

SKLearn

万永权

SKlearn 简介

Scikit learn的简称是SKlearn, Python中实现机器学习的模块。

建立在 NumPy、SciPy 和 Matplotlib的基础上。SKlearn包含了许多最常见的机器学习算法,例如分类、回归、聚类、数据降维、数据预处理等。

官方网站: http://scikit-learn.org

Scikit learn算法地图

基本功能	说明
数据预处理	数据特征提取、归一化。
(preprocessing) 数据降维 (dimensionality reduction)	主成分分析(PCA)、非负矩阵分解(NMF)、特征选择(eature_selection)等
模型选择 (model selection)	pipeline(流水线)、grid_search(网格搜索)、cross_validation(交叉验证)、metrics(度量)、learning_curve(学习曲线)等
分类	逻辑回归、支持向量机(SVM)、K-近邻、随机森林、
(classification)	逻辑回归、神经网络等
回归 (regression)	线性回归、支持向量回归(SVR)、脊回归、弹性回归、贝叶斯回归、Lasso回归、最小角回归(LARS)等
聚类 (clustering)	K-Means(均值聚类)、spectral clustering(谱聚类)、mean-shift(均值漂移)、分层聚类、DBSCAN聚类

SKlearn的一般步骤

- 1.获取数据, 创建数据集
- 2. 数据预处理
- 3.数据集拆分
- 4. 定义模型
- 5. 模型评估与选择

4.3.1 SKlearn的一般步骤

1. SKlearn获取数据

SKlearn提供了一个强大的数据库,包含了很多经典数据集。可以通过包含 SKlearn.datasets使用这个数据库。

数据库网址为: <u>http://scikit-learn.org/stable/modules/classes.html#module-sklearn.datasets</u>。

数据集	描述
datasets.fetch_california_housing	加载加利福尼亚住房数据集。
datasets.fetch_lfw_people	加载有标签的人脸数据集。
datasets.load_boston	加载波士顿房价数据集。
datasets.load_breast_cancer	加载乳腺癌威斯康星州数据集。
datasets.load_diabetes	加载糖尿病数据集。
datasets.load_iris	加载鸢尾花数据集。
datasets.load_wine	加载葡萄酒数据集。

使用经典的波士顿房价数据集,代码如下:

from sklearn.datasets import load_boston boston = load_boston()

或者

from sklearn import datasets boston = datasets.load_boston()

另一个比较著名的是鸢尾花数据集,调用如下:

from sklearn.datasets import load_iris data = load_iris()

或者

from sklearn import datasets boston = datasets. load_iris()

2. SKlearn数据预处理

SKlearn中的preprocessing模块功能是数据预处理和数据标准化,能完成诸如数据标准化、正则化、二值化、编码以及数据缺失处理等。

函数名称	功能
preprocessing.Binarizer	根据阈值对数据进行二值化
preprocessing.Imputer	插值,用于填补缺失值。
preprocessing.LabelBinarizer	对标签进行二值化
preprocessing.MinMaxScaler	将数据对象中的每个数据缩放到指定范围。
preprocessing.Normalizer	将数据对象中的数据归一化为单位范数。
preprocessing.OneHotEncoder	使用one-Hot方案对整数特征编码。
preprocessing.StandardScaler	通过去除均值并缩放到单位方差来标准化。
preprocessing.normalize	将输入向量缩放为单位范数。
preprocessing.scale	沿某个轴标准化数据集。

- 【例】使用SKlearn的preprocessing模块对数据进行标准化处理。
- 【例】使用preprocessing的MinMaxScaler类,将数据缩放到固定区间 [0, 1]。
- 【例】使用preprocessing的StandardScaler标准化类。

3. 划分数据集

- ◆一般会把数据集划分成训练集、验证集和测试集, 其中训练集用来估计模型,验证集用来确定网络 结构或控制模型复杂程度的参数,而测试集则用 于检验最终选择的最优模型的性能优劣。
- ◆Scikit-learn中使用sklearn.model_selection模块对数据集进行划分,而该模块中的train_test_split()是交叉验证中常用的函数,其功能是从样本中随机按比例选取train data和test data

3. SKlearn数据集拆分

可以使用SKlearn提供的train_test_split方法,按照比例将数据集分为测试集和训练集,格式:

X_train,X_test, y_train, y_test =
cross_validation.train_test_split(train_data,train_target,test_size=0.4, random_state=0)

参数解释:

- ◆train_data: 要划分的样本特征数据
- ◆train_target: 要划分的样本结果
- ◆test_size:测试集占比,默认值为0.3即预留30%测试样本。如果是整数的话就是测试集的样本数量。
- ◆random_state: 是随机数的种子。随机数种子的实质是该组随机数的编号。在需要重复试验的时候,使用同一编号能够得到同样一组随机数。比如随机数种子的值为1、其他参数相同的情况下,每次得到的随机数是相同的。如果每次需要不一样的数据,则random_state设置为None。

4.3.2 SKlearn模型选择与算法评价

1. SKlearn定义模型

针对不同的问题,选择合适的模型是非常重要的。如何确定学习模型,既涉及到模型的功能,还需要考虑不同数据量的情况。

2. 使用模型进行训练和预测

模型建立之后,需要使用数据集进行学习,称为训练。SKlearn的模型中大都提供了fit()函数可以进行学习训练。

3. SKlearn的模型评估手段

sklearn.metrics模块中提供了一些性能指标。

函数名	功能
metrics.f1_score()	计算调和均值F1指数
metrics.precision_score()	计算精确度
metrics.recall_score()	计算召回率
metrics.roc_auc_score()	根据预测分数计算接收机工作特性曲线下的计算区域 (ROC/AUC)
metrics.precision_recall_fsc ore_support()	计算每个类的精确度,召回率,F1指数和支持
metrics.classification_report()	根据测试标签和预测标签, 计算分类的精确度, 召回率, F1指数和支持指标

metrics.mean_absolute_error()	平均绝对误差回归损失
metrics.mean_squared_error()	均方误差回归损失
metrics.r2_score()	R2回归分数函数

model_selection.cross_va	通过交叉验证评估指标,并记录
lidate()	适合度/得分时间
model_selection.cross_va	通过交叉验证评估分数
l_score()	
model_selection.learning	学习曲线
_curve()	
model_selection.validatio	验证曲线
n_curve()	

<mark>【例</mark>3.71】查看iris数据集。

import pandas as pd import matplotlib.pyplot as plt import numpy as np df = pd.read_csv('iris.csv', header=1 X = df.iloc[:, [0, 2]].values# #前50个样本(setosa类别) plt.scatter(X[:50, 0], X[:50, 1],color=' #中间50个样本(versicolor类别) plt.scatter(X[50:100, 0], X[50:100, 1] # 后50个样本的散点图(Virginica 类 plt.scatter(X[100:, 0], X[100:, 1],colo plt.xlabel('petal length') plt.ylabel('sepal length') #图例位于左上角 plt.legend(loc=2) plt.show()

