

Overview

This project is to forecast the number of tickets that FlixBus can sell during the next 11 days, starting from 'Feb 27th 2018', at each location through specific channel.

Forecasting sales or any other measures with periodical data at hand is considered as a time-series problem in machine learning.

In a simple time-series problem, we will predict the trend of a measure for 't+n' time periods for a single attribute.

However, since we have to forecast the country-wise ticket sales through specific channels, this can be treated a multi-level time series problem.

Solution Approach

I have followed a four-step approach for the solution

Data Gathering

Exploratory
Data Analysis

Data Pre-Processing

Learning

- Data Gathering Data was given in three separate csv files, that need to be carefully merged.
- **EDA** Data Wrangling and EDA will be done to get a preliminary understanding of the data distribution and to identify any issues with the data. This would also help us in carrying out the required treatment to the data.
- **Data Pre-Processing** We will address the issues in our dataset by treating nulls, outliers, adding or dropping rows/columns as required. In this stage, we will prepare the data set that can be fed to the machine learning algorithm.
- Machine Learning This is a multi-level timeseries problem that we have at hand. We can approach this
 problem in multiple ways. We can either loop over an appropriate time-series algorithm to get forecasts for each
 combination of country and channel or we can extract more features from date column and normalize the data to
 do a simple linear regression analysis. However, we will decide on which approach to follow based on our data
 analysis and the assumptions that we make.

Data Gathering

We have historical ticket sales data from 1st Jan 2017 till 26th Feb 2018, stored in three different tables.

38756

23

- orders_date table contains order id, date of sale and the channel_id of the channel through which the order was
 done.
- orders_tickets table contains order id, number of tickets(n_tickets) in the order, and the type of product.
- orders_country table contains order id, country_1 and country_2 for first and second country id details.

I have gathered the required data by merging these tables to get all attributes related to a ticket order by merging order_tickets table with other two tables by **left outer join** using Pandas module in python.

Orders_date															
Orders_tickets				id	date	chann	el_id								
id	n_tickets	type		10173	6/12/20		39					Merged Table			
1586391	2	pax		95062	9/11/20		35						channel	country_	
	-	•		171081	7/5/20		39		id	n_tickets	type	date	_id	1	country_2
438232	2	pax		122867	8/18/20	17	39		1586391	2	pax	6/12/2017	39	24	,
270896	1	pax			_				438232	2	pax	9/11/2017	35	24	0
1181593	2	pax			Orders_co	-			270896	1	pax	7/5/2017	39	24	15
964842	1	pax		id		_1 countr	ry_2		1181593	2	pax	8/18/2017	39	24	9
	_	pux		105		24			964842	1	pax	11/23/2017		23	
246783	1	pax		793		24	0		246783	1	pax	9/2/2017		19	13
1693998	2	pax		813		24	15								
1958576	1	other		828		24	9								

Exploratory Data Analysis

In this stage, I have performed exploratory data analysis and identified

the target variable's(*n_tickets*) data distribution for various country and channel combinations **duplicates** in orders_date table

special country codes **xx** and **0** in country_2 column

country 24 and channel 39 has more ticket sales

null values in the dataset

country_1, 22 has only two records in the data

for many country and channel combinations have no data points, i.e., no ticket sales

plotted to identify seasonality or any explainable spikes in the trends

Data Pre-processing

Preparing and transforming the available raw data to algorithm-ready format is one of the biggest challenges of any machine learning project. It applies in this case too.

- Nulls in country_1 and channel_id were imputed using mode method.
 Country_2 value was first preferred for imputing country_1 nulls.
- Dropped id(insignificant column), type and country_2 columns.
- Grouped sum(n_tickets) by date, country and channel for maintaining single transactional data point per day per country by channel.
- Removed duplicate records in order_date table.
- Few outliers(n_tickets) were capped at grouped max values for channel_id and country_1 using percentile method. Extensive outlier treatment can be done with respect to business context.
- Added records for each day for country and channel combinations that
 do not have any sales. For these records, n_tickets are 0. This resulted in
 a perfect data set with continuous data points for all country-channel
 combinations.
- Train/Test sets: Cleaned dataset was then sliced in to two parts with records from 1st Jan 2017 till 4th Feb 2018 as train set and records from 5th Feb 2018 to 26th Feb 2018 as test set.

Assumptions

Before starting with modelling, the following assumptions were made based on the data analysis.

- Order at locations are uncorrelated i.e., orders at a particular country through a specific channel has no association to an order at a different country made through same or different channels. This assumption allows me to pick time-series approach over regular regression approach.
- No order record for a given country through a channel on a specific day is assumed as 0 sales and not a missing event.
- Shocks are randomly distributed with constant variance and has no seasonality in the trend.

