Module 03 - Production Modeling

Exploratory Data Analysis

	Average of	Average of	Average of	Average of Safety
Row Labels	Capacity	Demand	Production_cost	Stock
1	506	572	51.53041667	57.2
2	498.9995833	420.99875	50.51958333	42.099875
3	402.0008333	632.0004167	53.59041667	63.20004167
4	530.0004167	297.9991667	48.72958333	29.79991667
Grand Total	484.2502083	480.7495833	51.0925	48.07495833

Model Formulation

MIN: 51.53P1 + 50.52P2 + 53.59P3 + 48.73P4 + 1.35 (B1 + B2)/2 + 1.35 (B2 + B3)/2 + 1.35 (B3 + B4)/2 + 1.35 (B4 + B5)/2

Subject to:

P1 <= 487

P2 <= 499

P3 <= 402

P4 <= 265

B1 + P1 >= 52.7

B2 + P2 >= 42.09

B3 + P3 >= 63.02

B4 + P4 >= 29.79

Where:

B2 = B1 + P1 - 572

B3 = B2 + P2 - 420.99

B4 = B3 + P3 - 632.00

B5 = B4 + P4 - 297.99

Objective function:

Monthly production costs + monthly carrying costs

Model Optimized for Cost Reduction

A		B C		U			E		Г	G	П	
				1		2		3		4		
Beginning Inventory				300		215		293		63		
Units Produced			4	487		499		402		265		
Units Demanded				572	42	20.9988	63	32.0004	29	7.9992		
Ending Inventory				215		293		63		30		
Maximum Production				506	49	98.9996	40	2.0008	53	30.0004		
Minimum Inventory (capacity)				52.7	42	2.09988	63	3.20004	29	9.79992		
Average Inventory			:	258		254		178		46		
Unit Production Cost			\$	51.53	\$	50.52	\$	53.59	\$	48.73		
Unit Carrying Cost	\$	1.35	\$	1.35	\$	1.35	\$	1.35	\$	1.35		
Monthly Production Cost			\$25,106		\$25,209		\$21,543		\$12,894			
Monthly Carrying Cost			\$348		\$343		\$241			\$63		
											Total Cost	\$85,746

The total cost for the optimal solution is \$85,746.

Model with Stipulation

	1	2	3	4		
Beginning Inventory	300	53	695	63		
Units Produced	325	1,063	0	265		
Units Demanded	572	420.9988	632.0004	297.9992		
Ending Inventory	53	695	63	30		
Maximum Production	506	498.9996	402.0008	530.0004		
Minimum Inventory (capacity)	52.7	42.09988	63.20004	29.79992		
Average Inventory	176	374	379	46		
Unit Production Cost	\$ 51.53	\$ 50.52	\$ 53.59	\$ 48.73		
Unit Carrying Cost						
Monthly Production Cost	\$16,732	\$53,728	\$0	\$12,894		
Monthly Carrying Cost	\$0	\$0	\$0	\$0		
					Total Cost	\$83,353

In this case the units produced, ending inventory, and the monthly production cost would all be affected by this. The total cost though does not change that much, and it still gave a feasible solution. Some of the fallbacks of this model are that you could easily forget the carrying cost and it would not affect the model that much. Another fallback is that it gives you a feasible solution even when you remove the production capacity constraint.