Nicolas Privault

Notes on Stochastic Finance

Preface

This text is an introduction to pricing and hedging in discrete and continuous time financial models without friction (i.e. without transaction costs), with an emphasis on the complementarity between analytical and probabilistic methods. Its contents are mostly mathematical, and also aim at making the reader aware of both the power and limitations of mathematical models in finance, by taking into account their conditions of applicability. The book covers a wide range of classical topics including Black-Scholes pricing, exotic and american options, term structure modeling and change of numéraire, as well as models with jumps. It is targeted at the advanced undergraduate and graduate level in applied mathematics, financial engineering, and economics. The point of view adopted is that of mainstream mathematical finance in which the computation of fair prices is based on the absence of arbitrage hypothesis, therefore excluding riskless profit based on arbitrage opportunities and basic (buying low/selling high) trading. Similarly, this document is not concerned with any "prediction" of stock price behaviors that belong other domains such as technical analysis, which should not be confused with the statistical modeling of asset prices. The text also includes 104 figures and simulations, along with about 20 examples based on actual market data.

The descriptions of the asset model, self-financing portfolios, arbitrage and market completeness, are first given in Chapter 1 in a simple two time-step setting. These notions are then reformulated in discrete time in Chapter 2. Here, the impossibility to access future information is formulated using the notion of adapted processes, which will play a central role in the construction of stochastic calculus in continuous time.

In order to trade efficiently it would be useful to have a formula to estimate the "fair price" of a given risky asset, helping for example to determine whether the asset is undervalued or overvalued at a given time. Although such a formula is not available, we can instead derive formulas for the pricing of options that can act as insurance contracts to protect their holders against adverse changes in the prices of risky assets. The pricing and hedging of options in discrete time, particularly in the fundamental example of the

Cox-Ross-Rubinstein model, are considered in Chapter 3, with a description of the passage from discrete to continuous time that prepares the transition to the subsequent chapters.

A simplified presentation of Brownian motion, stochastic integrals and the associated Itô formula, is given in Chapter 4. The Black-Scholes model is presented from the angle of partial differential equation (PDE) methods in Chapter 5, with the derivation of the Black-Scholes formula by transforming the Black-Scholes PDE into the standard heat equation wich is then solved by a heat kernel argument. The martingale approach to pricing and hedging is then presented in Chapter 6, and complements the PDE approach of Chapter 5 by recovering the Black-Scholes formula via a probabilistic argument. An introduction to volatility estimation is given in Chapter 7, including historical, local, and implied volatilities. This chapter also contains a comparison of the prices obtained by the Black-Scholes formula with option price market data.

Exotic options such as barrier, lookback, and Asian options in continuous asset models are treated in Chapters 8, 9 and 10 respectively. Optimal stopping and exercise, with application to the pricing of American options, are considered in Chapter 11. The construction of forward measures by change of numéraire is given in Chapter 12 and is applied to the pricing of interest rate derivatives in Chapter 14, after an introduction to the modeling of forward rates in Chapter 13, based on material from [84].

Stochastic calculus with jumps is dealt with in Chapter 15 and is restricted to compound Poisson processes which only have a finite number of jumps on any bounded interval. Those processes are used for option pricing and hedging in jump models in Chapter 16, in which we mostly focus on risk minimizing strategies as markets with jumps are generally incomplete. Chapter 17 contains an elementary introduction to finite difference methods for the numerical solution of PDEs and stochastic differential equations, dealing with the explicit and implicit finite difference schemes for the heat equations and the Black-Scholes PDE, as well as the Euler and Milshtein schemes for SDEs. The text is completed with an appendix containing the needed probabilistic background.

The material in this book has been used for teaching in the Masters of Science in Financial Engineering at City University of Hong Kong and at the Nanyang Technological University in Singapore. The author thanks Ju-Yi Yen (University of Cincinnati) for several corrections and improvements.

The cover graph represents the time evolution of the HSBC stock price from January to September 2009, plotted on the price surface of a European

call option on that asset, expiring on October 05, 2009, cf. § 5.5.

This pdf file contains external links, and animated figures and embedded videos in Chapters 8, 9, 10, 11, 13 and 15, that may require using Acrobat Reader for viewing on the complete pdf file. Clicking on an exercise number inside the solution section will send to the original problem text inside the file. Conversely, clicking on the problem number sends the reader to the corresponding solution, however this feature should not be misused.

