



# MAAF My Amazing Assembly Furniture

Aurel, Umer, Baturalp, Mahsa under supervision: M.Sc. Marsil Zakour, Yuankai Wu

17.07.24



# **Motivation**

- Complexity of assembling IKEA furnitures
- Reducing Dependency on Written Manuals
- Improving User Experience
- Addressing Common Mistakes
- Safety Enhancements



Fig.1: Elderly man struggling

## **Problem Statement**

➤ Goal: Develop a FAA by using different fundamental and SOA models

Performed action classification: 6 different classes
mistake detection

DEVA: adaptable to different furniture inputs

Co-Tracker: adaptable, reduces video feature outputs

Pretrained and customized deep learning models

➤ Visualization: 3D reconstruction trimesh pyrender



# **Dataset Collection**

- New Dataset: IKEA Shoe Rack
- Tabletop Sensor Set Up
- 14 different video sequences including some common mistakes



# General Pipeline **Annotaated GT** Data Video CoTracker **DEVA** Classification stream (a) Visualization Video **DEVA** CoTracker stream Classification (b)

Fig.2: General Pipeline of MAAF (a) Training Pipeline (b) Processing Pipeline





## Video Annotation

- VGG Video Annotation: Tool developed by Oxford
- Generate a .json file which includes 6 different action classes and their timestamp for each sequence and view



Fig.3: VGG Tool Implementation



# Video Annotation



Fig.4: Action classes and their respective frequency

# Image Segmentation

#### 1. Vision

 Utilizing a model that can quickly adapt to segment different objects without fine-tuning

#### 2. Challenges

a. Hard to detect objects

#### 3. Attainments

- a. Hands on experience with SoTA segmentation models
- b. Docker and linux file management





# **DEVA** [2]







Fig.5: Segmentation Masks

#### **Key Highlights**:

- Open-vocabulary zero shot learning model
- Fuses segmentation hypotheses from different frames to generate a coherent segmentation

## Advantages:

- Eliminating the need for annotated datasets
- Allows for rapid adaptation in pipelines by changing prompts

# **Action Classification**

#### 1. Vision

- Taking advantage of multi-view setup
- b. Usage of reduce representation of the scene

#### 2. Challenges

- a. Hard to detect objects
- b. Unbalanced and noisy dataset

#### 3. Attainments

- a. Hands on experience with state of the art (SoTA) methods
- b. Unbalanced dataset management strategies
- c. Docker and linux file management





# Co-tracker [3]



Fig.6: Segmented Co-tracker output

#### Capabilities:

- Transformer based point tracker
- Can detect up to 70K points
- Can detect segmented points

#### Usage:

- Reduced-feature extraction
- Object Tracking (Visualization)





## **Dataset Generation**

#### 125874ffæmæss





#### **Problems**

- Unequal sequence and views
- Imbalanced dataset
- Low quality labels

#### **Solutions**

- Downsampling
- Class weights based on scarcity
- Focus on the only on actions





## Methods



Fig 7: Processing Logic

#### **Comparative Analysis:**



# **Architectures**



Fig. 8: Custom Lightweight Model: The yellow block represents the Efficient Channel Attention (ECA) [1], the pink block denotes the ReductionCNN block, and the purple block illustrates the ViewAware Transformer.



# Ablations on Light Weight Model

#### **Configurations:**

- Weighted F1 score
- Warm Up schedule with cosine decay
- 200 epochs

#### **Results:**

Table 1: Ablation Table

| Model Settings                        | Highest Val F1 Score |
|---------------------------------------|----------------------|
| Multiview weighted loss               | 66.67%               |
| Singleview weighted loss              | 52.10%               |
| Multiview classical loss              | 60.87%               |
| Multiview weighted loss with mistakes | 44.95%               |



# Results



Fig.9: Ablation graphs

- Multiview performs better
- Selected views effects performance
- Weighted loss performs better
- Accuracy higher without mistakes

# ResNet Architecture



Fig.10: ResNet+LSTM Based Big Model: The gray block represents the ResNet component, while the blue blocks denote the LSTM units.

