Contrôle d'analyse de données FIPA 2^{eme} année

Le Chenadec Gilles

17 Octobre 2017

Consignes

- Tous les documents sont autorisés.
- Il est fortement conseillé de justifier les réponses par un raisonnement.

L'usage de la calculatrice est fortement conseillé.

Tout autre dispositif numérique est interdit; en particulier un téléphone.

Cassure d'un mécanisme d'automobile

Ci-dessous sont donnés deux intervalles de confiance de la moyenne m du nombre de cycles de cassure d'un mécanisme d'automobile :

 $3124.9 \le m \le 3215.7$

 $3110.5 \le m \le 3230.1$

- 1a) Quelle est la valeur du nombre moyen de cycles de cassure? Expliquer.
- 1b) Le niveau de confiance d'un de ces intervalles est 95% et l'autre de 99%. Donner l'intervalle de confiance à 95%. Expliquer pourquoi.

Sodium

Le contenu en Sodium de boites (de 300 grammes) de cornflakes est pesé. Les données en milligrammes sont: 131.15, 130.69, 130.91, 129.54, 129.64, 128.77, 130.72, 128.33, 128.24, 129.65, 130.14, 129.29, 128.71, 129.00, 129.39, 130.42, 129.53, 130.12, 129.78, 130.92.

2) Pouvez-vous confirmer ou infirmer que le poids moyen en Sodium des boites de cornflakes est différent de 130 milligrammes? Utiliser $\alpha = 0.05$ puis 0.5. Préciser en le justifiant si vous mettez en œuvre un test de signification ou de conformité. On supposera que le poids moyen en Sodium est gaussien.

Publicité

Dans le but de mieux vendre un magazine, deux types de publicité sont testés sur des kiosques de trois quartiers. Le premier type consiste à placer devant le kiosque une affiche publicitaire contenant une illustration provocante ou un CD rom.

L'augmentation des ventes est la suivante :

Quartiers	I	II	Ш
Affiche	27	59	44
CD	23	48	42

3) Y'a-t-il une différence statistique entre les deux types de publicité utilisés sur l'augmentation des ventes dans les quartiers? Détailler.

Défauts de circuits imprimés

Le nombre de défauts dans des circuits imprimés est supposé suivre une loi de probabilité de Poisson (i.e. $\forall \ k \in \mathbb{N}$ p $(X = k) = \frac{e^{-\lambda} \lambda^k}{k!}$).

Une expérience aléatoire est menée sur n=60 circuits imprimés et les données suivantes ont été récoltées :

Nombre de défauts	Effectifs
0	32
1	15
2	9
3 (ou plus)	4

La moyenne (le paramètre) de la loi de Poisson supposée dans cet exemple n'est pas connue et doit être estimée à partir des données.

4) Construire un test permettant de savoir si les données sont conforme à la théorie.