Examen parcial de Física - CORRENT CONTINU 13 de març de 2017

Model A

Qüestions: 50% de l'examen

A cada qüestió només hi ha una resposta correcta. Encercleu-la de manera clara. Puntuació: correcta = 1 punt, incorrecta = -0.25 punts, en blanc = 0 punts.

- T1) Una bateria de fem 5 V amb una càrrega inicial de 1000 mAh alimenta ininterrompudament una bombeta led de 10 W. Quant temps funcionarà la bombeta i quants electrons (de càrrega $-e = -1.6 \cdot 10^{-19}$ C) hi hauran circulat?
 - a) 30 minuts i $2.25 \cdot 10^{22}$ electrons.
- b) 30 minuts i $6.25 \cdot 10^{18}$ electrons.
- c) 60 minuts i $6.25 \cdot 10^{18}$ electrons.
- d) 60 minuts i $2.25 \cdot 10^{22}$ electrons.
- **T2)** En relació a la bateria de fem 10 V del circuit de la figura, quina de les següents afirmacions és certa?
 - a) Subministra una potència de 0.1984 W.
 - b) Consumeix una potència de 0.2016 W.
 - c) Consumeix una potència de 0.1984 W.
 - d) Subministra una potència de 0.2016 W.

- T3) L'esquema de la figura representa tres branques d'un circuit per les quals circulen les intensitats indicades. Quin valor del potencial elèctric als quatre punts indicats és el correcte?
 - a) $V_B = 9.5 \text{ V}.$
 - b) $V_A = 13.5 \text{ V}.$
 - c) $V_C = 2.5 \text{ V}.$
 - d) $V_D = 9 \text{ V}.$

- **T4)** El circuit equivalent Thévenin entre els punts A i B del circuit de la figura és una fem i una resistència en sèrie de valors
 - a) $\epsilon_{\rm Th} = \epsilon/2$ i $R_{\rm Th} = 2R$.
 - b) $\epsilon_{\rm Th} = 3\epsilon/2$ i $R_{\rm Th} = 5R$.
 - c) $\epsilon_{\rm Th} = \epsilon/2$ i $R_{\rm Th} = R$.
 - d) $\epsilon_{\rm Th} = \epsilon i R_{\rm Th} = 2R$.

- T5) La placa superior del condensador de la figura està carregada positivament i l'energia emmagatzemada és de 12.5 μ J. La intensitat que circula per la resistència $R_2=10\,\Omega$ en el règim estacionari és
 - a) 0.5 A en sentit descendent.
 - b) 0.75 A en sentit descendent.
 - c) 0.75 A en sentit ascendent.
 - d) 0.5 A en sentit ascendent.

Examen parcial de Física - CORRENT CONTINU 13 de març de 2017

Model B

Qüestions: 50% de l'examen

A cada qüestió només hi ha una resposta correcta. Encercleu-la de manera clara. Puntuació: correcta = 1 punt, incorrecta = -0.25 punts, en blanc = 0 punts.

- T1) En relació a la bateria de fem 10 V del circuit de la figura. auina de les següents afirmacions és certa?
 - a) Consumeix una potència de 0.2016 W.
 - b) Consumeix una potència de 0.1984 W.
 - c) Subministra una potència de 0.2016 W.
 - d) Subministra una potència de 0.1984 W.

- T2) La placa superior del condensador de la figura està carregada positivament i l'energia emmagatzemada és de 12.5 μ J. La intensitat que circula per la resistència $R_2=10\,\Omega$ en el règim estacionari és
 - a) 0.75 A en sentit ascendent.
 - b) 0.75 A en sentit descendent.
 - c) 0.5 A en sentit descendent.
 - d) 0.5 A en sentit ascendent.

