# Chapter 1 Digital System and Binary Numbers

#### **Outline**

- Digital Systems
- Binary Numbers
- Number-Base Conversions
- Octal and Hexadecimal Numbers
- Complements
- Signed Binary Numbers
- Binary Codes
- Binary Storage and Registers
- Binary Logic

### **Digital Systems**

- Why do we need to learn digital systems? Digital systems are everywhere in modern life: (3C and more...)
  - Computers, PDA (personal digital assistant)
  - Consumer Electronics: Digital Camera, MP3 Player, Digital TVs, DVD...
  - Communications: Telephone switching, Internet, Cellular phones
  - Traffic control Systems
  - Medical Treatments: computer tomography...
- Characteristics of digital systems
  - Elements are in discrete levels. Ex: integer, alphabet, porker cards...
  - A digital system is an integration of many digital modules which manipulate the digital elements.
  - Current digital systems are based on "logic design."
- After learning "Logic Design," you can understand how a digital system operates in each basic logic module.

#### **Number Systems**

Decimal Number:

$$7392 = 7 \times 1000 + 3 \times 100 + 9 \times 10 + 2 \times 1$$
  
=  $7 \times 10^3 + 3 \times 10^2 + 9 \times 10^1 + 2 \times 10^0$ 

where base (radix) = 10 and (7, 3, 9, 2) are coefficients with respect to different powers of 10.

■ Any number can be written with a positive radix *r* by a string of digits:

$$a_{n-1}a_{n-2}\dots a_1a_0 \cdot a_{-1}a_{-2}\dots a_{-m+1}a_{-m}$$
 where  $0 \le a_i < r$  and . is the *radix point*.

■ The string of digits represents the power series:

$$(\text{Number})_r = \left(\sum_{i=0}^{n-1} a_i \cdot r^i\right) + \left(\sum_{j=-m}^{-1} a_j \cdot r^j\right)$$
Integer Fraction

3

#### **Number Systems**

|           |    | General         | Decimal            | Binary                 | Hexadecimal      |
|-----------|----|-----------------|--------------------|------------------------|------------------|
| Radix     |    | r               | 10                 | 2                      | 16               |
| Coefficie |    | 0, 1, 2, ,      | 0, 1, 2, , 9       | 0, 1                   | 0, 1, 2, , 9,    |
| (Digits   | )  | <i>r</i> - 1    |                    |                        | A, B, C, D, E, F |
|           | 0  | $r^0$           | $10^0 = 1$         | $2^0 = 1$              | $16^0 = 1$       |
|           | 1  | $r^1$           | $10^1 = 10$        | $2^1 = 2$              | $16^1 = 16$      |
|           | 2  | $r^2$           | $10^2 = 100$       | $2^2 = 4$              | $16^2 = 256$     |
| Power     | 3  | $r^3$           | $10^3 = 1000$      | $2^3 = 8$              | $16^3 = 4096$    |
| of        | 4  | $r^4$           | $10^4 = 10000$     | $2^4 = 16$             | $16^4 = 65536$   |
| Radix     | •  |                 |                    |                        |                  |
|           | -1 | $r^{-1}$        | $10^{-1} = 0.1$    | $2^{-1} = \frac{1}{2}$ | 16 <sup>-1</sup> |
|           | -2 | $r^{-2}$        | $10^{-2} = 0.01$   | $2^{-2} = \frac{1}{4}$ | 16 <sup>-2</sup> |
|           | -3 | $r^{-3}$        | $10^{-3} = 0.001$  | $2^{-3} = 1/8$         | 16 <sup>-3</sup> |
|           | -4 | r <sup>-4</sup> | $10^{-4} = 0.0001$ | $2^{-4} = 1/16$        | 16 <sup>-4</sup> |

Į

#### **Examples**

Decimal number

$$(7,392)_{10} = 7 \times 10^3 + 3 \times 10^2 + 9 \times 10^1 + 2 \times 10^0$$

■ Base-5 number

$$(4021.2)_5 = 4 \times 5^3 + 0 \times 5^2 + 2 \times 5^1 + 1 \times 5^0 + 2 \times 5^{-1}$$
  
