$11n_{118} (K11n_{118})$

Ideals for irreducible components 2 of X_{par}

$$\begin{split} I_1^u &= \langle 2u^8 - 6u^7 + u^6 + 3u^5 + 15u^4 - 13u^3 - 10u^2 + b + 3u + 3, \ u^8 - u^7 - 5u^6 + 3u^5 + 7u^4 + 7u^3 - 15u^2 + 2a + u^9 - 5u^8 + 7u^7 - u^6 + 5u^5 - 21u^4 + 11u^3 + 8u^2 - 2u - 2 \rangle \\ I_2^u &= \langle -u^3 - u^2 + b + u + 1, \ -u^4 - 2u^3 + u^2 + 2a + u, \ u^5 + 2u^4 - u^3 - 3u^2 + 2 \rangle \\ I_3^u &= \langle -u^2a - au + u^2 + b + u - 1, \ u^2a + a^2 - 5u^2 - 3a - 2u + 11, \ u^3 + u^2 - 2u - 1 \rangle \end{split}$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 20 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle 2u^8 - 6u^7 + \dots + b + 3, \ u^8 - u^7 + \dots + 2a + 2, \ u^9 - 5u^8 + \dots - 2u - 2 \rangle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -2u^{8} + 6u^{7} - u^{6} - 3u^{5} - 15u^{4} + 13u^{3} + 10u^{2} - 3u - 3 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -\frac{3}{2}u^{8} + \frac{11}{2}u^{7} + \dots + \frac{15}{2}u^{2} - 1 \\ -u^{8} + 4u^{7} - 3u^{6} - u^{5} - 8u^{4} + 12u^{3} + u^{2} - u - 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -\frac{3}{2}u^{8} + \frac{11}{2}u^{7} + \dots + 3u + 2 \\ -2u^{8} + 6u^{7} - u^{6} - 3u^{5} - 15u^{4} + 13u^{3} + 10u^{2} - 3u - 3 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} \frac{1}{2}u^{8} - \frac{3}{2}u^{7} + \dots + u + 1 \\ -u^{8} + 3u^{7} - u^{6} - u^{5} - 7u^{4} + 7u^{3} + 4u^{2} - u - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 - u^{2}u^{8} + \frac{1}{2}u^{7} + \dots + \frac{15}{2}u^{2} - 1 \\ 2u^{8} - 6u^{7} + 2u^{6} + u^{5} + 14u^{4} - 13u^{3} - 4u^{2} + 2u + 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} \frac{3}{2}u^{8} - \frac{11}{2}u^{7} + \dots + 3u + 2 \\ u^{8} - 5u^{7} + 5u^{6} + 2u^{5} + 8u^{4} - 18u^{3} - u^{2} + 4u + 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} \frac{3}{2}u^{8} - \frac{11}{2}u^{7} + \dots + 3u + 2 \\ u^{8} - 5u^{7} + 5u^{6} + 2u^{5} + 8u^{4} - 18u^{3} - u^{2} + 4u + 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-3u^8 + 13u^7 14u^6 + u^5 20u^4 + 46u^3 14u^2 12u 6$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1,c_5	$u^9 + 5u^8 + 7u^7 + u^6 + 5u^5 + 21u^4 + 11u^3 - 8u^2 - 2u + 2$
c_2	$u^9 + 11u^8 + \dots + 36u + 4$
c_3, c_4, c_{10}	$u^9 + 7u^7 + 2u^6 + 18u^5 + 8u^4 + 16u^3 + 7u^2 + 2u + 1$
c_6, c_9	$u^9 - 2u^8 - 3u^7 + 8u^6 + 6u^5 - 10u^4 - 10u^3 + 3u^2 + 8u + 1$
C ₇	$u^9 + 6u^8 + 19u^7 + 38u^6 + 54u^5 + 56u^4 + 49u^3 + 36u^2 + 16u + 2$
c ₈	$u^9 + u^8 - 8u^7 - 4u^6 + 21u^5 + 3u^4 - 3u^3 - 5u^2 + u + 1$
c_{11}	$u^9 - 8u^8 + 30u^7 - 69u^6 + 106u^5 - 109u^4 + 69u^3 - 18u^2 - 8u + 8$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_5	$y^9 - 11y^8 + \dots + 36y - 4$
c_2	$y^9 - 23y^8 + \dots - 240y - 16$
c_3, c_4, c_{10}	$y^9 + 14y^8 + 85y^7 + 280y^6 + 520y^5 + 512y^4 + 212y^3 - y^2 - 10y - 1$
