

中国・深圳

指导单位:

← 云计算开源产业联盟 RPA产业推进方阵 ® A h-Red files to the state to be belief a COA

主办单位: SacketUPS Community OOPSA Open OPS Aliance

RPA时代

时间: 2021年5月21日-22日

智能运维的实用性和易用性探索

智能运维中的数据管理和平台应用

王鹏 复旦大学

王鹏

复旦大学,教授,计算机科学技术学院

在数据库和数据挖掘领域顶级会议和期刊SIGMOD、VLDB、ICDE、IEEE TKDE、ICDM上发表论文30多篇,主持和参与科技部重点研发专项、国家青年973、自然科学重点、面上基金、上海市科委/经信委的多个项目,以及华为、微软、IBM、EMC、爱立信等企业的资助项目

- 1 背景
- 2 数据语义融合
- 3 数据管理查询
- 4 总结

背景

01

研究现状

Kafka

Data Collection

CMDB/调用链

- 数据类型日益丰富
 - 时间序列(性能指标)
 - 离散事件序列(日志/告警)
 - 图数据 (CMDB、调用链)
- 算法效果不断提升
 - 单源数据算法
 - 多源数据算法

2015-07-09 21:56:01,728 INFO action=set home="/users"

性能指标

2015-07-09 22:11:56.434 WARNING action=delete user=tom id=20192

2015-07-09 22:32:46,657 INFO action=insert user=david id=455095 record

2015-07-09 22:34:12,724 WARNING action=remove home="/users/ton

日志/告警

仅有算法是不够的

- 算法研究阶段
 - 算法发现告警A和B经常一起出现,需要回答"这是偶然现象吗"
 - Common Sense, 例外, 有价值?
- 算法应用阶段
 - 算法发现告警C是根因,需要回答 "这个故障之前出现过吗"
 - 数据库告警模板发生时,希望查看对 应时间段的CPU和内存波动情况
 - ・历史、多源数据的参考极为重要

智能运维能力

算法能力

- 异常检测算法
- 日志聚类算法
- 根因定位算法

数据语义融合能力

- 多源数据中的实体匹配
- 实体关联
- 多源数据的特征关联

异构数据管理能力

大规模时间序列数据、日志 /告警文本数据、图数据、 结构化数据的统一管理

数据探索能力

- 异构数据的统一查询
- 语义查询

针对时序数据、文本数据、图数据、结构化数据

- 1.实现统一的数据管理
- 2.在语义层面进行融合
- 3.实现跨数据源的查询

- 运维数据的充分利用
- · 为运维人员排障提供便利

数据语义融合

02

动机

- 从语义层面将数据进行有效融合
 - ·运维数据都是对IT系统的某个对象的描述
- 支持告警/日志和性能指标的关联
- 支持基于自然语言的查询引擎

性能指标

服务器host01: total cpu is now 95.10%, 高于阈值 (90%)

告警

运维数据关联和知识图谱

步骤一:实体提取

步骤二: 实体图和时序元数据融合

步骤三: 文本特征和时序特征的融合

- 基于弱标签分类算法, 学习故障描述文本对应的时序模式
- 在图谱中添加相应的时间序列模式
- 基于**时间序列近似匹配算法**,在历史数据中找出更多实例

语义模式库			
故障名称	文本特征	时序特征	时序模式库
风机发电机 功 率故 障	风速较大, 功率较小,	时序模式A 时序模式B	A B C

- Jiaye Wu, Peng Wang, Ningting Pan, Chen Wang, Wei Wang, Jianmin Wang, KV-match: A Subsequence Matching Approach Supporting Normalization and Time Warping, ICDE 2019
- Zicheng Fang, Peng Wang, Wei Wang, Efficient Learning Interpretable Shapelets for Accurate Time Series Classification. ICDE 2018
- Hanbo Zhang, Yawen Wang, Peng Wang, Wei Wang, Burst-based Event Classification on Weakly Labeled Time Series Data of Sensors, IEEE 6th International Congress on Big Data, 2017

用途

- 基于自然语言的时间序列查询
 - 性能指标数据覆盖面更广, 告警/日志数据易用性更好
- 告警数据的合理性验证
- 融合告警数据、CMDB、性能指标数据的根因定位

数据管理和查询

03

查询工具集

✔ ① 面向自然语言的运维数据查询

✔ ② 拖拽式数据处理引擎

提升查询的易用性

✔ ❸ 面向时间关联的数据查询

提升运维数据的查询表达能力

4 面向异常检测的数据查询和可视化

提升异构数据查询能力

● 基于自然语言的运维数据查询

- 提升运维过程中运维人员的数据探索能力
- •核心功能
 - 运维数据的统一管理
 - 自然语言到SQL的转化引擎

表1-1 数据库自然语言查询系统及关键步骤技术

系统	预处理	词法分析	句法分析	SQL 语句生成	
NaLIR ^[10]	Stanford Parser[11]	WordNet ^[12] + 用户	候选路径选取	启发式查询树+	
		交互	+ 用户交互	用户交互	
SQLizer ^[13]	Sempre ^[14]	word2vec ^[15]	手写规则	手写规则	
Seq2SQL ^[16]	Tokenizer + Stanford CoreNLP ^[17]	GloVe ^[18] + character n-grams ^[19]			
SQLNet ^[20] Tokenizer + Stanford CoreNLP ^[17]		GloVe ^[18]			

