#### **CVEN30008 ENGINEERING RISK ANALYSIS**

# **Quantitative Risk Analysis Estimation of Sample Size and Power**

COORDINATOR:
Dr Lihai Zhang
Infrastructure Engineering
Iihzhang@unimelb.edu.au



## Estimation of Sample Size and Power

## Limitations of Hypothesis Testing

Hypothesis testing involving a significance level  $\alpha$ , has two types of errors:

- Type I error:  $H_0$  is rejected when it is True.
- Type II error:  $H_0$  is not rejected when it is False.

## Estimation of sample size and power

In order to minimise the probability of Type I error:

Select a small significance level, α (e.g. α ≤ 0.05)



$$H_0: \mu \geq \mu_0$$



$$H_0: \mu \leq \mu_0$$

## The **Power** is the probability of **avoiding Type II error**:

Power = 
$$1 - P(Type II error)$$

#### Power ≥ 0.8 is generally considered to be acceptable





$$\mu_0 + Z \frac{\sigma}{\sqrt{n}} = \mu_A + Z_A \frac{\sigma}{\sqrt{n}}$$

The **Power** is the probability of **avoiding Type II error**:

Power = 
$$1 - P(Type\ II\ error)$$

To calculate the power:

- Step 1: Determine H<sub>0</sub> and H<sub>1</sub>
- Step 2: Select α and obtain Z
- Step 3: Approximate σ (through a preliminary sample or a sample of a similar population), and sample size, n

**Note:** While conducting the test, the sample is not yet drawn, and therefore  $\sigma$  needs to be assumed.

Step 4: Identify the critical point:

$$Critical\ Point = \mu_0 + Z \frac{\sigma}{\sqrt{n}}$$

• Step 5: Assume an alternative mean,  $\mu_A$  (usually close to  $\mu_0$ ) for the alternative distribution

• Step 6: Using the critical point identified in Step 4, define  $Z_A$  for the alternative distribution

$$Z_A = \frac{(\text{Critical Point} - \mu_A)\sqrt{n}}{\sigma}$$

## Step 7: Calculate P(Type II error) using Z<sub>A</sub>:



Left Tail

$$H_0: \mu \geq \mu_0$$



Right Tail

$$H_0: \mu \leq \mu_0$$

Power=Area to the left of  $Z_A$ 

Power=Area to the right of  $Z_A$ 

Note: Power ≥ 0.8 is generally considered to be acceptable



## **Example 1: Calculation of Power (Risk of Concrete Failure)**

A decision needs to be made concerning the production of high strength concrete. Find the power: with a significance level,  $\alpha$  of 5%, and the hypothesis testing consists of  $H_0$ :  $\mu \le 80$  MPa and  $H_1$ :  $\mu > 80$  MPa; the alternative mean,  $\mu_A$ , is 82 MPa, and assuming that the sample size, n = 50 and the standard deviation,  $\sigma = 5$  MPa. The production will commence if Power  $\ge 0.8$  in order to reduce Type II error.



## **Solution**

#### **Solution**

- Step 1:  $H_0$  and  $H_1$  are given
- Step 2:  $\alpha$  = 0.05 and therefore Z = 1.645
- Step 3:  $\sigma$  is given as 5
- Step 4: Therefore the critical point is

$$80 + 1.645 \frac{5}{\sqrt{50}} = 81.16$$

- Step 5:  $\mu_A$  = 82
- Step 6:  $Z_A = \frac{(81.16-82)}{\frac{5}{\sqrt{50}}} = -1.19$

#### **Solution**

- Step 7: Since  $Z_A = -1.19$ , P(Type II error) = 0.117
- Step 8: Power = 1 0.117 = 0.883

#### The production can commence



#### MATLAB function to calculate Power

```
sampsizepwr ('test type (z or t)', [\mu, \sigma], \mu_A, [], n, 'tail', 'both/right/left', 'alpha', \alpha)
```

sampsizepwr('z',[80,5],82,[],50,'tail','right','alpha',0.05)



Left Tail

$$H_0: \mu \geq \mu_0$$

Critical Point = 
$$\mu_0 + Z \frac{\sigma}{\sqrt{n}}$$

Critical Point = 
$$\mu_A + Z_A \frac{\sigma}{\sqrt{n}}$$

$$\mu_0 + Z \frac{\sigma}{\sqrt{n}} = \mu_A + Z_A \frac{\sigma}{\sqrt{n}}$$



Critical Point = 
$$\mu_0 + Z \frac{\sigma}{\sqrt{n}}$$

Right Tail

Critical Point = 
$$\mu_0 + Z \frac{\sigma}{\sqrt{n}}$$
 Critical Point =  $\mu_A + Z_A \frac{\sigma}{\sqrt{n}}$ 

$$\mu_0 + Z \frac{\sigma}{\sqrt{n}} = \mu_A + Z_A \frac{\sigma}{\sqrt{n}}$$

 $H_0: \mu \leq \mu_0$ 

## Estimation of sample size and power

In order to determine the required sample size, *n*:

