Bhaarat Sharma bsharma30@gatech.edu

1 Logistic Regression

1.1 Batch Gradient Descent

a.

$$NLL(w) = -\sum_{i=1}^{N} \left[(1 - y_i) \log(1 - \sigma(\mathbf{w}^T \mathbf{x})) + y_i \log \sigma(\mathbf{w}^T \mathbf{x}) \right]$$
$$-\sum_{i=1}^{N} \left[y_i \mathbf{w}^T \mathbf{x} - \log(1 + e^{\mathbf{w}^T \mathbf{x}}) \right]$$
$$-\sum_{i=1}^{N} \mathbf{x} (y_i - \sigma(\mathbf{w}^T \mathbf{x}))$$

1.2 Stochastic Gradient Descent

a.

$$= \left[(1 - y_t) \log(1 - \sigma(\mathbf{w}^T \mathbf{x_t})) + y_t \log(\mathbf{w}^T \mathbf{x_t}) \right]$$

b.

$$w_t = w_t + \eta((y_t - \sigma(\mathbf{w}^T \mathbf{x_t}))x_t)$$

c.

d.

Very large values of η make ROC curve closer to the middle whereas smaller values of η push it further away from the middle.

e.

$$w_t = w_t - \eta((y_t - \sigma(\mathbf{w}^T \mathbf{x_t})) x_t - \mu \|\mathbf{w}\|)$$

2

2.1

Metric	Deceased	Alive Patients
Event Count (Average)	682.64	1029.05
Event Count (Max)	12627	16829
Event Count (Min)	1	2
Encounter Count (Average)	18.66	24.86
Encounter Count (Max)	391	375
Encounter Count (Min)	1	1
Record Length (Average)	194.65	151.39
Record Length (Max)	3103	2601
Record Length (Min)	0	0
Common Diagnostics	DIAG320128 1019	DIAG320128 415
	DIAG319835 721	DIAG319835 413
	DIAG317576 719	DIAG313217 374
	DIAG42872402 674	DIAG197320 346
	DIAG313217 641	DIAG132797 297
Common Laboratory	LAB3009542 66910	LAB3009542 32747
	LAB3000963 57733	LAB3023103 28376
	LAB3023103 56967	LAB3000963 28288
	LAB3018572 54667	LAB3018572 27364
	LAB3007461 53548	LAB3016723 27041
Common Medication	DRUG19095164 12452	DRUG19095164 6394
	DRUG43012825 10388	DRUG43012825 5446
	DRUG19049105 9329	DRUG19049105 4323
	DRUG19122121 7586	DRUG956874 3962
	DRUG956874 7294	DRUG19122121 3908

2.3 b.

See figures 1 - 5. A high η learning parameter leads to worse results. I believe this is because of overfitting. Tuning a low η and randomization produces decent results. However, it is interesting to note how the curve starts close to the dotted line, starts to shift away, and then finally merges with the dotted line again.

2.4.b

See figure 6

2.4 c.

The two curves are very similar to each other. I believe this is because logistic regression is being used in both

Figure 2: Learning 9.0 — Regularization .00001

Figure 3: Learning .01 — Regularization .01

Figure 4: Learning .01 — Regularization .05

Figure 5: Learning .50 — Regularization .001

Figure 6: ROC Curve by testensemble.py

