Multiple classes

Single K-class Disconninent

 $J_{K}(x) = \omega_{K}^{T} \cdot x + b_{K}$

 $z \in C$; if $y_j(z) > j_k(z)$

This approach will contex

regions in feature space

Fisher's Linear Discriminant Analysis

LA LINEUR destifiER, disconiminative LA SUPERVISED LINEAR D'INEASIONL'TY REDUCTION Frad discriminant fet that the projection to orethogonal sepondailité and $J = \omega \cdot x + b$, $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, $\omega = \begin{bmatrix} \omega_1 \\ \omega_2 \end{bmatrix}$ Discumment fet y(n)<0

$$J(\vec{\omega}) = \frac{(m_1 - m_2)^2}{s_1^2 + s_2^2}$$

Pet is assuming we start in a 2-D feature and space and project down 1-D.

 m_{i} = projected mean for class Ci(1-D) s_{i}^{2} = projected varion in for class Ci(1-D)

ang max J(W)
{W3

 $\vec{m}_{i} = mean$ for class i in the original Space (2-D) for class i in the original $Z_{i} = covariance$ for class i in the original Space (2-D)

$$(m_1-m_2) = \overrightarrow{W}^T(\overrightarrow{m_1}-\overrightarrow{m_2})$$

For the projected class vortionie or

within - dess variance:

$$S_i^2 = \sum_{n \in C_i} (y(x_n) - m_i)^2$$

$$= \sum_{n \in C_i} \left(\vec{\omega}. \vec{z}_n + b - \vec{\omega}. \vec{m}_i \right)^2$$

$$= \sum_{n \in C_i} \left(\vec{w}^T \cdot \vec{x}_n - \vec{w}^T \vec{m}_i \right)^2$$

$$= \overline{w} \left(\overline{z_n} - \overline{m_i} \right) (\overline{z_n} - \overline{m_i})$$

$$J(\omega) = \frac{(m_1 - m_2)^2}{s_1^2 + s_2^2}$$

$$= \frac{\vec{\omega}^T (\vec{m_1} - \vec{m_2}) \cdot (\vec{m_1} - \vec{m_2})^T \cdot \vec{\omega}}{\vec{\omega}^T (\vec{m_1} - \vec{m_1}) (\vec{m_1} - \vec{m_1})^T + \sum_{n \in C_2} (\vec{n_1} - \vec{m_2})^T \cdot \vec{\omega}}$$

Sw = within-doss scatter MATRIX

$$J(\omega) = \frac{\vec{\omega} \cdot S_B \cdot \vec{\omega}}{\vec{\omega} \cdot S_{\omega} \cdot \vec{\omega}}$$

optimize for w:

$$\frac{\partial J(\vec{\omega})}{\partial \vec{\omega}} = 0 \implies \frac{2 \cdot (\vec{\omega}^T \cdot s_{\omega} \cdot \vec{\omega}) \cdot s_{\alpha} \cdot \vec{\omega} - 2 \cdot (\vec{\omega}^T s_{\beta} \cdot \vec{\omega}) \cdot s_{\omega} \cdot \vec{\omega}}{(\vec{\omega}^T \cdot s_{\omega} \cdot \vec{\omega})^2} = 0$$

$$(\Rightarrow) \frac{(\omega^T S \omega \omega) S_{\sigma} \omega}{(\omega^T S_{\omega} \omega)^2} = \frac{(\omega^T S_{\overline{\sigma}} \omega) S_{\omega} \omega}{(\omega^T S_{\omega} \omega)^2} = 0$$

$$(=) S_{B}. \omega = \underbrace{\omega^{T}. S_{B}. \omega}_{\omega^{T}. S_{W}. \omega}. S_{W}. \omega$$

$$\langle = \rangle S_{B}. \omega = \lambda. S_{\omega}. \omega$$

$$\langle = \rangle \left[S_{w}^{-1} S_{B}, w = \lambda, w \right], \text{ if } S_{w}^{-1} \in \text{xists}$$

LA CHARACTERISTIC EQUATION

Reminder

V Ergenvedor of A is its Ergenvedue A.V = A.V WE pick the signification wo of Sw. SB with largest significate.

Labercouse we want to maximize J(w).

· in practice, if Sw is not invertible (singular matrix), we can diagonally load it prior to inverting it.

100 - D Montheanne SPACE: 10 - D # desses

1 what is the size of w? (yes, 10-D!!)

@ what is the dimensionality of projection subspace?

C classes If WE hove

dimensions.