

An Exponential Cone Programming Approach for Managing Electric Vehicle Charging

8

Authors: Li Chen, Long He, Yangfang (Helen) Zhou

Reporter: 汪勐航

2023/8/2

Introduction Innovation Model Algorithm Experiments Conclusion

EV Charging

■ A key to the mass adoption of EVs is the ease of charging, where public charging will play an increasingly important role

Customers:

- stochastic arrivals of customers:
- <u>arrival time, desired departure time,</u>
 <u>charging requirements</u>

Introduction	Innova	tion	Model	Algorithm Experiments Conclusion
Company A				
Billing Element	Meter Reading	Rate	Charge	
Energy Usage	60,000 kWhr	\$0.06/kWhr	\$3,600	TELD300001
Demand Charge	200 kW	\$13/kW	\$2,600	发展的 国家电网
Total Charges			\$6,200	
Company B				
Billing Element	Meter Reading	Rate	Charge	Pay the bil
Energy Usage	60,000 kWhr	\$0.06/kWhr	\$3,600	
Demand Charge	490 kW	\$13/kW	\$6,370	research subject
Total Charges \$9,970			\$9,970	

The tariff structure

- Demand charges
- Energy charges

EV charging service provider:

■ This total demand charge for an EV charging service provider can be as high as 70% of its total electricity cost.

Introduction Innovation Model Algorithm Experiments Conclusion

- Research Subject: EV charging service provider
- **Goal**: minimizing the total expected cost
- Optimization approach: scheduling EV charging (joint pricing and scheduling)
- **Model**: model it as a stochastic program (SP) and characterize the random number of arriving customers to follow Poisson distributions

Summary of innovation

Introduction > Innovation

Model

Algorithm

Experiments

Conclusion

- > Modeling fits the scene well (Complex but solvable)
 - arrival time, desired departure time, charging requirements
 - tariff structure in electric power
- > solving method (80,000 random variables and 700,000 decision variables)
 - moment-generating functions (MGFs) +exponential cone programming(ECP) approximations
 - Upper (Lower) bound of SP and a performance guarantee
 - Entropic dominance constraints (ambiguity set) + ECP From the numerical experiment, ECP is fast and good

Summary of innovation

Introduction

Innovation

Model

Algorithm

Experiments

Conclusion

> Differences from existing literature

- Focus on the operational level rather than infrastructure planning
- Takes into account the setup of the supplier's purchase of electricity from the utility (including its tariff structure)

> This research is very comprehensive, including

- Benchmark with SAA and DRO
- Uncapacitated/ Capacitated case (a limited number of chargers)
- charging scheduling /joint pricing and scheduling (optimal price)
- Poisson's estimate is inaccurate
- Time Discretization(15min/period —— 1min/period)
- All-period, on peak, and mid-peak demand charge

Introduction Innovation Model Algorithm Experiments Conclusion

EV Arrivals

We classify EV customers into V types according to the triple (s_v, τ_v, u_v)

 s_v : arrival time

 τ_v : desired departure time ($s_v \leq \tau_v$)

 u_v : charging requirement for customer type $v \in [V]$.

Note: customers are heterogeneous in all three dimensions (v is very large)

we assume the arrivals of customer types $v \in [V]$ with infinite chargers are independent Poisson random variables, and each has an arrival rate λ_v . (denoted by $\tilde{z}_v \sim \lambda_v$)

$$\mathcal{Z} \triangleq \left\{ z \ge \mathbf{0} \middle| \sum_{v \in \mathcal{V}_t} z_v \le C, \ \forall t \in [T] \right\}.$$

 $\mathcal{V}_t \triangleq \{v \in [V] | s_v \le t \le \tau_v\}$ denote the set of customer types at the station in period t

 $\tilde{z} \triangleq (\tilde{z}_v)_{v \in [V]}$ denote the vector of these truncated Poisson random variables (\mathbb{P}^C)

Innovation

Model

Algorithm

Experiments

Conclusion

Decisions

Decision variable:

the menu-based charging schedule $x \triangleq (x_{v,t})_{v \in [V], t \in \mathcal{T}_v}$

where $x_{v,t}$ denotes in period $t \in T_v$ the charging speed for customer type v; $T_v \triangleq \{s_v, ..., \tau_v\}$ is the set of periods within the charging window of customer type v.

