Ασκηση εφ' όλης της ύλης (1, 2, 3, 4)

Η άσκηση αγγίζει σημαντικό μέρος της ύλης που έχουμε συζητήσει σε όλο το εξάμηνο (Κεφάλαια 1, 2, 3, 4).

Eκφώνηση (1) – software

 Δεδομένα για το λογισμικό (software). Ένα πρόγραμμα Π περιέχει την ακόλουθη μίξη εντολών και εκτελεί συνολικά 4x10⁹ δυναμικές εντολές.

Κατηγορία	Συχνότητα	Πλήθος
Ακέραιες αριθμητικές/λογικές	28%	1120 000 000
Φορτώσεις	26%	1 040 000 000
Αποθηκεύσεις	13%	520 000 000
Διακλαδώσεις	10%	400 000 000
Άλματα	3%	120 000 000
Κινητής υποδιαστολής	20%	800 000 000
Σύνολο	100%	4 000 000 000

Εκφώνηση (2) – microarchitecture

Δεδομένα για το υλικό (hardware). Το πρόγραμμα Π πρόκειται να εκτελεστεί σε δύο διαφορετικούς μικροεπεξεργαστές RISC-VP1, P2. Ο πίνακας περιέχει χαρακτηριστικά στοιχεία για τους δύο επεξεργαστές.

Επεξεργαστής MIPS	P1	P2
CPI Ακεραίων	1	1
CPI Φορτώσεων	1	1.2
CPI Αποθηκεύσεων	1	1.1
CPI Διακλαδώσεων	4	1.3
CPΙ Αλμάτων	1	2
CPI Κιν.Υποδιαστολής	5	5

Εκφώνηση (3) – technology 💲

 Δεδομένα για την τεχνολογία κατασκευής των δύο μικροεπεξεργαστών.

Επεξεργαστής	P1	P2
Ρυθμός ρολογιού	1 GHz	3 GHz
Τάση λειτουργίας	0.9 V	1.1 V
Χωρητικό φορτίο	0.035 μF	0.045 μF
Εσοδεία κατασκευής	0.94	0.88
Κόστος πλακιδίου	30 000 ευρώ	30 000 ευρώ
Διάμετρος πλακιδίου	20 cm	20 cm
Επιφάνεια κύβου (τσιπ)	2 cm ²	4 cm ²

Ερώτημα 1 – Execution time

 Πόσο χρόνο διαρκεί η εκτέλεση του προγράμματος Π σε καθέναν από τους επεξεργαστές P1 και P2;

	Χρόνος
	T = I x CPI / f
 P1	$T_{P_1} = 4x10^9 x [0.28x1 + 0.26x1 + 0.13x1 + 0.10x1 + 0.03x1 + 0.20x5]/(1x10^9)$
 P2	$T_{P_2} = 4x10^9 x [0.28x1 + 0.26x1.2 + 0.13x1.1 + 0.10x1.3 + 0.03x2 + 0.20x5]/(3x10^9)$

	Χρόνος	2
$ _{P_1}$	$T_{P1} = 4x10^9 \times 1.77 / (1x10^9) = 7.08 \text{ sec}$	
	1P1 - 4X10 X 1.777 (1X10) - 7.00 Sec	3
l D-	$T = 4 \times 10^9 \times 1.025 / (2 \times 10^9) = 2.57 \times 10^9$	
	$T_{P_2} = 4x10^9 x 1.925 / (3x10^9) = 2.57 sec$	5

	 Κύ	κλ	OL															 			200
 P1	 C_{P_1}	= 4	ĻΧ10	о ⁹ х	1.7	7 =	7 C	080	000	0 0	00	κύμ	ιλο	L							
? 2	 C _{P2}	= 4	4×1	0 ⁹	۲.۹	925	= 7	70	0.0	00	000) KI	ίκλ	Οl	*******	*****	~~~~	 			

Ερώτημα 2 – Time breakdown

Τι ποσοστό του χρόνου εκτέλεσης του Π στον P2 καταλαμβάνουν οι εντολές κάθε κατηγορίας;

