La Transformada Z en sistemas LTI

PSI Percepción y Sistemas Inteligentes

■ Introducción

- La **T.z** es al análisis de señales y sistemas **discretos** LTI como la **T.Laplace** es al análisis de señales y sistemas **contínuos** LTI.
- La **T.z** cubre una clase más **amplia** de señales que la **T.Fourier**.

La Transformada Z en sistemas LTI

■ Introducción...

- La **convolución** de dos señales en el dominio del tiempo corresponde a una **multiplicación** de sus transformadas Z.
- Simplifica el análisis de los sistemas LTI y sus respuestas, mediante el uso de ecuaciones algebraicas.

La Transformada Z en sistemas LTI

■ Introducción...

- La T.z proporciona una manera alterna de caracterizar sistemas LTI y sus respuestas a las entradas.
- Emplea la localización de las raíces del polinomio numerador y denominador (polos y ceros) para determinar los atributos del sistema.

Transformada z bilateral

■ Definición

■ La T.z bilateral de una señal discreta x(n) se define como la serie de potencias:

$$X(z) \equiv \mathcal{Z}\{x(n)\} = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$

- ullet z variable compleja de forma $z = re^{jw}$
- La relación entre x(n) y X(z) se denota:

$$x(n) \stackrel{z}{\longleftrightarrow} X(z)$$

■ Es necesario definir la ROC de la T.z.

Región de Convergencia (ROC)

■ Definición

- La ROC de X(z) es el conjunto de todos los valores de z para los que X(z) es finita.
- La T.z es una serie infinita de potencias.
 - Existe sólo para aquellos valores de z para los que la serie converge.
- Siempre que se determine una T.z bilateral debe indicarse su ROC.

Región de Convergencia

- **Ejemplo:** Encontrar la T.z bilateral de las señales de duración finita:
 - $x_1(n) = \{ \underline{4}, 2, 5, -7, 0, 3 \}$
 - $x_2(n) = \{4, 2, \underline{5}, -7, 0, 3\}$
 - $\mathbf{x}_3(n) = \delta(n)$
- **■** Solución
 - $X_1(z) = 4 + 2z^{-1} + 5z^{-2} 7z^{-3} + 3z^{-5}$
 - ROC: plano z, excepto z = 0
 - $X_2(z) = 4z^2 + 2z^1 + 5 7z^{-1} + 3z^{-3}$
 - ROC: plano z, excepto z = 0 y $z = \infty$
 - $X_3(z) = 1$
 - ROC: plano z

Señales Típicas y sus ROC

PSO Percepción y Sistemas Inteligentes

Señales de Duración Finita

Facultad de Ingeniería Escuela de Ingeniería Eléctrica y Electrónica

Región de Convergencia

■ Observación

- La ROC de señales de **duración finita** es todo el plano z, excepto quizás z = 0 y/o $z = \infty$.
- Desde el punto de vista matemático, la T.z es una forma alternativa de representar una señal discreta.

ROC: Parte causal y no-causal

■ Introducción

■ Encontrar la ROC de X(z) es equivalente a determinar el rango de valores de r para los que la secuencia $x(n)r^{-n}$ es absolutamente sumable.

$$z = re^{j\theta} \implies X(z)\Big|_{z=re^{j\theta}} = \sum_{n=-\infty}^{\infty} x(n)r^{-n}e^{-j\theta n}$$

■ La magnitud de X(z) está dada por,

$$|X(z)| = \left| \sum_{n=-\infty}^{\infty} x(n) r^{-n} e^{-j\theta n} \right| \le \sum_{n=-\infty}^{\infty} |x(n) r^{-n}|$$

ROC: Parte causal y no-causal

- Introducción ...
 - Reorganizando la sumatoria,

$$|X(z)| \le \sum_{n=1}^{\infty} |x(-n)r^n| + \sum_{n=0}^{\infty} \left| \frac{x(n)}{r^n} \right|$$

- Se observan dos componentes: anticausal y causal
- Para que exista X(z), ambos componentes deben **converger**:
 - Parte anticausal:

$$\sum_{n=1}^{\infty} x(-n)r^n < \infty$$
, converge para $r < r_1 < \infty$

Parte causal:

$$\sum_{n=0}^{\infty} \frac{x(n)}{r^n} < \infty$$
, converge para $r > r_2 < \infty$

ROC: Parte causal y no-causal

- **ROC Anular**: corresponde a una X(z) con parte causal y anticausal, tal que tal que $\mathbf{r}_2 < \mathbf{r} < \mathbf{r}_1$
 - ► Si r_2 > r_1 ⇒ ROC no existe $\xrightarrow{}$ X(z) no existe
- ▶ ROC Externa a un círculo r_2 : corresponde a una X(z) sólo con parte causal.
- ▶ ROC Interna a un círculo r_1 : corresponde a una X(z) sólo con parte anticausal.

