

Kubeflow Pipelines on Al Platform

Benoit Dherin

ML Engineer, Google Advanced Solutions Lab

Agenda

- System and Concept Overview
- Describing a Kubeflow Pipeline with KF DSL
- Pre-built Components
- Lightweight Python Components
- Custom Components
- Compile, Upload, and Run

Perception: ML products are mostly about ML

Reality: ML Requires lots of DevOps

Source: Sculley et al.: Hidden Technical Debt in Machine Learning Systems

The ML process

Machine learning is all about experimentation!

Kubeflow provides a standardized platform for building ML pipelines

- Leverage containers and Kubernetes so that in ML pipelines can be run on a cloud or on-premises with Anthos on GKE.
- Kubeflow is a cloud-native, multi-cloud solution for ML.
- Kubeflow provides a platform for composable, portable, and scalable ML pipelines.
- If you have a Kubernetes-conformant cluster, you can run Kubeflow.

Kubeflow pipelines enable:

ML workflow orchestration

Share, re-use, and compose

Rapid, reliable experimentation

What constitutes a Kubeflow pipeline?

Containerized implementations of ML tasks

- Example of ML tasks: Data import, training, serving, model evaluation
- Containers provide portability, repeatability, and encapsulation.
- A containerized task can invoke other services, such as Al Platform, Dataflow, or Dataproc.

Specification of the sequence of steps

Specified via Python SDK

Input parameters

 A "Job" is a pipeline invoked w/specific parameters

Visual depiction of pipeline topology

Rich visualization of metrics

View all configs, inputs, and outputs

Author pipelines with an intuitive Python SDK

Package and share pipelines as zip files

- Upload and execute pipelines via UI (in addition to API/SDK).
- Pipeline steps can be authored as reusable components.

Agenda

- System and Concept Overview
- Describing a Kubeflow Pipeline with KF DSL
- Pre-built Components
- Lightweight Python Components
- Custom Components
- Compile, Upload, and Run

Kubeflow offers a Domain Specific Language (DSL) in Python that allows you to use Python code to describe Kubeflow tasks as they organize themselves in a Directed Acyclic Graph (DAG).

We describe this DSL next...


```
import kfp
@kfp.dsl.pipeline(
    name='Covertype Classifier Training',
    description='Covertype training and deployment pipeline',
def covertype_train(project_id,
                    region,
                    source_table_name,
                    gcs_root,
                    dataset id,
                    evaluation_metric_name,
                    evaluation_metric_threshold,
                    model id,
                    version id,
                    replace_existing_version,
                    hypertune_settings=HYPERTUNE_SETTINGS,
                    dataset location='US'):
```

Pipeline Decorator

Pipeline Run Parameters

```
Run parameters
Specify parameters required by the pipeline
   project id
   region
   source_table_name
   gcs_root
   dataset id
   evaluation metric name
   evaluation metric threshold
   model id
   version_id
   replace existing version
  hypertune_settings
  { "hyperparameters": { "goal": "MAXIMIZE", "maxTrials": 6, "maxParallelTrials": 3, "hyp
  dataset location
  US
```

```
def covertype_train(project_id,
                    region,
                    source_table_name,
                    gcs_root,
                    dataset_id,
                    evaluation_metric_name,
evaluation_metric_threshold,
                    model id,
                    version_id,
                    replace_existing_version,
hypertune_settings=HYPERTUNE_SETTINGS,
                    dataset location='US'):
```

The Run Parameters are supplied at run time.

