Importing the required libraries

In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import sklearn as sk
import seaborn as sns
```

Reading the data set

In [2]:

```
df=pd.read_csv('emp_promotion.csv')
```

In [3]:

```
df.head()
```

Out[3]:

	employee_id	department	region	education	gender	recruitment_channel	no_of_trainings
0	65438	Sales & Marketing	region_7	Master's & above	f	sourcing	1
1	65141	Operations	region_22	Bachelor's	m	other	1
2	7513	Sales & Marketing	region_19	Bachelor's	m	sourcing	1
3	2542	Sales & Marketing	region_23	Bachelor's	m	other	2
4	48945	Technology	region_26	Bachelor's	m	other	1
4							•

Removing unwanted coloumns

```
In [4]:
```

```
df.drop(['employee_id'],axis=1,inplace=True)
```

Replacing null values

In [5]:

```
df.isnull().any()
```

Out[5]:

department False region False education True gender False recruitment_channel False no_of_trainings False False age previous_year_rating True length of service False KPIs_met >80% False awards_won? False avg_training_score False is_promoted False dtype: bool

In [6]:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 54808 entries, 0 to 54807
Data columns (total 13 columns):

Column Non-Null Count Dtype -----0 department 54808 non-null object 1 region 54808 non-null object 2 education 52399 non-null object 3 54808 non-null gender object 4 recruitment_channel 54808 non-null object 5 no_of_trainings 54808 non-null int64 6 54808 non-null int64 7 previous_year_rating 50684 non-null float64 8 length_of_service 54808 non-null int64 9 KPIs met >80% 54808 non-null int64 awards won? 54808 non-null int64 54808 non-null 11 avg_training_score int64 54808 non-null 12 is_promoted int64

dtypes: float64(1), int64(7), object(5)

memory usage: 5.4+ MB

```
In [7]:
```

```
df.isnull().sum()
```

Out[7]:

department 0 region 0 2409 education gender 0 recruitment_channel 0 no_of_trainings 0 age 0 previous_year_rating 4124 length of service 0 KPIs_met >80% 0 awards_won? 0 0 avg_training_score is_promoted 0 dtype: int64

In [8]:

```
df.duplicated().sum()
```

Out[8]:

118

In [9]:

```
df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 54808 entries, 0 to 54807
Data columns (total 13 columns):

Column Non-Null Count Dtype _____ 0 department 54808 non-null object 1 region 54808 non-null object 2 education object 52399 non-null 3 gender 54808 non-null object 4 recruitment_channel 54808 non-null object 5 no_of_trainings 54808 non-null int64 6 54808 non-null int64 7 previous_year_rating 50684 non-null float64 8 length_of_service 54808 non-null int64 9 KPIs_met >80% 54808 non-null int64 awards won? 54808 non-null int64 avg_training_score 54808 non-null 11 int64 is promoted 54808 non-null int64 dtypes: float64(1), int64(7), object(5)

memory usage: 5.4+ MB

In [10]:

```
df['education'].unique()
```

Out[10]:

In [11]:

```
df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 54808 entries, 0 to 54807
Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype				
0	department	54808 non-null	object				
1	region	54808 non-null	object				
2	education	52399 non-null	object				
3	gender	54808 non-null	object				
4	recruitment_channel	54808 non-null	object				
5	no_of_trainings	54808 non-null	int64				
6	age	54808 non-null	int64				
7	<pre>previous_year_rating</pre>	50684 non-null	float64				
8	length_of_service	54808 non-null	int64				
9	KPIs_met >80%	54808 non-null	int64				
10	awards_won?	54808 non-null	int64				
11	<pre>avg_training_score</pre>	54808 non-null	int64				
12	is_promoted	54808 non-null	int64				
dtynes: float64(1), int64(7), object(5)							

dtypes: float64(1), int64(7), object(5)

memory usage: 5.4+ MB

In [12]:

```
df.describe()
```

Out[12]:

	no_of_trainings	age	previous_year_rating	length_of_service	KPIs_met >80%	aw
count	54808.000000	54808.000000	50684.000000	54808.000000	54808.000000	54
mean	1.253011	34.803915	3.329256	5.865512	0.351974	
std	0.609264	7.660169	1.259993	4.265094	0.477590	
min	1.000000	20.000000	1.000000	1.000000	0.000000	
25%	1.000000	29.000000	3.000000	3.000000	0.000000	
50%	1.000000	33.000000	3.000000	5.000000	0.000000	
75%	1.000000	39.000000	4.000000	7.000000	1.000000	
max	10.000000	60.000000	5.000000	37.000000	1.000000	
4						•

```
In [13]:
```

```
df.tail()
```

Out[13]:

	department	region	education	gender	recruitment_channel	no_of_trainings	age	pr
54803	Technology	region_14	Bachelor's	m	sourcing	1	48	
54804	Operations	region_27	Master's & above	f	other	1	37	
54805	Analytics	region_1	Bachelor's	m	other	1	27	
54806	Sales & Marketing	region_9	NaN	m	sourcing	1	29	
54807	HR	region_22	Bachelor's	m	other	1	27	
4								•

