

线性代数

2021秋季学期版

期中小助手

学辅公众号

学粉群7.1

$$A_{1} = 6$$

$$\frac{4 R^{+}}{|A_{1}|^{2}}$$

$$\frac{|A_{1}|^{2}}{|A_{1}|^{2}}$$

$$|A_{1}|^{2} |A_{1}|^{2}$$

前言

致各位亲爱的学辅资料读者:

万物冬藏待春来,时光即在弹指间。仲英学辅在平静又不平凡中度过了一年时光; 脚下行程千里远,腹中贮书万卷多。仲英学辅工作人员们在大家的追梦路上,一如既往 的送去了温暖。

本资料由仲英书院学业辅导中心的工作人员编写,对线性代数学习及考试内容进行了全面及详细的总结,列举典型例题,以帮助同学们夯实、巩固和提高。在此,郑重感谢各位编者同学的努力,可以使本资料顺利完成。由于时间精力限制,难免有疏漏之处,如果在阅读使用过程中发现错误,欢迎同学们反馈,我们会记录,并在下一版中予以修正。(反馈请邮件联系学辅邮箱:xjtuzyxf@163.com)

资料版次及编者信息:

2021 年版

编写人员: 计算机 94 张文千、自动化 002 曹家熙、计算机 91 苏晗琛、金禾 001 聂博佩、计算机 95 王鸿瑞、AI001 刘海若、自动化 006 贾浚源、自动化 94 邓勇

排版人员: 金融 001 徐思佳、越杰 001 曾云海、越杰 81 唐智亿

版权所有,侵权必究

仲英学业辅导中心 2021 年 10 月 6 日

目录

第一章	行列式	1
1.1	行列式的定义与性质	1
	1.1.1 行列式的基本性质	1
	1.1.2 书后例题	1
1.2	行列式的计算	3
	1.2.1 重要方法	3
	1.2.2 特殊行列式	3
	1.2.3 典型例题	3
	1.2.4 书后例题	4
1.3	Cramer 法则	6
	1.3.1 Cramer 法则	6
	1.3.2 书后例题	7
1.4	第 1 章习题	8
第二章	矩阵	9
2.1	知识点总结与剖析	9
2.2	精选例题	11
	2.2.1 矩阵乘法与乘幂	11
	2.2.2 方阵的行列式	12
	2.2.3 伴随与逆矩阵	14
	2.2.4 矩阵的秩	18
2.3	习题练习	20

目录 ii

第三章	几何向量及其应用	22
3.1	向量的运算	22
	3.1.1 知识点	22
	3.1.2 典型例题	22
3.2	向量之间的关系	23
	3.2.1 知识点	23
	3.2.2 典型例题	24
3.3	空间的平面与直线	24
	3.3.1 知识点	25
	3.3.2 典型例题	27
3.4	第三章练习题	32

1.1 行列式的定义与性质

1.1.1 行列式的基本性质

- 1. 行列式与其转置行列式相等, 即 $D = D^T$;
- 2. 互换行列式两行(列)的位置,行列式的值反号;
- 3. 行列式 D 等于其任一行 (列) 元素分别与其对应的代数余子式乘积之和;
- 4. 行列式某一行 (列) 所有元素的公因子 k, 可以提到行列式符号的外面;
- 5. 若行列式的某一行(列)的元素都是两数之和,那么行列式等于两个行列式的和;
- 6. 行列式某一行 (列) 加上另外一行 (列) 的 k 倍, 行列式值不变;
- 7. 若行列式 D 有两行 (列) 元素相等或成比例, 则 D=0.

1.1.2 书后例题

 (\mathbf{A})

1. 求解方程组

$$\begin{cases} 3x_1 + 2x_2 = 6, \\ 5x_1 + 3x_2 = 8. \end{cases}$$

答案: $x_1 = -2$, $x_2 = 6$.

2. 任意改换行列式 D 的第 i 行元素和第 j 列元素, 而 D 的其他元素不变, 问 D 的 (i,j) 元素的代数余子式 A_{ij} 的值是否会改变?

答案: 不会.

解析: (i,j) 元素的代数余子式不包括第 i 行与第 j 列的元素.

3. 求行列式

$$D = \begin{vmatrix} 1 & -1 & 0 & 2 \\ 3 & 5 & -8 & 9 \\ 2 & 0 & -4 & 2 \\ 1 & 2 & 10 & 4 \end{vmatrix}$$

的 (3,4) 元素的余子式 M_{34} 及代数余子式 A_{34} .

答案: $M_{34} = 104$, $A_{34} = -104$.

解析:
$$M_{34} = \begin{vmatrix} 1 & -1 & 0 \\ 3 & 5 & -8 \\ 1 & 2 & 10 \end{vmatrix} = 104, A_{34} = (-1)^{3+4} M_{34} = -104.$$

4. 设有两个行列式

$$D_1 = \begin{vmatrix} 3 & 0 & 4 & 0 \\ 2 & 2 & 2 & 2 \\ 0 & -7 & 0 & 0 \\ 5 & 3 & -2 & 2 \end{vmatrix}, \qquad D_2 = \begin{vmatrix} 3 & 0 & 4 & 0 \\ 2 & 2 & 2 & 2 \\ 0 & -7 & 0 & 0 \\ -1 & 1 & -1 & 1 \end{vmatrix},$$

不用具体计算, 说明 D_1 的第 4 行元素余子式之和 $M_{41} + M_{42} + M_{43} + M_{44} = D_2$.

解析: D_1 与 D_2 仅第四行元素不同, 故 D_1 与 D_2 第四行元素的代数余子式相同. 将 D_2 按第四行展开, 得 $D_2 = (-1) \cdot (-1)^{4+1} \cdot M_{41} + (1) \cdot (-1)^{4+2} \cdot M_{42} + (-1) \cdot (-1)^{4+3} \cdot M_{43} + (1) \cdot (-1)^{4+4} \cdot M_{44} = M_{41} + M_{42} + M_{43} + M_{44}, M$ 是 D_2 的代数余子式, 也是 D_1 的代数余子式.

5. 计算下列行列式

答案: (1) -100; (2) 4abcdef.

解析: 第一问按行列式定义直接展开计算即可. 第二问各行分别提出公因子 a, d, f, 各列分别提出公因子 b, c, e, 再按定义展开计算.

6. 计算下列 n 阶行列式:

$$(1) \begin{vmatrix} 0 & \cdots & 0 & 1 & 0 \\ 0 & \cdots & 2 & 0 & 0 \\ \vdots & & \vdots & \vdots & \vdots \\ n-1 & \cdots & 0 & 0 & 0 \\ 0 & \cdots & 0 & 0 & n \end{vmatrix}; \qquad (2) \begin{vmatrix} x & y & 0 & \cdots & 0 & 0 \\ 0 & x & y & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & x & y \\ y & 0 & 0 & \cdots & 0 & x \end{vmatrix}.$$

答案: $(1) (-1)^{\frac{(n-1)(n-2)}{2}} n!$; $(2) x^n + (-1)^{n+1} y^n$.

1.2 行列式的计算

1.2.1 重要方法

- 1. 行列式某一行(列)所有元素的公因子 k, 可以提到行列式符号的外面.
- 2. 若行列式的某一行(列)的元素都是两数之和,那么行列式等于两个行列式的和.
- 3. 行列式某一行 (列) 加上另外一行 (列) 的 k 倍, 行列式值不变.

1.2.2 特殊行列式

- 1. 上、下三角行列式的值等于主对角线元素之积;
- 2. 范德蒙德行列式.

1.2.3 典型例题

一般行列式的求解, 利用降阶法化为上、下三角行列式.

例 1.2.2 计算行列式

$$D = \begin{vmatrix} 3 & -3 & 7 & 1 \\ 1 & -1 & 3 & 1 \\ 4 & -5 & 10 & 3 \\ 2 & -4 & 5 & 2 \end{vmatrix}.$$

答案: -2.

例 1.2.3 计算 n 阶行列式

$$D_n = \begin{vmatrix} a & b & b & \cdots & b \\ b & a & b & \cdots & b \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ b & b & b & \cdots & a \end{vmatrix}$$

答案: $[a + (n-1)b](a-b)^{n-1}$.

1.2.4 书后例题

1. 计算下列行列式:

$$(1) \begin{vmatrix} x & y & x+y \\ y & x+y & x \\ x+y & x & y \end{vmatrix}; \qquad (2) \begin{vmatrix} 1 & x & y & z \\ x & 1 & 0 & 0 \\ y & 0 & 1 & 0 \\ z & 0 & 0 & 1 \end{vmatrix};$$

$$(3) \begin{vmatrix} a+b & a & a & a & a \\ a & a-b & a & a \\ a & a & a+e & a \\ a & a & a-c \end{vmatrix}; \qquad (4) \begin{vmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \\ 3 & 4 & 1 & 2 \\ 4 & 1 & 2 & 3 \end{vmatrix};$$

$$(5) \begin{vmatrix} 3 & 1 & -1 & 2 \\ -5 & 1 & 3 & -4 \\ 2 & 0 & 1 & -1 \\ 1 & -5 & 3 & -3 \end{vmatrix}; \qquad (6) \begin{vmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & x & x & x \\ 1 & x & 0 & x & x \\ 1 & x & x & 0 & x \\ 1 & x & x & x & 0 \end{vmatrix}.$$

答案: (1) $-2(x^3+y^3)$; (2) $1-x^2-y^2-z^2$; (3) b^2c^2 ;

 $(4)\ 160;\ (5)\ 40;\ (6)\ 4x^3.$

2. 证明:

$$(1)\begin{vmatrix} a_1 + b_1 x & a_1 x + b_1 & c_1 \\ a_2 + b_2 x & a_2 x + b_2 & c_2 \\ a_3 + b_3 x & a_3 x + b_3 & c_3 \end{vmatrix} = (1 - x^2)\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix};$$

$$\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^3 & b^3 & c^3 \end{vmatrix} = (a+b+c)(b-a)(c-a)(c-b);$$
$$\begin{vmatrix} a^2 & (a+1)^2 & (a+2)^2 & (a+3)^2 \end{vmatrix}$$

(3)
$$\begin{vmatrix} a^2 & (a+1)^2 & (a+2)^2 & (a+3)^2 \\ b^2 & (b+1)^2 & (b+2)^2 & (b+3)^2 \\ c^2 & (c+1)^2 & (c+2)^2 & (c+3)^2 \\ d^2 & (d+1)^2 & (d+2)^2 & (d+3)^2 \end{vmatrix} = 0.$$

3. 计算下列行列式:

$$(1)\begin{vmatrix} 1 & 2 & 0 & 0 \\ 3 & 4 & 0 & 0 \\ 0 & 0 & 5 & 6 \\ 0 & 0 & 7 & 8 \end{vmatrix}; \quad (2)\begin{vmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 1 & 2 & 3 & 4 \\ 2 & 2 & 3 & 4 & 5 \\ 0 & 0 & 0 & 3 & 4 \\ 0 & 0 & 0 & 5 & 6 \end{vmatrix}; \quad (3)\begin{vmatrix} a & 0 & a & 0 & a \\ b & 0 & c & 0 & d \\ b^2 & 0 & c^2 & 0 & d^2 \\ 0 & ab & 0 & bc & 0 \\ 0 & cd & 0 & da & 0 \end{vmatrix}.$$

答案: (1) -20; (2) -2;

(3)
$$abd(c-d)(d-b)(d-c)(c^2-a^2)$$
.

