CLAIMS

WHAT IS CLAIMED IS:

i	1. A glow discharge emission spectroscope analysis apparatus having a
2	glow discharge chamber with an anode comprising:
3	a holding member for mounting a sample to be analyzed in operative
4	contact with the glow discharge chamber;
5	an inert gas is positioned in contact with a surface of the sample under
6	a pressure condition to enable a sputtering in the glow discharge chamber;
7	a power source of one of a high frequency voltage and a DC voltage is
8	provided to the glow discharge chamber; and
9	means for mounting the sample at the same potential of a negative side
0	of the power source so that the sample performs as a cathode to the anode of
1	the glow discharge chamber and a glow discharge is emitted from the
2	sputtering effect of the plasma on the sample; and
3	means for analyzing the emission from the glow discharge.
1	2. A glow discharge emission spectroscopic analysis apparatus according
2	to Claim 1 wherein the inert gas is one of argon, neon, helium and a mixture thereof.

- 3. A glow discharge emission spectroscopic analysis apparatus according to Claim 1 wherein means for maintaining the sample at the same potential as that of a negative side of said high-frequency voltage or DC voltage is a metallic flat member.
- 4. A glow discharge emission spectroscopic analysis apparatus according to Claim 1 wherein the flat member is tightly attached to the surface of the sample.

3	5.	In a glow discharge spectrometer for generating a glow discharge by		
4	arranging a sa	imple to face an anode of a glow discharge tube provided in a Faraday		
5	cage with inert gas adjacent a surface of the sample under low pressure condition and			
6	high frequenc	y voltage or DC voltage applied between the sample and the anode, for		
7	analyzing the	glow discharge generated, the glow discharge spectrometer		
8.	improvement	comprising:		
9		a first and second conductor member movably mounted to receive a		
0	sample therebetween;			
1		a force assembly for pressing the sample to seal against the glow		
2	discharge tube; and			
3		an electrical connector for providing a common electrical potential to		
4	the first and second conductors so that the sample acts as a cathode at a			
5	uniform potential.			
1	6.	The invention of Claim 5, wherein one conductor member has an		
2	aperture to ac	commodate a portion of the sample that is to be analyzed.		
1	7.	The invention of Claim 5, wherein the force member is a cylinder rod.		
1	8.	The invention of Claim 5, wherein the force member is a pair of		
2	cylinder rods	•		
1	9.	The invention of Claim 5, wherein the electrical connector is a wiper		
2	member.			
1	10.	The invention of Claim 5, wherein one of the conductor members is		
2	resiliently mo	ounted to permit adjustable movement between the conductor member		
3	and the sample when the sample is mounted between the first and second conductor			
4	members.			
1	11.	The invention of Claim 5 further including means for applying a		
2	pressurizing	force to a surface of the sample opposite the anode for sealing the sampl		

to the glow discharge tube.

1	12.	A method of analyzing a semiconductor wafer, comprising the steps of:	
2		positioning a semiconductor wafer between a first and second	
3	condu	ctor member, the first conductor has an aperture to expose a surface of	
4	the wa	afer and the second conductor has a corresponding section to the opposite	
5	apertu	are for exerting a sealing force;	
6		closing the first and second conductor to secure the semiconductor	
7	wafer		
8		positioning the exposed surface of the semiconductor wafer to an	
9	openi	ng in a glow discharge chamber;	
0		applying a force to seal the semiconductor wafer to the glow discharge	
1	cham	ber;	
2		providing a sputtering gas to the glow discharge chamber;	
3		applying an electrical potential to the semiconductor wafer through the	
4	first a	nd second conductors to create a uniform negative potential of sufficient	
5	magn	itude to cause a plasma of the sputtering gas to erode the semiconductor	
6	wafer	; and	
.7		analyzing the glow discharge emission of light to determine the	
8	eleme	ents in the semiconductor wafer.	
1	13.	The method of Claim 12 further including resiliently mounting at least	
2	one of the fir	st and second conductor members so that the semiconductor wafer is	
3	resiliently mo	ounted upon closing of the first and second conductor member.	
1	14.	The method of Claim 12 further including applying a negative high	
2	frequency vo	ltage	
1	15.	The method of Claim 12 further closing the first and second conductors	
2	with air pressure.		

16. An apparatus for determining the elements in a semiconductor wafer,
comprising:
a first conductor member having a central aperture and of a size larger
than the wafer;
a second conductor member of a size larger than the wafer;
means for opening and closing the first and second conductor members
to mount the wafer therebetween;
a glow discharge chamber apparatus having an opening adjacent the
central aperture of the first conductor member and an anode within the
chamber;
means for exerting a force on the wafer to seal the wafer to the glow
discharge chamber apparatus opening when the wafer is mounted between the
first and second conductors;
means for providing a sputtering gas to the glow discharge chamber
apparatus;
means for providing an electrical charge between the first and second
conductor s to uniformly charge the wafer as a cathode to the anode whereby
glow discharge emission is created as the wafer is sputtered; and
means for providing a spectroscopic analysis of the light from the glov
discharge emission to determine the elements in the wafer.

.