MATH 6220 HOMEWORK 5

RYAN MIKE (PRESENTER), COLTON GRAINGER (SCRIBE) APRIL 22, 2019

We work in the category Ch, chain complexes of graded abelian groups.

1. For a given chain complex C, let cyl(C) denote the mapping cylinder of the identity map on id: $C \to C$. The chain complex cyl(C) encodes the following data: If C is described by the level-wise groups and differentials

$$C = \left\{ C_{i+1} \xrightarrow{d_{i+1}} C_i : \text{for all } i \in \mathbb{Z} \right\},$$

then the mapping cylinder cyl(C) is described by level-wise groups and differentials

$$\operatorname{cyl}(C) = \left\{ \begin{array}{c} C_i \xrightarrow{d_i} C_{i-1} \\ \\ C_{i-1} \xrightarrow{\operatorname{id}} C_{i-1} \\ \\ C_i \xrightarrow{d_i} C_{i-1} \end{array} \right\}.$$

Each level-wise group $(\text{cyl}(C))_i$ is the direct sum of groups $C_i \oplus C_{i-1} \oplus C_i$, where id: $C \to C$ is the identity, and where arrows indicate how a component group is mapped into a component group of lesser degree in the chain complex cyl(C).

Writing the level-wise groups as column vectors and the differential $[\partial]$ of $\operatorname{cyl}(C)$ as a matrix is elucidating, and will be helpful for computation:

$$[\partial] = \begin{bmatrix} d & \mathrm{id} & 0 \\ 0 & -d & 0 \\ 0 & -\mathrm{id} & d \end{bmatrix} : \begin{bmatrix} C_i \\ C_{i-1} \\ C_i \end{bmatrix} \longmapsto \begin{bmatrix} C_{i-1} \\ C_{i-2} \\ C_{i-1} \end{bmatrix}.$$

Now, say that D is another chain complex that's the target of two chain maps $f, g: C \to D$.

Claim (Extending chain maps to a mapping cylinder). Two chain maps $f, g: C \to D$ are chain homotopic if and only if they extend to a map

$$[f \quad \mathcal{S} \quad g] : \operatorname{cyl}(C) \to D,$$

where $S: C \to D$ is a sequence of level-wise sections of homological degree +1.

¹Note that S is not a chain map. For example, if f = g, then the maps in S satisfy ds + sd = 0, and not ds = sd.

Proof. By definition, the chain maps f and g are chain homotopic if and only if there exists a sequence $\{H_i\}_{i\in\mathbb{Z}}$ of group homomorphisms

$$\left\{C_i \xrightarrow{H_i} D_{i+1}\right\}_{i \in \mathbb{Z}}$$

such that, for each $i \in \mathbb{Z}$, and each chain $c \in C_i$, the homomorphisms H_{i+1} and H_i satisfy the homotopy condition

$$(f_i - g_i)(c) = (d_i H_{i-1} - H_i d_{i-1})(c). (1.1)$$

On the other hand, $\begin{bmatrix} f & \mathcal{S} & g \end{bmatrix}$ is a chain map if and only if for each $i \in \mathbb{Z}$, the following diagram commutes:

$$(\operatorname{cyl}(C))_{i} \xrightarrow{[\partial]} (\operatorname{cyl}(C))_{i-1}$$

$$\begin{bmatrix} f & \mathcal{S} & g \end{bmatrix} \qquad \qquad \begin{bmatrix} f & \mathcal{S} & g \end{bmatrix}$$

$$D_{i} \xrightarrow{d} D_{i-1}$$

$$(1.2)$$

We compute the composition $(\text{cyl}(C))_i \to (\text{cyl}(C))_{i-1} \to D_{i-1}$ along the upper right corner of (1.2),

$$\begin{bmatrix} f & \mathcal{S} & g \end{bmatrix} \begin{bmatrix} d & \mathrm{id} & 0 \\ 0 & -d & 0 \\ 0 & -\mathrm{id} & d \end{bmatrix} = \begin{bmatrix} fd & f - sd - g & gd \end{bmatrix}. \tag{1.3}$$