4. 计算下列 n 阶行列式:

$$\begin{vmatrix}
0 & 1 & 1 & \cdots & 1 \\
1 & 0 & 1 & \cdots & 1 \\
1 & 1 & 0 & \cdots & 1 \\
\vdots & \vdots & \vdots & \vdots \\
1 & 1 & 1 & \cdots & 0
\end{vmatrix}$$

$$\begin{vmatrix}
a_1 + b & a_2 & a_3 & \cdots & a_n \\
a_1 & a_2 + b & a_3 & \cdots & a_n \\
a_1 & a_2 & a_3 + b & \cdots & a_n \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
a_1 & a_2 & a_3 & \cdots & a_n + b
\end{vmatrix}$$
;

$$\begin{vmatrix}
1 & 2 & 2 & \cdots & 2 \\
2 & 2 & 2 & \cdots & 2 \\
2 & 2 & 3 & \cdots & 2 \\
\vdots & \vdots & \vdots & & \vdots \\
2 & 2 & 2 & \cdots & n
\end{vmatrix};$$

$$(4) \begin{vmatrix}
1 + a_1 & 1 & \cdots & 1 \\
1 & 1 + a_2 & 1 & \cdots & 1 \\
\vdots & \vdots & & \vdots & & \vdots \\
1 & 1 & \cdots & 1 + a_n
\end{vmatrix};$$

答案:
$$(1)(n-1)(-1)^{n-1}$$
; $(2)\sum_{i=1}^{n}a_{i}b^{b-1}+b^{n}$;

(3) (-2)(n-2)!;

(4)
$$a_1 a_2 a_3 \cdots a_n (1 + \sum_{i=1}^n \frac{1}{a_i}).$$

5. 利用递推公式计算行列式

$$D_5 = \begin{vmatrix} 1-a & a & 0 & 0 & 0 \\ -1 & 1-a & a & 0 & 0 \\ 0 & -1 & 1-a & 0 & 0 \\ 0 & 0 & -1 & 1-a & a \\ 0 & 0 & 0 & -1 & 1-a \end{vmatrix}.$$

答案: $1-a+a^2-a^3+a^4-a^5$.

1.3 Cramer 法则

1.3.1 Cramer 法则

对于由 n 个方程、n 个未知量组成的线性方程组

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2, \\ \dots \dots \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n, \end{cases}$$

其中 x_1, x_2, \dots, x_n 为未知量; a_{ij} 为第 i 个方程中未知量 x_j 的系数, $i, j = 1, 2, \dots, n$; b_1, b_2, \dots, b_n 为常数项, 如果它的系数行列式

$$D = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} \neq 0,$$

则方程组有唯一解

$$x_1 = \frac{D_1}{D}, x_2 = \frac{D_2}{D}, \cdots, x_n = \frac{D_n}{D}.$$

其中, D_j 是将 D 的第 j 列元素 $a_{1j}, a_{2j}, \cdots, a_{nj}$ 依次用方程组右端的常数项 b_1, b_2, \cdots, n 替换后所得到的 n 阶行列式, 即

$$D_{i} = \begin{vmatrix} a_{11} & \cdots & a_{1,j-1} & b_{1} & a_{1,j+1} & \cdots & a_{1n} \\ a_{21} & \cdots & a_{2,j-1} & b_{1} & a_{2,j+1} & \cdots & a_{2n} \\ \vdots & & \vdots & \vdots & & \vdots \\ a_{n1} & \cdots & a_{n,j-1} & b_{1} & a_{n,j+1} & \cdots & a_{nn} \end{vmatrix}, \quad j = 1, 2, \dots, n.$$

书后例题 1.3.2

1. 用 Cramer 法则求解下列方程组:

$$(1) \begin{cases} 2x_1 - x_2 - x_3 = 4, \\ 3x_1 + 4x_2 - 2x_3 = 11, \\ 3x_1 - 2x_2 + 4x_3 = 11; \end{cases}$$

$$x_3 + a_1^3 x_4 = 1,$$

$$\begin{cases} 3x_1 - 2x_2 + 4x_3 = 11; \\ x_1 + a_1x_2 + a_1^2x_3 + a_1^3x_4 = 1, \\ x_1 + a_2x_2 + a_2^2x_3 + a_2^3x_4 = 1, \\ x_1 + a_3x_2 + a_3^2x_3 + a_3^3x_4 = 1, \\ x_1 + a_4x_2 + a_4^2x_3 + a_4^3x_4 = 1. \end{cases}$$
答案: (1) $x_1 = 3, x_2 = 1, x_3 = 1;$
(2) $x_1 = 1, x_2 = x_3 = x_4 = 0.$
2. 如果齐次线性方程组

(2)
$$x_1 = 1$$
, $x_2 = x_3 = x_4 = 0$.

$$\begin{cases} \lambda x_1 + x_2 + x_3 = 0, \\ x_1 + \lambda x_2 + x_3 = 0, \\ 3x_1 - x_2 + x_3 = 0 \end{cases}$$

存在非零解, 试求 λ 的值.

答案: $\lambda = 1$.

5. 求 3 次多项式 f(x), 使其满足: f(-1) = 0, f(1) = 4, f(2) = 3, f(3) = 16.

答案: $f(x) = 7 - 5x^2 + 2x^3$.

1.4 第 1 章习题

1. 答案: (1) 140; (2) 48; (3) 1,2,3; (4) $\frac{a}{b}$; (5) $\lambda \neq 1$ 且 $\mu \neq 0$.

2. **答案:** (1) D; (2) A; (3) B.

3. 答案: −105.

4. **答案:** (1) -18; (2) -142; (3) $1 + x^2 + y^2 + z^2$; (4) $6a^5$.

5. **答案:** $x_1 = \frac{1}{2}$, $x_2 = x_3 = x_4 = 0$.

2.1 知识点总结与剖析

1. 矩阵: 由数域 F 中的 $m \times n$ 个数排成的行列的矩形数表. 通常用大写字母表示矩阵, 小写字母表示其中元素.

矩阵运算:

a) 加减运算 A + B

前提: 矩阵维数相同, 即同为 $m \times n$ 矩阵.

运算规则: 下标相同元素相加.

b) 数乘运算 kA

运算规则: A 中每个元素均乘以 k

c) 乘法运算 **AB**

前提: A 的列数与 B 的行数相同.

运算规则: $m{A}$ 中的第i 行构成的行向量与 $m{B}$ 中的第j 列构成的列向量相乘的到结果矩阵 $m{C}$ 中的 $m{C}_{ij}$ 元素.

d) 矩阵的转置 A^T

运算规则: 将 \mathbf{A} 中元素的行下标与列下表交换, 即 a_{ji} 为 \mathbf{A}^T 中的第 j 行, 第 i 列个元素.

矩阵运算部分结论:

- a) $A^{-1}+B^{-1} \neq (A+B)^{-1}$,但二者可建立联系: $(A^{-1}+B^{-1})^{-1} = A(A+B)^{-1}B = B(A+B)^{-1}A$;
 - b) $(\boldsymbol{A}\boldsymbol{B})^T = \boldsymbol{B}^T \boldsymbol{A}^T$;
 - c) $\det(\mathbf{A}\mathbf{B}) = \det(\mathbf{A}) \times \det(\mathbf{B})$.
 - **2. 方阵的行列式:** 由 n 阶方阵 A 的元素所构成的行列式 (各元素的位置不变) 称

为方阵的行列式, 记作 |A| 或 det(A).

3. 伴随矩阵: 设 \boldsymbol{A} 为 $n(n \geq 2)$ 阶方阵, 称行列式 $|\boldsymbol{A}|$ 的各个元素的代数余子式 \boldsymbol{A}_{ij} 构成的矩阵的转置为伴随矩阵, 记作 \boldsymbol{A}^* 或 $adj(\boldsymbol{A})$.

- a) 性质 1: $AA^* = A^*A = \det(A) * E$;
- b) 性质 2: 若 $\det(\mathbf{A}) \neq 0$, 则 $\det(\mathbf{A}^*) = [\det(\mathbf{A})]^{n-1}$.
- **4. 逆矩阵:** 对于 n 阶方阵 A, 如果有 n 阶方阵 B, 使得: AB = BA = E 则称 A 可逆, B 方阵称为 A 的逆矩阵, 记作 $A^{-1} = B$.
 - a) 定理: \boldsymbol{A} 可逆 $\iff \det(\boldsymbol{A}) \neq 0$, 且当 \boldsymbol{A} 可逆时, 有 $\boldsymbol{A}^{-1} = \frac{\boldsymbol{A}^*}{\det(\boldsymbol{A})}$.
 - 5. 分块矩阵的运算: 将子矩阵视为矩阵元素, 具体规则与矩阵运算相同。
 - 6. 初等变换: 矩阵的初等列变换与初等行变换统称为矩阵的初等变换. 初等行 (列) 变换:
 - (1) 互换两行(列);(2) 数乘两行(列);(3) 倍加两行(列).

矩阵等价: 如果矩阵 \mathbf{A} 经有限次初等变换化成 \mathbf{B} , 则称 \mathbf{A} 与 \mathbf{B} 行 (列) 等价, 记作 $\mathbf{A} \cong \mathbf{B}$.

- a) 定理 1: 对矩阵 A 施行一次初等行变换, 相当于对 A 左乘一个相应的初等矩阵; 对 A 矩阵施行一次初等列变换, 相当于对 A 右乘一个相应的初等矩阵.
- b) 定理 2: 对于任一非零矩阵 $\mathbf{A} = (a_{ij})_{m \times n}$ 都可通过有限次初等行变化把它化成阶梯形矩阵, 进一步可化为简化行阶梯形矩阵.
 - c) 定理 3: 任一可逆方阵 A 必可通过若干次初等行变换化成同阶单位矩阵 E.
 - d) 定理 4: 方阵 A 可逆 \iff A 可表示成若干个初等矩阵的乘积.
- 7. 矩阵的秩: 如果 A = O, 则称 A 的秩为零; 如果 $A \neq O$, 则称 A 中非零子式的最高阶数为 A 的秩, 记作 R(A) 或 r(A).

k **阶子式:** 在 $m \times n$ 矩阵 \boldsymbol{A} 中, 任取 k 行 k 列 ($k \le m, k \le n$), 位于这些行列交叉 处的 k^2 个元素, 不改变他们在中所处位置的次序而得到的 k 阶行列式, 称为矩阵 \boldsymbol{A} 的一个 k 阶子式.

