Fibra óptica

Tipos

Monomodo (SMF)	Multimodo (MMF)
Fibra mais fina (9/125)	Fibra mais grossa (50/125 ou 62,5/125)
Luz é transmitida em linha reta	Luz ricocheteia no revestimento da fibra
Maior distância (ex: 80 km a 10 Gbit/s)	Menor distância (ex: 2 km a 100 Mbit/s, 1
	km a 1 Gbit/s e 500 m a 10 Gbit/s)
Maior largura de banda	Menor largura de banda
Mais cara	Mais barata
Comprimento de onda (λ) típico: 1.300 nm	Comprimento de onda (λ) típico: 850 nm

 Fibras multimodo podem ser classificadas em índice degrau (step-index, maior dispersão modal) e índice gradual (graded-index, menor dispersão modal)

Classificação

50/125

Diâmetro do núcleo, em µm

Diâmetro do revestimento, em µm

- Monomodo: tipicamente 9/125
- Multimodo: tipicamente 50/125 (padrão americano) ou 62,5/125 (padrão europeu)

Comprimento de onda

Cada fibra é tradicionalmente fabricada para operar a um comprimento de onda específico, a não ser que a fibra seja compatível com multiplexação por divisão de comprimento de onda (WDM), como é o caso das fibras NZ-DSF (Non-Zero, Dispersion-Shifted Fiber). Neste caso, a fibra poderá ter mais de um comprimento de onda sendo utilizado simultaneamente.

Note que o comprimento de onda sempre será infravermelho, isto é, invisível. Por isto, ao contrário da crença popular, a fibra não "acende" quando está transmitindo dados. Você não pode olhar diretamente para o núcleo da fibra, pois o laser, que é invisível, queimará a sua retina e você ficará cego.

Conectores

- SC, ST, FC e LC: com fibras tradicionais, requerem dois conectores, um para a fibra de transmissão e outro para a fibra de recepção. Com fibras que suportem a multiplexação por divisão de comprimento de onda, é possível utilizar apenas um conector, pois a fibra utilizará um comprimento de onda para a transmissão e outro comprimento de onda para a recepção. Podem ser usados tanto para fibras monomodo quanto multimodo.
- MT-RJ: suporta as duas fibras em um conector único. Usado apenas com fibras multimodo.
 Note que quando este conector é usado, normalmente o cabo em si é um só, contendo duas fibras em seu interior.

Padrões Ethernet (fibra óptica)

1000BASE-LX

Largura de banda, em Mbit/s ou Gbit/s

Tipo de transmissão (banda base)

Tipo de fibra óptica

- L (Long), indica longa distância, ou seja, fibra monomodo.
- F (Fiber) ou S (Short), indica curta distância, ou seja, fibra multimodo.