Facultad de Ingeniería Escuela de Ingeniería Eléctrica y Electrónica

Propiedad 1. Si x(n) es duración *infinita*, La ROC en el plano z puede ser un anillo o un disco o el exterior de un disco, centrados en el origen.

Propiedad 2. La T. F. de x(n) converge sii la ROC de la T.z. de x(n) contiene la circunferencia unidad.

■ Propiedad 3. La ROC no contiene ningún polo.

Propiedad 4. Si x(n) es de duración *finita*, la ROC es el plano z completo, pudiendo exceptuarse los valores z = 0 y/o $z = \infty$.

■ Propiedad 5. Si X(z) es racional, entonces su ROC está limitada por polos o se extiende al infinito.

Propiedad 6. Si X(z) es racional y x(n) es derecha (secuencia limitada por la izquierda, es decir x(n) = 0 para $n < N_1$) la ROC se extiende hacia afuera desde el *polo finito de mayor* magnitud de X(z). Además, si x(n) es causal $(N_1 \ge 0)$, entonces la ROC incluye a $z = \infty$.

 $\blacksquare N_1$ puede ser negativo o positivo

Propiedad 7. Si X(z) es racional y x(n) es izquierda (secuencia limitada por la derecha, es decir x(n) = 0 para $n > N_2$), la ROC se extiende hacia adentro desde el *polo finito de menor* magnitud (diferente de z = 0) de X(z). Además, si x(n) es puramente anticausal $(N_2 < 0)$, la ROC incluye z = 0.

 $\blacksquare N_2$ puede ser negativo o positivo

Propiedad 8. Si x(n) es una secuencia bilateral (extensión infinita tanto para n > 0 como para n < 0), la ROC será un anillo en el plano z limitado en el interior y exterior por un polo y no contendrá ningún polo.

■ **Propiedad 9.** La ROC debe ser una región conexa.

Ejemplo 1. Determinar X(z) para

$$x(n) = \alpha^n u(n) = \begin{cases} \alpha^n & n \ge 0 \\ 0 & n \le -1 \end{cases}, \quad |\alpha| < 1$$

- Solución
 - Por definición

$$X(z) = \sum_{n=-\infty}^{\infty} \alpha^{n} u(n) z^{-n} = \sum_{n=0}^{\infty} (\alpha z^{-1})^{n}$$

Utilizando la serie

$$1 + A + A^2 + A^3 + \dots = \frac{1}{(1 - A)}$$
 : $|A| < 1$

■ Solución ...

Igualando $A = (\alpha z^{-1})$, se encuentra:

$$X(z) = \frac{1}{1 - \alpha z^{-1}} = \quad \therefore \quad \left| \alpha z^{-1} \right| < 1 \ \delta \ \left| z \right| > \left| \alpha \right|$$

■ De donde: ROC: $|z| > |\alpha|$

Ejemplo 2. Determinar X(z) para

$$x(n) = -\beta^n u(-n-1) = \begin{cases} 0 & n \ge 0 \\ -\beta^n & n \le -1 \end{cases} |\beta| < 1$$

- **■** Solución
 - Por definición

$$X(z) = \sum_{n=-\infty}^{\infty} [-\beta^n u(-n-1)] z^{-n} = \sum_{n=-\infty}^{-1} (-\beta^n) z^{-n}$$
$$X(z) = -\sum_{n=1}^{\infty} (\beta^{-1} z)^n$$

Utilizando la serie

$$A + A^2 + A^3 + \dots = A(1 + A + A^2 + \dots) = \frac{A}{(1 - A)}$$
 $\therefore |A| < 1$

■ Solución ...

■ Con $A = (\beta^{-1}z)$, se encuentra:

$$X(z) = -\frac{\beta^{-1}z}{1 - \beta^{-1}z} = \frac{1}{1 - \beta z^{-1}} \quad \therefore \quad |\beta^{-1}z| < 1 \ \delta \ |z| < |\beta|$$

