Leveraging Intra and Inter Modality Relationship for Multimodal Fake News Detection

Shivangi Singhal IIIT Delhi India

shivangis@iiitd.ac.in

Tanisha Pandey IIIT Delhi India tanisha17116@iiitd.ac.in Saksham Mrig
IIIT Delhi
India
saksham19385@iiitd.ac.in

Rajiv Ratn Shah IIIT Delhi India rajivratn@iiitd.ac.in Ponnurangam Kumaraguru IIIT Hyderabad India pk.guru@iiit.ac.in

WWW'22 220912 Chia-Chun Ho

Outline of LIIRM

Introduction

Problem Formulation

Methodology

Experiments

Conclusion

Comments

News Example

- A husband divided his assets in half while settling the divorce case with her ex-wife.
- At a first read, the text might look believable.
- Now, when we read the same piece of information but with an image, shown in Figure 1, we might question the credibility of news.

Figure 1: An example of the tweet from the Twitter Dataset [4]. The corresponding text reads, 'Husband Gave His Unfaithful Ex-Wife Half Of Everything He Owned – Literally'. Our proposed intra-modality feature extractor curates the fine-grained salient representations for image and text, represented in the *blue* and *red* color, respectively.

Existing Approaches

- A modality is strong when it can assign a high probability to the correct class.
- A higher probability implies a more informative signal and stronger confidence.
- Existing methods for multimodal FND do not work on the principles of weak and strong modality.
 - Instead, methods capture high-level information from different modalities and jointly model them to determine the authenticity of news.
 - The feature extraction also occurs globally, ignoring the salient pixels containing meaningful information.

News Example

- For instance, Figure 1 highlights essential segments of the image and text containing details.
- However, current method of extracting visual features includes background information that might be unwanted.
- Similarly, there is a need to extract contextual dependencies for the textual features.

Figure 1: An example of the tweet from the Twitter Dataset [4]. The corresponding text reads, 'Husband Gave His Unfaithful Ex-Wife Half Of Everything He Owned – Literally'. Our proposed intra-modality feature extractor curates the fine-grained salient representations for image and text, represented in the *blue* and *red* color, respectively.

Importance of Modalities

- Hypothesize that not all modalities play an equal role in the decision-making process on any particular sample.
 - Aim to design an architecture that utilizes a multiplicative multimodal method to capture inter-modality relationship.
 - The method suppresses the cost of a weaker modality by introducing a down-weight factor in the cross-entropy loss function.
 - The down-weight factor associated with each modality highlights the average prediction power of the remaining modalities.

Intra-Relationship

- Capture the intra-modality relationship.
 - The idea is to generate fragments of a modality and then learn fine-grained salient representations from the fragments.
 - For image modality, perform bottom-up attention to extract the image patches.
 - The complex relationship between the patches is then encoded via self-attention mechanism.
 - The final visual representation is obtained by performing an average pooling operation over the fragment representations, resembling bag-of-visual-words model.

Intra-Relationship

- Capture the intra-modality relationship.
 - The idea is to generate fragments of a modality and then learn fine-grained salient representations from the fragments.
 - For text modality, use a wordpiece tokenizer to generate text fragments, then using BERT to extract contextual representations.
 - The obtained embeddings are further passed through 1D-CNN to extract the phrase-level information.
 - The resultant text representation is obtained by passing intermediate learned representations
 via a fully connected layer.

Contributions

- Capturing inter-modality relationship
 - Present a novel architecture that uses a multiplicative multimodal method to capture the inter-modality relationship between modalities.
 - Using the multiplicative multimodal method, aim to leverage information from a more reliable modality than a less reliable one on a per-sample basis.

- Capturing intra-modality relationship
 - The proposed method captures intramodality relationship by extracting the fine-grained salient representations for image and text.
 - The resultant feature vectors capture rich contextual dependencies present within its components.

