数字逻辑设计

高翠芸 School of Computer Science gaocuiyun@hit.edu.cn

Unit 7 组合逻辑元件

- 多路复用器(multiplexers)
- 三态器件(Three-state Buffer)
- 译码器(Decoders)
- 编码器(Encoders)
- ■奇偶校验器
- ■比较器
- 只读存储器(ROM)
- ■利用MSI设计组合逻辑电路

Unit 7 组合逻辑元件

- <u>多路复用器(multiplexers)</u>
- 三态器件(Three-state Buffer)
- 译码器(Decoders)
- 编码器(Encoders)
- ■奇偶校验器
- ■比较器
- 只读存储器(ROM)
- ■利用MSI设计组合逻辑电路

集成电路的分类

分类	单芯片内集成的逻 辑门数量	集成内容	器件封装	需要掌握的内容		
小规模 (SSI)	<10 gates	逻辑门、触 发器等		① 学会查阅器件资料; ② 典型集成电路芯片的 功能、外特性;		
中规模 (MSI)	10~100 gates	译码器、计 数器、加法 器等模块		③ 能熟练运用并完成设 计要求。		
大规模 (LSI)	100~10000 gates	存储器、微 处理器或复	ADERA: PREX.	① 了解典型PLD集成芯片的功能和特性;		
超大规模 (VLSI)	>10000 gates	杂的数字系 统	TO 14 4 4 2 N 1	② 能够使用HDL语言完成逻辑设计;		

数据选择器/多路开关

2选1数据选择器

$$Z = A'I_0 + AI_1$$

$Z = \sum_{k=0}^{2^n-1} m_k I_k$

控制端最小项 m_k 的 序号K,指向了第 K路数据输入端 I_k 。

 m_k —— n 个控制变量的最小项 I_k ——第 k 路数据输入

数据选择器的功能:

- ① 从多路输入中选择一个送往输出端(2n选1);
- ② 选择哪一路输入送到输出端由控制信号决定;

用途:实现多通道的数据传送;

4选1数据选择器

$$F = \overline{E}_n(D_0 \overline{A}_1 \overline{A}_0 + D_1 \overline{A}_1 A_0 + D_2 \overline{A}_1 \overline{A}_0 + D_3 \overline{A}_1 A_0)$$

E _n	$\mathbf{A_1}$	$\mathbf{A_0}$	F
1	×	×	0
0	0	0	\mathbf{D}_0
0	0	1	\mathbf{D}_1
0	1	0	$\mathbf{D_2}$
0	1	1	\mathbf{D}_3

功能表

■ 典型应用——实现常规逻辑函数

$$Z = \overline{C}\overline{D}(\overline{A} + \overline{B}) + \overline{C}D\overline{A} + C\overline{D}(A\overline{B} + \overline{A}B) + CD(0)$$

$$= \overline{A}\overline{C} + A\overline{B}\overline{D} + \overline{A}\overline{D}B \odot C$$

8选1数据选择器

数据选择器级 联实现

$$Z = A'B'C'I_0 + A'B'CI_1 + A'BC'I_2 + A'BCI_3 + AB'C'I_4 + AB'CI_5 + ABC'I_6 + ABCI_7$$

双4选1典型器件74LS153

1Gn	2Gn	A	В	1Y 2Y
1	1	×	×	0 0
0	0	0	0	1C ₀ 2C ₀
0	0	0	1	1C ₁ 2C ₁
0	0	1	0	1C ₂ 2C ₂
0	0	1	1	1C ₃ 2C ₃

Unit 7 组合逻辑元件

- 多路复用器(multiplexers)
- <u>三态器件(Three-state Buffer)</u>
- 译码器(Decoders)
- 编码器(Encoders)
- ■奇偶校验器
- ■比较器
- 只读存储器(ROM)
- ■利用MSI设计组合逻辑电路

三态门(Three-State Buffers)

三态——

- **0**
- **1**
- Z: 高阻态

- 包括三态恒等门、三态非门、三态与非门等, 缓冲器(驱动门)。
- 用途之一: 可用来增强输出驱动能力

三态门(恒等)

B: 使能端, 高电平有效

真值表

В	Α	С
0	0	Z
0	1	Z
1	0	0
1	1	1

三态门(Three-State Buffers)

В	Α	C	В	Α	C	В	Α	C	В	Α	C
0	0	Z Z 0 1	0	0	Z	0	0	0	0	0	1
0	1	Z	0	1	Z	0	1	1	0	1	0
1	0	0	1	0	1	1	0	Z	1	0	Z
1	1	1	1	1	0	1	1	Z	1	1	Z
		I									

