結核菌の検出は①喀痰の培養(ミジット法: MGIT)②培養結核菌の特異的蛋白 PB64 の検出(キャピリア TB)など**結核菌発育に依存**した方法(表現形)を使う限り最短 7日が必要。 塗抹検鏡は迅速だが、標本作成時の 2 次感染問題や非結核性抗酸菌の判別ができず感度も低い。 シータス社のマリスが PCR*を発明後プライマーやプローブのデザインで結核菌の検出と同定を同時に行うことができる。 ③血中リンパ球の結核菌に対する γ インターフェロン産生を検出するクオンティフェロン、T-SPOT などは感染の診断に有力。 DNA ポリメラーゼは 5'→3'の方向への鎖の延長 (図の左列の上から下へ) しかできない。

ではなく鎖そのものの合成開始にはプライマーが必要。DNA 二重鎖(三重や四重もある)の複製時は5'→3'(リーディング鎖)は二重鎖を開きながらコピーできるが、反対側(ラギング鎖:左図下方)は開いた DNA 鎖を逆方向に短く複製しては開き、を繰り返し DNA リガーゼによって一本の DNA に合成する。この瞬にフラグメント**の合成開始にも RNA

プライマーゼという酵素が作る 20 塩基ほどの RNA (プライマー) が必要。 は完成後除去される。 結核菌の遺伝子診断には DNA-DNA Hybridization 法 (DDH マイ <mark>コバクテリア</mark> 岐阜大、極東)が理解容易。各種結核菌、抗酸菌の一本鎖 DNA 標本を用 意しておき被検菌の1本鎖 DNA と2本鎖形成の有無を検査、非定型抗酸菌種決定に威 力を発揮する (但し小川培地で 8 週、数 mq の培養菌を得た後) 。 数時間の<mark>核酸増幅法</mark> : ①RT-PCR (DNA のリアルタイム PCR、TagMan 等) ②TMA*** (Transcription Mediated Amplification、MTD2 法:Mycobacterium Tuberculosis Direct:ダイレクト TB)など結 核菌の 16s rRNA の直接増幅同定法*** ③結核菌特異蛋白 Pab (Protein antigen b) を コードする DNA をリガーゼ連鎖反応(Ligase Chain Reaction)で検出。 ④LAMP 法。 リボゾームの小サブユニットの RNA (rRNA、約 1600bp) は微生物の系統分類に有 効で古細菌もこれで分類。結核菌も固有の 16s rRNA 塩基配列を持つ(真核生物は 18s rRNA)。 本来の遺伝子 DNA の解析ではないが、早期結核診断の有用性は PCR と変 全生物が持つ塩基配列が3か所にあり、ユニバーサルプライマーとして わらない***。 使用可能。 血液、heparin による PCR 阻害注意。 培養の併用も必要だが、核酸増 <mark>幅法</mark>で TB の<mark>診断</mark>は**結核病棟に転院**。 培養は転院後で **OK**。

*PCR (Polymerase Chain Reaction) の特許はロッシュに売却、ロッシュ・ダイアグノスティックの商品名はアンプリコア (現在 PCR 特許は期限切れ)。 **岡崎フラグメント (岡崎玲治 1967、名大)。 ***感度 100%, 特異度 99.6%