|1| Compléter par \in ou \notin :

$$0 \dots \mathbb{N}^*$$
 ;; $1 \dots \mathbb{N}^*$;; $1 \dots \mathbb{Z} \setminus \{1\}$

$$0 \dots \mathbb{R}^*$$
 ;; $2 \dots \mathbb{R}/\{2\}$;; $0 \dots \mathbb{R}^* \setminus \{1\}$

$$2 \dots [2, 3[;; 5 \dots [1, 5[;; 0 \dots [-1, +\infty[$$

|2| Compléter par \subset ou $\not\subset$:

$$\mathbb{Z} \dots \mathbb{N} \ ;; \ \mathbb{R}^+ \dots \mathbb{R} \ ;; \ \mathbb{N} \dots \mathbb{Z}^+$$

Exercice 2

1 Écrire sous forme de $a\sqrt{b}$ avec $a, b \in \mathbb{N}$

$$3\sqrt{12} + \sqrt{27} - 5\sqrt{3}$$
;; $5\sqrt{20} + 11\sqrt{5} - \sqrt{45}$

2 Calculer: $\sqrt{3+|-13|}$; $1+\sqrt{|-9|}$

$$\sqrt{\frac{27}{6}} \times \frac{\sqrt{18}}{3}$$
 ;; $(7 - 4\sqrt{3})^{2021} (7 + 4\sqrt{3})^{2021}$

$$\frac{\sqrt{2}^7 \times 4^4}{4^3 \times \sqrt{2}^5} \quad ;; \quad \frac{\left(\sqrt{5}^7\right)^2}{15^6} \times 3^6 \quad ;; \quad \left(\frac{1}{2}\right)^2 \times 2^2$$

3 Écrire sous forme d'une puissance de 10 :

$$\frac{0.01 \times 10^{3}}{10^{2} \times 0.001} ;; \frac{0.001 \times 10^{7}}{10^{3} \times 0.01} ;; \frac{10^{-1} \times 0.001}{0.0001}$$

4 Donner l'écriture scientifique de :

$$72,453 \times 10^3 \ ;; \ -1354 \ ;; \ 0,002 \times 10^{-2}$$

Exercice 3

1 Calculer: |-935|;; |132|;; $(|7-3|)^2$

$$(|3+4|)^2$$
;; $|-7|^2$;; $(|2-3|)^{20}$

2 Comparer 2 et $\sqrt{3}$ et déduire $|\sqrt{3}-2|$.

Exercice 4

Soit $x \in \mathbb{R}$. Développer puis simplifier les

expressions suivantes:

expressions survantes:
$$2x(x+\sqrt{3}) \quad ;; \quad \left(\sqrt{3}-\frac{1}{2}\right)^2 \quad ;; \quad \left(\sqrt{3}x-2\right)^2 \\ (2+x)^3 \quad ;; \quad (x-1)^2 \quad ;; \quad (2\sqrt{5}+1)(2\sqrt{5}-1) \end{aligned} \begin{cases} 3x+8y=0 \\ 5x-2y=1 \end{cases} \qquad ;; \quad \begin{cases} 2x+7y=-5 \\ 6x-2y=8 \end{cases}$$

$$(2+x)^3$$
 ;; $(x-1)^2$;; $(2\sqrt{5}+1)(2\sqrt{5}-1)$

Exercice 5

Soit $x \in \mathbb{R}$. Factoriser les expressions sui-

vantes:

$$(x-1)^2 - 9$$
 ;; $4x^2 + 8x + 1$ $x^2 - 4$

$$2(x^2-1)+5x+5$$
 ;; $8+x^3$;; $27x^3-8$

Exercice 6

Résoudre dans \mathbb{R} les équations suivantes :

