# Insper

Seleção de modelos, regularização e regressão logística

#### Aula 3

Magno Severino PADS - Modelos Preditivos 08/04/2021

### Objetivos de aprendizagem

Ao final dessa aula você deverá ser capaz de

- compreender e aplicar técnicas de seleção de variável;
- relacionar técnicas de regularização com o trade-off viés-variância;
- ajustar, definir hiperparâmetros e aplicar modelos com técnicas de regularização;
- comparar modelos de regressão linear e regularizados.
- Conceituar a regressão logística;
- Avaliar perfomance de um modelo de classificação.

#### Seleção de modelos

- Seleção de subconjuntos: considera um subconjunto das p preditoras.
- **Regularização:** ajusta-se um modelo com as *p* preditoras e os coeficientes estimados são encolhidos em direção a zero. Essa abordagem reduz a variância.
- Redução de dimensão: considera a utilização de uma combinação das p preditoras numa dimensão M tal que M < p.

#### **Critérios**

- $ullet \mathrm{C}_p = rac{1}{n}(\mathrm{RSS} + 2p\hat{\sigma}^2),$
- Akaike Information Criteria: AIC =  $\frac{1}{n\hat{\sigma}^2}$  (RSS +  $2p\hat{\sigma}^2$ ),
- Bayesian Information Criteria: BIC =  $\frac{1}{n} (RSS + \log(n)p\hat{\sigma}^2)$ ,

em que p é o número de preditoras utilizadas no modelo e  $\hat{\sigma}^2$  é uma estimativa da virância do erro  $\epsilon$  baseado em

$$Y=eta_0+eta_1X_1+eta_2X_2+\cdots+eta_pX_p+\epsilon.$$

#### **Best subset selection**

- Seja  $\mathcal{M}_0$  o modelo nulo (aquele que prevê apenas pela média de Y).
- Para k = 1, ..., p,
  - ajuste todos os  $\binom{p}{k} = \frac{p!}{(p-k)!k!}$  modelos com k preditoras;
  - o selecione o melhor entre todos os  $\binom{p}{k}$  modelos ajustados e denote-o por  $\mathcal{M}_k$ .
  - $\circ$  o melhor modelo pode ser definido de acordo com RSS ou  $\mathbb{R}^2$ .
- Selecione o melhor modelo entre  $\mathcal{M}_0, \mathcal{M}_1, \dots, \mathcal{M}_p$  utilizando validação cruzada para o erro de previsão,  $C_p$ , AIC, BIC ou  $R^2$  ajustado.
- Problema?

## **Stepwise**

Para contornar o problema do número de modelos do método *best subset selection*, as abordagens *stepwise* exploram um espaço restrito de modelos.

| Número de variáveis | Best subset | Stepwise |
|---------------------|-------------|----------|
| 2                   | 4           | 4        |
| 4                   | 16          | 11       |
| 8                   | 256         | 37       |
| 16                  | 65536       | 137      |
| 32                  | 4294967296  | 529      |

#### Forward stepwise selection

- Seja  $\mathcal{M}_0$  o modelo nulo.
- Para k = 0, ..., p 1
  - $\circ$  considere todos os p-k modelos que aumentam as preditoras no modelo  $\mathcal{M}_k$  em uma preditora.
  - escolha o melhor modelo entre os p-k modelos e denote por  $\mathcal{M}_{k+1}$ .
  - $\circ$  novamente, o melhor modelo pode ser definido como a menor RSS ou maior  $R^2$ .
- Selecione o melhor modelo entre  $\mathcal{M}_0, \mathcal{M}_1, \dots, \mathcal{M}_p$  utilizando validação cruzada para o erro de previsão,  $C_p$ , AIC, BIC ou  $R^2$  ajustado.

Esse método pode ser aplicado para os cenários de alta dimensão (n < p). No entanto, para esses casos, é possível construir os modelos  $\mathcal{M}_0, \mathcal{M}_1, \dots, \mathcal{M}_{n-1}$ . Pois o método dos mínimos quadrados não possui solução única para os casos em que  $p \ge n$ .

