AN INTRODUCTION TO tidyverse

AGENDA

- Overview of tidyverse
- Data Import with readr
- Data Manipulation with dplyr
 - Basic Grammar
 - The Pipeline
 - group_by
 - case_when
- Exercises

1.
OVERVIEW

- » Collection of R packages
- » Covers most of the basic data analysis workflow

Visualiza

select

MOTIVATION FOR

> mtcars

mpg cyl disp hp drat wt qsec vs am gear carb Mazda RX4 6 160.0 110 3.90 2.620 16.46 Mazda RX4 Wag 6 160.0 110 3.90 2.875 17.02 4 108.0 93 3.85 2.320 18.61 Datsun 710 Hornet 4 Drive 6 258.0 110 3.08 3.215 19.44 Hornet Sportabout 8 360.0 175 3.15 3.440 17.02 Valiant 6 225.0 105 2.76 3.460 20.22 Duster 360 8 360.0 245 3.21 3.570 15.84 Merc 240D 4 146.7 62 3.69 3.190 20.00 Merc 230 4 140.8 95 3.92 3.150 22.90 Merc 280 6 167.6 123 3.92 3.440 18.30 Merc 280C 6 167.6 123 3.92 3.440 18.90 Merc 450SE 8 275.8 180 3.07 4.070 17.40 Merc 450SL 8 275.8 180 3.07 3.730 17.60 Merc 450SLC 8 275.8 180 3.07 3.780 18.00 Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17 8 460.0 215 3.00 5.424 Lincoln Continental 10.4 Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 Fiat 128 4 78.7 66 4.08 2.20 Honda Civic 4 75.7 52 4.93 1.6 Toyota Corolla 4 71.1 65 4.22 1. Toyota Corona 4 120.1 97 3.70 2 Dodge Challenger 8 318.0 150 2.76 AMC Javelin 8 304.0 150 3.15 Camaro Z28 8 350.0 245 3.73 Pontiac Firebird 8 400.0 175 3.08 Fiat X1-9 4 79.0 66 4.08 Porsche 914-2 4 120.3 91 4.43 2 Lotus Europa 4 95.1 113 3.77 1 Ford Pantera L 8 351.0 264 4.22 3.1 Ferrari Dino 6 145.0 175 3.62 2.77 Maserati Bora 8 301.0 335 3.54 3.570 4 121.0 109 4.11 2.780 Volvo 142E

TESTING THE CARS

"I need to look further into some cars from the ones we tested. Take out all the cars which have four carburetors, and only keep those whose horsepower per gear is higher than 50. Make sure cars with higher number of carburetors and lower miles/gallon come up first in the list. On that note, I need a report on the average displacement and 1/4 mile time of these cars."

3.

READ RECTANGULAR TEXT DATA WITH

- » read_csv, read_csv2
- » Data type parsing

```
> read_csv("mtcars.csv")
Parsed with column specification:
cols(
 X1 = col_character().
 mpg = col_double(),
 cvl = col_double().
 disp = col_double(),
 hp = col_double(),
 drat = col_double().
 wt = col_double().
 asec = col_double().
 vs = col_double().
 am = col_double().
 gear = col_double().
 carb = col_double()
# A tibble: 32 x 12
  X1
                                    hp drat
                       cyl
                            disp
                                                wt gsec
                                                                             carb
                                                             ٧S
                                                                       gear
                 mpg
                           <db1> <db1> <db1> <db1> <db1> <db1> <db1> <db1> <
                                                                            <db1>
   <chr>>
               <db1> <db1>
                                       3.9
1 Mazda RX4
                21
                            160
                                   110
                                              2.62
                                                    16.5
2 Mazda RX4 ~
                21
                            160
                                   110
                                       3.9
                                               2.88
                                                   17.0
                            108
3 Datsun 710
                22.8
                                        3.85
                                              2.32
                                                    18.6
4 Hornet 4 D~
               21.4
                            258
                                        3.08
                                              3.22
                                                    19.4
                            360
5 Hornet Spo~
               18.7
                                   175
                                        3.15
                                              3.44
                                                    17.0
6 Valiant
                18.1
                            225
                                        2.76
                                                    20.2
                                   105
                                              3.46
                            360
                                   245
                                       3.21 3.57
                                                    15.8
                                                                                4
7 Duster 360
                14.3
8 Merc 240D
                            147.
                                        3.69
                                              3.19
                                                    20
                24.4
                                    62
9 Merc 230
                22.8
                            141.
                                        3.92 3.15
                                                    22.9
                                                                                2
10 Merc 280
                19.2
                            168.
                                        3.92 3.44
                                                    18.3
                                                              1
                                                                                4
# ... with 22 more rows
```

