Aprendizaje Automatico - Trabajo Practico 1

Gonzalo Castiglione - 49138

April 20, 2012

Objetivo: Aprender a clasificár datos utilizando clasíficadores bayesianos.

1 Aprendizaje bayesiano

 A continuación se muestra una matríz de probabilidades de gustos para cada tipo de oyente de la radio:

	J	V
P(1)	0.95	0.03
P(2)	0.05	0.82
P(3)	0.02	0.34
P(4)	0.2	0.92

La fila i indica la probabilidad que al grupo $(J \circ V)$ le guste el programa i.

Sea la condición $c=\mathrm{El}$ oyente disfruta del los programas 1 y 3, pero no de los programas 2 y 4.

Reaalizando un análists previo de los resultados, se ve que la mayoría de los jovenes disfrutan de escuchar los programas 1 y 3 y por el otro lado, la mayoría de los viejos no disfrutan de los programas 1 y 3. Por lo que, a simple vista, debería esperarse un resultado en donde haya un probabilidad muy grande que oyente sea joven.

Sea P(J) = probabilidad que el oyente sea joven = 1 - P(V) (ya que para esta estación de radio, no existe ningúna otra categoría de oyentes)

Por el teorema de Bayes, se tiene la fórmula:

$$P(J|c) = \frac{P(c|J)P(J)}{P(c)}$$

A partir de esta fórmula, se realiza el cálculo de v_{NB}

$$P(c|J) = P(p1 = 1|J) * P(p3 = 1|J) * P(p2 = 0|J) * P(p4 = 0|J) \simeq 0.1444$$

Para el cálculo de P(c), se puede aplicar el teorema de la probabilidad total,

$$P(c) = P(c|J) * P(J) + P(c|V) * P(V)$$
(1)

En esta fórmula faltaría calcular la proabilidad ${\rm P}(c|{\rm V})$ (de manera análoga a ${\rm P}(c|{\rm J}))$

$${\rm P}(c|{\rm V})={\rm P}({\rm p1}=1|{\rm V})$$
* ${\rm P}({\rm p3}=1|{\rm V})$ * ${\rm P}({\rm p2}=0|{\rm V})$ * ${\rm P}({\rm p4}=0|{\rm V})$ $\simeq 0.0016$

Reemplazando estos últimos valores en (1), se obtiene que $P(c) \simeq 0.016$

Y reemplazando nuevamente todos los valores calculados en la fórmula de Bayes. Queda finalmente que $P(J|c) \simeq 0.9$.

Hay un 90% de probabilidad que el oyente sea joven.

2. Algormitmo h_{MAP}

Para cada hipótesis h de H, se calcula: $P(h|D) = \frac{P(D|h)*P(h)}{P(D)}$

Se da como salida $h_{MAP} = \max_{h \in H} P(h|D)$

Hipótesis a consderar:

$$x = (1, 0, 1, 1, 0)$$

 h_e =La persona es escoses y siempre se cumplen los datos observados.

 h_i =La persona es inglésa y siempre se cumplen los datos observados.

Cálculo de probabilidad para cada hipótesis:

$$P(X) = \sum_{i} P(X|Ai)P(Ai)$$
 (2)

$$P(h_e) = (1 * \frac{1}{13}) * 5 + (\frac{1}{2} * \frac{2}{13}) * 2 = 7/13 = 0.54$$

$$P(h_i) = (1 * \frac{1}{13}) * 4 + (\frac{1}{2} * \frac{2}{13}) * 2 = 6/13 = 0.46$$

(Notar que la suma de ambas hipótesis es 1, y como son los únicos casos que pueden ocurrir, esta bien)

Quedando así
$$P(h_e|D) = P(h_i|D) = \frac{1}{13}$$

Con los datos observados el algoritmo h_{max} no es capaz de asegurar si x es escoses o inglés ya que ambos tienen la misma probabilidad de ocurrir.

