De la combinatoire aux graphes (HLIN201) – L1 Cardinalité, dénombrement

Sèverine Bérard

Université de Montpellier

2e semestre 2017-18

Sommaire

- Cardinalité
- Dénombrement élémentaire
 - Permutations
 - Arrangements
 - Coefficients binomiaux, combinaisons
 - Principe des tiroirs

Sommaire

- Cardinalité
- Dénombrement élémentaire

Introduction

Rappels

- Deux ensembles E et F sont équipotents si et seulement s'il existe une application bijective de E dans F
- Notation : $[1..n]_{\mathbb{N}} = \{1, 2, ..., n\}$, noté aussi [1..n] si pas d'ambiguïté

Cette partie du cours est « simplifiée »

Les ensembles *E* que nous considérons sont *discrets* :

- ou bien *finis* comportant n éléments. On dit alors que leur cardinal est n On note card(E) = |E| = n Dans ce cas, E est équipotent à $[1..n]_{\mathbb{N}}$
- ou bien *infinis*, mais dans notre cas équipotents à \mathbb{N} On dit alors que E est *infini dénombrable*

Énumération

Que les ensembles soit finis ou infinis dénombrables, on est capable de compter/énumérer leurs éléments

Si E est fini de cardinal n

Il existe une bijection entre [1..n] et E, appelons la enum Cette application définit une énumération des éléments de E: le premier enum(1), le deuxième enum(2), ..., le n^e enum(n)

Exemple : soit $E = \{a, b, c, d\}$ de cardinal 4

Énumération

Si E est infini équipotent à N

Il existe une bijection entre \mathbb{N} et E, que l'on peut aussi appeler *enum* Cette application définit encore une *énumération* des éléments de E

Exemple : soit Pair = $\{x \mid \exists p \in \mathbb{N}, avec \ x = 2 * p\}$

- ullet Pour énumérer Pair, il faut définir une application bijective de $\mathbb N$ dans Pair
- Soit **enum** : \mathbb{N} \longrightarrow *Pair* $n \longmapsto 2*n$
- Est-ce bien une application? OUI
- Est-elle bien bijective?
 - Est-elle bien injective? OUI
 - 2 Est-elle bien surjective? OUI

Propositions

Proposition 1

Soient A, B deux ensembles finis : $|A| \le |B|$ si et seulement si il existe une application injective $\mathbf{f}: A \longrightarrow B$.

Preuve : cf. fiche de cours n° 2 p. 7

Proposition 2

 $\mathbb N$ est le plus petit ensemble infini. Il est stable par addition, multiplication et exponentiation. Il est *bien ordonné* : toute partie non vide admet un plus petit élément

L'argument diagonal : L'ensemble des parties de $\mathbb N$ n'est pas dénombrable

Preuve : nous ne prouverons que le fait qu'il n'y a pas d'énumération de $\mathcal{P}(\mathbb{N})$ cf. fiche de cours n° 2 p. 8

Sommaire

- Cardinalité
 - Dénombrement élémentaire
 - Permutations
 - Arrangements
 - Coefficients binomiaux, combinaisons
 - Principe des tiroirs

Introduction

Tâches essentielles en informatique

- connaître/calculer le nombre de cas rencontrés dans l'exécution d'un algorithme
- estimer la taille mémoire de l'implantation d'un type de données
- estimer le temps d'exécution d'un programme

Pour cela il faut compter. On dit aussi dénombrer.

