
        pushdown(p);
41
        11 \text{ mid} = t[p].1 + t[p].r >> 1;
42
        if(1 <= mid) modify(p << 1, 1, r, c);</pre>
43
        if(r > mid) modify(p \ll 1 | 1, 1, r, c);
44
        pushup(p);
45
46
   }
47
48
   void build(ll p, ll l, ll r) {
49
        if(1 == r) {
50
            t[p] = \{1, r, 0, 0\};
51
            return;
52
        }
53
```

```
t[p].1 = 1, t[p].r = r;
54
        11 \text{ mid} = 1 + r >> 1;
55
        build(p << 1, 1, mid);
56
        build(p << 1 | 1, mid + 1, r);
57
        //pushup(p);//初始化都是 0 不用 pushup()
58
   }
59
60
    int main() {
61
        11 T;
62
        scanf("%11d", &T);
63
        while( T -- ) {
64
            memset(line, 0, sizeof(line));
65
            memset(b, 0, sizeof(b));
66
            memset(t, 0, sizeof(t));
67
68
            scanf("%lld%lld%lld", &n, &w, &h);
69
            for (ll i = 1, j = 0; i <= n; i++) {
70
                 11 x, y, 1;
71
                 scanf("%11d%11d%11d", &x, &y, &1);
72
                 line[i] = \{x, y, y + h - 1, 1\};
73
                 line[i + n] = \{x + w - 1, y, y + h - 1, -1\};
74
                 b[ ++ j] = y;
75
                 b[ ++ j] = y + h - 1;
76
            }
77
            n <<= 1;
78
            sort(b + 1, b + 1 + n);
79
            m = unique(b + 1, b + 1 + n) - b - 1;//unique 得到 end() 迭代器
80
            sort(line + 1, line + 1 + n);
81
82
            for (ll i = 1; i <= n; i++) {
83
                 line[i].y1 = lower_bound(b + 1, b + m + 1, line[i].y1) - b - 1;
84
                 line[i].y2 = lower_bound(b + 1, b + m + 1, line[i].y2) - b - 1;
85
            }
86
            build(1, 1, m - 1);
87
88
            11 \text{ res} = 0;
89
            for (11 i = 1; i <= n; i++) {</pre>
90
                 modify(1, line[i].y1, line[i].y2, line[i].c);
91
                 res = max(res, t[1].maxv);
92
            }
93
            printf("%d\n", res);
94
        }
95
        return 0;
96
   }
97
```

2.6 可持久化线段树

```
1 //Luogu 3824 kth-number
2 #include <bits/stdc++.h>
```

```
using namespace std;
   const int N = 2e5 + 10, M = (N << 2) + 17 * N;
   struct node {
        int 1, r;
        int cnt;
   } t[M];
   int idx, a[N];
10
   vector<int> num;
11
   int find(int x) { return lower_bound(num.begin(), num.end(), x) - num.begin(); }
12
13
   int insert(int now, int 1, int r, int x) {
14
        int p = ++ idx;
15
        t[p] = t[now];
16
        if (1 == r) {
17
            t[p].cnt ++;
18
            return p;
19
        }
20
        int mid = 1 + r \gg 1;
21
        if(x \le mid) t[p].1 = insert(t[now].1, 1, mid, x);
22
        else t[p].r = insert(t[now].r, mid + 1, r, x);
23
        t[p].cnt = t[t[p].1].cnt + t[t[p].r].cnt;
24
25
        return p;
26
   }
27
28
   int build(int 1, int r) {
29
        int p = ++ idx;
30
        if (l == r) return p;
31
        int mid = l + r \gg 1;
32
        t[p].l = build(l, mid), t[p].r = build(mid + 1, r);
33
        return p;
34
   }
35
   int query(int x, int y, int l, int r, int k) {
37
        if(l == r) return l;
38
        int cnt = t[t[y].1].cnt - t[t[x].1].cnt;
39
        int mid = l + r \gg 1;
40
        if(k <= cnt) return query(t[x].1, t[y].1, 1, mid, k);</pre>
41
        else return query(t[x].r, t[y].r, mid + 1, r, k - cnt);
42
   }
43
   int n, m, root[N];
45
46
   int main() {
47
        scanf("%d%d", &n, &m);
48
        for (int i = 1; i <= n; i ++ ) {</pre>
49
            scanf("%d", &a[i]);
50
            num.push_back(a[i]);
51
```

```
}
52
53
        sort(num.begin(), num.end());
54
        num.erase(unique(num.begin(), num.end());
55
56
       root[0] = build(0, num.size() - 1);
57
58
        for (int i = 1; i <= n; i ++ )</pre>
59
            root[i] = insert(root[i - 1], 0, num.size() - 1, find(a[i]));
60
       while (m -- ) {
61
           int 1, r, k;
62
            scanf("%d%d%d", &1, &r, &k);
63
            printf("%d\n", num[query(root[1 - 1], root[r], 0, num.size() - 1, k)]);
64
65
66
       return 0;
67
   }
68
   // http://oj.daimayuan.top/course/10/problem/464
   // 在给定 N 长的数组 {A} 中进行 Q 次询问 [Li,Ri] 区间中不大于 Hi 的元素个数。
   //主席树的在线做法 还有树状数组的对询问离线做法
   #include <bits/stdc++.h>
   using namespace std;
   const int N = 1e5 + 10;
   int n, q, L[N], R[N], idx, H[N], rt[N], a[N];
   vector<int> alls;
   struct node {
10
        int 1, r, cnt;
11
   } t[N * 75];
12
13
   int insert(int now, int 1, int r, int x) {
14
        int p = ++idx;
15
        t[p] = t[now];
16
        if(1 == r) {
17
            t[p].cnt++;
18
            return p;
19
20
        int mid = 1 + r \gg 1;
21
        if(x \le mid) t[p].l = insert(t[now].l, l, mid, x);
22
        else t[p].r = insert(t[now].r, mid + 1, r, x);
23
        t[p].cnt = t[t[p].1].cnt + t[t[p].r].cnt;
24
        return p;
25
   }
26
27
   int query(int version, int 1, int r, int h) {
28
        if(l == r) return t[version].cnt;
29
30
        if(r <= h) return t[version].cnt;</pre>
31
        int mid = 1 + r \gg 1, res = 0;
32
```

```
res += query(t[version].1, 1, mid, h);
33
        if(h > mid) res += query(t[version].r, mid + 1, r, h);
34
        return res;
35
   }
36
37
   int build(int 1, int r) {
38
        int p = ++ idx;
39
        if (l == r) return p;
40
        int mid = 1 + r \gg 1;
41
        t[p].l = build(l, mid), t[p].r = build(mid + 1, r);
42
        return p;
43
   }
44
45
   int find(int x) { return lower_bound(alls.begin(), alls.end(), x) - alls.begin(); }
46
47
   void init() {
48
        idx = 0;
49
        memset(rt, 0, sizeof rt);
50
        alls.clear();
51
        memset(t, 0, sizeof t);
52
   }
53
   int main() {
55
        int T; scanf("%d", &T);
56
        while(T --) {
57
            init();
58
            scanf("%d%d", &n, &q);
59
            for (int i = 1; i <= n; i ++) {
60
                scanf("%d", &a[i]);
61
                alls.push_back(a[i]);
62
            }
63
            //虽然是在线做法,但为了好处理 h 离散化后的值,就将 Hi 也加入 alls
            for (int i = 1; i <= q; i ++) {
65
                scanf("%d%d%d", &L[i], &R[i], &H[i]);
66
                alls.push_back(H[i]);
67
            }
68
            sort(alls.begin(), alls.end());
69
            alls.erase(unique(alls.begin(), alls.end());
70
71
            //rt[0] = build(0, alls.size() - 1);
72
            for (int i = 1; i <= q; i ++) H[i] = find(H[i]);</pre>
73
            for (int i = 1; i <= n; i ++) a[i] = find(a[i]);</pre>
74
75
            for (int i = 1; i <= n; i ++)</pre>
76
                rt[i] = insert(rt[i - 1], 0, alls.size() - 1, a[i]);
77
78
79
            for (int i = 1; i <= q; i++) {
80
                printf("%d ", query(rt[R[i]], 0, alls.size() - 1, H[i])
81
```

```
- query(rt[L[i] - 1], 0, alls.size() - 1, H[i]));
82
            }
83
            puts("");
84
       }
85
       return 0;
86
   }
87
          线段树合并
   2.7
   int merge(int p, int q, int l, int r) {
        if(!p || !q) return p + q;
2
        if(1 == r) {
            //维护信息, 一般是 t[p].val += t[q].val 等
            // t[p].val.first += t[q].val.first;
            return p;
       }
       int mid = 1 + r \gg 1;
       t[p].1 = merge(t[p].1, t[q].1, 1, mid);
       t[p].r = merge(t[p].r, t[q].r, mid + 1, r);
       // pushup();
       // t[p].val = max(t[t[p].l].val, t[t[p].r].val);
12
13
       return p;
14
   }
   // codeforces600E
   #include <bits/stdc++.h>
   using namespace std;
   using ll = long long;
   namespace SegTree {
   struct Info {
       11 cnt, ans; // 颜色的个数, 颜色编号和
10
       Info(11 v = 0, 11 x = 0) : cnt(v), ans(x) {}
11
   };
12
13
   Info operator+(const Info& a, const Info& b) {
14
       if(a.cnt > b.cnt) {
15
            return a;
16
       } else if(a.cnt < b.cnt) {</pre>
17
            return b;
18
        } else {
19
            return Info(a.cnt, a.ans + b.ans);
20
       }
21
   }
22
23
   Info merge(const Info &a, const Info &b) {
24
       return a + b;
25
```

26 }

```
27
    struct Node {
28
        Node *1,*r;
29
        Info val;
30
        Node() : l(nullptr), r(nullptr), val() {}
31
   };
32
33
   void pull(Node *&p) {
34
        p->val = merge(p->l == nullptr ? Info() : p->l->val, p->r == nullptr ? Info() :
35
        \hookrightarrow p->r->val);
   }
36
37
   // query(t, 0, n, query_left, query_right)
38
    Info query(Node *t, int l, int r, int le, int ri) { // [le, ri)
39
        // L
40
        // ooxxxxxooo
41
        // L R LR L R
42
        // xxooxooxxo
43
        if(ri <= 1 || r <= le || t == nullptr) {</pre>
44
            return Info();
45
46
        if(le <= 1 && r <= ri) {
47
            return t->val;
48
49
        int m = (1 + r) / 2;
50
        return merge(query(t->1, 1, m, le, ri), query(t->r, m, r, le, ri));
51
   }
52
53
    void modify(Node *&t, int 1, int r, int x, int v) { // [l,r)
54
        if(t == nullptr) {
55
            t = new Node();
56
57
        if(r - 1 == 1) {
58
            t->val.cnt += v;
59
            t->val.ans = x;
60
            return;
61
        }
62
63
        int m = (1 + r) / 2;
64
        if(x < m) {
65
            modify(t->1, 1, m, x, v);
66
        }else {
67
            modify(t->r, m, r, x, v);
68
69
        pull(t);
70
   }
71
72
   Node* merge(Node *&t, Node *&o, int 1, int r) { // [l,r)
73
        if(t == nullptr) return o;
74
```

```
if(o == nullptr) return t;
75
76
         Node *p = new Node();
77
78
         if(r - 1 == 1) {
79
             p->val = t->val;
80
             p->val.cnt += o->val.cnt;
81
             return p;
82
         }
83
84
         int m = (1 + r) / 2;
85
         p->1 = merge(t->1, o->1, 1, m);
86
         p->r = merge(t->r, o->r, m, r);
87
         pull(p);
88
         return p;
89
    }
90
91
    }
92
93
    using namespace SegTree;
94
95
96
97
    int main() {
98
         ios::sync_with_stdio(false);
99
         cin.tie(nullptr);
100
101
         int n;
102
         cin >> n;
103
         vector<int> col(n);
104
         for (int i = 0; i < n; i ++) {</pre>
105
             cin >> col[i];
106
107
         vector<Node *> rt(n + 1, nullptr);
108
         vector<vector<int>> G(n);
109
         for (int i = 1; i < n; i ++) {</pre>
110
             int u, v;
111
             cin >> u >> v;
112
             u--, v--;
113
             G[u].push_back(v);
114
             G[v].push_back(u);
115
         }
116
         vector<ll> ans(n);
117
         function<void(int, int)> dfs = [&](int u, int fa) {
118
             modify(rt[u], 1, n + 1, col[u], 1);
119
             for (auto v:G[u]) {
120
                  if(v == fa) continue;
121
                  dfs(v, u);
122
                  rt[u] = merge(rt[u], rt[v], 1, n + 1);
123
```

```
}
124
               ans[u] = rt[u]->val.ans;
125
          };
126
          dfs(0, -1);
127
          for (int i = 0; i < n; i ++) {</pre>
128
               cout << ans[i] << " \n"[i == n - 1];</pre>
129
          }
130
131
          return 0;
132
     }
133
```

2.8 DSU on tree

静态统计树上所有子树具有某些性质的个数

 $\mathcal{O}(n^2)$ 的方式:

- 1. 递归每个子树,记录某种性质出现
- 2. 退出子树时候清空 cnt 数组 (一般用于记录性质啥的), 以免影响到其他子树的统计
- 3. 这样对于父节点而言,就要重新统计这颗子树的性质

优化:

我们发现,某个节点的最后一棵子树可以不用清空统计。这貌似是一个常数优化,但当我们将最后一棵子树改成重儿子的时候,可以证明这样的时间复杂度是 $\mathcal{O}(nlogn)$ 的。

流程:

- 1. 第一次 dfsHson 得到重儿子
- 2. dfs 中, 先递归其所有轻儿子, 最后递归重儿子

```
for (auto v:G[u]) {
    if(v == fa || v == son[u]) continue;
    dfs(v, u, false);
}
if(son[u] != -1) {
    dfs(son[u], u, true);
}
```

- 3. calc 当前点 (u) 以及其所有轻儿子 (在 calc 中递归完成)
- 4. 如果当前点是其父亲的轻儿子,消除影响 (同样通过 calc 完成, calc 传入一个影响 val 可正可负)

```
1 // https://codeforces.com/problemset/problem/600/E
2 // 树的节点有颜色,我们称一种颜色占领了一个子树,
3 // 当且仅当没有其他颜色在这个子树中出现得比它多。
4 // 求占领每个子树的所有颜色之和。
```

