Applying RMA in Real-Life

(It can do more than one might think!)

Raj Rajkumar

Lecture #17

Carnegie Mellon

18-648: Embedded Real-Time Systems

Overview of BSY-1 Submarine Trainer

- This case study is interesting for several reasons:
 - RMS is not used, yet the system is analyzable using RMA
 - "Obvious" solutions would not have helped
 - RMA correctly diagnosed the problem
- Insights to be gained:
 - Devastating effects of non-preemption
 - How to apply RMA to a round-robin scheduler?
 - Contrast conventional wisdom about interrupt handlers with the results of RMA

Carnegie Mellon

Problem Analysis by Development Team

- During integration testing, the PC-RT could *not* keep up with the mainframe computer.
- The problem was perceived to be inadequate throughput in the PC-RT.
- Actions planned to solve the problem:
 - move processing out of the application and into OS interrupt handlers.
 - improve the efficiency of AIX (IBM's Unix) signals.
 - eliminate the use of Ada in favor of C.

Carnegie Mellon

18-648: Embedded Real-Time Systems

 $U_i = C_i/T_i$

Data from RMA Investigation

 $C = C_i$ (interrupt time) + C_a (application time)

	1 \	1 /	- a (-FI		
	Ci	Ca	O	Т	U
	(msec)	(msec)	(msec)	(msec)	
Event 1	2.0	0.5	2.5	43	0.059
Event 2	7.4	8.5	15.9	74	0.215
Event 3	6.0	0.6	6.6	129	0.052
Event 4	21.5	26.7	48.2	258	0.187
Event 5	5.7	23.4	29.1	1032	0.029
Event 6	2.8	1.0	3.8	4128	0.001
Total					0.543

• Observe that total utilization is only 54%; the problem is **not** insufficient throughput.

Carnegie Mellon

Schedulability Model: Original Design

$$(1) \ \frac{C_1}{T_1} + \left[\frac{C_2 + C_3 + C_4 + C_5 + C_6}{T_1} \right] \le U(1)$$

Preemption Execution Blocking (2)
$$\left[\frac{C_{1,I}}{T_1}\right] + \frac{C_2}{T_2} + \left[\frac{C_{1,A} + C_3 + C_4 + C_5 + C_6}{T_2}\right] \leq U(2)$$

$$(3) \left[\frac{C_{1,I}}{T_1} + \frac{C_{2,I}}{T_2} \right] + \frac{C_3}{T_3} + \left[\frac{C_{1,A} + C_{2,A} + C_4 + C_5 + C_6}{T_3} \right] \le U(3)$$

$$(4) \left\lceil \frac{C_{1,I}}{T_1} + \frac{C_{2,I}}{T_2} + \frac{C_{3,I}}{T_3} \right\rceil + \frac{C_4}{T_4} + \left\lceil \frac{C_{1,A} + C_{2,A} + C_{3,A} + C_5 + C_6}{T_4} \right\rceil \leq U(4)$$

- (5) (6)

Carnegie Mellon

18-648: Embedded Real-Time Systems

Schedulability Test: Original Design

$$(1) \quad \frac{2.5}{43} + \left[\frac{15.9 + 6.6 + 48.2 + 29.1 + 3.8}{43} \right] \le U(1)$$

$$(2) \left[\frac{2.0}{43} \right] + \frac{15.9}{74} + \left[\frac{(0.5) + 6.6 + 48.2 + 29.1 + 3.8}{74} \right] \le U(2)$$

$$(3) \left[\frac{2.0}{43} + \frac{7.4}{74} \right] + \frac{6.6}{129} + \left[\frac{(0.5 + 8.5) + 48.2 + 29.1 + 3.8}{129} \right] \le U(3)$$

$$(4) \left[\frac{2.0}{43} + \frac{7.4}{74} + \frac{6.6}{129} \right] + \frac{48.2}{258} + \left[\frac{(0.5 + 8.5 + 0.6) + 29.1 + 3.8}{258} \right] \le U(4)$$

$$(5) \left[\frac{2.0}{43} + \frac{7.4}{74} + \frac{6.6}{129} + \frac{21.5}{258} \right] + \frac{29.1}{1032} + \left[\frac{(0.5 + 8.5 + 0.6 + 26.7) + 3.8}{1032} \right] \le U(5)$$

$$(6) \left[\frac{2.0}{43} + \frac{7.4}{74} + \frac{6.6}{129} + \frac{21.5}{258} + \frac{5.7}{1032} \right] + \frac{3.8}{4128} + \left[\frac{(0.5 + 8.5 + 0.6 + 26.7 + 23.4)}{4128} \right] \le U(6)$$

Carnegie Mellon 18-648: Embedded Real-Time Systems

Utilization: Original Design

	Period	Preempt	Execute	Blocking	Total
	(msec)				U
Event 1	43	0.000	0.059	2.410	2.469
Event 2	74	0.047	0.215	1.192	1.454
Event 3	129	0.147	0.052	0.699	0.898
Event 4	258	0.194	0.187	0.165	0.546
Event 5	1032	0.278	0.029	0.039	0.346
Event 6	4128	0.284	0.001	0.015	0.300
Total			0.543		
				- (

• The problem is excessive blocking ("priority inversion") for events 1, 2 and 3.

