2. MĚŘENÍ TEPLOTY TERMOČLÁNKY v2021offline

Úvod

Termočlánky patří mezi nejpoužívanější senzory teploty v průmyslu. Fungují v širokém rozsahu teplot od kryogenních (- 270 °C) po velmi vysoké (2500 °C). Jejich citlivost je 10 až 80 μ V/K. Jsou velmi robustní a spolehlivé a při vhodné konstrukci mohou být i velmi rychlé (časová konstanta v řádu ms). V praxi se používá mnoho typů termočlánků, velmi běžný je např. typ "K" s citlivostí 41 μ V/K. Navzájem se liší teplotním rozsahem, citlivostí, linearitou, cenou, ... Výstupem z termočlánku je malé napětí (desítky μ V až desítky mV), které je potřeba přesně změřit. Malé napětí se často nejprve zesiluje (např. aby vyhovovalo rozsahu AD převodníku). To se musí provést zesilovačem s nízkou vstupní napěťovou nesymetrií (offsetem) nebo je nutné tento vliv korigovat.

Termočlánky se používají i v dalších aplikacích – hlídají přítomnost plamene v plynovém kotli, mnoho sériově řazených termočlánků lze využít k produkci elektrické energie, viz např. radioizotopové termoelektrické generátory na družicích pro mise v hlubokém vesmíru nebo na Marsu (např. Mars Science Laboratory, Perseverance Rover).

Typický laboratorní termočlánek typu K

Praktické provedení spoje dvou kovů

Průmyslový termočlánek v ochranném pouzdru – často obsahuje i kompenzaci srovnávacího spoje nebo celou měřící elektroniku.

Naopak **parazitní termočlánky**, vznikající na styku dvou vodičů z různých kovů, mohou způsobit problémy při měření malých napětí na výstupu z jiných senzorů (např. v případě tenzometrů zapojených do Wheatstonova můstku).

Otázky k úloze (domácí příprava)

- Jaká je teplota srovnávacího spoje ("studeného konce"), na kterou koriguje kompenzační obvod? Dá se to zjistit jednoduchým měřením?
- Čemu se rovná vstupní a výstupní odpor invertujícího a neinvertujícího zesilovače s ideálním operačním zesilovačem?
- Jak lze korigovat vstupní napěťovou nesymetrii zesilovače?
- Je vhodné použít termočlánek pro měření pokojové teploty? Vysvětlete.

Úkoly měření

Shlédněte video a z něj použijte údaje pro otázky níže.

- 1. Změřte teplotu v kalibrační pícce termočlánkem. Napětí termočlánku měříme:
 - a) přímo pomocí ručního multimetru a stolního multimetru. Je třeba ho **spočítat** při výpočtu teploty uvažte skutečnou teplotu srovnávacího spoje termočlánku, kterou měříme pokojovým teploměrem;
 - b) stejnými přístroji jako v bodě a), ale s připojeným kompenzačním obvodem AD8495.
- 2. Určete rozšířenou nejistotu měření **napětí** termočlánku (k_r =2) použitými číslicovými voltmetry.
- 3. Navrhněte zapojení s OZ, pomocí kterého zesílíte napětí termočlánku (bez kompenzačního obvodu). Požadované zesílení je 100 (101). **Zvolte takové zapojení, aby chyba metody způsobená vstupním odporem zesilovače byla zanedbatelná.** S tímto obvodem opakujeme měření 1a) s tím, že napětí termočlánku je nyní zesíleno navrženým zesilovačem.
- 4. Nakreslete zapojení pro **určení napěťové nesymetrie** OZ a) přímo b) pomocí komutace svorek. Uveďte rovnice pro výpočet, a napěťovou nesymetrii vypočtěte: použijte hodnoty z videa. Jaké jsou typické hodnoty U_o ? (pro OZ OP07 najděte a srovnejte s naměřenou/vypočtenou hodnotou).
- 5. Změřte teplotu v kalibrační pícce pomocí USB modulu s izotermální svorkovnicí. Pokud je indikovaná hodnota jiná, než teplota na kalibrační pícce, pokuste se nalézt možné zdroje odchylek.
- 6. Srovnejte nejistotu měření <u>teploty</u> přímým měřením (1a+2) a měřením se zesilovačem s OZ (3) pro oba multimetry, při ideální znalosti teploty okolí. Jak se výsledek změní a jaká nejistota dominuje, pokud uvažujeme nejistotu měření teploty místnosti 0,5°C (k_r =2)? poznámka: nejistotu zesílení, vliv Uo a Io v tomto případě považujeme za zanedbatelné

