

PCTWORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ :	A1	(11) International Publication Number: WO 98/14466
C07H 21/04, C12Q 1/68, C12N 15/63, 15/85, C12P 21/02		(43) International Publication Date: 9 April 1998 (09.04.98)
(21) International Application Number:	PCT/US97/17658	(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).
(22) International Filing Date:	30 September 1997 (30.09.97)	
(30) Priority Data:		
08/724,394	1 October 1996 (01.10.96)	US
08/852,495	7 May 1997 (07.05.97)	US
(71) Applicant:	PROGENTIER, INC. [US/US]; 4040 Campbell Avenue, Menlo Park, CA 94025 (US).	
(72) Inventors:	FEDER, John, N.; 1450 Chestnut Street, San Carlos, CA 94070 (US). KRONMAL, Gregory, S.; 277 Gateway Drive #131, Pacifica, CA 94044 (US). LAUER, Peter, M.; 128 Randall Street, San Francisco, CA 94131 (US). RUDDY, David, A.; 885 Greenwich Street, San Francisco, CA 94133 (US). THOMAS, Winston, J.; 40 White Plains Court, San Mateo, CA 94402 (US). TSUCHIHASHI, Zenta; 9 Light Way, Menlo Park, CA 94025 (US). WOLFF, Roger, K.; 41 Eugene Street, Mill Valley, CA 94941 (US).	
(74) Agents:	FITTS, Renee, A. et al.; Townsend and Townsend and Crew LLP, 8th floor, Two Embarcadero Center, San Francisco, CA 94111-3834 (US).	

(54) Title: POLYMORPHISMS AND NEW GENES IN THE REGION OF THE HUMAN HEMOCHROMATOSIS GENE

(57) Abstract

Polymorphic sites in the region surrounding the HFE gene are provided. These polymorphisms are useful as surrogate markers in diagnostic assays for hemochromatosis. Additionally, a fine structure map of the 1 megabase region surrounding the HFE gene is provided, along with 235 kb of DNA sequence and 8 loci corresponding to candidate genes within the 1 megabase region, and in the purification of related proteins.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		

Polymorphisms and New Genes in the Region of the Human Hemochromatosis Gene

BACKGROUND OF THE INVENTION

Hereditary hemochromatosis (HH) is an inherited disorder of iron metabolism wherein the body accumulates excess iron. In symptomatic individuals, this excess iron leads to deleterious effects by being deposited in a variety of organs leading to their failure, and resulting in cirrhosis, diabetes, sterility, and other serious illnesses. The gene which is defective in this disease was disclosed in copending U.S.S.N. 08/652,265.

Fine structure mapping of the region to which the gene responsible for HH, HFE (denoted HH or HFE in some publications), was mapped makes possible the identification of candidate sequences comprising the HFE gene, along with structural elements for regulation and expression and neighboring genes.

A variety of techniques is available for fine structure mapping, including direct cDNA selection, exon-trapping, and genomic sample sequencing. The direct selection approach (Lovett *et al.* Proc. Natl. Acad. Sci. U.S.A. 88:9628-9623 (1991)) involves the hybridization of cDNA fragments to genomic DNA. This technique is extremely sensitive and capable of isolating portions of rare transcripts. Exon-trapping (Church *et al.* Nature Genetics 6:98-105 (1994)) recovers spliced introns from *in vivo* expressed genomic DNA clones and produces candidate exons without requiring any prior knowledge of the target's gene expression. High-throughput genomic DNA sequencing with comparison of the sequence data to databases of expressed sequences has also been used, such as in the positional cloning of the Werner syndrome gene (Yu *et al.* Science 277:258-262 (1996)) and in cloning by homology of the second Alzheimer's disease gene on chromosome 1 (Levy-Lahad *et al.* Science 269:973-977 (1995)).

HH is typically inherited as a recessive trait; in the current state of knowledge, homozygotes carrying two defective copies of the gene are most frequently affected by the disease. In addition, heterozygotes for the HFE gene are more susceptible to sporadic porphyria cutanea tarda and potentially other disorders (Roberts *et al.*, Lancet 349:321-323 (1997)). It is estimated that approximately 10-15% of Caucasians carry one copy of the HFE gene mutation and that there are about one million homozygotes in the United States. HH, thus, represents one of the most common genetic disease mutations in Caucasian individuals. Although ultimately HH produces debilitating symptoms, the majority of homozygotes and heterozygotes have not been diagnosed.

The need for such diagnostics is documented, for example, in Barton, J.C. *et al.* Nature Medicine 2:394-395 (1996); Finch, C.A. West J Med 153:323-325 (1990); McCusick, V. Mendelian Inheritance in Man pp. 1882-1887, 11th ed., (Johns Hopkins University Press, Baltimore (1994)); Report of a Joint World Health Organization/Hemochromatosis Foundation/French Hemochromatosis Association Meeting on the Prevention and Control of Hemochromatosis (1993); Edwards, C.Q. *et al.* New Engl J Med 328:1616-1620 (1993); Bacon, B.R. New Engl J Med 326:126-

127 (1992); Balan, V. et al. Gastroenterology 107:453-459 (1994); Phatak, P.D. et al. Arch Int Med 154:769-776 (1994).

A single mutation in the HFE gene, designated 24d1 in copending U.S.S.N. 08/630,912, gave rise to the majority of disease-causing chromosomes present in the population today. This is referred to herein as the "common" or "ancestral" or "common ancestral" mutation. These terms are used interchangeably. It appears that about 80% to 90% of all HH patients carry at least one copy of the common ancestral mutation which is closely linked to specific alleles of certain genetic markers close to this ancestral HFE gene defect. These markers are, as a first approximation, in the allelic form in which they were present at the time the ancestral HFE mutation occurred. See, for example, Simon, M. et al. Am J Hum Genet 41:89-105 (1987); Jazwinska, E.C. et al. Am J Hum Genet 53:242-257 (1993); Jazwinska, E.C. et al. Am J Hum Genet 56:428-433 (1995); Worwood, M. et al. Brit J Hematol 86:863-866 (1994); Summers, K.M. et al. Am J Hum Genet 45:41-48 (1989).

Several polymorphic markers in the HFE region have been described and shown to have alleles that are associated with HH disease. These markers include the published microsatellite markers D6S258, D6S306 (Gyapay, G. et al. Nature Genetics 7:246-339 (1994)), D6S265 (Worwood, M. et al. Brit J Hematol 86:833-846 (1994)), D6S105 (Jazwinska, E.C. et al. Am J Hum Genet 53:242-257 (1993); Jazwinska, E.C. et al. Am J Hum Genet 56:428-433 (1995)), D6S1001 (Stone, C. et al. Hum Molec Genet 3:2043-2046 (1994)), D6S1260 (Raha-Chowdhury et al. Hum Molec Genet 4:1869-1874 (1995)) as well as additional microsatellite and single-nucleotide-polymorphism markers disclosed in co-pending PCT application WO 96/06583, the disclosure of which is hereby incorporated by reference in its entirety. Additionally, copending U.S.S.N. 08/630,912 disclosed additional markers 24d2 and 24d7.

The symptoms of HH are often similar to those of other conditions, and the severe effects of the disease often do not appear immediately. Accordingly, it would be desirable to provide a method to identify persons who may be destined to become symptomatic in order to intervene in time to prevent excessive tissue damage associated with iron overload. One reason for the lack of early diagnosis is the inadequacy of presently available diagnostic methods to ascertain which individuals are at risk, especially while such individuals are presymptomatic.

Although blood iron parameters can be used as a screening tool, a confirmed diagnosis often employs liver biopsy which is undesirably invasive, costly, and carries a risk of mortality. Thus, there is a clear need for the development of an inexpensive and noninvasive diagnostic test for detection of homozygotes and heterozygotes in order to facilitate diagnosis in symptomatic individuals, provide presymptomatic detection to guide intervention in order to prevent organ damage, and for identification of heterozygote carriers.

Furthermore, a need exists for both methods for fine structure mapping and a fine structure map of the region of the chromosome to which the HH locus maps. This and other needs are addressed by the present invention.

SUMMARY OF THE INVENTION

One aspect of the invention is an oligonucleotide comprising at least 8 to about 100 consecutive bases from the sequence of Figure 9, or the complement of the sequence, wherein the at least 8 to about 100 consecutive bases includes at least one polymorphic site of Table 1.

5 Another aspect of the invention is an oligonucleotide pair selected from the sequence of Figure 9 or its complement for amplification of a polymorphic site of Table 1.

Another aspect of the invention is an isolated nucleic acid molecule comprising about 100 consecutive bases to about 235 kb substantially identical to the sequence of Figure 9, wherein the DNA molecule comprises at least one polymorphic site of Table 1.

10 Another aspect of the invention is a method to determine the presence or absence of the common hereditary hemochromatosis (HFE) gene mutation in an individual comprising:

providing DNA or RNA from the individual; and

assessing the DNA or RNA for the presence or absence of a haplotype of Table 1,

15 wherein, as a result, the absence of a haplotype of Table 1 indicates the likely absence of the HFE gene mutation in the genome of the individual and the presence of the haplotype indicates the likely presence of the HFE gene mutation in the genome of the individual.

Another aspect of the invention is a method to determine the presence or absence of the common hereditary hemochromatosis (HFE) gene mutation in an individual comprising:

20 providing DNA or RNA from the individual; and

assessing the DNA or RNA for the presence or absence of a genotype defined by a polymorphic allele of Table 1,

25 wherein, as a result, the absence of a genotype defined by a polymorphic allele of Table 1 indicates the likely absence of the HFE gene mutation in the genome of the individual and the presence of the genotype indicates the likely presence of the HFE gene mutation in the genome of the individual.

Another aspect of the invention is a culture of lymphoblastoid cells having the designation ATCC CRL-12371.

30 One aspect of the invention is an isolated nucleic acid sequence comprising a nucleic acid sequence substantially identical to BTF1.

A further aspect of the invention is an isolated nucleic acid sequence comprising a nucleic acid sequence substantially identical to BTF2.

A further aspect of the invention is an isolated nucleic acid sequence comprising a nucleic acid sequence substantially identical to BTF3.

35 A further aspect of the invention is an isolated nucleic acid sequence comprising a nucleic acid sequence substantially identical to BTF4.

A further aspect of the invention is an isolated nucleic acid sequence comprising a nucleic acid sequence substantially identical to BTF5.

40 A further aspect of the invention is an isolated nucleic acid sequence comprising a nucleic acid sequence substantially identical to NPT3.

A further aspect of the invention is an isolated nucleic acid sequence comprising a nucleic acid sequence substantially identical to NPT4.

A further aspect of the invention is an isolated nucleic acid sequence comprising a nucleic acid sequence substantially identical to RoRet.

5 Additional aspects of the invention include nucleic acid sequences that are cDNAs, polypeptides encoded by the nucleic acids of the invention and antibodies specifically immunoreactive thereto, vectors comprising the nucleic acid sequences of the invention, and host cells stably transfected with the nucleic acids of the invention.

10 A further aspect of the invention is an isolated nucleic acid sequence comprising at least 18 contiguous nucleotides substantially identical to at least 18 contiguous nucleotides of BTF1.

A further aspect of the invention is an isolated nucleic acid sequence comprising at least 18 contiguous nucleotides substantially identical to at least 18 contiguous nucleotides of BTF2.

A further aspect of the invention is an isolated nucleic acid sequence comprising at least 18 contiguous nucleotides substantially identical to at least 18 contiguous nucleotides of BTF3.

15 A further aspect of the invention is an isolated nucleic acid sequence comprising at least 18 contiguous nucleotides substantially identical to at least 18 contiguous nucleotides of BTF4.

A further aspect of the invention is an isolated nucleic acid sequence comprising at least 18 contiguous nucleotides substantially identical to at least 18 contiguous nucleotides of BTF5.

20 A further aspect of the invention is an isolated nucleic acid sequence comprising at least 18 contiguous nucleotides substantially identical to at least 18 contiguous nucleotides of NPT3.

A further aspect of the invention is an isolated nucleic acid sequence comprising at least 18 contiguous nucleotides substantially identical to at least 18 contiguous nucleotides of NPT4.

A further aspect of the invention is an isolated nucleic acid sequence comprising at least 18 contiguous nucleotides substantially identical to at least 18 contiguous nucleotides of RoRet.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 depicts a combination genetic, physical and transcription map of the HFE gene region. The first line shows the relative positions of selected genetic markers that define the HFE region. The heavy bar below represents the YAC clone used in the direct selection experiment. The order and positions of the bacterial clones employed in the exon-trapping and sample sequencing is indicated under the YAC. The thin bar under the bacterial clones represents the approximate locations of a subset of the expressed sequence fragments mapped to the contig. The thicker bars show the location of the cDNAs cloned. Two regions are bracketed; the butyrophilin family of genes (BTF), and the region where complete genomic sequencing was carried out.

Figure 2 is a schematic of the 250 kb of genomic sequence including the HFE gene. Both the structure of the overall cDNA (top) and that corresponding to the coding regions (bottom), as well as the direction of transcription are shown. The positions of the histone genes, the zinc α -2 glycoprotein pseudogene, and the ESTs are also shown.

Figure 3 depicts an alignment of the predicted amino acid sequence of the BTF proteins. Sequences were aligned in a pair-wise fashion using CLUSTAL W (Thompson *et al.* *Nucl. Acids Res.* 22:4673-4680) to deduce the most parsimonious arrangement. The asterisks under the

alignment represent amino acids conserved in all 6 proteins; the "dots" represent conserved amino acids substitutions. Boxed are the regions within the proteins which correspond to three conserved motifs: 1) the B-G domain, 2) the transmembrane domain (TM), and 3) the B30-2 exon domain.

Figure 4, panel (A) depicts a Northern blot analysis of representative members of the two groups of BTF proteins, BTF1 and BTF5. BTF1 hybridized to all tissues on the blot as a major transcript at 2.9 kb and a minor one at 5.0 kb. BTF5 hybridized to several transcripts ranging between 4.0 and 3.1 kb and as a similar expression profile to BTF1. Autoradiography was for 24 hours. The β-actin hybridization demonstrated the variation in poly (A)+ RNA between the lanes. Autoradiography was for 1 hour. In panel (B), RT-PCR analysis demonstrated that the expression of both genes was widespread. Included in the (+) lane are cDNA 21 and 44 as positive controls; the (-) lane represents the no-DNA control. Amplification using primers for the RFP gene (Isomura et al. *Nucleic Acid Res.*, 20:5305-5310 (1992)) controlled for the integrity of the cDNA. All first strand cDNAs were checked for contaminating genomic DNA amplification by carrying out an identical experiment excluding the reverse transcriptase. In all cases, no amplification was obtained (data not shown).

Figure 5(A) depicts an alignment of the predicted amino acid sequence of the RoRet gene to the 52 kD Ro/SSA auto-antigen protein. The asterisks under the alignment represent conserved amino acids; the "dots" represent conserved amino acids substitutions. The putative DNA binding cysteine-rich domain and the B30-2 exon domain are boxed. Figure 5(B) depicts an alignment of the predicted amino acid sequence of the two novel putative sodium phosphate transport proteins to that of the NPT1.

Figure 6, panel (A) depicts a Northern blot analysis of the RoRet gene. The RoRet cDNA hybridized to 4 different transcripts, ranging from 7.1 kb to 2.2 kb. Autoradiography was performed for 4 days. The re-hybridization of the blot with a β-actin probe showed the variation in poly (A)+ RNA between the lanes. Autoradiography was for 1 hour. Panel (B) depicts RT-PCR analysis of the RoRet gene. Included in the (+) lane was a cDNA 27 positive control. Weak amplification of the correct size was observed in the small intestine, kidney and liver. The other tissues were negative as was the no DNA control lane (-). The RFP primers demonstrated the integrity of the cDNA. Panel (C) depicts Northern blot analysis of NPT3 and NPT4. NPT3 was expressed at high abundance in the heart and muscle as a single 7.2 kb transcript. Lesser amounts were found in the other tissues. The expression pattern of NPT4 was more restricted, being found only in the liver and kidney as a smear of transcripts ranging from 2.6 to 1.7 kb. Panel (D) depicts RT-PCR analysis of the NPT3 and NPT4 genes. Included in the (+) lane were the respective cDNA22E and 22B positive controls. The NPT3 gene was expressed as the proper size PCR fragment in kidney, liver, spleen and testis. A smaller fragment was detected in all tissues with the exception of the liver. The no DNA control lane (-) was negative. NPT4 was expressed as the proper size fragment in the small intestine, kidney, liver and testis. Larger and smaller size fragments were found in all other tissues with the exception of the brain. For both genes these different size fragments may indicate alternative splice events. The no DNA control lane (-) was negative. The RFP primers demonstrated the integrity of the cDNA.

Figure 7 depicts the sequences of cDNA 21 (BTF1), cDNA 29 (BTF3), cDNA 23 (BTF4), cDNA 44 (BTF5), cDNA 32 (BTF2), cDNA 27 (RoRet), cDNA 22B (NPT3), cDNA22E (NPT4).

Figure 8 depicts the nucleotide sequence of approximately 235 kb in the HFE subregion from an unaffected individual.

Figure 9 depicts the nucleotide sequence of approximately 235 kb in the HFE subregion from an HH affected individual. Polymorphic sites in the HH affected individual determined by comparing a sequence of the corresponding region from an HH unaffected individual are listed and described in Table I.

DETAILED DESCRIPTION

A. Definitions

Abbreviations for the twenty naturally occurring amino acids follow conventional usage. In the polypeptide notation used herein, the left-hand direction is the amino terminal direction and the right-hand direction is the carboxyl-terminal direction, in accordance with standard usage and convention. Similarly, unless specified otherwise, the left hand end of single-stranded polynucleotide sequences is the 5' end; the left hand direction of double-stranded polynucleotide sequences is referred to as the 5' direction. The direction of 5' to 3' addition of nascent RNA transcripts is referred to as the transcription direction; sequence regions on the DNA strand having the same sequence as the RNA and which are 5' to the 5' end of the RNA transcript are referred to as "upstream sequences"; sequence regions on the DNA strand having the same sequence as the RNA and which are 3' to the 3' end of the RNA transcript are referred to as "downstream sequences".

The term "nucleic acids", as used herein, refers to either DNA or RNA. "Nucleic acid sequence" or "polynucleotide sequence" refers to a single- or double-stranded polymer of deoxyribonucleotide or ribonucleotide bases read from the 5' to the 3' end. It includes both self-replicating plasmids, infectious polymers of DNA or RNA and nonfunctional DNA or RNA. The complement of any nucleic acid sequence of the invention is understood to be included in the definition of that sequence.

"Nucleic acid probes" may be DNA or RNA fragments. DNA fragments can be prepared, for example, by digesting plasmid DNA, or by use of PCR, or synthesized by either the phosphoramidite method described by Beaucage and Carruthers, *Tetrahedron Lett.* 22:1859-1862 (1981), or by the triester method according to Matteucci, *et al.*, *J. Am. Chem. Soc.* 103:3185 (1981), both incorporated herein by reference. A double stranded fragment may then be obtained, if desired, by annealing the chemically synthesized single strands together under appropriate conditions or by synthesizing the complementary strand using DNA polymerase with an appropriate primer sequence. Where a specific sequence for a nucleic acid probe is given, it is understood that the complementary strand is also identified and included. The complementary strand will work equally well in situations where the target is a double-stranded nucleic acid.

The phrase "selectively hybridizing to" refers to a nucleic acid probe that hybridizes, duplexes or binds only to a particular target DNA or RNA sequence when the target sequences are present in a preparation of total cellular DNA or RNA. "Complementary" or "target" nucleic acid sequences refer to those nucleic acid sequences which selectively hybridize to a nucleic acid probe. Proper annealing conditions depend, for example, upon a probe's length, base composition, and the number of mismatches and their position on the probe, and must often be determined empirically. For

discussions of nucleic acid probe design and annealing conditions, see, for example, Sambrook *et al.*, Molecular Cloning: a Laboratory Manual (2nd ed.), Vols. 1-3, Cold Spring Harbor Laboratory, (1989) or Current Protocols in Molecular Biology, F. Ausubel *et al.*, ed. Greene Publishing and Wiley-Interscience, New York (1987).

5 The phrase "nucleic acid sequence encoding" refers to a nucleic acid which directs the expression of a specific protein or peptide. The nucleic acid sequences include both the DNA strand sequence that is transcribed into RNA and the RNA sequence that is translated into protein. The nucleic acid sequences include both the full length nucleic acid sequences as well as non-full length sequences derived from the full length protein. It being further understood that the sequence
10 includes the degenerate codons of the native sequence or sequences which may be introduced to provide codon preference in a specific host cell.

The phrase "isolated" or "substantially pure" refers to nucleic acid preparations that lack at least one protein or nucleic acid normally associated with the nucleic acid in a host cell.

15 The phrase "expression cassette", refers to nucleotide sequences which are capable of affecting expression of a structural gene in hosts compatible with such sequences. Such cassettes include at least promoters and optionally, transcription termination signals. Additional factors necessary or helpful in effecting expression may also be used as described herein.

The term "operably linked" as used herein refers to linkage of a promoter upstream from a DNA sequence such that the promoter mediates transcription of the DNA sequence.

20 The term "vector", refers to viral expression systems, autonomous self-replicating circular DNA (plasmids), and includes both expression and nonexpression plasmids. Where a recombinant microorganism or cell culture is described as hosting an "expression vector," this includes both extrachromosomal circular DNA and DNA that has been incorporated into the host chromosome(s). Where a vector is being maintained by a host cell, the vector may either be stably
25 replicated by the cells during mitosis as an autonomous structure, or is incorporated within the host's genome.

30 The term "gene" as used herein is intended to refer to a nucleic acid sequence which encodes a polypeptide. This definition includes various sequence polymorphisms, mutations, and/or sequence variants wherein such alterations do not affect the function of the gene product. The term "gene" is intended to include not only coding sequences but also regulatory regions such as promoters, enhancers, and termination regions. The term further includes all introns and other DNA sequences spliced from the mRNA transcript, along with variants resulting from alternative splice sites.

35 The term "plasmid" refers to an autonomous circular DNA molecule capable of replication in a cell, and includes both the expression and nonexpression types. Where a recombinant microorganism or cell culture is described as hosting an "expression plasmid", this includes both extrachromosomal circular DNA molecules and DNA that has been incorporated into the host chromosome(s). Where a plasmid is being maintained by a host cell, the plasmid is either being stably replicated by the cells during mitosis as an autonomous structure or is incorporated within the host's genome.

The phrase "recombinant protein" or "recombinantly produced protein" refers to a peptide or protein produced using non-native cells that do not have an endogenous copy of DNA able to express the protein. The cells produce the protein because they have been genetically altered by the introduction of the appropriate nucleic acid sequence. The recombinant protein will not be found in association with proteins and other subcellular components normally associated with the cells producing the protein. The terms "protein" and "polypeptide" are used interchangeably herein.

The following terms are used to describe the sequence relationships between two or more nucleic acids or polynucleotides: "reference sequence", "comparison window", "sequence identity", "percentage of sequence identity", and "substantial identity". A "reference sequence" is a defined sequence used as a basis for a sequence comparison; a reference sequence may be a subset of a larger sequence, for example, as a segment of a full-length cDNA or gene sequence given in a sequence listing, or may comprise a complete cDNA or gene sequence.

Optimal alignment of sequences for aligning a comparison window may, for example, be conducted by the local homology algorithm of Smith and Waterman Adv. Appl. Math. 2:482 (1981), by the homology alignment algorithm of Needleman and Wunsch J. Mol. Biol. 48:443 (1970), by the search for similarity method of Pearson and Lipman Proc. Natl. Acad. Sci. U.S.A. 85:2444 (1988), or by computerized implementations of these algorithms (for example, GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package Release 7.0, Genetics Computer Group, 575 Science Dr., Madison, WI).

The terms "substantial identity" or "substantial sequence identity" as applied to nucleic acid sequences and as used herein denote a characteristic of a polynucleotide sequence, wherein the polynucleotide comprises a sequence that has at least 85 percent sequence identity, preferably at least 90 to 95 percent sequence identity, and more preferably at least 99 percent sequence identity as compared to a reference sequence over a comparison window of at least 20 nucleotide positions, frequently over a window of at least 25-50 nucleotides, wherein the percentage of sequence identity is calculated by comparing the reference sequence to the polynucleotide sequence which may include deletions or additions which total 20 percent or less of the reference sequence over the window of comparison. The reference sequence may be a subset of a larger sequence.

As applied to polypeptides, the terms "substantial identity" or "substantial sequence identity" mean that two peptide sequences, when optimally aligned, such as by the programs GAP or BESTFIT using default gap weights, share at least 80 percent sequence identity, preferably at least 90 percent sequence identity, more preferably at least 95 percent sequence identity or more.

"Percentage amino acid identity" or "percentage amino acid sequence identity" refers to a comparison of the amino acids of two polypeptides which, when optimally aligned, have approximately the designated percentage of the same amino acids. For example, "95% amino acid identity" refers to a comparison of the amino acids of two polypeptides which when optimally aligned have 95% amino acid identity. Preferably, residue positions which are not identical differ by conservative amino acid substitutions. For example, the substitution of amino acids having similar chemical properties such as charge or polarity are not likely to effect the properties of a protein. Examples include glutamine for asparagine or glutamic acid for aspartic acid.

The phrase "substantially purified" or "isolated" when referring to a peptide or protein, means a chemical composition which is essentially free of other cellular components. It is preferably in a homogeneous state although it can be in either a dry or aqueous solution. Purity and homogeneity are typically determined using analytical chemistry techniques such as polyacrylamide gel electrophoresis or high performance liquid chromatography. A protein which is the predominant species present in a preparation is substantially purified. Generally, a substantially purified or isolated protein will comprise more than 80% of all macromolecular species present in the preparation. Preferably, the protein is purified to represent greater than 90% of all macromolecular species present. More preferably the protein is purified to greater than 95%, and most preferably the protein is purified to essential homogeneity, wherein other macromolecular species are not detected by conventional techniques.

The phrase "specifically binds to an antibody" or "specifically immunoreactive with", when referring to a protein or peptide, refers to a binding reaction which is determinative of the presence of the protein in the presence of a heterogeneous population of proteins and other biologics. Thus, under designated immunoassay conditions, the specified antibodies bind to a particular protein and do not bind in a significant amount to other proteins present in the sample. Specific binding to an antibody under such conditions may require an antibody that is selected for its specificity for a particular protein. A variety of immunoassay formats may be used to select antibodies specifically immunoreactive with a particular protein. For example, solid-phase ELISA immunoassays are routinely used to select monoclonal antibodies specifically immunoreactive with a protein. See Harlow and Lane (1988) Antibodies, a Laboratory Manual, Cold Spring Harbor Publications, New York, for a description of immunoassay formats and conditions that can be used to determine specific immunoreactivity.

As used herein, "EST" or "Expressed Sequence Tag" refers to a partial DNA or cDNA sequence of about 150 to 500, more preferably about 300, sequential nucleotides of a longer sequence obtained from a genomic or cDNA library prepared from a selected cell, cell type, tissue or tissue type, or organisms which longer sequence corresponds to an mRNA or a gene found in that library. An EST is generally DNA. One or more libraries made from a single tissue type typically provide at least 3000 different (i.e. unique) EST's and potentially the full complement of all possible EST's representing all possible cDNAs, e.g., 50,000 - 100,000 in an animal such as a human. (See, for example, Adams et al. Science 252:1651-1656 (1991)).

"Stringent" as used herein refers to hybridization and wash conditions of 50% formamide at 42°C. Other stringent hybridization conditions may also be selected. Generally, stringent conditions are selected to be about 5° C lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength and pH. The Tm is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe. Typically, stringent conditions will be those in which the salt concentration is at least about 0.02 molar at pH 7 and the temperature is at least about 60°C. As other factors may significantly affect the stringency of hybridization, including, among others, base composition and size of the complementary strands, the presence of organic solvents and the extent of base mismatching, the combination of parameters is more important than the absolute measure of any one.

B. Transcript Map and New Genes near HH

The instant invention provides a fine structure map of the 1 megabase region surrounding the HFE gene. As part of that map the instant invention provides approximately 250 kb of DNA sequence of which about 235 kb are provided in Figure 8 and eight loci of particular interest corresponding to candidate genes within the 1 megabase region. These loci are useful as genetic and physical markers for further mapping studies. Additionally, the eight cDNA sequences corresponding to those loci are useful, for example, for the isolation of other genes in putative gene families, the identification of homologs from other species, and as probes for diagnostic assays. In particular, isolated nucleic acid sequences of at least 18 nucleotides substantially identical to contiguous nucleotides of a cDNA of the invention are useful as PCR primers. Typically, the PCR primer will be used as part of a pair of primers in a PCR reaction. Isolated nucleic acid sequences preferably comprising about 18-100 nucleotides, more preferably at least 18 nucleotides, substantially identical to contiguous nucleotides in a cDNA of the invention are useful in the design of PCR primers and probes for hybridization assays. Additionally, the proteins encoded by those cDNAs are useful in the generation of antibodies for analysis of gene expression and in diagnostic assays, and in the purification of related proteins.

Thus, in one embodiment of the invention, a 235 kb sequence is provided for the HFE subregion within the 1 megabase region mapped. This sequence can serve as a reference in genetic or physical analysis of deletions, substitutions, and insertions in that region. Additionally, the sequence information provides a resource for the further identification of new genes in that region. Thus, nucleic acid sequences substantially identically to the 235 kb sequence are also included in the scope of this invention.

In a further embodiment of the invention, a family of five genes, BTF1-5, is provided which are related by sequence homology to the milk protein butyrophilin (BT) (Figures 1, 3, and 7). The predicted amino acid sequences of the proteins encoded by these genes are provided in Figure 3. These cDNAs are useful for the identification of further members of the BT family and to study regulation of expression of this family of genes. The proteins encoded by these cDNAs can be useful in the identification and isolation of ligands for the BT protein, and in the generation of agonists or antagonists of BT function. Nucleic acid sequences substantially identically to BTF1-5 and the proteins encoded by them are also included in the scope of this invention, including allelic forms.

In a further embodiment of the invention, a novel gene RoRet is provided, which is related by sequence homology to the 52 kD Ro/SSA Lupus and Sjogren's syndrome autoantigen. This sequence is especially useful in the identification of other genes that may be involved in Lupus or Sjorgen's syndrome. The protein encoded by this cDNA can be useful in the identification and isolation of ligands for the autoantigen, and in the generation of agonists or antagonists of the antigen. Nucleic acid sequences substantially identically to RoRet and the proteins encoded by them are also included in the scope of this invention.

In a further embodiment of the invention, two genes, NPT3 and NPT4, with structural homology to a type 1 sodium transport gene are provided. These cDNAs and the proteins expressed by them are useful in determining the etiology of hypophosphatemia, along with being useful as probes

in the identification and isolation of further members of the gene family. Nucleic acid sequences substantially identically to the NPT1-like sequences and the proteins encoded by them are also included in the scope of this invention.

C. Polymorphic Markers

The invention provides 397 new polymorphic sites in the region of the HFE gene. These polymorphisms are listed in Table 1. As described below, these polymorphisms were identified by comparison of the DNA sequence of an affected individual homozygous for the common ancestral HH mutation with that of an unaffected individual disclosed in copending U.S. 08/724,394.

Table 1. Polymorphic Sites in the HH Region

Base Location	Difference	Base Location	Difference
35-36	AC DEL	19755	G-A
841	T-C	19949	C-T
15 2662-2663	TT DEL	20085	C-T
3767	T-C	20366-20367	A INS
3829	C-G	20463	C-A
20 4925-4928	TAAA DEL	20841	A-T
5691	C-T	21059	A-T
25 5839	T-C	21117	A-G
6011	G-A	21837	A-C
6047	C-G	22293	A-C
6231	G-A	22786	C-A
6643	A DEL	23009	G-A
25 6698	T-C	24143	T-A
7186	T-C	26175	G-C
7273	G-A	26667	C-A
7545-7558	TCACACACCGATTGG DEL	26994	T-C
30 7672	G DEL	27838	G-T
7933	T-C	27861	T DEL
8746	T-G	28132	G-A
9115	G-A	29100	G-A
9823	G-A	29454-29457	TTTT DEL
35 10027	G-A	29787	T-G
10214	C-T	29825	A-C
10828	A-G	30009	T-C
10918	C-G	30177	A-G
10955	A-G	30400	A-G
40 11524	C-A	31059	T-A
11674	A-G	31280	C-T
11955	T-C	31749	C-T
12173-12175	TTT DEL	32040	C-G
13304	G-A	32556-32559	TGTG DEL
45 13455	G-A	33017	T-G
14416-14417	A INS	33026	T DEL
14998	C-T	34434	C-T
15564	T-C	35179	A-C
15887	A-G	35695	G-A
50 15904-15919	CCAAACTGATCTTG DEL	35702	G-A
16019	T DEL	35983	A-G
16211	A-T	37411	A-G
17461	A-G	38526	C-T

	Base Location	Difference	Base Location	Difference
5	40431	C-A	72688	C-G
	42054-42055	TT DEL	75323-75324	T INS
	43783-43784	TTTT INS	75887	G-C
	45120	C DEL	77519	T-C
	45567	A-C	77749	G-A
10	46601	A-T	77908	T-C
	47255	C-G	78385	C-G
	47758	C-A	78592-78593	AG INS
	47994	G-C	80189	T-G
15	48440	G-A	80279	T DEL
	48650	T-G	80989-80990	A INS
	48680	A-G	81193	T-C
	50240	C-T	81273	A DEL
	50553	G-A	82166	G-A
20	50586	G-T	83847	T DEL
	51322	G-C	84161-84162	CA-GG
	51747	A-G	84533	A-G
	52474	C-G	84638	T-G
	52733	C-A	85526	T-G
25	52875	G-A	85705	G-T
	53631-53637	TTTTTTT DEL	86984	T-C
	53707	G-A	87655	T-C
	54819	A-G	87713	A-C
30	55913	T-C	87892	C-T
	56225	A-C	88192	T DEL
	56510	T-C	88528	A-G
	56566	G-A	89645	A-T
	56618	A-T	89728	A-G
	57815	A-G	90088	T-C
35	58011	T DEL	91193-91194	2209bp INS
	58247-58248	T INS	91373	T-C
	58926	C-G	91433-91434	A INS
	59406	C-G	91747	G-A
40	59422	G-C	93625	T DEL
	60221-60222	A INS	95116-95117	T INS
	60656-60657	CA DEL	96315	G-A
	61162	G-A	97981	A-G
	61465	G-A	98351	T DEL
45	61607	A DEL	99249	C-T
	61653	T-C	100094-100095	T INS
	61794-61795	T INS	100647-100648	TTC INS
	62061	G-C	100951	C-T
	62362	T-G	101610	C-G
50	62732	C-G	102589	C-T
	63364	G-A	103076-103077	TATATATATATATA INS
	63430-63431	GT INS	103747	T-C
	63754	C-T	105638	A-C
	63785	A-C	107024	C-T
55	63870-63871	A INS	107322	C-T
	64788	A-G	107858	C-G
	64962	G-A	109019	A DEL
	65891	C-T	109579	T DEL
	66675	G-C	110021	C-A
	67186-67187	ATT INS	111251	C-A
	67746-67747	TT INS	111425	G-A
	68259	T-C	112644	T-A
	68836	T-C	113001	G-C
	68976	C-G	113130	C-T
	72508	T-G	114026	G-A

	Base Location	Difference	Base Location	Difference
5	114250	A DEL	176222	T-C
	115217	C-G	176524	A-T
	117995	G-A	176684	G-A
	118874	A-G	176815	T-C
	119470	T-C	177049	T-C
10	119646	G-T	177065	G-T
	120853	C-T	178285	T-C
	121582	G-A	178551-178552	CTTTTTTTTTTTT INS
	123576	A-C	179114-179115	A INS
15	125581	C-T	179260	C-G
	125970	G-T	179281	C-G
	126197	A-G	180023	G-C
	126672	A DEL	180430	T-C
	126672	G-C	180773	T-C
20	128220-128221	A INS	180824	T-C
	132569	C-T	181097	C-T
	133572	A-C	181183	A-T
	134064	T-G	182351	C-T
25	136999	G-A	183197	G-A
	137784	C-T	183623	A-T
	138903	G-A	183653	G-T
	139159-139160	A INS	183657	T-G
	140359	G-A	183795-183796	A INS
30	140898	C-T	184060	G-A
	141313	C DEL	184993	G-A
	141343	T-C	185918	A-G
	142148	T-C	186036	T-C
	142178	C-A	186506-186507	TAAC INS
35	142433-142434	ATAGA INS	186561-186568	TATTATT DEL
	143783	C-T	186690	G DEL
	144090	C-T	186751	T-A
	144220-144221	A INS	187221	A-G
	144725	A-C	187260	A-G
40	145732-145733	AAAAAAAAAAAAAA INS	187444-187447	CTCT DEL
	147016-147017	CG DEL	187831-187832	C INS
	147021	G-T	188638	G-A
	147536	T-G	188642	C-T
	148936	T-A	189246	T-C
45	149061	T-C	190340	A-C
	154341	A-T	190354	A-G
	154588	G-A	190762	A-G
	155464	G-A	191260	G-T
	158574	C-G	193018-193019	AGAT INS
50	160007	C-T	193147	T-G
	164348	A-T	193196-193197	C INS
	164499	C-G	193499	C-T
	166677-166678	AAAG INS	193738	C-G
	167389	G-A	193984-193985	ACACACAC INS
55	168506-168507	AGGATGGTCT INS	194064	C-G
	168515	T-C	194504	A DEL
	169413-169414	AA INS	194734	G-A
	170300-170301	TTGTTGTTGTTG INS	194890	A-C
	170491	G-A	195404	G-A
	173428	T-C	195693	A-T
	173642	G-A	196205	G-A
	173948	T-G	197424	C-T
	175330	T-C	197513	C-T
	175836	T-C	197670	G-A
	176200	G-C	198055	C-A

* D6S2238 occurs at base 1. 24d1 occurs at base 41316. D6S2239 occurs at base 84841. D6S2241 occurs at base 235032.

45 Table 2. Polymorphic Allele Frequencies

Location	Frequency of ancestral variant in random chromosomes	Frequency of unaffected variant in random chromosomes
232703	53%	47%
231835	53%	47%
230394	85%	15%
230376	25%	75%
230109	53%	47%
225486	45%	55%
225416	75%	25%
220198	43%	57%
219660	58%	42%

Location	Frequency of ancestral variant in random chromosomes	Frequency of unaffected variant in random chromosomes
219560	53%	47%
214977	65%	35%
214908	50%	50%
214795	24%	76%
5 214549	53%	47%
214192	65%	35%
210299	53%	47%
10 208862	80%	20%
208634	48%	52%
207400	25%	75%
205284	50%	50%
204341	53%	47%
202880	58%	42%
15 202662	98%	2%
200027	25%	75%
199030	58%	42%
198692	55%	45%
198401	55%	45%
20 198055	55%	45%
195693	60%	40%
195404	25%	75%
194890	55%	45%
25 175330	53%	47%
173948	83%	17%
173642	55%	45%
173428	80%	20%
168515	80%	20%
160007	18%	82%
149061	58%	42%
30 148936	82%	18%
147536	100%	0%
147021	46%	54%
141343	55%	45%
35 140359	55%	45%
138903	55%	45%
132569	81%	19%
125581	18%	82%
121582	80%	20%
40 120853	18%	82%
118874	85%	15%
115217	50%	50%
113130	40%	60%
45 113001	48%	52%
107858	48%	52%
103747	50%	50%
96315	25%	75%
91194	80%	20%
50 90088	75%	25%
89728	50%	50%
89645	50%	50%
88528	63%	37%
87892	75%	25%
87713	60%	40%
55 87655	50%	50%
86984	79%	21%
85705	50%	50%
85526	50%	50%

Location	Frequency of ancestral variant in random chromosomes	Frequency of unaffected variant in random chromosomes
84638	50%	50%
84533	50%	50%
82166	78%	22%
81193	58%	42%
80189	50%	50%
78385	80%	20%
77908	88%	12%
68976	50%	50%
68259	51%	49%
66675	80%	20%
62732	50%	50%
62362	40%	60%
61653	48%	52%
61465	5%	95%
61162	60%	40%
53707	100%	0%
52875	50%	50%
52733	74%	26%
52474	47%	53%
50586	50%	50%
50553	50%	50%
50240	50%	50%
48680	53%	47%
48650	63%	37%
48440	50%	50%
47255	50%	50%
46601	53%	47%
45567	49%	51%
41316	5%	95%
40431	20%	80%
38526	23%	77%
37411	70%	30%
35983	5%	95%

These polymorphisms provide surrogate markers for use in diagnostic assays to detect the likely presence of the mutations 24d1 and/or 24d2, in preferably 24d1, in homozygotes or heterozygotes. Thus, for example, DNA or RNA from an individual is assessed for the presence or absence of a genotype defined by a polymorphic allele of Table 1, wherein, as a result, the absence of a genotype defined by a polymorphic allele of Table 1 indicates the likely absence of the HFE gene mutation in the genome of the individual and the presence of the genotype indicates the likely presence of the HFE gene mutation in the genome of the individual.

These markers may be used singly, in combination with each other, or with other polymorphic markers (such as those disclosed in co-pending PCT application WO 96/06583) in diagnostic assays for the likely presence of the HFE gene mutation in an individual. For example, any of the markers defined by the polymorphic sites of Table 1 can be used in diagnostic assays in combination with 24d1 or 24d2, or at least one of polymorphisms HHP-1, HHP-19, or HHP-29, or microsatellite repeat alleles 19D9:205; 18B4:235; 1A2:239; 1E4:271; 24E2:245; 2B8:206; 3321-1:98; 4073-1:182; 4440-1:180; 4440-2:139; 731-1:177; 5091-1:148; 3216-1:221; 4072-2:170; 950-1:142; 950-2:164; 950-3:165; 950-4:128; 950-6:151; 950-8:137; 63-1:151; 63-2:113; 63-3:169; 65-1:206; 65-

2:159; 68-1:167; 241-5:108; 241-29:113; 373-8:151; and 373-29:113, D6S258:199, D6S265:122, D6S105:124; D6S306:238; D6S464:206; and D6S1001:180.

Table 2 lists the frequency of about 100 of the alleles defined by the polymorphic sites of the invention in the general population. As is evident from the Table, certain of these alleles are present rarely in the general population. These polymorphisms are thus preferred as surrogate markers in diagnostic assays for the presence of a mutant HFE allele ("gene mutation") such as 24d1 or 24d2. Preferably, the frequency of the polymorphic allele used in the diagnostic assay in the general population is less than about 50%, more preferably less than about 25%, and most preferably less than about 5%. Thus, of the genotypes defined by the alleles listed in Table 2, polymorphisms occurring at base 35983 and base 61465 of Figure 1 are preferred.

It will be understood by those of skill in the art that because they were identified in an ancestral HH homozygote, the haplotypes defined by the polymorphic sites of Table 1 are predictive of the likely presence of the HFE gene mutation 24d1. Thus, for example, the likelihood of any affected individual having at least two or more of any of the polymorphic alleles defined by Table 1 is greater than that for any unaffected individual. Similarly, the likelihood of any affected individual having at least three or more of any of the polymorphic alleles defined by Table 1 is greater than that for any unaffected individual.

Thus, for example, in a diagnostic assay for the likely presence of the HFE gene mutation in the genome of the individual, DNA or RNA from the individual is assessed for the presence or absence of a haplotype of Table 1, wherein, as a result, the absence of a haplotype of Table 1 indicates the likely absence of the HFE gene mutation in the genome of the individual and the presence of the haplotype indicates the likely presence of the HFE gene mutation in the genome of the individual.

The markers defined by the polymorphic sites of Table 1 are additionally useful as markers for genetic analysis of the inheritance of certain HFE alleles and other genes which occur within the chromosomal region corresponding to the sequence of Figure 9 which include, for example, those disclosed in copending U.S.S.N. 08/724,394.

As the entire nucleotide sequence of the region is provided in Figure 9, it will be evident to those of ordinary skill in the art which sequences to use as primers or probes for detecting each polymorphism of interest. Thus, in some embodiments of the invention, the nucleotide sequences of the invention include at least one oligonucleotide pair selected from the sequence of Figure 9 or its complement for amplification of a polymorphic site of Table 1. Furthermore, in some embodiments of the invention a preferred hybridization probe is an oligonucleotide comprising at least 8 to about 100 consecutive bases from the sequence of Figure 9, or the complement of the sequence, wherein the at least 8 to about 100 consecutive bases includes at least one polymorphic site of Table 1. In some embodiments the polymorphic site is at base 35983 or base 61465.

It will also be appreciated that the nucleic acid sequences of the invention include isolated nucleic acid molecules comprising about 100 consecutive bases to about 235 kb substantially identical to the sequence of Figure 9, wherein the DNA molecule comprises at least one polymorphic

site of Table 1. Such isolated DNA sequences are useful as primers, probes, or as the component of a kit in diagnostic assays for detecting the likely presence of the HFE gene mutation in an individual.

D. Nucleic Acid Based Screening

Individuals carrying polymorphic alleles of the invention may be detected at either the

5 DNA, the RNA, or the protein level using a variety of techniques that are well known in the art. The genomic DNA used for the diagnosis may be obtained from body cells, such as those present in peripheral blood, urine, saliva, bucca, surgical specimen, and autopsy specimens. The DNA may be used directly or may be amplified enzymatically *in vitro* through use of PCR (Saiki et al. *Science* 239:487-491 (1988)) or other *in vitro* amplification methods such as the ligase chain reaction (LCR) 10 (Wu and Wallace *Genomics* 4:560-569 (1989)), strand displacement amplification (SDA) (Walker et al. *Proc. Natl. Acad. Sci. U.S.A.* 89:392-396 (1992)), self-sustained sequence replication (3SR) (Fahy et al. *PCR Methods Appl.* 1:25-33 (1992)), prior to mutation analysis. The methodology for preparing nucleic acids in a form that is suitable for mutation detection is well known in the art.

The detection of polymorphisms in specific DNA sequences, such as in the region of

15 the HFE gene, can be accomplished by a variety of methods including, but not limited to, restriction-fragment-length-polymorphism detection based on allele-specific restriction-endonuclease cleavage (Kan and Dozy *Lancet* ii:910-912 (1978)), hybridization with allele-specific oligonucleotide probes (Wallace et al. *Nucl Acids Res* 6:3543-3557 (1978)), including immobilized oligonucleotides (Saiki et al. *Proc. Natl. Acad. Sci. U.S.A.* 86:6230-6234 (1989)) or oligonucleotide arrays (Maskos and Southern 20 *Nucl Acids Res* 21:2269-2270 (1993)), allele-specific PCR (Newton et al. *Nucl Acids Res* 17:2503-2516 (1989)), mismatch-repair detection (MRD) (Faham and Cox *Genome Res* 5:474-482 (1995)), binding of MutS protein (Wagner et al. *Nucl Acids Res* 23:3944-3948 (1995)), denaturing-gradient gel electrophoresis (DGGE) (Fisher and Lerman et al. *Proc. Natl. Acad. Sci. U.S.A.* 80:1579-1583 (1983)), single-strand-conformation-polymorphism detection (Orita et al. *Genomics* 5:874-879 (1983)), RNAase 25 cleavage at mismatched base-pairs (Myers et al. *Science* 230:1242 (1985)), chemical (Cotton et al. *Proc. Natl. Acad. Sci. U.S.A.* 85:4397-4401 (1988)) or enzymatic (Youil et al. *Proc. Natl. Acad. Sci. U.S.A.* 92:87-91 (1995)) cleavage of heteroduplex DNA, methods based on allele specific primer extension (Svänen et al. *Genomics* 8:684-692 (1990)), genetic bit analysis (GBA) (Nikiforov et al. *Nucl Acids Res* 22:4167-4175 (1994)), the oligonucleotide-ligation assay (OLA) (Landegren et al. *Science* 30 241:1077 (1988)), the allele-specific ligation chain reaction (LCR) (Barrany *Proc. Natl. Acad. Sci. U.S.A.* 88:189-193 (1991)), gap-LCR (Abravaya et al. *Nucl Acids Res* 23:675-682 (1995)), radioactive and/or fluorescent DNA sequencing using standard procedures well known in the art, and peptide nucleic acid (PNA) assays (Orum et al., *Nucl. Acids Res.* 21:5332-5356 (1993); Thiede et al., *Nucl. Acids Res.* 24:983-984 (1996)).

35 In addition to the genotypes defined by the polymorphisms of the invention, as described in co-pending PCT application WO 96/35802 published November 14, 1996, genotypes characterized by the presence of the alleles 19D9:205; 18B4:235; 1A2:239; 1E4:271; 24E2:245; 2B8:206; 3321-1:98 (denoted 3321-1:197 therein); 4073-1:182; 4440-1:180; 4440-2:139; 731-1:177; 5091-1:148; 3216-1:221; 4072-2:170 (denoted 4072-2:148 therein); 950-1:142; 950-2:164; 950-3:165; 40 950-4:128; 950-6:151; 950-8:137; 63-1:151; 63-2:113; 63-3:169; 65-1:206; 65-2:159; 68-1:167; 241-

5:108; 241-29:113; 373-8:151; and 373-29:113, alleles D6S258:199, D6S265:122, D6S105:124, D6S306:238, D6S464:206; and D6S1001:180, and/or alleles associates with the HHP-1, the HHP-19 or HHP-29 single base-pair polymorphisms can also be used to assist in the identification of an individual whose genome contains 24d1 and/or 24d2. For example, the assessing step can be performed by a process which comprises subjecting the DNA or RNA to amplification using oligonucleotide primers flanking a polymorphism of Table 1, and oligonucleotides flanking 24d1 and/or 24d2, oligonucleotide primers flanking at least one of the base-pair polymorphisms HHP-1, HHP-19, and HHP-29, oligonucleotide primers flanking at least one of the microsatellite repeat alleles, or oligonucleotide primers for any combination of polymorphisms or microsatellite repeat alleles thereof.

10 Oligonucleotides useful in diagnostic assays are typically at least 8 consecutive nucleotides in length, and may range upwards of 18 nucleotides in length to greater than 100 or more consecutive nucleotides. Such oligonucleotides can be derived from either the genomic DNA of Figure 8 or 9, or cDNA sequences derived therefrom, or may be synthesized.

15 Additionally, the proteins encoded by such cDNAs are useful in the generation of antibodies for analysis of gene expression and in diagnostic assays, and in the purification of related proteins.

E. General Methods

20 The nucleic acid compositions of this invention, whether RNA, cDNA, genomic DNA, or a hybrid of the various combinations, may be isolated from natural sources, including cloned DNA, or may be synthesized *in vitro*. The nucleic acids claimed may be present in transformed or transfected whole cells, in a transformed or transfected cell lysate, or in a partially purified or substantially pure form.

25 Techniques for nucleic acid manipulation of the nucleic acid sequences of the invention such as subcloning nucleic acid sequences encoding polypeptides into expression vectors, labeling probes, DNA hybridization, and the like are described generally in Sambrook *et al.*, Molecular Cloning - a Laboratory Manual (2nd Ed.), Vol. 1-3, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, (1989), which is incorporated herein by reference. This manual is hereinafter referred to as "Sambrook *et al.*"

30 There are various methods of isolating the nucleic acid sequences of the invention. For example, DNA is isolated from a genomic or cDNA library using labeled oligonucleotide probes having sequences complementary to the sequences disclosed herein. Such probes can be used directly in hybridization assays. Alternatively probes can be designed for use in amplification techniques such as PCR.

35 To prepare a cDNA library, mRNA is isolated from tissue such as heart or pancreas, preferably a tissue wherein expression of the gene or gene family is likely to occur. cDNA is prepared from the mRNA and ligated into a recombinant vector. The vector is transfected into a recombinant host for propagation, screening and cloning. Methods for making and screening cDNA libraries are well known. See Gubler, U. and Hoffman, B.J. Gene 25:263-269 (1983) and Sambrook *et al.*

40 For a genomic library, for example, the DNA is extracted from tissue and either mechanically sheared or enzymatically digested to yield fragments of about 12-20 kb. The fragments

are then separated by gradient centrifugation from undesired sizes and are constructed in bacteriophage lambda vectors. These vectors and phage are packaged *in vitro*, as described in Sambrook, *et al.* Recombinant phage are analyzed by plaque hybridization as described in Benton and Davis, *Science* 196:180-182 (1977). Colony hybridization is carried out as generally described in M. Grunstein *et al.* *Proc. Natl. Acad. Sci. USA*, 72:3961-3965 (1975).

5 DNA of interest is identified in either cDNA or genomic libraries by its ability to hybridize with nucleic acid probes, for example on Southern blots, and these DNA regions are isolated by standard methods familiar to those of skill in the art. See Sambrook, *et al.*

10 In PCR techniques, oligonucleotide primers complementary to the two 3' borders of the DNA region to be amplified are synthesized. The polymerase chain reaction is then carried out using the two primers. See *PCR Protocols: a Guide to Methods and Applications* (Innis, M, Gelfand, D., Sninsky, J. and White, T., eds.), Academic Press, San Diego (1990). Primers can be selected to amplify the entire regions encoding a full-length sequence of interest or to amplify smaller DNA segments as desired.

15 PCR can be used in a variety of protocols to isolate cDNA's encoding a sequence of interest. In these protocols, appropriate primers and probes for amplifying DNA encoding a sequence of interest are generated from analysis of the DNA sequences listed herein. Once such regions are PCR-amplified, they can be sequenced and oligonucleotide probes can be prepared from sequence obtained.

20 Oligonucleotides for use as primers or probes are chemically synthesized according to the solid phase phosphoramidite triester method first described by Beaucage, S.L. and Carruthers, M.H., *Tetrahedron Lett.*, 22(20):1859-1862 (1981) using an automated synthesizer, as described in Needham-VanDevanter, D.R., *et al.*, *Nucleic Acids Res.*, 12:6159-6168 (1984). Purification of oligonucleotides is by either native acrylamide gel electrophoresis or by anion-exchange HPLC as 25 described in Pearson, J.D. and Regnier, F.E., *J. Chrom.*, 255:137-149 (1983). The sequence of the synthetic oligonucleotide can be verified using the chemical degradation method of Maxam, A.M. and Gilbert, W., in Grossman, L. and Moldave, D., eds. Academic Press, New York, *Methods in Enzymology* 65:499-560 (1980).

1. Expression

30 Once DNA encoding a sequence of interest is isolated and cloned, one can express the encoded proteins in a variety of recombinantly engineered cells. It is expected that those of skill in the art are knowledgeable in the numerous expression systems available for expression of DNA encoding a sequence of interest. No attempt to describe in detail the various methods known for the expression of proteins in prokaryotes or eukaryotes is made here.

35 In brief summary, the expression of natural or synthetic nucleic acids encoding a sequence of interest will typically be achieved by operably linking the DNA or cDNA to a promoter (which is either constitutive or inducible), followed by incorporation into an expression vector. The vectors can be suitable for replication and integration in either prokaryotes or eukaryotes. Typical expression vectors contain transcription and translation terminators, initiation sequences, and 40 promoters useful for regulation of the expression of polynucleotide sequence of interest. To obtain

high level expression of a cloned gene, it is desirable to construct expression plasmids which contain, at the minimum, a strong promoter to direct transcription, a ribosome binding site for translational initiation, and a transcription/translation terminator. The expression vectors may also comprise generic expression cassettes containing at least one independent terminator sequence, sequences permitting replication of the plasmid in both eukaryotes and prokaryotes, i.e., shuttle vectors, and selection markers for both prokaryotic and eukaryotic systems. See Sambrook *et al.* Examples of expression of ATP-sensitive potassium channel proteins in both prokaryotic and eukaryotic systems are described below.

5 a. **Expression in Prokaryotes**

10 A variety of procaryotic expression systems may be used to express the proteins of the invention. Examples include *E. coli*, *Bacillus*, *Streptomyces*, and the like.

15 It is preferred to construct expression plasmids which contain, at the minimum, a strong promoter to direct transcription, a ribosome binding site for translational initiation, and a transcription/translation terminator. Examples of regulatory regions suitable for this purpose in *E. coli* are the promoter and operator region of the *E. coli* tryptophan biosynthetic pathway as described by Yanofsky, C., *J. Bacteriol.* 158:1018-1024 (1984) and the leftward promoter of phage lambda (P λ) as described by Herskowitz, I. and Hagen, D., *Ann. Rev. Genet.* 14:399-445 (1980). The inclusion of selection markers in DNA vectors transformed in *E. coli* is also useful. Examples of such markers include genes specifying resistance to ampicillin, tetracycline, or chloramphenicol. See Sambrook *et al.* for details concerning selection markers for use in *E. coli*.

20 To enhance proper folding of the expressed recombinant protein, during purification from *E. coli*, the expressed protein may first be denatured and then renatured. This can be accomplished by solubilizing the bacterially produced proteins in a chaotropic agent such as guanidine HCl and reducing all the cysteine residues with a reducing agent such as beta-mercaptoethanol. The protein is then renatured, either by slow dialysis or by gel filtration. See U.S. Patent No. 4,511,503.

25 Detection of the expressed antigen is achieved by methods known in the art as radioimmunoassay, or Western blotting techniques or immunoprecipitation. Purification from *E. coli* can be achieved following procedures such as those described in U.S. Patent No. 4,511,503.

30 b. **Expression in Eukaryotes**

35 A variety of eukaryotic expression systems such as yeast, insect cell lines, bird, fish, and mammalian cells, are known to those of skill in the art. As explained briefly below, a sequence of interest may be expressed in these eukaryotic systems.

30 Synthesis of heterologous proteins in yeast is well known. *Methods in Yeast Genetics*, Sherman, F., *et al.*, Cold Spring Harbor Laboratory, (1982) is a well recognized work describing the various methods available to produce the protein in yeast.

35 Suitable vectors usually have expression control sequences, such as promoters, including 3-phosphoglycerate kinase or other glycolytic enzymes, and an origin of replication, termination sequences and the like as desired. For instance, suitable vectors are described in the literature (Botstein, *et al.*, *Gene* 8:17-24 (1979); Broach, *et al.*, *Gene* 8:121-133 (1979)).

Two procedures are used in transforming yeast cells. In one case, yeast cells are first converted into protoplasts using zymolyase, lyticase or glusulase, followed by addition of DNA and polyethylene glycol (PEG). The PEG-treated protoplasts are then regenerated in a 3% agar medium under selective conditions. Details of this procedure are given in the papers by J.D. Beggs, Nature (London) 275:104-109 (1978); and Hinnen, a., et al., Proc. Natl. Acad. Sci. U.S.A. 75:1929-1933 (1978). The second procedure does not involve removal of the cell wall. Instead the cells are treated with lithium chloride or acetate and PEG and put on selective plates (Ito, H., et al., J. Bact. 153:163-168 (1983)).

The proteins of the invention, once expressed, can be isolated from yeast by lysing the cells and applying standard protein isolation techniques to the lysates. The monitoring of the purification process can be accomplished by using Western blot techniques or radioimmunoassay or other standard immunoassay techniques.

The sequences encoding the proteins of the invention can also be ligated to various expression vectors for use in transforming cell cultures of, for instance, mammalian, insect, bird or fish origin. Illustrative of cell cultures useful for the production of the polypeptides are mammalian cells. Mammalian cell systems often will be in the form of monolayers of cells although mammalian cell suspensions may also be used. A number of suitable host cell lines capable of expressing intact proteins have been developed in the art, and include the HEK293, BHK21, and CHO cell lines, and various human cells such as COS cell lines, HeLa cells, myeloma cell lines, Jurkat cells, etc. Expression vectors for these cells can include expression control sequences, such as an origin of replication, a promoter (e.g., the CMV promoter, a HSV tk promoter or pgk (phosphoglycerate kinase) promoter), an enhancer (Queen et al. Immunol. Rev. 89:49 (1986)), and necessary processing information sites, such as ribosome binding sites, RNA splice sites, polyadenylation sites (e.g., an SV40 large T Ag poly A addition site), and transcriptional terminator sequences. Other animal cells useful for production of ATP-sensitive potassium channel proteins are available, for instance, from the American Type Culture Collection Catalogue of Cell Lines and Hybridomas (7th edition, (1992)).

Appropriate vectors for expressing the proteins of the invention in insect cells are usually derived from the SF9 baculovirus. Suitable insect cell lines include mosquito larvae, silkworm, armyworm, moth and *Drosophila* cell lines such as a Schneider cell line (See Schneider J. Embryol. Exp. Morphol. 27:353-365 (1987).

As indicated above, the vector, e.g., a plasmid, which is used to transform the host cell, preferably contains DNA sequences to initiate transcription and sequences to control the translation of the protein. These sequences are referred to as expression control sequences.

As with yeast, when higher animal host cells are employed, polyadenylation or transcription terminator sequences from known mammalian genes need to be incorporated into the vector. An example of a terminator sequence is the polyadenylation sequence from the bovine growth hormone gene. Sequences for accurate splicing of the transcript may also be included. An example of a splicing sequence is the VP1 intron from SV40 (Sprague, J. et al., J. Virol. 45: 773-781 (1983)).

Additionally, gene sequences to control replication in the host cell may be incorporated into the vector such as those found in bovine papilloma virus type-vectors.

Saveria-Campo, M., 1985, "Bovine Papilloma virus DNA a Eukaryotic Cloning Vector" in DNA Cloning Vol. II a Practical Approach Ed. D.M. Glover, IRL Press, Arlington, Virginia pp. 213-238.

The host cells are competent or rendered competent for transformation by various means. There are several well-known methods of introducing DNA into animal cells. These include: calcium phosphate precipitation, fusion of the recipient cells with bacterial protoplasts containing the DNA, treatment of the recipient cells with liposomes containing the DNA, DEAE dextran, electroporation and micro-injection of the DNA directly into the cells.

The transformed cells are cultured by means well known in the art (Biochemical Methods in Cell Culture and Virology, Kuchler, R.J., Dowden, Hutchinson and Ross, Inc., (1977)). The expressed polypeptides are isolated from cells grown as suspensions or as monolayers. The latter are recovered by well known mechanical, chemical or enzymatic means.

2. Purification

The proteins produced by recombinant DNA technology may be purified by standard techniques well known to those of skill in the art. Recombinantly produced proteins can be directly expressed or expressed as a fusion protein. The protein is then purified by a combination of cell lysis (e.g., sonication) and affinity chromatography. For fusion products, subsequent digestion of the fusion protein with an appropriate proteolytic enzyme releases the desired polypeptide.

The polypeptides of this invention may be purified to substantial purity by standard techniques well known in the art, including selective precipitation with such substances as ammonium sulfate, column chromatography, immunopurification methods, and others. See, for instance, R. Scopes, Protein Purification: Principles and Practice, Springer-Verlag: New York (1982), incorporated herein by reference. For example, in an embodiment, antibodies may be raised to the proteins of the invention as described herein. Cell membranes are isolated from a cell line expressing the recombinant protein, the protein is extracted from the membranes and immunoprecipitated. The proteins may then be further purified by standard protein chemistry techniques as described above.

3. Antibodies

As mentioned above, antibodies can also be used for the screening of polypeptide products encoded by the polymorphic nucleic acids of the invention. In addition, antibodies are useful in a variety of other contexts in accordance with the present invention. Such antibodies can be utilized for the diagnosis of HH and, in certain applications, targeting of affected tissues.

Thus, in accordance with another aspect of the present invention a kit is provided that is suitable for use in screening and assaying for the presence of polypeptide products encoded by the polymorphic nucleic acids of the invention by an immunoassay through use of an antibody which specifically binds to polypeptide products encoded by the polymorphic nucleic acids of the invention in combination with a reagent for detecting the binding of the antibody to the gene product.

Once hybridoma cell lines are prepared, monoclonal antibodies can be made through conventional techniques of priming mice with pristane and interperitoneally injecting such mice with the hybrid cells to enable harvesting of the monoclonal antibodies from ascites fluid.

In connection with synthetic and semi-synthetic antibodies, such terms are intended to cover antibody fragments, isotype switched antibodies, humanized antibodies (mouse-human, human-

mouse, and the like), hybrids, antibodies having plural specificities, fully synthetic antibody-like molecules, and the like.

This invention also embraces diagnostic kits for detecting DNA or RNA comprising a polymorphism of Table 1 in tissue or blood samples which comprise nucleic acid probes as described herein and instructional material. The kit may also contain additional components such as labeled compounds, as described herein, for identification of duplexed nucleic acids.

The following examples are provided to illustrate the invention but not to limit its scope. Other variants of the invention will be readily apparent to one of ordinary skill in the art and are encompassed by the appended claims.

10 **F. EXPERIMENTAL EXAMPLES**

1. Megabase transcript map

In these studies direct selection, exon-trapping, and genomic sample sequencing were used to generate a transcript map of a 1 megabase region approximately 8.5 megabases telomeric to HLA-A in the vicinity of HFE. This region 6p21.3 was flanked by the genetic markers D6S2242 and D6S2241. The starting material for these experiments was a 1 megabase YAC labeled y899g1 and a bacterial clone contig of this region (Feder *et al.* *Nature Genetics* 13:399-408 (1996)). These techniques and other methods used in the study are outlined below.

a. Direct Selection (DS)

Poly A⁺ RNA from human fetal brain, liver and small intestine (Clontech, Palo Alto, CA) were converted into cDNA using random primers and a Superscript cDNA synthesis kit (Life Technologies, Gaithersburg, MD). The cDNA was digested with Mbo I and ligated to cDNA Mbo I linker-adaptors. Unligated linker-adaptor were removed by passage through cDNA spun columns (Pharmacia, Piscataway, NJ). The 5 ng of each of the ligated cDNAs were amplified using the cDNA Mbo I-S primer (5'-CCTGATGCTCGAGTGAATT-3'). The amplified products were purified on S-400 spin columns (Pharmacia, Piscataway, NJ), ethanol precipitated and resuspended at 1mg/ml in TE. Gel-purified yac899g1 (Centre d'Etude du Polymorphisme Humain) was processed as described by Morgan *et al.* (*Nucl. Acids Res.* 20:5173-5179 (1992)). The cDNAs were mixed in equal molar amounts for a total of 3 mg, and blocked with a mixture of 4 mg Cot-1 DNA (Life Technologies, Gaithersburg, MD), and a cocktail of Sau 3A-digested ribosomal and five different histone DNAs. The 30 blocked cDNAs were hybridized to biotinylated yac899g1 DNA and streptavidin capture was carried out as described by Morgan *et al.* (*ibid*). After the second round of selection, the eluted cDNAs were amplified using the cDNA Mbo I-S primer which included a (CUA)4 repeat at the 5' end to facilitate cloning into a version of pSP72 (Promega, Madison, WI) constructed for use with uracil-DNA glycosylase cloning (UDG, Life Technologies, Gaithersburg, MD). Recombinants were transformed in DH5 α , 1000 clones picked into a 96 well format, and clones prepped for DNA sequencing using AGTC boiling 96-well mini-prep system (Advance Genetic Technologies, Gaithersburg, MD).

Four hundred and sixty five clones were sequenced and the resulting data searched by BLAST (Altschul *et al.* *J. Mol. Biol.* 215:403-410 (1990)). Those clones representing repetitive, bacterial, yeast, mitochondrial and histone sequences were eliminated from future considerations. The 40 remaining sequences were then searched for overlaps and assembled into 108 unique DS contigs.

The number of clones per DS contig varied between 1 to 22 with the length of each contig ranging from 250bp to 850 bp. Small sequence-tag-sites PCR assays were developed for each DS contig and two experiments were carried out concomitantly; mapping each DS contig back to the bacterial clone contig of the region and testing for the presence of each DS contig in cDNA libraries. Overall, 86 or 5 80% of the DS contigs mapped back to the region and were found to be in cDNA libraries. The number of 80% mapping to the region was probably an underestimate of the fidelity of the direct-selection since PCR assays which cross exon-intron boundaries would be expected to fail or give larger size products, thereby being scored negative.

b. Exon-Trapping

10 CsCl-purified genomic P1 (Genome Systems), BAC (Research Genetics) and PAC (Genome Systems) DNAs were digested with BamHI, Bgl II, Pst I Sac 1 and Xho I and 125 ng of each digest ligated into 500 ng pSPL3 (Church *et al.* *Nature Genetics* 6:98-105 (1994)) (Life Technologies, Gaithersburg, MD) digested with the appropriate restriction enzyme and phosphatased with calf intestinal alkaline phosphatase (USB, Cleveland, OH). One tenth of the ligation was used to transform 15 XL1-Blue MRF' cells (Stratagene, La Jolla, CA) by electroporation. Nine tenths of the electroporation was used to inoculate 10 ml of LB + 100 μ g/ml of carbenicillen and after overnight growth, DNA was prepared using Qiagen Q-20 tips (Qiagen GmbH, Hilden Germany). The remaining one tenth was plated on LB +100 μ g/ml carbenicillen plates to evaluated the efficiency on cloning and to test individual clones for the present of single inserts. COS-7 cells were seed overnight at a density of 1.4 20 $\times 10^5$ /well in 6 well dishes. One μ g of DNA was transfected using 6ml of Lipofect-Ace. Cytoplasmic RNA was isolated 48 hr post-transfection. RT-PCR was carried out as described by Church *et al.* (*ibid*) using commercially available reagents Life Technologies, Gaithersburg, MD). The resulting CUA-tailed PCR fragments for each restriction digested bacterial clone were pooled and UDG cloned 25 into pSP72-U (a derivative of pSP72). The DNA was transformed in DH5 α and the cells plated onto nylon membranes. After overnight growth, duplicates were made and the DNA hybridized to 32 P end-labeled oligos designed to detect various background products associated with the pSPL3 vector. One set of filters was hybridized with the following gel-purified oligos in 6X SSC aqueous hybridization solution at 42° C:

	vector-vector splicing	5'-CGACCCAGCAACCTGGAGAT-3'
30	cryptic donor-1021	5'-AGCTCGAGCGGCCGCTGCAG-3'
	cryptic donor-1134	5'-AGACCCCCAACCCACAAGAAG-3'

The filters were washed twice in 6X SSC, 10 mM sodium pyrophosphate (NaPPI) at 60°C, 30 mins.

After overnight autoradiography, non-hybridizing clones were picked and grown in 250 μ l of LB + 100 μ g/ml of carbenicillin in 96 well mini-rack tubes. The samples were analyzed by PCR 35 using the secondary PCR primers supplied in the kit (Life Technologies, Gaithersburg, MD) and those clones with inserts greater than 200 bp were selected for sequencing.

Ninety-six exon traps per bacterial clone were sequenced for a total of 768 reactions and the resulting data analyzed by BLAST. In addition, each potential exon was searched against a database of the 86 DS contigs to eliminate redundant sequences. PCR assays were developed for

each of the potential exons and they were tested for their presence in cDNA libraries. A total of 48 potential exons remained after these screening steps.

c. Sample Sequencing

A minimal set of bacterial clones chosen to cover y899g1 were prepped with the

5 Qiagen Maxi-Prep system and purified on CsCl. Ten micrograms of DNA from each bacterial clone was sonicated in a Heat Systems Sonicator XL and end-repaired with Klenow (USB) and T4 polymerase (USB). The sheared fragments were size selected between three to four kilobases on a 0.7% agarose gel and then ligated to BstXI linkers (Invitrogen). The ligation were gel purified on a 0.7% agarose gel and cloned into a pSP72 derivative plasmid vector. The resulting plasmids were
10 transformed into electrocompetent DH5 α cells and plated on LB-carbenicillin plates. A sufficient number of colonies was picked to achieve 15-fold clone coverage. The appropriate number of colonies was calculated by the following equation to generate a single-fold sequence coverage:
Number of colonies = size of bacterial clone (in kb)/average sequence read length (0.4 kb). These colonies were prepped in the 96-well AGCT system and end-sequenced with oligo MAP1 using
15 standard ABI Dye Terminator protocols. MAP1 was CGTTAGAACGCGGCTACAAT. The MAP1 sequences were screened locally with the BLAST algorithm against all available public databases. All sequence identities were catalogued and cross referenced to the DS and exon-trapped databases.

A total of 3794 end sequence reactions were run to achieve the theoretical 1X coverage. Eighty-five percent of these sequences contained non-bacterial non-vector inserts. An
20 additional 1060 end sequence reactions were run from the opposite end of the cloning vector to augment the sequence coverage and to prepare for contigging across selected regions. BLAST searches to all publicly available databases identified 12 histone genes and 74 unique expressed sequence fragments (ESF). The ESF represent a collection of ESTs and other expressed sequence fragments that were selected due to their sequence identity over a significant portion of genomic DNA.
25 The ESF were cross referenced against the DS and exon-trapped databases to eliminate redundancies. 58 unique ESF remained, representing 39 distinct clones. Included in these ESF are 5 sequences homologous to histone genes.

Table 3. EST's found by Sample Sequencing Large Insert Bacterial Clones

Clone name	Bacterial clone	Homology 5' blastx	Homology 3' blastx	Poly A+ signal ¹	Genomic poly (A) _n	cDNA Homology
EST03556	pc157c3	na ²	none ³	+	-	cDNA 28
ym33f11	pc157c3	ZNF	na	na	na	
EST04698	pc157c3	na	NSH ⁴	+	-	
EST04812	pc157c3	na	NSH	-	-	
yb89b08	pc157c3	NSH	na	na	na	
yd88g11	pc157c3	na	nsh	+	-	
yj49b01	pc157c3	NSH	na	na	na	
yv81d05	pc157c3	HG17 Human	NSH	+	-	cDNA 30
yg57h09	p196e20	BUTYBOVIN	NSH	+	-	cDNA 21
yq23d08	p196e20	BUTYBOVIN	NSH	+	-	cDNA 21

	Clone name	Bacterial clone	Homology 5' blastx	Homology 3' blastx	Poly A + signal ¹	Genomic poly (A) _{as}	cDNA Homology
30	yo65f06	p196e20	NSH	na	na	na	cDNA 29
	yv88c09	p196e20	BUTYBOVIN	na	na	na	cDNA 29
	yd17d06	p196e20	NSH	na	na	na	cDNA 23
	ye25g03	p196e20	BUTYBOVIN	NSH	na	na	cDNA 44
5	ys04h08	pc45p21	NSH	NSH	+	-	cDNA 44
	yn01c05	p196e20	BUTYBOVIN	na	na	na	cDNA 32
	YG78F10	PC45P21	NSH	NSH	na	na	
	yh54f11	p196e20	none	NSH	-	-	
	ys05b08	pc157c3	NSH	Alu	-	+	
10	yb12h11	b132a12	NSH	Histone H3.1	-	-	
	HSC2EE082	b132a12	na	NSH	+	-	
	HUM160h11b	b132a12	none	na	na	na	
	yg04f09	b132b12	Line element	Alu	-	+	
	yd37d11	b132a12	NSH	Alu	-	+	
15	ym29g03	b132a12	Histone H2A	NSH	+	-	cDNA 37
	yi77b02	b132a12	NSH	NSH	-	-	cDNA 37
	yh76b05	b132a12	NSH	Alu	-	-	
	yu98e02	b132a12	NSH	Alue	-	+	
	yd72h12	b132a12	Alu	NSH	+	+	
20	yd19d03	pc222k22	Histone H2B.1	NSH	+	-	
	ye98g01	b132a12	NSH	NSH	+	-	cDNA
	yi61f07	b132a12	NSH	NSH	-	+	
	ESTO5340	b3e17	na	Alu	-	+	
	yd35d05	pc222k22	NSH	NSH	-	+	
25	yc52a05	pc75L14	NSH	na	na	na	
	yd84a05	pc75L14	none	none	-	? ⁵	
	yr42a05	pc75L14	NaPi transport	none	+	-	cDNA 22B
	yd83h08	b20h20	NSH	none	+	-	
	ye38c09	b20h20	NSH	Alu	-	+	
30	yp74c05	b20h20	NaPi transport	Alu	? ⁶	na	

Bracketed area is the critical region

- | | | | |
|----|--------------------------|---|---------------------------------|
| 1 | Signal of ATAAA or ATTAA | 4 | No Significant Homologies |
| 2 | Not available | 5 | 3' splice that is not on contig |
| 35 | "NONE" reported by blast | 6 | Poor EST sequence |

d. cDNA library screening

Superscript plasmid cDNA libraries, brain, liver and testis, were purchased from Life

40 Technologies, Gaithersburg, MD. Colonies were plated on Hybond N filters (Amersham) using

standard techniques. Insert probes from DS, exons and EST (I.M.A.G.E. clones; Genome Systems) were all isolated by PCR followed by purification in low-melting point agarose gels (Seakem). The DNAs were labeled in gel using the Prime-it II kit (Stratagene, La Jolla, CA). Small exon probes were labeled using their respective STS PCR primers instead of random primers. Up to 5 different probes were pooled in a hybridization. Filters were hybridized in duplicate using standard techniques. Putative positives were screened by PCR using the probe's STSs to identify clones. Inserts from positive clones were subcloned in pSP72 and sequenced.

5 **e. Northern blots and RT-PCR analysis**

Multiple tissue northern blots were purchased from Clontech and hybridized according to the manufacturer's instructions. RT-PCR was carried out on random primed first strand cDNA made from poly A+ RNA (Clontech) using AmpliTaq Gold (Perkin-Elmer). Control reactions were performed on RNA samples processed in the absence of reverse transcriptase to control for genomic DNA contamination.

10 **f. Genomic Sequencing**

The MAP1 sequences from the bacterial clones b132a2, 222K22, and 75L14 were assembled into contigs with the Staden package (available from Roger Staden, MRC). A minimal set of 3 kb clones was selected for sequencing with oligo labeled MAP2 that sits on the opposite end of the plasmid vector. The sequence of MAP2 was GCCGATTTCATTAATGCAGGT. The MAP2 sequences were entered into the Staden database in conjunction with the MAP1 sequences to generate a tiling path of 3 kb clones across the region. These sequences were also screened with the BLAST algorithm and all novel sequence identities were noted. The plasmid 3 kb libraries were concurrently transformed in 96 well format into pox38UR (available from C. Martin, Lawrence Berkeley Laboratories). The transformants were subsequently mated with JGM (Strathman *et al.* P.N.A.S. 88:1247-1250 (1991) in 96 well format. All matings of the 3 kb clones within the tiling path were streaked on LB-carbenicillin-kanamycin plates and a random selection of 12 colonies per 3 kb clone was prepped in the AGCT system. The oligos -21: CTGTAAAACGACGGCCAGTC, and REV: GCAGGAAACAGCTATGACC were used to sequence off both ends of the transposon. Each 3 kb clone was assembled in conjunction with the end sequence information from all bacterial clones to generate complete sequence across the region. The genomic sequence was analyzed with the BLAST nucleotide and protein homology algorithms and the GRAIL 1.2 software to identify novel open reading frames (ORF) for gene finding.

15 **g. Discussion**

A compilation of 174 ESF led to the construction of an expressed sequence map of the region that served as the framework for the isolation of full-length cDNAs (Figure 1). (The map shows the subset of ESF that were actually mapped). Probes were developed for 82 best ESFs which appeared to be derived from the coding portions of cDNAs and the appropriate cDNA libraries were screened. This led to the isolation of 19 cDNAs, 17 of which represented novel sequences. 70 of the 174 ESF were included in the cDNAs isolated (40%). 36 probes failed to produce any clones even after repeated screening of several libraries. 51 ESF which were not accounted for in the cDNAs

cloned were not used in any screen. Therefore, it is possible that some additional genes within this 1 megabase region may have escaped detection.

A list of these cDNAs cloned and a comparison of the methods used to find them is presented in Table 4. Direct selection found 14 out of the 18 cDNAs contained within the boundaries of the YAC used in the experiment. Exon trapping found 15 out of the 19 cDNAs contained within the boundaries of the large insert bacterial clone contig. Sample sequencing identified 11 genes that had corresponding ESTs in the public database.

Table 4. Comparison of gene finding methods

	Bacterial Clone	CDNA #	Homology	EST	DS	Exon Trap
5	157c	28	zinc finger	EST03556	2	1
10	157c3	30	nonhistone	yv81d05 yvh07a10	1	none
15	157c3	46	ORF	yd88g11	1	
15	157c3	20	BT	none	none	3
15	p18696	21	BTF1	yn01G5 yg23d08 yg57h09 yu15h03	4	5
20	45p21	32	BTF2	yg78f10 yn01c05	7	3
20	45p21	29	BTF3	ye25g03 yo65f06	2	9
20	45p21	23	BTF4	yd17d06	4	6
20	45p21	44	BTF5	ys04h08	2	4
20	3e17	41	genomic?	none	none	1
25	132a2	43	genomic?	none	none	3
25	132a2	36	genomic?	none	1	none
25	132a2	37	histone 2A	ym29g03 yh87a03	3	none
25	75l14	24	MHC class 1	ye98g01	1	2
25	132a2	39	genomic?	none	none	4
25	132a2	27	Ro/SSA	none	3	4
25	132a2	22B	NPT1-like	yr42a05 yf09g06	1	7
30	20h20	22E	NPT1-like	none	2	5
30	20h20	NPT1	NPT1	yp74c05	N/A	3

As a final approach, a tiling path with overlapping end sequences from the sample sequence database was generated. Each 3 kb clone within the path was shotgun-sequenced using transposable elements as platforms for dual end sequencing. These individual clones were assembled in conjunction with the end sequences from all bacterial clones in the region. The resulting sequence (Figure 2) was analyzed systematically with BLAST homology searches and the Grail 1.2 program to identify novel open reading frames (ORF) and other gene-like structures. The BLAST homology searches did not produce any probes that had not already been identified by sample sequencing. Grail predicted exons for all the genes in the region, but was only able assemble the histones into any representative form. A detailed analysis of BLAST homology searches to protein databases identified an enticing homology to a zinc alpha 2 glycoprotein approximately 25 kb upstream of HFE, but the lack of a substantial ORF and the presence of a stop codon suggested that it was a pseudogene. Figure 2 shows the positions, the exon and intron structures, and the relative orientation of transcription of novel genes within this region. Also shown are the positions and transcriptional orientations of the histone genes. A total of 12 histone genes were identified in this study.

In an effort to account for the ESTs that did not associate with the characterized genes in the 250 kb region, the genomic sequence around the putative 3' ends were examined for polyadenylation signals to determine whether certain EST sequences may have originated from genomic DNA contamination in the normalized cDNA libraries used in EST generation. The positions of the 14 ESTs found in this region are indicated in Figure 2 to show those associated with the cDNAs cloned and those which did not associate with genomic DNA of obvious coding potential. Four ESTs corresponded to 3 of the 4 cDNAs cloned from the region (Table 2). One EST encoded a histone H2B.1 gene and another was a repetitive element. Of the remaining 8, 6 EST clones were used as probes of cDNA libraries with negative results. Those sequences representing putative 3' ends of cDNA were searched for the presence of poly (A)+ addition signals. Five of the 13 ESTs which had 3' end sequence, had the sequence ATAAA or ATTAA. Five of the remaining 8 ESTs that did not have a poly (A)+ addition signal had genomic encoded stretches of poly (A) near the end of EST sequence and, therefore, may have been created by oligo d(T) priming of contaminating genomic DNA. This analysis was expanded to include all ESTs in the large-insert bacterial contigs with definitive 3' ends. Of the remaining 26, 15 had 3' end sequence and, of these, 8 had poly (A)+ addition signals. Five of these 8 ESTs were associated with the cloned cDNAs. Of the remaining 7 which did not have poly (A)+ addition signals, 4 had genomic encoded stretches of poly (A).

i. Butyrophilin gene family

The human homolog of the bovine butyrophilin gene (BT) was cloned and mapped to approximately 480 kb centromeric to HFE (Figure 1). BT is a transmembrane protein of unknown function which constitutes 40% of the total protein associated with the fat globule of bovine milk (Jack *et al.* *J. Biol. Chem.* 265:14481-14486 (1990)). A human homolog of BT has recently been cloned by Tayloer *et al.* (*Biochem Biophys Acta* 1306:1-4 (1996)). The results in this study indicated that BT is a member of a gene family with at least five other members of the family residing in this region (Figure 1). A comparison of these proteins is shown in Figure 3. The proteins were aligned based on their descending order of relatedness and to minimized gaps in the sequence. Each of the five proteins

display varying degrees of homology to BT. BTF1 (cDNA 21), BTF2 (cDNA 32), BTF5 (cDNA 44), and BTF3 (cDNA 29) are 45%, 48%, 46%, and 49%, identical to BT, whereas BTF4 (cDNA 23), which is more similar to BTF3 (cDNA 29), is only 26% identical. This low degree of identity to BT is largely due to a truncation at the carboxyl terminus of the protein. The BTF family falls into two groups: BTF1 and 5 2 which are more related to each other than to BT or the other BTF members, and BTF5, 3 and 4, which appear to have a common evolutionary origin. The order of these genes on the chromosome suggests that the BT gene has duplicated two times, giving rise to BTF1 and BTF5. Subsequently, it appears likely these two genes experienced further duplication events to give rise to the other members in their groups.

10 The three major components of BT, the B-G immunoglobulin superfamily domain (containing the V consensus sequence) (Miller et al. *Proc. Natl. Acad. Sci. U.S.A.* 88:4377-4381 (1991)), the transmembrane region, and the B30-2 exon are found in all of these proteins (with the exception of BTF4 (cDNA 23) which lacks the B30-2 exon by virtue of the carboxyl terminal truncation). The exon B30-2 is a previously noted feature of the MHC class 1 region found approximately 200 kb 15 centromeric to the HLA-A gene (Vernet et al., *J. Mol. Evol.* 37:600-612 (1993)). In addition this exon is found in several genes of diverse function telomeric to HLA-A namely MOG (approximately 200 kb) and RFP (approximately 1 megabase) (Amadou et al. *Genomics* 26:9-20 (1995)).

20 The levels of the BTF mRNA were analyzed by northern blot analysis (Figure 4A). The expression of the BTF genes fell into two patterns. BTF1 and BTF2 were expressed as a single major transcript of 2.9 kb and one minor transcript of 5.0 kb. These genes were expressed at high 25 levels in all the tissues tested with the exception of the kidney where the expression level was less. The two genes are 90% identical at the DNA sequence level, therefore, it is possible that the signal observed on the northerns was the result of cross-hybridization and only one of the two genes was actually expressed. To address this possibility RT-PCR experiments were carried out on a panel of different tissues in order to detect possible tissue dependent expression that would suggest that both 30 genes are expressed. Identical, and thus equivocal, results were obtained with both BTF1 and BTF2 amplification (Figure 4B).

30 The second group of genes, BTF3-5, are expressed as three (BTF5) (Figure 4A) and two (BTF3 and 4) transcripts ranging from 4.0 to 3.3 kb. BTF5 is expressed at moderate levels in all tissues tested with the exception of the kidney where the expression level is less. RT-PCR experiments showed that mRNA from the BTF5 gene can be found in all tissues tested, including the kidney (Figure 4B). Identical results were obtained with primers from the other genes of this group (data not shown). These genes are also 90% identical to each other at the DNA sequence level (but only 58% identical to BTF1 and 2), hence like BTF1 and BTF2, cross-hybridization could account for 35 the similarity in size and patterns on the northern blots and RT-PCR. This might be particularly true for BTF4 which lacks the B30-2 exon but still hybridizes to larger size transcripts like BTF5 and BTF3.

ii. A gene with similarity to 52 kD Ro/SSA auto-antigen

40 Located approximately 120 kb telomeric to the HFE gene is a gene, RoRet, that has 58% amino acid similarity to the 52 kD Ro/SSA protein, an auto-antigen of unknown function that is frequently recognized by antibodies in patients with systemic lupus and Sjogren's syndrome (Anderson

et al. *Lancet* 2:456-560 (1961); Clark et al. *J. Immunol.* 102:117-122 (1969)) (Figures 1 and 2). Alignment of the predicted amino acid sequence of this cDNA with that of 52 kD Ro/SSA indicated two features associated with the 52 kD Ro/SSA protein: a putative DNA binding cysteine rich motif (C-X-(I,V)-C-X(11-30)-C-X-H-X-(F,I,L)-C-X(2)-C-(I,L,M)-X(10-18)-C-P-X-C) found at the N terminus (Freemont et al. *Cell* 64: 483-484 (1991)) and the B30-2 exon found near the carboxyl terminus, are both conserved in RoRet (Figure 5). Northern blot analysis indicated the RoRet gene was expressed as two major transcripts of 2.8 and 2.2 kb and two minor transcripts of 7.1 and 4.4 kb in all of the tissues on the blot at levels reflective of the RNA amounts as determined by β -actin probing (Figure 6A). Using RT-PCR, expression can also be detected in small intestine, kidney liver, and spleen (Figure 6B).

10 iii. Two genes with homology to a sodium phosphate transporter

A cDNA for a sodium phosphate transport protein (NPT1) was previously cloned and mapped to 6p21.3 using a somatic cell hybrid panel (Chong et al. *Genomics* 18:355-359 (1993)). NPT1 maps 320 kb telomeric to the HFE gene (Figures 1 and 2). Two additional cDNAs were cloned which show appreciable homology to NPT1 (Figure 5). These genes, NPT3 and NPT4, mapped 1.5 megabases and 1.3 megabases centromeric to the NPT1 gene (Figure 1). Like NPT1, the gene products of NPT3 and NPT4 were extremely hydrophobic, which may reflect a membrane location. Both proteins gave hydrophilicity profiles which were indistinguishable from NPT1 in this study (data not shown). Northern blot analysis indicated that the two genes have different patterns of expression (Figure 6C). NPT3 was expressed at high levels as a 7.2 kb transcript predominately in muscle and heart. Lesser amount of the mRNA were also found in brain, placenta, lung, liver and pancreas. RT-PCR analysis indicated that expression of the proper size PCR fragment for NPT3 was clearly absent in fetal brain, bone marrow and small intestine (Figure 6D). A smaller size fragment was detectable in all tissues with the exception of the liver, which may represent evidence for alternative splicing. Although expression was apparently absent from the kidney by northern blot analysis, it was detectable by RT-PCR. Expression was also noted in the mammary gland, spleen and testis. NPT4, on the other hand, was expressed only in the liver and the kidney as a smear of transcripts approximately 2.6 - 1.7 kb (Figure 6C). RT-PCR confirmed these results, although a small amount of the proper size PCR fragment was also found in the small intestine and testis (Figure 6D). Other tissues showed amplification, but the fragments were of larger and smaller size than that produced by the cDNA 22E positive control. Hence, these two genes which apparently have the structural characteristics of a sodium phosphate transporter, appeared to be under the control of different regulatory mechanism that lead to differential patterns of expression.

2. Sequencing of 235 kb from a Homozygous Ancestral (Affected) Individual

In these studies the entire genomic sequence was determined from an HH affected individual for a region corresponding to a 235,033 bp region surrounding the HFE gene between the flanking markers D6S2238 and D6S2241. The sequence was derived from a human lymphoblastoid cell line, HC14, that is homozygous for the ancestral HH mutation and region. The sequence from the ancestral chromosome (Figure 9) was compared to the sequence of the region in an unaffected individual (Figure 8) disclosed in copending U.S.S.N. 08/724,394 to identify polymorphic sites. A

subset of the polymorphic alleles so defined were further studied to determine their frequency in a collection of random individuals.

The cell line HC14 was deposited with the ATCC on June 25, 1997, and is designated ATCC CRL-12371.

5 a. Cosmid Library Screening

The strategy and methodology for sequencing the genomic DNA for the affected individual was essentially as described in copending U.S.S.N. 08/724,394, hereby incorporated by reference in its entirety. Basically, a cosmid library was constructed using high molecular weight DNA from HC14 cells. The library was constructed in the supercos vector (Stratagene, La Jolla, CA).

10 Colonies were replicated onto Biotrans nylon filters (ICN) using standard techniques. Probes from genomic subclones used in the generation of the sequence of the unaffected sequence disclosed in 08/724,394 were isolated by gel electrophoresis and electroporation. Subclones were chosen at a spacing of approximately 20 kb throughout the 235 kb region. The DNA was labeled by incorporation of 32P dCTP by the random primer labeling approach. Positively hybridizing clones were isolated to 15 purity by a secondary screening step. Cosmid insert ends were sequenced to determine whether full coverage had been obtained, and which clones formed a minimal path of cosmids through the 235 kb region.

b. Sample Sequencing

20 A minimal set of cosmid clones chosen to cover the 235 kb region were prepped with the Qiagen Maxi-Prep system. Ten micrograms of DNA from each cosmid preparation were sonicated in a Heat Systems Sonicator XL and end-repaired with Klenow (USB) and T4 DNA polymerase (USB). The sheared fragments were size selected between three to four kilobases on a 0.7% agarose gel and then ligated to BstXI linkers (Invitrogen). The ligations were gel purified on a 0.7% agarose gel and cloned into a pSP72 derivative plasmid vector. The resulting plasmids were transformed into 25 electrocompetent DH5 α cells and plated on LB-carbenicillin plates. A sufficient number of colonies was picked to achieve 15-fold clone coverage. The appropriate number of colonies was calculated by the following equation to generate a single-fold sequence coverage: Number of colonies = size of bacterial clone (in kb)/average sequence read length (0.4 kb). These colonies were prepped in the 96-well Qiagen REAL, and the 5' to 3' DNA Prep Kit, and AGCT end-sequenced with oligo MAP1 using 30 standard ABI Dye Terminator protocols. MAP1 was CGTTAGAACGCGGCTACAAT.

c. Genomic Sequencing

35 The MAP1 sequences from the cosmid clones HC182, HC187, HC189, HC195, HC199, HC200, HC201, HC206, HC207, and HC212 were assembled into contigs with the Staden package (available from Roger Staden, MRC). A minimal set of 3 kb clones was selected for sequencing with oligo labeled MAP2 that sits on the opposite end of the plasmid vector. The sequence of MAP2 was GCCGATTCAATTAAATGCAGGT. The MAP2 sequences were entered into the Staden database in conjunction with the MAP1 sequences to generate a tiling path of 3 kb clones across the region. The plasmid 3 kb libraries were concurrently transformed in 96 well format into pox38UR (available from C. Martin, Lawrence Berkeley Laboratories). The transformants were subsequently 40 mated with JGM (Strathman et al. P.N.A.S. 88:1247-1250 (1991) in 96 well format. All matings of the

3 kb clones within the tiling path were streaked on LB-carbenicillin-kanamycin plates and a random selection of 12 colonies per 3 kb clone was prepped in the AGCT system. The oligos -21: CTGTAAAACGACGCCAGTC, and REV: GCAGGAAACAGCTATGACC were used to sequence off both ends of the transposon. Each 3 kb clone was assembled in conjunction with the end sequence information from all cosmid clones in the region.

In some regions, the coverage of the genomic sequence by cosmids was incomplete. Any gaps in the sequence were filled by using standard PCR techniques to amplify genomic DNA in those regions and standard ABI dye terminator chemistry to sequence the amplification products.

5 d. Identification of Polymorphic Sites

The assembled sequence of the cosmid clones in connection with the PCR amplified genomic DNA was compared to the genomic sequence of the unaffected individual using the FASTA algorithm. Numeric values were assigned to the sequenced regions of 1 to 235,303, wherein base 1 refers to the first C in the CA repeat of D6S2238 and base 235,303 is the last T in the GT repeat of D6S2241 of the unaffected sequence (Figure 8). Table 1 lists the differences between the two compared sequences. Note that previously disclosed (Feder et al., Nature Genetics 13:399-408 (1996)) polymorphic sites D6S2238 (base 1), D6S2241 (base 235,032), 24d1 (base 41316), and D6S2239 (base 84841) are not included in the list of new polymorphisms, although they are provided for reference in a footnote to the Table and were observed in the ancestral sequence. In the Table, a single base change such as C-T refers to a C in the unaffected sequence at the indicated base position that occurred as a T in the corresponding position in the affected sequence. Similarly, an insertion of one or more bases, such as TTT in the affected sequence, is represented as "TTT INS" between the indicated bases of the unaffected sequence. A deletion of one or more bases occurring in the affected sequence, such as AAA DEL, is represented as the deletion of the indicated bases in the unaffected sequence.

10 e. Characterization of Rare Polymorphisms

In this study about 100 of the polymorphisms of Table 1 were arbitrarily chosen for further characterization. Allele frequencies in the general population were estimated by OLA analysis using a population of random DNAs (the "CEPH" collection, J. Dausset et al., Genomics 6(3):575-577 (1990)). These results are provided in Table 2.

15 One single base pair difference, occurring at base 35983 and designated C182.1G7T/C (an A to G change on the opposite strand) was present in the ancestral chromosome and rare in the random DNAs. This change occurred in a noncoding region of the hemochromatosis gene near exon 7 approximately 5.3 kb from the 24d1 (Cys282Tyr) mutation. OLA was used to genotype 90 hemochromatosis patients for the C182.1G7T/C base pair change. The frequency for C occurring at this position in the patients was 79.4% as compared to 5% in the random DNAs. Eighty-five of the 90 patients assayed contained identical 24d1 and C182.1G7T/C genotypes. Four of the remaining 5 patients were homozygous at 24d1 and heterozygous at C182.1G7T/C; one was heterozygous at 24d1 and homozygous at C182.1G7T/C. The primers used for this analysis were as follows.

PCR primers for detection:

182.1G7.F 5'-GCATCAGCGATTAACCTTCTAC -3'
182.1G7.R 5'-TTGCATTGTGGTGAAATCAGGG -3'

For the detection assay, the biotinylated primers used were as follows.

5 182.1G7.C 5' (b)CTGAGTAATTGTTAAGGTGC -3'
182.1G7.T 5' (b)CTGAGTAATTGTTAAGGTGT -3'

The phosphorylated digoxigenin-labeled primer used was:

182.1G7.D 5' (p)AGAAGAGATAGATGGTGG -3'

10 A further rare single base pair change was detected at 61,465bp. The inheritance pattern of this polymorphism, C195.1H5C/T (a G to A change on the opposite strand), is identical to that of 24d1. The frequency of T occurring at that position (C195.1H5T) observed in a set of 76 patients was 78.5% as compared to 5% in random individuals.

15 PCR primers for detection:

1951H5.3F 5'-GAATGTGACCGTCCCATGAG-3'
1951H5.3R 5'-CAACTGAATATGCAGAAAAAGTACACC-3'

For the detection assay, the biotinylated primers used were:

20 1951H5.3.4 5' (b)AGTAGCTGGGACTCACGGTGT-3'
1957H5.3.5 5' (b)AGTAGCTGGGACTCACGGTGC-3'

The phosphorylated digoxigenin-labeled primer used was:

1951H5.3.6 5' (p)GCGCCACCACTCCCAGCTCAT-3'

25 These rare alleles are thus preferred surrogate markers for 24d1 and are especially useful in screening assays for the likely presence of 24d1 and/or 24d2.

All publications, patents, and patent applications cited herein are hereby incorporated by reference in their entirety.

WHAT IS CLAIMED IS:

1 1. An oligonucleotide comprising at least 8 to about 100 consecutive bases from the
2 sequence of Figure 9, or the complement of the sequence, wherein the at least 8 to about 100
3 consecutive bases includes at least one polymorphic site of Table 1.

1 2. The oligonucleotide of claim 1, wherein the polymorphic site is selected from the
2 group consisting of base 35983 or base 61465.

1 3. An oligonucleotide pair selected from the sequence of Figure 9 or its complement for
2 amplification of a polymorphic site of Table 1.

1 4. An isolated nucleic acid molecule comprising about 100 consecutive bases to about
2 235 kb substantially identical to the sequence of Figure 9, wherein the DNA molecule comprises at
3 least one polymorphic site of Table 1.

1 5. The isolated nucleic acid molecule of claim 4, wherein the polymorphic site is selected
2 from the group consisting of base 35983 or base 61465.

1 6. The isolated nucleic acid molecule of claim 4, wherein the nucleic acid is selected
2 from the group consisting of cDNA, RNA, or genomic DNA.

1 7. A polypeptide encoded by the nucleic acid molecule of claim 4.

1 8. An antibody which specifically recognizes the polypeptide of claim 7.

1 9. A method to determine the presence or absence of the common hereditary
2 hemochromatosis (HFE) gene mutation in an individual comprising:
3 providing DNA or RNA from the individual; and
4 assessing the DNA or RNA for the presence or absence of a haplotype of Table 1,
5 wherein, as a result, the absence of a haplotype of Table 1 indicates the likely absence of the
6 HFE gene mutation in the genome of the individual and the presence of the haplotype indicates the
7 likely presence of the HFE gene mutation in the genome of the individual.

1 10. The method of claim 9, wherein the method further comprises assessing the RNA or
2 DNA for the presence of at least one of the polymorphisms 24d1, 24d2, HHP-1, HHP-19, or HHP-29;
3 or microsatellite repeat alleles 19D9:205, 18B4:235, 1A2:239, 1E4:271, 24E2:245, 2B8:206, 3321-
4 1:98, 4073-1:182, 4440-1:180, 4440-2:139, 731-1:177, 5091-1:148, 3216-1:221, 4072-2:170, 950-
5 1:142, 950-2:164, 950-3:165, 950-4:128, 950-6:151, 950-8:137, 63-1:151, 63-2:113, 63-3:169, 65-

6 1:206, 65-2:159, 68-1:167, 241-5:108, 241-29:113, 373-8:151, 373-29:113, D6S258:199, D6S265:122,
7 D6S105:124, D6S306:238, D6S464:206, or D6S1001:180.

1 11. The method of claim 9, wherein the haplotype comprises at least two polymorphic
2 sites of Table 1.

1 12. The method of claim 11, wherein one of the at least two polymorphic sites of Table 1
2 is at base 35983 or 61465.

1 13. The method of claim 11, wherein the haplotype comprises at least three polymorphic
2 sites of Table 1.

1 14. A method to determine the presence or absence of the common hereditary
2 hemochromatosis (HFE) gene mutation in an individual comprising:
3 providing DNA or RNA from the individual; and
4 assessing the DNA or RNA for the presence or absence of a genotype defined by a
5 polymorphic allele of Table 1,

6 wherein, as a result, the absence of a genotype defined by a polymorphic allele of Table 1
7 indicates the likely absence of the HFE gene mutation in the genome of the individual and the
8 presence of the genotype indicates the likely presence of the HFE gene mutation in the genome of the
9 individual.

1 15. The method of claim 15, wherein the polymorphic allele occurs in less than about 50%
2 of a random population of individuals.

1 16. The method of claim 15, wherein the polymorphic allele occurs in less than about 25%
2 of a random population of individuals.

1 17. The method of claim 15, wherein the polymorphic allele occurs in less than about 5%
2 of a random population of individuals.

1 18. The method of claim 15, wherein the genotype is C182.1G7C or C195.1H5T.

1 19. A kit comprising one or more oligonucleotides of claim 1.

1 20. A kit comprising at least one oligonucleotide pair of claim 3.

1 21. A culture of lymphoblastoid cells having the designation ATCC CRL-12371.

- 1 22. An isolated nucleic acid sequence comprising a sequence substantially identical to
2 BTF1.
- 1 23. The isolated nucleic acid sequence of claim 23, wherein the nucleic acid is cDNA.
- 1 24. The polypeptide encoded by the isolated nucleic acid sequence of claim 23.
- 1 25. A vector comprising the nucleic acid sequence of claim 23.
- 1 26. A host cell stably transfected with the nucleic acid sequence of claim 23.
- 1 27. An antibody that is specifically immunoreactive with the polypeptide of claim 24.
- 1 28. An isolated nucleic acid sequence comprising a sequence substantially identical to
2 BTF2.
- 1 29. The isolated nucleic acid sequence of claim 28, wherein the nucleic acid is cDNA.
- 1 30. The polypeptide encoded by the isolated nucleic acid sequence of claim 28.
- 1 31. A vector comprising the nucleic acid sequence of claim 28.
- 1 32. A host cell stably transfected with the nucleic acid sequence of claim 28.
- 1 33. An antibody that is specifically immunoreactive with the polypeptide of claim 30.
- 1 34. An isolated nucleic acid sequence comprising a sequence substantially identical to
2 BTF3.
- 1 35. The isolated nucleic acid sequence of claim 34, wherein the nucleic acid is cDNA.
- 1 36. The polypeptide encoded by the isolated nucleic acid sequence of claim 34.
- 1 37. A vector comprising the nucleic acid sequence of claim 34.
- 1 38. A host cell stably transfected with the nucleic acid sequence of claim 34.
- 1 39. An antibody that is specifically immunoreactive with the polypeptide of claim 36.

- 1 40. An isolated nucleic acid sequence comprising a sequence substantially identical to
2 BTF4.
- 1 41. The isolated nucleic acid sequence of claim 40, wherein the nucleic acid is cDNA.
- 1 42. The polypeptide encoded by the isolated nucleic acid sequence of claim 40.
- 1 43. A vector comprising the nucleic acid sequence of claim 40.
- 1 44. A host cell stably transfected with the nucleic acid sequence of claim 40.
- 1 45. An antibody that is specifically immunoreactive with the polypeptide of claim 42.
- 1 46. An isolated nucleic acid sequence comprising a sequence substantially identical to
2 BTF5.
- 1 47. The isolated nucleic acid sequence of claim 46, wherein the nucleic acid is cDNA.
- 1 48. The polypeptide encoded by the isolated nucleic acid sequence of claim 46.
- 1 49. A vector comprising the nucleic acid sequence of claim 46.
- 1 50. A host cell stably transfected with the nucleic acid sequence of claim 46.
- 1 51. An antibody that is specifically immunoreactive with the polypeptide of claim 48.
- 1 52. An isolated nucleic acid sequence comprising a sequence substantially identical to
2 NTP-3.
- 1 53. The isolated nucleic acid sequence of claim 52, wherein the nucleic acid is cDNA.
- 1 54. The polypeptide encoded by the isolated nucleic acid sequence of claim 52.
- 1 55. A vector comprising the nucleic acid sequence of claim 52.
- 1 56. A host cell stably transfected with the nucleic acid sequence of claim 52.
- 1 57. An antibody that is specifically immunoreactive with the polypeptide of claim 54.

- 1 58. An isolated nucleic acid sequence comprising a sequence substantially identical to
2 NTP-4.
- 1 59. The isolated nucleic acid sequence of claim 58, wherein the nucleic acid is cDNA.
- 1 60. The polypeptide encoded by the isolated nucleic acid sequence of claim 58.
- 1 61. A vector comprising the nucleic acid sequence of claim 58.
- 1 62. A host cell stably transfected with the nucleic acid sequence of claim 58.
- 1 63. An antibody that is specifically immunoreactive with the polypeptide of claim 60.
- 1 64. An isolated nucleic acid sequence comprising a sequence substantially identical to
2 RoRet.
- 1 65. The isolated nucleic acid sequence of claim 64, wherein the nucleic acid is cDNA.
- 1 66. The polypeptide encoded by the isolated nucleic acid sequence of claim 64.
- 1 67. A vector comprising the nucleic acid sequence of claim 64.
- 1 68. A host cell stably transfected with the nucleic acid sequence of claim 64.
- 1 69. An antibody that is specifically immunoreactive with the polypeptide of claim 66.
- 1 70. An isolated nucleic acid sequence comprising at least 18 contiguous nucleotides
2 substantially identical to 18 contiguous nucleotides of BTF1.
- 1 71. An isolated nucleic acid sequence comprising at least 18 contiguous nucleotides
2 substantially identical to 18 contiguous nucleotides of BTF2.
- 1 72. An isolated nucleic acid sequence comprising at least 18 contiguous nucleotides
2 substantially identical to 18 contiguous nucleotides of BTF3.
- 1 73. An isolated nucleic acid sequence comprising at least 18 contiguous nucleotides
2 substantially identical to 18 contiguous nucleotides of BTF4.
- 1 74. An isolated nucleic acid sequence comprising at least 18 contiguous nucleotides
2 substantially identical to 18 contiguous nucleotides of BTF5.

1 75. An isolated nucleic acid sequence comprising at least 18 contiguous nucleotides
2 substantially identical to 18 contiguous nucleotides of NPT3.

1 76. An isolated nucleic acid sequence comprising at least 18 contiguous nucleotides
2 substantially identical to 18 contiguous nucleotides of NPT4.

1 77. An isolated nucleic acid sequence comprising at least 18 contiguous nucleotides
2 substantially identical to 18 contiguous nucleotides of RoRet.

FIG. I.

2/162

FIG. 2.

3 / 162

Figure 3 (Page 1 of 2)

4/162

BT AGPPRRVGIFLDYESGDISFYNMNDGSDIYTFNSVTSGPLRPFFCLWSSGKKPLTICPI
BTF1 KESLCRGGVFLDYEAGDVSFYNMNRDRSHIYTCPRSAFSPVVRPFRLGC-EDSPIFICPA
BTF2 KESLCRGGVFLDYEAGDVSFYNMNRDRSHIYTCPRSAFTVPVVRPFRLGS-DDSPIFICPA
BTF5 PKPPKKVGVFLDYETGDISFYNAVDGSHIHTFLDVSFSEALYPVFRILTLPTALSICPA
BTF3 PEPPRKVGIFLDYETGEISFYNATDGSHIYTFPHASFSEPLYPVFRILTLPTALTICPA
BTF4 -----

BT ADGPERVTVIANAQDLSKEIPLSPMGEESAPRDADTLHSKLIPTQPSQGAP-----
BTF1 LTGANGVTVP-----EEGLTLHRVGTHQSL-----
BTF2 LTGASGVMVP-----EEGLKLHRVGTHQSL-----
BTF5 -----
BTF3 PKEVESSPDPLVDPDHSLETPLTPGLANESGE PQAEVTSLLLPAHGAEVSPSATTNQNH
BTF4 -----

BT -----
BTF1 -----
BTF2 -----
BTF5 -----
BTF3 KLQARTEALY
BTF4 -----

Figure 3 (Page 2 of 2)

5/162

RT-PCR

Northern

(+) Brain
Spleen
Kidney
Liver
Muscle
Pancreas
Lung
Heart
Brain
Pituitary

(-) Liver
Gland
Spleen
Testis

— 600 bp

— 600 bp

— 600 bp

RFP →

 β -actin →

FIG. 4A.

FIG. 4B.

		CYSTEINE-RICH DOMAIN
52	kD Ro	MASAARI TMMEEVTCPICLDPFVEPVSVIECGHSFCQECISQVGKGGGS-----VCPVCRQRFLLKLNLRPNRQLAMMVN
RoRet	MASTTSTKKMEEATCSICLSLMTNPVSINCCHSYCHLCITDEFKNPSQKQLRQETFCCPQCRAPFHMDSLRPNKQLGSLIE	
	* * * *	* *
52	kD Ro	NLKKIISQEAREGTQGERCAVHGERHLFCEKGDKALCWVCAQSKKHRDHAMVPLLEAAQEYQEKLQVALGEELRRKQELAEKLI ALKKTDQEM-----SCEEHGEQFHLCEDEGOLICWRCERAPQHKGHHTALVEDVCQGYKEKLQKAVTKLQLEDRCTEQ
RoRet	* * * *	* * * * * * * * * * * * * * * *
52	kD Ro	EVEIAIKRADWKKTVETQKSRIHAEFVQQKNFLVEEEQRQLQELEKDEREQLRILGEKEAKLAQOSQALQELISELDRRCHS KLSTAMRITKWKEKVQIQRQKIRSDFEKNLQCFLHEEEKSYLNRLEREEQQTLSRLRDYEAGLGLKSNELKSHILELEKKCQG
RoRet	* * * *	* * * * * * * * * * * * * * * *
52	kD Ro	SALELLQEVIIIVLERSESWNLKDLDITSPELRSVCHVP----GLKKMLRTCAVHITLDPPDTANPWLIILSEDRRQVRILGDTQQ SAQKLLQNVNNDTLISRSAWVKLETSEAVSLELHTMCNVSKLYFDVKKMLRSHQVSVTLDPPDTAHHELIILSEDRRQVTRGYTQE
RoRet	* * * * *	* * * * * * * * * * * * * * * *
		B 30-2 DOMAIN
52	kD Ro	SIPGNEERFDSDYPMVLGAQHFHSGKHYWEVDVTGKEAWDLGVCRDSVRRKGHFLSSKSGFWTIWLWNKQKYEAGTYQPQTPL NQDTSSRRETAFFPCVLGCEGFTSGRRYFEVDVGEGETGWDLGVCMENVQRGTMKQEPQSGFWTLLRICKKKGYVALTSPPTSL
RoRet	* * * * *	* * * * * * * * * * * * * * * *
52	kD Ro	HIQVPPCQVGIFIDYEAGMVSFYNITDHGSLLIYSFSECAFTGPLREFESPGENDGGKNTAPLTLCPLNIGSQGSTDY HLHEQPLLVGIFLDYEAGWVSYNG-NTGCHIFTFPKASFSDTLLRPYFQVYQYS-----PLFLPPP--G---D--
RoRet	* * * * * * * * * * * * * * * *	* * * * * * * * * *

FIG. 5A.

NPT1	-PMYNWSPDIQFIIISSTSYYGVIIIQPVPGYFSGIYSTKKMIGFALCLSSVLSLIPPAAGIGVAAQGIVASVYQWSPE	TAQFEIYVKWAPPLEGRITSMSTSGLGPFI
NPT3	-TGGFTIWAKWAPPLERSKLTTAGSGSAFGSFIILCVGGLISQALSWPFIYIFGSTGCVCCLLWFVIVYDDPMHHPCISVR	TGGFTIWAKWAPPPLERSKLTTAGSGSAFGSFIILCVGGLISQALSWPFIYIFGSTGCVCCLLWFVIVYDDPMHHPCISVR
NPT4	-GGQFAIWEKWGPQQERSRLCSIALSGMLLGCFTAILGGFISETLGWPFWYIFGGVGVCVCCLLWFVIVYDDPFSYPWISTS	GGQFAIWEKWGPQQERSRLCSIALSGMLLGCFTAILGGFISETLGWPFWYIFGGVGVCVCCLLWFVIVYDDPFSYPWISTS
	-----VLPVDSFEGGLSKAPKSLP-----	-----AKSSIL-----
	* * *	*
		*

JPT1	I K A C S T I L G M I G G L I A S T L T G L I L K Q D P E S A W F K T F I L M A A I N V T G L I F Y L I V A T A E I Q D W A K E K Q H T R L
JPT3	--- V R I L S L V G G M S F S C L L ----- Q S T C L A W S F T S R L D K Q N F K T G P K R G P L P A S E D I K L Q T -----
JPT4	L M G A S R G E S S I A P V I V P T V S G F L L S Q D P E F G W R N V F F L L F A V N L L G L I F Y L I F E A D V Q E W A K E R K L T R L

FIG. 5B.

8/162

SUBSTITUTE SHEET (RULE 26)

FIG. 6B.
FIG. 6A.

9/162

FIG. 6D.

FIG. 6C.

10 / 162

>CDNA21

>CDNA29

acgcgtccgcttcggaatgagagactcaaccataatagaagaatggagaactattaaccaccattttc
agtggctgtgatcccagagggaaactaagaatggttccatactggaaacccaaaggtaaagaca
ctcaaggacagacattttggcagagcatagatggaaatggcaagttccctggcttcctgtcaac
tttcatgtctccctttcttggtccagctgctactcctgctcagtcagtttctgtctggaccct
ctgggccatcctggccatggggtaagacgctgatctgccccgtcacctgttcccgaccatgagtgc
agagaccatggagctgaggtgggtgagttccagcctaaggcaggtggtaacgtgtatgcagatggaaag
gaagtggaaagacaggcagagtgcaccatatcgagggagaacttcgattctgcgggatggcatactgcag
ggaggctgctccgaatacacaacgtcacagcctgacagtggaaagtacttgttatccaaga
tgtgacttctacgaaaagccctggtagctgaagggtgcagcattgggtctgatctcacattgaa
gtgaagggttatgaggatggagggatccatctggagtgcaggtccactggctggtaaccccaaccccaa
taaagtggagcgcacaccaaggagagaacatcccgctgtggaaacgcacctgtgggtcagatggagtgg
cctgtatgcagtagcagcatctgtgatcatgagaggcagctctgggggtgtatccgtcatcatcaqa

Figure 7 (1 of 6)

11 / 162

>CDNA23

Figure 7 (2 of 6)

12 / 162

>CDNA44

>CDNA32

agagaacaggcccagataaccgagtcgcacccaaacatcgcgattaataggaggcctctggctctgt
cctgccctgggtgctcatggAACCGAGTCGCTCTGCACTTCCCTGCCAGCCTCCCTCCTCCTC
CTGCTCCTCCTCCTCTCAGCCTGTGTGCACTGGTCTCAGCCCAGTTACTGTCGTGGGCCAGCTAATC
CCATCCTGGCCATGGTGGAGAAAACACTACATTACGTCGCCATCTGTCAACCGAGAAAAATGCTGAGGA
CATGGAGGTGCGGTGGTCCGGTCTCAGTTCTCCCCCGCAGTGTGTATAAGGGTQQQAGAGAGAGA

Figure 7 (3 of 6)

13/162

acagaggaggcagatggaggagtaccgggagaagaatcaccttgcgtggacttccaaagacatcaacacaggggcagcg
 tggccctggtcatacataacgtcacagcccaggagaatggatctaccgctgtttacttccaaagaaggcag
 gtcctacgtgaggccatcctacgcctcggtggcaggcctgggtctaagccctcatgaaatcaag
 gccaagaggatgggagcatctggctggagtgcatatctggagggtggtacccagagccctcacagtgt
 ggaggggaccctacggtaggtgtgccccctgaaggaggttccatcgctgatgctgacggcctt
 catggtcaccacagctgtgatcatcagagacaagtatgtgaggaatgtgcctgctgtcaacaacacc
 ctgctggccaggagaaggaaactgtcattttatccagaatcccttatgcccagcgcacccctgga
 tggtgccctagctgtcatcctgaccgcacccctggatgggtccatgactgtcatccctggctgttt
 catcatcttcatggctgtcagcatctgtcatcaagaaacttcaagggaaaaaaagattctgtcaggg
 gaaaagaaagttaacaagaggaaaaaaaggaaattgcacagcaacttcaagaagaattgcgatggagaagaa
 cattcttacatgctgtgatgtggctctggatccagacaccgctcatcccgagcttccctgtcagagga
 ccggagaagtgtgaggccggggccctacaggcagagagtgccgtacaaacccagagagattcgacagtcag
 ccttgtcctggatggagagcttcgcctcaggaaacattacttggaggtggaggtggaaaacgtg
 tggtgtggactgtggggctgcagacacagtgttggagggaaaggggaggtgcctgctgattccctcagaa
 tggcttctggaccctgagatgtttggaaaccaataccggccctgtcctccctgagaggattccct
 ttgaaggagttcccttgcgggtggcgtttcctggactatgaaactggagatgtccttcaacaaca
 tgagggacagatcacacatctacacatgtccccgtcagccttactgtgcctgtgaggcccttctttag
 gttagggtctgtacagccccatcttcatctgcctgcactcacaggagccagtgggtcatggtgct
 gaagagggcctgaaacttacacagactggggaccaccagagcctatagaatcaattccctggactcacag
 ccatgcagataagccctggccatctcagcagccaccgcacaacccctaatgaaagacacgccttc
 ccctctggtaacgtaaagagacatcttccagctgcctttcacacccactccagccctctggccct
 ttctccctcaactagctgtggcttagtagttccttgcattgttaattatggatggatccaggcata
 gggactagtgtttcatagctccctgactcaaaaagaaagtggagagaagctgttggcactgtgaaacctactg
 tttaaaatcaggataaccacattaagcccaatatgccagttggcaccagatgtggacttggaaatgag
 gccaacaggggtcaccaggatggagagagggagagaatccacaggaccaccagaagggagggaaacca
 gatagtcagatcagagatagagggaaagtggaccaggagactggggaccacggatggatggacttgc
 agtcccaccataagagactaaagggtcctggagatgtggctcattccacccaaacccaggattccac
 agcacacacccacaggcctggacctggatgaaagatgaaacatggactcatgtggatgtgg
 ggctcagatgtccctgcaataaaacaaggggtcagttacttagtccctgagtgtggatggatgg
 tggtcagcaggcagttactggaccaggctacgtcagcattcaggttcaatggggacaccaggatgg
 aaacttccctgatctaattatgttttagacacttagaaagttattgaggactttaaagagactt
 ttgggttaatattatgacatttgcattggaaacaaaattttatgttatctttatattatgttaaa
 atagcattaataaaatcagttataggttaatgttagataggatgtttgtgaaaagcaatctattgt
 aaataaaaaaaaacaaaaagtgtgacactgtttaactttccagatctcatgtctggcttaataagagat
 atttgtattatcatatgtccttgcattttttagacacttagaaagttattgaggactttaaagagactt
 cttaactgcacactactgagagaatgagatggaaacgattatgtttcattattattatgtgaaaata
 ttatataactgggactccttaagagttacatcagacttctcttaggaatcccacccatttgaa
 actagaatagtggatcctggaaagtttaatccatgtgtggtaatttttagatgtcaacctggatgg
 aagagatggcaagtggactcagtgaaaattctctcctctggagctgagacactcttcttctgg
 gcagaggaaaggcaaattctctcctctggagctgagacactcttcttctggcataatacaacaaaag
 aactctggctctccggccttgaacttcaggacttgcatttttgcatttttgcatttttgc
 tttggactgagatgttacacaatcagcttccctggatgttgcattttcagacttaactgag
 cagcatcccagggtctccagcctacagatgagacttgcattttcatttttgcatttttgc
 caatctcctaataaaatgcctgtcatagatctgtatctatctatgtatgtcatctat
 tgcctatatctatcatattgtttgtctgtgagaaaccctgactaataaaatgaggcat
 ctaaaaaaaaaaaaaaa

CDNA27>

gaccacacgcgtccgaaaaagctatggcctcaaccaccaggcacaagaagatgtggaggaagccacctgct
 ccacatctgcctgagcctgtatgacgaaaccagtaagcatcaactgtggacacagactactgc
 aacagacttctttaaaaacccaaagccaaagcaactgaggcaggagacattctgtgtcc
 gtcctcatttcatatggatagcctccgacccaaacaaggcagctggaaagcctcatt
 cgatcaagaaatgtcatgtgagaaacacggagagcagttccacccatgttgc
 catctgtggcgctgtgagcggccaccacagcacaagggcacaccacagactt
 caggcgtacaaggaaaagctccagaaagctgtgacaaaactgaagcaactt
 gaagacagatgtacggc
 gtctgactttaagaatctccagttttccatgagaaagatgttcat
 gaagacaacagactctgagactatgaggactatgaggctgggctgaag
 gaactca

Figure 7 (4 of 6)

14/162

agagccacatccttggaaactggaggaaaaatgtcagggctcagcccagaattgtgcagaatgtaatga
 cactttagcaggagttggctgtgaagctggaaacatcagaggcttccttggaaacttcatactatg
 tgcaatgttccaagcttacttcgtatgtgaagaaaatgttaaggagtcatcaagtttagtgtactctgg
 atccagatacagctcatcacgaactaattctctgaggatcgagacaatgtactcgtggatacaccca
 ggagaatcaggacacatcttccaggagattactgccttccctgtgttgggtgtgaaggcttcacc
 tcaggaagacgttacttgaagtggatgttggcaaggaaccggatgggatttaggatgttatggaaa
 atgtcagaggggcactggcatgaagcaagcctcagtcgttgcattctggaccctcaggctgtgcaaaaa
 gaaaggctatgtacttcccccacttccttcattctgcattgcgacagccccctgtgttgaaa
 attttctggactatgaggccggagttgtatcctttataacgggataactggctccacatcttactt
 tcccgaaaggctccttcattgtatctccggccctatttcaggatttatcaatatttccttgcatttgc
 gcctcccccaagggtgactaaggaaaagagcagaagctccttggtttaaccaggacacagagaaaataatataa
 atcccataagggcagacgttggctgtttcttcattgcatttcatttaggtatgtacttagtgc
 attttagtgatataattgattatgttgaatataatggacttagcaactaaaataaccacagatggg
 aacctggactgggcaaaagcaagataatagtatgtatgcatttcatttcatttgcatttgcatttgc
 tcagggcttgcatttccaagggttccaggatgttgcatttcatttcatttgcatttgcatttgc
 tccttagttgttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgc
 atttaaaacaaaacaaaacagaaaaatcaaataacatttgcatttgcatttgcatttgcatttgc
 aatctaagcggcagtccggaggctaccagacttacttgcatttgcatttgcatttgcatttgc
 gagagaagggttaagactggcttacaatgttgcatttgcatttgcatttgcatttgcatttgc
 ttgtatggggattcaggctgttgcatttgcatttgcatttgcatttgcatttgcatttgc
 tattttaaaatctcaggtaatagttatttgcatttgcatttgcatttgcatttgcatttgc
 agcaaatagacatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgc
 caactaaaacataaacaacattaatgttgcatttgcatttgcatttgcatttgcatttgc
 gtttgcataaaaattgtatggccaggcatggcttgcatttgcatttgcatttgcatttgc
 cagggttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgc
 aaataaaaaatttagccggcatggcttgcatttgcatttgcatttgcatttgcatttgc
 aatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgc
 gtttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgc
 ctagatgtcaggaggcatggctggccatctctgcatttgcatttgcatttgcatttgc
 ccatgttcccccagggtcagaagttcaattatgtatgatgaggctgggtgttgcatttgc
 agcagaatatgccatcttggcataagaatgttgcatttgcatttgcatttgcatttgc
 aa

>CDNA22B

ggacagaaaaactccctcttccaagtttgcatttgcatttgcatttgcatttgcatttgc
 aggttaagtgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgc
 gaacagttttaggagaagtcaagaaaagacattaaacagcaacataaggatctccatctggtaatattgc
 ctaattccaaaatgaagagactctctggaaaatgtacttgcatttgcatttgcatttgc
 gaagccactggatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgc
 agtaaaagagattcaggccacaggaaaacttgcatttgcatttgcatttgcatttgc
 ggacgggaagctgcaccaggaaaaggcttgcatttgcatttgcatttgcatttgc
 cacttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgc
 ccactcaggcaggatcttgcatttgcatttgcatttgcatttgcatttgcatttgc
 catatccatcaaggatatttgcatttgcatttgcatttgcatttgcatttgc
 tttagtccatcaactatggataacttgcatttgcatttgcatttgcatttgc
 caaaaaaaaaatgttgcatttgcatttgcatttgcatttgcatttgcatttgc
 cttcggaggatgttgcatttgcatttgcatttgcatttgcatttgcatttgc
 cagtttactatgttgcatttgcatttgcatttgcatttgcatttgcatttgc
 ggtcaggatgttgcatttgcatttgcatttgcatttgcatttgcatttgc
 tatcttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgc
 cccatgcatttgcatttgcatttgcatttgcatttgcatttgcatttgc
 gtttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgc
 tttttcaggccatcttgcatttgcatttgcatttgcatttgcatttgc
 catgttaacatcaggatgttgcatttgcatttgcatttgcatttgc
 taggaggatgttgcatttgcatttgcatttgcatttgcatttgc
 ttcatcttgcatttgcatttgcatttgcatttgcatttgcatttgc
 ctccacttgcatttgcatttgcatttgcatttgcatttgcatttgc
 tgctgcatttgcatttgcatttgcatttgcatttgcatttgcatttgc

Figure 7 (5 of 6)

15/162

aagagaggacccttacccgccttgaggacataaaagttacaacttaatgtggtaactgagcatgaact
ttttaaacattttacttctccatattctgaccatagactcagcagttactctggctgtgt
ttagcttcctggggagccttataagacactgataacttgggaccactccagagattctgaatgaatt
ggctgggggtgaaacccagataactaatttttagataactcccttagaggttctagcatgcgcccggg
ttgacaacagctggacaaacttggaaaagtcaattcatgtggcccttgaatttccctattggaaagtact
aaataaataaaaaattcatgtgaaaatgatcaactgataaatatcttcatgtgtggcaggttattggatgc
agagaagatctgctcgaaattgttagccatatgttacagatctcagcaccatcagaactgtaaagctata
atccccagaattaaagttttatttttatacattgtaaaacatagacgtttatttatgtgattaaa
ttctattaaaatttacatgctaaaataaaaaaaaaaaaaaaa

>CDNA22E

acgcgtccgcccacgcgtccggccacgcgtccggtcggggccagagcgcaggtgtacctggcggccgtgc
tggagcacctgaccgcgagatcctggagctggctggcaacccggccgcacaagaagaccgcacat
cctgcgccacctgttagctggccattcgcaacggcgaggagcttaacaagctgctggcgaagtaccatc
gcmcaggcggtgtcctggccacattcagggcgtgtctgcggccagaagaccaagagccaccacaagg
ccaagggtgaaaaccattcaactagagagaggaaaacacaatggccaccaagacagagttgagtcac
caaggagagcaagaacgcacaagatatgcaagtggatgagacactgatccccaggaaaggccaagtt
atgttctgctcgctatggaatagccctcgcttacatttgcatttgcacaaacgcataccatgttgc
atcatgaacatcaccatgttagccatggcaacacgcacaagccctcaatcccagctcaatgattcct
aggtgctgcctgttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatt
acttgggggtcagttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatt
gctttatcaggaatgttactggatgcttactggccatcctcataggtggcttcatagtgaaaccctt
ggtggccctttgtcttcatatctttggaggtgtggctgtgtgccttctctgggttgtgat
ttatgatgaccctttctatccatggataagcacccatcagaaaaagaatatacatcatatcctcc
caacaggtcgggtcttctaagcagccctttccatcaaagctatgctcagatcttacccatggtcca
tatgtttaggctttcagccatcaatgttagttactggatgcttactggccatcctcataggtggctt
ctctgtgttaccatgttacatcagagacaatggacttctatctggcccttctttattgttgcctgg
ataggcatggtggaggctatggcagatttcttctaaccaaaaagtttagactcatcactgtgagga
aaattgccacaatttttagaagtctccctttcagcacttgcgttgcggattaagcacattgtgt
ctatcatcagcaactgccttgcgtacgcacttgcgttgcggattaagcacattgtgt
atcaatgtcttagatattgtccaaaggatattccatggagcatcaagaggatttcgagca
tagcacctgtcattgttacccactgtcagcggatttctttagtcaggaccctgagttgggtggag
tgtcttcttcttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgtt
gtccaaagaatggctaaagagagaaaactcaactcgttatgttgcgttgcgttgcgttgcgtt
ttaggcaccgtattgcataaaaatagaaggctccgtatgttgcgttgcgttgcgttgcgttgcgtt
gtggctttcaattatgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgtt
aataaaaattcaataaaaatgataactaagaaaaaaa

1 CACACACACA CACACACACA CACACACACA CACACAAATG AGGTATATAA AGGGTCTCCT
 61 AAAATGTCAT CTGATATTG TTATTTCAT A TCTCAGATT TTTAATCCAT TTAGGTAGGT
 121 CTATTTAGA TAGCCTGTC TGAAACAGAG CTGGGACCTG ATGAGTGAAA ATGAGCTCAC
 181 CAGAAGAAAA ATCAAACAGG CATTTCAGAG ATTGAGGCCA AGAAGTTAAA TGTCTTAAAT
 241 GGGCAGAGCT TAGCTGCTG ATGTGAAAAG AGACCAGCGT GGCTGGAACA GCAAAGGAGA
 301 ACAGCAGAAG AGGTGAACAG AGGCCAGAGA TGGTCACTGA GTGGGCCCTT AAGTCATGGT
 361 AAGGAGTATG GAGAATGAAT TATTGCATGT ATTGAATATG TAGGTGACGT GACTCACAGA
 421 TACTTTGGAT TTGTAGAGAT GAAGGAAATG TAGCAAGTGA CACTCTAGA ATGTTGATTT
 481 GAGTAAATGG TAGTGTCACT TATTGAACCTG GGGAGAACTG GAAGGGATAA CAGGCTTAAG
 541 GAGCACGTT ATTCCGTGT CTTGGAAGTG TTTAGGGTGA AAGACCTATT AGAGTTCTAA
 601 ATGGAGATGT CAAGTGAAAA TGTGGCTACA CACATTGCA TTTCAGAAAA AAGGTCAAGGC
 661 TGGAGATGTA AAATTGGAAG TTTACTGCAT ATAGATAGTC TTTGGAACCG TAGTATTGAT
 721 GAAGCCATTA ATGAGACAGA ACAAAAGACTA GGGACCAGAG CCAAGCTCCA AGTTTCTAA
 781 ATTTAGAGGA TAGTATAGTC TGGTCATTT GAGGTGAATA CTTAATAACA GAACAAATTG
 841 TTGAAGTGT AATTAGAGC CCTACACTT TAGCTCTGAC TATTAACGAA TACAGGAAAG
 901 AATGGATATG GTTATCTGCC TGGTGTCTGT GAAATAATT AAGCCAGGAA GAGATCCTCA
 961 CCAGAAAATG ACTATGCTGG CAACTTGAT CTTAGATTTC CAGCCTGCAG AATTGTTAGA
 1021 AAATAAAATGT CTATCGTTA AGCCACCACT GTGAGTATT TTGTTATGGC AGTCCAAGCT
 1081 GACTAAGTTT TGGTACCCAG GCGTGGGATG CTGCAACAAAC AAATACCTAA ACATGGGAA
 1141 GTGGCTTTGG AAATTGGTGA TGGGTAAGG CTGGAAGAGT TTGAGGTTCA TACTAGAAAA
 1201 AGCCAATTGT GAAGGGACTA TTGAAGAGAA TATGGACATT AAAGGCAATT CTGGCAAAGG
 1261 CTCAGAAAGG AAGAGAGCTG GACAGAAAGC TTCATTTTC ATAGAAACTT AGATTATATAA
 1321 CGATCATGGA TAGAATATTA AATATGCTGG TTAAAATATG GACTTTAGGC CAGGCCTGGT
 1381 GGCTCACGCC TGTAATCTCA GCACCTTGGG AGGCTGAGGG CACAGATCAC GAGGTCGGGA
 1441 GTTGAGACC AGCCTGGCCA ATATGGCGAA ACCCTGTCTC TACTAAAAAT ACAAAAATTA
 1501 GCTGGGCATG GTGATGTGCT TCTGTGGCC CAGCTACTCG GGAGGCTGAG GCTGAAGAAT
 1561 CGCTTAAACC CGGGGGGTGG AGGTTGCAGT GACCCAAGAT CACACCACTG CACTCCAGCC
 1621 TGGGATACAG AGCAGGACTC CACTCCCCC GCCACACACA CACAAAAAAAT ATATATATAT
 1681 GGACATTAAA GTCAACTCTT GTGAGGTCTC AGATGAAAAT GAGGGACAGG TTATTGAAA
 1741 CTGTAGAAAT CACTGTTCTT GTTACAATGT GTCAAGAACT TGGCTGAATT ACGCTGTAGT
 1801 GTTTACTGGA AAGAACTTAT AAGCAGTAA ACTGGATATT TACCAGAAGA GATGTCTAAG
 1861 CAAAGTATTG AAGGTGTGAT TTAGGTCTC CTTACTGCTT AAAGTGAAT GTGAGAGGAA
 1921 AGAGCCGAA TAAAGAAGGA ATTTTAAGC AAAACACAAT CAGAACCTGG AGATTGGGA
 1981 TAGATTTCTC AATCTATATT GTAAAATG AGAAAGTTT TCTTGAAGAG GTATGGTTGA
 2041 ACAATGTTTT CTTTTCTTT TTTTTCTTG GTTTTATTTT TATTTTATG TTTTTGAGA
 2101 CAGGGTCTGG CTATGTCATC CAGGCTGGAG TGCACTGGCA CAATCTCAGT TCAGTGCAC
 2161 CTTGCCTTC AGGCTCAAGC AATCCTCCA CCTCAGCCTC CTAAGTAGCT GGGACTACAT
 2221 GTATGCACCA CCACACCCCTG GCTAATTTT TGTTGTTGTT TATAGAGATG GGGTTTTGAC
 2281 ATGTTGCCTA GGCTGGCTC TAACTCCTGA GCTCAAGTGA TCTGCCCTCC TCAGTCTCCC
 2341 AAAGTGTGGA GATTACAGGC GTGAAACACT GAGCCTAGCC TGAACAACCA TTTGATAAAG
 2401 AGATAATGGG TGTGACCCAA GGATTTAATC AGCCATCTCA GCAGAACCCA GGAAGAGAGA
 2461 TGGGATTATT CCAGCAGAGA CACTGCCAAT TTAAACTAAC GTAGGCAGAG AAAACAGAAA
 2521 GGAACAAAGG AAGGTGTGCG ACTTTTGAA TTCTATAGAA CAGGATCATA GAGCTACCTG
 2581 GCTGTCAATG TGTACTATT TTTAAGAAA GGAAAGACTG ACCCACCAAA GGCAACTTAC
 2641 AAGATCACTA GGGCTGACTC TTTGTTTT TCTTGAGGCA GTCTCACTGT CACCCAGGCT
 2701 GTAGGGCAAT GGTGTGATCT CAGCTCACTG CAATCTCCAC CTCCCAGGTT CAAGGGATTG
 2761 TCTTGCCTTA GACTCCCAAG TAGCTGGGAT TACAGGCTCT AAATCTGTAC CCTCCCGAGT
 2821 AGCGCTCTG CCACCACTTG CCCAGCTAAT TTTGTATTT TTAGTAGAGA TGGGGTTTC
 2881 CTATGTTGGC CAGGCTAGTT TGGAACTCCT GACCTCCAGT GATCCATTCT CATTGGCCTC
 2941 CCAAAGTGCT GGGATTACAG GCAGGAGCCG CCAGGGCTGC CACTTTGATG TCAGACTCAG
 3001 AGAGTACAGA TGGGATAGGG TGGGGGTGGG AACATGTAGT CAAGGCTGAC TCTACCTGTT
 3061 TCAAAGATGC CCTGCAGAAC TGTGTGGGAG TCTCTCACAG ATGGCTGCCT GGGTGGGAC
 3121 CCACCAAATC GAAAGACCGA GACTTCAGGC AGGGCAGATG GAGTAGGCCA ACTACAGAGC
 3181 CAGAGGTGAC ACTGAGACAC CACTGGGCCT GGAAATCAGG GCATCAAGCC AAAGAGGGTT

Figure 8 (Page 1 of 73)

17/162

3241 TTTCTTAAGA CCTAACAGAA TTTGCCTTGC CAGGTTTG GG ACTTGATTAG GACACATTAC
 3301 ACCTTCCTTC TTTCCTATTT CTCCATTTC TAATGGGAAT GTCTATTATG CCTGTTCAC
 3361 CATTGTACT TAGAACATG TAACATTCT GTTTCACAC GTCAAAGCT GGAAAGGAAT
 3421 TTTGTCTCTG GATGAATCAC ACATTGAGCC TCACCCGTA CCTGATTTAG ATGATTTTT
 3481 AGATGACACT TTGAACCTTA GAATTGATGC TAGAATGAGT TAAGACTTC AGGGGGCTGT
 3541 TGGGATGGAA TAATTTTTT TTTTTTTTG AGACGGAGTC TAGCTCTGTC GCCCAGGCTG
 3601 GAGTGCAGTG GCACCACCTT GGCTCACTGC AAGCTCTGCC TCCCAGGTTT ATGCCATTCT
 3661 CATGTCTCAG CCTCCAGAGT AGCTGGGACT ACAGGCGCCC GCCACACAGC CTGGCTAATT
 3721 TTTTTTTAT TTTAGTAGAG ATGGGGTTTC ACCGTGTTAG CCAGAATGGT CTCGATCTCT
 3781 TGACCTTCCTG ATCCGCCTGC CTTGGCTTCC CAAAGTGTG GGATTACACG TGTGAGGCCAC
 3841 CATGCCCGGC TGGGATGGAA TAAATTTATC TTGTATGGGA GAAGGACATA CATTGGCA
 3901 GGTCAAGGAC AGAATGTTAT GGACTAAACT GTGTCCCCCA AAATTCTATT ATTAAAACCC
 3961 TAAACCCCAG TGTGACTGCA TTTGGACATA GAGCCTTAG GGGGTACATA AAACCTAAAGA
 4021 TCACAGGATA GGGCCTAAT CCCATTGGG CTGGTGTCT TACAGAAGAT GAGACACTTA
 4081 GAGCTCTCTC TCCACCGCAGG CACCAAGGAA ACACCATACA AACACACAGT GAGATGGCAG
 4141 CCATCTGTTA GCCAGGAACA GATTCTCACC ATAAAATATG TTGGCACCTT GATCTTAAAC
 4201 TTCCAGGCTC CAAAATGTG AGAAAATGAA TTTCTGTTCC AAGCCTCTT GATATGGAAA
 4261 AAAAGATTCT GTTGTAAAG CCATCCAGTC TCTGGTATTT TGTTATGGCA GCCTGAGTAG
 4321 GCTAAGACAA TGAAGGATGT GGTAAAACCT TACGTCCCAA CCACATACCA AAGAGGCTGG
 4381 AATTAGCAT GCTTCTTCT TTCAACTGTA GGCAATGTGC ACAAGTTCTA AATCCTAAGA
 4441 CATGTTGGCT CTTTACTCT GCCCAAACCA CAACTCAAAC AAACAACGT AATATAATAA
 4501 CATCCAATGA AGTTCTGACA TTTCTTCAAC ATGAGTACAG TAATTCAATG CCAGAGAATT
 4561 CATTATTTTG TGAAATCTAC ATGCCATATT CCAATTCTG TTGAAGATGC AATGGTTATA
 4621 TTATTTCTT TTAATATAGA TTATCAGAC TGGGCGCGGT GGCTCATACC TGTAATCCTA
 4681 GCATTTGAGA GGCTGAGGTG GGCATATCAC CTGAGGTCA GAGTTGAGA CCAGGCTGGC
 4741 CAACATGGTG AAACCTGTC TCTACTATAA ATATAAAAT TAGCTGGGT TGGTGGTGCA
 4801 TGCTGTAGT CCCAGTTACT AGGGAGGCTG AGGTAGAATT GCTTGAACCT GGGAGCAGGA
 4861 GGTGCAATG AGTGGAAATC GCACCAAGTAC ACTCCAGCCT GGATGACAGA GCAAAATAAT
 4921 AAATAAATAC ATAAAATAGA TTATCAGTT TATCAATAAT ATAGTTTCT TTTCTAGGTG
 4981 TAAATATAGG TAATGACTGT CCTTTAGTAC ATTTCTCAT GATGCTCTC TTACTGGTT
 5041 TGGTACAATA TTAAGTATTG AAATAAAATA GAGAATCCTG TCGCTACACA TGAGCACTTA
 5101 TTCCATTGTC TCATCTCCAA TATGCACGGG AAATTCTCAA ATTGCTAATA ATCTTGTAAC
 5161 ACACATGCAT TATATTCAAC AGGAATATAT AAATTATAA TTATAATTG GGATCAACAG
 5221 ATGACAAACC TTTAGAAGGT TTGTATTTAA CCTTAAAATA TAATTTTTA AAAATTGGTT
 5281 ATAAAATTC TAATACTTTC TTTTTGTGA CCTCAAGGGG AAAATATAAT TCTTATAAAA
 5341 GTTCAAATGA TTTACAGAAT ACAAAAAGTG AATAGAGATG ATGAATGAAT TAAAGGAAAG
 5401 GATATTGCTA CATAGATTG GAAATTAAA AAGGGAAATT ACGATTGGT ATTGTTGTGTT
 5461 AACTGATCT GCTTGTTCAGA GATACCTTA TGTACCAAA AATGATTTA TCTCAGCCTC
 5521 ATATCTCAGT AAATTCTGA GACAAACTTT AGTCCCTGGT GCCCAGGTGC CTTGGTAAT
 5581 TGGGAGACCT CTAGGTTTAG CATCCTCATC CACTGCCCA AATTAAATA GTCCCTCCCCA
 5641 GGCCATTCA GGCAAGGGAG ATGAAAACCT GCTCAAGAGT TGGAAATCCAA CTGAAGCTAC
 5701 CGAAATTCTAT TGCTCAATAG ATAATTTCCTG CTGGAAGTAA CTAGGGCTTT TGAATATAAT
 5761 AGTGGGCATT TCAAAGTAGA AGGTAAAGTA TTTTGGAGAT GAGGAGACAG GACAGAGCTA
 5821 CGAGGAATGT CCTTGCTTA GGGACTAGGC TCTTAGCAGT ACCTCTTAGG TAAGAACTGG
 5881 TTAACTGGCA CCTTCTGTGTT TCTCTGAAG CTCCCTTGC TTAGGGACTA GGCTCTTAGC
 5941 AGTACCTCTT AGGTAAGAAC TGGTTAACCTG ACACCTCTA TGTGTCTGAA GCTCCCAGAA
 6001 CAAACTGCCA GTGAAATTG GATTTTGGA ATATAGTTTC TTTTTCTTG TTACTTTTG
 6061 TTTTGTGTT TTTTTTGAG AGTCTCACTC TCACTGCAAC CTCCCCCTCC TATATTCAAG
 6121 TGATTCTCTT GCCTCAGCCT CCCGAGTAGC TGGGACTACA GGCCTGCACT AGCATGCCCA
 6181 GCTAATTTTGTATTTA GTAGAGATGG GGTGGTTTT TTTTGAGAC GGAGTTTCAC
 6241 TTTGTCGCC AGGCTGGAGT GCAGTGGCAC GATCTGGCT CACTACAACC TCCACCTCCC
 6301 GGGGTTCAAG TGATTCTCTG GCCTCAGCT CCTGAGTAGC TGGGACTACA GGCGCCTACA
 6361 GGTGAACACC GCCACACCTG ACTAATTGT GTAGTTTAT TAGAGATGGG GTTTCGCCAT
 6421 GTTGGCCAGG CTGGTCTCAA ACTCCTGACC TCAGGTGATC TACCCACCTC AGCCTCCCCA

