

第三章 烷烃、环烷烃

链烷烃的结构和构象

链烷烃的物理性质

链烷烃的化学性质和相关反应

链烷烃的制备和用途

环烷烃的结构和构象

环烷烃的物理性质

环烷烃的化学性质和相关反应

烷烃的分类

烃: 只含有碳氢两种元素的化合物

▶ 构造异构体:原子或基团排列顺序不同

▶ 立体异构体:原子和基团顺序相同,但空间或立体取向不同

▶ 构型异构体:限制性因素引起的立体异构

▶ 构象异构体: 仅由单键旋转引起的立体异构

▶ 构造异构体:原子或基团排列顺序不同

> 立体异构体:原子和基团顺序相同,但空间或立体取向不同

▶ 构型异构体:限制性因素引起的立体异构

$$H_3C$$
 CH_3
 H_3C
 CH_3
 H_3C
 CH_3

▶ 构象异构体: 仅由单键旋转引起的立体异构

构造式和结构式

- 构造式:代表分子中原子的种类、数目和排列次序的式子。
- ▶ 结构式:除了代表分子中原子的种类、数目和排列次序的之外,还包括了空间及原子、电子、构型、构象等信息的式子。

在二维平面描述三维结构:透视和投影

▶ 锯架式 (透视)

▶ 伞形式 (透视)

➤ 纽曼(Newman)投影式

 $C 1s^2 2s^2 2p^2$

➤ sp³杂化

乙烷的构象

交叉式构象 Staggered conformer

扭曲式构象 (多个) Skewed conformer

重叠式构象 Eclipsed conformer

乙烷的构象

交叉式构象 Staggered conformer

乙烷的构象

交叉式构象 Staggered conformer

乙烷的构象

交叉式构象 Staggered conformer

重叠式构象 Eclipsed conformer

超共轭作用

有机化合物结构

沸点

熔点

▶ 分子量: vander Waals作用力

▶ 对称性: 晶格能

熔点

▶ 分子量: vander Waals作用力

▶ 对称性: 晶格能

mp:-17℃

mp:-130℃

mp:-160℃

谱学性质

\rightarrow ¹H-NMR

```
1° H \delta \approx 0.9 ppm

2° H \delta \approx 1.3 ppm

3° H \delta \approx 1.5 ppm

—C—CH<sub>3</sub> \delta \approx 0.9 ppm

= C—CH<sub>3</sub> \delta \approx 1.7 ppm

= C—CH<sub>3</sub> \delta \approx 1.8-2.8 ppm
```

\rightarrow 13C-NMR

```
1° C δ ≈ 0-30 ppm

2° C δ ≈ 25-45 ppm

3° C δ ≈ 30-60 ppm

4° C δ ≈ 35-70 ppm
```

谱学性质

➤ IR (普通峰)

➤ IR (特殊峰)

1380

1380 1370

1380 1370

n≥4 724-722 cm⁻¹ (m) 少于四个亚甲基时, 吸收峰 向高波数移动

(CH₂)_n—

烷烃的化学性质

化学性质稳定

> 键能

```
BE_{C-C} = 82.6 \text{ kcal/mol}

BE_{C-H} = 99.3 \text{ kcal/mol}

BE_{C-C1} = 78.9 \text{ kcal/mol}

BE_{C-Br} = 68.2 \text{ kcal/mol}

BE_{C-I} = 52.1 \text{ kcal/mol}

BE_{C-S} = 65.1 \text{ kcal/mol}
```

- ➤ sp³碳:饱和,无法发生加成反应
- ➤ C-H键:弱极性共价键,氢的酸性小
- ▶ 电负性: 碳2.5, 氢2.2

烷烃的化学性质

烷烃的氧化反应

▶ 自动氧化

> 燃烧

$$C_nH_{2n+2} + (3n+1)/2 O_2 \longrightarrow n CO_2 + (n+1) H_2O$$

燃烧热: ΔH_c^{θ}

烷烃的化学性质

燃烧热: ΔH_c^{θ}

$$C_8H_{18} + 25/2 O_2 \longrightarrow 8 CO_2 + 9 H_2O$$

甲烷的氯代反应: 自由基取代反应

 CI_2 CI_2 CI_2 CI_2 CI_4 CI_4 CI_4 CI_5 CI_6 CI_7 CI_8 CI_8 CI_8 CI_8 CI_8

- > 室温下暗处无法发生
- ➤ 大于250°C可以发生
- > 可以用光来引发反应
- 如果有氧或者其他能捕捉自由基的杂质存在,反应则有诱导期,诱导期长短与存在这些杂质多少有关

