The Invariant Basis Number Property for C^* -Algebras

Philip M. Gipson

University of Nebraska - Lincoln

NIFAS April 19th, 2014.

All rings R will be unital and all modules X will be right modules.

- ▶ a **basis** for an R-module X is a R-linearly independent generating set.
- An R-module X has dimension if
 - it admits a finite basis, and
 - all finite bases of X have the same cardinality.
- \blacktriangleright A ring R has **Invariant Basis Number** if the free R-modules R^n all have dimension.
- ▶ A ring R is **dimensional** if all R-modules with finite basis have dimension.

Examples: Commutative, right-Noetherian, and division rings are dimensional. The ring

$$\langle a,b,c,d:ca=db=1,\;cb=da=0,\;ac+bd=1\rangle\langle v_1,v_2,v_1^*,v_2^*:v_1^*v_1=v_2^*$$

is not dimensional. Viewed as a module over itself it contains the bases $\{1\}$ and $\{a,b\}\{v_1,v_2\}$.

Leavitt's Work

Theorem (Leavitt, 1962)

A ring R is dimensional if and only if there exists a dimensional ring R' and a unital homomorphism $\psi: R \to R'$.

Theorem (Leavitt, 1962)

If R is not dimensional then there exist unique positive integers N and K such that:

- 1. if X is an R-module with finite basis of size m then m < N iff X has dimension, and
- 2. if X is an R-module with finite bases of distinct sizes n and m then $m \equiv n \mod K$.

The pair (N, K) is termed the **module type** of the ring.

Order and Lattice Structure of Module Types

The Module Types form a distributive lattice under the ordering

$$(N_1,K_1) \leq (N_2,K_2) \Leftrightarrow N_1 \leq N_2, K_2 \equiv 0 \mod K_1$$

and operations

$$(N_1, K_1) \wedge (N_2, K_2) := (\min(N_1, N_2), gcd(K_1, K_2))$$

 $(N_1, K_2) \vee (N_2, K_2) := (\max(N_1, N_2), lcm(K_1, K_2))$

Proposition (Leavitt, 1962)

For unital non-dimensional rings A and B

$$type(A \oplus B) = type(A) \lor type(B)$$

while

$$type(A \otimes_{\mathbb{Z}} B) \leq type(A) \wedge type(B).$$

Existence of all Types

Theorem (Leavitt)

Given a basis type (N, K) there is a unital ring R with that basis type.

The Leavitt Path algebra

$$L_F(1,k) = alg_F\langle v_i, v_i^* : i = 1, ..., k, \sum_{i=1}^{K} v_i v_i^* = 1, \ v_i^* v_j = \delta_{ij} \rangle$$

is of module type (1, k-1).

Leavitt also constructs algebras of types (n,1) for arbitrary $n \ge 1$: e.g.

$$alg_{F}\left\langle v_{ij}, v_{ij}^{*}: i=1,...,n, \ j=1,...,n+1, \ \sum_{k=1}^{n} v_{ki}^{*} v_{kj} = \delta_{ij}, \ \sum_{k=1}^{n+1} v_{ik} v_{jk}^{*} = \delta_{ij} \right\rangle$$

These have not been extensively studied.

Definitions

For a C^* -algebra A, a (right) A-module X is a complex vector space with

- 1. a right action of A, and
- 2. an "A-valued inner product" i.e. a mapping $\langle \cdot, \cdot \rangle : X \times X \to A$ satisfying:
 - $\langle x, ya \rangle = \langle x, y \rangle a$
 - $\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle$

 - $\langle x, x \rangle > 0$ if $x \neq 0$.

The assignment $||x||:=||\langle x,x\rangle||_A^{\frac{1}{2}}$ defines a norm on X.

If *X* is complete with respect to this norm it is a **Hilbert** *A*-**module**.

Examples

- ▶ If $A = \mathbb{C}$ then Hilbert A-modules are Hilbert spaces.
- ▶ C(0,1) is a Hilbert C[0,1]-module with $\langle f,g\rangle=\overline{f}g$.
- ▶ Any C^* -algebra A with $\langle a, b \rangle = a^*b$ is a Hilbert A-module.
- ▶ If X and Y are Hilbert A-modules then $X \oplus Y$ is a Hilbert A-module with the inner-product $\langle (x,y),(z,w)\rangle = \langle x,z\rangle_X + \langle y,w\rangle_Y$.
- ▶ The **standard** A-modules are $A^n := \bigoplus_{i=1}^n A$ with inner products $\langle (a_i), (b_i) \rangle = \sum_{i=1}^n a_i^* b_i$.

