Feuille de Travaux Dirigés 1

Intégrales doubles et couples de variables aléatoires

Exercice 1 Calculer les intégrales $\int \int_D f(x,y) dx dy$ dans les cas suivants :

a
$$f(x,y) = 1/(x+y+1)^2$$
 et $D = \{(x,y) \in \mathbb{R}^2 | 0 \le x \le 1, 0 \le y \le 1\}.$

b
$$f(x,y) = \sin(x+y)$$
 et $D = \{(x,y) \in \mathbb{R}^2 | 0 \le x \le \pi/2, 0 \le y \le \pi/2 \}.$

c
$$f(x,y) = x^2 + y^2$$
 et $D = \{(x,y) \in \mathbb{R}^2 | 0 \le x \le 1, 0 \le y \le x \}.$

d
$$f(x,y) = 2^x 4^y$$
 et $D = \{(x,y) \in \mathbb{R}^2 | x \ge 0, y \ge 0, x + y \le 1\}.$

e
$$f(x,y) = \exp(-y)/(2\sqrt{x})$$
 et $D = \{(x,y) \in \mathbb{R}^2 | x > 0, y > 0, x \le y^2\}.$

f
$$f(x,y) = 1/\sqrt{x^2 + y^2 + 1}$$
 et $D = \{(x,y) \in \mathbb{R}^2 | x^2 + y^2 \le 1\}$ Utiliser le passage en coordonnées polaires.

$$\mathbf{g} \quad f(x,y) = (x+y)^2 \exp\left(x^2 - y^2\right) \text{ et}$$

$$D = \{(x,y) \in \mathbb{R}^2 | x \ge 0, y \ge 0, x+y \le 1\}.$$
 Utiliser le changement de variable $u = x+y$ et $v = x-y$.

h $f(x,y) = y \exp(-xy)$ et $D = \{(x,y) \in \mathbb{R}^2 | 0 \le x \le 1, 0 \le y \le 1\}$. On demande ici de calculer l'intégrale de deux façons différentes (intégrer d'abord en x puis en y; faire ensuite le contraire).

Exercice 2 Soit

$$f(x,y) = \begin{cases} k(y^2 - x^2 + 1) & \text{si } 0 \le x \le 1, 0 \le y \le 1 \\ 0 & \text{sinon} \end{cases}.$$

Pour quelle valeur de k, f peut-elle représenter la densité d'un couple de variables aléatoires ?

Exercice 3 Soit V = (X, Y) un couple de variables aléatoires admettant pour densité

$$f_V(x,y) = \begin{cases} k & \text{si} \quad |x| + |y| \le 1 \\ 0 & \text{sinon} \end{cases}$$
.

- 1 Déterminer k ainsi que les lois marginales de X et de Y.
- **2** Déterminer cov(X, Y) et étudier l'indépendance de X et Y.

Exercice 4 Soient X et Y deux variables aléatoires indépendantes et de même loi continue uniforme sur [0,1].

- 1 Calculer la densité de probabilité de $T = \inf(X, Y)$ et de $Z = \sup(X, Y)$.
- **2** Calculer l'espérance mathématique de Z et de T.
- 3 Calculer le coefficient de corrélation linéaire entre Z et T.

Exercice 5 Soient X et Y deux variables aléatoires admettant pour densité de probabilité $f_{(X,Y)}(x,y) = \exp(-y)1_{[x,+\infty[}(y)1_{\mathbb{R}_+}(x).$

- 1 Vérifier que $f_{(X,Y)}$ est bien une densité de probabilité.
- **2** Déterminer les lois maginales de X et de Y.
- **3** Calculer $\mathbb{P}(X \leq 1|Y > 2)$.

Exercice 6 Soit X une variable aléatoire admettant pour loi conditionnelle lorsque Y = y, la loi de densité : $y^2x \exp(-yx)1_{\mathbb{R}_+}(x)$. La variable aléatoire Y admet pour densité $f_Y(y) = 1/y^21_{]1,+\infty[}(y)$. Calculer la loi conditionnelle de Y sachant que X = x ainsi que l'espérance conditionnelle $\mathbb{E}(Y|X)$.

Exercice 7 Soient X et Y deux variables aléatoires indépendantes suivant une loi exponentielle de paramètre $\lambda=1$. On considère les variables U et V définies par U=X+Y et V=X/Y.

- 1 Déterminer la loi du couple de variables aléatoires (U, V). Les variables U et V sontelles indépendantes?
- **2** Calculer $\mathbb{E}(U)$ et $\mathbb{E}(V)$.