高阻态: 电阻很大, 相当于开路

高阻态相当于该门同与它连接的电路处于断开的状态。(实际电路中不可能去断开它)

		S_2		
<i>S</i> ₁	X	0	1	Z
X	X	Χ	X	X
0	X	0	X	0
1	X	X	1	1
Z	X	0	1	Z

三态器件允许多个信号源 共享单个"总线"(同线), 但线上每次仅一个器件 "谈话"

假如不是全部EN线有效,则没有一个三态缓冲器能被使能,此时SDATA上的逻辑值是"未定义",悬空信号的实际电压值依赖于电路细节。

图 8个信号源共享1根三态总线/同线

对典型的三态器件,进入高阻态比离开高阻态快。也会使得系统中产生冲突(fighting)

14

使用三态器件唯一真正 安全的方法是设计逻辑 控制,以保证同线上有 一段截止时间(dead time),在此期间不应 有任何器件驱动同线。

三态门应用

三态门应用——续

■ 双向数据总线 Data Bus Memory DSP CPU I/O unit "1" I/O control Data out Data in Data in Data out Bi-direction databus I/O control -"1" **Device A** Device B

三态门应用——续

内存里的一个存储单元

- •读写控制线处于低电位时,可以写入;
- 读写控制线处于高电位时,可以读出
- 但是不读不写,就要用高阻态

三态门的应用

控制信号: 判断条件

$X_3 X_2 X_1 X_0$	F	$X_3 X_2 X_1 X_0$	F
0 0 0 0	1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0
0 0 0 1	0	1 0 0 1	0
0 0 1 0	0	1 0 1 0	×
0 0 1 1	0	1 0 1 1	×
0 1 0 0	0	1 1 0 0	×
0 1 0 1	1	1 1 0 1	×
0 1 1 0	0	1 1 1 0	×
0 1 1 1	0	1 1 1 1	X

三态门的应用——续

② 化简

$$F = \overline{X_{2}\overline{X}_{1}X_{0} + \overline{X}_{3}\overline{X}_{2}\overline{X}_{1}\overline{X}_{0}}$$

$$= (\overline{X_{2}\overline{X}_{1}X_{0}}) (\overline{\overline{X}_{3}\overline{X}_{2}\overline{X}_{1}\overline{X}_{0}})$$

$$\overline{\mathbf{F}} = (\overline{\mathbf{X}_2 \overline{\mathbf{X}}_1 \mathbf{X}_0}) \ (\overline{\overline{\mathbf{X}}_3 \overline{\mathbf{X}}_2 \overline{\mathbf{X}}_1 \overline{\mathbf{X}}_0})$$

③ 逻辑图

Unit 7 组合逻辑元件

- 多路复用器(multiplexers)
- 三态器件(Three-state Buffer)
- <u>译码器(Decoders)</u>
- 编码器(Encoders)
- ■奇偶校验器
- ■比较器
- 只读存储器(ROM)
- ■利用MSI设计组合逻辑电路

译码器及分类

◆ 特点:多输入、多输出的组合逻辑电路

◆ 功能:将一种编码转换为另一种编码

分类	特点	译码演示
二进制译码器	 n 位二进制码 N位(N=2"),每根输出线都与一个输入最小项唯一对应(输出线编号值=最小项编号值) 每个最小项输入,只能使 N 根输出线中的一个输出有效	0 C Y ₁ B Y ₃ A Y ₅ Y ₆ Y ₇ (3线-8线译码器)
代码转换译码器	从一种编码转换为另一种编码 (例如:8421BCD码→余3码)	$ \begin{array}{c} A \longrightarrow & X_1 \\ B \longrightarrow & X_2 \\ C \longrightarrow & X_3 \\ D \longrightarrow & X_4 \end{array} $
显示译码器	将输入的编码信号转换为十进制码或其它特定编 码,用来驱动显示器件显示相应的文字符号。	Seven-Segment Indicator $ \begin{array}{cccccccccccccccccccccccccccccccccc$