```
#include <bits/stdc++.h>
    using namespace std;
8
    using ll = long long;
10
    int main() {
11
        ios::sync_with_stdio(false);
12
        cin.tie(nullptr);
13
        int n;
14
        cin >> n;
15
        vector<int> col(n);
16
        vector<vector<int>> G(n);
17
        for (int i = 0; i < n; i ++) {
18
             cin >> col[i];
19
20
        }
21
        for (int i = 1; i < n; i ++) {</pre>
22
            int u, v;
23
            cin >> u >> v;
24
            u--, v--;
25
            G[u].push_back(v), G[v].push_back(u);
26
27
        vector<int> sz(n), son(n, -1); // son[u] 表示 u 的重儿子
28
        function<void(int, int)> dfsHson = [&](int u, int fa) {
29
             sz[u] = 1;
30
            for (auto v : G[u]) {
31
                 if(v == fa) continue;
32
                 dfsHson(v, u);
33
                 sz[u] += sz[v];
34
                 if(son[u] == -1 \mid \mid sz[son[u]] < sz[v]) {
35
                     son[u] = v;
36
                 }
37
            }
38
        };
39
        dfsHson(0, -1);
40
41
        vector<ll> cnt(n + 1), ans(n);
42
        11 mx = \emptyset, sum = \emptyset;
43
        function<void(int, int, int, int)> calc = [&](int u, int fa, int val, int Hson) {
44
             cnt[col[u]] += val;
45
             if(cnt[col[u]] > mx) {
46
                 mx = cnt[col[u]];
47
                 sum = col[u];
48
            } else if(cnt[col[u]] == mx) {
49
                 sum += col[u];
50
51
            for (auto v:G[u]) {
52
                 if(v == fa || v == Hson) continue;
53
                 calc(v, u, val, Hson);
54
```

```
}
55
        };
56
57
        function<void(int, int, int)> dfs = [&](int u, int fa, bool isCurHSon) {
58
            for (auto v:G[u]) {
59
                 if(v == fa || v == son[u]) continue;
60
                 dfs(v, u, false);
61
            }
62
            if(son[u] != -1) {
63
                 dfs(son[u], u, true);
64
            }
65
            calc(u, fa, 1, son[u]);
66
            ans[u] = sum;
67
68
            // 如果当前点是其父节点的轻儿子,则消除其影响
69
            if(!isCurHSon) {
70
                 calc(u, fa, -1, -1);
71
                 sum = mx = 0;
72
            }
73
        };
74
        dfs(0, -1, false);
75
76
        for (int i = 0; i < n; i ++) {</pre>
77
            cout << ans[i] << " \n"[i == n - 1];</pre>
78
        }
79
        return 0;
80
   }
81
```

2.9 树链剖分

```
#include<bits/stdc++.h>
   #define pb push_back
   using namespace std;
   using ll = long long;
   const int N = 1e5 + 10;
   struct node {
    int 1, r;
    11 add, sum;
   } t[N << 2];
   int n, m, w[N], nw[N];
12
13
   vector<int> G[N];
   int dep[N], top[N], son[N], dfn[N], sz[N], fa[N], cnt;
   16
17
   void pushdown(int p) {
18
    auto &rt = t[p], &nl = t[p << 1], &nr = t[p << 1 | 1];
```

```
if(rt.add) {
20
       nl.add += rt.add, nl.sum += (11)(nl.r - nl.1 + 1) * rt.add;
21
       nr.add += rt.add, nr.sum += (11)(nr.r - nr.1 + 1) * rt.add;
22
       rt.add = 0;
23
     }
24
   }
25
26
   void pushup(int p) { t[p].sum = t[p << 1].sum + t[p << 1 | 1].sum; }
27
28
   void build(int p, int l, int r) {
29
     t[p] = \{1, r, 0, nw[1]\};
30
     if(1 == r) return;
31
32
     int mid = 1 + r >> 1;
33
     build(p << 1, 1, mid);
34
     build(p << 1 | 1, mid + 1, r);
35
     pushup(p);
36
   }
37
38
   11 query(int p, int l, int r) {
39
     if(t[p].1 >= 1 \&\& t[p].r <= r) return t[p].sum;
40
41
     pushdown(p);
42
     int mid = t[p].1 + t[p].r >> 1;
43
     11 \text{ res} = 0;
44
     if(1 \le mid) res += query(p << 1, 1, r);
45
     if(r > mid) res += query(p << 1 | 1, 1, r);
46
     //pushup(p);
47
     return res;
48
   }
49
50
   void modify(int p, int l, int r, int k) {
51
     if(t[p].1 >= 1 \&\& t[p].r <= r) {
52
       t[p].sum += (t[p].r - t[p].l + 1) * k;
53
       t[p].add += k;
54
       return;
55
     }
56
57
     pushdown(p);
58
     int mid = t[p].1 + t[p].r >> 1;
59
     if(1 <= mid) modify(p << 1, 1, r, k);</pre>
60
     if(r > mid) modify(p << 1 | 1, 1, r, k);
61
     pushup(p);
62
   }
63
64
   65
   //第一次 dfs 维护 sz, 重儿子, dep[], fa[]
66
   void dfs1(int u, int fath) {
67
     sz[u] = 1, dep[u] = dep[fath] + 1, fa[u] = fath;
```

```
for(int v:G[u]) {
69
         if(v == fath) continue;
70
         dfs1(v, u);
71
         sz[u] += sz[v];
72
         if(sz[son[u]] < sz[v]) son[u] = v;</pre>
73
       }
74
    }
75
    //第二次 dfs, 维护 dfs 序,
76
    void dfs2(int u, int tp) {
77
       dfn[u] = ++cnt, nw[cnt] = w[u], top[u] = tp;
78
       if(!son[u]) return;
79
       dfs2(son[u], tp); //递归重儿子
80
       //维护轻儿子信息
81
       for(int v:G[u]) {
82
         if(v == fa[u] || v == son[u]) continue;
83
         dfs2(v, v);
84
       }
85
    }
86
87
    void modify_path(int u, int v, int k) {
88
       while(top[u] != top[v]) {
89
         if(dep[top[u]] < dep[top[v]]) swap(u, v);</pre>
90
         modify(1, dfn[top[u]], dfn[u], k);
91
         u = fa[top[u]];
92
93
       if(dep[u] < dep[v]) swap(u, v);</pre>
94
       modify(1, dfn[v], dfn[u], k);
95
    }
96
97
    void modify_tree(int u, int k) {
98
       modify(1, dfn[u], dfn[u] + sz[u] - 1, k);
99
    }
100
101
    11 query_tree(int u) {
102
       return query(1, dfn[u], dfn[u] + sz[u] - 1);
103
    }
104
105
    11 query_path(int u, int v) {
106
       11 \text{ res} = 0;
107
       while(top[u] != top[v]) {
108
         if(dep[top[u]] < dep[top[v]]) swap(u, v);</pre>
109
         res += query(1, dfn[top[u]], dfn[u]);
110
         u = fa[top[u]];
111
       }
112
       if(dep[u] < dep[v]) swap(u, v);</pre>
113
       res += query(1, dfn[v], dfn[u]);
114
       return res;
115
    }
116
117
```

```
118
    int main() {
119
120
      scanf("%d", &n);
121
      for(int i = 1; i <= n; i ++) scanf("%d", &w[i]);</pre>
122
      for(int i = 1; i < n; i ++) {</pre>
123
        int u, v; scanf("%d%d", &u, &v);
124
        G[u].pb(v), G[v].pb(u);
125
      }
126
      dfs1(1, 0);
127
      dfs2(1, 1);
128
129
      build(1, 1, n);
130
131
      scanf("%d", &m);
132
      while(m -- ) {
133
        int op, u, v, k;
134
        scanf("%d%d", &op, &u);
135
        if(op == 1) {
136
          scanf("%d%d", &v, &k);
137
          modify_path(u, v, k);
138
        }
139
        else if(op == 2) {
140
          scanf("%d", &k);
141
          modify_tree(u, k);
142
        }
143
        else if(op == 3) {
144
          scanf("%d", &v);
145
          printf("%lld\n", query_path(u, v));
146
        }
147
        else
148
          printf("%lld\n", query_tree(u));
149
      }
150
      return 0;
151
    }
152
          珂朵莉
    2.10
 1 // 珂朵莉树
    // 区间赋值 且数据随机(或者操作种类有限)时使用
    struct ODT {
        const int n;
        map<int, int> mp;
        ODT(int n) : n(n) \{ mp[-1] = 0; // mp[0] = 0, mp[n] = -1; \}
        void split(int x) {
            auto it = prev(mp.upper_bound(x)); //找到左端点小于等于 x 的区间
            mp[x] = it->second; //设立新的区间,并将上一个区间储存的值复制给本区间。
10
```

void assign(int l, int r, int v) { // 注意, 这里的 r 是区间右端点 +1

11

```
split(1);
12
            split(r);
13
            auto it = mp.find(1);
14
            while (it->first != r) {
15
                // 一般在此数可以同时完成相关的更新操作
16
                // 若重写一个 update 或者 query
17
                // 与 assign 一致, 就是把下一行换成 it = next(it);
18
                it = mp.erase(it);
19
            }
20
            mp[1] = v;
21
       }
22
   };
23
   2.11 CDQ 分治
   // 三维偏序模板
   #include <bits/stdc++.h>
   using namespace std;
   struct Node {
        int x, y, z, cnt, ans; // cnt: 坐标都为 {x, y, z} 的点数量
       bool operator<(const Node&rhs) const {</pre>
            if(x != rhs.x) return x < rhs.x;</pre>
            if(y != rhs.y) return y < rhs.y;</pre>
10
            return z < rhs.z;</pre>
12
       }
   };
13
   struct fenwick {
       const int n;
        vector<int> c;
17
       fenwick(int n) : n(n), c(n + 1) {}
       void add(int pos, int val) {
            for (int i = pos; i <= n; i+= i & -i) {</pre>
                c[i] += val;
21
22
            }
        int sum(int pos) {
24
            int res{0};
            for (int i = pos; i; i -= i & -i) {
                res += c[i];
27
28
            return res;
       }
   };
31
32
   int main() {
33
```

ios::sync_with_stdio(false);

```
cin.tie(nullptr);
35
        int n, k;
36
        cin >> n >> k;
37
        map<array<int, 3>, int> s;
38
        fenwick fen(k);
39
        for (int i = 0; i < n; i ++) {
40
            int x, y, z;
41
            cin >> x >> y >> z;
42
            s[{x, y, z}]++;
43
        }
44
        vector<Node> node(s.size());
45
        int m = 0;
46
        for (auto it = s.begin(); it != s.end(); ++it) {
47
            auto [x, y, z] = it->first;
48
            auto cnt = it->second;
49
            node[m++] = \{x, y, z, cnt, \emptyset\};
50
51
        assert(m == (int)s.size());
52
        sort(node.begin(), node.end());
53
        // for (int i = 0; i < m; i ++) {
54
               auto [x, y, z, cnt, _] = node[i];
55
               cout << "x = " << x << ' ' << y << ' ' << z << ' ' << cnt << '\n';
        //
56
        // }
57
58
        auto cmp2nd = [&](const Node &lhs, const Node &rhs) -> bool {
59
            if(lhs.y != rhs.y) return lhs.y < rhs.y;</pre>
60
            return lhs.z < rhs.z;</pre>
61
        };
62
63
        function<void(int, int)> cdq = [&](int 1, int r) {
64
            if(r - 1 == 1) {
65
                return;
66
            }
67
            int m = (1 + r) / 2;
            cdq(1, m); cdq(m, r);
69
            sort(node.begin() + 1, node.begin() + m, cmp2nd);
70
            sort(node.begin() + m, node.begin() + r, cmp2nd);
71
72
            int j = 1;
73
            for (int i = m; i < r; i ++) {
74
                while(j < m && node[i].y >= node[j].y) {
75
                    // 当涉及修改操作和查询操作时候
76
                    // 一般 Node 内会有一个标识
77
                    // 修改操作: if(node[j].type == 0) {
78
                    //
                          fen.add(node[j].z, node[j].cnt)
79
                    //}
80
                    // 统计答案时也只需要对查询操作统计
81
                    // 清空树状数组也是对修改操作
82
                    fen.add(node[j].z, node[j].cnt);
83
```

```
j++;
84
                  }
85
                  node[i].ans += fen.sum(node[i].z);
86
              }
87
              // 注意不能清空整个树状数组
88
              for (int t = 1; t < j; t ++) {</pre>
89
                  fen.add(node[t].z, -node[t].cnt);
90
              }
91
         };
92
         cdq(0, m);
93
94
         vector<int> res(n);
95
         for (int i = 0; i < m; i ++) {</pre>
96
              res[node[i].ans + node[i].cnt - 1] += node[i].cnt;
97
98
         }
         for (int i = 0; i < n; i ++) {</pre>
99
              cout << res[i] << '\n';</pre>
100
         }
101
102
         return 0;
103
    }
104
```

2.12 莫队

普通莫队:

```
#include <bits/stdc++.h>
   #define endl '\n'
   #define rep(i, a, b) for (int i = (a); i <= (b); i ++)
   using namespace std;
   const int N = 5e4 + 10, M = 2e5 + 10, S = 1e6 + 10; //值域
   int n, A[N], ans[M], cnt[S], m, sq, cur;
   struct query {
10
        int l, r, id;
11
        bool operator<(const query &rhs) const { //奇偶化排序
12
            if (1 / sq != rhs.1 / sq)
13
                return 1 < rhs.1;</pre>
14
            if (1 / sq & 1)
15
                return r < rhs.r;</pre>
16
            return r > rhs.r;
17
18
   } q[M];
19
20
   void add(int p) {
21
        if(cnt[A[p]] == 0) cur++;
22
        cnt[A[p]]++;
23
   }
24
```

```
25
    void del(int p) {
26
        cnt[A[p]]--;
27
        if(cnt[A[p]] == 0) cur--;
28
   }
29
30
    int main() {
31
        ios::sync_with_stdio(false);
32
        cin.tie(nullptr);
33
34
        cin >> n;
35
        sq = sqrt(n);
36
        rep(i, 1, n) cin >> A[i];
37
        cin >> m;
38
        rep(i, 1, m) {
39
            int 1, r;
40
            cin >> 1 >> r;
41
            q[i] = \{1, r, i\};
42
43
        sort(q + 1, q + 1 + m);
44
45
        int 1 = 1, r = 0;
46
        rep(i, 1, m) {
47
            while(1 > q[i].1) add(--1);
48
            while(r < q[i].r) add(++r);</pre>
49
            while(1 < q[i].1) del(1++);
50
            while(r > q[i].r) del(r--);
51
            ans[q[i].id] = cur;
52
53
        rep(i, 1, m) cout << ans[i] << endl;</pre>
54
55
        return 0;
56
   }
57
        带修莫队:
   #include <bits/stdc++.h>
    #define endl '\n'
    #define rep(i, a, b) for (int i = (a); i <= (b); i ++)
    using namespace std;
   const int N = 134000, S = 1e6 + 10; //值域
   int n, m, mq, mc, len, cur;
8
   int w[N], cnt[S], ans[N];
    struct Query {
10
        int id, l, r, tim;
11
   }q[N];
12
   struct Modify {
13
        int pos, val;
14
   } c[N];
15
```

