Statistics Cheat Sheet

Descriptive Statistics

- Dotplots: Used for reasonably small data sets
 - Represent each dot above corresponding location on measurement scale
 - Stack dots vertically for one or more occurrence

- Extremely different points = outlier
- Stem and leaf plot: Separate observation into two parts
 - Stem: all but last digit vertical column in increasing order (left)
 - Leaf: final digit right of the stem, in increasing order our of the stem
 - 0 | 4 1 | 1345678889 2 | 1223456666777889999 3 | 01122333445556666677778888899999 4 | 111222223344445566666677788888999 5 | 0011122223345566666677778888899 6 | 01111244455666778
 - Identifies typical values, shows extent of spread of typical values, presence of gaps in data, extent of symmetry, number and location of peaks, outlying values
 - Can round and truncate to avoid irrelevant information
 - Can split each stem to give detail in distribution
 - Can make back to back stemplots to compare distributions
 - Matlab command: round(sort(data)*10)/10

> Histograms

• Determine frequency observations in a class – draw rectangles around corresponding frequencies

- Matlab command: histogram(data) skewness(data)
- ⇒ For density histogram: histogram(Inflow,5,'Normalization','pdf')

Provides visual representation of shape of distribution

Example: Skewed to the left

Example: Skewed to the right

Example: Bimodal

Example: Symmetric shape

- Density histogram: Rectangular heights are densities of each histograms (not frequencies) - relative frequency of class is the proportion of observations in that class. (frequency of class divided by observations)
 - ⇒ Density = relative frequency of class/class width Total area of rectangles = 1 -> sum of all relative frequencies = 1
- Mean: Most frequently used measure of centre arithmetic average of n observations

 - Matlab: mean(x)
- Median: Divides data into two equal parts (half below and half above)
 - If n is **odd**: $m = x_{n+1}$
 - If n is **even**: $\frac{1}{2}(x_{\frac{n}{2}} + x_{\frac{n}{2}+1})$
 - Matlab: median(x)
- Quantiles and percentiles: divide samples into more than two parts
 - First/lower quartile: Median of lower half of data
 - Third/upper quartile: Median of upper half of data
 - Five number summary: $\{x_{(1)},q_1,m,q_3,x_{(n)}\}$
 - Matlab commands: [x(1), quantile(x,0.25), median(x), quantile(x,0.75), x(n)];
- Measures of variability: Observations deviations in the mean for given data

 - Sample variance: $s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i \bar{x})^2$ Standard deviation = $s = \sqrt{\frac{1}{n-1} \sum_{i=1}^n (x_i \bar{x})^2}$
 - Matlab: var(x), std(x)
 - Interquartile range: measure of variability related to sample mean and quartiles (difference between upper and lower quartiles)

- Iqr = q_3 - q_1 describes amount of variation in middle half of observations
 - Can detect outliers: observations that are **1.5*iqr** from closest quartile (extreme outlier is 3*iqr from closest quartile)
- Boxplot: Graphical representation of five number summary
- Central box spans quartiles
- Line in box Is median
- Lines outside box extend to data points which are not outliers (within 1.5*igr)

Elements of probability

- > Events: Subset of sample space of a random experiment
 - Union: $E_1 \cup E_2$ either E_1 or E_2 occurs: $P(E_1 \cup E_2) = P(E_1) + P(E_2)$ for **mutually exclusive** events only
 - Intersection $E_1 \cap E_2$ Both E_1 and E_2 occur
 - Compliment: E^c Event does not occur
 - $E_1 \subseteq E_2 \Rightarrow E_1 \text{ implies } E_2$
 - $E_1 \cap E_2 = \varphi \Rightarrow$ mutually exclusive events (they cannot occur together)
 - De Morgan's laws: $(E_1 \cup E_2) c = E_1 \cap E_2$ $(E_1 \cap E_2)^c = E_1 \cup E_2$

- $P(E^c) = 1 P(E)$
- $P(\varphi) = 0$
- $E_1 \subseteq E_2 \Rightarrow P(E_1) \le P(E_2)$ (increasing measure)
- $P(E_1 \cup E_2) = P(E_1) + P(E_2) P(E_1 \cap E_2)$ for **independent** events
- ➤ Assigning probabilities: probability = proportion of occurrences of an event
 - Multiplication rule: for operation with sequence of steps, total number of ways of completing operation: $n_1 * n_2 * ... * n_k$
 - Permutations: Order sequence of elements in a set: $P_n = n^*(n-1)^*(n-2)^*...^*2^*1=n!$

• Combinations: subset of elements selected from a larger set

$$\binom{n}{r} = C_r^n = \frac{n!}{r! (n-r)!}$$

- ➤ Conditional probability: Probability of A, given that B has occurred
 - $P(A|B) = \frac{P(A \cap B)}{P(B)}$ if P(B) > 0
 - Bayes first rule: if P(A)>0 and P(B)>0:
 P(B|A) = P(A|B) * P(B)/P(A)
- > Independence
 - Two events A and B are **independent** if and only if $P(A \cap B) = P(A)*P(B)$ P(A|B) = P(A) and P(B|A) = P(B) (the probability of the occurrence of one event is unaffected by the other)
- \triangleright Partition: Sequence of events $E_1, E_2, ..., E_n$ is called a partition of S
 - Law of total probability: $P(A) = \sum_{i=1}^{n} P(A|E_i) * P(E_i)$
 - Bayes second rule: for a given partition of S:

$$P(E_i|A) = \frac{P(A|E_i)P(E_i)}{\sum_{i=1}^{n} P(A|E_i)P(E_i)} \Rightarrow P(E|A) = \frac{P(A|E)P(E)}{P(A|E)P(E) + P(A|E^c)(1 - P(E))}$$

Random Variables

- Cumulative distribution function: cdf of random variable X defined for any real number. By F(X) = P(X<=x)</p>
 - For any $a \le b$, $P(a \le X \le b) = F(b) F(a)$
 - F is a non-decreasing function

- ➤ Discrete random variables: Assumes a finite number of variables
 - $S_X = \{x_1, x_2, ...\}$
 - Probability mass function of discrete random variable X defined for any real number x, by p(x) = P(X=x), sum of p(x) = 1

