ACVAE-VC : Non-Parallel Voice Conversion With Auxiliary Classifier Variational Autoencoder (2018)

Audio Signal Analysis course final project

Kamil Akesbi

Master MVA. France

15/03/2022

- Introduction
 Paper Motivation
 Existing approachs and drawbacks
- 2 The main architecture: the Variational Auto-Encoder
- Proposed Method Overall architecture About the auxiliary classifier Architecture details
- 4 Signal conversion
- Experiments and results Experimental settings Paper results: comparison to conventional methods Implementation and VC speech generation
- 6 Conclusion

Kamil Akesbi ASAIT 2 / 19

Paper motivation

Paper Topic

Voice conversion: converting some aspects of a speech signal without changing its linguistic information.

Applications: speaker identity modification - speaking assistance - speech enhancement

Problem: Many VC methods requires parrallel source and target speechs which can be costly to collect and align.

⇒ Goal : develop a non-parallel VC method

Kamil Akesbi ASAIT 3 / 19

Existing approachs and drawbacks

- Existing approach to Non-Parallel VC : Conditional VAE [Hsu et al. 2016]
- \Rightarrow Extended version of VAE where the encoder and decoder take an attribute class c as input.

Drawbacks:

- Don't capture time dependencies
- Over-smoothed outputs
- The encoder and decoder are free to ignore the attribute class label c

Solutions proposed in the paper:

- Fully convolutional architectures to capture time dependencies.
- Auxiliary classifier to ensure that the attribute class information is not lost.

Kamil Akesbi ASAIT 4 / 19

Introduction
 Paper Motivation
 Existing approachs and drawbacks

2 The main architecture: the Variational Auto-Encoder

Proposed Method Overall architecture About the auxiliary classifier Architecture details

- 4 Signal conversion
- Experiments and results Experimental settings Paper results: comparison to conventional methods Implementation and VC speech generation

Conclusion

Kamil Akesbi ASAIT 5 / 19

The main architecture : the Variational Auto-Encoder

• Goal : $q_{\phi}(z|x) \iff p_{\theta}(z|x)$

• Conditional VAE modification :

$$q_{\Phi}(z|x,c)$$

 $p_{\theta}(x|z,c)$

 $\begin{array}{c|c} \text{Input} & & \text{Reconstructed} \\ \hline & x \approx x' \\ \hline \\ & x \approx x' \\ \hline & & x$

Lower bound maximisation :

Figure 1: Variational Auto-Encoder

$$\textit{J}(\phi,\theta) = \mathbb{E}_{(x,c) \sim p_d(x,c)} \Big[\mathbb{E}_{z \sim q(z|x,c)} \big[\log p(x|z,c) \big] \Big] - \mathsf{KL} \Big[q(z|x,c) \mid\mid p(z) \Big]$$

Kamil Akesbi ASAIT 6 / 19

- Introduction
 Paper Motivation
 Existing approachs and drawbacks
- 2 The main architecture: the Variational Auto-Encoder
- Proposed Method Overall architecture About the auxiliary classifier Architecture details
- 4 Signal conversion
- Experiments and results Experimental settings Paper results: comparison to conventional methods Implementation and VC speech generation
- Conclusion

Kamil Akesbi ASAIT 7 / 19

- VAE's Inputs and Outputs :
 - ⇒ Sequence of 36 Mel-Cepstral coefficients [Tokuda et al. 1992]

Figure 2: Structure of the proposed ACVAE-VC

Kamil Akesbi ASAIT 8 / 19

About the auxiliary classifier

 The auxiliary classifier helps to maximize the mutual information between the output x ~ p_θ(x|z, c) and class attribute c|z.

• It can be seen as a regularizer.

• The final training criterion is given by :

$$\mathcal{J}(\phi,\theta) + \lambda_{\mathcal{Q}}\mathcal{Q}(\phi,\theta,\psi) + \lambda_{\mathcal{R}}\mathcal{R}(\psi)$$

Kamil Akesbi ASAIT 9 / 19

Figure 3: Encoder and Decoder architectures

Figure 4: Auxiliary classifier architecture

Kamil Akesbi ASAIT 10 / 19

- Introduction
 Paper Motivation
 Existing approachs and drawbacks
- 2 The main architecture: the Variational Auto-Encoder
- Proposed Method Overall architecture About the auxiliary classifier Architecture details
- 4 Signal conversion
- Experiments and results Experimental settings Paper results: comparison to conventional methods Implementation and VC speech generation
- Conclusion

Kamil Akesbi ASAIT 11 / 19

Signal Conversion

First: Which output consider at test time?