=  $(511.4)_{10}$ 

■ Binary number

$$(110101)_2 = 1 \times 2^5 + 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$$
  
= 32 + 16 + 4 + 1 = (53)<sub>10</sub>

■ Hexadecimal number

$$(B65F)_{16} = 11 \times 16^3 + 6 \times 16^2 + 5 \times 16^1 + 15 \times 16^0$$
  
=  $(46,657)_{10}$ 

■ Base-8 number:  $(127.4)_8 = (87.5)_{10}$ 

### **Binary Special Units**

- $2^{10}$  (1,024) is Kilo, denoted "K", ~  $10^3$
- 2<sup>20</sup> (1,048,576) is Mega, denoted "M", ~ 10<sup>6</sup>
- $\blacksquare$  2<sup>30</sup> (1,073,741,824) is Giga, denoted "G", ~ 10<sup>9</sup>
- $\blacksquare$  2<sup>40</sup> (1,099,511,627,776) is Tera, denoted "T",  $\sim$  10<sup>12</sup>
- A 512 M-byte memory is actually a 536,870,912 (512 x 1048576) byte memory.
- Hard drive companies use "real" bytes as their product capacity.
  - 120 G-byte HD  $\Rightarrow$  111.75 G-bytes shown on your computer.

### **Arithmetic Operations**

Addition: Multiplication:

Augend: 101101 Multiplicand: 1011

Addend: +100111 Multiplier: x 101

Sum: 1010100 1011 0000 1011

Subtraction: Product: 110111

Minuend: 101101

Difference: 000110

Subtrahend: - 100111

#### **Number-Base Conversions**



9

#### Conversion between Decimal and r-Based Number (Integer)

■ r-based integer to decimal integer

$$(a_n a_{n-1} ... a_1 a_0)_r = (a_n r^n + a_{n-1} r^{n-1} + ... + a_1 r^1 + a_0 r^0)_{10}$$

- Decimal integer to r-based integer
  - By dividing the number and all successive integer quotients by r and collecting the remainders as its coefficients.

by using division process on  $(N)_{10}$ :

$$\frac{N}{r} = a_n r^{n-1} + a_{n-1} r^{n-2} + \dots + a_2 r^1 + a_1 + \frac{a_0}{r} = Q_1 + \frac{a_0}{r}$$
 Residual  $a_0$ 

$$\frac{Q_1}{r} = a_n r^{n-2} + a_{n-1} r^{n-3} + \dots + a_3 r^1 + a_2 + \frac{a_1}{r} = Q_2 + \frac{a_1}{r}$$
 Residual  $a_1$ 

$$\frac{Q_2}{r} = a_n r^{n-3} + a_{n-1} r^{n-4} + \dots + a_4 r^1 + a_3 + \frac{a_2}{r} = Q_3 + \frac{a_2}{r}$$
 Residual  $a_2$ 

$$\dots N_{10} = (a_n a_{n-1} \dots a_1 a_0)_r$$

#### **Example**

■ From  $(41)_{10}$  to  $(a_n a_{n-1} ... a_1 a_0)_2$ :

| 41/2          | =               | Integer<br>Quotient<br>20 | +   | Remainder 1/2                                                                      | Coefficient $a_0 = 1$ |    |
|---------------|-----------------|---------------------------|-----|------------------------------------------------------------------------------------|-----------------------|----|
| 20/2          | =               | 10                        | +   | 0                                                                                  | $a_1 = 0$             |    |
| 10/2          | =               | 5                         | +   | 0                                                                                  | $a_2 = 0$             |    |
| 5/2           | =               | 2                         | +   | 1/2                                                                                | $a_3 = 1$             |    |
| 2/2           | =               | 1                         | +   | 0                                                                                  | $a_4 = 0$             |    |
| 1/2           | =               | 0                         |     | 1/2                                                                                | $a_5 = 1$             |    |
|               |                 | sto                       | •   |                                                                                    |                       |    |
| $(41)_{10} =$ | $(a_n a_{n-1})$ | $a_1a_0)_2$               | _ = | $(a_5 a_4 a_3 a_2 a_1 a_2 a_1 a_2 a_2 a_1 a_2 a_2 a_2 a_2 a_2 a_2 a_2 a_2 a_2 a_2$ | $a_0)_2 = (101001)_2$ | 11 |