3. Solución

	Maíz	Granola	Azucarados	Avena	Mayor a 60
1	1	0	0	0	1
2	1	0	0	1	1
3	1	1	1	1	1
4	0	0	0	1	1
5	0	1	1	0	0
6	1	1	0	0	0

Se desea clasificár la instancia: x = (0, 1, 1, 0).

fórmula del clasíficador de Naive de Bayes

$$v_{NB} = \max_{v_j \in V} P(v_j) \prod_{i=0}^{n} P(a_i | v_j)$$

 $v_{NB} = \!\! \mathrm{P}(v_j) \mathrm{P}(\mathrm{Ma\acute{z}} = 0 | v_j) \mathrm{P}(\mathrm{Granola} = 1 | v_j) \mathrm{P}(\mathrm{Azucarado} = 1 | v_j) \mathrm{P}(\mathrm{Avena} = 0 | v_j)$

 $P(Mayor \ a \ 60 = 1) = \frac{4}{6} = 0.667$

 $P(Mayor \ a \ 60 = 0) = 1 - P(Mayor \ a \ 60 = 1) = \frac{2}{6} = 0.333$

 $P(Maíz = 0|Mayor \ a \ 60 = 1) = \frac{1}{4} = 0.25$

 $P(Maiz = 0|Mayor \ a \ 60 = 0) = \frac{1}{2} = 0.5$

 $P(Granola = 1|Mayor a 60 = 1) = \frac{1}{4} = 0.25$

 $P(Granola = 1|Mayor \ a \ 60 = 0) = \frac{2}{2} = 1$

 $P(Azucarado = 1|Mayor \ a \ 60 = 1) = \frac{1}{4} = 0.25$

 $P(Azucarado = 1|Mayor \ a \ 60 = 0) = \frac{1}{2} = 0.5$

 $P(Avena = 0|Mayor \ a \ 60 = 1) = \frac{1}{4} = 0.25$

 $P(Avena = 0|Mayor \ a \ 60 = 0) = \frac{2}{2} = 1$

Quedando las ecuaciones de las probabilidades de x de la siguiente manera:

Sea c = Mayor a 60.

Sea d = No es mayor a 60.

(1) - P(c)P(Maíz = 0|c)P(Granola = 1|c)P(Azucarado = 1|c)P(Avena = 0|c) = $0.667*0.25*0.25*0.25*0.25=2.6x10^{-3}$

(2) - P(d)P(Maíz = 0|d)P(Granola = 1|d)P(Azucarado = 1|d)P(Avena = 0|d) = 0.333 * 0.5 * 1 * 0.5 * 1 = 0.083

Por ser el resultado de (1) > (2), el algoritmo escoge $v_{NB} = c$, es decir, la persona es mayoy a 60.

Además (por normalización), como las se cantidades anteriores suman uno, se puede calcular la probabilidad de que x ocurra realizando $\frac{(1)}{(1)+(2)} \simeq 97\%$.

Cabe aclarar que este resultado fue obtenido a partir de una muestra muy pequeña, por lo que su grado de certeza podría no ser ser aceptable.

4. Matríz con las mediciones realizadas por el psicólogo

	Rico	Casado	Saludable	Contenta?
1	1	1	1	1
2	0	0	1	1
3	1	1	0	1
4	1	0	1	1
5	0	0	0	0
6	1	0	0	0
7	0	0	1	0
8	0	1	0	0
9	0	0	0	0

Se desea calcular la probabilidad que la instancia: x = (0, 1, 1) este feliz con su vida.

(a) Cálculo de la probabilidad

$$v_{NB} = P(v_j)P(Rico = 0|v_j)P(Casado = 1|v_j)P(Saludable = 1|v_j)$$

$$P(Contenta = 1) = \frac{4}{9} = 0.444$$

$$P(Contenta = 0) = \frac{5}{9} = 0.556$$

$$P(Rico = 0|Contenta = 1) = \frac{1}{4} = 0.25$$

$$P(Rico = 0|Contenta = 0) = \frac{4}{5} = 0.8$$

$$P(Casado = 1|Contenta = 1) = \frac{2}{4} = 0.5$$

$$P(Casado = 1|Contenta = 0) = \frac{1}{5} = 0.2$$

$$P(Saludable = 1|Contenta = 1) = \frac{3}{4} = 0.75$$

$$P(Saludable = 1|Contenta = 0) = \frac{1}{5} = 0.2$$

Ecuaciones de las probabilidades de x de la siguiente manera:

Sea c = está contenta con su vida.

Sea d = No está contenta con su vida.