- a) 定理 1: 经过初等变换的矩阵其秩不变.
- b) 定理 2: 若 $r(\mathbf{A}_{m \times n}) = r$, 则必存在 m 阶可逆矩阵 \mathbf{P} 和 n 阶可逆矩阵 \mathbf{Q} , 使

$$PAQ = egin{bmatrix} I_r & O \ O & O \end{bmatrix}.$$

c) 结论:
$$r(\mathbf{A}^*) = \begin{cases} n, r(\mathbf{A}) = n, \\ 1, r(\mathbf{A}) = n - 1, \\ 0, r(\mathbf{A}) < n - 1. \end{cases}$$

2.2 精选例题

2.2.1 矩阵乘法与乘幂

例 2.1. 设 α 为 3 维向量, α^T 是 α 的转置.若 $\alpha\alpha^T=\begin{bmatrix}1&-1&1\\-1&1&-1\\1&-1&1\end{bmatrix}$,则 $\alpha^T\alpha=$ ____.

答案: 3.

法 1: 设 $\alpha = (x, y, z)^T$, 则

$$m{lpha} m{lpha}^T = egin{bmatrix} x^2 & xy & xz \\ xy & y^2 & yz \\ xz & yz & z^2 \end{bmatrix} = egin{bmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{bmatrix}.$$

又 $\alpha \alpha^T = x^2 + y^2 + z^2$, 所以 $\alpha \alpha^T = 3$

法 2: 由

$$m{lpha} m{lpha}^T = egin{bmatrix} 1 & -1 & 1 \ -1 & 1 & -1 \ 1 & -1 & 1 \end{bmatrix},$$

得

$$egin{aligned} oldsymbol{lpha} oldsymbol{lpha} oldsymbol{lpha}^T oldsymbol{lpha} oldsymbol{lpha} oldsymbol{lpha} oldsymbol{lpha}^T oldsymbol{lpha} oldsymbol{lph$$

注意到 $\alpha^T \alpha$ 为一个数, 所以 $\alpha \alpha^T \alpha \alpha^T = \alpha^T \alpha \alpha \alpha^T = 3\alpha \alpha^T$, 故 $\alpha^T \alpha = 3$.

法 3: 直接利用结论, 若为行向量, 则为一个数, 其值为矩阵主对角线元素之和. 故直接将所给矩阵主对角线元素相加的值为 3.

注: 行列向量的乘积是矩阵运算中经常涉及到的内容, 法 1 为原理, 法 2 是常见的处理方法, 法 3 是结论, 当在解题过程中碰到有关行列向量乘积的问题时, 应试着往这方面想.

例 2.2. 设 A 是 $m \times n$ 实矩阵. 证明: $AA^T = O \iff A = O$.

分析: 从右到左显然,从左到右: $\langle {\bf A}{\bf A}^T \rangle_{(i,i)} = \sum_{k=1} a_{ik}^2 = 0$,所以 $a_{ik} = 0$, $(k=0,1,2,\cdots,n)$ 所以 ${\bf A}$ 的第 i 行全为 0,同理可得其他行皆为 0,所以 ${\bf A}={\bf O}$.

此题相当于找到一行数的平方和为零问题, 从而证明各个元素都是 0.

例 2.3 (课本题,
$$P_{46}T_{10}$$
). (1) 设 $\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{bmatrix}$, 求 $\mathbf{A}^n - 2\mathbf{A}^{n-1}(n = 2, 3, \cdots)$;

(2) 设
$$\alpha = [1, 2, 3], \beta = [1, \frac{1}{2}, \frac{1}{3}]$$
 方阵 $A = \alpha^T \beta$, 求 $A^n (n = 2, 3, \cdots)$. 答案:

(1)
$$O$$
;
(2) $3^{n-1}\begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} \\ 2 & 1 & \frac{2}{3} \\ 3 & \frac{3}{2} & 1 \end{bmatrix}$.

分析: 见课本 P_{311} . (第二问用到行列向量相乘得一个数)

例 2.4. 设
$$\mathbf{A} = (1,2,3), \mathbf{B} = (1,-1,1),$$
则 $(\mathbf{A}^T \mathbf{B})^{2017} = \underline{}$

解:显然不能直接硬算,应利用矩阵运算规则先做简化处理,注意到 BA^T 是一个常数 2,所以, $(A^TB)^{2017}=(BA^T)^{2016}A^TB=2^{2016}A^TB$.

求幂的方法:

- 1) 归纳猜想, 计算几次后发现规律, 再用归纳法严格证明;
- 2) 若能分解成列行向量相乘的形式,则利用结合律提出行列向量相乘的部分;
- 3) 若能分解成 $P^{-1}AP(A)$ 为对角阵),则中间的 $P^{-1}P$ 部分全部抵消,转换成对角阵的幂,再乘以两端的 P,P^{-1} ,这种方法是非常常见且有效的一种方法;
 - 4) 分块对角阵求幂;
- 5) 若 A 可分解为 A = F + G, F,G 的幂便于计算, 且满足 FG = GF, 则可利用 二项展式计算 A^n .

2.2.2 方阵的行列式

例 2.5. 设 \mathbf{A} 为 3 阶矩阵, $|\mathbf{A}| = -2$, 将 \mathbf{A} 接列分块为 $\mathbf{A} = (a_1, a_2, a_3)$, 其中 $a_j(j = 1, 2, 3)$ 是 \mathbf{A} 的第 \mathbf{j} 列, 令 $\mathbf{B} = (a_3 - 2a_1, 3a_2, a_1)$, 则 $|\mathbf{B}| = \underline{\qquad}$.

答案: 6.

法 1: 将 $|\mathbf{B}|$ 拆成两个行列式之和,得 $|\mathbf{B}| = |(a_3 - 2a_1, 3a_2, a_1)| = |(a_3, 3a_2, a_1)| - |(2a_1, 3a_2, a_1)| = 3|(a_3, a_2, a_1)| - 0 = -3|(a_1, a_2, a_3)| = -3|\mathbf{A}| = 6.$

法 2:

$$|\mathbf{B}| = |(a_1, a_2, a_3) \begin{bmatrix} -2 & 0 & 1 \\ 0 & 3 & 0 \\ 1 & 0 & 0 \end{bmatrix}| = \begin{vmatrix} -2 & 0 & 1 \\ 0 & 3 & 0 \\ 1 & 0 & 0 \end{vmatrix} |\mathbf{A}| = -3|\mathbf{A}| = 6.$$

上述方法中方法 1 经常用到, 方法 2 与方法 3 等价, 方法 3 应重点掌握.

例 2.6. 设 4 阶方阵 $A = [\alpha, 2\gamma_2, 3\gamma_3, 4\gamma_4]^T$, $B = [\beta, \gamma_2, \gamma_3, \gamma_4]^T$, 其中 $\alpha, \gamma_2, \gamma_3, \gamma_4, \beta$ 均为 4 维行向量, 且已知 |A| = 8, |B| = 1, 计算行列式 |A - B|.

答案: -4.

$$|\mathbf{A} - \mathbf{B}| = \begin{vmatrix} \boldsymbol{\alpha} - \boldsymbol{\beta} \\ \boldsymbol{\gamma}_2 \\ 2\boldsymbol{\gamma}_3 \\ 3\boldsymbol{\gamma}_4 \end{vmatrix} = 6 \begin{vmatrix} \boldsymbol{\alpha} - \boldsymbol{\beta} \\ \boldsymbol{\gamma}_2 \\ \boldsymbol{\gamma}_3 \\ \boldsymbol{\gamma}_4 \end{vmatrix} = 6 \begin{vmatrix} \boldsymbol{\alpha} \\ \boldsymbol{\gamma}_2 \\ \boldsymbol{\gamma}_3 \\ \boldsymbol{\gamma}_4 \end{vmatrix} - 6 \begin{vmatrix} \boldsymbol{\beta} \\ \boldsymbol{\gamma}_2 \\ \boldsymbol{\gamma}_3 \\ \boldsymbol{\gamma}_4 \end{vmatrix} = \frac{1}{4} \begin{vmatrix} 2\boldsymbol{\gamma}_2 \\ 3\boldsymbol{\gamma}_3 \\ 4\boldsymbol{\gamma}_4 \end{vmatrix} = -6|\mathbf{B}| = \frac{1}{4}|\mathbf{A}| - 6|\mathbf{B}| = -4.$$

单纯的矩阵运算或是行列式并不麻烦,题型花样也不多,但加上逆阵后,特别是套上正交矩阵的马甲后题目就非常灵活了,下面一道题是 13 年的一道期中试题 (并不是压轴题),大家可以感受一下.

例 2.7. 设 \mathbf{A} 为 3 阶方阵, $\det(\mathbf{A}) = 0.5$, 求 $\det((2\mathbf{A})^{-1} - 5\mathbf{A}^*)$.

答案: -16.

分析: 此题要把握好伴随阵和逆矩阵的关系,以及逆矩阵的行列式与其本身行列式的关系. 先通过 $\mathbf{A}^* = |\mathbf{A}|\mathbf{A}^{-1}$,所求变成了 $\det(0.5\mathbf{A}^{-1}-2.5\mathbf{A}^{-1}) = (-2)^3\det(\mathbf{A}^{-1}) = -8\times 2 = -16$.

例 2.8. 设 A, B 均为 n 阶正交矩阵 (即 $A^{-1} = A^T$ 且为实矩阵), 满足 |A| + |B| = 0, 求 |A + B| 的值.

答案: 0.

分析: 首先, |A| + |B| 与 |A + B| 并不一定相等.

题目给了一个很弱的条件 |A| + |B| = 0, 但同时给了一个很强的条件 A、B 都是正交阵, 我们不妨从这里开始研究:

A 是正交阵,则 $AA^T = I$, 所以 $|A|^2 = 1$, 所以 $|A| = \pm 1$. 同理 $|B| = \pm 1$. 再看题 |A| + |B| = 0,则可知 |A|、|B| 异号,一定是一个 1 一个 -1,即 |A||B| = -1; 已知条件已经发掘完全,剩下的就是建立已知与所求之间联系:

 $(A^{-1}+B^{-1})^{-1} = A(A+B)^{-1}B$ (课本 $P_{54}T_{11}$), 则有 $A+B = A(A^{-1}+B^{-1})B = A(A^T+B^T)B$, 两边同时取行列式得:

 $|A+B|=|A||B||A^T+B^T|=|A||B||A+B|,(|A+B|=|A^T+B^T|)$ 所以|A+B|=|A+B|,所以|A+B|=0.

2.2.3 伴随与逆矩阵

例 2.9. 设方阵 A 满足 $A^3 - A^2 + 2A - E = O$, 证明: A 及 E - A 均可逆, 并求 A^{-1} 和 $(E - A)^{-1}$.

答案: $A^{-1} = A^2 - A + 2E$; $(E - A)^{-1} = A^2 + 2E$.

