Mike's questions - MAT 327 - Summer 2013

When I was an undergrad and took this course we had weekly assignments. Here is that list of problems.

I have also marked the questions I did not submit a solution for. Sometimes I didn't have time to complete them, sometimes I didn't understand the question and sometimes I just couldn't solve the problem. Some of these are really embarassing.

These questions are all taken from C. Wayne Patty's "Foundations of Topology".

1 Topological Spaces

- 1. Let d be the usual metric and let ρ be the square metric on \mathbb{R}^2 . Prove that:
 - (a) $\rho(a,b) \leq d(a,b)$ for all $a,b \in \mathbb{R}^2$;
 - (b) $d(a,b) \leq \sqrt{2} \cdot \rho(a,b)$ for all $a,b \in \mathbb{R}^2$.
- 2. Let X be an infinite set and let $\mathcal{T} := \{ U \in \mathcal{P}(X) : U = \emptyset \text{ or } X \setminus U \text{ is finite} \}$. Prove that \mathcal{T} is a topology on X.
- 3. Give an example of a set X and topologies \mathcal{T}_1 and \mathcal{T}_2 on X such that $\mathcal{T}_1 \cup \mathcal{T}_2$ is not a topology on X.
- 4. Let $\{\mathcal{T}_{\alpha} : \alpha \in \Lambda\}$ be a collection of topologies on a set X. Prove that there is a unique topology \mathcal{T} on X such that: (1) for each $\alpha \in \Lambda$, \mathcal{T} is finer than \mathcal{T}_{α} , and (2) if \mathcal{T}' is a topology on X that is finer than \mathcal{T}_{α} for each $\alpha \in \Lambda$, then \mathcal{T} is coarser than \mathcal{T}'
- 5. Let $\{\mathcal{T}_{\alpha} : \alpha \in \Lambda\}$ be a collection of topologies on a set X. Prove that there is a unique topology \mathcal{T} on X such that: (1) for each $\alpha \in \Lambda$, \mathcal{T} is coarser than \mathcal{T}_{α} , and (2) if \mathcal{T}' is a topology on X that is coarser than \mathcal{T}_{α} for each $\alpha \in \Lambda$, then \mathcal{T} is finer than \mathcal{T}' .

2 Basis for a Topology

- 1. Let \mathcal{T} be the usual topology on \mathbb{R} . Prove that $\mathcal{B} = \{ (a, b) : a < b \text{ and } a, b \in \mathbb{Q} \}$ is a countable basis for \mathcal{T} .
- 2. Let \mathcal{T} be the Sorgenfrey topology on \mathbb{R} . Prove that $(\mathbb{R}, \mathcal{T})$ is first countable, but not second countable.

- 3. Let \mathcal{B} be the collection of all intervals of the form [a,b), where a < b and a and b are rational. Prove that \mathcal{B} is a basis for a topology \mathcal{T} on \mathbb{R} . Is \mathcal{T} the Sorgenfrey topology on \mathbb{R} ?
- 4. Let X be the set of all functions that map [0,1] into [0,1]. For each subset A of [0,1], let $B_A = \{ f \in X : f(x) = 0, \forall x \in A \}$. Prove that $\mathcal{B} = \{ B_A : A \subseteq [0,1] \}$ is a basis for a topology on X.
- 5. Let (X, \mathcal{T}_1) and (X, \mathcal{T}_2) be topological spaces. Let $\mathcal{B} = \{U \times V : U \in \mathcal{T}_1, V \in \mathcal{T}_2\}$. Prove that \mathcal{B} is a basis for a topology on $X \times Y$.

