Gauge Theories and The Aspects of Flatspace Holography

State-of-Art Seminar by Raju Mandal

Supervisor : Prof. Shamik Banerjee

NISER, Bhubaneswar

March 31, 2023

Outline:

- ♦ Motivations
- ♦ Introduction to the Flatspace Holography
- ♦ Soft Theorems → Conformal Ward Identities
- Celestial OPE of Gluons
- Differential Equations for MHV Gluon Amplitudes
- \Rightarrow HSA for SU(N) Gauge Theories
- ♦ Discussion on the ongoing work...

Motivations

In search for the symmetries and where symmetries lead us to...

Asymptotic Symmetries of Flat Spacetime

 \angle '60s : Poincare \longrightarrow BMS = Lorentz \times Supertranslations

Bondi, Burg, Metzner and Sachs

'10s: BMS → Virasoro ⋈ Supertranslations (Gravity)
(using asymptotic symmetry analysis and soft theorems.)

Lorentz group → Virasoro

Kapec, Mitra, Strominger, ...

Another extension:

- \triangle Gauge Theories \longrightarrow HSA \times Poincare. (asymptotic symmetries)
- Implications of these infinite symmetries ...

Introduction to Flatspace Holography:

Conjecture:

Theories of QG in (3+1)D AFS \iff 2D CCFTs on the Celestial sphere at null infinity.

[Courtesy: Andrea Puhm]

Null Infinity:

In (u,r,z,\bar{z}) coordinates, Bondi Coordinates $ds^2 = -du^2 - 2dudr + r^2 \frac{4dzd\bar{z}}{(1+z\bar{z})^2}$ Where, $z = \frac{x^1 + ix^2}{x + c^3} = e^{i\phi}\tan\frac{\theta}{2}, \ \bar{z} = c.c$

We can go to future null-infinity by taking $r\longrightarrow\infty$ at fixed (u,z,\bar{z}) $d\tilde{s}^2=d\Omega_2^2$

Hints for the duality:

Action of 4D Lorentz group \sim Action of global conformal group on $\mathbb{C}S^2$

$$SO(3,1)^{\uparrow} \cong SL(2,\mathbb{C})/\mathbb{Z}_2$$

$$\Lambda = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2,\mathbb{C}) \text{ with } det(\Lambda) = 1$$

$$\begin{split} x &= \begin{pmatrix} x^0 - x^3 & x^1 + ix^2 \\ x^1 - ix^2 & x^0 + x^3 \end{pmatrix} & z &= \frac{x^1 + ix^2}{r + x^3} \text{ , } \bar{z} \longrightarrow c.c \\ x &\longrightarrow x' &= \Lambda x \Lambda^\dagger & z \to z' &= \frac{az + b}{cz + d} \text{ , } c.c \end{split}$$

Celestial Amplitude: S-matrix in Boost Eigenbasis:

S-matrix

Correlation function in Momentum space $\xrightarrow{\text{Mellin transform}}$ of 2D Celestial CFT

$$\prod_{i=1}^{n} \int_{0}^{\infty} d\omega_{i} \, \omega_{i}^{\Delta_{i}-1} \mathcal{S}_{n}(\{\omega_{i}, z_{i}, \bar{z}_{i}, \sigma_{i}, a_{i}\}) = \langle \prod_{i=1}^{n} \mathcal{O}_{h_{i}, \bar{h}_{i}}^{a_{i}}(z_{i}, \bar{z}_{i}) \rangle$$

(Gauge theory)

$$p^{\mu} = \omega(1 + z\bar{z}, z + \bar{z}, -i(z - \bar{z}), 1 - z\bar{z})$$

conformal weights :
$$h_i = \frac{\Delta_i + \sigma_i}{2}$$
, $\bar{h}_i = \frac{\Delta_i - \sigma_i}{2}$ and helicity : $\sigma_i = \pm 1$ (for gluons).

$$\Delta = 1 + i\mathbb{R}$$
 (Unitary principal series representation)

Under Lorentz transformations, Scattering amplitudes transform as correlation functions of 2D CFT!

