

Διαγωνισμός Ανοικτών Τεχνολογιών στην Εκπαίδευση

Υποσύστημα

Γεννήτρια

Συχνοτήτων

Τίτλος έργου

«Σύστημα εξοικονόμησης ενέργειας και ορθολογικής Διαχείρισης Φυσικών Πόρων εργαστηρίων του ΕΠΑΛ Αλιάρτου»

Συμμετοχή του «Εσπερινού ΕΠΑΛ Αλιάρτου »

Στον

«5ο Πανελλήνιο Διαγωνισμό Ανοιχτών Τεχνολογιών στην Εκπαίδευση»

Αναγκαιότητα του Υποσυστήματος - Στόχοι

- Εξοικείωση με τον ηλεκτρονικό σχεδιασμό
- Γνωριμία με απλά ηλεκτρονικά εξαρτήματα
- Γνωριμία και χρήση προγραμμάτων Ανοικτού κώδικα για την παραγωγή РСВ
- Απόκτηση πρακτικών δεξιοτήτων στη συναρμολόγηση ηλεκτρονικών

Ειδικότεροι Σκοποί του Υποσυστήματος

- Πολλά Σχολικά Εργαστήρια δεν έχουν Γεννήτρια Συχνοτήτων
- Κατασκευή απλής Γεννήτριας (ελάχιστης ενέργειας) για χρήση στο εργαστήριο
- Εξοικονόμηση Ενέργειας και χρημάτων
- Αντικατάσταση αντίστοιχων ενεργοβόρων συσκευών

Τί είναι η Γεννήτρια Συχνοτήτων ;

Οι γεννήτριες Συχνοτήτων (Σημάτων) είναι όργανα εργαστηρίου, που είναι ικανά να παράγουν μια ποικιλία από επαναλαμβανόμενες κυματομορφές. Η βασική κυματομορφή που μπορεί να παράγει μια γεννήτρια σήματος είναι η ημιτονοειδής, ενώ έχει τη δυνατότητα να παράγει κι άλλες επαναλαμβανόμενες κυματομορφές όπως πριονωτή, τριγωνική και τετραγωνική.

Μια δυνατότητα που περιλαμβάνουν πολλές γεννήτριες είναι η ρύθμιση DC offset (μέση τιμή σήματος).

Μια απλή γεννήτρια σήματος μπορεί να παράγει κυματομορφές με συχνότητες μέχρι 100kHz, ενώ πιο ακριβά μοντέλα μπορούν να παράγουν έως και 20MHz ή και ακόμα 40MHz

<u>Ρυθμίσεις Γεννήτριας Συχνοτήτων</u> (1-Τύπος κυματομορφής)

- Ημιτονοειδές σήμα: Κάθε γεννήτρια σήματος έχει την δυνατότητα να παράγει την βασική κυματομορφή: το ημιτονοειδές σήμα.
- Τετραγωνικό σήμα: Το τετραγωνικό σήμα είναι μια κυματομορφή που μπορεί μια γεννήτρια σήματος εύκολα να παράγει. Το τετραγωνικό σήμα είναι η συνεχείς μετάβαση μεταξύ δυο επιπέδων: "high" και "low".
- Παλμικό σήμα: Η παλμική κυματομορφή είναι ένα άλλο είδος σήματος, που μια γενήτρια σήματος μπορεί να παράγει. Είναι όμοια με την τετραγωνική κυματομορφή, με μόνη διαφορά την αναλογία μεταξύ "low" και "high" δηλαδή η τιμή του duty cycle μπορεί να είναι διαφορετική από 50%
- Τριγωνικό σήμα: Σε αυτό το σήμα η μετάβαση μιας "low" και "high" τιμής γίνεται γραμμικά.
- Πριονωτό σήμα. Είναι μια τριγωνική κυματομορφή στην οποία η άνοδος γίνεται γρηγορότερα ή πιο αργά από την κάθοδο του σήματος, με αποτέλεσμα να μοιάζει με πριονωτό σχήμα.