- T3) Una bateria de fem 5 V amb una càrrega inicial de 1000 mAh alimenta ininterrompudament una bombeta led de 10 W. Quant temps funcionarà la bombeta i quants electrons (de càrrega $-e = -1.6 \cdot 10^{-19}$ C) hi hauran circulat?
 - a) 60 minuts i $6.25 \cdot 10^{18}$ electrons.
- b) 60 minuts i $2.25 \cdot 10^{22}$ electrons.
- c) 30 minuts i $2.25 \cdot 10^{22}$ electrons.
- d) 30 minuts i $6.25 \cdot 10^{18}$ electrons.
- **T4)** L'esquema de la figura representa tres branques d'un circuit per les quals circulen les intensitats indicades. Quin valor del potencial elèctric als quatre punts indicats és el correcte?
 - a) $V_A = 13.5 \text{ V}.$
 - b) $V_C = 2.5 \text{ V}.$
 - c) $V_B = 9.5 \text{ V}.$
 - d) $V_D = 9 \text{ V}.$

- $\begin{array}{c|c}
 A & 4 & V \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\$
- **T5)** El circuit equivalent Thévenin entre els punts A i B del circuit de la figura és una fem i una resistència en sèrie de valors
 - a) $\epsilon_{\rm Th} = \epsilon/2$ i $R_{\rm Th} = 2R$.
 - b) $\epsilon_{\rm Th} = \epsilon/2$ i $R_{\rm Th} = R$.
 - c) $\epsilon_{\rm Th} = 3\epsilon/2 \text{ i } R_{\rm Th} = 5R$.
 - d) $\epsilon_{\rm Th} = \epsilon i R_{\rm Th} = 2R$.

Examen parcial de Física - CORRENT CONTINU 13 de març de 2017

Problema: 50% de l'examen

Coneixem totes les característiques del circuit de la figura, excepte la fem ε_4 . Les dades són: $\varepsilon_1 = 9$ V; $\varepsilon_2 = 5$ V; $\varepsilon_3 = 4$ V; $R_1 = R_5 = 2\Omega$; $R_2 = 6\Omega$; $R_3 = 4\Omega$ i $R_4 = 3\Omega$.

- a) Quant ha de valer ε_4 per tal que $I_2 = 1$ A? (4 p.)
- b) Calculeu el circuit equivalent Thévenin entre A i B quant aquests dos punts es consideren com terminals de sortida. (3 p.)
- c) Calculeu l'energia que acumularia un condensador de capacitat $C=20\,\mu\mathrm{F}$ connectat entre A i B i en estat estacionari. Sabent que la separació entre plaques és de 1 mm, quan val el camp elèctric a l'interior del condensador? (3 p.)

Respostes correctes de les questions del Test

Qüestió	Model A	Model B
T1)	a	a
T2)	b	a
T3)	a	c
T4) T5)	d	c
T5)	c	d

Resolució del Model A

T1) La càrrega total de la bateria és Q = 1000 mAh = (1 C/s)(3600 s) = 3600 C, que és tota la que circularà pel led i correspon a $N_e = (3600 \text{ C})/(1.6 \cdot 10^{-19} \text{ C}) = 2.25 \cdot 10^{22}$ electrons.

L'energia total que pot subministrar la bateria és $U=(5\ {\rm V})(1\ {\rm Ah})=5\ {\rm VA}\ {\rm h}=5$ Wh, i si el led consumeix una potència P=U/t=10 W, el temps que funcionarà és

