Darknet on Raspberry Pi - LeNet and YOLO -

2019 - 2020

Ando Ki, Ph.D. adki@future-ds.com

Contents

- Prerequisites
- What is Darknet
- Building Darknet
- Running LeNet using Darknet
- Running Tiny-YOLO using Darknet
- Darknet profiling
- How to deal with 'gemm_nn'
- Darknet using OpenMP
- Running Tiny-YOLO with USB-CAM
- Running Tiny-YOLO with video stream

Prerequisites

- Optional packages
 - ▶ OpenBLAS
 - Basic Linear Algebra Subroutines
 - OpenCV
 - Open Computing Vision Library

- Install OpenBLAS
 - ▶ From package repository
 - \$ sudo apt-get install libopenblas-dev
 - Check include files and libraries
 - \$ pkg-config --cflags openblas
 - -l/usr/include/arm-linux-gnueabihf
 - \$ pkg-config --libs openblas
 - -lopenblas
- Install OpenC
 - ► Refer to 'InstallOpenCV.sh'
 - ► Check include files and libraries
 - \$ pkg-config --cflags opencv
 - \$ pkg-config --libs openblas

1

What is Darknet

- Darknet is an open source neural network framework written in C and CUDA (C ompute Unified Device Architecture) supporting CPU (Central Processing Unit) and GPU (Graphical Processing Unit) computation.
 - ► Site: https://pjreddie.com/darknet/
 - ► GitHub: https://github.com/pjreddie/darknet
 - This version may cause error on Rasbperry Pi while running.
- Alexey's version
 - https://github.com/AlexeyAB/darknet

"Darknet: Open Source Neural Networks in C", Joseph Redmon, http://pjreddie.com/darknet, 2013-2016.

Building Darknet

- Visit
 - ► https://github.com/AlexeyAB/darknet
- Download
 - make a directory
 - ▶ \$ mkdir work && cd work
 - \$ git clone https://github.com/AlexeyAB/darknet.git
 - \$ mv darknet darknet-alexey
- Modify 'Makefile'
 - cd darknet-alexey
 - \$ vi Makefile
 - set 1 for OpenCV if you installed it.
- Compile
 - ▶ \$ make
- At last
 - 'darknet': executable

GPU=0 CUDNN=0 CUDNN_HALF=0 OPENCV=1 AVX=0 OPENMP=0 LIBSO=0 ZED CAMERA=0

- Nvidia CUDA related
 - ⇒ GPU, CUDNN, CUDNN_HALF
- x86 Vector related
 - ⇒ AVX
- ▶ Multi-core/computer related
 - OpenMP
- Shared library
 - ⇒ LIBSO
- 3D camera
 - ⇒ ZED_CAMERA

5

Building Darknet

- This example follows the step of building Darknet
 - ► Step 1: go to your project directory
 - ⇒ [user@host] cd \$(PROJECT)/codes/darknet-projects/darknet-alexey-blas
 - ▶ Step 2: see the codes and modify 'Makefile'
 - ► Step 3: run
 - [user@host] make

[user@host] cd \$(PROJECT)/codes/darknet-projects/darknet-alexey-blas [user@host] make [user@host]

Darknet usage

- \$./darknet function [function_arguments]
- functions
 - look 'darknet/examples/darknet.c' file and its related C files.
 - detect [cfg_file] [weights_file] [options]
 - detector [train/test/valid] [data_cfg] [cfg_file] [weights_file] [options]
 - yolo [train/test/valid] [cfg_file] [weights_file] [options]
 - cifar [train/test/valid] [cfg_file] [weights_file] [options]
 - \$./darknet detect cfg/yolov3.cfg weights/yolov3.weights data/dog.jpg
 - \$./darknet detector test cfg/coco.data cfg/yolov3.cfg weights/yolov3.weights data/dog.jpg
 - \$./darknet detector test cfg/voc.data cfg/yolo.cfg weights/yolo.weights data/dog.jpg

7

Contents

- Prerequisites
- What is Darknet
- Building Darknet
- Running LeNet using Darknet
- Running Tiny-YOLO using Darknet
- Darknet profiling
- How to deal with 'gemm_nn'
- Darknet using OpenMP
- Running Tiny-YOLO with USB-CAM
- Running Tiny-YOLO with video stream

Contents

- Prerequisites
- What is Darknet
- Building Darknet
- Running LeNet using Darknet
- Running Tiny-YOLO using Darknet
- Darknet profiling
- How to deal with 'gemm_nn'
- Darknet using OpenMP
- Running Tiny-YOLO with USB-CAM
- Running Tiny-YOLO with video stream

- use 'fim' to see the result
- \$ fim predect.png

1

Network visualizer

- https://github.com/lutzroeder/netron
- https://lutzroeder.github.io/netron/
 - ▶ load config file
 - "yolov3-tiny.cfg"

Contents

- Prerequisites
- What is Darknet
- Building Darknet
- Testing Darknet using Tiny-YOLO
- Darknet profiling
- How to deal with 'gemm nn'
- Darknet using OpenMP
- Running Tiny-YOLO with USB-CAM
- Running Tiny-YOLO with video stream

19

Darknet profiling (1/2)

