Table 1: Crystal data and refinement details for ${\bf mf118b}.$

Table 1: Crystal data and re	mement details for millsb.
empirical formula	$C_{38}H_{54}Fe_{2}N_{12}S_{2}$
moiety formula	$C_{22}H_{14}Fe_2N_{10}S_2^{2-}, 2(C_8H_{20}N^+)$
formula weight	854.75
T[K]	133(2)
crystal size $[mm^3]$	$0.500 \times 0.500 \times 0.360$
crystal system	monoclinic
crystal color	black
space group	$P2_1/c$ (No. 14)
$a \ [ext{Å}]$	11.2144(4)
$b \; [ext{Å}]$	14.4686(4)
$c \ [ext{Å}]$	13.7454(5)
α [°]	90
β [°]	113.658(3)
γ [°]	90
$V \ [\mathring{ m A}^3]$	2042.84(13)
Z	2
$\rho \; [\mathrm{g \cdot cm^{-3}}]$	1.390
F(000)	900
$\mu \ [\mathrm{mm}^{-1}]$	0.857
$T_{ m min}$ / $T_{ m max}$	$0.6373 \ / \ 0.7269$
θ -range	1.983 - 26.942
hkl-range	$-14 \le h \le 14$
	$-18 \le k \le 18$
	$-17 \le l \le 17$
measured refl.	26072
unique refl. $[R_{\rm int}]$	$4445 \ [0.0317]$
observed refl. $(I > 2\sigma(I))$	4191
data / restraints / param.	4445 / 0 / 248
goodness-of-fit (F^2)	1.037
$R1,wR2(I>2\sigma(I))$	$0.0227,\ 0.0599$
R1, wR2 (all data)	0.0247,0.0608
resid. el. dens. $[e \cdot Å^{-3}]$	-0.360 / 0.310

Table 2: Selected bond lengths [Å] for ${\bf mf118b}.$

Atoms	Bond lengths
Fe1-N1	2.1142(10)
Fe1-N4	2.1173(10)
Fe1-N3	2.1793(10)
Fe1-S1	2.2138(3)
$\mathrm{Fe1-S1}'$	2.2379(3)
Fe1-Fe1	2.7913(3)

Symmetry transformation used to generate equivalent atoms: (') 1-x, 1-y, 1-z.

Table 3: Selected bond angles $[^{\circ}]$ for **mf118b**.

Atoms	Bond angles
N1–Fe1–N4	141.30(4)
N1-Fe 1 - $N3$	73.13(4)
N4-Fe1-N3	72.85(4)
N1-Fe 1 -S 1	102.70(3)
N4-Fe1-S1	106.39(3)
N3-Fe1-S1	111.27(3)
${\rm N1Fe1S1}'$	99.78(3)
${\rm N4Fe1S1}'$	98.35(3)
${\rm N3Fe1S1}'$	146.39(3)
$\mathrm{S1}\text{-}\mathrm{Fe1}\text{-}\mathrm{S1}'$	102.343(12)
${\rm N1Fe1Fe1}'$	108.09(3)
${\rm N4Fe1Fe1}'$	109.89(3)
${\rm N3Fe1Fe1}'$	162.82(3)
$S1\mathrm{Fe}1\mathrm{Fe}1^{'}$	51.557(9)
$\mathrm{S1}^{\prime} ext{-Fe1} ext{-Fe1}^{\prime}$	50.786(9)
$\mathrm{Fe1}\mathrm{S1}\mathrm{Fe1}'$	77.657(11)
C3-N1-Fe1	117.83(8)
C1-N1-Fe1	137.94(9)
C8-N3-Fe1	119.44(8)
C4-N3-Fe1	119.24(8)
C9-N4-Fe1	118.01(8)
C10-N4-Fe1	138.39(9)

Symmetry transformation used to generate equivalent atoms: (') 1-x, 1-y, 1-z.

Table 4: Selected bond lengths [Å] for **mf118b**.

Atoms	Bond lengths	Atoms	Bond lengths
Fe1-N1	2.1142(10)	Fe1-S1	2.2138(3)
Fe1-N4	2.1173(10)	Fe1-S1	2.2379(3)
Fe1-N3	2.1793(10)	Fe1-Fe1	2.7913(3)

Symmetry transformation used to generate equivalent atoms: (') 1-x, 1-y, 1-z.

