Funkcje systemu operacyjnego

wspomaganie użytkownika (ang. user functions)

- sterowanie i utrzymanie kontroli nad programem (ang. program control)
- obsługa wejścia/wyjścia (ang. I/O handling)
- obsługa plików (ang. file system manipulation)

funkcje systemu (ang. system functions)

- zarządzanie pamięcią (ang. memory management)
- ochrona zasobów (ang. resource protection)
- przydział zasobów (ang. resource allocation)
- obsługa wyjątków (ang. exception handling)
- harmonogramowanie (ang. scheduling)
- raportowanie (ang. accounting)

System z podziałem czasu (ang. time sharing)

- każde działanie jest procesem lub jego częścią

Istotność procesu i schemat przełączania

Poziomy uprzywilejowania (istotności) procesów

- obsługa wyjątków (ang. exception handling) utrzymanie integralności systemu
- obsługa we/wy (ang. *I/O handling*) funkcje krytyczne względem czasu
- zadania nadzoru (ang. supervisor functions) zarządzanie procesami i pamięcią,
- zadania użytkowników (ang. user jobs)

- zdarzenia asynchroniczne przerwanie zewnętrzne (INT)
- zdarzenia synchroniczne wywołanie systemowe (SVC), pułapka (TRAP)

Przerwania i wyjątki

Przerwanie – (ang. *interrupt*) sygnalizowane zdarzenie **w środowisku procesora** wymagające obsługi programowej, najczęściej obsługa zewnętrznych urządzeń wejścia/wyjścia (ang. *inupt/output*)

Wyjątek – (ang. exception) sygnalizowane **zdarzenie podczas wykonania instrukcji** wymagające obsługi programowej (najczęściej błąd)

"Przerwanie" programowe – instrukcja procesora: wywołanie procedury systemowej, którą rozpoczyna automatyczne przechowanie słowa stanu procesora

Przerwania precyzyjne

- wewnętrzne (wyjątki, niesprawności, błędy wykonania) \rightarrow różne efekty
- zewnętrzne (zdarzenia w środowisku) \rightarrow zwłoka obsługi (ang. interrupt latency)

Przerwania nieprecyzyjne (zwykle niemaskowalne) – bez możliwości odtworzenia stanu procesora po zakończeniu obsługi, spowodowane błędem krytycznym

Obsługa przerwań

Priorytet obsługi – zależy przede wszystkim od jego pilności (ang. urgency):

- (H) spowodowane naruszeniem bezpieczeństwa lub błędem sprzętowym
- (M) krytyczne ze względu na czas obsługi (na przykład transmisja danych)
- (L) spowodowane obniżeniem przepustowości systemu lub związane z obsługą zdarzeń, których ważność jest określona przez użytkownika.

Przerwania nieprecyzyjne (zwykle niemaskowalne) – najwyższy priorytet (H)

Przerwania precyzyjne

- wewnętrzne (błędy wykonania) priorytet H lub M
 - instrukcja została *zakończona* (ang. *completed*), lecz wytworzony wynik jest błędny (na przykład wykryto nadmiar)
 - instrukcja została pominięta (ang. supressed), bo naruszono reguły ochrony
 - instrukcja została *zignorowana* (ang. *nulified*) wykonanie było niemożliwe, lecz po usunięciu przyczyny możliwe jest powtórzenie działania
 - instrukcja została wstrzymana (ang. terminated).
- *zewnętrzne (zdarzenia w otoczeniu)* → priorytet L lub M, zwykle obsługa we/wy

Identyfikacja przerwania – odpytywanie

Identyfikacja źródła przerwania

- odpytywanie (ang. polling) ciągłe zaangażowanie procesora
- samoidentyfikacja
 - ustanowienie sztywnego łańcucha priorytetów zgłoszeń (ang. daisy-chain)
 - wektoryzacja przerwań

Łańcuch zgłoszeń z ustalonymi priorytetami typu daisy-chain.