```
16
    int get(int x) {
17
        return x / len;
18
   }
19
20
    bool cmp(const Query& a, const Query& b) {
21
        int al = get(a.l), ar = get(a.r);
22
        int bl = get(b.l), br = get(b.r);
23
        if (al != bl) return al < bl;</pre>
24
        if (ar != br) return ar < br;</pre>
25
        return a.tim < b.tim;</pre>
26
   }
27
28
    void add(int val) {
29
        if(cnt[val] == 0) cur++;
30
        cnt[val]++;
31
   }
32
33
    void del(int val) {
34
        cnt[val]--;
35
        if(cnt[val] == 0) cur--;
36
   }
37
    int main() {
38
        ios::sync_with_stdio(false);
39
        cin.tie(nullptr);
40
        cin >> n >> m;
41
        rep(i, 1, n) cin >> w[i];
42
43
        rep (i, 1, m) {
44
             char op[2];
45
             int a, b;
46
             cin >> op >> a >> b;
47
             if (*op == 'Q') mq ++, q[mq] = \{mq, a, b, mc\};
48
             else c[ ++ mc] = {a, b};
49
        }
50
51
        len = cbrt((double)n * max(1 , mc)) + 1;
52
        sort(q + 1, q + mq + 1, cmp);
53
54
        int 1 = 1, r = 0, t = 0;
55
        rep(i, 1, mq) {
56
             auto [id, ql, qr, qt] = q[i];
57
             while (1 < q1) del(w[1++]);</pre>
58
             while (1 > q1) add(w[--1]);
59
             while (r < qr) add(w[++r]);</pre>
60
             while (r > qr) del(w[r--]);
61
             while (t < qt) {
62
                 t ++ ;
63
                 if (ql <= c[t].pos && qr >= c[t].pos) {
64
```

```
del(w[c[t].pos]);
65
                     add(c[t].val);
66
                 }
67
                 swap(w[c[t].pos], c[t].val);
68
            }
69
            while (t > qt) {
70
                 if (q1 <= c[t].pos && qr >= c[t].pos) {
71
                     del(w[c[t].pos]);
72
                     add(c[t].val);
73
                 }
74
                 swap(w[c[t].pos], c[t].val);
75
                 t--;
76
            }
77
            ans[id] = cur;
78
79
        }
80
        rep(i, 1, mq) printf("%d\n", ans[i]);
81
        return 0;
82
   }
83
```

3 图论

3.1 spfa

```
#include <bits/stdc++.h>
   #define pb push_back
   using namespace std;
   const int N = 1e5 + 10, inf = 0x3f3f3f3f;
   struct node{int v, w;};
   vector<node> G[N];
   int dis[N], n, m;
   bool inq[N];
   void spfa() {
        memset(dis, 0x3f, sizeof dis);
12
        dis[1] = 0;
        inq[1] = 1;
        queue<int> q;
15
        q.push(1);
16
        while(q.size()) {
17
            int u = q.front(); q.pop();
            inq[u] = 0;
19
            for(auto [v, w]:G[u]) {
20
                if(dis[v] > w + dis[u]) {
21
                    dis[v] = dis[u] + w;
22
                    if(!inq[v])
23
                         q.push(v), inq[v] = true;
24
                }
25
```

```
}
26
         }
27
    }
28
29
    int main() {
30
         cin >> n >> m;
31
         while(m -- ) {
32
             int u, v, w;
33
             cin >> u >> v >> w;
34
             G[u].pb({v, w});
35
         }
36
         spfa();
37
         if(dis[n] == inf)
                                  cout << "impossible";</pre>
38
         else
                       cout << dis[n];</pre>
39
         return 0;
40
    }
41
```

3.2 dijkstra

稀疏图 dijkstra:

```
//acwing 849
   #include <bits/stdc++.h>
    using namespace std;
    const int N = 510, inf = 0x3f3f3f3f;
    int dis[N], G[N][N], n, m;
   bool vis[N];
    void dij() {
        memset(dis, 0x3f, sizeof dis);
9
        dis[1] = 0;
10
        for (int j = 0; j < n; j ++) {</pre>
11
            int minv = inf, pos = -1;
12
            for(int i = 1; i <= n; i ++)</pre>
13
                 if (!vis[i] && minv > dis[i])
14
                     minv = dis[i], pos = i;
15
16
            if(pos == -1) break;
17
            vis[pos] = 1;
18
            for (int i = 1; i <= n; i ++)</pre>
19
                 if(!vis[i] && dis[pos] + G[pos][i] < dis[i])</pre>
20
                     dis[i] = dis[pos] + G[pos][i];
21
        }
22
   }
23
24
   int main() {
25
        cin >> n >> m;
26
        scanf("%d %d", &n, &m);
27
        memset(G, 0x3f, sizeof(G));
28
        while(m --) {
29
```

```
int u, v, w; scanf("%d %d %d", &u, &v, &w);
30
            G[u][v] = min(G[u][v], w);
31
        }
32
33
        dij();
34
35
        cout << (dis[n] == inf ? -1 : dis[n]);</pre>
36
        return 0;
37
   }
38
        稠密图 dijkstra:
   #include <bits/stdc++.h>
   #define pb push_back
   #define fi first
   #define se second
   using namespace std;
   using P = pair<int, int>;
   const int N = 151000, inf = 0x3f3f3f3f3;
   struct node{int v, w;};
   vector<node> G[N];
10
   int dis[N], n, m;
11
   bool vis[N];
12
13
   void dij() {
14
        memset(dis, 0x3f, sizeof dis);
15
        priority_queue<P, vector<P>, greater<P>> q;
16
        q.push({0, 1});
17
        while(q.size()) {
18
            auto t = q.top(); q.pop();
19
            int u = t.se, d = t.fi;
20
            if(vis[u]) continue;
21
            vis[u] = true;
22
            for(auto [v, w] : G[u]) {
23
                 if(dis[v] > d + w) {
24
                     dis[v] = d + w;
25
                     q.push({dis[v], v});
26
                 }
27
28
            }
        }
29
   }
30
31
   int main() {
32
        ios::sync_with_stdio(false);
33
        cin >> n >> m;
34
        while(m -- ) {
35
            int u, v, w; cin >> u >> v >> w;
36
            G[u].pb({v, w});
37
        }
38
        dij();
39
```

```
cout << (dis[n] == inf ? -1 : dis[n]);</pre>
40
        return 0;
41
   }
42
          最小生成树
   3.3
   // kruskal
   using ll = long long;
   struct Edge {
        int u, v, w;
        bool operator<(const edge &rhs) const { return w < rhs.w; }</pre>
   };
   struct DSU {
        int n;
        vector<int> f;
        DSU(int n): n(n), f(n) { iota(f.begin(), f.end(), 0); }
        int find(int x) { return x == f[x] ? x : f[x] = find(f[x]); }
        bool merge(int u, int v) {
            u = find(u), v = find(v);
            if(u == v) return false;
15
            f[v] = u;
            return true;
17
        }
18
   };
19
   int kruskal() {
21
        cin >> n >> m;
22
        11 \text{ ans} = 0;
23
        vector<Edge> edge(m);
        for (int i = 0; i < m; i ++) {</pre>
            int u, v, w;
26
            cin >> u >> v >> w;
27
            u--, v--;
            edge[i] = {u, v, w};
        sort(edge.begin(), edge.end());
31
        DSU dsu(n);
32
        for (auto [u, v, w]: edge) {
33
            if(dsu.merge(u, v)) {
                 ans += w;
36
37
        return ans;
38
   }
39
40
```

//prim

const int N = 510, inf = 0x3f3f3f3f;

```
int G[N][N], dis[N];
44
   int n, m;
45
   bool vis[N];
46
47
    int prim() {
48
        int res = 0;
49
        memset(dis, 0x3f, sizeof dis);
50
        dis[1] = 0; //随便选一点进入 mst 集合
51
        for(int j = 0; j < n; j ++) {</pre>
52
             int minv = inf, pos = -1;
53
             for(int i = 1; i <= n; i ++)</pre>
54
                 if(!vis[i] && dis[i] < minv)</pre>
55
                      pos = i, minv = dis[i];
56
57
             if(pos == -1) return inf;
58
             vis[pos] = true;
59
             res += dis[pos];
60
61
             for(int i = 1; i <= n; i ++)</pre>
62
                 if(!vis[i] && dis[i] > G[pos][i])
63
                      dis[i] = G[pos][i];
64
65
        return res;
66
   }
67
```

另外,对于完全图的 MST 问题,可以考虑使用 Boruvka 算法。我们要在 nlogn 或 $nlog^2n$ 时间内求出每个连通块最小的连接的边,而这个边权一般可通过点权以一定方式求出。通常不用直接写出,运用该思想求解。

3.4 kruskal 重构树

```
//kruskal 重构树
  //性质:
   //两个点之间的所有简单路径上最大边权的最小值
  // = 最小生成树上两个点之间的简单路径上的最大值
   // = Kruskal 重构树上两点之间的 LCA 的权值。
  //Loj136
   #include <bits/stdc++.h>
   #define pb push_back
   using namespace std;
10
11
   const int N = 1010 << 1, M = 3e5 + 10;
12
   int n, m, k, val[N];// kruskal 重构树的点权
13
   int idx; //重构树的节点数
14
15
   struct Edge{
16
       int u, v, w;
17
      bool operator<(const Edge &rhs) const { return w < rhs.w; }</pre>
18
   }edges[M];
19
```

```
20
    vector<int> G[N];
21
22
    int p[N];
23
    int find(int x) { return x == p[x] ? x : p[x] = find(p[x]); }
24
25
    int dep[N], fa[N][21];
26
27
    void bfs(int s) {
28
        dep[0] = 0, dep[s] = 1;
29
        queue<int> q;
30
        q.push(s);
31
        while(q.size()) {
32
            int u = q.front(); q.pop();
33
            for(int v:G[u]) {
34
                 if(dep[v] > dep[u] + 1) {
35
                     dep[v] = dep[u] + 1;
36
                     q.push(v);
37
                     fa[v][0] = u;
38
                     for (int i = 1; i <= 20; i ++)
39
                          fa[v][i] = fa[fa[v][i - 1]][i - 1];
40
                 }
41
            }
42
        }
43
   }
44
45
    int lca(int a, int b) {
46
        if(dep[a] < dep[b]) swap(a, b);</pre>
47
        for (int k = 20; k >= 0; k --)
48
            if(dep[fa[a][k]] >= dep[b])
49
                 a = fa[a][k];
50
        if(a == b) return a;
51
        for (int k = 20; k >= 0; k --)
52
            if(fa[a][k] != fa[b][k])
53
                 a = fa[a][k], b = fa[b][k];
54
        return fa[a][0];
55
   }
56
57
    void build() {
58
        idx = n;
59
        int cnt = 0;
60
        for (int i = 1; i <= m; i ++) {
61
            int u = edges[i].u, v = edges[i].v, w = edges[i].w;
62
            int fu = find(u), fv = find(v);
63
            if(fu != fv) {
64
                 val[++idx] = w;
65
                 G[idx].pb(fu), G[idx].pb(fv);
66
                 G[fu].pb(idx), G[fv].pb(idx);
67
                 p[fu] = p[fv] = idx;
68
```

```
cnt++;
69
            }
70
            if(cnt >= n - 1) break;
71
        }
72
   }
73
74
   int main() {
75
        scanf("%d %d %d", &n, &m, &k);
76
        for (int i = 1; i <= m; i ++) {</pre>
77
            int u, v, w; scanf("%d %d %d", &u, &v, &w);
78
            edges[i] = \{u, v, w\};
79
        }
80
        sort(edges + 1, edges + m + 1);
81
        for (int i = 1; i <= (n << 1); i ++) p[i] = i;
82
83
        build(); // kruskal 重构树
84
85
        memset(dep, 0x3f, sizeof dep);
86
        bfs(idx); //bfs 的根节点一定要是重构树的最高点
87
88
        while(k -- ) {
89
            int s, t;
90
            scanf("%d %d", &s, &t);
91
            if(find(s) != find(t))
                                        puts("-1");
92
            else
93
                printf("%d\n", val[lca(s, t)]);
94
95
        return 0;
96
   }
97
```

3.5 二分图匹配

- 二分图匹配的模型有两个要素:
- 1. 节点能分成独立的两个集合,每个集合内部有 0 条边
- 2. 每个节点只能与 1 条匹配边相连
- 二分图最小覆盖模型特点是: 每条边有 2 个端点, 二者至少选择一个。

könig 定理: 二分图最小点覆盖包含的点数等于二分图最大匹配数包含的边数。

图的最大独立集: 点集 S 中任意两点之间都没有边相连。其大小等于 n- 最大匹配数。(n 是二分图总点数)

```
    /* 染色法判断二分图
    bool vis[N];
    int col[N], flag = 1, n, m;
    void dfs(int u, int t) {
    if (vis[u]) {
    if (col[u] != t) flag = 0;
    return;
```

```
8
        vis[u] = 1; col[u] = t;
9
        for (int v : g[u]) {
10
            dfs(v, t ^ 1);
11
12
   }
13
    bool isbit() {//是否为二分图
14
        for (int u = 1; u <= n; u++) {
15
            if (!vis[u]) dfs(u, 0);
16
17
        return flag;
18
   }
19
20
   int G[N][M]; // 左半部 n, 右半部 m
21
    int n, m, p[M], vis[M];
22
    bool match(int u) {
23
        for (int i = 1; i <= m; i ++) {</pre>
24
            if(G[u][i] && !vis[i]) {
25
                 vis[i] = true;
26
                 if(p[i] == 0 \mid \mid match(p[i])) \{
27
                     p[i] = u; return true;
28
                 }
29
            }
30
        }
31
        return false;
32
   }
33
    int main() {
34
        /* 建图 */
35
        int res = 0;
36
        for (int i = 1; i <= n; i ++) {
37
            memset(vis, 0, sizeof vis);
38
            if(match(i)) res++;
39
40
        return 0;
41
   }
42
```

3.6 强连通分量缩点

时间复杂度 O(m+n),反向枚举 scc_cnt 即是新图拓扑序。

