AULA 9: APRENDIZADO DE MÁQUINAS MODELOS DE REGRESSÃO

INTRODUÇÃO A CIÊNCIA DE DADOS NA ENGENHARIA DE PETRÓLEO

Calendário

DATA	ATIVIDADE
26/08	Introdução
02/09	Tipos de dados/ Pré-processamento
09/09	Aula Prática 1
16/09	Aula Prática 2
23/09	Aula Prática 3
30/09	Introdução ML
07/10	ML Classificação
14/10	Aula Prática 4
21/10	ML Regressão
28/10	Feriado
04/11	ML Agrupamento/Aula Prática 5
11/11	Entrega dos Trabalhos

Tópicos

- Modelos de Regressão;
- Métricas de Avaliação;
- Regressão Linear Simples;
- Regressão Linear Multivariada;
- □ Regressões de Suporte de Vetores (Support Vector Regression SVR);

Modelos de Regressão

- Modelo capaz de realizar estimativa do valor da variável de saída contínua a partir das variáveis de entrada.
- □ Avaliação da predição:
 - □ Função do erro de predição (Valor Real Valor Predito).

□ Métricas geralmente usadas para avaliar modelos de regressão:

Nome da Métrica	Equação
Erro Quadrático Médio	$EQM = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$
Raiz quadrada do Erro Quadrático Médio (RMS)	$RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$
Erro absoluto médio percentual (MAPE)	$MAPE = \frac{1}{N} \sum_{i=1}^{N} \left \frac{y_i - \hat{y}_i}{y_i} \right $
Coeficiente de Determinação (\mathbb{R}^2)	$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$

Sendo:

- y: Valor Real
- \hat{y} : Valor Ajustado
- \overline{y} : Valor Médio
- N : Número de Amostras

□ Erro Quadrático Médio:

Nome da Métrica	Equação
Erro Quadrático Médio	$EQM = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$

Atentar que não está na mesma escala que a variável resposta.

□ Raiz Quadrada do Erro Quadrático Médio:

Nome da Métrica	Equação
Raiz quadrada do Erro Quadrático Médio (RMS)	$RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$

Mesma escala da variável de saída e pode ser analisado no contexto do problema.

□ Erro Absoluto Médio Percentual:

Nome da Métrica	Equação
Erro absoluto médio percentual (MAPE)	$MAPE = \frac{1}{N} \sum_{i=1}^{N} \left \frac{y_i - \hat{y}_i}{y_i} \right $

Tem que ser utilizado com cautela. Evitar usar quando existem valores reais que são 0 ou muito próximos de 0.

 \Box Coeficiente de Determinação (R^2) :

Equação

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

A média de y (\overline{y}) é melhor forma de prever o y?

 \square Coeficiente de Determinação (R^2) :

A média de y (\overline{y}) é melhor forma de prever o y?

Ajuste do Modelo

Equação

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

$$\bar{y} = 22,86$$

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = 896$$

 \square Coeficiente de Determinação (R^2) :

A média de y (\overline{y}) é melhor forma de prever o y?

Equação

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

Ajuste do Modelo

$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = 43.95$$

$$\bar{y} = 22,86$$

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = 896$$

□ Coeficiente de Determinação (R^2) :

o Ajuste da Reta:

$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = 43.95$$

Média do y:

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = 896$$

Equação

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

$$R^2 = \frac{\text{variação(média)-variação(ajuste)}}{\text{variação(media)}}$$

$$R^2 = \frac{896 - 43,95}{896} = 0,95$$

- Ou seja, a relação entre x e y explica 95% da variação dos dados.
- Os dados tem 95% menos variação em relação ao ajuste do que em relação a média.

□ Coeficiente de Determinação (R^2) :

Equação

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

- \circ Coeficiente de Determinação (R^2) pode ser negativo?
 - Sim! Em casos que o modelo é pior que a média da variável de saída.
- \circ \mathbb{R}^2 compara o erro do modelo estimado pelo erro da média da variável de saída.
 - $lacksquare R^2pprox 0$: Modelo não consegue explicar as observações melhor que a média da variável de saída.
 - $lacksquare R^2 < 0$: Indica que o modelo é pior que a média da variável de saída.
 - $lackbrack R^2pprox lackbrack 1$: Maior parte da variabilidade total é explicada pelo modelo.

Regressão

- □ Regressão Linear Simples
- □ Regressão Linear Múltipla
- □ Regressão Polinomial

Regressão de Suporte de Vetores (Support Vector Regression – SVR)

Exemplo de Dataset

	Well	Por	Perm	AI	Brittle	тос	VR	Prod
0	1	12.08	2.92	2.80	81.40	1.16	2.31	4165.196191
1	2	12.38	3.53	3.22	46.17	0.89	1.88	3561.146205
2	3	14.02	2.59	4.01	72.80	0.89	2.72	4284.348574
3	4	17.67	6.75	2.63	39.81	1.08	1.88	5098.680869
4	5	17.52	4.57	3.18	10.94	1.51	1.90	3406.132832
5	6	14.53	4.81	2.69	53.60	0.94	1.67	4395.763259
6	7	13.49	3.60	2.93	63.71	0.80	1.85	4104.400989
7	8	11.58	3.03	3.25	53.00	0.69	1.93	3496.742701

Y

https://aegis4048.github.io/mutiple_linear_regression_and_visualization_in_python

Parte do Dataframe com 200 registros e 8 categorias

Variável	Descrição	
Well	Well Index	
Por	Well Average Porosity (%)	
Al	Accoustic Impedance (kg/m ² s*10 ⁶)	
Brittle	Brittleness ratio (%)	
TOC	Total Organic Carbon (%)	
VR	Vitrinite Reflectance (%)	
Prod	Gas production per day (MCFD)	

Perguntas:

- Variável "Well" é importante para análise?
- Se fosse utiliza-la, deveria ser feita alguma transformação?

