参照机密级管理★启用前

陝西省 2025 年高考综合改革适应性演练

化学

注意事项:

- 1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡上。
- 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂 黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将 答案写在答题卡上。写在本试卷上无效。
- 3.考试结束后,将本试卷和答题卡一并交回。

可能用到的相对原子质量: H1 C12 N14 O16 Si28

- 一、选择题:本题共 14 小题,每小题 3 分,共 42 分。在每小题给出的四个选项中,只有一项是符合题目要求的。
- 1. 化学学科在创新中不断前进,下列说法错误的是
- A. 伏打研制了第一个化学电源,该装置实现了电能到化学能的转化
- B. 鲍林提出了甲烷的正四面体结构
- C. 侯德榜改进了索尔维制碱法, 侯氏制碱法经济环保
- D. 神舟十九号载人飞船使用了国产耐烧蚀树脂,该树脂为高分子材料
- 2. 下列化学用语表示正确的是
- A. 氯化氢的电子式: H⁺[:Cl:]⁻
- B. CO₂和SO₂的VSEPR模型均为:

C. 基态 Cr 原子价层电子的轨道表示式:

- D. 中子数为 20 的氯原子的核素符号: ³⁷Cl
- 3. 规范操作是实验安全的保障,下列做法错误的是
- A. 不能用手直接接触试剂,以免危害健康和污染试剂
- B. 使用浓硝酸等挥发性试剂时在通风橱中操作

- C. 金属钠着火, 迅速用湿抹布覆盖灭火
- D. 点燃可燃性气体前, 需要验纯
- 4. 下列物质在一定条件下的转化关系如图所示。E、G、Q、R 均为气体,其中 R 为红棕色。 下列说法正确的是

- A. E、G、Q、R、T 所含同种元素化合价依次升高
- B. E的水溶液能导电, 所以 E 是电解质
- C. Q和E可用排水法收集
- D. 铜与不同浓度的 T 溶液反应均可生成 Q
- 5. 一定温度下,恒容密闭容器中,物质 Z 发生反应 Z(g) X(g)+2Y(g) ΔH>0,一段时间后开始计时,测得各物质的浓度随时间变化如图所示。下列说法正确的是

- A. 曲线 I 代表物质 X, 曲线Ⅲ代表物质 Z
- B. 图中 t_1 时刻的正反应速率大于 t_2 时刻
- C. 若升高温度,正反应速率加快,逆反应速率减慢
- D. 0~40min,用物质Y表示的平均反应速率为0.3mmol·L⁻¹·min⁻¹
- 6. 物质结构决定性质。下列物质性质差异与结构因素没有关联的是

选项	性质差异	结构因素
A	极性: BF ₃ < PCl ₃	分子空间构型

В	酸性: 二氯乙酸<二氟乙酸	分子间氢键
С	熔点: NaCl > S _s	晶体类型
D	识别 K+的能力: 18-冠-6>12-冠-4	冠醚空腔直径

A. A

В. В

C. C

D. D

7. 已知在强碱溶液中 K_2MnO_4 可被 Cl_2 氧化为 $KMnO_4$ 。某实验小组使用 K_2MnO_4 和 MnO_2 的固体混合物,按照下图步骤依次操作,制备 $KMnO_4$ 固体。各步骤中装置和原理不能达到相应实验目的的是

A. A

B. B

C. C

D. D

8. 一种新型微孔材料由 X、Y、Z 三种短周期元素组成。X、Y 的质子数之和等于 Z 的质子数, X 与 Y 同周期, X 的第一电离能比同周期相邻两原子小,基态 Y 原子 s 能级上的电子总数与 p 能级上的电子总数相等。下列说法正确的是

A. 原子半径: Z>Y>X

B. X 的最高价氧化物对应的水化物是一种强

酸

C. Y 的氢化物既具有氧化性又具有还原性 D. Z 的氯化物属于离子化合物

9. 下列名组离子在水溶液中可以大量共存的是

A. $S_2O_3^{2-}$, H^+ , I^- , Na^+

B. CO₃²⁻, Cl⁻, ClO⁻, K⁺

C. NH₄, Br⁻, Cu²⁺, Ag⁺

D. $K^+ \ Fe^{3+} \ \left[Cu(NH_3)_4 \right]^{2+} \ SO_4^{2-}$

10. 某团队合成了一种铁掺杂二氧化钛的新型催化剂,用于转化 H_2S 为单质 S,提出的催化 历程示意图如下。 N_A 是阿伏加德罗常数的值。下列说法正确的是

- A. O₂ 使 Fe²⁺ 转化成 Fe³⁺, 恢复催化剂活性
- B. 过程①和④均发生了非极性键的断裂
- C. 过程②和③均发生了氧化还原反应
- D. 理论上, 每转化 $34gH_2S$, 转移的电子数目为 N_A
- 11. 科研人员在高温高压条件下合成了类金刚石结构的硼碳氮化合物,其晶胞结构如图所示,立方晶胞参数为apm。 N_{A} 是阿伏加德罗常数的值。下列说法错误的是