```
In [14]:
```

df.shape

Out[14]:

(54808, 13)

In [15]:

```
df['education'].mode()
```

Out[15]:

0 Bachelor's
dtype: object

In [16]:

```
df['education'].mode()[0]
```

Out[16]:

"Bachelor's"

```
In [17]:
```

```
df['education'].head(30)
Out[17]:
0
      Master's & above
1
            Bachelor's
2
            Bachelor's
3
            Bachelor's
4
            Bachelor's
5
            Bachelor's
6
            Bachelor's
7
      Master's & above
8
            Bachelor's
9
      Master's & above
10
11
            Bachelor's
12
            Bachelor's
13
      Master's & above
14
      Master's & above
            Bachelor's
15
16
            Bachelor's
            Bachelor's
17
18
            Bachelor's
            Bachelor's
19
            Bachelor's
20
21
22
            Bachelor's
            Bachelor's
23
24
      Master's & above
25
            Bachelor's
            Bachelor's
26
27
            Bachelor's
28
            Bachelor's
29
            Bachelor's
Name: education, dtype: object
In [18]:
df['education'].fillna(df['education'].mode()[0],inplace=True)
```

```
localhost:8888/notebooks/Untitled38.ipynb?kernel_name=python3
```

```
In [19]:
df['education'].head(30)
Out[19]:
0
      Master's & above
1
            Bachelor's
2
            Bachelor's
3
            Bachelor's
4
            Bachelor's
5
            Bachelor's
6
            Bachelor's
7
      Master's & above
            Bachelor's
8
9
      Master's & above
10
            Bachelor's
11
            Bachelor's
12
            Bachelor's
13
      Master's & above
14
      Master's & above
            Bachelor's
15
            Bachelor's
16
17
            Bachelor's
18
            Bachelor's
19
            Bachelor's
20
            Bachelor's
            Bachelor's
21
22
            Bachelor's
23
            Bachelor's
24
      Master's & above
25
            Bachelor's
26
            Bachelor's
27
            Bachelor's
28
            Bachelor's
29
            Bachelor's
Name: education, dtype: object
In [20]:
df['previous_year_rating'].mean()
Out[20]:
3.329255780917055
In [21]:
df['previous_year_rating'].fillna(df['previous_year_rating'].mean(),inplace=True)
In [22]:
df['previous_year_rating'].isnull().any()
Out[22]:
```

```
localhost:8888/notebooks/Untitled38.ipynb?kernel name=python3
```

False

```
In [23]:
```

```
df.isnull().any()
```

Out[23]:

department False region False False education gender False recruitment_channel False no_of_trainings False False previous_year_rating False length_of_service False KPIs_met >80% False awards_won? False avg_training_score False False is_promoted dtype: bool

univariate analysis of cateogarical data

In [24]:

```
import warnings
warnings.filterwarnings('ignore')
```

In [25]:

```
plt.style.use('fivethirtyeight')
```

In [26]:

```
sns.countplot(df['recruitment_channel'])
plt.show()
```


In [27]:

```
plt.figure(figsize=(6,4))
plt.subplot(121)
df['department'].value_counts().plot(kind='pie',autopct='%.2f')
plt.subplot(122)
df['education'].value_counts().plot(kind='bar')
plt.show()
```


In [28]:

```
plt.figure(figsize=(16,8))
plt.subplot(121)
df['region'].value_counts().plot(kind='bar')
plt.subplot(122)
df['gender'].value_counts().plot(kind='pie',autopct='%.2f')
plt.show()
```


univariate anlysis of numeric data

In [29]:

```
sns.set(rc = {'figure.figsize':(15,8)})
sns.distplot(df['age'],bins=60)
plt.show()
```


In [30]:

```
sns.displot(df['length_of_service'],kde=False,bins=40)
plt.show()
```


In [31]:

```
plt.hist(df['age'],bins=10,color='red',edgecolor='black')
plt.xlabel('Age')
plt.ylabel('Number of employees')
plt.title('Age of employees')
plt.show()
```


In [32]:

```
plt.figure(figsize=(14,4))
plt.subplot(121)
plt.xlabel('Average training score')
plt.ylabel('Employees')
plt.title('Average training score of the employees')
df.avg_training_score.plot(kind='hist')
plt.subplot(122)
plt.xlabel('Average training score')
plt.ylabel('Employees')
plt.title('Average training score of the employees')
df.avg_training_score.plot(kind='kde')
plt.show()
```


In [33]:

```
plt.figure(figsize=(24,10))
plt.subplot(121)
plt.xlabel('Trainings')
plt.ylabel('Employees')
plt.title('Number of trainings')
df.no_of_trainings.plot(kind='kde')
plt.subplot(122)
plt.xlabel('Trainings')
plt.ylabel('Employees')
plt.title('Number of trainings')
df.no_of_trainings.plot(kind='hist')
plt.show()
```


In [34]:

```
plt.figure(figsize=(14,4))
sns.boxplot(df['previous_year_rating'])
plt.show()
```


In [35]:

```
plt.figure(figsize=(14,4))
sns.boxplot(df['age'])
plt.show()
```


In [36]:

```
sns.catplot(x='gender',y='length_of_service',kind='box',data=df)
plt.show()
```


Multivarite Analysis

In [37]:

```
sns.catplot(y='age',x='is_promoted',hue='gender',kind='bar',data=df)
plt.show()
```


In [38]:

```
plt.figure(figsize=(20,6))
sns.barplot(x='department',y='age',hue='is_promoted',data=df)
plt.title('Promotion on based on Average training score and Previous year rating')
plt.show()
```


In [39]:

```
plt.figure(figsize=(20,6))
sns.scatterplot(df['length_of_service'],df['no_of_trainings'],df['is_promoted'],color='purp
plt.title('Promotion on based on Average training score and Previous year rating')
```

Out[39]:

Text(0.5, 1.0, 'Promotion on based on Average training score and Previous ye ar rating')

In [40]:

sns.catplot(x='is_promoted',y='length_of_service',hue='gender',kind='violin',split=True,col
plt.show()

In [41]:

sns.catplot(x='is_promoted',y='avg_training_score',hue='gender',kind='bar',color='violet',d
plt.show()

In [42]:

sns.catplot(x='is_promoted',y='length_of_service',hue='department',kind='bar',data=df)

Out[42]:

<seaborn.axisgrid.FacetGrid at 0x1d79ecd0b20>

In [43]:

sns.catplot(x='is_promoted',y='age',hue='department',kind='box',data=df)

Out[43]:

<seaborn.axisgrid.FacetGrid at 0x1d79edd5760>

In [45]:

sns.catplot(x='is_promoted',y='previous_year_rating',hue='department',kind='bar',data=df)

Out[45]:

<seaborn.axisgrid.FacetGrid at 0x1d79ede9160>

In [46]:

sns.catplot(x='is_promoted',y='previous_year_rating',hue='education',kind='strip',data=df)

Out[46]:

<seaborn.axisgrid.FacetGrid at 0x1d79ece7910>

In [47]:

sns.catplot(x='is_promoted',y='age',hue='education',kind='box',data=df)

Out[47]:

<seaborn.axisgrid.FacetGrid at 0x1d79ede90d0>

In [48]:

 $\verb|sns.catplot(x='is_promoted',y='length_of_service', hue='education', kind='bar', color='yellow'| | |sns.catplot(x='is_promoted',y='length_of_service', hue='education', kind='bar', color='yellow'| | |sns.catplot(x='is_promoted',y='is_promoted',y='is_promoted', hue='is_promoted', hue='is_promote$

Out[48]:

<seaborn.axisgrid.FacetGrid at 0x1d79f942610>

In [51]:

sns.catplot(x='is_promoted',y='previous_year_rating',hue='recruitment_channel',kind='strip'

Out[51]:

<seaborn.axisgrid.FacetGrid at 0x1d79ea8e580>

In [52]:

sns.catplot(x='is_promoted',y='length_of_service',hue='recruitment_channel',kind='bar',colo

Out[52]:

<seaborn.axisgrid.FacetGrid at 0x1d7a0469820>

In [53]:

sns.catplot(x='is_promoted',y='age',hue='recruitment_channel',kind='bar',color='black',data

Out[53]:

<seaborn.axisgrid.FacetGrid at 0x1d79f2522b0>

In [54]:

df.shape

Out[54]:

(54808, 13)

DESCRIPTIVE ANALYSIS

```
In [55]:
```

```
df.describe(include='all')
```

Out[55]:

	department	region	education	gender	recruitment_channel	no_of_trainings	
count	54808	54808	54808	54808	54808	54808.000000	54808.00
unique	9	34	3	2	3	NaN	
top	Sales & Marketing	region_2	Bachelor's	m	other	NaN	
freq	16840	12343	39078	38496	30446	NaN	
mean	NaN	NaN	NaN	NaN	NaN	1.253011	34.80
std	NaN	NaN	NaN	NaN	NaN	0.609264	7.66
min	NaN	NaN	NaN	NaN	NaN	1.000000	20.00
25%	NaN	NaN	NaN	NaN	NaN	1.000000	29.00
50%	NaN	NaN	NaN	NaN	NaN	1.000000	33.00
75%	NaN	NaN	NaN	NaN	NaN	1.000000	39.00
max	NaN	NaN	NaN	NaN	NaN	10.000000	60.00
4							•

Data preprocessing

```
In [56]:
```

```
df.duplicated().sum()
```

Out[56]:

156

In [57]:

```
df.drop_duplicates(inplace=True)
```

Feature selection

which can be used for eliminating the highly correlated values between coloumns

In [58]:

df.corr()

Out[58]:

	no_of_trainings	age	previous_year_rating	length_of_service	KPIs_n >8
no_of_trainings	1.000000	-0.081736	-0.059914	-0.057628	-0.0458
age	-0.081736	1.000000	0.005509	0.656472	-0.0263
previous_year_rating	-0.059914	0.005509	1.000000	0.000089	0.3382
length_of_service	-0.057628	0.656472	0.000089	1.000000	-0.0784
KPIs_met >80%	-0.045894	-0.026391	0.338224	-0.078414	1.0000
awards_won?	-0.007716	-0.008518	0.026655	-0.040282	0.0969
avg_training_score	0.042348	-0.049359	0.071929	-0.038843	0.0775
is_promoted	-0.025008	-0.017752	0.153435	-0.011183	0.2214

plt.figure(figsize=(14,14)) sns.heatmap(data.corr(),annot=True,cbar=True,linewidth=True,fmt='f') plt.show()

In [59]:

```
plt.figure(figsize=(14,14))
sns.heatmap(df.corr(),annot=True,cbar=True,linewidth=True,fmt='f')
plt.show()
```


Here i do no not have any values between 80% to 90% correlated but in this case the highly correlated value is around 65% that's i am not going to eliminate any column

Removing duplicates rows

```
In [60]:

df.duplicated().sum()

Out[60]:

0

In [61]:

df.drop_duplicates(inplace=True)
```

Removing outlier

In [62]:

```
plt.figure(figsize=(16,5))
plt.subplot(121)
sns.distplot(df['length_of_service'])
plt.subplot(122)
sns.distplot(df['age'])
plt.show()
```


In [63]:

```
df['length_of_service'].describe()
```

Out[63]:

count	54652.000000
mean	5.873838
std	4.265650
min	1.000000
25%	3.000000
50%	5.000000
75%	7.000000
max	37.000000

Name: length_of_service, dtype: float64

In [64]:

```
sns.boxplot(df['length_of_service'])
```

Out[64]:

<AxesSubplot:xlabel='length_of_service'>

In [65]:

df['age'].describe()

Out[65]:

count	54	4652.000	9000
mean		34.820	9684
std		7.66	217 3
min		20.000	9000
25%		29.000	0000
50%		33.000	9000
75%		39.000	9000
max		60.00	9000
Name:	age,	dtype:	float64

In [66]:

sns.boxplot(df['age'])

Out[66]:

<AxesSubplot:xlabel='age'>

In [67]:

```
percentile25_los=df['length_of_service'].quantile(0.25)
percentile75_los=df['length_of_service'].quantile(0.75)
percentile25_age=df['age'].quantile(0.25)
percentile75_age=df['age'].quantile(0.75)
print("Q2 of los:",percentile25_los)
print("Q4 of los:",percentile75_los)
print("Q2 of age:",percentile25_age)
print("Q4 of age:",percentile75_age)
```

Q4 of los: 7.0 Q2 of age: 29.0 Q4 of age: 39.0

In [68]:

```
iqr_los=percentile75_los-percentile25_los
print("IQR of los",iqr_los)
iqr_age=percentile75_age-percentile25_age
print("IQR of age",iqr_age)
```

IQR of los 4.0 IQR of age 10.0

In [69]:

```
upper_limit_los=percentile75_los+1.5*iqr_los
lower_limit_los=percentile25_los-1.5*iqr_los
upper_limit_age=percentile75_age+1.5*iqr_age
lower_limit_age=percentile25_age-1.5*iqr_age
```

In [70]:

```
print("upper limit of los",upper_limit_los)
print("lower limit of los",lower_limit_los)
print("upper limit of age",upper_limit_age)
print("lower limit of age",lower_limit_age)
```

```
upper limit of los 13.0 lower limit of los -3.0 upper limit of age 54.0 lower limit of age 14.0
```

In [71]:

df[df['length_of_service']>13]

Out[71]:

	department	region	education	gender	recruitment_channel	no_of_trainings	age	pr		
13	Technology	region_29	Master's & above	m	other	2	39			
42	HR	region_2	Bachelor's	m	sourcing	1	59			
60	Sales & Marketing	region_4	Master's & above	m	other	1	50			
74	Sales & Marketing	region_7	Bachelor's	m	other	1	50			
99	Finance	region_2	Master's & above	m	other	1	60			
54691	Analytics	region_2	Master's & above	m	sourcing	1	47			
54695	Operations	region_2	Bachelor's	f	other	2	52			
54697	Sales & Marketing	region_2	Bachelor's	m	sourcing	1	47			
54754	Technology	region_26	Bachelor's	f	other	1	42			
54803	Technology	region_14	Bachelor's	m	sourcing	1	48			
3488 rows × 13 columns										

```
In [72]:
```

```
df[(df['age']>54) | (df['age']<14)]
```

Out[72]:

	department	region	education	gender	recruitment_channel	no_of_trainings	age	рі
33	Operations	region_2	Bachelor's	m	sourcing	2	57	
42	HR	region_2	Bachelor's	m	sourcing	1	59	
49	Procurement	region_2	Master's & above	f	sourcing	1	56	
99	Finance	region_2	Master's & above	m	other	1	60	
307	Procurement	region_2	Master's & above	f	other	1	58	
54580	Technology	region_7	Master's & above	f	other	1	57	
54617	Sales & Marketing	region_2	Master's & above	f	other	1	57	
54628	Sales & Marketing	region_2	Bachelor's	m	sourcing	1	57	
54749	Procurement	region_2	Master's & above	f	sourcing	1	55	
54792	Sales & Marketing	region_14	Bachelor's	m	other	1	59	

1435 rows × 13 columns

CAPPING OF OUTLIERS

In [73]:

```
df['length_of_service']=np.where(
df['length_of_service']>upper_limit_los,
upper_limit_los,
np.where(
df['length_of_service']<lower_limit_los,
lower_limit_los,df['length_of_service'])
)</pre>
```

In [74]:

```
df['length_of_service'].describe()
```

Out[74]:

count 54652.000000 mean 5.578369 3.413165 std min 1.000000 25% 3.000000 50% 5.000000 75% 7.000000 max 13.000000

Name: length_of_service, dtype: float64

In [75]:

```
sns.boxplot(df['length_of_service'])
plt.show()
```


In [76]:

```
df['age'].describe()
```

Out[76]:

count	54	4652.00	9000
mean		34.82	2684
std		7.66	2173
min		20.00	9000
25%		29.00	0000
50%		33.00	0000
75%		39.00	9000
max		60.00	9000
Name:	age,	dtype:	float64

In [77]:

```
df['age']=np.where(
df['age']>upper_limit_age,upper_limit_age
   ,np.where(
   df['age']<lower_limit_age,lower_limit_age,
   df['age']))</pre>
```

In [78]:

```
sns.boxplot(df['age'])
plt.show()
```



```
In [79]:
```

df

Out[79]:

	department	region	education	gender	recruitment_channel	no_of_trainings	age	рі
0	Sales & Marketing	region_7	Master's & above	f	sourcing	1	35.0	
1	Operations	region_22	Bachelor's	m	other	1	30.0	
2	Sales & Marketing	region_19	Bachelor's	m	sourcing	1	34.0	
3	Sales & Marketing	region_23	Bachelor's	m	other	2	39.0	
4	Technology	region_26	Bachelor's	m	other	1	45.0	
54803	Technology	region_14	Bachelor's	m	sourcing	1	48.0	
54804	Operations	region_27	Master's & above	f	other	1	37.0	
54805	Analytics	region_1	Bachelor's	m	other	1	27.0	
54806	Sales & Marketing	region_9	Bachelor's	m	sourcing	1	29.0	
54807	HR	region_22	Bachelor's	m	other	1	27.0	
54652	rows × 13 co	lumns						
4								•

SPLITING THE DATA INTO TRAIN AND TEST DATA

```
In [80]:
```

```
X=df.iloc[:,:-1]
y=df.iloc[:,-1]
```

In [81]:

```
y.value_counts()
```

Out[81]:

0 499871 4665

Name: is_promoted, dtype: int64

```
In [82]:
```

```
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2)
```

IMPUTING MISSING VALUES

```
In [83]:
```

X_train.shape,X_test.shape

Out[83]:

((43721, 12), (10931, 12))

In [84]:

X_train.sample(5)

Out[84]:

	department	region	education	gender	recruitment_channel	no_of_trainings	age	p
31833	Procurement	region_14	Bachelor's	m	sourcing	1	29.0	_
10024	Operations	region_2	Bachelor's	f	other	2	48.0	
26657	Sales & Marketing	region_7	Bachelor's	m	sourcing	1	33.0	
45270	Procurement	region_2	Master's & above	m	other	2	34.0	
36164	Technology	region_22	Bachelor's	m	other	1	33.0	
4)	•

In [85]:

X_test.sample(5)

Out[85]:

	department	region	education	gender	recruitment_channel	no_of_trainings	age	рі
46500	Sales & Marketing	region_16	Bachelor's	m	other	1	26.0	
9727	Technology	region_1	Bachelor's	f	sourcing	1	29.0	
22751	Technology	region_14	Bachelor's	f	other	1	32.0	
7452	Operations	region_26	Bachelor's	m	other	2	44.0	
7737	Finance	region_26	Bachelor's	m	other	1	38.0	
4								•

```
In [86]:
```

```
X_train.isnull().mean()*100
Out[86]:
department
                         0.0
region
                         0.0
education
                         0.0
gender
                         0.0
recruitment_channel
                         0.0
no_of_trainings
                         0.0
                         0.0
age
previous_year_rating
                         0.0
length of service
                         0.0
KPIs_met >80%
                         0.0
awards_won?
                         0.0
                         0.0
avg_training_score
dtype: float64
```

In [87]:

```
X_test.isnull().mean()*100
```

Out[87]:

```
department
                          0.0
region
                          0.0
education
                          0.0
gender
                          0.0
{\tt recruitment\_channel}
                          0.0
no_of_trainings
                          0.0
                          0.0
age
previous_year_rating
                          0.0
length_of_service
                          0.0
KPIs_met >80%
                          0.0
                          0.0
awards_won?
avg_training_score
                          0.0
dtype: float64
```

In [88]:

```
df[['education','previous year rating']].info()
```

```
Int64Index: 54652 entries, 0 to 54807
Data columns (total 2 columns):
#
     Column
                           Non-Null Count
                                           Dtype
 0
     education
                           54652 non-null
                                           object
     previous_year_rating 54652 non-null
                                           float64
dtypes: float64(1), object(1)
memory usage: 1.3+ MB
```

<class 'pandas.core.frame.DataFrame'>

In [89]:

```
df_cat=X_train.select_dtypes(include='object')
df_cat.sample(5)
```

Out[89]:

recruitment_channel	gender	education	region	department	
referred	m	Bachelor's	region_22	Technology	17661
other	m	Bachelor's	region_7	Sales & Marketing	9748
sourcing	m	Bachelor's	region_5	Legal	50645
other	m	Bachelor's	region_13	Technology	22218
other	m	Bachelor's	region_17	Sales & Marketing	34439

In [90]:

```
df_num=X_train.select_dtypes(exclude='object')
df_num.sample(5)
```

Out[90]:

	no_of_trainings	age	previous_year_rating	length_of_service	KPIs_met >80%	awards_won?
6086	1	27.0	3.0	3.0	0	0
43570	1	35.0	3.0	6.0	1	0
5849	2	39.0	3.0	5.0	1	1
13339	1	39.0	2.0	3.0	1	0
6231	2	31.0	5.0	5.0	1	0
4						•

In [91]:

```
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import MinMaxScaler
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import OneHotEncoder
from sklearn.preprocessing import OrdinalEncoder
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import PowerTransformer
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline,make_pipeline
```

In [92]:

```
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import classification_report, confusion_matrix
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.ensemble import RandomForestClassifier
```

```
In [93]:
```

```
tr1=ColumnTransformer(transformers=[
    ('imputer2',SimpleImputer(strategy='most_frequent'),[2]),
    ('imputer7',SimpleImputer(strategy='median'),[7])
    #('ohe',OneHotEncoder(sparse=False,drop='first',dtype='int32'),[0,1,3,4]),
    #('le',LabelEncoder(),[2]),
    #('scaler',StandardScaler(),slice(0,5))
],remainder='passthrough')
```

In [96]:

```
tr1.fit(X_train)
```

Out[96]:

In [97]:

```
tr2=ColumnTransformer(transformers=[
    ('le',OrdinalEncoder(),[0])
],remainder='passthrough')
```

In [98]:

```
tr3=ColumnTransformer(transformers=[
    ('ohe',OneHotEncoder(sparse=False,dtype='int32'),[2])
],remainder='passthrough')
```

In [99]:

```
tr4=ColumnTransformer(transformers=[
    ('ohe',OneHotEncoder(sparse=False,dtype='int32'),[11])
],remainder='passthrough')
```

In [100]:

```
tr5=ColumnTransformer(transformers=[
    ('ohe',OneHotEncoder(sparse=False,dtype='int32'),[45])
],remainder='passthrough')
```

In [101]:

```
tr6=ColumnTransformer(transformers=[
    ('ohe',OneHotEncoder(sparse=False,dtype='int32'),[47])
],remainder='passthrough')
```

In [102]:

```
tr7=ColumnTransformer(transformers=[
    ('scaler',MinMaxScaler(),slice(0,55))
])
```

In [103]:

```
tr8=ColumnTransformer(transformers=[
    ('pt',PowerTransformer(method='yeo-johnson'),slice(0,55))
],remainder='passthrough')
```

In [104]:

```
tr9=RandomForestClassifier()
```

In [105]:

```
pipe1=Pipeline([
    ('tr1',tr1),
    ('tr2',tr2),
    ('tr3',tr3),
    ('tr4',tr4),
    ('tr5',tr5),
    ('tr6',tr6),
    ('tr7',tr7),
    ('tr8',tr8),
    ('tr9',tr9)
])
```

```
In [107]:
```

```
pipe1.fit(X train,y train)
Out[107]:
Pipeline(steps=[('tr1',
                 ColumnTransformer(remainder='passthrough',
                                    transformers=[('imputer2',
                                                   SimpleImputer(strategy='mo
st_frequent'),
                                                   [2]),
                                                   ('imputer7',
                                                   SimpleImputer(strategy='me
dian'),
                                                   [7])])),
                ('tr2',
                 ColumnTransformer(remainder='passthrough',
                                    transformers=[('le', OrdinalEncoder(),
                                                   [0])])),
                ('tr3',
                 ColumnTransformer(remainder='passthrough',
                                    transformers=[('oh...
                                                    [45])])),
                ('tr6',
                 ColumnTransformer(remainder='passthrough',
                                    transformers=[('ohe',
                                                   OneHotEncoder(dtype='int3
2',
                                                                  sparse=Fals
e),
                                                   [47])])),
                ('tr7',
                 ColumnTransformer(transformers=[('scaler', MinMaxScaler(),
                                                   slice(0, 55, None))])),
                ('tr8',
                 ColumnTransformer(remainder='passthrough',
                                    transformers=[('pt', PowerTransformer(),
                                                    slice(0, 55, None))])),
                ('tr9', RandomForestClassifier())])
```

In [108]:

```
y_pred1=pipe1.predict(X_test)
print('RandomForestClassifier:')
print('confusion_matrix:')
print(confusion_matrix(y_test,y_pred1))
print('classification_report:')
print(classification_report(y_test,y_pred1))
```

