CS70 - Lecture 25 Notes

Name: Felix Su SID: 25794773

Spring 2016 GSI: Gerald Zhang

Markov Chain Review

1. Markov Chain:

- Finite MC set $\mathscr X$
- Initial Distribution π_0
- Transition Probabilities $P = \{P(i, j), i, j \in \mathcal{X}\}\$
- $\Pr[X_0 = i] = \pi_0(i), i \in \mathscr{X}$
- $\Pr[X_{n+1} = j | X_0, \dots, X_n = i] = P(i, j), i, j \in \mathcal{X}, n \ge 0$
- Note: $\Pr[X_0 = i_0, X_1 = i_1, \dots, X_n = i_n] = \pi_0(i_0)P(i_0, i_1)P(i_{n-1}, i_n).$

2. First Passage Time:

•
$$A \cap B = \emptyset; \beta(i) = E[T_A | X_0 = i]; \alpha(i) = \Pr[T_A < T_B | X_0 = i]$$

•
$$\beta(i) = 1 + \sum_{j} P(i,j)\beta(j); \alpha(i) = \sum_{j} P(i,j)\alpha(j)$$

First Passage Time:

Given disjoint sets of states $A \cap B = \emptyset$

Expected Timesteps to get to state in A

$$\beta(i) = E[T_A|X_0 = i] = 1 + \sum_j P(i,j)\beta(j)$$
(1)

Probability of reaching A before B

$$\Pr[T_A < T_B | X_0 = i] \tag{2}$$

Distribution of X_n

- 1. Use $\pi_n = \pi_0 P^n$ function to check if it converges to a vector that does depend on π_0 or not
- Let $\pi_m(i) = \Pr[X_m = i], i \in X$. Note that

•
$$\Pr[X_{m+1} = j] = \sum_{i} \Pr[X_{m+1} = j, X_m = i]$$

$$- = \sum_{i} \Pr[X_m = i] \Pr[X_{m+1} = j | X_m = i]$$

$$-=\sum_{i}\pi_{m}(i)P(i,j)$$

– Hence,
$$\pi_{m+1}(j) = \sum_{i} \pi_m(i) P(i,j), \forall j \in X$$
.

• With π_m, π_{m+1} as a row vectors, these identities are written as $\pi_{m+1} = \pi_m P$.

- Thus, $\pi_1 = \pi_0 P$, $\pi_2 = \pi_1 P = \pi_0 P P = \pi_0 P^2$, ...

- Hence, $\pi_n = \pi_0 P^n, n \ge 0$

Distribution of X_n

Given that $\pi_m(i) = \Pr[X_m = i], i \in \mathscr{X}$

$$\pi_{m+1}(j) = \sum_{i} \pi_m(i) P(i,j), \forall j \in X$$
(3)

With π_m, π_{m+1} as row vectors

$$\pi_{m+1} = \pi_m P \tag{4}$$

General case of π_n

$$\pi_n = \pi_0 P^n, n \ge 0 \tag{5}$$

Balance Equations

1. A distribution π_0 such that $\pi_m = \pi_0, \forall m$ is said to be an invariant distribution $(\pi_0 P = \pi_0)$.

• Theorem A distribution π_0 is invariant iff $\pi_0 P = \pi_0$. These equations are called the balance equations.

• **Proof:** $\pi_n = \pi_0 P^n$, so that $\pi_n = \pi_0, \forall n \text{ iff } \pi_0 P = \pi_0$

 $-\pi_0$ is invariant \implies the distribution of X_n is always equal to X_0 .

- This does not mean that X_n does not move. It means that the probability that it leaves a state i is equal to the probability that it enters state i.

– The balance equations say that $\sum_{i} \pi_{i}(j)P(j,i) = \pi_{i}(i)$

- That is, $\sum_{j \neq i} \pi_{(j)} P(j, i) = \pi_{(i)} (1 - P(i, i)) = \pi_{(i)} \sum_{j \neq i} P(i, j)$.

- Thus, Pr[enter i] = Pr[leave i].