- A. 该化合物为共价晶体, 硬度大
- B. 晶体中与 B 原子距离最近且相等的 B 原子数为 4
- C. 晶胞中C-C键与C-N键的数目比为2:1

D. 晶体的密度=
$$\frac{98}{N_A \times (a \times 10^{-10})^3} g \cdot cm^{-3}$$

12. 化合物 M 是一种新型抗生素关键中间体的类似物,其合成路线如下(略去部分试剂和反应条件)。已知化合物 K 虚线圈内所有原子共平面。下列说法错误的是

- A. Q 的化学名称为 2-甲基-1-丙醇
- B. 在酸性条件下, M 可水解生成 CO2
- C. K 中氮原子的杂化方式为 sp²
- D. 形成 M 时, 氮原子与 L 中碳原子 a 成键
- 13. 为了从海水中提取锂,某团队设计了图示的电解池。保持电源正负极不变,每运行一段时间后,将电极1与4取下互换,电极2与3取下互换,实现锂的富集。下列说法正确的是

- A. 电路中电子的流向随着电极互换而改变
- B. 电极 2 上发生的反应为: $Ag-e^- = Ag^+$
- C. 理论上, 电极 1 与电极 4 的质量之和保持不变
- D. 理论上, 电路通过1mol 电子时, 有 0.5molLi* 富集在右侧电解液中
- 14. 常温下, $AgIO_3$ 和 $Pb(IO_3)_2$ 的沉淀溶解平衡曲线如图所示。纵坐标中 M 代表 Ag^+ 或 Pb^{2+} ,物质的溶解度以物质的量浓度表示。下列说法正确的是

A. a 点有 $AgIO_3$ 沉淀生成,无 $Pb(IO_3)_2$ 沉淀生成

B. 表示 $Pb(IO_3)_2$ 在纯水中溶解度的点在线段bc之间

C. 向 AgIO₃ 悬浊液中滴加 AgNO₃溶液、向 Pb(IO₃)₂ 悬浊液中滴加 Pb(NO₃)₂ 溶液,分别至
 c 点时, AgIO₃和 Pb(IO₃)₂ 的溶解度均为10^{-5.09}mol·L⁻¹

D.
$$c(IO_3^-) = 0.1 mol \cdot L^{-1}$$
时,AgIO₃、Pb $(IO_3)_2$ 饱和溶液中 $\frac{c(Pb^{2+})}{c(Ag^+)} = 10^{-4.09}$

二、非选择题:本题共4小题,共58分。

15. 纳米BaTiO₃可用于光电催化。某实验小组以钛酸四丁酯[Ti(OBu)₄,Bu代表正丁基:液体]为钛源,采用以下方法制备粒径小于20nm的BaTiO₃(反应装置如图,夹持等装置略)。

 $Ba(OH)_2 \cdot 8H_2O + Ti(OBu)_4 = BaTiO_3 + 4BuOH + 7H_2O$

- I. 在三颈烧瓶中加入8.8mmolBa(OH) $_2\cdot 8H_2$ O,20mL 二缩三乙二醇、少量表面活性剂,搅拌均匀后,采用合适方式加入8.0mmolTi(OBu) $_4$ 和20mL氨水。
- II. 160℃回流反应3h,冷却至室温,得到溶胶。
- Ⅲ. 向Ⅱ所得溶胶中加入100mL蒸馏水,得到纳米粒子聚集体,离心分离后,沉淀经洗涤、干燥,得1.4gBaTiO₃粉末。

回答下列问题:

- (1)仪器 a 名称为_____, 反应溶剂为_____, 加热方式为____。反应结束时,应先停止__ (填"加热"或"通冷凝水")。
- (2) Ti(OBu)₄水解较快时,难以形成小尺寸的纳米BaTiO₃。下列操作方式能降低Ti(OBu)₄水 解速率的有_____(填标号)。
- A. 依次缓慢滴加Ti(OBu)₄和氨水
- B. 依次倒入Ti(OBu)₄和氨水
- C. Ti(OBu)₄和氨水混合后缓慢滴加
- (3)检验步骤Ⅱ所得溶胶属于胶体的实验操作与现象为____。
- (4)离心分离可将沉淀紧密聚集在离心管底部(如图所示)。将离心后的沉淀和清液分开的方法 是____。

- (5)本实验的BaTiO3产率为____(保留 2 位有效数字)。
- (6)为了测定BaTiO₃的晶体结构,通常使用的仪器是____。
- 16. "三废"的科学治理是环境保护和资源循环利用的重要举措。某含砷烟尘主要成分为 As_2O_3 、 $Pb_5(AsO_4)_3$ Cl、CuS和 ZnS等。一种脱砷并回收 As_2O_3 、铜和锌的流程如下:

己知:

- ①As₂O₃ 微溶于冷水,易溶于热水;
- ②"氧化酸浸"中,金属硫化物转化成硫酸盐,难溶于热水的 Pbs(AsO4)3Cl 转化成 H3AsO4;
- ③萃取时,将萃取剂 HL 溶于磺化煤油中,所得溶液作为有机相,萃取和反萃取原理为 $2HL+M^{2+} = \frac{ \overline{x}_R}{ \overline{x}_{2RB}} = ML_2 + 2H^+$,式中 M^{2+} 为 Cu^{2+} 或 Zn^{2+} 。

回答下列问题:

- (1)"水浸"时,采用热水的目的是____。
- (2)"氧化酸浸"时,CuS 发生反应的离子方程式为_____, Pb₅(AsO₄)₃Cl 与硫酸反应的化学方程式为_____。

Cu²⁺配位,形成配合物 CuL₂。该配合物中 Cu²⁺的配位数为____, HL分子结构中设计正壬基的作用是____。"反萃取铜"后,"富铜液"为____相(填"水"或"有机")。

- (4)"沉砷"时,采用生石灰处理,滤渣主要成分的化学式为____。
- (5)"反萃取锌"时, 试剂 X 为____。
- 17. 1,3-丁二烯(C_4H_6 ,简称丁二烯)是生产橡胶的一种重要原料,其制备方法不断创新。
- I.1-丁烯 (C_4H_8) 催化脱氢法是工业生产丁二烯的方法之一。
- (1)25℃时,相关物质的燃烧热数据如下表:

物质	$C_4H_8(g)$	$C_4H_6(g)$	H ₂ (g)
燃烧热 ΔΗ / (kJ·mol ⁻¹)	a	-2542	-286

已知: $C_4H_8(g) = C_4H_6(g) + H_2(g)$ $\Delta H = +110kJ \cdot mol^{-1}$, 则 $a = _____$

(2)将一定量的 1-丁烯在密闭容器中进行上述反应,测得不同温度下 1-丁烯的平衡转化率与体系压强的关系如图所示。

①图中温度 T 由高到低的顺序为 , 判断依据为 。

②已知
$$C_4H_8(g) = C_4H_6(g) + H_2(g)$$
 的标准平衡常数 $K^\Theta = \frac{[p(C_4H_6)/p^\Theta][p(H_2)/p^\Theta]}{[p(C_4H_8)/p^\Theta]}$, 其中

 $p^{\Theta} = 0.1 \text{MPa}$,则 T₂ 温度下,该反应的 $k^{\Theta} =$ _____。

- Ⅱ.电化学催化还原乙炔法条件温和,安全性高。在室温下,某团队以KOH溶液为电解液, 电催化还原乙炔制备丁二烯。
- (3)反应开始时,溶解在电解液中的C₂H₂吸附在催化剂表面,该吸附过程的熵变ΔS______ 0(填">""<"或"="),生成丁二烯的电极反应式为____。
- (4)一定时间内, 丁二烯的选择性和通过电路的总电量随相对电势变化如下图所示。

已知: 丁二烯的选择性= $\frac{\pm 成丁二烯消耗的电量}{通过电路的总电量} \times 100\%$; 电量 Q=nF, n 表示电路中转移电子的物质的量,F=96500C·mol $^{-1}$ 。

- ①当相对电势为-1.0V时,生成丁二烯的物质的量为_____mol(列计算式)。
- ②当丁二烯选择性减小时,阴极产生的物质还可能有____(填标号)。

A. CO₂ B. H₂ C. O₂ D. C₃H₄

18. 化合物 J 具有抗肿瘤活性,可由如下路线合成(略去部分试剂和条件)。

回答下列问题:

(1)A 的结构简式是_____, B 的官能团名称是_____。

(2)下列说法错误的是____(填标号)。

A. E有顺反异构体

B. A可与 FeCl3 溶液发生显色反应

C. E→F 的反应中有乙醇生成

D. F→G 的反应类型为取代反应

- (3)J 的结构简式中标注的碳原子 a~d, 其中手性碳原子是____。
- (4)D 的同分异构体中,同时满足下列件的共有____种(不考虑立体异构):
- ①能发生银镜反应;②核磁共振氢谱显示 4 组峰,且峰面积比为 9:3:1:1。写出其中一种的结构简式____。

(5)某同学结合 J 的合成路线,设计了化合物 K()的一种合成路线。该路线中

L和M的结构简式分别为____和__。

已知: $R-CHO+CH_3CHO \xrightarrow{\text{催化剂}} R-CH=CHCHO+H_2O$

- 1. AB
- 【详解】A. 伏打研制了第一个化学电源, 该装置实现了化学能到电能的转化, A 错误;
- B. 范霍夫提出了甲烷的正四面体结构,而鲍林提出的杂化轨道理论很好地解释了甲烷的正四面体结构,B 错误;
- C. 侯德榜改进了索尔维制碱法,侯氏制碱法完美的弥补了索尔维制碱法的不足,不仅提高 了食盐利用率,减少了对环境的污染,还缩短了生产流程、降低了纯碱的成本,故侯氏制碱 更经济环保,C正确;
- D. 树脂属于合成有机高分子材料, D 正确; 答案选 AB。
- 2. D

