SIMPLIFICACIÓN

El proceso de simplificación de funciones lógicas consiste en pasar de una expresión algebraica a otra equivalente con el menor número posible de términos (sumas o productos) y con el menor numero de variables c/u.

Los métodos utilizados para la minimización de funciones Booleanas son: El algebraico, para lo cual se utilizan los postulados y teoremas del álgebra de Boole y el método gráfico de *Karnaugh*.

En general, el mapa de Karnaugh se considera como la forma gráfica de una tabla de verdad, o como una extensión del diagrama de Venn

METODO ALGEBRAICO

Las propiedades más utilizadas para la simplificación son

· Distributiva:

$$a + (b \cdot c) = (a + b) \cdot (a + c)$$

 $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$
 $a + a' = 1$
 $a \cdot a' = 0$

· Ley de absorción:

$$a + (a \cdot b) = a$$

 $a \cdot (a+b) = a$

· Teoremas de De Morgan

DIAGRAMA DE KARNAUGH

$\overline{\mathbf{A}}$	A
0	1

0	1

AB	Ā B
A B	A B

0 0	0 1
1 0	1 1

A	B 0	1
0		
1		

ĀĒC	ĀBC
ĀBC	ĀBC
ABC	ABC
ABC	ABC

	C	C
AB	000	001
ĀB	010	011
AB	110	111
AB	100	101

AB C	0	1
00	0	1
01	2	3
11	6	7
10	4	5

EN LOS MAPAS DE KARNAUGH LAS CELDAS DE LO BORDES SON ADYACENTES, CON LO CUAL EL MAPA SE PUEDE *DOBLAR* COMO SIGUE

CAMPOS DE ACCION – DOS VARIABLES

A	B 0	1	
0	A B	A B	
			=A
1			

CAMPOS DE ACCION – TRES VARIABLES

CAMPOS DE ACCION – CUATRO VARIABLES - $f = \Sigma 1, 3, 5, 7, 9, 11, 13$

METODO GENERAL

AGRUPAR EN CONJUNTOS DE 1, 2, 4, 8, etc CELDAS BUSCANDO EL MENOR NUMERO POSIBLE DE AGRUPAMIENTOS, CON EL MAYOR NUMERO DE CELDAS

Terminología para la simplificación:

A continuación definiremos algunos términos comúnmente utilizados en los procesos de simplificación de funciones lógicas.

Implicante:

Conjunto de unos en un mapa de Karnaugh que representa un termino producto de variables. Se denomina implicante porque cuando este termino toma el valor 1, *implica* que también la función toma el valor 1. Un mintérmino solo es un implicante.

Implicante Primo:

Implicante que no está incluido completamente dentro de otro implicante. No puede combinarse con otro implicante para eliminar un literal.

IMPLICANTES PRIMOS

Ejemplo: Simplificar la función:

 $f = \overline{A} \ \overline{B} \ C \ D + \overline{A} \ B \ \overline{C} \ D + \overline{A} \ B \ C \ \overline{D} + \overline{A} \ B \ C \ D + A \ \overline{B} \ \overline{C} \ \overline{D} + A \overline{B} \overline{C} \overline{D} + A \overline{B} \overline{C}$

∖AB	FUNCION			
CD/	00	01	11	10
00			1	1
01		1	1	
11	1	1		
10		1	1	1

De los 6 implicantes primos, sólo AC es esencial. ya que contiene al mintérmino: AB'CD' que no es cubierto por ningún otro implicante primo.

Puede comprobarse que se logra una mínima cobertura de la función con:

$$AC + BC' + A'B'D$$

Ejemplo: Para una función de 4 variables se tienen los siguientes implicantes primos:

Sólo BD es no esencial.

La función mínima debe contener los esenciales, y con éstos se logra cubrir completamente a la función:

$$f = ABC' + ACD + A'BC + A'C'D$$

Implicante Primo Esencial:

Implicante primo que contiene uno o mas mintérminos que no están incluidos en cualquier otro implicante primo.

