MULTIDIMENSIONAL SCALING AND FASTMAP

What if we do not have features??

We know the distances, but

- · we do not have explicit features, or
- they are not metric....

MDS: How do we map the query?

MDS

The criterion for the mapping is to minimize stress

$$stress = \sqrt{\frac{\sum_{i,j} (d'_{ij} - d_{ij})^2}{\sum_{i,j} d^2_{ij}}}$$

- Start with a (random) configuration of points in small # dimension
- Apply some form of steepest descent iteratively to minimize the stress.
 - move objects
 - If moving objects does not help add dimensions
- Requires O(N²) distance computations + the cost of iterations

 $d(1,4) \approx D(1,4)$

Embedding into a "space"

 $d(2,3) \approx D(2,3)$ $d(2,4) \approx D(2,4)$ $d(3,4) \approx D(3,4)$

K. Selcuk Candan (CSE515)

 $d(1,2) \approx D(1,2)$ $d(1,3) \approx D(1,3)$

MDS: How do we map the query?

- Option 1: Find the distances between the query and all the objects to update the mapping
 - O(N) distance computations
 - ..why bother using index structures if cost is O(N)
- Option 2: Find the distances between the query and select few objects
 - Can save a lot of time
 - ..the query mapping is not perfect...depends on the objects selected
 - How to select the objects to help mapping of the query?

- MDS requires
 - O(N²) distance computations (+ the cost of iterations) for the initial mapping
 - O(N) distance computations for mapping the query
- Can we do better?
- FastMap requires
 - O(kN) distance computations for the initial mapping
 - O(k) distance computations for mapping the query where k << N is the resulting number of dimensions.

How do we map the objects in the database onto the line to find their position along this dimension?

$$x_i = \frac{(\Delta_{Euc}(o_i, o_{p1}))^2 - (\Delta_{Euc}(o_i, o_{p2}))^2 + (\Delta_{Euc}(o_{p1}, o_{p2}))^2}{2\Delta_{Euc}(o_{p1}, o_{p2})}$$

How do we find distances in the projected space?

How do we find distances in the projected space?

Leverage metric space properties!

..already available..

How do we find distances in the projected space?

Leverage metric space properties!