Figure 8 (Page 2 of 73)

6481 AGTGCTGGGA TTACAGATGT GAGACACCAG ATCAGCCTCA GAAGACATT TCTATTGGAA
 6541 AGAGAAAACA CTATTAGCAA CCTATTAGTC TAATATTAA TACTTAATGT CTTCCCTTAGT
 6601 AATAAACCAA CTCTCTACAA CAAAGTCTT CCTGGCTGCC TAAGTCATTG ATTCAATTCA
 6661 TTCAACATT TCTCAATGCC CAACAGCCAA GTGTCTCTT TATGCCAAGT TCTATGCTGA
 6721 TTATCAGTAT TTGAATAAGA GGGGGTCTAC ATCTTAAGTA CTGCTTAAGA TGAAAGCCTC
 6781 TAGGTTAACAA AACTAACAC AATGTATCAT TCACTACTAA ATAGACCGAA TACAAAATCT
 6841 TGTTATTGGA GCCCAGAGAG AAGAATTGAA ATTCAAGTTT TCTCTCTCTC CTTTCTCAC
 6901 TCACCACAAAT AAGTCAGTTG CACCAAGTCT TGTAGCTCTT TACTGAGCCA TGTTTTCACG
 6961 TGTCCCTTTG TTTTATTGCA CACACCTAA ATAAAAATTG TACTGCTTT TTTCCCTGG
 7021 GTTTACAGTA TTAATACATT GTCAAGATT ACCTCTCGT GTAGATTCCC TGGGGAAAAT
 7081 TACCTTCCT CCACTCCCTA AATTCTTCAG AGGTTAGAAA GCCATTAGTA ACATTCTGGT
 7141 ATGTGGACAA AGTTTACCA TTATGTATGG ATGTTTTACT CTTTCTATTT TTCTGACAAT
 7201 AATCTCTAA GGAGGTGTGG TTATAGAATA GTCAGCTGTT ATAAGTACTG TTTTCTGGC
 7261 CTTACAACCT AAGTCTTTA AGCTGTTCT TAGTTGCTC ATCTCAAAAT TCGGAATAAG
 7321 GATAAAACCT ATCTCTTAGA TTGTTGGATT AAATGAATTA ACATACTGGA AGCTCATGAA
 7381 ATGTGCCTGG CACACAGTAG TGCCTAAAT ACCATCTCTC TTATTCTAGCC TGTTTCTGA
 7441 TTTCAGAACTC TACACTTGCT GAGCCAGGTT CTTTCATTG CAAGGTGAGC AAAAGCATAAC
 7501 AAGGAAGAGA TGGAGGTAGG AAGAGATTAA GCCTAGGCC AAGGTCACAC ACCGATTGGG
 7561 AGCTGGAATC AAAGGCAATT TGGTCAGTGA ATAAAAAGGA TTCCAAGGCC CATAAGGCCA
 7621 TTCTAACCTT AGGATCGAAA TTCTCGGACA TACAGGAAAT GCTGGGGGG GAAAATCCGG
 7681 TCTTCTCAGC CCAAGAGCCA TGTGAAACCA GACCTTCAAA TCTGATGATT CTCAGCCCAG
 7741 CTGCCCATTA GAATCGTTGT AATTAAAAA TACCTCTGGA AAATTCTAAT ATGTGGCTAT
 7801 CAAAGGTGAT CATTGCTTT TATGCCACTT TGTTTCACC CAAATGGAC ATCCAACCT
 7861 TTTCCTTGA GAGTAGTTGT AGGGAAAGGA GGGGGTGGAG GGAGGGAAGA CGGGAAAAGG
 7921 CTGGATCCGC CCTGAGCCGG TGTCACTG TGGGAAGTGG GAGGCCGTC AGCAGTAAAC
 7981 AGCTTCTGCT AGGATTATTA TCTCTGCCA CACACTCGGA TTTGAAGGCT CAAACGAAA
 8041 CAATGCAAAA CGCTTCAGTG GAGTTCCAGA AGCGTTAGAC TAAACGACTG GGTCTGTTG
 8101 GCCAGTCTGA GCAGCTGGGC GCAGATGCAT AGGCAAGACT TAGCCCGCT AGACTTTCT
 8161 GCCCACTTAA TTCCGATCAA AGCAGAAACC GGCGGGCGC GGTGGCTCAC GCCTGTAATC
 8221 CCAGCACTT GGTAGGCAGA GGCTGGCGGA TCACCTGAGG TCAGGAGTTC GAGACCAGCC
 8281 CGGCTAACCT GGTGAAACTC CGTTCTACT GGTGGCGGGC GCTTGTAAATC CCATCTACTA
 8341 GGGAGGCTGA GGCGGGAGAG TCGTCTGAAC CGGGGAGGCG GAGTTGTAT GCAGTGAGCC
 8401 GAGATCGCGC CACTGCATT CAGCTTGGGC AACAGGAGCA AAACCTCGTT TCAAAAAGC
 8461 AAGCAAACAA ACAAAAAAAT GCAGAAACCG AGATCCGGA GAAAACCTCG GCGAGATTCA
 8521 CAGAATCCAG GAAAATAGGT CTCTAGAAAT TTGTCATGG TCCCAGATCT CCATTCTTG
 8581 TGGGTGGGGC AGCTGTTACC AGATCCCTAG AAGCAAAGGT TTTTTGGGG GACCGTGTCT
 8641 CACTGTTGCC CAGGCTGGAG GGCAGTGGCA CGATCTCGGC TTACTACAAC CTCCGCCTCC
 8701 CAGGCTCAAG CGACTCTCCT GCGTCAGCTT CAAGAGTAGC TGGGATTACA AGGTATGTG
 8761 CACCACGCC AACTTATTAA TTATTTATT ATTTTTATT AGTAGAGAGG TGTTTCAACCA
 8821 TGGTGGCCAG GTTAGTGTGCA AAGTCGTGAC CTCAGGTGAT CAGCCCCCTC GGCCTCCCAA
 8881 AGTGGTAGGA TTAGAGGGGT GAGCAGAAAG CAAAGTTTT TGAGTGGCCA CAGGCCCCAC
 8941 TCTATTCCTT TTTCTGCCGT TAATGGCAAC CTAGACGCTT GAGCTTCTTA AAATACAAGA
 9001 GTAAGTTGCA TGTCAAGGCAC CGTTCTACAT TAGGGACATT AGTCTGTTT ACAGACACCT
 9061 TTCAACTCCC TGGTTAACTT TTAGGTAATA TACTCTGCAC TTTAGCAGGA ATGGGACCTA
 9121 TAACTCTCAC AGAATTAGGA AAGTGAGGCT GCCTACAGCC TAAATTGAGA AAAAAATAGA
 9181 CGGGGGACTA GTCGGAGGAC CAAACAAGGT TACCAACACG TTAGAGTTTT GCCTTCATT
 9241 TACATTTTA AAGTAATCAC AACGAAGTGT TTAGATCACG AGGCATCCCT GCATGTAAAC
 9301 TGGTAGGCAC TAACTATGGT CGATCTTACA AAGCATTAAAC TAGAATATTT CTTTAGAGTA
 9361 TGATAGTACG TAACTGACCT ACTATTACAT ACAAAACAGAC CAACCTTAG TAACAGCGCT
 9421 CCCCAAAAAC CGAAAAGCAG TAATACGCTT TGCTCAAGGT TGGCATAAAA TTAACCTACC
 9481 TTAGTGCCTT TTTCTCTT ACCTACAAGC AGTGGAGGTTA GCTCTCCCT TGAAACGGTA
 9541 GGGGGGCTCT GAAAAGAGCC TTTGGTTTG ATAGCGTTTC CGGGAGCTCA GATACCTGTC
 9601 AAATCACTTG CCCTGGCCT TGTGGTGACT CTCGGTCTTC TTAGGCAGAA GCACGGCCTG
 9661 GATGTTAGGA AGGACGCCGC CCTGAGCAAT GGTCAACCGG CCTAGCAGTT TGTTGAGCTC

Figure 8 (Page 3 of 73)

19/162

9721 CTCGTCGTTG CGGATGGCCA GCTGCAAGTG GCGCGGGATG ATGCGAGTCT TCTTGTGTC
 9781 GCGAGCCGCG TTGCCGGCCA GCTCCAGGAT CTCGGCGGTC AGGTACTCTA ACACCGCCGC
 9841 CAGGTACACC GGCGCGCCTG CCCCCAACCG CTCTCGTAG TTGCCTTAC GGAGCAGGCG
 9901 GTGCACTCGG CCCACCGGGA ACTGGAGACC AGCGCGAGAA GAGCAGGGATT TCGCTTTGGC
 9961 GCGAGCTTG CCTCCTTGCT TACCACGTCC AGACATTGCA ATCAGACAAA AATCACCAAA
 10021 ACCAGCGGCC TAAGCTCACG AGAAAACAAA CAAAATCAAG AAATATGTAA AACATGGCG
 10081 CTTTATAGG TAGTTCTGG GGAGTAAATC CGACTTTTG ATTGGTCGGT AGCAAATGCT
 10141 AGTCAGATAG CCAATAGAAA AGCTGTACTT TCATAACCTCA TTTGCATAGC TCTGCCACG
 10201 GATGACAACG GTGCAGTTG TCTTCCAATT AACTAAGAGG TACTCTCCAT CCCTCATTAG
 10261 CATAAAAGCC CTATAAGTAG CAGAAATCCG CTCTTACTT TCGACACATT TCTGGTGT
 10321 TAAGATGCCT GAGCCAGCCA AGTCTGCTCC CGCCCCGAAG AAGGGCTCCA AGAAGGCAGT
 10381 GACCAAAGCG CAGAAGAAAG ATGGCAAGAA GCGCAAGCG AGCCGCAAGG AGAGTTACTC
 10441 TGTGTACGTG TACAAGGTGC TGAAACAGGT CCATCCCGAC ACTGGCATCT CTTCCAAGGC
 10501 CATGGGCATC ATGAATTCTT TCGTTAACGA CATATTGAG CGCATCGGG GCGAGGCTTC
 10561 CCGCCTGGCG CATTACAACA AGCGCTCGAC CATCACCTCC AGGGAGATCC AGACGGCGT
 10621 GCGCCTGCTG CTTCCCGGAG AGCTGGCCAA GCACGCCGTG TCGGAGGGCA CCAAGGCCGT
 10681 CACCAAGTAC ACCAGCTCCA AGTAAACATT CCAAGTAAGC GTCTTAACAC CTAACCCAA
 10741 AGGCTCTTT AAGAGCCACC CAGATAACCA CTAAGAAGAGC TGTGGCCAGA CGCCAAATTT
 10801 TATTTGGCGG CGGAGGGGTA TTAGAATATA GGAACCTGGAG AGGGGTGGGG ACAAGTGTG
 10861 CAGCTTAGAG AGGGACAAAG GGTCTGAAAC CCGAAAGAAG CCAGCCATTA AAAATGGCTT
 10921 TGGGTCAAT TCGTTGTGCT TAAATTTAAA ATGGAGACAA GCGGCCATT TGCTAACTCG
 10981 GCGTCCCGG AAGAAACCGC AGGCTCGCTT AGGTTTCAGA CCCAGCTGTC TGTCCCTGTC
 11041 TACGTGCCA GGATCAACGG TTGCGTAAT GTCATAATT CGCCACCAGC TTCTAGCCAA
 11101 TAGGCTGTCC TGTCAATTAA AATATTAACC AATCGAGGGAA AAGCTTTTG GAGACTCTGA
 11161 TTTACATAGC GGACCGGAGT GGGAACCTGG GCAGTAACTG CCTAAGGAAG GACTCCCCCT
 11221 CTGTTTCGTT GGCGCACACC TTCGTAGTAT ACTGAAGGGT GTGTCCTG GGTTTCCAAC
 11281 TGCCCCGGTA ATAGTCTTTT AACCTAATAT GCGTCAGTT TGATAACAAC ACTAAGGCAG
 11341 TACAGAACTA AAGATGTAAG CACTGCCA GATGTTGCTT CATACATCTT ATTCTATTCA
 11401 ACTGGTTAT TCAAGATTCA AATCAAATCA AATTTTGCTT GAATCCCAGT GCTCAGTCAG
 11461 CCATAAAATGG TGTGTTGCCT GATTGAAACT TAAAATCTCC GTAGGGGGCT TGTAACATGC
 11521 AGACAAGTTT GAAAGTTGCT TTAGGAGAAAG CCAACTCTTA ACTGCTGGGT AAATTGACAA
 11581 GCCTTCGAAC ACTGAACCTGA AGGCCAGTAA GGACTAGGCG CTGGGTGGGG GAGAATGAAAG
 11641 AGGAGACGTC ATTAAACTTA GCACATACAC TGATCTCCT AGAGGACTCT CCCTTCCTAG
 11701 ACAACTGCAAG GCCGCTTGTG GGCCTGGAA ATTCCACATT CCCTTAAGTA TTTTACTCAT
 11761 GGTCTTTCC AGGTAAAGAT TTTAAGATGA AGGGTTAGAC GTAGTCTACC TATCTTTTA
 11821 TTCAAGTCTA GAACACGTT TTAGCACCTA GAAGTTTGCT TTCTCCATTA AAAACCGGGA
 11881 ATATACAATA AATAAAATTA GTGTTAAAGC AGATTTTAC AAACCTAAAT ACCATGTAAT
 11941 TTAGGTTACA GTTATTTAAC ATAAGGACTG TGTGATCTTA AATCTGCAAT TTCTTCA
 12001 CCTGGGAAAT AAACTAAGGC CTGCTTTGG TGCCAGACAA GGCCTTATAC TTGAACACTG
 12061 CTGTGCAATC ACAGGCTGCC TTGCTAGAT AACTTATCTG AGAAATTCTG ATGAGAAATG
 12121 AAATTTCCAG AGTCCTCAC AAGTAAATT TTTTTCTTT TTTTTTTTT TTTTTGAGAC
 12181 GAAGTTCTC TCTGTTTCC CAGGCTGGAG TGCAATGGCG CGATCTGGC TCACAGCAAC
 12241 CTCCGCCCTC CGGGTTCAAG CCATTCTCCT GCCTCAGCCT CCGGAGTAGC TGGGATTACA
 12301 GGCATGCGCC ACGACACCCCT GGCTAATTGT GTATTTTAG TAGAGACGAG GTTCTCCAT
 12361 GTCGGTCAAGG CTGGTCTCGA ACTCCGGACA TCAGGTGATC TGCCGCCCTT GGCCTCCCAA
 12421 AGTCCTGGAT TACAGGCTTG AGCCACCGCG CCGGGCTAA ATGGTTTTTT TTTTTCTAT
 12481 GCCTCTAATG GACCTGGTCA CTTATTCCCA TTCAGACTGA CCGCTCTCCT ACCTGCCAAC
 12541 TAACTAATCA GTGTAACCAA AATCTGCAA CAAAATTCTAG TATTCTTCC CCGCCTTTTC
 12601 CCCTTCTCT TACATAGATT ATGTTTTGC CTGTGTTAGA TGAAATAATT CTATTGCTTG
 12661 TTCTCTCTTC TGTACAAGTA CCCAGTAAGC AAATTATTAAC CTTCTGGTC ATTTATTTCT
 12721 GAATTTCCA CCAAGACAGT GTTATGTGA GTCATACAAT AAGAACCAAC AGAAATGTGT
 12781 GTCTGGAAA CAGGGTGTCT ATCCCTGGAC CCTTTGAGTT TTCTGTCAC TTTCCTTTGG
 12841 CTTTGCATG CTAAAAGTTT ATCGTCCCGG TTTGTTGTT TTGGTTATTC TAATTGGACT
 12901 TGGCTGATTG GTTGCATATT GGTGGCAGTA GTAGAATTG AATTCTGGTT TTCTGGTCAC

Figure 8 (Page 4 of 73)

20/162

12961 ATCATTAAAGT GATTAGTCAG TGGAGAGGAC AGGAAATCTG GTTTATTTAT TAACCTTTT
 13021 TTGGGGTGTGTT TTTGTTTGAA GATGTTGATA TTCTCTGTGA GGACACAGGG TTAGAGTTGG
 13081 TGTTTTCTT TCTGACTTTA CATGGGATTG GATGTTTTGT GCTTGTATGC CTCTTTCCAC
 13141 CTTCCAAAAC TTGCTTTTT TGAGTCCAAA TAGTTGTGCA TATCTGCAAA ACCAGTATT
 13201 CTGTGTTAAG ATGATATGAA TATAAAATGG CTGCCCTGTT ATAACTTTG ACTTTAAGAA
 13261 AGTGTAGGA CTAACAGGAG AAAAAAGGA AATCAAGGAA ACCGAATGTC TGGTCTCAAT
 13321 AACTGCTATG GCAGAGGCTC TACAGCTTAT TATTAATTAGT AGTAATTCA CATTATTGCC
 13381 CCTTCACGTT CTTAAGTAA GGTTAGAGGA CAGAAGAAC ATAATGTTGT TACAAATTGG
 13441 ACTATTGAGT CAGGGAAAAAA AAAGAGTGCT TTCATATCT GAATAAAACA AAGATTTAAT
 13501 ATTTTCTAAA CCTTAACGAG TTTATTGAA GGATGTGAT GCTGGAAACT AGGAAACTAG
 13561 AATTTCTTC TAAACTGAGA ATCAGAATTA TTCAATTCT CAGCAGTGGT GCCACCTGAG
 13621 GGACTTCTGA TCTTAATTAC ATACTTTAT TTCTTTAATC GATCAACATG CTAAATAGAT
 13681 AACCTATGGC TCTGTTTTA CCCACTTAA ATTCTGTTCT ATTAGCACGG TTAGCTTCC
 13741 TAATTGGCAA TAAGATTGAG ACTATCTTT TTTTTTTT GAGACAGAAT TTTGCTCTGT
 13801 GGCCCAGGCT GGGGTGCAGT GGCACAATCT CGGCTCACTG CAACCTCTGC CTCCAGGGTT
 13861 CTAGCAATT TCCCTGCCTCA GCCTCCCCAG TAGCTGGGAT TACAGGTGCA CCACCACGCC
 13921 TGGCTAATT GTGCATTTT AGTAGAGATG GGGTTTCGCC ATGTTGGCCA AACTGGTCTC
 13981 GAACTCAGGT GATCCACCTC GGCCTCCAA AGTGATGAGA TTACAGGCGT GAGCCACCGT
 14041 GCCCAGAAA GACTATCTA TTTTATGAAT TAAATAATT GTGAAATTAT CCACTTAAGG
 14101 GAATTAATAA ATTATAATGT AATCTTAAT TTAGTTGGC TTACATAAAG ACTTAAATA
 14161 CATCAATTAA AATAAAACT CATTGTCTA AAAAAAAATC AAAAATTTC CTTGTGCTT
 14221 AAATGTGCTA CCTCTTTAAG TTCTAATTAA GAGAAAAAAA GTTTAATCT GAGTTTCATT
 14281 AGTGGTCTT GTTAACAGCT TAAAGTATT TGAAAAAAAAA ATACTTCACA ATTAAATAAT
 14341 AACTAAAAA TATTAATACC TCTTTTATTA GGTTTTTTA ATAAGGAAAA TATATAATAC
 14401 ATCTAATCAA GATTTTTTT GGACAAATTG GCTTAATAAT TTCAATTAA AAATGGCTTC
 14461 TTTATTCTT TACTGAAAAA ATAATATTAG CAGAATATTA TAGTATACAC AAGTTAGGG
 14521 TTCAATTCTT AAAAAACAAA AACAAAAGCT AATTTAACTT GCATTTACTA ATTAACTTCC
 14581 ACTAGTTGTA CTGGTTACAT GAGTTAACAT CACTTTATT ATTATTCTAA ATTGTAAAT
 14641 TATTCAATTGAA ACCAAATTAA ATGATAATAG ATAATGTCT TTTAAAAAT GGAATTAAAT
 14701 TTTATGTTAC TAATTATAAG GATTCAATGT GTGAGCTTAA GTACTGAGTT CACAGTGTAT
 14761 GATAACTTTA AGAATTAGG TGAATATTAT TAAATTGAGT AAATTAATT TCAATCTTG
 14821 GATACCTGGA CAATTCTAA ATTGGAGGGT ACAAAATACA AATCACAAGA AACAGTGTAG
 14881 TTTATGCAA ATAACATTAA TACACAGTT AGAATAACCA TTGATAAACAA GATAAGAGAA
 14941 CATATGATTG CCTTAAATA GATACTGTT CTTTCGCCAC TTTAGATTTG TAAATCACGT
 15001 ACTGTATACG TGTGGCGTA GAGGACCATG CAGGTTTTGG ATGACTGCCT CTGTTTCGT
 15061 CATGCCTATG CGGGAACACA ATTGCCTGCT TTGTTTAAGG GCTATGGTTA ATCCAAACAG
 15121 CTCTGACTCT ATCAAGTACT ATAGCTACAG AGAAACACAA GTAAGCATTG GAGATAATGA
 15181 CTACCTTGAG CCTTTACTTA TTTAAAAAGT TGTTACTGTT TGTTAATGTG GTACATTCA
 15241 TTTACTATGG ATTGTCACTC TAAAATAAGA CTTCAATCTT TTTCTTATT TTATATAGCC
 15301 ATGATTTATA TTCATATCTT AATGTAATAA CCAATCTCT CTGACAAACAT TATAACAATG
 15361 CTGGAACCTC CATTTCAGT ACTTCAAACAA ACAAAACTG CTTTTATACT TCAGAGCAGA
 15421 TGGATATGTG CTTCCCAGTG TAAACACATT TGGAATCTCA CTGAGAAATA CACTATCACT
 15481 AAAAATACAG TTCTGAGATT CATTAAAAGA CCTCCAGAAT TCTGGAAGTA GGAAGTTCC
 15541 TCTTCAAAGT CTACAGAGGA AGATGAGGTC TGAAATAGAC AGCTTCTTCC TTCTTTTAC
 15601 TGTTGTATTA TTCTGTTTG TCCTTTCTC CATTATCTGT CTTTCCAGTG ATGAAATT
 15661 GATCTGGCCC TCCCAAGTAT TAAAAAAACAA GCAAATAAAC AAATCTCAGT TATTTTTAC
 15721 TAAGATATTG GCATGCTAAC TTTTGCAAGG TTGTAACAA GGACCTTTAT AACCTGACTA
 15781 AAAGTTCTA AATAAGAATA TTTACTAGAA AATTATTTC TGCCCTGGC CCACATTGA
 15841 GTCAAAATAA TCAATTAGGA AAAATGAAC TGTTAACTA AAGTTGACCA AACTGATCTT
 15901 TGACCAAACG GATCTTGAG ACCTATTCA CTAAGACAAG CCAATTAAAT TCTTGGAGAC
 15961 AATTGTACT TTAAGGAATT CTTATAATAT TTGTAATTAC CCTCATAACT TTTTTTTTG
 16021 CCCTACTTCT GTGCTTCTCT AATATGCAGA TTATTAATG TTGTTACAAA GCCATTGTCA
 16081 AAAAAACAAA AAACAAAAAA CTAACAAAC TCACATGGTT AGACTTGCTC CTTTATGAGA
 16141 TATTTTACCA AAAATGGAG GAGTTGAAAA ACTCTGGTGC CAGAAATCGT GAAGACATGG

Figure 8 (Page 5 of 73)

21/162

16201 CCTACCTAAC ATGGAATGT TGGTTGTCAG TGAAAATAC TACACAGAGA TAGCCATAGT
 16261 GCTGCACAGC CAATCTTAAG TGTTTCTAGA GAATCACTAA TTGTTCTAG AGAATCACTA
 16321 ATTGTTTCT TTTAACATTG TTGGTTTATA CAAGAAGAGA GTATCCATAC TAAACTCTT
 16381 TCTACTGAAA ATAATGTGCA AACATAACAT CCTATTCTA GACAGTTGT AGTTTTTTC
 16441 TCCCCATTCT ATTTTATAAA TCATCTTTT AAAATACTTT GTTGAGTCAA ATCAGTCCAT
 16501 TGCTTGATAT ACCTTGAGCA CAAGTAAATA GTATGCCAA AATTAAATGT CTTTCAGTCA
 16561 CAGTTGACA AACTCAACTA CCCTGAGCCT ATAGAGTGGT AATAATTGCC CTACTCATAA
 16621 AGATGGGGTG AAGATTAAT GAAATAGCAC CTATAGAACAA CTAGTCCAG ACGTGGTATC
 16681 ATGCTAGTAA AATGGCTGCA CAGCACTGCT CAATGATGAC AAAAAGTCAA GCTTCTGGAG
 16741 ACAGACTCCA AGTTGACTC CCAGATCACC ACATATAAGA TGTGGACTC TGAGGCAGGT
 16801 CATTAAATCT CTCTGTGCAT TAGTATCCTT CTCTATACCT TTACAGTGT GGTAATAGCA
 16861 CCTACCTCT AGAAGTATGT GAAGATTAAT GATCCTTAAT GCATATAAAC CACTGTGTTT
 16921 ACTGCTGTT GACAAATTTT ATTTATAACC ATCTTACGC TCCTAAAGG ACTTGAAGCA
 16981 GCTTATGACT GAAGACTTTG GTAGGAGTTG GCCTTCTATA AATTATAAGA ATTTCATAAA
 17041 TTATTTGATA TGAAAATGCC AGTTGATCAT AGTATGTTA CCGGGGTCCA ACAGGTTGAG
 17101 AAAAAATACA CTTTTTTCC CTGAACATAT GAAATTAGCT CTCTAGGCAT ATTCCCTAAGG
 17161 ACTTAAAGAA TGATAACTAT CATTCTCTT AAATCTTCCA GATTTGGAAG GATATATATA
 17221 TTCAGCACAT TGACAGACAA TCCCAGTAGT CCTAAATTAA AAGACATTA AAATTAGTGA
 17281 AACTTTCCCT ACCTTAGCC TGTGTAATCC TGGATGACCA AGCATAAAAT TAAATTGAGT
 17341 AGAGTATACC ACTGTAACAT TTCTGAAAG GTATTCTAGG CTCTGAGTAA TTTCTTGAGG
 17401 GTCTGAAGAT CAGTTGACA TATCCTCAAG TATCATGAGT TCATTATAAT TAAGAAAAAG
 17461 AGAGTAAATC TGGAGAATGA GCCACTTCT TACTACTCCT TGACCTCAGT TCTTTTTTC
 17521 AGAGACAGGG TCTCACTTTG TTGCCCAGGC TGCCAGGCTG GAGTGTAGTG GCGCAATCGC
 17581 ATCTCATTGT AACCTCCACC TTCTGGCTG AAGCCATCCT CCTGCCTCAG CATCCTGAGT
 17641 ATCTGGAACC ACAGCAGGTG CACACCACCA TGCCAAGCTA ATTTTTAAA AAGTTTTTG
 17701 TAGAGATGG GTCTTACTAT GTTGCCAGG CTGGTCTCAA ACTCCTGGC TTAAGTGTAC
 17761 CTCCTGCCTC AGCCTCCAA ATTGTTGGGA TTACTAGTGT GAGTCAGT ACCCCGCC
 17821 ACTTCAGTTC TGAGGAGGAA AAAATATGTA ATAATAATGG GACTTTGGTT TGCTGATTTA
 17881 AAGATTCATG TAACCTTATC ATCCAATGCG CAATTGTTAG AATAATTAA AGAGACATCT
 17941 GGTCTCATGT TTCTACAGTT GCTCATGCC TGATAGTAGA TCTCCTGCT GCTGGCTCAG
 18001 AAGGGTAAAA GAGCAGAAAT GATGGGGCTT CTCTCATTCT ATGAGGAAAT AGACCTATGT
 18061 AGAGGGAGCT ACCTGTGGTA AAACCTTATC CTCATCACCT AAAATTCTAG GCTTATTCTC
 18121 TGACCATATC AAGTTTCAA ATGGTAAAG AATTGGATTC AAGAGAAATA TGAATAAACT
 18181 TTGTTTCA CTTTCTCCC TCCTCTCCCC CCATTCTCCC TTCCTTATT TTCTTGTCT
 18241 TAGTTTCTT TTCACTTTT TGTCTACTAT TATTGCCCCA AACTCAACTG TAGGCTAGAA
 18301 CAAAAAAA TTGAAAATTA AAATGTGCC CTTTGTGTT TAGACTGCT TAAACAATTG
 18361 GGGTAATGAA CCTTGACAC TAGATTAA AACACACACA TTTGAGCTTC AGTGCAGTGA
 18421 AATAATATA TTTTAACAA TTAAGGAAAT AAATTGCATG TTAAAAAAAT CTGCAGAGAA
 18481 CAATACACGT TGTGAGATCT TGAATGGAAG GAAAAGTGT AGCCTCAAGA GTGGATCAA
 18541 GATGCTCAGC AGGCAACAGA GTAAGAGCAT GTTGGAGGG TTAGAGAGTG TGCTCAGGGT
 18601 TCTAGGCTCT AAAATCAGA CAGTCCCCAC GGCTGGCCT TCGTCGCTGT ATCTTCTTA
 18661 TGAAAAACAC TAAGTCTTT TCCTCACTGG ATAAATTCTT ATCCTTCAAG TTTAGATCAA
 18721 ATGGAACCTT AGGACACTGA CTAGGTTACA TTCATCTTT AAGAGCGTAC AGACATTCAA
 18781 GGGCTAGAGG ATGTGGTTT ACTGCACAGG CTCATTATCC AACAGCTGTG CTACCTGGGA
 18841 AACCTAACCT CTCTGTGCC TAATTCCTC ATCTATAACG CAGGGAGAAT GACAGTAGGT
 18901 ATCTCATAAG GTTGTGGAA CAACTAAATG CATTGGTATC TATTGTGAA AGTGTAAAG
 18961 ACACTGCCTG GCACAGAGCA AACATCCAGT GAACTTTAGC CATCATCATT ATCATTGTC
 19021 TCAGAGTCAA ATACAATATC TCATATCTGA TAAATTACAG AAGTGAATCA ATCACTCTCT
 19081 CTCTTTCTC CAGGGGAGA CAAACAGCTT TAGACATATC TTTTCCAACA GTCGTCAGTG
 19141 CTGGACACTG TTTCATCTTG CAAATAAAC AATGAAAATG AGTGTACCTA GAAGAAGATA
 19201 AATGGAGGTA TTTGAAACAA TCAAAGAAGG ACAAAATGAAC ACCTGGCTGA GAAAATTAG
 19261 CTCTTTTCTC TATGCATAAA ACTATTAAA TATTCTTCAT AGAAATTAT GACACAGGAA
 19321 ACATAAAAGAC AAAATAAAAA TAACTCCTAG TATCTCCTAT TCTTTTATA TGTATATTAT
 19381 ATATACTCAT ATTCAATATC ACATATATCT CACATCATGT ATCATATATA AAATAAAATT

Figure 8 (Page 6 of 73)

22/162

19441 AGGTGTCATG ATATATATTT AGATAAATAT ACTTAGAAAC TTTTTATGG ATGTATAATT
 19501 TATGGATATA TTGATAATTA TGTATTTGTT ATTGACTACT TCAATTGATT CCCATTTTA
 19561 TGCATTATAT TATAGATTAT ATAGCTCAC A CATCTTGTA CATAAATCTT TGTCAAATA
 19621 TTATTCCTA AGGATAGACT TCATGAAGTG GAAATACTAA ATCAAAAGTG AAAAACATTT
 19681 TCTAAGGTTC TTAACATATA CATTGCCAAA TTGCTATTCA GGATCATACC AATTTATAAT
 19741 CCCAAAATAA TATGAAATT CCTGTTTAT AGCACTCAT A TTTACAATAA ATTTAAAAAA
 19801 TCACTGTTAA CCTAATAGTC CTTCAAAAGA AAAAAAAATT GAAATTACAT TATTTAATG
 19861 ACTCTATTAG TGAGGGTCAT TCTTCCCAGT TTTCTGTTA GCCATGACCC TATAAGAAAT
 19921 AAACTGCACT GCAAAATGAT AAACATGACA TCAATCATT A CATGGGAAGG CACTATATAA
 19981 AGAATAATAC CTTAGGTTAA GGCCACATAA ATATTTATCA GGTGCCCTTT CTGCGGAGGA
 20041 CTCTGAAGGG ATACTAAACT GCATTTAGCT GCATGCAACT GAAACTACTT TTACCTACAT
 20101 TGTCTCTTAT AAACATTATA ACTACTCTT GAGAAAGTGT TTACTATGGA CTGAATTGTC
 20161 TCCCCATCCC CCCAAATTCA TATATTGAAG CCATAAAACCC CAATATGACT CTATTCTAG
 20221 ACAGGACTTA TAAGAGGTTAA TTAAGGTTAA ATGAGGTCA TAGGATGGGT TCCCTAAGTGG
 20281 ATAGGATTGG TGGCCTTATA AGAAGAGGAA GATTCTGCAC TTGGTCTTCC AAATTAAATA
 20341 ATTTATTTAA AAGAAAAAAA AAAAGAGGA AGAGAGGGAG CTCTGCACAT ATACTGAGGA
 20401 AAGGCTATGT GAGCTCTCAC AGTGAGAAGG TAGCACTCTA CAAGCCAGCA AGAGAGCCCT
 20461 CAACAGAATC CAGCCATGCT ATACCCCTGCT CTGAGACTTC CAGCCTCCAG AACTGTGATA
 20521 AAATTTGTT GTTTAAACCA CACAATCTAT GGTATTTTT TATGGCAGCC CAAGCCAACA
 20581 AAGACAGCAT CATTGCTGTC ACTTACAGAC AAGAAAACCA AGACTAGGAG AGAGAAAAGT
 20641 TAAACTGTC CAAGGTCACA AAAGCCAGAA ACAAGTGAGG TGAGAAGTTG ACCTTGTCT
 20701 CCTCAATCCA AGGCCAGGAC TCCTCCACTC CACATGTAGA TAGCCACCTC ACAGTCAAACA
 20761 GCCAAATGTC CACACCCAG AGTCAGCATT AGACCAAGAT GTCTTACAG GAGACAAATG
 20821 CCTCATCTTG AATAAAATATG ATCTAACAAAC TTACCCATGT AAAACATTGA ATCTCATGAG
 20881 AAAACAAAAT GCAAAGTATG TAGAAAACCA TGTTTACAC TTAACGTGACA GTGATAAAA
 20941 GCTTAATGAT ATCCTTATAG TCTTGGAGGG GTTTGTATAT GTGGTGAAC AGGTGCTCAC
 21001 GCACTGCTGA TAGACTGTAA ATTGGTCTTA GAGAGAAAAA TAAATAAAACT GGAAGGAGAT
 21061 ATGCTGTATG TTTACTTTT TTATGAAAC ATATGATATA CCTGGAAATT CGATTGACCA
 21121 TGATCTATT TCTTCAATGG GTATGCACAG TTGAGCTGTT CCCATGCACC AGGCACTGTA
 21181 ATGGGACAAC TGCACATGAC AGTCAAAAT CTCAGTCTCA TGAAGTCGAC ATGCTCATGG
 21241 AGAGGTGCTA CCCACTAAAC TAATATTGT ATATCAATT TGGATACATT GGGCCACATT
 21301 TACAGAAATT CACTTACAGT GGGTTACCAG AAGGGATTT TTTCTTGAT TGGCAAGAAG
 21361 GCTAGGCTGT TTTGTGGGG GCTGGCAGGA GCTGTCTAGG CTGCCCAAGT ATGCAGGTCT
 21421 CTTCTATCAT CCTGTGTTAA CCATCTCCA TGTATCTTC AACCTCATGG TCATCTGCAG
 21481 CATGTCTAGG GGTCAATATCT ATGTTCCATG CAGGAAAAAA GGGTAAAGGG AAAGGGAAGT
 21541 AGGCATGTAC CATTAAATG CACACCTTGG TTTTCAGAAA ATTTAAGAAG AAAGACTTTC
 21601 TGCTTTCTC TGACTATTCT GTATTCTGGA TTACAACGCA ACAGAAACGT CACCTTAAAT
 21661 TCTAATGTT TTCTCCCTT GCTTCAAAA ACTGACTCAT TAAACCTCCAC GTGGCTTGG
 21721 AAAATTATTT CAGTCATCCA GTAATGAGCT GTTCATAGAA ATGTTTGGAA CATCAAGTCT
 21781 GTGTTGTTAG CATTATACAT GTTAAGCATT GAATAAAAAA CAACATGATG TGGGTAAATT
 21841 TCTTACTTA CATATAAGTA CTTATATACT TATAGCTGAA AAGAGAGGTT GAAATGTCAG
 21901 GTGGAACAGA AATAAGATTA CCTAGATGTT TCTCCTATGG GTGATTTCA GCTATGCTGA
 21961 TCTTCTCTC GGGTCAGGTA CTCCCAGAAC TTCCTAATTA AATGGTGGCC CTGATCTTAG
 22021 TTCCCTCTC CTCTTAGACA TTTTCCAGGA CTACAGAAGA TGTGCAGTT ATAATGAGT
 22081 AGCAGAAACC TACTGAACAA ATTATTCAGG CTCATCTGAA CAGAGAGGAC ACCTTCTCTG
 22141 CTATACTCTC TCAGTGATT CCCTGCCTTG GGGTCAATT TGTCTTGGAA CATTGATTAA
 22201 AGCACATAAT AATTGTTGTC ATTGCTTATG TTTGGATTTC ATCTCCAAA ATAGATGGTA
 22261 AATTCTTAG TTTAGAGACC AAGTAATACT TAAAAAAAT TTTTGTGTGT GTGTGTGTGT
 22321 TTTTCTGTG TCTCTCAGCC CTGTAATAGC ATCGTACTTA CACTTGTAG ATTTTAGAG
 22381 ACAACTTTA CAAAACATGG AATTATCTAC ATACCCCTTC TACAAAACAG ACAAAATTAAA
 22441 TACTCAGTAG TTGAACCAAA AAAAGCAGTT CAAATAAAAT ACTTGAAAAT GAAGAAATCA
 22501 TTTGAACAGA GTTAAAGTTA ATCGTAAAAT AATGCTGTA AAAATTATTG CCAATCAAAT
 22561 ATAAAAGTTCA AAAATAGTGC TTGAAAAAGG AAGAATCATA TGAAAAGGGA CTACTCATT
 22621 TAAAAATGTT AGATATCAGG AAAAGCCAAG AAGTGAAGTAT GGTAAGAGTG CTGTCAAGTG

Figure 8 (Page 7 of 73)

23/162

22681 AAACCCCTGCT AATCTCACTG AACATGTAAA AATCTGTAGA TGCCTTTATT TTATTCACTC
 22741 ACACACATAT GTAGAAAGAG AAATATATGG TAAACATTAA AAAAACAAA TTAGAATGTA
 22801 AAATTAATAC TTTAAAAAAAT GGGCTGTATA CTTTTCTTAT CACCGGAGAT AAGAATTAT
 22861 TATTTTTAAA ATAAAGTTAT TTTCTCTGTG ACTGTTTCCA TGACTTGCT ACTTGAAGT
 22921 TAGAGATGCC AAAGTTTATC TAAGAAAATG TTTATGGAAA TATTATTCA ATAATGAATG
 22981 TTTAGAAGAC TGAATTTCT GACTGGCGC AGTGGCTCAT GCCTGTAATC CCAGCACTT
 23041 GAGAGGCTGA AGAAGGGAGGA TCGCTTGAGT CCGGGAGTTC AAGAGCATCC TGGGCAACAC
 23101 AGCGAGACCC TGCAAGCAAAG TAAAAAGAAA AAAGAATTGA AAAAGGAAGA CTGAATTCC
 23161 TTTGGGCAAG TCATGTGACA TTCCCTGTGCC TCAGTTTCTT CATCTATAAA GTTAATTCT
 23221 ACATTTTGG GGAAGGGAGA GAAAAACTTA GGATAGTGC TGACACAGAA GAAGCACTAT
 23281 ATACTATATA TATGTGGATA TCATTTGTTT TTATGGTACC ATTTAGCTA TCTAATGCAA
 23341 AATATGAATC TTTTTTTCT GGGCTTAAA TTATGGAATG TAAGAATTTT CTAAATTCTC
 23401 TAATTCTGTG TTAGTTTAA AGCAATGGAG TAACGTATCT GTCAACTTGT AAATATAAGG
 23461 ATCAACCTGA TCCACAATTG GACCCCTAGC CACTAATATT TAATAGTACA ACACTCAGAA
 23521 ATTATCAAAG GTCAGAGAAG CCAAACAAAT GTAAAAACAT ACAGGTGCTC AGAAAGATGC
 23581 ACCTGTAAATC TCTCTAAGGA GAAATATTG CCAAACGTAG TGACACGGTG CTTTAGTGAN
 23641 TTGTGGAATC AATCTCATGA TTCCCAACCT AGTGTCTT TAAAAATGAA CTAGTCCACA
 23701 GTAGAATATA CTAAAGTGC GGTGCTTAAG ATAGTATTGT TTTCTGGAAA AAAAAAAA
 23761 ATTTTTTTT TTTGAGACAG GGTCTCGCTC TTGCCAGGC TGAAGTGCAG TGACACAAATC
 23821 ATGCTCACTG CAGCCTTGAC CTCCCTGGCC CAAGTGATTC TCCCACCTCA GCCTTTGAG
 23881 TAACTGGGAC CACAGGTACG TGCCACCAAC CCCGGGTAAT TTTTAATTG TAGAGACAGG
 23941 GTCTTGCTAT GTGCTTAGGC TGGCCTTGTG AACTCCTGGG CTCTAGTGTAT CCACCTAGCCT
 24001 CAGCCTCCCA AATTATGGG ATTATAGGCA TGAGCCACCC TACCTGGCCT GTTCCCTGAA
 24061 TTTTTTTTTC TTTCAGGTGT TTGTGCATAT GTGTGTGTG ATGGGTATAA CAGAGAGACA
 24121 GAGAGAAAGA AACTTTCTA TCTCACTTT CAATCAGAAG TTTGAAGTCT TATTTTGG
 24181 CTTTGTTC AGAAATATT CAAATGTAGA CTCTCTCCTT TACCAACTG TCCCCTTAGG
 24241 CAAGGTCTTT GCCATTCTTC TGAGACTATT GCAACAGACT CCCAACCTCT GACTGTGGC
 24301 CCTTCTAAA AATGATTGTT TATGCAATAA ATCTAAACCC AAGACAACTA CAACAATACA
 24361 ACAAAATTCTC TGCTTTAAAAA CTTCAATGT CTGCCGGGG CGCGGCTCA CGCATGTATT
 24421 CCCAGCACTT TGGAGGCAGA GGCAGGAGA TCACCTGAGG TGGGGAGTTC GAGACTAGCC
 24481 TGGCCAACAT GATGAAACCC CATCTCTACT AAAAATACAA AAAATTAGCC AGGCATGGTG
 24541 GTGGGCGCCT ATAATCCCAG CTAATTGGGA GGCTGAGGCA GGAGAATTGC CTGAACCTGG
 24601 GAGGTGGAGG TTGCACTGAG CCAAGATCAC ACCATTGCAC TCCAGCCTGG GCAACAAAGAG
 24661 CAAAACCTG TCTCAAACCA AACCAAAACA AAACCTCTAA TATCTACCA ATGTTTCACA
 24721 CAAGTATTG GGGATCTTC CAAATGGCCC TTATGGAGTT TTCCTTGCT GAGACCTAT
 24781 GCTCTGGCCA CACTAAACCTC ATTCACTCATC CCAGAAAGGC CTCAGCCTTT GTGAGCAAGC
 24841 TCTTATCTCC AGGCCTCTCA CAAAGACCTG TTCCAGTAGA AGCTCAGGGG AGCACACTGG
 24901 ACATTATTCC AACAAACCTT TCCCCACAGC TATGCAGCCA AATCTGCCAG CTCAGTTAAT
 24961 TAATTAAGCA ATTCAAGAGAT GAGGGTCTGC CCAGGCTGGA GTGCAGTAGC TGCGACCTCA
 25021 AGCTCCTGGG CTCTAAGTGA TCCCTCTTCAG TCTACCCAGA AGCTGGGACT GCAGGCATGT
 25081 GCCACCACAC CCAGCTAATT TTTTTTTT TCAGTAGGGA CCAGGCCAAC CTAGTCTTGA
 25141 ACTCCTGGCC TCCAGCCTTC CGAAGTGCCTG TAATTACAGG CATGAATCAC TGCGCCCGAGC
 25201 CAACCCGCC AGTCTTGTG GACATGGGGT CTGTAGTTTC TAGTAGGTT TTAGGTCTAG
 25261 GTTCTTACCC TCATGTTTA TAGTTAATT AGGGGAGGGG CTGTGTCTGT TTATCTGGGG
 25321 ATGTAGGGGT GGGCAGGGGG ATAGAGGGGA CTTCAATTAA TGAAACCAGA AGCAAAACTC
 25381 AGTTGAGGAC ACCGGTCACTG AGAGTGGCCT GATTATGGCC AATCTTACAT AATGTGTGAG
 25441 ATCTTGATAT TACCCCATCC TTGAGAGTCC TCTATAAAAGC TACAGGGACT TGGGAGCACC
 25501 TTTAATTACA GACAACCCAT GTTCCCTGTGG ATTATGATT ATTAGATTGC ACATGCCTAA
 25561 ATAAAGACAT CCTCTGCAGT CTTTGACAA TTCTATAAGC ATCTCTGAC TCCGCAATTAA
 25621 GACAGCTAAG AGATCTGTG TACTTCCCTC ACATATATAA ATAATTAAATCA ATAAAAATCA
 25681 TGGCGTGAAT AATTCTTTC CTCTACCGAT TTGAAGCTAT CCATTGGAA GACCAACTCTG
 25741 AAGAGATGAA ATAAGTCTTC TGCCAAAGAT TACCTATTAA TTACAAAGGA AAAGGGGAAG
 25801 TTTTGTTCCT CTCCGTGAAT TTGATTGAAA ATCGAGGGCT TTCTCGAATA GTTTGGCAT
 25861 CCAGGGTCAT TTTCAATTAA AAAGAGAAAA GTCATGTCAA ATATGAATT CCAGCAGATTA

Figure 8 (Page 8 of 73)

25921 TTCAGCACTA GACCCTGGGA GATTCTGAA AGAGGGTTT TGTTATACTC AACTTTCCG
 25981 GGTAAAACAA ACACAAATAC TCCTCCTCCA AGGGCGGGG GCGGTGCCTA GGTGATGCAC
 26041 CAATCACAGC GCGCCCTACC CTATATAAGG CCCCAGGCC GCCCGGGTGT TTCACTGCTT
 26101 TCGCTGGTTA TTACATCTTG CGTTTCTCTG TTGTTATGTC TGAAACCGTG CCTGCAGCTT
 26161 CTGCCAGTGC TGGTAGGC GCTATGGAG AACTTCAAAC CAAGAACGGA GGGAGGAAGC
 26221 CGGCTGGCTT GATAAGTGCAG AGTCGCAAAG TGCCGAACCT CTCTGTGTCC AAGTTGATCA
 26281 CCGAGGCCCT TTCAGTGTCA CAGGAACGAG TAGGTATGTC TTTGGTTGCG CTCAAGAAGG
 26341 CATTGGCCGC TGCTGGCTAC GACGTAGAGA AGAATAACAG CCGCATCAA AAACTGCCCTCA
 26401 AGAGCTTAGT GAACAAGGGAA ATCCTGGTGC AAACCAAGGGG TACTGGTGCT TCCGGTTCC
 26461 TTAAGCTTAG TAAGAAGGTG ATTCCCTAAAT CTACCAAGAAG CAAGGCTAAA AAGTCAGTTT
 26521 CTGCCAAGAC CAAGAACGTC GTTTATCCA GGGACTCCAA GTCACCAAAG ACTGCTAAAA
 26581 CCAATAAGAG AGCCAAGAG CCGAGAGCGA CAACTCCTAA AACTGTTAGG AGCAGGGAGAA
 26641 AGGCTAAAGG AGCCAAGGGT AAGCAACAGC AGAACAGCC AGTGAAGGCA AGGGCTTCGA
 26701 AGTCAAAATT GACCCAACAT CATGAAGTTA ATGTTAGAA GGCCACATCT AAGAAGTAAA
 26761 GAGCTTCGG GGAGGCCAAT TTGGAAAGAA CCCAAAGGCT CTTTAAAGAG CCACCCACAT
 26821 TATTTAAAGA TGGCGTAACA CTGGAAACAA GTTCTGTGA CAGTTATCTA TAGGTTAAAG
 26881 TTGTGATGCA GCTGAGTTGA AAAGGCTTGA GATTGGAGAA TTAATTCAAGG CCAGGCTTC
 26941 AGACCACCT GGGCAACATA GCCAGACTAC CATCTATACC AGGGGTCCTC ATTTCCCCGG
 27001 CCACCGACCG GTAACCGGTC CCTGTCCATG GCACGTTATG AATTGAGCCG CACAGCTGAG
 27061 GGGTGAGCGA ACATTAACCA ACTGAGCTCC ACCGCCTGTC AGGTTAGCTG CAGCATTAGA
 27121 TAGATTCTCA TAAGCTCAA CTGTATTGTG AATGGCACAT GCAAGGGATC TAGGTTTCAG
 27181 GCTCTTGTG ACAATCTAAT GCCTGATGAT CTGAGGTTGG AGCAGTTTA GTCCGGAAAT
 27241 CATTGCTCCC AGCCCTGCA CCCCCGGTC CGTGGTATAA TTGTCTTACA CAAAACGGTC
 27301 TCTTGTGTCA AAAAGGTTGG AGACTACTGG TTTACAAA AAGTAAATT GTCAAGCATG
 27361 GTTGGCACGC TCCCTTAGTC CCTGCACCCA GGCCTTAAAG GATACAGTGA GCTATGATGG
 27421 TGCTACCTCA CTCCAGCCTG GGTGACAGCG AGTCAGACGT TGTCTAAAAA CTTAAAAAAA
 27481 AAAAAAGTTA AAACAGAAAA AGGGCTTCTT GTCAAGAGACT GCCGTATATC TAGAGGTCCA
 27541 GGAACAAAAA AGTCTGATGT CCAATCCTGA AAAGCTCGAT GGTGCACTAG AGGAGGCTT
 27601 TACATGTAAG AGCATCTAAG TTCTGGAAAT GCCAGTGTCA GGGAAAGGGAA GTGGAGAGCA
 27661 ATTTGGCATIC CAAACATAAC TTGCTGATAC TTTTTTTTT TTTAACACAA GTACTACATT
 27721 CTAGTCTTTC TGTGGTGTCA TTGTAACAT TGTCTTAA TATGCTATCC ACTGACTTCA
 27781 AGGGATCAAT AAATAGGAAT CAAGGTGTCC CAGAATATGG ATTAGGGAG TTTTTTTGTT
 27841 GTTGTGTTG TTGTTGTTT TCATCTATT ATTATCCTGT AGCTGAAATT TAGAATTTTC
 27901 TTCCATTGTG TGTGACTGAT AGAAATAACA AATTGTTAGG TTATAGTTGT TGCAAGAAC
 27961 TGGAAATCGT GCTTGCTTAT TTCCGAAGTA CTATTAGGTA TATCAACAAA AACACACATA
 28021 TTACGGTCAA GTGGTTGAT AATTATTAA ATATTATTGG TCTAATACAA TTGTAACCC
 28081 ATGAATTACT TTAAGTATCT TATTTATGAA AAGAATCTGT AAGTTCATC AGACTACCAAG
 28141 AGCATAACCGA AGACTGAAAA ATTTTAAGAA TCCAAACCTT AATGGAAATG TTGGAGGCTG
 28201 CCCAATTAGG TTCTGAATT CACCTTCCTG AATCACAAAC TTGTTTAAAC TCTCAGTCTG
 28261 AGGTAAACTA CGTTCTCTT TAAACAGACA TAGTTAATT TTCCCTTGAT TTTGATTAA
 28321 GTATTCTTAC TGATCATCAT AAAAAACCAA TGCTAATGTT AGTCTACTTT GGACCATGGT
 28381 ATTCGAGAA ACTTGAAACA AGTCCCTG CAAAACATG CATTGCATTA TTTCACATAC
 28441 ATTTATGTT TCCAGACGGT TCAATAGTAC CTCACTTTTC TGAACATTATT TGTATAGTT
 28501 GGCATCTTT TAAAAATTGT GTCCTATAAT GAAAGGTTGT AACACATTATG TTTAAATTT
 28561 GTATAGATAA AATCAACAC AGACCTTCC TTGCTTGGAT GTAATTGCCA TTGTTCCCA
 28621 ATGAGTTCCG AATTACTAGG ATTGTGCAA AATATGCCTC ACTTGCCCTGA CATAGCAGAG
 28681 AGCCATTTCG CCTAAATGCT GTGCCAGCA ATGGACTGTC ACCAGATTCT CATCACATAC
 28741 AGTGGAGGATG AACAACTAGC CTCTCCCAGC AGCTGGCCGG TCTCTCAATA ATATGGACT
 28801 CCCTCAAGAT GGCTTCCCTGC ACCTTGCCTC CTCTAGCCTT GTATGTATAC AAGGCTAGCA
 28861 TGCCTGGCAT ACATAAGGTT AAAAACAAAAA TCAATAAGTT ATGGTTCTTC CTCCAGTTCT
 28921 GGGGATTATT AGACCACTTT TTGTTTGT TTGTTTTGG ATGGAGCCTC GCTCTGTAC
 28981 CCAGGCTAGA GTGCAGTGGC ACAATCTCGG TTCACTGCAA CCTCTGCCTC CTGGGTTCAA
 29041 GCAGTTCTCT GGCTCAGCCT CCCACGTAGC TGGGATTACA GGTGCCGCC ACCACGCC
 29101 GCTAATTTT GTATTTTAG TAGACGGGGT TTCACCATCT TGGCCAGGCT GGTCTTGAAC

Figure 8 (Page 9 of 73)

25/162

29161 GCCAGACCTC GTGATCCACC CACCTGGCC TACCAAATG CTGGGAATAC AGGC GTGAGC
 29221 CACCGCGCCC GGACTTAGAC CACTTTGTT TGCCAATAG GACAACAGCC ATAGAACCC
 29281 CCGCAAATGA GAGCTTGTCC CTAAAGATGC TTTATTTACA TAGCTGTGTG CCGCATGAGC
 29341 CAAAAGGTGA TAACCTTTGT TCAACACGCG CCTCCAGCCC TTCGGTTAAG TCCAAAGTAC
 29401 CATTCTTAGA ATGCTCTAAA ATACATAATT TTTTTTTTT TTTTTTTTT TTTTTTGAG
 29461 GAGTCCTCTCT CGTCTCCCA GGCTGGAGGG GAGTGGCGCG ATCTCGGCTC ACTGCAATCT
 29521 CTGCTTCCGG GCTAGCTGGG CCTACAGGTG CAGACCACCA CGCCCGGCTA AGTTTGAT
 29581 TTTTTTGTT AGAGGGGGTT TCACCATTTC GGCCAGGCTG GTCTCGGATT CTTGATCTCA
 29641 AGT GATAACAC TAGCTTGCG CTCCCAAAGT GCTGGGATTA CAGTCGTGAG CCAC TGCGCC
 29701 CAGCAAAATG CTTTTGTTGG AGCCAATCAC TTTATTAGCG CTTACCTCTC TATGCCCTACT
 29761 TTATGCTTTG AAATTTGTC ACAGTGTGGC CGGT CATGGC AAACACAATT CATTCTTATG
 29821 CAGGATGTCA CGGTTATTTC TGTCATCCAA ACTCATTCTC GCAACGCATT TCAGCTCTT
 29881 AAACGACTTT GTGAGCGGCC CTGAAAAGG CTTTGGGTT TTTTGTTTT TGTTTTTGA
 29941 AGTTCTCAGG AGACCGCGTA TTCTTAGATT CAGCCGCCGA AGCCATACAG AGTGC GCCCC
 30001 TGACGTTTTA GGGCATATAC TACATCCATG GCTGTGACAG TTTTGCCTT GGC GTGCTCC
 30061 GTATAGGTGA CGGCGTCTCG AATAACGTT TCTAAGAAAA CCTTAAGCAC ACCTCGAGTC
 30121 TCCTCATAGA TAAGACCGGA AATGCGCTT ACGCCACCGC GCCGAGCCAA ACGGCGAATA
 30181 GCCGGTTTTG TAATGCCCTG GATGTTATCC CGGAGCACCT TACGATGGCG CTTAGCACCA
 30241 CCCTTCCCCA AGCCTTTTCC GCCTTGCCTG CGACCAGACA TGATTCTAT CGCAGTGGAA
 30301 GGTATGAAC GAAACAGTTT CTTAAATACA AACTTGGCGG ACCTGATTGA AAACAACATG
 30361 AGTTGGCGCG GTTTTTTTT TTTTCAAT TTGGTCACCA AGTGGTGGGA GCAAGAAAAA
 30421 CTGTTTCATT ATGGTTCATT GTTTGATTG GCCAGTGACA GCTTGCCTT TGTGGGAGTG
 30481 GAAGGGTGTG TGCAAGTTGA ATGCGCTGTA TTCTGTCACTT CTTAATGACG CTAAGCATAG
 30541 CCCCATTCGA CATTCTTTT TATTTCAC TGTAACTAA TAAATTACGG AATAGTTAT
 30601 TGGGGAACAT ACAAATAATG TTTAAAGGAG GTCAAGATTTA TAGGTCAAGG GATTTACCT
 30661 CCCAATCATT TTAATATTTT TATTTAAACC AGGCATTTG ATGGCCTTCT CTGTGCTGGA
 30721 CAAGGTATAA GTTTGGCTAT GAAGTTTCAC TCCTAAAGAC CCTATGTTTT GGGAAAGGCAA
 30781 AAAGGTAGCC AAATAATTGC AAATTAAAAC CTCATAAGTG CAAACTTCTT CCTCGTCACT
 30841 TTCCCTATCT CGATTCAAAT ATTGTGAA TGACTCATT TTCTGAAAAA GTCTGAGAGA
 30901 GACAGGAAT ATAAACTTAA GTCTGGATAA TATGTTTCC CGGGACGCTC TTCTGGTCT
 30961 GCTGTGCCTG TTTGCTGTGC CTGAAATCC AAACACTCTT CCCTCCCTC CGTTTTAAT
 31021 CCCCTTCAA CTTGCTACAG CTTTAGAGAA AAGAACATTC GTTTGTACA GTTGGGATT
 31081 AATTGAAGTG TAGGGCTAAT ACTTGATTA GGTCATTACA AAATCTACAG GGTCTTCCTC
 31141 TGGGAGGTTT TTGTGATAAG ATTATTGGTG TAAAATAAG GCTAATCCCC TTGAAAATA
 31201 AATAGAATAG CAGAATTGGG TCTGAATGTG GTTGAAGAA AGGGACTTCT CAATTCAAAA
 31261 TTTTATTCTT AGCTTCCTGC GGGAGCTTC CAGAATGCC ATAAGATCCA CTTTGTTTA
 31321 AAAAACAAAA ACAACCCAC CCACCACTCT CTGTTAATA AATGAATTTC TATTGGGAAT
 31381 ATTAGAATG GGGCTGTGGC CTGTGAGAGA CATTATATAG TAACCTCAGA CTTGCTCACA
 31441 TGAAGAGAAG AAATCCAGGA ATGGAGAAAA AAGACCCAGG AAAGGCCAGA ATGCTCTACA
 31501 TGTCAATTG TTTGTATCAC TTCTGAAATA ATTGATTACA TTCTCTGCC CCAAATTGAG
 31561 TTCTTAGGTT CTTCCACTCA CTGTCACAT GCCACAAACAC AGACCTTATA ACTAGAGACT
 31621 TAGCTAGGAA GAAATGTCAA ACATTACAGA GAAAAAATGC AGAGTGTGAG ATCATAAGTA
 31681 AAACTCTGAA ATCTCAACAT GCCTTTAAT TCATGAAAAT AAAAATATA GCAGCATATG
 31741 CAATATGACA ATTCTCTGAA AACATACATC ATGTGAACTA CCCTGGAACA CATCTGCCA
 31801 AGTGCCTACT TCATTTAAC CAGAGGTCTA GGATGCCCTT CCTTTATTTC GCCTATTATA
 31861 TCATTTATAA AACCCATT TTATTTGAT ATTATTTATA CTTTCTATTTC CCTGCTCCTA
 31921 ATATCTCCTT TCTAAACTTT TCTCAATGAC AGT GACTCAA AAACAATGAA TGT CAGAACAA
 31981 AATATTTAAA GGATCTGTAC ATGTAGATAT ATATTTAA AATGGATTCT TCCACTCTGC
 32041 GAAGAATTCA GGCATACTCA ATCTTATGGT TAGGGAGAGA TTAGGCTCAC TCGCCTAATC
 32101 TGTATGGCTT CTCGTTCGCT TTCCATTCA CCTTCCTCTC ACCCATCAGA TCAAACACTCAT
 32161 TCATTGAACA AGAGACCTAA GCCCTTCAGA TTAAAACCTCT GCAAACAAAGT TGTGGTTGAG
 32221 AGGATAACATG AAGCATTCAA ACAAAATAAT CTATGATATT AATCAGAGGT TAATCTATGA
 32281 TATTAATCAG AGGTTAATGC AGTGGCTCAC GGCTGTAATC CCAGCACTTC AGGAGGCTGA
 32341 GTTGGGAGAA TCGCTTGAGC TCAGGAGTTT AAGACCATT TGGGCAACAT AGCAAGTCTT

Figure 8 (Page 10 of 73)

32401 CATCTCTACT TAAAAAAA TAACCAGAGG TGTTATGAAA ATATAAATTG TCCAGAACTA
 32461 CCCTCCACAA ACTAACTCTC TCAGAATATT CGATATGAGG AATGAAATAT GGTGTGTGTG
 32521 TGTGTGTGTG TGTGTGTATG TGTGTGTGTG TGTGTGTGTG TGCACCTATA TATGGCACCT
 32581 ATATATTCAA CAAACAATTG TGATAATTGG CCAGGGTTGA GAATGACTAG CAGCCCAGCA
 32641 TACACTATCA GTTTTAAGTA TATAATTGCG CTTTAGTAAA ATGTAAAGAA ATCCCAGAGT
 32701 AGAAATACTT TTAAGCTATA TTACAGGTGA GAAAATGCAT AAGTATAGTC TCACCCAATC
 32761 TAGACTATGG GGGCTTTATA ATGTCACAA ACAGTTGTTCC AGGCATTTGG GGACATCACC
 32821 ACTGGTCTTG GGCAAGAAC TCCCTAGCC AATGGCTGAT TTATCTCACT CCCATCTAAG
 32881 GCTTCACTGC ATTTCTCTT TTCAGCAAC TAACTTATT AAAAATATCC ATTTTCTGAT
 32941 TCATTTTTT CTGAATTAAA CTGTCAGTAC CATTGGCACA CCTTTGGTTC CGTAGCATAC
 33001 CTGTGTCTCT GCTGTGTTT TTTTTTACCT CCACTCCTTA CTTTCTAGA AAAAAATCTC
 33061 TGCTTTTCTT TTTCAGTTA AATTATTCA CAAAAAGTTT TCTTGACTTG CACTTCCTAG
 33121 GCTTGCTGTC CTTGTGTGGG CACGCTCCA TAAACACTAT TAATACACTT CGATTTGTTA
 33181 AAAATAAAGA TATCTGGACA GAAAATTCT TTTCTTTTT TAAGATTTA AAATTTTAA
 33241 TGTTTATTCTT TTTCCTAGAC TGAGTACAG TGGACCATG ATGGCTCATG GTAGCCTACA
 33301 CTTCCCCGGG CTCAAGTGAT CCTCCCACCT CAGGCCCTCA AGTAGCTGGG ACTACAGGTG
 33361 TGCACAACCA CACCTGACTA ATTTGTTA TTTGTTGTT TTGTTTTG AGATGGAGTT
 33421 TCGCTCTTGT TGCCCAGGCT GGAGTGCAT GGCGGGATCT CGGCTCACCG CAACCTCTAC
 33481 CTCCCGAGGT CAAGCAATTG TCCTGCCTCA GCCTCCCGAG TAGCTGGGAT TACAGGCATG
 33541 CATCACCAACG CCCAGCTAAT TTTGTATT TAGTAGAGAC GGGGTTCTC CATGTTGAGG
 33601 CTGGTCTGGA ACTCCTGACC TCAGGTGATC TGCCCGCCTC GCCCTCCCAA AGTGCCTGGG
 33661 TTACAGGGCT GAGCCACAC GCTCGGCCAC TAATTGTA TATTTGTAG AGATGGGCTT
 33721 TCCCTGTGTT GTCCAGGCTG GTCTTGAAATT CCTGGGCTTA AGTGTACTGC CCACCTTGTC
 33781 CTCCCAAAAT GCTAGGATTA CTGGCGTGAG CCACCAGGTC TGGCTGGAAA GATAATTCT
 33841 AACATTATCC TCTCTAAAC ATTTGTTCA AAAATTTCAC AAACATGAGA GTAATTAAAT
 33901 TTGATTTCA AAATCCCTT GAATACTTTC TTAATAGCAC ACAGAAAGCA CAAAGTATT
 33961 TACATTGTT TTAATGATGA AATTGTGAAC CCAAACCTAC ACAAAAGAAA ACCCGTAACA
 34021 TTATACCCAT ACTTAAAACA GATGCCCTCA TATACATAGT AAAACTCTTG GGGGCAGTAG
 34081 TGAAGTTGGT TATTTACTGT TTTATGAAAG TGCCATTAG CGGGGTGCAG TGGCTCATGA
 34141 CTGTAATCCC AGCACTTGG GAGGTGAGG CAGGCTGATC ACGAGGTCAAG GAGTTCAAGA
 34201 CCAGCCTGAC CAAAATGATG AAACCCCTGTC TCTACTAAA ATACAAACAT TAGCTGGCG
 34261 TGGTGGTGTG TGCCTGTAGT CCCAGCTACT CAGGAGGCTG GGGCAGGAGA ATCGCTTGAA
 34321 CCTGGGAGGC GGAGATTGCA GTGAGCCAG ATCGCACCAC CGCACTCCAG CCTGGGAGAC
 34381 AGGGCGAGCT CCGTCTCGAA AAAAAAAAC AAAAAAGTGC CGTCATAGTG ACTCAGTTT
 34441 AAGGAATAAA TCAAGGATAT TTAACTCAAT AGACTACAGT TAGCTAACGT GACTTGCAC
 34501 GAAAGTTATA CGAATATTGG TACTTATTCC CCTGCCCTG AAGTATGAAAT TAAAGACTCC
 34561 AAAATTCTTT TTAGAATCTT CAGAGTAAA GCTAGAATT GATTTTTTA AATAATAAA
 34621 AAATACTTTG TATCTAAATC TGGTGTATAA AATAACTTGG TGGATGATGC TTCAAGGCTA
 34681 TCCATCCCCA AATTCTCCC TGAATGATAA AGAGAATAAA TGAATATGTC AATTCAAAAG
 34741 TTAGAAATTG GGCCGGGCAC GGTGGCTCAC TCCTGATAAT CCTTCGGAC GCTGAGGTGG
 34801 GTGGATCGCA TGAGCTCCGG AGTTCAAGAC CAACTGGGC AACATAGCCA GAACCCGTTT
 34861 CAATAAATAA TAGAAAAAAA TGAGCCAGGC GTGGTGGTCC CAGCTACTCA GTAGGCTGAG
 34921 GTGGGAGGAT CACTTGAGCT CAGGAGGTCG AGACTGCAGT GAGCCGTGAT CGCAGTACTG
 34981 CACACCAGCC TTGGTGTCAAG ACTGAGACCC TGTCTCAACA ACAACAAAAC AAGTTAGAAA
 35041 TTTGGCTGGG CGCGGTAGCT CACGCCGTGA ATCCCAGCAC TTTGGGAGGC CAAAAGGGC
 35101 GGATCATTG AGGTCAGGAG TTCGAGACCA GCCTGGCCAA CATGGTAAA CTCCATCTCT
 35161 ACTAAAAATA CAAAAAAAT TAGCCGTGCA TGGTGGCATG CGCCTGTAGT CTCAGCCACT
 35221 TGGGAGGCTG AGGCAGGAAA ATTGCTTGAA CCCAGGAGGC AGAGGTTGCA GTGAGCCGAG
 35281 ATCATGCCAC TGCATTCCAG CCTGGGTGAT AGAGTGAAGAC TCCATCTCGA GAAAAAAA
 35341 AAAATTCTGT ATGAAGTGAAC CAAAATATCC TTAAATTAA AAATACATCT GAAAGATATT
 35401 TCAAAATATT TAGGAAAAAA ATTATAGGGA TCAGGCAAAT TCTGAGATTC CTTTTCCCT
 35461 GCAGCAAACA TTAGGAGTGC TGCTGTTCT AAAAACATGG TAACTGTTGC CACACCGTAT
 35521 GTTCCCTTGG CTCAGACATA AGGTTGTGTA GTTGTATTG CAGAATAGCT AGAATAAAA
 35581 TCCAGCACAT CATTCTTC AGCAAGTTAA CTAACCTCTC TGTGCCTTGG TTTCATAACA

Figure 8 (Page 11 of 73)

27/162

35641	GCAACATAAG	CATAACAGAA	TAGCAGCAAT	AGCTCCTACC	TACCTCATAA	GATTCTTGG
35701	AGGAATTAAA	TTAAGATTCA	GAACACAGCC	TAATATCTAG	TAAGTAATAA	TAATTGGCTA
35761	AAAAAATTTC	CTTAAGATTA	TATATATTCA	TGGGGTACAA	GTACAATTTC	GCTACATTAA
35821	TATATTGCAT	TGTGGTGAAA	TCAGGGCCTT	CAATCCATCC	CGGAAAAAAA	AAGTTTTGA
35881	AAAGATTCT	GCCATGGAAA	ACTTTAATG	TACAAATTCA	TCCATCCAAG	AAATAGAAAA
35941	TATATAAGTA	TCAACTCCAA	ATCCACCATA	TCTATCTCTT	CTACACCTTA	AACAATTACT
36001	CAGAAATAGA	ATGCTTGAGA	TACCAGAATG	CATGCATATC	AAGTAATAAA	TGCATGCAGG
36061	ATGTCAACGC	ATCCTAGGCT	TTCAAATAAA	ATTGTCTAC	AAAATACTTT	AATATTGTAG
36121	TAACATTCTA	CATGTTAGAG	TGTAGAAGTT	AATCGCTGAT	GCAAAAAAAGG	AAAAGAACAC
36181	ATTATAACCC	AAGCTACAG	AGAGAATCAC	AATTACAAAT	ATCAGCCTGC	ATGTGAAAAT
36241	CTTTAATTG	AAAGTCAGAA	ATATTTAAAT	GATAGTCATT	GTTAAATCAG	ATTGTGGTTT
36301	GAAAAAAAGT	TAGTTAAAAA	CTGAGTTAT	GAAAATTTG	GGGATTTAG	AGACAGTGT
36361	TTGTTTTAA	ATGTGTGTGA	GTTTGTGAAG	AATGTTTAT	AAAATACTGA	CAGTATTATA
36421	AGATGACATT	ATTATAATAC	AACATAAGAA	TTTGGCCTG	TACCTCTCAG	CAGTCCTCAA
36481	TCACCTGCTG	TACTTGACTC	AATGATTATC	AGAGTGGTTT	GTTTCCCTTC	TGTTGTGTT
36541	CCAGTTCAAGG	CAGCTCAGCA	ATGGCCTGTG	ATTCCAGCAA	TTCAAATAGC	TGGTAAGTAG
36601	TTTCTGTTT	GTTCCTCAA	ATTTTCAGGG	GCTTTCTCT	ACAAGTGATT	TCCAGTGCAC
36661	GCCCCCTCCAC	CCATTCTTTA	TTCCCTTAC	TTCAAGGAAAA	CCCTCAGCGC	TGCATCTCTG
36721	GTCACCGGAC	CACCGTGGTA	CATTTACCTA	TGGCCACCA	GTGTCACCC	TCTCTTACT
36781	ACCATGGTTT	GTGAATGGTT	TTGCCAGAGG	TGAATAAGAA	TTTAAATG	AGGTCTTGA
36841	TTTTTCAAAT	GTAGTTGACC	TTAAGAATT	ATGAATAAAAG	CCAGAAAAAT	TAAGCTTAA
36901	AAACACCGAA	AGAAAATGAG	GACTTAAAT	TTCTATTAAA	AAAATTAACA	GGCCACAGTT
36961	GCTGATGTTT	AGTAAATGTG	TTAGTGAAT	GTGTTACTGT	GAAGACTGGG	GTGTTCTTG
37021	AAATCTCAGC	CCAGGTGAAA	TAAAACCAAT	ATAAAACAAA	TGCTTACCTA	ATAAATTAA
37081	TGTAACATAT	TCCTTATGAG	GTAGAAGAGT	AAGTGAAGCC	TTATAGCAGT	CTGCTTTCA
37141	TATAGTAAGA	TATTAAGAGA	GAAATAATT	GTCAATATGCT	TTCAGAATGG	TTGCTGGTA
37201	AAATAACCAA	TGTCTTACAA	CTTAGACGAC	AATGTCCTA	GAGTGAAGAA	ACACGATTAA
37261	TTCGGCTACC	ACAGTTGAAT	GAAAATATC	CGTAAGACAA	AATGTAAGA	AATTAGAAGC
37321	AAAATAAATG	TCTCCAAAT	GACAAAGCGA	TTAAGTATAT	ACACAAGATG	ACAAGAACT
37381	TCAATAAAAT	CATGCAGTAT	ACAATACAAT	ATACATTAT	TAAAGTATAT	GCATTTTAA
37441	TGCAACAATA	ATACTAACAG	GTAATAGACA	AGTTGTTAAT	AGTTTTTCAC	TGGCTAATT
37501	AATAACAGCT	TTAATTGTAT	TCATTTATA	GCTTTCTAC	AATGAGCGTA	AATCACATT
37561	ACTTTTTCT	ACATAACTTT	TCTAACACAA	AAAAAAAGAAA	ATGGTTAAA	AGAAGAGATG
37621	AGATATCTT	GCTAAAATT	AATGCCTAAA	GAAGAAACTT	CTGAGCTGTA	TATGGTATCC
37681	TGAAGCACCT	GCCCTTCAAG	ACAGAATGCT	TGTACCACAT	TTATGCAGCC	AAGTGCATGT
37741	AGTAACATAA	AGTAAACACA	TGCCATCTGG	ATATATATAT	TAAGACTCTT	TTGACGGCTG
37801	GGCAGGGTGG	CTCACACCTG	TAATCTCAGC	ACTTGGGAG	GCCGAGGCAG	GCGGATCACG
37861	AGGTCAAGGAG	AGTTCGAGAC	CAGCCTGGCC	AAACATGGTGA	AACCCTGTCT	CTACTAAAAA
37921	TACAAAATT	AGCCCCGCAT	GGTGGTGAC	GCCTGTAATC	CCAGCTACTT	GGGAGGGCTGA
37981	GACAGGGAGA	TCGCTTGAAC	CTGGGAGGCA	GAGGTTACAG	TGAGCCGAGA	TCATGCCATT
38041	GCACCTCAGC	CTGGGCAATA	GAGTCTCAA	AAAAAAGAAAA	AGACTCTTT	GAACATGGTG
38101	AACTGATTC	CCAGAATCTA	GCAATTCTG	AATGCTCTGG	TTAGATTTT	TTTTAATGT
38161	GCACCGGAAC	CCCAGTGGCT	CCATGGAAGG	ACCTGGGCAT	CCTCTAACCC	ACTTGGTGGC
38221	TTCCATTATA	CCATCTCAA	ATGAGAGAGC	TTACTCCACT	TCATTGAGGG	AAATACCACC
38281	AGAGTTCTGA	CTCCAGAGGC	ACTGGCCTAG	GGAGGACACC	GTGTGTGAAG	CCCAGCAGGG
38341	CCACTAGCTG	TCCCCACCAA	TTACAGTCT	TGCGTAGGGT	CCAAAGAAAT	GAATGCCAAA
38401	GAGAGCAACA	GAGGAGCAAG	GGAGTCACAT	TCCAGGACCT	TCCTTCAGGG	ACTTTAAAG
38461	GAAACATGAC	AGCTGAGGAT	CAGTTGGTTG	TTTCTGCTG	TTCCCTTCA	TGTGATTCAA
38521	GCTCACTCAG	AAGAAACACA	ATGAGACAAG	AGAAGAGCCA	TCTCCTCCT	TCTCTATTAA
38581	TTCTAGGCAT	CTAAACTACT	GAATGTAGTG	GTGTCTGAGA	TGTATCAAAC	GGTCAGATTG
38641	ACTGAGTTTG	AAACCTGTTT	CTATCACTGA	CAAACATATGA	GATACTCTAT	ACTTCACCTT
38701	CTTTTTTTTT	TCATTTTTTT	ATTTTATTT	TTATTTTTT	GAGATGGAGT	CTCACTCTGT
38761	CACCTAGGCT	GGAGTGCAGT	GGCGCAAAC	CGGCTCACTG	CAAGCTCTGC	CTCCTGGGTT
38821	CATGCCATT	TCCTGCCTCA	GCCTCCGAG	TAGCTGGGAC	TACAGGCAGTC	TGCCACCACG

Figure 8 (Page 12 of 73)

28/162

38881 CCCAGCTAAT TTTTGTATT TTTATTAGAG ATGGGGTTTC ACCATGTTAG CCAGGATGGT
 38941 CTCGATCTCC TGACCTCGTG ATCCACCCGC TTGGCCTCC CAAAGTGCTG GGATTACAGG
 39001 CGTGAGCCAC CGTCCCCGGC CTACTTCACT TTCTTCATT AAAAAGAAA TGGGGATAAT
 39061 AGTACCTATC TCATAGAATT ATTGTAAGAA GTGCATGCAG TAATGCATGT AAGTAGGTGC
 39121 TCAGAAGAGT CGGACACGAA GTAAGTGCTT TTATCATCCT TATCATAATT TTCATTATCA
 39181 GAACAAGGGAG AGACCAGGTA GAAAATTATT GTGATTCTTC AGGTCTGGAA TACTAGAGTA
 39241 GCATCCCAA TGAAGGCACC ATTAAACTTT GCAAATCTGT ATGACACCTT CATGCCAATT
 39301 AGAAAAAACAA CCTCTTCACA ACCCCTTCA AGATATTG CTCCTACCTG CTAAAAACAC
 39361 CCATCATACT ACCCACAGAT AGCCATGATG CTTTTCTGG GACAGGTGCC TCTTCCATTC
 39421 GTGCAGTGT AAGGCTTGGT GACAGATGAG TTACTGGGTA ACACAGAGAG AGGATTCAAA GGAAAAGTTG
 39481 AACGGGTCCA GAAAATGCAT AGATACATGT GTAAAAATCT GGTAAGGTTA TGACTAGCCA
 39541 CGTCCCAGGG TTCAAAGCTT TTCTCAGATG TTAAATGAA TCATGTAAGT CCCCCAAATT
 39661 TAAGGAGTCC TCTTCCAAA ATAGGAATG AAATGACATA GGTGTATGTC TCTGAGGTGA
 39721 CCGAGGAAAT GAAGGAAGCC TCTAGATGCA GCTTGAGGTT CATGAGAGAC AGTTCCAGGG
 39781 GAGAGGTAC AGCTAGGGAT CACCGGCATG CAGGAACCTCA GAAACCTAAA TGGGGAAATC
 39841 TTTTGAGGA AATGAACAGA GAAGGCTAAA ATCAAGGAGT TCGTCAGGCA ATTTCTATGT
 39901 TTAGGTTCAA CTCTCTCTG AAACATGAAG AGTCATAAA TGCACTCCCT CTTTGAGTCT
 39961 CTAGTTTGT CTCCCTCCCA CAGTGAGTCT GCAGGCTGCG TGTCACTCAC GTTCAGCTAA
 40021 GACGTAGTGC CCCATGGCTC CTCCTGTGGA GACAAGAGAC CCAGGAAAGA GGCATCACAA
 40081 ACCTAGGCAC CATCTTGCT CTTCTCTCTT CCTTATTTTC CTCATTCAAC CATCTCAATT
 40141 TAGACCTGGG CACTATTGGA TTCAAGAAC CATTATCTCT CATCTGGAAA TGCTTATTGG
 40201 CTTTCTAATC GGTCTCCCTCA CCTCTCATCT AACTTCTTAA CAACACATTC ACCATATAAG
 40261 GGAGATCGT GTCCTCCCTT CTTAGGATCC TTCAATGACA CCCCAGTGT CATAACCCAA
 40321 TATCCCAA GACCCCTTGGG CTCTGTATGA GCTGGCTTCT TTCTGATTCT CTTTCCCTA
 40381 CACCAAGAT GTTCAGGGG TAGAAATGCA TAATTGGTGA GTGATAGCTA CGCAAACCTCA
 40441 GGGTTAACGGT ACAGTAATT TTTCTAATCT CCCAGTATGC CTTATACTCT CCTACTTGGC
 40501 ATGGTTGCTC CGTCTGTGT GACCTCCCAT CATCTTCAAC CTCACCTAAAT GGAATCCAGC
 40561 TTCTCCCTCA AGATCCAGAA GGCTATCTG ATCCCCAGCT GAATGTGATC ATTCTTTCT
 40621 TTGACACCC AAGCATTTGC TTCTGCCTG CTTAGGACC TCATGGGTC TTCTTTAACT
 40681 ACATTTACTT GCTATCAATT TCATCCCTA CCAGATTGG GTTCTGAGAA TAGCCACAGT
 40741 GACTTCTCAA CCTCAAAGCC CCTGTACTAC CTTAACACGC TCTTGAAAAA TAGTAGGTGC
 40801 TCTGAAGATG TTTGTTGAAT TAGAGACTTT CATTCTGGGG AGAACCAATTA TTTTCTGTCT
 40861 CCCAGGGAGC TGCTGGTGC CCCAAAGAAAT ATAATGAGA AAAATGCTTC CCATGGATGC
 40921 CAGATCCCT CTGCCCTCT TCCCACGTG CCCTGGGGCA GAGGTACTAA GAGACTTCCC
 40981 CCTTGTCCCT ACTCACTTGA ACCCTGCCCT TTCTTAAATA TTATGAACAA AATTCCAATG
 41041 AACAAAGATGA CGACAAAAAC AGCAATTCCA CTGATGACTC CAATGACTAG GGTGCCAGAC
 41101 GGTGAGGGCT CTAAACAGA AAAAGCAAGT TAAAGCCTT GATTGCCACC CTCAGCCCAC
 41161 CCCCTAACAA AGAGCAGATC CTCATCTCAC TGCCATAATT ACCTCCTCAG GCACTCCTCT
 41221 CAACCCCCAA TAGATTTCT CAGCTCCTGG CTCTCATCAG TCACATACCC CAGATCACAA
 41281 TGAGGGCTG ATCCAGGCCT GGGTGTCCA CCTGGCACGT ATATCTCTGC TCTTCCCCAG
 41341 GGGGTACAGC CAAGGTTATC CAGCCCTGGT AGGTCCCATC CCCATTGGGC AATACGTCTT
 41401 TAGGTTCGAA CTCCCTGGCA TCCATTGGCT GCTTATCCTT CAGCCACTTC ATGGTGATGT
 41461 TCTGGGGGT AAGTGTCAAG GCCGACACC GTAGAGTGGT CACTGAAGAG GTCACATGAT
 41521 GTGTACACCT CACCAAAGGA GGCACCTGAC AGGAAAGAGG AAGGATGAGG AGAGGGATC
 41581 TGTTCACCCCT TGCCAGGAAG ACTGGAACCT TCACCTCCTT CTATAGGTTG GAGGAAGGAA
 41641 ATACCCCTTT CAGAAAAAAA CAAGCTACAG GAGAGACACC ATTTTGTC CTAAGATTGG
 41701 ACTCTAACAC AGTGTCACTT GGAGAGCAGT CAGATCAGCT TGTTCTCTC ACATGAAAT
 41761 ATACATATCT GTTACCCATG TTCTTGTT TGATAGATAA AATTGCCCTT TATGTGCATT
 41821 GAAAATGATT GAATACAGAT GGTCACTTC ACCTGGGTCA ACCTAGGAGG CATTGTTATA
 41881 AGAAGCGGAC TTGTAAGATA GGTAGCTTC GTGATTATTG CTATGTTCTA TGAAAGAAAC
 41941 TTTAACCTA AAGGATTCTT CTACTCTGAT AAGTGGCCTC ACTTGATATT TTGTCCTGGT
 42001 ATTCATATGA TAGCTGAGAT CTCTGAATTG TCTTTTTTTTTTTTTTTTTTTTTAAGAT
 42061 GGAGTCTCAC TCTGCTGCCT AGGCTGGAGT GCAGTGGCAGC GATCTGGCT CAGTGCAACT

Figure 8 (Page 13 of 73)

29/162

42121 TCCGCTTCCC AGGTTCAAGC GATGCTCCTG CCTCAGCCTT CCAATTAGCT GGGACTACAG
 42181 GTGCGCATGA CTGTGACCAAG CTAATTGGG TATTTTTTA GAGACGGGTT TCACCATGTT
 42241 GGTCAAGGCTG GTCTCAAACCT CCTGACCTTG TGACCACCCG CCTCGGCCTC CCAAAGTGT
 42301 GGGATTACAG GGGTGAGCCA CCGTCCCCGG CCTTGACATT TCTGAATTAA TAACAGGTAT
 42361 AAATATACAA AAGATTATTG GTTAAATAAA AAGCAAGGGC CATAGACACT TCCCTTGAG
 42421 CCATATGCAT GGAGAAAAGA ATTAAACCC ATGACTTGTG GCTGTCTCAT ACATCTCAAT
 42481 TATAAGGTAG AGACTCTAGG ATTGAGAAAG TCCCTTCCC GAATTGGAG AGGCACACAG
 42541 CCTCAGCCAC CTCTGAAACT CCAACCAGGG ATTCCGTGCC CTGCAACCTC CTCCACTCTG
 42601 CCACTAGAGT ATAGGGGCAG AAGTGTGTT CCACCATACC TTGTTGGTCC AAAACACCTC
 42661 TCCCCAGCTC CAGCAACTGC TGCAGCTGTG CAGGGCAGTC CCTCTCCAGG TAGGCCCTGT
 42721 TCTGCCTGGC CGGAATCTTG TGCCTTCCC ACTCCAGCTT GGTGGGCCAG GCCCTGGGTT
 42781 CTGCTGCTCT CCAATCCAGT GTGTCAGGGC AGAATTCAAG GTGGTCCTGC CCATCATACC
 42841 CGTACTTCCA GTAGCCCTCG GTACTGTTGT CTTCTTGAT TTCACAGCCC AGGATGACCT
 42901 GCAGGGTGTG GGACTCTGGA AAAATCCCCA GCCTTGTAA CTGCAACCAA AGGAATAGGT
 42961 CCCTATTCC ACCATCCCCA AGGACCAAAT GATCTCAGGA AGCAAATTCC TTCCCTCTTC
 43021 CCTGCTCCC CAAGACCTCA GACTTCCAGC TGTTTCTTC AAGATGCATG AAAAGATGAA
 43081 AAGCTCTGAC AACCTCAGGA AGGTGAGGCC CCCTCTCCAC ATACCCCTGC TGTGGTTGTG
 43141 ATTTTCCATA ATAGTCCAGA AGTCAACAGT GAACATGTGA TCCCACCCCTT TCAGACTCTG
 43201 ACTCAGCTGC AGCCACATCT GGCTTGAAT TCTACTGGAA ACCCATGGAG TTCGGGGCTC
 43261 CACACGGCGA CTCTCATGAT CATAGAACAC GAACAGCTGG TCATCCACGT AGCCCAAAGC
 43321 TTCAAACAAG GAAAGACCAA GGTCTGCTC TGAGGCACCC ATGAAGAGGT AGTGCAGAGA
 43381 GTGTGAACCT GGAGACAGAG CAACAGGCCT TAACCATGTG TAGTAGGAGG GGAGCAGGAT
 43441 GTTGAGGCTC CACACACCTG CATCAACTCA TACCATCAGC TGTGTCTGGT CCTCATTGGT
 43501 TGAAGGGTGA GTTGCAGTCC TGTCTTCTT CCATATGACA GTCTGGGTG CTCTTCTTC
 43561 GTGTGCTTTT CTCTGCCACA CGTGGCTGCC ACCCCCTCAC TGCCCCAGA TCCTATTCCA
 43621 ATACTCATGA TTAGACAGAC TCCACTAAAG CTGGTGGATT CTAGAAAATG TTAAGGTGTG
 43681 TCTAGCCATG GTAGTTGAAC TCAGGAGTTG GTGCTCAGGG CAAATTAGAC CCAAATCCTG
 43741 AGGAATAATT CCTTCAGTTT TTTTTTTTT TTTTTTTTT TTTTTGAGA CAGAGTCTCA
 43801 CTCTATCACC CAGGCTGGAG TGCAGTGGCA CAATCTCAGC TCACTGCAAC CTGCACCTCC
 43861 TGGGTTCAAG GGATTCTCCT ACCTAACGCT CCTGAAAACC TGGGACTATA GGCGTGCGCC
 43921 ACCACACCAAG GCTAATTGGG GTATTTTTAG TAGACATGGG GTTTCACCAT GTTGGCCAAG
 43981 CTTGTCTCAA ACTCCTGACC TCAAATGATC TACCTGCCTC AGCCACAAA GTGCTGGGAT
 44041 TACAGAAGTG AGCCACCGTG CCCAGCCTTG GTCTGTGAATT CTTACACTGA ACTGCCATAG
 44101 TGGCCTCACC ACTTGGAAAGC CTGACTGGAA TCTCAAACCTT AACATGTCCA AATGCAGATC
 44161 CTTGATTTAC CCCAAACTGC TCTTCTCT GCCTTCACCA TCTCAGAAAT GGCAATTGCCA
 44221 ATTACCCCAC TGCTCAGGCC AATAAAATTA AAATAAAAGAA CAAAGTCAAC TTTAACTCTT
 44281 CTCTTTTCA GGGGGTCAGG GGAGACAGGG TCTTGCTCTG TCACCTAGGC TGAAGTACAG
 44341 TGGCACAGTC ATGGCTCACT GCAGCCTCAA CCTCCTGGGC TCAAGCAATA CCCTCCACCT
 44401 CAGCCTCCCG AGTAGCTAGG ATCACAGGTG CATGCCACCA CACCCAGCTA ATTTTTGTAT
 44461 TTTTTGAGA GAAGGGGTT TGCTGTGTT CCCAGGCTGG TCTTGAACTC CTGAGCTCAG
 44521 GAATCTGCTC TCCTTGGCCT CCTCTTGGC ATGAGCTACT ACACCCAGCC AATTCTCTC
 44581 TTTCTCTCAC ACAACATAGA ATCCTTCAGC AACTCCTTC AGAATATATT CAGGAGACAA
 44641 TGGTTGTCA CCTCCCTTTTC TGTTCCACC CAGCCCCACTC CACTACCTCT TGCTGGACT
 44701 GTGTAACAGC TTCCCTGGCTG GGCTCCCTGC TTTTACTGTT GCTCCCTCA TTCTGCTTTC
 44761 CACATAGCAG CCAGAGCAAT CTTTAAAAG CCTGTGACAG ATCACTGTTA CCTCTGGCT
 44821 AGAATTCAAA CCACAGCCTA CAGGGCCTG CACAACCTTG TTTGTGGCTC CTCTTCTGAG
 44881 CCCATTACCT ACTTCTTGGC CTCTACTCCC CAGCAACTACT TGTTTATTTT TTTCAACCCG
 44941 AGCTTCTAA CCAGGAGTTT GTCTACTAGG TGACATGTGG CAAAGTTTAG AGACATTAA
 45001 GTTGTCAAG ACTGGGGGAG TGCTCCTAGC ACCTAGTGAG TAGGGAGGAC AGGATACTGC
 45061 TAGACATCCT ACATGCAGAT GGTAGTCCCC CCTCCCACCC CCACGCCGCC CCCCCCCCCC
 45121 ACACACACAC ACATGAGTAG TGCTGAGAAA ACCCGCTTT TAATCCAAT TGCCAGGGCC
 45181 ACTCAGTTG CCTGGGAAAT ACTGCTCCC GTCAATATCA TTCTTATTTT CTTCATGTCT
 45241 CTGCTCAAGT GTCAGCCCCA GAGTGACTTG CCTGACTTC TCTGCTTCTC ACAACACCCA
 45301 TGATTTCTG ATGTTGTATA TCTTCTGCT CATTGCTTA TTGTCATCTC TCCCACCTAGA

Figure 8 (Page 14 of 73)

30/162

45361 ATGCAAAATA TCAAAGGGTA AAGACTTGT TCCCTGCTCT CTCCCTGGG GCTTGAACAG
 45421 TGCAACACAT GGCTGGACT CATTACACT TGAAACAAT GAATATTCT GCTCAACATG
 45481 AAATTTTATT ATTCAACCTC TAATGCAGTG TGATGTTAA GAATCATAGC TATGAAGTGG
 45541 AGACATGAGC TCTGCCACCA AAGCCCAGTG TACCATTGAA TAAATTCGCC AGGAAGCAGG
 45601 CGGTGCCATG CCTCATTCTT GTCATGTGTA AAATGTGGAT ACACGTAGTA CCAAAACTCA
 45661 AAGTGTGTG CTGAGGCCGG CGTGTGACCC ACAGAACACT GTGCTACACT ACAGGGCAAA
 45721 ATCACTGTCA ACTAAGAGTA GAAGCAGCTG TAGTACTTGA AATAACATCA GAAAACCAGA
 45781 TTATTTATGT TCTTTGTAAC CTGAAAAGAG TTATATAATC TGAATTCCAG TTAACTTCTA
 45841 GTAAAATAAA CGTATTATTA GCTCCTACCT CCCTATGCCT AGTAAAATC AAATAAGATC
 45901 AGATATGAAT GTAACCTAGA AGTGAGTGCA TTGCTTACAT GTTCATTATC AGTACTTTGT
 45961 AGAGAGGCCT CTTAATTACA CAGCACATT CAAATCAATA AAGCCTAGCC GAAAAGAGAA
 46021 TTGTTCAGTT CAAACGTTCA AAACTAACAT ATACTTAATT TTCCAGGCAA AAGAACAAATT
 46081 GCCAAGAGTG GGGAAAGGCC CGAGGTAGGC CTCTCTCAGG AGCCTCCCAC CCTAGAGACC
 46141 TCCACCCCAG GTCTCACCAA AAGTGGGTGG AATGGTGAAG AATTCAAGATC CCCAACGCCA
 46201 CTCTTTCGCG CCCCCACCGC CCAACGCATT CGTCTGAGG TGGAAACCCC GTGCGGATCC
 46261 TGCTGTGGGT TTGCTCAGCC TTCTCGGCAA GCACTCAGGG AAGAACTTCC TGTTTGGAGA
 46321 TGACTGGGGA AAAAATGCA CAGCTGACAT TGAAAATAAA CCCGAGTTCC AGGTTCAAGG
 46381 AGCCCCAGGC TTAGCTCAGC TCAAGTGAGG AACTACGAGA TTTATTTAAA AGCATTCTAG
 46441 TTGGGGGAAG GGAGTGGCG GTTCCAAAAG TCACCTCGCA GAGCCGGAC AGCCGGGGGA
 46501 GGGGGCAGGT CCTGGGGCGA GGGACCCCTA TCTGCAGTTC AGTGGTAGGC ACTCCCTCAC
 46561 GGGGTCTGGA CGCAGAAAGT AGGGAGAGGG GCTTGCAGGAT AGGGTTGAGC AGGTCCCTCA
 46621 AAGTTAGCAA ACTCCAAGC GCAAAGAAAA AGCTAGTTTC GATTTTCCA CCCCCGCCGC
 46681 GCCCCTAGTT CGCCCGCAGC CCTCGGACTC ACGCAGCAAG CGCCCCCTGCA GGACCGCGGT
 46741 CTGAAAAGC ATCAGGAGGA GAAGCGCCGG CCTGGCTCGC GGGCCCATT CCCCAGCTCT
 46801 GGCGCACGT CCCCCTTAAA TCTCCGCTTC TTTGGGGGG CGGGGAAACG GGGATGGCTC
 46861 CAGAAGTCAC CCTACAGCTA TTGCTTAGGC TCAGGAGATG CCCAGTAAA CTTCTGGTG
 46921 AAAAGCAACA GGTCTTCAG AACTTTAGTT CTCTCTCTCC TACAGCAGAA GGTACCTGCT
 46981 TGTGAAACAC TAGGTGATCC AGTGTCCCC TTGGTTTTA AATCCTGAAG GGGTGTGTT
 47041 GATTGGGGA AGTAGCTTCG CAATGTTCTG ATCTGAACCT TAGATATTAA AATATTTATG
 47101 ATTTCAAAA TTCAATCATA CATTAAAAA TTTTATCTCA ACCTTAGACC AACTTATGTC
 47161 TTATTTGACT TAGAAATATA AAGCTTTTC ATTTTGTGTT TTGATTCAAA TTAATTAAGT
 47221 CATAACATTA ACCAATTAGA TCCTACTGAA ACACCTTCCA CAGCCTCAT AATTGAATTA
 47281 TCTGACAAGT GTTCACAAA CTTTACAGTA TTGGGATTAT CTGGAGATG ATAAACATA
 47341 TTGAGGCCTG CTCCTAACCC CAGACACACT GATTAAATGG GTAATTGTTA GGTAGTTAGA
 47401 CATTAGCAGT TGGGAGGGGA TGACAGAAAG GAGCGGAAAG GCTGTCACTA AGACAGCCAC
 47461 TGGCCCACCT AAATTCAAGGC CCAAGACTAC CCTAATGCCA CCCTAAGGGA TGGAGTTAT
 47521 GATAAAAGTCT GTGGCAAAA TATCCTGGAG AAAGAGAAAG GAGGGTACAG GTGGAAATT
 47581 CCTAAGGTGG CACATGCCCA ACAACACAAA AGCCTGTCTT CAAGTTCAACC
 47641 CATGCCATCA TTATAATAGA ATTTACATAC AGTTTGCCCT CCAAGTTCA
 47701 TCTTAACAAA TTATAGGTAA GACCATGCAC AGTTAATTT CCCCATCCCT
 47761 TTCAATCAAA TAACATCATC CTGTCACTCA GATACAGCCC GGGAGGCTTT
 47821 AAACCCATA AAAGCACCTT GAGCTCTGTA AAGAAGTGT TAGATTGTAT
 47881 AGCCCGCTGT CCCTCAGAGT GTATTATTGT GCTTCATAAA GAGCTTGAT
 47941 TTTGGTGTGTT GTTGCTAGTT CTTGCTCAC TATCACAAGA ACTGAGATTG
 48001 GCTCCGGCTA TAATAATCTC CTCGGTAAA GGATCCATCC CAATGCATAA
 48061 CAGTATGGGA TGCCACCTGG GCAATGGGAT TTTAAAAGCT TTCCCTCTCC
 48121 TTTGGGAATT ATTGCCCTAG ACATTTCAAA CAATATTAAT CTCAACGAAG
 48181 GCTCCAAACC TTTACATATC TAGCAAATTC AACAGGCATT AAATTTAATA
 48241 AAATTTGGC AATTCAAGAA ATCAAACAG GATATCAGGG ATTTTGTAAG
 48301 ATACAATAAC ATTGGAAACA TGAGAATAT TGATGATGGG GCATGTATGC
 48361 TATTCCTTTT TTTCAATTTT TGGTAAGATA TAATTAGCAT CCTCGACTGT
 48421 AAAATGCAA AATTGGCCCG GCTCAGTGGC TCACCGCTGT ACCATATAAT
 48481 CCGAGGAAGG CAGATCACCT GAGATCAGGG GTTCGAGACC AATCCCAGCA
 48541 ACCCGTCTT TACTAAAAT ACAAAATTA GCCGGCGTG ATAGCAGGCA ACTGTAATCC

Figure 8 (Page 15 of 73)

31/162

48601 CAGCTACATT AGAGGCTGAG GCAGGGAGAAT CGCTTGAACC CGGGAGGCAGT AGGTTGCAGT
 48661 GAGCTAACAT CGTGCCATCA CACTCCAGCA TGGGAGACAA GAGCAAGACT TCATCTCAA
 48721 AAAAAAAAAT TAGCTGGGTG TGGTGGCATG CACCTGTAAT TCCAGCTACT CGGGAAAGCTG
 48781 AGACAGGAGA ATCGCTTGAA CCTGGGAGGC GGAGGTTGTG GTGAGGCCAG ATCATGCCAT
 48841 TGCACCTCCAG CCTGGGCAAC AAGAGCGAAA CTCCGTCTCA AAAATAAAAT AAATAAAATA
 48901 AAATGCAAAA ATTAATGGAT TTAGTATAT TTACAGAGAT GTGCAACCAT TACCAAAATT
 48961 TTACATTTCT ATCTCCCCAA AAAGAAACCA TGTTCCCCTA ATTCACTTACCTTAATT
 49021 CGCCTCCCAAG ATTCTCCAT TCTCCTCCTC CTCCCCCTCC AGCCCTAGAC AATCTTTAAT
 49081 CTACTTTCTT TCTATTTGGA ACATTTAGTA TACATAGAGG CATATAATAT ATTGCTTTGC
 49141 CGTGACTGGC TTCTTCATT TAGCATAATG TTTTATGTA TGTTTTCAT GGACCAATAA
 49201 TATCTATTAT AAGGACATAC CACAACATAT TTTTATTAT CATTCACTAG CCGATGGACA
 49261 TTGGTTTGTG TCTACTTTAT GGCTATTGGG AATAGTGCTG TTATAAACAT TTATGTACAA
 49321 GTTTTTTGTG AGACTTATGT TTTGATTCT TTTGGTTATA TATCTAGAAG TGGGTTTGCT
 49381 GGGTCATATG GTAAACACTGT TTAACCTTT GAGGAATTGC CACATTCTT TCCAAAGTAA
 49441 GCATTTTATC CTCCTATCAG CAGTGTATGA GAGTTCTGAT TTCTCTCCAT CTTTGCCTGG
 49501 GTTTTTGAAT CAGGGCCCCA GATAGAACAA AAATGTGGTT ATTCACTTGT TCCACCACATCA
 49561 CTTGTTGAGA AGACTCTTT TTCATTGAAG TGTTTTGGCA CCCTTATCAA AAATCAATCT
 49621 ACCATAAATG TGAGAGTTA TTTCTGGAGT CTCAATTAA TCCCATTATG CTATAATCTA
 49681 TAATCCTATC TTTTTTTTT TTTGACAGAG CCTCACTCTA TTGCCCAGGT TGGAGTGCAG
 49741 TGGCCCAATC CGGGCCACTG GCTCCTCCTC CCAGGTTCAA GCAATTCTCC TGCCTCAGCC
 49801 TCCCAAGCAG CTGGGATTAC AGGTACCTGC CACCATGCCT GGTAAATTAA TGTATTTTA
 49861 GTAGAGACGG GGTTTCACCA TGTGGTCAG GCTGGTCTGG AACTCCTGAC CTCAGGTGAT
 49921 CTGCCCCACCT CAGCCTCCC AAGTGTGGG ATTACAGGCA TGAGCCACCA CACCCAGACT
 49981 ATAATCCTAT CTTTATGTCA GGACTACACT GTCTTGATT CAATAGCTT TTAGTAAATT
 50041 GAATTCAAGA AGTTTCTCAA CTTCAAATTG GATTTTTTG TGGAAGACTA TATTAGCTAT
 50101 TCTCAGTCTG CTGAATTTC CTAGGAATTG TAGGATCTAT TATCAATGTC TATTCTATT
 50161 TTGTATATGT TTTAATATTG TCATAAGAAA CTTTTTCAT TTAAACTTT TTTTTAAGA
 50221 AAAATAGTGA AAATCAGAAC ACTGGGGTC AGGCGCATT AACAGGCAGA AGAAGAATAA
 50281 AAACCTGTCA TATAAACAAA AAAGAAATGA CCAATCACAT TGTGGAGCC ATGGAGTGGT
 50341 TATAGGTGCC AAAGGCTGCA GAGAAATGGT GTCAGATATA CCTGAAAATT GTCCATTGTA
 50401 TTTGGCCATT AAGAGACTTA GAAGACTTAA GCCATAGATT GTCAGTGAG ACCCCGAGGG
 50461 CAAATGGTCT GAAGGTGAAT AGATCATTTC ACCTTTAAGA GAGCAGGTAG GAAGCTATAA
 50521 ATCCAAGATT AAAAGTTGA CTGAACTGTT AAGGAAGAAA CTCTAATCTT GAGCCACCC
 50581 ATCCTGGCTC CACCTCTGC TGCAAGCAAA CAGAAATGCT GAAATTCAAC ACTCACAAAG
 50641 GCTGGTAAGC TGGAAATGAC AAAAATTACT CCTGGGAAAG TCAGATTAG AATTAGGCCA
 50701 TATTGTTGG GGTCAGATT TTCATGTACA CTTGGGAAAG GGTTTAGCTT ATAGGCACAT
 50761 GCATGAAGGG AACTGGTATA GGGCTGTGTT CATAAGGTCA AGAGTTGAAG GCCAGGCATG
 50821 GAGGCTCTTG CCTGTAATCC CAGCACTTTG GGAGGCGAG GCAGGAGGAT GGCTTGAGCC
 50881 CAGGAATTCA AGACCAGCCT GGGAAACATA GGGAGATGCT GTCTTCACAA AACAAATTAA
 50941 AAATAAAATT AGTCAGGTGT GGTGGCACAC ACTTGTGGTC CCAGCCACTC AGGAGGTTGG
 51001 GAAGATCACT TAAGCCTGGG ACATTGAGGC TGTAGTCAGC CATGATAGTG CTACTGCACA
 51061 CCAGTCTAGG TGACAGAAC AGACCCCTGTC TCCAAAAAAA GAGCTGTATC CACATCCCAG
 51121 GAAAGTGGTT GAAGATCTAC TTTTCTCTGT AAACCTAATA AAGAATAGAG TGACAAATGT
 51181 GTGTTGTGGA AAGAAATGGG GTGAGAGCTA CGTAGATGCA AAACAATACA TCCCCACATA
 51241 CCACTTGTAA ATCATCTTT TCCACCCACT TATGGGATGA ATTGCATCTC CCCAAAAGAT
 51301 ACTCTGTCCT AACCCCTCAGT AGCTGTGAAC CTGACCTTAT CTGGAATACG GTGAGTTCAC
 51361 TGGTTAAGAA GAGATTATAG TGGAATAGGG TGAGTCCTCC AACCAATGAC TGGGGTCCTC
 51421 ACAGACACAG AGGGATGATG GCCAGGTAGA GATGGAGGCA GAGATTGGAG TTATGCTGCC
 51481 ACAAAACAAA CACAGGAAGC TGCTAGAAGT GGAAACAGGC AAGAAAGAAT CCTTCCCCAG
 51541 AGGCTACAGA GGGATCTGG CCCTGATAAT ACCTTGATCT CAACTGGCCT ACGTAACGT
 51601 GAGAGAATAA ATTTCTTTG TTCTAAGCCA CCCAGTTGAT AGTACTTTGT TACGGCAGCC
 51661 CTAAGGAAC TGTATACAT TTCTTTACT GTCATAGAAG TTTGAAATCT TTTAAGTAGG
 51721 TCTGTACCCCT TCCTCCCAAGT GTCAACACAT GGAATTCCCTC TCCTTGCGC TTGAAAAGTG
 51781 AAAGGTGTTT GAAGTGGTAA TGAAAGAAAT CTCAGCATGA GGCCAGATGC TGTACCTCAC

Figure 8 (Page 16 of 73)

32/162

51841 ACCTGTAATC TCAGCACTTC GGGAGGATGA GGCAGGCAGA TCACTTGAGG TCAGGAGTTC
 51901 TAGACTACTC TGGCCAACAT GGTAAACCC CATCTCTACT AAAAACAAAA AATGTTATCC
 51961 TAGCCGGCA TGGTGCCTGT AGTCCCAGCT ACTCAGGAGG CTGAGGCAGG AGAATTGCTT
 52021 GAACCCGGGA GGTGGAGGTT GCAGTGAAC GAGATCACCG CACTGCACTC TAGCCTTGGT
 52081 GAGAGAGCAA GACTTGGTCT TAAAAAAAGAG AAAAGAAAAA TGAAATTCA GCATTATAGA
 52141 ATAAAAATGT TTCCCCTTCC CCCCCAAACTT TAAAAAAAGCA GAAGTCTGCA TCATAAAAATG
 52201 GTCTTTGCCA ATGTTATTT TATTATAACA AAGGAATCTT GCAAGGCTAC CAGATCTCAG
 52261 CAATTGTAC TATGTTCTGT AAAAATCACT TCCTAAAATG TCTGAATTGA CTGCTTGTCT
 52321 CATTATTGT TTTCTCGTGT CATACTGCAA TGGATATCTG TCTTGTAGT ATAAATATTT
 52381 GTGCATTTG TTGTTGTTAA AACAGCTTT TTGGCCTGTC TTCTTCCACC TATGAGGTTAA
 52441 TATAAAACTC ATGTTAACCA CTTATTTTG TAGCAGGACA AGCTACAGAC AAAACCCCTC
 52501 AGACACTGAG TTAAAGAAGG AAGGGCTTTA TTCAGCTGGG AGCTTGGCA AGACTCACAT
 52561 CTCCAAAAC CGAGCTCCCT GAGTGAGCAA TTCTGTCCC TTTTAAGGGC TTGCAACTCT
 52621 AAGGGGTCT GTGTGAGAGG GTCATGATCG ACTGAGCAAG TGGGGTATG TGACTGGCAG
 52681 CTGCATGCAC CAGTAATCAG AACAGAACAG GGATTTTCAC AGTGTTCAC CACACAATGT
 52741 CTGGAATCTA TAGATAACAT AACCGGTTAG GTGGGGGGTC AATCTTAAC CAGACCCAGG
 52801 GTGCAACACC AGGCTGTCTG CCTGTGGATT TCATTTCTGC CTTTAGCTT TTACTTTTC
 52861 TTTCTTGGA GGCAGAAATT GGGCATAAGA CAATATGAGG GGTGGTCGCC TCACTTATTC
 52921 ACCCCCTTG AGAATCTCAC TCATTAGTGG GAGTTCTCAC TTTTATTCTC ACTACCTATG
 52981 TCTTCTTGAA AGACAGATTG ATAATGATTC ATATAGTACA CTTGTGCTGA AGCATTGG
 53041 TGAGCTAAGG TAGTGATGAA GCTTTTATC ATTTGGAGAA GTACAGGTAG CAAACAAGGA
 53101 AGCAGTAAGC AGGTTCTAT TAATATTATA ACTCCTATTA TAAGAGTTT AAATCTTCTT
 53161 AGCACTCGGA ACCATTTTC AAACATGCC CCAGAAACAA ATCCATACCA CACCTACATG
 53221 GGCACATGTG CCACTTTGT CATATTTCTA ACTATGTCTT CAAACTACTG CCCTTAATCA
 53281 TCTATGTGT GACAGCAATT AGTAAGGTTA AATTCCTAC AGACCCCTCC TTCAGTTGCT
 53341 AGCAAGTAGT CGAGAGCCAA TCCATTTGA TAGATAGCAT TTTGCATCTG AGTTTCTTGC
 53401 CAGGCCACAG TAGTCAGGGC TCTGCTGGTC TTATTAGTAA TTATTTCTAA GACAGCTTGT
 53461 AACCGTATGA TTCAGTTGAG CATGTAATG GGGGTCCCCT ATCCCCACAA GCCGTCTTGT
 53521 GCCCAAGTAG CAGGCCATA ATATTGTATG ATTCTCTCAG GGGGCCATTG ATTATTTTC
 53581 CAATTTCTA TAGCTATGCT TTTTTTTTT TTTTTTTTT TTTTTTTTT TTTTTTTGG
 53641 GAAGCATATA CAGGGAGGC CAGGAGTTG CCTGTCTTTA TGGGCAGTAG GAAGAAAGAT
 53701 GGTTTAGTAG TGTCAATAAC ACAACTACCT GCCCACTGGT CAGGTAATT GGCATAAGCT
 53761 GTATGCCAC ATATCAGTA TAATCCAGTG GGGCTGTCC AGTCCCCGTG GGACTCTGGG
 53821 TGGGTCCACA CAGTTGCAA CTTTGGGAAT TTACTAAATA GATTTTCTT AGTGTGGTTT
 53881 GAACTCCACT AGGTGGCTGT TTTTATAGTA CTATTATACA GTTTTGCCC AAGGCAGCTG
 53941 AGTCTTCCCA CAGGAAGGGT GAAGTCCTTC CCCACTTTG CTATACAGTA TTGTCTAATG
 54001 ATTGAGGCTT TTAGGACCCA GAAGTTATCA GGGTGAGTCT TTTGAGCTGG GAATTATCA
 54061 GGAACGGGT CTGTAGGTAC TAATTCTCGT GCTTCCCCTG GCCATTGATC TCCCATTACA
 54121 GTTCCTCCAC ATACATACAT AACATGAAGT GACATTGAGA GACTGGCTA CATGCTCAGC
 54181 TAATTGCAA AACAAATTTC TTGTTTTCC TGGAAATTCT AGTACTGGCA CATTCAAGTTC
 54241 ATCATAAGAA GGTGGAAAT ACTGGCTCAG GGGAGCATTG ATAAACCTCT CCTCAAACCA
 54301 CCATATTTAC TCAAGGATCC AGTCCAGCCC CAACTATTC TAAGGTTACA CGATCCCCTT
 54361 TTTTCCAGTG AGAATCAAGG GGGTTGGTTA TTACTAGTTC TAAGGGGTTA CACTGACCAC
 54421 TGGTACAGGA AGGGCCACTT TTCCCTTCT GAAGGTGGAC AGGATTCTTT TTATTTTTA
 54481 ACCAAGTTGC CAAATGACA CAAGACCAGT ATCTACATT ATTTCCACGC AGTCTTAATT
 54541 CATGACAAGC GTACTTATTT TCTGCCATAT AGCCTCTTC CTAATGAACA GAACCACATC
 54601 CTATTCTAA CTTATTACTA TTAATGACAG CACAGGCATC AAATTCAGA GTGACTTGT
 54661 TGGGCATTCC TTTTCTTCT GTTTGGCTA ACACCTTACT CGTATCGTTT ATGAACCCCC
 54721 ACCAGTCCTC AGTCCCAAT CTTATTTCAA AAACGTGGT CGTGGGAGGC TCAGATGGGT
 54781 CATAACACAC ATCAGGTTGG TCATTTCTTG GGCTACCTAC CTTGTATAGA ATAGCATTAT
 54841 ACAAAACAGT TATTTTACA GTCTTTGTAC ACTTATAATA ACCATAAAAT AATAAGACTG
 54901 TAGCAACTTT TTGTCCTACC TCAGTGACTT GATGTATACA CTGGGAACAG CCCTCAGTCT
 54961 GAGGAAGGGT AGTTGAAGTC TTTACTGTGCA AAGTCCAAAT TTTAAGGAAA ATGAGTCCCT
 55021 TGATGAGTTT TCTCATGTTT CGGCCATGCA TGGACCAGTC AGCTTCCGGG TGTGACTGG

Figure 8 (Page 17 of 73)

33/162

55081 GCAGGGCTTG TTGTCTTCTT CAGTCAC TTT GCAGGC GTTG GCGAAGCTGC CACGTACAGC
 55141 TCACAGTCTA CTGATGTTCA AGGATGGTCT TGGAAGTTGG GCCCACTAGA ATTAACTGAG
 55201 TCCAATACCT CTACTCAGTC ACTTTCAACT GGGCTTTCTG ATACCAGGAG CAAGGTGGCA
 55261 GGTTTTAGGG TGTTGCAAAT TTCAATGGTT ATGCAGGGAT TTTCACATAG CAAACTTGG
 55321 TACTTGGTTA ATCTAGCATT TGTTAGCCAA TGATGTATT ATTAAAGTCA CCACAGCATG
 55381 GAGGGCCTT AAGTTTAGGT TTTGTCCAAG AGTTAGCTTA TCTGCCTCTT GTGCTAGCAG
 55441 GGCTGTTGCT GCCAAGGCTC TTAAGCATGG AGGCCAACCC TTAGAAAATC CATCTAGTTG
 55501 TTTGGAGGCC CAGCCTCGGC CAGGGCCCCA CAGTCTGGGT CAAAACCTCA ACCGCCATT
 55561 TTTCTCTTC TGACACATAG AGTGTAAAGG GTTTGTCA GTCAGGTAGC CCCAGGGCTG
 55621 GGGCCGACAT GAGTTTTCT TTTAACATCAT GAAAAACTCA TTGCTGTTGG TTGTAATAGA
 55681 TGTAGTTTAT CCAATCTACA TTTTATTAA CTGTCACCCA CAAAATATT GACTCAAATC
 55741 CTGCAGCTAT TTGATTTGG GATTTAAATT GATCTGCTAT TCCCCTGTTGG ACTCCAATTG
 55801 CATCTAAATA GATGTGAGAG TTGAAAGACA CATAAGGGTC TTCTCTTGCT TTACGATGTC
 55861 TTATTTTCC TCCCTCTGGT TGATGAAATG CTAGGGTGA AGGGATAGCC AATTGGACTA
 55921 AAGTACAAGT GCGCTCCAG TTATTTGGCA GAGTGC CAG TAAAGGTCCA CCACAATACC
 55981 ACCACACATC CGCTTGGGA TGAACAAAGG CTGACTGATT GAGAAGCTCC TGAAAATTCT
 56041 TAAGCTCACT GCATCCCTC AGGTCTCCAA GGAATGCTAA GTTCCCTCCC TGTCAATGAGA
 56101 GACAAGAAGT GAACTTAGTT TTGGGAGATG GAAGCTGGAT GGCCCTCAGG GTTGCACCTG
 56161 CAGGGTGCTG GACTTTGGGA TATAGCAGAG AGAGCTTGGC ACGACTTATT ACTCCAGGCT
 56221 GTAGAATCCT GGAAAACAGT TACCATGCAG CCCATGCCTG GTCAACAGGA GGACCACCTT
 56281 AGTGGAAAGG GGATAATCTG GCCCTCTGGC CTGCCATGTG CACAAGCATA ACAATTGGTT
 56341 TTGTTAATG TGTGGACAGA ATATTTGATC CATTCCA ACT GGGCATTGTC ATCTTGGTAT
 56401 CCTGCTTAAT TATCAAAGTT TGTGTTAAGT CTTAACCTTC TATGACCCCTC TAGTAAAATG
 56461 AATGTATGAT TTTAGGAAAT TACAAAACC GGTGTTGGCA GTCCATCCTT GCTCTTTAGT
 56521 GGTCCACACA ACATTCGACC AACTATGGCA TAAAAGCTCT ACATCGGGGG GCAAGACTCC
 56581 TCGTTGACAC TGGGGCTTT ATTGAAATCT CTCTGGATA AATGGTCTCA GTTACTAAG
 56641 GCTCAGTCTG AGGAGAGTCA GGAGGGACAG AGGTACTTTT CTGAAGTACA GAGATGTCTT
 56701 CGACTTGGCA AGTCCCCACA GGGTATAACA AGGAAGCAT TAAATTCAAT AGTTTGAGGC
 56761 AAAATTGACT TGGTTATGTT AATAACTAGA TGGTCA GAGA TAGAGTGAGG GAAGAAGAAA
 56821 GAGTAATAGA ATAGATGAAG GAGTTAAATT TTTCTTAGCT TTAGTTGGT AGGGTTTTCC
 56881 CCTGGGACTA TGGCCCATGA CTCTGGAGGG GGTGGC ACTT TCTTGACTCG GGTGTGATGA
 56941 GTCCATCCCT TTTCACCGT ATGAAACA ACA GTCTCGGTGG TTAGCAGCAC AAGGTAGGGT
 57001 CCTTCCTAGG CTGGCTCAAG TTTTCCTCT TTCCACCCCT TGATGAGAAC ATGATCTTC
 57061 GGCTGGTGC GTTACAGA AAATTCTAGG GGTGGTACAT GTGCTAAAAG ACTTTTAGTT
 57121 TTGAGGAAA GGAAAGTGG AGATAAAC AGTATATAAC TTTAAAGAAG TTGACCTTT
 57181 GTTTAAATG TGGGGACATC AGCAGTGGAC TTTATAGTCC TTGGTGCCTT CTTACTGAGA
 57241 AATTTCCTT AGCACCTATT TTTATTAGTT TTTAGACCAA AGAAAGTCAA ATGCCATTT
 57301 ATATTTGACA ACGCTCTTG TATGTTATA CCAGATAAGC TAGATTTCAC CTTTATATTG
 57361 GTGTGTTATT AATGTTAAAC TTAGTTTAA TAAAACCTCTG TAGACATATT TATTTGATT
 57421 TTAATGTCTG ACCATAAGGT AAGATTTTA TAGACTTTT TTTAACCTT TATAATT
 57481 GTAAAGAAC AGGTAGTGC TTTAAGAAA ACCCGTTGTG TTTTATTTT AATGTTCA
 57541 TCACAGAAAA ACTGTATGAT ACCCTTAAC TTTAGCCAAT ATGTTAGAC ACAGAATT
 57601 CTTTACAATT AAGGTTCAA AACTTGCTTA AACCTCAA ACAATTGGT TAACTTTA
 57661 ATGTAGGTAA AAATCCACAT TCTTATGCAT CCTCATAATC CTTTACCAA AGGTATATT
 57721 TACTTCCTT ACATACCTTG CACATAACT GTTTATTCAA TAGTTTACA TTAGAAGGA
 57781 GGCTTAATTA CTTTAAATT ATACAAACATT TCTTACATAA ATTTATTTT CTAACACACA
 57841 TTTTTTCAT GACTTCACA GACAATTCTT CGACATGCCT CAACTTCTG ACTTATTGCA
 57901 AACATCCCTT TCTTAAACA ACTAGTTAAT TTATCTCAGG ACAAGGATT TCCATACAA
 57961 ATTCTTTT ATATAAATC TGCCTCCTT TTATTCCTT TTTTTTTT CCGAGGATGA
 58021 TAACCATTCT TTTCCAAAGC GAACTTCTT TATGCTGTG GACTGACTG TCTAAGGCCA
 58081 CAAGATTAGA AGTTACTATA ATACATGTTA CACTGTTAAC TTTAGCAA CTTTACTTT
 58141 GTGAAAACC TTGTAAGTTT GGGATTTCAA TTATCCTTTG CTATTAATAA GACCTTATT
 58201 AGTCCAAATT AACTTAAAT TGGTATAGAT GGCTTTTTT TTTTTTAAT TACCTGGGAG
 58261 GAACCATCTA TCCTCCTGTC CTGAAGGGAG TTCCCTCCTAG GTCTGGTCAG AGCTTGTAT

Figure 8 (Page 18 of 73)

58321 GGTAATTAAG ATTTAGATCC CCTGTTAGGA AACCTGCCGG GTTAAGAGAA TTTTCAGTGG
 58381 TTAATGTTAA ATCATCTTCT TTTTCTTT TTCTTAGGA TACTTCTGAA CCGGTGAGGT
 58441 GTGCTCACAA TGAGGTTCC TGAAAAGTT ATTTTTTAC TTTCTTCTGT TAGCAAAGCA
 58501 GTGCCGCTA CAGATTGAAT GCATTTGGC CATCCGCGGG TTACTGGGTT AAGGATTTT
 58561 GATAGGAAGG CCTTAATGCT TTTGAATAT GCCCTGACAA CAAAGTGCCTA GTTCCTTCCC
 58621 GGTGTTCAGC CACTGCGTTG ATCCTCCACG AGGGCCTGCC ACGTGCTGCT CTGGTGAGGC
 58681 GTTCCACCGG GGCAATTGCC TACCTGGGAG CGCTCTCCAG ATCTGTGTCG CTCAAACCTGG
 58741 CTGGAGTTCC CCGTAGGGAT GCTCCACAGG GCAGGCCTAA GTCGCCTAAG GGGCTGCCTT
 58801 GACCGTCCGT TAATCACCTC TGTCCTCCAA ACCAGCTCC CTGAGTGAGC AATTCTGTC
 58861 CCTTTAAGG GCTTACAAC TAAAGGGGT CTGCATGAGA GGGTCGTGAT TGATTGAGCA
 58921 AGCAGCGGGT ACGTGACTGG GGCTGCATGC ATCAGTAATC AGAACAGAAC AGAACAGCAC
 58981 AGGGATTTTC ACAATGCTTT TCCATACAAT GTCTGGAATC TATAGATAAC ATAACCTGTT
 59041 AGGTCAAAGG TCGATCTTA ACCAGACCA GGGTGCCTG CCGGGCTGTT TGCCTGTGGA
 59101 TTCATTTCT CCCTTTAAT TTTTACTTT TCTTCTTTG GAGGCAGAAA TTGGGCATAAA
 59161 GACAATATGA GGGGTGGTCT CCTCCCTAA TTTAAACAAA ATTTTCAAAG TCCTACCCCA
 59221 AGTAAATTGG CAAATATTAA TAAAGTTATG GCATAGAAAA TAAAATGAT TGTAAAAGGC
 59281 GTAAAGATAT TTCTGTGGGG AAAACATTG TTCATTAGTT ATCAGTTAA ATTCTGTGAA
 59341 AAATAACCAC TAGAGACCCCT AAAGTACCA GGGGCTAATA ATAAGAAGGG AGGAACACCC
 59401 TCTCACTCCC CACCGTTACC TGCCCAGAG GGAAGAGGAA GAGGGTGAATC CCAGGAGAGC
 59461 TGTGGTCTCC CCTCCCCATA TGTCACATA TACCTGACCT CCCCTCCCCA AAATATATAC
 59521 CCAATATCTC TCCCATAATAT ACATATTAT CTGACCTCTC CACATATGTA TACCTAAACT
 59581 TTCTCTATAT ATCCACATAT ACCTAACCT CTCACACACA TATAGCTGAC CTCCAGTGG
 59641 GGAAAATGGG GAAGAGAGA GAAGTTATCA AAGGATAAAT CTAGTCATA CTCAGAAATG
 59701 TGAAAACAA AAACCACACA CAGAAAAAAA AAACACACAC AAAAAAGAAA TTGATAAATT
 59761 TGTGTGTGTC AAAATTAAGA ATTCCGGTTC AATGAAGGAT CCCATGGATA AAGTTAACAG
 59821 ACTGCTGTA GGATGGTAGA GAATTAAATG TCTGAATCAG ACGAAAGGAT GAGTAATTAG
 59881 AATGCACAAG GCCAAGAAGA ACAAAACAGA AACTCCACAT AAAAAATGTA TGAGGCCGG
 59941 CGCGGTGGCT CATGCCAGTA ATCCAGCGC TTTGGGAGGC CAGGGCGGGC CGATCAGGAG
 60001 TTTGAGACCA GGCTGGCCAA CATTGTGAAA CCCCCATCTCT ACAAAATA CAAAAAATTA
 60061 GCCGGCGTG GTGGTGGGTG CCTATAATCC CAGCTACTTG GGAGGCTGAG GCAGGAGAAT
 60121 CACTTAAACT CAGGAGGCAG AGGTTGCAGT GAGCTGAGAT CACACCATTG CACTCCAGCC
 60181 TGGGTGACAG TGTGAGACTC TGTCTAAAA AAAAAAAA TTATATATAT ATATATATAT
 60241 ATATATATAT ATATATATAT ATATGAATAA AATGAACAAAG AAATTTAGAT ACAGGAAAT
 60301 CCAAAGCACT TGGTAATGAA AGAAAGGTAA AGTGATGTGT CCTTTGCAT TTAAAAGAGA
 60361 GCATTAACAA ATTAGAGAGC TGAATAATGC TCAGTATTGG TGTGGATATG GAGACTCAGG
 60421 AATCCTCATA CACTGCTGAT GGGAGTGCC ACTCCCTGGG AATATTTC CAAATATCATE
 60481 TCAAACATAT CCCATAAAGG TGACAGGAAA GTGTGGCTG ACTGATATCC TTCACTGAGA
 60541 GAGGTGGAGG TAAAATGAAG TCACTGCACA ATATAGAGTT GGAAGCAATG GATTAGATGT
 60601 CCACATAGTT ACGTGGAAAGA ATCCGTAAGA TACACACACA CACACACACA CACACACACC
 60661 TTGTGTATA TTGTTCTGG CAGGTAGGCA TGGAGGTTA GAGGTTTCT ACATCACACC
 60721 TACTGCACAC AGTAAATGGC CAGGCTGAGC ACTGACTTCC ATGAAGGGAG ATTGAAGGTA
 60781 AGAGATTGAA GATTGTTCCC TGGTCTGGGA CCCTGCAACT GAATATGAG AAAAAAGTAC
 60841 ACCCCGCCAC CCCGCTTCCC ATCTTCTCA CCTGATTAGA ATAGCTTTT CAGAAAACGT
 60901 TGGCCAGGGG TTGTGGCTCA CACCTGTAAT CCCAGCACTT TGGGAGGCTG AGGCAGGGCAG
 60961 ATCATCTGAG GTCAGAAGTT CCAGACCAGC CTGCCAACCA TGGCAGAACCC CAATCTCTAC
 61021 TAAAATATA AAAAATTAGC AGGGCATGGT GGCACACACC TGTCACTCCA GCTACTCGGG
 61081 AGCCTGAGGC AGGAGACTCA CTTGAAGCAC AGTGATGGAG GTTGAAGTTA GCTGAGATCT
 61141 TGCCACTGCA CTCCAGCCTG GGCAACAGAG TGACACTTTG TCTCAACAAC AACAAACAAA
 61201 CCCACCAAA CTAAATCT ACCTATGCC AAATGCCCTGC TAAAATGAGC ACCCAAGAAC
 61261 CAGTGTTCAG GAAAGTCAGA TGAATACCTT AAAATTAGAT GCAATGTTGG CTGGTCACAG
 61321 TGGCTCAGGC CCTGTAATCC CAATCCTTCT TGGGAGGCCAG AGGCAGACAGA TCGCTTAAGC
 61381 TCAGGAGATC GAGACCAGTC TGGACAACAT GGTGAGACCG TGTCTCTACA AAAACGTACA
 61441 AAAATGAGCT GGGAGTGGTG GCGCGCACCT GTAGTCCCAG CTACTCAGGA AGCTGAGGTG
 61501 GGAGGATCTC TTGAACCCAG AAGGCGGAGA CTGCAGTGA CAGAGATCAT GCCACTACAC

Figure 8 (Page 19 of 73)

61561 CCCAGCCTGG ATGATAGAGC CAGACCCCCA TCTCCAGAAA AAAAAAATAA AGAGAGAGAG
 61621 AGATGCAATA TTTAGGGTTC AACAAAGACTG AATTCTGAC TCCTTCCCT ACCTCTCCAG
 61681 CATGTTAGAT TCTGGGTCT TCATCCTAAC CCCCTGTTCA TGCCATAGCC ACCCTGTGGT
 61741 ACCAACTTTG GAAGCCTGGA TCTTCATCCC CTCATGATAA TGAGTGTCCC ATCAGGTCTC
 61801 CATGCTCAGC TTGGCAAGAG TATCTGTCTT CTCCATGG GACGGTCACA TTCACCCAGC
 61861 ACTGACAGGT TCCATTCCA CTAGGGTGGC ACCCTATATG GTCTGAGTCC AGGCCTTCT
 61921 GGTCCCTCAG TAATCTCAGC ATGGTAGCAC AATCGAAAAG GGCTAGGCAC GGCAGCACCA
 61981 TTTCCCACCA AGAGGTCTGA TGGCTCATCA CATAGACTGA AGGAGATTCT GAAGAGCAGA
 62041 GGTGGAATGA AGAATGAATC GTGGGCTCTG CTCTCCTAG GCCTGTCTC CTCTCTCCCG
 62101 AGATGTTAGC TAACTCATGA GAGCCAGAAA CCAACTGCAG GCTGGCCTCA GGCACCTAGG
 62161 TAGTGCTTC GCTCAGCAG TCCACATTCT AGGAACCCCTC ATAATATGGG TTGAAGTATG
 62221 CATTCCCACA AAAATAAAGT TGTTGAAGTC CTAACCACCA GTACTGAAAT GGGAAAAGTT
 62281 CCCTTGCTCC GCTCGCATGG CATGTGATAG GAGTGTGGCT AATTCTTCA GTGCCTGGCT
 62341 GCTCAAACCT CTAGGGAAC ATTAAAGACGG GCAGGTTGTG GGTCTCCAAC CCCATGACCC
 62401 CACACAGTG TCTAGGGTTG AATGTTACA GCTCTGAAG CCACAGTGGG TGTGTGTTAC
 62461 AGGGTGTCT TTTAGTTTG CCATTTATAG GCAGCTGGT GTTAACCAACT CAATTAGACC
 62521 GTCTACCTTG TCCCAAGGAC AGAAGAAGGC TTTCTGTATC CCAGGTTCTT GCCTTGGTGT
 62581 ACCGGAATAA ATCAGACCAC ACCTGGGTT AGAGAAAGAG TGCAAGGTTT TATTAAGTGG
 62641 AGGTAGCTCT CAGCAGTTGG GCAAAGCCAA AAGTGGATGG AGTGGGAAAG TTTTCCCTTG
 62701 GAGTCAGCCA CTCAGTGGCC CAGGCTCTCC TCCAACCACC CCAGTCAAAT TCCGCCTCAT
 62761 TTGCCAGGC AAACGTTTGT TGTGTGCTCT TCTGCCAGTG TGCTCCCTG GACGTCCAGC
 62821 TATTGCGTTC TTGTGGCAGG CCAGGGGAGG TCTTGGGAAA TGCAACATT TGCAACATTT GGGCAGGAAA
 62881 ACAAAAATGC CTGTCCTCAC CGTGGTCCTT GGGCACAGGC CTGGGGTGG AGCCCTAGCC
 62941 GGGGACCACG CCCTTCCCTT CCCCACCTCC ATATCATTAA AAGGGACCAT GCCCTTCCCT
 63001 TCCCAGCACT TTCCCCCTCC TGTATCAGGA CCTGTGAATG TGGCCTTATT TGGAAATAGG
 63061 GTCTTGACAC TTCATCAGTT AAGATAAGAG TGGGCTCTAA CCCAACATAA AGGGTGTCTT
 63121 TATAAAAAGG AGAAATGTCA TACACAGAGA CTGACACCTA TAGAGAGAAA ATGTGGTGAG
 63181 TAGACACAGG GAGAACATCACC ATTCAAGTCA AGCAATGAGT CTGGGGATAC CAGAACGCTGG
 63241 GAGAGAAACC TGGAACAGAT TATCCCTCAT TGCTTCAGA AGGAATCAAA CCTGATGATA
 63301 CTTTGATTC AGACTTCCAG CTTCCAGGAC TGTGTGACGA TAAATATCTG TTGTTAACCC
 63361 AACGAGTTG AGGTACTTTG TTACTGCGAG CCCAGAAAAC TAATACAGTA GGTACTATGG
 63421 ACTGAATTGA CTCCCCGTG CAAAATTCAAT ATGTTGAAAC CCTAACCCCC AGTGTGATGG
 63481 TACTTGGAGC TGGGGCGTTT GGGAAAGTCAT TATATTTAGA CAAACTCATC AGGATGTGTC
 63541 TCTCATGATG AAATTCAATGC CCTTATTAAA AGAGACAACA GGCCAGGTGC AGTGGCTCAT
 63601 GCCTGTAATC CCAGCACTTT GGGAGGCTGA GGTGGATGGA TCACCTGAGG TTGGGAGTTT
 63661 GAGACCAGCC TGGCAACAT GGTAAAACCC CATGTCTACT AAAAATACAA AAATTGGCCA
 63721 GGTGTGGTGG TGCACCGTTG TACTCCCAGC TACCTGGGAG GCTGAGGCAG GAGAACCT
 63781 TGAACACCAGG AGGTGGAAGT TGCAGTGAGA TCACACCCT GTACTCTAGC CTGGGTGATA
 63841 GAGACTCCAT CTCAAAAAAA AAAAAAAAAGACAAATAGA GCCAGGTGCT GCAGCTGATG
 63901 CCTGTAATTC CAACACTATG AGAGGCTGAA GCAGGAGGCT CGCTTAGCC CAGGAGTTCA
 63961 AGACCAAGCTT GGACAAAATA GTGAGACCCC CAACTTCTAA AAATTTAAAA AATGAACCTGG
 64021 GTGTGGTGGT ACACATCTGA GGCTCCAGCT ACTCTGGAGG CTGAGGTGGG AGGATTGCTT
 64081 GAGCCCAGGA GGAGGCTGCA GTGAGCCATT GCTGTCCAGC CTGGGCTACA CGAGAACCTG
 64141 TCTCGGGAAA AGGAGAAAAC AGTGAGACCT CTTTTCTCT CTCCTTCTC TCCACTGCC
 64201 AAGCCCTACA AGCACAAAAA GGACACCACA TGAGCACATA GTGAGAATGC TGCTGCCACC
 64261 AACAAAGTCAG GAAGAGAGCG TTCACCTAGA AACTGAATTG GCCAGCACCT GGATCTTGG
 64321 CTTCTGAGCT TCCAGAACTG TGAGAAAGTT ATTTTTTTTT TAGCGACTAA GTCTATAGTA
 64381 TTTTATTACA GCAGCTCAAG GTAACAAAC TAGTAGAAGG GATGAATTAT GGAGATCACA
 64441 AGTCCACGCC TCCAGAAAAA GACTTCCCTA AAAATTAGTC TGAGCAAAAT TCGAATGATG
 64501 AATTATTTTT AAGAACCTTT AAGGGATCTG ACAAGTTGC AAGAGCTAGA GAATGCTTTA
 64561 CAACGTGATA ATAGAATGCT CTGTGATGAC AGAAATCTT CCACACTGTT CAAACTAGC
 64621 TACTGGCCAC TTGTGACTAT TGTGCACTTG AAATGTGACT GGTGTCTGAG GAGCAGAATG
 64681 TTTAATTATA CTTAATTATA ATTCAATTACA ATAGCTACAT GTAGCTAGGG GCTACTGGAT
 64741 TGAACAGCAC AGCTCGAGTC TTTAGAGGG AGACAGGACT CACCAAGATG GATGCTGGTG

Figure 8 (Page 20 of 73)

