

BACHELOR OF SCIENCE (HONS) IN - APPLIED COMPUTING - COMPUTER FORENSICS & SECURITY - ENTERTAINMENT SYSTEMS - THE INTERNET OF THINGS

EXAMINATION:

DISCRETE MATHEMATICS (COMMON MODULE) SEMESTER 1 - YEAR 1- REPEAT

AUGUST 2023 DURATION: 2 HOURS

INTERNAL EXAMINERS: DR KIERAN MURPHY DATE: 24/08/2023

DR DENIS FLYNN TIME: 11:45 AM

VENUE: MAIN HALL, CORK ROAD CAMPUS

EXTERNAL EXAMINER: MS MARGARET FINNEGAN

INSTRUCTIONS TO CANDIDATES

- 1. ANSWER ALL QUESTIONS.
- 2. TOTAL MARKS = 100.
- 3. EXAM PAPER (5 PAGES) AND FORMULA SHEET (1 PAGE)

MATERIALS REQUIRED

- 1. NEW MATHEMATICS TABLES.
- 2. GRAPH PAPER

SOUTH EAST TECHNOLOGICAL UNIVERSITY

(a) Construct sets A and B satisfying the following three properties:

$$A \setminus B = \{1, 3\},\$$

$$B \setminus A = \{2, 4\},\$$

$$A \setminus B = \{1, 3\},$$
 $B \setminus A = \{2, 4\},$ $A \cap B = \{5, 6\}.$

(2 marks)

(b) Construct a truth table for the logical expression

$$(x \lor z) \land ((x \lor y) \rightarrow (\neg x \land \neg z))$$

Hence or otherwise, state whether the proposition is satisfiable, is a tautology or a contradiction. (Justify your answer.) (7 marks)

- (c) (i) Draw a graph with degree sequence (2, 3, 3, 4, 4).
 - Does there exist a *simple* graph with this degree sequence? Justify your answer. (ii)
 - (iii) How many edges does this graph have?
 - (iv) What changes to this graph would make it a complete graph?

(7 marks)

(d) Use a membership table, or otherwise, to determine whether the following expression involving sets is true

$$(A \setminus B) \cap (B \setminus C) = A \cap B \cap \overline{C}$$

(4 marks)

- (a) Consider the following logical circuit with two inputs, A and B, and two outputs, X and Y.
 - (i) Construct a logical expression to represent the output Y.
 - (ii) Is there an input case for which both outputs, X and Y, are True? (Justify your answer)
 - (iii) Is there an input case for which both outputs, X and Y, are False? (Justify your answer)

(10 marks)

- (b) Let $A = \{1, 2, 3, 4, 5\}$. Determine the truth value of each of the following statements, and justify your answer.
 - (i) $\forall x [x+4<9]$
 - **(ii)** $\exists x [x^2 > 15]$
 - (iii) $\forall x \forall y [x+y<9]$
 - (iv) $\forall x \exists y [x^2 + y^2 < 27]$

(6 marks)

(c) In a Python program, the variable x stores an unknown integer. Running the following Python code (where % denotes mod and // denotes integer division)

$${f print}(x\%7, ', ', x//7)$$

2

produces the output:

3,5

Determine a value for x that would produce the above output.

(4 marks) (Total 20 marks)

(a) Consider the function $f: \{1, 2, 3, 4, 5\} \rightarrow \{1, 2, 3, 4, 5\}$ given by the table below:

- (i) Use a Venn diagram to represent the function f.
- (ii) Graph the function f as points on the plane.
- (iii) Is f injective? Explain.
- (iv) Is f surjective? Explain.

(6 marks)

(b) Let R be the relation on the set A as given in the Python code below:

- (i) What does the print statement output?
- (ii) Represent R using a digraph.
- (iii) Is R reflexive? symmetric? transitive?
- (iv) Is R an equivalence relation? and if yes, what are the resulting equivalence classes?

(8 marks)

(c) The **girth** of a graph is the length of its shortest cycle. State the girth of each of the following graphs.

3

- (i) C_5
- (ii) Petersen graph
- (iii) $K_{3,3}$

(6 marks)

(a) What does the following function compute? (Justify your answer.)

```
def findWhat(A, B):
    result = set()
    for a in A:
        if a not in B:
            result.append(a)
    return result
```

(4 marks)

- **(b)** Let $S = \{1, 2, 3, \dots, 8\}$
 - (i) How many subsets of A are there?
 - (ii) How many subsets of A contain exactly 4 elements, i.e., have cardinality 4?
 - (iii) How many subsets with cardinality 5 contain at least one odd number?
 - (iv) How many subsets of cardinality 5 contain exactly one odd number?
 - (v) How many subsets of cardinality 6 contain *exactly* one even number?