"", "mpg", "cyl", "disp", "hp", "drat", "wt", "qsec", "vs", "am", "gear", "carb"

"Mazda RX4", 21, 6, 160, 110, 3.9, 2.62, 16.46, 0, 1, 4, 4

"Mazda RX4 Wag", 21, 6, 160, 110, 3.9, 2.875, 17.02, 0, 1, 4, 4

"Datsun 710", 22.8, 4, 108, 93, 3.85, 2.32, 18.61, 1, 1, 4, 1

"Hornet 4 Drive", 21.4, 6, 258, 110, 3.08, 3.215, 19.44, 1, 0, 3, 1

"Hornet Sportabout", 18.7, 8, 360, 175, 3.15, 3.44, 17.02, 0, 0, 3, 2

"Valiant", 18.1, 6, 225, 105, 2.76, 3.46, 20.22, 1, 0, 3, 1

"Duster 360", 14.3, 8, 360, 245, 3.21, 3.57, 15.84, 0, 0, 3, 4

"Merc 240D", 24.4, 4, 146.7, 62, 3.69, 3.19, 20, 1, 0, 4, 2

"Merc 280", 19.2, 6, 167.6, 123, 3.92, 3.44, 18.3, 1, 0, 4, 4

"Merc 280C", 17.8, 6, 167.6, 123, 3.92, 3.44, 18.9, 1, 0, 4, 4

"Merc 450SE", 16.4, 8, 275.8, 180, 3.07, 4.07, 17.4, 0, 0, 3, 3

CHANGE COLUMN SPECIFICATION

```
> read_csv("mtcars.csv", col_types = cols(
      X1 = col_{character}(),
      mpg = col double().
      cyl = col_integer()
      disp = col_double(),
      hp = col_double(),
      drat = col_double(),
      wt = col_double(),
      gsec = col_double()
      vs = col_integer()
      am = col_integer().
      gear = col_integer(),
      carb = col_integer()
+ ))
# A tibble: 32 x 12
  X1
                            disp
                                     hp
                                        drat
                                                 wt
                                                                             carb
                 mpg
                                                     gsec
                                                    <dbl> <int> <int> <int> <int>
   <chr>
               <db1> <int>
                            <db1> <db1>
                                        <db1> <db1>
 1 Mazda RX4
                21
                            160
                                               2.62
                                                     16.5
 2 Mazda RX4 ~
                            160
                                               2.88
                21
 3 Datsun 710
                22.8
                            108
                                         3.85
                                               2.32
                                                     18.6
```

Column types:

- col_logical()
- col_integer()
- col_double()
- col_character()
- col_factor(levels, ordered) (more at cols {readr})

4.
TIBBLE

WHAT IS TIBBLE?