36/162

64801 GCCAAGCAGC AATGGCAGGT AGTACACACA CAAGAGGCAG ATGATACAAC ACATCCTTCC
 64861 CAAACCTGGA GATAAGCTCA CCCCACAATC CCGCCGCTGA AATAGAGTTG ATGTTACCAA
 64921 TGTGCATT TATGTCCTT TCCATACAGA AAGATCATTC AGCAAGTACT ATGGTACTTA
 64981 AAAAACAAACA TTCAATTCA TATTATGACA AAATTAATT AATAGCTCTT CCTTAAACTT
 65041 TTAAATTCAA TTTACAATGC TTACTATTGG CATTATTAA TCTACCAATT TTTTCCATA
 65101 GAACCCATAG AACAAATAAT CTACCAAATT TTTAACATTC ATTTTGGCA AGGCTTTGC
 65161 AATTGACGA ACTTTAAGAA GAAAACCTAT AAATTGCAAT TTTTAAATCT GACATACTGG
 65221 ACTTTAAAG TATCCAATTG ACTAATGAAC AAAACTGCTC CAAATTTTC AATTCTTAA
 65281 AATCTTAAGA CAATACTTAA TATGGCAAAT CTTAACTTCT TAAACTTGT AAGAATGCTA
 65341 ATCAACTTAG ATTGGTATAA AGTTGAGTTA AAAATCACAG GATACATCAT CTCAGCTATA
 65401 AGTTTCATG AGTTGAGTT TTACAATCAC TTGAAATGCT TAGAATAGGA AATACGTATA
 65461 AATTATTTAA CATAAAATAT TGTTACAAAA CCTCTGGAGT GTCAGTTCT CTGGCCAGAC
 65521 TTTATGCTGC AGCACCTTG CCTGAGTTCT TGTCCTGCAT CCAGGAAGAA TTAGGTACAG
 65581 AGGCAAGAGT CAAGAAGATT AGTTTCCAA TAGTTCAGCT CACCTAGTTA ACTCCTGTT
 65641 ACAATCTCA AAGTTATCAG AAACCTGCAA TTGAGGGTTA TAATCCATT TTTGCAGAGT
 65701 TTCAAAACAA GACAACATT GTCTATGAAT GTTAAAATGT CCTAGGGTAG TCACAGTCAA
 65761 AAACACAATT GACAAAGAAA TTTAGTCACC TCTGTGATT ACAATAGCCT AACACAATAA
 65821 CTCTAATTAT AACTGATGAC ACAAACTCAG ATATCAGAAC TCTAGAAATC CCCTATAATT
 65881 TTGGAACACA CATTACACAGT TTTCACTGAA ATATGACCTG AAGATCAAAT ATCACCTTAT
 65941 TTCAACAATC CTATATAACT AAACGTGTCA AATGATCCTG TTTACCTCTC CTTTGGATAC
 66001 TCCAGGGGCC CTCTGTAGCA TCCAAAAGTT AGGGGTTAGC AAAGACAATT TTGAAGCTGT
 66061 AAAGGCTAA AACACTTAAT GAACCTCTAG TCATATCTGT TCTCTACTCA CTAATGCTA
 66121 GTAGCACCTC TCAGTTGTGG CTAAGCTGGG AGGATCTCTT GAGCCTAGAA GTTTGGGGAC
 66181 GCAGTGAGCT ATGATTATGC CACTGCACTC CAGCCTGGC AACAATGCAA AATCCTGTCT
 66241 CAAAAACAAA AACAAAAAAC AAATTGCCTA TGCTGTGGTT ATCTCACAAT TAATAAAAAG
 66301 GAAAAAAA GTATGCAGTC TTTGTAGGTC CTTGGGGTTT GTTGGAACTC AGAAAACAAT
 66361 ACCCCAAAAT AAAGACCGCA GAAGCCAAAG TTTTCTCTG ATCTTCTCCT GCCCTCCTGT
 66421 CTCTGAGTCC CATTCTCCCC GGAGTCTAGC CATAGAAATG AGAATCCTC TTCCTCAAGT
 66481 TAGGTCTAG AAATCAAAC ACCTTTCCC CAGAGCCCAG CCATAAAACC TAAAAATATT
 66541 ACTCTAACTT TCCCTCTGTT TTTCTGTGA AAAACTGGCC ATAAAGAAAT TATCTGAAC
 66601 ACCTTATTG ATCATAGATC ACCAGACCGC ATTCCAGAGA GGATCCAGAA GGAAGGAATG
 66661 CTGCACAGAG AGGCGAAGAA GAATCTAGAC AGACAGGCCT TGCTGGTTT CCCTACTCTG
 66721 TTTATTAGCA ATCCATTTC TACACGGCG CCCATACTTT GTTGAATCTA AAAAATAAAA
 66781 ATGGACAATT TCCCTGTAC ATGTTAATAC ACATTAATAA ATTGGATATA AATTGGATAA
 66841 TTTATTAAATA TACACATTAA TAAATTGGAT GCAGCCGGGT GCAATGGCTC ACGCCTGTAA
 66901 TCCCAGCACT TTGGGAGCTG AGGCAGGGCAG ACCACGAGGT CAAGACCACC CTAGCCGAAA
 66961 TGGTGAAACC CGTCTCTAT TAAAATACA AAAGTTAGCT GGGCGTGGTG GCACATGCT
 67021 GTAGTCCCAG CTACTGGGA GGCTGAGGCA GGAGAATTGC TTGAACTCGG GAGGCGGAGG
 67081 TTGAGTGTGAG CCGAGATTGC GCCACTGCAC TCCAGCCTGG TGACAGAGTG AGACTCCGTC
 67141 TAAAATAAT AATAATAATA ATAATAATAA TAATAATAAT AATAAAATTGG ATGCATTAA
 67201 TCCTATTAAAT CTTCTCTTG TCGGTGGTT TCAGCGACTC TTCAGAGGCC AAAGAGTAAG
 67261 TTTCCCTTA GCCCTACAG GTTCTTATGT TTAATTGTT ACTCTCATTT AAGACATAAT
 67321 TAAAGTGGCT TCTCCATGAA GATTATTCT GCATCCATTA TTTGGTAAGA TTGGCCGTTT
 67381 TCTCCTTGA TCTCTACTTC ACACTGACCC ACATAAAACA TCACTGCCTG TTTTTTGT
 67441 GTTGTGTTT GGAGACGGAG TCTTGCTCTG TTGCCAGGC TGGAGTGCAG TGGTGTGATC
 67501 TCCGCTCACT GCAAGCTCCG CCTCCCGAT TCACGCCATT CTCCTGCCTC AGCCTCCTGA
 67561 GCAGCTGGGA CTACAGGCAC CCACCACAA GCCCGGCTAA TTTTGTATT TTAGTAGAT
 67621 ACGGGGTTTC ACTTTGTTAA CCAGGATGGT CTCGATCTCC TGACCTCGTG ATCGGCCCGC
 67681 CTCAGCCTCC CAAAGTGTG GGATTACAGG AGTGGAGCCAC TGCGCCCGC CCCGTTTTT
 67741 TTTTGGTTT TTGAGTGTCT TCTCCCTTT ACTGTAAACT ATTTCCACTA CCAGCGTAGT
 67801 TATCATTCT ACTGCTTAAT AATTGTTTG GGGAAAGTGAA TGCACTAAC CACATGAATT
 67861 TCTTGTCTAT TTGACAATT ATTCTCTTA GGAATAGTAT TAACTCCTAA GGTCTGGGA
 67921 GCCAGTCTCT GTACTTGGCT GCTCCAGGGT CCTACTTCAG TTTCCCAGCT TCTCAGTACT
 67981 GTCAGTGTCA ATTGTGGTA ATAATTATT TTGTCCACCA AAAGACTCTG TATGTGAATG

Figure 8 (Page 21 of 73)

37/162

68041 AGTTTGAAA TCTGCTGAGT AATACAGTGT CAACCCAGTT AATGATTGC CGGGCGGCTT
 68101 GATCAGGGGC TGTCCAACA CCGGCATTTC GATTGGAGC GTCTAGT GTCTGAAAGC
 68161 ACAAAACAACA TCCTACATTG TAAATGCCTT TGGCTACAGA GATTGAAACC AAAGCAAACC
 68221 TATGTTTGAA ATTGTTATTTC TTCAAGCAGTT CTGCTAGCTT TGAAAAATCT AAAAGTTAAA
 68281 AAAAGCTTT ATATTCATT TTCTGCCTAA ACTCTTTAAA ATTGCTAGTT GACAATTAGA
 68341 TATTTCAAT TTAATGAAAT TTTTTTTAG TTCACAGATT AATACACAAT GGGGGAGGGT
 68401 TCTTATTCTG TTGGACTTTT ACATAACCTC CACTTTAGTG CAGTCTGCTT TATGGGTCT
 68461 TGGTGGAGGT GTGTGTGTGT TTAAGGGAAT GTGGTTTACA ATCAAAATAT TGGGTTGCTC
 68521 TAGGCACAT TGAAAGTCA CACACCTGTA TTCTTATTGA TACATAATGA TTAATAACAT
 68581 TATTATTACA GCCTGATCAC CATCATTATT GATATATCTA ATAATGAAT TTTATAATT
 68641 TGCTTCCTGT CAGGCAAGAG CCAATTTCAG TGCTACCATG TTTGTATAGC AGTATTTATG
 68701 TCTGTATCC TCAGTCATT TACTTCACCT GTTCTTAGCC AAACGGCCGA GAAGCGATGG
 68761 TCATTTTACT TCAAAAATGA AAAGAATTAA TATTTTACG TTTCCCTTAA AGACCCCTATG
 68821 TTTAACCTCC ACTCCTGGGT AAAATGGTCT AGTCCCTCTT TTTCATATCA TCTCTGATAT
 68881 CTTTGCACA GCCACTATT CCTACCGTT TCTAGATCCC TATTCTCAA ACACCACCAT
 68941 GAAGGTAGAG CCTGTCTGAA TTATTTCTT GTCCCTGAA CTCAGTACAT TGTTAGGCTT
 69001 CTTGAAGATG TTGATCAGTT GTTGTGGAG TGAATGAATC AGCTAGCATG ATTTTCTAG
 69061 ACCACTGAGA CAAGTGTCTA AGACACTTGT TCCTTCCCAT GTTCTTGCT GCCTGTGCAA
 69121 TCCATGCAGT CTCATGGCTT CCCAGTGCCT CAGAATTATC CCCTGTCAA CAGGCATTAT
 69181 AATTCTGTC CACTGAAAAG GACAAAAAAAC TAAGTGTATA GCTAGAAAGTT AAAAATTACC
 69241 GCCCAGGTAC TGTGGCTCAC TCCTGTTATT CCAACATTTT GGGAGGCTGA GGCGGGCAGA
 69301 TCACCTGAGG TCAGGAATTG GATACCAGGC TGGCTAACAT GGCACCCCG TCTCTATCAA
 69361 AAATGTAAAA GTTAGGCCAGG TGTGGTGCT CGCACCTGTG GCCCCAGCTA CTCAGGAGGC
 69421 TGAGGCAGGA GGATCGTTTG AGCCCTGGAG GTTGTGGCTG CAGAAAAATA GGAATATACT
 69481 CTCTTCAGAG AGTCGTGGT TTTGACTGCC ACCTAGCGTA CATCAGAAAA ACCGCATGAC
 69541 ATAGGAAATG CCTGTGACAG AGGGGTAAGG TGAGAGAGGT TGATGAAGAA TGTATTGAAG
 69601 GAGTGAAAC GCTTCATCC CTCTACTTAC TAAATATATT AGTTAAGTAG TTGGGGCATA
 69661 TTAAATTCA TGCATTTGT AGATAGAAAA ACAAAAGTTT TATTCTGTTT GATTTAGTTG
 69721 ATACTTTAAT ATGTGTGTGT TTAGGATGCA TGATTTATAA TCAGTCGCA GCACCTCTTG
 69781 GAGAAGTCTG AATTCTCATT CTCCATTTC TTATTGGCAA CGTGAGAATG ATTACAATGG
 69841 TGTTGTCTC ATAGAATGCA GGGAGTCAGA ATGAAAATAG TCCATATAAT GCCTGGTGC
 69901 GAGGAAGGGT TCAGTTAACT GTCTGTATTA ATATTACTGA TAACAGTCAT GACAAACAAA
 69961 AGCTTAACAA CAACACCACC AACAACAGTT GCAGAATTGA GCCACCAATT TGACACACAAG
 70021 ATTGTAGGTA GGATGTTTA GAAAAGTTAT TATTTAATAT ATGTATATAT TTTTGTACTT
 70081 AAAATATGTC AGAGGTTGTT CTAAGAACTA TTAAATGTT AACTCCCTAA TCCTCATAAT
 70141 GACCCATGAA ACAGGTAGGC TTATTATTGT CTCTTACAT GTGAGAACAC TGAGACACGA
 70201 AAAGGTTTAT TAACTCACCC AAAGTCACAC AGCTGGTAAA ACGGAAAAT TGAATTGAA
 70261 CTCAGACATT CCAGGTTCCA AGACAGTCTA ATTATTCTTT TGACTAATAT ACTAAGCTGC
 70321 CTCTGTATTTC TTCTTGATT ACCTTGAAA AGTATGAGGA AAATATAAGT GCTTCAGTA
 70381 ACCATGAAAA ATATAAACAA TCTATGTATC AACTGAAGCA TAATTACAAA TCCTTGATA
 70441 AGCAACACATA ATAAAAATTG GATATCAATC AAAACTTTCA TGTAATGAA GCAGGTTGAG
 70501 ATGAATTCTA TAGAAAAAA GTGCAGAGTG CTGGAATACC ATGCTCTAA TATATTGGCT
 70561 AGGCACACCT GCCTGCTATC AAAGGTATGC ACACACCTTG GATACAGAAA GTTGGGACTG
 70621 GGTAGTTATG TGAGTGTCT CAGAATTCTT TCCCACCTGG GAAAGAATTG TCCATCATAA
 70681 GCTTGGATGA TGGACAAGGA GTGAGCTCCC AGAACAGTGA TGTGGGATA CATCCTCACA
 70741 TCACAGTGTGAG AATGAGTGTGTT CTAGACTGTT TACACACCTA CCACTCTAA ATGCACACAT
 70801 ATAATTGCTT GCACACACAC ACATACACAC TCATCTCTTC TCTGGGGTC CAGCTCTATC
 70861 TCTTATCATTC AGGCTCTTG GGGCTAGTAC CTAGGGCCTG TATCCTTCA GAGGCAGCTA
 70921 AGGAAAGCAC ACATAATTAG AAAGAATGAA CCAGCTTGTGTT GGATTTGGTC TCTTCGCATC
 70981 CAGCCCTCCA AGTTAAGGAG AGTACCATCT TTCTTAGGGT CACCAAAGGA AAAAAAAA
 71041 AAAGAAAGAA ACAGAAGGAT ATCATACAGC AAGGATCTAA TGCAAATATG CCTCAAATGA
 71101 GAGGCTACTG TGTGTGATC CCAATCCCAG GAACTGTATG CACATTATCT AATTAAATCC
 71161 TCACTGTATT TCTGGAGTA TTATTCCCAT TTTACAGAGA AGGAACCTGG CAGGGTAACC
 71221 AAGCTCATGA ATGGAGAAC TGGGATTAAA TATAAAGCTT CCTTGCTCCA GAACTGCTGT

Figure 8 (Page 22 of 73)

71281 CTTTCTGCTC TTCCACACTA CCAGCTCAGC TGTGCTCTCT ACATGCAGGC AGTTTTACAA
 71341 GTTTCAGATT AGCCTGGGAC TTCCAGGGTT TTGAATGGGT TAGGGAATGG GGAACCTTTG
 71401 GGTTTACTTT CCATTTTTC TTCATACATA TGTAATATAT AACATAAATC TATGGTATAT
 71461 ATGATAAATA TATGGCTACA TATGAACTAT ATAATCACAT ATATGCATTA TAAATAAATA
 71521 TTAATTTAT AATATTTAA AGGTTATCAA ATAAATATTA ATATAAATAA TTAAATAATT
 71581 AATACTCAGC TTTGTTTCC AAAGTGATAA ATGCCATATAT TTAGAAAAT ATTTTTGGA
 71641 GGCTGTAG TTTTAGGAG TGTAAAGAAG TCCTGATATC TAAATGTTA AGAACCACTA
 71701 TTTTAGGCTG TTGCTTCTG TCTTATTTC CCAGCTAGAC TGGTAAATAC TTGAAGGCAA
 71761 ACGTTAGCC AGCACATTAA CATTATGT TTTATTCTT TTGTCCTCTC AGTGGCTGTG
 71821 TCTTTCTAT CGATTCTCA CACTGTATGA TGGTTATATT TGTCTGTATC TGTCCCACCA
 71881 GGTATAAGTT CTTGAGAGGA CACACTGCTA GGCTGATCTT AGTTTTATT ATTTCCTCTG
 71941 GTGTCCTGTG CTTAACAAAGT GCTCATTAAG TGTGTAAAAA CACAGCACAG TAAAAAAACTA
 72001 GACATTAAAA AATAATGTCA ACCAATCTAT TGAAATTTCG ATTTCCATGT TTCTTCCAAT
 72061 ATAGTCATTG TGTCAGGTTA TGTACTTATT CTGATGAAGA CTATTGCCTA ATATACTTT
 72121 GCATCTTGTG CTTTATAACT GCCTCATAT AGACACAGAT TGAGAAGGTG TAAAAATGTG
 72181 CATATCCTCA CAATTGACAA ATTCTTATCC TTTGAGGGTA GGTTGACTT TCTGAAATGC
 72241 TTTGACATCA TTTGAAAGAA GCTTGAAGAA TAAGATAGCT GTTAATGACC CAGTTCCCTA
 72301 TGTCACTTAT ACAATTATAA TGGCAATTTC AAAATGTTAG GTAAATATAT TTTGCAATAT
 72361 ATTGTTCCCTT TTGTAATACT CTCTATGTAT TTATTTATAT TTTTAAATTT TATATTTATG
 72421 TATTTATTT TCTGGACAGA GTCTGCTCT TTGCCCCAGG TTAGAGTGA GTGTTGTGAT
 72481 CATAGCTCTC TGCAACTTCA AACTGCTTGG CAAAAGTGAT CCTCCTGCCT CAGCCTCATG
 72541 AGTAGAGTAG CGGGAACTAC AGGCGCATGC CACTGCACCC AGCTAACAC TATTTATTAT
 72601 GCTCCTACTG TGTGCTTTAG TATATTTCT TTGTTTTCT GCAACCCATT TTGAGGGCGT
 72661 GTTAGGAAAT ACAGATGCAG TAACTTTCTG CTCAGCCCTT GAGGTGAGGA AATATTTAGC
 72721 CTCAGGTTTA ATCTAATTGT TGGCCATTG CCTTCAAAGA TTGAAATATG AGCAAAACTG
 72781 TGCTCTGGG TTATATGTTA AAAAAAAGTT TATGGGGCTG AAGCCAGGCA ACAGACAAGA
 72841 GCCCCTACAA TCTTATTTAG GCTGAAAATA TCCGGAGTC CCTGTATTGT TGGTCTCAAG
 72901 CAGATAGCAA CACTAACACT TACTCTTGA GGCAGGCACT GCCAGTGGGG TGGCTGTTAT
 72961 TATTAGCTTC ATTAATTGGT GAGTCAGGAA AAAACAGCTT TAAATCATTG AAAGTTCTGG
 73021 CCTATACAGG ATTTAGTAAT ATTAGGTTAG CTACATCCAA AAGATGACAG AACCTACTC
 73081 TAAGGCTGGG CTTGGTGGTT CACACCTATA ATCTCAAAAC TTTGGGAGGC TGAGGCAGGA
 73141 GGATCACTTG GTGCCAAGAG TTTGAGACCA GCCTGAGCAA CATAGTGAGA CCCCTGTCTC
 73201 TATCAAAAC AAAGAACTCT AATTGGCATA GTAGAAGGAA AAAGTGAAG AAAAACCAGC
 73261 TGTCAACCCTC ATTCCCTTACA CCTGCTCAA CAACTCCTCT CACTATCCTT TGAATATATC
 73321 TTGGCTGTTT GAGTCTCTCT CTAGCCCCAT TACTGCTGTT TGGACTTGAC ATTTGCTCT
 73381 GCATTTTAA CTTTCTACC AGGGTTCCA GACCTGAAAG AGTGTGGCAT GAAACAAAAC
 73441 TAGTCAACCT ATAATATTTA TGATGTGTGT GTAAATAAAA GAATACACAA TATATTGCAT
 73501 TACAATATT TAACTGTGTC CTCATTGTT TTGTTGCTTT CTTGAGGACA TCAGTTTGG
 73561 GTGGGACGAC CACATCCTTA ATCTGAACCT TCCCTGGAG GTCATTCTT TTTTTTGAA
 73621 ATAGAGTCTC GCTCTGTAC CCAGGCTGGA GTGCAGTGGC GCAATCTCAG CTCACTGCAA
 73681 CGTCCGCCTC CTGGGTTCAA GTGATTCTCC TGCTCAGCC TTCAAGTAG CTGGGATTAC
 73741 AGATGCACGC CACCATGCCG AGCTAATT TGTATTTTA GAAGAGACGG AATTCACCA
 73801 TGGTGGTCAG GCTGGCTTA AACTCCTGAC CTCATGATCT GCCCACCTCA GCCTCCTAAA
 73861 GTGCTGGGAT TACAGGCGTG AGCCACCCCG CCCGGCCAGA GGTCAATTCTA ATAGACTTT
 73921 TTTTTGTTGT TGCTCACAGG CTTGTTCAAT CTTATTTCAA AATTGAGAA ATACAGTTTC
 73981 CATGGAACAC CAACCAAGATA TCAGGTTGCT ATGGAGTTGA TAGTCAAAAG CTTTGTATCT
 74041 TCCAGTTTT CAGAATGGCT TCTAAAGGTT CTGATTTCAGA GCTCTTAGGC GAAATTGAAC
 74101 AACCAAGTGT CAAAGTACAA CATTCAAGAA GTTAAAACAA TGACTGACAT ATATGTACTA
 74161 TATATAGTGA GCTTGTGTAT GTGTCATGA ATGATTAAAT TCATTAATGA AGGAGGAAGC
 74221 AGAATCACAA TTAGGTCAA GGAAGATACG GGAGAATAAA ATATGTATTT GGTCAGGGAA
 74281 AGGATGTATA CTGGAAGAGG AAGGGAAAAT CAGATATAAA GTTGTAAAT GACTTATTAG
 74341 GCAATACAAT AATAACTTT AGGGTCATTT TTCTATATT AAGAATTCTAT TTCCATCTCT
 74401 ATGACAAAAT CCTTATTAAT TTATTAAC TCTACAAGTG AATGTTACT TTAGATAGT
 74461 CTGGACCCAA TAAATGTAA ACATTAAGTC AGAGTTACTT TCACGTAGGA CAGTGTGTC

Figure 8 (Page 23 of 73)

74521 CAATAAGGTA CCACTAGCTA CACGTGATCA TTGACCATTG GGACTATAGC TAGACTGATT
 74581 TAAAATGTTCA TAAAAGTGTAA AAATACACAC CAGGTTCTGA AGATTTATCA TTTAAAAAAG
 74641 AATGTCAACT GTCTTTTTT TTAGCTTATT TATTATATGT TGAAGTGATA ATAGTTAGA
 74701 TATATTAAGT TAAATAAAAT ATCTTAAAT TAATTTTACT TGTTTCTTT CATTCTTC
 74761 ATGTGACCAC TAGAAATCTG GAAAGTATTG ATGTGATTCA CATTCTATT TACTGTCTAG
 74821 TATTGCCTTA CATCATCAGG TACCCCATAA GTAGGCTTT TAGATAATTC TCTAATATAG
 74881 CTGGAAAGGA TATGGAGAAA TATTTTGCG TTGCTTTAA GTTTGCATA ACTTTTCAA
 74941 CACACTTTAT AAAGGATCTA GAAAAGGTT GTTACATGT TTCTCTGTCT TCTGGCTCC
 75001 ACCATGTTGC CAGGAGGTTG GGGACAAGAT TCTGGTGGC TGGATGTCCT AATGGCTTG
 75061 GGTCTGGACT TGAGATTGC ATATAAAAGAG ATGTGATTAG ATTGAGTCGA CTAGAAAAAT
 75121 CATATTAGAG AACTGAATCA CAGCGATTAA ATTACATGT CGATTATAA ACCAGGACAC
 75181 CAATTTATAG TGAAAAGAAGG TCCAGTTACC TGTTAATCAA GACGTTCAT AGCTATTTTC
 75241 ATGATGGATA TACTTAGCTG AGTTTAAAT GAGAAGGGGG TTCATTGCAC ATAGAATAAG
 75301 ATCTAAGTGA AATGTTTATT TTATTTTTT TTTTTGACA TGGAGTCTTG CTCTGTTGCC
 75361 CAGGCTGGAG TGCAATGAGG CAATCTCGGC TTCTGGAGTG CAATGAGGCA ATCTCGGCTT
 75421 CTGGAGTGC ACGAGGCAAT CTCGGCTCAC TGCAACCTCC ACCTCCCGGG TTCAAATGAT
 75481 TCTCCTGCCT CAGTTTCCTG AGTAGCTGGG ATTAGAGTTG CCTGCCACCA CGCCAGGCTA
 75541 ATTTTTGTAT TTTTTTAGT AGAGATGGGG TTTCACCATG CTGGCCAGGC TGGTCTCGAA
 75601 CTCCTGACCT CAGGCATCT GCCCGCCTCA GCCTCCAAA GTGCTAGGAT TACAGGCGTG
 75661 AGCCACCAAG CCTGGCCTAA GTGACATGTT CTTATATTGT TCCTTCTTT CTTTTTTTTT
 75721 CGACTGAGTC TCACCCCTGTT GCACAGGCTG GAGTGCAGTG GCGTCATTTC GGCTCATTGC
 75781 AACCTCTGCT TCCCCGGGTT AAGCGATTCC CTTGCCCTCAG CCTCCTGAGT GCCACCAACCC
 75841 CCAGCTAATT TTTGTACTTT TAGTAGAGAT GGTGTTTAC CATGTCGGCT AGGCTGATCT
 75901 CAAACTCCTG GCCTCAGGTG ATCCGCCCCC GAGTCTCCC AAGTGTAGG ATTACAGGGG
 75961 TGGGCCACGG GGCCCAGCCT TATATTATT CTTTACTAC AATATATTAG TATGATGCAG
 76021 GTGCTTCAAT TGTTTATACA CTTTCCATAA TTTGTATAA TTCTTATACC CTGTCACTCT
 76081 GAGGAATAGC CGGTCTAAGT GTTTTCCAC CACTGCTAAT TCATCCATCA CTAATCTCAT
 76141 TAGACTGTTA ATTCCCAGAG GACATAAGCA CACAAGCAGA CAATGTTAC AAATGTTGGA
 76201 CAAATGTTAT TTAATAAAAC AATGGGGTCA CCCTTAGTCT AAAAGATGTT TCACTTTCA
 76261 TTTGTCATTG AACTCTTATT TGTAGGTTCC CTTTGACTT TCCCACAATC TAAGGCTGTT
 76321 CTCTTTAACCA CATATTTCA TGAAAACATA TATTGAGCA GAAATTGTTG GGGAGTTGTA
 76381 ATATTACCTT TGTCCCTAAA TATGAATCTA TAATTATATC AAATATATGG GCAGACAAATT
 76441 TACTTGCCCT TTAATCTCAA GAAAAAAATA GCAATTACTT GGGGTCGGAG AGTAAAATAA
 76501 GAAGTAGTGA ACCTTAAAGT AGCAAACCTT AGAACAGAAT AGTTTCAGAG GGGATGAGAA
 76561 GAGGGTATT TTCAGCTCAT CAACAACAGA TCTTATAATA AATTACATGT TCTGGTACTT
 76621 TTCTTGCTT TCTGTGTTAA ATTTGCTAT TTAAAAAAAT AAATTCTAAA TACATTGTT
 76681 ATCTTAAAG TCAAGAGTGT GTTTTATTAA AGTCAGTTGC TTTATTGCA ACTCAAAAGA
 76741 TATATTGAG TTCCCAACTG GAGATTGTC TATATGGTAA CTTGCGTAAG GTATGGTTAC
 76801 TGAAAGTAAC CTACAATTTC CATGGGCTGA AATTCAATTTC TATATTGAG CGTACAAAAAA
 76861 TAAATAAAATA AAAAATGCTT GTTTCTTG AAAACATATT ATCTCAGTGC CTCTAACTGC
 76921 CAAATCTATT GGCTTTTTG CAGGCTTAAG GGCTCTCCCT TGTTCCCTTA TGATCTCTAT
 76981 CTTGAGGGCC AGACCTCCTG CCTTACACAA CTCAGAGGG GACCTCAGAG CTCTTTAAAA
 77041 AGAGCCCAAT TTCTCGCTG TAGAGAAGTG AAAAGGATGC CCCACCCCCA TCTATGAAAA
 77101 GAGGGATTG ATAGTTCAA TGTCTTCAA TCAAAGAGTT AAGTCTGTAG CCCCCCACC
 77161 CCCCCGACCC TAGCAAGGCT CATGAACCCC CTCCCATCCC GCCCTAATTG CTTGGACTG
 77221 GCCGTGGAAT CTTGCTCCC GTCCACAGTT CCTGTGCGAC TGCACGAAGA ATTACACAGAG
 77281 GACCTGTGTT ACTTCCCTTG TGAAGAAACA GAATTATCAT GAAAATTAG GTGGAAACCA
 77341 TTTCGTTTT TTCTTCAAAA ATAAGGGAAG CATGTGCCA ACCACCCCTG GGAAAAAGAA
 77401 CCTTCAGGGG CAAAGGAGCG AACAGGTAAT TTATAAGAAA AACAGAAAGT GGTCTCTGAC
 77461 TGCCCCAGAC TTCCCTCGGA GTGGGGGAA TTGGGGACGC CTGGACCGGT TGTTTTG
 77521 TTTGTGGAAA AAATAAAATGA AGAGCATGAA GCCCGAGGCT TCTGAGATCC TTCTCTGACC
 77581 AAACCCAAGT GATTTGGTGC GGGGAATTAA AATATTTTC CCCTTTGTG AGGTGGAACA
 77641 AACACAACTT GGGAGCAGCG CAGCGGCTCA GAGCCTGCCA GCCAGGCGGG CGACCAGAGC
 77701 ACCAATCAGA GCGCGCCTGC GCTCTATATA TACAGCGGCC CTGCCCCAGGC GCTGCTTCAT

Figure 8 (Page 24 of 73)

40/162

77761 CGCGCGTTTG CCACTGTAC CCGAGTTTT GATTCTAAC ATGTCGGAGA CTGCTCCTGC
 77821 CGCTCCCGCT GCCGCGCCTC CTGCGGAGAA GGCCCCTGTA AAGAAGAAGG CGGCCAAAAA
 77881 GGCTGGGGGT ACGCCTCGTA AGGCGTCTGG TCCCCCGGTG TCAGAGCTCA TCACCAAGGC
 77941 TGTGGCCGCC TCTAAAGAGC GTAGCGGAGT TTCTCTGGCT GCTCTGAAA AAGCGTTGGC
 78001 TGCCGCCGCC TATGATGTGG AGAAAAAACAA CAGCCGTATC AAACTTGGTC TCAAGAGCCT
 78061 GGTGAGCAAG GGCACCTCTGG TGCAAACGAA AGGCACCGGT GCTTCTGGCT CCTTTAAACT
 78121 CAACAAGAAG GCAGCCTCCG GGGAGCCAA GCCCAAGGTT AAAAAGCGG GCGGAACCAA
 78181 ACCTAAAGAAG CCAGTTGGGG CAGCCAAGAA GCCCAAGAAG GCGGCTGGCG GCGCAACTCC
 78241 GAAGAAGAGC GCTAAGAAAA CACCGAAGAA AGCGAAGAAG CGGGCCCGG CCACTGTAAAC
 78301 CAAGAAAGTG GCTAAGAGCC CAAAGAAGGC CAAGGTTGCG AAGCCAAGA AAGCTGCCA
 78361 AAGTGTGCT AAGGCTGTGA AGCCCAAGGC CGCTAAGCCC AAGGTTGTCA AGCCTAAGAA
 78421 GCGGGCGCCC AAGAAGAAAT AGGCGAACGC CTACTTCTAA AACCCAAAAG GCTCTTTCTA
 78481 GAGCCACCAC TGATCTCAAT AAAAGAGCTG GATAATTCT TTACTATCTG CCTTTCTTG
 78541 TTCTGCCCTG TTACTTAAGG TTAGTCGTAT GGGAGTTACT GAGGTATCAG AGGAATTGGG
 78601 TGACGGGGTT GGAGAGTGGC CGTGGTGGAGG TTACAGCATT TAAACCTTA TTGCGGCTTC
 78661 TAGGTCCCTG ACCGGAGGCT TTTCTCGCTG GCGGATGGTT TTGGGATGGC AGTCCCGCC
 78721 CAGGCCGTG AACGGCAGAA AAGACCGCAA AACAAAGAGCC AGTTTCTTAG TCTAAAGGGA
 78781 TGTCGGATT GGACTAAAAA ATTTCAAAAA GTCCCGCCCT GCTCCCGGGT TGGTCCGTTC
 78841 TTCTAGTACA TGACTTTCAT TCTGTATTAA ATTGGATGGT GGAAGACGTT GCTTATTCTG
 78901 TGTTTTTGCTT TTTACTGTGA CTTAAAAGTT TTGCCTCTTT TCTCTTATA TTAATGTCTG
 78961 GGATTCGGA CGCTTCCAT GTGTTGGTA GTCAAGTTGA TGTCTCTGG AGTAGTAGGGC
 79021 AACATCCAGC CCTGGGAGGA GAGTGCCTGC AGGTACCTT GTCCTACATT CCTCTGCTGT
 79081 TAATTTCTCA TTCCTGTGGC AACGAAGGAA TGCATTTAAA AACAGCCAC AACAGCGGCA
 79141 ATAGCCCTTC CTCCACCCAA GGCAATCGT GACCTAGGG A TTTTTTGTG CCACATAACA
 79201 TGTAGCCTTC CGCTAAACTG ACAGGTTTGA GCGTATCGAT TTTGAGCGTA TCGAAAGCAC
 79261 AACTTTAGC CAGCCATTT GTCCTCGCAT GACTACGGTT GCTTATCCTG TTTAGACAGA
 79321 CAGCAACATT TAAAAATCGA AGTTCTTTA AACGTATTT GTTTGGCAGT CCAAATGTTT
 79381 CTATGCAGAA AACAGTATTT GTACTATTAA CTATGAAGAG TGTATGGATA AATGGGAGAC
 79441 ATTCTAATA AAGGCCCTCG TTAATGGTTC CCTCTGTTG ACATCCATGG TGCTTCTGAA
 79501 TACAGAAAGC CTAGCGTCTT ATATTGCTT CTTTTAAAAT CTGGTGGGCA CATTGGGTG
 79561 AGACCTAAAT TATGGGGACT GGGGCTTCG GAGATAAGCT GCTCAATTAT TCTACCATCT
 79621 CCACAATGAT TAATATAGTG AGTTGATTG TTAGTGATAG TGACCACGGA TTCATCCCA
 79681 GAAAGAGAAA GGGGAGGGAG GCAAGCAGAG AGACAGGAAG ACAGAGGCAG GGAAGAAGGA
 79741 GAAAACATTC TCCCATGGTT TAAGTAATT TGTGTTGTTA ATTTTACATT ACAACACGGT
 79801 TTAACATGGT GAACCCCTCA TTTTGGTGTG AGGTTAACAA TATGGACATA TTTTCCCAA
 79861 GACCATTAT GAACCTTCAT TTCTGCTTCC CCCTCTTCC TCCCGTGCCA CCCTCCACGC
 79921 TCCTATCAAT TTTGGCTGTT TTGTCATAGG CTAATACGCT ATAATTTCAT GGACAGTTGG
 79981 ACTGTCTTAG GTTTCTCAGG TTTCTATTAA GTTCCTTTAG TCATCCCCAC AATTCTTAAG
 80041 GTAGAATTGT ATTGTTTTAA ACATTGTTG GTGTGCTATC CTCAATGCTG AGATGATTAT
 80101 GTGACAAATG GCAAGTGTTC AACTAATACC TAAATCTGTA GTATCTTATC AAGCCTAATG
 80161 CTACTTCACA ATGCCCTACTC CATTCACCTC ACTTTATCTC ATTACTGGCA TTCTGTCATC
 80221 TCACATCATC ACAAGTAAAA CGGTAAGCTA TTTTGAGAGA GATCACAGTC ATATAATTAA
 80281 TATTATATT TATTATTTA TTTATGAGAC GGAGTTCCC TCTGTACCC AGGCTGGAGT
 80341 GCTGTGGCAC GTTCTCGGCT CACTGCAACC TCCGCCAC GGGTTCAAGC GATTCTCCTG
 80401 CCTCCGCCTC CCGAGTAGCT GAGATTACAG GGGCCTGCCA CCATGCCGG CTAATTGGT
 80461 TATTGGTAGT AGAGACGGGG TTTCACTAAG TTGGCCAGGC TGGTCTCGAA CTCCCTGACCT
 80521 CAGTTATCC GCCCACCTCA TCCTGCCAAA GTGCTTAGAT TACAGGCGTG AACCCACCGTT
 80581 CACAGACTCA AATCATTAA ATTACAGTAT ATTGTTATAA TTGTTGTTT ATTATCAGTT
 80641 ATTGCTAATC TCTTACAGTG CCTGATTAA AAATTAAATT CATCATTGCC ATGTGTATAT
 80701 AGAAAAAAAC AGTGTATATA CGGTTCAAGA CTATCTGTGG TTTCAGGCAT CCACTGGGG
 80761 TGCAGTTTAT TAAACATGCA TTTACATTAG TCTCCCTTT GGGAGACTAA TTAACTGAGA
 80821 TGTGTAACG TGACTTTAAT AGCAGATAGA GCTAATTTC TCTCATTACT CTTCTTTTC
 80881 AGAATTTCG TGGTTATTCC ATTGTTTATT TTTCCATATG TATATTAAGA TCTCTTCCAC
 80941 CTCCTCCTGT TTCTCCATCT CAACATCAA CAATTAAAAA AAAAAAAAG GCTGGCGCG

Figure 8 (Page 25 of 73)

41/162

81001 GTGGCTCACG CCTATAATCC CAGCTCTTG GGAGGCCTAG GCGGGTGGAT CACGAGGTCA
 81061 GGAGTTCAAG ACCAGCCTCG CCAAGATGGT GAAATCCGT CTCTACTAAA AGTATAAAAAA
 81121 TTAGCCAACC ATGGTGGCAG GCGCCTGTAA TCCCAGCTAC TCGGGAGGCT GAGGCAGAGA
 81181 ATTGCTTGAA CCTGGGAGGC GGAGGTTGCA GTGAGGCAG ACCTTGCAC CCAGCCTGGG
 81241 TGACACAGCG AGACTCCGTC ATAAAAAAAAA AAAGCCGGAA GCAGTGGCTC ACGCCTGTAA
 81301 TTCCAGCACT TTGGGAGGCT GAGTCAGGCA GATTACCTGA GGTCAAGGAGT TCAGGACCA
 81361 CCTGGCCATG AAAATACAGC CTGGCCATGA AAACACACAA TAAATTAGCT GGGCGTGGTG
 81421 TCACACACCT GTAATCCTAG CTACTCGGGA GGCTGAGACA GGAGAACAC TTGAACCCAG
 81481 GAGGCAGAGG TTGCACTGAG TTAAGATGAC GCCACTGCAC TCCATCTGGG CGACAGAGCC
 81541 AGACTCTCTC TCAAAAAACT AAATAAAATA AAATAAAAGTT ATGGTACATT GAACTCTGT
 81601 GTTCCTTTCT CCCTTAGATA CTTTCATGGC TACCCATTAA ATTGATGTTT TTATCATCTC
 81661 CAAGAGTTAG TCAGGAGAGG AATCAACCCAA AGCAAAAAATA GCTGATTTT TAATTTCTT
 81721 TCAATGCCCT TTGGGGTCTT AATCCATTG ATTATATGTAC TTTCAATTAA TCCTAACCTC
 81781 GAATGTCTTC TGCAAACATG TTCCACAGA TGAAACTCGT CAAATGAAAC ACATTCCTT
 81841 AATTTATAGA GTTAAAAATT AGAAAAAATT TCAATTCTAT TTGGCCTTTA GATTCACTCT
 81901 TGCAATATGTT TTCTCAATT TGTTCATGCT CTTAGTTT GTTTTATTCC ATCACAATTG
 81961 TTCACATAGC TTACTGGCTT AGGTCTAATG AACCAATTCAAT TTGGAAATTAA AAATTGGCCA
 82021 TTTTAAGATG AAAAGATTC TTGCTCAAT TTTACTTAGT TTTTGAACACT GTCAATGAGG
 82081 ACACATGTTT TTCTGTACTC TTAGATTCAAC TAAGTAGTGT CTTGCAAATT TAATGACAA
 82141 AGGACAGATT AACATGCGAA AAAAGAGCA TGCAATTAA TTAGTATATT ACATGCACAG
 82201 AGTTCCCAA GAAAAAAATTT TGAAACCTT AAAACGCGG TTAGACTCAC AGACTTATAC
 82261 ACCATTCCAA CAAAGGAAAG GGAGTTGCA CTTCATGGGA TGACGAATTG GGGAAATGTGA
 82321 CAAGGAAATA AATACATGGG CAATAAAAC CATGGAAGAT AAAATGAAAG ATAGAAATAA
 82381 TTGTTAGTAAG GTTTGTTTT GCAGAGTCAT CTCAGTGCCA ACCTTCATA TCTAGTGATA
 82441 AGAATTGCTC TCTTTTCCT GGTATAGCAG TTGGGGACAC TTTTACAAGG GAAATTCTG
 82501 TCACCTTCAC AAAGGGAAAT TTGGTAAAG AGAAGACAGA GACCTCTTC TACACCTGTT
 82561 GATTTTCAT TGCCCTCAGC TGAAAATAAC TTTTATGCCA AAGTAGAATA ATTTGGGGGT
 82621 GACATCCTGA TATTCTCAA AACTTATATT TAATTTCACAA TTAGTAATTAA TATCATTGTT
 82681 GATTTTAAATTT TAGTTTAT AAAATAATT TGAAAACCGG TAATAATATT CAAATAATT
 82741 CAGAAACACT GCTGATAAGC CAAAAACATC AATGAATATT GCATAAACAA CTGATAATT
 82801 AACCATGAAA ATTTATGACA TTGTTCTTGT GTGATAAAAC TATGAGTAAC ATAAAAACTA
 82861 GAGGCTACTT GTAATGCATT ATTCCAAACT TTCTGTTTT TATTTATTAA TTTATTATT
 82921 TTGAGACATA GTCTCTCTC GTCACCCAGG TTGGAGTGCA ATGGCGTGAT CTTGGTTAC
 82981 TGCGCCTCC ACTTCCCCGG TTCAAGCAAT TCTCCTGCCT CAGCCTCTG AGTAACGTGG
 83041 ATTACAGGCA CCTGACACCA AACCCGGCTA ATTTTTTGT ATTTTTAGTA GAGACGGGGT
 83101 TTGCCCCATGT TTGCCAGGCT AGTCTCGAAC TCCGACCTC AGTGATCCAC CTACCTCGGC
 83161 CTCCCCAAAGT GCTAGGATTA CAGGGCGTGG CCACCATGCC CGGCGCATTAA TTCCAAACTT
 83221 TCATACACAG TGCTATCATG GCTACAAATT GAAGTATCAT ATTATACACT CCTAGGCAA
 83281 GCTCTGGATA TTTTGGCTAT ATAAGCCTGA GGGAAATGTA GTAAGGACAT TGTGGTTGAA
 83341 ATTCATACCA GAGATGAACA GGCCCAGTGC AAGACAGAAT TACATCACTA AAGGATATCA
 83401 GAAGAGAATA GGGATTAGG GTACAGTGGC AACAAACAGTT TTGGGAACCA GCATTTTTG
 83461 AGCACTTATT TACAATATGC CAAGCACTGT TGCTGATTAC TCTATATTAA TTTTCAAACA
 83521 CATTCTTGTC ACAGCACTTT GAAGTAAGTG CCATTGTCAAT TCCCACCTCA GGGTGAAGGA
 83581 CTAAGCTTG GTGTCACTAA GGATGTAGCT AGTTAGCTGT GTGTGTGTGT GTGTGTGT
 83641 GTGCATTTTT TTTTAAATTAA AAAGTCAATA AATTTTATT TGAAGAATTAA CACATCAAGG
 83701 TAAACTTTGT TCCTCTAAAG AGCTGGAGTC AAAATGTATC TTCAAAAGAT TCATCTTCAA
 83761 GTTAGCCCTT CTTAATAGAA CTGATGCTTA ATCCACAGTT GTCAGCCCAC AGTTCTTTA
 83821 TTTTGACTTT TTTTTTTTTT TTTTTTGAG ACGGAGTCTC TCACTGTCAC CCAGGCTGCT
 83881 GGGCAGTGGC GTGATCTCGG CTCGCTGCAA CCTCTGCCTC CGGGGTCAA GTGATTCTCC
 83941 TGCCTCAGCC TCCTTAGTAG CTGGGACCCAC AGGCGCATGC CATCGTGTCTC GGCTAATT
 84001 TGATTTTTA TTAGAGACAG GGTTCACTA TGTTGGCCAG GCTGATCTCA AACTCCTGAC
 84061 CTCATGATCC GCCTGCCCTTG GCCTCTCAAA GTGCTGGGAT TACAGGTGTG AGCCACTGCA
 84121 CCCGGCCTTA TTTTGCCTTC TTTAATCTCC ATTTGAACAT ACACATACTG ATGAAAAC
 84181 CAACATTCTT CACCAAAAT CTTTGGGATT TAATTCTTC AACCACTTTA CTTTGGGTC

Figure 8 (Page 26 of 73)

42/162

84241 ATTTTAAGAT TAGGTGTATC TGCCTGGTTC TCAATTGAC ACCCTTCCTC TCTAAACATG
 84301 AATGAGTTC AATCATATTT ATTCCTAACG TATCACACTC AAATATACTA CAGATCTGTG
 84361 GAATATGCCA AAAGTTAAGG TGAAAATTA AATTATTAGG TATTTCATAG TTTTGCTAGT
 84421 TTTTGATCTG TGAGTGAATA TAACTATCCT CTATGTCCTG GCACTGTTCC TCAGAAACAT
 84481 AGGGTCCACA TATGTAATT TAAATTTTT AATAGGCACA TTTAAAAAG TGAAAAAAGA
 84541 ATATCTTTT AATGATTGTA ATCCAGTGTAA ACCAAAAATT GTTCAACAA GGTATCTAAT
 84601 ATTAAAATAT TGAGTTTTA CTTTGTATT TTACTAGTTC TTTGAAATCT GGTGTGTATT
 84661 TTACACTTAA AGCACACATCAC AGTTGGAGT AGCCACATT CCAATGCTTA ATACTCACAT
 84721 ATGGTTAGTG GCAACTATCT TGGACAGGAC AGCTTTATA CTCTGGGAAG ACACAAGCAA
 84781 ATACTTGCTC TGCAGCAGAA TCCAGATGTT TTCCAAGAAA ACACCTTTTC TGACCTGTT
 84841 CTGAAACCCA GGTAGTGTCT CTAATACTTT ATATTTTATT GGTTTGTCT ATTGTAACCA
 84901 CCCAACGGGC TCTCCTTGTG CACTTCCTAG ACAGAGCTGA TTTATCAAGA CAGGGGAATT
 84961 GCAATAAGGA GCCAGCGCTA CAGGAGACTA GAGTTTTATT ATTACTCAA TCAGTCTCCT
 85021 TGAGAATTG GGGACCAAAG TTTTAAGGA TAATTGATT GTAGGGGACC AGTGAGTCGG
 85081 GAGTGCTGCT TGGTTGGTC AGAGATGAAA TTATAGGGAG CCTAAGCTGT CCTCTTGTGC
 85141 TAAATCAGTT CCTGGGAGTG GTGGGGTGGG GGACTCAAGA CCAGATAATC CAGTTTATCT
 85201 ATATGGGTGG TGCCAGCTAA TCCATTGTGT TCAGGGTCTG CAAAATAGCT CAAGCATTGA
 85261 TCTTAGGTTT TAAAATAGTG ATTTTATCCC CAGGAGCAAT TTGAGGTTA GAATCTTGT
 85321 GCTTCCAGCT GCATGACTCC TAAACCATAA TTTATAATCT TGTGGCTAAT TTGTTAGTCC
 85381 TGCAAAAGCA GTCTGGTCCC CAGGCAGGAA AGGGGTTTGT TTCTGAAAGG GCTGTTATTG
 85441 TTTTGTTTA AAAGCAAAAG TATAAACTAA GCTCCTCCCA AAGTTAGTTA ATCCCAAAC
 85501 CAGGAATGAA AAGGACAGCT TGGAGTTAG ACGTTAGATG GAGTCGGTTA GGTAAGATCT
 85561 CTTTCACTGT AATAATTTC TCAGTTATGA TTTTGCAAA GGCAGTTCA CTGTCCACTT
 85621 CACCTCACAT CAGGCCCTG ACTAGAGGAT TCCAACAATA CTTAGGCCAG GACACCACCA
 85681 TGTCTCCTTA TCCACCCCTGA GGGAGTCCAA TTTCTGAAAC AAAGGAAACT ATATATGATA
 85741 GTATGAAACT ATATATGAGA AGGAAATTAT ATATGATAAT CAATTAGG GTTATCTTAT
 85801 TGATTAGAAG ATATTAAGT GTGACACTGC CTGGCAATGA TATCTGCTGG TAGTAAGAAT
 85861 TTGGCGAATT TAGTGAATT CCTGAGGCTG AACCTCCACT TCTGTAAAAT GGAGACAGTG
 85921 AGATAATTG CCTTACAATG CTGAAGTAAG AATTTCACAC AATAATTCAAG ACCAACCACT
 85981 TCATGTGGTA CTTGGCCCGT GGAAGACTAT CAATGACAGT TAGTTTATAG TTTATACTAT
 86041 TAATGAATCC TTTGTTTCAT TGTTATTTC TTCTACACGT TGGCCTCTCT AAAAGAAGGT
 86101 AATATTCAAT ACAAAATAAG TTAAAACAGC TTGCAGAGTT GTCCCAGGGA ACTCACTAA
 86161 CCACTGAAGT GTTCAAATTG CTTAAGGTTG ACTTTATATT CTCCTGACTA ACCTTCCTCC
 86221 TTCTGGTATT TCTTCTGAGA ACAGCACCAC CATCCAAAGC ATCATGCAA CAGTGGTCAT
 86281 CCCAGACCAG TAATTCTCAA CTCACAGGGT GCTCCTGCAAG AGATGTATT GAATAGAGTG
 86341 GTAGGATGCT GAAGAAGGCC ACGTAAAATT TGCCAGTGA TCTGGGGCAG ATTTATCCTG
 86401 AAGCTAATGA AACACAAGTG TAAGGGCCTG TACTTCCAAG GTGCAGAGAG GGGCCCTACA
 86461 AATGTGTTAG TTTGCTCTC TCTCTCTC TGATTTAAA ATTTGCAGTA TTAAGGTACT
 86521 TTAATCACGG ATGGTTCAGG CTGCTATTCT CACTCAATCC TCCTTTTAT TAAAATCACC
 86581 ATTGTCTGAT TATGTTAGAA TCCTGATGAA AATATTGGA ATTTGAGTAA GAGAAAGTTT
 86641 AGTTGAAGAT GTATCTAGTA TGGGGATAAT AAGTTACGTG ATTTGCATAT GTGATCATGT
 86701 GTACTTCATT CGTTGCCAGC CAATCTGACG TAAGAATGGC TTCAAGGAGG CCGGGCGCGG
 86761 TGGCTCACGC CTGTAATCCT AGCACTTGG GAGGCCGAGA CGGGCGGATC ACGAGGTCA
 86821 GAGATCGAGA CCATCTGGC TAACACGGTG AAAACCGTT TCTACTAAAA ATACAAAAAA
 86881 TTAGCCGGC GTGTTGGCGG CGCAGCTGTAG TCCCAGCTAC TTGGGAGGCT GAGGCAGGAG
 86941 AATGGCATGA ACCTGGGAGG CGGAGCTTGC AGTGAGCCGA GATTGCGCCA CTGCACTCCA
 87001 ACCTGGGAGA CACAGCGAGA CTCCGCTCTCA AAAAAGAATG GCTTCAAGGA
 87061 ATGTTCCCTAC TGCTCACTGG AATAACTCAC CTAAATTCTC GGCAAGATGC AGGTCTAGAT
 87121 AAAATGTTAT GACATCTAAG TATTCAAAAC ACATTCCCAG CACTGAGAGT GAGTGTCTAG
 87181 TGGAGAGTAG AAACGTATAG AGCCAGAAGC TAGTCTGGAA AGAATTCTTA CAAAGTTTAC
 87241 AACTTACATG TGAAAGGAGC TTAACAGAGG ATTTCCAAA TTTGAAAACA ATCCTAAAAA
 87301 CTTACTTGAC ATTACCAATA ATGTGTTTG AAACGTAAAT ACTTCTAAGT TATGAAGAAA
 87361 ACATATTATC ATCAGGCCACC CTGGAGGAAA GATTGAATT TATTTCCATT ACCTATAGAC
 87421 AACATTACAA AATAATTGCA ATCTGAAGAT GGAATCAGAG TATTCAGTCA AAACATACAGG

Figure 8 (Page 27 of 73)

87481 AAAATATACT TGGTAGTGTC ATATTCAAGAA GTTAATAAAA TATGCTATTT TCTGAATTTT
 87541 GTGATGGCTG TTGTTTGTC AGCTTTATA AAATTGGAAT TTGATTTTAT TTTCCCATTA
 87601 TAAATTTATA TTTACAGTCT GCAGTACTTT TCAGATTTA ATTTACATT ATAGTTTTA
 87661 ATAGTTAAC AAGTGTAAAA GGTTTGATCC CCAGAAAACC TTGATCTACC CCATCAGTTA
 87721 AGTATACTAA TATATTTAGA AAATGGATGA AATCAGCATT TGAATATTT TAAATATTTA
 87781 TAAAAGAGG ACATGGGTAA AAGAGCTTTG CAGTTGCCAC CCTTCATTCT CAAATTCCCT
 87841 GGATAAGGAT GACCGCATAA TCTTGATG GTCATACGCA AGTCTGTGT ACTTGTAC
 87901 TAAATCTATT TAGTGGACTT TTGGCAGTGT GAACTGAGGC CAGTTCTTC CACCTGAGCT
 87961 CTGACTCCAC CTCCAGCAGC CCAAAACCAA TACTGAATT TGAGGTCAGC TATTGTTTT
 88021 GTGGACTTAG GTAATCACAC ACACATTGTC TTTATGATAG CTTAATAAT ACTGCCATCA
 88081 GAACTAAAAT TGTACACGTGG ATTAAAAGGA GTGACGGTGG TGTCCCCAGG AGCCTTCAA
 88141 TATGTAAGTA TTTACACATA TACATGCTAA AAAGACCCCT AGGAATTTT TAACAAGGGC
 88201 AAAACAGTAA CTCAGCTTGT TTTCTCGAG TAAAACCGGT TGAAAAGGCC TGATAGACCT
 88261 GTCTGCAGTT ACAAAACTTG TGTGTAGTTA TCACCTTTAT ATCTCCTGGA AACTAACATA
 88321 GACAACCGAA TGGGTTACAA CTGTTTTAA GTGAAATTGT GAGTGGCTCT GAAAAGAGCC
 88381 TTTTCAATGA GGAAGAACG GGCAGACTTA TGCCCTTCC CCACGGATGC GACGTGCCAG
 88441 CTGGATATCT TTGGGCATGA TGGTACGCG TTTAGCGTGA ATAGCGCACA GATTGGTGT
 88501 TTCGAAGAGT CCCACCCAGGT AGGCCTCACA AGCCTCCTGC AGCGCCATCA CCGCAGAGCT
 88561 CTGAAACGC AGGTGGTTT TGAAGTCTG GGCAGATTCT CGCACCCAGG GCTGGAACGG
 88621 CAGCTCCGG ATCAGCAGCT CGGTGGACTT CTGGTAGCGA CGGATTCGC GCAAGGCCAC
 88681 GGTGCCCGGG CGGTAGCGAT GAGGTTCTT CACGCCACCG GTGGCCGGAG CGCTCTTACG
 88741 GGCTGCTTTA GTAGCAAGCT GCTTGCAGGG AGCTTTGCCG CCGGTAGACT TCGAGCTGT
 88801 TTGCTTCGTA CGAGCCATT TGAATGAGAG CACACACAA AGTGTAGTGA ACTGAGAGCA
 88861 AGTGGCCTT AAATATAGTG AGAAACATT TGATTGGTCC TGTAATATTT CAAAAGTCCC
 88921 GCGCGATAAA ATCATTGGCT GAAGAGTGA CAGACTGATT GGTTCATTAC TAGACAATCT
 88981 TATTGGATGA GTGCCAAC CGCCCATCCT GTCTTTTCCG TTTCAGTTAT CTGCAGCGAC
 89041 AAATTGTCTA AAATTCTAGT TCATCCAGTC CCAAAGAACAA GAGTGTATAA CAAGGTATCT
 89101 AAGGATTTT AAAATGTAAA TTCCGATTCA GTAAGTTTG TGAGGACTTG AAATTCTGCA
 89161 TTCCTGACAG TCTCGCAAGT TATCAATGCT GGTGAACACT CACTAAACCA CCAGAACGT
 89221 TCAGACTCAT GTGGGAAAT AACGCTTATA TTCAAGAGAAT GAGATTCCAT GCTATTTGT
 89281 TACTGGCGAA CAGCAAGTTT CCTTGCCCTT TGTTTTCTAA GTCCAAGTCA CATTCCACC
 89341 CTGCCTGTT TCAAAATGTC TTATTTGGT TGCCCTTAAG TTTCACTTTG TATACTCTAA
 89401 AATGTACTTT CTAAAGGAAG GTGTTATTTT CTCGAAACTT AACTTTTAA CACCATTAGG
 89461 CTAGGGGGC GGTGGCTCAC GCCTGTAAATC CCAGCATTTC GGGAGGGCGA GATGGGACGA
 89521 TCACTAGAGG CCAGGAGTTC AAGACAACCC TGCTAAAT GGTGAACCC CGTCTCGCAT
 89581 AAAAATACAA AAACTAGCTG GGCGCGTAG CAGACGCCCTG TAATCCAAG TACACAGGAG
 89641 GCTGAGGCAT GAGAACCGCG TGAAGCGCG GGGTGGAGGT TGCAGTAAGC CGATATCGCG
 89701 CCGCTGCACT CCAGCCTGGG TGACAGAACT AGACTGTCTC AAAACAAACC AATCCAAACG
 89761 AAAAGCAAAA AATACCCCAA CAGAAGCAAG TTATCATCCT TTCTTGTGTA ACTATGGACG
 89821 GCTCTGAAAA ATGCCGTTTC AAGTGTAAAGC TACGTTTTCT GATTGAGTG TTTACTTGAC
 89881 CTTGGCCTTA TCGTGGCTCT GTTATTTGG CAACAGGACG GCCTGAATAT TGGACAGGAC
 89941 GCCTCCCTGA GCAATAGTGA CGTTGCCAG CTGCTTGTG ACCTCCTCGT CGTTCGGAT
 90001 GGCCAGCTGC AGGTGGCGGG GGATGATGCT GCGGGTCTTG TCACGTATGG CGCTGCCAC
 90061 CAGTTCTAAG ATCTCGGCCG CCAGGTATTG TAAGTACACT GGCGCACCGG CTCCGACCCG
 90121 CTCAAAATAA TTGCCCTTC GAAAAAGATG ACGGACTCTG CCCTATTGGG AACTGCAAGC
 90181 CCGGTAGCGA CGAACAAAGTT TTTGCTTCTAG CTCCATTTTC CACGTCCGCA AATAGCGACC
 90241 TATGAAAGCA GCGGAAAACCT GTGAAAGACA AGCAAGCTGG AATGGCGCCT GAACAAATCC
 90301 TTTTATACAA ACTGCAAGGC TGCAATAGGA AGCTATCCTA TTGGTCAATT ATGTTGGTG
 90361 CTTTATCCAA TAGAAAAAGA TAACATAAAAT TCCATATTG CATAAAACCC ACCCCTCAGT
 90421 GAAACCGTGT TTCTTTGTC CAATCAGAAG TGAGGAATCT TAAACCGTCA TTTGAATCTC
 90481 AGGACTATAA ATACATGGGC TCTGAACGT TCTCTGTACT ACTCTGTAGT GGAGAGTGT
 90541 AGTAGCTTT CTATTCTGTT TAGGAATAGC AATGCCCTGA CCCTCTAAGT CTGCTCCAGC
 90601 CCCTAAAAG GGTCTAAGA AGGCTATCAC TAAGCGCAG AAGAAGGATG GTAAGAACG
 90661 TAAGCGCAGC CGCAAGGAGA GCTATTCTAT CTATGTGTAC AAGGTTCTGA AGCAGGTCCA

Figure 8 (Page 28 of 73)

90721 CCCCAGACACC GGCATCTCAT CCAAGGCCAT GGGGATCATG AATTCCCTCG TCAACGACAT
 90781 CTTCGAGCGC ATCGCGGGCG AGGCTTCTCG CCTGGCTCAC TACAATAAGC GCTCGACCAT
 90841 CACCTCCAGG GAGATTCAAGA CGGCTGTGCG CCTGCTGCTG CCTGGGGAGC TGGCTAAGCA
 90901 TGCTGTGTCC GAGGGCACTA AGGCAGTTAC CAAGTACACT AGCTCTAAAT AAGTGCTTAT
 90961 GTAAGCACTT CCAAACCCAA AGGCTCTTT CAGAGCCACC TACTTTGTCA CAAGGAGAGC
 91021 TATAACCACA ATTCTTAAG GTGGTGTGTC TGCTATTCTG TTTCAGTTCT AGAGGATCAA
 91081 CTGGAATGTT AGCGAAGACA AGTTTAGAG CCAAGGTTAA CTTGGACGGG GCCGTGCGCG
 91141 GTGCCTCTTG CCTTTAACCTCC CGGCAATTG GGAGGCGAG GCAGGCGGAT CACGAGGTCA
 91201 GGAGATGGAG ACCATCCTGC TTAACACGAT GAAACCCCGT CTCTACTAAA AATACAAAAT
 91261 AATTAGCTGG GCGTGATGGT GGGCGCCTGT AGTCCCAGCT ACTCGGGAGG CTGAGGCAGG
 91321 AGAATGGCGT GAACCGGGGAGC GGCAGGAGCTT GCAGTGAGCC GAGATCGCGC CATGGCACTC
 91381 CAGCCTGGGT GACAGAGCGA GACTCCGTCT CAAAAAAA AAAAAAAA AATTAAAAAA
 91441 ATATGAAGTT TTGAAGCAGA AATTATTTG TCGTATGTT TTTCATAAAT TTTTGCGCTG
 91501 CCTGCCTTCT TCCCTTGTAA CAGAACTCCA ACACCTTACCC AAAGGTAGCT GTTGGGTCA
 91561 GGTTTCTGTA CTATAGTCCC TTCTGTGGT GCCAGAAATA TGTTACAGGA AAGAGGTCCC
 91621 CATCCAGACC CCAAGAGAGG GTTCTTGGAT CCCGCGCAAG AAAGAGTTCA GGGTGAGTCC
 91681 GCAGTGCAAA GTAAATGCAA GTTTACTAAG AAAGTAAAGT GGTGAAACGA CAACTACTCC
 91741 ATAGACGGAG CAGGACATT CCGAAAGTAA GAGGAGGAAG GCATCCACCC TAGGTACAAT
 91801 ACTTGTATAT ATGGGGAGAT GTGCTCTGCT ACAAGTTTG GATAAAGGAT TAATTTCTT
 91861 AGTTACTATA TTTTGCAGA ATCAACATTA TTATCTTTAA ACAAAATTAA GAATGCCTT
 91921 GTTCTCCAGA TATAGGGATA TCTGGACACT CCTAAGTCTG AGTCTGTTA GTAAACATTA
 91981 TTTATTTGTT CCCTTAACCG TAAACATCTA GAAGCTAGGA ATGACTGACT TTCTGGGAAT
 92041 GCAGCCCAGA AAGTCTCAGC CTCATTTCC TAGCCCTCAC TCAAAATGGA GTTACTCTGG
 92101 TTCAAGTAAAC TCTGACACTT TTCTTCTCTT TTTTCCTTC CTTTATTTT
 92161 TATTTTTTAT TTTTGAATAA AGAAATCAAG AATACTTGAT GTTTCATCTA AAACAATACC
 92221 CATAATTGAT AAGCCAAAAC AAAACCTAG GTCTCTAAC TCAAAACTAG GATGTTTGC
 92281 TGTCTCTGCT GATACTCGGC TGATCGTTAA TAGGTAATTAA ACAAAACAAGC CTTGCTATGT
 92341 CCCCCCTCAGT TTATTACCAT TAGATCATAT GCCTACTGTC AATCATATTAA ATCCACAAC
 92401 ATGCATTTCA CAAAACCTGC CATAAAAATT CACAGGTTTC CGCCTCCCT CGAGTTTCA
 92461 TTTCCGAAGG GTCCCAGTGA ATATAAAACT TATATTAAAT ACATTGTAT GCTTTCTCT
 92521 TGCTAATCTT TTTTTTTGTT TTTTGAGACT GAGCCTTGCT CTGTCACCCA GGCTGGAGTG
 92581 CAATGGCGCG ATCTCGGCTC ACTGCAACCT CCGCTTCCCA GGTTCAAGCG ATTCTACTGC
 92641 CTCGCCCTCC CGAGTAGCTG GGACCACAGA TACGTGCCAC CATGCCCGC TAATTTTGT
 92701 ATTTTTAGTA GAGACAGGGT TTCACCGTGT TGCCAGGAT GTTCTCAATC TCCTTACCTC
 92761 GTGATCCGCC CGCCTCGTCC TGCCAAAGTG CTCGGATTAC AGACGTGAGC CACTGCACCC
 92821 GACCAATCTG TCTTTTGTA GAGGGGCCCTC AAGCATGAAC TTACTGTATGG GTGAGAAAAA
 92881 CAGAATTTC TTTTCCCCTA CAATATAAAC ATTAATTGTA ATGTTATCAT TCAGGACATT
 92941 TTGGTGACCA ATCTTACAGA AATTTTATCT TGTGCAAGTC TATGCAAACC AATATGTAAA
 93001 TCTTCTATAA GTGAGATTGT ATTTCACTTT TCTAGTATCC TTTAAATTA ATAAAAGAGA
 93061 TTCTAATGAT TATTTTCATT ACTGCATTTCA ATTGTAGGGG AGTAGATAAT TGCCCTTTAT
 93121 TCACTGACCT TCGCTTTTA AAAATTAAA CCATGTTACC ATGAAATGC TTTTCAGTAT
 93181 TTCTCTACAC ACAAGATTGC TGTAAGGGCA AAAATAGAGA TAGGAATCAT GCATCCATTG
 93241 ATATACATAT TTTGATTTTT AATACATGTT ACCAAGTTGC CTCCTGAAGG TCTGTTACA
 93301 CTCTCACCAA CAGGGTGTGTT TTTCCTGACT TCCACAAATG CTCTTGAAACA GTGGGTGTGT
 93361 TAGTCTGTTC AAATTGCCGA CATGAACAAT TAAATCTCAT TGTTGTTTT ATTTTTAAGA
 93421 CAATTATTGT TTGAGACTGC ACATTTGAT AATAACATT TTTCTATTAT GGTTTGATTA
 93481 CTCATGATTC TTGCCCTATT TCTTTGGGA TGGTGCCTTA TGTACATTAT TTTAAATAGA
 93541 TAGCTCCATG TATTAAGAA TTATTAAGTT TGAGGGCTTA TGATATGTCA GTTACATTTC
 93601 TAAGATTTT TTTTTTTTT TTTTGAGAC GGAGTTACAC ACTTGTGCCC CAGGCTGGAG
 93661 TGCAATGGTG CGATCTCGGC TCACCGCAAC CTCCGCTCC AGGGTCAAG CAATTCTCCT
 93721 GCCTCAGCCT CCCCAGTAAT TGGGACTACT GGCAAGCGCC ACCACGCCG GCTAATTTG
 93781 TATTTTTATT AGAGATGAGG TTTCTCCATG TTGGTCAGAC TGTCAGGAA CTGCCGACCT
 93841 CAGGTGATCC ACCCGCCTCG GCCTCCAAA GTGCTGGGAT TACAGGTATG AGCCACTGGG
 93901 CCCGGCCACA TTTCTAAATT CTTTATAAGT ATAAATTCTA CCAATCTCA CAAAAACTCA

Figure 8 (Page 29 of 73)

45/162

93961 ATGAAGTGTG AGTACTATTA TTATCATTGT TTTACAGATC AAAACAAGTA ATACAGTCAC
 94021 TTACTGAGTT CTATACACCT GGTAATTTT TTGTTTCGTT GTTCTATCAA TTATTGGGA
 94081 AGGGGTGTTG AAATCTCTAC CTTTAAATCA TGATGTGTC TATTCTCCT TTCGGTTCTA
 94141 TCAGGTTTTG CTACACATAT TTTGCAGTTC TGTTATTTGG TGCATATACA TTTAGAATTG
 94201 CTTGTTTTG GTATTGGATT GACCCGTGTA TCATTATGTA ATATCCCTGT CTGTTCCAG
 94261 TAATTTCTT TGCTCTGAAA TATACTTATC TGATATATCA TCCAAAAGAC CACCAGGATG
 94321 GCTAAAGAGT AGAAAGGAGA GATTTACTGG CAATACTAAT TTGCAAGCCA GGAAGAGATG
 94381 GTCCCAGAAC CTGCCAAAAT TACTCTCTCT TTGGGGAGAA GGAGCAGGTT GGTTATTTT
 94441 ATGCCTCAT A GGCTATATAT TACACAATAG AGTCATACAT ATTTAGCACG TTTGGGGGA
 94501 CAGCTATATA TATTATGAGG GGTGCCAAGT GCATTCACAA TGGATAAAACA CGTGTAAATAT
 94561 ACCTCCCAGT TTCACCTCGA GGTTAAATTT TGTTAAAAT GAGGTAGAAT TTAGGTCTT
 94621 ACATCACAAG GTGAACATATA GGAACAAAGT TTACGTGCTG CCTCTAGCAG CTGGCTGAAA
 94681 ATGGCTTAAG GTCTACAATT ACGTGTAAGA ATAGAATGTG TGTCAAGGCG GTCCTCTGTC
 94741 CAATCAGAGT TGTAGTGGAC TGGACTGTAATCAGAGTTA GGAGGGCTTC TGATAGCTCC
 94801 TATAGTTAAG GAATTAGCA AGTGTGAGTT TTTGGTAGT CTTTGAATT TAGGAATTG
 94861 CCATGCCAGC CAAGCCATGA ATGCTCTACC AGTAGGTAAC TTTGTTGCT TAATCTTAGA
 94921 GTCTGTCTTA GTTGGTATAG GGGCATCTAT TTTGGTCTT CAGATCCCAG ATATTATTAA
 94981 TACAGATACT CTTGCAGTTT TGGGCTGATG TTTATATGGC TTATCTTTT TGCAAGCCTT
 95041 AATTCAACC TGCGTTATGT TTATATTGAGA AGTGTGAGATT TTGCAAGACAG TGTACAGTTG
 95101 TTGTTTTTT TTTTTGAGA TGGAAATTCA CTCTTGTTGT CCAGGCTGGG GTGCAGTGGC
 95161 ACAGTCTCAG CTCACTGCAA CCTCCGCCTC CTGGGTTCAA GGGATTCTCC TGCCCTAGCC
 95221 TCTTGAGCAG CTGGGATTGC AGCCATGCGC CACCACACCC GGCTAATTT TGTATTTTA
 95281 GTAGAGACAG GATTCAACAT TCAGGAGCAT GTTGCCTCAGG CTGGTCTCGA ACTCCTGACC TCAAGTGATC
 95341 CGCCAGCCTC GGCCTACCAA AGTGTGTTGA TTACAGGTGT GAGACCTCGC GCCCAGCCAA
 95401 ACTGTTTTT TATGGGTGTA TTTATACAC ACACATTAA TGCAATTATT GATATCTTAG
 95461 GGCTTAAGTT CATGAAGGGT AGTGTGGGAA CCATAGTCTC TTGGCCCCACT AAATGTTGC
 95521 CAGAAATCAC TGACAAGGCA GATTGATTAA TAGGTGAAAA GGCATTTAC CTATTGTTA
 95581 ACGTGTCTAT GTGGGAGCAT TCAGAATTAA TTACCTAACT TCCCAATGAG TTATAGATGC
 95641 TTATATACCA TTTTAGATC ACAGAAAGAA TTGGGCTTA GATTCTGGTA AACAGGTTA
 95701 TGGGAGGCAA AAGAGGTTG CTTTGCAAAG GTGGCCTTGT TAGGTAGGTG AAGCCTCCCT
 95761 CAGAAAGAAC AGATGGTAAAT TGTTTCTTTT ATGATTTTA AGTGTGAGAC TCTCAGTCTC
 95821 TCCTGGATCT GGGGAAAGGT ATAGAAAGGT GAGGAGGCAT GGCTGCATTA ATGGAGATT
 95881 TCTACAGATG TAAAATTTT CCCATTTAAG GCAGCTTGC AAGCCATT TGCCCTGCTG
 95941 GCCAAGCAGC AGCCATTCA AAATATGTCA AAGAAATATA TTTGGGTA AAATATTTG
 96001 ATTCCTTTA GACTGGTGGC CTTATAAGAA AAGGAAGAGA CACCTGAGCT GACACACATA
 96061 CCCTTGCTCT CTCACACATGT TATGATGCG TAAAGAAGGCC CTCACCAAGAT ACTAATTCCA
 96121 TGCCCTTAGC TTCCAGGTT CTAGAACAGT AGGAAATAAA TTTCTTTCT TTAAAAGTTA
 96181 GCCAGTCTGT GGTATTCTGT TATAGTATCA CAAAATGGAC TAAGTAACTA TATTATGATC
 96241 ATCTTACATG ACTGATCCCT CCTACATCAT ACACATACAC AGGCCACATT TGGAACATTG
 96301 TTAGAGGTC CTCGCCAG TACAAATGTA CTACAAATTAA TATATGTATT TTAAAATTT
 96361 TGAGTATCTT CAATAGTATA TTTTCGTTAA CTTTTGTAGT CAAAATGTCA TTATAACATG
 96421 TATTCAATAT GCATAATTAT TAGTCAGATG TTTTACATTC TTTCTTCATA CTAAGTGATA
 96481 TGGTTGGAT ATTTGTCCTC TCTAAATCTC ATGTTGAAAT GTAATCTCCA ATGTTGGAAG
 96541 TGAAGCCTGG TGAAAGGTTT TTGGATCGTG AGGGTGAACC CCTCATGAAG CGCACTCTTC
 96601 AGGGTAATCA ATGGGTTCTC ACTTTGAGTT CACAAGAGAT CTGGTTCTTT AAAAGAGTGT
 96661 GACACCTCCC CCATCTCTCT CGCTCAGCTC TCACCATATG ATATGCCCTAC TCCCTCTTCA
 96721 CCTTCCACCA TGATTGGAAG TTTCCTGAGG ACTTGCCTGT AGCAGATGCC TGCACCACAC
 96781 CTCCTGTACA GCCTGCACAA CCGTGAGCCA AAAAAAATTA CTTTTCTTTA TAAATTAGTC
 96841 AGTTTCAGGG ATTCCCTTAT AGTAATGCAA GAACGAACTA ACACACTAAG TCTATTTCAT
 96901 ATTTACAGAA TAGCTCAATC TGAAGTACCC TTTTCAACT TCACAGTAGC TACTTGTAGC
 96961 TAGTGGGCAC TGATTGGAG CGTGTCAAG GGTGAATTGT ATTATGCAAT TAACAGATT
 97021 TTTTTATTGT TTTCGCAAAC CACGAGGCAT AGATTGTCTT ACTTTCTCTG CTCCCTGGTGT
 97081 TGGAGTGTGTT ATTGGGAAAC AACATTATTT CCTCTTATAT TTATATGGAA TAAATAACCC
 97141 CCAATATTTC CCTCCCCAAT ATCTGCCTT TGTATGTTT TTGAAGGCAA GTGCCTAGAA

Figure 8 (Page 30 of 73)

46/162

97201 TTTACTGTTT TTGAAGCACT TACTGAAAGG ATTGCCATCA AGTTGTTTG CTAATAGTAC
 97261 ATGCCAGCG CTTGTTGGTT TGCTTAATTC AAGGTAACCT GGATGAGAAG AAGAGTTTT
 97321 CTCATCCATG GCTCAGTGGA GTATAGATT CTGATATTGT GACTGGATGT ACTCCTGCTT
 97381 TCTAGTCTGA GTTTTGAAAG CTACCCCTAA TCTTGGTTTC AATTATCT AGCCCTGTAC
 97441 ATATCCAAGG CTCTTCCAA AATGGTCTAC GATTGTTTA GGAAGTTAGA ATAGCTGTAC
 97501 TTTCTGAACC ACGGTTCCCTG ACATTTCTG GACTTCAAAC ACATCCAGCA TTTTATCGAA
 97561 GTATTTATCC TTCCTACTTG GCTGGCTCTC TCCTTGCCCT CAGGTCTGAA TTCAAATGAC
 97621 ATTCTCCTGA TGAAACTTTC CATCCTTATT TCTATTCTTT TTTCTTATCC CCTTTCTTTA
 97681 TTTTCTCCA CAGCACTCAT CACTTATCTC TACATTTCA TTATGTATTT ACCTTATTGT
 97741 GCACCTCCA CTACAAGACA AGTAGCACCG TAAGGAAACA GGTTGCTCTGC TTTTCACTG
 97801 CTATGCTCCC TGCACCTAGA ACACCTCTG GCACCTAGCA GGTTTCAGT AAATATATGC
 97861 TGAACATAA ATGCTGGATA TACATCTCCC TCATGAACTC TCTAAATCCT TCTAATTAC
 97921 ATTGATCAAT CTTCTTTCC ATGTGCTTT GTATGATTAA TTGCTCAAAA TCTTTATTTT
 97981 ATATGCAGAA CGTGCACCTGC TATTTAATCT TCATGTACGT AAGTCCCTCCC TTCTCTGAGT
 98041 ATAATCTCTT CAGGGCACTA TCTGAGATAA CTTTTAACCA TCTCCATCAT GAATCTTGTA
 98101 CCTTTCAAA GAAAATGAGC CAGTGATTAC TGATGTTAC GGCTATTGTT GAGGGTGAAG
 98161 ATCATTATAA TTTGAAAAG GGAAGTTGAA TATTGTGAAG GGAAAGATAA CACTAGAGTC
 98221 AGAAGACTTG GGAGAAGGCA AAAAACAAAC TAAAAATGAG CACTTTAGT CTCCGTACAG
 98281 TTTCTCTGAA TCAAATCCAT AGTTCTGTGA CAGCGTGGC TTAGAAGCAG ATTTTTTTT
 98341 TTTTTTTTG TGAAATGGAG TTCGCTCTT GCCCAGGCTG GAGTGCAGTG GCACGATCTC
 98401 GGCTCACTGC AACCTCTGTC TCCAGGGTTC AAGCGATTCT CCTGCTTCAG CCTATGGAGT
 98461 AGCTGGGATT ACAGGCTCCC ACAACCACGC CCAGCTAATT TTTGTATT TTAGTGAAGA
 98521 CTGGGGTTTC ACCATGTTGG CCAGGCTGGT TACGAACCTC TGTTCTCAAG TGATCTGCC
 98581 GCCTGGCCT CCCAAAGTGT TGGGATTACA GGCATCAGCC ACCGTGCCA GCCAGGAGCA
 98641 GATTTTTTA CACTCATGTT TCTTTTCCT TCTGTATCC TGTTCAAGTA TAAGCAGACC
 98701 ACAGATAGAA GTAGTAGATA CCTCAGAAAT TCCTGGAATA ATTAATCCAC GTTCATCTGT
 98761 ACTCCATCTG CTCCTATCTC ATGGAATATA AAAGGAAAAA CACCAAGATT TCCCTAGGCA
 98821 ATCTGTCTT ATTTAGGTT CCTCAACAGG AGAGCCAGAC AATGGCTGTA ATAATATTGT
 98881 CCCGGCCAAG GAAAACCTTC CCCTTGGCC TCCCAAGGTT TATGAAAAT TACTGGCAAA
 98941 ACACAGATTA ACTGGAGAAA AGGCATATAT ATTTATTCA TCACAATT TTACAGGAGATT
 99001 TTAGAATTAA GACTGAAAGA TACAGGGAA ATTGCCATT TTTATGCTTA GGTTCAACAA
 99061 GATAAACAGC TGTATAGGTT ACGATCTAAT GCTAACAGAC TGAGTGGGA AGCCCCGCAA
 99121 GGCTGTCTG TCAAGATTCT TCTTGACCTC TCAGTGCAGC ATTTCTTCCT TCTGGTTATA
 99181 GGACAAGACT CTCTTTAGA ATGGGGGTC TTATGACCTA CAGGAAACAA AGGTAGGTTA
 99241 GAGTAATACT TTTAGGTTT ATGGCTGGT CTAGGGAAAA GGAGTCTGG TTTGTATGGC
 99301 CTACCTTGAG GAGGAATTCT GGTTCTATG GCTAGACTTT GGGGAGAATG GGACTTACAG
 99361 ACAGGAAGGC AGAAGGTGGT CAGTGAACAA CCTTTATAAT CATAATCCCA TTTTGAGTAT
 99421 TTCTGTGTTA TGGAAATGTTT GTTCTCTCAT TTCTGAAAG ATTCCAGAGA CTCCCTATTC
 99481 AGTGTGTGA AAAAGTCAG GAAATGCAAC TCAAAATGT GCCACTTGT TACGCTGATT
 99541 TCTTGAAC TGGGGCACCT AGGAAACAGT AAATTCAAGG AAGGGCTTTC GCTGAACCT
 99601 AATCAAAAT TTGAAAATT AAAAATT CAAAAGGAA TTTAGTTGTT AAGATTCACT
 99661 TCCCTGGGA ATCTCATCAA CCAGAGAAGA TTAACGTAT CACAGGAGAG GAGACTGGTG
 99721 GTTAACACCA TCTAACAGA CTTTGTACCA GCTGTCACCT ATTCTTGAA ACACCCATT
 99781 ATTTTCTCC AAAATCATAT ACTCTCCCT AAGTTGCCTA CATCCCCCTT CTTTCTCCCT
 99841 TATGAATCAA GAGAGCTTAT AAGCTTCTAC AGTCACTGG GATTTGGGT ATTCGTTTT
 99901 CTTCCCTCCC ACTCCCCCTC CCCTTTTTT GTCTTGAGA CACAGTCTTC TGGCTCTGTC
 99961 GCCCACGCTG GAGTGTGGTG GCTCTATGTG AACTCACTGC AACCTCCTCC TCTCGGGTTC
 100021 AAGCGATCCT CCCACCTCAG CTTCTCGAGT AACTGGAACCT ACAGGCGTGC ACTACCAAGC
 100081 CCGGCTTTTT TTTTCTTTT TCTCCCCGT TTCTTTTTG GTTATTTAC TGGAGACAGG
 100141 GTTCTCCAT GTTGTCCACG CTGGTCTCGA ACGCCTGACC CGCCGTCCTC GGCCCTCCAA
 100201 AGTGTGGTA TTACGGGCAT GAGCCACTGC GCCCGATTG AAGGACCTCT TAAATATCTA
 100261 TTTAGAAATT GGTCGGAGTC CACTCCTTC CAAAAACATG AGTCACAATC CGGGAAAAGC
 100321 ACGAGCGGCT GAAAGTCAAATAACCAGAA CAAACCTCC ACTCATGCTT AAAAAAGGTA
 100381 TTTTGACAAA ATCCTAATTC GGCCAATTAT TATTAGTATT CAAGTCGAAG GCTCGTCAAG

Figure 8 (Page 31 of 73)

47/162

100441 CCAGACTGGG GATTGGGTCA AACATAAAACC TTACACCAGA CGGAAGGATT ACATGCAAAT
 100501 GAAGGATGCA GATTCTGATT TCCCATTGGG TATTTGACAT TAGCCAATGG GAGAATTCCCT
 100561 CACAGCCTAC CTCCAGTCAG TATAAAACT TCTCTGCCTT GCGTTCTAAT GTAGTTTCAT
 100621 TACATTTCT TGTGGCGATT TTCCCTTATC AGAAGTAGTT ATGTCTGGTC CGGGCAAACA
 100681 AGGCGGTAAA GCTCGCGCCA AGGCTAAGAC TCGGTCTTCT CGTGCAGGTT TGCAAGTTCC
 100741 TGTGGGCCGA GTGCACCGCC TGCTCCGAA AGGCAACTAC TCCGAGCGCG TCAGGGCTGG
 100801 CGCGCCGGTG TATCTCGCG CGGTGCTTGA GTACCTGACC GCCGAGATCC TGGAGCTGGC
 100861 GGGCAATGCG GCCCGCGACA ACAAGAAGAC CGGCATCATC CCGCGCCACC TGCAATTGGC
 100921 CATCCGCAAT GACGAGGAGC TTAATAAACT CTTGGGGCGT GTGACCATCG CGCAGGGTGG
 100981 CGTTTTGCCT AATATTCAAG CGGTGCTGCT GCCTAAGAAA ACTGAGAGCC ATCATAAGGC
 101041 CAAGGGAAAG TGAAGAGTTA ACGCTTCATG CACTGCTGTT TTTCTGTCAG CAGACAAAAT
 101101 CAGCCTAACCA GCAAAGGCTC TTTTCAGAGC CACCTACGAC TTCCATTAAA TGAGCTGTTG
 101161 TGCTTTGGAT TATGCCGCC ATAAAGATGT TTTTGAGGTT TTTTAATGG CTTTGAGTGT
 101221 GGCACTTTA GTAATTTGTC CTGCAGAAAT TAGATCCATA GAAACCTCAG GAATTCTAGG
 101281 TATGTGGGAG AAGTGCCATG CAGCACAAAA CATGTTTACA GGGGTGATTG GCGTTAAGTT
 101341 TCACACACAG CAGTTACTAC ATTTTAGAGG AAGGAAATTA TACCCATGAG TGCAATTCTA
 101401 ACTATCTTGA ATGGAAGTGT TAAAACCCGC ATGCCCCACA CAAGTTGAA TATGTCATAC
 101461 CATTGCTGT AGCAATTAAT GGCATACACA ATTGAGAGCA CACACATTAC CACTGAACAT
 101521 TTGAGTATGT ATTTCCAAA ATGAGCTTTT TTCCAGTTG GGGATGTTT GCTTGTGTTT
 101581 GGGGTGGAGT CTCCCTCTCG CCCAAGCTGC AGTGCAGCGG CGTGATAACA GCTCACTGTA
 101641 ACCTCGAACT CGGGCTCAAG CGATCCTCTT GACAGCCTTC TGAGTAGCTG GGATTACAGG
 101701 CGAGAGCCGC CACGCCCGGC TAAGAGCATT TTCTAATTG CCCACACTTC TTATGCGACA
 101761 CCCAGAAAAA TACAATTAA AATAAAGCGC ATATGCAAAT TTCCCTAACG GTCTCCAATA
 101821 TTCTCTGATT TCTTTTTAT ATTTTAACTA GAAACAATTG GAGGTTTCCG CGTTGCTTTG
 101881 TGTGGTTGTA AATTAAAGA CTTCAGGAAA CTTTCCAGT ACAAGACTTG TCCACAGTGG
 101941 ATATAGCAGC TAAGGGGTTA ACAAATGAC GTCAAGAGTAG CTACGTAAT GGGCAGGAGC
 102001 CTCTCTTAAT CTGCAACCAG GCACAGAGAT GGACCAATCC AAGAAGGGCG CGGGGATTTT
 102061 TGAATTCTCT TGGGTCCAAT AGTTGGTGGT CTGACTCTAT AAAAGAAGAG TAGCTCTTC
 102121 CTTTCCTCCA CAGACGTCTC TGCAAGGAAG CTTTCTGTG GTTTGCCAT GGCTCGTACT
 102181 AAACAGACAG CTCGAAATC CACCGCGGT AAAGGCCAC GCAAGCAGCT GGCTACCAAG
 102241 GCTGTCGCA AGAGCGCGCC GGCTACCGC GGCCTGAAAA AGCCTCACCG TTACCGCCCG
 102301 GGCACGTGCGG CTCTGCGCGA GATCCGCCGC TACCAAAAGT CGACCGAGTT GCTGATTCCG
 102361 AAGCTGCCGT TCCAGCGCCT GGTGCAGGAA ATCGCCAAG ACTTCAAGAC CGATCTTCGC
 102421 TTCCAGAGCT CTGCGGTGAT GGCGCTGCAG GAGGTTGTG AGGCCTACTT GGTAGGGCTC
 102481 TTTGAGGACA CAAACCTTTG CGCCATCCAT GCTAAGCGAG TGACTATTAT GCCCAAAGAC
 102541 ATCCAGCTCG CTCGCCGCAT TCGCGGAGAA AGAGCGTAA TGTAAGTCA CTTTTTCATC
 102601 AGTCTTAAA CCCAAAGGCT CTTTCAGAG CCACCCACTT ATTCAACGA AAGTAGCTGT
 102661 GATAATTCTT TGTTGTCTT ACGAACAAA TTTCTAAGGA CCCCCCCGGA AAGCATTAGA
 102721 CTATGGTCTT AAAGTTGATT AACAGAAATA ACGGTTGGT CAGTCTTGCA GTGTAGGTTA
 102781 TTTCTGACCT TATTAAGGTG CTATTTGGAG AGAAGCTGTG TAAGTCCACT ATCATTCAAGG
 102841 CCTCTAGCTT GCTATGATTA GCATTTGTTT AAACAACCTT GTAAGAGTAA GGGAAAAATC
 102901 TGGTAAGTAG TTAACGGCG CTTACTAGGC ATTTTGCAA AGCTTGAAA AGATTAGAAA
 102961 ATTGTGTCTT GCGAGTTCCA GTGTCTTCCT CAAAATGCTT AGGAAGATTT TCTCAGCTCA
 103021 ATACATAGTC CCCTAGGTT TCTCATATAT TATATATATA TATATATATA TATATACTGT
 103081 TAAATTCACT TGGCTGTTAA CATTAAACCTG AAATTTATTC TGGTGCAAAA TGTGAGGCAG
 103141 GGATCTAACT GGCTCTCATT TTATCCATAG CTAGCTACCC ACTTTAAATC TGTCAGTCTG
 103201 TCGACCAAGC ATAATTTAAT CCCTTATATA TGAATTTTTA TATGTGTGGC TTTGCTTGTA
 103261 AATAGTCTAT CTGGTTGCAT TGCTTGTCT CCTCTAGGAC TATGCACCAT GACATGCCAC
 103321 ATTCTTTTT TCAGTACTTC TTGCCTGTAG TTATTAAT CTAGAATTAA CAAGTTTAA
 103381 CCATTTCTT TCTGTTGATC TTGCTTTCTG GTTTGGAGG TTGGGGATTG AGTACTGGAA
 103441 GAAAATTTAG AGGGATGGGA ATACTGTACG CAAACAAAAG TAATATTTAC TTTAAAATTT
 103501 TTATATTTG TATTTTTTA TCATATAGCT TTTACATCAC ATTTACAGA CTAACTTAG
 103561 AACAAACCACA GAATGTCCAA CATTAAAATC ACTAATTCCA AAGACCTG CTCACATTCT
 103621 TTTTACAAT AAATATTTTT TACACCTAAC ATTCTTCTT GGCCTACATC TAGAATGTAA

Figure 8 (Page 32 of 73)

48/162

103681 ACTGATGTAC CATACTAAAA TCGCCTGACC AACTGTCAAC ACAACAAAT CACACACACA
 103741 AAAGATTAAA TTGAATTGC ATCGTTACT TAAATTCAATT TGTGTTCCAG CTTTTAATAA
 103801 GGCAGTTTT GGTTTATAAA GTAATATTG CATTAAATT ATTATGAAA TGAATATGTC
 103861 AGTTTGTGTT ATGATTGCTT TTTCTTGACT CTTATACAAAG CGACTCTAAC TGCGATAGAC
 103921 ATTTGTTATC CACAGACAGT ATAGATATGT TAGAGATGCC AATGGACTTG GTCTATGCCA
 103981 AGGTGACTAC TCACAAGCTC TGGGCCAGC TGAAGGTCAA GTATTTTT TCCAGTTATA
 104041 GATGTGCTGG ATCTGATGTA TAGCGCTTGA CTTTTATAT TTTCTTATC TGTAGGAAAC
 104101 AAATGTGTTG GAGGTACTGG GTCTGACGAA TAGCATAAA GAATAAAGTT ACATTACTGT
 104161 CTGAGGATCA GATGGACAGG GGGTGGTAGC TCAGTCCAGC TATTTCCAC TCCCTCACCT
 104221 ACATTCTTG CCCCTCCTC AACAGAACAA GGATTCTGCT GTAACCTTC ATTGACAGTT
 104281 GATATTTAAA AATTAACGAA TGGATGAAAT TCTCATTG GAAAGAAAAT TTATTGAGCA
 104341 TTTTGTTATT GTGAGTAGTG CAAACATTAA AATATTATAT TAAGAATCTA TTGTTTTGTA
 104401 TTAGAGGAGT AATTAAGGAG AGATTGGAGA CAAAAGGGG GTGTTGTTG CAGAATATAC
 104461 CATCCAAAAA TAGACCACTG TGGGATCAGG ATTCTTTGA GCTAAAGGCA CTTCAAAAC
 104521 AGCATTCAAG AAGGGAATTG TTCTAAACTT TTCTTCTGA AAACAGGAGA TAAAAGTCC
 104581 AATGTGAAAAA ATGCTCTGCT TGTACCAGGT GAAAAGACAT ATTCTTCAGC CCAGAGGCAT
 104641 AGATGAGATA ATTCTGCACA AACACAGCAG GGAGTCATAG CCGAGAGACT TCTATACACA
 104701 AACAAACCTT GTTAAATATAA TCATATATTG CTTAAATCTC CTCATATGGT TTACTTTCCC
 104761 ACAATTGCCT CTCTTTAACT TAATGTGAAA GCATTTAGCT TTTGCCATT CTTTGGGCT
 104821 TCACTTTTT ATGAGGGTTC TCCTGCCCCA TAAAATTAC ATTAAATACA TTTGTATGCT
 104881 TTCATTCTGC TAATCTGTT TATGGCAAAT GAATTATCAG GTCCAGCTGG AGACCCCTAAC
 104941 AGAGTAGAGG TAAAATTTG CCTCCCTACA AGATAGAGAT TGTGTCATT AAATGTTGTT
 105001 TGTTCCCAGT TGTCAGTT GTCAAGGCTC TGAGCCGAAG CTAAGCCATC ATATCCCTG
 105061 TGAACTCGAC GTATGCCTCT AGATGGCCTG AAGTAACCTGA AGAAACACAA AAGAAGTGA
 105121 AATGCCCTGT TCCTGCCTTA ACTGATGACA TTACCTTG TG AAATTCCCTC TCCTGGCTCA
 105181 TCCTGACTCA AAAGCTCCCC CACTGAGCAC CTTGTGACCC CCACCCCTGC CAGCCAGAGA
 105241 ACAACCCCCCT TTGACTGTAA TTTTCCACTA TCTACCCAAA TCTTATAAAA CGGACCCACC
 105301 CCATCTCCCT TCGCTGACTC TTTTCGACT CAGCCCCCT GCACCCAGGT AGAATAAACAA
 105361 GCCTTGTGTC TCACACAAAC CCTGTTGAT GGTCTCTTCAC CACGGACGCG CCTGAAACAG
 105421 TTTAACAGGG TTTTCCTGC CCAGTCACAA CAAAGTGATG TTATGCTGCA GGCTGAAGTT
 105481 TACAGCTAAT GCTGTTGAAG TCTAAATCA GTTTGGTT GTTAGATTG GGTGAGATGG
 105541 CTAAGATTCT CAGAGAAAGA AGTCAAGTTT GGGGTGCATT TTTCAGACTT AAAAATTAG
 105601 CAGTAGCCCT TGCAGTTTT CCAATAGAAG TGATTTAAGA ATGTTTCAG GAAATTAAA
 105661 ACAACAGTGA GAAGCGTGTAA TGGAGAGTTG AACTACACTC CAGACTTGGC TATAGGAAAG
 105721 CACGAATGCT GCTATTGTT TGACACCTTGG AAAAGAGAAC AAAGGAATAT TTTCGGACAA
 105781 TTTTAACATG TCACATATGA AAAGCTAAC GGAATCTGTC AACACCTTGT ACGTTATTAC
 105841 AGGCTGTGAT TTTAAAAAAA CAATCCTTAC TAATACATAC ATAGTTGCTG CTAGCAATAT
 105901 AGTGTGTTGGAA GTAAAAACAC GAAAATGAGA GTTCAGGACA ATATCCAAC TCTGAGCAGA
 105961 TTTTTTTAAG TAGTAACATC TAAAATTAAA CCATATTATG TAATATTAT TTCTTTCCA
 106021 CAGTCTCTTC TCATGCCTCG TTCACATTAG CTAATTAAA GTCCCTGAG TATCATCATA
 106081 ACCCGATTAA CAGATGAAGG CACGGTTGCA ATGAGCTATC ACCCTCTTCT GAATGAGACA
 106141 GTACAGTGTG AAGGGATAGCA AAACCTCACT CCCATCCTCT TAGGGCTCTG GCTGGACCAG
 106201 CAAATTAAAAT TAATGTAAAAA TGGATTAACA GGAGAAAGGT ATATGCATT ATTAAACACA
 106261 GTTTTACGT GACACAGGTG CTCTCATATAAG GTAATGAAAG CCCAAAAAAA GCAGTTAGCT
 106321 ACTTATATAA TGAAATTGGAC AATTAGTAAA ATGTAAAAAT GCGCTAAAGC AAAGGGATTT
 106381 AGGCTAGAAT ATATAACTGT GTAGAGAACGCCAGCAAG GGCTAGTGCA AGGTTTGAC
 106441 AGAATTCTCT TGGCCTCAGC CTCCTATCCT TGAGAAGAAC GTTGCTTTT TTAAACTACA
 106501 GTGAGAACAT CTTTCATATG AGAATTTCAC CTACTGCTTC TAAGAAACAG GTCAGCTTTC
 106561 AAGAAAACAT AAGGCCAGAG TGATCTTTC ACAGCTGCTC TTTTAAGTAC CTTTGAATAG
 106621 TCAATATGTC TTCAAGCACT TGAAAGACTT AAAAAGTTTA CCACTCCGGC ATATTAGTGA
 106681 AAGCCCTAA TATAAGCCCT TATTAATT CTCAGTCGAG GGTATAAAATT CAGATTCAAA
 106741 TAGTAGTGTGTC GTAAACGGGA GGGAAAAACT AAAGGGATTA AAAAGTAAAAA CTATTGTTG
 106801 CTCCCTCGCA GTCCCTTAGGT CACTGCCCT CGAGGGCGG AGCAAAAGT GAGGCAGCAA
 106861 CGCCTCCTTA TCCTCGCTCC CGCTTCAAGT TCTCAATAAG GTCCGATGTT CGTGTATAAA

Figure 8 (Page 33 of 73)

106921 TGCTCGTGGC TTGCTTTCTT TTCGCGTACC TGGTTTTGT TGTCAAGCTGG TTAGACATGT
 106981 CTGGTCGCGG CAAAGGCGGT AAAGGTTGG GTAAGGGAGG TGCCAAGCGT CACCGAAAAG
 107041 TGCTCGGGGA TAACATCCAA GGCATCACCA AACCGGCCAT TCGGCGCCTT GCTAGGCGTG
 107101 GTGGGGTTAA GCGAATTCC GGTTTGATTG ATGAGGAGAC TCGTGGCGTT CTCAGGCTGT
 107161 TTCTGGAGAA CGTGATCCGG GACGCCGTGA CCTACACCGGA GCACGCCAAG CGCAAGACTG
 107221 TCACTGCCAT GGATGTGGTT TACCGCCTCA AGCGTCAAGG ACGCACTCTG TACGGCTTCG
 107281 GCGGTTAACG TTTTCTGTCAG TTTTCTTCCA ATGGCCCTT TCAGGGCCGC CCACCTCCCTC
 107341 TCAGAAAGAG CTGTGATTGT ATTCTTCGG ATGGTAACAT CTCAATGGCT TTACTCGGCT
 107401 ATTCTGCCCA GTATGTAGAA CTATTATAAA CCAGTTGGGA GAGACCGAGT TGTTTGGTCT
 107461 GAGTGGCTGC TAAAGCAGAA ATCAGCTAAG TAAACGAGGT CTCCGAGATA AGTGANCTAT
 107521 AAACCTCAAT GCTATAGTT TGACATGTCA AGCAACTTAA CGTGCAGCGC GAGTCCGATA
 107581 AATGAGTAGC TCAGCTTTT AGTTTTAAAA ACCAGGTTGT CGTTATTTGT ACGAGAGCCT
 107641 AAGATGCTAG CTGCCTGGAA CTGAGTAGGT GGATTAAAAT GGGTGTCAAG TCTGTTTCC
 107701 CAGGCGTATC TGACTTAACG TCAGCAAAAG CTGTACTTTT AGCTTCCCTG GTAACACCTG
 107761 CCGTCCTTAA CCGCCCCCTG CCGTAGCGC CAGAAGCCTT TACTTCCATT TCTAGTTGAG
 107821 CTTGGCGTCC TGCTGAGTGA CGTCACCTCC CCCTCTCTG GAGTAGGACT GGCAGGTTAAA
 107881 GCTGCTTGC TATTTTCAGT CCTCAGGCTG GAGGCTCCCC TAAGCAGGCT GCCTACGCAG
 107941 TTCGTAATT CCCACTTAGT AGACTAAGGG AGTCTGTTT ATAAATAAGG ACTCAAATT
 108001 CTTCTGACTC CGAGGTCCGT GGCAGCAGCT ATAAGATGGA AGCCCCCTCT GATGTAAGAT
 108061 TCTCAGATGA CTTGCATCTT CACTGTACCT GTCAACCCAA TAGTCTTCTA TTCTGCCTT
 108121 AAATTGTAAT TTCCAAAAT GATTTAATTG TGAAAGTTTC AAACGTACG ACCTAGGAAG
 108181 TGTCAAAGTT AGGTGACCAG ATTTTTAGAA GTCAGCCAA TATTCAAGCAT CTTTGATTTA
 108241 GTAACAAATA TATTGATGGC TACTTCAGCA AAAAATCA ACTTTGTTT CTGGTTACTT
 108301 TGCTAACAAAG CTTCTCCTGA CAGGAGGATA TAGTGAATAG GCAGTTGAAT AAGTGAGTTC
 108361 GGGTGAGAGG TCTGAGCTGG AGATAAAAAT GTGTGAGTCA TCAGCAGATA AATAATGCT
 108421 GAGACCAGAT GAGATGGCTA AAAACTGAAA CATAATGTAG TGCAGCATTG TTTGTAATAG
 108481 TAAATGAGTG GCAACTGTAA AGTTTCATC AGAAAGGACT AGAGTGTACT ATACATCCAT
 108541 AAAATAGAGT ATTTCTCTAC ACAGCCCTAC TAAAGAATGA GAAAGCTGTA CTCCACTACA
 108601 TACTCTGGTG TACTCTGGCT CAGTTCTGG ACTCCTCTT TCTTGGCTAA CTCAACTGGC
 108661 CTCACCACCT ACATGCTCTG TGCTCTGTC AATAGTTGT TCAACAGAAC ACCACGGCCT
 108721 AGCTGTAAGT GCCACGTTAA CTTCTAGCAA TGCCAAAGCC TGTGATAGTG GCAGCTTCGG
 108781 GCTGTTCTC ATTCCCGGGG TGCCCTAACCA CCTCTCCAAA TTCTATCAGT TTGCTTCCAC
 108841 CCACTTCAAG CTTCAGAACG AAACATAGAG CTTAAGAAAT ATAGGCCGG CAAGGTGGCT
 108901 CACGCCTGTA ATCCCAGCAC TTTGGAAAGC TGAGCCTGGT GGATCACCTG GGGTCAGGG
 108961 TTCGAGACCA GCCTGGCCAA TATTGTGAAA CCCCCTCTC ACTAAAAAAA AAAAAAAAAT
 109021 TAGCTGGCA TGGTTGCGGG CGACTGTAAT CCAAGCTACT CGGGGAGGGTG AGACAGGAGA
 109081 ATAGCTTGA CTCGGGAGGC AGAAGTTGCA GTGAGTTGAG ATCGCGCTAT TACACTTAGG
 109141 CCTGGGAGAC AAGAGTGAAA CTGTGCTCT AAATAAGTG TTGCAATTAT AAACCATCTC
 109201 CCTGACCTTA AATCTCTAGA CTCATATACA ACTGCATATT TGATGTATCT AATTGAATAA
 109261 TGGGCATCTC GAACTGTCC AAAATATGTT TATACGTAAA CACCAAGTCT GTTCTTCTC
 109321 TGATATTGTA CATGTCAATC AATAGAACTC CATTCTTCAA GCAGCTTGGG CCAGGAATTG
 109381 TGCAATATTG TTTGCTCTGA GCTTCTTACA ACTTTCACCC AATGAGTCA GCTCTGTTGA
 109441 AAATCAATCA GAATACCTTT CATTGTTTC TTTGCTGCTT CTCTAGGAGC AAGCTGCCAT
 109501 GGCAGTTGT CTGAATGACC ACAGTGACCC CAAACTGGTC TTTGTTTCA CTTTTAATCC
 109561 CCCTGTCATA CAGTTTTTC TCTATCCAGC ATCAACAGTG ATCCTTTTG AAGGTATTAT
 109621 GTCCACTGTC TGCTGAAAAG ATTCCACTGG CTTTCCATCA CCTTCATAAT AAAAACCCAGC
 109681 ATCCTTATCA TAGCCTACAA GTAAGATGAC CAACCATTAC AGTTGCCTG ACTCTCAGGG
 109741 GTTTCTCAGG GTGTAAGACT TACAGTGTG AAACCTAGAA AGTCCAAGC AAACCTAGGAT
 109801 GAGCTGCTCA ACCTACTAGA TCTGTACTCT GGCTACCCCT TGACCTCATT CTCTTCGAG
 109861 TTCTTCTCT TCACTGACCT TGCTGTTCTT GGAATGGACC AAGCATTCC AGCATCAGCA
 109921 CCTTTATATC TATTCTTCTT CCCTAGAAGG GTCTTGTCTT GGATATCTGA ATGGCTCTAG
 109981 ATCTCATTC ATTCAAGCCT CTCCTCAAAT ACCAACCTTA CGAAAGAGAC CTCCCATAAT
 110041 CATCCCTTGT AAAATAAGCT TTTCTGCTCA TTTAGCATAT ATATATATAG TTGACTATCC
 110101 TCAATAGCAT ATATATATAA CATTCCCCA CCTAGAATT AATATATTAA

Figure 8 (Page 34 of 73)

110161 AAAAAAAATA CATATAACTA GATATATTTT ATTTTGTGTT TGTTCTCTCT CCCCAACTG
 110221 GAATATATTG TTTGAAGGTA GGGACTTGTG TTTGTCCCAG AAGTATCCCT AGCACCTG
 110281 ACAGGGCTGA CGTTAACAG GTAGTTATG GAGGTTGTT GAATGAAAGG ATGTGTGAAT
 110341 TTTCTATGTA AGTCTCCAGG CTCTCCACTA AGCCCACAG AATGCTAAC CAATCAATTC
 110401 CCCATCTCAT TCCTTGACCT GCCACTGCCT GAAGCAATCA GCGTGCAGTT TCTCTTTAGA
 110461 AAATCTGGGG GATAGTCTAG GGGTTGCAA TTAAGCAACA TTATCTTGT TCTGAACAAG
 110521 GACTGCATGA GTGTTAGGAC TGAAGAAGGC CCAAGGTGGT GGTGGGTATG CCTAAGATGA
 110581 GTATGACATA TCAGCAATGC TATGAACATA GCAATGCTAT GAAAGGCCAG GCAAAACGTA
 110641 ACAGGAGCTA GTCGTGGCTT ATTGTTACAA CGACTATACC TCCCATATGG GTAATCGATA
 110701 TCCACACACC CCTCTACATT GACTCTGGAA TTCAGGAAAG GGAATTAAAA TTTTCTAATC
 110761 TATGTACCCC AATGATTCA ACAATATCTG GCATATGAGA TCAATAAATA TCTTTAAAAT
 110821 ACCAACTAAG AAAGACATAA AATGACCCAC CCTCCATACC AGGCTCATTT TTGCTCCTCT
 110881 GATTCCCTGAA ACTATCCAGA ATGCAGCTAT GAATTCTCTC CATTGTCAGT TTTAAATTAA
 110941 GCCAAGCTGG GTACTTGTGT AATTCCCTAA GAAATCCTGG ATGAAAACGT TCAGGTGGAA
 111001 AACAGGACCT CAAAATAAAG AGACATCCAT CACTGAAGCT AACATCGTGA GGCTGAAATC
 111061 AGTCCTATAA CAATGGTACC AAAAAGAGCA CAATGAGAGG CATTGTTGAA TATTTACTCA
 111121 GATGAGAGTA AGATATTCC CTATCAGCTA ACCTGAAGTT CACATCCCTT TTCCAGCTGA
 111181 GTTCTGAAGC TAGATGTACT TAACCTGGAC ACATAACTGC ATCAGGAACA TCCTTTAAA
 111241 CTATGGCTAC CATGGCTTGA CTGGACAAAC CCCAGGCTTC CAGGTTAGC ACAGGTGGCC
 111301 CTTCACAGAC CAACATTGCC TATGCTACCA ACCTCATGTC CTACCACCT GCTTGCATCA
 111361 TTTCTCTCTC TGCATATATA AAAATATATG TGTATGTATA TAATCAGCTT TATTGATATT
 111421 TAATGTACCA CAAAATTGCA CCACCTTAACTG TACAGTTCAA TGAATTTCAC CGTGTTTCT
 111481 TAGTTGTACA ACCATCATCA CAATTAAATT TCGGAATATT TCTATCACCC AAATTTCCAT
 111541 TTCTGCGTAA AGGGGGAAAA AAAAAGGTTA ACTGCTGAAG GCCGCGGTAA CACTGAAAAA
 111601 GGTGCCTTT CTCTCTAAAA CAGATTAA TCTCCCTGA ATTTAGTGTCT CGTGTATTC
 111661 CAGGAGCTG AATAGGGTTT CAATTTCAG GGTCTTTTTA ATAGAGTAAA ACTGTATTGG
 111721 TGGCGATAAA TTTAGTATTG CTCTCAGTAC ATGATTGAGG GATACTTAAA TGTCTCTGTG
 111781 ATTTTATTTC ATAATCGCTA AAAGATGGTT TTTTTTTTC CTAAAACAGG GTTTTTGTTT
 111841 TTTCTCAATA AGCTTCTTAG CTTCCCTCC GGCTCCCTGG CTTGCCTCAG GAAATATTAG
 111901 CTCATCAGTT CTGATTGGTT GACAGCTACG AATGGCCCTC ATTGATTGGG CAGCGCTTCT
 111961 TTGTCCCTTG GAAACTAATA CAAATTAACTT ACACTACTTT TTTTCCACTC TTTCTTCAGA
 112021 GTTGAATAT CGTTGCTCCC CTACCCATAT GTAGTGAGTG GAGGGCAAC TTGGAGTTCC
 112081 CCTAATCTTT CCTTTTTAGG ATGTCAGCTC AGTATCATTG ATCTTAATTA CACATTGAGC
 112141 TTCTTGACTT AATGGATACA GCTCTCTTT TGTTTAGTTG GGCAGGCTG AAAAGGGCCT
 112201 TTGGTTCAGA AATGCAAGCT GTGGAGAAAT CAGCAACCTT AACCGCCAAA GCCATAAAGG
 112261 GTGCGTCCCT GGCGCTTAAG CGCGTAGACC ACGTCCATGG CAGTGAUTGT CTTGCCTTG
 112321 GCGTGCCTCG TATAGGTGAC AGCGTCACGG ATCACGTTCT CCAAAACAC CTTGAGCACC
 112381 CCGCGAGTCT CCTCGTAGAT CAGACCAAGG ATCCGCTTCA CACCGCCACG CCGGGCCAGA
 112441 CGCCGGATGG CCGGCTTGGT GATGCCCTGG ATGTTGTCAC GCAACACCTT GCGGTGGCGC
 112501 TTGGCACCCC CCTTACCCAA ACCCTTCCCG CCCTTACAC GTCCAGACAT GACTTCCCAA
 112561 GAAGTGAACCC AAGAGCAAGT GAGAGAATAG GAAACCGATC TTTATATATC TACGTTACCC
 112621 CTGCCCCAC CTCCAGCGGA CACTGAGACT GAAAAGCGCG CAGGCGGGAA ATGTGACGCC
 112681 TACAGTCCGC TCCTTTAACCT CCTCCTCCAA GCCCCAGGAA ATGGCGGGAG CAGCGATTGG
 112741 GGGAGGGTGG GGAGATGAGG GTGGGACCAA GCAGGCTTGA CCAATGGCCT TTATTTCTT
 112801 AACAGAGCTA CAGGCTTGA GGAACGGGT TAAGAATTAA ATGTAACCC ATTCTGACTC
 112861 CAGAATTATT TTAAGTCGAA CTTTTTTTTT AACCAGATCT CTCTGTCGCC CAGACTGGAG
 112921 TACATTAGAG CCATCTCGAT TCACTGAAAC CTCTGCCTCT CAGGTTCAAG TGTTTCTCCT
 112981 GCCTCAGCCT TCAGAGTGTAA GCTGGGATTA CAAGCGCTCG CCGTCGCGCC CGGCCTGTTT
 113041 TTGTATTTT CGTAGAGACG GGATTGGCC ATGTTGGCCA GGCTGATCCC GAACTCCTGA
 113101 TTTCTGGTAA TCCGGCCGCC TCAGCCTCTC AAAGTGCTTG AATTACAGGC GTGAGTCACC
 113161 GCGACCGGGCC GAAATCGATT GGTTTGAAG CCTTCAGTAG CATTAAAACG AAAAGTGCTC
 113221 CCAATGCATT CCCTTTGTC TTAAATTGGT TTCTTACAGC TACTTTACTT GAAAAGGGGG
 113281 TGGCTCTGAA AAGAGCCTTT GCTTGGACCG TCAGAGAGAC CACAGTAATC ACGCCCTCTC
 113341 TCCCGGGATG CGGGGGCGA GCTGGATGTC CTTGGCATG ATAGTGACGC GCTTGGCGTG

Figure 8 (Page 35 of 73)

113401 GATGGCGCAC AGGTTAGTGT CCTCAAATAG CCCTACCAAG TAGGCCTCGC ACGCCTCCTG
 113461 CAGAGCCATC ACAGCGGAGC TCTGGAAACG CAGGTCTGTT TTAAAGTCCT GCGCAATCTC
 113521 GCGCACCAAG CGCTGGAAAG GTAGTTACG AATAAGCAGT TCAGTGGACT TCTGATAACG
 113581 GCGGATCTCG CGCAGAGCCA CGGTGCCGG CGGGTAGCGG TGGGGCTTT TCACGCCGCC
 113641 GGTGGCCGGA GCGCTTTGC GGGCTGCCTT AGTGGCCAAC TGTTTGCCTG GCGCCTTGCC
 113701 ACCAGTAGAC TTCCGAGCAG TTTGCTTAGT GCGAGCCATG ACGGAAAAAC AGCACAGCGG
 113761 AACACCCAAC ACTAGCGCAA ATACGCCAT GAGCTGCTCT ATTATAGTG TGAAAAGTGC
 113821 AGTGATTGGA TGATAGAAGA CGCTAAATAT GACGTTACAC ACTCTGATTG GTCTATCTT
 113881 AAGCCAGCAA CAATCGTGC A GTTTCACCGG CTACTATATT CTATCCAAC TCTACAGATG
 113941 ATTATTAAG TGTTATTTA TTACTACTAT TATTTTATTT TACTTTGCT TTGTTCCCCA
 114001 AGCTGGTCTT AAACCTGGC TCAAAGGATC TTCCCGCCTC AGCATCCAGA GTAGCTGGGA
 114061 TTACAGGGGA GCCCCACTGC GCCGGCTTGG ACTTTAATT TTAAACTTG TCCTCTTCTA
 114121 CATCTGGTT TCATAAACCTG AAGGCTGTGT TTATTTCCA TAAAACAAGG CATTGATTCC
 114181 AAAGGTATTA TAATCCCCA ATTCCGTATA ACCCTCAGCT CTTAGGAAA AAAAAAAA
 114241 AAAAAAAA GAGGAATAC TGCTCACCTC CTCTCCGGAA ATGTACCCTT TACGGGAATT
 114301 TCTGAAACCT TTCACAAGAA TTGGATTCCCT TTGTAATGCT TTAATTGACT TAGGAGTGT
 114361 ATTGAAATCT ACAAAAGCATC TCAAACATAG TAGGATTACA CTATTACTCA GAAACATT
 114421 CTATGAGACG TCTTCTCTT GATTATGCTC TTTGAATCCT AAACCTGCAG CGTTCTGCAG
 114481 CTTTGTTT CTAAAGCCTA GGTGTACTCT GCCAGTCACA AAATGGCGTT TCTCCAGCAC
 114541 TGCCGCCAGG TACCACCAGC TGGGAGTTGT TCCCTTGCG GAGCAGGAGG TGGACTTGGC
 114601 CCAAGAGAAA CTGGATAGTG GTTCGCAAGG AACATAATT AGCATGCCA AGAGCTAATG
 114661 CAATCATTGAA GAAAATCTCA AAACACTGAA AAGTGGATTG TGACCTTTT AAATTACCAA
 114721 GAGACAGGCC ACATTCTATC TTTTGATTGG TTTAGGCTAT TTTCTGAAC AGCCATTAG
 114781 AAAGCAGATC TATCATCCTT CATTGATG GAGCCTTCCC ATTTTATTTG AAACCAGTT
 114841 AACCCAATAG AAAAAAGGGA GGCAGAACCC ATTATTTAA GTGAAACTC CTGAATCAGA
 114901 TAATTAGGAG TATTCTCTT TCAAAAGTTG CGTTTTTCA GATACTCGC TTATTACACT
 114961 AAGAAAGGTT TATATCTTC ACAAAGGGTT TACTTACAA AATCTCCAA TTTGTATAC
 115021 CTGTGTTCA TAACTGACTA GCCGTCAAAC CAAGATGTAG AGTTTCAAC CGTTATTT
 115081 CAAATTTTA GAAATTACGT GAAATATTG AATGCATGCC TTCTCAATAA AATGGGACGT
 115141 AGGAAGCACT GGTGCAGAAG ATGGGTACAA TACTTATCTG GGACCACTCC ATTATTTGGT
 115201 TGGCACGTTG TTTGAACAAA AAGGGGAAAA GCTCAGGTTA CTTAGCATGG TTCGGACTTA
 115261 TTTGAAAAC ACCACAGCAG GAGCGGAAAT AAGACCGCAT TACCTCACTC TCTGCTGTGC
 115321 TGTGCTAGGG GGTTATCCAG AATAGGATTG TAGAAGTGGA TGTCGATTTA ATAGTTTTT
 115381 ATTCTCCCAT TAGCTGAGTC TCTGATTGGC AATGTGAGAT CGTTTAGCT TATTGATACT
 115441 TTGAAATGCA CTTAACAGCC ACAAACAAGT TAAAGGGTTG TTACCATAAA ATCTTATCCC
 115501 CAGGGTGTGC TTGATTTAT CACCCGTGTT TGCTTCACA CTAAGTGGAC TAAACTCCCC
 115561 AGCAGAATGC CTGTCAGGG A CCGGTTTCG TGGACCCAGC ATTTAACGCC T TCGCAGGC
 115621 TTGTGAGGCC CATAAATATT TGTTGAATAA AAGAATGAGT TGACCATGTC ATGGTGCCT
 115681 GATTGCGTGT GCTGACATGG AACACAGGTT GTAAACCTTA ATACCAATT GGGGCATGTT
 115741 GTATGGATGA AAAGGGCATT GGAAATCCT GAAGTGCATC CCACATTGGA CTGTGGAAAT
 115801 AAGTTGCAAG TGCAGAACG TTTCCACACT TGCAGTTGA GTATTAATTG CAGCGTTGT
 115861 GAATTCTGGT GTGTCTACG ATTCAATTGTT GTTGACGTG AAAGGTATTC GCGAGACACA
 115921 TCGCTCTAA ACATTGCCAG AAAATGTAAT AGAGTTGATG ACAACTGGCC CTAACACGGC
 115981 CTAAAACCTCG CACTTTCTC TCCCTCCGA ACTATTCAA ACACGTATT TTACATTCT
 116041 TGCAAATTAA AAACTAACAT CTCTGGCAAC GGACCTCTAA AAATTTCTAA TAAAACCTCT
 116101 CGGATGCTTG TGGCACTGCA TTTGTAACCC GCCCCCTCTC AACCTACTCC CTAAAAAAGA
 116161 GCTGCTTTT GAGAGAGAAG CGGTACCTCTC TGATGTTACT GGGCGGCAGT CTGCCTACAA
 116221 TTTCTTCAC AATGAGGCAA CCAGAGCGGC TTTTCTGTG TGTTGCTTG CGTGAGGG
 116281 AGCAGGACCA TAGGCCCTAG AGGCCCCAG CTGCCCTCTG AGACTGGCG AAACCCCTCGG
 116341 CAGCGCGCAG GGGCGCTAG GGCAGGAGG GCGGGCACTG ACGGGCACCA ATCACGGCG
 116401 AGTCCCACCC TATAAATAGG CTGCGTTGGG GCCTTTTTT CGCATCCTGC TTCGTCAGGT
 116461 TTATTAACACT TTATTTGGTG TGCTGTGTTA GTCAACCAGT CTGAAACAGT GCCTCCCGCC
 116521 CCCGCCGCTT CTGCTGCTCC TGAGAAACCT TTAGCTGGCA AGAAGGCAA GAAACCTGCT
 116581 AAGGCTGCAG CAGCCTCCAA GAAAAAACCC GCTGGCCCTT CGTGTCAGA GCTGATCGTG

Figure 8 (Page 36 of 73)

116641 CAGGCTGCTT CCTCCTCTAA GGAGCGTGGT GGTGTGTCGT TGGCAGCTCT TAAAAAGGCG
 116701 CTGGCGCCG CAGGCTACGA CGTGGAGAAG ACAACAGCC GCATTAAGCT GGGCATTAAG
 116761 AGCCTGGTAA GCAAGGGAAC GTTGGTGCAG ACAAAGGGTA CCGGAGCCTC GGGTCCCTC
 116821 AAGCTCAACA AGAAGGGCAG CTCCGTGGAA ACCAAGGCCG GCGCCTAAA GGTGGCTACA
 116881 AAAACTAAGG CAACGGGTGC ATCTAAAAAG CTCAAAAAGG CCACGGGGC TAGCAAAAG
 116941 AGCGTCAAGA CTCCGAAAAA GGCTAAAAAG CCTGCGGCAA CAAGGAAATC CTCCAAGAAT
 117001 CCAAAAAAAC CCAAAACTGT AAAGCCCAAG AAAGTAGCTA AAAGCCCTGC TAAAGCTAAG
 117061 GCTGTAAAAC CCAAGGCGGC CAAGGCTAGG GTGACGAAGC CAAAGACTGC CAAACCCAAG
 117121 AAAGCGGCAC CCAAGAAAAA GTAAATTCAAG TTAGAAGTTT CTTCTAGTAA CCCAACGGCT
 117181 CTTTTAAGAG CCACCTACGC ATTCAGGAA AAGAGCTGTA GTACACAGAT GAAATCCCC
 117241 AAGCAAATGC AACACGCCCT CAATTATATT AGAATCACTT GGAGAGTCGA TAGAACTTTA
 117301 ACATAGCCTC ATCTAGTAAG AATTTACTAC TCAATCTATC AAAGATAGCA AGGTGAATT
 117361 AAATGCACCG AGTTAAAATC GAGTTTAAA GTCACCTGGG TTTCGGTAGC CGGAAGTCCC
 117421 GCGTCTCACG ACTCCAAGCT AATTAGTCAT AACCGTATTG AACCAAGGTT GAAGCCCAAGT
 117481 CCCAGGCTTG AGGCTTTTA TTATACAAGG TAAAGTGGG GATATTGCGT TTTGGGGTCA
 117541 ATATTGCTAA AGTAGCATT TCCGAAATTG GGTGGTCCTA AGAAATGCTT CTGGGATAGT
 117601 TGGCAAAATA TATGGCTTAA CCACGCCCTC TCCACAGGAG TGGCTAGCGA GCTGTCTGTC
 117661 CTTGGGAAGG ACGGTGACCC TGCTGGCGTG GCTGGCGCC ACCTGGCGT CCTCTGAAAG
 117721 CCCCCGCCAGG TAGGCCCTAGC TCGCTTGCTT TCTGCAGCGC CATCATGACA AAGCTTGAA
 117781 ACGCAAAATG CTTTCTTTGT GCAGCGCCTT ACCATGGGTG CACTTACGGG CTGTCGACTT
 117841 GGTTTAGGCC CTTGTCAGGA CAAAGGAGCT TAGTTGTTG GAGTTTACA GCTGCAACCC
 117901 AAAATCCCTT GCTCGGTTTC TCTGTTTTA GAAACGGAAG CGCCCTGATT GGATATTGA
 117961 AAATTACTGT GCTTAACTGG ATCGTGTTC ATCAGTCGTG CAGGATTTTC AACCCCTGGTG
 118021 GAGCCCACAC ATTCAAAACT GAAGATCCTT TTCTCAGAAC TGCCCTTTA AGCTTTGCA
 118081 ATTTTAATTG TGGGGGTCAAG ATTTTAATAA TTGGACTTTT TTGTTTACAT CTGACAAGAG
 118141 TATATGATGA GCCAAGTTA CTCACTTTA CTTAGTGCAG TTCACATTCA AAAGTTTATT
 118201 TTTGCGTGTG TGCAATGAG TTAATAATCA GTTGTATTTT TCAAACGGTC TTTTTCAAT
 118261 TGTTTGCTT AGCTCCTTCC ATCGTCTAAA GTCAGGGATA CAGGCACATC ACATCCCTGT
 118321 TCCCCCTTCC TCAAACTAAT ATGTAGCTAC CTAGGTTTAT CCTTTAAAAC AAAAATTCTC
 118381 ACCTATTTT GTGAGAAATA TACATGTTT TCTTGAACT AAGTATTTA CATAACACCTA
 118441 TCTATATACA TGCATACTTG TGGTTTGT TTTTTAAAAA AAAAAGAAAA AAAACACGTT
 118501 ATCTTTGAG ACTGGGTCTC AGTCTGTTGC CCAGACTGGA CTGCAGTGGC ATAATCACAG
 118561 CACACTGTAA CCTCCAACCTC CTGGGCTCAG GCTATCCTGC AGCCTCAGCA TCCGGAGTAG
 118621 CTGGGATTGC ATGCACGCAC CACCAAGCCG GGCTTTTGT TTTTATTTT TGTGGAGACA
 118681 GTCACACCAG GTTGTCCAAG CTGGTCTAGA AATGGCCTCA AGTGTACATC GACCTCCCAA
 118741 AGTGTGGGA TTACGGTCAC TGTGCCTGGC CTTGTATGCA TAATTGTTT GTCTTTGAT
 118801 TAGGGTTATT AATTAAAAA ACAAAAGCTG GACGCACTGG CTCACATCTG TAATCCCAGC
 118861 ACTTTAGGAA GCCAGATGGG CAGATTACTT GAGCTCAGGA GTTCAAGACC AGCCTGGGCA
 118921 ACATGGTGAA ATCCCATCTT GACAAAAAAT ACAAAAAAATT AGCAAGGCC AGTGGCACGC
 118981 ACTTATAGTC CCAGCTACTT GGGAGGCTGG GGTGGGAAGA TGACTGGAAC CTGGGAGGTA
 119041 GAGGCTGCAAG TGAGCAGAGA TCGTCCACT GCACCTAACG CTAGGTGACA GAATGAGACC
 119101 CAGTCTAAA ACAAAAATAA TAAAAATTAA TTACAACGAT GTTATATACA CTTCTGCATG
 119161 TTGCTTTCT CTTAACCAA CTTTCTAAA ACCCTGTCA GAAAAAAAGAA ATCCCTTCACA
 119221 TGGAAATAGCA TAAGTTATTC ATCCATTCT TATTGATAAG CATTGATGTT TCCAGTTACC
 119281 ACTGCTGAAC ATGGTGCAT TGAATAGAA TCCAGGGCTG AGATTGCTAG GTTTTAGGTT
 119341 GTATTTATT ATTTTATTAA TTTTATTAA TATTAGACA GAGTCTTAAC CTGTCACCCA
 119401 TGGTGGAGTA CAGTGCCTAG ACCTCAGTTG CAACCTTGC CTCCTGAGTT CAAGCGATTC
 119461 TCATGCCTCT GGTCTCCCAGA GTAGCTGGGA TTACAGGCAC CTGCCACAG GCCTGGCTAA
 119521 TTTTGTTATT TTTAGGAGAG ATGGGTTTC ACCATGTTGG CCAGACTGGT CTAAACTCC
 119581 TGGCCTCAAG TGATCTGGCC ACCTCGGCC CCGAAGTGC TGGGATTACA GGTGTGAGGC
 119641 ATGGCGCCAG ACCTGGACTT TGTCTCTGT TTCATCAGTC CTTCTGTTGG TTCAAGCACA
 119701 GTATCACACT GAAGACTGAT GATTCTATAT AAATATGGTA AAGACTGTAC ACCCTAACTG
 119761 TTCTTATTTT TTAATTTAA GGCAATTAA GATTCCAGCT TTCCAAAGAA TTGTGGAATG
 119821 CTTAGAGCTA GAGAAGCATT GGAAGTCATT TAGTTTTGT TTTGTCAGAG AAAATTCTGT

Figure 8 (Page 37 of 73)

119881 AGAGACTCTG TCCTGCTCTC ACTGAATACC ATCCCCATAGT ACCCCCCAAC AGCTTTAAAG
 119941 GGCAATAATA CCTTATGGAC AGTATGCTTT TCCTCAAATA TATTCTAAGC CATGGTCAAT
 120001 GCAAAAGAGT GAGAAGGAAA GTAGAATAAG TTATCTAAGA ATCAGTGGGT GCTCTCTTA
 120061 AACTGATTTA TCACCTCCCC TTCCAAACTC TCTTGAAGGT CACTCTGCCT CCCTTCTAC
 120121 ATAAGAACTC CTAACCTCAA GGGAGGAAGG TAAGTTATTTC TTATTCCTTG CTTAGAAAAA
 120181 GAGAAAATAG GTTGGTAAAG CATCCGCTT CTGCTACCAT TCTCTGTGTT TCTGTGTTT
 120241 TTATAGGATC ATTCAATTAT TGGTTGGCTC TTGAGAGGGA ATGCAAGGTT CAAGGACACA
 120301 AGCCTAGATC TTGCTGTAT AGAACCTCAT GATGTTATGC TTCTCTAAAA TGAGGCCTGG
 120361 AGGAGACATG TTGAAAGTGA CCCATAAATC TGCACTATCT CATGCTCTC AATGGGGACA
 120421 AGGAGTACCA TGGGAAATAG CATTAGGTCA ATGACAGTAA CAACTCCCAG GTGAGTTGAT
 120481 TTATTCTTT ATTATATAAG TTGTTAATAT GCTACATAGT CCCTAATTTT GCCACAAAATA
 120541 GTCATTATT TAATTCATA TTTCACTATT GATAAATGAA GGAAAAAATG AGTAGCAGTT
 120601 AAGCAGTCCA TAAACCTACA TATAAAGCAA ATTGGAGATT TTAAAATTGA TTCTGGATGC
 120661 TTAAAATCCT TCTCATTGAA AAAAATTC GTATTAGAAG ATTTCAACAT TCTTTAAACT
 120721 GAGAAGCATA ACATATAAAC AGAAAACCAC AGCAAAACAA AAATGCAAAG CTCAATAAAT
 120781 GAACACAAAG TGAACACCAT ATAATTGCC ACACAAAGTAA AAAAACAGAA AATCAGCCAA
 120841 CCCTCCCAGA GCCGCGCTGAT GCTTGCTTCC AGTCACATTA TCACTCCATC TGCCCTAAAC
 120901 ATAACCCCTA TTTGATTTC CAATGCTGTA ATTAGTATG CCTGTTTTG AACATATAA
 120961 AATGGAAATA AAACAAATGT AATCCTATGT ACCTGACATA TTTCACTCCA GAACATTAGG
 121021 TTTGAATAGA TTCATCTGTG TTGCTGTGTA TAACCTTAAT TCATTTTTAT TGTTATGTAA
 121081 TATTCCATGT TATGAGTGC ACAATTAGG TGTCTACTGT TGATGCATAT TTGCTTCCCT
 121141 TTTTCAGCTA ATATAAACAA TACCGTGAAT ATTCTGTGTT ATGTGTCTTG GTATATATAG
 121201 GAATACATAT TTTGTTGTA TACCTAGGAG AGGAATTGTT GGGTCAAATG CTAAACTCTT
 121261 TTTGAAAGTG GTGATATTAG GTTTACATGC GATGAAATGA AAATTAACAC CACAGTTATA
 121321 AACAGCATGG ATGAACCTCA CAAACCTAAT GTTGATGGAA TCTAGCTGGG AATTCTGTT
 121381 CTTCCATATA CTTCCAATA TTTTTTCCA ATTAAAATTG TTAATCTTTT GAAGATGTTA
 121441 TCCATTGTGG CAGATGTGCA GTATTATCTC ATTATGGTTT TATTTTACAT CTTTGCCCCA
 121501 TTTTTTCTTA ATTGGATTGT ATATCAGTCG ACTTGGGCTG CCATAACAAA AATACTAGAC
 121561 TAGGTAGCTT GAACAAAAGG AGTTTATTAC CTCACAGTTC TAAAGGCCAG GCCAGAAATC
 121621 CTAAATTGAG GTGCCAAGAG ATTCAGTTTC TAGTGAAGGGC TCTCTTATTG ACCTGAAGAT
 121681 AGTTGCTGTC TTAGATTGTT TGGTGTGAA CAGAATACCA GAGACCAAAT AATTATAAA
 121741 GAATACAGAT TTATTTCTTA CAATTCTGGT GGCTATAAAG CCTATGGTCG AGGGGCCAC
 121801 CTCTGGCAAG GGCCTTCTTA CTGTTATGGC AGATGTGAGA TGTCACTCA TATTCAAACC
 121861 ACAGCAGTCG CCTTTGTGT CCTCATGTGG CCTCTTCATA TGCCCATAAA ATGACCTCAT
 121921 GTCTCTCCT TTTCTTATAA GGACACCGA TCTATCAGAC TACTGGCCTA CTCTTATGAC
 121981 CTCATTTAAC CTTAAATATC TCCATAAAGT CCCAAATCC CTATCTCAA ATATAGGCAC
 122041 ATTGGGTGTT AGAGTTCAA CATCAATTTC GGGGAAACAC AATTAGGCC AAAAAGATTG
 122101 TGTTTTTCT TGTTGGTTA AGATAGCTGT CTTTTGTCC TTTTGTCTT TTCTTTTTT
 122161 TTGAGGTGGA CTCTGCTGT GTCACCCGGG TTGGAGTGC GTGGCGCTGT CTCAGCTCAC
 122221 TGCAACCTCC ACCTCCTGGG TTCAAGAAAT TCTCCTCCTC CCAAGTAGCT GGGACTACAG
 122281 GTGCATACCA CGCGCCCTG CTAATTTCAG TATTTTGAT AGAGACGGGG TTTCACCATG
 122341 TTGGCCAGGC TGGTCTCAA CTCCTGACCT CAGGTGATCC ACCTGCCTCG GCCTCCAAA
 122401 ATGCTGAGAT TACAGGTGTG AGCCACCAA CCTGGCCTGT CTTTCTGTT TTAAGTTTT
 122461 AAATTTGCT CACGAACCT TTATCCATT TATGTGTTGC AGGTATTTC TCTGTAACCT
 122521 GTCTTCACTC TGTCAAGAGGC TGGAGTGCAG TGGCACAATC ACAGCTCACT GCAGCCTCCA
 122581 CCTCCCAGGA TCAAGCGATC CTCCTACCTT ATCCTCTTA GTAGGGGAA CTACATGTGC
 122641 AGGCCACCAT GCCCAGCTAA TCTTTGTATT TTTTGTAGA GATGGTGTG TTGCCCAAGT
 122701 TGGTCTCAA CTCCCTGAGCT CAAGCAATCC ATCAACCTTG GCCTCCAAA GTGTTGGAC
 122761 TAGAGGTGAG ACCACCACT GCACCCAGCC AATGATATCT CATGATGCAT TAAAGTCATT
 122821 AATTTAGTGT ACTCAAATTA AGCACACTGC CCTTTATGC ACAACCTTT TTGTATCTTA
 122881 TTAAAAAAAT CATTTCTAT TTCAAGGTCA TGAAGATCTT ATTTTATAAT ACCTTCTGT
 122941 GAAATTAGTT CTCAAGACTA CCCTCACTTC TAACACCAAT TATAAGTTGG GAGGTCTGT
 123001 GTTCCCAATC AACCTTAGGT TAGTAATTG CTAAAAGGAC TCACAGAACT TGCTGAAGCT
 123061 GTTAGCCTCA TGGTTACAAT TTATTATAGG ATATATAGCT TATTATGTCA TTCCAATGCA

Figure 8 (Page 38 of 73)

123121 ATGTAAAATT ATACAAC TAC TTTTAAAAG ATTTAGCAT TTGACCCAAC AATTCACTC
 123181 TGAGGTATAAC AAACAGCAGA TATGTGTGCA CATATATACC AAGACACATA CACAGCAAA
 123241 TTCATTGTTT GTAATAGTTG AAAAGGGAA ACAACTCAAG GAATAAGAT TAAAATCAGC
 123301 TGAGAAAAGA AACACACAAG GCAGTATTAT GGATCGAATT GTATGCAGAT CTCCCTTGCC
 123361 CCCAGAAGAT ATGTTTAAAG TCCCACCTCC CAGTACCTCA GAATTGTGGC CTTATTTGGA
 123421 AATAGGATAG TTGCAGATAT AATTAGTTAA GATGAGGTTA TAGTACAGTA TGATGGCTG
 123481 GTGACTTAGA AGAAGTAGTA TATATATATT TTTAATAGA ACTAGTATTG TTCTAAGGTG
 123541 GTCACTGTGAA GACAGACACA CACAGCAGA GACTGAGGTT ATGCAGCTGC AGGTCAAGGA
 123601 ATGTCAAAGG TTGCCAGCAA GTACGAGAAG CTAGGAAGAG TCAAGGAAGG ATTTCCCTAC
 123661 AGGCTTCAGT GGAAGCATAG ATCTAATGAT ACCTTCATGT CAGATTCTA GCTTCCAGAA
 123721 CTACAAGAGA ATATATTGT TGTTTAAGC CACCCCTAGCT TCTAGCTCTT TGTTACAGCA
 123781 GCCCTAGGAA ACTAATATAG GCACAATCCA GGCAAGTTCC AAATATGAGC TTCCAGTTGT
 123841 CCTCTCCAG TAATATGAAC AGTATTACTT TCCCAGCATT AATGTGTGAC AATACACATG
 123901 ACGTACAGAG CAGTCCCCAC TTATGCACAA AACATATGTT CCAGGACCTC CAGTGGATGT
 123961 CTGAAACCAT GGATAGTACT GAACTCTATA TAGCTGTTT TTCCTATACA GACACAGCTA
 124021 TGATAAGGCT TAATTTATAA ATTAGGCACA GTAAGAGATT AATAACAATA AATTAGAATA
 124081 ATTGTTAAGA ATATACTGTA TAAAAGTTAG GTGAATGTTT ATTTCTGAA TTTACCGTTT
 124141 ATTATTTTG GACTGCAGTA GACCACAGGA ACTAAAACCA TGTAGAAACC GTATACAAGA
 124201 GAACTGTATT TCACCCGAGC CTCAGTGTGC AGTTTTAATG GCCTGCCATG GTTGAUTGCT
 124261 CACATGGCCG ATCTTTTAGT CTACCTCCAC AGGTAGAGCT GATACTGTGT GGCTCAAAGT
 124321 TCCTATTATA AATCACATTG TTGACTGTGT GGTGGTCAA ACCTCCAGGT AAACAAAGAC
 124381 ACACTTATCA GTGAGAACAT TTCAAGGGTC TAAAATTCACT CTCCCTAGTAG CTGAGGGCAA
 124441 AGGCTAGACC TCTTTTGGG TAAGATAAAAT TTTTACCAT ATACTTTATT TTGCTTTCA
 124501 TGTTTAACCT TATTTGCTT TTCACTGTTAG TTCCCCTGGA ATTGTTTTT GTGTATAGT
 124561 TGAAGTAGGG GGTCAAGTTT CTTTTTTTT CTTTTTTGTT CTTTTTCTGT TTAAAAGGCT
 124621 ATACAATTGT CCCATGCCAT TTATTTACAA GAGTCCTTC ACCATTGTTG TATGGTGC
 124681 CTTTAGATGT AAATCAATGT CCATATTGT TTGAGCCTGT TCCATTGTT TGTCTATT
 124741 TGGACAACAC TGCCCTGATT ATTGTCATTT TATCAGTTT GATATTAAAT AAAGCAACAG
 124801 ATTTGTTAT TTTGGGCCCT TGGATTGTG TATTAATTT GAACCTGTT TGTCAATT
 124861 TATAATAAAG CTTATTGGG ATCTGATTAG GATTACAATG GTTGTGAGA TCAGTTGGG
 124921 GACAATTAAT ACCTTTAAAA TATTGACCGC TTCAACTGTA AATATACTCC TCCATTATT
 124981 AGTTTCTG TTTAATTAT CTGAGTAATA CATTATAGTT TTCTCGTAG AAGTCAGATA
 125041 CGTAGAAAAT TCAAAGCCCA AGTGCATAG CTCATGTC TGTAATACCAGC ACTTTGGGAG
 125101 GCCGATGTGG GTGGATCACC TGAGGTCAAGG AGTTTGAGAC CAGACTGGCC AACATGGTGA
 125161 AACCTCATCT CTAGTAAAAA TACAAAAAATT AGCTGGGTGT GGTGGCGGGC ACCTGTAATC
 125221 CCAGCTAACAGGAGACTGA GGCAGGAGAA TCGCTTGAAAC CCAGGAGGCA GAGGTTGCAG
 125281 TGAGCCAAGT TCCGTCACT GCACCCACC CTGGCGACA GAGGAGACT TCGTCTCAA
 125341 AAAACAAAAA AAAGAACATT CAAATAATCA ATGTAGATAA TTCAAATAAC TAAAAAATGA
 125401 ACAGTTATTA AAATATCAGG ATATAAAAGC AAAAAAAATCA ATAACCTCCA TATATACAAA
 125461 ATGGCCAGTT AGAGAAAAAA AAAAGAATAG GCGAGACTTA AAAAGGCTGG GAATCTCCCT
 125521 GAAAATCTT GAGAGCCTTG GCCCTGCCCT CAGGGATTC TCTGGCTTC TGCCAGATA
 125581 CGGGTACAGT TCCTTGTGTTA AAAAAATTG GCTCCATCAA TCAACAAGGG GCTCCTTCCT
 125641 CAGAGCACAA GGACCTCCAT AACACGGGAC ACTAGATGTC TAAGGGACAC CTCTTAAGGA
 125701 AGTTAGACTT CCAAAGAATG GTGTTCTC TGTCCTCAA CTCTGAACT CACAGCACAA
 125761 CTGCTCCTG GAGTCGGTT TCAAATCTAC AAGGCTGTCA TGGAGGTTGC AGACCAAGTC
 125821 CGTGGCCTCA GTGTCCGGAT GTACGGTGGC CTGGCACCT GAATGTGAGA ACATGACCTC
 125881 CCTGAAACCA CCACAAGTAT TGTTCATGT TATGTATGTT TTTCTTATC TGAAATT
 125941 TTTCTTAAAT AATTCAAATT ACATATTG CAAGCCCCTG AACAGCTTC ATGAGCATTT
 126001 ATTGAACCCA CAGCTTTAA AACCTACTGA ACACCTTGCT CTATGTTGTC ATTCACTATC
 126061 CACCAATTAT TTAATTATTG ATCAATATTG TTCTCTTAGT GTTGGGATCA TTTATGCATG
 126121 TATTTCTTTT ATATTGCATA TTTTATTTT CTGCATTACA GTTATTACAT ATTACTTTG
 126181 CTACAGTAAT AGTCAAAAG TGTACATCCA AAATTTAGCT GTGAAGTGGA TGGACTGAGG
 126241 CAGAACTGGG GGCAAGAAAA TGTCACAGTA ATTCTAAAAA AGATGATGTA CAATTAGAGC
 126301 AAGAGAGTAG CACTGAAATT GAAGAAAAAT AGATGCGTTT GAGAGAAAAT TAGGAGGTAG

