

Final Exam Topics

Class Overview

Discrete Objects

Python!

Sets

Compound Truth Tables

Fibonacci Sequence: Generator with Yield

Graph Theory

Analysis

Discrete Structures: CMPSC 102 A Review of the Class

Oliver BONHAM-CARTER

Fall 2019 Week 15

Final Exam Topics

Final Exam Topics

Class Overview

Discrete Objects

Python!

Sets

Compound Truth Tables

Fibonacci Sequence: Generator with Yield

Graph Theory

- ullet Can only be given on Tuesday 17^{th} December at 9:00am,
- Alden 101
- Online format
- Three hours to complete
- Fifteen questions: Multi-choice, True/False and Short answer
- Material covered since week 12

What types of things to study

Final Exam Topics

Class Overview

Discrete Objects

Python!

Sets

Compound Truth Tables

Fibonacci Sequence: Generator with Yield

Graph Theory

- Slides, notes, with chapters to add detail to class material
- Main ideas behind mathematical subjects in class (again, study your slides)
- Python basics and bug-checking in code
- Basic stats: meaning and understanding of how to use (interpret) a measurement
- Conceptual questions: problem solving using concepts gained from the class

Course Overview: Academic Bulletin Description

Final Exam Topics

Class Overview

Discrete Objects

Python!

Sets

Compound Truth Tables

Fibonacci Sequence: Generator with Yield

Graph Theory

Analysis

An introduction to the foundations of computer science with an emphasis on understanding the abstract structures used to represent discrete objects. Participating in hands-on activities that often require teamwork, students learn the computational methods and logical principles that they need to create and manipulate discrete objects in a programming environment. Students also learn how to write, organize, and document a programs source code so that it is easily accessible to intended users of varied backgrounds. During a weekly laboratory session students use state-of-the-art technology to complete projects, reporting on their results through both written documents and oral presentations. Prerequisite: Knowledge of elementary algebra. Distribution Requirements: QR, SP.

What did I learn here? How to pair

Final Exam Topics

Class

Discrete Objects

Python!

Sets

Compound Truth Tables

Fibonacci Sequence: Generator with Yield

Graph Theory

Analysis

Logics,
Equations
and
Mathematical
Concepts

Automation From CS

This class was designed to inform your skills to combine automation with logics and mathematical reasoning.

What did I learn here?

Final Exam Topics

Class Overview

Overview

Objects
Python!

Sets

Compound Truth Tables

Fibonacci Sequence: Generator with Yield

Graph Theory

Analysis

"An introduction to the foundations of computer science with an emphasis on understanding the abstract structures used to represent discrete objects."

Wait! What?

What is do you mean by, **discrete**?

Discreet or Discrete

- **Discreet** means *unobtrusive* or *unnoticeable* (not this course!)
- **Discrete** means *separate*, not continuous or *not sharing* any common space

So, Discrete then?

Final Exam Topics

Class Overview

Discrete Objects

Python!

Sets

Compound Truth Tables

Fibonacci Sequence: Generator with Yield

Graph Theory

Analysis

• Discrete mathematics involves countable things.

Discrete objects

Final Exam Topics

Class Overview

Discrete Objects

Python!

Sets

Compound Truth Tables

Fibonacci Sequence: Generator with Yield

Graph Theory

- Discrete means "countable"
- We can count the number of animals.

About Python...

Final Exam **Topics**

Class

Overview Discrete Objects

Python!

Finding Factorials Approx Sarts

Sets

Compound Truth Tables

Fibonacci Sequence: Generator with Yield

Graph Theory

- Python's simple, easy to learn syntax emphasizes readability and therefore reduces the cost of program maintenance.
- Python supports modules and packages, which encourages program modularity and code reuse.
- The Python interpreter and the extensive standard library are open source and freely available in all major platforms

About Python...

Final Exam Topics

Class Overview

Discrete Objects

Python!

Finding Factorials Approx Sqrts

Sets Compound

Truth Tables

Fibonacci Sequence: Generator with Yield

Graph Theory

Analysis

Topics

- Using the interactive shell
- Mathematical operators
- If and Conditional statements
- Reading from files
- Data structures
- Generator functions
- Tying all code to classes (discrete objects)
- Applying mathematical reasoning, logic to your code.

Practicals

- Calculating factorials
- Approximating square roots
- Fibonacci sequences

Finding Factorial (not Nemo!)

Practical work: Putting mathematics to computation

Final Exam Topics

Class Overview

Discrete Objects

Python!

Finding Factorials
Approx Sgrts

Sets

Compound Truth Tables

Fibonacci Sequence: Generator with Yield

Graph Theory

```
Enter a number: 10
 The number you entered is the following: 10
Testing the number for Odd or Even polarity ...
 The number << 10 >> is EVEN:
Determing the factorial of the number ...
Current value of fact int :
                             24
Current value of fact int: 120
Current value of fact int: 720
Current value of fact int :
                             5040
Current value of fact int :
                             40320
 Current value of fact int :
                             362880
 * Factorial for 10 is : 3628800
```

$$n! = \prod_{k=1}^{n} k = n * (n-1) * (n-2) \cdots (3) * (2) * (1)$$

Finding Factorial (not Nemo!)

