

# A Dynamic Framework for Identification and Estimation of Nonseparable Production Functions

Job Market Presentation
Justin Doty

#### Introduction

- This paper identifies and estimates a nonseparable production function with unobserved heterogeneity
- Two important contributions to the literature
  - New nonparametric estimates of firm-specific production functions
    - Nonseparable model allows interactions between unobserved production shocks and inputs
    - Captures sources of unobserved heterogeneity arising from factor-specific productivity changes
    - Important implications for models that use production function estimates
  - New framework to capture heterogeneous productivity dynamics
    - ► Incorporates asymmetric persistence in productivity history
    - Driven by size and sign of productivity shocks
    - ► Can explain variation in productivity rankings across time

#### Production Functions

- Production functions are important in many economic models
- ► They link outputs to inputs (e.g. capital, labor) and represents firm technology
- Estimates can be used in the following applications:
  - 1. Measuring returns to scale
  - 2. Gains from trade
  - 3. Capital misallocation
  - 4. Estimates of market power (e.g. markups)
- A correctly specified production function is crucial for correct inference in these areas
- ► For example, biased flexible input elasticities are transmitted to markup estimates

# Simultaneity Bias

- Significant progress in solving one type of bias in production function estimation: simultaneity bias
- ► Researchers don't observe productivity
- Firm chooses inputs depending on their productivity
- ► A more productive firm may hire more/less workers
- ▶ In this case, labor estimates will be biased
- Proxy variable approaches of OP, LP, ACF remain a popular tool
- ► Basic idea: A policy function (e.g. material demand) is inverted as a function of productivity
- ► Substitute inverted function into production function and estimate in two-step approach (ACF Estimator)

## Limitations of Proxy Variables

- ► This approach relies on many crucial assumptions
- ► No unobserved errors in the policy function
  - ► No measurement error
  - No unobserved demand shocks
- Productivity and an unobserved production shock are additive (e.g. log-Cobb-Douglas)
  - ► Implies productivity is "factor-neutral"
  - ► Technology is fixed across firms
  - ► Estimates only capture average firm production
- Productivity process is subject to additive shocks
  - Empirical evidence is in favor of more flexible productivity dynamics
  - Since productivity is transmitted to inputs it is important to understand its dynamics to test model validity

# Why Nonseparable Models

- Empirical research points to missing heterogeneity from technological change, which favors inputs such as labor
- ► Labor augmenting productivity explains much of the variation in markups over time (Dermirer, 2020)
- ▶ It is also the primary driver of the fall in labor shares across many advanced economies (Doraszelski and Jaumandreu, 2018)
- Recent advancements have used a structural approach to estimating factor-specific productivity
- ► These rely on either a parametric or nonparametric inversion of policy functions
- ► These techniques are still invalid in the presence of unobservables in the policy functions

# Why Nonseparable Models

- Productivity is significantly heterogeneous across firms even in narrowly defined industries
- The cross-sectional distribution of productivity varies over time
- ► These dynamic effects can change the production function at different points in time
- ► A more flexible productivity process may provide insight to how firms asymmetrically adjust inputs and output in accordance to shocks
- ► Large degree of persistence in productivity rankings in the U.S. (Bartelsman and Dhrymes, 1998)
- ► High and low productivity firms may change productivity rankings depending on the size of sign of shocks

#### Preview of Results

Figure 1: Summary Statistics of Productivity Dynamics



#### Preview of Results





\*Panel (a): Productivity persistence from a linear model. Panel (b): Productivity persistence for a nonlinear model that is separable in unobserved shocks. Panel (c): Productivity persistence estimated in the nonseparable model.

#### Preview of Results

Figure 3: Non-Hicks Neutral Elasticities



\*Panel (a): Capital efficiency evaluated at  $\tau_{\eta}$  and percentiles of capital  $\tau_{k}$  averaged over values of  $(l_{it}, m_{it})$  that correspond to  $\tau_{k}$ . Panel (b): Labor efficiency evaluated at  $\tau_{\eta}$  and percentiles of labor  $\tau_{l}$  averaged over values of  $(k_{it}, m_{it})$ . Panel (c): Materials efficiency evaluated at  $\tau_{\eta}$  and percentiles of materials  $\tau_{m}$  averaged over values of  $(k_{it}, l_{it})$ .

# Summary of Findings

#### Data: U.S. Compustat public manufacturing firms

- Asymmetric persistence in productivity
  - 1. Positive shocks for low productivity firms
  - 2. Negative shocks for high productivity firms

have lower persistence of productivity

- Asymmetric adjustments of inputs with respect to productivity and shocks
- ► Length of time until recovery from bad productivity shocks varies by firm
- ► Nonlinearities in production function estimates
  - 1. Positive capital productivity effects
  - 2. Positive and negative labor productivity effects
  - 3. Negative material productivity effects

#### Outline for the Rest of Talk

- 1. Introduction
- 2. Economic Model
- 3. Econometric Identification
- 4. Econometric Procedure and Quantile Modelling
- 5. Results
- 6. Conclusions

#### The Production Function

► Consider a nonseparable model for a firm's gross-output production function (in logs)

$$y_{it} = Q_t^y(k_{it}, l_{it}, m_{it}, \omega_{it}, \eta_{it}), \quad \eta_{it} \sim Uniform(0, 1)$$
 (1)

Skorohod Representation

- ► Allows for non-linear interactions between inputs and unobserved productivity
- ► Assume the following

## Assumption 1 (Production Function)

- 1. The unanticipated production shocks  $\eta_{it}$  are i.i.d. over firms and time.
- 2. The unanticipated production shock  $\eta_{it}$  follows a standard uniform distribution independent of  $(k_{it}, l_{it}, m_{it}, \omega_{it},)$ .
- 3.  $\tau \to Q_t^y(k_{it}, l_{it}, m_{it}, \omega_{it}, \tau)$  is strictly increasing on (0, 1).

