Laboratorio 2

Giovanni Zanotti - giovanni.zanotti@polimi.it Stefano Silvestrini - stefano.silvestrini@polimi.it

Introduzione all'Analisi di Missioni Spaziali

A.A. 2022-2023

Andrea Colagrossi

Contenuti

- Trasfrimento da Orbita Iniziale a Finale
- Cambio di Piano
- Cambio dell'Anomalia del Pericentro
- Cambio della Forma dell'Orbita (i.e., a ed e)
- Procedura completa

Trasferimento da orbita iniziale a finale

Procedura standard: 3 manovre

- 1. Cambio di piano (ΔV_1)
- 2. Cambio dell'anomalia del pericentro (ΔV_2)
- 3. Cambio della forma dell'orbita (ΔV_3 , ΔV_4)
 - 2 impulsi (i.e., Trasferimento Bitangente)

Trasferimento da orbita iniziale a finale

- Cambio di piano (changeOrbitalPlane):

$$[a, e, i_i, \Omega_i, \omega_i, i_f, \Omega_f] \rightarrow [\Delta v, \omega_f, \theta]$$

- Cambio dell'anomalia del pericentro (changePericenterArg):

$$[a, e, \omega_i, \omega_f] \rightarrow [\Delta v, \theta_i^{1,2}, \theta_f^{1,2}]$$

- Trasferimento bitangente (bitangentTransfer):

$$[a_i, e_i, a_f, e_f, type] \rightarrow [\Delta v_1, \Delta v_2, \Delta t]$$

Codice colori:

- Orbita iniziale
- Orbita finale
- Parametri fissi
 - Variabili trasferimento

Cambio di piano

orbita iniziale (orbita 1)

Geometricamente:

- lacktriangle Data orbita iniziale (i_1 , Ω_1)
- lacktriangle (i_2 , Ω_2) definiscono altro piano
- Si individua l'intersezione dell'orbita iniziale con il nuovo piano (\vec{r}^*)
- Si ruota il vettore velocità intorno ad \vec{r}^* per portarla su nuovo piano
- Parametri orbitali che non cambiano: $a e \theta$
- Parametri orbitali che cambiano: $i \quad \Omega \quad \omega$

Triangoli sferici

Definizione:

Un'area di una sfera delimitata da tre **geodetiche** (archi di cerchio massimo) è detta **triangolo sferico**.

I lati di un triangolo sferico si identificano utilizzando l'angolo ad essi sotteso, e non la lunghezza lineare.

La trigonometria sferica è simile a quella euclidea, con le dovute modifiche.

Legge dei seni

$$\frac{\sin A}{\sin \alpha} = \frac{\sin B}{\sin \beta} = \frac{\sin C}{\sin \gamma}$$

Legge del coseno

$$\cos C = \cos A \cos B + \sin A \sin B \cos \gamma \quad \text{(lati)}$$

$$\cos \gamma = -\cos \alpha \cos \beta + \sin \alpha \sin \beta \cos C \quad \text{(angoli)}$$

Cambio di piano

 $\Delta\Omega > 0$, $\Delta i > 0$ $\Delta\Omega$ < 0, Δ i < 0 $\Delta\Omega > 0$, $\Delta i < 0$ $\Delta\Omega$ < 0, Δ i > 0

$$\cos \alpha = \cos i_1 \cos i_2 + \sin i_1 \sin i_2 \cos \Delta \Omega \implies \alpha$$