## Ablations on ResNet

#### Input Ablations on ResNet

- 1 view (5) Resnet-50
- 4 views (2,4,5,6) Resnet-50
- All views Resnet-50

#### **Results:**

Table 2: Different input modality performance table

| Model Settings    | Highest Val F1 Score |
|-------------------|----------------------|
| 1 view            | 85.71%               |
| 4 views (2,4,5,6) | 76.05%               |
| All views         | 37.92%               |





# Confusion Matrix for 4 Views on ResNet-50



Fig. 10: Confusion Matrix



# Input Modalities on ResNet-18

#### **Experiments**

- RGB Videos
- Segmentation mask inputs
- Overlayed co-tracker [3] inputs

#### **Results:**

Table.3: Different input modality performance table

| Model Settings                                                    | Highest Val F1 Score |
|-------------------------------------------------------------------|----------------------|
| Single view classical loss no mistakes rgb input                  | 52.10%               |
| Single view classical loss no mistakes mask input                 | 43.20%               |
| Single view classical loss with mistakes overlay co-tracker input | 44.95%               |



# **Executive Summary**

## **Implementation Options:**

- Lightweight Model:
  - Co-tracker [3] based fast approach
- Big Model:
  - Resnet+Istm based direct rgb approach

## **Performance Highlights:**

- Degradation in the mistake detection
- High accuracy with Resnet+Istm

Table.4: Selected Model Performance

| Model Settings                    | Highest Val F1 Score |
|-----------------------------------|----------------------|
| Resnet+LSTM with Mistakes         | 76.05%               |
| ECA+CNN+Transformer with Mistakes | 44.95%               |







# Demo of Resnet LSTM with Actions







# Demo of Resnet LSTM with Mistakes









# Demo of Light Weight Model with Actions









# Demo of Light Weight Model with Mistakes



## Visualization

- 1) Updating the 3D model of the furniture by receiving the action sequence
- 2) Movement tracking the components of the furniture



Fig.12: Final 3D reconstruction

Mahsa, Aurel



#### Data from the CoTracker

- 1) Inserting the long horizontal rods
- 2) Inserting the short horizontal rods
- 3) Inserting the elbows
- 4) Inserting the short vertical rods
- 5) Mistakes



- 1) Trimesh: Constructing the cylinders, spheres, rectangles
- 2) Pyrender: for rendering and visualization of the meshes



Fig.13: Pyrender's output



#### General idea:

- 1) Discretely constructing the components
  - Sphere for the elbows
  - Cylinders for the rods
  - Rectangle for the table top
- 2) Locating them in the desired positions through coordinates
- 3) Using the timestamps from the pre-trained model



## **Challenges:**

- 1) Differentiating between different rods and elbows
- 2) Visualization of the mistake due to the orientation
- 3) Mistake classification











- 1) Using the segmentation masks to segment different objects
- 2) Using CoTracker to sample the components
- Using CoTracker to track the sampled points locations in each sequence
- 4) Combine the previous steps with 3D-reconstruction



Fig.14: CoTracker's output



## Challenges:

- 1) Not all the views are useful
- 2) Some objects are not completely present in the recordings
- 3) Hand is masking the object







Fig.15: Segmented mask



1) Using the segmentation masks to segment different objects



Fig.16: Segmentation mask for frame 50



Fig.17: Segmentation mask for frame 55



Step1) Using the segmentation masks to segment different objects

Filtering out the objects



Fig.18: The hand is masking the object and making it discrete



Step2) Using CoTracker to sample the components



Fig.19: Image points

36 Mahsa, Aurel



Step3) Using CoTracker to track the sampled points locations in each sequence (getting the image points)





Fig.20: Most points have vanished in the frame 95

Mahsa, Aurel

#### Challenges of step 3:

1) Calibratecamera function fails to return the camera matrix, distortion coefficients, rotation and translation vectors

#### Reasons:

- 1) Error due to numerical instability
- 2) Insufficient input data
- 3) CoTracker was not able to extract enough features
  - a) Not having a special texture (Like the chessboard)
  - b) Object sizes were too small

# References

[1]Q. Wang, B. Wu, P. Zhu, P. Li, W. Zuo, and Q. Hu, "ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks." Available: https://arxiv.org/pdf/1910.03151

[2]H. Cheng, Seoung, W. Oh, B. Price, A. Schwing, and J.-Y. Lee, "Tracking Anything with Decoupled Video Segmentation." Accessed: Jul. 17, 2024. [Online]. Available: https://arxiv.org/pdf/2309.03903

[3]N. Karaev *et al.*, "CoTracker: It is Better to Track Together." Accessed: Jul. 17, 2024. [Online]. Available: https://arxiv.org/pdf/2307.07635

# Thank you!