En el siguiente mapa de Karnaugh: Los términos I II y III son implicantes primos

El termino IV no es implicante primo Los términos I y III son implicantes primos esenciales

El termino II no es un implicante primo esenciales

La función se obtiene con los términos I y III

EJEMPLOS

IMPLICANTES NO ESENCIALES

CONDICIONES NO IMPORTA NO SUCEDE

mi	A B C	f
m0	0 0 0	X
m1	0 0 1	0
m2	0 1 0	1
m3	011	1
m4	100	0
m5	101	0
m6	110	X
m7	111	1

Condiciones "no importa"

■ Ejemplo: conversor BCD natural a BCD exceso 3

A	В	С	D	PQRS
000000011	0 0 0 0 1 1 1 1 0 0	0011001100	0 1 0 1 0 1 0 1	0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0 1 0 1 1 1 0 1 0
1 1 1 1 1	0 1 1 1	1 0 0 1 1	0 1 0 1 0	X X X X X X X X X X X X X X X X X X X

$$P = A + B \cdot C + B \cdot D$$

Minimización en mapas de Karnaugh de 5 variables

Simplificar la función = $\sum m(0,2,8,11,15,18,20,21,27,28,29,31)$

III

La función quedará f=ĀCDĒ+BDE+BCDĒ+ACD

II

Representación

- Nótese que el mapa de 5 variables se obtiene a partir de dos mapas para n = 4.
- A uno se le antecede un cero en la codificación de las columnas y al otro un 1.
- \square El mapa de Karnaugh de 5 variables f(A,B,C,D,E):

Representación

□ Otra forma de representación

PROBLEMAS RESUELTOS

FUNCIONES NO TOTALMENTE DEFINIDAS

Problema 1

a) Simplificar por el método de Karnaugh la siguiente expresión:

$$S = \overline{c} \cdot d + a \cdot \overline{b} \cdot c \cdot \overline{d} + a \cdot \overline{b} \cdot \overline{c} \cdot \overline{d} + a \cdot b \cdot \overline{c} \cdot \overline{d} + b \cdot c \cdot d$$

b) Dibujar un circuito que realice dicha función con puertas lógicas

(Selectividad andaluza)

a. Obtenemos la expresión canónica y realizamos el mapa de Karnaugh para cuatro variables

$$S = \overline{c} \cdot d + a \cdot \overline{b} \cdot c \cdot \overline{d} + a \cdot \overline{b} \cdot \overline{c} \cdot \overline{d} + a \cdot b \cdot \overline{c} \cdot \overline{d} + b \cdot c \cdot d$$

$$S = \overline{c} \cdot d \cdot (a + \overline{a}) \cdot (b + \overline{b}) + a \cdot \overline{b} \cdot c \cdot \overline{d} + a \cdot \overline{b} \cdot \overline{c} \cdot \overline{d} + a \cdot b \cdot \overline{c} \cdot \overline{d} + b \cdot c \cdot d \cdot (a + \overline{a})$$

$$S = a \cdot b \cdot \overline{c} \cdot d + \overline{a} \cdot b \cdot \overline{c} \cdot d + a \cdot \overline{b} \cdot \overline{c} \cdot d + a \cdot \overline{b} \cdot \overline{c} \cdot \overline{d} + a \cdot \overline{b} \cdot \overline{c} \cdot \overline{d$$

$$S = a \cdot b \cdot \overline{c} \cdot d + \overline{a} \cdot b \cdot \overline{c} \cdot d + a \cdot \overline{b} \cdot \overline{c} \cdot d + \overline{a} \cdot \overline{b} \cdot \overline{c} \cdot d + + a \cdot \overline{b} \cdot c \cdot \overline{d} + a \cdot \overline{b} \cdot \overline{c} \cdot \overline{d} + + a \cdot b \cdot \overline{c} \cdot \overline{d} + \overline{a} \cdot b \cdot \overline{c} \cdot \overline{d} + + a \cdot b \cdot c \cdot \overline{d}$$