#### Conversion between Decimal and r-Based Number (Fraction)

r-based fraction to decimal number

$$(0.a_{-1}a_{-2}...a_{-m+1}a_{-m})_r = (a_{-1}r^{-1} + a_{-2}r^{-2} + ... + a_{-m+1}r^{-m+1} + a_{-m}r^{-m})_{10}$$

- Decimal fraction to *r*-based number
  - By multiplying the number and all successive fractions by r and accumulating the integers.

$$N\times r = a_{-1} + a_{-2}r^{-1} + \dots + a_{-m+1}r^{-m+2} + a_{-m}r^{-m+1} = a_{-1} + M_1 \quad \text{Integer } a_{-1}$$
 
$$M_1\times r = a_{-2} + a_{-3}r^{-1} + \dots + a_{-m+1}r^{-m+3} + a_{-m}r^{-m+2} = a_{-2} + M_2 \quad \text{Integer } a_{-2}$$
 
$$M_2\times r = a_{-3} + a_{-4}r^{-1} + \dots + a_{-m+1}r^{-m+4} + a_{-m}r^{-m+3} = a_{-3} + M_3 \quad \text{Integer } a_{-3}$$
 
$$M_2 \times r = a_{-3} + a_{-4}r^{-1} + \dots + a_{-m+1}r^{-m+4} + a_{-m}r^{-m+3} = a_{-3} + M_3 \quad \text{Integer } a_{-3}$$
 
$$M_3 \quad \text{May have infinite integers}$$

ا ر

#### **Example**

■ From  $(0.6875)_{10}$  to  $(0.a_{-1}a_{-2}...a_{-m+1}a_{-m})_2$ 

Integer Fraction Coefficient 
$$0.6875 \times 2 = 1 + 0.3750 \times 2 = 0 + 0.7500 \times 2 = 1 + 0.5000 \times$$

$$(0.6875)_{10} = (0.a_{-1}a_{-2}a_{-3}a_{-4})_2 = (0.1011)_2$$

#### **Example**

■ From  $(0.513)_{10}$  to  $(0.a_{-1}a_{-2}...a_{-m+1}a_{-m}...)_8$ 

|           | 1 | Intege | r | Fraction | Coefficient  |
|-----------|---|--------|---|----------|--------------|
| 0.513 x 8 | = | 4      | + | 0.104    | $a_{-1} = 4$ |
| 0.104 x 8 | = | 0      | + | 0.832    | $a_{-2} = 0$ |
| 0.832 x 8 | = | 6      | + | 0.656    | $a_{-3} = 6$ |
| 0.656 x 8 | = | 5      | + | 0.248    | $a_{-4} = 5$ |
| 0.248 x 8 | = | 1      | + | 0.984    | $a_{-5} = 1$ |
| 0.984 x 8 | = | 7      | + | 0.872    | $a_{-6} = 7$ |
|           |   |        | i |          |              |

To seven significant digits:

$$(0.513)_{10} = (0.a_{-1}a_{-2}...a_{-m+1}a_{-m}...)_8 = (0.406517...)_8$$

#### **Numbers with different bases**

| Decimal   | Binary   | Octal    | Hexadecimal |
|-----------|----------|----------|-------------|
| (Base 10) | (Base 2) | (Base 8) | (Base 16)   |
| 00        | 0000     | 00       | 0           |
| 01        | 0001     | 01       | 1           |
| 02        | 0010     | 02       | 2           |
| 03        | 0011     | 03       | 3           |
| 04        | 0100     | 04       | 4           |
| 05        | 0101     | 05       | 5           |
| 06        | 0110     | 06       | 6           |
| 07        | 0111     | 07       | 7           |
| 08        | 1000     | 10       | 8           |
| 09        | 1001     | 11       | 9           |
| 10        | 1010     | 12       | А           |
| 11        | 1011     | 13       | В           |
| 12        | 1100     | 14       | С           |
| 13        | 1101     | 15       | D           |
| 14        | 1110     | 16       | E           |
| 15        | 1111     | 17       | F           |

