Lecture 09 Bits, Bytes, and Integer Encoding

CS211 – Fundamentals of Computer Programming II Branden Ghena – Fall 2021

Slides adapted from: Jesse Toy

Administrivia

- Homework 4 due on Thursday
 - You can do it!
- Remember that office hours get busy right before the deadline
 - It'll be harder to get help and you'll get less time

Administrivia

- No lecture on Thursday
 - Take a nap instead so you can recharge
- Next week starts C++

Today's Goals

 Go below the level of C and understand how the computer thinks about data with bits and bytes

Understand how this leads to the boundaries of common C types

- Note: this isn't going to be on a quiz or in a homework
 - I just wanted to take today to explain more deeply
 - This will all come up again if you take CS213

Outline

Bits and Bytes

Integer Encoding

C Type Bounds

Positional Numbering Systems

- The position of a numeral (e.g., digit) determines its contribution to the overall number
 - Makes arithmetic simple (compared to, say, roman numerals)
 - Any number has one canonical representation

• Example: base 10

•
$$10456_{10} = 1*10^4 + 0*10^3 + 4*10^2 + 5*10^1 + 6*10^0$$

• Usually, we leave out the zeros:

$$\bullet$$
 1*10⁴ + 4*10² + 5*10¹ + 6*10⁰

Positional Numbering Systems

- Other bases are also possible
 - Base 60, used by the Babylonians
 - The source of 60 seconds in a minute, 60 minutes in an hour
 - And 360 degrees in a circle
 - Base 20, used by the Maya and Gauls (bits remain in French today)
 - Base 2: $10010010_2 = 1*2^7 + 1*2^4 + 1*2^1 = 146_{10}$

Base 2 Example

- Computer Scientists use base 2 a *LOT*
- Let's convert 134₁₀ to base 2
- We need to decompose 134₁₀ into a sum of powers of 2
 - Start with the largest power of 2 that is smaller or equal to 134_{10}

Subtract it, then repeat the process

$$134_{10} - 128_{10} = 6_{10}$$

 $6_{10} - 4_{10} = 2_{10}$
 $2_{10} - 2_{10} = 0_{10}$

$$134_{10} = \mathbf{1} \times 128 + 0 \times 64 + 0 \times 32 + 0 \times 16 + 0 \times 8 + \mathbf{1} \times 4 + \mathbf{1} \times 2 + 0 \times 1$$

$$134_{10} = \mathbf{1} \times 2^7 + 0 \times 2^6 + 0 \times 2^5 + 0 \times 2^4 + 0 \times 2^3 + \mathbf{1} \times 2^2 + \mathbf{1} \times 2^1 + 0 \times 2^0$$

$$134_{10} = 10000110_2$$

Why computers use Base 2

- Simple electronic implementation
 - Easy to store with bi-stable elements
 - Reliably transmitted on noisy and inaccurate wires

- Straightforward implementation of arithmetic functions
- (Pretty much) all computers use base 2

Why don't computers use Base 10?

- Because implementing it electronically is a pain
 - Hard to store
 - ENIAC (first general-purpose electronic computer) used 10 vacuum tubes / digit
 - Hard to transmit
 - Need high precision to encode 10 signal levels on single wire
 - Messy to implement digital logic functions
 - Addition, multiplication, etc.

Base 16: Hexadecimal

- Writing long sequences of 0s and 1s is tedious and error-prone
 - And takes up a lot of space on a page!
- So we'll often use base 16 (also called *hexadecimal*)

- Base 2 = 2 symbols (0, 1)
 Base 10 = 10 symbols (0-9)
 Base 16, need 16 symbols
 - Use letters A-F once we run out of decimal digits

Hex	Decimal	Binary
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
A	10	1010
В	11	1011
С	12	1100
D	13	1101
E	14	1110
F	15	1111

Base 16: Hexadecimal

- $16 = 2^4$, so every group of 4 bits becomes a hexadecimal digit (or *hexit*)
 - If we have a number of bits not divisible by 4, add 0s on the left (always ok, just like base 10)

$$0\ 0\ 1\ 0\ 1\ 0\ 1\ 1\ 1\ 1\ 1\ 0\ 1\ 1$$
 \longrightarrow 0x297B

"0x" prefix = it's in hex

Decimal	Binary
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
10	1010
11	1011
12	1100
13	1101
14	1110
15	1111
	0 1 2 3 4 5 6 7 8 9 10 11 12 13

