ENEE 646: Digital Computer Design Program Assignment #3 Report

Yang Xie 113085185

2.1 Working Set Characteriztion

Cache configuration:

- Split, fully associative, block size 4 bytes, write-back, write-allocate
- Cache size increased from 4 bytes until the hit rate remains insensitive to cache size

2.1.1 Data and plot for spice.trace

Data:

Cache	Block	Assoc.	Instruction	Instruction	Instruction	Data	Data	Data Hit Rate
Size	Size		Accesses	Misses	Hit Rate	Accesses	Misses	
(byte)	(byte)							
4	4	1	782764	782764	0	217237	204118	0.060390265
8	4	2	782764	782764	0	217237	185640	0.14544944
16	4	4	782764	780135	0.003358611	217237	160277	0.262202111
32	4	8	782764	774879	0.010073279	217237	137747	0.365913726
64	4	16	782764	576445	0.263577528	217237	119032	0.452063875
128	4	32	782764	494190	0.368660286	217237	100030	0.539535162
256	4	64	782764	426746	0.454821632	217237	59898	0.724273489
512	4	128	782764	362575	0.536801641	217237	33711	0.844819253
1024	4	256	782764	191922	0.754814989	217237	19993	0.907966875
2048	4	512	782764	107987	0.862043988	217237	10170	0.953184771
4096	4	1024	782764	73811	0.905704657	217237	7475	0.965590576
8192	4	2048	782764	19782	0.974728015	217237	5950	0.972610559
16384	4	4096	782764	10620	0.986432692	217237	4225	0.980551195
32768	4	8192	782764	8964	0.988548273	217237	4225	0.980551195
65536	4	16384	782764	8964	0.988548273	217237	4225	0.980551195

The hit rate for instruction remains insensitive when cache size reaches beyond 32KB, and the hit rate for data remains insensitive when cache size reaches beyond 16KB.

2.1.2 Data and plot for cc.trace Data:

Cache	Block		Instruction	Instruction	Instruction	Data	Data	Data Hit
Size	Size	Assoc.	Accesses	Misses	Hit Rate	Accesses	Misses	Rate
(byte)	(byte)		Accesses	MISSES	mit Nate	Accesses	MISSES	Nate
4	4	1	757341	757341	0	242661	226269	0.067551
8	4	2	757341	757341	0	242661	209336	0. 137332
16	4	4	757341	753804	0.00467	242661	188581	0. 222862
32	4	8	757341	730580	0. 035335	242661	161866	0. 332954
64	4	16	757341	666884	0. 11944	242661	136720	0. 43658
128	4	32	757341	604143	0. 202284	242661	109141	0. 550233
256	4	64	757341	529362	0. 301026	242661	82925	0.658268
512	4	128	757341	454953	0. 399276	242661	60111	0. 752284
1024	4	256	757341	398640	0. 473632	242661	40189	0.834382
2048	4	512	757341	308232	0. 593008	242661	29941	0.876614
4096	4	1024	757341	199920	0. 736024	242661	21715	0. 910513
8192	4	2048	757341	99691	0.868367	242661	13670	0. 943666
16384	4	4096	757341	48500	0. 93596	242661	10797	0. 955506
32768	4	8192	757341	38475	0. 949197	242661	9554	0.960628
65536	4	16384	757341	37005	0. 951138	242661	9273	0. 961786
131072	4	32768	757341	31195	0. 95881	242661	9273	0. 961786

The hit rate for instruction remains insensitive when cache size reaches beyond 128KB, and the hit rate for data remains insensitive when cache size reaches beyond 64KB.

2.1.3 Data and plot for tex.trace Data

Cache	Block		To at my at i	Trond trous of i	To at my at i	Doto	Doto	Doto III
Size	Size	Assoc.	Instruction	Instruction	Instruction	Data	Data	Data Hit
(byte)	(byte)		Accesses	Misses	Hit Rate	Accesses	Misses	Rate
4	4	1	597309	597309	0	235168	235166	8. 5E-06
8	4	2	597309	597309	0	235168	182914	0. 222199
16	4	4	597309	597309	0	235168	156786	0. 333302
32	4	8	597309	485394	0. 187365	235168	100815	0. 571306
64	4	16	597309	485394	0. 187365	235168	18714	0. 920423
128	4	32	597309	485394	0. 187365	235168	14944	0. 936454
256	4	64	597309	272807	0. 543273	235168	14944	0. 936454
512	4	128	597309	530	0. 999113	235168	14944	0. 936454
1024	4	256	597309	160	0. 999732	235168	14944	0. 936454
2048	4	512	597309	160	0. 999732	235168	14944	0. 936454
4096	4	1024	597309	160	0. 999732	235168	14944	0. 936454
8192	4	2048	597309	160	0. 999732	235168	14944	0. 936454
16384	4	4096	597309	160	0. 999732	235168	14944	0. 936454
32768	4	8192	597309	160	0. 999732	235168	9522	0. 95951
65536	4	16384	597309	160	0. 999732	235168	9522	0. 95951

The hit rate for instruction remains insensitive when cache size reaches beyond 1KB, and the hit rate for data remains insensitive when cache size reaches beyond 32KB.