$$2x-7=1$$
 ;; $x-6=0$;; $\frac{3}{4}x-6=-x+3$

$$-3x + 4 = 2x$$
 ;; $|x - 3| = 2$;; $|x + 3| = |x|$

$$1 + \frac{x}{x-5} = \frac{5}{x-5}$$
 ;; $\frac{3x}{x+4} = 2 - \frac{12}{x+4}$

$$(x-2)(5x+1) = 5x(x+1)$$
 ;; $x^2 - 2x = 3$

$$x^2 = 5x - 6$$
 ;; $-x^2 + 6 = x$;; $x^2 = 2$

$$x^2 - 2x + 3 = 0$$
 ;; $x^2 - 4x + 4 = 0$

$$x^2 - 5x = 0$$
 ;; $9x^2 - 6x + 1$;; $x^2 = -2x$

$$-1x^2 + 2x + 3 = 0$$
 ;; $3x^2 + 6x = 0$

Exercice 7

Etudier les signes des expressions suivantes :

$$2x-4$$
 ;; $x+1$;; $5x-6$;; x^2-4x+4

$$x^2 - 4$$
 :: $x^2 - 2x + 3$:: $-x^2 + x + 6$

$$x^{2} - 4$$
 ;; $x^{2} - 2x + 3$;; $-x^{2} + x + 6$
 $x^{2} - 7x$;; $-x^{2} - 5x$;; $\sqrt{x - 1} + 2$

$$(2x+3)(5x-1)$$
 ;; $2x^2(x-3)$;; $(4-3x)x$

$$\frac{2x+3}{5x-1}$$
 ;; $\frac{2x+3}{5x-1}(4-3x)$

Exercice 8

Résoudre dans $\mathbb{R} \times \mathbb{R}$ les systèmes suivants :

$$\begin{cases} 3x + 8y = 0 \\ 5x - 2y = 1 \end{cases} ;; \begin{cases} 2x + 7y = -5 \\ 6x - 2y = 8 \end{cases}$$

Résoudre dans \mathbb{R} les inéquations suivantes :

$$3x - 1 > 0$$
;; $2x - 2 \le 0$;; $-3x + 2 \le 0$

$$-x+3 \ge 0$$
 ;; $x^2-4x+3 \ge 0$;; $x^2-x-6 < 0$

$$x^2 - 2x + 1 > 0$$
;; $x^2 + 3x + 4 \ge 0$

$$3x - 6 < 0$$
 ;; $-1x^2 + 2x + 3 < 0$

$$x^2 - 2x - 3 \ge 0$$
;; $|x+1| < 2$;; $|x-1| > 5$

Exercice 10

|1| Trouver un encadrement de x dans les cas suivants:

$$x \in [1, 6[;; x \in]2, 9] ;; x + 2 \in [-3, 12[$$

2 Donner le type de chacun des intervalles :

$$]-\infty,3[;; [-3,71[;;]-\infty,3[;; [-3,67]$$

3 Calculer le centre, le rayon et la longueur

de l'intervalle [-1, 5]. Représenter le.

Exercice 11

Soient deux polynômes P et Q tel que:

$$P(X) = X^3 - 7X + 6$$
 et $Q(X) = X^2 + 2X - 3$

 $\boxed{1}$ Donner $\deg(P)$, $\deg(Q)$, $\deg(P+Q)$,

 $\deg(P \times Q)$ et $\deg(5P + Q)$.

2 Calculer (P+Q)(X) et $(P\times Q)(X)$.

|3| Effectuer la division Euclidienne de P

sur X-2. Que remarquer toi?

4 Vérifier que 1 et -3 sont deux racines de

Q et factoriser Q.

|5| Déduire la factorisation de P.

Exercice 12

Déterminer le domaine de définition de la function f dans les cas suivants :

$$f(x) = 4x^3 - 5x^2 + 8x \ ;; \ f(x) = \frac{5}{x - 1}$$

$$f(x) = \sqrt{2x - 1} \ ;; \ f(x) = \frac{7x - 1}{(1 - x)(3 + x)}$$

$$f(x) = \sqrt{x - 1} + 2 \ ;; \ f(x) = \frac{-4x + 5}{\sqrt{x - 2}}$$

$$f(x) = \sqrt{\frac{4x + 4}{x - 2}} \ ;; \ f(x) = \sqrt{x^2 - 5x + 6}$$

$$f(x) = \frac{\sqrt{x - 2}}{x^2 - 4x + 3} \ ;; \ f(x) = \frac{-5x + 3}{x^2 - x - 2}$$

$$f(x) = \frac{3x^2 - \sqrt{4}}{2 - x} \ ;; \ f(x) = \frac{2x - 3}{3x - 6}$$

$$f(x) = -\sqrt{x - 1} + x^2$$

Exercice 13

Calculer les limites suivantes :