Contents

Int	trodu	ction	1
1	Ass	ets, Portfolios and Arbitrage	11
	1.1	Definitions and Formalism	11
	1.2	Portfolio Allocation and Short Selling	12
	1.3	Arbitrage	13
	1.4	Risk-Neutral Measures	16
	1.5	Hedging of Contingent Claims	19
	1.6	Market Completeness	20
	1.7	Example	21
	Exe	rcises	27
2	Dis	crete-Time Model	31
	2.1	Stochastic Processes	31
	2.2	Portfolio Strategies	32
	2.3	Arbitrage	35
	2.4	Contingent Claims	35
	2.5	Martingales and Conditional Expectation	38
	2.6	Market Completeness and Risk-Neutral Measures	42
	2.7	The Cox-Ross-Rubinstein (CRR) Market Model	44
	Exe	rcises	47
3	Pri	cing and Hedging in Discrete Time	49
	3.1	Pricing of Contingent Claims	49
	3.2	Hedging of Contingent Claims - Backward Induction	54
	3.3	Pricing of Vanilla Options in the CRR Model	55
	3.4	Hedging of Vanilla Options in the CRR model	58
	3.5	Hedging of Exotic Options in the CRR Model	61
	3.6	Convergence of the CRR Model	68
	Exe	rcises	71

4	Bro	ownian Motion and Stochastic Calculus	77
	4.1	Brownian Motion	77
	4.2	Wiener Stochastic Integral	
	4.3	Itô Stochastic Integral	88
	4.4	Stochastic Calculus	
	4.5	Geometric Brownian Motion	99
	4.6	Stochastic Differential Equations	102
	Exe	rcises	104
5	The	e Black-Scholes PDE	
	5.1	Continuous-Time Market Model	115
	5.2	Self-Financing Portfolio Strategies	115
	5.3	Arbitrage and Risk-Neutral Measures	119
	5.4	Market Completeness	121
	5.5	The Black-Scholes PDE	122
	5.6	The Heat Equation	131
	5.7	Solution of the Black-Scholes PDE	133
	Exe	rcises	
6	Ma	rtingale Approach to Pricing and Hedging	
	6.1	Martingale Property of the Itô Integral	141
	6.2	Risk-neutral Measures	145
	6.3	Girsanov Theorem and Change of Measure	147
	6.4	Pricing by the Martingale Method	149
	6.5	Hedging Strategies	153
	Exe	rcises	159
7	Est	imation of Volatility	171
•	7.1	Historical Volatility	
	7.2	Implied Volatility	
	7.3	The Black-Scholes Formula vs Market Data	
	7.4	Local Volatility	
	7.5	Stochastic Volatility	
	7.6	Volatility Derivatives.	
		volatility Derivatives	
	Exe	rcises	190
8	Bar	rrier Options	199
	8.1	Options on Extrema	199
	8.2	Maximum of Standard Brownian Motion	
	8.3	The Reflection Principle	
	8.4	Joint Density of Brownian Motion and its Maximum	206
	8.5	Pricing of Barrier Options	
	8.6	PDE Method	
		rcises	
	1110	1	_01

9	Lookback Options	235
	9.1 Average Brownian Extrema	235
	9.2 The Lookback Put Option	240
	9.3 PDE Method	242
	9.4 The Lookback Call Option	248
	9.5 Hedging Lookback Call Options	258
	Exercises	261
10	Asian Options	263
	10.1 Options on Averages	263
	10.2 The Asian Call Option	267
	10.3 Moment Matching Approximations	271
	10.4 PDE Method - Two Variables	276
	10.5 PDE Method - One Variable	279
	Exercises	286
11	American Options	
	11.1 Filtrations and Information Flow	
	11.2 Martingales, Submartingales, and Supermartingales	
	11.3 Stopping Times	
	11.4 Perpetual American Options	
	11.5 Finite Expiration American Options	
	Exercises	321
12	Change of Numéraire and Forward Measures	
	12.1 Notion of Numéraire	333
	12.2 Change of Numéraire	335
	12.3 Foreign Exchange	343
	12.4 Pricing of Exchange Options	349
	12.5 Hedging by Change of Numéraire	351
	Exercises	354
13	Forward Rate Modeling	359
	13.1 Short Term Models and Mean Reversion	359
	13.2 Zero-Coupon Bonds	366
	13.3 Forward Rates	376
	13.4 The HJM Model	384
	13.5 Forward Vasicek Rates	387
	13.6 Modeling Issues	391
	13.7 The BGM Model	
	Eina	