Homomorphisms and Unitaries

An A-module homomorphism $\phi: X \to Y$ is an A-linear map, i.e. $\phi(xa+y) = \phi(x)a + \phi(y)$. A homomorphism is:

- ▶ bounded if $\sup_{x \in X} \frac{||\phi(x)||_Y}{||x||_X} < \infty$.
- ▶ **adjointable** if there is a homomorphism $\phi^*: Y \to X$ satisfying $\langle \phi(x), y \rangle_Y = \langle x, \phi^*(y) \rangle_X$.
- unitary if it is adjointable and $\phi\phi^* = I_Y$, $\phi^*\phi = I_X$.

Bounded homomorphisms need not be adjointable, e.g. the inclusion $i: C(0,1) \hookrightarrow C[0,1]$.

L(X, Y)

For Hilbert A-modules X and Y we set

$$L(X,Y):=\{\phi:X o Y:\ \phi\ ext{an adjointable homomorphism}\},$$

$$L(X):=L(X,X).$$

Examples:

- ▶ H, K Hilbert \mathbb{C} -modules; then L(H, K) = B(H, K) and L(H) = B(H).
- ▶ Viewing (unital) A as a Hilbert module over itself; then L(A) = A. (If A non-unital then L(A) is the multiplier algebra.)
- ► The standard A-module A^n ; then $L(A^n) = M_n(A)$ and $L(A^n, A^m) = M_{m,n}(A)$.

Two Hilbert A-modules are **unitarily equivalent**, denoted $X \simeq Y$, if L(X, Y) has a unitary element. This is an equivalence relation.

Bases of Hilbert Modules

Assumption

Henceforth all C^* -algebras will be assumed unital.

Let X be Hilbert A-module.

A set $\{x_{\alpha}\}\subset X$ is **orthogonal** if $\langle x_{\alpha},x_{\beta}\rangle=0$ when $\alpha\neq\beta$, and **orthonormal** if in addition $\langle x_{\alpha},x_{\alpha}\rangle=1_{A}$.

A **basis** for a Hilbert *A*-module is an orthonormal set whose *A*-linear span is norm-dense.

Remark: Orthonormality guarantees the "A-linear independence" of the basis.

Examples

- ▶ If X is a Hilbert \mathbb{C} -module (i.e. a Hilbert space) then its Hilbert space basis is a \mathbb{C} -module basis.
- ▶ The singleton set $\{1_A\}$ is a basis for A considered as a module over itself.
- ▶ The standard modules have the "standard basis" $\{e_1, ..., e_n\}$ with $e_i := (..., 0, 1, 0, ...)$.
- ightharpoonup C(0,1) is a Hilbert C[0,1]-module with no bases.

Finite Bases

Proposition

If X is a Hilbert A-module with finite basis $x_1,...,x_n$ then for each $x \in X$ we have the Fourier decomposition $x = \sum_{i=1}^{n} x_i \langle x_i, x \rangle$.

Short Proof. Use same proof as for finite Hilbert space bases. Completeness of A is essential.

Proposition

If X is a Hilbert A-module with finite basis $x_1, ..., x_n$ then $X \simeq A^n$.

Further, a unitary $u \in L(X, A^n)$ may be found such that $ux_i = e_i$ (e_i the standard basis element of A^n) for all i = 1, ..., n.

Short Proof. Map each element of X to the tuple whose elements are its "Fourier coefficients."

Uniqueness of Basis Size?

Natural Question: Is the cardinality of a basis unique to the module?

Answer: Yes... in some cases.

Example: Hilbert \mathbb{C} -modules have unique basis sizes. This is because they are just Hilbert spaces.

Answer: But not in general.

Example: The Cuntz algebra \mathcal{O}_2 has a singleton basis (the identity) and a basis of size two (the generating isometries).

Invariant Basis Number

Definition

A C^* -algebra A has **Invariant Basis Number (IBN)** if every Hilbert A-module X with finite basis has a unique finite basis size.

Proposition

A has IBN if and only if whenever $A^j \simeq A^k$ then j = k.

Short Proof. If X is a Hilbert A-module with bases of sizes j and k then $A^j \simeq X \simeq A^k$.

Corollary

A does not have IBN if and only if $A^{j} \simeq A^{k}$ for some $j \neq k$.

Examples

- ► Commutative C*-algebras have IBN.
- ▶ No Cuntz algebra \mathcal{O}_n $(n \ge 2)$ has IBN.
- ▶ Stably finite C^* -algebras (ones with no proper matrix isometries) have IBN.

Proposition

A has IBN if and only if every unitary matrix over A is square.

Short Proof. Since $L(A^j, A^k) = M_{j,k}(A)$ we have that $A^j \simeq A^k$ if and only if there is a unitary $j \times k$ matrix over A.

Shamelessly brief review of C^* -algebraic K-theory.