 $\cos i_1 = \cos \alpha \cos i_2 + \sin \alpha \sin i_2 \cos u_2$ $\cos i_2 = \cos \alpha \cos i_1 - \sin \alpha \sin i_1 \cos u_1$

$$\sin u_1 = \frac{\sin \Delta \Omega}{\sin \alpha} \sin i_2$$

$$\sin u_2 = \frac{\sin \Delta\Omega}{\sin \alpha} \sin i_1$$

$$\frac{\sin \Delta s t}{\sin \alpha} \sin i_1$$

$$u_1 = \omega_1 + \theta_1 \\ u_2 = \omega_2 + \theta_2 \qquad \longrightarrow \qquad \begin{array}{c} \theta_1 = \theta_2 \\ \omega_2 \end{array}$$

$$\cos \alpha = \cos i_1 \cos i_2 + \sin i_1 \sin i_2 \cos \Delta \Omega$$

$$\cos i_2 = \cos \alpha \cos i_1 + \sin \alpha \sin i_1 \cos u_1$$

$$\cos i_1 = \cos \alpha \cos i_2 - \sin \alpha \sin i_2 \cos u_2$$

$$\sin u_1 = \frac{\sin \Delta \Omega}{\sin \alpha} \sin i_2$$

$$\sin u_2 = \frac{\sin \Delta \Omega}{\sin \alpha} \sin i_1$$

$$u_1 = 2\pi - (\omega_1 + \theta_1)$$

$$u_2 = 2\pi - (\omega_2 + \theta_2)$$

$$\omega_2$$

Nota:

$$sign(\alpha) = sign(\Delta\Omega)$$

Cambio di piano

Calcolare il costo della manovra

$$v_{\vartheta} = \sqrt{\frac{\mu}{p}} (1 + e \cos \theta)$$
$$\Delta v = 2v_{\vartheta} \sin \frac{\alpha}{2}$$

OUTPUT: $\left[\Delta v, \omega_f, \theta\right]$

NOTE:

Più lontano è, meglio è...

Cambio di piano – Alternativa

Esiste un secondo punto di intersezione

$$\tilde{\theta} = \theta + \pi$$

Dal momento che $\Delta v \propto v_{\vartheta}$, funzione dell'anomalia vera, **potrebbe essere** conveniente manovrare in $\tilde{\theta}$.

Come scegliere il punto di manovra?

$$v_{\vartheta} = \sqrt{\frac{\mu}{p}} (1 + e \cos \theta)$$

Abbiamo v_{ϑ} piccola quando $\frac{\pi}{2} < \theta < \frac{3}{2}\pi$, poiché $\cos \theta < 0$.

Quindi se l'algoritmo vi restituisce θ nel I o IV quadrante, risulterà conveniente manovrare a $\tilde{\theta} = \theta + \pi$.

NOTE:

• Per sapere se θ è nel I o IV quadrante, controllate il segno del coseno. Se positivo, scegliete $\theta + \pi$.

Siamo sullo stesso piano dell'orbita finale

Siamo sullo stesso piano dell'orbita finale

Siamo sullo stesso piano dell'orbita finale

$$\omega_3 = \omega_f$$

$$\Delta \omega = \omega_3 - \omega_2 = \omega_f - \omega_2$$

 \blacktriangleright Manovra di cambio ω

$$heta_a^2 = rac{\Delta \omega}{2}$$
 $heta_b^2 = rac{\Delta \omega}{2} + \pi$

Siamo sullo stesso piano dell'orbita finale

$$\omega_3 = \omega_f$$
 $\Delta \omega = \omega_3 - \omega_2 = \omega_f - \omega_2$

Manovra di cambio ω

$$egin{align} heta_a^2 &= rac{\Delta \omega}{2} & \Longrightarrow heta_a^3 = 2\pi - heta_a^2 \ & heta_b^2 = rac{\Delta \omega}{2} + \pi & \Longrightarrow heta_b^3 = 2\pi - heta_b^2 \ \end{matrix}$$

