项目用例图

模块一:数据采集与传输 (week2已完成)

任务描述:

- 1. **传感器数据采集**:实现与角度传感器的通信,确保能够按照100Hz的频率实时采集下肢关节角度的动态变化数据。
- 2. **蓝牙数据传输**:实现蓝牙低功耗(BLE)通信,确保传感器与移动设备之间的稳定连接和数据传输。
- 3. **数据接收与初步校验**:在移动设备上实现数据接收功能,并对接收到的数据进行初步校验,确保数据的完整性和准确性。

开发重点:

- 蓝牙通信协议的实现与优化。
- 数据接收与校验的逻辑处理。
- 确保数据采集的实时性和稳定性。

根据模块一(数据采集与传输)已完成的情况,剩下的功能可以重新划分为4个任务量相近的模块,分配给四个开发组。

模块一: 实时数据处理与状态分析

任务描述:

1. 数据去噪与计算

- 。 实现卡尔曼滤波算法, 对原始传感器数据进行去噪处理。
- 。 计算关节角度、运动速度、加速度等关键参数。

2. 即时恢复效果判定

- 将计算后的参数与预设康复标准对比,实时判定患者动作是否达标。
- 生成即时反馈(如"动作合格"或"需调整幅度")。

3. 数据缓存与传递

。 将处理后的数据暂存于内存中, 为后续存储和界面展示提供实时数据流。

开发重点:

- 算法性能优化 (确保100Hz实时处理)。
- 判定逻辑与康复标准的动态适配。

模块二: 历史数据管理与趋势预测

任务描述:

1. 数据持久化

- 。 设计本地数据库(SQLite),存储历史康复数据(角度、速度、判定结果等)。
- 。 集成云存储 (如阿里云OSS) , 实现数据备份与跨设备同步。

2. 趋势预测模型

- 。 实现时间序列分析 (如ARIMA) 或机器学习模型 (如线性回归) , 预测患者康复进展。
- 。 根据历史数据生成未来3天/1周的关节活动范围预测。

3. 数据索引与查询

。 支持按时间、康复阶段等条件快速检索历史数据。

开发重点:

- 数据库设计(平衡效率与扩展性)。
- 模型训练与预测结果的验证逻辑。

模块三: 个性化康复训练推荐

任务描述:

1. 推荐算法开发

- 结合患者历史数据、当前状态(如关节活动范围)、个体差异(年龄、康复阶段),设计推荐逻辑。
- 。 示例: 若膝关节活动增长缓慢, 推荐加强屈伸训练的方案。

2. 康复方案库集成

- 搭建训练方案库,包含图文/视频指导、训练强度、频率等信息。
- 。 实现方案与患者数据的动态匹配(如优先级排序)。

3. 推荐结果反馈

。 将推荐方案推送到界面模块,并支持患者执行后的效果追踪。

开发重点:

- 推荐逻辑的合理性验证(需医疗专业知识支持)。
- 方案库内容的结构化存储与管理。

模块四: 用户界面与交互系统

任务描述:

1. 3D模型与实时数据展示

- 。 集成3D关节模型 (如Unity/OpenGL) , 实时同步患者动作角度与运动轨迹。
- 。 动态更新图表 (如过去一周角度变化曲线) 。

2. 数据对比功能

实现患者数据与正常人群标准的可视化对比(柱状图、差值提示)。

3. 恢复周期预测界面

。 展示预测进度条(如"完成40%,预计剩余8周"),支持点击查看详细依据。

4. 交互优化

- 。 设计用户友好的操作流程 (如训练推荐的一键执行) 。
- 。 适配不同屏幕尺寸 (手机/平板)。

开发重点:

- 3D模型的性能优化与实时渲染。
- 数据可视化的清晰性与交互性。

模块分工与协作关系

模块名称	输入依赖	输出结果	协作要点
实时数据处理与	模块一的原始传	处理后的数据、即	需与模块四同步实时数据
状态分析	感器数据	时反馈	
历史数据管理与	模块一处理后的	数据库、预测结果	为模块三提供历史数据,为模
趋势预测	数据		块四提供预测
个性化康复训练	模块二的历史数	推荐方案	依赖模块二的数据,输出到模
推荐	据与预测		块四
用户界面与交互 系统	所有模块的数据	可视化界面、用户 操作	整合各模块数据,提供统一交

优势与平衡性说明

1. 任务量均衡

- 。 模块一(数据处理)和模块四(界面)侧重实时性与性能优化,适合有算法或图形经验的团队。
- 模块二(数据管理)和模块三(推荐系统)侧重逻辑设计与外部集成,适合后端与数据分析团队。

2. 独立性

。 各模块通过数据接口解耦,可并行开发(如模块四可先用模拟数据开发界面)。

3. 扩展性

。 模块二的云存储和模块三的方案库均支持后续功能扩展(如远程医疗协作)。

建议根据团队技术专长分配模块,并预留20%缓冲时间用于模块间的接口联调与测试。