Caractéristique d'un dipôle actif

I - Dipôles actifs :

1- Définition :

Un dipôle est dite actif si, en circuit ouvert, la tension à ses bornes n'est pas nulle.

Exemples: Piles, accumulateurs.

2-Convention générateur :

Dans la convention générateur la tension U_{PN} et l'intensité de courant I sont orientées de mêmes sens.

3-Caractéristique d'un dipôle actif :

1-1-Définition:

On appelle graphe caractéristique d'un dipôle actif le graphe de la fonction qui lie la tension U_{PN} entre ses bornes au courant I qui le traverse.

1-2-Caractéristique d'une pile :

Montage électrique :

L'interrupteur K est ouvert on mesure la tension U_{PN} .

On ferme K et on déplace le curseur C le long du rhéostat, on relève les valeurs de U_{PN} et I on obtient le tableau suivant :

$U_{PN}(V)$	4,50	4,35	4,20	4,05	3,90	3,75
I(A)	0	0,1	0,2	0,3	0,4	0,5

Tracé de la caractéristique intensité du courant-tension :

La caractéristique est une droite qui ne passe pas par l'origine, il représente une fonction affine d'équation : $U_{PN} = aI + b$

La valeur de a :

Le coefficient directeur a est négatif et s'exprime en $V.A^{-1}$ c'est-à-dire en ohm.

a est l'opposé de la résistance a = -r, r est appelé la résistance interne du générateur.

La valeur de b:

L'ordonné à l'origine b s'exprime en volt, il a les dimensions de la tension. $\mathbf{b} = \mathbf{E}$, E est appelé la force électromotrice du générateur.

 $r = |a| \Rightarrow r = \left|\frac{\Delta U_{PN}}{\Delta I}\right| = \left|\frac{4,50-3,75}{0-0.5}\right| = 1,5 \Omega$

$$b = E = 4.5 V$$

L'équation de la caractéristique de générateur :

$$U_{PN} = 4, 5 - 1, 5 I$$

1-3- La loi d'ohm pour le générateur :

$$egin{align*} oldsymbol{U_{PN}} = oldsymbol{E} - oldsymbol{r}. oldsymbol{I} = oldsymbol{E}. \ force \ électromotrice \ du \ générateur \ en \ (V) \ r: résistance \ interne \ du \ générateur \ en \ (\Omega) \ I: Intensité \ du \ courant \ qui \ traverse \ le \ générateur \ en \ (A) \ \end{cases}$$

1-4- Intensité de court-circuit d'un générateur :

Pour mettre le générateur en court-circuit, on relie ses pôles par un fil métallique, dans ce cas la tension U_{PN} est nulle.

$$E - r \cdot I_{CC} = 0 \implies I_{CC} = \frac{E}{r}$$

$$I_{CC} = \frac{4,5}{1,5} = 3 A$$

Remarque:

Un dipôle actif est idéal si sa résistance interne est nulle (r = 0).

1-5-Association en série des dipôles actifs linéaires :

Soit deux piles $G_1(E_1, r_1)$ et $G_2(E_2, r_2)$ associées en série, cette association est équivalente à un dipôle actif G(E, r).

D'après la loi d'additivité des tensions :

$$U_{AB} = U_{AC} + U_{CB}$$

La loi d'ohm pour les trois piles :

$$U_{AB} = E_1 - r_1.I$$
 ; $U_{AB} = E_2 - r_2.I$; $U_{AB} = E - r.I$ $E - r.I = E_1 - r_1.I$ + $E_2 - r_2.I$ $E = E_1 + E_2$ et $r = r_1 + r_2$

Généralisation:

L'association des n dipôles actifs et linéaires est équivalente à un dipôle actif et linéaire sa force électromotrice : $E = \sum E_i$ et de résistance interne : $r = \sum r_i$

II- Caractéristiques d'un récepteur (l'électrolyseur) :

1- Définition :

Un récepteur est un dipôle électrique qui convertit une partie d'énergie électrique qu'il reçoit en une autre forme d'énergie autre que l'énergie thermique.

Exemples: un moteur, un électrolyseur.

2-Convention récepteur :

Dans la convention récepteur la tension U_{AB} et l'intensité du courant I sont orientées dans le sens contraires.

