aper	Code: REC-301	Roll N	θ.								
		n TDC	TT								
	(SEM-III) ODD	B. TEC	H. EXAI	MIN	[AT]	ON	2018	8-19)		
	Di	GITAL LOGI	C DE	SIG							
	Time: 3.0 Hours				M	axim	ium I	Mari	ks: 70		
lote:	Attempt all questions. All que	estions carry equal	marks.								
).1. At	tempt all parts of the following:								(3.5x4)		024 bg
(a)	(i) What is the exact number (ii) Convert the following nu ADD and Multiply with	imbers with the in out converting then	into o	lecim	al: h	exade	ecima	1 2E	and 34	S. EU 12. S	x1024x11 20, 26
(b)	Draw a NAND logic diag	$A.B. (C.D) = \sum_{i=1}^{n} \{0, 1\}$. 2, 3, 1	o, 10,	, 11, 1	7)		•		tion:	
(c)	Write first 20 numbers in rad	ix-5. Convert the for $F(x, y, z) = \sum (1, 3)$	4,5, ollowin	7 0 g to t	he ot	113, her ca	15, monio F (v	cal fo	orm:- 2	TT (6	3, 2, 4,6
	Gray Code	OR									
	What is a reflected code? Wr 10's complement of the follo	ite about reflected o wing decimal numb	ers 099	900 1	0000	. 000	00.				1
	The Hamming code 0101101		901	9 4 4	DA.	169	9 AA	recei	. 901t ved data	if 9	b, 00019
	there is any error.								y = x10 y		
	Realize Ex-OR gate operation	OR with minimal num	ber of	NAN							n31 (
Q.2.	Attempt all parts of the following	g:-		-	16	21	Z ,	7	(7x2=	l4) ^{[-}	2
a)	Implement the follow (ii) Draw the logic diagram	ring using a multip of 8:1 MUX with	olexer active l	F(w,	x,y,z)	= \(\sum_{\text{input}} \)	m(0,1	1,2,3, g NA	4,9,13,1 ND gate	4,15). es.	生
b)	Implement the following using	ng a decoder F(A,B	,C,D) =	$\sum (0,$	1,4,7	,9,12,	,14) .				111
		OR									35.50
	Realize a combinational logic	circuit for converti	ng a Bo	CD ni	umbe	r to a	seve	n seg	ment di	splay.	• •
2.3.	Attempt all parts of the followin	g:							(7x2=	14)	•
a) 1	The content of a 4-bit register the serial input being 101101.	What is the conten	he regi t of the	ster is regis	s shift ster af	ted si ter ea	x timach sh	es to nift?			77
at—	Draw the logic diagram of a fo		-	er and	l expl	ain it	s ope	ratio	Afters And n.	=(10]	1)
b)	Explain the working of serial	in parallel out shift	register	with	logic	diag	gram a	and v	vavefor	ns.	
	Sevialin D3	02 1	1	1	E	f &	L				
				1	ν						

 Ξ

An asynchronous sequential circuit has two internal states and one output. The excitation and (a) output functions describing the circuit are as follows:

$$Y_1 = x_1x_2 + x_1y_2 + x_2y_1$$

$$Y_2 = x_2 + x_1y_1y_2 + x_2y_1$$

$$Z = x_2 + y_1$$

- (i) Draw the logic diagram of the circuit.
- (ii) Derive the transition table and output map.
- (iii) Obtain a flow table for the circuit.

Merge each of the primitive flow tables shown in Fig.(a) Proceed as follows:

10	6, -	T.	h, -		(G), 0	.h, _	***	(F), O
=	l 1*	_ ¹ 2	0,0		l'-	(O.0	1-	
0]	- 'q	(b).0	-'p	(G) ₁	1.	8,-	(g), 0	
00	(d), 0	а, –	-	a,	a, –	: .	4,	a, –
	a	q	3	p	10	5)	Þζ	=

(i) Find all compatible pairs by means of an implication table

(ii) Find the maximal compatibles by means of a merger diagram.

(iii)Find a minimal set of compatibles that covers all the states and is closed.

OR

Sesign a circuit that has no static hazards and implements the Boolean function as given below: $F(w, x, y, z) = \sum (0, 2, 6, 8, 10, 12)$

Q.5. Attempt all parts of the following:

(7x2=14)

Draw an inverter circuit using a BJT and Explain it's working using numerical values of R_C = (a) $1K\Omega$, $R_B = 22K\Omega$, $h_{FE} = 50$, $V_{CC} = 5V$ $V_H = 5V$ and $V_{L} = 0.2V$.

