Name	Rahul K
Register Number	720419104021
Team Size	4
Team ID	PNT2022TMID43503

Assignment -II

1) Importing
In []:
import pandas as pd
import numpy as np
import seaborn as sns
from matplotlib import pyplot as plt
import warnings
warnings.filterwarnings('ignore')
2.Load the Dataset
In []:
data=pd.read_csv("Churn_Modelling.csv")
In [43]:
data
Out[43]:

	Row Num ber	Cust omer Id	Sur na me	Cred itSco re	Geo grap hy	Ge nd er	A g e	Te nu re	Bal anc e	NumO fProdu cts	Has CrC ard	IsActiv eMem ber	Estima tedSal ary	Ex ite d
0	1	0.275 616	Har gra ve	619	Fran ce	Fe ma le	4 2	2	0.00	1	1	1	101348	1
1	2	0.326 454	Hill	608	Spai n	Fe ma le	4	1	838 07.8 6	1	0	1	112542 .58	0
2	3	0.214 421	Oni o	502	Fran ce	Fe ma le	4 2	8	159 660. 80	3	1	0	113931 .57	1
3	4	0.542 636	Bon i	699	Fran ce	Fe ma le	3	1	0.00	2	0	0	93826. 63	0
4	5	0.688 778	Mit chel	850	Spai n	Fe ma le	4 3	2	125 510. 82	1	1	1	79084. 10	0
•••														
9 9 9 5	9996	0.1 <i>6</i> 2 119	Obi jiak u	771	Fran ce	Ma le	3	5	0.00	2	1	0	96270. 64	0

	Row	Cust	Sur	Cred	Geo	Ge	A	Te	Bal	NumO	Has	IsActiv	Estima	Ex
	Num	omer	na	itSco	grap	nd	g	nu	anc	fProdu	CrC	eMem	tedSal	ite
	ber	Id	me	re	hy	er	e	re	e	cts	ard	ber	ary	d
9 9 9 6	9997	0.016 765	Joh nsto ne	516	Fran ce	Ma le	3 5	10	573 69.6 1	1	1	1	101699 .77	0
9 9 9 7	9998	0.075 327	Liu	709	Fran ce	Fe ma le	3	7	0.00	1	0	1	42085. 58	1
9 9 9 8	9999	0.466 637	Sab bati ni	772	Ger man y	Ma le	4 2	3	750 75.3 1	2	1	0	92888. 52	1
9 9 9	1000	0.250 483	Wal ker	792	Fran ce	Fe ma le	2 8	4	130 142. 79	1	1	0	38190. 78	0

 $10000 \text{ rows} \times 14 \text{ columns}$

3. Visualizations

a) Univariate Analysis

In [44]:

sns.displot(data.Gender)

Out[44]:

<seaborn.axisgrid.FacetGrid at 0x7f80cb07c690>

B)Bi-Variate Analysis

In [45]:

data.plot.line()

Out[45]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f80cb9a8a50>

C)Multi - Variate Analysis

Out[46]:

<seaborn.axisgrid.FacetGrid at 0x7f80cb95fe10>

4)Perform descriptive statistics on the dataset.

In [47]:
data.describe()

Out[47]:

	RowN	Consta	Cua dia		Т	Dalama	NumOf	HasC	IsActive	Estimat	
	umbe	Custo merId	Credit Score	Age	Tenur	Balanc	Product	rCar	Membe	edSalar	Exited
	r	meriu	Score		e	e	S	d	r	y	
co	10000	10000.	10000.	10000.	10000.	10000.	10000.0	10000	10000.0	10000.0	10000.
un	.0000	00000	00000	00000	00000	000000	00000	.0000	00000	00000	00000
t	0	0	0	0	0	000000	00000	0	00000	00000	0

