F17T2A1

Sei $n \in \mathbb{N} := \{1, 2, 3, ...\}$. Seien

$$f_n, g_n : [0, \infty[\to \mathbb{R}, \quad f_n(x) := x^n e^{-nx}, \quad g_n(x) := x^n e^{-x^n}$$

- a) Sei $n \in \mathbb{N}$ beliebig, aber fest. Untersuche, ob die Funktionen f_n und g_n auf $[0, \infty[$ Maximum und Minimum annehmen.
- b) Zeige, dass $(f_n)_{n\in\mathbb{N}}$ und $(g_n)_{n\in\mathbb{N}}$ auf $[0,\infty[$ punktweise konvergieren. Bestimme die jeweilige Grenzfunktion f bzw. g.
- c) Welche der Funktionenfolgen $(f_n)_{n\in\mathbb{N}}$ und $(g_n)_{n\in\mathbb{N}}$ konvergieren auf $[0,\infty[$ gleichmäßig?

zu a):

$$f_n(x) := x^n e^{-nx} \implies f_n(0) = 0$$

$$f'_n(x) := nx^{n-1}e^{-nx} - nx^n e^{-nx} = nx^{n-1}e^{-nx}(1-x) \implies f'_n(1) = 0$$

$$g_n(x) := x^n e^{-x^n} \implies g_n(0) = 0$$

$$g'_n(x) := nx^{n-1}e^{-x^n} - nx^{n-1}x^n e^{-x^n} = nx^{n-1}e^{-x^n}(1-x^n) \implies g'_n(1) = 0$$

Da $f_n(0) = g_n(0) = 0$ und f_n , $g_n > 0$ ist 0 das Minimum für beide Funktionen. Extrema liegen bei $f'_n(x) = g'_n(x) = 0$. $f'_n(x)$ hat bei x = 1 eine Nullstelle. Da $nx^{n-1}e^{-nx}$ stets positiv ist, gilt $f'_n(x) > 0$ für x < 1 und $f'_n(x) < 0$ für x > 1.

$$\Rightarrow$$
 Bei $x = 1$ liegt ein Maximum $\Rightarrow f_n(1) = e^{-n}$

 $g'_n(x)$ hat bei x = 1 eine Nullstelle. Es gilt dieselbe Begründung wie für $f'_n(x)$, also liegt auch hier bei x = 1 ein Maximum vor. $\Rightarrow g_n(1) = e^{-1}$

zu b):

Sei $x \in [0, \infty[$. Es gilt nach Teil a) $f_n(x) \le e^{-n}$, da dies das Maximum ist. Somit gilt $f_1(x) = xe^{-x} \le e^{-n} < 1$. Also erhält man

$$\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} x^n e^{-nx} = \lim_{n \to \infty} (xe^{-x})^n \le \lim_{n \to \infty} e^{-n^2} = 0$$

 $\Rightarrow (f_n)_{n\in\mathbb{N}}$ konvergiert punktweise gegen die Nullfunktion.

Für g_n gelten 3 Fälle:

1.
$$\underline{x=1}$$
: $g_n(1) = e^{-1}$

2.
$$\underline{x < 1}$$
: Also $\lim_{n \to \infty} x^n = 0$

$$\Rightarrow \lim_{n \to \infty} g_n(x) = \lim_{n \to \infty} x^n e^{-x^n} \le \lim_{n \to \infty} x^n = 0$$

3.
$$\underline{x > 1}$$
: Also $\lim_{n \to \infty} x^n = \infty$

$$\Rightarrow \lim_{n \to \infty} g_n(x) = \lim_{n \to \infty} x^n e^{-x^n} = \lim_{n \to \infty} x e^{-x} = 0$$

$$\Rightarrow \text{Grenzwert } g: [0, \infty[\to \mathbb{R}, \ x \mapsto \begin{cases} e^{-1} & \text{für } x = 1 \\ 0 & \text{sonst} \end{cases}$$

zu c):

 $(f_n)_{n\in\mathbb{N}}$ konvergiert gleichmäßig. Sei $\varepsilon>0$, wähle $N\in\mathbb{N}$ so, dass $e-N<\varepsilon$. Es gilt dann für $x\in[0,\infty[$ und $n\geq N$

$$f_n(x) \le f_n(1) = e - n \le e - N < \varepsilon$$

Würde $(g_n)_{n\in\mathbb{N}}$ gleichmäßig konvergieren, so wäre g_n stetig und damit auch ihre Grenzfunktion g. Da g aber nach Teil b) nicht stetig ist, folgt: $(g_n)_{n\in\mathbb{N}}$ ist nicht gleichmäßig konvergent.