Continuous random variables: Needs to exist a nonnegative function f(x) for all real x

- $P(X \in B) = \int_{B}^{\cdot} f(x) dx$
- Consequence if P(X=x) = 0 for any x
- Probability density function: $F(X) = P(X \le x) = \int_{-\infty}^{x} f(x) dx$ f(x) = dF(x)/dx = F'(x)
- \triangleright Expectation: expectation or mean of a random variable E(x) or μ

Discrete r.v: $E(X) = \sum_{x \in X} x \cdot p(x)$ Continuous r.v: $E(X) = \int_{Sx} x f(x) dx$

- Function of a random variable: discrete r.v: $E(g(X)) = \sum_{S_X} g(x) * p(x)$ Continuous r.v $E(g(X)) = \int_{S_X} g(x) f(x) dx$
- Linear transformation: E(aX+b) = aE(X)+b
- Variance: Var(x) or $\sigma^2 \Rightarrow \text{Var}(x) = \text{E}((x-\mu)^2)$ Discrete r.v: Var(X) = $\sum_{S_x} (x - \mu)^2 * p(x)$ Continuous r.v: Var(X) = $\int_{S_x} (x - \mu)^2 f(x) dx$
 - $Var(X) = E(X^2) (E(X))^2 = E(X^2) \mu^2$
 - Standard deviation $\sigma = \operatorname{sqrt}(\operatorname{Var}(X))$
 - Linear transformation: Var(aX+b) = a²Var(X)
- ightharpoonup Standardisation: $Z = \frac{X \mu}{\sigma}$
 - $E(Z) = (1/\sigma)E(X) \frac{\mu}{\sigma} = 0$
 - $Var(Z) = (1/\sigma^2)Var(X) = \sigma^2/\sigma^2 = 1$
- ightharpoonup Covariance: Covariance of to random variables X and Y \Rightarrow Cov(X,Y) = E((X-E(X))(Y-E(Y))
 - $\mathbb{C}ov(X, Y) = \mathbb{C}ov(Y, X)$
 - $\mathbb{C}\mathsf{ov}(X,X) = \mathbb{V}\mathsf{ar}(X)$

 - $\mathbb{C}ov(aX + b, cY + d) = ac \mathbb{C}ov(X, Y)$
 - $\mathbb{C}ov(X_1 + X_2, Y_1 + Y_2)$ = $\mathbb{C}ov(X_1, Y_1) + \mathbb{C}ov(X_1, Y_2) + \mathbb{C}ov(X_2, Y_1) + \mathbb{C}ov(X_2, Y_2)$
- Correlation: $\rho = \frac{Cov(X,Y)}{\sqrt{Var(X)Var(y)}}$ correlation does not prove causation Close p is to 1 = stronger the linear relationship

Special random variables

- \blacktriangleright Binomial distribution: Outcome experiment is classified as either **success or failure** \Rightarrow Success has probability π with n independent repetitions of the experiment
 - For X = number of successes, binomial random variable: $X \sim Bin(n, \pi)$
 - O Binomial PMF is given by $p(x) = \frac{n!}{x!(n-x)!} \times \pi^x (1-\pi)^{n-x}$ for x = 0,1,...,n n and x are binomial coefficients

• If n = 1, use Bernoulli distribution $(X \sim Bern(\pi))$

$$p(x) = \begin{cases} 1 - \pi & \text{if } x = 0 \\ \pi & \text{if } x = 1 \\ 0 & \text{otherwise} \end{cases}$$

- $X_1 + X_2 \sim Bin(n_1 + n_2, \pi)$
- $u = E(X) = n\pi$
- $\sigma^2 = Var(x) = n\pi(1-\pi)$
- For $X \sim Bin(20,0.1)$
- a) $\mathbb{P}(X=2) = \binom{20}{2} \cdot 0.1^2 \cdot 0.9^{18} = 0.2852$ Matlab: binopdf(2,20,0.1)

b)
$$\mathbb{P}(X \ge 5) = 1 - \mathbb{P}(X = 0) - \mathbb{P}(X = 1) - \mathbb{P}(X = 2) - \mathbb{P}(X = 3) - \mathbb{P}(X = 4)$$
 Matlab: 1-binocdf(4,10,0.1)

- c) $\mathbb{P}(X > 10) = \mathbb{P}(X = 11) + \mathbb{P}(X = 12) + \ldots + \mathbb{P}(X = 20) = \ldots$
- Matlab for $P(5 \le Y \le 15) = binocdf(14,20,0.1) binocdf(4,10,0.1)$
- Matlab for P(5 < Y < 15) = binocdf(15,10,0.1) binocdf(5,10,0.1)
- ➤ Poisson distribution: Interest in **number of occurrences** of some random phenomenon in a fixed **period of time**
 - For X = number of occurrences, Poisson random variable: $X \sim P(\lambda)$
 - $p(x) = \frac{e^{-\lambda} \lambda^x}{x!}$ for $x = 0,1,2,3,... \Rightarrow \lambda$ must satisfy $\lambda > 0$
 - $E(X) = \lambda$
 - $Var(X) = \lambda$
 - $X \sim P(20)$
 - P(X <= 10) = poisscdf(10,20)
 - P(X<10) = poisscdf(9,20)
 - P(X>=10) = 1-poisscdf(9,20)
- Uniform distribution: continuous distribution
 - o A random variable is uniformly distribution over an interval $[\alpha,\beta]$ $X \sim U_{[\alpha,\beta]}$

if its probability density function is given by

$$f(x) = \begin{cases} \frac{1}{\beta - \alpha} & \text{if } x \in [\alpha, \beta] \\ 0 & \text{otherwise} \end{cases} (\rightarrow S_X = [\alpha, \beta])$$

Constant density $\to X$ is just as likely to be "close" to any value in S_X .

