香港中文大學 The Chinese University of Hong Kong

版權所有 不得翻印 Copyright Reserved

Course Examinations 1997 - 98

Course Code & Title: CSC 3130 Formal Languages and Automata Theory	
Time allowed	: hours minutes
Student I.D. No.	: Seat No. :

Answer all FOUR (4) Questions.

1. Consider the following problem.

Given a deterministic finite automaton M and a context free grammar G, determine whether $L(G) \setminus L(M) = \emptyset$, where L(G) is the language generated by G and L(M) the language accepted by M.

- (a) (10 marks) Outline an algorithm that answers this decision problem.
- (b) (10 marks) Apply the algorithm in (a) to determine whether $L(G_1) \setminus L(M_1) = \emptyset$ for the following deterministic finite automaton M_1 and context free grammar G_1 .

- 2. Let $\Sigma = \{a,b,c\}$. Consider the Σ -language $L = \{\omega c \omega \mid \omega \in (a+b)^*\}$.
 - (a) (15 marks) Prove or disprove that L is context free.
 - (b) (15 marks) Prove or disprove that \overline{L} is context free.
- 3. (a) (15 marks) Design a Turing acceptor that accepts the language $\{a^ib^jc^k \mid i=j+k\}$.
 - (b) Let L_1 be a recursively enumerable language and L_2 be a recursive language.
 - (i) (5 marks) Is the complement of L₁ a recursively enumerable language? Explain your answer.
 - (ii) (5 marks) Is it a decidable problem to determine whether a string ω is **not** in the intersection of L₁ and the complement of L₂? Explain your answer.
- 4. Consider the following grammar G, in which S' is the start symbol.

 $S' \rightarrow aA \mid bB$

 $A \rightarrow abA \mid bB$

 $B \rightarrow bBc \mid bc$

- (a) (5 marks) Construct the set of LR(0) items for the grammar G.
- (b) (10 marks) Is the grammar G LR(0)? Justify your answer.
- (c) (10 marks) Can the string aabbbcc be parsed by an LR(0) parser? Show the steps of parsing if it can be parsed; or show why it cannot be parsed otherwise.

- End of Paper -