15

#### Octal and Hexadecimal Numbers

■ It's important in digital computer to convert

**(**10110001101011.111100000110)<sub>2</sub>

$$= (2 \ 6 \ 1 \ 5 \ 3 \ . \ 7 \ 4 \ 0 \ 6)_{8}$$
$$= (2 \ C \ 6 \ B \ . \ F \ 0 \ 6)_{16}$$

- $\bullet (673.124)_8 = (110\ 111\ 011.001\ 010\ 100)_2$ 
  - 6 7 3 1 2 4
- $(306.D)_{16} = (0011\ 0000\ 0110.1101)_2$   $3 \quad 0 \quad 6 \quad D$

#### **Complements**

- Complements are used in digital computers to simplify the subtraction operations and for logical manipulations, so that the corresponding circuits can be simpler and less expensive.
- There are two types of complements for each base-*r* system:
  - r's (radix) complement
  - (r-1)'s (diminished radix) complement
  - Examples:

**Diminished Radix Complement** 

■ Given a number N in base r having n digits, the (r-1)'s complement of N is defined as

**■** Examples:

The 9's complement of 546700 is 999999 - 546700 = 453299The 9's complement of 012398 is 999999 - 012398 = 987601The 1's complement of 1011000 is 1111111 - 1011000 = 0100111 The 1's complement of 0101101 is 1111111 - 0101101 = 1010010

#### **Radix Complement**

■ The r's complement of an n-digit number N in base r is defined as:

$$\begin{cases} r^n - N & \text{for } N \neq 0 \\ 0 & \text{for } N = 0 \end{cases}$$

- The r's complement = (r-1)'s complement + 1
- Examples:

```
The 10's complement of 546700 is 1000000 - 546700 = 453300
The 10's complement of 012398 is 10000000 - 012398 = 987602
The 2's complement of 1011000 is 100000000 - 1011000 = 0101000
The 2's complement of 0101101 is 100000000 - 0101101 = 1010011
```

19

### **Complements**

- How if the number contains a radix point?
  - If number N has a radix point, the point should be removed temporarily to do r's or (r-1)'s complement and then restoring the radix point to the complemented number in the same position.
  - Example:  $N = (213.61)_{10} \Rightarrow N' = 21361$ Take  $\begin{cases} 10\text{'s complement of } N'\text{: } 78639 \\ 9\text{'s complement of } N'\text{: } 78638 \end{cases} \Rightarrow \begin{cases} 786.39 \\ 786.38 \end{cases}$
- Note: the complement of the complement is equal to the original number.

#### **Subtraction with Complements**

- In elementary school math, we use the "borrow" concept to do subtraction: Not efficient in digital hardware implementations!! ⇒ use complements!!
- The subtraction of two n-digit unsigned numbers M-N in base r:
  - 1. Add the minuend M, to the r's complement of the subtrahend N. That is,  $M + (r^n N) = M N + r^n$ .
  - 2. If  $M \ge N$ , the sum will produce an end carry  $r^n$ , which can be discarded to get the result M N.
  - 3. If M < N, the sum will be equal to  $r^n (N M)$ , which is the r's complement of N M.
    - $\Rightarrow$  To obtain the answer in a familiar form, take the r's complement of the sum and place a "negative" sign in front.

#### **Examples**

■ Using 10's complement to compute 72532 — 3250

$$M = 72532$$
  
10's complement of  $N = + 96750$   
Sum = 169282  
Discard end carry  $10^5 = -100000$   
Answer = 69282

■ Using 10's complement to compute 3250 - 72532

$$M = 03250$$
  
10's complement of  $N = + 27468$   
Sum = 30718

 $\therefore$  M < N, the answer is - (10's complement of 30718) = -69282.