• Different possibilities :

$$\mathbf{0} \hat{x}_{mean} = \mu_{\theta}(\mu_{\phi}(x, c), \hat{c})$$

$$\hat{x}_{diff} = x - \bar{x}_{mean} + \hat{x}_{mean}$$
 where $\bar{x}_{mean} = \mu_{\theta}(\mu_{\phi}(x,c),c)$

$$\hat{\mathbf{s}} \hat{\mathbf{x}}_{samp} \sim p_{\theta} \big(\mathbf{x} | \hat{\mathbf{z}}, \hat{\mathbf{c}} \big)$$

Second: Reconstructing the speech signal using the <math display="inline">WORLD vocoder [Morise et al. 2016]

Kamil Akesbi ASAIT 12 / 19

- Introduction
 Paper Motivation
 Existing approachs and drawbacks
- 2 The main architecture: the Variational Auto-Encoder
- Proposed Method Overall architecture About the auxiliary classifier Architecture details
- 4 Signal conversion
- Experiments and results Experimental settings Paper results: comparison to conventional methods Implementation and VC speech generation
- Conclusion

Kamil Akesbi ASAIT 13 / 19

Experimental settings

- Dataset : Subset of the Voice Conversion Challenge 2018 dataset
 - ⇒ Two female speakers, two male speakers
- Performance measure: average mel-cepstral distortion (MCDs) along the DTW path:

$$MCD[dB] = \frac{10}{ln10} \sqrt{2 \sum_{d=2}^{D} \left(x_d - y_d\right)^2}$$

Speakers		Layer type		
source	target	frame-independent	fully convolutional	
	SM1	9.07 ± 0.197	6.79 ± 0.088	
SF1	SF2	8.73 ± 0.121	6.51 ± 0.096	
	SM2	9.25 ± 0.189	7.05 ± 0.081	
SM1	SF1	8.94 ± 0.166	7.03 ± 0.090	
	SF2	8.33 ± 0.214	6.29 ± 0.095	
	SM2	8.68 ± 0.165	6.67 ± 0.071	
SF2	SF1	8.78 ± 0.211	6.95 ± 0.104	
	SM1	8.54 ± 0.198	6.45 ± 0.103	
	SM2	8.75 ± 0.183	6.87 ± 0.102	
SM2	SF1	9.03 ± 0.202	7.17 ± 0.098	
	SM1	8.65 ± 0.182	6.63 ± 0.083	
	SF2	8.43 ± 0.213	6.58 ± 0.088	

Figure 5: Results obtained with or without taking into account time dependency

Speakers		Auxiliary classifier			
source	target	not included	included		
	SM1	7.48 ± 0.150	6.70 ± 0.129		
SF1	SF2	7.38 ± 0.163	6.57 ± 0.134		
	SM2	7.70 ± 0.140	6.97 ± 0.124		
SM1	SF1	7.64 ± 0.144	7.01 ± 0.108		
	SF2	6.93 ± 0.148	6.29 ± 0.133		
	SM2	7.25 ± 0.136	6.64 ± 0.111		
SF2	SF1	7.83 ± 0.164	6.94 ± 0.115		
	SM1	7.25 ± 0.151	6.36 ± 0.108		
	SM2	7.49 ± 0.167	6.85 ± 0.137		
SM2	SF1	7.82 ± 0.176	7.24 ± 0.151		
	SM1	7.22 ± 0.150	6.66 ± 0.133		
	SF2	7.15 ± 0.170	6.64 ± 0.152		

