

Upcoming Space Flight Opportunities

Cal Poly CubeSat Workshop Utah State University Logan, Utah

August 7-8, 2010

Prof. Bob Twiggs
Morehead State University
Morehead, KY
RJTwiggs@gmail.com

Overview

- Projects in Kentucky
- Present & new flight opportunities

Projects in Kentucky

<u>Projects</u> <u>I</u>	<u>Partne</u> r	<u>Purpose</u> <u>L</u>	aunch Date
Interorbital	Morehead	Test Flight	???? 2010
Interorbital	Morehead	Orbital launch	20??
UniSat	Univ. of Rome	Education	Fall 2010
PocketQub	Morehead	Micro Technolog	y Fall 2 010
GlioLab	Univ. of Rome	Cancer research	Fall 2010
Rampart	AFRL/Others	Tech Demo	Spring 2011
NanoRacks	Morehead	MG - research	2011
QB50	International	Atmospheric R.	2013

Interorbital LEO TubeSat Launches

Test Launch in Mojave

Interorbital

Launch in Fall 2010

Orbital Launch

Launch in 2011

University of Rome UniSat MR-FOD Launches

UniSat

LEO Sun Synchronous Orbit:

Orbital parameters close to:

-Altitude $\sim 700 \text{ km}$;

- eccentricity 0;

- inclination 98,24°;

- local mean solar time of the ascending node first passage

22 hours 30 min

Russian Dnper Launch

ASTRONAUTIC SYSTEMS LAD

SPACE SCIENCE CENTER

MOREHEAD STATE UNIVERSITY

OUR PAYLOAD

ASTRONAUTIC SYSTEMS LAB

SPACE SCIENCE CENTER MOREHEAD STATE ÜNIVERSITY

IIVERSITY

PocketQub w Deorbiter

ATE UNIVERSITY

MR-FOD Launcher

GlioLab ISS Microgravity Research

NOREHEAD STATE UNIVERSITY

NanoRacks

SPACE SCIE MOREHEAD ST

GlioLab

MOREHEAD STATE UNIVERSITY

Cancer Growth Research

RAMPART POPACS Technology Demonstration

Technology Demonstration Launch: Spring 2011

QB50 International LEO Atmospheric Research

QB50

An international network of 50 double CubeSats for multi-point, in-situ, long-duration measurements in the lower thermosphere and for re-entry research

J. Muylaert, R. Reinhard, C. Asma
The 4S Symposium
Funchal, Madeira, Portugal
31 May – 4 June 2010

QB50

QB50 - THE IDEA

- A network of <u>50 double CubeSats</u> sequentially deployed
- (1 CubeSat every orbit or every 2 or 3 orbits)
- Initial altitude: 330 km (circular orbit, i=79°)
- Each performing in-situ measurements of atmospheric parameters
- Downlink using the Global Educational Network for Satellite Operations (*GENSO*)

QB50 – Studying Lower

QB50

The smasphere?

- The *least explored* layer
- Stratospheric balloons up to 42 km max.
- Remote-sensing by ground based lidars and radars up to 105 km.
- Remote-sensing by Earth observation satellites in higher orbits (600 – 800 km) only observe constituents in the troposphere, stratosphere and mesosphere (MTL too rarefied).
- In-situ measurements by sounding rockets in the MLT Region provide only a few times per year single-line data

QB50 – MLT research

On a Double CubeSat (10 x 10 x 20 cm³):

Science Unit:

Lower Thermosphere Measurements Sensors to be selected by a Working Group

Standard sensors for all CubeSats

Functional Unit:

Power, CPU, Telecommunication, IMU, GPS

Optional Technology or Science Package Universities are free to design the functional unit

QB50 – Sensor Selection

Mission objective: to make multi-point, in-situ measurements of the neutral component in the lower thermosphere

Examples for sensors/instruments:

- FIPEX sensor for measurement of atomic oxygen
- Atmospheric density measurements
- Miniaturized neutral mass spectrometer
- Accelerometers
- Gyroscopes
- Thermocouples / Thermistors / Resistance temperature detectors
- GPS

Selection of the standardized sensors for in-situ measurements will be made by the **Sensor Selection Working Group** (SSWG) in 2010

QB50

QB50, an international network of 50 CubeSats for multi-point, in-situ measurements in the lower thermosphere and re-entry research

Possible U.S. Stihel Payloads

		Edu	Non Edu
1.1U Tech Demo	6 ea	Costs \$25k	
2.2U QB Sats – Atmospheric Research	8 ea	\$30k	\$60k
3.3U Tech Demo	<u>6 ea</u>	\$90k 20 ea	\$180k

Present Launch Opportunities

Launch Opportunities with Morehead & Collaborators

PocketQubs

UniSat

Fall 2010

4 launch slots ~ \$8k + deorbitor

NanoRacks

ISS

Every 3-4 months

Education \$25/1U - 3 months on ISS

Future Launch Opportunities

Launch Opportunities with Morehead & Collaborators

Roma – NextSat?? Russian Dnepr 2012

PocketQubs & Payloads

Roma – NextSat?? Russian Dnepr 2013

PocketQubs & Payloads

VKI - QB50 Russian Stihel 2013/14

Roma – NextSat?? Russian Dnepr 2014

PocketQubs & Payloads

Conclusions

