Journal of Catalysis

EDITORS:

W. Keith Hall

EDITORIAL BOARD:

R. B. Anderson

M. Boudart

J. B. Butt

A. Cimino

B. Delmon

R. P. Eischens

P. C. Gravelle

J. Haber

C. Kemball

G. W. Keulks

Frank S. Stone

H. Knözinger

J. H. Lunsford

A. Nielsen

J. F. Roth

W. M. H. Sachtler

P. W. Selwood

G. V. Smith

K. Tamaru

S. J. Thomson

P. B. Weisz

Volume 62 • 1980

ACADEMIC PRESS

A Subsidiary of Harcourt Brace Jovanovich, Publishers

New York London Toronto Sydney San Francisco

Copyright © 1980 by Academic Press, Inc.

All Rights Reserved

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the copyright owner.

The appearance of the code at the bottom of the first page of an article in this journal indicates the copyright owner's consent that copies of the article may be made for personal or internal use, or for the personal or internal use of specific clients. This consent is given on the condition, however, that the copier pay the stated, per copy fee through the Copyright Clearance Center, Inc. (Operations Staff, P.O. Box 765, Schenectady, New York 12301), for copying beyond that permitted by Sections 107 or 108 of the U.S. Copyright Law. This consent does not extend to other kinds of copying, such as copying for general distribution, for creating new collective works, or for resale. Copy fees for pre-1980 articles are the same as those shown for current articles.

MADE IN THE UNITED STATES OF AMERICA

Contents of Volume 62

Number 1, March, 1980

J. L. TAYLOR, D. E. IBBOTSON, AND W. H. WEINBERG. The Oxidation of Carbon	
Monoxide over the (110) Surface of Iridium	1
M. Carbucicchio and F. Trifirò. Redox Processes at the Surfaces of Fe ₂ O ₃ -	
MoO ₃ /SiO ₂ Catalysts	13
JOHN G. EKERDT AND ALEXIS T. BELL. Evidence for Intermediates Involved in	
Fischer-Tropsch Synthesis over Ru	19
TAIZO UDA, TIMOTHY, T. LIN, AND GEORGE W. KEULKS. The Catalytic Oxidation	
of Propylene. VII. The Use of Temperature Programmed Reoxidation to	
Characterize γ-Bismuth Molybdate	26
B. J. COOPER AND D. L. TRIMM. Carbon Deposition from Propylene on Polycrystal-	
line and Single Crystal Iron	35
V. U. S. RAO, A. SZIRMAE, AND R. M. FISHER. Studies of Auger Electron	
Spectroscopy and Characteristic-Energy-Loss Spectra of Alloy Catalysts for	
the Gasification of Graphite in Water Vapor and Hydrogen	44
J. E. STULGA, P. WYNBLATT, AND J. K. TIEN. Particle Splitting and Redispersion	
Phenomena in Model Alumina-Supported Platinum Catalysts	59
D. R. KILANOWSKI AND B. C. GATES. Kinetics of Hydrodesulfurization of Ben-	
zothiophene Catalyzed by Sulfided Co-Mo/Al ₂ O ₃	70
E. N. Panayotova-Björnbom, D. I. Dimitrov, M. P. Popngelova, A. A.	
PETKOV, AND P. BJÖRNBOM. Oxidation of Cumene to Hydroperoxide in the	
Presence of Platinum	79
MASAMICHI AKIMOTO AND I. G. DALLA LANA. Role of Reduction Sites in Vapor-	0.4
Phase Hydrolysis of Carbonyl Sulfide over Alumina Catalysts	84
W. KRASSER, A. FADINI, AND A. J. RENOUPREZ. The Raman Spectra of Carbon	0.4
Monoxide Chemisorbed on Silica-Supported Nickel	94
N. DJEGHRI AND S. J. TEICHNER. Heterogeneous Photocatalysis: The Photooxida-	00
tion of 2-Methylbutane	99
YOSHIHIRO SHIGEMASA, MIKIO KAWAHARA, CHIKAHIRO SAKAZAWA, RUKA NA-	
KASHIMA, AND TERUO MATSUURA. Formose Reactions. IX. Selective Forma-	
tion of Branched Sugar Alcohols in a Modified Formose Reaction and Factors	107
Affecting the Selectivity	107
EDWARD W. THORNTON, HELMUT KNÖZINGER, B. TESCHE, J. J. RAFALKO, and B.	
C. Gates. Formation of a Supported-Metal Catalyst by Aggregation of Rho-	117
dium Complexes	117
	127
Spectroscopy Studies Employing ⁵⁷ Fe as a Probe	127
Passation of NO and NH on Vanadium Oxida Catalyat in the Presence of	
Reaction of NO and NH ₃ on Vanadium Oxide Catalyst in the Presence of Oxygen under the Dilute Gas Condition	140
Joseph Lieto, Joseph J. Rafalko, and Bruce C. Gates. Polymer-Bound	140
Phosphine-Substituted Tetrairidium Carbonyl Clusters: Catalysts for Olefin	
	149
Hydrogenation	147