#### **Backward stepwise selection**

- Seja  $\mathcal{M}_0$  o modelo nulo.
- Para k = p, p 1, ..., 1
  - $\circ$  considere todos os p-k modelos que contenham todas as preditoras no modelo  $\mathcal{M}_k$  menos uma, para um total de k-1 preditoras.
  - escolha o melhor modelo entre os p-k modelos e denote por  $\mathcal{M}_{k-1}$ .
  - o novamente, o melhor modelo pode ser definido como a menor RSS ou maior  $R^2$ .
- Selecione o melhor modelo entre  $\mathcal{M}_0, \mathcal{M}_1, \dots, \mathcal{M}_p$  utilizando validação cruzada para o erro de previsão,  $C_p$ , AIC, BIC ou  $R^2$  ajustado.

#### **Dados Credit** <sup>1</sup>

• **ID**: id

• **Income**: renda (em \$10,000)

• Limit: limite de crédito

• Rating: rating de crédito

• Cards: número de cartões de crédito

• Age: idade em anos

• Education: anos de escolaridade

• **Gender**: Male / Female

Student: Yes / NoMarried: Yes / No

Ethnicity: African American / Asian / Caucasian
 Balance: saldo médio do cartão de crédito em \$

## **Dados Credit**

library(ISLR)
data(Credit)

| ID \$ | Income \$ | Limit | Rating | Cards | Age | Education | Gender + | Student | Married * | Ethnicity *         |
|-------|-----------|-------|--------|-------|-----|-----------|----------|---------|-----------|---------------------|
| 118   | 91.362    | 9113  | 626    | 1     | 47  | 17        | Male     | No      | Yes       | Asian               |
| 352   | 61.62     | 5140  | 374    | 1     | 71  | 9         | Male     | No      | Yes       | Caucasian           |
| 187   | 36.472    | 3806  | 309    | 2     | 52  | 13        | Male     | No      | No        | African<br>American |
| 93    | 30.733    | 2832  | 249    | 4     | 51  | 13        | Male     | No      | No        | Caucasian           |
| 337   | 32.856    | 5884  | 438    | 4     | 68  | 13        | Male     | No      | No        | Caucasian           |

## Como representar a variável Student?

- Valores que **Student** pode assumir: Yes / No.
- Faz sentido escrever o modelo abaixo?

$$Balance = \beta_0 + \beta_1 Income + \beta_2 Student + \epsilon.$$

• Alternativa:

$$\mathbb{I}(Student) = egin{cases} 1, & ext{se } Student = Yes \ 0, & ext{caso contrário}. \end{cases}$$



#### Como representar a variável Student?

- Valores que **Student** pode assumir: Yes / No.
- Faz sentido escrever o modelo abaixo?

$$Balance = \beta_0 + \beta_1 Income + \beta_2 Student + \epsilon.$$

• Alternativa:

$$\mathbb{I}(Student) = egin{cases} 1, & ext{se } Student = Yes \ 0, & ext{caso contrário.} \end{cases}$$



#### Prática R

- Faça uma análise exploratória dos dados (exploratory data analysis EDA).
- Quais variáveis você acredita que mais se relacionam com Balance?

#### **Dados Credit**

```
fit <- lm(Balance ~ ., data = Credit[,-1])
summary(fit)$coefficients</pre>
```

```
Pr(>|t|)
##
                         Estimate Std. Error
                                                 t value
## (Intercept)
                     -479.2078706 35.77393717 -13.3954468 6.730600e-34
## Income
                       -7.8031018 0.23423191 -33.3135727 7.372312e-116
## Limit
                        0.1909067 0.03277862
                                               5.8241238 1.205974e-08
## Rating
                        1.1365265 0.49089445
                                               2.3152157 2.112213e-02
## Cards
                       17.7244836 4.34103295
                                               4.0830106 5.401200e-05
## Age
                       -0.6139088 0.29398941
                                              -2.0882005 3.743127e-02
## Education
                                              -0.6876651 4.920746e-01
                       -1.0988553 1.59795129
## GenderFemale
                      -10.6532477 9.91399990
                                              -1.0745660 2.832368e-01
## StudentYes
                      425.7473595 16.72258016
                                              25.4594300 8.854521e-85
## MarriedYes
                     -8.5339006 10.36287466
                                              -0.8235071 4.107256e-01
## EthnicityAsian
                       16.8041792 14.11906302
                                               1.1901767 2.347047e-01
## EthnicityCaucasian
                       10.1070252 12.20992331
                                               0.8277714 4.083088e-01
```

