CS-E4600 Mining data streams II slide set 8

Aristides Gionis

Department of Computer Science

Aalto University

reading assignment

- LRU book: chapter 4
- recent Communications of the ACM paper by Cormode [Cormode, 2017]
- optional reading
- paper by Charikar, Chen, and Farach-Colton [Charikar et al., 2002]
- paper by Cormode and Muthukrishnan
 [Cormode and Muthukrishnan, 2005]

- consider again a data stream
- $X = (x_1, x_2, \dots, x_m)$ a data stream
- each x_i is a member of the set $N = \{1, \dots, n\}$
- $m_i = |\{j : x_j = i\}|$ the number of occurrences of i
- $f_i = m_i/m$ the frequency of item i

problem : estimate most frequent items in data stream

- problem formalization
- rename items $\{o_1, \ldots, o_n\}$ so that $m_1 \geq \ldots \geq m_n$
- given k < n want to return top-k items o_1, \ldots, o_k

- problem formalization first attempt
- problem FINDCANDIDATETOP(X, k, ℓ)
- given stream X and integers k and ℓ
- return list of ℓ items, so that top most frequent k items of X occur in the list
- should return all most frequent items

- FINDCANDIDATETOP(X, k, ℓ) can be too hard to solve
- consider the case $m_k = m_{\ell+1} + 1$
- i.e., number of occurences of k-th frequent item exceeds only by 1 the number of occurences of the $(\ell+1)$ -th frequent item
- almost impossible to find a list that contains the k most frequent items

- problem formalization second attempt
- problem FINDAPPROXTOP(X, k, ϵ)
- given stream X, integer k, and real $\epsilon < 1$
- return list of k items, so that for each item i in the list it is $m_i > (1 \epsilon)m_k$
- no guarantee to return all most frequent items,
 but if return an item it should be frequent enough

- problem : FINDAPPROXTOP (X, k, ϵ)
- algorithm : COUNTSKETCH
- based on sketching techniques
- intuition
- use a hash function s and a counter c
- function s hashes objects to $\{-1, +1\}$
- for each item o_i seen in the stream, set $c \leftarrow c + s[o_i]$
- then $\mathbb{E}\left[c \cdot s[o_i]\right] = m_i$ (prove it!)
- so, estimate m_i by $c \cdot s[o_i]$

- problem with using one hash function and one counter
- very high variance
- remedy 1 use t hash functions s_1, \ldots, s_t and t counters c_1, \ldots, c_t
- for each item o_i seen in the stream, set $c_j \leftarrow c_j + s_j[o_i]$, for all j = 1, ..., t
- to estimate m_i take median of $\{c_1 \cdot s_1[o_i], \ldots, c_t \cdot s_t[o_i]\}$ (as before $\mathbb{E}\left[c_j \cdot s_j[o_i]\right] = m_i$ for all $j = 1, \ldots, t$)

- problem with using one hash function and one counter
- very high variance
- remedy 1 use t hash functions s_1, \ldots, s_t and t counters c_1, \ldots, c_t
- for each item o_i seen in the stream, set $c_j \leftarrow c_j + s_j[o_i]$, for all $j = 1, \dots, t$
- to estimate m_i take median of $\{c_1 \cdot s_1[o_i], \dots, c_t \cdot s_t[o_i]\}$ (as before $\mathbb{E}\left[c_j \cdot s_j[o_i]\right] = m_i$ for all $j = 1, \dots, t$)

- problem with previous idea
- high-frequency items (e.g., o_1) may spoil estimates of lower-frequency items (e.g., o_k)
- remedy 2
- do not update all counters with all items
- replace each counter with a hash table of $\it b$ counters
- items update different subsets of counters, one per hash table
- each item gets enough high-confidence estimates
 (those avoiding collisions with high-frequency elements)

- problem with previous idea
- high-frequency items (e.g., o_1) may spoil estimates of lower-frequency items (e.g., o_k)
- remedy 2
- do not update all counters with all items
- replace each counter with a hash table of b counters
- items update different subsets of counters, one per hash table
- each item gets enough high-confidence estimates
 (those avoiding collisions with high-frequency elements)

