UNIVERSIDADE DO ESTADO DE RIO DE JANEIRO

LISTA DE EXERCÍCIOS DE ÁLGEBRA (Grupos)

- 1. Verifique que dados a, b e c são elementos de um grupo G valem:
 - (a) Cancelamento à direita: se a * c = b * c, então a = b.
 - (b) Cancelamento à esquerda: se c * a = c * b, então a = b.
 - (c) $(a^{-1})^{-1} = a$,
 - (d) $(a*b)^{-1} = b^{-1} * a^{-1}$.
- 2. Se p é um número primo, então $\mathbb{Z}_p^* = \mathbb{Z}_p \{[0]\}$ com a operação multiplicação [a]*[b] = [a.b] é um grupo abeliano. Se n não é primo então $\mathbb{Z}_n \{[0]\}$ com a operação multiplicação é um grupo?
- 3. Em geral se $n \in \mathbb{N}$, em \mathbb{Z}_n com a operação multiplicação [a] * [b] = [a.b], podemos definir $\mathbb{Z}_n^* = \{[r] \in \mathbb{Z}_n | \text{ existe } s \in \mathbb{Z} \text{ tal que } [r] * [s] = 1\}$.
 - (a) Verifique que o conjunto

$$\{r\in\{1,2,\ldots,n-1\}| \text{ existe } s\in\mathbb{Z} \text{ tal que } [r]*[s]=1\},$$

é igual a
$$\{r \in \{1, 2, \dots, n-1\} | mdc(r, n) = 1\}$$

- (b) $(\mathbb{Z}_n^*,*)$ é um grupo com $\phi(n)$ elementos, onde $\phi(n)=\#\{r\in\{1,2,\ldots,n-1\}|\ mdc(r,n)=1\}$
- 4. Seja G um grupo tal que $g^2 = e$ para todo G. Verifique que G é abeliano.
- 5. Sejam G um grupo, H_1 e H_2 subgrupos de G. Verifique que $H_1 \cap H_2$ é um subgrupo de G.
- 6. Ache todos os subgrupos de $(\mathbb{Z}_4, +)$.