Diffusion in Biological Systems

class - 17 (06.11.24)

LS2103 (Autumn 2024)

Dr. Neelanjana Sengupta Associate Professor, DBS

https://www.iiserkol.ac.in/~n.sengupta/

STOKES-EINSTEIN RELATIONSHIP

Fluctuation-Dissipation Theorem (simple definition):

At equilibrium, a process that dissipates heat (eg. viscosity) is directly related to another process (diffusion) associated with thermal fluctuations (k_BT)

FLUCTUATION - DISSIPATION

STOKES-EINSTEIN RELATIONSHIP

$$6\pi\eta aD = k_BT$$
Bulk
property
Molecular
property

No direct molecular analogy!

$$6\pi\eta\alpha D = (RT)$$

Does not have a molar analogy

Unlike - ..

Diffusion Equations:

$$\langle r_N^2 \rangle = (2d) (D) (T)$$

$$6 \pi \eta a D = k_B T \quad \text{SI units: Pa-s} = 1 \text{ kg m}^2 s^{-1}$$

Dimensions and Units of dynamic viscosity

interconversions

Diffusion Equations:

$$\langle \mathbf{r}_N^2 \rangle = (2d) (D) (T)$$

Eg 1. self-diffusion of pure Ethanol

- How will you approximately estimate the time to diffuse across a given length, say 5 cm?
- What does your answer indicate?

$$6 \pi a D = k_B T$$
radius, a = 4.4 Angs

$$(time) = 0.9 \times 10^6 \text{ see}$$

Eg 2. diffusion of Ethanol in binary mixture:

radius, a = 4.4 Angs

- Here, one must consider viscosity of the medium
- The two different molecules will have different diffusion coefficients

Viscosity of the mixture (water + ethanol).

Computational results (full symbols) Vs. Experimental data (empty symbols)

Eg 2. diffusion of Ethanol in binary mixture:

Viscosity of the mixture (water + ethanol).

Computational results (full symbols) Vs. Experimental data (empty symbols)

Typical "room temperature" Diffusion Coefficients:

	Molecular Weight	Diffusion Coefficient	
Molecule	(g/mol)	(cm ² /s)	
H^{\dagger}	1.008	9.31×10^{-5}	>
Na^{\dagger}	22.99	1.33×10^{-5}	↑
K^{+}	39.098	1.96×10^{-5}	9
Ca ²⁺	40.078	0.79×10^{-5}	`a'
Cl	35.453	2.03×10^{-5}	
Ammonia (NH ₃)	17.031	1.51×10^{-5}	
Oxygen (O ₂)	31.999	2.10 × 10 ⁻⁵	
Carbon dioxide (CO ₂)	44.01	1.97 × 10 ⁻⁵	V
Urea	60.055	1.38 × 10 ⁻⁵	
Glucose	180.156	5×10^{-6}	
Sucrose	342.296	5.23×10^{-6}	2
Hemoglobin	68,000	6.9×10^{-7}	2
DNA	6,000,000	1.3×10^{-8}	

Eg. 3. Consider a typical membrane bilayer to be permeable to each of the molecules (previous slide). Estimate the average time taken to diffuse across the bilayer.

Eg. 3. Consider a typical membrane bilayer to be permeable to each of the molecules (previous slide). Estimate the average time taken to diffuse across the bilayer.

Using d=3,
how kny does it take
these ions to unsthe
bilayer?

	Molecular Weight	Diffusion Coefficient			
Molecule	(g/mol)	(cm ² /s)			
H ⁺	1.008	9.31 × 10 ⁻⁵			
Na ⁺	22.99	1.33×10^{-5}			
K ⁺	39.098	1.96×10^{-5}			
Ca ²⁺	40.078	0.79×10^{-5}			

GTM aD = RBT

Stokes-Einstein Equation:

6 TT
$$\eta$$
 a D = k_BT

$$a^{3} \alpha \left((mol. wt.) \right)$$

$$a_{1}^{3} = (mw)_{1} = \frac{17}{(mw)_{2}} \frac{17}{64.5}$$

$$a_{1}^{3} = (64.5)^{1/3}$$

$$= 0.641$$

Consider 'size' to be directly proportional to the molecular weight (mw) of a class of proteins. Myoglobin (1) and Hemoglobin (2) have mw of 17 kDa and 64.5 kDa, respectively.