- 1. 找发生告警次数最多的主机名为Server1的告警 类型。
- 2. 发生毛刺异常次数最多的应用。
- 3. CPU占用率最高的应用。
- 4. 近15分钟全部交易指标异常。
- 5. 每天的交易失败次数。
- 6. 过去7天同一时刻应用名为app1交易量情况。
- 7. 最近10分钟内应用名为app1的交易异常分布。
- 8. 最近8小时内每分钟的平均响应时间。
- 9. 最近9分钟突增或突降的指标有哪些?

基于自然语言的运维数据查询

核心模块

运维知识图谱

(1) 实体词典

("异常", "outlier") ("主机", "server") ("大于", ">") ("笨于", ">")

(3) 属性值词典

("业务型", "指标分组") ("突增", "类型")

(4) 修饰词词典

(" outlier " , ['id',
'timetag','val', 'outlier_degree',
'type', 'metric_name',
'server_name', 'app_name'])

通用知识库

(1) 聚集词词典

```
("计数", "COUNT")
("最小","MIN")
```

(2) 比较关系词典

```
("大于",">")
("等于", "=")
```

5) 通用分词词典

"小于等于"

(3) 固定搭配词典

```
("分组", "GROUP BY col")
("排序", "ORDER BY col")
```

(4) 逻辑关系词典

```
("与", "AND"
("或", "OR")
"突增或突降":
outlier. type='突增' OR
outlier. type='突降'
```

查询处理引擎

1. 词法解析

- 分词
- 数据库语义标注
- 语义消歧

2.语法解析

- 语义依存树
- 句法分析

3.SQL生成

"最近1天内存异常程度超过80%的异常分布"

['最近1天'/固定搭配,
'memory'/属性值/所属属性
'metric_name'/所属实体'metric'/有歧义/歧义列表
['metric','metric_data','outlier'],
'异常度'/所属属性'outlier_degree'/所属实体'outlier'.

'超过'/操作符'>',

'80',

'异常'/所属实体'outlier', '分布']

SELECT 'outlier'.'id', 'outlier'.'timetag', 'outlier'.'val',
'outlier'.'outlier_degree', 'outlier'.'type', 'outlier'.'metric_name',
'outlier'.'server_name', 'outlier'.'app_name'
FROM 'outlier'
WHERE timetag >= DATE_SUB(CURDATE(),INTERVAL 1 DAY)
AND 'outlier'.'metric_name'='memory'
AND 'outlier'.'outlier_degree' > 80

{object=outlier.allattribute},
 {condition=[timetag >=DATE_SUB(CURDATE(),INTERVAL 1
 DAY),`outlier`.`metric_name`='memory',`outlier`.`outlier_d
 egree` > 80]},
 {table=outlier}

系统界面

查询示例

- 1. 找发生告警次数最多的主机名为Server1的告警 类型。
- 2. 发生毛刺异常次数最多的应用。
- 3. CPU占用率最高的应用。
- 4. 近15分钟全部交易指标异常。
- 5. 每天的交易失败次数。
- 6. 过去7天同一时刻应用名为app1交易量情况。
- 7. 最近10分钟内应用名为app1的交易异常分布。
- 8. 最近8小时内每分钟的平均响应时间。
- 9. 最近9分钟突增或突降的指标有哪些?

2 拖拽式运维数据分析引擎

- 便于领域专家结合不同分析算法 搭建分析流程
- 融合了异常检测、聚类、场景挖 掘等多种算法
- 支持不同语言开发的算法
- 支持输入数据格式的智能学习

主要算法

时间序列数据挖掘

- 时间序列分类, sax-vsm, fast-shapelet
- 时间序列弱分类: matrix-profile based
- 聚类: k-shape
- 状态切分: Autoplait, pHMM, mp-based supervised
- 频繁子序列挖掘: motif
- 异常检测: STL, ripple, SOM
- 相关性分析: tslrm, Jocor
- 序列匹配: DSTree
- 子序列匹配:, ucr-ed/dtw, kv-match, onex

■ 日志/告警分析

- 模板提取: Drain、Spell
- 场景挖掘: Fp-growth、community-based
- 根因定位: mutual information
- 正则表达式处理
- 变量提取

