

Rule of Total Probability

probability rules

{events collectively exhaustive}

{mutually exclusive}

probability rules

Rule of Total Probability

If events A_1,A_2,\ldots,A_k constitute a partition of the sample space Ω and $P(A_i)
eq 0 \ \forall i,$ then or any event B in Ω

$$P(B) = \sum_{i=1}^{k} P(A_i)P(B \mid A_i)$$

Proof:
$$P(B) = P(B \cup (A_1 \cup A_2 \cup \cdots \cup A_k))$$

 $= P((B \cap A_1) \cup (B \cap A_2) \cup \cdots \cup (B \cap A_k))$
{events collectively exhaustive}
 $= \sum_{i=1}^k P(B \cap A_i)$
{mutually exclusive}
 $= \sum_{i=1}^k P(A_i)P(B \mid A_i)$

so this rule only applies to MECE events!

probability rules

Bayes Rule

{rule of total probability}