Математическая модель эффекта обратной связи в системах искусственного интеллекта

Андрей Сергеевич Веприков Научный руководитель: д.ф.-м.н. А. С. Хританков

Кафедра интеллектуальных систем ФПМИ МФТИ Специализация: Интеллектуальный анализ данных Направление: 03.04.01 Прикладные математика и физика

Цель исследования

В данной работе решается задача математического моделирования систем с адаптивным управлением. Системе с ИИ ставится в соответствие дискретная динамическая система, по поведению которой можно судить об исходном объекте.

Рис. 1: Две постановки эксперимента. Скользящее окно и обновление выборки.

Примеры процессов многократного машинного обучения:

- 1. Эффекты петель обратной связи (feedback loop)
- 2. Усиление ошибок (error amplification)
- 3. Пузыри фильтров (filter bubbles) и эхо-камеры (echo chambers)

Постановка задачи и теорема о предельном множестве

Определим следующую дискретную динамическую систему:

$$f_{t+1}(x) = \mathsf{D}_t(f_t)(x)$$
 для $\forall x \in \mathbb{R}^n, t \in \mathbb{N}$ и $\mathsf{D}_t \in \mathbb{D},$ (1)

где D_t обычно называется оператором эволюции, $f_t(x)$ – функции плотности вероятности распределения данных системы, а начальная функция $f_0(x)$ задана.

Теорема 1 (Предельное множество системы (1))

Для любой функции плотности $f_0(x), x \in \mathbb{R}^n$ и дискретной динамической системы (1), пусть существуют $g(x) \in L_1(\mathbb{R}^n)$ и $\psi_t \geq 0$ такие, что $f_t(x) \leq \psi_t^n \cdot |g(\psi_t \cdot x)|$ для всех $t \in \mathbb{N}$ и $x \in \mathbb{R}^n$. Тогда, если ψ_t расходится $k \infty$, плотности $f_t(x)$ стремятся k дельта-функции, $f_t(x) \underset{t \to +\infty}{\longrightarrow} \delta(x)$ слабо.

Если ψ_t сходится к 0, тогда плотности $f_t(x)$ сходятся к нулевому распределению, $f_t(x) \xrightarrow{}_{t \to \infty} \zeta(x)$ слабо.

Рис. 2: Пример использования Теоремы 1 с $\psi_t = t$ для $\mathcal{N}(0;1)$.

Анализ условий существования петель обратной связи и автономности системы (1)

Лемма 1 (Стремление моментов к нулю)

Если система (1) с n=1 удовлетворяет условиям Теоремы 1 и $\psi_t \to \infty$, тогда все 2k-тые моменты невязок y-h(X) убывают со скоростью как минимум ψ_t^{-2k} .

Рис. 3: Пример использования Леммы 1.

Теорема 2 (Критерий автономности)

Если операторы эволюции D_t динамической системы (1) имеют вид $D_{\overline{1,t}}(f_0)(x)=\psi_t^n\cdot f_0(\psi_t\cdot x)$, тогда система (1) автономна тогда и только когда, когда $\psi_{\tau+\kappa}=\psi_{\tau}\cdot\psi_{\kappa}\ \forall \tau,\kappa\in\mathbb{N}.$

Рис. 4: Пример использования Теоремы 2.

Предел к дельта-функции или нулевому распределению

Рис. 5: Постановка скользящее окно (сверху), обновление выборки (снизу).

Стремление моментов к нулю и исследование систем на автономность

Рис. 6: Стремление моментов к нулю(сверху): скользящее окно(слева), обновление выборки(справа). Проверка автономности(снизу): скользящее окно(слева), обновление выборки(середина и справа).

Выносится на защиту

- 1. Построена математическая модель эффекта петель обратной связи с использованием дискретных динамических систем
- 2. Были получены результаты для определения предельного множества динамической системы, достаточных условий существования петли обратной связи и критерий автономности
- 3. Разработан стенд проведения вычислительных экспериментов, симулирующий процесс многократного машинного обучения

Публикации

- 1. Veprikov A., Afanasiev A., Khritankov A. A Mathematical Model of the Hidden Feedback Loop Effect in Machine Learning Systems // arXiv preprint https://arxiv.org/abs/2405.02726
- 2. Веприков А. С., Афанасьев А. П., Хританков А.С. Математическая модель эффекта обратной связи в системах искусственного интеллекта // Сборник тезисов 21-й Всероссийской конференции Математические методы распознавания образов (ММРО-21).
 - Российская академия наук, 2023. С. 35-37