The feasible set of x, denoted by X, is given as follows:

$$\mathcal{X} \triangleq \left\{ x \mid \sum_{t \in \mathcal{T}_v} \eta x_{v,t} = u_v \quad \forall v \in [V] \\ 0 \le x_{v,t} \le K/\eta \quad \forall v \in [V], t \in \mathcal{T}_v \right\}$$

- customer type v needs to fulfill the charging requirement u_v , $\eta \in (0,1]$ is the ratio of the quantity of electricity increased in the battery to the quantity of electricity used to charge the battery.;
- charging speed is within the limit.

Introduction **Innovation** Model **Algorithm**

Experiments

Conclusion

Total Cost

$$c(x,\tilde{z}) \triangleq d \max_{t \in [T]} \{f_t(x,\tilde{z})\} + \sum_{s \in [T]} e_s f_s(x,\tilde{z}),$$

 $f_t(x,\tilde{z})$ denote the total electricity used to charge EVs of all customers in period t, that is

$$f_t(x, \tilde{z}) = \sum_{v \in \mathcal{V}_t} x_{v, t} \tilde{z}_v.$$

Model Formulation

We formulate the problem of scheduling EV charging as an SP:

$$\min_{x \in \mathcal{X}} \mathbb{E}_{\mathbb{P}^C}[c(x, \tilde{z})], \tag{3}$$

where the expectation is over \tilde{z} . We denote an optimal solution to (3) by x^* and the optimal value of (3) by π^* , that is, $\pi^* = \mathbb{E}_{\mathbb{P}^c}[c(x^*, \tilde{z})]$.

Introduction

Innovation

Model

Algorithm

Experiments

Conclusion

ECP Approximations

Uncapacitated Case

(Method: MGF+ECP)

假设我们有一个随机变量X,它表示某个产品的寿命(以小时为单位),服从指数分布,参数为A。

我们可以通过矩生成函数推导出X的各阶矩。首先,我们计算矩生成函数M(t)。对于指数分布的随机变量X,其概率密度函数为f(x) = λe^(-λx),则矩生成函数为:

 $M(t) = E[e^{(tX)}] = \int (0 \text{ to } \infty) \lambda e^{(-\lambda x)} e^{(tx)} dx$

通过对上述积分进行计算,我们可以得到矩生成函数的表达式。具体地,对于指数分布的随机变量X,其矩生成函数为:

 $M(t) = \lambda / (\lambda - t)$

通过对矩生成函数进行不同阶数的导数,我们可以得到随机变量X的各阶矩。例如,对于一阶矩(均值):

 $E[X] = M'(0) = (\lambda) / (\lambda - 0) = 1/\lambda$

对于二阶矩 (方差):

 $E[X^2] = M''(0) = 2 / (\lambda^2)$

通过类似的计算, 我们可以得到更高阶的矩。

在这个例子中, 矩生成函数帮助我们推导出指数分布随机变量X的均值和方差, 以及其他阶数的矩。这些矩是对该随机变量性质的重要描述, 通过矩生成函数, 我们可以方便地计算它们的准确值。

Introduction

Innovation

Model

Algorithm

Experiments

Conclusion

ECP Approximations

demand charge

$$f_t(x,\tilde{z}) = \sum_{v \in \mathcal{V}_t} x_{v,t} \tilde{z}_v.$$

Let \mathbb{P}^{∞} denote the joint distribution of \tilde{z} for $C = \infty$. Note that \tilde{z}_v s for $v \in [V]$ are independent Poisson random variables. Given any $\boldsymbol{\theta} \triangleq (\theta_v)_{v \in [V]}$, the MGF of $\tilde{z} \sim \mathbb{P}^{\infty}$ is

$$\mathbb{E}_{\mathbb{P}^{\infty}} \left[\exp \left(\sum_{v \in [V]} \theta_v \tilde{z}_v \right) \right] = \prod_{v \in [V]} \mathbb{E}_{\mathbb{P}^{\infty}} [\exp(\theta_v \tilde{z}_v)]$$
$$= \prod_{v \in [V]} \exp \left(\lambda_v (e^{\theta_v} - 1) \right), \tag{4}$$

where the first equality is due to the independence of \tilde{z}_v 's and the second equality follows from the closed-form MGF expression of a Poisson random variable \tilde{z} ~

