Protocolo UART

UART (Universal Asynchronous Receiver-Transmitter) es un protocolo de comunicación serial ampliamente utilizado en sistemas embebidos y dispositivos electrónicos para transmitir datos de forma secuencial. Proporciona una forma sencilla y eficiente de transferir información entre dispositivos.

Funcionamiento básico del protocolo UART

- Utiliza dos líneas de comunicación: una para transmitir datos (Tx) y otra para recibir datos (Rx).
- Los datos se envían de forma asincrónica, sin necesidad de una señal de reloj compartida entre los dispositivos.
- Cada byte de datos se divide en bits individuales y se transmite en serie, comenzando con el bit de inicio, seguido de los bits de datos y finalizando con uno o más bits de parada.
- Los dispositivos que se comunican a través de UART deben tener la misma configuración de velocidad de transmisión (baud rate), que representa la cantidad de bits transmitidos por segundo.

Configuración del UART

Antes de utilizar UART, es necesario configurar algunos parámetros clave:

- Velocidad de transmisión (baud rate): Define la velocidad a la cual los bits de datos se transmiten a través del UART. Debe ser la misma en ambos dispositivos para una comunicación adecuada.
- **Bits de datos:** Determina el número de bits de datos que se transmiten en cada byte. Puede ser de 5, 6, 7 u 8 bits.
- **Paridad:** Opcionalmente, se puede habilitar la paridad para verificar la integridad de los datos transmitidos. Puede ser par, impar o desactivada.
- **Bits de parada:** Indica el número de bits de parada utilizados al final de cada byte de datos. Puede ser 1 o 2 bits.
- Control de flujo: Permite controlar el flujo de datos entre los dispositivos para evitar la pérdida de datos debido a la diferencia de velocidad de transmisión. Los métodos comunes incluyen RTS/CTS (Request To Send/Clear To Send) y XON/XOFF.

Uso del UART

- Configuración del UART: Antes de utilizar el UART, es necesario configurar los parámetros mencionados anteriormente, como la velocidad de transmisión, los bits de datos, la paridad, los bits de parada y el control de flujo. Esto se realiza mediante funciones específicas proporcionadas por la biblioteca o API del UART en el lenguaje de programación utilizado.
- Envío de datos: Para enviar datos a través del UART, se deben escribir los bytes de datos en el buffer de transmisión del UART. Esto se realiza

- mediante una función de escritura específica proporcionada por la biblioteca o API del UART.
- Recepción de datos: Para recibir datos a través del UART, se debe leer el buffer de recepción del UART. Esto se realiza mediante una función de lectura específica proporcionada por la biblioteca o API del UART.
- Procesamiento de datos: Una vez que los datos se han recibido o enviado a través del UART, se pueden procesar según las necesidades del sistema o la aplicación.