AVSP završni ispit 2017

13. lipnja 2017.

1 1. zadatak

Za zadani graf na Slici 1 napisati jednadžbe toka ranga/utjecaja (engl. rank) za sve čvorove u grafu u grafu (engl. Flow Equation Formulation).

- a) Primijeni li se metoda uzastopnog potenciranja s ciljem izračunavanja vektora ranga \mathbf{r} na zadani graf, hoće li dobiveni rezultati biti vjerodostojni? Detaljno objasniti odgovor.
- b) Modificirati zadani graf uvodenjem teleportirajućih poveznica (engl. teleports). Napisati vrijednost Google matrice A ako vjerojatnost da će slučajni šetač (engl. $random\ walker$) slijediti poveznicu iz grafa iznosi $\beta=0.9$.

Slika 1: Graf čvorova.

2 2. zadatak

U Tablici 1 zadana je matrica ocjena korisnika za pojedine filmove (engl. user-item matrix). Prazna polja u matrici predstavljaju ocjene koje nedostaju. Korištenjem algoritama suradničkog filtriranja (engl. Collaborative Filtering) potrebno je izračunati preporuku/ocjenu za korisnika U4 i film M5.

- a) Koristi se *Item-Item* pristup suradničkog filtriranja.
- b) Koristi se *User-User* pristup suradničkog filtriranja.

Tablica 1: User-item matrica.

X	U1	U2	U3	U4	U5
M1	2	1	1		3
M2		3	3		4
M3			3	1	2
M4	4	2	5	2	2
M5	2	5	4	?	1

3 3. zadatak

Razvijen je novi Recommender System za filmove, s preko 10^6 naslova. Budući da je sustav u ranoj fazi korištenja, ima relativno malo korisničkih ocjena, reda veličin 10^3 .

- a) Koji model (*content-based*, *item-based*, *user-based*) biste koristili u ovoj fazi i zašto?
- b) Korisnik A je filmovima Godfather i Goodfellas dao ocjenu 5/5. Koji mu od sljedeća tri filma sustav vjerojatno neće preporučiti i zašto: Godfather 2, Shawshank Redemption, Finding Nemo?
- c) Nakon nekog vremena, sustav ima dovoljno ocjena. Prosječna je ocjena filma 3.5. Prosječna ocjena koju korisnik A daje filmovima je 3.8. Prosječna ocjena za film *Deadpool* u sustavu je 4. Koliko iznosi *baseline estimation* za ocjenu korisnika A za film *Deadpool*?

4 4. zadatak

Skup podataka:

(1, 1), (1, 3), (1, 5), (2, 2), (2, 4) i (3, 3) grupiran je primjenom algoritma BFR (Bradley, Fayyad, Reina) u jednu grupu C1. Nakon toga, u skup je dodana točka (4, 4).

- a) Navedite stanje strukture podataka algoritma **prije** dodavanja točke.
- b) Definirajte i objasnite Mahalanobisovu udaljenost.
- c) Izračunajte MD((4,4)) i navedite stanje strukture podataka **nakon** dodavanja točke.

5 5. zadatak

Zadan je graf društvene mreže na Slici 2.

- a) Navedite izlaz Girwan-Newman algoritma nakon 3 koraka.
- b) Nacrtajte AGM (Affiliation Graph Model) za mrežu nakon provođenja algoritma u zadatku a).
- c) Navedite definiciju društvene mreže.

Slika 2: Graf čvorova.

6 6. zadatak

U sustavu oglašavanja nalaze se 2 oglašivača:

- Oglašivač A ima početni budžet 5 i nudi jedan novac za oglase X i Y.
- Oglašivač B ima početni budžet 6 i nudi dva novca, ali samo za oglase Y.

Pretpostavite da sustav dodijeljuje oglasni prostor primjenom algoritma BALANCE i da se u izjednačenom slučaju oglasi dodjeljuju prema prioritetu $A \to B$ – dakle, A ima veći prioritet.

- a) Kojim će se redoslijedom oglasi prikazivati korisnicima?
- b) Odredite competitive ratio.
- c) Navedite općeniti competitive ratio za 2 oglašivača s **istim** ograničenim budžetom.

7 7. zadatak

Razmatramo algoritam DGIM. Odredite i obrazložite:

- a) prostornu složenost **vremenske oznake (engl.** *timestamp*) pretinca,
- b) prostornu složenost **veličine** pretinca,
- c) ukupnu prostornu složenost cijelog algoritma,
- d) vremensku složenost odgovaranja na upit.