$$\mathcal{A}_{n}(\{z_{i}, \bar{z}_{i}, h_{i}, \bar{h}_{i}, a_{i}\}) = \prod_{i=1}^{n} \frac{1}{(cz_{i} + d)^{2h_{i}}} \frac{1}{(\bar{c}\bar{z}_{i} + \bar{d})^{2\bar{h}_{i}}} \mathcal{A}_{n} \left(\left\{ \frac{az_{i} + b}{cz_{i} + d}, \frac{\bar{a}\bar{z}_{i} + \bar{b}}{\bar{c}\bar{z}_{i} + \bar{d}}, h_{i}, \bar{h}_{i}, a_{i} \right\} \right).$$

Example:

[S. Banerjee and S. Ghosh; arXiv:2011.00017]

$$\mathcal{A}(1^{-a_1}, 2^{+a_2}, 4^{-x}) \sim f^{a_1 a_2 x} \frac{z_{14}^3}{z_{12}^3 z_{24}} \underbrace{\delta(\bar{z}_{14}) \delta(\bar{z}_{24})}_{i=1} \prod_{i=1}^3 \Theta(\epsilon_i \sigma_{i,1})$$

presence of delta distributions makes it look different from the usual 2d cft-amplitudes!

[Casali-Melton-Strominger '22]

Momentum space soft theorems:

At tree level

Leading term,

$$S_{(0)}^a \sim \sum_{k=1}^n \frac{\epsilon_\mu p_k^\mu}{q \cdot p_k} T_k^a$$

(universal)

Subleading term,

$$S_{(1)}^a = \sum_{k=1}^n i \frac{\epsilon_\mu q_\nu J_k^{\mu\nu}}{q \cdot p_k} T_k^a$$

where, $J_k^{\mu\nu}$ is the total angular momentum of the k'th particle.

Conformal Soft gluon theorems

lacktrianglerightarrow Leading Conformal Soft Gluon Theorem $, <math>\Delta \to 1$

$$\left\langle j^a(z) \prod_{i=1}^n \mathcal{O}^{a_i}_{h_i,\bar{h}_i}(z_i,\bar{z}_i) \right\rangle = -\sum_{k=1}^n \frac{T_k^a}{z - z_k} \left\langle \prod_{i=1}^n \mathcal{O}^{a_i}_{h_i,\bar{h}_i}(z_i,\bar{z}_i) \right\rangle$$

where leading conformal soft gluon operator is defined as,

$$j^{a}(z) = \lim_{\Delta \to 1} (\Delta - 1) \mathcal{O}_{\Delta,+}^{a}(z, \bar{z})$$

and

$$T_k^a \mathcal{O}_{h_i,\bar{h}_i}^{a_i}(z_i,\bar{z}_i) = i f^{aa_ib} \mathcal{O}_{h_i,\bar{h}_i}^b(z_i,\bar{z}_i) \delta_{ik}.$$

 \Rightarrow The modes j_n^a give level zero Kac-Moody algebra on celestial sphere.

[arXiv:2011.00017]

Subleading Conformal Soft Gluon Theorem, $\Delta \to 0$

$$\left\langle S_{1}^{+a}(z,\bar{z}) \prod_{i=1}^{n} \mathcal{O}_{h_{i},\bar{h}_{i}}^{a_{i}}(z_{i},\bar{z}_{i}) \right\rangle$$

$$= -\sum_{i=1}^{n} \frac{\epsilon_{k}}{z - z_{k}} (-2\bar{h}_{k} + 1 + (\bar{z} - \bar{z}_{k})\bar{\partial}_{k}) T_{k}^{a} P_{k}^{-1} \left\langle \prod_{i=1}^{n} \mathcal{O}_{h_{i},\bar{h}_{i}}^{a_{i}}(z_{i},\bar{z}_{i}) \right\rangle$$

where subleading conformal soft gluon operator is defined as,

$$S_1^{+a}(z,\bar{z}) = \lim_{\Delta \to 0} \Delta \mathcal{O}_{\Delta,+}^a(z,\bar{z})$$

and

$$P_k^{-1}\mathcal{O}_{h_i,\bar{h}_i}^{a_i}(z_i,\bar{z}_i) = \mathcal{O}_{h_i-\frac{1}{2},\bar{h}_i-\frac{1}{2}}^{a_i}(z_i,\bar{z}_i)\delta_{ki}.$$

[Donnay, Puhm, Strominger; 2018]

