

ATK-MD0350 模块用户手册

高性能 3.5 寸 TFTLCD 电阻触摸屏模块

用户手册

正点原子

广州市星翼电子科技有限公司

修订历史

版本	日期	原因
V2.0	2022/5/16	新版本手册发布

目 录

1,	特性参数	1
	使用说明	
	2.1 模块简介	
	2.2 模块引脚说明	
	2.3 LCD 接口时序	
	2.4 LCD 驱动说明	5
	2.5 触摸屏接口说明	
	2.5.1 电阻式触摸屏简介	
	2.5.2 电阻触摸屏触摸 IC 简介	10
3,	结构尺寸	
	其他	
• /	/ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	10

1,特性参数

ATK-MD0350-V2.4(V2.4 是版本号,下面均以 ATK-MD0350 表示该产品)是正点原子推出的一款高性能 3.5 寸电容触摸屏模块。该模块屏幕分辨率为 480*320,16 位真彩显示,采用 NT35310 驱动,该芯片直接自带 GRAM,无需外加驱动器,因而任何单片机,都可以轻易驱动。ATK-MD0350 模块采用电阻触摸屏,精度高,抗干扰能力强,稳定性好,但不支持多点触摸。

ATK-MD0350 模块各项参数如表 1.1 和表 1.2 所示。

项目	说明
接口类型	LCD: Intel8080-16 位并口
	触摸屏: SPI
颜色格式	RGB565
颜色深度	16 位
LCD 驱动器芯片	NT35310
电阻触摸芯片	XPT2046、HR2046
LCD 分辨率	480*320
触摸屏类型	电阻触摸
触摸点数	单点触摸
屏幕尺寸	3.5'
工作温度	-20°C~70°C
存储温度	-30°C~80°C
外形尺寸	97.4mm*56.4mm

表 1.1 ATK-MD0350 基本特性

项目	说明
电源电压	背光: 5V
	其他: 3.3V
IO 口电平 ¹	3.3V
功耗2	37~119mA

表 1.2 ATK-MD0350 电气特性

注 1: 3.3V 系统,可以直接接本模块 (供电必须 5V&3.3V 双供电),如果是 5V 系统,建议串接 100R 左右电阻,做限流处理。

注 2: 37 mA 对应背光关闭时的功耗, 119mA 对应背光最亮时的功耗, 此数据是模块的总功耗(包括 3.3V 和 5V 电源部分), 实际应用中功耗会由于电源电压的波动而略微变化。

2, 使用说明

2.1 模块简介

ATK-MD0350 模块是正点原子推出的一款高性能 TFTLCD 显示模块,外观漂亮、性能 优异、结构紧凑。模块通过 1 个 2*17P 的 2.54mm 间距排针与外部连接,模块外观如图 2.1.1 所示:

图 2.1.1-1 ATK-MD0350 电容触摸屏模块正面图

图 2.1.1-2 ATK-MD0350 电容触摸屏模块背面图

从图 2.1.1 可以看出,模块丝印标注非常详细,并带有安装孔位,利于安装,可方便应用于各种产品设计。

ATK-MD0350 模块具有如下特点:

- ▶ 高分辨率: 480*320, 显示更清晰细腻;
- ▶ 自带驱动,无需外加驱动器,单片机直接使用;
- ▶ 板载背光电路,只需要 3.3V&5V 供电即可,无需外加高压;
- ▶ 接口简单(LCD 采用 16 位 8080 并口,触摸屏采用 SPI 接口),使用方便;
- ▶ 采用全新元器件加工,纯铜镀金排针,坚固耐用;
- ➤ 采用国际 A 级 PCB 料, 沉金工艺加工, 稳定可靠;
- ▶ 人性化设计,各接口都有丝印标注,使用起来一目了然;
- ▶ PCB 尺寸为 97.4mm*56.4mm, 并带有安装孔位, 安装方便;

2.2 模块引脚说明

ATK-MD0350 电容触摸屏模块通过 2*17 的排针(2.54mm 间距)同外部连接,模块可以与正点原子的 STM32 开发板直接对接,我们提供相应的例程,用户可以在正点原子 STM32 开发板上直接测试。模块通过 34(2*17)个引脚同外部连接,对外接口原理图如图 2.2.1 所示:

LCD CS	1	LCD		2	LCD RS
	1	CS RS	-		_
LCD WR	3	WR RD		4	LCD_RD
LCD RST	5			6	LCD D0
LCD D1	7	RST DB0		8	LCD D2
LCD D3	9	DB1 DB2		10	LCD D4
LCD D5	11	DB3 DB4		12	LCD D6
LCD D7	13	DB5 DB6		14	LCD D8
LCD D9	15	DB7 DB8		16	LCD D10
LCD D11	17	DB9 DB10		18	LCD D12
LCD D13	19	DB11 DB12		20	LCD D14
LCD D15	21	DB13 DB14		22	GND
BL CTR	23	DB15 GND		24	VCC3.3
VCC3.3	25	BL VDD3.3		26	GND
GND	27	VDD3.3 GND		28	VCC5
RT MISO	29	GND BL_VDD		30	T MOSI
T PEN	31	MISO MOSI		32	RT BUSY
T CS	33	T_PEN MO		34	T CLK
		T_CS CLK			
		TFTLCD			

图 2.2.1 模块对外接口原理图

对应引脚功能详细描述如表 2.2.1 所示:

序号	名称	说明					
1	CS	LCD 片选信号(低电平有效)					
2	RS	命令/数据控制信号(0,命令;1,数据;)					
3	WR	写使能信号(低电平有效)					
4	RD	读使能信号(低电平有效)					
5	RST	复位信号(低电平有效)					
6~21	DB0~DB15	双向数据总线					
22,26,27	GND	地线					
23	BL	背光控制引脚(高电平点亮背光,低电平关闭)					
24,25	VCC3.3	主电源供电引脚(3.3V)					
28	VCC5	背光供电引脚(5V)					
29	MISO	NC, 电容触摸屏未用到					
30	MOSI	电容触摸屏 IIC_SDA 信号(CT_SDA)					
31	PEN	电容触摸屏中断信号(CT_INT)					
32	BUSY	NC, 电容触摸屏未用到					
33	CS	电容触摸屏复位信号(CT_RST)					
34	CLK	电容触摸屏 IIC_SCL 信号(CT_SCL)					

表 2.2.1 ATK-MD0350 模块引脚说明

2.3 LCD 接口时序

ATK-MD0350 模块采用 16 位 8080 总线接口,总线读写时序如图 2.3.1 所示:

图 2.3.1 总线读写时序

图中各时间参数见表 2.3.1 和表 2.3.2 所示:

le 7.3.1 VCI=2.3 V to 3.3. VDDI = 1.65 V to 3.3 V (Register Access)

Item	Symbol	Timing Diagram	Min	Тур	Max	Unit
Write cycle time	tWC	Figure 7.3.1	40	-	-	ns
Read cycle time	tRC	Figure 7.3.1	160	-	-	ns
Write control pulse "Low" duration	tWRL	Figure 7.3.1	19	-	-	ns
Read control pulse "Low" duration	tRDL	Figure 7.3.1	45	-	-	ns
Write control pulse "High" duration	tWRH	Figure 7.3.1	19	-	-	ns
Read control pulse "High" duration	tRDH	Figure 7.3.1	90	-	-	ns
Write setup time (DCX to CSX, WRX)	tAST	Figure 7.3.1	0	-	-	ns
Read setup time (DCX to CSX, RDX)	tAST	Figure 7.3.1	10		-	ns
Address hold time	tAHT	Figure 7.3.1	2	-	-	ns
Write data setup time	tDST	Figure 7.3.1	15	-	-	ns
Write data hold time	tDHT	Figure 7.3.1	10	-	-	ns
Read data access time	tRAT	Figure 7.3.1	-	-	40	ns
Read data hold time	tODH	Figure 7.3.1	5	-	-	ns
Chip select setup time	tCS	Figure 7.3.1	15			ns

表 2.3.1 访问寄存器时读写时间参数

VCI=2.3 V to 3.3, VDDI = 1.65 V to 3.3 V (RAM Data Access)

