Algebra assignment

Prof.G V V sharma

July 27, 2023

Questions

- 1. If α and β are the zeroes of the quadratic polynomial $p(x)=x^2-ax-b$, then the value of $\alpha^2+\beta^s$ is :
 - (a) $a^2 2b$
 - (b) $a^2 + 2b$
 - (c) $b^2 2a$
 - (d) $b^2 + 2a$
- 2. Assertion(A): The polynomial $p(x) = x^2 + 3x + 3$ has two real zeroes. Reason(R): A quadratic polynomial can have at most two real zeroes.
- 3. (a) If $4 \cot^2 45^\circ \sec^2 60^\circ + \sin^2 60^\circ + p = \frac{3}{4}$, then find the value of p. **OR**
 - (b) If $\cos A + \cos^2 A = 1$, then find the value of $\sin^2 A + \sin^4 A$.
- 4. Prove that:

$$\left[\frac{1}{\cos\theta} - \cos\theta\right]\left[\frac{1}{\sin\theta} - \sin\theta\right] = \frac{1}{\tan\theta + \cot\theta}$$

- 5. The value of k for which the pair of equations kx = y+2 and 6x = 2y+3 has infinitely many solutions,
 - (a) isk = 3
 - (b) does not exist
 - (c) is k = -3

- (d) is k = 4
- 6. If 2tanA = 3, then the value of $\frac{4sinA + 3cosA}{4sinA 3cosA}$ is
 - (a) $\frac{7}{\sqrt{13}}$
 - (b) $\frac{1}{\sqrt{13}}$
 - (c) 3
 - (d) does not exist
- 7. If α,β are the zeroes of a polynomial $p(x)=x^2+x-1$, then $\frac{1}{\alpha}+\frac{1}{\beta}$ equals to
 - (a) 1
 - (b) 2
 - (c) -1
 - $(d) \ \frac{-1}{2}$