Übungsblatt LA 8

Computational and Data Science FS2025

Mathematik 2

Lernziele:

- Sie kennen die Begriffe charakteristisches Polynom, charakteristische Gleichung, Eigenwert, Eigenvektor, Spektrum und Eigenraum und deren wichtigste Eigenschaften.
- Sie können das charakteristische Polynom, die Eigenwerte und Eigenvektoren einer quadratischen Matrix berechnen.
- Sie können die Eigenschaften einer Matrix bzw. linearen Abbildung anhand ihrer Eigenwerte/Eigenvektoren beurteilen und umgekehrt.

1. Aussagen über Eigenwerte und -vektoren

Welche der folgenden Aussagen sind wahr und welche falsch?

		wahr	falsch
a)	Jede quadratische Matrix hat mindestens einen reellen		
	Eigenwert.		
b)	Sind \vec{v} und \vec{w} zwei Eigenvektoren einer Matrix, dann gilt dies		
	auch für $\vec{u} = \vec{v} + \vec{w}$.		
c)	Sind \vec{v} und \vec{w} zwei Eigenvektoren einer Matrix zum selben		
	Eigenwert λ , dann gilt dies auch für $\vec{u} = \vec{v} + \vec{w}$.		
d)	Eine 3x3 Matrix hat maximal drei verschiedene Eigenwerte.		
e)	Gilt $spec(A) = \{0\}$, dann gilt: $tr(A) = 0$.		
f)	Gilt $0 \in spec(A)$, dann gilt: $det(A) = 0$.		

2. Eigenwerte und -vektoren der Standardmatrizen in 2D

Betrachten Sie die Standardmatrizen \mathbb{E} , \mathbb{I} , P, Z_a , P_x , P_y , S_x und S_y .

- a) Welche reellen Eigenwerte und Eigenvektoren der Standardmatrizen können Sie ohne zu rechnen angeben?
- b) Berechnen Sie das charakteristische Polynom, die Eigenwerte und Eigenvektoren der Standardmatrizen.

3. Eigenwerte und -vektoren bestimmen

Berechnen Sie jeweils das charakteristische Polynom, die reellen Eigenwerte und die reellen Eigenvektoren der Matrix.

a)
$$\begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$$
 b) $\begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix}$ c) $\begin{pmatrix} 0 & 6 \\ 2 & 0 \end{pmatrix}$ d) $\begin{pmatrix} 0 & -6 \\ 2 & 0 \end{pmatrix}$ e) $\begin{pmatrix} 1 & 0 & 0 \\ 2 & 2 & -1 \\ 0 & -3 & 0 \end{pmatrix}$ f) $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$

4. Eigenwerte und -vektoren mit Python/Numpy bestimmmen

Berechnen Sie die Eigenwerte- und vektoren aus Aufgabe 3 mit Python/Numpy.

5. Eigenwerte und -vektoren mit Python/Sympy bestimmmen

Berechnen Sie die Eigenwerte- und vektoren aus Aufgabe 3 mit Python/Sympy.

6. Eigenwerte/-vektoren zu quadrierter/invertierter Matrix

Gegeben sei ein Eigenvektor \vec{v} zum Eigenwert λ einer Matrix A.

- a) Ist \vec{v} auch Eigenvektor von A^2 ? Und falls ja, zu welchem Eigenwert?
- b) Wenn A zudem invertierbar sei, ist dann \vec{v} auch ein Eigenvektor zu A^{-1} ? Und falls ja, zu welchem Eigenwert?

7. Aussagen über 2 Matrizen in 3D

Gegeben seien die beiden Matrizen

$$A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \text{ und } B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}.$$

Welche der folgenden Aussagen sind wahr und welche falsch?

	wahr	falsch
a) Das charakteristische Polynom von A hat den Grad 1.		
b) A ist orthogonal.		
c) Es gilt: $spec(A) = spec(B)$.		
d) B hat genau 2 verschiedene Eigenwerte.		
e) $\sqrt{2} \cdot \hat{e}_x$ ist ein Eigenvektor von <i>B</i> .		
f) Es gilt: $A^{12} \cdot \hat{e}_y = -B \cdot \hat{e}_z$.		

8. Eigenwerte- und vektoren bestimmen → Arens S. 692 A18.3

In der folgenden Abbildung zeigt das erste Bild ein aus den Punkten A, B, C, D gebildetes Quadrat um den Ursprung. Die folgenden Abbildungen zeigen Bilder des Quadrats unter zwei verschiedenen linearen Abbildungen $\phi_{1,2}$. Bestimmen Sie die Eigenwerte und -vektoren der Abbildungen.

2

9. Unternehmen

Ein Unternehmen produziert in der Periode t drei Güter in den Quantitäten x_t , y_t und z_t , die in der Folgeperiode t+1 teilweise als Rohstoffe wieder verwendet werden. Es gilt der Zusammenhang

$$\begin{pmatrix} x_{t+1} \\ y_{t+1} \\ z_{t+1} \end{pmatrix} = \begin{pmatrix} a & 1/2 & 0 \\ b & 1 & c \\ 0 & c & 3/4 \end{pmatrix} \begin{pmatrix} x_t \\ y_t \\ z_t \end{pmatrix} = A \begin{pmatrix} x_t \\ y_t \\ z_t \end{pmatrix}, a, b, c \in \mathbb{R}.$$

Die Matrix A besitzt den Eigenwert $\lambda = 3/2$ und den zugehörigen Eigenvektor $\begin{pmatrix} u \\ u \\ 0 \end{pmatrix}$ mit u > 0.

- a) Bestimmen Sie die Konstanten *a, b, c*, der Matrix *A*.
- b) Interpretieren Sie den Eigenwert λ und den Eigenvektor $\begin{pmatrix} u \\ u \\ 0 \end{pmatrix}$ bezogen auf die Aufgabenstellung, wenn ein gleichmässiger Wachstumsprozess unterstellt wird.
- c) Der Gesamtoutput für die 3 Güter im Zeitpunkt t beträgt 200 Einheiten. Wie verteilen sich diese Einheiten bei Unterstellung eines gleichförmigen Wachstumsprozesses auf x_t , y_t und z_t ? Geben Sie die Anzahl der zu produzierenden Güter für die Perioden t+1 und t+2 an, wenn ein gleichmässiger Wachstumsprozess unterstellt wird.