Answer the following questions completely.

1. Let
$$W$$
 be a subset of \mathbb{R}_3 defined by $W = \left\{ \begin{bmatrix} a-b+2c\\ 2a-2c+3d\\ a+b+d \end{bmatrix} | a,b,c,d \in \mathbb{R} \right\}$.

- (a) Find a set S that spans W.
- (b) Find the subset of S that forms a basis for W. What is the dimension of W?
- 2. Recall that the set $M_{3,3}$ is the set of all 3×3 matrices. Let W be the set of all diagonal 3×3 matrices.
 - (a) Show that W is a subspace of $M_{3,3}$.
 - (b) Find a basis for W. (5 pts)
- 3. Let $V = M_{3,3}$. A matrix is *circulant*, if the (i+1)st row can be obtained by shifting the *ith* row entries on place to the right with a wrap around. Examples of 3×3 circulant matrices are:

$$\begin{bmatrix} 2 & -1 & 3 \\ 3 & 2 & -1 \\ -1 & 3 & 2 \end{bmatrix} \quad \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Let W be the set of all circulant 3×3 matrices.

- (a) Show that W is a subspace of $M_{3,3}$.
- (b) Find a basis for W.
- (c) What is the dimension of W?
- 4. Find a basis for \mathbb{R}^3 that includes (1,2,3).
- 5. Find a basis for \mathbb{R}^3 that is a subset of

$$S = \{(1,0,2), (-3,-4,4), (1,1,-1), (2,1,3)\}.$$

- 6. Given $A = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 1 & -4 & -5 \end{bmatrix}$.
 - (a) Find the rank of A.
 - (b) Is A singular or nonsingular? Support your answer.
 - (c) Give a basis for the row space of A.
 - (d) Find the solution set of the homogenous system AX = O. What is the dimension of this solution set?
- 7. Suppose $S = \{\alpha_1, \alpha_2, \alpha_3\}$ is a linearly independent set of vectors in a vector space V. Prove that $T = \{\beta_1, \beta_2, \beta_3\}$ is also linearly independent set if $\beta_1 = \alpha_1 + \alpha_2$, $\beta_2 = \alpha_1 + \alpha_3$ and $\beta_3 = \alpha_2 + \alpha_3$.
- 8. Let A be an $n \times n$ matrix and λ be a scalar. Show that the set W consisting of all vectors $\alpha \in \mathbb{R}^n$ such that $A\alpha = \lambda \alpha$ is a subspace of \mathbb{R}_n .