

Winning Space Race with Data Science

Atif Hussain August, 2023

Executive Summary

Methodologies

Data Collection

- REST API
- Web Scraping

Data Wrangling

• Creation of binary Outcome Variable

Visualization

- Basic Graphs
- Maps using Folium
- Dashboard

Analysis

- Basic Analysis
- Predictive Models

Results

- Improved Success rate over the time
- KSC LC-39A is the most successful site
- ES-L1, GEO, HEO, and SSO have the highest success rate
- All sites are close to coastline
- Decision Trees model has the highest accuracy

Introduction

Project background and context

 SpaceX is a leader in the space industry. It has launched several missions in some of which first stage has been successful and unsuccessful in others. We need to analyze publicly available data for a competitor of SpaceX.

Specific questions

- How various factors (launch site, payload, orbit etc) affect success/failure of first stage landing?
- Is there any trend in success rate of first stage landings over time?
- What ML model best predicts success?

Methodology

Data collection:

Collected through REST API and Web Scraping

Perform data wrangling

Filtering, missing values handling, one hot endcode

Visualization and EDA with SQL

Visual analytics using Folium and Plotly Dash

Predictive Analytics

Various classification models built and tested

Data Collection

Request/Fetch
Data

2

Convert to Data Frame

3

Filter Data

4

Replace missing values

5

Export to csv

Data Collection – SpaceX API

Github Link: https://github.com/Atifhussain40/data-science-capstone/blob/main/api%20collection.ipynb

Data Collection - Scraping

Github Link: https://github.com/Atifhussain40/data-science-capstone/blob/main/web%20scraping.ipynb

Data Wrangling

Import necessary libraries (numpy, pandas)

Load the dataset

Data analysis:

Missing values percentage Column types

Calculations:

Export the dataframe to a CSV file

Number of launches on each site

Number and occurrence of each orbit

Number and occurrence of mission outcome per orbit type

New variable 'Class'

Github Link: https://github.com/Atifhussain40/data science capstone/blob/main/data%20wrangling.ipynb

EDA with Data Visualization

Plot	Purpose
FlightNumber vs. PayloadMass	Investigate the impact of flight number and payload mass on landing success
FlightNumber vs. LaunchSite	Examine the influence of flight number and launch site on success rates
Payload vs. LaunchSite	Determine the relationship between payload mass and choice of launch site
Success Rate vs. Orbit Type	Identify which orbit types have higher success rates
FlightNumber vs. Orbit Type	Explore the correlation between flight number and orbit type
Payload vs. Orbit Type	Analyze how payload mass and orbit type affect landing success
Yearly Success Trend	Assess the trend of launch success rate over time

EDA with SQL 1/2

Select

Select distinct launch site names.

Query: SELECT DISTINCT "Launch_Site" FROM SPACEXTABLE;

Display

Display 5 records where launch sites begin with the string 'CCA'.

 Query: %sql SELECT SUM(PAYLOAD_MASS_KG_) as Total_Payload_Mass FROM SPACEXTABLE WHERE Customer = 'NASA (CRS)';

Display

Display the total payload mass carried by boosters launched by NASA (CRS).

 Query: SELECT SUM("PAYLOAD_MASS__KG_") as Total_Payload_Mass FROM SPACEXTABLE WHERE "Customer" = 'NASA (CRS)';

Display

Display average payload mass carried by booster version F9 v1.1.

 Query: SELECT AVG("PAYLOAD_MASS__KG_") as Average_Payload_Mass FROM SPACEXTABLE WHERE "Booster_Version" LIKE 'F9 v1.1%';

List

List the date when the first successful landing outcome in ground pad was achieved.

 Query: SELECT MIN("Date") as First_Successful_Landing FROM SPACEXTABLE WHERE "Landing_Outcome" LIKE 'Success%';

Github Link: https://github.com/Atifhussain40/data science capstone/blob/main/sql%20analysis.ipynb

EDA with SQL 2/2

List

List the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less

• Query: SELECT DISTINCT "Payload" FROM SPACEXTABLE WHERE "Landing Outcome" LIKE 'Success (drone ship)%' AND "PAYLOAD MASS KG " > 4000 AND "PAYLOAD MASS KG " < 6000:

than 6000.

List

List the total number of successful and failure mission outcomes.

• Query: SELECT SUM(CASE WHEN "Mission Outcome" LIKE 'Success%' THEN 1 ELSE 0 END) AS Successful Missions, SUM(CASE WHEN "Mission Outcome" LIKE 'Failure%' THEN 1 ELSE 0 END) AS Failed Missions FROM SPACEXTABLE;

List

List the names of the booster versions which have carried the maximum payload mass.

Query: SELECT "Booster Version" FROM SPACEXTABLE WHERE "PAYLOAD MASS KG " = (SELECT MAX("PAYLOAD MASS KG ") FROM SPACEXTABLE);

List

List the records which will display the month names, failure landing outcomes in drone ship, booster versions, and launch site for the months in the year 2015.

•Query: SELECT SUBSTR("Date", 4, 2) as Month, "Booster Version", "Launch Site". "Landing Outcome" FROM SPACEXTABLE WHERE "Landing Outcome" LIKE 'Failure (drone ship)%' AND SUBSTR("Date",7,4)='2015';

Rank

Rank the count of landing outcomes between the date 2010-06-04 and 2017-03-20, in descending order.