二进制译码器举例——3线-8线译码器

有	吏能站	岩	;	输入		译码输出							
G ₁	G_{2A}	G _{2B}	С	В	Α	Y_0	\mathbf{Y}_{1}	Y_2	Y ₃	Y ₄	Y ₅	Y_6	Y ₇
0	X	X	X	X	X	1	1	1	1	1	1	1	1
X	1	X	X	X	X	1	1	1	1	1	1	1	1
X	X	1	X	X	X	1	1	1	1	1	1	1	1
1	0	0	0	0	0	0	1	1	1	1	1	1	1
1	0	0	0	0	1	1	0	1	1	1	1	1	1
1	0	0	0	1	0	1	1	0	1	1	1	1	1
1	0	0	0	1	1	1	1	1	0	1	1	1	1
1	0	0	1	0	0	1	1	1	1	0	1	1	1
1	0	0	1	0	1	1	1	1	1	1	0	1	1
1	0	0	1	1	0	1	1	1	1	1	1	0	1
1	0	0	1	1	1	1	1	1	1	1	1	1	0

译码器输出:低电平有效

$$y_i = \overline{m}_i = M_i$$

典型芯片:74LS138

3线-8线译码器

译码器输出:高电平有效 🛶 $y_i = m_i$

佢	吏能	端	į	输入		译码输出							
G₁	G_{2A}	\mathbf{G}_{2B}	С	В	Α	Y ₀	Y ₁	Y ₂	Y_3	Y_4	Y ₅	Y_6	Y ₇
0	X	X	X	X	X	0	0	0	0	0	0	0	0
X	1	X	X	X	X	0	0	0	0	0	0	0	0
X	X	1	X	X	X	0	0	0	0	0	0	0	0
1	0	0	0	0	0	1	0	0	0	0	0	0	0
1	0	0	0	0	1	0	1	0	0	0	0	0	0
1	0	0	0	1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	1	0	0	0	1	0	0	0	0
1	0	0	1	0	0	0	0	0	0	1	0	0	0
1	0	0	1	0	1	0	0	0	0	0	1	0	0
1	0	0	1	1	0	0	0	0	0	0	0	1	0
1	0	0	1	1	1	0	0	0	0	0	0	0	1

二进制译码器的典型应用——地址译码

■ 微处理器的地址译码

*假设D0—D7连接到各个外设的低8位地址线。

地址译码

•图示电路的整个地址译码范围?各个外设的地址译码范围?

二进制译码器的典型应用——译码器级联

• 3线-8线译码器扩展为4线-16线译码

(I)

	输	λ		译码输出								
D	C	В	A	$\mathbf{Y_0}$	\mathbf{Y}_{1}	\mathbf{Y}_{2}	$\mathbf{Y_3}$	Y_4	$ \mathbf{Y}_5 $	$\mathbf{Y_6}$	\mathbf{Y}_7	
0	0	0	0	0	1	1	1	1	1	1	1	
0	0	0	1	1	0	1	1	1	1	1	1	
0	0	1	0	1	1	0	1	1	1	1	1	
0	0	1	1	1	1	1	0	1	1	1	1	
0	1	0	0	1	1	1	1	0	1	1	1	
0	1	0	1	1	1	1	1	1	0	1	1	
0	1	1	0	1	1	1	1	1	1	0	1	
0	1	1	1	1	1	1	1	1	1	1	0	

(II)

	输	入		译码输出								
D	C	В	A	$\mathbf{Y_0}$	\mathbf{Y}_{1}	\mathbf{Y}_{2}	\mathbf{Y}_3	Y_4	Y_5	$\mathbf{Y_6}$	$\mathbf{Y_7}$	
1	0	0	0	0	1	1	1	1	1	1	1	
1	0	0	1	1	0	1	1	1	1	1	1	
1	0	1	0	1	1	0	1	1	1	1	1	
1	0	1	1	1	1	1	0	1	1	1	1	
1	1	0	0	1	1	1	1	0	1	1	1	
1	1	0	1	1	1	1	1	1	0	1	1	
1	1	1	0	1	1	1	1	1	1	0	1	
1	1	1	1	1	1	1	1	1	1	1	0	

编码转换译码器

- •例:设计一个译码器,
- 将输入的4位二进制数转换为典型格雷码

ABCD	WXYZ	ABCD	WXYZ
0000	0000	1000	1100
0001	0001	1001	1101
0010	0011	1010	1111
0011	0010	1011	1110
0100	0110	1100	1010
0101	0111	1101	1011
0110	0101	1110	1001
0111	0100	1111	1000

