

Метод розкладання інтеграла

Основні методи невизначеного інтеграла

- Метод розкладання інтеграла
- Метод підстановки
- Метод інтегрування частинами
- Інтегрування елементарних дробів
- Інтегрування раціональних функцій

Метод розкладання інтеграла

Функція f(x)	Загальний вигляд первісних $F(x) + C$	Невизначений інтеграл
0	c	$\int 0 dx = C$
1	x + C	$\int dx = x + C$
$x^n (n \neq -1)$	$\frac{x^{n+1}}{n+1} + C$	$\int x^n dx = \frac{x^{n+1}}{n+1} + C$
$\frac{1}{x}$	$\ln x + C$	$\int \frac{dx}{x} = \ln x + C$
sin x	$-\cos x + C$	$\int \sin x dx = -\cos x + C$
$\cos x$	$\sin x + C$	$\int \cos x dx = \sin x + C$
$\frac{1}{\cos^2 x}$	tg x + C	$\int \frac{dx}{\cos^2 x} = \operatorname{tg} x + C$
$\frac{1}{\sin^2 x}$	$-\operatorname{ctg} x + C$	$\int \frac{x}{\sin^2 x} = -\operatorname{ctg} x + C$
e ^x	$e^{x} + C$	$\int e^x dx = e^x + C$
a ^x	$\frac{a^x}{\ln a} + C$	$\int a^x dx = \frac{a^x}{\ln a} + C$

Знайти невизначений інтегра

$$I = \int \frac{dx}{\sin^2 x \cos^2 x}$$

$$1 \equiv \sin^2 x + \cos^2 x$$

$$I = \int \frac{\sin^2 x + \cos^2 x}{\sin^2 x \cos^2 x} dx = \int \left(\frac{1}{\cos^2 x} + \frac{1}{\sin^2 x}\right) dx$$

$$\int (f(x) \pm \varphi(x)) dx = \int f(x) dx \pm \int \varphi(x) dx.$$

$$I = \int \frac{dx}{\cos^2 x} + \int \frac{dx}{\sin^2 x}$$