By integration, it is easy to show that

$$F(x) = \begin{cases} 0 & \text{if } x < \alpha \\ \frac{x - \alpha}{\beta - \alpha} & \text{if } \alpha \le x \le \beta \\ 1 & \text{if } x > \beta \end{cases}$$

- \circ E(X) = $(\alpha+\beta)/2$
- \circ Var(X) = $(\beta \alpha)^2/12$
- \circ P(a < X < b) = (b a)/(β α)
- o For $X \sim U_{[-1.1]}$
 - P(X<0) = P(X<=0) = unifcdf(0,-1,1)
 - $P(-0.9 \le X \le 0.8) = P(X \le 0.8) P(X < -0.9) = unifcdf(0.8,-1,1)-unifcdf(-0.9,-1,1)$
 - the value of x such that $P(-x \le X \le x) = 0.9 = \text{unifiny}(0.95, -1, 1)$
 - i) $\mathbb{P}(X > 0.2125) = 1 \mathbb{P}(X \le 0.2125)$ >> 1-unifcdf(0.2125,0.205,0.215) ans = 0.2500
 - ii) What is x to have $\mathbb{P}(X > x) = 0.1$? That means : $\mathbb{P}(X \le x) = 0.9$ >> unifinv(0.9,0.205,0.215) ans = 0.2140

 $\rightarrow x = 0.214$ is the thickness exceeded by 10% of the wafers

- Exponential distribution: Interest in random amount of time before the first occurrence of a given phenomenon over a unit period of time
 - Random variable is an exponential random variable with parameter μ $X \sim Exp(\mu)$

if its probability density function is given by

$$f(x) = \begin{cases} \frac{1}{\mu} e^{-\frac{x}{\mu}} & \text{if } x \ge 0 \\ 0 & \text{otherwise} \end{cases} (\to S_X = \mathbb{R}^+)$$

By integration, we find

$$F(x) = \begin{cases} 0 & \text{if } x < 0 \\ 1 - e^{-\frac{x}{\mu}} & \text{if } x \ge 0 \end{cases}$$

- $E(X) = \mu$
- $Var(X) = \mu^2$
- For $X \sim Exp(2)$
 - i) $\mathbb{P}(W \leq 2)$ >> expcdf(2,2) ans = 0.6321
 - ii) $\mathbb{P}(W < 2) = \mathbb{P}(W \le 2)$, as Exponential is a continuous distribution. For that matter, the MATLAB command is the same to compute $\mathbb{P}(W \leq w)$ and $\mathbb{P}(W < w)$: expcdf
 - iii) $\mathbb{P}(10 < W < 13) = \mathbb{P}(W < 13) \mathbb{P}(W \le 10)$ >> expcdf(13,2)-expcdf(10,2) ans =
 - 0.0052
 - iv) $\mathbb{P}(W > -5) = 1 \mathbb{P}(W < -5)$ must be 1, as an Exponential random variable can only assume non negative values. Indeed: >> 1-expcdf(-5,2) ans =

For $\mu = 1/0.0003$

Find x such that $\mathbb{P}(X > x) = 0.95$. That means that $\mathbb{P}(X \le x) = 0.05$ >> expinv(0.05,1/0.0003) ans =

- $\sim 95\%$ of the fans will last longer than 170.98 hours
- Normal distribution: random variable is normally distributed with parameters μ and σ : $X \sim N(\mu, \sigma)$
 - Probability density function:

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

o
$$E(X) = \mu$$

$$\circ \quad Var(X) = \sigma^2$$

- > Standardisation: if $X \sim N(\mu, \sigma)$ then $Z = \frac{x \mu}{\sigma} \sim N(0, 1)$
 - o This transforms X into a standard normal random variable Z
- \triangleright P(x<=Z<y) in matlab: normcdf(y)-normcdf(x)
 - o For $P(X \le x) = P((x-\mu)/\sigma)$
 - For $y = P(X \le x) = P(Z \le (x \mu)/\sigma)$ ⇒ norminv(y) = z

 $(x-\mu)/\sigma = z \Rightarrow$ can solve for μ

 \triangleright Quantiles: P(Z>z_a) = 1 - α or P(Z<z_a) = α

- > Checking normal distribution
 - o Can check density histogram follows a bell-shaped curve
 - Quantile plots: More reliable for smaller sample sizes (matlab: qqplot(data))
 - Compares the data ordered from smallest to largest, if the sample comes from a normal distribution, the points should follow approximately a straight line.

 \rightarrow the normality assumption appears acceptable for the first data set, not at all for the second

Inferences concerning a mean

- ➤ Point estimation: An estimator y is a random variable, which has its mean, variance and probability distribution, known as sampling distribution.
 - To estimate population mean μ , use sample mean $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ This derives to E(X) = μ and Var(X) = σ^2/n
 - $X_i \sim N(\mu, \sigma/n^{1/2})$
- \triangleright Properties of estimators: An estimator Y of y is said to be unbiased if an only if it means is equal to y such that E(Y) = y
 - To say its unbiased means on the average, its values will equal the parameter its supposed to estimate.

- If not biased, E(Y)-y is called the biased estimator (systematic error)
- Estimators with smaller variances are more likely to produce estimates close to the true value y.
 - Good way to check is to show variance decreases to 0 as n increases.
- > Standard error: the standard error of an estimator Y is its standard deviation sd(Y)
 - Standard error of sample mean: from E(X) and var(X), sd(X) = $\sigma/n^{1/2}$
 - Sample standard deviation: $s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i \bar{x})^2}$ Where sd(X) = s/n^{1/2}
- > Confidence intervals: Interval for which we can assert a reasonable degree of certainty that will contain the true value of the proportion under consideration.
 - Short interval implies precise estimation, wide interval shows there is a great deal of uncertainty concerning the parameter we are estimating.
 - At a confidence level of $100*(1-\alpha)\% \Rightarrow$ we are that percent confident that our true value of the parameter is included into the interval [a,b]
- Confidence interval on the mean of a normal distribution with variance known:
 - If we desire a confidence interval for μ of level 100*(1- α)% from a random sample: $P(L \le \mu \le U) = 1 - \alpha$
 - Since Z ~ N(0,1): P(- $z_{1-\alpha/2} \le \frac{\sqrt{n}(\bar{X}-\mu)}{\sigma} \le z_{1-\alpha/2}$) = 1- α
 - Two sided Confidence interval of level $100*(1-\alpha)\%$ for μ is given by:

$$\left[\bar{x}-z_{1-\alpha/2}\frac{\sigma}{\sqrt{n}},\bar{x}+z_{1-\alpha/2}\frac{\sigma}{\sqrt{n}}\right]$$

