Algorithm Analysis and Design

Advanced Data Structure (Binomial Heap)

Lecture -36-39

Overview

- This section present data structures known as mergeable heaps, which support the following seven operations.
 - MAKE-BINOMIAL-HEAP
 - BINOMIAL-HEAP-INSERT
 - BINOMIAL-HEAP-MINIMUM
 - BINOMIAL-HEAP-EXTRACT-MIN
 - BINOMIAL-HEAP-UNION
 - BINOMIAL-HEAP DECREASE-KEY
 - BINOMIAL-HEAP-DELETE

Binomial Heap

- Binomial heap was introduced in 1978 by Jean Vuillemin.
- Jean Vuillemin is a professor in mathematics and computer science.
- The other name of Binomial Heap is Mergeable heaps.
- A binomial heap is a collection of binomial trees.
 - Lets learn What is Binomial Tree?

- Binomial tree B_k is an ordered tree defined recursively.
- The binomial tree B_0 has one node.
- The binomial tree B_k consists of two binomial trees B_{k-1} and they are connected such that the root of one tree is the leftmost child of the other.

- Binomial tree B_k is an ordered tree defined recursively.
- The binomial tree B_0 has one node.
- The binomial tree B_k consists of two binomial trees B_{k-1} and they are connected such that the root of one tree is the leftmost child of the other.

- Binomial tree B_k is an ordered tree defined recursively.
- The binomial tree B_0 has one node.

• The binomial tree B_k consists of two binomial trees B_{k-1} and they are connected such that the root of one tree is the leftmost child of the other.

 $oldsymbol{B}_k$ (Fig: A General View of B-Tree)

Binomial tree properties:

- B_k has 2^k nodes
- B_k has height k
- There are exactly $\binom{k}{i}$ nodes at depth i for i=0, 1, 2,...,k.

For Example:

Lets check in B_4 and depth 2(i.e.k = 4 and i = 2)

$$\binom{k}{i} = \frac{k!}{i!(k-i)!} = \frac{4!}{2!(4-2)!} = \frac{4 \times 3 \times 2 \times 1}{2 \times 1 \times 2 \times 1} = 6$$

Hence 6 numbers of nodes are available in depth 2 of B_4

• The root has degree k which is greater than other node in the tree. Each of the root's child is the root of a subtree Bi.

Binomial Heap (Property)

A Binomial Heap H is a set of binomial trees that satisfies the following properties:

- Each binomial tree in H obeys the min heap property.
 - (i.e. key of a node is greater or equal to the key of its parent. Hence the root has the smallest key in the tree).
- For any non negative integer k, there is at most one binomial tree whose root has degree k.
 - (e.g. it implies that an n node Binomial heap H consists of at most $\lfloor \log n \rfloor + 1$ binomial Tree.
- The binomial trees in the binomial heap are arranged in increasing order of degree

Binomial Heap (Property)

• Example:

Here n=13 So $\lfloor \log n \rfloor + 1 = \lfloor \log 13 \rfloor + 1 = 3 + 1 = 4$ (So at most 4)

The Above Figure of Binomial Heap consists of \mathcal{B}_0 , \mathcal{B}_2 and \mathcal{B}_3

Binomial Heap (Representation)

- Each binomial tree within a binomial heap is stored in the left-child, right-sibling representation
- Each node X contains POINTERS
 - p[x] or $x \rightarrow parent$ to its parent
 - key[x] or $x \to key$ to its key value
 - child[x] or $x \to child$ to its leftmost child
 - sibling[x] or $x \rightarrow sibling$ to its immediately right sibling
 - degree[x] or $x \rightarrow degree$ to its degree value (i.e. denotes the number of children of X)

Binomial Heap (Representation)

NIL

12

NIL

15

NIL

NIL

NIL

NIL

Binomial Heap support the following five operations:

- 1. MAKE-HEAP() creates and returns a new heap containing no elements.
- 2. MINIMUM(H) returns a pointer to the node in heap H whose key is minimum.
- 3. UNION(H1, H2) creates and returns a new heap that contains all the nodes of heaps H1 and H2. Heaps H1 and H2 are "destroyed" by this operation.
- **4. EXTRACT-MIN(H)** deletes the node from heap H whose key is minimum, returning a pointer to the node.

- **5. INSERT(H, x)** inserts node x, whose key field has already been filled in, into heap H.
- 6. **DECREASE-KEY(H, x, k)** assigns to node x within heap H the new key value k, which is assumed to be no greater than its current key value.[1]
- 7. **DELETE(H, x)** deletes node x from heap H

1. MAKE-HEAP(): creates and returns a new heap containing no elements.

To make an empty binomial heap, the MAKE-BINOMIAL-HEAP procedure simply allocates and returns an object H, where head [H] = NIL.