■ De donde: ROC: $|z| < |\beta|$

Señales Típicas y sus ROC

PSO Percepción y Sistemas Inteligentes

Señales de Duración Infinita

r2 < |z| < r1

Facultad de Ingeniería Escuela de Ingeniería Eléctrica y Electrónica

Señal $x(n)$	Transformada z $X(z)$	ROC
$\delta(n)$	1	Todo z
u(n)	$\frac{1}{1-z^{-1}}$	z > 1
u(n-m)	$\frac{1}{1-z^{-1}}z^{-m}$	$Si \ m \ge 0, todo \ z \ excepto$ $z = 0$ $Si \ m < 0, todo \ z \ excepto$ $z = 0 \ y \ z = \infty$
-u(-n-1)	$\frac{1}{1-z^{-1}}$	z < 1
$\delta(n-m)$	z^{-m}	Todo z excepto $0 (si \ m > 0) $ 6 $\infty (si \ m < 0)$
nu(n)	$\frac{z^{-1}}{(1-z^{-1})^2}$	z > 1
-nu(-n-1)	$\frac{z^{-1}}{(1-z^{-1})^2}$	z < 1
$n^2u(n)$	$\frac{z^{-1}(1+z^{-1})}{(1-z^{-1})^3}$	z > 1
$-n^2u(-n-1)$	$\frac{z^{-1}(1+z^{-1})}{(1-z^{-1})^3}$	z < 1
$n^3u(n)$	$\frac{z^{-1}(1+4z^{-1}+z^{-2})}{(1-z^{-1})^4}$	z > 1
$-n^3u(-n-1)$	$\frac{z^{-1}(1+4z^{-1}+z^{-2})}{(1-z^{-1})^4}$	z < 1

Pares Comunes de Transformadas z

Pares de Transformadas z

Señal $x(n)$	Transformada z $X(z)$	ROC
$\propto^n u(n)$	$\frac{1}{1-\alpha z^{-1}}$	$ z > \alpha $
$-\alpha^n u(-n-1)$	$\frac{1}{1-\alpha z^{-1}}$	$ z < \infty $
$n \propto^n u(n)$	$\frac{\propto z^{-1}}{(1-\propto z^{-1})^2}$	$ z > \alpha $
$-n \propto^n u(-n-1)$	$\frac{\propto z^{-1}}{(1-\propto z^{-1})^2}$	$ z < \infty $
$n^2 \propto^n u(n)$	$\frac{\propto z^{-1}(1+\propto z^{-1})}{(1-\propto z^{-1})^3}$	$ z > \alpha $
$-n^2 \propto^n u(-n-1)$	$\frac{\propto z^{-1}(1+\propto z^{-1})}{(1-\propto z^{-1})^3}$	$ z < \alpha $
$[\cos w_0 n] u(n)$	$\frac{1 - [\cos w_0]z^{-1}}{1 - [2\cos w_0]z^{-1} + z^{-2}}$	z > 1
$[sen\ w_0n]u(n)$	$\frac{[sen \ w_0]z^{-1}}{1 - [2cos \ w_0]z^{-1} + z^{-2}}$	z > 1
$r^n[\cos w_0 n]u(n)$	$\frac{1 - [r\cos w_0]z^{-1}}{1 - [2r\cos w_0]z^{-1} + r^2z^{-2}}$	z > r
$r^n[sen\ w_0n]u(n)$	$\frac{[rsen w_0]z^{-1}}{1 - [2rcos w_0]z^{-1} + r^2z^{-2}}$	z > r

Facultad de Ingeniería Escuela de Ingeniería Eléctrica y Electrónica

Transformada z

Propiedades

Propiedad	Dominio del Tiempo	Dominio z	ROC
Notación	$egin{array}{c} x(n) \\ x_1(n) \\ x_2(n) \end{array}$	$egin{array}{c} X(z) \ X_1(z) \ X_2(z) \end{array}$	$egin{aligned} extit{ROC:} & r_2 < z < r_1 \ extit{ROC}_1 \ extit{ROC}_2 \end{aligned}$
Linealidad	$a_1x_1(n) + a_2x_2(n)$	$a_1X_1(z) + a_2X_2(z)$	Como minimo la intersección de ROC ₁ y ROC ₂
Desplazamiento en el tiempo	x(n-k)	$z^{-k}X(z)$	La $deX(z)$, excepto z = 0 si $k > 0y z = \infty si k < 0$
Escalado en el dominio z	$a^n x(n)$	$X(a^{-1}z)$	$ a r_2 < z < a r_1$
Escalado en el tiempo	$x\left(\frac{n}{k}\right)$	$\mathit{X}(\mathbf{z}^k)$	$rac{1}{r_1^k} \! < z \! < \! rac{1}{r_2^k}$

Transformada z

■ Propiedades ...

Propiedad	Dominio del Tiempo	Dominio z	ROC
Inversión temporal	x(-n)	$X(z^{-1})$	$\frac{1}{r_1} < z < \frac{1}{r_2}$
Conjugación	$x^*(n)$	$X^*(z^*)$	ROC
Parte Real	$Re\{x(n)\}$	$\frac{1}{2}[X(z)+X^*(z^*)]$	Incluye a la ROC
Parte Imaginaria	$Im\{x(n)\}$	$\frac{1}{2J}[X(z)-X^*(z^*)]$	Incluye a la ROC
Diferenciación en el dominio z	nx(n)	$-z\frac{dX(z)}{dz}$	$r_2 < z < r_1$

Transformada z

■ Propiedades ...

