Построение доверительных интервалов*

Общий вид закона распр. ген. сов. X	Параметры	Центральная статистика и ее закон распределения
	μ – неизв., σ – изв. Оценить μ . μ – изв., σ – неизв. Оценить σ .	$\frac{\mu - \overline{X}}{\sigma} \sqrt{n} \sim N(0, 1)$
$N(\mu, \sigma^2)$	μ – неизв., σ – неизв. Оценить μ .	$\frac{\mu - \overline{X}}{S(\vec{X}_n)} \sqrt{n} \sim \operatorname{St}(n-1)$
	μ – неизв., σ – неизв. Оценить σ .	$\frac{S^2(\vec{X}_n)}{\sigma^2}(n-1) \sim \chi^2(n-1)$
$Exp(\lambda)$	λ – неизв. Оценить λ .	$2\lambda n\overline{X} \sim \chi^2(2n)$

Проверка статистических гипотез* для нормально распределенной генеральной совокупности $X \sim \mathrm{N}(\mu, \sigma^2)$

	Основная гипотеза H_0	Конкур. гипотеза H_1	Статистика $T(\vec{X}_{\scriptscriptstyle n})$ и ее закон распределения при $H_{\scriptscriptstyle 0}$	Условие, определяющее критическую область W
І. σ изв.	$\mu = \mu_0$	$\mu < \mu_0$ $\mu > \mu_0$ $\mu \neq \mu_0$	$\frac{\mu_0 - \overline{X}}{\sigma} \sqrt{n} \sim N(0, 1)$	$T(\vec{X}_n) \geqslant u_{1-\alpha}$ $T(\vec{X}_n) \leqslant -u_{1-\alpha}$ $\left T(\vec{X}_n) \right \geqslant u_{1-\alpha/2}$
II. о неизв.	$\mu = \mu_0$	$\mu < \mu_0$ $\mu > \mu_0$ $\mu \neq \mu_0$	$\frac{\mu_0 - \bar{X}}{S(\bar{X}_n)} \sqrt{n} \sim \operatorname{St}(n-1)$	$T(\vec{X}_n) \geqslant t_{1-lpha}$ $T(\vec{X}_n) \leqslant -t_{1-lpha}$ $\left T(\vec{X}_n)\right \geqslant t_{1-lpha/2}$
Ш. о1 и о2 изв.	$\mu_1 = \mu_2$	$\mu_1 > \mu_2$ $\mu_1 \neq \mu_2$	$T(\vec{X}_{n_1}, \vec{Y}_{n_2}) = \frac{\bar{X} - \bar{Y}}{\sqrt{\sigma_1^2/n_1 + \sigma_2^2/n_2}} \sim N(0, 1)$	$T(\vec{X}_{n_1}, \vec{Y}_{n_2}) \geqslant u_{1-\alpha}$ $\left T(\vec{X}_{n_1}, \vec{Y}_{n_2}) \right \geqslant u_{1-\alpha/2}$
IV. о1 и о2 неизв.	$\mu_1 = \mu_2$	$\mu_1 > \mu_2$	$T(\vec{X}_{n_1}, \vec{Y}_{n_2}) = \frac{\overline{X} - \overline{Y}}{\sqrt{1/n_1 + 1/n_2}} \times \sqrt{n_1 + n_2 - 2}$	$T(ec{X}_{\scriptscriptstyle n_1},ec{Y}_{\scriptscriptstyle n_2})\!\geqslant\! t_{\scriptscriptstyle 1-lpha}$
		$\mu_1 \neq \mu_2$	$\times \frac{\sqrt{n_1 + n_2 - 2}}{\sqrt{(n_1 - 1)S^2(\vec{X}_{n_1}) + (n_2 - 1)S^2(\vec{Y}_{n_2})}}$ $\sim \operatorname{St}(n_1 + n_2 - 2)$	$\left T(\vec{X}_{n_1},\vec{Y}_{n_2}) ight \geqslant t_{1-lpha/2}$
v.	$\sigma = \sigma_0$	$\sigma > \sigma_0$	$\frac{S^2(\vec{X}_n)}{\sigma_0^2}(n-1) \sim \chi^2(n-1)$	$T(\vec{X}_n) \geqslant h_{1-\alpha}$
		$\sigma < \sigma_0$ $\sigma \neq \sigma_0$		$T(\vec{X}_n) \leqslant h_{\alpha/2}$ $[T \leqslant h_{\alpha/2}] \lor [T \geqslant h_{1-\alpha/2}]$
VI.	$\sigma_1 = \sigma_2$	$\sigma_1 > \sigma_2$	$T(\vec{X}_{n_1}, \vec{Y}_{n_2}) = $	$T(\vec{X}_{n_1}, \vec{Y}_{n_2}) \geqslant F_{1-\alpha}(n_1 - 1, n_2 - 1)$
		$\sigma_1 < \sigma_2$ $\sigma_1 \neq \sigma_2$	$= \frac{\max\left\{S_1^2(\vec{X}_{n_1}), S_2^2(\vec{Y}_{n_2})\right\}}{\min\left\{S_1^2(\vec{X}_{n_1}), S_2^2(\vec{Y}_{n_2})\right\}} \sim F(n_1 - 1, n_2 - 1)$	$T \geqslant F_{1-\alpha/2}(n_1-1,n_2-1)$

^{*} \overline{X} — выборочное среднее, S^2 — исправленная выборочная дисперсия, α — уровень значимости критерия, u_q , t_q , h_q , F_q — квантили уровня q соответствующих распределений.