Guia 2 Complejidad

Ejercicio 1 Probar que los siguientes lenguajes están en P

```
a) COPRIME = \{\langle a,b\rangle: (a:b)=1, \text{ es decir, a y b son coprimos}\} def coprimo(a,b)\{ tmp = 0 while b != 0: tmp = b b = a % b a = tmp //hasta aca es el algoritmo de eculides para calcular mcd return mcd == 1 \} Es polinomial respecto de |a|+|b|. Con |a|=log_2(a) y |b|=log_2(b). \Rightarrow a = 2^{|a|} Con a > b la complejidad es:
```

```
O(\log a) reemplazando con la def |a| \to O(\log(2^{|a|})) = O(|a| \cdot \log(2)) = O(|a|)
```

Notar que haciendo el algoritmo naive que es O(a): $O(a) = O(2^{|a|})$

Que es exponencial al tamaño de la entrada

La moraleja de este ejercicio es que si la entrada es un numero, **iterar todo el** rango de ese numero es exponencial respecto a su tamaño.

Es la idea que hay que usar en todos los incisos.

c) TREE = $\{\langle G \rangle : G \text{ es un grafo conexo sin ciclos}\}$

Algoritmo:

- 1. DFS en G marfcando los nodos, si encuentro uno ya marcado devuelvo falso.
- 2. Si termina el dfs, recorrer la lista de nodos y ver que esten todos marcados para devolver true, caso contrario falso.

Complejidad: Si cada nodo se representa en log
n y cada arista log
m Digamos |G|=|V|+|E|=nlogn+mlogm

 $1 \to O((nlogn)^2)$ en matriz de adyacencia $2 \to O(nlogn)$ recorrer la lista de nodos

Es polinomial

Ejercicio 2: Probar que la clase P está cerrada por unión, intersección y complemento

Tomo cualqueira $L_1, L_2 \in P$ y P1(x) P2(x) las maquinas que los reconocen en tiempo polinomial

Unión:

```
def unionL1_L2(x):
    return p1(11) or p2(x)
IntersecciónL1_L2:
def interseccion(x):
    return p1(x) and p2(x)
Complemento:
def complemento_L1(x):
    return not p1(x)
```

Son los tres polinomiales porque en python son polinomiales

Ejercicio 3 Probar que los siguientes lenguajes están en NP.

 $HAMPATH = \{\langle G, s, t \rangle : G \text{ es un grafo con dos nodos } s \text{ } t \text{ tales que hay un camino hamiltoniando de } s \text{ a } t \}$

Certificado: Lista de los nodos que forman el camino hamiltoneano (camino que pasa por todos los nodos si repetir)

Es polinomial tiene tamaño O(|V|) o O(nlogn).

falta agregar...

Ejercicio 4 Probar que los siguientes problemas están en coNP

a) PRIME= $\{n : n \in N \text{ es primo}\}\$

```
PRIME esta en coNP si solo si PRIME complemento esta en NP.
El complemento es el lenguaje de los numeros naturales que no son primos.
Veo que este en NP:
Certificado: lista de su factorizacion en primos.
El certificado es polinomial, a lo sumo tiene O(log(n)) factores primos.
Y se verifica en tiempo polinomial con el siguiente pseudocodigo:
def verificar(n, cert):
    res = 1
    for e in certificado:
        // ver que un nro sea primo es polinommial
        if(!esPrimo(e)){return false}
        res *= e
    return n == res and 1 not in cert and n not in cert
```

Corre en tiempo O(|cert|.polinomial) que es polinomial

b) GIRTH= $\{\langle G, k \rangle : G \text{ es un grafo tal que todos sus ciclos simples tienen k o menos vértices}\}$

El complemento de un para todo es un existe negando la propiedad. Entonces el complemento de $\{ \langle G,k \rangle \}$ tq existe un ciclo simple con mas de k vertices

Veo que sea NP:

Certificado: Camino de vertices de longitud > k que fomrman un ciclo. Tiene longitud O(nlogo Verificador:

Hay que recorrer la lista de nodos y verificar que forman un ciclo (ver que sean adyacentes Por ultimo hay que chequear que la longitud del certificado sea mayor a k y que no haya nodo

c) TAUTOLOGY= $\{\langle \phi \rangle : \phi \text{ es tautología}\}$

El complemento es que exista una valuacion que haga la formula falsa. Veo que sea NP: Certificado: Una valuacion que al evaluarla en ϕ de falso. Su longitud es polinomial respecto a ϕ , pues si ϕ tiene n varibles distintas el certificado tendra longitud n. Verificador: Recorre el certificado (es O(|certificado|)), reemplaza cada una de las variables en ϕ , evalua ϕ y verifica que sea falsa (polinomial respecto de ϕ)

 \Rightarrow)

Por hipótesis hay camino de longitud par <= k de s a t en g, en general:

$$s \to v_1 \to v_2 \to \dots \to v_n \to t$$

Por la definicion de G' existe en G' un camino análogo

$$(s,p) \rightarrow (v_1,i) \rightarrow (v_2,p) \rightarrow \dots \rightarrow (t,p)$$

Notar que por la alternancia en la segunda componente siempre que un camino termina en un nodo de tipo (n,p) el camino tiene longitud par y si termina en uno (n,i) tiene longitud impar.

