Soutenance stage ingénieur

Yicheng GAO

INSA de Rouen

29 août 2013

Tuteur INSA : Abdelaziz Bensrhair Tuteur entreprise : Jean-Philippe AUTHIER

Le Plan

- Introduction
- 2 Présentation de l'entreprise
- Contexte de travail
- 4 Le travail effectué
- Conclusion

Sommaire

- Introduction
- 2 Présentation de l'entreprise
- 3 Contexte de travail
- 4 Le travail effectué
- Conclusion

Introduction

Stage ingénieur

- Stage ingénieur de 25/03/2013 à 31/08/2013
- Stage en commun avec Master 2 SSI d'université de Rouen
- Chez société UINT situé à SAINT AUBIN (91)
- Tuteur INSA: Abdelaziz Bensrhair
- Tuteur entreprise : Jean-Philippe AUTHIER (Directeur logiciel R&D)

Sujet du stage

L'optimisation d'un système d'authentification forte dont le mot de passe dynamique est généré en acoustique (Carte acoustique)

Sommaire

- Introduction
- 2 Présentation de l'entreprise
- 3 Contexte de travail
- 4 Le travail effectué
- Conclusion

Présentation de l'entreprise (1/4)

UINT

- Fondée en Avril 2008. UINT veut être reconnue comme une société très innovante, pionnière et leader dans le domaine des cartes à énergie embarquée.
- Récompensée «Jeune Entreprise Innovante»
- Prix de la «Start-UP de l'année 2010» décerné par ElectroniqueS
- Prix de «l'innovation internationale 2010» décerné par la CCIE et la CGPME 91
- Equipe composée de 8 ingénieurs/docteurs reconnus pour leur expertise dans le domaine des cartes électroniques («Oscard de la meilleure technologie dans une carte bancaire») et («Finaliste 2009 des SESAMES AWARDS Cartes 2009»).

Présentation de l'entreprise (2/4)

Power Inlay Technologies

- UINT Card Platform
 - ISO 7810
 - Process de lamination à froid, tiède ou chaud
- Développement de firmware

WE BRING PLASTIC CARDS TO LIFE

Embedded Card's Design Flexible Circuitry

FLEXIBLE CIRCUITRY

We have in house Powered Flexible circuit Design to provide a complete turn key solution from layout to final assembly. All our components are flexible: PCB, Batteries, Leds, Switches, Displays, Chips, ASIC, MEMS, Sensors, Antennas, Microphones, Piezzos...

We are able to fit all these components in an ISO 7810 card.

7/31

Présentation de l'entreprise (3/4)

Domaines : Sécurité, santé, jeu, marketing

Présentation de l'entreprise (4/4)

Projet Carte acoustique

FIGURE: Face avant d'une carte acoustique

Fonctionnalités générales

La carte acoustique émet une séquence acoustique unique à chaque pression du bouton. La carte utilise un microprocesseur pour calculer les deux OTP (One Time Password). L'énergie utilisée provient d'une batterie fine et flexible.

Sommaire

- Introduction
- 2 Présentation de l'entreprise
- 3 Contexte de travail
- 4 Le travail effectué
- Conclusion

10/31

Contexte de travail (1/4)

Caractéristiques générales de la carte acoustique

L'électronique embarquée est composée des éléments

- Intégrés sur un circuit imprimé flexible, ou « flex »
- Soudés au « flex » par un processus de capillarité
- Flex composants est appelé Inlay
- Intégré à l'intérieur de la carte PVC

Contexte de travail (2/4)

Caractéristiques générales de la carte acoustique

Organigramme de fonctionnement de la carte acoustique

FIGURE: Fonctionnement de la carte acoustique

Contexte de travail (3/4)

Caractéristiques générales de la carte acoustique

Les constantes et variables essentielles

- Les clés cryptographiques (HOTP KeyA & HOTP KeyB)
- Le compteur d'évènements (Event Counter)
- Le numéro de série (Id)

Génération du cryptogramme acoustique

- La génération d'un HOTP et du cryptogramme
- L'encodage du cryptogramme
 - Le cryptogramme et les symboles
 - Le mélangeur
 - L'ajout du CRC16 au message
 - Le codage convolutif
- La restitution du cryptogramme