Propiedad	Dominio del Tiempo	Dominio z	ROC
Convolución	$x_1(n) * x_2(n)$	$X_1(z)X_2(z)$	Como minimo la interseccion de ROC ₁ y ROC ₂
Correlación	$r_{x_1x_2}(l) = x_1(l) * x_2(-l)$	$R_{x_1x_2}(z) = X_1(z) * X_2(z^{-1})$	Como minimo la intersección de ROC de $X_1(z)X_2ig(z^{-1}ig)$
Teorema del Valor Inicial	Si $x(n)$ es causal	$x(0) = \lim_{x \to \infty} X(z)$	
Teorema del Valor Final	$\lim_{n\to\infty}x(n)$	$\lim_{z\to 1} \big((z-1)X(z)\big)$	$Valido\ solo\ si\ los\ polos$ $de\ (z-1)X(z)$ se encuentran dentro del circulo unitaro.
Multiplica ción	$x_1(n)x_2(n)$	$\frac{1}{2\pi j} \oint_{C} X_{1}(v) X_{2}\left(\frac{z}{v}\right) v^{-1} dv$	$r_{1l}r_{2l} < z r_{1u}r_{2u}$
Relación de Parseval	$\sum^{\infty} x_1(n) x_2^*(n)$	$\frac{1}{2\pi j} \oint_{C} X_{1}(v) X_{2}^{*}\left(\frac{1}{v^{*}}\right) v^{-1} dv$	

■ Ejemplo 1:

- Para la señal compleja x(n) con T.z dada por X(z) y con una región de convergencia ROC_x ,
 - Obtener la T.z y la ROC de la *parte real* de x(n) en términos de X(z) y ROC_x respectivamente.

$$e^{j2\pi f_0 t} = \cos(2\pi f_0 t) + j\sin(2\pi f_0 t)$$

 $http://www.eetimes.com/document.asp?doc_id=1275580$

Facultad de Ingeniería Escuela de Ingeniería Eléctrica y Electrónica

■ Solución:

■ La parte real de una señal compleja se obtiene como:

$$Re\{x(n)\} = \frac{1}{2} [x(n) + x^*(n)]$$

De la propiedad de conjugación de la Transformada z:

Propiedad	Dominio del Tiempo	Dominio z	ROC
Conjugación	x*(n)	$X^*(\mathbf{z}^*)$	ROC

Luego

$$\not\equiv \{Re\{x(n)\}\} = \frac{1}{2}[X(z) + X^*(z^*)], \qquad ROC = ROC_x$$

■ Ejemplo 2:

■ Sin calcular la Transformada z inversa, determine si el sistema

$$H(z) = \frac{\frac{3}{\sqrt{2}}}{z^{-2} - 6\cos(\pi/4)z^{-1} + 9}$$

fue generado por una respuesta impulsional h(n) real.

■ Solución:

Utilizar la Propiedad de Conjugación !!

Propiedad	Dominio del Tiempo	Dominio z	ROC
Conjugación	x*(n)	$X^*(z^*)$	ROC

■ Solución ...

■ Implicaciones de la Propiedad de Conjugación

Propiedad	Dominio del Tiempo	Dominio z	ROC
Conjugación	x*(n)	<i>X</i> *(<i>z</i> *)	ROC

- Si x(n) es real, se puede concluir que $X(z) = X^*(z^*)$
- Esto es:
 - Si X(z) tiene un polo (cero) en $z = z_0$, también debe tener un polo (cero) en el punto complejo conjugado $z = z_0^*$.

■ Solución ...

- Calculando las raíces del numerador y denominador de H(z) se encuentra que :
 - Ceros $z_{c1,c2} = 0$
 - Polos $z_{p1,p2} = (1/3)e^{\pm j\pi/4}$
- Dado que H(z) tiene ceros reales y un par de polos complejos conjugados, el sistema h(n) es real !!

Transformadas z Racionales

■ Introducción

X(z) es una función racional si se puede expresar como el cociente de dos polinomios en z^{-1} (ó z).

$$X(z) = \frac{N(z)}{D(z)} = \frac{\sum_{k=0}^{M} b_k z^{-k}}{\sum_{k=0}^{N} a_k z^{-k}}$$

► Si $a_0 \neq 0$ y $b_0 \neq 0$ se tiene,

$$X(z) = \frac{N(z)}{D(z)} = \frac{b_0 z^{-M}}{a_0 z^{-N}} \frac{z^M + (b_1/b_0) z^{M-1} + \dots + (b_M/b_0)}{z^N + (a_1/a_0) z^{N-1} + \dots + (a_N/a_0)}$$

Transformadas z racionales

■ Introducción ...

