MATH 6270 HOMEWORK 4

COLTON GRAINGER OCTOBER 20, 2019

1.	To prove. ¹ For all $i \in \mathbb{N}$, the derived subgroup $G^{(i)}$ of an arbitrary group G is contained in 2^i th subgroup $\gamma_{2^i}(G)$ of the lower central series for G .
	Proof.
2.	Given. Let $GL(n,p)$ be the multiplicative group of invertible $n \times n$ matrices with entries in the finite field of prime order p . Let $U(n,p)$ be the subgroup of unit upper triangular matrices.
	Proposition.
	(a) $U(n,p)$ is nilpotent of class $n-1$.
	(b) $U(n, p)$ is a Sylow p-subgroup of $GL(n, p)$.
	(c) Every finite p-group embeds into some $U(n, p)$.
	Proof.
3.	To prove. If G is a finite group with Sylow ² subgroup P such that $N_G(P) \leq H \leq G$, then H is self-normalizing in G
	Proof.
4.	$Given.$ The generalized dihedral group $\mathrm{Dih}(A)$ is the data of
	• an abelian group A (or, if you like, a \mathbb{Z} -module A),
	• the embedding $\mathbb{Z}_2 \xrightarrow{\alpha} \operatorname{Aut}(A)$ defined by $0 \mapsto \operatorname{id}(-)$ and $1 \mapsto (-)^{-1}$,
	• the semidirect product $\mathbb{Z}_2 \ltimes_{\alpha} A$.
	<i>Proposition.</i> For the Prüfer p-group $A = \mathbb{Z}(2^{\infty})$, the generalized dihedral group $\mathrm{Dih}(A)$
	• is not nilpotent, but ³
	• each $H \in Dih(A)$ has normalizer $N_{Dih(A)}(H)$ strictly larger than H .
	Proof.
	References
	[Rob96] Derek Robinson. A Course in the Theory of Groups. Graduate Texts in Mathematics. Springer-Verlag, New York, 2 edition 1996. 1

See sections 5.1.11 and 5.1.12 in [Rob96]. ²Hint: Use Sylow's theorem to obtain a transitive action of G on its Sylow p-subgroups, then apply an argument like Frattini's. ³Hint: Write the elements of Dih(A) in the form a and ba for $a \in A$ and b acting as inversion.