## Quantile Function

▶ For a given  $\tau$ , the conditional quantile function for the random variable Y|X is defined as

$$Q_{\tau}(Y|X) = \inf\{y \in \mathbb{R} : \tau \le F_{Y|X}(y|x)\}, \quad \tau \in (0,1)$$

where  $F_{Y|X}$  is continuous and strictly increasing

- ► This quantile assumption will be important later on as it allows me to recover estimates of firm specific production functions, input demands, and productivity
- ► The standard production function and quantiles is an unexplored area
- ► Doty and Song, 2021 consider the case for a simple additive-in-productivity model and discuss some of its implications

# Productivity

 Productivity evolves according to an exogenous first-order Markov process given by

$$\omega_{it} = Q_t^{\omega}(\omega_{it-1}, \xi_{it}), \quad \xi_{it} \sim \textit{Uniform}(0, 1),$$
 (2)

where  $\xi_{i1}, \dots, \xi_{iT}$  are independent uniform random variables which represent innovation shocks to productivity

▶ The function  $Q^{\omega}$  is a function that allows the persistence in productivity in firms to be nonlinear across different quantiles

## Assumption 2 (Productivity)

- 1. The productivity innovation shocks  $\xi_{it}$  are i.i.d. across firms and time.
- 2.  $\xi_{it}$  follows a standard uniform distribution independent of previous period productivity  $\omega_{it-1}$ .
- 3.  $\tau \to Q_t^{\omega}(\omega_{it-1}, \tau)$  is strictly increasing on (0,1).

## Flexible Inputs

- Labor and material inputs are chosen to maximize current period profits
- ► Therefore they are a function of current period state variables

$$I_{it} = Q_t^{\ell}(k_{it}, \omega_{it}, \epsilon_{\ell, it}), \quad \epsilon_{\ell, it} \sim \textit{Uniform}(0, 1),$$
 (3)

$$m_{it} = Q_t^m(k_{it}, l_{it}, \omega_{it}, \epsilon_{m,it}), \quad \epsilon_{m,it} \sim \textit{Uniform}(0, 1), \quad (4)$$

- $ightharpoonup \epsilon_{\ell,it}$  and  $\epsilon_{m,it}$  are i.i.d. unobservable input demand shocks that are assumed to be independent of current period state variables
- In the control function approach, with material inputs as a proxy, this function could not be inverted as an expression of productivity only
- ► This can also be extended to the case where labor has adjustment frictions (Labor Adjustments)

# Flexible Inputs

### Assumption 3 (Flexible Inputs)

- 1. The unobserved input demand shocks  $\epsilon_{\ell,it}$  and  $\epsilon_{m,it}$  are i.i.d. across firms and time.
- 2.  $\epsilon_{\ell,it}$  and  $\epsilon_{m,it}$  follow a standard uniform distribution independent of  $(k_{it}, \omega_{it})$  and  $(k_{it}, l_{it}, \omega_{it})$ , respectively.
- 3.  $\tau \to Q_t^{\ell}(k_{it}, \omega_{it}, \tau)$  and  $\tau \to Q_t^{m}(k_{it}, l_{it}, \omega_{it}, \tau)$  are strictly increasing on (0, 1).

## Capital and Investment

► Capital accumulates to the following generalized law of motion

$$K_{it} = \kappa_t(K_{it-1}, I_{it-1}, \upsilon_{it-1})$$
(5)

where  $I_{it-1}$  denotes firm investment in the prior period

- ► Eliminates the deterministic relationship of capital with respect to previous period state and choice variables
- Assume this error term is independent of the arguments in the capital accumulation law
- ► In each period, a firm chooses investment to maximize its discounted future profits:

$$I_{it} = \iota_t(K_{it}, \omega_{it}) = \underset{I_t \geq 0}{\operatorname{argmax}} \left[ \Pi_t(K_{it}, \omega_{it}) - c(I_{it}, \omega_{it}) + \beta \mathbb{E} \left[ V_{t+1}(K_{it+1}, \omega_{it+1}) | \mathcal{I}_t \right] \right], \tag{6}$$

## Capital and Investment

- $\blacktriangleright$   $\pi_t(\cdot)$  is current period profits as a function of the state variables  $c(\cdot)$  is the cost function,  $\mathcal{I}_t$  is information set
- ► Empirical investment rule is

$$i_{it} = Q_t^i(k_{it}, \omega_{it}, \zeta_{it}), \quad \zeta_{it} \sim \textit{Uniform}(0, 1).$$
 (7)

#### Assumption 4 (Capital Accumulation and Investment)

- 1. The unobserved investment demand shocks  $\zeta_{it}$  is i.i.d. across firms and time.
- 2.  $\zeta_{it}$  follows a standard uniform distribution independent of  $(k_{it}, \omega_{it})$ .
- 3. The production shock  $\eta_{it}$  and  $\zeta_{it}$  are independent conditional on  $(k_{it}, l_{it}, m_{it}, \omega_{it})$ . In addition,  $v_{it}$  is independent of  $\eta_{it}$  conditional on  $(k_{it}, l_{it}, m_{it}, \omega_{it})$
- 4.  $au o Q_t^i(k_{it},\omega_{it}, au)$  is strictly increasing on (0,1)