The running time is $\Theta(1)$.

2. MINIMUM(H): The procedure BINOMIAL-HEAP-MINIMUM() returns a pointer to the node with the minimum key in an n-node binomial heap H. This implementation assumes that there are no keys with value ∞ .

2. MINIMUM(H): Since the binomial heap is a min-heap-order, the minimum key of each binomial tree must be at the root. This operation checks all the roots to find the minimum key.

Pseudocode: This implementation assumes that there are no keys with value ∞ .

2. MINIMUM(H): Since the binomial heap is a min-heap-order, the minimum key of each binomial tree must be at the root. This operation checks all the roots to find the minimum key.

Pseudocode: This implementation assumes that there are no keys with value ∞ .

 ${\tt BINOMIAL-HEAP-MINIMUM(H)} \ \ {\it Head[H]}$

- 2 $x \leftarrow head[H]$
- $3 \quad \min \leftarrow \infty$
- 4 while $x \neq NIL$
- 5 do if key[x] < min
- 6 then min $\leftarrow \text{key}[x]$
- 7 $y \leftarrow x$
- 8 $x \leftarrow sibling[x]$
- 9 return y

2. MINIMUM(H): Since the binomial heap is a min-heap-order, the minimum key of each binomial tree must be at the root. This operation checks all the roots to find the minimum key.

Pseudocode: This implementation assumes that there are no keys with value ∞ .

BINOMIAL-HEAP-MINIMUM(H) Head[H]

- 1 $y \leftarrow NIL$
- 2 $x \leftarrow head[H]$
- $3 \quad \min \leftarrow \infty$
- 4 while $x \neq NIL$
- 5 do if key[x] < min
- 6 then min \leftarrow key[x]
- 7 $y \leftarrow x$
- 8 $x \leftarrow sibling[x]$
- 9 return y

Since binomial heap is Heap-ordered and the minimum key must reside in a ROOT node. The **BINOMIAL-HEAP-MINIMUM(H)** checks all roots in $O(\lg n)$.

Because,

Number of Roots in Binomial Heap is at least $\lfloor \log n \rfloor + 1$

Hence RUNNING-TIME = O(lgn)

3. UNION(H1, H2)

This operation consists of the following steps

- Merge two binomial heaps H1 and H2. The resulting heap has the roots in increasing order of degree
- For each tree in the binomial heap H, if it has the same order with another tree, link the two trees together such that the resulting tree obeys min-heap-order.

For this there is an requirement of 3 pointers into the root list

```
x = points to the root currently being examined
```

```
prev-x = points to the root PRECEDING x on the root list sibling [prev-x] = x
```

```
next-x = points to the root FOLLOWING x on the root list sibling [x] = next-x
```

This operation perform by the help of 4(four) number of cases.

Case 1:
$$if(degree[x] \neq degree[next \rightarrow x])$$

prev
$$\rightarrow x = x$$

$$x=next \rightarrow x$$

Example:

This operation perform by the help of 4(four) number of cases.

Case 2:
$$if (degree[x] = degree[next \rightarrow x] = degree[sibling[next \rightarrow x])$$

 $prev \rightarrow x = x$
 $x=next \rightarrow x$

Example:

This operation perform by the help of 4(four) number of cases.

Case 3:
$$if (degree[x] = degree[next \rightarrow x]) \text{ and } (key[x] \le key[next])$$

 $sibling[x] = sibling[next \rightarrow x]$
 $Binomial Link(next \rightarrow x, x)$

Example:

This operation perform by the help of 4(four) number of cases.

```
Case 4: if (degree[x] = degree[next \rightarrow x]) and (key[x] \ge key[next])

if (prev \rightarrow x == Null)

Head[H]= next \rightarrow x

else

sibling[prev \rightarrow x]= next \rightarrow x

Binomial Link(x, next \rightarrow x)
```

Binomial Heap (Operations_3) $x \to x$

Binomial Heap (Operations_3) $\lim_{\text{prev} \to x} \frac{x}{x} = \lim_{\text{next} \to x} \frac{x}{x}$


```
BINOMIAL-LINK(y, z)
```

```
1 p[y] = z
2 sibling[y] = child[z]
3 child[z] = y
4 degree[z] = degree[z] + 1
```

BINOMIAL-LINK(y, z)

$$1 p[y] = z$$

2 sibling[y] = child[z]

$$3 \text{ child}[z] = y$$

4 degree[z] = degree[z] + 1

BINOMIAL-LINK(y, z)

$$1 p[y] = z$$

2 sibling[y] = child[z]

$$3 \text{ child}[z] = y$$

4 degree[z] = degree[z] + 1

Example 1: Merge the following two Binomial heap H1 and H2.

