alkoxycarbonylamino, (C_1-C_6) -alkoxy, carboxyl, (C_1-C_8) -alkoxycarbonyl, straight-chain or branched (C_1-C_6) -alkyl which is substituted by one or more fluorine atoms, hydroxyl, straight-chain or branched (C_1-C_8) -alkoxy, where adjacent oxygen atoms can also be linked by (C_1-C_2) -alkylene groups, benzyloxy, nitro, amino, mono- (C_1-C_4) -alkylamino, di- (C_1-C_4) -alkylamino, aryl, which can be unsubstituted or mono- or polysubstituted by identical or different substituents from the group consisting of straight-chain or branched (C_1-C_8) -alkyl, (C_3-C_7) -cycloalkyl, carboxyl, straight-chain or branched (C_1-C_8) -alkoxycarbonyl, by trifluoromethyl, hydroxyl, straight-chain or branched (C_1-C_8) -alkoxy, benzyloxy, nitro, amino, mono- (C_1-C_4) -alkylamino, di- (C_1-C_4) -alkylamino, cyano, straight-chain or branched cyano- (C_1-C_6) -alkyl; and their structural isomers and stereoisomers, and their pharmaceutically acceptable salts.--

Delete claim 12.

REMARKS

Claims 1-11 and 13-14 are in the application.

Claim 1 was amended to correct a number of informalities. Claim 12 to the therapeutic process was deleted. A claim comparison page is attached.

It is respectfully submitted that the compound of Example 11 of Sugihara et al. is a 3,4,5-trimethoxybenzyl compound, and such a substitution is not possible for R_4 of the present invention which is a "straight-chain or branched (C_1 - C_{20})-alkyl

S M

radical which can be saturated or unsaturated, with one to three double and/or triple bonds."

In view of the foregoing, a reconsideration of the outstanding rejections, and the allowance of claims 1-11 and 13-14 are respectfully urged.

Francese Sawyer

Customer No. address 23622

Gabriel P. Katona, their attorney

Respectfully submitted

It is hereby certified that this is being mailed on December 16, 2002.

Claim comparison page Quinoline derivatives according to the formula 1

$$R_1$$
 R_2 R_3 R_4 R_4 R_4 R_4 R_4 R_4 R_4 R_4 R_5 R_7 R_8 R_9 R_9

in which

R, R_1 , R_2 , R_3 can [may] be attached to any of the quinoline carbon atoms C_2 to C_8 , are identical or different and independently of one another denote hydrogen, straightchain or branched (C₁-C₈)-alkyl, (C₃-C₇)-cycloalkyl, straight-chain or branched (C₁- C_8)-alkylcarbonyl, preferably acetyl, straight-chain or branched (C_1 - C_8)-alkoxy, halogen, aryl-(C₁-C₈)-alkoxy,[preferably benzyloxy or phenylethyloxy] nitro, amino, mono- (C_1-C_4) -alkylamino, di- (C_1-C_4) -alkylamino, (C_1-C_8) alkoxycarbonylamino, (C1-C6)-alkoxycarbonylamino-(C1-C8)-alkyl, cyano, straightchain or branched cyano- (C_1-C_6) -alkyl, carboxyl, (C_1-C_8) -alkoxycarbonyl, (C_1-C_4) alkyl which is substituted by one or more fluorine atoms, [preferably the trifluoromethyl group, carboxy- (C_1-C_8) -alkyl or (C_1-C_8) -alkoxycarbonyl- (C_1-C_6) alkyl, (C₂-C₆)-alkenyl, [preferably allyl,] (C₂-C₆)-alkynyl,[preferably ethynyl or propargyl] straight-chain or branched cyano-(C₁-C₆)-alkyl, [preferably cyanomethyl] aryl, where the aryl radical can [may] be unsubstituted or mono- or polysubstituted by identical or different substituents from the group consisting of halogen, straight-chain or branched (C₁-C₈)-alkyl, (C₃-C₇)-cycloalkyl, carboxyl, straight-chain or branched (C1-C8)-alkoxycarbonyl,[preferably tert**butoxycarbonyl,**] by trifluoromethyl, hydroxyl, straight-chain or branched (C_1-C_8) -alkoxy, [**preferably methoxy or ethoxy,**] benzyloxy, nitro, amino, mono- (C_1-C_4) -alkylamino, di- (C_1-C_4) -alkylamino, cyano, straight-chain or branched cyano- (C_1-C_6) -alkyl, where additionally R and R₁ or R₂ and R₃ can [**may**] form a fused aromatic 6-membered ring with the quinoline ring forming an acridine ring which for its part can [**may**] be substituted at any C atom ring position by the radicals R, R₁, R₂ and R₃ having the meanings mentioned above;