Proof. To obtain an upper bound of π^* , we first obtain an upper bound of $\mathbb{E}_{\mathbb{P}^{\infty}}[\max_{t \in [T]} f_t(x, \tilde{z})]$:

$$\mathbb{E}_{\mathbb{P}^{\infty}} \left[\max_{t \in [T]} f_t(x, \tilde{z}) \right]$$

$$= \mathbb{E}_{\mathbb{P}^{\infty}} \left[\max_{t \in [T]} \left(f_t(x, \tilde{z}) - f_t(x, \lambda) + f_t(x, \lambda) \right) \right]$$

$$\leq \mathbb{E}_{\mathbb{P}^{\infty}} \left[\max_{t \in [T]} \left(f_t(x, \tilde{z}) - f_t(x, \lambda) \right) + \max_{t \in [T]} f_t(x, \lambda) \right]$$

$$= \mathbb{E}_{\mathbb{P}^{\infty}} \left[\max_{t \in [T]} \left(f_t(x, \tilde{z}) - f_t(x, \lambda) \right) \right] + \max_{t \in [T]} f_t(x, \lambda). \tag{6}$$

We then obtain an upper bound of the first term in (6) given any $\mu > 0$ as follows:

$$\mathbb{E}_{\mathbb{P}^{\infty}} \left[\max_{t \in [T]} (f_{t}(x, \tilde{z}) - f_{t}(x, \boldsymbol{\lambda})) \right]$$

$$\leq \mu \ln \mathbb{E}_{\mathbb{P}^{\infty}} \left[\exp \left(\max_{t \in [T]} (f_{t}(x, \tilde{z}) - f_{t}(x, \boldsymbol{\lambda})) / \mu \right) \right]$$

$$\leq \mu \ln \mathbb{E}_{\mathbb{P}^{\infty}} \left[\sum_{t \in [T]} \exp \left((f_{t}(x, \tilde{z}) - f_{t}(x, \boldsymbol{\lambda})) / \mu \right) \right]$$

$$= \mu \ln \sum_{t \in [T]} \mathbb{E}_{\mathbb{P}^{\infty}} \left[\exp \left((f_{t}(x, \tilde{z}) - f_{t}(x, \boldsymbol{\lambda})) / \mu \right) \right]$$

$$= \mu \ln \sum_{t \in [T]} \mathbb{E}_{\mathbb{P}^{\infty}} \left[\exp \left(\sum_{v \in \mathcal{V}_{t}} \frac{x_{v, t}}{\mu} (\tilde{z}_{v} - \lambda_{v}) \right) \right]$$

$$= \mu \ln \sum_{t \in [T]} \prod_{v \in \mathcal{V}_{t}} \mathbb{E}_{\mathbb{P}^{\infty}} \left[\exp \left(\frac{x_{v, t}}{\mu} \tilde{z}_{v} \right) \right] \exp \left(-\frac{x_{v, t}}{\mu} \lambda_{v} \right)$$

$$= \mu \ln \sum_{t \in [T]} \exp \left(\sum_{v \in \mathcal{V}_{t}} \lambda_{v} (e^{x_{v, t} / \mu} - 1 - x_{v, t} / \mu) \right), \tag{7}$$

Introduction

Innovation

Model

Algorithm

Experiments

Conclusion

ECP Approximations

Uncapacitated Case

(Method: MGF+ECP)

Proposition 1. When $C = \infty$, the optimal value of ECP-U gives an upper bound of π^* :

$$\inf_{x \in \mathcal{X}, \kappa, \gamma, \mu > 0, \xi, \zeta} d(\kappa + \gamma) + \sum_{s \in [T]} e_s f_s(x, \lambda)$$
s.t.
$$\sum_{v \in \mathcal{V}_t} x_{v,t} \lambda_v \leq \gamma \qquad \forall t \in [T], \quad (5a)$$
(ECP-U)
$$\mu \exp(x_{v,t}/\mu) \leq \xi_{v,t} \qquad \forall t \in [T], v \in \mathcal{V}_t, \quad (5b)$$

$$u \exp\left(\left(-\kappa + \sum_{v \in \mathcal{V}_t} \lambda_v(\xi_{v,t} - x_{v,t} - \mu)\right) \middle/ \mu\right) \leq \zeta_t \quad (5c)$$

$$\forall t \in [T], \quad (5d)$$

All the constraints in this model involve either linear or exponential functions and thus can be expressed as exponential cone constraints. Hence, ECP-U is an ECP, and thus can be solved via MOSEK.

