Quiz 2 - Été 2017

MAT1720 - Probabilités

Soit X_1 et X_2 deux v.a. <u>indépendantes</u> telles que $X_1 \sim \mathcal{N}(0,1)$ et $X_2 \sim \text{Gamma}(1/2,1/2)$. Notez que

$$f_{X_1}(x_1) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{x_1^2}{2})$$
 et $f_{X_2}(x_2) = \frac{1}{\sqrt{2\pi x_2}} \exp(-\frac{x_2}{2})$.

où $x_1 \in \mathbb{R}$ et $x_2 \in (0, \infty)$. Appliquons le changement de variables

$$Y_1 = g_1(X_1, X_2) \stackrel{\circ}{=} \frac{X_1}{\sqrt{X_2}}, \quad Y_2 = g_2(X_1, X_2) \stackrel{\circ}{=} X_2.$$

- (a) (1 point) Trouvez des fonctions h_1 et h_2 telles que $X_1 = h_1(Y_1, Y_2)$ et $X_2 = h_2(Y_1, Y_2)$.
- (b) (1 point) Quelle est l'image de g_1 et g_2 (respectivement)? Autrement dit, sur quel sousensemble de \mathbb{R} se trouve toute la masse de probabilité de Y_1 et Y_2 (respectivement)?
- (c) (2 points) À partir de (a) et (b), montrez que $D \stackrel{\circ}{=} \det \left(\left(\frac{\partial h_i(y_1, y_2)}{\partial y_j} \right)_{1 \leq i, j \leq 2} \right) = \sqrt{y_2}$.
- (d) (2 points) En prenant pour acquis que

$$f_{Y_1,Y_2}(y_1,y_2) = f_{X_1,X_2}(h_1(y_1,y_2),h_2(y_1,y_2)) \cdot |D|,$$

montrez que $f_{Y_1,Y_2}(y_1,y_2) = \frac{1}{2\pi} \exp\left(-\left(\frac{y_1^2+1}{2}\right) \cdot y_2\right)$ et <u>indiquez le support de la densité</u>.

- (e) (2 points) Montrez que $f_{Y_1}(y_1) = \frac{1}{\pi(y_1^2+1)}$ et <u>indiquez le support de la densité</u>.
- (f) (1 point) Sachant que $\frac{d}{dy} \left[\frac{1}{2} \log(y^2 + 1) \right] = \frac{y}{y^2 + 1}$, calculez $E[Y_1]$.