甲烷的氯代反应

> 机理

Step1:Initiat ion

Step2:Propagati on

Step3 : Termination

甲烷的氯代反应

▶ 机理: 自由基型链反应

箭头:起点/终点、方向、形状

甲烷的氯代反应

▶ 机理:自由基型链反应

▶ 循环表达式

甲烷的氯代反应

- ▶ 机理: 自由基型链反应
- 链引发

Cl₂
$$\xrightarrow{hv}$$
 ·Cl + ·Cl (1) $\Delta H = 58.1 \text{ kcal/mol}$

生成自由基

	Bond energy	Energy to break one bond	Corresponding wavelength	
CI-CI	58.1 kcal/mol	4.023×10 ⁻¹⁹ J	493.7nm	_
C-H	99.4 kcal/mol	6.899×10 ⁻¹⁹ J	288.0nm	aviolet
C-C	82.7 kcal/mol	5.741×10^{-19} J	346.0nm	aviolet

甲烷的氯代反应

- ▶ 机理:自由基型链反应
- >链增长

$$CH_4 + CI \longrightarrow CH_3 + HCI$$
 (2) $\Delta H = 1.8 \text{ kcal/mol}$

$$\cdot \text{CH}_3 + \text{Cl}_2 \longrightarrow \text{CH}_3\text{Cl} + \cdot \text{Cl}$$
 (3) $\Delta H = -27.0 \text{ kcal/mol}$

$$CH_4 + CI \rightarrow H + CH_3CI$$
 $\Delta H = 27.9 \text{ kcal/mol}$

甲烷的氯代反应

- ▶ 机理:自由基型链反应
- ▶ 链终止

$$\cdot \text{Cl} + \cdot \text{Cl} \longrightarrow \text{Cl}_2$$

$$\cdot \text{CH}_3 + \cdot \text{CH}_3 \longrightarrow \text{CH}_3\text{CH}_3$$

$$\cdot \text{CH}_3 + \cdot \text{Cl} \longrightarrow \text{CH}_3\text{Cl}$$

过渡态理论: 微观可逆原理

在化学反应中,反应物相互接近,总是先达到一势能最高点 (结构称为过渡态,相应能量为活化能),然后再转变为产物。

过渡态理论

> 过渡态: 反应物转变为产物的中间状态,

(推测的)势能最高处的原子排列,寿命=0,一般无法测得。

> 中间体: 反应中生成的寿命较短的分子、离子或自由基,

中间体一般很活泼, 但可通过实验方法观察到。

过渡态理论

▶ 过渡态:能量对反应坐标的一阶导数等于0,二阶导数小于0。

▶ 中间体:能量对反应坐标的一阶导数等于0,二阶导数大于0。

过渡态理论: 动力学控制与热力学控制

- ✓ 动力学控制:反应时间短,得C+D (活性)
- ✓ 热力学: 反应时间长, 得E+F (稳定性)

Reaction process

甲烷的卤代反应

▶ 链增长: 势能变化

甲烷的氟、氯、溴、碘代反应

 $\cdot X + H - CH_3 \longrightarrow \cdot CH_3 + H - X$

X	碳-氢键能 (kcal/mol)	氢-卤键能 (kcal/mol)	$AH^{ heta}$ (kcal/mol)	活化能 <i>Ea</i> (kcal/mol)	反应
氟	105. 1	135. 9	-30.8	1.0	大量放热,不可控
氯	105. 1	103. 3	+1.8	14. 0	活化能低,选择性差
溴	105. 1	87.6	+17.5	18. 0	活化能适中
碘	105. 1	71. 4	+33. 7	> 33.7	活化能过高, 难发生