Identyfikacja przerwania – wektoryzacja

zgłoszenie: zbocze impulsu (opadające) lub poziom sygnału IRQ#

maska: selektywne blokowanie zgłoszeń

priorytety: ustalanie priorytetu: zwykły, z rotacją, z rotacją specjalną

obsługa: wykaz przerwań w trakcie obsługi (ang. pending interrupt)

wektor: kod identyfikujący procedurę obsługi w tablicy przerwań

(ang. interrupt table) w pamięci operacyjnej komputera

Identyfikacja przerwania – dystrybucja

Potrzeba równomiernego obciążenia zadaniami obsługi procesorów w systemie wieloprocesorowym

Protokół przerwania (schemat działania):

- sekwencja programowania sterownika
- sekwencja zgłoszenia
 - identyfikator źródła przerwania
 - adresowanie procesora obsługującego
 - o geograficzne jawnie wskazany procesor obsługujący
 - o logiczne i rozgłaszanie (ang. *broadcasting*) obsługę podejmuje jeden z mniej obciążonych procesorów
 - kody kontrolne
- sekwencja zakończenia
 - identyfikator źródła przerwania
 - kod zakończenia (ang. End Of Interrupt, EOI)
 - kody kontrolne

Obsługa wejścia i wyjścia

Podsystem wejścia/wyjścia

Urządzenia we/wy:

- magazynujące (ang. *storage*) przechowywanie danych
 - pamięci wtórne i tercjalne, archiwizery
- gromadząco-rozsyłające (ang. source/sink) konwersja i rozsyłanie danych
 - komunikacja człowieka z komputerem: mysz, klawiatura, monitor ekranowy, drukarka
 - sprzęg procesów przemysłowych z komputerem: czujnik, regulator, konwerter A/C i C/A, sterownik
 - komunikacja między inteligentnymi terminalami: modem, łącze sieci komputerowej, łącze transmisji szeregowej lub równoległej.

Urządzenia wejścia i wyjścia

Cechy eksploatacyjne urządzeń zewnętrznych:

- czas dostępu (ang. *access time*), zwłoka dostępu (ang. *latency*) znacznie (>10⁵ razy) większe niż dla pamięci (dostęp sekwencyjny)
- przepustowość (ang. bandwith) maksymalna liczba danych przesyłanych w kwancie czasu (transmisja równoległa z szybkością GB/s).
- ryzyko błędu (ang. error rate) średnie ryzyko błędu (<10-6)

Sterowanie urządzeniami (mikrokontrolery)

- programowanie sterownika (wysyłanie poleceń)
- testowanie sterownika
- obsługa przerwań sygnalizowanych przez urządzenia
- obsługa błędów urządzeń.

Sterowniki

- łącza bezpośredniego (COM, LPT) sprzęg (ang. interface) we/wy
 - szeregowego (protokół RS232, RS485, USB, FireWire)
 - równoległego (protokół Centronics)
- magistral dedykowanych lub współdzielonych.

Oprogramowanie we/wy

Struktura warstwowa (ang. software layers)

- "uchwyty przerwań" (ang. interrupt handlers) procedury obsługi zgłoszeń
- sterowniki urządzeń (ang. device drivers) działania specyficzne dla urządzeń (translacja poleceń logicznych ("odczytaj blok danych")
 na zestaw poleceń fizycznych ("odczytaj sektor N na ścieżce P w dysku D")):
 - buforowanie (kolejkowanie) poleceń logicznych
 - zmiana porządku poleceń w celu poprawy przepustowości transmisji
 - zmiana logicznych adresów urządzeń i bloków danych na adresy fizyczne
 - obsługa błędów transmisji.
- funkcje użytkownika oprogramowanie niezależne od urządzeń:
 - zmiana symbolicznej nazwy urządzenia (standardowe wejście i wyjście, drukarka) na nazwę logiczną (adres bloku sterującego procesu obsługi)
 - przeformatowanie danych na postać wymaganą przez urządzenie (buforowanie, upakowanie, rozpakowanie, translacja kodu danych)
 - przydział i zwolnienie przydziału pamięci.
- uaktywnienie (proces użytkownika) określenie parametrów transmisji, przygotowanie danych i zainicjowanie komunikacji we/wy.

Procesy wejścia i wyjścia

Sterowniki urządzeń (ang. device drivers) – zasoby chronione

Funkcje obsługi wejścia/wyjścia – osobne procesy na poziomie nadzoru.

Proces obsługi wejścia lub wyjścia:

- program wykonywany przez CPU
- program wykonywany przez sterownik

Klasyfikacja

- bezpośrednie we/wy (ang. direct I/O) funkcje sterownika wykonuje procesor: testowanie statusu urządzenia (ang. busy waiting) i nadzór wykonania poleceń
- nakładane (ang. overlapped) we/wy obsługa w trybie przerwań precyzyjnych, wymaga intensywnej synchronizacji
- autonomiczne (ang. *autonomous*) we/wy bezpośredni dostęp do pamięci (ang. *Direct Memory Access*, DMA), wymaga minimum synchronizacji.