3- Caractéristique de l'électrolyseur :

3-1- Montage expérimental :

On déplace le curseur le long du rhéostat, on relève les valeurs de U_{AB} et de I .

3-2- Tableau des résultats :

$U_{AB}(V)$	0	0,50	1,00	1,50	2,00	2,50	3, 0	4	5	6
I(A)	0	0	0	0,02	0,06	0,14	0, 4	0,9	1,4	1,9

3-3-Caractéristique $U_{AB} = f(I)$:

La caractéristique intensité-tension de l'électrolyseur est une portion de droite d'équation :

$$\begin{aligned} \textbf{\textit{U}}_{AB} &= \textbf{\textit{E}}' + \textbf{\textit{r}}'. \textbf{\textit{I}} \\ & = \begin{cases} E' : force \ contre - \'electroomotrice \ (f. \ c. \'e. \ m)en \ (V) \\ r' : r\'esistance \ interne \ de \ l'\'electrolyseuren \ (\Omega) \\ I: intensit\'e \ du \ courant \ en \ (A) \\ U_{AB} : la \ tension \ aux \ brnes \ de \ l'\'electrolyseur \ en \ (V) \end{cases}$$

$$E' = 2, 2 V$$
 $r' = \frac{\Delta U_{AB}}{\Delta I} = \frac{5, 0 - 3, 0}{1, 4 - 0, 4} = 2 \Omega$

La loi d'ohm pour un récepteur s'écrit :

$$U_{AB} = E' + r'.I$$

Pour l'électrolyseur on a :

$$U_{AB} = 2, 2 + 2.I$$

III – Point de fonctionnement :

1-Notion de point de fonctionnement :

Le branchement d'un dipôle actif (piles) aux bornes d'un dipôle passif (électrolyseur), forme un circuit électrique.

L'intensité I_f du courant qui traverse le circuit et la tension U_f aux bornes du dipôle actif définit le point du fonctionnement du circuit $F(I_f, U_f)$.

2-Détermination du point du fonctionnement du circuit :

2-1-Méthode graphique :

Traçant les caractéristiques de la pile et de conducteur ohmique dans le même repère.

Les deux caractéristiques se coupent en un point F de cordonnées :

$$F(I_f=0,1\,A\,,U_f=4\,V\,)$$

E=5 V; r=10 Ω R=40 Ω

2-2- Méthode algébrique :

Appliquant la loi d'ohm:

Pour un générateur : $U_{PN} = E - r \cdot I$

Pour un conducteur ohmique : $U_{AB} = R.I$

D'après la loi d'additivité des tensions :

$$U_{PN} = U_{AB}$$

$$E-r.I=R.I$$

$$I = I_F = \frac{E}{P+r}$$

$$I = I_F = \frac{E}{R+r}$$
 $A.N: I_F = \frac{5}{50} = 0, 1 A$

$$U_{AB} = U_F = R.I \Rightarrow U_F = R.\frac{E}{R+r}$$
 $A.N: U_F = 40 \times \frac{5}{10+40} = 4V$

$$A. N: U_F = 40 \times \frac{5}{10+40} = 4 V$$

3- Loi de Pouillet:

-On considère le montage qui contient :

Un générateur (E,r), un moteur (E',r') et un conducteur ohmique de résistance R.

-Trouvons l'intensité du courant I qui circule dans le circuit:

Appliquant la Loi d'ohm:

$$U_{PN}=E-r.I$$

 $U_{PN} = E - r.I$ Pour le générateur

$$U_{AB} = E' + r'.I$$

Pour le moteur

 $U_{BC} = R.I$ Pour le conducteur ohmique

D'après la Loi d'additivité des tensions :

$$U_{PN} = U_{AB} + U_{BC}$$

$$E - r.I = E' + r'I + R.I$$

$$E - E' = (R + r + r').I$$

$$I = \frac{E - E'}{R + r + r'} \quad (1)$$

La relation (1) exprime la loi de Pouillet, qui concerne les circuits électriques constitués uniquement des dipôles linéaires associés en série.

Généralisation:

L'intensité du courant qui passe dans un circuit série comportant n générateurs, m récepteurs actifs et k conducteurs ohmiques est :

$$I = \frac{\sum E_i - \sum E'_i}{\sum r_i + \sum r'_i + \sum R_i}$$