七段显示译码器

显示译码器:与显示器件(如数码管)配合,将输入代码转换为十进制码或特定编码,并在显示器件上显示相应的字形

8421BCD码驱动的共阴极七段 数码管显示译码器功能表

	输	λ		译码输出						
A	В	C	D	a	b	C	d	е	f	g
0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	0	1	1	0	0	0	0
0	0	1	0	1	1	0	1	1	0	1
0	0	1	1	1	1	1	1	0	0	1
0	1	0	0	0	1	1	0	0	1	1
0	1	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	0	0	0	0
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	1	0	1	29 1

Unit 7 组合逻辑元件

- 多路复用器(multiplexers)
- 三态器件(Three-state Buffer)
- 译码器(Decoders)
- <u>编码器(Encoders)</u>
- ■奇偶校验器
- ■比较器
- 只读存储器(ROM)
- ■利用MSI设计组合逻辑电路

编码器

◆ 特点:多输入、多输出的组合逻辑电路

◆ 功能:将二进制码按照一定规律编排,使其具有特定含义,与译码器互逆。

常用编码器	特点	编码演示
普通编码器 (二进制编码 器)	N位,任何时刻N 根输入线中只能有一个输入有效,N(N=2")中取一。 n 位二进制码	□ Y ₀ C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
优先编码器	允许同时输入两个以上的有效编码输入信号, 优先编码器能按照预先设定的优先级别,只 对其中优先级最高的输入进行编码。	(8 线-3 线优先编码器)

键盘编码器

$$W=(P_8 \cdot P_9)'$$

 $Y=(P_2 \cdot P_3 \cdot P_6 \cdot P_7)'$

$$X = (P_4 \cdot P_5 \cdot P_6 \cdot P_7)'$$

 $Z = (P_1 \cdot P_3 \cdot P_5 \cdot P_7 \cdot P_9)'$

键盘编码器

4:2编码器

计算机配有四个外部设备:声卡(A0),硬盘驱动器(A1),鼠标(A2),网卡(A3), B_0 、 B_1 为编码输出。

抢答器输出

A_3	A ₂	A ₁	A_0	B ₁	B ₀
0	0	0	1	0	0
0	0	1	0	0	1
0	1	0	0	1	0
1	0	0	0	1	1

某一时刻只允许输入一个编码信号,如 A_1 (A_1 =1) 向 CPU 请求传送数据,CPU 根据接收的编码 B_1B_0 = 01,启动硬盘驱动器,开始传送数据。

普通编码器:无法避免错误输入(同时输入多路有效信号),容易造成混乱。

4:2优先编码器

A ₃	$\mathbf{A_2}$	$\mathbf{A_1}$	$\mathbf{A_0}$	B ₁	\mathbf{B}_0
0	0	0	1	0	0
0	0	1	X	0	1
0	1	X	X	1	0
1	X	X	X	1	1

$$A = A0 \overline{A1} \overline{A2} \overline{A3}$$

$$\mathbf{B} = \mathbf{A}1 \overline{\mathbf{A}2} \overline{\mathbf{A}3}$$

$$C = A2 \overline{A3}$$

$$D = A3$$

二进制编码器:

- 可以对2ⁿ个输入对象编码
- 只需n个输出端(每个对象获得一个n位编码)

优先编码器

■ 编码具有唯一性

优先编码器:

- 允许同时输入多路有效信号
- 按照预先设定的优先级,只对其中优先级最高的输入进行编码。

编码器典型芯片74LS148

标志位:

0:编码输出;1:非编码输出

输入和输出均为低电平被有效。

输入使能

8线-3线优先编码器

输出使能

		输)	\			3	输		出	
$\overline{\mathbf{s}}$	\bar{I}_7	\bar{I}_6	\bar{I}_5	$ar{I}_4$	\bar{I}_3	\bar{I}_2	\bar{I}_1	\bar{I}_0	\overline{Y}_2	\overline{Y}_1	\overline{Y}_0	$\overline{Y}_{E\lambda}$	$\overline{Y_S}$
1	×	×	×	×	×	×	×	×	1	1	1	1	1
0	1	1	1	1	1	1	1	1	1	1	1	1	0
0	0	\times	\times	\times	\times	\times	\times	\times	0	O	0	0	1
0	1	0	\times	\times	×	\times	\times	\times	0	O	1	0	1
0	1	1	0	\times	\times	\times	\times	\times	0	1	0	0	1
0	1	1	1	0	\times	\times	\times	\times	0	1	1	0	1
0	1	1	1	1	0	\times	\times	\times	1	0	0	0	1
0	1	1	1	1	1	0	\times	×	1	0	1	0	1
0	1	1	1	1	1	1	0	\times	1	1	0	0	1
0	1	1	1	1	1	1	1	0	1	1	1	0	1