3 Closed Sets, Closures, and Interiors of Sets

- 1. Let \mathcal{T} be the usual topology on \mathbb{R} and let $a, b \in \mathbb{R}$ with a < b. Prove that [a, b) is neither open nor closed.
- 2. Let \mathcal{T} be the Sorgenfrey topology on \mathbb{R} and let $a, b \in \mathbb{R}$ with a < b. Prove that [a, b) is both open and closed.
- 3. Let $X = \{1, 2, 3\}$ and let $\mathcal{T} = \{X, \emptyset, \{1\}, \{1, 2\}, \{1, 3\}\}$. Then \mathcal{T} is a topology on X.
 - (a) List the closed subsets of (X, \mathcal{T}) .
 - (b) Find $\overline{\{1\}}$.
 - (c) Find $\overline{\{2\}}$.
 - (d) Find $int({2,3})$.
 - (e) Find boundary $(\{2,3\})$.
- 4. Let \mathcal{T} be the finite complement topology on \mathbb{R} , and let A = [0, 1]. Find \overline{A} and int(A) and prove your answers.
- 5. Let $\mathcal{T} = \{ U \in \mathcal{P}(\mathbb{R}) : 0 \notin U \text{ or } U = \mathbb{R} \}.$
 - (a) Prove that \mathcal{T} is a topology on \mathbb{R} .
 - (b) Describe the closed subsets of \mathbb{R} .
 - (c) Find $\overline{\{1\}}$.
- 6. Let A be a subset of a topological space (X, \mathcal{T}) . Prove that:
 - (a) int(A), $int(X \setminus A)$ and boundary(A) are pairwise disjoint sets whose union is X.
 - (b) boundary (A) is a closed set.
 - (c) $\overline{A} = int(A) \cup boundary(A)$.

- (d) boundary(A) = \emptyset if and only if A is both open and closed.
- 7. Let X be a set, and let cl : $\mathcal{P}(X) \longrightarrow \mathcal{P}(X)$ be a function such that the following conditions hold:
 - (a) For each $A \in \mathcal{P}(X)$, $A \subseteq cl(A)$.
 - (b) For each $A \in \mathcal{P}(X)$, $\operatorname{cl}(\operatorname{cl}(A)) = \operatorname{cl}(A)$.
 - (c) $\operatorname{cl}(\emptyset) = \emptyset$.
 - (d) If $A, B \in \mathcal{P}(X)$, then $\operatorname{cl}(A \cup B) = \operatorname{cl}(A) \cup \operatorname{cl}(B)$.

Let $\mathcal{T} = \{ U \in \mathcal{P}(X) : \text{there is a subset } C \text{ of } X \text{ such that } \operatorname{cl}(C) = C \text{ and } U = X \setminus C \}.$ Prove that \mathcal{T} is a topology on X. Properties (a)-(d) are called the **Kuratowski** Closure Properties in honour of K. Kuratowski (1896-1980).

- 8. Let X be a set and let $D \subseteq X$. Define a function $f : \mathcal{P}(X) \longrightarrow \mathcal{P}(X)$ by $f(A) = A \cup D$ for each $A \in \mathcal{P}(X)$.
 - (a) Prove that f satisfies the Kuratowski Closure Properties.
 - (b) Describe the members of \mathcal{T} , where \mathcal{T} is the topology defined in the previous exercise.
 - (c) What is the topology \mathcal{T} when $D = \emptyset$?
 - (d) What is the topology \mathcal{T} when D = X?

4 Convergence

- 1. Let X be a set and let d be the discrete metric on X. Prove that (X, d) is complete.
- 2. Let A be a sounded subset of a metric space (X, d). Prove that \overline{A} is bounded.
- 3. Give an example of a set X and metrics d and ρ on X such that the topology induced by d is the same as the topology induced by ρ , but (X, d) is complete, while (X, ρ) is not.
- 4. Let (X, d) be a metric space and let A be a dense subset of X such that every Cauchy sequence in A converges in X. Prove that (X, d) is complete.
- 5. Let (X, \leq) be a linearly ordered set, and let \mathcal{T} denote the order topology on X. Prove that (X, \mathcal{T}) is a Hausdorff space.

5 Continuous Functions and Homeomorphisms

- 1. Let (X, \mathcal{T}) be a separable space, let (Y, \mathcal{U}) be a topological space, and let $f: X \longrightarrow Y$ be a continuous function that maps X onto Y. Prove that (Y, \mathcal{U}) is separable.
- 2. Give examples of topological spaces (X, \mathcal{T}) and (Y, \mathcal{U}) and a function $f: X \longrightarrow Y$ such that
 - (a) f is open but not closed.
 - (b) f is closed but not open.
- 3. Let (X, \mathcal{T}) and (Y, \mathcal{U}) be topological spaces and let $f: X \longrightarrow Y$ be a bijection. Prove that the following statements are equivalent:
 - (a) f is a homeomorphism.
 - (b) f is open and continuous.
 - (c) f is closed and continuous
- 4. Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a continuous function, and define $g: \mathbb{R} \longrightarrow \mathbb{R}^2$ by g(x) = (x, f(x)). Prove that g is continuous.