#### **Examples**

■ X= 1010100, Y = 1000011 to calculate (a) X - Y and (b) Y - X using 2's complement

(a) 
$$X - Y$$
  $X = 1010100$   
2's complement of  $Y = + 0111101$   
Sum = 10010001  
Discard end carry  $2^7 = -10000000$   
Answer = 0010001

(b) 
$$Y - X$$
  $Y = 1000011$   
2's complement of  $X = + 0101100$   
Sum = 1101111

: 
$$Y < X$$
, the answer is - (2's complement of 1101111)  
= - 0010001

## Subtraction using (r-1)'s Complements

- When performing (r-1)'s complement subtraction, if there's an end carry, the result will be one less than the correct answer. Removing the end carry and adding 1 to the sum is referred to as "end-around carry."
- **Examples:** X = 1010100, Y = 1000011(a) X-Y(b) Y-X1000011 Y =X =1010100 1's comp't of X = + 01010111's comp't of Y = + 0111100Sum = 10010000Sum = 1101110 End-around carry =  $\pm$ There's no end carry, the Answer = 0010001answer is - (1's complement

of 1101110) = -0010001

#### **Signed Binary Numbers**

- Traditionally, positive number has no sign or a "plus, +" sign and negative number has a "minus, —" sign before the number.
- In computer the sign is represented by the leftmost bit: "0" is for positive and "1" is for negative.
- In computer, the difference between signed and unsigned numbers is important.



**Signed Binary Numbers** 

- Signed-magnitude representation
  - Negative number is obtained by changing the sign bit in the leftmost position from 0 to 1
    - **+** 9 000001001
    - **-** 9 100001001
- Signed-complement representation
  - In 2's complement, negative number is presented by taking the 2's complement of the positive number
  - 2's complement
     9 000001001
     9 111110111
     1's complement
     9 000001001
     9 111110110
- What is decimal value of 101011011 in (a) signed magnitude, (b) 2's complement, and (c) 1's complement representations?

**Signed Binary Numbers** 

| Decimal | Signed 2's complement | Signed 1's complement | Signed<br>Magnitude |
|---------|-----------------------|-----------------------|---------------------|
| +7      | 0111                  | 0111                  | 0111                |
| +6      | 0110                  | 0110                  | 0110                |
| +5      | 0101                  | 0101                  | 0101                |
| +4      | 0100                  | 0100                  | 0100                |
| +3      | 0011                  | 0011                  | 0011                |
| +2      | 0010                  | 0010                  | 0010                |
| +1      | 0001                  | 0001                  | 0001                |
| +0      | 0000                  | 0000                  | 0000                |
| -0      | -                     | 1111                  | 1000                |
| -1      | 1111                  | 1110                  | 1001                |
| -2      | 1110                  | 1101                  | 1010                |
| -3      | 1101                  | 1100                  | 1011                |
| -4      | 1100                  | 1011                  | 1100                |
| -5      | 1011                  | 1010                  | 1101                |
| -6      | 1010                  | 1001                  | 1110                |
| -7      | 1001                  | 1000                  | 1111                |
| -8      | 1000                  | -                     | -                   |

27

#### **Arithmetic Addition**

- Signed-magnitude addition:
  - If the signs are the same, we add the two magnitudes and give the sum a common sign.
  - If the signs are different, subtract larger magnitude by smaller magnitude. Then give the difference the sign of the larger number to get the resultant sign.
- Signed-complement addition:
  - We do not need sign comparison and magnitude comparison.
  - Only direct addition is required.