Where,

$$S_1^{+a}(z,\bar{z}) = J^a(z) + \bar{z}K^a(z).$$

Ward Identities of 2D conformal currents:

$$\left\langle J^{a}(z) \prod_{i=1}^{n} \mathcal{O}_{h_{i},\bar{h}_{i}}^{a_{i}}(z_{i},\bar{z}_{i}) \right\rangle = -\sum_{k=1}^{n} \frac{\epsilon_{k}}{z - z_{k}} (-2\bar{h}_{k} + 1 - \bar{z}_{k}\bar{\partial}_{k}) T_{k}^{a} P_{k}^{-1} \left\langle \prod_{i=1}^{n} \mathcal{O}_{h_{i},\bar{h}_{i}}^{a_{i}}(z_{i},\bar{z}_{i}) \right\rangle = -\sum_{k=1}^{n} \frac{\epsilon_{k}}{z - z_{k}} (-2\bar{h}_{k} + 1 - \bar{z}_{k}\bar{\partial}_{k}) T_{k}^{a} P_{k}^{-1} \left\langle \prod_{i=1}^{n} \mathcal{O}_{h_{i},\bar{h}_{i}}^{a_{i}}(z_{i},\bar{z}_{i}) \right\rangle$$

and

$$\left\langle K^a(z) \prod_{i=1}^n \mathcal{O}_{h_i,\bar{h}_i}^{a_i}(z_i,\bar{z}_i) \right\rangle = -\sum_{k=1}^n \frac{\epsilon_k}{z - z_k} \bar{\partial}_k T_k^a P_k^{-1} \left\langle \prod_{i=1}^n \mathcal{O}_{h_i,\bar{h}_i}^{a_i}(z_i,\bar{z}_i) \right\rangle$$

 \Rightarrow Current algebra of two currents $J^a(z)$ and $K^a(z)$.

[arXiv:2011.00017]

OPE structures:

1. From colliner limit:

$$\mathcal{A}(1^{-a_1}, 2^{+a_2}, 3^{+a_3}, 4^{-a_4}) \xrightarrow[p_3 \cdot p_4 = 0]{} \frac{z_{34} \to 0}{z_{34}} P(\Delta_3 - 1, \Delta_4 + 1) \mathcal{A}(1^{-a_1}, 2^{+a_2}, 4^{-x}) \\ + \text{ subleading in } z_{34} + \dots$$

Leading OPE:

$$\mathcal{O}^{a_3}_{\Delta_3,+}(z_3,\bar{z}_3)\mathcal{O}^{a_3}_{\Delta_4,-}(z_4,\bar{z}_4) \sim -\frac{f^{a_3a_4x}}{z_{34}}B(\Delta_3-1,\Delta_4+1)\mathcal{O}^x_{\Delta_3+\Delta_4-1,-}(z_4,\bar{z}_4)$$

Subleading ... (similarly)

[arXiv: 2011.00017]

2. From symmetry analysis: [ref: 2011.00017]

$$\mathcal{O}^{a_1}_{\Delta_1,+}(z_1,\bar{z}_1)\mathcal{O}^{a_2}_{\Delta_2,\sigma_2}(z_2,\bar{z}_2) = -iz_{12}^p\bar{z}_{12}^qf^{a_1a_2x}\underbrace{C_{p,q}(\Delta_1,\Delta_2,\sigma_2)}\mathcal{O}^x_{\Delta,\sigma}(z_2,\bar{z}_2) + \dots$$

Goal: To determine $C_{p,q}(\Delta_1, \Delta_2, \sigma_2)$ and values of p and q.

Step 1.

Null states of current algebra \longrightarrow Null decoupling equations (BG equations)

Step 2.

BG equations \longrightarrow a recursion relation

$$(\Delta_1 + 2p + 1)C_{p,q}(\Delta_1, \Delta_2, \sigma_2) = (\Delta_2 - \sigma_2 + q - 1)C_{p,q}(\Delta_1 + 1, \Delta_2 - 1, \sigma_2)$$

Step 3.

Global time translation — another recursion relation

$$C_{p,q}(\Delta_1, \Delta_2, \sigma_2) = C_{p,q}(\Delta_1 + 1, \Delta_2, \sigma_2) + C_{p,q}(\Delta_1, \Delta_2 + 1, \sigma_2)$$

Step 4.