Nepovinná část

- 7. Jaký vliv má vstupní klidový proud a vstupní odpor zesilovače při daném odporu termočlánku?
- 8. V případě použití zesilovače (neideálního) vstupuje navíc nejistota způsobená napěťovou vstupní nesymetrií a nejistota zesílení (uvažujme 1% toleranci odporů, vstupní klidové proudy je možné zanedbat). Jak pak určíme celkovou nejistotu typu B pro měření napětí při použití zesilovače?.

Poznámky k měření

Konstanta termočlánků se pohybuje v řádech desítek $\mu V/^{\circ}C$. V úloze je použit termočlánek typu K (chromel-alumel), jehož citlivost je 40,8 $\mu V/^{\circ}C$ (pozor, neplatí v celém rozsahu možných měřených teplot). Pro výpočet teploty předpokládejte teplotu srovnávacího spoje termočlánku rovnou teplotě v laboratoři, kterou změřte pokojovým teploměrem).

K bodu 1b): Kompenzační obvod slouží ke kompenzaci termoelektrických napětí srovnávacího spoje. Dříve byl tvořen například můstkem s teplotně závislým prvkem napájeným ze zdroje stabilizovaného napětí. Nyní se používají integrovaná řešení, viz obvod Analog Devices AD8495 (Obr. 1). V tomto obvodě je integrován polovodičový senzor teploty a zesilovač (výstup 5 mV/°C), takže jeho výstup může být připojen přímo na vstup AD převodníku. Běžné je také řešení s externím senzorem teploty a číslicovou korekcí ve firmware (používá modul **AD24USB** z bodu 5).

K bodu 3: Termočlánek je zdrojem napětí s vnitřním odporem. Tento odpor je v řádu jednotek ohmů, tudíž při měření číslicovými voltmetry je tímto způsobená chyba metody velmi malá (vstupní odpor voltmetru $10 \text{ M}\Omega$). Při použití zesilovače s OZ závisí jeho vstupní odpor na použitém zapojení.

Obr. 2: Invertující zesilovač

Obr. 3: Neinvertující zesilovač

Ze schémat je zřejmé, že zatímco u invertujícího zesilovače (Obr. 2) je vstupní odpor $1 \, k\Omega$ (R₁), u neinvertujícího zesilovače (Obr. 3) je vstupní odpor prakticky určen rezistorem $100 \, k\Omega$ připojeným paralelně ke vstupním svorkám. Tento rezistor není pro funkci zapojení nutný. V praxi definuje úroveň na vstupu zesilovače v případě, že by došlo k odpojení termočlánku.

Poznámka:

Výrazně vyšší hodnotu R_1 než cca 10 k Ω nelze použít, protože by pak vycházela příliš velká hodnota odporu R_2 , což je nevhodné ze dvou důvodů:

- a) na velkém odporu vzniká příliš vysoké šumové napětí;
- b) příliš se projeví vstupní proudy operačního zesilovače.

 $\it K~bodu~4$: Vstupní napěťovou nesymetrii zesilovače zjistíme změřením výstupního napětí při komutaci měřeného zdroje (komutace - reverzace polarity). Druhým možným způsobem je změřit výstup zesilovače při zkratovaném vstupu zesilovače. V obou případech je třeba změřené napětí přepočítat na vstup operačního zesilovače, tedy vydělit ho zesílením zesilovače pro napěťovou nesymetrii. Přitom je třeba vzít v úvahu, že i v případě invertujícího zesilovače je napětí vstupní napěťové nesymetrie operačního zesilovače zesilováno neinvertujícím zesilovačem, tedy je v případě invertujícího zesilovače rovno 101 (pro odpory $\it R_1 = 1~k\Omega$ a $\it R_2 = 100~k\Omega$).

K bodu 5: Použitý USB modul obsahuje A/D převodník a izotermální svorkovnici. Izotermální svorkovnice je opatřena čidlem teploty (v našem případě polovodičovým odporovým senzorem Siemens), které nám umožní přesně změřit teplotu srovnávacího spoje termočlánku a pak tuto teplotu kompenzovat softwarově. Pro měření spusť program AD24Control, který je na ploše. Modul lze použít i pro změření teploty v laboratoři zkratováním vstupu.

