Activating hidden metrological usefulness

Géza Tóth^{1,2,3,4}, Tamás Vértesi⁵, Paweł Horodecki^{6,7}, Ryszard Horodecki⁸

¹Theoretical Physics, University of the Basque Country (UPV/EHU), Bilbao, Spain
 ²Donostia International Physics Center (DIPC), San Sebastián, Spain
 ³IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
 ⁴Wigner Research Centre for Physics, Budapest, Hungary
 ⁵Institute for Nuclear Research, Hungarian Academy of Sciences, Debrecen, Hungary
 ⁶International Centre for Theory of Quantum Technologies, University of Gdansk, Poland
 ⁷Faculty of Applied Physics and Mathematics, National Quantum Information Centre,
 Gdansk University of Technology, Gdansk, Poland

⁸Institute of Theoretical Physics and Astrophysics, National Quantum Information Centre, Faculty of Mathematics, Physics and Informatics, University of Gdansk, Poland

Torun, Poland, 8 September 2021 (online).

Photos

Tamás Vértesi Hungary

Paweł Horodecki Poland

Ryszard Horodecki Poland

What are entangled states useful for?

- Entanglement is needed for beating the shot-noise limit in quantum metrology.
- Not all entangled states are more useful than separable states.
- Question:
 - Can a quantum state become useful metrologically, if an ancilla or a second copy is added?
 - How to find the local Hamiltonian, for which a quantum state is the most useful compared to separable states?

Metrological usefulness

Metrological gain optimized over all local Hamiltonians

$$g(\varrho) = \max_{\mathrm{local}\mathcal{H}} \frac{\mathcal{F}_Q[\varrho,\mathcal{H}]}{\mathcal{F}_Q^{(\mathrm{sep})}(\mathcal{H})} \; \leftarrow \text{metrological performance of } \varrho \\ \leftarrow \text{best metrological performance of separable states}$$

- A state ρ is useful if g(ρ) > 1.
 G. Toth, T. Vertesi, P. Hordecki, R. Horodecki, PRL 2020.
- We would like to detmine g.

Method for finding the optimal Hamiltonian II

Maximization of $\mathcal{F}_Q[\varrho,\mathcal{H}]$ over \mathcal{H} is difficult: it is convex in \mathcal{H} .

The maximum over local Hamiltonians can be obtained as

$$\max_{local\ \mathcal{H}} \mathcal{F}_Q[\varrho,\mathcal{H}] = \max_{local\ \mathcal{H}} \max_{M} \frac{\langle i[M,\mathcal{H}] \rangle_{\varrho}^2}{(\Delta M)^2}.$$

Similar idea for optimizing over the state, rather than over \mathcal{H} :

[K. Macieszczak, arXiv:1312.1356; K. Macieszczak, M. Fraas, and R. Demkowicz-Dobrzański, New J. Phys. 16, 113002 (2014); Tóth and Vértesi, Phys. Rev. Lett. (2018).]

See-saw algorithm

The precision cannot get worse with the iteration!

Note that $\mathcal{H}_1, \mathcal{H}_2$ fulfill

$$c_n \mathbb{1} \pm \mathcal{H}_n > 0.$$

Numerical results for isotropic state

ullet The 3 imes 3 isotropic state is useful if

$$p < \frac{25 - \sqrt{177}}{32} \approx 0.3655.$$

Then, we have the following results for activation.

a	A	B
\overline{A}	B	

	Analytic example	Numerics
Ancilla	0.3752	0.3941
Second copy	0.4164	0.4170

Pure states

All bipartite pure entangled states are useful.

 In the infinite copy limit, all bipartite pure entangled states are maximally useful.

Summary

See:

Géza Tóth, Tamás Vértesi, Paweł Horodecki, Ryszard Horodecki,

Activating hidden metrological usefulness, Phys. Rev. Lett. 125, 020402 (2020). (open access)

THANK YOU FOR YOUR ATTENTION!

