Package 'MittagLeffleR'

October 12, 2022

Type Package

Title Mittag-Leffler Family of Distributions
Version 0.4.1
Author Katharina Hees [aut], Peter Straka [aut, cre], Gurtek Gill [aut], Roberto Garrappa [ctb]
Maintainer Peter Straka <straka.ps@gmail.com></straka.ps@gmail.com>
Description Implements the Mittag-Leffler function, distribution, random variate generation, and estimation. Based on the Laplace-Inversion algorithm by Garrappa, R. (2015) <doi:10.1137 140971191="">.</doi:10.1137>
<pre>URL https://strakaps.github.io/MittagLeffleR/</pre>
<pre>BugReports https://github.com/strakaps/MittagLeffleR/issues</pre>
License GPL (>= 2)
Encoding UTF-8
RoxygenNote 7.1.1
Imports stats, stabledist
Suggests knitr, rmarkdown, testthat, animation, magrittr
VignetteBuilder knitr
NeedsCompilation no
Repository CRAN
Date/Publication 2021-09-06 06:50:02 UTC
R topics documented:
MittagLeffleR-package logMomentEstimator Mittag-Leffler mlf
Index

MittagLeffleR-package Mittag-Leffler family of distributions

Description

A generalization of the exponential distribution. Contains

- the Mittag-Leffler function mlf
- distributions (dml, pml, qml) and random variate generation (rml)
- a log-moment estimator (logMomentEstimator), and maximum likelihood estimator (mlmle)

Details

- Plots of the Mittag-Leffler distributions
- Details of Mittag-Leffler random variate generation
- Probabilities and Quantiles

Also see the package web page at https://strakaps.github.io/MittagLeffleR/reference/index.html

Author(s)

Maintainer: Peter Straka < straka.ps@gmail.com>

Authors:

- Katharina Hees <heeskatharina@gmail.com>
- Gurtek Gill

Other contributors:

• Roberto Garrappa <roberto.garrappa@uniba.it> [contributor]

See Also

Useful links:

- https://strakaps.github.io/MittagLeffleR/
- Report bugs at https://github.com/strakaps/MittagLeffleR/issues

logMomentEstimator 3

logMomentEstimator

Log-Moments Estimator for the Mittag-Leffler Distribution (Type 1).

Description

Tail and scale parameter of the Mittag-Leffler distribution are estimated by matching with the first two empirical log-moments (see Cahoy et al., doi: 10.1016/j.jspi.2010.04.016).

Usage

```
logMomentEstimator(x, alpha = 0.05)
```

Arguments

x A vector of non-negative data.

alpha Confidence intervals are calculated at level 1 - alpha.

Value

A named vector with entries (nu, delta, nuLo, nuHi, deltaLo, deltaHi) where nu is the tail parameter and delta the scale parameter of the Mittag-Leffler distribution, with confidence intervals (nuLo, nuHi) resp. (deltaLo, deltaHi).

References

Cahoy, D. O., Uchaikin, V. V., & Woyczynski Wojbor, W. A. (2010). Parameter estimation for fractional Poisson processes. Journal of Statistical Planning and Inference, 140(11), 3106–3120. doi: 10.1016/j.jspi.2010.04.016

Cahoy, D. O. (2013). Estimation of Mittag-Leffler Parameters. Communications in Statistics - Simulation and Computation, 42(2), 303–315. doi: 10.1080/03610918.2011.640094

Examples

```
logMomentEstimator(rml(n = 1000, scale = 0.03, tail = 0.84), alpha=0.95)
```

Mittag-Leffler

Distribution functions and random number generation.

Description

Probability density, cumulative distribution function, quantile function and random variate generation for the two types of Mittag-Leffler distribution. The Laplace inversion algorithm by Garrappa is used for the pdf and cdf (see https://www.mathworks.com/matlabcentral/fileexchange/48154-the-mittag-leffler-function).

4 Mittag-Leffler

Usage

```
dml(x, tail, scale = 1, log = FALSE, second.type = FALSE)
pml(q, tail, scale = 1, second.type = FALSE, lower.tail = TRUE, log.p = FALSE)
qml(p, tail, scale = 1, second.type = FALSE, lower.tail = TRUE, log.p = FALSE)
rml(n, tail, scale = 1, second.type = FALSE)
```

Arguments

vector of quantiles. x, q tail tail parameter. scale scale parameter. log, log.p logical; if TRUE, probabilities p are given as log(p). logical; if FALSE (default), first type of Mittag-Leffler distribution is assumed. second.type logical; if TRUE, probabilities are $P[X \le x]$ otherwise, P[X > x]lower.tail vector of probabilities. р n number of random draws.

