Semiconductor Electronics

Semiconductor and Types:

	Conductors	Semiconductors	Insulators
9		1/4	10"-10" Am
0	102-108 Ami	105-106 (am)-1	10-19-10-11

- Energy band gap: Gap blw top of valence band and bottom of conductor band.
 - → For conductors Eg ≈ 0
 - → For insulators Eg > 3eV
 - -> For semiconductors Eg <3eV
- * Intrinsic pure semiconductors
- * Extrinsic doped semiconductors

- · Biasing of p-n junction
- → when p-side is given higher potential → forward biased
- → when n-side is given higher potential → reverse biased

Extrinsic Semiconductor :

- on-type pentavalent dopant
 - → donor → ne>nn
- · p-type trivalent dopant
 - \rightarrow acceptor
 - -> ne < nn
- -> For semiconductors -

nenh = ni2

Biasing of PN Junction:

Breakdown I Vo Vo

Reverse Biased

- 1) Photodiode is a PN junction whose function is controlled by light allowed to fall on it.
- 2) 2ED used in T.V. or electronic gadgets.
 V-I characteristics are similar to that of 5i function diode.
- 3) Solar cell generates emf when solar radiat falls on it.

d-NOTES

PN Junction:

P Id n (diffusion)

current

(drift)

bias in the breakdown voltage, used as voltage regulator.

- Depletion region is very
- Half-wave rectifier

· Full wave rectifier

Logic Gates

Electronic circuit which make Logistic decision.

- Basic building blocks for most digital systems.
- 3 Basic Logic Gates→
- 1 AND gate Bike start (break,
 2 OR gate Air bags of car accelerator)
- 3 NOT gate Invert gate
 - OOR GATE → High output, if any of the input is high

Transistor:

As an Amplifier -

· Voltage gain

$$A_{V} = \frac{\Delta V_{c}}{\Delta V_{in}}$$

Av = - ARBAC

· Power gain

$$\beta = \Delta I_c$$

Trans - Conductance

$$g_m = \frac{\Delta I_c}{\Delta V_B}$$

x	У	OIP	
0	0	0	1+x=1
0	1	1	1+y=1
1	0	1	
1	1	1	

(2) AND Gate - High output, if both inputs are

$$\begin{array}{c}
\bullet \\
\bullet \\
\bullet
\end{array}$$

$$\begin{array}{c}
\text{high} \\
Y = A \cdot B
\end{array}$$

Analog Signals - Signals which vary continuously with time.

B. B = B

Circuit - Analog	electronic	Circuit
V1	Vr	
0 mt	OAA	/ t

- Digital Signals Signals having either of the two levels, 0 of 1 are called digital signals. 0 > off, 1 - on.
- Gate Digital signal which either allows or stops the signal.

χ	4	OIP
0	0	0
0	1	0
1	0	0
1	1	1

 $A \cdot A = A$

3 NOT Grate →

$$A \circ \bigcirc \bigcirc \bigcirc \bigcirc \lor = \overline{A}$$

X	0/P
0	1
1	0

Invert Gate

4 NOR Gate → OR + NOT

$$Y = \overline{A + B}$$

X	Y	OR	NOR
0	0	0	1
0	1	1	0
1	0	1	0
1.	1	1	0

(5) NAND Gate →
AND + NOT

$$\gamma = \overline{A \cdot B}$$

x	4	AND	NAND
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0