### Observação

Note que, ao utilizar o best subset, é possível que aconteça a situação seguinte.

| # de variáveis | Best subset                   | Forward stepwise               |  |  |  |
|----------------|-------------------------------|--------------------------------|--|--|--|
| 1              | rating                        | rating                         |  |  |  |
| 2              | rating, income                | rating, income                 |  |  |  |
| 3              | rating, income, student       | rating, income, student        |  |  |  |
| 4              | cards, income, student, limit | rating, income, student, limit |  |  |  |

Os três primeiros modelos em cada coluna são idênticos, já o quarto é diferente.

No método *forward stepwise*. uma variável que aparece no primeiro moedelo fará parte de todos os modelos até o último passo (modelo final).

#### Stepwise

#### Forward

#### **Backward**

```
fit <- lm(Balance ~ ., data = Credit[,-1])
stepAIC(fit, direction = "backward")</pre>
```

#### **Both**

```
stepAIC(fit, direction = "both")
```

#### Importância de variáveis



Métodos de encolhimento

No modelo de regressão linear, o objetivo é encontrar  $\beta=(\beta_0,\beta_1,\ldots,\beta_p)$  que minimizam

$$ext{RSS} = \sum_{i=1}^n igg(y_i - eta_0 - \sum_{j=1}^p eta_j x_{ij}igg)^2.$$

Agora, vamos considerar um termo de penalização para a expressão acima. Assim,

$$ext{RSS} + \lambda \sum_{i=1}^p eta_j^2.$$

Qual o impacto que este termo de penalização causa no RSS? O que acontece se  $\lambda = 0$ ? E se  $\lambda \to \infty$ ?

Minimizar a quantidade acima é equivalente à resolver o seguinte problema de otimização

$$rg\min_{eta} igg\{ \sum_{i=1}^n igg( y_i - eta_0 - \sum_{j=1}^p eta_j x_{ij} igg)^2 igg\} \quad ext{sujeito a} \quad \sum_{j=1}^p eta_j^2 \leq s.$$

Existe uma relação entre  $\lambda$  e s.

Note que  $\beta_0$  **não** é regularizado.

















## Regressão Ridge - escolha de $\lambda$

Vamos determinar  $\lambda$  através da validação cruzada.



Esse gráfico apresenta a estimativa do erro e o desvio-padrão. Essa função utiliza 10-folds como padrão. Os números na parte superior indicam quantos coeficientes são diferentes de zero.

#### Regressão Ridge - resultados

14606.

NA

NA

## 2 ridge ## 3 lasso

## 4 elastic

```
y_ridge <- predict(ridge, newx = X[-idx,],</pre>
                     s = cv ridge$lambda.1se)
 tab <- tibble(metodo = c("lm", "ridge", "lasso", "elastic"),</pre>
               mse = NA)
tab$mse[tab$metodo == "ridge"] <- mean((y[-idx] - y ridge)^2)</pre>
fit lm <- lm(Balance ~ ., Credit[idx, -1])</pre>
y_lm <- predict(fit_lm, Credit[-idx,])</pre>
 tab$mse[tab$metodo == "lm"] <- mean((y[-idx] - y lm)^2)
tab
## # A tibble: 4 x 2
     metodo
##
                 mse
## <chr>
            <dbl>
## 1 lm
             11205.
```

#### Regressão LASSO

A regressão LASSO (Least Absolute Shrinkage and Selection Operator), consdiera a seguinte penalização

$$ext{RSS} + \lambda \sum_{j=1}^p |eta_j|.$$

O que acontece se  $\lambda = 0$ ? E se  $\lambda \to \infty$ ?

Minimizar a quantidade acima é equivalente à resolver o seguinte problema de otimização

$$rg \min_{eta} \left\{ \sum_{i=1}^n \left( y_i - eta_0 - \sum_{j=1}^p eta_j x_{ij} 
ight)^2 
ight\} \quad ext{sujeito a} \quad \sum_{j=1}^p |eta_j| \leq s.$$

Essa penalização é comumente denotada como  $\ell_1$ , pois a norma  $\ell_1$  de um vetor  $\boldsymbol{\beta}$  é dada por  $\ell_1 = \sum_j |\beta_j|$ .

