Raspberry Pi

Krzysztof Kulewski 20.01.2016

1 Wprowadzenie

1.1 Opis

Raspberry Pi to komputer jednopłytkowy SBC, który został stworzony przez Raspberry Pi Foundation[1]. Składa się z pojedynczego obwodu drukowanego, a jego premiera miała miejsce w I kwartale 2012 roku.

Urządzenie działa pod kontrolą systemów operacyjnych GNU/Linux i RISC OS oraz - w przypadku modelu Pi 2 B - również Windowsa 10 IoT. Z założenia platforma miała przede wszystkim wspierać naukę podstaw informatyki, znalazła jednak szerokie zastosowanie w elektronice DIY, obok Arduino. Przykłady użycia:

- przenośny PC
- serwer WWW RPi z racji niewielkich rozmiarów oraz niskiego poboru prądu znakomicie sprawdza się w roli serwera
- robotyka RPi może pełnić rolę głównego komputera
- automatyka domowa
- tablet (po zainstalowaniu wyświetlacza dotykowego)
- stacja pogodowa
- klaster

1.2 Podstawowe modele

Wyróżniamy kilka podstawowych wersji:

- 1. Pi 1 A (02.2012)
- 2. Pi 1 B (05.2012)
- 3. Pi 1 B+ (07.2014)
- 4. Pi 1 A+ (11.2014)
- 5. Pi 2 B (02.2015)
- 6. Pi Zero (11.2015)

2 Specyfikacja

2.1 Parametry wersji B oraz Zero

Tabela 1 na stronie 2 przedstawia parametry podstawowych modeli wersji B oraz Zero.

	Pi 1 B	Pi 1 B+	Pi 2 B	Pi Zero
Cena	25\$	20\$	35\$	5\$
SoC (Broadcom)	BCM2835		BCM2836	BCM2835
CPU	700 MHz	700 MHz	900 MHz, quad	1 GHz
GPU	Broadcom VideoCore IV @ 250 MHz			
RAM	$256/512~\mathrm{MB}$	512 MB	1 GB	512 MB

Tablica 1: Parametry

2.2 Wyjścia wersji 2 B

Grafika 1 przedstawia elementy Raspberry Pi 2 B.[2]

Rysunek 1: Raspberry Pi 2 B

3 Wzory

Poniższe wzory[3] mogą być użyteczne przy używaniu Raspberry Pi.

3.1 Napięcie

Wzór 1 pozwala na obliczenie napięcia prądu elektrycznego.

$$U = \Delta \varphi = \frac{W}{q}[V] \tag{1}$$

Gdzie:

 ${\cal U}$ - napięcie prądu elektrycznego [V]

 $\Delta \varphi$ - różnica potencjałów [V]

W - praca [J]

q - przepływający ładunek $[\mathbf{C}]$

3.2 Natężenie

Wzór 2 pozwala na obliczenie natężenia prądu elektrycznego.

$$I = \frac{q}{t}[A] \tag{2}$$

Gdzie:

I - natężenie prądu [A]

q - przepływające ładunek

t- czas przepływu ładunku $[\mathbf{s}]$

Literatura

- [1] http://www.raspberrypi.org/
- [2] https://en.wikipedia.org/wiki/Raspberry_Pi
- [3] Tablica wzorów fizycznych