- » A refined, more concise data frame
- » Better print method
- » No input type conversion

	Vaca	Δς
_	vusa	163

	Name P	latform Yea	ar_of_Release	Genre	Publisher N	A_Sales	EU_Sales	JP_Sales	Other_Sales	Global_Sales (Critic_Score
1	Wii Sports	Wii	2006	Sports	Nintendo	41.36	28.96	3.77	8.45	82.53	76
2	Super Mario Bros.	NES	1985	Platform	Nintendo	29.08	3.58	6.81	0.77	40.24	NA
3	Mario Kart Wii	Wii	2008	Racing	Nintendo	15.68	12.76	3.79	3.29	35.52	82
4	Wii Sports Resort	Wii	2009	Sports	Nintendo	15.61	10.93	3.28	2.95	32.77	80
5	Pokemon Red/Pokemon Blue	GB	1996	Role-Playing	Nintendo	11.27	8.89	10.22	1.00	31.37	NA
6	Tetris	GB	1989	Puzzle	Nintendo	23.20	2.26	4.22	0.58	30.26	NA
7	New Super Mario Bros.	DS	2006	Platform	Nintendo	11.28	9.14	6.50	2.88	29.80	89
8	Wii Play	Wii	2006	Misc	Nintendo	13.96	9.18	2.93	2.84	28.92	58
9	New Super Mario Bros. Wii	Wii	2009	Platform	Nintendo	14.44	6.94	4.70	2.24	28.32	87
10	Duck Hunt	NES	1984	Shooter	Nintendo	26.93	0.63	0.28	0.47	28.31	NA
11	Nintendogs	DS	2005	Simulation	Nintendo	9.05	10.95	1.93	2.74	24.67	NA
12	Mario Kart DS	DS	2005	Racing	Nintendo	9.71	7.47	4.13	1.90	23.21	91

TIBBLE vs DATA FRAME

<pre>> as_tibble(vgsa</pre>	les)	-									
# A tibble: 16,71	19 x 16										
Name Platform	n Year_of_Re	lease Genre	Publisher	NA_Sales	EU_Sales	JP_Sales	Other_Sales	Global_Sales	Critic_Score	Critic_Count l	Jser_Score
<chr> <chr></chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	<db7></db7>	<db1></db1>	<db1></db1>	<db1></db1>	<db1></db1>	<int></int>	<int></int>	<db1></db1>
1 Wii ∼ Wii	2006	Spor∼	Nintendo	41.4	29.0	3.77	8.45	82.5	76	51	8
2 Supe~ NES	1985	Plat∼	Nintendo	29.1	3.58	6.81	0.77	40.2	NA	NA	NA
3 Mari∼ Wii	2008	Raci~	Nintendo	15.7	12.8	3.79	3.29	35.5	82	73	8.3
4 Wii ∼ Wii	2009	Spor∼	Nintendo	15.6	10.9	3.28	2.95	32.8	80	73	8
5 Poke~ GB	1996	Role∼	Nintendo	11.3	8.89	10.2	1	31.4	NA	NA	NA
6 Tetr∼ GB	1989	Puzz~	Nintendo	23.2	2.26	4.22	0.580	30.3	NA	NA	NA
7 New ~ DS	2006	Plat∼	Nintendo	11.3	9.14	6.5	2.88	29.8	89	65	8.5
8 Wii ∼ Wii	2006	Misc	Nintendo	14.0	9.18	2.93	2.84	28.9	58	41	6.6
9 New ∼ Wii	2009	Plat∼	Nintendo	14.4	6.94	4.7	2.24	28.3	87	80	8.4
10 Duck∼ NES	1984	Shoo~	Nintendo	26.9	0.63	0.28	0.47	28.3	NA	NA	NA
# with 16,709	more rows,	and 3 more	variables	: User_Coι	int <int>,</int>	Develope	er <i><chr></chr></i> , Rat	ing <i><chr></chr></i>			

Formation Type	Data Frame Commands	Tibbles Commands
Creation	data.frame()	<pre>data_frame() tibble() tribble()</pre>
Coercion	as.data.frame()	as_data_frame() as_tibble()
Importing	read.*()	<pre>read_delim() read_csv() read_csv2() read_tsv()</pre>

More on TIBBLE

https://www.jumpingrivers.com/blog/the-trouble-with-tibbles/

4.

