Sniffing, Spoofing, Denial of Service, Internet of Things and Security

Angriffsformen

- Passive Angriffe
 - Lauschangriff (eavesdropping, sniffing)
 - Verkehrsflussanalyse (traffic analysis)
- Aktive Angriffe
 - Maskerade (masquerading)
 - Man-in-the-middle attack
 - Verändern von Daten (modification)
 - Einfügen von Daten (injection, spoofing)
 - Wiederholen (replay)
 - Fluten (flooding, spamming)
 - Dienstverweigerung (denial of service)

Konkrete Beispiele

Sniffing-Angriffe: Funktionsweise (Ethernet)

- a) Ethernet: Alle Stationen erhalten alle Datenpakete
 - lokale Filterfunktion
 - Abschalten des Filters in Ethernetadapter möglich: »promiscuous mode«
- b) Switched Ethernet: Sniffing beschränkt sich auf die Netzsegmente, in denen der Angreifer verbreitet ist
 - Angriff über ARP-Spoofing für nicht direkt abhörbare Netzsegmente

Rechner A und D kommunizieren miteinander

a) im Ethernet

b) im Switched Ethernet

Ausbreitung der übertragenen Daten

Sniffing-Angriffe: Vorgehen

- 1. Schritt Beschaffung der Daten
 - Konfiguration der Netzwerkschnittstelle (promiscuous mode)
 - Auslesen sämtlicher Datenpakete
- 2. Schritt Informationsgewinnung
 - Auswahl der »interessanten« Pakete anhand der Protokoll-Informationen (Sender- bzw. Empfängeradresse, TCP-Port etc.)
- 3. Schritt Auswertung des Datenteils


```
0 0
                    /usr/bin/login (ttyp1)
WARNING: Short packet. Try increasing the snap length
11:46:50.885110 arp who-has 160.45.110.189 tell router-110.inf
11:46:51.099430 titanus.inf.fu-berlin.de.49156 > fubinf.inf.fu
11:46:51.100215 fubinf.inf.fu-berlin.de.domain > titanus.inf.f
11:46:51.214719 arp who-has 160.45.110.180 tell router-110.inf
11:46:52.112502 titanus.inf.fu-berlin.de.49156 > fubinf.inf.fu
11:46:52.113040 fubinf.inf.fu-berlin.de.domain > titanus.inf.f
11:46:52.113293 titanus.inf.fu-berlin.de.49156 > fubinf.inf.fu
11:46:52.113706 fubinf.inf.fu-berlin.de.domain > titanus.inf.f
11:46:52.885123 arp who-has 160.45.110.189 tell router-110.inf
11:46:57.010498 jefe.inf.fu-berlin.de > dvmrp.mcast.net: igmp
11:46:58.363997 arp who-has 160.45.110.189 tell router-110.inf
11:46:59.884553 arp who-has 160.45.110.189 tell router-110.inf
11:47:01.884507 arp who-has 160.45.110.189 tell router-110.inf
11:47:03.734152 silver.inf.fu-berlin.de.2611 > 255.255.255.255
11:47:03.884505 arp who-has 160.45.110.189 tell router-110.inf
11:47:05.884498 arp who-has 160.45.110.189 tell router-110.inf
```

Sniffing-Angriffe: Vorgehen

- 3. Schritt Auswertung des Datenteils
 - Im Beispiel ASCII-Textdarstellung eines Ethernet-Datenpaketes gewählt (Punkte stehen für Steuerzeichen)

```
....Ih..OyB..OyB...E...S'@.....QP\.G<..C.H.M../(~.P....>..*.....
..E......w.R$.6..f%A....4.6.f%A....
U.......tmpReview...U..........Form MemoU.........Type..
MemoU......DeletionPeriod.....>@U.....HoldPeriod..
.....U......ReturnReceiptS..OnU......DeliveryReport
--B=U......Sign..liU......DefaultMailSaveOptions..lrU.
D.....ReplyToa..U....Body...Hallo,....
......das ist ein Test f.r unsere Sneaker.....
.....THE MAGIC WORDS ARE FEEBLE GIBBERISH.....
Mueller......Dele
tionDate..U.......Encrypts..OtU........$Folders..U.....
....PreparedToSend..O U.......DeliveryPriority..NMU......
..$KeepPrivate..U...........Subject ..Testmail fuer SniffingU.E.
..6....SendTo..CN=Andreas Maier/OU=DuD/OU=Datenschutz/O=TUD@TU-Dresd
enU.E......BlindCopyTo..U.E..../.....Fr
om..CN=Matthias Mueller/OU=DuD/OU=Datenschutz/O=TUD.EU......Po
.a%...$.t.%.....O=TUD......O=TUD......BV...1.0.BC...BA..0BL..v.NN
P...w...%m...|i.u...;..ys}.}...4|..yl.)....c...|ohi<'.5L.r..B...
BZ%;m<....L..Q])..EN..D..MA..l...So; | ...PURSAFO..d.YK.....<>3.....
.#->k.....|.Jj/..R..|.U...ka..Ofz......@@
```

