CS3390: Foundations of Machine Learning

2023

Lecture 7: 12 September 2023

Instructor: P. K. Srijith Scribe: Gautam Singh

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

7.1 Probabilistic Generative Models

So far, we have considered the following classification methods.

- 1. Using posterior class probabilities, called discriminative models.
- 2. Find a function f, called a discriminant function, which maps each input \mathbf{x} directly onto a class label. Probabilities play no role here.

7.1.1 Generative Classifiers

Here, we first solve the inference problem of determining the class-conditional densities $p(\mathbf{x}|y)$. Also, we require the prior class probabilities p(y). Then, we use Bayes' Theorem as follows.

$$p(y|\mathbf{x}) = \frac{p(\mathbf{x}|y) p(y)}{p(\mathbf{x})}$$
(7.1)

Approaches that implicitly or explicitly model the distribution of inputs and outputs are called **generative** models, because by sampling from them we can generate synthetic data points in the input space.

Approaches that model the posterior probabilities directly are called discriminative models.

7.1.1.1 Binary Classification

For two classes, we have

$$p\left(C_{1}|\mathbf{x}\right) = \frac{p\left(\mathbf{x}|C_{1}\right)p\left(C_{1}\right)}{p\left(\mathbf{x}|C_{1}\right)p\left(C_{1}\right) + p\left(\mathbf{x}|C_{2}\right)p\left(C_{2}\right)}$$
(7.2)

$$=\frac{1}{1+\exp\left(-a\right)}\tag{7.3}$$

where

$$a \triangleq \ln \frac{p(\mathbf{x}|\mathcal{C}_1) p(\mathcal{C}_1)}{p(\mathbf{x}|\mathcal{C}_2) p(\mathcal{C}_2)}.$$
(7.4)

7.1.1.2 Multiclass Classification

If there are k classes,

$$p\left(C_{k}|\mathbf{x}\right) = \frac{p\left(\mathbf{x}|C_{k}\right)p\left(C_{k}\right)}{\sum_{i}p\left(\mathbf{x}|C_{k}\right)p\left(C_{k}\right)}$$
(7.5)

$$= \frac{\exp\left(a_k\right)}{\sum_{i} \exp a_i} \tag{7.6}$$

where

$$a_k \triangleq \ln p\left(\mathbf{x}|\mathcal{C} - k\right) p\left(\mathcal{C}_k\right)$$
 (7.7)

Hence,

$$p\left(\mathbf{x}|\mathcal{C}_{k}\right) = \frac{1}{\left(2\pi\right)^{\frac{D}{2}}|\mathbf{\Sigma}|^{\frac{1}{2}}} \exp\left\{-\frac{1}{2}\left(\mathbf{x} - \boldsymbol{\mu}_{\mathbf{k}}^{\top} \mathbf{\Sigma}^{-1}\left(\mathbf{x} - \boldsymbol{\mu}_{\mathbf{k}}\right)\right)\right\}$$
(7.8)

and also,

$$\mathbf{w_k} = \mathbf{\Sigma}^{-1} \boldsymbol{\mu_k} \tag{7.9}$$

7.2 Discriminant Analysis: Parameter Estimation

We model joint probability of observing input and output.

$$p(\mathbf{x_n}, C_1) = p(C_1) p(\mathbf{x_n} | C_1) = \pi \mathcal{N}(\mathbf{x_n} | \boldsymbol{\mu_1}, \mathbf{Sigma})$$
(7.10)

$$p(\mathbf{x_n}, \mathcal{C}_2) = p(\mathcal{C}_2) p(\mathbf{x_n} | \mathcal{C}_2) = (1 - \pi) \mathcal{N}(\mathbf{x_n} | \boldsymbol{\mu_2}, \mathbf{Sigma})$$
(7.11)

Then,

$$p(\mathbf{t}|\pi, \boldsymbol{\mu}_{1}, \boldsymbol{\mu}_{2}, \boldsymbol{\Sigma}) = \prod_{i=1}^{N} \left[\pi \mathcal{N}(\mathbf{x}_{n}|\boldsymbol{\mu}_{1}, \boldsymbol{\Sigma})\right]^{t_{n}} \left[\left(1 - \pi\right) \mathcal{N}(\mathbf{x}_{n}|\boldsymbol{\mu}_{2}, \boldsymbol{\Sigma})\right]^{1 - t_{n}}$$
(7.12)