THE BASIC GRAMMAR
OF DATA MANIPULATION

SELECT

Extract subset of column(s) in a tibble

Select some columns

> select(mtcars, mpg, cyl)

	mpg	cyl
Mazda RX4	21.0	6
Mazda RX4 Wag	21.0	6
Datsun 710	22.8	4
Hornet 4 Drive	21.4	6

Select a range of columns

> select(mtcars, mpg:hp)

	mpg	cyl	disp	hp
Mazda RX4	21.0	6	160.0	110
Mazda RX4 Wag	21.0	6	160.0	110
Datsun 710	22.8	4	108.0	93
Hornet 4 Drive	21.4	6	258.0	110

Select all but some columns

> select(mtcars, -cyl, -hp)

	mpg	disp	drat	wt	qsec	٧S	am	gear	carb
Mazda RX4	21.0	160.0	3.90	2.620	16.46	0	1	4	4
Mazda RX4 Wag	21.0	160.0	3.90	2.875	17.02	0	1	4	4
Datsun 710	22.8	108.0	3.85	2.320	18.61	1	1	4	1
Hornet 4 Drive	21.4	258.0	3.08	3.215	19.44	1	0	3	1

SELECT

Extract subset of column(s) in a tibble

Select all columns with a certain prefix

> select(mtcars, starts_with("d"))

	disp o	Irat
Mazda RX4	160.0	3.90
Mazda RX4 Wag	160.0 3	3.90
Datsun 710	108.0	3.85
Hornet 4 Drive	258.0 3	3.08

Select all columns which contains a certain string

> select(mtcars, contains("ar"))

	gear	carb
Mazda RX4	4	4
Mazda RX4 Wag	4	4
Datsun 710	4	1
Hornet 4 Drive	3	1

SELECT

Extract subset of column(s) in a tibble

SELECT: return a data frame/ tibble, even for a single column

PULL: get a vector of data

```
> mtcars %>% pull(mpg)
[1] 21.0 21.0 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 17.8
16.4 17.3 15.2 10.4 10.4 14.7 32.4 30.4 33.9 21.5 15.5 15.
2 13.3 19.2 27.3 26.0
```


Filter rows with a criterium

> filter(mtcars, mpg > 20)

mpg cyl disp hp drat wt qsec vs am gear carb Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4 Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4 Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1 Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3

Filter rows with multiple criteria

> filter(mtcars, mpg > 20, gear != 4)

mpg cyl disp hp drat wt qsec vs am gear carb Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1 Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1 Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2 Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2

Filter rows with on-the-fly values

> filter(mtcars, hp > mean(hp))

	mpg	cyl	disp	hp	drat	wt	qsec	٧S	am	gear	carb
Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0	3	2
Duster 360	14.3	8	360.0	245	3.21	3.570	15.84	0	0	3	4
Merc 450SE	16.4	8	275.8	180	3.07	4.070	17.40	0	0	3	3
Merc 450SL	17.3	8	275.8	180	3.07	3.730	17.60	0	0	3	3
Merc 450SLC	15.2	8	275.8	180	3.07	3.780	18.00	0	0	3	3

Subset rows using column values or conditions

2 FILTER

Subset rows using column values or conditions

Filter rows with logical expressions

> filter(mtcars, disp < 200 | wt > 5)

 mpg cyl disp hp drat
 wt qsec vs am gear carb

 Mazda RX4
 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4

 Mazda RX4 Wag
 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4

 Datsun 710
 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1

 Merc 240D
 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2

Operator	Description
+	Addition
_	Subtraction
*	Multiplication
/	Division
^	Exponent
%%	Modulus (Remainder from division)
%/%	Integer Division

Operator	Description							
<	Less than							
>	Greater than							
<=	Less than or equal to							
>=	Greater than or equal to							
==	Equal to							
!=	Not equal to							

