FABRÍCIO ALMEIDA-SILVA

I am a computational biologist interested in developing and applying algorithms to understand how evolution shaped plant genomes and gene networks. Additionally, I am interested in developing biometrical and biostatistical frameworks to identify genes associated with quantitative traits of agronomical relevance in crop species, especially legumes.

EDUCATION

Current 2020

Master's Candidate, Plant Biotechnology State University of Northern Rio de Janeiro

Q RJ. Brazil

2019

2016

Undergraduate, Biological Sciences

State University of Northern Rio de Janeiro

RJ, Brazil

· Thesis: Analysis of soybean transcriptional regulation using gene coexpression networks

RESEARCH EXPERIENCE

Current 2020

Graduate Researcher

Venancio Lab

State University of Northern Rio de Janeiro

- · Development of an R package to infer and compare biological networks
- · Development of an R package to integrate GWAS and RNA-seq data to mine candidate genes associated with agronomically important traits
- · Development and optimization of pipeline to process and analyze largescale RNA-seq data
- · Genomic analysis of stress-related gene families in soybean

2019 2017

Undergraduate Researcher

Venancio Lab

State University of Northern Rio de Janeiro

- · Analysis of large-scale RNA-seq data
- · Construction of the largest soybean expression atlas

PUBLICATIONS

- 1) F Almeida-Silva, TM Venancio (2021). Integration of genome-wide association studies and gene coexpression networks unveils promising soybean resistance genes against five common fungal pathogens. bioRxiv.
- 2 DK Turquetti-Moraes, KC Moharana, **F Almeida-Silva**, F Pedrosa-Silva et al. (2021). Integrating omics approaches to discover and prioritize candidate genes involved in oil biosynthesis in soybean. bioRxiv.
- **3 F Almeida-Silva**, TM Venancio (2021). *cageminer: an R/Bioconductor package to* prioritize candidate genes by integrating GWAS and gene coexpression networks. hioPxiv

CONTACT

- fabricio_almeidasilva@hotmail.com
- Ø almeidasilvaf.github.io
- almeidasilvaf
- almeidasilvaf

PROGRAMMING SKILLS

R	
Bash	
Python	
Perl	
SQL	
CSS	

LANGUAGES

Portuguese
English
Spanish
French

Last updated on 2021-09-12.

- F Almeida-Silva, TM Venancio (2021). BioNERO: an all-in-one R/Bioconductor package for comprehensive and easy biological network reconstruction. bioRxiv.
- **5** F Almeida-Silva, TM Venancio (2021). Pathogenesis-related protein 1 (PR-1) genes in soybean: genome-wide identification, structural analysis and expression profiling under multiple biotic and abiotic stresses. bioRxiv.
- **6** F Almeida-Silva, KC Moharana, TM Venancio (2021). The state of the art in soybean transcriptomics resources and gene coexpression networks. in silico Plants. 3 (1), diab005
- **7** S Sangi, PM Araújo, FS Coelho, RK Gazara, **F Almeida-Silva** et al. (2021). *Genome-Wide Analysis of the COBRA-Like Gene Family Supports Gene Expansion through Whole-Genome Duplication in Soybean (Glycine max)*. **Plants**. 10 (1), 167
- **8 F Almeida-Silva**, KC Moharana, FB Machado, TM Venancio (2020). *Exploring the complexity of soybean (Glycine max) transcriptional regulation using global gene co-expression networks.* **Planta**. 252 (6), 1-12
- (9) KC Moharana, **F Almeida-Silva**, RK Gazara, F Pedrosa-Silva, FS Coelho et al. (2020). *Systematic analysis of 1,298 RNA-Seq samples and construction of a comprehensive soybean (Glycine max) expression atlas..* **The Plant Journal: for Cell and Molecular Biology**.

F Almeida-Silva, TM Venancio (2021). *BioNERO: Biological Network Reconstruction Omnibus*. DOI: 10.18129/B9.bioc.BioNERO

F Almeida-Silva, TM Venancio (2021). cageminer: Candidate Gene Miner. DOI: 10.18129/B9.bioc.cageminer

F Almeida-Silva, TM Venancio (2021). SoyFungiGCN: R/Shiny package to explore a gene coexpression network of soybean infected with pathogenic fungi.

Package: github.com/almeidasilvaf/SoyFungiGCN Web app: soyfungigcn.venanciogroup.uenf.br

Q AWARDS AND DISTINCTIONS Best oral presentation 2021 Brazil 6th Fluminense Graduate Congress Honorable mention 2020 Brazil 3rd Symposium on Plant Biotechnology 2020 Best poster presentation Brazil 5th Fluminense Graduate Congress **Undergraduate Honors** 2020 Brazil State University of Northern Rio de Janeiro Honorable mention 2015 Brazil Brazilian Maths Olympiad for Public Schools

		COMPLEMENTARY EDUCATION	
2021		Building Web Applications in Django University of Michigan	♥ Michigan, USA
2021	•	Using Databases with Python University of Michigan	♥ Michigan, USA
2021		Using Python to Access Web Data University of Michigan	♥ Michigan, USA
2020		Integrated Analysis in Systems Biology Icahn School of Medicine at Mount Sinai	• New York, USA
2020		Dynamical Modeling Methods for Systems Biology Icahn School of Medicine at Mount Sinai	• New York, USA
2020		Network Analysis in Systems Biology Icahn School of Medicine at Mount Sinai	• New York, USA
2020		Statistics for Genomic Data Science Johns Hopkins University	♥ Baltimore, USA
2020	•	Developing Data Products Johns Hopkins University	♥ Baltimore, USA
2020		Building Data Visualization Tools Johns Hopkins University	♥ Baltimore, USA
2020	•	Regression Models Johns Hopkins University	♥ Baltimore, USA
2020		Advanced R Programming Johns Hopkins University	♥ Baltimore, USA
2020		Algorithms for DNA sequencing Johns Hopkins University	Paltimore, USA
2020	•	Python for Genomic Data Science Johns Hopkins University	♥ Baltimore, USA
2020		Practical Machine Learning Johns Hopkins University	♥ Baltimore, USA
2020	•	Statistical Inference Johns Hopkins University	♥ Baltimore, USA

- 1. **F Almeida-Silva**. cageminer: mining candidate genes by integrating GWAS and gene coexpression networks. **BioC2021**. Virtual. (2021)
- 2. **F Almeida-Silva**, TM Venancio. *Prioritizing biotic stress-related genes in soybean by integrating GWAS and gene coexpression network analysis.* **5th Meeting on Genetics and Plant Breeding**. Viçosa, Brazil. (2020)
- 3. **F Almeida-Silva**, KC Moharana, FB Machado, RK Gazara, TM Venancio. *Global coexpression network analysis unveils important aspects of evolution and transcriptional regulation in soybean (Glycine max).* **15th International Conference of the Brazilian Society for Bioinformatics and Computational Biology**. Campos do Jordão, Brazil. (2019)
- 4. **F Almeida-Silva**, FB Machado, KC Moharana, TM Venancio. *Gene coexpression networks uncover transcription factors that probably shape the transcriptional landscape during soybean germination.* **47th Annual Meeting of the Brazilian Society for Biochemistry and Molecular Biology**. Joinville, Brazil. (2018)

REVIEWER

- · 2021 current **Scientific Reports**
- · 2021 current **BMC Plant Biology**