```
#include<bits/stdc++.h>
#define pb push_back
using namespace std;

const int N = 1e4 + 10;
vector<int> G[N], G2[N];
stack<int> s;
int n, m, tim, scc_cnt;
int w[N], dfn[N], low[N], id[N];
int dist[N], ind[N], W[N];
```

```
bool ins[N];
11
12
    void tarjan(int u) {
13
        low[u] = dfn[u] = ++tim;
14
        s.push(u); ins[u] = true;
15
        for(int v:G[u]) {
16
            if(!dfn[v]) {
17
                 tarjan(v);
18
                 low[u] = min(low[v], low[u]);
19
            }
20
            else if(ins[v])
21
                 low[u] = min(low[u], dfn[v]);
22
23
        if(low[u] == dfn[u]) {
24
            int y; ++scc_cnt;
25
            do {
26
                 y = s.top(); s.pop();
27
                 ins[y] = false;
28
                 id[y] = scc_cnt;
29
                 W[scc\_cnt] += w[y];
30
            } while (y != u);
31
        }
32
   }
33
34
    int sol() {
35
        queue<int> q;
36
        for (int i = 1; i <= scc_cnt; i++)</pre>
37
            if(!ind[i]) {
38
                 q.push(i);
39
                 dist[i] = W[i];
40
            }
41
42
        while(q.size()) {
43
            //cout << "cnt = " << ++cnt << endl;
44
            int u = q.front(); q.pop();
45
            for (int v:G2[u]) {
46
47
                 \rightarrow //当有重边时, dist[v] 被更新的值始终不变,即 dist[v] = dist[u] + W[v];所以不会影响
                 dist[v] = max(dist[v], dist[u] + W[v]);
48
                 if(--ind[v] == 0)
49
                     q.push(v);
50
            }
51
        }
52
53
        int ans = 0;
54
        for (int i = 1; i <= scc_cnt; i++)</pre>
55
            ans = max(ans, dist[i]);
56
        return ans;
57
   }
58
```

```
59
60
    int main() {
61
        ios::sync_with_stdio(false), cin.tie(0);
62
        cin >> n >> m;
63
        for (int i = 1; i <= n; i ++)
                                            cin >> w[i];
64
        while(m--) {
65
            int u, v;
66
            cin >> u >> v;
67
            G[u].pb(v);
68
69
        for (int i = 1; i <= n; i ++)
70
            if(!dfn[i])
71
                 tarjan(i);
72
        //缩点
73
        for (int u = 1; u <= n; ++u) {
74
            for(int v : G[u]) {
75
                 if(id[v] != id[u]) {
76
                     G2[id[u]].pb(id[v]);
77
                     ind[id[v]]++;
78
                     //printf("ind[%d] = %d\n",id[v], ind[id[v]]);
79
                 }
80
            }
81
        }
82
        // debug
83
        // for (int i = 1; i <= scc_cnt; i++)
84
               printf("ind[%d] = %d\n",i, ind[i]);
85
        // for (int i = 1; i <= scc_cnt; i++)
86
        // {
87
88
        //
               printf("%d->", i);
89
               for (int v:G2[i])
        //
90
        //
                    printf("%d ", v);
91
        //
               puts("");
92
        // }
93
        printf("%d\n", sol());
94
        return 0;
95
   }
96
```

3.7 无向图的双连通分量

桥:

```
1 // 一个有桥的连通图,如何把它通过加边变成边双连通图?
2 // 1. 求出所有的桥,然后删除这些桥边,剩下的每个连通块都是一个双连通子图。
3 // 把每个双连通子图收缩为一个顶点 ,再把桥边加回来,最后的这图一定是一棵树,边连通度为 1。
4 // 2 统计出树中度为 1 的节点的个数,即为叶节点的个数,记为 cnt。
5 // 3. 则至少在树上添加 (cnt+1)/2 条边,就能 使树达到边二连通,所以至少添加的边数就是 (cnt+1)/2。
6 #include <bits/stdc++.h>
7 #define pb push_back
```

```
using namespace std;
    const int N = 5010;
   int n, m;
10
   vector<int> G[N];
11
    int low[N], dfn[N], id[N], deg[N];
12
    int dcc_cnt, tim, stk[N], top;
13
    vector<int> bridge[N];
14
15
    void tarjan(int u, int fa) {
16
        low[u] = dfn[u] = ++tim;
17
        stk[++top] = u;
18
19
        for (int i = 0; i < G[u].size(); i++) {</pre>
20
             int v = G[u][i];
21
             if(!dfn[v]) {
22
                 tarjan(v, u);
23
                 low[u] = min(low[v], low[u]);
24
                 if(dfn[u] < low[v])</pre>
25
                      bridge[u].pb(v), bridge[v].pb(u);
26
             }
27
             else if(fa != v)
28
                 low[u] = min(low[u], dfn[v]);
29
30
        if (dfn[u] == low[u]) {
31
             int y;
32
             ++dcc_cnt;
33
             do {
34
                 y = stk[top--];
35
                 id[y] = dcc_cnt;
36
             } while (u != y);
37
        }
38
   }
39
40
    int main() {
41
        ios::sync_with_stdio(false), cin.tie(0);
42
        cin >> n >> m;
43
        while(m -- ) {
44
             int u, v;
45
             cin >> u >> v;
46
             G[u].pb(v), G[v].pb(u);
47
48
        tarjan(1, -1);
49
        for (int u = 1; u <= n; u++)</pre>
50
             deg[id[u]] += bridge[u].size();
51
        int cnt = 0;
52
        for (int i = 1; i <= dcc_cnt; i ++)</pre>
53
             if(deg[i] == 1)
54
                 cnt++;
55
        cout << (cnt + 1) / 2;
56
```

```
return 0;
57
   }
58
        割点:
    #include<bits/stdc++.h>
    #define pb push_back
    using namespace std;
    const int N = 2e4 + 10;
    vector<int> G[N], cut;
   int tim, n, m, root;
    int dfn[N], low[N];
    void tarjan(int u) {
9
        low[u] = dfn[u] = ++tim;
10
        int tot = 0;
11
        for(int v:G[u]) {
12
            if(!dfn[v]) {
13
                 tarjan(v);
14
                 low[u] = min(low[u], low[v]);
15
                 if (dfn[u] <= low[v])</pre>
16
                     tot++;
17
            }
18
            else
19
                 low[u] = min(low[u], dfn[v]);
20
21
        if ( (tot > 0 && u != root) | | (tot > 1 && u == root))
22
            cut.pb(u);
23
24
   }
25
26
   int main() {
27
        cin >> n >> m;
28
        while(m --) {
29
            int u, v;
30
            cin >> u >> v;
31
            G[u].pb(v), G[v].pb(u);
32
        }
33
34
        for (root = 1; root <= n; root ++)</pre>
35
            if(!dfn[root])
36
                 tarjan(root);
37
38
        //不用 sort, 就开一个 bool cut[N];
39
        sort(cut.begin(), cut.end());
40
        printf("%d\n", cut.size());
41
        for(int v : cut)
42
            printf("%d ", v);
43
44
        return 0;
45
   }
46
```

3.8 lca

```
1
   求 Lca: 1. 倍增 2. 树剖 3.tarjan 离线
   1. 树上两点之间的距离 (多维护一个 dist 数组, dis[u] + dis[v] - 2 * dis[Lca(u, v)])
   2. 树上两条路径是否相交 (如果两条路径相交,那么一定有一条路径的 LCA 在另一条路径上)
   #include <bits/stdc++.h>
   #define pb push_back
   using namespace std;
   const int N = 1e4 + 10;
10
11
   struct node{int v, w;};
12
   vector<node> G[N];
13
   int fa[N][19], dep[N], dis[N];
14
   int n, m;
15
16
   void bfs(int s) {
17
        memset(dep, 0x3f, sizeof dep);
18
        dep[0] = 0, dep[s] = 1;
19
       dis[s] = 0;
20
       queue<int> q; q.push(s);
21
       while(q.size()) {
22
            int u = q.front(); q.pop();
23
           for(auto [v, w] : G[u]) {
24
                if(dep[v] > dep[u] + 1) {
25
                    dis[v] = dis[u] + w;
26
                    dep[v] = dep[u] + 1;
27
                    fa[v][0] = u;
28
                    q.push(v);
29
                    for(int i = 1; i < 19; ++i)</pre>
30
                        fa[v][i] = fa[fa[v][i - 1]][i - 1];
31
                }
32
           }
33
       }
34
   }
35
36
   int lca(int a, int b) {
37
        if(dep[a] < dep[b]) swap(a, b);</pre>
38
        for(int k = 18; k >= 0; k--)
39
           if(dep[fa[a][k]] >= dep[b])
40
                a = fa[a][k];
41
        if(a == b) return a;
42
43
        for(int k = 18; k >= 0; --k)
44
            if(fa[a][k] != fa[b][k])
45
                a = fa[a][k], b = fa[b][k];
46
       return fa[a][0];
47
   }
48
```

3.9 2-SAT

```
#include <bits/stdc++.h>
   using namespace std;
   // O(n + m)
   struct TwoSat {
        int n;
        vector<vector<int>> e;
6
        vector<bool> ans;
        TwoSat(int n) : n(n), e(2 * n), ans(n) {}
        void addClause(int u, bool f, int v, bool g) {
            e[2 * u + !f].push_back(2 * v + g);
10
            e[2 * v + !g].push_back(2 * u + f);
11
        }
12
        bool satisfiable() {
13
            vector<int> id(2 * n, -1), dfn(2 * n, -1), low(2 * n, -1);
14
            vector<int> stk;
15
            int now = 0, cnt = 0;
16
            function<void(int)> tarjan = [&](int u) {
17
                 stk.push_back(u);
18
                 dfn[u] = low[u] = now++;
19
                 for (auto v : e[u]) {
20
                     if (dfn[v] == -1) {
21
                         tarjan(v);
22
                         low[u] = min(low[u], low[v]);
23
                     } else if (id[v] == -1) {
24
                         low[u] = min(low[u], dfn[v]);
25
                     }
26
27
                 if (dfn[u] == low[u]) {
28
                     int v;
29
                     do {
30
                         v = stk.back();
31
                         stk.pop_back();
32
                         id[v] = cnt;
33
                     } while (v != u);
34
                     ++cnt;
35
                }
36
            };
37
            for (int i = 0; i < 2 * n; ++i) if (dfn[i] == -1) tarjan(i);</pre>
38
            for (int i = 0; i < n; ++i) {
39
                 if (id[2 * i] == id[2 * i + 1]) return false;
40
                ans[i] = id[2 * i] > id[2 * i + 1];
41
            }
42
            return true;
43
44
        vector<bool> answer() { return ans; }
45
   };
46
47
   int main() {
48
```

```
ios::sync_with_stdio(false);
49
        cin.tie(nullptr);
50
        int n, m;
51
        cin >> n >> m;
52
        TwoSat ts(n);
53
        for (int i = 0; i < m; i ++) {
54
             int u, f, v, g;
55
             cin >> u >> f >> v >> g;
56
             u--, v--;
57
             ts.addClause(u, f, v, g);
58
59
        if(ts.satisfiable()) {
60
             cout << "POSSIBLE" << '\n';</pre>
61
             for (int i = 0; i < n; i ++) {
62
                  cout << ts.ans[i] << " \n"[i == n - 1];</pre>
63
             }
64
        } else {
65
             cout << "IMPOSSIBLE" << '\n';</pre>
66
67
        }
68
        return 0;
69
    }
70
```

3.10 基环树

基环树的性质:点数等于边数;度数是点数两倍。一般题目中出现"从一个点到另一个点建一条边","N 个点通过恰好 N 条双向道路连接起来,不存在任何两条道路连接了相同的两个点"等类似信息可以判定该图是基环树森林。以下是求基环树 (森林) 直径 (和) 代码

```
1 //基环树森林求直径和最大
  #include <bits/stdc++.h>
 #define endl '\n'
  #define pb push_back
  using ll = long long;
   using namespace std;
   const int N = 1e6 + 10, M = N << 1;
   int h[N], e[M], w[M], ne[M], idx;
   11 s[N], sum[M], d[M]; //环上的前缀和数组, 破环成链后两倍的前缀和
   bool ins[N], vis[N];
10
   int n, cir[M], ed[M], cnt; //cnt 环的个数
11
   int fa[N], fw[N]; //父节点, 反向权值
12
   int q[M];
13
   ll ans;
14
15
   void add(int a, int b, int c) {
16
       e[idx] = b, ne[idx] = h[a], w[idx] = c, h[a] = idx++;
17
   }
18
19
   //深搜 + 栈 找环
20
   void dfs(int u, int from) {
```

```
vis[u] = ins[u] = true;
22
        for (int i = h[u]; ~i; i = ne[i]) {
23
            //如果是反向边则跳过,必须用边来判断,这样才能确定是通过反向变回到父节点
24
            if (i == (from ^ 1)) continue;
25
            int v = e[i];
26
            fa[v] = u, fw[v] = w[i];
27
            if (!vis[v]) dfs(v, i);
28
            else if(ins[v]) {
29
                cnt++;
30
                ed[cnt] = ed[cnt - 1];
31
                ll tot = w[i];
32
                for (int k = u; k != v; k = fa[k]) {
33
                    s[k] = tot;
34
                    tot += fw[k];
35
                    cir[++ ed[cnt]] = k;
36
37
                s[v] = tot, cir[++ ed[cnt]] = v;
38
            }
39
40
        ins[u] = false;
41
   }
42
43
   // 求以 u 为根节点的子树的最大深度
44
   11 dfs_d(int u) {
45
        vis[u] = true;
46
        11 d0 = 0, d1 = 0; //最大距离,次大距离
47
        for (int i = h[u]; ~i; i = ne[i]) {
48
            int v = e[i];
49
            if (vis[v]) continue;
50
            ll d = dfs_d(v) + w[i];
51
            if (d >= d0) d1 = d0, d0 = d;
52
            else if (d > d1) d1 = d;
53
54
        ans = max(ans, d1 + d0);
55
        return d0;
56
   }
57
58
   int main() {
59
        ios::sync_with_stdio(false), cin.tie(0);
60
        cin >> n;
61
        memset(h, -1, sizeof h);
62
        for (int u = 1; u <= n; u ++) {</pre>
63
            int v; ll w; cin >> v >> w;
64
            add(u, v, w), add(v, u, w);
65
        }
66
67
        for (int i = 1; i <= n; i ++)</pre>
68
            if(!vis[i])
69
                dfs(i, -1);
70
```

