DIALOG(R)File 347:JAPIO (c) 2005 JPO & JAPIO. All rts. reserv.

04743810 **Image available**
DRIVING CIRCUIT FOR DISPLAY DEVICE

PUB. NO.: 07-036410 [JP 7036410 A]

PUBLISHED: February 07, 1995 (19950207)

INVENTOR(s): SAKAMOTO MITSUNAO

APPLICANT(s): PIONEER ELECTRON CORP [000501] (A Japanese Company or

Corporation), JP (Japan)

APPL. NO.: 05-178326 [JP 93178326]

FILED: July 19, 1993 (19930719)

INTL CLASS: [6] G09G-003/30

JAPIO CLASS: 44.9 (COMMUNICATION -- Other)

ABSTRACT

PURPOSE: To provide a driving circuit for a display device capable of attaining a proper light emitting state after a light emitting element is used for a long period and reducing power consumption in the initial state of using the light emitting element.

CONSTITUTION: This device is constituted so as to incorporate a display panel constituted of plural scanning electrodes 18-0, 18-1... and plural signal electrodes 16-0, 16-1... arranged in matrix and the light emitting elements 20-20 connected to the scanning electrodes 18-0, 18-1... and the signal electrodes 16-0, 16-1..., a driving means supplying a constant current driving signal to the signal electrodes 16-0, 16-1... according to an input signal, a detection means detecting a forward voltage drop in the light emitting elements 20-20 and a control means controlling a current from the driving means so that the luminance of the light emitting elements 20-20 become a fixed level according to a detection signal from the detection means.

(19)日本国特許庁 (JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開平7-36410

(43)公開日 平成7年(1995)2月7日

(51) Int. Cl. 6

識別記号

FΙ

G09G 3/30

J 9378-5G

審査請求 未請求 請求項の数1 〇L (全!!頁)

(21)出願番号

特願平5-178326

(22)出願日

平成5年(1993)7月19日

(71)出願人 000005016

パイオニア株式会社

東京都目黒区目黒1丁目4番1号

(72)発明者 坂本 三直

埼玉県鶴ケ島市富士見6丁目1番1号 パ

イオニア株式会社総合研究所内

(74)代理人 弁理士 石川 泰男

(54) 【発明の名称】表示装置の駆動回路

(57)【要約】

【目的】 本発明は、表示装置の駆動回路に関し、発光素子の長期間使用後に適切な発光状態を達成できるとともに、発光素子の使用の初期状態においては、消費電力を低減することができる表示装置の駆動回路を提供する。

【構成】 マトリクス状に配置された複数の走査電極及び複数の信号電極と、該走査電極及び信号電極に接続された発光素子と、から構成される表示パネルと、入力信号に応じて信号電極に定電流駆動信号を供給する駆動手段と、発光素子での順方向電圧降下を検出する検出手段と、該検出手段からの検出信号に応じて発光素子の輝度が一定になるように駆動手段からの電流を制御する制御手段と、を含むように構成する。

本形明の原理による表示装置の駆動回路

2

【特許請求の範囲】

【請求項1】 マトリクス状に配置された複数の走査電 極及び複数の信号電極と、該走査電極及び信号電極に接 続された発光素子と、から構成される表示パネルと、 入力信号に応じて前記信号電極に定電流駆動信号を供給 する駆動手段と、

前記発光素子での順方向電圧降下を検出する検出手段 と、

該検出手段からの検出信号に応じて前配発光素子の輝度 が一定になるように前記駆動手段からの電源を制御する 10 制御手段と、

を含むことを特徴とする表示装置の駆動回路。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、表示装置の駆動回路に 関する。

[0002]

【従来の技術】表示装置では、複数の走査電極及び複数 の信号電極がマトリクス状に配置され、走査電極と信号 電極との交点部分では、該走査電極及び信号電極に発光 20 素子が接続されている。そして、1つの共通走査電極に 対して、所望の信号電極に定電流駆動信号を供給するこ とにより、対応する発光素子を発光状態にしている。