Remember that U *cannot* be greater than 1.0 for any system and for RMS, it can even be lower for non-harmonic tasksets.

<u>Carnegie</u> Mellon

Schedulability Model: RM Design

$$(1) \quad \frac{C_{1}}{T} + \begin{bmatrix} \max(C_{2,A}, C_{3,A}, C_{4,A}, C_{5,A}, C_{6,A}) + C_{2,I} + C_{3,I} + C_{4,I} + C_{5,I} + C_{6,I} \\ \text{Execution} & \text{Blocking} \end{bmatrix}$$

$$(2) \left[\frac{C_1}{T_1} \right] + \frac{C_2}{T_2} + \left[\frac{\max(C_{3,A}, C_{4,A}, C_{5,A}, C_{6,A}) + C_{3,I} + C_{4,I} + C_{5,I} + C_{6,I}}{T_2} \right]$$

$$(3) \left[\frac{C_1}{T_1} + \frac{C_2}{T_2} \right] + \frac{C_3}{T_3} + \left[\frac{\max(C_{4,A}, C_{5,A}, C_{6,A}) + C_{4,I} + C_{5,I} + C_{6,I}}{T_3} \right]$$

$$(4) \left[\frac{C_1}{T_1} + \frac{C_2}{T_2} + \frac{C_3}{T_3} \right] + \frac{C_4}{T_4} + \left[\frac{\max(C_{5,A}, C_{6,A}) + C_{5,I} + C_{6,I}}{T_4} \right]$$

(5)
$$\left[\frac{C_1}{T_1} + \frac{C_2}{T_2} + \frac{C_3}{T_3} + \frac{C_4}{T_4}\right] + \frac{C_5}{T_5} + \left[\frac{C_6}{T_5}\right]$$

Carnegie Mellon

18-648: Embedded Real-Time Systems

Schedulability Test: RM Order

(1)
$$\frac{2.5}{43} + \left[\frac{26.7 + 7.4 + 6.0 + 21.5 + 5.7 + 2.8}{43} \right] \le U(1)$$

$$(2) \ \left[\frac{2.5}{43}\right] + \frac{15.9}{74} + \left[\frac{(26.7) + 6.0 + 21.5 + 5.7 + 2.8}{74}\right] \le U(2)$$

$$(3) \left[\frac{2.5}{43} + \frac{15.9}{74} \right] + \frac{6.6}{129} + \left[\frac{(26.7) + 21.5 + 5.7 + 2.8}{129} \right] \le U(3)$$

$$(4) \left[\frac{2.5}{43} + \frac{15.9}{74} + \frac{6.6}{129} \right] + \frac{48.2}{258} + \left[\frac{(23.4) + 5.7 + 2.8}{258} \right] \le U(4)$$

$$(5) \left[\frac{2.5}{43} + \frac{15.9}{74} + \frac{6.6}{129} + \frac{48.2}{258} \right] + \frac{29.1}{1032} + \left[\frac{3.8}{1032} \right] \le U(5)$$

(6)
$$\left[\frac{2.5}{43} + \frac{15.9}{74} + \frac{6.6}{129} + \frac{48.2}{258} + \frac{29.1}{1032} \right] + \frac{3.8}{4128} \le U(6)$$

Carnegie Mellon

18-648: Embedded Real-Time Systems

Utilization: RM Design

	Period (msec)	Preempt	Execute	Blocking	Total U	Previous Total
Event 1	43	0.000	0.059	1.631	1.690	2.469
Event 2	74	0.059	0.215	0.848	1.122	1.454
Event 3	129	0.274	0.052	0.440	0.766	0.898
Event 4	258	0.326	0.187	0.124	0.637	0.546
Event 5	1032	0.513	0.029	0.004	0.546	0.346
Event 6	4128	0.542	0.001	0.000	0.543	0.300
Total			0.543			

• Note: Events 3 through 6 will meet their deadlines.