13/31

Contexte de travail (4/4)

Caractéristiques générales de la carte acoustique

Les trois versions

- V4G
- V0
- V1

Les outils

- Offline: L'utilitaire ListenAcousticMessage_V1.2.1.35.exe
- Online : La page de test
- Authentification (SAS)

Sommaire

- 1 Introduction
- 2 Présentation de l'entreprise
- 3 Contexte de travail
- 4 Le travail effectué
 - Plate-forme de tests
 - Plate-forme de démonstration
- 5 Conclusion

Le travail effectué

Deux parties

- Plate-forme de tests
- Plate-forme de démonstration

Le travail effectué Plate-forme de tests (1/5)

Objectif

Évaluer la performance de carte acoustique Version 4G

Procédure

Phase 1 : Plan du test

Phase 2 : Démarrage du test

Phase 3 : Analyse des résultats

Le travail effectué Plate-forme de tests (2/5)

Plan du test

TEST 1: Fiabilité de l'encryptage

TEST 2 : Fiabilité émission sonore

TEST 3 : Consommation

TEST 4 : Durée de vie

TEST 5 : Récupération via IPad

TEST 6 : Récupération via IPhone

TEST 7 : Récupération via Windows

Facteurs

- Distances
- Importance
- Périphériques
- Environnements
- Versions
- Phases
- Nombre de tests
- Logiciel utilisé

Le travail effectué Plate-forme de tests (3/5)

Stratégie

Le prototype : génère une séquence de 100 messages acoustiques

Le travail effectué Plate-forme de tests (4/5)

Stratégie

Le prototype : génère une séquence de 100 messages acoustiques

Environnement du code source

- IDE : MPLAB V.8
- Language : Assembleur
- Compilateur : MPASM
- Microcontrôleur : PIC16F648A (Microchip)
 - 256 octets RAM
 - 4096 mots flash
 - communication usart uniquement
 - 1 vecteur interruption

Le travail effectué Plate-forme de tests (5/5)

Analyse des résultats

- Traitement statistique des résultats
- Analyse de léeffet filtrage sous PC
- Analyse de volume de son par sonomètre
- Différences entre les prototypes et les cartes
- Analyse de léeffet environnement

Le travail effectué Plate-forme de démonstration (1/7)

Architecture globale

22/31

Le travail effectué Plate-forme de démonstration (2/7)

Deux objectifs

- Authentification
- Paiement

Trois méthode à utiliser

- ActiveX
- SVI appel/rappel
- SVI Oneclick

Le travail effectué Plate-forme de démonstration (3/7)

Principe de fonctionnement

Le travail effectué Plate-forme de démonstration (4/7)

Welcome into Acoustic Authentication

-- Click here to start --

N ActiveX verrinn 3.1.1.136

L'utilisateur doit cliquer dans l'ActiveX pour initialiser la capture acoustique.

ActiveX

- HTTP
- JAVASCRIPT

25/31

Le travail effectué Plate-forme de démonstration (5/7)

Fonctionnement serveur vocal (SVI)

Le travail effectué Plate-forme de démonstration (6/7)

SVI

Le dialogue entre le SVI et le serveur web se fait à l'aide de 2 pages Web

- GET_Session
- POST_RAW

Les paramètres

- PhoneNumberToCall
- DemoID
- InternalPINCardRange1

- InternalPINCardRange2
- SessionID
- AskPIN

Le travail effectué Plate-forme de démonstration (7/7)

Démonstration

XL.com, votre agence de voyages vous propose ces bons plans !

FIGURE: http://solution.uint.fr/xlplus/

Sommaire

- Introduction
- 2 Présentation de l'entreprise
- 3 Contexte de travail
- 4 Le travail effectué
- Conclusion

Conclusion

Les réalisations

- Plate-forme de tests : Les résultats sont bien pris en compte
- Plate-forme de démonstration : L'application web est entièrement fonctionnelle

Bilan personnel

- Durée
- Mettre en oeuvre autour des trois filières ASI
 - Acquisition de l'information
 - Traitement de l'information
 - Informatique
- Jouer des rôles multiples

Fin de la présentation

Merci de votre attention