Sniffing-Angriffe: Abwehr

schwacher Angreifer

Angreifer

- Physischer Schutz
 - auch physischer Schutz des Übertragungsmediums
- Netzwerkadapter
 - ohne »promiscuous mode«
 - Signalisierung des Umschaltens in »promiscuous mode«
 - switched networks
- Schutz gegen einen relativ starken Angreifer
 - kann Datentransfer über das Medium belauschen
 - Einsatz von Verschlüsselungsverfahren

Sniffing-Angriffe: Abwehr

- Hardwareverschlüsselung direkt auf Netzwerkkarte
 - Historisches Beispiel:
 - 3COM 10/100 Secure Network Interface Cards
 - IPSec-Verschlüsselung mit 3DES und DES
 - IPSec-Authentifikation (RFC 2402 Authentication Header) mit SHA-1 und MD5
 - enthält Kryptoprozessor
 - Variante für Client-PCs und Server
 - Speichert bis zu 700 bzw. 1000 Security Associations (Schlüssel der Gegenstelle)
 - wird nicht mehr vertrieben

http://www.3com.com/products/en_US/detail.jsp?tab=features&pathtype=purchase&sku=3CR990-TX-97

Das Recht auf Vergessen im Internet

Allgemeines Ziel

 Verbotenes und Unerwünschtes im Internet soll

nicht möglich

nicht mehr vorhanden

Technisch: x-pire!

wenigstens nicht mehr erreichbar

(Untaugliche) Lösungsansätze

[Juristisch: Verbote]

Technisch: x-pire!

sein.

Funktionsweise X-pire!

Sicherheitsaspekte

- Zentraler Schlüsselserver
 - Verfügbarkeit: single-point-of-failure
 - Vertraulichkeit: Datenbank-Betreiber kennt alle Schlüssel
 - Erweiterungen denkbar:
 - Verteilte Datenbanken
 - Verwendung von Secret-Sharing-Verfahren und Anonymitätstechniken
- Kein Schutz gegen Angreifer in der Rolle »Betrachter«
 - Software im Verfügungsbereich des Betrachters (Browser) erhält Zugriff auf Schlüssel und unverschlüsselten Inhalt
 - Weder Verschlüsselung noch CAPTACHs helfen hier!
- Streisand-Effekt
 - Insbesondere Inhalte, die wieder aus dem Netz verschwinden sollen, halten sich möglicherweise besonders lange.

Funktionsweise Streusand-Erweiterung

Streusand-Erweiterung

- Nutzung von X-pire! kann sogar schädlich sein
 - Streusand-Galerie: längst verschwundene Bilder archiviert

	O O		
01.02.2011 08:25:36	4d4d75d742863ab9656f3d5f76dff858	a7385c51a13dd53030ee2f18c7fcb689ad4094b06ffb90c601c3abac722f1f5c	#!/bin/bash
31.01.2011 20:24:00	ab897fbdedfa502b2d839b6a56100887	eee65472de6234f647cf5c25d959e2f116707f76bcb7a5a5de2ad1a99e1d4628	
31.01.2011 20:23:12	ab897fbdedfa502b2d839b6a56100887	17150bb7b618f8e11358b5d8b7d6be438394213eb2a5e582703d8ee733c198e1	
31.01.2011 20:21:08	ab897fbdedfa502b2d839b6a56100887	2b4c6711793140ea5fa88c27f61354034f69dbdbaaae82f6c88490fcd019bd09	X-pire!
27.01.2011 18:29:03	e6f207509afa3908da116ce61a757695	fb1c038c912c46c41181c8cb32b39e396abacdb0abf1d0683b6ca3d12ee386ba	X-pire!

Softwarelösungen zur Durchsetzung des Rechts auf Vergessen sind untauglich.

Auszug aus Artikel 17 DSGVO

Art. 17 DSGVO Recht auf Löschung (»Recht auf Vergessenwerden«)

(1) ...

(2) Hat der Verantwortliche die personenbezogenen Daten öffentlich gemacht und ist er gemäß Absatz 1 zu deren Löschung verpflichtet, so trifft er unter <u>Berücksichtigung der verfügbaren Technologie</u> und der <u>Implementierungskosten</u> angemessene Maßnahmen, auch technischer Art, um für die Datenverarbeitung Verantwortliche, die die personenbezogenen Daten verarbeiten, darüber zu informieren, dass eine betroffene Person von ihnen die <u>Löschung aller Links</u> zu diesen personenbezogenen Daten oder von <u>Kopien oder Replikationen dieser personenbezogenen Daten</u> verlangt hat.

