Evaluating the Efficacy of Feature Selection Methods in Cardiovascular Disease Prediction with Machine Learning

Paper ID: 439

December 8, 2023

Contents

- Introduction
- Problem Statement
- Related Work
- Research Questions
- 5 Research Objective
- Outcomes and Impacts
- Methodology
 - Workflow of The Research
 - Feature Transformation
 - Feature Selection
 - Machine Learning Models
- Experimental Results
- 9 Conclusion
- 10 Future Works
- References

- Introduction
- Problem Statement
- Related Work
- Research Questions
- 5 Research Objective
- Outcomes and Impacts
- Methodology
 - Workflow of The Research
 - Feature Transformation
 - Feature Selection
 - Machine Learning Models
- 8 Experimental Results
- 9 Conclusion
- 10 Future Works
- 11 References

Introduction

- Cardiovascular diseases (CVD) are currently the number one cause of death.[1].
- World Health Organization (WHO) has predicted that CVD mortality will reach nearly 30 million by 2040 [2].

Figure 1: Mortality due to Cardiovascular Diseases [3]

- Most medical practice has been performed with the help of AI to improve the health care sector for the past 30 year. [4].
- Machine learning and data mining-based approaches can predict and detect CVD.[4].

- Introduction
- Problem Statement
- Related Work
- Research Questions
- 5 Research Objective
- Outcomes and Impacts
- Methodology
 - Workflow of The Research
 - Feature Transformation
 - Feature Selection
 - Machine Learning Models
- 8 Experimental Results
- Onclusion
- Future Works
- 111 References

Problem Statement

- Cost effectiveness.
- Limited availability of labeled heart disease data for training models.
- Real-time prediction challenges.
- Modern Technology in remote areas.
- Making a robust model to detect a new patient effectively.
- Imbalanced datasets.

- Introduction
- Problem Statement
- Related Work
- 4 Research Questions
- Research Objective
- Outcomes and Impacts
- Methodology
 - Workflow of The Research
 - Feature Transformation
 - Feature Selection
 - Machine Learning Models
- 8 Experimental Results
- Onclusion
- Future Works
- References

Related Work

Table 1: Summary of previous research works

SL.	Authors	Method	Accuracy	
1.	Sadia Arooj[5]	CNN	91%	
2.	M.D.Amzad Hossen[6]	LR, DT, RF	92%	
3.	Mirza Muntasir Nishat[7]	KNN, DT, RF	95%	
4.	Kaushalya Dissanayake[8]	DT, KNN, RF	93%	
5.	Rohit Bharti[9]	KNN, DT, SVM , DL	94%	
6.	Jafar Abdollahi[10]	MLP, Stacking, DT	95%	
7.	Jyoti Soni[11]	DT	99.2%	
8.	Mustafa Jan[12]	RF	98.1%	

Limitations of Previous Works

- Data preprocessing techniques are missing.
- Missing values are not handled.
- Imbalanced dataset.
- Categorical features are treated as nominal value.
- No explanation about the risk factors of CVD.

- Introduction
- Problem Statement
- Related Work
- 4 Research Questions
- 5 Research Objective
- Outcomes and Impacts
- Methodology
 - Workflow of The Research
 - Feature Transformation
 - Feature Selection
 - Machine Learning Models
- 8 Experimental Results
- Onclusion
- Future Works
- References

Research Questions

- What is the most efficient feature transformation method for predicting Cardiovascular Disease (CVD)?
- Which feature selection method is the most effective in selecting optimal features for predicting CVD?
- Which machine learning classifier is the most effective in leveraging selected features to achieve optimal results for detecting cardiovascular disease?
- What is the impact of the number of features on the training time and performance of ML classifiers for CVD prediction?

- Introduction
- Problem Statement
- Related Work
- Research Questions
- 5 Research Objective
- Outcomes and Impacts
- Methodology
 - Workflow of The Research
 - Feature Transformation
 - Feature Selection
 - Machine Learning Models
- 8 Experimental Results
- 9 Conclusion
- Future Works
- 11 Poforoncos

Research Objective

The following research goals have been designed to answer the research questions related to predict & detect CVD:

- Develop a precise and dependable machine learning model through training with existing data.
- Apply feature transformation techniques to identify the attributes that impact the severity of CVD.
- Employ feature selection techniques to identify the factors that influence the severity of CVD.
- Ensuring cost-effectiveness is essential to ensure the feasibility of implementation even in remote areas.