[0003]

【発明が解決しようとする課題】上記表示装置におい て、発光素子(Eし素子)は、長期間使用すると性能が 劣化し、順方向電圧降下(V。)が大きくなり、更に、 電流対輝度特性も劣化する。このように、定電流駆動で は発光素子の性能劣化に従って、発光素子の輝度が徐々 に低下することになる。そこで、表示装置では、発光素 30 子の順方向電圧降下V。が大きくなることを見込んで、 駆動手段から出力される電流を予め高く設定している。 ところが、このように駆動手段から出力される電流を予 め高く設定すると、発光素子の性能が劣化していない初 期状態においても駆動手段から出力される電流が高いの で、駆動手段のトランジスタで消費される電力が多くな り、消費電力の無駄が生じていた。

【0004】本発明の目的は、発光素子の長期間使用後 に適切な発光状態を達成できるとともに、発光素子の使 用の初期状態においては、消費電力を低減することがで 40 きる表示装置の駆動回路を提供することにある。

[0005]

【課題を解決するための手段】本発明は、マトリクス状 に配置された複数の走査電極及び複数の信号電極と、該 走査電極及び信号電極に接続された発光素子と、から構 成される表示パネルと、入力信号に応じて前記信号電極 に定電流駆動信号を供給する駆動手段と、前記発光素子 での順方向電圧降下を検出する検出手段と、該検出手段 からの検出信号に応じて前記駆動手段に所定の電圧が印 加されるように制御する制御手段と、を含むことを特徴 50 信号電極16-0及び走査電極18-0の交点に対応す

とする。

[0006]

【作用】発光素子(EL素子)を長期間使用すると、性 能が徐々に劣化し、発光素子での順方向電圧降下V。が 大きくなると同時に電流対輝度特性が劣化するので、こ の結果、発光素子の輝度が低下する。そこで、駆動手段 から発光素子に接続された信号電極の電圧を検出する検 出部を設けて、発光素子の電圧降下V。を測定し、該電 圧降下V。が小さい場合には、駆動手段からの電流を低 く設定する。これにより、駆動手段からは必要最小限度 の電流が出力されるので、消費電力を低減することがで きる。一方、発光素子の長期間の使用により、性能が徐 々に劣化し、発光素子の電圧降下V。が大きくなり輝度 が低下すると、輝度が一定に保たれるように駆動手段か らの電流を増加させる。これにより、発光素子は寿命の 末期まで、一定の輝度を保つことができる。

【0007】次に、図1には、本発明の原理による表示 装置の駆動回路が示されており、図1は、単純マトリク スの例(定電流駆動)を示す。図1において、表示パネ ル10は、Xドライバ12及びYドライバ14により駆 動されるようになっており、Xドライバ12からの信号 電極16-0, 16-1, 16-2, …とYドライバ1 4からの走査電極18-0、18-1、…により、表示 パネル10のマトリクスが構成される。なお、表示パネ ル10において、信号電極16-0, 16-1, 16-2, …と走査電極18-0, 18-1, …との交点部分 では、該信号電極16-0, 16-1, 16-2, …及 び走査電極18-0, 18-1, …に発光素子20~2 0 が接続されている。

【0008】前記Xドライバ12は、定電流源22-0、22-1、22-2、…を含み、該定電流源22-0, 22-1, 22-2, …は、制御コンピュータ24 からPWM変調信号26を受けるとともに、電源電圧 (+V) を受け、信号電極16-0,16-1,16-2、…に発光素子点灯用の定電流を出力する。また、Y ドライバ14は、スイッチ素子28-0, 28-1, … を含み、該スイッチ素子28-0.28-1は、制御コ ンピュータ24からの制御信号29によりオンオフ作動 し、走査電極18-0, 18-1, …をGNDに接続し たりGNDから遮断したりする。