```
71
        memset(vis, 0, sizeof vis);
72
        for (int i = 1; i <= n; i ++) vis[cir[i]] = 1; //标记环上所有点
73
74
        11 \text{ res} = 0;
75
        for (int i = 1; i <= cnt; i ++) {</pre>
76
            ans = 0; // 当前基环树的直径
77
            int sz = 0; // 当前基环树的环的大小
78
            for (int j = ed[i - 1] + 1; j <= ed[i]; j ++) {</pre>
79
                 int k = cir[j];
ลด
                 d[sz] = dfs_d(k); // 求以当前点为根的子树的最大深度
81
                 sum[sz] = s[k];
82
                 sz++;
83
            }
84
            // 破环成链, 前缀和数组和 d[] 数组延长一倍
85
            for (int j = 0; j < sz; j ++)</pre>
86
                 d[sz + j] = d[j], sum[sz + j] = sum[j] + sum[sz - 1];
87
88
            // 做一遍滑动窗口, 比较依据是 d[k] - sum[k]
89
            int hh = 0, tt = -1;
90
            for (int j = 0; j < sz * 2; j++) {
91
                 while (hh <= tt \&\& q[hh] <= j - sz) hh++;
92
                 if (hh \leftarrow tt) ans = max(ans, d[j] + sum[j] + d[q[hh]] - sum[q[hh]]);
93
                while (hh <= tt && d[j] - sum[j] >= d[q[tt]] - sum[q[tt]]) tt--;
94
                 q[ ++ tt] = j;
95
            }
            res += ans;
97
98
        cout << res << endl;</pre>
99
        return 0;
100
    }
101
    3.11 树哈希
    #include <bits/stdc++.h>
    using ull = unsigned long long;
    const ull mask = std::chrono::steady_clock::now().time_since_epoch().count();
    ull shift(ull x) {
        x ^= mask;
        x ^= x << 13;
        x ^= x >> 7;
        x ^= x << 17;
10
        x ^= mask;
11
        return x;
12
13
    }
14
```

int main() {

```
std::ios::sync_with_stdio(false);
16
        std::cin.tie(nullptr);
17
18
        int n;
19
        std::cin >> n;
20
        auto G = std::vector<std::vector<int>>>(n);
21
        for (int i = 1; i < n; i ++) {
22
            int u, v;
23
            std::cin >> u >> v;
24
            u--, v--;
25
            G[u].push_back(v);
26
            G[v].push_back(u);
27
        }
28
29
        std::vector<ull> hash_vals(n);
30
        std::unordered_set<ull> trees;
31
        std::function<void(int, int)> dfs = [&](int u, int fa) {
32
            hash_vals[u] = 1;
33
            for (const auto v: G[u]) {
34
                if(v == fa) continue;
35
                dfs(v, u);
36
                hash_vals[u] += shift(hash_vals[v]);
37
            }
38
            trees.insert(hash_vals[u]);
39
        };
40
41
        dfs(0, -1);
42
        // 求有根树下不同构的子树
43
        std::cout << trees.size() << '\n';</pre>
44
45
        return 0;
46
   }
47
   3.12 dinic
   #include <bits/stdc++.h>
   #define pb push_back
   using namespace std;
   using ll = long long;
   const int N = 1e4 + 10;
   const 11 inf = 0x3f3f3f3f3f3f3f3f3;
   int n, m, s, t, dep[N];
   struct node {int v, cap, rec;};
   vector<node> G[N];
10
   bool bfs() {
11
        queue<int> q;
12
        q.push(s);
13
```

memset(dep, -1, sizeof dep);

```
dep[s] = 0;
15
        while (q.size()) {
16
            int u = q.front(); q.pop();
17
            for(auto [v, cap, rev] : G[u])
18
                 if(dep[v] == -1 \&\& cap)
19
                     dep[v] = dep[u] + 1, q.push(v);
20
21
        return dep[t] != -1;
22
   }
23
    11 dfs(int u, 11 lim) {
25
        if(u == t | | lim == 0) return lim;
26
        11 tot_flow = 0;
27
        for(auto& [v, cap, rev] : G[u]) {
28
            if(dep[v] == dep[u] + 1 \&\& cap > 0) {
29
                 11 d = dfs(v, min(lim, (ll)cap));
30
                 cap -= d, G[v][rev].cap += d;
31
                 lim -= d, tot_flow += d;
32
                 if(lim == 0) return tot_flow;
33
            }
34
35
        if(lim != 0) dep[u] = -1;
36
        return tot_flow;
37
   }
38
39
    11 dinic() {
40
        11 max_flow = 0;
41
        while(bfs())
42
            max_flow += dfs(s, inf);
43
        return max_flow;
44
   }
45
46
    int main() {
47
        scanf("%d%d%d%d", &n, &m, &s, &t);
48
        while(m --) {
49
            int u, v, cap; scanf("%d%d%d", &u, &v, &cap);
50
            G[u].pb({v, cap, G[v].size()});
51
            G[v].pb({u, 0, G[u].size() - 1});
52
53
        printf("%lld\n", dinic());
54
        return 0;
55
   }
56
```

4 动态规划

4.1 背包

```
#include<bits/stdc++.h>
using namespace std;
```

```
3
   void pack01 {
        int n, m;
5
       cin >> n >> m;
6
        vector < int > v(n + 1), w(n + 1);
       for (int i = 1; i <= n; i ++) {
            cin >> v[i] >> w[i];
                                   // volume, weight
       }
10
11
       for (int i = 1; i <= n; i ++) {
12
            for (int j = m; j >= v[i]; j --) {
13
                f[j] = max(f[j, f[j - v[i]]] + w[i]);
14
                // 求方案 f[j] += f[j - a[i]];
15
            }
16
17
       cout << f[m] << '\n';
18
   }
19
20
   void completePack {
21
       int n, m;
22
       cin >> n >> m;
23
        vector<int> v(n + 1), w(n + 1);
24
       for(int i = 1; i <= n; i++) cin >> v[i] >> w[i];
25
26
       // vector<vector<int>> f(n + 1, vector<int>(m + 1));
27
       // for(int i = 1; i <= n; i++)
28
       //
               for(int j = 0; j <= m; j++) {
29
       //
                   if(j < v[i]) f[i][j] = f[i - 1][j];
30
       //
                   else f[i][j] = max(f[i - 1][j], f[i][j - v[i]] + w[i]);
31
       //
               }
32
       // cout << f[n][m] << '\n';
33
       for(int i = 1; i <= n; i++) {</pre>
34
            for(int j = v[i]; j <= m; j ++) { // 正序循环,表示 i->i 转移,每个物品用无限次
35
                f[j] = max(f[j], f[j - v[i]] + w[i]);
36
                // 方案数: f[j] = f[j] + f[j - w[i]]
37
            }
38
39
       cout << f[m] << '\n';</pre>
40
       return 0;
41
   }
42
43
   // 多重背包, 分组背包 见进阶指南 p280
44
45
   int main() {
46
47
       return 0;
48
   }
49
```

4.2 数位 dp

```
// Lead 前导 0, Lim 是否到限制
   int a[N], dp[N][N];
   int dfs(int pos, int pre, bool lead, bool limit) {
       if (!pos) {
           // 边界条件
       }
       if (!limit && !lead && dp[pos][pre] != -1) return dp[pos][pre];
       int res = 0, up = limit ? a[pos] : 无限制位;
       for (int i = 0; i <= up; i ++) {</pre>
           if (不合法条件) continue;
10
           res += dfs(pos - 1, 未定参数, lead && !i, limit && i == up);
11
12
       return limit ? res : (lead ? res : dp[pos][sum] = res);
13
   }
14
15
   int cal(int x) {
16
       // 一般 dp 初始化成-1, Len = 0;
17
       memset(dp, -1, sizeof dp);
18
       len = 0;
19
       while (x) a[++ len] = x % 进制, x /= 进制;
20
       return dfs(len, 未定参数, 1, 1);
21
   }
22
23
   int main() {
24
       cin >> 1 >> r;
25
       cout << cal(r) - cal(l - 1) << endl;</pre>
26
   }
27
```

4.3 换根 dp

换根 dp 一般时间复杂度为 $\mathcal{O}(n)$,需要对树处理得到大规模答案,如对每个点得到一个答案。

```
// 求树上 对某个点来说包含他的连通点集个数
   #include <bits/stdc++.h>
   #define pb push back
   #define endl '\n'
  using 11 = long long;
   using namespace std;
   const int N = 1e6 + 10, mod = 1e9 + 7;
   11 f[N], ans[N], n;
   vector<int> G[N];
10
11
   11 qpow(ll a, ll b) {
12
       11 \text{ res} = 1;
13
       while(b) {
14
           if(b & 1) res = res * a % mod;
15
           a = a * a \% mod;
16
```

```
b >>= 1;
17
18
       return res;
19
   }
20
21
   void dfs(int u, int fa) {
22
       f[u] = 1;
23
       for (auto v:G[u]) {
24
           if(v == fa) continue;
25
           dfs(v, u);
26
           f[u] = f[u] * (f[v] + 1) % mod;
27
       }
28
   }
29
30
31
   考虑换根, ans[u] 记为以 u 为根, 和整棵树其他点能形成的所有子树数量。(即最终答案)
32
   换根方程: ans[v]=(ans[u]/(f[v]+1)+1)*f[v]
33
   解释: u 点答案除以 v 点贡献 (f[v] + 1) 为与 v 无关的 u 点答案, +1 后为其余点对 v 点贡献,再乘上 f[v]
34
35
   有一个很坑的地方,就是 (f[v]+1) 求逆元可能得到 \theta (f[v] 可能为 mod-1),这时相当于除于 \theta,出错
36
   当逆元 inv 为 0 时, ans[u] 实际是由在树形 dp 的时候求出的 f[u],而 f[u] 又等于 (他所有儿子 f 的值 +1) 的乘积。
37
   所以 ans[u] / (f[v]+1) 又可以变成 u 的其他儿子的乘积: u 除 v 外的其他儿子记 brother。
38
   (f[brother_1]+1) * (f[brother_2] + 1) * ..... 他的所有兄弟的值乘积。
39
40
41
   void dp(int u, int fa) {
42
       for (int v:G[u]) {
43
           if(v == fa) continue;
44
           ll inv = qpow(f[v] + 1, mod - 2);
45
           if(inv) ans[v] = (ans[u] * inv % mod + 1) % mod * f[v] % mod;
46
           else {
47
               11 t = 1;
48
               for (auto other:G[u]) {
49
                   if(other == v || other == fa) continue;
50
                   t = t * (f[other] + 1) \% mod;
51
52
               ans[v] = (t + 1) * f[v] % mod;
53
54
           dp(v, u);
55
       }
56
   }
57
58
   int main() {
59
       cin >> n;
60
       for (int i = 1; i < n; i ++) {
61
           int u, v; cin >> u >> v;
62
           G[u].pb(v), G[v].pb(u);
63
       }
64
       dfs(1, 0);
65
```

```
ans[1] = f[1];
dp(1, 0);

for (int i = 1; i <= n; i ++) cout << ans[i] << endl;
return 0;

1 }</pre>
```

4.4 数据结构优化 dp

1D/1D dp 转移

4.5 斜率优化 dp

(待完善)

- 1. 单调队列优化
- 2. 二分
- 3. cdq 分治

```
1 // p3195
   #include <bits/stdc++.h>
   using namespace std;
   using ll = long long;
   const int N = 50050;
   int n, L;
   11 dp[N], sum[N], f[N], g[N], h, t, Q[N];
10
   long double slope(int i, int j) {
11
      return (long double) (dp[j] + g[j] - dp[i] - g[i]) / (f[j] - f[i]);
12
   }
13
14
   int main() {
15
        ios::sync_with_stdio(false);
16
        cin.tie(nullptr);
17
       cin >> n >> L;
18
19
        for(int i = 1; i <= n; i++) {</pre>
20
            cin >> sum[i];
21
            sum[i] += sum[i - 1];
22
            f[i] = sum[i] + i;
23
            g[i] = (f[i] + L + 1) * (f[i] + L + 1);
24
      }
25
      g[0] = (11)(L + 1) * (L + 1);
26
        for(int i = 1; i <= n; i++) {</pre>
27
            while(h < t && slope(Q[h], Q[h + 1]) <= 2 * f[i]) h++;
28
        dp[i] = dp[Q[h]] + (f[i] - f[Q[h]] - L - 1) * (f[i] - f[Q[h]] - L - 1);
29
```

```
\label{eq:while} \mbox{while}(\mbox{$h$} < \mbox{$t$} \&\& \mbox{$slope(Q[t], i)$} < \mbox{$slope(Q[t-1], Q[t])$}) \mbox{$t--$;}
30
        Q[++t] = i;
31
        }
32
33
        cout << dp[n] << '\n';
34
        return 0;
35
    }
36
         例: LIS 计数
    #include <bits/stdc++.h>
    using namespace std;
    constexpr int mod = 1e9 + 7;
    struct Info {
        int x, y;
        Info(int x = 0, int y = 0):x(x), y(y) {}
    };
9
10
    Info operator+(const Info& a, const Info& b) {
11
        if(a.x == b.x) {
12
             return {a.x, (a.y + b.y) % mod};
13
        } else {
14
             if(a.x > b.x) {
15
                  return a;
16
             } else {
17
                  return b;
18
             }
19
        }
20
    }
21
22
    template<typename T, typename OP = plus<T>>
23
    struct fenwick {
24
        const int n;
25
        vector<T> c;
26
        const OP op;
27
        fenwick(int _n) : n(_n), c(_n + 1), op(OP()) {}
28
        void add(int pos, T v) {
29
             for (int i = pos; i <= n; i += i & -i) {</pre>
30
                  c[i] = op(c[i], v);
31
             }
32
33
        T query(int pos) {
34
             T res;
35
             for (int i = pos; i; i -= i & -i) {
36
                  res = op(res, c[i]);
37
             }
38
             return res;
39
        }
40
    };
41
```

```
42
43
    void discrete(vector<int>& a) {
44
        vector<int> b = a;
45
        sort(b.begin(), b.end());
46
        b.erase(unique(b.begin(), b.end());
47
        for (size_t i = 0; i < a.size(); i++) {</pre>
48
            a[i] = lower_bound(b.begin(), b.end(), a[i]) - b.begin() + 1;
49
        }
50
   }
51
52
   int main() {
53
        ios::sync_with_stdio(false);
54
        cin.tie(nullptr);
55
        int n;
56
        cin >> n;
57
        vector<int> a(n);
58
        for (auto &x: a) cin >> x;
59
        discrete(a);
60
        vector<int> f(n, 1), dp(n, 1);
61
62
        fenwick<Info> fen(n);
63
64
        int ans = 0, LIS = 0;
65
        for (int i = 0; i < n; i++) {</pre>
66
            // cout << "i = " << i << '\n';
67
68
            auto t = fen.query(a[i] - 1);
69
            f[i] = t.x + 1;
70
            dp[i] = max(1, t.y);
71
            fen.add(a[i], {f[i], dp[i]});
72
            LIS = max(f[i], LIS);
73
        }
74
75
76
        for (int i = 0; i < n; i ++) {</pre>
77
             if(f[i] == LIS)
78
                 (ans += dp[i]) %= mod;
79
80
        cout << ans << '\n';</pre>
81
        return 0;
82
   }
83
```

5 字符串

5.1 字符串 Hash