- Introduction
- Problem Statement
- Related Work
- Research Questions
- 5 Research Objective
- Outcomes and Impacts
- Methodology
 - Workflow of The Research
 - Feature Transformation
 - Feature Selection
 - Machine Learning Models
- 8 Experimental Results
- 9 Conclusion
- Future Works
- 111 References

Outcomes and Impacts

- Efficient Feature Selection
- Enhanced Accuracy
- Cost-Effective Detection
- Real-world Impact
- Potential for Early Intervention
- Future Research Directions

- Introduction
- Problem Statement
- Related Work
- Research Questions
- 5 Research Objective
- Outcomes and Impacts
- Methodology
 - Workflow of The Research
 - Feature Transformation
 - Feature Selection
 - Machine Learning Models
- 8 Experimental Results
- Onclusion
- Future Works
- References

16/39

Figure 2: Schematic Representation of the Methodical Trajectory

Feature Transformation

- Normalization (Min-Max Scaling)
- Standardization (Z-Score Scaling)
- Robust Scaling
- Max Abs Scaler

18/39

Figure 3: Different Feature Selection Methods

Machine Learning Models

- Logistic Regression (LR)
- Support Vector Machine (SVM)
- Random Forest Tree (RF)
- K-Nearest Neighbor (KNN)
- Gaussian Naive Bayes (GNB)
- Decision Tree (DT)
- Extra Tree (ET)
- Neural Network (MLP)

- Introduction
- Problem Statement
- Related Work
- Research Questions
- 5 Research Objective
- Outcomes and Impacts
- Methodology
 - Workflow of The Research
 - Feature Transformation
 - Feature Selection
 - Machine Learning Models
- 8 Experimental Results
- Onclusion
- 10 Future Works
- Referer

Experimental Results

Performance Measure:

Table 2: Performance measure of best feature subsets using different FS methods(1)

Methods	NOF	Classifier	Precision	Recall	F1-Score	AUC
FFS	7	RF	99.45	100.0	99.71	99.70
FF3	7	ET	99.45	100.0	99.71	99.70
BFE	6	RF	99.45	100.0	99.71	99.70
BFC	6	ET	99.45	100.0	99.71	99.70
RFE	5	RF	99.45	100.0	99.71	99.70
Chi-Square	6	RF	99.45	100.0	99.71	99.70
	6	DT	99.45	100.0	99.71	99.70
	6	ET	99.45	100.0	99.71	99.70
MI	6	RF	99.45	100.0	99.71	99.70
	6	DT	99.45	100.0	99.71	99.70
	6	ET	99.45	100.0	99.71	99.70

Paper ID (439) EICT 2023 December 8, 2023 22/39

Performance Measure:

Table 3: Performance measure of best feature subsets using different FS methods(2)

Methods	NOF	Classifier	Precision	Recall	F1-Score	AUC
ANOVA	6	RF	99.45	100.0	99.71	99.70
	6	ET	99.45	100.0	99.71	99.70
Relief	8	RF	99.45	100.0	99.71	99.70
	9	DT	99.45	100.0	99.71	99.70
Ridge	9	RF	99.45	100.0	99.71	99.70
Lasso	10	RF	99.40	99.45	99.35	99.42

Summary of the feature selection techniques:

Best feature selection technique (according to accuracy and number of selected features): Recursive Feature Elimination (RFE) of wrapper methods

Number of selected features: 5

Selected features: 'sex', 'cp', 'exang', 'oldpeak', 'thal'

Accuracy: 99.70

Confusion Matrix:

Figure 4: Confusion matrix for selected five features using RFE

Paper ID (439) EICT 2023 December 8, 2023 25/39

ROC Curve:

Figure 5: ROC curve for selected five features using RFE

Paper ID (439) EICT 2023 December 8, 2023 26/39

Comparison with Existing Works:

Table 4: Comparison with Other Existing Researches

Refer	ence	Accuracy	Precision	Recall	F1-Score	ROC
[11]		99.2	-	-	-	-
[12]		98.13	98.1	-	98.3	98.3
[13]		89.93	65.0	-	-	84.0
[14]		88.4	90.1	92.8	90	-
Our	Proposed	99.70	99.45	100.0	99.71	99.70
Appro	oach					

- Introduction
- Problem Statement
- Related Work
- Research Questions
- 5 Research Objective
- Outcomes and Impacts
- Methodology
 - Workflow of The Research
 - Feature Transformation
 - Feature Selection
 - Machine Learning Models
- 8 Experimental Results
- 9 Conclusion
- Future Works
- 11 References

Conclusions

- Experimental study evaluates feature selection's effect on precision in cardiovascular disease prediction.
- Different ML classifiers examined in conjunction with various feature selection strategies.
- Trials conducted with and without feature selection to assess impact on accuracy.
- Remarkably, RF classifier achieves high accuracy (99.70%) with just five features using recursive feature elimination.