Existe uma relação entre  $\lambda$  e s. Note que  $\beta_0$  não é regularizado.

## Regressão LASSO

```
lasso <- glmnet(X[idx,], y[idx], alpha = 1, nlambda = 1000)
plot_glmnet(lasso, lwd = 2, cex.lab = 1.3, xvar = "lambda")</pre>
```



### Regressão LASSO - escolha de $\lambda$

Vamos determinar  $\lambda$  através da validação cruzada.



#### Regressão LASSO - resultados

## 4 elastic

NA

# LASSO e Ridge



#### **Elastic-net**

O elastic-net é uma penalização do tipo

$$ext{RSS} + \lambda \sum_{j=1}^p igg( lpha |eta_j| + (1-lpha) eta_j^2 igg).$$

Qual a relação desta penalização com o ridge e LASSO?

O que acontece se  $\alpha = 0$ ? E se  $\alpha = 1$ ?

#### **Elastic-net**

```
elastic <- glmnet(X[idx,], y[idx], alpha = 0.5, nlambda = 1000)
plot_glmnet(elastic, lwd = 2, cex.lab = 1.3, xvar = "lambda")</pre>
```



#### Elastic-net - escolha de $\lambda$

Vamos determinar  $\lambda$  através da validação cruzada.



#### **Elastic-net - resultados**

#### Importância de variáveis



#### Pratica R

Problemas de classificação

#### Problemas de classificação

- Situações em que o objetivo é assinalar uma classe à uma observação.
- Dados Default 1:
  - Informações sobre 1000 clientes;
  - o default: indica se o cliente apresentou default;
  - **student**: indica se o cliente é estudante;
  - o balance: saldo médio mensal no cartão de crédito;
  - o income: renda do cliente;
- Objetivo: predizer quais clientes apresentarão default no cartão de crédito.

#### **Dados Default**

|                                   |    | default  | <b>☆</b> | student | <b>*</b> |   |   | bal      | ance 🖣 |  | income \$ |
|-----------------------------------|----|----------|----------|---------|----------|---|---|----------|--------|--|-----------|
| 1                                 | No |          | No       |         |          |   |   | 7        | 29.53  |  | 44361.63  |
| 2                                 | No |          | Yes      |         |          |   |   | 8        | 317.18 |  | 12106.13  |
| 3                                 | No |          | No       |         |          |   |   | 10       | 73.55  |  | 31767.14  |
| 4                                 | No |          | No       |         |          |   |   | 5        | 29.25  |  | 35704.49  |
| 5                                 | No |          | No       |         |          |   |   | 7        | 85.66  |  | 38463.5   |
| 6                                 | No |          | Yes      |         |          |   |   | 9        | 19.59  |  | 7491.56   |
| 7                                 | No |          | No       |         |          |   |   | 8        | 25.51  |  | 24905.23  |
| 8                                 | No |          | Yes      |         |          |   |   | 8        | 808.67 |  | 17600.45  |
| 9                                 | No |          | No       |         |          |   |   | 11       | 61.06  |  | 37468.53  |
| 10                                | No |          | No       |         |          |   |   |          | 0      |  | 29275.27  |
| Showing 1 to 10 of 10,000 entries |    | Previous | 1        | 2       | 3        | 4 | 5 | <br>1000 | Next   |  |           |

# Análise exploratória



# Análise exploratória



# Análise exploratória





Qual seria a previsão para o ponto preto no gráfico?



Considerando k = 1.



Considerando k = 3.



Considerando k = 1.



Considerando k=3.



Regressão logística

#### Classificação

- A variável default assume dois possíveis valores: Yes e No.
- Ao invés de modelar diretamenteo a variável resposta Y, vamos modelar a *probabilidade* de Y pertencer a uma categoria em particular.
- Por exemplo, a probabilidade de default = Yes dado a variável balance pode ser escrita como

$$p(\text{balance}) = P(\text{default} = Yes|\text{balance}).$$

• Poderíamos, por exemplo modelar p(balance) por

$$p(\text{balance}) = \beta_0 + \beta_1 \times \text{balance}.$$

# Classificação



# Porque não usar regressão linear?



Problema?

