Les Hypovanadates de Magnésium MgVO₃ et MgV₂O₅. Structure Cristalline de MgVO₃

JEAN-CLAUDE BOULOUX, IVANA MILOSEVIC ET JEAN GALY

Laboratoire de Chimie du Solide du C.N.R.S., Université de Bordeaux I, 351, cours de la Libération, 33405 Talence, France

Received April 28, 1975

Two phases have been investigated in the MgO-VO₂ system at 900°C. MgVO₃ crystallizes in the orthorhombic system, space group $Cmc2_1$, with a = 5.243 Å, b = 10.028 Å, and c = 5.290 Å. The structure is built up from square pyramids VO₃ and MgO₅ sharing edges and forming sheets connected through oxygen atoms. Its structure is related to the ReO₃ and Mg₂NF structures. MgV₂O₅ is orthorhombic with a = 3.696 Å, b = 9.965 Å, and c = 11.019 Å; the space group is $Cmc2_1$, Cmcm, or C2cm.

Our structural data for MgVO₃ do not agree with the ones published by Cros, Tourne and Philippot (16).

Rudorff et Reuter (1) signalaient l'existence de deux phases dans le système binaire MgO- VO_2 : Mg_2VO_4 de structure spinelle inverse avec a=8.386 Å et MgVO₃ pour laquelle aucune donnée cristallographique n'était signalée.

Dans le cadre d'une étude générale des composés oxygénés comportant le vanadium au seul degré d'oxydation +IV (Bouloux et Galy (2-4) nous nous sommes intéressés aux hypovanadates de magnésium. Trois phases ont été isolées: Mg₂VO₄, MgVO₃ et MgV₂O₅. Les deux dernières ont été plus particulièrement étudiées. La détermination de la structure cristalline de MgVO₃ fait l'objet essentiel de ce mémoire.

Synthèse des Phases MgVO₃ et MgV₂O₅

Elles ont été préparées à 900°C par synthèse directe à partir des oxydes MgO et VO₂ en tube de vycor muni d'une protection d'or et scellé sous vide.

La phase MgVO₃ de couleur brun-rouge se décompose vers 1020°C. En la portant rapidement à la température de 1150°C apparaissent, après refroidissement lent, deux types de cristaux rouges; les uns correspondent à

l'orthovanadate $Mg_3(VO_4)_2$ (Durif (5), Kohlmuller et Perraud (6)), les autres à l'hypovanadate $MgVO_3$; ils sont difficilement différenciables. L'examen du spectre X après fusion montre également la présence du spinelle Mg_2VO_4 et de la phase $Mg_{0.15}V_{1.85}O_3$ limite supérieure de la solution solide $Mg_xV_x^{4+}V_{2-2x}^{3+}O_3$ avec $0 < x \le 0.15$ (Bouloux, Milosevic et Sénégas (7). A cette température la décomposition de $MgVO_3$ s'accompagne donc d'une dismutation partielle du vanadium +IV en vanadium +V et +III.

L'hypovanadate MgV₂O₅ de couleur vert clair se décompose vers 950°C suivant la réaction:

$$MgV_2O_5 \rightarrow MgVO_3 + VO_2$$
.

De petits cristaux de MgV₂O₅ ont pu cependant être isolés après recuit à 900°C pendant quinze jours environ.

Etude Cristallographique des Phases MgVO₃ et MgV₂O₅

(a) $MgVO_3$

Le cristal choisi est une plaquette de dimensions $0.1 \times 0.08 \times 0.02$ mm³. L'examen des diagrammes de Laue et de Buerger montre

	TAB	LEAU I						
Données Radiocristallographiques	RELATIVES AU	X PHASES	MgVO ₃ ,	Mg ₂ NF,	MgV₂O₅,	CaV ₂ O ₅	ET \	V ₂ O ₅

	MgVO ₃	Mg_2NF	MgV_2O_5	CaV ₂ O ₅	V_2O_5
Symétrie Paramètres (en Å)	Orthorhombique $a = 5.243 \pm 0.002$ $b = 10.028 \pm 0.004$	Quadratique $a = 4.186$ $c = 10.042$	Orthorhombique $a = 3.696 \pm 0.003$ $b = 9.965 \pm 0.005$	a = 11.347 b = 3.605	a = 11.510 b = 3.563
Groupe spatial	$c = 5.293 \pm 0.002$ $Cmc2_1$	I4 ₁ /amd	$c = 11.019 \pm 0.005$ $Cmc2_1$, $Cmcm$ ou C2cm	c = 4.892 $Pmmn$	c = 4.369 <i>Pmmn</i>

que MgVO₃ cristallise dans le système orthorhombique. Les paramètres donnés au Tableau I ont été affinés par indexation du spectre de poudre (Tableau II).