编码器与译码器的实际应用

Unit 7 组合逻辑元件

- 多路复用器(multiplexers)
- 三态器件(Three-state Buffer)
- 译码器(Decoders)
- 编码器(Encoders)
- ■奇偶校验器
- ■比较器
- 只读存储器(ROM)
- ■利用MSI设计组合逻辑电路

奇偶校验器

- □ 用来检查数据传输和存取过程中是否产生错误的组合逻辑电路。 (就是检测数据中包含"1"的个数是奇数还是偶数)
- □ 广泛用于计算机的内存储器以及磁盘等外部设备中

奇偶校验发生器:可产生奇偶校验位,与数据一起传输或保存

奇偶校验检测器:可以检验所接受数据的正确性

被校验的原始数据和1位校验位组成 n+1位校验码。

n位 1位 原始数据 校验位 校验码: n+1 位

偶校验位逻辑值的表达式:

$$\mathsf{R}_{\mathsf{E}} = \mathsf{A}_3 \oplus \mathsf{A}_2 \oplus \mathsf{A}_1 \oplus \mathsf{A}_0$$

奇校验位逻辑值的表达式:

$$\mathsf{P}_0 = \mathsf{A}_3 \oplus \mathsf{A}_2 \oplus \mathsf{A}_1 \oplus \mathsf{A}_0$$

奇偶校验器一般 由异或门构成

异或门真值表

Α	В	F		
0	0	0		
0	1	1		
1	0	1		
1	1	0		

异或门特性

- 两个输入中有奇数个"1",输出为1;有偶数个 "1",输出为0。
- ◆ 扩展: n个1位二进制数中有奇数个"1",输出 为1;有偶数个"1",输出为0。

偶校验位逻辑值电路是 在奇校验位逻辑值电路 输出端加非门实现

4位二进制数校验码真值表

$A_3A_2A_1A_0$	$P_{E} P_{O}$				
0000	0 1				
0001	1 0				
0010	1 0				
0011	0 1				
0100	1 0				
0101	0 1				
0110	0 1				
0111	1 0				
1000	1 0				
1001	0 1				
1010	0 1				
1011	1 0				
1100	0 1				
1101	1 0				
1110	1 0				
1111	0 1				

奇偶校验器

奇偶校验器/产生器: 74xx180、 74xx280

例)用9位奇偶校验器74LS280设计一个8位二进制码的奇校验位发生器和检测器。

74XX280功能表

A~I	EVEN	ODD
偶数个"1"	1	0
奇数个"1"	0	1

奇偶校验器

奇偶校验实际应用意义

- ① 能够检测传送出错,但不能确定错误位置,不能纠错;
- ② 数据在存储或传送过程中,发生一位错误的可能性占 96%以上;
- ③ 电路简单,容易实现,且有实际应用意义。

Unit 7 组合逻辑元件

- 多路复用器(multiplexers)
- 三态器件(Three-state Buffer)
- 译码器(Decoders)
- 编码器(Encoders)
- ■奇偶校验器
- ■比较器
- 只读存储器(ROM)
- ■利用MSI设计组合逻辑电路

数值比较器

- 计算机中对数据的基本处理方法
 - □加、减、乘、除
 - □ 比较运算
- •数值比较器:一种关系运算电路
 - □ 能对2个 n 位二进制数 A和B 进行比较的多输入、多输出的组合逻辑电路
 - □ 比较结果: Y_{A>B}、Y_{A<B}、Y_{A=B}

一位数值比较器

真值表

Α	В	$Y_{A=B}$	$Y_{A>B}$	$Y_{A < B}$
0	0	1	0	0
0	1	0	0 0	
1	0	0	1	0
1	1	1	0	0

$$\begin{cases} Y_{A=B} = \overline{A}\overline{B} + AB = (A + \overline{B})(\overline{A} + B) = (\overline{A} + \overline{A} + \overline{B})(B + \overline{A} + \overline{B}) \\ = (\overline{A} + \overline{A} + \overline{B}) + (\overline{B} + \overline{A} + \overline{B}) \end{cases}$$

$$Y_{A>B} = A\overline{B} = \overline{A}(\overline{A} + \overline{B}) = \overline{A} + (\overline{A} + \overline{B})$$

$$Y_{A$$

多位数值比较器

■ 自高而低逐位比较,只有在高位相等时,才需要比较低位。

接低位芯片的比较结果,用于芯片扩展。

比较2个4位二进制数的大小时,3个输入端(A=B)_i、(A>B)_i、(A<B)_i 应接 100,当A₃A₂A₁A₀= B₃B₂B₁B₀比较器的输出Y_{A=B}Y_{A>B}Y_{A<B}=100