Table 5: Selected bond angles [°] for **mf118b**.

Atoms	Bond angles	Atoms	Bond angles
N1-Fe1-N4	141.30(4)	N4–Fe1–Fe1	109.89(3)
N1-Fe 1 - $N3$	73.13(4)	${\rm N3Fe1Fe1}'$	162.82(3)
N4-Fe1-N3	72.85(4)	$S1\mathrm{Fe}1\mathrm{Fe}1^{'}$	51.557(9)
N1-Fe 1 -S 1	102.70(3)	$\mathrm{S1}^{\prime}\mathrm{-Fe1}\mathrm{-Fe1}^{\prime}$	50.786(9)
N4Fe1S1	106.39(3)	$\mathrm{Fe1}\text{-}\mathrm{S1}\text{-}\mathrm{Fe1}'$	77.657(11)
N3Fe1S1	111.27(3)	C3-N1-Fe1	117.83(8)
$\rm N1Fe1S1'$	99.78(3)	C1-N1-Fe1	137.94(9)
$\mathrm{N4}\text{-}\mathrm{Fe1}\text{-}\mathrm{S1}'$	98.35(3)	C8-N3-Fe1	119.44(8)
${\rm N3Fe1S1}'$	146.39(3)	C4-N3-Fe1	119.24(8)
$\mathrm{S1}\text{-}\mathrm{Fe1}\text{-}\mathrm{S1}'$	102.343(12)	C9–N4–Fe1	118.01(8)
N1–Fe1–Fe1	108.09(3)	C10-N4-Fe1	138.39(9)

Symmetry transformation used to generate equivalent atoms: (') 1-x, 1-y, 1-z.

Table 6: Selected bond lengths [Å] for **mf118b** (sorted).

Atoms	Bond lengths
Fe1-N1	2.1142(10)
Fe1-N4	2.1173(10)
Fe1-N3	2.1793(10)
Fe1-S1	2.2138(3)
$\mathrm{Fe}1\mathrm{-S1}'$	2.2379(3)
$\mathrm{Fe1}\text{-}\mathrm{Fe1}'$	2.7913(3)

Symmetry transformation used to generate equivalent atoms: (') 1-x, 1-y, 1-z.

Figure 1: Selected bond lengths [Å] and angles [°] for $\mathbf{mf118b}$: Fe1–N1 2.1142(10), Fe1–N4 2.1173(10), Fe1–N3 2.1793(10), Fe1–S1 2.2138(3), Fe1–S1 2.2379(3), Fe1–Fe1 2.7913(3); N1–Fe1–N4 141.30(4), N1–Fe1–N3 73.13(4), N4–Fe1–N3 72.85(4), N1–Fe1–S1 102.70(3), N4–Fe1–S1 106.39(3), N3–Fe1–S1 111.27(3), N1–Fe1–S1 99.78(3), N4–Fe1–S1 98.35(3), N3–Fe1–S1 146.39(3), S1–Fe1–S1 102.343(12), N1–Fe1–Fe1 108.09(3), N4–Fe1–Fe1 109.89(3), N3–Fe1–Fe1 162.82(3), S1–Fe1–Fe1 51.557(9), S1 –Fe1–Fe1 50.786(9), Fe1–S1–Fe1 77.657(11), C3–N1–Fe1 117.83(8), C1–N1–Fe1 137.94(9), C8–N3–Fe1 119.44(8), C4–N3–Fe1 119.24(8), C9–N4–Fe1 118.01(8), C10–N4–Fe1 138.39(9). Symmetry transformation used to generate equivalent atoms: (′) 1-x, 1-y, 1-z.

Table 7: Selected bond angles $[\circ]$ for **mf118b** (sorted).