Define the task DAG within the pipeline function body

```
@kfp.dsl.pipeline(...)
def covertype_train(...):
    # Task DAG defined here

1. Create the "ops."
2. Compose them into a DAG.
(OPs = components)
```


Creation and composition of ops

```
1. Ops creation
train_model = mlengine_train_op(
        project_id=project_id,
        region=region,
                                                 2. Ops composition
        master_image_uri=TRAINER_IMAGE,
        job dir=job dir,
        args=train_args)
eval_model = evaluate_model_op(
        dataset_path=str(create_testing_split.outputs['output_gcs_path']),
        model_path=str(train_model.outputs['job_dir']),
        metric_name=evaluation_metric_name)
```

Some ops can be triggered conditionally to other ops output

```
# Deploy the model if the primary metric is higher than a given threshold
with kfp.dsl.Condition(eval_model.outputs['metric_value'] >
evaluation_metric_threshold):
    deploy_model = mlengine_deploy_op(
        model_uri=train_model.outputs['job_dir'],
        project_id=project_id,
        model_id=model_id,
        version_id=version_id,
        runtime_version=RUNTIME_VERSION,
        python_version=PYTHON_VERSION,
        replace_existing_version=replace_existing_version)
```


3 main types of Kubeflow components we will look at

- O1 Pre-built components
 - Just load the component from its description and compose.
- O2 Lightweight Python components
 - Implement the component code.
- O3 Custom components
 - Implement the component code.
 - Package it into a Docker container.
 - Write the component description.

Agenda

- System and Concept Overview
- Describing a Kubeflow Pipeline with KF DSL
- Pre-built Components
- Lightweight Python Components
- Custom Components
- Compile, Upload, and Run

Github repo for pre-built Kubeflow components

https://github.com/kubeflow/pipelines/blob/master/components

Component description

component.yaml

```
implementation:
110
111
       container:
                                                                                                  Container image URI
         image: gcr.io/ml-pipeline/ml-pipeline-gcp:ad9bd5648dd0453005225779f25d8cebebc7ca00
112
113
           --ui_metadata_path, {outputPath: MLPipeline UI metadata},
114
           kfp_component.google.ml_engine, train,
115
           --project_id, {inputValue: project_id},
116
117
           --python_module, {inputValue: python_module},
           --package_uris, {inputValue: package_uris},
118
           -- region, {inputValue: region},
119
120
           --args, {inputValue: args},
           --job_dir, {inputValue: job_dir},
121
                                                                                                  Run parameters
122
           --python_version, {inputValue: python_version},
           --runtime_version, {inputValue: runtime_version},
123
124
           --master_image_uri, {inputValue: master_image_uri},
           --worker_image_uri, {inputValue: worker_image_uri},
125
126
           --training_input, {inputValue: training_input},
           --job_id_prefix, {inputValue: job_id_prefix},
127
           --job_id, {inputValue: job_id},
128
           --wait_interval, {inputValue: wait_interval},
129
130
131
         env:
132
           KFP_POD_NAME: "{{pod.name}}"
133
         fileOutputs:
```

Loading a pre-built component

```
import kfp

URI = 'https://raw.githubusercontent.com/kubeflow/pipelines/0.2.5/components/gcp/'

component_store = kfp.components.ComponentStore(
    local_search_paths=None, url_search_prefixes=[URI])

bigquery_query_op = component_store.load_component('bigquery/query')
mlengine_train_op = component_store.load_component('ml_engine/train')
mlengine_deploy_op = component_store.load_component('ml_engine/deploy')
```

Using pre-built bigquery/query

```
create_training_split = bigquery_query_op(
    query=query,
    project_id=project_id,
    dataset_id=dataset_id,
    table_id='',
    output_gcs_path=training_file_path,
    dataset_location=dataset_location)
```

Runtime arguments:

Argument	Description	Optional	Data type	Accepted values	Default
query	The query used by BigQuery to fetch the results.	No	String		
project_id	The project ID of the Google Cloud Platform (GCP) project to use to execute the query.	No	GCPProjectID		
dataset_id	The ID of the persistent BigQuery dataset to store the results of the query. If the dataset does not exist, the operation will create a new one.	Yes	String		None

Output:

Name	Description	Туре
output_gcs_path	The path to the Cloud Storage bucket containing the query output in CSV format.	GCSPath

https://github.com/kubeflow/pipelines/tree/master/components/gcp/bigquery/query

Using pre-built ml_engine/train

```
train_model = mlengine_train_op(
    project_id=project_id,
    region=region,
    master_image_uri=TRAINER_IMAGE,
    job_dir=job_dir,
    args=train_args)
```

https://github.com/kubeflow/pipelines/tree/master/components/gcp/ml_engine/train

Runtime arguments:

Argument	Description	Optional	Data type	Accepted values	Default
project_id	The Google Cloud Platform (GCP) project ID of the job.	No	GCPProjectID	-	-
python_module	The name of the Python module to run after installing the training program.	Yes	String	_	None
package_uris	The Cloud Storage location of the packages that contain the training program and any additional dependencies. The maximum number of package URIs is 100.	Yes	List	-	None

Output:

Name	Description	Туре
job_id	The ID of the created job.	String
job_dir	The Cloud Storage path that contains the output files with the trained model.	GCSPath

Using pre-built ml_engine/deploy

```
deploy_model = mlengine_deploy_op(
model_uri=train_model.outputs['job_dir'],
    project_id=project_id,
    model_id=model_id,
    version_id=version_id,
    runtime_version=RUNTIME_VERSION,
    python_version=PYTHON_VERSION,

replace_existing_version=replace_existing_version)
```

https://github.com/kubeflow/pipelines/tree/master/components/gcp/ml_engine/deploy

Runtime arguments:

Argument	Description	Optional	Data type	Accepted values	Default
model_uri	The URI of a Cloud Storage directory that contains a trained model file. Or An Estimator export base directory that contains a list of subdirectories named by timestamp. The directory with the latest timestamp is used to load the trained model file.	No	GCSPath		
project_id	The ID of the Google Cloud Platform (GCP) project of the serving model.	No	GCPProjectID		
model_id	The name of the trained model.	Yes	String		None
version_id	The name of the version of the model. If it is not provided, the operation uses a random name.	Yes	String		None

Output:

Name	Description	Туре
model_uri	The Cloud Storage URI of the trained model.	GCSPath
model_name	The name of the deployed model.	String
version_name	The name of the deployed version.	String

Composing pre-built components: Hyper tuning

```
tune_args = [
    '--training_dataset path',
create_training_split.outputs['output_gcs_path'],
    '--validation dataset path',
create_validation_split.outputs['output_gcs_path'],
    '--hptune', 'True'
hypertune = mlengine_train_op(
    project id=project id,
    region=region,
    master_image_uri=TRAINER_IMAGE,
    job dir=job dir,
    args=tune_args,
    training input=HYPERTUNE SETTINGS)
```

Composing pre-built components: Hypertuning

```
HYPERTUNE_SETTINGS =
    "hyperparameters": {
        "goal": "MAXIMIZE",
        "maxTrials": 6,
        "maxParallelTrials": 3,
        "hyperparameterMetricTag": "accuracy",
        "enableTrialEarlyStopping": True,
        "params": [
                "parameterName": "max_iter",
                "type": "DISCRETE",
                "discreteValues": [500, 1000]
         etc.
11 11 11
```


Composing pre-built components: Training best run

```
train_args = [
    '--training_dataset_path', create_training_split.outputs['output_gcs_path'],
    '--validation_dataset_path', create_validation_split.outputs['output_gcs_path'],
    '--alpha', get_best_trial.outputs['alpha'],
    '--max_iter', get_best_trial.outputs['max_iter'],
    '--hptune', 'False'
]

train_model = mlengine_train_op(
    project_id=project_id,
    region=region,
    master_image_uri=TRAINER_IMAGE,
    job_dir=job_dir,
    args=train_args,
}
Components composed through
their input/output
```


Agenda

- System and Concept Overview
- Describing a Kubeflow Pipeline with KF DSL
- Pre-built Components
- Lightweight Python Components
- Custom Components
- Compile, Upload, and Run

Wrap Python functions into KF components

helper_components.py

```
def retrieve_best_run(project_id, job_id):
    """Retrieves the parameters of the best Hypertune run."""
   # [...]
    return (metric value, alpha, max iter)
def evaluate_model(dataset_path, model_path, metric_name):
    """Evaluates a trained sklearn model."""
   # [...]
    return (metric_name, metric_value, json.dumps(metrics))
```

func_to_container_op

```
from helper_components import evaluate_model
from helper_components import retrieve_best_run
from kfp.components import func_to_container_op

retrieve_best_run_op = func_to_container_op(
    retrieve_best_run, base_image=BASE_IMAGE)

evaluate_model_op = func_to_container_op(
    evaluate_model, base_image=BASE_IMAGE)
```