Problem Formulation

Notations

- A set of n news articles, $S = \{S_i^T, S_i^I, y\}_{i=1}^n$
 - S_i^T : text content, S_i^I : corresponding image, y: label (fake: y = 0, true: y = 1)
 - Every content piece comprises of k sentences: $\{S_i^{T_a}\}_{a=1}^k$
 - Each sentence $S_i^{T_a}$ is further tokenized into $\{w_{i_1}, w_{i_2}, ..., w_{i_k}\}$
 - Every image is segregated into a finite set of $\{m_i^1, m_i^2, ..., m_i^{36}\}$ fragments via bottom up attention module.

Problem Formulation

Problem

- Give a news sample $S = \{S_i^T, S_i^I, Y\}$.
- The goal is to design a novel architecture that capture
 - The intra-modality relationship via granular fragment representation &
 - Extracts the inter-modality relationship by inducing knowledge in classification submodule that tell which modality contributed towards fakeness.
 - Such knowledge will also help readers understand the modality that contributed to the forgery.

Proposed model

Self-Attention

Text-Embeddings

Image-Embeddings

Employ bottom-up attention model pre-trained on Visual Genome to extract a fixed-sized set of l patches.

The obtained image embeddings are condensed into a dense representations by performing average pooling followed by L2 normalization to procure the resultant image feature vector.

Multiplicative Multimodal Method

- This work aims to capture interaction among different modalities to better perform the task at hand.
- There are some practical constraints in integrating synergies across modalities using existing additive approaches.
 - Additive methods assume that every modality is potentially helpful and is jointly combined to decide.
 - Neural network models built on top of aggregated features cannot determine the quality of each modality and its contribution toward fake detection tasks on a persample basis.

Multiplicative Multimodal Method

- Given multiple input modalities, an ideal algorithm should be robust to noise from weak modalities and harvest relevant details from stronger modalities on a per sample basis.
- In this work, perform the multiplicative multimodal method that addresses the challenges mentioned above.
- Specifically, technique explicitly models that not all modalities contribute equally to any particular sample.

Multiplicative Multimodal Method

- Let every modality present in a news sample make its own independent decision
- $P_T = [p^1, p^0]$, $P_I = [p^1, p^0]$, where P_T , P_I denotes the text and image predictions.
- Typical, additive combination would have resulted in

$$l_{cross_entropy}^{y} = -\sum_{i=1}^{M} \log \left(p_{i}^{y}\right)$$

• where l^y is a class loss as it is part of the loss function associated with a particular class.

Multiplicative Multimodal Method

To mitigate the challenges, utilized a down-weight scaling factor,

$$q_i = \left[\prod_{j \neq i} \left(1 - p_j\right)\right]^{\beta/(m-1)}$$

• where β is a hyper-parameter used to control the strength of down-weighting.

Down-weight factor

- The down-weight factor is responsible for suppressing the modality predictive power that incorrectly classifies the sample.
- For instance, if p_i show confident predictions for the correct class, down-weight factor will be a small value, suppressing cost for the other modalities $(j \neq i)$.
- Intuitively, when current modality gives a favourable prediction, other modalities need not be equally helpful.
- Larger the value of down-weight factor, stronger the suppressing effect on that modality and vice versa.

Loss function

 Leverage benefits of extracting complementary information from the given piece of information using multiplicative method that have resulted in the modification of loss function as

$$l_{multiplicative}^{y} = -\sum_{i=1}^{M} q_{i} \cdot \log \left(p_{i}^{y}\right)$$

Datasets

- MediaEval
 - Train 7032: 5008 fake: real
 - Test 2564: 1217 fake: real
- Weibo
 - Train: Test 8:2
 - 4749 fake: 4779 real

Baselines

- Single-modal
 - Text-CNN, BERT, VGG-19
- Multi-modal
 - EANN, MVAE, SpotFake

Research Questions

- Is the proposed model improving multimodal fake news detection by leveraging intra and inter-modality relationships?
- How effective are the extracted fragments and self-attention representations in improving the multimodal fake news detection?
- Can the proposed model identify the modality that aided in easy recognition of falsification in a particular news sample?