Operator	Description
!	NOT
&	AND
1	OR

DATA MASKING

Base R: column has to be referenced by dataset

Dplyr: Most cases reference not needed

Subset rows using their indices

> mtcars %>% slice(1:5)

	mpg	суΊ	disp	hp	drat	wt	qsec	٧s	am	gear	carb
Mazda RX4	21.0	6	160	110	3.90	2.620	16.46	0	1	4	4
Mazda RX4 Wag	21.0	6	160	110	3.90	2.875	17.02	0	1	4	4
Datsun 710	22.8	4	108	93	3.85	2.320	18.61	1	1	4	1
Hornet 4 Drive	21.4	6	258	110	3.08	3.215	19.44	1	0	3	1
Hornet Sportabout	18.7	8	360	175	3.15	3.440	17.02	0	0	3	2

Slice rows with min/max value from a column

```
> mtcars %>% slice_min(mpg)
```

```
mpg cyl disp hp drat wt qsec vs am gear carb
Cadillac Fleetwood 10.4 8 472 205 2.93 5.250 17.98
Lincoln Continental 10.4
                         8 460 215 3.00 5.424 17.82 0 0
> mtcars %>% slice_max(hp)
             mpg cyl disp hp drat wt qsec vs am gear carb
```

```
Maserati Bora 15 8 301 335 3.54 3.57 14.6 0 1
```

```
also achievable using FILTER
> mtcars %>% filter(hp == min(hp))
            mpg cyl disp hp drat
                                     wt qsec vs am gear carb
Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1
```

Subset rows using their position

Calculate a new variable from the existing one

```
> # Calculate Miles/liter variable from Miles/gallon
> mutate(mtcars, mpl = mpg / 3.785)
```

```
mpg cyl disp hp drat wt qsec vs am gear carb mpl 1 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4 5.548217 2 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4 5.548217 3 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1 6.023778 4 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1 5.653897
```

Using "one-the-fly" results

```
> # Calculate diviation of each car's weight from the mean
```

```
> mutate(mtcars, wtdiff = round(wt - mean(wt), 1))
```

```
mpg cyl disp hp drat wt qsec vs am gear carb wtdiff 1 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4 -0.6 2 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4 -0.3 3 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1 -0.9 4 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1 0.0
```

Another way to delete columns

```
> # Delete column am
```

MUTATE

Create, modify and delete columns

Calculate multiple variables

```
> mutate(mtcars, wtpgear = wt/gear, meanhp = mean(hp))
    mpg cyl disp hp drat
                          wt gsec vs am gear carb
                                                        wtpgear
                                                                  meanhp
         6 160.0 110 3.90 2.620 16.46
  21.0
                                                    4 0.6550000 146.6875
  21.0
         6 160.0 110 3.90 2.875 17.02
                                                    4 0.7187500 146.6875
  22.8
         4 108.0 93 3.85 2.320 18.61
                                                    1 0.5800000 146.6875
         6 258.0 110 3.08 3.215 19.44
                                                    1 1.0716667 146.6875
```

MUTATE: keep all columns

```
> # Calculate horse power per cylinder
> mutate(mtcars, hppcyl = round(hp / cyl, 2))
   mpg cyl disp hp drat
                            wt gsec vs am gear carb hppcyl
  21.0
         6 160.0 110 3.90 2.620 16.46
                                                     18.33
  21.0
        6 160.0 110 3.90 2.875 17.02
                                                   4 18.33
  22.8
       4 108.0 93 3.85 2.320 18.61
                                                   1 23.25
  21.4
         6 258.0 110 3.08 3.215 19.44
                                                   1 18.33
```

TRANSMUTE: keep only calculated columns

```
> # Calculate horse power per cylinder, return only that variable
> transmute(mtcars, hppcyl = round(hp / cyl, 2))
    hppcyl
1    18.33
2    18.33
3    23.25
4    18.33
```