After Merging......


```
BINOMIAL-HEAP-UNION(H1, H2)
```

- 1 H = MAKE-BINOMIAL-HEAP()
- 2 head[H] = BINOMIAL-HEAP-MERGE(H1, H2)
- 3 free the objects H1 and H2 but not the lists they point to
- 4 if head[H] = NIL
- 5 then return H
- 6 prev-x \leftarrow NIL
- 7 $x \leftarrow head[H]$
- 8 $next-x \leftarrow sibling[x]$

```
9
    while next-x \neq NIL
10
        do if (degree[x] \neq degree[next-x]) or
        (sibling[next-x] \neq NIL and degree[sibling[next-x]] = degree[x])
                                                        Cases 1 and 2
11
            then prev-x \leftarrow x
12
                                                        Cases 1 and 2
                  x \leftarrow \text{next-x}
13
        else if key[x] \le key[next-x]
            then sibling[x] \leftarrow sibling[next-x]
14
                                                       ▶ Case 3
                                                        ▶ Case 3
15
                  BINOMIAL-LINK(next-x, x)
16
            else if prev-x = NIL
                                                        Case 4
                                                        ▶ Case 4
17
                     then head[H] \leftarrow next-x
18
                                                       ▶ Case 4
                  else sibling[prev-x] \leftarrow next-x
19
                 BINOMIAL-LINK(x, next-x)
                                                       ▶ Case 4
20
                                                        ▶ Case 4
                x \leftarrow \text{next-x}
21
        next-x \leftarrow sibling[x]
22 return H
```

Analysis of BINOMIAL-HEAP-UNION(H1, H2)

The running time of BINOMIAL-HEAP-UNION is O(lg n), where n is the total number of nodes in binomial heaps H1 and H2.

We can see this as follows.

- Let H1 contain n1 nodes and H2 contain n2 nodes, Hence, n = n1 + n2.
- Then H1 contains at most |lg n1|+1 roots.
- and H2 contains at most [lg n2]+1 roots,
- Hence H contains at most $\lfloor \lg n1 \rfloor + \lfloor \lg n2 \rfloor + 2 \le 2 \lfloor \lg n \rfloor + 2 = O(\lg n)$ roots immediately after the call of BINOMIAL-HEAP-MERGE.
- The time required to perform BINOMIAL-HEAP-MERGE is thus $O(\lg n)$.

Analysis of BINOMIAL-HEAP-UNION(H1, H2)

- Each iteration of the while loop takes O(1) time, and there are at most $\lfloor \lg n1 \rfloor + \lfloor \lg n2 \rfloor + 2$ iterations.
 - (because each iteration either advances the pointers one position down the root list of H or removes a root from the root list.)
- Hence the total time required to execute BINOMIAL-HEAP-UNION is O(lg n).

4. EXTRACT-MIN(H)

The following procedure extracts the node with the minimum key from binomial heap H and returns a pointer to the extracted node.

BINOMIAL-HEAP-EXTRACT-MIN(H)

- 1 find the root x with the minimum key in the root list of H, and remove x from the root list of H
- 2 $H' \leftarrow call MAKE-BINOMIAL-HEAP()$
- 3 reverse the order of the linked list of x's children, and set head[H'] to point to the head of the resulting list
- 4 $H \leftarrow call BINOMIAL-HEAP-UNION(H, H')$
- 5 return x

Example:

Extract the node with minimum key from following Binomial Heap.

Example:

Hear minimum is 1(i.e. x), so remove it

Example:

Hear minimum is 1(i.e. x), so remove it

Example:

Hear minimum is 1(i.e. x), so remove it

Example:

After remove x reverse the order of the list and put it in H'

Example:

Apply BINOMIAL-HEAP-UNION(H, H') on the following two Binomial Heap

Example:

After merging of two binomial heap H and H'

Example:

After merging of two binomial heap H and H'

Example:

After placing x and next \rightarrow x

Example:

After placing x and next \rightarrow x

Example:

Example:

After applying case 4

5. INSERT (H, x)

The BINOMIAL-HEAP-INSERT procedure inserts node x into binomial heap H, assuming that x has already been allocated and key[x] has already been filled in.