ML Approach

As mentioned earlier, we can try two different machine learning approaches in solving this problem.

- 1. Regression problem with cross-sectional data: By extracting features like month, day and dayofweek and then creating more features like moving average, std, differenced mean etc, we can solve this in a cross sectional linear regression approach using linear regression models.
- 2. Multi-level time series Analysis: We can do regular time-series analysis and perform statistical tests to use time-series models. We can loop these models for each combination of country and channel.

Based on my assumptions and data distribution for multiple country-channel combinations, I have decided to follow the **second approach**.

Statistical Analysis

The first assumption/criteria to perform the time series analysis is that my data should be stationary. We can check the stationarity of data by using following tests:

Rolling Stats Test

By plotting rolling mean and std for 30days interval, we can say whether the data looks stationary or not.

Dickey-Fuller Test

This is more advanced test that gives exact results such a p-value, test statistic and critical values. With the help of these values, we can confidently say whether a time-series is stationary or not.

I have performed both the tests on multiple country-channel combinations and inferred that my time-series is **not stationary.** (**P-value>alpha** & **critcal values** > **Test statistic**) and hence failed to reject null hypothesis that the data is not stationary.

Results of Dickey-Fuller Test:							
Test Statistic	-2 <u>.284</u> 9 <u>1</u> 9						
p-value	0.176878						
#Lags Used	14.000000						
No. of Observations Used	384.000000						
Critical value (1%)	-3.447495						
Critical value (5%)	-2.869096						
Critical value (10%)	-2.570795						
dtype: float64							
_							

Statistical Analysis

Making time Series Stationary:

I tried the following methods to make the series stationary.

- Log Transformation
- Log minus Moving Average
- Log Shift

Of all, 'log shift' has made the data stationary at a statistically significant level.


```
Results of Dickey-Fuller Test:
Test Statistic
                           -7.628246e+00
p-value
                            2.041287e-11
#Lags Used
                            1.300000e+01
No. of Observations Used
                            3.840000e+02
Critical value (1%)
                           -3.447495e+00
Critical value (5%)
                           -2.869096e+00
Critical value (10%)
                           -2.570795e+00
J+..... £1 - - + C A
```

Then, I have induced noise using residuals to test stationary and the log shifted data remained stationary

AR-I-MA

Used ARIMA model to perform time series forecast on the stationary data.

AR value: Plotted Auto Correlation Function(ACF) to get optimal AR value (p)

I value: Since our data was not stationary and had to do one differencing, I value remained at 1. This was the case for most of the combinations and overall data. Hence I value remained at 1 forecasting all combinations.

MA value: Plotted Partial Auto Correlation Function(PACF) to get optimal MA values (q).

However, optimal p and q values have not performed well in all cases and hence tuned the values appropriately to get lower Residual Sum of Squares.

Looped Forecasting

For each combination of country-channel, I have looped the steps of log transformation, log shift and ARIMA model fit to get the forecasted predictions.

Since the p and q values vary for each data set, I have iterated them for 0-8 to get the best_model with lower RSS.

Out of 812 possible combinations of country-channel, 605 combinations did not have sufficient data points (at least 25) and hence these we ignored and predicted as zero sales. Iterated the loop for the other 207 combinations.

Model Evaluation

Forecasted *n_tickets* for each country through each channel from 4th Feb 2018 till 26th Feb 2018 (**test data dates**).

Evaluation Metric:

SMAPE: Symmetric Mean Absolute Percentage Error

SMAPE =
$$\frac{100\%}{n} \sum_{t=1}^{n} \frac{|Forcast_{t} - Actual_{t}|}{|Actual_{t}| + |Forcast_{t}|}$$

Code in Python:

def smape(y, yhat):
 return 100 * np.mean(2 * np.abs(y - yhat)/(np.abs(y) + np.abs(yhat)))

Best model selected based on lowered RSS and the selected best model was evaluated using SMAPE metric.

In this case, actuals are the test data tickets, and the forecasted values were the model predictions.

Final Forecast: Same looped forecast technique was used to forecast the ticket sales from current date (27th Feb 2018) and the next 10 days i.e., till 9th March 2018.