Figure 8 (Page 39 of 73)

126361 AATCAACAGA TTAGATGTAG GGATGAGAAG GGTCAAAGAT GACACTAGGG TTTTTAACTG
 126421 GAGCAAGTAG GTAGACAGAA CATTCTTCC TGAAAGGGCA GGTCAAGATCA TGTGTTGTCT
 126481 CAAAGGGCAT GAAGAGTAGA AAGCCTGGGA CAGATCCTGA GATGACCAAT ACCCATGGTG
 126541 CAGGGAGAGG GAGGGAGATC TGCTAAAAAG ACTGCAAATG TCAGGATAGT AGAAAATCAT
 126601 GAGTGTGTGA TGTCTGGAA GTTGAGACAG TATCACATT GAGAACATTT AAATTGGTAA
 126661 CTCTGACAAA AAGCTGGAGG CCAACTGTGA ATGCCATGA GAGTGAGAAG CTCCCACACT
 126721 TTTGTGGCCA TCAGAAAGCC CACCAGGTTG CTGCAGTGAA GATCTGAGAA GGATCCTCTT
 126781 GTGGCTTTGG CAGGGAGAGA AGAATTATTA TGAAATACAC CCCAGAACCT TCTTCAAAC
 126841 AAAGGCCTAC TCTCAAGGGG AAAACATTT GCCAGAGTCT TATCCCAGCT GGGAGAAGGT
 126901 AATTCTTCCC ACTGCAGCCT CATCTAGGCT TTCTGTCTCA CTTAAGGGAA GAAAATTAGT
 126961 CAACAGGGAT CAGAGCTTC TGAAAATAA TTGGAATGG TGCAAGCCAGG AAAGGAGCAA
 127021 AGGTCTGAGG AGGAGGGAGAA GGAGGAAGAG GAGTTGTATC ATTATAAATA CTTGAGGAAG
 127081 AGGAGGGAGAA GGAGGAGGGAG GAGGAGTTGT ATCATTATAA ACACTTGAGG AAGAGGAGGA
 127141 GGAGAAGGGAG GAGGAGGGAGT TGATCATTA TAAACACTTG AGGAAGAGGA GGAGGAGGAAG
 127201 GAGGAGGGAGG AGGAGTTGTA TCATTATAA CACTTGTGAC GGTCCCAGCC CCAAGATATA
 127261 GGCATGCTAA TAAACTGAGG CTTAACACTT TGACTACAGA ATGCTGCTTC TCCCTAACAC
 127321 CATCAAGGCT CCAACTGAAT AACAAATGAAT TATGAATGAA AGAGCTGTAA GGAGAGACAA
 127381 AAGTTAGAAT GAGACAAGTA TTGTTATCTA GAGATGCCAA GAAGGCAAGG AAGATAACTA
 127441 AAAAGGCACT CTGGATTTAG AAATAGGAAG TCATTAGTGA CCTTGTAAT AATGGAGCCA
 127501 GAGGAATACC AAGGGCAGAA GCCTCACTAT AGTGTGTTGC ACCTGTAGA GGTCAGGAGG
 127561 TGAACTGAC TCTCCCACAG TGTGGCTTTG GAAGAGAGAA GTCAGCAGCT GCATGGAGAT
 127621 TGGGAGAGG GAAAGCTTTT TTTTTTTTT TTTAATTGGA AAAGACTGAG CTATGTGTA
 127681 ATAGAATAAG ACAGGAAGAG TGTTAGACACA GGAAAGAGGG CAGACAAAAA CAAGTGCACA
 127741 GTTATCTAAG GGAAACAATG GGATCAAGCT GCAAGTATAT AAACCTGTCT TGATAGAAGA
 127801 ATCCTTGATC TGGTTTATTC AGTGTGTTGGT CCAAACCCAC ATCCCTGTT CTCCTGTCTC
 127861 TGAATTGCTC TGTGCCCGAG AAGCCCAGCT TCTACAGATA GCATTAGCTG GGCAGCCCTG
 127921 CCCTCTGCA ACAGCTGGAT TTGGCCAGTG ATCAGCCAG CAGGAATGTA GATGGCAAAG
 127981 GAGAGAGAGG TTAGTGTACT TATTCCCTGC ATCACCCCCC TGCTTGGTGG GCAGCTCTC
 128041 CTCCACAGTC CCAGCTCTGG CCTAGCTCTG GTTACAGGTT CCCTCCCATT GCCTCTTCAG
 128101 ATTAAAGGT GTGTCTGTCA GGGTATAACT GGGAGCTAGA AATTGCACTG AAATTGAACA
 128161 AAGAATTTTA TGGGAATGGT TGTTAACTAG TTATAAGAGG ACTGAAAATG GAAAAGTGG
 128221 CAAACGTATC AGAGATAGTA ATGACAGAAA GCAACTACCA CCTCCAGGTT TAGGAGAAC
 128281 AGAAAAGAT TCTTGAAGA GATCCCCAGA ACTGGGACCT CTGAGGAGTG TATGCTGGAC
 128341 CACTGATGAT GATATGTCTG TAGATAGAGG CATGATGAGG CTGATTAGT GAGCATGGAA
 128401 GATCTCCAAA CTGAAGCCAA CTGCTGTTAC TGGATTCAAC TGCCACTGCC AGGTTGAAGA
 128461 ACCCATTCTG TGAGGATGTC AACAAACAAA GTGGGAAATC TTTTCACATC CTTCCAGCCC
 128521 TCTAGTCTTC CTCCAGTGCT TTCTATTGGT AGGGTTGGG GAGGTGGCTA GCAAAGCGGT
 128581 ATTGGAAAAG ATAGAAGAGA CTAATCTTC ATAACCAGCA CAGGGTGACA CTGGATCACT
 128641 ACTGTTGCTG ATCTTGGCT GCCTCATATC CCCTGTTCTT CCCATTAGCC CTGTACA
 128701 TTTGTAGATA TCCCTTCATT ATATGCCCTT CATATATTCT TTTGGTTAA CTTTTCTGT
 128761 TGAATCCTA ATATGGCACT CCTCCATTTC TCAGGACCAA AAGAGTATAA AAGATTATCT
 128821 TTTACCAAAA AAAAGACAAA AACTGATCT AATTCTGTAT TTGATCATT CACAATCTAT
 128881 ACATGTATCA AAATATCACA TAGTACCCCA TAAATATATA CAACTGTGTC CATTAAAAAT
 128941 AAAAATTAAA GAAAAGATGG TAAATATAGC TCTGTCAGGC AGTGGAGGTT TTACCA
 129001 GGCTGTTATT TCCCCCATGA AGGGGGAGT GAGGGAGCAG CTGAAAGTAG GTGCTTATAG
 129061 GGGTATAGAG GGGCTCAAAG CTTTGAGAGA GGAGAATGTC TGAAAGAGCT GCCAAATAGC
 129121 ATGCAGGTCC CATGGGGGCA GAGCCTCTGC TCATTACCCA GTGCCTCTTC AATATCTACA
 129181 CTTAACGCTA ACACAAAGTG TGTGTTAAT AAGTATTGTC TGAGTATGTA AAGTGGAAAC
 129241 AGAACCAATC TGGCAAACCT TGTAGGACTG GTGGGCAATG AAGATCAGTC AGGTAAAATC
 129301 TGTGGATATA AATTATATT GATCAAAAAA TTCAAGGTTA GGTGTTTTTC TTCAGTCATG
 129361 CTCAACGATG CTTCAGCCAT GCTCAACTCT TCTGTAGCCA CAGAAAAAAG TTTACCCATA
 129421 ATCGAGCTGT GTCTGTGTCT GAATAATGAA AAGACCATGA TGCAAGGGAG TTGGAGACAC
 129481 AGAAACAGTG TTTGAAGTAA TGGGTAATGG AAGCATGCTA CCAGGGAAAG GAAAGAAGTG
 129541 GCAATAGGAA GGAACAGAGA TCTGTGGTCC TATGTCCCCT GAGCATATTC ACATGTTAAA

Figure 8 (Page 40 of 73)

129601 GCTAATTCA G TTTCAATCA TCATTAATGAA TTTGTTCC G AATATATGGC CATTATTT
 129661 CACAACCACA CTAAAACCTT ATTACCTCTG GCAAGTGACT ATGCAAGTAA CTAAGAGCAA
 129721 AAATATCCAC AACTACCATT TGAGCTATCA ATTTAGGGAA AGTCATCTGG CTATAATCTA
 129781 AGTGAACCTC CACTGAATGT CAGATCTTT GCATATGTGA TTTAAATCTG GCCCTTCGCA
 129841 ACACCATGAA CTGTTCTTGT CTTGAATATC CAGATTGAAG GAAATAATCT GAGTAGTTAC
 129901 GAGTCCTGAA GCTAGAAAGA TGGAACCCCC ATTGCTCAT CAGAAAGCCT TAGAGCTTGG
 129961 GCGCTGGCGG GTCCGTCTC ACCGGGACAG AGGGGCTTT TCCTCCCCAT CTGATAGTCT
 130021 GATAACTAGA GAAGCCGGCC AACTTATTCT CCAAGAAGGA GCCATCTTAG TTCCCTCTGA
 130081 AATGTTCTATA TTTAGAAATT ATTGTTGTC AGTAATTAA CCCCTTAATG GGCTTGCC
 130141 GTGGTCCATA CCACGTGAGTG CAGAGCTTGC CTGGAAGAAT TGTGAGGGCC ATTCCATCTT
 130201 CCAGGCAGTA GAGTCAGTA CTTCTTAA ATTGCTGCTG AACTCTGTAT TTGAAAAGAA
 130261 AGAACATATT GGGTGTGGTA GCTCACACCT GTAATCCTAG CGCTTTGGGA GGCTGAGGTG
 130321 GGAGGATCAT TTGATGCCAG GAGGACCACT TGAGACCACC CTGGGTAACA TAGCAAGACC
 130381 CTGTCTTTAG AAAAAAAA TACAATAAAA TAAATACAAT AAAAATAAAA GCAAAAAGAA
 130441 AGAGTCCATC TTAGGGACAG ACTGTAAC TA CTCACGGAG CTTACCTTA CATAGTTCA
 130501 GATCAATTAT AATAAAACAC TTTTGTGCAG ATTCATAGG ATTATTTAA TCCCCATCAT
 130561 CTCTCTGAGT TTCCAGTCAG TTTCTCTGCA TGTAGACACC CTTCTCCAGC CCACCATTT
 130621 CTCTCCTCCT ATAGCTCCAC CAACAAATCA GAACCTTTTC TAACTGCACC TAGTGCACCT
 130681 AGAGTCTACT CCAGAACATGCT CATGGAGAAA GTTCTGAAA GGTAAAACTC TGAATGATAT
 130741 TTGTAGCTAA AGGGAGACTT GCTAGAGACA ATAAGCTAAT AGTTGTAGAC TTCAGTAGAA
 130801 GAGGAATGAC ACTGCAATGT CAGGGTGCAG GACTTCAAGA GGGCAGAGTA TGGAAACCCA
 130861 ATGGGAAAAA TGCTCACCAG GAACATGAAAG AGAAGGAATT ACGTGTAAAGG ATTTCTCAAT
 130921 GTGTTCCCAA ATTTGCCAG CAGAGGGAGG CCTCGGGTTG ATGGCAGGCT GACCACACAA
 130981 TTAAAGAAGG CTGAACCTGG GGGCTTTAA CAACCATCGT GGGCTCTACT GTAAGCATT
 131041 AGAAAAAGAA AGTTATCCAT TCAAAATAT ATATATTTT AAACCTCAGA ACAAAATTAT
 131101 GAAGAGCTAT ATTTACTTTT CTACATTCTA ATTTTATAA ATCTGAGTAT ATTTTGCTA
 131161 TATTGTTATA GTACATATTG AATTGGTAT TTTGCTGTT TCACCTAACC ATTTTTACTA
 131221 GATTACTCTG TGTTCTATAAT AATCACTTTT TTTAAACCTTT TATTTTATT TATTTTATT
 131281 TTTTTGAGT CAGAGTCACA CTCTGTCGCC CAGGCTGGAG TGCACTGGCG TGATCTTGGC
 131341 TTACTGCAAC TTCCACCTCC TGGATTCAAG CAGTTCTCCT GCCTTAGCCT CCTGAGCAGC
 131401 TGGGATTACA GGTGTGCACC ACCAACCGG GCTAATTTT GTATTTTTAG TAAAGACGGG
 131461 GTTCAACCAT GTTGGTCAGG CTGGTCTCCA ACTCTGACCC TCATGATCTG CCCACCTTGG
 131521 CCTCCCAAAG TGCTGGGATA ATCACTTTT ATGCTGCATA ATTCTTCAGA TTTGTCAGTA
 131581 CGACTGTATT TACACTCATT TGTTTATTA GAAAGAATT CAGAATATTT TGGCTGCC
 131641 AATTAATTAA ACAATTAAATA TGATTTGAA ATTGGGTATT GGCTCCTCT GAATTGGTTT
 131701 ATTAAATAT ATTCTAATGT AATTATGAC ATTTCATCA TATTAGCATA TTTATTCTGT
 131761 TAGAATTCA TAATTTATAA AGCTACAAAC TGTATGTGAT ATAGCTTGTAA ACTTTATCTC
 131821 ATAACCTTAT GCAGTTACAA GTAGAAATAA AATGTTCCC TCAAGATTGCT TAAAATTTT
 131881 ATTATAAACAA AGTGTAAAAA ACAAATCAC TAAAACACTC CCTCTTTTTT CCCCCAAAAT
 131941 GCATGTTTCC ATTTAACAG AACCGTATT TAATCAGCAG ATTTCTATGG TGGCTAGATT
 132001 TGTAGACTAA ATATTAAGA TCCCAGCA AATGCATTTC TCTCTTAAAT TTTACTGACT
 132061 TTTTTTTTT TTCTTTCT GAGACGGAGT CTTGCTCTGT CGCCCAAGGCT GGAATGCAGT
 132121 GGCACAATCT CGGCTCACTG CAACCTCCGC CTCCCGGATT CACGCCATT TCCTGCCTCA
 132181 ACCTCCCGAG TAGCTGGGAC CACAGCGCC CGCCACCAAG CCCAGCTAAT TTTTGTT
 132241 TTTAGTAGAG ACAGGGTTTC ACCGTGTTAG CGGGGATGGT CTCGATCTCC TGACCTCATG
 132301 ATCTGCCAC CTCAGCCTCC CAAAGTGCTA GGATCACAGG CATGAGCCAC CGCGCCCCGC
 132361 CTACTGACTT TTATCCAAAG AAAATATAAG AGCTCTTCAT CATAACGTAT GTTTCTTGCT
 132421 CTTGTTATTA AATATGACAC ATTTAGACTT AAACCTGATT GAAGGTTAT GACATTGTT
 132481 AAGTTATTAC ATAATTAAATT CATAAAAGATA ATGACTAGTT TGAACACTG ACAGCTCACA
 132541 CATCATCAGT TGAACAGCAG AAAGCTTACT AAGCTACTT CTTATGTTTC TGTCTCCAG
 132601 CTACTAAAAG AAACGAAACC CTTCCAGGTG TTAAGGCAA ACTTTCTCC CCCTTTCTTC
 132661 TATAAAATCTG ATTCCATGTT AGTAAATTT CTACTGATGG CTTTGGTTTC CTCTATAGTA
 132721 GAATAGAGAT CCTATGGCAA AAGTCATGTC TGACATGGTA GCAAATAGAA ATGGGGAAA
 132781 GGAAGGTCTG CAAGAGCCAA TGTGGAAAT GGGGAGAGGA CTGACTACAA AAACCCAGCA

Figure 8 (Page 41 of 73)

136081 CATGACCAAG GTATTATGAG ATTCTGGAAT TTCCCCAAAC CACATTGATT GCTGGGAGAA
 136141 TAGAAGAACT GGATTACAAG TGGAACCTAG AAGGGGAGTA TTCGAGAAGA CGTCTCTGCA
 136201 AATCCATTG GAGAGACCT TCTCCAGTGG TGACTCAAAG ATGCAGCTCC TTTCATCCTG
 136261 TGGCTTGGCC ATCTTCAGCA CATGGCTCCC AAGGGATGTCC TCAGGATGGT CTCTAATCCA
 136321 AGGAGCCTGA AGAGAAAAAA AGGCATGGAG TATTGTGAGT GGTAGGTGGT TATGGACCAG
 136381 TTATGGAAGA ATACACATCA CTTTTGCCCA CCTTCTACTA ACCAGAACTC ACACAGCCAT
 136441 AGACACTGAC AAGTAGGACT TAACAAGAACT CTAATTTGA GTCTAGGAAT ACGACTGTAG
 136501 CAAATATTG ACAGCTTCAA ACACAGGTGC ATTGCTATCA CTATGCTTGG CCCAGGCCG
 136561 TCTCCCTTTC CTGCCATGTC ACAGGGGCCA GCATTTATGT CTAGATTGGG TTGGTTGGG
 136621 TATTAAGACA ATAATGAACC AATAACAACAT CTTGAGCATA AAACCAACTG ATACAATGAT
 136681 GTACAAGTCA GATGATTCTG ATGATTATGA ATTATGTCAA TAAAAGAAAT GTGATAACTA
 136741 AGGTAAATTG TGTTTGGCA AATTTTGTT TGTTCATGAC AGGATGAAAT CCTGTCACTT
 136801 GTAGCAACAT GGATGGAATT GCAGGATACT ACATTAAGTG AAATAAGCCA GAAACAGAAA
 136861 GTTAAACACC ACATGTTCTC ACTTATATGC AGAAGCTAGC TAACTAAGTA AATAAGTTA
 136921 TCTCATTGAA GTAAAAAGTA CAACAGAGAT TACTAGAGG TGGAATGGT AGGGGAAAGA
 136981 GATGATAAAG AGAGATTCTG TAAAATAAGT TACAGCTAGA TAAGAGCAAT CAGTTCTAGT
 137041 GTTCTATTG TACTACAGAA TGGCAATAGT TAAACAGTAAT AAATAATTTC AAAGAGCTAG
 137101 AAAAGAGGAC ATTGAATGTT TCCAACACAA AGAAAATGAGA AATGCTTGAAT ATAATGGATA
 137161 TTCTAATTAA TTACCCGTAT CTGATCACTA TACACAGTAT GTATAAAAAT AACACTATGG
 137221 GCTGGCGCA GTGGCTCACA CCTGTAATCC CAGCACTTTG GGAGGCCAAG GTAAGCAGAT
 137281 CACTTGAGGT CAGGAGTTAG AGACCAGTCT GGCCAACATA GTGAAACTCC ATCCCTACTA
 137341 AAAATACAAA AATCAGCCAG GCGTGGTGGC ATGTGCTGT AATCCCAGCT ACTCAGGAGG
 137401 CTGAGGCAAG AGAATTGCTT GAACCCAGGA GCGGGAGGTT GCAGTGAGCC GAAATCGCC
 137461 CACTGCACTC CAGCTGGGT AACAGAGCAA GGCTCTGTT CAAAATAAA TAAATACATA
 137521 AATAAATATT TTTTAAAAAA AGAACATCAC TATGCACCCCC ATATATACAT ATAATTATTA
 137581 TGTCAATTG AAACATAATT TTGAAAAATG AAAAAATGAA ACACAAATAT GAATCAATCC
 137641 TCTCCAAGTT GATATACTTA AAAGGAAAAA AGTCCGAGGG CTTAAACTAT TCAATCAAA
 137701 TTTTATTAAA ATGCTATAGT AATCTGGAAA GTATTCAGA ATGAATTGGT ATAAGGTTAG
 137761 ACACAAAGAT CAGTGAACAA AAACAGAGAA CCCAGAAATA GATTACACACA TCTATGGACA
 137821 ACTGGTTTG ACAAAAGGTGT CAAGGCTATT TAATAAGTAA AAAAATCGTC TTTTCAGTAA
 137881 ATGTTCTTG AACAGTAGA CATCCGGTGT GGGGGAGAGG AGCAGGAGCC TTACCTCAAA
 137941 CTTTATGCAA AAATTAACTC AAAATAGACC ATAGACTTAA ATGTAAAAGC TAAAATTATA
 138001 AAACCTCTT AAAAAATAGG AGAAAATCAT CAACACCCCA GGATTAGCAA AGATTTCTTT
 138061 AAAACAAAAC AACAGGTTA TAGTTTATAA AACATAAAATA ACAAAATGAT AAATTCATC
 138121 AAAAGTAAA AATTGCTTTT CAAAAACAT TATAAAATGA AAAGCAGGAG GCTGAGGCAT
 138181 GAGAATCACT GGAACCCGGG AGCTACAGGT TGCAGTGGC CAAGATGGT CCACTGCAC
 138241 CCAGCCTGGG TGACAAAGTG AGACTCTTCC TAAAAATAA ATAAATAAAT AAATAAATAG
 138301 AAAAGAAAAA GAAAAATCAC AGGCTGAGAG AAAATATTTA TAATACATGT ATCTGACAAA
 138361 GGACTCGCAC CTGGAAAATA TAAGGAACCT TATAACTTAG TAAGATGACA AGCCAAAACA
 138421 AAGAGTAAA GTTTCAACA GACATTCAC AAAAGAAAAC ATACAAATGG CCAGTATGCA
 138481 CATGAAAAGA TTTTAAACAT CATTAGTTAC TAGGGAAATG CAAGTCAAA CCACAATGAG
 138541 ATACTTCACA TTCAACAGAA TAGCTAATGT TAAAAGGACT GACAATCCCC AGGGTGAGCA
 138601 AGGGTGTGGA GGAAACTACT CTCATATATT GTGAATGTAA GAGGACAATG TTACAACCTAC
 138661 TTTGAAAAAA GTTTGGCTGT TTCTAACATA AAAAAAAACA CTTATACAGC CCAGCAATAT
 138721 TTCTGGGTCA TTTCTCCCAG ATAAATGAAC ACATGTCCAT ACTATGACAT GTACAAATGT
 138781 TCATACTGGC TTTGTTTCAC AATGCTATAA ACTGGAAACA ACCCACGTGT CCATCAACAG
 138841 GTGAATGGGT AAATAAATTG TAATATATCG GCCAGACGCA GTGGTTCATG CCTGTAATCC
 138901 CAGAACCTTG GGAGGCCAAG ATGTACGGAT CACCTGAGAT CAGGAGTTG AGACCAGCCC
 138961 ATCCAACATG GTGAAACCCC ATCTCTACTA AAAAATTAGC TGGGCATGGT CACGGGCGCC
 139021 TGTAATCCA GCTACTCGGA AGGCTGAGGC AAGAGAAATCA CTTGAACCGA AGAGGCGGAG
 139081 GTTGCAGTGA GCCAAGACCA TGCCATTGCA CTTCAGCCTG GGCAACAAGA TGGAAACTCC
 139141 ATCTCAAAA AAAAAAAAT TGCAATATAT CTATATCTG GAATATTATA AAGCAATAAA
 139201 AGGGAAATAAA CTACTGATAT ATACACAAAA TGGATGAATC TCAAAAATGT GAAGGAAAAT
 139261 AAAAAATACA TATGATATAA ATTCCATTCA TATGAAATTG TAGGAATGGG AAAACTAAGC

Figure 8 (Page 43 of 73)

139321 TGTAATTATG GAAAGTACAT CAGTGGCTGC CTGGGGCCAA GAGGATGGAA GAGGCAGGAC
 139381 AGGTGATACT ACAAATGGAA ACTATCTAGG TTGACGGAAG TGTCTGTAA CTTGATTACA
 139441 GTAGTAACTG TTTGGGTATA TAAAACGCAT CAAATTGTAT AATTAATACA GGTGTATTT
 139501 ACTGTGTATA AATTATTCTC CAATAAAAGTT GATTTTCAT TAAATATATT ATTTGCTAAA
 139561 ATGAGGAGAG ACAACTATTA TCTTAAAATA GTTAAGCACA ATAAAAATAC TACAATCAAC
 139621 TCATTATATA TGAAATTAA AGGAGAAAA TAGTGGTATG ATTAATTAAA ATAAAAAGAA
 139681 AACCTCTAA ATTTTATCTT AGCTCATAGT TGTTAAAGCT GCCATCCCTA ACCAAGGCCA
 139741 CCCTTGACCC TTTCTCATGT TCCATCTTC TGTTGTTTC ATAGTTATG TCTCACCAA
 139801 ATCTATCAGA TAAACGTATT CATATGAAGA TTAAATATA TTACATGTG AGCCTTAGCG
 139861 AATACTTCAA TATCTAAAGA AGGTACAAAC AAAACAAAAA TCAACACTTA GTTATAAGAG
 139921 ATTACATAC CTCCAGGGAA GACCTGAAGA CTAGCCCCCT TCTGGATCCC ACTAGCCCT
 139981 CATCCCACTC CAAGCCCTCC CCTCCAATCC CATATGCACT GGGCATTATC ACAAATAAGA
 140041 CCATCAGCTC TGGATATCTG TACTGATTGA TGCTCCTGCT AACTACCTGA ATGATTGCGA
 140101 TGTAAGGACA GCACTGCCTG AATCCTATTT ATCTCTCGCT ATGCCATAGC GGCCTTCCAT
 140161 GCTGATGGCG TGTTGAGGA TCCAGAGGG TCTTGGTTG GCAGGATTGT TTTATTTCCC
 140221 CAAGAGGAGA GCCTTGATGC AAAAATAGGT GAAGAAATCA GTACAACAAA ACAGAAAGCC
 140281 TAGAAACTAC TATGAACACA ATAGAGCAGA AGTAGCCTTA AGAGTTGGT GAGAAAGGAT
 140341 GGTCTATTCA ATTACCTGGG CTGAGAAACT GGCTTCATA TGGAATAAAA ATAAAATTAT
 140401 AGCTATACCC CATATCATAAC ACAAAAGTT CTACATCTAA CAAAGACACA GATAGAAAAT
 140461 GTTTTAAAT TTTAGAAGAA AATAGTGCAG AATTTTAGTG CAGAATTCT TAGACTAGAT
 140521 GCAAAACAA AAATGATTAA AGTGGCCAGG CACGGTGGCT TATGCCGTGTA ATCTCAGCAC
 140581 TCTGGGAGGC CGAGGTAGGT GGATTAGTGG AGGTCACTGAT TTCGAGACCA GCCTGGACAA
 140641 CATAGTGAAA CCCATCTCT ACTAAAATAC AAAAATTGGT AGGGTGTGGT GGCTCACGCT
 140701 TTTAATCCCA GCTACTGGG AGTCTGAGGC AGGAGAATCA CTTGAACCTG GGAGGCAGAG
 140761 GTTGCACTGCA GGGGAGATGG CGCCACTGCA CTCCAGCCTG AGAACACAG CGAGACTCTG
 140821 TCTCAAAAAA ATCTAAAAT AAAAAGATTA TTTTAAAAG ACTATTTAA ACAAAAAAAA
 140881 TCGTTAAAT GATATGACAC ACTACATCTA ATATTTGAA AAGTACTTCT TAATACTTT
 140941 AATAAAAAGA GGCGCTGAGA GCATACAACC TATCCTCAGA AGAGTGTGTT ACCTCTAGGA
 141001 GGGACGCAAG CGCCTTCTTC CTTCACTTAA ACTGGTCATT TTCATTATT TCAGGAACAT
 141061 CTGAAGTAAA CACAGTCACA CGTTAACCT TAAAATCTA GGAGGTGCGT ACGCATAGTT
 141121 CCATTACTTC AATTTTGTA CTTTGCACTT TAAAATATC ACAGGGAAAGC TCGGTACAGC
 141181 TTCAAGGCTA GGAGGGGTGG CTCTCTCTTA AGCCCTGTCC CCGCCAGCCC CAGACCTCTC
 141241 GTCCCCCCCC CATTGCCAG TCCCCACCT CACTTCCCCA TTTCCCCACT CCCGCGGTCT
 141301 CTTAACGCACT CTCGTTTTTC GTCCAGTGGA CTCAGACCTG TAGTCTTCCA CCAGGATCGG
 141361 CTCTTTCCC GGAGCTCTCG CTCTTAGAGG AAATTGAGAG AAGCATCAGC GGAGACCCAT
 141421 CTGTGGCTCT CCAGAGGGCG CGGCATTCTAG ACCCCAGATC CAGCTGTGAG AACGGACCCC
 141481 AGGCTCACAC CAGGCCGCG GGAGGCGGCC CACCAAGAGGC GCTAGAAAAC AAGCCTCGCG
 141541 GGGAGGCGCG CAGGGCGACT GCAAGCTGTA GGGGGCGCTG GCGCCCTCAC AGGCCAGGGGG
 141601 CAGGGCCGGC GCTGCGGGCG GGGCTCTGC GGGGTGAGGG GCGGCCCCAG GCCAGCAGCT
 141661 GCGCCCTGGC TGGGAGCCGG GGAGCATTG CTGCTCTGCT GGACCTGAG TCTGGCGGGCG
 141721 GGCAGGCTCC TCTCCGCTCC CGCCCCGCCA TCCCCCAACT CCCGATCTCT CTGCTCGCTC
 141781 TGGCCTCAGG CTGAGACCCC AACGAATCAT TCCCCGCATG GGAACATTAAATGATATAAC
 141841 TGAATTCACT TTTATGTATA ACTGAATTAC GGATATGAGA ATCTCAAATG AGGACGAATG
 141901 GTTTTACCGC ACAAAACATG AGACACAAAT CTGTAAGAAA TATAAAGTCG TGACCACGTC
 141961 CTTTCAGAAC TTAAACCTGT TTGCTGAAGT ACGTCACTGAA CAATGGCAGG GAAAGGGTAT
 142021 CTTAAATTTC ACCACAGCCT CAAAGAGGCC ATTTCTGGA TCCGCTGAGG CTTGGAGTCG
 142081 GCCTTCTGAC CACGAGTCCT GCGGCTATGA AAGAGGAAGC CGCGGTTCA GGCCTCCTCG
 142141 CGAGTCGTGCA AGCCCCCCT GCTCCAGCTG GGGACACCGG TGGTCACGGC GCTTCCAGC
 142201 TGCAGATCCA GGCAGCAGCC CAAGATTGG TCCAGCCGCC AAGGGGTGGC TCGAGTGACT
 142261 GACGGGCCTT GAACGCTCCC AGGACCCACA TCTGGAGAGG GAGGTGGGG TGGGGTGCTG
 142321 AAGTCATTCT TGGGCCCCCT GGGGGCGGGC ATGGACCTGG GTAAGGCCAG AGAAATTGAC
 142381 ACCTCGTGAAC ATCCCTGGAA GAGAAGTACG TTCACTGTCA CTCCAGAGCT GAAACCGCCT
 142441 TCTGGCTGGT CCCTCCTCAC CTACATACTT TTCTAATTG TCTGGAGCAG GCCGGGCATC
 142501 TGTATTATCT GGTTATTAA ATATCTGGT ATTAAAAGC TCTCCATTAA ATTACACATAC

Figure 8 (Page 44 of 73)

142561 ACGAAAATAA AAATTAAAAA AAATTTTAA AAAAGAAC AAAAGCTCTC TAATGACCAA
 142621 GTCCTACACG ATAGTGAATA AATTTTTG TGTTGGCCCT AAAATTGAGT TCATGCCCTT
 142681 TCTGAAGTAA TAGACGCCA GAGAAGGGAT CGACTTACCC ATCATGCCAC AGAGATTAAT
 142741 TGGCCCCAGA ATTCTTTAGC AGACCGTGT AATGAACGTC CTTTGCAATC ATATAAATTA
 142801 ACTGGGAAAA CCTCATTTAG TATGTTACAT GCCTAGCGTT TTGTGCCTGA ACACCTTACA
 142861 AGAACCCAGGG ACTATTGCC CAATATTATA TTTCAGGAAA GGAAGGCCA GACAAATGGT
 142921 GTCACTGGTC CACTTCACC CAGTTGGTAA ATGAAACCG AAATTATAGC TGTACCAACAG
 142981 AAAGGTGAAA ACGTTCTTT TATAATTCA CATAACAATCT TTAATGGACC CAGTGTCCAA
 143041 CACATTAAG CAAGTGCTCA GGAGTGACAT CAAGATGTAA AAAATAGTCC TGTCCCTCAGG
 143101 GAGTTTAGGT CTGGAGAAA AGAGACCCAA GGAGACACAA GACAAAGGGG AAAGAGAAGG
 143161 AGCGCTGAAG ACTGAGGACC CTGCCTGTGG ACTGAAGTGA GGATGGGAC ACCCGATGCC
 143221 CGGAATATGA CAGTTGGAG GGGCCTGAAG GACTCTTCTA TTCTCTATCA GAAAACAGA
 143281 ATTACTCTCC TAACCAGAAA AGGTATTCA ATTATATT TCCATCACAG CACTTTCTG
 143341 GTGATAATT AATGTGTTT AAAAATGTA TCACAGTGAT GGCCTGGTGT GAAATAAATA
 143401 ATAAAATTT AAGAATTAAA AAATATAAA ATCTTTATA TAGACATTAG GAGTTACAAG
 143461 GATAACTGTG AATTATAATT AGTAATTAAA TTGAAATACT GATTATTTTC ATTTTATTT
 143521 AATTATTAA TAAAACCTAT TTAACATTAA ATATTTATCA GTAATTAAAT CTAATTGTTA
 143581 ATATTTATTA TTATAAATTAA TTGAGAATT AAAAATAAGT GTAGAAGCGA GGCATGGTGG
 143641 CTCAAGCTG TAATCCCAAC ACTTTGGGAG GCTAAGGTGG GAGGATTGCT TGAGCCCAGT
 143701 AGTTCAAGAC CAGCCTGGGC AACATGGAGA AACCTGTCT CAATACAAA AAATGAGCCA
 143761 TGTGTGGTGG TGCGTGCCTG TAGTCCAGC CATTCTGGAG GCTGAGGTGG GAGGATGACT
 143821 TGAGCCTAGG CAGTCAAGGC TGAGTGGC CCTGATCTTG CCACTGCACT CCAGTCTGGG
 143881 CAACAGAGCA AGACCCTGTG TCAATATACA TATGGACAAA CTTAAAATTT AAAATGAAAG
 143941 CATACTACTG ATACAGAATT GAGTAGAGAT GCAAAGCTAG TCCTATAACC AGAACATAAA
 144001 AGATAAAAAG GAGAGTGGAA GAAGGTATGT CATGAATTTC ATGATAAATG GCAATTGCAA
 144061 ATATCCTGTA GCAGAACAAA ACAACAAAAC TGAGATAAA ACATATCCAA CCCTTGAA
 144121 GGCCAAGGGAG GGAGGATTGT TTGAGCCCAG AAGTTGGAGA CCAGCCTGGG CAACATAGTG
 144181 AGACCCTGTA TCTAAAAGG AAGAAAGAAA AAAAAAAAAA GGATGATAAA GTAGACAATA
 144241 TTGAAAGCCA TTTCTGCAA ATACATACTG AATTTGATCA GTAATTTC TCCAACAGTG
 144301 CAAAAATGAA TAGATATTAG TTGCGTGGAAA TAAAATCAA ATATCCAACA AAAAATATTG
 144361 ACTATCTAAT AGTATCTAAG CTAGTAAATT TGCCAGTTA TAAAATGTCT TAAATTTTA
 144421 TTTAAAAAAA GAAAACCATA TTTATAAGAA GAGGTGATAA AGAGAAATTA TTTCAGTTAT
 144481 GAAGATTTG TTAGAAAATC ATGAGAAAA AACTATTTTG TGTTTCAAA AAGTGAAGA
 144541 TTAAGTTACC AAACAGTTGC TAAAGAATAC CAGATGGCTG AGCGTGGTGA CTTATGCCTG
 144601 TAATCCCAGT ACTTTGGAAAG GCCAAGGCAG GAGGATCATT TTAGGCCTGG AGTCGAGAC
 144661 CAGCCTGGGC ACTGTAGCAA GACCCGTCTC TATTAACAAA AAAAAAAAAA AAAAAAAGA
 144721 ATACAAGACC TTGCTAACAA TAGCAAAGAT CAATTAATTCA AAAATTGAA AAACGTAAAT
 144781 TTATTTAGCT TTAGAGTACT CTCGTGATAT GAGATTGCCA ATTAATACT TTGGGTGCAT
 144841 TTCTTTCTC AAAGGACTTG CAAATTACA AAGAAGTGT GAAGAAAAGC CACACATTGG
 144901 CAGGTAATGT TTGCAAAGA CAGATCTGAT GAAGAACAAAT ATTTTAGAA TATACAAAGA
 144961 ATACTTAAA CTCAACAGTA AGAAAATAAC CTGATTTAAA GCAGGCCAAT GACCTGAACA
 145021 TCTGTTCAAC AAAGAAGATA CACAGATGCA AGTATGCATA TGAAAAGATG CTTGACATCA
 145081 TGTCAATTAG GAACTGCAA TTAAAACAAG TAGATACCAC TGCATACCTA GTAGAATGAC
 145141 CAAAATTTAG AACACTGTCA GCACCAAAGG TTGCAAAGAT ATGTAGCAAT AGTAACGTG
 145201 TCATTACTGG TGAGAATGCA AAATGTGCAA TCACTTTGGA AGACAGTTG GTGGTTCTT
 145261 ACAAAGTAA CCATACTTTT ACCATAAGAT TCACCAATCA CACTCCTTAG TATTTATCCA
 145321 AAGGAATTGA AAACCTTATCT CCACACAAA ACCTGCACAT AGATGTTTAT AGCAGCTTA
 145381 TTCATAATT ATCCAAAATC TGGAAACAAG ATGTCTTC TGTAGGTAAGT GGATAACTGT
 145441 GGTACTCTG AATAATGGAA TGTTATTTAG AGTTAAAAG AAATGCATTC ACTTTGGGAG
 145501 GCCGAAGTGG GTGGATTGCT TGAGGCCAGG AGTTTGAGAC CAGCCTGGTC AACATGGGAA
 145561 AACCCCAATT AGCCGGGCAT AGTGGCGTGA GCCTGTAATC CCAGCTACTC GGGAGGCTGA
 145621 GATATGAGAA TCGTTTGAAC CTGGGAGATG GAGGTTGCAG TGAGCCAGTG CCACTGCACT
 145681 TCAGCCTGGG CAACAGAGCA AGACTCTCT GTCTCAAAAAA AAAAAAAAAA AAGAAAGAAA
 145741 AGAAAAAAGA AAAAGAAAAA GAAAAGAAC GATCAAGCCA TGAAAACACA TGAAGGAAAC

Figure 8 (Page 45 of 73)

61/162

145801 TTAAATGTAT GTTACTAAAA AGCCAACCTG AAAAGACTGC ATACTATATG ACTCCAACCTG
 145861 ATGCAGGGCA AGCAAGCCAA AAATTAGGGC TTAGCCCCGGG AAGAATTCAA GGGTGAAGTG
 145921 GTGGTGTAG CAACTTTAC TGAAGCAGCA GTGTACAACA GCAGAACAGG TACTGCTCCT
 145981 TGCTGAGCAG GGCTAACCCA TAAGTAATGT GCCCAGAGTA GCAGCTCAGG GGCAGTTCTG
 146041 CAGTAATATA CCTGCTTTA GTTAAGTGCA TGTTAAGGGG GATTATGCAG AAATTTCTAG
 146101 AAAAAGAGTG GTAACCTCGG AGTAGGTACA GAGGAAAGAA GTCGATAATG TCCTGTTGTT
 146161 GCCATGGCAA CGAAAAACTG ACATGGCGCT GGTGGCGTG TCTTATGGAG AGGTGCTTTA
 146221 ACCTCGTCCC TGTTTCGGCT AGTCTTCAAT CTGGTCCCGA GTAAAGTCCC TGCCTCCCGA
 146281 GTTCACTCCT GCTTCCTGCT TCACAACTGT ATGACACTCT AGAAAAGACA GTAACATATGG
 146341 ACACAGTCAA AAGATTAGTT GATAGAAATT GGGTGACAGG AAGTGTGAA AAGGCAGAAC
 146401 ACAGGATTT TAGGGCAGTG AAACTTCTGT GATACTATAA TGTTGAATAC ATGACATTAT
 146461 ACATTTGTCA AAACCCATAG AAAGCACAAC ACCAAGAATA AACCCCTAATG TAAATTACAG
 146521 ACTTCGTTG ATAATGACGT GTCAATGTAA GTTCAATTGT AATAAATGTA CTACTGTGGT
 146581 GCTGGATGTC TATGGTGGGG GGACATTGTT GCTCAATAG TTACAGTTGA AGTAAATGTT
 146641 TGTGTTCCC ACAATGCATA TGTAGAAACT CTCACATTCA ATGTGATGGT CTTTGGAGGT
 146701 GGGCTTTTG GGTGATAGTT AGGTTTAGTT GAGATCCTAG CAGATCGAGT CTTCATGATG
 146761 GGCATGATGG GACTGGTCCC TTATAAGAAA AGACCAGAAA GCTAGCTCTC TCTTGCAT
 146821 GTGAAGACAT AGCAGGAAGG TAGCCATCTG CAAGCTAGGA AAGGGCCTTC ACAAAAGAAC
 146881 AACTCAGACC TCAGAACAGT GAGAGATAAA TTGTCGTTGT TTAAGTCACT CAGGCTGTGG
 146941 TATTTGTTT CAGCAGCCCA ACCTAAGACT GTTAATTGGA TTAGAAATT CTTTTGGGG
 147001 ATGGTGTGTG GCGGGCGGGG GGCGGGGAGT ACCTTTGTTA AGCTTTATA TCAATGAGTT
 147061 TGTAGGCTTT TCTTTTTGTC TCAATTGACTA GGACAGTTA AATAGTATGA GTGTGAAGGA
 147121 GATTGTTGGT CATCTATTGCA ATGTCCTTC TCTGTTTTT AATATGAGAA CTCCGTATTT
 147181 TCAGCCAAC ACCCTGGAAA AAAAGCTAAT CTTCTGACT TCTTAAGTGT GCCCATGTAC
 147241 TAAATTCTGG CTAATGCAAG GCAAGCCAA GGTTTTATGA TAGGTTTTAG GACACTAGAG
 147301 TAAAAGAGAG CTGTTGCACA CATGCTCTTC ACCCTACTTT TGTGCTCTT TTTCCATCCT
 147361 ACAACTTGGG TTGTGAGTAT GATGGCTGGA ACTTTAGTGG CTCTCTTGGA TCCCAGGGGT
 147421 AATTGAGGGG TGGCTGGAAG GAATCTGTGA TTTCTGGAG TTTCCATACA CAAACAAGAC
 147481 CTGGATTTTC TGGGCTTCCC AGACTTCCAC ATCTAGACTT GCTTTAAATG GGAGATAAT
 147541 AAACCTGTTT CAGCCACTGT CATTGGGGC TATTTTATAG AACTTAATCT AATCTTCAAG
 147601 GGTACATGAA TTGCTTTCC TTAAAAAAA AATCAGCCAT AAAATCATCT TCTTTTTCT
 147661 TTTGTTCCCC ACATTATTTA GTTGGAGCTC TGTAACTTTT TTTTTTTTT TTTTGAGAC
 147721 AAGGTCTTGC TCTGCACTT AGGCTGGAAAT TCAGTGGCAT GACCATGGCT CACTGCAGCC
 147781 TTGCCCTCCT AGGCTCAAGC AATCCTCGTC TCAGCCTCCT GAGTAGCTGA AACTAAGGCA
 147841 CATGCCACCA TGCCAGCTA ATTTCTTTTC TTTTAGAGAT GGGAGCCTTG CCCAGGCTAG
 147901 TCTCAAACTC CTAGCCTCAA GTGATCCCTC CATCTCAGCC TCCCAAAGTG ACAGGATTAC
 147961 AGGTGTGAGC CACCATGCCT GGCTGCTCTG TAAGTGTCTG AATTCATTT TGTATTTATC
 148021 AGTCTGTTTA GATTTCTTT CCCTTCTTGG GTCAAGTTAGG CCATTGGTTT CTTTTAAAG
 148081 GTTTTCAAAT TTATTTGCAT CTAATTCTTC AAATTACTCT CAAAATTATT CCAGTATATA
 148141 TTCTTTGTT CCTATTTCT TCTGTATTCT TTATTAATAGCTAATGAT TTATCTAGCA
 148201 GGACTTATAT TCTTCCATA ACTTTCTGC ACCCCAAATT AATCTCCAATT TTATATTCT
 148261 TCTGGCCTTC CTTATAGTTT CCACAGGTTT ATTTTATTCA TTTTTAAAAA CTTTTATTCA
 148321 ATTGTTTATT TTATTATCAT TCTTTCTTAT TCAGCAATCT AAGTGTCTAG GGATATAGAA
 148381 TTTCCTCTAA GCAGCATATG CTAGGCTTTA ACAATGTTAG GGAGGCTCC CTTTCTGGG
 148441 GAAGACCACA CTTACATTAA CACAGGACTG TGGGATGCCA AGAGGTAGAG AAGAGCTTAT
 148501 GAATATCCAG ATTACATCTT CACTGATCCT GCACAAAGGT GGGGTTCCCTC GGTTACCCAC
 148561 TGGGTCTAT TACCCAAGTC TGGGTCAGCA TACCGAGACT ACGGGTATAT AGAACAAAGTG
 148621 CAACTGGCGA TAATCCTTCT GTGGGGGAGA AAAATCTTTT TTTCTATTCT ATCTTAGGTT
 148681 CTCCATCTGT GGCCCTATCA AGTAGACTAA CAAAAGACAG ATTGACAAGA CAGAAACAAA
 148741 GCATGTGCAT TGTACAAACA CAGGGGAGTA CTGAGATGAA TACTCAAAG AGGATTTAGA
 148801 ACTTGGGCTT ATATAGCATT TTAAGAAAAG AATACATTCTT TTAAGTGACA AGGAAGACGA
 148861 AAAGGACTTT GAGTTCTAG TGCAGTAAT TGTGGGAAGG CAACTTTTC TTTCCCTTTT
 148921 TTTTTTTTTT TTTTAAAAAA AAAAGACTTC TCTGGTGCTA TGTCCAGGCT GATAAGAGTC
 148981 TAAAGTCTCT GGTGACTAAC TTTTGTCTT CCCCCGAGTAA GAAGACACCT TCACAATTTC

Figure 8 (Page 46 of 73)

149041 ATATCCTGCT TTTAGGCAGA TAGGGAGAGG GCAGAGGTGT TTGTTTGT TTAATCTATT
 149101 TTTTTCTCA ATTGTCTTC AACTAAAATA CTTCTTATGC CAAAGATGGC ATATTCTGCT
 149161 ACCCTTCACT TACTACTTAC AACCCAGCCT CTATCATCAT AATTAGAACT TCTGACCCCTG
 149221 GGGAACATGG GCAATAGTTT GAACCTTTT ATATCTCCCT TAGGCAGAGA TGGAGGCCA
 149281 GCCATGCCCT TGACATCTAG ACACAACTGT TGCTTCATT CTCCTATTCT CAGAGGTGAT
 149341 GTTGTAGGAC TTCAACAAAT ATCAGTAAAC ATTAATT TTTTCCCTG AGGCACAGCA
 149401 TGATCTTGGC TTACTGCAGC TGCTGCAGGC TCAAGCAATT CTCCTGCCTT GGCCCTCACGA
 149461 GTAGCTGGGT TACAGGCCCT TACCACCATG CCCGGCTAAT TTTGTATT TTAGTAGAGA
 149521 CAGGGTTTCA CCATGTTGGC CAGGCTGGTG TTGAACCTCT GACCTCAAGT GATCCACCTG
 149581 CCTCAGCCCT ACATAGTTCT GGGATTACAG GCGTGGAGCCA CCATGCCCTGG CCATCAATT
 149641 TTATGTCAAC TCTAAATTAT AACATTTAGC AATTGTGTA CTTTTATGG TCATCATTAA
 149701 TGTTGTTTAT GTTTAGTTG TAGTCCTGTC ATTACTCACT CGGGTATGGT AATTGGTCT
 149761 TTTCAAAAT GAAGTTAAGG TCTATTGCT CTTCTCTGAA TCATAATAAG AACTGCCAAC
 149821 AGCCATTCA GCAATAACTA TTTACTGAGA TTTAAAATA TTTCAAGGTA ATTGGTCCTA
 149881 GCAGACTGGA AAATACCAA TTCTTTCCA GAACGTAACT CCCCATCAA GTCAATT
 149941 ACTCATAATT CCCTTTCAT TTGAAGCATC TCATTGTAAG CCAGTCTTAA CCCTTCTCTC
 150001 ACACCTTGCT TGGCTGTTTC TCAGGTTAGAA CTCAGTAAGT CTGGTAGCCT CCAGGACTGC
 150061 CGCTTAGATT ATAAACAAAC ATGTCAGTGG TTGGAAGAGT CAATGTTATT TTGATTTTC
 150121 TGTTTGT TGTAAAT GCAGTTGGCG GATAATTGCA GCTTCTTTC ATTCCCTACA
 150181 TGAGTTCAAA TGGCAGCAAA CAAACTAGGA GAACGCAGAC CTTCTGACTT GTGGGTACCC
 150241 CTACTCATCA CCTGAAGACC CTTGGAAATC AAAGCCCTGA CCCATTAAAG ACAGGATGGAG
 150301 ACAGCAACAT ACGATCATCA CTATTATCTT GCTTGCCTT AGTCCAGGTT AACCACATCTG
 150361 GGTATTTTA GTGCTAAGT CCATATATTC AACATAAAATC AATTATATAT CCACTAAAAT
 150421 CTCAGCACTA GTCTAACTAC TAAGGAAATG ACAGCGAAGA AAACAGACCA AACGTCTG
 150481 CTTATGGGAT TTATATTATT TTCTCTGTG TGTTAAACC AAGGAGCTTC TGCTCTTTC
 150541 CTTAGTCACC TGGGGGAGGC AGAAACAAAG GAGAATATTG ATAAACCTGG AAATAGGGC
 150601 GGAGAGTATC AGAGAAGGAA GCCTTCGGGA AAGTAAAGAT GTGGCAGCCA GTATTCCC
 150661 TATAAAAGGA TACAACCTCCG GCCTCATAGT CCAGAAAAAT TCCCACAAGC AGGGGCTG
 150721 CATGCAGATC AAGGAAAGTT GGGGGAGAGG TAAGTGTAC ATAGCCTTTC TTTTGCA
 150781 GCCTGAGGGT CCAGAATCCA GACTGAGGCT CTTGCTTCAT GCCAGTGCCC CTCTGCAC
 150841 TTTCCATACA AACTCCTAAA TCCCACATCCGG TTCCCTCGCC AACATCCACT TCAAAGTA
 150901 GTCTTCTGAA GGTGAAGCCT TCACAACCCA AGACACAGGG GAAGGCAGTA AATCTCCTG
 150961 AAGATGTGTC CTGATTCTCC TGGGTGTATC CACGAGTCAC TTGTCTCCGA TCCTCAG
 151021 GAATTAGTTC GTGATGAGCT GTATCTGGAT CCAGAGTCAC ACTAACTGCA AAACAAA
 151081 AAACAAACAA AAATAATT TGTGCTGTGA AGAACACAGG TTATTTATT TTATTTATT
 151141 TTGAGATGGA GTGTTGCTGT CACCCAGGCT GGAGTGCAC GGCACATCT CAACTCA
 151201 CAACCTCCAC CTCCTGGATT CAGGCAATT TCCTGCCTCA GCCTCCGGAG TAACTG
 151261 TACAGGTGCG CACCACCA AGTGGCTAAT TTTTTAAAT TTTCTGTAGA GATGGGGTT
 151321 CGCCATGTTG GCCAGGCTGG TCTCAAACTC CTGACCTGAA GTGTTCCACC CACCTCG
 151381 TCCCCAAAGTG CTGGATTACA CAGGTGTGAG CCACCATGCC CAGCCACAAG TTATTT
 151441 TAAAACCAGC CTGTGTTCAA ACCCAACTAT TGTTCTTAT AAACCTGGTG AGCTTAGG
 151501 AATCATTTAA CTTCTGAGC CTCAGTTGT TAACTATAAA GTGGAAATTA CCGTATT
 151561 TGCAGAGAAT GGTGGGTAGG ATTGAATAAG CTTATGTTTG CTTAATGCTT GGTAAA
 151621 CTGGTACATG GTAACCACCT AATAAGTGGT AGTTGTTGG GTGATCAGGC CCAACAC
 151681 GCCGTGGGGG CTACAAAGTC CGGCGGGGTC AAAGGAATGA GAAAAGACAA GTTAAGAG
 151741 CATAAAAGTGG GTCCAGGGTG CCAGCACTAG ATTGGAGGCT GCAAAGGCC TAAGCT
 151801 GAGCCCACAC TATTTATTGG TGATCAAACA AAGAACAGG TGTTGAGGAC GTGAGGG
 151861 ACAGGTGAGG GCATGAGGAC ATGGGGTAG AAAGGTAGTG GTGCATTAAAG CGTAGCT
 151921 ACAGTTTAGC ATTTCTTTG ACACATGTAG AATATACTCT GCTGCTTGAG ATAGTAGAG
 151981 ACACGTTTAT GAGTAAAAAG CAAGGAACCA ACAAGTCTGT GCACTTCCCA GAGGCT
 152041 GGGTTTTAT GCCCTGAGCC CTGGGTTCCA TCCAAGCCAC AAGGGTTTT ATGCCCTAG
 152101 CTTAGATTG TGGTGGGGCA GGGCAGCCTT CCACCATTTG GCACAGAGCT TGGTGT
 152161 AAGGCCACGA GGGGTTTGG ACCCTGGACC CCGGACATCT TCCAAGACTC TTTTACAT
 152221 TGACAGACAA GCCAGTCCTG CTTCAAGCTCT TCTAACAAAC TGTAGTAATA ATGATAT

Figure 8 (Page 47 of 73)

64/162

155521 GGTGGCAAAG GGAGACCTG TCTCAAAAAA AAATTAACAA ATTAGCCAGG TATGGTGGCC
 155581 TGTTCCCTGTA GTCCCAGCAA CTGGGGAGGC TGAGGTGAGA AGATCACTTT AGCTCAGGTG
 155641 GTGGAGCCAT GATCGCACCA CTGTACCACT CGGCTTGGGC AACAGAGTGA GAGCCTGTCT
 155701 CGAAAAAAACA AATATATAACA CACAGTAATC AATATATATA TTATATGTAC CAATCAATGC
 155761 TTCACTTTA TATATAATAT AGATTACATC TTATTAGATA TATAGTATTTC CTTCTCCATA
 155821 GATAGATAGA TACAGATATA GACATAGTAT CCTCTATCCA TATTAGAGAG AGGATACTAT
 155881 ATATATCTAT AGCATATAGA GATGCTGTCT CAAAAAAATT TAAACATCAG CCAGATGTGG
 155941 TGGCCCATGTC CTGTAGTCCC AGCTACTGGG GAGGCTGAAA TGAGAGGATT GCCATTGATC
 156001 CTCTCATTGG TTGAGGCCATA ATCGCACTAC TGACCACTC AGCCTGGGAG ACAGAGGGAG
 156061 ACCTGAGGTG GAAGGATATA GATATAGATA TATAAATAAA TATGTATAGA GAGAATATAA
 156121 TATATGTGTG TATGTGTATA TATATATATT ATGAAGACAC TGGGAGAGAA TACTATATAT
 156181 ATATGTGTGT GTGTATATAT ATATTATGAA GACACTGGTG GGATGTTTC ATTACCAATT
 156241 GGACCAAGAG TCCAGGTATG GAGCCAACAT GCAATGTTGT TGTGACTGA GCTGGCAGAG
 156301 CACTGGTCAT AGITACGGGA AAAGAAGGTC TCCAATGAGA CATACTTAAC AAAATATATG
 156361 AACTTGCCAT ATACGTGGAG AGTTCTGGTG TGTATATAGC CTTCTCTCAC CAACCTAGCA
 156421 ATTGCTTCA TCATCATTAT AATGCTATCA GAGCAAAGAT GACAGCTAAA TTTTTTTGTC
 156481 CCTTTCTTCT TCTTCTCTT CTTTCCCCTC CCCCACCTCT TTCTCTCCT CTCCTCCTT
 156541 CATCTCTCTT CTTTTTTTTT TTGAGATGGA GTCTTACTCT GTCGCTCAAG CTGGAGTGCA
 156601 GTGGCACAAT CTCAGCTCAC TGCAACCTCT GCCTTCTGGG TTCAAGCAAT TCTGCCTAAG
 156661 CCTCCAGAGT AGCTAGGACT GCAAGTGCAC ACCACCACAC CTGGCTAATT TTTGTATTT
 156721 TAGTAGAGAT AGGGTTTCAC AATGCTGGCC AGGCTGGTCT CAAACTCCTG CCCTCAAGTG
 156781 ATCCTCTGC CTCGGCCTCC CAATGTGCTG GGATTACAGG CGTAAGCCAC TGTACCCGGC
 156841 CTCCTCTTT AATAGACAGG GTCTAGCTCT GTTGGCCAGG CTGGGTACAG TGGCGTGATC
 156901 ATAGCTTACT GCAGCCTCGA ACTCCTGGGC TCAGGAGATC CTCCTGCCCT AGTCTCCCCA
 156961 GTAGCTGGAA CTACAGGCAT AGCACACGGG GCTAATAAAA TTAATTAGGT GATAAAATTC
 157021 ACTGCCCACACT GATGACTAAG CTCTTGGAC ATAAAAGACA CAGACCTTGA AGGAAAATGT
 157081 GTCTACTTAA TTTGAAACCC CTATTTATCA AAAAAACAGGA TGAAAATGCA AAATGCCATC
 157141 CACATGCCAG AAGATATCAG CTATAATAAG TTCCCATAAA TCAATAAGGA AAAGAACCCA
 157201 ATAAAAATTA TTAAACCCACA GTAAATCATG GGTAAATCAC AGAGGCCTGA AGGGCTAATG
 157261 GACATACAAA AAGAATCTCA ATCTCACTAG TGAAATCAGA AAAGCACAAA TTAAGTACAC
 157321 AATTAGGTAC CATTAAAT CTGTAAGACT GTCAAAATCA TAAATTATAT AAGTAAAGAC
 157381 TCAGGGAGTT TTGGAGGAGT GAGAGCTCTT ATATTGTTG TGGGGTAGAA TTGGAACAAT
 157441 TTCAAGATCT GTAGTATCTG GTAAAATTAT GATATGCATC CCTCACACCA GCATGTCACT
 157501 CCAAGGTATC TCCCTGGAGG GAACATTAC GGGACACAAG GAAGCATGGA TAAGAATGTT
 157561 CACAGTAGTA TTGTCTGCAA CAGCAACAC AACAAAAAAA CCCAACTACA CACAACCTCA
 157621 ATGCCCAAGTC CACAAGGCAA TGGATTAAAT AAACCTTCAGG CCGGAGATGG TGGTTCATGC
 157681 CTGTAATCCC AACACTTTAG AAGGCCGAGG CGAGAGGACT GCTTGAGCCC AGGAGTTCAA
 157741 GACCAGCCTG AACAAAATAA AGAGATAGT TTTCTACAAA AAATTTTAA AAAATTAGCC
 157801 AGACGTGGCA GTGCTTGCCT GTGGTCCAG CTACTGGGG A GCTGACGTG GGAGGATTGC
 157861 TTAAGCCAG GAATTAAAGG CTGCAGGGAG CCATGATGGG GCCATTGCAC TCCAGCCTGG
 157921 GTGACAGAGT GAGACCCGT CTAAAAGAGA TAAGTAAATA ACAACTTTGC ATTTTCTGCC
 157981 ACATTGCAAAT ATGGTGAGAG AGTGGTTCT AGACTCTAGA CTCTTCTAT GACTACCTTC
 158041 TAGTTATGAG ATCCTACAAC ACTCACCTAA CCTCTCTGTG TCATATTTC TCCTCTATAA
 158101 AGCAAAATG CCCCACATAG AGAGGACTGT GATATAAAAC AAGAACCAAG AAAAGTAAAG
 158161 CTTTTCTAAT CTGTCACAGA CTAAAGAGTG CTCAGTATAT GTGAGTCATT ATTCTGGTG
 158221 CTGGTAGGAG TGTATGTTAC AACTTTGAGT CAAGTAATAT GGTACCATAT ATTAAGATTA
 158281 ACAACAAACCT CGGCAATCCC AGTTGGGGT ATGTTCCCAA AAGAAATGAA AGCACCAGGA
 158341 TATAAGGATG CATGACTAG AAAGTTATTG TAGAACATT GTAATAACTA AGTTCTAAA
 158401 ACAGCCTGAA GCTCCATCAG TAGGGATATG GTTACATATA TTTATTATAT TCTTATGGAA
 158461 TATTAGACAT AAAAAGTAAC GAGTAACATA GAAGAGACAG TGTATATATG TTACGTTGT
 158521 ACAAACTTAG GGAAAGATAT AGATCACCT ACCTAGAGAA GTCAGATTGG AGACGGGTGG
 158581 GAAAAACCTT GAACTTCTC CTTATATCCT TTATATTGTT TGACTGATTA AAATGTATTT
 158641 GTTGCATCTG CTTGAAGGCA ATGTAAAATA AAATAAACAT ACATTAAAAA ATAAAAATAA
 158701 AATTATATTCC TATCACTTTT GTAATAAAGC TGGGCACAGT GACTAACACT TGTAATCCTA

Figure 8 (Page 49 of 73)

158761 GCACTTTGGG AGGCAGAGAC AGGCAGATCA CCTGAGGTCA GGGGTTTGAG ACCAGCCTGG
 158821 CCAACATTGT GAAACCCCAT CTCTACTAAA AATACAAAAAA TCAGCCAGGC ATAGTGGTGC
 158881 GTACCTGTAA TCCCACGCTA CCCGGGAGGC TGAGGCGCTG GAACCCAGGA GGCAGAGGCT
 158941 GCAGTGGAGCT GAGATTGCGG CACTGCAAGC CAGCCTGGGT AACAGCGAGA CTCCATCTCA
 159001 AAAAAAAATT TGAAAAAAAGA AAAATTTAA TAAACAGTGT TTAAGAGGGG AGAAATATTT
 159061 AGTTAAAAGA TAAGCCCCATT TAAGAAAATAG TTTCACTTGA CCCGGAAGGC GGAGCTTGCA
 159121 GTGAGGCCGAG ATCGCACCAC TGCACTCCAG CCTGGGCGAC AGAGCGAGAC TCTGTCTCAA
 159181 AAAAAAAAAGA AAAGAAAGAA AGAAAGAAAG AAATAGTTTC ACTTGAACCA TATTATGATT
 159241 CCTTCTGTAA AAGATGAGAG TAGGCAAATT GACTCAGTGA AATCCCAGCA AAACTTACAC
 159301 AAAGTCTTGT TCTTCTTCC TGTCATCTGT ATAGGATGAA ATACAGAGTG CTTTGGGTT
 159361 TTGTTGTTGT TTGTTGTTGT GTATTTGAGG GGAACACAGG TCTATAATTC CTTTCTGAA
 159421 ATCCCTGGAA CAAAATGGGC TTTGCCATT AAATTAGTTT AGAAGTTATA AAGGCAAAA
 159481 AATGCATATA CTCTAAAGTT CAACCCCATC ATGGCCTAAG GCAGAGCCCT GTAATCAAAT
 159541 TCATCAATAT ATCTGCAGCA AAACATTAT TCAAATTAAG TGGGATAAAT AAAGACTTT
 159601 AAATAGTCTC ATCTCAGTGC CGTTCAGGGT TGGCCACTGT GGAAGACAGA CTCAGGGTG
 159661 GCCTTCTATG ATTCCCTGCCT CTTGGTGTTC ACACCCCTCGT AAAATTCTT GTCTTGAGT
 159721 GTGAGCAGGG CTTATGAATT GCTTCTGACC AATAGGATAT GGCAAAGATG ATGGGATATA
 159781 ATTTCTATGA TTACGTTTCA TTATGTAAGA CTCCATCTTG CTGGCAGATT TTCTCTAAAG
 159841 AGTCTGTCTC CTGAGCTCTC TCTGAAGAAA TAACTGGCCA TGTAGAAGC CCATGTGCAA
 159901 AGAGCTGAGG GGTGGCCTGT AGAAGCTGT GGCAACCTCC AGCCAACAGC CAGAAATAAC
 159961 CAGGGCCAAA GTCCTGCAAC CATCAGGAAA GAAATTCTGC CTGCTACCTC AGTGAGCTTG
 160021 GAAGTGGATT CTTCCCTTAGC CTAGCCTCCA GATAAGAAC CAGCCTGACC AACACCTTAA
 160081 CTGCAGCCTT ATCAGACCCCT AAGCAGCAGG CCCAACTAAG CTGTGCCAG ATTCCCTGAAC
 160141 CACAAAATT GAGATAACAT ATCAGTGTG TATTAAGGTT CTAATTATG GTAATTGTT
 160201 TGTACTAATA GATAACTAAT ATAACCACCA AATCATTCA GTTAGGCCA GATTTTGTA
 160261 GCCAAATGAA TCATGATAAA ACTTTCCATT TTCAAGGGTT TTTTGATTT TGTACTTACG
 160321 GATACAAATT TGTGAAAGTA TAGTCAGCAC TGATTTAAAA AATCAAGGGA GCAGGAAACT
 160381 CAGTAAATGG TTCTAACATT TTGGAATCTG TAAATTGGTT GTAACATTG TCATCTGTG
 160441 TATCTAAGTC AAGTCCCTAA AATATGTGAA TGATAGGTTA TCATACTCAC CTACTTTCT
 160501 TGCATTGCTC TAAGAGTTGG CTGAGCTATT GATAATAAAC ACTATGATCA GATCTAATAC
 160561 CATGATGTGC TATTATGATC ATGTGTCACT CACAGGGCTA AGCACTTGT ACATGTTGAT
 160621 GCATTTAATT TTGATGATAA CTCAATGAAG TAGGAGCTGT TAATATTTC ATTTTCAGA
 160681 GGGGAAACCC AAGTCACTTG GAGTAACATG GCTAATAAGT GAAAGAATAA GAATTGAAA
 160741 GGTTTGCACA GATAACCCAGA ATGCAATGCT CATCACATTG ACTGAGCAGT GAATCATACT
 160801 AACTAGAGAA AGTATGAAAG CTCTACTGAA ATTAACTAAA CAACCTCTCT GGCTGTGAGC
 160861 CTGCCAAGGG ACAGGGTGTAA AACTGGTTA CTGCATAAGG CCCCTCTAT CCACAGTATT
 160921 CAGGAATTCT TTAGTGAACA TACCTTGATG ACTCCTTAAC ATTTCTTCA CATCGAAGTA
 160981 AAGCTTGGAA ACATTGCACA TAGTATGAAG TTCCAAGGAG ACAGCCTCTG ATGTTCCAG
 161041 CTTCACAGCC CAACTCCTAG AATAAGCAGA GGGAGAGAT TTCTTCAGAG GTGCATTCCA
 161101 TTCATTCTA TATACGCACA CCCCTCCCT CCTGCATTCA AACAGGACTT ACCTGCTCAA
 161161 AGTGTCAATT ACATTCTATA AAGAAACAA AAGAAAAGGT GAGCATGGGA ACATCGGTAT
 161221 TTCACTGGGGC TTGTCTGCA GGGCTATTCT TCTTGTCTT ACCCGAAGAA GTAAAGAGAG
 161281 TTACCCCTAGT CTTAGTCTTA GATATTGATG GATACTCAA CAAAGTAATT CCCACCAAGTC
 161341 TTAGGTATTG ATGGATAACCC AGATGGAATA ATTCCCTACCA GCTTCTGGGA GATTCACT
 161401 GGCAGGATGT TTATCAACAT TTGCATCTAT TCTCATCCTT GCTGAAGTCT GAGGCCAGG
 161461 AGCTTTGTCC ATGCTCCCTC TGTAAGGACT AGCTTTGGT GATCGGATTG CCTTCACAGT
 161521 GAGCCCAGAT TAGAGAACAC TTATCATAAA GGTCTTAGT GGTGAATCTG TGCACAGCCC
 161581 TGAGACTGGG CCACTGCCAC TAAGATGGTG GTAGCAGGTA TCACACAGTG GTAAAGCAAT
 161641 CATGCTATAC ACTCAGCCTT ACAGTATAGT CACCAATCCT GTTAGTTAGA ACCAGAATTA
 161701 ATGGCTCCAG ATGTTTATCT TCCTACAGAT AAAGCTGTAG ATTGTACCAT AACAGCTCTG
 161761 GAGCAAGGGT TCTACAAGCA AATCAGGGAA AAGGTTATCA CTCATTGTTG CTGCCCAACT
 161821 TCATCACCCA TCAGTCACCT AGTGGAGTAT TTCAAGGAGAG AGTCAACAAAC CAGGGTTCTC
 161881 TGCACATGGG CCAAGGAGGC AAACAGTGGT AAATGTTATC CCGTGGTTTC ATTTGGCCAA
 161941 GCTGTGTTCC CTCAGAAGTT TATTTCTA ATTGACATAA AGGTACCTA TAAATTAGTG

Figure 8 (Page 50 of 73)

162001 AAGGCCAGCC TGATGGCACT GATGTACATC TAAAAGAAAC ATTACTTAT CTTCCCATGC
 162061 TTCCCTTACCA TTCTCCTTTA ATAGCACTAT AACATACCTT TTTTCCTAC TCCAAGTACA
 162121 CAGCCTCACCC TGAGCAATT TCTGGCTGA GCCCTGACAT TTTCCCTCA GTTCCAGGGAT
 162181 GTGGCTCTTG AGTCATTGC TCTTCAGCCC CAGACCAGCC TCATAGTCCC TCAGTCTACT
 162241 CAGAGTCTGT TGTTCTTCTT TCTCCAGCCT CCAGAGATAA GACTTCTCTT CCTCATGTAG
 162301 GAAACACTGG AGATTCTAA AGTCAGACCG GATTTTTGT CTCTGAATCT GTACCTTCTC
 162361 CTGGAGTCAA GAAAGTATGG TCAAAAGGTG GAAGTAAACC AAATGTCCAT CTATGGATGA
 162421 ATGGATAAAC AAGAATGAAA GTCTGACACA CGCTACTACA TGACAAGCCT TGAAGACATT
 162481 CAAGCAAAAT AAGCCAGAAA CAAAAGGGCA AATATTGTAA GACTTGCTT ATACAAGGCA
 162541 TCTGGAGTAG TTAAGTTCAT AGAGACAGAA AGTAAAATAG TGGTTACAAG GTGTTGGCAA
 162601 GACCAGAAAA TGGACAGTTA TTGTTAATG GGTAGTGTAG TTCAGTTAG AAGATGAAAG
 162661 ATGAAACTGA GTTGAGTTT GGAGATGGGA ATGGTGATGG TTGCACAACA ATGTAACAAT
 162721 GTAAAAGCAC TTAATTCTAC TGAACTATAT ACTTAAAAGT GGTTAAATGC TTAAGTGT
 162781 TATATATTTC CACACAAACA CACACACACA CACAATCAGC CACTGGGACA TTATTTCTC
 162841 ATGAGTCACT GAAGCTGGAA GAATGTCCCC AGTTTCTGC TGCAAGTCA TGTGTGGGAG
 162901 GCAGGCACTC AGATGTGGAA GAGGTTGCCT CAGATTCTT ATAGTCACCC AATTAATT
 162961 CTTGTTCTTC AGCCAAGACA CAGGAGAAAG CTGGGTTAGG AGTGCTAGAT AATTTAATT
 163021 TGAAAATAGG GCCAAGTTCA AACACTTAT CAGTTACAAG GATAAAAAGA GTTTTTACT
 163081 TATGATTTAA GAAGTTAGAT TTCTGAGTTG GAGCGATTT CTTGAAGTAA AAGCTTATAA
 163141 TGAACATCAC CCAGACTGGA TTTTAAGACA ACCAGGCTGG TAAGAGGGTC CATAATTCTT
 163201 GGCAGGGGGA GCTTGAGTG TGACAGGCAT TTATTATGGT TAACTGAGAA ATACTGTTCT
 163261 ACTACCTAG GGTCACTTA AGCATTCTA TGTGTAAGAC TGACAGAAAT CAAGTGAAC
 163321 TCTCATCTGA GGAGATGTAA AGTTGCAATT TCCATTAGTG CTGCTAAAT TAATGCAGTG
 163381 GGAGTGTGTA TTCAGGGCAA TTTGAATCTA TGTTCTTGGA TTGCAAGTCTT CAAACTTGGC
 163441 CCAAATAAAC TCTCTACTTA TCTTAAAAAA ATAAAAATTAA AAAAATAAAAA ATAAATTCTAT
 163501 ACAGTGTGTT GATGACTATG ATATAGAAGA AGGGTCTTTG ACTTAGGATG AGGTGGAATT
 163561 TTTGTGTAGG AGACAGGTGC AGCTTTAAGT CTTGTATAGA CGGGTTTCA TATATGTTAG
 163621 TTACAATCAA GGTCTTCCCC ATTGCCAAG ATCCTAGAAA TGGGGGAAGT AAGAGTGTAC
 163681 TCAGGAGCTC AAGAGCAACA TCCACAAACA AAGATCAGGG TAGAGGTTAG AGAGGACTCC
 163741 TGAAAGAGAG AAAATTGGTA ATCAGCTTGT GGGATTTAC TGCAAGCTAG TGAATTATAT
 163801 AAATATAAAAG ATTGGTGCAA AAGTAATTGT GGTTTTGCC TTTACTTTAA TGGCAAAGAC
 163861 CGCAATTACT TTTGCACAAA CCTAAATATT TCCATAAAAG AATGTGGCTC TGATAATGTG
 163921 GAGGTTAGTC AGCCACGGAA ATAATCTGAA AGTTTGTAGT TGCAAGTGTG TAGGTTGTTG
 163981 CATTACTTGT GATGACTTTA TAAATCAAGT ATAGGCCGGG TGCAAGTGGCT CACGCCTGTA
 164041 ATCCCAGCAC TTTGGGAGGC TGAGGTGGGT GAATCACGAG GTCAGGAGAT CAAGACCAC
 164101 CTGGCCAACA TGGTGAACCC CCGTCTCTAC TAAAATACAA AAAATTAGCC AGGCATGGTA
 164161 GCACATGCCT GTAATCCCAG CTACTCAAGA GGCTGAGGCA GGGGAATTGC TTGAACCCGG
 164221 GAGGTGGACA TTGCACTGAG CTGAGATCGC ACCACTACAC TCCAGCAAGA CTCCATCTCA
 164281 AAAATAGTA ATAATTAAA AATAAATAAA TAAATAAAAGT ATATTCTTT CATCAGCTTC
 164341 ATGAGCTAGA GTAGTATGAA TTCAATCTG GAGTGATCCT GTTTCTAAG TGTTCACAAA
 164401 GCTTGGTTTC TGTACCTGTA AAGTTGAGAG CCAGATGCTC CACTGTGGTA AAAGTGCCAG
 164461 GGTAATGAGT TGAGGCCTGC AAACCAGGT TATTTTGACG TATTTAAAGT TTGAGACCCA
 164521 CTCGATGCTT TTTCTAGGTA AATAGTCATA CTAATTCTGC TTCTTCTGAC TGAAGTATCA
 164581 GGAATCCCAG CCAACTACAG TTTAAAGATG GAAAGATTGG TGCTAAATAC TCATGGATGT
 164641 AAACCTGGAA CCAGGGGCAT AAGTACAAT AATGGTTCTC TCCTTGGGTT TCATTTTTTC
 164701 AATCTGGTTT AGTGAGAATA AATCCTCATT GTGCTTTCC TCAATCATCC CCTATGCCTA
 164761 AGCTCTAGAA TGGAAAATAG CTTGAGATCA ATGAAAGTCAG ATTCTTACTT TCCATTTAGT
 164821 TATTGCGATT GCTGTGGACA GCTTCTGCTC CGTACATCTG TCTTCAAGTT GCTTCAGTTT
 164881 TGTCACAGCT TTCTGGAGCT TTTCTGAAAG GAAAAATTG ATAAGTGAAG CCTATTCAAT
 164941 TTGACTCTTC ATTAGGGGACC TAGGGGGAAAT CCCAATCTTC TAAGATATAT TTGAATAATA
 165001 GTGAATATTT ATAGAGTCCT CATTGTTTT TGCTAGAGAG CATGCTAAAG GCTATATGTG
 165061 CAGGAACATA CTGATCCCCT TGGCAACCC GAATAGTTGG TAGGATTTA AACTTCATTT
 165121 CTGTGCTGTA GAAAATGAGA CTAAGAAAGG GGTAAAATAA CTTGCCAAA GGGCTATGAC
 165181 TGCCAGGTGG TGGAGCAACA ATTGCAATCT CATCTGCTGA CCCAGAGCCT GAGCTATGTC

Figure 8 (Page 51 of 73)

165241 CACCACTAGA GTCCTGCCAG GAAAAAGTTG GATATAGAAC AAGGTAATCA TCATCTAAA
 165301 GATTTTGAA AACAAACATGC TGAACCAAGC AAAACCAATA CCAGTGTGG GCACACATGA
 165361 ATTTTGTGT CTTATGAGTC AGGAAAATC AGGATGCCAG CTGGTTATTAA GAAACAGTTC
 165421 ATGGAAGAGG GGAATTCTGG TATCTTTGA ACAATGGTAT CATGAATCCA ATTAAAATG
 165481 ATTTAGTATT CATGTCAAGC TTTTAGCTTA TTCTCAAAGC CAGTTCTCA TATTCTATT
 165541 GAAAGTGATT TGAAGCTGAC CCAAATTGCT AATTGTAGTC AATGCTGAAA GAATTGTCTC
 165601 CTGTCCCTGT TAAACCCAAAC AAGTATACTC ATTCAATTCTC GAGTGTCTC AGGAAAAGGT
 165661 TCTATGTAAC TGTTTAGCA AAAGATGACA TTGTCCTTAC TATATGCCAA GTGCTATTCT
 165721 ATGCATTCTA TATTTTAATG TCCTCAAAGC TTATAACCAC CTCCTGTGTA TGTGTTTAG
 165781 GGAGGGAGGA CACTGCTATT ATCCCCATT ACAGATGGAG AAACCAAGGT GTGAAGACAT
 165841 TAAGTAACGT GCCCAAAATT GCCCATCTAG TAAGTGACAA AACTCAATT CAACATAAGC
 165901 TGGTTCTTT TCTTACTACT TGTTGGAAAA GTAATTCAA TGGGAATATG ATCATCGCAG
 165961 TTATTAGCTG CTCCATGGAG TTTAAGGAAG AGCTGCCATG AGCTGAGTGG TGGTCATGAT
 166021 TGACATGTCC TTAGAAGGAC TTAGAGCCTT CATAACAAGAC CACCTCTGCC TCATGGAGGA
 166081 CAGAATAAGG AGCCTGACAC TGGAGACAAAC ATTTCTCTCA AATTAGGCA GGACAGAGAA
 166141 GGAAAAAGGA CATCAGGACT ATGCCCATTC CTCCATGCTG CCAACAGCAA AGTCCCACCT
 166201 TCCTTAATAT GCTTCTGGC AAGAAATCTG GATGGTACAC AAAACCTCTC CCTCTGCTTC
 166261 ACCTTCCACA ACCAAGCATT TCCAAATCTT TGACTCTTCTC TCCTGAATCG TGCTTAAAT
 166321 CTGCCCTCTC CTCCCCTTCT TATACGGATA GTTGAATT TACTCCTTGA TATTCTTTT
 166381 ATCATAGACA TGCCACAGTA GCTGGGCACA GTGGTTCATG CCTCTAATCC CAGCATTG
 166441 GGAGGCTGAG ATGGGAGGGG GACCAGGGT TTGAGGCCAG TATAAGCAAG AAAGGCAGAC
 166501 CATGTCTCTA CAAAAAATAA AAAAATTATC CAGGTATGGT GGGGCATCCC TGTAGTCTTA
 166561 GCTACTTGGG AGGCTGAGGT GGGAGGATTG CTTGAGCCCC AGAAGGTTGA GGCTGCAGTG
 166621 AGCCGAGATT GCACCATTGT ACTCCAACCT GGGATACAGA GCAAGACCC ACCTCAGGAA
 166681 AAAAAAAAAA AAAAAAAA AAAAGTAGAG GTACCAGAGT GATATTTCATCA ATGTCACTGA
 166741 CCCTTCATTCC CCCAAATGAA AATCCCCAA TAGGTGTTCA ATTTTACGT GTCCTTCAGG
 166801 AGTTACTTCT AAGATGAACC ACTCTCTACC CTAATGTCC CTCCCCACCA CCAAAACCAAG
 166861 GGACCTCCAG GCAGACATT TTGATGGTT GTTTCTTTA CTAGACTGTA GATACTAAA
 166921 AGGTGATGGG TCTTCTTCC CTGTTTTCAG GCCCTACTGC ATGGCTTAC ATATTGTGGT
 166981 TTTCAAATG ATATTCATGG TGTGAAACAA GAAAAAATGC GGGTGTGGG TTTGAGAACAA
 167041 ACCTGTTCTA AAGCAAAAG AAATTCACTA TAACACAAAT GGATAGAGAT AAGAGTCCAA
 167101 CCATCCCATT GAAGGTCAGG ATGGACAGTC TAGATAATTG AGCAAGAAAT CATCATAAAC
 167161 TATTTTCAG AAGAATGACA TGATGAAAGC TGTATTCTCA AGTCATAATG TTAGGTTCA
 167221 AGTTAAATCA TCTCAGCTCC TGGGGAGCAG GATAAGACTT GGTACTTAC AAAGCTCCCG
 167281 GGGCCACACA CTCACCTTGT AGCCCTGGCA TACGTCTTCA ACAAGAGCTG TGGTGTGCC
 167341 TTGTCGCTGT GGTGCCGCT CACAGGCCA GCAGATGAGC TGCCCTCGT CTCGCAGAA
 167401 CAGGTGGAAC TGCTCTCCGT GTTCCCTACA TGACATTCT TGATCCGTCT CTTGAGGGC
 167461 TTCAATGAGG CTTCCAGCT GCTTGTGGG TCGGAGGCTA TCCATATGAA ATGGAGCCCC
 167521 ACACTGGGA CAGCAGAACATG TCTCCTGCCT CAGTTGCTTT TGGCTGGGT TTTAAAGAA
 167581 GTCTGTTATA CACAAGTGGC AGTAGCTGTG TCCACAGTTG ATGCTTACTG GGTCGTCA
 167641 CAGGCTCAGG CAGATGGAGC AGGTGGCTTC CTCCATCATC TTCTTGGTGC TGGTGGTTGA
 167701 GCCCATAGCT TTTATTGAAA AGCTCCAATA TTGGCTCTAG AGATGGAGAT GAAGCAGCCA
 167761 GAATTTCCA CCGTGATGAA AATACACCTC ACCTGCACCT CTATGTGATG AGCTGGCTGC
 167821 AACTGACTTC CATAGGTCTT GAAGGTTTC CTTCAACCC CTATTATCTC ATTGTGTATT
 167881 GAAGAAAAGA GGACCTAAAA GGAAGAAGTT GAGGCTGAGG TTGTTGGGC CACGTTGAG
 167941 AACTGCAACC CAAGTGCAGA GTTCAAGTT GCCCTCATTA GCAAGCAGTT ACAAGTGGTT
 168001 GTTTAGAGGA AAAAAGCAG TTTAAAGCA GTTTAAAGT TGTTGCCAA GAATTACAT
 168061 TAAAATAGCA TAAGCTTTG ACTGGCTATA CATTGTTCTT TGTATTACAA ATCTCGGGAA
 168121 TATGTAGGTA ATAGATGAGG CAGCCAGTC GGAACAAAAT GCTTTAAAC ATGGGGTCTT
 168181 AACTGAAGAC CTATACTCCT GCCTCACTTG TCCTGATAAA TTTGCATAC CTCACATAGC
 168241 TCAGACTGCT CTAAATTATT TCATTATTTC TCTTTCTCA GTCTTCTAAC TTTTTTTTT
 168301 TTTTTAATG AGACGGAGTC TCACTCTGTC ACCCAGGCTG GAGTGCAGTG ACGCTATCTC
 168361 GGCTCACTGC ACCTCCGCT CCCGGGTTCA AGCGATTCTC CTGCCTCAGC CTCCCGAGTA
 168421 GTAGCTGGGT CTACAGGTGT GCACCACTAC GCCCAGCTAA TTTTGTTATT TTTAGTAGAG

Figure 8 (Page 52 of 73)

168481 ATGGGGTTTC ACCATGTTGG TTGGCTCGAT CTCTTGACCT TGTGATCCAC CCGCCTCAGC
 168541 CTCCCAAAGT GCCAGGATTA CAGGCATGAG CCACCGTGCC CAGCCTCTT TTCTTTCTT
 168601 ATAAGACAAG TTCTCGCTCT CTTGCCAGG CTGTAGTGG A GGGCAGTGGC ATGACCACAG
 168661 CTCACTGCAG CCTCGACCTC CTGGGTTAA GCAATCCTCC TGCCCTACCC TGGCAGAGTG
 168721 GCTGGGACTA CAGGTATGTG CCACCATGTC CAGCTAAAGT CTTCTCTCCA GAAAGAAGAA
 168781 ATGCATTGGA ATTTAGAGGA TACACAAAACA TCTAGCTGTA TAGCTAATAAC AGTAGCCACT
 168841 ATCATGAGTA GGAATTAAA TTTAACCTAA TAAAAATTAA AATGAAAAAA TTCAGTTTTT
 168901 CTGTTCCAGT TGCCACATTT TGATTGCTTA ATAGTTGCAT GTGACTAGTG GCTACATAAC
 168961 AGCCTCAATA TACAACATTC TGTTATCACA GAAAGTTACC TTGGACCAAG TGCTGGGAGA
 169021 AGCAATGCAG GCTTCCTCAC AAAAGCTGTA AAAGAGAGAA CTCAGGGAGT GTGAAACTCT
 169081 TTCCATTCT AGTTAACCTC AAGAATAATT GTTACCAAGGC CAGCACGGTG GCTCACGCCT
 169141 GTAATCCTAG CACTTTGGGA AGCCGAGGCG GGCAGATCAC CTGAGGTCA GAGTTTGAGA
 169201 CCAGCCTGAC CAACATGGCA AAACCTCATC TCTACTAAAA ATACAAAAAG TTAGCTAGAT
 169261 GTGGTGGTGC ACACCTGTAA TCCCAGCTGC TCAGGAGGCT GAGGAAGGAG AATGACTTGA
 169321 GCTCCGGAGG GGGAGGTTGC AGTGAGCCA GATTACACCA CTGCACTCCA GCCTGGGTGA
 169381 AAGAGCGAGA ATCTGTCTTA AAAAAAAA AAAGAATAAT TGGTACCAAG ATTACTCTT
 169441 GTAATTAGTA GTAACACTTA TGCAATTGGG TGATCTGTGA CAGATTCCAT TGAAGGAGTA
 169501 TGGGGAGCTT CACCCCAATA TATGACTCCC TGGTATAATG AGTATTGTA ATTAAAGGCC
 169561 CTTAGAGATC AGCAGATGCT GGAAGAGACT TTTCCCTAT CTACATAAAG ACCAGTCACA
 169621 CTAGACAAGA AGAACAAATTG TTTTCCTTC CAACCCCTAT TATCTCATTT TGTACTGAAG
 169681 AAAAGAGGAC TAAGAATGTA ACCAGACCTA ATCAGACACT TTCACAAAAT AATGCTGTG
 169741 TCTCAGGCTC ATTCACTTTT CAAAGAGAAC CATTACAAAG TTAAACTCTG TTCTCCATT
 169801 CATTCACTCC CCCAAATATT CATTATTCTT CCCTAGTAAT CATTACTGC CCCTCAAAGA
 169861 ATTACCTATA TTCTCCTGAT ATCACCCCTC CCCTCTGAAA TAAATATGTA TACATGTATA
 169921 AACGTTATAC ATACATATTT ATACAGTATA CATAACATATT TATACATACA TACATATGCA
 169981 TACATATTAA TATTATGTA TTTATACATA AGTATTATA AATAAGGCTA TATAAGTATC
 170041 TACCCCCATT GGCAGAGGGG GTAATCACTC TGTGATTCTA GCCCATGTAC TTGTTAATAA
 170101 ATTTGTATGC CTTTCTCCA ATTAGCCTGC CTTTGTGAG TCGATTTC AGTGAACCTC
 170161 AGAAGGCAAA GGGGAAGTGT TCCCTTGGCT CCTACACCAT CATGACAATA AAATTTGACT
 170221 CCACCTCGAC CCCCCCCCATC CCCCACAAAG AACAAACAACC AACACTGGTT AATAAGGTCG
 170281 GTTGTGTTT GTTGTGTTT TTGTTGTTGT TGTTTTGCT TTCAGGAGCA GAGGTATAAT
 170341 AGGCAAAAGA AAGAGAAAGG AGAATAGTGA ATACCTCTTC TGCAGAGGAGG GGTGCCTAAG
 170401 TGGGACTTCC CTGGCTAATA ACGTCTGCT AGAGACCCAA CCAGGAGGAT AATGGAAGCA
 170461 ATCAAGGCAA CCAGAACAAAC CAGAAGAAC GGTTTATCCT TTTTGTGCC TCTCCCTAA
 170521 CTGAGGGAAAT AAGAATTGGA AAGAAGGCTG CAGAGCAGAG GGTTTGTCC TGAGGAGCAG
 170581 TTATTCTAT GGGATCAGAG CTCCTGCAGA ACTGGGGAGT TTACTTTAC TATCTCTTCT
 170641 CCAGGACAGG ACCTATCTCA AGAGACATGT TCAGAGTGT TGCAACATAA AGAGTTGCA
 170701 GACCCAAGGA GGTAGGAAAG GCAGAAAGAA GATGGGGGAG GGCAGGGATA GGCAACAGAG
 170761 GAGTGACCAAG GAGCGAAAAA GCCTGCCTCT TCTGAGAACC TAGCTGGCT CTCCCTGTAC
 170821 CCCCCGATCCC TCCCCCCCAG CCGCCCCCAC ACCCCTACTC CTGGGAGCTC CTCTAGGACA
 170881 GGGGCAGAGT CAGGAGGAAG TTTGAAGAGT GCCTAGAATA AAAAACAGTA ATTTAACTAC
 170941 AATTACCGGG TAGGCTGTTT TCCTCTCACA ATTTGATCAG TCTCTTGAAAG CCACACAGAA
 171001 TTTCTCTGA AGACGTGTAT TCCTTGGCAG GCTATTTCTT CCAGTGATAC ACCAGGCCCC
 171061 TCTCTGCTGG GGTCACTGCT CTTCTGGGA GATGGGGCTC CCCTCCTTCC AAGGCTCCAG
 171121 GTTCTCTGTC CTGGGCCCCA CTCATCTAAG TTCTGAATCT TCTGAGATTG GTGTAAAGT
 171181 CTGGTGAAAG AAAGAGCAGG AAAGAGGTGA GAGCTGTAAA ACAAAAGAAAG TCCTGACCAT
 171241 TTTCAGAGTT GGAGGGCCC TGCTGTCAAG AAATATATT CCCACCCAC TTGCCATCAG
 171301 TACACACTCA CATATCCACT GAGAAAACCT TAGCCTGGAC CTTTCCGTA ACCTTCACTG
 171361 CTCAGACACT TACATATTG C TGCTAGTCC CCTCTGTTGC TGCCACTTCC TGGGTCAGGA
 171421 AGTTAACTCA GACCGGATTA AACTGAGAAC TGAAACTACT GTGGGAGGCG GGGCTCATAA
 171481 GATTAGGAG AAAACTAGTG ACGTTGTTCA TATCATTGTC ACTCCGCTC TCCGGTAAAG
 171541 GAGGGGGAAA CGTAGGAAGA AAATATCCTT CTTTACAGC AATAAAAAGA AGGAACCAAT
 171601 TAATAACCT GTAAACTATC ATGTGACCCC AACACAGAT ATCTAAAAAC AGGAAGCCTG
 171661 CAGAGGTTCA GTTCACAGAC TCTGATTGA GATCTTTCTA CTTTGGCAC CAACTCCCTT

Figure 8 (Page 53 of 73)

171721 GGGAGTCCTT AAGCCTTCCT AGCTGATGTT ACTTCTTTG CTATTATGG GTTGCTTGTG
 171781 GTTCTATAAC TGCTCTGAAG GGTGTGGTGG AAAAAGGGGT GGTAAACAGCA GTAGGACTCA
 171841 TTGGCATCAC AAAATTCACT TGAGTCAGCT TTCTATTCTT CTCTGTCCCC TTCTGTGTCT
 171901 TGTTTTCTC CTTGCTGTCC TTCTGCAGGA CTCAGATCTT CTTCAATAGC GAGGGTCAGC
 171961 CAGGATAGAA AATGGGAGTC ACTAGTGGCC CAGCAGTGAG TGCCCCCAGC TTAGAGCTGT
 172021 GTGGGATCCC TGGGACCATC ACTCTGCTTT GTGCTTTGTG GAGAAAAGGC TGTGGGGTCC
 172081 AGGGTCAAGT CCTTAATGAC TTAGCTCCAG CTTCTCCACT TCAAAATGAA AGGAAAAGTA
 172141 CTATCACCAC CGCGTTAGAAT TATTATTCA TGGGGAAAAA AGATGGATTA CTATCTCACA
 172201 ATAAGAGCTT GTCACATTAA TAAGTCTCAG GTGTAAGAGG CATTATGAT ACAAACATAA
 172261 TAAATGCTGG CTTAAGTAGA TGCAGTGGTC CAAGGGAAACC AGTAAGGGGA GCTCAGGACA
 172321 CAGGTGGGAG GAGAAATTAA ACTTGAATTC TGGGAGCCAC TGGCCTGTCT GGGCCCCTGG
 172381 CCTGCCTGCT GACCTGATA GCCAATGGAA CATGGAGTTT GGCCCAGCTG CAATCCCTCT
 172441 GGTCCAACTA CTCAAAATAA AGGCAAGATT GGGAAACACG TTCCCTTCTT CCTATACCAA
 172501 GCAGAAGACT CTTCAAGCACT GCACCCCTCT GGGTGCTCAC AGAGCCTTCT GTTGTGTTGC
 172561 CACCTACGAT TCATCATGCC CTGGCATGAT GGTGCGAGAC CCCATGCATA GCATGGGACA
 172621 TTCTACTCCT GAGGCAACCA GCACACAGAG AGAGGAGAAA GAATGAGCCC CTGAATCCTT
 172681 GGTCCCACCA TGAGTCCTTG CAGATATCTA CAACTTTCAT TGTTGTGGAT GTGACTCTGT
 172741 ACCCAGGCAT GGCTCATTCC AGATCTGTC TATTGTCAGA GGTGTTCAAA CCAGAATGAC
 172801 TCCATTGTA ATGGGGCTA GTAAAATAA GGCTGAGACC TACTGGCTG CATTCCCAGG
 172861 AAGTTAGGCA TTGTAAGTC CAGGATGAAA TAGGCAGTTG GCACAAGACA CAGGTCAATAA
 172921 AGATCTTGCT GATAAAACAG GTTGCAAGTA AGAAGCTGAC CAAAACCCAC CAAAATCAAG
 172981 ATGGCAACAA GAGTGGCCTC TAGTCATTCT CATTGCTCAT TATACACGAA TTATAATGTG
 173041 TTAGCAAGTT AGAAGGCATT CCCACCAGCT CCATAGTGGT TTATAAAATAC CATGGCGATG
 173101 TCAGGAAGCT ACCCTATATA GTCTAAAAG GGGAGGAACG CTTGGTTCTG GGAATTGCC
 173161 ACATCTTCC CAGAAAACAT ATGAATAATC CACTCCTTGT TTAGTACATA ATCAAGAAAT
 173221 AACTGTAAGT ATCTGTATTA GTCCATTTC ACACTGCTGA TCCAGACATA CCTGAGACTG
 173281 AGTAATTTAT ACCAGGAAAA AATGTTTCAT GCTCTTACAG TCCCACGTGT CTGGGGAGAC
 173341 CTCACAACCA CAGCAGAAGG CAAGGAGGAG CAAGTCAGGT CTTACATGGA TGGCAGCAGG
 173411 CAAAGAGCTT GTGCAGGGAA ATTCCCTTCT ATAAAACCAT CAGGTCTCAT GAAACTTATT
 173461 GACTATCATG AGAACAGCAG TATAAATTAC TCAGGGAAAG ACCTGCCCCC ATGATTCAAT
 173521 TACCTCCAC CAGGTCCCTC CCACAATATG TGGGAATTAA AGATGAGAGT TAGGTGGGGA
 173581 CACAGCCAAA CCATATCAGT ATCCTTAGTC CAGAAGCTGA TGCTCTGCCT GTAGAGTAGC
 173641 CGTTCTTTA TTCCTTTACT TTCTTGCTT CACTTACTG TGTAGACTTG CCCCCAAATTC
 173701 TTTCTCACAC GAGATCTAAG AACCTCTCT TAGGGTCTGG GTTGGGACCC CTTTCTGGT
 173761 AACACTATCA AAGGATCAGG AAAAGGAAGC TAGTGAATGC TAAAAGGAA ACAAAACTACC
 173821 ATTACCAATA ATAACAGCAA GACAAAAGCA AAACGGATTG TGACAGCTGT CCCATCTCAC
 173881 ACCTGTTCC CATTGCAGGA AGGAGGGCT GTTCACTGCA CAGAGTGGCC AATATTAGAA
 173941 GCAGAGATGG GGTGCAGATG AGACTTCAGG AATATGTTGA CAAAGGCAGG CCTAGGGAGA
 174001 AATCAACCTG AACTATCCCC AAGGAGGAAT GCATTATCTC TAATATGTAA AGTTAGGCTT
 174061 GATCCTGTGA TTATGGATA TAGGAGTCCA AAGACTCACA ATGGGAAGTA GGTCACTAGA
 174121 GTCTCCTCA GAAGCTCTGT ACTGTGTGTT CCCACTGTGG GCAAGAGTC GCACTCAGCT
 174181 ATTCCCTAGAA TGCCTTCTC CAACTCCTTC AGATTTGCC TCTCAACTAA CCCTATCCTG
 174241 ACCACTTGT AGCAAGTGT A CCCCTCTCTC CCTCCCAAAC ATTTCAAAT CTATTTGTT
 174301 CCCATGGCAC TTATCACTGA ATATTTACT AATTTATTT GTTAGTGTGTT TGCTTCCCTC
 174361 ATGAGAAATGC AAAGGGATGG ATTTTTCA ATATTGTTCA CTGATGAATC CCAGTAACCA
 174421 GAATATTTCT AAGCATAGT ATGTGCATTA AATCAAAGAG TAACTTTCTG AATTGCACCA
 174481 AACACACATC ACAAGAGGTG TGTGCACATA TGTGCATGAT GCACGTAGTG TGGTGTGGGT
 174541 GTTGTGTGGG GTATGTGGTA CTGTGTGTGC TGTGTGTGGT ATGTGATACA TAGTTGTGT
 174601 TAGTGTGATG CATGTGATGT GGTATGTGTG TGCCTGTCCA TACATATTAG GGGTGGCGGG
 174661 GATGTTAATA TGTCAAATGG TACTAGAAAG TATCAGAACT CATGGTGCTT ACTGGTTTCC
 174721 CAGAGAGCTG CTTCTCTCCC ACCTGTAGGA TATACGTGAT GTTGGACAG AGAAGAAATA
 174781 AAAAGAAGGC TGTGACCTAC TGGGCTGAGG AAATAAAAAC GAAAGTAAAA GAAGAGCTGG
 174841 GAAAAGAGAG TGGAGGGGCC AAGGAAATT TCCCTTTGG CTTCTGGGA AACTTTGCTG
 174901 AAAATCAAC TCACAAATTT ATTAACATGT ACACAGGGAG AACCATAGAA TGATTATCCA

Figure 8 (Page 54 of 73)

70/162

174961 CTTCCCAAGA GGGCTTAAAAA GCTTATATAT TATCCTGGCA AAACAGATTA TGGGAGGGGA
 175021 AGAAGAGAAA CTCTGTTGAT GGGATTACTG TTGCGGATTT TTGCTCCTTC GCTCAGCTAG
 175081 GTCCGGGTTT TTGTCTCAC A GCCAGGAAGA ATTAGGCATG CAGCCATCAA AGAATGAGTG
 175141 GAGTAGAATT TATTAAGTGA AAGGAAAGCT CTCAGCAAAG ACAAGGGTCC TGAAAGCAGA
 175201 TTTCTGGTTT GCTCTTCACA GTTGAATACT AGGGCTTAAG ACTCAAATTC CTGACAACCTC
 175261 CACCCCTGTCC TACCAAGTGCA TGCGAGCCT TAGACTGAGC TACTCCATAT TGATTAATT
 175321 CCTGAACGTG GCATGTGTTA AGGAAAGGAA TCATCCACTG CAGGCATGTT TAGGCAAGGCC
 175381 CCCTGTGCAA GTTCCCTTAT CTGCACAAAAA CATCCGGTGT AAGCACTTGT GGGGCAGGTC
 175441 AGAGGTTCTC TGGGTACCAT TCCCTTACTG TCTGCCTAAA GCAAGCTGGC CAACTCCTT
 175501 CATTACTAGG GAGAGTAAGT AGATCAGGGA ACAGAGATTA ACTTGAACAT TATCTTGTA
 175561 AAGTCCGTTC GGGCATGGTT ACATTCTTGG TCTTACAGGA AGGGTAAATA AAAATAATTG
 175621 CTCTTTTTCG TGGGTCTGGA TCTTAGGTAG ATAAAGAAC TTTAATTCCA CGATGTGTT
 175681 TGGTAGGGAT AGTTGGTGGC AGGGATGTCA GAGAGACTTT GAGGCTCTT CAGTTCAATA
 175741 TGACCAAGGG CCATATATTA GGGTATCAAT TTCTGAGCCC CAACAAGAGC TTAGGAGAGA
 175801 TGTGATAGCA TCACAGTGTG AAAGCAATT TTTGTTTGT TTTAGAGACA GGCTCTTGCA
 175861 CTGTCACCCCT GGCTGAAGTA CAATGGTACG ATCACAGCTC ACTGTAATCT TGAACGGGT
 175921 TCAAATGATC CTCCCATCTA AGCATTCAA AGTGTGGGA TTACAGGCAT GAGCCACGGT
 175981 ACCCAGCCTG AAACCTGCACC CACTTTCTGA TAAACTTTTC AAATGACTAA AGGGGAGAGA
 176041 GTAAGCACTA CTCAGAGGTA GGAAGAAAGG ACACAGGATT ATAGGATTAA ACAACAACC
 176101 ACCAAAAAAA ACCAGACCGG TGTTGGTGGCT CACACCTGTA ATCACAGCAC TTGGGGAGGC
 176161 TGAGGTGGGG GGAGTCACTG GAGGCCAGGA TTTCGAGACG AGCCTGGCCA ACATAGCAAG
 176221 ATGCTGTCTC TATTAACAAA AAAAATACC TGCTTGAGC TAATCAGAAAT CATGGACCT
 176281 GACAAAGGAT GTCCCCAAAGT AAGTCTTAGC ATTTTTTTT TTTTTTTGAG ACAGTCTCGC
 176341 TGTGTTGCCCG AGGCTGAAGT TCAGTGGCGT GATCTCGGCT CACTGCAACA GCTGCCTCCC
 176401 AGGCTCAAGC AATTCTCCCT GCCTTCAGCC TCCCAAGTAG CTGGGATTAC AGATGCCAC
 176461 CACCAACGCCT GGCTAATTTT TGTTTTTTT AATAGAGATG GGGTTTGCC ATGTTAACCA
 176521 GGCAAGGTCTT GAACTCCTGA CCTCAAGTGA TCTGCCACC TTGGCCCTC CATAGTGCTG
 176581 GGATTACAGG CGTGAGTCAC TGCAACCGGC AAAGTCTTAG CATTCTTAC AAACAGTTG
 176641 TACCCGTATC TCTAAAAGGG AGTAGTGAAT TTCACCCCAA AATGTGGCTT CCTGATATAA
 176701 TGAGTATTTT GAATGAAAAA CTCTTAGAGA TCAACAGACA CTAAAGAGAC TTTTCCCTAG
 176761 GTACATAAAA ATAGGATGGC CCCACCAGCG AGAACAAATTG TTCTTTCTC CCTCTCTGTT
 176821 ATCTCATTGT GCATTATAGG AAAGACCAAG AATGTAACCA CACCTGAACA GACCCTTTA
 176881 TAAGATAATC AGTCTCTAAG CATCATTAA ATTCCAAGGA GAACTATTTA CAAATTATC
 176941 TGGTCTTTGA TCCAATTAGT CTCTCCTGGT AGTTACATAT TGCCCCCTCAA CAGAATTCT
 177001 CTTCTTCTGT TTCCCATAAC CTATTTGCA AGGATCAAGC CCCTGTTATT TCTTCAACTT
 177061 CAAGGTGGCA TATAAGCTC TAAATTCCAC TGGGATATTG GTACTATGTG CATGAGGAGA
 177121 ACCACAGAGT AATTAAATTG TAAAGCCTT TATCTTATGA ATCTGCCTT TTTTGTGTT
 177181 ATTTTCAGC AAAACTTCCA AGGGCAAAGG TATAAAACAA AAATAAAATT CTAAGCCCC
 177241 CCAACCACAT CTGAATAGACTT TCTCTTCAGT CAGGCTTCTT AAAATGTAAC CTGAAAGACT
 177301 GGCTCAGGCC ATTAAGGGAA GTGGGGGTTG AACATGCCTC ATTATTCCTC TCTGGCATT
 177361 ACATCAACAC AGCTTTAAG TCTGATAAGA AACATTTAC AACCTATTCT CTCTGAAGGCC
 177421 TGCTAGCTAA AAACCTTCATC CCATAGTACA ACTTTGGTCT TCACAACTG TTATCACAAC
 177481 CTAGTGCTCC TTTCTATTAA TCCCAAATCT TTATACAAAC TCAACCAATT GTCATCACCT
 177541 CCACCCACT CCTCCGCTGC TTCCAGTGT CCCGCCTCTC TGGACCAAAC CAGTGTACAT
 177601 TTCTTAAACG TATTTGATTG ATGCCCCATG CCTCCCTAAA ATGTATAAAAG CCAAGGTGCA
 177661 TCCCAACCAC CTTGAGCGCT TGTTCCTCAGG ACCTCCTGAG GGCTGTGTCA TGGGCCATGG
 177721 TCACTCAAAT TTGGCTCAGA ATAATCTCT TCAAATGTT TACAGAGTTT GGCTCTTGT
 177781 ATGACACAGA TGACTGCTTC ACTGAAGCT GCTCTGGAAAG TGAGTGGGGG TTTTGCAAGG
 177841 ATAATTTTCC CGGGATAGCC CCAGAACGAG CTAGTAATAA TACACTAAA GGTAGCTAA
 177901 ATGCATTGAA CACTTGTGTT GTGCCAGACC TATGTCAACA TTTGCTTTGT GCCAGGCTTA
 177961 TGCCAGTACT CCTGATTTGT TAATACATT TAAATAAAAA TTCTGGAGTT TCAAATATAA
 178021 TAACTGAAAA ACAGAAAATA AATAAAAATA TATAATAACT GAAATAAAA TTTACTAAGG
 178081 CTGGGGATGG TGGCTCACTC ACACCTGTAA TCCTGTTACC GGAAAGGGT CCGTCCAGAT
 178141 CCAGACCCCA AGAGAGGGTT CTTGGATCTC ACACAAGAAA GAATTGGGCC GAGTCTGTAA

Figure 8 (Page 55 of 73)

71/162

178201 AGTGAAAGCA AGTTTATTAA GAAAGTAGAG GAATAAAAGA ACGGCTACTC CATAGGCAGA
 178261 GCAGCTCTGA GGGCTGCTGG TCGCTCATTT TTATGGTTAT TTCTTGATTA TGTGCTAAC
 178321 AAGGGGTGGA TAATTCATGC CTCCATTTC TAGACCATAT AAAGTAACCT CCTGACGTTG
 178381 CCATGGCATT CGTAAACTGT CGTGGCGCTG GTATGAGCAT AGCAGTGAGG ACGACCAGAG
 178441 GTCACTCTCA TCGCCATCTT GGATTTGGTG GGGAGCAGTG AGGATGACCA GAGGTCACTC
 178501 TCATCGCCAT CTTGGATTTG GTGGGGTTA GCCAGCTTCT TTACTTTTTT CTTTTTTTT
 178561 TTTGCCAGG CTGGAGTGA GTGGCACGAT CTCAGCTCAC TGAAACCTCC AATTCTGAG
 178621 TTCAAGCGAT TCTCGTGCCT CAGCCTCCA AGTAGCTGGG ATTACAGGCA TGTGCCACCA
 178681 CACCCAGCTA ATTTTTATA TTTTAATAG AGACCGGGTT TCGCCATGTT GCCTACGCTG
 178741 ATCTCCAACCT CCTGCGCTCA AGCCATCCAG CCACCTTAGC CTCCCCAAAGT GCTGGGCTTA
 178801 TAGGTGTGAG CCACCCCACC TGGCCTAGCC GGCTTCTTTA CTGCAACCTG TTTTATCAGC
 178861 AAGGTCTTTA TGACCTGTAT TTTGTGCCCA CTGCCTGCCT CATCCTGTGG CTTACAATGC
 178921 CTAACTTACA GGGATGCAG CCCAGCAGGA CTCAGCCTTA TTTCACCCAG CTCCTATTCA
 178981 AGATGGAGTC TTTCTTGTTC AAATACCTCT GACAAGCCCA ACACTTGGG AGGATGACAC
 179041 AGGAGGATGT CTTAGCCTA GGAGCTCAAG ACCAGCCTGG GCAACACAGT GAGACCCCAT
 179101 CTCTAAAAAA AAAAATACAA AAAAATTAGC CAGGCATGAT GGTGTGTGCC TGTAGTCCCT
 179161 GCTACTCAGG AGGCTGAAGT GGGAAAGATGG CTTCAGGCCA GGAATTCAAG GCTGCATTGT
 179221 CAGAGGCATT TGAACCAGAA TGACTCTATC TTGAATAGGC GCTGGATAAA ATAAGGCTGA
 179281 CACCTGCTAG GTCGATTTC CAGTATGTTA GGCATTCTTA GTCACAGGAT GAGATAGGAA
 179341 GTCAGCACAA GGTACACATC ACAAAAGACCT TGCTGATAAA ATAGGTTGTG GTAAAGAAGT
 179401 TGGCCAAAAC CCATCAAAAC CAACATGGCC ACCAAAGGGGA CCTCTGGTTG TCTTCACTGC
 179461 TCATTATATG TTAATTATAA TGTATTAAACA TGCTAAAAGA CACTCCCTACC AGCATCATGA
 179521 CAGCTTACAA ATACTGCGGC AATATCTGGA CTTTACCTTA TATGGTCTAA AAGGTGGAGG
 179581 AACCCCTCAAT TTTGGGAATT GTCCACCCCT TTTTGGGAAT GCTCATGAAT AATCCACCC
 179641 TTGTTTAGCA CATAATCCAG AAATAACTAT AAGTATGCTT ATTTGAGCAG ACCACGCTGC
 179701 TGTTCTGCCT ACAGAGTAGC CATTCTTTA TTTCTTACT TTCTTAATAA ACCTGCTTTC
 179761 ACTTTACTGT ATGGACTTGC CCTTAAATTCT TTCTTGTGTG AGATCCAAGA ACCCTCTCTT
 179821 GGGGTCTGGA TCAAGACCCC TTTCTGGTAA CATCTTCTG GTGACCACGA AGGGACAATA
 179881 CTGAGGAGAC TCTGAAGCCA AAGGAAACAG ACTACAGCAC CAACTGGCTG ACTTTGGGT
 179941 AGTGGTGGAG TCCCCGGGT AAGGATAGGA TTGGGTTAGA GGTGCAACTT AGGGGAGATA
 180001 GGGTCTCTCC TAAGACAGAG AGGGTTTCAG TCCGCTCTTA ATAAAGGGCA AGAATGCTTG
 180061 ACCGAACCTG GGTTTGAGAC CCAACTTAGG AAGGCTACAG TCCTTAAGAT TTAAGGGGTT
 180121 AGAGGCCCT CTCAGTAAAG TCTCTCTTGG TTAAAAAACGG ATTTAGCATT AGGGGATGTT
 180181 AACTGCTATT CTGTTGTAT TAATCTTCCC TGTGCTCTTT GCTGACAGCT ATGGGTGACA
 180241 GGATTAGGCA TGTACAGGAT CACGGGACAT TGGGAACCTT TCTTCTCTCC AAAAGGGGAA
 180301 GCTTGACAGC TGATAGGACT GTTGGAAAAG ATCCCTTTGC TATGACAAGC AGCCGCCTGA
 180361 ACTTTTGATT CAGTGTGCT GCAATGGGT GGTCTTCTC TGGCCTCTGT GAACTCCTCA
 180421 CCTTCCCCAT CTCACCACAG GCAATGCTT TCTCCCTTTC TCTCTTTCT CTTTCTGTG
 180481 TTTTCTGTTA CTTGAGACAA CCATCTGCC CAGAGACCAT ATGTTGAAAC TCCTGGTCAG
 180541 AAGTTTGATT AAAGATGAAA GGGCCTATCT GGGGGCAAGT TTGAGCCTTC CCAGTTAGAT
 180601 ATTGGGTGCT AAGTGGAGTG GCCAATGTCT ATGTTTGTC ACATGTATAT TGCTCTGGCT
 180661 GAAATGGAAA ACGTTAATTG GTTACTTTA TGTGGCCATT GGGCAGCCTC TTACAAAAGT
 180721 GAGAGACATT TATTTGCTG TGGTCCATG AAACAGAAA AAGTTGGTTT TCTTTGTGT
 180781 CGTAGCTTGG ACCCAAGGGC TTTGCAGTGA GCAAGGTTGC TAGTGTGCT CAGTGAAAGA
 180841 GAACCCAGAA ACCTGGCATG CCAGCAAAG GGTAAAGATT TCTTACCAAGT CAGGCTTCTG
 180901 GCCTCTCTCT CTTAGTGGAA ACTGAATGAA TGGAAAAAT CACTGTTTAT CACCTCTGTA
 180961 AAGTTTGAT TAATGGGAAC AAGGATTGTT GGGCTAGTC TTAAGCTGTA ATGAATCTGG
 181021 TATACTTTGT GATATCAATT TGTCTTCTG TATTACTCTG TCATAAAAGAG GAATATGGTA
 181081 GGATAGAACAA TGGGCTCAGG ACTCCATAAG CCTGCTGTT AAGCCAGCCC AGTAAACTGG
 181141 TCCGTTGCAA AGTTTATTAC AGGTCCCTGG AAAAAAAA AAATAAAAAC TGGATGAAGT
 181201 TTCTCTCTCA TCTTGTGTTA TGTCTTGTGG AGCTTCACCT TGTAACCACG TGGCGGTACT
 181261 TTCTCTTGGT CTCTGCCATC CAGGGAAACAG GAATTGGGG GTTTATGTAA TAGTTAACTC
 181321 TAAAATTAT CTCAAGCCAT TGCAAGCTCA AAATTGGCTG CTCTGGACCC CTTCTGGGAA
 181381 GGGCAATGGA AACTAACCAAG TGTGCTAGCT CAGCAGCTAA GGATTGTCA TTTTATAATG

Figure 8 (Page 56 of 73)

181441 GCGGCCAAGG TTCAATCCTG GCTTAGGGAA TGAGTACTTT CTGATTGATA TCTGTGTGAC
 181501 CTTTACCAATT TGTTGATTCT GTTCTCTTCC CCTCCACACA CTGTCCTGAG TTTTCCTCTC
 181561 TCTGAGAACCG TGGGAGAGTTA TCTTGGTAA AGTCAAAAG CCAGAAAATAA TGGCCGTGAG
 181621 GGATGGCTAA AGTTGAGTAA TAAGAAAATT AGCTTAATTA AAAGTGGATA TTCAATCTCT AAAAGCCTGG
 181681 TGCTATGGTT TATGGTTAAA AGCTTAATTA AAAGTGGATA TTCAATCTCT AAAAGCCTGG
 181741 GACTCCTTGG GAAAAGCAGA GGAGGCACCA CAGACCCCAT TTTGGAAAAA CCTCTGTTT
 181801 CCTCATGAAA CCCCAGGAAC TGGAAGTGG TAGATCCTTC GCAAATCTA AGGCTCTGTT
 181861 TGGCTTGCAT TTATGTTATC TGATGTTTT GACTTTGGG GGTATCAGAA ATTACTTGC
 181921 ATTATGAGGG AGATCTGGTG TGTAATAACC AGGTAGGAA TATACTCTG GGGATAGCTA
 181981 AAGGCAAATA TAGGTGAATA CTTGGCTATT TGCACTTTG GATCACAAAGA AGCATTCTCT
 182041 TGACTACCTA GAAGGTATGG AAATGTCTCC ATCCCCACCG AGAGATAAGA TTCCCAGGGG
 182101 AGATGGCTGA TCCCCCAAAA GAGGGCTGAT TCCCTCTTT GGGATCCAGG ATCTGGTATA
 182161 AAAATGGGAC CCTGCCAGG CACAGTGGCT CACGCCTGTA ATCTCAACAC TTTGGGAAGC
 182221 CTCAGAGTTA TGAATGTCTC ACCATACTGA CACTTGTGA CTGAGCTCCT CTCTACCCCTG
 182281 GACACAAGAG ACCCTAATAA TTAGACAGGA ATATCATTGC CCCTATTTAG TCTGAAGAAG
 182341 TTATAGAAGA CGGATCTTA TCCCAGTGCA ATCCTTAGGA TTAAGGGTTC CCTGGTAAAAA
 182401 GGGAGTGGGA AAATATGTCA GAGGCATTG AATCAGAGTG ACTCCATCTT GAATAGGGC
 182461 TGGTAAAT AAGGCTGAGG CCTGCTGGGT TAGGTTAGGC ATTCTAACCA GGAGTTAGT
 182521 CACAGGATGA GATAGAAGGT TGCACAAGGT ACCCGTCACA AAGACCTTGC TGATAAAAATA
 182581 GGTAACGGTA AAGAAGCCAG CTAAAGCCCA CCAAAACCAA CATGCCACA AAAGTGACCT
 182641 CTTGTATCC TCACTGCTCA TATACTAA TTAACTGCA TTAGCATGCT ACAAGACACT
 182701 CCCACCAGTG CCACGACAGT TTACAAATAC CATGACAACA TCTGGACGTT ACCTTATATG
 182761 GTCTAAAACG GGGAAAGAACCTT CTTAGTTCTG GGAATTGTCC ACCTCTTCC TGAAAAAATTC
 182821 TTGAATAATC CATTAGTTA GCACATAATC CAGAAATAAC TATACGTCTG CTTATTTGAG
 182881 CAGTCCATAC TGCTGCTCTG CCTATGGAGT AGCCATTCTT TTCTTTTATT TTTATTTTT
 182941 AGATAAAAGAC TCGCTCTGTC ACTCAGGCTG GAGTCTGGAG TGCAGTGACG TGTTTTGGCT
 183001 CACTGCAACC TTCACCTCCC GGGTTCAAGC AATTCTCCTG CCTCAGCCTC CCAACTAGCT
 183061 GGGACCACAG GTGGGTGCCA CCATGCCCTGG CTAATTTTG TATTATTAGT AGAGATGGGG
 183121 TTTCGCCATG TTGGCCAGGC TGGTCTCGAA CCTCTGGCCT CAAGCGATCC ACTTGCCCTTG
 183181 GCCTCCAAA GTGCTAGGAT TACAGGCATT ACCCACTATG CATGACCCAT TCTTTTATTT
 183241 CTTAACCTTT TTTTGTCTG TTGAGACAGA GTCTCACTCT GTCACCAGG CTAGAGGCTG
 183301 GAGTGCAGTG GTGCGATCTT GGTTCACTGC AACCTCTGCC TCCTGGTTC AAGCGATTCT
 183361 TCTGCCTCAG TCTCCTGAGG AGCTGGACT ACAGACATGT GCCACTACAC CCAGCTAATT
 183421 TTGTATTTT AGTAGAGACA GTGTCTGCC ATGTTGTCA GGCTTGCTC GAACTCCTAA
 183481 CCTCAAGTGG TCTGCCCTGCC TCAGCCTCCC AAAGTGTGT GATTACAGGC ATAAATCACT
 183541 GCGCTGGCC CTTCTTACT TTCTTAATAA ACTTGTCTG ACTTTACTGT ATGGACTAGC
 183601 CCCAAATTCC TTCTTGTGTG AGATCCAATA ACCCTTTGT GTGTGAAAGA ATGTATTGCT
 183661 GCTGTTCAAGG CTGGAGCAAG CTGGAGCTCA TGCTGCTGCT CAGACTGGAG CATCGTGAT
 183721 CTGTGATCCC AGTAAGAGGA TCATGGTCAC TCCAGCCTGA ACAGACAGCAT GATATCTCAT
 183781 CTGTAAGAAA AAAAAATTAC TAGAGGGCTT TAAACAGCAA TTTGAGCAGC AAAAAAGAAGT
 183841 AATCAGTGAAT CTCAAAGATA GGTCAATTGA AATGATCTAC TCTGAAAAAC AGAAAGAAGA
 183901 CAGAATGAAG AAAAAAGAAAT AGAGCCTTAG AGACAGGGGA TACCATCAAG CATACTAATA
 183961 TATGCATAAT GGGACTCTA GAAGGAGAAA AGTGGAGAGGA CAGGGAGAGA GAATGTTGG
 184021 AGAAAATAATT TCTCAAAGCT TCCCATGTT GGCAAAAG CATTAACCTG CATAACATATT
 184081 TTAGGAGCTC AATGAATTCC AAGTAGGATA CACTCAAAGA GATCCATACC TAGACACATC
 184141 ATAATCAGAT TATCAAAAGA TGAAGAAGAT GAATCTTGAG AGCAGAAAGA AAGGAACAAT
 184201 TCATCACATA CAAATAGTAC TCAAAAGATG TCTGGAGTAG GTATACTAAT ATCAGACAAA
 184261 ATAAAACCTTA AGATAAGCAT TGTTATAATA AATAAAGAAA GGTATTTGT AATGATAAAA
 184321 GTGTCAATTG ATCAAGAAAA CATAACATTA TAAACATACA TGACCTAAC AACAGAGCCC
 184381 TAATATTCAT GAAACAAAAC TGACAGAATT GAAGGGAGAA ATAGAAAATT CGACAATAAT
 184441 AGTTGGAGAC ATCAATACCT CACTAGTTAG ACAAGATCAA CAAAAAATA GAAGACTTAA
 184501 CACTTGAAAA CACCTAACCT GACCCTAACCA TAAATCTATA GGTCACTACA CCCAAAACA
 184561 GCAGAATAAA CATCCCTCTG AAGCTCACAT GAAACATTTC TCAGGATAGA CTGTATATTA
 184621 CTTCATGAAA TAAGTCTCAA TAAATGTAAA AGGACTATAA TAATAGAGTA TATATTCTCT

Figure 8 (Page 57 of 73)

73/162

184681 GACCAAAGTG GAATGAAGAT AGAAATCAAT AACTAGGCTG GGC GTGATGG CTCACGCCTG
 184741 TAATCCCAGC ACTTTGGGAG GCCAAGGCAG ACAGATCACG AGGT CAGGAG TTTGAGACCA
 184801 GCCTGACCAA CATGGT GAAA CCCTGTCTCT ACTAACAAAA TACAAAATT AGCCAGGCCT
 184861 GGTGGCATCT GCCTGTAGTC CCAGCTACTC GGGACACTGA GGCAGGAGAA TCAC TTGAAC
 184921 CCAGGAGGCA GAGATTGCAG TGAGCTGAGA TCGGCCACT GCATTCCAGC CTGGGAGACA
 184981 GAGCGAGACT CCGTCTCAAA ATTAAAAAAA AAAAAGAAC TAGAAAATA AGAACAAATC
 185041 AAACCCAAAG CAAGCAAGAG GAAAATGAAA AATTCAAAG CAGCCAAGAA CAAAAGGCAC
 185101 ATTATGTACA GAAGAACAAAG TGTATAGATC ACATATTCT CATAGACACA ATATAAGCAA
 185161 AAAGACAGTG GAGCAAATT TTTTAGATTA ATGAAAGACC TACAATTCTG TACCAAGCAA
 185221 AAAAACTCCC CCCAAATGAG GGTGAAATAA GACAATTAA TACAGAGAAA AGAGGAAGGA
 185281 ATTATCTAG TCATATGTGA GAGTTTATG ATACATTG TACTGTATAT GTGGATGTTT
 185341 TCTATTTCAT TTAAAAAAATC AACCGTGCAA TTAAATGGTA GATTGTCTTG CTTCTTTTG
 185401 ATTGACACAG TCATTAACTA AAATATTGTA GTATTTTTT ATCTCCCTGC CTAAAGGCAA
 185461 TAAACATCTA ATCAGCAGAC TAGAACAAATA AAAAATATT TTTAAAAGTC CTTAGGCAG
 185521 AATGATAAAA GTCCCTTAGG CATATTGAAA TTCCATTAA TACAAAGGAA TAAACAGTAC
 185581 TAGAAATTGT AACTATGTGA GTAAACAGAT AATATTTTTT CTCCATAAAAA TGTGGTTGAC
 185641 TATTTTCACA AAAATAGTTA ACAATGTAAT GTGTGATTAA TAGCATTAA AAGTAAAACA
 185701 GGC GGGCAC AAAGGTTCGT GCCTGTAATC CCAGCACTT TGGAGGCCGA GGC GTGCAGA
 185761 TCACTTGAGG ACAGGAGTT AAGACCAGCC TGGCTAACAT GGCAAAACCC CATCTCTACT
 185821 AAAAATACAA AAATTAACCA GGCGTGGTGG TGCACGCCTG TAATCCCAGC TACTCTGGAG
 185881 GCTGAGGCAC AAGAACACT TGAATCCAGG AGGTGGAAGT TGCA GTGAGG CAAAATTATA
 185941 CCACTGTGCT CCAGCCTAGG CAACAGAGCT AGACTCTGTC ACACACACAC ACACACACAA
 186001 AAGAAAAGTG TATGACAACA ACAGTGAAA AGAAGTGGAA ATGAAAATAA TGTTATTTA
 186061 TATAAGTGGT ATACTTTAG ATGAACTACG ATAAATTAAAT GATGTATACT ATAAACTCTA
 186121 AGGCAACCAC TGAAATAATG AAACGAAGAA TTATGGCTAA CAAGCCACAA AAAGAAATAA
 186181 AATAGAATGA GAAAAAATAT TTAAGTTGTT CAACAGATGG GAAAAAAAG AGGAAAAGA
 186241 GAACAAAGAA CAGATGGGAC AAATGGGAAA GTAATAGCAA GATGATAGAC TTAACTCTAC
 186301 CCATATAGAT TATCACACTT AAGGTAATG ATCTAAATAC TCTAATACAA AAGCAGAGGT
 186361 TGTCAGATTG AATTAAAAAA ACAGACAACA ACAAAAAAA GCAAAAAAG AGCCACAACA
 186421 TGCTGCCCTAC AAAAAATTCA CTTTAATATA AAGACACAA TAGTCTAGAA CACCATCACT
 186481 TTTAACCTTA TTTACTCAA CCTCCTGATC CCTATTATT TATT TATTAA TTTATTATT
 186541 TATT TATTAA TTTATTATT TTTGAGACAG AGTCTGACTC TGTTGCCAG GCTGGAGTGC
 186601 AGTGGCACCA TCTAGGCTCA CTGCAGCCTC TACCTCTCGG GTTCAAGCGA TTCTCCTGCC
 186661 TCAGGCCCTCC CAAGTAGCTG GGACTATAGG CACATGCCAC CATGCCAGC TAATTATTAT
 186721 ATTTTTAGTA GAGACGGGGT TTTGCCATGT TGGCCAGGTT GGTCTCAAAC GCCTGACCTC
 186781 AGCCTCCCAA AGTGTGGGA TTACAGGCGT GAGCCACAGC ACCCAGCTCC TCTTCATTTA
 186841 TTCTTGCTAC GCTTCCCTCA ATCCATTGAT TGCATTGAT GATTTGCCA GTAAC TTCTT
 186901 TATTTTCTG GTAAAATTAC TTATGGGTCA CTGAGGACTG GGATGTTCTT TCTCTAGAG
 186961 GGGGTTTGTG TCTGCTTTG CCAGGAAGCT GGGGTACCAAC CAGTCAAGTA TTACTTTAAA
 187021 CTCAATTCTA GAATTGAGAC TTTTTTTTT TTTTTTTTT TTACGAGAG TCCTACTCTG
 187081 TCACCCAGGC TGGAGTGCAG CGGTGTGAAC ATGGCTCACT GCAGCCTCAA CCTACTGAGC
 187141 TCAAGCAATC CTTCTGCCCT ACCATTCTGT ATAGCTAGGA CTACAGGTGT GTGCCACCAT
 187201 GCCTGACTAA TTTTTAAAT ATTTTTTTA GAGATGGGGC TCACTTGTT GCCCAGGCCA
 187261 GTCTCGAGCT CCTGGGCTCA AGTGTACCTC CCACCTTGGT CTCCCAAAGT GCTGGGGTTA
 187321 CAGGCATGAG CCTCTGTGGC TAGCCAAGAC TTTTTATT TTAGCCTAAA TGTGTATAAA
 187381 AGTTGGCTTG TGGTTACAAC TTATCAGGAT TGATGATCTC TCTCTCTCTC TCTCTCTC
 187441 TCTGTCTCTC CCCACCTCTC TCACATCCCT TGCTCTGCTG AGAAGCAGAG CAAACATTCT
 187501 AGCAGTTCC AGAGAGTAGG ATGGGATTAC TTCTAGTTA CTTTTATCAT CCTTTGGGAT
 187561 CGCAGTATTA CTGGGAGAAC ACAAGTATCT CTTATTAGAC ATACCACCTT TGTAGAATCT
 187621 GGACTTTCAT TTTAGACTT ATTGTGTTTC TACTATAAGC AATTAAAGTT ACAGATCTCT
 187681 CTACACACTG TTTAAGTTGC ATCCCAGAA TTTTGATGTG CTTTATTGTC ATTATTATAT
 187741 AGTACAATGT ATTTGTAAAT TTTTGATGTG TTGTTGGAG AGATTGATTA ATTAGAATGA
 187801 TGTTTAATT CCAAATATGT GTGTTTTTT CTACATTCT TATT TATTATT GATTCAAAT
 187861 TTATTCTAC TGTAGTCAGA TTTAATAATT CATTATT TATTATTTC ATT TTTTTAG

Figure 8 (Page 58 of 73)

187921 AGACAGGGCC TTTCTGTGTT GCCCAGGTT GTCCCCAACT CCTAGTCCC ACGAGTTCTC
 187981 CTGCCTCAGC CACCCAAAGT GCTGGGATTA TAGGCACGAG CCACCCGTGC ACAACCAACA
 188041 ATTCAATTAA AAAGTGGGCA AGTGAACGT ACAGACATT CTCAAAAGAA GGCATACAAAT
 188101 TGGCCAACAA ATATATGAAA GAATGCTCAA CATCACTGTA TTAGTCTGTT TTCATGCTGC
 188161 TAATAAAGAC TTAACCTGAG ACTGGGAAAT TTACAAGAGA AAGAGGTTA ATGGACTTAC
 188221 AGTTCCACAT GGCTGGAGAG ATCTCACAAAT CATGGTGGAA GGCAAGGAGG AGCAAGTCAC
 188281 ATCTTACATG GATGGCAGCA GGCAAAGAGA GAGCTTGTGC AGGGAAACTC CCGTTTTAA
 188341 AACCATCAGA TCTCGTGAGA CTCATTCACT ATCATAAGAA CAGCATAGGA AAGACCCGGC
 188401 CCATAATTCA GTCACCTCCC ACTGGGTCC TCCCAGGACA CATGGGAATT GTGGGAGTTA
 188461 CAATTCAAGA TGAGATTGAG GTAGGGACAC AGCCAAACCA TATAAATAAC TAATCATCAG
 188521 GGAAATGCAA ATCAAAACCA CAATAAGGT ATCATCTCACC CCAGTTAGAA TGGCTATTGT
 188581 CAAAAAAACA AAAAATAACA AATGCTGGT AGGATGTACA GAAGAGGGGA CTCTTATGTC
 188641 CCACTGGTGG AAATGTCAAT TAGCATAGCC ATTATGCAAAT ATAGTATGGA AGTGAGGTAG
 188701 GTTACATAGG GTGGTCACAG CCTCCCTGAA AAGGAAACAA GAAACTTGTG AAATTGATGG
 188761 AGAGAACAAA TCTCTTGACA TTACACAAAC TGCATCTGGG GCTAGTGGTT AGAATATCCT
 188821 CAGTCAGGA GGTAGAAGAG CAGGAGGGAA AATCCCTAAG TTCGTGCAAG TGCAAGAAC
 188881 CACAAGCTGT GTTCTCAGGT TGACATATAC TCATTTAAAT AGTAAGAAC ACACCCCTGG
 188941 GTAGAGAATT AAAATGCTAA TAATACATGT GATGTATGTA CTAGCGTGT TGGCAATATT
 189001 GCATGCACAT TCAAGAGACC ACCCAAAACA TATTTAACAA CAATGCCAT TCCCACCCCC
 189061 TCATGGATAA TCACGTAGGA CTCCCATAAAC GGGAGTTCT TCAGTGTCAA TTGGTGCTGA
 189121 AGTAGCCGAC CCTGACTCTG CTATCAGCGT GTACTTTCAC CTTGCAATAA ACTCCTTGC
 189181 CTACTTTAC TTTGGACTGG CTTTCAAAATT CTTTGTGCA GGGATTCAA GAATCTGAAC
 189241 CAGCCTACTG ACAACAGAGG TTTCTCAGAA ACCTAAAAAT AGATCTACCA GATGAGGCTG
 189301 AAAATCTGCT ACTGGCTATT TATCCAAGG GAAGGAAATC AGTATACAAA GAGACACCTA
 189361 CATCCCCATG TTATTCAGGT CACTCTCAC AAGAGCTGAT ATATAAGTC AACCCCTAAAT
 189421 GTTCATTAAC AGACAAATGG ATAGAAAATG TGGCATATAT ACACAATGAA ATACTATTG
 189481 GCCATGAGAA GAATGCAATC TTGTCATTTG TGGCAACGTA GATGAAACTG GAGAACATTA
 189541 TGTAAAGTAA GATAAGCTAG GATTGGAAAG ATAAATACTA CATGTTATCA CTCATATGTC
 189601 AAAGTAGAGA AAAATTTTA GCTCATGGAT TTAGAGAAC GAACTGTGGG TACCGGAAGC
 189661 TGGGAAGGGT AGCAAGGAGG GGAGGATAGG GAGAGGTTGG TTAATGGTGA CAAAATTACA
 189721 GCTAGATTGT AGAAATGAGT TCCGGTGTTC TGCAACCATTG TAGGGTGCAT ATGGTTAATC
 189781 CTCATTTATT GTATATTTTCA AAAAAGCTAG AAAAGAATTG TGAATACTCA CAACAAAATA
 189841 AATGATAAAAT GTTAAAGGTG ATGGATATAC TAATTACTCT GATTGATTA TTACACATTG
 189901 TGTACACATA TAAAAATATC ACTCTTTATC CCGTATATAT GTACAGTTAT TATATGTCAA
 189961 CTAAAATATAA AAGAAAAAAA GAATATGATC TATCATGATG TATATATCAT GTGTAATTG
 190021 GCAAAATGTG CATGCAGATA TTGTGTATAA TGGTCTATAA ATCAATTAGC TCAAGATAAT
 190081 AGATAGGATT GTTCAGATCT TCTGTGCTT TACTGATATT TTGCTAGTT ATTGCATCAT
 190141 TACCAAAAAA AGGGTGTAA ACTCTCCAAA TGTGATTGTA GAATTGTCTA TTTTGTCTTT
 190201 TCTTTCCAT TTTACTTTA TGTATTGTA AACTCTGTTA TGACATTTTG CTATGTATTT
 190261 TAAAACCTCG TTATGTATTT TGAAACTCTG TTGTTAGAAT CATACTTTA TGATTATTAT
 190321 GTTTCTTGA TGAAATGACA CTTTCTATT GTCTATTGTT TTGTTTTTC TGAAATGGAG
 190381 TCTCACTCTG TTGCCAGGC TGGAGTACAG TGGCACAAATC TTGGTTCACT GCAACCTCCA
 190441 CCTCCTGGGT TCAAGCGAGT CTCCTGACTC AGCCTCCAAG TAGCTGGAT TACAGGCATG
 190501 TGCCAGCATG CCAAACAAAT TTTGTATTT TATTAGAGAC AGAGTTTCAC CACGTTGGCC
 190561 AGGCTGGTCT CGAACCTCTG ACCTCAGGTG ATCCGCCAC CTCGGCATT TTATTTTATT
 190621 TTATTTTTT GAGACAGAGT CTCACTCTGT CACCCAGGGT AGAATGCGGT GGTGTGATCT
 190681 TGGCTCACTG CAACCTCCGC CTCCTGGTT CAAGCAATT CCATGCCCTCA GCCTCCCAG
 190741 TAGCTGGGAT TACAGGCACA TACCACCATG ACTGGCTAAT TTGTTATTT TTAGTAGAGA
 190801 TGGGGTTTTT CTATGTTGGC CAGGCTGGCA ACTGACTCCT TTAACAATAC AAAATATC
 190861 TCTGTCTCTG GTAACACTCT CTGTCTTAA CTCTATTTTA GCTGTTATTA TTATAGCCAT
 190921 TTTAGTCTTT TTATGTTTC TGTTTGCTA GTGTATATAT TTAAATATGT TTATTCTCAA
 190981 GTTATCTGTG TTTTATATT TAAGATGTTT CTCTTCTAGC CAACGTGTTT GGTTCTGCA
 191041 TTTTAAGTC GATTCTAACAA ATCTTGCCT TTCAATTGAA ATATTTACAC CATTAACATC
 191101 TAACATTAAC ATTTATTTT CTTTCCACAG TACACTGGCT AGCATCTCCC ATATAATATT

Figure 8 (Page 59 of 73)