▶ Dado que N(z) y D(Z) son polinomios, X(z) puede expresarse como un producto de factores:

$$X(z) = \frac{b_0}{a_0} z^{N-M} \frac{\prod_{k=1}^{M} (z - c_k)}{\prod_{k=1}^{N} (z - p_k)}$$

- $ightharpoonup c_k \cong Ceros$ de X(z): valores de z para los cuales X(z) = 0
- ▶ $p_k \cong Polos$ de X(z): valores de z para los cuales $X(z) = \infty$
- ▶ Por definición, la ROC de X(z) no puede contener ningún polo.

■ Introducción

- Existe relación directa entre la localización de los polos y la forma de la señal discreta correspondiente en el dominio del tiempo.
- ► El comportamiento de las señales causales está influenciado por la ubicación de los polos respecto al círculo unitario en el plano z.

Percepción y Sistemas Inteligentes

Señal con un solo polo

► Una transformada con un solo polo corresponde a una señal exponencial con base real.

$$x(n) = a^n u(n)$$

$$X(z) = \frac{1}{1 - az^{-1}}$$

Cero
$$z_1 = 0$$

$$Polo p_1 = a$$

racultau ue myemene

Escuela de Ingeniería Eléctrica y Electrónica

Percepción y Sistemas Inteligentes

Señal con un polo real doble

▶ Una transformada con un polo real doble corresponde a una señal exponencial con base real multiplicada por n.

$$x(n) = n \, a^n u(n)$$

$$X(z) = \frac{az^{-1}}{(1 - az^{-1})^2}$$

$$p_{1,2} = a$$

Facultad de Ingeniería Escuela de Ingeniería Eléctrica y Electrónica

► Una transformada con un polo real doble corresponde a una señal sinusoidal ponderada exponencial con base real.

$$x(n) = a^n \cos(w_o n) u(n)$$

$$X(z) = \frac{1 - az^{-1}\cos w_o}{1 - 2az^{-1}\cos w_o + a^2z^{-2}}$$

Facultad de Ingeniería Escuela de Ingeniería Eléctrica y Electrónica

- Señal con una pareja de polos dobles complejos conjugados
 - ► Señal causal correspondiente a un par de polos conjugado doble sobre la circunferencia unidad.

Observaciones

Comportamiento

- Los polos determinan el comportamiento de la señal en el tiempo
- Los ceros tienen menor incidencia en las características de la señal
- Los efectos de los polos se aplica tanto a señales como a sistemas

Señal decreciente

- Polos dentro del círculo unitario
- La tasa de decaimiento es inversamente proporcional a la distancia de los polos

Señal creciente

- Polos por fuera del círculo unitario
- Polos múltiples sobre la circunferencia unidad

Señal constante

• Polos sobre la circunferencia unidad

Función de Transferencia-Sistemas LTI

■ Definición:

▶ Para un sistema LTI, se cumple que:

$$y(n) = h(n) * x(n) \stackrel{z}{\longleftrightarrow} Y(z) = H(z)X(z)$$

Luego, la transformada z de h(n) puede determinarse como,

$$H(z) = \frac{Y(z)}{X(z)}$$

 \blacktriangleright H(z) recibe el nombre de **Función de Transferencia** del sistema, y describe el sistema en el dominio z.

Función de Transferencia-Sistemas LTI

Percepción y Sistemas Inteligentes

Para un sistema descrito por e.d.c.c.

$$y(n) = -\sum_{k=1}^{N} a_k y(n-k) + \sum_{k=0}^{M} b_k x(n-k) \longleftrightarrow Y(z) = -\sum_{k=1}^{N} a_k Y(z) z^{-k} + \sum_{k=0}^{M} b_k X(z) z^{-k}$$

Se obtiene:

$$H(z) = \frac{Y(z)}{X(z)} = \frac{\sum_{k=0}^{M} b_k z^{-k}}{1 + \sum_{k=1}^{N} a_k z^{-k}}$$

Sistema de todo ceros
$$\rightarrow$$
 FIR

Si
$$a_k = 0$$
 para $1 \le k \le M \Rightarrow H(z) = \sum_{k=0}^{M} b_k z^{-k} = \frac{1}{z^M} \sum_{k=0}^{M} b_k z^{M-K}$

$$H(z) = \frac{Y(z)}{X(z)} = \frac{\sum_{k=0}^{M} b_k z^{-k}}{1 + \sum_{k=1}^{N} a_k z^{-k}} \begin{cases} Si \ a_k = 0 \ para \ 1 \le k \le M \Rightarrow H(z) = \sum_{k=0}^{M} b_k z^{-k} = \frac{1}{z^M} \sum_{k=0}^{M} b_k z^{M-K} \\ Sistema \ de \ todo \ polos \to IIR \\ Si \ b_k = 0, \ para \ 1 \le k \le M \Rightarrow H(z) = \frac{b_0 z^N}{\sum_{k=0}^{M} a_k z^{N-k}} , \quad a_0 \equiv 1 \end{cases}$$

Definición

- Procedimiento para pasar del dominio z al dominio temporal.
- Dada por la integral de contorno que encierra el origen y se encuentra en la ROC de X(z)

$$x(n) = \frac{1}{2\pi j} \oint_C X(z) z^{n-1} dz$$

Inspección de pares de transformadas Resolución de pares de integral Expansión en series de potencias Expansión en fracciones parciales

Inpección de pares de transformadas

Técnica que consiste en identificar en una tabla de transformadas las parejas correspondientes.