- I show that the conditional densities corresponding to production, inputs, and productivity are nonparametrically identified
- ▶ Let  $Z_t = (I_t, k_t, m_t, k_{t+1})$  denote conditioning variables

Assumption 5 (Conditional Independence)

- 1.  $f(y_t|y_{t+1}, I_t, \omega_t, Z_t) = f(y_t|\omega_t, Z_t)$ 2.  $f(y_{t+1}|I_t, \omega_t, Z_t) = f(y_{t+1}|\omega_t, Z_t)$
- ▶ First equality states that conditional on  $\omega_t$  and  $Z_t$ ,  $y_{t+1}$  and  $I_t$  do not provide any additional information about  $y_t$
- ▶ Second equality states that conditional on  $\omega_t$  and  $Z_t$ ,  $I_t$  does not provide any additional information about  $y_{t+1}$
- ► Satisfied by mutual independence assumptions on  $\eta_t$  and  $\zeta_t$  conditional on  $(\omega_t, k_t, l_t, m_t)$

- ► Begin by relating a conditional density as a function of observable to densities containing unobserved productivity
- ▶ Using the conditional independence assumption, I can write

$$f_{y_t,I_t|y_{t+1},Z_t} = \int f_{y_t|Z_t,\omega_t} f_{I_t|Z_t,\omega_t} f_{\omega_t|y_{t+1},Z_t} d\omega_t \tag{8}$$

► The identification strategy follows HS by using a eigenvalue-eigenfunction decomposition of integral operators of (8)

#### Definition 1

(Integral Operator) Let a and b denote random variables with supports  $\mathcal{A}$  and  $\mathcal{B}$ . Given two corresponding spaces  $\mathcal{G}(\mathcal{A})$  and  $\mathcal{G}(\mathcal{B})$  of functions with domains  $\mathcal{A}$  and  $\mathcal{B}$ , let  $L_{b|a}$  denote the operator mapping  $g \in \mathcal{G}(\mathcal{A})$  to  $L_{b|a}g \in L_{b|a}\mathcal{G}(\mathcal{B})$  defined by

$$[L_{b|a}g](b) \equiv \int_A f_{b|a}(b|a)g(a)da,$$

where  $f_{b|a}$  denotes the conditional density of b given a.

► The observed density in (8) can be written in operator notation

$$L_{y_t, I_t | y_{t+1}, Z_t} = L_{y_t | Z_t, \omega_t} \Delta_{I_t | Z_t, \omega_t} L_{\omega_t | y_{t+1}, Z_t}$$
(9)

► Will show that under a set of assumptions, the conditional density is identified from an eigenvalue-eigenfunction decomposition of (9)

### Assumption 6 (Injectivity)

The operators  $L_{y_t|Z_t,\omega_t}$  and  $L_{y_{t+1}|Z_t,\omega_t}$  are injective

- The above assumption allows us to take inverses of the operators.
- ▶ Injectivity of  $L_{y_t|Z_t,\omega_t}$  can be interpreted as its corresponding density  $f_{y_t|Z_t,\omega_t}(I_t|K_t,\omega_t)$  having sufficient variation in  $\omega_t$  given  $Z_t$ .
- ► Type of nonparametric IV rank condition

### Assumption 7 (Uniqueness)

For any  $\bar{\omega}_t$ ,  $\tilde{\omega}_t \in \Omega$ , the set  $\{f_{l_t|\omega_t,Z_t}(l_t|\bar{\omega}_t,Z_t) \neq f_{l_t|\omega_t,Z_t}(l_t|\tilde{\omega}_t,Z_t)\}$  has positive probability whenever  $\bar{\omega}_t \neq \tilde{\omega}_t$ .

- ► This assumption is relatively weak
- ▶ Satisfied if there is conditional heteroskedasticity in  $f_{I|\omega,Z}$
- $\blacktriangleright$  Satisfied if any functional of its distribution is strictly increasing in  $\omega_t$
- ▶ I assume  $E[I_t|\omega_t, Z_t]$  is strictly increasing in  $\omega_t$
- ► Similar to the invertibility condition in Olley and Pakes, 1996

## Assumption 8 (Normalization)

There exists a functional  $\Gamma$  such that  $\Gamma[f_{y_t|\omega_t,Z_t}(y_t|\omega_t,Z_t)] = \omega_t$ .

- ► This functional does not need to be known
- ► Sufficient to consider a known function of the data distribution as shown by Arellano and Bonhomme, 2016
- ► In my empirical application, I consider a nonseparable translog production function
- ► The assumption can be satisfied by the normalization  $E[y_t|\omega_t,0]=\omega_t$
- ▶ For more generalized production functions, if  $E[y_t|\omega_t, Z_t]$  is strictly increasing in  $\omega_t$ , then one could normalize  $\omega_t = E[y_t|\omega_t, Z_t]$
- ► These restrictions are easily adaptable in estimation as it amounts to centering the coefficients in the model

Theorem 1 (Identification)

Under Assumptions 5, 6, 7, and 8, given the observed density  $f_{y_t,l_t|y_{t+1},Z_t}$ , the equation

$$f_{y_t,I_t|y_{t+1},Z_t} = \int f_{y_t|\omega_t,Z_t} f_{I_t|\omega_t,Z_t} f_{\omega_t|y_{t+1},Z_t} d\omega_t$$
 (10)

admits a unique solution for  $f_{y_t|\omega_t,Z_t}, f_{I_t|\omega_t,Z_t}$ , and  $f_{\omega_t|y_{t+1},Z_t}$ 

