Assignment on Ensemble Learning

Course name: Data Science

Course code: CSEL - 42---

Submitted By

Farhana Akter Suci

ID: B190305001

&

Rifah Sajida Deya

ID: B190305004

Submitted To

Dr. Md. Manowarul Islam

Associate Professor, Department of C S E, Jagannath University

5thth February, 2025

1) Load and Preprocess the Data:

import pandas as pd

data = pd.read_csv("Maternal Health Risk Data Set.csv")

data

 $\overline{\Rightarrow}$

	Age	SystolicBP	DiastolicBP	BS	BodyTemp	HeartRate	RiskLevel
0	25	130	80	15.0	98.0	86	high risk
1	35	140	90	13.0	98.0	70	high risk
2	29	90	70	8.0	100.0	80	high risk
3	30	140	85	7.0	98.0	70	high risk
4	35	120	60	6.1	98.0	76	low risk
1009	22	120	60	15.0	98.0	80	high risk
1010	55	120	90	18.0	98.0	60	high risk
1011	35	85	60	19.0	98.0	86	high risk
1012	43	120	90	18.0	98.0	70	high risk
1013	32	120	65	6.0	101.0	76	mid risk

1014 rows × 7 columns

data.shape

→ (1014, 7)

data.isnull().sum().sum()

→ 0

There is no null value in this dataet

data.info()

→ <class 'pandas.core.frame.DataFrame'> RangeIndex: 1014 entries, 0 to 1013 Data columns (total 7 columns):

> Column Non-Null Count Dtype ----------_ _ _ 0 1014 non-null int64 Age SystolicBP 1014 non-null int64 1 2 DiastolicBP 1014 non-null int64 3 BS 1014 non-null float64 4 BodyTemp 1014 non-null float64 5 HeartRate 1014 non-null int64 6 RiskLevel 1014 non-null object

dtypes: float64(2), int64(4), object(1)

memory usage: 55.6+ KB

data.describe().T

		count	mean	std	min	25%	50%	75%	max
· ·	∖ge	1014.0	29.871795	13.474386	10.0	19.0	26.0	39.0	70.0
Syst	olicBP	1014.0	113.198225	18.403913	70.0	100.0	120.0	120.0	160.0
Dias	tolicBP	1014.0	76.460552	13.885796	49.0	65.0	80.0	90.0	100.0
I	BS	1014.0	8.725986	3.293532	6.0	6.9	7.5	8.0	19.0
Bod	yTemp	1014.0	98.665089	1.371384	98.0	98.0	98.0	98.0	103.0
Hea	rtRate	1014.0	74.301775	8.088702	7.0	70.0	76.0	80.0	90.0

import matplotlib.pyplot as plt

import seaborn as sns

plt.figure(figsize=(6, 4)) sns.countplot(x="RiskLevel", data=data) plt.title("Distribution of Maternal Health Risk Levels") plt.show()

data.hist(figsize=(12, 8), bins=30, edgecolor='black')
plt.suptitle("Feature Distributions", fontsize=14)
plt.show()

Feature Distributions


```
plt.figure(figsize=(10, 6))
sns.boxplot(data=data, palette="Set2")
plt.xticks(rotation=45)
plt.title("Boxplot of Features")
plt.show()
```


Label Encoding the target column

from sklearn.preprocessing import LabelEncoder

```
label_encoder=LabelEncoder()

data['RiskLevel']= label_encoder.fit_transform(data['RiskLevel'])

label_encoder = LabelEncoder()

plt.figure(figsize=(8, 6))
sns.heatmap(data.corr(), annot=True, cmap="coolwarm", fmt=".2f", linewidths=0.5)
plt.title("Feature Correlation Heatmap")
plt.show()
```


Skewness Analysis

```
from scipy.stats import skew
skewness = data.skew()
print("Feature Skewness:\n", skewness)
```

→ Feature Skewness:

Age 0.783063
SystolicBP -0.251189
DiastolicBP -0.048441
BS 1.868203
BodyTemp 1.750988
HeartRate -1.043525
RiskLevel -0.108748

dtype: float64

```
sns.pairplot(data, hue="RiskLevel")
plt.show()
```


Split the dataset

X = data.iloc[:, :-1]

