

Computational Intelligence Methods for Solving Partial Differential Equations

Name: Nicolai Schwartze

Study Program: Master Mechatronics

Semester: 4

 $u(x,2) = 2e^{-1.5(x^2+4)} + e^{-3((x+1)^2+9)} + e^{-3((x+1)^2+1)} + e^{-3((x-1)^2+9)} + e^{-3((x-1)^2+9)} + e^{-3((x-1)^2+9)} + e^{-3((x-1)^2+1)} + e^{-3((x-1)^2+1)$

 $+6(6x^2 - 12x + 5)e^{-3((x-1)^2 + (y+1)^2)} + 6(6y^2 + 12y + 5)e^{-3((x-1)^2 + (y+1)^2)}$

 $+6(6x^{2} + 12x + 5)e^{-3((x+1)^{2} + (y-1)^{2})} + 6(6y^{2} - 12y + 5)e^{-3((x+1)^{2} + (y-1)^{2})}$

 $+6(6x^{2}-12x+5)e^{-3((x-1)^{2}+(y-1)^{2})}+6(6y^{2}-12y+5)e^{-3((x-1)^{2}+(y-1)^{2})}$

on the domain Ω :

Outline

- Problem Description
- Experimental Design
- Serial JADE
- Parallel JADE
- Adaptive Kernel
- Gauss-Sine Kernel
- Conclusion

Problem Description: Optimisation Problem

- Reformulation of the differential equation into an optimisation problem
 - Minimisation of the residuum
 - x is limited to $x \in \mathbb{R}^2$
 - $\Omega \subseteq \mathbb{R}^2$ is the domain of the differential equation with the boundary $\partial \Omega$
 - $u(x): \Omega \to \mathbb{R}$ is the solution to the differential equation

$$Lu(x) = f(x) in \Omega$$

$$Bu(x) = g(x) auf \partial \Omega$$
 L and B are linear differential operators

- -R(u(x)) = Lu(x) f(x)
- $R(u(x)) \rightarrow min \text{ for } u(x)$

Problem Description: Function Representation

 Approximation is represented as a finite sum of radial basis function

$$u(x) \approx u_{apx}(x) = \sum_{i=0}^{N} \phi_i(x)$$

- Two basis functions are tested
 - Gauss Kernel

$$\begin{split} gak(x) &= \omega e^{-\gamma \|x-c\|^2} \\ \left[\omega_0, \gamma_0, c_{00}, c_{01}, \dots \, \omega_i, \gamma_i, c_{i0}, c_{i1}, \dots \, \omega_N, \gamma_N, c_{N0}, c_{N1}\right]^T \end{split}$$

Gauss-Sine Kernel

$$gsk(x) = \omega e^{-\gamma ||x-c||^2} \sin(f||x-c||^2 - \varphi)$$

$$[\omega_0, \gamma_0, c_{00}, c_{01}, f_0, \varphi_0, \dots \omega_i, \gamma_i, c_{i0}, c_{i1}, f_i, \varphi_i, \dots \omega_N, \gamma_N, c_{N0}, c_{N1}, f_N, \varphi_N]^T$$

Problembeschreibung: Fitnessfunktion

- Based on the residuum
- Assigns a real value to an approximation $u_{apx}(x)$
- Residuum for $u_{apx}(x)$ is evaluated
 - Finite number of Collocation Points in the domain
- "Using CMAES for solving different types of differential equations" (Chaquet und Carmona 2019)
- Fitness function:

$$F\left(u_{apx}(x)\right) = \frac{\sum_{i=1}^{nc} \xi(x_i) \left[Lu_{apx}(x_i) - f(x_i)\right]^2 + \phi \sum_{j=1}^{nB} \left[Bu_{apx}(x_j) - g(x_j)\right]^2}{(n_C + n_B)}$$

• Implementation: $F\left(\underbrace{u_{apx}(x)}_{[\omega_i,\gamma_i,c_{i0},c_{i1}]}:\mathbb{R}^{4N}\to\mathbb{R}\right)$

Experimental Design: Testbed

- Testbed consists of 11 PDEs
 - Poisson Equation:
 Laplace operator is applied to solution function
- ◆ 5 Equations are important:
 - PDE 0A: Sum of 5 Gauss Kernel
 - PDE 2: From Literature
 - PDE 3: From Literature
 - PDE 4: From NIST Testbed
 - PDE 5: From NIST Testbed