Use and compose the lightweight components as usual

```
get_best_trial = retrieve_best_run_op(
    project_id, hypertune.outputs['job_id'])

eval_model = evaluate_model_op(
    dataset_path=str(create_testing_split.outputs['output_gcs_path']),
    model_path=str(train_model.outputs['job_dir']),
    metric_name=evaluation_metric_name)
```


Agenda

- System and Concept Overview
- Describing a Kubeflow Pipeline with KF DSL
- Pre-built Components
- Lightweight Python Components
- Custom Components
- Compile, Upload, and Run

Custom components

Steps

- 1. Write your own code (in any language).
- 2. Write a Dockerfile to package it into a Docker container.
- 3. Build and push your Docker container image to gcr/io.
- 4. Describe your component in a yaml description file.
- 5. Use the description file to load the component into the pipeline.

Step 1: Write your custom code (example)

main.py

```
from google.cloud import bigquery
from google.cloud.bigquery.job import ExtractJobConfig
if name == " main ":
    bq = bigquery.Client()
    dataset_ref = bigquery.Dataset(bq.dataset("taxifare"))
    bq.create dataset(dataset ref)
    bq.query(TRAIN_SQL).result()
    bq.query(VALID SQL).result()
    export_table_to_gcs(dataset_ref, TRAIN_TABLE, train_export_path)
```

Step 2: Package it into a Docker container

Dockerfile

```
FROM google/cloud-sdk:latest
RUN apt-get update && \
    apt-get install --yes python3-pip
COPY . /code
WORKDIR /code
RUN pip3 install google-cloud-bigquery
ENTRYPOINT ["python3", "./main.py"]
```

Step 3: Write the component description

bq2gcs.yaml

```
name: bq2gcs
description:
    This component creates the training and
    validation datasets as BiqQuery tables and exports
    them into Cloud Storage at gs://<BUCKET>/taxifare/data.
inputs:
    - {name: Input Bucket , type: String, description: 'GCS directory path.'}
implementation:
    container:
        image: gcr.io/<YOUR PROJECT>/taxifare-bq2gcs
        args: ["--bucket", {inputValue: Input Bucket}]
```

Step 4: Load the component into the pipeline

```
@dsl.pipeline(
    name='Taxifare',
    description='Train an Ml model to predict the taxi fare in NY')
def pipeline(gcs_bucket_name='<bucket where data and model will be exported>'):
    bq2gcs_op = comp.load_component_from_file(BQ2GCS_YAML)
    bq2gcs = bq2gcs_op(
        input_bucket=gcs_bucket_name,
    )

[...]
```

Run the pipeline with custom components!

```
import kfp
client = kfp.Client(host=HOST)
client.list_experiments()
exp = client.create_experiment(name='taxifare')
kfp.compiler.Compiler().compile(pipeline, PIPELINE_TAR)
run = client.run_pipeline(
    experiment_id=exp.id,
    job_name='taxifare',
    pipeline_package_path='taxifare.tar.gz',
    params={
        'gcs_bucket_name': BUCKET,
    },
```

Agenda

- System and Concept Overview
- Describing a Kubeflow Pipeline with KF DSL
- Pre-built Components
- Lightweight Python Components
- Custom Components
- Compile, Upload, and Run

Step 1: Build and push the trainer container

trainer image/Dockerfile

Required by ml_engine/train

```
FROM gcr.io/deeplearning-platform-release/base-cpu
RUN pip install -U fire cloudml-hypertune scikit-learn==0.20.4 pandas==0.24.2

WORKDIR /app

COPY train.py .

ENTRYPOINT ["python", "train.py"]
```

```
TRAINER_IMAGE='gcr.io/PROJECT_ID/TRAINER_IMAGE_NAME:TAG'
gcloud builds submit --timeout 15m --tag $TRAINER_IMAGE trainer_image
```