【0009】なお、発光素子20は、その陽極が信号電 極16-0、16-1、16-2、…に接続され、その 陰極が走査電極18-0, 18-1, …に接続されてい る。また、符号16a~16aは、信号電極16の抵抗 分を示し、符号18a~18aは、走査電極18の抵抗 分を示す。

【0010】前記発光素子20の性能劣化を測定するた めに、信号電極16-0及び走査電極18-0にそれぞ れ電圧検出端子(測定端子A、測定端子B)を設ける。

る発光素子20が点灯したとき、両測定端子A、B間の 電圧を測定し、該測定電圧から配線(抵抗分16a,1 8 a) の電圧降下等を差し引き、発光素子20の順方向 電圧降下V〟を推定する。発光素子20の輝度劣化と電 圧降下V,との相関関係があるので、この電圧降下V, の変化に基づいて発光素子20の劣化具合を推定し、輝 度が低下した分を、定電流源22から電流値を増加させ ることにより補う。

【0011】なお、電圧降下V。の値を測定する際に、 誤差が1番少なくなる測定端子は、配線による電圧降下 10 る。 が最も小さい部分である。 すなわち、図1の構成におい て、左上の発光素子20を駆動した場合に順方向電圧降 下V。を測定できるような測定端子A、Bである。しか しながら、他のどの測定端子でも電圧を測定して発光素 子20の電圧降下V』を推定することができ、また、表 示画面以外に検出専用の発光素子を作成しておいて、該 検出専用の発光素子を測定しても同様のことを行うこと ができる。

[0012]

【実施例】以下、画面基づいて本発明の好適な実施例を 20 説明する。図2には、表示装置の概略構成が示されてい

【0013】図2において、符号30は、表示パネルを 示し、該表示パネル30はXドライバ32及びYドライ バ34により駆動される。一方、ビデオ信号はA/Dコ ンパータ36を介してメモリ38に供給され、該メモリ 38からのデータは、Xドライバ32に供給される。な お、Xドライバ32、Yドライバ34及びメモリ38は コントローラ42により制御される。

【0014】図3には、表示装置の回路構成が示されて 30 信号FCLKは1水平同期期間に1回パルスを出力し、 いる。図3において、映像信号は、A/Dコンパータ3 6を介してメモリとしてのシフトレジスタ38に供給さ れ、該シフトレジスタ38は、複数のフリップフロップ 回路(以下FFという)44~44を含む。シフトレジ スタ38内のFF44~44からの信号は、Xドライバ 40内でFF46~46を介してPWM変調器48~4 8に供給される。PWM変調器48~48からの信号 (輝度データに対応したパルス幅を示すアナログ信号) は、信号電極A。, A, , A, , A, , …に供給され、 一方、Yドライバ34内のFF50~50からの信号 は、走査電極K。, K, , K, , K, , …に供給され、 これらの信号電極A。, A、, A、, A、, …及び走査 電極K。, K, , K, , K, , …により、表示パネル3 0のマトリクスが構成される。表示パネル30におい て、信号電極 A。, A。, A。, A。, …と走査電極 K 。. K, , K, , K, , …との交点部分では信号電極A 。, A, , A, , A, , …及び走査電極K。, K, , K 1, K₃, …に発光素子52~52が接続されている。 【0015】コントローラとしてのタイミングジェネレ ータ42は、水平同期信号及び垂直同期信号を受取り、

信号SCLK、LCLK、FPUL、及びFCLKを出 力する。信号SCLKは、A/Dコンパータ36及びシ フトレジスタ38内のFF44~44に供給され、信号 LCLKはXドライバ40内のFF46~46に供給さ れ、信号FPUL及びFCLKは、Yドライバ34内の FF50~50に供給される。