⑥ 面向时间关联的数据查询

Log Type	Log Content
E_1	2019/8/6 15:00 Adding a new node: /default-rack/192.168.0.231:50010
E_1	2019/8/6 15:01 Adding a new node: /default-rack/192.168.0.232:50010
E_2	2019/8/6 15:02 Adding new storage ID DS-efe44b9ea549 for DN 192.168.0.231:50010
E_2	2019/8/6 15:02 Adding new storage ID DS-efe54b9sa352 for DN 192.168.0.232:50010
E_3	2019/8/6 15:03 Number of failed storage changes from 0 to 0
E_4	2019/8/6 15:04 BLOCK* fsync: /hbase/WALs/hadoop5
E_5	2019/8/6 15:05 BLOCK* registerDatanode: from DatanodeRegistration(192.168.0.231:50010)

SELECT A.*, B.*, C.*

FROM (SELECT * FROM HDFS WHERE LogType = E_1) A

INNER JOIN (SELECT * FROM HDFS WHERE LogType = E_2) B

ON 0 <= TIMESTAMPDIFF(MINUTE, A. Timestamp, B. Timestamp) <= 5

AND A.IP = B.IP

INNER JOIN (SELECT * FROM HDFS WHERE LogType = E_5) C

ON 0 <= TIMESTAMPDIFF(MINUTE, A. Timestamp, C. Timestamp) <= 5

AND 0 <= TIMESTAMPDIFF(MINUTE, B. Timestamp, C. Timestamp) <= 5

AND A.IP = C.IP

PATTERN (E_1, E_2, E_5) WITHIN 5 minute

BETWEEN 2016/08/06 15:00 AND 2016/08/06 15:10

AND $E_1.IP = E_2.IP$

AND $E_1.IP = E_5.IP$

SQL查询

PLO查询

在告警序列中,告警间通常具有关联关系,这些告警均由同一系统行为引发 这些告警的集合称为场景

shared memory realm does not exist

ORACLE not available

-: - ··

could not obtain authorized session

链路异常

射频业务异常

小区不可用异常

场景2

场景1

在告警序列中,告警间通常具有关联关系,这些告警均由同一系统行为引发 这些告警的集合称为场景

行为信息

告警出现规律中蕴含的行为信息

FP-Growth Apriori SWIFT, ...

语义信息

告警文本中蕴含的语义信息

Content
Memory utilization (90.3%) exceeds configured threshold (90.00%)
Memory util reached threshold 99%

Bag of Words, Jaccard, Word Embedding, ...

目标:融合行为信息和语义信息,基于深度学习模型进行场景挖掘

利用行为信息

行为序列:告警在过去24小时每一分钟发生的次数

类CBOW模型

利用语义信息

告警内容包含多个单词,每个单词对关键语义的贡献程度不同

示例告警 The TIME_WAIT tcp connection number is 3018 is great than threshold value 3000 please pay attention...

场景挖掘

整合告警的行为信息和语义信息,结合深度学习模型在线地对告警进行聚类

结果示例

告警

			_
Timestamp	Type	Content	
2021/5/2 14:18	T1	Memory utilization (90.3%) exceeds configured threshold (90.00%)	3
2021/5/2 14:19	1 /	instance XXX database XXDB tablespace XXTable utilization 75 exceed threshold 70.00	100
2021/5/2 14:19	Т3	Memory util reached threshold 99%	
2021/5/2 14:20	T4	CPU Util reach 90.2%, exceeds threshold 90.00%	(

日志

Timestamp	Type	Content
2020/10/23 1:21	T5	check pass; user unknown
2020/10/23 1:21	1.6	authentication failure; logname= XXX uid=0 euid=0 tty=XXX ruser= XXX rhost= XXX

面向时间关联的数据查询

- 典型应用
 - 告警数据中的场景分析
 - KPI数据和日志/告警数据的关联分析

PATTERN (E_1, E_2, E_5) WITHIN 5 minute BETWEEN 2016/08/06 15:00 AND 2016/08/06 15:10 AND $E_1.IP = E_2.IP$ AND $E_1.IP = E_5.IP$

面向时间关联的数据查询

时间关联是运维分析的核心目标, 也是关联多源数据的重要手段

面向时间关联的数据查询

基于bitmap的数据分块

2

AND、OR、L-SHIFT、R-SHIFT、FILL、M-AND **自定义bitmap操作集合**

$$BM^{A_{i}} = BM_{P}^{A_{i}} \& BM_{T}^{A_{i}} \& BM_{S}^{A_{i}} \& BM_{V}^{A_{i}}.$$

基于bitmap的查询处理

面向时间关联的数据查询

可扩展作为性能指标、日志、调用链数据的统一查询工具

例如:某类型的指标异常和某种特点日志是否总是一起发生

总结

- ·在算法设计、测试和应用过程中,数据探索查询起到重要的作用
- ・多源异构数据需要从语义层面进行有效融合
- ・查询引擎应面向运维数据特点且具有高易用性

Thanks

高效运维社区

开放运维联盟

荣誉出品