$$\frac{E \times 98}{f(x) = 3 + 2 \ln x - (\ln x)^2} \qquad I =]0; +\infty[$$

$$f'(x) = \frac{2}{x} - \frac{2}{x} \ln x = \frac{2}{x} \left(1 - \ln x \right)$$
 Signe de $f': \frac{2}{x} \left(1 - \ln x \right) > 0 = 0$

1-lux > 0	×>0	1 x	0	e		+00
-lnx>-1		1-lnx V	1 +	9		
lnx L 1		× 1	+		+	
xLe						

$$\frac{x}{e} = \frac{1}{e} + \frac{1}{e} + \frac{1}{e} = \frac{1}{e} = \frac{1}{e} + \frac{1}{e} = \frac{1}$$

$$f(e) = 3 + 2 \ln(e) - (\ln(e))^2 =$$

= 3 + 2 - 1 = 4

$$f(x) = x + \frac{1}{2(e^x + 1)}$$
 $D_f = \mathbb{R}$

1.
$$\lim_{x \to -\infty} f(x) = -\infty + \frac{1}{2(e^{-x} + 1)} = -\infty + \frac{1}{2} = -\infty$$

$$\lim_{x \to +\infty} f(x) = +\infty + \frac{1}{2(e^{+x} + 1)} = +\infty + \frac{1}{+\infty} = +\infty + 0 = +\infty$$

2.
$$f'(x) = 1 - \frac{2e^x}{4(e^x + 1)^2} = 1 - \frac{e^x}{2(e^x + 1)^2} = \frac{2(e^x + 1)^2 - e^x}{2(e^x + 1)^2} = \frac{2(e^x + 2e^x + 1) - e^x}{2(e^x + 1)^2} = \frac{2(e^x + 2e^x + 1) - e^x}{2(e^x + 1)^2} = \frac{2(e^x + 2e^x + 1) - e^x}{2(e^x + 1)^2}$$

3. Since de
$$f'$$
: $2e^{2x}+3e^{x}+2>0$ $2(e^{x}+1)^{2}>0$ $X=e^{x}=2X^{2}+3X+2>0$ Toujours positif. $\Delta = 9-6\times2\times2=-7<0$ $+(+)+$

Tablear de vanistions 1

×	-00	+ 100
21	+	
		7+0
7		