【详解】

- A. 氯化氢是共价化合物, 其电子式为: H:Cl:, A 错误:
- B. 二氧化碳的价层电子对是 2, 没有孤电子对,则其 VSEPR 模型是直线型, B 错误;
- C. Cr 是 24 号元素,价电子排布式为 3d54s1,价电子的轨道表示式为:

D. 中子数为 20 的氯原子的质量数为 37, 可表示为: $^{37}_{17}$ Cl, **D** 正确;

故选 D。

- 3. C
- 【详解】A. 固体试剂一般用镊子或药匙取用,液体药品一般用滴管取用,不能用手直接接触试剂,以免危害健康和污染试剂,A正确;
- B. 易挥发有毒试剂的取用一般在通风橱中操作, B 正确;
- C. 金属钠着火不能用湿抹布覆盖灭火,因为钠遇水会发生剧烈反应,产生氢气并可能导致 爆炸,正确的做法是使用干燥的细沙覆盖扑灭,C错误;
- D. 可燃性气体在点燃或加热之前都要验纯,以免发生爆炸,D 正确;答案选 C。
- 4. A
- 【分析】由图可知, E、G、Q、R、T均为含氮化合物, 故 E 为 NH_3 、G 为 N_2 、Q 为 NO,

R 为NO₂, T 为HNO₃;

【详解】A. 由分析可知: E、G、Q、R、T 所含同种元素化合价依次升高,A 符合题意;

- B. E 为 NH,, NH, 是非电解质, B 不符合题意:
- C. E为NH₃, NH₃极易溶于水,不能排水集气,C不符合题意;
- D. 铜和浓硝酸反应的还原产物是二氧化氮,铜和稀硝酸反应的还原产物是一氧化氮,D不符合题意;

故选 A:

5. B

【分析】结合反应方程式以及图中物质的浓度变化,减少的为反应物,增加的为生成物,生成物的浓度增加量之比等于化学计量数之比,可知曲线III代表反应物 Z, 曲线 I 代表物质 Y, 曲线 II 代表物质 X, 据此分析解答。

【详解】A. 曲线Ⅰ代表物质 Y, 曲线Ⅲ代表反应物 Z, 故 A 错误;

- B. t₁时刻反应物的浓度大于t₂时刻,浓度越大反应速率越快,则t₁时刻的正反应速率大于t₂时刻,故 B 正确;
- C. 升高温度,正反应速率加快,逆反应速率也加快,故 C 错误;
- D. $0\sim40\,\mathrm{min}$,用物质 Z 表示的平均反应速率为 $v(Z)=\frac{(27-15)\mathrm{mmol}\cdot L^{-1}}{40\,\mathrm{min}}=0.3\mathrm{mmol}\cdot L^{-1}\cdot\mathrm{min}^{-1}$,根据速率之比等于化学计量数之比可知物质 Y 表示的平均反应速率为 $v(Y)=2v(Z)=0.6\mathrm{mmol}\cdot L^{-1}\cdot\mathrm{min}^{-1}$,故 D 错误;

故选: B。

6. B

- 【详解】A. BF,是平面三角形, PCl,是三角锥型,极性和分子空间构型有关联,故 A 不符合题意;
- B. 由于 F 的电负性比 Cl 大, 吸引电子的能力更强, 三氟乙酸羧基中的 O-H 键的极性更大, 更易电离出 H+, 酸性更强, 酸性和分子间氢键没有关联, 故 B 符合题意;
- C. NaCl 是离子晶体, S_* 是分子晶体,离子晶体一般来说比分子及个体熔点高,熔点和晶体类型有关联,故 C 不符合题意;
- D. 18-冠-6 空腔的直径与 K+的直径相当, 12-冠-4 空腔的直径小于 K+的直径, 所以识别 K+

的能力与冠醚空腔直径有关联, 故 D 不符合题意; 答案选 B。

7. D

- 【详解】A. K_2MnO_4 溶于 KOH 溶液中形成 K_2MnO_4 碱性溶液,而 MnO_2 不溶于水,可用过滤分离出溶液中的 MnO_2 ,A 选项正确;
- B. 实验室利用二氧化锰和浓盐酸加热条件下反应生成氯气,再利用饱和食盐水除去氯气中混有的 HCl 杂质, B 选项正确;
- C. 在强碱溶液中 K_2MnO_4 可被 Cl_2 氧化为 $KMnO_4$,因此将氯气通入到 K_2MnO_4 碱性溶液中可制备得到 $KMnO_4$,此外氯气有毒,用NaOH溶液进行尾气处理,C选项正确;
- D. KMnO₄ 受热易分解,应该用蒸发浓缩,冷却结晶的方式得到 KMnO₄ 固体, D 选项错误; 故选 D。