Item	Symbol	Timing Diagram	Min.	Тур.	Max.	Unit
Write cycle time	tWC	Figure 7.3.1	40	-	-	ns
Read cycle time	tRCFM	Figure 7.3.1	400		-	ns
Write low-level pulse width	tWRL	Figure 7.3.1	19	-	-	ns
Read low-level pulse width	tRDLFM	Figure 7.3.1	150	-	-	ns
Write high-level pulse width	tWRH	Figure 7.3.1	19	-		ns
Read high-level pulse width	tRDHFM	Figure 7.3.1	250	n-M		ns
Write setup time (DCX to CSX, WRX)	tAST	Figure 7.3.1	201	\\- <u> </u>		ns
Read setup time (DCX to CSX, RDX)	tAST	Figure 7.3.1	10	/ //II	1	ns
Address hold time	tAHT	Figure 7.3.1	2	-	-	ns
Write data setup time	tDST	Figure 7 .3.1	10		•	ns
Write data hold time	tDHT.	Figure 7.3.1	10	<u>-</u>	-	ns
Read data delay time	tRATFM	Figure 7.3.1			150	ns
Read data hold time	todh	Figure 7.3.1	5	-		ns
Chip select setup time	tCS	Figure 7.3.1	15			ns

表 2.3.2 访问数据时读写时间参数

LCD 详细的读写时序,请看 NT35310 数据手册。

2.4 LCD 驱动说明

ATK-MD0350 模块采用 NT35310 作为 LCD 驱动器,该驱动器自带 LCD GRAM,无需外加独立驱动器,并且,在指令上,基本兼容 ILI9341,使用非常方便。模块采用 16 位 8080 并口与外部连接(不支持其他接口方式,仅支持 16 位 8080 并口),在 8080 并口模式下,LCD 驱动需要用到的信号线如下:

CS: LCD 片选信号。

WR: 向LCD写入数据。

RD: 从LCD 读取数据。

DB[15: 0]: 16 位双向数据线。

RST: 硬复位 LCD。

RS: 命令/数据标志(0,读写命令; 1,读写数据)。

除了以上信号,我们一般还需要 BL 脚, BL 是背光控制引脚,高电平有效,BL 自带了 100K 下拉电阻,所以如果这个引脚悬空,背光是不会亮的。必须接高电平,背光才会亮,另外可以用 PWM 控制 BL 脚,从而控制背光的亮度。这里说明一下 RST 引脚,RST 是液晶的硬复位脚,低电平有效,用于复位 NT35310 芯片,实现液晶复位,在每次初始化之前,我们强烈建议大家先执行硬复位,再做初始化。

NT35310 自带 LCD GRAM (480*320*18/8 字节),即 18 位模式 (26 万色)下的显存量。在 16 位模式下,NT35510 采用 RGB565 格式存储颜色数据,此时 NT35310 的 18 位显存与MCU 的 16 位数据线以及 RGB565 的对应关系如表 2.4.1 所示:

5310 显存	B17	B16	B15	B14	B13	B12	B11	B10	В9	В8	В7	В6	В5	В4	В3	В2	В1	ВО
RGB565 GRAM	R[4]	R[3]	R[2]	R[1]	R[0]	R[4]	G[5]	G[4]	G[3]	G[2]	G[1]	G[0]	B[4]	B[3]	B[2]	B[1]	B[0]	B[4]
5310数据线	DB15	DB14	DB13	DB12	DB11		DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
MCU 数据线	D15	D14	D13	D12	D11		D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	DO	

表 2.4.1 16 位数据与 18 位显存对应关系

从图中可以看出,NT35310 在 16 位模式下面,18 位显存的 B0 和 B12 是使用 B[4]和 R[4]来填充(最高位填充),从而实现一个伪 18 位显示效果(实际还是 16 位颜色深度)。实际接线的时候,我们使用 MCU 的 D0-D15 连接 LCD 模块的 DB0-DB15 即可。颜色填充及

对应处理由 NT35310 自动处理完成,用户无需关心。

MCU的 16 位数据中,最低 5 位代表蓝色,中间 6 位为绿色,最高 5 位为红色。数值越大,表示该颜色越深。另外,特别注意 NT35310 所有的指令都是 8 位的(高 8 位无效),且参数除了读写 GRAM 的时候是 16 位,其他操作参数,都是 8 位的。

接下来,我们介绍一下 NT35310 的几个重要命令,因为 NT35310 的命令很多,我们这里就不全部介绍了,有兴趣的大家可以找到 NT35310 的 datasheet 看看。里面对这些命令有详细的介绍。我们将介绍: 0XD4, 0X36, 0X2A, 0X2B, 0X2C, 0X2E 等 6 条指令。

指今 0XD4.	是遗 ID4 指今.	用于读取 LCD 控制器的 ID,	该指今加表 242 所示.
			VX 1H V XHAX Z.T.Z 1/1/1\.