- use parameters t and b
- let h_1, \ldots, h_t be hash functions from items to $1, \ldots, b$
- let s_1, \ldots, s_t be hash functions from items to $\{-1, +1\}$
- consider $t \times b$ table of counters
- for each item o_i seen in the stream,
 set h_i[o_i] ← h_i[o_i] + s_i[o_i], for all j = 1,..., t
- to estimate m_i take median of $\{h_1[o_i] \cdot s_1[o_i], \ldots, h_t[o_i] \cdot s_t[o_i]\}$

the COUNTSKETCH data structure

an improved data stream summary

- the CountMinSketch data stream summary
- see [Cormode, 2017]
- optional reading [Cormode and Muthukrishnan, 2005]

the COUNTMINSKETCH data stream summary

- limitations of existing sketches
- model limitations (a sequence of items / numbers)
- space required is $\mathcal{O}(\frac{1}{\epsilon^2})$ recall that quarantees are quantified by ϵ , δ parameters
 - ϵ : accuracy
 - δ : probability of failure
- update time proportional to the whole sketch
- different sketch for each summary
- COUNTMINSKETCH addresses all those limitations

incremental data-stream model

- consider a vector $\mathbf{x}(t) = \{x_1(t), \dots, x_n(t)\}$
- number of coordinates n potentially very large
- $\mathbf{x}(t)$ the values of vector at time t
- at each time t a vector coordinate is updated
- data stream : updates (i_t, c_t) for t = 1, ...
- then

$$x_{i_t}(t) \leftarrow x_{i_t}(t-1) + c_t$$

and

$$x_j(t) \leftarrow x_j(t-1)$$
, for $j \neq i_t$

incremental data-stream model

- generalization of previous model previous model was $c_t=1$
- special cases
- cash register model : $c_t > 0$
- turnstile model : c_t can be negative
 - non-negative turnstile model : $x_i(t) \ge 0$
 - general turnstile model : $x_i(t)$ can be negative

the COUNTMINSKETCH data stream summary

- interesting queries that we would like to handle
- point query Q(i): approximate x_i
- range query $\mathcal{Q}(\ell,r)$: approximate $\sum_{i=\ell}^{r} x_i$
- inner product $Q(\mathbf{x}, \mathbf{y})$: approximate $\mathbf{x} \cdot \mathbf{y} = \sum_{i=1}^{n} x_i y_i$
- $-\phi$ -quantiles
- heavy-hitters : most frequent items given frequency threshold ϕ , find items i for which $x_i > (\phi \epsilon)||\mathbf{x}||_1$ for some $\epsilon < \phi$

the COUNTMINSKETCH data structure

- similar to COUNTSKETCH
- a table of counters C of dimension $d \times w$
- d hash functions h₁,.., h_d from {1,..,n} to {1,..,w}
 chosen from a pairwise-independent family

$$C = \left(\begin{array}{ccc} C[1,1] & \cdots & C[1,w] \\ \vdots & \ddots & \vdots \\ C[d,1] & \cdots & C[d,w] \end{array}\right)$$

 parameters d and w specify the space requirements depend on error bounds we want to achieve

COUNTMINSKETCH: update summary

given (i_t, c_t) update one counter in each row of C,
 in particular

$$C[j,h_j(i_t)] \leftarrow C[j,h_j(i_t)] + c_t$$
 for all $j=1,\ldots,d$

the COUNTMINSKETCH data structure

Figure from "Data Sketching", Cormode, CACM, 2017

COUNTMINSKETCH: point query

- the answer to Q(i) is $\hat{x}_i = \min_i C[j, h_i(i)]$
- theorem : the estimate \hat{x}_i satisfies
 - (i) $x_i \leq \hat{x}_i$
 - (ii) $\hat{x}_i \leq x_i + \epsilon ||\mathbf{x}||_1$ with prob at least 1δ

COUNTMINSKETCH

- similar type of estimates for other queries
- range, inner product, etc.
- parameters are set to

$$d = \left\lceil \log \frac{1}{\delta} \right\rceil$$
 and $w = \left\lceil \frac{1}{\epsilon} \right\rceil$

- improved space ; instead of usual $\mathcal{O}(\frac{1}{\epsilon^2})$
- improved update time : access only d counters

references I

Charikar, M., Chen, K., and Farach-Colton, M. (2002).

Finding frequent items in data streams.

In International Colloquium on Automata, Languages, and Programming, pages 693–703.

Cormode, G. (2017).

Data sketching.

Communications of the ACM, 80(9):48-55.

Cormode, G. and Muthukrishnan, S. (2005).

An improved data stream summary: the count-min sketch and its applications.

Journal of Algorithms, 55(1):58-75.