Dirac Structures and Classical Mechanics

Rafael Córdoba Lopez

Universidad de los Andes

22 de noviembre de 2021

Contents

Classical Mechanics

Symplectic structure

Dirac structures and Dirac manifolds

Dirac structures and constrains

Classical Mechanics I

• System \leftrightarrow Manifold

Example (N-free particles)

$$M' = M \setminus \{\langle v_{1,1}, ..., v_{N,3} \rangle : \langle v_{i,1}, v_{i,2}, v_{i,3} \rangle = \langle v_{j,1}, v_{j,2}, v_{j,3} \rangle \ i \neq j \}$$

Classical Mechanics II

Example (Rigid body rotations)

 $M = O^{+}(3) = Orthogonal linear transf.$ preserving orientation.

Classical Mechanics III

- Configuration $\rightarrow \varphi(t) \in M$
- State of the system $= \underbrace{M}_{Position} + \underbrace{\textbf{things}}_{Momentum} = S$

Configurations $\pi: S \to M$ s.t.

$$=\pi\langle q^1,...,q^{3N},p_1,...,p_{3N}\rangle=\varphi(t).$$

Remark

$$q \in M \implies \dot{q} \in TM, \quad p \in ?$$

State at a time t:

- $\varphi_{t,t_0}: S \to S$, $\varphi_{t,t_0}(s) \leftarrow$ state at a time t
- $\varphi_{t,t_1} \circ \varphi_{t_1,t_0} = \varphi_{t,t_0} \implies \varphi_{s_2} \circ \varphi_{s_1} = \varphi_{s_1+s_2} \ \varphi$ describes a flow on S = T * M

Classical Mechanics Ingredients: $M, \ T^*M, \ \varphi, \ \pi$

$$M, T^*M, \varphi, \pi$$

Equations of motion: Let M_1, M_2 and $\varphi: M_1 \to M_2$ a map,

- $T(\varphi \circ \psi) = T(\varphi) \circ T(\psi)$
- $\pi \circ T(\varphi) = \varphi \circ \pi$

$$\pi \circ T(\varphi_t)\xi = \varphi_t(\pi(\xi)).$$

The flow φ is generated by an infinitesimal generator X $(\dot{\varphi} = X(\varphi(t)))$.

Example

$$X = y \frac{\partial}{\partial x} - x \frac{\partial}{\partial y}$$

$$\dot{\varphi}^1 = \varphi^2$$
$$\dot{\varphi}^2 = -\varphi^1$$

$$\implies (\varphi^1)^2 + (\varphi^2)^2 = C^2.$$

$$\pi_{*\xi}(T(X)_{\xi}) = X_{\xi}$$
 hence

$$T(X)_{T(\alpha)}\langle v, w \rangle = \langle X_{\alpha}, dX_{\alpha(v)}(w) \rangle$$

i.e., with $\langle q_{lpha}, \dot{q}_{lpha}
angle = \langle v, w
angle$

$$\begin{cases}
\frac{dq^{i}}{dt} = X^{i} \\
\frac{d\dot{q}^{i}}{dt} = \frac{\partial X^{i}}{\partial x^{1}}\dot{q}^{1} + \dots + \frac{\partial X^{i}}{\partial x^{n}}\dot{q}^{n}
\end{cases}$$
(1)

and similarly for T^*M

The fundamental linear form. Given a $z \in T^*M$, let $\xi \in T_zT^*M$, the fundamental linear form θ is defined (in coordinates) as

$$\langle \xi, \theta_z \rangle = \langle \pi_* \xi, z \rangle$$

i.e.

$$\theta = \sum p_i dq^i$$

Let $\varphi: M_1 \to M_2$ diff. and θ_1 , θ_2 the fundamental linear forms.

•
$$T^*(\varphi)^*\theta_2 = \theta_1 \quad (\pi_*T^*(\varphi)_*\xi = \varphi_*\pi_*\xi)$$

• If $M_1 = M_2$, $(T^*(\varphi_t))^*\theta = \theta$

Using $\pi_*(T^*(X)_I = X_X)$,

$$D_{T^*(X)}\theta = 0$$

Note that $f_X(z) = \langle X_x, z \rangle$, $x = \pi(z)$ i.e. $f_X = \langle T^*(X), \theta \rangle$ since $\langle T^*(X)_z, \theta \rangle = \langle \pi_* T^*(X)_z, z \rangle = \langle X_z, z \rangle$.