Κατηγορία	Πλήθος εντολών	CPI	Πλήθος κύκλων	% κύκλων (άρα χρόνου)
Ακέραιες	1 120 000 000	Anna	1120 000 000	14.5%
Φορτώσεις	1 040 000 000	1.2	1 248 000 000	16.2%
Αποθηκεύσεις	520 000 000	1.1	572 000 000	7.4%
Διακλαδώσεις	400 000 000	1.3	520 000 000	6.8%
Άλματα	120 000 000	2	240 000 000	3.1%
Κινητής υποδιαστολής	800 000 000	5	4 000 000 000	52.0%
Σύνολο	4 000 000 000		7 700 000 000	100.0%

Ερώτημα 2 – Time breakdown

Ερώτημα 3 – Power

Πόση ηλεκτρική ισχύ καταναλώνει κάθε επεξεργαστής;

	Ισχύς (Power)	
	Ισχύς = Φορτίο χωρητικότητας x Τάση² x Ρυθμός ρολογιού	
P1	$0.035 \times 10^{-6} \times 0.9^{2} \times (1\times10^{9})$	
P2	0.045 x 10 ⁻⁶ x 1.1 ² x (3x10 ⁹)	

	σχύς (Power)	
 P1	28.35 Watt	-
P2	163.35 Watt	

Ερώτημα 4 – Energy

 Πόση ηλεκτρική ενέργεια καταναλώνει κάθε επεξεργαστής για την εκτέλεση του Π;

	Ενέργεια (Energy)	
	Ενέργεια = Ισχύς x Χρόνος	
P1	28.35 Watt x 7.08 sec	
P2	163.35 Watt x 2.57 sec	

	Ενέργεια (Energy)
P ₁	200.72 Joule
P2	419.81 Joule

Ερώτημα 5 – MIPS

Τι ρυθμό εκτέλεσης εντολών (instructions per second – IPS)
έχει κάθε επεξεργαστής για το πρόγραμμα Π;

	Ρυθμός εκτέλεσης εντολών
	Ρυθμός εντολών (Instructions Per Second) = Εντολές/χρόνος
P1	4x10 ⁹ / 7.08
P2	4x10 ⁹ / 2.57

	Ρυθμός εκτέλεσης εντολών	
P1	65 MIPS (Millions of Instructions per Second)	
P2	556 MIPS	

Ερώτημα 6 – MFLOPS

Τι ρυθμό εκτέλεσης εντολών κινητής υποδιαστολής
(floating point operations per second – FLOPS) έχει κάθε επεξεργαστής για το πρόγραμμα Π;

	Ρυθμός εκτέλεσης εντολών κινητής υποδιαστολής	:οδιαστολής								
	Ρυθμός εντολών (Floating Point Operations Per Second) = Εντο	λές ΚΥ/χρόνος								
P1	0.2 x 4x10 ⁹ / 7.08									
P2	0.2 x 4x10 ⁹ / 2.57									

senen se	Ρυθμός εκτέλεσης εντολών κινητής υποδιαστολής									
P1 113 MFLOPS (Millions of Floating Point Operations per Second)										
	P2	311 MFLOPS								

Ερώτημα 7 – Cost

Πόσο κοστίζει κάθε τσιπ επεξεργαστή P1και κάθε τσιπ επεξεργαστή P2;

	Κόστος τσιπ								
Κόστος τσιπ = Κόστος πλακιδίου / (#Τσιπ ανά πλακίδιο x Εσοδεία)									
	#Τσιπ ανά πλακίδιο = Επιφάνεια πλακιδίου / Επιφάνεια τσιπ								
P1	30 000 / [(π x 10² cm² / 2 cm²) x 0.94] ευρώ								
P2	30 000 / [(π x 10² cm² / 4 cm²) x 0.88] ευρώ								

		Πλήθος «καλών» τσιπ
	P1	$(\pi \times 10^{2} \text{ cm}^{2} / 2 \text{ cm}^{2}) \times 0.94 = 157 \times 0.94 = 147$
-	P2	$(\pi \times 10^{2} \text{ cm}^{2}/4 \text{ cm}^{2}) \times 0.88 = 78 \times 0.88 = 68$

	Κόστος τσιπ													
 P1	203 ευρώ													
P2	434 ευρώ	*********			*****		*******	~~~~~	 en se se se se se se	*****	******	******		

Ερώτημα 8 – Speedup

Αν δαπανηθεί επιπλέον hardware (με τεχνικές είδαμε στο Κεφάλαιο 4) ο επεξεργαστής P2 μπορεί να γίνει ακόμη ταχύτερος και το CPI των εντολών γίνεται αυτό που δείχνει ο