Step 2: Build and push the base container

base_image/Dockerfile

Required by the Python lightweight ops

```
FROM gcr.io/deeplearning-platform-release/base-cpu
```

RUN pip install -U fire scikit-learn==0.20.4 pandas==0.24.2 kfp==0.2.5

```
BASE_IMAGE='gcr.io/PROJECT_ID/BASE_IMAGE_NAME:TAG'
gcloud builds submit --timeout 15m --tag $BASE_IMAGE base_image
```

Step 3: Compile the Kubeflow pipeline

dsl-compile --py pipeline/covertype_training_pipeline.py --outputcovertype_training_pipeline.yaml

```
[16]: !head covertype training pipeline.yaml
      "apiVersion": |-
       argoproj.io/v1alpha1
      "kind": |-
       Workflow
      "metadata":
        "annotations":
         "pipelines.kubeflow.org/pipeline_spec": |-
           {"description": "The pipeline training and deploying the Covertype classifierpipeline yaml", "input
      s": [{"name": "project_id"}, {"name": "region"}, {"name": "source_table_name"}, {"name": "gcs_root"}, {"na
      me": "dataset_id"}, {"name": "evaluation_metric_name"}, {"name": "evaluation_metric_threshold"}, {"name":
      "model_id"}, {"name": "version_id"}, {"name": "replace_existing_version"}, {"default": "\n{\n
      rameters\": {\n
                            \"goal\": \"MAXIMIZE\",\n
                                                          \"maxTrials\": 6,\n
                                                                                       \"maxParallelTrials\":
                 \"hyperparameterMetricTag\": \"accuracy\",\n
                                                                   \"enableTrialEarlyStopping\": True,\n
      3,\n
      \"params\": [\n
                               {\n
                                                  \"parameterName\": \"max_iter\",\n
                                                                                                   \"type\":
                                    \"discreteValues\": [500, 1000]\n
      \"DISCRETE\",\n
                                                                               },\n
                                                                                               {\n
      \"parameterName\": \"alpha\",\n
                                                 \"type\": \"DOUBLE\",\n
                                                                                         \"minValue\": 0.000
                         \"maxValue\": 0.001,\n
                                                             \"scaleType\": \"UNIT_LINEAR_SCALE\"\n
      1,\n
                     }\n}\n", "name": "hypertune_settings", "optional": true}, {"default": "US", "name": "dat
      aset_location", "optional": true}], "name": "Covertype Classifier Training"}
        "generateName": |-
         covertype-classifier-training-
```

Step 4: Upload the pipeline to the KF cluster

```
kfp --endpoint $ENDPOINT pipeline upload -p $PIPELINE_NAME \
covertype_training_pipeline.yaml
```

kfp --endpoint \$ENDPOINT pipeline list

Step 5: Run the pipeline

```
kfp --endpoint $ENDPOINT run submit \
    -e $EXPERIMENT_NAME \
    -r $RUN ID \
    -p $PIPELINE ID \
    project id=$PROJECT ID \
    gcs_root=$GCS_STAGING_PATH \
    region=$REGION \
    source_table_name=$SOURCE_TABLE \
    dataset_id=$DATASET_ID \
    evaluation_metric_name=$EVALUATION_METRIC \
    evaluation_metric_threshold=$EVALUATION_METRIC_THRESHOLD \
   model id=$MODEL ID \
   version id=$VERSION ID \
    replace_existing_version=$REPLACE_EXISTING_VERSION
```

Run parameters

Lab

Kubeflow Pipelines on CAIP

In this lab, you will learn how to use AI Platform Pipelines to build a Kubeflow pipeline to train, tune, and serve a model automatically.

https://github.com/GoogleCloudPlatform/mlops-on-gcp/blob/master/workshops/kfp-caip-sklearn/lab-02-kfp-pipeline/exercises/lab-02.ipynb

cloud.google.com