Research Questions

- Is the proposed model improving multimodal fake news detection by leveraging intra and inter-modality relationships?
- How effective are the extracted fragments and self-attention representations in improving the multimodal fake news detection?
- Can the proposed model identify the modality that aided in easy recognition of falsification in a particular news sample?

Performance Analysis

- Results shown in the tables indicate that proposed method outperforms the baselines on accuracy and F1-score for Twitter and Weibo, respectively.
- SpotFake is the strongest baseline on multimodal fake news detection, and our proposed method outperforms it by a fair margin of an average of 3.05% and 4.525% on the accuracy and F1-score, respectively.

	MediaEval Benchmark Dataset					
Baselines	Acc	Prec.	Rec.	F1		
Text-CNN [†]	0.614	0.599	0.612	0.594		
BERT [†]	0.607	0.595	0.601	0.594		
VGG-19 [∓]	0.558	0.572	0.573	0.558		
EANN [‡]	0.648	0.697	0.630	0.634		
MVAE [‡]	0.745	0.745	0.748	0.744		
SpotFake [‡]	0.777	0.791	0.753	0.760		
Proposed	0.831	0.836	0.832	0.830		

	Weibo Dataset					
Baselines	Acc	Prec.	Rec.	F1		
Text-CNN [†]	0.794	0.791	0.800	0.792		
BERT [†]	0.861	0.860	0.870	0.859		
VGG-19 [∓]	0.654	0.502	0.502	0.501		
EANN [‡]	0.782	0.790	0.780	0.778		
MVAE [‡]	0.824	0.830	0.822	0.823		
SpotFake [‡]	0.8923	0.874	0.810	0.835		
Proposed	0.900	0.882	0.823	0.847		

Research Questions

- Is the proposed model improving multimodal fake news detection by leveraging intra and inter-modality relationships?
- How effective are the extracted fragments and self-attention representations in improving the multimodal fake news detection?
- Can the proposed model identify the modality that aided in easy recognition of falsification in a particular news sample?

ExperimentsAblation Analysis

	Variants	w/o Text	w/o Image	w/o Multiplicative	Proposed
Twitter	Acc	0.703	0.626	0.813	0.831
	Prec.	0.707	0.622	0.814	0.836
	Rec.	0.707	0.621	0.812	0.832
	F1	0.705	0.621	0.812	0.830
Weibo	Acc	0.736	0.794	0.873	0.900
	Prec.	0.608	0.802	0.824	0.882
	Rec.	0.588	0.791	0.815	0.823
	F1	0.595	0.791	0.820	0.847

Research Questions

- Is the proposed model improving multimodal fake news detection by leveraging intra and inter-modality relationships?
- How effective are the extracted fragments and self-attention representations in improving the multimodal fake news detection?
- Can the proposed model identify the modality that aided in easy recognition of falsification in a particular news sample?

Case Study

(a) False Context

Eiffel Tower lit up in Pakistan Beware and Bewarned THe colours after yesterday's barbaric attacks in Lahore

(b) Fabricated Content

FIVe Headed Snake. A snake with Five heads

(c) False Connection

@Palestine_Pics: Syrian girl selling chewing gum in the streets of Jordan. I via @Trotsmoslim #FreeSyria

0.7, 0.4

0.03, 0.8695

(d) Manipulated Content

Ok... Who wants to tell President Bush that the library book he's reading is upside down?\n#bushlibrarybooks

Conclusion of LIIRM

- Presenting a novel framework that leverages intra and inter modality relationships for multimodal fake news detection.
- Proposed method comprises of two sub-modules.
 - Intra-modality feature extractor
 - BERT+Text-CNN & image fragments are obtained via bottom-up attention.
 - Inter-modality relationship extractor
 - Fuses multimodal features multiplicatively.

Comments of LIIRM

- Datasets and comparison models are old version (classic).
 - MediaEval
 - EANN, MVAE, SpotFake (even no SpotFake+)
- Extract image fragments to obtain more useful informations.
 - May can utilized in my method.