La densité mesurée par pycnométrie dans l'orthophtalate de diéthyle $(d_{exp} = 2.90 \pm 0.03)$ est en bon accord avec la densité théorique $(d_x = 2.91)$ pour quatre motifs MgVO₃ par maille. La densité annoncée par Rudorff et Reuter (1) était égale à 2.91.

Les conditions d'existence relevées sur les clichés de Buerger:

$$(hkl) h+k=2n$$

$$(h0l) l=2n$$

sont compatibles avec les trois groupes spatiaux orthorhombique à bases centrées: $Cmc2_1$, Cmcm et C2cm.

(b) MgV_2O_5

Une étude sur chambre de Weissenberg d'un cristal de MgV₂O₅ ayant la forme d'un très petit bâtonnet allongé suivant l'axe Oy montre que la symétrie est orthorhombique. Les paramètres de la maille élémentaire figurent au Tableau I, ils ont été affinés par indexation du spectre de poudre donné au Tableau II.

La densité mesurée par pycnométrie dans l'orthophtalate de diéthyle ($d_{exp} = 3.34 \pm 0.04$) correspond à quatre motifs MgV₂O₅ par maille ($d_x = 3.38$).

Les conditions d'existence des réflexions hkl relevées sur les diagrammes de Weissenberg:

$$(hkl) h+k=2n$$

$$(h0l) l=2n$$

sont compatibles avec les groupes spatiaux $Cmc2_1$, Cmcm et C2cm.

Les données cristallographiques de MgV₂O₅ sont comparées au Tableau I à celles de CaV₂O₅ (Bouloux et Galy (2)) et V₂O₅ (Bachmann, Ahmed et Barnes (8)).

Détermination de la Structure de MgVO,

Les intensités des diverses réflexions hkl ont été mesurées à l'aide d'un diffractomètre automatique Enraf Nonius CAD 3. Les réflexions retenues satisfont au test portant sur l'intensité mesurée $I > \sigma(I)$. La radiation $K\alpha$ utilisée était celle d'une anticathode de molybdène. La correction par le facteur de Lorentz-polarisation a été effectuée. Etant donné les faibles dimensions du cristal les corrections d'absorption ont été négligées. Les facteurs de diffusion de Mg^{2+} , V^{4+} et de O^{2-} ont été tirés ou extrapolés à partir des tables de McMaster, Kerr del Grande, Mallet et Hubbel (9).

Tous les calculs ont été effectués sur IRIS 80. La déconvolution de la fonction de Patterson P(uvw) a permis de déterminer les coordonnées réduites des atomes de magnésium, de vanadium et des deux atomes

d'oxygène en position indépendante.

Nous avons vu précédemment que trois groupes spatiaux étaient possibles: $Cmc2_1$ et C2cm non centrosymétriques et Cmcm centrosymétrique. Un premier affinement sur la base du groupe Cmcm à l'aide d'une méthode utilisant les blocs diagonaux donne un facteur R égal à 6.6%.