Χ

-		_
-	_	$\overline{}$
	-	

7		Age	SystolicBP	DiastolicBP	BS	BodyTemp	HeartRate
	0	25	130	80	15.0	98.0	86
	1	35	140	90	13.0	98.0	70
	2	29	90	70	8.0	100.0	80
	3	30	140	85	7.0	98.0	70
	4	35	120	60	6.1	98.0	76
	1009	22	120	60	15.0	98.0	80
	1010	55	120	90	18.0	98.0	60
	1011	35	85	60	19.0	98.0	86
	1012	43	120	90	18.0	98.0	70
	1013	32	120	65	6.0	101.0	76

1014 rows × 6 columns

```
y = data.iloc[:, -1]
У
             0
             0
     2
             0
     3
             0
             1
     1009
     1010
            0
     1011
            0
     1012
     1013
     Name: RiskLevel, Length: 1014, dtype: int64
y.unique()
\rightarrow array([0, 1, 2])
y.nunique()
→ 3
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X = scaler.fit_transform(X)
   Label Encoding the target column
y = data['RiskLevel']
```

У

```
1010 0
1011 0
1012 0
1013 2
Name: RiskLevel, Length: 1014, dtype: int64
```

Split dataset: 80% training, 20% testing

```
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

X_train.shape, X_test.shape, y_train.shape, y_test.shape

$\frac{1}{2}$ ((811, 6), (203, 6), (811,), (203,))

Double-click (or enter) to edit
```

2) Bagging Implementation:

test_predictions

 $\rightarrow \overline{}$ array([2, 0, 0, 1, 1, 2, 2, 2, 2, 1, 0, 2, 2, 0, 2, 2, 0, 1, 1, 2, 2, 2,

0, 0, 1, 2, 0, 2, 1, 1, 2, 0, 1, 2, 1, 0, 0, 2, 1, 0, 0, 1, 0, 0, 1, 2, 0, 2, 1, 1, 2, 1, 1, 2, 2, 2, 0, 1, 1, 2, 1, 2, 2, 2, 1, 0,

```
2, 0, 2, 0, 0, 0, 2, 2, 2, 0, 1, 2, 0, 2, 1, 2, 1, 1, 2, 1, 1, 2, 0, 2, 2, 0, 1, 0, 2, 1, 0, 2, 1, 1, 1, 2, 1, 1, 2, 2, 2, 2, 1, 0, 2, 1, 1, 0, 2, 0, 2, 1, 1, 2, 0, 0, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 1, 1, 0, 2, 1, 2, 0, 0, 1, 1, 0, 1, 1, 2, 1, 2, 1, 2, 0, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 2, 1, 1, 0, 1, 2, 1, 2, 0, 2, 1, 1, 1, 0, 2, 1, 2, 0, 1, 0, 1, 2, 1, 2, 2, 2, 2, 1, 2, 2, 0, 1, 2, 2, 2, 2, 0])

a.metrics import accuracy_score
```

```
from sklearn.metrics import accuracy_score

from sklearn.metrics import precision_score, recall_score, f1_score, confusion_matrix

accuracy1=accuracy_score(y_test, test_predictions)
accuracy1

0.8078817733990148

precision1=precision_score(y_test, test_predictions, average='weighted')
precision1

0.814527289486854

recall1=recall_score(y_test, test_predictions, average='weighted')
recall1

0.8078817733990148

f11=f1_score(y_test, test_predictions, average='weighted')
```

→ 0.8084290104530727

accuracy_matrix

f11

Show accuracy matrix as a Dataframe

```
accuracy_matrix = pd.DataFrame({
    "Metric": ["Accuracy", "Precision", "Recall", "F1-Score"],
    "Score": [accuracy1, precision1, recall1, f11]
})
```

```
Metric Score

0 Accuracy 0.807882

1 Precision 0.814527

2 Recall 0.807882

3 F1-Score 0.808429
```

Compute confusion matrix

Plot confusion matrix

```
import seaborn as sns

import matplotlib.pyplot as plt

plt.figure(figsize=(6, 5))
sns.heatmap(conf_matrix1, annot=True)
plt.xlabel("Predicted Labels")
plt.ylabel("True Labels")
plt.title("Confusion Matrix")
plt.show()
```


