Projet de statistiques

Exercice 2:

Soit (X, Y) rue couple de variables aleatoires discieles dont la loi de probabilité est indiquée par le tableau ci après:

XX	1	2	3	4.	
1	0,08	0,04	0,16	0,12	
2	0,04	0,02	0,08	0,06	
3	0,08	0,04	0, 16	0,12	

a)

Les lois marginales de X et y:

X	4	2	3	4	Loi monginale de
1	0,08	0,04	0,16	0,12	0,4
2	0,04	0,02	0,08	0,06	0,2
3	0108	0,04	0,16	0,12	0,4
Le y	0, 2	017	0,4	0,3	1

→ Indiquous si ces variables sont indépendantes:

Deux variables aleatoires discutes X et Y sont dites indépendents si pour tout X e X (I) et Y e Y (I):

$$P(x=x] \cap [y=y] = P(x=x) P(y=y)$$

$$P(x=1) \cap (y=1) = 0.08$$

Acros
$$P[(x=1) \cap (y=1)] = P(x=1) P(y=1) = 0.08$$

$$P[(x=2) \cap (y=4)] = 0.06$$

$$P(x=2) P(y=4) = 0.2 \times 0.3 = 0.06$$

donc P[(x=2) \(\mathbb{I}\) (Y=4)] = P(x=2) P(x=4) = 0,06

Donc les variables aleatoires X et Y sont indépendentes.

b) Calculous Pov (x,y)

Cov(x,y) = E(xy) - E(x) E(y)

Dons notre cas les deux variables aléatoires sont independantes donc Cov(x,y) = o, Calculons Cov(x,y) pour la prenve:

$$E(x) = \sum xi P(x = xi)$$

$$= (4x0,4) + (2x0,2) + (3x0,4) = 2$$

$$E(x) = 2$$

$$E(Y) = \sum_{i=1}^{N} P(Y = y_i)$$

$$= (1 \times 0,2) + (2 \times 0,1) + (3 \times 0,4) + (4 \times 0,3) = 2,8$$

$$E(Y) = 2,8$$

•
$$E(xy) = \sum xiy_1 P(x=xi, y=yi)$$

$$E(xy) = (1x1x0,08) + (2x1x0,04) + (3x1x0,16) + (4x1x0,12) + (2x1x0,04) + (2x1x0,08) + (2x1x0,08) + (3x1x0,08) + (3x1x0,0$$

$$E(x) = 2$$
; $E(y) = 2.8$; $E(x,y) = 5.6$
 $Cov(xy) = 5.6 - (2x2.8) = 0$
 $douc[E(x,y) = 0]$

c) Determinous la loi du couple [ing(x,y), sup(x,y)] On pose: U = ing(x,y) et v = sup(x,y).

On pose: U= inf(x,y) et v= sup(x,y). → Determinans d'abord les valeurs de « c'est à dire les valeurs inférieures de x et y.

X	1	2	3	4
1	4	1	1	1
2	1	2.	2	2
3	1	2.	3	3

Donc \mathcal{U} fund les valeurs 1,2 et 3 $\mathcal{U} = \{1, 2, 3\}$

$$P[u=1] = P(x=1, y=1) + P(x=2, y=1) + P(x=1, y=3) + P(x=1, y=3) + P(x=1, y=1) + P(x=1, y=1)$$

$$P(u=1) = 0.08 + 0.04 + 0.16 + 0.12 + 0.04 + 0.08 = 0.52$$

 $P(u=1) = 0.52$

$$P(u=2) = P(x=2, y=2) + (x=3, y=2) + (x=2, y=3) + (x=2, y=4)$$

$$= 0,02 + 0,04 + 0,08 + 0,06 = 0,2$$

$$P(u=2) = 0,2$$

$$P(u=3) = P(x=3|y=3) + P(x=3,y=4)$$

= 0,16 + 0,12 = 0,26

→ voi marginale de U: ing (x,v)

U où inf(x,y)	4	2	3	
P(u)	0,52	0,2	0,28	1

Determinons les valeurs de v c'est à dire les valeurs superieures de X et Y:

X	1	2	3	4
1	1	2	3	4
2	2	2	3	4
3	3	3	3	4

Donc v prend les valeurs 1,2,3 et 4 P(v=1) = P(x=1, y=1) = 0,08

$$P(v=2) = P(x=1, y=2) + (x=2, y=1) + (x=2, y=2) = 0,000 = 0,000 = 0,000$$

$$P(v=3) = P(x=1, y=3) + P(x=2, y=3) + P(x=3, y=1)$$

+ $P(x=3, y=2) + P(x=3, y=3)$

$$P(v=3) = P(x=1, y=3) + P(x=2, y=3) + P(x=3, y=1) + P(x=3, y=2) + P(x=3, y=3)$$

$$P(v=u) = P(x=1, y=u) + P(x=2, y=u) + P(x=3, y=u) + 0,12 + 0,06 + 0,12$$

→ Loi marginale de v: sup(x,y)

v on sup(x,y)	1	2	3	4	T
P(v)	0,08	0,1	0,52	0,3	4

→ La loi du couple [ing (x, y), sup (x, y)] on [(u),(v)].

