4.2 The Composition Operation

4.2.1 Finding $f \circ g$, given f and g

If $f:A\to B$ and $g:B\to C$, then we can build a new function called $(f\circ g)(x)$ that has the domain A and the codomain C, and that follows the rule $(f\circ g)(x)=f(g(x))$. We read $f\circ g$ as "f of g", or the composition of f with g.

To find $f \circ g$, you plug f(x) into g(x) and simplify.

Example: f(x) = 2x + 1 and $g(x) = x^2 - 1$. What is $(f \circ g)(x)$?

- 1. Plug f(x) into g(x): f(g(x)) $= f(x^2 1)$ $= 2(x^2 1) + 1$
- 2. Simplify: $= 2x^2 2x + 1$ $= 2x^2 1$

Question 1

Solve the following:

a.
$$f(x) = 2x - 1$$
 and $g(x) = 3x$, what is $(f \circ g)(x)$?

b.
$$f(x) = 2x - 1$$
 and $g(x) = 3x$, what is $(g \circ f)(x)$?

c.
$$f(x) = x^2$$
 and $g(x) = x + 1$, what is $(f \circ g)(x)$?

d.
$$f(x) = x^2$$
 and $g(x) = x + 1$, what is $(g \circ f)(x)$?

4.2.2 Finding g based on f and $f \circ g$

If we have f and $f \circ g$, but need to find the function g, we can do this with substitution...

Example: f(x) = 2x + 1 and $(f \circ g)(x) = 2x^2 - 1$. What is g(x)?

- 1. Use a to symbolize g(x). a = g(x).
- 2. Rewrite f(g(x)) f(g(x)) = f(a)
- 3. Find f(a) via the f(x) function. f(a) = 2a + 1
- 4. Set f(a) = 2a + 1 equal to $f(g(x)) = 2x^2 1$. $2a + 1 = 2x^2 1$
- 5. Solve for a to find g(x). $2a+1=2x^2-1$ $2a=2x^2-1-1$ $2a=2x^2-2$ $a=x^2-1$

Therefore, $g(x) = x^2 - 1$.

Question 2

Solve the following:

a.
$$f(x) = 2x - 1$$
 and $(f \circ g)(x) = 6x - 1$, what is $g(x)$?

b.
$$f(x) = x^2$$
 and $(f \circ g)(x) = x^2 + 2x + 1$, what is $g(x)$?

c.
$$f(x) = 3x - 2$$
 and $(f \circ g)(x) = 12x + 7$, what is $g(x)$?

4.2.3 Finding f based on g and $f \circ g$

If we have g and $f \circ g$, but need to find the function f, we can use substitution in another way...

Example: $g(x) = x^2 - 1$ and $(f \circ g)(x) = 2x^2 - 1$. What is f(x)?

- 1. Beginning with f(g(x)), Set a to the LHS of g(x). $a = x^2 - 1$.
- 2. Solve for x: $x^2 = a + 1$ $x = \sqrt{a+1}$
- 3. Rewrite f(g(x)): $f(g(x)) = f(x^2 1)$
- 4. Plug in $x = \sqrt{a+1}$ $f(a) = 2(\sqrt{a+1})^2 1$
- 5. Simplify: f(a) = 2(a+1) 1f(a) = 2a + 2 1f(a) = 2a + 1

So, f(x) = 2x + 1.

Question 3

Solve the following:

a.
$$g(x) = 3x$$
 and $(f \circ g)(x) = 6x - 1$. What is $f(x)$?

b.
$$g(x) = x + 1$$
 and $(f \circ g)(x) = x^2 + 2x + 1$. What is $f(x)$?

c.
$$g(x) = 2x - 1$$
 and $(f \circ g)(x) = 6x - 1$. What is $f(x)$?

4.2.4 More arrow diagrams

We can also use arrow diagrams to visually represent functions and compositions of functions.

Example:

f(x): Domain $A = \{1, 2\}$, Codomain $B = \{3, 4\}$,

Rule { (1,3), (1,4), (2,4) }, g(x): Domain $B = \{3, 4\}$, Codomain $D = \{f, g\}$, Rule { (3,f), (4,g) }.

Draw the diagrams for f(x), g(x), and f(g(x)).

 $f: A \to B$

 $g: B \to C$

 $f\circ g:A\to C$

Question 4

Finish the following diagrams:

a.

$$f: A \to B$$

$$g: B \to C$$

$$(g \circ f) : A \to C$$

b.

$$f: A \to B$$

$$g: B \to C$$

 $(g \circ f) : A \to C$