Math 104, HW6

Tianshuang (Ethan) Qiu October 10, 2021

1 Q1

Let $x_0 \in \mathbb{R}$, $\epsilon > 0$. We first define $\log_a a^k = k$. Choose $\delta = \log_a (\frac{\epsilon}{a^{x_0}} + 1)$ Let $|x - x_0| < \delta$, consider $|f(x) - f(x_0)| = |a^x - a^{x_0}| \le |a^{|x|} - a^{|x_0|}|$. Since we know that $|x - x_0| < \delta$, we have $|x| < \delta + |x_0|$ Now we substitute our inequality in:

$$|a^{|x|}-a^{|x_0|}|<|a^{\delta+|x_0|}-a^{|x_0|}|=|a^{x_0}(a^{\delta}-1)|=|a^{x_0}(\frac{\epsilon}{a^{x_0}}+1-1)|=|a^{x_0}\frac{\epsilon}{a^{x_0}}|=\epsilon$$

Therefore we have shown the epsilon delta property.