JOHK X8K Size of word

Size of word

Worlawles X H bits OR

H datalines OR

H chalines OR

H functions

b) 15 points Using D-type flip-flops, design a 3-bit Gray code counter which has the following counting sequence:

•				
	P5	NS (- 2	10 ff
	Q2Q,Q0 /	05 0'r 0°P	010100	n = Ott1
	000	001	001	0,00
	001	110	110	
	010	1110	110	Q2 0 0 0 1
4	011	1010	010	100
_0	100	1000	000	
-3)	101	100	100	$D_2 = Q_1 Q_0' + Q_0 Q_2$
	1, 10	1111		_
	111	1101	(101	

b) 15 points Using D-type flip-flops, design a 3-bit Gray code counter which has the following counting sequence:

Question 2 (20 points) Design a 3-bit register whose function is described in the following table, where M and N are two control bits. Using the proper digital components (encoders, decoders, multiplexers, etc.) logic gates, and D flip-flops, draw a detailed diagram of the logic circuit of the register.

a. What is the decimal value of the number stored initially in the register?

b. What is the register value after an arithmetic shift right? Give your result both in binary and decimal.

c. Starting again from the initial number 11011000, determine the register value after an arithmetic shift left, both in binary and decimal.

d. What arithmetic operations are performed by these shifts?

e. Is there any overflow?

	xv^z	0	1
	0 0	F = A + B (add)	F = A + B + 1
	0 1	F = A + B	F = A - B (subtract)
_	10	F = A (transfer)	F = A + 1 (increment)
	1 1	F = A - 1	F = A' + 1
		(decrement)	(2's complement of A)

Fb takes 3 input
1's comp 2's

AzAiAo +BzBiBo+O (reg) A+B 000 A2A, A0 + B2B, B0+1 1+8+A 001 001 A+B) AZA, A0 + B2 B1 B0 +0 **つハ**、 AZA7AO + BZB1B0+1 A-B 1 1 00 A2A1A0 +000 +0 A2 A1 A0 + 000 + 1 0 AZA1/40/+111+0 1414 A2'A1'A6 + 000 + 1

X7 11 73 9

Clock M N Operation ↑ 0 0 Store current value / No change ↑ 0 1 Decrement by 3 ↑ 1 0 Load external inputs (I₂ I₁ I₀) ↑ 1 1 Increment by 2
↑ 0 1 Decrement by 3 ↑ 1 0 Load external inputs (I₂ I₁ I₀) ↑ 1 1 Ingrement by 2
- I I I Intercement by 2

Design a synchronous modulo-4 binary counter that has one control input W and that counts forward or backward, as follows (assume an initial count value of 0): • if W =0: counts backward by one $(0\rightarrow 3\rightarrow 2\rightarrow 1\rightarrow 0)$ at each clock pulse • if W =1: counts forward by one $(0\rightarrow 1\rightarrow 2\rightarrow 3\rightarrow 0)$ at each clock pulse

x y	z = 0	z=1
0 0	F = A' + 1 (2's complement)	F = A - 1 (decrement)
0 1	F = A - B (subtract)	F = A - B + 1 (subtract with borrow)
1 0	F = A + 1 (increment)	F = A (transfer)
1 1	F = A + B + 1 (add with carry)	F = A + B (add)

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{bmatrix} 0 & 1 & F = A + B' & F = A - B \text{ (subtract)} \end{bmatrix}$
$ \begin{array}{ c c c c c }\hline 1 & 0 & F = A \text{ (transfer)} & F = A+1 \text{ (increment)} \\\hline 1 & 1 & F = A-1 \text{ (decrement)} & F = A'+1 \text{ (2's complement)} \\\hline \end{array} $