顺序		控	制				各位	描述					HEX
// // // // // // // // // // // // //	RS	RD	WR	D15~D8	D7	D6	D5	D4	D3	D2	D1	D0	IILA
指令	0	1	1	XX	1	1	0	1	0	1	0	0	D4H
参数 1	1	↑	1	XX	X	X	X	X	X	X	X	X	X
参数 2	1	1	1	XX	0	0	0	0	0	0	0	1	01H
参数 3	1	↑	1	XX	0	1	0	1	0	0	1	1	53H
参数 4	1	↑	1	XX	0	0	0	1	0	0	0	0	10H

表 2.4.2 读 ID 指令描述

手册里面是有误的,这个才是 0XD4 指令正确的用法。从上表可以看出,0xD4 指令后面跟了 4 个参数,最后 2 个参数,读出来是 0x53 和 0x10,刚好是我们控制器 NT35310 的数字部分,从而,通过该指令,即可判别所用的 LCD 驱动器是什么型号,这样,我们的代码,就可以根据控制器的型号去执行对应驱动 IC 的初始化代码,从而兼容不同驱动 IC 的屏,使得一个代码支持多款 LCD。

接下来看指令: 0x36, 这是存储访问控制指令, 可以控制 NT35310 存储器的读写方向, 简单的说, 就是在连续写 GRAM 的时候, 可以控制 GRAM 指针的增长方向, 从而控制显示方式(读 GRAM 也是一样)。该指令如表 2.4.3 所示:

顺序		控制		各位描述									HEV
// // // // // // // // // // // // //	RS	RD	WR	D15~D8	D7	D6	D5	D4	D3	D2	D1	D0	HEX
指令	0	1	1	XX	0	0	1	1	0	1	1	0	36H
参数	1	1	1	XX	MY	MX	MV	ML	BGR	MH	0	0	0

表 2.4.3 0x36 指令描述

从上表可以看出,0x36 指令后面,紧跟一个参数,这里主要关注: MY、MX、MV 这三个位。通过这三个位的设置,可以控制整个 NT35310 的全部扫描方向,如表 2.4.4 所示:

<u> </u>		1 1-1-1-1	2, 15/12/10 11 11/10/10 11 12 11/10/10 11/10/10 11/10/10 11/10/10 11/10/10 11/10/10 11/10/10 11/10/10 11/10/10 11/10/10 11/10/10 11/10/10 11/10/10 11/10/10 11/10/10 11/10/10 11/10/10 11/10/10/10 11/10/10/10 11/10/10/10 11/10/10/10 11/10/10/10 11/10/10/10/10/10/10/10/10/10/10/10/10/1					
	控制位		效果					
MY	MX	MV	LCD 扫描方向(GRAM 自增方式)					
0	0	0	从左到右,从上到下					
1	0	0	从左到右,从下到上					
0	1	0	从右到左,从上到下					
1	1	0	从右到左,从下到上					
0	0	1	从上到下,从左到右					
0	1	1	从上到下,从右到左					
1	0	1	从下到上,从左到右					
1	1	1	从下到上,从右到左					

表 2.4.4 MY、MX、MV 设置与 LCD 扫描方向关系表

这样,我们在利用 NT35310 显示内容的时候,就有很大灵活性了,比如显示 BMP 图片, BMP 解码数据,就是从图片的左下角开始,慢慢显示到右上角,如果设置 LCD 扫描方向为

从左到右,从下到上,那么我们只需要设置一次坐标,然后就不停的往 LCD 填充颜色数据即可,这样可以大大提高显示速度。

实验中, 我们默认使用从左到右, 从上到下的扫描方式。

接下来看指令: 0x2A, 这是列地址设置指令, 在从左到右, 从上到下的扫描方式(默认)下面, 该指令用于设置横坐标(x坐标), 该指令如表 2.4.5 所示:

顺序	控制						各位	立描述					HEX	
ל (אנוית	RS	RD	WR	D15~D8	D7	D6	D5	D4	D3	D2	D1	DO	IILA	
指令	0	1	1	XX	0	0	1	0	1	0	1	0	2AH	
参数 1	1	1	1	XX	SC15	SC14	SC13	SC12	SC11	SC10	SC9	SC8	SC	
参数 2	1	1	1	XX	SC7	SC6	SC5	SC4	SC3	SC2	SC1	SC0	SC	
参数 3	1	1	1	XX	EC15	EC14	EC13	EC12	EC11	EC10	EC9	EC8	EC	
参数 4	1	1	1	XX	EC7	EC6	EC5	EC4	EC3	EC2	EC1	EC0	EC	

