Informe de Trabajo Práctico N°3

Denavit y Hartenberg

Robótica I

Ingeniería en Mecatrónica Facultad de Ingeniería - UNCUYO

Alumno: Juan Manuel BORQUEZ PEREZ Legajo: 13567

1. Ejercicio 1.

La convención de Denavit - Hartenberg (DH) se utiliza para establecer una matriz de transformación homogénea que describe la posición y orientación de un sistema de referencia respecto a otro, y está formada por el producto de 4 transformaciones elementales, 2 traslaciones y 2 rotaciones. Considere que existen algunas modificaciones de la convención original, pero en este cursado usaremos la estándar (prestar atención a las indicaciones de los autores al momento de presentarla).

1.1. Inciso 1.

Escriba de forma simbólica cada transformación elemental, indicando si es traslación o rotación, el parámetro principal, y con respecto a qué eje se realiza

1. Rotación alrededor del eje Z_{i-1} un ángulo θ_i para llevar el eje X_{i-1} hasta el eje X_i . Corresponde con la variable articular q_i .

$$Rot(Z_{i-1},\theta_i)$$

2. Traslación a lo largo de Z_{i-1} una distancia d_i desde el origen del sistema $\{S_{i-1}\}$ hasta el eje X_i . Corresponde con la longitud articular.

$$Tras\left(Z_{i-1},d_{i}\right)$$

3. Traslación a lo largo del eje X_i una distancia a_i desde el eje Z_{i-1} al eje Z_i . Corresponde con la longitud del eslabón i.

$$Tras(X_i, a_i)$$

4. Rotación alrededor del eje X_i un ángulo α_i desde el eje Z_{i-1} al eje Z_i . Corresponde con el ángulo de torsión del eslabon i.

$$Rot(X_i, \alpha_i)$$

1.2. Inciso 2.

Escriba el producto matricial ordenado y la forma general de la matriz homogénea que relaciona 2 sistemas consecutivos

$$^{i-1}T_i = Rot\left(Z_{i-1}, \theta_i\right) Tras\left(Z_{i-1}, d_i\right) Tras\left(X_i, a_i\right) Rot\left(X_i, \alpha_i\right)$$

2. Ejercicio 2

Aplique la convención DH a los siguientes robots. Es decir, asigne adecuadamente los sistemas de referencia y determine los 4 parámetros de cada articulación: θ , d, a, α . Realice un esquema adecuado donde se aprecien todos los parámetros involucrados.

2.1. Inciso 1

Figura 1: Robot planar de 3 articulaciones rotacionales (Spong 2005).

Figura 2: Identificación de eslabones y articulaciones.

Figura 3: Definición de los sistemas.

Figura 4: Aplicación de la convención DH.

Sistema	θ	d	a	α	σ
1	q_1	0	l_{esl1}	0	0
2	q_2	0	l_{esl2}	0	0
3	q_3	0	l_{esl3}	0	0

Cuadro 1: Síntesis de la convención DH.

2.2. Inciso 2.

Figura 5: Robot planar con 3 articulaciones: rotación, traslación, rotación (Spong 2005).

Figura 6: Identificación de eslabones y articulaciones.

Figura 7: Definición de los sistemas.

Figura 8: Aplicación de la convención DH.

Sistema	θ	d	a	α	σ
1	q_1	0	0	90°	0
2	0	$q_2 + l_{esl1} + l_{esl2} - b$	0	-90°	1
3	$q_3 - 90^{\circ}$	0	l_{esl3}	0	0

Cuadro 2: Síntesis de la convención DH.

2.3. Inciso 3.

Figura 9: Robot de 3 articulaciones: traslación, rotación, rotación (Craig 2006)

Figura 10: Identificación de eslabones y articulaciones.

Figura 11: Definición de los sistemas.

Figura 12: Aplicación de la convención DH.

Sistema	θ	d	a	α	σ
1	0	d_1	l_{esl1}	0	1
2	q_2	0	l_{esl2}	0	0
3	q_3	0	l_{esl3}	0	0

Cuadro 3: Síntesis de la convención DH.

3. Ejercicio 3.

Determine los parámetros DH de cada uno de los siguientes robots reales. Analice cada uno de ellos y obtenga los datos necesarios de su geometría a partir de la información gratuita que el fabricante pone a disposición en su página web. Si existe más de un modelo para cada caso seleccione uno, cualquiera.

3.1. SCARA IRB 910SC-3/0.45 (ABB).

Figura 13: Identificación de eslabones y articulaciones.

Figura 14: Definición de sistemas vista lateral.

Como se puede ver en las fig. 13, fig. 14 y fig. 15, hemos separado al par cilíndrico en el extremo del robot por un par de rotación más un par prismático y hemos considerado un sistema de referencia independiente para cada uno ({S2} y {S3}).

Figura 15: Definición de los sistemas vista superior.

Los parámetros para la convención DH se resaltaron en las fig. 17 y fig. 16 con cuadros de color violeta para las dimensiones en milímetros y con cuadros en rojo para la denominación de los parámetros; mientras que aquellos parámetros que no se indican en las figuras se colocan directamente en la table 4. En la fig. 16 también se indica en forma de árbol la cuenta que hay que hacer para determinar d_4 .

Figura 16: Aplicación de la convención DH vista lateral.

Figura 17: Aplicación de la convención DH vista superior.

Elemento	Descripción	Variante
		IRB 910SC- 3/0.45
L	Longitud del brazo inferior	200 mm

Figura 18: parámetros 1.

Elemento	Descripción	Variante
		IRB 910SC- 3/0.45
В	Recorrido Z	180 mm

Figura 19: parámetros 2.

Sistema	θ	d	a	α	σ
1	q_1	199,2	200	0	0
2	q_2	59,5	250	0	0
3	q_3	0	0	90°	0
4	0	$37,5+q_4$	0	0	1

Cuadro 4: Síntesis de la convención DH.

3.2. Paint Mate 200iA (FANUC).

Aplicamos la convención DH directamente como se muestra en las fig. 20 y fig. 22.. En las que se ha identificado los sistemas de referencias para cada articulación y para el

efector final y se han resaltado los parámetros del robot que son útiles para la definición de la matriz de transformación homogénea según DH.

Figura 20: Aplicación de la convención DH overview.

Figura 21: Datos de la muñeca.

Figura 22: Aplicación de la convención DH vista lateral.

Sistema	θ	d	a	α	σ
1	α.	450	75	90°	0
1	q_1			90	0
2	$90^{\circ} + q_2$	0	300	0	U
3	q_3	0	75	90°	0
4	q_4	320	0	-90°	0
5	q_5	0	0	90°	0
6	q_6	80	0	0	0

Cuadro 5: Síntesis de la convención DH.

3.3. LBR iiwa 7 R800 (KUKA).

Figura 23: Definición de sistemas vista lateral.

Figura 24: Aplicación de la convención DH vista frontal.

Sistema	θ	d	a	α	σ
1	q_1	340	0	90°	0
2	q_2	0	0	-90°	0
3	q_3	400	0	90°	0
4	q_4	0	0	-90°	0
5	q_5	400	0	90°	0
6	q_6	0	0	-90°	0
7	q_7	MF	0	0	0

Cuadro 6: Síntesis de la convención DH.