

# ML4SCI NMR Spin Challenge

Avanti Bhandarkar Keerthiraj Nagaraj Enes Grahovac

#### Overview

- 1. Problem Formulation
- 2. Motivation
- 3. ML Models
- 4. Data preprocessing
- 5. Model training
- 6. Gators4SCI Team

#### Problem formulation

- Design and train a model that predicts the strength and shape of interactions between the nuclear spins from simulated time-dependent magnetization curves
- From ML point of view Predict four real numbers from a large input vector of real numbers
- Multi-Target Regression One Vs different models for different targets.
- We decided to test multiple models for different targets.
  - This allows for more flexibility while choosing right model and its hyperparameters for a given target variable.

#### Motivation for our approach

- The data provided had 10,000 samples for model training with each sample having a dimensionality of (942x1), so overall 942 features in the data.
- We discussed about pros and cons of using a "simple Vs complex" ML model.
- We expected slightly complex models such as MLP neural networks to overfit with this data and our experiments validated it.
- Trusting Occam's Razor rule, we decided to stick with simpler ML models.
- We ended up using Multivariate Linear Regression, Bayesian Ridge Regression, and Support Vector Regression.

#### Regression Models

- Linear Regression
  - Attempts to find the mapping from input regressors to target using ordinary least squares fit method.
  - Assumes a direct correlation between the independent (input) and dependent (target) variables.
- Support Vector Regression (SVR)
  - Aims to find decision boundaries around a hyperplane that fits good amount of training data and SVR accounts for non-linearity in the data and provides proficient prediction model.
- Bayesian Regression
  - This method works well even with insufficient data or poorly distributed data by formulating linear regression using probability distributors rather than point estimators

## Data preprocessing

- We experimented with various data preprocessing techniques such as feature standardization, dimensionality reduction and feature selection.
- Selecting certain features gave us better performance as some features were not contributing anything to the target prediction and were only acting as noise.
- We used f\_regression score, which is calculated based on correlation between each regressor input and target, F-score and a p-value.
- For 2 of the 4 targets, top 100 features were enough for prediction with low errors.

#### Model training

- We performed 5-fold cross validation to choose the hyperparameters for each target.
- This improved the model generalizability and helped us choose the optimal hyperparameters.
- We experimented with more than 10 regression models and >50 hyperparameter combination to get highest generalizability for our models.
- Our solution consisted of the following models implemented using Scikit-learn.
  - Correlation strength (Alpha) Linear Regression (with intercept + top 300 features)
  - Correlation length (xi) Bayesian Ridge Regression (with top 100 features)
  - Correlation power (p) Support Vector Regression (C=10.0, epsilon=1e-4, kernel= polynomial)
  - Dissipation power (d) Bayesian Ridge Regression (with top 100 features)

#### Team



Enes Grahovac
Physics, Undergraduate
FICS AI Researcher



Keerthiraj Nagaraj Comp.Eng., PhD Student WAM System Lab, UF



Avanti Bhandarkar Comp.Eng., PhD Student FICS AI Researcher

#### Resources

https://www.analyticsvidhya.com/blog/2020/03/support-vector-regression-tutorial-for-machine-learning/

https://towardsdatascience.com/introduction-to-bayesian-linear-regressione66e60791ea7

https://towardsdatascience.com/understanding-the-fundamentals-of-linear-regression-7e64afd614e1

https://scikit-learn.org/stable/user\_guide.html