- If one sided, then $z_{1-\alpha}$
- Matlab: $[mean(x)-norminv(1-\alpha/2)*(std(x)/sqrt(n)), mean(x)+norminv(1-\alpha/2)*(std(x)/sqrt(n)), mean(x)+norminv(x)+n$ $\alpha/2$)*(std(x)/sqrt(n))]
- Since the error $e = |\bar{x} \mu|$ is less than $z_{1-\alpha/2} \cdot \sigma / n^{1/2}$ then sampling size is

$$n = \left(\frac{z_{1-\frac{\alpha}{2}}\sigma}{e}\right)^{2}$$

- > Central limit theorem: Asserts that the sum of a large number of independent random variables has a distribution that is approximately normal
 - If $X_1, X_2, ..., X_n$ is a random sample taken from a population with mean μ and finite difference σ^2 and given \bar{x} is the sample mean, then limiting distribution is: $\frac{\sqrt{n}(\bar{X}-\mu)}{\sigma}$ as n goes to infinity, is the standard normal
 - $X_i \sim \text{Exp}(\lambda) \Rightarrow (\mu = 1/\lambda, \sigma = 1/\lambda) \Rightarrow \frac{\sqrt{n}(\bar{X} \frac{1}{\lambda})}{\frac{1}{\lambda}} \sim N(0,1)$
 - $X_i \sim U_{[a,b]} \Rightarrow (\mu = (a+b)/2, \sigma = (b-a)/12^{1/2}) \Rightarrow \frac{\sqrt{n}(\bar{X} \frac{a+b}{2})}{\frac{b-a}{\sqrt{2\sigma}}} \sim N(0,1)$
 - $X_i \sim \text{Bern}(\pi) \Rightarrow (\mu = \pi, \sigma = \sqrt{\pi(1-\pi)}) \Rightarrow \frac{\sqrt{n}(\bar{X}-\pi)}{\sqrt{\pi(1-\pi)}} \sim N(0,1)$
 - The larger the n, the better the normal approximation
 - The closer the population distribution is to being normal, the more rapidly the distribution of $\frac{\sqrt{n}(\bar{X}-\mu)}{\sigma}$ approaches normality as n gets large.

- The normal approximation is valid whenever sample size $n \ge 30$
- > Student t-distribution: Random variable T, from a normal population that follows students t-distribution with v degrees of freedom such that $T \sim t_v$
 - E(T) = 0 and Var(T) = v/(v-2) for v>2
 - Student's t-distribution has a heavier tail that a normal distribution
 - Quantiles: critical t value \Rightarrow $t_{v;1-\alpha} = -t_{v;\alpha}$
 - For $n \ge 2$, $T = \frac{\sqrt{n}(\bar{X} \mu)}{s} \sim t_{n-1}$ and thus:
 - $P(-t_{n-1;1-\alpha/2} \le \frac{\sqrt{n}(\bar{X}-\mu)}{\sigma} \le t_{n-1;1-\alpha/2} = 1-\alpha$
 - Confidence interval:

$$\left[\left[\bar{x}-t_{n-1;1-\alpha/2}\frac{s}{\sqrt{n}},\bar{x}+t_{n-1;1-\alpha/2}\frac{s}{\sqrt{n}}\right]\right]$$

- Matlab: $[mean(x)-tinv(1-\alpha/2.n-1)*(std(x)/sqrt(n)), mean(x)+yinv(1-\alpha/2,n-1)*(std(x)/sqrt(n)), mean(x)+yinv(1-\alpha/2,$ 1)*(std(x)/sqrt(n))]
- \triangleright Predicting future observation: Predicting an X_{n+1} value for a single future observation where X^* is a statistic of the predictor X_{n+1}

 - $E(X_{n+1}-X^*) = 0$ and $Var(X_{n+1}-X^*) = \sigma^2(1+1/n)$ $Z = \frac{X_{n+1}-\bar{X}}{\sigma\sqrt{1+\frac{1}{n}}} \sim N(0,1)$ and $T = \frac{X_{n+1}-\bar{X}}{S\sqrt{1+\frac{1}{n}}} \sim t_{n-1}$

$$\begin{split} & \left[\bar{x} - z_{1-\alpha/2} \, \sigma \, \sqrt{1 + \frac{1}{n}}, \bar{x} + z_{1-\alpha/2} \, \sigma \, \sqrt{1 + \frac{1}{n}} \right] \\ & \left[\bar{x} - t_{n-1;1-\alpha/2} \, s \, \sqrt{1 + \frac{1}{n}}, \bar{x} + t_{n-1;1-\alpha/2} \, s \, \sqrt{1 + \frac{1}{n}} \right] \end{split}$$

- \triangleright Inferences concerning proportions: Focuses around π , the proportion of the population that has characteristic of interest. $X \sim Bern(\pi)$
 - Sample proportion: $\hat{p} = \frac{Y}{n} = \frac{1}{n} \sum_{i=1}^{n} x_i$
 - $E(\hat{p}) = \pi$ and $Var(\hat{p}) = \pi(1-n)/n$
 - $\frac{\sqrt{n}(\hat{p}-\pi)}{\sqrt{\pi(1-\pi)}} \sim N(0,1) \Rightarrow P(-z_{1-\alpha/2} \le \frac{\sqrt{n}(\hat{p}-\pi)}{\sqrt{\pi(1-\pi)}} \le z_{1-\alpha/2} = 1-\alpha$
 - Confidence interval:

$$\left[\hat{p} - z_{1-\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \hat{p} + z_{1-\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \right]$$

Choice of sample size:

$$n = \left(\frac{Z_{1-\frac{\alpha}{2}}}{2e}\right)^{2}$$

- ➤ Hypothesis testing: Requires the decision of which 2 parameters are true
 - Null hypothesis H_0 : $\mu = x \Rightarrow$ we assume this is true unless we have enough evidence otherwise and thus:
 - Alternative hypothesis: could be H_a : $\mu \neq x$ (two sided alternatives) or H_a : μ >x or μ <x (one sided alternatives)
 - Errors: P(type 1 error): P(reject H_0 when it is true) = α (reduce by increasing acceptance region and increase significance level α)