#### **Example (2's Complement Addition)**

29

#### **Arithmetic Subtraction**

- Signed-magnitude subtraction:
  - Change the sign of subtrahend first.
  - Do the same step as signed-magnitude addition

$$(\pm A) - (+B) = (\pm A) + (-B)$$
  
 $(\pm A) - (-B) = (\pm A) + (+B)$ 

- Signed-complement subtraction:
  - Reverse subtrahend by taking signed 2's complement
  - Do the same step as signed-complement addition (only direct addition)

#### **Binary Code**

- Digital systems use signals that have two distinct values and circuit elements that have two stable states (bi-stable states).
- An n-bit binary code is a group of n bits that assumes up to  $2^n$  distinct combinations of 1's and 0's, with each combination representing one element state.
- Binary Codes:
  - Binary Coded Decimal (BCD) Code
  - BCD-2421 Code
  - Excess-3 Code
  - 84-2-1 Code
  - Gray Code
  - ASCII Character Code
  - Error Detecting Code

31

### **Binary Coded Decimal (BCD)**

- BCD represents the decimal system using binary number:
  - Using 4-bit to represent 0-9 in the decimal system.
  - A-F in the binary numbers are discarded
  - Example:

$$(185)_{10} = (0001\ 1000\ 0101)_{BCD}$$
  
=  $(10111001)_2$ 

- Important facts:
  - A BCD number needs more bits than its equivalent binary value. (12 bits v.s. 8 bits in the example)
  - BCD numbers are decimal numbers, not binary numbers.

| Decimal | BCD   |
|---------|-------|
| Symbol  | Digit |
| 0       | 0000  |
| 1       | 0001  |
| 2       | 0010  |
| 3       | 0011  |
| 4       | 0100  |
| 5       | 0101  |
| 6       | 0110  |
| 7       | 0111  |
| 8       | 1000  |
| 9       | 1001  |

#### **BCD Addition**

■ Example: 184 + 576 = 760 in BCD

■ The plus 6 and minus 10 are equivalent in carry-propagation operation.

#### **Decimal Arithmetic**

- Signed decimal number in BCD is similar to the signed binary number.
  - First digit: 0 (0000) for "+" and 9 (1001) for "-"
- 10's complement, is obtained by taking the 9's complement first and adding 1 to the least significant digit, which is the one most often used.

**Other Decimal Codes** 

| Other Decimal oddes |            |             |               |              |  |
|---------------------|------------|-------------|---------------|--------------|--|
| Decimal             | BCD 8421   | 2421        | Excess-3      | 8, 4, -2, -1 |  |
| Digit               | (weighted) | (weighted)  | (self-comp't) | (weighted)   |  |
| 0                   | 0000       | 0000        | 0011          | 0000         |  |
| 1                   | 0001       | 0001        | 0100          | 0111         |  |
| 2                   | 0010       | 0010 (1000) | 0101          | 0110         |  |
| 3                   | 0011       | 0011 (1001) | 0110          | 0101         |  |
| 4                   | 0100       | 0100 (1010) | 0111          | 0100         |  |
| 5                   | 0101       | 1011 (0101) | 1000          | 1011         |  |
| 6                   | 0110       | 1100 (0110) | 1001          | 1010         |  |
| 7                   | 0111       | 1101 (0111) | 1010          | 1001         |  |
| 8                   | 1000       | 1110        | 1011          | 1000         |  |
| 9                   | 1001       | 1111        | 1100          | 1111         |  |
|                     | 1010       | 0101        | 0000          | 0001         |  |
|                     | 1011       | 0110        | 0001          | 0010         |  |
| Unused bit          | 1100       | 0111        | 0010          | 0011         |  |
| combinations        | 1101       | 1000        | 1101          | 1100         |  |
|                     | 1110       | 1001        | 1110          | 1101         |  |
|                     | 1111       | 1010        | 1111          | 1110         |  |

35

### **Gray Code**

- Many physical systems' output data are continuous quantities.
- Continuous/Analog information is converted to digital form by ADC.
- The advantage of Gray code is that only one bit in the code group changes when going from one number to the next.
- Gray code is used in applications in which the normal sequence of binary numbers may produce an error or ambiguity during the transition.