- Introduction
- Problem Statement
- Related Work
- 4 Research Questions
- 5 Research Objective
- Outcomes and Impacts
- Methodology
 - Workflow of The Research
 - Feature Transformation
 - Feature Selection
 - Machine Learning Models
- 8 Experimental Results
- Onclusion
- Future Works
- 11 References

Future Works

- Build a robust model by applying the model on different datasets to validate the result.
- Anticipated comprehensive understanding of cardiovascular disease markers and enhanced prediction model effectiveness through deep learning integration.
- Investigation of effectiveness of new algorithms, comparison with current models, and assessment of results.

- Introduction
- Problem Statement
- Related Work
- Research Questions
- 5 Research Objective
- Outcomes and Impacts
- Methodology
 - Workflow of The Research
 - Feature Transformation
 - Feature Selection
 - Machine Learning Models
- Experimental Results
- 9 Conclusion
- Future Works
- References

[1] Peter C Austin, Jack V Tu, Jennifer E Ho, Daniel Levy, and Douglas S Lee.

Using methods from the data-mining and machine-learning literature for disease classification and prediction: a case study examining classification of heart failure subtypes. *Journal of clinical epidemiology*, 66(4):398–407, 2013.

- [2] Cardiovascular diseases who.int. https://www.who.int/health-topics/ cardiovascular-diseases#tab=tab_1.
 - cardiovascular-diseases#tab=tab_1. [Accessed 26-07-2023].
- [3] CDC.

Heart Disease Facts | cdc.gov — cdc.gov.

https://www.cdc.gov/heartdisease/facts.htm. [Accessed 14-08-2023].

[4] Rachael Hagan, Charles J Gillan, and Fiona Mallett. Comparison of machine learning methods for the classification of cardiovascular disease.

Informatics in Medicine Unlocked, 24:100606, 2021.

[5] Sadia Arooj, Saif ur Rehman, Azhar Imran, Abdullah Almuhaimeed, A Khuzaim Alzahrani, and Abdulkareem Alzahrani.

A deep convolutional neural network for the early detection of heart disease.

Biomedicines, 10(11):2796, 2022.

- [6] MD Amzad Hossen, Tahia Tazin, Sumiaya Khan, Evan Alam, Hossain Ahmed Sojib, Mohammad Monirujjaman Khan, and Abdulmajeed Alsufyani.
 - Supervised machine learning-based cardiovascular disease analysis and prediction.
 - Mathematical Problems in Engineering, 2021:1–10, 2021.
- [7] Mirza Muntasir Nishat, Fahim Faisal, Ishrak Jahan Ratul, Abdullah Al-Monsur, Abrar Mohammad Ar-Rafi, Sarker Mohammad Nasrullah, Md Taslim Reza, and Md Rezaul Hoque Khan. A comprehensive investigation of the performances of different machine learning classifiers with smote-enn oversampling technique and hyperparameter optimization for imbalanced heart failure dataset.

Scientific Programming, 2022:1-17, 2022.

- [8] Kaushalya Dissanayake and Md Gapar Md Johar. Comparative study on heart disease prediction using feature selection techniques on classification algorithms. Applied Computational Intelligence and Soft Computing, 2021:1–17, 2021.
- [9] Rohit Bharti, Aditya Khamparia, Mohammad Shabaz, Gaurav Dhiman, Sagar Pande, and Parneet Singh. Prediction of heart disease using a combination of machine learning and deep learning. Computational intelligence and neuroscience, 2021, 2021.
- [10] Jafar Abdollahi and Babak Nouri-Moghaddam. A hybrid method for heart disease diagnosis utilizing feature selection based ensemble classifier model generation. *Iran Journal of Computer Science*, 5(3):229–246, 2022.

[11] Jyoti Soni, Ujma Ansari, Dipesh Sharma, Sunita Soni, et al. Predictive data mining for medical diagnosis: An overview of heart disease prediction.

International Journal of Computer Applications, 17(8):43–48, 2011.

[12] Mustafa Jan, Akber A Awan, Muhammad S Khalid, and Salman Nisar.

Ensemble approach for developing a smart heart disease prediction system using classification algorithms.

Research Reports in Clinical Cardiology, pages 33–45, 2018.

[13] Hung Minh Le, Toan Dinh Tran, and LANG Van Tran. Automatic heart disease prediction using feature selection and data mining technique.

Journal of Computer Science and Cybernetics, 34(1):33–48, 2018.

[14] Senthilkumar Mohan, Chandrasegar Thirumalai, and Gautam Srivastava.

Effective heart disease prediction using hybrid machine learning techniques.

IEEE access, 7:81542-81554, 2019.

Thank You