14	Pricing of Interest Rate Derivatives	409
	14.1 Forward Measures and Tenor Structure	
	14.2 Bond Options	412
	14.3 Caplet Pricing	413
	14.4 Forward Swap Measures	416
	14.5 Swaption Pricing on the LIBOR	
	Exercises	
15	Stochastic Calculus for Jump Processes	437
	15.1 The Poisson Process	
	15.2 Compound Poisson Processes	
	15.3 Stochastic Integrals with Jumps	
	15.4 Itô Formula with Jumps	
	15.5 Stochastic Differential Equations with Jumps	
	15.6 Girsanov Theorem for Jump Processes	
	Exercises	
16	Pricing and Hedging in Jump Models	469
	16.1 Market data vs Gaussian and Power Tails	469
	16.2 Risk-Neutral Measures	473
	16.3 Pricing in Jump Models	474
	16.4 Black-Scholes PDE with Jumps	476
	16.5 Exponential Models	478
	16.6 Self-Financing Hedging with Jumps	481
	Exercises	484
17	Basic Numerical Methods	487
	17.1 Discretized Heat Equation	487
	17.2 Discretized Black-Scholes PDE	490
	17.3 Euler Discretization	493
	17.4 Milshtein Discretization	494
Аp	pendix: Background on Probability Theory	497
•	Probability Spaces and Events	497
	Probability Measures	501
	Conditional Probabilities and Independence	
	Random Variables	504
	Probability Distributions	506
	Expectation of a Random Variable	
	Conditional Expectation Revisited	
	Moment Generating Functions	524
	Exercises	526

Exercise Solutions
Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 10
Chapter 11
Chapter 12
Chapter 13
Chapter 14
Chapter 15
Chapter 16
Background on Probability Theory 678
Index
A .12 . 4 . 2
Author index
Deferences 690

List of Figures

0.1	"As if a whole new world was laid out before me."
0.2	Graph of the Hang Seng index
0.3	Sample price processes simulated by a geometric Brownian motion \dots 6
0.4	"Infogrames" stock price curve
1.1	Arbitrage - 2006 retail prices around the world for the Xbox $360\ldots$ 14
1.2	Absence of arbitrage - the Mark Six "Investment Table"
1.3	Separation of convex sets
2.1	Illustration of the self-financing condition (2.3)
4.1	Sample paths of a one-dimensional Brownian motion
4.2	Two sample paths of a two-dimensional Brownian motion
4.3	Sample paths of a three-dimensional Brownian motion
4.4	Construction of Brownian motion by linear interpolation* 82
4.5	Scaling property of Brownian motion*
4.6	Step function
4.7	Geometric Brownian motion started at $S_0 = 1^*$
5.1	Illustration of the self-financing condition (5.4)
5.2	Graph of the Black-Scholes call price function with strike $K = 100^* \dots 126$
5.3	Graph of the Black-Scholes put price function with strike price $K = 100 128$
5.4	Graph of the stock price of HSBC Holdings
5.5	Path of the Black-Scholes price for a call option on HSBC
5.6	Time evolution of a hedging portfolio for a call option on HSBC 130
5.7	Path of the Black-Scholes price for a put option on HSBC
5.8	Time evolution of the hedging portfolio for a put option on HSBC \dots 131
5.9	Time-dependent solution of the heat equation*
5.10	Option price as a function of the volatility σ
6.1	Drifted Brownian path 145