| <b>D</b> · · | 0 0 :             |
|--------------|-------------------|
| Decimal      | Gray Code         |
| 0            | 0000              |
| 1            | 0001              |
| 2            | 0011              |
| 3            | 0010              |
| 4            | 0110              |
| 5            | 0111              |
| 6            | 0101              |
| 7            | 0100              |
| 8            | 1100              |
| 9            | 1101              |
| 10           | 1111              |
| 11           | 1110              |
| 12           | 1010              |
| 13           | 1011              |
| 14           | 1001              |
| 15           | 1000 <sub>3</sub> |

#### **ASCII Character Code**

- Digital computers require to handle not only numbers, but also characters and symbols.
- To contain all uppercase and lowercase letters, numerals and special characters, 7-bit binary codes are required.
- ASCII (American Standard Code for Information Interchange) code uses 7 bits,  $b_1$  to  $b_7$ , to code 128 characters:
  - 94 graphic characters: 26 uppercase, 26 lowercase, 10 numerals, and 32 special characters.
  - 34 control characters: backspace (BS), file separator (FS), start of text (STX), delete (DEL), etc.
- Most computers use "byte" (containing 8 bits). A byte contains an ASCII code, with one more bit for other purposes.

**ASCII** Code

American Standard Code for Information Interchange (ASCII)

|                                                             | b <sub>7</sub> b <sub>6</sub> b <sub>5</sub> |     |     |     |     |     |     |     |
|-------------------------------------------------------------|----------------------------------------------|-----|-----|-----|-----|-----|-----|-----|
| b <sub>4</sub> b <sub>3</sub> b <sub>2</sub> b <sub>1</sub> | 000                                          | 001 | 010 | 011 | 100 | 101 | 110 | 111 |
| 0000                                                        | NUL                                          | DLE | SP  | 0   | @   | P   | `   | р   |
| 0001                                                        | SOH                                          | DC1 | !   | 1   | A   | Q   | a   | q   |
| 0010                                                        | STX                                          | DC2 | "   | 2   | В   | R   | b   | r   |
| 0011                                                        | ETX                                          | DC3 | #   | 3   | C   | S   | c   | s   |
| 0100                                                        | EOT                                          | DC4 | \$  | 4   | D   | T   | d   | t   |
| 0101                                                        | <b>ENQ</b>                                   | NAK | %   | 5   | E   | U   | e   | u   |
| 0110                                                        | ACK                                          | SYN | &   | 6   | F   | V   | f   | v   |
| 0111                                                        | BEL                                          | ETB | 6   | 7   | G   | W   | g   | w   |
| 1000                                                        | BS                                           | CAN | (   | 8   | Н   | X   | h   | X   |
| 1001                                                        | HT                                           | EM  | )   | 9   | I   | Y   | i   | У   |
| 1010                                                        | LF                                           | SUB | *   | :   | J   | Z   | j   | z   |
| 1011                                                        | VT                                           | ESC | +   | ;   | K   | [   | k   | {   |
| 1100                                                        | FF                                           | FS  | ,   | <   | L   | \   | 1   | Ì   |
| 1101                                                        | CR                                           | GS  | _   | =   | M   | ]   | m   | }   |
| 1110                                                        | SO                                           | RS  |     | >   | N   | ^   | n   | ~   |
| 1111                                                        | SI                                           | US  | /   | ?   | O   | _   | O   | DEI |

#### **ASCII Code's Control Characters**

#### Control characters

| NUL | Null                | DLE | Data-link escape          |
|-----|---------------------|-----|---------------------------|
| SOH | Start of heading    | DC1 | Device control 1          |
| STX | Start of text       | DC2 | Device control 2          |
| ETX | End of text         | DC3 | Device control 3          |
| EOT | End of transmission | DC4 | Device control 4          |
| ENQ | Enquiry             | NAK | Negative acknowledge      |
| ACK | Acknowledge         | SYN | Synchronous idle          |
| BEL | Bell                | ETB | End-of-transmission block |
| BS  | Backspace           | CAN | Cancel                    |
| HT  | Horizontal tab      | EM  | End of medium             |
| LF  | Line feed           | SUB | Substitute                |
| VT  | Vertical tab        | ESC | Escape                    |
| FF  | Form feed           | FS  | File separator            |
| CR  | Carriage return     | GS  | Group separator           |
| SO  | Shift out           | RS  | Record separator          |
| SI  | Shift in            | US  | Unit separator            |
| SP  | Space               | DEL | Delete                    |