La transformada puede expresarse como una suma de términos y encontrar las transformadas inversas de cada uno de ellos a partir de la tabla.

Para ampliar el alcance de las tablas de transformadas se recurre a las propiedades.

Percepción y Sistemas Inteligentes

Ejemplo: Encontrar la Transf. Inversa de:

$$X(z) = \left(\frac{z^{-3}}{1 - \frac{1}{2}z^{-1}}\right) \qquad ROC: \ |z| > \left|\frac{1}{2}\right|$$

De la tabla de pares:

$$a^n \ u(n) \stackrel{z}{\Leftrightarrow} \frac{1}{1-a z^{-1}} \quad ROC: |z| > |a|$$

► De las propiedades:

$$x(n-n_o) \Leftrightarrow z^{-n_o}X(z)$$

ROC: Región x, adic./supr. de z = 0 ó $z = \infty$

► Solución:

$$x(n) = \left(\frac{1}{2}\right)^{n-3} u(n-3)$$

La integral de contorno se calcula usando el Teorema de Residuo de Cauchy.

Si la derivada de orden (k+1) de f(z) existe dentro de y sobre el contorno C, y f(z) no tiene polos en $z=z_0$, entonces:

$$\frac{1}{2\pi j} \oint_C \frac{f(z)}{(z-z_0)^k} dz = \begin{cases} \frac{1}{(k-1)!} \frac{\partial^{k-1} f(z)}{\partial z^{k-1}} \middle|_{z=z_0} & \text{si } z_0 \in C \\ 0 & \text{si } z_0 \notin C \end{cases}$$

PSI Percepción y Sistemas Inteligentes

Ejemplo: Por resolución de la integral encontrar la Transf. Inversa de:

$$X(z) = \frac{1}{1-az^{-1}} \quad ROC: |z| > |a|$$

Solución: De la definición se tiene:

$$x(n) = \frac{1}{2\pi j} \oint_C \frac{z^{n-1}}{1-a z^{-1}} dz = \frac{1}{2\pi j} \oint_C \frac{z^n}{z-a} dz$$

donde C es una circunferencia de radio mayor que |a|

- ▶ Por comparación, se aprecia que $f(z) = z^n$, $z_0 = a$ y k = 1.
- Como X(z) es causal se evalúa para n≥0 y se verifica que z₀ no es polo de f(z).
- ► Luego:

$$x(n) = f(z_0) = a^n \ u(n)$$

Expansión en series de potencias

La expresión de la T.z es una serie de Laurent en la que los valores de x(n) son los coeficientes de z^{-n} .

$$X(z) = \sum_{n = -\infty}^{\infty} x(n)z^{-n}$$

Si la Transformada z se expresa como una serie de potencias

$$X(z) = \dots + x(-2) z^2 + x(-1) z^1 + x(0) + x(1) z^{-1} + x(2) z^{-2} + \dots$$

Cualquier valor de x(n) se obtiene del coeficiente de la potencia apropiada de z^{-n}

Expansión en series de potencias

Cuando X(z) es racional, la expansión se obtiene mediante la división entre los polinomios numerador y denominador.

Es posible que se obtenga series de potencia finitas o infinitas

Ejemplo. Encontrar por expansión **en serie de potencias** de la transformada inversa de:

$$X(z) = \log (1 + a z^{-1}) ROC : |z| > |a|$$

- ► Solución:
 - ▶ Usar la serie de potencias para log(1+x), con |x|<1 dada por,

$$X(z) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1} a^n z^{-n}}{n}$$

▶ La Transformada inversa se obtiene de los coeficientes:

$$x(n) = \begin{cases} (-1)^{n+1} \frac{a^n}{n}, & n \ge 1 \\ 0, & n \le 0 \end{cases}$$

Expansión en racciones parciales

Se expresa X(z) como una combinación lineal de transformadas z simples, tal que sus transformadas inversas sean conocidas:

$$X(z) = a_1 X_1(z) + a_2 X_2(z) + \cdots + a_k X_k(z)$$

Por la propiedad de linealidad, la transformada se obtiene como la suma de transformadas inversas individuales:

$$x(n) = a_1 x_1(n) + a_2 x_2(n) + \dots + a_k x_k(n)$$

■ Expansión en Fracciones Parciales ...