Practical work: The steps for approximation.

Final Exam **Topics**

Class Overview

Discrete Objects

Python! Finding Factorials

Approx Sarts

Sets

Compound Truth Tables

Fibonacci Sequence: Generator with Yield

Graph Theory

Analysis

Finding square root of: 2 Initial values: n = 2 and guess = 1.0 Square root result : 1.4142156862745099

Finding cube root of: 175616

Approx quess: 1.0

Initial values: n = 175616 and guess = 1.0 Cube root result: 56.00000000040617

Finding forth root of: 9834496

Initial values: n = 9834496 and guess = 1.0

Forth root result: 56.0

Guess			Approx. root
x_n	$f(x) = x_n^2 - 2$	$f'(x_n) = 2x$	$x_n - \frac{f(x_n)}{f'(x_n)}$
1	-1	2	$1 - \frac{-1}{2} = \frac{3}{2} = 1.5$
$\frac{3}{2}$	$\frac{1}{4} = 0.25$	3.0	$\frac{3}{2} - \frac{(\frac{1}{4})}{3} = \frac{17}{12} = 1.4167$
$\frac{17}{12}$	$\frac{1}{144}$	$\frac{17}{6}$	$\frac{17}{6} - \frac{\frac{1}{144}}{\frac{17}{6}} = \frac{577}{408} = 1.4142$

Types of Sets One decides which elements make up a set

Final Exam **Topics**

Class

Overview Discrete Objects

Python!

Sets

And, Or, Not

Compound Truth Tables

Fibonacci Sequence: Generator with Yield

Graph Theory

Analysis

Set of Triangles

Intentional definition of sets

- A_1 is the set whose members are the first four positive integers.
- B_1 is the set of colors of the Union Jack (i.e., the British flag)

Types of Sets Sets of members in curly brackets

Final Exam Topics

Class Overview

Discrete Objects

Python!

Sets

And, Or, Not

Compound Truth Tables

Fibonacci Sequence: Generator with Yield

Graph Theory

Analysis

Extensional definition of sets

- \bullet $A_2 = \{4, 2, 1, 3\}$
 - The first four positive numbers
- $B_2 = \{ Blue, Red and White \}$
 - The set of colors of the Union Jack (the British flag)
- $F = \{n^2 4 : n \text{ is an integer; and } 0 \le n \le 19\}$
 - \bullet The set of all values gained from plugging in n between 0 and 19 into the equation n^2-4

Types of Sets Practical: Used to make a secret writing program

Final Exam Topics

Class Overview

Discrete Objects

Python!

Sets

And, Or, Not

Compound Truth Tables

Fibonacci Sequence: Generator with Yield

Graph Theory

Analysis

Intentional Definition:

- ullet A_1 is the set are the first four positive integers.
- ullet B_1 is the set of colors of the Union Jack
- Extensional Definition:
 - $A_2 = \{4, 2, 1, 3\}$
 - $B_2 = \{ Blue, Red and White \}$

Prepositional Logic

Final Exam **Topics**

Class Overview

Discrete Objects

Python!

Sets And, Or, Not

Compound Truth Tables

Fibonacci Sequence: Generator with Yield

Graph Theory

Analysis

A proposition statement:

- Denoted by a capital letter (i.e., "A")
- A negation of a proposition statement
- $\sim A$: "not A"
- Two proposition statements joined by a connective
- *A* ∧ *B*: "A and B"
- $A \vee B$: "A or B"
- If a connective joins complex statements, parenthesis are added
- $A \wedge (B \vee C)$: "A and (B or C)"

Compound Truth tables

Final Exam Topics Class

Class Overview

Discrete Objects

Python!

Sets

Compound Truth Tables

Fibonacci Sequence: Generator with Yield

Graph Theory

Analysis

Α	В	\sim A	$A \lor B$	$(\sim A) \land (A \lor B)$
0	0	1	0	0
0	1	1	1	1
1	0	0	1	0
1	1	0	1	0

Legend

- AND is denoted by : ∧
- ullet OR is denoted by : \vee
- ullet Contradiction is denoted by : \sim
- \bullet Equivalency is denoted by : \equiv

Generator Functions For Fibonacci Sequences

Creating sequences dynamically with yield

Final Exam **Topics** Class

• Functions having *yield*-statement are generator

Overview Discrete Objects

This function works as a generator or otherwise

Python! Sets

A generator function for the Fibonacci sequence

Compound Truth Tables

Fibonacci Sequence: Generator with Yield

Graph Theory

```
def fibs(n):
   a=1
  b=1
   for i in range(n):
      vield a
      a, b = b, a + b
print([x for x in fibs(6)])
print(" My type is:",type(fibs))
f = fibs(6)
for i in f: print(i)
print(" My type is: ",type(fibs(6)))
```

Define a Graph

Final Exam Topics

Class Overview

Discrete Objects

Python!