Nous allons effleurer dans cette partie les techniques élémentaires de dénombrement

Propriétés simples

- $|A \cup B| = |A| + |B| |A \cap B|$ et si A et B sont disjoints : $|A \cup B| = |A| + |B|$ Se généralise à une partition, soit $\{A_1, \dots, A_n\}$ une partition de E, alors $|E| = |A_1| + \dots + |A_n|$
- $\bullet |A \times B| = |A|.|B|$
- $|B^A| = |B|^{|A|}$ ($B^A = \{A \rightarrow B\}$ ensemble des applications de A vers B)
- $|\mathcal{P}(E)| = 2^{|E|}$ (à chaque application de E dans $\{0,1\}$ on associe la partie de E qu'elle représente, combien d'applications ? $|\{0,1\}|^{|E|} = 2^{|E|}$)

On suppose dans la suite que |A| = n et |B| = p, avec $n \ge p$

Nombre d'applications bijectives de A vers Al

On peut le voir comme le nombre de manière d'ordonner les éléments de A.

```
1^{re} position : n choix 2^e position : n-1 choix
```

Dernière position : 1 choix

Ce nombre est $n \times (n-1) \times \cdots \times 2 \times 1 = n!$

Une application bijective de *A* vers *A* est aussi appelée une *permutation* de *A*.

Nombre d'applications bijectives de A vers Al Permutations

Exemple

Soit $A = \{a, b, c, d, e\}$ et la bijection f de A dans A

Si on considère que les éléments de *A* sont ordonnés : (a, b, c, d, e)

Alors cette bijection induit un nouvel ordre : (f(a), f(b), f(c), f(d), f(e)), c.-à-d. (e, c, b, d, a)

Nombre d'applications bijectives de A vers Al

Quand se sert-on des permutations?

- On doit faire passer 10 étudiants à l'oral, combien d'ordres possibles?
 10!= 3628800
- De combien de manières différentes huit personnes peuvent-elles se placer autour d'une table ? 8!= 40320
- On a 6 couleurs à associer à nos 6 matières du semestre, combien de possibilités d'affectation? 6!= 720

Nombre d'applications injectives de B vers A Arrangements

Définition

Chaque injection de *B* vers *A* est une manière d'ordonner *p* objets de *A*, c.-à-d. d'obtenir une liste ordonnée de *p* objets choisis dans *A*.

La question revient donc à combien de listes ordonnées de taille *p* différentes ?

On choisit chaque élément au fur et à mesure :

Choix pour le 1^{er} élément : n choix

Choix pour le 2^e élément : n-1 choix

...

Choix pour le p^e élément : n-p+1 choix

$$n \times (n-1) \times \ldots \times (n-p+1) = \frac{n!}{(n-p)!} = \mathcal{A}_n^p$$

Nombre d'applications injectives de B vers A Arrangements

Exemple

Soit $A = \{a, b, c, d, e\}$, $B = \{1, 2, 3\}$ et f une injection de B vers A n = 5, p = 3, liste ordonnée de taille 3 d'éléments de A:

Choix pour le 1^{er} élément : 5 choix Choix pour le 2^e élément : 4 choix Choix pour le 3^e élément : 3 choix

Résultat : (c, a, e)

$$\frac{5!}{2!} = \frac{120}{2}$$
 = 60 listes différentes possibles

Quand se sert-on des arrangements?

• Combien de tiercés possibles dans une course de 10 chevaux?

$$A_{10}^3 = \frac{10!}{7!} = 720$$

Combien de mots de 4 lettres dans un alphabet de 26?

$$26 * 26 * 26 * 26 = 26^4 = 456976$$

 Combien de mots de 4 lettres sans lettre répétée dans un alphabet de 26?

$$A_{26}^4 = \frac{26!}{22!} = 358800$$

 7 amis sont en vacances. Pour désigner respectivement celui qui fait le ménage, la cuisine, les courses et la vaisselle, ils tirent au sort. Une urne contient donc 7 papiers (un par prénom). Combien existe-t-il de répartitions possibles des tâches? (tiré de http://www.netprof.fr) A₁⁴ = ^{7!}/_{2!} = 840

Nombre de parties de *A* ayant pour cardinal *p* Coeff. binomiaux, combinaisons

Définition

On dénombre l'ensemble des parties de A comportant p éléments par une valeur notée $\binom{n}{p}$.

Choix pour le 1^{er} élément : n choix Choix pour le 2^e élément : n-1 choix

. . .