παρακάτω πίνακας. Πόση θα είναι η επιτάχυνση του προγράμματος Π;

Επεξεργαστής MIPS	P2	P2*
CPI Ακεραίων	1	1
CPI Φορτώσεων	1.2	1.1
CPI Αποθηκεύσεων	1.1	1.1
CPI Διακλαδώσεων	1.3	1.2
CPΙ Αλμάτων	2	2
CPI Κιν.Υποδιαστολής	5	4

	Χρόνος εκτέλεσης
P ₂	2.57 sec
P2*	$T_{P2*} = 4x10^9 \text{ x} [0.28x1 + 0.26x1.1 + 0.13x1.1 + 0.10x1.2 + 0.03x2 + 0.20x4]/(3x10^9) = 2.252 \text{ sec}$
Επιτά- χυνση	2.57 / 2.252 = 1.14 φορές

Ερώτημα 9 − Instr. Replacement j

Στον νέο επεξεργαστή P2* γίνεται προσπάθεια να επιταχυνθεί το πρόγραμμα Π μέσω αντικατάστασης κάποιων «αργών» εντολών κινητής υποδιαστολής με αντίστοιχες ακέραιες. Πόσες εντολές κινητής υποδιαστολής πρέπει να αντικατασταθούν με ακέραιες ώστε το πρόγραμμα να εκτελείται σε 2 sec;

	Επιθυμητός χρόνος εκτέλεσης
P2*	2 sec
P2*	T_{P2} * = 4x10 ⁹ x CPI / (3x10 ⁹) = 2.0 sec – άρα θέλουμε CPI = 1.5
CPI	CPI = (0.28+k) x1 + 0.26x1.1 + 0.13x1.1 + 0.10x1.2 + 0.03x2 + (0.20 - k) x4
	(με k<0.20)
	1.5 = 0.28 + k + 0.286 + 0.143 + 1.20 + 0.06 + 0.80 – 4k
	$3k = 1.269 \acute{\eta} k = 0.423$
Απάντηση	Δηλαδή οι εντολές κινητής υποδιαστολής πρέπει να αποτελούν το
	20% – 42.3% των εντολών = – 22.3% (!)
	Άρα το ζητούμενο δεν είναι εφικτό

Ερώτημα 10 – Energy per Instrucțiii

Πόση ενέργεια καταναλώνεται για την εκτέλεση 1 εντολής της κάθε κατηγορίας στον επεξεργαστή Ρ1;

Εντολές	Ενέργεια
Ακεραίων	200.72 Joule x (1 / 7 080 000 000) = 28 nJoule
Φορτώσεων	200.72 Joule x (1 / 7 080 000 000) = 28 nJoule
Αποθηκεύσεων	200.72 Joule x (1 / 7 080 000 000) = 28 nJoule
Διακλαδώσεων	200.72 Joule x (1 / 7 080 000 000) = 28 nJoule
Αλμάτων	200.72 Joule x (1 / 7 080 000 000) = 28 nJoule
Κιν.Υποδιαστολής	200.72 Joule x (5 / 7 080 000 000) = 140 nJoule

Ερώτημα 11 – Datacenter

Υποθέστε ότι όλα τα τσιπ του επεξεργαστή P1 που κατασκευάζονται από ένα πλακίδιο και λειτουργούν σωστά και όλα τα τσιπ του P2 που κατασκευάζονται από ένα πλακίδιο και πάλι λειτουργούν σωστά «επιστρατεύονται» σε ένα κέντρο δεδομένων για να εκτελούν επαναλήψεις του προγράμματος Π (που αποδείχθηκε πολύ δημοφιλές!). Πόσες συνολικά εκτελέσεις του Π κατά τη διάρκεια μιας ημέρας μπορούμε να επιτύχουμε;

Πλήθος «καλών» τσιπ P1 + P2	147 + 68
Χρόνος Π στο Ρ1, Ρ2	7.08 sec, 2.57 sec
Επαναλήψεις του Π σε κάθε τσιπ Ρ1, Ρ2 σε μία μέρα	24 x 60 x 60 / 7.08 = 12 203 εκτελέσεις @P1 24 x 60 x 60 / 2.57 = 33 619 εκτελέσεις @P2
Συνολικές εκτελέσεις	12 203 * 147 + 33 619 * 68 = 4 079 933 εκτελέσεις / day

Εκφώνηση (4) – RISC-V CPU P3

Θεωρήστε τώρα ότι το πρόγραμμα εκτελείται σε έναν νέο μικροεπεξεργαστή RISC-V P3, ο οποίος είναι πολύ απλός και σχεδιάζεται με

διαδρομή δεδομένων ενός μεγάλου κύκλου ρολογιού (single-cycle datapath). Οι λανθάνοντες χρόνοι των μονάδων του υλικού του P3 φαίνονται στον πίνακα.