3) Boosting Implementation:

AdaBoostClassifier(random_state=42)

```
from sklearn.ensemble import AdaBoostClassifier, GradientBoostingClassifier

from xgboost import XGBClassifier

model2=AdaBoostClassifier(n_estimators=50, random_state=42)

model3= GradientBoostingClassifier(n_estimators=50, random_state=42)

model4=XGBClassifier(n_estimators=50, eval_metric='mlogloss', random_state=42)

model2.fit(X_train, y_train)

AdaBoostClassifier
```

```
model3.fit(X_train, y_train)
```

```
GradientBoostingClassifier

GradientBoostingClassifier(n_estimators=50, random_state=42)
```

```
model4.fit(X_train, y_train)
```

```
XGBClassifier

XGBClassifier(base_score=None, booster=None, callbacks=None, colsample_bylevel=None, colsample_bynode=None, colsample_bytree=None, device=None, early_stopping_rounds=None, enable_categorical=False, eval_metric='mlogloss', feature_types=None, gamma=None, grow_policy=None, importance_type=None, interaction_constraints=None, learning_rate=None, max_bin=None, max_cat_threshold=None, max_cat_to_onehot=None, max_delta_step=None, max_depth=None, max_leaves=None, min_child_weight=None, missing=nan, monotone_constraints=None, multi_strategy=None, n_estimators=50, n jobs=None, num parallel tree=None, objective='multi:softprob', ...)
```

AdaBoostClassifier Evaluation

precision2

→ 0.7036267138434321

```
test_predictions = model2.predict(X_test)
test_predictions

array([2, 0, 0, 1, 1, 2, 1, 0, 2, 1, 0, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 0, 1, 2, 1, 0, 0, 1, 1, 0, 2, 2, 0, 0, 1, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1, 0, 2, 2, 2, 1, 1, 1, 0, 2, 2, 2, 1, 1, 1, 0, 2, 2, 2, 1, 1, 1, 1, 2, 1, 1, 0, 0, 0, 2, 2, 0, 1, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 0, 1, 1, 0, 1, 0, 0, 1, 2, 1, 1, 0, 2, 2, 2, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2, 0, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2])

accuracy2=accuracy_score(y_test, test_predictions)
accuracy2

0.6945812807881774
```

precision2=precision_score(y_test, test_predictions, average='weighted')

```
recall2=recall_score(y_test, test_predictions, average='weighted')
recall2

→ 0.6945812807881774

f12=f1_score(y_test, test_predictions, average='weighted')
f12

→ 0.69643113617261
```

Show accuracy matrix as a Dataframe

```
accuracy_matrix = pd.DataFrame({
    "Metric": ["Accuracy", "Precision", "Recall", "F1-Score"],
    "Score": [accuracy2, precision2, recall2, f12]
})
```

accuracy_matrix

```
Metric Score

0 Accuracy 0.694581

1 Precision 0.703627

2 Recall 0.694581

3 F1-Score 0.696431
```

Compute confusion matrix¶

```
plt.figure(figsize=(6, 5))
sns.heatmap(conf_matrix, annot=True)
plt.xlabel("Predicted Labels")
plt.ylabel("True Labels")
plt.title("Confusion Matrix")
```

plt.show()