Thus,

$$0 = D_{T^*(X)_w} \theta = d \langle \underbrace{T^*(X)}_{f_X}, \theta \rangle + \underbrace{\iota_{T^*(X)} d\theta}_{T^*(X) \cup \theta}$$
$$\implies df_X = -\iota_{T^*(X)} d\theta$$

The fundamental exterior 2-form on T^*M

$$\Omega = d\theta$$

- $d\Omega = 0 = d^2\omega$
- Ω is non singular, i.e. if $\xi \in T_z T^*M$ s.t. $\iota_\xi \Omega = 0 \iff \xi = 0$ Proof: $\theta = p_i dq^i \implies \Omega = dp_i \wedge dq^i$. $X = A^i \frac{\partial}{\partial q^i} + B^i \frac{\partial}{\partial p^i}$ hence:

$$\iota_X\Omega=\sum B^idq\hat{\mathbf{i}}-A^idp^i=0\iff A=B=0.$$

Hence, there is a one-to-one correspondence $X \to \iota_X \Omega$ between diff. forms and vector fields,

$$\omega_X = \iota_X \Omega$$

$$\omega = \iota_{X_{\omega}} \Omega.$$

where $d\omega = 0 \iff D_{X_{\omega}}\Omega = d(\iota_{X_{\omega}}\Omega) = d\omega = 0$ This is a distinguished class of vector fields T^*M (corresponding to functions), vector fields on T^*M . These vector fields are called **Hamiltonian vector fields**.

- $aX_{dF} + bX_{dG} = X_{d(aF+bG)}$
- $[X_{dF}, X_{dG}]$ is Hamiltonian,

$$dD_X G = D_X (dG) = D_X (\iota_{X_{dG}} \Omega) = \iota_{D_X Y} \omega + \iota_Y D_X \Omega$$

= $\iota_{D_X Y} \Omega = \iota_{[X,Y]} \Omega$
 $\Longrightarrow [X_{dF}, X_{dG}] = X_{d(X_{dF} G)}$

 $[\cdot,\cdot]$ is a Lie Bracket on Hamiltonian vector fields, We can define a Poisson bracket $\{\cdot,\cdot\}$ by

$$\{F,G\}=X_{dF}G$$

hence,

$$[X_{dF}, X_{dG}] = X_{d\{F,G\}}$$

• $\{F,G\} = -\{G,F\},$

$$X_{dF}G = \langle X_{dF}, dG \rangle = \langle X_{dF}, \iota X_{dG}\Omega \rangle$$
$$= \langle X_{dG} \wedge X_{dF}, \Omega \rangle \implies \{F, G\} = -\{G, F\}$$

In coordinates $(\langle q_{\alpha}, p_{\alpha} \rangle)$

$$dF = \sum \frac{\partial F}{\partial q^{i}} dq^{i} + \frac{\partial F}{\partial p^{i}} dp^{i} \implies$$

$$X_{dF} = \sum \frac{\partial F}{\partial q^{i}} \frac{\partial}{\partial p^{i}} - \frac{\partial F}{\partial p^{i}} \frac{\partial}{\partial q^{i}} \implies$$

$$\{F, G\} = \sum \frac{\partial F}{\partial q^{i}} \frac{\partial G}{\partial p^{i}} - \frac{\partial F}{\partial p^{i}} \frac{\partial G}{\partial q^{i}}$$

Proposition: If F, G are s.t. $X_{dF}G = 0$ then $X_{dG}F = 0$. If G is constant along the solution curves of X_{dF} then F is constant along X_{dG} "

The moment function of *Y* satisfies:

$$-T^*(Y) = X_{df_Y}$$

using $df_X = -\iota_{T^*(X)}d\theta$ Hamiltonian mechanics:

- Evolution of the system is determined by a flow on T^*M
- The infinitesimal generator of the flow is a Hamiltonian vector field

"There is a function H (energy) on T^*M s.t. X_{-dH} is the infinitesimal generator of the flow on T^*M "

$$X_{-dH} = \sum \frac{\partial H}{\partial p^i} \frac{\partial}{\partial q^i} - \frac{\partial H}{\partial q^i} \frac{\partial}{\partial p^i},$$

the flow $\langle q^{\alpha}(t), p^{\alpha}(t) \rangle$ is an integral curve of the flow

Equations of motion:
$$\frac{\partial H}{\partial p^i} = \frac{dq^i(t)}{dt}$$
$$-\frac{\partial H}{\partial q^i} = \frac{dp^i(t)}{dt}$$

Trivial consequence of $\{F,G\} = -\{G,F\} \implies$

$$X_{-dH}H = 0 \leftarrow \text{Conservation law}$$

H is a constant along trajectories of the system

Let X_{-dH} , F s.t.

$$X_{-dF}H = 0$$

then F is a constant on the trajectories of the flow. Prototype of momentum conservation.