分析: 对题目所给式子做恒等变形, 因式分解, 即可确定.

由 $A^3 - A^2 + 2A - E = O$, 得: $A(A^2 - A + 2E) = E$, 故 A 可逆, 且 $A^{-1} = A^2 - A + 2E$;

由 $A^3-A^2+2A-E=O$,得: $A^3-A^2+2A-2E=-E$,整理后得 $(E-A)(A^2+2E)=E$;

所以 E - A 可逆, 且 $(E - A)^{-1} = A^2 + 2E$.

例 2.10. 设 A, B, A + B 均为可逆方阵, 证明:

- $(1) A^{-1} + B^{-1}$ 可逆, 且 $(A^{-1} + B^{-1})^{-1} = A(A + B)^{-1}B$;
- (2) $A(A + B)^{-1}B = B(A + B)^{-1}A;$

答案:

- $(1) (A^{-1} + B^{-1})^{-1} = A(A + A)^{-1}B \iff ((A^{-1} + B^{-1})^{-1})^{-1} = (A(A + A)^{-1}B)^{-1}$ $\iff (A^{-1} + B^{-1}) = B^{-1}(A + B)A^{-1}$ 因为 A, B, A + B 均可逆, 且上式显然成立, 得证:
 - (2) if $A(A+B)^{-1}B = B(A+B)^{-1}A$:

 $({m A}^{-1}+{m B}^{-1})={m A}^{-1}({m A}+{m B}){m B}^{-1}
ightarrow ({m A}^{-1}+{m B}^{-1})^{-1}={m B}({m A}+{m B})^{-1}{m A}$ is (1) $({m A}^{-1}+{m B}^{-1})^{-1}={m A}({m A}+{m B})^{-1}{m B};$

根据可逆方阵的逆是唯一的, 可知: $A(A+B)^{-1}B = B(A+B)^{-1}A$.

例 2.11. 已知 n 阶矩阵 \boldsymbol{A} 满足 $\boldsymbol{A}^3=2\boldsymbol{I},$ $\boldsymbol{B}=\boldsymbol{A}^2-2\boldsymbol{A}+2\boldsymbol{I},$ 证明 \boldsymbol{B} 可逆, 并求 $\boldsymbol{B}^{-1}.$

答案:
$$B^{-1} = \frac{1}{10}(A^2 + 3A + 4I)$$

法 1: 利用条件 $A^3 = 2I$ 可发现, $A^3 与 I$ 齐次, 同理, A^4 与 A 齐次, A^5 与 A^2 齐次, 故 A 的代数多项式一定可用 I, A, A^2 表示.

若 \boldsymbol{B} 可逆, 则一定存在 a,b,c 使得 $\boldsymbol{B}^{-1} = a\boldsymbol{A}^2 + b\boldsymbol{A} + c\boldsymbol{I}$;

$$\mathbb{P}[BB^{-1} = (A^2 - 2A + 2I)(aA^2 + bA + cI);$$

则:

$$\begin{cases}
2a - 2b + c = 0 \\
2b - 2a - 2c = 0 \\
2b + 2c - 1 = 0
\end{cases}$$

解得:

$$\begin{cases} a = \sqrt{\frac{1}{10}} \\ b = \sqrt{\frac{3}{10}} \\ c = -\frac{2}{5} \end{cases}$$

所以 $m{B}$ 可逆, 且 $m{B}^{-1}=rac{1}{10}(m{A}^2+3m{A}+4m{I})$ 法 2:

 $m{B}=m{A}^2-2m{A}+2m{I}=m{A}^3+m{A}^2-2m{A}=m{A}(m{A}-m{I})(m{A}+2m{I}),$ 将 $\,m{B}\,$ 分解,证其因子可逆.

... $oldsymbol{A}^3=2oldsymbol{I}, \ oldsymbol{A}
ot
otin
otation <math>oldsymbol{A}$ 可逆, $oldsymbol{A}^{-1}=rac{1}{2}oldsymbol{A}^2.$

 $m{A^3-I}=m{A^3-I^3}=(m{A-I})(m{A^2+A+I})$ 且 $m{A^3-I}=m{I}$,所以 $(m{A-I})(m{A^2+A+I})=m{I}$, $(m{A-I})$ 可逆,且 $(m{A-I})^{-1}=m{A^2+A+I}$.

 $m{A}^3 + 8m{I} = m{A}^3 + (2m{I})^3 = (m{A} + 2m{I})(m{A}^2 - 2m{A} + 2m{I}) = 10m{I}$,所以 $(m{A} + 2m{I})$ 可逆, $(m{A} + 2m{I})^{-1} = rac{1}{10}(m{A}^2 - 2m{A} + 2m{I})$.

所以 \boldsymbol{B} 可逆, 且 $\boldsymbol{B}^{-1} = \frac{1}{20}(\boldsymbol{A}^2 - 2\boldsymbol{A} + 2\boldsymbol{I})(\boldsymbol{A}^2 + \boldsymbol{A} + \boldsymbol{I})\boldsymbol{A}^2 = \frac{1}{10}(\boldsymbol{A}^2 + 3\boldsymbol{A} + 4\boldsymbol{I}).$

例 2.12 (课本第 2 章习题, $P_{79}T_5$, 18 年期中). 设 4 阶矩阵 \boldsymbol{B} 满足 $[(\frac{1}{2}\boldsymbol{A})^*]^{-1}\boldsymbol{B}\boldsymbol{A}^{-1} =$

$$2\mathbf{A}\mathbf{B} + 12\mathbf{I}$$
, 其中 $\mathbf{A} = \begin{bmatrix} 1 & 2 & 0 & 0 \\ 1 & 3 & 0 & 0 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & -1 & 0 \end{bmatrix}$, 求矩阵 \mathbf{B} . 答案: $\mathbf{B} = \begin{bmatrix} 2 & -4 & 0 & 0 \\ -2 & -2 & 0 & 0 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & -1 & 2 \end{bmatrix}$.

代数方程的解法分离出未知量, 再通过求逆阵求解即可.

化筒: 由
$$(\frac{1}{2}A)^* = |\frac{1}{2}A|(\frac{1}{2}A)^{-1}$$
 得 $(\frac{1}{2}A)^* = \frac{|A|}{8}A^{-1} = \frac{1}{4}A^{-1}$,

故原方程化简为: $4ABA^{-1} = 2AB + 12I$, 进一步化简得: 2B = BA + 6I,

故原方程化简为:
$$4\mathbf{A}\mathbf{B}\mathbf{A}^{-1} = 2\mathbf{A}\mathbf{B} + 12\mathbf{I}$$
, 进一步化简得: $2\mathbf{B} = \mathbf{B}\mathbf{A} + 6\mathbf{I}$, 所以 $\mathbf{B} = 6(2\mathbf{I} - \mathbf{A})^{-1}$, $2\mathbf{I} - \mathbf{A} = \begin{bmatrix} 1 & -2 & 0 & 0 \\ -1 & -1 & 0 & 0 \\ 0 & 0 & 2 & -2 \\ 0 & 0 & 1 & 2 \end{bmatrix}$, 分块对角阵求逆阵得

$$\boldsymbol{B} = 6(2\boldsymbol{I} - \boldsymbol{A})^{-1} = \begin{bmatrix} 2 & -4 & 0 & 0 \\ -2 & -2 & 0 & 0 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & -1 & 2 \end{bmatrix}.$$

例 2.13. 设
$$A = \begin{bmatrix} 1 & 2 & -2 \\ 4 & t & 3 \\ 3 & -1 & 1 \end{bmatrix}$$
, 矩阵 $B_{4\times3} \neq O$, 且满足 $BA = O$, 求常数 t 的值.

答案: -3.

法 1: 用反证法证明 |A| = 0:

假设 $|A| \neq 0$, 则 A 可逆, 又有 BA = O, 两边同时右乘 A^{-1} , 得 B = O, 与题设 矛盾,故 $|\mathbf{A}| = 0$;

法 2: 用线性方程组的观点证明 |A|=0:

因为 BA = O, 所以 $A^TB^T = O$, 又 $B^T \neq O$, 所以线性方程组 $A^Tx = O$ 有非零 解, 所以 |A| = 0;

计算 |A| 得 7t + 21 = 0, 解得 t = -3.

例 2.14. 设 $\mathbf{A} = \mathbf{E} - \boldsymbol{\alpha} \boldsymbol{\alpha}^T$, 其中 \mathbf{E} 为 n 阶单位矩阵, $\boldsymbol{\alpha}$ 是 $n \times 1$ 非零矩阵, 证明: (1) $\mathbf{A}^2 = \mathbf{A} \Longleftrightarrow \boldsymbol{\alpha} \boldsymbol{\alpha}^T = 1$; (2) $\boldsymbol{\alpha} \boldsymbol{\alpha}^T = 1$ 时, \mathbf{A} 不可逆.

证:

- (1) 因为 $\mathbf{A}^2 = \mathbf{A}\mathbf{A} = (\mathbf{E} \boldsymbol{\alpha}\boldsymbol{\alpha}^T)(\mathbf{E} \boldsymbol{\alpha}\boldsymbol{\alpha}^T) = \mathbf{E} 2\boldsymbol{\alpha}\boldsymbol{\alpha}^T + \boldsymbol{\alpha}\boldsymbol{\alpha}^T\boldsymbol{\alpha}\boldsymbol{\alpha}^T$, 注意到 $\boldsymbol{\alpha}^T\boldsymbol{\alpha}$ 是一个数,则 $\mathbf{A}^2 = \mathbf{E} 2\boldsymbol{\alpha}\boldsymbol{\alpha}^T + (\boldsymbol{\alpha}^T\boldsymbol{\alpha})\boldsymbol{\alpha}\boldsymbol{\alpha}^T$, 显然,当 $\boldsymbol{\alpha}^T\boldsymbol{\alpha} = 1$ 时, $\mathbf{A}^2 = \mathbf{A}$; 而当 $\mathbf{A}^2 = \mathbf{A}$ 时,有 $(\boldsymbol{\alpha}^T\boldsymbol{\alpha} 1)\boldsymbol{\alpha}\boldsymbol{\alpha}^T = \mathbf{O}$,又 $\boldsymbol{\alpha}$ 非零,则 $\boldsymbol{\alpha}\boldsymbol{\alpha}^T \neq \mathbf{O}$ (只要设 $\boldsymbol{\alpha} = (x_1, x_2, \cdots, x_n)$,计算可知) 故必有 $\boldsymbol{\alpha}^T\boldsymbol{\alpha} = 1$,所以充要条件成立.
- (2) 由 (1) 知, 当 $\alpha^T \alpha = 1$ 时, $A^2 = A$, 如果 A 可逆, 则 $A^{-1}(AA) = A^{-1}A$, 于 是 A = E, 则 $\alpha \alpha^T = O$, 由 (1) 中运算可知, 此时必有 $\alpha = 0$, 与 $\alpha^T \alpha = 1$ 矛盾, 故 A 不可逆.

