Mathematical and Computer Modeling of Biological Processes

Practice 10

Consider a model with two bacterial strains, b_1 (nonresistant) and b_2 (antibiotic resistant), from Lecture 11.

Take the following values of the model parameters: $\lambda_1=2.7,\ \lambda_2=0.9,\ \nu_1=3,\ \nu_2=1,$ $\alpha_1=2,\ \alpha_2=0.2,\ M=1,\ T=28,$ and

$$P(b_1, b_2, 0) = \begin{cases} 3 & \text{if} & 1 \le b_1 + b_2 \le 2, \\ 0 & \text{if} & b_1 + b_2 < 1 \text{ or } b_1 + b_2 > 2. \end{cases}$$

Task. Compute the total amount of the antibiotic-resistant bacterial strain, $Q_2(T)$, for two treatment strategies:

- 1) h(t) = 5 if $0 < t \le 14$, h(t) = 0 if $14 < t \le 28$;
- 2) h(t) = 10 if $0 < t \le 7$, h(t) = 0 if $7 < t \le 28$.

Determine which of the two treatments yields a smaller $Q_2(T)$. Plot the results.

(4 points)