```
#include <bits/stdc++.h>
using namespace std;
```

```
struct Hash {
3
        using ull = unsigned long long;
        const int base = 131;
5
        int siz;
        vector<ull> pow_base, hash_val; // or p, h due to time budget
        Hash() { }
        Hash(const string &s) {
            siz = s.size();
10
            pow_base.resize(siz);
11
            hash_val.resize(siz);
12
            pow\_base[0] = 1;
13
            hash_val[0] = s[0];
14
            for (int i = 1; i < siz; i++){</pre>
15
                pow_base[i] = pow_base[i - 1] * base;
16
                hash_val[i] = hash_val[i - 1] * base + s[i];
17
            }
18
        }
19
        // 下标 Ø 开始,闭区间
20
        ull operator[](const array<int, 2>& range) const {
21
            // if(r < L | L > n) return 0; //根据题目需要处理边界情况
22
            auto 1 = range[0], r = range[1];
23
            if(1 == 0) return hash_val[r];
24
            return hash_val[r] - hash_val[l - 1] * pow_base[r - l + 1];
25
        }
26
27
        ull get(int 1, int r) {
28
            return this->operator[]({1, r});
29
        }
30
   };
31
32
   struct doubleHash {
33
        using ll = long long;
34
        int size;
35
        array<int, 2> mod = {2000000011, 2000000033}, base = {20011, 20033};
36
        vector<array<11, 2>> hash, pow_base;
37
        doubleHash() { }
38
        doubleHash(const string& s) {
39
            size = s.size();
            hash.resize(size);
41
            pow_base.resize(size);
42
            pow_base[0][0] = pow_base[0][1] = 1;
43
            hash[0][0] = hash[0][1] = s[0];
            for(int i = 1; i < size; i++){</pre>
45
                hash[i][0] = (hash[i - 1][0] * base[0] + s[i]) % mod[0];
                hash[i][1] = (hash[i - 1][1] * base[1] + s[i]) % mod[1];
47
                pow_base[i][0] = pow_base[i - 1][0] * base[0] % mod[0];
                pow_base[i][1] = pow_base[i - 1][1] * base[1] % mod[1];
49
            }
50
        }
51
```

```
array<11, 2> operator[](const array<int, 2>& range) const {
52
              auto 1 = range[0], r = range[1];
53
             if(1 == 0) return hash[r];
54
             return {
55
                  (hash[r][\emptyset] \ - \ hash[1 \ - \ 1][\emptyset] \ * \ pow\_base[r \ - \ 1 \ + \ 1][\emptyset] \ \% \ mod[\emptyset] \ + \ mod[\emptyset]) \ \%
56
                  \hookrightarrow mod[0],
                  (hash[r][1] \ - \ hash[1 \ - \ 1][1] \ * \ pow\_base[r \ - \ 1 \ + \ 1][1] \ \% \ mod[1] \ + \ mod[1]) \ \%
57
                  \hookrightarrow mod[1]};
         }
58
         //double hash to A hash_val
59
         11 get(int 1, int r) {
60
             auto h = this->operator[]({1, r});
61
              return h[0] * 100000000011 + h[1];
62
         }
63
64
    };
    int main() {}
65
    5.2 Trie
    #include <bits/stdc++.h>
    using namespace std;
    const int N = 1e5 + 10;
    char str[N];
    int son[N][26], cnt[N], idx;
    void insert(char *str) {
         int p = 0;
         for (int i = 0; str[i]; i ++) {
              int u = str[i] - 'a';
             if(!son[p][u]) son[p][u] = ++idx;
12
             p = son[p][u];
13
         ++cnt[p];
15
    }
16
17
    int query(char *str) {
         int p = 0;
19
         for (int i = 0; str[i]; ++i) {
20
             int u = str[i] - 'a';
21
             if(!son[p][u]) return 0;
              p = son[p][u];
23
24
         return cnt[p];
25
    }
```

5.3 KMP

```
1 //poj2406
   #include <bits/stdc++.h>
   using namespace std;
   const int N = 1e6 + 10;
   char s[N];
   int nxt[N], n;
   /*
   //区间 [L, r] 的 kmp
        nxt[l] = 0;
       for (int i = l + 1; i <= r; i ++) {
10
            int j = nxt[i - 1];
11
            while(j \&\& s[i] != s[l + j]) j = nxt[l + j - 1];
12
            if(s[i] == s[j + l]) j++;
13
            nxt[i] = j;
14
15
16
   void get_nxt() {
17
        nxt[1] = 0;
18
        for (int i = 2, j = 0; i <= n; i ++) {
19
            while(j && s[i] != s[j + 1]) j = nxt[j];
20
            if(s[i] == s[j + 1]) j++;
21
            nxt[i] = j;
22
        }
23
   }
24
25
   int main() {
26
        while(~scanf("%s", s + 1)) {
27
            if(s[1] == '.') break;
28
            n = strlen(s + 1);
29
            get_nxt();
30
            int period = n - nxt[n];
31
            if(n % period == 0) printf("%d\n", n / period);
32
            else puts("1");
33
        }
34
        return 0;
35
   }
36
```

5.4 Z-algorithm

- 给出字符串 a,b,求 a 的每个后缀与 b 的 LCP: 设 \$ 为字符集外字符,求 b+\$+a 的 Z 函数,则 a 的后缀 a[i..] 与 b 的 LCP 为 Z(|b|+1+i) 。
- 求 s 的每个前缀的出现次数: 求 s 的 **Z** 函数。对于每一个 i ,如果 Z(i) 不等于 0,说明长度为 $Z(i), Z(i) 1, \cdots, 1$ 的前缀在此处各出现了一次,所以求一个后缀和即可。在这个问题中一般令 Z(0) = |s|。

```
for (int i = n + 1; i < 2 * n + 1; ++i)
```

```
S[z[i]]++;
for (int i = n; i >= 1; --i)
S[i] += S[i + 1];
```

• 求 s 的所有 border:

KMP 就可以,也可以用 Z 算法。求 s 的 Z 函数。对于每一个 i,如果 i+Z(i)=|s| ,说 明这个 Z-Box 对应一个 border。(注:与 KMP 不同,这里只是求所有 border,不是求所有前缀的 border)

```
1 //给定两个字符串 a,b,
  // 要求出两个数组: b 的 z 函数数组 z、
   // b 与 a 的每一个后缀的 LCP 长度数组 p。
   #include <bits/stdc++.h>
  #define rep(i, a, b) for (int i = (a); i < (b); i ++)
  #define sz(a) int((a).size())
  using namespace std;
  using ll = long long;
   const int N = 2e7;
   ll ansz, ansp;
10
   string a, b;
11
12
   // Zfunction
13
   int z[N << 1];</pre>
14
   void getz(string s) {
15
       int 1 = 0;
16
       for (int i = 1; i <= s.size(); i ++) {</pre>
17
            if(1 + z[1] > i) z[i] = min(z[i - 1], 1 + z[1] - i);
18
           while(i + z[i] < s.size() && s[z[i]] == s[i + z[i]]) z[i]++;
19
           if(i + z[i] > 1 + z[1]) 1 = i;
20
21
       // rep(i,0,s.size()) cout<<z[i]<<" ";cout<<'\n';
22
   }
23
24
25
   int main(){
26
       ios::sync_with_stdio(0);
27
       cin.tie(0),cout.tie(0);
28
       cin >> a >> b, getz(b + a);
29
       ansz = 111 * (sz(b)+1)*(0+1);
30
       rep(i,1,sz(b)) ansz^=111*(min(z[i],sz(b)-i)+1)*(i+1);
31
       rep(i,0,sz(a)) ansp^=1ll*(min(z[i+sz(b)],sz(b))+1)*(i+1);
32
       cout << ansz << '\n'
33
             << ansp << '\n';
34
       return 0;
35
   }
36
```

5.5 AC 自动机

```
#include <bits/stdc++.h>
```

```
using namespace std;
3
    constexpr int N = 2e5;
5
   struct ACM {
7
        int state_num;
9
        struct Node {
10
             array<int, 26> nxt;
11
             int fail;
12
             Node(): nxt{}, fail(0) {}
13
        };
14
        vector<Node> vec;
15
        ACM(int n) : vec(n + 1) \{\}
16
        int insert(const string& s) {
17
             int p = 0;
18
             for (auto ch: s) {
19
                 int &u = vec[p].nxt[ch - 'a'];
20
                 if(!u) {
21
                      u = ++state_num;
22
                 }
23
                 p = u;
24
             }
25
             return p;
26
27
        void build() {
28
             queue<int> q;
29
             for(auto i: vec[0].nxt) {
30
                 if(i) q.push(i);
31
             }
32
             while(q.size()) {
33
                 int u = q.front(); q.pop();
34
                 for (int i = 0; i < 26; i ++) {</pre>
35
                      int &v = vec[u].nxt[i];
36
                      int w = vec[vec[u].fail].nxt[i];
37
                      if(v) {
38
                          vec[v].fail = w;
39
                          q.push(v);
40
                      } else {
41
                          V = W;
42
                      }
43
                 }
44
             }
45
        }
46
47
   };
48
49
   void solve() {
50
        int n;
51
```

```
cin >> n;
52
         vector<string> patterns(n);
53
         ACM ac(N);
54
55
         vector<int> id(n); // id[i] 表示第 i 个字符串结尾的 state_num
56
         for (int i = 0; i < n; i ++) {</pre>
57
             cin >> patterns[i];
58
             id[i] = ac.insert(patterns[i]);
59
60
         ac.build();
61
         // cerr << "state_num == " << ac.state_num << '\n';
62
         // for (int i = 1; i <= ac.state_num; i ++) {</pre>
63
                cerr << i << ".fail = "<< ac.vec[i].fail << "\n";</pre>
64
        // }
65
         // cerr << "////////" << '\n';
66
67
         vector<vector<int>>> G(ac.state_num + 1);
68
         for (int i = 1; i <= ac.state_num; i ++) {</pre>
69
             G[ac.vec[i].fail].push_back(i);
70
         }
71
72
         string t;
73
         cin >> t;
74
75
         int u = 0;
76
         vector<int> cnt(ac.state_num + 1);
77
         for (auto ch: t) {
78
             u = ac.vec[u].nxt[ch - 'a'];
79
             cnt[u]++;
80
             // cerr << u << '\n';
81
         }
82
83
         function<void(int)> dfs = [&](int u) {
84
             for (auto v: G[u]) {
85
                 dfs(v);
86
                 cnt[u] += cnt[v];
87
             }
88
         };
89
         dfs(0);
90
         // cerr << "////////" << '\n';
91
         for (int i = 0; i < n; i++) {</pre>
92
             cout << cnt[id[i]] << '\n';</pre>
93
         }
94
95
    }
96
97
    int main() {
98
         ios::sync_with_stdio(false);
99
         cin.tie(nullptr);
100
```

```
int T = 1; // cin >> T;
101
        while(T --) {
102
            solve();
103
        }
104
        return 0;
105
    }
106
    5.6 SA
        lcp(i,j) 表示后缀 i,j 的最长公共前缀 (的长度)
        height 数组定义: ht[i] = lcp(sa[i], sa[i-1])
        性质: lcp(sa[i], sa[j]) = min\{ht[i+1..j]\}
    由此,求两子串 (排名为 i,j) 最长公共前缀就转化为了 RMQ 问题 (求 ht[i+1] 到 ht[j] 的
    最小值)。
        本质不同的子串: \frac{n*(n+1)}{2} - \sum_{i=2}^{n} ht[i]
        ht 数组连续一段不小于 h 的区间长度代表长 h 的这个子串的出现次数
    #include <bits/stdc++.h>
    using namespace std;
    class SuffixArray {
    //得到的 sa[], rk[] 下标从 0 开始, ht 下标从 1 开始 (因为是长度)
    private:
        int n, m;
        vector<int> x, y, cnt;
        void radixSort() {
            for (int i = 0; i < m; ++ i) cnt[i] = 0;</pre>
10
            for (int i = 0; i < n; ++ i) cnt[x[i]] ++;</pre>
11
            for (int i = 1; i < m; ++ i) cnt[i] += cnt[i - 1];</pre>
12
            for (int i = n - 1; i >= 0; -- i) sa[-- cnt[x[y[i]]]] = y[i];
13
        }
14
    public:
15
        vector<int> sa, rk, ht;
16
17
        SuffixArray(const string &s) :
18
            n(s.size()), m(256), //m 为字符集最大数量
19
            x(n), y(n), cnt(max(n, m)),
20
            sa(n), rk(n), ht(n) {
21
            init_sa(s);
22
            init_ht(s);
23
24
        void init_sa(const string &s) {
25
            for (int i = 0; i < n; ++ i) {
26
                x[i] = s[i];
27
                y[i] = i;
28
            }
29
            radixSort();
30
            for (int w = 1; w <= n; w <<= 1) {
31
```

int p = 0;

32

```
for (int i = n - w; i < n; ++ i) y[p ++] = i;
33
                 for (int i = 0; i < n; ++ i)</pre>
34
                      if (sa[i] >= w) y[p ++] = sa[i] - w;
35
36
                 radixSort();
37
                 swap(x, y);
38
                 x[sa[0]] = 0;
39
                 p = 1;
40
                 auto cmp = [&](int i, int j) {
41
                      if (i < n && j < n) return y[i] == y[j];</pre>
42
                      return i >= n && j >= n;
43
                 };
44
                 for (int i = 1; i < n; ++ i)</pre>
45
                      x[sa[i]] = (cmp(sa[i], sa[i - 1]) \&\& cmp(sa[i - 1] + w, sa[i] + w))
46
                      ? p - 1 : p++;
47
48
                 if (p >= n) break;
49
                 m = p;
50
51
             for (int i = 0; i < n; ++ i) rk[sa[i]] = i;</pre>
52
53
        void init_ht(const string &s) {
54
             for (int i = 0, k = 0; i < n; ++ i) {
55
                 if (rk[i] == 0) continue;
56
                 if (k) k --;
57
                 int j = sa[rk[i] - 1];
58
                 while (i + k < n \&\& j + k < n \&\& s[i + k] == s[j + k]) k ++;
59
                 ht[rk[i]] = k;
60
             }
61
        }
62
   };
63
64
    void solve() {
65
        string s;
66
        cin >> s;
67
        SuffixArray f(s);
68
        for (int i = 0; i < s.size(); ++ i)</pre>
69
             cout << f.sa[i] + 1 << " \n"[i + 1 == s.size()];</pre>
70
        for (int i = 0; i < s.size(); ++ i)</pre>
71
             cout << f.ht[i] << " \n"[i + 1 == s.size()];</pre>
72
   }
73
74
    /* nLogn 版
75
76
   int n, m;
77
    char s[N];
78
    int sa[N], rk[N], ht[N], x[N], id[N], cnt[N];
79
80
   void init_sa() {
81
```