GradientBoostingClassifier Evaluation

```
test_predictions = model3.predict(X_test)
test_predictions
\rightarrow \overline{\phantom{a}} array([2, 0, 0, 1, 1, 1, 1, 2, 2, 1, 0, 1, 1, 1, 2, 1, 0, 1, 1, 2, 2, 2,
            2, 0, 1, 2, 0, 1, 1, 1, 1, 0, 1, 2, 1, 0, 0, 2, 1, 0, 0, 2, 0, 0,
            1, 2, 0, 2, 1, 1, 1, 1, 1, 2, 2, 2, 0, 1, 1, 1, 1, 1, 2, 1, 1, 0,
            2, 1, 2, 0, 0, 0, 2, 2, 2, 0, 1, 2, 0, 1, 1, 2, 1, 1, 2, 1, 1, 2,
            0, 2, 2, 2, 1, 0, 2, 1, 2, 1, 0, 2, 1, 0, 2, 1, 2, 2, 1, 2, 1, 2,
            2, 2, 1, 0, 2, 1, 1, 0, 2, 0, 2, 1, 1, 2, 1, 0, 2, 2, 1, 2, 1, 1,
            2, 2, 1, 1, 0, 2, 1, 2, 0, 2, 0, 0, 1, 1, 0, 1, 1, 2, 1, 2, 2, 2,
            0, 2, 1, 2, 1, 0, 1, 1, 1, 2, 1, 2, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0,
            2, 1, 1, 1, 0, 1, 2, 0, 0, 1, 0, 1, 1, 1, 2, 2, 2, 2, 1, 1, 2, 0,
            1, 1, 2, 2, 0])
```

accuracy3=accuracy_score(y_test, test_predictions) accuracy3

```
precision3=precision_score(y_test, test_predictions, average='weighted')
precision3

① 0.7495390214602038

recall3=recall_score(y_test, test_predictions, average='weighted')
recall3

② 0.7487684729064039

f13=f1_score(y_test, test_predictions, average='weighted')
f13

② 0.7479471055637963
```

Show accuracy matrix as a Dataframe

```
accuracy_matrix = pd.DataFrame({
    "Metric": ["Accuracy", "Precision", "Recall", "F1-Score"],
    "Score": [accuracy3, precision3, recall3, f13]
})
```

accuracy_matrix

```
Metric Score

O Accuracy 0.748768

Precision 0.749539

Recall 0.748768

The score 0.747947
```

Compute confusion matrix¶

[1, 64, 15],

```
conf_matrix = confusion_matrix(y_test, test_predictions)

conf_matrix

array([[38, 4, 5],
```

```
plt.figure(figsize=(6, 5))
sns.heatmap(conf_matrix, annot=True)
plt.xlabel("Predicted Labels")
plt.ylabel("True Labels")
plt.title("Confusion Matrix")
plt.show()
```


XGBClassifier Evaluation

```
test_predictions = model4.predict(X_test)
test_predictions
```

```
2, 1, 1, 1, 0, 2, 1, 0, 0, 1, 0, 1, 1, 1, 2, 2, 2, 2, 1, 1, 2, 0, 1, 2, 2, 2, 0])
```

```
accuracy4=accuracy_score(y_test, test_predictions)
accuracy4
```

0.8423645320197044

```
precision4=precision_score(y_test, test_predictions, average='weighted')
precision4
```

→ 0.8427400801169274

```
recall4=recall_score(y_test, test_predictions, average='weighted')
recall4
```

→ 0.8423645320197044

```
f14=f1_score(y_test, test_predictions, average='weighted')
f14
```

0.8423566439324042

Show accuracy matrix as a Dataframe

```
accuracy_matrix4 = pd.DataFrame({
    "Metric": ["Accuracy", "Precision", "Recall", "F1-Score"],
    "Score": [accuracy4, precision4, recall4, f14]
})
```

accuracy_matrix4

```
Metric Score

0 Accuracy 0.842365
1 Precision 0.842740
2 Recall 0.842365
3 F1-Score 0.842357
```

Compute confusion matrix

```
conf_matrix4 = confusion_matrix(y_test, test_predictions)
conf_matrix4
```

```
plt.figure(figsize=(6, 5))
sns.heatmap(conf_matrix4, annot=True)
plt.xlabel("Predicted Labels")
plt.ylabel("True Labels")
plt.title("Confusion Matrix")
plt.show()
```


