PHIL 4110: Problem Set 3

Due on February 26, 2024

 $Professor\ Lockhart$

Matthew Rogers

Problem 1

Solution

Part One

$$s(v) = 1$$
, $\mathfrak{M}, s \models \exists x (A(f(z), c) \supset \forall y (A(y, x) \lor A(f(y), x)))$

Let $\varphi_1 \equiv A(f(z), c) \supset \forall y (A(y, x) \lor A(f(y), x))$

 $\mathfrak{M}, s \models \exists x \varphi_1 \text{ iff } \mathfrak{M}, s[m_1/x] \models \varphi_1 \text{ for some } m_1 \in |\mathfrak{M}|$

 $\mathfrak{M}, s[m_1/x] \models A(f(z), c) \supset \forall y(A(y, x) \vee A(f(y), x)) \text{ for some } m_1 \in |\mathfrak{M}|$

This is equivalent to the expression $\mathfrak{M}, s[m_1/x] \not\models A(f(z),c)$ or $\mathfrak{M}, s[m_1/x] \models \forall y(A(y,x) \lor A(f(y),x))$ for some $m_1 \in |\mathfrak{M}|$.

Evaluating $\mathfrak{M}, s[m_1/x] \not\models A(f(z), c)$ for some $m_1 \in |\mathfrak{M}|$:

- $= \langle \operatorname{Val}_{s[m_1/x]}^{\mathfrak{M}}(f(z)), c \rangle \notin A^{\mathfrak{M}}$ $= \langle f^{\mathfrak{M}}(\operatorname{Val}_{s[m_1/x]}^{\mathfrak{M}}(z)), \operatorname{Val}_{s[m_1/x]}^{\mathfrak{M}}(c) \rangle \notin A^{\mathfrak{M}}$ $= \langle f^{\mathfrak{M}}(1), c^{\mathfrak{M}} \rangle \notin A^{\mathfrak{M}}$
- $=\langle 2,3\rangle \notin A^{\mathfrak{M}}=$ False, since $\langle 2,3\rangle$ is in $A^{\mathfrak{M}}$

Evaluating $\mathfrak{M}, s[m_1/x] \models \forall y(A(y,x) \lor A(f(y),x))$ for some $m_1 \in |\mathfrak{M}|$:

Let $\varphi_2 \equiv A(y,x) \vee A(f(y),x)$

 $\mathfrak{M}, s[m_1/x] \models \forall y \varphi_2 \text{ iff } \mathfrak{M}, s[m_1/x][m_2/y] \models \varphi_2 \text{ for some } m_1 \text{ for all } m_2, \text{ such that } m_1, m_2 \in |\mathfrak{M}|$

This is just the expression $\mathfrak{M}, s[m_1/x][m_2/y] \models A(y,x)$ or $\mathfrak{M}, s[m_1/x][m_2/y] \models A(f(y),x)$, for some m_1 for all m_2 .

Evaluating $\mathfrak{M}, s[m_1/x][m_2/y] \models A(y,x)$, for some m_1 for all m_2 :

- $= \langle \operatorname{Val}_{s[m_1/x][m_2/y]}^{\mathfrak{M}}(y), \operatorname{Val}_{s[m_1/x][m_2/y]}^{\mathfrak{M}}(x) \rangle \in A^{\mathfrak{M}}$ $= \langle m_2, m_1 \rangle \in A^{\mathfrak{M}} \text{ for some } m_1 \text{ for all } m_2, \text{ such that } m_1, m_2 \in |\mathfrak{M}|$

We must check for all possible values of m_2 in the domain:

 $=\langle 1, m_1 \rangle \in A^{\mathfrak{M}}$ and $\langle 2, m_1 \rangle \in A^{\mathfrak{M}}$ and $\langle 3, m_1 \rangle \in A^{\mathfrak{M}}$

Evaluating $\mathfrak{M}, s[m_1/x][m_2/y] \models A(f(y), x)$, for some m_1 for all m_2 .

- $= \langle \operatorname{Val}_{s[m_1/x][m_2/y]}^{\mathfrak{M}}(f(y)), \operatorname{Val}_{s[m_1/x][m_2/y]}^{\mathfrak{M}}(x) \rangle \in A^{\mathfrak{M}}$ $= \langle f^{\mathfrak{M}}(\operatorname{Val}_{s[m_1/x][m_2/y]}^{\mathfrak{M}}(y)), m_1 \rangle \in A^{\mathfrak{M}}$ $= \langle f^{\mathfrak{M}}(m_2), m_1 \rangle \in A^{\mathfrak{M}} \text{ for some } m_1 \text{ for all } m_2, \text{ such that } m_1, m_2 \in |\mathfrak{M}|$

We must check for all possible values of m_2 in the domain:

- $=\langle f^{\mathfrak{M}}(1), m_{1}\rangle \in A^{\mathfrak{M}} \text{ and } \langle f^{\mathfrak{M}}(2), m_{1}\rangle \in A^{\mathfrak{M}} \text{ and } \langle f^{\mathfrak{M}}(3), m_{1}\rangle \in A^{\mathfrak{M}}$
- $=\langle 2, m_1 \rangle \in A^{\mathfrak{M}}$ and $\langle 3, m_1 \rangle \in A^{\mathfrak{M}}$ and $\langle 2, m_1 \rangle \in A^{\mathfrak{M}}$
- $=\langle 2, m_1 \rangle \in A^{\mathfrak{M}} \text{ and } \langle 3, m_1 \rangle \in A^{\mathfrak{M}}$

 $\mathfrak{M}, s[m_1/x][m_2/y] \models \varphi_2$ becomes the expression:

$$(\langle 1, m_1 \rangle \in A^{\mathfrak{M}} \text{ and } \langle 2, m_1 \rangle \in A^{\mathfrak{M}} \text{ and } \langle 3, m_1 \rangle \in A^{\mathfrak{M}}) \text{ or } (\langle 2, m_1 \rangle \in A^{\mathfrak{M}} \text{ and } \langle 3, m_1 \rangle \in A^{\mathfrak{M}})$$

for some $m_1 \in |\mathfrak{M}|$

Let $m_1 = 3$, then the second half of the 'or' operation is satisfied, since $\langle 2, 3 \rangle, \langle 3, 3 \rangle \in A^{\mathfrak{M}}$.

