Sección #10 – Limpieza, Procesado y Análisis

Capturas de pantalla del gráfico sin nulos

Detección y limpieza de outliers

Capturas de pantalla de la fórmula:

Capturas de pantalla de la estacionalidad

O3 (Ozono):

• Los niveles de ozono parecen ser más altos durante los meses de primavera y verano (marzo a agosto) y más

bajos en los meses de **invierno** (diciembre a febrero).

 Este patrón es típico debido a que la formación de ozono troposférico depende de la radiación solar y las temperaturas cálidas, que son más intensas en primavera y verano.

 Los niveles de óxidos de nitrógeno (NO) tienden a ser más altos en los meses de invierno (enero y diciembre) y más bajos durante los meses más cálidos (primavera y verano).

Esto puede deberse a un aumento en las emisiones de vehículos y calefacción durante el invierno, así como a condiciones climáticas como inversiones térmicas que atrapan contaminantes cerca de la

Capturas de pantalla del pronóstico

superficie.

Añade los gráficos anteriores a la story

Añade una página de inicio y conclusiones propias.

Según el análisis de los gráficos, se prevé que las concentraciones de NO continúen incrementándose debido a factores como el aumento del tráfico vehicular, la expansión industrial y la dependencia persistente de combustibles fósiles. En cuanto al O3, el cambio climático, asociado con temperaturas más altas, podría favorecer su formación, especialmente en los meses de verano.

Capturas de pantalla de las conclusiones

Está en la story grupal se la sección 9, pero el texto está puesto arriba