表 2.4.5 0x2A 指令描述

在默认扫描方式时,该指令用于设置 x 坐标,该指令带有 4 个参数,实际上是 2 个坐标值: SC 和 EC,即列地址的起始值和结束值,SC 必须小于等于 EC,且 $0 \le$ SC/EC \le 239。一般在设置 x 坐标的时候,我们只需要带 2 个参数即可,也就是设置 SC 即可,因为如果 EC 没有变化,我们只需要设置一次即可(在初始化 NT35310 的时候设置),从而提高速度。

与 0X2A 指令类似,指令: 0X2B,是页地址设置指令,在从左到右,从上到下的扫描方式(默认)下面,该指令用于设置纵坐标(y坐标)。该指令如表 2.4.6 所示:

顺序	控制				各位描述										
顺分	RS	RD	WR	D15~D8	D7	D6	D5	D4	D3	D2	D1	DO	HEX		
指令	0	1	1	XX	0	0	1	0	1	0	1	1	2BH		
参数 1	1	1	1	XX	SP15	SP14	SP13	SP12	SP11	SP10	SP9	SP8	SP		
参数 2	1	1	1	XX	SP7	SP6	SP5	SP4	SP3	SP2	SP1	SP0	SF		
参数 3	1	1	1	XX	EP15	EP14	EP13	EP12	EP11	EP10	EP9	EP8	ED		
参数 4	1	1	1	XX	EP7	EP6	EP5	EP4	EP3	EP2	EP1	EP0	EP		

表 2.4.6 0X2B 指令描述

在默认扫描方式时,该指令用于设置 y 坐标,该指令带有 4 个参数,实际上是 2 个坐标值: SP 和 EP,即页地址的起始值和结束值,SP 必须小于等于 EP,且 $0 \le SP/EP \le 319$ 。一般在设置 y 坐标的时候,我们只需要带 2 个参数即可,也就是设置 SP 即可,因为如果 EP 没有变化,我们只需要设置一次即可(在初始化 NT35310 的时候设置),从而提高速度。

接下来看指令: 0X2C,该指令是写 GRAM 指令,在发送该指令之后,我们便可以往 LCD的 GRAM 里面写入颜色数据了,该指令支持连续写,指令描述如表 2.4.7 所示。

顺序		控制		各位描述									HEX		
ין (אטיי	RS	RD	WR	D15~D8	D7	D6	D5	D4	D3	D2	D1	D0	IILA		
指令	0	1	1	XX	0	0	1	0	1	1	0	0	2CH		
参数 1	1	1	1				D1[1	5: 0]					XX		
	1	1	1		D2[15: 0]										
参数 n	1	1	1				Dn[1	5: 0]					XX		

表 2.4.7 0X2C 指令描述

由表 2.4.6 可知,在收到指令 0X2C 之后,数据有效位宽变为 16 位,我们可以连续写入 LCD GRAM 值,而 GRAM 的地址将根据 MY/MX/MV 设置的扫描方向进行自增。例如:假设设置的是从左到右,从上到下的扫描方式,那么设置好起始坐标(通过 SC,SP 设置)后,每写入一个颜色值,GRAM 地址将会自动自增 1 (SC++),如果碰到 EC,则回到 SC,同时

SP++,一直到坐标: EC, EP 结束,期间无需再次设置的坐标,从而大大提高写入速度。最后,来看看指令:0X2E,该指令是读 GRAM 指令,用于读取 NT35310 的显存(GRAM),该指令在 ILI9341 的数据手册上面的描述是有误的,真实的输出情况如表 2.4.8 所示:

顺序	控制				各位描述											HEX	
/ / / / / / / / / / / / / / / / / / /	RS RD WR			D15~D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	DO	пва	
指令	0	1	†	2	2ЕН				0	0	0	0	0	0	0	2ЕООН	
参数 1	1	1	1		XX									dummy			
参数 2	1	1	1	R1[4:0]	XX			G1[5:0]						Х	X	R1G1	
参数 3	1	1	1	B1[4:0]		XX		R2[4:0]						XX		B1R2	
参数 4	1	1	1	G2[5:0]	XX			B2[4:0]						XX	G2B2		
参数 5	1	1	1	R3[4:0]	XX			G3[5:0]						Х	X	R3G3	
参数 N	1	1	1		按以上规律输出												

