Math 635 Lecture 15

Thomas Cohn

2/22/21

Some review:

- For (X,ω) a symplectic manifold, given $H \in C^{\infty}(X)$, $\exists ! \Xi_H \in \mathfrak{X}(X)$ s.t. $\iota_{\xi_H} \omega = -dH$. Refer to Lee, Smooth Manifolds, Chapter 22. Warning: His ω is different from ours by a sign. But the ξ_H is the same.

 • The flow of ξ_H preserves H, ω , $\frac{\omega^n}{n!}$, and the Liouville volume on regular level sets of H.

 • Symmetries: We proved that $\forall G, H \in C^{\infty}(X)$, $[\Xi_G, \Xi_H] = 0$ iff $\omega(\Xi_G, \Xi_H) = \Xi_G(H) = -\Xi_H(G)$ is constant. We call
- this the Poisson bracket, and denote it by $\omega(\Xi_G, \Xi_H) = \{G, H\}$.

Defn: We say that G is a conserved quantity under the flow of Ξ_H if and only if G is constant along the trajectories of Ξ_H if and only if $\Xi_H(G) = 0$.

Observe: The above implies that G is a conserved quantity under the flow of Ξ_H if and only if $\{G, H\} = 0$, so Ξ_G preserves H if and only if Ξ_H preserves G.

We'll apply this as follows:

- Geodesic flow is a Hamilton flow for some $H: T^*M \to \mathbb{R}$.
- If we have a field on M generating isometries, we'll get a G on T^*M that preserves H. This implies that G is constant along geodesics.

Recall: If M is any C^{∞} manifold, then $X = T^*M$ has a natural symplectic form ω , which, in standard local coordinates on T^*M , takes the form $\omega = dp_i \wedge dx^i = d\alpha$, where $\alpha = \sum p_i dx^i$ is the tautological 1-form.

A class of examples of Hamiltonians on T*M: Start with $X \in \mathfrak{X}(M)$. Then define

$$\ell_X: T^*M \to \mathbb{R}$$
$$(x,\xi) \mapsto \xi(X_x)$$

Observe that $\ell_X(x,\xi)$ is linear in ξ , i.e., linear on the fibers.

In coordinates (x^1,\ldots,x^n) , $X=f^i\frac{\partial}{\partial x^i}$, we get $(x^1,\ldots,x^n,p_1,\ldots,p_n)$ coordinates on T^*U . Then

$$\ell_X(x^1,\ldots,x^n,p_1,\ldots,p_n)=p_if^i(X)$$

Recall Hamilton's equations for the flow of $\Xi_{\ell_X} \in \mathfrak{X}(T^*M)$:

$$\begin{cases} \dot{x}^i = \frac{\partial \ell_X}{\partial p_i} = f^i & \leftrightarrow \text{ exactly the flow of } X \text{ itself} \\ \dot{p}^i = -\frac{\partial \ell_X}{\partial x^i} = -p_j \frac{\partial f^j}{\partial x^i} \end{cases}$$

Prop: Let $\phi_t: M \to M$ be the flow of X. Then the flow of Ξ_{ℓ_X} is $\tilde{\phi}_t: T^*M \to T^*M$, given by

$$\tilde{\phi}_t(x,\xi) = \left(\phi_t(x), ((d\phi_{-t})_{\phi_t(x)})^* \xi\right)$$

Let's unpack this. We know

$$d(\phi_{-t})_{\phi_t(x)}: T_{\phi_t(x)}M \to T_xM$$

Thus, its pullback is a map $T_x^* \to T_{\phi_t(x)}^* M$. So we have the following commutative diagram:

$$\begin{array}{ccc} T^*M & \stackrel{\tilde{\phi}_t}{\longrightarrow} T^*M \\ \downarrow & & \downarrow \\ M & \stackrel{\phi_t}{\longrightarrow} M \end{array}$$

1

Our main example is when (M, g) is a Riemannian manifold. Using $g, \forall x \in M$, we get $T_xM \cong T_x^*M$ by $\mathbb{F}: v \mapsto \langle \cdot, v \rangle$. We can assemble this into a "big map" between the total spaces of the bundle:

$$TM \xrightarrow{\sim} T^*M$$

$$M$$

by computing \mathbb{F} fiberwise. In coordinates, let (x^1, \dots, x^n) be coordinates on $U \subset M$. Then we get coordinates on TU and T^*U , and \mathbb{F} is

$$\mathbb{F}(x^1, \dots, x^n, v^1, \dots, v^n) = (x^1, \dots, x^n, p_i = g_{ij}v^j)$$

Thm: Let $L:TM\to\mathbb{R}$. Define $H:T^*M\to\mathbb{R}$ by $H=L\circ\mathbb{F}^{-1}.$ $(x,v)\mapsto \frac{1}{2}\left||v|\right|^2$

Then \mathbb{F} intertwines the geodesic flow on TM with the Hamilton flow of H.

Cor: Geodesic flow is volume preserving, and we can use the Hamiltonian to study symmetries and other things.

We could prove this now, but it would require a terribly long and boring computation. There's an elegant proof of this using a different point of view, which we will do later on.

Observe:
$$H(x,p) = \frac{1}{2}g^{ij}(x)p_ip_j$$
. $\dot{x}^i = \frac{\partial H}{\partial v_i} = g^{ij}(x)p_j$.

Application: Surfaces of revolution. Let $S = \partial_{\Theta} \in \mathfrak{X}(M)$ generate rotations: $\phi_t : M \to M$ where $\phi_{t+2\pi} = \phi_t$, and $\forall t, \phi_t$ is an isometry. (Compare with problem 1 on page 77 of Do Carmo.)

On the cotangent bundle, $\tilde{\phi}_k : T^*M \to T^*M$ preserves H; therefore, $\ell_{\partial_{\Theta}} : T^*M \to T^*M$ is a conserved quantity. But what is it geometrically? We can pass it to TM:

$$\ell_{\partial_{\Theta}} \circ \mathbb{F} : TM \to \mathbb{R}$$

 $(x, v) \mapsto \langle v, \partial_{\Theta} \rangle$

where $\langle \ , \ \rangle$ is the Euclidean dot product (from the subspace-induced Riemannian metric). Again, let $\gamma(t)$ be a geodesic with speed 1. We know that

$$\langle \dot{\gamma}(t), \partial_{\Theta} \rangle = ||\partial_{\Theta}|| \cos \angle (\dot{\gamma}(t), \partial_{\Theta})$$

is independent of t. It turns out $||\partial_{\Theta}|| = r$, the distance to the axis of symmetry, since the line of latitude has perimeter $2\pi ||\partial_{\Theta}||$. So we conclude that along a speed-1 geodesic, $\gamma(t)\cos\angle(\dot{\gamma}(t),\partial_{\Theta})$ is independent of t.