证明矩阵可逆的一般思路:

- (1) 证明行列式不为 0;
- (2) 证明满秩;
- (3) 找到一个矩阵, 使与之乘积为 kI:
- (4) 反证法;
- (5) 看能否写成初等阵之积等.

求逆矩阵的一般方法:

- (1) 初等行变换;
- (2) 定义法求伴随, 化逆阵;
- (3) 凑配法;
- (4) 分块对角公式
- 例 2.15 (课本 $P_{55}T_3$). 设实方阵 $\mathbf{A} = (a_{ij})_{4\times 4}$ 满足: (1) $a_{ij} = \mathbf{A}_{ij}$, 其中 \mathbf{A}_{ij} 是 a_{ij} 的代数余子式; (2) $a_{44} = -1$.
 - (1) 求 |A|; (2) 证明: A 可逆, 且 $A^{-1} = A^{T}$.

答案: (1) 1; (2) 详见分析.

分析: (1) 由 $a_{ij} = \mathbf{A}_{ij}$ 得 $\mathbf{A} = (\mathbf{A}^*)^T$,所以 $|\mathbf{A}| = |\mathbf{A}^*|$,即 $|\mathbf{A}| = |\mathbf{A}|^3$,故 $|\mathbf{A}| = 0, 1, -1$;

将 |A| 按第四行展开, 得 $|A| = a_{41}^2 + a_{42}^2 + a_{43}^2 + 1 \ge 1$, 故 |A| = 1.

(2) 由 $A = (A^*)^T$ 得 $A^T = A^*$, 两边同乘 A 得 $AA^T = |A|I = I$, 所以 A 可逆, 且 $A^{-1} = A^T$.

例 2.16 (课本 $P_{79}1.(5)$). 设矩阵 $\mathbf{A} = (a_{ij})_{3\times 3}$ 满足 $\mathbf{A}^* = \mathbf{A}^T$,若 a_{11}, a_{12}, a_{13} 为三个相等的正数,求 a_{11} .

答案: $\frac{\sqrt{3}}{3}$.

分析: $\mathbf{A}^* = \mathbf{A}^T$, 则 $|\mathbf{A}^T| = |\mathbf{A}| = |\mathbf{A}^*| = \mathbf{A}^{3-1} = \mathbf{A}^2$, 所以 $|\mathbf{A}| = 0,1$, 当满足 $\mathbf{A}^* = \mathbf{A}^T$ 时, 有 $a_{ij} = \mathbf{A}_{ij}$, 其中 \mathbf{A}_{ij} 是 a_{ij} 的代数余子式;

将
$$|\mathbf{A}|$$
 按第一行展开,得 $|\mathbf{A}|=a_{11}^2+a_{12}^2+a_{13}^2>0$,得 $|\mathbf{A}|=a_{11}^2+a_{12}^2+a_{13}^2>0$;
所以 $|\mathbf{A}|=1$,得 $|\mathbf{A}|=a_{11}^2+a_{12}^2+a_{13}^2=3a_{11}^2=1$,所以 $a_{11}=\frac{\sqrt{3}}{3}$.

2.2.4 矩阵的秩

例 2.17. 设线性方程组 AX = B 的增广矩阵为

$$ar{m{A}} = [m{A} : m{b}] = egin{bmatrix} 1 & 1 & \lambda & dots & m{A} \ -1 & \lambda & 1 & \ddots & \lambda^2 \ 1 & -1 & 2 & dots & -4 \end{bmatrix},$$

求 $r(\mathbf{A})$ 及 $r(\bar{\mathbf{A}})$.

分析: 这是一道讨论思想很明显的题目. 大家都知道对于求秩很基础的一个方法就是求化简为行阶梯型.

$$\begin{bmatrix} 1 & 1 & \lambda & \vdots & 4 \\ -1 & \lambda & 1 & \vdots & \lambda^2 \\ 1 & -1 & 2 & \vdots & -4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & \lambda & \vdots & 4 \\ 0 & 1+\lambda & 1+\lambda & \vdots & 4+\lambda^2 \\ 0 & -2 & 2-\lambda & \vdots & -8 \end{bmatrix},$$

下一步应当是用第二行消去第三行、第二列的 2, 此时要注意到是要判断 λ 与 -1 的关系. 我们先假设可以消去继续往下写, 最后 $\lambda = -1$ 的情况再单独讨论即可.

解答: 由题意得

$$\begin{bmatrix} 1 & 1 & \lambda & \vdots & 4 \\ -1 & \lambda & 1 & \vdots & \lambda^2 \\ 1 & -1 & 2 & \vdots & -4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & \lambda & \vdots & 4 \\ 0 & 1+\lambda & 1+\lambda & \vdots & 4+\lambda^2 \\ 0 & -2 & 2-\lambda & \vdots & -8 \end{bmatrix}$$

当 $\lambda \neq -1$ 时

$$\begin{bmatrix} 1 & 1 & \lambda & \vdots & 4 \\ 0 & 1+\lambda & 1+\lambda & \vdots & 4+\lambda^2 \\ 0 & -2 & 2-\lambda & \vdots & -8 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & \lambda & \vdots & 4 \\ 0 & 1+\lambda & 1+\lambda & \vdots & 4+\lambda^2 \\ 0 & 0 & 4-\lambda & \vdots & -8+\frac{8+2\lambda^2}{1+\lambda} \end{bmatrix}$$

故当
$$\lambda \neq 4$$
 且 $\lambda \neq -1$ 时, $r(\mathbf{A}) = r(\bar{\mathbf{A}}) = 3;$
当 $\lambda = -1$, $r(\mathbf{A}) = 2$, $r(\bar{\mathbf{A}}) = 3;$
当 $\lambda = 4$, $r(\mathbf{A}) = r(\bar{\mathbf{A}}) = 2.$

此类题是比较常见的一类题型,考试中出现的概率较大.考察同学们的矩阵的秩、增广系数阵等基础知识以及基础的分类讨论思想,属于难度不大的常考题型.

例 2.18 (13 年期中压轴题). 设 A 是 n 阶矩阵, r(A) = r, 证明: 必存在 n 阶可逆矩阵 B 及秩为 r 的 n 阶矩阵 C 满足 $C^2 = C$, 使 A = BC.

分析: A、C 秩为 r, 则 A、C 等价, A 必可表示为 BC, B 即为题目所给满秩方阵,

故关键在于找到这样的
$$C^2=C$$
 ,且说明使 $A=BC$,将 C 满秩分解为 $C=P\begin{bmatrix}I_r&O\\O&O\end{bmatrix}Q$ 的形式,若 $C^2=C$,显然 C 应有 $C=P\begin{bmatrix}I_r&O\\O&O\end{bmatrix}P^{-1}$; 设 $A=P\begin{bmatrix}I_r&O\\O&O\end{bmatrix}Q$,则现在的工作是找到这样一个 $B=MI_nN$,和 $C=X\begin{bmatrix}I_r&O\\O&O\end{bmatrix}X^{-1}$,使得 $P\begin{bmatrix}I_r&O\\O&O\end{bmatrix}Q=MI_nNX\begin{bmatrix}I_r&O\\O&O\end{bmatrix}X^{-1}$,注意到当 $NX=I_n$,上式刚好化为 $M\begin{bmatrix}I_r&O\\O&O\end{bmatrix}X^{-1}=P\begin{bmatrix}I_r&O\\O&O\end{bmatrix}Q$,所以取 $X^{-1}=Q$, $M=P$, $N=Q$,构造出来的矩阵 C 满足题意。 解答:设 $A=P\begin{bmatrix}I_r&O\\O&O\end{bmatrix}Q$; 令 $B=PI_nQ$, $C=Q^{-1}\begin{bmatrix}I_r&O\\O&O\end{bmatrix}Q$,显然满足 $C^2=C$; 且有 $C=PI_nQQ^{-1}\begin{bmatrix}I_r&O\\O&O\end{bmatrix}Q=A$,找到了这样的 $C=C$,命题得证.

例 2.19. 设 A 为 $m \times n$ 阶矩阵, B 为 $n \times m$ 阶矩阵, 证: $|I_m - AB| = |I_n - BA|$. 解: 由分块矩阵乘法得,

$$egin{bmatrix} m{I}_m & m{O} \ -m{B} & m{I}_n \end{bmatrix} \cdot egin{bmatrix} m{I}_m & m{A} \ m{B} & m{I}_n \end{bmatrix} = egin{bmatrix} m{I}_m & m{A} \ m{O} & m{I}_n - m{B}m{A} \end{bmatrix},$$

$$egin{bmatrix} egin{bmatrix} m{I}_m & -m{A} \ m{O} & m{I}_n \end{bmatrix} \cdot egin{bmatrix} m{I}_m & m{A} \ m{B} & m{I}_n \end{bmatrix} = egin{bmatrix} m{I}_m - m{A} & m{O} \ m{B} & m{I}_n \end{bmatrix},$$
两边取行列式得 $egin{bmatrix} m{I}_m & m{A} \ m{B} & m{I}_n \end{bmatrix} = |m{I}_m - m{A}m{B}| = |m{I}_n - m{B}m{A}|.$

2.3 习题练习

- 1. 若方阵 A 的行列式为零, 求证: A 的伴随阵的行列式为零.
- 2. 设 n 阶方阵 A, B 的行列式分别等于 2, -3, 求 $det(-2A^*B^{-1})$.

3. 设 3 阶矩阵
$$\boldsymbol{A}$$
, \boldsymbol{B} 满足 $2\boldsymbol{A}^{-1}\boldsymbol{B} = \boldsymbol{B} - 4\boldsymbol{I}$, $\boldsymbol{B} = \begin{bmatrix} 1 & -2 & 0 \\ 1 & 2 & 0 \end{bmatrix}$, 求矩阵 \boldsymbol{A} .

4. 设矩阵 \boldsymbol{B} 满足方程 $\boldsymbol{A}^*\boldsymbol{B} = \boldsymbol{A}^{-1} + 2\boldsymbol{B}$, 其中 $\boldsymbol{A} = \begin{bmatrix} 1 & 1 & -1 \\ -1 & 1 & 1 \end{bmatrix}$, 求 \boldsymbol{B}

5. 设矩阵 X 满足方程 AXA + BXB = AXB + BXA + I, 其中 A =

5. 设矩阵
$$X$$
 满足方程 AXA — $\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$, 求矩阵 X .

6. 已知
$$\boldsymbol{A}$$
 的伴随阵为
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & -3 & 0 & 8 \end{bmatrix}$$
, 矩阵 \boldsymbol{B} 满足方程 $\boldsymbol{A}\boldsymbol{B}\boldsymbol{A}^{-1} = \boldsymbol{B}\boldsymbol{A}^{-1} + 3\boldsymbol{I}$,

求 **B**.