P(u= m, v= vi) = P(u= mi) x P(v= vi) car les deux

variables al'atoires sont indépendantes

•				
1	2	3	4	Total
0,04-16	0,052	0,2704	0,156	0,52
0,016	0,02	0,104	0,06	0,2
0,0224	0,028	0,1456	0,084	0,28
0,08	0,1	0,52	0,3	1
	0,04-16	0,0446 0,052 0,046 0,02 0,0224 0,028	0,0446 0,052 0,2704 0,046 0,02 0,404 0,0224 0,028 0,4456	0,0446 0,052 0,2704 0,156 0,046 0,02 0,104 0,06 0,0224 0,028 0,1456 0,084

Exercice 3:
1) Une variable aléatoire est sans mémoire si:

$$P(x \ge x + x_0/x > x_0) = P(x > x)$$

 $P(x > x + x_0/x > x_0) = \frac{P(x > x + x_0) \cap P(x > x_0)}{P(x > x_0)}$

$$P(x > x + x_0) = \int_{x+x_0}^{+\infty} f(t) dt$$

$$= \int_{x+x_0}^{+\infty} e^{-\lambda t} dt$$

$$= \lambda \int_{x+x_0}^{+\infty} e^{-\lambda t} dt$$

$$= \lambda \left[-\frac{1}{\lambda} e^{-\lambda t} \right]_{x+x_0}^{+\infty}$$

$$= -\left[e^{-\lambda t} \right]_{x+x_0}^{+\infty}$$

$$= -\left[e^{-\alpha} - e^{-\lambda(x+x_0)} \right] = +\left(+ e^{-\lambda(x+x_0)} \right)$$

$$P(x > x + x_0) = e^{-\lambda x} e^{-\lambda x_0}$$
Calculons
$$\int_{x_0}^{+\infty} f(t) dt = P(x > x_0)$$

$$\int_{x_0}^{+\infty} f(t) dt = \int_{x_0}^{+\infty} e^{-\lambda t} dt$$

$$= \lambda \int_{x_0}^{+\infty} e^{-\lambda t} dt$$

$$= A \left[-\frac{1}{A} e^{-\lambda t} \right]_{x_0}^{+\infty}$$

$$= -\left[e^{-\lambda t} \right]_{x_0}^{+\infty}$$

$$= -\left(e^{-\omega} - e^{-\lambda x_0} \right)$$

$$\frac{P(x > x_0 + x_0)}{P(x > x_0)} = \frac{e^{-\lambda x} e^{-\lambda x_0}}{e^{-\lambda x_0}}$$
$$= e^{-\lambda x} = P(x > x)$$

Donc la durée de vie de lampe de videopigecteur est est sans memoire

$$E(x) = \int_0^{+\infty} x f(x) dx = \int_0^{+\infty} x^3 e^{-3x} dx$$

$$= \lambda \int_0^{+\infty} x e^{-3x} dx$$

$$\begin{cases}
U = x \\
V' = e^{-\lambda x}
\end{cases}
\begin{cases}
U' = \frac{1}{4}e^{-\lambda x}
\end{cases}$$

$$\lambda \int_{0}^{+\infty} x e^{-\lambda x} dx = \lambda \left(\left[x \left(-\frac{1}{4}e^{-\lambda x} \right) \right]_{0}^{+\infty} - \int_{0}^{+\infty} 1 \left(-\frac{1}{4}e^{-\lambda x} \right) \right)$$

$$= \lambda \left(\left[-x \left(\frac{1}{4}e^{-\lambda x} \right) \right]_{0}^{+\infty} + \frac{1}{4} \int_{0}^{+\infty} e^{-\lambda x} dx \right)$$

Scanné avec CamScanner

$$= \left[-\frac{\lambda}{2} \left(x e^{-\lambda x} \right) \right]_{0}^{+\infty} + \frac{\lambda}{2} \left(e^{-\lambda x} dx \right)$$

$$\int_{0}^{+\infty} e^{-\lambda x} dx = \left[-\frac{1}{2} e^{-\lambda x} \right]_{0}^{+\infty}$$

Donc
$$\int_{0}^{+\infty} \mathbf{B}(\mathbf{x}) d\mathbf{x} = \left[\mathbf{x} e^{-\lambda \mathbf{x}} \right]_{0}^{+\infty} + \left[-\frac{1}{\lambda} e^{-\lambda \mathbf{x}} \right]_{0}^{+\infty}$$

$$= \left[e^{-\infty} - oe^{\circ} \right] - \frac{1}{3} \left[e^{-\infty} - e^{\circ} \right]$$

$$= (0-0) - \frac{1}{3} (0-1)$$

3) de fabriqueut est-il honnête? Durée de vie moyenne: 10.000 heures: E(x) = -10.000 or E(x) = $\frac{1}{2}$

$$\Rightarrow \lambda_1 = 0,00001 \Rightarrow \lambda_2 = 0,00001$$

Pour E(x) = 7000 on a:

$$E(x) = \frac{4/2}{3^2} \implies 7000 = \frac{1/2}{3^2} \implies 7000 = \frac{1}{232}$$

$$\implies 14.00032 = 1$$

14000 72 = 1 => A2 = 0,000-14 0,00014 A1 ~ A2: Donc on peut dire que le fabriquant est honnête.