Des essais systématiques ont alors été effectués pour les trois groupes spatiaux

 $TABLEAU\ II$ Spectre de Diffraction X des Phases MgVO3 et MgV2O5

	MgV	O_3			MgV	√2O5	
h k l	$d_{\mathrm{obs}}(\mathrm{\AA})$	d _{calc} (Å)	I/I_0	h k l	d _{obs} (Å)	d _{cale} (Å)	I/I_0
020	5.017	5.014	100	002	5.51	5.51	<2
110	4.686	4.681	24	020	4.99	4.98	100
021	3.627	3.623	14	022	3.70	3.70	10
111	3.494	3.492	86	110	3.460	3.465	30
200	2.648	2.647	12	111	3.299	3.306	22
002	2.623	2.621	16	023	2.956	2.956	33
040	2.508	2.507	6	004	2.754	2.754	8
131	2.488	2.488	60	113	2.520	2.520	13
110	2.289	2.287	6	040	2.492	2.491	7
041	2.263	2.262	2	1 3 0	2.472	2.471	8
221	2.138	2.137	2	041	2.430	2.430	2
202	1.863	1.862	37	024	2.412	2.411	5
240	1.820	1.820	4	042	2.271	2.270	3
042	1.812	1.812	2	1 3 2	2.254	2.254	2 5 3 2 6
151	1.766	1.766	30	114	2.156	2.156	6
222	1.746	1.746	20	0 4 3	2.062	2.062	8
060	1.671	1.671	2	025	2.016	2.015	3
(023	1.650	1.650	9	[200]	1 047	1 040	9
1311	1.050	1.649	,	(044	1.847	1.848	9
061	1.592	1.592	<2	(134	1.020	1.839	-
∫ 3 3 1	1.496	1.496	15	1006	1.838	1.836	5
242	1.430	1.495		150	1.756	1.754	2
1 3 3	1.487	1.486	12	(220	1 722	1.733	
260	1.4133	1.4131	15	151	1.732	1.732	2
062	1.4095	1.4093	18	026	1.724	1.723	4
170	1.3830	1.3828	<2	152	1.672	1.672	10
[350	1.3236	1.3247	2	222	1.653	1.653	<2
1400	1.3230	1.3232		135	1.644	1.644	3
004	1.3108	1.3107	4	116	1.624	1.623	<2
3 5 1	1.2846	1.2843	6	223	1.566	1.567	7
[420	1.2788	1.2794	8	204	1.535	1.535	<2
1153	1.2700	1.2785		063	1.514	1.513	4
0 2 4	1.2683	1.2681	<2	/154	1 490	1.480	8
3 1 3	1.2321	1.2322	<2	046	1.480	1.478	8
352	1.1814	1.1823	<2	241	1.471	1.471	3
402	1.1014	1.1813		∫117	1.433	1.433	6
204	1.1745	1.1746	<2	242	1.433	1.433	О
3 3 3	1.1641	1.1639	2				

possibles avec les 372 réflexions hkl observées. Après plusieurs cycles d'affinement les résultats sont les suivants:

 $Cmc2_1$ R = 4.0 % C2cm R = 6.9 %Cmcm R = 4.3 %. Les tests de Howells, Philipps et Rogers (10) et de Srinivasan (11) étant favorables aux groupes non-centrosymétriques, nous avons finalement retenu le groupe spatial non-centrosymétrique $Cmc2_1$.

Quelques cycles d'affinement portant également sur les facteurs d'agitation thermique

	Mg	V	0(1)	0(2)
$x(\delta x)$	0	0	0.2383(8)	0
$y(\delta y)$	0.4267(3)	0.0686(1)	-0.005(1)	0.2330(4
$z(\delta z)$	0*	0.011(3)	0.264(4)	0.025(4)
β ₁₁ **	48(5)	33(2)	43(6)	182(16)
β_{22}	14(2)	8.0(5)	19(3)	10(3)
β_{33}	19(18)	41(4)	35(8)	93(34)
β_{12}	0	0	5(8)	0
β_{23}	0	0	56(19)	0
β_{13}	3(8)	1(7)	-1.5(5.0)	14(12)
Positions	4 <i>a</i>	4a	8 <i>b</i>	4a

 $\label{thm:cordonness} \textbf{TABLEAU III}$ Coordonnées Réduites et Facteurs d'Agitation Thermique Anisotrope dans MgVO $_3$

 $TABLEAU\ IV$ Distances Interatomiques en Å dans $MgVO_3$

Mg-Mg'	3.005(1)	2Mg-O(13)	2.02(1)
V′–V″	2.960(8)	Mg-O(2)	1.947(8)
MgV	3.591(6)	4O(1)-O(10)	2.62(2)
Mg-V'	3.766(6)	2O(1)-O(11)	2.52(2)
Mg-V"	3.005(6)	2O(2)-O(1)	2.98(2)
2V-O(1)	1.97(1)	2O(2)-O(10)	2.95(2)
2V-O(10)	1.92(1)	2O(12)-O(14)	2.77(2)
V-O(2)	1.65(1)	2O(2)-O(12)	3.22(2)
2Mg-O(12)	2.07(1)	2O(2)-O(13)	3.35(2)
	•		

anisotrope conduisent au facteur R final égal à 3.4%.

