Problem

Let G₁ be the following grammar that we introduced in Example 2.45. Use the DK-test to show that G₁ is not a DCFG.

$$R \to S \mid T$$

 $S \to aSb \mid ab$
 $T \to aTbb \mid abb$

Step-by-step solution

Step 1 of 3

DK-test is a procedure which is exactly used to determine whether a CFG is deterministic or not. DK-test comes into picture because the definition of DCFG's does not give any accurate way to determine whether a CFG is deterministic. The procedure of DK-test can be explained as follow.

Starting with a CFG G, construct the associated DFA DK. Now, determine whether G is deterministic by testing DK's accept states. The DK-test stipulates that every accept state contains:

- 1. Exactly one completed rule, and
- 2. No dotted rule in which terminal symbol immediately follows the dot (that is, no dotted rule of the form $B \to u.av \ for \ a \in \sum$).

Comment

Step 2 of 3

Now, consider the grammar $G_{\rm l}$ which is given below:

$$R \to S \mid T$$

$$S \to aSb \mid ab$$

$$T \to aTbb \mid abb$$

• The language of grammar is $B \cup C$ where $B = \{a^m b^m \mid m \ge 1\}$ and $C = \{a^m b^{2m} \mid m \ge 1\}$. In the leftmost reduction of string $aaabbb \in L(G_1)$. It is underlined the handle at each step:

$$aa\underline{ab}bb \rightarrow a\underline{aSb}b \rightarrow \underline{aSb} \rightarrow \underline{S} \rightarrow \underline{R}$$

 \bullet Equivalently, this is leftmost reduction of the string $\it aaabbbbbbb$:

$$aa\underline{abb}bbbb \rightarrow a\underline{aTbb}bb \rightarrow \underline{aTbb} \rightarrow \underline{T} \rightarrow R$$

- In the both of the cases which is given above, the leftmost reduction as shown happens to be **the only reduction possible**. In other grammars, where many reduction may occur.
- Here, it is notice that the handles of aaabbb and aaabbbbbb are unequal, even though the initial part of these strings agree.

Comment

Step 3 of 3

Therefore, from the above discussion it violates the condition of DK-test (as DK-test say that every accept state must consist of exactly one completed rule), because so many completed rules present here. Thus, it can be said that "The grammar G_1 is not a DCFG".

Comment