表 2.4.8 0X2E 指令描述

该指令用于读取 GRAM,如表 2.4.7 所示,NT35310 在收到该指令后,第一次输出的是dummy 数据,也就是无效的数据,第二次开始,读取到的才是有效的 GRAM 数据(从坐标: SC,SP 开始),输出规律为:每个颜色分量占 8 个位,一次输出 2 个颜色分量。比如:第一次输出是 R1G1,随后的规律为:B1R2→G2B2→R3G3→B3R4→G4B4→R5G5...以此类推。如果我们只需要读取一个点的颜色值,那么只需要接收到参数 3 即可,如果要连续读取(利用 GRAM 地址自增,方法同上),那么就按照上述规律去接收颜色数据。

以上,就是操作 NT35310 常用的几个指令,通过这几个指令,我们便可以很好的控制 NT35510 显示我们所要显示的内容了。

一般 TFTLCD 模块的使用流程如图 2.4.1:

图 2.4.1 TFTLCD 使用流程

任何 LCD,使用流程都可以简单的用以上流程图表示。其中硬复位和初始化序列,只需要执行一次即可。而画点流程就是:设置坐标→写 GRAM 指令→写入颜色数据,然后在 LCD 上面,我们就可以看到对应的点显示我们写入的颜色了。读点流程为:设置坐标→读 GRAM 指令→读取颜色数据,这样就可以获取到对应点的颜色数据了。

详细源码,请参考本模块资料:程序源码 相关例程源码部分。

2.5 触摸屏接口说明

2.5.1 电阻式触摸屏简介

电阻触摸屏的主要部分是一块与显示器表面非常贴合的电阻薄膜屏,这是一种多层的复合薄膜,具体结构如下图 2.5.1.1 所示。

图 2.5.1.1 电阻触摸屏多层结构图

表面硬涂层起保护作用,主要是一层外表面硬化处理、光滑防擦的塑料层。玻璃底层用于支撑上面的结构,主要是玻璃或者塑料平板。透明隔离点用来分离开外层 ITO 和内层 ITO。 ITO 层是触摸屏关键结构,是涂有铟锡金属氧化物的导电层。还有一个结构上图没有标出,就是 PET 层。PET 层是聚酯薄膜,处于外层 ITO 和表面硬涂层之间,很薄很有弹性,触摸时向下弯曲,使得 ITO 层接触。

当手指触摸屏幕时,两个ITO 层在触摸点位置就有接触,电阻发生变化,在 X 和 Y 两个方向上产生电信号,然后送到触摸屏控制器,具体情况如下图 2.5.1.2 所示。触摸屏控制器侦测到这一接触并计算出 X 和 Y 方向上的 AD 值,简单来讲,电阻触摸屏将触摸点(X,Y)的物理位置转换为代表 X 坐标和 Y 坐标的电压值。单片机与触摸屏控制器进行通信获取到 AD 值,通过一定比例关系运算,获得 X 和 Y 轴坐标值。

图 2.5.1.2 电阻式触摸屏的触点坐标结构

电阻触摸屏的优点:精度高、价格便宜、抗干扰能力强、稳定性好。电阻触摸屏的缺点:容易被划伤、透光性不太好、不支持多点触摸。

位 7

(MSB)

位 6

位 5

高性能 3.5 寸 TFTLCD 电阻触摸屏模块

位 0

(LSB)

2.5.2 电阻触摸屏触摸 IC 简介

从以上介绍可知,触摸屏都需要一个 AD 转换器,一般来说是需要一个控制器的。正点原子 ATK-MD0350 模块选择的是四线电阻式触摸屏,这种触摸屏的控制芯片有很多,包括: ADS7543、ADS7846、TSC2046、XPT2046 和 HR2046 等。这几款芯片的驱动基本上是一样的,也就是你只要写出了 XPT2046 的驱动,这个驱动对其他几个芯片也是有效的。而且封装也有一样的,完全 PIN-TO-PIN 兼容。所以在替换起来,很方便。

