Universidade Estadual de Campinas Instituto de Computação

Introdução ao Processamento Digital de Imagem (MC920 / MO443)

Professor: Hélio Pedrini

Trabalho 1

1 Especificação do Problema

O objetivo deste trabalho é implementar algumas operações em imagens, tanto monocromáticas quanto coloridas, no domínio espacial. As máscaras e matrizes apresentadas a seguir devem ser explicitamente utilizadas nos códigos, ou seja, eventuais funções disponíveis em bibliotecas não devem ser empregadas na implementação.

1.1 Imagens Coloridas

a) Dada uma imagem colorida no formato RGB, altere a imagem conforme as seguintes operações:

$${\rm R'} = 0.393 {\rm R} + 0.769 {\rm G} + 0.189 {\rm B}$$

$$G' = 0.349R + 0.686G + 0.168B$$

$$B' = 0.272R + 0.534G + 0.131B$$

Após a transformação, caso R', G' ou B' tenha valor maior do que 255, ele deve ser limitado em 255.

b) Dada uma imagem colorida no formato RGB, altere a imagem tal que ela contenha apenas uma banda de cor, cujos valores são calculados pela média ponderada:

$$I = 0.2989R + 0.5870G + 0.1140B$$

1.2 Imagens Monocromáticas

A filtragem aplicada a uma imagem digital é uma operação local que altera os valores de intensidade dos pixels da imagem levando-se em conta tanto o valor do pixel em questão quanto valores de pixels vizinhos. No processo de filtragem, utiliza-se uma operação de convolução de uma máscara pela imagem. Este processo equivale a percorrer toda a imagem alterando seus valores conforme os pesos da máscara e as intensidades da imagem.

Aplique os seguintes filtros em uma imagem digital monocromática.

$$h_1 = egin{array}{c|cccc} -1 & 0 & 1 \\ -2 & 0 & 2 \\ \hline -1 & 0 & 1 \\ \hline \end{array}$$

$$h_2 = egin{array}{c|ccc} -1 & -2 & -1 \ \hline 0 & 0 & 0 \ \hline 1 & 2 & 1 \ \hline \end{array}$$

$$h_4 = \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \quad h_5 = \begin{bmatrix} -1 & -1 & 2 \\ -1 & 2 & -1 \\ 2 & -1 & -1 \end{bmatrix} \quad h_6 = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix} \quad h_7 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix}$$

$$h_9 = \frac{1}{256} \begin{vmatrix} 1 & 4 & 6 & 4 & 1 \\ 4 & 16 & 24 & 16 & 4 \\ 6 & 24 & 36 & 24 & 6 \\ 4 & 16 & 24 & 16 & 4 \\ 1 & 4 & 6 & 4 & 1 \end{vmatrix}$$

Explique os efeitos de cada filtro. Os filtros h_1 e h_2 deverão ser aplicados à imagem tanto individualmente quanto de forma combinada somando-se as respostas de cada um dos filtros por meio da expressão: $\sqrt{(h_1)^2 + (h_1)^2}$.

2 Entrada de Dados

As imagens de entrada estão no formato PNG (*Portable Network Graphics*). Alguns exemplos de imagens monocromáticas encontram-se disponíveis no diretório "http://www.ic.unicamp.br/~helio/imagens_png/", enquanto exemplos de imagens coloridas estão disponíveis em "https://www.ic.unicamp.br/~helio/imagens_coloridas/".

3 Saída de Dados

As imagens de saída devem estar no formato PNG (*Portable Network Graphics*). Resultados intermediários podem ser também exibidos na tela.

4 Especificação da Entrega

- A entrega do trabalho deve conter os seguintes itens:
 - código fonte: o arquivo final deve estar no formato zip ou no formato tgz, contendo todos os programas ou dados necessários para sua execução.
 - relatório: deve conter uma descrição dos algoritmos e das estruturas de dados, considerações adotadas na solução do problema, testes executados, eventuais limitações ou situações especiais não tratadas pelo programa.
- O trabalho deve ser submetido por meio da plataforma Google Classroom.
- Data de entrega: 14/04/2021.

5 Observações Gerais

- Os programas serão executados em ambiente Linux. Os formatos de entrada e saída dos dados devem ser rigorosamente respeitados pelo programa, conforme definidos anteriormente. Não serão aceitos trabalhos após a data de entrega.
- Os seguintes aspectos serão considerados na avaliação: funcionamento da implementação, clareza do código, qualidade do relatório técnico.