2.1.4 Analysis

a. Explain what this experiment is doing, and how it works. Also, explain the significance of the features in the hit-rate vs. cache size plots.

This experiment is analyzing the relationship between cache size and hit rate. It fixes all other configurations and only change the cache size so that we can find out the relationship between hit rate and cache size.

Comparing three data sets and their plots, we can conclude that:

- When the cache size increases from 4 bytes to several kilobytes, the capacity miss will be decreased and the cache hit rate increases dramatically until certain point.
- After that, the cache hit rate will increase slowly until it reaches an upper bound, which means
 that increasing cache size will no longer increase the cache hit rate. This happens because
 increasing cache size can't avoid the compulsory misses.
- b. What is the total instruction working set size and data working set size for each of the three sample traces?

spice.trace: Instruction working set size: 8964; Data working set size: 4225 cc.trace: Instruction working set size: 31195; Data working set size: 9273 tex.trace: Instruction working set size: 160; Data working set size: 9522

2.2 Impact of Block Size

Cache configuration:

- Split, 2 way associative, cache size 8K bytes, write-back, write-allocate
- Block size from 4 bytes to 4KB

2.2.1 Data and Plot for spice.trace

Data:

Cache	Block		Tootsustion	Tootsustion	Tootsustion	Doto	Doto	Doto IIit
Size	Size	Assoc.	Instruction	Instruction	Instruction	Data	Data	Data Hit
(byte)	(byte)		Accesses	Misses	Hit Rate	Accesses	Misses	Rate
8192	4	2	782764	37618	0. 951942	217237	6491	0. 97012
8192	8	2	782764	21743	0. 972223	217237	3683	0. 983046
8192	16	2	782764	13585	0. 982645	217237	2467	0. 988644
8192	32	2	782764	8976	0. 988533	217237	1913	0. 991194
8192	64	2	782764	6590	0. 991581	217237	3160	0. 985454
8192	128	2	782764	5073	0. 993519	217237	4039	0. 981407
8192	256	2	782764	4230	0. 994596	217237	5157	0. 976261
8192	512	2	782764	3543	0. 995474	217237	9479	0. 956366
8192	1024	2	782764	3516	0. 995508	217237	12701	0. 941534
8192	2048	2	782764	8681	0. 98891	217237	22415	0.896818
8192	4096	2	782764	10638	0. 98641	217237	44607	0. 794662

2.2.2 Data and Plot for cc.trace

Data:

0 1	D1 1							
Cache	Block		Instruction	Instruction	Instruction	Data	Data	Data Hit
Size	Size	Assoc.		Misses	Hit Rate		Misses	
(byte)	(byte)		Accesses	MISSES	пі кате	Accesses	Misses	Rate
8192	4	2	757341	134420	0.822511	242661	16045	0. 933879
8192	8	2	757341	77069	0.898237	242661	11059	0. 954426
8192	16	2	757341	47894	0. 93676	242661	8582	0. 964634
8192	32	2	757341	31983	0. 957769	242661	7397	0. 969517
8192	64	2	757341	23040	0. 969578	242661	7521	0. 969006
8192	128	2	757341	17301	0. 977156	242661	9225	0. 961984
8192	256	2	757341	13624	0. 982011	242661	11937	0. 950808
8192	512	2	757341	10679	0. 985899	242661	17793	0. 926675
8192	1024	2	757341	9713	0. 987175	242661	28109	0.884164
8192	2048	2	757341	8709	0. 988501	242661	44295	0.817461
8192	4096	2	757341	9347	0. 987658	242661	71292	0. 706207

2.2.3 Data and Plot for cc.trace

Data:

	Dala.							
Cache	Block		Instruction	Instruction	Instruction	Data	Data	Data Hit
Size	Size	Assoc.						
(byte)	(byte)		Accesses	Misses	Hit Rate	Accesses	Misses	Rate
8192	4	2	597309	160	0. 999732	235168	14944	0. 936454
8192	8	2	597309	87	0. 999854	235168	7478	0. 968201
8192	16	2	597309	51	0. 999915	235168	3745	0. 984075
8192	32	2	597309	29	0. 999951	235168	1882	0. 991997
8192	64	2	597309	20	0. 999967	235168	961	0. 995914
8192	128	2	597309	13	0. 999978	235168	566	0. 997593
8192	256	2	597309	10	0. 999983	235168	734	0. 996879
8192	512	2	597309	15	0. 999975	235168	1900	0. 991921
8192	1024	2	597309	12	0. 99998	235168	8620	0. 963345
8192	2048	2	597309	11	0. 999982	235168	21175	0. 909958
8192	4096	2	597309	14936	0. 974995	235168	44798	0.809506

2.2.4 Analysis

a. Explain why the hit rate vs. block size plot has the shape that it does. In particular, explain the relevance of spatial locality to the shape of this curve.