J. LAINE, S. YUNES, J. BRITO, AND P. ANDRÉU. Relationship between the Number and Strength of the Acid Sites on Solid Surfaces Using Ammonia Adsorption	157
R. L. Moss, D. Pope, and B. J. Davis. Ethylene Hydrogenation over Supported Nickel-Palladium Catalysts Paul R. Holzman, Woodrow K. Shiflett, and J. A. Dumesic. The Importance of Ammonia Pressure in the Kinetics of Ammonia Synthesis	161
over Supported Ru	167
tion in Carbon Monoxide Oxidation over Platinum	173
Adsorption on Ideal Surfaces P. A. Zhdan, A. P. Schepelin, A. I. Boronin, G. K. Boreskov, W. H. Weinberg, and W. F. Egelhoff, Jr. Photoelectron Spectroscopic Evidence for the Oxidation of Ir(111)	176 180
Letters to the Editors	
A. CIMINO AND B. A. DE ANGELIS. On the Relationship between Binding Energy and Oxidation State of Mo in Molybdenum Oxides	182
E. Broclawik, A. E. Foti, and V. H. Smith, Jr. On the Relationship between 3d Binding Energy and Oxidation State in Molybdenum Oxides S. Parkash and J. G. Hooley. The Location of Catalytic Iron in Reduced	185
Graphite Ferric Chloride E. Kikuchi, T. Ino, and Y. Morita. Reply to "The Location of Catalytic Iron	187
in Reduced Graphite Ferric Chloride''	189
Book Reviews	191
Number 2, April 1980	
E. I. ODUMAH AND J. C. VICKERMAN. The Decomposition of Isopropanol over	
Spinel Solid Solutions $MgAl_{2-x}Cr_xO_4$	195
Solid Solutions JOHN F. PATZER, II, WILLIAM L. KEHL, AND HAROLD E. SWIFT. Zinc-Deficient	202
Zinc Aluminate-Supported Residual HDS Catalysts	211
R. Boeva, K. Markov, and St. Kotov. Kinetics and Mechanism of the Interaction of Phenol with Ethylene Oxide in the Presence of Ion-Exchange Resin	221
Wofatit SBW as Catalyst	231
Sensitivity of Propane Hydrogenolysis over Ni/SiO ₂ Catalysts	235
Nouved with Hydrogen	1/1 4