Les coordonnées réduites des atomes et les facteurs d'agitation thermique anisotrope figurent au Tableau III, les distances interatomiques au Tableau IV.

Description de la Structure de MgVO₃

La projection de la structure de MgVO₃ sur le plan x0y est représentée à la Fig. 1.

Les atomes de magnésium et de vanadium sont en coordinence [5]; l'environnement oxygéné est de type pyramidal à base carrée. Toutes les pyramides ont leur base sensiblement parallèle au plan x0z. Les pyramides entourant les atomes de vanadium (V' et V") mettent en commun une arête de base pour former des chaînes parallèles à l'axe 0z. Des

chaînes pyramidales analogues centrées sur les atomes de magnésium (Mg et Mg') se développent parallèlement. Ces diverses chaînes, liées entre elles par des arêtes de base communes, forment des feuillets dont le plan médian constitué par les atomes d'oxygène O(1) est parallèle au plan (010). Dans ces feuillets il faut noter que:

deux pyramides $\hat{V}O_5$ ou MgO_5 associées par une arête de base ont leur cinquième oxygène O(2) situé de part et d'autre du plan médian oxygéné.

deux pyramides liées par un sommet du plan de base ont leur cinquième oxygène situé du même côté du plan médian.

Fig. 1. Projection de la structure de MgVO₃ sur le plan (001).

^{*} Coordonnée bloquée pour fixer l'origine.

^{**} $\beta \times 10^4$.

Ces feuillets sont liés entre eux au niveau des atomes d'oxygène O(2), deux pyramides associées par leur sommet étant occupées respectivement par un atome de vanadium et un atome de magnésium.

L'environnement oxygéné du vanadium est caractérisé par une liaison V-O(2) courte (1.65 Å) par rapport aux quatre distances V-O(1) relatives au plan de base (1.92 ou 1.97 Å). Ce type de coordinence pour le vanadium +IV est bien connu, il a déjà été mis en évidence par exemple dans les phases VO(OH)₂ (Evans et Mrose (12)); VOSO₄α (Longo et Arnott (13)); CaV₃O₇ (Bouloux et Galy (2)); CaV₄O₉ (Bouloux et Galy (3)); et NaV₂O₄F (Carpy et Galy (14)). Dans celles-ci la distance moyenne du vanadium au sommet de la pyramide est également voisine de 1.60 Å.

L'environnement pyramidal à base carrée pour le magnésium est moins commun. Il existe cependant dans le nitrofluorure de magnésium Mg₂NF (Andersson (15)). La distance Mg-O(2) (1.95 Å) est sensiblement plus courte que les quatre distances Mg-O(1) égales à 2.02 ou 2.07 Å, mais cette différence est moins accentuée que celle observée dans le cas du vanadium +IV. Dans Mg₂NF, où il existe un ordre entre les atomes d'azote et de fluor, les cinq liaisons Mg-(N,F) sont pratiquement égales (2.12 ou 2.16 Å).

La liaison courte V–O(2) dans les pyramides VO₅ peut être attribuée à l'existence d'un cation vanadyle VO²⁺ qui n'a évidemment pas son homologue dans le cas du magnésium.

Relations Structurales entre MgVO₃, ReO₃ et Mg₂NF

Les relations du réseau cristallin de $MgVO_3$ avec le réseau ReO_3 sont très étroites. Le mécanisme qui permet de passer de ReO_3 à la structure de $MgVO_3$ est illustré par la Fig. 2. En coupant les octaèdres ReO_6 selon leur plan médian (d'où deux pyramides à base carrée) avec une période a suivant Oz et en opérant un glissement des feuillets ainsi obtenus d'une valeur $a\sqrt{2}/2$ dans la direction [110] de ReO_3 on obtient en effet le réseau de $MgVO_3$.

La projection de la structure de Mg₂NF sur le plan (010) est représentée à la Fig. 3c. Les pyramides à base carrée entourant le mag-

Fig. 2. Mécanisme montrant le passage de la structure de ReO₃ à celle de MgVO₃.

Fig. 3. Mécanisme montrant le passage de la structure de MgVO₃ à celle de Mg₂NF.

nésium sont liées par des arêtes de base ou par des sommets comme dans MgVO₃, mais également par des arêtes latérales impliquant ainsi une structure plus compacte.