75/162

191161 GAACATAAAAG TGTGATAACT GACATCCTTA TTTCATTCCCT ACTCTGAGTG GAAAGGGCAG
 191221 GGGTGGAGAA AGCATTCAAC AATTGCCAT AATTATAATG CTTTTGTTA CACTGTTTC
 191281 TTCTGCATTA AAAAATATCA TTACATTTC CATGAATTAT TAGGAGAAAA TATTTCCAA
 191341 TTTTCCTGGA AAATGCCATA ACCACGTCTC TCAATTTCAT TTCCATCTT CTTCCACATT
 191401 TTACATAACC TACATAAGAG ACACATTATC AAGTATATT TACATGGCTT CTCAGTGTCT
 191461 TCTCTGTCTG CTAACAGGT TACCAAGAGA TGGCACTCTT GTATTCTGG TGGCTATGTC
 191521 CATATCGTT TGCCTTTAAG ACAGCGTAAC TACTTCTTTC ACCAGTATTA AAGACATGTA
 191581 CATTGATCT GGTTCTTGTG GATGATTAA AATGACTCAA GCTAATAATC CTAATTTAC
 191641 CTAAACACTC CATTATTTA AAATGTATT CTTTATGCC ACAATAAAC A TTTATTGACA
 191701 TTAGGCTGGA CATTAGGCTT CTCTATGGCA GACATTAGGC TGGACCTAG CCATATATCT
 191761 ATTGAGGGAA AAAAATTAT TTTCTATATA AGTTCCAGA AAGCCAAGAT GTGTTTAAA
 191821 AACAAAACAA AACATTACAT TCTAAATGCT GTAACAAGAT AAGAAAAAGT GTTGAGGCTG
 191881 AGAGAAGAAC AAAGCAGCAA GCAACTCCTG GAAGGACAC TGCTGCAGAG GTAATAACTG
 191941 GTGAACCATG TTTGGAGAA GGAAAAGGTC ACCAAGAGAA GGAGGGGTC CAGGGTGTTC
 192001 AGAAAAGATTG CATGCATAAA GATCAAGGGT AAAAAAAA ATTCCGTATT ATGTAATGT
 192061 GAAGTTCCAG GACCAGT GAGC TTGGAGAGCA TGAAGTACAG GAGGAGGGTT GGTTCAAAT
 192121 AAATCTGGGA ATGAAACAGT GAAGCCTCTG GCAGAACTCA CATCTTTTC CTCCCCTCTT
 192181 CCTTGACAT TCCCCTTATG GAGTAATTGC AGGGATGGGA AAAGTCAAA ACCACCACTG
 192241 AGCCTAGGAA GTGCTAGGGT AAAGTGGAGA ATGAACCTGC GTGATTTGCT CATCCTAAAC
 192301 TAGGTTCTTC TAGGAGAGCC CTTCCCCATA AAATCTGCC TCCTCGAAGG GGCCCAGACA
 192361 GCCTAAGCTC ACCTCCAAA GACCCCTTAC TTGCTGACTG AATCTGATT CACCCAGACA
 192421 TGGCCTAAAA CCCTTCCATA ACTCTATAGC CAAATTCAAT TTTAGACAGG CCTCATACCA
 192481 ACCTTTCTTC CTCTAACGACT GCAACCTCTA ACATTCTCTA CACACTTGG
 192541 GGCCATAGAC GTGCTACCAA GTCTCCAGAC CTAGACCTGA TGGAGCAGTG CTGTAATGAG
 192601 ACGACCACGT GCCTTGAAC CAGACCTTC TCTGTGGCTC CTATGCATCT CCAACCTGTT
 192661 TTGAGCACTG CTGCCAAGAC ATCTTGGCA CTTTGTGTT AAGTTTAAA ACTGAACAA
 192721 TCTACAAAAC ACCTAACCTT TAAAAATTCA TTGTCATTTT ATATCATGAA AGATAAAGAA
 192781 AGGCCAGGAA ACTGTTCCAG GTTAATAGAG ACTAAAGAGA TAGCAACCAA ATGCAATTG
 192841 TGATCCTGGA TTGAGGGAA AAAGTGTGT CAGAGACATG ATTGGGACAG CTGGTAAAAT
 192901 TTGAATTGA ATTTAAAGAT AAAGTATTGA GTAATATAGG AAGATGATTA TCTGCAACTT
 192961 TCAAATGTT CAGTAAGTAT ATATATATAT AAAGAGATAT AAAGACATAT AAATAATGG
 193021 ATAGGTAGAG AAAAAGCAA TGTATAATAT TAACAATCTA GTAAAAAGT ATATGAGTGT
 193081 TCTTGTACT GTTTTCTGA TTTTCTATA TGTTGAAAT CATTAAAAA TAAGAAGGTT
 193141 TTTGGGTTT TTTTGTGTT TTTTGTGTT TAGAGACAGC ATCTTATTCT GTCACCAGGC
 193201 TGTAGCTCAG TGGCCCAATC ATTGCTCACT GCAGCCTCAA CTTCTGGC TCCAGTAATT
 193261 CCCCCCTACCT CAGGCTCATG AGTAGCTGGT ACTTCAGGT TGCACTCTG CACTCAGCTA
 193321 ATTTTATTT TTTAAATTT TGAGAGATG GCATGTTGCT ATGTCACCCA GGCTAGTCTC
 193381 AAACTCCTGC CCCCAAGTGA TCCTCCACT TTGGCCTCCC AAAGTGTAG AATTATAGGC
 193441 ATGAGCCACT GCACCCAGCC CCAAATAAAA AAGTATTAA TTTAATTAA CTAATTAAC
 193501 TTGAGTCAGA GTTCACCCCT TGTCACCCAG GCTGGAGTGC AATGGCATGA TGTTGGCTCA
 193561 CTGCAAACCTC TGCCCTCTGT GTTTAAGCGA TTCTCTTGCC TCAGACTCCT GAGTAGCTGA
 193621 GATTACAGGT GCCTGCCACC ATGCCAGCT AATTTTATA TTTTAGTAG AGACGGGTT
 193681 TCAGCATGTT GGTCAAGCTT GTCTCAAACCT CCGACCTCA GGTGATCCAC CCACCTCCGC
 193741 CTCCGAAAGT GTTGATGAGC CACACACCC GGTCTAAAAA GTATTAAA ACCACAGTCC
 193801 CACTCTACCT TGTCCTACAC TACCAAGGGC TAGGATCACC CCATGTCTC TAGGCTATGA
 193861 GATAGAGGAA TCCAAGGAAG AAGATAAGCT ACTTGGTTCC TCTATAGGGT CTTGTGTG
 193921 CTCTCATGTG CTCTCTCTCT CTCTCTCT CTCACACACA CACACACACA CACACACACA
 193981 CACATGAATA CCAGAGCTAT CACTTTCCCA GTCTAGTACT CATCTCATCC CAAGGGTTT
 194041 GTGTTGTAGT GGTTGCTCA TTTCTTGTGTT TTGTTGTT GCTTGGATTA TTCTTTCT
 194101 CTTTTGCAAGGGAG AATTCCAGG CCAGCCCTT GGCCATTAGA GTTACAGTGC
 194161 CTCTATTCAAG GCTTCATAGA GAGACCTGGG ATTCAAGTAGT GGGGGCTTT TATCCAGTTC
 194221 AAAATAATGC ATTCTCACCA AGATGTACTT TGAAATAAAAA CAATACTAAA ACACAAAATT
 194281 TTATTTATGC TGAACATTGA ATCACTTTT TCTGTATT GTGTAGAAAG TTATACACAC
 194341 ACAAAACACAT TTGCTCCTGC TTTGTTTATT GGCCAGGGG TATGTTGGT AATACTTCAT

Figure 8 (Page 60 of 73)

194401 CAGGCATGAG TAGTACGTCT TGGAAGGTGT GGTCTAAAGC CTAGACTCCT ATCTGCTTCC
 194461 TTCAGCATTC TCCAGTGTAT CTGTCATCTG TCTACCTTAG GATAGGGTC TCCAGAACCTT
 194521 CCATTCACTAT TTAGAAGAGG GCAGCGCTT TCTATGGAAA ATATGAACTC TCATTCATCT
 194581 CTATTCCCTC TTCTAGCTAT GGTCCAGCTC AGCTGTTGG AATAAAAGTAT CTATATGAAG
 194641 TCTGCGAATG GTTCTCAGAC TGGTTGAACA TTAGAATCAC CTGAGTACCT TCTAAAATTC
 194701 TTATTACCCA GGGCATATCT CAGAATGAGT ACCGCAGGGT AGGGATAGGA TTAGGGATCA
 194761 TGATCTCTGG AGTCTGGTT AGGCAGTAGT GCTGTTAAA ACTACGTTCA TGAGGTGGAG
 194821 GTTGCAGTGA GCCGAGATGG CGCCACTGCA CTCCAACCTG GCGACAGAG TGAGAGTCTG
 194881 TCTCAACAAA ACAAAACAAA AAAAACCAAC TACCCCTGTG ATTTGAATGT CCATCCAAAA
 194941 TTGAGAACCA TTAGGTAAGG CCAAGCTGTA TAATTAAAGA GCAGTTTCA TTTGTCTGGT
 195001 GTGGTGGCAG CTTTTGATA AGGGAAAGTAT TGTTGCCATC CACATACCTG AGCCTCACTC
 195061 CTGAGAACAC TGGTGTGTAT GTTGCTAAAA TTCCCCAGGT GATTCTGAGG TTCCTTCCTG
 195121 GATAAAAACC ACTGACCCTG GGAATGTACC CACTGCCAT CTCCTCGTA AACCTTGGAT
 195181 ACTGGGAAGC CTACAGTTGA AAATATTGGG CTTGAGATCC TGAAACAAAT CTTGTATTT
 195241 ATTAAGACTA ATATTGGTA CAGTGCAGCA AATCAAGGGA ATTTTGGTGG CTGAGTTCTT
 195301 TTAGAACTTT TGCAATTGAAA TAGGTTCAAG CAGCAATAAG TTAAAACACTAC AACCTCAGCT
 195361 AAAGGATTAA AAGACACGTG AGCTGGGTAG GATGAGGTCT AAGGTTGGGT GTGGCGGCTC
 195421 ATACCTGTAA TCCCAGCACT TTGGGAGACT GAGGTGGGTG GATCACTTGA GGTCAAGGAGT
 195481 TCAAAACCAG CCTGGCCAAC ATGGTAAAAA CCCATCTCTA CTAAGAAATAC AAAAAAATTA
 195541 GCTGGCGAG GTGCCAGGCA CCTGTAATCC CAGCTACTGG GGAGGCTGAG GGAGGACAAT
 195601 CACTTGAAC TAGGAGGCAG AGGTTGTAGT GAGCTGAGAT CGCACCACTG CACTCCAGCC
 195661 TGGGTGACAG AGCAAGACTC CATTAAAAAA AAAAATAATA ATAATAACAA TAATAATAAT
 195721 TCAGACATAT CCAGGCATCA AACAGATACC TGGGGCAGAT GAATAGTCTT GAGATTCAAG
 195781 TCACACATGA AATTAGGTG GAAAATGACA TTGGAGAAAT TTGAGATTAT GATGAATGGA
 195841 AATTTTCAA AGAGGAATTG CAGGCTCTGT TCTTGAGGGG ATAGATGGAC TTCCAACAGC
 195901 AATAACACAG GATTAATGAG GACTTGGGAT GTTACATAAA TTAGAGATGT TAGATGGATA
 195961 AAGAGATAAA AGTACTCTCT CTAAGAACAT GGGACCAGAG ATAGGCTCAC TTCTAACCAT
 196021 CAGATATAAC TAGCAGACTA AACGGTCTAA AAATAAAAT CATGCCAAC TCCTGCTTAA
 196081 GACATTTAA TTACTCTCAG TAACTCTCA GTTTTCTAC TGTGTATCT TAACTACAG
 196141 GTTGGTCTG GGTGTGCAAC ACAAGAAAGC CTGGCATATA CATGGATTCA AGTGTATGCC
 196201 ATGTGCAGGT ATTCTTCAT GTACTATTTC ATGTATTCTT TTTCACATCT GTTTTTCCCT
 196261 TCATTGAAGT CAATGGCTGA TATTAGATT TACTATTCTAT GTGTACTAGT TATATATAAT
 196321 TGTTACAAA CAAATTAGCA AAAACTTAGT GGCTTAAAGC AACACACATT TATTATTACC
 196381 TAAGGTCTGT GGATAGAAGT TCTGACATGG CTTAACTGGG TTCCCTGCTT CAAGCCTCAT
 196441 GTGGCTGCAA TCCAGGTGTT GGCTGAGTCT GAATTCTCAT CAGAGGCTTG ATTGTGGAAA
 196501 TTTCCACTTC CAAGCTCCCT CAGGTTGTT GAAAATTCA GTTCTTGCA CCGGTAGAAG
 196561 CTTCTGGTA GAGGCTGATT CAACTCTAG AGGCTGTCTG CAGTTCTGT CACCCAGGGT
 196621 GGAGTGCAGT GGAGCAATCA TAGCTCACTG CAGCCTGAC CTCCCAGAAAT CAATCTGTT
 196681 TCCCACCTCA GCATCCTGAG TAGCTGGGAC CACAAGTGTG TGCCATCACA CCTGCCTAAA
 196741 AAACAAACAA ACGAAAAAAA ACCCCCCAGAG AACTTTGTAG AGACAAGCTG GTCTGGAAC
 196801 CCTGCGCTCA AGCAATTCTC CTGCTTAGC CTAAAAGTTC TGGGATTATA GGTATAAGCC
 196861 ACCATACCTG GCATATGGCA AGTCTTGAGC AGGACAAATA CAGATGATT ATGTCTGTCT
 196921 TCCATGGTAT TCTAGGTTAT TGTTGAGATG GTCTCTATT GTCTTGTCC ATCTATTGAT
 196981 TAGATAAAAC GTTGTTCCTT CTGTTATTT TCAACAGTAG CTTTTATGTG TCTCTCTTAA
 197041 TCTTAAATT CTAACCAAAG AGCTGCTCTT TTCTTGGTGT ACTTTACCTT TGGTTGATCC
 197101 TTCTTAACCT CTTCTTGGCC TCTGGGGCCT AAGATGAGGG CTGTTATCAG ATGTGAGTCT
 197161 ATGGGAAAGC AAGCAAGAGG TTCTTCAGCC TCCGTTCAGC CTTAAATGTC TAGGTAGAAA
 197221 TCAGTCATGG CCCTTCCAAT GTGGTACAGA CCAGATCACAGA GAGACAGGGG TCTCAGCCAA
 197281 GGTCTTGTGG CCTAACGCTT ATAGAAATAA TGAGTGTGTTA CTTACTTGGA GAACTCCCTT
 197341 GGAATATCTT TTTTGTGAA CCTGAGGCAA CTTTTGGTGA TTTCTTGATG TCTTGGGAAT
 197401 CTTGGTCTAG AGCCATTCA ACCCGATTTC TTTCATGTC AGTGGCATTG TGTGACCAGA
 197461 TAGTAAATAA GTTCTATGAT GTTCACTCAG AGAAATACAA TGACTTATGA TGCGAAGCCTT
 197521 CTGTGGTTCA GCCCTTACTT CATCTTCATT CCCTCTTATC TGCATCTGTC TCCTGCTTGG
 197581 GAACAAAAGT CTGGCTTCAT TCTATGACCC CCACGTTGAG TTTCTTAGTA GCACTTACTT

Figure 8 (Page 61 of 73)

77/162

197641 TTCAATTAGG AGTGTCCCTCA CTTCTATCCG TCAGACATAA CTAGCCGACT AAACAGTCTA
 197701 AATATAAAAA TCATGTCCCTA CTCCTGCTGA AAACATTTA ATTACTCCCC ATCATTAAAT
 197761 TTTTCTACT GGGTTATCTT TAACCTCAGA GTTGGTCTTG TGTGCAACAC AAGAAAACCT
 197821 GGCATATACA TGGATTCAAG TGTATGCCAC GTGCATGTAT TCCTTCATGT ACTATTCAT
 197881 GTATTCTTT TCACATCTGT TTTTCCTCT AAAATTATT TCCTTTAAA AATGAAAATT
 197941 TTGCATTTGA CAAATTGTG CAAATTAGT CAAATTGTT TAAAACCATT TTTAAAATGT
 198001 TTCCCAGGT TTTGAGTGA GTTAGTACTT CAGAAAAACT GTTTGTATT TTTCTGTGA
 198061 CCTCAGTGCA CTGCTGTGCA TTTCCATTTC TGCGTCCACA CACATTGTT TTGAGGAAAT
 198121 ATAGGAACGA CAAGATAAAAG TTCAAGCTCC TGGACATTGC ATAAAAGACC GTCATGACCT
 198181 GGTCTGTG ACTTCCCTAG ATTTCCCGCT ATTCCTAAG TTGAGATTTT TGGTTGGAT
 198241 GCTTGTGTT TTCCTAAAAT CAAAATAGGT TTTGCCTT TATGATTATA CAGTAATAA
 198301 ATGCTATTG TGTGAAACTT TAAACAATAC AAAAAAAACC TAAGGAAGAA AGTCAGATTC
 198361 ATCTAAAAT CCTTGTTGCC AGAATTAAC ACCTTAGTTA CTATTTCTC TATCTCTCTC
 198421 TCTCAATGTA TATTGGTGT AGGTATAGGG GTGTGTGTA TGTGTGTGTA TGTATATATC
 198481 TGTTTCTATT CCTGTATGTA GATGTGCACA ACGCATCCTG CTTTGACAC TACAGTACTA
 198541 GCATTTTCT AATGTAATTG AATATTGTT AAAACATTAA AAAAAGCTT GTATATATAC
 198601 ACACACATAC ACATACATGC ATGTATGTAC ATACACAT ACAGACAAAA ATGTATCCTA
 198661 TGTATATTCA CACATGTATA CACACTCACAC CATAACATAGA GTTTTACATC CATACTTAT
 198721 AAATGTTGCT TTTTTTGGT CACCTTTTG CTAAGTCTTA CACTTTTTT TTTTTTTTT
 198781 GAGACGGAGT TTGTTGTCA TTGCCCAGGC TTAGTGCAGT AGCGCGATCT CACCTCACTG
 198841 CAACCTCGAC CTCCCGGGTT CAAGCGGTT TCCTGCCTTA GCCTCCTGAG TAGCTGGTAC
 198901 TACAGGTGT CGCCACCATG CCTGGCTAAT TTTGTAGTT TTTTATAGA GACGAGGTTT
 198961 CACCATGTT GCCAAGCTGG TCTGGAACTC CTGACCTCAA GTGATCTGCC TGCCTCAGAT
 199021 TCCCAAAGTT CTGGGATTAC AGATGTGAGC CACTGCACCC GGCCAAGTCT TACACATCTT
 199081 TTTTTTACCA CTAAACTGTT TACCCAAACC TGATAACCCA AGTCAACAGC TATTATGGCT
 199141 CACACAATCT TATGAAACA AAGATACAGA TATATAGAAT TTTCTTGATT AATATTCAAGA
 199201 AAAAAATGGA GTCCCTTAT ACgtccttag TATCTGCTT ACTCATTAA AAATGTATTA
 199261 CATTATATGA AAGTATTCAAG GTCAAATGTT ATAGATGTGA TTCATTCTT TAAACTGTGT
 199321 TATTTTCTG CAATGACTAT GTATCACAAA GTACTCAGTC TTCCACTGAT GAAAATTTGG
 199381 GCTATTCGA GTTTGTCTTC CATTTCCTT TCTCCTCTT GGATTTCAC TCAATGTGTT
 199441 TACTAATTG AAGAAGAATCA ATAGTTTTA TGGTATTACT TCTCCCATTC AAGAATATAG
 199501 CATATGGTAT AGTATAGTAG AGTACTTAGT TTAATTTAGC CAGATCCTGT TTTCTGCCCT
 199561 TTAATAAAAT TCTATCATT TCTGCCTTG AGTCACATT TCCCTGTTCA TATAATTCTT
 199621 AAAAAATGTA TAGTTTCAT TCTAAGGGAA CATAAAACT TCTTCCATT TCTATTCTG
 199681 TCTAGTTAAT TCTACTATTG GGAAAAGTAA CTGTTAAAAA AAATTCTTAT CTTTCCAGTC
 199741 AGTTCACCAAC ATTTCTTTA TACCTTGTA CTTTAATCCC CAGTCATGTT GAACACTTCT
 199801 TATTCCTCAC ACCAAGCCTC AACGGGTTG CTCTTTCTGG AAGGTGCTTC CCCTGTATTA
 199861 CTGACTTATT CATAACACAC ATGGAGACTG GCGCAGCCCT GTTCTGCCTG GGAAGCCTTC
 199921 CCCTGATACC CCCAGTTGGC AGGAGTCTTC ATTGTGTTCTT TTCTAGTCAC CTGTGCAAGT
 199981 TTGTATTGTT CATGTTTATC ATCCTTCATT CTAGTTGTT GTCTCTGTGT GTGGTCTCAT
 200041 TCAGTGGACT CTGAACTCTT ATGAAGTCAT GTCATGGTC AGATCTTAAT AAATTAATAT
 200101 TGTCGGAAGC TAATGTCATG TCTAGAATAC AGAAAATTTA TCAAAAAAAA ATATAGTATG
 200161 TTGGCTGGGC GCAGTGGATC AAGCCCGTAA TCCCAGCACT TTGGGAGGCC GAGGCAGGAG
 200221 GATCACATGA GGTCAAGAAAT TCAAGACCAAG CCTGGCCAAA ATGGTAAAC CTCATCTCTA
 200281 CTAAAAATAC AAAAGTAGC CAGGCGTGGT GGTGCCACC TGTAACTCCA GCTACTCAGG
 200341 AGGCTGAAGC GGGAGGATCA CTTGAACCTG GGAGGCAGAG ATTGCAATGA GCTGAGATCA
 200401 TGCCACTGCA CTCCAGCCTG GCGCAGCTG AGACTCCATC TCAAAATAAT AATAATAATA
 200461 ATAATAATAA TAATAATAAT AATTGTATGG AATTGAACGT CTCTGATTGG AAATAGCTGT
 200521 TTTTAAAAA ATTATTATT TTTAAGTTCC TGGGTACAAG TACAGGATGT GCAGGTTTGT
 200581 TACATAGGTA AACGTGTGCC ATGGTATTG GCTGCACCTA TCAACCCATC ACCTAGGTAT
 200641 TAAGTACAGC ATGCATTAGC TCTTTTACCT AATGTTCTCC CACACCCCCA CCCCATCCTC
 200701 CCCCAACAGG CCCCAGTGAG TGTTGTTCCC CTCCCTGTGT CCACATGTTTC TCATTGTTCA
 200761 GCTCCCACTC ATAAGTGAGA ACATGAGGTG TTTGGTTTTC TGTTCTGCC TTAGCTGTTA
 200821 ATGTCAGGCC AGAGAGGCTT AAATTTTAA GGATCTCTGG ACTTTCTTC TACATTACTC

Figure 8 (Page 62 of 73)

78 / 162

200881	TTGATGTTA	TAATGTTAC	AACTCTTTA	ATTCATTTA	ATGTATAACCT	TATTGAGTT
200941	ATTTAACTGA	GTAACTTG	TTATATGAAA	ATCATGATTG	GGAGTGAGGG	GGTAAACCA
201001	GCTACAGAGA	TCTGATTGT	TGGTGGTGA	GCAATGCAAG	AATTCAATTCA	TTCAGTAAAC
201061	TAATGTTAT	TAAGCGTGA	CTGCTTAGT	CTGTTCAAGAC	TGCTGTAACA	AAATATCATA
201121	AACTGGGTGA	CTTATAAACAA	ACAAAAAATT	TATTTCTTAC	AGTTCTGGAG	GTGGGAAGTC
201181	TAAGATTAAG	GCCCTGGCAA	ATTAGTGTC	TGGTGAGGAC	AGGTAGCCAT	CTTTTGCTG
201241	AGTCCTAACAA	TGGCAGAAGG	GTGAAATAAA	CTTCCTTGGG	TTTCTTTAT	AAGGACACTA
201301	ATCCTAGTGA	TGAGGTTCT	GCCTCATGG	TATAACTACT	GCCCAAAGAC	CCCTCCTCT
201361	AATATTATCA	CTTGTGGGT	TAGGATTTC	ACATGAGTTT	TGAGAGGATA	CAGACATTG
201421	GATCATAGCA	CACACCATA	GACAGACACT	GTGCCAGAAGAA	TTGTGGATAT	AGTATTCTC
201481	AAAATGAACA	AGATCCCCTC	AGAGAGCTT	CAAATCCAG	CTATAAAATT	ATGCTTTTA
201541	AAACAAATTAT	GCAGTTGAA	AAATCTACTC	TGAATCTTAC	TTGTGGCATT	GAATACTTT
201601	GGCCACTCTT	TCCTTATTAT	ATTTAAATATT	TAATCTTGT	TGGGGGATCC	AGTCTCACCT
201661	ACTTTTCTA	CCAGAACTGG	TATCAGCTCA	TGCTCTGCCT	TATGCAAATT	AAGAAAATAT
201721	CATACCTTT	GGGTAAATT	AGCCAAGAAA	GTTCTCTTT	CTTCTCTTTC	TCTCTTTCTT
201781	TCTTCCTCTC	TTTCTCTTTC	TTTCTTCTC	TCTCTCTCTT	TCTTTCTTTC	TTTCTTTCTT
201841	TCTTCCTTC	TTTCTTCTT	TTTCTTCTG	ACAGGGTCTT	GCTCTATTGC	CTAGGCTGGA
201901	GTGCAGTGGT	GCAATCTCAG	CTCACTGCAG	CCTTGAACTC	CAGGGCTCAA	GCAATCCTCC
201961	TGAGTAGCTG	GGACTATAGG	CATGTGCCAC	AAACATCAAGC	TAATTTTGC	ATTTTTTGT
202021	GGAGACGGGA	TCTCCCTATG	TTGCTAAGGC	TGGTCTTGG	TTCCCTGGCT	TATGCGATT
202081	TCCTGCCTCA	GCCTCCCCAA	GTCTGGGAT	TACAGGCATG	AGCCACTGCC	CCTGGCCATT
202141	ATAACTATTT	TCATTGGCTT	ATCAGGCACA	TGATAACTAT	AATAAATCAA	TAACCAGAAT
202201	TTTAAATAA	AGAAAGGAAG	GAATTGTTTC	AACTCTTCT	GCTACCCCTC	TATCCCTCAA
202261	AAGGGTAGGC	TGAATGTTGT	CCTCCAAAGA	TATCCATGTC	CTAATCCCCA	GAACCTGTAA
202321	ATATATTACC	TTATATGACA	AAAGGGACTT	TACATGTTA	ATAAGTTAAG	AATTGAGA
202381	TGGGCAGATT	TTCCCTGAATT	TTGCAGATGG	GCCCTAGTGT	AATCACAAAGG	GTCCTTATAA
202441	GAGACAGGCA	GAAGAGTCAG	AATAAGAGAA	AAATACTTC	AGATGTTACA	CTGCTGGCTT
202501	TAAGGTGGAG	GAAAGGCCAA	GAGCCAAAAAA	ATGCAGTGGT	CACTACAAGC	TGAAAAGAAA
202561	AAGAAATGGA	TTTCCCCCTA	AAGCCTCTGG	AGGGGGCACA	ACCTTGCCAA	TACCTTGATT
202621	TTGGCTCAGT	GAAACCCATT	TTGGACTTCT	GACCTTCTAGA	ATTGTAATA	AATAAATAAT
202681	TTTGTGTTGT	TTCAAGCCAT	CACAGTTGTG	GTAATTACT	ACAACAGCAA	TAAAATAGAA
202741	TTAAATACAG	AGATCTGAGG	AGTTGAGTAG	GATAAGCCTA	CTCCAGCAGG	TTATTCGGG
202801	AGTATGGTGA	GACTCACTAG	GATGGCGGAA	CTCAATTAAAG	GAAGTCTGAA	GCTGATAAGC
202861	CAGAGAGGGA	AGGCTCTCAT	TTCATTTTAT	AAGGGTTGCG	TCACACTAGG	AAGATCCAAT
202921	AGCAACCACA	GTCTAAAT	TAATGATTAC	AAATAGGACA	CAATTCCAAG	AGTCGGAGC
202981	CAAGCAGAAA	ATGGATTAGG	GAAGACATGG	ATGATATGAA	ACAGGAAGGA	GGGGTACAAG
203041	GCAGCTTCCT	GGGAAGTTGC	CAGGGCAGTC	ACAGTTCACA	TTCATTAGGC	TGTGGCACC
203101	AAATGCATAT	GGAAAATCTA	GCTGACTTAA	CTGAACCTCT	GAAGAGGAAT	GAACACCTCA
203161	TTTATTGAGG	AGCTACTACC	AATTAGAATA	TGTATTTCAT	TTGTTCAATA	ACCCCATGAG
203221	TACAGTAACA	CAATCCTTGC	TTTACTAAAG	CGGAAGCCAA	TTCAAAGAGG	TTCAGTGA
203281	TGTCCAAGCT	CAGGGAAAAC	ACTAGGAAGT	GAATATGGGT	CTGACTCCAT	CACTGATTTC
203341	AGGAGCCCTG	CCCTTCTCTC	CACACCAGTC	CCCCTTGCTT	TCAGAAAAAA	AGGCTTGTG
203401	ACTGAATGGT	TGTATGCACA	GTTCAAAGCA	GAAACACACG	ATGACATCTT	TTGAGATACT
203461	CTAACAGTGA	GAACCTGAAA	ATGAAGTTAA	AAATTAAGCG	GCAAAACCAA	GCCGAGGCTT
203521	TCTGAGAAAG	TGGGGCCAAA	CCTGTTGCCG	TCTGACTGCC	ACGTGGCTCA	CTATTATCC
203581	CTGAAAAAT	CTGAAAAGT	ATTGAAAGG	GAAGAAGGGA	CAGAAAACTC	CCTCCTTTTC
203641	CAAGTTAGCC	TTATAGTCTA	GGGCTTAAAA	TACTGGTTA	ATGGTGAAGG	TAAGTGTCTT
203701	TCTTCTTTT	GGGTAGAAGG	ATTATTACTA	ACTTACCAAA	GGTCCATTAA	GGGGAGGGAA
203761	CAGTTTCTAGG	AGAAGTCAGA	GAAAAGACAT	TAACAGCAAC	ATAAGGATCT	CCATCTGGTA
203821	ATATTGCTA	ATTCCAAAAT	GAAGAGACTC	TCTGAAAAG	ATAACTGATT	CAATGAAGAC
203881	CCTAGGGCAA	GGCTTGAGAA	GCCACTGGTA	CCAATGGACA	CTGTGGACAA	TGGTCATTTC
203941	TCCAAGGACG	CTGTGAGTAT	TAACTGTGAT	GCTGTGATTA	GTCAGACTGG	GATTGGCTGT
204001	GGAATGAAAT	ACTGATCAGA	ACTGACAAGA	TTTGTGTTG	GGACTGTGGC	TAACGAGTCT
204061	TTTCAGACTT	CTATATGAAT	TTGAAATGGT	CTCTCAGGAA	AAGGAGACA	TGGCCGGGCC

Figure 8 (Page 63 of 73)

79/162

204121 TGGTGGCTCA CGCCTGTAAT CCCAGCACTT TGGCAGGCTG AGGCAGGCAG ATCACTTGAG
 204181 GTCAGGAGTT TGAGACCAGC CTGGCCAACA TGGTAAACCC CTGTCTCCAC TAAAAAATACA
 204241 AAAATTAGCA GGGCGTAGCG GCGCGTCAC CTATGCGCAT GCATAGTGCAG CGTGCAGCT
 204301 ATTCAAGGAGG CTGAGGCAGG AGAATTGCTT GAACCCAGGA CGTAGAGGTT GCAGTAGTTG
 204361 AGATCATACC ACTGCACTCC AGCCTAGGTG ACAGAGTAAG ACTCTGTCTC AAAAAAATAA
 204421 TAATAATAAA AGAAAAGGAG AACATGACCA AAGTTATGAA TAAGACTGAA GGCAAGAAAA
 204481 TTGTACGCTT GTAGAGATCA CCTAGCTTGT TGCCCTCATT GTACAGCTAA GAAAAGGCAC
 204541 CCAGGGACAT TGTGGTCAGC ACCAATTCT CAGAAAGATA GGCAGATGAT GAGAGGGCCC
 204601 TCAGTTTTC TAACACTGAA GGAATTGCTT CTATGTTTC TGTTGAACTC CTCCCCACTC
 204661 ATCTTGAGGA TTCCAGGCCA GAAGAATCCA CTTAAAAAA GAAACATTAA AAACCAATT
 204721 ACAACCAAT CAAAGGCAC TTTATAGAAA TACATTTCAT TTGCTGTAGG CCTGTATT
 204781 TGGATCTGAG AGGGCTAGAC TGCCAATATT GTGACTGTTT ATTATTATTG CTGTTGCTAG
 204841 TATCTAGAAT ATTATACAAC ATATAACACT TTGCAATTAA CGAGGCATGT CTCATACTT
 204901 TGTTTCACT CCAAACGTGCC CAGTGAAGTA ACATTATCCC AATTCTTCCT ATGAAACAGT
 204961 GAAAGCCCTA AGAGTTTTG AAACCTTACCC TGGTTTACTC AATTGGAA TGGCAGAGCA
 205021 GAATTTCAGTC CTTGAATATC CTCCCACCTGC AGGTTCATGC TCTTGATCT AGGTGTAACA
 205081 TTTACTCTGA GTAAACTAGG ACTCTGGCT AACAGAGATG AAGCAAGACA GGCTGGATAT
 205141 TAGGAGAATC TAAGAGCAAT CTAACGACCA TTATAATAAA ATCATGAGTT CTAGACTAA
 205201 AAAAGGGAA AAACCTGTTT TTTTGCTTAT GCGTATACCA TAATATTAC ATTATT
 205261 TTTTCTCAA ATTCAACCTA TACTGTGTCA AGTAATTAA TTTAATATAA CATTTCCTT
 205321 TAACTTAATT TCAATTCTATT TTTCTGTGTC TACTTACAAC TTTGGCACTA GAATTCA
 205381 TTTTTTTTA GAGGTATATC TCCTTAAAGG GAAGGGTTCT GACACTGTTA CATGTTCTCA
 205441 ATTGTTGCA AATAGGTTAA TAATTATTCC AGTGTCTCTA AGTACATATC AACCATGCCA
 205501 GTGTTCAGCC TCCATAATT TATTAGCTTC TGTGCTTATT TTGGAAAAAC ATTTCCCATT
 205561 ACCATGAAAG ACCTCAGTTT AGGATGGTTT GGTATGTTAG CCTGATTCT GCATTCGTCT
 205621 CATGAAAGG AAAATAGGAA ACGAAGAACT GAAATTACCT ATTGATACAA AATCAAAGTA
 205681 GCATTGAAA CCATAAAACT TAAGTAGGGC TTTTCATCCT TTCTCGTTAG ACAGCAACAG
 205741 AGAATGGGAA GAAAACCTAA AGTGTGGGT TTGTGATACA ATTCCAGTAA CATAAAGAGC
 205801 AAGGAGAAGT AGTTTGTG TGTTTATGTT TAATATTCAA AGCTAACCT AAAAGTATT
 205861 TTCATTATCA AACTCCTTC TAGAATAAT GATTAAACT TGATTAAAA TATACAAATT
 205921 CTCCCTTATA ATACCTCAAA ATGGAGCTAC CCCATTGAGT TTTAAGCTTG TGATTAAAAT
 205981 ATTACGAAAA CAAAGGGGAA GTTGTAAAG GTAGAACAAAG CAGTAGTCTA GGCATTAGGG
 206041 GATCTGGTGC TGGCTCTGTG CATCATGTGG TTTCAGGCAA CTTTCAAAT TTTCTACGCA
 206101 AATTTCTTA TCAATAAAAT AAACAGTGG GCCAGAGGAT CTCTGAGTCT CTTTCAGCTT
 206161 TCAGTGTGTA TAAGATTGGA GAAGTTGGT GGAAAGCTTT AAGTGGAGTG TAAGTAATTG
 206221 CAGCTGCATG TACAGTTAA GAGTTGCCTT CAGCCAAGCC ACGGGATCTT GCATAAAAAG
 206281 TGAAATCAAA TAGAAAATGG TCCAAACTCT GGTTTGACCC ACAGATGACT TCAGCTAGGA
 206341 TCTGAGTGTGTA GAGCAATGAG CTGAACCTCT GATATCCAGA TGTTAGCAAG ACTTGGAGGC
 206401 CTTCTAAGGC AGAGCAACAA CCAGTATCTG TCCTGGTGT GACCTGATCT TACTAGCAAT
 206461 TGGGCCTCCA TTTGGGTCCA TTGTACAAAA CAACAACAAAC AACAAACAATA AAATCTCCAA
 206521 ACACCCAAAA TTCAAAATT AGATGGAGAG ATACTATTCC CAGAATTCTA GAGATATTG
 206581 GAAAGCAGAA AACTATACTT GCCATGCTGA TGAAGTCCAA TTATTGCTCT TTTAAATACA
 206641 TTTAGCTACT TCTGAATATA AAATGAGTAT CTACTAATTA TTTACAAAAT CACTTGGTAA
 206701 ATATAGAAAG TCACAAAGAA TGAAGTGTATC ATCCTGTTT GTAACCCAGA AATAGTCATT
 206761 ACTGGCACTT GTGTGAATCA GTTTCTATT CTGTATGTGG ATGTGCACAG CGTATCCTGC
 206821 TTTGTACACT AGAGTACTAG CATTCTCTA ATGTAATTCA ATATTGTCGA AAACATT
 206881 AAATAGCTTC CATCACAATA ATCTATCAA TTGACTTGCC AGACTCTCAT TATTAGGTAA
 206941 ATTTATCTCT AACATTATGC AGTCATGAGT AATACTACAA AGGATATTG TGAGACACAA
 207001 TTTTCATCTA TGCCCTTCTT TATAATCCTT CATCCTAAGG TCACAGATTA TGAATATC
 207061 TAAAGTACGG ACAAGTCTT TAAATTTGT GTGCAAAAGC AGTGCAGG CTTGAATGAT
 207121 AAAATAGAGG TTTGATATAT GTGTTTTTT GTTGTTTGT TTTGAGACGG ATTCCCTGCTC
 207181 GTCCCCCAA GCTGTAGTGC AGTGGCACGA TCTGGCTCA CTGCAACCTT TGCCTCTTGG
 207241 GTTCAAGCAA TTATCCTGCC TCAGCCTCT TAGTAGCAGG GTCTACAGGC ATGTGCCACC
 207301 ACACCCGGCT GTTTGTAT TTTTAGTAGA GATGGGGTTT CACCATGTTG GCCAGGATGA

Figure 8 (Page 64 of 73)

80/162

207361 TCTCGAACAC CTGACCTCAA GTGATCCACC CACCTCAGTC TCCCAAAGTG CTGGGATTAC
 207421 AGGTGTGAGC CACTGCACCC GGCGATAACA TGTGTTTTA AAGTCACAGA AATTCAGAT
 207481 GTCTTGAAGG ATTTAAGCA ATTTAAAAAA TAAAGTCATA GAAGCTTCAA TTTAGGAATG
 207541 AATGGAAAAT TGATGATATT CTTAGGATAT GGATTTTCC TAAAAGAAC AAATGTATGC
 207601 ATCCCCAAAG ATAATTGAT TAGTATACAA ATATTAAATT AAACATGTCC ATATTTAGAG
 207661 CCATGAATT TCCTTGCCTG TCACAATAGC TGGATTTATT CACAATTGTA GTAATTAGTC
 207721 CCTGTTCATT ATAATTTCCT AGGTGATATG AAGACTTGT CAGTCCAAGC AAGTGTCCAC
 207781 ATTGTGTGTA GCAAACATGA GAATAAACAT TTTAAACTTT TAAATGTAAT ACATATTAGT
 207841 GTTATGTAAT GTCATCCTTC ATGTTGAAAG GCACATGGAA CATTGTTCTG GTGGTACAGA
 207901 GGGGAGAGAA ACACCATCAG AATGAAAGGA AAGACCGCTC TGBAACCTTC CTCCTTAGCT
 207961 CTTGAGCTTA GTTTAATTGT CCTGTTCTTAT GGTCTGCTAC AAGCAATACC ACTCTTCACC
 208021 TTCGCATGCT TCTCTGTGGT TTGATAAAAGT ACATGCAATT TTTCATTTAA TTCTTCCAGC
 208081 TGCACTAAGA AAGGAGCCTT ATCTTATTG AACAGATGAG GAAATGAATG ATTAGAGAAT
 208141 TTAAATGACT AGCTCTAGGT CACACAGCTG GAACCTACAG CCAGATTCC TTTTAACAAT
 208201 CCTGTAACCA AAAGCATACC AGTAGTGCC CATAAAATGT AAGTTATAGA GCTGTGTTGG
 208261 GTCAAAACTT TTACTGATGC TAAGAGGAGG CAACATTAAC AAGGGGAAAT TATTTGTGTA
 208321 TTATGTTTG GATTATGTTC TCTCCATAGA TAAAAGACTG TCGTAGTAAA AGAGATTCAAG
 208381 GGCACAGGGG AACTCCACCA CAAAGCGTGG TACCATTTCC CACAGAAGCT AAATGGACGG
 208441 GAAGCCTGCC ACCAGGAAAG GTAAAGCCAC TGCTCTTGTG TGCAGGCTAT GTTAATAAGC
 208501 TGAAGCTTAT TCCGACACAT TTACACATCT CTGCATCACA CTGACCCTTC GTAAAGATAC
 208561 TCCCAGTGT ACATGGAGC CAGCTCCAGC CCCTGATCCT GTGCTTTTT CCTTAGCCCC
 208621 ATGAAATCAT CTGTGAGAAA TTAAGCCAA TAAGCAATAA ATCCTGGGAT CTAGGGAGTG
 208681 GAATAAGTT TGGGAAAGTC TTTTTTTTT TTTTTTTG TGAGTCTTG CTCTGTCTCA
 208741 CAGGCTGGAG TGCAGTGGTG CGATCTGGC TCACGCAAC CTCTGCCTCC CGGGTTCAAG
 208801 TGATTCTCCT GCCTCAGCCT CCCGAGTAGC TTGGACTACA GGCACACACC ACCATGCCA
 208861 GATGAATT TGTATTTTA GTAGAGATGG AGTTCGCCG TGTTAGCCAG GATGGTCTCG
 208921 ATCTCCTGAC CTCGTGATCC ACCGGCCTCG GCCTCCAAA GTGCTGGGAT TACAGGCATG
 208981 GCCCACACG CCTGGCCCGG GAAAGTCATT TTAAACCAAC CTATGTATGA ATCCCTACTA
 209041 TAATATTCTC ACCAACCGGC TGGCTCTTC TCCTGAGCTT GGAAACCTCC AGTAAAATGG
 209101 AAATAATTAT TTCCCAGACC ACCACTCTTA TCTGTGAGCT TTTTGGCCA TTAAAAATTA
 209161 TTTCTTCAT TATATTTTA TCTGTGCTT CACAGGTTTT CTCTTCTTT CACTTTAGTG
 209221 CTTTTCTCA AATAAGCAGG AAAAATCCA TCTATCATGC ACATGGGAAC CCTTTCAATA
 209281 TTGGTCTGTG GTTGTCCAT TTTATGGGA TGCTTTAAA GAAAAAATTT GTCTTTCAA
 209341 TATATTGAAT ATCTTCCAGC ACCACATCAC CTGCAAGCTT TGAAAAATA GTTCTACATA
 209401 TTAATTTTTT TTTTTTTTT GAGATTGAGT CTCATTCTGT CACCCAGGCT GGAGTACAGT
 209461 GACATGATCT TGGCTCATG CAACCTCTGC CTCCTGGGTT CAAGTATTTC TCCTGACTCA
 209521 GCCTCCCGAG TAGCTGGGAT TACAGGCATG CATCACCATG CCTGGGTAAT TTTGTATT
 209581 TTAGTAGAGA TGGGGTTCA CCATGTTGAC CAGGCTGGTC TCAAACCTCT GACCTCAAGT
 209641 GATCCACCTG CCTTAGCCTC CCAAAATGCT GGGACTACAG GCGTGAGCCA CTGCACCCCCA
 209701 CGTAGTTTT TTTTTTTTT AAGTTGAACA TATGTGAAGG CAGGACCTAG TGACACATAG
 209761 CAAATAACATT TCCAAGTAGA CATTACACTA GGGAAATTAGT CGAAGTGTCT ATTAAAGTA
 209821 CCATCTCTCA AATGTATTAA AAGAGAATCC TTGGATGTGC AATACCTTAA TTCAAAGGCA
 209881 GCTCGTTATG TATAAAACTCT CAAGCTTTGT GATAAAACAA TGTCATAAC AGATGGGACT
 209941 ATTCACTTAC AGCCCAGGGA ATTTTATTGA CGCTGAGAAG GTTATGTGAC TGGCTCTGCC
 210001 ACTGTCATCC CCATTCACTT CATTGGAG CAATATGACA TAAATGCCCT ACATGTGGGT
 210061 TTTCTCTATT TATCATGTGT TTCTATCCC CTTGAAAGAT GGCCATATTT GCTTTACTTG
 210121 GTTATAAGAT CCCATATTG CTGCTTGAA GCCAACCAAA TAATTTGACA AAGTGGGTTT
 210181 GTAGTGCTGG CTATTTGGT GAAAAAAAGA CAATGAGACT TCATGTGTCA TCCAAAGTT
 210241 TATCAGATCG AGCTGTGAGA GAAAGGAAAA GAAAGGGTCA TCAGTCAGGA TGCTCACTAC
 210301 ATACATCTGT GTTGTGTCT AGGTCCAGAT TTCTGTTCAT TACGCTATGG GCTGGCTCTT
 210361 ATCATGCCT TCTCAAACCT CACCATGATA ACGCAGCGTG TGAGTGTGAG CATTGCGATC
 210421 ATCGCCATGG TGAACACCAAC TCAGCAGCAA GGTCTATCTA ATGCCCTCAC TGAGGGGCC
 210481 GTTGCAGATG CCTTCAATAA CTCCAGCATA TCCATCAAGG AATTTGATAC AAAGGTAAGT
 210541 ATGATGGAAA ATAGGGCTCT TTGTTGAGAG AAAAAACTTT GAAAGGAAGG CATAGATCTT

Figure 8 (Page 65 of 73)

210601 GATTCTGTGG AGTATGGAAG TATAACATTC CAATGACAAA TTAAAACGTGA CTGGAACATAT
 210661 TTTTCTTTGA GACATTGCTT ACTTCATAAA TAAAAATAAG ATTTCAATTGA GTTTATTATG
 210721 ATTATAAGGT GGGGAACTG TAGAGTTAAA TGTGAAAAT TTAAAATGG AACAGTTAT
 210781 GTGATGTCTT CAATGAAAAA CTAGGTATTA CCTGGGCACA TTCTTATAGG TTACTCAATC
 210841 CTATTCAAGTT CTCTGCCTGT TTTATTGTTT CTGAGCAATT TTATATCCCT GTAAATTCTA
 210901 TATAACCAAT AGAAATGCAA ACGATTCTTG TCCATAGCTT TGCAAAATAA TTTTGCCAAG
 210961 AGAAAATCA GTTAAAACCTT TTCTCCACTC ACCTCCCAGT TGAATTAGCC AATTTGCTG
 211021 TTTGTTTGTG TGTTTGTGTT TTGAGATAGA GTCTTCCTCT GTCAATTGAGG CTGGAGTGCA
 211081 GTGGCATGAT CTCAGCTCAC TGCAAGCTCC GCCTCCCGGG TTCAAGAGAT TTTCTGTCT
 211141 CGGCCTCCCCA AGTAGCTGGG AGTAAGGGGG CATGCCACCG CGGCTGGCTA ATTTTTGTAT
 211201 TTTTAGTACA GACAGGGTTT CACTAGGCTG GTCTCGAACT CCTGACCTCA GGTGATCCAC
 211261 CCGCCTCGGC CTCCCAAAGT GTTGGGATTA CAGGTGTGAG CCACTGTGCC AGGCTCTGCT
 211321 GTATATTTAA AGTCTATTTC AGCATTGCTT CCTGCTTGTG TTATGCGTGA TTCTTGAGT
 211381 TTTCCTTCA ACCAGTTATA ACATCTTACT TACCTCCCTCC ATTAATCAAT GAGTTAAATA
 211441 AAATCTTGT TGTATGTTA TTTTACATT ATATGAAAAC CATGAATTAA CCCAATTAAA
 211501 AAAATTATCC TTTAAATTAT CTTGTACTGT ACATTTCCCA TGTCATCCCT ATAATTCAATG
 211561 ATTAATGATT TTATTACATT GGACCTAGCT TATTACAAT GAGTACATAA ATTTATTGTC
 211621 TCCAGTCTT CCTCCATTAT CCCGTCTACA TATCCACACT GAGTAGATTG ACTACTCAGG
 211681 AATCTGGAC ACCTTCAGT TGCCAAACAT GCAGTGTTCAG CTGGACATGC TGTGTTCCCT
 211741 CAGAATTGG GCCTGCTTCT CAGCACACTC ACATCTGCTA TCAATGACCC ATGGAAAGTT
 211801 TTGCCCCGAGA GCAAGCCAGA GTCCCTGTTA GTTCTTCCA AATGCTACAA GTTCACTTT
 211861 GCTATTTTTT CCGATGAGAT AAAATTTCC TTTTGACTT TCTACAAATC ATAGTCATT
 211921 TTCAAGGGAT AGTTCAAGTA TTGCTTCCTT TCTGGGACCT TCCCAAATTA TTATTTCTC
 211981 CTCTCAAAGT CTCTGTTTAA TTTATGTTCA TCCTCAAATC TTGATTCTCA CATGAATCAT
 212041 ATACCTTGTAA TTATTATAG TTTTTTGAG TGGTAAAAT ATTCATATT TTATATTCTT
 212101 TGGCTCTCTA CTTTATAGCA TGATGCCAGA TATTTAGGGG CCTTATTGCA TTTATTTTT
 212161 ATTTTATTTT AAAATCTATT TTATTTTTA TTTATTTATT TTAAAATCTA TTATTTTTA
 212221 GGAAATATT CAGGTAATAT AATTTATGTA ATTATTTAGG AATTTAGGT AGTTATTTA
 212281 AAATAATTCA AATTATTTAT TGAGTTATAT CAGAAGAATG TGATCTTATT CATTGTAAT
 212341 ATGTGTTTA GGAACTCAGT TCAGCCAGGG CAGACCATGA TTCCCAAATC TGACTTTCT
 212401 TTTTAATTAG GCACTGATT TGTTAACAGAG TTCAGTAAAG TTTTGTTGT GTGTTTAAA
 212461 AAATTCTTG ATATAAGAGT CAAGATGTTA CTCAACTTTT ACTAGAAGCA AAATAGAGGA
 212521 AGTGCTTTCA CAGATGAAAT ATCTCTCAAT GTTTCTTCC ATTTACTTCT TCCTATTATT
 212581 CATCTATATA ATCATTTCCTT TTACCTCTT TCTTCATTTT TTCTGTTTT CTCTCCTTCT
 212641 ACTAAGACAA GCAAATTAGG GGTATAATTG GTTATTTGGG AAGGTAGGAA GAATATAGAG
 212701 AGAAACAAAA ATCAATATT TATACTAGGG TCTCACTAAC CTCAAGCAAC TCTGACTGTA
 212761 AAGTAGATTTC TCATAATAGG ACTTCTTGAC AAAAGTTTT CCTATTTC CCCCAGGCCT
 212821 CTGTGTATCA ATGGAGCCCA GAAACTCAGG GTATCATCTT TAGCTCCATC AACTATGGGA
 212881 TAATACTGAC TCTGATCCCA AGTGGATATT TAGCAGGGAT ATTTGGAGCA AAAAAATGC
 212941 TTGGTGCTGG TTTGCTGATC TCTTCCCTTC TCACCCCTCTT TACACCCTG GCTGCTGACT
 213001 TCGGAGTGTATTTGGTCATC ATGGTTGGGA CAGTCCAGGG CTTGGCCAG GTATCCAGAT
 213061 ACTTTCTCAT TCTTGGTGGG ATCCAGATT CTGAATTCTA CAAAATATCA AAGGTCTTAA
 213121 TGATTTCTCAT TTCAGGGAAT GGCATGGACA GGTCACTTTA CTATTTGGGC AAAGTGGGCT
 213181 CCTCCACTTG AACGAAGCAA GCTCACCAATTGAGGAT CAGGTAAGTG TGCACAGATG
 213241 GGTCACTAGCT TTGTCATCTG TTCCATCCCA CTGTTCTTA TCTTCTATGA ATCAAATGGT
 213301 TTGGGAAGA GAGAGAAAAA GTACTGCTGA AAAATTCAAC AATATAAGAC ACTTGATCA
 213361 CAAATAGGAA AGATGCATCT GTGCAGTAA GACATTGAAG CTTAGAAGTA GAAAAAACCA
 213421 TTGTGAGCTA GGTTTCAGCT CAGAAAAGCC TTAGTAGTCA GAAAAGCCTT AGTAGTCAGA
 213481 AAAGCCTTGT CGGAAAAAGT TTAAACCTT AAGAATTGCA CACATGGAAA AAGATCAAGT
 213541 AAGCTATATA TACACCCTCT TAGCAATGAT TTGAGGTGA GAATTAAGGC TACCACAGCT
 213601 CCAGGTGGTA AGGAGAGAAA TCAGGCTGGA AGAGTTGAA GTTCTGTAT TATTCTAAGC
 213661 TCTTTACTAT TCTATTATGA GCTCATTAAAT TCTCACAAACA ACCCTCTCAT ATAAGTACCA
 213721 TTTTAAATTCA TTATTTTACA GAGAAGGGAG TTAAGGAAGG TGGAGATTAA GAAAATTGCC
 213781 CAAATACAAA TAGCCAGCAG GTGGTAGGTC TGAGATTAA GCCCATGCAG ATTTTAGGCC

Figure 8 (Page 66 of 73)

213841 CAGAGCAGAC ATTCTCAATC ACTATGCTAG ACTGCCTTTC CATGGTATGT GATCCTACTC
 213901 AGGCCTCTAC AGCTTTATCA TTGCTGTTCT CCCCAGCCTG TCGTGCTGAG AGTATATACT
 213961 CGAAGAGCAG AACTAAAATT CCATCCAGCT TCTCACTCCT AGGTCCACTA CACAGCTGCA
 214021 TCCTGCAGAC TTTTACCTCA AGCAACCCTC CTGCCTTCTT GCTTCCTTCC ATCATAGTTG
 214081 TAACCATCTC CTCTATTGCA AAATACTATC TGCTGATCTC TCTCTTCTAG ACTGGTTCT
 214141 TTCAACCTTC TTCCCACCAA ACCAACAGTTA GCTTGCTAAA ATAAAGATGG CACATTTTA
 214201 CTCACCCGCT TGAGAATTTC CAATGTGTTTC CTTCATGCTT ACAGAGTAAA GCCTGACCTC
 214261 TTTATTGCAAT GAATACAAAAA GTTCTTAGCC ATCTGGCCCC AACCTTGTTC CACTCAACTC
 214321 CCCTGTGCAA GCATGGCTCC AGTGGCACTG GACATTGGCT GCTCTCCACA TAGATCTGCA
 214381 CTGCACTTCC CTCTGGCTCT GCTCCCGTTA GTTATATGCC CTGGAAAGTT CTTGCCCCCT
 214441 GTTCCTTGTG CCAAAATTCC ATCTATCCTA TTGCTAGCT TATGTAaaaa CTTCTAAAC
 214501 CTTTTTTTTT TTTTTTTTTT TTTTTTTTG AGACGGTGTG TCACTCTTC GCCCAGGCCG
 214561 GACTGCAGTA GCGCTATCTC GGCTCACTGC AAGCTCCGCC TCCCAGGTTA ACGCCATT
 214621 CCTGCCTCAG CCTCCCGAGT AGCTGGGACT ACAGGCGCCT GCCACCATGA CCGGCTAATT
 214681 TTTGTATT TTAGTAGAGA CGGGGTTCA AGCCAGGATG GTCTCAATCT CCTGACCTCG
 214741 TGATCCGCC GCCTCGGCCT CCCAAAGTGC TGGGATTACA GGCGTGAGCC ACCGCGCCCG
 214801 GCCAAAACCT CCTAAATCTT ATAATTATTA TCAATTATTC CTCAGATATA CTTCCACGTA
 214861 CATTGTAGTT TTATTATATT TATATTTCAC ATCTTTTTTT TCAAATTCA GTTGGGACC
 214921 CATTAGTGGAG TCATAAAATC CATTGAGCGG GTTAAAATCA TTATTTAAA AAATGAATAG
 214981 AATAGAATAG AAATTGTTGG AGTGCATTGG ACATGGTAAA GTTAAATATC GATTCATGAA
 215041 ACCATCGTTT GAGGCATATG TGTGTGGTT TATGTACAAG TGTATTGCA TATTGGTGTG
 215101 TGTGTTATGT TACCCGTAA AATGCAATTTC TTACTATAGG TCTCTGTGAA ATATGTGTCT
 215161 TGTGTTTTTT TAATGTAGAC TTCCAAAGCC TACATGGCAT TTCACTAGTG ACAATCAATT
 215221 TTATTACACAT TTTCTCTCC AATTGGACCA GAAGCTCTT GAGGGCAGGG GCTGTATCTT
 215281 ACCGATTTTTT GTAAGTCTT CATTTCCTGC CCCTAGCCTC ATATTAGATC ATGCAAGAAT
 215341 GCAACTGTAA TCACAAAGAAA ATGCAATTGG GCTGTGATAG CAGAGAGTTA CTGTGACAAA
 215401 CTAAGGGATT TAGATTGGT CACATTGGTG TTGAGGAGCC ATTGAAGAAT CAGAGAGTGT
 215461 GTTACTATTA TTTGTTAATT TTAATTATAT CATATTACTT TACTGGGAA AATCTGTGAG
 215521 CTATTTAGA AATAAAACT CTCATTGCC AATAATTCTA AGTCTGCCAC CTCACTGTG
 215581 GGACATTGTT TAGGGAGGCC ACGAAGTCTC AGCCTTTGAT ATTTTCATAA GTGTTTTCT
 215641 CCCTTTTTCC TTTAGGGTCA GCATTTGGAT CCTTCATCAT CCTCTGTGTG GGGGGACTAA
 215701 TCTCACAGGC CTTGAGCTGG CCTTTTATCT TCTACATCTT TGGTGAGTC CTTCTCTTA
 215761 AATCCTAACG CCTCCATTTC CTGAGCATCC ATTGGCAC CTACACCAC CACATTCTTC
 215821 CTATATGAAA GAAAATGTCC TTATCAAAT GGAAGATGAT AAAAAATGTC AACGGTTGGT
 215881 ATCATTTTA ATCTAGTCAC ACAACCTGAT TAACACCTTC CTGGTGGTTCA TGGGAAGCCA
 215941 CACGCACAAG GTAGAGGGAT TGACTATTCA CATGGCACCC ACCGACTTGT GATGCAGTCT
 216001 TGCCCTTCCA TATCAAGCAC CTTCTGCAGA ATCTCTACCA CCACATCTGA AGTGCCTGCT
 216061 ATATGCAGTT AAGATGTCAA AGATAGTGA GTACATTTC AATGTGTCTT CATATTTCAT
 216121 TATAATTATT ATTCTGTCC AAGATGCCCT TCACCTGTTC TCTACCAAGT TAATCTTGCA
 216181 AAGTTCAATT CAAATGTTCC CTTCCCCATG GGCCCTTCCA GGGCTTACCC TATCAGATT
 216241 TGGCATTCTC TCCTTTATGA TATTCCTCT CTAGGTTATG TTGGTGTGTA ATTATTTATT
 216301 TCTCCTTTTC TTTCCACTAG ACTGTGAAAT GCTTGAGGCA AGGAATCCAT TCTATGTTT
 216361 CATCACTTGG GTGTCATCAT GGTGCTGAT TTTTAGCTTT AAAATAAAAG AATCAGTGA
 216421 TCCAGTAATT AGAGGGGATT TAAAGAAAAC TAGCCTCAG AATCTTTAA CATAGAATGT
 216481 TCTTCAAATA AGGAATTCCA ATAATAAGAC AATTTCCTAC ACTTGATTTT GTTTTTATAG
 216541 CCAAATGGTG TCATTAATAA TAGCCTGGC CTGAATGGCT TTCTCATTAA TGATGCTAAT
 216601 TATTTGGTT TGTACATGTT AACCAAGGTAT TGTACAAAAA TATTTCTTT GGGAAATCCAT
 216661 AATGGATGTA TGGCTGAAAT ACAAATAATA CTGCTCTTG TAAGTGCAATT GGAAATTTT
 216721 CCCTGCCACA TGATTTCATG GAAGGTTGTT TCGTGTATGT ATGACTGCAA ACCTGACTAT
 216781 TCAGATCTTC CGCAACAAGA CAACTTATGT GTGCATTAAG AAGTTGCTGC CTAAGATACA
 216841 TAACACTGTA ATCATTGGAG ACTTTAAAGT AATTAATCAG CTATGCAATG CCACGCTCCT
 216901 GTTATCTCCA GAGGGCTCTG ACATTGACAA ATGGTGGCTT TCTATTGAG ACGTAATATC
 216961 TAAAAAGCTT TAACAGGTTT GTAGAAGGAT TGAAAGAAAG AATGGGAACA TTTAGGTCC
 217021 TATGGTAGAA TAAGCATTAA TTGATTAGTG TGTAGAAGGG AGAGGCATGC CACTTCAGAG

Figure 8 (Page 67 of 73)

217081 GAAACTTCCT TCCCCAGTA AACAAATCTA CCTAAAAACT AATTTTATCC CTTCTTCCA
 217141 GGTAGCACTG GCTGTGTCTG CTGTCTCTA TGTTCACAG TGATTATGA TGACCCCATG
 217201 CATCACCGT GCATAAGTGT TAGGGAAAAG GAGCACATCC TGTCCTCACT GGCTCAACAG
 217261 GTACAGTGCA CACCTTGTAC CTGTGGCCA TGCAGAGGTC TCTAGGGCAG GGTGTGGATC
 217321 TCCTCTGAGA GGCACCACATCT TGGCTGCTCT AATACTCATG CTGATTAGAT CTTTCTTT
 217381 AGCCCAGTTC TCCTGGACGA GCTGTCCCCA TAAAGGCGAT GGTCACATGC CTACCACTTT
 217441 GGGCCATTTC CCTGGGTTTT TTCAGCCATT TCTGGTTGTG CACCATCATC CTAACATACC
 217501 TACCAACGTA TATCAGTACT CTGCTCCATG TTAACATCAG AGATGTGAGT TTACTTCCTA
 217561 TACTTCTACG AAAATGATAA TGGTAATAAG GAGAACAGT TCTGTGTTAC CTATTACATT
 217621 CTGGCTTAC ATATAACCAT TAATTTAACC TTCACAATGA CCTTGAGAGA GGCATTGTTA
 217681 TAATTCCCTT TTCACAGATG TGGAAACAGG ACACCTAGAG GTGAGATAAC TTGCCCCAGG
 217741 TTGCACAATA CTAAGTGATA GAGCTGCTGC AGCATCCATA TTCTTAACCA CTATGCTATA
 217801 CTACCACACC AGCTGATTCC AAAGCTTCTT TTAGAAATAA TATTGCTGGG CCAGGCATGG
 217861 TGGCTCATGC CTGTAATTCC ACCACTTGG GAGGCCGAGG CAGGCAGATC ATGAGGTCAG
 217921 GAATGCAAGA CCAGCCTGAC CAATATGGT TACTAAATAT CATCTACTAA AAATACAAA
 217981 ATTAGCCAGG TGTGGTGGCA GGCACCTGTA ATCCCAGCTA TTCAGGAGGC TGAGACAGGA
 218041 GAATCGCTG AACCCAGGAG GTGGAGGTTG CATTGAGCCA AGATCATGCC ACTGCACTCC
 218101 AGCCTGGCG ACAGAGTAAG ACTCCGTTTC AAAAACAAAA AACCCAAGAA ATTAATATTG
 218161 CTTTTATCTG GAGCCAGAG TGATGCAGCT TCTGGCCCTC TTATCTGAGA CAGTGTCTT
 218221 TTAGTGTGAA AAAGGATGCT AATTTTCCCT CAAACAACCC ACAGTATCAT GGGGGTAAGT
 218281 TAATGGCTGG TCTGTGTAAC TGACAAATTG TGTTGCTAAC GTATCTCTAT AACTACTCTG
 218341 TATAAACTTC CTTCTTCAG CAGCTGGCAG ATTTCCTTT GTCCAGGAAT CTTCTCAGAT
 218401 GCTGTACAAT TTTAGGAGGT TTTCATCTC TTGGTAAGGA TAAGCGTGTG GGCCCATTAA
 218461 TGATCACTGT GCGAAAGCTC TGGTCTCAGA GGGTTCCCTG ACAGCATGTC CTCATTGCC
 218521 ACCAATCCCT TTTCTGCACA TGGTCTCAGA GGGTTCCCTG ACAGCATGTC CTCATTGCC
 218581 AGGGCTCCTC CTTCCATCAA TATGTGCTGT GGCCCTGCC TTTGTGGCCT CCAGTTACGT
 218641 GATAACCATT ATTTGCTGA TACTTATTCC TGGGACCAAGT AACCTATGTG ACTCAGGGTT
 218701 TATCATCAAC ACCTTAGATA TCGCCCCCAG GTAAGAGCTC TACCTGTTT TTCCCCCTCT
 218761 CCAGACCCCT CCAGAGGTGT TAGACCTCAG TGTCGCCGT GAAACTCTTT AATGTTACTG
 218821 ACATTGCACT AATGGCAGAA TGACAAATAA CTACAAATAT CTGTCGTGG CCATTTTTAG
 218881 ACAACAAAT GTGGCATTTC TAGAACACA ATTTCAATC TTGGCCAGTA ATCATTGAG
 218941 CAAAAACCTT CCCAAGCTTC CCTAACAGAG ATTGAACCTGT GTATGCTGGG AAAAGGCCA
 219001 CACACAGGTG ATTTGGAAAA GTTCCATGG TGTGTTCAT ATTAGCTACC ATATATATAT
 219061 ATATATATAT ATATATATAT ATACAGTCAC AATAAGCCAG CTCCTGTGCC AAGACTTGCC
 219121 ATATATCAAC ACATCTAATC CTCACAGTTA TATTAGGTAG GCCCTATTGT TATCCCCATT
 219181 TTATAAGGGA GAAGGCTGAG GCACAAGGAG GTTAAATGGT GTGACTATGG TCACATAAAG
 219241 GCAGAGCCAG GATTGGACT GGGGGAGTCT GGCTTGGAG TCTGTGCCT GCCCGTTGCA
 219301 CAAACTGGCT TCTCCACTGA GCAGCCGGG TAAAGAAACG TGGTCCAG AGAGACTGCA
 219361 TTGCTCCCTG GTTATTGACT TGGTAGATTG GTAATTTCAG GTTGGCAAA TAGACATTGC
 219421 CCTGAATGTC TTTAGGTGAA TGAAAAACTG CATTAAAGCAA AATGACTTTG CCATTAGAGC
 219481 TGAATTGCA TAAAGTTGAG TTGCTGCAGA AGCTGTAGGT GGCTTCTAT ATAAAATCAT
 219541 TTATAAAATC ATCTTCCAC AGATATGCAA GTTCCCTCAT GGGAACTCA AGGGGATTG
 219601 GGCTCATCGC AGGAATCATC TCTTCCACTG CCACTGGATT CCTCATCAGT CAGGTTGGC
 219661 CAGTTTATTG AACATCTCA AGTGGCAGGT ATTGTTTAG GTGTTGGAG TACACACGGT
 219721 GCTCTAAAGA TCTGGATGGC AACACAAATT CTCTATTAC ATGAGCCTCT AAATCAGACT
 219781 CTGGTAGGTC AGATTCCCA GAGGAAGAAA AATATAAGCT TATTTTCTCA AGATGAATAG
 219841 ATGTTAGATT GATTAAATG AGCTGTTCCG GTGCAGAAGA CAGCACGTG GACTTCCTAG
 219901 AGGTACATGA GCATGAAACA GTTCTTAGTT ATGACCAGAA TGAAAGACAC ATGTCAGGA
 219961 ATAGCAAGAG ACGAAGACAG AGGGGCAAA GAAGATCATG AAGAATATGT TCAGACTAAT
 220021 CCAATTTCATA AAAATCACA AAAGGGAAAC AAAGTGTCTT AGGCCAGTT AAAGATAATT
 220081 TAATGTCCTGG AAACAGATCG GCTGTGAGAC ATTGCAAGGA GGCTGCTCG GTGTTGGAA
 220141 ATGCAGGCTC ATGAGGAAGA TGAAAAGACA GACCCAGGCA GGGATGGAAG GACTGACGAG
 220201 AACCAACTTA CAAAGAGAAG TTTTGTGTTT ACTACATTTC TATGTGATCA AGTTCCCAGG
 220261 TTAATATTTG ACTAAACTGC TAGGAATCCA CTGTGACTAT AATGCTGGAA ATGACTTAGT

Figure 8 (Page 68 of 73)

220321 AGGGCTTTCT GAGGAGGGTC ACACAGAAGA CCAAAGAGAA CTCATGTTGA ATTGAGATGG
 220381 GTTGTAGTGA TAGTTGTC AAGCCAATAC AGAAACAAAA AAAAACAAAA CAAACAGCAA
 220441 CAACAACAAC AAAAAAAAAC AGAGAAGACA CAAACACAAT GCCACAATGC CATTAGGC
 220501 ATAATTTAA ATGAGTAATA TTATATGTT AAATCAAAT TTTCAGAAAA ACATTAGTGT
 220561 ATTTTATTT TGTTAAAGA AATAACCAC TCAACTCAGA ACCCCATGTG CATTGGGCC
 220621 ATTTGTTTC CAATAGTTTC ATAAACTTTC TTAAGTAAC ACTGCACATT GTTCCTTATA
 220681 TTCCTGTA TCAACATTGC AATACACAAC TGGGAGGGCT ACTAGAACTG GTGTAGAAGG
 220741 AACTTGTGAG ATTGATCATT TTCTCTGTT TTTACATCTA GGATTTGAG TCTGGTTGGA
 220801 GGAATGTCTT TTTCTGTCT GCTGCAGTC ACATGTTGG CCTGGCTTT TACCTCACGT
 220861 TTGGACAAGC AGAACTCAA GACTGGGCC AAGAGAGGAC CCTTACCCGC CTCTGAGGAC
 220921 ATAAAGTTAC AAACCTAAAT GTGGTACTGA GCATGAACCT TTTAAACATT TTTTACTTCT
 220981 CTCCATATT C TGACCAGT ACTCAGCAGT TCTTAACCTCT GGCTGTGTG TAGTCTTCCC
 221041 TGGGGAGCCT TTATAAGACA CTGATACTTG GGACCCACTC CAGAGATTCT GAATGAATTG
 221101 GTCTGGGGTG GAACCCAGAT ACTACTAATT TTTAGATACT CCTTAGAGGT TTCTAGCATG
 221161 CGCCCGGGGT TGACAAACAGC TGGACAAACT TGAAAAGTCA ATTCACTGTG CTTTGAAATT
 221221 TTCCCTATTG GAAAGTACTA AATAAATAAA AATTCACTGTG AAAATGATCA CTGATAAAATA
 221281 TCTTCATGGT GGGCAGGTT ATTGGATGCA GAGAAGATCT GCTCGGAATT GTAGCCATAT
 221341 GTTACAGATC TCAGCACCGA TCGGAACCTG AAAGCTATAA TCCCCAGAAT TAAAGTTTT
 221401 ATTATTTTT ATACATTGTA AAACATAGAC GTTATTTAT GTGATTAAT TCTATTAAAA
 221461 TTTACATGCT AAAATAAAAT AGACCATTAA CAAATTATTT AGATCCAGAT ATTTCCATCA
 221521 GATTAAACAG ATATTATTT ATCCTAGCCC AATTGCAAGA GATTAATGAT GAGAAAATGA
 221581 CCAATACAAG ATTTAAATAAA TGAGGTTAAC TTAGAAATCA AGGACAGAGA AGATAGAACT
 221641 GGAAGGCTTG TATTGTGAGA AGAATGAATG TGAAGGAAGG CAATGTAGAC ACTTCCAGAA
 221701 GGGATAGCAA TATAGTTTAG ACCATATAAT GAAAATTGGA GAGAGATGAC AGAGACACTT
 221761 TCAAGTGAAA TGACAATTAA TATGGGGAG AAAATATTG AAGACATAAC AAGATGAGAA
 221821 AAGGCATAGA AATGTATCAC ATACAAGCA TAGAAGTGTA TCACATACAA GAGAAGTTCC
 221881 TTTTGAGCGT AGAAAAAGAT AATTAAACCT TCTTCATATT TTTCTTACTT TCCCAAGATA
 221941 CTCAGATAGG CAGCGTCAAC TCTAACAGGA ATTAATTG TGCTAACAC TTAAGACATA
 222001 TCCCTTAGTT TGTCTCCTCA CACAGAACTG ATTCTGGTTT TGCCACAACA TGTCTAGAGA
 222061 AGAAGTTCCC ACCATATTAA AAATCCTATT AAAAAGTGC TTGGACAAGA ACCTTGGGTT
 222121 AATTCAAGCAG ATGAAGAGAA TCTCCTAATG CAAATCAATG GGTATTTTG AGCAAGTTT
 222181 TCAGAAAAAC AGAGTGTCAAG GCCCTGAGGG TGGTACTAAG ATGAGAACAT TGATTTGCC
 222241 TTCATGATAT TGACAAACACA AAGAGGAAAG GGGGTTGCA GAAAAGTAA AGAAGAAGTA
 222301 GAAGAAAAAA GAAAGACATA GTATAATAGG TAGTCAAATT ATGTACAGAA AAAAGAGAAA
 222361 AAAAAAAACAA AAAAGGGTGG GGGACAGACA ACCCAACTAA AAAATGGGCC AATGACTTGA
 222421 ACAGGGACTT CATAAAAGAG AAAATGTAAG TGGCTCCTTA ACATATAAA AGATGTTCAA
 222481 CTTCATTAGT CATTACAGAA ATGAAAATCA AAACATACAAT GAAATACCAC TATAAAATT
 222541 ACTAATGGAT AAAATGAAAG GAGATGGAA ACAAAATGTT GCCAGACATG TGGAGCAACT
 222601 GGAACCTTCA TACGTTACGA ATGTGAACCT TGGAAAGCTG CTCGGCAATA TCTCCTAAAG
 222661 CTAATGTAC AATTCCAGTG ACTCAAACAT TTTACTTAA AATGCACATA TACATCCATA
 222721 AACATGTAC AACAAATGTC ATAGGAGCAC TATCTGTAAT AGCCTGAACA GGAAGTTGTC
 222781 TGTTAAAAAA AGAATGAGTA AATAAACCAC GGTCTATTG TATAGCAATG AGAATTAACA
 222841 GACCCCAATA TATAATAGAT GAATGGGTCT CATAAGCACA ATATTGATTA AAGGAAGACA
 222901 AAACGCACAT TCTTTAAAG GTTTATAAAA TACTTTTAA AAACAGCTAC AACCAATCTG
 222961 TCCTGTTAA AATCAGTGAG CGATTTCCCT TGTGAGGG A TGGGGTTGT GGCTGGATGG
 223021 ATGGTACTTA AGAAGTGCTC CTGGGGTACT AGAAATATT TATTTCTTGA CTTGGATGTG
 223081 TGTTTACTTT GTGAATATTG TACATTATG ATTTGTGCAC GTTTATGAA GTAGAAAATA
 223141 AAACAGAAAG CAAATTCAA GTATCATCCT TTTGAGAGCT TCTGCTCTGA CTTCGTTTG
 223201 ACCAATGGAG CAGTTGGAA GGGGTCTTGG TCCTCGGTC CTTTGCTTTT TTTTTTTT
 223261 TTTTTTTTT TAGACAGAGT CTTACTCTGT CGCCCGGGCT GGAGTGCAGT GGCTCGATCT
 223321 TAGCTCACTG AAAGCTTGC CTCCCGGGTT CATGCCATT C TCCTGCTCA GCCTCCCCAG
 223381 TAGCTGGGAC TACAGGCACC TGCCACCATG CCCGGCTAAT TTTTTGTATT TTTTAGTAGA
 223441 GACGGGGTTT CACCATGTTA GCCAGGATGG TCTCGATCTC CTGACCTCGT GATCCGCCA
 223501 CCTGAGCCTC CCAAAGTGCT GGGATTACAG GTGTGAGCCA CCGCGCCCGG CCCCTGGTCC

Figure 8 (Page 69 of 73)

223561 TCTGCTTTCA TGTTCTTCTT GGTCCTGTT CTCCTCCTCT TTTGTTGGAA CTTCCAGTAT
 223621 CAGAGCAGGA AGGAAGGCAA TGGGTCAATC GATGCTGTCA GCTTTGGAT CAAACTGCAA
 223681 GTTCTCAAAC AGCAAAATT AATGAGCTAG GCTTGAGAAGA AACCATGACC CTGAAAGCAT
 223741 CAGTTGCTTC CAATTGCATC AGTTGCCACG GGTGATAAGA ACAATGATGA CTCAGAATGC
 223801 CTAGGTTTTC CCAGCAGCTT CTCTGAGGTT TTCCCAGCAG CTTCTCTGAT TGATTCTGA
 223861 CAGATGACTT CGGTGTGTCA GACTTTCAGG GTATCTTCC TTATGTGATG GTTGAGGAA
 223921 GAGTTACCAT TCACATTCC C AATGGCTTCA GAATAGATGC AATTGTGAAC TGATAGGAAA
 223981 CATTCTAAAT TCATCTCCCC TCCCCATCCC TAAAGGATTG TTTCTAACAA TAGTCATGAA
 224041 AATTAATTCA CTTTCTCAA ATAGTTTATT GTCATCTACC TAATGATGAG ATGACTTACT
 224101 TTTCTCCTT GACTGTTAAA TATTATGAAT TATATTAAATG TATTTCTAA TGTGAGCTT
 224161 TCCCTTGAAT ATTCTTTGA TGTACGACAG AATTGATTG ACTAATAGTT TATTTAGGAC
 224221 TTTGGCTGAT GTACTGATAT ATGAGATTGG CTCTGTATGC ATACATGTGT TTTGTGTATC
 224281 TTTTTGTTGT CTGGATATGG AGCTTATGCT GATTTCAGAA ACAAGAAAGG AGAAACTTCC
 224341 TTTTCCCA TTACTCTGAA AAAGATTGAC TAGAATGGAA TTTTTATAAT TGCTGTTGTT
 224401 ATTTGAAAGC TTGAAAGCAT TGTTTGTAA AAATCATGCA GGCTGAAAGC CATTGAGG
 224461 AGACTTTGAT AACTTCTCA ATTTCTTCA GTTACTGGTC TTTAAGGGG TTTTATATT
 224521 TTCTTGATC AATTGAC ATTATGTTA TCTTGGAGGA TCATCTATTT TACACACTAT
 224581 TAAAGTATA TTGCAAAAAA TTCAACTGTT TTATCAGGCT ATCTTTTAA TAATATATT
 224641 ATTTTATCTA TATCTGAGGT TTTAGCTTCT TTGACTTCT GACCCAATTG CATGTGTGCT
 224701 TTCTTCTCC TTCATTAGAC TACTTAGTC TTTACTAATT TTAAGAATAG CTGTCCTTT
 224761 ATTATTTAC TTATTATTT TTGAGACGGA GTCTCACTCT GTCACCCAGG CTGGAGTGCA
 224821 GTGGCGCGAT CTCGGCTCAC TGCAACCTCC GCCTCCCGGG TTCAAGTGAT TCTCCTGCCT
 224881 CAGACTCCCG AGTAGCTGGG ATTACAGTC TGACCCACCA TGTCTGGCTA ATTTCTGTAT
 224941 TTTTAATAGA GATGGGGTTT TGCTATGTT TGCAAGCTGG TCTCAAACCTC CTGACCTTAG
 225001 ATGATCTACC CACCTGGCC TCCCAAAGTG CTGGGATTAC AGGCATGAGC CACTGCGCCC
 225061 AGCCCTGCTT GTCTTTTAT TTTATATTG ATTAGCTTA TCTTTATCA AGCTTATGTC
 225121 CTATTTCCCT TTGCTTACT TCATATAAA TTTGTTTGG ATAGTTTATT TATTTTCAT
 225181 TTAATTATGA AACAGGTTAA AGCTTAGAGG AAAATTGCTC CTCTAAGTCC AATTTGTGG
 225241 GCAGATTACA TTTGCTGTG TTGTGCTCCC AAATTCAATTG TTCTTTAAT GCTTTATTC
 225301 TCAAGTTAAT AACCTATATA GTAAAAAAAGT GGCTGTTGAC TCTCAGCTT TTTTTTTT
 225361 TTTTTTTT GTAGATACAG GGATCTTGCT GTGTTGCTCA GGCTGGCTG AACTGCTGG
 225421 CTCAAGGGG TCCTCCTGCC TTGGTCTCAC AAAATGCTGG GATGACAGAC ATGAGACACC
 225481 ATGCCTAGCC ATGTCCTCTC CCTTATATAT AATAAGAAA CAGACACACT GAGGCATCCT
 225541 ATCATCTCAC TCTTGGTTTC ACTACTGTT CTCGGAGTT TTGCTCTGAC CTTTGCACT
 225601 TAATGTATTA ATTTGCATT GAGTAGTTTC CATAGAAGAA TTATAGCATT TGCATTCTGT
 225661 TGGGTATTAT ACTTTCACT GTTATTTGAA CATAATTGAA GGGCTGAAAC CAAGATGAGG
 225721 CAAAGTGGAGT GCCCAGGAAG CAATATTTAA GGAGGCATCC TTTCTTAGGC TCATGCAAGA
 225781 ACAGAATTGG CACATGAGAG TGAGTGCCTC CTTAATTGTT AGTGTGGAC ACTTCTTGCT
 225841 CACTTAGCAT ACCCCCTGGAC AATGAAGTGT TTTTGTGTT GTTTTTCAT GTCCATCCTT
 225901 TATCCTCTT CATCTAAAA CATTCAATG GAGTATTTTT TTGGAGCAGT ACTTGGATGA
 225961 GCCTCTGAGT CCCACAGTAG CTGAGAATT ATTTCATAGT ACTCTTTATG ATCACTGTGG
 226021 AGCCTTAAAA CATTGTAATA TAAACTTAGC TGGGAACAGA AATTGTTGTC CACAATTG
 226081 CTTATTCAGA ACAGTATTGA CTTCTGCTA GTCTCTTCTG ATGTCCAATA TGAGGAAGTC
 226141 TAGTTAGCCA GCTACTTTT GTAGGAGAGC TATGTTAGG CTAGGTGCTA TAGGATTCTC
 226201 TTTATCCTGG AATTCTTCA CCAAGATGTG CCAAGGTGTT AATCATTTC TCTTGCTTT
 226261 TGGCTGGTGG TCTTAGAGTT TCCTTCGATT TTGTTTATT TAGTGATTGT CCTCAATTG
 226321 TTTCTTAC TAAGAATCTC TCTTCTATT ATCTGTATGG TAAAACCTTG TTGCCCATCT
 226381 TTCTGGTTTC TGCTGACTTT CATTGTTGGA CCTTTTACTT TGCTTTCTCC ATGGACTTT
 226441 TGGTAGTGG A GGCAGGCAA CACTTCCAA AGTCTTCTC AATTCCATC AATTCAACT
 226501 TATTCCTAA AATTGCTCA GAATGTGCT ATGTCCACAA TATCCCTCCT TCCACTTTAG
 226561 AAAGGAAAGG CATCCACACT TTATTTAGGT GCAATGCCTG AAGTGTAAAC ACTTCTGGT
 226621 TGTCACAAA GGAGTACTTC CAAATATTGG TTTGGGATA ACCTGCTAAT GATTAACACA
 226681 TTCACCTTGG CTCTGGTTT GCCTGCTCCC TCTTCTTTA TCTGCTGTGT GTATTTTT
 226741 TAATCACTGA GAATATGCAC AGTATTGTAT GTTTTATT AAGAGAGGAC TGGCCAGAGT

Figure 8 (Page 70 of 73)

226801 GGGATGTT TGAATT CAGA ATAACT GAAG CAGTACAGGA TAGGAAC TCA TTCTTTCAA
 226861 TGAAGCTGGC ATATTTCCC AGAGCACCAA ATTCAATAT ATATTTAAA AACTTGATAT
 226921 GAATGATACA ATAAAGTGGT TAGAACTTT ATTAAAATAA ACTTATGTCA TGAAATAC
 226981 ATTCTAATTA TAGTCACTCT TCATCTTATT TCATCTTATA ACATGTTAA TGTTTCTTT
 227041 TATTTACAAA ACAATT TATT TTTGATGAA AAGTTT TAGA AATCAAGTT AAAATATTCA
 227101 AAGGAATGCC TAAAGTTTC AAAATTCTT TACATGTTGT ACAATCAAA GAGTCTGAAG
 227161 ACCATTAGC TATCCAAATT GTTATT TTT AAGCAGTATC CCTTCTAATA TTTACTATTT
 227221 ATAATCCTTA AAAATTGCG TTAGCACAGG AGAATTGCTT GAACCCAGGA GACGGAGGTT
 227281 GCAGTGAGCC AACACAGTGC CACTGCCCTC CAGCCTCGGC GACAGAGTGA GACTCTGCT
 227341 CAAAAAAA AAAAAAAA AAAAAAAAG GCCAAAAACA AATAAACAAA CAAAAAAATC
 227401 CGCCTTAACA TTATTGTTT ATTAAAAACT TTCTTAAATA CTACTAGTTT CCCTTCCTC
 227461 TCAGCCCATT GTCATATTGTT GATTTTATC ACTTGCTTTG TAGGACATAT GAGGTTTTG
 227521 TTTTTTTTTT TTTTGGAGA TGCACTCTC CTCTGTTGCC CGTGCTGGAG TGCAATGGCG
 227581 CAATCTTGGC TCAC TGCAAC CTCTGCCCTC TGGGTTCAAG CAATTCTCCT GCCTCAGCCT
 227641 TCCAAGTAGC TGGGATTACA GGCA CCCACT ACCACGCCG GCTAATT TTT GTATTTCTGG
 227701 TAGAGACGGG GTT CACCAT GTGGGCCAGG CTGGTCTCGA ACTCCTGACC TCAAGTGATC
 227761 CACAATCCTT GGCCTCCCAA AGTGTATGA TTACAAGCAT GAGCCACCTG CCCAGCCAGA
 227821 ATATATGTTT ATTGAGTC CTTAACAAA GTCTAAAGAA TTTTAGGAAT TCAGTTACTT
 227881 TCTTGAGAAA ATCTCTGAAA AGATGCCAAT AATTGTTAGC CAATTATATT GATTTCTCTT
 227941 TTTCATATTG AGAATTGTTT TTTAAAAGT TTGTATGTGT GAAGATT TTT GCACTGTAGT
 228001 TAAAGAAACC ACCTGTGTGT TGGTTAACCC ATAAGTACAT GTATTCAAAT AAATTGAGGTT
 228061 GGGGTTACTC TGAGAATCAA AGGAAAACCT GAAGAAACAG GCAGCCTCAA AAGGTCTTAG
 228121 CTGTAGCAAC TTGCTCCATT GTT GAAATAA ATAGGCTTGA ACTTGTTATT TCCCTCTACT
 228181 CAACATTAA GGTCTCAGAA GATAATATAA TTGGTGAAT TTAAGTAAAG TGCTCACTCT
 228241 TTGCTTTAA CAAACCCCTAG AGAGCTGGTA GGCAAGAGCCT CAACAGACCG TTTAGCTTC
 228301 CAAAGGGAGT TCAGGACACC ATGATTCA CG ACCACAATAC ATCACACATA ATTGAGAAAA
 228361 GATAGTTCCA CCAAATAAAG TTGAAATGCT GACAAGAAGG GGTAAAGAAT CTTGGAAATA
 228421 AGTTTATATA AAATT TATT TTTCTTTT TATTGTTATG GAATAGGACC AGTTCTACTT
 228481 AAGCCACCCCA TTTGCCAAA TAAAGTGAGA ATCGTTTCTT TTGGGGACTC CTCTTTGTAG
 228541 CTCCAAGTGC CACTAACAAAT TCTTAGGACC TGAGCTATAA GCCAGGTGAT TTCAGTTAAT
 228601 ATGATCAATT ATTTCAATTAA AATGGCTCTA ATGTGCAAGAG GGAACGGAGC CCATCAGCAT
 228661 TCCCTGCAGG GAACTGCAGT GGCTTTATC AACTTGAACA GCTAGCTTC AACTGTTTGT
 228721 AAATCACTTT CAGGGTGGTC ATGTAGTTGC TTTTTGAAA TCAGAAGATG ATTCTGCCCTC
 228781 TTTTAATATG TGACTCCTCA GATTCAAGAA GTGCTCGTA GTCTTAAGAG TGAATTACCC
 228841 TCAGTGGTCC AGCGCTTATG AACCCACATC TAACCCTATC CCCTGGGGAA ACTATCAGAG
 228901 AAATTGGTGC CATGGACATA AGAGGAAGGC ACAGTGAAGC AGAGAGCCCC GCATGATGAA
 228961 AATCAGTGGA CAGCATCATT ATTTACAAT TTGTAATCAC CCAGGAGCAT GAAAATCCAG
 229021 GCCAATCTGG CACCATGAGC TCTAATT TTT GTGGAGTTC TTGGAAACCGA TTCTGATGAA
 229081 TGACTGTTA GCCATT TTAG AGTGTGGCAT ACGTGGCTGC TGGCATAACAG AGGTTGGATG
 229141 TAAACGGGCC TTTGCCCTCT CTTATGAACA TAGACAGGAA CTAAACTGTG TCACATAGGT
 229201 TCCAAATGGT GGCCTGAATA CTATTACAA CTAAGGTACA ATGAAATTGA GTAAGTCTTT
 229261 TCCTCTTTG CAGATACCAT CATTATTCA ATATTCTTC AAAGTTAACT ATTTGTATT
 229321 GGTAAATT TTTT AATAGAAATG TAATAATTGC TTCTCAAGTT TAGTCTTGTAG TCTTAAGGTT
 229381 GATGCTCTCC ATGTCCCTC AAAAAAAGGT ATGTTGTTTT TATTATATCC TCGCCTTCAG
 229441 ATGGGATTAT TCCATT TGT TCTTGTAA TATATACTTT GAGCCACTT TTTGTGGCT
 229501 CTGGGTGAGA TGCTATAGGT ACAATGACAA GTGATACGTG TGTTGTCCT GTCAACAAAG
 229561 TGGATAGCCT AAGTGGTGAC TTTTACCTCC ACTCCAAATA TATGTATCAC ACACCAGCCG
 229621 TATGCCAGGC ACCACTCTAG GTGCTAGGGAA TACAGCAGTA AACAGACAAA TGCAACCCCT
 229681 GCCCATGTGA AAGAGAATAA GACAATAAAT AAGTAAAGTG CATGTTATAT GGAGGTGGCA
 229741 AATGCTAAA AGAAAAATTA AGCAGGCAAG AGGACTCATT GAAAAGATGA CATTGGGTA
 229801 AAAGCCCAGT TATATATGTT CTATTGTTT TATTCTCTG GAGGCCCTG ACTAATACAC
 229861 AATGACTTTG AGAAGTTACT GGCTTTGAT TTATCACACT ATT CGAGAGCCT
 229921 TCTTAGTGTG TATTCA GTGTGTG TTTAAGAGAG CTTGTGGATG AATAATAAT AGGACAAAAT
 229981 TTATCCAAAC TTAAGCCTTG CTTTAGGTA AAGGGCTCT CTTACAAGGT AGAAGGTTAT

Figure 8 (Page 71 of 73)

230041 TATTTGGCAT TTAAATCCAA CTGAAGACTA ATAAGACTAA TTAATTAAAA GTTTTAAAT
 230101 CACAACGTGG TGCAAAATAA ATGGAACCGC CATGCTGCC AAGTGTGCAT GAGTGGTGTG
 230161 CATGGGAGAC AGCACGAAGC TAATCCCACAT CTCAGGCAG GTGCTCCAT TTTCTCCTA
 230221 AAATCAGTAA GACAGAAGCT GGTCAGATTA TCAAGAGCCC TAGTTAAACA CAGCAGTAGC
 230281 ATTTGGAAGG GTTGCTCTC ATTAGGCAGT GCCTGACCAC AACAAAGAGAT GAACAAGCCC
 230341 TGTATCTGAA GCCATCATGC CTAGTTATGG TCCCCCACTG TTCATGATGC CTGAAAGGGA
 230401 GGCCCCCTGC ACCCTAGAAA GCTGGGTGGG TTCTACTGTC TGCTTACTG CTAAAAACCC
 230461 TCTTCTTTGG ATCTGGACTT TACCTCTATC TGATTTTTT TTCTAATATA TGATTTGGCA
 230521 CTGAGTCTGT CACTGCTGCT AACCTCAGCAG TTCTAGGGTC ATTGCCCCAT TGCCTCACAG
 230581 AAAGAATTTC ATAGCTTCCA GCATCCTCTC TCCCTCATTAA TACTTTGATT TCAGCATTGC
 230641 TATTTTTCT CTTGGGTGTT GCAGCTCTCT CTCTCCTTCC CATGCTTGTG TGGTTTTCTG
 230701 CTAACTCCTG CTTTTTTCT TTGAGACGGA GTCTCGTTCT GTCAACCCAGG
 230761 CTGGAGTGCA GTGGCACAACT CTCGGCTCAC TGCAACCTCC GCCTCCGGG TTCAAGCTAT
 230821 TCTCCTGCCT CAGCCTCCCA AGTAGCTGGG ACTACAGGGC CTCACCACTA TGCCCCACTA
 230881 ATTTTGTAT TTTTAGTATT GCTGTATCA ATCCACATGT CCAGAACGAC CTAGAAACTC
 230941 TAATTCTTTG TAGGTATCAA ACCCTAGGAC TCTTCTCT AATCACAATA TATAATCCCT
 231001 GATTCCCAA CACGGCTTT TCATATACAT TTTCACTGT ACATACTTTC TGACCTGGAA
 231061 AGCTCTTACA CAAACACGCC CTCCCCTAGG AAGCCTTTAT AAATGTTCCC AGGAAGAAC
 231121 AGTCACCCAA CAGTGTCTT GTCACATCTT AGGTTCTACA CCTTTATTTG TTCTATCTGA
 231181 ATGTAATCTC CCAGAGGGTG TTATCATCTT TTTTTTGAG ATGGAATCTT GCTTGCTGC
 231241 CCAGGCTGGA GTGCAGTGGC ATGATCTGG CTCACAGCAA CCTCCACCTC CTGGGTTCAA
 231301 GTGATTCTCC TGCCCTCAGCC TCCTGAGTAG CTGGGATTAC AGACGTGTG CACCACACCT
 231361 GGCTAATTTC TGTATTTTA GTAGAGACAG GGTTTCACCG TGTTGGCAAG GCTTCCTCG
 231421 AACTCCCAA CTCAGGTGAT CCACCCGCT CAGCCTCCCA AAGTGTGGG ATTACAGGTG
 231481 TGAGCCACCA TGTCCAGCCC CATTTTTTC TTTAGTTA GTTCTTAACA AATAGTCTGA
 231541 CACAAAGTGG ATATAACAAT ATTTGAATT ATGAATAACT AAATGAATAT TTCCAGATTT
 231601 CCTGGTGCTC TCAAAGTTT ATGTTACAAA AGAAAAAACAA GTCTAAAATA CCTGCCTCAA
 231661 GTTTTATCT GTACTATGAT TTCAAACCAA ATAAAAAACAA GGTGGGGTAA AAACTGAAAC
 231721 AGGAAATACA TATAACTGAA AAATTTGGT ATGTTAGTAT GATAATACTA GGTCACTTTT
 231781 CCTGTTCCC CAACTCATT TTCTATAGCA ATAAAAAGAA ACAAGTAAAT GTATATTAAAT
 231841 TTAATTAAA AGAAGTAGTC TACCATCTCT TCTGTTAAA AGAAAAAAAGT ATTTAAAAAA
 231901 ATTATCTCTG GAAGGATACA CAGGGAACAT TGCTCTGGTT TCTTCCAAGA GAGAAATGAG
 231961 GAACTAGAGA GCATGGCCAA GTGGGGTTT GCTTTGTTT TTGTTGTCT ATCTGTTAGC
 232021 TTTTATTAT TTTCTTTGT AGGTTGAAT TTCAAACAC ATAAATCTGT TACATGCTCA
 232081 TAATAATAAG TTTAAAATAA AACTTTTGGC TGGGTGCAAT GACTTACACC TGTAATCCCA
 232141 GCGCTTGGG AAGCAGAGGT GGGGAGGATAC TTGAGGCCAG GAATTGAGA TCAGCCTGGG
 232201 CAACATAGTG AGACCCCTGCC TCTGTAGAAA TAAACAAAAA TTAGCTGGAT ATGGTGGTGC
 232261 ATGCTTGAC TCCTAGCTAC TTGGGAGGTT GAGGCAGGAG GATCCTTGA GTCCAGGAGT
 232321 TTGAGGCTGC AGTGAGCTAT AATCACCCAC TGCACATAG CATGGCAAT AAGGTGAGAA
 232381 CTTGTCTCAA AAAAAAAAAGGGGGGGG AAACAAATAA ATAAATATAA ACAAAACTTT
 232441 TGTTCAAAAA TATGTAATAT TTAGCACTAA AGAATTCTGA ATTGTAGAGC TAAAAAGTAC
 232501 TTAAGGTTA ATAATTATTG TCTCCTTAA AAGAATTGTT ATCAAAGTAT AATTTTATC
 232561 CAGAAAATCA TCCATATCAG CAAGCTAAC TTTCTCAAA TGACATATCC ATGTAATTAG
 232621 CTCCCAGGTA ATTAGCAGGC AGCCTCTACT CAGGTTGAGT ATTCCCTAATC TAAAAATTGG
 232681 AAATTCAAA TGCTCCAAA TCGGCAACTT TTGAATGCT AACATGATTC TCAAAGGAGT
 232741 GCTCATGGAA TATTCAGAT TTTGGATTG TGGATTGAG ATACTCAGTA TAATGCAAAC
 232801 ATTCAAATC TGAAAAATC TGAAATACTT CTGTTCTAA GCATAAGGGA TACTCAACGT
 232861 GTGTTAGCTA ATTAGACCTC TCATGGCTC TTCTAGACCT CAGCTCTTC AAGGTAACCT
 232921 CTATCCTCAC TTCTAATAGC ATGAACTTTT CTGTTTGA ATAATTGGA TTTTCAGGAA
 232981 AGTTGCAAAG ATAGTACAAA GACAGTACAG GAGAGTTCCC ATATATCTTT CACCTAGCTT
 233041 TCCCCCATTG TTAGGATTG ACATTATTAT GATACATTG TCAAATATAA GCAACTCAC
 233101 TTGATACATG AAACCTCTATT AACCAAACCC TAGACTTTAT GTGGATTCA CCACTGTT
 233161 CACTAATGTT TTCTTCTGT TCCAAGGTCC AATCTGGAAT ACCACACTGC ATTTTCTTGT
 233221 CATATCTCCC TAGTCTTTT TTGTCTGTGA CAATGTCATCA GTCTTTCTT GCTTTCTATG

Figure 8 (Page 72 of 73)

88/162

233281 ACCTTAACAG TCCTGAAGAT CATTGCTTT TTTTCATAA TTACACCGA GTTATAGATT
 233341 TTTGAAATA ATACCACAAG GGCAAAGGGC CCTCTTGTC ACATCATTAA AGGGAGAAC
 233401 TGATATCCAC ATGACATCAC TGATATTAAAC CTTCATCATG TGGTTAGGT AATGTTCA
 233461 GTTCTCTAC TGCAAAGTGA TTTTTTCCC TTAATTAGC CCACCTGAAC TTATCAATT
 233521 TGTTTCTTC CATGACTAAT ACTTTGTAA TTATAGCTAA AACTTCATTG GGGCAAATC
 233581 TTAGATCATG TAAATTTCT TCTATATTAA ATTCTAAAAG CTTGTAATGT TTGATACATT
 233641 CTAAAAGATG TAATGTTGA TACATTACAT CTAGCCTTT GATTATTAA TAGTTACTTT
 233701 TGTATAAGGT GTGAGAGATG TCTCCAGTT CACTTTATTAA ACACATTGTG GTGTTCCAGT
 233761 ACTATTTGTT GCTAAGACTA TCTTTTTCC ATTGATTACC TTTGCCTTAG TTGGCAATAT
 233821 TTTGTTGGT TTATTCTAG ACTGTTATC TCATCCACT GATTGTGTC TATCTTTTG
 233881 ACAAAACTGT TGATTACAGT AAGCTTGAA ATAGTTCATT TTTGTGTC AACTGACTGA
 233941 GTCAGGGGAT AACCAAGCTAT CTGGTTAAC ATTATTTCTG GCTGTGTTG TGAGCGTGT
 234001 TCTGGATGAG ATTAGCCTTT GAATAGGTGA TCCTAGTAA GTAAACTGTC TTTCCCAGTG
 234061 TGGATGGCAT TATGCCACCT GATATTCAAG GTCTGAATAG AAGAAAAGGC AGAGGAAGGG
 234121 GGAATTTGGG CCTTTTTTC TGCCTCACTG CTTGAGCTGG GACATCTCAT CTGGTCTCCT
 234181 GCTCTTGAAC TGGGATTTCAC ATCATCAGTT CCTCTGGTTC TCAGGCCCTTC AGATTCA
 234241 TGAATCATAAC CACCAGCTTT CCTGGGTCTC CAGCTTGAG ATTACAGATC ATGGGACTCC
 234301 TCATCTTCCA TAAATGCATG AGCCAATTCA GTCTATGTCC TTGAAAATG CCCCACGTGCA
 234361 GATTAAGGCT TTTTCCACT AGGTGAAATA AAGAAGCTTG TTAGACAGAT TTCCCTTCAT
 234421 CCAGTGCCTT CTCCTCTTA AGTTACAACA CATTGGCTAC ACCTAAGTGC AGGGGTGGGG
 234481 ATGAGGGTAT AGTCCTCTTG TTGCTGAGA AGAGAACTGT ATTGGGAAAG CTCTAGAAGT
 234541 GTTGATACA TACATAAAACA AGGCATGGTT TTTGCACTTA ATTCACATT ACATTTTC
 234601 CAGAAAAAAA GGAATGTATA GGCATCACGT AACTGTACTA GCTGGAGTCA TTCTTCC
 234661 TTATCAAAGG TAAACAGTTA TTAATCCTAT ACCAAGATGT CAAGGAGAAG TACTTTGG
 234721 ACACAAGGAA TTCTCTGGG GTCCTTA CTCCTCAAGCC CAGTGAAGAAG GTTAATGAA
 234781 AACTATAGTA CCTCCTATA AGCTGGATGA CTAATTACCA GGCTCATTAA GGAATTG
 234841 TTACCAAGTA AAACATAAGG GCAGCTGAGG TGCTGACTGA AGACAAATGG AGCATAGAAT
 234901 AAGAGTAGTA AAGAATGCC AAAATGCTGT CATGTATCCA TTGACAAAAG GAGCTATAAA
 234961 GCCTTAGGT ATTTCACAC TTGCTCTGTT ACGTAAATGT ATGTGTGTGT GTGTGTGT
 235021 GTGTGTGTGT GTG

Figure 8 (Page 73 of 73)

1 CACACACACA CACACACACA CACACACACA CACAAATGAG GTATATAAAG GGTCTCCTAA
 61 AATGTCATCT GATATTGTT ATTCATATT CTCAGATTT TAATCCATT AGTAGGCT
 121 ATTTAGATA GCCTTGTCTG AAACAGAGCT GGGACCTGAT GAGTAAAAT GAGCTCACCA
 181 GAAGAAAAAT CAAACAGGC A TTTCAGAGAT TGAGGCCAAG AAGTTAAATG TCTTAAATGG
 241 GCAGAGCTTA GCTGCTTGAT GTGAAAAGAG ACCAGCGTGG CTGGAACAGC AAAGGAGAAC
 301 AGCAGAACAGAG GTGAACAGAG GCCAGAGATG GTCACTGAGT GGGCCCTTAA GTCATGGTAA
 361 GGAGTATGGA GAAATGAATT TTGCATGTAT TGAATATGTA GGTGACGTGA CTCACAGATA
 421 CTTGGATT GTAGAGATGA AGGAAATGTA GCAAGTGACA CTCTTAGAAT GTTGATTTGA
 481 GTAAATGGTA GTGTCAGTTA TTGAACTGGG GAGAACTGGA AGGGATAACA GGCTTAAGGA
 541 GCACGTTAT TCCTGTGTCT TGGAAGTGT TAGGGTGAAA GACCTATTAG AGTTCTAAAT
 601 GGAGATGTCA AGTAAAATG TGGCTACACA CATTGCAATT TCAGAAAAA GGTCAAGGCTG
 661 GAGATGTAAA ATTGGAAAGTT TACTGCATAT AGATAGTCTT TGGAACCGTA GTATTGATGA
 721 AGCCATTAAT GAGACAGAAC AAAGACTAGG GACCAGAGCC AAGCTCCAAG TTTCTAAAT
 781 TTAGAGGATA GTATAGTCTG GTCATTTGA GGTGAATACT TAATAACAGA ACAATTGCT
 841 GAAAGTGTAAA TTTAGAGCCC TACACTTTA GCTCTGACTA TTAACGAATA CAGGAAAGAA
 901 TGGATATGGT TATCTGCCTG GTGTCGTGA AATAATTAA GCCAGGAAGA GATCCTCACC
 961 AGAAACTGAC TATGCTGGCA ACTTGGATCT TAGATTCCA GCCTGCAGAA TTGTTAGAAA
 1021 ATAATGTCT ATCGTTTAAG CCACCAAGTCT GTAGTATTTT GTTATGGCAG TCCAAGCTGA
 1081 CTAAGTTTG GTACCCAGGC GTGGGATGCT GCAACAAACAA ATACCTAAAC ATGGGGAAAGT
 1141 GGCTTGGAA ATTGGTGATG GGTAAAGGCT GGAAGAGTTT GAGGTTCATC CTAGAAAAAG
 1201 CCAATTGTGA AGGGACTATT GAAAGAAATA TGGACATTAA AGGCAATTCT GGCAAAAGGCT
 1261 CAGAAAGGAA GAGAGCTGGA CAGAAAGCTT CCATTTCTAT AGAAACTTAG ATTATATAACG
 1321 ATCATGGATA GAATATTAAA TATGCTGGTT AAAATATGGA CTTTAGGCCA GGCCTGGTGG
 1381 CTCACGCCTG TAATCTCAGC ACTTTGGGAG GCTGAGGGCA CAGATCACGA GGTGGGAGT
 1441 TTGAGACCAG CCTGGCCAAT ATGGCGAAC CCTGTCCTCTA CTAAAAATAC AAAAATTAGC
 1501 TGGGCATGGT GATGTCCTTC TGTGGTCCC GCTACTCGGG AGGCTGAGGC TGAAGAACG
 1561 CTAAACCCG GGGGGTGGAG GTTGCAGTGA CCCAAGATCA CACCACTGCA CTCCAGCCTG
 1621 GGATACAGAG CAGGACTCCA CTCCCCCGC CACACACACA CAAAAAATAT ATATATATGG
 1681 ACATTAAGT CAACTCTTGT GAGGTCTCAG ATGAAAATGAG GGGACAGGTT ATTGGAAACT
 1741 GTAGAAATCA CTGTTCTTGT TACAATGTGT CAAGAACTTG GCTGAATTAC GCTGTAGTGT
 1801 TTACTGGAAA GAACTATAA CGAGTAAAAC TGGATATTAA CCAGAAGAGA TGTCTAAGCA
 1861 AAGTATTGAA GGTGTGATTT AGGTCCCTCT TACTGCTTAA AGTGAATGT GAGAGGAAAG
 1921 AGCCGAAATA AAGAAGGAAT TTTTAAGCAA AACACAATCA GAACTTGGAG ATTGGGATA
 1981 GATTCTCAA TCTATATTGT AAAAATTGAG AAAGTTTTTC TTGAAGAGGT ATGGTTGAAC
 2041 AATGTTTCT TTTTCTTTT TTTTCTTGT TTTTATTTA TTTTTATGTT TTTTGAGACA
 2101 GGGTCTGGCT ATGTCATCCA GGCTGGAGTG CAGTGGCACA ATCTCAGTTC AGTGCACCT
 2161 TTGCCTTCAG GCTCAAGCAA TCCTCCCAAC TCAGCCTCT AAGTAGCTGG GACTACATGT
 2221 ATGCACCACC ACACCCCTGGC TAATTTTTG TTGTTGTTTA TAGAGATGGG GTTTGACAT
 2281 GTTGCCTAGG CTGGTCTCTA ACTCCTGAGC TCAAGTGATC TGCCCTCCTC AGTCTCCCAA
 2341 AGTGTGGGA TTACAGGCGT GAAACACTGA GCCTAGCCTG AACAACCATT TGATAAAGAG
 2401 ATAATGGGTG TGACCCAAGG ATTTAATCAG CCATCTCAGC AGAACGCCAGG AAGAGAGATG
 2461 GGATTATTCC AGCAGAGACA CTGCCAATT AAACTAACGT AGGCAGAGAA AACAGAAAGG
 2521 AACAAAGGAA GTTGTGAC TTTTGAAATT CTATAGAACCA GGATCATAGA GCTACCTGGC
 2581 TGTCAATGTG TACTATTCTT TAAGAAAAGG AAAGACTGAC CCACCAAAGG CAACTTACAA
 2641 GATCACTAGG GCTGACTCTT TTTGTTTTT TCTTGAGGCA GTCTCACTGT CACCCAGGCT
 2701 GTAGGGCAAT GGTGTGATCT CAGCTCACTG CAATCTCCAC CTCCCAGGTT CAAGGGATTC
 2761 TCTTGCCTTA GACTCCCAAG TAGCTGGGAT TACAGGCTCT AAATCTGTAC CCTCCCGAGT
 2821 AGCGCTCTG CCACCACTTG CCCAGCTAAT TTTGTATTT TTAGTAGAGA TGGGGTTTCA
 2881 CTATGTTGGC CAGGCTAGTT TGGAACTCT GACCTCCAGT GATCCATTCT CATTGGCCTC
 2941 CCAAAGTGCT GGGATTACAG GCAGGAGCCG CCAGGGCTGC CACTTTGATG TCAGACTCAG
 3001 AGAGTACAGA TGGGATAGGG TGGGGGTGGG AACATGTAGT CAAGGCTGAC TCTACCTGTT
 3061 TCAAAGATGC CCTGCAGAAC TGTGTGGGAG TCTCTCACAG ATGGCTGCCT GGGTGGGACC
 3121 CCACCAAACG GAAAGACCGA GACTTCAGGC AGGGCAGATG GAGTAGGCCA ACTACAGAGC
 3181 CAGAGGTGAC ACTGAGACAC CACTGGGCCT GGAAATCAGG GCATCAAGCC AAAGAGGGTT

Figure 9 (Page 1 of 74)

90/162

3241 TTTCTTAAGA CCTAACAGAA TTTGCCTTGC CAGGTTTGG ACTTGATTAG GACACATTAC
 3301 ACCTTCCTTC TTTCTTATTC CTCCATTTC TAATGGGAAT GTCTATTATG CCTGTTTCAC
 3361 CATTGTACCT TAGAACATG TAACATTCT GGTTCACAC GTTCAAAGCT GGAAAGGAAT
 3421 TTTGTCTCTG GATGAATCAC ACATTGAGCC TCACCCGTAA CCTGATTAG ATGATTTTT
 3481 AGATGACACT TTGAACCTTA GAATTGATGC TAGAATGAGT TAAGACTTTC AGGGGGCTGT
 3541 TGGGATGGAA TAATTTTTT TTTTTTTTG AGACGGAGTC TAGCTCTGTC GCCCAGGCTG
 3601 GAGTGCAGTG GCACCATCTT GGCTCACTGC AAGCTCTGCC TCCCAGGTTT ATGCCATTCT
 3661 CATGTCTCAG CCTCCAGAGT AGCTGGACT ACAGGCGCCC GCCACCACGC CTGGCTAATT
 3721 TTTTTTTAT TTTAGTAGAG ATGGGGTTTC ACCGTGTTAG CCAGAACGGT CTCGATCTCT
 3781 TGACCTTCTG ATCCGCCTGC CTTGGCTTCC CAAAGTGTG GGATTACAGG TGTGAGCCAC
 3841 CATGCCCGGC TGGGATGGAA TAAATTATC TTGTATGGGA GAAGGACATA CATTGGCA
 3901 GGTCAAGGAC AGAATGTTAT GGACTAAACT GTGTCCCCA AAATTCAATT ATTAAAACCC
 3961 TAAACCCAG TGTGACTGCA TTTGGACATA GAGCCTTAG GGGGTACATA AAACAAAGA
 4021 TCACAGGATA GGGCCCTAAT CCCATTGGGG CTGGTGTCTT TACAGAAGAT GAGACACTA
 4081 GAGCTCTCTC TCCACCGCAGG CACCAAGGAA ACACCATACA AACACACAGT GAGATGGCAG
 4141 CCATCTGTTA GCCAGGAACA GATTCTCACC ATAAACTATG TTGGCACCTT GATCTTAAAC
 4201 TTCCAGGCTC CAAAATGTG AGAAAATGAA TTTCTGTTCC AAGCCTCTTA GATATGGAAA
 4261 AAAAGATTCT GTTGTAAAG CCATCCAGTC TCTGGTATTT TGTTATGGCA GCCTGAGTAG
 4321 GCTAAGACAA TGAAGGATGT GGTAAAACCT TACGTCCCAA CCACATACCA AAGAGGCTGG
 4381 AATTTAGCAT GCTTCTTCT TTCAACTGTA GGCAATGTGC ACAAGTTCTA AATCCTAAGA
 4441 CATGTTGGCT CTTTACTCT GCCCCAACTA CAACTCAAAC AAACAACGT AATATAATAA
 4501 CATCCAATGA AGTTCTGACA TTTCTTCAAC ATGAGTACAG TAATTCAATG CCAGAGAATT
 4561 CATTATTTTG TGAAATCTAC ATGCCATATT CCAATTCTG TTGAAGATGC AATGGTTATA
 4621 TTTATTCTT TTAATATAGA TTTATCAGAC TGGGCGCGGT GGCTCATACC TGTAATCCTA
 4681 GCATTTGAGA GGCTGAGGTG GGCAATATCAC CTGAGGTCAAG GAGTTGAGA CCAGGCTGGC
 4741 CAACATGGTG AAACCCCTGTC TCTACTATAA ATATAAAAAT TAGCTGGGTG TGGTGGTGCA
 4801 TGCCTGTAGT CCCAGTTACT AGGGAGGCTG AGGTAGAATT GCTTGAACCT GGGAGCAGGA
 4861 GGTGCAATG AGTGGAAATC GCACCAAGTAC ACTCCAGCCT GGATGACAGA GCAAATAAT
 4921 AAATACATAA AATAGATTAA TCAGTTATC AATAATATAG TTTCTTTTC TAGGTGTAAA
 4981 TATAGGTAAT GACTGTCCTT TAGTACATTT TCTCATGATG CTCCTCTTAC TTGGTTGGT
 5041 ACAATATTAA GTATTGAAAT AAAATAGAGA ATCCCTGTCGC TACACATGAG CACTTATTCC
 5101 ATTTGCTCAT CTCCAATATG CACGGGAAAT TCTCAAATTG CTAATAATCT TGTAACACAC
 5161 ATGCATTATA TTCAACAGGA ATATATAAT TTATAATTAT AATTTAGGAT CAACAGATGA
 5221 CAAACCTTTA GAAGGTTTGT ATTTAACCTT AAAATATAAT TTTTTAAAAA TTGGTTATAA
 5281 AATTTCTAAT ACTTTCTTT TTGTGACCTC AAGGGGAAAA TATAATTCTT ATAAAAGTTC
 5341 AAATGATTAA CAGAACACAA AAAGTGAATA GAGATGATGA ATGAATTAAA GGAAAGGATA
 5401 TTGCTACATA GATTTGGAAA TTTAAAAGG GAAATTACGA TTGTTGATTT TGTGTTAAAC
 5461 TGATCTGCTT TGTTCAAGAT ACCTTATGTA CCAAAATG ATTTTATCTC AGCCTCATAT
 5521 CTCAGTAAAT TCCTGAGACA AACTTTAGTC CCTGGTGCCTT AGGTGCCTT GTAAATTGGG
 5581 AGACCTCTAG GTTTAGCATC CTCATCCACT CGCCCCAATT TAAATAGTCC TCCCCAGGGC
 5641 CATTCAAGGCA AGGGAGATGA AAACCTGTC AAGAGTTGGA ATCCAATTGA AGCTACCGAA
 5701 ATTCATTGCT CAATAGATAA TTTCCCTGG AAGTAACCTAG GGCTTTGAA TATAATAGTG
 5761 GGCATTTCAA AGTGAAGGT AAAGTATTTT GGAGATGAGG AGACAGGACA GAGCTACGAG
 5821 GAATGTCCTT TGCTCAGGGAA CTAGGCTCTT AGCAGTACCT CTTAGGTAAG AACTGGTTAA
 5881 CTGGCACCTT CTGTGTTCT CTGAAGCTCC CTTGCTTAG GGACTAGGCT CTTAGCAGTA
 5941 CCTCTTAGGT AAGAACTGGT TAACTGACAC CTTCTATGTG TCTGAAGCTC CCAGAACAAA
 6001 CTGCCAATGA AATTGGATT TTTGGAATAT AGTTCTTTT TTGTTGTTAC TTTTGTTTTT
 6061 GTTGTTTTT TTTGAGAGTC TCACTCTCAC TGCAACCTCC CCCTCCTATA TTCAAGTGAT
 6121 TCTCTTGCCT CAGCCTCCCG AGTAGCTGGG ACTACAGGCG TGCACTAGCA TGCCAGCTA
 6181 ATTTTGAT TTTTAGTAG AGATGGGTT GGTTTTTTTG TGAGACAGAG TTTCACTTTG
 6241 TCGCCCAGGC TGGAGTGCAG TGGCACGATC TTGGCTCACT ACAACCTCCA CCTCCCGGGG
 6301 TTCAAGTGAT TCTCTGCCT CAGTCTCTG AGTAGCTGGG ACTACAGGCG CCTACAGGTG
 6361 AACACCGCCA CACCTGACTA ATTGTGTAG TTTTATTAGA GATGGGGTTT CGCCATGTTG
 6421 GCCAGGCTGG TCTCAAACTC CTGACCTCAG GTGATCTACC CACCTCAGCC TCCCCAAGTG

Figure 9 (Page 2 of 74)

6481 CTGGGATTAC AGATGTGAGA CACCAAGATCA GCCTCAGAAAG ACATTTCTA TTGGAAAGAG
 6541 AAAACACTAT TAGCAACCTA TTAGTCTAAT ATTTAATACT TAATGTCTTC CTTAGTAATA
 6601 AACCAACTCT CTACAACAAA GTGCTTCCTG GCTGCCTAGT CATTGATTCA TTCAGTTCAA
 6661 CATTTCCTCA ATGCCAACCA GCCAAGTGT TCCGTATGC CAAGTTCTAT GCTGATTATC
 6721 AGTATTTGAA TAAGAGGGGG TCTACATCTT AAGTACTGCT TAAGATGAAA GCCTCTAGGT
 6781 TAACAAACTT AACACAATGT ATCATTCACT ACTAAATAGA CCGAATACAA AATCTTGTTA
 6841 TTGGAGCCCA GAGAGAAGAA TTGAAATTCA AGTTTCTCT CTCTCCTTT CTCACTCACC
 6901 ACAATAAGTC AGTTGCACCA AGTCTGTAG CTCTTACTG AGCCATGTTT TCACGTGTCC
 6961 CTTTGTTTA TTTGCCACAC CCTAAATAAA AATTGTACTG GCTTTTTTC CCTGGGTTA
 7021 CAGTATTAAAT ACATTGTCAA GATTTACCTC TTCGTGTAGA TCCCCTGGGG AAAATTACCT
 7081 TTCCTCCTTC CCTTAAATTCTC TTCAAGGGTT AGAAAAGCCAT TAGTAACATT CTGGTATGTG
 7141 GACAAAGTTT ACCCATTATG TATGGATGTT TTACTCTTTC CATTTCCTG ACAATAATCT
 7201 CTTAAGGAGG TGTGGTTATA GAATAGTCAG CTGTTATAAG TACTGTTTTC CTGGCCTTAC
 7261 AACTTAAATT CTTTAAGCTG TTTCTTAGTT TGCTCATCTC AAAATTGGAA ATAAGGATAA
 7321 AACCTATCTC TTAGATTGTT GGATTAATG AATTAACATA CTGGAAGCTC ATGAAATGTG
 7381 CCTGGCACAC AGTAGTGCCT AATAAACCAT CTCTCTTATT CAGCCTGTTT TCTGATTTC
 7441 GAATCTACAC TTGCTGAGCC AGGTTCTTT CATTCAAGG TGAGCAAAAG CATAACAAGGA
 7501 AGAGATGGAG GTAGGAAGAG ATTAAGCCCT AGGCCAAGGG AGCTGGAATC AAAGGCAATT
 7561 TGGTCAGTGA ATAAAAAGGA TTCCAAGGCC CATAAGGCAA TTCTAACCTT AGGATCGAAA
 7621 TTCTCGGACA TACAGGAAAT GCTGGGGGGG GGAAAATCCG GTCTTCTCAG CCCAAGAGCC
 7681 ATGTGAAACC AGACCTTCAA ATCTGATGAT TCTCAGGCCA GCTGCCATT AGAATCGTTG
 7741 TAATTTAAAAT ACACCTCGG AAAATTCTAA TATGTGGCTA TCAAAGGTGA TCATTTGCTT
 7801 TTATGCCACT TTGTTTAC CCAAATGGGA CATCCAACCC TTTTCCTTG AGAGTAGTTG
 7861 TAGGGAAAGG AGGGGGTGGGA GGGAGGGAAAG AGCGGAAAAG GCTGGATCCG CCCCAGAGCC
 7921 GTGTCACTAT CTGGGAAGTG GGAGGCGCGT CAGCAGTAA CAGCTCTGC TAGGATTATT
 7981 ATCTCCTGCC ACACACTCGG ATTTGAAGGC TCCAAACGAA ACAATGCAA ACGCTTCAGT
 8041 GGAGTTCAG AAGCGTTAGA CTAAACGACT GGGCTGTGTT GGCCAGTCTG AGCAGCTGGG
 8101 CGCAGATGCA TAGGCAAGAC TTAGCCGCC TAGACTTTTC TGCCCACCTA ATTCCGATCA
 8161 AAGCAGAAAC CGGCCGGCG CGGTGGCTCA CGCCTGTAAT CCCAGCACTT TGGTAGGCAG
 8221 AGGCTGGCGG ATCACCTGAG CGCTTGTAAAT CCCATCTACT AGGGAGGCTG AGGCCGGAGA
 8281 CCGTTCTAC TGTTGGCGGG GGAGTTGTA TGCACTGAGC CGAGATCGCG CCACTGCATT
 8341 GTCGTCTGAA CCCGGGAGGC AAAACTCCGT TTCAAAAAAG CAAGCAAACA AACAAAAAAA
 8401 CCAGCTTGGG CAACAGGAGC TGCAGAAACC GAGATCCGGA AGAAAACCTC GGCGAGATTC
 8461 TCTCTAGAAA TTTGTCCATG CAGATCCCTA GAAGCAAAGG GTCCCAGATC TCCATTTC
 8521 TTTTTGGG GGACCGTGTCACTGTTTGAGGCTG AGGCTGTTAC
 8581 CAGATCCCTA GAAGCAAAGG TTTTTGGG GGACCGTGTCACTGTTTGAGGCTG AGGCTGTTAC
 8641 GGGCAGTGGC ACGATCTCGG CTTACTACAA CCTCCGCCCTC CCAGGCTCAA GCGACTCTCC
 8701 TGCGTCAGCT TCAAGAGTAG CTGGGAGTAC AAGGTATGTG CCACCAAGGCC
 8761 TTTTATTAT TATTTTATT TAGTAGAGAG GTGTTTCACC ATGTTGGCCA GTTGTAGTGT
 8821 GAAGTCGTGA CCTCAGGTGA TCAGCCCCCT CGGCCTCCCA AAGTGGTAGG ATTAGAGGGG
 8881 TGAGCAGAAA GCAAAGGTTT TTGAGTGGCC ACAGGGCCCA CTCTATTTC TTTTCTGCT
 8941 GTAATGGCAA CCTAGACGCT TGAGCTTCTT AAAATACAAG AGTAAGTTGC ATGTCAGGCA
 9001 CCGTTCTACA TTAGGGACAT TAGTCTGTT TACAGACACC TTTCAACTCC CTGGTTAACT
 9061 TTTAGGTAAT ATACTCTGCA CTTTAGCAGG AATGGAACCT ATAACCTCTCA CAGAATTAGG
 9121 AAAGTGAGGC TGCCTACAGC CTAAATTGAG AAAAAAATAG AGGGGGACT AGTCGGAGGA
 9181 CCAAACAAGG TTACCAACAC GTTAGAGTTT TGCCTTCAT TTACATTTC AAAGTAATCA
 9241 CAACGAAGTG TTTAGATCAC GAGGCATCCC TGCATGTAAA CTGTTAGGCA CTAACATATGG
 9301 TCGATCTTAC AAAGCATTAA CTAGAATATT TCTTAGAGT ATGATAGTAC GTAACGTGACC
 9361 TACTATTACA TACAAACAGA CCAACCTTA GTAACAGCGC TCCCCAAAAA CCGAAAAGCA
 9421 GTAATACGCT TTGCTCAAGG TTGGCATAAA ATTAACCTAC CTTAGTGCCT TTTTCCTTC
 9481 TACCTACAAG CAGTGAGGTT AGCTCTTCTT TTGAAACGGT AGGGGGCTC TGAAAAGAGC
 9541 CTTTGGGTTT GATAGCGTTT CGGGGAGCTC AGATACCTGT CAAATCACTT GCCCTGGCC
 9601 TTGTGGTGAC TCTCGGTCTT CTTAGGCAGA AGCACGGCCT GGATGTTAGG AAGGACGCG
 9661 CCCTGAGCAA TGGTCACCCCG GCCTAGCAGT TTGTTGAGCT CCTCGTCGTT GCGGATGGCC

Figure 9 (Page 3 of 74)

92/162

9721 AGCTGCAAGT GGCGCGGGAT GATGCGAGTC TTCTTGTGTT CGCGAGCCGC GTTGCCGGCC
 9781 AGCTCCAGGA TCTCGCGGT CAGATACTCT AACACCGCCG CCAGGTACAC CGGCGCGCCT
 9841 GCCCCAACCC GCTCTCGTA GTTGCCTTTA CGGAGCAGGC GGTGCACTCG GCCCACCGGG
 9901 AACTGGAGAC CAGCGCGAGA AGAGCGGGAT TTCGCTTTGG CGCGAGCTT GCCTCCTTGC
 9961 TTACACAGTC CAGACATTGC AATCAGACAA AAATCACCAA AACCAGCAGC CTAAGCTCAC
 10021 GAGAAAACAA ACAAAATCAA GAAATATGTA AAACATGGCC GCTTTATAG GTAGTCCTG
 10081 GGGAGTAAAT CCGACTTTT GATTGGTCGG TAGCAAATGC TAGTCAGATA GCCAATAGAA
 10141 AAGCTGTACT TTCATACCTC ATTTGCATAG CTCTGCCAC GGATGACAAC TGTGTAGTTT
 10201 GTCTTCAAT TAACTAAGAG GTACTCTCCA TCCCCTCATTA GCATAAAAGC CCTATAAGTA
 10261 GCAGAAAATCC GCTCTTACT TTCGACACAT TTCTGGTGTGTT TTAAGATGCC TGAGCCAGCC
 10321 AAGTCTGCTC CCGCCCCGAA GAAGGGCTCC AAGAAGGCAG TGACCAAAGC GCAGAAGAAA
 10381 GATGGCAAGA AGCGCAAGCG CAGCCGCAAG GAGAGTTACT CTGTGTACGT GTACAAGGTG
 10441 CTGAAACAGG TCCATCCCGA CACTGGCATC TCTTCCAAGG CCATGGCAT CATGAATTCT
 10501 TTCGTTAACG ACATATTGTA GCGCATCGC GGCGAGGCTT CCCGCCTGGC GCATTACAC
 10561 AAGCGCTCGA CCATCACCTC CAGGGAGATC CAGACGGCCG TGCGCTGCT GCTTCCCGGA
 10621 GAGCTGGCCA AGCACGCCGT GTGCGAGGGC ACCAAGGCCG TCACCAAGTA CACCAGCTCC
 10681 AAGTAAACAT TCCAAGTAAG CGTCTTAACA CCTAACCCCA AAGGCTCTT TAAGAGCCAC
 10741 CCAGATAACCC ACTAAAAGAG CTGTGGCCAG ACGCCAAATT TTATTTGGCG GCGGAGGGGT
 10801 ATTAGAATGT AGGAACATGGA GAGGGGTGGG GACAAGTGTGTT GCAGCTTAGA GAGGGACAAA
 10861 GGGTCTGAA CCCGAAAGAA GCCAGCCATT AAAAATGGGT TTGGGGTCAA TTCTGTTGTGC
 10921 TAAATTTAA AATGGGGACA AGCGGCCATT TTGCTAATCT GGCGTTCCCG GAAGAAACCG
 10981 CAGGCTCGCT TAGGTTTCAG ACCCAGCTGT CTGTCCTGT CTACGTCGCC AGGATCAACG
 11041 GTTGCCTGAA TGTCTATAATT TCGCCACCAG CTTCTAGCCA ATAGGCTGTC CTGTCACTTT
 11101 AAATATTAAC CAATCGAGGG AAAGCTGTT TGAGACTCTG ATTTACATAG CGGACCGGAG
 11161 TGGGAACCTG GGCAGTAACt GCCTAAGGAA GGACTCCCCC TCTGTTTCG TGGCGCACAC
 11221 CTTCTGTAGTA TACTGAAGGG TGTGTCTCCT GGGTTTCCAA CTGCCCCGGT AATAGTCTT
 11281 TAACCTAATA TGCCTCAGTT TTGATAACAA CACTAAGGCA GTACAGAACT AAAGATGTAA
 11341 GCACTGCGCC AGATGTTGCT TCATACATCT TATTCTATTCA AACTGGTTA TTCAAGATT
 11401 AAATCAAATC AAATTTGCT TGAATCCCAG TGCTCAGTCA GCCATAAAATG GTGTGTTGC
 11461 TGATTGAAAC TAAAAATCTC CGTAGGGGGC TTGTAACATG CAGAAAAGTT TGAAAGTTGC
 11521 TTTAGGAGAA GCCAACTCTT AACTGCTGGG TAAATTGACA AGCCTCGAA CACTGAACGT
 11581 AAGGCCAGTA AGGACTAGGC GCTGGGTGGG GGAGAAATGAA GAGGAGACGT CATTAAACTT
 11641 AGCACATACA CTGTGTCTCC TAGAGGACTC TCCCCCTCTA GACAATGCA GGCCGCTTTG
 11701 TGGCCTGGGA AATTCCACAT TCCCTTAAGT ATTTTACTCA TGGTCTTTTC CAGGTAAAGA
 11761 TTTTAAGATG AAGGGTTAGA CGTAGTCTAC CTATCTTTT ATTCAAGTCT AGAACACCGT
 11821 TTTAGCACCT AGAAGTTGCT TTTCTCCATT AAAAACCGGG AATATACAAT AAATAAAATT
 11881 AGTGTAAAG CAGATTTTA CAAACTTAA TACCATGTAA TTTAGGTTAC AGTTACTTAA
 11941 CATAAGGACT GTGTGATCTT AAATCTGCAA TTTCTTCAC ACCTGGAAA TAAACTAAGG
 12001 CCTGTCTTTG GTGCCAGACA AGGCCTTATA CTTGAACACT GCTGTGCAAT CACAGGCTGC
 12061 CTTGCCTAGA TAACTTATCT GAGAAATTCT GATGAGAAAT GAAATTCCA GAGTCCCTCA
 12121 CAAGTAAATT TTTTTTCTT TTTTTTTTT TTTGAGACGA AGTTTCTCTC TTGTTTCCCA
 12181 GGCTGGAGTC CAATGGCGCG ATCTTGGCTC ACAGCAACCT CGCCTCCCG GGTCAAGGCC
 12241 ATTCTCCTGC CTCAGCCTCC GGAGTAGCTG GGATTACAGG CATGCGCCAC GACACCCCTGG
 12301 CTAATTTGT ATTTTAGTA GAGACGAGGT TTCTCCATGT CGGTCAAGGCT GGTCTCGAAC
 12361 TCCGGACATC AGGTGATCTG CCCGCCTTGG CCTCCCAAAG TCCTGGATTA CAGGCTTGAG
 12421 CCACCGCGCC GGGCCTAAAT GTTTTTTTT TTTCTATGC CTCTAATGGA CCTGGTCACT
 12481 TATTCCCATT CAGACTGACC GCTCTCCTAC CTGCCAACTA ACTAATCAGT GTAACCAAAA
 12541 TCTGCAAACA AAATTAGTA TTCTTCCCC GCCTTTCCC CTTTCTCTTA CATAGATTAT
 12601 GTTTTGCT GTGTTAGATG AAATAATTCT ATTGCTTGTGTT CTCTCTCTG TACAAGTACC
 12661 CAGTAAGCAA ATTATTAAC TCTTGGTCAT TTATTCTGA ATTTTCCACC AAGACAGTGT
 12721 TTATGTGAGT CATAACAATAA GAACCAACAG AAATGTGTGT CTTGAAACA GGTGCTAT
 12781 CCCTGGACCC TTTGAGTTT CTGTTCACTT TCCTTGGCT TTTGCATGCT AAAAGTTAT
 12841 CGTCCGCGTT TGTGTTGTGTT GGTTATTCTA ATTGGACTTG GCTGATTGGT TGCAATTG
 12901 TGGCAGTAGT AGAATTGAA TTCTGGTTT CTGGTCACAT CATTAAGTGA TTAGTCAGTG

Figure 9 (Page 4 of 74)

12961 GAGAGGACAG GAAATCTGGT TTATTTATTA ACCTTTTTT GGGGTGTTT TGTTGAAGA
 13021 TGTTGATATT CTCTGTGAGG ACACAGGGTT AGAGTTGGTG TTTTCTTTC TGACTTTACA
 13081 TGGGATTTGA TGTTTGTGC TTGTATGCC CTTCCACCT TCCAAAACCT GTCTTTTG
 13141 AGTCAAATA GTTGTGATA TCTGAAAC CAGTATTCC GTGTTAAGAT GATATGAATA
 13201 TAAAATGGCT GCCCTGTTAT AACTTTGAC TTAAGAAG TGTTAGGACT AACAGGAGAC
 13261 AAAAAGGAAA TCAAGGAAAC CAAATGCTG GTCTCAATAA CTGCTATGGC AGAGGCTCTA
 13321 CAGCTTATT TAATTTTAG TAATTCACA TTATTGCC TTCACGTTCT TTAAGTAAGG
 13381 TTAGAGGACA GAAGAACAT AATGTTGTTA CAAATTGGAC TATTGAGTCA GGAAAAAAA
 13441 AGAGTGTCTT CAATATCTGA ATAAAACAAA GATTTAATAT TTTCTAAACC TTAACGAGTT
 13501 TATTGTAAGG GATGTGATGC TGGAAACTAG GAAACTAGAA TTTTCTCTA AACTGAGAAT
 13561 CAGAATTATT CATATTCTCA GCAGTGGTGC CACCTGAGGG ACTTCTGATC TTAATTACAT
 13621 ACTTTTATT CTTTAACTGA TCAACATGCT AAATAGATAA CCTATGGCTC TGTTTTTACC
 13681 CACTTTAAAT TCTGTTCTAT TAGCACGGTT AGCTTCTCTA ATTGGCAATA AGATTGAGAC
 13741 TATCTTTTT TTTTTTTGA GACAGAATT TGCTCTGTGG CCCAGGCTGG GGTGCAGTGG
 13801 CACAATCTCG GCTCACTGCA ACCTCTGCC CCAGGGTCT AGCAATTTC CTGCCTCAGC
 13861 CTCCCCAGTA GCTGGGATTA CAGGTGCACC ACCACGCCG GCTAATTGT GCATTTTAG
 13921 TAGAGATGGG GTTTCGCCAT GTGGCCTAA CTGGTCTCGA ACTCAGGTGA TCCACCTCGG
 13981 CCTCCCAAAG TGATGAGATT ACAGGCGTGA GCCACCGTGC CCAGAAAAGA CTATCTTATT
 14041 TTATGAATT AAATAATTGT GAAATTATCC ACTTAAGGGA ATTAATAAAT TATAATGTA
 14101 TCTTAAATT TAGTGGCTT ACATAAACAC TAAAATACA TCAATTAAA TAAAACACTCA
 14161 TTTGTCTAAA AAAAATCAA AAATTTCT TGTGTTAA ATGTGCTACC TCTTTAAGTT
 14221 CTAATTAAGA GAAAAAAAGT TTAACTGTGA GTTCATTAG TGGTCTTAGT TAACAGCTTA
 14281 AAGTATTGG TAAAAAAAT ACTTCACAAT TTTAAATAA CTTAAAAATA TTAATACCTC
 14341 TTTTATTAGG TTTTTTAAT AAGGAAAATA TATAATACAT CTAATCAAGA TTATTTTTG
 14401 GACAAATTGG CTTAATAATT TCATTTAAA AATGGCTCT TTATTCTTAT ACTGTAAAAA
 14461 TAATATTAGC AGAATATTAT AGTATACACA AGTTAGGGT TCATATTCTA AAAACAAAA
 14521 ACAAAAGCTA ATTTAACCTG CATTACTAA ATTCTTCCA CTAGTTGTAC TGGTTACATG
 14581 AGTTAACATC ACTTATTAA TTATTCTAAA ATTGTAAATT ATTCAATTGAA CAAATTAAA
 14641 TGATAATAGA TAATGTCATT TTAAAAATG GAATTAAATT TTATGTTACT AATTATAAGG
 14701 ATTCAATGTG TGAGCTTAAG TACTGAGTC ACAGTGTATG ATAACATTAA GAATTAGGT
 14761 GAATATTATT AAATTGAGTA AATTAATTCT CAATCTTGG ATACCTGGAC AATTCTAAA
 14821 TTGGAGGGTA CAAAATACAA ATCACAAGAA ACAGTGTAGT TTTATGCAA TAACATTTT
 14881 ACACAGTTA GAATAACCATT TGATAAACAG ATAAGAGAAC ATATGATTGC CTTAGAATAG
 14941 ATACTGTTGC TTTGCCACT TTAGATTGT AAATCATGTA CTGTATACGT GTGGCGTAG
 15001 AGGACCATGC AGGTTTGGG TGACTGCC C TGTGTTCGTC ATGCCTATGC GGGAACACAA
 15061 TTGCCTGCTT TGTTAAGGG CTATGGTTAA TCCAAACAGC TCTGACTCTA TCAAGTACTA
 15121 TAGCTACAGA GAAACACAAG TAAGCATTG AGATAATGAC TACCTTGAGC CTTTACTTAT
 15181 TTAAAAAGTT GTTACTGTTT GTTAATGTGG TACATTCAAT TTACTATGGA TTGTCACTCT
 15241 AAAATAAGAC TTCAATCTTT TTCTTATTT TATATAGCCA TGATTATAT TCATATCTTA
 15301 ATGTAATAAC CAATCTTCTC TGACAACATT ATAACAATGC TGGAACCTCC ATTTTCAGTA
 15361 CTTCAAACAA CAAATACTGC TTTTATACTT CAGAGCAGAT GGATATGTGC TTCCCAGTGT
 15421 AAACACATTG GGAATCTCAC TGAGAAATAC ACTATCACTA AAAATACAGT TCTGAGATTC
 15481 ATTAAAAGAC CTCCAGAATT CTGGAAAGTAG GAAGTTTCCT CTTCAAAGTC TACAGAGGAA
 15541 GACGAGGTCT GAAATAGACA GCTTCTTCC TCTTTACCT GTGGTATTAT TCTGTTTTGT
 15601 CCTTTCTCC ATTATCTGTC TTCCAGTGA TGAAATTGG ATCTGCCCT CCCAAGTATT
 15661 AAAAACAAG CAAATAAACAA AATCTCAGTT ATATTTACT AAGATATTGG CATGCTAACT
 15721 TTTGCAAGGT TTGTAACAAG GACCTTATA ACTGACTAA AAGTTCCTAA ATAAGAATAT
 15781 TTACTAGAAA ATTTATTCT GCCTGTGCC CACATTGAG TCAAAATAAT CAATTAGGAA
 15841 AAAATGAACTT GTTTAACTAA AGTTGGCCTA ACTGATCTT GAGACCTATT CATCTAAGAC
 15901 AAGCCAATTA AATTCTTGGG GACAATTGT ACTTTAAGGA ATTCTTATAA TATTGTAAT
 15961 TACCCCTCATA ACTTTTTTT TGCCCTACTT CTGTGCTTCT CTAATATGCA GATTATTAAA
 16021 TGTTGTTACA AAGCCATTGT CAAAAAAACA AAAACAAAA AACTAAACAA ACTCACATGG
 16081 TTAGACTTGC TCCTTTATGA GATATTGGA CAAAAATGG AGGAGTTGAA AAACCTGTT
 16141 GCCAGAAATC GTGAAGACAT GGCTACCTA ACTTGGAAAT GTTGGTTGTC AGTGGAAAAT

Figure 9 (Page 5 of 74)

