Introduction to Bayesian Inference: Selected Resources

Tom Loredo
Cornell Center for Astrophysics and Planetary Science
http://www.astro.cornell.edu/staff/loredo/bayes/

CASt Summer School — 1-5 June 2021

Books by physicists and astronomers

- Probability Theory: The Logic of Science (PTLOS)
 Edwin T. Jaynes; ed. G. Larry Bretthorst [http://bayes.wustl.edu/]
 [Cambridge U. Press]
 Jaynes worked on this book for over 30 years; it was unfinished at his death in 1998, but Bretthorst thankfully assembled the book from his last draft chapters. Provides the best (and lengthiest) coverage of foundations and fundamentals for a physical scientist audience. It dates from before the development of modern computational tools, and is thus not the most practical text.
 See reviews by: Persi Diaconis (theoretical & applied statistics), Anton Garrett (physics), Terry Fine (applied math, philosophy), Will Faris (for AMS). Diaconis: "There are many places in which I want to yell at him. He's so full of himself. That's what makes the book so terrific. It's the real thing—the best introduction to Bayesian statistics that I know. Go take a look for yourself."
- Bayesian Logical Data Analysis for the Physical Sciences, A Comparative Approach with Mathematica Support
 Phil Gregory [Cambridge U. Press (2010)]
 Could be regarded as a practical companion to PTLOS; adopts similar point of view but focuses on applications, including basic coverage of MCMC. Some comparison with frequentist approaches. Two chapters based on TL's notes.
- Data Analysis: A Bayesian Tutorial
 Devinder Sivia, John Skilling [Oxford U. Press (2006)]

 The most accessible book on Bayesian methods by physical scientists; somewhat idiosyncratic coverage of computational methods.

- Bayesian Probability Theory: Applications in the Physical Sciences
 Wolfgang von der Linden, Volker Dose, Udo von Toussaint
 [Cambridge U. Press, coming July 2014]
 Authors are highly-regarded pioneers of application of Bayesian methods to
 problems in plasma physics and other areas. Some weaknesses on
 theory/fundamental topics, but numerous very good examples from physics.
- Statistics, Data Mining, and Machine Learning in Astronomy: A Practical Python Guide for the Analysis of Survey Data
 Zeljko Ivezić, Andrew Connolly, Jacob VanderPlas, Alexander Gray [Princeton U. Press]
 Balanced coverage of frequentist and Bayesian methods, mostly in the context of analyzing large survey datasets. Extensive accompanying Python software, datasets, and reproducible analyses.
- Bayesian Methods for the Physical Sciences
 Stefano Andreon, Brian Weaver [Springer; authors' site]

 New (2015) book by astronomers, highlighting use of the JAGS probabilistic programming language. See the somewhat mixed review by astronomer David Hogg.
- Bayesian Models for Astrophysical Data Using R, JAGS, Python, and Stan
 By statistician Joseph Hilbe and astronomers Rafael de Souza and Emille E. O.
 Ishida [Cambridge U. Press]

- Information Theory, Inference, and Learning Algorithms
 David MacKay [Cambridge U. Press, 2003; free PDF/DJVU at MacKay's site]
 By a physicist-turned-statistician/information theorist. An extremely original
 and influential account of ideas underlying statistics, machine learning, signal
 processing, and communication, from a Bayesian viewpoint. A strong emphasis
 on information theory and coding problems makes it not the most
 straightforward introduction for a data analyst, yet it has exceptionally clear
 coverage of model comparison, information-based experimental design, neural
 networks, and Monte Carlo methods (including MCMC).
- Bayesian Methods in Cosmology
 Ed. by Michael Hobson et al. [Cambridge U. Press (2010)]
 Chapters by multiple authors and thus with varying quality and notation.

Tutorials aimed at physical scientists

See links collected at the Bayesian inference for the physical sciences (BIPS) web site. Note that this site is not regularly updated; some noteworthy recent articles include:

- "Bayesian Methods in Cosmology" by Roberto Trotta ADS, arXiv:1701.01467
- "Markov Chain Monte Carlo Methods for Bayesian Data Analysis in Astronomy" by Sanjib Sharma — arXiv:1706.01629

Selected Bayesian statistics books

- Doing Bayesian Data Analysis
 John K. Kruschke [author's book site]
 Known as "the dog book," for the illustration of dogs on the cover, it offers an exceptionally clear, thorough, and accessible introduction to Bayesian concepts and computational techniques. I recommend this to beginning students. Be sure to get the 2nd edn., which switches from BUGS to JAGS and Stan as computational tools.
- Bayesian Data Analysis (BDA)
 Andrew Gelman et al. [CRC Press (3rd edn. 2013)]
 Probably the most influential and widely-used Bayesian text by statisticians.
 Both broad and deep, including coverage of multilevel modeling, nonparametric Bayes, model testing, and modern computational methods.
- Handbook of Markov Chain Monte Carlo
 Ed. by Brooks, Gelman, Jones, Meng [CRC Press (2011)]
 Accessible, authoritative coverage of a wide range of MCMC techniques, including good coverage of output analysis. Selected chapters online.
- Bayesian Methods for Data Analysis
 Bradley Carlin & Thomas Louis [CRC Press (3rd edn. 2008)

 Earlier editions were titled, "Bayes and Empirical Bayes Methods for Data Analysis," reflecting the book's particularly strong coverage of empirical/hierarchical Bayesian modeling (multilevel modeling). See Gelman's comparison of BDA and Carlin & Louis.