c_{6}, c_{9}	$y^9 - 10y^8 + \dots + 58y - 1$
	$y^9 + 2y^8 + 13y^7 + 34y^6 + 122y^5 + 4y^4 - 55y^3 + 48y^2 + 112y - 4$
<i>c</i> ₈	$y^9 - 17y^8 + \dots + 11y - 1$
c_{11}	$y^9 - 4y^8 + 8y^7 - 7y^6 + 30y^5 - 89y^4 + 245y^3 + 316y^2 + 352y - 64$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.827217 + 1.065600I		
a = 0.127211 + 0.403713I	4.50943 + 3.60395I	-7.94742 - 3.61538I
b = 1.189760 - 0.208029I		
u = -0.827217 - 1.065600I		
a = 0.127211 - 0.403713I	4.50943 - 3.60395I	-7.94742 + 3.61538I
b = 1.189760 + 0.208029I		
u = 0.637971	0.005500	11.0040
a = 0.581775	-0.867730	-11.0840
$\frac{b = -0.134369}{u = -0.390331 + 0.211849I}$		
	0.50000 1.710227	9.65090 + 4.510977
a = -0.15178 - 1.44152I	-0.58699 - 1.71933I	-2.65828 + 4.51037I
b = -0.619342 - 0.660345I $u = -0.390331 - 0.211849I$		
a = -0.350331 0.2110431 $a = -0.15178 + 1.44152I$	$\begin{bmatrix} -0.58699 + 1.71933I \end{bmatrix}$	$\begin{bmatrix} -2.65828 - 4.51037I \end{bmatrix}$
b = -0.619342 + 0.660345I	0.90099 1.719991	2.00020 4.010071
$\frac{v = -0.019342 + 0.000345I}{u = 1.60275 + 0.27471I}$		
a = -1.057300 + 0.502009I	-7.17964 - 0.81901I	-9.63369 + 0.38923I
b = -1.245760 - 0.193497I		0.00000 0.000201
u = 1.60275 - 0.27471I		
a = -1.057300 - 0.502009I	-7.17964 + 0.81901I	-9.63369 - 0.38923I
b = -1.245760 + 0.193497I		
u = 1.79582 + 0.27938I		
a = 1.290980 + 0.002356I	-4.53360 - 8.88256I	-8.21864 + 4.17646I
b = 1.74253 + 0.93792I		
u = 1.79582 - 0.27938I		
a = 1.290980 - 0.002356I	-4.53360 + 8.88256I	-8.21864 - 4.17646I
b = 1.74253 - 0.93792I		

$$II. \\ I_2^u = \langle -u^3 - u^2 + b + u + 1, \ -u^4 - 2u^3 + u^2 + 2a + u, \ u^5 + 2u^4 - u^3 - 3u^2 + 2 \rangle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} \frac{1}{2}u^{4} + u^{3} - \frac{1}{2}u^{2} - \frac{1}{2}u \\ u^{3} + u^{2} - u - 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -\frac{1}{2}u^{4} + \frac{3}{2}u^{2} - \frac{1}{2}u - 1 \\ u^{2} + u - 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} \frac{1}{2}u^{4} - \frac{3}{2}u^{2} + \frac{1}{2}u + 1 \\ u^{3} + u^{2} - u - 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} \frac{1}{2}u^{4} + u^{3} - \frac{3}{2}u^{2} - \frac{3}{2}u + 2 \\ u^{2} + u - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} \frac{1}{2}u^{4} + u^{3} - \frac{1}{2}u^{2} - \frac{1}{2}u \\ u^{2} - 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} \frac{1}{2}u^{4} - \frac{3}{2}u^{2} + \frac{1}{2}u + 1 \\ u^{4} + 2u^{3} - u^{2} - 2u + 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} \frac{1}{2}u^{4} - \frac{3}{2}u^{2} + \frac{1}{2}u + 1 \\ u^{4} + 2u^{3} - u^{2} - 2u + 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-2u^4 2u^3 + u^2 2u 10$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^5 + 2u^4 - u^3 - 3u^2 + 2$
c_2	$u^5 + 6u^4 + 13u^3 + 17u^2 + 12u + 4$