Introduction

Innovation

Model

Algorithm

Experiments

Conclusion

ECP Approximations

Capacitated Case ($\tilde{z} \sim \mathbb{P}^{C}$ does not follow independent Poisson distributions)

(Method: Entropic dominance constraints +ECP)

We use the infinitely constrained "entropic dominance" ambiguity set, adapted from Chen et al. (2019):

 \mathcal{F}

$$\triangleq \left\{ \mathbb{P} \in \mathcal{P}_0(\mathbb{R}^V) \middle| \begin{array}{c} \tilde{z} \sim \mathbb{P} \\ \ln \mathbb{E}_{\mathbb{P}}[\exp(\boldsymbol{\theta}'\tilde{z})] \leq \sum_{v \in [V]} \lambda_v(e^{\theta_v} - 1), \\ \forall \boldsymbol{\theta} \geq 0 \end{array} \right\},$$

Therefore, we can obtain an upper bound of the optimal value of (3) by considering the worst-case expected total cost over the ambiguity set \mathcal{F} :

$$\min_{x \in \mathcal{X}} \sup_{\mathbb{P} \in \mathcal{F}} \mathbb{E}_{\mathbb{P}}[c(x, \tilde{z})],$$
 (DRO-Ent)

Proposition 3. When $C < \infty$, the following ECP-C gives an upper bound of π^* :

$$\inf_{\substack{\kappa \in \mathcal{X}, a, b \geq 0, \nu \geq 0, y \geq 0, \mu > 0, \\ \kappa, \gamma, \alpha, \beta \geq 0, \xi, \zeta, \rho \geq 0}} d(\kappa + \gamma + \alpha + \beta' \lambda) + a + b' \lambda$$

s.t.
$$\sum_{v \in \mathcal{V}_t} y_{v,t} \lambda_v \le \gamma \quad \forall t \in [T], \quad (13a)$$

$$(\xi_{v,t}, \mu, y_{v,t}) \in \mathcal{K}_{\exp}$$

$$\forall t \in [T], v \in \mathcal{V}_t, \quad (13b)$$

$$\left(\zeta_{t}, \mu, -\kappa + \sum_{v \in \mathcal{V}_{t}} \lambda_{v}(\xi_{v, t} - y_{v, t} - \mu)\right) \in \mathcal{K}_{\exp}$$

(ECP-C)
$$\sum_{t \in [T]} \zeta_t \le \mu, \tag{13d}$$

$$C\sum_{k\in[T]}\rho_t^k \le \alpha \qquad \forall t\in[T], \quad (13e)$$

$$x_{v,t} - y_{v,t} - \beta_v \le \sum_{k \in \mathcal{T}_v} \rho_t^k$$

$$\forall t \in [T], v \in \mathcal{V}_t, \quad (13f)$$

$$C\sum_{t\in[T]} \nu_t \le a,\tag{13g}$$

$$\sum_{s \in \mathcal{T}_v} x_{v,s} e_s - b_v \le \sum_{t \in \mathcal{T}_v} v_t$$

$$\forall v \in [V]$$

Joint Pricing and Scheduling

Price-Dependent Arrival Rate. For ease of exposition and computational tractability, we assume that the customer arrival rate is linearly decreasing in the price:

$$\lambda_v = \overline{\lambda}_v (1 - r_v p), \quad \forall v \in [V], \tag{16}$$

Objective Function

$$\max_{p \in [\underline{p}, \overline{p}], x \in \mathcal{X}} \quad \mathbb{E}_{\mathbb{P}^{C}} \left[\sum_{v \in [V]} p u_{v} \tilde{z}_{v} - c(x, \tilde{z}) \right]. \tag{17}$$

Problem (17) is much more challenging than the scheduling problem (3) because the underlying distribution \mathbb{P}^{c} in (17) depends on the pricing decision p. To solve (17) efficiently, we leverage our ECP approximations for both the uncapacitated and capacitated cases.

Approximation cost allocation algorithm

Introduction Innovation Model Algorithm Experiments Conclusion

Proposition 4. When $C = \infty$, the optimal value of JPS-U is a lower bound of (17):

$$\sup_{x \in \mathcal{X}, p \in [\underline{p}, \overline{p}], \mu > 0, \lambda, \kappa, \gamma} \sum_{v \in [V]} p u_v \lambda_v - d(\kappa + \gamma)$$

$$- \sum_{s \in [T]} e_s f_s(x, \lambda) \qquad \text{(JPS-U)}$$
s.t. $(5a), (8), (16)$.

