USA Computing Olympiad

OVERVIEW

TRAINING

CONTESTS

HISTORY

STAFF

Resources

USACO 2023 DECEMBER CONTEST, SILVER PROBLEM 1. BOVINE ACROBATICS

Return to Problem List

Time Remaining: 3 hrs, 50 min, 36 sec

Submitted; Results below show the outcome for each judge test case											
* 3.4mb	* 3.4mb	* 3.6mb	★ 3.6mb	* 3.6mb	★ 6.5mb	★ 6.5mb	* 10.3mb	* 10.3mb	* 10.3mb	* 10.3mb	* 10.3mb
1 2ms	2 1ms	3 2ms	4 2ms	5 2ms	6 31ms	7 31ms	8 56ms	9 55ms	10.5ms	11 48ms	12 72ms
			7	k 4	k 7	k :	k /	•			
								3mb 7ms			
								3mb 7ms			

English (en) 🗸

Farmer John has decided to make his cows do some acrobatics! First, FJ weighs his cows and finds that they have N ($1 \le N \le 2 \cdot 10^5$) distinct weights. In particular, for each $i \in [1, N]$, a_i of his cows have a weight of w_i ($1 \le a_i \le 10^9$).

His most popular stunt involves the cows forming *balanced towers*. A *tower* is a sequence of cows where each cow is stacked on top of the next. A tower is *balanced* if every cow with a cow directly above it has weight at least K ($1 \le K \le 10^9$) greater than the weight of the cow directly above it. Any cow can be part of at most one balanced tower.

If FJ wants to create at most M ($1 \le M \le 10^9$) balanced towers of cows, at most how many cows can be part of some tower?

INPUT FORMAT (pipe stdin):

The first line contains three space-separated integers, N, M, and K.

The next N lines contain two space-separated integers, w_i and a_i . It is guaranteed that all w_i are distinct.

OUTPUT FORMAT (pipe stdout):

Output the maximum number of cows in balanced towers if FJ helps the cows form towers optimally.

SAMPLE INPUT:

- 3 5 2
- 76
- 5 5

SAMPLE OUTPUT:

14

FJ can create four balanced towers with cows of weights 5, 7, and 9, and one balanced tower with cows of weights 5 and 7.

SAMPLE INPUT:

- 3 5 3
- 5 5
- 7 6

SAMPLE OUTPUT:

9

FJ can create four balanced towers with cows of weights 5 and 9, and one balanced tower with a cow of weight 7. Alternatively, he can create four balanced towers with cows of weights 5 and 9, and one balanced tower with a cow of weight 5.

SCORING:

- In inputs 3-5, $M \le 5000$ and the total number of cows does not exceed 5000.
- In inputs 6-11, the total number of cows does not exceed $2 \cdot 10^5$.
- Inputs 12-17 have no additional constraints.

Problem credits: Eric Hsu