Transformations and Normality Assumptions

STA 721: Lecture 22

Merlise Clyde
Duke University

Outline

- Normality & Transformations
- Box-Cox
- Variance Stabilizing Transformations
- Nonlinear Regression

Readings: Christensen Chapter 13, Seber & Lee Chapter 10 & Wakefield Chapter 6

Model Assumptions

Linear Model:

$$\mathbf{Y} = \boldsymbol{\mu} + \boldsymbol{\epsilon}$$

Assumptions:

$$oldsymbol{\mu} \in C(\mathbf{X}) \Leftrightarrow oldsymbol{\mu} = \mathbf{X}oldsymbol{eta} \ oldsymbol{\epsilon} \sim \mathsf{N}(\mathbf{0}_n, \sigma^2 \mathbf{I}_n)$$

- ullet Normal Distribution for ${f Y}$ with constant variance or fixed covariance
- ullet linearity of $oldsymbol{\mu}$ in ${f X}$
- Computational Advantages of Normal Models
- Robustify with heavy tailed error distributions

Checking via QQ-Plots

- QQ-Plots are a graphical tool to assess normality
- Order residuals e_i : $e_{(1)} \leq e_{(2)} \ldots \leq e_{(n)}$ sample order statistics or sample quantiles (standardized divide by $\sqrt{1-h_{ii}}$
- Let $z_{(1)} \leq z_{(2)} \dots z_{(n)}$ denote the expected order statistics of a sample of size n from a standard normal distribution "theoretical quantiles"
- ullet If the e_i are normal then $\mathsf{E}[e_{(i)}/\sqrt{1-h_{ii}}]=\sigma z_{(i)}$
- Expect that points in a scatter plot of $e_{(i)}/\sqrt{1-h_{ii}}$ and $z_{(i)}$ should be on a straight line.
- Judgment call use simulations to gain experience!

Animal Example

1 data(Animals, package="MASS")
2 plot(brain ~ body, data=Animals, xlab="Body Weight (kg)", ylab="Brain Weight")

Original Units

Residual Plots

```
1 brains.lm <- lm(brain ~ body, data=Animals)
2 par(mfrow=c(2,2))
3 plot(brains.lm)</pre>
```


Normality Assumption

Recall:

$$egin{aligned} \mathbf{e} &= (\mathbf{I} - \mathbf{P_X}) \mathbf{Y} \ &= (\mathbf{I} - \mathbf{P_X}) (\mathbf{X} \hat{oldsymbol{eta}} + oldsymbol{\epsilon}) \ &= (\mathbf{I} - \mathbf{P_X}) oldsymbol{\epsilon} \end{aligned}$$

$$e_i = \epsilon_i - \sum_{j=1}^n h_{ij}\epsilon_j$$

- Lyapunov CLT (independent but not identically distributed) implies that residuals will be approximately normal (even for modest n), if the errors are not normal
- Supernormality of residuals
- clearly not the case here!

Box-Cox Transformation

Box and Cox (1964) suggested a family of power transformations for Y>0

$$U(\mathbf{Y},\lambda) = Y^{(\lambda)} = egin{cases} rac{(Y^{\lambda}-1)}{\lambda} & \lambda
eq 0 \ \log(Y) & \lambda = 0 \end{cases}$$

• Estimate λ by maximum Likelihood

$$\mathcal{L}(\lambda,oldsymbol{eta},\sigma^2) \propto \prod f(y_i \mid \lambda,oldsymbol{eta},\sigma^2)$$

- $ullet \ U(\mathbf{Y},\lambda) = Y^{(\lambda)} \sim \mathsf{N}(\mathbf{X}oldsymbol{eta},\sigma^2)$
- ullet Jacobian term is $\prod_i y_i^{\lambda-1}$ for all λ
- Profile Likelihood based on substituting MLE $m{eta}$ and σ^2 for each value of λ is

$$\log(\mathcal{L}(\lambda) \propto (\lambda - 1) \sum_i \log(Y_i) - \frac{n}{2} \log(\mathsf{SSE}(\lambda))$$

Profile Likelihood

• Profile Likelihood is a function of λ obtained by substituting the MLE of $\pmb{\beta}$ and σ^2 for each value of λ

```
1 MASS::boxcox(brains.lm, lambda=seq(-2, 2, by=0.1))
```


Residuals after Transformation of Response

1 plot(lm(log(brain) ~ body, data=Animals))

Residuals after Transformation of Response and Predictor

```
1 logbrain.lm <- lm(log(brain) ~ log(body), data=Animals)</pre>
```

2 plot(logbrain.lm)

Transformed Data

1 plot(brain ~ body, data=Animals, xlab="Body Weight (kg)", ylab="Brain Weight (kg)", ylab="Bra