Choose base models among AdaBoostClassifier GradientBoostingClassifier and XGBClassifier

```
models = {
    'Bagging':model1,
    'AdaBoost': model2,
    'GradientBoosting': model3,
```

```
'XGBoost': model4

}

test_accuracies = {}

for name, model in models.items():
    model.fit(X_train, y_train)
    test_predictions = model.predict(X_test)
    test_accuracies[name] = accuracy_score(y_test, test_predictions)

plt.figure(figsize=(10, 5))
plt.bar(test_accuracies.keys(), test_accuracies.values(), color=['blue', 'green', 'red','ora
plt.xlabel('Bagging and Boosting Methods')
plt.ylabel('Test Accuracy')
plt.title('Comparison of Ensemble Methods on Maternal Health Risk Dataset (Test Accuracy)')
plt.ylim([0.5, 1.0]) # Adjusted for dataset accuracy range
plt.show()
```



```
best_model_name = max(test_accuracies, key=test_accuracies.get)
```

```
best_model_name
```

```
print("\nTest Accuracy:")
for model, acc in test_accuracies.items():
   print(f"{model}: {acc:.4f}")
\rightarrow
    Test Accuracy:
    Bagging: 0.8079
    AdaBoost: 0.6946
    GradientBoosting: 0.7488
    XGBoost: 0.8424
\overline{\Rightarrow}
    ✓ Best Model: **XGBoost**
best_model = models[best_model_name]
best_model.fit(X_train, y_train)
best_test_predictions = best_model.predict(X_test)
Start coding or generate with AI.
best_test_accuracy = accuracy_score(y_test, best_test_predictions)
print(f"@ Best Model Test Accuracy: {best_test_accuracy:.4f}")
```

4) Stacking Implementation:

```
from sklearn.ensemble import StackingClassifier

from sklearn.tree import DecisionTreeClassifier

from sklearn.svm import SVC
```

```
from sklearn.linear_model import LogisticRegression
model5=StackingClassifier(
        estimators=[('dt', DecisionTreeClassifier()), ('svm', SVC(probability=True)), ('lr',
        final_estimator=LogisticRegression()
    )
model5.fit(X train, y train)
\rightarrow
                         StackingClassifier
                  dt
                                  SVM
                                                 1r
       ▶ DecisionTreeClassifier
                                  ▶ SVC
                                        ▶ LogisticRegression
                          final estimator
                        ▶ LogisticRegression
test_predictions = model5.predict(X_test)
test_predictions
\rightarrow array([2, 0, 0, 1, 1, 2, 2, 2, 2, 1, 0, 2, 2, 0, 2, 2, 0, 1, 1, 2, 2, 2,
            0, 0, 0, 2, 0, 1, 1, 1, 2, 0, 1, 2, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0,
            1, 2, 0, 2, 1, 1, 2, 1, 1, 2, 2, 2, 0, 1, 1, 2, 1, 2, 2, 1, 1, 0,
            2, 0, 2, 0, 0, 0, 2, 2, 2, 0, 0, 0, 0, 2, 1, 2, 1, 1, 2, 1, 1, 2,
            0, 2, 2, 0, 1, 0, 2, 1, 2, 1, 0, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2,
            2, 2, 1, 0, 2, 1, 1, 0, 1, 0, 2, 1, 1, 2, 0, 0, 2, 2, 2, 1, 1, 1,
            2, 2, 1, 1, 0, 2, 1, 2, 0, 2, 0, 0, 1, 1, 0, 1, 1, 2, 1, 2, 1, 2,
            0, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 2, 2, 1, 1, 0, 1, 2, 1, 2, 0,
            2, 1, 1, 1, 0, 2, 1, 2, 0, 1, 0, 1, 2, 1, 2, 2, 2, 2, 1, 2, 2, 0,
            1, 2, 2, 2, 0])
accuracy5=accuracy_score(y_test, test_predictions)
accuracy5
→ 0.8226600985221675
precision5=precision_score(y_test, test_predictions, average='weighted')
precision5
→ 0.8252832151323424
recall5=recall_score(y_test, test_predictions, average='weighted')
recall5
→ 0.8226600985221675
```

```
f15=f1_score(y_test, test_predictions, average='weighted')
f15
```

0.8225547363607623

Show accuracy matrix as a Dataframe

```
accuracy_matrix = pd.DataFrame({
    "Metric": ["Accuracy", "Precision", "Recall", "F1-Score"],
    "Score": [accuracy5, precision5, recall5, f15]
})
```

accuracy_matrix

→		Metric	Score
	0	Accuracy	0.822660
	1	Precision	0.825283
	2	Recall	0.822660
	3	F1-Score	0.822555

plt.title("Confusion Matrix")

plt.show()

