Rules for Understanding Redox Reactions

1. By convention, redox half-reactions are written as reductions:

oxidant +
$$e^- \rightarrow reductant$$

eg.
$$O_2 + 4e^{-}(+ 4 H^{+}) \rightarrow 2H_2O$$
 $E_0 = +0.82 V$

- 2. The more positive the E_0 value, the higher the affinity of the oxidant for e s; ie the better an oxidant it is. The more negative the E_0 value, the better reductant it is it gives up e s more easily.
- 3. Under standard conditions, an oxidant (eg. O_2 , E_0 = +0.82 V) will oxidize a reductant (eg. NADH, E_0 = -0.32 V) if the reductant exhibits a more negative E_0 value. Conversely, a reductant will reduce any oxidant whose E_0 value is more positive. Thus O_2 will oxidize NADH (NADH will reduce O_2) under standard conditions.
- 4. The sign is reversed for half-reactions written in the opposite direction.
- 5. A net positive E_0 value for any conjugate redox pair (eg. $O_2/NADH$) means the forward reaction is favorable under standard conditions. A net negative E_0 value means the reverse reaction is favorable. (opposite of ΔG^0)

Eq.
$$\frac{1}{2} O_2 + NADH + H^+ \rightarrow H_2O + NAD^+$$
 $E^0 = +1.14 V$

Thus, oxidation of NADH by oxygen is highly favorable.