## Mas

## INDIAN INSTITUTE OF TECHNOLOGY

Date: February 2014, FN/AN, Time: 2 Hrs., Full Marks: 60, No. of Students: 770 (Non-ECE branches); Mid Spring Semester, Sub. No.: EC21101, Sub. Name: Basic Electronics

Instructions

- . All waveform sketches / diagrams must be neatly drawn and clearly labeled. Answers must be brief and to the point.
- Insert this question paper inside your answer booklet and submit it along with your answer booklet
- The final answers (numerical values with unit) should be <u>underlined</u> or enclosed within <u>box</u> with unit.
- · For every Question No., start your answer from a new page.
- · Avoid writing answers of the various parts of a single question at different locations in your answer-script.
- Given parameters which you might require: mass of electron:  $9.11 \times 10^{-31} \text{kg}$ , Boltzmann constant:  $1.38 \times 10^{-23}$  J/K, charge of electron:  $1.6 \times 10^{-19}$  C, Density of Al =  $2.7 \times 10^{3}$  kg.m<sup>-3</sup>, Resistivity of Al  $\rho = 3.44 \times 10^{-8}$   $\Omega$ .m @ 300K, Atomic weight of Al = 26.98, Avogadro's no, Navo =  $6.023 \times 10^{23}$ , Intrinsic concentration of Si n<sub>i</sub> =  $1.45 \times 10^{10}$  cm<sup>-3</sup> @ 300K, Ideality factor for a Si diode  $\eta = 2$
- For any value related to any device parameter or circuit parameter, which you may find not given with a problem, assume suitable value for such parameter.
- Answer ALL questions
- 1A. Compute the mobility of the free electrons in aluminum (Al) at room temperature for which all three valence electrons are free for conduction. [3]
- 1B. Determine the change in the contact potential in an open-circuited pn junction at room temperature, assuming that  $N_D$  and  $N_A$  are changed by factors of 2500 and 8000 respectively. [3]
- 1C. A flat Al strip has a cross sectional area of  $2x10^4$  mm<sup>2</sup> and a length of 5 mm. What is the voltage drop across this strip for a current of 50 mA? [3]
- 1D. Determine the concentration of free electrons and holes in Si at room temperature which has a donor concentration of  $N_D=2x10^{14}$  atoms/cm<sup>3</sup> and acceptor concentration of  $N_A=3x10^{14}$  atoms/cm<sup>3</sup>. [3]
- 1E. A Si diode is forward biased with 0.2 V at room temperature. Assuming that the saturation current doubles for every 10°C rise in temperature, by what factor will the diode current increase for a 40°C rise above room temperature? [3]
- 2A. The diodes in the circuit are ideal (V $\gamma$ =0 V) as shown in figure below. Sketch the transfer characteristic over the range -20 V  $\leq v_i \leq$  20 V. [5]



- **2B.** A zener diode has the specifications  $V_Z = 5.2 \text{ V}$  and  $P_{Zmax} = 260 \text{ mW}$ . Assume  $R_Z$  (Zener Resistance) = 0. (a) Find the maximum allowable current  $I_Z$  when Zener diode is acting as a regulator. (b) If a single-loop circuit consists of an ideal 15 V dc source Vs, a variable resistor R, and the described Zener diode, find the range of R for which the Zener diode remains in constant reverse breakdown with no danger of failure. [6]
- 2C. Find the current flowing through the diode in the adjoining figure, given that  $V_{\gamma}=0.5$  V,  $R_f$  (forward resistance)=5  $\Omega$ ,  $R_r$ (reverse resistance)=500  $\Omega$ ,  $V_z=2$  V,  $R_z$ (zener resistance)=100/3  $\Omega$ . [4]



**3A.** The transistor in figure below has  $\beta=120$ . Plot the voltage transfer characteristics (Vo vs V<sub>I</sub>) over the range  $0 \le V_I \le 5$  V for (a)  $R_E=0$  and (b)  $R_E=1$  k $\Omega$ . [3.5+3.5]



**3B.** For the circuit shown below, the Q point is  $I_{CQ}=2$  mA and  $V_{CEQ}=12$  V when  $\beta=60$ . Determine the values of  $R_C$  and  $R_B$ . [2]



3C. Design a bias stable circuit in the form of figure below with  $\beta$ =120 such that  $I_{CQ}$ =0.8 mA and  $V_{CEQ}$ =5 V, and the voltage across  $R_E$  is 0.7V, assume all capacitors are very large. [6]



- 4A. Two ac signals A and B have the following current amplitude ratios in the dB scale (i) 3 dB, (ii) 20 dB. Find these ratios in the absolute scale.[2]
- 4B. Two ac signals A and B have the following power ratios in the dB scale (i) 6 dB, (ii) -10 dB. Find these ratios in the absolute scale.[2]
- 4C. Draw a positive going negative pulse waveform and a positive impulse waveform. [2]
- **4D.** A 5V battery is connected at t=0 sec to an oscilloscope. Consider oscilloscope to be an RC circuit with  $R=1M\Omega$  and C=1pF. Find the time the oscilloscope will take to show the voltage to rise to 4.5V. Also calculate the rise time of the oscilloscope. [4]
- 4E. It is given that the rise time  $t_r$  of a RC circuit is related to the 3 dB cutoff frequency of the RC filter by the formula  $f_{3dB}=0.35/t_r$ . From this knowledge calculate the approximate peak value of the waveform shown in oscilloscope when a 6.77 KHz, 5V sinusoidal signal is applied to the oscilloscope. Recalculate the same if the applied signal frequency is changed to 3.385 MHz. [5]