Sets

Compound Truth Tables

Fibonacci Sequence: Generator with Yield

Graph Theory
Adjacency Matrices

Analysis

A Bowtie Graph

- We define a graph by its vertices and edges: G = (V, E)
 - Vertices: $V(G) = \{V_1, V_2, V_3, V_4, V_5\}$
 - Edges: $E(G) = \{V_1V_2, V_2V_3, V_3V_1, V_4V_1, V_5V_1, V_4V_5\}$

Adjacency Matrices

Final Exam Topics

Topics Class

Overview
Discrete
Objects

Python!

. ,

Sets

Compound Truth Tables

Fibonacci Sequence: Generator with Yield

Graph Theory

Adiacency Matrices

Analysis

A matrix is used describe adjacent vertices

- A matrix contains rows and columns
- Vertices are labelled with a 1 or 0 in position (v_i, v_j) according to whether v_i and v_j are adjacent vertices

Creating Plots with Matplotlib

Final Exam Topics

Class Overview

Discrete Objects

Python!

Sets

Compound Truth Tables

Fibonacci Sequence: Generator with Yield

Graph Theory
Analysis

Visualizing Data

Statistics Text SvmPv

 We first need to know that the library is installed on your machine.

python3

from pylab import plot, show

- https://matplotlib.org/index.html
- https://matplotlib.org/3.0.0/users/installing.html

Another Amazing Example!

Plot the sin wave

Final Exam Topics

Class Overview

Discrete Objects

Python!

Sets

Compound Truth Tables

Fibonacci Sequence: Generator with Yield

Graph Theory

Analysis

Visualizing Data

Statistics Text SvmPv

Place in python3 or in a python3 program file

```
from pylab import plot, show #get the library
import math
x_num = [i for i in range(50)]
y_num = [math.sin(i) for i in x_num]
plot(x_num, y_num, marker ='o')
# also including 'o', '*', 'x', and '+' as points
show() # draw the plot on canvas
```


Coding Statistics

Final Exam Topics

Class Overview

Discrete Objects

Python!

Sets

Compound Truth Tables

Fibonacci Sequence:

Generator with Yield

Graph Theory

Analysis

Statistics

Text SvmPv

Adding analysis to code, reading results

- Mean
- Median
- Mode
- Range
- Variance
- Standard Deviation
- Correlation

Frequency Fingerprints of Famous Writers! Text Analysis

Final Exam Topics

Class Overview

Discrete Objects

Python!

Sets

Compound Truth Tables

Fibonacci Sequence: Generator with Yield

Graph Theory

Analysis
Visualizing Data
Statistics

Text SymPy You can't hack into a type eviter that the type evit the t

Figure: Maybe we cannot hack into a typewriter but we can still hack the text that typewriters have produced. For this type of hacking, we collect frequency information to determine the distribution of frequencies.

Frequency Fingerprints of Famous Writers! Text Analysis

Final Exam Topics

Class Overview

Discrete Objects

Python!

Sets

Compound Truth Tables

Fibonacci Sequence: Generator with Yield

Graph Theory

Analysis
Visualizing Data

Statistics Text

Text

Figure: Authur Conan Doyle's fingerprint from word frequencies.

What is SymPy? An excellent library for mathematical work

Final Exam Topics

Class Overview

Discrete Objects

Python!

Sets

Compound Truth Tables

Fibonacci Sequence: Generator with Yield

Graph Theory

Analysis

Visualizing Data Statistics

SvmPv

https://www.sympy.org

- Sympy is a symbolic manipulation library for python.
- Solve mathematical problems using non-numeric data types
- You can work with math where the computed values remain in the contexts of fractions, equations, etc (otherwise these values would be immediately converted to floating points, for example)

Simplifying Square Roots

Final Exam Topics

Class Overview

Discrete Objects

Python!

Sets

Compound Truth Tables

Fibonacci Sequence: Generator with Yield

Graph Theory

Analysis
Visualizing Data
Statistics
Text

SymPy

```
Using Python
```

import sympy

sympy.sqrt(8) # 2*sqrt(2)

sympy.sqrt(20) # 2*sqrt(5)

Input:

√8

Input:

 $\sqrt{20}$

Exact result:

 $2\sqrt{2}$

Exact result:

 $2\sqrt{5}$

Decimal approximation:

Decimal approximation:

2.8284271247461900976033774

4.4721359549995793928183

Graphics from: https://www.wolframalpha.com

Sentiment Analyzer!

Analysis with text

Final Exam Topics

Class Overview

Discrete Objects

Python!

Sets

Compound Truth Tables

Fibonacci Sequence: Generator with Yield

Graph Theory

Analysis

Visualizing Data Statistics

SvmPv

Remember that there is more to an analysis than just one type of study.

What else did we cover here?

Final Exam Topics

Class Overview

Discrete Objects

Python!

Sets

Compound Truth Tables

Fibonacci Sequence: Generator with Yield

Graph Theory

Analysis

Visualizing Data Statistics Text

SymPy

SOMUCH MORE