【0016】前記Xドライバ40内のPWM変調器48 ~48には、水平同期信号H~Hが供給される。図4に は、図3の表示装置のタイミングチャートが示されてい

【0017】図4(A)のXドライパのタイミングチャ ートを説明すると、映像信号をA/Dコンバータ36で A/D変換してサンプリングする毎に、A/D変換され たデータDATAは、信号SCLKにより、シフトレジ スタ38内のFF44~44に順次シフトされる。そし て、1水平同期期間のデータDATAが全てFF44~ 44に送られると、信号LCLKにより、FF44~4 4内のデータはXドライバ32内のFF46~46を介 してPWM変調器48~48に供給される。PWM変調 器48~48は送られたデータをPWM変調し、データ に対応する長さのパルスを信号電極A。, A,, A,, A。, …に出力する。

【0018】 図4 (B) のYドライバのタイミングチャ ートを説明すると、信号FPULは、垂直同期期間に1 回"High"レベルになり、信号FCLKにより、信号F PULのパルスが走査電極(ライン) K。, K,, K, , K, , …に順次転送されていく。そして、走査ラ インK。 (n=0, 1, 2, 3, …) が "High" レベル のとき、そのラインK。が点灯することになる。なお、 信号FPULは1垂直同期期間に1回パルスを出力す

【0019】次に、図5には本発明の実施例による表示 装置の駆動回路の概略構成が示されている。図5におい て、符号54はCPUを示し、該CPU54は、バス5 6に接続されており、また、バス56には、ROM5 8、RAM60、D/Aコンバータ62, 64、入力ポ ート66,68が接続されている。なお、D/Aコンバ 一夕62,64は、それぞれ、駆動電圧指令,駆動電流 40 指令を出力し、また、入力ポート66,68には、それ ぞれ、走査電極(陰極)タイミング、信号電極(陽極) タイミングが供給されている。

【0020】前記パス56には、マルチプレクサ70が A/Dコンバータ?2を介して接続され、該マルチプレ クサ70はS/H回路74, 76, 78からの信号を受 ける。ここで、S/H回路74, 76, 78は、それぞ れ、端子A、端子B、表示パネルの温度センサ80から の信号を受ける。なお、端子A、端子B、温度センサ8 0については後述する。

【0021】次に、図6には本発明の実施例による表示

装置の駆動回路の回路構成が示されている。図6において、符号30は表示パネルを示し、該表示パネル30は、Xドライバ32 χ 0を示し、该表示パネル30 る。 χ 0を表示が多点の信号電極A。, χ 0のである。 χ 1のでは、 χ 1のでである。 χ 2のでは、 χ 2のでは、 χ 2のでは、 χ 3のでは、 χ 4のでは、 χ 5のでは、 χ 5のでは、 χ 6のでは、 χ 6のでは、 χ 7のでは、 χ 7のでは、 χ 7のでは、 χ 7のでは、 χ 7のでは、 χ 8のでは、 χ 8のでは、 χ 9のでは、 χ 9のでは χ 9のでは、 χ 9のでは χ 9ので χ 9のでは χ 9ので χ 9のでは χ 9のでは χ 9のでは χ 9のでは χ 9のでは χ 9ので χ

【0022】まず、Yドライバ34について説明する。 Yドライバ34において、走査電極 K_0 , K_1 , K_2 , …が1走査期間(すなわち1水平周期期間)ずつ順次 "High" レベルになると、その"High" レベルになった 走査電極 K_0 (n=0, 1, 2, …)に接続された発光素子 $52\sim52$ が点灯する。ここで、素子 $52\sim52$ が どの程度の輝度で点灯するかは、Xドライバ32からの信号電極 A_0 , A_1 , …の信号により決定される。

【0023】次に、Xドライバ32について説明する。 符号82は、電源回路を示し、該電源回路82内のコン バレータ84の一端子には、CPU54からの電圧指令 20 がA/Dコンパータ62を介して供給されている。

