Indian Institute of Technology Mandi Kamand, Himachal Pradesh - 175075

भारतीय प्रौद्योगिकी संस्थान मण्डी कमांद, हिमाचल प्रदेश - 175075

MA-221(Numerical Analysis)
Course Instructor: Prof. Rajendra K. Ray
TA: Kajal Mittal, Niladri Bose
Lab Assignment-4
Date: 18/02/2025

Instructions

- Solve using both **Fixed-Point Iteration** and **Secant Method**.
- Use appropriate stopping criteria for numerical methods.
- Find a root with an error tolerance of 10^{-12} .
- Compare the convergence rates of the Fixed-Point Iteration and Secant Method for each equation.
- Explain why certain equations may converge faster with one method compared to the other.

Problem 1: Root Finding Using Fixed-Point Iteration and Secant Method

- 1. $x = \frac{2+x^2}{4}$, with initial guesses $x_0 = 0.5$, $x_1 = 1.2$.
- 2. $x = \arcsin(x 0.5)$, with initial guesses $x_0 = 0.1$, $x_1 = 0.4$.
- 3. $tan(x) = x^2 3$, with initial guesses $x_0 = 1$, $x_1 = 2$.
- 4. $x = \sin(x) + 0.5$, with initial guesses $x_0 = -0.4$, $x_1 = 0.6$.
- 5. $\sinh(x) x^2 + 2 = 0$, with initial guesses $x_0 = -0.5$ and $x_1 = 0.8$
- 6. $x \ln(x+2) = 0$, with initial guesses $x_0 = 0.1, x_1 = 1$.
- 7. $\cos(x) x = 0$, with initial guesses $x_0 = 0.2$, $x_1 = 0.9$.
- 8. $\sqrt{x+1} x^2 = 0$, with initial guesses $x_0 = 0.1$, $x_1 = 0.9$.

Submission Guidelines

• Submit your Python or MATLAB or C++ code for all problems.