- $ightharpoonup K_0(A)$ is an abelian group.
- ▶ $K_0(A)$ is generated by elements [p] for $p \in P_n(A)$, $n \ge 1$.
- ▶ [p] = [q] if $\begin{bmatrix} p & 0 \\ 0 & r \end{bmatrix} \sim \begin{bmatrix} q & 0 \\ 0 & r \end{bmatrix}$. Here " \sim " is Murray-von Neumann equivalence: $x \sim y$ if $vv^* = x$ and $v^*v = y$ for some v.
- ▶ The map $K_0: A \mapsto K_0(A)$ is a covariant, half exact functor.

The K-theory of many classes of C^* -algebras is well known and, in some cases, provides a classification invariant.

Fact: $K_0(\mathcal{O}_n) = \mathbb{Z}/(n-1)\mathbb{Z}$.

Characterization of IBN

Theorem (G. '14)

A C^* -algebra A has IBN if and only if the element $[1_A] \in K_0(A)$ has infinite order.

Short Proof. Let $|\cdot|$ denote the order of a group element.

If
$$|[1_a]| = k < \infty$$
 then $k[1_A] = [I_k] = 0$.

By definition this means there is some matric projection p for which

$$\begin{bmatrix} I_k & 0 \\ 0 & p \end{bmatrix} \sim [p].$$

We can in fact choose $p = I_n$ for some n > 0, hence $I_{k+n} \sim I_n$.

Thus there is $u \in M_{n,n+k}(A)$ for which $uu^* = I_n$, $u^*u = I_{n+k}$, i.e. there is a unitary in $M_{n,n+k}(A) = L(A^n,A^{n+k})$.

Consequences

We may now recover the C^* -algebraic version of Leavitt's characterization.

Corollary

If $\phi: B \to A$ is a unital *-homomorphism and A has IBN then B has IBN as well.

Short Proof. The functoriality of K_0 gives a group homomorphism $K_0(\phi): K_0(B) \to K_0(A)$ with $K_0(\phi)[1_B] = [1_A]$. Thus $|[1_B]| \equiv 0 \mod |[1_A]|$.

Corollary

If B is an extension of A, i.e. for some C we have the short exact sequence,

$$0 \rightarrow C \rightarrow B \rightarrow A \rightarrow 0$$

and A has IBN then B also has IBN.

Examples

- ▶ The irrational rotation algebras A_{θ} have IBN since $K_0(A_{\theta}) = \mathbb{Z}^2$.
- ▶ The Toeplitz algebra has IBN since it is an extension of $C(\mathbb{T})$ by the compacts.
- Neither the Calkin algebra nor B(H) has IBN since both have trivial K₀.
- ▶ If A is non-unital then its unitization $\widetilde{A} \cong \mathbb{C} \oplus A$ has IBN since $K_0(\widetilde{A}) = K_0(A) \oplus \mathbb{Z}$.

Algebras without IBN

Theorem (G. '14)

If A is a unital C^* -algebra without IBN then there are unique positive integers N and K such that

- 1. if n < N and $A^n \simeq A^j$ for some j then j = n, and
- 2. if $A^j \simeq A^k$ then $j \equiv k \mod K$.

Short Proof. Since A doesn't have IBN there are at least two distinct positive integers for which $A^{j} \simeq A^{k}$. Let N be the smallest of all such integers. Let K be the smallest positive integer for which $A^{N} \simeq A^{N+K}$.

The pair (N, K) will be termed the **basis type** of the C^* -algebra A.

Examples

- ▶ The Cuntz algebra \mathcal{O}_2 has basis type (1,1) since $\mathcal{O}_2 \simeq \mathcal{O}_2^2$.
- ▶ In general, \mathcal{O}_n has type (1, n-1).
- ► *B(H)* has basis type (1, 1).

Theorem (G. '14)

If A has basis type (N, K) then $K = |[1_A]|_{K_0}$.

Corollary

If $K_0(A) = 0$ then A does not have IBN and K = 1.

The C^* -algebraic basis types have the same lattice structure as the purely algebraic module types:

$$(N_1, K_1) \leq (N_2, K_2) \Leftrightarrow N_1 \leq N_2, K_2 \equiv 0 \mod K_1$$

 $(N_1, K_1) \wedge (N_2, K_2) := (\min(N_1, N_2), gcd(K_1, K_2))$
 $(N_1, K_2) \vee (N_2, K_2) := (\max(N_1, N_2), lcm(K_1, K_2))$

Theorem (G. '14)

If A and B are C^* -algebras of basis types (N_1, K_1) and (N_2, K_2) respectively then $A \oplus B$ is of basis type $(N_1, K_1) \vee (N_2, K_2)$.