P and Q are each 2 hydrogen atoms,

 \mathbf{Z}

is oxygen or sulfur, where the radical

$$Z$$
 P
 $(CH_2)m$
 Q

substituted on the quinoline heterocycle \underline{can} [may] be attached to C atoms C_2 - C_8 of the quinoline ring skeleton;

is nitrogen or C-R₅, where R₅ represents hydrogen or (C_1-C_6) -alkyl; n,m independently of one another denotes an integer between 0-3, with the proviso that in the case n=0, X denotes a CR_5R_6 group where R₅ and R₆ independently of one another represent hydrogen or (C_1-C_6) -alkyl and that the nitrogen atom adjacent to the C=Z group is substituted by a hydrogen atom or a $(C-C_6)$ -alkyl group;

 R_4 is a straight-chain or branched (C_1 - C_{20})-alkyl radical which \underline{can} [\mathbf{may}] be saturated or unsaturated, with one to three double and/or triple bonds, and which \underline{can} [\mathbf{may}] be unsubstituted or \underline{can} [\mathbf{may}] optionally be substituted at the same or different C atoms by one, two or more aryl, heteroaryl, halogen, cyano, (C_1 - C_6)-alkoxycarbonylamino, (C_1 - C_6)-alkoxy, amino, mono-(C_1 - C_4)-alkylamino or di-(C_1 - C_4)-alkylamino; a (C_6 - C_{14})-aryl radical, (C_6 - C_{14})-aryl-(C_1 - C_4)-alkyl radical or a (C_2 - C_{10})-heteroaryl or (C_2 - C_{10})-heteroaryl-(C_1 - C_4)-alkyl radical which contains one or more heteroatoms selected from the group consisting of N, N0 and N2, where the (N3-alkyl radical can be unsubstituted or mono- or polysubstituted by identical or different substituents from the group consisting of (N3-alkyl, halogen and oxo (=N3) and where the (N4-aryl or (N5-alkyl) radical can be unsubstituted or mono- or polysubstituted by identical or different substituted or mono- or polysubstituted by identical or different substituents from the group consisting of straight-chain or branched

 (C_1-C_8) -alkyl, (C_3-C_7) -cycloalkyl, halogen, cyano, (C_1-C_6) -alkoxycarbonylamino, (C_1-C_6) -alkoxy, carboxyl, (C_1-C_8) -alkoxycarbonyl, straight-chain or branched (C_1-C_6) -alkyl which is substituted by one or more fluorine atoms, [preferably trifluoromethyl,] hydroxyl, straight-chain or branched (C_1-C_8) -alkoxy,[preferably methoxy or ethoxy,] where adjacent oxygen atoms can [may] also be linked by (C_1-C_2) -alkylene groups, [preferably by a methylene group] benzyloxy, nitro, amino, mono- (C_1-C_4) -alkylamino, di- (C_1-C_4) -alkylamino, aryl, which [for its part] can be unsubstituted or mono- or polysubstituted by identical or different substituents from the group consisting of straight-chain or branched (C_1-C_8) -alkyl, (C_3-C_7) -cycloalkyl, carboxyl, straight-chain or branched (C_1-C_8) -alkoxycarbonyl, by trifluoromethyl, hydroxyl, straight-chain or branched (C_1-C_8) -alkoxy, [preferably methoxy or ethoxy,] benzyloxy, nitro, amino, mono- (C_1-C_4) -alkylamino, di- (C_1-C_4) -alkylamino, cyano, straight-chain or branched cyano- (C_1-C_6) -alkyl;

and their structural isomers and stereoisomers, [in particular tautomers, diastereomers and enantiomers] and their pharmaceutically acceptable salts[in particular acid addition salts].