Mathematical logic

- Propositional calculus
 - Three components: variables, operators (e.g. \land , \lor , \neg), formulas.
 - A formula is **satisfiable** if you can assign true/false to its variables s.t. the formula yields true.
 - p → ¬p is not satisfiable.
 - A set X of formulas is satisfiable if there is an assignment to all variables in X s.t. for every formula $x \in X$, x yields true under the assignment.
 - Is set X of infinitely many formulas is satisfiable?
- Compactness theorem
 - For a set X of formula, X is satisfiable iff every finite subset of X is satisfiable.
 - i.e. X is not satisfiable iff any finite subset of X is not satisfiable.
 - **Tautology**: a formula which is always true regardless of the value of its variables.
 - $X \vdash \alpha$: α is provable from a set X of formulas.
 - Rule 1: $X \vdash \alpha$ if $\alpha \in X$
 - Rule 2: $X \vdash \alpha$ and $Y \vdash \alpha$ whereas $Y \supseteq X$ or $X \supseteq Y$
 - Rule 3: $X \vdash \alpha \land \beta$ iff $X \vdash \alpha$ and $X \vdash \beta$
 - Rule 4: $X \cup \{\alpha\} \vdash \beta$ and $X \cup \{\neg \alpha\} \vdash \beta$, then $X \vdash \beta$
 - Rule 5: $X \vdash \alpha$ and $X \vdash \neg \alpha$, then $X \vdash \beta$ for every β
 - Ø \vdash α, then α is tautology, e.g. p → \neg p
 - Example: if $\{p\} \vdash p$, and $\{p, p \land \neg q\} \vdash p$, then $\{p, p \land \neg q\} \vdash p \land \neg q$
 - $X \models \alpha$: every satisfying assignment of X is also satisfiable assignment of α , i.e. $X \models \alpha$ iff $X \models \alpha$
- First order logic
 - First order quantification: "for all", 'there is", etc.
 - Define vocabulary (a set of symbols) (τ)
 - Constant symbols (c)
 - Relation symbols (R)
 - Function symbols
 - A first order formula set vocabulary τ is defined as follows:
 - If R is a relation symbol in τ and x1, x2, ... xk are variable, then R(x1, x2, ...xk) is a formula.
 - If f1 and f2 are formulas, then so are f1 \land f2, f1 \lor f2, \neg f1, \neg f2
 - If f is a formula and x is a variable, then "there exist x", "for all x" is in first order formulas.
 - If x and y are variables, then x = y is a formula
 - "There exists x for all y" is not equal to "for all x there exists y"
 - $G \models f$ reads f holds in G
 - A formula f is satisfiable if there is G s.t. $G \models f$
 - A set X of formulas is satisfiable if there is G s.t. $G \models f$ for every f in X
 - A structure over vocabulary τ is <A, R₁, R₂, ...R_k>
 - A is a set of elements called **universe** or **domain**.
 - For each R_i in τ , $R_i \subseteq A^*A^*...^*A$
 - If F is a formula over τ , A is a structure over τ , then f is true/false in A
 - F is satisfiable if there is A s.t. $A \models f$

- X is satisfiable if there is A s.t. $A \models f$ for every f in X
- Cardinals of math
 - |A| = |B| if there is a bijection from A to B
 - |A| < |B| if there is injection from A to B but no bijection.
 - $|A| < |2^A|$ for every A regardless A is countable or uncountable.
 - $-Z_{i} = 2^{Z}i-1$
- Proof system for first-order logic
- Godel's completeness theorem
- Godel's incompleteness theorem