6.2	Delta of a European call option	158
6.3	Gamma of a European call option	158
6.4	Option price as a function of the underlying and of time to maturity	165
6.5	Delta as a function of the underlying and of time to maturity	165
6.6	Gamma as a function of the underlying and of time to maturity	166
6.7	Option price as a function of the underlying and of time to maturity	167
6.8	Delta as a function of the underlying and of time to maturity	
6.9	Gamma as a function of the underlying and of time to maturity	168
7.1	"The fugazi: it's a wazy, it's a woozie. It's fairy dust." *	172
7.2	Implied volatility of Asian options on light sweet crude oil futures $\ \ldots \ $	173
7.3	Option prices plotted against strikes	174
7.4	Graph of the (market) stock price of Cheung Kong Holdings	175
7.5	Graph of the (market) call option price on Cheung Kong Holdings \ldots .	176
7.6	Graph of the Black-Scholes call option price on Cheung Kong Holdings .	176
7.7	Graph of the (market) stock price of HSBC Holdings	177
7.8	Graph of the (market) call option price on HSBC Holdings	177
7.9	Graph of the Black-Scholes call option price on HSBC Holdings $\ldots\ldots$	177
7.10	Graph of the (market) put option price on HSBC Holdings	178
7.11	Graph of the Black-Scholes put option price on HSBC Holdings	178
7.12	Call option price vs underlying price	179
7.13	Local volatility estimated from Boeing Co. option price data	183
7.14	Euro / SGD exchange rate	184
7.15	Option price approximations plotted against v with $\rho = -0.5$	196
8.1	Brownian motion B_t and its running maximum $(M_0^t)_{t \in \mathbb{R}_+}^*$	201
8.2	Running maximum of Brownian motion*	
8.3	A function with no last point of increase before $t=1$	
8.4	Zeroes of Brownian motion*	
8.5	Reflected Brownian motion with $a = 1^*$	204
8.6	Probability density of the maximum of Brownian motion $\hdots \dots \dots$	205
8.7	Probability density of the maximum X_T of geometric Brownian motion	206
8.8	Joint probability density of Brownian motion and its maximum $\ \ldots \ \ldots$	208
8.9	Heat map of the joint density of B_1 and its maximum	
8.10	v	
8.11	Graph of the up-and-out call option price with $B>K^*$	216
8.12	Graph of the up-and-out put option price (8.19)	222
8.13	Graph of the up-and-out put option price (8.20)	222
8.14	Graph of the down-and-out call option price with $B < K \ \dots \ \dots$	224
	Graph of the down-and-out call option price with $K>B$	
8.16	Graph of the down-and-out put option price with $K>B$	225
8.17	Delta for the up-and-out option *	229
9.1	Graph of the lookback put option price *	
9.2	Graph of the normalized lookback put option price	246

Q

This version: June 23, 2016

xvi

9.3	Black-Scholes put price in the decomposition (9.11)	247
9.4	Function $h_p(\tau, z)$ in the decomposition (9.11)	248
9.5	Graph of the lookback call option price*	251
9.6	Normalized lookback call option price	255
9.7	Graph of the underlying asset price	
9.8	Running minimum of the underlying asset price	256
9.9	Graph of the lookback call option price	256
9.10	Black-Scholes call price in the normalized lookback call price	
9.11	Function $h_c(\tau, z)$ in the normalized lookback call option price	257
9.12	Delta of the lookback call option*	260
9.13	Rescaled portfolio strategy for the lookback call option	260
	Brownian motion and its moving average*	
	Graph of Asian option prices	
	Lognormal approximation of probability density	
10.4	Lognormal approximation to the Asian option price	273
11.1	Drifted Brownian path	291
	Evolution of the fortune of a poker player vs number of games played	
	Stopped process	
	Graphs of the option price by exercise at τ_L for several values of $L \dots$	
	Animated graph of the option price $x \mapsto f_L(x)^*$	
	Option price as a function of L and of the underlying asset price	
	Path of the American put option price on the HSBC stock	
	Graphs of the option price by exercising at τ_L for several values of L	
	Graphs of the option prices parametrized by different values of L	
	Expected Black-Scholes European call price $vs(x,t) \mapsto (x-K)^+ \dots$	
11.11	Black-Scholes put price function $vs(x,t) \mapsto (K-x)^+ \dots \dots$	316
11.19	Optimal frontier for the exercise of a put option	316
	Numerical values of the finite expiration American put price	
	4Longstaff-Schwartz algorithm for the American put price	
	6Comparison between Longstaff-Schwartz and finite differences	
13.1	Graph of $t \longmapsto r_t$ in the Vasicek model	360
13.2	CBOE 10 Year Treasury Note yield	365
	Calibrated Vasicek samples	
13.4	Graphs of $t \longmapsto P(t,T)$ and $t \longmapsto e^{-r_0(T-t)}$	371
13.5	Graph of $t \longmapsto P(t,T)$ for a bond with a 2.3% coupon	372
13.6	Bond price graph with coupon rate 6.25%	372
13.7	Orange Cnty Calif prices	375
13.8	Orange Cnty Calif yields	375
13.9	Graph of $T \longmapsto f(t,t,T)$	377
	Federal Reserve yield curves from 1982 to 2012	
13.11	European Central Bank yield curves*	383
	2 Stochastic process of forward curves	

