$$X_1, X_2, \dots, X_n$$
 i.i.d. p.d.f. or p.m.f. $f(x; \theta)$. $H_0: \theta = \theta_0$ vs. $H_1: \theta = \theta_1$.

Likelihood Ratio:

$$\lambda(x_1, x_2, ..., x_n) = \frac{L(\theta_0; x_1, x_2, ..., x_n)}{L(\theta_1; x_1, x_2, ..., x_n)}.$$

Neyman-Pearson Lemma:

$$C = \{ (x_1, x_2, ..., x_n) : \lambda(x_1, x_2, ..., x_n) \le k \}.$$

$$(\text{``Reject H}_0 \text{ if } \lambda(x_1, x_2, ..., x_n) \le k \text{'`})$$
is the best (most powerful) rejection region.

1. Let $X_1, X_2, ..., X_n$ be a random sample from an exponential distribution with mean θ . That is, let $X_1, X_2, ..., X_n$ be a random sample from a distribution with the p.d.f.

$$f(x) = \frac{1}{\theta} e^{-x/\theta}, \quad x > 0.$$

We wish to test $H_0: \theta = 0.5$ vs. $H_1: \theta > 0.5$.

a) If n = 7, find a uniformly most powerful rejection region with the significance level $\alpha = 0.05$.

Hint: If T has a Gamma $(\alpha, \theta = 1/\lambda)$ distribution, where α is an integer, then ${}^2T/_{\theta} = 2\lambda T$ has a $\chi^2(2\alpha)$ distribution (a chi-square distribution with 2α degrees of freedom).

Let $\theta > 0.5$.

$$\lambda(x_{1}, x_{2}, ..., x_{n}) = \frac{L(H_{0}; x_{1}, x_{2}, ..., x_{n})}{L(H_{1}; x_{1}, x_{2}, ..., x_{n})} = \frac{L(0.5; x_{1}, x_{2}, ..., x_{n})}{L(\theta; x_{1}, x_{2}, ..., x_{n})}$$

$$= \frac{\prod_{i=1}^{n} 2e^{-2x_{i}}}{\prod_{i=1}^{n} \frac{1}{\theta}e^{-x_{i}/\theta}} = (2\theta)^{n} \exp\left\{\left(\frac{1-2\theta}{\theta}\right)\sum_{i=1}^{n} x_{i}\right\}.$$

Since
$$\theta > 0.5$$
, $1 - 2\theta < 0$, and

Since
$$\theta > 0.5$$
, $1 - 2\theta < 0$, and $\lambda(x_1, x_2, ..., x_n) \le k \iff \sum_{i=1}^n x_i \ge c$.

If H_0 is true, $\sum_{i=1}^{7} X_i$ has a Gamma $(\alpha = 7, \theta = 1/2)$ distribution.

0.05 =
$$\alpha$$
 = P(Reject H₀ | H₀ is true) = P($\sum_{i=1}^{7} X_i \ge c | \theta = \frac{1}{2}$)
= P($4\sum_{i=1}^{7} X_i \ge 4c | \theta = \frac{1}{2}$) = P($\chi^2(14) \ge 4c$).

$$\Rightarrow$$
 4 $c = \chi_{0.05}^2(14) = 23.68.$ \Rightarrow $c = 5.92.$

Reject H₀ if $\sum_{i=1}^{7} x_i \ge 5.92$.

Find the power of the rejection rule from part (a) at $\theta = 0.75$. b)

Power
$$(\theta = 0.75) = P(\text{Reject H}_0 \mid \theta = 0.75) = P(\sum_{i=1}^{7} X_i \ge 5.92 \mid \theta = 0.75) = \dots$$

$$= P\left(\frac{2}{0.75} \sum_{i=1}^{7} X_i \ge \frac{2}{0.75} \cdot 5.92 \mid \theta = 0.75\right) = P\left(\chi^2(14) \ge \frac{2}{0.75} \cdot 5.92\right)$$

=CHISQ.DIST.RT(2*5.92/0.75,14)

OR

=
$$P(Poisson(\frac{5.92}{0.75}) \le 7 - 1) = P(Poisson(\frac{5.92}{0.75}) \le 6)$$

0.326575

0.326575

c) Find the significance level if the rejection rule is "Reject H_0 if $\sum_{i=1}^{7} X_i \ge 6$ ".

Hint: If T has a Gamma (α, θ) distribution, where α is an integer, then $P(T \ge t) = P(Y \le \alpha - 1), \text{ where } Y \text{ has a Poisson}\left(\frac{t}{\theta}\right) \text{ distribution.}$

significance level =
$$P(\text{Reject H}_0 \mid \text{H}_0 \text{ is true}) = P(\sum_{i=1}^7 X_i \ge 6 \mid \theta = 1/2)$$

= $P(Y \le 7 - 1)$, where Y has a $Poisson(\frac{1}{1/2} \cdot 6 = 12)$ distribution

using Cumulative Poisson Probabilities table:

$$= P(Y \le 6) = 0.046.$$

d) Find the power of the rejection rule is "Reject H_0 if $\sum_{i=1}^7 X_i \ge 6$ " at $\theta = 0.75$, $\theta = 1$, $\theta = 1.5$, $\theta = 2$.

Power(
$$\theta$$
) = P(Reject H₀ | θ) = P($\sum_{i=1}^{7} X_i \ge 6 | \theta$) = P(Y $\le 7 - 1$) = P(Y ≤ 6), where Y has a Poisson($\frac{1}{\theta} \cdot 6 = \frac{6}{\theta}$) distribution.

Using Cumulative Poisson Probabilities table:

$$\theta = 0.75$$
 $\frac{6}{\theta} = 8$ = **0.313**.
 $\theta = 1$ $\frac{6}{\theta} = 6$ = **0.606**.
 $\theta = 1.5$ $\frac{6}{\theta} = 4$ = **0.889**.
 $\theta = 2$ $\frac{6}{\theta} = 3$ = **0.966**.

e) Suppose $\sum_{i=1}^{7} x_i = 6.5$. Find the p-value of this test.

p-value = P(
$$\sum_{i=1}^{7} X_i$$
 as extreme or more extreme than ($\sum_{i=1}^{7} x_i$)_{observed} | H₀ true)
= P($\sum_{i=1}^{7} X_i \ge 6.5 | \theta = \frac{1}{2}) = P(Y \le 6)$

where Y has a Poisson $(\frac{1}{1/2} \cdot 6.5 = 13)$ distribution

= 0.026.