Above recursion relations lead to,

$$(\Delta_1 + 2p + 1)C_{p,q}(\Delta_1, \Delta_2, \sigma_2) = (\Delta_1 + \Delta_2 + 2p + q - \sigma_2 + 1)C_{p,q}(\Delta_1 + 1, \Delta_2, \sigma_2)$$

Step 5. subleading soft gluon theorem \longrightarrow following recursion relation

$$\frac{\Delta_1 + q - 1}{2p + \Delta_1 + 1} + \frac{\Delta_2 - \sigma_2 - 1}{\Delta_2 - \sigma_2 + q - 1} = \frac{2(\Delta_1 + \Delta_2 + 2q - \sigma_2 - 1)}{\Delta_1 + \Delta_2 + 2p + q - \sigma_2 + 1}$$

$$\Rightarrow p = -1, \quad q = 0$$

\Rightarrow \Delta = \Delta_1 + \Delta_2 - 1, \quad \sigma = \sigma_2

$$\mathcal{O}^{a_1}_{\Delta_1,+}(z_1,\bar{z}_1)\mathcal{O}^{a_2}_{\Delta_2,\sigma_2}(z_2,\bar{z}_2) = \frac{-if^{a_1a_2x}}{z_{12}}\underbrace{C_{-1,0}(\Delta_1,\Delta_2,\sigma_2)}\mathcal{O}^x_{\Delta,\sigma}(z_2,\bar{z}_2) + \dots$$

Step 6.

Using the values of p and q in the recursion relations one can get,

$$C_{-1,0}(\Delta_1, \Delta_2 + 1, \sigma_2) = \frac{\Delta_2 - \sigma_2}{\Delta_1 + \Delta_2 - \sigma_2 - 1} C_{-1,0}(\Delta_1, \Delta_2, \sigma_2).$$

Soln.

$$C_{-1,0}(\Delta_1, \Delta_2 + 1, \sigma_2) = \alpha B(\Delta_1 - 1, \Delta_2 - \sigma_2)$$

 $\alpha = 1$ (comparing with Ward Identity)

$$\mathcal{O}^{a_1}_{\Delta_1,+}(z_1,\bar{z}_1)\mathcal{O}^{a_2}_{\Delta_2,\sigma_2}(z_2,\bar{z}_2) = \frac{-if^{a_1a_2x}}{z_{12}}B(\Delta_1-1,\Delta_2-\sigma_2)\mathcal{O}^x_{\Delta,\sigma}(z_2,\bar{z}_2) + \dots$$

Similar analysis has been performed to determine the subleading OPE structure.

BG equations and its solutions

Null states of the current algebra \to Correlation functions for descendants \to Null decoupling equations.

$$\begin{split} \left[\frac{C_A}{2} \partial_{z_i} - h_i \sum_{j=1, j \neq i}^n \frac{T_i^a T_j^a}{z_i - z_j} + \frac{1}{2} \sum_{j=1, j \neq i}^n \frac{\epsilon_j (2\bar{h}_j - 1 - (\bar{z}_i - \bar{z}_j) \partial_{\bar{z}_j})}{z_i - z_j} T_j^a P_j^{-1} T_i^a P_{-1, -1}(i) \right] \\ & \times \langle \prod_{k=1}^n \mathcal{O}_{h_k, \bar{h}_k}^{a_k} (z_k, \bar{z}_k) \rangle_{MHV} = 0. \qquad i \in (1, 2, ..., n-2) \end{split}$$

Pure YM

[S. Banerjee and S. Ghosh]

These equations have been solved to find the Scattering amplitudes!