Experimental Design: Comparison

- 3 attributes of the solver are compared:
 - Execution time
 - Allocated memory
 - Quality of the approximation
- Compared to Finite Element Solver NGSolve
- Compared to other results from the literature
- Statistical interpretation: 20 replications Wilcoxon Ranksum Test with $\alpha = 0.05$

$$||u_{ext} - u_{apx}|| = \sqrt{\int_{\Omega} \left(u_{ext}(x) - u_{apx}(x)\right)^2 dx}$$

Serial JADE: Hypothesis

- JADE is an evolutionary optimisation algorithm
 - Mutation/Crossover
 - Evaluation
 - Selection
- The same experiments as in "Chaquet and Carmona 2019"
 - JADE instead of CMAES
 - Slight different parameter

Is it possible to use JADE and achieve comparable results to other algorithms from the literature research?

Serial JADE: Results

Name	10 ⁴ #FE		10 ⁶ #FE		Wilcoxon
	mean	median	mean	median	
PDE 0A	1.9415 ± 0.3321	1.8844	0.6596 ± 0.5510	0.9285	sig. better
PDE 2	0.0890 ± 0.0334	0.0760	0.0257 ± 0.0140	0.0224	sig. better
PDE 3	0.2409 ± 0.1051	0.2309	0.0328 ± 0.0169	0.0285	sig. better
PDE 4	0.1102 ± 0.0367	0.0985	0.0378 ± 0.0083	0.0352	sig. better
PDE 5	0.6645 ± 0.1930	0.6263	1.1968 ± 0.0286	1.2056	sig. worse

Paper	Paper Parameter		RMSE PDE 3	
	4 kernel			
Chaquet and Carmona 2019	$\max \#FE=10^6$	$(1.75 \pm 1.14)10^{-4}$	$(1.09 \pm 0.846)10^{-5}$	
	50 replications			
	10 harmonics			
Chaquet and Carmona 2012	$ ext{max}~\# ext{FE} = G \cdot \lambda = 1.2 \cdot 10^6$	$(6.37 \pm 0.733)10^{-3}$	$(5.90 \pm 0.799)10^{-3}$	
	10 replications			
	unknowns: N/A			
Panagant and Bureerat 2014	$\#\text{FE}{=}5\cdot 10^5$	7.25610^{-4}	9.48910^{-6}	
	replications: N/A			
	5 kernel			
serial memetic JADE	$\mathrm{max}~\mathrm{\#FE}=10^6$	$(2.9798 \pm 1.5541)10^{-2}$	$(3.8225 \pm 1.9438)10^{-2}$	
	20 replications			

Parallel JADE: Hypothesis

- Parallel implementation of JADE
- The inner iteration over the population is evaluated in parallel
- From an algorithm perspective only slightly different:
 - The information is only available after the synchronisation of the processes

Can the parallel algorithm decrease the execution time of the program?

Parallel JADE: Results

Name	serial JADE		parallel JADE		Wilcoxon
	mean	median	mean	median	
PDE 0A	0.6596 ± 0.5510	0.9285	0.6939 ± 0.6635	0.9243	unsig. undecided
PDE 2	0.0257 ± 0.0140	0.0224	0.0300 ± 0.0157	0.0255	unsig. worse
PDE 3	0.0328 ± 0.0169	0.0285	0.0371 ± 0.0206	0.0295	unsig. worse
PDE 4	0.0378 ± 0.0083	0.0352	0.0505 ± 0.0121	0.0481	sig. worse
PDE 5	1.1968 ± 0.0286	1.2056	1.2030 ± 0.0465	1.2053	unsig. undecided

Adaptive Kernel: Hypothesis

- Convergence based termination of JADE necessary:
 - Unchanged fitness over generations
- Adaptive Scheme
 - Start with one kernel, low dimension
 - Increase kernel count until the solution can not be improved with more kernel
- Can the adaptive scheme improve the results?

