Elevated temperatures have a greater effect on herbivore survival than a viral pathogen

Victoria Peechatt

Spring 2024

- 1 Questions & Hypotheses
- 2 Study System
- 3 Research Design
- 4 The Model
- **6** Model Checking
- **6** Drawing Inferences
- Code

- 1 Questions & Hypotheses
- Study System

Questions & Hypotheses

000

- **6** Drawing Inferences

 Questions & Hypotheses
 Study System
 Research Design 000
 The Model 0000000
 Model Checking 0000000
 Drawing Inferences 0000000

Background

Questions

Questions & Hypotheses

 How do different temperatures affect the development and survival of an insect herbivore, both infected and not infected with JcDV?

Questions

Questions & Hypotheses

- How do different temperatures affect the development and survival of an insect herbivore, both infected and not infected with JcDV?
- Does viral infection and temperature interact to effect the development and survival of an insect herbivore?

Questions

Questions & Hypotheses

- How do different temperatures affect the development and survival of an insect herbivore, both infected and not infected with JcDV?
- Does viral infection and temperature interact to effect the development and survival of an insect herbivore?
- Is there a threshold temperature at which insect herbivores can survive with infection of the virus?

1 Questions & Hypotheses

Study System

- 2 Study System

- **6** Drawing Inferences

Study System

Junonia coenia densovirus (Parvoviridae: Densovirinae)

Plantago lanceolata Plantain

- Questions & Hypotheses
- 2 Study System
- 3 Research Design
- 4 The Mode
- **5** Model Checking
- **6** Drawing Inferences
- 7 Code

Field Work

Factorial Experiment Design

	Temp 1 (25/20)	Temp 2 (28/23)	Temp 3 (31/26)	Temp 4 (35/29)
Infected	60	60	60	60
Control	60	60	60	60

- **1** Questions & Hypotheses

- 4 The Model
- **6** Drawing Inferences

Model Statements

Questions & Hypotheses

$$y_i \sim Bernoulli(\mu_i)$$

Model 1:

$$\mu_i = logit^{-1}(\beta_0 + \beta_1 virus_i + \beta_2 temp_{2i} + \beta_3 temp_{3i} + \beta_4 temp_{4i})$$

Model 2:

$$\mu_i = logit^{-1}(\beta_0 + \beta_1 virus_i + \beta_2 temp_2 virus_i + \beta_3 temp_3 virus_i + \beta_4 temp_4 v$$

Model 3:

$$\mu_i = logit^{-1}(\beta_0 + \beta_1 \textit{virus}_i + \beta_2 temp_{2i} + \beta_3 temp_{3i} + \beta_4 temp_{4i})$$

$$\beta_1 \sim \textit{Normal}(-1.3, 1.5)$$

Model 1 Results

Model 1:

Parameter	Rhat	n_eff	mean	sd	se_mean	2.5%	97.5%
alpha	1.0	12011	1.7	0.3	0.0	1.1	2.3
beta_virus	1.0	18817	-1.1	0.3	0.0	-1.6	-0.5
beta_temp2	1.0	15785	0.4	0.4	0.0	-0.4	1.2
beta_temp3	1.0	15259	-0.4	0.4	0.0	-1.1	0.4
beta_temp4	1.0	14106	-1.7	0.4	0.0	-2.5	-1.0

Model 1 Posterior Distributions

Model 2 Results

Model 2:

Parameter	Rhat	n_eff	mean	sd	2.5%	97.5%
alpha	1.0	28490	1.0	0.2	0.7	1.3
beta_virus	1.0	36956	0.0	1.0	-2.0	2.0
beta_temp2	1.0	33795	-0.2	0.4	-0.9	0.6
beta_temp3	1.0	34062	-0.9	0.4	-1.7	-0.2
beta_temp4	1.0	32972	-1.9	0.4	-2.7	-1.1

Model 2 Posterior Distributions

Model 3 Results

Model 3:

Parameter	Rhat	n_eff	mean	sd	2.5%	97.5%
alpha	1.0	12776	1.7	0.3	1.1	2.3
beta_virus	1.0	17718	-1.1	0.3	-1.6	-0.6
beta_temp2	1.0	16688	0.4	0.4	-0.4	1.2
beta_temp3	1.0	16386	-0.4	0.4	-1.1	0.4
beta_temp4	1.0	15455	-1.7	0.4	-2.5	-1.0

Model 3 Posterior Distributions

000

- **1** Questions & Hypotheses

- **5** Model Checking
- **6** Drawing Inferences

Model Checking

Questions & Hypotheses

The loo package is used to carry out Pareto smoothed importance-sampling leave-one-out cross-validation (PSIS-LOO) for purposes of model checking and model comparison.

- elpd_{loo}
 - expected log predictive density
- Ploo
 - effective number of parameters
- $looic = -2elpd_{loo}$
 - the LOO information criterion

Model Checking

Model	$\Delta \widehat{elpd_{loo}}$	Δse	looic
Model 3	0.0	0.0	331.3
Model 1	-0.1	0.0	331.4
Model 2	-11.9	4.6	355.0

The compare function makes an object that contains the estimated difference of expected leave-one-out prediction errors between the two models, along with the standard error.

- 1 Questions & Hypotheses
- 2 Study System
- 3 Research Design
- 4 The Mode
- **5** Model Checking
- **6** Drawing Inferences
- 7 Code

Drawing Inferences

Conclusions

• The highest temperature treatment group had a greater negative effect on the survival of Buckeyes than viral infection.

Conclusions

- The highest temperature treatment group had a greater negative effect on the survival of Buckeyes than viral infection.
- There may not be a strong interaction between temperature and virus, but there might be some interaction in the lower temperature treatment groups.

Conclusions

- The highest temperature treatment group had a greater negative effect on the survival of Buckeyes than viral infection.
- There may not be a strong interaction between temperature and virus, but there might be some interaction in the lower temperature treatment groups.
- Prior data did not really change the results, but made the posterior predictive check perform slightly better.

- **1** Questions & Hypotheses

- **6** Drawing Inferences
- Code

Model 3

```
int N; // Number of observations
real virus[N]; // Virus dummy variable (0 or 1)
real temp 2[N]; // Temperature dummy variable (0 or 1)
real temp 3[N];
real temp 4 N;
int surv[N]; // Response variable: survivorship
real alpha; // Intercept
real beta virus; // Coefficient for virus variable
real beta temp2;
real beta_temp3;
real beta temp4;
```

Model 3

```
alpha ~ normal(0, 1); // Prior for intercept
beta_virus ~ normal(-1.3, 1.5);// Prior for virus coefficient
for (i in 1:N) {
  real mu = alpha +
            beta_virus * virus[i] +
            beta temp2 * temp 2[i] +
            beta temp3 * temp 3[i] +
            beta temp4 * temp 4[i]; // Linear predictor
  surv[i] ~ bernoulli logit(mu); // Likelihood function*
```