K bodu 6: Jedná se o stanovení nejistoty nepřímého měření, správný postup je vyjádřit rovnici a jednotlivé parciální derivace. Správně bychom měli uvažovat i nejistotu znalosti převodní konstanty termočlánku, pro náš účel porovnání různých metod se stejným termočlánkem ji můžeme považovat za zanedbatelnou.

Parametry použitých přístrojů

1. Ruční multimetr Mastech MY-64

3. ELECTRICAL SPECIFICATIONS

Accuracy is given as ± (% of reading + number of least significant digits) for one year, at 23°C±5°C RH<75%

1) DCV

Bango	Accuracy						
Range	MY-60	MY-60T	MY-61	MY-62	MY-63	MY-64	
200mV			0.59	%±1			
2V							
20V	$0.5\%\pm2$						
200V							
1000V			0.89	%±2			

Input impedance: $10M\Omega$ on all range

Úplný návod je v příloze.

2. Stolní multimetr Agilent U3401A

DC voltage

DCV resolution, full-scale reading and accuracy [± (% of reading + count)]

U3401A 4.5-digit DMN	U	1340	1A	4.5	-dia	iit	DI	V	٨	1
----------------------	---	------	----	-----	------	-----	----	---	---	---

Range Resolution		Maximum reading	Accuracy (1 year; 23 °C ± 5 °C)	Typical input impedance (1		
500.00 mV	10 μV	51 0.00	0.02% + 4	10.0 ΜΩ		
5.0000 V	100 µV	5.1000	0.02% + 4	11.1 MΩ		
50.000 V	1 mV	51.000	0.02% + 4	10.1 MΩ		
500.00 V	10 mV	51 0.00	0.02% + 4	10.0 MΩ		
1000.0 V	100 mV	1200.0[2]	0.02% + 4	10.0 ΜΩ		

^[1] Input impedance is in parallel with capacitance <100 pF.

Úplný návod je v příloze.

3. Kompenzační obvod AD8495C

- Kalibrováno pro termočlánky typu K
- Kompenzace teploty srovnávacího spoje je optimalizována pro rozsah pokojové teploty 0-50 °C
- Laserově trimováno pro počáteční absolutní chybu kompenzace max. 1°C
- Maximální změna výstupu při změně teploty studeného konce: 0.025 °C/°C
- Napájecí napětí a proud: 2,7-36 V (nebo symetrické ±2,7-18 V), 250 μA
- Šířka pásma (-3 dB): 25 kHz
- Možnost použít obvod jako termostat (s externě nastavitelnou hysterezí).
- Maximální chyba ±2°C pro rozsah měřených teplot –25°C až +400 °C, v případě požadavku na širší rozsah nebo nižší chybu je třeba použít dodatečnou číslicovou korekci. Chyba je primárně způsobena nelinearitou termočlánku nad teplotou 0°C je Seebeckův koeficient přibližně konstantní (41 μV), pro nízké teploty se výrazně snižuje:

^[2] In VDC 1000 V range, 1200 V is readable with audio warning.

Závislost Seebeckova koeficientu na teplotě pro různé typy termočlánků.

4. operační zesilovač OP 07

Jedním z důležitých parametrů operačního zesilovače je velikost vstupního napěťového offsetu a jeho teplotní a časová stabilita, viz relevantní část datasheetu níže:

OP07E ELECTRICAL CHARACTERISTICS

 $V_S = \pm 15 \text{ V}$, unless otherwise noted.