Choix pour le p^e élément : n-p+1 choix

Mais il n'y a pas d'ordre dans une partie (rappel : partie = sous-ensemble) Il faut donc diviser par le nb d'ordres possibles : p!

$$\binom{n}{p} = n \times (n-1) \times \ldots \times (n-p+1)$$

$$\binom{n}{p} = \frac{n \times (n-1) \times \ldots \times (n-p+1)}{p!}$$

Formule du binôme

Définition

Vu en Calculus au 1er semestre :

$$(x+y)^n = \sum_{i=0}^n \binom{n}{p} x^p y^{n-p}$$

Exemple pour n = 4

$$(x+y)^4 = {\binom{4}{0}} x^4 y^0 + {\binom{4}{1}} x^3 y^1 + {\binom{4}{2}} x^2 y^2 + {\binom{4}{3}} x^1 y^3 + {\binom{4}{4}} x^0 y^4$$
$$x^4 + 4x^3 y + 6x^2 y^2 + 4xy^3 + y^4$$

Rmq : on peut aussi calculer ces coefficients à l'aide du triangle de Pascal

Quand se sert-on des combinaisons?

- Combien de tirages de loto possible (5 boules parmi 49) ? $\binom{49}{5} = \frac{49!}{5!44!} = 1906884$
- Combien d'ensemble de 4 lettres dans un alphabet de 26 ? $\binom{26}{4} = \frac{26!}{4!22!} = 14950$
- 7 amis sont en vacances. Ils n'ont que 3 billets pour aller au concert, ils décident de tirer au sort (ils ont toujours l'urne avec leur 7 prénoms).
 Combien de tirages différents possibles?

$$\binom{7}{3} = \frac{7!}{4!3!} = 35$$

- Question subsidiaire : combien chacun a-t-il de chances d'aller au concert ?
 - Autrement dit, combien de tirages de 3 prénoms contiennent un prénom donné?

Nb de tels tirages : $\binom{6}{2} = \frac{6!}{4!2!} = 15$ D'où 15 chances sur 35 d'aller au concert, soit environ 43 %

Autre manière de compter

Combien de listes ordonnées de p éléments choisis parmi n

On cherche à re-calculer \mathcal{A}_n^p

- On choisit un lot de p éléments parmi n, il y a $\binom{n}{p}$ lots possibles
- 2 puis on les ordonne, il y a p! manières d'ordonner chaque lot

d'où
$$\mathcal{A}^{m{p}}_n=inom{n}{m{p}} imesm{p}!=rac{n!}{m{p}!(n-m{p})!} imesm{p}!=rac{n!}{(n-m{p})!}$$

Rappel

- $[x] \in \mathbb{N}$ désigne la partie entière supérieure de $x \in \mathbb{Q}$
- Ex:[1,3]=2:[1]=1
- Soit |A| = n et |B| = p, si n > p alors il n'existe pas d'injection de A vers B

Chaussettes et tiroirs

- Prenons C un ensemble de n chaussettes et T un ensemble de p tiroirs
- Si on veut ranger n chaussettes dans p tiroirs, et si on veut de plus que chaque chaussette soit dans un tiroir différent, en fait on veut construire une application injective de C vers T
- Quand n > p c'est impossible

Un cas particulier : n = p + 1

 Si p tiroirs sont occupés par p + 1 chaussettes, alors au moins un tiroir contient au moins 2 chaussettes

Cas général

- Si p tiroirs sont occupés par n chaussettes, alors il existe au moins un tiroir qui contient au moins [n/p] chaussettes
- Ex: 10 chaussettes et 4 tiroirs; au moins un tiroir avec au moins $\lceil 10/4 \rceil = 3$

Utilisation

- Soit une application **f**: $C \longrightarrow T$, avec |C| = n, |T| = p,
- D'après le principe des tiroirs : il existe un élément de l'ensemble d'arrivée qui a au moins \[n/p \] antécédents
- Autrement dit, il existe $t \in T$ tel que $|f^{-1}(\{t\})| \ge \lceil n/p \rceil$.

