Summary: Lecture 8

Summary for the chapters 9.3 and 9.4. [2, 1]

Undirected graph

An undirected graph G is a pair of sets (V, E) where V is the finite set of nodes and E is a set of unordered pairs in V that are symmetric:

$$\forall i, j \in E, i \neq j : (i, j) \in E \Rightarrow (j, i) \in E$$

IndependentSet

IndependentSet

INDEPENDENTSET

Input: An undirected Graph G = (V, E) and a number k.

Question: Is there a set $I \subseteq V$ of k = |I| nodes with no edges in between? (INDEPENDENTSET)

INDEPENDENTSET is NP-complete.

Proof idea:

• triangle construction: any independent set can contain at most one node of the triangle

$$(x_1 \vee x_2 \vee x_3) \wedge (\neg x_1 \vee \neg x_2 \vee \neg x_3) \wedge (\neg x_1 \vee x_2 \vee x_3)$$

Figure 1: Graph with triangles [2]

- consider only graphs whose nodes can be partitioned in m disjoint triangles \rightarrow independent set can contain at most m nodes (one from each triangle)
- reduction from 3SAT to IndependentSet
- construct graph of formula ϕ :
 - each literal as a node
 - clauses as triangles
 - edges between nodes in different triangles if they correspond to the same literal (negated)
 - -K = m (m clauses)

TODO

Questions:

HamiltonPath is NP-complete

HAMILTONPATH is NP-complete.

Proof idea:

• Another reduction from 3SAT

TODO

Questions:

TSP(D)

TSP(D)

TSP(D) is a decision version of TSP.

Input: A $n \times n$ distance matrix and a bound $B \in \mathbb{N}$

Question: Is there a round tour of length $\leq B$ that visits all *cities*?

TSP(D) is NP-complete.

Proof idea:

• budget of nodes is B = |V| + 1

TODO

Questions:

Knapsack

Knapsack

KNAPSACK is NP-complete.

• filled in in one dimensional array on the board

•

TODO

Questions:

References

- [1] Martin Berglund. Lecture notes in Computational Complexity.
- [2] Christos H. Papadimitriou. Computational Complexity. Addison-Wesley Publishing Company, 1994.