Table 1.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS				•	•	
$T_A = 25^{\circ}C$						
Input Offset Voltage ¹	Vos			30	75	μV
Long-Term Vos Stability ²	V _{os} /Time			0.3	1.5	μV/Month
Input Offset Current	los			0.5	3.8	nA
Input Bias Current	I _B			±1.2	±4.0	nA
Input Noise Voltage	e _n p-p	0.1 Hz to 10 Hz ³		0.35	0.6	μV p-p
Input Noise Voltage Density	en	f _O = 10 Hz		10.3	18.0	nV/√Hz
		$f_0 = 100 \text{ Hz}^3$		10.0	13.0	nV/√Hz
		$f_0 = 1 \text{ kHz}$		9.6	11.0	nV/√Hz
Input Noise Current	I _n p-p			14	30	pA p-p
Input Noise Current Density	In	f ₀ = 10 Hz		0.32	0.80	pA/√Hz
		$f_0 = 100 \text{ Hz}^3$		0.14	0.23	pA/√Hz
		$f_0 = 1 \text{ kHz}$		0.12	0.17	pA/√Hz
Input Resistance, Differential Mode ⁴	R _{IN}		15	50		ΜΩ
Input Resistance, Common Mode	RINCM			160		GΩ
Input Voltage Range	IVR		±13	±14		V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = \pm 13 \text{ V}$	106	123		dB
Power Supply Rejection Ratio	PSRR	$V_S = \pm 3 \text{ V to } \pm 18 \text{ V}$		5	20	μV/V
Large Signal Voltage Gain	Avo	$R_L \ge 2 k\Omega, V_O = \pm 10 V$	200	500		V/mV
		$R_L \ge 500 \ \Omega, V_O = \pm 0.5 \ V, V_S = \pm 3 \ V^4$	150	400		V/mV
$0^{\circ}C \leq T_A \leq 70^{\circ}C$						
Input Offset Voltage ¹	Vos			45	130	μV
Voltage Drift Without External Trim ⁴	TCVos			0.3	1.3	μV/°C
Voltage Drift with External Trim ³	TCV _{OSN}	$R_P = 20 \text{ k}\Omega$		0.3	1.3	μV/°C
Input Offset Current	los			0.9	5.3	nA
Input Offset Current Drift	TClos			8	35	pA/°C
Input Bias Current	I _B			±1.5	±5.5	nA
Input Bias Current Drift	TCI _B			13	35	pA/°C
Input Voltage Range	IVR		±13	±13.5		V
Common-Mode Rejection Ratio	CMRR	VcM = ±13 V	103	123		dB
Power Supply Rejection Ratio	PSRR	$V_5 = \pm 3 \text{ V to } \pm 18 \text{ V}$		7	32	μV/V
Large Signal Voltage Gain	Avo	$R_L \ge 2 k\Omega$, $V_O = \pm 10 V$	180	450		V/mV

5. USB měřicí modul AD24USB

Technické parametry

AD část - galvanicky oddělený integrační převodník s programovatelným rozlišením 22 až 26 bitů, 8 diferenčních vstupů nebo 16 SE, vst. rozsah 0-10 V/ \pm 5 V, programovatelné zesílení 1 až 128 (1 až 512 pro diferenciální verzi), šum 15 nV $_{\S\S}$ pro 1 měření/s, **expandery** pro připojení **termočlánků**, **tenzometrů** nebo odporových teploměrů **Pt100.** Součástí dodávky je rovněž obslužný program **AD24control** umožňující odměr dat, jejich zobrazení, a uložení na disk.

Teplotní kompenzace a linearizace se provádí programově v programu AD24control, který dovoluje i zadání vlastního linearizačního polynomu. Manuál je v příloze nebo ke stažení přímo z http://www.janascard.cz/.

Kalibrační pícka OMEGA CL1000 s termočlánky

Detail konektoru termočlánku (zelený) a prodlužovacího vedení k modulu (žlutá)

Detail "izotermální svorkovnice" modulu AD24USB. Plošný spoj s dostatečnou tloušťkou a velkou plochou mědi zaručí dobrou tepelnou vodivost mezi senzorem teploty a "studeným" koncem termočlánku.

Jen pro referenci: návod k obsluze programu AD24Control

V menu *Configuration* zvolte položku *Mode*, vyberte možnost *Continual* a položku *Time axis length* nastavte na přibližně 60 s. Dále v menu *Mathematics* (Compute) zvolte možnost *Thermocouple*, čímž zapnete výpočet teploty, Program bude jinak jen měřit napětí.

V menu *Input* vyberte položku *Input 0*, na který je připojen termočlánek. V části *Range* nastavte nejvyšší citlivost, tedy 78 mV. V části Display můžete vybrat typ zobrazení ve formě textového okna, nebo grafu. Stiskněte tlačítko *Thermocouple* a vyberte termočlánek typu K.

Samotné měření spustíte kliknutím na Start ve stavovém řádku hlavního okna, nebo stisknutím F2. Měření ukončíte stisknutím F3.