```
RandomForestClassifier:
confusion_matrix:
[[9807
       183]
 [ 866
         75]]
classification_report:
                            recall f1-score
              precision
                                                support
           0
                    0.92
                                         0.95
                              0.98
                                                    9990
           1
                    0.29
                              0.08
                                         0.13
                                                     941
                                         0.90
                                                  10931
    accuracy
                                         0.54
                    0.60
                              0.53
                                                  10931
   macro avg
                              0.90
                                         0.88
                                                  10931
weighted avg
                    0.86
```

In [109]:

```
tr10=DecisionTreeClassifier()
```

In [110]:

```
pipe2=Pipeline([
    ('tr1',tr1),
    ('tr2',tr2),
    ('tr3',tr3),
    ('tr4',tr4),
    ('tr5',tr5),
    ('tr6',tr6),
    ('tr7',tr7),
    ('tr8',tr8),
    ('tr10',tr10)
])
```

In [111]:

```
pipe2.fit(X_train,y_train)
Out[111]:
Pipeline(steps=[('tr1',
                 ColumnTransformer(remainder='passthrough',
                                    transformers=[('imputer2',
                                                   SimpleImputer(strategy='mo
st_frequent'),
                                                   [2]),
                                                   ('imputer7',
                                                   SimpleImputer(strategy='me
dian'),
                                                   [7])])),
                ('tr2',
                 ColumnTransformer(remainder='passthrough',
                                    transformers=[('le', OrdinalEncoder(),
                                                   [0])])),
                ('tr3',
                 ColumnTransformer(remainder='passthrough',
                                    transformers=[('oh...
                ('tr6',
                 ColumnTransformer(remainder='passthrough',
                                    transformers=[('ohe',
                                                   OneHotEncoder(dtype='int3
2',
                                                                  sparse=Fals
e),
                                                   [47])])),
                ('tr7',
                 ColumnTransformer(transformers=[('scaler', MinMaxScaler(),
                                                   slice(0, 55, None))])),
                ('tr8',
                 ColumnTransformer(remainder='passthrough',
                                    transformers=[('pt', PowerTransformer(),
                                                   slice(0, 55, None))])),
                ('tr10', DecisionTreeClassifier())])
```

In [112]:

```
y_pred2=pipe2.predict(X_test)
print('decision tree:')
print('confusion matrix:')
print(confusion_matrix(y_test,y_pred2))
print('classification report:')
print(classification_report(y_test,y_pred2))
decision tree:
confusion matrix:
[[9177 813]
 [ 737 204]]
classification report:
                            recall f1-score
              precision
                                               support
           0
                   0.93
                              0.92
                                        0.92
                                                   9990
           1
                   0.20
                              0.22
                                        0.21
                                                    941
                                        0.86
                                                 10931
    accuracy
                              0.57
                                        0.57
                   0.56
                                                 10931
   macro avg
                              0.86
                                        0.86
                                                 10931
weighted avg
                   0.86
```

In [113]:

```
tr11=KNeighborsClassifier()
```

In [114]:

```
pipe3=Pipeline([
    ('tr1',tr1),
    ('tr2',tr2),
    ('tr3',tr3),
    ('tr4',tr4),
    ('tr5',tr5),
    ('tr6',tr6),
    ('tr7',tr7),
    ('tr8',tr8),
    ('tr11',tr11)
])
```

```
In [115]:
pipe3.fit(X_train,y_train)
Out[115]:
Pipeline(steps=[('tr1',
                 ColumnTransformer(remainder='passthrough',
                                    transformers=[('imputer2',
                                                    SimpleImputer(strategy='mo
st_frequent'),
                                                    [2]),
                                                   ('imputer7',
                                                    SimpleImputer(strategy='me
dian'),
                                                    [7])])),
                ('tr2',
                 ColumnTransformer(remainder='passthrough',
                                    transformers=[('le', OrdinalEncoder(),
                                                    [0])])),
                ('tr3',
                 ColumnTransformer(remainder='passthrough',
                                    transformers=[('oh...
                                                    [45])])),
                ('tr6',
                 ColumnTransformer(remainder='passthrough',
                                    transformers=[('ohe',
                                                    OneHotEncoder(dtype='int3
2',
                                                                  sparse=Fals
e),
                                                    [47])])),
                 ColumnTransformer(transformers=[('scaler', MinMaxScaler(),
                                                    slice(0, 55, None))])),
                 ('tr8',
                 ColumnTransformer(remainder='passthrough',
                                    transformers=[('pt', PowerTransformer(),
                                                    slice(0, 55, None))])),
                ('tr11', KNeighborsClassifier())])
```

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

In [116]:

```
y_pred3=pipe3.predict(X_test)
print('KNeighborsClassifer:')
print('confusion_matrix:')
print(confusion_matrix(y_test,y_pred3))
print('classification_report:')
print(classification_report(y_test,y_pred3))
```