Nakładane we/wy (overlapped I/O)

Synchronizacja obsługi we/wy w trybie przerwań sygnalizujących:

- gotowość peryferala (urządzenia we/wy) do transmisji
- zakończenie operacji
- wystąpienie wyjątku sygnalizowanego (na przykład błąd transmisji).

Procesy we/wy są niezależne:

- jednoczesna obsługa wielu urządzeń, problem identyfikacji źródła
- konieczność przełączania procesów

Realizacja nakładanego we/wy

Autonomiczne we/wy

Transmisja bloku danych zamiast transmisji danych pojedynczych:

- zmniejszenie częstości synchronizowania procesów
- redukcja narzutów czasowych synchronizowania
- konieczne bufory danych najprościej w pamięci głównej
 - → transmisja z pominięciem CPU (DMA)

Realizacja autonomicznego we/wy

Bezpośredni dostęp do pamięci (DMA)

Obsługa w trybie bezpośredniego dostępu do pamięci

- programowanie procesora DMA podanie parametrów transmisji: adresu źródłowego i docelowego danych, rozmiaru bloku i protokołu transmisji
- zainicjowanie transmisji skutek zgłoszenia żądania transmisji przez kanał DMA (procesor DMA ma zwykle kilka niezależnych kanałów).

Procedura:

- zgłoszenie w kanale DMA żądania transmisji (ang. bus request, hold)
- potwierdzenie udostępnienia magistral (ang. bus grant, hold acknowledge)
- wykonanie transferu DMA i zwolnienie magistral.

Transfer pojedynczy (ang. *single-cycle DMA*) – wykradanie cykli (ang. *cycle-stealing*) Transfer blokowy (ang. *burst-mode DMA*).

- blokowanie dostępu do magistral –pamięci dwuportowe
- różny rozmiar bloków danych w urządzeniach uczestniczących
 - przerwanie po każdym transferze bloku
 - powiązanie danych (ang. data chaining) autoprogramowanie kanału DMA
 →rejestr powiązań (ang. data chain register, DCR) adres kolejnego bloku

Systemy magistral (1)

Magistrala (ang. bus) – zestaw linii połączeń między elementami systemu cyfrowego

- magistrala równoległa sygnały przesyłane jednocześnie i niezależnie
 - o połączenia elementów komputera
- magistrala szeregowa sygnały przesyłane sekwencyjnie przez jedną linię
 - o transmisja między komputerami

Klasyfikacja magistral

- lokalna (ang. *local*) dostosowana do procesora
 - o połączenie procesor pamięć podręczna / lokalne sterowniki we/wy
 - o połączenia głównych bloków w obrębie płyty (ang. board level)
- systemowa (ang. system) standardowa, np. VME, Multibus
 - o połączenia wszystkich modułów systemu
 - o połączenia modułów wymiennych (ang. backplane level),.
- sprzęgająca (ang. interface) standardowa, np. SCSI, PCI
 - o przyłączenie pamięci masowych i urządzeń we/wy za pomocą sterowników (SCSI *Small Computer System Interconnect*)
 - o połączenie urządzeń zewnętrznych (PCI, Peripheral Component Interconnect)

Systemy magistral (2)

Magistrale specjalizowane (ang. dedicated)

- pojedyncze przesłanie między procesorem i pamięcią lub we/wy
- transfer informacji jednego typu (adresu, polecenie, dane)
- duża przepustowość, wysoki koszt, duża podatność na błędy.

Magistrale współdzielone (ang. shared)

- mała przepustowość, niski koszt, możliwa korekcja błędów
- możliwość konfliktu dostępu, konieczny arbitraż

Magistrale dzielone strukturalnie – zestaw magistral specjalizowanych

- procesor domniemany zarządca magistrali (ang. bus master)
- dominujące przesłania procesor–pamięć

Magistrale dzielone funkcjonalnie

- zorientowane na przesłanie wiadomości (ang. message) bloków danych wraz z informacją adresową, statusową oraz kontrolną (korekcja błędów)
- standardy transmisji są niezależne od sprzętu
- charakterystyka przepustowość (ang. throughput).

Transakcje (1)

Transakcja (ang. bus transaction) – przesłanie po magistrali

- żądanie dostępu (ang. request)
- arbitraż (ang. arbitration)
- zaadresowanie (ang. addressing)
- przesłanie danych (ang. data transfer)
- detekcja i sygnalizacja błędów (ang. error detection and signalling).