- ► The proof follows using Hu and Schennach, 2008
- ► However it does not directly identify the Markov transition function for productivity  $f_{\omega_{it+1}|\omega_{it}}(\omega_{it+1}|\omega_{it})$

Corollary 1 (Identification of Markov Process: Stationarity Case)

Suppose that the production function is stationary,

 $f_{y_t|\omega_t,Z_t}=f_{y_1|\omega_1,Z_1}, \forall t\in\{1,\cdots,T\}$ . Then, under Assumptions 5, 6, 7, and 8, the observed density  $f_{y_t,l_t|y_{t+1},Z_t}$ , uniquely determines the density  $f_{\omega_{t+1}|\omega_t}, \forall t\in\{1,\ldots,T-1\}$ 

Corollary 2 (Identification of Markov Process: Non-Stationarity Case)

Under Assumptions 5, 6, 7, and 8, the observed density  $f_{y_{t+1},l_{t+1}|y_{t+2},Z_{t+1}}$ , uniquely determines the density  $f_{\omega_{t+1}|\omega_t}, \forall t \in \{1,\ldots,T-2\}$ 

#### Econometric Procedure: Production

► The production function is specified as Translog with non-Hicks neutral effects

$$Q_{t}^{y}(k_{it}, l_{it}, m_{it}, \omega_{it}, \tau) =$$

$$\gamma_{0}(\tau) + (\gamma_{k}(\tau) + \sigma_{k}(\tau)\omega_{it})k_{it} + (\gamma_{l}(\tau) + \sigma_{l}(\tau)\omega_{it})l_{it} + (\gamma_{m}(\tau) + \sigma_{m}(\tau)\omega_{it})m_{it}$$

$$+ (\gamma_{kl}(\tau) + \sigma_{kl}(\tau)\omega_{it})k_{it}l_{it} + (\gamma_{lm}(\tau) + \sigma_{lm}(\tau)\omega_{it})l_{it}m_{it} + (\gamma_{km}(\tau) + \sigma_{km}(\tau)\omega_{it})k_{it}m_{it} + (\gamma_{kk}(\tau) + \sigma_{kk}(\tau)\omega_{it})k_{it}^{2} + (\gamma_{ll}(\tau) + \sigma_{ll}(\tau)\omega_{it})l_{it}^{2}$$

$$+ (\gamma_{mm}(\tau) + \sigma_{mm}(\tau)\omega_{it})m_{it}^{2} + \sigma_{\omega}(\tau)\omega_{it}.$$
(11)

- ► Similar model was estimated by Ackerberg and Chen (2015)
- ► In my approach I can simulate productivity from estimated intital conditions and Markov process to compute average derivative effects
- ► Provides a better picture of heterogeneity instead of reporting individual coefficients

# Econometric Procedure: Productivity

▶ I specify productivity using 3rd order polynomial

$$Q^{\omega}(\omega_{it-1}, \tau) = \rho_0(\tau) + \rho_1(\tau)\omega_{it-1} + \rho_2(\tau)\omega_{it-1}^2 + \rho_3(\tau)\omega_{it-1}^3.$$
(12)

Selection Bias

► Initial productivity

$$Q^{\omega_1}(k_{i1},\tau) = \sum_{j=1}^{J} \rho_{\omega_1,j}(\tau)\phi_{\omega_1,j}(k_{i1}), \tag{13}$$

▶ I can also consider the case where productivity may evolve endogenously as Doraszelski and Jaumandreu, 2013

$$Q^{\omega}(\omega_{it-1}, r_{it-1}, \tau) = \mathbb{I}\left\{R_{it-1} = 0\right\} Q^{\omega}(\omega_{it-1}, \tau) + \mathbb{I}\left\{R_{it-1} > 0\right\} Q^{\omega, r}(\omega_{it-1}, r_{it-1}, \tau). \tag{14}$$

R&D Firms

# Econometric Procedure: Flexible Inputs

► I specify the labor input demand equation as follows:

$$Q_t^{\ell}(k_{it}, \omega_{it}, \tau) = \sum_{j=1}^{J} \alpha_{\ell,j}(\tau) \phi_{\ell,j}(k_{it}, \omega_{it}), \qquad (15)$$

where  $\phi_{\ell,i}$  can be another non-linear function

► Material inputs are specified as

$$Q_t^m(k_{it}, l_{it}, \omega_{it}, \tau) = \sum_{j=1}^J \alpha_{m,j}(\tau) \phi_{m,j}(k_{it}, l_{it}, \omega_{it}), \qquad (16)$$

▶ Again,  $\phi_{m,j}$  can be a non-linear function

#### Econometric Procedure: Investment

► The investment demand function is specified as

$$i_{it} = Q_t^i(k_{it}, \omega_{it}, \tau) = \sum_{j=1}^J \delta_j(\tau) \phi_{i,j}(k_{it}, \omega_{it}), \qquad (17)$$

where  $\phi_{\iota,j}$  is specified similarly as the labor and material input decision rule.

