

Course 1

Osman SALEM
Maître de conférences - HDR
osman.salem@u-paris.fr

1

Ubuntu You will use your laptop Install Virtualbox/Vmware workstation Install Ubuntu

UNIX/LINUX OPERATING SYSTEM

- Introduction to Unix
- History of UNIX
- What is LINUX
- LINUX Distributions
- Unix OS Structure
- Unix File System
- Unix Directories, Files and Inodes
- Users, Groups and Permissions

3

UNIX

- An operating system
- Developed at AT&T Bell Labs in the <u>1969</u>
- By ken Thompson and Dennis Ritchie
- Objective:
 - Portable OS written in C
 - Not in assembler
- Distributed as Open Source

- Command Line Interpreter
- GUIs (Window systems) are now available
- Unix becomes commercial & paying (outside AT&T)

UNIX

- Unix is a multi-user, multi-tasking operating system
- You can have many users logged into a system simultaneously, each running many programs
- It's the kernel's job to keep each process and user separate and to regulate access to system hardware, including cpu, memory, disk and other I/O devices

History of UNIX

1980

- Richard Stallman decides to create a clone of "Unix"
- With source code available (Open source)
- Creates Free software (most beautiful gift for the world!)
 - Open Source
 - You can look and modify the code
 - General Public License (GPL)
- Stallman want to create a derived version of "Unix"
 - GNU : GNU's Not Unix
 - Develop most of Unix Commands (GCC: C compiler)
- But they were late to develop the Kernel
 - Communications between software and hardware
 - Memory management, Process management, CPU usage, hard disk, network card, etc.

/

History of LINUX

Linus Torvals in 1991

- Has created the kernel using Minix
- Publish in web forum
- Like Free Software (General Public License)
- Error in naming
 - Kernel : Linux à la place de Linus
- Invite other to join his project
- Andrew Tanenbaum
 - Computer Science professor emeritus in Amesterdam
 - Author of Minix => Teaching the OS
 - Minix: Unix-like operating system for teaching purposes
- Like kernel is the most important part
 - Linux + GNU = Linux
 - Stallman ask to call it: GNU /Linux
 - It's so late, because it was widely known as Linux

Linus Torvalds

Andrew

Pichard Stallman

- Unix was the predecessor of Linux
- Linux is a variant of Unix
 - So is Mac OS X, so much of this tutorial applies to Macs as well
 - Linux is open source
 - Linux is free
 - It's fully customizable
 - It's stable (i.e. it almost never crashes)
 - These characteristics make it an ideal OS for programmers and scientists

LINUX Distributions

- Mandrake: http://www.mandrakesoft.com/
- RedHat: http://www.redhat.com/
- Fedora: http://www.fedora-fr.org/
- CentOs : http://www.centos.org/
- Debian: http://www.debian.org/ (very secure)
- Ubuntu: http://www.ubuntu-fr.org/
- SuSE/Novell: http://www.suse.com/
- Kali: https://www.kali.org/
- etc. (or distrowatch.com)

11

Installation

Installation

- Root password
- Network Devices
- Services
- Users
- Hardware

13

UNIX Structure

<u>Shell</u>

- Command line interpreter
- Shell is an interface between user and kerne
- Shell interprets your input as commands and pass them to kernel

Shell commands

Some commands

- date
- who am i : account used
- who: list of connected users to the system
- cal: calender
- uname: OS & kernel version
- id: identity of user
- su: switch user
- script -a => exit: save in file name typescript
- file *filename*: the type of the file

19

Shell commands

Some commands

- date
- Is, cp, rm, mv, In, pwd, cd, mkdir, find, cat, more, less, grep, sort, tail, head, wc, whereis, alias, unalias, type
- chgrp, df, file, tac, rev, tr, date, clear, diff, passwd, who, whoami
- Wildcards symbol: *, ?, []

UNIX Shell

- The shell sits between you and the operating system, acting as a command interpreter.
- It reads your terminal input and translates the commands into actions taken by the system.
- When you log into the system you are given a default shell.
- When the shell starts up it reads its startup files and may set environment variables, command search paths, and command aliases, and executes any commands specified in these files.
 - /etc/profile

Then attempts to read and execute (but stop after the first file is found)

- 1. .bash_profile (fedora, redhat, centos, etc.)
- 2. .bash_login
- 3. .profile (debian, ubuntu)

21

UNIX Shell

- Shell sessions can be divided into 2: login shells and non-login shells
 - Login shell: ctrl-alt-F1 =>F6 & session on remote hosts (ssh, telnet)
 - Non-login shell: terminal session on the GUI desktop
- Startup files divided into 2 groups
- Global files in /etc and applied to all users
 - Non login: /etc/bash.bashrc
- Local files in user's home directory
 - Non login: .bashrc
- .bash_profile or .profile : source .bashrc file: read this file during startup of login and non-login shells, so putting your changes in .bashrc is usually a safe bet

Customize your shell

- # nano /home/login/.bashrc
 - alias III="Is | less"
 - alias x= "ls -l"
 - alias n= "nano"
- Restart your terminal
- Or
- source .bashrc

23

Help!