<u>Ρυθμίσεις Γεννήτριας Συχνοτήτων</u> (1-Τύπος κυματομορφής)

Παρακάτω σχεδιάζονται οι πιο συνήθεις τύποι κυματομορφών που παράγονται από τις Γεννήτριες Συχνοτήτων εργαστηρίου.

<u>Ρυθμίσεις Γεννήτριας Συχνοτήτων</u> (2- Ρύθμιση Συχνότητας)

Με την επιλογή της συχνότητας στη γεννήτρια σήματος, μπορούμε να επιλέξουμε τη συχνότητα με την οποία μια κυματομορφή επαναλαμβάνεται.

<u>Ρυθμίσεις Γεννήτριας Συχνοτήτων</u> (3- Ρύθμιση Πλάτους)

<u>Ρυθμίσεις Γεννήτριας Συχνοτήτων</u> (4- Υπόλοιπες Ρυθμίσεις)

- DC offset (Μέσος όρος): Με την επιλογή αυτή ορίζουμε τη μέση τιμή της κυματομορφής ως προς την τάση μηδέν.
- Duty cycle: Με την επιλογή αυτή ορίζουμε το λόγο του σήματος που έχει τιμή "high" προς την περίοδο του σήματος για μια παλμική κυματομορφή

Pυθμίση_Duty cycle

<u>Ρυθμίσεις Γεννήτριας Συχνοτήτων</u> (5- Πραγματική Εμπορική Γεννήτρια Συχνοτήτων) Υποσύστημα 2° Γεννήτρια Συχνοτήτων

Ρύθμιση_Εμπορικής Γεννήτριας

Χρήση Γεννήτριας Συχνοτήτων

Οδήγηση απλών κυκλωμάτων

Απλή Γεννήτρια Συχνοτήτων (2-Τύποι Κυματομορφών)

Απλή Γεννήτρια Συχνοτήτων (3- Εξαρτήματα)

Απλή Γεννήτρια Συχνοτήτων (4- Σχηματικό Διάγραμμα Κυκλώματος)

Απλή Γεννήτρια Συχνοτήτων (5- Πλακέτα τυπωμένου κυκλώματος- PCB)

Υποσύστημα 2° Γεννήτρια Συχνοτήτων

Στοιχεία με ΠΟΛΙΚΟΤΗΤΑ

Function Generator Kit with XR2208 JK1 Amplitude Course

<u>Όψεις</u> Τυπωμένου κυκλώματος

Στοιχεία με ΔΡΙΘΜΗΣΗ

Στοιχείο	Περιγραφή	Τιμή
R1	Αντίσταση	1K
R2	Μετ.Αντίσταση	B503=50K
R3 _r R5 _r R6	Αντίσταση	5.1 K
R4	Αντίσταση	330
R7	Μετ.Αντίσταση	B503=50K
R8	Μετ.Αντίσταση	B104=100K
C1	Ηλ.Πυκνωτής	1∞UF
C2	Πυκνωτής	104
C3 _r C4	Ηλ.Πυκνωτής	10∪F
C 5	Πυκνωτής	105
C6	Πυκνωτής	473
C7	Πυκνωτής	222
C8	Πυκνωτής	101
U1	Ολοκλ.Κύκλωμα	XR2206
JK1	DC POWER	
J1	2PIN Jumper cap	XM2.54
	2044	V442 = 4
J2	2P1N Jumper cap	XM2.54
Pl	κλέμμες	
J3	2 * 5PJumper cap	

Λίστα Υλικών που χρησιμοποιήθηκαν

- Αντιστάσεις R
- Ολοκληρωμένα Κυκλώματα
- Ηλεκτρολυτικοί Πυκνωτές C
- Ποτενσιόμετρα Rp
- Φωτοδίοδοι LED
- Βίδες για τη στήριξη
- Καλώδια για συνδέσεις

Υποσύστημα 2° Γεννήτρια Συχνοτήτων

TO BE CONTINUED:

Με το Υποσύστημα

3°

Παλμογράφος

Ευχαριστούμε για την ευκαιρία που μας δώσατε και

για την Δοργάνωση του διαγωνισμού!!!

THE END

THANK YOU

Διαγωνισμός Ανοικτών Τεχνολογιών στην Εκπαίδευση