6 Subspaces

- 1. Let $X = \{1, 2, 3\}$ and let $A = \{2, 3\}$.
 - (a) If $\mathcal{T} = \{\emptyset, \{1\}, X\}$, what is \mathcal{T}_A ?
 - (b) If $\mathcal{T} = \{\emptyset, \{1, 2\}, X\}$, what is \mathcal{T}_A ?
- 2. Prove that Hausdorff is hereditary.
- 3. Prove that the axiom of first countability is hereditary.
- 4. Give an example of a topological space (X, \mathcal{T}) , a subspace (A, \mathcal{T}_A) of (X, \mathcal{T}) , and a closed set in (A, \mathcal{T}_A) that is not closed in (X, \mathcal{T}) .
- 5. Let $(X, \mathcal{T}), (Y, \mathcal{U})$, and (Z, \mathcal{V}) be topological spaces such that there is an embedding of X in Y and an embedding of Y in Z. Prove that there is an embedding of X in Z. (X is embedded in Y if X is homeomorphic to a subspace of Y.)
- 6. Let (X, \mathcal{T}) be a topological space, and let $B \subseteq A \subseteq X$. Show that the boundary of B, considered as a subset of A, is a subset of the boundary of B, considered as a subset of X, intersected with A.
- 7. Let A be an open subset of a separable space (X, \mathcal{T}) . Prove that (A, \mathcal{T}_A) is separable.

- 8. Let (A, \mathcal{T}_A) be a subspace of a topological space (X, \mathcal{T}) . Prove that the inclusion map $i: A \longrightarrow X$ defined by i(a) = a for each $a \in A$ is continuous.
- 9. Let (X, \mathcal{T}) and (Y, \mathcal{U}) be topological spaces, let (A, \mathcal{T}_A) be a subspace of (X, \mathcal{T}) , and let $f: X \longrightarrow Y$ be a continuous function. Prove that $f|_A: A \longrightarrow Y$ is continuous.
- 10. Let \mathcal{B}' be the collection of all open disks in \mathbb{R}^2 with a finite number of straight lines through the center removed, and let

$$\mathcal{B} = \{ B \cup \{c\} : B \in \mathcal{B}' \text{ and } c \text{ is the center of } B \}$$

- (a) Show that \mathcal{B} is a basis for a topology \mathcal{T} on \mathbb{R}^2 .
- (b) Compare \mathcal{T} with the usual topology \mathcal{U} on \mathbb{R}^2 .
- (c) Let A denote a striaght line in \mathbb{R}^2 . Describe \mathcal{T}_A .
- (d) Let A denote a circle in \mathbb{R}^2 . Compare \mathcal{T}_A and \mathcal{U}_A .
- 11. Let \mathcal{T} denote the subspace topology on [0,1) determined by the usual topology on \mathbb{R} , and let \mathcal{U} denote the subspace topology on $S^1 = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$ determined by the usual topology on \mathbb{R}^2 . Define $f:[0,1) \longrightarrow (S^1,\mathcal{U})$ by

$$f(x) = (\cos(2\pi x), \sin(2\pi x)).$$

- (a) Prove that f is a bijection.
- (b) Prove that f is continuous.
- (c) Prove that f^{-1} is not continuous.

7 Product Topology on $X \times Y$

- 1. Let $X = \{1, 2, 3\}$, $\mathcal{T} = \{\emptyset, \{1\}, \{1, 2\}, X\}$, $Y = \{4, 5\}$ and $\mathcal{U} = \{\emptyset, \{4\}, Y\}$. Find a basis \mathcal{B} for the product topology on $X \times Y$.
- 2. Let X and Y be infinite sets, let \mathcal{T} be the discrete topology on X and \mathcal{U} be the indiscrete topology on Y. Describe the product topology on $X \times Y$.
- 3. Let $\mathcal{T} := \{U \in \mathcal{P}(\mathbb{R}) : 0 \in U\} \cup \{\emptyset\}$, and let $\mathcal{U} := \{U \in \mathcal{P}(\mathbb{R}) : 1 \in U\} \cup \{\emptyset\}$. Describe the product topology on $\mathbb{R} \times \mathbb{R}$ determined by \mathcal{T} and \mathcal{U} .
- 4. Let \mathcal{T} be the Sorgenfrey topology on \mathbb{R} , and let \mathcal{U} be the product topology on $(\mathbb{R}, \mathcal{T}) \times (\mathbb{R}, \mathcal{T})$. Identify the subspace topology on the line $L := \{(x, -x) : x \in \mathbb{R}\}$.
- 5. Let (X, \mathcal{T}) and (Y, \mathcal{U}) be topological spaces, let $a \in X$, and let $b \in Y$. Prove that the functions $f: X \longrightarrow X \times Y$ and $g: Y \longrightarrow X \times Y$ defined by f(x) = (x, b) and g(y) = (a, y) are embeddings.