Bytes

- A single bit doesn't hold much information
 - Only two possible values: 0 and 1
 - So we'll typically work with larger groups of bits
- For convenience, we'll refer to groups of 8 bits as bytes
 - And usually work with multiples of 8 bits at a time
 - Conveniently, 8 bits = 2 hexits

Some examples

"0b" prefix = it's in binary

- 1 byte: 0b01100111 = 0x67
- 2 bytes: $11000100 \ 00101111_2 = 0xC42F$

Convert 0x42 to decimal

- Steps
 - Convert 0x42 to binary:

Convert binary to decimal:

Convert 0x42 to decimal

- Steps
 - Convert 0x42 to binary:
 - $0x4 \rightarrow 0b0100$ $0x2 \rightarrow 0b0010$

0x42 -> 0b 0100 0010

Convert binary to decimal:

Convert 0x42 to decimal

- Steps
 - Convert 0x42 to binary:

•
$$0x4 \rightarrow 0b0100$$
 $0x2 \rightarrow 0b0010$

0x42 -> 0b 0100 0010

- Convert binary to decimal:
 - $1*2^6 + 1*2^1 = 64 + 2 = 66$

Convert 0x42 to decimal

- Critical thinking:
 - What are the maximum and minimum values?
 - Minimum 0 (0x00)
 - Maximum 255 (0xFF)
 - How big is 0x42 out of 0xFF?
 - ~25% (0x40, 0x80, 0xC0, 0x100)
 - So $255/4 \approx 256/4 \approx 64$

Outline

Bits and Bytes

Integer Encoding

C Type Bounds

These two lines of code are equivalent

```
char mychar = 97;
char mychar = 'a';
```

- Per the ASCII table, the character 'a' has a decimal value 97
 - The character value and decimal value are equivalent
 - These two are also equivalent

```
char diff = 'c' - 'a';
char diff = 99 - 97;
```

Big idea: bits can be used to represent anything

- Depending on the context, the bits 11000011 could mean
 - The number 195
 - The number -61
 - The number -1.1875
 - The value True
 - The character \ \-'
 - The ret x86 instruction

- You have to know the context to make sense of any bits you have!
 - People and software they write determine what the bits actually mean

Expressing C types in bits

- Two families of encodings to express those using bits
 - *Unsigned* encoding for unsigned integers
 - *Two's complement* encoding for signed integers
- Each encoding will use a fixed size (# of bits)
 - For a given machine
 - Size + encoding family determine which C type we're representing
 - Fixed size is because computers are finite!

Unsigned integer encoding

- Just write out the number in binary
 - Works for 0 and all positive integers

• Example: encode 104₁₀ as an **unsigned** 8-bit integer

•
$$104_{10} = 0 \times 2^7 + 1 \times 2^6 + 1 \times 2^5 + 0 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 0 \times 2^0$$

$$\Rightarrow 0x68$$

$$B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i$$
 (Binary To Unsigned)

Bounds of unsigned integers

- For a fixed width w, a limited range of integers can be expressed
 - Smallest value (we will call *UMin*):
 - all 0s bit pattern: 000...0, value of 0
 - Largest value (we will call *UMax*):
 - all 1s bit pattern: 111...1, value of $2^w 1$
 - $2^{w} 1 = 1 \times 2^{w-1} + 1 \times 2^{w-2} + ... + 1 \times 2^{1} + 1 \times 2^{0} = 111111...$
- Maximum 8-bit number = 2^{8} -1 = 256-1 = 255

Two's complement encoding

- Good news: can represent both positive and negative numbers
- Bad news: need to make the encoding more complicated
- Plan:
 - Start with unsigned encoding, but make the largest power negative
 - Example: for 8 bits, most significant bit is worth -2⁷ not +2⁷
- To encode a negative integer
 - First, set the most significant bit to 1 to start with a big negative number
 - Then, add positive powers of 2 (the other bits) to "get back" to number we want
- Example: encode -6 as a 4-bit two's complement integer
 - $-6_{10} = 1 \times -2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 \Rightarrow 0b1010 \Rightarrow 0xA$

Two's complement examples

• Encode -100 as an 8-bit two's complement number

•
$$-100_{10} = 1 \times -2^7 + 0 \times 2^6 + 0 \times 2^5 + 1 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 0 \times 2^0$$