Asi que si el camino de G tiene longitud par, el camino en G' al ser análogo tambien y por consecuente su último nodo tiene que tener p en la segunda componente. (Y ambos son de misma longitud asi que se cumple que es de longitud $\leq k$ por hipótesis)

$$< G', (s,p), (t,p), k> \in PATH$$

 \Leftarrow

Por hipótesis en G' hay camino de longitud \leq k de (s,p) a (t,p)

$$(s,p) \rightarrow (v_1,i) \rightarrow (v_2,p) \rightarrow \dots \rightarrow (t,p)$$

EL camino tiene longitud par porque termina en un nodo (n,p) por la misma observacion de antes.

Entonces existe un camino análogo tambien de longitud <= k en G de forma:

$$s \rightarrow v_1 \rightarrow v_2 \rightarrow \dots \rightarrow v_n \rightarrow t$$

Que al ser análogo tambien tiene longitud par.

$$< G, s, t, k > \in EVEN - PATH$$

Queda demostrado

 \mathbf{a}

Dada una instancia $\langle X \rangle$ de 2-PARTITION, se define la instancia $\langle R, r1, \ldots, r|X| \rangle$ de RECTANGLE PACKING donde R tiene base P x \in X x/2 y altura 2, y ri es un rectángulo de base xi y altura 1, para cada $1 \le i \le |X|$. Demostrar que $\langle X \rangle \in$ 2-PARTITION $\iff \langle R, r1, \ldots, r|X| \rangle \in$ RECTANGLE PACKING.

Veo la ida \rightarrow :

Quiero ver que los subrectangulos r_i cubren al rectangulo R.

Para que la instancia \in RECTANGLE PACKING, los r_i deben poder cubrir R. como cada r_i tiene area x_i el conjunto de las areas es X. Por hipotesis se que lo puedo dividir como:

$$\sum_{x \in X_1} x = \sum_{x \in X_2} x = \sum_{x \in X} x/2$$

Asi que puedo dividir a todos los r_i en dos rectangulos de altura 1 (los pongo todos uno al lado de otro). Y la suma de ambas es el area de R. Si pongo esos de rectangulos uno arriba de otro obtengo al R de altura 2 que cumple con area. (Notar que la base de cada area es $\sum_{x \in X} x/2$)

Veo la vuelta \leftarrow : Ahora por hipotesis se que tengo un rectangulo R y que los r_i con altura 1 y base x_i cubren completamente a R.

$$\sum_{x \in X} x =$$
 Area del Rectangulo

Como la hipotesis es que los r_i pueden cubrir al rectangulo (que tiene altura 2) y se que todos los rectangulos tienen altura 1, pensando geometricamente, puedo partir al rectangulo R en dos rectangulos de altura 1. Llamo al conjunto de las areas de cada particion X_1 y X_2 . Como lo partir a la mitad:

$$\sum_{x \in X_1} x = \sum_{x \in X_2} = \sum_{x \in X} x/2$$

Como parti a la mitad el triangulo cada subconjunto tiene elementos distintos $X_1\cap X_2=\emptyset$

Por lo mismo $X_1 \cup X_2 = X$

b

te la debo

 \mathbf{c}

Mostrar que las reducciones implicadas por los puntos anteriores son polinomiales en función de los tamaños de las entradas.

La reduccion seria algo como:

 $< x > \in 2-partition \iff f(< x >) \in RECTANGLEPACKING$

Tengo que encontrar una f. Notar que los rectangulos tienen la pinta de (base,altura)

 $f(X)\colon res = new \ tupla \ R = (sum(x)/2,2) \ res.agregar(R)$ for e in x: res.agregar(e,1) return res

Explicar por qué la identidad no es una reducción polinomial de un lenguaje Π a $\Pi^c.$

Concluir que las nociones de NP y co
NP son altamente sensibles a la "etiqueta" de la respuesta.

La identidad es f(x): return x, para que se cumpla la reduccion tendria que valer que:

$$x \in \Pi \iff x \in \Pi^c$$

Abs!