- 6. Let (X_1, \mathcal{T}_1) and (X_2, \mathcal{T}_2) be separable spaces, and let \mathcal{T} denote the product topology on $X = X_1 \times X_2$. Prove that (X, \mathcal{T}) is a separable space.
- 7. Let (X_1, \mathcal{T}_1) and (X_2, \mathcal{T}_2) be first countable spaces, and let \mathcal{T} denote the product topology on $X = X_1 \times X_2$. Prove that (X, \mathcal{T}) is a first countable space.
- 8. Let (X_1, \mathcal{T}_1) and (X_2, \mathcal{T}_2) be second countable spaces, and let \mathcal{T} denote the product topology on $X = X_1 \times X_2$. Prove that (X, \mathcal{T}) is a second countable space.
- 9. Let (X_1, \mathcal{T}_1) and (X_2, \mathcal{T}_2) be first countable spaces, and let \mathcal{T} denote the product topology on $X_1 \times X_2$, and let \mathcal{U} denote the product topology on $X_2 \times X_1$. Prove that $(X_1 \times X_2, \mathcal{T})$ is homeomorphic to $(X_2 \times X_1, \mathcal{U})$.
- 10. Let (X, \mathcal{T}) be a topological space. Let \mathcal{U} denote the product topology on $X \times X$, let $\Delta := \{(x, x) : x \in X\}$, and let \mathcal{U}_{Δ} be the subspace topology on Δ determined by \mathcal{U} . Prove that (X, \mathcal{T}) is homeomorphic to $(\Delta, \mathcal{U}_{\Delta})$. (The set Δ is called the **diagonal**.)
- 11. (**I didn't solve this.**) Let (X, \mathcal{T}) be a topological space and let \mathcal{U} denote the product topology on $X \times X$. Prove that (X, \mathcal{T}) is Hausdorff if and only if the diagonal is a closed subset of $(X \times X, \mathcal{U})$.
- 12. Let (X_1, \mathcal{T}_1) and (X_2, \mathcal{T}_2) be topological spaces, and suppose $X_1 \times X_2$ has the product topology. For i = 1, 2, let A_i be a subset of X_i . Prove that $\overline{A_1 \times A_2} = \overline{A_1} \times \overline{A_2}$.
- 13. Let (X_1, \mathcal{T}_1) and (X_2, \mathcal{T}_2) be topological spaces, and suppose $X_1 \times X_2$ has the product topology. For i = 1, 2, let A_i be a subset of X_i . Prove that

$$int(A_1 \times A_2) = int(A_1) \times int(A_2).$$

- 14. Let X, Y_1 and Y_2 be sets, for each i = 1, 2, let $U_i \subseteq Y_i$ and let $f_i : X \longrightarrow Y_i$ be a function, and define $f : X \longrightarrow Y_1 \times Y_2$ by $f(x) = (f_1(x), f_2(x))$. Prove that $f^{-1}(U_1 \times U_2) = f_1^{-1}(U_1) \cap f_2^{-1}(U_2)$.
- 15. (I didn't solve this.) Let $(X_1, \mathcal{T}_1), (X_2, \mathcal{T}_2), (Y_1, \mathcal{U}_1), (Y_2, \mathcal{U}_2)$ and (Z, \mathcal{V}) be topological spaces, and let $f: X_1 \longrightarrow Y_1, g: X_2 \longrightarrow Y_2$ and $F: Y_1 \times Y_2 \longrightarrow Z$ be continuous functions. Prove that the function $G: X_1 \times X_2 \longrightarrow Z$ defined by $G((x_1, x_2)) = F(f(x_1), g(x_2))$ is continuous.
- 16. (**I didn't solve this.**) Prove that the function $f: \mathbb{R} \longrightarrow \mathbb{R}^2$ defined by

$$f(x) = (x^2 - 5, \frac{1}{x^2 + 1})$$

is continuous.

