10. Další výpočty s vektory a body

Úloha 1. Skříň jsme přesunuli po úsečce z bodu A[-2;4] do bodu B[3;7], přičemž jsme na ni při tom působili silou F(2;1).

- (a) Jak daleko jsme ji přesunuli?
- (b) Jak velkou silou jsme působili?
- (c) Kolik práce jsme vykonali?
- (d) Určete, o jak velký úhel jsme silou působili "špatně".
- (e) Určete souřadnice vektoru síly \mathbf{G} , který bude mít stejnou velikost jako \mathbf{F} , ale bude působit tím "správným" směrem (tj. od A do B).

Úloha 2. Najděte nějaký nenulový vektor, který bude kolmý na vektor

- (a) (2;1),
- (b) (3;-1;2)

(tj. úhel jimi sevřený bude 90°). Jak efektivně poznáme, že dva vektory jsou na sebe kolmé, když známe jejich souřadnice?

Úloha 3. Nalezněte reálná čísla a, b taková že bude platit $\mathbf{u} \cdot \mathbf{v} = 16$ a $\mathbf{u} \cdot \mathbf{w} = 3$, kde $\mathbf{u} = (1; a; b)$, $\mathbf{v} = (2; -1; 4)$, $\mathbf{w} = (-1; 4; 4)$.

Úloha 4. Nalezněte reálná čísla a, b taková, že body K, L, M budou ležet na jedné přímce, jestliže jejich souřadnice jsou

- (a) K[1;2;3], L[4;5;7], M[10;a;b],
- (b) K[1;5;6], L[3;a;2], M[5;1;b].

(Nápověda: Na tuto úlohu vůbec není potřeba skalární součin.)

Úloha 5. Nalezněte všechna reálná čísla p taková, že odchylka vektorů ${\bf u}$ a ${\bf v}$ bude α , jestliže

- (a) $\mathbf{u} = (1; 1), \mathbf{v} = (2; p), \alpha = 60^{\circ},$
- (b) $\mathbf{u} = (3; 1), \mathbf{v} = (1; p), \alpha = 30^{\circ},$
- (c) $\mathbf{u} = (-p; p+1), \mathbf{v} = (1; 2p), \alpha = 90^{\circ}.$

1.

- (a) $\sqrt{34}$ (metrů)
- (b) $\sqrt{5}$ (Newtonů)
- (c) 13 (Joulů)
- (d) $\arccos\left(\frac{13}{\sqrt{170}}\right) \doteq 4^{\circ}24'$
- (e) $\left(5\sqrt{\frac{5}{34}}; 3\sqrt{\frac{5}{34}}\right)$

2.

- (a) např. (-1; 2)
- (b) např. (1;3;0)nebo (124;138;-117)nebo mnohé další...
- **3.** a = -2, b = 3

4.

- (a) a = 11, b = 15
- (b) a = 3, b = -2

5.

- (a) $p = -4 + 2\sqrt{3}$
- (b) $p_1 = \frac{1}{13} (6 5\sqrt{3}), p_2 = \frac{1}{13} (5\sqrt{3} + 6)$
- (c) $p_1 = 0, p_2 = -\frac{1}{2}$