OR

(b) Write all the characteristics of digital logic families with diagrams.

Fanin Fonout, bower dissipation, Par pagetiondelay. Noise margin

(i) Classify the various types of semiconductor memories in short. → RMM PROMIEEPROM

$$F = \sum (0, 5, 6, 7)$$

7200 6000

Scanned by CamScanner

* In not SIPoregister, to provide nobit ofta socially in, it requires nelock pulse.
* To provide parallel outfut no clock pulse is required.

[+]
$$Y_1 = x_1x_2 + x_1y_2 + x_2y_1$$
 $X_2 = x_2 + x_1y_1'y_2 + x_1'y_1$
 $X_3 = x_2 + x_1y_1'y_2 + x_1'y_1$
 $X_4 = x_2 + x_1y_1'y_2 + x_1'y_1$
 $X_4 = x_2 + x_1y_1'y_2 + x_1'y_1$

भाभ _य अ। अ २	अञ्ब	441	なり	Yı	Xą	9, 92	x,4/4,	2/41	Y2	Z	
0000	0	0	0	00	0	0	0	0	0	0	
0001	0	1	0	1	0	0	6	0	0	0	
6011	1		0		1	0	6	0	6	0	
0100	0	0	0	0	0	1	0	0 0	0	0	
0110	0	0	0	0	6	1	1	00	1	0	
1000	0	0	1	1	6	٥	0	١	1	l	
1000	0	0	0	0	0	0	о О	0	0	1	
1010	0	1	0	1	1	0	0	0	-	<u> </u>	
1100	0	0	1	0	0	0	0		i / i		
1101	0	0	0	1	6	6	0	0 0	1		
1111		0	6	1	1	0	D	6	1		
						er dege		J-			

Ь	V	Γ					
С	8, d × e, & ×	g'q x					
4	b,d x	×	V				
e	~	くもら	Ciまx	V]		
土	6,7 × e,6 ×	617 X	c, fx	0,3 ×	ghx		
7	8, 8x	b,9 x	d, 9 x	X	V	V	
h	e ₁ h x	V	~	V	e ₁ 8x	V	V
	a	В	C	d	e	于	9

- (i) The Composible pairs are: (a, b) (a, e) (b, h) (c,d) (c,h) (d,e) (d,h) (e,) (+,) (\$,h) (8,h)
- Maximal compatible pairs one: (±13,5), (c,d,h),(a,b), (a,e) or (d, e)

t

(iii) (a,b) (c,d) (e,f,8,h)

F= ZZ+ wyZ + wyZ There is no static hazard.

$$V_{ii} = 5V$$

Case(1)

 $V_1' = L = 0.2V$

then VBE LO-6V therefore transistor is wtoff. The collector emittor circuit behaves like an open circuit, so output Voltage Vo = 5V=H

Case (ii)

Vi = H = 5V, we infer that VBE 70.6 assuming that VBE = 0.7 V, we calculat $\pm B = \frac{V_1 - V_{BE}}{R_B} = \frac{5 - 0.7}{22 k_B} = 0.195 \text{ M}$

VCE = 0-21 (assume), the maximum Collector

Current
$$T_{cs} = \frac{V_{cc} - 0.2}{R_c} = \frac{5 - 0.2}{1 \text{ kg}} = 4.0 \text{ mA}$$

thu IB > Ics

0·195 ≥ 4·B 50

· 195 > 0.096mA

* thus transistor is Saturated and output Voltage Vo = VCE = 0.21 thus the circuit behave as an inverter.

merit. From in and fan-out, Power dissipation, Propagationdelay, Neise margin, figures

Penderdissipation - The power dissipated ber logic gate.

Propagation de lay - Time required to get the output when input is given .

Forout- It is the maximum number of logic gated that can be driven by Logic gate output without offecting its oblitation

Figure of merit = Power discipation * Propagation delay = Paiss. * tpd

Noise margin - 9+ 18 the maximum noise voltage that can be added to a lagic gate input which will not affect the outfut

Types of semiconductor memories.

RAM

ROM

PROM

· EPROM

= EEPROM

ipperofit contracts

F = ABC + AC + AB