答案:

- 1. 如果 A 是零矩阵,则 A 的伴随阵也为零矩阵,其行列式为零;如果 A 不是零矩阵,那么 $AA^* = |A|I = O$. 现在假设 A 的伴随阵的行列式不为零,那么 A 的伴随阵可逆,上式两端同时右乘 A 的伴随阵的逆之后得 A = O,与 A 不是零矩阵矛盾,所以此种情况下 A 的伴随阵的行列式仍为零,证毕.
 - 2. $-\frac{2^{2n-1}}{3}$, 注意 -2 提取出来之后应带 n 次方.

$$3. \begin{bmatrix} 0 & 2 & 0 \\ -1 & -1 & 0 \\ 0 & 0 & -2 \end{bmatrix}$$

$$4. \begin{bmatrix} \frac{1}{4} & \frac{1}{4} & 0 \\ 0 & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & 0 & \frac{1}{4} \end{bmatrix}.$$

$$5. \begin{bmatrix} 1 & 2 & 5 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}.$$

$$6 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 0 & 6 & 0 & 0 \end{bmatrix}.$$

,先根据 \boldsymbol{A} 的伴随阵的行列式为 8 得出 \boldsymbol{A} 的行列式为 2,据此可

以求出 \mathbf{A} 的逆, 进而得到 \mathbf{A} , 最后得到 \mathbf{B} .

 $\begin{bmatrix} 0 & 3 & 0 & -1 \end{bmatrix}$

第三章 几何向量及其应用

3.1 向量的运算

3.1.1 知识点

向量的线性运算包括加法和数乘。(加法: a + b, 数乘: λa) 向量的三种积包括数量积、向量积和混合积,具体如下:

(1) 数量积(点积、内积,二维情形,更高维同理):

$$a \cdot b = ||a|| \cdot ||b|| \cdot \cos \theta = ||a||(b)_a = ||b||(a)_b = x_a x_b + y_a y_b$$

(2) 向量积(叉积、外积):

结果的方向满足右手定则,结果的模在数值上等于由两向量确定的平行四边形的面积,该运算满足反交换律。

$$\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ x_a & y_a & z_a \\ x_b & y_b & z_b \end{vmatrix}$$

(3) 混合积: 三个向量其中两个先求叉积,再与另外一个作点积。

$$\begin{bmatrix} a & b & c \end{bmatrix} = (a \times b) \cdot c = \begin{vmatrix} x_a & y_a & z_a \\ x_b & y_b & z_b \\ x_c & y_c & z_c \end{vmatrix}$$

互换两个向量的位置,结果反号。

3.1.2 典型例题

例1

设a,b,c分别为空间上三点A,B,C的向径,证明:点C落在线段AB上的充要条件是存在数 $\lambda \in [0,1]$,使得

$$c = \lambda a + (1 - \lambda)b$$

证: 当C在线段的两端时, $\lambda = 0$ 或 1

当C在线段的内部时,设 $\lambda = \frac{CB}{AB}$,则 $\overrightarrow{CB} = \lambda \overrightarrow{AB}$,

$$\overrightarrow{m}\overrightarrow{CB} = c - b, \overrightarrow{AB} = a - b$$

故
$$c - b = \lambda(a - b)$$

$$\mathbb{P} \mathbf{c} = \lambda \mathbf{a} + (1 - \lambda) \mathbf{b}$$

一般地,若 λ 为实数,则点C在直线AB上。

思路: 先写出 $\overrightarrow{CB} = \lambda \overrightarrow{AB}$, 再一步一步推导即可

例 2

设
$$(a \times b) \cdot c = 2$$
,则 $[(a + b) \times (b + c)] \cdot (c + a) =$ ____。
解:
$$[(a + b) \times (b + c)] \cdot (c + a)$$
$$= [(a + b) \times b + (a + b) \times c] \cdot (c + a)$$
$$= (a \times b + a \times c + b \times c) \cdot (c + a)$$
$$= a \times b \cdot c + b \times c \cdot a = 2(a \times b \cdot c) = 4$$

思路: 先利用向量三种积的运算规则对式子进行化简,再依据向量与本身的向量积为零向量,向量与其他向量先进行向量积再与其本身进行数量积为 0 等性质对式子进行进一步化简即可。

3.2 向量之间的关系

3.2.1 知识点

两向量共线的充要条件:

a与b共线 $\Leftrightarrow a = \lambda b (\lambda \in R, b \neq 0) \Leftrightarrow k_1 a + k_2 b = 0 (k_1, k_2$ 不全为 0) 三向量共面的充要条件:

a、b、c共面 \Leftrightarrow 存在不全为零的 k_1 、 k_2 、 k_3 ,使得 $k_1a + k_2b + k_3c = 0$

特别地,当a、b、c为三维向量时,充要条件为存在不全为零的 k_1 、 k_2 、 k_3 ,使得

$$\begin{cases} x_a k_1 + y_a k_2 + z_a k_3 = 0 \\ x_b k_1 + y_b k_2 + z_b k_3 = 0 \\ x_c k_1 + y_c k_2 + z_c k_3 = 0 \end{cases}$$

即行列式 $\begin{vmatrix} x_a & y_a & z_a \\ x_b & y_b & z_b \\ x_c & y_c & z_c \end{vmatrix} = 0$,亦即混合积 $\begin{bmatrix} a & b & c \end{bmatrix} = 0$

两向量垂直的充要条件:

$$a \perp b \Leftrightarrow a \cdot b = 0 \Leftrightarrow a, b$$
夹角为 $\frac{\pi}{2}$

3.2.2 典型例题

例 3

若 $a \times b + b \times c + c \times a = 0$, 证明: a, b, c共面。

解: 证明a,b,c共面,只需证明其混合积等于0。

在原等式右乘一个c, 得 $a \times b \cdot c + b \times c \cdot c + c \times a \cdot c = 0$,

其中 $\mathbf{b} \times \mathbf{c} \cdot \mathbf{c} = \mathbf{c} \times \mathbf{a} \cdot \mathbf{c} = \mathbf{0}$ 。

故 $\mathbf{a} \times \mathbf{b} \cdot \mathbf{c} = [\mathbf{a} \quad \mathbf{b} \quad \mathbf{c}] = \mathbf{0}$, 故得证。

思路:运用三向量共面充要条件。

3.3 空间的平面与直线

3.3.1 知识点

- 1.平面的表示形式:
 - (1) 点法式:

$$A(x - x_0) + B(y - y_0) + C(z - z_0) = 0$$

过点 (x_0,y_0,z_0) , 法向量为 $\mathbf{n}=(A,B,C)$.

(2) 一般式:

$$Ax + By + Cz + D = 0$$

法向量为 $\mathbf{n} = (A, B, C)$

(3) 截距式:

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$

在x,y,z轴上的截距依次为a,b,c。(截距式不能表示与坐标轴平行的平面)

(4) 参数方程式:

$$\left\{ \begin{array}{l} x = x_0 + sL_1 + tL_2 \\ y = y_0 + sM_1 + tM_2, \quad (-\infty < s < +\infty, -\infty < t < +\infty) \\ z = z_0 + sN_1 + tN_2 \end{array} \right.$$

表示过点 (x_0, y_0, z_0) ,且向量 (L_1, M_1, N_1) , (L_2, M_2, N_2) 为该平面内不共线的两个向量。(参数方程形式基本不用)

2.空间直线的表示形式:

对于过点 (x_0, y_0, z_0) ,方向向量为(l, m, n)的直线

(1) 参数方程:

$$\begin{cases} x = x_0 + lt \\ y = y_0 + mt \\ z = z_0 + nt \end{cases} (-\infty < t < +\infty)$$

(2) 对称式方程:

$$\frac{x-x_0}{l} = \frac{y-y_0}{m} = \frac{z-z_0}{n}$$

该式表示一种比例形式,而不是除式。若分母为0,表示分子为0。

(3) 一般式方程:

$$\begin{cases} a_1x + b_1y + c_1z + d_1 = 0 \\ a_2x + b_2y + c_2z + d_2 = 0 \end{cases}$$

表示两个平面的交线,只有两个平面方程表示的平面相交时,上式表示直线。(可通过求两平面法向量的矢量积来求直线的方向向量)

3.平面之间的位置关系

对于两平面:

$$\pi_1: a_1x + b_1y + c_1z + d_1 = 0 \ , \qquad \pi_2: a_2x + b_2y + c_2z + d_2 = 0$$

其法向量为:

$$n_1 = (a_1, b_1, c_1), n_2 = (a_2, b_2, c_2)$$

有下列关系:

$$\pi_1 \parallel \pi_2 \Leftrightarrow n_1 \parallel n_2, \pi_1 \perp \pi_2 \Leftrightarrow n_1 \perp n_2$$

4.直线之间的位置关系

对于直线:

$$L_1: \frac{x - x_1}{l_1} = \frac{y - y_1}{m_1} = \frac{z - z_1}{n_1}, L_2: \frac{x - x_2}{l_2} = \frac{y - y_2}{m_2} = \frac{z - z_2}{n_2}$$

线上两点:

$$P_1(x_1, y_1, z_1), P_2(x_2, y_2, z_2)$$

两直线的方向向量:

$$\mathbf{n_1} = (l_1, m_1, n_1), \mathbf{n_1} = (l_2, m_2, n_2)$$

两者共面 $\leftrightarrow \overrightarrow{P_1P_2}$ 与 n_1, n_2 共面; 两者异面 $\leftrightarrow \overrightarrow{P_1P_2}$ 与 n_1, n_2 异面。

5.平面与直线的位置关系

一条直线L与L在平面 π 上的投影直线的夹角 φ 称为直线L与 π 的夹角($\varphi \in \left[0,\frac{\pi}{2}\right]$)。设直线方向向量为 α ,平面法向量为n,则

$$sin\varphi = |cos\langle a, n \rangle| = \frac{|a \cdot n|}{\|a\| \cdot \|n\|}$$

27

 $\varphi = 0$,则L与 π 平行或L在 π 内;

 $\varphi \neq 0$,则L与 π 相交。

特别地, 若 $\varphi = \frac{\pi}{2}$, 则L与 π 垂直。

注:绝大多数的空间平面与直线之间的关系问题,都是通过转化为他们的法向量和 方向向量的关系来求解的。

3.3.2 典型例题

例 4

已知两条直线 L_1 : $\frac{x-1}{1} = \frac{y-2}{0} = \frac{z-3}{-1}$ 和 L_2 : $\frac{x+2}{2} = \frac{y-1}{1} = \frac{z}{1}$,试求过 L_2 且平行于 L_1 的平面方程

分析: 平面与已知直线平行或直线在平面内,则平面的法向量与两直线的方向向量垂直。

解: 设所求平面的法向量n=(a,b,c), L_1 的方向向量 $n_1=(1,0,-1)$, L_2 的方向向量 $n_2=(2,1,1)$ 。则 $n\perp n_1, n\perp n_2$,平面过 L_2 上的点(-2,1,0)。