Regressão Linear Simples

X			У	•

Por	Perm	AI	Brittle	тос	VR	Prod
12.08	2.92	2.80	81.40	1.16	2.31	4165.196191
12.38	3.53	3.22	46.17	0.89	1.88	3561.146205
14.02	2.59	4.01	72.80	0.89	2.72	4284.348574
17.67	6.75	2.63	39.81	1.08	1.88	5098.680869
17.52	4.57	3.18	10.94	1.51	1.90	3406.132832
14.53	4.81	2.69	53.60	0.94	1.67	4395.763259
13.49	3.60	2.93	63.71	0.80	1.85	4104.400989
11.58	3.03	3.25	53.00	0.69	1.93	3496.742701

Matriz de Correlação

Maior correlação com Prod: Por

Regressão Linear Simples

	X	У
	Por	Prod
0	12.08	4165.196191
1	12.38	3561.146205
2	14.02	4284.348574
3	17.67	5098.680869
4	17.52	3406.132832
5	14.53	4395.763259
6	13.49	4104.400989
7	11.58	3496.742701
8	12.52	4025.851153
9	13.25	4285.026122

Ajuste do Modelo de Regressão Linear Simples:

$$y = \theta_0 + \theta_{Por} x_{Por}$$

Ajuste da série de Treino:

$$y = 60.36 + 284.82 x_{Por}$$

$$R_{treino}^{2} = 0.758$$

$$RMSE = 486.64$$

Avaliação na Série de Teste:

$$R_{test}^2 = 0.678$$

$$EQM = 313735$$

RMSE = 560

Regressão Linear Simples

	Por	Prod
0	12.08	4165.196191
1	12.38	3561.146205
2	14.02	4284.348574
3	17.67	5098.680869
4	17.52	3406.132832
5	14.53	4395.763259
6	13.49	4104.400989
7	11.58	3496.742701
8	12.52	4025.851153
9	13.25	4285.026122

Regressão Linear Múltipla

Ajuste do Modelo de Regressão Linear Múltipla:

$$y = \theta_0 + \theta_{Por} x_{Por} + \theta_{Perm} x_{Perm} + \theta_{AI} x_{AI} + \theta_B x_B + \theta_{TOC} x_{TOC} + \theta_{VR} x_{VR}$$

Ajuste da série de Treino:

$$y = -1431 + 235. x_{Por} + 108. x_{Perm} - 285. x_{AI} + 26x_B + 14. x_{TOC} + 685. x_{VR}$$

$$R_{treino}^2 = 0.960$$
 $RMSE = 197$

Avaliação na Série de Teste:

$$R_{test}^2 = 0.955$$

$$EQM = 43732$$

Recapitulando SVM (Support Vector Machine)...

Objetivo:

Encontrar um hiperplano que separe as classes sem erros:

$$f(x) = w.x + b$$

Filgueiras (2014)

Equação:

Minimizar
$$\frac{1}{2} ||w||^2 + C \sum_{i=1}^{N} (\xi_i)$$

Restrições:

$$wx_i + b \ge +1 - \xi_i$$

$$w.x + b \le -1 + \xi_i$$

$$\xi_i \ge 0$$

Recapitulando SVM...

Se for não linear:

Utilizar funções de núcleo que aumentam a dimensionalidade dos dados para eles se tornarem linearmente

separáveis.

○ E o SVR?

- Problemas de regressão podem ser resolvidos pelo <u>método de classificação</u> <u>binária</u>.
- Para cada amostra x_i da regressão, um número positivo d é adicionado e subtraído do correspondente valor y_i.

Equação:

Minimizar
$$\frac{1}{2} ||w||^2 + C \sum_{i=1}^{N} (\xi_i + \xi_i^*)$$

Restrições:

$$y_i - wx_i - b \le \epsilon + \xi_i$$

$$wx_i + b - y_i \le \epsilon + \xi_i^*$$

$$\xi_i, \xi_i^* \geq 0$$

	X	У
	Por	Prod
0	12.08	4165.196191
1	12.38	3561.146205
2	14.02	4284.348574
3	17.67	5098.680869
4	17.52	3406.132832
5	14.53	4395.763259
6	13.49	4104.400989
7	11.58	3496.742701
8	12.52	4025.851153
9	13.25	4285.026122

Base Radial e parâmetros default

Ajuste da série de Treino:

$$R_{treino}^2 = 0.760$$
$$RMSE = 993$$

Avaliação na Série de Teste:

$$R_{test}^2 = 0.644$$

$$RMSE = 589$$

$$EQM = 347447$$

Referências Bibliográficas

- □ Evsukoff, A G. INTELIGÊNCIA COMPUTACIONAL Fundamentos e aplicações. 2020.
- □ Filgueiras, P. R. REGRESSÃO POR VETORES DE SUPORTE APLICADO NA DETERMINAÇÃO DE PROPRIEDADES FÍSICO-QUÍMICAS DE PETRÓLEO E BIOCOMBUSTÍVEIS. Tese. 2014.
- □ Grus, J. Data Science from Scratch. First Principles with Python. 2015
- Muller, A and Guido, S. Introduction to Machine Learning with Python. A guide for Data Scientists.
 2016.
- □ VanderPlas, J. **Python Data Science Handbook**. 2016.