For example, \mathcal{O}_3 is of type (1,2), \mathcal{O}_4 is of type (1,3) and $\mathcal{O}_3 \oplus \mathcal{O}_4$ is of type (1, 6).

See this either because $\mathcal{O}_7 \subset \mathcal{O}_3 \oplus \mathcal{O}_4$ or

$$K_0(\mathcal{O}_3 \oplus \mathcal{O}_4) = K_0(\mathcal{O}_3) \oplus K_0(\mathcal{O}_4) = \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z} \cong \mathbb{Z}/6\mathbb{Z}.$$

Theorem (G. '14)

If A has basis type (N_1, K_2) and $\pi : A \to B$ is a unital *-homomorphism then B has basis type $(N_2, K_2) \le (N_1, K_1)$.

Theorem (G. '14)

If A and B have basis types (N_1, K_1) and (N_2, K_2) respectively then $A \otimes B$ has basis type $\leq (N_1, K_1) \wedge (N_2, K_2)$.

The proof is an application of the first Theorem and, as such, applies to $A \otimes_{max} B$ as well.

Equality can occur. For example,

$$\textit{type}(\mathcal{O}_3 \otimes \mathcal{O}_4) = (1,1) = (1,2) \wedge (1,3) = \textit{type}(\mathcal{O}_3) \wedge \textit{type}(\mathcal{O}_4).$$

Existence of all Basis Types

Theorem (G. '14)

For each pair of positive integers (N, K) there is a C^* -algebra A with that basis type.

Sketch of Proof. By the previous result, if type(A) = (N,1) and type(B) = (1,K) then $type(A \oplus B) = (N,K)$. Thus it is enough to exhibit C^* -algebras with the types (N,1) and (1,K) for each $N,K \ge 1$.

We have already seen that $type(\mathcal{O}_{K+1}) = (1, K)$.

A series of papers by Rørdam contains such an algebra, which is additionally simple and nuclear.

Theorem (Rørdam, 1998)

Let A be a simple, σ -unital C*-algebra with stable rank one. Then $\mathcal{M}(A)$ is finite if A is non-stable and $\mathcal{M}(A)$ is properly infinite if A is stable.

Finite-ness (or lack thereof) is important because the existence of isometries is necessary to have a module basis.

Theorem (Rørdam, 1997)

For each integer $n \ge 2$ there exists a C^* -algebra B such that $M_n(B)$ is stable and $M_k(B)$ is non-stable for $1 \le k < n$. Moreover, B may be chosen to be σ -unital and with stable rank one.

Recall that if A is of basis type (N, K) then the standard modules are "nice" for indices below N and "interesting" above N.

Theorem (Rørdam, 1998)

For each $n \ge 2$ there is a C^* -algebra A such that $M_k(A)$ is finite for $1 \le k < n$ and $M_n(A)$ is properly infinite.

Theorem (Rørdam, 1998)

For each $n \ge 2$ there is a C^* -algebra A such that $M_k(A)$ is finite for $1 \le k < n$ and $M_n(A)$ is properly infinite.

Fix $n \ge 2$ and take A from the third Theorem. Then A is the multiplier algebra of a stable C^* -algebra and hence $K_0(A) = 0$ and so A does not have IBN and is of basis type (N,1) for some N. We also have $K_0(M_n(A)) = K_0(A) = 0$.

Since $M_n(A)$ is properly infinite and has trivial K_0 there exists a unital embedding $\mathcal{O}_2 \hookrightarrow M_n(A)$. We can use these isometries to show $M_n(A) \simeq M_n(A)^2$, i.e. there is a unitary in $L(M_n(A), M_n(A)^2) = M_{1,2}(M_n(A)) = M_{n,2n}(A)$.

This gives us the equivalence $A^n \simeq A^{2n}$ and so $N \leq n$. A more technical argument, using the finite-ness of the algebras $M_k(A)$ for $1 \leq k < n$, gives that N > n.

Summary

Definition

A C^* -algebra A has IBN if $A^n \simeq A^m \Leftrightarrow n = m$.

Theorem

A C^* -algebras has IBN if and only if the element $[1_A]$ has infinite order in $K_0(A)$.

$\mathsf{Theorem}$

 C^* -algebras without IBN have a unique basis type (N, K).

Theorem

All basis types are realized by C*-algebras.

Thank you.

References

W. G. Leavitt, *Modules Without Invariant Basis Number*, Proc. Amer. Math. Soc., 1957.

" , The Module Type of a Ring, Trans. Amer. Math. Soc., 1962.

M. Rørdam, *Stability of C*-algebras is not a stable property*, Documenta Math., 1997.

" , On sums of finite projections, in "Operator Algebras and Operator Theory," Amer. Math. Soc., 1998.

" , A simple C^* -algebra with a finite and an infinite projection, Acta Mathematica, 2003.