The kinetic energy is a function on T^*M associated to the Riemannin metric (\cdot, \cdot) hence, $K = \frac{1}{2}(\ell, \ell)$.

Example:

Particle of mass m, $p = m\dot{q}$

$$||(\dot{q}_x,\dot{q}_y,\dot{q}_z)||^2 = m\dot{q}_x^2 + m\dot{q}_y^2 + m\dot{q}_z^2$$

the map $T_x R^3 \to T_x^* R^3$ sends

$$\langle q_{\alpha}, \dot{q}_{\alpha} \rangle \rightarrow \langle q_{\alpha}, p_{\alpha} \rangle$$

 $\implies K = \frac{1}{2m}(p_x^2 + p_y^2 + p_z^2)$ The function U is assumed to be

 $U=\bar{U}\circ\pi$ where \bar{U} is a function on M. The form $F=-d\bar{U}$ is called the force field with potential U. In coordinates,

$$\langle \xi, F \rangle = - \langle \xi, d \overline{U} \rangle$$

Using
$$H = U + K = \frac{1}{2m} \sum p_{\alpha}^2 + U$$
,

$$\frac{\partial H}{\partial p^{i}} = \frac{p^{i}}{m} \equiv \frac{dq^{i}}{dt}$$
$$-\frac{\partial H}{\partial q^{i}} = F \equiv \frac{dp^{i}}{dt} = \dot{p}.$$

Frame Title I

Definition

A 2-form $\omega \in \Omega^2(M)$ is called **symplectic** if it is nondegenerate, i.e.

$$\omega^{\#}: TM \to T^*M$$
$$X \to \iota_X \omega$$

is an isomorphism ($\omega=\frac{1}{2}\omega_{ij}dx^i\wedge dx^j$, ω_{ij} invertible) and $d\omega=0$. The pair (M,ω) is a symplectic 2-form, called a **symplectic** manifold.

Hamiltonian formalism:

For any function $f \in C^{\infty}(M)$, there is an associated **hamiltonian** vector field X_f uniquely defined by the condition

$$\iota_{X_f}\omega=df.$$

Frame Title II

In other words, $X_f = (\omega^\#)^{-1}(df)$. There is an induced bilinear operator

$$\{\cdot,\cdot\}: C^{\infty}(M)\times C^{\infty}(M)\to C^{\infty}(M),$$

konwn as the **Poission bracket**, that measures the rate of change of a function g along the Hamiltonian flow of f,

$$\{f,g\} := \omega(X_g,X_f) = \mathcal{L}_{X_f}g$$

- $d\omega(X_f, X_g, X_h) = \{f, \{g, h\}\} + \{h, \{f, g\}\} + \{g, \{h, f\}\} = 0$
- Stisfies the Leibniz rule $\{f,gh\} = \{f,g\}h + \{f,h\}g$.

Frame Title III

From the Leibniz rule, the Possion bracket is defined by a bivector field $\pi \in \Gamma(\Lambda^2 TM)$, uniquely determined by

$$\pi(df,dg) = \{f,g\} = \omega(X_g,X_f)$$

and locally, $\pi = \frac{1}{2}\pi^{ij}\frac{\partial}{\partial x^i}\wedge \frac{\partial}{\partial x^j}$.

The bivector field π defines a bundle map

$$\pi^{\#}: T^*M \to TM$$

$$\alpha \to \iota_{\alpha}\pi,$$

such that $X_f = \pi^\#(df)$. Since $df = \omega^\#(X_f) = \omega^\#(\pi^\#(df))$, we see that ω and π are related by

$$\omega^{\#} = (\pi^{\#})^{-1}$$

Recall: A symplectic structure

- 1. non-degenerate $\underbrace{closed\ 2 form}_{symplectic\ form}$ or,
- 2. non-degenerate <u>Poisson bivectorfield</u> Poisson Structure

 ω is non-degenerate if the map (bundle map)

$$\omega^{\#}: TM \to T^*M$$
$$X \to i_X \omega$$

is an isomorpism (or in coordinates (ω_{ij}) is invertible). Hamilton formalism:

1. For any $f \in C^{\infty}(M)$ there is a X_f defined by

$$i_{X_f}\omega=df$$

i.e.

