Chapter 4.2: Exponential & Logarithmic Functions of Base b

Expected Skills:

- Be able to specify the domain and range of $f(x) = b^x$ and $f(x) = \log_b x$.
- Be able to graph $f(x) = b^x$ and $f(x) = \log_b x$, labeling all intersections with the coordinate axes and all asymptotes.
- Be able to solve equations involving logarithm or exponential functions.
- Be able to differentiate exponential and logarithmic functions; also, be able to solve application problems such as tangent line, rates of change, local/absolute extrema, and curve sketching.

Practice Problems:

- 1. Evaluate each of the following without a calculator.
 - (a) $\log_4 16$
 - (b) $\ln \frac{1}{\sqrt[5]{e}}$
 - (c) $\log_{43} 1$
 - (d) $\log_{16} 2$
- 2. Use the properties of logarithms to expand (as much as possible) the expression as a sum, difference, and/or constant multiple of logarithms. (Assume that all variables are positive.)
 - (a) $\log_5 (5x^2 \sqrt{y})$
 - (b) $\log_6 \frac{x^3}{y^2 z^4}$
- 3. Determine the domain of the following functions. Express your answer in interval notation.
 - (a) $f(x) = \frac{\ln(x-1)}{x-5}$
 - (b) $f(x) = \frac{\sqrt{4-x}}{2^x 3}$
 - (c) $f(x) = \frac{x-1}{2 \log_4 x}$

4. Solve the given equation for x. Where appropriate, you may leave your answers in logarithmic form.

(a)
$$(3^{x-5}) - 4 = 11$$

(b)
$$2\log_5(3x) = 4$$

(c)
$$\log_3 x + \log_3 (x - 8) = 2$$

(d)
$$\log_8 2x + \log_8 (x+4) = 2$$

- 5. In a research experiment the population of a certain species is given by $P(t) = 15(7^t)$, where t is the number of weeks since the beginning of the experiment.
 - (a) How large was the population at the beginning of the experiment?
 - (b) How long will it take for the population to reach 300? You may leave your answer in logarithmic form.
- 6. Calculate $\frac{dy}{dx}$.

(a)
$$y = \log_2(3x - 1)$$

(b)
$$y = \frac{\log x}{2 - \log x}$$

7. Use the change of base formula to express the following function in terms of the natural log. Then, calculate $\frac{dy}{dx}$. (Assume x > 0.)

(a)
$$y = \log_{x^2}(e)$$

(b)
$$y = \log_{3x}(x)$$

8. Find an equation of the tangent line to the graph of $f(x) = 3^{2x}$ at the point where $x = \log_3 4$.