▶ In the case where investment is censored, I can write

$$Q_t^{i*}(k_{it},\omega_{it},\tau) = \max\{0, \sum_{j=1}^J \delta_j(\tau)\phi_{i,j}(k_{it},\omega_{it})\}, \qquad (18)$$

due to the equivariance properties of quantiles

- ► The censored quantile regression model avoids distributional assumptions at the cost of computational complexity
- ► Censored investment levels are not an issue in Compustat

#### **Econometric Restrictions**

The following conditional moment restrictions hold:

$$\mathbb{E}\left[\Psi_{\tau}\left(y_{it}-Q_{t}(y_{it}|k_{it},l_{it},m_{it},\omega_{it};\beta(\tau))\right)\middle|k_{it},l_{it},m_{it}\right]=0$$
(19)

$$\mathbb{E}\left[\Psi_{\tau}\left(I_{it}-\sum_{i=1}^{J}\alpha_{I,j}(\tau)\phi_{I,j}(k_{it},\omega_{it})\right)\middle|k_{it},\omega_{it}\right]=0$$
(20)

$$\mathbb{E}\left[\Psi_{\tau}\left(m_{it}-\sum_{j=1}^{J}\alpha_{m,j}(\tau)\phi_{m,j}(k_{it},\omega_{it})\right)\bigg|k_{it},\omega_{it}\right]=0$$
(21)

$$\mathbb{E}\left[\Psi_{\tau}\left(i_{it} - \sum_{j=1}^{J} \delta_{j}(\tau)\phi_{\iota,j}(k_{it}, \omega_{it})\right) \middle| k_{it}, \omega_{it}\right] = 0$$
 (22)

For  $t \geq 2$ ,

$$\mathbb{E}\left[\Psi_{\tau}\left(\omega_{it}-\rho_{0}(\tau)-\rho_{1}(\tau)\omega_{it-1}-\rho_{2}(\tau)\omega_{it-1}^{2}-\rho_{3}(\tau)\omega_{it-1}^{3}\right)\bigg|\omega_{it-1}\right]=0, \quad (23)$$

$$\mathbb{E}\left[\Psi_{\tau}\left(\omega_{i1} - \sum_{i=1}^{J} \rho_{\omega_{1},j}(\tau)\phi_{\omega_{1},j}(k_{i1})\right) \middle| k_{i1}\right] = 0, \tag{24}$$

#### **Econometric Restrictions**

- ▶ The function  $\Psi_{\tau}(u) = \tau \mathbb{1}\{u < 0\}$
- Estimating the above conditional moment restrictions is infeasible due to the unobserved productivity component
- Use the unconditional moment restriction and integrate out productivity
- ▶ Let the finite and functional parameters be indexed by a finite dimensional parameter vector  $\theta(\cdot)$ .
- To fix ideas, consider the unconditional moment restriction corresponding to the production function

$$\mathbb{E}\left[\int \Psi_{\tau}\left(y_{it} - Q_{t}^{y}(k_{it}, l_{it}, m_{it}, \omega_{it}; \beta(\tau))\right) \otimes \begin{pmatrix} k_{it} \\ l_{it} \\ m_{it} \\ \omega_{it} \end{pmatrix} g_{i}(\omega_{i}^{T}; \theta(\cdot)) d\omega_{i}^{T}\right] = 0,$$
(25)

► The posterior density  $g_i(\omega_i^T; \theta(\cdot)) = f(\omega_i^T | y_i^T, k_i^T, l_i^T, m_i^T, i_i^T, \theta(\cdot))$  involves the entire set of model parameters

## Implementation

- ► Therefore, it is impossible to estimate the model parameters in a  $\tau$ -by- $\tau$  procedure
- ► To eliminate the intractability of this problem, the continuous model parameters are approximated by piece-wise linear splines
- $\theta$  is a piecewise-polynomial interpolating splines on a grid  $[\tau_1, \tau_2], [\tau_3, \tau_4], \ldots, [\tau_{Q-1}, \tau_Q]$ , contained in the unit interval and is constant on  $[0, \tau_1]$  and  $[\tau_Q, 1)$
- ▶ The intercept coefficient  $\beta_0$  is specified as the quantile of an exponential distribution on  $(0, \tau_1]$  (indexed by  $\lambda^-$ ) and  $[\tau_{Q-1}, 1)$  (indexed by  $\lambda^+$ ).
- ► The remaining functional parameters are modeled similarly.
- ► With piece-wise linear splines, the posterior density has a closed form expression without relying on strong distributional assumptions for estimation

## Implementation

- ▶ In order to estimate the model, the integral inside the expectation of Equation (25) needs to be approximated
- ► This can be done using quadrature methods or Monte Carlo integration by converting the problem into a weighted quantile regression
- Due to the high-dimensionality of my application I choose to use a random-walk Metropolis Hastings algorithm to compute the integral
- ► This is known as a Monte Carlo Expectation Maximization (MCEM) procedure where the maximization step is performed using quantile regression
- ► This type of estimator is used by Arellano and Bonhomme, 2016 and Arellano, Blundell, and Bonhomme, 2017

### Implementation

Given an initial parameter value  $\hat{\theta}^0$ . Iterate on  $s=0,1,2,\ldots$  in the following two-step procedure until converge to a stationary distribution:

1. Stochastic E-Step: Draw M values  $\omega_{i}^{(m)} = (\omega_{i1}^{(m)}, \omega_{i2}^{(m)}, \dots, \omega_{iT}^{(m)}) \text{ from}$   $g_{i}(\omega_{i}^{T}; \hat{\theta}^{(s)}) = f(\omega_{i}^{T}|y_{i}^{T}, k_{i}^{T}, l_{i}^{T}, m_{i}^{T}, i_{i}^{T}, ; \hat{\theta}^{(s)}) \propto$   $\prod_{t=1}^{T} f(y_{it}|k_{it}, l_{it}, m_{it}, \omega_{it}; \hat{\beta}^{(s)}) f(l_{it}|k_{it}, \omega_{it}; \hat{\alpha}_{i}^{(s)}) f(m_{it}|k_{it}, l_{it}, \omega_{it}; \hat{\alpha}_{m}^{(s)})$   $\times f(i_{it}|k_{it}, \omega_{it}; \hat{\delta}^{(s)}) \prod_{t=2}^{T} f(\omega_{it}|\omega_{it-1}; \hat{\rho}^{(s)}) f(\omega_{i1}|k_{i1}; \hat{\rho}_{\omega_{1}}^{(s)})$ 

