Übung 1: Entropie

Aufgabe 1: Doppelwürfel.

Jemand wirft 2 Würfel X und Y gleichzeitig und beobachtet für jeden Wurf die Summe S=X+Y der beiden Augenzahlen.

a) Bestimmen und skizzieren Sie die Wahrscheinlichkeitsverteilung Ps(s) von S.

Kontrollieren Sie, dass
$$\sum_{s=2}^{12} P_s(s) = 1$$
.

Hinweis:

Bestimmen Sie alle möglichen Kombinationen x+y mit der gleichen Summe s.

S	2	3	4	5	6	7	8	9	10	11	12
P _S (s)											

- b) Bestimmen Sie mathematisch den Mittelwert E[S].
- c) Bestimmen Sie die Entropie H(S)?

Verifizieren Sie Ihr Resultat, indem Sie es mit einem oberen Grenzwert vergleichen.

d) Bestimmen Sie die Redundanz des Symbols S.

Aufgabe 2: BMS.

Betrachten Sie die folgende binäre, gedächtnisfreie Quelle (BMS).

a) Bestimmen Sie die Information bzw. die Entropie H(X) [bit / Quellensymbol].

Ein Quellencoder fasst jeweils 3 Symbole zusammen und codiert sie mit einem binären, präfixfreien Codewort variabler Länge, siehe Tabelle.

Eingang X[n]	Ausgang Y[n]				
000	0				
0 0 1	100				
010	101				
011	11100				
100	110				
1 0 1	11101				
110	11110				
111	11111				

b) Ist dieser Quellenencoder verlustlos?

Wenn ja, wie gut ist diese Datenkompression?

Hinweis:

Bestimmen Sie die mittlere Codewortlänge und dann die mittlere Anzahl bit / Symbol.

c) Bestimmen Sie die Wahrscheinlichkeitsverteilung P_Y(y) am Ausgang des Quellenencoders.