Software Engineering (IT): Course Introduction

Gül Calikli and Blair Archibald

Overview

- This course is all about how we build software
- This semester: the *processes* behind building software
 - Are we building the right thing?
 - How to manage a project
 - Agile development

Overview

- This course is all about how we build software
- This semester: the processes behind building software
 - Are we building the right thing?
 - How to manage a project
 - Agile development
- Next semester: how we write the software
 - What does good design look like?
 - What tools do we have for design/architecture?
 - How do we cope with complex systems?
 - What common patterns/architectures exist?

Lecturers

handangul.calikli@glasgow.ac.uk

- Empirical Software Engineering
- Human Aspects of Software Engineering
- Data Analytics for Software Engineering

blair.archibald@glasgow.ac.uk

- Formal Methods
- Graph Transformation
- Parallelism/High Performance Computing

Caveats

- There are a lot of ways to build software
- We will give an overview of techniques/tools found in practice
 - Some are more common than others
 - You should be aware of a range of techniques
 - To better integrate to different teams in future
 - Techniques may not necessarily better or more correct than another style
 - Tools to put a rover on Mars are going to be different from those to build a small app

Good Software Engineers are flexible

Course Structure

- 15 Credit Course
 - 1.5 times the size of what you are used to
- Taught over 2 semesters:
 - Semester 1 is online (Live Thursdays 9:00-11:00)
 - Software life-cycle/management/requirements capture
 - Semester 2 is in-person
 - Software design/clean code/architecture patterns

Course Structure

- 2h lecture each week
 - Online (Live) in first semester
- Materials/Recordings will be posted after the lecture
 - Please do try to attend live:
 - Having a fixed study structure is really useful!
 - You can ask questions
 - It's really boring for us to speak to an empty room!
- Labs starting in semester 2

Assessment

- Exam at the end of the course (70%)
- Assessed Exercises
 - Team based (like almost all software development)
 - AE1: Semester 1 (10%)
 - Produce a high level design for a system
 - AE2: Semester 2 (20%)
 - Implement (part of) your design (using good practice!)

Tips to Do Well

- Attend the lectures and labs
 - Attendance and final course mark are correlated
- Attempt questions in lectures and labs
- Spend a reasonable time on the assessed exercises
 - Only 30% of the course, which itself is a smaller percentage of your degree
 - Don't spend ages at the detriment of other work

Tips to Do Well

- Seek out additional material for areas you are stuck
 - Lots of SE books (some suggestions:)
 - Agile Project Management J Carroll & D Morris
 - Head First Object-Oriented Analysis & Design B McLaughlin, G Pollice
 & D West.
 - Head First Design Patterns E Freeman & E Robson
 - Lots of info on SE online
 - Speak with your peers
 - Ask for help if you need it
- Make sure to do well in your programming courses
 - We are going to see a lot of code in semester 2!

Lets Get Started

Q&A from Lecture

- How many people per team: 6/7
- How do we choose teams: choose own teams, or allocated if not possible
- When does AE1 Begin: exact date TBC, but probably week 3
 - Completed and marked this semester
- When does AE2 Begin: Second semester, exact date TBC
- What programming language will we use: Java
- When is the exam: April/May exam diet