【0024】このCPU54からの電圧指令を制御することにより、電源回路82からの信号電極(陽極)の電源電圧V。を制御することができる。前記電源回路82からの電源電圧V。は、定電流源88に供給され、該定電流源88内のトランシジスタ90、91、91、…には、CPU54からの電流指令がD/Aコンパータ64及び電圧/電流交換器(V/I変換器)94を介して供給されている。このCPU54からの電流指令を制御することにより、定電流源88からの定電流値を制御する30ことができる。

【0025】前記停電流源88からの停電流は、信号電 極A。, A, , …に供給され、該信号電極A。, A, , …は、分岐してトランジスタ96-0, 96-1, …の コレクタに接続されている。このトランジスタ96-0,96-1,…のベースは、PWM変調器48-0, 48-1, …に接続されている。そして、例えば、PW M変調器48-0が "High" レベルであると、トランジ スタ96-0がオン状態になって、該トランジスタ96 -0内を信号電極A。の定電流が流れるので、信号電極 A。に接続された発光素子52は、消灯状態である。一 方、PWM変調器48-0が "Low" レベルであると、 トランジスタ96-0がオフ状態になり、信号電極A。 の定電流は、発光素子52に供給されるので、該発光素 子52は、点灯状態である。なお、発光素子52の点灯 時に、該発光素子52の輝度は、PWM変調器48が "Low" レベルになる時間により決定される。

【0026】前記発光素子52の電圧降下V。を検出するために、信号電極A。には、検出用端子Aが設けられ、走査電極K。には、検出用端子Bが設けられてい

る。両端子A、Bからの検出信号は、CPU54に供給され、CPU54では、両端子A、Bからの検出信号に基づいて発光素子52の電圧降下V。を求め、該電圧降下V。に基づいて電流指令を発生する。この電流指令は、前述したように、D/Aコンパータ64及びV/D変換器94を介して定電流源88内のトランジスタ90、91、91、…に供給され、これにより、定電流源88からの定電流が適切な値に制御される。

【0027】以下、定電流源からの電流値を制御する過 10 程を図7のフローチャートを参照しながら説明する。ステップ100でスタートし、ステップ102で駆動電流値を設定し、すなわち、輝度を設定する。ステップ104で測定すべき発光素子を選択し、走査電極(陰極)がアクティブになると、ステップ106に進み、ステップ106で測定すべき発光素子を駆動し、信号電極(陽極)がアクティブになると、ステップ108に進む。

【0028】ステップ108で端子A、GND間または端子A、B間の電位差V,を測定する。ステップ110で駆動電流値、信号電極(陽極)及び走査電極(陰極)の抵抗値から陽極及び陰極での電圧降下分を推定し、この推定した電圧降下を前記電位差V,から引き、発光素子の電圧降下V,を求める。ステップ112で求めた電圧降下V,の値から発光素子の輝度の劣化具合を推定し、輝度が一定になるような電流値I,を求める。

【0029】なお、前記ステップ108,110においては、発光素子の構造上、電圧降下V,を直接測定できないので、このようなステップをとるのである。次のステップ114で、設定できる駆動電流値が推定したI,の値より大きいと、ステップ116で推定したI,の値を新たな駆動電流値として設定する。一方、ステップ114の結果が"NO"であると、ステップ118で表示パネルの寿命が来たことを表示し、ステップ120で終了する。

【0030】次に、図8には上記図7のフローチャートの変形例が示されている。図8において、ステップ100~110と同じであるが、ステップ1100~110と同じであるが、ステップ1100~110と同びであるが、ステップ1100~110と同びであるが、ステップ1100~110を関定しく図5の温度センサ80を参照)、ステップ124で表示パネルの温度T,が上限温度を越えていると、ステップ126で駆動電流値を下げる。一方、ステップ124で"NO"であると、ステップ128で表示パネルの温度T,に基づいて発光素子の電圧降下V,を補正し、その後、図7と同じステップ112、114に進む。ステップ114で"NO"であると、ステップ118で表示パネルの寿命が来たことを表示し、ステップ130で駆動電流値を下げる