- P(type II eror): P(fail to reject H_0 .when it is false) = β (reduce by opposite of above)
- If population follow a normal distribution with known standard deviation σ , at significance level α , the decision rule is:

reject
$$H_0$$
 if $\bar{x} \notin \left[\mu_0 - z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}, \mu_0 + z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}} \right]$

- We can tolerate being wrong at $\alpha\%$ of most cases
- \triangleright P-value: Smallest level of significance that would lead to rejection of H_0 with the observed sample the probability that the test statistic will take on a value that is at least extreme as the observed value when H_0 is true
 - When testing H_0 : $\mu = \mu_0$ against H_a : $\mu \neq \mu_0$ then need z_0 as z-score $z_0 = \frac{\sqrt{n}(\bar{X} \mu_0)}{\sigma}$

 $p = 2*(1-\phi(|z_0|): 2*(1-normcdf(z_0))$ (matlab)

- If $p < \alpha$ then reject H_0 , if $p >= \alpha$ then do not reject H_0
- State the null and alternative hypotheses: H₀ and H_a
- 2 Determine the rejection criterion
- Ompute the appropriate test statistic and determine its distribution
- Calculate the p-value using the test statistics computed
- 6 Conclusion: reject/do not reject H₀, relate back to the research question
- Pone sided alternatives: When testing H_a : $μ > μ_0$, we reject H_0 if $\bar{X} > μ_0 + z_{1-α/2*}(σ/n^{1/2})$
 - $p = 1 \phi(z_0) (1 normcdf(z_0))$
- Unknown standard deviation: Now work with $t_0 = \frac{\sqrt{n}(\bar{X} \mu_0)}{s}$
 - For a two sided hypothesis test, rejection criterion:

reject
$$H_0$$
 if $\bar{x} \notin \left[\mu_0 - t_{n-1,1-\alpha/2} \frac{s}{\sqrt{n}}, \mu_0 + t_{n-1,1-\alpha/2} \frac{s}{\sqrt{n}} \right]$

- $p = 2*P(T>|t_0|) (2*(1-tcdf(t_0)))$
- For one sided alternatives, rejection criterion:

reject
$$H_0$$
 if $\bar{x} > \mu_0 + t_{n-1,1-\alpha} \frac{s}{\sqrt{n}}$ or reject H_0 if $\bar{x} < \mu_0 - t_{n-1,1-\alpha} \frac{s}{\sqrt{n}}$

and the associated p-values are

$$p = \mathbb{P}(T > t_0)$$
 or $p = \mathbb{P}(T < t_0)$

 \blacktriangleright Hypothesis tests for a proportion: Consider two sided hypothesis test where H_0 : $\pi = \pi_0$ against H_a : $\pi \neq \pi_0$, rejection criterion:

reject
$$H_0$$
 if $\hat{p} \notin \left[\pi_0 - z_{1-\alpha/2} \sqrt{\frac{\pi_0(1-\pi_0)}{n}}, \pi_0 + z_{1-\alpha/2} \sqrt{\frac{\pi_0(1-\pi_0)}{n}} \right]$

• $z_0 = \frac{\sqrt{n}(\hat{p} - \pi_0)}{\sqrt{\pi_0(1 - \pi_0)}} \Rightarrow p = 2*(1 - \phi(|z_0|))$

• For a one sided test for H_0 : $\pi = \pi_0$ against H_a : $\pi > \pi_0$ or H_a : $\pi < \pi_0$, then

reject
$$H_0$$
 if $\hat{p} > \pi_0 + z_{1-\alpha} \sqrt{\frac{\pi_0(1-\pi_0)}{n}}$

or

reject
$$H_0$$
 if $\hat{p} < \pi_0 - z_{1-\alpha} \sqrt{\frac{\pi_0(1-\pi_0)}{n}}$

will have approximate significance level α .

The associated approximate p-values will be

$$p=1-\Phi(z_0)$$
 or $p=\Phi(z_0)$

Inferences concerning a difference of means

- Based around interest in comparing two different populations assuming the two samples studied are independent
- \triangleright Hypothesis test: Null hypothesis will be H₀: μ₁ = μ₂

 H_a : $\mu_1 \neq \mu_2$ (two sided alternative) or

 H_a : $\mu_1 > \mu_2$ or H_a : $\mu_1 < \mu_2$ (one sided alternative)

• Sampling distribution:

$$oxed{ar{X}_1 - ar{X}_2 \overset{ ext{(a)}}{\sim} \mathcal{N}\left(\mu_1 - \mu_2, \sqrt{rac{\sigma_1^2}{n_1} + rac{\sigma_2^2}{n_2}}
ight)}$$

• Rejection criterion:

reject
$$H_0$$
 if $\bar{x}_1 - \bar{x}_2 \notin \left[-z_{1-\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}, z_{1-\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \right]$

- $Z_0 = \frac{(\bar{X}_1 \bar{X}_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \Rightarrow p = 2*(1-\phi(|z_0|))$
- For one sided alternatives:

Similarly, for the one-sided test with alternative $H_1: \mu_1 > \mu_2$, the decision rule is

reject
$$H_0$$
 if $\bar{x}_1 - \bar{x}_2 > z_{1-\alpha} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$

and the associated p-value is

$$p = 1 - \Phi(z_0),$$

while for the one-sided test with alternative $H_1: \mu_1 < \mu_2$, the decision rule is

reject
$$H_0$$
 if $ar{x}_1-ar{x}_2<-z_{1-lpha}\sqrt{rac{\sigma_1^2}{n_1}+rac{\sigma_2^2}{n_2}}$

and the associated p-value is

$$p = \Phi(z_0)$$

Confidence interval for μ₁-μ₂:

$$\left[(\bar{x}_1 - \bar{x}_2) - z_{1-\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}, (\bar{x}_1 - \bar{x}_2) + z_{1-\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \right]$$