94/162

16201 ACTACACAGA GATAGCCATA GTGCTGCACA GCCAATCTTA AGTGTTCATA GAGAACACT
 16261 AATTGTTCT AGAGAACAC TAATTGTTT CTTTAAACAT TCTGGTTA TACAAGAAGA
 16321 GAGTATCCAT ACTAAACTCT TTTCTACTGA AAATAATGTG CAAACATAAC ATCCTATTCC
 16381 TAGACAGTT GTAGTTTT TCTCCCATT CTATTTATA AATCATCTT TTAAAATACT
 16441 TTGTTGAGTG AAATCAGTCC ATTGCTTGAT ATACCTTGAG CACAAGAAA TAGTATGCCA
 16501 AAAATTAAAT GTCTTCAGT CACAGTTGA CAAACTCAAC TACCCGTGAGC CTATAGAGTG
 16561 GTAATAATTG CCCTACTCAT AAAGATGGGG TGAAGATTAA ATGAAATAGC ACCTATAGAA
 16621 CACTAGTTCC AGACGTGGTA TCATGCTAGT AAAATGGCTG CACAGCACTG CTCATGATG
 16681 ACAAAAAGTG AAGCTCTGG AGACAGACTC CAAGTTGAC TCCCAGATCA CCACATATAA
 16741 GATGTGGGAC TCTGAGGCAG GTCATTTAAT CTCTCTGTGC ATTAGTATCC TTCTCTATAC
 16801 CTTTACAGTG ATGTAATAG CACCTACCTT CTAGAAGTAT GTGAAGATTA AAGATCCTTA
 16861 ATGCATATAA ACCACTGTGT TTACTGCTGT TTGACAAATT TTATTTATAA CCATCTTAC
 16921 GCTCCTAAAA GGACTTGAAG CAGCTTATGA CTGAAGACTT TGGTAGGAGT TGGCCTTCTA
 16981 TAAATTATAA GAATTTCATA AATTATTGTA TATGAAAATG CCAGTTGATC ATAGTATGTT
 17041 TACCGGGGTC CAACAGGTTG AGAAAAAAATA CACTTTTTT CCCTGAACAT ATGAAATTAG
 17101 CTCTCTAGGC ATATTCTAA GGACTTAAAG AATGATAACT ATCATTCTC TAAATCTTC
 17161 CAGATTTGGA AGGATATATA TATTCAAGCAC ATTGACAGAC AATCCCAGTA GTCCTAAATT
 17221 AAAAGACATT AAAAATTAGT GAAACTTTTC CTACCTTTAG CCTGTGTAAT CCTGGATGAC
 17281 CAAGCATAAA ATAAATTGA GTAGAGTATA CCACTGTAAC ATTCCTGAA AGGTATTCTA
 17341 GGCTCTGAGT AATTTCTTTG GGGTCTGAAG ATCAGTTGA CATATCCTCA AGTATCATGA
 17401 GTTCATTATA ATTAAGAAAA AGGGAGTAA TCTGGAGAAT GAGCCACTT CTTACTACTC
 17461 CTTGACCTCA GTTCTTTTT TCAGAGACAG GGTCTCACTT TGTTGCCAG GCTGCCAGGC
 17521 TGGAGTGTAG TGGCGCAATC GCATCTCATT GTAACCTCCA CCTTCTGGC TGAAGCCATC
 17581 CTCCCTGCCTC AGCATCCTGA GTATCTGGAA CCACAGCAGG TGCACACCAC CATGCCAAGC
 17641 TAATTTTTTA AAAAGTTTTT TGTAGAGATG GGGTCTTACT ATGTTGCCA GGCTGGTCTC
 17701 AAACCTCCTGG GCTTAAGTGA TCCTCCTGCC TCAGCCTCCC AAATTGTTGG GATTACTAGT
 17761 GTGAGTCACT GTACCCGCC CCACTTCAGT TCTGAGGAGG AAAAAATATG TAATAATAAT
 17821 GGGACTTTGG TTTGCTGATT TAAAGATTCA TGTAACCTTA TCATCCAATG CGCAATTGTT
 17881 AGAATAATTA ATAGAGACAT CTGGTCTCAT GTTTCTACAG TTGCTCATGC CTTGATAGTA
 17941 GATCTCCTTG CTGCTGGCTC AGAAGGGTAA AAGAGCAGAA ATGATGGGC TTCTCTCATT
 18001 CTATGAGGAA ATAGACCTAT GTAGAGGAGG CTACCTGTGG TAAAACCTTA TCCTCATCAC
 18061 TTAAAATTCT AGGCTTATTG TCTGACCATA TCAAGTTTC AAATGGTAA AGAATTGGAT
 18121 TCAAGAGAAA TATGAATAAA CTTTGTTT CACTTTCTC CCTCCTCTCC CCCCATTCTC
 18181 CCTCCTTTA TTTTCTTGTG CTTAGTTTC TTTTCACTT TTTGTCTACT ATTATTTGCC
 18241 CAAACTCAAC TGTAGGCTAG ACAAAAAAA AATTGAAAAT TAAAATGTG CCCCCCTTGT
 18301 GTTAGACTTG CTTAAACAAT TGGGGTAATG AACCTTGGAC ACTAGATTTT AAAACACACA
 18361 CATTGAGCT TCAGTGCAC GAAATAAATA TATTTTTAAC AATTAAAAAA TAAAATTGCA
 18421 TGTTAAAAAA ATCTGCAGAG ACAAAACAC GTTGTGAGAT CTTGAATGGA AGGAAACTG
 18481 CTAGCCTCAA GAGTGGATCA AAGATGCTA GCAGGCAACA GAGTAAGAGC ATGTTGGAGG
 18541 GTTAGAGAG TGTGCTCAGG GTTCTAGGCT CTAAAAATCA GACAGTCCCC ACGGCCTGGC
 18601 CTTGTCGCT GTATCTTCTT TATGAAAAC ACTAAGTCTT TTTCTCACT GGATAAATT
 18661 TTATCCTTCA AGTTTAGATC AAATGGAAC TTAGGACACT GACTAGGTTA CATTCTCATT
 18721 TTAAGAGCGT ACAGACATTC AAGGGCTAGA GGATGTTGGGT TTACTGCACA GGCTCATTAT
 18781 CCAACAGCTG TGCTACCTGG GAAACTTAAC CTCTCTGTGC CTTAATTCTC TCATCTATAA
 18841 CGCAGGGAGA ATGACAGTAG GTATCTCATAG AGGTGTTGG ACAACTAAA TGCATTGGTA
 18901 TCTATTGTGT AAAGTCTTA AACACTGCC TGGCACAGAG CAAACATCCA GTGAACCTTA
 18961 GCCATCATCA TTATCATTGT TCTCAGAGTC AAATACAATA TCTCATATCT GATAAATTAC
 19021 AGAAGTGAAT CAATCACTCT CTCTCTTTT TCCAGGGGG AACAACAGCT TTTAGACATA
 19081 TCTTTCCAA CAGTCGTAC TGCTGGACAC TGTTCATCT TGCAAATAAA CCAATGAAAA
 19141 TGAGTGTACCC TAGAAGAAGA TAAATGGAGG TATTTGAAC AATCAAAGAA GGACAAATGA
 19201 ACACCTGGCT GAGAAAAATT AGCTCTTTT TCTATGCATA AAACTATTAA AATATTCTTC
 19261 ATAGAAAATT ATGACACAGG AACATCAAAG ACAAAATTAA AATAACTCCT AGTATCTCCT
 19321 ATTCTTTTA TATGTATATT ATATATACCTC ATATTCATAT ATACATATAT CTCACATCAT
 19381 GTATCATATA TAAAATAAT TTAGGTGTCA TGATATATAT TTAGATAAT ATACTTAGAA

Figure 9 (Page 6 of 74)

19441 ACTTTTTAT GGATGTATAA TTTATGGATA TATTGATAAT TATGTATTTG TTATTGACTA
 19501 CTTCAATTGA TTCCCATTTT TATGCATTAT ATTATAGATT ATATAGCTCA CACATCTTG
 19561 TACATAAAATC TTTGTTCAAA TATTATTTC TAAAGGATAGA CTTCATGAAG TGGAAATACT
 19621 AAATCAAAG TGAAAAACAT TTTCTAAGGT TCTTAACATA TACATTGCCA AATTGCTATT
 19681 CAGGATCATA CCAATTATA ATCCCCAAAT AATATGAAAA TTCCTGTTT ATAGCACTCA
 19741 TATTTACAAT AAATTTAAA AATCACTGTT AACCTAATAG TCCTTCAAA GAAAAAAA
 19801 TTGAAATTAC ATTATTTAA TGACTCTATT AGTGAGGGTC ATTCTTCCC TGTTTCTTGT
 19861 TAGCCATGAC CCTATAAGAA ATAAACTGCA CTGCAAAATG ATAAACATGA TATCAATCAT
 19921 TACATGGAA GGCACATATAT AAAGAATAAT ACCTTAGGTT AAGGCCACAT AAATATTTAT
 19981 CAGGTGCCTT TTCTGCGGAG GACTCTGAAG GGATACTAAA CTGCATTTAG CTGCATGCAA
 20041 CTGAAATTAC TTTTACCTAC ATTGTCTTT ATAAACATTA TAACTACTCT TTGAGAAAGT
 20101 GTTTACTATG GACTGAATTG TCTCCCCATC CCCCCAAATT CATATATTGA AGCCATAAAC
 20161 CCCAATATGA CTCTATTCCCT AGACAGGACT TATAAGAGGT AATTAAGGTT AAATGAGGTC
 20221 ATTAGGATGG GTTCTTAAC GGATAGGATT GGTGGCCTTA TAAGAAGAGG AAGATTCTGC
 20281 ACTTGGTCTT CCAAATTAAA TAATTTATTT AAAAGAAAAA AAAAAAAGA GGAAGAGAGG
 20341 GAGCTCTGCA CATATACTGA GGAAAGGCTA TGTGAGCTCT CACAGTGAGA AGGTAGCACT
 20401 CTACAAGCCA GCAAGAGAGC CCTCACCAAGA ATCCAGCCAT GCTATACCC GCTCTGAGAC
 20461 TTCCAGCCTC CAGAACTGTG ATAAAATTT GTTGTTTAAA CCACACAATC TATGGTATT
 20521 TTTTATGGCA GCCCAAGGCCA ACAAAAGACAG CATCATTGCT GTCACCTACA GACAAGAAA
 20581 CTAAGACTAG GAGAGAGAAA AGTTAAACTT GTCCAAGGTC ACAAAAGCCA GAAACAAGTG
 20641 AGGTGAGAAG TTGACCTTGT TCTCCTCAAT CCAAGGCCAG GACTCCCTCA CTCCACATGT
 20701 AGATAGCCAC CTCACAGTC ACAGCCAAAT GTCCACACCC CAGAGTCAGC ATTAGACCAA
 20761 GATGTCTTAC CAGGAGACAA ATGCCTCATC TTGAATAAAT ATGTTCTAAC AACTTACCCA
 20821 TGTAACACAT TGAATCTCAT GAGAAACAAA AATGCAAAGT ATGTAGAAAA CTATGTTAC
 20881 CACTTAACGT ACAGTGATAA AAAGCTTAAT GATATCCTTA TAGTCTTGGA GGGGTTGTA
 20941 TATGTGGTGA AACAGGTGCT CACGCACACTG TGATAGACTG TAAATTGGTC CTAGAGAGAA
 21001 AAATAAATAA ACTGGAAGGA GTTATGCTGT ATGTTTACTT TTTTTATGGA AACATATGAT
 21061 ATACCTGGAA ATTGATTGG CCATGCATCT ATTTCTTCAA TGGGTATGCA CAGTTGAGCT
 21121 GTTCCCATGC ACCAGGCACT GTAATGGGAC AACTGCACAT GACAGTCAAA AATCTCAGTC
 21181 TCATGAAGTC GACATGCTCA TGGAGAGGTG CTACCCACTA AACTAATATT TGTATATCAA
 21241 TTATGGATAC ATTGGGCCAC ATTTACAGAA ATTCACTTAC AGTGGGTTAC CAGAAGGGAT
 21301 TTTTTTCTT GATTGGCAAG AAGGCTAGGC TGTTTTGTT GGGGCTGGCA GGAGCTGTCT
 21361 AGGCTGCCA AGTATGCAGG TCTCTTCTAT CATCCTGTGT TAACCATCTT CCATGTATCT
 21421 TTCAACCTCA TGGTCATCTG CAGCATGTCT AGGGGTCTA TCTATGTTCC ATGCAGGAAA
 21481 AAAGGGTAAA GGGAAAGGGA AGTAGGCATG TACCACTTTA ATGCACACCT TGGTTTTCAG
 21541 AAAATTAAAG AAGAAAGACT TTCTGCTTT CTCTGACTAT TCTGTATTCT GGATTACAAC
 21601 GCAACAGAAA CGTCACCTTA AATTCTAATG TTTTCTCTC CTTGCTTCA AAAACTGACT
 21661 CATTAAACCTC CACGTGGCTT GGAAAAATTA TTTCAGTCAT CCAGTAATGA GCTGTTCTA
 21721 GAAATGTTT GGACATCAAG TCTGTGTGT TAGCATTATA CATGTTAAGC ATTGAATAAA
 21781 AAACAACATG ATGTGGGTAC ATTTCTTAC TTACATATAA GTACTTATAT ACTTATAGCT
 21841 GAAAAGAGAG GTTGAATGT CAGGTGGAAC AGAAATAAGA TTACCTAGAT GTTTCTCTA
 21901 TGGGTGATT TCAGCTATGC TGATCTTCT TCTGGGTCAAG GTACTCCAG AACTTCTAA
 21961 TTAAATGGTG GCCCTGATCT TAGTTCCTCT CTCCTCTTAG ACATTTCCA GGACTACAGA
 22021 AGATGTGCAAG TTTATAAAATG AGTAGCAGAA ACCTACTGAA CAAATTATTC AGGCTCATCT
 22081 GAACAGAGAG GACACCTCT CTGCTATACT CTCTCAGTGA TTTCCCTGCC TTGGGGTCAA
 22141 TTATTGCTT GGACATTGAT TTAAGCACAT AATAATTGTT GTCACTGCTT ATGTTTGGAT
 22201 TTCATCTCCC AAAATAGATG GTAAATTCTT TAGTTTAGAG ACCAAGTAAT ACTTACAAA
 22261 AAATTGTTG TGTGTGTGT TGTTTTCT GTGTCTCTCA GCCCTGTAAT AGCATCGTAC
 22321 TTACACTTGT TAGATTTTA GAGACAACCT TTACAAAACA TGGAATTATC TACATACCT
 22381 TTCTACAAAA CAGACAAATT AAATACTCAG TAGTTGAACC AAAAAAAGCA GTTCAAATAA
 22441 AATACTTGAA AATGAAGAAA TCATTTGAAC AGAGTTAAAG TTAATCGTAA AATAATGTCT
 22501 GTAAAAATTAA TTGCCAATCA AATATAAAAGT TCAAAAATAG TGCTTGAAA AGGAAGAATC
 22561 ATATGAAAG GGACTACTCA TTTTAAAT GTTAGATATC AGGAAAAGCC AAGAAGTGAG
 22621 TATGGTAAGA GTGCTGTC GCTAACCTC GCTAATCTCA CTGAACATGT AAAATCTGT

Figure 9 (Page 7 of 74)

22681 AGATGCCTT ATTATTATTCA CTCACACACA TATGTAGAAA GAGAAATATA TGGTAAACAT
 22741 TAAAAAAAAC AAATTAGAAT GTAAAATTAA TACTTTAAAA AATGGGCTGT ATACTTTCT
 22801 TATCACCGGA GATAAGAATT TATTATTTTT AAAATAAAGT TATTTCCTCT GTGACTGTTT
 22861 CCATGACTTT GCTACTTAGA AGTTAGAGAT GCCAAAGTTT ATCTAAGAAA ATGTTTATGG
 22921 AAATATTATT TCAATAATGA ATGTTTAGAA GACTGAATT CCTGACTGGG CACAGTGCT
 22981 CATGCCTGTA ATCCCAGCAC TTTGAGAGGC TGAAGAAGGA GGATCGCTTG AGTCCGGGAG
 23041 TTCAAGAGCA TCCTGGCAA CACAGCGAGA CCCTGCAGCA AAGTAAAAG AAAAAAGAAT
 23101 TGAAAAAGGA AGACTGAATT TCCTTTGGC AAGTCATGTG ACATTCTGT GCCTCAGTTT
 23161 CTTCATCTAT AAAGTTAATT CCTACATTTC TGGGGAAAGGG AGAGAAAAC TTAGGATAGT
 23221 GACTGGCACA GAAGAACGCAC TATATACTAT ATATATGTGG ATATCATTG TTTTTATGGT
 23281 ACCATTTAG CTATCTAATG CAAAATATGA ATCTTTTTT TCTGGGTCTT AAATTATGGA
 23341 ATGTAAGAAT TTTCTAAATT CTCTAATTCT GTGTTAGTTT TAAAGCAATG GAGTAACGTA
 23401 TCTGTCAACT TGTAATATA AGGATCAACC TGATCCACAA TTTGACCCCT AGCCACTAAT
 23461 ATTTAATAGT ACAACACTCA GAAATTATCA AAGGTCAAGAG AAGCCAACA AATGAAAAA
 23521 CATAACAGGTG CTCAGAAAGA TGCACCTGTA ATCTCTCTAA GGAGAAATAT TTTCCAAACT
 23581 GAGTGACACG GTGCTTTAGT GAGTTGTGGA ATCAATCTCA TGATTCCAA CCTAGTGTTC
 23641 TTTTAAAAT GAACTAGTCC ACAGTAGAAT ATACTAAAGT GCTGGTGCTT AAGATAGTAT
 23701 TGTTTCTGG AAAAAAAA AAAATTTTT TTTTTGAGA CAGGGTCTCG CTCTTGCCCCA
 23761 GGCTGAAGTG CAGTGGCACA ATCATGCTCA CTGCAGCCTT GACCTCTGG GCCCAAGTGA
 23821 TTCTCCACC TCAGCCTTT GAGTAACTGG GACCACAGGT ACGTGCCACC ACACCCGGGT
 23881 AATTTTTAA TTGTAGAGAC AGGGTCTTGC TATGTGCTTA GGCTGGCCTT GTGAACTCCT
 23941 GGGCTCTAGT GATCCACTAG CCTCAGCCTC CCAAATTAT GGGATTATAG GCATGAGCCA
 24001 CCCTACCTGG CCTGTTCCCT GAATTTTTT TTCTTCAGG TGTTTGTGCA TATGTGTGTG
 24061 TGTATGGGTA TAACAGAGAG ACAGAGAGAA AGAAAACCTTT CTATCACACT TTGCAATCAG
 24121 AAGTTGAAG TCTTATCTT TGGCTTTGT TTCAGAAATA TTTCAATGT AGACTCTCTC
 24181 CTTTACCAACA CTGTCCTCCTT AGGCAAGGTC TTTGCCATTC TTCTGAGACT ATTGCAACAG
 24241 ACTCCCAACT TCTGACTGTG GGCCCTTCTC AAAAATGATT GTTTATGCAA TAAATCTAAA
 24301 CCCAAGACAA CTACAACAAT ACAACAAATT CTCTGCTTAA AAACCTCCAA TGTCTGCCGG
 24361 GCGCGGCGGC TCACGCATGT ATTCCCAGCA CTTTGGAGGC AGAGGGGGC AGATCACTTG
 24421 AGGTGGGAG TTCGAGACTA GCCTGGCAA CATGATGAAA CCCCCTCT ACTAAAAATA
 24481 CAAAAAATTA GCCAGGCATG GTGGTGGGCG CCTATAATCC CAGCTAATTG GGAGGCTGAG
 24541 GCAGGAGAAT TGCCTGAACC TGGGAGGTGG AGGTTGCACT GAGCCAAGAT CACACCATTG
 24601 CACTCCAGCC TGGGCAACAA GAGCAAAACT CTGTCTCAAA CCAAACCAAA ACAAAACCTC
 24661 TAATATCTAC CAAATGTTT ACACAAGTAT TTGGGGATCT TCACAAATGG CCCTTATGGA
 24721 GTTTTCTTT GCTGAGACCC TATGCTCTGG CCACACTAAA CTCATTCACTC ATCCCAGAAA
 24781 GGCCTCAGCC TTTGTGAGCA AGCTCTTATC TCCAGGCCCTC TCACAAAGAC CTGTTCCAGT
 24841 AGAAGCTCAG GGGAGCACAC TGGACATTAT TCCAACAACC CTTTCCCCAC AGCTATGCAG
 24901 CCAAATCTGC CAGCTCAGTT AATTAATTAA GCAATTCAAGA GATGAGGGTC TGCCCAGGCT
 24961 GGAGTGCAGT AGCTGCAGCC TCAAGCTCCT GGCTCTAAAG TGATCCTCTT CAGTCTACCC
 25021 AGAAGCTGGG ACTGCAGGCA TGTGCCACCA CACCCAGCTA ATTTTTTTT TTTTCAGTAG
 25081 GGACCAGGGC AACCTAGTCT TGAACCTCTG GCCTCCAGCC TTCCGAAGTG CTGTAATTAC
 25141 AGGCATGAAT CACTGCAGCC AGCCAACCCG CCCAGTCTTG TTAGACATGG GGTCTGTAGT
 25201 TTCTAGTAGG TTCTTGAGTC TAGGGTCTCCT ACCTCATGTT TTATAGTTAA TTTAGGGGAG
 25261 GGACTGTGTC TGTTTATCTG GGGATGTAGG GGTGGGCAGG GGGATAGAGG GGACTTCAAT
 25321 TAATGAAACC AGAAGCAAAA CTCAGTTGAG GACACCGGTC ATGAGAGTGG CCTGATTATG
 25381 GCCAATCTTA CATAATGTGT GAGATCTTGA TATTACCCCA TCCTTGAGAG TCCTCTATAA
 25441 AGCTACAGGG ACTTGGGAGC ACCTTTAATT ACAGACAACC CATGTTCTG TGGATTATGA
 25501 TTTATTAGAT TGACACATGCC TAAATAAAGA CATCCTCTGC AGTCTTTGA CAATTCTATA
 25561 AGCATCTTCT GACTCCGCAA TTAGACAGCT AAGAGATCTG TGTTACTTCC CTCACATATA
 25621 TAAATAATT TAAATAAAAA TCATGGCGTG AATAATTCTT TTCTCTTACG GATTGAAAGC
 25681 TATCCATTG GAAGACCACT CTGAAGAGAT GAAATAAGTC TTCTGCCAAA GATTACTTAT
 25741 TAATTTACAA GGAAAAGGGG AAGTTTGTT CCTCTCCGTG AATTTGATTG AAAATCGAGG
 25801 GCTTTCTCGA ATAGTTTGG CATCCAGGGT CATTTCAT TAAAAAGAGA AAAGTCATGT
 25861 CAAATATGAA TTTCCGCAGA TTATTCAGCA CTAGACCCTG GGAGATTCTG TAAAGAGGGG

Figure 9 (Page 8 of 74)

97/162

25921 TTTTGTATA CTCAACTTTT CCGGGTAAAA CAAACACAAA TACTCCTCCT CCAAGGGCG
 25981 GGGGCGGTGC CTAGGTGATG CACCAATCAC AGCGCGCCCT ACCCTATATA AGGCCCGAG
 26041 GCCGCCCGGG TGTTTCATGC TTTTCGCTGG TTATTACATC TTGCGTTCT CTGTTGTTAT
 26101 GTCTGAAACC GTGCCTGCAG CTTCTGCCAG TGCTGGTCTA GCCGCTATGG AGAAACTTCC
 26161 AACCAAGAAG CGAGGGAGGA AGCCGGCTGG CTTGATAAGT GCAAGTCGCA AAGTGCCGAA
 26221 CCTCTCTGTG TCCAAGTTGA TCACCGAGGC CTTTCAGTG TCACAGGAAC GAGTAGGTAT
 26281 GTCTTGGTT GCGCTCAAGA AGGCATTGGC CGCTGCTGGC TACGACGTAG AGAAGAATAA
 26341 CAGCCGCATC AAACGTCCC TCAAGAGCTT AGTGAACAAG GGAATCCTGG TGCAAACCCAG
 26401 GGGTACTGGT GCTTCCGGTT CCTTTAACGCT TAGTAAGAAG GTGATTCCTA AATCTACCAG
 26461 AAGCAAGGCT AAAAGTCAG TTTCTGCCAA GACCAAGAAG CTGGTTTTAT CCAGGGACTC
 26521 CAAGTCACCA AAGACTGCTA AAACCAATAA GAGAGCCAAG AAGCCGAGAG CGACAACCTCC
 26581 TAAAACGTGTT AGGAGCGGGA GAAAGGCTAA AGGAGCCAAG GTAAAGCAAA AGCAGAAGAG
 26641 CCCAGTGAAG GCAAGGGCTT CGAAGTCAAA ATTGACCCAA CATCATGAAG TTAATGTTAG
 26701 AAAGGCCACA TCTAAGAAGT AAAGAGCTT CGGGAGGCC AATTGGAAA GAACCCAAAG
 26761 GCTCTTTAA GAGCCACCCA CATTATTAA AGATGGCGTA ACACGGAAA CAAGTTCTG
 26821 TGACAGTTAT CTATAGTTT AAGTTGTGAT GCAGCTGAGT TGAAAAGGCT TGAGATTGGA
 26881 GAATTAAATTG AGGCCAGGCT TCAAGACCAT CCTGGCAAC ATAGCCAGAC TACCATCTAT
 26941 ACCAGGGTCT CTCATTCCCC CGGCCACCGA CGGTAAACCG GTCCCTGTCC ATGGCACGTT
 27001 ATGAATTGAG CCGCACAGCT GAGGGGTGAG CGAACATTAA CCAACTGAGC TCCACCGCCT
 27061 GTCAGGTTAG CTGCAGCATT AGATAGATTC TCATAAGCTC AAACGTATT GTGAATGGCA
 27121 CATGCAAGGG ATCTAGGTT CAGGCTCCT GTGACAATCT AATGCCTGAT GATCTGAGGT
 27181 TGGAGCAGTT TTAGTCCGGA AATCATTGCT CCCAGCCCC GCACCCCTG GTCCGTGGTA
 27241 TAATTGTCTT ACACAAAACG GTCTCTTGTG TCAAAAAGGT TGGAGACTAC TGGTTTTACA
 27301 AAAAAGTAAA TTAGTCAAGC ATGGTTGGCA CGCTCCCTA GTCCCTGCAC CCAGGCGTTT
 27361 AAGGATACAG TGAGCTATGA TGGTGCTACC TCACCTCCAGC CTGGGTGACA GCGAGTCAGA
 27421 CGTTGTCTCA AAACCTAAAA AAAAAAAAG TTAAAACAGA AAAAGGGCTT CTTGTCAAGAG
 27481 ACTGCCGTAT ATCTAGAGGT CCAGGAACTA AAAAGTCTGA TGTCCAATCC TGAAAAGCTC
 27541 GATGGTGAC TAGAGGAGGC TTTTACATGT AAGAGCATCT AAGTTCTGGA AATGCCAGTG
 27601 TCAGGGAAAGG GAAGTGGAGA GCAATTGGC ATCCAAACAT AACTTGCTGA TACTTTTTT
 27661 TTTTTAACCA CAAGTACTAC ATTCTAGTCT TTCTGTGGTG TCATTGTAAC TATTGTTCT
 27721 TAATATGCTA TCCACTGACT TCAAGGGATC AATAAAATAGG AATCAAGGTG TCCCAGAATA
 27781 TGGATTAGGG GAGTTTTTT TTTGTTGTG TTGTTGTTGT TTTCATCTAT TCATTATCCT
 27841 GTAGCTGAAA TTTAGAATT TCTTCCATTG TGTGTGACTG ATAGAAATAA CAAATTGTA
 27901 GGTTATAGTT GTTGAAGAA TCTGGAATC GTGCTTGCTT ATTTCCGAAG TACTATTAGG
 27961 TATATCAACA AAAACACACA TATTACGGTC AAGTGGTTT ATAATTATTT TAATATTATT
 28021 GGTCTAATAC AATTGTAACC CTATGAATTA CTTTAAGTAT CTTATTATG AAAAGAATCT
 28081 GTAAGTTCA TCAAACATACC AGAGCATAAC GAAGACTGAA AAATTAAAG AATCCAAAC
 28141 TTAATGGAAA TGTTGGAGGC TGCCCAATTA GGTTCTGAAT TCCACCTTCC TGAATCACAA
 28201 ACTTGTTTA ACTCTCAGTC TGAGGTAAAC TACGTTTCTC TTTAAACAGA CATAGTTAA
 28261 TTTTCCTTTG ATTTTGATT TAGTATTCTT ACTGATCATC ATAAATAACC AATGCTAATG
 28321 TTAGTCTACT TTGGACCATG GTATTCGAG AAACTTGAA CAAAGTCCCC TGCAAAACTA
 28381 TGCATTGCA TATTCACAT ACATTATGT TTTCCAGACG GTTCAATAGT ACCTCACTTT
 28441 TCTGAACCTA TTTGTATAGT TTGGCATCTT TTTAAAATT GTGCTCTATA ATGAAAGGTT
 28501 GTAAACATTA TGTTTAAAT TTGTATAGAT AAAATCAACC ACAGACCTTT CCTGCTTGG
 28561 ATGTAATTGC CATTGTTCC CAATGAGTTC GGAATTACTA GGATTGTGCA AAAATATGCC
 28621 TCACTTGCCT GACATAGCAG AGAGCCATT TGCTTAAATG CTGTGCCAG CAATGGACTG
 28681 TCACCAGATT CTCATCACAT ACAGTGAGGA TGAACAACTA GCCTCTCCC GCAGCTGGCC
 28741 GGTCTCTCAA TAATATGGGA CTCCCTCAAG ATGGCTTCT GCACCTTGCG TCCCTCTAGCC
 28801 TTGTATGTAT ACAAGGCTAG CATGCCCTGGC ATACATAAGG TTAAAAACAA AATCAATAAG
 28861 TTATGGTTCT TCCTCCAGTT CTGGGGATTA TTAGACACT TTTTGTTTT GTTTGTTT
 28921 GGATGGAGCC TCGCTCTGTC ACCCAGGCTA GAGTGCAGTG GCACAATCTC GGTCACACTGC
 28981 AACCTCTGCC TCCTGGGTTC AAGCAGTTCT CTGGCTCAGC CTCCCACGTA GCTGGGATTA
 29041 CAGGTGCCCG CCACCAACGCC CAGCTAATT TTGTATTTT AGTAGACGGG GTTTCACCAT
 29101 CTTGGCCAGG CTGGTCTTGA ACGCCAGACC TCGTGATCCA CCCACCTTGG CCTACCAAAC

Figure 9 (Page 9 of 74)

29161 TGCTGGGAAT ACAGGGCGTGA GCCACCGCGC CCGGACTTAG ACCACTTTGT TTTGGCCAAT
 29221 AGGACAACAG CCATAGAACCC CTCCGAAAT GAGAGCTTGT CCCTAAAGAT GCCTTATTAA
 29281 CATAGCTGTG TGCCGCATGA GCCAAAAGGT GATAACCTTT GTTCAACACG CGCCTCCAGC
 29341 CCTCGGGTTA AGTCCAAAGT ACCATTCTTA GAATGCTCTA AAATACATAA TTTTTTTTTT
 29401 TTTTTTTTTT TTTTGAGGA GTCTCTCT GTCTCCAGG CTGGAGGGGA GTGGCGCGAT
 29461 CTCGGCTCAC TGCAATCTCT GCTTCCGGGC TAGCTGGGCC TACAGGTGCA GACCACCACG
 29521 CCCGGCTAAG TTTTGTATT TTTTGGTAG AGGGGGTTTC ACCATTGG CCAGGCTGGT
 29581 CTCGGATTCT TGATCTCAAG TGATACACTA GCTTTGGCCT CCCAAAGTGC TGGGATTACA
 29641 GTCGTGAGCC ACTGCGCCCA GCAAAATGCT TTTTGTGGAG CCAATCACTT TATTAGCGCT
 29701 TACCTCTCTA TGCCCTACTTT ATGCTTGAA ATTTTGTAC AGTGGGGCCG GTCATGGCAA
 29761 ACACAATTCA TTCTTATGCA GGCTGTCACG GTTATTCTG TCATCCAAAC TCATTCTCGC
 29821 AACGCATTTC AGCTCTTAA ACGACTTGT GAGCGGCCCT GAAAAGGGCC TTTGGGTTTT
 29881 TTTGTTTTTG TTTTGTGAAG TTCTCAGGAG ACCCGTATT CTTAGATTCA GCCGCCGAAG
 29941 CCATACAGAG TGCGCCCCCTG ACGTTTCAGG GCATATACTA CATCCATGGC TGTGACAGTT
 30001 TTGCGCTTGG CGTGCTCCGT ATAGGGTGAACG GCGTCTCGAA TAACGTTCTC TAAGAAAACC
 30061 TTAAGCACAC CTCGAGTCTC CTCATAGATA AGACCGGAAA TGCGCTTGAC GCCACCGCGC
 30121 CGAGCCAAAC GGCGGATAGC CGGTTTTGTA ATGCCCTGGA TGTTATCCC GAGCACCTTA
 30181 CGATGGCGCT TAGCACCACC CTTCCCCAAG CCTTTTCCGC CTTTGCAGCG ACCAGACATG
 30241 ATTCCTATCG CAGTGGAAAGG TATGAACTGA AACAGTTCT TAAATACAAA CTTGGCGGAC
 30301 CTGATTGAAA ACAACATGAG TTGGCGCGGT TTTTTTTTTT TTTCAAATTG GGTACCGAG
 30361 TGGGTGGAGC AAGAAAAAACT GTTTCATTAT GGTTCATTTGT TTTGATTGGC CAGTGACAGC
 30421 TTGCTCTTGG TGGGAGTGGAA AGGGTGTGG CAAGTTGAAT GCGCTGTATT CCTGTCAGCT
 30481 TAATGACGCT AAGCATAGCC CCATTCCACA TTTTTTTTA TTTCCACTG CTAACATAATA
 30541 ATTACGGAA TAGTTTATTG GGGAACATAC AAATAATGTT TAAAGGAGGT CAGATTATA
 30601 GGTCAAGGGAA TTACCCCTCC CAATCATTAA AATATTTTA TTTAAACCAG GCATTTGAT
 30661 GGCTTCTCT GTGCTGGACA AGGTATAAGT TTGGCTATGA AGTTTCACTC CTAAGACCC
 30721 TATGTTTGG GAAGGCAAAA AGGTAGCCAA ATAATTGCAA ATTAAACCT CATAAGTGCA
 30781 AACTCTTCC TCGTCACTTT CCCTATCTCG ATTCAAATAT TTGTTGAATG ACTCATTTTT
 30841 CTGAAAGT CTGAGAGAGA CAGGGAAATAT AAACCTTAAGT CTGGATAATA TTTTTCCCG
 30901 GGACGCTCTT CCTGGCTCTGC TGTGCCTGTT TGCTGTGCCT GAAATTCCAA ACACCTTCC
 30961 CTTCCCTCCG TTTTAATCC CTTTCAACT TGCTACAGCT TTAGAGAAA GAACATACGT
 31021 TTTGTACAGT TGGGGATTAA TTGAAGTGTAA GGGCTAATAC TTGATTAAGG TCATTACAAA
 31081 ATCTACAGGG TCTTCCCTCTG GGAGGTTTT GTGATAAGAT TATTGGTGT AAAATAAGGC
 31141 TAATCCCTT GAAAATAAA TAGAATAGCA GAATTGGGTC TGAATGTGGT TTGAAGAAAAG
 31201 GGACTTCTCA ATTCAAAATT TTATTCTTAG CTTCCCTGTGG GAGCTTCCA GAATGCCCAT
 31261 AAGATCCACT TTTGTTAAA AAACAAAAAC AACCCCAACCC ACCACTCTCT GGTAAATAAA
 31321 TGAATTCTA TTGGGAATAT TTGAATGGG GCTGTGGCCT GTGAGAGACA TTATATAGTA
 31381 ACCTCAGACT TGCTCACATG AAGAGAAGAA ATCCAGGAAT GGAGAAAAAA GACCCAGGAA
 31441 AGGCCAGAAT GCTCTACATG TCATATTGTT TGATACATT CTGAAATAAT TGATTACATT
 31501 CTTCTGCCCTT AAATTGAGTT CTTAGGTTCT TCCACTCACT GTCCACATGC CACAACACAG
 31561 ACCTTATAAC TAGAGACTTA GCTAGGAAGA AATGTCAAAC ATTACAGAGA AAAATGCAAG
 31621 AGTCTGAGAT CATAAGTAAA ACTCTGAAAT CTCAACATGC CTTTAATTC ATGAAAATAA
 31681 AAAATATAGC AGCATATGCA ATATGATAAT TCTCTGAAAA CATACATCAT GTGAACCTACC
 31741 CTGGAACACA TCTCGCCAAG TGCCATCTC ATTTAACCA GAGGTCTAGG ATGCCCTTCC
 31801 TTTATTTTGC CTATTATATC ATTTATAAAA CCCCCATTTC ATTTGTATAT TTTATTTACT
 31861 TTCTATTTCC TGCTCTTAAT ATCTCCTTTC TAAACCTTTTCA TCAATGACAG TGACTAAAA
 31921 ACAATGAATG TCAGAACAAA TATTTAAAGG ATCTGTACAT GTAGATATAT ATATTTAAAA
 31981 TGGATTCTTC CACTCTGGGA AGAATTCAAG CATACTCAAT CTTATGGTTA GGGAGAGATT
 32041 AGGCTCACTC GCCTAATCTG TATGGCTTCT CGTCGCTTT CCATTTCAAC TTCCCTCTCAC
 32101 CCATCAGATC AAAACTCATTC ATTGAACAAAG AGACCTAACG CCTTCAGATT AAAACTCTGC
 32161 AAACAAAGTTG TGGTTGAGAG GATACATGAA GCATTCAAAC AAATAAATCT ATGATATTAA
 32221 TCAGAGGTAA ATCTATGATA TTAATCAGAG GTTAATGCAG TGGCTCACGG CTGTAATCCC
 32281 AGCACTTCAG GAGGCTGAGT TGGGAGAATC GCTTGAGCTC AGGAGTCAA GACCATTTG
 32341 GGCAACATAG CAAGTCTTCA TCTCTACTTA AAAAAAATA ACCAGAGGTG TTATGAAAAT

Figure 9 (Page 10 of 74)

32401 ATAAATTGTC CAGAACTACC CTCCACAAAC TAACTCTCTC AGAATATTG ATATGAGGAA
 32461 TGAAATATGG TGTGTGTGTG TGTGTGTGTG TATGTGTGTG TGTGTGTGTG TGTATGCACC
 32521 TATATATGGC ACCTATATAT TCAACAAACA ATTCTGATAA TTGGCCAGGG TTGAGAATGA
 32581 CTAGCAGCCC AGCATACACT ATCAGTTTA AGTATATAAT TGCCTTAG TAAAATGTAA
 32641 AGAAATCCC GAGTAGAAAT ACTTTAACG TATATTACAG GTGAGAAAAT GCATAAGTAT
 32701 AGTCTCACCC AACTTAGACT ATGGGGCCTT TATAATGTCA CAACAGTTGT TTCCAGGCAT
 32761 TTGGGGACAT CACCACTGGT CTTGGGCAAG AAACCTCTC AGCCAATGGC TGATTTATCT
 32821 CACTCCATC TAAGGCTTCA CTGCATTCT CTTTTCAGC AACCTAACTT ATTTAAAAAT
 32881 ATCCATTTTC TGATTCAATT TTTCTGAAT TAAACTGTCA GTACCATTGG CACACCTTTG
 32941 GTTCCGTAGC ATACCTGTGT CTCTGCTGTG GTTTTTTTA CCTCCACTCC TTACTTTCT
 33001 AGAAAAAAAT CTCTGTTTT TCTTTTCAGT TTAAATTATT TCACAAAAG TTTTCTTGAC
 33061 TTGCACTTCC TAGGCTTGCT GTCCTTGTT GGGCACGCTC CCATAAACAC TATTAATACA
 33121 CTTCGATTTG TTAAAAATAA AGATATCTGG ACAGAAAATT TCTTTCTTT TTTTAAGATT
 33181 TTAAAATTTT TAATGTTTAT TTTTTCTTA GACTGGAGTA CAGTGGCACC ATGATGGCTC
 33241 ATGGTAGCCT ACACCTCCCC GGGCTCAAGT GATCTCTCC CCTCAGCCTC CCAAGTAGCT
 33301 GGGACTACAG GTGTGCACAA CCACACCTGA CTAATTGTGTT TTATTTGTTT GTTTGTTT
 33361 TTGAGATGGA GTTCGCTCT TGTTGCCAG GCTGGAGTC AATGGCGGGA TCTCGGCTCA
 33421 CCGCAACCTC TACCTCCCAG GTTCAAGCAA TTCTCTGCC TCAGCCTCCC GAGTAGCTGG
 33481 GATTACAGGC ATGCATCACC ACGCCCAGCT AATTGTAT TTTTAGTAGA GACGGGGTTT
 33541 CTCCATGTT AGGCTGGTCT GGAACCTCTG ACCTCAGGTG ATCTGCCGC CTCGGCCTCC
 33601 CAAAGTCTG GGATTACAGG CGTGAGCCAC CACGCTCGGC CACTAATT TTGATATTG
 33661 TAGAGATGGG CTTCCCTGT GTTGTCCAGG CTGGTCTTGA ATTCTGGC TTAAGTGATC
 33721 TGCCCCACCTT GTCTCCCAA ATAGCTAGGA TTACTGGCGT GAGCCACAG GTCTGGCTGG
 33781 AAAGATAATT TCTAACATTA TCCTCTCTTA AACATTGTT TCAAAATTT TACAAACATG
 33841 AGAGTAATT AATTGATT TCAAAATTCC CTTGAATACT TTCTTAATAG CACACAGAAA
 33901 GCACAAAGTA TTTTACATTT GTTTTAATGA TGAAATTGTG AACCCAAACT TACACAAAGA
 33961 AAAACCGTAA CATTATACCC ATACTAAAA CAGATGCCCT CATATACATA GTAAAACCT
 34021 TGGGGCAGT AGTGAAGTTG GTTATTTACT GTTTATGAA AGTGCATTC AGCCGGGTGC
 34081 AGTGGCTCAT GACTGTAATC CCAGCACTT GGGAGGTGCA GGCAGGCTGA TCACGAGGTC
 34141 AGGAGTTCAA GACCAGCCTG ACCAAAATGA TGAAACCTG TCTCTACTAA AAATACAAAC
 34201 ATTAGCTGGG CGTGGTGGTG TGTGCTGTA GTCCAGCTA CTCAGGAGGC TGGGGCAGGA
 34261 GAATCGCTTG AACCTGGGAG GCGGAGATTG CAGTGAGCCG AGATCGCACC ACCGCACTCC
 34321 AGCCTGGGAG ACAGGGCGAG CTCCGTCCTCG AAAAAAAA ACAAAAAAAGT GCCGTATAG
 34381 TGACTTAGTT TTAAGGAATA AATCAAGGAT ATTTAATCTA ATAGACTACA GTTACCTAAC
 34441 GTGACTTGCA CTGAAAGTTA TACGAATATT GGTACTTATT CCCCTGCC TGAAGTATGA
 34501 ATTAAGACT CCAAAATTCT TTTTAGAATC TTCAGAGTAA AAGCTAGAAT TTGATTTTT
 34561 TAAATAATAA AAAAATACTT TGTATCTAAA TCTGGTGTAT AAAATAACTT GGTGGATGAT
 34621 GCTCAAGGC TATCCATCCC CAAATTCTC CCTGAATGAT AAAGAGAATA AATGAATATG
 34681 TCAATTCAA AGTTAGAAAT TTGGCCGGGC ACGGTGGCTC ACTCCTGATA ATCCTTCGG
 34741 ACGCTGAGGT GGGTGGATCG CATGAGCTCC GGAGTTCAAG ACCAACCTGG GCAACATAGC
 34801 CAGAACCGT TTCAATAAAAT AATAGAAAAA AATGAGCCAG GCGTGGTGGT CCCAGCTACT
 34861 CAGTAGGCTG AGGTGGGAGG ATCACTTGAG CTCAGGAGGT CGAGACTGCA GTGAGCCGTG
 34921 ATCGCAGTAC TGCACACCAG CCTTGGTGTG AGACTGAGAC CCTGTCCTAA CAACAACAAA
 34981 ACAAGTTAGA AATTGGCTG GGCAGGTAG CTCACGCTG TAATCCAGC ACTTTGGGAG
 35041 GCCAAAAAGG GCGGATCATT TGAGGTCAAG AGTTGAGAC CAGCCTGCC AACATGGTGA
 35101 AACTCCATCT CTACTAAAAA TACAAAAAA CTTAGCCGTG CATGGTGGCA TGCCCTGTA
 35161 GTCTCAGCCA CTTGGGAGGC TGAGGCAGGA AAATTGCTTG AACCCAGGAG GCAGAGGTTG
 35221 CAGTGAGCCG AGATCATGCC ACTGCATTCC AGCCTGGGTG ATAGAGTGTG ACTCCATCTC
 35281 GAGAAAAAAA AAAAAATTCT GTATGAACTG AACAAAATAT CCTTAAATT TAAAATACAT
 35341 CTGAAAGATA TTTCAAAATA TTTAGGAAAA AAATTATAGG GATCAGGCAA ATTCTGAGAT
 35401 TCCTTTTCC CTGCAGCAA CATTAGGAGT GCTGCTGTTC CTAAAAACAT GGTAAGTGT
 35461 GCCACACCGT ATGTTCCCTT GGCTCAGACA TAAGGTTGTG TAGTTGTAT TCCAGAATAG
 35521 CTAGAATAAA AATCCAGCAC ATCATTCTC TCAGCAAGTT AACTAACCTC TCTGTGCCTT
 35581 GGTTTCATAA CAGCAACATA AGCATAACAG AATAGCAGCA ATAGCTCCTA CCTACCTCAT

Figure 9 (Page 11 of 74)

35641 AAGATTCTTT GGAAGAATTA AATTAAGATT CAGAACACAG CCTAATATCT AGTAAGTAAT
 35701 AAAATTGGC TAAAAAAATT TTCTTAAGAT TATATATATT CATGGGTAC AAGTACAATT
 35761 TTGCTACATT AATATATTGC ATTGTGGTGA AATCAGGGCC TTCAATCCAT CCCGGAAAAA
 35821 AAAAGTTTT GAAAAGATT CTGCCATGGA AAACTTTAA TGTACAAATT CATCCATCCA
 35881 AGAAATAGAA AATATATAAG TATCAACTCC AAATCCACCA TATCTATCTC TTCTGCACCT
 35941 TAAACAATTA CTCAGAAATA GAATGCTGAA GATACCAGAA TGCAATGCATA TCAAGTAATA
 36001 AATGCATGCA GGATGTCAAC GCATCCTAGG CTTCAAATA AAATTGTCAT ACAAAATACT
 36061 TTAATATTGT AGTAACATTC TACATGTTAG AGTGTAGAAG TTAATCGCTG ATGCAAAAAA
 36121 GAAAAGAAC ACATTATACC CAAAGCCTAC AGAGAGAAC ACAATTACAA ATATCAGCCT
 36181 GCATGTGAAA ATCTTAATT TGAAAGTCAG AAATATTTAA ATGATAGTC TGTAAATC
 36241 AGATTGTGGT TTGAAAAAAA GTTAGTTAA AACTGAGTTT ATGAAAAATT TGGGGATTTT
 36301 AGAGACAGTG TTTGTTTTT AAATGTGTGT GAGTTGTGA AGAATGTTT ATAAAATACT
 36361 GACAGTATTA TAAGATGACA TTATTATAAT ACAACATAAG AATTTGGCC TGTACCTCTC
 36421 AGCAGTCCTC AATCACCTGC TGTACTTGAC TCAATGATTA TCAGAGTGGT TTGTTTCCT
 36481 TCTGTTGTGT TCCCAGTTCA GGCAGCTCAG CAATGGCCTG TGATTCCAGC AATTCAAATA
 36541 GCTGGTAAGT AGTTTCTTGT TTGTTTCTC AAATTTTCAG GGGCTTTCT CTACAAGTGA
 36601 TTTCCAGTGC ACGCCCCCTCC ACCCATTCTT TATTCTTTA CCTTCAGGAA AACCCCTCAGC
 36661 GCTGCATCTC TGGTCACCGG ACCACCGTGG TACATTTACC TATGCCACC AGGTGTCACC
 36721 CTTCTCTTTA CTACCATGGT TTGTAATGG TTTGCCAGA GGTGAATAAG AATTTAAAAT
 36781 GCAGGTCTTT GATTTTCAA ATGTAGTTGA CCTTAAGAAT TTATGAATAA AGCCAGAAA
 36841 ATTAAGCTTA AAAACACCCG AAAGAAAATG AGGACTTAAA ATTTCTATTA AAAAATTTAA
 36901 CAGGCCACAG TTGCTGATGT TTAGTAAATG TGTTAGTGAA ATGTGTACT GTGAAGACTG
 36961 GGGTGTTCCT TGAAATCTCA GCCCAGGTGA AATAAAACCA ATATAAAACA AATGCTTACC
 37021 TAATAAAATTA ATTGTAAACAT ATTCTTATG AGGTAGAAGA GTAAGTGAAG CCTTATAGCA
 37081 GTCTGTTTC AGTATAGTAA GATATTAAGA GAGAAATAAT TTGTCATATG CTTTCAGAAT
 37141 GTTTGCTGG TAAAATAACC AATGCTTAC AACTTAGACG ACAATGTCCC TAGAGTGAAG
 37201 AAACACGATT AATTGGCTA CCACAGTTGA ATGAAAATAT TCCGTAAGAC AAAATGTAAA
 37261 GAAATTAGAA GCAAAATAAA TGTCTCCAAA ATGACAAAGC GATTAAGTAT ATACACAAGA
 37321 TGAACAAGAA CTTCAATAAA ATCATGCAGT ATACAATACA ATGTACATTT ATAAAGTAT
 37381 ATGCATTTT AATGCAACAA TAATACTAAC AGGTAATAGA CAAGTTGTTA ATAGTTTTC
 37441 ACTGGCTAAT TAAATAACAG CTTTAATTGT ATTCTTTTA TAGCTTTCT ACAATGAGCG
 37501 TAAATCACAT TTACTTTTT CTACATAACT TTTCTAACCA CAAAAAAAGA AAATGGTTA
 37561 AAAGAAGAGA TGAGATATCT TTGCTAAAAT TTAATGCCTA AAGAAGAAC TTCTGAGCTG
 37621 TATATGGTAT CCTGAAGCAC CTGCCCTTCA AGACAGAATG CTTGTACAC ATTATGCAG
 37681 CCAAGTGCAT GTAGTAACAT AAAGTAAACA CATGCCATCT GGATATATAT ATTAAGACTC
 37741 TTTTGACGGC TGGGCAGGGT GGCTCACACC TGTAATCTCA GCACTTTGG AGGCCGAGGC
 37801 AGCGGGATCA CGAGGTCAAG AGAGTTCGAG ACCAGCCTGG CCAACATGGT GAAACCCCTGT
 37861 CTCTACTAAA AATACAAAAA TTAGCCGGC ATGGTGGTGC ACGCCTGTA TCCCAGCTAC
 37921 TTGGGAGGCT GAGACAGGAG AATCGCTTGA ACCTGGGAGG CAGAGTTAC AGTGAGCCGA
 37981 GATCATGCCA TTGCACTCCA GCCTGGCAA TAGAGTCTCA AAAAAAAAAA AAAGACTCTT
 38041 TTGAACATGG TGAACTGATT TCCCAGAAC TAGCAATTCC TGAATGTCCT GTTAGATT
 38101 TTTTTTTAAT GTGCACCGGA ACCCCAGTGG CTCCATGGAA GGACCTGGC ATCCTCTAAG
 38161 CCACTGGTG GCTTCCATTA TACCATCTCA AAATGAGAGA GCTTACTCCA CTTCATTGAG
 38221 GGAAATACCA CCAGAGTTCT GACTCCAGAG GCACTGGCCT AGGGAGGACA CCGTGTGTGA
 38281 AGCCCAGCAG GCCCACTAGC TGTCCCCACC AATTACAGTC CTTGCGTAGG GTCCAAAGAA
 38341 ATGAATGCCA AAGAGAGCAA CAGAGGAGCA AGGGAGTCAC ATTCCAGGAC CTTCTTCAG
 38401 GGACTTTAA AGGAAACATG ACAGCTGAGG ATCAGTTGGT TGTGTTCTGC TGTCCCCCTT
 38461 CATGTGATTC AAGCTCATTC AGAAGAAACA CAATGAGACA AGAGAAGAGC CATCTCCTTC
 38521 CTTCTCTATT TATTCTAGGC ATCTAAACTA CTGAATGTAG TGGTGTCTGA GATGTATCAA
 38581 ACGGTCAAGAT TGACTGAGTT TGAAACCTGT TTCTATCACT GACAAACTAT GAGATACTCT
 38641 ATACTTCACT TTCTTTTTT TTTCATTTT TTATTTTTAT TTTTATTTT TTGAGATGGAA
 38701 GTCTCACTCT GTCACCTAGG CTGGAGTGCA GTGGCGAAA CTCGGCTCAC TGCAAGCTCT
 38761 GCCTCCTGGG TTCATGCCAT TCTCCTGCCT CAGCCTCCG AGTAGCTGGG ACTACAGGCG
 38821 TCTGCCACCA CGCCCACTA ATTTTTGTA TTTTATTAG AGATGGGGTT TCACCATGTT

Figure 9 (Page 12 of 74)

3881 AGCCAGGATG GTCTCGATCT CCTGACCTCG TGATCCACCC GCTTTGGCCT CCCAAAGTGC
 38941 TGGGATTACA GGCAGTGAGCC ACCGTGCCG GCCTACTTCAT CTTTCTTCAT TTAAAAAAGA
 39001 AATGGGGATA ATAGTACCTA TCTCATAGAA TTATTGTAAG AAGTGCATGC AGTAATGCAT
 39061 GTAAGTAGGT GCTCAGAAGA GTCGGACACG AAGTAAGTGC TTTTATCATC CTTATCATAA
 39121 TTTTCAATTAG CAGAACAAAGG AGAGACCAGG TAGAAAATTA TTGTGATTCT TCAGGTCTGG
 39181 AATACTAGAG TAGCATCCCA AATGAAGGCA CCATTAAACT TTGCAAATCT GTATGACACC
 39241 TTCATGCCAA TTAGAAAAAA CACCTCTTC CAACCCCTT CAAGATATT GCCTCCTACC
 39301 TGCTAAAAAC ACCCATCATA CTACCCACAG ATAGCCATGA TGCTTTTCT GGGACAGGTG
 39361 CCTCTTCAT TCGTCAGTG TACAGCCTTC ATAGCTGTGC AACTCACATC ACAATCAGAT
 39421 GGAAGAATCC CCAAGGCTTG GTGACAGATG AGTTACTGGG TAACACAGAG AGAGGATTCA
 39481 AAGGAAAAGT TGAACGGGTC CAGAAAATGC ATAGATACAT GTGAAAAAT CTGGTAAGGT
 39541 TATGACTAGC CACGTCCCAG GGTTCAAAGC TTTTCTCAGA TGTAAAATG AATCATGTAA
 39601 GTCCCCCAA TTTAAGGAGT CCTCTTCCAA AAATAGGAAA TGAAATGACA TAGGTGTATG
 39661 TCTCTGAGGT GACGGAGGAA ATGAAGGAAG CCTCTAGATG CAGCTTGAGG TTCATGAGAG
 39721 ACAGTTCCAG GGGAGAGGTC ACAGCTAGGG ATCACCGGCA TGCAAGGAAC CAGAAACCTA
 39781 AATGGGGAAA TCTTTTGAG GAAATGAACA GAGAAGGCTA AAATCAAGGA GTTCGTCAGG
 39841 CAATTCTAT GTTTAGGTT AACTCTCTCC TGAAACATGA AGAGCTCATA AATGCACTCC
 39901 CTCTTTGAGT CTCTAGTTT GTCTCTTC CACAGTGAATG CTGCAGGCTG CGTGTCACTC
 39961 ACGTTCAGCT AAGACGTAGT GCCCCATGGC TCCTCCTGTG GAGACAAGAG ACCCAGGAAA
 40021 GAGGCATCAC AACCTAGGC ACCATCTTC CTCTTCTCTC TTCCATTATT TCCTCATTCA
 40081 CCCATCTCAA TTTAGACCTG GGCACTATTG GATTCAAGA ACCATTATCT CTCATCTGGA
 40141 AATGCTTATT GGCTTCTAA CTGGTCTCT CACCTCTCAT CTAACCTTAA ACAACACAT
 40201 TCACCATATA AGGGAGATCG TGGTCTCTT TTCTTAGGAT CCTTCATGA CACCCAGTG
 40261 ATCATAACCC AATATCCAA AAGACCCCTG GACTCTGTAT GAGCTGGCTT CTTTCTGATT
 40321 CTCTTTCCC TACACCACAG ATGTTCAAGGG GGTAGAAATG CATAATTGGT GAGTGATAGC
 40381 TAAGCAAAC TCAAGGTTAAG GTACAGTAAT TATTCTAAAT CTCCCAGTAT GCCTTATACT
 40441 CTCCTACTTG GCATGGTTGC TCCGTCGTG TAGACCTCCC ATCATCTTC ACCTCACCTA
 40501 ATGGAATCCA GCTTCTCCTT CAAGATCCAG AAGGCTATCT TGATCCCCAG CTGAATGTGA
 40561 TCATTCTTC CTTTGACACC CTAAGCATTG GCTTCTTG TGCTTAGGA CCTCATGGGG
 40621 TCTCTTTAA CTACATTAC TTGCTATCAA TTTCATTCCC TACCAGATTG GGGTTCTGAG
 40681 AATAGCCACA GTGACTTCTC AACCTCAAAG CCCCTGTACT ACCTTAAACA GCTCTGCAA
 40741 AATAGTAGGT GCTCTGAAGA TGTGTTGAA ATTAGAGACT TTCATTCTGG GGAGAACCAT
 40801 TATTTCTGT CTCCCAGGGG GCTGCTGGT TCCCCAAAGA ATATAAAATGA GAAAAATGCT
 40861 TCCCATGGAT GCCAGATCCC CTCTGCCCT CTTCCCACTG TGCCCTGGGG CAGAGGTACT
 40921 AAGAGACTTC CCCCTGTTC CTACTCACTT GAACCCTGCC TCTTCCTTAA TATTATGAAC
 40981 AAAATTCCAA TGAACAAGAT GACGACAAAA ACAGCAATTG CACTGATGAC TCCAATGACT
 41041 AGGGTGCAG ACGGTGAGGG CTCTAAACAA GAAAAAGCAA GTTAAAGCCT TTGATTGCCA
 41101 CCCTCAGCCC ACCCCCTAAC AAAGAGCAGA TCCTCATCTC ACTGCCATAA TTACCTCCTC
 41161 AGGCACTCCT CTCAACCCCCC AATAGATTTC CTCAGCTCCT GGCTCTCATC AGTCACATAC
 41221 CCCAGATCAC AATGAGGGGC TGATCCAGGC CTGGGTGCTC CACCTGGTAC GTATATCTCT
 41281 GCTCTCCCCC AGGGGGTACA GCCAAGGTTA TCCAGCCCTG GTAGGTCCCA TCCCCATTGG
 41341 GCAATACGTC TTTAGGTTCG AACTCTTGG CATCCATTGG CTGCTTATCC TTCAGCCACT
 41401 TCATGGTGT GTTCTGGGG TAGTAGTTCA AGGCCCCGACA CCGTAGAGTG GTCACTGAAG
 41461 AGGTACATG ATGTGTCACC TTCAACAAAG GAGGCACCTTG ACAGGAAAGA GGAAGGATGA
 41521 GGAGAGGGGA TCTGTTTACCTTGCCAGGA AGACTGGAAC TTTCACTTCC TTCTATAGGT
 41581 TGGAGGAAGG AAATACCCCTT TTCAAGAAAAA ACAAGCTAC AGGAGAGACA CCATTTGTG
 41641 TCCTAAGATT GGACTCTAAC ACAGTGTAC TTGGAGAGCA GTCAGATCAG CTTGTTCTCC
 41701 TCACATGTAA ATATACATAT CTGTTACCCA TGTTCTTGT TCTGATAGAT AAAATTGCC
 41761 TTTATGTGCA TTGAAAATGA TTGAATACAG ATGGTCAGTT TCACCTGGGT CAACCTAGGA
 41821 GGCATTGTTA TAAGAACCGG ACTTGTAAAGA TAGGTAGCTT CAGTGATTAT TGCTATGTT
 41881 TATGAAAGAA ACTTTAACCA TAAAGGATTC TTCTACTCTG ATAAGTGGCC TCACTTGATA
 41941 TTTTGTCTG GTATTCTAT GATAGCTGAG ATCTCTGAAT TCTCTTTTT TTTTTTTT
 42001 TTTTAAGAT GGAGTCTCAC TCTGCTGCC AGGCTGGAGT GCAGTGGCGC GATCTGGCT
 42061 CAGTGCAACT TCCGCTTCCC AGGTTCAAGC GATGCTCCTG CCTCAGCCTT CCAATTAGCT

Figure 9 (Page 13 of 74)

102/162

42121 GGGACTACAG GTGCGCATGA CTGTGACCAG CTAATTTTG TATTTTTTA GAGACGGGTT
 42181 TCACCATGTT GGTCAGGCTG GTCTCAAACCT CCTGACCTTG TGACCACCCG CCTCGGCCTC
 42241 CCAAAGTGT GGGATTACAG GGGTGAGCCA CGTGCCCCGG CCTTGACATT TCTGAATTT
 42301 TAACAGGTAT AAATATACAA AAGATTATTG GTTAAATAAA AAGCAAGGGC CATAGACACT
 42361 TCCCTTGAG CCATATGCAT GGAGAAAAGA AATTAAACCC ATGACTGTG GCTGTCTCAT
 42421 ACATCTCAAT TATAAGGTAG AGACTCTAGG ATTGAGAAGAAG TCCCTTCCC GAATTGGAG
 42481 AGGCACACAG CCTCAGCCAC CTCTGAAACT CCAACCAGGG ATTCCGTGCC CTGCAACCTC
 42541 CTCCACTCTG CCACTAGAGT ATAGGGGAG AAGTGTGTTT CCACCATACC TTGTTGGTCC
 42601 AAAACACCTC TCCCCAGCTC CAGCAACTGC TGCAAGCTGTG CAGGGCAGTC CCTCTCCAGG
 42661 TAGGCCCTGT TCTGCCTGGC CCGAATCTTG TGCCCTTCCC ACTCCAGCTT GGTGGGCCAG
 42721 GCCCTGGGTT CTGCTGCTCT CCAATCCAGT GTGTCAGGGC AGAATTCAAG GTGGTCCTGC
 42781 CCATCATACC CGTACTTCCA GTAGCCCTCG GTACTGTTGT CTTCTGCAT TTCACAGCCC
 42841 AGGATGACCT GCAGGGTGTG GGACTCTGGA AAAATCCCCA GCCTTGTAA CTGCAACCAA
 42901 AGGAATAGGT CCCTATTTCC ACCATCCCCA AGGACCAAAT GATCTCAGGA AGCAAATTCC
 42961 TTCCCTCTTC CCTGCCTCCC CAAGACCTCA GACTTCCAGC TGTTCCCTC AAGATGCATG
 43021 AAAAGATGAA AAGCTCTGAC AACCTCAGGA AGGTGAGGCC CCCTCTCCAC ATACCCTTGC
 43081 TGTGGTTGTG ATTTTCCATA ATAGTCCAGA AGTCAACAGT GAACATGTGA TCCCACCCCT
 43141 TCAGACTCTG ACTCAGCTGC AGCCACATCT GGCTGAAAT TCTACTGGAA ACCCATGGAG
 43201 TTGGGGCTC CACACGGCGA CTCTCATGAT CATAGAACAC GAACAGCTGG TCATCCACGT
 43261 AGCCCAAAGC TTCAAAACAAG GAAAGACCAA GGTCTGCTC TGAGGCACCC ATGAAGAGGT
 43321 AGTGCAGAGA GTGTGAACCT GGAGACAGAG CAACAGGCC TAACCATGTG TAGTAGGAGG
 43381 GGAGCAGGAT GTGAGGCTC CACACACCTG CATCAACTCA TACCATCAGC TGTGTCTGGT
 43441 CCTCATTTCG TGAAGGGTGA GTTGCAGTCC TGTCTTCTT CCATATGACA GTCCTGGGTG
 43501 CTCTTCCCTT GTGTGCTTTT CTCTGCCACA CGTGGCTGCC ACCCCCTCAC TGCCCCCAGA
 43561 TCCTATTCCA ATACTCATGA TTAGACAGAC TCCACTAAAG CTGGTGGATT CTAGAAAATG
 43621 TTAAGGTGTG TCTAGCCATG GTAGTTGAAC TCAGGAGTTG GTGCTCAGGG CAAATTAGAC
 43681 CCAAATCTG AGGAATAATT CCTTCAGTTT TTTTTTTTTT TTTTTTTTTT TTTTTTTTTT
 43741 GAGACAGAGT CTCACTCTAT CACCCAGGCT GGAGTCAGT GGCACAATCT CAGCTCACTG
 43801 CAACCTGCAC CTCCTGGGTT CAAGGGATTC TCCTACCTAA GCCTCTGAA AACCTGGGAC
 43861 TATAGGCCTG CGCCACCAAC CAAGGCTAAT TTTGTATT TTAGTAGACA TGGGGTTCA
 43921 CCATGTTGGC CAAGCTTGTCA TCAAACCTCT GACCTCAAAT GATCTACCTG CCTCAGCCAC
 43981 CAAAGTGTG GGATTACAGA AGTGAGCCAC CGTCCCAGC CTTGGTCTG AATTCTTACA
 44041 CTGAACCTGC TATGTGGCCT CACCACTTGG AAGCCTGACT GGAATCTCAA ACTTAACATG
 44101 TCCAAATGCA GATCCTTGAT TTACCCAAA CTGCTCTTC CTCTGCCTTC ACCATCTCAG
 44161 AAATGGCATT GCCAATTACCA CCACTGCTCA GGCCAATAAA ATAAAATAA AGAACAAAGT
 44221 CAACTTTAAC TCTTCTCTT TTCAGGGGGT CAGGGGAGAC AGGGTCTTGC TCTGTCACCT
 44281 AGGCTGAAGT ACAGTGGCAC AGTCATGGCT CACTGCAGCC TCAACTCCT GGGCTCAAGC
 44341 AATACCCCTC ACCTCAGCCT CCCGAGTAGC TAGGATCACA GGTGCATGCC ACCACACCC
 44401 GCTAATTTCG GTATTTCG TAGAGAAGGG GTTTGCTGT GTTGCCTCAGG CTGGTCTTGA
 44461 ACTCTGAGC TCAGGAATCT GCTCTCCTTG GCCTCCTCCT TGGCATGAGC TACTACACCC
 44521 AGCCAATTCT TCTCTTCTC TCACACAAAC TAGAATCCTT CAGCAACTTC CTTCAGAATA
 44581 TATTCAAGGAG ACAATGGTTT GTCACTCCCT TTTCTGTTCC CACCCAGCCC ACTCCACTAC
 44641 CTCTTGCCTG GACTGTGTAA CAGCTTCCTG GCTGGGCTCC CTGCTTTAC TGGTCTCCC
 44701 TTCATTCTGC TTTCCACATA GCAGCCAGAG CAATCTTTA AAAGCCTGTG ACAGATCACT
 44761 GTTACTCCTT GGCTAGAATT CACACCACAG CCTACAGGGC CCTGCACAAC CTGTTGTG
 44821 GCTCCTCTTC TGAGCCATT ACCTACTTCT TGGCCTCTAC TCCCCAGCAC TACTTGTAA
 44881 TTTTTTCAA CCCGAGCTTC TTAACCAGGA GTTGTCTAC TAGGTGACAT GTGGCAAAGT
 44941 TTAGAGACAT TTTGGTTGT CAAGACTGGG GGAGTGTCTCC TAGCACCTAG TGAGTAGGGA
 45001 GGACAGGATA CTGCTAGACA TCCTACATGC AGATGGTAGT CCCCCCTCCC ACCCCCCACGC
 45061 CGCCCCCCCCC CCCACACACA CACACATGAG TAGTGCTGAG AAAACCCGCT TTTTAATCCA
 45121 ACTTGCCAGG CCCACTCAGT TTGCTGGGA AATACTGCTC CCAGTCATAA TCATTCTTAT
 45181 TTCCCTTCATG TCTCTGCTCA AGTGTCAAGCC CCAGAGTGCAC TTGCCCCGAC TTCTCTGCTT
 45241 CTCACAACAC CCATGATTTC CTGATGTTGT ATATCTTCT GCTCATTTGC TTATTGTCA
 45301 CTCTCCCACT AGAATGCAAAGA ATATCAAAGG GTAAAGACTT GTTTCCCTGC TCTCTCCCTT

Figure 9 (Page 14 of 74)

45361 GGGGCTTGAA CAGTCAACA CATGGCTGGG ACTCATTTAC ACTTGTAAAC AATGAATATT
 45421 TCTGCTAAC ATGAAATTT ATTATTCAAC CTCTAATGCA GTGTGATGTT TAAGAATCAT
 45481 AGCTATGAAG TGGAGACATG AGCTCTGCCA CCAAAGCCCC GTGTACCATT GAATAAATTT
 45541 GCCAGGAAGC AGGCCGTGCC ATGCCTCATT CTTGTCATGT GTAAAATGTG GATACACGTA
 45601 GTACCAAAAC TCAAAGTGCT GTGCTGAGGC CGGCGTGTGA CCCACAGAAC ACTGTGCTAC
 45661 ACTACAGGGC AAAATCACTG TCAACTAAGA TTAGAAGCAG CTGTAGTACT TGAAATAACA
 45721 TCAGAAAACC AGATTATTTA TGTTCTTGT AACCTGAAAA GAGTTATATA ATCTGAATT
 45781 CAGTTAACTT CTAGTAAAAT AAACGTATTA TTAGCTCCTA CCTCCCTATG CCTAGTGAAA
 45841 ATCAAATAAG ATCAGATATG AATGTAACCT AGAAGTGAGT GCATTGCTTA CATGTTCATT
 45901 ATCAGTACTT TGTAGAGAGG CCTCTTAATT ACACAGCAC TTGCAAATCA ATAAAGCCTA
 45961 GCCGAAAAGA GAATTGTTCA GTTCAAACGT TCAAAACTAA CATATACTTA ATTTTCCAGG
 46021 CAAAAGAACCA ATTGCCAAGA GTGGGGAAAG GCCCGAGGTA GGCCTCTCTC AGGAGCCTCC
 46081 CACCCTAGAG ACCTCCACCC CAGGTCTCAC CAAAAGTGGG TGGAAATGGTG AAGAATTCA
 46141 ATCCCCAACG CCACTCTTTC GCGCCCCCAC CGCCCAACGC ATTCGTTCTG AGGTGGAAAC
 46201 CCCGTGCGGA TCCTGCTGTG GGTTGCTCA GCCTTCTCGG CAAGCACTCA GGGAAAGAACT
 46261 TCCTGTTGG AGATGACTGG GGAAAAAAACT GCACAGCTGA CATTGAAAT AAACCCGAGT
 46321 TCCAGGTTCA AGGAGCCCCA GGCTTAGCTC AGCTCAAGTG AGGAACATCG AGATTTATTT
 46381 AAAAGCATT TAGTTGGGG AAGGGAGTGG GCGGTTCCAA AAGTCACTCC GCAGAGCCGG
 46441 GACAGCCGGG GGAGGGGGCA GGTCTGGGG CGAGGGACCC CTATCTGCAG TTCAGTGGTA
 46501 GGCACCTCCCT CACGGGGTCT GGACGCAGAA AGTAGGGAGA GGGGCTGCG GATTGGGTTG
 46561 AGCAGGTCCT CCAAAGTTAG CAAACTCCCA AGCGCAAAGA AAAAGCTAGT TTGATTTTT
 46621 CCACCCCCCGC CGCGCCCTA GTTCGCCCCCG AGCCCTCGGA CTCACGCAGC AAGCGCCCT
 46681 GCAGGACCGC GGTCTGAAA AGCATCAGGA GGAGAAGCGC CGGCCTGGCT CGCGGGCCCA
 46741 TTTCCCCAGC TCTGGCCGCA CGTCCCCGTT AAATCTCCGC TTCTTTGGG GGGCGGGGAA
 46801 ACGGGGATGG CTCCAGAAGT CACCCCTACAG CTATTGCTA GGCTCAGGAG ATGCCAGTA
 46861 AAACTTCCTG GTGAAAAGCA ACAGGTCTT CAGAACTTTA GTTCTCTCTC TCCTACAGCA
 46921 GAAGGTACCT GCTTGTGAAA CACTAGGTGA TCCAGTGTCC CCCTTGGTT TTAAATCCTG
 46981 AAGGGGTGTT GTTGATTGGG GAAAGTAGCT TCGCAATGTT CTGATCTGAA CTTTAGATAT
 47041 TAAATATTAT ATGATTTCA AAATTCAATC ATACATTTAA AAATTTATC TCAACCTTAG
 47101 ACCAACTTAT GTCTTATTTG ACTTAGAAAT ATAAAGCTTT TTCATTTGT TTTTGATT
 47161 AAATTAATTA AGTCATAACA TTAACCAATT AGATCCTACT GAAACACGTT CCACAGCCTT
 47221 CATAATTGAA TTATCTGACA AGTGTTCAC AAACCTTACA GTATTGGAT TATCTGGAGA
 47281 ATGATTAAAC ATATTGAGGC CTGCTCCTAA CCCCAGACAC ACTGATTAA TGGTAATTG
 47341 TTAGGTAGTT AGACATTAGC AGTTGGGAGG GGATGACAGA AGAGAGCGGA AAGGCTGTCA
 47401 CTAAGACAGC CACTGGCCA CCTAAATTCA GGCCCAAGAC TACCTTAATG CCACCCCTAAG
 47461 GGATGGAGTT TATGATAAAG TCTGTGGCA AAATATCCTG GAGAAAGAGA AAGGAGGGTA
 47521 CAGGTGGAAA TTCCCTAAGG TGGCACATGC CCAACAAACAC AAAAGCCTGT CTTCAAGTT
 47581 ACCCCAAGTT CATCATGCCA TCATTATAAT AGAATTTCACA TACAGTTTG CCCCCCCATC
 47641 CCTGGGAGGC TTTTCTTAAC AAATTATAGG TAAGACCATG CACAGTTAA TTTTAGATTG
 47701 TATAGCTATA AACTTCATC AAATAACATC ATCCGTAC TCAGATACAG CCCAACACCTC
 47761 AACTCCTCCC CACAAACCCC ATAAAAGCAC CTTGAGCTCT GTAAAGAAGT GCTGAGTTCA
 47821 CTTCGCAGAA ATAAGCCGC TGTCCTCAG AGTGTATTAT TGTGCTCAA TAAACTTTGC
 47881 TTTAAGCTTG CATTGTTGGT TTAGTTGTA GTTCTTTGCT CACTATCACA AGAAACTGAGA
 47941 TTGCTGCTTC AGAGCTCCGG CTATAATAAT CTCCCTCGTT AAAGGATCCA TCCCAATGCA
 48001 TAATTCCAG TAACAGTATG GGATGCCACC TGGCAATGG GATTTAAAA GCTTTCTTC
 48061 TCCCTCAACG AAGTTGGGA ATTATTGCCT TAGACATTTC AAACAATATT AATAAATT
 48121 ATACACCTGA TTTGCTCAA ACCTTTACAT ATCTAGCAAA TTCAACAGGC ATTATTTTG
 48181 TAAGCATGTAA TGCAAATTTT GGCAATTCAA GAAAATCAA CAGGATATCA GGGCCTCGAC
 48241 TGTAGGCAAA CAGATACAAT AACATTGGAA ACATGTAGAA TATTGATGAT GGGCACATTG
 48301 GGGCTGATAG TACTATTCTT TTTTTCAAT TTTTGGTAAG ATATAATTAG CATACCATAT
 48361 AATTCTATCTA TGTAAAATGC AAAAATTGGC CCAGCTCAGT GGCTCACGCT TGTAAATCCC
 48421 GCACTTTGGG CGGCCGAGGA AGGCAGATCA CCTGAGATCA GGGGTTGAG ACCAGCCTGG
 48481 CCAACATGGT GAAACCCGT CTTTACTAAA AATACAAAAA TTAGCCGGC GTGATAGCAG
 48541 GCAACTGTAA TCCCAGCTAC ATTAGAGGCT GAGGCAGGAG AATCGCTTGA ACCCGGGAGG

Figure 9 (Page 15 of 74)

48601 CGGAGGTTGC AGTGAGCTAA GATCGTCCA TCGCACTCCA GCATGGGAGA CAAGAGCAAG
 48661 ACTTCATCTC AAAAAAAA AATTAGCTGG GTGTGGTGGC ATGCACCTGT AATTCCAGCT
 48721 ACTCGGGAAAG CTGAGACAGG AGAACATCGCTT GAACCTGGGA GGCGGAGGTT GTGGTGAGCC
 48781 GAGATCATGC CATTGCACTC CAGCCTGGGC AACAAAGAGCG AAACCTCCGTC TCAAAAATAA
 48841 AATAAATAAA ATAAAATGCA AAAATTAAATG GATTTTAGTA TATTTACAGA GATGTGCAAC
 48901 CATTACCAAA ATTTTACATT TCTATCTCCC CAAAAAGAAA CCATGTTCCC CTAATTCACT
 48961 ACCCTTAATT CATGCCCTCC CAGATTCTCTC CATTCTCTC CTCCTCCCC CCCAGCCCTA
 49021 GACAATCTT AATCTACTTT CTTTCTATTG GGAACATTTA GTATACATAG AGGCATATAA
 49081 TATATTGCTT TGCGGTGACT GGCTTCTTTC ATTAGCATA ATGTTTTAT GTATGTTTT
 49141 CATGGACCAA TAATATCTAT TATAAGGACA TACCACAACA TATTTTATTT ATTCATTCTAT
 49201 CAGCCGATGG ACATTGGTTT GTTTCTACTT TATGGCTATT GGGAAATAGTG CTGTTATAAA
 49261 CATTATGTA CAAGTTTTT TGTAGACTTA TGTTTGATT TCTTTGGTT ATATATCTAG
 49321 AAGTGGGTTT GCTGGGTCA ATGGTAACAC TGTTTAACCT TTTGAGGAAT TGCCACATTC
 49381 TTTTCAAAG TAAGCATTAT ATCCCTCTAT CAGCAGTGTG TGAGAGTTCT GATTTCTCTC
 49441 CATCTTGCC TGGGTTTTG AATCAGGGCC CCAGATAGAA CAAAATGTG GTTATTCACT
 49501 TGTTCCACCA TCACTTGTT AGAAGACTCT TTTTCATTG AAGTGGTTG GCACCCCTAT
 49561 CAAAATCAA TCTACCATAA ATGTGAGAGT TTATTTCTGG AGTCTCAATT TTATCCCATT
 49621 ATGCTATAAT CTATAATCCT ATCTTTTTT TTTTTGACA GAGCCTCACT CTATTGCCCA
 49681 GGTTGGAGTG CAGTGGCCCA ATCCCAGGCA CTGGCTCTC CTCCCAGGTT CAAGCAATT
 49741 TCCTGCCTCA GCCTCCCAAG CAGCTGGGAT TACAGGTACC TGCCACCATG CCTGGTTAAT
 49801 TTTGTATTG TTAGTAGAGA CGGGGTTCA CCATGTTGGT CAGGCTGGTC TGGAACTCCT
 49861 GACCTCAGGT GATCTGCCA CCTCAGCCTC CCAAAGTGCT GGGATTACAG GCATGAGCCA
 49921 CCACACCCAG ACTATAATCC TATCTTATG TCAGGACTAC ACTGCTTGA TTACTATAGC
 49981 TTTTAGTAA ATTGAATTCA AGAAGTTCT CAACTTCAA TTTGATCTTT TTTTGGAAAGA
 50041 CTATATTAGC TATTCTCAGT CTGCTGAATT TCCCTAGGAA TTTTAGGATC TATTATCAAT
 50101 GTCTATTCTA TTTTGTATA TGTGTTAATA TTTTCATAAG AAACTTTTT CATTAAACT
 50161 TTTTTTTA AGAAAAATAG TGAAAATCAG AATACTGGGG GTCAGCGCA TTTAACAGGC
 50221 AGAAGAAGAA TAAAACCTTG TCATATAAAC AAAAAAGAAA TGACCAATCA CATTGTGGAA
 50281 GCCATGGAGT GGTTATAGGT GCCAAAGGCT GCAGAGAAAT GGTGTCAGAT ATACCTGAAA
 50341 ATTGTCCATT GTATTGGCC ATTAAGAGAC TTAGAAGACT TAAGCCATAG ATTGCTCAGT
 50401 GAGACCCCGA GGGCAAATGG TCTGAAGGT AATAGATCAT TTCACCTTTA AGAGAGCAGG
 50461 TAGGAAGCTA TAAATCCAAG ATTAAAAAGT TGACTGAAC GTTAAAGAAG AAACCTTAAT
 50521 CTTGAGCCAC CCTATCCTTG CTCCACCTTC TGCTGCAAGC AAACAGAAAT GCTGAAATTC
 50581 AACACTCACA AAGGCTGGTA AGCTGGAAAT GACAAAAATT ACTCCTGGGA AAGTCAGATT
 50641 TAGAATTAGG CCATATTGT TGGGGTTCAG ATTTCTATGT ACACCTGGGA AAGGGTTTAG
 50701 CTTATAGGCA CATGCATGAA GGGAACTGGT ATAGGGCTGT GTTCATAAGG TCAAGAGTTG
 50761 AAGGCCAGGC ATGGAGGCTC TTGCGCTGAA TCCCAGCACT TTGGGAGGCC GAGGCAGGGAG
 50821 GATGGCTTGA GCCCAGGAAT TCAAGACAG CCGGGAAAC ATAGGGAGAT GCTGTCTTCA
 50881 CAAAACAATT AAAAAATAAA ATTAGTCAGG TGTGGTGGCA CACACTGTG GTCCCAGCCA
 50941 CTCAGGAGGT TGGGAAGATC ACTTAAGCCT GGGACATTGA GGCTGTAGTC AGCCATGATA
 51001 GTGCTACTGC ACACCACTCT AGGTGACAGA ATGAGACCT GTCTCCAAA AAAGAGCTGT
 51061 ATCCACATCC CAGGAAAGTG GTTGAAGATC TACTTTCTC TGTAACCTA ATAAAGAATA
 51121 GAGTGACAAA TGTGTGTTGT GGAAAGAAAT GGGGTGAGAG CTACGTAGAT GCAAACAAAT
 51181 ACATCCCCAC ATACCACTTG TTAATCATCC TTTCCACCC ACTTATGGGA TGAATTGCAT
 51241 CTCCCCAAA GATACTCTGT CCTAACCTCTC AGTACCTGTG AACCTGACCT TATCTGGAAT
 51301 ACGGTGAGTT CACTGGTAA GAAGAGATTA TAGTGGAAATA GGGTGAGTCC TCCAACCAAT
 51361 GACTGGGGTC CTCACAGACA CAGAGGGATG ATGCCAGGT AGAGATGGAG GCAGAGATTG
 51421 GAGTTATGCT GCCACAAACC AAACACAGGA AGCTGCTAGA AGTGGAAACA GGCAAGAAAG
 51481 AATCCTTCCC CAGAGGCTAC AGAGGGATCT TGGCCCTGAT AATACCTTGA TCTCAACTGG
 51541 CCTACGTAAC TGTGAGAGAA TAAATTTCTT TTGTTCTAAG CCACCCAGTT GATAGTACTT
 51601 TGTTACGGCA GCCCTAAGGA ACTTGATATA CATTCTTTT ACTGTCATAG AAGTTTGAA
 51661 TCTTTTAAGT AGGTCTGTAC CCTTCCTCCC AGTGTCAACG CATGGAATTC CTCTCCTTGT
 51721 GCCTTGAAA GTGAAAGGTG TTTGAACTGG TAATGAAAGA AATCTCAGCA TGAGGCCAGA
 51781 TGCTGTACCTCACACCTGTAAATCTCAGCAC TTGGGAGGA TGAGGCCAGC AGATCACTTG

Figure 9 (Page 16 of 74)

105/162

51841 AGGTCAGGAG TTCTAGACTA CTCTGGCCAA CATGGTGAAA CCCCATCTCT ACTAAAAACA
 51901 AAAAATGTTA TCCTAGCCGG GCATGGTGCC TGTAGTCCCA GCTACTCAGG AGGCTGAGGC
 51961 AGGAGAATTG CTTGAACCCCG GGAGGTGGAG GTTGCAGTGA ACTGAGATCA CGCCACTGCA
 52021 CTCTAGCCTT GGTGAGAGAG CAAGACTTGG TCTTAAAAAA GAGAAAAGAA AAATGAAATT
 52081 TCAGCATTAT AGAATAAAAA TGTTTCCCT TCCCCCCAAA CTTTAAAAAA GCAGAAGTCT
 52141 GCATCATAAA ATGGTCTTTG CCAATGTTAT TTTTATTATA ACAAAAGGAAT CTTGCAAGGC
 52201 TACCAAGATCT CAGCAATTGT CACTATGTTG TGTAaaaATC ACTTCCTAAA ATGTCTGAAT
 52261 TGACTGCTTG TCTCATTAT TTGTTTCTCG TGTCATACTG CAATGGATAT CTGTCTTGT
 52321 AGTATAAATA TTTGTGCATT TTGTTGTGT TAAAACAGCT TTTTGGCCT GTCTTCTTCC
 52381 ACCTATGAGG TAATATAAAA CTCATGTTA ACACTTATTT TTGTAGGAGG ACAAGCTACA
 52441 GACAAAACCC CTCAGACACT GAGTTAAAGA AGGAAGGGCT TTATTTCAGCT GGGAGCTTTG
 52501 GCAAGACTCA CATCTCCAAA AACCGAGCTC CCTGAGTGAG CAATTCCGT CCCTTTTAAG
 52561 GGCTTGCAAC TCTAAGGGGG TCTGTGTGAG AGGGTCATGA TCGACTGAGC AAGTGGGGT
 52621 ATGTGACTGG CAGCTGCATG CACCAGTAAT CAGAACAGAA CAGGGATTT CACAGTGT
 52681 TTCCATACAA TGTCTGGAAT CTATAGATAA CATAACCGGT TAGGTCGGGG GTCAATCTT
 52741 AACCAAGACCC AGGGTGCAAC ACCAGGCTGT CTGCTGTGAG ATTTCAATTG TGCCTTTAG
 52801 CTTTTACTTT TTCTTTCTT GGAGGCAAA ATTGGGCATA AGACAATATG AGGGGTGGTC
 52861 GCCTCACTTA TTCACCCCT TTGAGAATCT CACTCATTAG TGGGAGTTCT CACTTTATT
 52921 CTCACTACCT ATGTCTTCTT GAAAGACAGA TTGATAATGA TTCATATAGT ACACTTGTGC
 52981 TGAAGCATT TGGTGAGCTA AGGTAGTGT GAAGCTTTT ATCATTGGA GAAGTACAGG
 53041 TAGCAAACAA GGAAGCAGTA AGCAGGTTTC TATTAATATT ATAACCTCTA TTATAAGAGT
 53101 TTTAAATCTT CTTAGCACTC GGAACCATT TTCAAACATG GCCCCAGAAA CAAATCCATA
 53161 CCACACCTAC ATGGGCACAT GTGCCACTT TGTCATATTT CTAACATAGT CTTCAACTAC
 53221 TTGCCCTTAA TCATCTATGT GTAGACAGCA ATTAGTAAGG TAAATTTC TACAGACCCC
 53281 TCCTTCAGTT GCTAGCAAGT AGTCGAGAGC CAATCCATT TGATAGATAG CATTTCGAT
 53341 CTGAGTTCT TGCCAGGCCA CAGTAGTCAG GGCTCTGCTG GTCTTATTAG TAATTATTTC
 53401 TAAGACAGCT TGTAACCGTA TGATTCACTT GAGCATGTAA ATGGGGTCC CATATCCCC
 53461 CAAGCCGTCT TGTGCCCAAG TAGCAGGCC ATAATATTGT ATGATTCTCT CAGGGGCCA
 53521 TTCATTATT TTCCAATT TTCTAGCTAT GCTTTTTTT TTTTTTTTT TTTTTTTTT
 53581 TTGCGGGAAAG CATATACAGG GAAGCCCAGG AGTTTGCTG TCTTTATGGG CAGTAGGAAG
 53641 AAAGATGGTT TAATAGTGT AATAACACAA CTACCTGCC ACTGGTCAGG TAATTGGCA
 53701 TAAGCTGTAT GCCCACATAT CCAGTATAAT CCAGTGGGGG CTGTCCAGTC CCGGTGGGAC
 53761 TCTGGGTGGG TCCACACAGT TTGCAACTT GGGAAATTAC TAAATAGATT TTTCTTAGTG
 53821 TGGTTTGAAC TCCACTAGGT GGCTGTTTT ATAGTACTAT TATACAGTTT TTGCCAAGG
 53881 CAGCTGAGTC TTCCCACAGG AAGGGTGAAAG TCCTTCCCCA CTTTGCTAT ACAGTATTGT
 53941 CTAATGATTG AGGCTTTAG GACCCAGAAG TTATCAGGGT GAGTCTTTG AGCTGGGAAT
 54001 TTATCAGGAA CTGGGTCTGT AGGTACTAAT TCTCGTGCTT CCCATGGCCA TTGATCTCCC
 54061 ATTACAGTTC CTCCACATAC ATACATAACA TGAAGTGACA TTGAGAGACT GGGCTACATG
 54121 CTCAGCTAAAT TGCAAAACAA AATTCTGT TTTCTGTGGA ATTTCTAGTA CTGGCACATT
 54181 CAGTTCATCA TAAGAAGGTT TGAAATACTG GCTCAGGGGA GCATTATAA ACTTCTCCTC
 54241 AAACCACCAT ATTTACTCAA GGATCCAGTC CAGCCCCAAC TATTTCCTAAAG GTTACACGAT
 54301 CCCCTTTTT CCAGTGAGAA TCAAGGGGGT TGGTTATTAC TAGTTCTAAAG GGGTTACACT
 54361 GACCACTGGT ACAGGAAGGG CCACCTTCC CTTTCTGAAG GTGGACAGGA TTCTTTTAT
 54421 TTTTTAACCA AGTTGCCTAA ATGACACAAG ACCAGTATCT ACATTATTG CCACGCAGTC
 54481 TTAATTCTATG ACAAGCGTAC TTATTTCTG CCATATAGCC TCTTTCTAA TGAACAGAAC
 54541 CACATCCTAT TTCTAACTTA TTACTATTAA TGACAGCACA GGCATCAAAT TTCAAGGTGA
 54601 CTTGTTTGGG CATTCCCTTT TCTTCTGTGTT TGGCTAACAC TTTACTCGTA TCGTTTATGA
 54661 ACCCCCCACCA GTCCCTCAGTC CTCAATCTT TTTCAAAAAC TGTGGTCGTG GGAGGCTCAG
 54721 ATGGGTCTATA ACACACATCA GGTTGGTCAT TTCTTGGGCT ACCTGCCTTG TATAGAATAG
 54781 CATTATACAA ACAAGTTATT TTAGAGTCT TTGTACACTT ATAATAACCA TAAAATAATA
 54841 AGACTGTAGC AACTTTTGT CCTACCTCAG TGACTTGATG TATACACTGG GAACAGCCCT
 54901 CAGTCTGAGG AAGGTTAGTT GAAGTCTTA CTGTGCAAGT CCAAATTAA AGGAAAATGA
 54961 GTCCCTTGAT GAGTTTCTC ATGTTTGGC CATGCATGGA CCAGTCAGCT TCCGGGTGTG
 55021 ACTGGAGCAG GGCTTGTGT CTTCTCAGT CACTTGCAG GCGTTGGCGA AGCTGCCACG

Figure 9 (Page 17 of 74)

55081 TACAGCTCAC AGTCTACTGA TGTTCAAGGA TGGTCTTGGA AGTTGGGCC ACTAGAAATTA
 55141 ACTGAGTCCA ATACCTCTAC TCAGTCACCT TCAACTGGGC TTTCTGATAC CAGGAGCAAG
 55201 GTGGCAGGTT TTAGGGTGTG GCAAATTCA ATGGTTATGC AGGGATTTTC ACATAGCAAA
 55261 CTTGGTACT TGTTAACATC AGCATTTGTT AGCCAATGAT GTATTTATTA AAGTCACCAAC
 55321 AGCATGGAGG GCCTTAAAGT TTAGGTTTTG TCCAAGAGTT AGCTTATCTG CCTCTTGTGC
 55381 TAGCAGGGCT GTGCTGCCA AGGCTCTAA GCATGGAGGC CAACCCTTAG AACTCCATC
 55441 TAGTTGTTG GAGGCCAGC CTCGGCCAGG GCCCCACAGT CTGGGTCAAA ACTCCAACCG
 55501 CCATTTTTTC TCTTCTGAC ACATAGAGTG TAAAGGGTT TGTCAGGTCA GGTAGCCCCA
 55561 GGGCTGGGGC CGACATGAGT TTTTCTTTA ACTCATGAAA AACTCATTGC TGTTGGTTGT
 55621 AATAGATGTA GTTTATCCAA TCTACATT TATTAACGT CACCCACCAA AATATTGACT
 55681 CAAATCCTGC AGCTATTGA TTTTGGGATT TAAATTGATC TGCTATTCCC TGTGGGACTC
 55741 CAATTGCATC TAAATAGATG TGAGAGTTGA AAGACACATA AGGGTCTTCT CTTGCTTTAC
 55801 GATGTCTTAT TTTCTCTCCC TCTGGTTGAT GAAATGCTAG GGTGAAAGGG ATAGCCAAC
 55861 GGACTAAAGT ACAAGTGCCG CTCCAGTTAT TTGGCAGAGT GCCCAGTAAA GGTCCACCA
 55921 AATACCACCA CACATCCGCT TGGGGATGAA CAAAGGCTGA CTGATTGAGA AGCTCCTGAA
 55981 AATTCTTAAG CTCACTGCAT CCCTTCAGGT CTCCAAGGAA TGCTAAGTT CCTCCCTGTC
 56041 ATGAGAGACA AGAAGTGAAC TTAGTTTGG GAGATGGAAG CTGGATGGCC CTCAGGGTT
 56101 GACCTGCAGG GTGCTGGACT TTGGGATATA GCAGAGAGAG CTTGGCACGA CTTATTACTC
 56161 CAGGCTGTAG CATCCTGGAA AACAGTTACC ATGCAGGCCA TGCCTGGTCA ACAGGAGGAC
 56221 CACCTTAGTG GAAAGGGGAT AATCTGGCC TCTGGCTCTGC CATGTGCACA AGCATAACAA
 56281 TTGGTTTTGT TTAATGTGTG GACAGAATAT TTGATCCATT CCAACTGGC ATTTGCATCT
 56341 TGGTATCCTG CTTAATTATC AAAGTTGTT TTAAGTCTTT AACTCTATG ACCCTCTAGT
 56401 AAAATGAATG TATGATTTA GGAAATTACA AAAACCGGTT GGGGCAGTCC ATCCTCGCTC
 56461 TTAGTGGTC CACACAACAT TCGACCAACT ATGGCATAAA AGCTCTACAT CAGGGGGCAA
 56521 GACTCCTCGT TGACACTGGG GTCTTTATTG AAATCTCTCT GGATTAAATG GTCTCAGTT
 56581 ACTAAGGCTC AGTCTGAGGA GAGTCAGGAG GCACAGAGGT ACTTTCTGA AGTACAGAGA
 56641 TGTCTTCGAC TTGGCAAGTC CCCACAGGGT ATAACAAGGC AAGCATTAAA TTCAATAGTT
 56701 TGAGGCAAAA TTGACTTGGT TATGTTAATA ACTAGATGGT CAGAAATAGA GTGAGGGAAG
 56761 AAGAAAGAGT AATAGAATAG ATGAAGGAGT TAAATTTTC TTAGCTTCTAG TTTGGTAGGG
 56821 TTTTCCCCTG GGACTATGGC CCATGACTCT GGAGGGGGTG GCACCTTCTT GACTCGGGTG
 56881 TGATGAGTCC ATCCCTTTT CACCGTATGA ACAACAGTCT CGGTGGTTAG CAGCACAAGG
 56941 TAGGGTCCTT CCTAGGCTGG CTCAAGTTT CCTCTTTCC ACCCTTGAT GAGAACATGA
 57001 TCTTCAGGCT GGTGCTGGTT TACAGAAAAT TCTAGGGGTG GTACATGTGC TAAAAGACTT
 57061 TTAGTTTGA GGGAAAGGAA AGTGGAAAGAT AAACCAAGTA TATAACTTTT AAGAAGTTGA
 57121 CCTTTTGTGTT TAAATGTGGG GACATCAGCA GTGGACTTTA TAGTCCTTGG TGCCTTCTTA
 57181 CTGAGAAATT TCCTTAGCA CCTATTTTA TTAGTTTTA GACCAAAAGAA AGTCAAATGC
 57241 CATTTTATAT TTGACAACGC TTCTGTATG TTTATACCAAG ATAAGCTAGA TTTCACCTTT
 57301 ATATTGGTGT GTTATTAATG TTAAACTTAG TTAAATAAA ACTCTGTAGA CATATTATT
 57361 TGATTTTTAA TGTCTGACCA TAAGGTAAGA TTTTATAGA CTTTTCTTTA ACCTTTTATA
 57421 ATTTTTGTTA AAGAACAGGT TAGTGTCTTA AGAAAAAACCC GTTGTGTTTT TATTTTAATG
 57481 TTCAGTTCAC AGAAAAACTG TATGATACCC CTTAACTTTA GCCAATATGT TTAGACACAG
 57541 AATTTCTTT ACAATTAAGG TTTCAAAACT TGCTTAAACC TTCAAAACAA TTTTTGTAAC
 57601 CTTTAATGT AGGTAAAAAT CCACATTCTT ATGCATCCTC ATAATCCTT TACCAAAGGT
 57661 ATATTTTACT TTCCTTACAT ACCTTGACCA TAAACTGTT ATTCAATAGT TTACATTTA
 57721 GAAGGAGGCC TAATTACTTT TAAATTATAC AACATTCTT GCATAAATT TTTTTCTAA
 57781 CACACATTTC TTTCATGACT TTCACAGACA ATTCTTCGAC ATGCCTCAAC TTTCTGACTT
 57841 ATTGCAAACA TCCCTTCTT TAAACAAACTA GTTAATTAT CTCAGGACAA GGATTTCCA
 57901 TACAACATTC TTTTTATAT AAATTCTGCC TCCTCTTTAT TCCCTTTTT TTTTCCGAG
 57961 GATGATAACC ATTCTTTCC AAAGCGAATC TCTTTATGT CTGTGGACTA GACTGTCTAA
 58021 GCCCACAAAGA TTAGAAGTTA CTATAATACA TGTTACACTG TTAACCTTTA GCAAACCTTA
 58081 CTTTGTTGA AACCTTGTA AGTTGGGAT TTCAATTATC CTTTGCTATT AAAAGACCT
 58141 TATTTAGTCC AAATTAACCT AGAATTGGTA TAGATGGCTT TTTTTTTTT TTTAATTACC
 58201 TGGGAGGAAC CATCTATCCT CCTGCTCTGA AGGGAGTTCC TCCTAGGTCT GGTCAAGAGCT
 58261 TTGTATGGTA ATTAAGATTT AGATCCCCCTG TTAGGAAACC TGCCGGGTTA AGAGAATTAA

107/162

58321 CAGTGGTTAA TGTTAAATCA TCTTCTTTT TCTTTTTCC TTAGGATACT TCTGAACCGG
 58381 TGAGGTGTGC TCACAATGAG GTTTCCTGTA AAAGTTATT TTTACTTTC TTCTGTTAGC
 58441 AAAGCAGTG CCGCTACAGA TTGAATGCAT TTGGGCCATC CGCGGGTTAC TGGGTTAAGG
 58501 ATTTTGATA GGAAGGCCTT AATGCTTTG GAATATGCC TGACAACAAA GTGCCAGTTC
 58561 CTTCCCGGTG TTCAGCCACT GCGTTGATCC TCCACGAGGG CCTGCCACGT GCTGCTCTGG
 58621 TGAGGCGTTC CACGGGGCA ATTGCCTACC TGGGAGCGCT CTCCAGATCT GTGTCGCTCA
 58681 AACTGGCTGG AGTTCCCCGT AGGGATGCTC CACAGGGCAG GCCTAAGTCG CCTAAGGGC
 58741 TGCCTTGACC GTCCGTTAAT CACCTCTGTC TCCAAAAAAC AGCTCCCTGA GTGAGCAATT
 58801 CCTGTCCCTT TTAAGGGCTT ACAACTCTAA GGGGGTCTGC ATGAGAGGGT CGTGATTGAT
 58861 TGAGCAAGCA GGGGGTACGT GACTGGGCT GCATGCATCA GTAATCAGAA CAGAACAGAA
 58921 CAGCACAGGG ATTTCACAA TGCTTTCCA TACAATGTCT GGAATCTATA GATAACATAA
 58981 CCTGTTAGGT CAAAGGTCGA TCTTAAACCA GACCCAGGGT GCGGTGCCGG GCTGTTGCC
 59041 TGTGGATTTC ATTTCTCCCT TTTAATT TTTACTTTCTT TCTTTGGAGG CAGAAATTGG
 59101 GCATAAGACA ATATGAGGGG TGGTCTCCTC CCTTAATTAA AACAAAATT TCAAAGTCCT
 59161 ACCCCAAAGTA AATTGGCAAA TATTAATAAA GTTATGGCAT AGAAAATAAA AATGATTGTA
 59221 AAAGGCGTAA AGATATTCT GTGGGGAAAA CATTGTTCA TTAGTTATCA GTTAAAATTTC
 59281 TGTAAAAAT AACCACTAGA GACCTAAAG TACCCAGGGG CTAATAATAA GAAGGGAGGA
 59341 ACACCCCTCTC AGTCCCCACC GTTACCTCCC CAGAAGGGAA GAGGAAGAGG GTGACTCCAG
 59401 GAGAGCTGTG GTCTCCCCTC CCCATATGTC CACATATACC TGACCTCCCC TCCCCAAAT
 59461 ATATACCCAA TATCTCTCCC ATATATACAT ATTATCTGA CCTCTCCACA TATGTATACC
 59521 TAAACTTTCT CTATATATCC ACATATACCT AACCTCTCA CACACATATA GCTGACCTCC
 59581 AGTGGAGGAA AATGGGAAG AGAGAAGAAG TTATCAAAGG ATAAATCTAG GTCATACTCA
 59641 GAAATGTGAA AAACAAAAAC CACACACAGA AAAAAAAAC ACACACAAA AAGAAATTGA
 59701 TAAATTGTT TGTGTCAAAA TTAAGAATT CGGTTCAATG AAGGATCCC TGGATAAAAGT
 59761 TAAGACACTG CTGTAAGGAT GGTAGAGAAT TAAATGTCTG AATCAGACGA AAGGATGAGT
 59821 ATTAGAAATG CACAAGGCCA AGAAGAACAA AACAGAAACT CCACATAAA AATGTATGAG
 59881 GCCGGGCGCG GTGGCTCATG CCAGTAATCC CAGCGCTTTG GGAGGCCAGG GCGGGCCGAT
 59941 CAGGAGTTG AGACCAGGCT GGCAACATT GTGAAACCCC ATCTCTACAA AAAATACAAA
 60001 AAATTAGCCG GGCGTGGTGG TGGGTGCCTA TAATCCCAGC TACTGGGAG GCTGAGGCAG
 60061 GAGAATCACT TAAACTCAGG AGGCAGAGGT TGCAGTGAGC TGAGATCACA CCATTGCACT
 60121 CCAGCCTGGG TGACAGTGTG AGACTCTGTC TCAAAAAAAA AAAAAAATTA TATATATATA
 60181 TATATATATA TATATATATA TATATATATA TGAAATAAAAT GAACAAGAAA TTTAGATACA
 60241 GGAAAATCCA AAGCACTTGG TAATGAAAGA AAGGTAAGT GATGTCCT TTTGCATTAA
 60301 AAAGAGAGCA TTAACAAATT AGAGAGCTGA ATAATGCTCA GTATTGGTGT GGATATGGAG
 60361 ACTCAGGAAT CCTCATAACAC TGCTGATGGG AGTGCCACT CCCTGGGAAT ATTTTCCAAA
 60421 TATCATCTCA AACATATCCC ATAAAGGTGA CAGGAAAGTG TGGGCTGACT GATATCCTC
 60481 ACTGAGAGAG GTGGAGGTAA ATGAAGTCA CTGCACAATA TAGAGTTGGA AGCAATGGAT
 60541 TAGATGTCCA CATAGTTACG TGGAAATC CGTAAGATAC ACACACACAC ACACACACAC
 60601 ACCTTTGTGT ATATTGTTCC TGGCAGGTAG GCATGGAGGT TTAGAGGCTT TCTACATCAC
 60661 ACCTACTGCA CACAGTAAAT GGCCAGGCTG AGCACTGACT TCCATGAAGG GAGATTGAAG
 60721 GTAAGAGATT GAAGATTGTT CCCTGGCTG GGACCTTGCA ACTGAATATG CAGAAAAAAG
 60781 TACACCCCGC CACCCCGCTT CCCATCTTC CTACCTGATT AGAATAGCTT TTTCAGAAAA
 60841 CGTTGGCCAG GGGTTGTGGC TCACACCTGT AATCCCAGCA CTTTGGGAGG CTGAGGCAGG
 60901 CAGATCATCT GAGGTCAAGAA GTTCCAGACC AGCCTGGCCA ACATGGCAGA ACCCCATCTC
 60961 TACTAAAAAT ATAAAAAATT AGCAGGGCAT GGTGGCACAC ACCTGTCATC CCAGCTACTC
 61021 GGGAGCCTGA GGCAGGGAGAC TCACTTGAAAG CACAGTGTAG GAGGTTGAAG TTAGCTGAGA
 61081 TCTTGCCACT GCACTCCAGC CTGGACAAACA GAGTGACACT TTGTCTCAAC ACAACACA
 61141 AAACCCACCA AAACTTAAA TCTACCTATG GCCAAATGCC TGCTAAAATG AGCACCCAAAG
 61201 AAGCAGTGT CAGGAAAGTC AGATGAATAC CCTAAAATTA GATGCAATGT TGGCTGGTCA
 61261 CAGTGGCTCA GGCCCTGTAA TCCCAATCCT TCTTGGGAGG CCGAGGCGAC AGATCGCTTA
 61321 AGCTCAGGAG ATCGAGACCA GTCTGGACAA CATGGTGAGA CCGTGTCTCT ACAAAAACGT
 61381 ACAAAAATGA GCTGGGAGTG GTGGCGACCA CCTGTAGTCC CAGCTACTCA GGAAGCTGAG
 61441 GTGGGAGGAT CTCTTGAACC CAGAAGGCAG AGACTGCAGT GAGCAGAGAT CATGCCACTA
 61501 CACCCAGCC TGGATGATAG AGCCAGACCC CCATCTCCAG AAAAAAAAT AAAGAGAGAG

Figure 9 (Page 19 of 74)

61561 AGAGATGCAA TATTTAGGGT TCAACAAAGAC TGAACCTTCTG ACTCCCTTCC CTACCTCTCC
 61621 AGCATGTTAG ATTCTGGGTC CTTCATCTA ACCCCCTGT CATGCCATAG CCACCCTGTG
 61681 GTACCAACTT TGGAAGCCTG GATCTTCATC CCCTCATGAT AATGAGTGTC CCATTCAAGGT
 61741 CTCCATGCTC AGCTTGGCAA GAGTATCTGT CTTCTCCTCA TGGGACGGTC ACATTCAACCC
 61801 AGCACTGACA GGTTCACATTG CCACTAGGGT GGACCCCTAT ATGGTCTGAG TCCAGGCCTT
 61861 CCTGGTCCCT CAGTAATCTC AGCATGGTAG CACAATCGAA AAGGGCTAGG CACGGCAGCA
 61921 CCATTTCCA CCAAGAGGTC TGATGGCTCA TCACATAGAC TGAAGGAGAT TCTGAAGAGC
 61981 AGAGGTGGAA TGAAGAACATGA ATCCCTGGCT CTGCTCTTC TAGGCCTGTC TTCCTCTCTC
 62041 CCGAGATGTT AGCTAATCTA TGAGAGCCAG AAACCAACTG CAGGCTGGCC TCAGGCACCTT
 62101 AGGTAGTGCT TCAGCCTCAG CAGTCCACAT TCTAGGAACC CTCATAATAT GGGTTGAAGT
 62161 ATGCATTCCC ACAAAAATAA AGTTGTTGAA GTCTAACCA CCAGTACTGA AATGGGAAAAA
 62221 GTTCCCTTGT CCCGCTCGCA TGGCATGTGA TAGGAGTGTC GCTAATTTCT TCAGTGCCTG
 62281 GCTGCTAAA CCTCTAGGGG AACAGTAAGA CGGGCAGGTT GTGGGCTCC AACCCCATGA
 62341 CCCCCACCACCA GTGTCTAGGG TTGAATGTT ACAGCTCTG AAGCCACAGT GGGTGTGTGT
 62401 TACAGGGTGC TCTTTAGTT TTGCCATTAA TAGGCAGCTG GTGTTAACCA ACTCAATTAG
 62461 ACCGTCTACC TTGTCCCAAG GACAGAACAA GGCTTCTGT ATCCCAGGTT CTTGCCTTGG
 62521 TGTACCGGAA TAAATCAGAC CACACCTGGG CTTAGAGAAA GAGTGCAGG TTTTATTAAG
 62581 TGGAGGTAGC TCTCAGCAGT TGGGCAAAGC CAAAAGTGG AAGCCACAGT GGGTGTGTGT
 62641 TTGGAGTCAG CCACTCAGTG GCCCAGGCTC TCCTGCAACC ACCCCAGTC AATTCCGCCT
 62701 CATTGGCCA GGAAACAGTT TGTTGTGTGC TCTTCTGCCA GTGTGCCTCC CTGGACGTCC
 62761 AGCTATTCTG GTCTGTGGC AGGCCAGGGG AGGTCTGGG AAATGCAACA TTTGGGCAGG
 62821 AAAACAAAAA TGCCGTCTC CACCGTGGTC CCTGGGCACA GGCCTGGGG TGGAGGCCCTA
 62881 GCCGGGGACC ACGCCCTTCC CTTCCCCACT TCCATATCAT TTAAAGGGAC CATGCCCTTC
 62941 CCTTCCCAGC ACTTCCCCC TCCTGTATCA GGACCTGTGA ATGTGCCCTT ATTTGGAAAT
 63001 AGGGTCTTG CACTCATCA GTTAAGATAA GAGTGGGCTC TAACCCAACA TAAAGGGTGT
 63061 CCTTATAAAA AGGAGAAATG TCATACACAG AGACTGACAC CTATAGAGAG AAAATGTGGT
 63121 GAGTAGACAC AGGGAGAAC GATTATCCCT CATTGCCCTC AGAAGGAATC AAACCTGATG
 63181 TGGGAGAGAA ACCTGGAACA CAGCTCCAG GACTGTGTGA CGATAAATAT CTGTTGTTAA
 63241 ATACTTTGAT TTCAGACTTC TTGAGGTACT TTGTTACTGC AGCCCCAGAA AACTAATACA GTAGGTACTA
 63301 TGGACTGAAT TGTGACTCCC CGTCGAAAAA TTCAATATGTT GAAACCTAA CCCCCAGTGT
 63421 GATGGTACTT GGAGCTGGGG CGTTGGGAA GTCAATTATAT TTAGACAAAC TCATCAGGAT
 63481 GTGTCTCTCA TGATGAAATT CATGCCCTTA TTAAAAGAGA CAACAGGCCA GGTGCAGTGG
 63541 CTCATGCCCTG TAATCCCAGC ACTTTGGGAG GCTGAGGTGG ATGGATCACC TGAGGTTGGG
 63601 AGTTTGAGAC CAGCCTGGCC AACATGGTAA AACCCCATGT CTACTAAAAA TACAAAAAATT
 63661 GCCCAGGTGT GGTGGTGCAC GCTTGTACTC CCAGCTACTT GGGAGGCTGA GGCAGGAGAA
 63721 TCCCTGAAAC CCAGGAGGTG GAAGTTGCAG TGAGATCACA CCACTGTACT CTAGCCTGGG
 63781 TGATAGAGAC TCCATCTCAA AAAAAAAA AAAAAAAGAC AATAGAGCCA GGTGCTGCAG
 63841 CTGATGCCCTG TAATCCAAC ACTATGAGAG GCTGAAGCAG GAGGCTCGCT TTAGCCCAGG
 63901 AGTTCAAGAC CAGCTTGGAC AAAATAGTGA GACCCCCAAC TTCTAAAAAT TTAAAAAATG
 63961 AACTGGGTGT GGTGGTACAC ATCTGAGGCT CCAGCTACTC TGGAGGCTGA GGTGGGAGGA
 64021 TTGCTTGAGC CCAGGAGGAG GCTGCAGTGA GCCATTGCTG TCCAGCCTGG GCTACACGAG
 64081 AACCTGTCTC GGGAAAAGGA GAAAACAGTG AGACCTCTTT TTCTCTCCTC CTTCTCTCCA
 64141 CTGCCTAACGC CCTACAAGCA CAAAAAGGAC ACCACATGAG CACATAGTGA GAATGCTGCT
 64201 GCCACCAACA AGTCAGGAAG AGAGCGTTCA CCTAGAAACT GAATTGGCCA GCACCTGGAT
 64261 CTTGGACTTC TGAGCTTCCA GAACTGTGAG AAAGTTATT TTTTTTAGC GACTAAGTCT
 64321 ATAGTATTTT ATTACAGCAG CTCAAGGTTA CTAACATAGT AGAAGGGATG AATTATGGAG
 64381 ATCACAAGTC CACGCCCTCA GAAAAAGACT TCCCTAAAAA TTAGTCTGAG CAAAATTGCA
 64441 ATGATGAATT ATTTTAAGA ACTTTTAAGG GATCTGACAA GTTGCAGAAGA GCTAGAGAAT
 64501 GCTTTACAAC GTGATAATAG AATGCTCTGT GATGACAGAA ATCTTCCAC ACTGTTCAAA
 64561 ACTAGCTACT GGCCACTTGT GACTATTGTG CACTTGAAT GTGACTGGTG TCTGAGGAGC
 64621 AGAATGTTA ATTTACTTA ATTTTAATTC ATTACAATAG CTACATGTAG CTAGGGGCTA
 64681 CTGGATTGAA CAGCACAGCT CGAGTCTTT AGAGGGAGAC AGGACTCACC AAGGTGGATG
 64741 CTGGTGGCCA AGCAGCAATG GCAGGTAGTA CACACACAAG AGGCAGATGA TACAACACAT

Figure 9 (Page 20 of 74)

109/162

64801 CCTTCCAAA CCTGGAGATA AGCTCACCCC ACAATCCCGC CGCTGAAATA GAGTTGATGT
 64861 TACCAATGTG CATTTTATG TCCTTTCCA TACAGAAAGA TCATTCAACA AGTACTATGG
 64921 TACTAAAAAA ACAACATTCA ATTCAATTATT ATGACAAAAT TAAATTAATA GCTCTTCCTT
 64981 AAACCTTAA ATTCAATTCA CAATGCTTAC TATTGGCATT TATTAATCTA CCAATTCCCC
 65041 CCCATAGAAC CCATAGAAC AATAATCTAC CAAATTTTA ACATTCACTT TTGGCAAGGC
 65101 TTTGCAATT TGACGAAC TTAAAGAGAA ACTTATAAAAT TGCAATTCCCC AAATCTGACA
 65161 TACTGGACTT TTAAAGTATC CAATTGACTA ATGAACAAAAA CTGCTCCAAA TTTTCATT
 65221 CTTAAAATC TTAAGACAAT ACTTAATATG GCAAATCTTAACTTCTAAA CTTGTAAGA
 65281 ATGCTAATCA ACTTAGATTG GTATAAAGTT GAGTTAAAAA TCACAGGATA CATCATCTCA
 65341 GCTATAAGTT TTCATGAGTT GAGTTTTAC AATCACTTGAAATGCTTAGA ATAGCTAGA ATAGGAAATA
 65401 CGTATAAATT ATTTAACATA AAATATTGTT ACAAAACCTC TGGAGTGTCA GTTCTCTGG
 65461 CCAGACTTTA TGCTGCAGCA CCTTGCCTG AGTTCTTGTCTGCATCCAG GAAGAATTAG
 65521 GTACAGAGGC AAGAGTCAAG AAGATTAGTT TTCCAATAGT TCAGCTCACC TAGTTAACTC
 65581 CTGTTCACAA TCTTCAAAGT TATCAGAAC CTGCAATTGA GGGTTATAAT CCATTCTTGG
 65641 CAGAGTTCA AAACAAGACA ACATTTGTCT ATGAATGTTAAATGCTTA GGGTAGTCACTC
 65701 AGTCAAAAAC ACAATTGACA AAGAAATTAA GTCACCTCTG TGATTACAA TAGCCTAAC
 65761 CAATAACTCT AATTATAACT GATGACACAA ACTCAGATAT CAGAACTCTA GAAATCCCC
 65821 ATAATTTGG AACACATATT CACAGTTTC ACTGAAATAT GACCTGAAGA TCAAATATCA
 65881 CCTTATTCACAA ACAATCCTAT ATAACCTAAC GTGTCAAATG ATCCTGTTA CCTCTCCTT
 65941 GGATACTCCA GGGGCCCTCT GTAGCATCCA AAAGTTAGGG GTTAGCAAAG ACAATTGG
 66001 AGCTGTAAAG GCTCAAAACA CTTAATGAAC CTCTAGTCAT ATCTGTTCTC TACTCACTAA
 66061 ATGCTAGTAG CACCTCTCAG TTGTGGCTAA GCTGGGAGGA TCTCTTGAGC CTAGAAGTT
 66121 GGGGACGCAG TGAGCTATGA TTATGCCACT GCACTCCAGC CTGGGCAACA ATGCAAAATC
 66181 CTGTCTCAA AACAAAAACA AAAACAAAT TGCCTATGCT GTGGTTATCT CACAATTAA
 66241 AAAAAGGAA AAAAAGTAT GCAGTCTTG TAGGTCCTTG GGGTTGTTG GAACTCAGAA
 66301 AACAAATACCC CAAAATAAAG ACCGCAGAAG CCAAAGTTT TCTCTGATCT TCTCTGCC
 66361 TCCTGTCTCT GAGTCCCATT CTCCCCGGAG TCTAGCCATA GAAATGAGAA TTCCCTCTTCC
 66421 TCAAGTTAGG TCATAGAAAT CAAAACACCT TTTCCCGAGA GCCCAGCCAT AAAACCTAA
 66481 AATATTACTC TAACTTCCC TCTGTTTTC TGTGTAAAAA CTGGCCATAA AGAAATTATC
 66541 TGAACCTACCT TATTTGATCA TAGATCACCA GACCGCATT CAGAGAGGAT CCAGAAGGAA
 66601 GGAATGCTGC ACAGAGAGGC CAAGAAGAAT CTAGACAGAC AGGCCTTGCT GGGTTCCCT
 66661 ACTCTGTTA TTAGCAATCC TATTTCTACA CGGGGGCCCA TACTTTGTTG AATCTAAAAA
 66721 ATAAAAATGG ACAATTCCC CTGTACATGT TAATACACAT TAATAAATTG GATATAAATT
 66781 GGATAATTAA TTAATATACA CATTAAATAA TTGGATGCAG CGGGGTGCAA TGCTCACGC
 66841 CTGTAATCCC AGCACTTGG GAGCTGAGGC GGGCAGACCA CGAGGTCAG ACCACCC
 66901 CCGAAATGGT GAAACCCGT CTCTATTAAA AATACAAAAG TTAGCTGGGC GTGGTGGCAC
 66961 ATGCCCTGAG TCCCCAGCTAC TGGGGAGGCT GAGGCAGGAG AATTGCTTGA ACTCGGGAGG
 67021 CGGAGGTTGC AGTGAGCCGA GATTGCGCCA CTGCACTCCA GCCTGGTGAC AGAGTGAGAC
 67081 TCCGTCTAAA AATAATAATA ATAATAATAA TAATAATAAT AATAATAATAAATGG
 67141 TGCATTTTAT CCTATTAAATC TTCTCTTGT CGGTGGTTT CAGCGACTCT TCAGAGGCCA
 67201 AAGAGTAAGT TTCCCTTAG CCCCTACAGG TTCTTATGTT TAATTGTTA CTCTCATTTA
 67261 AGACATAATT AAAGTGGCTT CTCCATGAAG ATTATTTCTG CATCCATTAT TTGGTAAGAT
 67321 TGGCCGTTT CTCCTTGAT CTCTACTTCA CACTGACCCA CATAAAACAT CACTGCCTGT
 67381 TTTTTGTTG TTGTTGTTG GAGACGGAGT CTTGCTCTGT TGCCCAGGCT GGAGTGCAGT
 67441 GGTGTGATCT CCGCTCACTG CAAGCTCCGC CTCCCGATT CACGCCATT CTCCTGCCTCA
 67501 GCCTCCTGAG CAGCTGGAC TACAGGCACC CACCACCAAG CCCGGCTAAT TTTGTATT
 67561 TTAGTAGATA CGGGGTTCA CTTTGTAAAC CAGGATGGTC TCGATCTCCT GACCTCGTGA
 67621 TCGGCCCGCC TCAGCCTCCC AAAGTGTGG GATTACAGGA GTGAGCCACT GCGCCCGGCC
 67681 CCGTTTTTTT TTTTTGGTT TTTGCATGTC TTCTCCCTT TACTGAAAC TATTTCCACT
 67741 ACCAGCGTAG TTATCATTTC TACTGCTTAA TAATTGTTT GGGGAAGTGA ATGCATCAAC
 67801 CCACATGAAT TTCTGTCTA TTGACAATT TATTCTCTT AGGAATAGTA TTAACTCCTA
 67861 AGGTGCTGGG AGCCAGTCTC TGTACTTGGC TGCTCCAGGG TCCTACTTCA GTTCCCAGC
 67921 TTCTCAGTAC TGTCACTGTC ATTGTGGGT AATAATTATT TTTGTCCACC AAAAGACTCT
 67981 GTATGTGAAT GAGTTTGAA ATCTGCTGAG TAATACAGTG TCAACCCAGT TAATGATTG

Figure 9 (Page 21 of 74)

68041 CCGGGCGGGCT TGATCAGGGG CTGTCCAAC ACCGGCATT TGATTGGAG CGTCATCTAG
 68101 TGTCTGAAAG CACAAACAAC ATCCTACATT GTAAATGCCT TTGGCTACAG AGATTGAAAC
 68161 CAAAGCAAAC CTATGTTTG AATTGTTATT CTTCAGCAGT TCTGCTAGCC TTGAAAAATC
 68221 TAAAAGTTAA AAAAAGCTT TATATTTCAT TTTCTGCCTA AACTCTTAA AATTGCTAGT
 68281 TGACAATTAG ATATTTCAA TTTAATGAAA TTTTTTTTA GTTCACAGAT TAATACACAA
 68341 TGGGGGAGGG TTCTTATTCT GTTGGACTTT TACATAACCT CCACTTAGT GCAGTCTGCT
 68401 TTATGGGGTC TTGTTGAGG TGTGTGTG TTTAAGGGAA TGTGGTTAC AATCAAAATA
 68461 TTGGGTTGCT CTTAGGCACA TTGTAAGTC ACACACCTGT ATTCTTATTG ATACATAATG
 68521 ATTAATAACA TTATTATTAC AGCCTGATCA CCATCATTAT TGATATATCT AAATAATGAA
 68581 TTTTATAATT TTGCTTCTG TCAGGCAAGA GCCAATTCA GTGCTACCAT GTTTGTATAG
 68641 CAGTATTAT GTCTGTCATC CTCAGTCATT TTACTTCACT TGTTCTTAGC CAAACGGCCG
 68701 AGAACGATG GTCATTTAC TTCAAAAATG AAAAGAATTA ATATTTTAC GTTTCCCTTA
 68761 AAGACCTAT GTTTAACCTC CACTCCCAGG TAAAATGGTC TAGTCCTCC TTTTCATATC
 68821 ATCTCTGATA TCTTTGCAC AGCCACTATT ACCTACCGTT TTCTAGATCC CTATTCTCA
 68881 AACACCACCA TGAAGGTAGA GCCTGTCGA ATTATTTCT TGTCCCGTGA ACTCAGTACA
 68941 TTGTTAGGCT TCTTGAAGAT GTTGATCAGT TGTTGTGGA GTGAATGAAT CAGCTAGCAT
 69001 GATTTTCTA GACCACTGAG ACAAGTGTCT AAGACACTTG TTCCTTCCCA TGTTCTTGCC
 69061 TGCTGTGCA ATCCATGCAG TCTCATGGCT TCCCAGTGCC TCAGAATTAT CCCCTGTCAA
 69121 ACAGGCATTA TAATTTCTGT CCACTGAAAA GGACAAAAAA CTAAGTGTAT AGCTAGAAGT
 69181 TAAAATTAC CGGCCAGGTA CTGTCATCA CTCCTGTTAT TCCAAACATTG TGGGAGGCTG
 69241 AGGCGGGCAG ATCACCTGAG GTCAGGAATT CGATACCAGG CTGGCTAACCA TGGCGACCCC
 69301 GTCTCTATCA AAAATGTAAA AGTTAGCCAG GTGTTGTTGGC TCGCACCTGT GGCCCCAGCT
 69361 ACTCAGGAGG CTGAGGCAGG AGGATCGTT GAGCCCTGGA GGTGAGGCT GCAGAAAAAT
 69421 AGGAATATAC TCTCTTCAA GAGTTCTGG TTTGACTGC CACCTAGCGT ACATCAGAAA
 69481 AACCGCATGA CATAGGAAAT GCCTGTGACA GAGGGGTAAG GTGAGAGAGG TTGATGAAGA
 69541 ATGTATTGAA GGAGTGAAGA CGCTTCCATC CCTCTACTTA CTAATATAT TAGTTAAGTA
 69601 GTTGGGGCAT ATTTAATTC ATGCATTTC TAGATAGAAA AACAAAAGTT TTATTCTGTT
 69661 TGATTTAGTT GATACTTAA TATGTGTGTG TTTAGGATGC ATGATTTATA ATCAGTCTGC
 69721 AGCACTTCTT GGAGAAGTCT GAATTCTCAT TCTCCATTTC CTTATTGGCA ACGTGAGAAT
 69781 GATTACAATG GTGGTTGTCT CATAGAATGC AGGGAGTCAG AATGAAAATA GTCCATATAA
 69841 TGCCCTGGTGC AGAGGAAGGG TTCAGTTAAC TGTCTGTATT AATATTACTG ATAACAGTCA
 69901 TGACAAACAA AAGCTTAACA ACAACACCAC CAACAACAGT TGCAAGATTG AGCCACCAAT
 69961 TTGCACACAA GATTGTAGGT AGGATGTTT AGAAAAGTTA TTATTTAATA TATGTATATA
 70021 TTTTGTAATCT TAAAATATGT CAGAGGTTGT TCTAAGAACT ATTTAAATGT TAACTCCTTA
 70081 ATCCTCATAA TGACCCATGA AACAGGTTAGG CTTATTATTG TCTCTTACA TGTGAGAACAA
 70141 CTGAGACACG AAAAGGTTA TTAACTCACC CAAAGTCACA CAGCTGGTAA AACGGCAAAA
 70201 TTGAATTGTA ACTCAGACAT TCCAGGTTCC AAGACAGTCT AATTATTCTT TTGACTAATA
 70261 TACTAAGCTG CCTCTGTATT TTTCTTGAT TACTTTGTAA AAGTATGAGG AAAATATAAG
 70321 TGCTTCAGT AACCATGAAA AATATAAACAA ATCTATGTAT CAACTGAAGC ATAATTACAA
 70381 ATCCTTTGAT AAGCAAACAT AATAAAAATT TGATATCAAT CAAAACTTTC ATGTAATGTA
 70441 AGCAGGTTGA GATGAATTCT ATAGTAAAAA AGTGCAGAGT GCTGGAATAC CATGCTCCTA
 70501 ATATATTGGC TAGGCACACC TGCTGCTAT CAAAGGTATG CACACACCTT GGATACAGAA
 70561 AGTTGGGACT GGGTAGTTAT GTGAGTGTCA TCAGAATTCT TTCCCACTTG GGAAAGAATT
 70621 GTCCATCATA AGCTTGGATG ATGGACAAGG AGTGANCTCC CAGAACAGTG ATGTGGGAT
 70681 ACATCCTCAC ATCACAGTGA GAATGAGTGT TCTAGACTGT TTACACACCT ACCACTCCTA
 70741 AATGCACACA TATAATTGCT TGACACACAA CACATACACA CTCATCTCTT CTCTGGTGGT
 70801 CCAGCTCTAT CTCTTATCAT TAGGCTTCTT GGGCTAGTA CCTAGGGCCT GTATCCTTC
 70861 AGAGGCAGCT AAGGGAAAGCA CACATAATTA GAAAGAATGA ACCAGCTTGT TGGATTTGGT
 70921 CTCTTCGCT CCAGCCCTCC AAGTTAAGGA GAGTACCATC TTTCTTAGGG TCACCAAAGG
 70981 AAAAAAAA AAAAGAAAGA AACAGAAGGA TATCATACAG CAAGGATCTA ATGCAAATAT
 71041 GCCTCAAATG AGAGGCTACT GTGTGCTGAT CCCAATCCCA GGAACGTAT GCACATTATC
 71101 TAATTTAATC CTCACTGTAT TTCTGGAGT ATTATTCCCA TTTTACAGAG AAGGAACCTG
 71161 GCAGGGTAAC CAAGCTCATG AATGGAGAAA CTGGGATTAA ATATAAAGCT TCCTTGCTCC
 71221 AGAACTGCTG TCTTCTGCT CTTCCACACT ACCAGCTCAG CTGTGCTCTC TACATGCAGG

Figure 9 (Page 22 of 74)

111/162

71281 CAGTTTTACA AGTTTCAGAT TAGCCTGGGA CTTCCAGGGT TTTGAATGGG TTAGGGAATG
 71341 GGGAACTTTT GGGTTTACTT TCCATTTCCTT CTCATAACAT ATGTAATATA TAACATAAAT
 71401 CTATGGTATA TATGATAAAAT ATATGGCTAC ATATGAACTA TATAATCACA TATATGCATT
 71461 ATAAATAAAAT ATTAATTTTA TAATATTTC AAGGTTATCA AATAAATATT AATATAAATA
 71521 ATTAATAAAAT TAATACTCG CTTTGTTC CAAAGTGATA AATGCCTATA TTTAGCAAAA
 71581 TATTTTTGG AGGCCTGATA GTTTTTAGGA GTGTAAAGAA GTCCTGATAT CTAAATGTTT
 71641 AAGAACCACT ATTTTAGGCT GTTGTCTTCT GTCTTATTT CCCAGCTAGA CTGGTAAATA
 71701 CTTGAAGGCA AACGTTAGC CAGCACATTA ACATTTATG TTTTATTCT TTTGTGCTCT
 71761 CAGTGGCTGT GTCTTTCTA TCGATTCTC ACACTGTATG ATGGTTATAT TTGTCGTAT
 71821 CTGTCCCACC AGGTATAAGT TCTTGAGAGG ACACACTGCT AGGCTGATCT TAGTTTTAT
 71881 TATTTCTCCT GGTGCTCTGT GCTTAACAAG TGCTCATTAA GTGTGTAAAA ACACAGCACA
 71941 GTAAAAAACT AGACATTAAA AAATAATGTC AACCAATCTA TTGAAATTG CATTTCATG
 72001 TTTCTTCCAA TATAGTCATT GTGTCAAGGT ATGTAATTAT TCTGATGAAG ACTATTGCCT
 72061 AATATACGTT TGCATCTTGT GCTTTATAAC TGCCTTCATA TAGACACAGA TTGAGAAGGT
 72121 GTAAAAAATGT GCATATCCTC ACAATTGACA AATTCTTATC CTTTGAGGGT AGGTTTGACT
 72181 TTCTGAAATG CTTTGACATC ATTTGAAAGA AGCTTGAAGA ATAAGATAGC TGTTAATGAC
 72241 CCAGTTCTC ATGTCACTTA TACAATTATA ATGGCAATT CAAAATGTTA GGTAAATATA
 72301 TTTGCAATA TATTGTTCTT TTGTAATAC TCTCTATGTA TTTATTATA TTTTAAATT
 72361 TTATATTATG GTATTATTCTT TTCTGGACAG AGTCTTGCTC TGTTGCCAG GTTAGAGTGA
 72421 AGTGGTGTGA TCATAGCTCT CTGCAACTTC AAACGTCTGG GCAAAGTGA TCCTCCTGCC
 72481 TCAGCCTCAT GAGTAGAGTA GCGGGAACTA CAGGCGCATG CCACTGCACC CAGCTAATCA
 72541 CTATTATTA TGCTCTTACT GTGTGCTTTA GTATATTTC TGTTGTTTC TGCAACCCAT
 72601 TTTGAGGGCG TGTTAGGGAA TACAGATGCA GTAACCTTGG TCTCAGCCCT TGAGGTGAGG
 72661 AAATATTAG CCTCAGGTTT AATCTAATTG TTGGCCATTG GCCTTCAAAG ATTGAAATAT
 72721 GAGCAAAACT GTGGCTCTGG GTTATATGTT AAAAAGT TTATGGGCT GAAGCCAGGC
 72781 AACAGACAAG AGCCCTACA ATCTTATTAA GGCTGAAAAT ATCCTGGAGT CCCTGTATTG
 72841 TTGGTCTCAA GCAGATAGCA ACACAAACAC TTACTCTTTG AGGCAGGCAC TGCCAGTGGG
 72901 GTGGCTGTAA TTATTAGCTT CATTAAATTG TGAGTCAGGA AAAAACAGCT TTAAATCATT
 72961 CAAAGTTCTG GCCTATACAG GATTTAGTAA TATTAGGTT GCTACATCCA AAAGATGACA
 73021 GAACCTACT CTAAGGCTGG GCTTGGTGGT TCACACCTAT AATCTCAAAA CTTTGGGAGG
 73081 CTGAGGCAGG AGGATCACTT GGTGCAAAGA GTTGAGACCA AGCCTGAGCA ACATAGTGA
 73141 ACCCCTGTCT CTATCAAAAA CAAAGAACTC TAATTGGCAT AGTAGAAGGA AAAAGTGA
 73201 GAAAACCAG CTGTCACCCCT CATTCCCTAC ACCTGTCTA ACAACTCCTC TCACTATCCT
 73261 TTGAATATAT CTTGGCTGTT TGAGTCTCTC TCTAGCCCCA TTACTGCTGT TTGGACTTGA
 73321 CATTGGCTC TGCAATTAA ACTTTTCTAC CAGGGTTTCAGGCTGAA GAGTGTGGCA
 73381 TGAAACAAAA CTAGTCAACC TATAATATTG ATGATGTGTG TGTAATAAAA AGAATACACA
 73441 ATATATTGCA TTACAATTGTT TTAACATTGTT TTGTTGGCTT TCTTGAGGAC
 73501 ATCAGTTTG GGTGGGACGA CCACATCCTT AATCTGAACCTT CGCTCTGTCA CCCAGGCTGG
 73561 TTTTTTTGAA AATAGAGTCT CGCTCTGTCA AGTGCAGTGG CGCAATCTCA
 73621 GCTCACTGCA ACGTCCGCCT CCTGGGTCA AGTGAATTCTC CTGCCCTCAGC CTTCCAAGTA
 73681 GCTGGGATTA CAGATGCACG CCACCATGCC GAGCTAATTG TTGTTGGCTT AGAAGAGACG
 73741 GAATTCACC ATGTTGGTCA GGCTGGTCTT AAACCTCTGA CCTCATGATC TGCCCACCTC
 73801 AGCCTCTAA AGTGTGGGA TTACAGGCGT GAGCCACCCGCCCGGCCAG AGGTCTATTCT
 73861 AATAGACTTT TTTTTGTTTG TTGCTCACAG GCTTGTCAA TCTTATTTCATAAATTTGAGA
 73921 AATACAGTT CCATGGAACA CCAACCAGAT ATCAGGTTGC TATGGAGTTG ATAGTC
 73981 GCTTGTATC TTCCAGTTT TCAGAATGGC TTCTAAAGGT TCTGATTGAGC AGCTCTT
 74041 CGAAATTGAA CAACCAAGTG TCAAAGTACA ACATTCAGGA AGTAAACATGACTGACA
 74101 TATATGTACT ATATATAGTG AGCTTGTGTA TGTGTCAATG AATGATTAA TTCATTAATG
 74161 AAGGAGGAAG CAGAATCACA ATTAGTCAA AGGAAGATAC GGGAGAATAA AATATGTATT
 74221 TGGTCAGGGAA AAGGATGTAT ACTGGAAGAG GAAGGGAAAA TCAGATATAA AGTTGTTAA
 74281 TGACTTATTA GGCAATACAA TAATAACTT TAGGGTCATT TTTCTATAT TAAGAATTCA
 74341 TTTCCATCTC TATGACAAAA TCCTTATTAA TTATTAAC TTCTACAAGT GAATGTTAC
 74401 TTTAGATAG TCTGGACCCA ATAAAATGTA AACATTAAGT CAGAGTTACT TTCACGTAGG
 74461 ACAGTGTGTG CCAATAAGGT ACCACTAGCT ACACGTGATC ATTGACCATT TGGACTATAG

Figure 9 (Page 23 of 74)

112 / 162

74521 CTAGACTGAT TAAAAATGTT CTAAAAGTGT AAAATACACA CCAGGTTCTG AAGATTTATC
 74581 ATTTAAAAAA GAATGTCAAC TGTCTTTTT TTTAGCTTAT TTATTATATG TTGAAGTGAT
 74641 AATAGTTAG ATATATTAAG TTAAATAAAA TATCTAAAAA TTAATTTCAC TTGTTCTTT
 74701 TCATTCTTC AATGTGACCA CTAGAAATCT GGAAAGTATT TATGTGATTC ACATTCTATT
 74761 TTACTGTCTA GTATTGCCTT ACATCATCAG GTACCCCAT AAGTAGGCTTT TTAGATAATT
 74821 CTCTAATATA GCTTGGAGG ATATGGAGAA ATATTTTGC GTTGCTTTA AGTTTGCGAT
 74881 AACCTTTCA ACACACTTA TAAAGGATCT AGAAAAGGGT TGTTACATG TTCTCTGTC
 74941 TTCTGGCCTC CACCATGTTG CCAGGAGGT GGGGACAAGA TTCTGGTGG CTGGATGTCC
 75001 TAATGGCTTG AGGTCTGGAC TTGAGATTG CATATAAAAGA GATGTGATTA GATTGAGTCG
 75061 ACTAGAAAAA TCATATTAGA GAACTGAATC ACAGCGATTA AATTTACATG TCGATTTATA
 75121 AACCAAGGACA CCAATTATA GTGAAAGAAG GTCCAGTTAC CTGGTAATCA AGACGTTCA
 75181 TAGCTATTT CATGATGGAT ATACTTAGCT GAGTTTAAA TGAGAAGGGG GTTCATTGCA
 75241 CATAGAATAA GATCTAAGTG AAATGTTAT TTATTTTTT TTTTTTTGA CATGGAGTCT
 75301 TGCTCTGTTG CCCAGGCTGG AGTGAATGA GGCATCTCG GCTTCTGGAG TGCAATGAGG
 75361 CAATCTCGGC TTCTGGAGTG CAACGAGGCA ATCTCGGCTC ACTGCAACCT CCACCTCCCC
 75421 GGTTCAAATG ATTCTCCTGC CTCAGTTCC TGAGTAGCTG GGATTAGAGT TGCCTGCCAC
 75481 CACGCCAGGC TAATTTTGT ATTTTTTTA GTAGAGATGG GGTTCACCA TGCTGGCCAG
 75541 GCTGGTCTCG AACTCCTGAC CTCAGGCGAT CTGGCCGCT CAGCCTCCC AAGTGCTAGG
 75601 ATTACAGGGC TGAGGCCACCA AGCCTGGCT AAGTGACATG TTCTTATATT GTTCCTTTCT
 75661 TTCTTTTTT TTCGACTGAG TCTCACCCCTG TTGACAGGC TGGAGTGCAG TGGCGTCATT
 75721 TCGGCTCATT GCAACCTCTG CTTCCCGGGT TCAAGCGATT CCCTTGCTC AGCCTCCTGA
 75781 GTGCCACCAC CCCCAGCTAA TTTTGTACT TTTAGTAGAG ATGGTGTTC ACCATGTCCG
 75841 CTAGGCTGAT CTCAAACCTCC TGGCCTCAGG TGATCCGCC CCGAGTCTCC CAAAGTGCTA
 75901 GGATTACAGG CGTGGGCCAC GGGGCCAGC CTTATATTAT TTCTTTTACT ACAATATATT
 75961 AGTATGATGC AGGTGCTTCA ATTGTTATA CACTTCCAT AATTTGTAT AATTCTTATA
 76021 CCTGTCACT CTGAGGAATA GCCGGTCTAA GTGTTTTCC ACCACTGCTA ATTCACTCCAT
 76081 CACTAATCTC ATTAGACTGT TAATTCCCAG AGGACATAAG CACACAAGCA GACAATGTTT
 76141 ACAAAATGTT GACAAATGTT ATTTAATAAA ACAATGGGGT CACCTTAGT CTAAAAGATG
 76201 TTTCACTTT CATTGTCAT TGAACCTTA TTTGTAGGTT CCCTTTGAC TTCCCCACAA
 76261 TCTAAGGCTG TTCTCTTAA CACATATTG CATGAAAACA TATATTGAG CAGAAATTGTT
 76321 TGGGGAGTTG TAATATTACC TTTGTCCCTA AATATGAATC TATAATTATA TCAAATATAT
 76381 GGGCAGACAA TTTACTTTGC CTTTAATCTC AAGAAAAAAA TAGCAATTAC TTGGGGTCGG
 76441 AGAGTAAAAT AAGAAGTAGT GAACCTAAA GTAGCAAAC TTAGAACAGA ATAGTTTCAG
 76501 AGGGGATGAG AAGAGGTGAT TTTTCAGCTC ATCAACAACA GATCTTATAA TAAATTACAT
 76561 GTTCTGGTAC TTTCTTGTC TTTCTGTGT AAATTTGCT ATTTAAAAAA ATAATTTCA
 76621 AATACATTGT TCATCTTAA AGTCAAGAGT GTGTTTTATT AAAGTCAGTT GTTTTATTG
 76681 CAACTAAAAA GATATATTG AGTTCCCAAC TGGAGATTGT CCTATATGGT AACTTGCCTA
 76741 AGGTATGGTT ACTGAAAGTA ACCTACAATT TTCATGGGCT GAAATTCTATT TCTATATTG
 76801 AGCGTACAAA AATAAATAAA TAAAAAAATGC TTGTTTTCTT TGAAAACATA TTATCTCAGT
 76861 GCCTCTAACT GCCAAATCTA TTGGCTTTT TGCAAGGCTTA AGGGCTCTCC CTTGTTCCCT
 76921 TATGATCTCT ATCTTGAGGG CCAGACCTCC TGCTTACAC AACTCAGAGG GGGACCTCAG
 76981 AGCTCTTAA AAAGAGCCCA ATTTCTGCC TGAGAGAAG TGAAAAGGAT GCCCCACCCC
 77041 CATCTATGAA AAGAGGGATT TGATAGTTTC AATGTCTCA AATCAAAGAT TTAAGTCTGT
 77101 AGCCCCCACCAC CACCCCGGAC CCTAGCAAGG CTCATGAACC CCCTCCCATC CCGCCCTAA
 77161 TGCTTGGAC TGGCGTGGAA ATCCTGTCC CAGTCCACAG TTCTGTGCG ACTGCACGAA
 77221 GAATTCACAG AGGACCTGTG TTACTCCCT TGTGAAGAAA CAGAATTATC ATGAAAATT
 77281 AGGTGGAAAC CATTTCGCTT TTTCTTCAA AAATAAGGG ACGATGTGCC CAACCACCCC
 77341 TGGGAAAAAG AACCTTCAGG GGCAAAGGAG CGAACAGGTA ATTTATAAGA AAAACAGAAA
 77401 GTGGTCTCTG ACTGCCCAAG ACTTCCTTCG GAGTTGGGG AATTGGGGAC GCCTGGACGC
 77461 GTTGTGTTTG CGTTGTGGAA AAAAATAAA GAAGAGCATG AAGCCCGAGG CTTCTGAGAT
 77521 CCTTCCTGA CCAAACCCAA GTGATTTGGT GCGGGGAATT TTAATATTTT TCCCCTTTG
 77581 TGAGGTGGAA CAAACACAAAC TTGGGAGCAG CGCAGCGCT CAGAGCCTGC CAGCCAGGCG
 77641 GCGGACCAGA GCACCAATCA GAGCGCGCCT GCGCTCTATA TATACAGCGG CCCTGCCAG
 77701 ACGCTGCTTC ATCGGCGCTT TGCCACTTGT ACCCGAGTTT TTGATTCTCA ACATGTCCGA