Método bastante útil cuando X(z) es una función **racional**.

$$X(z) = \frac{N(z)}{D(z)} = \frac{b_0 + b_1 z^{-1} + \dots + b_M z^{-M}}{1 + a_1 z^{-1} + \dots + a_N z^{-N}}$$

- F. Racional **Propia** si $a_N \neq 0$ y M < N
- ► F. Racional **Impropia** si M ≥ N
 - Una F. Racional **Impropia** siempre **puede expresarse** como la suma de un **polinomio** y una función **racional propia**.

Expansión en Fracciones Parciales

- Polos diferentes: ningún polo se repite
 - Forma de la expansión:

$$X(z) = \sum_{k=0}^{M-N} c_k z^{-k} + \sum_{k=1}^{K_1} \frac{b_k}{1 + a_k z^{-1}} + \sum_{k=1}^{K_2} \frac{b_{0k} + b_{1k} z^{-1}}{1 + a_{1k} z^{-1} + a_{2k} z^{-2}}$$

■ Ejemplo

■ Obtener la expansión en Fracciones Parciales de la función de transferencia

$$H(z) = \frac{1 - 0.3z^{-1}}{1 + 0.1z^{-1} - 0.2z^{-2}}$$

■ Solución

■ Función racional Propia N > M: N = 2, M = 1

$$H(z) = \frac{1 - 0.3z^{-1}}{(1 + 0.5z^{-1})(1 - 0.4z^{-1})} ; Polos Diferentes !!$$

$$H(z) = \frac{A_1}{(1+0.5z^{-1})} + \frac{A_2}{(1-0.4z^{-1})}$$

■
$$A_1 = A_2 =$$

Expansión en Fracciones Parciales

- Polos repetidos: polos con multiplicidad *l*
 - Forma de la expansión:

$$X(z) = \frac{A_{1k}}{z - p_k} + \frac{A_{2k}}{(z - p_k)^2} + \dots + \frac{A_{lk}}{(z - p_k)^l}$$

■ Ejemplo

■ Obtener la expansión en Fracciones Parciales de la función de transferencia

$$H(z) = \frac{1 - 0.3z^{-1}}{1 - 0.3z^{-1} - 0.24z^{-2} + 0.08z^{-3}}$$

■ Solución

■ Función racional Propia N > M: N = 3, M = 1

$$H(z) = \frac{1 - 0.3z^{-1}}{(1 + 0.5z^{-1})(1 - 0.4z^{-1})(1 - 0.4z^{-1})} ; Polos Repetidos !!$$

$$H(z) = \frac{A_1}{(1+0.5z^{-1})} + \frac{A_2}{(1-0.4z^{-1})} + \frac{A_3}{(1-0.4z^{-1})^2}$$

$$\blacksquare A_1 = A_2 = A_3 =$$

Ejemplo. Encontrar por expansión en *fracciones parciales* la transformada inversa de:

$$X(z) = \frac{1 + 2z^{-1} + z^{-2}}{1 - \frac{3}{2}z^{-1} + \frac{1}{2}z^{-2}} \quad ROC: |z| > 1$$

Factorizando:

$$X(z) = \frac{\left(1 + z^{-1}\right)^2}{\left(1 - \frac{1}{2}z^{-1}\right)\left(1 - z^{-1}\right)}$$

Por expansión en fracciones:

$$X(z) = 2 - \frac{9}{\left(1 - \frac{1}{2}z^{-1}\right)} + \frac{8}{\left(1 - z^{-1}\right)}$$

Antitransformando:

$$x(n) = 2 \delta(n) - 9 \left(\frac{1}{2}\right)^n u(n) + 8 u(n)$$

Facultad de Ingeniería Escuela de Ingeniería Eléctrica y Electrónica

■ Introducción

- La T.z. bilateral exige que las señales correspondientes estén especificadas para $-\infty < n < \infty$.
- En sistemas prácticos la entrada se aplica en un instante n_0 ,
 - La entrada como la salida quedan especificados para $n \ge n_0$, lo que no significa que sean cero para $n < n_0$.
 - No puede utilizarse la T.z. bilateral.
- La T.z. unilateral se aplica en el análisis de sistemas causales especificados por e.d.c.c. y con condiciones iniciales.

■ Definición

La transformada z unilateral $X^+(z)$ de una señal x(n) se define como, $X^+(z) = Z^+\{x(n)\} \equiv \sum_{n=0}^{\infty} x(n)z^{-n} \quad x(n) \xleftarrow{z^+} X^+(z)$

■ Características

Por ser siempre **cero el límite inferior** de la transformada unilateral, presenta las siguientes características:

No contiene **información** sobre la señal x(n) para valores negativos del tiempo (n<0).

Características ...

