Caminos rugosos y soluciones de ecuaciones diferenciales.

David Alejandro Alquichire Rincón

11 de marzo de 2025

Idea: Estudiar ecuaciones diferenciales estocásticas por medio de caminos rugosos.

¿Hasta dónde? Peter Fritz... soluciones a PDE estocásticas... ¿Métodos Numéricos?

Propuesta capítulos:

1. Introducción y Preliminares

- a) Conceptos de Probabilidad y Teoría de la medida (LB, D. Cohn, Protter y el otro libro).
- b) Conceptos en Convergencia de Procesos Estocásticos.
- c) Conceptos de Procesos Estocásticos (Notas de Freddy, apoyo de Capinski)
- d) Integración de Riemann Stieltjes
- e) Teoría de la medida y la integral de Lebesgue
- f) Análisis Funcional
- g) Ecuaciones Diferenciales Ordinarias (Existencia y Unicidad)
- h) Ecuaciones Diferenciales Parciales
- 2. Construcción del Movimiento Browniano
 - *a*) a
- 3. Construcción de la Integral de Itô
 - *a*) a
- 4. Ecuaciones Diferenciales Estocásticas por Itô -¿Oksendal
 - a) Integral de Itô, Cálculo Estocástico
 - b) Ecuaciones Diferenciales Estocásticas, Solución clásica de Itô.
 - c) Teoremas de Existencia y Unicidad.
- 5. Ecuaciones Diferenciales Estocásticas por caminos rugosos Pruebas de funciones α . Gráficas: Simulaciones de ecuaciones rugosos. α -Hölder. Caminos orden α , ¿Cómo luce?

- 6. EDP Estocásticas*
- 7. Métodos Numéricos y Aplicaciones*
- 8. Conclusiones
- 9. Bibliografía

η	Γ í t 11	lo

Caminos rugosos y soluciones de ecuaciones diferenciales.

Title

Rough paths and solutions to differential equations.

Resumen:

Abstract:

Palabras clave:

Keywords:

Índice general

1.	Preliminares			7
	1.1. Conceptos de Probabilidad		7	
		1.1.1.	Espacios de probabilidad	7
		1.1.2.	Variables aleatorias	9
		1.1.3.	Integración respecto a medida de probabilidad. Valor	
			esperado	11
2.	Movimiento Browniano			13
	2.1.	Conce	ptos de Procesos Estocásticos	13
	2.2.	Consti	rucción del Movimiento Browniano	13
3.	La I	Integra	al de Itô	15

Capítulo 1

Preliminares

En este capítulo, nos dedicaremos a repasar conceptos de teoría de la probabilidad, teoría de integración y ecuaciones diferenciales estocásticas. Para una mayor información, en cada sección

1.1. Conceptos de Probabilidad.

1.1.1. Espacios de probabilidad.

Sea Ω un conjunto abstracto. Denotamos por 2^{Ω} el conjunto de partes de $\Omega.$

Definimos a \mathcal{F} una σ -álgebra es subconjunto de 2^{Ω} que cumple las siguientes propiedades:

- \emptyset , $\Omega \in \mathcal{F}$
- Si $A \in \mathcal{A}$, luego $A^c \in \mathcal{A}$
- Dado $\{A_i\}_{i\in I}$ una sucesión de subconjuntos de Ω a lo más contable. Luego, si para todo $i\in I,\ A_i\in\mathcal{A}$, entonces $\cup_{i\in I}A_i\in\mathcal{A}$

El espacio (Ω, \mathcal{A}) se llama **espacio medible**.

Los elementos en \mathcal{A} se llamarán eventos.

Ejemplo:

- Para Ω un conjunto abstracto, $\mathcal{A} = \{\emptyset, \Omega\}$ es la σ -álgebra trivial.
- Sea $A \subset \Omega$, entonces $\sigma(A) = \{\emptyset, A, A^c, \Omega\}$ también es una σ -álgebra, llamada la **menor** σ -álgebra que contiene a A, que se genera mediante la intersección de todas las σ -álgebras que contienen a A.
- Para $\Omega = \mathbb{R}$, una σ -álgebra para este conjunto es la σ -álgebra de **Borel**, que se puede generar con intervalos de la forma $(-\infty, a]$ para todo $a \in \mathbb{Q}$. También, es la generada por todos los conjuntos abiertos (O cerrados, o semiabiertos...). Para más información consulte CITAR DONALD COHN Y PROTTER.

Una **medida de probabilidad** definida en una σ -álgebra \mathcal{A} de Ω , es una función $P: \mathcal{A} \to [0, 1]$ que cumple:

- $P(\Omega) = 1$
- Para toda colección contable $\{A_n\}_{n\geq 1}$ de elementos en \mathcal{A} que son disyuntos par a par, se tiene:

$$P\left(\bigcup_{n=1}^{\infty}\right) = \sum_{n=1}^{\infty} P\left(A_n\right)$$

Es decir, la función es contablemente aditiva. Se llama a P(A) como la probabilidad del evento A.

La tripla (Ω, \mathcal{A}, P) se conoce como **espacio de probabilidad**.