# Alternativa: modelar uma função da chance

$$ext{chance} = rac{p(X)}{1-p(X)}.$$

| Probabilidade | Chance        |
|---------------|---------------|
| 0.90          | 90:10 ou 9    |
| 0.75          | 75:25 ou 3    |
| 0.50          | 50:50 ou 1    |
| 0.20          | 20:80 ou 0.25 |
| 0.10          | 10:90 ou 0.11 |
| 0.01          | 1:99 ou 0.01  |

### Alternativa: modelar uma função da chance

$$ext{chance} = rac{p(X)}{1-p(X)}.$$

| Probabilidade | Chance        | Log da chance |
|---------------|---------------|---------------|
| 0.90          | 90:10 ou 9    | 2.197         |
| 0.75          | 75:25 ou 3    | 1.099         |
| 0.50          | 50:50 ou 1    | 0.000         |
| 0.20          | 20:80 ou 0.25 | -1.386        |
| 0.10          | 10:90 ou 0.11 | -2.197        |
| 0.01          | 1:99 ou 0.01  | -4.595        |

# Alternativa: modelar uma função da chance



#### Log da chance

$$\log( ext{chance}) = \log\left(rac{p(X)}{1-p(X)}
ight) = eta_0 + eta_1 X.$$

Após algumas manipulções algébricas para isolar p(X), temos que

$$p(X) = rac{\exp\{eta_0 + eta_1 X\}}{1 + \exp\{eta_0 + eta_1 X\}} = rac{1}{1 + \exp\{-(eta_0 + eta_1 X)\}}.$$

# Logística

$$f(x) = \frac{\exp\{x\}}{1 + \exp\{x\}}$$



# Logística

$$\log\!\left(rac{p(x)}{1-p(x)}
ight) = -10.6513 + 0.0055x.$$



#### Logística

$$\log\!\left(rac{p(x)}{1-p(x)}
ight) = -10.7495 + 0.0057 imes balance - 0.7149 imes student.$$



Student = No — Student=Yes

### Como obter as estimativas para $\beta_j$ ?

Vamos considerar uma situação em que todas observações apresentam a mesma probabilidade  $\theta$  de apresentar *default* e foram observados *d defaults* numa amostra de tamanho *n*. Assim,

$$egin{aligned} L_y( heta) &= P(Y_1 = y_1, \dots, Y_n = y_n | heta) \ &= \prod_{i=1}^n P(Y_i = y_i | heta) \ &= \prod_{i=1}^n heta^{y_i} (1 - heta)^{1 - y_i} \ &= heta^d (1 - heta)^{n - d}. \end{aligned}$$

# **Exemplo**

Tome n=10 e d=3. Então

$$L_y( heta) = heta^3 (1- heta)^{10-3}.$$



68 / 83

# **Exemplo**

Tome n=10 e d=3. Então

$$L_y( heta) = heta^3 (1- heta)^{10-3}.$$



69 / 83

### **Exemplo**

Tome n=100 e d=30. Então





70 / 83

### Como obter as estimativas para $\beta_j$ ?

Com a função de verossimilhança.

$$egin{aligned} L_{\mathbf{x},y}( heta) &= P(Y_1 = y_1, \dots, Y_n = y_n | \mathbf{x}_1, \dots, \mathbf{x}_n, eta) \ &= \prod_{i=1}^n P(Y_i = y_i | \mathbf{x}_i, heta) \ &= \prod_{i=1}^n p(\mathbf{x}_i)^{y_i} [1 - p(\mathbf{x}_i)]^{1-y_i} \ &= \prod_{i=1}^n \left( rac{\exp\{eta_0 + eta_1 x_{1,i} + \dots + eta_1 x_{p,i}\}}{1 + \exp\{eta_0 + eta_1 x_{1,i} + \dots + eta_1 x_{p,i}\}} 
ight)^{y_i} \left( 1 - rac{\exp\{eta_0 + eta_1 x_{1,i} + \dots + eta_1 x_{p,i}\}}{1 + \exp\{eta_0 + eta_1 x_{1,i} + \dots + eta_1 x_{p,i}\}} 
ight)^{1-y_i}. \end{aligned}$$