$$t = U/P = (5 \text{ Wh})/(10 \text{ W}) = 0.5 \text{ h} = 30 \text{ minuts}.$$

- T2) Pel circuit hi passa una intensitat I = (20-10)/(200+4+290+6) = 0.02 V en sentit antihorari perquè la fem de 20 V és més gran que la de 10 V i la font de la dreta treballa com un generador i la de l'esquerra com un receptor. Per tant, la font de tensió de 10 V consumeix una potència $P = \epsilon \cdot I + r \cdot I^2 = 10 \cdot 0.02 + 4 \cdot (0.02)^2 = 0.2016$ W.
- **T3)** Els potencials elèctrics valen: $V_C = 1 + 2 \cdot 1.75 = 4.5 \text{ V}$; $V_B = V_C + 2 \cdot 2.5 = 9.5 \text{ V}$; $V_A = V_B 4 = 5.5 \text{ V}$; $V_D = V_C 6 \cdot 0.75 = 0 \text{ V}$.
- **T4)** Si no hi ha res més connectat entre A i B, és a dir, estan en circuit obert (CO), només circula corrent per la malla esquerra en sentit horari $I = \epsilon/(4R)$, i $V_{\text{Th}} = (V_A V_B)_{CO} = \epsilon/2 + 2RI = \epsilon/2 + 2R[\epsilon/(4R)] = \epsilon$.

Per trobar $R_{\rm Th}$ hem de substituir les fonts de tensió per la seva resistència interna, que és nul·la perquè les fonts són ideals, la qual cosa és equivalent a substituir-les per un cable de resistència nul·la. I després hem de buscar la resistència equivalent entre A i B. En fer-ho, veiem que la resitència R està en sèrie amb la combinació de les dues de 2R que estan en paral·lel. Per tant $R_{\rm Th} = R + [(1/2R) + (12R)]^{-1} = R + R = 2R$.

T5) Si la tensió a borns d'un condensador de capacitat C és V_C , la seva energia és $U = CV^2/2$. Per tant $V = (2U/C)^{1/2} = [2(12.5 \ \mu\text{J})/(4 \ \mu\text{F})]^{1/2} = 2.5 \ \text{V}$. Com que la placa superior del condensador està carregada positivament i en el regim estacionari no passa corrent per R_5 , $V_C = (V_M - V_N) = 2.5 \ \text{V}$. Aleshores, si suposem que la intensitat I que circula per R_2 ho fa en sentit descendent, s'ha de satisfer $V_C = (V_M - V_N) = R_2 I + \epsilon_2$, d'on es dedueix que $I = (V_C - \epsilon_2)/R_2 = (2.5 - 10)/10 = -0.75 \ \text{A}$, és a dir, $0.75 \ \text{A}$ en sentit ascendent.

Resolució del Problema

- a) Segons les regles de Kirchhoff:
 - 1. Pel nus "B", tenim que: $I_1 + I_3 = I_2 = 1$
 - 2. La malla de la dreta satisfà: $\varepsilon_4 = R_2 I_2 + R_3 I_3$
 - 3. La malla de l'esquerra satisfà: $\varepsilon_1+\varepsilon_2+\varepsilon_3=(R_1+R_4+R_5)I_1+R_2I_1$

De la darrera equació, tenim que: $18 = 7I_1 + 6$, per la qual cosa $I_1 = 12/7 = 1.714$ A. De la primera equació deduim que $I_3 = -0.714$ A i de la segona tenim que $\varepsilon_4 = 3.143$ V.

b) De l'apartat anterior: $\varepsilon_{Th.} = V_A - V_B = R_4 I_1 - \varepsilon_3 + R_2 I_2 = 7.143 \text{ V.}$ Si curtcircuitem els generadors, la resistència equivalent entre A i B resulta ser:

$$R_{Th.} = \frac{(R_1 + R_5)(R_4 + R_{23})}{R_1 + R_5 + R_4 + R_{23}} = 2.3 \,\Omega,$$

on
$$R_{23} = \frac{R_2 R_3}{R_2 + R_3} = 2.4 \Omega$$
.

c) Coneixent la diferència de potencial entre A i B (apartat b, $\Delta V = 7.143$ V), podem calcular l'energia acumulada: U = $\frac{1}{2}C(\Delta V)^2 = 0.51$ mJ.

D'altra banda, el camp elèctric es pot calcular com: $E = \frac{\Delta V}{d} = 7.143 \text{ kV/m}.$