1
$$\Longrightarrow$$
 P(c)P(Rico = 0|c)P(Casado = 1|c)P(Saludable = 1|c) = 0.444* 0.25* 0.5* 0.75 = 0.042

2
$$\Longrightarrow$$
 P(d)P(Rico = 0|d)P(Casado = 1|d)P(Saludable = 1|d) = 0.556* 0.8 * 0.2 * 0.2 = 0.0178

El algorimto retorna que la persona está contenta con una probabilidad de acierto de $\frac{0.042}{0.042+0.0178}=0.70$. Es decir, un 70%.

- (b) Sea una persona /x=(0,1). La probabilidad de que x este Contenta, está dada por:
 - c =la persona está contenta.

$$d =$$
la persona no está contenta.

$$v_1 = P(c)P(Rico = 0|c)P(Casado = 1|c) = 0.444 * 0.25 * 0.5 = 0.055$$

$$v_2 = P(d)P(Rico = 0|d)P(Casado = 1|d) = 0.556 * 0.8 * 0.2 = 0.089$$

$$P(x_1) = \frac{0.089}{0.089 + 0.055} = 0.62 \Rightarrow 62\%$$

Por lo tanto, la probabilidad que una persona Pobre y Casada este contenta es del 62%

(c) Una persona pobre, casada y saludable estária definida por x=(0,1,1). La probabilidad que x este contenta es de $\frac{0.042}{0.042+0.012}=0.78$ c= la persona está contenta. d= la persona no está contenta. $v_1=P(c)P(\text{Rico}=0|c)P(\text{Casado}=1|c)P(\text{Saludable}=1|c)=0.444*0.25*0.5*0.75=0.042$ $v_2=P(d)P(\text{Rico}=0|d)P(\text{Casado}=1|d)P(\text{Saludable}=1|d)=0.556*0.8*0.2*0.2=0.018$ $P(x_1)=\frac{0.042}{0.042+0.018}=0.7\Rightarrow 70\%$

5. Solución

(a) Las medidas obtenidas a través del *matlab* son las siguientes:

		Largo cépalo	Ancho cépalo	Largo pétalo	Ancho pétalo
	$\operatorname{Set}\operatorname{osa}$	5.8000	4.4000	1.9000	0.6000
Max	Versicolor	7.0000	3.4000	5.1000	1.8000
	Virginica	7.9000	3.8000	6.9000	2.5000
	Setosa	4.3000	2.3000	1.0000	0.1000
Min	Versicolor	4.9000	2.0000	3.0000	1.0000
	Virginica	4.9000	2.2000	4.5000	1.4000
	Setosa	5.0060	3.4280	1.4620	0.2460
Media	Versicolor	5.9360	2.7700	4.2600	1.3260
	Virginica	6.5880	2.9740	5.5520	2.0260
	Setosa	0.3525	0.3791	0.1737	0.1054
Desvio	Versicolor	0.5162	0.3138	0.4699	0.1978
	Virginica	0.6359	0.3225	0.5519	0.2747
	Setosa	1.5000	2.1000	0.9000	0.5000
Rango	Versicolor	2.1000	1.4000	2.1000	0.8000
	Virginica	3.0000	1.6000	2.4000	1.1000

A continuación se presental algunas de las mediciones de la tabla graficadas

Figure 1: Máximos valores alcanzados por cada tipo de Lirio

Figure 2: Medias alcanzadas por cada tipo de Lirio

Figure 3: Rangos alcanzados por cada tipo de Lirio

(b) Gráfico de los valores:

Figure 4: Posibles "rangos" de valores útiles para clasificar cada lirio a partir de las dimesiones de su pétalo

En el gráfico puede observarse que hay un umbral muy definido entre la clase setosa de Lirio frente a las otras dos. No siendo tan así para los tipos versicolor y virgínica. Por lo que, a simple vista, se puede intuir que si hay errores de clasificacion, es muy probable que sean entre estas dos especies.

- (c) Asumiendo distribución gaussiana
 - i. Código

```
load fisheriris;
NB = NaiveBayes.fit(meas, species);
NB_Clases=NB.predict(meas);
```

- i. Porcentaje de datos mal calculados = 4%
- ii. Matríz de confusión

50	0	0
0	47	3
0	3	47

En la matríz de confusión, todos los valores que se encuentran fuera de la diagonál principal, son valores que se clasificaron mal. A partír de esta observación, se puede calcular el error cometido como $\frac{incorrectos}{total} = \frac{3+3}{150} = 0.04. \ \mathrm{Un} \ 4\% \ \mathrm{de} \ \mathrm{error}.$