#### Modelo estimado

```
##
## Call:
## glm(formula = default ~ balance + student, family = binomial,
      data = Default)
##
## Deviance Residuals:
                10 Median
##
      Min
                                  3Q
                                         Max
## -2.4578 -0.1422 -0.0559 -0.0203
                                      3.7435
##
## Coefficients:
##
                Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.075e+01 3.692e-01 -29.116 < 2e-16 ***
## balance 5.738e-03 2.318e-04 24.750 < 2e-16 ***
## studentYes -7.149e-01 1.475e-01 -4.846 1.26e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 2920.6 on 9999 degrees of freedom
## Residual deviance: 1571.7 on 9997 degrees of freedom
## AIC: 1577.7
##
## Number of Fisher Scoring iterations: 8
```

#### Como classificar?



#### Como classificar?



#### Matriz de confusão

```
Para corte = 0.5.
```

```
## Observado
## Predito No Yes
## No 9628 228
## Yes 39 105
```

Para corte = 0.8.

```
## Observado
## Predito No Yes
## No 9663 303
## Yes 4 30
```

#### Métricas

|              | Observado |     |  |  |
|--------------|-----------|-----|--|--|
| Classificado | No        | Yes |  |  |
| No           | a         | b   |  |  |
| Yes          | c         | d   |  |  |

Erro de classificação total:  $\frac{b+c}{n}=1-\frac{a+d}{n}$ ;

Verdadeiro positivo (sensibilidade ou recall:  $\frac{d}{b+d}$ ;

Verdadeiro negativo (especificidade):  $\frac{a}{a+c}$ ;

Valor preditivo positivo (precision):  $\frac{d}{c+d}$ ;

Valor preditivo negativo:  $\frac{a}{a+b}$ ;

F-score:  $2 \times \frac{\text{precision} \times \text{recall}}{\text{precision} + \text{recall}}$ .

### Medidas



#### Medidas



### **Curva ROC**



#### Adicionando fator de perda/ganho na classificação

Considere os seguintes ganhos/perdas a depender da classificação feita por um dado modelo.

|              | Observado |     |  |
|--------------|-----------|-----|--|
| Classificado | No        | Yes |  |
| No           | 10        | -5  |  |
| Yes          | -20       | 100 |  |

Em um conjunto com 100 observações, obteve-se o seguinte cenário.

|              | Obse | bservado |  |  |
|--------------|------|----------|--|--|
| Classificado | No   | Yes      |  |  |
| No           | 30   | 20       |  |  |
| Yes          | 10   | 40       |  |  |

Então, o lucro esperado será

$$\begin{aligned} \text{Lucroesperado} &= 10 \times \frac{30}{100} + (-5) \times \frac{20}{100} + (-20) \times \frac{10}{100} + 100 \times \frac{40}{100} \\ &= 40. \end{aligned}$$

#### Dados desbalanceados <sup>1</sup>

Há algumas alternativas para situações em que as classes estão desbalanceadas:

- Ajustar o modelo para maximizar a acurácia da classe minoritária;
- Escolher o corte para classificação com base na curva ROC;
- Poderar os dados com pesos maiores para as classes minoritárias;
- Down-sampling: amostra dados da classe majoritária para que tenha a mesma proporção da classe minoritária;
- *Up-sampling*: é feito um processo de reamostragem com reposição do grupo minoritário até tenha aproximadamente o mesmo número de observações que o grupo majoritário.

#### Resumindo...

- Seleção de modelos através de critérios como o  $C_p$ , AIC, BIC,  $R^2$  e validação cruzada para o erro de previsão:
  - best subset selection;
  - forward stepwise;
  - o backward stepwise.
- Métodos de encolhimento (shrinkage methods):
  - o ridge;
  - LASSO;
  - o elastic-net.
  - Modelo KNN para classificação.
- Regressão logística.
- Métricas para avaliar a performance de um modelo de classificação.

# **Obrigado!**

magnotfs@insper.edu.br