

Term End Examination - November 2013

Course : MAT101 - Multivariable Calculus and Differential Slot: D2+TD2

Equations

Class NBR : 2238/2279/2287/2304/2330/2376/2388/5067/5076/5078

Time : Three Hours Max.Marks:100

PART – A (10 X 3 = 30 Marks) Answer <u>ALL</u> Questions

1. Determine whether the functions $u = e^x \sin y$, $v = e^x \cos y$ are functionally dependent.

2. Prove that
$$xu_x + yu_y = \frac{5}{2} \tan u$$
 if $u = \sin^{-1} \left(\frac{x^3 + y^3}{\sqrt{x} + \sqrt{y}} \right)$.

- 3. Find the value of $\int_{0}^{2} (8-x^3)^{-\frac{1}{3}} dx$ in terms of Gamma function.
- 4. Evaluate $\int_{0}^{a} \int_{0}^{b} xy(x-y)dxdy.$
- 5. Find the direction in which the directional derivative of $\varphi = x^3 y^2 z$ at (1,2,3) is maximum.
- 6. Find 'a' and 'b' such that $\vec{F} = 3x^2y\vec{i} + (ax^3 2yz^2)\vec{j} + (3z^2 by^2z)\vec{k}$ is irrotational.
- 7. Solve $(D^4 2D^3 + D^2)y = 0$.
- 8. Find the particular integral of $(D^2 + 4)y = \cos^2 x$.
- 9. Find $L^{-1} \left(\frac{1}{s+5} \right)^5$.
- 10. Find $L\left(t\cos\frac{t}{a}\right)$.

PART - B (5X 14 = 70 Marks)

Answer any <u>FIVE</u> Questions

- 11. a) Expand $e^y \ln(1+x)$ in powers of x and y. [7]
 - b) Find the minimum value of x^2yz^3 subject to the condition 2x + y + 3z = a. [7]
- 12. a) Evaluate by changing to polar coordinates $\int_{0}^{a} \int_{y}^{a} \frac{x^{2} dx dy}{\sqrt{x^{2} + y^{2}}}.$ [7]
 - b) Evaluate $\iint [xy(1-x-y)]^{\frac{1}{2}} dxdy$ over the area enclosed by the lines x=0, y=0 and x+y=1 in the positive quadrant, using Gamma functions.

- 13. Verify Stoke's theorem for $\overline{F} = xy\overline{i} 2yz\overline{j} zx\overline{k}$ where S is the open surface of the rectangular parallelepiped formed by the planes x = 0, x = 1, y = 0, y = 2 and z = 3 above the xy- plane.
- 14. a) Solve $\frac{d^2y}{dx^2} + y = \sin x$ by the method of undetermined coefficients. [7]
 - b) Solve by method of variation of parameters, $\frac{d^2y}{dx^2} + 4y = 4 \tan 2x$. [7]
- 15. a) Use convolution theorem to find the inverse Laplace transform of $\frac{s^2 + s}{(s^2 + 1)(s^2 + 2s + 2)}.$
 - b) Solve by using Laplace transforms $(D^2 + 4D + 13)y = e^{-t} \sin t$ given that $(D^2 + 4D + 13)y = e^{-t} \sin t$ given that $(D^2 + 4D + 13)y = e^{-t} \sin t$ given that $(D^2 + 4D + 13)y = e^{-t} \sin t$ given that $(D^2 + 4D + 13)y = e^{-t} \sin t$ given that
- 16. a) Find the maximum and minimum values of $f(x, y) = x^3 + 3xy^2 15x^2 15y^2 + 72x$ [7]
 - b) By changing the order of integration evaluate $\int_{0}^{a} \int_{x^{2}/a}^{2a-x} xy \, dx \, dy$ [7]
- 17. a) Evaluate $\iint_S \vec{F} \cdot \vec{ds}$, if $\vec{F} = yz\vec{i} + 2y^2\vec{j} + xz^2\vec{k}$ and S is the surface of the cylinder $x^2 + y^2 = 9$ contained in the first octant between the planes z = 0 and z = 2
 - b) Solve $(x^2D^2 + 3xD + 5)y = x\cos(\log x)$. [7]

 $\Leftrightarrow \Leftrightarrow \Leftrightarrow$