MINESEC Délégation régionale du LITTORAL Délégation départementale du MOUNGO Bassin pédagogique de NKONGSAMBA II è Baccalauréat Blanc/Série:D Session: 2016/Coef: 4

Durée: 4heures

épreuve de Mathématiques

Exercice1: 5points

I) Le tableau ci-dessous donne la répartition des notes sur 20 de 10 élèves de terminale D, à la fin de la 5^è séquence. X désigne la note en chimie et Y la note en SVT.

Notes en chimie (x_i)	12	13	08	11	13	12	13	08	08	12
Notes en SVT (y_i)	06	11	12	06	11	06	12	06	11	06

1) Construire le nuage de points de cette série.

1pt

2) Déterminer les coordonnées du point moyen G de cette série.

0,25pt

- 3) Démontrer qu'une équation de la droite de régression de y en x est : $y = -\frac{1}{42}x + \frac{941}{105}$ 0.5pt
- 4) Quelle serait la note en SVT d'un élève qui a eu 13 en chimie (on prendra l'arrondi d'ordre zéro du résultat) 0,25pt
- 5) Calculer le coefficient de corrélation linéaire de cette série. Peut-on se fier à la prévision faite à la question 4)? 0,5pt
- II) Une urne contient 8 boules indiscernables au touché dont 3bleues numérotées de 1à 3 et 5 noires numérotées de 1à 5.on tire au hasard successivement et avec remise 3boules de cette urne.

NB: Dans cette partie, tous les résultats seront arrondis au dixième près.

- 1) Calculer la probabilité de l'évènement A : « obtenir trois boules de même couleur » 0,5pt
- 2) On appelle X la variable aléatoire associant le nombre de boules bleues tirées
 - a) Déterminer la loi de probabilité de X

1pt

b) Définir et représenter la fonction de répartition de X

Exercice2: 4 points

On considère le polynôme complexe P défini par $p(z) = z^4 - 6z^3 + 17z^2 - 24z + 54$

- 1) Montrer que si z_0 est une racine de P, alors $\overline{z_0}$ est aussi une racine de P.
- 2) Vérifier que 2i est une racine de P puis en déduire une autre racine de P.

0,25pt 0,5pt

0,25pt

3) Déterminer deux nombres complexes a et b tel que $\forall \epsilon \emptyset$, $p(z) = (z^2 + 4)(z^2 + az + b)$

0,75pt

4) Résoudre dans \mathbb{C} l'équation p(z) = 0

- 5) Le plan complexe est rapporté à un repère ortho normal $(0; \vec{u}; \vec{v})$. On désigne par A, Bet C d'affixes respectives $z_A = 2i$, $z_B = -2i$; $z_C = 3 - 2i$. I est le milieu du segment [AC]
 - a) Calculer $\frac{z_A z_B}{z_C z_B}$ et en déduire la nature du triangle ABC

0,5pt

- b) Déterminer l'affixe du point I puis en déduire la nature et les éléments caractéristiques de l'ensemble (Γ) des points M d'affixes z vérifiant |2z-3|=50,5pt
- 6) f est l'application du plan dans le plan qui à tout point M d'affixe z associe le point M' d'affixe z' tel que $z' = \frac{4}{3}iz (\frac{8}{3} + 2i)$. On pose $(\Gamma') = f(\Gamma)$ et E = f(I)
- a) Déterminer la nature et les éléments caractéristiques de f

0,75pt

b) Déterminer l'affixe du point E et en déduire une équation cartésienne de (Γ') .

0.5pt

Problème: 11 points

Partie A

On considère les équations différentielles (E): y'' - y' - 2y = 2x + 3 et (E'): y'' - y' - 2y = 0 et f la fonction de \mathbb{R} vers \mathbb{R} qui à x associe f(x) = ax + b

- 1) Déterminer les réels a et b pour que la fonction f soit solution de l'équation (E). 0,5pt
- 2) Déterminer les solutions générales de (E').

0,5pt

- 3) Montrer qu'une fonction φ est solution de (E) si et seulement si $g = \varphi f$ est solution de (E')0,5pt
- 4) En déduire toutes les solutions de (E).

0,25pt

5) Déterminer alors la solution φ de (E) vérifiant $\varphi'(0) = 1$ et $\varphi(0) = 0$.

0,5pt

Partie B

Soit la fonction g de \mathbb{R} vers \mathbb{R} qui à x associe $\begin{cases} e^{2x} - x - 1 & \text{si } x < 0 \\ \ln(1 + 2x) & \text{si } x \ge 0 \end{cases}$ et (C) sa courbe représentative dans le repère (O; I; I) du plan.

- 1) Déterminer l'ensemble de définition D_g puis calculer les limites de g aux bornes de D_g . 0,75pt
- 2) Etudier la continuité et la dérivabilité de g en 0.

0,75pt

3) Etudier les variations de g puis dresser son tableau de variation sur D_g .

- 1pt
- 4) a) Calculer $\lim_{x \to -\infty} \frac{g(x)}{x}$ et $\lim_{x \to +\infty} \frac{g(x)}{x}$ et interpréter géométriquement le résultat.

0,5pt

b) Construire (C) dans le repère (0; I; J).

1pt

- 5) soit la fonction h définie sur $[0; +\infty[$ par $h(x) = \left(x + \frac{1}{2}\right) \ln(1 + 2x) \frac{1}{2} x$
 - a) Montrer que h est une primitive de g sur $[0; +\infty[$.

0,25pt

- b) En déduire l'aire A de la partie du plan délimitée par la courbe (C), l'axe des abscisses et les droites d'équations x = 0 et x = 1.
- 6) On considère la fonction f définie sur $K = [1; +\infty[$ par f(x) = g(x) x
 - a) Etudier les variations de f sur K.

0,75pt

- b) Justifier que l'équation f(x) = 0 admet une unique solution α dans I = [1; 2].
- 0,25pt

c) Montrer que $\forall x \in I$, $g(x) \in I$.

0,25pt

- 7) Soit la suite $(u_n)_{n\in\mathbb{N}}$ définie par $\begin{cases} u_0 = 1 \\ u_{n+1} = g(u_n) \end{cases}$; $\forall n \in \mathbb{N}$
 - a) Démontrer par récurrence que $\forall n \in \mathbb{N}$, $u_n \in I$.

0,5pt

b) Démontrer par récurrence que la suite $(u_n)_{n \in \mathbb{N}}$ est croissante.

0,5pt

c) Montrer que $\forall x \in I$, $|g'(x)| \le \frac{2}{3}$.

0,5pt

d) En déduire que $\forall n \in \mathbb{N}$, $|u_{n+1} - \alpha| \leq \frac{2}{3}|u_n - \alpha|$. e) Démontrer par récurrence que $\forall n \in \mathbb{N}$, $|u_n - \alpha| \leq (\frac{2}{3})^n$.

0,5pt 0,5pt

f) La suite $(u_n)_{n \in \mathbb{N}}$ est-elle convergente?

0,25pt