Magistrale niemultipleksowane – transakcje (pojedyncze lub blokowe):

- zapis danych zarządca magistrali wysyła w tym samym cyklu adres i dane
- *odczyt* danych zarządca magistrali wysyła tylko adres

Schemat transakcji na magistrali niemultipleksowanej (A – linie adresowe, D – linie danych, NA – kolejny adres)

Transakcje (2)

Magistrala multipleksowana – rodzaje transakcji:

- zapis (*write*), pojedynczy lub blokowy (*burst mode*)
- odczyt (*read*), pojedynczy lub blokowy (*burst mode*)
 - o transakcja rozdzielona przełączanie komunikatów (ang. *message switching*) adres ... oczekiwanie ... zwrotny zapis
 - o transakcja nierozdzielona przełączanie układów (ang. circuit switching).
- zapis po odczycie i modyfikacji (ang. read-modify-write),
- odczyt po zapisie (ang. read-after-write),

Schemat transakcji na magistrali multipleksowanej

Adresowanie obiektów przyłączonych do magistrali

Adresowanie logiczne – arbitralne przypisanie urządzeniu identyfikatora

• wymaga dodatkowych układów adresowych.

Adresowanie geograficzne – rozpoznanie na podstawie fizycznej lokalizacji

- umożliwia programową identyfikację urządzeń przez system operacyjny
- adres urządzenia:
 - o identyfikator łącza (ang. slot number)
 - o identyfikator urządzenia (adres lokalny) na płycie.

Adresowanie zbiorowe

- rozgłaszanie (ang. *broadcast*) wysłanie informacji jednocześnie do wielu odbiorców (RESET, aktualizacja pamięci podręcznych kilku procesorów)
- wywołanie (ang. broadcall) identyfikacja źródła lub źródeł sygnału
 - o jednoczesny odbiór informacji z wielu źródeł
 - forsowanie stanu: suma lub iloczyn logiczny sygnałów
 - separowanie źródeł sygnałów (zgłoszenie przypisane do linii).

Protokół magistrali

Protokół – reguła transakcji (sposób przesyłania, relacje czasowe sygnałów)

- synchronicznie ustalone chwile pojawienia się każdego sygnału
- asynchronicznie ustalone tylko następstwo sygnałów
- półsynchronicznie ustalone następstwo i chwile wystąpienia sygnałów.

nadajnik (<i>source</i>)	odbiornik (<i>destination</i>)
-	(0) żądanie transferu danych (<i>odczyt</i>)
(1) umieszczenie danych na liniach	
•	(2) oczekiwanie na stabilizację danych
(3) sygnalizacja stabilności danych	
	(4) przyjęcie potwierdzenia stabilności
	odbiór danych
	(5) potwierdzenie odczytu
(6) odbiór potwierdzenia odczytu	
(7) usunięcie danych	
(8) sygnalizacja usunięcia danych	
	(9) odbiór sygnału usunięcia danych
	(10) potwierdzenie zakończenia transferu
() początek nowego transferu	
Schemat transakcji	

Synchroniczna realizacja protokółu magistrali

Przesłania synchroniczne

- ustalone chwile pojawienia się sygnałów w relacji do impulsów taktujących (CLK), niezależnie od szybkości nadajnika i odbiornika
 - o gotowość danych (data ready DR)
 - o potwierdzenie (data accepted − DA)
- ustalone parametry elektryczne sygnałów
- brak możliwości potwierdzenia odbioru lub sygnalizacji błędów
- niezawodność transferu kodowanie informacji kodami korekcyjnymi

Protokół synchroniczny: DR –gotowość danych, DA –zakończenie transakcji

Protokóły asynchroniczne

Przesłania asynchroniczne

- ustalone relacje czasowe sygnałów
 - o gotowość danych (data ready DR)
 - o potwierdzenie (data accepted − DA)
- ustalone wybrane parametry elektryczne sygnałów
- niezawodność transferu sygnalizacja błędów

Przesłanie asynchroniczne

- niepowiązane (ang. non–interlocked)
 - o ustalony czas trwania sygnału gotowości (DR)
 - o ustalony czas trwania sygnału potwierdzenia (DA) lub błędu (DE)
- częściowo powiązane (ang. half-interlocked)
 - o powiązanie sygnału gotowości z sygnałem potwierdzenia
- w pełni powiązane (ang. fully interlocked) (z potwierdzeniem, ang. handshaking)
 - o wzajemne powiązanie sygnału gotowości i potwierdzenia