13.13 Forward rate process $t \mapsto f(t, T, S)$. 388
13.14 Instantaneous forward rate process $t \mapsto f(t,T) \dots \dots \dots$. 388
13.15 Forward instantaneous curve in the Vasicek model*	. 389
13.16 Forward instantaneous curve $x \mapsto f(0,x)$ in the Vasicek model*	. 390
13.17 Short term interest rate curve $t \mapsto r_t$ in the Vasicek model	. 390
13.18 Market example of yield curves (13.26)	. 391
13.19 Graph of $x \mapsto g(x)$ in the Nelson-Siegel model	. 391
13.20 Graph of $x \mapsto g(x)$ in the Svensson model	. 392
13.21 Comparison of market data vs a Svensson curve	. 392
13.22 Graphs of forward rates	. 393
13.23 Forward instantaneous curve in the Vasicek model	. 393
13.24 Graph of $t \mapsto P(t, T_1)$. 394
13.25 Graph of forward rates in a two-factor model	. 397
13.26 Random evolution of forward rates in a two-factor model	. 397
13.27 ECB data vs fitted yield curve*	. 398
13.28 Graph of stochastic interest rate modeling	. 400
14.1 Forward rates arranged according to a tenor structure	. 409
14.2 Implied swaption volatilities	. 423
15.1 Sample path of a Poisson process $(N_t)_{t\in\mathbb{R}_+}$	
15.2 Sample path of a compound Poisson process $(Y_t)_{t \in \mathbb{R}_+}$	
15.3 Sample trajectories of a gamma process	
15.4 Sample trajectories of a stable process	
15.5 Sample trajectories of a variance gamma process	
15.6 Sample trajectories of an inverse Gaussian process	
15.7 Sample trajectories of a negative inverse Gaussian process	
15.8 Geometric Poisson process*	
15.9 Ranking data	
15.10 Geometric compound Poisson process*	
15.11 Geometric Brownian motion with compound Poisson jumps*	
15.12 SMRT Share price	. 458
101 34 1	4770
16.1 Market returns vs normalized Gaussian returns	
16.2 Empirical vs Gaussian CDF	
16.3 Quantile-Quantile plot	
16.4 Empirical density vs normalized Gaussian density	
16.5 Empirical density vs power density	. 472
17.1 Divergence of the explicit finite difference method	401
17.1 Divergence of the explicit finite difference method	
17.3 Probability computed as a volume integral	
11.0 1 topasmity computed as a volume integral	. 510
S.1 Samples of linear interpolations	55/
S.2 Market data for the warrant #01897 on the MTR Corporation	
5.2 Market data for the warrant #01057 on the MIII Corporation	. 500

xviii

S.3	Lower bound vs Black-Scholes call price	572
S.4	Lower bound vs Black-Scholes put price	572
S.5	Price of a digital call option	578
S.6	Risky hedging portfolio value for a digital call option	580
S.7	Riskless hedging portfolio value for a digital call option	580
S.8	Black-Scholes price of the maximum chooser option	582
S.9	Delta of the maximum chooser option	583
S.10	Black-Scholes price of the minimum chooser option	584
S.11	Delta of the minimum chooser option \hdots	584
S.12	Average return by selling at the maximum vs selling at maturity T	587
S.13	Average return by selling at the minimum vs selling at maturity T	589
S.14	Price of the up-and-in long forward contract	592
S.15	Delta of down-and-in long forward contract	593
S.16	Price of the up-and-out long forward contract	594
S.17	Delta of up-and-out long forward contract price \hdots	595
S.18	Price of the down-and-in long forward contract	596
S.19	Delta of down-and-in long forward contract	596
S.20	Price of the down-and-out long forward contract	597
S.21	Delta of down-and-out long forward contract	598
S.22	Expected minimum of geometric Brownian motion $\ldots \ldots \ldots$	600
S.23	Time derivative of the expected minimum	600
S.24	Expected maximum of geometric Brownian motion	602
S.25	Time derivative of the expected maximum \hdots	603
S 26	Lookback call option as a function of maturity time T	605

 $^{^{\}ast}$ Animated figures (work in Acrobat reader).

Introduction

Modern mathematical finance and quantitative analysis require a strong background in fields such as stochastic calculus, optimization, partial differential equations (PDEs) and numerical methods, or even infinite dimensional analysis. In addition, the emergence of new complex financial instruments on the markets makes it necessary to rely on increasingly sophisticated mathematical tools. Not all readers of this book will eventually work in quantitative financial analysis, nevertheless they may have to interact with quantitative analysts, and becoming familiar with the tools they employ be an advantage. In addition, despite the availability of ready made financial calculators it still makes sense to be able oneself to understand, design and implement such financial algorithms. This can be particularly useful under different types of conditions, including an eventual lack of trust in financial indicators, possible unreliability of expert advice such as buy/sell recommendations, or other factors such as market manipulation. To some extent we would like to have some form of control on the future behaviour of random (risky) assets, however, since knowledge of the future is not possible, the time evolution of the prices of risky assets will be modelled by random variables and stochastic processes.