Alumina-Supported Iridium Catalyst E. I. Ko, J. B. BENZIGER, AND R. J. MADIX. Reactions of Methanol on W(100) and W(100)—(5 × 1)C Surfaces 7AKAYOSHI UEMATSU, TOSHIHIKO KONDO, SYUJI SAITO, AND HIDEHISA HASHIMOTO. Reaction Intermediates in the Hydrogen Exchange of Propene on Cation-Exchanged Resin Studied by Microwave Spectroscopy 275 JOHN L. FALCONER AND A. ERCÜMENT ZAĞLI. Adsorption and Methanation of Carbon Dioxide on a Nickel/Silica Catalyst. 286 F. NOZAKI, T. KITOH, AND T. SODESAWA. Promoting Effect of Oxygen for Hydrogenation of Butadiene over Ni ₂ P Catalyst B. A. MORROW AND L. E. MORAN. The Adsorption of NO and NO ₂ on Silica-Supported Nickel B. A. MORROW, W. N. SONT, AND A. ST. ONGE. The Reaction between NO and CO on Silica-Supported Nickel B. A. MORROW, W. N. SONT, AND B. A. MORROW. Raman Spectra of Pyridine Adsorbed on a Series of X Zeolites M. A. BARTEAU AND R. J. MADIX. Decomposition of Methyl Formate on W(100), W(100)—(5 × 1)C, and W(100)—(CO(g) Surfaces 1SHMAIL T. ALI AND IAN D. GAY. Adsorption and Hydrogenation of Ethylene on Pure and Doped Zinc Oxide: Studies by Proton Magnetic Resonance 1RUSSELL MAATMAN AND SJOUKE HIEMSTRA. A Kinetic Study of the Methanation of CO ₂ over Nickel—Alumina HISASHI MYATTA AND JOHN B. MOFFAT. Infrared Studies of Pyridine, 2,6-Dimethyl pyridine, and 2,6-Dirett-butylpyridine on Stoichiometric and Nonstoichiometric Boron Phosphate 1HONG-CHIU CHEN, G. CALLUM GILLIES, AND ROBERT B. ANDERSON. Impregnating Chromium and Copper in Alumina 257 ASBED VASSILIAN AND JOHN C. BAILAR, JR. Comparison of -Snø ₃ and -SnCl ₃ as Cocatalyst Groups for (Pt(Pø ₂) ₂ ClQ) in the Isomerization of 1,5-Cyclocotadiene NOTES EDOARDO GARRONE, ADRIANO ZECCHINA, AND FRANK S. STONE. Anionic Intermediates in Surface Processes Leading to O ₂ - Formation on Magnesium Oxide R. E. TAYLOR, M. M. SILVA CRAWFORD, AND B. C. GERSTEIN. Self-Diffusion of Hydrogen in H _{1,65} MOO ₃ AUTHOR INDEX FOR VOLUME 62. The Subject Index for Volume 62.	F. SOLYMOSI AND J. RASKÓ. An Infrared Study of CO and NO Adsorption on	
E. I. Ko, J. B. Benziger, and R. J. Madix. Reactions of Methanol on W(100) and W(100)–(5 × 1)C Surfaces		253
TAKAYOSHI UEMATSU, TOSHIHIKO KONDO, SVUJI SAITO, AND HIDEHISA HASHIMOTO. Reaction Intermediates in the Hydrogen Exchange of Propene on Cation-Exchanged Resin Studied by Microwave Spectroscopy	E. I. Ko, J. B. BENZIGER, AND R. J. MADIX. Reactions of Methanol on W(100) and	
MOTO. Reaction Intermediates in the Hydrogen Exchange of Propene on Cation-Exchanged Resin Studied by Microwave Spectroscopy	W(100)–(5 × 1)C Surfaces	264
Cation-Exchanged Resin Studied by Microwave Spectroscopy	TAKAYOSHI UEMATSU, TOSHIHIKO KONDO, SYUJI SAITO, AND HIDEHISA HASHI-	
JOHN L. FALCONER AND A. ERCÜMENT ZAĞLI. Adsorption and Methanation of Carbon Dioxide on a Nickel/Silica Catalyst	MOTO. Reaction Intermediates in the Hydrogen Exchange of Propene on	
Carbon Dioxide on a Nickel/Silica Catalyst	Cation-Exchanged Resin Studied by Microwave Spectroscopy	275
F. NOZAKI, T. KITOH, AND T. SODESAWA. Promoting Effect of Oxygen for Hydrogenation of Butadiene over Ni ₂ P Catalyst	JOHN L. FALCONER AND A. ERCÜMENT ZAĞLI. Adsorption and Methanation of	
