Ćwiczenia z ANALIZY NUMERYCZNEJ (L)

Lista nr 7

18 listopada 2020 r.

Zajęcia 24 listopada 2020 r. Zaliczenie listy od 5 pkt.

L7.1. | 1 punkt | Podaj postać Newtona wielomianu interpolacyjnego dla następujących danych:

Uwaga. Jeśli chwilę pomyślisz, na pewno zauważysz, że rozwiązując podpunkty b) i c) nie musisz wykonywać wielu obliczeń.

L7.2. | 1 punkt | Ile i jakich operacji arytmetycznych należy wykonać, aby dla danych parami różnych węzłów x_0, x_1, \ldots, x_n obliczyć ilorazy różnicowe

(1)
$$f[x_0], f[x_0, x_1], \dots, f[x_0, x_1, \dots, x_n]$$
?

Podaj pseudokod algorytmu wyznaczającego ilorazy różnicowe (1), którego złożoność pamięciowa wynosi O(n).

L7.3. 1 punkt Korzystając z wiedzy z analizy matematycznej, znajdź takie wartości parame- $\overline{\text{tr\'ow } a, b} > 0$, by wyrażenia

$$\max_{x \in [-1,1]} |(x-a)(x+a)|, \qquad \max_{x \in [-1,1]} |(x-b)x(x+b)|$$

przyjmowały najmniejszą możliwą wartość. Jakie i dlaczego płyną stąd wnioski dla sposobu wyboru węzłów interpolacji?

L7.4. Włącz komputer! 1 punkt Przy pomocy programu umożliwiającego rysowanie wykresów funkcji, przygotuj wykresy wielomianów

$$p_{n+1}(x) := (x - x_0)(x - x_1)\dots(x - x_n)$$
 $(n = 4, 5, \dots, 20)$

dla x_k ($0 \le k \le n$) będących węzłami równoodległymi w przedziale [-1,1]. Następnie powtórz eksperyment dla węzłów Czebyszewa. Skomentuj wyniki porównując odpowiednie wykresy. Jakie i dlaczego płyną stąd wnioski dla sposobu wyboru węzłów interpolacji?

L7.5. 1 punkt Funkcję $f(x) = \ln(2x+3)$ interpolujemy wielomianem $L_n \in \Pi_n$ w pewnych $\overline{n+1}$ różnych punktach przedziału [-1,0]. Znajdź wartość n, dla której

$$\max_{x \in [-1,0]} |f(x) - L_n(x)| \le 10^{-6}.$$

Jak zmieni się sytuacja, gdy użyjemy węzłów Czebyszewa odpowiadających przedziałowi [-1,0]?

L7.6. 2 punkty Funkcję $f(x) = e^{x/3}$ interpolujemy wielomianem $L_n \in \Pi_n$ w n+1 równo-odległych punktach przedziału [-1,1]. Znajdź **możliwie najmniejszą** wartość n, dla której

$$\max_{x \in [-1,1]} |f(x) - L_n(x)| \le 10^{-16} ?$$

Jak zmieni się sytuacja, gdy za węzły przyjmiemy zera wielomianu Czebyszewa T_{n+1} ?

L7.7. 2 punkty Język programowania PWO++ ma bogatą bibliotekę funkcji i procedur numerycznych. Wśród nich znajduje się m.in. procedura Interp_Newton(x,f) znajdująca dla wektora x:= $[x_0, x_1, \ldots, x_n]$ parami różnych liczb rzeczywistych i wektora f:= $[f_0, f_1, \ldots, f_n]$ współczynniki b_k $(k = 0, 1, \ldots, n)$ postaci Newtona wielomianu interpolacyjnego $L_n \in \Pi_n$,

$$L_n(x) := b_0 + b_1(x - x_0) + b_2(x - x_0)(x - x_1) + \dots + b_n(x - x_0)(x - x_1) \cdot \dots \cdot (x - x_{n-1}),$$

spełniającego warunki $L_n(x_i) = f_i$ dla i = 0, 1, ..., n. Niestety procedura ta ma pewną wadę, mianowicie n musi być mniejsze niż 31. W jaki sposób, wykorzystując procedurę Interp_Newton tylko raz, można szybko wyznaczyć współczynniki postaci Newtona wielomianu $L_{31} \in \Pi_{31}$ spełniającego warunki

$$L_{31}(z_i) = h_i$$
 $(i = 0, 1, ..., 31; z_i \neq z_j \text{ dla } i \neq j)$?

L7.8. 1 punkt W rzeczywistości procedura Interp_Newton(x,f) języka PWO++ (patrz zadanie poprzednie) ma jeszcze jedno ograniczenie. Chodzi o to, że żaden z elementów wektorów x oraz f nie może być co do modułu większy niż 2020. Czy jeśli warunek ten nie jest spełniony, to procedura ta może być nadal użyteczna?

(-) Paweł Woźny