Problemspezifische Unterstützung finden

Unzureichende Implementierung von Schutzmaßnahmen kann Vertrauen in IT gefährden

Unzureichende Schutzmaßnahmen gefährden Vertrauen in IT

Unzureichende Schutzmaßnahmen gefährden Vertrauen in IT

Unzureichende Schutzmaßnahmen gefährden Vertrauen in IT

HTTP Basic Auth: Passwd: 7380jirf85uv

https://example.com/devices/

Angreifer kann Device-ID im Request weglassen und Server liefert alle Device-IDs inkl. aller Standorte der Nutzer

Angreifer

"id": "786572032150562", "phone": "004915156833300", "name": "Mikes Tasche", "lastUpdate":1515137867000, "lastPosition":351528783,

"id":"786542032376175". "phone": "004915154563702", "name": "Sonja unterwegs", "lastUpdate":1515137629000, "lastPosition":351918722.

Server

https://example.com/device/<Device-ID>/update/<GPS-Pos> HTTP Basic Auth: passwd:73gqjjrf85uv

GPS-Tracker sendet regelmäßig sendet Koordinaten an Server des Dienstanbieters, gleiches Passwort für alle Tracker, fest in App eingebaut

Spoofing

Integrität: Spoofing

- Was ist Spoofing?
 - Vortäuschen falscher Information
 - Angriffe gegen die Integrität
 - auch mit dem Ziel, schließlich die Vertraulichkeit zu verletzen
- Arten von Spoofing
 - Mail-Spoofing
 - IP-Spoofing
 - DNS-Spoofing
 - ARP-Spoofing
 - SSID-Spoofing

- Szenario 1:
 - ISP greift an
 - DNS-Sperre als Beispiel
- Szenario 2:
 - Angriff im LAN
 - ARP- und DNS-Spoofing mit Tool Cain&Abel

Einordnung ARP, IP, DNS

- DNS: Domain Name System
 - Abbildung des Rechnernamens auf IP-Adresse
 - Anfrage an Nameserver
 - typischerweise in WANs
- ARP: Address Resolution Protocol
 - Abbildung von
 IP-Adresse auf
 Hardwareadresse
 - Anfrage an das lokale Netz (Broadcast)
 - nur in lokalen Netzen

Sicherheit im Domain Name System (DNS)

- DNS: Domain Name System
 - Abbildung des Rechnernamens auf IP-Adresse
 - Anfrage an Nameserver
 - typischerweise in WANs
- Angriffe auf DNS
 - Sniffing von DNS-Anfragen
 - Fälschen der DNS-Antworten
 - Denial-of-Service

Zunächst wird DNS-Server angefragt

Anschließend wird Inhalt abgerufen

DNS-Sperre: DNS-Server sendet »falsche« Antwort

Access Provider Nutzer Nutzer ruft auf: http://www.server.net/inhalt/ ISP **DNS**

Browser

- 1. sendet DNS-Request: www.server.net
- 2. DNS-Server sieht Sperrliste durch (Treffer!)
- 3. empfängt DNS-Antwort: 128.124.2.2

Host-Provider

www.server.net (192.133.1.666)

Mit DNS-Sperre landet der Nutzer im WWW auf Stopp-Seite

Mit DNS-Sperre und Open DNS

Browser

- 1. sendet DNS-Request: www.server.net
- 2. empfängt DNS-Antwort: 192.133.1.666

Open DNS

DNS-Sperre und Windows (27 Sekunden)

Quelle: http://www.youtube.com/watch?v=1NNG5I6DBm0

Spoofing-Angriffe: Funktionsweise (Switched Ethernet)

Switch verteilt Daten nur auf Netzabschnitt des Empfängers

- b) Switched Ethernet: Sniffing beschränkt sich auf die Netzsegmente, in denen der Angreifer verbreitet ist
 - Angriff über ARP-Spoofing für nicht direkt abhörbare Netzsegmente

