Name: Mohamed Ibrahim Adam

ID: 3016

Motivation

Try to understand the factors affecting the spreading of Covid-19 and why it's spreading more in some countries than others.

And the factors affecting increase or decrease in the number of daily cases in a country

Class 1

Exponential equation is $f(x) = A \cdot e^{b \cdot x}$ where x is the number of days since pandemic started and y is the number of daily cases

Egypt Model

Data taken from March 22 till May 10

	Α	В			
1	Number of days since march 22	Daily cases			
2	1	33			
3	2	39			
4	3	36			
5	4	54			
6	5	39	39	38	260
7	6	41	40	39	226
8	7	40	41	40	269
9	8	33	42	41	358
10	9	47	43	42	298
11	10	54	44	43	272
12	11	69	45	44	348
13	12	86	46	45	388
14	13	120	47	46	387
15	14	85	48	47	393
16	15	103	49	48	495
17	16	149	50	49	488
18	17	128	51	50	436
19	18	110	52		

Exponential curve fitting

Base model

A = 42.43, b = 0.048, sum squared error = 0.0003861

Italy Model

Data taken from February 25 till March 21

D	Е	
number of days from feb 25	daily cases	
1	94	
2	147	
3	185	
4	234	
5	239	
6	573	
7	335	
8	466	
9	587	
10	769	
11	778	
12	1247	
13	1492	
14	1797	
15	977	
16	2313	
17	2651	
18	2547	
19	3497	
20	3590	
21	3233	
22	3526	
23	4207	
24	5322	
25	5986	
26	6557	

Exponential curve fitting

Base model

A = 256.8, b = 0.125, sum squared error = 0.00000278

Results

Couldn't find any external factors that actually affect the increase or decrease in the number of daily cases

It was random in my opinion and doesn't depend on a specific environmental daily factor in any of the two countries

Class 2

Total cases

Factors chosen:

1-Total population: chose total population instead of population density because some countries like Russia have very low population density as some areas are uninhabitable because it is frozen tundra but it is top 10 country in the total cases.

Same for the US which have relatively low population density but is the highest total cases country

- 2-GDP/capita: because it represents how strong the economy of the country and this would attract people to visit the country which lead to more spreading
- 3-Average temperature in April: because of African countries which have high population and relatively high GDP/capita but very small total cases

Training Data collected on April 25

1	Α	В	С	D	E	F
1	country	Tot population	GDP capita	April Average temp	Total cases	
2	USA	331,002,651	59,939	10.6	960,896	
3	mexico	128,932,753	9,224	25.9	13,842	
4	uk	67,886,011	39,532	9.7	148,377	
5	belgium	11,589,623	43,325	8.9	46,134	
6	netherlands	17,134,872	48,796	6	37,845	
7	spain	46,754,778	28,175	14.6	223,759	
8	ireland	4,937,786	69,727	8.2	18,561	
9	sweden	10,099,265	54,075	5	18,640	
10	Austria	9,006,398	47,261	10	15,225	
11	Panama	4,314,767	15,166	20	5,538	
12	Slovenia	2,078,938	23,488	10	1,396	
13	qatar	2,881,053	61,264	26.1	10,287	
14	Ghana	31,072,940	2,026	27.4	1,550	

Neural network Model Training

```
import keras
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import os
df = pd.read_csv('../input/total cases.csv')
df.head()
X = df[['Tot population', 'GDP capita', 'April Average temp']]
Y = df[['Total cases']]
model = keras.Sequential()
model.add(keras.layers.Dense(32, activation='relu', input\_shape=(3,)))
model.add(keras.layers.Dense(32, \ activation='relu'))
{\tt model.add(keras.layers.Dense(32, activation='relu'))}
{\tt model.add(keras.layers.Dense(32, activation='relu'))}
\label{loss_model_add} $$ model.add(keras.layers.Dense(32, activation='relu')) $$ model.add(keras.layers.Dense(32, activation='relu')) $$
model.add(keras.layers.Dense(1))
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
model.fit(X, Y, epochs=20, callbacks=[keras.callbacks.EarlyStopping(patience=5)])
test_data = np.array([331002651, 59939, 10.6])
print(model.predict(test_data.reshape(1,3), batch_size=1))
```

Prediction Code for test Countries

```
import keras
import tensorflow as tf
from time import sleep
from keras.utils import to_categorical
from keras.models import Sequential
from keras.layers import Dense, Conv2D, MaxPool2D, Dropout, Flatten, BatchNormalization, MaxPooling2D, Activation
from keras.optimizers import RMSprop, Adam
from tensorflow.keras.callbacks import EarlyStopping
from keras import backend as k# Input data files are available in the "../input/" directory.
model = tf.keras.models.load_model('../input/thirdmodel/model3.h5')
italy = np.array([60461826, 32038, 13.7])  # italy numbers
france = np.array([65273511, 39827, 10.8])
portugal = np.array([10196709, 21316, 13.3])  # portugal numbers
egypt = np.array([102334404, 2441, 20.7])  # egypt numbers

singapore = np.array([5850342, 56746, 27.2])  # singapore numbers

switzerland = np.array([8654622, 80296, 8.6])  # switzerland numbers
bangladesh = np.array([164689383, 1564, 29])  # bangladesh numbers
bosnia = np.array([3280819, 5387, 9.9]) # bosnia numbers
print("preidcted numbers for Italy is",int(model.predict(italy.reshape(1,3), batch_size=1)))
print("preidcted numbers for France is",int(model.predict(france.reshape(1,3), batch_size=1)))
print("preidcted numbers for portugal is",int(model.predict(portugal.reshape(1,3), batch_size=1)))
print("preidcted numbers for egypt is",int(model.predict(egypt.reshape(1,3), batch_size=1)))
print("preidcted numbers for singapore is", int(model.predict(singapore.reshape(1,3), batch\_size=1)))
print("preidcted numbers for switzerland is",int(model.predict(switzerland.reshape(1,8), batch_size=1)))
print("preidcted numbers for bangladesh is",int(model.predict(bangladesh.reshape(1,3), batch_size=1)))
print("preidcted numbers for bosnia is".int(model.predict(bosnia.reshape(1,3), batch_size=1)))
```

```
preidcted numbers for Italy is 174882
preidcted numbers for France is 188515
preidcted numbers for portugal is 28633
preidcted numbers for egypt is 298793
preidcted numbers for singapore is 14024
preidcted numbers for switzerland is 20942
preidcted numbers for bangladesh is 480983
preidcted numbers for bosnia is 9292
```

Comparing Prediction data with the actual data on the test Countries

14						
15	Test Countries	Tot population	GDP /capita	April Average temp	Total cases	
16						Prediction from Model
17	italy	60,461,826	32,038	13.7	195,351	174,882
18	france	65,273,511	39,827	10.8	161,488	188,515
19	portugal	10,196,709	21,316	13.3	23,864	28,633
20	Egypt	102,334,404	2,441	20.7	4,319	298,793
21	singapore	5,850,342	56,746	27.2	13,624	14,024
22	switzerland	8,654,622	80,296	8.6	28,894	20,942
23	bangladesh	164,689,383	1,564	29	5,416	480,983
24	Bosnia	3,280,819	5,387	9.9	1,516	9,292
25						

Comments

From the results it looks like the Model gave the highest weight of prediction to the Total number of population in the country.

So model did well in predicting total cases with countries that have high population and high cases or countries with low population and low cases.

But did poorly for countries that had very high population numbers but low actual cases like Egypt and Bangladesh. That's because it gave the highest weight on the population number of the country

More data would be better of course to cover all the cases for training.