Logarithmic Scale

Test that Dinosaurs are from a Different Population (outliers)

Log Posterior Odds

Variance Stabilizing Transformations

- If $Y-\mu$ (approximately) $N(0,h(\mu))$
- Delta Method implies that

$$g(Y) \stackrel{.}{\sim} \mathsf{N}(g(\mu), g'(\mu)^2 h(\mu))$$

• Find function g such that $g'(\mu)^2/h(\mu)$ is constant

$$g(Y) \sim N(g(\mu),c)$$

- ullet Poisson Counts (need Y>3), g is the square root transformation
- Binomial: $\arcsin(\sqrt{Y})$

Note: transformation for normality may not be the same as the variance stabilizing transformation; boxcox assumes mean function is correct

Generalized Linear Models are preferable to transforming data, but may still be useful for starting values for MCMC

Nonlinear Regression

ullet Drug concentration of caldralazine at time X_i in a cardiac failure patient given a single 30mg dose (D=30) given by

$$\mu(oldsymbol{eta}) = \left[rac{D}{V} ext{exp}(-\kappa_e x_i)
ight]$$

with $oldsymbol{eta} = (V, \kappa_e) \, V = volume$ and κ_e is the elimination rate

• If $Y_i = \left[\frac{D}{V} \exp(-\kappa_e x_i)\right] imes \epsilon_i$ with $\log(\epsilon_i) \stackrel{\mathrm{iid}}{\sim} N(0, \sigma^2)$ then the model is intrinisically linear (can transform to linear model)

$$\log(\mu(oldsymbol{eta})) = \log\left[rac{D}{V} \exp(-\kappa_e x_i)
ight] = \log[D] - \log(V) - \kappa_e x_i \ log(Y_i) - \log[30] = eta_0 + eta_1 x_i + \epsilon_i$$

where ϵ_i has a log normal distribution

Nonlinear Least Squares Example

```
1  x = c(2,4,6,8,10,24,28, 32)
2  y = c(1.63, 1.01, .73, .55, .41,
3
4  conc.lm = lm(I(log(y) - log(30))
5
6  vhat = exp(-coef(conc.lm)[1])
7  khat = -coef(conc.lm)[2]
8
9  vhat
```

```
(Intercept)
16.66331
```

```
1 khat
x
0.1521064
```

```
1 plot(x, y)
2 lines(x, (30/vhat)*exp(-khat*x))
```


Additive Error Model

- If $\mathbf{Y} = \left[\frac{D}{V} \exp(-\kappa_e x_i)\right] + \epsilon_i$ model is intrinisically nonlinear and cannot transform to a linear model.
- need to use nonlinear least squares to estimate $m{eta}$ and σ^2
- or MCMC to estimate the posterior distribution of $m{eta}$ and σ^2

Intrinsically Linear Model nls

```
1 df = data.frame(y=y, x=x)
2 logconc.nlm = nls( log(y) ~ log((30/V)*exp(-k*x)), data=df, start=list(V=3 summary(logconc.nlm)
Formula: log(y) ~ log((30/V) * exp(-k * x))
```

Parameters:

```
Estimate Std. Error t value Pr(>|t|)
V.(Intercept) 16.66331 7.11923 2.341 0.057796
k.x 0.15211 0.02368 6.423 0.000673
```

Residual standard error: 0.7411 on 6 degrees of freedom

Number of iterations to convergence: 0 Achieved convergence tolerance: 4.056e-09

Intrinsically Nonlinear Model

```
Formula: y ~ (30/V) * exp(-k * x)

Parameters:
    Estimate Std. Error t value Pr(>|t|)
V 13.06506    0.60899    21.45 6.69e-07
k    0.18572    0.01124    16.52 3.14e-06

Residual standard error: 0.05126 on 6 degrees of freedom

Number of iterations to convergence: 4
Achieved convergence tolerance: 7.698e-06
```


Functions of Interest

Interest is in

- clearance: $V\kappa_e$
- ullet elimination half-life $x_{1/2} = \log 2/\kappa_e$
- ullet Use properties of MLEs: asymptotically $\hat{oldsymbol{eta}} \sim N\left(oldsymbol{eta}, I(\hat{oldsymbol{eta}})^{-1}
 ight)$
- Asymptotic Distributions
- Bayes obtain the posterior directly for parameters and functions of parameters!
 - Priors?
 - Constraints on Distributions?
 - Bayes Factor for testing normal vs log-normal models?

Summary

- Optimal transformation for normality (MLE) depends on choice of mean function
- May not be the same as the variance stabilizing transformation
- Nonlinear Models as suggested by Theory or Generalized Linear Models are alternatives
- ``normal'' estimates may be useful approximations for large p or for starting values for more complex models (where convergence may be sensitive to starting values)