```
m = 300:
82
        for (int i = 1; i <= m; i++) cnt[i] = 0;
83
        for (int i = 1; i <= n; i++) ++ cnt[x[i] = s[i]];
84
        for (int i = 1; i <= m; i++) cnt[i] += cnt[i - 1];
85
        for (int i = n; i; i--) sa[cnt[x[i]]--] = i;
86
        for (int w = 1; w <= n; w <<= 1) {
87
             int num = 0:
88
            for (int i = n - w + 1; i <= n; i++) id[++ num] = i;
89
            for (int i = 1; i <= n; i++)
90
                 if (sa[i] > w) id[++ num] = sa[i] - w;
91
            for (int i = 1; i <= m; i++) cnt[i] = 0;
92
            for (int i = 1; i <= n; i++) cnt[x[i]] ++;
93
            for (int i = 1; i <= m; i++) cnt[i] += cnt[i - 1];
94
            for (int i = n; i; i--) sa[cnt[x[id[i]]] --] = id[i], id[i] = 0;
95
        for(int i = 1; i <= n; i ++) swap(x[i], id[i]);
96
            x[sa[1]] = 1, num = 1;
97
             auto cmp = [\&](int a, int b, int w) {
98
                 return id[a] == id[b] \&\& id[a + w] == id[b + w];
99
100
            };
            for (int i = 2; i <= n; i++)
101
                 x[sa[i]] = cmp(sa[i], sa[i - 1], w) ? num : ++num;
102
             if (n == num) break;
103
            m = num;
104
105
        for (int i = 1; i <= n; i ++) rk[sa[i]] = i;
106
    }
107
108
109
```

5.7 SAM

- **1. SAM** 的总状态数不超过 2n-1 , 当字符串形如 abbb... 时取到上界
- 2. SAM 的总转移数不超过 3n-4 , 当字符串形如 abbb...bc 时取到上界
- 3. 构建 SAM 的复杂度为 $|\Sigma|n$, Σ 为字符集。(瓶颈是复制节点,所以如果字符集过大,可以 考虑用 map 代替数组)

SAM 的总转移数不超过,当字符串形如时取到上界构建 SAM 的复杂度为,为字符集。(瓶颈是复制节点,所以如果字符集过大,可以考虑用 map 代替数组)

```
// https://ac.nowcoder.com/acm/contest/33188/H
#include <bits/stdc++.h>

using namespace std;
using i64 = long long;

struct SuffixAutomaton {
    static constexpr int ALPHABET_SIZE = 26, N = 1e5;
    struct Node {
```

```
int len, link;
10
            int next[ALPHABET_SIZE];
11
            Node() : len(0), link(0), next{}{}
12
        } t[2 * N];
13
        int cntNodes;
14
        SuffixAutomaton() {
15
            cntNodes = 1;
16
            fill(t[0].next, t[0].next + ALPHABET_SIZE, 1);
17
            t[0].len = -1;
18
        }
19
        int extend(int p, int c) {
20
            if (t[p].next[c]) {
21
                 int q = t[p].next[c];
22
                 if (t[q].len == t[p].len + 1)
23
                     return q;
24
                 int r = ++cntNodes;
25
                 t[r].len = t[p].len + 1;
26
                 t[r].link = t[q].link;
27
                 copy(t[q].next, t[q].next + ALPHABET_SIZE, t[r].next);
28
                 t[q].link = r;
29
                 while (t[p].next[c] == q) {
30
                     t[p].next[c] = r;
31
                     p = t[p].link;
32
                 }
33
                 return r;
34
            }
35
            int cur = ++cntNodes;
36
            t[cur].len = t[p].len + 1;
37
            while (!t[p].next[c]) {
38
                 t[p].next[c] = cur;
39
                 p = t[p].link;
40
            }
41
            t[cur].link = extend(p, c);
42
            return cur;
43
        }
44
   };
45
46
    int main() {
47
        ios::sync_with_stdio(false);
48
        cin.tie(nullptr);
49
50
        int n, m, k;
51
        cin >> n >> m >> k;
52
53
        string A;
54
        cin >> A;
55
        int p = 1;
56
        SuffixAutomaton sam;
57
        for (auto c : A) {
58
```

```
p = sam.extend(p, c - 'a');
59
         }
60
61
         vector<int> w(m);
62
          for (int i = 0; i < m; i++) {</pre>
63
              cin >> w[i];
64
         }
65
66
         vector<i64> s(m + 1);
67
          for (int i = 0; i < m; i++) {</pre>
68
              s[i + 1] = s[i] + w[i];
69
         }
70
71
         while (k--) {
72
              string B;
73
              cin >> B;
74
75
              int p = 1;
76
              i64 \text{ ans} = 0;
77
              deque<int> q{0};
78
              for (int i = 0, j = 0, len = 0; i < m; i++) {
79
                   while (j < m && sam.t[p].next[B[j] - 'a']) {</pre>
80
                       p = sam.t[p].next[B[j] - 'a'];
81
                       len++;
82
                       j++;
83
                       while (!q.empty() && s[j] > s[q.back()]) {
84
                            q.pop_back();
85
                       }
86
                       q.push_back(j);
87
88
                   while (q.front() < i) {</pre>
89
                       q.pop_front();
90
91
                   ans = max(ans, s[q.front()] - s[i]);
92
93
                   if (len <= sam.t[sam.t[p].link].len) {</pre>
94
                       p = sam.t[p].link;
95
                   }
              }
97
              cout << ans << "\n";
98
         }
99
100
         return 0;
101
     }
102
```

5.8 Manacher

用 Manacher + hash 可以求出所有本质不同的回文子串 (存 hash 值), 时间复杂度 $\mathcal{O}(|s|)$ 。但是不用于求每个本质不同回文子串出现次数相关统计,因为统计出现次数时,while(l <= r) 中

```
不可以 break, 复杂度 n^2
        auto p = manacher(s);
        Hash hs(s); //or doubleHash
        set<ull> res; // ll when doubleHash
        for (int mid = 1; mid < p.size() - 1; mid ++) {</pre>
            //枚举回文子串的左右端点
             int 1 = (mid - p[mid] + 1) / 2, r = (mid + p[mid] - 1) / 2;
            while(1 <= r) {
                 if(res.count(hash.get(l, r))) break;
                 res.insert(hash.get(l++, r--));
             }
        }
   #include<bits/stdc++.h>
   using namespace std;
   // return p, p[i] 表示修改后的串中以 i 为中心的最长回文半径
   vector<int> manacher(const string& _s) {
       vector<int> p(_s.size() * 2 + 1);
       string s(_s.size() * 2 + 1, '$');
       for (int i = 0; i < _s.size(); i++) s[2 * i + 1] = _s[i];</pre>
       for(int i = 0, maxr = 0, mid = 0; i < s.size(); i++) {</pre>
           if(i < maxr) p[i] = min(p[mid * 2 - i], maxr - i);
           while(i - p[i] - 1 >= 0 && i + p[i] + 1 < s.size()
10
               && s[i - p[i] - 1] == s[i + p[i] + 1])
11
12
           if(i + p[i] > maxr) maxr = i + p[i], mid = i;
13
14
       return p;
15
   }
16
17
18
   int main() {
19
       string s;
20
       cin >> s;
21
       auto p = manacher(s);
22
       // for (int i = 0; i < p.size(); i ++) {
23
              cout << p[i] << " \n"[i == p.size() - 1];</pre>
24
25
       cout << (*max_element(p.begin(), p.end())) << endl;</pre>
26
   }
27
```

6 其他

6.1 glibc 内置函数

```
1 // Returns the number of 1-bits in x.
2 int __builtin_popcount(unsigned int x);
```

```
int __builtin_popcountll(unsigned long long x);
   // Returns the number of trailing 0 (undefined when x == 0)
   int __builtin_ctz(unsigned int x);
   int __builtin_ctzll(unsigned long long x);
   // Returns log_2(x)
   int __lg(int x);
10
11
   int __gcd(int x, int y);
12
   6.2 __int128 读写
   inline __int128 read(){
        __int128 x = 0, f = 1;
2
       char ch = getchar();
       while (ch<'0' || ch>'9') { if(ch == '-') f = -1; ch = getchar();}
       while (ch >= '0' && ch <= '9') { x = x * 10 + ch - '0'; ch = getchar(); }
       return x * f;
   }
   inline void print(__int128 x) {
        if(x < 0) \{ putchar('-'); x = -x; \}
10
        if(x > 9) print(x / 10);
11
        putchar(x % 10 + '0');
12
13
   }
   6.3 大整数运算
   #include <iostream>
   #include <vector>
   using namespace std;
   vector<int> add(vector<int> &A, vector<int> &B) {
        if (A.size() < B.size()) return add(B, A);</pre>
       vector<int> C;
9
       int t = 0;
10
        for (int i = 0; i < A.size(); i ++ ) {</pre>
11
            t += A[i];
12
            if (i < B.size()) t += B[i];</pre>
13
            C.push_back(t % 10);
14
            t /= 10;
15
16
        if (t) C.push_back(t);
17
       return C;
18
   }
19
```

20

```
int main() {
21
        string a, b;
22
        vector<int> A, B;
23
        cin >> a >> b;
24
        for (int i = a.size() - 1; i >= 0; i -- ) A.push_back(a[i] - '0');
25
        for (int i = b.size() - 1; i >= 0; i -- ) B.push_back(b[i] - '0');
26
27
        auto C = add(A, B);
28
        for (int i = C.size() - 1; i >= 0; i -- ) cout << C[i];</pre>
29
        cout << endl;</pre>
30
31
        return 0;
32
   }
33
34
    //减法
35
36
    bool cmp(vector<int> &A, vector<int> &B) {
37
        if (A.size() != B.size()) return A.size() > B.size();
38
39
        for (int i = A.size() - 1; i >= 0; i -- )
40
            if (A[i] != B[i])
41
                 return A[i] > B[i];
42
        return true;
43
   }
44
45
    vector<int> sub(vector<int> &A, vector<int> &B) {
46
        vector<int> C;
47
        for (int i = 0, t = 0; i < A.size(); i ++ ) {</pre>
48
            t = A[i] - t;
49
            if (i < B.size()) t -= B[i];</pre>
50
            C.push_back((t + 10) % 10);
51
            if (t < 0) t = 1;
52
            else t = 0;
53
54
        while (C.size() > 1 && C.back() == 0) C.pop_back();
55
        return C;
56
   }
57
    int main() {
59
        string a, b;
60
        vector<int> A, B;
61
        cin >> a >> b;
62
        for (int i = a.size() - 1; i >= 0; i -- ) A.push_back(a[i] - '0');
63
        for (int i = b.size() - 1; i >= 0; i -- ) B.push_back(b[i] - '0');
64
        vector<int> C;
65
        if (cmp(A, B)) C = sub(A, B);
66
        else C = sub(B, A), cout << '-';</pre>
67
68
        for (int i = C.size() - 1; i >= 0; i -- ) cout << C[i];</pre>
69
```

```
cout << endl;</pre>
70
         return 0;
71
    }
72
73
    // 乘法
74
    // 高精相乘见 fft
75
76
    vector<int> mul(vector<int> &A, int b) {
77
         vector<int> C;
78
         int t = 0;
79
         for (int i = 0; i < A.size() || t; i ++ ) {</pre>
80
             if (i < A.size()) t += A[i] * b;</pre>
81
             C.push_back(t % 10);
82
             t /= 10;
83
84
         while (C.size() > 1 && C.back() == 0) C.pop_back();
85
         return C;
86
    }
87
88
    int main() {
89
         string a;
90
         int b;
91
         cin >> a >> b;
92
         vector<int> A;
93
         for (int i = a.size() - 1; i >= 0; i -- ) A.push_back(a[i] - '0');
94
         auto C = mul(A, b);
95
         for (int i = C.size() - 1; i >= 0; i -- ) printf("%d", C[i]);
96
         return 0;
97
    }
98
    vector<int> div(vector<int> &A, int b, int &r) {
100
         vector<int> C;
101
         r = 0;
102
         for (int i = A.size() - 1; i >= 0; i -- ) {
103
             r = r * 10 + A[i];
104
             C.push_back(r / b);
105
             r %= b;
106
107
         reverse(C.begin(), C.end());
108
         while (C.size() > 1 && C.back() == 0) C.pop_back();
109
         return C;
110
    }
111
112
    int main() {
113
         string a;
114
         vector<int> A;
115
         int B;
116
         cin >> a >> B;
117
         for (int i = a.size() - 1; i >= 0; i -- ) A.push_back(a[i] - '0');
118
```

```
int r;
119
        auto C = div(A, B, r);
120
        for (int i = C.size() - 1; i >= 0; i -- ) cout << C[i];</pre>
121
        cout << endl << r << endl;</pre>
122
        return 0;
123
    }
124
    6.4 整数二分
   // 区间 [L, r] 被划分成 [L, ans] 和 [ans + 1, r] 时使用:
    int bsearch_1(int 1, int r) {
        while (1 < r) {
            int mid = 1 + r \gg 1;
            if (check(mid)) r = mid;
                                       // check() 判断 mid 是否满足性质
            else l = mid + 1;
        }
        return 1;
    }
    // 区间 [L, r] 被划分成 [L, ans - 1] 和 [ans, r] 时使用:
    int bsearch_2(int 1, int r) {
        while (l < r) {
12
            int mid = 1 + r + 1 >> 1;
            if (check(mid)) l = mid;
            else r = mid - 1;
15
        }
        return 1;
17
    }
          单调栈
    6.5
   #include <bits/stdc++.h>
    using namespace std;
    const int N = 1000100;
    //单调栈,记录每个数左边比他小(大)的第一个数(也可以记录其下标)
    int stk[N], tt, a[N];
    int main() {
        ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
        int n; cin >> n;
        for (int i = 1; i <= n; i ++) cin >> a[i];
10
11
        for (int i = 1; i <= n; i++) {
12
            while(tt \&\& stk[tt] >= a[i]) tt--;
13
            if(tt) cout << stk[tt] << ' ';
14
```

else cout << -1 << ' ';

stk[++tt] = a[i];

15

16

17

18

19 }

}

return 0;

单调队列 6.6