c_3, c_{10}	$u^5 + 2u^3 + u^2 - 3u + 1$
c_4	$u^5 + 2u^3 - u^2 - 3u - 1$
<i>C</i> ₅	$u^5 - 2u^4 - u^3 + 3u^2 - 2$
c_{6}, c_{9}	$u^5 - 2u^4 + u^2 - u - 1$
	$u^5 + 3u^4 + 2u^3 - u^2 - 2u - 2$
c ₈	$u^5 - u^4 - u^3 - 4u^2 - 2u - 1$
c_{11}	$u^5 + u^4 - u^3 + 2u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1,c_5	$y^5 - 6y^4 + 13y^3 - 17y^2 + 12y - 4$
c_2	$y^5 - 10y^4 - 11y^3 - 25y^2 + 8y - 16$
c_3, c_4, c_{10}	$y^5 + 4y^4 - 2y^3 - 13y^2 + 7y - 1$
c_{6}, c_{9}	$y^5 - 4y^4 + 2y^3 - 5y^2 + 3y - 1$
	$y^5 - 5y^4 + 6y^3 + 3y^2 - 4$
c ₈	$y^5 - 3y^4 - 11y^3 - 14y^2 - 4y - 1$
c_{11}	$y^5 - 3y^4 + 5y^3 - 2y^2 + 4y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.886428 + 0.266186I		
a = -0.148382 + 0.576930I	-1.42879 + 1.52428I	-12.65090 - 2.62716I
b = -0.663438 + 0.814334I		
u = 0.886428 - 0.266186I		
a = -0.148382 - 0.576930I	-1.42879 - 1.52428I	-12.65090 + 2.62716I
b = -0.663438 - 0.814334I		
u = -0.972160 + 0.575992I		
a = -0.210793 + 1.027090I	6.00798 + 2.19755I	-5.78391 - 2.40841I
b = 0.634295 - 0.253899I		
u = -0.972160 - 0.575992I		
a = -0.210793 - 1.027090I	6.00798 - 2.19755I	-5.78391 + 2.40841I
b = 0.634295 + 0.253899I		
u = -1.82854		
a = -1.28165	-12.4482	-13.1300
b = -1.94171		

$$III. \\ I_3^u = \langle -u^2a - au + u^2 + b + u - 1, \ u^2a + a^2 - 5u^2 - 3a - 2u + 11, \ u^3 + u^2 - 2u - 1 \rangle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u \\ u^{2} - u - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{2}a + au - u^{2} - u + 1 \\ 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{2}a - au + u^{2} + a + u - 2 \\ 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{2}a - au + u^{2} + a + u - 1 \\ u^{2}a + au - u^{2} - u + 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -au - 3u^{2} - a - u + 7 \\ au + u^{2} + u - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} a \\ au - u^{2} - u + 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{2}a - au + u^{2} + a + u - 1 \\ 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{2}a - au + u^{2} + a + u - 1 \\ 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = -6

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_5, c_7	$(u^3 - u^2 - 2u + 1)^2$
c_2	$(u^3 + 5u^2 + 6u + 1)^2$
c_3, c_4, c_{10}	$u^6 - u^5 + 2u^4 - 4u^3 - 2u^2 - 8u - 1$
c_6, c_9	$u^6 - u^5 - 2u^4 + 8u^3 - 14u^2 + 14u - 7$
c ₈	$u^6 + u^5 - 4u^4 - 2u^2 - 12u - 13$
c_{11}	$(u+1)^6$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_5, c_7	$(y^3 - 5y^2 + 6y - 1)^2$
c_2	$(y^3 - 13y^2 + 26y - 1)^2$
c_3, c_4, c_{10}	$y^6 + 3y^5 - 8y^4 - 42y^3 - 64y^2 - 60y + 1$
c_{6}, c_{9}	$y^6 - 5y^5 - 8y^4 + 6y^3 + 49$
<i>c</i> ₈	$y^6 - 9y^5 + 12y^4 + 14y^3 + 108y^2 - 92y + 169$
c_{11}	$(y-1)^6$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.24698		
a = 0.722521 + 0.457399I	0.234991	-6.00000
b = 0.222521 + 1.281600I		