8. C

- 【分析】X、Y、Z 三种短周期元素,X 与 Y 同周期,Y 原子核外 s 能级上的电子总数与 p 能级上的电子总数相等,则 Y 可能为 1s²2s²2p⁴或 1s²2s²2p⁶3s²,为氧或镁,X、Y 的质子数 之和等于 Z 的质子数,则 Y 为氧,X 的第一电离能比同周期相邻两原子小,X 为硼,那么 Z 为铝;
- 【详解】A. 电子层数越多半径越大,电子层数相同时,核电荷数越大,半径越小;原子半径: Al>B>O, A错误:
- B. X 的最高价氧化物对应的水化物为硼酸,是一种弱酸,B 错误;
- C. Y 的氢化物中过氧化氢或水,其中氢化合价能降低、氧化合价能升高,则既具有氧化性 又具有还原性,C正确;
- D. Z 的氯化物为氯化铝,属于共价化合物,D 错误; 故选 C。

9. B

- 【详解】A. $S_2O_3^{2-}$ 、H⁺反应生成硫单质和二氧化硫,不能大量共存,A 错误;
- B. CO²⁻、Cl⁻、ClO⁻、K⁺互不反应,可以大量共存,B正确;
- C. Br 、Ag + 会生成溴化银沉淀,不能大量共存,C错误;

D. Fe^{3+} 在 $\left[Cu(NH_3)_4\right]^{2+}$ 大量存在的溶液中会生成氢氧化铁沉淀,不能大量共存,D 错误; 故选 B。

10. A

【详解】A. 根据图示③④两步历程,可知 O_2 使 Fe^{2+} 转化成 Fe^{3+} ,恢复催化剂活性,A正确;

- B. 过程①中没有发生非极性键的断裂,过程④中发生了O=O非极性键的断裂,B错误;
- C. 过程②中铁元素化合价发生变化,发生氧化还原反应,过程③中元素化合价没有变化,没有发生氧化还原反应,C错误;
- D. 根据图示,该催化历程的总反应为 $2H_2S+O_2=2S+2H_2O$,可知 $H_2S=2e^-$,理论上,每转化 $34gH_2S$ 即 $1molH_2S$,转移的电子数目为 $2N_A$,D错误;

故选 A。

11. C

【分析】由图可知,按均摊法,N 原子数目为 $8 \times \frac{1}{8} + 2 \times \frac{1}{2} = 2$,B 原子数目为 2,C 原子数目为 $4 \times \frac{1}{2} + 2 = 4$,则 N、B、 C 原子数目之比为 1:1:2,化学式为 BC₂N;

【详解】A. 该晶体具有类金刚石结构,金刚石是由碳原子通过共价键形成的共价晶体,具有硬度大、熔沸点高等性质,则该化合物为共价晶体,硬度大,A正确;

B. 如图所示:将晶胞平移,以 b 点的 B 为坐标原点:

,则B原子

距离最近且相等的 $1 \land B$ 原子 a 位于面心,其余两个面心为 C 原子,根据晶胞结构可知,若面心上全部都是 B, B 原子距离最近且相等的 B 原子数为 $3 \times 8 + \frac{1}{2} = 12$,但面心上的 B 只占了 $\frac{1}{3}$,因此 B 原子距离最近且相等的 B 原子数为 4, B 正确;

C. 如图所示:

以 m 点的 C 原子为研究对象,其形成 2 条 C-C键,

两条C-N键,则二者数目比为1:1,C不正确;

$$D. \quad \text{label notation} = \frac{\frac{2\times \left(11+12\times 2+14\right)}{N_{_{A}}}g}{\left(a\times 10^{^{-10}}\text{cm}\right)^{^{3}}} = \frac{98}{N_{_{A}}\times \left(a\times 10^{^{-10}}\right)^{^{3}}}g\cdot \text{cm}^{^{-3}}, \ \ D \ \text{i.e.} ;$$

答案选 C。

12. D

- 【详解】A. Q 为饱和一元醇,命名时,从靠近羟基碳原子的一端开始编号,即羟基碳原子的位次为"1",则其化学名称为 2-甲基-1-丙醇, A 正确;
- B. M 分子中,左侧环上存在酯基和酰胺基,在酸性条件下两种官能团都发生水解反应, M 可水解生成 H₂CO₃, H₂CO₃分解生成 CO₂和水, B 正确;
- C. 题中信息显示, 化合物 K 虚线圈内所有原子共平面, 则 N 原子的最外层孤电子对未参与杂化, N 原子的杂化方式为 sp², C 正确;
- D. 对照 L 和 M 的结构可以看出,形成 M 时, L 分子中 ¹⁸O 与 b 碳原子之间的共价键断裂,则氮原子与 L 中碳原子 b 成键, D 错误:

故选 D。

13. C

【分析】为从海水中提取锂,电极1的电极反应式为: FePO4+e⁻+Li⁺=LiFePO4,则电极1为 阴极,则电极2为阳极,电极3为阴极,电极4为阳极,在电极4上发生氧化反应: LiFePO4-e⁻=Li⁺+FePO4,实现了锂的提取。

【详解】A. 保持电源正负极不变,则电子流向不变,故A错误;

- B. 由分析可知, 电极 2 为阳极, 海水中有 Cl⁻, 则电极 2 的电极反应式为: Ag-e⁻+Cl⁻=AgCl, 故 B 错误;
- C. 由分析可知,通过相同电量,电极1上附着的Li*的量和电极4上失去的Li*的量相等, 所以理论上,电极1与电极4的质量之和保持不变,故C正确:
- D. 根据电子守恒,电路中各处的电量相等,所以理论上,电路通过1mol电子时,有1molLi⁺ 富集在右侧电解液中,故D错误;

故答案为: C。

14. C

【分析】由 $Ksp(AgIO_3)=c(Ag^+)c(IO_3^-)$ 和 $Ksp[Pb(IO_3)_2]=c(Pb^{2+})c^2(IO_3^-)$ 可知,本題图像斜率

绝对值大的线段为 $Ksp[Pb(IO_3)_2]$ 即 $Pb(IO_3)_2$ 的饱和溶液,线段 bc 代表的是 $Ksp[Pb(IO_3)_2]$ 即 $Pb(IO_3)_2$ 的饱和溶液,而另外一条线代表的是 $Ksp(AgIO_3)$ 即 $AgIO_3$ 的饱和溶液,且由 c 点坐标值可知: $Ksp(AgIO_3)=10^{-5.09}\times10^{-2.21}=10^{-7.30}$ 和

$$ksp[Pb(IO_3)_2]=10^{-5.09}\times10^{-5.09}\times10^{-2.21}=10^{-12.39}$$
.

【详解】A. 结合图像和分析,过 a 点作 x 轴垂线, a 点的 Qc 大于 ksp $\left[Pb\left(IO_3\right)_2\right]$, a 点是 $Pb\left(IO_3\right)_2$ 的过饱和溶液有沉淀析出, a 点的 Qc 小于 ksp $\left(AgIO_3\right)$, a 点是 $AgIO_3$ 的不饱和溶液,没有沉淀析出, A 不符合题意:

B. $Pb(IO_3)_2$ 在纯水中溶解度的点为 $2c(Pb^{2+}) \approx c(IO_3^-)$,即 $-lgc(Pb^{2+}) > -lgc(IO_3^-)$,在坐标轴体现应该是一象限角平分线的左上部,B 不符合题意:

C. 向 AgIO₃ 悬浊液中滴加 AgNO₃溶液、向 Pb(IO₃)₂ 悬浊液中滴加 Pb(NO₃)₂ 溶液,分别至 c 点时, AgIO₃ 的溶解度为10^{-5.09} mol*L⁻¹, Pb(IO₃)₂ 的溶解度为5×10^{-6.09} mol*L⁻¹, C 不符合題 意;

D. c(IO;)=0.1mol/L 时, AgIO3、Pb(IO3), 饱和溶液中

题意:

故选 D。

15. (1) 球形冷凝管 二缩三乙二醇 油浴 加热

(2)A

(3)用一束强光照射步骤 II 所得溶胶,垂直光的方向看到一条光亮的通路

(4)过滤

(5)75%

(6)X-射线衍射仪

【分析】在三颈烧瓶中加入8.8mmolBa(OH)₂·8H₂O, 20mL二缩三乙二醇作溶剂、少量表面活性剂,搅拌均匀后,采用合适方式加入8.0mmolTi(OBu)₄和20mL氨水,采用油浴加热到160℃回流反应3h,冷却至室温,得到溶胶。

- 【详解】(1) 仪器 a 为球形冷凝管,起到冷凝、回流,提高原料利用率;二缩三乙二醇作溶剂,温度高于100°C,常采用油浴加热,反应结束时,应先停止加热,继续通冷凝水让装置冷却,故答案为:球形冷凝管;二缩三乙二醇;油浴;加热;
- (2) Ti(OBu)₄与水反应发生水解,为了防止Ti(OBu)₄较快水解,应将氨水加入Ti(OBu)₄
 中,并缓慢滴加,故依次缓慢滴加Ti(OBu)₄和氨水,故答案为:A;
- (3)检验步骤Ⅱ所得溶胶属于胶体的实验操作:用一束强光照射步骤Ⅱ所得溶胶,垂直光的方向看到一条光亮的通路,故答案为:用一束强光照射步骤Ⅱ所得溶胶,垂直光的方向看到一条光亮的通路;
- (4)离心分离可将沉淀紧密聚集在离心管底部,可采用过滤的方法将离心后的沉淀和清液,故答案为:过滤;
- (6) 通常使用 X-射线衍射仪测定 BaTiO₃ 的晶体结构, 故答案为: X-射线衍射仪。
- 16. (1)将 As₂O₃ 溶解, 便于 As₂O₃ 回收
- (2) $CuS+4H_2O_2=SO_4^{2-}+Cu^{2+}+4H_2O$ $Pb_5(AsO_4)_3Cl+5H_2SO_4=3H_3AsO_4+5PbSO_4+HCl$
- (3) 4 使 HL 分子易溶于有机相 水