There are many other excellent Bayesian texts by statisticians; this brief, idiosyncratic list just scratches the surface.

Tools for Computational Bayes

Astronomer/Physicist Tools

- AstroML http://www.astroml.org/
 Python package supporting machine learning and statistical inference for analyzing astronomical data. Built in part to support the book, "Statistics, Data Mining, and Machine Learning in Astronomy;" it includes modules supporting Bayesian calculations from the book.
- mc3 https://github.com/pcubillos/mc3
 Multi-Core Markov-Chain Monte Carlo: A multi-method package spearheaded
 by Joe Harrington, with Patricio Cubillos as main developer (TL consulting).
 Implments optimization, MCMC by Metropolis random walk or differential
 evolution, and nested sampling (using dynesty).
- CosmoMC http://cosmologist.info/cosmomc/
 Parameter estimation for cosmological models using CMB, etc., via MCMC
- DNest4 https://github.com/eggplantbren/DNest4
 Posterior sampling and marginal likelihoods via diffusive nested sampling; see
 arXiv:1606.03757
- MultiNest http://ccpforge.cse.rl.ac.uk/gf/project/multinest/
 Bayesian inference via an approximate implementation of the nested sampling algorithm
- PolyChord https://ccpforge.cse.rl.ac.uk/gf/project/polychord/ "Next generation" nested sampling

- dynesty https://github.com/joshspeagle/dynesty
 Dynamic nested sampling; see arXiv:1704.03459
- emcee http://dan.iel.fm/emcee/
 Python implementation of an ensemble MCMC sampler (no diagnostics—be sure to find them elsewhere!)
- extreme-deconvolution

http://code.google.com/p/extreme-deconvolution/ Multivariate density estimation with measurement error, via a multivariate normal finite mixture model; partly Bayesian; Python & IDL wrappers

- George http://dan.iel.fm/george/
 Fast Gaussian process implementation, for nonparametric Bayesian regression.
- ExoFit http://www.homepages.ucl.ac.uk/~ucapola/exofit.html
 Adaptive MCMC for fitting exoplanet RV data
- XSpec http://heasarc.nasa.gov/xanadu/xspec/ Includes some basic MCMC capability
- CIAO/Sherpa http://cxc.harvard.edu/sherpa/
 On/off marginal likelihood support, and Bayesian Low-Count X-ray Spectral (BLoCXS) analysis via MCMC via the pyblocxs extension https://github.com/brefsdal/pyblocxs
- root/RooStats https://twiki.cern.ch/twiki/bin/view/RooStats/WebHome
 Statistical tools for particle physicists; Bayesian support being incorporated

- CDF Bayesian Limit Software
 - http://www-cdf.fnal.gov/physics/statistics/statistics_software.html Limits for Poisson counting processes, with background & efficiency uncertainties
- CUBA http://www.feynarts.de/cuba/ Multidimensional integration via adaptive cubature, adaptive importance sampling & stratification, and QMC (C/C++, Fortran, and Mathematica; R interface also via 3rd-party R2Cuba)
- Cubature http://ab-initio.mit.edu/wiki/index.php/Cubature
 Subregion-adaptive cubature in C, with a 3rd-party R interface; intended for low dimensions (< 7)
- APEMoST http://apemost.sourceforge.net/doc/ Automated Parameter Estimation and Model Selection Toolkit in C, a general-purpose MCMC environment that includes parallel computing support via MPI; motivated by asteroseismology problems
- SuperBayeS http://www.superbayes.org/
 Bayesian exploration of supersymmetric theories in particle physics using the MultiNest algorithm; includes a MATLAB GUI for plotting
- Inference Forthcoming at http://inference.astro.cornell.edu/
 Python package targeting statistical inference problems arising in the physical sciences; several self-contained Bayesian modules; Parametric Inference Engine
- BIE http://www.astro.umass.edu/~weinberg/BIE/
 C++ Bayesian Inference Engine (ca. 2010); earliest large-scale astro framework

Python

- PyStan https://pystan.readthedocs.io/
 Python interface to the Stan probabilistic programming language, for partly automated posterior sampling for graphical (hierarchical) models. See also TL's StanFitter for a more Pythonic interface.
- PyMC http://code.google.com/p/pymc/
 A framework for MCMC via Metropolis-Hastings; also implements Kalman filters and Gaussian processes. Targets biometrics, but is general. Includes output analysis tools.
- emcee http://dan.iel.fm/emcee/current/
 Python implementation of an ensemble-based, affine invariant MCMC algorithm, by astronomer Daniel Foreman-Mackey.
- Monte Python http://baudren.github.io/montepython.html
 A a Monte Carlo code for Cosmological Parameter extraction.
- SimPy http://simpy.sourceforge.net/
 SimPy (rhymes with "Blimpie") is a process-oriented public-domain package for discrete-event simulation.
- rpy2 http://rpy2.readthedocs.io/ Call R from Python; see the CRAN Bayesian Task View for Bayesian resources. Also see RSPython https://web.archive.org/web/20151130002540/http: //www.omegahat.org/RSPython, with bi-directional communication between Python and R (abandoned?)