Atoms	Bond angles
S1'-Fe1-Fe1'	50.786(9)
$S1\mathrm{Fe}1\mathrm{Fe}1^{'}$	51.557(9)
N4-Fe1-N3	72.85(4)
N1-Fe 1 - $N3$	73.13(4)
$\mathrm{Fe1}\text{-}\mathrm{S1}\text{-}\mathrm{Fe1}'$	77.657(11)
${\rm N4Fe1S1}'$	98.35(3)
${\rm N1Fe1S1}'$	99.78(3)
S1Fe1S1'	102.343(12)
N1-Fe 1 -S 1	102.70(3)
N4-Fe1-S1	106.39(3)
${\rm N1Fe1Fe1}'$	108.09(3)
${\rm N4Fe1Fe1}'$	109.89(3)
N3-Fe1-S1	111.27(3)
C3-N1-Fe1	117.83(8)
C9-N4-Fe1	118.01(8)
C4-N3-Fe1	119.24(8)
C8-N3-Fe1	119.44(8)
C1-N1-Fe1	137.94(9)
C10-N4-Fe1	138.39(9)
N1-Fe 1 - $N4$	141.30(4)
${\rm N3Fe1S1}'$	146.39(3)
N3–Fe1–Fe1′	162.82(3)

Symmetry transformation used to generate equivalent atoms: (') 1-x, 1-y, 1-z.

Table 8: Selected bond lengths $[\mathring{A}]$ for $\mathbf{mf118b}$ (sorted).

Atoms	Bond lengths	Atoms	Bond lengths
Fe1-N1		Fe1-S1	2.2138(3)
Fe1-N4	` ,	Fe1–S1	2.2379(3)
Fe1-N3		Fe1-Fe1	2.7913(3)

Symmetry transformation used to generate equivalent atoms: (') 1-x, 1-y, 1-z.

Table 9: Selected bond angles [°] for **mf118b** (sorted).

Atoms	Bond angles	Atoms	Bond angles
S1'-Fe1-Fe1'	50.786(9)	N4–Fe1–Fe1	109.89(3)
$S1\mathrm{Fe}1\mathrm{Fe}1^{'}$	51.557(9)	N3– $Fe1$ – $S1$	111.27(3)
N4-Fe1-N3	72.85(4)	C3-N1-Fe1	117.83(8)
N1-Fe 1 - $N3$	73.13(4)	C9-N4-Fe1	118.01(8)
$\mathrm{Fe1}\text{-}\mathrm{S1}\text{-}\mathrm{Fe1}'$	77.657(11)	C4-N3-Fe1	119.24(8)
$\mathrm{N4Fe1S1}'$	98.35(3)	C8-N3-Fe1	119.44(8)
$\rm N1Fe1S1'$	99.78(3)	C1-N1-Fe1	137.94(9)
$S1\mathrm{Fe}1S1^{'}$	102.343(12)	C10-N4-Fe1	138.39(9)
$N1\mathrm{Fe}1\mathrm{S}1$	102.70(3)	N1-Fe 1 - $N4$	141.30(4)
N4Fe1S1	106.39(3)	$\mathrm{N3Fe1S1}^{\prime}$	146.39(3)
N1–Fe1–Fe1	108.09(3)	N3– $Fe1$ – $Fe1'$	162.82(3)

Symmetry transformation used to generate equivalent atoms: (') 1 - x, 1 - y, 1 - z.

Figure 2: Selected bond lengths [Å] and angles [°] for $\mathbf{mf118b}$ (sorted): Fe1–N1 2.1142(10), Fe1–N4 2.1173(10), Fe1–N3 2.1793(10), Fe1–S1 2.2138(3), Fe1–S1' 2.2379(3), Fe1–Fe1' 2.7913(3); S1'–Fe1–Fe1' 50.786(9), S1–Fe1–Fe1' 51.557(9), N4–Fe1–N3 72.85(4), N1–Fe1–N3 73.13(4), Fe1–S1–Fe1' 77.657(11), N4–Fe1–S1' 98.35(3), N1–Fe1–S1' 99.78(3), S1–Fe1–S1' 102.343(12), N1–Fe1–S1 102.70(3), N4–Fe1–S1 106.39(3), N1–Fe1–Fe1' 108.09(3), N4–Fe1–Fe1' 109.89(3), N3–Fe1–S1 111.27(3), C3–N1–Fe1 117.83(8), C9–N4–Fe1 118.01(8), C4–N3–Fe1 119.24(8), C8–N3–Fe1 119.44(8), C1–N1–Fe1 137.94(9), C10–N4–Fe1 138.39(9), N1–Fe1–N4 141.30(4), N3–Fe1–S1' 146.39(3), N3–Fe1–Fe1' 162.82(3). Symmetry transformation used to generate equivalent atoms: (′) 1-x, 1-y, 1-z.