南京邮电大学 2016/2017 学年第 一 学期

《 信号与系统 B 》期末试卷(A)

院(系)				字号			姓名			
题号 一	=	三	四	五	六	七	八	九	+	总分
得分										
1.	、 选择 下列信 ⁻	号为能量	量信号的	力是	B		u(t)	D. co	$\cos \frac{\omega_0 t}{t} +$	$5 \sin \frac{\omega_0 t}{5}$
 系统的微分 A. 线性时3 信号卷积u(t-1)u(t-1) 	方程为; 变 t + 1) * 1	y(t) = q B. 线 $u(t-2)$	v ² (0)+ 性时不)=	7 lg x(t 变),则该 C. 非: [。]	系统是 线性时	: <i>C</i> 不变	D.	, 系统。	,
$4. \int_{-\infty}^{\infty} 2\delta(t-$	2)u(t –	8)dt =	0	_ •						
A. 2 B 5. 关于无失真	. 1 传输系约	C. 抗的描述	0 公不正确	D. o 的是_	<u> </u>	,	_ ,•			
A.无失真传输到	系统的系	统函数	Η(ω)	= Ke ^{-ja}	[⋈] 。 B.无	失真传	输系统	的幅频	特性为	一常数
C.无失真传输》	系统的相	频特性	为一常	数			大大 大量信号		统不会	产生新
6. 信号 6Sa(1 A. 100	B. 60	0	C. 200		D. 120	00				
7. 已知 <i>F(z)</i> =	$=\frac{2z}{(z-1)}$	$\frac{z+1}{(z-0.5)}$, 序3	列 $f(k)$)的终值	为	В	°		
8. 己知 F(s)=	$\frac{2s+1}{s+3}$,	则原函	i数 $f(t)$	的初值	$f(0^{\scriptscriptstyle +})$	为	А_			
A5 9. 周期信号 sin A. 2πs	n(4t)+ co	s(6t)的)	周期 T€	等于		D	•			

《信号与系统 B》试卷 (A) 第 1 页 共 4 页

10. 序列 $x(k) = \{2816\}$, $h(k) = \{947\}$, y(k) = x(k) * h(k), 则 y(0) = x(k) * h(k)C. 76 A. 45 B. 80 D. 114 二、填空题(每空3分,共21分) 1.周期信号 f(t)如图1所示,其基波频率为<u>0.2</u>Hz 2.已知 $f(t) \leftrightarrow F(\omega)$,则 tf(2t) 的傅立叶变换为 $\frac{1}{2\sqrt{d\omega}}$

- 3. 系统函数为 $H(s) = \frac{s+2}{s^2+3s+2}$,则该系统的微分方程为 $y'(t)+3y'(t)+2y'(t)=\chi(t)+2\chi(t)$
- 4. z 变换 $F(z) = \frac{3z}{2z^2 z 1}$ 的原函数 f(k)等于 $\left[\left(-\frac{1}{\nu} \right)^k \right] \mathcal{U}(k)$
- 5. 若序列 f(k)的 Z变换为 F(z),则 序列 $\sum_{n=0}^{k} a^n f(n)$ 的 Z变换为 $\frac{3}{3-1}$ $F(\frac{3}{4})$ 6. 差分方程 y(k+2)-y(k+1)-2y(k)=3x(k), 对应的系统 稳定系统。(填"是"或"不是") $H(3)=\frac{3}{3^2-3^{-2}}=\frac{3}{(3+1)(3-2)}$ -ct-d)

 $f(k) = 2\delta(k+1) - \delta(k) + 2\delta(k-1) + \delta(k-2)$,画出该信号波形。(4分)