- Step 1: Determine H<sub>0</sub> and H<sub>1</sub>
- Step 2: Select α and obtain Z
- Step 3: Approximate σ
- Step 4: Obtain the expression of the critical point
- Step 5: Define μ<sub>A</sub>
- Step 6: Select an acceptable Power, P(Type II error)= 1-Power
- Step 7: Determine  $\mathbb{Z}_{A}$  by using P(Type II error)
- Step 8: Use the following equation and solve it for sample size, n

$$\mu_0 + Z \frac{\sigma}{\sqrt{n}} = \mu_A + Z_A \frac{\sigma}{\sqrt{n}}$$



## Example 2: Calculation of Sample Size (Risk of Concrete Failure)

Find the sample size of the production of high strength concrete, with a significance level,  $\alpha$ , of 5%, and the hypothesis testing consists of  $H_0$ :  $\mu \le 80$  MPa and  $H_1$ :  $\mu > 80$  MPa; the alternative mean,  $\mu_A$ , is 81 MPa, and assuming that the standard deviation,  $\sigma$ , is 7 MPa and the Power is 0.9.



#### **Solution**

#### **Solution**

- Step 1:  $H_0$ :  $\mu \le 80$  MPa and  $H_1$ :  $\mu > 80$  MPa
- Step 2:  $\alpha$  = 0.05 and therefore Z = 1.645
- Step 3:  $\sigma$  is given as 7
- Step 4: Therefore the critical point is

