Page: 1 of 2

University of Texas at Austin

Quiz #3

Prerequisite material.

Provide your **complete solution** to the following problems. Final answers only, without appropriate justification, will receive zero points even if correct.

Problem 3.1. Monotonicity.

(i)	(3 points)	Write	down	the	definition	of	an	increasing	${\it real-valued}$	function	whose	domain	are a	all
	nonnegative real numbers.													

(ii) (3 points) Write down the definition of an **decreasing** real-valued function whose domain are all nonnegative real numbers.

Instructor: Milica Čudina

Problem 3.2. (1 point) Draw the graph of an *increasing* function.

Problem 3.3. (1 point) Draw the graph of a decreasing.

Problem 3.4. (2 points) Draw the graph of a function which is neither decreasing nor decreasing.

Problem 3.5. (5 points) Let the accumulation function be given by

$$a(t) = (1 + 0.05)^{t^2}$$

Then, we can say the following about the continuously compounded, risk-free interest rate r associated with the above accumulation function:

- (a) r = 0.05
- (b) $r = 2\ln(1.05)$
- (c) r = 0.10
- (d) The continuously compounded, risk-free interest rate is not constant.
- (e) None of the above