	RowN umbe	Custo merId	Credit Score	Age	Tenur e	Balanc e	NumOf Product	HasC rCar	IsActive Membe	Estimat edSalar	Exited
	r						S	d	r	y	
m ea n	5000. 50000	0.5009 80	650.52 8800	36.533 900	5.0128 00	76485. 889288	1.53020 0	0.705 50	0.51510 0	100090. 239881	0.2037 00
st d	2886. 89568	0.2877 57	96.653 299	6.4738 43	2.8921 74	62397. 405202	0.58165	0.455 84	0.49979	57510.4 92818	0.4027 69
mi n	1.000	0.0000	350.00 0000	20.000	0.0000	0.0000	1.00000	0.000	0.00000	11.5800 00	0.0000
25 %	2500.75000	0.2513 20	584.00 0000	32.000 000	3.0000	0.0000	1.00000	0.000	0.00000	51002.1 10000	0.0000
50 %	5000. 50000	0.5001 70	652.00 0000	37.000 000	5.0000 00	97198. 540000	1.00000	1.000	1.00000	100193. 915000	0.0000
75 %	7500. 25000	0.7501 64	718.00 0000	40.000 000	7.0000 00	127644 .24000 0	2.00000	1.000	1.00000	149388. 247500	0.0000
m ax	10000 .0000 0	1.0000	850.00 0000	50.000 000	10.000	250898 .09000 0	4.00000	1.000	1.00000	199992. 480000	1.0000

5)Handle the Missing values.

In[]:

data = pd.read_csv("Churn_Modelling.csv")

pd.isnull(data["Gender"])

Out[]:

- 0 False
- 1 False
- 2 False
- 3 False
- 4 False

...

- 9995 False
- 9996 False
- 9997 False
- 9998 False
- 9999 False

Name: Gender, Length: 10000, dtype: bool

6)Find the outliers and replace the outliers

In [48]:

sns.boxplot(data['Age'])

Out[48]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f80caeafc50>


```
In [28]:
data['Age']=np.where(data['Age']>50,40,data['Age'])
data['Age']
Out[28]:
0
     42
1
     41
2
     42
3
     39
4
    43
9995 39
9996 35
9997 36
9998 42
9999 28
Name: Age, Length: 10000, dtype: int64
In [49]:
sns.boxplot(data['Age'])
Out[49]:
```

 $<\!matplotlib.axes._subplots. AxesSubplot\ at\ 0x7f80cb95fc10\!>$

In [34]: data['Age'] = np.where(data['Age'] < 20,35,data['Age'])

data['Age']

Out[34]:

0 42

1 41

2 42

3 39

4 43

••

9995 39

9996 35

9997 36

9998 42

9999 28

Name: Age, Length: 10000, dtype: int64

7) Check for Categorical columns and perform encoding.

In [50]:

 $pd.get_dummies(data,\ columns=["Gender",\ "Age"],\ prefix=["Age",\ "Gender"]).head()$

Out[50]:

	R o w N u m be	C us to m er Id	S u r n a m e	C re di tS co re	G eo gr a p h	T e n u r e	B al a n ce	Nu m Of Pr od uct s	H as C r C ar d	Is Ac tiv eM em ber	G e n . d . er 4	G e n d er - 4	G e n d er - 4 3	G e n d er - 4	G e n d er - 4 5	G e n d er - 4 6	G e n d er - 4	G e n d er - 4	G e n d er - 4	G n d er - 5
0	1	0.275616	ar g ra v	61 9	Fr an ce	2	0. 0 0	1	1		. 0	1	0	0	0	0	0	0	0	0
1	2	0. 32 64 54	H il l	60 8	S pa in	1	8 3 8 0 7. 8 6	1	0	1	. 1	0	0	0	0	0	0	0	0	0
2	3	0. 21 44 21	O ni o	50 2	Fr an ce	8	1 5 9 6 6 0.	3	1		. 0	1	0	0	0	0	0	0	0	0