$$X_f = \left(\omega^\#\right)^{-1} (df)$$

2. There is a op. $\{\cdot,\cdot\}: C^{\infty}(M)\times C^{\infty}(M)\to C^{\infty}(M)$ called the **Poission bracket** defined by

$$\{f,g\} := \omega(X_g,X_f) = \mathcal{L}_{X_f}f$$

Results:

- 1. $\{f,g\} = -\{g,f\}$
- 2. $Jac_{Poiss} = d\omega = 0$

The pair $(C^{\infty}(M), \{\cdot, \cdot\})$ is called a **Poission algebra**. Poisson algebra= Lie algebra+ $\{\cdot, \cdot\}$ is compatible with the associative, commutative product via Leibniz,

$${f,gh} = {f,g}h + {f,h}g$$

(Immediatly verified by the Lie derivative).

One can equivalently define a bivectorfield $\pi \in \Gamma(\Lambda^2 TM)$ such that

$$\pi(df, dg) = \{f, g\} = \omega(X_g, x_f)$$

 π defines a bundle map

$$\pi^{\#}: T^*M \to TM$$

$$\alpha \to i_{\alpha}\pi$$

in such a way that $X_f = \pi^\#(df)$.

Remark

$$\omega^{\#} = (\pi^{\#})^{-1}$$
.

Hence, one can either choose π or ω to describe the system. Likewise, π is non degenerate if the bundle map $\pi^{\#}$ is an iso. (or (π_{ii}) is invertible).

• We say that π is **Poission** if $\{f,g\} = \pi(df,dg)$ satisfies the Jacobi identity:

$${f,{g,h}} + {h,{f,g}} + {g,{h,f}} = {f,{g,h}} + {c.p} = 0$$

Remarks: We asked for

- 1. A lie Algebra √
- 2. $\{\cdot,\cdot\}$ compatible with the product via Leibniz
- 3. Skew symmetric $\pi \in \Gamma(\Lambda TM)$

There is a correspondence of Bivectorfields \leftrightarrow non-degenerate 2-forms s.t. pi is Poission iff ω is closed.

 $d_{i,j} = 0$

non-degenerate
$$\pi$$
 non-degenerate ω

Poission manifolds

Contrary at symplectic forms, if (M, π) is a Poission manifold, any function $f \in C^{\infty}(M)$ defines a unique Hamiltonian

$$X_f=\pi^\#(df),$$

i.e. $(C^{\infty}(M), \{\cdot, \cdot\})$ is a Poisson algebra.

Dirac structures [Courant, Weinstein '88, Courant'90] I

"A way to treat both types of degenerate symplectic structures in a unified manner" The presymplectic and Poisson structures are subbundles of the **generalized tangent**

$$\mathbb{T}M = TM \bigoplus T^*M$$

defined by the graphs of $\pi^{\#}$, $\omega^{\#}$ and additional geometric structures.

• A bilinear form $\langle \cdot, \cdot \rangle$ non-degenerate, symmetric on $\mathbb{T} M$ defined by

$$\langle (X, \alpha), (Y, \beta) \rangle = \beta(X) + \alpha(Y)$$

• A Courant bracket $\llbracket \cdot, \cdot \rrbracket : \Gamma(\mathbb{T}M) \times \Gamma(\mathbb{T}M) \to \Gamma(\mathbb{T}M)$ defined by

$$[(X,\alpha),(Y,\beta)] = ([X,Y],\mathcal{L}_X\beta - \mathcal{L}_Y\alpha + \frac{1}{2}d(i_Y\alpha - i_X\beta) + \mathcal{H}(X,Y,\cdot))$$

Dirac structures [Courant, Weinstein '88, Courant'90] II

A **Dirac structure** on M is a vector subbundle $L \subseteq \mathbb{T}M$ satisfying:

- 1. $L = L^{\perp}$, resp. to \langle , \rangle .
- 2. $[\Gamma(L), \Gamma(L)] \subseteq \Gamma(L)$ i.e. L is involutive w.r.t the Courant bracket.

Remarks:

- 1. is equivalent to $\langle , \rangle |_L = 0$ and rank(L) = dim(M)
- The Courant bracket satisfies

$$\mathsf{Jac}_{[\![,]\!]} = [\![[\![a_1, a_2]\!], a_3]\!] + c.p. = \frac{1}{3}d\langle [\![a_1, a_2]\!], a_3\rangle$$

i.e. it is NOT a Lie bracket.

