Marek Funtowicz

Embedded Software / FPGA Firmware Engineer

Personal Details

Education

Address: Stanisława Ligonia 14/37 2014 – 2017 The University of Sheffield

44-280 Rydułtowy

github.com/IceDefcon

Electronics and Communication Engineering

Master of Engineering

Phone: +48 724 235 978

2013 – 2014 Open Study College

Pure Mathematics

A-Level

E-mail: ice.marek@yahoo.com

2012 – 2014 Central College Nottingham

Electrical and Electronic Engineering

Higher National Diploma

Web: icedefcon.github.io

Git:

Skill

CPU:

Personal Research and Development

FPGA: Intel, Xilinx

x86 64, ARM, PowerPC

RTL: Verilog, VHDL

Code: ASM, C, C++, Python,

Fortran

OS: FreeRTOS, VxWorks,

Linux, Autosar

USB, UART, SPI, I2C, Com:

JTAG, GPIO, TCP, UDP,

CAN

Circuit: Mentor graphics, Spice,

Multisim, Altium

Test: Oscilloscope, Multimeters

Logic Analyzer

Matrix: Matlab, Octave

Web: HTML, PHP, CSS,

Java script, Bootstrap

DB: MySQL

Lang: Polish (Native),

English (Fluent)

Research and Develop CPU & FPGA Computer Platform (C, C++, VHDL, Pvthon)

 $x86 \rightarrow Powered by Ubuntu$

LNX → ARM Cortex-A8 powered by Debian LNX

◆ FPGA → Intel Cyclone IV FPGA for high speed computation

System specification:

 $x86 \rightarrow Graphical User Interface for the overall master control$

x86 → Network Client (Python GUI)

LNX → Network Server (C++ Application)

LNX → Char device for IO between Kernel and User space

LNX → Block RAM device for chip configuration in FPGA **

LNX → SPI driver for bidirectional FPGA communication over DMA **

* LNX → Bidirectional GPIO signaling for FPGA/Kernel ISR processing

LNX → Work queues and kthread design techniques *

FPGA → Watchdog interface for Kernel synchronization *

* FPGA → SPI interface for data serialization and parallelization

FPGA → Parametrized I2C controller driven from LNX Kernel **

** FPGA → Parametrized FIFO controller driven from LNX Kernel

FPGA → Offload controller and packet switch for FIFO data flow **

** FPGA → PWM controller for the motor throttle control

* FPGA → UART controller for the logs acquisition

FPGA → PID controllers for feedback control :: Pending R&D

FPGA → Gyroscope/Accelerometer devices for measurement acquisition

Platform will be upgraded to Xilinx Zyng UltraScale+TM MPSoC

System will be powered by the Ultra96-V2

ARM Cortex-A53, ARM Cortex-R5 and a Mali-400 MP2 GPU

More powerful FPGA chip fully integrated with CPU over DMA

The SPI interface for CPU<->FPGA comms replaced with a DMA

Adaptation of the the current LNX kernel module to Xilinx system

40-pin general-purpose I/O and low-speed peripheral interfaces

60-pin high-speed connector (handling higher data rates interfaces)

Software Engineer

Prototyping of the new generation wireless charging systems in the automotive industry (ASM, C)

- Reading/analyzing prototype PCB schematics
- ❖ Adaptation of the PCB hardware with the low level drivers
- ❖ Licensed code generation tools (Tresos, Da-Vinci, CANoe)
- ❖ BPP, EPP and MPP wireless charging protocols
- Backward compatibility of the existing stack with the latest generation of wireless charging protocol
- ❖ Low level coding and debugging on the live targets (ASM, C)
- ❖ Introduction to the software architecture design
- Coding standards (MISRA, HIS) in the automotive applications

Tronel

October 2019 → June 2023

Software Engineer

Research and design the components of LTE communication protocol

- Physical L1 abstraction layer of an LTE protocol stack
- **♦** DMA communication with FPFA → Data and control
- ❖ Low-level DMA problems
- **♦** Low-level multithreading problems → Race conditions
- Low-level CPU stack problems (ASM) → Thread crashes
- ❖ Live kernel debugging @ VxWorks RTOS
- Code disassembly and investigation (ASM)
- **♦** Thread crash analysis → Intel and PowerPC registry dump analysis
- Analyzing data logs using custom made scripts
- ❖ Research and investigation of FPGA RTL
- Research and investigation of non-FPGA parts of the system → Higher layers of the LTE protocol, SCPI communication with RF boards
- ♦ Various number of tests → LTE protocol functionality

Turbo Power Systems

August 2019 → October 2019

Embedded Systems Engineer

Design Firmware and RTL for Power Electronic Device using AURIX 32-bit Tri-Core Microcontroller and ARTIX 7 Xilinx FPGA (Soft Power Bridge)

- * Research the Infineon Low Level Drivers for the Tri-Core
- ❖ Develop Tri-Core Firmware drivers for ASCLIN (UART), QSPI and CAN peripherals to communicate with PCB
- ❖ Research Tri-Core Firmware for TCP/IP Stack (LWIP)
- ❖ Research ARTIX 7 RTL to communicate with CPU over QSPI and PCB peripherals
- * Research Microblaze firmware in ARTIX 7 FPGA
- ❖ Investigate and analyze circuit schematics and PCB layout
- ❖ Test the behavior of the Firmware on the Tri-Core development board and the actual product PCB (Soft Power Bridge)

Junior Hardware Engineer

Design computer hardware for capturing, processing and streaming live video using Intel Altera FPGA technology and firmware control

- Design FPGA hardware modules in VHDL and Verilog
- Design QSYS networks for Nios II processing
- ❖ On-chip memory management for Nios II processing
- Test RTL modules with Modelsim
- ❖ Test and debug RTL modules with signal tap
- ❖ Test and debug RTL modules with live PCB
- * Test functionality of live PCB with measurement equipment
- Design Nios II firmware for graphical signal processing in FPGA
- ❖ Design Nios II firmware for peripheral devices mounted on PCB
- Test and debug Nios II firmware on live FPGA usign Eclipse
- ❖ Integrate firmware with BSP and HAL drivers for Intel IP definitions
- Investigate booting codes for embedded Intel Nios II processor
- ❖ FPGA pin planning → IO Banks, Voltages, Transceivers
- ❖ FPGA chip planning → Module's connectivity and Logic congestion
- **❖** Timing analysis for RTL → Clock Cross Domain, False paths
- Investigate and analyze circuit schematics and PCB layout
- Integrate FPGA hardware code and CPU firmware with the circuit schematic and PCB Layout

Prototyping embedded graphical processing system using Xilinx FPGA technology and Linux firmware control

- ◆ Develop booting sequence for Zynq Ultrascale MPSoC in QSPI → hand over FPGA control to Linux kernel via U-Boot
- Research bare metal codes → PMUFW, FSBL, ATF
- ❖ Research and modify U-boot source → Configure MAC addressing
- ❖ Research bare metal XEN Hypervisor → Register XEN watchdog
- Develop UART communication for Zynq Ultrascale MPSoC → register UARTLITE driver in Linux to communicate with external chip for TMDS processing and HDCP control
- **❖** Research kernel → Version control
- ❖ Research device tree → Petalinux overlay
- **❖** Research root file system → Network configuration
- **♦** Customize Petalinux → Kernel, Root file system and device tree
- ◆ Debug kernel in OS awareness mode → Eclipse environment