MET CS 526 Hao Wu HomeWork 5

- (1) Encode the string "BDEGC" to a bit pattern using the Huffman tree.
- (2) Decode the bit pattern "010111010011" to the original string using the Huffman tree.

Question 1	Question 2	
B = 1111	010 = E	
D = 011	1110 = A	
E = 010	10 = G	
G = 10	011 = D	
C = 00	Decode = EAGD	
Encode = 1110110101000		

Problem 6

 $\begin{array}{c} P(1,\,1) = (P(0,\,1) + P(1,\,0)) \, / \, 2 = (1+0) \, / \, 2 = 1/2; \\ P(1,\,2) = (P(0,\,2) + P(1,\,1)) \, / \, 2 = (1+1/2) \, / \, 2 = 3/4; \\ P(2,\,1) = (P(1,\,1) + P(2,\,0)) \, / \, 2 = (1/2+0) \, / \, 2 = 1/4; \\ P(1,\,3) = (P(0,\,3) + P(1,\,2)) \, / \, 2 = (1+3/4) \, / \, 2 = 7/8; \\ P(2,\,2) = (P(1,\,2) + P(2,\,1)) \, / \, 2 = (3/4+1/4) \, / \, 2 = 1/2; \\ P(3,\,1) = (P(2,\,1) + P(3,\,0)) \, / \, 2 = (1/4+0) \, / \, 2 = 1/8; \\ P(1,\,4) = (P(0,\,4) + P(1,\,3)) \, / \, 2 = (1/4+0) \, / \, 2 = 15/16; \\ P(2,\,3) = (P(1,\,3) + P(2,\,2)) \, / \, 2 = (7/8+1/2) \, / \, 2 = 15/16; \\ P(3,\,2) = (P(2,\,2) + P(3,\,1)) \, / \, 2 = (7/8+1/2) \, / \, 2 = 5/8; \\ P(2,4) = P(1,4) + P(2,3)/2 = 11/16 + 15/16 \, / \, 2 = 13/16 \\ P(1,\,5) = (P(0,\,5) + P(1,\,4)) \, / \, 2 = (1+15/16) \, / \, 2 = 31/32; \\ P(4,1) = (P(3,1) + P(4,0))/2 = 1 + 1/8 \, / \, 2 = 1/16 \\ P(4,2) = (P(3,2) + P(4,1))/2 = 5/16 + 1/16 \, / \, 2 = 3/16 \end{array}$