(No entendi la moraleja del ejercicio consultar)

Considerar el siguiente lenguaje: CONNECTED = $\{\langle G, s, t \rangle : G \text{ es un digrafo y } s \text{ y t dos nodos de } G \text{ tales que hay un recorrido de } s \text{ a t} \}$ Para un digrafo G, sea H el digrafo que tiene un vértice (S, v) para cada $S \subseteq V$ (G) y cada $v \in V$ (G), donde $(S, v) \to (R, w)$ es una arista de H si y solo si $w \notin S$, $R = S \cup \{w\}$ y $v \to w$ es una arista de G.

a)

Demostrar que $\langle G,\,s,\,t\rangle\in HAMPATH\iff \langle H,(\{s\},\,s),(V\ (G),\,t)\rangle\in CONNECTED.$

⇒) Si hay Hamiltoneano en G de s a t hay un camino de forma:

$$s \to v_1 \to v_2 \to \dots \to v_n \to t$$

tal que:

$$V(g) = \{s, v_1, ... v_n, t\}$$

Por la definicion de H, Hay camino analogo en H tq:

$$(\{s\},s) \to (\{s,v_1\},v_1) \to (\{s,v_1,v_2\},v_2) \to (\{s,v_1,v_2,...,v_n\},v_n) \to (\{s,v_1,v_2,...,v_n,t\},t) = (V(g),v_n) \to (\{s,v_1\},v_1) \to (\{s,v_1\},v_2) \to (\{s,v_1\},$$

$$\Rightarrow < H, (s, s), (V(g), t) > \in CONNECTED$$

 \Leftarrow)

Por como esta definido H cada vez que se "camina" de un nodo a otro, el destino se agrega a la primera componente del vertice de H donde se forma un conjunto de los nodos ya visitados en el "camino actual" (quedan de la pinta (camino, nodo_actual)). Notar que en su definicion no permite tener nodos repetidos en el conjunto.

Entonces como por hipotesis hay camino de $(\{s\}, s)$ a (V(g), t) necesariamente tuvo que haber recorrido todos los nodos del grafo de forma:

$$(\{s\}, s) \to (\{s, v_1\}, v_1) \to (\{s, v_1, v_2\}, v_2) \to (\{s, v_1, v_2, ..., v_n\}, v_n) \to (\{s, v_1, v_2, ..., v_n, t\}, t)$$

Por definicion de H a partir de G, el camino analogo existe en G:

$$s \to v_1 \to v_2 \to \dots \to v_n \to t$$

$\Rightarrow < G, s, t > \in HAMPATH$

queda demostrado

b)

Mostrar que la reducción de HAMPATH a CONNECTED implicada por el punto anterior ${f no}$ es polinomial.

Se ve que no es polinomial porque las aristas del grafo H se forman a partir de todos los caminos posibles en cada arista. Mas precisamente por la definicion de H·

$$|V(H)| = |\{(S, v) : S \subseteq V(G)\}| = n \cdot 2^n$$

Es exponencial respecto al tamaño de la entrada.

Ejercicio 9 (a consultar)

Si ${\bf x}$ pertenece a L quiero que ${\bf f}({\bf x})$ termine asi pertenece a halting, sino quiero que se cuelgue

Llamo L a la maquina que reconoce ${\cal L}$

```
def f(x):
    if(L(x) == 1):
        return(<M,x>)
    else:
        return <M',x>

def M(x):
    return 1

def M'(x):
    while(true)
```

Ejercicio 10 Probar que NP \subseteq RECURSIVE. Concluir que HALTING \notin NP

la demo esta basada en el apunte de santi, chequear la parte de maquinas no deterministicas

Si un problema esta en NP, por definicion, hay una maquina no deterministica N que corre en tiempo polinomial tq: L(n) = L (es decir, x pertenece a L sii existe un computo aceptador de N a partir de x).

Digamos que cada computo posible de la maquina N, corre a lo sumo en tiempo T(n). Podemos representar todos los posibles computos de N como un grafo, donde cada nodo es una configuracion. (en estas maquinas desde cada configuracion hay dos transiciones posibles δ_1 y δ_2). Cada nodo tiene dos hijos que corresponden a una posible evolucion del siguiente paso de esa configuracion.

Notar que con esta idea de codificacion, cualquier computo posible de la maquina N se puede codificar como cadenas de 1 y 0. Siendo 0 avanzar a la izquierda y 1 a la derecha.

Entonces todos los posibles computos se pueden simular de manera **deterministica** a partir de un nodo inicial. Habria que analizar 2^t computos (porque son cadenas de 01^* de longitud t), siendo t la longitud maxima de un computo.

Como cada computo toma a lo sumo t
 tiempo (t pasos a realizar), podemos simular todos los computos en
 $O(t.2^t)$

Esto significa que todos los computos de una maquina no deterministica se pueden simular (aunque sea en tiempo exponencial), y como ya explique todo lenguaje en NP tiene una maquina no deterministica que lo decide.

En conclusion todo problema de NP, es decidible $\Rightarrow NP \subseteq RECURSIVE$ (Como halting no es decidible no pertenece a NP)