De forma general, la medida de probabilidad, es un caso específico de una función de medida, en este caso, tendremos un espacio de medida. Vea COHN.

Note que, podemos ver una propiedad más débil que el axioma (2) en la anterior definición. Para toda colección $\{A_k\}_{k=1}^n$ finita, de disyuntos par a par, si tenemos:

$$P(\bigcup_{k=1}^{n} A_k) = \sum_{k=1}^{n} P(A_k)$$

entonces la función P es aditiva (O finitamente aditiva).

Vamos a revisar algunas propiedades de las funciones de probabilidad, sin demostración. Para consultar los detalles, puede consultar PROTTER.

Teorema 1 Sea (Ω, \mathcal{A}) un espacio medible, y $P : \mathcal{A} \to [0, 1]$ una función finitamente aditiva y $P(\Omega) = 1$. Entonces, tenemos las siguientes equivalencias:

- La función es contablemente aditiva.
- $Si A_n \in \mathcal{A} \ y A_n \downarrow \emptyset$, luego $P(A_n) \downarrow 0$.
- $Si\ A_n \in \mathcal{A}\ y\ A_n \downarrow A,\ luego\ P(A_n) \downarrow P(A).$
- $Si A_n \in \mathcal{A} \ y A_n \uparrow \Omega, \ luego \ P(A_n) \uparrow 1.$
- $Si\ A_n \in \mathcal{A}\ y\ A_n \uparrow A$, luego $P(A_n) \uparrow P(A)$.

Más aún, si P es una medida de probabilidad, y dado $\{A_n\}$ sucesión de eventos que converge a A. Entonces $A \in \mathcal{A}$ y $\lim_{n\to\infty} P(A_n) = P(A)$

1.1.2. Variables aleatorias.

En esta sección, tommaos a (Ω, \mathcal{A}, P) un espacio abstracto, donde Ω no es necesariamente contable.

Sean (E, \mathcal{E}) y (F, \mathcal{F}) dos espacios medibles (No necesariamente tienen una medida de probabilidad). Una función $X : E \to F$ es una función medible si $X^{-1}(\Lambda) \in \mathcal{E}$ para todo $\Lambda \in \mathcal{F}$.

Si (E, \mathcal{E}, P) es un espacio de probabilidad, X posee el nombre de variable aleatoria.

Nuevamente, tenemos varias propiedades para las funciones medibles, que enunciaremos acá, sin la demostración respectiva. Para esto, consulte, PROTTER.

Corolario 1 Sea (E, \mathcal{E}) un espacio medible aleatorio, $y (\mathbb{R}, \mathcal{B})$. Sea $X, X_n : E \to \mathbb{R}$ funciones:

- X es medible si y sólo si $\{X \leq a\} = X^{-1}((-\infty, a]) \in \mathcal{E}$, para todo $a \in \mathbb{R}$.
- Si cada X_n es medible, luego sup X_n , inf X_n , lim sup X_n y lim inf X_n son medibles.
- Si cada X_n es medible, $y \{X_n\}$ converge puntualmente a X, luego X es medible.

Teorema 2 Sea X medible de (E, \mathcal{E}) en (F, \mathcal{F}) , y Y medible de (F, \mathcal{F}) en (G, \mathcal{G}) . Entonces, $Y \circ X$ es medible de (E, \mathcal{E}) en (G, \mathcal{G}) .

Teorema 3 Sean (E, \mathcal{U}) y (F, \mathcal{V}) espacios topológicos, y \mathcal{E} , \mathcal{F} sus σ -álgebras de Borel (generada por los abiertos), respectivamente. Entonces, cada función continua $X: E \to F$ es medible (O también llamada, función boreliana).

Recuerde que, la función indicadora, $f(x) = 1_A(x)$ se define como:

$$1_A(x) = \left\{ \begin{array}{ll} 0 & x \in A \\ 1 & x \notin A \end{array} \right\}$$

Teorema 4 Sea $(F, \mathcal{F}) = (\mathbb{R}, \mathcal{B})$ y (E, \mathcal{E}) un espacio medible.

- Función indicadora 1_A en E es medible si y sólo sí $A \in \mathcal{E}$
- Si X_1, \dots, X_n son functiones medibles de (E, \mathcal{E}) en $(\mathbb{R}, \mathcal{B})$, y si f es borel en \mathbb{R}^n , luego $f(X_1, \dots, X_n)$.
- Si X, Y son medibles, luego X + Y, XY, max(X, Y), min X, Y y X/Y con $Y \neq 0$ son medibles.

Recordemos, para X una variable aleatoria, será una función entre los espacios medibles (Ω, \mathcal{A}) y (E, \mathcal{E}) . Si dotamos al primer espacio de una probabilidad, P, de forma canónica podemos dotar al segundo espacio, de una medida de probabilidad, según X.

