Exercise 10.8 Let $x, z, y \in O$ and $y_k \in O$ s.t. $y_k \to y$. By the definition of inf and the triangle inequality we know

$$\underline{\omega}(z) \le \omega(y_k) + \|z - y_k\| \le \omega(y_k) + \|z - x\| + \|x - y_k\| \implies \underline{\omega}(z) \le \liminf_k \omega(y_k) + \|z - x\| + \|x - y\|$$

where the implication comes from taking \liminf of the rhs. Lsc of ω tells us $-\omega(y) \leq -\liminf_k \omega(y_k)$ so

$$\underline{\omega}(z) - \omega(y) \le \|z - x\| + \|x - y\| \implies \underline{\omega}(z) \le \|z - x\| + \omega(y) + \|x - y\|$$

Since this inequality holds for all y it holds for inf over y and hence $\underline{\omega}(z) \leq ||z - x|| + \underline{\omega}(x)$. Symmetry gives us the same inequality but with x and z flipped so that

$$|\underline{\omega}(z) - \underline{\omega}(x)| \le ||z - x||$$

hence $\underline{\omega}$ is Lipschitz with constant 1.

Exercise 10.14 I'm somewhat confused here, and am thinking maybe I should skip this one so I can get onto more convex analysis?

My confusion: I'm not sure how to determine whether A being asymptotically stable for F means A is asymptotically stable for F_K (naively I think this implication shouldn't hold, since there are potentially more solutions to the regularization than there were to the original inclusion). If A is asymptotically stable, then I think we can use Fact 10.13 above to get our desired functions for F_K , but these functions also apply for F since $F(x) \subset F_K(x)$ for every x.

I don't understand how the hint plays into any of this either, but I'm guessing it addresses my above confusion, somehow?

Exercise 10.16 Put $A = \{v \mid v \cdot \nabla f(\overline{x}) \leq 0\}$. Let $v \in T_C(\overline{x})$ then $\exists \lambda \searrow 0$ and $x_i \in C$ s.t. $x_i \to x$ where $\frac{x_i - x}{\lambda_i} \to v$. We have

$$x_i = \overline{x} + \lambda_i \frac{x_i - x}{\lambda_i}$$

and so because f is continuously differentiable

$$\lim_{i \to \infty} \frac{f(x_i) - f(\overline{x})}{\lambda_i} = \nabla f(\overline{x}) \cdot v$$

Since $x_i \in C$ $f(x_i) \le f(\overline{x})$ so that $f(x_i) - f(\overline{x}) \le 0$ and thus $\nabla f(\overline{x}) \cdot v \le 0$ so that $v \in A$.

Now let $v \in A$. If $v \cdot \nabla f(\overline{x}) < 0$ then

$$\frac{f(\overline{x} + hv) - f(\overline{x})}{h} < 0$$

for small enough h. Form a sequence $h_i \to 0$ of these small enough h and put $x_i = \overline{x} + h_i v$ then $f(x_i) < f(\overline{x})$ so that $x_i \in C$, $h_i \searrow 0$ and

$$\frac{x_i - \overline{x}}{h_i} = \frac{\overline{x} + h_i v - \overline{x}}{h_i} = v$$

so that $v \in T_C(\overline{x})$. If $v \cdot \nabla f(\overline{x}) = 0$ then, because $\nabla f(\overline{x}) \neq 0$ there's a direction w so that $w \cdot \nabla f(\overline{x}) < 0$. Put $\psi : [0,1] \to \mathbb{R}$ given by

$$\psi(\lambda) = ((1 - \lambda)w + \lambda v) \cdot \nabla f(\overline{x})$$

then ψ is continuous and $\psi(0) < 0$ and $\psi(1) = 0$. By IVT ψ achieves each value in between $\psi(0)$ and $\psi(1)$ so we can find $\lambda_i \to 1$ so that $\psi(\lambda_i)$ is negative, increasing and converges to 0.Because $((1 - \lambda_i)w + \lambda_i v) \cdot \nabla f(\overline{x}) < 0$ we know $(1 - \lambda_i)w + \lambda_i v \in T_C(\overline{x})$. Since $T_C(\overline{x})$ is closed we know $v = \lim_i (1 - \lambda_i)w + \lambda_i v \in C$, completing the proof.

If $\nabla f(\overline{x}) = 0$ then the above equality breaks at saddle points. For example $f(x) = x^3$, f'(0) = 0 and $T_C(0) = \mathbb{R}^-$, but $1 \cdot f'(0) = 0 \implies 1 \in A$, so that $T_C(0) \neq A$.

Exercise 10.17 Trivially if $x \notin C$ then neither side of the \iff can ever be true, so that vacuously the \iff holds. For $x \in \text{int } C$ $T_C(x) = \mathbb{R}^n$, so we only need to show the right hand implication holds for any v. For small enough h $x + hv \in C$ so that $d_C(x + hv) = 0$, thus the right hand liminf vanishes, so the claim holds. Lastly consider $x \in \partial C$. If $v \in T_C(x)$ then $\exists x_i \in C \to x$ and $\lambda_i \searrow 0$ so that

$$0 = \lim_{i \to \infty} \left\| \frac{x_i - x}{\lambda_i} - v \right\| = \lim_{i \to \infty} \frac{\|x_i - x - \lambda_i v\|}{\lambda_i} \ge \lim_{i \to \infty} \frac{d_C(x + \lambda_i v)}{\ge} \liminf_{h \searrow 0} \frac{d_C(x + hv)}{h} \ge 0$$

thus the right hand side holds. For the reverse implication we know $\exists \lambda_i \searrow 0$ so that

$$0 = \liminf_{h \searrow 0} \frac{d_C(x + hv)}{h} = \lim_{i \to \infty} \frac{d_C(x + \lambda_i v)}{\lambda_i}$$

And for each i by definition $\exists x_{i,k} \in C$ so that $\lim_{k\to\infty} ||x+\lambda_i v - x_{i,k}|| \to d_C(x+\lambda_i v)$. Notably

$$||x - x_{i,i}|| \le ||x + \lambda_i v - x_{i,i}|| + \lambda_i ||v|| \to 0 \text{ as } i \to \infty$$

so that $x_{i,i} \to x$ and

$$0 = \lim_{i \to \infty} \frac{d_C(x + \lambda_i v)}{\lambda_i} = \lim_{i \to \infty} \frac{\|x + \lambda_i v - x_{i,i}\|}{\lambda_i} = \lim_{i \to \infty} \left\| \frac{x_{i,i} - x}{\lambda_i} - v \right\|$$

so that $\frac{x_{i,i}-x}{\lambda_i} \to v$, thus $v \in T_C(x)$.