Carnegie Mellon

18-648: Embedded Real-Time Systems

Preemptible IO

Packetized Data Movement

Carnegie Mellon

18-648: Embedded Real-Time Systems

Schedulability Test: Packetized Data and Preemptible I/O

$$(1) \quad \frac{2.5}{43} + \left[\frac{(4.5) + 1.5 + 6.0 + 21.5 + 5.7 + 2.8}{43} \right] \le U(1)$$

$$(2) \ \left[\frac{2.5}{43}\right] + \frac{15.9}{74} + \left[\frac{(4.5) + 6.0 + 21.5 + 5.7 + 2.8}{74}\right] \le U\left(2\right)$$

$$(3) \left[\frac{2.5}{43} + \frac{15.9}{74} \right] + \frac{6.6}{129} + \left[\frac{(4.5) + 21.5 + 5.7 + 2.8}{129} \right] \le U(3)$$

$$(4) \left[\frac{2.5}{43} + \frac{15.9}{74} + \frac{6.6}{129} \right] + \frac{48.2}{258} + \left[\frac{(3.9) + 5.7 + 2.8}{258} \right] \le U(4)$$

$$(5) \left[\frac{2.5}{43} + \frac{15.9}{74} + \frac{6.6}{129} + \frac{48.2}{258} \right] + \frac{29.1}{1032} + \left[\frac{3.8}{1032} \right] \le U(5)$$

$$(6) \left[\frac{2.5}{43} + \frac{15.9}{74} + \frac{6.6}{129} + \frac{48.2}{258} + \frac{29.1}{1032} \right] + \frac{3.8}{4128} \le U(6)$$

Carnegie Mellon

18-648: Embedded Real-Time Systems

Utilization: Packetized Data and Preemptable I/O

	Period (msec)	Preempt	Execute	Blocking	Total U	Previous Total
Event 1	43	0.000	0.059	0.977	1.035	1.690
Event 2	74	0.059	0.215	0.548	0.822	1.122
Event 3	129	0.274	0.052	0.268	0.594	0.766
Event 4	258	0.326	0.187	0.049	0.562	0.637
Event 5	1032	0.513	0.029	0.004	0.546	0.546
Event 6	4128	0.542	0.001	0.000	0.543	0.543
Total			0.543			

Note: Events 2 through 6 meet their deadlines.

Carnegie Mellon

18-648: Embedded Real-Time Systems

Streamlined Interrupt Handler

Carnegie Mellon

18-648: Embedded Real-Time Systems

Schedulability Test: Streamlined Interrupt Handler

(1)
$$\frac{2.5}{...} + \left[\frac{(4.5) + 1.5 + 6.0 + 6.5 + 5.7 + 2.8}{43} \right] \le U(1)$$

$$(2) \ \left[\frac{2.5}{43}\right] + \frac{15.9}{74} + \left[\frac{(4.5) + 6.0 + 6.5 + 5.7 + 2.8}{74}\right] \le U\left(2\right)$$

$$(3) \left[\frac{2.5}{43} + \frac{15.9}{74} \right] + \frac{6.6}{129} + \left[\frac{(4.5) + 6.5 + 5.7 + 2.8}{129} \right] \le U(3)$$

$$(4) \left[\frac{2.5}{43} + \frac{15.9}{74} + \frac{6.6}{129} \right] + \frac{48.2}{258} + \left[\frac{(3.9) + 5.7 + 2.8}{258} \right] \le U(4)$$

$$(5) \ \left[\frac{2.5}{43} + \frac{15.9}{74} + \frac{6.6}{129} + \frac{48.2}{258} \right] + \frac{29.1}{1032} + \left[\frac{3.8}{1032} \right] \le U(5)$$

(6)
$$\left[\frac{2.5}{43} + \frac{15.9}{74} + \frac{6.6}{129} + \frac{48.2}{258} + \frac{29.1}{1032}\right] + \frac{3.8}{4128} \le U(6)$$

Carnegie Mellon

Utilization: Streamlined Interrupt Handler

	Period (msec)	Preempt	Execute	Blocking	Total U	Previous Total
Event 1	43	0.000	0.059	0.628	0.687	1.035
Event 2	74	0.059	0.215	0.345	0.619	0.822
Event 3	129	0.274	0.052	0.152	0.478	0.594
Event 4	258	0.326	0.187	0.049	0.562	0.562
Event 5	1032	0.513	0.029	0.004	0.546	0.546
Event 6	4128	0.542	0.001	0.000	0.543	0.543
Total			0.543			

Note: **All** events meet their deadlines.

Carnegie Mellon

18-648: Embedded Real-Time Systems

BSY-1 Trainer Case-Study Summary

- Recall original action plan:
 - improve efficiency of AIX signals
 - move processing from application to interrupts
 - recode 17,000 lines of Ada to C
- Final actions:
 - increase preemption and improve AIX
 - move processing from interrupts to application
 - modify 300 lines of Ada code
 - RMA took 3 people and 3 weeks

Carnegie Mellon

18-648: Embedded Real-Time Systems

Summary of Lecture

- Applying RMA to real-time systems
 - Can be applied to systems that did not use Rate-Monotonic Scheduling or Deadline-Monotonic Scheduling
 - can be applied to systems doing round-robin scheduling, for example
- Conclusions drawn without understanding realtime scheduling theory can be widely off.
- Knowing real-time scheduling theory, simple fixes at the right places can solve what seem to be fundamental design and performance problems.

Carnegie Mellon