Figure 9 (Page 24 of 74)

77761 GACTGCTCCT GCCGCTCCCG CTGCCGCC 77821 GGCGGCCAAA AAGGCTGGGG GTACGCCTCG TAAGGCGTCC GGTCCCCCGG TGTCAGAGCT
 77881 CATCACCAAG GCTGTGGCCG CCTCTAAAGA GCGTAGCGGA GTTTCTCTGG CTGCTCTGAA
 77941 AAAAGCGTTG GCTGCCGCCG GCTATGATGT GGAGAAAAAC AACAGCCGTA TCAAACCTGG
 78001 TCTCAAGAGC CTGGTGAGCA AGGGCACTCT GGTGCAAACG AAAGGCACCG GTGCTTCTGG
 78061 CTCCTTAAAC CTCAACAAGA AGGCAGCCTC CGGGGAAGCC AAGCCCAAGG TTAAAAAGGC
 78121 GGGCGGAACC AAACCTAAGA AGCCAGTTGG GGCAGCCAAG AAGCCCAAGA AGGCAGGCTGG
 78181 CGGCGCAACT CGAAGAAGA GCGCTAAGAA AACACCGAAG AAAGCGAAGA AGCCGGCCGC
 78241 GCCCACTGTA ACCAAGAAAG TGGCTAAGAG CCCAAAGAAG GCCAAGGTTG CGAAGCCCAA
 78301 GAAAGCTGCC AAAAGTGTG CTAAGGCTGT GAAGCCGAAG GCGCTAACG CCAAGGTTGT
 78361 CAAGCCTAAAG AAGGCCGCG CCAAGAAGAA ATAGGCGAAC GCCTACTTCT AAAACCCAAA
 78421 AGGCTCTTT CAGAGCCACC ACTGATCTCA ATAAAAGAGC TGGATAATT CTTTACTATC
 78481 TGCCCTTTCT TGTTCTGCC TGTTACTTAA GGTTAGTCGT ATGGGAGTTA CTGAGGTATC
 78541 AGAGACGAAT TGGGTGACGG GGTTGGAGAG TGCCCGTGGT GAGGTTACAG CATTAAACCC
 78601 TTATTGCGG CTTCTAGGTC CCTGACCGGA GGCTTTCTC GCTGGGGAT GGTTTGGGA
 78661 TGGCAGTCCC GCCCCAGGCC TGTGAACGGC AGAAAAGACC GCAAAACAAG AGCCAGTTTC
 78721 TTAGTCTAAA GGGATGTCCG GATTGGACTA AAAAATTTTC AAAAGTCCCG CCCTGCTCCC
 78781 GGTTGGTCC GTTCTCTAG TACATGACTT TCATTCTGTA TTTAATTGGA TGTTGGAAGA
 78841 CGTTGCTTAT TCTGTGTTT TTGCTTTACT GTGACTTAAA AGTTTGCTT CTTTCTCTT
 78901 TATATTAATG TCTGGGATTT CGGACGCTT CCATGTTGTT GGTAGTCAAG TTGATGTCTC
 78961 CTGGAGGTAG TGGCACACATC CAGCCCTGGG AGGAGAGTGC GTGCAGGTAC CTTTGTCCCTA
 79021 CATTCTCTG CTGTTAATT CTCATTCTG TGGCAACGAA GGAATGCATT TAAAAAACAG
 79081 CCACAAACAGC GGCAATAGCC CTCCTCCAC CCAAGGCAAT CGTGGACCTA GGGAGTTTT
 79141 TGTGCCACAT AACATGTAGC CTCCTGCTAA ACTGACAGGT TTGAGCGTAT CGATTTTGAG
 79201 CGTATCGAA GCACAACATT TAGCCAGCCA TTTTGTCCCTC GCATGACTAC GTTGCTTAT
 79261 CCTGTTAGA CAGACAGCAA CATTAAAAA TCAGAAGTTCC TTTAACGTA TTTGTTGG
 79321 CAGTCCAAAT GTTCTATGCA AGAAAACAGT ATTGACTA TTAACATATGA AGAGTGTATG
 79381 GATAATGGG AGACATTCT ATAAGGAGCC TTCGTTAATG GTTCCCTCTG TTTGACATCC
 79441 ATGGTGCTTC TGAATACAGA AAGCCTAGCG TCTTATATTG CTTCTTTA AAATCTGGTG
 79501 GGCACATTG GGTGAGACCT AAATTATGGG GACTGGGGCT TCTGGAGATA AGCTGCTCAA
 79561 TTATTCTACC ATCTCCACAA TGATTAATAT AGTGAAGTTGA TTTGTTAGTG ATAGTGACCA
 79621 CGGATTCATC CCAAGAAAGA GAAAGGGGAG GGAGGCAAGC AGAGAGACAG GAAGACAGAG
 79681 GCAGGGAAGA AGGAGAAAAC ATTCTCCCAT GGTTAAGTA ATTTGTTGTT GTTAATTTTA
 79741 CATTACAACA CGGTTAACCA TGTTAACCC TCTATTG TGTAAGGTTT AACATATGGA
 79801 CATATTTTC CCAAGACCAT TTATGAACTT TCATTCTGC TTCCCCCTTC TTCCCTCCCGT
 79861 GCCACCCCTCC ACGCTCTAT CAATTTGGC TGTTTGTCA TAGGCTAATA CGCTATAATT
 79921 TCATGGACAG TTGGACTGTC TTAGGTTCT CAGGTTCTA TTTGTTCTC TTAGTCATT
 79981 CCACAATTCT TAAGGTAGAA TTGTATTGTT TAAACATTG TGTTGTGTC TATCCTCAAT
 80041 GCTGAGATGA TTATGTGACA AATGGCAAGT GTTCAACTAA TACCTAAATC TGAGTATCT
 80101 TATCAAGCCT AATGCTACTT CACAATGCC ACTCCATTCA CCGCACTTTA TCTCATTACT
 80161 GGCATTCTGT CATCTCACAT CATCACAAGT AAAACGGTAA GCTATTGTA GAGAGATCAC
 80221 AGTCATATAA TTATATTAT ATTATTTAT TTATTTATGA GACGGAGTTT CCCTCTGTCA
 80281 CCCAGGCTGG AGTGTGTGG CACGTTCTCG GCTCACTGCA ACCTCCGCCT CACGGGTTCA
 80341 AGCGATTCTC CTGCCTCCGC CTCCCGAGTA GCTGAGATTAA CAGGGGCCTG CCACCATGCC
 80401 CGGCTAATT TTGTATTGTT AGTAGAGACG GGGTTTCACT AAGTGGCCA GGCTGGTCTC
 80461 GAACTCCTGA CCTCAGGTTA TCCGCCACC TCATCCTGCA AAAGTGTCTA GATTACAGGC
 80521 GTGAACCACC GTTCACAGAC TCAAATCATT TTTATTACAG TATATTGTTA TAATTGTTGT
 80581 TTTATTATCA GTTATTGCTA ATCTCTTACA GTGCCTGATT TATAAATTAA ATTCACTCATT
 80641 GCCATGTGTA TATAGAAAAA AACAGTGTAT ATACGGTTCA GTACTATCTG TGTTTCAGG
 80701 CATCCACTGG GGGTGCAGTT TATTAACAT GCATTTACAT TAGTCTCCCC TTTGGGAGAC
 80761 TAATTAACG AGATGTTGTA ACGTGACTTT AATAGCAGAT AGAGCTAATT TTCTCTCAT
 80821 ACTCTCTTT TTCAGAATT TCCGGTTAT TCCATTCTT ATTTCCTCAT ATGTATATT
 80881 AGATCTCTTC CACCTCCTCC TGTTCTCCA TCTCAACATC AAACAATTAA AAAAAAAA
 80941 AAAGGCTGGG CGCGGTGGCT CACGCCTATA ATCCAGCTC TTTGGGAGGC CTAGGCAGGGT

Figure 9 (Page 25 of 74)

81001 GGATCACGAG GTCAGGAGTT CAAGACCAGC CTCGCCAAGA TGGTGAATC CCGTCTCTAC
 81061 TAAAAGTATA AAAATTAGCC AACCATGGTG GCAGGCGCCT GTAATCCCGG CTACTCGGGA
 81121 GGCTGAGGCA GAGAATTGCT TGAACCCGGG AGGCGGAGGT TGCAGTGAGG CGAGACCTTG
 81181 CACTCCAGCC TGGGTGACAC AGCGAGACTC CGTCATAAAA AAAAAAGCCG GAAGCAGTGG
 81241 CTCACGCCTG TAATTCCAGC ACTTTGGGAG GCTGAGTCAG GCAGATTACC TGAGGTCAGG
 81301 AGTTCAAGGAC CAGCCTGGCC ATGAAAATAC AGCCTGGCCA TGAAAACACA CAATAAATTA
 81361 GCTGGGGTGT GTGTACACACA CCTGTAATCC TAGCTACTCG GGAGGCTGAG ACAGGAGAAT
 81421 CACTTGAACC CAGGAGGCAG AGGTTGCAGT GAGTTAACAGT GACGCCACTG CACTCCATCT
 81481 GGGCGACAGA GCCAGACTCT CTCTCAAAA ACTAAATAAA TAAAATAAA GTTATGGTAC
 81541 ATTGAACCTC TGTGTTCCCT TCTCCCTTAG ATACTTTCAT GGCTACCCAT TTAATTGATG
 81601 TTCTTATCAT CTCCAAGAGT TAGTCAGGAG AGGAATCAAC CCAAGCAAAA ATAGCTGATT
 81661 TTCTAATTTC CCTTCATGC CCTTTGGGGT CTTAATCCAT TTGATTATG TACTTTCAAT
 81721 TAATCCTAAC CTCGAATGTC TTCTGCAAAC ATGTTTCCAC AGATGAAACT CGTCAAATGA
 81781 AACACATTCC TTTAATTAT AGAGTTAAA ATTAGAAAAA TTTCAATTCT TATTTGGCCT
 81841 TTAGATTCAAG TCTTGCATAT GTTTTCTCAA TTTTGTTCAT GCTCTTCTAGT TTTGTTTAT
 81901 TCCATCACAA TTGTTCACAT AGCTTACTGG CTTAGGTCTA ATGAACCATT CATTGGAAA
 81961 TTAAAATTGG CCATTTAAC ATGAAAAGA TTCTTGCTC AATTTTACTT AGTTTTGAA
 82021 ACTGTCAATG AGGACACATG TTTTTCTGTA CTCTTAGATT CACTAAGTAG TGTCTTGCAA
 82081 ATTTAATCTGA CAAAGGACAG ATTAACATGC GAAAAAAA GCATGCAATT TTATTAGTAT
 82141 ATTACATGCA CAGAGTTCCC AAAGAAAAA AAATTGAAAC CTTAAAACG CGGTTAGACT
 82201 CACAGACTTA TACACCATTCA CAACAAAGGA AAGGGAGTT GCACCTCATG GGATGACGAA
 82261 TTTGGGAATG TGACAAGGAA ATAAATACAT GGGCAATAAA AACCATGGAA GATAAAATGA
 82321 AAGATAGAAA TAATTGTAGT AAGGTTTGT TTTGCAGAGT CATCTCAGTG CCAACCTTCC
 82381 ATATCTAGTG ATAAGAATTG CTCTCTTTT CCTGGTATAG CAGTTGGGA CACTTTTACA
 82441 AGGGAAATTCT GTGTACACCTT CACAAAGGG AATTGGGTA AAGAGAAGAC AGAGACCTCT
 82501 TCCTACACCT GTGATTTC AATTGCCCTC AGCTGAAAAT AACTTTATG CCAAAGTAGA
 82561 ATAATTGGG GGTGACATCC TGATATTCTT CAAAACCTTAT ATTTAATTTC ACATTAGTAA
 82621 TTATATCATT TTTGATTTC AAATTAGTT TATAAAATAA TTTTGGAAA CGGTAAATAAT
 82681 ATTCAAATAA TTCCAGAAC ACTGCTGATA AGCCAAAAC ATCAATGAAT ATTGCATAAA
 82741 CAACTGATAA TTCAACCATTG AAAATTATG ACATTGTTCT TGTGTGATAA AACTATGAGT
 82801 AACATAAAA CTAGAGGCTA CTTGTAATGC ATTATTCCAA ACTTTCTGTT TTTTATTTAT
 82861 TTATTTATT ATTGAGAC ATAGTCTCTC TCTGTCAACCC AGGTTGGAGT GCAATGGCGT
 82921 GATCTTGGTT CACTGCAGCC TCCACTTCCC CGGTTCAAGC AATTCTCCTG CCTCAGCCCTC
 82981 CTGAGTAAC GGGATTACAG GCACCTGACA CCAAACCCGG CTAATTTTT TGTATTTTA
 83041 GTAGAGACGG GGTTTCGCCA TGGTTGCCAG GCTAGTCTCG AACTCCTGAC CTCAGTGATC
 83101 CACCTACCTC GGCCTCCCAA AGTGCTAGGA TTACAGGCCT GAGCCACCAT GCCCGGGCGCA
 83161 TTATTCCAAA CTTTCATACA CAGTGTATC ATGGCTACAA ATTGAAGTAT CATATTATAC
 83221 ACTCCTAGGC AAAGCTCTGG ATATTTGGC TATATAAGCC TGAGGGAAAT GTAGTAAGGA
 83281 CATTGTGGTT GAAATTCTA CCAGAGATGA ACAGGCCAG TGCAAGACAG ATTACATCA
 83341 CTAAGGATA TCAGAAGAGA ATAGGGATT AGGGTACAGT GGCAACAAACA GTTTGGGAA
 83401 CTAGCATTTC TTGAGCACTT ATTTACAATA TGCCAAGCAC TGTGCTGTAT TACTCTATAT
 83461 TTATTTCAA ACACATTCTT GTACACAGCAC TTTGAAGTAA GTGCCATTGT CATTCCCAC
 83521 TCAGGGTGA GGACTAAAGC TTGGTGTCTA TAAGGATGTA GCTAGTTAGC TGTGTGTGTG
 83581 TGTGTGTGTG TGTGTGCATT TTTTTTAAA TTTAAAGTCA ATAAATTTT ATTGAAAGAA
 83641 TTTCACATCA AGGTAAACTT TGTTCCTCTA AAGAGCTGGA GTCAAATGT ATCTTCAAA
 83701 GATTCACTTT CAAGTTAGCC CTTCTTAATA GAACTGATGC TTAATCCACA GTTGTCAAGCC
 83761 CACAGTTCTT TTATTTCGAC TTTTTTTTT TTTTTTTTG AGACGGAGTC TCTCACTGTC
 83821 ACCCAGGCTG CTGGCAGTGT GCGTGTATCTC GGCTCGCTGC AACCTCTGCC TCCCCGGGTT
 83881 AAGTGAATTCT CCTGCTCAG CCTCCTTAGT AGCTGGGACC ACAGGCCAT GCCATCGTGC
 83941 TCGGCTAATT TTTGTATTTT TATTAGAGAC AGGTTTCAC TATGTTGGCC AGGCTGATCT
 84001 CAAACTCCTG ACCTCATGAT CCGCCTGCCT TGGCCTCTCA AAGTGCTGGG ATTACAGGTG
 84061 TGAGCCACTG CACCCGGCCT TATTTGCTCT TCTTTAATCT CCATTTGAAC ATGGACATAC
 84121 TGATGAAAAC TACAACATTTC TTCACCAAAA ATCTTTGGGA TTTAATTCT TCAACCACCTT
 84181 TACTTTGGGG TCATTTAAG ATTAGGTGTA TCTGCCTGGT TCTCAATTG ACACCCTTC

Figure 9 (Page 26 of 74)

115/162

84241	TCTCTAAACA	TGAATGAGTT	CCAATCATAT	TTATTCTCAA	GCTATCACAC	TCAAAATATA
84301	TACAGATCTG	TGGAATATGC	AAAAGTTAA	GGTGAATAAAT	TAATTATTAA	GGTATTTCAT
84361	AGTTTGCTA	GTTCGGATC	TGTGAGTGA	TATAACTATC	CTCTATGTCC	TGGCACTGTT
84421	CCTCAGAAC	ATAGGGTCCA	CATATGTAAT	TTAAATTCTT	TTAATAGGCC	CATTTAAAAA
84481	AGTGGAAAAA	GAAATCTATT	TTAATGATT	GAATCCAGTG	TAACCAAAAA	TTGTTCAAC
84541	AAGGTATCTA	ATATTAAAAT	ATTGAGTTT	TACTTTGTTA	TTTACTAGG	TCTTTGAAT
84601	CTGGTGTGTA	TTTACACTT	AAAGCACATC	ACAGTTGGA	GTAGCCACAT	TTCCAATGCT
84661	TAATACTCAC	ATATGGTTAG	TGGCAACTAT	CTTGGACAGG	ACAGCTTTA	TACTCTGGGA
84721	AGACACAAGC	AAATACTTGC	TCTGCAGCG	AATCCAGATG	TTTCCAAGA	AAACACTTTT
84781	TCTGACCTGT	TCGTGAAACC	CAGGTAGTGT	CTCTAATACT	TTATATTCTT	TTGGTTTGTC
84841	CTATTGTAAC	CACCCAACGG	GCTCTCCTTG	TCCACTTCCT	AGACAGAGCT	GATTATCAA
84901	GACAGGGAA	TTGCAATAAG	GAGCCAGCGC	TACAGGAGAC	TAGAGTTTA	TTATTACTCA
84961	AATCAGTCTC	CTTGAGAATT	TGGGGACCAA	AGTTTTAAG	GATAATTG	TTGTAGGGGA
85021	CCAGTGANTC	GGGAGTGCCTG	CTTGGTTGGG	TCAGAGATGA	AATTATAGGG	AGCCTAAGCT
85081	GTCCTTGT	GCTAAATCAG	TTCTGGGAG	TGGTGGGTG	GGGGACTCAA	GACCAGATAA
85141	TCCAGTTAT	CTATATGGGT	GGGCCAGCT	AATCCATTGT	GTCAGGGTC	TGCAAAATAG
85201	CTCAAGCATT	GATCTTAGGT	TTTAAATAG	TGATTTATC	CCCAGGAGCA	ATTTGAGGTT
85261	TAGAACTTGT	TAGCTTCCAG	CTGCATGACT	CCTAAACCAT	AATTATAAT	CTTGTGGCTA
85321	ATTGTTAGT	CCTGCAAAAG	CAGTCTGGTC	CCCAGGCAGG	AAAGGGTTT	TTTCTGAAA
85381	GGGCTGTTAT	TGTTTTGTT	TTAAAGCAA	AGTATAAACT	AAAGCTCCTC	CAAAGTTAGT
85441	TAATCCAAA	CTCAGGAATG	AAAAGGACAG	CTTGGAGGTT	AGACGTTAGA	TGGAGTCGGT
85501	TAGGTAAGAT	CTCTTCACT	GTAATAATT	TCTCAGTTAT	GATTTTGCA	AAGGCAGTTT
85561	CACTGTCCAC	TTCACCTCAC	ATCAGGCCCT	TGACTAGAGG	ATCCAACAA	TACTTAGGCC
85621	AGGACACCC	CATGTCTCCT	TATCCACCT	GAGGGATTCC	AATTCTGAA	ACAAAGGAAA
85681	CTATATATGA	TAGTATGAAA	CTATATATGA	GAAGGAAATT	ATATATGATA	ATCAATTATA
85741	GGGTTATCTT	ATTGATTAGA	AGATATTAAA	GTGTGACACT	GCCTGGCAAT	GATATCTGCT
85801	GGTAGTAAGA	ATTGGCGAA	TTTAGTGAA	TTCCCTGAGG	TGAACCTCCA	CTTCTGAAA
85861	ATGGAGACAG	TGAGATAATT	TGCCCTACAA	TGCTGAAGTA	AGAATTCTAC	ACAATAATT
85921	AGACCAACCA	CTTCATGTGG	TACTTGGCCC	GTGGAAGACT	ATCAATGACA	GTAGTTTAT
85981	AGTTTATACT	ATTAATGAAT	CCTTGTTC	ATTGTTATT	CCTTCTACAC	GTTGGCCTCT
86041	CTAAAAGAAG	GTAATATTCA	ATACAAATAA	AGTTAAAACA	GCTTGCAGAG	TTGTCAGG
86101	GAACTCACCT	AAACACTGAA	GTGTTCAAAT	TGCTTAAGGT	TGACTTTATA	TTCTCCTGAC
86161	TAACCTTCT	CCTTCTGGTA	TTCTCTCTGA	GAACAGCACC	ACCATCCAAA	GCATCATGCA
86221	AACAGTGGTC	ATCCCAGACC	AGTAATTCTC	AACTCACAGG	GTGCTCCTGC	AGAGATGTAT
86281	TTGAATAGAG	TGGTAGGATG	CTGAAGAAGG	CCACGTAAA	TTTGGCCAGT	GATCTGGGGC
86341	AGATTATGCC	TGAAGCTAAT	GAAACACAAG	TGTAAGGGCC	TGACTTTCCA	AGGTGAGAG
86401	AGGGGCCCTA	CAAATGTGTT	AGTTGTCTC	TCTCTCTCTC	TCTGATTTTA	AAATTGAG
86461	TATTAAGGTA	CTTTAATCAC	GGATGGTTCA	GGCTGCTATT	TTCACTCAAT	CCTCCCTTTT
86521	ATTAAAATCA	CCATTGTC	ATTATGTTAG	AATCCTGATG	AAAATATTG	GAATTGAGT
86581	AAGAGAAAAGT	TTAGTTGAAG	ATGTATCTAG	TATGGGGATA	ATAAGTTACG	TGATTGAT
86641	ATGTGATCAT	GTGTACTTCA	TTCTGGCCA	GCCAATCTGA	CGTAAGAATG	GCTTCAGG
86701	GGCCGGCGC	GGTGGCTCAC	GCCTGTAATC	CTAGCACTT	GGGAGGCCGA	GACGGCGGA
86761	TCACGAGGTC	AGGAGATCGA	GACCACATCTG	GCTAACACGG	TGAAACCCCCG	TTTCTACTAA
86821	AAATACAAAA	AATTAGCCCG	GCGTGTGGC	GGCGCCTGT	AGTCCCAGCT	ACTTGGGAGG
86881	CTGAGGCAGG	AGAATGGCAT	GAACCTGGGA	GGCGGAGCTT	GCAGTGAGCC	GAGATCGC
86941	CACTGCACTC	CAACCTGGGA	GACACAGCGA	GACTCCGTCT	AAAAAAAAAA	AAAAAAAGAA
87001	TGGCTCAAG	GAATGTTCT	ACTGCTACT	GAATAACTC	ACCTAAATT	CTGGCAAGAT
87061	GCAGGTCTAG	ATAAAATGTT	ATGACATCTA	AGTATTCAA	ACACATTCCC	AGCACTGAGA
87121	GTGAGTGTCT	AGTGGAGAGT	AGAAACGTAT	AGAGCCAGAA	GCTAGTCTGG	AAAGAATTCT
87181	TACAAAGTTT	ACAACCTACA	TGTGAAAGGA	GCTTAACAGA	GGATTTCCA	AATTGAGAA
87241	CAATCCTAAA	AACTTACTTG	ACATTACCA	TAATGTGTT	TGAAACTGAA	ATACTTCTAA
87301	GTTATGAAGA	AAACATATTA	TCATCAGCCA	CCCTGGAGGA	AAGATTGAAT	TCTATTCTCA
87361	TTACCTATAG	ACAACATTAC	AAAATAATT	CGATCTGAAG	ATGGAATCAG	AGTATTCACT
87421	CAAAACTACA	GGAAAATATA	CTTGGTAGTG	TCATATTCA	AAGTTAATAA	AATATGCTAT

Figure 9 (Page 27 of 74)

116/162

87481 TTTCTGAATT TTGTGATGGC TGTTGTTTG TCAGCTTTA TAAAATTGGA ATTTGATTTC
 87541 ATTTTCCCAT TATAAATTAA TATTTACAGT CTGCAGTACT TTTGCATTT TAATTTACA
 87601 TTATAGCTTT TAATAGTTAA CAAGTTGTA AAGGTTTGAT CCCCAGAAAA CCTTGATCTA
 87661 CCCCTCAGT TAAGTATACT AATATATTAA GAAAATGGAT GAAATCAGCA TTTGAATATT
 87721 TTTAAATATT TATTAAAAGA GGACATGGGT AAAAGAGCTT TGCAGTTGCC ACCCTTCATT
 87781 CTCAAATTCC CTGGATAAGG ATGACCGCAT AACCTTTGGA TGGTCATACG CAAGTCTTGT
 87841 GTATTTGTTA CATAAATCTA TTTAGTGAC TTTGGCAGT GTGTACTGAG GCCAGTTCT
 87901 TCCACCTGAG CTCTGACTCC ACCTCCAGCA GCCCAAAACC AATACTGAAT TTTGGGGTCA
 87961 GCTATTGTTT TTGTGGACTT AGGTAACTAC ACACACATTG TCTTTATGAT AGCTTTAATA
 88021 ATACTGCCAT CAGAACTAAA ATTGTACAGT GGATTAAAAG GAGTGACGGT GGTGTCCCCA
 88081 GGAGCCTTTC AATATGTAAG TATTTACACA TATACATGCT AAAAAGACCC CTAGGAATTT
 88141 TTTTAACAAAG GGCAAAACAG TAACTCAGCT TGTTTCTCG CAGTAAAACC GGTTGAAAAG
 88201 GCCTGATAGA CTTGTCGCA GTTACAAAC TTGTGTGTAG TTATCACCTT TATATCTCCT
 88261 GGAAAACAAAC ATAGACAAACC GAATGGGTTA CAACTGTTT TAAGTCAAAT TGTGAGTGGC
 88321 TCTGAAAAGA GCCTTTCAA TGAGGAAGAA ACGGGCAGAC TTATGCCCT TCCCCCACGGA
 88381 TCGCACGTGC CAGCTGGATA TCTTTGGCA TGATGGTGAC GCGTTAGCG TGAATAGCGC
 88441 ACAGATTGGT GTCTTCGAAG AGTCCCACCA GGTAGGCCTC GCAAGCCTCC TGCAGCGCCA
 88501 TCACCGCAGA GCTCTGGAAA CGCAGGTCGG TTTGAAGTC CTGGCGATT TCTCGCACCA
 88561 GGCCTGGAA CGGCAGCTTC CGGATCAGCA GCTCGGTGGA CTTCTGGTAG CGACGGATT
 88621 CGCGCAAGGC CACGGTGCCTT GGGCGGTAGC GATGAGGTTT CTTCACGCCA CCGGTGGCCG
 88681 GAGCGCTCTT ACGGGCTGCT TTAGTAGCAA GCTGCTTGCG CGGAGCTTG CCGCCGGTAG
 88741 ACTTGCAGC TGTTGCTTC GTACGAGCA TTTGAATGA GAGCACACAC AAAAGTGTAG
 88801 TGAACTGAGA GCAAGTGGCC TTAAATATA GTGAGAAACA TTCTGATTGG TCCTGTAATA
 88861 TTTCAAAAGT CCCGCGCGAT AAAATCATTG GCTGAAGAGT GACCAGACTG ATTGGTTCAT
 88921 TACTAGACAA TCTTATTGGA TGAGTTGCC CACCGCCCAT CCTGTCCTT TCGTTTCAGT
 88981 TATCTGCAGC GACAAATTGT CTAAAATTCT AGTCATCCA GTCCCAAAGA ACAGAGTGT
 89041 TAACAAGGTA TCTAAGGATT TTAAATGT AAATTCCGAT TCAGTAAGTT TGAGTGGAC
 89101 TTGAAATTCT GCATTCCGCA CAGTCTCGCA AGTTATCAAT GCTGGTGAAC ACTCACTAAA
 89161 CCACCAGAAA CGTTCAGACT CATGTCGGGA AATAACGCTT ATATTCAAG AATGAGATTC
 89221 CATGCTATTGTT GTTACTGGC GAACAGCAAG TTTCTTGCC CTTTGTTC TAAGTCCAAG
 89281 TCACATTCCC ACCCTGCGTGG TTCTCAAAAT GTCTTATTGGT GGTGGCCTT AAGTTTCACT
 89341 TTGTATACTC TAAAATGTAC TTCTAAAGG AAGGTGTTAT TTTCTCGAAA CTTAACCTTT
 89401 TAACACCATT AGGCTAGGGG GGCGGTGGCT CACGCCGTGA ATCCCAGCAT TTTGGGAGGG
 89461 CGAGATGGGA CGATCACTAG AGGCCAGGAG TTCAAGACAA CCCTGGCTAA AATGGTAAA
 89521 CCCCGTCTCG CATAAAAATA CAAAAACTAG CTGGGCGCGG TAGCAGACGC CTGTAATCCC
 89581 AAGTACACAG GAGGCTGTGG CATGAGAAC GCGTGAAGCG GCGGGGTGGA GTTGCAGTA
 89641 AGCCGATATC GCGCCGCTGC ACTCCAGCCT GGGTGACAGA GCTAGACTGT CTCAAAACAA
 89701 ACCAATCCAA ACGAAAAGCA AAAAATACCC TAACAGAAGC AAGTTATCAT CTTTCTTGT
 89761 GTAACTATGG ACGGCTCTGA AAAATGCGT TTCAAGTGTAA AGCTACGTT TCTGATTGAA
 89821 GTGTTTACTT GACCTTGCC TTATCGTGGC TCTGTTATTG TGGCAACAGG ACGGCCTGAA
 89881 TATTGGACAG GACGCCCTCC TGAGCAATAG TGACGTTGCC CAGCTGCTTG TTGACCTCCT
 89941 CGTCGTTTCG GATGCCAGC TGCAAGGTGGC GGGGGATGAT GCTGCGGGTC TTGTCACGTA
 90001 TGGCGCTGCC CACCAAGTTCT AAGATCTGG CGGCCAGGTA CTGTAAGTAC ACTGGCGCAC
 90061 CGGCTCCGAC CGGCTCAAAA TAATTGCCCT TTGAAAAG ATGACGGACT CTGCCCTATT
 90121 GGGAACTGCA AGCCCCGGTAG CGACGAACAA GTTTTGCTT TAGCTCCATT TTCCACGTCC
 90181 GCAAATAGCG ACCTATGAAA GCAGCGGAAA ACTGTGAAAG ACAAGCAAGC TGGAAATGGCG
 90241 CCTGAACAAA TCCTTTATA CAAACTGCAA GGCTGCAATA GGAAGCTATC CTATTGGTCA
 90301 ATTATGTTTG GTGCTTTATC CAATAGAAAA AGATAACATA AATTCCATAT TTGCATAAAC
 90361 CCCACCCCTC AGTGAACCCG TGTTTCTTT GTCCAATCAG AAGTGAGGAA TCTTAAACCG
 90421 TCATTTGAAT CTCAGGACTA TAAATACATG GGCTCTGAAC TGTCTCTGT ACTACTCTGT
 90481 AGTGGAGAGT GTTAGTAGCT TTCTATTCT GTTGTAGGAAT AGCAATGCCT GAACCCCTCTA
 90541 AGTCTGCTCC AGCCCCCTAAA AAGGGTTCTA AGAAGGCTAT CACTAAGGCG CAGAAGAAGG
 90601 ATGGTAAGAA GCGTAAGCGC AGCCGCAAGG AGAGCTATT TATCTATGTG TACAAGGTTTC
 90661 TGAAGCAGGT CCACCCCGAC ACCGGCATCT CATCCAAGGC CATGGGGATC ATGAATTCT

Figure 9 (Page 28 of 74)

90721 TCGTCAACGA CATCTTCGAG CGCATCGCGG GCGAGGCTTC TCGCCTGGCT CACTACAATA
 90781 AGCGCTCGAC CATCACCTCC AGGGAGATT AGACGGCTGT GCGCCTGCTG CTGCCTGGGG
 90841 AGCTGGCTAA GCATGCTGT TCCGAGGGCA CTAAGGCAGT TACCAAGTAC ACTAGCTCTA
 90901 AATAAGTGCT TATGTAAGCA CTTCCAAACC CAAAGGCTCT TTTCAGAGCC ACCTACTTTG
 90961 TCACAAGGAG AGCTATAACC ACAATTCTT AAGGTGGTGC TGCTGCTATT CTGTTTCAGT
 91021 TCTAGAGGAT CAACTGGAAT GTTAGCGAAG ACAAGTTTA GAGCCAAGGT TAACTGGAC
 91081 GGGGCCGTGC CGGGTGCCTC TTGCTTTAA TCCCAGCAAT TTGGGAGGCC GAGGCGGGCG
 91141 GATCACTTGA GGTGGGAGT TCGAGACTAG CCCGGCCAAC ATGGCGAAAG CCCGTCTCTA
 91201 CTAAAATACA AATGATAGAC GGTGCGTGTG GCGCTCTTC TCATCTGTCT TAGCAAACCT
 91261 CTTGTTCCC CCTGGGTAAG CCTTCGGGTA CTATGTATAA TCCCTTGAT AAGGTCACTA
 91321 CTCCCTCCCT GGTCTAGTAC AGGAAACTTC CCTTCTGGA TAATGAAGCA GGTAAATGGAA
 91381 TTCAGGGTAT AGTGTTCCTG TGGGGGTCA TAGCGTTAA CTTCTGTGA GATGCGGGGG
 91441 AGGGGAGCAG AAAAGTCTAA GCGACAAAAG GGCATGTAGG GATATTGCT CCTGCAGCTT
 91501 GCCTATGCTG TAAATTCTTA CTTCAAGTAT TGAGGAAACA ATAAGCGAAG TCTGATTTCC
 91561 CGGGCGCTT TATACGGAAT ATTTCCCGCT CCACAAAATG AAATCGCAGT AGTTTGAGT
 91621 TATAATTGTT TATCAATGAC AACAGCTATG TAGTTTACAT ATTTCATGCA TCCCAGAAAT
 91681 CCAGATTCCC ATTTCTTAAG CCACTTAACG TTCTGATTT CAGCTCTGCG AGATACAAAA
 91741 GGGTTGGAT TTTGTGCCCT TCCCCATCTG CGGCCACTGC AAAGCTTACT AGGAGGGCCC
 91801 CACTTGGAGA GGGAAATCTT TTTCGAGAAG TCCAGGACGC CAAAAAACAT ATAGCTAAAA
 91861 AAAAAAAA AAAAAAGGCA GGAAGAGCAC TAGTTGAGGA GGAGGACTCA ATGGGCCAAT
 91921 TCTGGGGCTG GGGCTGGGG AAGAAATGCA AGAAGAAAAG ACACTTGTTG ACTGCACAGT
 91981 AAGCAGGAGG GGGTGGGGGA ATCGGAGGGG AGTATTTCA GCGAATTAT GGGCATTATA
 92041 TGTAGGTGAC ATACAGCAGT GTCTTTGGAT GAAGAAATAA AGTTTCTCAA ACAGTTCTTG
 92101 TTTTGTTTT GAGAAAGGC CTTTCTCTGT CGGCCAGGCG CCATCATAGC TCACTGCAAC
 92161 CTCGACTTCC CCAGCTCAAG CGATCCTCTT ACTTCAGCCC CTTGAGTGGC TGGGACTAGA
 92221 GAAATGCACC ACCATACCCA GTTAATTTT TAATTTTTG TGGAGGCAA GGGTCTTACT
 92281 TTGTTGCCA GGCTGGTCAA GCGAACTCCT GGGCTCAAAT GATCCTCCCG CCTTGGCCTC
 92341 CCAAAGTCCT GGGATTATAG GAATGAGTCA CCGGCCCGG CCCAGATTTA ATTTTAAGA
 92401 ATCTTTAAA AGAGGTTCTG GGCCGGGTGT GGTGAGCTC ACGCCTGTAA TACCAGCATT
 92461 TTGGGAGGCC AAGGTGGGAG GATCACTTGA GCCCAGGAGC TCAAGACCAG TCTGGGCAAC
 92521 TTAGTGAGAC CTTTGTCTC CACCAAAAT TTAAAAAATT AACCAGGCCT GGTGGCACAT
 92581 TTCTGTAGTC CCAAGTACTG GGGAGGCTGA AGTGGGAGGA TCATTTGAGC CTGGAAGGTG
 92641 GAGGTTGCAG TAAGCTGTGA CGGCACAAC GCACTCCAGT CTGGGTGAGG ACAGACCTG
 92701 TCTCAAAAAT AAAAAATAAA AAAAAATCTG GATGCCACAC AAAATGTCAG TGAACAACAG
 92761 TAAGTGAAGC ACTTCCCATC CTAGTACTGT ATATGCAAAC TGCGTTGTG AAAGTGACGC
 92821 TTGGCTTAAA AATCTACATT CTTTTTTAA TTATAAAAT ACCACATCCC CAAAAAACAT
 92881 TACTAAGGAA TTGAGGCTGC AGTTTAAGAA GCTGATATT AGGATCTATC TCCGGAGAAG
 92941 TGAGACCTGG TAATATAAGC ATTTTCAAAA TGAACTTTG GGCCAGGTGA GGTGTGTCA
 93001 GCCTGTAATC CCAGCACTT GGGAGACCTA GTCAGGCAGA TCACTTGAGC TCACAATTG
 93061 AGACCAGCCT GAGCAACATG GCGAAATCCA GTCTCTACAA AAAATTAGCA GGGCGTGGTG
 93121 GCATATGCCT ATAGTTCAG CTACTATAGA GGCTGAGGTG GGAGGATTAC TTGAGCCCGG
 93181 GAGGCAGAGG TTGCGAGCAAG CCAAGATCGC GCCGCCACAG CCTGAGCGAC AGAATGAGAT
 93241 ATGCACCCAC GCCCTAAAAA AAAGCATGAC TCATTTAAAAA AAAAAAATT AGCCGGTCGC
 93301 GGTGGCTCAC GCCTGTAATC CCAGCACTT GGGAGGCCGA GGCGGGCGGA TCACGAGGTC
 93361 AGGAGATGGA GACCATCCTG CTTAACACGA TGAAACCCCG TCTCTACTAA AAATACAAAA
 93421 TAATTAGCTG GGCCTGATGG TGGCGCCCTG TAGTCCCAGC TACTCGGGAG GCTGAGGAG
 93481 GAGAATGGCG TGAACGGGG AGGCGGGAGCT TGCAGTGGAC CGAGATCGCG CCACGGCACT
 93541 CCAGCCTGGG TGACAGAGCG AGACTCCGTC TCAAAAAAAA AAAAAAAA AAAATTAAAA
 93601 AAATATGAAG TTTGAAAGCA GAAATTATTT TGTCGTATGT TCTTTCATAA ATTTTTGCC
 93661 TGCCTGCCTT CTTCTTTGT TACAGAACTC CAACACTTAC CCAAAGGTAG CTGTTGGGTC
 93721 AGGGTTCTG TACTATAGTC CCTTCTGTGG TGGCAGAAA TATGTTACAG GAAAGAGGTC
 93781 CCCATCCAGA CCCCAAGAGA GGGTTCTGG ATCCCGCGCA AGAAAGAGTT CAGGGTGAGT
 93841 CCGCAGTGCA AAGTAAATGC AAGTTACTA AGAAAGTAA GTGGTGAAC GACAACACT
 93901 CCATAGACAG AGCAGGACAT TCCCGAAAGT AAGAGGAGGA AGGCATCCAC CCTAGGTACA

Figure 9 (Page 29 of 74)

118/162

93961 ATACTTGTAT ATATGGGGAG ATGTGCTCTG CTACAAGTTT GTGATAAAGG ATTAATTTC
 94021 TTAGTTACTA TATTGGCAA GAATCAACAT TATTATCTT AAACAAAATT AAGAATGCCT
 94081 TTGTTCTCCA GATATAGGGA TATCTGGACA CTCCTAAGTC TGAGTCTGTT TAGTAAACAT
 94141 TATTTATTG TTCCCTAAC CGTAAACATC TAGAAGCTAG GAATGACTGA CTTCTGGGA
 94201 ATGCAGCCC GAAAGTCTCA GCCTCATTT CCTAGCCCTC ACTCAAAATG GAGTTACTCT
 94261 GGTTCAAGTA ACTCTGACAC TTTTCTTCTC TTTTTTCTT CTTTTTCCCT TCCTTTATTT
 94321 TTTATTTTT ATTGAAA TAAGAAATCA AGAATACTTG ATGTTTCATC TAAAACAATA
 94381 CCCATAATTG ATAAGCCAA ACAAAAACCT AGGTCTCTA ACTCAAAACT AGGATGTTTT
 94441 GCTGTCTCTG CTGATACTCG GCTGATCGTT AATAGGTAAT TAACAAACAA GCCTTGCTAT
 94501 GTCCCCCTCA GTTTATTACC ATTAGATCAT ATGCCACTG TCAATCATAT TAATCCACAA
 94561 CTATGCATT CACAAAACCT GCCATAAAAA TTCACAGGTT TCCCCTTCC CTCGAGTTTT
 94621 CATTCCGAA GGGTCCCAGT TAATATAAA CTTATATTAA ATACATTGT ATGCTTTCT
 94681 CTTGCTAAC TTTTTTTTG TTTTGAGA CTGAGCCTTG CTCTGTCACC CAGGCTGGAG
 94741 TGCAATGGCG CGATCTGGC TCACTGCAAC CTCGCTTCC CAGGTTCAAG CGATTCTACT
 94801 GCCTCGCCCT CCCGAGTAGC TGGGACCACA GATACGTGCC ACCATGCCCG GCTAATTTC
 94861 GTATTTTTAG TAGAGACAGG GTTTCACCGT GTGGGCCAGG ATGTTCTCAA TCTCCTTACC
 94921 TCGTGATCCG CCCGCCTCGT CCTGCCAAAG TGCTCGGATT ACAGACGTGA GCCACTGCAC
 94981 CCGACCAATC TGTCTTTTG TAGAGGGCC TCAAGCATGA ACTTACTGAT GGGTGAGAAA
 95041 AACAGAATT TCTTTCCCC TACAATATAA ACATTAATTG TAATGTTATC ATTCAGGACA
 95101 TTTGGTGAC CAATCTTACA GAAATTTAT CTTGTGCAAG TCTATGCAA CCAATATGTA
 95161 AATCTTCTAT AAGTGAGATT GTATTCACT TTTCTAGTAT CCTTTAAAT TAATAAAAGA
 95221 GATTCTAATG ATTATTTCA TTACTGCATT TCATTGTTAGG GAAGTAGATA ATTGCCCTT
 95281 ATTCACTGAC CTTCGCTTT TAAAAAATTA AACCATGTTA CCATGAAAT GCTTTTCAGT
 95341 ATTTCTCTAC ACACAAGATT GCTGTAAGGG CAAAATAGA GATAGGAATC ATGCATCCAT
 95401 TGATATACAT ATTTGATTT TTAATACATG TTACCAAGTT GCCTCTGAA GGTCTGTTA
 95461 CACTCTCAC C AACAGGGTGT TTTTCCTGA CTTCCACAAA TGCTCTGAA CAGTGGGTGT
 95521 GTTAGTCTGT TCAAATTGCC GACATGAACA ATTAATCTC ATTGTTGTT TTATTTTAA
 95581 GACAATTATT GTTTGAGACT GCACATTTG ATAATAACAT TTCTCTTATT ATGGTTTGAT
 95641 TACTCATGAT TCTGCCCAT TTTCTTTGG GATGTTGCCT TATGTACATT ATTTAAATA
 95701 GATAGCTCCA TGTATTTAA GATTATTAAG TTTGAGGGCT TATGATATGT CAGTTACATT
 95761 TCTAAGATT TTTTTTTTT TTTTTGAGA CGGAGTTCA CACTGTTGC CCAGGCTGGA
 95821 GTGCAATGGT GCGATCTCGG CTCACCGCAA CCTCCGCGCTC CAGGGTCAA GCAATTCTCC
 95881 TGCCTCAGCC TCCCCAGTAA TTGGGACTAC TGGCAAGCGC CACCACGCC GGCTAATTTC
 95941 GTATTTTTAT TAGAGATGAG GTTCTCCAT GTGGTCAGA CTGGTCTCGA ACTGCCGACC
 96001 TTGGCTTAAA AATCTACATT CTTTTTTAA TTATAAAACT ACCACATCCC CAAAAAACAT
 96061 TACTAAGGAA TTGAGGCTGC AGTTTAAGAA GCTGATATT AGGATCTATC TCCGGAGAAG
 96121 TGAGACCTGG TAATATAAGC ATTTCAAAA TGAACCTTTG GGCCAGGTGA GGTGTGTCAT
 96181 GCCTGTAATC CCAGCACTT GGGAGACCTA GTCAGGCAGA TCACTTGAGC TCACAATTG
 96241 AGACCAAGCT GAGCAACATG GCGAAATCCA GTCTCTACAA AAAATTAGCA GGGCGTGGTG
 96301 GCATATGCCCT ATAGTTCCAG CTACTATAGA GGCTGAGGTG GGAGGATTAC TTGAGCCCGG
 96361 GAGGCAGAGG TTGCAGCAAG CCAAGATCGC GCCCCACAG CCTGAGCGAC AGAATGAGAT
 96421 ATGCACCCAC GCCCTAAAAA AAAGCATGAC TCATTAAGAA AAAAAAATTT AGCCGGTCCG
 96481 GGTGGCTCAC GCCTGTAATC CCAGCACTT GGGAGGCCGA GGCAGGCGGA TCACGAGGTC
 96541 AGGAGATGGA GACCACCTG CTTAACACGA TGAAACCCCG TCTCTACTAA AAATACAAA
 96601 TAATTAGCTG GGCCTGATGG TGGGCGCTG TAGTCCCAGC TACTCGGGAG GCTGAGGCAG
 96661 GAGAATGGCG TGAACCGGG AGGCGGAGCT TGCAGTGAGC CGAGATCGCG CCACGGCACT
 96721 CCAGCCTGGG TGACAGAGCG AGACTCCGTC TCAAAAAAAA AAAAAAAA AAAATTAAAAA
 96781 AAATATGAAG TTTGAAGCA GAAATTATT TGTCGTATGT TCTTCATAA ATTTTTGCC
 96841 TGCCTGCCTT CTTCTTTGT TACAGAACTC CAACACTTAC CCAAAGGTAG CTGTTGGGTC
 96901 AGGGTTCTG TACTATAGTC CCTTCTGTGG TGGCCAGAAA TATGTTACAG GAAAGAGGTC
 96961 CCCATCCAGA CCCCAAGAGA GGGTCTTGG ATCCCGCGCA AGAAAGAGTT CAGGGTGAGT
 97021 CCGCAGTGC AAGTAATGC AAGTTACTA AGAAAGTAA GTGGTAAAC GACAACACT
 97081 CCATAGACAG AGCAGGACAT TCCCGAAAGT AAGAGGAGGA AGGCATCCAC CCTAGGTACA
 97141 ATACTTGTAT ATATGGGGAG ATGTGCTCTG CTACAAGTT GTGATAAAGG ATTAATTTC

Figure 9 (Page 30 of 74)

119/162

97201 TTAGTTACTA TATTTGCAA GAATCAACAT TATTATCTT AAACAAAATT AAGAATGCCT
 97261 TTGTTCTCCA GATATAGGGA TATCTGGACA CTCTTAAGTC TGAGTCTGTT TAGTAAACAT
 97321 TATTTATTG TTCCCTTAAC CGTAAACATC TAGAAGCTAG GAATGACTGA CTTTCTGGGA
 97381 ATGCAGCCCCA GAAAGTCTCA GCCTCATTT CCTAGCCCTC ACTCAAAATG GAGTTACTCT
 97441 GGTTCAAGTA ACTCTGACAC TTTTCTTCTC TTTTTTCTT CTTTTTCCT TCCTTTATTT
 97501 TTTATTTTT ATTGAAA TAAGAAATCA AGAATACTTG ATGTTTCATC TAAAACAATA
 97561 CCCATAATTG ATAAGCCAA ACAAAAACCT AGGTCTTCTA ACTCAAAACT AGGATGTTTT
 97621 GCTGTCTCTG CTGATACTCG GCTGATCGTT AATAGGTAAT TAACAAACAA GCCTTGCTAT
 97681 GTCCCCCTCA GTTTATTACC ATTAGATCAT ATGCCACTG TCAATCATAT TAATCCACAA
 97741 CTATGCATT CACAAAACCT GCCATAAAA TTCACAGGTT TCCCGCTTCC CTCGAGTTTT
 97801 CATTTCGAA GGGTCCCAGT TAATATAAA CTTATATTAA ATACATTGT ATGCTTTCT
 97861 CTTGCTAATC TTTTTTTTG TTTTTGAGA CTGAGCCTTG CTCTGTCACC CAGGCTGGAG
 97921 TGCAATGGCG CGATCTCGGC TCACTGCAAC CTCCGCTTCC CAGGTTCAAG CGATTCTACT
 97981 GCCTCGCCCT CCCGAGTAGC TGGGACACCA GATACTGCC ACCATGCC GCTAATT
 98041 GTATTTTAG TAGAGACAGG GTTCACCGT GTTGGCCAGG ATGTTCTCAA TCTCCTTACC
 98101 TCGTGATCCG CCCGCCTCGT CCTGCCAAAG TGCTCGGATT ACAGACGTGA GCCACTGCAC
 98161 CCGACCAATC TGTCTTTTG TAGAGGGGCC TCAAGCATGA ACTTACTGAT GGGTGAGAAA
 98221 AACAGAAATT TCTTTTCCCC TACAATATAA ACATTAATTG TAATGTTATC ATTCAAGGACA
 98281 TTTTGGTGAC CAATCTTACA GAAATTTAT CTTGTGCAAG TCTATGCAA CCAATATGTA
 98341 AATCTTCTAT AAGTGAGATT GTATTCACT TTTCTAGTAT CCTTTAAAT TAATAAAAAGA
 98401 GATTCTAATG ATTATTTCA TTACTGCATT TCATTGTAGG GAAGTAGATA ATTGCCCTT
 98461 ATTCACTGAC CTTCGCTTT TAAAAATTAA ACCATGTAA CCATGAAAT GCTTTCACT
 98521 ATTTCTCTAC ACACAAGATT GCTGTAAGGG CAAAAATAGA GATAGGAATC ATGCATCCAT
 98581 TGATATACAT ATTTGATTT TTAATACATG TTACCAAGTT GCCTCTGAA GGTCTGTTA
 98641 CACTCTCACC AACAGGGGTGT TTTTCCTGA CTTCCACAAA TGCTCTGAA CAGTGGGTGT
 98701 GTTAGTCTGT TCAAATTGCC GACATGAACA ATTAATCTC ATTGTTGTT TTATTTAA
 98761 GACAATTATT GTTGAGACT GCACATTG ATAATAACAT TTCTCTATT ATGGTTTGAT
 98821 TACTCATGAT TCTTGCCCAT TTTCTTTGG GATGTTGCCT TATGTACATT ATTTAAATA
 98881 GATAGCTCCA TGTATTAAAA GATTATTAAG TTTGAGGGCT TATGATATGT CAGTTACATT
 98941 TCTAAGATT TTTTTTTT TTTTTGAGA CGGAGTTCA CACTGTTGC CCAGGCTGGA
 99001 GTGCAATGGT GCGATCTCGG CTCACCGCAA CCTCCGCCTC CAGGGTTCAA GCAATTCTCC
 99061 TGCCCTCAGCC TCCCCAGTAA TTGGGACTAC TGGCAAGCGC CACCACGCCT GGCTAATT
 99121 GTATTTTAT TAGAGATGAG GTTCTCCAT GTGGTCAGA CTGGTCTCGA ACTGCCGACC
 99181 TCAGGTGATC CACCCGCCTC GGCCTCCAA AGTGTGGGA TTACAGGTAT GAGCCACTGG
 99241 GCCCGGCCAC ATTTCTAAAT TCTTTATAAG TATAAATTCA TTCAATCTTC ACCAAAACCTC
 99301 AATGAAGTGT GAGTACTATT ATTATCATTG TTTACAGAT CAAAACAAGT AATACAGTC
 99361 CTTACTGAGT TCTATACACC TGGTAATT TTTGTTCTGT TGTCTATCA ATTATTGGGG
 99421 AAGGGGTGTT GAAATCTTA CCTTTAAATC ATGTATGTGT CTATTCTCC TTTCGGTTCT
 99481 ATCAGGTTTT GCTACACATA TTTGCAGTT CTGTTATTG GTGCATATAC ATTTAGAATT
 99541 GCTTGTTTT CGTATTGGAT TGACCCCTGTT ATCATTATGT AATATCCCTG TCTGTTCTA
 99601 GTAATTCTT TTGCTCTGAA ATATACTTAT CTGATATATC ATCCAAAAGA CCACCAGGAT
 99661 GGCTAAAGAG TAGAAAGGAG AGATTTACTG GCAATACTAA TTTGCAAGCC AGGAAGAGAT
 99721 GGTCCCAGAA CCTGCCAAA TTACTCTCTC TTTGGGGAGA AGGAGCAGGT TGGTTATT
 99781 TATGCCCTCAT AGGCTATATA TTACACAATA GAGTCATACA TATTTCAGCAC GTTGGGGGG
 99841 ACAGCTATAT ATATTATGAG GGGTCCAAG TGCATTACA ATGGATAAAC ACGTGTAATA
 99901 TACCTCCCAT GTTCACCTCG AGGTTAAATT TTGGTTAAA TGAGGTAGAA TTAGGGTCTT
 99961 TACATCACAA GGTGAACATAG AGGAACAAAG TTACGTGCT GCCTCTAGCA GCTGGCTGAA
 100021 AATGGCTTAA GGTCTACAAT TACGTGTAAG AATAGAATGT GTGTCAAGGC GGTCTCTGT
 100081 CCAATCAGAG TTGTTAGTGGAA CTGGACTGTA AATCAGAGTT AGGAGGGCTT CTGATAGCTC
 100141 CTATAGTTAA GGAATTCTAGC AAGTGTGAGT TTTTGGTAG TCTTGGAAAT TTAGGAATT
 100201 GCCATGCCAG CCAAGCCATG AATGCTCTAC CAGTAGGTAAC TTTGTTGCTC TTAATCTTAG
 100261 AGTCTGTCTT AGTTGGTATA GGGGCATCTA TTTGGTCTT TCAGATCCC GATATTATTA
 100321 ATACAGATAC TCTTGCAAGTT TTGGGCTGAT GTTATATGG CTTATCTTT TTGCAGCCTT
 100381 TAATTCACAC CTGCGTTATG TTTATATTG AAGTGGAGATT CTTGCAGACAGTGTACAGTT

Figure 9 (Page 31 of 74)

120/162

100441 GTTGTCCCCC TTTTTTTG AATGGAAATT CACTCTTGT GTCCAGGCTG GGGTGCAGTG
 100501 GCACAGTCTC AGCTCACTGC AACCTCCGCC TCCTGGGTTC AAGGGATTCT CCTGCCTCAG
 100561 CCTCTTGAGC AGCTGGGATT GCAGCCATGC GCCACCACAC CCGGCTAATT TTTGTATTTT
 100621 TAGTAGAGAC AGGATTCAAC ATGTTGCCA GGCTGGTCTC GAACCTCTGA CCTCAAGTGA
 100681 TCCGCCAGCC TCGGCCTACC AAAGTGTGG GATTACAGGT GTGAGACCTC GCGCCCAGCC
 100741 AAACTGTTT TTTATGGGTG TATTTATACC ACACACATT AATGCAATT TTGATATCTT
 100801 AGGGCTTAAG TTCATGAAGG GTAGTGTGGG ACCATAGTC TCTTGGCCCA CTAAATGTTT
 100861 GCCAGAAATC ACTGACAAGG CAGATTGATT AATAGGTGAA AAGGCATTTC ACCTATTGTT
 100921 TAACGTGTCT ATGTGGGAGC ATTCAAGATT AATTACCTAA CTTCCCAGT AGTTATAGAT
 100981 GCTTATATAAC CATTGGTAGA TCACAGAAAG AATTGGGCT TAGATTCTGG TAAAACAGGT
 101041 TATGGGAGGC AAAAGAGGTT TGGCTTGCAA AGGTGGCCTT GTTGGTAGG TGAAGCCTCC
 101101 CTCAGAAAGA ACAGATGGTA AATGTTCTT TTATGATTTT TAAGTGTCAAG ACTCTCAGTC
 101161 TCTCCTGGAT CTGGGAAAG GTATAGAAAG GTGAGGAGGC ATGGCTGCAT TAATGGAGAT
 101221 TCTCTACAGA TGTAATTTT TTCCCATTTA AGGCAGCTTT GCAAGCCAT TTCTGCCTGC
 101281 TGGCCAAGCA GCAGCCATT CAAAATATGT CAAAGAAATA TATTTGGG TAAAATATTT
 101341 TGATTTCTT TAGACTGGTG GCCTTATAAG AAAAGGAAGA GACACCTGAG CTGACACACA
 101401 TACCCCTGCT CTCTCAACAT GTTATGATGC AGTAAGAAGG CCCTCACCAAG ATACTAATT
 101461 CATGCCCTTA GCTTCCCAGG TTCTAGAAC GTAGGAAATA AATTCTTT CTTTAAAAGT
 101521 TAGCCAGTCT GTGGTATTCT GTTATAGTAT CACAAAATGG ACTAAGTAAC TATATTATGA
 101581 TCATCTTACA TGACTGATCC CTCCTACATC ATACACATAC ACAGGCCACA TTTGGAACAT
 101641 TGTTAGAGGT TCCTCTACCC AGTACAAATG TACTACAAAT TATATATGTA TTTTAAATT
 101701 TTGAGTATC TTCAATAGTA TATTTCTT AACTTTGTA GTCAAAATGT CATTATAACA
 101761 TGTATTCAAT ATGCATAATT ATTAGTCAGA TGTTTACAT TCTTCTTCA TACTAAGTGA
 101821 TATGGTTTG ATATTGTCC CCTCTAAATC TCATGTTGAA ATGTAATCTC CAATGTTGGA
 101881 AGTGAAGCCT GGTGAAAGGT TTTGGATCG TGAGGGTGAAC CCCCTCATGA AGCGCACTCT
 101941 TCAGGGTAAT CAATGGGTTTC TCACTTTGAG TTCACAAGAG ATCTGGTCT TAAAAAGAGT
 102001 GTGACACCTC CCCCCATCTCT CTCGCTCAGC TCTCACCATA TGATATGCCT ACTCCCTCTT
 102061 CACCTTCCAC CATGATTGGA AGTTTCTGA GGACTTGCCA GTAGCAGATG CCTGCACCA
 102121 ACCCTCTGTA CAGCCTGCAC AACCGTGAGC CAAAAAAAT TACTTTCTT TATAAATTAG
 102181 TCAGTTTCAG GGATTCCTT ATAGTAATGC AAGAACGAAC TAACACACTA AGTCTATTTC
 102241 ATATTTACAG AATAGCTCAA TCTGAAGTAC CCTTTTCAA CTTCACAGTA GCTACTTGT
 102301 GCTAGTGGGC ACTGATTGAG AGCGTGTCA AGGGTGAATT GTATTATGCA ATTAACAGAT
 102361 TTTTTTATT GTTTCTGCAA ACCACGAGGC ATAGATTGTC TTACTTCTC TGCTCCTGGT
 102421 GTTGGAGTTG TTATTGGAA ACAACTTATT TTCCCTTTAT ATTTATATGG AATAAATAAC
 102481 CCCCAATATT TCCCTCCCCA ATATCTGCT TTTGTATGTT TTTGAAGGC AAGTGCCTAG
 102541 AATTTACTGT TTTGGAAGCA CTTACTGAAA GGATTGCCAT CAAGTTGTT TGCTAATAGT
 102601 ACATGCCAGG CGCTTGTGG TTTGCTTAAT TCAAGGTAAC TTGGATGAGA AGAAGAGTTT
 102661 TTCTCATCCA TGGCTCAGTG GAGTATAGAT TACTGATATT GTGACTGGAT GTACTCCTGC
 102721 TTCTAGTCT GAGTTTTGAA AGCTACCCCTT AATCTTGGTT TCAATTCTTAT CTAGCCCTGT
 102781 ACATATCCAA GGCTCTTCC AAAATGGCT ACGATTGTT TAGGAAGTTA GAATAGCTGT
 102841 ACTTCTGAA CCACGGTTCC TGACATTTC TGGACTTCAA ACACATCCAG CATTATATCG
 102901 AAGTATTAT CTTCTCTACT TGGCTGGCTT CTTCTTGTGTT TTCAGGCTG AATTCAAATG
 102961 ACATTCTCCT GATGAAACTT TCCATCCTTA TTTCTATTCT TTTTCTTAT CCCCTTTCTT
 103021 TATTTTCTC CACAGCACTC ATCACTTATC TCTACATTTC CATTATGTAT TTACCTTATT
 103081 GTGCACCTCC CACTACAAGA CAAGTAGCAC CGTAAGGAAA CAGGTTGCT GCTTTTCAC
 103141 TGCTATGCTC CCTGCACCTA GAACACTCTC TGGCACTTAG CAGGTTTCA GTAAATATAT
 103201 GCTGAACTAA TAATGCTGGA TATACATCTC CCTCATGAAC TCTCTAAATC CTTCTAATTT
 103261 ACATTGATCA ATCTTCTTTT CCATGTGCTT TTGTATGATT TATTGCTCAA AATCTTTATT
 103321 TTGTATGCAAG AACGTGCACT GCTATTTAAT CTTCATGTAC GTAAGTCTC CCTTCTCTGA
 103381 GTATAATCTC TTCAGGGCAC TATCTGAGAT AACTTTTAA CATCTCCATC ATGAATCTTG
 103441 TACCTTTCA AAGAAAATGA GCCAGTGATT ACTGATGTTT ACGGCTATTG TTGAGGGTGA
 103501 AGATCATTAT AATTTGAAA AGGGAAGTTG AATATTGTGA AGGGAAAGAT AACACTAGAG
 103561 TCAGAAGACT TGGGAGAAGG CAAAAAACAA ACTAAAAATG AGCACTTTA GTCTCCTGAC
 103621 AGTTTCTCTG AATCAAATCC ATAGTTCTGT GACAGCGTTG GCTTAGAAGC AGATTTTTT

Figure 9 (Page 32 of 74)

121/162

103681 TTTTTTTTTT TTGAAATGGA GTTCGCTCT TGCCAGGCT GGAGTGCAGT GGCACGATCT
 103741 CGGCTCACTG CAACCTCTGT CTCCAGGGTT CAAGCGATT TCCTGCTTC A GCCTATGGAG
 103801 TAGCTGGAT TACAGGCTCC CACAACCACG CCCAGCTAAT TTTTGTTATT TTTAGTGAAG
 103861 ACTGGGGTTT CACCATGTTG GCCAGGCTGG TTACGAACTC CTGTTCTCAA GTGATCTGCC
 103921 CGCCCTGGCC TCCCCAAAGTG TTGGGATTAC AGGCATCAGC CACCGTGCAGC AGCCAGGAGC
 103981 AGATTTTTT ACACCATGTT TTCTTTTCC TTCTGTCATC CTGTTTCAGT ATAAGCAGAC
 104041 CACAGATAGA AGTAGTAGAT ACCTCAGAAA TTCCTGGAAT AATTAATCCA CGTTCATCTG
 104101 TACTCCATCT GCTCCCTATCT CATGGAATAT AAAAGGAAAA ACACCAAGAT TTCCCTAGGC
 104161 AATCTGTCTT GATTTAGGT TCCTCAACAG GAGAGCCAGA CAATGGCTGT AATAATATTG
 104221 TCCCAGGCAA GGAAAAACTT CCCCTTGCC CTCCCAAGGT TTATGGAAAA TTACTGGCAA
 104281 AACACAGATT AACTGGAGAA AAGGCATATA TATTTATTTT ATCACAAATT TACAGGAGAT
 104341 TTTAGAATTA AGACTGAAAG ATACAGGGGA AATTGCCCCAT TTTTATGCTT AGGTTCAACA
 104401 AGATAAACAG CTGTATAGGG TACGATCTAA TGCTAACAGA CTGAGTGGGG AAGCCCCGCA
 104461 AGGCTTGTCT GTCAAGATT TCCTTGACCT CTCAGTGCAG CATTCTTCC TTCTGGTTAT
 104521 AGGACAAGAC TCTCTTTAG AATGGGGGGT CTTATGACCT ACAGGCAAAC AAGGTAGGTT
 104581 AGAGTAATAT TTTTAGGTT TATGGCTGGT TCTAGGGAAA AGGAGTTCTG GTTTGTATGG
 104641 CCTACCTTGA GGAGGAATTC TGTTTCTAT GGCTAGACTT TGGGGAGAAT GGGACTTACA
 104701 GACAGGAAGG CAGAAGGTGG TCAGTGAAC ACTTTTATAA TCATAATCCC ATTTTGAGTA
 104761 TTCTGTGTT ATGGAATGTT TGTTCTCTA TTCTCTGAAA GATTCCAGAG ACTCCTCATT
 104821 CAGTGTGTTG AAAAGTTCA GGAAATGCAA CTCAAAAATG TGCCACTTTG TTACGCTGAT
 104881 TTCTTGAAC TGAGGGCACC TAGGAAACAG TAAATTCAAG GAAGGGCTTT CGCTGAAC
 104941 TAATCAAAAAA TTTGAAAATT AAAAAAAAT TCAAAAGGA ATTTAGTTGT TAAGATTCA
 105001 TTCCCTGGGG AATCTCATCA ACCAGAGAAG ATTAACGTGA TCACAGGAGA GGAGACTGGT
 105061 GGTTAACACC ATCTAAACAG ACTTTGTCA AGCTGTCACC TATTCTTGA AACACCCATT
 105121 TATTTTCTC CAAATCATA TACTCTCCCC TAAGTTGCCT ACATCCCCCT TCTTCTCCC
 105181 TTATGAATCA AGAGAGCTTA TAAGCTCTA CAGTCAGTG GGATTTGGGG TATTGCTTT
 105241 TCTTCCCTCC CACTCCCCCT CCCCTTTTT TGTCTTGAG ACACAGTCTT CTGGCTCTGT
 105301 CGCCCACGCT GGAGTGTGGT GGCTCTATGT GAACTCACTG CAACCTCCTC CTCTCGGGTT
 105361 CAAGCGATCC TCCCACCTCA GCTTCTCGAG TAACTGGAAC TACAGGCGTG CACTACCAAG
 105421 CCCGGCTTT TTTTTTCTT TTTCTCCCCC GTTCTTTTT TGTTTATTTT ACTGGAGACA
 105481 GGGTTTCTCC ATGTTGTCCA CGCTGGTCTC GAACGCTGA CCCGCCGTCC TCGGCCTCCC
 105541 AAAGTGTGG TATTACGGGC ATGAGCCACT GCGCCCGATT TGAAGGACCT CTTAAATATC
 105601 TATTTAGAAA TTGGTGGAG TCCACTCCT TCCAAAAACA TGAGTCACAA TCCGGGAAAA
 105661 GCACGAGCGG CTGAAAGTCA AAATAACCA AGACAAACCT CCACTCATGC TTAAAAAAGG
 105721 TATTTTGACA AAATCCTAAT TCGGCCAATT ATTATTAGTA TTCAAGTCGA AGGCTCGTCA
 105781 AGCCAGACTG GGGATTGGGT CAAACATAAA CCTTACACCA GACGGAAGGA TTACATGCAA
 105841 ATGAAGGATG CAGATTCTGA TTCCCATTG GGTATTGAC ATTAGCCAAT GGGAGAATT
 105901 CTCACAGCCT ACCTCCAGTC AGTATAAATA CTTCTCTGCC TTGCGTTCTA ATGTAGTT
 105961 ATTACATTTT CTTGTGGCGA TTTCCCTTC TTATCAGAAG TAGTTATGTC TGGTCGCGGC
 106021 AAACAAGGCG GTAAAGCTCG CGCCAAGGCT AAGACTCGGT CTTCTCGTGC AGGTTTGCAG
 106081 TTCCCTGTGG GCCGAGTGCA CGCCTGTC CGCAAAGGCA ACTACTCCGA GCGCGTCGGG
 106141 GCTGGCGCGC CGGTGTATCT CGCGGGCGGT CTTGAGTAC TGACCGCCGA GATCCTGGAG
 106201 CTGGCGGGCA ATGCGGCCCG CGACAACAAG AAGACCGCA TCATCCCGCG CCACCTGCAA
 106261 TTGGCCATCC GCAATGACGA GGAGCTTAAT AAACTTTTGG GGC GTGTGAC CATCGCGCAG
 106321 GGTGGCGTT TGCTTAATAT TCAGGCGGTG CTGCTGCCA AGAAAACGTGA GAGCCATCAT
 106381 AAGGCCAAGG GAAAGTGAAG AGTTAACGCT TCATGCACTG CTGTTTTCT GTCAGCAGAC
 106441 AAAATCAGCC TAACAGCAA GGCTCTTTT AGGCCACCT ACGACTTCCA TTAAATGAGC
 106501 TGGTTGTCTT TGGATTATGC CGCCCATAAA GATGTTTTG AGGTGTTTTT AATGGCTTT
 106561 AGTGTGGCAC TTTTAGTAAT TTGCTCTGCA GAAATTAGAT CCATAGAAAC CTCAGGAATT
 106621 CTAGGTATGT GGGAGAAGTG CCATGCAGCA CAAACATGT TTACAGGGT GATTGCGGTT
 106681 AAGTTTCACA CACAGCAGTT ACTACATTT AGAGGAAGGA AATTATACCC ATGAGTGCAT
 106741 TCCTAACTAT CTTGAATGGA AGTGTAAAA CCCGATGCC CCACACAGT TTGAATATGT
 106801 CATAACATTGAA GCTGTAGCAA TTAATGGCAT ACACAATTGA GAGCACACAC ATTACCACTG
 106861 AACATTTGAG TATGTATTTC CCAAAATGAG CTTTTTCCA GTTTGGGGAT GTTTGCTTT

Figure 9 (Page 33 of 74)

122/162

106921 GTTTTGGGGT GGAGTCTCCC TCTCGCCAA GCTGGAGTGC AGCGGCGTGA TAACAGCTCA
 106981 CTGTAACCTC GAACTCGGGC TCAAGCGATC CTCTTGACAG CCTTCTGAGT AGCTGGGATT
 107041 ACAGGCAGA GCCGCCACGC CGGGCTAAGA GCATTTTCT AATTGCCAC ACTTCTTATG
 107101 CGACACCCAG AAAAATACAA TTTAAATAA AGGCATATG CAAATTCCC TAATCGTC
 107161 CAATATTCTC TGATTCTTT TTATATTT AACTAGAAC AATTGGAGGT TTCCGCGTTG
 107221 CTTTGTGTGG TTGTAATTT TAAGACTTCA GGAAACTTTT CCAGTACAAG ACTTGTCCAC
 107281 AGTGGATATA GCAGCTAAGG GGTTAACAAA ATGACGTCAG AGTAGCTACG GTAATGGCA
 107341 GGAGCCTCTC TTAATCTGCA ACCAGGCACA GAGATGGACC AATCCAAGAA GGGCGCGGGG
 107401 ATTTTGAAAT TTTCTGGGT CCAATAGTTG GTGGTCTGAC TCTATAAAAG AAGAGTAGCT
 107461 CTTTCCCTTC CTCCACAGAC GTCTCTGCG GCAAGCTTTT CTGTGGTTT GCCATGGCTC
 107521 GTACTAAACA GACAGCTCGG AAATCCACCG GCGGTAAAGC GCCACCGAAG CAGCTGGCTA
 107581 CCAAGGCTGC TCGCAAGAGC GCGCCGGCTA CGGGCGCGT GAAAAAGCCT CACCGTTACC
 107641 GCCCGGGCAC TGTGGCTCTG CGCGAGATCC GCGCTACCA AAAGTCGACC GAGTTGCTGA
 107701 TTCGGAAGCT GCCGTTCCAG CGCCTGGTGC GAGAAATCGC CCAAGACTTC AAGACCGATC
 107761 TTCGCTTCCA GAGCTCTGCG GTGATGGCGC TGCAGGAGGC TTGTGAGGCC TACTTGGTAG
 107821 GGCTCTTGA GGACACAAAC CTTTGCCTCA TCCATGCTAA GCGAGTGACT ATTATGCCA
 107881 AAGACATCCA GCTCGCTCGC CGCATTGCG GAGAAAGAGC GTAAATGTAA AGTTACTTT
 107941 TCATCAGTCT TAAAACCAA AGGCTCTTT CAGAGCCACC CACTTATTCC AACGAAAGTA
 108001 GCTGTGATAA TTTTTGTTG TCTTAACAGA ACAAAATTCT AAGGACCCCC CCGGAAAGCA
 108061 TTAGACTATG GTCTTAAAGT TGATTAACAG AAATAACGGT TTGGTCAGTC TTGCAGTGT
 108121 GGTTATTTCT GACCTTATTA AGGTGCTATT TGGAGAGAAG CTGTGTAAGT CCACTATCAT
 108181 TCAGGCCTCT AGCTTGCTAT GATTAGCATT TGTTAACACA ACTTTGTAAG AGTAAGGGAA
 108241 AAATCTGGTA AGTAGTTAAC TGGCGCTTAC TAGGCATTT TGCAAGCTT TGAAAAGATT
 108301 AGAAAATTGT GTCTTGCAG TTCCAGTGTCTC TTCTCAAAA TGCTTAGGAA GATTTCTCA
 108361 GCTCAATACA TAGTCCCTA GGTTTCTCA TATATTATAT ATATATATAT ATATATATAT
 108421 ATATATATAT ATATACTGTT AAATTCACTT GGCTGTTAAC ATTAACCTGA AATTATTCT
 108481 GGTGCAAAT GTGAGGCAGG GATCTAACTG GCTCTCATT TATCCATAGC TAGCTACCCA
 108541 CTTTAAATCT GTCAGTCTGT CGACCAAGCA TAATTTAAC CTTTATATAT GAATTTTAT
 108601 ATGTGTGGCT TTGCTTGTAA ATAGTCTATC TGTTGCATT GCTTTGTCTC CTCTAGGACT
 108661 ATGCACCATG ACATGCCACA TTCTTTTTT CAGTACTTCT TGCTGTAGT TATTAAAATC
 108721 TAGAATTTCAC AAGTTTAAC CATTTCCTT CTGTTGATCT TGCTTTCGG TTTTGGAGGT
 108781 TGGGGATTCA GTACTGGAAG AAAATTAGA GGGATGGAA TACTGTACGC AAACAAAAGT
 108841 AATATTTCATC TTAAAATTT TATATTGTT ATTTCATAT CATATAGCT TTACATCACA
 108901 TTTTACAGAC TAACTTACA ACAACCACAG AATGTCCAAC ATTAAAACCA CTAATTCCAA
 108961 AGACCTTGCC TCACATTCTT TTTTACAATA AATATTTTT ACACCTAACAA TTCTTTCTTG
 109021 GCCTACATCT AGAATGTAAA CTGATGTACC ATACTAAAAT CGCCTGACCA ACTGTCAACA
 109081 ACAACAAATC ACACACACAA AAGATCAAAT TTGAAATTGCA TCGTTTACTT AAATTCACTT
 109141 GTGTTCCAGC TTTTAAATAAG GCAGTTTTG GTTATAAAAG TAATATTGCA ATTTCATTT
 109201 TTATGAAAAT GAATATGTCA GTTGTGTTA TGATTCGTTT TTCTTGACTC TTATACAAGC
 109261 GACTCTAACT GGCATAGACA TTTGTTATCC ACAGACAGTA TAGATATGTT AGAGATGCCA
 109321 ATGGACTTGG TCTATGCCAA GGTGACTACT CACAAGCTCT GGGCCCGACT GAAGGTCAAG
 109381 TATTTTTTTT CCAGTTATAG ATGTGCTGGA TCTGATGTAT AGCGCTTGAC TTTTATATT
 109441 TTCTTTATCT GTAGGAAACA AATGTGTTGG AGGTACTGGG TCTGACGAAT AGCATAAAAG
 109501 AATAAAGTTA CATTACTGTC TGAGGATCAG ATGGACAGGG GGTGGTAGCT CAGTCCAGCT
 109561 ATTTCCACT CCCTCACTTA CATTCTTGC CCCCTCCTCA ACAGAACAAAG GATTCTGCTG
 109621 TAACTCTCA TTGACAGTTG ATATTTAAA ATTAACGAAT GGATGAAATT CTCATTTGTG
 109681 AAAGAAAATT TATTGAGCAT TTGTATTTG TGAGTAGTGC AAACATTTA ATATTATATT
 109741 AAGAATCTAT TGTTTGTAT TAGAGGAGTA ATTAAGGAGA GATTGGAGAC AAAAGGGGG
 109801 TGTTGTTGC AGAATATACC ATCCAAAAT AGACCACTGT GGGATCAGGA TTCTTTGAG
 109861 CTAAAGGCAC TTCAAAACAA GCATTCAAGA AGGAAATTCT TCTAAACTTT TCTTTCTGAA
 109921 AACAGGAGAT AAAAGTTCCA ATGTGAAAAA TGCTCTGCTT GTACCAGGT AAAAGACATA
 109981 TTCTTCAGCC CAGAGGCATA GATGAGATAA TTCTGCACAA ACACAGCAGG GAGTCATAGC
 110041 CGAGAGACTT CTATACACAA ACAAAACCTTG TTAAAATAAT CATATATTCC TTTAATCTCC
 110101 TCATATGGTT TACTTCCCA CAATTGCCTC TCTTTAACTT AATGTGAAAG CATTAGCTT

Figure 9 (Page 34 of 74)

123 / 162

110161 TTGCCATTTC TTTGGGGCTT CACTTTTTA TGAGGGTTCT CCTGTCCCAT AAAATTTACA
 110221 TTAAATACAT TTGTATGCTT TCATTCTGCT AATCTGTTT ATGGCAAATG AATTATCAGG
 110281 TCCAGCTGGA GACCTAACAA GAGTAGAGGT AAAATTTGC CTCCCTACAA GATAGAGATT
 110341 GTGTGCATTA AATGTTGTTT GTTCCCAGTT GTTCAGTTG TCAGGCTCT GAGCCGAAGC
 110401 TAAGCCATCA TATCCCCTGT GAACTGCACG TATGCCTCTA GATGGCCTGA AGTAACTGAA
 110461 GAAACACAAA AGAAGTGAAA ATGCCCTGTT CCTGCCTTAA CTGATGACAT TACCTTGTA
 110521 AATTCCCTCT CCTGGCTCAT CCGACTCAA AAGCTCCCCC ACTGAGCACC TTGTGACCCC
 110581 CACCCCTGCC AGCCAGAGAA CAACCCCTT TGACTGTAAT TTTCCACTAT CTACCCAAAT
 110641 CTTATAAAAC GGACCCACCC CATCTCCCT CGCTGACTCT TTTCGGACTC AGCCCGCCTG
 110701 CACCCAGGTA GAATAAACAG CCTTGTGCT CACACAAACC CTGTTGATG GTCTCTTCAC
 110761 ACGGACGCCG CTGAAACAGT TTAACAGGGT TTTTCCTGCC CAGTCACAAAC AAAGTGATGT
 110821 TATGCTGCAG GCTGAAGTTT ACAGCTAATG CTGTTGAAGT CTAAAATCAG TTTTGGTTG
 110881 TTAGATTTGG GTGAGATGGC TAAGATTCTC AGAGAAAGAA GTCAAGTTG GGGTGCATT
 110941 TTCAGACTTA AAAATTTAGC AGTAGCCCT GCAGTTTTTC CAATAGAAAGT GATTTACGAA
 111001 TGTTTCAGG AAATTTAAAAA CAACAGTGAG AAGCGTGTAT GGAGAGTTGA ACTACACTCC
 111061 AGACTTGGCT ATAGGAAAGC ACGAATGCTG CTATTGTATT GCACCTTGGA AAAGAGAAACA
 111121 AAGGAATATT TTCGACAAAT TTTAACATGT CACATATGAA AAGCTAAACG GAATCTGTCA
 111181 ACACCTTGTG CGTTATTACA GGCTGTGATT TTAAAAAAAC AATCCTTACT AATACATACA
 111241 TAGTTGCTGC TAGCAATATA GTGTTGGAG TAAAAACACG AAAATGAGAG TTCAGGACAA
 111301 TATCCCAACT CTGAGCAGAT TTTTTAAGT AGTAACATCT AAAATTAAAC CATATTATGT
 111361 AATATTTATT TCTTTTCCAC AGTCTCTCT CATGCCTCGT TCACATTAGC TAATTAAAAG
 111421 TCCCCCTGAGT ATCATCATAA CCCGATTAC AGATGAAGGC ACGGTTGCAA TGAGCTATCA
 111481 CCCTCTTCTG AATGAGACAG TACAGTGTGA AGGATAGCAA AACTCCACTC CCATCCTCTT
 111541 AGGGCTCTGG CTGGACCAGC AAATTAATT AATGAAAAT GGATTAACAG GAGAAAGGTA
 111601 TATGCATTAA TTTAACACAG GTTTTACGTG ACACAGGTGC TCTCATAAGG TAATGAAAGC
 111661 CCAAAAAAAG CAGTTAGCTA CTTATATAAT GAATTGGACA ATTAGAAAA TGAAAAATG
 111721 CGCTAAAGCA AAGGGATTAA GGCTAGAATA TATAACTGTG TAGAGAAGCG CCCAGCAAGG
 111781 GCTAGTGCAA GGTTTGTACA GAATTCTCTT GCCCTCAGCC TCCTATCCTT GAGAAGAATG
 111841 TTGCTTTTT TAAACTACAG TGAGAACATC TTTCATATGA GAATTTCACC TACTGCTTCT
 111901 AAGAAACAGG TCAGCTTCA AGAAAACATA AGGCCAGAGT GATCTTTCA CGCCTGCTCT
 111961 TTTAAGTACC TTTGAATAGT CAATATGTCT TCAAGCACTT GAAAGACTTA AAAAGTTAC
 112021 CACTCCGGCA TATTAGTGAA AGCCCTTAAT ATAAGCCCTT ATTAAAATTC TCAGTCGAGG
 112081 GTATAAAATT AGATTCAAAT AGTAGTGTG TAAACGGGAG GGAAAAACTA AAGGGATTAA
 112141 AAAGTAAAC TATTGTGTT CCCCCTCGCAG TCCTTAGGTC ACTGCCCCCTC GAGGGCGGAA
 112201 GCAAAAAGTG AGGCAGCAAC GCCTCCTTAT CCTCGCTCCC GCTTTCAGTT CTCATAAAGG
 112261 TCCGATGTTG GTGTATAAAT GCTCGTGGCT TGCTTTCTTT TCGCGTACCT GGTTTTTGTT
 112321 GTCAGCTGGT TAGACATGTC TGGTCGCGGC AAAGGCGGTA AAGGTTGGG TAAGGGAGGT
 112381 GCTAAGCGTC ACCGAAAAGT GCTCGGGGAT AACATCCAAG GCATCACCAA ACCGGCCATT
 112441 CGGCGCTTG CTAGGCCTGG TGGGGTTAAG CGAATTTCGG GTTTGATTAA TGAGGAGACT
 112501 CGTGGCGTT TCAAGGTGTT TCTGGAGAAC GTGATCCGGG ACGCCGTGAC CTACACGGAG
 112561 CACGCCAAGC GCAAGACTGT CACTGCCATG GATGTGGTTT ACGCGCTCAA GCGTCAAGGA
 112621 CGCACTCTGT ACGGCTTCGG CGGTTAAC TTTCGTCAGT TTTCTTCCAA TGGCCCTTTT
 112681 TAGGGCGGCC CACTCCCTCT CAGAAAGAGC TGTGATTGTA TTCTTCGGA TGGTAACATC
 112741 TCAATGGCTT TACTCGGCTA TTCTGCCTAG TATGTTAGAAC TATTATAAAC CAGTTGGAG
 112801 AGACCAGGTT GTTGGTCTG AGTGGCTGCT AAAGCAGAAA TCAGCTAAGT AAACGAGGTC
 112861 TCCGAGATAA GTGAGCTATA AACTTCAATG CTATAGTTT GACATGTCAA GCAACTTAAC
 112921 GTGCAGCGCG AGTCCGATAA ATGAGTAGCT CAGCTTTTTA GTTTAAAAAA CGAGTTGTGC
 112981 GTTATTGTA CGAGAGCCTA AGATGCTAGC TGCCTGGAAC TGAGTAGGTG GATTAAAATG
 113041 GGTGTCAGGT CTGTTTCCC AGGCGTATCT GACTTAACGT CAGCAAAAGC TGTACTTTA
 113101 GCTTCCCTGG TAACACCTGC CGTCCTTAAC CGCCCCCTGC CGGTAGCGCC AGAAGCCTTT
 113161 ACTTCCATT TCTAGTTGAGC TTGGCGTCT GCTGAGTGAC GTCACCTCCC CCTTCTGTGG
 113221 AGTAGGACTG CGGGTTAAAG CTGCTTGTCT ATTTCAGTC CTCAGGCTGG AGGCTCCCT
 113281 AAGCAGGCTG CCTACGCAGT TCGTAAATTC CCACCTAGTA GACTAAGGAA GTCTGTTTA
 113341 TAAATAAGGA CTCAAATTTC TTCTGACTCC GAGGTCCGTG GCAGCAGCTA TAAGATGGAA

Figure 9 (Page 35 of 74)

124/162

113401 GCCCCCTCTG ATGTAAGATT CTCAGATGAC TTGCATCTTC ACTGTACCTG TCAACCCAAT
 113461 AGTCTTCTAT TCCTGCCTTA AATTGTAAT TCCAAAATG ATTAAATTGT GAAAGTTCA
 113521 AACTGTACGA CCTAGGAAGT GTCAAAGTTA GGTGACCAGA TTTTTAGAAG TCAGCCAAAT
 113581 ATTCAGCATC TTTGATTTAG TAACAAATAT ATTGATGGCT ACTTCAGCAA AAAAATCAA
 113641 CTTTGTTTTC TGGTTACTTT GCTAACAAAGC TTCTCCTGAC AGGAGGATAT AGTGAATAGG
 113701 CAGTTGAATA AGTGAGTTCG GGTGAGAGGT CTGAGCTGGA GATAAAAATG TGTGAGTCAT
 113761 CAGCAGATAA ATAAAATGCTG AGACCAGATG AGATGGCTAA AAACGTAAAC ATAATGTAGT
 113821 GCAGCATTGT TTGTAATAGT AAATGAGTGG CAACGTAAA GTTTCATCA GAAAGGACTA
 113881 GAGTGATCTA TACATCCATA AAATAGAGTA TTTCTCTACA CAGCCCTACT AAAGAATGAG
 113941 AAAGCTGTAC TCCACTACAT ACTCTGGTGT ACTCTGGCTC AGTTCTTGGG CTCCTCTTTT
 114001 CTTGGCTAAC TCAACTGGCC TCACCACTTA CATGCTCTGT GCTCTGTCAA ATAGTTGTT
 114061 CAACAGAACCA CCACGGGCTA GCTGTAAGTG CCACGTTAAC TTCTAGCAAT GCCAAAGCCT
 114121 GTGATAGTGG CAGCTTCGGG CTGTTTCTCA TTCCCGGGAT GCCTAACAC CTCTCCAAAT
 114181 TCTATCAGTT TGCTTCCACC CACTTCAAGC TTCAGAACGA AACATAGAGC TTAAGAAATA
 114241 TAGGCCCGGC AAGGTGGCTC ACGCCTGTAA TCCCAGGCACT TTGGAAAGCT GAGCCTGGTG
 114301 GATCACCTGG GGTCAGGGGT TCGAGACAG CCTGGCCAAT ATTGTGAAAC CCCGTCTCTA
 114361 CTAAAAAAA AAAAAAATTA GCTGGGCATG GTTGCAGGGCG ACTGTAATCC AAGCTACTCG
 114421 GGAGGGTGGAG ACAGGAGAAT AGCTTGAAC CGGGAGGCAG AAGTTGCAGT GAGTTGAGAT
 114481 CGCGCTTATT CACTTAGGCC TGGGAGACAA GAGTGAAACT GTGTCTCTAA ATAAGTGT
 114541 GCAATTATAA ACCATCTCCC TGACCTTAA TCTCTAGACT CATATACAAC TGCATATTG
 114601 ATGTATCTAA TTGAATAATG GGCATCTCGA ACTTGTCCAA AATATGTTA TACGTAAACA
 114661 CCAAGTCTGT TCTTCTCTG ATATTTGTCA TGTCAATCAA TAGAACTCCA TTCTTCAAGC
 114721 AGCTTGGGCC AGGAATTGTG CAATATTGTT TGTCTGAGC TTCTTACAAC TTTCACCCAA
 114781 TGCAGTCAGC TCTGTTGAAA ATCAATCAGA ATACCTTCA TTGTTTCTT TGCTGCTTCT
 114841 CTAGGAGCAA GCTGCCATGG CGGTTTGTCT GAATGACCAC AGTGAACCCCA AACTGGTCTT
 114901 TGTTTCACT TTTAATCCCC CTGTCATACA GTTTTCTCT ATCCAGCATE AACAGTGTAC
 114961 CTTTTGAAAG GTATTATGTC CACTGTCCTGC TGAAAAGATT CCACTGGCTT TCCATCACCT
 115021 TCATAATAAA AACCAGCATC CTTATCATAG CCTACAAGTA AGATGACCAA CCATTACAGT
 115081 TTGCCTGACT CTCAGGGTT TCTCAGGGTG TAAGACTTAC AGTGTGAAA CTTAGAAAAGT
 115141 TCCAAGCAAA CTAGGATGAG CTGCTCAACC TACTAGATCT GTACTCTGGC TACCCCTCTGA
 115201 CCTCATTCTC TTGCGAGTTC TTTCTCTCA CTGACCTTGC TGTTCTGGA ATGGACCAAG
 115261 CATTTCAGC ATCAGCACCT TTATATCTAT TCTTCTCCC TAGAAGGGTC TTGTCTGGA
 115321 TATCTGAATG GCTCTAGATC TCATTTCACTT CAAGCCTCTC CTAAATACCAACCTTAAGA
 115381 AAGAGACCTC CCATAATCAT CCCTTGTAAA ATAAGCTTT CTGCTCATT AGCATATATA
 115441 TATATAGTTG ACTATCCTCA ATAGCATATA TATATAACAT TTCCCCACCT AGAATTATAT
 115501 ATGTAATAAT ATATTTAACAA AAAAATACAT ATAACTAGAT ATATTTATT TTGTGTTGTT
 115561 TCTCTCTCCC CCAACTGGAA TATATTTTT GAAGGTAGGG ACTTTGTTT GTCCCAGAAG
 115621 TATCCCTAGC ACCTTGAACA GGGCTGACGT TTAACAGGTA GTTATGGAG GTTGTGAA
 115681 TGAAAGGATG TGTGAATT TTCTATGTAAGT CTCCAGGCTC TCCACTAACG CCACCAGAAT
 115741 GCTAACACAA TCAATTCCCC ATCTCATCC TTGACCTGCC ACTGCCTGAA GCAATCAGCG
 115801 TGCAGTTCT CTTAGAAAAA TCTGGGGAT AGTCTAGGGG TTGCAAATTA AGCAACATTA
 115861 TCTTTGTTCT GAACAAGGAC TGCTGAGTG TTAGGACTGA AGAAGGCCA AGGTGGTGGT
 115921 GGGTATGCCT AAGATGAGTA TGACATATCA GCAATGCTAT GAACATAGCA ATGCTATGAA
 115981 AGGCCAGGCA AAACGTAACA GGAGCTAGTC GTGGCTTATT GTTACAACGA CTATACCTCC
 116041 CATATGGGTAA ATCGATATCC ACACACCCCT CTACATTGAC TCTGGAATTCA AGGAAAGGGA
 116101 ATAAAATTT TCTAACTTAT GTACCCCAAT GATTCAACA ATATCTGGCA TATGAGATCA
 116161 ATAAATATCT TTAAAATACC AACTAAGAAA GACATAAAAT GACCCACCC CTATACCAAGG
 116221 CTCATTTTG CTCCTCTGAT TCCTGAAACT ATCCAGAAATG CAGCTATGAA TTCTCTCCAT
 116281 TGTCAGTTT AAATTAAGCC AAGCTGGTA CTTGTTGTAAT TCCTCAAGAA ATCCTGGATG
 116341 AAAACTGTCA GGTGGAAAAG AGGACCTCAA AATAAAGAGA CATCCATCAC TGAAGCTAAC
 116401 ATCGTGAGGGC TGAAATCAGT CCTATAACAA TGGTACCAA AAGAGCACAA TGAGAGGCAT
 116461 TTGTGAATAT TTACTCAGAT GAGAGTAAGA TATTTCCTA TCAGCTAAC TGAAGTTCAC
 116521 ATCCCTTTTC CAGCTGAGTT CTGAGCTAG ATGTAATCAA CTGGAACACAA TAACTGCATC
 116581 AGGAACATCC TTTAAAACCA TGGCTACAAT GGCTTGACTG GACAAACCCCA AGGCTTCCAG

Figure 9 (Page 36 of 74)

116641 GTTTAGCACA GGTGGCCCTT CACAGACCAA CATTGCCTAT GCTACCAACC TCATGTCCTA
 116701 CCACCCCTGCT TGCATCATTT CTCTCTCTGC ATATATAAAA ATATATGTGT ATGTATATAAA
 116761 TCAGCTTAT TGATATTAA TATACCACAA AATTGCCCCA CTTTAGGTAC AGTTCAATGA
 116821 ATTTTACCGT GTTTCTTAG TTGTACAACC ATCATCACAA TTTAATTTCG GAATATTCT
 116881 ATCACCCAAA TTTCCATTTC TGCCTAAAGG GGGAAAAAAA AAGGTTAACT GCTGAAGGCC
 116941 GCGGTAACAC TGAAAAAGGT GCCTTTCTC TCTAAAACAG ATTTTAATCT CCCCTGAATT
 117001 TAGTGTCTG GGTATTCAG GAGTCTGAAT AGGGTTCAA TTTTCAGGGT CTTTTAATA
 117061 GAGTAAAACG GTATTGGTGG CGATAAATT AGTATTGCTC TCAGTACATG ATTGAGGGAT
 117121 ACTTAAATGT CTCTGTGATT TTATTCATA ATCGCTAAAA GATGGTTTT TTTTTCTA
 117181 AACAGGGTT TTTGTTTTT CTCATAAACG TTCTTAGCTT CCCCTCCGGC TCCCTGGCTT
 117241 GCCTCAGGAA ATATTAGCTC ATCAGTTCTG ATTGGTTGAC AGCTACGAAT GCCCCTCATT
 117301 GATTGGGCAG CGCTCTTTG TCCCTGGAA ACTAATACAA ATTTTTAACCA CTACTTTTT
 117361 TCCACTCTT CTTCAGAGTT GGAATATCGT TGCTCCCCTA CCCATATGTA GTGAGTGGAG
 117421 GGCAAACCTG GAGTTCCCT AATCTTCCT TTTTAGGATG TCAGCTCAGT ATCATTCACT
 117481 TTAATTACAC ATTGAGCTTC TTGACTTAAT GGATACAGCT CTTCTTTGT TTAGTTGGGC
 117541 GCCCCTGAAA AGGGCCTTTG GTTCAGAAAT GCAAGCTGTG GAGAAATCAG CAACCTTAAC
 117601 CGCCAAAGCC ATAAAGGGTG CGTCCCTGGC GCTTAAGCGC GTAGACCACG TCCATGGCAG
 117661 TGACTGTCTT GCGCTGGCG TGCTCCGTAT AGGTGACAGC GTCACGGATC ACGTTCTCCA
 117721 AAAACACCTT GAGCACCCCCG CGAGTCTCCT CGTAGATCAG ACCAGAGATC CGCTTCACAC
 117781 CGCCACGCCG GGCCAGACGC CGGATGGCCG GCTTGGTGT GCCCTGGATG TTGTCACGCA
 117841 ACACCTTGCG GTGGCGCTTG GCACCCCCCT TACCCAAACC CTTCCGCCG TTACACGTC
 117901 CAGACATGAC TTCCCAAGAA GTGAACCAAG AGCAAGTGAG AGAATAGGAA ACCGATCTT
 117961 ATATATCTAC GTTACCCCTG CCCCCCACCTC CAGCGGACAC AGAGACTGAA AAGCGCGCAG
 118021 GCGGGAAATG TGACGCCTAC AGTCCGCTCC TTTAACCCCT CCTCCAAGCC CCAGGAAATG
 118081 GCGGGAGCAG CGATTGGGG AGGGTGGGAG GATGAGGGTG GGACCAAGCA GGCTTGACCA
 118141 ATGGCCTTTA TTTTCTTAAC AGAGCTACAG GCTTTGAGGA ACTGGTTAA GAATTAAATG
 118201 TAAACCCATT CTGACTCCAG AATTATTTA AGTCGAACCTT TTTTTTTAAC CGAATCTCTC
 118261 TGTCGCCAG ACTGGAGTAC ATTAGAGCCA TCTCGATTCA CTGAAACCTC TGCCCTCTCAG
 118321 GTTCAAGTGT TTCTCCTGCC TCAGCCTTCA GAGTGTACCT GGGATTACAA GCGCTCGCCG
 118381 TCGCGCCCG CGTGTGTTTG TATTTTCGT AGAGACGGGA TTCGGCCATG TTGGCCAGGC
 118441 TGATCCCGAA CTCCTGATTT CTGGTAATCC GCCCCCTCA GCCTCTAAA GTGCTTGAAT
 118501 TACAGGCGTG AGTCACCGCG ACCGGCCGAA ATCGATTGGT TTTGAAGCCT TCAGTAGCAT
 118561 TAAAACGAAA AGTGTCCCCA ATGCATTCCC TTTGTCTTA AATTGGTTTC TTACAGCTAC
 118621 TTTACTTGAA AAGGTGGTGG CTCTGAAAAG AGCCTTGTG TGGACCGTCA GAGAGACCAC
 118681 AGTAATCAGC CCCTCTCTCC CGGGATGCGG CGGGCGAGCT GGATGTCCTT GGGCATGATA
 118741 GTGACGCGCT TGGCGTGGAT GGCACAGG TTAGTGTCTT CAAATAGCCC TACCAAGTAG
 118801 GCCTCGCAGC CCTCTGCAG AGCCATCACA GCGGAGCTCT GGAAACCGAG GTCTGTTTA
 118861 AAGTCCTCGC CAATCTCGCG CACCAGGCGC TGGAAAGGTA GTTTACCAAT AAGCAGTTCA
 118921 GTGGACTTCT GATAACGGCG GATCTCGCGC AGAGCCACGG TGCCCGCCG GTAGCGGTGG
 118981 GGCTTTTCG CGCCGCCGGT GGCGGAGCG CTTTGCAGGG CTGCCTTAGT GGCCAACGTG
 119041 TTGGGTGGCG CCTTGCACC AGTAGACTTC CGAGCAGTT GCTTAGTGCAG ACCATGACG
 119101 GAAAAACAGC ACAGCGGAAC ACCAACACT AGCCAAATA CGCCCATGAG CTGCTCTATT
 119161 TATAGTGTGT AAAGTGCAGT GATTGGATGA TAGAAGACGC TAAATATGAC GTTACACACT
 119221 CTGATTGGTC TATCTTAAG CCAGCAACAA TCGTGCAGTT TCACCGCTA CTATATTCTA
 119281 TTCCAACCTC ACAGATGATT ATTAAAGTGG TATTTTATTA CTACTATTAT TTATTTTAC
 119341 TTTTGCTTTG TCCCCAAGC TGGCTTAAA CTTGGGCTCA AAAGATCTTC CGGCCTCAGC
 119401 ATCCAGAGTA GCTGGGATTA CAGGGGAGCC CCACTGCGCC GGCTTGACT TTAATTTTT
 119461 AAACTTGTCC TCTTCTACAT CTGGTTTCA TAACCTGAAG GCTGTGTTA TTTCCATAA
 119521 AACAAAGGCAT TGATTCCAAA GGTATTATAA TCCCCAATT CCGTATAACC TTCACTCTT
 119581 TAGGAAAAAA AAAAAAAA AAAAAAGAGG GAATACTGCT CACCTCTCT CCGGAAATGT
 119641 ACCCTTACG GGAATTCTG AAACCTTCA CAAGAATTGG ATTCCTTGT AATGCTTTAA
 119701 TTGACTTAGG AGTGTATTG AAATCTACAA AGCATCTCAA ACATAGTAGG ATTACACTAT
 119761 TACTCAGAAA CATTTCTAT GAGACGTCTT TCTCTTGATT ATGCTCTTG AATCCTAAAC
 119821 TTGCAGCGTT CTGCAGCTT TGTTTCTAA AGCCTAGGTG TACTCTGCCA GTCACAAAAT

Figure 9 (Page 37 of 74)

126/162

119881 GGCAGGTAC ACCAGCTGGG AGTTGTTCC CTTGCGGAGC
 119941 AGGAGGTGGA CTTGCCCAA GAGAAACTGG ATAGTGGTC GCAAGGAACA TAATTTAGCA
 120001 TTGCCAAGAG CTAATGCAAT CATTGAAA ATCTAAAAC ACTGAAAAGT GGATTGTGAC
 120061 CTTTTAAAT TCACAAGAGA CAGGCCACAT TCTATCTTT GATTGGTTA GGCTATTTTC
 120121 TTGAACAGCC ATTTAGAAAG CAGATCTATC ATCCTTCATT TGCAATGGAGC GTTCCCATT
 120181 TATTTGAAAC CAGTTAACCC CAATAGAAAA AAGGGAGGCA GAACCCATTA TTTAAAGTGG
 120241 AAACTCTGA ATCAGATAAT TAGGAGTATT TCCTTTCAA AAGTTGCGTT TTTTCAGATA
 120301 CCTCGCTTAT TACACTAAGA AAGGTTATA TCTTCACAA AGGGTTACT TACAAAAATC
 120361 TTCCAATTGT GTATACCTGT GTTCATTAAC TGACTAGCCG TCAAACCAAG ATGTAGAGTT
 120421 TCCAACCCTT ATTTCACAAA TTTTAGAAA TTACGTGAAA TATTTGAATG CATGCCTTCT
 120481 CAATAAAATG GGACGTAGGA AGCACTGGTG CAGAAGATGG GTACAATACT TATCTGGGAC
 120541 CACTCCATTA TTTGGTTGGC ACGTTGTTG AAGAAAAAGG GGAAAAGCTC AGGTTACTTA
 120601 GCATGGTTCG GACTTATTG AAAACTACCA CAGCAGGAGC GGAAATAAGA CCGCATTACC
 120661 TCACTCTCTG CTGTGCTGTG CTAGGGGGTT ATCCAGAATA GGATTGTAGA AGTGGATGTC
 120721 GATTTAATAG TTTTTTATTG TCCCATTAGC TGAGTCTCTG ATTGGCAATG TGAGATCGTT
 120781 TTAGCTTATT GATACTTGA AATGCACTTA ACAGCCACAA ACAAGTTAAA GGGTTGTTAC
 120841 CATAAAATCT TATCCCCAGG GTGTGCTTG ATTATCACC CGTGTGTTGCT TTCACACTAA
 120901 GTGGACTTAA CTCCCCAGCA GAATGCCTGT CAGGGAACCG GTTCTGTGGA CCCAGCATTT
 120961 AACGCCCTTC GCAGGCTTGT GAGGCCATA AATATTGTT GAATAAAAGA ATGAGTTGAC
 121021 CATGTATGG TGCGCTGATT GCGTGTGCTG ACATGGAACA CAGGTTGTAA ACCTTAATAC
 121081 CAATTGGGG CATGTTGTAT GGATGAAAAG GGCATTGGAA ATTCTGAAG TGCACTCCAC
 121141 ATTGGACTGT GGAAATAAGT TGCAAGTGCA GAAACGTTTC CACACTGCA GTTGTAGTAT
 121201 TAATTGCAGC GTTGTGAAT TCTGGTGTG TCTACGATTG ATTCTGTGTT GACGTGAAAG
 121261 GTATTGCGGA GACACATCGC TCTAAACAT TGCCAGAAAA TGTAATAGAG TTGATGACAA
 121321 CTGGCCCTAA CACGGCCTAA AACTCGCACT TTTCTCTCC TCCGCAACTA TTCAAAACAC
 121381 TGTATTTTAC ATTCTTGCA AATTAAAAAC TAACATCTCT GGCAACGGAC CTCTAAAAT
 121441 TTCTAATAAA ACTCCTCGGA TGCTTGTGGC ACTGCATTG TAAACCGCCC CCTCTCAACC
 121501 TACTCCCTAA AAAAGAGCTG CTTTTGAGA GAGAAGCGGT ACCCTCTGAT GTTACTGGGC
 121561 GGCAGTCTGC CTACAAATTG CTTCACAAATG AGGCAACCAAG AGCGGCTTTT TCTGTGTTG
 121621 TGCTTGCCTT GAGGGGAGCA GGACCATAGG CCCTAGAGGC CCCCAGCTGC CTTCTGAGAC
 121681 TGGCGAACAC CCTCGGCAGC GCGCAGGGGG CGCTAGGGCG CGAGGGGGCGG GCACTGACGG
 121741 GCACCAATCA CGGCGCAGTC CCACCCATA AATAGGCTGC GTTGGGGCCT TTTTTTCGCA
 121801 TCCTGCTTCG TCAGGTTTAT ACCACTTAT TTGGTGTGCT GTGTTAGTCA CCATGTCTGA
 121861 AACAGTGCCT CCCGCCCCCG CCGCTTCTGC TGCTCCTGAG AAACCTTAG CTGGCAAGAA
 121921 GGCAAAGAAA CCTGCTAAGG CTGCAGCAGC CTCCAAGAAA AAACCCGCTG GCCCTTCCGT
 121981 GTCAGAGCTG ATCGTGCAGG CTGCTTCTC CTCTAAGGGAG CGTGGTGGTG TGCGTTGGC
 122041 AGCTCTTAA AAGGCGCTGG CGGCCGAGG CTACGACGTG GAGAAGAACAA ACAGCCGCAT
 122101 TAAGCTGGC ATTAAGAGCC TGGTAAGCAA GGGAACGTTG GTGCAGACAA AGGGTACCGG
 122161 AGCCTCGGGT TCCTTCAAGC TCAACAAGAA GGCGTCCTCC GTGGAAACCA AGCCCGGGCG
 122221 CTCAAAGGTG GCTACAAAAA CTAAGGCAAC GGGTGCATCT AAAAGCTCA AAAAGGCCAC
 122281 GGGGGCTAGC AAAAAGAGCG TCAAGACTCC GAAAAAGGCT AAAAGCCTG CGGCAACAAG
 122341 GAAATCCTCC AAGAATCCAA AAAACCCAA AACTGTAAAG CCCAAGAAAG TAGCTAAAAG
 122401 CCCTGCTAAA GCTAAGGCTG TAAACCCAA GGCGGCCAG GCTAGGGTGA CGAAGCCAAA
 122461 GACTGCCAA CCCAAGAAAG CGGCACCAA GAAAAAGTAA ATTCAAGTTAG AAGTTTCTTC
 122521 TAGTAACCCA ACGGCTCTT TAAGAGCCAC CTACGCAATT CAGGAAAAGA GCTGTAGTAC
 122581 ACAGATGAAA TCCCCCAAGC AAATGCAACA CGCCCTCAAT TATATTAGAA TCACTTGGAG
 122641 AGTCGATAGA ACTTTAACAT AGCCTCATCT AGTAAGAATT TACTACTCAA TCTATCAAAG
 122701 ATAGCAAGGT GAATTCAAAT GCACCGAGTT AAAATCGAGT TTTAAAGTCA CCTGGGTTTC
 122761 GGTAGCCGGA AGTCCCGCGT CTCACGACTC CAAGCTAATT AGTCATAACC GTATTGAACC
 122821 AAGGTTGAAG CCCAGTCCCA GGCTTGAGGC TTTTTATTAT ACAAGGTTAA AGTGGGGATA
 122881 TTGCGTTTGT GGGTCAATAT TGCTAAAGTA GCATTTTCCG AAATTGGGTG GTCCTAAGAA
 122941 ATGCTTCTGG GATAGTTGGC AAAATATATG GCTTAACCAC GCCCTCTCCA CAGGAGTGGC
 123001 TAGCGAGCTG TCTGTCTTG GGAAGGACGG TGACCCCTGCT GGCCTGGCTG GCGCCACGT
 123061 TGGCGTCTC TGAAAGCCCC GCCAGGTAGG CCTAGCTCGC TTGCTTCTG CAGCGCCATC

Figure 9 (Page 38 of 74)

127/162

123121 ATGACAAAGC TTTGAAACGC AAAATGCTTT CTTTGTGCAG CGCCTTACCA TGGGTGCACT
 123181 TACGGGCTGT CGACTTGGTT TAGGCCCTG TCAGGACAAA GGAGCTTAGT TTGTTGGAGT
 123241 TTTAGAGCTG CAACCCAAAA TCCCTTGCTC GGTTTCTCTG TTTTAGAAA CGGAAGCGCC
 123301 CTGATTGGAT ATTTGAAAAT TACTGTGCTT AACTGGATCG TGTTTCATCA ATCGTGCAAGG
 123361 ATTTTCAACC CTGGTGGAGC CCACACATTC AAAACTGAAG ATCCTTTCT CAGAACTGCC
 123421 CCTTTAAGCT TTTGCAATT TAATTCTGGG GGTCAGATT TAATAATTGG ACTTTTTGT
 123481 TTACATCTGA CAAGAGTATA TGATGAGCCA AGTTTACTCA CTTTTACTTA GTGCAGTTCA
 123541 ATTCTAAAAG TTTATTTTG CGTGTGTGCA TATGAGTTAA TAATCAGTTG TATTTTTCAA
 123601 ACGGTCTTT TTCAATTGTT TTGCTTAGCT CCTTCATCG TCTAAAGTC GGGATACAGG
 123661 CACATCACAT CCCTGTTCCC CCTTCCTCAA ACTAATATGT AGCTACCTAG GTTTATCCTT
 123721 TAAAACAAAA ATTCTCACCT ATTTTGTA GAAATATACA TGTTTTCTT TGAACTAAGT
 123781 ATTTTACATA CACCTATCTA TATACATGCA TACTTGTGGT TTTGTTTTT TAAAAAAA
 123841 AAAAAAAA CACGTTATCT TTTGAGACTG GGTCTCAGTC TGTTGCCAG ACTGGACTGC
 123901 AGTGGCATAA TCACAGCACA CTGTAACCTC CAACTCCTGG GCTCAGGCTA TCCTGCAGCC
 123961 TCAGCATCCG GAGTAGCTGG GATTGCATGC ACGCACCACC AAGCCGGCT TTTGTTTTT
 124021 ATTTTTGTG GAGACAGTC CACCATGTTG TCCAAGCTGG TCTAGAAATG GCCTCAAGTG
 124081 ATCATCGACC TCCCCAAAGTG TTGGGATTAC GGTCACTGTG CCTGGCCTT TATGCATAAT
 124141 TGTGTTGTCT TTTGATTAGG GTTATTAAATT TAAAAAACAA AGCCTGGACG CAGTGGCTCA
 124201 CATCTGTAAT CCCAGCACTT TAGGAAGCCG GATGGGCAGA TTACTTGAGC TCAGGAGTT
 124261 AAGACCAGCC TGGGCAACAT GGTGAAATCC CATCTTGACA AAAATACAA AAAATTAGCA
 124321 AGGCCAGTG GCACGCACCT ATAGTCCCAG CTACTTGGG GGTGGGGTG GGAAGATGAC
 124381 TGGAACCTGG GAGGTAGAGG CTGCACTGAG CAGAGATCGT GCCACTGCAC TCAAGCCTAG
 124441 GTGACAGAAAT GAGACCCAGT CTCAAAACAA AAATAATAAA AATTTTTTAC AACGATGTTA
 124501 TATACACTTC TGCATGTTGC TTTTCTCTTA ACCAAACTTT TCTAAAACCC TGTCACTGAAA
 124561 AAAGAAATCC TTCACATGGA ATAGCATAAG TTATTCTATT GATAAGCATT
 124621 GATGTTCCA GTTACCACTG CTGAACATGG TGCAATTGAA TAGAATTCCA GGGCTGAGAT
 124681 TGCTAGGTT TAGGTTGTAT TTATTATT TATTATTAAATT TTTATTATT TAGACAGAGT
 124741 CTTACTCTGT CACCCATGGT GGAGTACAGT GCCATGACCT CAGTTGCAAC CTTTGCCTCC
 124801 TGAGTTCAAG CGATTCTCAT GCCTCCGGTC TCCCAGTAG CTGGGATTAC AGGCACCTGC
 124861 CACCAGGCCT GGCTAATT TTGTATTAA GGAGAGATGG GTTTCACCA TGTTGGCCAG
 124921 ACTGGTCTCA AACTCCTGGC CTCAAGTGT CTGGCCACCT CGGCCTCCCG AAGTGCTGG
 124981 ATTACAGGTG TGAGCCATGG CTCCAGACCT GGACTTTGTC TTCTGTTCA TCAGTCCTTC
 125041 TGTTGGTTCA AGCACAGTAT CACACTGAAG ACTGATGATT CTATATAAT ATGGTAAAGA
 125101 CTGTACACCC TAACTGTTCT TATTTTTAA TTTTAAGGCA ATTTTAGATT CCAGCTTCC
 125161 AAAGAATTGT GGAATGCTTA GAGCTAGAGA AGCCTGGAA GTCATTAGT TTTGTTTTG
 125221 TCAGAGAAAA TTCTGTAGAG ACTCTGTTCT GCTCTCACTG AATACCATCC CATAGTACCC
 125281 CCCAACAGCT TAAAGGGCA ATAATACCT ATGGACAGTA TGCTTTCTT CAAATATATT
 125341 CTAAGCCATG GTCAATGCAA AAGAGTGAGA AGGAAAGTAG AATAAGTTAT CTAAGAATCA
 125401 GTGGGTGCTC TCTTAAACT GATTTATCAC TCCCCCTTCC AACTCTCTT GAAGGTCACT
 125461 CTGCCTCCCT TTCTACATAA GAACTCTAA CTCCAAGGGGA GGAAGGTAAG TTATTCTTAT
 125521 TCCCTGCTTA GAAAAGAGA AAATAGGTT GGTAAAGCATC CGCTTCTGC TACCATCTC
 125581 TGTGTTCTG TGTTTTTAT AGGATCATTC AATTATTGGT TGGCTCTTGA GAGGGAAATGC
 125641 AAGGTTCAAG GACACAAGCC TAGATCTGC CTGTATAGAA CCTCATGATG TTATGCTTCT
 125701 CTAAAATGAG GCCTGGAGGA GACATGTTGA AAGTGACCCA TAAATCTGCA GTATCTCATG
 125761 TCTCTCAATG GGGACAAGGA GTACCAGGG AAATAGCATT AGGTCAATGA CAGTAACAAC
 125821 TCCCAGGTGA GTTGATTAT TCTTTTATT TATAAAGTTGT TAATATGCTA CATAGTCCCT
 125881 AATTTTGCCA CAAATAGTC TTATTTTAAT TTCATATTT ACTATTGATA AATGAAGGAA
 125941 AAAATGAGTA GCAGTTAACG AGTCCATAAA CCTACATATA AAGCAAATG GAGATTTAA
 126001 AATTGATTCT GGATGCTTA AATCCTTCTC ATTGAAAAAA AATTCGTAT TAGAAGATT
 126061 CAACATTCTT TAAACTGAGA AGCATAACAT ATAAACAGAA AACCAAGCA AAACAAAAAT
 126121 GCAAAGCTCA ATAAATGAAC ACAAAAGTGAA CACCATAATA ATTGCCACAC AAGTAAAAAA
 126181 ACAGAAAATC AGCCAACCCCT CCCAGAGCTG CCTGATGCTT GCTTCAGTC ACATTATCAC
 126241 TCCATCTGCC CTAACATAA CCCCTATTGTT GATTCCAAT GCTGTAATT AGTATGCCCTG
 126301 TTTTGAAAC ATATAAAATG GAAATAAAC AAATGTAATC CTATGTACCT GACATATTTC

Figure 9 (Page 39 of 74)

128 / 162

126361 ACTCCAGAAC ATTAGGTTTG AATAGATTCA TCTGTGTTGC TGTGTATAAC TTTAATTCAT
 126421 TTTTATTGTT ATGTAATATT CCATGTTATG AGTGAACAA TTTAGGTGTC TACTGTTGAT
 126481 GCATATTTGC TTCCCTTTT CAGCTAATAT AAACAATACC GTGAATATT CTGTGTATGT
 126541 GTCTGGTAT ATATAGGAAT ACATATTTC TTTGTATACC TAGGAGAGGA ATTGTTGGGT
 126601 CAAATGCTAA ACTCTTTTG AAAGTGGTGA TATTAGGTTT ACATGCGATG AAATGAAAAT
 126661 TAAAACCACA GTTATAAACCA GCATGGATGA ACCTCACAAA CCTAATGTT ATGGAATCTA
 126721 GCTGGGAATT CCTGTTCTTC CATATACTTC CCAATATTTT TTTCCAATTA AAATTGTTAA
 126781 TCTTTGAAAG ATGTTATCCA TTGTGGCAGA TGTGCAGTAT TATCTCATTA TGTTTTATT
 126841 TTACATCTT TGCCCATT TTCTTAATTG GATTGTATAT CAGTCGACTT GGGCTGCCAT
 126901 AACAAAAATA CTAGACTAGG TAGCTTGAAC AAAAGGAATT TATTACCTCA CAGTTCTAAA
 126961 GGCCAGGCCA GAAATCCTAA ATTGAGGTGC CAAGAGATTC AGTTCTAGT GAGGGCTCTC
 127021 TTATTGACCT GAAGATAGTT GCTGTCTTAG ATTGTTTGGT GCTGAACAGA ATACCAGAGA
 127081 CCAAATAATT TATAAAGAAT ACAGATTAT TTCTTACAAT TCTGGTGGCT ATAAAGCCTA
 127141 TGGTCGAGGG GCCCACCTCT GGCAAGGGCC TTCTTACTGT TATGGCAGAT GTGAGATGTC
 127201 ATCTCATATT CAAACCACAG CAGTCGCCTT TTGTGTCCTC ATGTGGCCTC TTCATATGCC
 127261 CATAAAATGA CCTCATGTCT CTTCCCTTTT TTATAAGGAC ACCAGATCTA TCAGACTACT
 127321 GGCCTACTCT TATGACCTCA TTTAACCTTA AATATCTCCA TAAAGTCCC AAATCCCTAT
 127381 CTCCAAATAT AGGCACATTG GGTGTTAGAG TTCAACATC AATTTGGGG GAACACAATT
 127441 TAGGCCAAA AGATTGTTT TTTTCTTGTG GTTTTAAGAT AGCTGTCTT TTGTCCTTT
 127501 TGCCCTTTCT TTTTTTTGAA GGTGGACTCT TGCTGTGTCA CCCGGGTTGG AGTGCAGTGG
 127561 CGCTGTCTCA GCTCACTGCA ACCTCCACCT CCTGGGTTCA AGAAATTCTC CTCCTCCCAA
 127621 GTAGCTGGGA CTACAGGTGC ATACCACCGC GCCCTGCTAA TTTTGTATT TTTGATAGAG
 127681 ACGGGGTTTC ACCATGTTGG CCAGGCTGGT CTCAAACCTCC TGACCTCAGG TGATCCACCT
 127741 GCCTCGGCCT CCCAAATGCA TGAGATTACA GGTGTGAGCC ACCAAACCTG GCCTGTCTTT
 127801 TCTGTTTAAAT GTTTTAAAT TTTGCTCACG AACCTTTAT CCATTTATG TGTTGCAGGT
 127861 ATTCCTCTG TAACTGTC TCACTCTGTC AGAGGCTGGA GTGCAGTGGC ACAATCACAG
 127921 CTCACTGCAG CCTCCACCTC CCAGGATCAA GCGATCCTCC CATCTTATCC TCCTTAGTAG
 127981 GTGGGACTAC ATGTGCAGGC CACCATGCC AGCTAATCTT TGTATTTTT TGTAGAGATG
 128041 GTGCTGTTGC CCAAGTTGGT CTCAAACCTC TGAGCTCAAG CAATCCATCA ACCTTGGCCT
 128101 CCCAAAGTGT TGGGACTAGA GGTGTGAGCC ACCACTGCAC CCAGCCAATG ATATCTCATG
 128161 ATGCATTAAT GTCATTAATT TAGTGTACTC AAATTAAGCA CACTGCCCTT TTATGCACAA
 128221 CCTTTTTGT ATCTTATTAA AAAAATCATT TTCTTATTCA AGGTCAATGAA GATCTTATT
 128281 TATAATACCT TCTTGTGAAA TTAGTTCTCA AGACTACCC CACTCTAAC ACCAATTATA
 128341 AGTTGGGAGG TCTGTTGTC CCAATCAACC TTAGGTTAGT AATTTGCTAA AAGGACTCAC
 128401 AGAACCTGCT GAAGCTGTTA GCCTCATGGT TACAATTAT TATAGGATAT ATAGCTTATT
 128461 ATGTCAATTCC AATGCAATGT AAAATTATAC AACTACTTT AAAAAGATTT TAGCATTGAA
 128521 CCCAACAAATT TCACTCTGAG GTATACAAAC AGCAGATATG TGTGCACATA TATACCAAGA
 128581 CACATACACA GCAAATTCA TTGTTTGAA TAGTTGAAAA GGGGAAACAA CTCAGGAAAT
 128641 AAAGATTAATC ATCAGCTGAG AAAAGAAACA CACAAGGCAG TATTATGGAT CGAATTGTAT
 128701 GCAGATCTCC CTTGCCCTCA GAAGATATGT TTAAAGTCCC AACTCCAGT ACCTCAGAAT
 128761 TGTGGCCTTA TTTGAAATA GGATAGTTGC AGATATAATT AGTTAAGATG AGGTTATAGT
 128821 ACAGTATGAT GGGCTGGTGA CTTAGAAGAA GTAGTATATA TATATTTTT AATAGAACTA
 128881 GTATTCTTCT AAGGTGGTCA CGTGAAGACA GACACACACA GGCAGAGACT GCGGTTATGC
 128941 AGCTGCAGGT CAAGGAATGT CAAAGGTTGC CAGCAAGTAC GAGAAGCTAG GAGAGTCAA
 129001 GGAAGGATTTC TCCTACAGGC TTCAGTGGAA GCATAGATCT AATGATACCT TCATGTCAGA
 129061 TTTCTAGCTT CCAGAACTAC AAGAGAATAT ATTGTTGTT TTAAGCCACC CTAGCTTCTA
 129121 GCTCTTGTG ACAGCAGCCC TAGGAAACTA ATATAGGCAC AATCCAGGCA AGTTCCAAT
 129181 ATGAGCTTCC AGTTGTCCTC TCCCAGTAAT ATGAAACAGTA TTACTTCCC AGCATTAAATG
 129241 TGTGACAATA CACATGACGT ACAGAGCAGT CCCCACCTTAT GCACAAAACA TATGTTCCAG
 129301 GACCTCCAGT GGATGCTGA AACCATGGAT AGTACTGAAC TCTATATAGC TGTTTTTCC
 129361 TATACAGACA CAGCTATGAT AAGGCTTAAT TTATAAATTA GGCACAGTAA GAGATTAATA
 129421 ACAATAAATT AGAATAATTG TTAAGAATAT ACTGTATAAA AGTTAGGTGA ATGTTTATT
 129481 CTGAAATTAA CCGTTTATTAA TTTTGGACT GCAGTAGACC ACAGGAAC TAACCATGTA
 129541 GAAACCGTAT ACAAGAGAAC TGTATTCAC CCGAGCCTCA GTGTGCAGTT TTAATGGCCT

Figure 9 (Page 40 of 74)

129/162

129601 GCCATGGTTG ACTGCTCACA TGGCCGATCT TTTAGTCTAC CTCCACAGGT AGAGCTGATA
 129661 CTGTGTGGCT CAAAGTCCT ATTATAAAC ACATTGTTGA CTGTGTGGTG GTCAAAACCT
 129721 CCAGGTAAAC AAAGACACAC TTATCAGTGA GAACATTCA AGGGCTAAA ATTCATCTCC
 129781 CAGTAGCTGA GGGCAAAGGC TAGACCTCTT TTTGGGTAAG ATAAATTTT TACCATATAC
 129841 TTTATTTGCT TTTCATGTT TAACCTTATT TTGCTTTCA TGTTAGTTCC CCTGGAATTG
 129901 TTTTTGTTGT ATAGTGTGAA GTAGGGGTC AAGTTTCTTT TTTTTCCCTT TTTGTTCTTT
 129961 TTCTGTTAA AAGGCTATAC AATTGTCCTA TGCCATTAT TTACAAAGAGT CCTTCACCA
 130021 TTGTTGTATG GTGCCACTTT AGATGTAAT CAATGTCCAT ATTTGTTGA GCCTGTTCCA
 130081 TTCGTTTGTCA TATTTTGGA CAACACTGCC CTGATTATTG TCATTTTATC AGTTTGATA
 130141 TTTAATAAAAG CAACAGATTG GTTTATTTC GGCCCTTGGGA TTTGTGTATT AAATTTGAAC
 130201 CCTGTTTGTCA AATTCTATA ATAAGCTTA TTGGAATCT GATTAGGATT ACAATGGTTT
 130261 TGTAGATCAG TTTGGGGACA ATTAATACCT TTAAAATATT GACCGCTTCA ACTGTAATAA
 130321 TACTCCTCCA TTATTTAGTT TTCTGTTA ATTTATCTGA GTAATACATT ATAGTTTCT
 130381 TCGTAGAAGT CAGATACGTA GAAAATTCAA AGCCAAGTG CAATAGCTCA TGTCTGTAAT
 130441 ACCAGCACTT TGGGAGGCCG ATGTGGGTTG ATCACCTGAG GTCAGGAGTT TGAGACCAGA
 130501 CTGGCCAACA TGGTGAACACC TCATCTCTAG TAAAAATACA AAAATTAGCT GGGTGTGGTG
 130561 GCGGGCACCT GTAATCCCAG CTAATCAGGA GACTGAGGCA GGAGAACCGC TTGAACCCAG
 130621 GAGGCAGAGG TTGCACTGAG CCAAGTTCT GTCACTGCAC CCCACCTGG GCGACAGAGC
 130681 GAGACTTCGT CTCAAAAAAA CAAAAAAAG AACATTCAA TAATCAATGT AGATAATTCA
 130741 AATAACTAAA AAATGAACAG TTATTTAAAT ATCAGGATAT AAAAGCAAA AAATCAATAA
 130801 CCTCCATATA TACAAAATGG CCAGTTAGAG AAAAAAAAGA GAATAGGCAG GACTTAAAAA
 130861 GGCTGGGAAT CTCCCTGAAA ATCTTGAGA GCCTTGGCCC TGCCCTCAGG GATTCTCTG
 130921 GCTTCATGCC CAGATATGGG TACAGTTCT TGTTAAAAAA AATTTCGTC CATCAATCAA
 130981 CAAGGGGCTC CTTCCTCAGA GCACAAGGAC CTCCATAACA CCGGACACTA GATGTCTAAG
 131041 GGACACCTCT TAAGGAAGTT AGACTTCAA AGAATGGTGT TTCCTCTGTC CCCAAACTCT
 131101 GGAACACTACA GCACAACTGTC TCCTGGAGT TCGGTTCAA ATCTACAGG CTGTCATGGA
 131161 GGTGCAAGAC CAAGTCCGTG GCCTCAGTGT CCGGATGTAC GGTGGCCTTG GCACCTGAAT
 131221 GTGAGAACAT GACCTCCCTG AAACCACCA AAGTATTGTT TCATGTTATG TATGTTTTT
 131281 CTTATCTGAA ATTCTTTTC TTAAAAAATT CAAATTACAT ATTTTCAGA CCCCTGAACA
 131341 AGCTTCATGAA GCATTATTG AACCCACAGC TTTAAAACC TACTGAACAC TTTGCTCTAT
 131401 GTTGTCTTC ACTATCCACC AATTATTAA TTATTGATCA ATATTGTTT CTTAGTGTGTT
 131461 GGATCATTGAA TGCATGTATT TCTTTATAT TGCATATTTC ATATTCTGC ATTACAGTTA
 131521 TTACATATTAA CTTTGCTAC AGTAATAGTT CAGAAGTGTAA CATCCAAAT TTAGCTGTGA
 131581 AGTGGATGGA CTGAGGCAGA ACTGGAGCA AGAAAATGTC ACAGTAATTCA TAAAAAAAGAT
 131641 GATGTACAAT TAGAGCAAGA GAGTAGCACT GAAATTGAAG AAAAATAGAT GCGTTGAGA
 131701 GAAAATTAGG AGGTAGAAC AACAGATTAG ATGTAGGGAT GAGAAGGGTC AAAGATGACA
 131761 CTAGGGTTT TAACTGGAGC AAGTAGGTAG ACAGAACATT TCTTCCTGAA AGGGCAGGTC
 131821 AGATCATGTG TTGTCCTAAA GGGCATGAAG AGTAGAAAGC CTGGGACAGA TCCTGAGATG
 131881 ACCAATACCC ATGGTGCAGG GAGAGGGAGG GAGATCTGCT AAAAAGACTG CAAATGTCAG
 131941 GATAGTAGAA AATCATGAGT GTGTGATGTC CTGGAAGTTG AGACAGTATC ACATTGAGA
 132001 ACATTTAAAT TGGTAACCTCT GACAAAACCT GGAGGCCAAC TGTGAATGCC CATGAGAGTG
 132061 AGAAGCTCCC ACACCTTTGT GGGCATCAGA AAGCCCCACCA GTTCCCTGCA GTGAAGATCT
 132121 GAGAAGGATC CTCTTGTGGC TTTGGCAGGG AGAGAAGAAT TATTATGAAA TACACCCAG
 132181 AACCTCTTC AAAACAAAGG CCTACTCTCA AGGGGAAAAC ATTTGCCAG AGTCTTATCC
 132241 CAGCTGGAG AAGGTAATTG TTCCCACGAGC AGCTCTCATCT AGGCTTCTG TCTCACTTAA
 132301 GGGAAAGAAA TTAGTCACAA GGGATCAGAG CTTCATGAAA ATAAATTGGA AATGGTGCAG
 132361 CCAGGAAAGG AGCAAAGGTC TGAGGAGGAG GAGAAGGGAGG AAGAGGAGTT GTATCATTAT
 132421 AAATACTTGA GGAAGAGGAG GAGAAGGGAGG AGGAGGAGGA GTTGTATCAT TATAAACACT
 132481 TGAGGAAGAG GAGGAGGAGA AGGAGGAGGA GGAGTTGTAT CATTATAAAC ACTTGAGGAA
 132541 GAGGAGGAGG AGAAGGAGGA GGAGGAGGAG TTGTATCATT ATAAACACTT GTGACGGTCC
 132601 CAGCCCAAG ATATAGGCAT GCTAATAAAC TGAGGCTTAA CACTTTGACT ACAGAATGCT
 132661 GCTTCTCCCT AACACCACCA AGGCTCCAC TGAATAACAA TGAATTATGA ATGAAAGAGC
 132721 TGTAAGGAGA GACAAAAGTT AGAATGAGAC AAGTATTGTT ATCTAGAGAT GCCAAGAAGG
 132781 CAAGGAAGAT AACTAAAAAG GCACTCTGGA TTTAGAAATA GGAAGTCATT AGTGACCTTG

Figure 9 (Page 41 of 74)

130/162

132841 TAAATAATGG AGCCAGAGGA ATACCAAGGG CAGAAGCCTC ACTATAGTGT GTTCACCTG
 132901 TCAGAGGTCA GGAGGTGTAA CTGACTCTCC CACAGTGTGG CTTTGGAAAGA GAGAACAG
 132961 CAGCTGCATG GAGATTGGG AGAGGGAAAG CTTTTTTTTT TTTTTTTAA TTGGAAAAGA
 133021 CTGAGCTATG TGAAATAGA ATAAGACAGG AAGAGTGTAG ACACAGGAAA GAGGGCAGAC
 133081 AAAAACAAAGT GCACAGTTAT CTAAGGGAAA CAATGGGATC AAGCTCAAG TATATAAACT
 133141 TGTCTTGATA GAAGAATCCT TGATCTGGTT TATTCAAGTGT TTGGTCCAAA CCCACATCCC
 133201 TGTTCTGCCT GTCTCTGACT TGCTCTGTGCCCAGAAGCC CAGCTCTAC AGATAGCATT
 133261 AGCTGGGCAG CCCTGCCCTC TTGCAACAGC TGGATTGGC CAGTGTACAG CCCAGCAGGA
 133321 ATGTAGATGG CAAAGGAGAG AGAGGTTAGT GTACTTATTG CCTGCATCAC CCCCCCTGCTT
 133381 GGTGGGCAGC TCTTCCCTCCA CAGTCCCAGC TCTGGCCTAG CTCTGGTTAC AGGTTCCCTC
 133441 CCATTGCCTC TTCAGATTAA AAGGTGTGTC TGTCAAGGGTA TAACTGGGAG CTAGAAATTG
 133501 CACTGAAATT GAACAAAGAA TTTTATGGGAA ATGGTTGTTA ACTAGTTATA AGAGGACTGA
 133561 AAATGGAAA GTGGAACACAA CGTATCAGAG ATAGTAATGA CAGAAAGCAA CTACCACCTC
 133621 CAGGTTTAGG AGAACAAAGGA AAAGATTCTT TGAAGAGATC CCCAGAACTG GGACCTCTGA
 133681 GGAGTGTATG CTGGACCACT GATGATGATA TGTCTGTAGA TAGAGGCATG ATGAGGCTGA
 133741 TTTTAGGAGC ATGGAAGATC TCCAAACTGA AGCCAACACTGC TGTTACTGGA TTCAACTGCC
 133801 ACTGCCAGGT TGAAGAACCC ATTCTGTGAG GATGTCAACA AACAAAGTGG GAAATCTTT
 133861 CACATCCCTC CAGCCCTCTA GTCTTCCCTC AGTGTCTTCT ATTGGTAGGG TTTGGGGAGG
 133921 TGGCTAGCAA AGCGTATTG GAAAAGATAG AAGAGACTAA ATCTTCATAA CCAGCACAGG
 133981 GTGACACTGG ATCACTACTG TTGCTGATCT TGGGCTGCCT CATATCCCT GTTCTTCCCA
 134041 TTAGCCCTGT CACAACTTG TAGATATCCC TTCATTATAT GCCCTTCATA TATTCTTTG
 134101 GTTTAACTTT TTCTGTTGGA ATCCTAATAT GGCACCTCTC CATTTCAG GACCAAAAGA
 134161 GTATAAAAGA TTATCTTTA CCAAAAAAAA GACAAAAAAAC TGATCTAATT CCTGATTG
 134221 TCATTACACA ATCTATACAT GTATCAAAT ATCACATAGT ACCCCATAAA TATATACAAAC
 134281 TGTGTCCATT AAAAATAAAA ATTAAAGAAA AGATGGTAA TATAGCTCTG TCAGGCAGTG
 134341 GAGGTTTTAC CACGATGGCT GTTATTTCCC CCATGAAGGG GGGAGTGAGG GAGCAGCTGA
 134401 AAGTAGGTGC TTATAGGGGT ATAGAGGGC TCAAAGCTTT GAGAGAGGAG AATGTCTGAA
 134461 AGAGCTGCCA AATAGCATGC AGGTCCCAG GGGCAGAGC CTCTGCTCAT TCACCAGTGC
 134521 CTCTTCATAA TCTACACTTA AGCCTAACAC AAAGTGTGTG CTTAATAAGT ATTTGCTGAG
 134581 TATGTAAAGT GGAAACAGAA CCAATCTGGC AAACCTTTGTA GGACTGGTGG GCAATGAAGA
 134641 TCAGTCAGGT AAAATCTGTG GATATAAATT TATATTGATC AAAAATTCA AGGTTAGGTG
 134701 TTTTCTTCATC GTCATGCTCA ACGATGCTTC AGCCATGCTC AACTCTCTG TAGCCACAGA
 134761 AAAAAGTTA CCCATAATCG AGCTGTGTCT GTGTCTGAAT AATGAAAAGA CCATGATGCA
 134821 AGGGAGTTGG AGACACAGAA ACAGTGTGTT AAGTAATGGG TAATGGAAGC ATGCTACCAAG
 134881 GGAAAGGAAA GAAGTGGCAA TAGGAAGGAA CAGAGATCTG TGGCCTTATG TCCCCTGAGC
 134941 ATATTACACAT GTTAAAGCTA ATTCACTTT CAATCATCAT TAAAATTG TCCCTAAATA
 135001 TATGGCCATT ATTTCCACA ACCACACTAA AACTTTATTA CCTCTGGCAA GTGACTATGC
 135061 AAGTAACTAA GAGCAAAAT ATCCACAAC ACCATTTGAG CTATCAATT AGGGAAAGTC
 135121 ATCTGGCTAT AATCTAAGTG ACCCTCCACT GAATGTCAGT ATCTTGCAT ATGTGATTAA
 135181 AATCTGGGCC TTCGCAACAC CATGAACGT TCTGTCTTG AATATCCAGA TTGAAGGAAA
 135241 TAATCTGAGT AGTTACGAGT CCTGAAGCTA GAAAGATGGA AACCCATT GCTCATCAGA
 135301 AAGCCTTACA GCTTGGCGC TGGCGGGTCC TGTCCTCACCG GGACAGAGGG GCTCTTCCCT
 135361 CCCCATCTGA TAGTCTGATA ACTAGAGAAG CGGCCAACT TATTCTCAA GAAGGAGCCA
 135421 TCTTAGTTCC TCCTGAAATG TTCAATTAA GAAATTATTG TTTGTCAGTA ATTTAACCCC
 135481 TTAATGGGCT TGCCTGTGTT TCCATACCA TGAGTGCAGA GCTTGCCTGG AAGAATTG
 135541 AGGGCCATTG CATCTTCCAG GCAGTAGAGT TCAGTACTTC TTTAAAATTG CTGCTGAAC
 135601 CTGTATTTGA AAAGAAAAGAA TCATTTGGGT GTGGTAGCTC ACACCTGTAA TCCTAGCGCT
 135661 TTGGGAGGCT GAGGTGGAG GATCATTGA TGCCAGGAGG ACCACTTGAG ACCACCCCTGG
 135721 GTAACATAGC AAGACCTGT CTTAGAAAA AAAAATACA ATAAAATAAA TACAATAAAA
 135781 ATAAAAGCAA AAAGAAAAGAG TCCATCTTAG GGACAGACTG TAACTACTCA CTGGAGCTTA
 135841 CCTTTACATA GTTCAGGATC AATTATAATA AAACACTTT GTGCAGATTCA AATAGGATTA
 135901 TTTTAATCCC CATCATCTCT CTGAGTTTCC AGTCAGTTTC TCTGCATGTA GACACCCTC
 135961 TCCAGCCCCAC CATTGTCTCT CCTCCTATAG CTCCACCAAC AAATCAGAAC TTTTTCTAAC
 136021 TGACACCTAGT GCACCTAGAG TCTACTCCAG AATGCTCATG GAGAAAGTTT CTGAAAGGTA

Figure 9 (Page 42 of 74)

