Mock Exam:

MIXING TIMES OF MARKOV CHAINS (Lent 2017).

Duration: two hours.

Attempt no more than **THREE** questions.

There are FOUR questions in total.

The questions carry equal weight.

Problem 1.

(a) Define the total variation distance $\|\mu - \nu\|_{\text{tv}}$ for probability distributions μ, ν on a finite set S. Show that

$$\|\mu - \nu\|_{\text{tv}} = (1/2) \sum_{x \in S} |\mu(x) - \nu(x)| = \sum_{x \in S} (\mu(x) - \nu(x))_{+}$$

where $a_+ = \max(a,0)$. Show that if P is the transition matrix of an irreudcible, aperiodic Markov chain on a state space S with invariant distribution π , and if $d(t) = \sup_x \|P^t(x,\cdot) - \pi(\cdot)\|_{\text{tv}}$ then $d(t) \leq \bar{d}(t) \leq 2d(t)$ where $\bar{d}(t) = \sup_x \|P^t(x,\cdot) - P^t(y,\cdot)\|_{\text{tv}}$.

(b) Define what is meant by a *coupling* of μ and ν , and show that if (X,Y) is such a coupling then

$$\|\mu - \nu\|_{\text{tv}} \leqslant \mathbb{P}(X \neq Y).$$

- (c) Using a coupling or otherwise, show that $\bar{d}(t+s) \leq \bar{d}(t)\bar{d}(s)$. Hence deduce that $\rho = \lim_{t\to\infty} d(t)^{1/t}$ exists. [Hint: you can use without proof the following lemma: if f is subadditive, i.e., if $f(t+s) \leq f(t) + f(s)$ for all $s, t \geq 0$ then $\lim_{t\to\infty} f(t)/t$ exists in $\mathbb{R} \cup \{-\infty\}$.]
- (d) Assuming also reversibility in the above setting, what is the value of ρ ? [You can use without proof any result from the course, provided it is clearly stated].

Problem 2.

(a) Let P be the transition matrix of an irreducible, aperiodic and reversible Markov chain on a finite state space S of size n with invariant distribution $(\pi(x))_{x \in S}$, with eigenvalues $\lambda_1 \geq \ldots \geq \lambda_n$. Define the *Dirichlet form* $\mathcal{E}(f, f)$ associated to P, and give without proof an equivalent expression. State and prove the *variational characterisation* of the spectral gap in terms of $\mathcal{E}(f, f)$. State without proof a similar characterisation for higher order eigenvalues.

- (b) Let P, \tilde{P} be two transitive Markov chains on S, with corresponding Dirichlet forms $\mathcal{E}, \tilde{\mathcal{E}}$ respectively. Suppose that if A > 0 is such that $\tilde{\mathcal{E}}(f, f) \leq A\mathcal{E}(f, f)$. State and prove a theorem concerning their respective mixing behaviours in L^2 , defining carefully the expressions you introduce. (You can use without proof a relation between eigenvalues and L^2 distance to stationarity, provided that this is stated clearly).
- (c) Define the interchange process on a connected graph $\mathcal{G} = (V, E)$. State a theorem giving a bound of mixing time of the interchange on \mathcal{G} in terms of geometric quantities associated with \mathcal{G} .
- (d) Suppose $\mathcal{G} = (V, E) = [0, n)^2 \cap \mathbb{Z}^2$ is the $n \times n$ square, and E is the set of nearest neighbour edges, so $(u, v) \in E$ if and only if $||u-v||_1 = 1$ for $u, v \in V$ (here $||u||_1 = |u_1| + |u_2|$ for $u = (u_1, u_2)$). Show that the interchange process (in continuous time) satisfies $t_{\text{mix}} = O(n^4 \log n)$. On the other hand, explain briefly, e.g. by considering the position of a single card, why $t_{\text{mix}} \ge cn^4$ for some c > 0.

Problem 3.

(a) Let $(X_t, t = 0, 1, ...)$ be an irreducible, aperiodic and reversible Markov chain on a finite state space S with invariant distribution $\pi(y), y \in S$. Define the notion of mixing time $t_{\text{mix}}(\alpha)$ at level $\alpha \in (0, 1)$.

Give the definition of the absolute spectral gap γ_* of the chain, as well as that of the relaxation time $t_{\rm rel}$, and give without proof the statement of a relation between relaxation time and mixing time at level $\varepsilon > 0$.

- (b) Define the *bottleneck* (or isoperimetric) ratio Φ_* of an irreducible, reversible Markov chain on a finite state space S. State Cheeger's inequality, and prove that if γ is the spectral gap, then $\gamma \leq 2\Phi_*$.
- (c) Let $S = \{1, ..., n\}$ be the *n*-cycle and consider the Markov chain on S which is the lazy simple random walk on S. Show that $\Phi_* = (1/n)(1 + o(1))$ as $n \to \infty$. Deduce that $\gamma \ge (1 + o(1))2/n^2$, and hence show that $t_{\text{mix}}(1/4) \le O(n^2 \log n)$.
- (d) Compute all the eigenvalues of this Markov chain, and compare the estimate above with the actual value of the spectral gap.

Problem 4.

(a) Let $(X_t, t = 0, 1, ...)$ be an irreducible, aperiodic and reversible Markov chain on a finite state space S with invariant distribution $\pi(y), y \in S$. Show that if $P^t(x, y)$ denote the t-step transition probabilities of the chain,

$$\frac{P^t(x,y)}{\pi(y)} = \sum_{j=1}^n \lambda_j^t f_j(x) f_j(y)$$

where λ_j are the eigenvalues and f_j are functions which you should specify. [You can assume without proof that there exists an orthonormal basis of eigenfunctions for the inner product associated with the ℓ^2 norm $||f||_2 = (\sum_x f(x)^2 \pi(x))^{1/2}$].

(b) Define the relaxation time $t_{\rm rel}$, and the ℓ^2 distance $d_2(t)$ to equilibrium. Show that $d(t) \leq (1/2)d_2(t)$ where d(t) is the total variation distance to equilibrium, and show that

$$t_{\text{mix}}(\varepsilon) \leqslant \log\left(\frac{1}{2\varepsilon\sqrt{\pi_{\text{min}}}}\right) t_{\text{rel}}$$

where $\pi_{\min} = \min\{\pi(x) : x \in S\}$, and $t_{\min}(\varepsilon)$ is the mixing time at level ε .

- (c) Show that $P^{2t}(x,x)$ is a decreasing sequence (as a function of $t=0,1,\ldots$). Show however with an example that $P^t(x,x)$ is not in general monotone, as a function of t.
 - (d) Show that $d_2(t)$ is a contraction: for all $t, s \ge 0$:

$$d_2(t+s) \leqslant d_2(s)e^{-t/t_{\text{rel}}}.$$

[You can use freely without proof the inequality $1-x \leqslant e^{-x}$, valid for all $x \in \mathbb{R}$].