

- 1. First, Alice copies the unsifted key (1a) and basis choice (1b) from computer. She needs to translate from hex to binary as well.
- 2a. Alice receives Bob's basis choice from public channel (2), and compares the basis choices (1b) and (2) to obtain the matched basis:

(1b)	(2)	(MB)
0	0	1
0	1	0
1	0	0
1	1	1

- 2b. Alice then sends the matched basis (MB) to Alice (in hex) through the public channel.
- 3. From the matched basis (MB), Alice selects the measurement result according to table on the right.
 - 4. After the sifting process, move all the matched bits to the right. Ignore all the non-matching bits.
 - 5. Translate from binary to hex, and count how many bits you have. Finally, you get the key!

- 1. First, Bob copies the measurement result(1a) and basis choice (1b) from computer. He needs to translate from hex to binary as well.
- 2. Bob writes his basis choice (1b) on the public channel (in hex), and sends the paper to Alice.
- 3. After receiving the matched basis (MB) from Alice, Bob selects the measurement result accordingly:

(1a)	(MB)	(3)	
0	0	X	(removed)
0	1	X	(removed)
1	0	0	
1	1	1	

- 4. After the sifting process, move all the matched bits to the right. Ignore all the non-matching bits.
 - 5. Translate from binary to hex, and count how many bits you have. Finally, you get the key!