.cd ab	00	01	11	10
00		1		
01		1	1	
11	1	1	1	
10	1	1		1

b. La función simplificada es

$$S = \overline{c} \cdot d + a \cdot \overline{c} + b \cdot d + a \cdot \overline{b} \cdot \overline{d}$$

Dada la siguiente función:

$$S = \overline{a} \cdot \overline{b} + \overline{a} \cdot \overline{c} + a \cdot \overline{b} \cdot \overline{c} + \overline{a} \cdot b$$

- a) Obtenga su forma canónica como suma de productos lógicos.
- b) Obtenga su expresión más significativa.
- Obtenemos su función canónica como suma de productos

$$S = \overline{a} \cdot \overline{b} + \overline{a} \cdot \overline{c} + a \cdot \overline{b} \cdot \overline{c} + \overline{a} \cdot b$$

$$S = \overline{a} \cdot \overline{b} \cdot (c + \overline{c}) + \overline{a} \cdot \overline{c} \cdot (b + \overline{b}) + a \cdot \overline{b} \cdot \overline{c} + \overline{a} \cdot b \cdot (c + \overline{c})$$

$$S = \overline{a} \cdot \overline{b} \cdot c + \overline{a} \cdot \overline{b} \cdot \overline{c} + \overline{a} \cdot b \cdot \overline{c} + \overline{a} \cdot \overline{b} \cdot \overline{c} + a \cdot \overline{b} \cdot \overline{c} + \overline{a} \cdot b \cdot c + \overline{a} \cdot b \cdot \overline{c}$$

$$S = \overline{a} \cdot \overline{b} \cdot c + \overline{a} \cdot \overline{b} \cdot \overline{c} + \overline{a} \cdot b \cdot \overline{c} + a \cdot \overline{b} \cdot \overline{c} + \overline{a} \cdot b \cdot c$$

b. Situamos los términos de la función sobre la cuadrícula para tres variables y simplificamos la función por Karnaugh

√bc a	00	01	11	10
0	1	1	1	1
1	1			

La función obtenida es

$$S = \overline{a} + \overline{b} \cdot \overline{c}$$

Problema 6

Un motor eléctrico puede girar en ambos sentidos por medio de dos contactores: "D" para el giro a derecha y "I" para el giro a izquierda. Estos dos contactores son comandados por dos pulsadores de giro "d" (derecha) e "i" (izquierda) y un interruptor de selección "L" de acuerdo con las siguientes condiciones:

- Si sólo se pulsa uno de los dos botones de giro, el motor gira en el sentido correspondiente.
- Si se pulsan los dos botones de giro simultáneamente, el sentido de giro depende del estado del interruptor "L" de forma que,
 - Si "L" está activado, el motor gira a la derecha.
 - Si "L" está en reposo, el motor gira a la izquierda.

Establecer:

- a) La tabla de verdad.
- b) Las funciones lógicas D e I y simplificarlas.
- su circuito lógico mediante puertas.

(Selectividad andaluza)

Realizamos la tabla de verdad contemplando las dos salidas

ď	İ	L	D	1
0	0	0	0	0
0	0	1	0	0
0	1	0	0	1
0	1	1	0	1
1	0	0	1	0
1	0	1	1	0
1	1	0	0	1
1	1	1	1	0

b. De las funciones deducidas de la tabla, situamos sus términos sobre las cuadrículas correspondientes de tres variables y las simplificamos por Karnaugh a. Realizamos la tabla de verdad contemplando las dos salidas

d	ĺ	L	D	1
0	0	0	0	0
0	0	0 1	0	0
0	1	0	0	1
0	1	1	0	1
0	0	0	1	0
1	0	0 1	1	0 0 1
1	1	0	0	1
1	1	1	1	0

b. De las funciones deducidas de la tabla, situamos sus términos sobre las cuadrículas correspondientes de tres variables y las simplificamos por Karnaugh

$$D = d \cdot \overline{i} \cdot \overline{L} + d \cdot \overline{i} \cdot L + d \cdot i \cdot L \qquad I = \overline{d} \cdot i \cdot \overline{L} + \overline{d} \cdot i \cdot L + d \cdot i \cdot \overline{L}$$

$$D=d\cdot \bar{i}+d\cdot L$$

$$D = d \cdot (\overline{i} + L)$$

$$I = \overline{d} \cdot i \cdot \overline{L} + \overline{d} \cdot i \cdot L + d \cdot i \cdot \overline{L}$$

$$I = \overline{d} \cdot i + i \cdot \overline{L}$$

$$I = i \cdot (\overline{d} + \overline{L})$$

Un motor es controlado mediante tres pulsadores A, B y C.