Query: SELECT "Landing Outcome", COUNT(*) as Count FROM SPACEXTABLE WHERE "Date" BETWEEN '2010-06-04' AND '2017-03-20' GROUP BY "Landing Outcome" ORDER BY Count DESC;

Github Link: https://github.com/Atifhussain40/data_science_capstone/blob/main/sql%20analysis.ipynb

Build an Interactive Map with Folium

Object Added	Purpose
folium.map.Marker	Mark the exact location of each launch site with a text label marker. The marker has the launch site name.
folium.PolyLine	Draw a line from the launch site to the coastline.
folium.PolyLine	Draw a line from a nearby city to the launch site and display the distance.
folium.PolyLine	Draw a line from a nearby railway to the launch site and display the distance.
folium.PolyLine	Draw a line from a nearby highway to the launch site and display the distance.

Github Link: https://github.com/Atifhussain40/data_science_capstone/blob/main/Folium.ipynb

Build a Dashboard with Plotly Dash

Chart	Purpose
Chart- Successful Launches by Site	To see which site has the highest share in the successful launches
Chart – KSC LC 39A Success Failure comparison	To see the percentage of successful launches from the site
Scatter Chart	To see correlation between payload and launch success

Predictive Analysis (Classification)

- Data Loaded
- Models Built
- Models tuned using GridSearchCV
- Models compared using accuracy score
- Best model selected
- Github Link: https://github.com/Atifhussain40/data-science-capstone/blob/main/Predictive.ipynb

Main Results

- Success rate has improved over the time
- KSC LC 39A has the best success rate
- Decision Trees based model performs best in predicting outcome

Flight Number vs. Launch Site

- CCAFS SLC 40 has the highest number of flights, however, many of those have been unsuccessful
- KSC LC 39A has very few unsuccessful flights

CCAFS SLC 40 Launch Site VAFB SLC 4E Class KSC LC 39A 8000 2000 4000 6000 10000 12000 14000 **Payload**

Payload vs. Launch Site

- CCAFS SLC 40 has more success with greater mass loads
- KSC LC 39A also has greater success with small mass loads

1.0 0.8 Success Rate 0.2 ES-L1 GEO GTO HEO ISS LEO MEO SO SSO VLEO Orbit

Success Rate vs. Orbit Type

• ES-L1, GEO, HEO and SSO have the highest success rates

• GTO orbit has the lowest success rate

Flight Number vs. Orbit Type

- LEO orbit, success is related to the flight number whereas
- In the GTO orbit, there is no relationship between flight number and the success

Payload vs. Orbit Type

In ISS orbit, success is associated with higher payloads

Launch Success Yearly Trend

Success rate has generally increased over the years.

All Launch Site Names

Query has selected distinct/unique launch site names from SPACEXTABLE

Launch Site Names Begin with 'CCA'

Selected records where launch sites began with `CCA` using LIKE

Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASS_KG_	Orbit	Customer	Missio
06/04/2010	18:45:00	F9 v1.0 B0003	CCAFS LC-40	Dragon Spacecraft Qualification Unit	0.0	LEO	SpaceX	
12/08/2010	15:43:00	F9 v1.0 B0004	CCAFS LC-40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0.0	LEO (ISS)	NASA (COTS) NRO	
22/05/2012	7:44:00	F9 v1.0 B0005	CCAFS LC-40	Dragon demo flight C2	525.0	LEO (ISS)	NASA (COTS)	
			CCAFC	CV		150	NIACA	

Total Payload Mass

Average Payload Mass by F9 v1.1

First Successful Ground Landing Date

```
* sqlite://my_data1.db
Done.

MIN("Date")

01/08/2018
* SELECT MIN("Date") FROM SPACEXTABLE WHERE "Landing_Outcome" = 'Success (ground pad)';

* sqlite://my_data1.db
Done.
```

The first successful ground landing was on 01/07/2020

Successful Drone Ship Landing with Payload between 4000 and 6000

Total Number of Successful and Failure Mission Outcomes

List the total number of successful and failure mission outcomes

Boosters Carried Maximum Pa yload

F9 B5 B1058.3

F9 B5 B1051.6

F9 B5 B1060.3

F9 B5 B1049.7

15600.0

15600.0

15600.0

15600.0

2015 Launch Records

```
* sqlite:///my_data1.db
Done.

Out[36]: Month Booster_Version Launch_Site Landing_Outcome

10 F9 v1.1 B1012 CCAFS LC-40 Failure (drone ship)

04 F9 v1.1 B1015 CCAFS LC-40 Failure (drone ship)
```


Launch Sites in USA

Marked Sites

Distances from city, railway, and highway

Successful Launches by site

Total Success Launches by Site

KSC LC 39A has the highest successful launches

KSC LC 39A Success vs Failure

Total Success Launches for Site KSC LC-39A

KSC LC 39A has had more success than failure

Classification Accuracy

Accuracy Comaprison

Confusion Matrix of Decision Tree

The matrix shows that the classifier misclassified 3 failed landings as successful

Conclusions

Launch success rate has generally increased over the time.

Orbits ES-L1, GEO, HEO, SSO, VLEO had the most success

KSC LC-39A has enjoyed the most success.

The Decision tree classifier is the best classifier in the current context

Conclusions

- Launch success rate has generally increased over the time.
- Higher payloads are associated with greater success
- Orbits ES-L1, GEO, HEO, SSO, VLEO had the most success
- KSC LC-39A has enjoyed the most success.
- Sites are near the coastline
- The Decision tree classifier is the best classifier in the current context