What are the approx. ratio of their times taken to cover a distance of 1 micrometre, in media of similar viscosities, if T(1) and T(2) are 300 K and 320 K, respectively?

$$\frac{a_1D_1}{a_2D_2} = \frac{T_1}{T_2}$$

$$0.641\left(\frac{D_1}{D_2}\right) = \frac{300}{320}$$

$$D_1 = \left(\frac{D_1}{D_2}\right)$$

Offsetting diffusion: Nernst Eqn. sets the scale for membrane potentials

$$\Delta (hc) = -\frac{9^{\Delta V}}{k_0 T}$$

Offsetting diffusion: Nernst Eqn. sets the scale for membrane potentials

For mixtures of ions:

Intracellular and	extracellular	concentrations	and	Nernst	equilibrium	potential	values	for	a f	few	ions	of
physiological importance		CI			Cz		\	1e	rth	ا		

Ionic Species	Intracellular Concentration	Extracellular Concentration	Equilibrium Potentia	
Sodium (Na ⁺)	15 mM	145 mM	V _{Na} = +60.60 mV	
Potassium (K ⁺)	150 mM	4 mM	V _K = -96.81 mV	
Calcium (Ca ²⁺)	70 nM	2 mM	V _{Ca} = +137.04 mV	
Hydrogen ion (proton, H ⁺)	63 nM (pH 7.2)	40 nM (pH 7.4)	V _H = -12.13 mV	
Magnesium (Mg ²⁺)	0.5 mM	I mM	V _{Mg} = +9.26 mV	
Chloride (Cl ⁻)	I0 mM	I I 0 mM	V _{Cl} = −64.05 mV	
Bicarbonate (HCO ₃ ⁻)	15 mM	24 mM	V _{HCO3-} = -12.55 mV	

(T = 310 K, ie. physiological temperature)

Offsetting Diffusive Effects:

$$\ln \left(\frac{c_2}{c_1}\right) \equiv \frac{\left[\text{force }\right]\left[\text{length}\right]}{\left(\text{kgT}\right)}$$

Centrifugal force:

At a distance r,

$$\ln \left(\frac{c_r}{c_o}\right) = \frac{\left[m \omega^2 r\right][r]}{\left(k_B T\right)}$$

$$= \left(\frac{m}{k_B T}\right) \times \frac{4\pi^2 \left(r.p.m\right)^2 \times r^2}{3600}$$

Biocompare.com

Prob. Consider a solution of proteins that are of mass 50 kiloDa (Note: 1 Da \sim 1 g/mol). The solution is spun in a low-powered centrifuge that achieves the highest rotation per minute (**rpm**) of 100.

- a) Find the concentration ratio in the centrifuge tube at (r = 0 cm) with that at (r = 5 cm).
- b) What is the **rpm** required for a *concentration ratio of 1000*?

~ 3500 c. þm ??

Centrifugation

Sedimentation time scale,

$$t = \frac{m_{net}}{7}, viscons$$
friction with

$$m_{net} = (m - Pv)_{q}$$
we $f \rightarrow dusty$

$$v \rightarrow drift reductly.$$

Material	Density (g/cm ³)		
Microbial cells	1.05 - 1.15		
Mammalian cells	1.04 - 1.10		
Organelles	1.10 - 1.60		
Proteins	1.30		
DNA	1.70		
RNA	2.00		

Sedimentation coefficient is defined as:

1 Svedberg (s),

$$s = 10^{-13} s$$

Sedimentation coefficients are not additive

Sedimentation time scale,

$$t = \frac{m_{net}}{\zeta}$$

1 Svedberg,

$$s = 10^{-13} s$$