氯代位置	产率	氢的个数	相对反应速率
伯氢 (1애)	45%	9	1
仲氢 (2°H)	33%	2	3. 3
叔氢 (3°H)	22%	1	4.4

烷烃氯代反应的选择性

▶ 叔氢 > 仲氢 > 伯氢

键能

98.1 kcal/mol 95.1 kcal/mol 93.1 kcal/mol

由基稳定性

超共轭效应 (hyperconjugative effect)

张力释放 (Strain release)

烷烃氯代反应的选择性

烷烃氯代反应的选择性 (25℃)

 $3^{\circ}H: 2^{\circ}H: 1^{\circ}H = 5.0: 3.7: 1.0$

烷烃溴代反应的选择性

$$H_{3}$$
C C C H_{3} H_{3} C C H_{3} H_{4} C C H_{4} H_{4} C C H_{4} H_{5} C C H_{5} H_{5} C C H_{5} C H_{5}

烷烃溴代反应的选择性(127℃)

 $3^{\circ}H: 2^{\circ}H: 1^{\circ}H = 1600: 82: 1$

烷烃的其他自由基取代反应

➤ 硝化反应 (Nitration)

$$C_nH_{2n+2} \xrightarrow{HNO_3 \text{ or } N_2O_4} C_nH_{2n+1}-NO_2$$
 H_2
 H_3C
 C_1H_{2n+2}
 H_3C
 $C_1H_{2n+1}-NO_2$
 NO_2
 NO_2

➤ 磺化反应 (Sulfonation)

$$H_{3}C-CH_{3} \xrightarrow{H_{2}SO_{4}} H_{3}C \xrightarrow{H_{2}} SO_{3}H$$

$$C_{12}H_{26} \xrightarrow{SO_{2}CI_{2}} C_{12}H_{25}-SO_{2}CI$$

烷烃的热裂解反应

热作用下的自由基反应 碳链均裂,然后进行一系列 β 裂解 自由基可以互相结合

$$CH_{3}CH_{2}CH_{2}CH_{2}CH_{2}CH_{3}$$

$$CH_{3}CH_{2}C$$

烷烃的热裂解反应

热作用下的自由基反应 碳链均裂,然后进行一系列 β 裂解 自由基可以互相结合

$$CH_{3}CH_{2} \xrightarrow{CH_{2}} CH_{2} \cdot \longrightarrow CH_{2} \xrightarrow{F} CH_{2} \cdot + CH_{2} = CH_{2}$$

$$CH_{3}CH_{2} \xrightarrow{CH_{2}} CH_{2} \cdot \longrightarrow CH_{2} = CH_{2} + H \cdot$$

$$CH_{3}CH_{2}CH_{2} \xrightarrow{CH_{2}} CH_{2} \cdot \longrightarrow CH_{3} \xrightarrow{CH_{2}} CH_{2} \cdot + CH_{2} = CH_{2}$$

$$CH_{3} \cdot + CH_{2} = CH_{2}$$

$$CH_{3} \cdot + CH_{3}CH_{2} \cdot \longrightarrow CH_{3}CH_{2}CH_{3}$$

$$CH_{3}CH_{2} \cdot + CH_{3}CH_{2}CH_{2} \cdot \longrightarrow CH_{3}CH_{2}CH_{2}CH_{2}CH_{3}$$

烷烃的异构化

在催化剂的存在下, 烷烃可异构化一直链烷烃异构化为支链烷烃

烷烃资源

来源: 天然气、石油

煤一液化 碳化学

煤或CO 高温高压催化剂下加氢

用途: 甲烷: 燃料 生产氨和甲醇的原料

乙烷: 生产乙烯及氯乙烯的原料

丙烷:燃料(液化石油气)生产乙烯 溶剂,制冷剂

丁烷:燃料(液化石油气) (轻汽油)

石油醚: 常用溶剂

环烷烃

环烷烃的历史

▶ 1880年之前:只有环戊烷和环己烷被发现,认为其他的环不稳定

▶ 1883年: W. H. Perkin制备了环丙烷和环丁烷,认为反应活性排序为 双键 > 三元环 > 四元环

$$H_2$$
 C
 H_2C-CH_2
 H_2C-CH_2

- ➤ 1885年: A. von. Baeyer提出了环张力学说
 - ◆ 成环的碳原子均在同一同面上,且呈正多边形
 - ◆ 碳原子采取sp3杂化形式,正常键角应为约109.5度
 - ◆ 为了满足平面正多边形的内角要求,成环的键必须向内或向外"屈挠", "屈挠"的程度越大,体系越不稳定。