2. *Maximization Step*: For q = 1, ..., Q, solve (e.g for production function)

$$\hat{\beta}(\tau_q)^{(s+1)} = \underset{\beta(\tau_q)}{\operatorname{argmin}} \sum_{i=1}^{N} \sum_{t=1}^{T} \sum_{m=1}^{M} \psi_{\tau_q} \bigg( y_{it} - Q_t^{\gamma}(k_{it}, l_{it}, m_{it}, \omega_{it}^{(m)}; \beta(\tau_q)) \bigg)$$

# Empirical Implementation

- $\psi_{\tau}(u) = (\tau \mathbb{1}\{u < 0\})u$  is the "check" function from quantile regression
- ► Repeat Step 2 for estimating the productivity process, input decision rules and investment
- ▶ Take M=1 in the MCEM algorithm and the report estimates as the average of the last  $\tilde{S}=S/2$  draws
- ► This is known as the stochastic EM algorithm (stEM) of Celeux and Diebolt, 1985
- ► The sequence of maximizers  $\hat{\theta}^{(s)}$  is a time-homogeneous Markov chain which, if ergodic, will converge to its stationary distribution
- ► Nielsen, 2000 provides sufficient conditions for ergodicity and asymptotic properties of the estimator when the "M-step" is solved using maximum likelihood
- ► Arellano and Bonhomme, 2016 discuss the asymptotic properties of the estimator when the M-step is solved using quantile regression

## **Empirical Implementation**

- Estimation procedure is ran with 500 random walk
   Metropolis-Hastings steps keeping the last draw for estimation
- ▶ 200 EM steps where the average is taken over half the draws
- ightharpoonup Q = 11 for grid size for the interpolating spline
- Experimented with many different proposal distributions and initial values
- Normal distribution centered at the current draw of productivity with variance equal 0.01
- ► Acceptance rate  $\approx 10\%$
- Initial values for productivity are simulated from TFP estimated from the LP model
- ► Replication code is available on author's Github

## Application

- ► Standard and Poors Compustat database 1997 2016
- Productivity is simulated from its estimated parameters and used to construct investment, inputs, and output using their estimated parameters
- ► Capital is simulated from a linear accumulation process with constant depreciation rate 0.02
- Results are not too different from reasonable specifications for the capital accumulation process
- Interested in a variety of average and individual marginal quantile effects
- ► Using these estimates, can analyze how firms react to latest shocks to production, inputs, and productivity
- ► How long does it take for firms to recover from bad shocks to productivity?

#### Production Elasticities

Figure 4: Output Elasticities



\*Panel (a): Capital elasticity evaluated at  $\tau_{\eta}$  and percentiles of capital  $\tau_{k}$  averaged over values of  $(l_{it}, m_{it})$  that correspond to  $\tau_{k}$ . Panel (b): Labor elasticity evaluated at  $\tau_{\eta}$  and percentiles of labor  $\tau_{l}$  averaged over values of  $(k_{it}, m_{it})$ . Panel (c): Materials elasticity evaluated at  $\tau_{\eta}$  and percentiles of materials  $\tau_{m}$  averaged over values of  $(k_{it}, l_{it})$ .

#### Production Elasticities





\*Panel (a): Capital elasticity evaluated at  $\tau_{\eta}$  and  $\tau$ -productivity averaged over values of  $(k_{it}, l_{it}, m_{it})$  that correspond to  $\tau$ -productivity. Panel (b): Labor elasticity evaluated at evaluated at  $\tau_{\eta}$  and  $\tau$ -productivity averaged over values of  $(k_{it}, l_{it}, m_{it})$  that correspond to  $\tau$ -productivity. Panel (c): Materials elasticity evaluated at  $\tau_{\eta}$  and  $\tau$ -productivity averaged over values of  $(k_{it}, l_{it}, m_{it})$  that correspond to  $\tau$ -productivity.

#### **Production Elasticities**

Figure 6: Non-Hicks Neutral Elasticities



\*Panel (a): Capital efficiency evaluated at  $\tau_{\eta}$  and percentiles of capital  $\tau_{k}$  averaged over values of  $(l_{it}, m_{it})$  that correspond to  $\tau_{k}$ . Panel (b): Labor efficiency evaluated at  $\tau_{\eta}$  and percentiles of labor  $\tau_{l}$  averaged over values of  $(k_{it}, m_{it})$ . Panel (c): Materials efficiency evaluated at  $\tau_{\eta}$  and percentiles of materials  $\tau_{m}$  averaged over values of  $(k_{it}, l_{it})$ .

## Productivity Persistence

Figure 7: Productivity Persistence



<sup>\*</sup>Estimates of average productivity persistence evaluated at  $au_{\xi}$  and percentiles of previous productivity.