Example 1:

1: $1-a \qquad 1-b \qquad P = \begin{bmatrix} 1-a & a \\ b & 1-b \end{bmatrix}$

$$\begin{split} \pi P &= \pi \iff \left[\pi(1) \quad \pi(2)\right] \begin{bmatrix} 1-a & a \\ b & 1-b \end{bmatrix} = \left[\pi(1) \quad \pi(2)\right] \\ &\iff \pi(1)(1-a) + \pi(2)b = \pi(1) \text{ and } \pi(1)a + \pi(2)(1-b) = \pi(2) \\ &\iff \pi(1)a = \pi(2)b \\ &\text{Equations are redundant, so add an equation: } \pi(1) + \pi(2) = 1. \text{ Then we find } \\ \pi &= \left[\frac{b}{a+b} \quad \frac{a}{a+b}\right] \end{split}$$

Example 2:

$$\begin{split} \pi P &= \pi \iff \left[\pi(1), \pi(2)\right] \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \\ &= \left[\pi(1), \pi(2)\right] \iff \pi(1) = \pi(1) \text{ and } \pi(2) = \pi(2) \\ \text{Every distribution is invariant for this Markov chain. This is obvious, since } X_n = X_0 \text{ for all } n. \text{ Hence, } \Pr[X_n = i] = \Pr[X_0 = i], \forall (i, n) \end{split}$$

Irreducibility

1. MC is **irreducible** if it can go from every state i to every state j in any amount of steps

Existence and Uniqueness of Invariant Distribution

- Theorem: A finite irreducible Markov chain has one and only one invariant distribution.
 - There is a unique positive vector $\pi = [\pi(1) \dots \pi(K)]$ such that $\pi P = \pi$ and $\sum_{k} \pi(k) = 1$
- Fact: If a Markov chain has two different invariant distributions π and ν , then it has infinitely many invariant distributions.
 - * $p\pi + (1-p)\nu$ is then invariant since $[p\pi + (1-p)\nu]P = p\pi P + (1-p)\nu P = p\pi + (1-p)\nu$

Finite irreducible Markov chain has one and only one invariant distribution

There is a unique positive vector $\pi = [\pi(1) \dots \pi(K)]$ such that

$$\pi P = \pi \text{ and } \sum_{k} \pi(k) = 1 \tag{6}$$

Long Term Fraction of Time in States

- Theorem Let X_n be an irreducible Markov chain with invariant distribution π .
- Then, for all $i, \frac{1}{n} \sum_{m=0}^{n-1} 1\{X_m = i\} \to \pi(i)$, as $n \to \infty$.
- The left-hand side is the fraction of time that $X_m = i$ during steps $0, 1, \ldots, n-1$. Thus, this fraction of time approaches $\pi(i)$.

Long Term Fraction of Time in States

for all
$$i, \frac{1}{n} \sum_{m=0}^{n-1} 1\{X_m = i\} \to \pi(i) \text{ as } n \to \infty$$
 (7)

Example 1

• The fraction of time in state 1 converges to 1/2, which is $\pi(1)$.

Example 2

Convergence to Invariant Distribution

- Assuming the MC is irreducible π_n does not necessarily approach a unique invariant distribution π
- Example:

Assume $X_0 = 1$. Then $X_1 = 2, X_2 = 1, X_3 = 2, ...$ Thus, if $\pi 0 = [1, 0], \pi 1 = [0, 1], \pi 2 = [1, 0], \pi 3 = [0, 1],$ etc. Hence, π_n does not converge to $\pi = [1/2, 1/2].$

Periodicity

- 1. If the Markov chain is irreducible, d(i) is the same for all i. Check for 1 state.
- **Definition** If d(i) = 1, the Markov chain is said to be **aperiodic**.
 - Otherwise, it is periodic with period d(i).
- Theorem (see below)
 - Gcd of the set of all numbers of steps it takes to go from from state i, back to state i where the probability of that path is greater that 0
 - Proof: See Lecture notes 24.

