Teste Computacional 1 (TC1)

Turma Engenharia Elétrica Resolvendo Sistemas Lineares pelo Método Iterativo de Gauss Jacobi

Objetivos:

Entender e implementar o método iterativo de Gauss Jacobi e verificar a velocidade de convergência da sequência gerada usando diversos chutes iniciais, para um conjunto de problemas específicos (serão descritos).

Implementações

Implementar um código para resolver vários sistemas lineares veia método iterativo de Gauss Jacobi. A implementação do método iterativo deve ser feita em rotina (função) própria e deve ser desenvolvida de forma que haja um critério de parada e limitante para a quantidade de iterações para evitar loop infinito nas situações onde não houver convergência. O critério de parada deve ser:

Parar quando a distância relativa (em módulo) entre os 2 últimos vetores < dada tolerância

Usar a norma do máximo para calcular o tamanho (a norma) da distância entre os vetores e, também, usar a norma do máximo para calcular a norma do vetor mais atual. (obs: definição desta norma está nas notas de aulas).

A função deve ter como dados de entrada os elementos mencionados acima, isto é:

- a matriz A e o vetor b (os dados do sistema linear Ax=b)
- a tolerância
- e a quantidade máxima de iterações

A função deve retornar, pelo menos, a quantidade de iterações realizadas (mas pode haver mais variáveis de retorno se quiserem) .

Por exemplo, se a função implementada fosse denominada de "resolve_via_Jacobi", a chamada da função para um sistema linear dado (com a A e b já previamente definidas), com tolerância tol=0.0001 e uma quantidade máxima de iterações de 500 iterações, seria: > qte | Iter = resolve | via | Jacobi(A, b, 0.0001, 500)

De forma a ser possível fazer vários experimentos e poder fazer comparações para sistemas lineares quadrados, de várias dimensões, que geram sequências convergentes, funções que geram sistemas lineares (matrizes A e vetores b) específicos, automaticamente, estão sendo

TAREFAS

Experimento 1

Obter a solução do sistema linear Ax=b, com A e b dados abaixo, pelo método de Gauss Jacobi

```
A = [ 5.0 0.5 0.5

8.0 1.5 5.0

7.0 6.0 5.0 ]

b = [ 10.0

15.0

18.0 ]

Aplicar o método, ou seja, obter

x0 = [ 0.0 0.0 0.0 ]
```

disponibilizadas. Serão descritos mais adiante.

Aplicar o método, ou seja, obter a solução usando, os seguintes chutes iniciais:

```
x0 = [0.0 \quad 0.0 \quad 0.0]

x0 = [1.0 \quad 1.0 \quad 1.0]

x0 = [20.0 \quad 30.0 \quad 40.0]
```

e mais um chute distinto, à sua escolha.

Para cada chute, nos casos onde houver convergência em menos de 1000 iterações, relatar a solução obtida e o número de iterações necessárias para se obter a solução. Quando não houver convergência, colocar a quantidade máxima de iterações.

	Chute 1	Chute 2	Chute 3	Chute 4	Média	desvio padrão
Qte de iterações	+1000	+1000	+1000	+1000	+1000	N/A

TABELA 1 Quantidade de iterações necessárias para atingir a tolerância, para o problema do exemplo 1 odos os chutes, inclusive o adicional, definido como [2,0,3,0,4,0] excederam o limite de 100

Todos os chutes, inclusive o adicional, definido como [2.0, 3.0, 4.0] excederam o limite de 1000 iterações

Experimento 2

De forma a ser possível fazer vários experimentos e poder fazer comparações para sistemas lineares de várias dimensões, que geram sequências convergentes, foi criada uma função chamada "gera_matriz_DIAGDOM(n)" que gera uma matriz de dimensão n (valor a ser fornecido na chamada da função) cujos elementos são quaisquer, gerados aleatoriamente entre 0 e 1 e diagonalmente dominante (ver definição nas notas de aulas) . Além disso, com o objetivo de criar sistemas cuja solução seja previamente conhecida (para fins de comparações didáticas) foi criada a função "gera_b_para_Sistema_linear_com_solucao_unitaria" de forma a gerar um vetor b fazendo o produto da matriz A com um vetor unitário (com todos os seus elementos iguais a 1).

Usando os códigos fornecidos, obtenha a solução de um sistema linear, de dimensão 3, gerado pelas funções descritas acima, com 4 chutes (vetores iniciais) distintos. Estes chutes devem ser vetores gerados no código, tendo com elementos valores aleatórios entre 0 e 10.

Para cada chute, anotar e relatar, a solução obtida e o número de iterações necessárias para se obter a solução com tolerância dada. Calcular a média aritmética da quantidade de iterações observadas. Relatar os dados do sistema linear, ou seja, copiar a matriz A gerada e o vetor b gerado.

Usando os códigos fornecidos, repetir o mesmo processo mais 2 vezes, isto é, gerar mais 2 sistemas lineares e obter, para cada sistema, a solução com 4 chutes iniciais distintos.

Ao final, portanto, o experimento terá sido realizado para 3 sistemas distintos.

Relatar os resultados em uma tabela similar à tabela dada abaixo.

dim=3	Chute 1	Chute 2	Chute 3	Chute 4	Média	desvio padrão
Sistema 1	34	34	34	33	33.75	0.433
Sistema 2	40	40	40	42	40.5	0.87
Sistema 3	108	107	108	106	107.25	0.83

TABELA 2 Quantidade de iterações necessárias para atingir a tolerância, para problemas de dimensão 3

Experimento 3

Repetir o mesmo experimento feito em (2) mas agora com problemas de dimensão 20. Relatar os resultados da mesma forma, em uma tabela similar à tabela dada abaixo.

dim=20	Chute 1	Chute 2	Chute 3	Chute	Média	desvio padrão
Sistema 1	299	304	303	303	302.25	1.92
Sistema 2	323	321	326	325	323.75	1.92
Sistema 3	354	360	357	359	357.5	2.29

TABELA 3 Quantidade de iterações necessárias para atingir a tolerância, para problemas de dimensão 20

Para todos os experimentos usar a tolerância = 10^(-12) e fazer no máximo 1000 iterações (Qtde Máxima de iterações).

Informações adicionais sobre trabalho e a entrega

Componentes: O trabalho deve ser feito por, no máximo, duas pessoas.

Linguagem: Em python

(quem preferir fazer em outra linguagem, entrar em contato comigo para combinar)

Data de entrega: 06/05/2024 às 23h59

O que entregar:

- o código implementado. O código deve ter o primeiro nome do(s)(a(s) componentes, escritos em minúsculas, separados por underscore)

Exemplos:

Feito por Lucas e João_Pedro -> lucas_joao_pedro.py Feito por Ana e Gabriel -> ana_gabriel.py

Colocar o(s) nome(s) completos do(os)a(as) componente(s) nas primeiras linhas do código.

o relatório contendo o que foi solicitado nas tarefas. Gere um arquivo em pdf.
 Colocar o(s) nome(s) completo(s) também no relatório.