Historical Sketch

We start with a description of some of the main steps, ideas and individuals that played an important role in the development of the field over the last century.

Robert Brown, botanist, 1827

Brown observed the movement of pollen particles as described in his paper "A brief account of microscopical observations made in the months of June, July and August, 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies."

Phil. Mag. 4, 161-173, 1828.

Philosophical Magazine, first published in 1798, is a journal that "publishes articles in the field of condensed matter describing original results, theories and concepts relating to the structure and properties of crystalline materials, ceramics, polymers, glasses, amorphous films, composites and soft matter."

Louis Bachelier, mathematician, PhD 1900

Bachelier used Brownian motion for the modelling of stock prices in his PhD thesis "Théorie de la spéculation", Annales Scientifiques de l'Ecole Normale Supérieure 3 (17): 21-86, 1900.

Albert Einstein, physicist

Einstein received his 1921 Nobel Prize in part for investigations on the theory of Brownian motion: "... in 1905 Einstein founded a kinetic theory to account for this movement", presentation speech by S. Arrhenius, Chairman of the Nobel Committee, Dec. 10, 1922.

Albert Einstein, "Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen", Annalen der Physik 17 (1905) 223.

Norbert Wiener, mathematician, founder of cybernetics

Wiener is credited, among other fundamental contributions, for the mathematical foundation of Brownian motion, published in 1923. In particular he constructed the Wiener space and Wiener measure on $C_0([0, 1])$ (the space of continuous functions from [0, 1] to \mathbb{R} vanishing at 0).

Norbert Wiener, "Differential space", Journal of Mathematics and Physics of the Massachusetts Institute of Technology, 2, 131-174, 1923.

Kiyoshi Itô (伊藤清), mathematician, Gauss prize 2006

Itô constructed the Itô integral with respect to Brownian motion, cf. Itô, Kiyoshi, Stochastic integral. Proc. Imp. Acad. Tokyo 20, (1944). 519-524. He also constructed the stochastic calculus with respect to Brownian motion, which laid the foundation for the development of calculus for random processes, cf. Itô, Kiyoshi, "On stochastic differential equations", Mem. Amer. Math. Soc. (1951).

"Renowned math wiz Itô, 93, dies." (The Japan Times, Saturday, Nov. 15, 2008).

Kiyoshi Itô, an internationally renowned mathematician and professor emeritus at Kyoto University died Monday of respiratory failure at a Kyoto hospital, the university said Friday. He was 93. Itô was once dubbed "the most famous Japanese in Wall Street" thanks to his contribution to the founding of financial derivatives theory. He is known for his work on stochastic differential equations and the "Itô Formula", which laid the foundation for the Black-Scholes model, a key tool for financial engineering. His theory is also widely used in fields like physics and biology.

Paul Samuelson, economist, Nobel Prize 1970

In 1965, Samuelson rediscovered Bachelier's ideas and proposed geometric Brownian motion as a model for stock prices. In an interview he stated "In the early 1950s I was able to locate by chance this unknown [Bachelier's] book, rotting in the library of the University of Paris, and when I opened it up it was as if a whole new world was laid out before me." We refer to "Rational theory of warrant pricing" by Paul Samuelson, Industrial Management Review, p. 13-32, 1965.

Fig. 0.1: [15] "As if a whole new world was laid out before me."*

In recognition of Bachelier's contribution, the Bachelier Finance Society was started in 1996 and now holds the World Bachelier Finance Congress every

^{*} Click on the figure to play the video (works in Acrobat reader on the entire pdf file).

2 years.

Robert Merton, Myron Scholes, economists

Robert Merton and Myron Scholes shared the 1997 Nobel Prize in economics: "In collaboration with Fisher Black, developed a pioneering formula for the valuation of stock options ... paved the way for economic valuations in many areas ... generated new types of financial instruments and facilitated more efficient risk management in society."*

Black, Fischer; Myron Scholes (1973). "The Pricing of Options and Corporate Liabilities". Journal of Political Economy 81 (3): 637-654.

The development of options pricing tools contributed greatly to the expansion of option markets and led to development several ventures such as the "Long Term Capital Management" (LTCM), founded in 1994. The fund yielded annualized returns of over 40% in its first years, but registered lost US\$ 4.6 billion in less than four months in 1998, which resulted into its closure in early 2000.