 $(4)Ca_3(AsO_4)_2$

 $(5)H_2SO_4$

【分析】含砷烟尘(As₂O₃、Pb₅(AsO₄)₃Cl、CuS、ZnS)用热水水浸,由于 As₂O₃ 易溶于热水,其它几种物质都不溶于水,过滤后得到 As₂O₃ 的热溶液,蒸发结晶后得到 As₂O₃;剩余固体加 H₂SO₄、H₂O₂ 氧化酸浸,CuS、ZnS 被氧化,CuS+4H₂O₂=SO₄²+Cu²⁺+4H₂O、ZnS+4H₂O₂=SO₄²+Zn²⁺+4H₂O,Pb₅(AsO₄)₃Cl 与 H₂SO₄ 反应生成 H₃AsO₄,

Pb₅(AsO₄)₃Cl+5H₂SO₄=3H₃AsO₄+5PbSO₄+HCl, 用铜萃取剂将 Cu²⁺萃取到有机相中, 再加酸溶液将 Cu²⁺反萃取到水相中, 得到富铜液, 再用锌萃取剂将 Cu²⁺萃取到有机相中, 再加酸溶液将 Zn²⁺反萃取到水相中, 得到富锌液, 经过蒸发浓缩、冷却结晶、过滤洗涤干燥等步骤得到 ZnSO₄·7H₂O。

- 【详解】(1) As₂O₃ 易溶于热水,用热水可以将 As₂O₃溶解,便于 As₂O₃回收;
- (2)根据分析, "氧化酸浸"时, CuS 发生反应的离子方程式为 CuS+4H2O2=SO4++Cu2++4H2O;
- (3) HL 中 N、酚羟基均能与 Cu²⁺形成配位键,每个 HL 形成 2 配位,故 CuL₂ 中 Cu²⁺的配位数为 4;正壬基为烷烃基团,极性较小,根据相似相溶原理,正壬基易溶于有机物,HL 作为萃取剂,与 Cu²⁺形成配位化合物后溶于有机相,从而实现萃取的目的;根据分析,反萃取后 Cu²⁺在水相中,因此富铜液为水相;
- (4) "沉砷"时, 采用生石灰处理, CaO、H2O与 H3AsO4反应生成 Ca3(AsO4)2 沉淀;
- (5) 根据 $2HL+M^{2*}$ $= \frac{\Psi R}{E^{2}} ML_{2}+2H^{+}$ 可知,反萃取需要加 H^{+} 使平衡逆向移动,最终得到 $ZnSO_{4}$ $7H_{2}O$,因此 X 为 $H_{2}SO_{4}$ 。

17. (1)-2718

- (2) $T_1 > T_2 > T_3$ 反应为吸热反应,相同条件下,升高温度,平衡正向移动,1 T烯的 平衡转化率升高 $\frac{9}{91}$
- (3) < $2C_2H_2+2e^{-}+2H_2O=CH_2=CHCH=CH_2+2OH^{-}$
- $(4) \qquad \frac{11}{9.65} \text{mol} \times 70\% \times \frac{1}{2} \qquad \text{BD}$

【详解】(1) 燃烧热是在 101 kPa 时, 1 mol 纯物质完全燃烧生成指定产物时所放出的热量;由表:

①
$$C_4H_6(g) + \frac{11}{2}O_2(g) = 4CO_2(g) + 3H_2O(l) \Delta H_1 = -2542kJ \cdot mol^{-1}$$

②
$$H_2(g) + \frac{1}{2}O_2(g) = H_2O(1) \Delta H_2 = -286kJ \cdot mol^{-1}$$

 $\textcircled{3} C_4 H_8(g) + 6O_7(g) = 4CO_7(g) + 4H_7O(1) \Delta H = a$

由盖斯定律,③-①-②得反应 $C_4H_8(g)=C_4H_6(g)+H_2(g)$ $\Delta H=a-\Delta H_1-\Delta H_2=+110kJ\cdot mol^{-1}$,则 a=-2718kJ/mol:

- (2)①反应为吸热反应,相同条件下,升高温度,平衡正向移动,1-丁烯的平衡转化率升高,则图中温度 T 由高到低的顺序为 $T_1 > T_2 > T_3$;
- ②由图, T₂ 温度下, 平衡时压强为 0.1MPa, 1-丁烯的平衡转化率为 30%, 假设 1-丁烯投料为 1mol,则:

$$C_4H_8(g)$$
 \subset $C_4H_6(g)+H_2(g)$ 起始(mol) 1 0 0
转化(mol) 0.3 0.3 0.3
平衡(mol) 0.7 0.3 0.3

总的物质的量为 1.3mol,则 C_4H_8 、 C_4H_6 、 H_2 分压分别为 $0.1MPa \times \frac{0.7}{1.3}$ 、 $0.1MPa \times \frac{0.3}{1.3}$ 、

$$0.1 \text{MPa} \times \frac{0.3}{1.3}$$
,该反应的 $k^{\Theta} = \frac{\frac{0.1 \text{MPa} \times \frac{0.3}{1.3}}{0.1 \text{MPa}} \times \frac{0.1 \text{MPa} \times \frac{0.3}{1.3}}{0.1 \text{MPa}}}{\frac{0.1 \text{MPa} \times \frac{0.7}{1.3}}{0.1 \text{MPa}}} = \frac{9}{91}$;

(3)溶解在电解液中的 C_2H_2 吸附在催化剂表面,该吸附过程为熵减的过程,则熵变 $\Delta S < 0$; 以KOH溶液为电解液,电催化还原乙炔制备丁二烯,则生成丁二烯的电极反应为乙炔在碱 性条件下得到电子发生还原反应生成丁二烯,反应为:

2C2H2+2e+2H2O=CH2=CHCH=CH2+2OH+;

(4) ①当相对电势为-1.0V时,由图,总电量为1.1×10°C,则电路中转移电子

$$\frac{1.1 \times 10^5 \text{C}}{96500 \text{C} \cdot \text{mol}^{-1}} = \frac{11}{9.65} \text{mol}$$
,丁二烯的选择性为 70%,结合反应

 $2C_2H_2+2e^-+2H_2O=CH_2=CHCH=CH_2+2OH^-$,则生成丁二烯的物质的量为 $\frac{11}{9.65}$ mol×70%× $\frac{1}{2}$;②阴极上物质得到电子发生还原反应,元素化合价降低,则当丁二烯选择性减小时,阴极会产生其它还原产物,产生的物质还可能有 B. H_2 、D. C_3H_4 ,生成二氧化碳和氧气需要发生氧化反应,故选 BD。

(2)D

(3)c

(4) 4 (CH₃)₃CC(CH₃)(OH)CHO

【分析】

分析合成路线,根据 B、C 的结构简式以及 A 的分子式,可知, $A\rightarrow C$ 的过程为 A 与 B 发

生取代反应,生成 C 与 HBr。A 的结构简式为:

生成 E和 HBr。E在酸性条件下发生水解,生成

中一个 C 原子上连有 2 个羟基时,结构不稳定,最终变成 F(

分子式和 G 的分子式,结合 H 的结构简式,可知 $F \rightarrow G$ 的过程为 $F 与 CH_3NO_2$ 发生加成反

浓硫酸的作用下发生酯化反应,生成 H。H与 H_2 在催化剂的作用下发生还原反应,H中的 硝基(-NO₂)被还原为氨基(-NH₂),生成 I。I 脱去一分子 CH_3OH ,发生分子内成环反应,生成 I。据此解答。

【详解】(1)

由分析可知, A 的结构简式为: HO ; 根据 B 的结构简式, 可知 B 中的官能团

为碳溴键 (或 Br 原子)。答案为:

- (2) A. E中碳碳双键上的每个 C 原子都连接了不同的原子和原子团,则 E 有两种结构:相同的氢原子位于双键同一侧的顺式结构和相同的氢原子位于双键两侧的反式结构, A 项正确;
- B. A 的分子中含有酚羟基,可与 FeCl₃ 溶液作用显紫色, B 项正确;
- C. 由分析可知, $E \rightarrow F$ 的过程中生成乙醇, C 项正确;
- D. 根据分析, $F \rightarrow G$ 的反应类型为碳碳双键的加成反应,D 项错误;答案选 D。
- (3) 手性碳原子是指与四个各不相同的原子或基团相连的碳原子,分析 J 的结构简式,可知 c 为手性碳原子。答案为: c;
- (4)D的分子式为C₇H₁₄O₂,其同分异构体满足条件①②,说明同分异构体中含有醛基(-CHO), 且存在四种不同环境的氢原子个数为 9、3、1、1,满足条件的同分异构体有:

(CH₃)₃CC(CH₃)(OH)CHO、HCOOCH(CH₃)C(CH₃)₃、(CH₃)₃CCH(CHO)OCH₃、 (CH₃)₃COCH(CH₃)CHO, 共 4 种。答案为: 4; (CH₃)₃CC(CH₃)(OH)CHO; (5)

【点睛】