3 MUTATE

Create, modify and delete columns

4 SUMMARIZE

Summarize to fewer rows

Summarize a column into a value

- > # Calculate mean horse power
- > summarize(mtcars, meanmpg = mean(mpg))
 meanmpg
- 1 20.09062

Multiple summarized columns

- > # Calculate min and max horse power
- > summarise(mtcars, minhp = min(hp), maxhp = max(hp))
 minhp maxhp
- 1 52 335

Check for NAs

- > # Check for NAs
- > summarise(mtcars, checkNA = any(is.na(mpg)))
 checkNA
- 1 FALSE

Row counts

- > # Row count
- > summarize(mtcars, n())
 n()
- 1 32

Useful functions

Center	mean(), median()
Spread	sd()
Range	min(), max(), quantile()
Position	first(), last()
Count	n()
Logical	any(), all()

Sort tibble based on a column

- > # Arrange mtcars with ascending mpg
- > arrange(mtcars, mpg)

	mpg	cyl	disp	hp	drat	wt	qsec	٧S	am	gear	carb
Cadillac Fleetwood	10.4	8	472.0	205	2.93	5.250	17.98	0	0	3	4
Lincoln Continental	10.4	8	460.0	215	3.00	5.424	17.82	0	0	3	4
Camaro Z28	13.3	8	350.0	245	3.73	3.840	15.41	0	0	3	4
Duster 360	14.3	8	360.0	245	3.21	3.570	15.84	0	0	3	4
Chrysler Imperial	14.7	8	440.0	230	3.23	5.345	17.42	0	0	3	4

With descending order

- > # Arrange mtcars with ascending mpg
- > arrange(mtcars, desc(mpg))

	mpg	cyl	disp	hp	drat	wt	qsec	٧S	am	gear	carb
Toyota Corolla	33.9	4	71.1	65	4.22	1.835	19.90	1	1	4	1
Fiat 128	32.4	4	78.7	66	4.08	2.200	19.47	1	1	4	1
Honda Civic	30.4	4	75.7	52	4.93	1.615	18.52	1	1	4	2
Lotus Europa	30.4	4	95.1	113	3.77	1.513	16.90	1	1	5	2
Fiat X1-9	27.3	4	79.0	66	4.08	1.935	18.90	1	1	4	1

Using multiple columns

- > # Arrange mtcars with (1) gear, then (2) with disp
- > arrange(mtcars, gear, disp)

	mpg	cyl	disp	hp	drat	wt	qsec	٧S	am	gear	carb
Toyota Corona	21.5	4	120.1	97	3.70	2.465	20.01	1	0	3	1
Valiant	18.1	6	225.0	105	2.76	3.460	20.22	1	0	3	1
Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	1
Merc 450SE	16.4	8	275.8	180	3.07	4.070	17.40	0	0	3	3

Arrange rows by column values

cars wit come up average

"I need to look further into some cars from the ones we tested. Take out all the cars which have four carburetors, and only keep those whose horsepower per gear is higher than 50. Make sure cars with higher number of carburetors and lower miles/gallon come up first in the list. On that note, I need a report on the average displacement and ½ mile time of these cars."

"I need to look further into some cars from the ones we tested. Take out all the cars which have four carburetors, and only keep those whose horsepower per gear is higher than 50. Make sure cars with higher number of carburetors and lower miles/gallon come up first in the list. On that note, I need a report on the average displacement and ½ mile time of these cars."

```
> subset
                               wt qsec vs am gear carb hpPerGear
             disp hp drat
1 15.0
          8 301.0 335 3.54 3.570 14.60
                                                           67,00000
                                             3 3 60.00000

3 3 60.00000

0 3 2 58.333

2 58.333
2 15.2
         8 275.8 180 3.07 3.780 18.00
3 16.4
         8 275.8 180 3.07 4.070 17.40
4 17.3
         8 275.8 180 3.07 3.730 17.60
         8 360.0 175 3.15 3.440 17.02
5 18.7
6 19.2
         8 400.0 175 3.08 3.845 17.05 0 0
> result
  meanDisp meanQsec
1 314.7333
             16.945
```