 \triangleright Hypothesis test for $\mu_1 = \mu_2$ ($\sigma_1 = \sigma_2$) we have:

$$\frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{S_\rho \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \stackrel{(a)}{\sim} t_{n_1 + n_2 - 2}$$

Where S_p is the pooled standard deviation: $S_p = \sqrt{\frac{(n_1-1)s_1^2 + (n_2-1)S_2^2}{n_1+n_2-2}}$

reject
$$H_0$$
: $\mu_1 = \mu_2$ if

$$\bar{\mathbf{x}}_1 - \bar{\mathbf{x}}_2 \notin \left[-t_{n_1 + n_2 - 2; 1 - \alpha/2} \, \mathbf{s}_p \, \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}, t_{n_1 + n_2 - 2; 1 - \alpha/2} \, \mathbf{s}_p \, \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \right]$$

$$ho$$
 $t_0 = \frac{(\bar{X}_1 - \bar{X}_2)}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \Rightarrow p = 2*(T>|t_0|) \text{ where } T \sim t_{n1+n2-2}$

One-sided versions of this test are also available. For the alternative $H_a: \mu_1 > \mu_2$, the decision rule is

reject
$$H_0: \mu_1 = \mu_2$$
 if $\bar{x}_1 - \bar{x}_2 > t_{n_1 + n_2 - 2; 1 - \alpha} s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$

and the associated p-value is

$$p = 1 - \mathbb{P}(T < t_0),$$

whereas for the alternative H_a : $\mu_1 < \mu_2$, the decision rule is

reject
$$H_0$$
 if $ar{x}_1 - ar{x}_2 < -t_{n_1 + n_2 - 2; 1 - lpha} \, s_p \, \sqrt{rac{1}{n_1} + rac{1}{n_2}}$

and the associated p-value is

$$p = \mathbb{P}(T < t_0)$$

ightharpoonup Two sided confidence interval for μ_1 - μ_2 :

$$\begin{split} [(\bar{X}_1 - \bar{X}_2) - t_{n_1 + n_2 - 2; 1 - \frac{\alpha}{2}} S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}, [(\bar{X}_1 - \bar{X}_2) \\ + t_{n_1 + n_2 - 2; 1 - \frac{\alpha}{2}} S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}] \end{split}$$

while two 100 \times (1 $-\alpha$)% one-sided confidence intervals for $\mu_1 - \mu_2$ are

$$\left(-\infty, (\bar{x}_1 - \bar{x}_2) + t_{n_1 + n_2 - 2; 1 - \alpha} s_{\rho} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}\right]$$

and

$$\left[(\bar{x}_1 - \bar{x}_2) - t_{n_1 + n_2 - 2; 1 - \alpha} s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}, +\infty \right)$$

► Hypothesis test for μ_1 = μ_2 ($\sigma_1 \neq \sigma_2$) we have:

$$\frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} \stackrel{a}{\sim} t_{\nu}$$

• Degrees of freedom is now:

$$\nu = \frac{(s_1^2/n_1 + s_2^2/n_2)^2}{\frac{(s_1^2/n_1)^2}{n_1 - 1} + \frac{(s_2^2/n_2)^2}{n_2 - 1}}$$

• Confidence interval:

$$\left[\bar{x}_1 - \bar{x}_2 \pm t_{\nu;1-\alpha/2} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}\right]$$

- Paired observations: Used to deal with "before and after" data
 - Consider differences $D_i = X_{i1} X_{i2} = Y_{i1} Y_{i2}$ $\mu_D = \mu_1 - \mu_2$
 - Hypothesis test: H_0 : $\mu_1 = \mu_2$ against H_a : $\mu_1 > \mu_2$
 - Need to take sample difference and then find the mean \bar{d} and the sample standard deviation s, then the rejection criterion is:

reject
$$H_0$$
 if $\bar{d} > t_{n-1;1-\alpha} \frac{s}{\sqrt{n}}$

• The p-value is: $P(T>|t_0|)$ where $t_0 = \frac{\sqrt{n}\bar{d}}{s}$

Regression Analysis

- ➤ Simple linear regression model: If points lie randomly around a straight line, it is reasonable to assume X and Y are related
 - Regression Model: $Y = \beta_0 + \beta_1 X + \epsilon$, where the slope β_1 and intercept β_0 are regression coefficients.
 - $E(\varepsilon) = 0 \Rightarrow \mu_Y = \beta_0 + \beta_1 X$ and $Var(\varepsilon) = \sigma^2$
 - Random error is normally distributed: $\varepsilon \sim N(0,\sigma)$, $Y|(X=x) \sim N(\beta_0 + \beta_1 X,\sigma)$
- Least squares estimators
 - $S_{XX} = \sum_{i=1}^{n} (X_i \bar{X})^2 \left(= \sum_{i=1}^{n} X_i^2 \frac{(\sum_i X_i)^2}{n} \right)$
 - $S_{XY} = \sum_{i=1}^{n} (X_i \bar{X}) (Y_i \bar{Y}) (= \sum_{i=1}^{n} X_i^2 \frac{(\sum_i X_i)^1 (\sum_i Y_i)^1}{n})$
 - $\beta_1 = S_{XX}/S_{XY}$ and $\beta_0 = \overline{Y} \frac{S_{XX}}{S_{XY}}\overline{X}$
 - $\bar{X} = \frac{\sum_i X_i}{n}$
- Estimating σ^2 : ε = Y-(β_0 + β_1 X)
 - Residuals of fitted model:

$$\bar{e} = \frac{1}{n} \sum_{i=1}^{n} \hat{e}_i = \bar{y} - (\hat{b}_0 + \hat{b}_1 \bar{x}) = 0$$

- Number of degrees of freedom is now n-2 since there are 2 parameters
- Unbiased estimated of σ^2 :

$$s^2 = \frac{1}{n-2} \sum_{i=1}^n \hat{e}_i^2$$

$$\Rightarrow S^2 = \frac{1}{n-2} \sum_{i=1}^{n} (Y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i))^2$$