取法向量

$$n = n_1 \times n_2 = (1, -3, 1)$$

则平面方程为

$$x - 3y + z = -5$$

注:该问题也可用平面束解决。

另解: 过 L_2 的平面束为

$$(x-2y+4) + \lambda(y-z-1) = 0$$

化简得

$$x + (\lambda - 2)y - \lambda z = \lambda - 4$$

由 L_1 的方向向量垂直于平面束的法向量解得 $\lambda = -1$

因此所求平面方程为

$$x - 3y + z = -5$$

例 5

求两平面2x - y + z = 7和x + y + 2z = 11所成二面角的平分面方程。

分析: 直接向已知直线引垂线并不方便, 可以考虑使用两平面相交来求。

解:设P(x,y,z)为平分面上任意一点,则P到两平面距离相等,因此

$$\frac{|2x - y + z - 7|}{\sqrt{6}} = \frac{|x + y + 2z - 11|}{\sqrt{6}}$$

即

$$2x - y + z - 7 = \pm(x + y + 2z - 11)$$

因此平分面方程为

$$x - 2y - z + 4 = 0$$
 \mathbf{g} $x + z - 6 = 0$

例 6

直线L过点P(2,1,3),且与直线 $\frac{x+1}{3} = \frac{y-1}{2} = \frac{z}{-1}$ 垂直相交,求L的方程。

分析: 直接向已知直线引垂线并不方便,可以考虑使用两平面相交来求。

解:过已知直线的平面束为

$$(2x + 3y + 5) + \lambda(y + 2z - 1) = 0$$

代入P的坐标,解得

$$\lambda = -1$$

所以该平面为

$$2x - 4y - 2z + 6 = 0$$

再求过P的已知直线法平面方程法向量为(3,2,-1),过点P,由此得到法平面方程

$$3x + 2y - z - 5 = 0$$

解得直线一般式方程

$$\begin{cases} x - 2y - z + 3 = 0 \\ 3x + 2y - z - 5 = 0 \end{cases}$$

例 7

求过 $P_0(-1,0,4)$ 与平面3x - 4y + z - 10 = 0平行且又与直线 $\frac{x+1}{1} = \frac{y-3}{1} = \frac{z}{2}$ 相交的直线方程。

分析: 求出已知直线和平行平面的交点,就可解得直线方向向量,从而得出直线方程。**解**: 已知过 P_0 且与已知平行的平面方程:

$$3(x+1) - 4y + z - 4 = 0$$

已知直线的参数方程为

$$\begin{cases} x = -1 + t \\ y = 3 + t \\ z = 2t \end{cases}$$

将其代入平面方程得

$$3t - 12 - 4t + 2t - 4 = 0$$

解得

$$t = 16$$

直线过另一点(16,19,32), 直线方向向量为l = (16,19,28).

所以直线方程为

$$\frac{x+1}{16} = \frac{y}{19} = \frac{z-4}{28}$$

例 8

证明: 直线 $L_1: x=y=z-4, L_2: -x=y=z$ 异面; 求两直线间的距离,并求出与 L_1 和 L_2 都相交的直线方程。

分析: 任取 L_1, L_2 上两点 P_1, P_2 ,通过直线方向向量 l_1, l_2 和 $\overrightarrow{P_1P_2}$ 混合积判断是否异面。

解: 由题意得 $\boldsymbol{l}_1=(1,1,1), \boldsymbol{l}_2=(-1,1,1),$ 取 $P_1(0,0,4),P_2(0,0,0),$ 则 $\overrightarrow{P_1P_2}=(0,0,-4).$

混合积 $[\boldsymbol{l}_1 \quad \boldsymbol{l}_2 \quad \overrightarrow{P_1P_2}] = -8 \neq 0$,故 L_1, L_2 异面。

$$L_1, L_2$$
间距 $d = \frac{|[l_1 \quad l_2 \quad \overline{P_1 P_2}]|}{\|l_1 \times l_2\|} = \frac{8}{2\sqrt{2}} = 2\sqrt{2}$ 。

公垂线 L_3 与 $l_1 \times l_2 = (0,2,-2)$ 平行,设其方向向量为 $l_3 = (0,1,-1)$ 。

由 L_1 , L_3 确定平面法向量 $\mathbf{n}_1 = \mathbf{l}_1 \times \mathbf{l}_3 = (-2,1,1)$,平面为-2x + y + z - 4 = 0。 由 L_2 , L_3 确定平面法向量 $\mathbf{n}_2 = \mathbf{l}_2 \times \mathbf{l}_3 = (-2,-1,-1)$,平面为-2x - y - z = 0。 求得直线一般式方程为 $\left\{ \begin{array}{c} 2x - y - z + 4 = 0 \\ 2x + y + z = 0 \end{array} \right.$

例 9

求常数k的值,使得下列三个平面过同一直线,并求此直线的对称式方程。(直线如下)

$$\pi_1$$
: $3x + 2y + 4z = 1$; π_2 : $x - 8y - 2z = 3$; π_3 : $kx - 3y + z = 2$

解: 平面 π_1 、 π_2 的交线为

$$\begin{cases} 3x + 2y + 4z = 1 \\ x - 8y - 2z = 3 \end{cases}$$

 $\diamondsuit x = 0$ 得

$$\begin{cases} 2y + 4z = 1\\ -8y - 2z = 3 \end{cases}$$

解得直线上一点为 $\left(0,-\frac{1}{2},\frac{1}{2}\right)$ 。

该直线的方向向量为平面 π_1 、 π_2 法向量的外积向量,即

$$(3,2,4) \times (1,-8,-2) = (28,10,-26) = 2(14,5,-13)$$

所以交线L的对称式方程为

$$\frac{x}{14} = \frac{y + \frac{1}{2}}{5} = \frac{z - \frac{1}{2}}{-13}$$

L的方向向量与 π_3 法向量垂直则

$$(14.5, -13) \cdot (k, -3.1) = 0$$

解得k = 2。经验证,k = 2时 π_3 通过L,满足题意。

所以k = 2,对称式方程为

$$\frac{x}{14} = \frac{y + \frac{1}{2}}{5} = \frac{z - \frac{1}{2}}{-13}$$

另解: 利用平面束的方法求k的值。

$$\pi_3$$
: $3x + 2y + 4z - 1 + \lambda(x - 8y - 2z - 3) = 0$

即

$$(3 + \lambda)x + (2 - 8\lambda)y + (4 - 2\lambda)z = 1 + 3\lambda$$

其系数与 π_3 : kx - 3y + z = 2对应成比例。

则

$$\frac{3+\lambda}{2} = \frac{2-8\lambda}{-3} = \frac{4-2\lambda}{1} = \frac{1+3\lambda}{2}$$

解得 $k = 2, \lambda = 1$ 。

可通过解1的方法求得交线的对称式方程可写为

$$\frac{x}{14} = \frac{y + \frac{1}{2}}{5} = \frac{z - \frac{1}{2}}{-13}$$

总结:本章的主要内容比较简单,概念容易理解,考试形式比较固定,题目难度较小。 前面有关向量概念和计算是基础,后面的空间平面直线主要应用向量的知识来处理。这 些向量的概念在之后的章节中内涵会有所延伸,不能仅仅把它当做有向线段等事物。此 外,向量积只针对三维向量。

3.4 第三章练习题

(一) 基础题

1. 己知 $\vec{a} + \vec{b} + \vec{c} = \vec{0}$.则 $\vec{a} \times \vec{b} = \vec{0}$

分析: 题意是将 $\vec{a} \times \vec{b}$ 用其他形式表示,只要将 \vec{c} 移到等式右侧再等式两侧同时叉乘 \vec{b} ,最后进行化简即可。

解:
$$\vec{a} + \vec{b} = -\vec{c}$$
, $(\vec{a} + \vec{b}) \times \vec{b} = -\vec{c} \times \vec{b}$, $\vec{a} \times \vec{b} = \vec{b} \times \vec{c}$

2. 设向量 a_1 与 a_2 不共线,又 $\overrightarrow{AB} = a_1 - 2a_2$, $\overrightarrow{BC} = 2a_1 + 3a_2$, $\overrightarrow{CD} = -a_1 - 5a_2$,证明:ABD三点共线。

分析: 只要证明 \overrightarrow{AB} 与 \overrightarrow{BD} 方向相同即可

证明: $\overrightarrow{BD} = \overrightarrow{BC} + \overrightarrow{CD} = a_1 - 2a_2 = \overrightarrow{AB}$

则 \overrightarrow{AB} 与 \overrightarrow{BD} 方向相同,

即ABD三点共线。

3. 直线 L_1 : $\begin{cases} x + 2y - z = 7 \\ -2x + y + z = 7 \end{cases}$ 与直线 L_2 : $\begin{cases} 3x + 6y - 3z = 8 \\ 2x - y - z = 0 \end{cases}$ 之间的关系为?

分析: 先求出两直线的各自的一个方向向量, 再观察计算两向量关系

解: 直线 L_1 的一个方向向量 $\overrightarrow{L_1} = (1,2,-1) \times (-2,1,1) = (3,1.5)$

直线 L_2 的一个方向向量 $\overrightarrow{L_2}$ = $(3,6,-3) \times (2,-1,-1)$ = (-9,-3,-15) = $-3\overrightarrow{L_1}$ 因此直线 L_1 平行于直线 L_2 .

4. 求以A(1,-1,1),B(-1,0,2),C(2,-2,1)为顶点的三角形面积,并求AB边上的高。 **分析**:通过向量积来求面积,进而求高。

解:
$$\|\overrightarrow{AB} \times \overrightarrow{AC}\| = \|\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -2 & 1 & 1 \\ 1 & -1 & 0 \end{vmatrix}\| = \sqrt{3} = \|\overrightarrow{AB}\|h = 2S$$

$$\therefore S = \frac{\sqrt{3}}{2}, h = \frac{\sqrt{2}}{2}.$$

5. 求以A(3,0,0), B(0,3,0), C(0,0,2), D(4,5,6) 为顶点的四面体的体积。

分析: 利用混合积的几何意义。

解:

$$V_{A-BCD} = \frac{1}{6}V_{\text{\pi/f} / \text{\text{in}} / \text{\text{$/$}}} = \frac{1}{6}|[\overrightarrow{AB} \quad \overrightarrow{AC} \quad \overrightarrow{AD}]| = 15$$

6. 已知向量b与向量a = (1,1,-1)平行,且b与z正向的夹角为锐角,求b方向余弦。

分析:向量a与向量b的方向相反。

解: 向量**b**的方向与**n** = (-1,-1,1)一致,则方向余弦为

$$b^0 = \frac{n}{\|n\|} = (-\frac{\sqrt{3}}{3}, -\frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3})$$

分析: 平面过原点则平面的形式为Ax + By + Cz = 0,其法向量与直线的方向向量垂直。

解:

$$l_1 = (0,1,1), l_2 = (1,2,1)$$

则 $l_1 \times l_2 = (-1,1,-1)$

平面方程为x - y + z = 0.