I need to look further into some cars from the ones we tested. Take out all the cars which have four carburetors, and only keep those whose horsepower per gear is higher than 50. Make sure cars with higher number of carburetors and lower miles/gallon come up first in the list. On that note, I need a report on the average displacement and ¼ mile time of these cars.

```
> subset
                               wt qsec vs am gear carb hpPerGear
            disp hp drat
1 15.0
         8 301.0 335 3.54 3.570 14.60
                                                           67,00000
                                               3 3 60.00000
3 3 60.00000
3 3 60.00000
3 2 58.33333
2 15.2
         8 275.8 180 3.07 3.780 18.00
3 16.4
        8 275.8 180 3.07 4.070 17.40
4 17.3
        8 275.8 180 3.07 3.730 17.60
5 18.7
        8 360.0 175 3.15 3.440 17.02 0 0
6 19.2
         8 400.0 175 3.08 3.845 17.05 0 0
                                                           58.33333
> result
  meanDisp meanQsec
1 314.7333
             16.945
```

```
> subset <- mutate(mtcars, hpPerGear = hp/gear)</pre>
> subset <- filter(subset, hpPerGear > 50 & carb != 4)
> subset <- arrange(subset, desc(carb), mpg)</pre>
> result <- select(subset, disp, qsec)</pre>
> result <- summarize(result, meanDisp = mean(disp), meanQsec = mean(gsec))</pre>
> subset
                             wt gsec vs am gear carb hpPerGear
   mpg cyl disp hp drat
         8 301.0 335 3.54 3.570 14.60
                                                        67.00000
2 15.2
         8 275.8 180 3.07 3.780 18.00 0 0
                                                        60.00000
3 16.4
         8 275.8 180 3.07 4.070 17.40 0 0
                                                     3 60.00000
4 17.3
         8 275.8 180 3.07 3.730 17.60
                                                     3 60.00000
5 18.7
         8 360.0 175 3.15 3.440 17.02
                                                     2 58.33333
6 19.2
         8 400.0 175 3.08 3.845 17.05 0 0
                                                     2 58.33333
> result
  meanDisp meanQsec
1 314.7333
             16.945
```

I need to look further into some cars from the ones we tested. Take out all the cars which have four carburetors, and only keep those whose horsepower per gear is higher than 50. Make sure cars with higher number of carburetors and lower miles/gallon come up first in the list. On that note. I need a report on the average displacement and 1/4 mile time of these cars.

I want to calculate the rounded value **OF** the exponent **OF** the square root **OF** the logarithm OF 1000.

```
> round(exp(sqrt(log(1000))), 0)
[1] 14
```


I want to calculate the rounded value OF the exponent OF the square root OF the logarithm OF 1000.

```
> round(exp(sqrt(log(1000))), 0)
[1] 14
```

I want to TAKE 1000 THEN calculate the logarithm THEN the square root THEN the exponent THEN round it up.

```
> 1000 %>% log() %>% sqrt() %>% exp() %>% round(0) [1] 14
```

Advantages

- » Left-to-right structured sequence of operations
- » Avoid nesting functions
- » Reducing needs for extra variables
- » Easy to modify in any steps of the operation

Traditional way

```
mpg cyl disp hp drat wt qsec vs am gear carb hpPerGear 1 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8 67.00000 2 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3 60.00000 3 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3 60.00000 4 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3 60.00000 5 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2 58.33333 6 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2 58.33333
```