Adaptive Kernel: Results

Name	parallel JADE		adaptive Kernel		Wilcoxon
	mean	median	mean	median	
PDE 0A	0.6939 ± 0.6635	0.9243	9.694E-16 ± 1.486E-16	9.255E-16	sig. better
PDE 2	0.0300 ± 0.0157	0.0255	0.0735 ± 0.0358	0.1034	sig. worse
PDE 3	0.0371 ± 0.0206	0.0295	0.1731 ± 0.0395	0.1822	sig. worse
PDE 4	0.0505 ± 0.0121	0.0481	0.0707 ± 0.0053	0.0720	sig. worse
PDE 5	1.2030 ± 0.0465	1.2053	122.6312 ± 372.5676	1.1643	unsig. undecided

Gauss-Sine Kernel: Hypothesis

 Fitness function gets optimised but does not reflect the actual quality criterion

- Fitness function must be changed
 → simple way to do that: other kernel
- $gsk(x) = \omega e^{-\gamma ||x-c||^2} \sin(f||x-c||^2 \varphi)$

 Can the new Gauss-Sine Kernel cope with the problem of contradictory fitness and L2 Norm on PDE 5?

Gauss-Sine Kernel: Results

Name	Gauss Kernel		Gauss-Sine Kernel		Wilcoxon
	mean	median	mean	median	
PDE 0A	0.6939 ± 0.6635	0.9243	0.8106 ± 0.7929	0.6765	unsig. undecided
PDE 2	0.0300 ± 0.0157	0.0255	0.0448 ± 0.0224	0.0416	unsig. worse
PDE 3	0.0371 ± 0.0206	0.0295	0.0263 ± 0.0111	0.0269	unsig. better
PDE 4	0.0505 ± 0.0121	0.0481	0.0470 ± 0.0078	0.0458	unsig. better
PDE 5	1.2030 ± 0.0465	1.2053	0.5860 ± 0.2149	0.6841	sig. better

Conclusion

- JADE produces worse results then other comparable algorithms from the literature
- Use CMAES on this testbed
- A radial symmetry of the fitness function can be observed, which could lead to the design of better suited algorithms

$$u(x) \approx u_{apx}(x) = \sum_{i=0}^{N} \phi_i(x)$$

$$\begin{bmatrix} kernel_0 & kernel_i & kerenl_N \end{bmatrix}^T$$

www.fhv.at

Name: Nicolai Schwartze

Contact: nicolai.schwartze@students.fhv.at

Study Program, Semester: Master Mechatronics, 4

Statistical Significance: Wilcoxon Test

Undecided:

L2 Norm

Pseudocode: Mutation/Crossover

CurrentToPBest	$v_{i,g} = x_{i,g} + F_i \cdot (x_{best,g}^p - x_{i,g}) + F_i \cdot (x_{r1,g} - x_{r2,g})$
CurrentToPBest with archive	$v_{i,g} = x_{i,g} + F_i \cdot (x_{best,g}^P - x_{i,g}) + F_i \cdot (x_{r1,g} - \tilde{x}_{r2,g})$

Expected Runtime Distribution

L2 Norm auf allen 11 PDEs zu einem Targetvalue von:

0.05

0.01

0.005

0.001

Pseudocode: JADE

Algorithm A.1: JADE Pseudocode

```
1 Function JADE(X_{g=0}, p, c, function, minError, maxFE):
         fValue_{g=0} \leftarrow function(\mathbf{x}_{g=0})
         \mu_{CR} \leftarrow 0.5
         \mu_F \leftarrow 0.5
         A \leftarrow \emptyset
         while fe \leq maxFE do
              g \leftarrow g + 1
              S_F \leftarrow \emptyset
              S_{CR} \leftarrow \emptyset
 9
              for i = 1 to NP do
10
                    F_i \leftarrow randc_i(\mu_F, 0.1)
11
                   v_i \leftarrow mutationCurrentToPBest1(\mathbf{x}_{i,g}, A, fValue_g, F_i, p)
12
                    CR_i \leftarrow randn_i(\mu_{CR}, 0.1)
13
                    u_i \leftarrow crossoverBIN(\mathbf{x}_{i,g}, v_i, CR_i)
14
                    if function(\mathbf{x}_{i,q}) \geq function(\mathbf{u}_{i,q}) then
15
                         \mathbf{x}_{i,q+1} \leftarrow \mathbf{x}_{i,q}
16
                    end
17
                    else
18
                         \mathbf{x}_{i,g+1} \leftarrow \mathbf{u}_{i,g}
19
                         fValue_{i,g+1} \leftarrow function(\mathbf{u}_{i,g})
20
                         \mathbf{x}_{i,g} 	o \mathbf{A}
21
                         CR_i \to S_{CR}
22
                         F_i \rightarrow S_F
23
                    \mathbf{end}
24
               end
25
              // resize A to size of \mathbf{x}_q
^{26}
              if |A| > NP then
27
                    A \leftarrow A \setminus A_{rand_i}
^{28}
               end
29
              fe \leftarrow fe + size(\mathbf{X})
30
              \mu_{CR} \leftarrow (1-c) \cdot \mu_{CR} + c \cdot arithmeticMean(S_{CR})
31
              \mu_F \leftarrow (1-c) \cdot \mu_F + c \cdot lehmerMean(S_F)
32
         end
33
```