周期信号双边频谱如图所示,(1)画出其单边频谱; 型傅立叶级数表达式;(3)求该信号平均功率。 (10分) $f(t) = 2.5 + 400(t + \frac{2\pi}{3}) + 2 cm(t + \frac{\pi}{3})$ (3) $p = (2.5)^2 + \frac{1}{1}x(4)^2 + \frac{1}{1}x(1)^2 = 16.25(W)$ 五、图示系统由几个子系统组合而成,各子系统的冲激响应为 $h_i(t) = \delta(t-1)$, $h_2(t) = u(t) - u(t-3)$, 求该系统的冲激响应 h(t)。 (8分) $h(t) = \left[S(t) + S(t-1) + S(t-2) \right] \times \left[u(t) - u(t-3) \right]$ = u(t) - u(t-3) + u(t-1) - u(t-4) + u(t-1) - u(t-5)六、某离散系统的差分方程为 y(k+2) - y(k+1) - 2y(k) = x(k), 其 中激励x(k) = u(k),用 Z变换法求该系统的零状态响应。(10分) M': $H(x) = \frac{1}{x^2 - x - 2}$, $\chi(x) = \frac{x}{x^{-1}}$ $\gamma_{25}(3) = \mu(3) \cdot \chi(3) = \frac{3}{(3^{2}-3^{-2})(3^{-1})} = \frac{3}{(3^{+1})(3^{-2})(3^{-1})} = \frac{3}{(3^{+1})(3^{-2})(3^{-2})} = \frac{3}{(3^{-1})(3^{-2})(3^{-2})} = \frac{3}{(3^{-1})(3^{-2})(3^{-2})} = \frac{3}{(3^{-1})(3^{-2})(3^{-2})} = \frac{3}{($ $y_{2s}(k) = \mathcal{Z}^{-1}[\gamma_{1s}(3)] = \frac{1}{b}(-1)^{k} + \frac{1}{3}(2)^{k} - \frac{1}{2}]U(k)$ 《信号与系统 B》试卷(A) 第 3 页 共 4 页

→ Y(z) 离散系统的模拟图如右图所示, (2) 求系统单位函数响应: (3) 写出系统差分方程。 $\frac{1}{2} \left(\frac{1}{3} \right) \left(\frac{1}{3} \right) = \frac{1}{3} \left(\frac{1}{3} \right) \cdot \frac{1}{3} \cdot \frac{$ $(1 - \frac{3}{4}3^{-1} + \frac{1}{8}3^{-2}) \gamma(3) = \chi(3)$ $H(\delta) = \frac{\gamma(\delta)}{\chi(\delta)} = \frac{1}{1 - \frac{3}{4} \delta^{-1} + \frac{1}{4} \delta^{-2}} = \frac{\delta^{-1}}{\delta^{-2} + \frac{3}{4} \delta^{-1}} = \frac{\delta^{-1}}{\delta^{-2} + \frac{3}{4} \delta^{-1}}$ $(2) H(\delta) = \frac{3^2}{(3-\frac{1}{2})(3-\frac{1}{2})} = 3\left(\frac{2}{3-\frac{1}{2}} + \frac{-1}{3-\frac{1}{2}}\right)$ $h(k) = \mathcal{Z}[H(x)] = 2\left(\frac{1}{2}\right)^k u(k) - \left(\frac{1}{4}\right)^k u(k)$ (3) 尾分析治力: y(k+1) - 是y(k+1) + 是y(k) = x(k+2) 八、已知系统微分方程 y''(t)+5y'(t)+6y(t)=2x'(t)+x(t),系统初始状 绝 不 态为 $y(0^-)=1,y'(0^-)=2$,输入激励信号 $x(t)=e^{-t}u(t)$ 。试用拉氏变换分 作 弊 析法,求解系统全响应y(t)。 A: 方程的边取栏(建模, 得: 527(s) - 59(0-) - 9'(0-) + 5[57(s) - 9(0-)]+67(s)=25x(s)+x(s) 指的一)=1,为10-)=2成八少式,符: $\chi(s) = \frac{2S+1}{s^2+s+b} \chi(s) + \frac{s+7}{s^2+s+b}$ $\chi(s) = \mathcal{L}[\chi(t)] = \frac{1}{s+1}$ $\gamma(s) = \frac{s^2 + 10s + 8}{(s+2)(s+3)(s+1)} = \frac{8}{s+2} + \frac{-2.5}{s+3} + \frac{-0.5}{s+1}$

《信号与系统 B》试卷(A) 第 4 页 共 4 页

y(t) = 2 [[(s)] = ge-rt-b.se-3t_0.se-t, t>0