BINOMIAL-HEAP-INSERT(H, x)

- 1 $H' \leftarrow call MAKE-BINOMIAL-HEAP()$
- 2 $p[x] \leftarrow NIL$
- $3 \quad \text{child}[x] \leftarrow \text{NIL}$
- 4 sibling[x] \leftarrow NIL
- 5 degree[x] \leftarrow 0
- 6 head[H'] \leftarrow x
- 7 $H \leftarrow call BINOMIAL-HEAP-UNION(H, H')$

Example:

inserts node x into binomial heap H

$$H' \xrightarrow{X} 18$$

Example:

inserts node x into binomial heap H

Apply Merge

Example:

After Merging

Example:

After Merging

Example:

After placing x and next \rightarrow x

Example:

After placing x and next \rightarrow x

Example:

After applying case 3

Example:

After applying case 3

Apply Case 3

Example:

After applying case 3

Example:

After applying case 3

Apply Case 3

Example:

After applying case 3

6. DECREASE KEY (H, x, k)

The DECREASE KEY procedure decreases the key of a node x in a binomial heap H to a new value k. It signals an error if k is greater than x's current key. BINOMIAL-HEAP-DECREASE-KEY(H, x, k)

```
1 if k > \text{key}[x]

2 then error "new key is greater than current key"

3 \text{key}[x] \leftarrow k

4 y \leftarrow x

5 z \leftarrow p[y]

6 while z \neq \text{NIL} and \text{key}[y] < \text{key}[z]

7 do exchange \text{key}[y] \leftrightarrow \text{key}[z]

8 • If y and z have satellite fields, exchange them, too.

9 y \leftarrow z

10 z \leftarrow p[y]
```

Example:

Example:

Example:

Example:

Example:

Decreases the key of a node x (i.e. 26) in a binomial heap H to a new value k (i.e. 7).

Set the pointer y and z

Example:

Example:

Decreases the key of a node x (i.e. 26) in a binomial heap H to a new value k (i.e. 7).

Exchange key[y] with key[z] and change the position of y and z

Example:

Example:

Decreases the key of a node x (i.e. 26) in a binomial heap H to a new value k (i.e. 7).

Exchange key[y] with key[z] and change the position of y and z

Example:

7. DELETE(H, x)

The delete procedure delete the key x with an assumption that no node currently in the binomial heap has a key of $-\infty$.

BINOMIAL-HEAP-DELETE(H, x)

- 1 BINOMIAL-HEAP-DECREASE-KEY(H, x, $-\infty$)
- 2 BINOMIAL-HEAP-EXTRACT-MIN(H)

Example: Delete the key x with an assumption that no node currently in the binomial heap has a key of $-\infty$.

Example: Delete the key x with an assumption that no node currently in the binomial heap has a key of $-\infty$ (i.e. k).

Replace the key[x] with k

Example: Delete the key x with an assumption that no node currently in the binomial heap has a key of $-\infty$ (i.e. k).

Example: Delete the key x with an assumption that no node currently in the binomial heap has a key of $-\infty$ (i.e. k).

Set the pointer y and z

Example: Delete the key x with an assumption that no node currently in the binomial heap has a key of $-\infty$ (i.e. k).

Example: Delete the key x with an assumption that no node currently in the binomial heap has a key of $-\infty$ (i.e. k).

Exchange key[y] with key[z] and change the position of y and z

Example: Delete the key x with an assumption that no node currently in the binomial heap has a key of $-\infty$ (i.e. k).

Example: Delete the key x with an assumption that no node currently in the binomial heap has a key of $-\infty$ (i.e. k).

Exchange
key[y] with
key[z] and
change the
position of y
and z

Example: Delete the key x with an assumption that no node currently in the binomial heap has a key of $-\infty$ (i.e. k).

Example: Delete the key x with an assumption that no node currently in the binomial heap has a key of $-\infty$ (i.e. k).

Example: Delete the key x with an assumption that no node currently in the binomial heap has a key of $-\infty$ (i.e. k).

After remove x reverse the order of the list and put it in H'

Example: Delete the key x with an assumption that no node currently in the binomial heap has a key of $-\infty$ (i.e. k).

Merge two Binomial Heao

Example: Delete the key x with an assumption that no node currently in the binomial heap has a key of $-\infty$ (i.e. k).

Place x and $next \rightarrow x$

Example: Delete the key x with an assumption that no node currently in the binomial heap has a key of $-\infty$ (i.e. k).

Example: Delete the key x with an assumption that no node currently in the binomial heap has a key of $-\infty$ (i.e. k).

Example: Delete the key x with an assumption that no node currently in the binomial heap has a key of $-\infty$ (i.e. k).

Example: Delete the key x with an assumption that no node currently in the binomial heap has a key of $-\infty$ (i.e. k).

Example: Delete the key x with an assumption that no node currently in the binomial heap has a key of $-\infty$ (i.e. k).

Binomial Heap

The running time of binomial Heap w.r.t Binary Heap is given below

Procedure	Binary heap (worst-case)	Binomial heap (worst-case)
INSERT	$\Theta(\lg n)$	0(lg n)
MINIMUM	Θ(1)	0(lg n)
EXTRACT-MIN	$\Theta(\lg n)$	Θ(lg n)
UNION	Θ(n)	0(lg n)
DECREASEKEY	$\Theta(\lg n)$	Θ(lg n)
DELETE	Θ(lg n)	Θ(lg n)