 A subbundle L ⊂ TM satisfiying 1. is called Lagrangian subbundle of TM

Dirac structures [Courant, Weinstein '88, Courant'90] III

• 2. can be equivalently written by (using 1.)

$$\langle \llbracket a_1, a_2 \rrbracket, a_3 \rangle = 0.$$

For any lagrangian subbundle L,

$$\Upsilon_L(a_1,a_2,a_3) := \langle \llbracket a_1,a_2 \rrbracket, a_3 \rangle$$

defines an elemeent $\Upsilon_L \in \Gamma(\Lambda^3 L^*)$ called the **Courant tensor** of L.

Dirac structures [Courant, Weinstein '88, Courant'90] IV

Example: Any bivector field π defines a lagrangian subbundle by

$$L_{\pi} = \{ (\pi^{\#}(\alpha), \alpha) \mid \alpha T^*M \}$$

Hence, $(a_i = (\pi^\#(df_i), df_i))$

$$[a_1, a_2] = [X_{f_1}, X_{f_2}] \bigoplus \mathcal{L}_{X_{f_1}} df_2 - \mathcal{L}_{X_{f_2}} df_1 + \frac{1}{2} d(X_{f_2}(df_1) - X_{f_1}(df_2))$$

Recall that

$$\mathcal{L}_{X_{f_1}} df_2 - \mathcal{L}_{X_{f_2}} df_1 = d(\mathcal{L}_{X_{f_1}} f_2 - \mathcal{L}_{X_{f_2}} f_1) = 2d\{f_1, f_2\}$$

$$\frac{1}{2}d(i_{X_{f_1}}-i_{X_{f_2}}df_1)=\frac{1}{2}d(\mathcal{L}_{X_{f_1}}f_2-\mathcal{L}_{X_{f_2}}f_1)=d\{f_1,f_2\}$$

Dirac structures [Courant, Weinstein '88, Courant'90] V

Hence,

$$\begin{split} \Upsilon_{L_{\pi}}(a_1, a_2, a_3) &= \langle [\![a_1, a_2]\!], a_3 \rangle = df_3([X_{f_1}, X_{f_2}]) + d\{f_1, f_2\}(X_{f_3}) \\ &= X_{f_1}\{f_2, f_3\} - X_{f_2}\{f_1, f_2\} \\ &= Jac_{\{\cdot, \cdot, \cdot\}}(f_1, f_2, f_3). \end{split}$$

So 2. is satisfied iff π is Poisson.i.e. L_{π} is a Dirac structure. Similarly, the graph

$$L_{\omega} = \{(X, \omega^{\#}(X) \,|\, X \in TM\}$$

has

$$\Upsilon_{L_{\omega}}(a_1,a_2,a_3)=d\omega(X_1,X_2,X_3)$$

i.e. L_{ω} is a Dirac structure iff ω is presymplectic. [Casallas].

Hamiltonian vector fields: Let L be a Dirac structure on M. A function $f \in C^{\infty}(M)$ is called addmisible if there is a vector field X_f s.t.

$$(X, df) \in L$$
.

In this case X is called the Hamiltonian relative to f.

All the addmisible functions are always a Poisson algebra.

Morphisms: One can either identify the structures $\varphi:M_1\to M_2$ either with the pullback or the pushforward

$$\varphi^*\omega_2=\omega_1$$

$$\varphi_*\pi=\pi$$

however, the morphisms are not equivalent.

Example

Concider $\omega_{\mathbb{R}^2}=dq^1\wedge dp_1$, $\pi_{\mathbb{R}^2}=\frac{\partial}{\partial p_1}\wedge\frac{\partial}{\partial q^1}$ and $\omega_{\mathbb{R}^4}=dq^1\wedge dp_1+dq^2\wedge dp_2$, $\pi_{\mathbb{R}^4}=\frac{\partial}{\partial p_1}\wedge\frac{\partial}{\partial q^1}+\frac{\partial}{\partial p_2}\wedge\frac{\partial}{\partial q^2}$ The projection $(q^1,p_1,q^2,p_2)\to (q^1,p_1)$ satisfies $\varphi_*\pi_1=\pi_2$ but not $\varphi^*\omega_2=\omega_1$ and the inclusion $(q^1,p_1)\to (q^1,p_1,q^2,p_2)$ satisfies $\varphi^*\omega_2=\omega_1$ but not $\varphi_*\pi_1=\pi_2$.

Recall: The evolution of the system is given by the Poisson bracket,

$$\frac{df}{dt} = \{f, H\}$$

The introduction of constrains will reduce the space of admissible functions.