- parametri orbitali che non cambiano:
 - a e i Ω
- parametri orbitali che cambiano:

$$\omega \theta$$

Pericentri in direzioni opposte

Pericentri in direzioni opposte

Pericentri in direzioni opposte

Manovra di cambio ω

$$egin{align} heta_a^2 &= rac{\Delta \omega}{2} & \Longrightarrow heta_a^3 = 2\pi - heta_a^2 \ heta_b^2 &= rac{\Delta \omega}{2} + \pi & \Longrightarrow heta_b^3 = 2\pi - heta_b^2 \ \end{matrix}$$

parametri orbitali che non cambiano:

$$a$$
 e i Ω

parametri orbitali che cambiano:

$$\omega \theta$$

Le due orbite sono ora coassiali

■ Orbita iniziale: $\{a_i, e_i, i_i, \Omega_i, \omega_i, \theta_i\}$

 $\begin{array}{c} \bullet \text{ Orbita iniziale: } \{a_i,e_i,i_i,\Omega_i,\omega_i,\theta_i\} \\ = -\text{ attesa fino a punto manovra: } \Delta t_1 \\ \{a_i,e_i,i_i,\Omega_i,\omega_i,\theta_2\} \\ = -\text{ cambio piano: } \Delta v_1 \\ \{a_i,e_i,i_f,\Omega_f,\omega_2,\theta_2\} \end{array}$

 $\{a_i,e_i,\underbrace{i_i,\Omega_i,\omega_i}_{},\underbrace{\theta_2}\}$ — attesa fino a punto manovra: Δt_1 lacksquare Orbita iniziale: $\{a_i,e_i,i_i,\Omega_i,\omega_i,oldsymbol{ heta_i}\}$ $\{a_i,e_i,i_f,\Omega_f,\omega_2, heta_2\}$ — cambio piano: Δv_1 — attesa fino a punto manovra: Δt_2 $\{a_i,e_i,i_f,\Omega_f,\omega_2,\overline{ heta_3}\}$ — cambio anomalia pericentro: Δv_2 $\{a_i,e_i,i_f,\Omega_f,\overline{\omega_f, heta_4}\}$ — attesa fino a punto manovra: Δt_3 $\begin{cases} a_i, e_i, i_f, \Omega_f, \omega_f, \underline{\theta_5} \\ \\ \{a_f, e_f, i_f, \Omega_f, \omega_f, \underline{\theta_6} \} \end{cases} - \text{cambio } a \text{ ed } e \colon \Delta v_3, \Delta v_4, \Delta t_4$

Funzioni da implementare

Cambio piano:

$$[\Delta v_1, \omega_2, \theta_2] = \text{CambioPiano}(a_i, e_i, i_i, \Omega_i, \omega_i, i_f, \Omega_f)$$

Cambio anomalia pericentro:

$$[\Delta v_2, \theta_3, \theta_4] = \text{CambioAnPericentro}(a_i, e_i, \omega_i, \omega_f, \theta_2)$$

Cambio forma orbita:

$$[\Delta v_3, \Delta v_4, \Delta t_4] = \text{CambioFormaOrbita}(a_i, e_i, a_f, e_f)$$

Calcolo tempi fra anomalie vere:

$$[\Delta t_{12}] = \text{CalcoloTempi}(a, e, \theta_1, \theta_2)$$

Nota su calcolo dei tempi

■ Calcolo tempi fra anomalie vere: $[\Delta t_{12}] = \text{CalcoloTempi}(a, e, \theta_1, \theta_2)$

$$\theta_2 > \theta_1$$
 $\triangle t_{12} = t_2 - t_1$

$$\theta_1 > \theta_2$$
 $\triangle t_{12} = t_2 - t_1 + T$

Matlab

Funzioni che potrebbero tornare utili:

- switch/case/otherwise struttura che permette di discriminare diversi casi (alternativa a if)
- atan2 arcotangente conoscendo valori seno e coseno (trova angolo fra 0 e 2π)

Laboratorio 2

Giovanni Zanotti - giovanni.zanotti@polimi.it Stefano Silvestrini - stefano.silvestrini@polimi.it

Introduzione all'Analisi di Missioni Spaziali

A.A. 2022-2023

Andrea Colagrossi