## Marginal Productivities

Figure 8: Input Demand Responses to Productivity



\*Panel (a): Investment demand evaluated at  $\tau_{\zeta}$  and percentiles of productivity  $\tau_{\omega}$  averaged over values of  $k_{it}$ . Panel (b): Labor demand evaluated at  $\tau_{\epsilon\ell}$  and percentiles of productivity  $\tau_{\omega}$  averaged over values of  $k_{it}$ . Panel (c): Material demand evaluated at  $\tau_{\epsilon_m}$  and percentiles of productivity  $\tau_{\omega}$  averaged over values of  $k_{it}$  and  $l_{it}$ 

## Productivity Innovation Shocks



\*Top row: Differences between firms hit with low productivity shock  $\tau_{\xi}=0.1$  and medium shock  $\tau_{\xi}=0.5$  at different levels of initial productivity. Bottom row: Differences between firms hit with high productivity shock  $\tau_{\xi}=0.9$  and medium shock  $\tau_{\xi}=0.5$  at different levels of initial productivity.

## Productivity Innovation Shocks to Capital



\*Top row: Differences between firms hit with low productivity shock  $\tau_{\xi}=0.1$  and medium shock  $\tau_{\xi}=0.5$  at different levels of investment demand. Bottom row: Differences between firms hit with high productivity shock  $\tau_{\xi}=0.9$  and medium shock  $\tau_{\xi}=0.5$  at different levels of investment demand

## Productivity Innovation Shocks to Labor



\*Top row: Differences between firms hit with low productivity shock  $\tau_{\xi}=0.1$  and medium shock  $\tau_{\xi}=0.5$  at different levels of labor demand. Bottom row: Differences between firms hit with high productivity shock  $\tau_{\xi}=0.9$  and medium shock  $\tau_{\xi}=0.5$  at different levels of labor demand.

## Productivity Innovation Shocks to Materials



\*Top row: Differences between firms hit with low productivity shock  $\tau_{\xi}=0.1$  and medium shock  $\tau_{\xi}=0.5$  at different levels of materials demand. Bottom row: Differences between firms hit with high productivity shock  $\tau_{\xi}=0.9$  and medium shock  $\tau_{\xi}=0.5$  at different levels of materials demand.

#### Conclusion

- Nonparametric identification of production function, input demand, and productivity
- Proposed an estimation framework to document firm heterogeneity in production, input decisions, and productivity
- Asymmetric productivity persistence depends on size of innovation shock and levels of previous productivity
- ► Some firms respond to productivity shocks by using more inputs, but this affect is asymmetric for different productivity levels input demand size
- Asymmetric impact of innovation shocks to inputs after bad/good shocks
- Extension to multi-dimensional unobservables: fixed effects, labor-augmenting productivity
- ► Implications for TFP estimates and market power

#### **ACF** Estimator

► ACF procedure for estimating a *value-added* production function (in logs):

$$y_{it} = \beta_k k_{it} + \beta_l I_{it} + \omega_{it} + \varepsilon_{it}, \qquad (26)$$

- $ightharpoonup y_{it}$  is value-added output for firm i and time t
- ► *l<sub>it</sub>* denotes labor input
- ▶ k<sub>it</sub> denotes capital input
- $\blacktriangleright$   $\omega_{it}$  is unobserved productivity
- $ightharpoonup arepsilon_{it}$  denotes an independent and identically distributed (i.i.d) shock to production
- ▶ The constant  $\beta_0$  is omitted since it is not separately identified from the mean of productivity.

#### **ACF** Estimator

► ACF introduces an intermediate input demand function defined as

$$m_{it} = m_t(k_{it}, l_{it}, \omega_{it}) \tag{27}$$

- ▶ The function m is assumed to be strictly increasing in  $\omega_{it}$  for all  $k_{it}$  and  $l_{it}$ .
- Productivity can then be expressed as

$$\omega_{it} = m_t^{-1}(k_{it}, l_{it}, m_{it})$$
 (28)

Substituting this equation into the production function

$$y_{it} = \beta_k k_{it} + \beta_l l_{it} + m_t^{-1}(k_{it}, l_{it}, m_{it}) + \varepsilon_{it} = \Phi_t(k_{it}, l_{it}, m_{it}) + \varepsilon_{it}.$$
(29)

► The function,  $\Phi_t(k_{it}, l_{it}, m_{it})$ , is identified by the following first stage moment restriction

$$\mathbb{E}[\varepsilon_{it}|\mathcal{I}_{it}] = 0 \tag{30}$$

▶  $\mathcal{I}_{it}$  denotes the firm's information at time t.

 $\blacktriangleright$  The first stage estimate of  $\Phi_t$  can be obtained by a local

#### **ACF** Estimator

► For the second stage, assume that productivity follows an AR(1) process given by

$$\omega_{it} = \mathbb{E}[\omega_{it}|\omega_{it-1}] + \xi_{it} = \rho\omega_{it-1} + \xi_{it}, \tag{31}$$

- $\xi_{it}$  denotes an innovation to productivity which satisfies  $\mathbb{E}[\xi_{it}|\mathcal{I}_{it-1}] = 0$ .
- Plugging into the production function gives

$$y_{it} = \beta_k k_{it} + \beta_l I_{it} + \rho \omega_{it-1} + \xi_{it} + \varepsilon_{it}$$

$$= \beta_k k_{it} + \beta_l I_{it} + \rho (\Phi_{t-1}(k_{it-1}, I_{it-1}, m_{it-1}) - \beta_k k_{it-1} - \beta_l I_{it-1}) + \beta_k k_{it-1} + \beta_l I_{it-1} +$$

▶ The production function parameters  $\beta_k$ ,  $\beta_l$  and  $\rho$  are identified from the moment restrictions given by

$$\mathbb{E}[\xi_{it} + \varepsilon_{it} | \mathcal{I}_{it-1}] = 0. \tag{32}$$

► Estimation of the second stage coefficients proceeds by plugging in first stage estimates  $\hat{\Phi}_{t-1}$  and forming a Generalized Method of Moments (GMM) criterion function.