u = 1.24698		
a = 0.722521 - 0.457399I	0.234991	-6.00000
b = 0.222521 - 1.281600I		
u = -0.445042		
a = 1.40097 + 2.98949I	5.87476	-6.00000
b = 0.900969 - 0.738343I		
u = -0.445042		
a = 1.40097 - 2.98949I	5.87476	-6.00000
b = 0.900969 + 0.738343I		
u = -1.80194		
a = 1.15958	-11.0446	-6.00000
b = 1.23060		
u = -1.80194		
a = -1.40656	-11.0446	-6.00000
b = -2.47758		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$(u^{3} - u^{2} - 2u + 1)^{2}(u^{5} + 2u^{4} - u^{3} - 3u^{2} + 2)$ $\cdot (u^{9} + 5u^{8} + 7u^{7} + u^{6} + 5u^{5} + 21u^{4} + 11u^{3} - 8u^{2} - 2u + 2)$
c_2	$(u^{3} + 5u^{2} + 6u + 1)^{2}(u^{5} + 6u^{4} + 13u^{3} + 17u^{2} + 12u + 4)$ $\cdot (u^{9} + 11u^{8} + \dots + 36u + 4)$
c_3,c_{10}	$(u^{5} + 2u^{3} + u^{2} - 3u + 1)(u^{6} - u^{5} + 2u^{4} - 4u^{3} - 2u^{2} - 8u - 1)$ $\cdot (u^{9} + 7u^{7} + 2u^{6} + 18u^{5} + 8u^{4} + 16u^{3} + 7u^{2} + 2u + 1)$
c_4	$(u^5 + 2u^3 - u^2 - 3u - 1)(u^6 - u^5 + 2u^4 - 4u^3 - 2u^2 - 8u - 1)$ $\cdot (u^9 + 7u^7 + 2u^6 + 18u^5 + 8u^4 + 16u^3 + 7u^2 + 2u + 1)$
c_5	$(u^{3} - u^{2} - 2u + 1)^{2}(u^{5} - 2u^{4} - u^{3} + 3u^{2} - 2)$ $\cdot (u^{9} + 5u^{8} + 7u^{7} + u^{6} + 5u^{5} + 21u^{4} + 11u^{3} - 8u^{2} - 2u + 2)$
c_6, c_9	$(u^5 - 2u^4 + u^2 - u - 1)(u^6 - u^5 - 2u^4 + 8u^3 - 14u^2 + 14u - 7)$ $\cdot (u^9 - 2u^8 - 3u^7 + 8u^6 + 6u^5 - 10u^4 - 10u^3 + 3u^2 + 8u + 1)$
c_7	$(u^3 - u^2 - 2u + 1)^2(u^5 + 3u^4 + 2u^3 - u^2 - 2u - 2)$ $\cdot (u^9 + 6u^8 + 19u^7 + 38u^6 + 54u^5 + 56u^4 + 49u^3 + 36u^2 + 16u + 2)$
c_8	$(u^{5} - u^{4} - u^{3} - 4u^{2} - 2u - 1)(u^{6} + u^{5} - 4u^{4} - 2u^{2} - 12u - 13)$ $\cdot (u^{9} + u^{8} - 8u^{7} - 4u^{6} + 21u^{5} + 3u^{4} - 3u^{3} - 5u^{2} + u + 1)$
c_{11}	$(u+1)^{6}(u^{5}+u^{4}-u^{3}+2u-1)$ $\cdot (u^{9}-8u^{8}+30u^{7}-69u^{6}+106u^{5}-109u^{4}+69u^{3}-18u^{2}-8u+8)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1,c_5	$(y^3 - 5y^2 + 6y - 1)^2(y^5 - 6y^4 + 13y^3 - 17y^2 + 12y - 4)$ $\cdot (y^9 - 11y^8 + \dots + 36y - 4)$
c_2	$(y^3 - 13y^2 + 26y - 1)^2(y^5 - 10y^4 - 11y^3 - 25y^2 + 8y - 16)$ $\cdot (y^9 - 23y^8 + \dots - 240y - 16)$
c_3, c_4, c_{10}	$(y^5 + 4y^4 - 2y^3 - 13y^2 + 7y - 1)$ $\cdot (y^6 + 3y^5 - 8y^4 - 42y^3 - 64y^2 - 60y + 1)$ $\cdot (y^9 + 14y^8 + 85y^7 + 280y^6 + 520y^5 + 512y^4 + 212y^3 - y^2 - 10y - 1)$
c_6, c_9	$(y^5 - 4y^4 + 2y^3 - 5y^2 + 3y - 1)(y^6 - 5y^5 - 8y^4 + 6y^3 + 49)$ $\cdot (y^9 - 10y^8 + \dots + 58y - 1)$
c_7	$(y^3 - 5y^2 + 6y - 1)^2(y^5 - 5y^4 + 6y^3 + 3y^2 - 4)$ $\cdot (y^9 + 2y^8 + 13y^7 + 34y^6 + 122y^5 + 4y^4 - 55y^3 + 48y^2 + 112y - 4)$
c_8	$(y^5 - 3y^4 - 11y^3 - 14y^2 - 4y - 1)$ $\cdot (y^6 - 9y^5 + 12y^4 + 14y^3 + 108y^2 - 92y + 169)$ $\cdot (y^9 - 17y^8 + \dots + 11y - 1)$
c_{11}	$(y-1)^{6}(y^{5} - 3y^{4} + 5y^{3} - 2y^{2} + 4y - 1)$ $\cdot (y^{9} - 4y^{8} + 8y^{7} - 7y^{6} + 30y^{5} - 89y^{4} + 245y^{3} + 316y^{2} + 352y - 64)$