Compute confusion matrix

5) Compare the performance of Bagging, Boosting, and Stacking

pd.DataFrame(performance)

```
        Models
        Accuracy
        Precision
        Recall
        F1-Score

        0
        Bagging
        0.807882
        0.814527
        0.807882
        0.808429

        1
        Boosting(XGB (best))
        0.842365
        0.842740
        0.842365
        0.842357

        2
        Stacking
        0.822660
        0.825283
        0.822660
        0.822555
```

ax.set_title('Model Accuracy Comparison')

ax.set_xticks(x)

plt.ylim(0.7, 0.9)

ax.legend()

plt.show()

ax.set_xticklabels(models)

```
performance = {
    'Models': ['Bagging', 'Boosting (XGB Best)', 'Stacking'],
    'Accuracy': [accuracy1, accuracy4, accuracy5] # Only accuracy values
}

models = performance['Models']
accuracy_values = performance['Accuracy']

import numpy as np

x = np.arange(len(models))
width = 0.5

fig, ax = plt.subplots(figsize=(8, 5))
ax.bar(x, accuracy_values, width, color='blue', label='Accuracy')
ax.set_xlabel('Models')
ax.set_ylabel('Accuracy Score')
```



```
model_names = ['Bagging', 'Boosting (XGB Best)', 'Stacking']

conf_matrices = [conf_matrix1, conf_matrix4, conf_matrix5]

fig. axes = plt.subplots(1, 3, figsize=(15, 5))
```

```
fig, axes = plt.subplots(1, 3, figsize=(15, 5))
for i, ax in enumerate(axes):
    sns.heatmap(conf_matrices[i], annot=True, fmt="d", cmap="Blues", cbar=False, ax=ax)
    ax.set_title(f'Confusion Matrix - {model_names[i]}')
    ax.set_xlabel('Predicted Label')
    ax.set_ylabel('True Label')

plt.tight_layout()

plt.show()
```


6) Select the Model (XGB Classifier) Analysis

```
accuracy_matrix4 = pd.DataFrame({
    "Metric": ["Accuracy", "Precision", "Recall", "F1-Score"],
    "Score": [accuracy4, precision4, recall4, f14]
})
```

pd.DataFrame(accuracy_matrix4)

```
Metric Score

0 Accuracy 0.842365
1 Precision 0.842740
2 Recall 0.842365
3 F1-Score 0.842357
```

```
plt.figure(figsize=(6, 5))
sns.heatmap(conf_matrix4, annot=True)
plt.xlabel("Predicted Labels")
```

plt.ylabel("True Labels")
plt.title("Confusion Matrix")
plt.show()

XGB Classifier (Best) with Validation

```
X_train, X_temp, y_train, y_temp = train_test_split(X, y, test_size=0.2, random_state=42)
X_val, X_test, y_val, y_test = train_test_split(X_temp, y_temp, test_size=0.5, random_state=
```

final_model=XGBClassifier(n_estimators=50, eval_metric='mlogloss', random_state=42)

final_model.fit(X_train, y_train)

plt.show()

XGBClassifier

final_evaluation

```
→ {'XGB': [0.8423645320197044], 'XGB(Validation)': [0.8529411764705882]}
```

```
final_evaluation = {
    'XGB': [0.8423645320197044],
    'XGB(With Validation)': [0.8529411764705882]
}
```

```
models = list(final_evaluation.keys())
accuracies = [val[0] for val in final_evaluation.values()]
```

```
plt.figure(figsize=(10, 5))
plt.bar(models, accuracies, color=['blue', 'red'])
plt.xlabel('Models')
plt.ylabel('Test Accuracy')
plt.title('Comparison of XGB')
plt.ylim([0.8, 0.9])
plt.show()
```


sns.heatmap(conf_matrices[i], annot=True, fmt="d", cmap="Blues", cbar=False, ax=ax

fig, axes = plt.subplots(1, 2, figsize=(12, 5))

ax.set_title(f'Confusion Matrix - {model_names[i]}')

for i, ax in enumerate(axes):

End of Assignment

Start coding or generate with AI.