COMPITO B

LT FISICA (Fioresi)

8 Gennaio, 2020

NOME:

COGNOME:

NUMERO DI MATRICOLA:

Non sono permesse calcolatrici, telefonini, libri o appunti.

Ci sono 6 esercizi per un totale di 300 punti.

Recupero 1: Es. 1, 2, 3.

Recupero 2: Es. 4, 5, 6.

Tutto il lavoro deve essere svolto su queste pagine. Non fate la brutta e siate chiari nei ragionamenti.

In tutto il compito siano a e b le ultime due cifre NON NULLE e DISTINTE del proprio numero di matricola. Esempio: se il numero di matricola e' 624040066 allora a=4, b=6.

1	
2	
3	
4	
5	
6	
Totale	

Cerchiare a penna una ed una sola delle seguenti voci:

RECUPERO 1

RECUPERO 2

TOTALE

Esercizio 1 (50 punti)

I) Siano dati in \mathbb{R}^3 i luoghi dei punti descritti dalle equazioni:

$$U = \{(x,y,z)|x=a+at, y=t+1, z=0\}, \qquad W = \{(x,y,z)|x-ay-b=0\}$$

- a) Si dica di che luoghi si tratta (punti, rette, piani etc).
- b) Sia per U che per W: Si determini se si tratta di un sottospazio vettoriale
- di \mathbb{R}^3 , e nel caso lo sia se ne trovi una base e si determini la dimensione.
- b) Si calcoli la distanza tra U e W.

[Nota: non e' permesso l'uso di formule preconfezionate per la distanza tra rette, piani, etc.]

II) Si enunci con chiarezza il teorema di struttura dei sistemi lineari esemplificandolo attraverso il punto (I) di questo esercizio.

Esercizio 2 (55 punti)

Si consideri l'applicazione lineare $f: \mathbf{R}^4 \longrightarrow \mathbf{R}^4$ $f(e_1) = e_1$, $f(e_2) = ae_1 - be_2 + e_3 - e_4$, $f(e_3) = e_2 + e_3$, $f(e_4) = ke_4$.

- a) Si determini un valore di k per il quale l'applicazione data NON e' suriettiva e per tale valore si calcoli una base per il nucleo e una base per l'immagine. In entrambi i casi si completino tali basi in modo da ottenere basi di \mathbf{R}^4 . Si motivi accuratamente la risposta.
- b) Si dica per quali valori di $k\ f$ e' un isomorfismo. Si motivi accuratamente la risposta.
- c) Scelto un valore di k come al punto (a), si determini (se possibile) un sottospazio vettoriale Z di dimensione 1 non contenuto nell'immagine di f. Si motivi accuratamente la risposta.
- d) Si dimostri che $\mathbf{R}^4 = Im(f) \oplus Z$.

Esercizio 3 (45 punti)

- a) Siano U, V, W spazi vettoriali finito dimensionali e siano $f: U \longrightarrow V, g: V \longrightarrow W$ applicazioni lineari tali che Im(f) = Ker(g), f iniettiva e g suriettiva. Si dimostri che dim(V) = dim(U) + dim(W). Si motivi accuratamente la risposta.
- b) Siano due sottospazi vettoriali U e W di V, finito dimensionale.
- I) Si dimostri che $U \cap W$ e' un sottospazio vettoriale di V.
- II) Si dimostri che, esistono una base \mathcal{B} di U e una base \mathcal{B}' di W tali che $U \cap W$ abbia per base $\mathcal{B} \cap \mathcal{B}'$

CREDITO EXTRA (15 punti). Sia $c \in \mathbf{Q}$, c > 0 e $\gamma \in \mathbf{R}$ tale che $\gamma^2 = c$. Si consideri il sottoinsieme dei reali $F = \{a + b\gamma \mid a, b \in \mathbf{Q}\} \subset \mathbf{R}$. Si dimostri che e' un campo. Si dimostri inoltre che e' uno spazio vettoriale sul campo $k = \mathbf{Q}$ e si calcoli la sua dimensione.

Esercizio 4 (55 punti)

- a) Si enunci con chiarezza il Teorema Spettrale sul campo reale.
- b) Sia A una matrice complessa $n \times n$ tale che $A = -A^*$.
- I) Si dimostri che A^* ha autovalori immaginari puri (cioe' senza parte reale).
- II) Tali matrici costituiscono un gruppo? Si motivi accuratamente la risposta.
- c) Si risponda vero o falso alle seguenti domande motivando accuratamente la risposta.
- I) Sia A una matrice $n \times n$ a coefficienti nel campo complesso.
- i) Gli autovalori di A coincidono con gli autovalori di A^t ?
- ii) Gli autovettori di A sono gli stessi di A^t ?
- II) Sia W un sottospazio vettoriale di V, spazio vettoriale reale di dimensione finita. Allora $(W^{\vee})^{\vee} = W$?

CREDITO EXTRA (15 punti). Sia V uno spazio vettoriale complesso di dimensione finita. Siano $f,g:V{\longrightarrow}V$ applicazioni lineari diagonalizzabili, $f\circ g=g\circ f$. Allora esiste una base di V che diagonalizza sia f che g.

Esercizio 5 (50 punti)

Data la matrice:

$$A = \left(\begin{array}{ccc} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{array}\right)$$

a) Si calcolino autovalori e autovettori e si dica se la matrice e' diagonalizzabile.

[Aiuto: 8 e - 1 sono autovalori.]

- b) Si trovi, se esiste, una matrice P ortogonale tale che $P^{-1}AP$ sia diagonale.
- c) Si dica se A e' invertibile e nel caso lo sia, si calcoli la sua inversa.

Esercizio 6 (45 punti)

a) Data la conica di equazione:

$$x^2 + y^2 - 4axy = 1$$

- 1) Si trovi la forma canonica e si dica di che conica si tratta.
- 2) Si scriva il prodotto scalare ad essa associato e si dica se e' non degenere, definito positivo.
- b) Sia $W = \text{span}\{(1, a, -1, 0), (0, b, -i, 0)\} \subset \mathbf{C}^4$.
- i)Si determinino W^{\perp} rispetto al prodotto hermitiano standard e W^{\vee} . ii) Si definisca (se esiste) un isomorfismo esplicito tra W^{\perp} e W^{\vee} .