R packages and interfaces

- CRAN Bayesian task view
 - http://cran.r-project.org/web/views/Bayesian.html
 Overview of many R packages implementing various Bayesian models and
 methods; pedagogical packages; packages linking R to other Bayesian software
 (BUGS, JAGS)
- BOA http://www.public-health.uiowa.edu/boa/ Bayesian Output Analysis: Convergence diagnostics and statistical and graphical analysis of MCMC output; can read BUGS output files.
- CODA http:

//www.mrc-bsu.cam.ac.uk/bugs/documentation/coda03/cdaman03.html Convergence Diagnosis and Output Analysis: Menu-driven R/S plugins for analyzing BUGS output

- LearnBayes
 - http://cran.r-project.org/web/packages/LearnBayes/index.html Companion software for the introductory book, *Bayesian Computation With R* by Jim Albert
- R2Cuba http:
 - //w3.jouy.inra.fr/unites/miaj/public/logiciels/R2Cuba/welcome.html R interface to Thomas Hahn's Cuba library (see above) for deterministic and Monte Carlo cubature
- rpy2 http://rpy.sourceforge.net/rpy2.html Provides access to R from Python; see also PypeR (http://www.webarray.org/softwares/PypeR/) for an alternative interface relying on pipes, with simpler installation requirements but less efficiency

C/C++/Fortran

- BayeSys 3 http://www.inference.phy.cam.ac.uk/bayesys/
 Sophisticated suite of MCMC samplers including transdimensional capability, by the author of MemSys
- fbm http://www.cs.utoronto.ca/~radford/fbm.software.html
 Flexible Bayesian Modeling: MCMC for simple Bayes, nonparametric Bayesian
 regression and classification models based on neural networks and Gaussian
 processes, and Bayesian density estimation and clustering using mixture models
 and Dirichlet diffusion trees
- BayesPack, DCUHRE
 http://www.sci.wsu.edu/math/faculty/genz/homepage
 Adaptive quadrature, randomized quadrature, Monte Carlo integration
- CUDAHM https://github.com/tloredo/CUDAHM-Paper1v2
 C++ framework for accelerating hierarchical Bayesian methods (by astronomers Brandon Kelly, Tamas Budavari, TL); not actively developed; see arXiv:2105.08026
- BIE, CDF Bayesian limits, CUBA (see above)

Java

- Hydra https://www.jstatsoft.org/article/view/v007i04
 HYDRA provides methods for implementing MCMC samplers using Metropolis, Metropolis-Hastings, Gibbs methods. In addition, it provides classes implementing several unique adaptive and multiple chain/parallel MCMC methods. (Appears abandoned.)
- YADAS https://github.com/gertvv/yadas
 Software system for statistical analysis using MCMC, based on the multi-parameter Metropolis-Hastings algorithm (rather than parameter-at-a-time Gibbs sampling); appears abandoned as of 2008
- Omega-hat http://www.omegahat.net/
 Java environment for statistical computing, being developed by XLisp-stat and R developers; appears abandoned as of 2011

Other Statisticians' & Engineers' Tools

- Stan http://mc-stan.org/ Budding successor to BUGS/JAGS, with a similar modeling language based on describing a generative model via conditional distributions for parameters and data; compiles models to C++; uses Hamiltonian Monte Carlo for posterior sampling, supported by automatic differentiation of models
- JAGS http://www-fis.iarc.fr/~martyn/software/jags/
 "Just Another Gibbs Sampler;" MCMC, esp. for Bayesian hierarchical models
- BUGS/WinBUGS http://www.mrc-bsu.cam.ac.uk/bugs/
 Bayesian Inference Using Gibbs Sampling: Flexible software for the Bayesian analysis of complex statistical models using MCMC
- OpenBUGS http://mathstat.helsinki.fi/openbugs/ BUGS on Windows and Linux, and from inside the R
- XLisp-stat http://www.stat.uiowa.edu/~luke/xls/xlsinfo/xlsinfo.html Lisp-based data analysis environment, with an emphasis on providing a framework for exploring the use of dynamic graphical methods; apparently abandoned, but influential for R's development
- ReBEL https://github.com/SaeedKeshavarzi/ReBEL
 Library supporting recursive Bayesian estimation in Matlab (Kalman filter, particle filters, sequential Monte Carlo).