Si X es una variable aleatoria entre (Ω, \mathcal{A}, P) , con valores en (E, \mathcal{E}) , la **distribución** (O **medida de distribución**) de X, está definida por:

$$P^X(B)=P(X^{-1}(B))=P(\{\omega:X(\omega)\in B\})=P(X\in B)$$
para todo $B\in\mathcal{E}.$

Como la inversa se comporta bien bajo uniones e intersecciones, no es muy dificil probar que:

Teorema 5 La distribución de X es una medida de probabilidad en (E, \mathcal{E})

Si X es una variable aleatoria en \mathbb{R} , P^X es una probabilidad en los reales, caracterizada por la función:

$$F_X(x) = P^X((-\infty, x]) = P(X \le x)$$

por el hecho, que los elementos en los borelianos, \mathcal{B} , pueden ser generador por elementos de la forma $(-\infty, x]$. $F_X(x)$ se conoce como función de distribución cumulativa.

1.1.3. Integración respecto a medida de probabilidad. Valor esperado.

Dada una variable aleatoria, en un espacio de probabilidad (Ω, \mathcal{A}, P) , podríamos determinar un valor esperado, un promedio ponderado según la probabilidad, la imagen que se espera que tenga la variable aleatoria.

Para una variable aleatoria discreta, tenemos la definición:

Ahora, queremos hallar el valor esperado para variables aleatorias en general. Consideramos algunos casos especiales inicialmente:

Una variable aleatoria X es **simple** si su imagen es un conjunto finito, por ende, para una familia de conjuntos disyuntos medibles, $\{A_i\} \subset \mathcal{A}$, y constantes, $a_i \in \mathbb{R}$, para $1 \leq i \leq n$, veremos que la variable aleatoria tiene la forma:

$$X = \sum_{i=1}^{n} a_i 1_{A_i}$$

Para X variable aleatoria simple, podemos definir su **integral respecto** a P o valor esperado como:

$$\mathbb{E}(X) = \sum_{i=1}^{n} a_i P(A_i)$$

o también denotado por $\int XdP$.

Ahora, deseamos extender la definición para funciones más generales. Para esto, tendremos en cuenta el siguiente teormea:

Teorema 6 Para cada variable aleatoria positiva X, existe una sucesión de variables aleatorias simples $\{A_n\}_{n\geq 1}$ tal que X_n tiende a X de forma creciente, para $n\to\infty$

Demostración: Podemos tomar la sucesión:

$$X_n(\omega) = \begin{cases} k2^{-n} & \text{si } k2^{-n} \le X(\omega) < (k+1)2^{-n} \text{ y } 0 \le k \le n2^n - 1\\ n & \text{si } X(\omega) \ge n \end{cases}$$

AÑADIR UNA GRAFICA

_

Capítulo 2

Movimiento Browniano

En 1828, el botánico Sueco, *Robert Brown*, observó que los granos de polen en un líquido se movian de forma irregular.... más contexto histórico.

2.1. Conceptos de Procesos Estocásticos

2.2. Construcción del Movimiento Browniano

Primero, damos la definición de un movimiento Browniano, y luego, se hará la construcción. Esta, se puede hacer por dos maneras distintas:

- 1. Teoremas de existencia y continuidad de Kolmogorov.
- 2. Teorema de Donsker (Caso más general).

En el presente trabajo, haremos la construcción usando el Teorema de Donsker, y más tarde, se enunciarán los teoremas de Kolmogorov (Sin demostración).

Dado $\{W_t\}$ un proceso estocástico, en el espacio de probabilidad (Ω, \mathcal{F}, P) . El proceso $\{W_t\}$ es un **movimiento Browniano** en una dimensión, si se cumplen las siguientes condiciones:

- Para casi todo ω , los caminos $W_t(\omega)$ son continuos (En el sentido de la probabilidad).
- $\{W_t\}$ es un proceso Gaussiano, es decir, para $k \geq 1$, y todo $0 \leq t_1 \leq \cdots \leq t_k$, el vector aleatorio, $Z = (W_{t_1}, \cdots, W_{t_k}) \in \mathbb{R}^n$ tiene distribución multinormal (O Gaussiana).

Capítulo 3

La Integral de Itô

En este capítulo, comenzaremos la construcción de la integral de Itô. Para cumplir este objetivo, usaremos fuertemente los hechos vistos en el capítulo anterior del movimiento Browniano.

Ahora, ¿Por qué es necesario construir una nueva integral? Veamos el objetivo inicial, solucionar una ecuación diferencial que tiene cierto ruido:

$$\frac{dX}{dt} = b(t, X_t) + \sigma(t, X_t) \cdot W_t$$

Note que el ruido se puede representar como el proceso estocástico W_t . Bajo experimentación, se interponen las siguientes condiciones sobre el ruido:

- Dos variables del proceso W_{t_1} y W_{t_2} con $t_1 \neq t_2$ son independientes.
- $\{W_t\}$ es un proceso estacionario.
- $\mathbb{E}[W_t] = 0$ para todo t.

No hay algún proceso estocástico tradicional que cumpla las condiciones dadas. Por ende, lo podemos ver como un proceso estocástico generalizado, un **proceso de ruido blanco**, esto es, un proceso que se puede construir como medida de probabilidad en cierto espacio sútil de funcionales $C[0,\infty)$.

Por ende, se nos sugiere que el proceso $\{W_t\}$ será el movimiento Browniano. Discretizando la ecuación inicial...

$$\int_0^t f(s, w) dB_s(w)$$