正点原子 ATK-MD0350 模块自带的触摸屏控制芯片为 XPT2046 或 HR2046。这里以 XPT2046 作为介绍。XPT2046 是一款 4 导线制触摸屏控制器,使用的是 SPI 通信接口,内含 12 位分辨率 125KHz 转换速率逐步逼近型 A/D 转换器。XPT2046 支持从 1.5V 到 5.25V 的低电压 I/O 接口。XPT2046 能通过执行两次 A/D 转换(一次获取 X 位置,一次获取 Y 位置)查出被按的屏幕位置,除此之外,还可以测量加在触摸屏上的压力。内部自带 2.5V 参考电压可以作为辅助输入、温度测量和电池监测模式之用,电池监测的电压范围可以从 0V 到 6V。XPT2046 片内集成有一个温度传感器。在 2.7V 的典型工作状态下,关闭参考电压,功耗可小于 0.75mW。

XPT2046的驱动方法也是很简单,主要看懂 XPT2046通信时序图,如下图 2.5.2.1 所示。

图 2.5.2.1 XPT2046 通信时序图

依照时序图,就可以很好写出这个通信代码,上图具体过程:拉低片选,选中器件→发送命令字→清除 BUSY→读取 16 位数据(高 12 位数据有效即转换的 AD 值)→拉高片选,结束操作。这里的难点就是需要搞清楚命令字该发送什么?只要搞清楚发送什么数值,就可以获取到 AD 值。命令字的详情如下图 2.5.2.2 所示:

位 3

位 2

位 1

位 4

S	A2			A1	A1 A0		SER/DFR	PD1	PD0					
位	彳	3称		功能描述										
7		S	开始	开始位。为 1 表示一个新的控制字节到来,为 0 则忽略 PIN 引脚上数据										
6-4	A.	2-A0	通道	通道选择位。参见表 1 和表 2										
3	M	ODE	12 1	12位/8位转换分辨率选择位。为1选择8位为转换分辨率,为0选择12位分辨率										
2	SER/DFR 单端输入方式/差分输入方式选择位。为1是单端输入方式,为0是差分输							↑输入方式						
1-0	PD	1-PD0)率模式选择位 区模式	立。若为11,暑	器件总处于供印	电状态;若为00),器件在变换	英之间处于低					

图 2.5.2.2 命令字详情图

位 7, 开始位,置 1 即可。位 3, 为了提供精度, MODE 位清 0 选择 12 位分辨率。位 2, 是进行工作模式选择,为了达到最佳性能,首选差分工作模式即该位清 0 即可。位 1-0 是功

ATK-MD0350 模块用户手册

高性能 3.5 寸 TFTLCD 电阻触摸屏模块

耗相关的,直接清 0 即可。而位 6-4 的值要取决于工作模式,在确定了差分功能模式后,通道选择位也确定了,如图 2.5.2.3 所示。

A2	A1	A0	+REF	-REF	YN	XP	ΥP	Y-位置	X-位置	Z₁- 位置	Z₂-位置	驱动
0	0	1	YP	YN		+IN		测量				YP, YN
0	1	1	YP	XN		+IN				测量		YP, XN
1	0	0	ΥP	XN	+IN						测量	YP, XN
1	0	1	XP	XN			+IN		测量			XP, XN

图 2.5.2.3 差分模式输入配置图 (SER/DFR=0)

从上图,就可以知道: 当我们需要检测 Y 轴位置时,A2A1A0 赋值为 001; 检测 X 轴位置时,A2A1A0 赋值为 101。结合前面对其他位的赋值,在 X,Y 方向与屏幕相同的情况下,命令字 0xD0 就是读取 X 坐标 AD 值,0x90 就是读取 Y 坐标的 AD 值。假如 X,Y 方向与屏幕相反,0x90 就是读取 X 坐标的 AD 值,而 0xD0 就是读取 Y 坐标的 AD 值。

关于这个芯片其他的功能,也可以参考芯片的 datasheet。

详细源码,请参考本模块资料:程序源码 相关例程源码部分。

3,结构尺寸

ATK-MD0350 电容触摸屏模块的尺寸结构如图 3.1 所示:

图 3.1 ATK-MD0350 模块尺寸图

4, 其他

1、购买地址:

天猫: https://zhengdianyuanzi.tmall.com

淘宝: https://openedv.taobao.com

2、资料下载

模块资料下载地址: http://www.openedv.com/docs/modules/lcd/index.html

3、技术支持

公司网址: www.alientek.com

技术论坛: http://www.openedv.com/forum.php

在线教学: www.yuanzige.com

B 站视频: https://space.bilibili.com/394620890

传真: 020-36773971 电话: 020-38271790