En comparant les données cristallographiques de MgVO₃ et de Mg₂NF qui figurent au Tableau I on peut remarquer que $c(Mg_2NF) \simeq b(MgVO_3)$. En appelant u la longueur moyenne d'une arête de base de la pyramide à base carrée, d'après la Fig. 1: $a(MgVO_3) \simeq c(MgVO_3) \simeq 2u$. Pour Mg₂NF (Fig.3c) $a(Mg_2NF) \simeq u\sqrt{2}$, donc $a(MgVO_3) \simeq$ $c(MgVO_3) \simeq a\sqrt{2}(Mg_2NF)$. Ces relations sont dues au fait que l'empilement oxygéné dans MgVO₃, tout en étant moins compact, est comparable à l'empilement anionique de Mg₂NF.

Le réseau de Mg₂NF dérive géométriquement de celui de MgVO₃. La projection idéalisée de MgVO₃ sur un plan dont les axes sont Oy et la direction [101] est représentée à la Fig. 3a. En introduisant dans la structure de MgVO₃ des plans de cisaillement cristallographiques parallèlement au plan (010) au niveau de l'accolement des pyramides par leur sommet, comme l'indiquent les flèches sur la Fig. 3a, on obtient une structure intermédiaire, représentée à la Fig. 3b, qui présente le même empilement anionique que Mg₂NF. Il suffit alors de déplacer les cations selon la séquence indiquée par des flèches sur la Fig. 3b pour obtenir un réseau de type Mg₂NF.

Note added in proof. Cros, Tourne et Philippot (16) ont rapporté en 1975 la structure cristalline de MgVO₃. Les données radiocristallographiques concernant la maille cristalline et le spectre X de poudre sont très voisins: a(16) = 5.291 Å, b(16) = 10.018 Å et c(16) = 5.239 Å mais le groupe spatial annoncé Cmmm est différent et par suite la structure finale est différente.

Un essai de calcul effectué à l'aide de nos données hkl Fo et des données structurales des auteurs cités plus haut conduit à un facteur R = 0.15.

L'étude des hypovanadates de magnésium et de nickel. Etude cristallochimique et magnétique des solutions solides $M_x^{2+}V_x^{4+}V_{2-2x}^{3+}O_3$ (M=Mg, Ni) avait fait l'objet d'une soutenance de Thèse de Docteur en Chimie en 1973 (17).

References

- W. RUDORFF ET B. REUTER, Z. Anorg. Allg. Chem. 253, 177 (1947).
- J. C. BOULOUX ET J. GALY, Acta Crystallogr. B29, 269 (1973).
- J. C. BOULOUX ET J. GALY, Acta Crystallogr. B29, 1335 (1973).
- 4. J. C. Bouloux et J. Galy, à paraître.
- 5. A. DURIF, Ann. Chim. 31, 1741 (1959).
- R. KOHLMULLER ET J. PERRAUD, Bull. Soc. Chim. Fr. 642 (1964).
- 7. J. C. BOULOUX, I. MILOSEVIC, ET J. SENEGAS, *Rev. Chim. Miner.*, en cours de parution.
- H. G. BACHMANN, F. R. AHMED, ET W. H. BARNES, Z. Krist. 115, 110 (1961).
- W. H. McMaster, N. Kerr del Grande, J. H. Mallet, et J. H. Hubbel, National Bureau of Standards. Compilation of X-Ray Cross Sections UCRL-50174 Sec. II Rev. 1, 1969.
- E. R. HOWELLS, D. C. PHILLIPS, ET D. ROGERS, Acta Crystallogr. 3, 210 (1950).
- 11. R. SRINIVASAN, Acta Crystallogr. 13, 338 (1960).
- H. T. EVANS ET M. E. MROSE, Acta Crystallogr. 11, 56 (1958).
- J. M. Longo et R. J. Arnott, J. Solid State Chem. 1, 394 (1970).
- 14. A. CARPY ET J. GALY, Bull. Soc. Chim. Fr. Miner. Cristallogr. 94, 24 (1971).
- 15. S. Andersson, J. Solid State Chem. 1, 306 (1970).
- B. Cros, G. Tourne, et E. Philippot, Bull. Soc. Chim. Fr. 290, 1583 (1975).
- I. Milosevic, Thèse Docteur en Chimie, Uni versité Bordeaux I, France (1973).