

Interactive simulation of the composition of forces

Members	Student ID
Nguyễn Quang Đức	20204867
Nguyễn Thế Minh Đức	20204904
Nguyễn Ngọc Dũng	20204905
Lưu Anh Đức	20204875

Problem statement

Simple interactive simulation:

-> Newton's laws of motion

User:

- Control all components
- Observe motion of main object
- Display statistics: velocity, acceleration, force value, ...

System: Recalculate statistics each time interval

Use case diagram

General class diagram

Class diagrams for model package

Class diagrams for object package

Inheritance

Cube, Cylinder inherits from MainObject

All Forces inherits from HorizontalVector

Polymorphism

Different behaviors applyForceInTime

In Simulation class:

```
public void applyForceInTime(double t)
{
    this.getObj().applyForceInTime(...);
}
```

In Cube class:

In Cylinder class:

```
public void applyForceInTime(..) {
          super.applyForceInTime(..);
          this.applyForceInTimeRotate(..);
}
```

Aggregation

Composition

Simulation aggregates
MainObject, HorizontalVector
, and Surface

MainObject composites
HorizontalVector
(such as velocity, ..)

Demo

