ML Hackathon Techkriti 2k21

Problem Statement: Classifying images into 6 categories (buildings, forest, glacier, mountain, sea, and street)

ML library used: TensorFlow (!pip install tensorflow to install

tensorflow)

GPU used: NVIDIA TESLA P100

Dataset Details: Following is the distribution of data

We can see that the

training data and test data are **uniformly distributed** over 6 classes. So, **Accuracy is the best metric** that can be used to test our model.

Training Details:

- Data pipeline is prepared using tf.keras.preprocessing.ImageDataGenerator and augmentation is added to Training data to make sure that the model is not over-fitting. (More details can be found in training.ipynb file)
- Pretrained models (tf.keras.applications) are used as base model for training and few FC layers are added to top of base model.
- Loss: Categorical Cross Entropy; Metric: Categorical Accuracy; Optimizer: Adam optimizer.
- Call-backs used : Reduce ROn plateau,

Model checkpoint, Early stopping

 Best model is obtained with high validation categorical accuracy and it is further used to test on test data (seg_pred,seg_test).

Results: (Go to experiments folder, more details in experiments.csv file)

Notebook	exp0	exp1	exp2	exp3	exp4	exp5	exp6	exp7	exp8	exp9	exp10	exp 11	exp12
Accuracy	0.935	0.9413	0.941	0.9417	0.935	0.9343	0.937	0.938	0.938	<mark>0.946</mark>	0.945	0.937	0.942
Run time	5458	4570	7960	5996	3271	2161	6945	7459	3799	<mark>2560</mark>	3001	2593	8291

Steps to run scripts:

- Run the training.ipynb file to retrain the model. This will save the model in the ./
 directory as best_model.h5. (on an avg 4-5min per epoch)
- Run the test.py file to obtain the test.csv file. Also, Accuracy on test data is also printed. (1-2min time). Format of csv is as follows

original_label	predicted_value	result
0	0	correct
0	1	incorrect

- Run prediction.py to obtain prediction.csv file in in which the predictions column contains the name of image in the lexicographical order of images. (1-2 min time)
- Experiments (in codes folder) folder contains all the notebooks of various models and variations I tried.
- In test.csv file labels are : {0: 'buildings', 1: 'forest', 2: 'glacier', 3: 'mountain', 4: 'sea', 5: 'street'}
- It is suggested to run the scripts on GPU /Colab/Kaggle as required RAM and computation are high.
- Accuracy is checked from test.csv file.

Best Accuracy on test data: 0.945677

Base pretrained model: DenseNet201 (no freeze layers)