Przesłania niepowiązane

Przesłanie niepowiązane

- zależne od szybkości odbiornika opóźnienie potwierdzenia $t_{\scriptscriptstyle R}$
- zależne od szybkości nadajnika opóźnienie zakończenia $t_{\scriptscriptstyle A}$

Protokół asynchroniczny – przesłania niepowiązane: DR –gotowość danych, DA/DE – potwierdzenie transakcji lub sygnał błędu

Problem – ustalona szerokość ale zmienny odstęp t_R sygnałów DR i DA

- zbyt szybki nadajnik usunięcie danych w czasie aktywnego poziomu DR
- zmienny czas reakcji na potwierdzenie odbioru możliwe zbyt szybkie rozpoczęcie kolejnego transferu i usunięcie danych przy aktywnym DA

Przesłania częściowo powiązane

Wyeliminowana możliwość usunięcia danych podczas aktywnego DR:

- wysłanie nowych danych wymaga wcześniej wygaszenia sygnału DR
- wygaszenie DR możliwe dopiero po uaktywnieniu potwierdzenia DA.
- możliwość zbyt wczesnego rozpoczęcia kolejnego transferu i zmiany danych podczas trwania aktywnego stanu sygnału DA nadajnik nie otrzymuje potwierdzenia zakończenia odbioru (deaktywacja sygnału DA).

Protokół asynchroniczny – przesłania częściowo powiązane: DR – gotowość danych, DA/DE – potwierdzenie transakcji / sygnał błędu

Przesłania z potwierdzeniem (1)

Przesłanie z potwierdzeniem (ang. handshaking)

- •jeden odbiornik protokół czterozboczowy
- •wiele odbiorników (rozgłaszanie) protokół sześciozboczowy

Czterozboczowy protokół przesłań w pełni powiązanych (ang. fully-interlocked).

- kasowanie sygnału DR przednim zboczem DA/DE
- kasowanie sygnału DA/DE tylnym zboczem sygnału DR
- nowy transfer po wygaszeniu sygnału potwierdzenia lub błędu DA/DE

Protokół asynchroniczny – czterozboczowe przesyłanie z potwierdzeniem: DR – gotowość danych, DA/DE – potwierdzenie transakcji / sygnał błędu

Przesłania z potwierdzeniem (2)

Protokół rozgłaszania (ang. broadcasting) z potwierdzeniem (ang. six-edge handshaking)

- sygnał ogólnej gotowości RDY (iloczyn logiczny gotowości odbiorników
- $-\dots RDY \uparrow \to DR \to RDY \downarrow \to DA = \&DA_i \to RDY \uparrow$
- sygnał upływu czasu eliminacja długich okresów oczekiwania na RDY

Protokół asynchroniczny – sześciozboczowe przesyłanie z potwierdzeniem. DR – gotowość danych, DA – potwierdzenie transakcji

Arbitraż magistrali

Arbitraż statyczny – cykliczne przejmowanie magistrali przez zarządców,

- kwantyzacja dostępu, przesyłanie synchroniczne
- prosta realizacja, duże straty czasu (przydział bez zapotrzebowania)

Arbitraż dynamiczny – przydzielanie magistrali zgodnie z zapotrzebowaniami

- małe straty czasu
- dobór algorytmu przydziału
 - o uwzględnianie ważność (priorytet) żądań
 - o wykluczenie zablokowania obsługi (zagłodzenia)
 - o zasada uczciwości (ang. fairness)
 - o rotacja priorytetów
 - rotacja karuzelowa (ang. round-robin)
 - rotacja automatyczna cykliczna zmiana po każdej transakcji
- zwalnianie magistrali i przejmowania dostępu
 - o na żądanie
 - o po wykonaniu operacji
 - o odblokowujące (ang. pre-emption)

Problemy arbitrażu

Realizowane centralnie lub lokalnie, wymagają trzech sygnałów:

- żądanie dostępu (ang. bus request/hold)
- gwarancja (potwierdzenie) dostępu (ang. bus grant/hold acknowledge)
- zajętość magistrali (ang. bus busy).

Zgłoszenia żądań mogą być

- dzielone (ang. *shared request*)
- przekazywane w łańcuchu zgłoszeń typu daisy-chain
- niezależne na osobnych liniach żądań arbitraż centralny

Niezawodność – zapewnienie satysfakcjonującej obsługi błędów

- wykrywanie niesprawności sprzętu
- sygnalizowanie błędów transmisji

Rodzaje błędów:

- błędy adresowania naruszenie reguł dostępu lub adres "donikąd"
- błędy danych kody korekcyjne
- błędy arbitrażu limitowanie czasu potwierdzenia