אלגברה ב – מרחבי מכפלה פנימית ו

נושאים:

- 1. תיאוריה ודוגמאות בסיסיות
 - 2. דוגמאות לא סטנדרטיות

תיאוריה ודוגמאות בסיסיות

ברחב V מ"ו מעל F (כאשר F הוא הממשיים או המרוכבים). המרחב V נקרא מרחב V מכפלה פנימית אם לכל זוג וקטורים U, קיים U ב V ב מכפלה פנימית אם לכל זוג וקטורים U, קיים V

$$\langle u+v,w\rangle = \langle u,w\rangle + \langle v,w\rangle$$
 .1

- $\langle \alpha u, v \rangle = \alpha \langle u, v \rangle$.2
- (בפרט, $\langle u,u \rangle$ ממשי כי צמוד לעצמו) ($\langle u,v \rangle = \overline{\langle v,u \rangle}$.3
 - V u לכל $u \in \langle u, u \rangle \ge 0$.4
 - $.\mathbf{u} = 0$ אם ורק אם $\langle u, u \rangle = 0$.5

אז: R או מעל C או מנימית מעל מכפלה מכפלה ערחב מכפלה V

- $\langle u, v+w \rangle = \langle u, v \rangle + \langle u, w \rangle$.1
 - $\langle u, \alpha v \rangle = \overline{\alpha} \langle u, v \rangle$.2

(השורש החיובי) $\|v\| = \sqrt{\langle v,v \rangle}$ היא V-v ב v ממ"פ, הנורמה של V-v ממ"פ מעל V-v נקרא מרחב אוניטרי ממ"פ מעל V-v נקרא מרחב אוניטרי ממ"פ מעל V-v נקרא מרחב אוניטרי

הערה: למרחב וקטורי V מעל R (או V) יכולים להיות מבנים שונים של מרחבי מכפלה פנימית (לכן חשוב לציין עם איזו מכפלה פנימית עובדים).

- טענה: יהיו V,W מרחבים וקטורים מעל F. נניח כי לV מבנה מכפלה פנימית ו ע"י ענה: ע"י איזומורפיזם של מרחבים וקטוריים, אז T משרה על V מבנה מכפלה פנימית ע"י $T:V \to W$. $\langle w_1, w_2 \rangle_W = \langle T^{-1}(w_1), T^{-1}(w_2) \rangle_V$

הוכחה: \langle , \rangle_w מוגדרת היטב, כי T^{-1} איזומורפיזם (לכן חח"ע ועל). המכפלה הפנימית ליניארית משמאל כי T^{-1} העתקה ליניארית. תכונות 3 ו – 4 מתקיימות באופן ברור (4 נובע מכך ש - T^{-1} על, לכן מתקיים לכל w ב – w). תכונה 5 מתקיימת כי T^{-1} חח"ע לכן הגרעין טריוויאלי.

דוגמאות:

- $\langle (a_{1,...},a_n),(b_{1,...},b_n) \rangle = \sum_{i=1}^n a_i b_i$ יש מבנה מכפלה פנימית, ע"י $V = R^n 1$. 1 ($R^n 1$)
- .(C^n מגדירים סטנדרטית ($(a_{1,\dots},a_n)$, $(b_{1,\dots},b_n)$) $=\sum_{i=1}^n a_i \overline{b_i}$ מגדירים $V=C^n-1$. 2
- (C^nxm מגדירים $V = c^nxm \lambda$ (המכפלה הסטנדרטית ב $V = c^nxm \lambda$) (מגדירים $V = c^nxm \lambda$
- 4. יהי V מרחב הפונקציות הממשיות הרציפות בקטע הסגור [a,b]. נגדיר מכפלה פנימית V יהי V נקרא המכפלה הפנימית הסטנדרטית ל
 - . $\langle f,g \rangle = \int_a^b f(x) \overline{g(x)} dx$ ל V מרחב הפונקציות המרוכבות, נקח V ל

דוגמאות לא סטנדרטיות

נבחר (n). נבחר (מרחב הפולינומים מדרגה לכל היותר $V=R_n[x]$ נבחר (א: נסתכל על f, g)=f(x_1)g(x_1)+...+f(x_{n+1})g(x_{n+1}) הוכח שזה מספרים ממשיים, ונגדיר מרחב מכפלה פנימית.

תשובה: תכונות 1-3 מתקיימות בצורה ברורה. תכונה 4 מתקיימת כי עבור פולינום f נקבל

לכל היותר, f סכום ריבועים. תכונה 5 מתקיימת כי f פולינום ממעלה f לכל היותר, f סכום ריבועים. תכונה 5 מתקיימת כי f פולינום ממעלה f לכן יש לו לכל היותר f שורשים (אלא אם הוא פולינום האפס), ואז בהכרח יש f עבורו . $f(x_j)^2 \neq 0$

הערה: יש איזומורפיזם $R_n[x] \equiv R^{n+1}$ (ע"י העתקות הבסיסים הסטנדרטיים). לפי הטענה הקודמת, מתקבלים מבנים שונים של מכפלות פנימיות על R^{n+1} (ולא רק המכפלה הסטנדרטית אותה אנו מכירים).

דוגמה קונקרטית: נסתכל על R^3 והמכפלה הפנימית המושרית עליו מהמכפלה הפנימית $T^{-1}((a_1,a_2,a_3))=a_1+a_2x+a_3x^2$: (-1,0,1) ואז לשני $R_2[x]$ המתאימה לשלשה $R_2[x]$ ואז לשני $\langle (a_1,a_2,a_3),(b_1,b_2,b_3)\rangle_{R^3}=\langle a_1+a_2x+a_3x^2,b_1+b_2x+b_3x^2\rangle_{R_2[x]}=$. $=(a_1-a_2+a_3)(b_1-b_2+b_3)+a_1b_1+(a_1+a_2+a_3)(b_1+b_2+b_3)=$ וקטורים נקבל: $=2(a_1b_1+a_1b_3+a_2b_2+a_3b_1+a_3b_3)+a_1b_1$

במוד ע"י הוספת צמוד (ז"א לפולינומים מעל המרוכבים), ע"י הוספת צמוד (ז"א לפולינומים מעל המרוכבים), ע"י הוספת צמוד לערכים של $_{
m g}$

עבור אילו . $\langle (x_1,x_2),(y_1,y_2) \rangle = x_1y_1 - x_2y_1 - x_1y_2 + kx_2y_2$ ונגדיר ונגדיר $V=R^2$ יהי ונגדיר אילו גקבל מכפלה פנימית?

תשובה: k>1 תכונות k>1 מתקיימות לכל k תכונה k מחייבת k>1 (רק כך ניתן להבטיח שהמכפלה הפנימית חיובית, כסכום ריבועים, אחרת תמיד אפשר לבחור וקטור k>1 שייתן ערך שלילי). תנאי k>1 מתקיים בנוסף לתנאים הקודמים רק אם