The spatial locality concludes that the likelihood of referencing a resource is higher if a resource

near it was just referenced. At the beginning, when the block size starts to increase, the hit rate also increase because of the spatial locality. However, due to the limitation of constant cache size, when we increase the block size, the number of sets will be decreased and thus the resources are more likely to have conflict miss. Also, the spatial locality has a workable scope. When the block size is larger than that scope, some cached blocks will be redundant. Therefore, when we further increase the block size, the cache hit rate will reach a peak and then decrease. There exists an optimal block size.

When the block size is smaller than the spatial locality scope, the curve will be ascending; when the block size is larger than the spatial locality scope, the curve will be descending.

b. What is the optimal block size (consider instruction and data references separately) for each trace?

spice.trace: instruction: 1KB; data: 32 bytes cc. trace: instruction: 2KB; data: 32 bytes tex.trace: instruction: 2KB; data: 128 bytes

c. Is the optimal block size for instruction and data references different? What does this tell you about the nature of instruction references versus data references?

Yes. The spatial locality is more applicable to instruction references than data references. Thus the block size for instruction cache should be larger.

2.3 Impact of Associativity

Cache configuration:

- Split, block size 128 bytes, cache size 8K bytes, write-back, write-allocate
- Associativity from 1 to 64

2.3.1 Data and plot for spice.trace Data:

Cache Size (byte)	Block Size (byte)	Assoc.	Instruction Accesses	Instruction Misses	Instruction Hit Rate	Data Accesses	Data Misses	Data Hit Rate
8192	128	1	782764	9018	0. 988479	217237	8519	0. 960785
8192	128	2	782764	5073	0. 993519	217237	4039	0. 981407
8192	128	4	782764	4273	0. 994541	217237	1075	0. 995051
8192	128	8	782764	4457	0. 994306	217237	860	0. 996041
8192	128	16	782764	4511	0. 994237	217237	789	0. 996368
8192	128	32	782764	4553	0. 994183	217237	730	0.99664
8192	128	64	782764	4591	0. 994135	217237	728	0. 996649

2.3.2 Data and plot for cc.trace

Data:

Cache Size (byte)	Block Size (byte)	Assoc.	Instruction Accesses	Instruction Misses	Instruction Hit Rate	Data Accesses	Data Misses	Data Hit Rate
8192	128	1	757341	19894	0. 973732	242661	14934	0. 938457
8192	128	2	757341	17301	0. 977156	242661	9225	0. 961984
8192	128	4	757341	15819	0. 979112	242661	7232	0. 970197
8192	128	8	757341	15823	0. 979107	242661	6386	0. 973683
8192	128	16	757341	15275	0. 979831	242661	6067	0. 974998
8192	128	32	757341	15033	0. 98015	242661	5919	0. 975608
8192	128	64	757341	15065	0. 980108	242661	5946	0. 975497

2.3.3 Data and plot for tex.trace

Data

Cache Size (byte)	Block Size (byte)	Assoc.	Instruction Accesses	Instruction Misses	Instruction Hit Rate	Data Accesses	Data Misses	Data Hit Rate
8192	128	1	597309	18	0. 99997	235168	3107	0. 986788
8192	128	2	597309	13	0. 999978	235168	566	0. 997593
8192	128	4	597309	13	0. 999978	235168	476	0. 997976
8192	128	8	597309	13	0. 999978	235168	476	0. 997976
8192	128	16	597309	13	0. 999978	235168	476	0. 997976
8192	128	32	597309	13	0. 999978	235168	476	0. 997976
8192	128	64	597309	13	0. 999978	235168	476	0. 997976

2.3.4 Analysis

a. Explain why the hit rate vs. associativity plot has the shape that it does.

Increasing the associativity will decrease the conflict misses. Thus, at the beginning of the plot, the hit rate increases with the associativity. However, after certain point, the increase of associativity can no longer decrease the conflict misses and result in a diminishing return.

b. Is there a difference between the plots for instruction and data references? What does this tell you about the difference in impact of associativity on instruction versus data references?

From the plot, we can observe that the impact of associativity on instruction and data references are almost the same. The associativity might have more impact on data cache because when we increase the associativity, the improved data hit rate percentage:

(improved data hit rate – original data hit rage)/original data hit rate is larger than the improved instruction hit rate percentage.