Oldrich Vasiček, economist, 1977

Interest rates behave differently from stock prices, notably due to the phenomenon of mean reversion, and for this reason they are difficult to model using geometric Brownian motion. Vasiček was the first to suggest a mean-reverting model for stochastic interest rates, based on the Ornstein-Uhlenbeck process, in "An equilibrium characterisation of the term structure", Journal of Financial Economics 5: 177-188.

David Heath, Robert Jarrow, A. Morton

These authors proposed in 1987 a general framework to model the evolution of (forward) interest rates, known as the HJM model, see their joint paper "Bond Pricing and the Term Structure of Interest Rates: A New Methodology for Contingent Claims Valuation", Econometrica, (January 1992), Vol. 60, No. 1, pp 77-105.

Alan Brace, Dariusz Gatarek, Marek Musiela (BGM)

The BGM model is actually based on geometric Brownian motion, and it is specially useful for the pricing of interest rate derivatives such as caps and

^{*} This has to be put in relation with the modern development of risk societies; "societies increasingly preoccupied with the future (and also with safety), which generates the notion of risk".

swaptions on the LIBOR market, see "The Market Model of Interest Rate Dynamics". Mathematical Finance Vol. 7, page 127. Blackwell 1997, by Alan Brace, Dariusz Gatarek, Marek Musiela.

European Call and Put Options

We close this introduction with a description of European call and put options, which are at the basis of risk management. As mentioned above, an important concern for the buyer of a stock at time t is whether its price S_T can fall down at some future date T. The buyer of the stock may seek protection from a market crash by purchasing a contract that allows him to sell his asset at time T at a guaranteed price K fixed at time t. This contract is called a put option with strike price K and exercise date T.

Fig. 0.2: Graph of the Hang Seng index - holding a put option might be useful here.

Definition 0.1. A (European) put option is a contract that gives its holder the right (but not the obligation) to sell a quantity of assets at a predefined price K called the strike price (or exercise price) and at a predefined date T called the maturity.

In case the price S_T falls down below the level K, exercising the contract will give the holder of the option a gain equal to $K - S_T$ in comparison to those who did not subscribe the option and sell the asset at the market price S_T . In turn, the issuer of the option will register a loss also equal to $K - S_T$ (in the absence of transaction costs and other fees).

If S_T is above K then the holder of the option will not exercise the option as he may choose to sell at the price S_T . In this case the profit derived from the option is 0.

In general, the payoff of a (so called European) put option will be of the form

$$\phi(S_T) = (K - S_T)^+ = \begin{cases} K - S_T, & S_T \le K, \\ 0, & S_T \ge K. \end{cases}$$

Two possible scenarios (S_T finishing above K or below K) are illustrated in Figure 0.3.

Fig. 0.3: Sample price processes simulated by a geometric Brownian motion.

On the other hand, if the trader aims at buying some stock or commodity, his interest will be in prices not going up and he might want to purchase a call option, which is a contract allowing him to buy the considered asset at time T at a price not higher than a level K fixed at time t.

Here, in the event that S_T goes above K, the buyer of the option will register a potential gain equal to $S_T - K$ in comparison to an agent who did not subscribe to the call option.

Definition 0.2. A (European) call option is a contract that gives its holder the right (but not the obligation) to buy a quantity of assets at a predefined price K called the strike and at a predefined date T called the maturity.

In general, a (European) call option is an option with payoff function

$$\phi(S_T) = (S_T - K)^+ = \begin{cases} S_T - K, S_T \ge K, \\ 0, & S_T \le K. \end{cases}$$

In market practice, options are often divided into a certain number n of warrants, the (possibly fractional) quantity n being called the $entitlement\ ratio$.

In order for an option contract to be fair, the buyer of the option should pay a fee (similar to an insurance fee) at the signature of the contract. The computation of this fee is an important issue, which is known as option pricing.

The second important issue is that of *hedging*, *i.e.* how to manage a given portfolio in such a way that it contains the required random payoff $(K-S_T)^+$ (for a put option) or $(S_T-K)^+$ (for a call option) at the maturity date T.

The next figure illustrates a sharp increase and sharp drop in asset price, making it valuable to hold a call option during the first half of the graph, whereas holding a put option would be recommended during the second half.

Fig. 0.4: "Infogrames" stock price curve.

An illustration - pricing and hedging in a binary model

We close this introduction with a simplified illustration of the pricing and hedging technique in a binary model. Consider a risky stock price S valued $S_0 = 4$ at time t = 0, and taking only two possible values

$$S_1 = \begin{cases} \$5\\ \$2 \end{cases}$$

at time t=1. In addition, consider an option that yields a payoff P whose values are contingent to the data of S:

$$P = \begin{cases} \$3 & \text{if } S_1 = \$5 \\ \$0 & \text{if } S_1 = \$2. \end{cases}$$

At time t=0 we choose to invest α units in the risky asset S, while keeping β on our bank account, meaning that we invest a total amount

$$\alpha S_0 + \$ \beta$$
 at $t = 0$.