B. A. MORROW AND L. E. MORAN. The Adsorption of NO and NO2 on Silica-Supported Nickel B. A. MORROW, W. N. SONT, AND A. ST. ONGE. The Reaction between NO and CO on Silica-Supported Nickel B. A. MORROW, W. N. SONT, AND A. ST. ONGE. The Reaction between NO and CO on Silica-Supported Nickel A. H. HARDIN, M. KLEMES, AND B. A. MORROW. Raman Spectra of Pyridine Adsorbed on a Series of X Zeolites M. A. BARTEAU AND R. J. MADIX. Decomposition of Methyl Formate on W(100), W(100)–(5 × 1)C, and W(100)–CO(β) Surfaces ISHMAIL T. ALI AND IAN D. GAY. Adsorption and Hydrogenation of Ethylene on Pure and Doped Zinc Oxide: Studies by Proton Magnetic Resonance RUSSELL MAATMAN AND SJOUKE HIEMSTRA. A Kinetic Study of the Methanation of CO2 over Nickel–Alumina HISASHI MIYATA AND JOHN B. MOFFAT. Infrared Studies of Pyridine, 2.6-Dimethyl pyridine, and 2,6-Di-tert-butylpyridine on Stoichiometric Boron Phosphate Thong-Chiu Chen, G. Callum Gillies, AND Robert B. Anderson. Impregnating Chromium and Copper in Alumina P. H. Lewis. Incorrect Quantitative Analysis of Cracking Catalysts through Use of Copper Radiation A. C. Cirillo, Jr., F. R. Dollish, AND W. K. Hall. Studies of the Hydrogen Held by Solids. XXVI. Proton Resonance from Alumina and Molybdena–Alumina Catalysts ASBED VASSILIAN AND JOHN C. BAILAR, Jr. Comparison of -Snφ3 and -SnCl3 as Cocatalyst Groups for (Pt(Pφ3)2ClQ) in the Isomerization of 1,5-Cyclooctadiene Solids Strace Processes Leading to O2 Formation on Magnesium Oxide R. E. TAYLOR, M. M. SILVA CRAWFORD, AND B. C. Gerstein. Self-Diffusion of Hydrogen in H _{1.65} MOO3 Author Index for Volume 62 The Subject Index for Volume 62 will appear in the December 1980 issue as part of	Carbon Dioxide on a Nickel/Silica Catalyst	280
B. A. MORROW AND L. E. MORAN. The Adsorption of NO and NO₂ on Silica-Supported Nickel		
Supported Nickel B. A. Morrow, W. N. Sont, and A. St. Onge. The Reaction between NO and CO on Silica-Supported Nickel A. H. Hardin, M. Klemes, and B. A. Morrow. Raman Spectra of Pyridine Adsorbed on a Series of X Zeolites M. A. Barteau and R. J. Madix. Decomposition of Methyl Formate on W(100), W(100)–(5 × 1)C, and W(100)–CO(β) Surfaces Sishmail T. Ali and Ian D. Gay. Adsorption and Hydrogenation of Ethylene on Pure and Doped Zinc Oxide: Studies by Proton Magnetic Resonance Russell Maatman and Sjouke Hiemstra. A Kinetic Study of the Methanation of CO ₂ over Nickel–Alumina Hisashi Miyata and John B. Moffat. Infrared Studies of Pyridine, 2,6-Dimethyl pyridine, and 2,6-Di-tert-butylpyridine on Stoichiometric and Nonstoichiometric Boron Phosphate Thong-Chiu Chen, G. Callum Gillies, and Robert B. Anderson. Impregnating Chromium and Copper in Alumina A. C. Cirillo, Jr., F. R. Dollish, and W. K. Hall. Studies of the Hydrogen Held by Solids. XXVI. Proton Resonance from Alumina and Molybdena–Alumina Catalysts A. C. Cirillo, Jr., F. R. Dollish, and W. K. Hall. Studies of the Hydrogen Held by Solids. XXVI. Proton Resonance from Alumina and Molybdena–Alumina Catalysts Asbed Vassilian and John C. Bailar, Jr. Comparison of -Snφ ₃ and -SnCl ₃ as Cocatalyst Groups for (Pt(Pφ ₃) ₂ ClQ) in the Isomerization of 1,5-Cyclooctadiene Notes Edoardo Garrone, Adriano Zecchina, and Frank S. Stone. Anionic Intermediates in Surface Processes Leading to O ₂ - Formation on Magnesium Oxide R. E. Taylor, M. M. Silva Crawford, and B. C. Gerstein. Self-Diffusion of Hydrogen in H _{1.65} MoO ₃ Author Index for Volume 62 Will appear in the December 1980 issue as part of	Hydrogenation of Butadiene over Ni ₂ P Catalyst	286