- \triangleright Inferences concerning β₁: Need to consider that β₁ = 0 as a hypothesis (it does not depend on the predictor X)
 - H₀: $\beta_1 = 0$ against H_a: $\beta_1 \neq 0$ where $\sqrt{s_{xx}} \frac{\widehat{\beta_1} \beta_1}{s} \sim t_{n-2}$
 - Rejection criterion:

reject
$$H_0$$
 if $\hat{b}_1 \notin \left[-t_{n-2,1-\alpha/2} \frac{s}{\sqrt{s_{xx}}}, t_{n-2,1-\alpha/2} \frac{s}{\sqrt{s_{xx}}} \right]$

• $p = 2*P(T>|t_0|) \Rightarrow t_0 = \sqrt{s_{xx}} \frac{\widehat{b_1}}{s}$

• Two sided Confidence interval for the true slope β_1 :

$$\left[\hat{b}_{1} - t_{n-2;1-\alpha/2} \frac{s}{\sqrt{s_{xx}}}, \hat{b}_{1} + t_{n-2;1-\alpha/2} \frac{s}{\sqrt{s_{xx}}}\right]$$

- \triangleright Inferences concerning β_0
 - Two sided confidence interval:

$$\left[\hat{b}_{0} - t_{n-2;1-\alpha/2} s \sqrt{\frac{1}{n} + \frac{\bar{x}^{2}}{s_{xx}}}, \hat{b}_{0} + t_{n-2;1-\alpha/2} s \sqrt{\frac{1}{n} + \frac{\bar{x}^{2}}{s_{xx}}}\right]$$

• Rejection criterion for the same hypothesis test:

$$\text{reject } H_0 \text{ if } \hat{b}_0 \notin \left[-t_{n-2,1-\alpha/2} s \sqrt{\frac{1}{n} + \frac{\bar{x}^2}{s_{xx}}}, t_{n-2,1-\alpha/2} s \sqrt{\frac{1}{n} + \frac{\bar{x}^2}{s_{xx}}} \right]$$

$$t_0 = rac{\hat{b}_0}{s\sqrt{rac{1}{n} + rac{ ilde{X}^2}{s_{XX}}}} \qquad o oldsymbol{p} = 2 imes \mathbb{P}(T > |t_0|), \quad T \sim t_{n-2}$$

Computer Output

Regression Analysis: Y versus X

The regression equation is Y = 74.283 + 14.947 X

$$S = 1.087 R-Sq = 87.74% R-Sq(adj) = 87.06%$$

- First Column 'Coef' is coefficients b₀ and b₁
 - Second Column 'SE Coef' Is standard errors $s\sqrt{\frac{1}{n} + \frac{\bar{x}^2}{s_{xx}}}$ and $\frac{s}{\sqrt{s_{xx}}}$
 - Third Column T is observed t₀ values of test statistic
 - Fourth column p gives associated p values
 - $S = \text{estimate s of } \sigma$
- Confidence interval on mean response: Specified at a specific value X
 - Standardising unknown σ as S: $\frac{\widehat{\mu}_{Y|X=x} \mu_{Y|X=x}}{s\sqrt{\frac{1}{n} + \frac{(x-\overline{x})^2}{s_{YY}}}} \sim t_{n-2}$
 - From $y(x) = b_0 + b_1 x \Rightarrow$ Two sided confidence interval on the mean response Y

$$\left[\hat{y}(x) - t_{n-2;1-\alpha/2} s \sqrt{\frac{1}{n} + \frac{(x-\bar{x})^2}{s_{xx}}}, \hat{y}(x) + t_{n-2;1-\alpha/2} s \sqrt{\frac{1}{n} + \frac{(x-\bar{x})^2}{s_{xx}}}\right]$$

- ➤ Predicting new observations: Given by $Y^*(X) = \beta_0 + \beta_1 x$
 - Standardisation gives: $\frac{\widehat{\mu}_{Y|X=x} \mu_{Y|X=x}}{s\sqrt{1 + \frac{1}{n} + \frac{(x \overline{x})^2}{s_{YY}}}} \sim t_{n-2}$
 - Prediction interval:

$$\left[\hat{y}(x) - t_{n-2;1-\alpha/2}s\sqrt{1 + \frac{1}{n} + \frac{(x - \bar{x})^2}{s_{xx}}}, \hat{y}(x) + t_{n-2;1-\alpha/2}s\sqrt{1 + \frac{1}{n} + \frac{(x - \bar{x})^2}{s_{xx}}}\right]$$

 CI does not tend to 0 as n increases ⇒ Inherent variability of the new observation never vanishes.

- Residual analysis: The observed residuals $e_i = y_i y(x_i) = y_i (b_0 + b_1 x_i)$
 - Plot the residuals in time sequence/against fitted values/against predictor values

Represents ideal solution

Variability changes with x and y

Dependence in error terms

Nonlinear probabilistic model

- Normality assumption is checked with qqplot
- Coefficient of determination: Compare ss_r to ss_t to judge model adequacy
 - r^2 = coefficient of determination: r^2 = ss_r/ss_t , where ss_t = ss_r + ss_e
 - because the x_i values are different, all Y_i have different means. This variability is quantified by the 'regression sum of squares':

$$ss_r = \sum_{i=1}^n (\hat{y}(x_i) - \bar{y})^2$$

② each value Y_i has variance σ^2 around its mean. This variability is quantified by the 'error sum of squares':

$$ss_e = \sum_{i=1}^n (y_i - \hat{y}(x_i))^2 = \sum_{i=1}^n \hat{e}_i^2$$

- r² represents proportion of variability in the responses that is explained by the predictor ⇒ taken into account in the model
- r^2 near 1 = good fit to data, r^2 near 0 = poor fit to data

strength of linear relationship between X and Y

• ρ close to 1 or -1 = strong linear relationship

• From
$$r^2 = ss_r/ss_t = s^2_{xy}/s_{xx}s_{yy}$$

$$r = \frac{\sum_i (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_i (x_i - \bar{x})^2 \sum_i (y_i - \bar{y})^2}}$$

- This is the sample correlation coefficient which can be regarded as sample estimate of the proportion correlation coefficient p
- Correlation does not prove causation.