8 Quotient Maps

We didn't cover quotient maps, but here are the questions anyway. Don't worry about these.

- 1. Define an equivalence relation \sim on $X = \mathbb{R}^2$ by $(x_1, y_1) \sim (x_2, y_2)$ if and only if $y_1 = y_2$. Let $(X/\sim, \mathcal{U})$ be the identification space, and let \mathcal{T} denote the usual topology on \mathbb{R} . Prove that $(X/\sim, \mathcal{U})$ is homeomorphic to $(\mathbb{R}, \mathcal{T})$.
- 2. Let $X = \{(x,y) \in \mathbb{R}^2 : x \geq 0 \text{ or } y = 0\}$, and let \mathcal{T} be the subspace topology on X induced by the usual topology on \mathbb{R}^2 , and let \mathcal{U} be the usual topology on \mathbb{R} . Define $f: X \longrightarrow \mathbb{R}$ by f((x,y)) = x for all $(x,y) \in X$. Prove that f is a quotient map and show that it is neither open nor closed.
- 3. Let (X, \mathcal{T}) and (Y, \mathcal{V}) be topological spaces, and let f be a function that maps X onto Y, and let \mathcal{U} be the quotient topology on Y induced by f. Prove that if f is continuous and closed, then $\mathcal{U} = \mathcal{V}$.
- 4. Prove that the composition of two quotient maps is a quotient map.
- 5. Let (X, \mathcal{T}) be a topological space, and let \mathcal{D} be a partition of X. Let $p: X \longrightarrow \mathcal{D}$ be the natural map, and let \mathcal{U} be the quotient topology on \mathcal{D} induced by p. Prove that a subset \mathcal{E} of \mathcal{D} is open if and only if $\bigcup \{E: E \in \mathcal{E}\}$ is open in X.
- 6. Let $Y = \{(x,y) \in \mathbb{R}^2 : x = 0 \text{ or } y = 0\}$. Let \mathcal{T} be the usual topology on \mathbb{R}^2 , and deifne $f : \mathbb{R}^2 \longrightarrow Y$ by f((0,y)) = (0,y) and f((x,y)) = (x,0) if $x \neq 0$. Let \mathcal{U} be the quotient topology on Y induced by f. Show that (Y,\mathcal{U}) is not Hausdorff.
- 7. Let $Y = \{a, b, c\}$ and define $f : \mathbb{R} \longrightarrow Y$ by:

$$f(x) = \begin{cases} a : x < 0 \\ b : x = 0 \\ c : x > 0 \end{cases}$$

Describe the quotient topology on Y induced by f.

8. Let $X = [0,1] \cup (2,3]$, let Y = [0,2], and suppose X and Y have the usual topologies. Define $f: X \longrightarrow Y$ by:

$$f(x) = \begin{cases} x & : x \in [0, 1] \\ x - 1 & : x \in (2, 3] \end{cases}$$

Is f a quotient map? Prove your answer.

- 9. Let $X := \bigcup_{n \in \mathbb{N}} (\mathbb{R} \times \{n\})$, and let $Y := \bigcup_{n \in \mathbb{N}} \{(x, y) \in \mathbb{R}^2 : y = nx\}$. Suppose both X and Y have the subspace topology induced by the usual topology on \mathbb{R}^2 . Define $p: X \longrightarrow Y$ by p((x, n)) = (x, nx) for each $x, n \in X$.
 - (a) Show that p maps X onto Y.
 - (b) Show that p is not a quotient map.

9 Connectedness

- 1. Prove that the product of two connected spaces is connected.
- 2. Prove that no two of the intervals [0,1], (0,1) and [0,1) are homeomorphic. (Hint: Use cut-points.)
- 3. Are any of the following subspaces of \mathbb{R}^2 homeomorphic? A "+" shape, a "P" shape, a "Y" shape and a square.
- 4. (I didn't solve this.) Let p be a cut-point of a connected space (X, \mathcal{T}) and suppose A and B form a separation of $X \setminus \{p\}$. Prove that $A \cup \{p\}$ is connected.
- 5. (I didn't solve this.) Let (L, \leq) be a linearly ordered set and let \mathcal{T} be the order topology on X. Prove that (X, \mathcal{T}) is connected if and only if (X, \leq) is Dedekind complete and has no gaps.