B. A. Morrow, W. N. Sont, and A. St. Onge. The Reaction between NO and CO on Silica-Supported Nickel. A. H. Hardin, M. Klemes, and B. A. Morrow. Raman Spectra of Pyridine Adsorbed on a Series of X Zeolites. M. A. Barteau and R. J. Madix. Decomposition of Methyl Formate on W(100), W(100)–(5 × 1)C, and W(100)–CO(β) Surfaces. SISHMAIL T. ALI AND IAN D. GAY. Adsorption and Hydrogenation of Ethylene on Pure and Doped Zinc Oxide: Studies by Proton Magnetic Resonance. RUSSELL Maatman and Sjouke Hiemstra. A Kinetic Study of the Methanation of CO₂ over Nickel–Alumina. HISASHI MIYATA AND JOHN B. MOFFAT. Infrared Studies of Pyridine, 2,6-Dimethyl pyridine, and 2,6-Di-eert-butylpyridine on Stoichiometric and Nonstoichiometric Boron Phosphate. STHONG-CHIU CHEN, G. CALLUM GILLIES, AND ROBERT B. ANDERSON. Impregnating Chromium and Copper in Alumina. A. C. CIRILLO, JR., F. R. Dollish, and W. K. Hall. Studies of the Hydrogen Held by Solids. XXVI. Proton Resonance from Alumina and Molybdena–Alumina Catalysts. ASBED VASSILIAN AND JOHN C. BAILAR, JR. Comparison of -Snφ₂ and -SnCl₃ as Cocatalyst Groups for (Pt(Pφ₃)₂ClQ) in the Isomerization of 1,5-Cyclooctadiene. STONES EDOARDO GARRONE, ADRIANO ZECCHINA, AND FRANK S. STONE. Anionic Intermediates in Surface Processes Leading to O₂- Formation on Magnesium Oxide. SEDOARDO GARRONE, ADRIANO ZECCHINA, AND FRANK S. STONE. Anionic Intermediates in Surface Processes Leading to O₂- Formation on Magnesium Oxide. SEDOARDO GARRONE, ADRIANO ZECCHINA, AND FRANK S. STONE. Anionic Intermediates in Surface Processes Leading to O₂- Formation on Magnesium Oxide. SEDOARDO GARRONE, ADRIANO ZECCHINA, AND FRANK S. STONE. Anionic Intermediates in Surface Processes Leading to O₂- Formation on Magnesium Oxide. SEDOARDO GARRONE, ADRIANO ZECCHINA, AND FRANK S. STONE. Anionic Intermediates in Surface Processes Leading to O₂- Formation on Magnesium Oxide. SEDOARDO GARRONE, ADRIANO ZECCHINA, AND B. C. GERSTEIN. Self-Diffusion of Hydrogen in H _{1.65} MoO₃ AUTHOR INDEX FOR VOLUME 62.		
on Silica-Supported Nickel. A. H. HARDIN, M. KLEMES, AND B. A. MORROW. Raman Spectra of Pyridine Adsorbed on a Series of X Zeolites. M. A. BARTEAU AND R. J. MADIX. Decomposition of Methyl Formate on W(100), W(100)–(5 × 1)C, and W(100)–CO(β) Surfaces. SISHMAIL T. ALI AND IAN D. GAY. Adsorption and Hydrogenation of Ethylene on Pure and Doped Zinc Oxide: Studies by Proton Magnetic Resonance. RUSSELL MAATMAN AND SIOUKE HIEMSTRA. A Kinetic Study of the Methanation of CO₂ over Nickel–Alumina. HISASHI MIYATA AND JOHN B. MOFFAT. Infrared Studies of Pyridine, 2,6-Dimethyl pyridine, and 2,6-Di-tert-butylpyridine on Stoichiometric and Nonstoichiometric Boron Phosphate. STOMOG-CHIU CHEN, G. CALLUM GILLIES, AND ROBERT B. ANDERSON. Impregnating Chromium and Copper in Alumina. OR H. LEWIS. Incorrect Quantitative Analysis of Cracking Catalysts through Use of Copper Radiation. A. C. CIRILLO, JR., F. R. DOLLISH, AND W. K. HALL. Studies of the Hydrogen Held by Solids. XXVI. Proton Resonance from Alumina and Molybdena–Alumina Catalysts. ASBED VASSILIAN AND JOHN C. BAILAR, JR. Comparison of -Snφ₃ and -SnCl₃ as Cocatalyst Groups for (Pt(Pφ₃)₂ClQ) in the Isomerization of 1,5-Cyclooctadiene. STOMOTES EDOARDO GARRONE, ADRIANO ZECCHINA, AND FRANK S. STONE. Anionic Intermediates in Surface Processes Leading to O₂ Formation on Magnesium Oxide. R. E. TAYLOR, M. M. SILVA CRAWFORD, AND B. C. GERSTEIN. Self-Diffusion of Hydrogen in H _{1.65} MOO₃ AUTHOR INDEX FOR VOLUME 62. 404 The Subject Index for Volume 62 will appear in the December 1980 issue as part of		294