- Fan, Fotopoulos, Stieberger, Taylor and Zhu in [arXiv: 2202.08288] have solved these equations for pure YM theory coupled with massless scalar background field.
- S. Banerjee, P. Paul, A. Manu and RM have recently solved BG equation for a pure YM theory coupled to a massive scalar background. [arXiv:2302.10245]

Holographic Symmetry Algebra (HSA)

- ➤ It is known that there is no soft factorisation beyond the subleading order (for gluons).
- \triangleright Beta functions in the OPE have poles for $\Delta = 1, 0, -1, -2, ...$

$$\mathcal{O}_{\Delta_1}^{a,+}(z_1,\bar{z}_1)\mathcal{O}_{\Delta_2}^{b,+}(z_2,\bar{z}_2) = -\frac{if^{abc}}{z_{12}}\sum_{n=0}^{\infty}B(\Delta_1+n-1,\Delta_2-1)\frac{\bar{z}_{12}^n}{n!}\bar{\partial}_2^n\mathcal{O}_{\Delta_1+\Delta_2-1}^{c,+}(z_2,\bar{z}_2).$$

Soft gluon operator :

$$R^{k,a}(z_1,\bar{z}_1) = \lim_{\Delta_1 \to k} (\Delta_1 - k) \mathcal{O}_{\Delta_1}^{a,+}(z_1,\bar{z}_1)$$

where k = 1, 0, -1, ...

[A. Guevara, E. Himwich, M. Pate and A. Strominger]

Mode Expansion:

$$R^{k,a}(z,\bar{z}) = \sum_{n=\frac{k-1}{2}}^{\frac{1-k}{2}} \frac{R_{n}^{k,a}(z)}{\bar{z}^{n+\frac{k-1}{2}}}$$

$$\begin{split} &[R_{m,n}^{k,a},R_{m',n'}^{l,b}]\\ &=-if^{abc}\frac{(\frac{1-k}{2}-n+\frac{1-l}{2}-n')!}{(\frac{1-k}{2}-n)!(\frac{1-l}{2}+n')!}\frac{(\frac{1-k}{2}+n+\frac{1-l}{2}+n')!}{(\frac{1-k}{2}+n)!(\frac{1-l}{2}+n')!}R_{m+m',n+n'}^{k+l-1,c} \end{split}$$

So, we now have infinite tower of soft gluons and their algebra !

This algebra is similar to $w_{1+\infty}$ algebra obtained in case of gravity.

General structure of OPE of the thories invariant under the above algebra for gluons

$$\begin{split} \mathcal{O}^{a,+}_{\Delta_1}(z_1,\bar{z}_1)\mathcal{O}^{b,+}_{\Delta_2}(z_2,\bar{z}_2) \\ &= -\frac{if^{abc}}{z_{12}}B(\Delta_1-1,\Delta_2-1)\mathcal{O}^{c,+}_{\Delta_1+\Delta_2-1}(z_2,\bar{z}_2) - \frac{if^{abc}}{z_{12}}\sum_{n=1}^{\infty}B(\Delta_1+n-1,\Delta_2-1)\frac{\bar{z}_{12}^n}{n!}\bar{\partial}^n_2\mathcal{O}^{c,+}_{\Delta_1+\Delta_2-1} \\ &\qquad + \sum_{m,n}\sum_{i=1}^{a(m,n)}z_{12}^m\bar{z}_{12}^nf^{abc}C^{(i)}_{m,n}\mathcal{O}^{(i),c}_{m,n}(z_2,\bar{z}_2) \end{split}$$

Our Goals?

- ① To determine the gluon-gluon OPE for the theories which are invariant under the HSA × Poincare.
- ② To find the null states of such theories.
- To classify all such dual theories which are invariant under this algebra.

Motivated by:

An interesting recent work [arXiv:2301.13225] done in case of gravity by S. Banerjee, H. Kulkarni and P. Paul.

The authors have shown that there exists a discrete infinite family of wedge subalgebra of $w_{1+\infty}$ invariant dual theories whose bulk descriptions are not known except for the MHV and self-dual gravity.

Progress...

- ✓ We have already found a "subalgebra" which plays an important role to check the covariance of OPE under the full HSA × Poincare.
- We have also found the null states which furnish the representation of this subalgebra.
- ✓ We know how this algebra acts on the gluon primaries.
- ✓ General structure of OPE at $\mathcal{O}(1)$.

Remarks

- This "subalgebra" has $H^1_{-1/2,-1/2}$ which doesn't come from any soft theorem in case of gauge theories.
- $^{\circ}$ In gravity $H^1_{-1/2,-1/2}$ was manifestly present there because of the leading soft graviton theorem.
- For SU(N) gauge theories, ASG is (HSA \times Poincare) which acts non-trivialy on the Hilbert space.

Thank You!!