Diseñe su circuito de control mediante puertas lógicas que cumpla las siguientes condiciones de funcionamiento:

- Si se pulsan los tres pulsadores el motor se activa.
- Si se pulsan dos pulsadores cualesquiera, el motor se activa pero se enciende una lámpara adicional como señal de emergencia.
- Si sólo se pulsa un pulsador, el motor no se excita, pero se enciende la lámpara indicadora de emergencia.
- Si no se pulsa ningún interruptor, ni el motor ni la lámpara se activan.

(Selectividad andaluza septiembre-97)

Obtenemos la tabla de verdad para las dos salidas, según las especificaciones, y expresamos sus funciones canónicas

Α	В	С	М	L
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	1
1	0	0	0	1
1	0	1	1	1
1	1	0	1	1

Α	В	С	М	L
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	1
1	0	0	0	1
1	0	1	1	1
1	1	0	1	1
1	1	1	1	0

$$M = \overline{A} \cdot B \cdot C + A \cdot \overline{B} \cdot C + A \cdot B \cdot \overline{C} + A \cdot B \cdot C$$

$$L = \overline{A} \cdot \overline{B} \cdot C + \overline{A} \cdot B \cdot \overline{C} + \overline{A} \cdot B \cdot C + A \cdot \overline{B} \cdot \overline{C} + A \cdot \overline{B} \cdot C + A \cdot B \cdot \overline{C}$$

Por el método tabular obtenemos sus funciones simplificadas

$$M = B \cdot C + A \cdot C + A \cdot B$$

$$L = \overline{A} \cdot C + A \cdot \overline{B} + B \cdot \overline{C}$$

Un sistema electrónico de alarma está constituido por cuatro detectores a, b, c y d. La alarma debe dispararse cuando se activen tres o cuatro detectores. Si se activan sólo dos detectores su disparo es indiferente. La alarma nunca debe dispararse si se activa un solo detector o ninguno. Por último y por razones de seguridad, se deberá activar si a=0, b=0, c=0 y d=1. Diseñe un circuito de control para esta alarma con el menor número posible de puertas lógicas.

(Propuesto Andalucía 96/97)

Realizamos la tabla de verdad basándonos en las condiciones iniciales

а	b	С	d	S
0	0	0	0	0
0	0	0	1	1
0	0	1	0	0
0	0	1	1	Х
0	1	0	0	0
0	1	0	1	Х
0	1	1	0	Χ
0	1	1	1	1
1	0	0	0	0
1	0	0	1	Х
1	0	1	0	Х
1	0	1	1	1
1	1	0	0	Х
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

-çd	00	01	11	10
ab 00		1	×	
01		х	1	Х
11	X	1	1	1
10		X	1	Х

$$S = d + a \cdot b$$

Un proceso de fabricación es controlado por cuatro sensores A, B, C y D, de forma que sus salidas son "0" o "1", según estén desactivados o activados respectivamente. El proceso deberá detenerse cuando está activado el sensor A o cuando lo estén dos sensores cualesquiera. Se pide:

- a) Realice la tabla de verdad.
- b) Simplifique la función por el método de Karnaugh.
- c) Represente el esquema del circuito con puertas lógicas.

(Selectividad andaluza septiembre-99)

Realizamos primeramente su tabla de verdad

а	b	С	ď	S
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

$$S = \overline{A} \cdot \overline{B} \cdot \overline{D} + \overline{A} \cdot \overline{C} \cdot \overline{D} + \overline{A} \cdot \overline{B} \cdot \overline{C}$$

Realizamos primeramente su tabla de verdad

а	b	c	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1