The following issues can be addressed:

a) Hedging: how to choose the portfolio allocation $\{\alpha, \$\beta\}$ so that the value

$$\alpha S_1 + \$ \beta$$

of the portfolio matches the future payoff P at time t=1?

b) Pricing: how to determine the amount $\alpha S_0 + \$\beta$ to be invested in such a portfolio at time t = 0?

Hedging means that at time t=1 the portfolio value matches the future payoff P, i.e.

$$\alpha S_1 + \$\beta = P.$$

This condition can be rewritten as

$$P = \begin{cases} \$3 = \alpha \times \$5 + \$\beta & \text{if } S_1 = \$5, \\ \$0 = \alpha \times \$2 + \$\beta & \text{if } S_1 = \$2, \end{cases}$$

i.e.

$$\begin{cases} 5\alpha+\beta=3 & \text{which yields} \\ 2\alpha+\beta=0, & \end{cases} \text{ which yields} \begin{cases} \alpha=1 \\ \$\beta=-\$2. \end{cases}$$

In other words, we buy 1 unit of the stock S at the price $S_0 = \$4$, and we borrow \$2 from the bank. The price of the option contract is given by the portfolio value

$$\alpha S_0 + \$\beta = 1 \times \$4 - \$2 = \$2.$$

at time t = 0.

Conclusion: in order to deliver the random payoff $P = \begin{cases} \$3 & \text{if } S_1 = \$5 \\ \$0 & \text{if } S_1 = \$2. \end{cases}$

at time t = 1, one has to:

- 1. receive \$2 (the option price) at time t = 0,
- 2. borrow $-\$\beta = \2 from the bank,
- 3. invest those \$2 + \$2 = \$4 into the purchase of $\alpha = 1$ unit of stock valued at $S_0 = \$4$ at time t = 0,

4. wait until time t=1 to find that the portfolio value evolved into

$$P = \begin{cases} \alpha \times \$5 + \$\beta = 1 \times \$5 - \$2 = \$3 & \text{if } S_1 = \$5, \\ \alpha \times \$2 + \$\beta = 1 \times \$2 - \$2 = 0 & \text{if } S_1 = \$2. \end{cases}$$

so that the option contract is fulfilled whatever the evolution of S.

We note that the initial amount of \$2 can be turned to P = \$3 (%50 profit) ... or into P = \$0 (total ruin).

Thinking further

1) The expected gain of our portfolio is

$$\mathbb{E}[P] = \$3 \times \mathbb{P}(P = \$3) + \$0 \times \mathbb{P}(P = \$0)$$

$$= \$3 \times \mathbb{P}(S_1 = \$5)$$

$$= \$3 \times \mathbb{P}(S_1 = \$5).$$

In absence of arbitrage opportunities ("fair market") this expected gain $\mathbb{E}[P]$ should equal the initial amount \$2 invested in the option. In that case we should have

$$\begin{cases} \mathbb{E}[P] = \$3 \times \mathbb{P}(S_1 = \$5) = \$2 \\ \mathbb{P}(S_1 = \$5) + \mathbb{P}(S_1 = \$2) = 1. \end{cases}$$

from which we can *infer* the probabilities

$$\begin{cases}
\mathbb{P}(S_1 = \$5) = \frac{2}{3} \\
\mathbb{P}(S_1 = \$2) = \frac{1}{3}.
\end{cases} (0.1)$$

We see that the stock S has twice more chances to go up than to go down in a "fair" market.

2) Based on the probabilities (0.1) we can also compute the expected value $\mathbb{E}[S_1]$ of the stock at time t=1. We find

$$\mathbb{E}[S_1] = \$5 \times \mathbb{P}(S_1 = \$5) + \$2 \times \mathbb{P}(S_1 = \$2)$$

$$= \$5 \times \frac{2}{3} + \$2 \times \frac{1}{3}$$

$$= \$4$$

$$= S_0.$$

Here this means that, on average, no profit can be made from an investment on the risky stock. In a more realistic model we can assume that the riskles bank account yields an interest rate equal to r, in which case the above analysis is modified by letting β become $(1+r)\beta$ at time t=1, nevertheless the main conclusions remain unchanged.