10 Path Connectedness

- 1. Show that the topologist's comb is pathwise connected but not locally connected.
- 2. Let \leq denote the dictionary order relation on $I \times I$ determined by less than or equal to on I, and let \mathcal{T} denote the order topology on $I \times I$. Prove that $(I \times I, \mathcal{T})$ is locally connected, but not locally pathwise connected.
- 3. Prove that the continuous image of a pathwise connected space is pathwise connected.
- 4. Prove that if A is a countable subset of \mathbb{R}^2 , then $\mathbb{R}^2 \setminus A$ is pathwise connected.
- 5. The **deleted comb space** is the space obtained from the topologist's comb by deleting the open interval $\{0\} \times (0,1)$. Prove that the deleted comb space is connected and has two path components.

11 Compactness in Metric Spaces

- 1. Prove that every subset of a totally bounded metric space is totally bounded.
- 2. (I didn't solve this.) Let \mathcal{O} be a collection of open intervals such that

$$I\subseteq\bigcup\{O:O\in\mathcal{O}\}.$$

Prove that there is a finite subset $\{O_1, O_2, \dots, O_N\}$ of \mathcal{O} such that $I \subseteq \bigcup_{n=1}^N O_N$.

- 3. (I didn't solve this.) Let (X, d) be a compact metric space, and let ρ be any metric on X such that the topology induced by ρ is the topology induced by d. Prove that (X, ρ) is bounded.
- 4. (I didn't solve this.) Let (X, \mathcal{T}) be a metrizable space such that every metric that generates \mathcal{T} is bounded. Prove that X is compact.
- 5. Let (X,d) be a totally bounded metric space. Prove that X is separable.
- 6. Give an example of a comapct metric space (X, \mathcal{T}) , a topological space (Y, \mathcal{U}) that is not Hausdorff, and a continuous function f that maps X onto Y.
- 7. (I didn't solve this.) Let $\{A_{\alpha} : \alpha \in I\}$ be a family of closed subsets of a compact metric space (X,d) such that $\bigcap_{\alpha \in I} A_{\alpha} = \emptyset$. Prove that there is a positive number ϵ such that if B is any subset of X of diameter less than ϵ , then there exists $\beta \in I$ such that $B \cap A_{\beta} = \emptyset$.
- 8. (I didn't solve this.) Prove that every comapct metric space is second countable.
- 9. (I didn't solve this.) Prove that every compact subset of a metric space is closed and bounded.
- 10. Give an example of a bounded metric space that is not compact.

12 T_0, T_1 and T_2 spaces.

- 1. Let (X, \mathcal{T}) be a topological space. Prove that (X, \mathcal{T}) is a T_0 space if and only if for each pair a and b of distinct members of X, $\{a\} \neq \{b\}$.
- 2. Let (X, \mathcal{T}) be a topological space, let R be an equivalence relation on X, and let \mathcal{U} be the quotient topology on X/R induced by the natural map. Prove that $(X/R, \mathcal{U})$ is a T_1 space if and only if for each $x \in X$, [x] is a closed subset of X.
- 3. For each i = 0, 1, prove that every subspace of a T_i space is a T_i space.

- 4. For each i = 0, 1, prove that the product of T_i spaces is a T_i space.
- 5. Let I = [0,1], and define $x \sim y$ provided x y is rational. This is clearly an equivalence relation on I. Let $p: I \longrightarrow I/\sim$ be the natural map.
 - (a) Prove that I/\sim is not Hausdorff;
 - (b) Prove that p is an open map.
- 6. Let X be a set and let $D \subseteq X$. Define a topology \mathcal{T} on X by saying that a subset of X is closed whenever $C = C \cup D$ and a subset U of X belongs to \mathcal{T} whenver $X \setminus U$ is closed. For each i = 0, 1, 2, under what conditions on D is (X, \mathcal{T}) a T_i space?
- 7. Let (X, \mathcal{T}) be a T_1 -space, let (Y, \mathcal{U}) be a topological space, and let f be a closed map of X onto Y. Prove that (Y, \mathcal{U}) is a T_1 space.
- 8. Let (X, \mathcal{T}) be a T_1 -space and let $(\mathcal{D}, \mathcal{U})$ be a decomposition space of X. Prove that $(\mathcal{D}, \mathcal{U})$ is T_1 if and only if each member of \mathcal{D} is a closed subset of X.
- 9. We know that we can define a topology in terms of closed sets. Define a basis for the closed sets of a topology.