Traditional way

With pipe operator

```
mtcars %>%
  mutate(hpPerGear = hp/gear) %>%
  filter(hpPerGear > 50, carb != 4) %>%
  arrange(desc(carb), mpg)
```

```
mpg cyl disp hp drat wt qsec vs am gear carb hpPerGear 1 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8 67.00000 2 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3 60.00000 3 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3 60.00000 4 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3 60.00000 5 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2 58.33333 6 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2 58.33333
```

Traditional way

With pipe operator

```
mtcars %>%
  mutate(hpPerGear = hp/gear) %>%
  filter(hpPerGear > 50, carb != 4) %>%
  arrange(desc(carb), mpg)
```

```
mpg cyl disp hp drat wt qsec vs am gear carb hpPerGear 1 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8 67.00000 2 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3 60.00000 3 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3 60.00000 4 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3 60.00000 5 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2 58.33333 6 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2 58.33333
```

GROUP_BY

Summarize with groups in a column

Groups with multiple columns

```
> # Get maximum weight of car subsets according to different types of
> # engine and transmission
> mtcars %>% group_by(vs, am) %>% summarize(maxWeight = max(wt))
`summarise()` regrouping output by 'vs' (override with `.groups` argument)
# A tibble: 4 x 3
# Groups: vs [2]
    vs am maxWeight
    <dbl> <dbl> <dbl> <dbl>
1    0    0    5.42
2    0    1    3.57
3    1    0    3.46
4    1    1    2.78
```

Group_by alone doesn't change how data look

```
> mtcars %>% group_by(vs, am)
# A tibble: 32 x 11
         vs, am [4]
# Groups:
          cyl disp
                       hp drat
                                                    am gear
                                   wt qsec
                                              ٧S
    mpg
              <db1> <db1> <db1> <db1> <db1> <db1> <db1> <db1> <
                                                             <db1>
   21
               160
                      110
                                 2.62
                                       16.5
   21
            6 160
                      110
                          3.9
                                 2.88
                                      17.0
            4 108
   22.8
                       93
                          3.85
                                2.32
                                       18.6
   21.4
            6 258
                           3.08
                                3.22 19.4
                      110
```

Count the number of rows in each group with tally()

GROUP_BY

GROUP_BY

You can also effectively group numeric variables with cut()

```
> # Set some thresholds for car's horsepower
> threshold <- c(0, 100, 120, 150, 180, Inf)
> # Calculate average mpg for the car subsets
> mtcars %>% group_by(hpThreshold = cut(hp, breaks = threshold)) %>%
    summarize(count = n(), meanMpg = mean(mpg))
`summarise()` ungrouping output (override with `.groups` argument)
# A tibble: 5 x 3
  hpThreshold count meanMpg
  <fct>
              <int>
                     <db1>
1(0,100)
                     26.8
                    22.2
2 (100,120]
3 (120,150]
                 4 16.9
                    17.8
4 (150,180]
                      13.4
5 (180, Inf]
```


CASE_WHEN

- » Vectorized IF statement
- » Useful to label stuff based on conditions
- » Condition can be formed using multiple columns

```
> # Create column called taxMult. Cars running more than 22miles/ gallon
> # and having less than 6 cylinders get a 0.8 multiplier. Cars running less
> # than 14 miles/ gallon get a 1.5 multiplier, otherwisde 1.0.
> mtcars %>%
   mutate(taxMult = case\_when((mpg > 22) & (cyl < 6) ~ 0.8,
                               mpg < 15 \sim 1.5,
                              TRUE ~ 1.0))
                              wt qsec vs am gear carb taxMult
                  hp drat
         6 160.0 110 3.90 2.620 16.46
         6 160.0 110 3.90 2.875 17.02
         4 108.0 93 3.85 2.320 18.61
         6 258.0 110 3.08 3.215 19.44
         8 360.0 175 3.15 3.440 17.02
                                                           1.0
         6 225.0 105 2.76 3.460 20.22
  18.1
                                                           1.0
         8 360.0 245 3.21 3.570 15.84
                                                           1.5
```

EXERCISE