## Skorohod Representation

► This representation comes from the fact that  $\eta_{it}$  can be defined as

$$\eta_{it} = F(y_{it}|k_{it}, l_{it}, m_{it}, \omega_{it})$$
(33)

▶  $\eta_{it}$  is then uniformly distributed independently of  $(k_{it}, l_{it}, m_{it}, \omega_{it})$  on (0, 1)

$$y_{it} = F^{-1}(k_{it}, l_{it}, m_{it}, \omega_{it}, \eta_{it}), \quad \eta_{it} \sim Uniform(0, 1) \quad (34)$$

which is the quantile function

## Labor Adjustments





### R&D Firms



\*Panel (a): Estimates of average productivity persistence for non R&D firms evaluated at  $\tau_{\xi}$  and percentiles of previous productivity. Panel (b): Estimates of productivity persistence for R&D firms evaluated at  $\tau_{\xi}$  and percentiles of previous productivity averaged over R&D. Panel (c): Estimates of productivity persistence for R&D firms evaluated at  $\tau_{\xi}$  and percentiles of R&D averaged over productivity.

### R&D Firms



\*Panel (a): Returns to R&D for firms evaluated at  $\tau_{\xi}$  and percentiles of previous productivity averaged over R&D. Panel (b): Returns to R&D for firms evaluated at  $\tau_{\xi}$  and percentiles of R&D averaged over productivity.

### R&D Firms



\*Top row: Differences in productivity between firms hit with low productivity shock  $\tau_{\xi}=0.1$  and medium shock  $\tau_{\xi}=0.5$  at different levels of initial productivity. Bottom row: Differences in productivity between firms hit with high productivity shock  $\tau_{\xi}=0.9$  and medium shock  $\tau_{\xi}=0.5$  at different levels of initial productivity.

### Correction for Selection Bias

► The exit rule can be written as

$$h_{t}(\omega_{it-1},\xi_{it}) \geq \underline{\omega}_{t}(k_{it}),$$

$$\xi_{it} \geq h_{t}^{-1}(\omega_{it-1},\underline{\omega}_{t}(k_{it})),$$

$$\xi_{it} \geq h_{t}^{-1}(\omega_{it-1},k_{it}),$$

$$\xi_{it} \geq \underline{\omega}_{t}(\omega_{it-1},k_{it})$$

$$(35)$$

- ► Then if  $\xi_{it}$  is independent of  $(k_{it}, \omega_{it-1})$ ,  $\xi_{it}|(k_{it}, \omega_{it-1}) \sim U(0, 1)$
- ► The cutoff for which firms stay in operation can be estimated from

$$\underline{\omega}_t(\omega_{it-1}, k_{it}) = \text{Prob}(\chi_{it} = 1 | \omega_{it-1}, k_{it}) \equiv p(\omega_{it-1}, k_{it}) \quad (36)$$

- Firms that receive an innovation shock greater than  $p(\omega_{it-1}, k_{it})$  continue to operate
- ▶ Then, the distribution of  $\xi_{it}|(k_{it}, \omega_{it-1}, \chi_{it} = 1)$  is

$$\xi_{it}|(k_{it},\omega_{it-1},\chi_{it}=1) \sim U(p(\omega_{it-1},k_{it}),1)$$
 (37)

#### Correction for Selection Bias

▶ Consider a simple process for productivity  $\omega_{it} = \rho(\xi_{it})\omega_{it-1}$ 

$$Prob(\omega_{it} \leq \rho(\tau)\omega_{it-1}|\omega_{it-1}, k_{it}, \chi_{it} = 1)$$

$$= Prob(\xi_{it} \leq \tau|\omega_{it-1}, k_{it}, \chi_{it} = 1)$$

$$= \frac{\tau - p(\omega_{it-1}, k_{it})}{1 - p(\omega_{it-1}, k_{it})} \equiv G(\tau, p)$$
(38)

▶ If  $\omega_{it}$  is known, then  $\rho(\tau)$  is the solution to a rotated quantile regression problem

$$\hat{\rho}(\tau) = \underset{\rho}{\operatorname{argmin}} \sum_{i=1}^{N} \sum_{t=2}^{T} \chi_{it} \left[ G(\tau, \hat{\rho}) (\omega_{it} - \rho \omega_{it-1})^{+} + (1 - G(\tau, \hat{\rho})) (\omega_{it} - \rho \omega_{it-1})^{-} \right]$$
(39)

where  $a^+ = max(a,0)$  and  $a^- = max(-a,0)$ 

- ▶  $p(\omega_{it-1}, k_{it})$  can be estimated using a probit model
- ► This approach is similar to that of Arellano and Bonhomme, 2017

#### Correction for Selection Bias

Figure 9: Productivity Persistence (Selection Corrected)



<sup>\*</sup>Estimates of average productivity persistence evaluated at  $\tau_{\xi}$  and percentiles of previous productivity.

# Productivity Innovation Shocks (Selection Corrected)



# Productivity Innovation Shocks to Capital (Selection Corrected)



# Productivity Innovation Shocks to Labor (Selection Corrected)



# Productivity Innovation Shocks to Materials (Selection Corrected)