【0031】一方、前記ステップ114で"YES"であると、ステップ132で走査電極の最大電流I,を推50 定し、ステップ134でI,の値が走査電極の上限値以

下であると、ステップ116に進み、推定した I, を新たな駆動電流値として設定する。なお、ステップ134で"NO"であると、ステップ118に進む。

【0032】次に、図9には、定電流駆動回路の回路構成が2つ示されている。図9(A)の第1構成において、電源電圧+Vはカレントミラー構成の定電流源88に供給され、該定電流源88内のトランジスタ90,91には基準電流Irefが供給されている。定電流源88からの定電流は、信号電極A。を介して発光素子52に供給される。信号電極A。は、分岐してトランジスタ96に分のコレクタに接続され、該トランジスタ96のベースには、発光のオンオフ信号が供給される。

【0033】そして、発光のオンオフ信号が"High"レベルであると、トランジスタ96がオン状態であるので、該トランジスタ96内を信号電極A。の定電流が流れ、発光素子52は、消灯状態である。一方、発光のオンオフ信号が"Low"レベルであると、トランジスタ96がオフ状態になり、信号電極A。の定電流は、発光素子52に供給されるので、該発光素子52は点灯状態である。

【0034】図9(B)の第2構成において、発光のオンオフ信号に応じてTTL132からの出力は V_{off} あるいは V_{off} になり、これにより、トランジスタ134はオン状態あるいはオフ状態になる。この結果、トランジスタ134からの定電流 I_{off} が発光素子52に供給されたり、供給されなかったりする。なお、トランジスタ134のオン時に、定電流 I_{off} は、次の式で示される。

[0035] $I_F = (V_c - V_{eL} + V_{eE}) / R$ [0036]

【発明の効果】以上説明したように、本発明によれば、 発光素子での電圧降下を測定し、該電圧降下に応じて駆 動手段からの電流を制御する構成であるので、発光素子 の長期間の使用により該発光素子の電流対輝度特性が劣 化した場合には、駆動手段からの電流を高め、これにより、発光素子の輝度を一定に保つことができる。一方、 発光素子の性能が劣化していない初期状態においては、 駆動手段からの電流を低下させ、この結果、駆動手段で の消費電力を低減させることができる。

【図面の簡単な説明】

【図1】本発明の原理による表示装置の駆動回路の回路 図である。

【図2】表示装置の概略構成図である。

【図3】表示装置の回路構成図である。

【図4】表示装置のタイミングチャート図であり、

(A) はXドライバのタイミングチャートを示し、

(B) はYドライバのタイミングチャートを示す。

【図5】本発明の実施例による表示装置の駆動回路の概略構成図である。

【図6】本発明の実施例による表示装置の駆動回路の回路構成図である。

【図7】実施例による駆動回路の作用を示す第1のフローチャート図である。

20 【図8】実施例による駆動回路の作用を示す第2のフローチャート図である。

【図9】定電流駆動回路の回路構成図であり、(A)

(B) はそれぞれ、第1構成、第2構成を示す。

【符号の説明】

10…表示パネル

12…Xドライバ

14…Yドライバ

16-0, 16-1, 16-2…信号電極

18-0, 18-1…走査電極

30 20~20…発光素子

22-0, 22-1, 22-2…定電流源

24…制御コンピュータ

[図1]

本発明の原理にお表示装置の駆動回路

[図2]

表示表置の統略構成

[図4]

表示装置のタイミングチャート

(A) X ドライバ

[図3]

[図5]

本発明の実施例による表示装置の駆動回路の概略構成

[図6]

本発明の実施例による表示装置の駆動回路の回路構成

【図7】

実施例による駆動回路の作用を示す第1のフローケャート

【図8】

[図9]

定電流駆動回路の回路構成 (A) 第1構成

(8) 第2構成