Theorem: Periodicity

Assume that the MC is irreducible

$$d(i) := g.c.d.\{n > 0|\Pr[X_n = i|X_0 = i] > 0\} \text{ has the same value for all states } i$$
(8)

Example

$$\begin{split} [A]: \{n>0|\Pr[X_n=1|X_0=1]>0\} &= \{3,6,7,9,11,\ldots\} \implies d(1)=1.\\ \{n>0|\Pr[X_n=2|X_0=2]>0\} &= \{3,4,\ldots\} \implies d(2)=1.\\ [B]: \{n>0|\Pr[X_n=1|X_0=1]>0\} &= \{3,6,9,\ldots\} \implies d(i)=3.\\ \{n>0|\Pr[X_n=5|X_0=5]>0\} &= \{6,9,\ldots\} \implies d(5)=3. \end{split}$$

Convergence of π_n

- Irreducible MC \implies fraction of time spent in state i is equal to the invariant probability of that state
- Irreducible + Aperiodic MC \implies fraction of time spent in state i is equal to and converges to the invariant probability of that state
- **Proof:** See EE126, or Lecture notes 24.

Theorem: Convergence of π_n

Let X_n be an irreducible and aperiodic MC with invariant distribution π

For all
$$i \in X$$
, $\pi_n(i) \to \pi(i)$, as $n \to \infty$ (9)

Example 1

• Irreducible + Aperiodic MC \implies fraction of time spent in state i is equal to and converges to the invariant probability of that state

Example 2

• Irreducible MC \implies fraction of time spent in state i is equal to the invariant probability of that state

Example 3

• Loop implies aperiodicity

Calculating π

Method

1. Let P be irreducible

$$2. \ \pi P = \pi \implies \pi [P - I] = 0$$

3. Replace the last equation with ones $\pi 1 = 1$ to get $\pi P_1 = [0, 0, 1]$

• Observe the sum of the columns of P-I=0, which shows the equations are redundant, which means the equations are redundant

4. Solve $\pi = [0, 0, 1]P_1^{-1}$

Example:

Let *P* be irreducible. Find π where $P = \begin{bmatrix} 0.8 & 0.2 & 0 \\ 0 & 0.3 & 0.7 \\ 0.6 & 0.4 & 0 \end{bmatrix}$

One has
$$\pi P = \pi$$
, i.e., $\pi [P - I] = 0$ where I is the identity matrix:
$$\pi \begin{bmatrix} 0.8 - 1 & 0.2 & 0 \\ 0 & 0.3 - 1 & 0.7 \\ 0.6 & 0.4 & 0 - 1 \end{bmatrix} = [0, 0, 0].$$

However, the sum of the columns of P-I is 0. This shows that these equations are redundant: If all but the last one hold, so does the last one. Let us replace the last equation by $\pi 1 = 1$, i.e., $\sum_{i} \pi(j) = 1$:

6

$$\pi \begin{bmatrix} 0.8 - 1 & 0.2 & 1 \\ 0 & 0.3 - 1 & 1 \\ 0.6 & 0.4 & 1 \end{bmatrix} = [0, 0, 1].$$

 $\pi \begin{bmatrix} 0.8 - 1 & 0.2 & 1 \\ 0 & 0.3 - 1 & 1 \\ 0.6 & 0.4 & 1 \end{bmatrix} = [0, 0, 1].$ Hence, $\pi = [0, 0, 1] \begin{bmatrix} 0.8 - 1 & 0.2 & 1 \\ 0 & 0.3 - 1 & 1 \\ 0.6 & 0.4 & 1 \end{bmatrix}^{-1} \approx [0.55, 0.26, 0.19]$

Summary: Markov Chains

1. Markov Chain: $\Pr[X_n + 1 = j | X_0, \dots, X_n = i] = P(i, j)$

2. FSE: $\beta(i) = 1 + \sum_{j} P(i,j)\beta(j); \alpha(i) = \sum_{j} P(i,j)\alpha(j).$

3. $\pi_n = \pi_0 P^n$

4. π is invariant iff $\pi P = \pi$

- 5. Irreducible \implies one and only one invariant distribution π
- 6. Irreducible \implies fraction of time in state i approaches $\pi(i)$
- 7. Irreducible + Aperiodic $\implies \pi_n \to \pi$.
- 8. Calculating π : One finds $\pi = [0, 0, \dots, 1]Q 1$ where $Q = \dots$.