环烷烃

Baeyer环张力学说

- ◆ 成环的碳原子均在同一同面上, 且呈正多边形
- ◆ 碳原子采取sp3杂化形式,正常键角应为约109.5度
- ◆ 为了满足平面正多边形的内角要求,成环的键必须向内或向外"屈挠", "屈挠"的程度越大,体系越不稳定。

正环烷烃					
正多边形角度	60	90	108	120	129
偏离角度	-49. 5	-19. 5	-1.5	10. 5	19. 5
每个CH ₂ 燃烧热 (kcal/mol)	167	164	159	158	158

157

影响环烷烃稳定性的因素:

- ✓ 角张力 (Baeyer 张力)
- ✔ 扭转张力
- ✓ 范氏力

环丙烷构象

所有C-H 键均为重叠式构象,有扭转张力

角张力 (angle strain)

环丁烷构象

全重叠式

蝴蝶式

环丁烷构象

部分交叉式 扭转张力较小 代价:键角88.8°

信封式 半椅式 环烷烃的构象 环戊烷构象

环己烷构象 椅式 扭船式

更大的环构象

环张力的组成

环碳数	总环张力	角张力	扭转张力	van de Waals
3	很大	很大	中等	无
4	很大	大	中等	无
5	很小	很小	较小	无
6	无	无	无	无
7-12	较小	小	较小	较大
> 12	无	无	无	无

如果环己烷构象是平面的?

角张力 扭转张力

椅式构象 (Chair conformation)

部分交叉式,扭转张力较小

直立键 (axial bond) 和平伏键 (equatorial bond)

相邻碳上的a键和e键为顺式两个相邻的a键(或e键)为反式

- ▶ 相间的两根键相互平行 (画 Z 字形)
- ▶ 六个碳原子交替分布在两个平面上
- ▶ 每个碳均有一根C-H键在垂直方向, 上平面的向上面,下平面的向下面
- ▶ 其它C-H键分别向左(左边的三个) 或向右(右边的三个),且上下交替

直立键 (axial bond) 和平伏键 (equatorial bond)

船式构象 (Boat conformation)

扭船式构象 (Twist boat conformation)

半椅式构象 (Half chair conformation)

环己烷构象之间关系

process

单取代环己烷构象

van de Waals半径

基团	Н	CH_3	CH_2	N	P	0
半径/Å	1.2	2.0	2.0	1.5	1.9	1.4
基团	S	F	C1	Br	I	

单取代环己烷构象

叔丁基环己烷构象

优势构象

室温: 100%

平伏键(equatorial)和直立键(axial)的顺反关系

二取代环己烷

二取代环己烷

- ✓ 在满足空间构型的前提下,令尽可能多的取代基处于e键。
- ✓ 优先满足大基团处于e键。

van de Waals半径

基团	Н	CH_3	CH_2	N	P	0
半径/Å	1.2	2.0	2.0	1.5	1.9	1.4
基团	S	F	C1	Br	I	

甲基叔丁基环己烷的构象

十氢萘构象

2.1 kcal/mol more stable

环烷烃的物理性质

- ✔ 环烷烃分子较规则,不易自由摇动
- ✔ 分子排列紧密
- ✔ 熔点、沸点、密度等一般高于相应的直链烷烃

环烷烃的物理性质

环烷烃¹H-NMR

$$\delta_{cyclopropane} = 0.22$$
 $\delta_{cyclobutane} = 1.96$ $\delta_{other} = \sim 1.5$

 $oldsymbol{\delta}_{e-H}$ 大约比 $oldsymbol{\delta}_{a-H}$ 大0. 2° 0. 5 ppm,但实际上只有低温下能观测到这个差别

环烷烃自由基取代反应

环烷烃自由基取代反应

环烷烃卤素加成反应

环烷烃卤化氢加成反应

环烷烃卤化氢加成反应

反应选择性:

氢加在氢多的碳上 碳正离子稳定性

环烷烃与H₂O/H₂SO₄反应