```
KNeighborsClassifer:
confusion_matrix:
[[9784 206]
 [ 859
         82]]
classification_report:
                            recall f1-score
              precision
                                                support
           0
                    0.92
                              0.98
                                         0.95
                                                    9990
           1
                    0.28
                              0.09
                                         0.13
                                                     941
                                         0.90
                                                   10931
    accuracy
                                         0.54
                    0.60
                              0.53
                                                   10931
   macro avg
                    0.86
                              0.90
                                         0.88
                                                   10931
weighted avg
```

In [117]:

```
tr12=GradientBoostingClassifier()
```

In [118]:

```
pipe4=Pipeline([
    ('tr1',tr1),
    ('tr2',tr2),
    ('tr3',tr3),
    ('tr4',tr4),
    ('tr5',tr5),
    ('tr6',tr6),
    ('tr7',tr7),
    ('tr8',tr8),
    ('tr12',tr12)
])
```

```
In [119]:
```

```
pipe4.fit(X train,y train)
Out[119]:
Pipeline(steps=[('tr1',
                 ColumnTransformer(remainder='passthrough',
                                    transformers=[('imputer2',
                                                    SimpleImputer(strategy='mo
st_frequent'),
                                                    [2]),
                                                   ('imputer7',
                                                    SimpleImputer(strategy='me
dian'),
                                                    [7])])),
                ('tr2',
                 ColumnTransformer(remainder='passthrough',
                                    transformers=[('le', OrdinalEncoder(),
                                                    [0])])),
                ('tr3',
                 ColumnTransformer(remainder='passthrough',
                                    transformers=[('oh...
                 ('tr6',
                 ColumnTransformer(remainder='passthrough',
                                    transformers=[('ohe',
                                                    OneHotEncoder(dtype='int3
2',
                                                                  sparse=Fals
e),
                                                    [47])])),
                ('tr7',
                 ColumnTransformer(transformers=[('scaler', MinMaxScaler(),
                                                    slice(0, 55, None))])),
                ('tr8',
                 ColumnTransformer(remainder='passthrough',
                                    transformers=[('pt', PowerTransformer(),
                                                    slice(0, 55, None))])),
                ('tr12', GradientBoostingClassifier())])
```

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with noviewer.org

```
In [120]:
```

y_pred4=pipe4.predict(X_test)

```
print('GradientBoosterClassifier:')
print('confusion_matrix:')
print(confusion_matrix(y_test,y_pred4))
print('classification_report')
print(classification_report(y_test,y_pred4))
GradientBoosterClassifier:
confusion_matrix:
[[9954
         36]
 [ 889
         52]]
classification_report
              precision
                            recall f1-score
                                               support
           0
                   0.92
                                        0.96
                              1.00
                                                   9990
           1
                   0.59
                              0.06
                                        0.10
                                                    941
                                        0.92
                                                 10931
    accuracy
                   0.75
                              0.53
                                        0.53
                                                 10931
   macro avg
weighted avg
                   0.89
                              0.92
                                        0.88
                                                 10931
In [121]:
from sklearn.model_selection import cross_val_score
from sklearn.metrics import f1_score
In [122]:
y_pred1=pipe1.predict(X_test)
In [123]:
y_pred2=pipe2.predict(X_test)
In [124]:
y_pred3=pipe3.predict(X_test)
In [125]:
y_pred4=pipe4.predict(X_test)
In [126]:
print('rf:',y_pred1,'dt:',y_pred2,'knc:',y_pred3,'gbc:',y_pred4)
rf: [0 0 0 ... 0 0 0] dt: [0 0 0 ... 0 0 0] knc: [0 0 0 ... 0 0 0] gbc: [0 0
0 ... 0 0 0]
In [127]:
score1=f1_score(y_pred1,y_test,average='weighted')
```

```
In [128]:
score2=f1_score(y_pred2,y_test,average='weighted')
In [129]:
score3=f1_score(y_pred3,y_test,average='weighted')
In [130]:
score4=f1_score(y_pred4,y_test,average='weighted')
In [131]:
print('rf:',score1,'dt:',score2,'knc:',score3,'gbc:',score4)
rf: 0.9297813505142158 dt: 0.8557201983481194 knc: 0.9269123144274146 gbc:
0.948719894696188
In [132]:
cv1=cross_val_score(pipe1,X_train,y_train,cv=5)
In [133]:
cv2=cross_val_score(pipe2,X_train,y_train,cv=5)
In [134]:
cv3=cross_val_score(pipe3,X_train,y_train,cv=5)
In [135]:
cv4=cross_val_score(pipe4,X_train,y_train,cv=5)
In [136]:
print('rf:',np.mean(cv1),'dt:',np.mean(cv2),'knc:',np.mean(cv3),'gbc:',np.mean(cv4))
rf: 0.9074586575939094 dt: 0.856544832571952 knc: 0.9084878720398063 gbc: 0.
9169964198598388
In [137]:
pd.crosstab(y_test,y_pred4)
Out[137]:
      col 0
is promoted
            9954
                 36
         0
             889
                52
```

In [138]:

sns.heatmap(pd.crosstab(y_test,y_pred4),annot=True,cbar=True,linewidth=True,fmt='f')
plt.show()

In [139]:

import joblib

In [140]:

joblib.dump(pipe4, 'model.pkl')

Out[140]:

['model.pkl']