Idea [Dirac'60s]: Describe the dynamics of the system (with constrains) in a bracket (Dirac bracket). \implies Dirac H-twisted structures.

- Constrains $\phi_r(q_i, p_i) = 0 \leftarrow$ first class constrain.
- Constrains $\phi_r(q_i, p_i) \ge 0$ second class constrain.

Example: The rolling (without slip) cylinder.

$$L = \frac{1}{2}m\dot{y}^2 + \frac{1}{2}I\dot{\theta}^2 - mg(I - y)\sin\alpha,$$

$$\phi = y - R\theta = 0.$$

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{v}} = m\ddot{y}, \quad \frac{\partial L}{\partial v} = mg\sin\alpha, \quad \frac{d}{dt}\frac{\partial L}{\partial \dot{\theta}} = \frac{1}{2}mR^2\ddot{\theta}, \quad \frac{\partial L}{\partial \theta} = 0$$

E-L:

$$\frac{\partial L}{\partial q^{i}} - \frac{d}{dt} \frac{\partial L}{\partial \dot{q}^{i}} = \sum \lambda^{i} \frac{\partial \phi^{i}}{\partial q^{i}}$$

Hence,

$$\ddot{y} = \frac{3g\sin\alpha}{2} \implies \lambda = -\frac{mg\sin\alpha}{2} = F$$
$$\ddot{\theta} = \frac{g\sin\alpha}{2R}.$$

Let L_H be a Dirac structure over the configuration space, a set of constrins ϕ^i are indep. if

$$\{f, \sum \phi^i\} = 0.$$

Example

As above, $\phi = y - R\theta \implies$

$$\{\phi, H\} = \frac{P_x}{m} - \frac{4P_\theta R}{mR^2} = 0\checkmark$$

In this context, Dirac introduced

$$\dot{q}_{i} = \sum \frac{\partial H}{\partial p_{i}} + \lambda^{r} \frac{\partial \phi_{r}}{\partial p_{i}}$$

$$\dot{p}_{i} = -\sum \frac{\partial H}{\partial q_{i}} - \lambda^{r} \frac{\partial \phi_{r}}{\partial q_{i}}, \quad \phi_{r} = 0.$$

One can then write

$$\dot{q}_i = \{p_i, H\} + \lambda^r \{q_i, \phi_r\}$$
$$\dot{p}_i = \{p_i, H\} + \lambda^r \{q_i, \phi_r\}$$

and therefore, observables:

$$\dot{f} = \sum \frac{\partial f}{\partial q_i} \dot{q}_i + \frac{\partial f}{\partial p_i} \dot{p}_i = \{f, H\} + \lambda^r \{f, \phi_r\}$$

One then could define a Dirac bracket

$$\{\cdot,\cdot\}_D:C^\infty(T^*M)\times C^\infty(T^*M)\to C^\infty(T^*M)$$

by

$$\{f,g\}_D = \{f,g\} - \{f,\xi_\mu\}\Delta^{\mu\nu}\{\xi_\nu,g\}$$

where ξ_{μ} are secondary constrains.

Example

$$\phi = y - R\theta = 0$$
 then the symplectic form is

$$\omega_0 = dp_i \wedge dq^i = dp_v \wedge dy + dp_\theta \wedge d\theta.$$

To carry the constrains we "perturve" the form into

$$\omega = \phi \omega_0$$

which in turn introduces a Dirac H-twisted structure with $H=d\omega$. The algebra of admissible functions is then given by f satisfying $L_{X_f}\omega=L_{X_f}\left((y-R\theta)\left(dp_y\wedge dy+dp_\theta\wedge d\theta\right)\right)=0$ $=X_f(y-R\theta)\left(dp_y\wedge dy+dp_\theta\wedge d\theta\right)+(y-R\theta)L_{X_f}\left(dp_y\wedge dy+dp_\theta\wedge d\theta\right)=0$ $=\{f,\phi\}=0$

Bibliografía I

Dirac Manifolds

Beyond Poisson structures

P. Dirac

Lectures on quantum mechanics

Henrique Bursztyn

A brief introduction to Dirac manifolds

Alejandro Casallas Lagos

Geometría de Estructuras de Dirac y Sistemas con Ligaduras

Bibliografía II

Soldstein, Poole, Safko

Classocal Mechanics. 3rd Edition.

Gert Heckman

Symplectic Geometry

Na Cannas da Silva

Lectures on Symplectic Geometry