Document-Level Relation Extraction with Adaptive Thresholding and Localized Context Pooling

Wenxuan Zhou¹, Kevin Huang², Tengyu Ma³, Jing Huang²
¹University of Southern California ²JD AI Research ³Stanford University

¹zhouwenx@usc.edu ²{kevin.huang, jing.huang}@jd.com ³tengyuma@stanford.edu

收录:Arxiv2020

动机:Graph-based model和transformer-based model都有提取长距离信息的作用,存在重叠且简单使用 transformer-based model给出的embedding会导致不同的实体对中使用的entity embedding是相同的,故需改进;之前的方法在预测时使用Global Thresholding,较为机械且影响准确度

方法:使用额外的上下文信息提升entity embedding,额外的上下文信息是通过充分利用BERT中的Transformer信息(代替Graph-based model)得到的,这样既解决了Graph-based model和transformer-based model潜在的重叠问题,又使不同实体对预测中使用的entity embedding不同;预测时使用Adaptive Thresholding代替Global Thresholding,提高准确度

Entity Encoder

$$[\mathbf{h}_1, \mathbf{h}_2, ..., \mathbf{h}_l] = BERT([x_1, x_2, ..., x_l]).$$

 $oldsymbol{h}_{e_i} = \log \sum_{j=1}^{N_{e_i}} \exp \left(oldsymbol{h}_{m^i_j}
ight).$

Entity Localized Context Pooling

$$egin{align} oldsymbol{A}^{(s,o)} &= oldsymbol{A}^E_s \cdot oldsymbol{A}^E_o, \ oldsymbol{q}^{(s,o)} &= \sum_{i=1}^H oldsymbol{A}^{(s,o)}_i, \ oldsymbol{a}^{(s,o)} &= oldsymbol{q}^{(s,o)}/\mathbf{1}^\intercal oldsymbol{q}^{(s,o)}, \ oldsymbol{c}^{(s,o)} &= oldsymbol{H}^\intercal oldsymbol{a}^{(s,o)}, \end{aligned}$$

将BERT中最后一层Transformer的Attention 矩阵记为 A_{H*L*L} ,其中H是Attention头数,L是 passage中总词数,在第二个维度上,按照某个 entity mention是passage中第几个词进行截取,得到矩阵 A_{H*L} ,将同一个entity的所有mention 对应位置截取到的矩阵进行平均得到 A^E

Entity Embedding

$$egin{aligned} oldsymbol{z}_{s}^{(s,o)} &= anh\left(oldsymbol{W}_{s}oldsymbol{h}_{e_{s}} + oldsymbol{W}_{c_{1}}oldsymbol{c}^{(s,o)}
ight), \ oldsymbol{z}_{o}^{(s,o)} &= anh\left(oldsymbol{W}_{o}oldsymbol{h}_{e_{o}} + oldsymbol{W}_{c_{2}}oldsymbol{c}^{(s,o)}
ight), \end{aligned}$$

$$P(r|e_s, e_o) = \sigma(\boldsymbol{z}_s^{\mathsf{T}} \boldsymbol{W}_r \boldsymbol{z}_o + b_r),$$

Adaptive Thresholding

将Thresholding视为一个类,以DocRED为例,原DocRED共96类,现在将Thresholding加入作为一类,共97类,为这97类均进行上述Classifier的计算,通过训练得到Adaptive Thresholding的值

Adaptive Thresholding Loss

$$\begin{split} \mathcal{L}_1 &= -\sum_{r \in \mathcal{P}_T} \log \left(\frac{\exp\left(\operatorname{logit}_r \right)}{\sum_{r' \in \mathcal{P}_T \cup \{\operatorname{TH}\}} \exp\left(\operatorname{logit}_{r'} \right)} \right), \\ \mathcal{L}_2 &= -\log \left(\frac{\exp\left(\operatorname{logit}_{\operatorname{TH}} \right)}{\sum_{r' \in \mathcal{N}_T \cup \{\operatorname{TH}\}} \exp\left(\operatorname{logit}_{r'} \right)} \right), \\ \mathcal{L} &= \mathcal{L}_1 + \mathcal{L}_2. \end{split}$$

Model	Dev		Test	
	$\operatorname{Ign} F_1$	F_1	$\operatorname{Ign} F_1$	F_1
Sequence-based Models				
CNN (Yao et al., 2019)	41.58	43.45	40.33	42.26
BiLSTM (Yao et al., 2019)	48.87	50.94	48.78	51.06
Graph-based Models				
BiLSTM-AGGCN (Guo et al., 2019)	46.29	52.47	48.89	51.45
BiLSTM-LSR (Nan et al., 2020)	48.82	55.17	52.15	54.18
BERT-LSR _{BASE} (Nan et al., 2020)	52.43	59.00	56.97	59.05
Transformer-based Models				
BERT _{BASE} (Wang et al., 2019b)	-	54.16	-	53.20
BERT-TS _{BASE} (Wang et al., 2019b)	-	54.42	-	53.92
HIN-BERT _{BASE} (Tang et al., 2020a)	54.29	56.31	53.70	55.60
CorefBERT _{BASE} (Ye et al., 2020)	55.32	57.51	54.54	56.96
CorefRoBERTa _{LARGE} (Ye et al., 2020)	57.84	59.93	57.68	59.91
Our Methods				
BERT _{BASE} (our implementation)	54.27 ± 0.28	56.39 ± 0.18	-	-
BERT-E _{BASE}	56.51 ± 0.16	58.52 ± 0.19	-	-
BERT-ATLOP _{BASE}	59.22 ± 0.15	61.09 ± 0.16	59.31	61.30
RoBERTa-ATLOP _{LARGE}	$\textbf{61.32} \pm \textbf{0.14}$	$\textbf{63.18} \pm \textbf{0.19}$	61.39	63.40