- Es **única** sólo para señales causales, ya que x(n) = 0 para n < 0.
- La T.Z. unilateral $X^+(z)$ de $\mathbf{x}(\mathbf{n})$ es idéntica a la T.Z. bilateral X(z) de la señal $\mathbf{x}(\mathbf{n})$ $\mathbf{u}(\mathbf{n})$.
- Puesto que x(n) u(n) es causal, la ROC de X(z) y X^+ (z) es siempre exterior a un círculo.
- No es necesario **especificar** la ROC cuando se trabaja con transformadas z unilaterales.

■ Propiedades

- Todas las **propiedades** de la transformada z **bilateral** se **extienden** a la transformada z **unilateral** con la **excepción** de algunas, entre las cuales está la propiedad de **desplazamiento temporal**.
- La propiedad de **desplazamiento temporal** facilita la **solución** de e.d.c.c. y condiciones iniciales distintas de cero para sistemas recursivos LTI.

Retardo Temporal

$$si \quad x(n) \stackrel{z^+}{\longleftrightarrow} X^+(z) \quad entonces:$$

$$x(n-k) \stackrel{z^+}{\longleftrightarrow} z^{-k} \left[X^+(z) + \sum_{n=1}^k x(-n)z^n \right] \quad k > 0$$

Para señales x(n) causales se tiene:

$$x(n-k) \stackrel{z^+}{\longleftrightarrow} z^{-k} X^+(z)$$

Ejemplo. Encuentre la transformada unilateral de:

a)
$$x_1(n) = a^n u(n)$$
 , $|a| < 1$

b)
$$x_2(n) = x(n-2)$$
 donde $x(n) = a^n$ $|a| < 1$

■ Solución:

a)
$$X_1^+(z) = \sum_{n=0}^{\infty} a^n z^{-n} = \frac{1}{1 - a z^{-1}}$$

b)
$$X_2^+(z) = z^{-2} \left[\frac{1}{1 - az^{-1}} + x(-1)z + x(-2)z^2 \right]$$

$$con \quad x(-1) = a^{-1} \quad y \quad x(-2) = a^{-2}$$

$$X_{2}^{+}(z) = \frac{z^{-2}}{1 - az^{-1}} + a^{-1}z^{-1} + a^{-2}$$

Avance Temporal

$$si \quad x(n) \stackrel{z^+}{\longleftrightarrow} X^+(z)$$

entonces:

$$x(n+k) \stackrel{z^+}{\longleftrightarrow} z^k \left[X^+(z) - \sum_{n=0}^{k-1} x(n) z^{-n} \right] \quad k > 0$$

Ejemplo. Encuentre la transformada unilateral de:

$$x_3(n) = x(n+3) \text{ donde } x(n) = a^n \quad |a| < 1$$

■ Solución:

$$X_{3}^{+}(z) = z^{3} \left[X^{+}(z) - x(0) - x(1)z^{-1} - x(2)z^{-2} \right]$$

$$= z^{3} X^{+}(z) - x(0)z^{3} - x(1)z^{2} - x(2)z$$

$$con X^{+}(z) = \frac{1}{1 - az^{-1}}, \quad x(0) = 1, \quad x(1) = a \quad y \quad x(2) = a^{2}$$

$$X_{3}^{+}(z) = \frac{z^{3}}{1 - az^{-1}} - z^{3} - az^{2} - a^{2}z$$

Solución de la e.d.c.c. mediante T.z.

■ Introducción

■ La T.Z. unilateral es un método indirecto efectivo para la solución de ecuaciones de diferencia con y sin condiciones iniciales.

RESOLUCIÓN DE LA ECUACIÓN DE DIFERENCIA

Aplicar la T.z a la ecuación de diferencia y a la señal de entrada.

Obtener una ecuación algebraica en z y despejar Y(z).

Obtener y(n) mediante la Transformada z inversa.

Solución de e.d.c.c mediante T.Z.

Percepción y Sistemas Inteligentes

- **Ejemplo 1:** Determine la repuesta del sistema ante la entrada dada.
 - Sistema: $y(n) = \alpha y(n-1) + x(n)$, $|\alpha| < 1$
 - Condición inicial: y(-1) = 1
 - Señal de entrada: x(n) = u(n)
- Solución:
 - Encontrar la Transformada z de la señal de entrada:

$$Z^{+}{u(n)} = X^{+}(z) = \frac{1}{1-z^{-1}}$$

Calcular la T.z unilateral a ambos lados de la ecuación,

$$Y^{+}(z) = \alpha \left[z^{-1}Y^{+}(z) + y(-1) \right] + X^{+}(z)$$

Solución de e.d.c.c mediante T.Z.

■ Solución...

■ Reemplazado X(z) y la condición inicial y(-1) se llega a:

$$Y^{+}(z) = \frac{\alpha}{1 - \alpha z^{-1}} + \frac{1}{(1 - \alpha z^{-1})(1 - z^{-1})}$$

Antitransformando se obtiene:

$$y(n) = \frac{1}{1-\alpha} (1-\alpha^{n+2}) u(n)$$