Figure 6: Results obtained with or without the auxiliary classifier

Kamil Akesbi ASAIT 14 / 19

Paper results : comparison to conventional methods

Speakers			parallel method			
source	target	VAE [19]	VAEGAN [20]	StarGAN [35]	Proposed	sprocket [61]
SF1	SM1	7.66 ± 0.123	7.70 ± 0.122	7.81 ± 0.126	6.70 ± 0.129	6.91 ± 0.119
	SF2	7.53 ± 0.118	7.43 ± 0.124	7.54 ± 0.146	6.57 ± 0.134	6.70 ± 0.125
	SM2	8.06 ± 0.143	8.04 ± 0.145	8.11 ± 0.123	6.97 ± 0.124	7.06 ± 0.118
SM1	SF1	8.25 ± 0.104	8.20 ± 0.128	8.27 ± 0.119	7.01 ± 0.108	7.01 ± 0.114
	SF2	7.43 ± 0.111	7.23 ± 0.117	7.27 ± 0.134	6.29 ± 0.133	6.30 ± 0.108
	SM2	7.92 ± 0.106	7.82 ± 0.103	7.56 ± 0.106	6.64 ± 0.111	6.58 ± 0.099
SF2	SF1	7.97 ± 0.127	7.83 ± 0.121	7.99 ± 0.144	6.94 ± 0.115	7.21 ± 0.111
	SM1	7.38 ± 0.108	7.37 ± 0.097	7.28 ± 0.112	6.36 ± 0.108	6.77 ± 0.108
	SM2	7.92 ± 0.122	7.78 ± 0.109	7.75 ± 0.124	6.85 ± 0.137	6.85 ± 0.115
SM2	SF1	8.33 ± 0.148	8.20 ± 0.158	8.30 ± 0.189	7.24 ± 0.151	7.31 ± 0.116
	SM1	7.73 ± 0.138	7.66 ± 0.142	7.44 ± 0.122	6.66 ± 0.133	6.88 ± 0.114
	SF2	7.74 ± 0.135	7.65 ± 0.137	7.53 ± 0.154	6.64 ± 0.152	6.78 ± 0.146

Figure 7: Comparison to the conventional non-parallel and parallel methods

Kamil Akesbi ASAIT 15 / 19

Implementation and VC speech generation

- Code adapted from the public repository: https://github.com/ariacat3366/ACVAE-VC
- Main modification : save data preprocessing step to speed up training :
 - ⇒ More then 20 hours training to 30 mins
- Some hyper-parameters (sampling frequency, λ_Q , λ_R) + Reconstruction loss computation **differs from the paper**...
 - → Still qualitatively gives good results.
- Code and Results on my github : https:
 - //github.com/kamilakesbi/MVA-Voice-Conversion-with-ACVAE

Kamil Akesbi ASAIT 16 / 19

- Introduction
 Paper Motivation
 Existing approachs and drawbacks
- 2 The main architecture: the Variational Auto-Encoder
- Proposed Method Overall architecture About the auxiliary classifier Architecture details
- 4 Signal conversion
- Experiments and results Experimental settings Paper results: comparison to conventional methods Implementation and VC speech generation
- **6** Conclusion

Kamil Akesbi ASAIT 17 / 19

Main contributions of the paper:

This paper proposed a non-parallel VC method using a VAE variant called auxiliary classifier VAE (ACVAE)

- Key ideas :
 - ⇒ capturing time dependencies.
 - ⇒ Using information-theoretic regularization with the auxiliary classifier.

Results:

Better perfomances then conventional methods

Future work

- Incorporating a neural vocoder instead of the WORLD vocoder.
- Testing Transformer approachs rather than the convolutional ones

Kamil Akesbi ASAIT 18 / 19

References

- Hsu, Chin-Cheng et al. (2016). Voice Conversion from Non-parallel Corpora Using Variational Auto-encoder. URL: https://arxiv.org/abs/1610.04019.
- Morise, M. et al. (2016). WORLD: A vocoder-based highquality speech synthesis system for real-time applications. URL: https://www.jstage.jst.go.jp/article/transinf/E99.D/7/E99.D_2015EDP7457/_article.
- Tokuda, K. et al. (1992). An adaptive algorithm for mel-cepstral analysis of speech. URL: https://www.researchgate.net/publication/3532054_An_adaptive_algorithm_for_mel-cepstral_analysis_of_speech.

Thank you!

Kamil Akesbi ASAIT 19 / 19