- 'gprof' 사용
 - ▶ 컴파일 단계에서 '-pg' 선택자 사용
 - ▶ 프로그램 수행 결과로 'gmon.out' 파일 생성
 - ▶ 'gprof' 프로그램으로 분석
- 1) 'Makefile'의 'CFLAGS'에 '-pg' 추가
 - ► CFLGAS+=-pg
- 2) 'make' 실행
 - ▶ \$ make clean && make GPROF=1
- 3) run
 - \$./darknet detect cfg/yolov3-tiny.cfg weights/yolov3-tiny.weights data/dog.jpg
- 4) 'gprof' 실행
 - \$ gprof darknet gmon.out > gprof.txt
- 5) 'gprof.txt' 파일 검토
 - ▶ \$ head -20 gprof.txt

GPU=0
CUDNN=0
CUDNN_HALF=0
OPENCV=1
AVX=0
OPENMP=0
LIBSO=0
ZED_CAMERA=0
GPROF=0
....
ifeq (\$(GPROF), 1)
CFLAGS+=-pg
endif

Darknet profiling (2/2)

21

How to deal with 'gemm_nn'(1/3)

- Use optimized GEMM in 'src/gemm.c'
- Change 'Makefile'

... Makefile
... ifeq (\$(OPENBLAS), 1)
COMMON+=-DOPENBLAS
CFLAGS+=-DOPENBLAS -I/opt/OpenBLAS/include
LDFLAGS+=/opt/OpenBLAS/lib/libopenblas.a
endif
...

How to deal with 'gemm_nn'(1/3)

- Use optimized GEMM in 'src/gemm.c'
- Change 'Makefile'

```
... Makefile
... ifeq ($(OPENBLAS), 1)
CFLAGS+=-DOPENBLAS
LDFLAGS+=-lopenblas
endif
...
```

2

How to deal with 'gemm_nn'(2/3)

- Install OpenBLAS
 - \$ sudo apt-get install libopenblas-dev
- \$ make clean && make OPENBLAS=1 \
- GPROF=1
- \$./darknet detect cfg/yolov3-tiny.cfg \
- weights/yolov3-tiny.weights data/dog.jpg
- \$ gprof darknet gmon.out > gprof.txt
- \$ head -20 gprof.txt

		bi@	raspberryp	i: ~/work/	/darknetAle	exeyAB • ^	×
File E	Edit Tabs	Help					
	spberrypi]	gprof dar head -20			rof.txt		•
		ts as 0.01	seconds.				
	umulative			self	total		-
time	seconds	seconds	calls	ms/call	ms/call	name	
31.07	0.55					sgemm_kernel_L4_M4_22	
21.47			1	380.00	380.00		т
13.56	1.17		8845488	0.00	0.00	rand_uniform	
10.17	1.35		13	13.85	32.31	make_convolutional_layer	
3.95	1.42					sgemm_tcopy_L4_M4_20	
3.39	1.48		9	6.67		im2col_cpu_ext	
2.82	1.53		1	50.00	50.00	resize_image	
2.82	1.58					blas_thread_server	
2.26	1.62					inner_thread	
1.69	1.65	0.03	761	0.04	0.04	mat_to_image	
1.69	1.68					sgemm_kernel_L4_M4_100	
1.13	1.70	0.02				sgemm_kernel_L2_M4_22	
1.13	1.72	0.02				sgemm_kernel_L4_M4_20	- 1
1.13	1.74	0.02				sgemm_ncopy_L4_M4_20	- 1
0.56	1.75	0.01	13	0.77	0.77	add_bias	- 1
Inimras	spberrypi]						- 0

- use 'fim' to see the result
- \$ fim predect.png

2

Make a long story short

- Get Darknet-AlexeyAB version and modify
 - \$ cd ~/work/codes/darknet-projects
 - \$ git clone https://github.com/AlexeyAB/darknet.git
 - \$ mv darknet darknet-alexey-blas
 - \$ cd darknet-alexey-blas
 - \$ patch Makefile < ../patch_Makefile.txt</p>
 - \$ patch src/gemm.c < ../patch_gemm.txt</p>
 - \$ make
 - \$./darknet detect cfg/yolov3-tiny.cfg weights/yolov3-tiny.weights data/dog.jpg
 - \$ fim predect.png

Darknet using OpenMP

- OpenMP will use multi-thread
 - Install OpenMP
 - \$ sudo apt-get update
 - \$ sudo apt-get install libomp-dev
- Simply set 'OPENMP' 1
- It can be run along with other options.
 - ▶ OPENCV
 - ▶ OPENBLAS
 - ▶ GPROF

GPU=0 CUDNN=0 CUDNN_HALF=0 OPENCV=1 AVX=0 OPENMP=1 LIBSO=0 ZED_CAMERA=0

27

Running Tiny-YOLO with USB-CAM

\$./darknet detector demo cfg/coco.data cfg/yolov3-tiny.cfg weights/yolov3-tiny.weights -c 0

Running Tiny-YOLO with video stream

\$./darknet detector demo cfg/coco.data cfg/yolov3-tiny.cfg weights/yolov3-tiny.weights video.mp4