We also compute the composition $(\text{cyl}(C))_i \to D_i \to D_{i-1}$ along the lower left corner of (1.2),

$$[d] [f \quad \mathcal{S} \quad g] = [df \quad ds \quad dg].$$
 (1.4)

Now df = fd and dg = gd by the hypotheses that $f, g: C \to D$ are chain maps. Comparing entries in (1.4) and (1.3), the following are equivalent:

- $f, g: C \to D$ extends to a chain map $\begin{bmatrix} f & \mathcal{S} & g \end{bmatrix}: \operatorname{cyl}(C) \to D$.
- The diagram (1.2) commutes.
- For each i, the maps $(\text{cyl}(C))_i$ to D_{i-1} on the upper right and lower left of (1.2) are equal.
- For each i, the maps $f_{i-1} f_{i-1} f_{i-1} = f_{i-1}$ from the center component of $(\operatorname{cyl}(C))_i$ to f_{i-1} are equal.
- For each i, the levelwise maps satisfy f g = ds + sd.
- S is a chain homotopy between $f, g: C \to D$.

We have proven that $f, g: C \to D$ are chain homotopic if and only if they extend to a chain map $\operatorname{cyl}(C) \to D$.

2. Let A and B be chain complexes. Define the tensor chain complex $A \otimes B$ as the graded abelian group

$$(A \otimes B)_n := \bigoplus_{i+j=n} A_i \otimes B_j,$$

with differential, for each *i*-chain a and each *j*-chain b in A_i and B_j ,

$$\partial(a\otimes b):=d_i^A(a)\otimes b+(-1)^ia\otimes d_j^B(b).$$

Claim (Tensor product of complexes are complexes). $A \otimes B$ with differential ∂ is a chain complex.

²Note the indices: the center component of $(\text{cyl}(C))_i$ is C_{i-1} . Maps out of the center component are thus shifted -1 degree from what one might expect.

Proof. It suffices to show that $\partial^2 = 0$, which follows. Consider $a \otimes b$, where $a \in A_i$ and $b \in B_j$

$$\begin{split} \partial^2(a \otimes b) &= \partial \left(d_i^A(a) \otimes b \right. \\ &= \partial \left(d_i^A(a) \otimes b \right) \\ &= \partial \left(d_i^A(a) \otimes b \right) \\ &= \left. (-1)^i \partial \left(a \otimes d_j^B(b) \right) \right. \\ &= \left. d_{i-1}^A d_i^A(a) \otimes b + (-1)^{i-1} d_i^A(a) \otimes d_j^B(b) \right. \\ &+ \left. (-1)^i \left(d_i^A(a) \otimes d_j^B(b) + (-1)^i a \otimes d_{j-1}^B d_j^B(b) \right) \right. \\ &= \left. (-1)^{i-1} d_i^A(a) \otimes d_j^B(b) + (-1)^i \left(d_i^A(a) \otimes d_j^B(b) \right) \right. \\ &= 0 \end{split}$$

We have shown that ∂ is order 2, because $\partial^2(a \otimes b) = 0$, and each chain in any levelwise group $(A \otimes B)_i$ is a linear combination of tensors of the form $a \otimes b$.

Claim (Mapping cylinders are realized as tensor products). Let I be the chain complex defined

- as the graded abelian group I such that $I_0 = \mathbb{Z}\{\ell_0, \ell_1\}, I_1 = \mathbb{Z}\{\ell\}, \text{ and } I_i = 0 \text{ if } i \neq 0, 1,$
- with differential d such that $d_1(\ell) = \ell_1 \ell_0$ and $d_i = 0$ for all $i \neq 1$.

Then $\operatorname{cyl}(C) \cong I \otimes C$.