Calculer les limites suivantes :
$$\lim_{x \to 1} \frac{\sqrt{x-1}-2}{x^2-2x} \; ;; \; \lim_{x \to 1} \frac{\sqrt{8x+1}+2x-5}{x-1}$$

$$\lim_{x \to 1} \frac{2x^2-5x+3}{x-1} \; ;; \; \lim_{x \to 1^+} \frac{4x^2-5x+1}{x^2-1}$$

$$\lim_{x \to -2} \frac{x^2+5x+6}{x+2} \; ;; \; \lim_{x \to -1} \frac{2x^2+5x+3}{x^2+2x+1}$$

$$\lim_{x \to 3} \frac{x^2-5x+6}{x^3-27} \; ;; \; \lim_{x \to 1} \frac{x^3+2x^2+x-4}{x^2-1}$$

$$\lim_{x \to 1} \frac{x^2+|x-1|-1}{x^2-x} \; ;; \; \lim_{x \to 0} \frac{x^2+|x|}{x^2-|x|}$$

$$\lim_{x \to 1} \frac{\sqrt{x-1}}{x-1} \; ;; \; \lim_{x \to 3} \frac{\sqrt{4x+3}}{\sqrt{7-x}-2}$$

$$\lim_{x \to +\infty} \frac{\sqrt{x-1}}{x^2+x+2-3x} \; ;; \; \lim_{x \to +\infty} \frac{5x^5-x^2+7}{x^3+3x^2-9}$$

$$\lim_{x \to +\infty} \frac{4x^2+2x+1}{x^3+3x^2-1} \; ;; \; \lim_{x \to -\infty} \frac{(2x)^3+3x^2-9}{x^3+x^2-6}$$

$$\lim_{x \to +\infty} \frac{\sin(x)}{x} \; ;; \; \lim_{x \to +\infty} \frac{x+1-\sqrt{x^2-x}}{x-3-\sqrt{x^2-x}}$$

$$\lim_{x \to +\infty} \frac{\sin(x)}{x} \; ;; \; \lim_{x \to +\infty} \frac{x+1-\sqrt{x^2-x}}{x-3-\sqrt{x^2-x}}$$

On considère la fonction f définie par :

$$f(x) = \frac{3x + \cos(x)}{x + 2}$$

1 Montrer que :

$$\forall x \in]0, +\infty[: \frac{3x-1}{x+2} \leqslant f(x) \leqslant \frac{3x+1}{x+2}$$

 $\boxed{2}$ Déduire $\lim_{x\to+\infty} f(x)$

Exercice 15

Calculer $f \circ g$ et $g \circ f$ dans les cas suivants :

$$f(x) = \sqrt{2x - 1} \; ;; \; g(x) = x^2 + 1$$

$$f(x) = \frac{5}{x - 3} \; ;; \; g(x) = \sqrt{x} + 3$$

$$f(x) = \frac{2x - 3}{3x - 6} \; ;; \; g(x) = x^3$$

Exercice 16

1 Donner la valeur de vérité des assertions

suivantes:

(P) :
$$(3=2)$$
 et $(\frac{1}{3} = \frac{2}{6})$

$$(Q): \frac{22}{7} = 3,15$$

2 Donner la négation des assertions sui-

vantes:

$$(P_1): \forall x \in \mathbb{R} / x \geqslant 0$$

$$(P_2): \exists a \in \mathbb{N}, \forall x \in \mathbb{R} / x \leqslant a$$

Exercice 17

On considère la suite $(u_n)_n$ définie par :

$$u_0 = 1$$
 et $u_{n+1} = \frac{2u_n}{2 + 3u_n}$

 $\lfloor 1 \rfloor$ Calculer u_1 et u_2

 $\boxed{2}$ Déterminer la nature de la suite $(u_n)_n$.