Επεξεργαστής MIPS	P3
Μνήμη εντολών	250 ps
Μνήμη δεδομένων	230 ps
Καταχωρητές	150 ps
ΑLU ακεραίων	180 ps
ΑLU κινητής υποδιαστολής	450 ps
οι δύο ALU λειτουργούν παράλληλα στους καταχωρητέ	ές τους

Ερώτημα 12 - Χρόνος εκτέλεσης Ρ3

Σε πόσο χρόνο θα εκτελεστεί το πρόγραμμα στην νέα αυτή CPU P3;

Χρόνος κύκλου ρολογιού στον Ρ3	Μια εντολή load θα χρειαστεί: 250 + 150 + 180 + 230 + 150 ps ή συνολικά 960 ps		
	Μια εντολή κινητής υποδιαστολής θα χρειαστεί: 250 + 150 + 450 + 150 ps ή συνολικά 1000 ps		
	Συνεπώς η πιο αργή διαδρομή που καθορίζει και το ρολόι είναι 1000 ps των εντολών κιν.υποδιαστολής		
Χρόνος εκτέλεσης	Το πρόγραμμα εκτελεί 4 000 000 000 εντολές και κάθε μία διαρκεί 1 κύκλο δηλαδή 1000 ps Χρόνος = 4 000 000 000 * 1000 * 10 ⁻¹² sec = 4 sec		

Ερώτημα 13 – Διοχέτευση στον Ρ3

- Λαμβάνουμε την απόφαση να επανασχεδιάσουμε τον P3 ώστε να περιέχει διοχέτευση 5 σταδίων (στο στάδιο ΕΧ μπορεί να εκτελεστεί είτε μια ακέραια πράξη είτε μια πράξη κινητής υποδιαστολής).
- Πόση είναι η διάρκεια του κύκλου ρολογιού του νέου P3;

Χρόνος ρολογιού Ρ3 με	Ίσος με το μέγιστο στάδιο του pipeline. Στην
διοχέτευση	περίπτωση του P3 αυτό είναι το EX με διάρκεια 450 ps.

Πόση επιτάχυνση παρέχει για το συγκεκριμένο πρόγραμμα η νέα σχεδίαση με διοχέτευση; Θεωρήστε ότι δεν υπάρχουν καθυστερήσεις και κίνδυνοι και η εκτέλεση στη διοχέτευση γίνεται ιδανικά.

	ιτά			
(sp	ee	duj	o)	

Speedup (ideal pipeline vs. single-cycle) = 1000 ps / 450 ps = 2.22 (το πλήθος εντολών είναι το ίδιο και το CPI ίσο με 1 και στις δύο σχεδιάσεις)

Ερώτημα 14 – Κίνδυνοι στον Ρ3

- Τώρα υποθέστε ότι η εκτέλεση στον P3 με διοχέτευση δεν είναι ιδανική και ότι το 15% των εντολών υφίσταται 1 κύκλο καθυστέρησης (stall) λόγω κινδύνων δεδομένων που δεν μπορούν να λυθούν με προώθηση, και επίσης ότι το 1/4 των διακλαδώσεων προβλέπονται εσφαλμένα και πληρώνουν 2 κύκλους καθυστέρησης επειδή η επίλυση των διακλαδώσεων γίνεται στο στάδιο ΕΧ.
- Πόση είναι τώρα η επιτάχυνση της σχεδίασης του P3 με διοχέτευση έναντι της απλής σχεδίασης ενός κύκλου;

Επιτάχυνση (speedup)

Speedup (real pipeline vs. single-cycle) =

= [1000 ps x 1] / [450 ps x (1 + 0.15*1 + 0.10*0.25*2)] = 1.85 (το CPI λαμβάνεται εδώ υπόψιν αφού είναι 1 στη σχεδίαση ενός κύκλου αλλά 1.20 στη διοχέτευση λόγων των καθυστερήσεων)