8. 求平行于平面5x - 14y + 2z + 36 = 0且与之距离为 3 的平面。

分析: 利用平面间距离公式。

解: 设平面为5x - 14y + 2z + m = 0

则

$$\frac{|m-36|}{\sqrt{5^2 + (-14)^2 + 2^2}} = 3$$

解得m = -9 或 81.

故平面方程为5x - 14y + 2z - 9 = 0 或 5x - 14y + 2z + 81 = 0.

9. 求过点(3,4,-2)且与坐标轴截距相等的平面。

分析: 利用截距式。

解:设截距为a,则平面方程为

$$\frac{x}{a} + \frac{y}{a} + \frac{z}{a} = 1$$

带入已知点得a=5

所以平面方程为x + y + z = 5.

10. 设平面S过 3 点(1,0,0),(0,1,0),(0,0,1)。直线L过原点,与S的夹角为 $\frac{\pi}{4}$,且位于平面 x=y上,求直线L的方程。

解: 平面方程为x+y+z=1, 其法向量 $n_1=(1,1,1)$. 平面x=y的法向量 $n_2=(1,-1,0)$

设直线的方向向量l = (a, b, c)

则

$$\begin{cases} \mathbf{l} \cdot \mathbf{n_2} = 0 \\ \frac{\mathbf{l} \cdot \mathbf{n_1}}{\|\mathbf{l}\| \|\mathbf{n_1}\|} = \sin \frac{\pi}{4} \end{cases}$$

 $\mathfrak{R}\boldsymbol{l} = (1,1,4 \pm 3\sqrt{2})$

直线方程为

$$x = y = \frac{z}{4 \pm 3\sqrt{2}}$$

- 11. 设有直线 L_1 : $\begin{cases} x-y=3\\ 3x-y+z=1 \end{cases}$ 和直线 L_2 : $x+1=\frac{y-1}{-2}=\frac{z}{2}$,点M: (1,0,-1).
 - (1) 求 L_1 的对称式方程

- (2) 求*M*到*L*₁的距离
- (3) 求 L_2 到 L_1 的距离

分析: 主要利用公式求解。

解:

(1) 可取点(0,-3,-2),方向向量为(1,1,-2)

$$\frac{x}{1} = \frac{y+3}{1} = \frac{z+2}{-2}$$

(2) 利用点到直线的距离公式,取P:(0,-3,-2),方向向量 $l_1=(1,1,-2)$

$$d = \frac{\left\| \overrightarrow{PM} \times \boldsymbol{l}_1 \right\|}{\left\| \boldsymbol{l}_1 \right\|} = \frac{\sqrt{93}}{3}$$

(3) 直线 L_2 的方向向量 $l_2 = (1, -2, 2)$,点N: (-1, 1, 0)则

$$d = \frac{\left| \begin{bmatrix} \boldsymbol{l}_1 & \boldsymbol{l}_2 & \overrightarrow{MN} \end{bmatrix} \right|}{\left\| \boldsymbol{l}_1 \times \boldsymbol{l}_2 \right\|} = \frac{20}{\sqrt{29}}$$

12. 设矩阵 $\begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix}$ 是满秩的,则直线 L_1 : $\frac{x-a_3}{a_1-a_2} = \frac{y-b_3}{b_1-b_2} = \frac{z-c_3}{c_1-c_2}$ 与直线 L_2 : $\frac{x-a_1}{a_2-a_3} = \frac{y-b_3}{a_1-a_2} = \frac{y-b_3}{b_1-b_2} = \frac{z-c_3}{c_1-c_2}$

- A. 相交于一点 **B**. 重合
- C. 平行但不重合
- D. 异面

解:点 $(a_1,b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3)$ 记为A,B,C.

则 L_1 过点C且方向向量为 \overrightarrow{AB} ; L_2 过点A且方向向量为 \overrightarrow{BC}

而矩阵 $\begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix}$ 是满秩的,即A,B,C不在同一直线上

所以两直线相交于一点。

13. 求过点(1,2,3)且与直线L: x - 1 = y = 1 - z垂直相交的直线方程。

分析: 先设交点再求解, 也可考虑用平面束来求解。

解: 直线的一个方向向量为(1,1,-1),设交点为(x,y,z),则该点指向交点的向量为(x-1)

1,y-2,z-3),该向量与直线L垂直,因此 $(x-1,y-2,z-3) \times (1,1,-1) = 0$,解得 (x,y,z) = (1,0,1),所以(x-1,y-2,z-3) = (0,-2,-2),所以直线方程为

$$\frac{x-1}{0} = \frac{y-2}{1} = \frac{z-3}{1}$$

另解: 过已知直线的平面束为 $x-1-y+\lambda(y+z-1)=0$,带入点(1,2,3),得 $\lambda=\frac{1}{2}$,所以该平面为2x-y+z=3,其法向量为(2,-1,1)。

而所求的直线的方向向量与平面法向量垂直且与直线L垂直则利用向量积得所求直线的方向向量为(0,1,1)

则直线方程为

$$\frac{x-1}{0} = \frac{y-2}{1} = \frac{z-3}{1}$$

拓展:已知一直线的对称式方程求通过该直线的平面束方法:将对称式方程分开写为两个等式,将 $\frac{x-x_0}{a} = \frac{y-y_0}{b} = \frac{z-z_0}{c}$ 化为 $b(x-x_0) - a(y-y_0) + \lambda(c(y-y_0) - b(z-z_0)) = 0$,该式即为所要求的平面束方程。

14. 设有直线 L_1 : $\frac{x+3}{2} = \frac{y+2}{3} = \frac{z-6}{-4}$ 和 L_2 : $\begin{cases} x-z=9\\ y+4z=-17 \end{cases}$,试判断这两条直线的位置关系。 若共面,求它们所确定的平面方程;若还相交,求交点。

分析: 先看方向向量, 判断平行; 之后联立看是相交还是异面。

 \mathbf{m} : L_1 的方向向量 $\mathbf{l_1}=(2,3,-4)$, L_2 的方向向量 $\mathbf{l_2}=(1,-4,1)$, 两直线不平行。

联立可得方程有解(3,7,-6).

即两者相交且交于点(3,7,-6).

它们确定的平面的法向量垂直于l₁l₂.

求得一法向量为 $l_1 \times l_2 = (13,6,11)$.

则平面方程为13(x-3)+6(y-7)+11(z+6)=0.

(二) 提高题

1. (1) 证明: $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c}$.

- (2) 证明: $(\mathbf{a} \times \mathbf{b}) \cdot (\mathbf{c} \times \mathbf{d}) = (\mathbf{a} \cdot \mathbf{c})(\mathbf{b} \cdot \mathbf{d}) (\mathbf{a} \cdot \mathbf{d})(\mathbf{b} \cdot \mathbf{c}).$
- (3) 证明: $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) + \mathbf{b} \times (\mathbf{c} \times \mathbf{a}) + \mathbf{c} \times (\mathbf{a} \times \mathbf{b}) = \mathbf{0}$.

分析: (1) 拉格朗日公式; (2) 根据前者推导而来; (3) 称作雅克比恒等式。 证明:

(1) 假设 $\mathbf{a} = (a, b, c), \mathbf{b} = (d, e, f), \mathbf{c} = (g, h, i)$

$$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = \mathbf{a} \times \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ d & e & f \\ g & h & i \end{vmatrix} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a & b & c \\ e\mathbf{i} - fh & fg - d\mathbf{i} & dh - eg \end{vmatrix}$$

$$= (bdh + cdi - beg - cfg \quad aeg + cei - adh - cfh \quad afg + bfh - adi - bei)$$

$$= (ag + bh + ci)(d \quad e \quad f) - (ad + be + cf)(g \quad h \quad i) = (a \cdot c)b - (a \cdot b)c$$

(2) 在(1) 的结论将b换为d,并在两端同点乘b,得到

$$[a \times (d \times c)] \cdot b = (a \cdot c)(b \cdot d) - (a \cdot d)(b \cdot c)$$

同时

$$[a \times (d \times c)] \cdot b = [a \quad d \times c \quad b]$$

$$= [b \quad a \quad d \times c]$$

$$= [a \quad b \quad c \times d]$$

$$= (a \times b) \cdot (c \times d)$$

故原式成立。

- (3)将(1)中的轮换式子相加即可。
- 2. (1) 已知 $\overrightarrow{MP} \perp \overrightarrow{MA}$,将 \overrightarrow{MP} 绕 \overrightarrow{MA} 右旋角度 θ 得 $\overrightarrow{MP_1}$,记 $e = \frac{\overrightarrow{MA}}{\|\overrightarrow{MA}\|}$,试用 e, \overrightarrow{MP} , θ 表示 出 $\overrightarrow{MP_1}$ 。
- (2) 设O,A,P是三个不同的点,将 \overrightarrow{OP} 绕 \overrightarrow{OA} 右旋角度 θ 得 $\overrightarrow{OP_1}$,记 $e = \frac{\overrightarrow{OA}}{\|\overrightarrow{OA}\|}$,试用 $e,\overrightarrow{OP},\theta$ 表示出 $\overrightarrow{OP_1}$ 。

分析: 先建立3个基底,再利用坐标的旋转公式。 解: (1)以 \overrightarrow{MP} 方向的单位向量为x轴正方向,记 $i = \frac{\overrightarrow{MP}}{\|\overrightarrow{MP}\|}$,e为z轴正方向,则y轴正方向为

$$j = e \times \frac{\overrightarrow{MP}}{\|\overrightarrow{MP}\|}$$

其中 $\overrightarrow{MP} = \|\overrightarrow{MP}\| i$,

$$\overrightarrow{MP_1} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} \|\overrightarrow{MP}\| \\ 0 \end{bmatrix} [\mathbf{i} \quad \mathbf{j}]$$
$$= \cos \theta \overrightarrow{MP} + \sin \theta (\mathbf{e} \times \overrightarrow{MP}).$$

(2) 设P到OA的垂足为M,则

$$\overrightarrow{OP_1} = \overrightarrow{OM} + \overrightarrow{MP_1}$$

$$\overrightarrow{m}\overrightarrow{OM} = (\overrightarrow{OP} \cdot \boldsymbol{e})\boldsymbol{e}$$

将 $\overrightarrow{MP} = \overrightarrow{OP} - \overrightarrow{OM}$ 带入(1)的结果并注意到 $e \times \overrightarrow{OM} = 0$,得

$$\overrightarrow{MP_1} = (\overrightarrow{OP} - \overrightarrow{OM})\cos\theta + (e \times \overrightarrow{OP})\sin\theta$$

联立得

$$\overrightarrow{OP_1} = (1 - \cos\theta) (\overrightarrow{OP} \cdot \boldsymbol{e}) \boldsymbol{e} + \cos\theta \ \overrightarrow{OP} + \sin\theta \left(\boldsymbol{e} \times \overrightarrow{OP}\right).$$