Therefore, $\mathfrak{M}, s[m_1/x][m_2/y] \models \varphi_2$ and $\mathfrak{M}, s[m_1/x] \models \forall y (A(y,x) \vee A(f(y),x))$

Recall that $\mathfrak{M}, s \models \exists x \varphi_1$ iff $(\mathfrak{M}, s[m_1/x] \not\models A(f(z), c)$ or $\mathfrak{M}, s[m_1/x] \models \forall y (A(y, x) \lor A(f(y), x)))$ for some $m_1 \in |\mathfrak{M}|$.

We have shown the second half of the 'or' operation, therefore $\mathfrak{M}, s \models \exists x \varphi_1$ and \mathfrak{M}, s satisfies the original formula.

Part Two

Use the originial variable assignment and structrue but have $A^{\mathfrak{M}} = \{\langle 1, 3 \rangle \langle 2, 2 \rangle \langle 3, 3 \rangle\}.$

Problem 2

Proposition 7.14. If the free variables in φ are among x_1, \ldots, x_n , and $s_1(x_i) = s_2(x_i)$ for $i = 1, \ldots, n$, then $\mathfrak{M}, s_1 \models \varphi$ iff $\mathfrak{M}, s_2 \models \varphi$.

Induction Hypothesis: Assume $\mathfrak{M}, s_1 \models \varphi$ iff $\mathfrak{M}, s_2 \models \varphi$ for all formulae ψ less complex than φ .

Solution

Part One

$$\varphi \equiv \psi \supset \chi$$

By definition, $\mathfrak{M}, s_1 \models \varphi$ iff $\mathfrak{M}, s_1 \not\models \psi$ or $\mathfrak{M}, s_1 \models \chi$. By the IH we have $\mathfrak{M}, s_2 \not\models \psi$ or $\mathfrak{M}, s_2 \models \chi$. Then, $\mathfrak{M}, s_2 \models \varphi$.

The other direction of the proof relies on similar reasoning.

Part Two

 $\varphi \equiv \forall x \psi$

If $\mathfrak{M}, s \models \varphi$, then for any variable assignment $s, \mathfrak{M}, s[m/x] \models \psi$ for all $m \in |\mathfrak{M}|$.

Problem 3

Proposition 7.17. Let \mathfrak{M} be a structure, φ be a sentence, and s a variable assignment. $\mathfrak{M} \models \varphi$ iff $\mathfrak{M}, s \models \varphi$.

Proof

If $\mathfrak{M} \models \varphi$, then \mathfrak{M} satisfies the sentence φ , and for all variable assignments $s, \mathfrak{M}, s \models \varphi$.

Working in the opposite direction, if $\mathfrak{M}, s \models \varphi$, and φ is a sentence, then corollary 7.15 allows us to say that $\mathfrak{M}, s' \models \varphi$ for every variable assignment s'.

Since φ is a sentence and is satisfied for every s', then we can write $\mathfrak{M}, s \models \varphi$ for all variable assignments s.

Problem 4

Proposition 7.18. Suppose $\varphi(x)$ only contains x free, and \mathfrak{M} is a structure. Then:

- 1. $\mathfrak{M} \models \exists x \varphi(x) \text{ iff } \mathfrak{M}, s \models \varphi(x) \text{ for at least one variable assignment } s.$
- 2. $\mathfrak{M} \models \forall x \varphi(x)$ iff $\mathfrak{M}, s \models \varphi(x)$ for all variable assignments s.

Proof

Part One

If $\mathfrak{M} \models \exists x \varphi(x)$, then by definition $\mathfrak{M}, s[m/x] \models \varphi(x)$ for some variable assignment s from x to some $m \in |\mathfrak{M}|$. Therefore there must be at least one variable assignment s such that $\mathfrak{M}, s \models \varphi(x)$.

Working in the opposite direction, assume $\mathfrak{M}, s \models \varphi(x)$ for at least one variable assignment s. Since x is the only free variable and $\mathfrak{M}, s \models \varphi(x)$, we know s must at least assign x to some value $m \in |\mathfrak{M}|$ such that $\varphi(x)$ is satisfied relative to s.

Then we write $\mathfrak{M}, s[m/x] \models \varphi(x)$ for some $m \in |\mathfrak{M}|$, which gives way to $\mathfrak{M} \models \exists x \varphi(x)$.

Part Two

If $\mathfrak{M} \models \forall x \varphi(x)$, then by definition for any variable assignment s, $\mathfrak{M}, s[m/x] \models \varphi(x)$ for all $m \in |\mathfrak{M}|$. The satisfaction of $\varphi(x)$ relative to any s is not restricted by any particular assignment of x, so we can write $\mathfrak{M}, s \models \varphi(x)$ for all s.

Working in the opposite direction, assume $\mathfrak{M}, s \models \varphi(x)$ for all variable assignments s. Then any s could assign x to any member of the domain, and we would still have $\mathfrak{M}, s \models \varphi(x)$. We can express this property of s as $\mathfrak{M}, s[m/x] \models \varphi(x)$ for all $m \in |\mathfrak{M}|$. This implies $\mathfrak{M} \models \forall x \varphi(x)$.

Problem 5

Proposition 7.19.

Proof