	R		S		G			Nu	Н			G	G	G	G	G	G	G	G	G	G
	0	C	u	C	eo	T	В	m	as	Is		e	e	e	e	e	e	e	e	e	e
	w	us		re		e				Ac		n	n	n	n	n	n	n	n	n	n
	N	to	r	di	gr	n	al	Of	C	tiv	•	d	d	d	d	d	d	d	d	d	d
	u	m	n	tS	a	u	a	Pr	r	eM	•	er									
	m	er	a	co	p	r	n	od	C	em	•	_	_	_	_	_	_	_	_	_	_
	be	Id	m	re	h	e	ce	uct	ar	ber		4	4	4	4	4	4	4	4	4	5
	r		e		y			S	d			1	2	3	4	5	6	7	8	9	0
							8														
							0														
		0																			
		0.	В		Fr		0.				•										
3	4	54	0	69	an	1	0	2	0	0		0	0	0	0	0	0	0	0	0	0
		26	ni	9	ce		0														
		36																			
							1														
			M				2														
		0.	it				5														
		68	c	85	S		5				•										
4	5	87	h	0	pa	2	1	1	1	1	•	0	0	1	0	0	0	0	0	0	0
			-1		in		0														

 $5 \; rows \times 45 \; columns$

78 el

8) Split the data into dependent and independent variables.

0.

A) Split the data into Independent variables.

In [37]:

X = data.iloc[:, :-1].values

```
print(X)
[[1 15634602 'Hargrave' ... 1 1 101348.88]
[2 15647311 'Hill' ... 0 1 112542.58]
[3 15619304 'Onio' ... 1 0 113931.57]
[9998 15584532 'Liu' ... 0 1 42085.58]
[9999 15682355 'Sabbatini' ... 1 0 92888.52]
[10000 15628319 'Walker' ... 1 0 38190.78]]
B) Split the data into Dependent variables.
In [38]:
Y = data.iloc[:, -1].values
print(Y)
[1 0 1 ... 1 1 0]
9) Scale the independent variables
In [39]:
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
data[["CustomerId"]] = scaler.fit\_transform(data[["CustomerId"]])
In [40]:
print(data)
   RowNumber CustomerId Surname CreditScore Geography Gender Age \
0
        1 0.275616 Hargrave
                                     619 France Female 42
        2 0.326454
                        Hill
                                  608
                                        Spain Female 41
1
2
        3 0.214421
                        Onio
                                   502 France Female 42
3
           0.542636
                        Boni
                                   699 France Female 39
           0.688778 Mitchell
                                    850
                                         Spain Female 43
9995
        9996 0.162119 Obijiaku
                                       771 France Male 39
```

9996	9997	0.016765 Johnstone	516 France Male 35
9997	9998	0.075327 Liu	709 France Female 36
9998	9999	0.466637 Sabbatini	772 Germany Male 42
9999	10000	0.250483 Walker	792 France Female 28

Tenure Balance NumOfProducts HasCrCard IsActiveMember \

0	2 0.0	00	1	1	1
1	1 8380	7.86	1	0	1
2	8 15966	50.80	3	1	0
3	1 0.0	00	2	0	0
4	2 1255	10.82	1	1	1
9995	5 (0.00	2	1	0
9996	10 57	369.61	1	1	1
9997	7 (0.00	1	0	1
9998	3 750	075.31	2	1	0
9999	4 130	142.79	1	1	0

EstimatedSalary Exited

0	101348.88	1
1	112542.58	0
2	113931.57	1
3	93826.63	0
4	79084.10	0
9995	96270.64	0
9996	101699.77	0
9997	42085.58	1
9998	92888.52	1
9999	38190.78	0

```
[10000 rows x 14 columns]
10)Split the data into training and testing
In [42]:
from sklearn.model_selection import train_test_split
train_size=0.8
X = data.drop(columns = ['Tenure']).copy()
y = data['Tenure']
X_train, X_rem, y_train, y_rem = train_test_split(X,y, train_size=0.8)
test\_size = 0.5
X_valid, X_test, y_valid, y_test = train_test_split(X_rem,y_rem, test_size=0.5)
print(X_train.shape), print(y_train.shape)
print(X_valid.shape), print(y_valid.shape)
print(X_test.shape), print(y_test.shape)
(8000, 13)
(8000,)
(1000, 13)
(1000,)
(1000, 13)
(1000,)
Out[42]:
(None, None)
```