- Unlike ECP-U, which is convex, JPS-U is nonconvex because p (and equivalently λ_v) is a decision variable.
- Therefore, we propose an optimization procedure to solve JSP-U efficiently by alternating between fixing p and fixing x and μ .

Algorithm 1 (Alternating Optimization for JPS-U)

- 1. **Initialization** Set initial price $p^{(0)} \in [\underline{p}, \overline{p}]$, iteration counter $i \leftarrow 1$
- 2. **Scheduling optimization** Solve Model (18) with input $p^{(i-1)}$ and let x^* and μ^* be the optimal solution; set $x^{(i-1)} \leftarrow x^*$ and $\mu^{(i-1)} \leftarrow \mu^*$. Store optimal value $val_1^{(i)}$;
- 3. **Pricing optimization** Solve Model (19) with inputs $x^{(i-1)}$ and $\mu^{(i-1)}$, and let p^* be the optimal solution; set $p^{(i)} \leftarrow p^*$. Store optimal value $val_2^{(i)}$;
- 4. **Termination** If $|val_2^{(i)} val_1^{(i)}| < \delta$ (where $\delta > 0$ is a given small tolerance), set $p^* \leftarrow p^{(i)}$, solve Model (18) with input $p^{(i)}$ to obtain x^* , output p^* and x^* , and then stop. Otherwise, set $i \leftarrow i+1$ and go back to Step 2.

Output: Pricing decision p^* and scheduling decision x^*

Proposition 5. The sequence of optimal values $\{val_1^{(i)}, val_2^{(i)}\}$ in Algorithm 1 is nondecreasing and converges to a finite value.

Introduction Innovation Model Algorithm Experiments Conclusion

> Settings

- **□** t=15min, T=96
- \square 14,284 customer types (v)
- \Box *U*=62 kWh;
- \blacksquare *K*=10.75kWh/period
- $\Box \eta = 0.9$

> Unit charge

$$\hat{e}_t = \begin{cases} \$0.1466/\text{kWh} & \text{if } 13 \le \lceil t/4 \rceil \le 18 \text{ (on-peak hours)} \\ \$0.0895/\text{kWh} & \text{if } 9 \le \lceil t/4 \rceil \le 12 \text{ or } 19 \le \lceil t/4 \rceil \le 23 \\ & \text{(mid-peak hours)} \\ \$0.0582/\text{kWh} & \text{otherwise (off-peak hours),} \end{cases}$$

$$\hat{d}_t = \begin{cases} \$0.465/\text{kW} & \forall t \in [T] \doteq [96] \text{ (all-period)} \\ \$0.540/\text{kW} & \text{if } 13 \le \lceil t/4 \rceil \le 18 \text{ (on-peak hours)} \\ \$0.165/\text{kW} & \text{if } 9 \le \lceil t/4 \rceil \le 12 \text{ or } 19 \le \lceil t/4 \rceil \le 23 \\ & \text{(mid-peak hours),} \end{cases}$$

Introduction Innovation Model Algorithm Experiments Conclusion

Table 1. Performance Comparison Between ECP-C (or ECP-U) and SAA

С	Method		CPU	
		Mean	Standard deviation	Time (s)
15	ECP-C	600.40	35.20	312.33
	SAA	608.91	36.76	13,015.66
20	ECP-C	717.73	44.42	354.66
	SAA	727.38	46.22	15,806.33
25	ECP-C	783.66	57.13	445.66
	SAA	794.04	59.44	16,207.17
30	ECP-C	805.00	67.55	320.56
	SAA	816.39	69.94	16,005.50
00	ECP-U	808.90	71.30	194.22
	SAA	819.80	73.64	17,673.80

Figure 3. (Color Online) Expected Cost Under SAA at Different Sample Sizes Given C = 30

SAA (8000 samples)

- ECP is faster and better than SAA, DRO and other methods;
- ECP is not limited by sample size.

