TD-2 : Couche Liaison de donnée (Correction)

Exercice 1: Structure trame Ethernet

En utilisant la structure de la trame Ethernet, décoder les trames MAC Ethernet suivantes (ces trames sont données **sans le préambule et CRC**):

Trame1:

Rappel:

	Paquet	ARP	31			
Hardware Type		Protocol Type				
HLEN	PLEN	Operation				
Sender HA (0-3 octets)						
Sender HA (4-5 octets)		Sender IP (0-1 octets)				
Sender IP (2-3 octets)		Target HA (0-1 octets)				
Target HA (2-5 octets)						
Target IP (0-3 octets)						

Hardware type	00 01 - Ethernet	
Protocol type	0x0800 - IP	
Hardware Address Length	06 - Ethernet	
Protocol Address Length	04 - IP v4	
Operation	01- Request requête	
	02 - Reply réponse	
Sender Hardware Address	Adresse MAC source	
Sender Prococol Address	Adresse IP de source	
Target Hardware Address	Adresse MAC destination	
Target Protocol Address	Adresse IP de destination	

Réseaux 2 2023/2024

Exercice 2: CRC

Soit le message suivant : 00111111101. On rajoute à ce message un CRC calculé par le polynôme générateur $g(x) = x^2 + x + 1$. *Quel est le message codé?*

Message M = 00111111101

On ajoute de 00 car le générateur est degré 2, le Message M égalera : 0011111101 00

Générateur g(x) = 111

On fait une division de M/g(x)

0011111101 00	111
Reste = 11	

Le reste représente le CRC = 11

Donc le message envoyé est : 001111110111

Le message 101011000110 est reçu. Le polynôme utilisé pour la détection des erreurs est le suivant $x^6 + x^4 + x + 1$. La transmission s'est-elle faite correctement? quel est le message émis?

Il faut diviser le message reçu par le polynôme générateur : 1010011 Le reste est nul.

La transmission s'est faite correctement. Sachant que le polynôme générateur est de degré 6 donc le reste est codé sur 6 bits. Le message émis est 101011.

Exercice 3: Slotted Aloha

On considère un réseau local comportant trois stations désignées par A, B et C. Chaque station accède au support en utilisant le protocole **Slotted Aloha**. Le temps est devisé en slots de taille L/R avec : L= 1000 bit et R=4000 bit/s.

- 1) Dessiner un diagramme des temps gradués en slots décrivant le déroulement des différentes transmissions de trames suivant le scénario suivant :
- A t = 0 slot, A veut transmettre 1 trame;
- A t = 1 slot, B veut transmettre 1 trames;
- A t = 3 slot, C veut transmettre 1 trame;
- A t = 4 slot, B et C veulent transmettre 1 trame chacune;
- A t = 7 slot, A veut transmettre 1 trame;
- 2) Quelle est la durée totale de l'exécution de ce scénario?

Voici le tableau des tirages aléatoires lors des collisions s'il y a lieu.

	Tirages	Tirages		
Stations	1er	2eme	3eme	
A	2	1	3	
В	1	3	2	
С	4	2	2	

Exercice 4: CSMA/CD

On considère un réseau local IEEE 802.3

- - A l'instant t = 0, la station A acquiert la voie et commence à transmettre un message.
- - A l'instant t = 3, les stations B, C et D veulent transmettre un seul message.

Tous les messages ont une taille fixe = 4 slots.

- On considère que la fonction de tirage rend successivement pour chaque station les résultats suivants:

Précisez pour chaque slot l'état de la voie ?

	Tirages			
Stations	1er	2eme	3eme	
В	1	3	2	
С	0	0	6	
D	0	2	5	

Exercice 5: L'algorithme de Backoff

Dans un réseau Ethernet à 10 Mb/s, deux nœuds (A et B) tentent l'accès au canal en même temps, et il y a donc collision.

1) Calculer la probabilité que la collision se reproduise à la 1ère tentative de retransmission.

CSMA utilise un algorithme de **Backoff**: si une collision se produit, le nœud va attendre un nombre aléatoire R x time slot. R est tiré d'une façon aléatoire dans l'intervalle: $[0, 2^k-1]$ où k représente k^{eme} collision

Dans notre cas, après la 1ère tentative de transmission (et donc, après la première collision, nous avons pour les 2 nœuds): $[0, 2^1-1]=[0,1]$

Il y a donc 4 possibilités, c'est à dire (A=0,B=0), (A=0,B=1) (A=1,B=0) (A=1,B=1), dont 2 amènent à une nouvelle collision (**probabilité 2/4=0.5**)

2) En supposant qu'une nouvelle collision se soit produite, calculer la probabilité que la collision se reproduise à la 2ème tentative de retransmission.

Après la $2^{\text{ème}}$ collision, donc $k = 2 = [0, 2^k - 1] [0, 2^2 - 1] = [0, 3]$

Et donc il y a **16 cas possibles :**

(0,0)(0,1)(0,2)(0,3)(1,0)(1,1)(1,2)(1,3)(2,0)(2,1)(2,2)(2,3)(3,0)(3,1)(3,2)(3,3),

et donc la probabilité d'une nouvelle collision est de 4/16=0.25