- Whenever you need help with a command type "man" and the command name
- The **man** command is used to display the manual entry associated with **word** entered as argument.
- The -k option is used to display a list of manual entries that contain entered keyword.

man [chapter] word
man -k keyword

File System

- The Unix file system looks like an inverted tree structure.
- You start with the root directory, denoted by /, at the top and work down through sub-directories underneath it.
- Root Directory /

29

Structure of Standard Directories in Unix/Linux

- / The ancestor of all directories on the system; all other directories are subdirectories of this directory, either directly or through other subdirectories.
- /bin Essential tools and other programs (or binaries).
- /dev Files representing the system's various hardware devices. For example, you use the file `/dev/cdrom' to access the CD-ROM drive.
- /etc Miscellaneous system configuration files, startup files, etc.

Structure of Standard Directories in Unix/Linux

- /home The home directories for all of the system's users.
- /lib Essential system library files used by tools in `/bin'.
- /proc Files that give information about current system processes.
- /root The superuser's home directory, whose username is root. (In the past, the home directory for the superuser was simply `/'; later, `/root' was adopted for this purpose to reduce clutter in `/'.)

31

Structure of Standard Directories in Unix/Linux

- /sbin Essential system administrator tools, or system binaries.
- /tmp Temporary files.
- /usr Subdirectories with files related to user tools and applications.

Essential Binaries for Use by All Users (/bin/)

Table 5-1

File	Description
/bin/bash	The bash shell
/bin/cat	Display files
/bin/cp	Copy files
/bin/dd	Copy files byte-wise
/bin/gzip	Compress files
/bin/mount	Mount file systems
/bin/rm	Delete files
/bin/vi	vi editor

33

Libraries (/lib/)

- Shared libraries are removed from the actual program, stored in the system, and only called up when the program runs
- The directory /lib/ contains the libraries that are used by programs in the directories /bin/ and /sbin/
- The kernel modules (hardware drivers not compiled into the kernel) are located in the directory /lib/modules/
- You can find additional libraries below the directory /usr/

Mount Points for Removable Media (/media/*)

- Linux creates directories such as the following in the directory /media/ (depending on your hardware) for mounting removable media:
 - /media/cdrom/
 - /media/cdrecorder/
 - /media/dvd/
 - /media/floppy/

35

System Binaries (/sbin/)

- Contains important system administration programs
- Programs in /sbin/ can also, as a rule, be run by normal users, but only to display configured values

Temporary Area (/tmp/)

Various programs create temporary files that are stored in /tmp/ until they are deleted

37

Variable Files (/var/)

- This directory and its subdirectories contain files that can be modified while the system is running
 - File in printing

Table 5-7

Directory	Description
/var/lib/	Variable libraries (such as databases for the commands
	locate and rpm)
/var/log/	Log files for most services
/var/run/	Files with information on running processes
/var/spool/	Directory for queues (printers, e-mail)
/var/lock/	Lock files to protect devices from multiple use

- Relative to your current location
 - .: your current location
 - .. : one directory above your current location pwd: gives you your current location
- Example

Is ./linux : lists the content of the dir linux Is ../../ : lists everything that is two dir higer

User Directories (/home/)

- Every user on a Linux system has his own area in which to create and remove files: its home directory
- Individual configuration files can be found in the user's home directory

Table 5-4

File	Description
.profile	User's private login script
.bashrc	Configuration file for bash
.bash_history	List of commands previously run in bash

- If there are no special settings, the home directories of all users are located beneath /home/
- The home directory of a user be addressed via "~"

41

UNIX File System

Figure 5-2

Moving in Directories

- cd try_it
 - Changes the directory to try_it
- pwd
 - Prints present Working Directory (e.g. /home/smith/try_it)
- cd .
 - Move to superior directory
- pwd
 - Prints /home/smith
- cd /home
 - The absolute path
- pwd
 - Prints /home

47

Moving in Directories

- cd
 - The system is returned to the user home directory
 - cd ../../rep1/srep1; cd ~rep1/srep1; cd; cd ~toto/public-html
- cd \$HOME <=> cd <=> cd ~
- echo \$USER
- whoami
- w & who

- *Is* is used to list the contents of a directory.
- If the command Is is written with parameter —/
 - then the command lists contents of the working directory with details. Example:
 - \$ Is -I

Command: Is

- Is has many options
 - -/ long list (displays lots of info)
 - -t sort by modification time
 - -S sort by size
 - -h list file sizes in human readable format
 - *-r* reverse the order
 - -a list all files (with hidden files)
 - -A same as –a minus directories "." and ".."
 - -d list only directories
 - -g do not list owner (similar to ls –l but without owner)
- "man Is" for more options
- Options can be combined: "Is -Itr"