39

#### **Error-Detecting Code**

- To detect errors in data communication and processing, an eighth bit is sometimes added to the ASCII character to indicate its parity.
- A **parity** bit is an extra bit included with a message to make the total number of 1's either even or odd.

#### ■ Example:

Consider the following two characters and their even and odd parity:

|                   | Even Parity | Odd Parity |
|-------------------|-------------|------------|
| ASCII A = 1000001 | 01000001    | 11000001   |
| ASCII T = 1010100 | 11010100    | 01010100   |

#### **Error-Detecting Code**

- Redundancy (e.g. extra information), in the form of extra bits, can be incorporated into binary code words to detect and correct errors.
- A simple form of redundancy is parity, an extra bit appended onto the code word to make the number of 1's odd or even. Parity can detect all single-bit errors and some multiple-bit errors.
- A code word has even parity if the number of 1's in the code word is even.
- A code word has odd parity if the number of 1's in the code word is odd.
- Error detecting/correcting code is important in modern communication systems.

41

## **Example of Error Detecting/Correcting Code**



1011100010110100 1111 1100 0

Data after FEC

#### **Binary Storage and Registers**

- A binary cell is a device that possesses two stable states and is capable of storing one of the two states.
- A register is a group of binary cells. A register with n cells can store any discrete quantity of information that contains n bits.
  - *n*-bit register, containing *n* cells, has  $2^n$  states.

- Examples: 16-bit register

■ Binary: 1100 0011 1100 1001

■ Decimal number: 50121

■ ASCII Code: C I characters

■ Excess-3 Code: 9096

■ BCD: Meaningless because of 1100

In a register, the same bit configuration may be interpreted differently for different types of data format.

43

#### **Register Transfer**

- Register Transfer
  - A transfer of the information stored in one register to another
  - One of the major operations in digital system
  - Example:



### **Binary Information Processing**



45

#### **Binary Logic**

- Binary logic consists of binary variables and a set of logical operations.
  - Each variable has two and only two distinct possible values: 1 and 0.
  - There are three basic logical operations: AND, OR, and NOT.
- Definitions of binary logic/operation:
  - AND:  $x \cdot y = z$ , z = 1 if and only if x = 1 and y = 1; z = 0 otherwize

     OR: x + y = z, z = 1 if and only if x = 1 and/or y = 1; z = 0 otherwize

     NOT: x' = z, z = 1 if x = 0

z = 0 if x = 1

#### **Truth Table**

**Table 1.8** *Truth Tables of Logical Operations* 

| AN  | ID          |   | O | R     | N | от |
|-----|-------------|---|---|-------|---|----|
| x y | $x \cdot y$ | X | y | x + y | X | x' |
| 0 0 | 0           | 0 | 0 | 0     | 0 | 1  |
| 0 1 | 0           | 0 | 1 | 1     | 1 | 0  |
| 1 0 | 0           | 1 | 0 | 1     |   | ı  |
| 1 1 | 1           | 1 | 1 | 1     |   |    |

47

#### **Binary Signal Representation**

- Logic gates are electronic circuits that operate at two separate voltage levels representing binary variable to logic-1 and logic-0.
- The allowable range defines legal voltage level for logic-1 or logic-0.
- The intermediate range between allowed ranges is crossed only during a state transition.



#### Example of Input-Output Signals for Three Gates



49

## Graphic Symbols for Digital Logic Circuit

■ Graphic symbols of AND, OR and Not gates:



Gates with multiple inputs:



(a) Three-input AND gate

(b) Four-input OR gate