$$80 + 1.645 \frac{7}{\sqrt{n}}$$

- Step 5:  $\mu_A$  = 81
- Step 6: Power = 0.9, P(Type II error)= 1-0.9=0.1



| Z    | 0.00                  | 0.01   | 0.02   | 0.03   | 0.04   | 0.05   | 0.06   | 0.07   | 0.08   | 0.09   |
|------|-----------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| -3.0 | 0.0013                | 0.0013 | 0.0013 | 0.0012 | 0.0012 | 0.0011 | 0.0011 | 0.0011 | 0.0010 | 0.0010 |
| -2.9 | 0.0019                | 0.0018 | 0.0018 | 0.0017 | 0.0016 | 0.0016 | 0.0015 | 0.0015 | 0.0014 | 0.0014 |
| -2.8 | 0.0026                | 0.0025 | 0.0024 | 0.0023 | 0.0023 | 0.0022 | 0.0021 | 0.0021 | 0.0020 | 0.0019 |
| -2.7 | 0.0035                | 0.0034 | 0.0033 | 0.0032 | 0.0031 | 0.0030 | 0.0029 | 0.0028 | 0.0027 | 0.0026 |
| -2.6 | 0.0047                | 0.0045 | 0.0044 | 0.0043 | 0.0041 | 0.0040 | 0.0039 | 0.0038 | 0.0037 | 0.0036 |
| -2.5 | 0.0062                | 0.0060 | 0.0059 | 0.0057 | 0.0055 | 0.0054 | 0.0052 | 0.0051 | 0.0049 | 0.0048 |
| -2.4 | 0.0082                | 0.0080 | 0.0078 | 0.0075 | 0.0073 | 0.0071 | 0.0069 | 0.0068 | 0.0066 | 0.0064 |
| -2.3 | 0.0107                | 0.0104 | 0.0102 | 0.0099 | 0.0096 | 0.0094 | 0.0091 | 0.0089 | 0.0087 | 0.0084 |
| -2.2 | 0.0139                | 0.0136 | 0.0132 | 0.0129 | 0.0125 | 0.0122 | 0.0119 | 0.0116 | 0.0113 | 0.0110 |
| -2.1 | 0.0179                | 0.0174 | 0.0170 | 0.0166 | 0.0162 | 0.0158 | 0.0154 | 0.0150 | 0.0146 | 0.0143 |
| -2.0 | 0.0228                | 0.0222 | 0.0217 | 0.0212 | 0.0207 | 0.0202 | 0.0197 | 0.0192 | 0.0188 | 0.0183 |
| -1.9 | 0.0287                | 0.0281 | 0.0274 | 0.0268 | 0.0262 | 0.0256 | 0.0250 | 0.0244 | 0.0239 | 0.0233 |
| -1.8 | 0.0359                | 0.0351 | 0.0344 | 0.0336 | 0.0329 | 0.0322 | 0.0314 | 0.0307 | 0.0301 | 0.0294 |
| -1.7 | 0.0446                | 0.0436 | 0.0427 | 0.0418 | 0.0409 | 0.0401 | 0.0392 | 0.0384 | 0.0375 | 0.0367 |
| -1.6 | 0.0548                | 0.0537 | 0.0526 | 0.0516 | 0.0505 | 0.0495 | 0.0485 | 0.0475 | 0.0465 | 0.0455 |
| -1.5 | 0.0668                | 0.0655 | 0.0643 | 0.0630 | 0.0618 | 0.0606 | 0.0594 | 0.0582 | 0.0571 | 0.0559 |
| -1.4 | 0.0808                | 0.0793 | 0.0778 | 0.0764 | 0.0749 | 0.0735 | 0.0721 | 0.0708 | 0.0594 | 0.0681 |
| -1.3 | 0.0968                | 0.0951 | 0.0934 | 0.0918 | 0.0901 | 0.0885 | 0.0869 | 0.0853 | 0.0838 | 0.0823 |
| -1.2 | <del>&lt;0.1151</del> | 0.1131 | 0.1112 | 0.1093 | 0.1075 | 0.1056 | 0.1038 | 0.1020 | 0.1003 | 0.0985 |
| -1.1 | 0.1357                | 0.1335 | 0.1314 | 0.1292 | 0.1271 | 0.1251 | 0.1230 | 0.1210 | 0.1190 | 0.1170 |
| -1.0 | 0.1587                | 0.1562 | 0.1539 | 0.1515 | 0.1492 | 0.1469 | 0.1446 | 0.1423 | 0.1401 | 0.1379 |
| -0.9 | 0.1841                | 0.1814 | 0.1788 | 0.1762 | 0.1736 | 0.1711 | 0.1685 | 0.1660 | 0.1635 | 0.1611 |
| -0.8 | 0.2119                | 0.2090 | 0.2061 | 0.2033 | 0.2005 | 0.1977 | 0.1949 | 0.1922 | 0.1894 | 0.1867 |
| -0.7 | 0.2420                | 0.2389 | 0.2358 | 0.2327 | 0.2296 | 0.2266 | 0.2236 | 0.2206 | 0.2177 | 0.2148 |
| -0.6 | 0.2743                | 0.2709 | 0.2676 | 0.2643 | 0.2611 | 0.2578 | 0.2546 | 0.2514 | 0.2483 | 0.2451 |
| -0.5 | 0.3085                | 0.3050 | 0.3015 | 0.2981 | 0.2946 | 0.2912 | 0.2877 | 0.2843 | 0.2810 | 0.2776 |
| -0.4 | 0.3446                | 0.3409 | 0.3372 | 0.3336 | 0.3300 | 0.3264 | 0.3228 | 0.3192 | 0.3156 | 0.3121 |
| -0.3 | 0.3821                | 0.3783 | 0.3745 | 0.3707 | 0.3669 | 0.3632 | 0.3594 | 0.3557 | 0.3520 | 0.3483 |
| -0.2 | 0.4207                | 0.4168 | 0.4129 | 0.4090 | 0.4052 | 0.4013 | 0.3974 | 0.3936 | 0.3897 | 0.3859 |
| -0.1 | 0.4602                | 0.4562 | 0.4522 | 0.4483 | 0.4443 | 0.4404 | 0.4364 | 0.4325 | 0.4286 | 0.4247 |
| 0.0  | 0.5000                | 0.4960 | 0.4920 | 0.4880 | 0.4840 | 0.4801 | 0.4761 | 0.4721 | 0.4681 | 0.4641 |

P(Type II error)= 1-0.9=0.1

Step 7:  $Z_A$  is approximately -1.28

#### **Solution**

• Step 8

$$\mu_0 + Z \frac{\sigma}{\sqrt{n}} = \mu_A + Z_A \frac{\sigma}{\sqrt{n}}$$

$$80 + 1.645 \frac{7}{\sqrt{n}} = 81 - 1.28 \frac{7}{\sqrt{n}}$$

$$n \approx 420$$



$$H_0: \mu \leq \mu_0$$

MATLAB function to calculate Sample Size

```
sampsizepwr ('test type (z or t)', [\mu, \sigma], \mu_A, Power, [], 'tail', 'both/right/left', 'alpha', \alpha)
```

sampsizepwr('z',[80,7],81,0.90,[],'tail','right','alpha',0.05)