A. H. HARDIN, M. KLEMES, AND B. A. MORROW. Raman Spectra of Pyridine Adsorbed on a Series of X Zeolites		
Adsorbed on a Series of X Zeolites		304
M. A. Barteau and R. J. Madix. Decomposition of Methyl Formate on W(100), W(100)–(5 × 1)C, and W(100)–CO(β) Surfaces		
W(100)–(5 × 1)C, and W(100)–CO(β) Surfaces		316
ISHMAIL T. ALI AND IAN D. GAY. Adsorption and Hydrogenation of Ethylene on Pure and Doped Zinc Oxide: Studies by Proton Magnetic Resonance		
Pure and Doped Zinc Oxide: Studies by Proton Magnetic Resonance		329
RUSSELL MAATMAN AND SJOUKE HIEMSTRA. A Kinetic Study of the Methanation of CO2 over Nickel-Alumina		
of CO ₂ over Nickel-Alumina		341
HISASHI MIYATA AND JOHN B. MOFFAT. Infrared Studies of Pyridine, 2,6-Dimethyl pyridine, and 2,6-Di-tert-butylpyridine on Stoichiometric and Nonstoichiometric Boron Phosphate		2.40
pyridine, and 2,6-Di-tert-butylpyridine on Stoichiometric and Nonstoichiometric Boron Phosphate		349
tric Boron Phosphate		
HONG-CHIU CHEN, G. CALLUM GILLIES, AND ROBERT B. ANDERSON. Impregnating Chromium and Copper in Alumina		
Chromium and Copper in Alumina		357
 P. H. Lewis. Incorrect Quantitative Analysis of Cracking Catalysts through Use of Copper Radiation		2.65
Copper Radiation		367
 A. C. CIRILLO, JR., F. R. DOLLISH, AND W. K. HALL. Studies of the Hydrogen Held by Solids. XXVI. Proton Resonance from Alumina and Molybdena–Alumina Catalysts. ASBED VASSILIAN AND JOHN C. BAILAR, JR. Comparison of -Snφ3 and -SnCl3 as Cocatalyst Groups for (Pt(Pφ3)2ClQ) in the Isomerization of 1,5-Cyclooctadiene. NOTES EDOARDO GARRONE, ADRIANO ZECCHINA, AND FRANK S. STONE. Anionic Intermediates in Surface Processes Leading to O2 Formation on Magnesium Oxide. R. E. TAYLOR, M. M. SILVA CRAWFORD, AND B. C. GERSTEIN. Self-Diffusion of Hydrogen in H1.65MOO3. AUTHOR INDEX FOR VOLUME 62. 404 The Subject Index for Volume 62 will appear in the December 1980 issue as part of 		274
by Solids. XXVI. Proton Resonance from Alumina and Molybdena–Alumina Catalysts		3/4
Catalysts		
ASBED VASSILIAN AND JOHN C. BAILAR, JR. Comparison of -Snφ ₃ and -SnCl ₃ as Cocatalyst Groups for (Pt(Pφ ₃) ₂ ClQ) in the Isomerization of 1,5-Cyclooctadiene		270
Cocatalyst Groups for (Pt(Pφ ₃) ₂ ClQ) in the Isomerization of 1,5-Cyclooctadiene		3/9
diene		
EDOARDO GARRONE, ADRIANO ZECCHINA, AND FRANK S. STONE. Anionic Intermediates in Surface Processes Leading to O ₂ ⁻ Formation on Magnesium Oxide		290
EDOARDO GARRONE, ADRIANO ZECCHINA, AND FRANK S. STONE. Anionic Intermediates in Surface Processes Leading to O ₂ ⁻ Formation on Magnesium Oxide	diene	309
EDOARDO GARRONE, ADRIANO ZECCHINA, AND FRANK S. STONE. Anionic Intermediates in Surface Processes Leading to O ₂ ⁻ Formation on Magnesium Oxide	Notes	
Intermediates in Surface Processes Leading to O ₂ ⁻ Formation on Magnesium Oxide		
sium Oxide		
R. E. TAYLOR, M. M. SILVA CRAWFORD, AND B. C. GERSTEIN. Self-Diffusion of Hydrogen in H _{1.65} MoO ₃		
of Hydrogen in H _{1.65} MoO ₃		396
AUTHOR INDEX FOR VOLUME 62		40.1
The Subject Index for Volume 62 will appear in the December 1980 issue as part of	of Hydrogen in H _{1.65} MoO ₃	401
The Subject Index for Volume 62 will appear in the December 1980 issue as part of	AUTHOR INDEX FOR VOLUME 62	404
a cultulative fluex for the year 1700.	a cumulative index for the year 1980.	