```
#include<bits/stdc++.h>
   using namespace std;
   const int N = 1e6 + 10;
   int a[N], q[N],n, k;
   //滑动窗口
   int main() {
       cin >> n >> k;
       for(int i = 0; i < n; i++)</pre>
                                    cin >> a[i];
       int hh = 0, tt = -1;
       for(int i = 0; i < n; i++) {</pre>
10
           //判断队头是否已经划出窗口
11
           if( h \le tt \&\& i - k + 1 > q[hh]) hh++;
12
           while(hh <= tt && /* 后面改成要维护的最小值 */a[q[tt]] >= a[i]) tt -- ;//求区间最小
13
           q[ ++ tt ] = i;
14
           if(i >= k-1) printf("%d ",a[q[hh]]);
15
       }
16
       return 0;
17
   }
18
          矩阵快速幂
   6.7
   template<typename T>
   struct matrix {
2
       size_t dim;
```

```
vector<vector<T>> mtx;
4
        matrix(int n) : dim(n), mtx(n, vector<T>(n, 0)){}
6
        void I() {
            for (size_t i = 0; i < dim; i ++) {</pre>
                 for (size_t j = 0; j < dim; j ++) {</pre>
                     mtx[i][j] = static_cast<T>(i == j);
10
                 }
11
            }
12
13
        matrix operator*(const matrix &rhs) {
14
             assert(this->dim == rhs.dim && "Matrix dimension must be the same.");
15
            matrix<T> res(dim);
16
            for (size_t i = 0; i < dim; i ++) {</pre>
17
                 for (size_t j = 0; j < dim; j ++) {</pre>
18
                     for (size_t k = 0; k < dim; k ++) {
19
                          res.mtx[i][j] += (mtx[i][k] * rhs.mtx[k][j]) \% mod;
20
                          res.mtx[i][j] %= mod;
21
22
                     }
                 }
23
            }
24
             return res;
25
        }
26
27
```

```
matrix<T> res(dim);
29
           res.I();
30
           for (; n; n >>= 1) {
31
               if(n & 1) res = res * (*this);
32
               *this = *this * (*this);
33
           }
34
           return res;
35
       }
36
37
   };
38
   6.8 MEX
   struct Mex {
       int n;
       std::set<int> s;
       std::vector<int> cnt;
       Mex(int n) : n(n + 1), cnt(n + 2) {
           // 这里 i 从 0 还是从 1 开始取决于数据
           for (int i = 0; i <= n + 1; i ++) {
               s.insert(i);
               cnt[i] = 0;
           }
10
       }
11
       int mex() {
           // assert(!s.empty());
           return *s.begin();
       void insert(int x) {
           if (cnt[x]++ == 0) {
               s.erase(x);
18
           }
       void erase(int x) {
21
           if (-- cnt[x] == 0) {
22
               s.insert(x);
       }
25
   };
26
   // 维护一个数据结构, 可插入, 删除,
   // 快速得到第一个不在该集合中的自然数 (或从一开始的整数)
```

matrix operator^(ll n) {

28

6.9 GospersHack

生成 n 元集合所有 k 元子集的算法。这个算法复杂度与答案个数是同阶的,比暴力枚举 2^n 个数然后分别算 popcount 要好。

```
void GospersHack(int k, int n) {
        int cur = (1 << k) - 1;
2
        int limit = (1 << n);</pre>
3
        while (cur < limit) {</pre>
            // do something
            int lb = cur & -cur;
            int r = cur + 1b;
            cur = ((r ^ cur) >> __builtin_ctz(lb) + 2) | r;
            // 或: cur = (((r ^ cur) >> 2) / lb) | r;
        }
10
   }
11
   6.10 C++17-STL
   #include <bits/stdc++.h>
   using 11 = long long;
   using namespace std;
   Lambda expression
   /* structure binding */
10
        // Graph with weighted edges
11
        vector<vector<pair<int, int>>> G(n);
        // somewhere in dfs,
        for (auto [v, w] : G[u]) {
        }
16
17
   }
18
        // using std::tie for multi key compare in structure:
20
        struct Node{
21
            int x, y, z;
            bool operator<(const Node& rhs) const {</pre>
                return tie(x, y, z) < tie(rhs.x, rhs.y, rhs.z);</pre>
            }
25
        };
26
27
   }
29
   /* discrete manipulate*/
        // vector<int> v. vv = v;
31
        sort(v.begin(), v.end());
32
        v.erase(unique(v.begin(), v.end()), v.end());
33
```

}

```
36
37
   some useful function in STL
38
39
40
        int n = 256;
41
        vector<int> v(n);
42
        // generate v as 0, 1, 2, ...
43
        // often used when you initialize DSU or generate a permutation
44
        iota(v.begin(), v.end(), 0);
45
46
        11 res = accumulate(v.begin(), v.end(), 1LL,
47
                             [](int a, int b){return (ll)a*b;});
48
49
        gcd() and lcm(); // not __gcd() version
50
51
        // sum of k largest numbers in linear time
52
        nth_element(a.begin(), a.end(), k);
53
        11 ans = accumulate(a.begin(), a.begin() + k, OLL);
54
55
        // max_element and min_element which can be used with user-defined op
56
        cout << *max_element(v.begin(), v.end() /*[]()->bool{}*/);
57
58
        //std::clamp
59
        // Returns x if it is in the interval [low, high] or,
60
        // otherwise, the nearest value.No more max of min of max of...
61
        cout << clamp(7, 0, 10); //7</pre>
62
        cout << clamp(7, 0, 5); //5
63
        cout << clamp(7, 10, 50); //10</pre>
64
        /*don't do*/ max(ans, max(t1, t2));
66
        /*just*/ max({ans, t1, t2}); // initalizer list
67
68
        /* partial_sum and adjacent_difference 前缀和与差分 */
70
        vector<int> a(n, 2), b(n, 2);
71
        partial_sum(a.begin(), a.end(), a.begin());
72
        partial_sum(a.begin(), a.end(), b.begin());
73
74
        adjacent_difference(v.begin(), v.end(), v.begin());
75
76
        count(v.begin(), v.end(), target);
77
        count_if(v.begin(), v.end(), [](int x) {x % 4 == 0});
78
79
80
        // 常用在分治中的一些 STL: inplace_merge, merge, partition, stable_partition
81
        // Merges two consecutive sorted ranges [first, middle) and [middle, last)
82
        // into one sorted range [first, last).
83
        void inplace_merge(BidirIt first, BidirIt middle, BidirIt last);
84
```

```
// example
85
         template<class Iter>
86
         void merge_sort(Iter first, Iter last) {
87
             if (last - first > 1) {
88
                 Iter middle = first + (last - first) / 2;
89
                 merge_sort(first, middle);
90
                 merge_sort(middle, last);
91
                 std::inplace_merge(first, middle, last);
92
             }
93
94
         // used in merge, cdq
95
         // partition, 将满足条件 p 的元素放在前部分
97
         template <class ForwardIt, class UnaryPredicate>
98
         constexpr ForwardIt partition(ForwardIt first, ForwardIt last, UnaryPredicate p);
99
100
         // partition 的 stable 版本,常在分支中使用
101
         template <class BidirIt, class UnaryPredicate>
102
         BidirIt stable_partition(BidirIt first, BidirIt last, UnaryPredicate p);
103
104
         #include <algorithm>
105
         #include <array>
106
         #include <iostream>
107
108
         int main()
109
         {
110
             std::array<int, 9> v{};
111
             std::iota(v.begin(), v.end(), 1);
112
113
             auto is_even = [](int i){ return i % 2 == 0; };
114
             std::cout.setf(std::ios_base::boolalpha);
115
             std::cout << std::is_partitioned(v.begin(), v.end(), is_even) << ' ';</pre>
116
117
             std::partition(v.begin(), v.end(), is_even);
118
             std::cout << std::is_partitioned(v.begin(), v.end(), is_even) << ' ';</pre>
119
120
             std::reverse(v.begin(), v.end());
121
             std::cout << std::is_partitioned(v.cbegin(), v.cend(), is_even) << ' ';</pre>
122
             std::cout << std::is_partitioned(v.crbegin(), v.crend(), is_even) << '\n';</pre>
123
             // output:
124
             // false true false true
125
         }
126
    }
127
128
129
    template< class R, class... Args >
130
    class function<R(Args...)>;
131
    */
132
    {
133
```

```
// a callable obj
134
         function<int(int, int)> dfs = [&](int u, int fa) {
135
136
         };
137
    }
138
139
    /* Set operations (on sorted ranges)*/
140
141
         set<int> s1, s2;
142
         set<int> ans;
143
         set_intersection(s1.begin(), s1.end(),
144
                                 s2.begin(), s2.end(),
145
                                 std::inserter(ans, ans.begin()));
146
                                 // 若为 vector, 可以用 back_inserter;
147
148
    }
149
150
    Initializer in if and switch:
151
    */
152
    {
153
         set<int> s;
154
         if (auto [iter, ok] = s.insert(42); ok) {
155
156
         }
157
         else {
158
             //`ok` and `iter` are available here
159
160
         //But not here
161
    }
162
163
164
    about string
165
166
    {
167
         substr(npos, count);
168
169
         string to_string(/*numeric type*/);
170
171
         //将字符串按照字面转化为数字类型
172
         int stoi(const string &str);
173
         long long stoll(const string &str);
174
         float stof(const string &str);
175
         double stod(const string &str);
176
         long double stold(const string &str);
177
178
    }
179
180
    // split of string
181
    vector<string> split(const string &str, const char *delim) {
182
```

```
vector<string> tokens;
183
      if (str.empty()) {
184
       return tokens;
185
      }
186
      string token;
187
      size_t curr = 0;
188
      size_t next;
189
      size_t delim_len = strlen(delim);
190
      while ((next = str.find(delim, curr)) != string::npos) {
191
       tokens.emplace_back(str.substr(curr, next - curr));
192
       curr = next + delim_len;
193
      }
194
      if (curr != str.size()) {
195
       // one last word
196
       tokens.emplace_back(str.substr(curr, str.size() - curr));
197
      }
198
      return tokens;
199
    }
200
201
   int main() {
202
    }
203
    6.11 pbds
        头文件:
    #include<ext/pb ds/assoc container.hpp>
    #include<ext/pb ds/tree policy.hpp>
    #include<bits/stdc++.h>
    using namespace std;
    using namespace __gnu_pbds;
        带有 find_by_order() , order_of_key() 的 set 和 map
        代替 std::set<int>
    using tree = __gnu_pbds::tree<int, null_type, less<int>,
                  rb_tree_tag, tree_order_statistics_node_update>;
        代替 std::multiset<int>
        using tree = __gnu_pbds::tree<pair<int, int>, null_type, less<pair<int, int>>,
                rb_tree_tag, tree_order_statistics_node_update>;
        // 插入时: insert({value, count++});
        // 查找时 Lower_bound({value, 0});
        示例
 1 #include<ext/pb_ds/assoc_container.hpp>
 #include<ext/pb ds/tree policy.hpp>
   #include<bits/stdc++.h>
```

```
using namespace std;
   using namespace __gnu_pbds;
   using ll = long long;
   // use this as multiset with find_by_order
   using RBT = __gnu_pbds::tree<pair<11, int>, null_type, less<pair<11, int>>, rb_tree_tag,

    tree_order_statistics_node_update>;

   RBT rbt;
   int t = 0;
10
    int main() {
11
        int n, m, k;
12
        cin >> n >> m >> k;
13
        std::vector<ll> a(n);
14
        for (int i = 0; i < n; i++) {</pre>
15
            cin >> a[i];
16
17
        }
18
        for (int i = 0; i < m; i ++) {
19
            rbt.insert({a[i], t++});
20
        }
21
22
        int count = 0;
23
        std::vector<ll> res(n);
24
        11 \text{ kth} = 0;
25
        for (auto it = rbt.begin(); count < k; count++, it++) {</pre>
26
            res[m - 1] += it->first;
27
            kth = it->first;
28
29
        }
30
        for (int i = m; i < n; i ++) {
31
            rbt.erase(rbt.lower_bound({a[i - m], 0}));
32
            rbt.insert({a[i], t++});
33
            auto new_kth = rbt.find_by_order(k - 1)->first;
34
            if (a[i - m] \le kth \&\& a[i] \le kth) {
35
                 res[i] = res[i - 1] + (-a[i - m] + a[i]);
36
            } else if (a[i - m] > kth && a[i] <= kth) {</pre>
37
                 res[i] = res[i - 1] - kth + a[i];
38
            } else if (a[i - m] \le kth \&\& a[i] > kth) {
39
                 res[i] = res[i - 1] + new_kth - a[i - m];
40
            }
41
            else if (a[i - m] > kth && a[i] > kth) {
42
                 res[i] = res[i - 1];
43
            }
44
            kth = new_kth;
45
        }
46
47
        for (int i = m - 1; i < n; i ++) {</pre>
48
            std::cout << res[i] << ' ';
49
50
        return 0;
51
```

52 }

6.12 一些结论

- 1. 维护区间加,区间查 gcd 利用 gcd(a, b) = gcd(a-b, b) // 常用结论 考虑维护差分序列,则 gcd(a[l], a[l + 1], ..., a[r]) = gcd(a[l], b[l + 1], ..., b[r])
- 2. 一个序列的异或和小于等于数值和 $a+b=a\oplus b+2(a\&b)$
 - 一个序列的数值和和异或和奇偶性相同
- 3. 一般估计因子数是 $\mathcal{O}(\sqrt{n})$,但这个上界是比较松的。**1e18** 内的数最多有 **103680** 个因子,**1e9** 内有 **1344** 个因子
- **4.** 除法上取整: (a+b-1)/b, 或者 ceil(a.0/b.0)
- 5. $\sum_{k=1}^{n-1} k \cdot k! = n! 1$
- 6. 根号 trick: 若 a[i] > 0, $\sum_{i=1}^n a[i] = n$, 则 a 中不同的数只有 \sqrt{n} 种
- 7. 排列的性质: max min + 1 = len
- 8. 合法括号的充分必要条件:任意前缀的左括号数大于等于右括号数字 (catalan 数)
- 9. 多个点的 LCA 是其中 dfs 序最小和最大的两个点的 LCA
- **10.** $\sum_{i=1}^n \sum_{j=i+1}^n (A_i + A_j)(B_i + B_j) = \sum_{i=1}^n A_i \dot{\sum}_{i=1}^n B_i + \sum_{i=1}^n (n-2)A_iB_i$ 等式右侧利用前缀和可以在 $\mathcal{O}(n)$ 时间内完成