Proof. Recognize the free abelian group $\mathbb{Z}\{\ell_0,\ell_1\}\cong\mathbb{Z}\oplus\mathbb{Z}$. Because the tensor product commutes with direct sums, for an arbitrary abelian group \mathcal{A} , there's an natural isomorphism

$$\mathbb{Z}\{\ell_0,\ell_1\}\otimes\mathcal{A}\stackrel{\cong}{\longrightarrow} (\mathbb{Z}\otimes\mathcal{A})^{\oplus 2}.$$

Moreover, this tensor product is over \mathbb{Z} , so $(\mathbb{Z} \otimes \mathcal{A})^{\oplus 2} \cong \mathcal{A} \oplus \mathcal{A}$. Accounting for $\mathbb{Z}\{\ell\}$ in a similar fashion, it follows that, for any degree $i \in \mathbb{Z}$, the abelian group $(I \otimes C)_i$ is naturally isomorphic to the direct sum

$$(\mathbb{Z}\ell_1 \otimes C_i) \oplus (\mathbb{Z}\ell \otimes C_{i-1}) \oplus (\mathbb{Z}\ell_0 \otimes C_i) \xrightarrow{\cong} C_i \oplus C_{i-1} \oplus C_i. \tag{2.1}$$

Therefore, as graded abelian groups, $I \otimes C \cong_{\mathsf{GrAb}} \mathrm{cyl}(C)$.

Considering the RHS and LHS of (2.1), we deduce that d of I induces the differential ∂ on $I \otimes C$ as follows:

$$\left\{ \begin{array}{c} \mathbb{Z}\ell_{1} \otimes C_{i} & \xrightarrow{\operatorname{id} \otimes d_{i}} & \mathbb{Z}\ell_{1} \otimes C_{i-1} \\ \mathbb{Z}\ell \otimes C_{i-1} & \xrightarrow{-\operatorname{id} \otimes d_{i-1}} & \mathbb{Z}\ell \otimes C_{i-2} & : i \in \mathbb{Z} \end{array} \right\} \longleftrightarrow \left\{ \begin{array}{c} C_{i} & \xrightarrow{d_{i}} & C_{i-1} \\ \text{id} & \xrightarrow{\operatorname{id} \otimes d_{i}} & C_{i-1} \\ \mathbb{Z}\ell_{0} \otimes C_{i} & \xrightarrow{\operatorname{id} \otimes d_{i}} & \mathbb{Z}\ell_{0} \otimes C_{i-1} \end{array} \right\} \longleftrightarrow \left\{ \begin{array}{c} C_{i} & \xrightarrow{d_{i}} & C_{i-1} \\ C_{i-1} & \xrightarrow{-\operatorname{id} \otimes d_{i}} & C_{i-2} & : i \in \mathbb{Z} \end{array} \right\}.$$

Hence, if $\varphi \colon I \otimes C \to \operatorname{cyl}(C)$ is the natural isomorphism of graded abelian groups in 2.1, then $\varphi \circ \partial = d \circ \varphi$. So φ is an invertible chain map, thus $I \otimes C \cong_{\mathsf{Ch}} \operatorname{cyl}(C)$ as chain complexes.

Note. Say that Δ_1 and Δ_2 are abstract ordered simplices. The product $\Delta_1 \times \Delta_2$ contains 6 vertices, so is not a 3-simplex. However, there's an operator, call it \times , that takes $\Delta_1 \times \Delta_2$ and makes an ordered decomposition into 3 adjacent 3-simplices, each pairwise sharing 3 vertices. How does the rule \times for the decomposition

$$\Delta_1 \times \Delta_2 \stackrel{\times}{\longmapsto} \Delta_3 \sqcup \Delta_3 \sqcup \Delta_3 / \sim$$

correspond to the rule on signs for the differential $[\partial]$ on the mapping cylinder? I really don't know.