 $-128 + 0 + 0 + 16 + 8 + 4 + 0 + 0$

Problem becomes: encode +28 as a 7-bit unsigned number

• $-100_{10} = 0b10011100 = 0x9C$

Two's Complement Shortcut

• Shortcut: determine positive version of number, flip it, and add one

•
$$100_{10} = 0b01100100$$

• Flipped = 0b10011011

• Plus 1 = 0b10011100 = 0x9C

Sidebar: binary addition

Interpreting binary signed values

• Converting binary to signed: $B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i$ Sign bit

- Note: most significant bit still tells us sign!! 1 -> negative
 - Checking if a number is negative is just checking that top bit
- Note: there is only one zero value
 - 0b00000000 = 0 0b10000000 = -128
- -1: 0b111...1 = -1 (regardless of number of bits!)

Bounds of two's complement integers

- For a fixed width w, a limited range of integers can be expressed
 - Smallest value, most negative (we will call *TMin*):
 - 1 followed by all 0s bit pattern: $100...0 = -2^{w-1}$
 - Largest value, most positive (we will call *TMax*):
 - 0 followed by all 1s bit pattern: 01...1, value of $2^{w-1} 1$
- Beware the asymmetry! Bigger negative number than positive

Unsigned & Signed Numeric Values

Χ	B2U(<i>X</i>)	B2T(<i>X</i>)
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	-8
1001	9	- 7
1010	10	-6
1011	11	- 5
1100	12	-4
1101	13	-3
1110	14	-2
1111	15	-1

Equivalence

Same encodings for non-negative values

Uniqueness

- Every bit pattern represents unique integer value
- Each representable integer has unique bit encoding

→ Can Invert Mappings

- Can go from bits to number and back, and vice versa
- $U2B(x) = B2U^{-1}(x)$
 - Bit pattern for unsigned integer
- $T2B(x) = B2T^{-1}(x)$
 - Bit pattern for two's complement integer

Practice + Break

 What range of integers can be represented with 5-bit two's complement?

- A -31 to +31
- B -15 to +15
- C 0 to +31
- D -16 to +15
- E -32 to +31

Practice + Break

• What range of integers can be represented with 5-bit two's complement?

• A	-31 to +31	No asymmetry and 6-bits
• B	-15 to +15	No asymmetry
• C	0 to +31	Unsigned
• D	-16 to +15	Correct
• E	-32 to +31	6-bits

Outline

Bits and Bytes

Integer Encoding

C Type Bounds

Standard sizes of C types on modern (64-bit) computers

- 1 byte
 - char, unsigned char, signed char
 - bool
- 2 bytes
 - short, unsigned short, signed short
- 4 bytes
 - int, unsigned int, signed int
 - float
- 8 bytes
 - long, unsigned long, signed long
 - double
 - Every pointer type!

Ranges for different bit amounts

	W?			
?	8?	16 ?	32 ?	64 ?
UMax2	255	65,535	4,294,967,295	18,446,744,073,709,551,615
TMax?	127	32,767	2,147,483,647	9,223,372,036,854,775,807
TMin2	-128	-32,768	-2,147,483,648	-9,223,372,036,854,775,808[

?

Observations

- |TMin| = TMax + 1
 - Asymmetric range
- UMax = 2 * TMax + 1

C Programming

- #include limits.h>
- Declares constants, e.g.,
 - ULONG_MAX
 - LONG_MAX
 - LONG_MIN
- Values are platform specific

Overflow

• What happens if you exceed the bound of a variable type?

Modulo behavior in binary numbers

Overflow

What happens if you exceed the bound of a variable type?

- Unsigned Variables
 - They wrap!

```
char a = 255;
a++;
// a now equals 0

char b = 2;
b = b-5;
// b now equals 253
```

Overflow

What happens if you exceed the bound of a variable type?

- Signed Variables
 - UNDEFINED BEHAVIOR
 - Often they wrap
 - But also the compiler can do anything it wants

Remember that overflow/underflow can occur in C

- Warning: programmers often fail to account for wrapping!
 - Sometimes it leads to unexpected behavior

Overflow example in the real world

- Dream Devourer
 - Special boss in the Nintendo DS edition
- Wanted to make it even more challenging
 - 32000 hit points
 - Takes forever to defeat

• Range: -32768 to +32767

Chrono Trigger signed overflow bug

Solution: heal it

 Hit points go negative and it dies

Outline

Bits and Bytes

Integer Encoding

C Type Bounds