Further Scope for Improvement

There could be **many** other possible and **innovative ways** to make this model better. Few of the options that could be tried to improve the model are listed below:

- 1. Outliers/unexplainable spikes in the time series should be addressed. This can be done by using standardization, outlier detection methods or reasonable treatment based on the business context.
- 2. I have generated a table to capture the best RSS for each of the country-channel combination. By carefully examining each of those trends with unreasonably high RSS, we can minimize the noise to get better predictions. I have tried doing the same for few observations. For eg: below table shows a high RSS for country 12 and channel 29 when plotted, it seems to have an **outlier**.

country	chann	el	best_p-	d-q	best_RSS	
	20	26	1-	-1-4		43.6495
	20	29	4-	-1-5		19.8677
	20	40	5-	-1-5		50.0924
	24	25	6-	-1-5		49.5584
	24	41	4-	-1-6		22.1308
	12	29	6-	-1-7	:	104.2427
	12	49	6-	-1-6		31.0183
	12	33	6-	-1-7		35.9361

3. Furthermore, we can try other time series models like ARCH, GARCH etc to verify which model fares well in the longrun.

Code Snippet – Time Series Analysis

```
#Dickey-fuller test
from statsmodels.tsa.stattools import adfuller
def test stationarity(timeseries):
   #determine rolling stats
   movavg = timeseries.rolling(30).mean()
   movstd = timeseries.rolling(30).std()
   #plot rolling stats
   orig = plt.plot(timeseries, color = 'c', label = 'Original')
   mean = plt.plot(movavg, color = 'r', label = 'Mean')
   std = plt.plot(movstd, color = 'black', label = 'std')
   plt.legend(loc = 'best')
   plt.title('Rolling Mean & Std Dev')
    plt.show(block = False)
   #perform Dickey-fuller test
   print('Results of Dickey-Fuller Test:')
   dftest = adfuller(timeseries['tickets'], autolag = 'AIC')
   dfout = pd.Series(dftest[0:4], index = ['Test Statistic', 'p-value', '#Lags Used', 'No. of Observations Used'])
   for key, value in dftest[4].items():
        dfout['Critical value (%s)'%key] = value
   print(dfout)
```

```
#ACF and PACF
from statsmodels.tsa.stattools import acf, pacf
lag_acf = acf(dflogshift, nlags = 20)
lag_pacf = pacf(dflogshift, nlags = 20, method = 'ols')
```

Code Snippet – Time Series Analysis

```
results_AR2.plot_predict(1,420)
x = results_AR2.forecast(steps = 21)
```



```
preds_array = results_AR2.forecast(steps = 21, alpha = 0.05)[0]
```

Code Snippet – Looped Forecast

```
idef blackmamba(cc, train):
    tf = train.loc[train.cc == cc, ['date','tickets']]
    tf.sort_values('date', inplace=True)
    tf.set_index('date', inplace=True)

df_logscale = np.log1p(tf) #log transformation for stationarity

dflogshift = df_logscale - df_logscale.shift() #one shift of logvalues for better statiotionarity
    dflogshift.dropna(inplace=True)

results = arima_tune(df_logscale, dflogshift.tickets) #call timeseries model to get the best model after tuning

best_pqd = min(results, key = results.get)
    best_rss, best_model = results.get(best_pqd)

preds_array = best_model.forecast(steps = 22, alpha = 0.05)[0]
    final_preds = np.round(np.expm1(preds_array))

return final_preds
```

```
: def arima tune(logscale, logshift):
      results = {}
      for AR in range(0,8):
          for MA in range(0,8):
              model = ARIMA(logscale, order = (AR,1,MA))
              fit is available = False
              results ARIMA = None
              try:
                  results ARIMA = model.fit(disp = -1, method = 'css')
                  fit is available = True
              except:
                  continue
              if fit is available:
                  RSS = get rss(logshift, results ARIMA.fittedvalues)
                  results['%d-1-%d' % (AR,MA)]=[RSS, results ARIMA]
      return results
```

Code Snippet – Looped Forecast

```
def get_rss(series, fits):
    fits_new = fits
    missing_idx = list(set(series.index).difference(set(fits_new.index)))
    if missing_idx:
        nan_series = pd.Series(index = pd.to_datetime(missing_idx))
        fits_new = fits_new.append(nan_series)
        fits_new.sort_index(inplace = True)
        fits_new.fillna(method = 'bfill', inplace = True)
        fits_new.fillna(method = 'ffill', inplace = True)
    return sum((fits_new - series)**2)
```

```
counter = 207
for cc in cc_major.values:
    print('Forecasting cc: {}'.format(cc))
    print(counter, ' left')
    preds = blackmamba(cc,new_train)

i = 0
    for d in forecast_dates:
        new_test.loc[((new_test.date == d)&(new_test.cc==cc)), 'tickets'] = preds[i]
        i+=1
        counter -=1
```

Technologies/Tools Involved

Thank You