Rank-65859 over GF(4)

January 15, 2021

The equation

The equation of the surface is:

$$X_0^2 X_3 + X_1^2 X_2 + X_0 X_1 X_2 = 0$$

(0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0) The point rank of the equation over $\mathrm{GF}(4)$ is 1431725401

General information

Number of lines	7
Number of points	25
Number of singular points	5
Number of Eckardt points	2
Number of double points	6
Number of single points	17
Number of points off lines	0
Number of Hesse planes	0
Number of axes	0
Type of points on lines	5 ⁷
Type of lines on points	$3^2, 2^6, 1^{17}$

Singular Points

The surface has 5 singular points:

$$\begin{array}{ll} 0: \ P_2 = \mathbf{P}(0,0,1,0) = \mathbf{P}(0,0,1,0) \\ 1: \ P_3 = \mathbf{P}(0,0,0,1) = \mathbf{P}(0,0,0,1) \\ 2: \ P_{38} = \mathbf{P}(0,0,1,1) = \mathbf{P}(0,0,1,1) \end{array} \qquad \begin{array}{ll} 3: \ P_{53} = \mathbf{P}(0,0,\omega,1) = \mathbf{P}(0,0,2,1) \\ 4: \ P_{69} = \mathbf{P}(0,0,\omega^2,1) = \mathbf{P}(0,0,3,1) \end{array}$$

The 7 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_0 = \mathbf{Pl}(1, 0, 0, 0, 0, 0)_0$$

$$\ell_{1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{16} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{16} = \mathbf{Pl}(0,0,1,0,0,0)_{2}$$

$$\ell_{2} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{37} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{37} = \mathbf{Pl}(0,0,1,0,0,1)_{108}$$

$$\ell_{3} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{340} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{340} = \mathbf{Pl}(0,0,1,0,0)_{9}$$

$$\ell_{4} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{356} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{356} = \mathbf{Pl}(0,1,0,0,0,0)_{1}$$

$$\ell_{5} = \begin{bmatrix} 1 & \omega^{2} & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{80} = \begin{bmatrix} 1 & 3 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{80} = \mathbf{Pl}(0,0,1,1,2,1)_{258}$$

$$\ell_{6} = \begin{bmatrix} 1 & \omega & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{59} = \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{59} = \mathbf{Pl}(0,0,1,1,3,1)_{318}$$

Rank of lines: (0, 16, 37, 340, 356, 80, 59)

Rank of points on Klein quadric: (0, 2, 108, 9, 1, 258, 318)

Eckardt Points

The surface has 2 Eckardt points: $0: P_2 = \mathbf{P}(0, 0, 1, 0) = \mathbf{P}(0, 0, 1, 0),$ $1: P_{38} = \mathbf{P}(0, 0, 1, 1) = \mathbf{P}(0, 0, 1, 1).$

Double Points

The surface has 6 Double points: The double points on the surface are:

$$P_0 = (1,0,0,0) = \ell_0 \cap \ell_1$$

$$P_5 = (1,1,0,0) = \ell_0 \cap \ell_2$$

$$P_1 = (0,1,0,0) = \ell_0 \cap \ell_3$$

$$P_6 = (2,1,0,0) = \ell_0 \cap \ell_5$$

$$P_7 = (3, 1, 0, 0) = \ell_0 \cap \ell_6$$

 $P_3 = (0, 0, 0, 1) = \ell_3 \cap \ell_4$

Single Points

The surface has 17 single points: The single points on the surface are:

 $\begin{array}{l} 0: \ P_8 = (1,0,1,0) \ \text{lies on line} \ \ell_1 \\ 1: \ P_9 = (2,0,1,0) \ \text{lies on line} \ \ell_1 \\ 2: \ P_{10} = (3,0,1,0) \ \text{lies on line} \ \ell_1 \\ 3: \ P_{12} = (1,1,1,0) \ \text{lies on line} \ \ell_2 \\ 4: \ P_{17} = (2,2,1,0) \ \text{lies on line} \ \ell_2 \\ 5: \ P_{22} = (3,3,1,0) \ \text{lies on line} \ \ell_2 \\ 6: \ P_{26} = (0,1,0,1) \ \text{lies on line} \ \ell_3 \\ 7: \ P_{30} = (0,2,0,1) \ \text{lies on line} \ \ell_3 \\ 8: \ P_{34} = (0,3,0,1) \ \text{lies on line} \ \ell_3 \end{array}$

9: $P_{43} = (2, 1, 1, 1)$ lies on line ℓ_5 10: $P_{44} = (3, 1, 1, 1)$ lies on line ℓ_6 11: $P_{46} = (1, 2, 1, 1)$ lies on line ℓ_6 12: $P_{48} = (3, 2, 1, 1)$ lies on line ℓ_5 13: $P_{50} = (1, 3, 1, 1)$ lies on line ℓ_5 14: $P_{51} = (2, 3, 1, 1)$ lies on line ℓ_6 15: $P_{53} = (0, 0, 2, 1)$ lies on line ℓ_4 16: $P_{69} = (0, 0, 3, 1)$ lies on line ℓ_4

The single points on the surface are:

Points on surface but on no line

The surface has 0 points not on any line: The points on the surface but not on lines are:

Line Intersection Graph

	0123456
0	0111011
1	1010100
2	1100100
3	1000100
4	0111011
5	1000101
6	$\begin{array}{c} 0.111011\\ 0.110101\\ 1.010100\\ 1.100100\\ 0.111011\\ 1.000101\\ 1.000110 \end{array}$

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2	ℓ_3	ℓ_5	ℓ_6
in point	P_0	P_5	P_1	P_6	P_7

Line 1 intersects

Line	ℓ_0	ℓ_2	ℓ_4
in point	P_0	P_2	P_2

Line 2 intersects

Line	ℓ_0	ℓ_1	ℓ_4
in point	P_5	P_2	P_2

Line 3 intersects

Line	ℓ_0	ℓ_4
in point	P_1	P_3

Line 4 intersects

Line	ℓ_1	ℓ_2	ℓ_3	ℓ_5	ℓ_6
in point	P_2	P_2	P_3	P_{38}	P_{38}

Line 5 intersects

Line	ℓ_0	ℓ_4	ℓ_6
in point	P_6	P_{38}	P_{38}

Line 6 intersects

Line	ℓ_0	ℓ_4	ℓ_5
in point	P_7	P_{38}	P_{38}

The surface has 25 points:

The points on the surface are:

$0: P_0 = (1, 0, 0, 0)$	$9: P_{10} = (3,0,1,0)$	18: $P_{44} = (3, 1, 1, 1)$
$1: P_1 = (0, 1, 0, 0)$	$10: P_{12} = (1, 1, 1, 0)$	19: $P_{46} = (1, 2, 1, 1)$
$2: P_2 = (0, 0, 1, 0)$	11: $P_{17} = (2, 2, 1, 0)$	$20: P_{48} = (3, 2, 1, 1)$
$3: P_3 = (0,0,0,1)$	$12: P_{22} = (3, 3, 1, 0)$	$21: P_{50} = (1,3,1,1)$
$4: P_5 = (1, 1, 0, 0)$	13: $P_{26} = (0, 1, 0, 1)$	$22: P_{51} = (2, 3, 1, 1)$
$5: P_6 = (2, 1, 0, 0)$	14: $P_{30} = (0, 2, 0, 1)$	$23: P_{53} = (0,0,2,1)$
$6: P_7 = (3, 1, 0, 0)$	15: $P_{34} = (0, 3, 0, 1)$	$24: P_{69} = (0,0,3,1)$
$7: P_8 = (1,0,1,0)$	16: $P_{38} = (0, 0, 1, 1)$	
$8: P_9 = (2,0,1,0)$	$17: P_{43} = (2, 1, 1, 1)$	