Introduction > Innovation > Model > Algorithm > Experiments > Conclusion

- Opt-15 min To 1 min policy: the 1-minute charging policy transformed via Algorithm 2 from the optimal charging policy solved on 15-minute discretization.
- Opt-1-min policy: the optimal charging policy solved directly on 1-minute discretization. Using the optimal policies allows

Table 3. Performance over a One-Hour Time Horizon (5 a.m. to 6 a.m.) with 1-Minute Discretization

			Total cost	E[Demand charge/
Hour	Policy	Mean	Standard deviation	total cost]
5 a.m. to 6 a.m.	Opt-1-min Opt-15minTo1min	1.046 1.061	1.144 1.163	0.361 0.370

 Algorithm 2 is very efficient and greatly reduces the computation time.

```
Algorithm 2 (Transform a 15-Minute Charging Policy x
into a 1-Minute Implementable Policy y)
       Input: 15-minute charging policy x_{v,t}
   1 for 1-minute customer type v' \in [V'] do
          set s_v \leftarrow \lceil s_{v'}/15 \rceil, \tau_v \leftarrow \lceil \tau_{v'}/15 \rceil, v \leftarrow (s_v, \tau_v, u_{v'});
          for 15-minute period t \in \{s_n, \dots, \tau_n\} do
            compute the actual 1-minute stay duration S_t
            of EV of type v' in period t;
            compute \overline{x}_{v,t} \leftarrow K/(15\eta) \cdot S_t;
          if s_p < \tau_p then
            compute the excess charging quantity in arrival
             period E \leftarrow \max\{0, x_{v,s_n} - \overline{x}_{v,s_n}\};
             update x_{v,s_n} \leftarrow x_{v,s_n} - E; set t \leftarrow s_v + 1;
            while E > 0 do
  10
                update x_{v,t} \leftarrow x_{v,t} + E; compute E \leftarrow \max
 11
                \{0, x_{p,t} - \overline{x}_{p,t}\};
                update x_{n,t} \leftarrow x_{n,t} - E; set t \leftarrow t + 1;
 13
 14
             compute the excess charging quantity in depar-
             ture period E \leftarrow \max\{0, x_{n,\tau_n} - \overline{x}_{n,\tau_n}\};
            update x_{v,\tau_n} \leftarrow x_{v,\tau_n} - E; set t \leftarrow \tau_v - 1;
            while E > 0 do
  16
                    update x_{v,t} \leftarrow x_{v,t} + E; compute E \leftarrow \max
                   \{0, x_{v,t} - \overline{x}_{v,t}\};
                   update x_{n,t} \leftarrow x_{n,t} - E; set t \leftarrow t - 1;
            end
 20
          end
          for 1-minute period t' \in \{s_{\tau'}, \ldots, \tau_{\tau'}\} do
            set t \leftarrow \lceil t'/15 \rceil; set y_{v',t'} \leftarrow x_{v,t}/S_t;
  23
          end
 24 end
      Output: 15minTo1min implementable charging
      policy y_{v',t'}
```


Introduction	Innovation	Model	Algorithm	Experiments	Conclusion
--------------	-------------------	-------	-----------	--------------------	------------

Table 11. Performance Improvement of ECP-C over the Maximum-Speed Charging Policy

	Total cost		Expected maximum load			
С	Mean	Standard deviation	Overall	On-peak	Mid-peak	Off-peak
15	13.60%	27.87%	23.64%	23.56%	21.43%	10.33%
20	12.12%	25.49%	20.99%	20.68%	18.56%	8.41%
25	11.22%	21.80%	18.91%	19.00%	16.03%	8.70%
30	10.99%	19.02%	17.94%	18.89%	13.65%	8.59%

- Without making decisions about charging speed, the cost increases a lot.
- The charging load of the ECP is smoother, which is conducive to the battery maintenance of the EV.

Figure 5. (Color Online) Electricity Load Under ECP-C for Different Compositions of the Demand Charge Given C = 30

Electricity load becomes smooth when consider all-period demand charge.

Introduction Innovation Model Algorithm Experiments Conclusion

Figure 7. (Color Online) Expected Profits Under SAA and JPS-C

• The optimal price p=0.48 under SAA leads to an evaluation of the expected profits under SAA to be 739.62, lower than the expected profits under JPSC, which is 749.91.

Conclusion

Introduction Innovation Model Algorithm Experiments Conclusion

♦ Main Contribution

- Model fits well
- ECP performs well
- **□** Extension studies well

Thanks for

Your Listening