Rechner A und D kommunizieren miteinander

b) im Switched Ethernet

Ausbreitung der übertragenen Daten

ARP: Address Resolution Protocol

- ARP-Anfrage
 - Anfrage wird an das gesamte lokale Netz gestellt (Broadcast)
 - Mitteilen der eigenen Adresse(n) in der Anfrage

b) im Switched Ethernet

- ARP-Antwort
 - Jeder Rechner kann antworten

ARP Spoofing

Angreifer C sendet gefälschte ARP-Response

b) im Switched Ethernet

ARP Spoofing

- B adressiert an IP A
- Ethernetkarte von Rechner B schickt die Daten jedoch an MAC C

b) im Switched Ethernet

ARP-Spoofing-Demonstration: Vorbereitung

ARP-Spoofing-Demonstration: Opfer sendet IP-Paket ins Internet

ARP-Spoofing

- Angreifer
 - empfängt den gesamten Netzwerkverkehr
 - vom Opfer zum Internet
 - vom Internet zum Opfer
 - kann diese Datenpakete beliebig manipulieren
- Demonstration:
 - Windows Tool »Cain & Abel«
 - http://www.oxid.it/cain.html
 - ARP-Spoofing:
 - Opfer: 10.1.2.207
 - Standardgateway: 10.1.1.254
 - DNS-Spoofing:
 - Umleitung von www.bsi.de nach jap.inf.tu-dresden.de

Rechner im Netzwerk identifizieren

Auswahl der Rechner für das ARP-Spoofing

Einrichten des DNS-Spoofing

Start des ARP- und DNS-Spoofings

Erreichte Situation

Sicht des Opfers

Sicht des Angreifers

Schutz vor ARP-Spoofing

Arpwatch

- verfolgt Änderungen der Zuordnung von Ethernetadressen und IP-Adressen
 - Erstmaliges Erscheinen einer neuen Ethernetadresse
 - Wechseln der Zuordnung von der ȟblichen« auf eine neue Zuordnung (Ethernetadresse–IP-Adresse)
- Alarmiert Systemadministrator bei Auffälligkeiten per E-Mail
- Manpage
 - http://linuxcommand.org/man pages/arpwatch8.html
- Package
 - http://packages.debian.org/unstable/admin/arpwatch.html

Schutz vor DNS-Spoofing

- DNSSEC (DNS Security Extensions)
 - vorgeschlagen im März 2005 als RFC 4034 (und weitere)
 - http://www.dnssec.net/
 - Kernidee:
 - Nutzung digitaler Signaturen zur Authentifizierung der DNS-Antwort
 - Schutzziele
 - Schutz der Integrität und Zurechenbarkeit
 - Kein Schutz der Vertraulichkeit und Verfügbarkeit

Denial-of-Service Angriffe

Verfügbarkeit: Denial-of-Service

- DoS-Angriffe auf Schwachstellen im Systemdesign (insb. Protokolle)
 - Mail-Bombing Spamming
 - Broadcast-Storm
 - SYN-Flooding
- DoS-Angriffe auf Implementationsfehler
 - WhatsApp text bomb freezing smartphones worldwide (Mai 2018)
 https://www.gadgetsnow.com/tech-news/this-message-is-freezing-whatsapp-across-the-world/articleshow/64058468.cms
 - WinNuke, Teardrop und Nachfahren (Windows NT, Windows 95, bis ca. 1997)
 - Ping of Death (Windows, Unix, bis ca. 2013)

Distributed Denial-of-Service Angriffe im Internet

- Charakterisierung
 - Ziel wird von mehreren Quellen gleichzeitig angegriffen
- Typische Angriffsmuster
 - Reflexion, Spoofing
 - Amplification
 - Distribution (Botnets)
- Beispiele
 - Smurf IP Denial-of-Service Attack von 1998
 - Mirai-Botnet (2016)
 - Memcached-Angriff von 2017

Distribution

Smurf IP Denial-of-Service Attack (CERT Advisory CA-1998-01)

- DDos-Angriff basierend auf Flooding mit Ping-Paketen
 - Ping: Management-Service zur Überprüfung der Empfangsbereitschaft eines Rechners
 - Smurf IP DDos ist Beispiel f
 ür IP-Spoofing und Amplification
- Vorgehen
 - Angreifer schickt Ping-Pakete mit gefälschter Absender-Adresse an schlecht administriertes LAN/Intranet
 - Konfigurationsfehler im LAN vervielfacht Ping
 - Weiterleitung an alle Rechner des LAN hinter dem Gateway
 - Jeder Rechner des LAN antwortet mit Pong

Smurf IP Denial-of-Service Attack (1998)

Mirai Botnet (2016)

Memcached-Angriff (2017)

Internet of Things Security

Angreifer kann alle drei Schutzziele verletzen:

- Vertraulichkeit
- Integrität
- Verfügbarkeit

Internet of Things – im lokalen Netz

Internet

Internet of Things – im lokalen Netz angreifbar

Internet of Things – Angriff über Universal Plug and Play (UPnP)

Internet of Things – Sichere Kommunikation über IoT Broker

Internet of Things – IoT Devices als Teil eines Botnetzes

Internet of Things – Over The Air (OTA) Update