Details

The Mittag-Leffler function mlf defines two types of probability distributions:

The **first type** of Mittag-Leffler distribution assumes the Mittag-Leffler function as its tail function, so that the CDF is given by

$$F(q; \alpha, \tau) = 1 - E_{\alpha, 1}(-(q/\tau)^{\alpha})$$

for $q \ge 0$, tail parameter $0 < \alpha \le 1$, and scale parameter $\tau > 0$. Its PDF is given by

$$f(x; \alpha, \tau) = x^{\alpha - 1} E_{\alpha, \alpha} [-(x/\tau)^{\alpha}] / \tau^{\alpha}.$$

As α approaches 1 from below, the Mittag-Leffler converges (weakly) to the exponential distribution. For $0 < \alpha < 1$, it is (very) heavy-tailed, i.e. has infinite mean.

The **second type** of Mittag-Leffler distribution is defined via the Laplace transform of its density f:

$$\int_0^\infty \exp(-sx)f(x;\alpha,1)dx = E_{\alpha,1}(-s)$$

It is light-tailed, i.e. all its moments are finite. At scale τ , its density is

$$f(x; \alpha, \tau) = f(x/\tau; \alpha, 1)/\tau.$$

Value

dml returns the density, pml returns the distribution function, qml returns the quantile function, and rml generates random variables.

mlf 5

References

Haubold, H. J., Mathai, A. M., & Saxena, R. K. (2011). Mittag-Leffler Functions and Their Applications. Journal of Applied Mathematics, 2011, 1–51. doi: 10.1155/2011/298628

Mittag-Leffler distribution. (2017, May 3). In Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/w/index.php?title=Mittag-Leffler_distribution&oldid=778429885

Examples

```
dml(1, 0.8)
dml(1, 0.6, second.type=TRUE)
pml(2, 0.7, 1.5)
qml(p = c(0.25, 0.5, 0.75), tail = 0.6, scale = 100)
rml(10, 0.7, 1)
```

mlf

Mittag-Leffler Function.

Description

The generalized (two-parameter) Mittag-Leffer function is defined by the power series

$$E_{\alpha,\beta}(z) = \sum_{k=0}^{\infty} z^k / \Gamma(\alpha k + \beta)$$

for complex z and complex α , β with $Real(\alpha) > 0$ (only implemented for real valued parameters).

Usage

```
mlf(z, a, b = 1, g = 1)
```

Arguments

z The argument (real-valued)

a, b, g Parameters of the Mittag-Leffler distribution; see Garrappa

Value

mlf returns the value of the Mittag-Leffler function.

References

Garrappa, R. (2015). Numerical Evaluation of Two and Three Parameter Mittag-Leffler Functions. SIAM Journal on Numerical Analysis, 53(3), 1350–1369. doi: 10.1137/140971191

The Mittag-Leffler function. MathWorks File Exchange. https://au.mathworks.com/matlabcentral/fileexchange/48154-the-mittag-leffler-function

6 mlmle

Examples

```
mlf(2,0.7)
```

mlmle

Maximum Likelihood Estimation of the Mittag-Leffler distribution

Description

Optimizes the bivariate loglikelihood of the Mittag-Leffler distribution via optim. Uses logMomentEstimator for initial parameter values.

Usage

```
mlmle(data, ...)
```

Arguments

```
data Vector of class "numeric"... Additional parameters passed on to optim.
```

Value

The output of optim.

Examples

```
library(magrittr)
rml(n = 100, tail = 0.8, scale = 1000) %>% mlmle()
```

Index

* Mittag Leffler Distribution Mittag-Leffler, 3 dm1, 2dml (Mittag-Leffler), 3logMomentEstimator, 2, 3, 6Mittag-Leffler, 3 MittagLeffleR (MittagLeffleR-package), 2 MittagLeffleR-package, 2 mlf, 2, 4, 5mlmle, 2, 6optim, 6pm1, 2 pml (Mittag-Leffler), 3 qm1, 2qml (Mittag-Leffler), 3 rm1, 2rml (Mittag-Leffler), 3