Lecture 1 - GWAS Statistics + Polygenic Risk Scores (PRS)

Wed, Mar 20, 9-10AM

Recap

HPC | GWAS

Recap: HPC + SSH

Recap: GWAS

GWAS

Genome-wide Association Studies

Genome-wide Association studies (GWAS)

Single nucleotide polymorphism (SNP): This is a variation in a single nucleotide (i.e., A, C, G, or T) that occurs at a specific position in the genome. A SNP usually exists as two different forms (e.g., A vs. T). These different forms are called alleles. A SNP with two alleles has three different genotypes (e.g., AA, AT, and TT).

Data sources & repositories

specific for GWAS Chronic Kidney Disease

Genetic models

Genetic models	AA	AG	GG	
Additive model	0	1	2	
Dominant model	0	1	1	
Recessive model	0	0	1	

- Additive model (ADD)
- Dominant model (DOM)
- Recessive model (REC)

Contingency table

Quantitative traits

$$y = G\beta_G + X\beta_X + e$$

- G is the genotype matrix.
- β_G is the effect size for variants.
- X and β_X are covariates and their effects.
- e is the error term.

Binary traits

$$logit(p) = G\beta_G + X\beta_X + e$$

Polygenic Risk Scores

stratification & disease trajectories

Common workflow - single-trait PRS

Common workflow - multi-trait PRS

Multiple observations suggest "biomarkers → disease" links

PRS-PheWAS analysis

Biomarkers are more heritable than disease

Mendelian Randomization

Multi-PRS is a weighted sum of PRSs
i.e. w₁(PRS₁) + w₂(PRS₂) + w₃(PRS₃) + ...

Common workflow - multi-trait PRS

Multi-PRS is a weighted sum of PRSs
i.e. w₁(PRS₁) + w₂(PRS₂) + w₃(PRS₃) + ...

Case study - disease stratification

ARR (%)	1.1	1.3	3.0
RRR	0.36	0.32	0.46

Case study - multi-trait PRS improves disease prevalence prediction

Use of PRS for trait / disease prediction

Use of PRS for trait / disease prediction

Limitations - ethnicity / ancestry

Limitations - polygenicity & pleiotropy

- Polygenicity: many variants one trait
- Pleiotropy: one variant many traits

- Large number of associations in population-based cohorts
- Can we group them together for enhanced interpretation?

Going further - EHR's & PRS

Summary

Two complementary approaches to improve predictive performance:

- Sample size → increase in statistical power
 - Multi-trait PRS analysis

Why does multi-PRS work?

- Quantitative traits have more power
- Genetic correlation between biomarkers and disease

The multi-trait PRS model:

Genetics →Biomarkers (molecular traits) →Disease