Transformers and Pretraining

Computational Linguistics

Alexander Koller

08 December 2023

Recurrent neural networks

• When we process language, we usually don't have inputs of fixed length (sentences can be arbitrarily long).

Limitations of RNNs

- Long computation paths make backprop hard.
- Computing loss at timestep t requires doing all the computations at times 1, ..., t-1.
 - Computations for different timesteps are different.
 - Can't parallelize these computations.

Transformers: Big picture

Encode sequence of inputs in parallel!

Attention: Big picture

Attention: Details

Transformer Encoder

Self-attention dimensions

Some extra details

- Need to add *positional encodings* to each input, so the transformer can keep string positions apart.
- Typical transformers have *multiple attention heads* rather than just one. Can pay independent attention, outputs are concatenated.
- I skipped over some technical details that are important in practice; see original paper.

Transformer Decoders

Decoder differences

- Decoder produces outputs token by token.
 Each token is appended to the decoder input.
- Decoder can have self-attention to its own inputs - but only to inputs to the left of the current token.
- Decoder also has cross-attention ("encoder-decoder attention") to read encoder outputs.

Cross-attention dimensions

Pretraining

Pretrained word embeddings

word embeddings: vector representations for individual tokens

hidden representations: vectors for internal use

output layer: scores for all possible outputs

prob dist over outputs $P(x_t \mid x_{t-2}, x_{t-1}, x_{t+1}, x_{t+2})$

Pretrained word embeddings

- Classical word embeddings:
 - word2vec (2013)
 - GloVe (2014)
 - Fasttext (2016)
- All of these map words
 (or subword tokens) into
 vector representations.
- Representation depends only on word, not context.

Pretrained transformers

BERT pretraining task

(1) Masked language modeling

BERT pretraining task

(2) Next-sentence prediction

Usefulness of BERT

	DM		PAS		PSD		EDS		AMR 2015	AMR 2017
	id F	ood F	id F	ood F	id F	ood F	Smatch F	EDM	Smatch F	Smatch F
Groschwitz et al. (2018)	-	-	-	-	-	-	-		70.2	71.0
Lyu and Titov (2018)	-	-	-	-	-	-	-		73.7	74.4 ± 0.16
Zhang et al. (2019)	-	-	-	-	-	-		-	-	76.3 ± 0.1
Peng et al. (2017) Basic	89.4	84.5	92.2	88.3	77.6	75.3		-	-	-
Dozat and Manning (2018)	93.7	88.9	94.0	90.8	81.0	79.4		-	-	-
Buys and Blunsom (2017)	-	-	-	-	-	- 1	85.5	85.9	60.1	-
Chen et al. (2018)	-	-	-	-	-	_	90.9 ^{1,2}	90.4 ¹	-	-
This paper (GloVe)	90.4 ± 0.2	84.3 ±0.2	91.4 ± 0.1	86.6 ± 0.1	78.1 ± 0.2	74.5 ± 0.2	87.6 ± 0.1	82.5 ± 0.1	69.2 ± 0.4	70.7 ± 0.2
This paper (BERT)	93.9 ±0.1	90.3 ±0.1	94.5 ±0.1	92.5 ±0.1	82.0 ±0.1	81.5 ±0.3	90.1 ± 0.1	84.9 ± 0.1	74.3 ±0.2	75.3 ± 0.2
Peng et al. (2017) Freda1	90.0	84.9	92.3	88.3	78.1	75.8	-	-	-	-
Peng et al. (2017) Freda3	90.4	85.3	92.7	89.0	78.5	76.4	-	-	-	-
This paper, MTL (GloVe)	91.2 ± 0.1	85.7 ± 0.0	92.2 ± 0.2	88.0 ± 0.3	78.9 ± 0.3	76.2 ± 0.4	88.2 ± 0.1	83.3 ± 0.1	$(70.4)^3 \pm 0.2$	71.2 ± 0.2
This paper, MTL (BERT)	94.1 ±0.1	90.5 ±0.1	94.7 ±0.1	92.8 ±0.1	82.1 ±0.2	81.6 ±0.1	90.4 ± 0.1	85.2 ± 0.1	$(74.5)^3 \pm 0.1$	75.3 ± 0.1

Pretrained enc-dec models

- T5: Standard encoder-decoder transformer.
- Unsupervised pretraining on C4 corpus: cleaned-up version of the Common Crawl.
- Training objective: Denoising.

Finetuning T5

Map wide variety of NLP tasks into seq2seq task:

• Apply T5 to new task by finetuning all of its parameters:

Fine-tuning method	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
★ All parameters	83.28	19.24	80.88	71.36	26.98	39.82	27.65
Adapter layers, $d = 32$	80.52	15.08	79.32	60.40	13.84	17.88	15.54
Adapter layers, $d = 128$	81.51	16.62	79.47	63.03	19.83	27.50	22.63
Adapter layers, $d = 512$	81.54	17.78	79.18	64.30	23.45	33.98	25.81
Adapter layers, $d = 2048$	81.51	16.62	79.47	63.03	19.83	27.50	22.63
Gradual unfreezing	82.50	18.95	79.17	70.79	26.71	39.02	26.93

Decoder-only models

• GPT models: Use only a stack of decoders (GPT-2 XL has 48 of them).

- No cross-attention because there is no encoder.
- *Masked* self-attention: can only attend to the left.

In-context learning

The three settings we explore for in-context learning

Zero-shot

The model predicts the answer given only a natural language description of the task. No gradient updates are performed.

One-shot

In addition to the task description, the model sees a single example of the task. No gradient updates are performed.

Few-shot

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.

```
Translate English to French: task description

sea otter => loutre de mer examples

peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => prompt
```

Traditional fine-tuning (not used for GPT-3)

Fine-tuning

The model is trained via repeated gradient updates using a large corpus of example tasks.

(Brown et al. 2020: GPT-3 as "few-shot learner")

Tokenization

- Challenge in broad-coverage neural LMs: How do you keep vocabulary size under control?
- Standard solution nowadays is to use subword tokenizers, which break words up into reusable pieces.
 - ▶ Byte-pair encoding (BPE, Sennrich et al. 2016)
 - ▶ WordPiece (introduced for BERT, Devlin et al. 2019)
 - SentencePiece is a popular implementation
 - Huggingface models such as XML-RoBERTa come with their own subword tokenizers already implemented.

Byte-pair encoding

Original corpus:

hug x 10 pug x 5

pun x 12 bun x 4 hugs x 5

Split into characters:

h u g

p u g

p u n x 12

b u n

h u g s

Merge most frequent token pair:

h **ug** x 10

p ug

p u n x 12

b u n

h **ug** s

(repeatedly)

h ug

p ug

p un x 12

b un x 4

h ug s

Stop at intended vocabulary size:

hug x 10

p ug

p un x 12

b un

hug s

Summary

- Transformers: sequence models that can be trained in parallel.
- Pretraining is extremely effective method, especially for very large transformers.
 - finetuning vs. in-context learning
- Tokenization is a challenge which is often adressed with subword tokenization.