 $\boxed{3}$ Montrer que : $\forall n \in \mathbb{N} : u_n > 0$

Exercice 18

On considère la suite $(u_n)_n$ définie par :

$$\forall n \in \mathbb{N}, u_n = 4n - 3$$

 $\boxed{1}$ Calculer u_0 , u_1 et u_2 .

2 Calculer $u_{n+1} - u_n$ pour tout n dans \mathbb{N} .

3 Conclure.

Exercice 19

On considère la suite $(v_n)_n$ définie par :

$$\forall n \in \mathbb{N} , v_n = 5v_n \quad v_0 = 1.$$

 $\boxed{1}$ Calculer v_1

 $\boxed{2}$ Calculer $\frac{v_{n+1}}{v_n}$ pour tout n dans \mathbb{N} .

3 Quelle est la nature de (v_n) ? Justifier.

4 Donner le terme général de (v_n) .

 $\boxed{5}$ Calculer v_{11} .

Exercice 20

Calculer les limites suivantes :

$$\lim_{n \to +\infty} 2\sqrt{n} \; ; \; \lim_{n \to +\infty} 2n^5 \; ; \; \lim_{n \to +\infty} -4n^9$$

$$\lim_{n \to +\infty} 14 + n^3 \; ; \; \lim_{n \to +\infty} \frac{-2}{n^2} \; ; \; \lim_{n \to +\infty} 7 \times \frac{4}{n}$$

$$\lim_{n \to +\infty} \frac{n + n^3 - 5}{n^2 + 1} \; ; \; \lim_{n \to +\infty} 5n^4 + 3n^3 - 2n^5$$

$$\lim_{n \to +\infty} n^4 + 2n^5 + n^3 + \sqrt{6} \; ; \; \lim_{n \to +\infty} \frac{\cos(n)}{n}$$

$$\lim_{n \to +\infty} \frac{1 + n^3}{n^4 - 5} \; ; \; \lim_{n \to +\infty} \frac{n^2 + 1}{n + n^3 - 5}$$

$$\lim_{n \to +\infty} 3n^3 + 4n^5 - 2n \; ; \; \lim_{n \to +\infty} \frac{\sin(n)}{n}$$

On considère la suite $(U_n)_n$ tel que

$$\forall n \in \mathbb{N} , U_n = 3n - 4$$

- 1 Calculer $U_{n+1} U_n$ et déduire la monotonie de $(U_n)_n$.
- 2 Conclure la nature de $(U_n)_n$ et sa raison.

Soit $(V_n)_n$ la suite définie par :

$$\forall n \in \mathbb{N}^*, \ V_n = \left(\frac{1}{2}\right)^n$$

- 1 Quelle est la nature de $(V_n)_n$.
- 2 Montrer que $(V_n)_n$ est bornée.
- 3 Calculer $S = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{64}$

Exercice 23

- Trouver le poids de G le barycentre de A(2) et B(3)
- 2 Déduire le barycentre de A et B et C(1)

Exercice 24

Calculer f'(x) dans chacun des cas suivants :

$$f(x) = x^4 + 2x^3 - 6x + 5$$
;; $f(x) = 5(x^2 + 1)^3$

$$f(x) = 4x^3 - 5x^2 - 6x + 4$$
 ;; $f(x) = \sqrt{x} + 5x$

$$f(x) = \sqrt{x} + \frac{1}{x} - 2$$
 ;; $f(x) = \frac{1}{x^2 + 3x}$

$$f(x) = \frac{x^2 + 1}{x^2 - 2}$$
 ;; $f(x) = \sqrt{5x^2 + 8x - 4}$

$$f(x) = (x - 3)(x^2 + 2x)$$

$$f(x) = 2x^3 - 5x + 6$$
 ;; $f(x) = (x^2 + 3x + 1)^{10}$

Remarques

•	•	•	•	•		•	•	•	•	•	•	•		•	•	•	•	•

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

,																													
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