ANOVA (analysis of variance)

- > Comparing more than 2 populations
- ➤ Use boxplots to show variability of observations within and between groups
- Each group is called a treatment that is denoted by k independent samples.
- > Grand mean:

$$\bar{\bar{X}} = \frac{1}{n} \sum_{i=1}^{k} \sum_{i=1}^{n_i} X_{ij} = \frac{n_1 \bar{X}_1 + n_2 \bar{X}_2 + \ldots + n_k \bar{X}_k}{n}$$

- ANOVA model: $X_{ij} = \mu_i + \epsilon_{ij}$
 - μ_I = mean response for ith treatment
 - ε_{ij} = individual random error component
- ANOVA hypothesis: H_0 : $\mu_1 = \mu_2 = ... = \mu_k$ against H_a : not all the means are equal
- Variability decomposition
 - Total sum of squares: $SS_{Tot} = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (X_{ij} \overline{X})^2 \quad (df = n-1) \Rightarrow$ Quantifies total amount of variation contained in the global sample.
 - Treatment sum of squares (variability between groups):

$$SS_{Tr} = \sum_{i=1}^{k} n_i \left(\overline{X}_i - \overline{\overline{X}} \right)^2 \quad (df = k - 1)$$

• Error sum of squares (variability within groups):

$$SS_{Er} = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (X_{ij} - \bar{X}_i)^2 \quad (df = n - k)$$

- Sum of squares identity: $SS_{Tot} = SS_{Tr} + SS_{Er}$
- Mean squared error: $MS_{Er} = \frac{SS_{Er}}{n-k} \Rightarrow$ Always estimates σ^2 Treatment mean square: $MS_{Tr} = \frac{SS_{Tr}}{k-1} \Rightarrow$ Estimates σ^2 only when H₀ is true
- Fisher F-distribution: $F \sim F_{k-1,n-k}$
 - It can be shown that H₀ Is true from the ratio $F = \frac{MS_{Tr}}{MS_{Er}} = \frac{\frac{SS_{Tr}}{k-1}}{\frac{SS_{Er}}{k-1}}$
 - Rejection criterion:

reject
$$H_0$$
 if $\frac{ms_{Tr}}{ms_{Fr}} > f_{k-1,n-k;1-\alpha} \implies \text{Matlab: finv}(1-\alpha,k-1,n-1)$

p-value: $p = P(X>f_0)$ where $f_0 = ms_{Tr}/ms_{Er} \Rightarrow Matlab$: fcdf($f_0,k-1,n-1$)

➤ ANOVA table:

	degrees of freedom	sum of squares	mean square	F-statistic
Treatment	$df_{Tr} = k - 1$	ss _{Tr}	$ms_{\mathrm{Tr}} = rac{ss_{\mathrm{Tr}}}{k-1}$	$f_0 = rac{ms_{ m Tr}}{ms_{ m Er}}$
Error	$df_{Tr} = k - 1$ $df_{Er} = n - k$	<i>ss</i> _{Er}	$\textit{ms}_{Er} = \frac{\mathit{ss}_{Er}}{\mathit{n-k}}$	
	$df_{\text{Tot}} = n - 1$			

Note 1:
$$df_{Tot} = df_{Tr} + df_{Er}$$
 and $ss_{Tot} = ss_{Tr} + ss_{Er}$

Note 2: this table is the usual computer output when an ANOVA procedure is run

- \triangleright Confidence intervals on the treatment of means: Interest about which μ_l 's are different from each other
 - As MS_{Er} is an unbiased estimator for σ^2 with n-k

$$\sqrt{n_i} \, rac{ar{X}_i - \mu_i}{\sqrt{ extit{MS}_{ extsf{Er}}}} \sim t_{n-k}$$

• Two sided confidence interval for μ_i , from observed values x_i and MS_{Er}

$$\left[\bar{x}_i - t_{n-k,1-\alpha/2}\sqrt{\frac{\textit{MS}_{\text{Er}}}{n_i}}, \bar{x}_i + t_{n-k,1-\alpha/2}\sqrt{\frac{\textit{MS}_{\text{Er}}}{n_i}}\right]$$

- Confidence intervals for each group will tell which values μ_i 's are much different from one another and which are close
- $\blacktriangleright\,$ Pairwise comparisons: Confidence intervals on the difference of two means μ_i and μ_i

$$\begin{split} \left[(\bar{x}_i - \bar{x}_j) - t_{n-k;1-\alpha/2} \sqrt{\textit{MS}_{\text{Er}}\left(\frac{1}{n_i} + \frac{1}{n_j}\right)}, \\ (\bar{x}_i - \bar{x}_j) + t_{n-k;1-\alpha/2} \sqrt{\textit{MS}_{\text{Er}}\left(\frac{1}{n_i} + \frac{1}{n_j}\right)} \; \right] \end{split}$$

- If 0 is contained in the found interval, then conclude that μ_i and μ_j are not significantly different. Vice versa in there is no 0 in the interval.
- Bonferonni adjustments: Gives an overall significance level α , where pairwise comparison tests are carried out at significance level $\alpha/K\%$, where $K = \binom{k}{2} = \frac{k!}{2!(k-2)!}$
- Bonferonni-adjusted t-test: Testing H₀: $\mu_i = \mu_j$ againt H_a: $\mu_i \neq \mu_j$ test statistic: $t_0 = \frac{\bar{x}_i \bar{x}_j}{\sqrt{MS_{Er}(\frac{1}{n_i} + \frac{1}{n_i})}}$
- p-value: $p = 2*P(T>|t_0|)$, $T \sim t_{n-k} \Rightarrow$ reject H_0 if p value is less than α/K , where K is the number of pairwise comparisons
- Adequacy of ANOVA model: Based on several assumptions that should be carefully checked
 - 1. Normality: check by constructing a normal quantile plot for residuals.
 - 2. Equal variances in each group: checked by plotting residuals against treatment level \Rightarrow Spread of residuals should not depend on $\overline{x_i}$
 - ullet Rule of thumb: if ratio of largest standard deviation to smallest standard deviation is less than 2 \Rightarrow validate equal variance
 - 3. Independence assumption: Checked by plotting residuals against time (if available) ⇒ No pattern (negative or positive sequences) should be observed. Generally no valid way of checking this.