当 $A_3A_2A_1A_0=B_3B_2B_1B_0$,比较器的输出复现3个输入端(A=B); (A>B); (A<B); 的状态。

Ĭ	比较输入				级联输入			输出		
	A ₃ B ₃	A ₂ B ₂	A ₁ B ₁	B ₀ A ₀	(A>B) _i	(A <b)<sub>i</b)<sub>	(A=B) _i	Y _{A>B}	Y _{A<b< sub=""></b<>}	Y _{A=B}
	$A_3 > B_3$	Х	Х	X	Х	Х	Х	1	0	0
	$A_3 < B_3$	Х	Х	Х	Х	Х	Х	0	1	0
	$\mathbf{A}_3 = \mathbf{B}_3$	$A_2 > B_2$	Х	Х	Х	Х	Х	1	0	0
	$\mathbf{A}_3 = \mathbf{B}_3$	$A_2 < B_2$	Х	Х	Х	Х	Х	0	1	0
ľ	$A_3 = B_3$	$A_2 = B_2$	$A_1 > B_1$	Х	Х	Х	Х	1	0	0
ľ	$\mathbf{A}_3 = \mathbf{B}_3$	$\mathbf{A_2} = \mathbf{B_2}$	$A_1 < B_1$	Х	Х	Х	Х	0	1	0
Į	$A_3 = B_3$	$\mathbf{A_2} = \mathbf{B_2}$	$A_1 = B_1$	$A_0 > B_0$	Х	Х	Х	1	0	0 (
Ĭ	$\mathbf{A}_3 = \mathbf{B}_3$	$\mathbf{A_2} = \mathbf{B_2}$	$\mathbf{A}_1 = \mathbf{B}_1$	$A_0 \le B_0$	Х	Х	Х	0	1	0
	$\mathbf{A}_3 = \mathbf{B}_3$	$\mathbf{A_2} = \mathbf{B_2}$	$\mathbf{A}_1 = \mathbf{B}_1$	$\mathbf{A}_0 = \mathbf{B}_0$	1	0	0	1	0	0
	$\mathbf{A}_3 = \mathbf{B}_3$	$\mathbf{A_2} = \mathbf{B_2}$	$A_1 = B_1$	$\mathbf{A}_0 = \mathbf{B}_0$	0	1	0	0	1	0
	$A_3 = B_3$	$\mathbf{A_2} = \mathbf{B_2}$	$A_1 = B_1$	$\mathbf{A}_0 = \mathbf{B}_0$	0	0	1	0	0	1
	$\mathbf{A}_3 = \mathbf{B}_3$	$\mathbf{A_2} = \mathbf{B_2}$	$A_1 = B_1$	$\mathbf{A}_0 = \mathbf{B}_0$	0	0	0	0	0	0
	$\mathbf{A}_3 = \mathbf{B}_3$	$\mathbf{A_2} = \mathbf{B_2}$	$A_1 = B_1$	$\mathbf{A}_0 = \mathbf{B}_0$	0	1	1	0	1	1
¥	$A_3 = B_3$	$\mathbf{A_2} = \mathbf{B_2}$	$A_1 = B_1$	$A_0 = B_0$	1	0	1	1	0	1
	$\mathbf{A}_3 = \mathbf{B}_3$	$\mathbf{A_2} = \mathbf{B_2}$	$A_1 = B_1$	$\mathbf{A}_0 = \mathbf{B}_0$	1	1	0	1	1	0
Ĭ	$\mathbf{A}_3 = \mathbf{B}_3$	$\mathbf{A_2} = \mathbf{B_2}$	$A_1 = B_1$	$\mathbf{A}_0 = \mathbf{B}_0$	1	1	1	1	1	1

数值比较器的级联—— ①串行方式

数值比较器的级联——②并行方式

Unit 7 组合逻辑元件

- <u>多路复用器(multiplexers)</u>
- 三态器件(Three-state Buffer)
- <u>译码器(Decoders)</u>
- 编码器(Encoders)
- 奇偶校验器
- 比较器
- 只读存储器(ROM)
- 利用MSI设计组合逻辑电路