Pseudocode: memetic JADE

Algorithm 5.1: Pseudocode of memetic JADE

```
Function memeticJADE(X, funct, minErr, maxFE):

dim, popsize \leftarrow size(X)
p \leftarrow 0.3
c \leftarrow 0.5
pop, FE, F, CR \leftarrow JADE(X, p, c, funct, minErr, maxFE - 2dim)
bestIndex = argmin(FE)
bestSol = pop[bestIndex]
pop, FE = downhill simplex(funct, bestSol, minErr, 2dim)
return pop, FE, F, CR
```

Finite Elemente Results

Problem PDE	L2 Norm
0A	$2.967 \cdot 10^{-5}$
0B	$1.071 \cdot 10^{-5}$
1	$8.004 \cdot 10^{-7}$
2	$3.501 \cdot 10^{-8}$
3	$1.680 \cdot 10^{-9}$
4	$4.764 \cdot 10^{-7}$
5	$6.057 \cdot 10^{-6}$
6	$1.908 \cdot 10^{-7}$
7	$5.203 \cdot 10^{-5}$
8	$3.237 \cdot 10^{-7}$
9	$2.366 \cdot 10^{-7}$

Derivatives Kernel

Gauss Kernel

$$\frac{\partial u_{apx}(\mathbf{x})}{\partial x_j} = -2\sum_{i=0}^{N} \omega_i \gamma_i (x_j - c_{ij}) e^{-\gamma_i r_i^2}$$
(3.13)

$$\frac{\partial^2 u_{apx}(\mathbf{x})}{\partial x_i^2} = \sum_{i=0}^N \omega_i \gamma_i \left[4\gamma_i (x_j - c_{ij})^2 - 2 \right] e^{-\gamma_i r_i^2}$$
(3.14)

$$\frac{\partial^2 u_{apx}(\mathbf{x})}{\partial x_j x_k} = 4 \sum_{i=0}^{N} \omega_i \gamma_i^2 (x_j - c_{ij}) (x_k - c_{ik}) e^{-\gamma_i r_i^2}$$
(3.15)

Gauss-Sine Kernel

$$\frac{\partial u_{apx}(\mathbf{x})}{\partial x_j} = \sum_{i=0}^{N} 2\omega_i (x_j - c_{ij}) e^{-\gamma_i r_i^2} (f_i cos(f_i r_i^2 - \varphi_i) - \gamma_i sin(f_i r_i^2 - \varphi_i))$$
(3.19)

$$\frac{\partial^2 u_{apx}(\mathbf{x})}{\partial x_j^2} = \sum_{i=0}^{N} 2\omega_i e^{-\gamma_i r_i^2}$$

$$[-(2(f_i^2 - \gamma_i^2)(x_j - c_{ij})^2 + \gamma_i)\sin(f_i r_i^2 - \varphi_i) - (4f_i \gamma_i (x_j - c_{ij})^2 - f_i)\cos(f_i r_i^2 - \varphi_i)]$$
(3.20)

$$\frac{\partial^2 u_{apx}(\mathbf{x})}{\partial x_j x_k} = \sum_{i=0}^{N} -4\omega_i (c_{ij} - x_j)(c_{ik} - x_k) e^{-\gamma_i r_i^2}
\left[(f_i^2 - \gamma_i^2) \sin(f_i r_i^2 - \varphi_i) + 2f_i \gamma_i \cos(f_i r_i^2 - \varphi_i) \right]$$
(3.21)

Picture Library – revised