2.4 Memory Bandwidth

2.4.1 Fix write-no-allocate policy, compare write-back and write-through policy

		o-allocate poi	Cache	Block				
Trace	WB/WT	WA/NW	Size	Size	Assoc.	DF	СВ	Total
			(byte)	(byte)				
spice	WB	NW	8K	64	2	151104	13624	164728
spice	WT	NW	8K	64	2	151104	66538	217642
spice	WB	NW	8K	128	2	280768	32287	313055
spice	WT	NW	8K	128	2	280768	66538	347306
spice	WB	NW	8K	64	4	107296	9219	116515
spice	WT	NW	8K	64	4	107296	66538	173834
spice	WB	NW	16K	64	2	57008	8252	65260
spice	WT	NW	16K	64	2	57008	66538	123546
сс	WB	NW	8K	64	2	474256	39426	513682
СС	WT	NW	8K	64	2	474256	83030	557286
сс	WB	NW	8K	128	2	824192	78872	903064
сс	WT	NW	8K	128	2	824192	83030	907222
СС	WB	NW	8K	64	4	423104	32102	455206
сс	WT	NW	8K	64	4	423104	83030	506134
СС	WB	NW	16K	64	2	252096	24048	276144
сс	WT	NW	16K	64	2	252096	83030	335126
tex	WB	NW	8K	64	2	2880	29903	32783
tex	WT	NW	8K	64	2	2880	104513	107393
tex	WB	NW	8K	128	2	3488	29935	33423
tex	WT	NW	8K	128	2	3488	104513	108001
tex	WB	NW	8K	64	4	3312	29903	33215
tex	WT	NW	8K	64	4	3312	104513	107825
tex	WB	NW	16K	64	2	2464	29909	32373
tex	WT	NW	16K	64	2	2464	104513	106977

2.4.2 Fix write-back policy and compare write-allocate and write-no-allocate policy

			Cache	Block				
Trace	WB/WT	WA/NW	Size	Size	Assoc.	DF	CB	Total
			(byte)	(byte)				
spice	WB	WA	8K	64	2	156000	18880	174880
spice	WB	NW	8K	64	2	151104	13624	164728
spice	WB	WA	8K	128	2	291584	36256	327840
spice	WB	NW	8K	128	2	280768	32287	313055
spice	WB	WA	8K	64	4	110400	7296	117696
spice	WB	NW	8K	64	4	107296	9219	116515
spice	WB	WA	16K	64	2	59856	6208	66064
spice	WB	NW	16K	64	2	57008	8252	65260
сс	WB	WA	8K	64	2	488976	41840	530816
сс	WB	NW	8K	64	2	474256	39426	513682
сс	WB	WA	8K	128	2	848832	91744	940576
СС	WB	NW	8K	128	2	824192	78872	903064
СС	WB	WA	8K	64	4	435408	33216	468624
сс	WB	NW	8K	64	4	423104	32102	455206
СС	WB	WA	16K	64	2	261248	23584	284832
сс	WB	NW	16K	64	2	252096	24048	276144
tex	WB	WA	8K	64	2	15696	7664	23360
tex	WB	NW	8K	64	2	2880	29903	32783
tex	WB	WA	8K	128	2	18528	8608	27136
tex	WB	NW	8K	128	2	3488	29935	33423
tex	WB	WA	8K	64	4	15408	7568	22976
tex	WB	NW	8K	64	4	3312	29903	33215
tex	WB	WA	16K	64	2	11696	7616	19312
tex	WB	NW	16K	64	2	2464	29909	32373

2.4.3 Analysis

a. Which cache has the smaller memory traffic, the write-through cache or the write-back cache? Why?

Write-back cache

b. Is there any scenario under which your answer to the question above would flip? Explain.Yes. When block size is large, for write-back policy, copies_back will cost a lot. For example, I test the three files with the following configurations:

	_		0 0					
Trace	WB/WT	WA/NW	Cache	Block Size	Assoc.	DF	СВ	Total
			(byte)	(byte)				
spice	WB	NW	8K	1K	2	3669248	1199855	4869103
spice	WT	NW	8K	1K	2	3669248	66538	3735786
СС	WB	NW	8K	1K	2	8280576	1291279	9571855
сс	WT	NW	8K	1K	2	8280576	83030	8363606
tex	WB	NW	8K	1K	2	506368	30368	536736
tex	WT	NW	8K	1K	2	506368	104513	610881

We can observed that for the first two test file, the total memory traffic for write-through policy is smaller than the that for the write-back policy.

c. Which cache has the smaller memory traffic, the write-allocate or the write-no-allocate cache? Why?

Write-no-allocate

d. Is there any scenario under which your answer to the question above would flip? Explain

tex.trace gives us a good example. With write allocate and write-back policy, the program might have more write hits and thus the data needed to be written back is decreased. So even though the write-no-allocate policy might have less data fetches, it can have more data needed to be written back, and thus results in a larger total memory traffic.