(10 marks)

(c) Let A and B be defined as

$$A = \{ n \in \mathbb{N} | n \text{ is a multiple of } 14 \}$$

and

$$B = \{n \in \mathbb{N} | n \text{ is a multiple of 2 or } n \text{ is a multiple of 7} \}$$

Which of the following is true? (Justify your answer.)

(i) $A \subset B$

(ii) $A \subseteq B$

(iii) $B \subset A$

- (iv) $A \cap B = A$
- (v) $A \cap B = \{n, k \in \mathbb{N} | n = 7k\}$
- (vi) $A \cap B = B$

(6 marks)

(a) Consider the following diagram, consisting of two rows of six dots.

.

How many

(i) Squares (ii) Right-angled triangles (iii) Triangles can be drawn using the dots as vertices (corners).

(8 marks)

- (b) How many shortest lattice paths start at (0,0) and
 - (i) end at (8,9)?
 - (ii) end at (8,9) and pass through (3,6)?
 - (iii) end at (8,9) and avoid (3,6)?

(7 marks)

(c) (i) What does the following function do? (Justify your answer.)

```
def calculateWhat(n):
    if n == 0 or n == 1:
        return 1
    return n*calculateWhat(n-1)
```

(ii) What value will calculateWhat(5) return?

(5 marks)

Laws of Logic

Logical Connective	Symbol	Python Operator	Precedence	Logic Gate
Negation (Not)		not	Highest	\triangleright
Conjunctive (AND)	\land	and	Medium	
Disjunctive (OR)	V	or	Lowest	\triangleright

Basic Rules of Logic

Implications and Equivalences

Commutative Laws

$$p \vee q \Leftrightarrow q \vee p \qquad p \wedge q \Leftrightarrow q \wedge p$$

Detachment (Modus Ponens)
$$(p \to q) \land p \Rightarrow q$$

Associative Laws

$$(p \lor q) \lor r \Leftrightarrow p \lor (q \lor r)$$
 $(p \land q) \land r \Leftrightarrow p \land (q \land r)$

Indirect Reasoning (Modus Tollens)

$$(p \to q) \land \neg q \Rightarrow \neg p$$

Distributive Laws

$$p \wedge (q \vee r) \Leftrightarrow (p \wedge q) \vee (p \wedge r) \qquad p \vee (q \wedge r) \Leftrightarrow (p \vee q) \wedge (p \vee r)$$

Disjunctive Addition
$$p \Rightarrow (p \lor q)$$

Identity Laws

$$p \vee \mathbf{F} \Leftrightarrow p \qquad p \wedge \mathbf{T} \Leftrightarrow p$$

Conjunctive Simplification
$$(p \land q) \Rightarrow p \qquad (p \land q) \Rightarrow q$$

Negation Laws

$$p \land (\neg p) \Leftrightarrow \mathbf{F} \qquad p \lor (\neg p) \Leftrightarrow \mathbf{T}$$

Disjunctive Simplification
$$(p \lor q) \land \neg p \Rightarrow q \qquad (p \lor q) \land \neg q \Rightarrow p$$

Idempotent Laws

$$p \lor p \Leftrightarrow p \qquad p \land p \Leftrightarrow p$$

Chain Rule
$$(p \to q) \land (q \to r) \Rightarrow (p \to r)$$

Null Laws

$$p \wedge \mathbf{F} \Leftrightarrow \mathbf{F}$$
 $p \vee \mathbf{T} \Leftrightarrow \mathbf{T}$

Resolution
$$(\neg p \lor r) \land (p \lor q) \Rightarrow (q \lor r)$$

Absorption Laws

$$p \land (p \lor q) \Leftrightarrow p \qquad p \lor (p \land q) \Leftrightarrow p$$

Conditional Equivalence
$$p \to q \Leftrightarrow \neg p \lor q$$

DeMorgan's Laws

$$\neg (p \lor q) \Leftrightarrow \neg \, p \land \neg \, q \qquad \neg (p \land q) \Leftrightarrow \neg \, p \lor \neg \, q$$

Biconditional Equivalences
$$(p \leftrightarrow q) \Leftrightarrow (p \to q) \land (q \to p)$$
 $\Leftrightarrow (p \land q) \lor (\neg q \land \neg q)$

Involution Law

$$\neg(\neg p) \Leftrightarrow p$$

Contrapositive $p \to q \Leftrightarrow \neg q \to \neg p$