136081 AAACTCTGAA TGATATTTGT AGCTAAAGGG AGACTTGCTA GAGACAATAA GCTAATAGTT
 136141 GTAGACTTCA GTAGAACAGG AATGACACTG CAATGTCAGG GTGCAGGACT TCAAGAGGGC
 136201 AGAGTATGGA AACCCAAATGG GAAAAATGCT CACCAGGAAC ATGAAGAGAA GGAATTACGT
 136261 GTAAGGATT CTCAATGTGT TCCCAAATTT GCCCAGCAGA GGGAGGCCTC GGGTTGATGG
 136321 CAGGCTGACC ACACAATTAA AGAAGGCTGA ACCTGGGGC TTTAACAAAC CATCGTGGGC
 136381 TCTACTGTAA GCATTTAGAA AAAGAAAAGTT ATCCATTCAA AAATATATAT ATTTTTAAC
 136441 TTCAGAACAA AATTATGAAG AGCTATATT ACTTTTCTAC ATTCTAATT TTATAAAATCT
 136501 GAGTATATT TGCAATATATT GTTATAGTAC ATATTCAATT TTGTATTTG CTGTTTCAC
 136561 TTAACCATT TTACTAGATT ACTCTGTGT CATAATAATC ACTTTTTAA AACTTTTATT
 136621 TTTATTTATT TATTTTTTT TTGAGTCAGA GTCAACACTCT GTCGGCCAGG CTGGAGTGCA
 136681 GTGGCGTGT CTTGGCTTAC TGCAACTTCC ACCTCCTGGA TTCAAGCAGT TCTCCTGCCT
 136741 TAGCCTCTG AGCAGCTGGG ATTACAGGTG TGCACCACCA AGCCCCGCTA ATTTTTGTAT
 136801 TTTTAGTAA GACGGGGTTT CACCATGTTG GTCAAGGCTGG TCTCCAACTC CTGACCTCAT
 136861 GATCTGCCA CCTTGGCCTC CCAAAGTGCT GGATAATCA CTTTTTATGC TGCATAATTC
 136921 TTCAGATTG TCAGTACGAC TGTATTACA CTCAATTGTT TTATTAGAAA GAATTCCAGA
 136981 ATATTTGGC TGCCCTAATT AATTTACAA TTAATATGAT TTTGAAATTG GGTATTGGCT
 137041 CCTTCTGAAT TGGTTTATTAA AAATATATTC TAATGTAATT TATGACATT TCATCATATT
 137101 AGCATATTTA TTCTGTTAGA ATTCATAAT TTATAAAAGCT ACAAACTGTA TGTGATATAG
 137161 CTTGTAACCT TATCTCATAA CTTTATGCAG TTACAAGTAG AAATAAAATG TTCCCTCTAA
 137221 GATTGTTAA AATTTTATTAA TAAACAAGTG TAAAAAAACAA AATCACTAAA ACACCTCCCTC
 137281 TTTTTCCCC CAAAATGCAT GTTCCATT TAACAGAAC CGTATTTAAT CAGCAGATT
 137341 CTATGGTGGC TAGATTGTA GACTAAATAT TAAAAGTCCC AAAGCAAATG CATTTCCTC
 137401 TTAAATTTA CTGACTTTTT TTTTTTTCT TTTTCTGAGA CGGAGTCTTG CTCTGTCGCC
 137461 CAGGCTGGAA TGCAGTGGCA CAATCTCGC TCACTGCAAC CTCCGCCTCC CGGATTCAAG
 137521 CCATTCTCCT GCCTCAACCT CCCGAGTAGC TGGGACCACA GGCGCCCGCC ACCACGCCA
 137581 GCTAATTTT TGTATTTTA GTAGAGACAG GGTTCACCG TGTTAGCCGG GATGGTCTCG
 137641 ATCTCCTGAC CTCATGATCT GCCCACCTCA GCCTCCAAA GTGCTAGGAT CACAGGCATG
 137701 AGCCACCGCG CCCCCCCTAC TGACTTTAT CCAAAGAAAA TATAAGAGCT CTTCATCATA
 137761 ACGTATGTTT CTTGCTCTTG TTATTAAATA TGACACATT AGACTTAAAC TGATTTGAAG
 137821 GTTTATGACA TTGTTTAAGT TATTACATAA TTAATTCTATA AAGATAATGA CTAGTTGAA
 137881 CTACTGACAG CTCACACATC ATCAGTGAA CAGCAGAAAG CTTATTAAGC TACTTTCTTA
 137941 TGTTTCTGTC TCCCAGCTAC TAAAAGAAC GAAACCCTTC CAGGTGTTAA GGCAAAACTT
 138001 TCCTCCCCCT TTCTCTATA AATCTGATTC CATGTTAGTG AAATTCTAC TGATGGCTTT
 138061 GGTTCTCT ATAGTAGAAT AGAGATCTA TGCAAAAGT CATGTCAGC ATGGTAGCAA
 138121 ATAGAAATGG GGAAAAGGAA GGTCTGCAAG AGCCAAATG TGAAATGGGG AGAGGACTGA
 138181 CTACAAAAC CCAGCAGGAA TTCCAGAAGA AAACCTCTCA GGACGGGCAC ATTGGCTCAT
 138241 GCCTGTAATC CCAGTACTTT GGGAGGCCGA GGTGGCAGA TCACITGAGT CCAGGAGTTT
 138301 GAGACCAGCC TGGTCAACAT GGCAGAACCT CATCTCTACA AAAAATAAAA AAATTGTC
 138361 GGCAGTGGTGG CATGCACCTG TAGTCCCAGC TACTCAAGAG ACTTAAGTGG GAGAACACT
 138421 CGAGCCTTGG AGGTGGAGGT TGGTGAGCCG AGATCACGCC ACTGCATTCC AGCCTGGCG
 138481 ACAAAGTGAAG ACGCCATCTC AATCAATCAG TCTCTCGAA AAGCAACATT ATGGAGAGAC
 138541 AGGATTCGGT CAAGGCCTGG GGCACACAGG AAAATATTAA GGCAGAAAGAG AGTTTCTCC
 138601 CCACACCA CCGTATCCCA CAGGCACCTGC GGATGTGCAT ATGCAAGAGG GGTTGATCCT
 138661 AAGAATTAG AGTCACAGAG GAGGAGGCAC CAAGCAGACT GTGGAGAAAG TCATGACAG
 138721 AAAGGGACAG AATGAAAGC TTCAGCTGAT TATCTGGCCT CAGGGATTCC AGAGGAACCTG
 138781 GTCCCAATGG TCTCCTGGTG ATGTAGGTTTCT TTAGGTTTCT TTTACAGGGG TTTTCTGGGA
 138841 GATCGTTGAC CCAGTTAGCA TTCAAGCAAC TTCCACCTG CACTTTTATT CTTTCCCCCT
 138901 CACCTGCTTA GGTTTATCT GTCCAGGCAA TAATAATAAA ATTATTGAGC CCTGGACATG
 138961 TACCTGTAAA GCTCCTTAAA GATGATGCCT TCTAACTCCT CATTCAACAG ATACAAAAC
 139021 ATTACAATAA AATGACTCAT GCAAGACACC CAGGTAGTTT ATAGCAGCTA ATAAAAACAG
 139081 AATAACTATA AAATATGGTA AGTTTATAAA AGTTACATTG AGTATACTTT ATAAGAACCTG
 139141 CTTATTGAGT TTGCCTAATA ACCACACAGC ACAATAATAA TATGATATA TTTTTAAATA
 139201 TGTGTAAATA TGTGTAAACAC AAACCTGTAG AAGGTATATC TGAGTACAAC CCTATTCTGT
 139261 TTGGTTACCT TTTCTAGTTC ATTATGTAAG TGGCATAGCT ACCTAAGGAC TTATGCTTAT

Figure 9 (Page 43 of 74)

139321 AAATGTTACT CAAAAAAATA CAGAGGACAT ATGTGGATAG ATAATGGAAG AGATAAGATA
 139381 GGTAGGTTGA AGGGTTGGC TGCCCCTCCA CACCTGTGGG TGTTTCTCGT TAGGTGGAAT
 139441 GAGAGACTTG GAAAAGAAAG AGACACAGAG ACAAAAGTATA GAGAAAGAAA AAAAGGGGTC
 139501 CAGGGGACCG GTGTTCAGCA TACGGAGGAT CCCACCGGCC TCTGAGTTCC CTTAGTATT
 139561 ATTGATCATT ATTGGGTGTT TCTCGGAGAG GGGGATGTGG CAGGGTCAA GGATAATAGT
 139621 GGAGAGAAGG TCAGCAGGTA AACACGTGAA CAAAGGTCTC TGCATCATAA ACAAGGTAAA
 139681 GAATTAAGTG CTGTGCTTTA GATATGCATA CACATAAACAA TCTCAATGAC TTGAAGAGCA
 139741 GTATTGCTGC CAGCATGTCC CACCTCCAGC CCTAAGGCAG TTTTCCCTA TCTCAGTAGA
 139801 TGGAATATAC AATCAGGGTTT TACACTGAGA CATTCCATTG CCCAGGGACG AGCAGGAGAC
 139861 AGATGCCTTC CTCTTGTCTC AACTGCAAAG AGGCCTTCCTC TCCTCTTTA CTAATCCTCC
 139921 TCAGCACAGA CCCTTACGG GTGTCGGGCT GGGGGACGGT CAGGTCTTC CCTTCCCACG
 139981 AGGCCACATT TCAGACTATC ACATGGGGAG AAACCTTGGAA CAATACCTGG CTTTCCTAGG
 140041 CAGAGGTCCC TGTGGCTTC CTCAGTGTGTT TGTGTCCCTG AGTACTTGAG ATTAGGGAGT
 140101 GGAGATGACT CTTAACGAGC ATGCTGCCCT CAAGCATTTC TTTAACAAAG CACATCTTGC
 140161 ACAGCCCTTA ATCCATTAA CCCTGAGTTG ACACAGCATA TGTCTCAGGG AGCACAGGGT
 140221 TGGGGCTAGG GTTAGATTAA CAGCATCTCA AGGCAGAAGA ATTTTCTTA GTACAGAACAA
 140281 AAATGGAGTC TCCTATGTCT ACTTCTTCT ACACAGACAC AGTAACAATG TGATCTCTCT
 140341 CTCTTTCCC CACAGGAGGT GATGGCCGGA AGAACATGGC AGAGGGCAAACAAAACAGC
 140401 ATTGGGAACA AGCTCTGTT AAAAGGGAGAC TTGTGAACAG CAAAGAGTAG AAAGGGTTCT
 140461 CTTACAAC TG AAGCCCATGG AAGACAAATG TGTACTGCGT GAGTTTAAG GCAATAGGAG
 140521 TAGTGGGACC TAGGGCACAC CAGAGAGCAT ATTAACTCTC AAACTTTAA AAACATTATA
 140581 TCTGCTGGAC ACAGTGGCTC ACACCTTAAT CCTACAACTT TGGGAGGCCG AGGCGGGCGG
 140641 GTGTAGCTTG AGCCCAGGAG TTGAGACCA ACCTGGGCAA CATGGCAAA TCCCCTCC
 140701 ACAAAACAAA CAAACAAAAA ACAAAATTAG CCAGGCACGG TGATGCGTAC CTGTGGTCCC
 140761 AGCTACTCAG AGGCTGAGGT GGGAGGATCG CTTGAGCCCC GGGAGGTTAA GGCTGCAGTG
 140821 AGCCATGATA ATGCCACTGC ATCTCAGCCT GGGCAACAGA GGGAGAACCT GTCTCAAAAC
 140881 AAAAACAAAA ACACACCATA CCCAACACCA ATGCATCTGT CTTAAAGTAC AGTACCAACAC
 140941 CCCTCTACTC ACTACTAAAT AGGTGAGTTC CCAATCCCTG GTAGCAGGTT TAAGCATGTT
 141001 ATATTAAAGG TCTTAGGCTA GTGACTCATT CACTCATTAA ACAAAACTT ATTGTGCATC
 141061 TACTATAAAC TAAGTACTGT GCTAGGTACA AAAGCAAATA ATCTAAGCTC TATAAACTTT
 141121 ACTTTCTTC TCAACAAAAT GGAGATGTT TAGGCATCTA CTCATCATTC TGAGCTCCAT
 141181 CTTTGTGAC TGTAGTTGGC AGAGCTTTT ATCAGTTCT CTAAATAGCT CTACCAAGTCC
 141241 CTGGTGGATG CTGGCATGCC CAAAGGATCC ATCCTGATGG CCCTGTCTGC TTACCTTACC
 141301 TGCCCTGCCTT TGCAGCACCG CTCTGCTCTT CTGCAGGACT TCCCTTATCC TTTGGGTCT
 141361 TGCTGCTCTT AGGCTGCTCT GCTTGTGTT ATCTGCTTTG CATCACATGT ATGTAAGGT
 141421 CCTTTCTTA TTTACCCATG ACCAAGGTAT TATGAGATTC TGGAATTTC CCAAACCCACA
 141481 TTGATTGCTG GGAGAATAGA AGAAGTGGAT TACAAGTGGAACTTAGAAGG GGAGTATTG
 141541 AGAAGACGTC TCTGCAAATC CATTAGAGA GACCTTCTC CAGTGGTGAC TCAAAGATGC
 141601 AGCTCCTTTC ATCCTGTGGC TTGGCCATCT TCAGCACATG GCTCCAAGG ATGTCCTCAG
 141661 GATGGTCTCT AATCCAAGGA GGCTGAAGAG AAAAAAAAGGC ATGGAGTATT GTGAGTGGTA
 141721 GGTGGTTATG GACCAGTTAT GGAAGAATAC ACATCACTT TGCCCACCTT CTACTAACCA
 141781 GAACTCACAC AGCCATAGAC ACTGACAAGT AGGACTTAAC AAGAATCTAA TTTGAGTCT
 141841 AGGAATACGA CTGTAGCAA TATTTAACAG CTTCAAACAC AGGTGCATTG CTATCACTAT
 141901 GCTTGGCCCA GGCCTGTCTC CCTTCTGCTC CATGTCACAG GGGCCAGCAT TTATGTCTAG
 141961 ATTGGGTTGG TTGGGATATT AAGACAATAA TGAACCAATA CAACATCTT AGCATAAAAC
 142021 CAACTGATAC AATGATGTAC AAGTCAGATG ATTCTGATGA TTATGAATTA TGCAATAAA
 142081 AGAAATGTGA TAACTAAGGT AATTTTGTGTT TTGGCAAATT TTTGTTGTT CATGACAGGA
 142141 TGAAATCCTG TCATTTGTAG CAACATGGAT GGAATTGCAG GATACTACAT TAAGTGAAT
 142201 AAGCCAGAAA CAGAAAGTTA AACACCACAT GTTCTCACTT ATATGCAGAA GCTAGCTAAC
 142261 TAAGTAAATA AGTTTATCTC ATTGAAGTAA AAAGTACAAC AGAGATTACT AGAGGCTGGG
 142321 AATGGTAGGG GAAAGAGATG ATAAAGAGAG ATTCAATTAA ATAAGTTACA GCTAGATAAG
 142381 AGCAATCAGT TCTAGTGTTC TATTTGACT ACAGAATGGC ATAAGTTAAC AGTAATAAAAT
 142441 AATTTCAAAG AGCTAGAAAA GAGGACATTG AATGTTCCA ACACAAAGAA ATGAGAATG
 142501 CTTGAAATAA TGGATATTCT AATTAATTAC CCTGATCTGA TCACTATACA CAGTATGTAT

Figure 9 (Page 44 of 74)

142561 AAAAATAACA CTATGGGCTG GGCGCAGTGG CTCACACCTG TAATCCCAGC ACTTTGGGAG
 142621 GCCAAGGTAA GCAGATCACT TGAGGTCAAG AGTTAGAGAC CAGTCTGGCC AACATAGTGA
 142681 AACTCCATCC CTACTAAAAA TACAAAATC AGCCAGGC GTGGCATGT GCCTGTAATC
 142741 CCAGCTACTC AGGAGGCTGA GGCAAGAGAA TTGCTTGAAC CCAGGAGGCG GAGGTTGCAG
 142801 TGAGCCGAAA TCGGCCACT GCACTCCAGC CTGGGTAACA GAGCAAGGCT CTGTTTCAAA
 142861 AATAAATAAA TACATAAATA AATATTTTT AAAAAGAA CATCACTATG CACCCCATAT
 142921 ATACATATAA TTATTATGTC AATTGAAAC ATAATTTGA AAAATGAAAA AATGAAACAC
 142981 AAATATGAAT CAATCCTCTC CAAGTTGATA TACTTAAAG GAAAAAGTC CGAGGGCTTA
 143041 AACTATTCAA TCAAAATTT ATTAAATGC TATAGTAATC TGGAAAGTAT TTCAGAATGA
 143101 ATTGGTATAA GGTAGACAC AAAGATCAGT GAAACAAAAT AGAGAACCCA GAAATAGATT
 143161 CACACATCTA TGGACAAC TGTTTGACAA AGGTGTCAAG GCTATTAAAT AAGTAAAAAA
 143221 ATCGTCTTT CAGTAAATGT TTCTTGACAA AGTAGACATC CGGTGTGGGG GAGAGGAGCA
 143281 GGAGCCTTAC CTCAAACCTT ATGCAAAAT TAATCAGGAA TAGACCATAG ACTTAAATGT
 143341 AAAAGCTAAA ATTATAAAAC TTCTTTAAA AATAGGAGAA AATCATCAAC ACCCTAGGAT
 143401 TAGCAAAGAT TTCTTTAAA CAAAACAACA GTTTTATAGT TTATAAAACA TAAATAACAA
 143461 AATGATAAAT TTCATCAAAA GTGAAAATTT GCTTTCAAA AAACATTATA AAATGAAAAG
 143521 CAGGAGGCTG AGGCATGAGA ATCACTGGAA CCCGGGAGCT ACAGGTTGCA GTGAGCCAAG
 143581 ATGGTGCCAC TGCACCTCAG CCTGGGTGAC AAAGTGAGAC TCTTCCTAA AAATAAATAA
 143641 ATAAATAAAT AAATAGAAAA GAAAAGAAA AATCACAGGC TGAGAGAAAA TATTTATAAT
 143701 ACATGTATCT GACAAAGGAC TCGCACCTGG AAAATATAAG GAACCTTATA ACTTAGTAAG
 143761 ATGACAAGCC AAAACAAAGA GTAAAAGTT TCAACAGACA TTTCACAAAA GAAAACATAC
 143821 AAATGGCCAG TATGCACATG AAAAGATTT AAACATCATT AGTTACTAGG GAAATGCAAG
 143881 TCAAAACCAC AATGAGATAC TTCACATTCA ACAGAATAGC TAATGTTAAA AGGACTGACA
 143941 ATCCCCAGGG TGAGCAAGGG TGTGGAGGAA ACTACTCTCA TATATTGTGA ATGTAAGAGG
 144001 CATTTTATGA TATAACTGAA TTCAGTTTA TGTATAACTG AATTACGGAT ATGAGAATCT
 144061 CAAATGAGGA CGAATGGTT TTACGCACAA AACATGAGAC ACAAAATCTGT AAGAAATATA
 144121 AAGTCGTGAC CACGTCTTT CAGAACTTTA ACCTGTTGC TGAAGTACGT CAGTAACAAT
 144181 GGCAGGGAAA GGGTATCTTA AATTCACCA CAGCCTCAAA GAGGCCATT CGTGGATCCG
 144241 CTGAGGCTTG GAGTCGGCCT TCTGACCAAG AGTCCTGCGG CTATGAAAGA GGAAGCCGCG
 144301 GTTCAGGGCG TCCTCGCGAG TCGCGCAGCC CGCCCTGCTC CAGCTGGGA CACAGGTGGT
 144361 CACGGCGCTT TCCAGCTGCA GATCCAGGCG GCAGCCCCAAG ATTTGGTCCA GCCGCCAAGG
 144421 GGTGGCTCGA GTGACTGACG GGCCTTGAAC GCTCCCAGGA CCCACATCTG GAGAGGGAGG
 144481 TGGGGGTGGG GTGCTGAAGT CATTCTTGGG GCCCCTGGGG GCGGGCATGG ACCTGGTAA
 144541 GCCCAGAGAA ATTGACACCT CGTGACATCC CTGGAAGAGA AGTACGTTCA GTGTCACTCC
 144601 AGAGCTGAAA GATACCGCCT TCTGGCTGGT CCCTCCTCAC CTACATACTT TTCTAATTG
 144661 TCTGGAGCAG GCCGGGCATC TGTATTATCT GGTATTAAAT ATATCTGGTT ATTTAAAAGC
 144721 TCTCCATTAA ATTACACATAC ACGAAAATAA AAATTTAAA AAATTTAAA AAAAGAAAC
 144781 AAAAGCTCTC TAATGACCAA GTCTACACG ATAGTGAATA AATTTTTTG TGTGGTCCCT
 144841 AAAATTGAGT TCATGCTTT TCTGAAGTAA TAGACGCCA GAGAAGGGAT CGACTTACCC
 144901 ATCATGCCAC AGAGATTAAT TGGCCCCAGA ATTCTTAGC AGACCGTGTATGAACGTC
 144961 CTTTGCATTC ATATAAATTAA ACTGGGAAAA CCTCATTAG TATGTTACAT GCCTAGCGTT
 145121 TTGTGCCTGA ACACCTTACA AGAACCAAGGG ACTATTGCCA CAATATTATA TTTCAGGAAA
 145181 GGAAGGCCCA GACAAATGGT GTCACTGGTC CACTTCACC CAGTTGGTAA ATGAAACCAAG
 145241 AAATTATAGC TGTACACAG AAAGGTGAA ACGTTCTTT TATAATTCA CATAACATCT
 145301 TTAATGGACC CAGTGTCCAA CACATTAAAG CAAGTGTCA GGAGTGACAT CAAGATGTAA
 145361 AAAATAGTCC TGTCTTCAGG GAGTTTAGGT CTTGGAGAAA AGAGACCCAA GGAGACACAA
 145421 GACAAAGGGG AAAGAGAAGG AGCGCTGAAG ACTGAGGACC CTGCCGTGG ACTGAAGTGA
 145481 GGATGGGGAC ACCCGATGCC CGGAATATGA CAGTTGGAG GGGCCTGAAG GACTCTTCTA
 145541 TTCTCTATCA GAAAAACAGA ATTACTCTCC TAACCAGAAA AGGTATTCA ATTTATATT
 145601 TCCATCACAG CACTTTCTG GTGATAATT AATGTGTTT AAAAATGTA TCACAGTGT
 145661 GGCCTGGTGT GAAATAAATA ATAAAATTT AAGAATTAAA AAATATAAA ATCTTTATA
 145721 TAGACATTAG GAGTTACAAG GATAACTGTG AATTATAATT AGTAATTAAA TTGAAATAC
 145781 GATTATTTTC ATTTTATTT AATTATTAA TAAAACCTAT TTAACATTAA ATATTATCA
 145841 GTAATTAAAT CTAATTGTTA ATATTATTAA TTATAAATTAA TTTAGAATT AAAAATAAGT

Figure 9 (Page 45 of 74)

145901 GTAGAAGCGA GGCATGGTGG CTCAAGCCTG TAATCCAAAC ACTTTGGGAG GCTAAGGTGG
 145961 GAGGATTGCT TGAGCCCAGT AGTTCAAGAC CAGCCTGGC AACATGGAGA AACCTGTCT
 146021 CAATACAAAA AAATGAGCCA TGTGTGGTGG TCGCTGCCTG TATTCCCAGC CATTCTGGAG
 146081 GCTGAGGTGG GAGGATGACT TGAGCCTAGG CAGTCAGGC TGCAGTGAGC CCTGATCTG
 146141 CCACTGCACT CCAGTCTGGG CAACAGAGCA AGACCCCTGTG TCAATATACA TATGGACAAA
 146201 CTTAAATTT AAAATGAAAG CATACTACTG ATACAGAATT GAGTAGAGAT GCAAAGCTAG
 146261 TCCTATAACC AGAACAAATAA AGATAAAAAG GAGAGTGGAA GAAGGTATGT CATGAATTTC
 146321 ATGATAAAATG GCAATTGCAA ATATCCTGTA GCAGAACAAA ACAACAAAAT TGTAGATAAA
 146381 ACATATCCAA CCCTTGGAA GGCCAAGGAG GGAGGATTGT TTGAGCCAG AAGTTGGAGA
 146441 CCAGCCTGGG CAACATAGTG AGACCCCTGTG TCTAAAAAGG AAGAAAAGAA AAAAAAAA
 146501 AGGATGATAA AGTAGACAAT ATTGAAAGCC ATTTTCTGCA AATACATAGT GAATTTGATC
 146561 AGTAATTTTC TTCCAACAGT GCAAAAATGA ATAGATATTA GTTGCCCTGAA ATAAAAATCA
 146621 AATATCCAAC AAAAAATATT GACTATCTAA TAGTATCTAA GCTAGTAAAT TTGGCCAGTT
 146681 ATAAAATGTC TTTAAATTTT ATTTAAAAAA AGAAAACCAT ATTTATAAGA AGAGGTGATA
 146741 AAGAGAAATT ATTTCAAGTTA TGAAGATTT GTTAGAAAAC TATGAGAAAA AACTATT
 146801 TTGTTTCAA AAAGTGAAG ATTAAGTTAC CAAACAGTTG CTAAGAATA CCAGATGGCT
 146861 GAGCGTGGTG ACTTATGCCT GTAATCCAG TACCTTGGAA GGCCAAGGCA GGAGGATCAT
 146921 TTTAGGCCTG GAGTCGAGA CCAGCCTGGG CACTGTAGCA AGACCCGTCT CTATTAAAA
 146981 AAAAAAAA AAAAAAAAAG AATACCAAGC CTTGCTAACAA ATAGCAAAGA TCAATTAAATT
 147041 CAAAATTGAA AAAACTGTAA TTTATTTAGC TTTAGAGTAC TCTCGTGATA TGAGATTGCC
 147101 AAATTAAATAC TTTGGGTGCA TTTCTTTCT CAAAGGACTT GCAAATTAC AAAGAAGTGT
 147161 TGAAGAAAAG CCACACATTG GCAGGTAATG TTTGCAAAAG ACAGATCTGA TGAAGAACAA
 147221 TATTTTAAAG ATATACAAAG AATACTAAA ACTCAACAGT AAGAAAATAA CCTGATTTAA
 147281 AGCAGGCCAA TGACCTGAAC ATCTGTTAC CAAAGAAGAT ACACAGATGC AAGTATGCAT
 147341 ATGAAAAGAT GCTTGACATC ATGTCATTAG GGAAGTGC AAATAAAACAA GTAGATACCA
 147401 CTGCATACCT AGTAGAATGA CCAAAATTAA GAACACTGTC AGCACCAAG GTGCAAAGA
 147461 TATGTAGCAA TAGTAACCTG TTCATTACTG GTGAGAATGC AAAATGTGCA ATCACTTTG
 147521 AAGACAGTTT GGTGGTTCT TACAAAAGTA ACCATACTTT TACCATAAGA TTCACCAATC
 147581 ACACTCCTTA GTATTATCC AAAGGAATTG AAAACTTATC TCCACACAAA AACCTGCACA
 147641 TAGATGTTA TAGCAGCTT ATTCTATAATT TATCCAAAAC TTGAAACAA GATGTCTTTC
 147701 AGTAGGTAAG TGGATAACTG TGGTACTTCT GAATAATGGA ATGTTATTTA GAGTTAAAAA
 147761 GAAATGCATT CACTTGGGA GGCGAAGTG GGTGGATTGC TTGAGGCCAG GAGTTTGAGA
 147821 CCAGCCTGGT CAACATGGGA AAACCCCAAT TAGCCGGGCA TAGTGGCGTG AGCCTGTAAT
 147881 CCCAGCTACT CGGGAGGCTG AGATATGAGA ATCGTTGAA CCTGGGAGAT GGAGGTTGCA
 147941 GTGAGCCAGT GCCACTGCAC TTCAGCCTGG GCAACAGAGC AAGACTCCTC TGTCTCAAA
 148001 AAAAAAAA AAAAAAAAAGAA AGAAAAGAAA AAAGAAAAG AAAAAAGAAAA
 148061 GAAACGATCA AGCCATGAAA ACACATGAAG GAAACTTAAAT TGTATGTTAC TAAAAGCCA
 148121 ACCTGAAAAG ACTGCATACT ATATGACTCC AACTGATGCA GGGCAAGCAA GCCAAAAATT
 148181 AGGGCTTAGC CCGGGAAAGAA TTCAAGGGTG AAGTGGTGGT GTTAGCAACT TTTACTGAAG
 148241 CAGCAGTGTAA CAACAGCAGA ACAGGTACTG CTCCTTGCTG AGCAGGGCTA ACCCATAAGT
 148301 AATGTGCCCA GAGTAGCAGC TCAGGGGCAG TTCTGCAGTA ATATACCTGC TTTTAGTTAA
 148361 GTGCATGTTA AGGGGGATTA TGCAGAAATT TCTAGAAAAA GAGTGGTAAC TTCGGAGTAG
 148421 GTACAGAGGA AAGAAGTCGA TAATGTCCTG TTGTTGCCAT GGCAAGAAA AACTGACATG
 148481 GCGCTGGTGG GCGTGTCTTA TGGAGAGGTG CTTTAACCTC GTCCCTGTTT CGGCTAGTCT
 148541 TCAATCTGGT CGGGAGTAAA GTCCCTGCCT CGGGAGTTCA CTCCCTGCTTC CTGCTTCACA
 148601 ACTGTATGAC ACTCTAGAAA AGACAGTAAC TATGGACACA GTCAAAAGAT TAGTTGATAG
 148661 AAAATTGGGTG ACAGGAAGTG TTGAAAAGGC AGAACACAGG ATTTTTAGGG CAGTGAAACT
 148721 TCTGTGATAC TATAATGGTG AATACATGAC ATTATACATT TGTCAAAACC CATAGAAAGC
 148781 ACAACACCAA GAATAAAACCC TAATGTAAT TACAGACTTT CGTTGATAAT GACGTGTCAA
 148841 TGTAAGTTCA ATTGTAATAA ATGTAACACT GTGGTGTCTGG ATGTCTATGG TGGGGGGACA
 148901 TTTTGCTTC AATAGTTACA GTTGAAGTAA ATGTTTGTGT TTCCCCACAAT GCATATGTAG
 148961 AAACTCTCAC ATTCAATGTG ATGGTCTTTG GAGGTGGGCT CTTTGGTGA TAGTTAGGT
 149021 TAGTTGAGAT CCTAGCAGAT CGAGTCTTCA TGATGGCAT GATGGGACTG GTCCCTTATA
 149081 AGAAAAGACC AGAAAGCTAG CTCTCTCTT GGCATGTGAA GACATAGCAG GAAGGTAGCC

Figure 9 (Page 46 of 74)

135/162

149141 ATCTGCAAGC TAGGAAAGGG CCTTCACAAA GAATCAACTC AGACCTCAGA ACAGTGAGAG
 149201 ATAAATTGTC GTTGTGTTAAC TCACTCAGGC TGTGGTATTT TGTTTCAGCA GCCCAACCTA
 149261 AGACTGTTAA TTGGATTAGA AATTTCCCTT TGGGGATGGT GTGTGGCGGG GGGTGCAGGG
 149321 AGTACCTTG TTAAGCTTT ATATCAATGA GTTGTAGGC TTTTCCTTT TGTCATTGA
 149381 CTAGGACAGT TTAATAGTA TGAGTGTGAA GGAGATTGTT GGTCACTAT TCGATGTCCC
 149441 TTCTCTGTT TTAATATGA GAACTCCTGA TTTTCAGCCA ACTACCTGG AAAAAAAGCT
 149501 AATCTTCCTG ACTTCTTAAG TGTGGCCATG TACTAAATTG TGGCTAATGC AAGGCAAGCC
 149561 AAAGGTTTA TGATAGGTT TAGGACACTA GAGTAAAAGA GAGCTGTTGC ACACATGCTC
 149621 TTCACCCTAC TTTGTGTCC TTTTTCCAT CCTACAACCTT GGGTTGTGAG TATGATGGCT
 149681 GGAACCTTAG TGGCTCTCTT GGATCCCAGG GGTATTGAG GGGTGGCTGG AAGGAATCTG
 149741 TGATTTCTG GAGTTCCAT ACACAAACAA GACCTGGATT TTCTGGCCTT CCCAGACTTC
 149801 CACATCTAGA CTTGCTTAA ATGGGAGAGA AATAAACTTG TTTCAGCCAC TGTCACTTTG
 149861 GGCTATTTA TAGAACTTAA TCTAATCTTC AAGGGTACAT GAATTGCTT TCCTTAAAAA
 149921 AAAATCAGC CATAAAATCA TCTTCTTTT TCTTTGTTT CCCACATTAT TTAGTTGGAG
 149981 CTCTGTAACT TTTTTTTT TTTTTTGA GACAAGGTCT TGCTCTGTCA CTTAGGCTGG
 150041 AATTCACTGG CATGACCATG GCTCACTGCA GCCTTGCCT CCTAGGCTCA AGCAATCCTC
 150101 GTCTCAGCCT CCTGAGTAGC TGAAACTAAG GCACATGCCA CCATGCCAG CTAATTCTT
 150161 TTCTTTAGA GATGGGAGCC TTGCCCCAGGC TAGTCTCAA CTCCTAGCCT CAAGTGATCC
 150221 TCCCCTCTCA GCCTCCAAA GTGACAGGAT TACAGGTGTG AGCCACCATG CCTGGCTGCT
 150281 CTGTAAGTGT CTGAATTCA TTTGTATTT ATCAGTCTGT TTAGATTTC TTTCCCTTCT
 150341 TGGGTCAAGT AGGCCATTGG TTTCTTTTA AAGTTTTCA AATTATTG CATCTAATTC
 150401 TTCAAATTAC TCTCAAAATT ATTCCAGTAT ATATTCTTT GTTCCTATTT TCTTCTGTAT
 150461 TCTTTATTAA AATAGCTAA GATTTATCTA GCAGGACTTA TATTCTTCC ATAACATTCC
 150521 TGCACCCCAA TTAATCTCCA ATTTTATATT TCTTCTGGCC TTCCCTATAG TTTCCACAGG
 150581 TTTATTCTTAT TCATTTTTA AAACTTTAT TTAATTGTTT ATTTTATTAT CATTCTTCT
 150641 TATTCAAGCAA TCTAAGTGCT TAGGGATATA GAATTTCCTC TAAGCAGCAT ATGCTAGGCT
 150701 TTAACAATGT TAGGGAGGCC TCCCCCTTCT GGGGAAGACC ACACCTACAT TAACACAGGA
 150761 CTGTGGGATG CCAAGAGGTA GAGAAGAGCT TATGAATATC CAGATTACAT CTTCACTGAT
 150821 CCTGCACAAA GGTGGGGTTC CTCGGTTACC CACTGGGTCC TATTACCCAA GTCTGGCTCA
 150881 GCATACCGAG ACTACGGGT A TATAGAACAA GTGCAACTGG CGATAATCCT TCTGGGG
 150941 AGAAAAATCT TTTTTCTA TTCACTCTAG GTTCTCCATC TGTGGCCCTA TCAAGTAGAC
 151001 TAACAAAAGA CAGATTGACA AGACAGAAC AAAGCATGTG CATTGTACAA ACACAGGGGA
 151061 GTACTGAGAT GAATACTAA AAGAGGATT AGAAGTTGGG CTTATATAGC ATTTTAAGAA
 151121 AAGAATACAT TTTTTAAGTG ACAAGGAAGA CGAAAAGGAC TTTGAGTTTC TAGTGCAGTA
 151181 AATTGTGGGA AGGCAACTTT TTCTTCCCT TTTTTTTTT TTTTTTTTA AAAAAAAGAC
 151241 TTCTCTGGTG CTATGTCCAG GCTGATAAGA GTCTAAAGTC TCTGGTGAECT AACTTTGTT
 151301 CTCCCCGAG TAAGAAGACA CCTTCACAAAT TTCAATATCCT GCTTTAGGC AACAGGGAG
 151361 AGGGCAGAGG TGTTGTTTG TTTTTAATCT ATTTTTTTTC TCAATTGTCT TCAACTCAA
 151421 ATACTTCTTA TGCCAAAGAT GGCATATTCT GCTACCCCTTC ACTTACTACT TACAACCCAG
 151481 CCTCTATCAT CATAATTAGA ACTTCTGACC CTGGGAAACA TGGGCAATAG TTTGAACCT
 151541 TTATATCTC CCTTAGGCAG AGATGGAGGC CCAGCCATGC CTCTGACATC TAGACACAAC
 151601 TGTTGCTTC TTTCTCCTAT TCTCAGAGGT GATGTTGTAG GACTTCAACA AATATCAGTA
 151661 AACATTAATT TTTTTTTTCC TTGAGGCACA GCATGATCTT GGCTTACTGC AGCTGCTGCA
 151721 GGCTCAAGCA ATTCTCCTGC CTTGGCCTCA CGAGTAGCTG GGTTACAGGC CCCTACCACC
 151781 ATGCCCGGCT AATTTTGTA TTTTTAGTAG AGACAGGGTT TCACCATGTT GGCCAGGCTG
 151841 GTGTTGAAC TCTGACCTCA AGTGTACCCAC CTGCTCAGC CTCACATAGT TCTGGGATTA
 151901 CAGGCGTGTAG CCACCATGCC TGGCCATCAA TTTTTATGTC AACTCTAAAT TATAACATT
 151961 AGCAATTTCG TGACTTTTA TGGTCATCAT TAATGTTGTT TATGTTTAG TTGTAGTCCT
 152021 GTCATTACTC ACTCGGGTAT GGTAAATTGG TCTTTTCAA AATGAAGTTA AGGTCTATT
 152081 GCTCTTCTCT GAATCATAAT AAGAACTGCC AACAGCCATT TCAGCAATAA CTATTTACTG
 152141 AGATTTAAA ATATTCAAG GTAATTGGTC CTAGCAGACT GGAAAATACC AAATTCTTT
 152201 CCAGAACTGA ATCCCCCATC AAAGTTCAAT TTACTCATA ATTCCCTTT CATTGAGAC
 152261 ATCTCATTGT AAGCCAGTCT TAACCCCTCT CTCACACTT GCTTGGCTGT TTCTCAGGTA
 152321 GAACTCAGTA AGTCTGGTAG CCTCCAGGAC TGCCGCTTAG ATTATTAAC AACATGTCAG

Figure 9 (Page 47 of 74)

152381 TGGTTGGAAG AGTCAATGTT ATTTTGATTT TTCTGTTTG TTTTGTAA AATGCAGTTG
 152441 GCGGATAATT GCAGCTTCT TTCATTCCCT ACATGAGTTC AAATGGCAGC AAACAAACTA
 152501 GGAGAACGCA GACCTTCTGA CTTGTGGTA CCCCTACTCA TCACCTGAAG ACCCTGGAA
 152561 ATCAAAGCCC TGACCCATTA AAGACGGATG GAGACAGCAA CATAAGATCA TCACATTAT
 152621 CTTGCTTTGC CCCAGTCCAG GTTAACCATC TGTGGTATTT TTAGTTGCTA AGTCCATATA
 152681 TTCAACATAA ATCAATTATA TATCCACTAA AATCTCAGCA CTAGTCTAAC TACTAAGGAA
 152741 ATGACAGCGA AGAAAACAGA CCAAACGTCT GCCCTTATGG GATTTATATT ATTTTCTCTG
 152801 TGCTGGTTAA ACCAAGGAGC TTCTGCTCTT TTCCCTAGTC ACCTGGGGGA GGCAGAAACA
 152861 AAGGAGAATA TTGATAAAACC TGGAAATAGG GCCGGAGAGT ATCAGAGAAG GAAGCCTTCG
 152921 GGAAAGTAAA GATGTGGCAG CCAGTATTCC CGTTATAAAA GGATACAAC CCGGCCTCAT
 152981 AGTCCAGAAA AATTCCCACA AGCAGGGCT GCTCATGCAG ATGAAGGGAA GTTGGGGGAG
 153041 AAGTAAGTGC TACATAGCCT TTCTTTTGC ACAGCCTGAG GGTCCAGAAT CCAGACTGAG
 153101 GCTCTGCTT CATGCCAGTG CCCCTTGCA CATTTCAT ACAAACTCCT AAATCCCATC
 153161 CGGTTCTTC GCCAACATCC ACTTCAAAGT AACGTCTTCC TGAGGTGAAG CCTTCACAAAC
 153221 CCAAGACACA GGGGAAGGCA GTAAATCTCC TGGAAGATGT GTCCTGATTC TCCTGGGTGT
 153281 ATCCACGAGT CACTGTCTC CGATCCTCAG AGAGAATTAG TTCGTGATGA GCTGTATCTG
 153341 GATCCAGAGT CACACTAACT GCAAAACAAA ACAAAACAAA CAAAAATAAT TTTGTTGCTG
 153401 TGAAGAACAC AGGTATTATT ATTATTTATT ATTGTGAGAT GGAGTGTG TGTCACCCAG
 153461 GCTGGAGTGC ACTGGCACTA TCTCAACTCA CTGCAACCTC CACCTCCTGG ATTCAAGGCAA
 153521 TTCTCCTGCC TCAGGCTCCG GAGTAACTGC GACTACAGGT GCGCACCCACC ACAAGTGGCT
 153581 AATTTTTTA AATTTCTGT AGAGATGGGG TTTCGCCATG TTGGCCAGGC TGGTCTCAA
 153641 CTCCTGACCT GAAGTGTCC ACCCACCTCG GCCTCCAAA GTGCTGGATT ACACAGGTGT
 153701 GAGCCACCAT GCCCCAGCCAC AAGTTATT ATTCAAAACC AGCCTGTGTT CAAACCCAAC
 153761 TATTGTTCT TATAAACTGG GTGAGCTTAG GCAAATCATT TAACTTCTG AGCCTCAGTT
 153821 TGTTAACTAT AAAGTGGAAA TTACCGTATT TGTTGCAGAG AATGGTGGGT AGGATTGAAT
 153881 AAGCTTATGT TTGCTTAATG CTTGGTAAAA TTCTGGTAC ATGGTAACCA CCTAATAAGT
 153941 GGTAGTTGTT GGGGTGATCA GGCACAC CAGGCCGTGG GGGCTACAAA GTCCGGCGGG
 154001 GTCAAAGGAA TGAGAAAAGA CAAGTTAAGA GTGCATAAAG TGGGTCCAGG GTGCCAGCAC
 154061 TAGATTGGAG GCTGCAAAGG CCCTAACGTC TGGGAGCCCA CACTATTAT TGGTGTGAA
 154121 ACAAAAGAAGC AGGTGGTGAG GACGTGAGGG TAAACAGGTG AGGGCATGAG GACATGGGGG
 154181 TAGAAAGGTA GTGGTGCATT AAGCGTAGCT GTGACAGTTT AGCATTTCCT TTGACACATG
 154241 TAGAATATAC TCTGCTGCTT GAGATAGTAG AGGACACGTT TATGAGTGAA AAGCAAGGAA
 154301 CCAACAAAGTC TGTGCACTTT CCAGAGGCTA TGAGGGGTTT TATGCCCTGA GCCCTGGGTT
 154361 CCATCCAAGC CACAAGGGT TTTATGCCCT AGGCTTAGAT TTGTGGTGC GCAAGGGCAGC
 154421 CTTCCACCAT TTGGCACAGA GCTTGGTGT CCAAAGGCCA CGAGGGGTTT TGGACCCCTGG
 154481 ACCCCGGACA TCTTCCAAGA CTCTTTACA TTATGACAGA CAAGCCAGTC CTGCTTCAGC
 154541 TCTTCTAACCA ACATGTAGTA ATAATGATAT CATCAACATC ATCTTCTGTCT TAATTATTCA
 154601 AGGATGCCAA GGTACAGAAC TAACCTGTTA ATATGGTTAC CATCCTGTCC AAAGTTCTTC
 154661 TCCCCTGAG GACTTCCAGG AATCATGAGA CAGTTGAGCA GAAAGATACC TTTTCCCTTC
 154721 TCTACTGAAT AACCAACCAAC ATTGAGAATC AGAGAGGGAA AATGACTCAG CTAATGTCTT
 154781 AGCTTGTAT TGGAAAGACCC AGGTCTCATG ACACATGCC AGTCCCAGTA CTTTTAATTG
 154841 TAAGCTCTC TCTTCCCT CAGATAATGT TCCATAAGCA TTAGTATGAG ATAATAATAC
 154901 ACTGAGGACC AATATACATG AAAAATATCA GACTAGAAC AACAAGACA GAAAAAAAGAT
 154961 CTGATAACCT AAAGTGGAGAT ACTGAACAGT ATGCAGTTT AAAAATAAAA AATGGTAATA
 155021 GGATGTTCTA ACAAGAGAGT TAAGAAACCA CTGTGCTACT GAGTTAAATG TTGATCAGTT
 155081 GGTCTGTGAC ATTAAGGAA TTCAAGTATT CAGAAACACT TCCTGTGCTG GATGCTCTC
 155141 GTTTGTTCTT CCAAATAATC CCTCACTTTT CCCTGTCTTG CTCTGTGCC AGGAAGGCTG
 155201 ACATGGACAG ATTAACCAGG CTTTCCGCC TCTGGCTTGG TTCAGCCAAT GGGAAAGCACC
 155261 AGAGGAGACC ATAGGGCACA AAGAAGCAGC CTTGGGAGTA TTCAGTACCC CAGTCCCACG
 155321 CTATGATTG GAGGGTCTGC ATTCCCTCTGC CTCTGGGCAC ACTCTAGTAT AGTTACAGCT
 155381 CCCTACACCT GCCACTTGAG GCCCAGAGGA GGTGATGGCT CTCTAACTGT TCCTAGTTCT
 155441 GGGTGTCTCC TGTTCTTGT GGATTTCCA ACTCCTCAC TTTGTAAATA CCCTCCTTT
 155501 TCAAACCTA TTCAGTTAGC TTTTATCAGC CTGACTCACA GAAGTTGGG GTTTCAATT
 155561 ATATTACCTG AATGACCCAG GAAAACCCAT GTTGAGAAAT TAAAATGTTT ACAGGGGTGGT

Figure 9 (Page 48 of 74)

137/162

155621 AATACCAC TT AAGAGAAAAA ATATCAATTG GATTTTAAA ATTCCACCTA TCTATTGGTG
 155681 TGACACATCA ACAAAAACAT ATAGAAAGAT TGGAAGCTAA AAGATAGATA ATATAGTCAT
 155741 ATACTGTTAT AGTATTATAT CAAAAGATAT TAAGTCAGAG CATTATTAAG AATGGAAGAA
 155801 GGGCCAGGTG TGGTGGCTCA TGCTGTAA CCCAGCACTT TGGGAGGCCA AGGCAGGCCG
 155861 ATCACTTGAA GCCAGGAGTT CAAGACCAGC CTGCCAACAA TGGCAAAACC CTGGCTCTAC
 155921 CAAAATACA ACAATTAGCT GGGCATTGTG GCACATGCCT GTAATCCCAG CTACTTGGGA
 155981 GGCTGAAGCA CAAGAACAC TTGAACCGGG GAGGCAGAGG TTGAGCTGAG CTGAGATTTC
 156041 GCCACTACAC TACAGCCTGG GTGACAGAGA GAGATTCTGT CTCAAAAAAA AAAAAAAAGA
 156101 AAGAATGAAA GGAGTCACCT AAAAAAGATA ACACAATTAA AACATAAAAT GTACTACATT
 156161 ATTGATGAAAT TCATGTTAG AATTGTTA ATATACAAAG CAAAATTGT AGAATTATAG
 156221 GAGAAATGGA CAAATCTACA ATCATCATGG GATGTTTAA CATTCTCTT TCCATAATTG
 156281 ATAGATCAGG CAGACCAAA GAAAGAAATA AGGGAAGATA CGGAAGGTCT GAACAATCTA
 156341 AGAAGCGCAA TCTCATAGTC AATACATAAA GCTCAGCAAT TGTTAATAA TAGTAAGCAG
 156401 AGAATATGCA GTTTCTCAG GTATAGATGG AACATGCACT AACTGAGTAA ATACTAGGCA
 156461 GAAAACAGTC TGAACAAGTT CAAATAAAC TGTATTACAC AGATCATTCT CTCTAGCCTC
 156521 AATATAAGAT TATAAACCA AAATAAAAAG ATGACTAAAA AGATTCTAA TATTAGGAAA
 156581 TGTAACATAC TAATAAGTC TTAGAAGATG TATAGAATGG AACAAATAAA AAATGTTATT
 156641 TATAAAAATA TACAATGAAG CTAAAGCAGA ATTTTAAGGA AAATTGTTAG GCTTTAAATG
 156701 CTTATCTTAG AAAAATTAAA AAGCTGAACA TTAATGAGCC AAGCATCTAA TTTAAATTTC
 156761 AAAAGAACAA TAGAAAGCCA AATATAATT TTTAAAAGA AAAAATAGAT ATAAACAAAT
 156821 ATAACAGTGA AGTTAAAGAA AACAAAGAATG CAATAAAGAG GAAAACAAA CAAAAAA
 156881 AGTAGCTTCT TTAAAGGAA ATTTAATAAA ATAGACATAC CTCCAATGAG ATTTATCAAA
 156941 GTAAGACAGA AGGCACAAAT GGAATGAATA CAGAAACTTT TAAATATTA CAGAACTTTA
 157001 TAATAAATCT TATGCTACTA ATAAAATGAA AAGTACTGAT AAAATTATTA CTTCCCTAGAA
 157061 AAAATATTTC TGAGTAAAC TCACTAAAA AACAAATAAA GCATGGGCAG ACCTAACATT
 157121 AAAGAAATGA AATCACTACT TTAAATTAA CCGACAGATA ATAAAACGTG CATCTTATC
 157181 AAGCAAAAT GGAACCTGTC AGTTTTATAG GAAATTAGA AGTCAAGGCA TGAGTAATGC
 157241 CAATCTCATA CCAAATCCTA CAAAGAATAG AAAATTATGG CTCCCGCTTA TAGACATAGA
 157301 TATAGAACTC CTGCACAAA TAATATAAA AACAAACCAA ATTTTATATT TGCAACTATA
 157361 CATATTATAT GTGTATGTAT TATATATGTT AACATATACA TATATAATAT GTATAGCATA
 157421 TGTTCTACAT ATTATATATG TATAGTGTAT GTATTTACA ATATATAAT GAAAACCCAA
 157481 TCTTTAATAT ATTCACTCTAG ATTGTCAAT ATGACATATA TAATACATTA CATAAAAAAT
 157541 GTGTACAATA ATCAGGCCAG GCACAGTGAC TCATGCCGT AATCCCAGCA CGTTGGGAGG
 157601 CTGAGGCCGG TCAATCACTT GAGTCCAAGA GTTGAGACC AGCCTGGTCA ATATGCCAA
 157661 ATTCCATCTC TACAAAAAAAT ATGAAAAAATT ATCCAGGCAT TGTGGTGCAC ACCAATAGTC
 157721 CCAGCTACTC GGGAAAGCTGA GGTGAGAGGA TCACTTAAGC CTGGGAGGTG GAGATTGCAG
 157781 TGAGTCGAGA TTGCCAGT GCACCTCAGC CTGGGTGGCA AAGGGAGACC CTGTCTCAA
 157841 AAAAATTAA AAAATTAGCC AGGTATGGTG GCCTGTTCCCT GTAGTCCCAG CAACTGGGAA
 157901 GGCTGAGGTG AGAAGATCAC TTTAGCTCAG GTGGTGGAGC CATGATCGCA CCACTGTACC
 157961 ACTCGGCTTG GGCAACAGAG TGAGAGCCTG TCTCGAAAAA ACAAAATATAT ACACACAGTA
 158021 ATCAATATAT ATATTATATG TACCAATCAA TGCTTCACCTT TTATATATAA TATAGATTAC
 158081 ATCTTATTAG ATATATAGTA TTCCCTCTCC ATAGATAGAT AGATACAGAT ATAGACATAG
 158141 TATCCTCTAT CCATATTAGA GAGAGGATAC TATATATATC TATAGCATAT AGAGATGCTG
 158201 TCTCAAAAAA ATTTAAACAT CAGCCAGATG TGGTGGCCCA TGCTGTAGT CCCAGCTACT
 158261 GGGGAGGCTG AAATGAGAGG ATTGCCATTG ATCCTCTCAT TGGTTGAGCC ATAAATGCAC
 158321 TACTGCACCA CTCAGCCTGG GAGACAGAGG GAGACCTGAG GTGGAAGGAT ATAGATATAG
 158381 ATATATAAAAT AAATATGTAT AGAGAGAATA TAATATATGT GTGTATGTGT ATATATATAT
 158441 ATTATGAAGA CACTGGGAGA GAATACTATA TATATATGTG TGTGTGTATA TATATATTAT
 158501 GAAGACACTG GTGGGATGGT TTCATTACCA ATTGGACCAA GAGTCCAGGT ATGGAGCCAA
 158561 CATGCAATGT TGTTGTTGAC TGAGCTGGCA GAGCACTGGT CATAGTACG GGAAAAGAAG
 158621 GTCTCCAATG AGACATACTT AACAAAATAT ATGAACCTGC CATATACGTG GAGAGTTCTG
 158681 GTGTGTATAT AGCCTCTCT CACCAACCTA GCAATTGTCT TCATCATCAT TATAATGCTA
 158741 TCAGAGCAAA GATGACAGCT AAATTTTTT GTCCCTTTCT TCTTCTTTCT CTTCCCTCCCC
 158801 CTCCCCCACC TCTTCTCTT CCTCCTCCTC CTTCATCTCT CTTCTTTTT TTTTGAGAT

Figure 9 (Page 49 of 74)

158861 GGAGTCTTAC TCTGTCGCTC AAGCTGGAGT GCAGTGGCAC AATCTCAGCT CACTGCAACC
 158921 TCTGCCTTCT GGGTCAAGC AATTCTGCCT AAGCCTCCAG AGTAGCTAGG ACTGCAAGTG
 158981 CACACCACCA CACCTGGCTA ATTTTGAT TTTAGTACA GATAGGGTTT CACAATGCTG
 159041 GCCAGGCTGG TCTCAAACTC CTGCCCTCAA GTGATCCTCC TGCCCTGGCC TCCAATGTG
 159101 CTGGGATTAC AGGCGTAAGC CACTGTACCC GGCCTCCTCC TTTAATAGAC AGGGTCTAGC
 159161 TCTGTTGCC C AGGCTGGTA CAGTGGCGTG ATCATAGCTT ACTGCAGCCT CGAACTCCTG
 159221 GGCTCAGGAG ATCCTCCTGC CCTAGTCTCC CCAGTAGCTG GAACTACAGG CATAGCACAC
 159281 GGGGCTAATA AAATTAATTA GGTGATAAAA TTCACTGCC ACTGATGACT AAGCTCTTG
 159341 GACATAAAAG ACACAGACCT TGAAGGAAA TGTGTCTACT TAATTTGAA ACCCTATTAA
 159401 TCAAAAAACA GGATGAAAAT GCAAATGCC ATCCACATGC CAGAAGATAT CAGCTATAAT
 159461 AAGTTCCCAT AAATCAATAA GGAAAAGAAC CCAATAAAA TTATTAACAC ACAGTAAATC
 159521 ATGGGTAAAT CACAGAGGCC TGAAGGCTA ATGGACATAC AAAAAGAAC TCAATCTCAC
 159581 TAGTGAATC AGAAAAGCAC AAATTAAGTA CACAATTAGG TACCATTTA AATCTGTAAG
 159641 ACTGTCAAA TCATAAAATTA TATAAGTAA GACTCAGGGA GTTTGGAGG AGTGAGAGCT
 159701 CTTATATTGC TTGTGGGTA GAATTGAAAC AATTCAAGA TCTGTAGTAT CTGGTAAAAT
 159761 TATGATATGC ATCCCTCACA CCAGCATGTC ACTCCAAGGT ATCTCCCTGG AGGGAACATT
 159821 TACGGGACAC AAGGAAGCAT GGATAAGAAT GTTACAGTA GTATTGTCTG CAACAGCAAC
 159881 AACAAACAAA AAACCAACT ACACACAAT TCAATGCCA GTCCACAAAGG CAATGGATTA
 159941 AATAAACTTC AGGCCGGAGA TGGTGGTCA TGCCTGTAAT CCCAACACTT TAGAAGGCCG
 160001 AGGCAGAGGG ACTGCTTGAG CCCAGGAGTT CAAGACCAGC CTGAACAAA TAAAGAGATA
 160061 GTGTTCTAC AAAAATTTT TAAAAAATTA GCCAGACGTG GCAGTGCTTG CCTGTGGTCC
 160121 CAGCTACTGG GGAAGCTGAC GTGGGAGGAT TGCTTAAGCC CAGGAATTAA AGGCTGCAGG
 160181 GAGCCATGAT GGGGCCATTG CACTCCAGCC TGGGTGACAG AGTGAGACCC TGTCTAAAAG
 160241 AGATAAGTAA ATAACAACTT TGCAATTCTT GCCACATTGC AAAATGGTGA GAGAGTGGTT
 160301 TCTAGACTCT AGACTCTTTC TATGACTACC TTCTAGTTAT GAGATCCTAC AACACTCACC
 160361 TAAACCTCTCT GTGTCATATT TCCTCCTCTA TAAAGCAAAA ATGCCCTATA TAGAGAGGAC
 160421 TGTGATATAA ACAAGAACC AAGAAAAGTA AAGCTTTCT AATCTGTCAC AGACTAAAGA
 160481 GTGCTCAGTA TATGTGAGTC ATTATTCTG GTGCTGGTAG GAGTGTATGT TACAACCTTG
 160541 AGTCAAGTAA TATGGTACCA TATATTAAGA TTAACAACAA CCTCGGCAAT CCCAGTTGG
 160601 GGTATGTTCC CAAAAGAAAT GAAAGCACCA GGATATAAGG ATGCATGGAC TAGAAAGTTA
 160661 TTGTTAGCAAC ATTGTAATAA CTAAGTTCTA AAAACAGCCT GAAGCTCCAT CAGTAGGGAT
 160721 ATGGTTACAT ATATTTATTA TATTCTTATG GAATATTAGA CATAAAAAGT AACGAGTAAC
 160781 ATAGAAGAGA CAGTGTATAT ATGTTACGTT TGACAAACT TAGGAAAGA TATAGATCAC
 160841 CCTACCTAGA GAAGTCAGAT TGGAGAGGGG TGGAAAAAAC CTTGAACCTT CTCCTTATAT
 160901 CCTTTATATT GTTTGACTGA TTAAAATGTA TTTGTTGCAT CTGCTTGAAG GCAATGTAAA
 160961 ATAAAATAAA CATACTTTA AAAATAAAAA TAAAATTTAT TCCTATCACT TTTGTAATAA
 161021 AGCTGGGCAC AGTGAACAAAC ACTTGTATC CTAGCACTT GGGAGGCAGA GACAGGCAGA
 161081 TCACCTGAGG TCAGGGTTT GAGACCAGCC TGGCCAACAT TGTGAAACCC CATCTCACT
 161141 AAAAATACAA AAATCAGCCA GGCATAGTGG TGCCTACCTG TAATCCACG CTACCCGGGA
 161201 GGCTGAGGGC CTGGAACCCA GGAGGCAGAG GCTGCACTGA GCTGAGATTG CGGCACTGCA
 161261 AGCCAGCCTG GGTAAACAGCG AGACTCCATC TCAAAAAAAA ATTTGAAAAA AGAAAATTT
 161321 TAATAAACAG TGTAAAGAG GGGAGAAATA TTTAGTTAAA AGATAAGCCC ATTTAAGAAA
 161381 TAGTTCACT TGACCCGGAA GGCAGGAGCTT GCAGTGGGCC GAGATCGCAC CACTGCACTC
 161441 CAGCCTGGGC GACAGAGCGA GACTCTGTCT CAAAAAAA AAAAAAGAAA GAAAGAAAGA
 161501 AAGAAATAGT TTCACCTGAA CCATATTATG ATTCCCTCTG TAAAAGATGA GAGTAGGCAA
 161561 ATTGACTCACT TGAAATCCC GCAAAACTTA CACAAAGTCT TGTTCTCCT TCCTGTCATC
 161621 TGTATAGGAT GAAATACAGA GTGCTTTGG GTTTGTTGT TGTTGTTGT TGTGTATTG
 161681 AGGGGAACAC AGGTCTATAA TTCCCTTCT GAAATCCCTG GAACAAAATG GGCTTGGCCA
 161741 TTCAAATTAG TTTAGAAGTT ATAAAGGAA AAAAATGCAT ATACTCTAAA GTCAACCCCC
 161801 ATCATGGCCT AAGGCAGAGC CCTGTAATCA AATTCACTAA TATATCTGCA GCAAAACATT
 161861 TATTCAAATT AAGTGGGATA AATAAAGACT TTTAAATAGT CTCATCTCAG TGCCGTTCA
 161921 GGTGGGCCAC TGTGGAGAC AGACTCAAGG GTGGCCTCT ATGATTCTG CCTCTTGGTG
 161981 TTCACACCCCT CGTAAAATTC CTTGTCTTG AGTGTGAGCA GGGCTTATGA ATTGCTCTG
 162041 ACCAATAGGA TATGGCAAAG ATGATGGGAT ATAATTTCTA TGATTACGTT TCATTATGTAA

Figure 9 (Page 50 of 74)

139/162

162101 AGACTCCATC TTGCTGGCAG ATTTTCTCTA AAGAGTCTGT CTCCTGAGCT CTCTCTGAAG
 162161 AAATAACTGG CCATGTTAGA AGCCCATGTG CAAAGAGCTG AGGGGTGGCC TGTAGAACGCT
 162221 GTGGGCAACC TCCAGCCAAC AGCCAGAAAT AACCAGGGCC AAAGTCCTGC AACCATCAGG
 162281 AAAGAAATTG TGCCCTGCTAT CTCAGTGAGC TTGGAAGTGG ATTCTTCCTT AGCCTAGCCT
 162341 CCAGATAAGA ACACAGCCTG ACCAACACCT TAAC TGAGC CTTATCAGAC CCTAACGAGC
 162401 AGGCCAAGT AAGCTGTGCC CAGATTCTG AACCACAAAA ATTGAGATAA CATATCAGTG
 162361 TTGTATTAAG GTTCTAAATT ATGGTAATTG GTTGTACTA ATAGATAACT AATATAACCA
 162421 CCAAATCATT TCAGGTTAGG CCAGATTTT GTAGCCAAAT GAATCATGAT AAAACTTTCC
 162481 ATTTTCAGGG GTTTTTGTA TTTTGTACTT ACGGATACAA ATTGTGAAA GTATAGTCAG
 162541 CACTGATTAA AAAATCAAG GGAGCAGGAA ACTCAGTAAA TGTTCTAAC ATTTTGGAAAT
 162601 CTGTAAATTG GTTGTAAACAT TTGTCATCTG TGTTATCTAA GTCAAGTTCC TAAAATATGT
 162661 GAATGATAGG TTATCATACT CACCTACTTT TCTTGATTG CTCTAAAGT TGGCTGAGCT
 162721 ATTGATAATA AACACTATGA TCAGATCTAA TACCATGATG TGCTATTATG ATCATGTGTC
 162781 AGTCACAGGG CTAAGCACTT TGTCATGTT GATGCATTAA ATTGTGATGA TAACTCAATG
 162841 AAGTAGGAGC TGTTAAATT TTCATTTTC AGAGGGGGAA ACCAAGTCAC TTGGAGTAAC
 162901 ATGGCTAATA AGTGAAGGAA TAAGAATTG AAAGGTTGC ACAGATAACC AGAATGCAAT
 162961 GCTCATCACCA TTCACTGAGC AGTGAATCAT ACTAACTAGA GAAAGTATGA AAGCTCTACT
 163021 GAAATTAACAA AACAAACCTC TCTGGCTGTG AGCCTGCCAA GGGACAGGTG GTAAACTTGG
 163081 TTACTGCATA AGGCCCTTC TATCCACAGT ATTCAAGGAAT TCTTTAGTGA ACATACCTTG
 163141 ATGACTCCTT AACATTTCT TCACATCGAA GTAAAGCTTG GAAACATTGC ACATAGTATG
 163201 AAGTTCCAAG GAGACAGCCT CTGATGTTT CAGCTTCACA GCCCAACTCC TAGAATAAGC
 163261 AGAGGCAGAGA GATTCTTCA GAGGTGCATT CCATTCAATT CTATATAACGC ACACCCCTCC
 163321 CCTCCTGCAT TCAAACAGGA CTTACCTGCT CAAAGTGTCA TTACATTCT ATAAAGAAAC
 163381 AAAAGAAAAA GGTGAGCATG GGAACATCGG TATTTCATGG GGCTTGTCA GCAGGGCTAT
 163441 TCTTCTTGC TTTACCCGAA GAAGTAAAGA GAGTTACCT AGTCTTAGTC TTAGATATTG
 163501 ATGGATACTC AAACAAAGTA ATTCCCACCA GTCTTAGGTA TTGATGGATA CCCAGATGGAA
 163561 ATAATTCTCA CCAGCTTCTG GGAGATTCA GATGGCAGGA TGTTATCAA CATTTCATC
 163621 TATTCTCATC CTTGCTGAAG TCTGAGGGCC AGGAGCTTG TCCATGCTCC CTCTGTAAGG
 163681 ACTAGCTTT GGTGATCGGA TTTCTTCAC AGTAGCCCCA GATTAGAGAA CACTTATCAT
 163741 AAAGGTCTT AGTGGTGAAT CTGTCACAG CCCTGAGACT GGGCCACTGC CACTAAGATG
 163801 GTGGTAGCAG GTATCACACA GTGGTAAAGC AATCATGCTA TACACTCAGC CTTACAGTAT
 163861 AGTCACCAAT CCTGTTAGTT AGAACCCAGAA TTAATGGCTC CAGATTTA TCTTCCTACA
 163921 GATAAGCTG TAGATTGTAC CATAACAGCT CTGGAGCAAG GGTTCTACAA GCAAATCAGG
 163981 GAAAAGGTTA TCACTCATTT TGGCTCCCC ACTTCATCAC CCATCAGTCA CCTAGTGGAG
 164041 TATTTCAGGA GAGAGTCAC ACCAGGGTT CTCTGCACAT GGGCCAAGGA GGCAAAACAGT
 164101 GGTAATGTT ATCCCGTGGT TTCATTTGGC CAAGCTGTGT TCCCTCAGAA GTTTATTTTT
 164161 CTAATTGACA TAAAGGTACC CTATAAATTG GTGAAGGCCA GCCTGATGGC ACTGATGTAC
 164221 ATCTAAAAGA AACATTACTT TATCTTCCCA TGCTTCCTTA CCATTCTCCT TTAATAGCAC
 164281 TATAACATAC CTTTTTCCC TACTCCAAGT ACACAGCCTC ACCTGCAGCA ATTCTGGGC
 164341 TGAGCCCTGA CATTTCCTCC CCAAGTCCAG GATGTGGCTC TTGAGTTCAT TGCTCTTCAG
 164401 CCCCAGACCA GCCTCATAGT CCCTCAGTCT ACTCAGAGTC TGTTGTTCTT CTTCTCCAG
 164461 CCTCCAGAGA TAAGACTTCT CTTCTCATG TAGGAAACAC TGGAGATTCT TAAAGTCAGA
 164521 CCGGATTTTT TGTCTCTGAA TCTGTACCTT CTCCTGGAGT CAAGAAAGTA TGGTCAAAAG
 164581 GTGGAAGTAA ACCAAATGTC CATCTATGGA TGAATGGATA ACAAGAAATG AAAGTCTGAC
 164641 ACACGCTACT ACATGACAAG CTTGAAGAC ATTCAAGCAA AATAAGCCAG AAACAAAAGG
 164701 GCAAATATTG TAAGACTTTG CTTATACAAG GCATCTGGAG TAGTTAAGTT CATAGAGACA
 164761 GAAAGTAAAA TAGTGGTTAC AAGGTGTTGG CAAGACCAGA AAATGGACAG TTATTGTTTA
 164821 ATGGGTAGTG AGTTTCAGTT TAGAAGATGA AAGATGAAAC TGAGTTGCAG TTGGAGATG
 164881 GGAATGGTGA TGTTGCACA ACAATGTAAC AATGAAAG CACTTAATTC TACTGAACCA
 164941 TATACTTAAAGTGGTTAA TGCTTAAGTG TTATATATAT TTTCACACAA ACACACACAC
 165001 ACACACAATC AGCCACTGGG ACATTATTTC CTCATGAGTC ACTGAAGCTG GAAGAATGTC
 165061 CCCAGTTCC TGCTGCAGAG TCATGTGTTGG GAGGCAGGCA CTCAGATGTG GAAGAGGTTG
 165121 CCTCAGATTG CTTATAGTCA CCCAATTAAAT TTTCTTGTTC TTCAGCCAAG ACACAGGAGA
 165181 AAGCTGGTT AGGAGTGCTA GATAATTAA TTGTGAAACT AGGGCCAAGT TCAAACACTT

Figure 9 (Page 51 of 74)

140/162

165241 TATCAGTTAC AAGGATAAAA AGAGGTTTTT ACTTATGATT TAAGAAGTTA GATTTCTGAG
 165301 TTGGAGCGAT TTTCTTGAAG TAAAGCTTA TAATGAACAT CACCCAGACT GGATTTAAG
 165361 ACAACCAGGC TGGTAAGAGG GTCCATAATT CTTGGCAGGG GGAGCTTGA GTGTGACAGG
 165421 CATTATTAT GGTAACTGA GAAATACTGT TCTACTACCC TAGGGTCATC TTAAGCATTC
 165481 CTATGTGTAAG GACTGACAGA AATCAAGTGA AACTCTCATC TGAGGAGATG TAAAGTTGCA
 165541 ATTTCCATTA GTGCTGTCTA AATTAATGCA GTGGGAGTGT GTATTCAAGG CAATTGAAAT
 165601 CTATGTTCTT GGATTGCAGT CTTCAAACCTT GGCCCAAATA AACTCTCTAC TTATCTTAA
 165661 AAAATAAAAAA TTAAAAAATA AAAATAAATT CATACAGTGT TTTGATGACT ATGATATAGA
 165721 AGAAGGGTCT TTGACTTAGG ATGAGGTGGA ATTTTGTGT AGGAGACAGG TGCAGCTTAA
 165781 ACTCTTGAT AGACGGGTTT TCATATATGT TAGTTACAAT CAAGGTCTTC CCCATTGCC
 165841 AAGATCCTAG AAATGGGGA AGTAAGAGTG TACTCAGGAG CTCAAGAGCA ACATCCACAA
 165901 ACAAAAGATCA GGGTAGAGGT TAGAGAGGAC TCCGAAAGA GAGAAAATTG GTAATCAGCT
 165961 TGTGGGATTG TACTGCAAGC TAGTGAATTA TATAAATATA AAGATTGGT CAAAAGTAAT
 166021 TGTGGTTTT GCCTTACTT TAATGGCAA GACCGCAATT ACTTTGCAC AAACCTAAAT
 166081 ATTTCCATTA AAGAATGTGG CTCTGATAAT GTGGAGGTTA GTCAGCCACG GAAATAATCT
 166141 GAAAGTTGT AGTTGCAAGT GTGTAGGTTG TTGCAATTACT TGTGATGTAC TTATAAATCA
 166201 AGTATAGGCC GGGTGCAGTG GCTCACGCC GTAATCCCAG CACTTGGGA GGCTGAGGTG
 166261 GGTGAATCAC GAGGTCAAGGA GATCAAGACC ATCCTGGCCA ACATGGTGA ACCCCGTC
 166321 TACTAAAATA CAAAAAAATA GCCAGGCATG GTAGCACATG CCTGTAATCC CAGCTACTCA
 166381 AGAGGCTGAG GCAGGGAAAT TGCTGAAACC CGGGAGGTGG ACATTGCACT GAGCTGAGAT
 166441 CGCACCACTA CACTCCAGCA AGACTCCATC TCAAAAATA GTAATAATTT AAAAATAAAT
 166501 AAATAAATAA AGTATATTTC TTTCATCAGC TTCAATGAGCT TGAGTAGTAT GAATTCAAT
 166561 CTGGAGTGAT CCTGTTTCT AAGTGTTCAC AAAGCTTGGT TTCTGTACCT GTAAAGTTGA
 166621 GAGCCAGATG CTCCACTGTG GTAAAAGTGC CAGGGTAATG AGTTGAGGCC TGCAAACCC
 166681 GTTTATTTTG AGGTATTTAA AGTTTGAGAC CCACTCGATG CTTTTCTAG GTAAATAGTC
 166741 ATACTAATTC TGCTCTTCT GACTGAAGTA TCAGGAATCC CAGCCAACTA CAGTTAAAG
 166801 ATGGAAAGAT TGGTGCTAAA TACTCATGGA TGAAACCTG GAACCAGGGG CATAAGTACA
 166861 ATAATGGTT TCTTCCTTGG GTTTCATTTT TTCAATCTGG TTTAGTGAGA ATAAATCCTC
 166921 ATTGTGCTT TCCTCAATCA TCCCCATATGC CTAAGCTCTA GAATGGAAA TAGCTTGAGA
 166981 TCAATGAAGT CAGATTCTTA CTTTCCATT AGTTATTCGC ATTGCTGTGG ACAGCTTCTG
 167041 CTCCGTACAT CTGCTTCAA GTGCTTCAG TTTGTCACA GCTTTCTGGA GCTTTCC
 167101 AAGGAAAAT TTGATAAGTG AAGCCTATTC AATTGACTC TTCATTAGGG ACCTAGGGG
 167161 AATCCCAATC TTCTAAGATA TATTTGAATA ATAGTGAATA TTTATAGAGT CCTCATTGTT
 167221 TTTTGCTAGA GAGCATGCTA AAGGCTATAT GTGCAGGAAC ATACTGATCC CTTGGCAAC
 167281 CCTGAATAGT TGGTAGGATT TTAAACTTCA TTTCTGTGCT GTAGAAAATG AGACTAAGAA
 167341 AGGGGTAAAA TAACTTGCCC AAAGGGCTAT GACTGCCAGG TGGTGGAGCA ACAATTGCAA
 167401 TCTCATCTGC TGACCCAGAG CCTGAGCTAT GTCCACCACT AGACTCCTGC CAGGAAAAG
 167461 TTGGATATAG AACAAAGTAA TCATCATCTA AAAGATTTG TAAAACAACA TGCTGAACCA
 167521 AGCAAAACCA ATACCAAGTGT TTGGCACACA TGAAATTTG TGTCTTATGA GTCAGGAAA
 167581 ATCAGGATGC CAGCTGGTTA TTAGAAACAG TTCATGGAAG AGGGGAATTC TGGTATCTT
 167641 TGAACAATGG TATCATGAAT CCAATTAAA ATGATTTAGT ATTCATGTCA AGCTTTAGC
 167701 TTATTCTTCA AAACAGTTTC TCATATTCT ATTGAAAGTG ATTGAAAGCT GACCCAAATT
 167761 GCTAATTGTA GTCAATGCTG AAAGAATTGT CTCCGTGCT CTGTAACCC ACAAGTATA
 167821 CTCATTCACT CTCGAGTGTG CTCAGGAAA GGTTCTATGT AACTGTTTA GCAAAAGATG
 167881 ACATTGCTT TACTATATGC CAAGTGTAT TCTATGCATT CTATATTAA ATGCTCTCAA
 167941 AGCTTATAAC CACCTCTGT GTATGTGTT TAGGGAGGGG GGACACTGCT ATTATCCCC
 168001 TTTACAGATG GAGAAACAA GGTGTGAAGA CATTAAAGTAA CGTGCCCCAA ATTGCCCATC
 168061 TAGTAAGTGA CAAAACCAA TTTCAACATA AGCTGGTTCC TTTCTTACT ACTTGGTGG
 168121 AAAGTAATTG AAATGGGAAT ATGATCATCG CAGTTATTAG CTGCTCCATG GAGTTAAGG
 168181 AAGAGCTGCC ATGAGCTGAG TGGTGGTCAT GATTGACATG TCCTTAAAG GACTTAGAGC
 168241 CTCATACAA GACCACCTCT GCCTCATGGA GGACAGAATA AGGAGCCTGA CACTGGAGAC
 168301 AACATTTCC TCAAAATTAG GCAGGACAGA GAAGGAAAAA GGACATCAGG ACTATGCC
 168361 TTCCCTCATG CTGCCAACAG CAAAGTCCC CCTCCCTTAA TATGCTTCT GGCAAGAAAT
 168421 CTGGATGGTA CACAAAACCT CTCCCTCTGC TTCAACCTTCC ACAACCAAGC ATTTCCAAT

Figure 9 (Page 52 of 74)

168481 CTTTGACTCT TCTTCCTGAA TCGTGCTTAA AATCTGCCCT CTCCTCCCTT TCTTATAACGG
 168541 ATAGTTTGAA TTTTACTCCT TGATATTCTT TTTATCATAG ACATGCCACA GTAGCTGGGC
 168601 ACAGTGGTTC ATGCCTCTAA TCCCAGCATT TTGGGAGGCT GAGATGGGAG GGAGACCAGG
 168661 GTTTGAGGC CAGTATAAGC AAGAAAGCA GACCATGTCT CTACAAAAAA TAAAAAAATT
 168721 ATCCAGGTAT GGTGGGGCAT CCCTGTAGTC CTAGCTACTT GGGAGGCTGA GGTGGGAGGA
 168781 TTGCTTGAGC CCCAGAAGGT TGAGGCTGCA GTGAGCCGAG ATTGCACCAT TGTACTCCAA
 168841 CCTGGGATAC AGAGCAAGAC CCTACCTCAG AAAAAAAA AAAAAAAA AAAGTAGAGG
 168901 TACCAAGAGTG ATATTTCAA TGTCACTGAC CCTTCATTCC CCAAATGAAA ATCCCCAAT
 168961 AGGTGTTCAA TTTTACGTG TCCTTCAGGA GTTACTTCTA AGATGAACCA CTCTCTACCC
 169021 TAAATGTCCC TCCCCACCAC CAAAACCAGG GACCTCCAGG CAGACATTT TGATGGTTG
 169081 TTTTCTTAC TAGACTGTAG ATACCTAAAA GGTGATGGGT CTTTCTCCC TGTTTCAGG
 169141 CCCTACTGCA TGGCTTACA TATTGTGGTT TTTCAAATGA TATTCTGGT GTGAAACAAG
 169201 AAAAAATGCG GGTGTTGGT TTGAGAACAA CCTGTTCTAA AGCAAAAAGA AATTCACTCAT
 169261 AACACAAATG GATAGAGATA AGAGTCCAAC CATCCCATTG AAGGTCAAGGA TGGACAGTCT
 169321 AGATAATTGA GCAAGAAATC ATCATAAACT ATTTTCAGA AGAATGACAT GATGAAAGCT
 169381 GTATTTCCAA GTCATAATGT TAGGTTCAA GTTAAATCAT CTCAGCTCCT GGGGAGCAGG
 169441 ATAAGACTTG GTACTTACCA AAGCTCCCGG GCCCACACAC TCACCTGTG GCCCTGGCAT
 169501 ACAGTCTCAA CAAGAGCTGT GGTGTGCCCT TTGTGCTGTG GTGCCCGCTC ACAGCGCCAG
 169561 CAGATGAGCT GCCCCTCATC TTGCGAGAAC AGGTGGAAC GCTCTCCGTG TTCCCTCACAT
 169621 GACATTTCTT GATCGTCTC TTTGAGGGCT TCAATGAGGC TTCCAGCTG CTTGTTGGGT
 169681 CGGAGGCTAT CCATATGAAA TGGAGCCGA CACTGGGGAC AGCAGAATGT CTCCTGCCTC
 169741 AGTTGCTTT GGCTTGGGT TTTAAAGAAG TCTGTTATAC ACAAGTGGCA GTAGCTGTG
 169801 CCACAGTTGA TGCTTACTGG GTTCGTCATC AGGCTCAGGC AGATGGAGCA GGTGGCTTCC
 169861 TCCATCATCT TCTTGGTGCT GGTGGTTGAG GCCATAGCTT TTATTGAAAA GCTCCAATAT
 169921 TGCTCTAGA GATGGAGATG AAGCAGCCAG AATTTCAC CGTGATGAAA ATACACCTCA
 169981 CCTGCACCTC TATGTGATGA GCTGGCTGCA ACTGACTTCC ATAGGTCTTG AAGGTTTCC
 170041 TTCCAACCCC TATTATCTCA TTTTGTTATTG AAGAAAAGAG GACCTAAAG GAAGAAGTTG
 170101 AGGCTGAGGT TGTTGGGCC ACGTTTGAGA ACTGCAACCC AAGTGCAGAG TTCAGTTG
 170161 CCCTCATTAG CAAGCAGTTA CAAGTGGTTG TTAGAGGAA AAAAGCAGT TTAAAGCAG
 170221 TTTTAAAGTT GTTTGCCAAG AATTTCACATT AAAATAGCAT AAGCTTTGA CTGGCTATAC
 170281 ATTGTTCTTT GTATTACAAA TCTCGGGAAT ATGAGGTAA TAGATGAGGC AGCCAGTCAG
 170341 GAACAAAATG CTTTTAAACA TGGGGCTTA ACTGAAGACC TATACTCTG CCTCACTTGT
 170401 CCTGATAAAAT TTGCTATACC TCACATAGCT CAGACTGCTC TAAATTATTT CATTATTTT
 170461 CTTTCTCACT TCTTCTT TTTTAATGA GACGGAGTCT CACTCTGTCA
 170521 CCCAGGCTGG AGTGCAGTGA CGCTATCTCG GCTCACTGCA CCTCCGCCCTC CCGGGTTCAA
 170581 GCGATTCTCC TGCCTCAGCC TCCCGAGTAG TAGCTGGTC TACAGGTGTG CACCACTACG
 170641 CCCAGCTAAAT TTTGTATTT TTAGTAGAGA TGGGGTTCA CCATGTTGGT TGGCTAGGAT
 170701 GGTCTCGATC TCTCGACCTT GTGATCCACC CGCCTCAGCC TCCCAAAGTG CCAGGATTAC
 170761 AGGCATGAGC CACCGTGCCTC AGCCTCTTT TCTTTCTTA TAAGACAAGT TCTCGCTCTC
 170821 TTGCCAGGC TGTAGTGGAG GGCAGTGGCA TGACCACAGC TCACTGCAGC CTCGACCTCC
 170881 TGGGTTAAC CAATCCTCCT GCCTCACCC GGCAGAGTGG CTGGGACTAC AGGTATGTGC
 170941 CACCATGTCC AGCTAAAGTC TTCTCTCCAG AAAGAAGAAA TGCATTGGAA TTAGAGGAT
 171001 ACACAAACAT CTAGCTGTAT AGCTAATACA GTAGCCACTA TCATGAGTAG GAATTAAAT
 171061 TTAACCTTAAT AAAAATTAAA ATGAAAAAAAT TCAGTTTTTC TGTTCCAGTT GCCACATTT
 171121 GATTGCTTAA TAGTTGCATG TGACTAGTGG CTACATAACA GCCTCAATAT ACAACATTCT
 171181 GTTATCACAG AAAGTTACCT TGGACCAAGT GCTGGGAGAA GCAATGCAGG CTTCCCTACA
 171241 AAAGCTGTAA AAGAGAGAAC TCAGGGAGTG TGAAACTCTT TCCTATTCTA GTTAACTTCA
 171301 AGAATAATTG TTACCAAGGCC AGCACGGTGG CTCACGCCCTG TAATCTTAGC ACTTTGGGAA
 171361 GCCGAGGCAG GCAGATCACC TGAGGTCAGG AGTTTGAGAC CAGCCTGACC AACATGGCAA
 171421 AACCTCATCT CTACTAAAAA TACAAAAAGT TAGCTAGATG TGGTGGTGCA CACCTGTAAT
 171481 CCCAGCTGCT CAGGAGGCTG AGGAAGGAGA ATGACTTGAG CTCCGGAGGG GGAGGTTGCA
 171541 GTGAGCCCAG ATTACACCAC TGCACCTCAG CCTGGGTGAA AGAGCGAGAA TCTGTCTTAA
 171601 AAAAAAAA AAAAGAATAA TTGGTACCAAG AATTACTCTT TGTAATTAGT AGTAACACTT
 171661 ATGCAATTGG GTGATCTGTG ACAGATTCCA TTGAAGGAGT ATGGGGAGCT TCACCCCAAT

Figure 9 (Page 53 of 74)

142/162

171721 ATATGACTCC CTGGTATAAT GAGTATTG AATTAAAGGC CCTTAGAGAT CAGCAGATGC
 171781 TGGAAGAGAC TTTCCCCTA TCTACATAAA GACCAGTCAC ACTAGACAAG AAGAAATTT
 171841 GTTTTCCTT CCAACCCCTA TTATCTCATT TTGTACTGAA GAAAAGAGGA CTAAGAATGT
 171901 AACCAAGACCT AACAGACAC TTTCACAAAA TAATGTCTGT CTCTCAGGCT CATTCAATT
 171961 CCAAAGAGAA CCATTACAA GTTAAACTCT GTTCTCCAT TCATTATCC TCCCAATAT
 172021 TCATTTATTC TCCCTAGTAA TCATTTACTG CCCCTCAAAG AATTACCTAT ATTCTCCTGA
 172081 TATCACCCCTT CCCCTCTGAA ATAAATATGT ATACATGTAT AAACGTTATA CATAACATATT
 172141 TATACAGTAT ACATACATAT TTATACATAC ATACATATGC ATACATATTT ATATTTATGT
 172201 ATTTATACAT AAGTATTAT AAATAAGGCT ATATAAGTAT CTACCCCCAT TGGCAGAGGG
 172261 GGTAATCACT CTGTGATTCT AGCCCATGTA CTTGTTAATA AATTTGTATG CCTTTCTCC
 172321 AATTAGCCTG CTTTTGTGA GTCGATTTT CAGTGAACCT CAGAAGGCAA AGGGGAAGTG
 172381 TTCCCTTGGC TCCTACACCA TCATGACAAT AAAATTGAC TCCACCTCGA CCCCCCCCCT
 172441 CCCCCACAAA GAACAACAAAC CAACACTGGT TAATAAGGTC GGTGTTTT TGTTGTGTT
 172501 TTTGTTGTTG TTGTTGTTGT TGTTGTTTT GCTTCAGGA GCAGAGGTAT AATAGGCAA
 172561 AGAAAGAGAA AGGAGAATAG TGAATACCTC TTCTGCAGAG AGGGGTGCCT AAGTGGGACT
 172621 TCCCTGGCTA ATAACGTCTT GCTAGAGACC CAACCAGGAG GATAATGGAA GCAATCAAGG
 172681 CAACCAGAAC AACCAAGAAG ACCAGTTAT CTTTTGTTG CCCTCTCCCT AACTGAGGG
 172741 AATAAGAATT GGAAAGAAGG CTGCAGAGCA GAGGGTTTGC TCCTGAGGAG CAGTTATTC
 172801 TATGGGATCA GAGCTCCTGC AGAAACTGGGG AGTTTACTTT TACTATCTCT TCTCCAGGAC
 172861 AGGACCTATC TCAAGAGACA TGTCAGAGT GATTGCAACA TAAAGAGTTT GCAGACCCAA
 172921 GGAGGTAGGG AAGGCAGAAA GAAGATGGGG GAGGCCAGGG ATAGGCAACA GAGGAGTGAC
 172981 CAGGAGCGAA AAAGCCTGCC TCTTCTGAGA ACCTAGCTGG GCTCTCCCTG TACCCCCGAT
 173041 CCCTCCCCCCC CGCCCCGCCCC CACACCCCTA CTCCTGGGAG CTCCTCTAGG ACAGGGGCAG
 173101 AGTCAGGAGG AAGTTGAAG AGTGCCTAGA ATAAAAAAACA GTAATTAAAC TACAATTACC
 173161 GGGTAGGCTG TTTCTCTCTC ACAATTGAT CAGTCTCTTG AAGCCACACA GAATTCTTC
 173221 TGAAGACGTG TATTCTTGG CAGGCTATT CTCCTAGTGA TACACCAGGC CCCTCTCTGC
 173281 TGGGTCACT GCTCTTCTGG GGAGATGGGG CTCCCCTCCT TCCAAGGCTC CAGGGTTCC
 173341 GTCCTGGGCC CCACTCATCT AAGTTCTGAA TCTTCTGAGA TTTGGTGTAA AGTCTGGTGA
 173401 AAGAAAGAGC AGGAAAGAGG TGAGAGCTGT AAAACAAAGA AAGTCCTGAC CATTTCAGA
 173461 GTTGGAGGGG CCCTGCTGTC ACGAAATATA TTCCCCACCC CACTGCCAT CAGTACACAC
 173521 TCACATATCC ACTGAGAAAA CCTTAGCCTG GACCTTTTCC GTAACCTTC TGTCTCAGAC
 173581 ACTTACATAT TCGCTGCTAG TCCCCTCTGT TGCTGCCACT TCCTGGTCA GGAAGTTAAC
 173641 TCAGACCGGA TTAAACTGAG AAGTGAACACT ACTGTGGGAG GCGGGGCTCA TAAGATTTAG
 173701 GAGAAAACTA GTGACGTTGT TCATATCATT TGCACTCCGC CTCTCCGGTA AAGGAGGGGG
 173761 AAACGTAGGA AGAAAATATC CTTCTTTAC AGCAATAAAA AGAAGGAACC ATTAATAAC
 173821 CCTGTAAACT ATCATGTGAC CCCAACACAG AGTATCTAAA AACAGGAAGC CTGCAGAGGT
 173881 TCAGTTCACCA GACTCTGATT TGAGATCTT CTACTTTGC CACCAACTCC CTTGGGAGTC
 173941 CTTAACGCTT CCTAGCTGAT GTTACTTCTT TTGCTATTAA TGGGTTGCTT GTGGTTCTAT
 174001 AACTGCTCTG AAGGGTGTGG TGGAAAAGG GGTGGTAACA GCAGTAGGAC TCATTGGCAT
 174061 CACAAAATTC ATCTGAGTCA GCTTTCTATT CTTCTCTGTC CCGTTCTGT TCTTGTTTTT
 174121 CTCTTCTGCTG TCCTTCTGCA GGACTCAGAT CTCTTCAAT AGCGAGGGTC AGCCAGGATA
 174181 GAAAATGGGA GTCACTAGTG GCCCAGCAGT GAGTGCCTTCC AGCTTAGAGC TGTGTGGGAT
 174241 CCTGGGACC ATCACTCTGC TTTGTGCTTT GTGGAGAAAA GGCTGTGGGG TCCAGGGTCA
 174301 AGTCCTTAAT GACTTAGCTC CAGCTTCTCC ACTTCAAAAT GAAAGGAAAA GTACTATCAC
 174361 CACCCGTTAG AATTATTATT TCATGGGAA AAAAGATGGA TTACTATCTC ACAATAAGAG
 174421 CTTGTCACAT TTATAAGTCT CAGGTGTAAG AGGCATTTAT GATAACAACA TAATAATGC
 174481 TGGCTTAAGT AGATGCGAGT GTCCAAGGGG ACCAGTAAGG GGAGCTCAGG ACACAGGTGG
 174541 GAGGAGAAAT TAAACTGAA TTCTGGGAGC CACTGGCCTG TCTGGGCCCC TGGCCTGCC
 174601 GCTGACCTG ATAGCCAATG GAACATGGAG TTTGGCCAG CTGCAATCCC TCTGGTCAA
 174661 CTACTAAAA TAAAGGCAAG ATTGGGAAAC ACGTTCTTT CTTCTATAC CAAGCAGAAG
 174721 ACTCTTCAGC ACTGCACCCCT CCTGGGTGCT CACAGAGCCT TCTGTTGTT TGCCACCTAC
 174781 GATTATCATCAT GCCCTGGCAT GATGGTTGCA GACCCCATGC ATAGCATGGG ACATTCTACT
 174841 CCTGAGGCAA CCAGCACACA GAGAGAGGGG AAAGAATGAG CCCCTGAATC CTTGGTCCCA
 174901 CGATGAGTCC TTGCAAGATAT CTACAACCTT CATTGTTGTG GATGTGACTC TGTACCCAGG

Figure 9 (Page 54 of 74)

143/162

174961 CATGGCTCAT TCCAGATCTG TCCTATTGTC AGAGGTGTTA AAACCAGAAT GACTCCATT
 175021 TGAATGGGG CTAGGTAAAA TAAGGCTGAG ACCTACTGGG CTGCATTCCC AGGAAGTTAG
 175081 GCATTGTAAG TCACAGGATG AAATAGGCAG TTGGCACAAG ACACAGGTCA TAAAGATCTT
 175141 GCTGATAAAA CAGGTTGCAG TAAAGAAGCT GACCAAAACC CACCAAAATC AAGATGGCAA
 175201 CAAGAGTGGC CTCTAGTCAT TCTCATTGCT CATTATACAC GAATTATAAT GTGTTAGCAA
 175261 GTTAGAAGGC ATTCCCACCA GCTCCATAGT GTTTTATAAA TACCATGGCG ATGTCAGGAA
 175321 GCTACCCTAT ATAGTCTAAA AAGGGGAGGA ACGCTTGGTT CTGGGAATTG CCCACATCTT
 175381 TCCCCAGAAA CATATGAATA ATCCACTCCT TGTTTAGTAC ATAATCAAGA AATAACTGTA
 175441 AGTATCTGTA TTAGTCCATT TTCACACTGC TGATCCAGAC ATACCTGAGA CTGAGTAATT
 175501 TATACCAGGA AAAATGTTT CATGCTCTTA CAGTCCCACG TGTCTGGGA GACCTCACAA
 175561 CCACAGCAGA AGGCAAGGAG GAGCAAGTCA GGTCTTACAT GGATGGCAGC AGGCAAAGAG
 175621 CTTGTGCAGG GAAATTCCCT CCTATAAAC CATCAGGTCT CATGAAACTT ATTGACTATC
 175681 ATGAGAACAG CAGTATAAT TACTCAGGGA AAGACCTGCC CCCATGATTCA ATTACCTCC
 175741 CACCAAGTCC CTCCCACAAAT ATGTGGGAAT TTAAGATGAG AGTTAGGTGG GGACACAGCC
 175801 AAACCATATC AGTATCCTTA GTCCAGAAGC TGATGCTCTG CCTGTAGAGT AGCCATTCTT
 175861 TTATTCCCTT ACTTCTTGC TTTCACTTTA CTGTGTAGAC TTGCCCCAAA TTCTTTCTCA
 175921 CACGAGATCT AAGAACCTTC TCTTAGGGTC TGGGTTGGGA CCCCCTTCT GGTAACACTA
 175981 TCAAAGGATC AGGAAAAGGA AGCTAGTGAA TGCTAAAAG GAAACAAACT ACCATTACCA
 176041 ATAATAACAG CAAGACAAAA GCAAAACGGA TTGTGACAGC TGTCCCATCT CACACCTGTT
 176101 TCCCATTGCA GGAAGGAGGG GCTGGTCAT GCACAGAGTGC GCCAATATTA GAAGCAGAGA
 176161 GGGGGTGCAG ATGAGACTTC AGGAATATGT TGACAAAGGC AGGCCTAGGG AGAAATCAAC
 176221 CTGAACATATC CCCAAGGAGG AATGCATTAT CTCTAATATG TAAAGTTAGG CTTGATCCTG
 176281 TGATTATGGG ATATAGGAGT CCAAAGACTC ACAATGGGAA GTAGGTCACT AGAGTCTCCT
 176341 TCAGAACGTC TGTACTGTGT GTTCCCCTG TGGGCAAGAG TCAGCACTCA GCTATTCCCTA
 176401 GAATGCCTT CCTCAACTCC TTCAGATTT GCCTCTAAC TAACCTATC CTGACCACTT
 176461 GTTAGCAAGT GTACCCCTCT CTCCCTCCCA AACATTTCA AATCTATTT GTTCCCCTGG
 176521 CACTTATCAC TGAATATTTT ACTAATTAT TTTGTTTAGT GTTGTCTTCC CTCATGAGAA
 176581 TGCAAAGGGG TGGATTTTT TCAATATTGT TCACTGATGA ATCCCAGTAA CTAGAATATT
 176641 TCTAAGCATA GTGATGTGCA TTAAATCAA GAGTAACCTT CTGAATTGCA CTAAACACAC
 176701 ATCACAAGAG GTGTGTGCAC ATATGTGCAT GATGCACGTA GTGTGGTGTG GGTGTTGTG
 176761 GGGGTATGTG GTACTGTGTG TGCTGTGTG GGTATGTGAT ACATAGTTG TGTTAGTGTG
 176821 ATGCATGTGA TGTGGTATGT GTGTGCGTGT CCATACATAT TAGGGGTGGC GGGGATGTAA
 176881 ATATGTCAAA TGGTACTAGA AAGTATCAGA ACTCATGGT CTTACTGGTT TCCCAGAGAG
 176941 CTGCTCTCT CCCACCTGTA GGATATACTG ATGGTTTGGG CAGAGAAGAA ATAAAAAAGAA
 177001 GGCTGTGACC TACTGGGCTG AGGAAATAAA AACGAAAGTA AAAGAAGAGC TGGGAAAAGA
 177061 GAGTGGAGGG GCCAAGGGAA ATTTCCCTT TGGCTCTGG GGAAACTTTG CTGAAAATC
 177121 AACTCACAAA TTTATTAACA TGTACACAGG GAGAACATA GAATGATTAT CCACTTCCCA
 177181 AGAGGGCTTA AAAGCTTATA TATTATCCTG GCAAAACAGA TTATGGGAGG GGAAGAAGAG
 177241 AAACCTGTT GATGGGATTA CTGTTGCGGA TTTTGCTCC TTCGCTCAGC TAGGTCCGGG
 177301 TTTTGTCAC ACAGCCAGGA AGAATTAGGC ATGCAGCCAT CAAAGAATGA GTGGAGTAGA
 177361 ATTTATTAAG TGAAAGGGAA GCTCTCAGCA AAGACAAGGG TCCTGAAAGC AGATTTCTGG
 177421 TTTGCTCTTC ACAGTTGAAT ACTAGGGCTT AAGACTAAA TTCTGACAA CTCCACCCCTG
 177481 TCCTACCAGT GCATGCAGGC CTTTAGACTG AGCTACTCCA TATTGATTAA TTTCCTGAAC
 177541 TGGCCTGTG TTAAGGAAAG GAATCATCCA CTGCAGGCAT GTTGTAGGCAA GCCCCCTGTG
 177601 CAAGTTCCCT TATCTGCACA AAACATCCGG TGTAAGCACT TGTGGGAGG GTCAGAGGTT
 177661 CTCTGGGTAC CATTCCCTTA CTGTCCTGCC AAAGCAAGCT GGCAACTCC TTTCATTACT
 177721 AGGGAGAGTA AGTAGATCAG GGAACAGAGA TTAACTTGAA CATTATCTTG TGAAAGTCCG
 177781 TTCGGGCATG GTTACATTCT TGGCTTACA GGAAGGGTAA ATAAAAATAA TTGCTCTTT
 177841 TGGTGGGTCT GGATCTTAGG TAGATAAAGA AACTTTAATT CCACGATGTG TTTGGTAGG
 177901 GATAGTTGGT GGCAGGGATG TCAGAGAGAC TTTGAGGCTT CTTCAGTTCA ATATGACCAA
 177961 GGGCCATATA TTAGGGTATC AATTCTGAG CCCAACAAAG AGCTTAGGAG AGATGTGATA
 178021 GCATCACAGT GTGAAAGCAA TTTTTGTCT GTTTTAGAG ACAGGCTCTT GCACTGTCAC
 178081 CCTGGCTGAA GTACAATGGT ACGATCACAG CTCACTGTAA TCTTGAACAG GGTTCAAATG
 178141 ATCCCTCCCAT CTAAGCATTT CAAAGTGTG GGATTACAGG CATGAGCCAC GGTACCCAGC

Figure 9 (Page 55 of 74)

144/162

178201 CTGAAACTGC ACCCACTTTC TGATAAACTT TTCAAATGAC TAAAGGGGAG AGAGTAAGCA
 178261 CTACTCAGAG GTAGGAAGAA AGGACACAGG ATTATAGGAT TAAAACAACA ACCACCAAAA
 178321 AAAACCAGAC CGGTGTGGTG GCTCACACCT GTAATCACAG CACTTGGGA GGCTGAGGTG
 178381 GGGGGAGTC A CTGGAGGCCA GGAGTTGAG ACCAGCCTGG CCAACATAGC AAGACGCTGT
 178441 CTCTATTAAA AAAAAAAAT ACCTGCCTTG AGCTAATCAG AATCATGGAC CCTGACAAAG
 178501 GATGTCCCAA AGTAAGTCTT AGCATTTTT TTTTTTTTT GAGACAGTCT CGCTGTGTTG
 178561 CCCAGGCTGA AGTTCACTGG CGTGATCTCG GCTCACTGCA ACAGCTGCCT CCCAGGCTCA
 178621 AGCAATTCTC CCTGCCTTCA GCCTCCAAG TAGCTGGGAT TACAGATGCC CACCACCAACG
 178681 CCTGGCTAAT TTTTGTCCCC TTTAATAGAG ATGGGGTTTT GCCATGTTAA CCAGGCTGGT
 178741 CTTGAACTCC TGACCTCAAG TGATCTGCC ACCTTGGCCC CTCCATAGTG CTGGGATTAC
 178801 AGGCCTGAGT CACTGCACCC GGAAAGTCT TAGCATTCTT TACAAACAGT TTGTACCCGT
 178861 ATCTCTAAAA GGGAGTAGTG AATTCACCC CAAAATATGG CTTCCGTATA TAATGAGTAT
 178921 TTGAAATGAA AAACCTCTAG AGATCAACAG ACACAAAGA GACTTTCCC TAGGTACATA
 178981 AAAATAGGAT GGCCCCACCA GCGAGAACAA TTGTTCTTT CTCCCTCCCT GTTATCTCAT
 179041 TGTGCATTAT AGGAAAGACC AAGAATGTA CCACACCTGA ACAGACCCCT TTATAAGATA
 179101 ATCAGTCTCT AAGCATCATT TAAATTCCAA GGAGAACTAT TTACAAATT ATCTGTTCTT
 179161 TGATCCAATT AGTCTCTCCT GGTAGTTACA TATTGCCCT CAACAGAATT CCTCTTCTTC
 179221 TGTTCCTCAT AACCTATTAA GCAAGGATCA AGCCCCTGTT ACTTCTCAA CTTCAAGTTG
 179281 GCATATAAGC TTCTAAATTC CACTGGATA TTGGTACTAT GTGCATGAGG AGAACACACG
 179341 AGTAATTAAA TTGAAAGCC TTTTATCTT TGAATCTGCC TTTTTTGTG TTCATTTTC
 179401 AGCAAAACTT CCAAGGGCAA AGGTATAAAA CAAAATAAA ATTCTAAAGC CCCCCAACCA
 179461 TCTGAATAGA CTTCTCTTC AGTCAGGCTT CTTAAATGT AACCTGAAAG ACTGGCTCAG
 179521 GCCATTAAGG GAAGTGGGGG TTGAACATGC CTCATTATTC CTCTCTGGCA TAAACATCAA
 179581 CACAGCTTT AAGTCTGATA AGAAACATT TACAACCTAT TCTCTCTGAA GCCTGCTAGC
 179641 TAAAACCTC ATCCCATACT ACAACTTTGG TCTTCACAACT GTTATCAC AACCTAGTGC
 179701 TCCTTCTAT TAATCCAAA TCTTTATACA AACTCAACCA ATTGTATCA CCTCCACCCC
 179761 ACTCCTCCGC TGCTTCCAGT TGTCCCGCCT CTCTGGACCA AACCAAGTGT CATTCTTAA
 179821 ACGTATTTGA TTGATGTCCC ATGCCTCCCT AAAATGTATA AAGCCAAGGT GCATCCAAAC
 179881 CACCTTGAGC GCTTGTCTC AGGACCTCCT GAGGGCTGTG TCATGGGCCA TGGTCACTCA
 179941 AATTGGCTC AGAATAAAATC TCTTCAAATG TTTTACAGAG TTGGCTCTT GTCATGACAC
 180001 AGATGACTGC TTCACTGAAG CCTGCTCTGG AAGTGAGTGG GGGTTTGCA AGGATAATT
 180061 TCCCCGGATA GCCCCAGAAG CAGCTAGTAA TAATACACTT AAAGGTAGCT AAAATGCATT
 180121 GAACACTTGT TTTGTGCCAG ACCTATGTCA ACATTGCTT TGTGCCAGGC TTATGCCAGT
 180181 ACTCCTGATT TGTAAATACA TTCTAAATAA AAATTCTGGA GTTTCAAATA TAATAACTGA
 180241 AAAACAGAAA ATAAATAAAA ATATATAATA ACTGAAATAA AAATTTACTA AGGCTGGGG
 180301 TGGTGGCTCA CTCACACCTG TAATCCTGTT ACCGGAAAGG GGTCCGTCCA GATCCAGACC
 180361 CCAAGAGAGG GTTCTGGAT CTCACACAAG AAAGAATTG GGCAGTCTG TAAAGTAAA
 180421 GCAAGTTTAT TAAGAAAGTA GAGGAATAAA AGAACGGCTA CTCCATAGGC AGAGCAGCTC
 180481 TGAGGGCTGC TGGTCGCCA TTTTATGGT TATTCTTGA TTATGTGCTA AACAAAGGGGT
 180541 GGATAATTCA TGCCTCCATT TTTTAGACCA TATAAAAGTAA CTTCTGACG TTGCCATGGC
 180601 ATTGTAAAC TGCGTGGCG CTGGTATGAG CATAGCAGTG AGGACGACCA GAGGTCACTC
 180661 TCATGCCAT CTTGGATTTG GTGGGGAGCA GTGAGGATGA CCAGAGGTCA CTCTCATCGC
 180721 CATCTTGGAT TTGGTGGGGT TTAGCCAGCT TCTTACTTT TTTCCTTTTT TTTTTTTTT
 180781 TTTTTTTTTT GCCCCAGGCTG GAGTGCAGTG GCACGATCTC AGCTCACTGA AACCTCCAAT
 180841 TTCTGAGTTC AAGCGATTCT CGTGCCTCAG CCTCCCAAGT AGCTGGGATT ACAGGCATGT
 180901 GCCACCACAC CCAGCTAATT TTTTATATT TTAATAGAGA CGGGTTTCG CCATGTTGCC
 180961 TACGCTGATC TCCAACCTCT GCGCTCAAGC CATCCAGCCA CCTTAGCCTC CCAAAGTGCT
 181021 GGGCTTATAG GTGTGAGCCA CCCCACCTGG CCTAGCCGGC TTCTTACTG CAACCTGTT
 181081 TATCAGCAAG GTCTTATGA CCTGTATTTT GTGCCACTG CCTGCCTCAT CCTGTGGCTT
 181141 ACAATGCCCTA ACTTACAGGG AATGCAGCCC AGCAGGACTC AGCCTTATTT CACCCAGCTC
 181201 CTATTCAAGA TGGAGTCTT CTTGTTCAA TACCTCTGAC AAGCCAAACA CTTGGGAGG
 181261 ATGACACAGG AGGATTGCTT TAGCCTAGGA GCTCAAGACC AGCCTGGCA ACACAGTGAG
 181321 ACCCCATCTC TAAAAAAAT AAATACAAA AAATTAGCCA GGCATGATGG TGTGTGCCTG
 181381 TAGTCCCTGC TACTCAGGAG GCTGAAGTGG GAAGATGGCT TCAGCCAGG AATTCAAGGC

Figure 9 (Page 56 of 74)

145/162

181441 TGCATTGTCA GAGGCATTTG AACCGAAATG ACTCTATCTT GAATAGGGC TGGATAAAAAT
 181501 AAGGCTGAGA CCTGCTAGGC TGCAATTCCA GTATGTTAGG CATTCTTAGT CACAGGATGA
 181561 GATAGGAAGT CAGCACAAAGG TACACATCAC AAAGACCTTG CTGATAAAAT AGGTTGTGGT
 181621 AAAGAAGTTG GCCAAAACCC ATCAAAACCA ACATGGCCAC CAAAGGGACC TCTGGTTGTC
 181681 TTCACTGCTC ATTATATGTT AATTATAATG TATTAACATG CTAAAAGACA CTCCTACCAG
 181741 CATCATGACA GCTTACAAAT ACTGCGGCAA TATCTGGACT TTACCTTATA TGGTCTAAAA
 181801 GGTGGAGGAA CCCTCAATTG TGGGAATTGT CCACCCCTT TTTGGAATGC TCATGAATAA
 181861 TCCACCCCTT GTTTAGCACA TAATCCAGAA ATAACATATAA GTATGTTAT TTGAGCAGAC
 181921 CACGCTGCTG TTCTGCCTAC AGAGTAGGCCA TTCTTTTATT TCCTTACTTT CTTAATAAAC
 181981 CTGCTTCAC TTTACTGTAT GGACTTGCCC TAAATTCTT CTTGTGTGAG ATCCAAGAAC
 182041 CCTCTCTTGG GGTCTGGATC AAGACCCCTT TCTGGTAACA TCTTCTGGT GACCACGAAG
 182101 GGACAATACT GAGGAGACTC TGAAGCCAAA GGAAACAGAC TACAGCACCA ACTGGCTGAC
 182161 TTTGGGTAAG TGGTGGAGTC CCCGGGTTAAA GGATAGGATT GGGTTAGAGG TGCAACTTAG
 182221 GGGAGATAGG GTCTCTCCTA AGACAGAGAG CGTTTCAGTC CGCTCTTAAT AAAGGGCAAG
 182281 AATGCTTGAC CGAACCTGGG TTTGAGACCC AACTTAGGAA GGCTACAGTC CTTAAGATTT
 182341 AAGGGGTTAG AGGCCCCCTC CAGTAAAGTC TCTCTTGGTT AAAAACGGAT TTAGCATTAG
 182401 GGGATGTTAA CTGCTATTCT GTTTGTATTA ATCTTCCCTG TGCTCTTGC TGACAGCTAT
 182461 GGGTGACAGG ATTAGGCATG TACAGGATCA CGGGACATTG GGAACCTTTC TTCTCTCAA
 182521 AAGGGGAAGC TTGACAGCTG ATAGGACTGT TGGAAAAGAT CCCTTGCTA TGACAAGCAG
 182581 CCGCCTGAAC TTTGATTCA GTGTTGCTGC AATGGGTGGG TCTTCTCTG GCCTCTGTGA
 182641 ACTCCTCACC TTCCCCACCT CACCACAGGC AATGCTTTTC TCCCTTCTC TCTTTCTCT
 182701 TTTCTGTCTT TTCTGTACT TGAGACAACC ATCTTGCCTA GAGACCATAT GTTGAACACTC
 182761 CTGGTCAGAA GTTTGATTAA AGATGAAAGG GCCTATCTGG GGGCAAGTTT GAGCCTTCCC
 182821 AGTTAGATAT TGGGTGCTAA GTGGAGTGGC CAATGTCTAT GTTTGTAC ATGTATATTG
 182881 CTCTGGCTGA AATGGAAAAC GTTAATTGG TTACTTTATG TGGCCATTGG GCAGCATCTT
 182941 ACAAAAGTGA GAGACATTG TTTGCCTGTG GTTCCATGAA ACAGAAAAAA GTTGGTTTC
 183001 CTTTGTGTCG TAGCTGGAC CCAAGGGCTT TGCACTGAGC AAGGTTGCTA GCGCTGCTCA
 183061 GTGAAAGAGA ACCCAGAAAC CTGGCATGCC AGCAAAAGGG TAAAGATTC TTACCAAGTC
 183121 GGCTTCTGGC CTCTCTCTCT TAGTGAACAC TGAATGAATG GTAAAAATCA CTGTTTATCA
 183181 CCTCTGTAAA GTTTGATTA ATGGGAACAA GGATTTGTGG GGCTAGTCTT AAGCTGTAAT
 183241 GAATCTGGTA TACTTTGTGA TATCAATTG TCTTCTGTGA TTACTCTGTC ATAAAGAGGA
 183301 ATATGGTAGG ATAGAACATG GGCTTAGGAC TCCATAAGCC TGCTGTTCAA GCCAGCCCCAG
 183361 TAAACTGGTC CGTTGCAAAG TTTATTACAG GTCCCTGGAA AAAAAAAA TTAAAAACTG
 183421 GATGAAGTTT CCTCTCTCATC TTGTTTTATG TCCCTTGGAG CTTCACCTTG TAACCACGTG
 183481 GCGGTACTTT CTCTTGGTCT CTGCCATCCA GGGAACAGGA ATTTTGGGT TTATGTAATA
 183541 GTAAACTCTA AAAATTATCT CAAGCCATTG CAAGCTCAA ATTGGCTGCT CTGGACCCCT
 183601 TCTGGGAAGG GCAATGGAAA CTAACCAGTG TTGTAGCTCA GCAGCTAAGG ATTTGTCAATT
 183661 TTATAATGGC GGCCAAGGTT CAATCCTGGC TTAGGGAATG AGTACTTTCT GATTGATATC
 183721 TGTGTGACCT TTACCATTTG TTGATTCTGT TCTCTTCCCT TCCACACACT GTCTTGAGTT
 183781 TCCCTCTCTC TGAGAACCTG GGAGATTATC TTTGGTAAAG TTCAAAAGCC AGAAATAATG
 183841 GCCGTGTGGG ATGGCTAAAG TTGAGTAATA AGAAACCTAA AAGGACTCCT TTTTTTTTG
 183901 CTTTAGAGTG CTATGGTTA TGTTAAAAG CTTAATTAAA AGTGGATATT CAATCTCTAA
 183961 AAGCCTGGGA CTCCTGGGA AAAGCAGAGG AGGCACCA GACCCCATTT TGGGAAAACC
 184021 TCTGTTTCC TCATGAAACC CCAGGAACCTG GAAGTGGATA GATCCTCGC AAAATCTAAG
 184081 GCTCTGTTTG GCTTGCATT ATGTTATCTG ATGTTTTGTA CTTTTGGGG TATCAGAAAT
 184141 TACTTGCAT TATGAGGGAG ATCTGGTGTG TAATAACCAG GTAGGAAATA TACTTCTGGG
 184201 GATAGCTAAA GGCAAATATA GGTGAATACT TGGCTATTG CACTTTGGA TCACAAGAAC
 184261 CATTCTCTTG ACTACCTAGA AGGTATGGAA ATGTCTCCAT CCCCACCGAG AGATAAGATT
 184321 CCCAGGGGAG ATGGCTGATC CCCCCAAAGA GGGCTGATTG CCTCTTTGG GATCCAGGAT
 184381 CTGGTATAAA AATGGGACCC TGGCCAGGCC CAGTGGCTCA CGCCTGTAAT CTCAACACTT
 184441 TGGGAAGCCT CAGAGTTATG AATGTCTCAC CATACTGACA CTTTGTGACT GAGCTCCTCT
 184501 CTACCCCTGGA CACAAGAGAC CCTAATAATT AGACAGGAAT ATCATTGCC CTTAGGATT AAGGGTTCCC
 184561 TGAAGAAGTT ATAGAACATG GATCTTATC CCACTGCAAT CTTAGGATT AAGGGTTCCC
 184621 TGGTAAAAGG GAGTGGGAAA ATATGTCAGA GGCATTGAA TCAGAGTGCAC TCCATCTTGA

Figure 9 (Page 57 of 74)

146/162

184681 ATAGGGGCTG GGTAAAATAA GGCTGAGGCC TGCTGGGTTA GGTTAGGCAT TCTAACCAAGG
 184741 AGTTTAGTCA CAGGATGAGA TAGAAGGTTG CACAAGGTAC CCGTCACAAA GACCTTGCTG
 184801 ATAAAATAGG TAACGGTAAA GAAGCCAGCT AAAGCCCACC AAAACCAACA TGGCCACAAA
 184861 AGTGAACCTCT TGTCATCCTC ACTGCTCATA TACACTAATT ATACTGCATT AGCATGCTAC
 184921 AAGACACTCC CACCACTGCC ACGACAGTTT ACAAAATACCA TGACAAACATC TGGACGTTAC
 184981 CTTATATGGT CTAAAACGGG GAAGAACCCCT TAGTTCTGGG AATTGTCCAC CTCTTCCCTG
 185041 AAAAATTCTT GAATAATCCA TTAGTTAGC ACATAATCCA GAAATAACTA TACGTCTGCT
 185101 TATTTGAGCA GTCCATACTG CTGCTCTGCC TATGGAGTAG CCATTCTTTT CTTTTATT
 185161 TATTTTTAG ATAAAGACTC GCTCTGTAC TCAGGCTGGA GTCTGGAGTG CAGTGACGTTG
 185221 TTTTGGCTCA CTGCAACCTT CACCTCCCGG GTTCAGGCAA TTCTCCGCC TCAGCCTCCC
 185281 AACTAGCTGG GACCACAGGT GGGTGCCACC ATGCCCTGGCT AATTTTTGTA TTATTAGTAG
 185341 AGATGGGGTT TCGCCATGTT GGCCAGGCTG GTCTCGAACT CCTGGCCTCA AGCGATCCAC
 185401 TTGCCTTGCG CTCCCAAAGT GCTAAGATTA CAGGCATTAC CCACTATGCA TGACCCATTC
 185461 TTTTATTTCT TAACTTTTTT TTGTTTTTTT GAGACAGAGT CTCACTCTGT CACCCAGGCT
 185521 AGAGGCTGGA GTGCAGTGGT GCGATCTTGG TTCACTGCAA CCTCTGCCTC CTGGGTTCAA
 185581 GCGATTCTTC TGCCCTCAGTC TCCTGAGGAG CTGGGACTAC AGACATGTGC CACTACACCC
 185641 AGCTAATTT GTATTTTAG TAGAGACAGT GTCTGCCAT GTTTGTCAAGG CTTGTCTCGA
 185701 ACTCCTAACCC TCAAGTGGTC TGCCCTGCC AGCCTCCCAA AGTGTGTGA TTACAGGCAT
 185761 AAATCACTGC GCTCGGCCCT TCTTTACTTT CTTAATAAAC TTGTTTCAC TTTACTGTAT
 185821 GGACTAGCCC CAAATTCTT CTTGTGTGAG TTCCAATAAC CCTTTGTGT GTGAAAGAAT
 185881 TTATGGCTGC TGTTCAAGGCT GGAGCAAGCT GGAGCTCATG CTGCTGCTCA GACTGGAGCA
 185941 TGCCTGATCT GTGATCCCAG TAAGAGGATC ATGGTCACTC CAGCCTGAAC GACAGCATGA
 186001 TATCTCATCT GTAAGAAAAA AAAAATTACT AGAGGGCTTT AACAGCAAAT TTGAGCAGCA
 186061 AAAAGAAGTA ATCAGTGAAC TCAAAGATAG GTCAATTGAA ATGATCTACT CTGAAAAACA
 186121 GAAAGAAGAC AGAATGAAGA AAAAGAATA GAGCCTTAGA GACAGGGGAT ACCATCAAGC
 186181 ATACTAATAT ATGCATAATG GGACTCCTAG AAGGAGAAAA GTGAGAGGAC AGGGAGAGAG
 186241 AATGTTGGA GAAATAATTCT CTCAAAGCTT CCCATGTTTG GCAAAAAAAAC ATTAACTTGC
 186301 ATACATATTG TAGGAGCTCA ATGAATTCCA AGTAGGATAC ACTCAAAGAG ATCCATACCT
 186361 AGACACATCA TAATCAGATT ATCAAAGAT GAAAGAAGATG AATCTTGAGA GCAGAAAGAA
 186421 AGGAACAATT CATCACATAC AAATAGTACT CAAAAGATGT CTGGAGTAGG TATACTAATA
 186481 TCAGACAAAA TAAACTTAA GATAAGCATT GTTATAATAA ATAAAGAAAG GTATTTGTG
 186541 ATGATAAAAG TGTCAATTCA TCAAGAAAAC ATAACATTAT AAACATACAT GCACCTAAC
 186601 ACAGAGCCCT AATATTCTG AAACAAAATC GACAGAAATTG AAGGGAGAAA TAGAAAATT
 186661 GACAATAATA GTTGGAGACA TCAATACCTC ACTAGTTAGA CAAGATCAAC AAAAAAATAG
 186721 AAGACTTAAC ACTTGAAAAC ACCTAACCTG ACCCTAACAT AAATCTATAG GTCACTACAC
 186781 CCCAAACAG CAGAATAAAC ATCCTCTGA AGCTCACATG AAACATTTT CAGGATAGAC
 186841 TGATATTAC TTCATGAAAT AAGTCTCAAT AAATGTAAAA GGACTATAAT AATAGAGTAT
 186901 ATATTCTCTG ACCAAAGTGG AATGAAGATA GAAATCAATA ACTAGGCTGG GCGTGATGGC
 186961 TCACGCCCTGT AATCCCAGCA CTTTGGGAGG CCAAGGCGGA CAGATCACGA GGTCAGGAGT
 187021 TTGAGACCAG CCTGACCAAC ATGGTGAAAC CCTGTCTCTA CTAACAAAAT ACAAAAATTA
 187081 GCCAGGCCTG GTGGCATCTG CCTGTAGTCC CAGCTACTCG GGACACTGAG GCAGGAGAAT
 187141 CACTTGAACC CAGGAGGCAG AGATTGCAGT GAGCTGAGAT CGCGCCACTG CATTCCAGCC
 187201 TGGGAGACAG AGCGAGACTC CATCTAAAAA TTAAAAAAA AAAAGAAAAT AGAAAAATAA
 187261 GAACAAATCA AACCCAAAGC AAGCAAGAGG AAAATGAAAA ATTTCAAAGC AGCCAAGAAC
 187321 AAAAGGCACA TTATGTACAG AAGAACAAAGT GTATAGATCA CATATTCTC ATAGACACAA
 187381 TATAAGCAAA AAGACAGTGG AGCAAAATT TTTAGATTAA TGAAAGACCT ACAATTCTGT
 187441 ACCAAGCAAA AAAACTCCCC CCAAATGAGG GTGAAATAAG ACAATTAAAT ACAGAGAAAA
 187501 GAGGAAGGAA TTTATCTAGT CATATGTGAG AGTTTATGA TACATTGT ACTGTATATG
 187561 TGGATGTTTT CTATTCTCATT TAAAAAATCA ACCGTGCAAT TAAATGGTAG ATTGTCTTGC
 187621 TTCTTTTGTA TTGACACAGT CATTAACTAA AATATTGTAG TATTTTTTA TCTCCCTGCC
 187681 TAAAGGCAAT AAACATCTAA TCAGCAGACT AGAACAAATAA AAAATATTTT TAAAAAGTCC
 187741 TTTAGGCAGA ATGATAAAAG TCCCTTAGGC ATATTGAAAT TCCTATTAT ACAAAAGGAAT
 187801 AACAGTACT AGAAATTGTA ACTATGTGAG TAAACAGATA ATATTTTTC TCCATAAAAT
 187861 GTGGTTGACT ATTTCACAA AAATAGTTAA CAATGTAATG TGTGATTAT AGCATTAAA

Figure 9 (Page 58 of 74)

147/162

187921 AGTAAAACAG GCCGGGCACA AAGGTTCGTG CCTGTAATCC CAGCACTTT GGAGGCCGAG
 187981 GCGTGCAGAT CACTTGAGGA CAGGAGTTCA AGACCAGCCT GGCTAACATG GCAAAACCCC
 188041 ATCTCTACTA AAAATACAAA AATTAAACAG GCGTGGTGGT GCACGCCTGT AATCCCAGCT
 188101 ACTCTGGAGG CTGAGGCACA AGAACACTT GAATCCAGGA GGTGGAGGTT GCAGTGAGGC
 188161 AAAATTATAAC CACTGTGCTC CAGCCTAGGC AACAGAGCTA GACTCTGTCA CACACACACA
 188221 CACACACAAA AGAAAAGTGT ATGACAACAA CAGTGCAAAA GAAGCGGAAA TGAAAATAAT
 188281 GTTATTTAT ATAAGTGGTA TACTTTAGA TGAACATACGA TAAATTAATG ATGTATACTA
 188341 TAAACTCTAA GGCAACCACT GAAATAATGA AACGAAGAAT TATGGCTAAC AAGCCACAAA
 188401 AAGAAATAAA ATAGAATGAG AAAAAATATT TAAGTTGTTCA AACAGATGGG AAAAAAAAGA
 188461 GGAAAAAGAG AACAAAGAAC AGATGGGACA AATGGGAAAG TAATAGCAAG ATGATAGACT
 188521 TAACTCTACC CATATAGATT ATCACACTTA AGGTAATGA TCTAAATACT CTAATACAAA
 188581 AGCAGAGGTT GTCAGATTGA ATTAAAAAAA CAGACAACAA CAAAAAAAAG CAAAAAAAAGA
 188641 GCCACAAACAT GCTGCCTACA AAAAATTACAC TTTAATATAA AGACACAAAT AGTCTAGAAC
 188701 ACCATCACTT TTAACCTTAT TTACTCAAAC CTCTTAACCTG ATCCCTATTT ATTTATTTAT
 188761 TTATTTATTT ATTTATTTAT TTATTTTGA GACAGAGTCT GACTCTGTTG CCCAGGCTGG
 188821 AGTGCAGTGG CACCATCTAG GCTCACTGCA GCCTCTACCT CTCGGGTTCA AGCGATTCTC
 188881 CTGCCTCAGG CCTCCCAAGT AGCTGGACT ATAGCACATG CCACCATGCC CAGCTAATT
 188941 TTATATTTTT AGTAGAGACG GGGTTTGCC ATGTTAGGCC GGTGGTCTC AAACGCCGAG
 189001 CCTCAGCCTC CCAAAGTGCT GGGATTACAG GCGTGAGCCA CAGCACCCAG CTCCTCTTCA
 189061 TTTATTCTTG CTACGCTTCC TCCAATCCAT TTTGTGCATT TGATGATTT GCCAGTAACT
 189121 TCTTTATTTT TCTGGTAAAA TTACTTATGG GTCACTGAGG ACTGGGATGT TCTTTCTTCT
 189181 AGAGGGGGTT TGTGTCGT TTTGCCAGGA AGCTGGGTA CCACCACTCA AGTATTACTT
 189241 TAAACTCAAT TCATGAATTG AGACTTTTTT TTTTTTTTTT TTTTTTACGC AGAGTCCTAC
 189301 TCTGTCACCC AGGCTGGAGT GCAGCGGTGT GAACATGGCT CACTGCAGCC TCAACCTACT
 189361 GAGCTCAAGC AATCCTTCTG CCTCACCATT CTGTATAGCT AGGACTACAG GTGTGTGCCA
 189421 CCATGCCTGA CTAATTTTTT AAATGTTTT TTTAGAGATG GGGCTCACTT TGTTGCCAG
 189481 GCCGGTCTCG AGCTCCTGGG CTCAAGTGT CCTCCCACCT TGGTCTCCCA AAGTGTGAG
 189541 GTTACAGGCA TGAGCCTCTG TGGCTAGCCA AGACTTTTTA TTTTTTAGCC TAAATGTGTA
 189601 TAAAAGTTGG CTTGTGGTTA CAACTTATCA GGATTGATGA TCTCTCTCTC TCTCTCTCTC
 189661 TCTGTCTCTC CCCACCTCTC TCACATCCCT TGCTCTGCTG AGAAGCAGAG CAAACATTCT
 189721 AGCAGTTTCC AGAGAGTAGG ATGGGATTAC TTCTAGTTA CTTTTATCAT CTTTGGGAT
 189781 CGCAGTATTA CTGGGAGAAC ACAAGTATCT CTTATTAGAC ATACCACCTT TGTAGAATCT
 189841 GGACTTTCAT TTAGACTTT ATTTGTTTC TACTATAAGC AATTAAAGT ACAGATCTCT
 189901 CTACACACTG TTTAAGTTGC ATCCCATGAA TTTGATGTG CTTTATTGTC ATTATTATAT
 189961 AGTACAATGT ATTTTGTAAT TTTTTGTGAT TTGTTGGAG AGATTGATTA ATTAGAATGA
 190021 TGTAAATTG CAAATATGT GTGTTTTTT CCTACATTTC TTATTTTAT TGATTTCAAA
 190081 TTATTTCTA CTGTAGTCAG ATTTAATAAT TCATTTATTT TTATTTTTT CATTTTTTA
 190141 GAGACAGGGC CTTCTGTGT TGCCCAGGTT TGCCCCAACAC TCCTAGTCCC AAGCAGTTCT
 190201 CCTGCCTCAG CCACCCAAAG TGCTGGGATT ATAGGCACGGA GCCACCCGTG CACAACCAAC
 190261 AATTCAATTAA AAAAGTGGGC AAGTGAACCT AACAGACATT TCTCAAAAGA AGGCATACAA
 190321 TTGGCCAACA AATATATGAA AGAATGCTCA ACATCACTGT ATTAGTCTGT TTTCATGCTG
 190381 CTAATAAAGA CTTAACCTGA GACTGGGAA TTTACAAGAG AAAGAGGTTT AATGGACTTA
 190441 CAGTTCACACA TGGCTGGAGA GATCTCACAA TCATGGTGGAGGCAAGGAG GAGCAAGTCA
 190501 CATCTTACAT GGATGGCAGC AGGCAAAGAG AGAGCTTGTG CAGGGAAACT CCCGTTTTTA
 190561 AAACCATCAG ATCTCGTGTGAG ACTCATTAC TATCATAAGA ACAGCATAGG AAAGACCCGG
 190621 CCCATAATTG AGTCACCTCC CACTGGGTTG CTCCCAGGAC ACATGGGAAT TGTGGGAGTT
 190681 ACAATTCAAG ATGAGATTG GGTAGGGACA CAGCCAAACC ATATAAATAA CTAATCATCA
 190741 GGGAAATGCA AATCAAAACC ACAATAAGGT ATCATCTCAC CCCAGTTAGA ATGGCTATTG
 190801 TCAAAAAAAC AAAAATAAC AAATGCTGGT GAGGATGTAC AGAAGAGGGG ACTCTTATAT
 190861 CCTACTGGTG GAAATGTCAA TTAGCATAGC CATTATGCAA AATAGTATGG AAGTGTGAGGTA
 190921 GGTACATAG GGTGGTCACA GCCTCCCTG AAAGGAAACA AGAAAATTGT CAAATTGATG
 190981 GAGAGAACAA ATCTCTTGAC ATTACACAAA CTGCATCTGG GGCTAGTGGT TAGAATATCC
 191041 TCAGTCAAGG AGGTAGAAGA GCAGGAGGGAA AAATCCCTAA GTTCGTGCAA GTGCAGAAC
 191101 CCACAAGCTG TGTTCTCAGG TTGACATATA CTCATTTAA TAGTAAGAAA CACACCCCTTG

Figure 9 (Page 59 of 74)

191161 GGTAGAGAAT TAAAATGCTA ATAATACATG TGATGTATGT ACTAGCGTGT ATGGCAATAT
 191221 TGCATGCACA TTCAAGAGAC CACCCAAAAC ATATTTAACCA ACAATGCCA TTCCCACCC
 191281 CTCATGGATA ATCACGTAGG ACTCCCATAA CGGGAGTTTC TTCAGTGTCA ATTGGTGCTG
 191341 AAGTAGCCGA CCCTGACTCT GCTATCAGCG TGTACTTTCA CCTTGCAATA AACTCCTTG
 191401 CCTACTTTA CTTGGACTG GCTTTCAAAT TCTTTGTGC AGGAAATTCA AGAATCTGAA
 191461 CCAGCCCACG GACAACAGAG GTTTCAGA AACTAAAAA TAGATCTACC AGATGAGGCT
 191521 GAAAATCTGC TACTGGCTAT TTATCCAAG GGAAGGAAAT CAGTACAA AGAGACACCT
 191581 ACATCCCCAT GTTTATTGCG TCACTCTTC CAAGAGCTGA TATATAGGT CAACCCCTAAA
 191641 TGTTCATTA CAGACAAATG GATAGAAAAT GTGGCATATA TACACAATGA AATACTATT
 191701 GCCCATGAGA AGAATGCAAT CTTGTCATT GTGCAACGT AGATGAAACT GGAGAACATT
 191761 ATGTTAAGTA AGATAAGCTA GGATTGGAAA GATAAATACT ACATGTTATC ACTCATATGT
 191821 GAAAGTAGAG AAAAATTTT AGCTCATGGA TTTAGAGAAC AGAACTGTGG GTACCGGAAG
 191881 CTGGGAAGGG TAGCAAGGAG GGGAGGATAG GGAGAGGTTG GTTAATGGTG ACAAAATTAC
 191941 AGCTAGATTG TAGAAATGAG TTCCGGTGT CTGCACCATT GTAGGGTGCA TATGGTTAAC
 192001 TCTCATTAT TGTATATTTC CAAAAGCTA GAAAAGAATT TTGAATACTC ACAACAAAAT
 192061 AAATGATAAA TGTTAAGGT GATGGATATA CTAATTACTC TGATTTGATT ATTACACATT
 192121 GTGTACACAT ATAAAAATAT CACTCTTTAT CCCGTATATA TGTACAGTTA TTATATGTCA
 192181 ACTAAAAATA AAAGAAAAAA AGAATATGAT CTATCATGAT GTATATATCA TGTGTACTTG
 192241 AGCAAAATGT GCATGCAGAT ATTGTGTATA ATGTTCTATA AATCAATTAG CTCAAGATAA
 192301 TAGATAGGAT TGTCAGATC TTCTGTGTCT TTACTGATAT TTTGTCAGT TATTGCATCA
 192361 TTACCAAAAA AAGGGTGTAA AACTCTCCAA ATGTGATTGT AGAATTGTCT ATTTGTCTT
 192421 TTCTTTTCCA TTTTACTTT ATGTATTTG AACTCTGTT ATGACATTT GCTATGTATT
 192481 TTTAAACTTC GTTATGTATT TTGAAACTCT GTGTTAGAA TCATACATTT ATGATTATTA
 192541 TGTTTCTTG ATGAAATGAC CCTTTCTAT TGTCGTTGTT TTTGTTTTT CTGAAATGGA
 192601 GTCTCACTCT GTGCCCGAGG CTGGAGTACA GTGGCACAAT CTTGGTCAC TGCAACCTCC
 192661 ACCTCCTGGG TTCAAGCGAG TCTCCTGACT CAGCCTCCAA GTAGCTGGGA TTACAGGCAT
 192721 GTGCCAGCAT GCCAAACTAA TTTTGTATT TTATTAGAGA CAGAGTTCA CCACGTTGGC
 192781 CAGGCTGGTC TCGAACCTCT GACCTCAGGT GATCCGCCA CCTCGGCATT TTATTTTAT
 192841 TTTATTTTT TGAGACAGAG TCTCACTCTG TCACCCAGGG TAGAATGCGG TGGTGTGATC
 192901 TTGGCTCACT GCAACCTCCG CCTCCTGGGT TCAAGCAATT CCCATGCCCT AGCCTCCCGA
 192961 GTAGCTGGGA TTACAGGCAC ATGCCACCAT GACTGGCTAA TTTTGTATT TTTAGTAGAG
 193021 ATGGGGTTTT TCTATGTTGG CCAGGCTGGC AACTGACTCC TTTAACAAATA CAAAATATCA
 193081 CTCGTCTCT GGTAAACACTC TCTGTCCTAA ACTCTATTAGT AGCTGTTATT ATTATAGCCA
 193141 TTTTACTCTT TTTATGCTTT CTGTTTGCA AGTGTATATA TTTTAATATG TTTATTCTCA
 193201 AGTTATCTGT GTTTTATAT TTAAGATGTT TCTCTTCTAG CCAACGTGTT TGGTTCTGC
 193261 ATTTTAAGT CGATTCTAAC AATCTTGCC TTTCAATTGA AATATTACAA CCATTAACAT
 193321 CTAACATTAA CATTTATTTT TCTTTCACAA GTACACTGGC TAGCATCTCC CATATAATAT
 193381 TGAACATAAA GTGTGATAAC TGACATCCTT ATTCATTCC TACTCTGAGT GGAAAGGGCA
 193441 GGGGTGGAGA AAGCATTCAA CAATTGCCA TAATTATAAT TCTTTTGTT ACACTGTTTT
 193501 CTTCTGCATT AAAAATATC ATTACATTTC GCATGAATTAA TTAGGAGAAA ATATTTCCA
 193561 ATTTCTCTGG AAAATGCCAT AACCACTGCT CTCAATTTC TTTCCATCTT TCTTCCACAT
 193621 TTTACATAAC CTACATAAGA GACACATTAT CAAGTATATT TTACATGGCT TCTCAGTGT
 193681 TTCTCTGTCT GCTAACAGGT TTACCAAGAG ATGGCACTCT TGTATTTCTG GTGGCTATGT
 193741 CCATATCGTT TTGCCCTTAA GACAGCGTAA CTACTCTTT CACCAGTATT AAAGACATGT
 193801 ACATTTGATC TGGTTCTTGT GGATGATTAA AATGACTCA AGCTAATAAT CCTAATTTC
 193861 CCTAAACACT CCATTATTTT AAAATGTATT CCTTTATGCC CACAATAAAAC ATTATTGAC
 193921 ATTAGGCTGG ACATTAGGCT TCTCTATGGC AGACATTAGG CTGGACCTA GCCATATATC
 193981 TATTGAGGGAA AAAAAAATTA TTTTCTATAT AAGTTCCAG AAAGCCAAGA TGTGTTTAA
 194041 AAACAAAACA AAACATTACA TTCTAAATGC TGTAACAAGA TAAGAAAAAG TGGTGGAGGCT
 194101 GAGAGAAGAA CAAAGCAGCA AGCAACTCCT GGAAGGACCA CTGCTGCAGA GGTAAATAACT
 194161 GGTGAACCAT GTTTGGAGA AGGAAAAGGT CACCAAGAGA AGGAGGGGT CCAGGGTGT
 194221 CAGAAAGATT GCATGCATAA AGATCAAGGG TAATAAAAAA AATTCCGTAT TATGTAAATG
 194281 TGAAGTTCCA GGACCATGAG CTTGGAGAGC ATGAAGTACA GGAGGAGGGT TGTTTCAA
 194341 TAAATCTGGG AATGAAACAG TGAAGCCTCT GGCAGAACTC ACATCTCTT CCTCCCCCTCT

Figure 9 (Page 60 of 74)

149/162

194401 TCCTTGCACA TTCCCTTTAT GGAGTAATTG CAGGGATGGG AAAAGTCAA AACCACCACT
 194461 GAGCCTAGGA AGTGCTAGGG TAAAGTGGAG AATGAACCTG CGTGATTTGC TCATCCTAAA
 194521 CTAGGTTCTT CTAGGAGAGC CCTTCCCCAT AAAATCTGCC CTCCTCGAAG GGGCCCAGAC
 194581 AGCCTAACGCT CACCTCCCAA AGACCCCTTA CTTGCTGACT GAATCTGATT CCACCCAGAC
 194641 ATGGCCTAAA ACCCTTCCAT AACTCTATAG CCAAATTCAA TTTAGACAG GCCTCATACC
 194701 AACCTTCTT CCTCTAACGTC TGCCACCCCTA GGCAATTCTC AACATCTCT ACACACTTTG
 194761 GGGCCATAGA CGTGCTACCA AGTCTCCAGA CCTAGACCTG ATGGAGCAGT GCTGTAATGA
 194821 GACGACCACT GGCTTTGAA CCAGACCCCTT CTCTGTGGCT CCTATGCATC TCCAACCTGT
 194881 TTTGAGCACT GCTGCCAAGA CATCTTGGC ACTTTGTTGT GAAGTTTAA AACTGAACTA
 194941 ATCTACAAAA CACCTAACCT TTAAAAATTTC ATTGTCAATT CATATCATGA AAGATAAAGA
 195001 AAGGCCAGGA AACTGTTCCA GTTAAATAGA GACTAAAGAG ATAGCAACCA AATGCAATT
 195061 GTGATCCTGG ATTGAGGGGA AAAAGTGTG TCAGAGACAT GATTGGGACA GCTGGTAAA
 195121 TTTGAATTG AATTAAAGA TAAAGTATTG AGTAATATAG GAAGATGATT ATCTGCAACT
 195181 TTCAAATGTT TCAGTAAGTA TATATATATA TAAAGAGATA TAAAGACATA TAAATAAATA
 195241 GATGGATAGG TAGAGAAAAA GCAAATGTAT AATATTAACA ATCTAGGTAA AAAGTATATG
 195301 AGTGTCTTT GTACTGTTT TCTGATTTT CTATATGTT GAAATCATT TAAAATAAGA
 195361 AGGTTTTGG GGTTTTTTG TTTGTTTTT GTTTTAGAG ACAGCATCTT ATTCTGTCAC
 195421 CCAGGCTGTA GCTCAGTGGC CCAATCATG CTCACTGCAG CCTCAACTTC CTGGGCTCCA
 195481 GTAATTCCCC CTACCTCAGG CTCATGAGTA GCTGGTACTT CAGGTGTGCA CCACTGCACT
 195541 CAGCTAATT TTATTTTTA AATTTTGTG GAGATGGCAT GTGCTATGT CACCCAGGCT
 195601 AGTCTAACAC TCCTGCCCCC AAGTGTACCT CCCACTTGG CCTCCCAAAG TGCTAGAATT
 195661 ATAGGCATGA GCCACTGCAC CCAGCCCCA ATAAAAAAAGT ATTTTATTT AATTAACCAA
 195721 TTAATTGTA GTCAGAGTTT CACCCCTGTC ACCCAGGCTG GAGTGCATG GCATGATGTT
 195781 GGCTCACTGC AAACCTTGCC TCCGTGTTT AAGCGATTCT CTTGCCTCAG ACTCCTGAGT
 195841 AGCTGAGATT ACAGGGCCT GCCACCATGC CCAGCTAATT TTTATTTTT TAGTAGAGAC
 195901 GGGGTTTCAG CATGTTGGTC AAGCTTGTCT CAAACTCCTG ACCTCAGGTG ATCCACCCAC
 195961 CTCGGCCTCC GAAAGTGTG ATGAGCCACC ACACCCGGTC TAAAAGTAT TTTAAAACCA
 196021 CAGTCCCAC CTACCTTGTC CTACACTACC AGGGGCTAGG ATCACCCAT GTCTTCTAGG
 196081 CTATGAGATA GAGGAATCCA AGGAAGAAGA TAAGCTACTT GTTCCCTCTA TAGGGTCTTG
 196141 TGTGTGCTCT CATGTGCTCT CTCTCTCTC CTCTCTCTA CACACACACA CACACACACA
 196201 CACACACACA CACACACATG AATACCAAGAG CTATCACTT CCCAGTCTAG TACTCATCTC
 196261 ATCCCAAGGG TTTGTGTTG TAGTGGTTG CTCATTTGTT GTTTTGTTT GTTGCTTGG
 196321 ATTATTCTT TTCTCTTTT GCAGCTGAAG GGAGAATTTC CAGGCCAGCC CTTTGGCCAT
 196381 TAGAGTTACA GTGCCCTAT TCAGGCTCTA TAGAGAGACC TGGGATTCAG TAGTGGGGGG
 196441 CTTTATCCA GTTCAAAATA ATGCATTCTC ACCAAGATGT ACTTTGAAAT AAAACAATAC
 196501 TAAAACACAA AATTTATTT ATGCTGAACA TTGAATCACT TTTTCTGTA TTTTGTGTA
 196561 AAAGTTATAC ACACACAAAC ACATTTGCTC CTGTTTGTT TATTGGCCCA GGGGTATGTT
 196621 TGGTAATACT TCATCAGGCA TGAGTAGTAC GTCTTGGAAAG GTGTGGCTA AAGCCTAGAC
 196681 TCCTATCTGC TTCCCTCAGC ATTCTCCAGT GTATCTGTCA TCTGTCTACC TTAGGATGGG
 196741 GTCTCCAGAA CTTCCATTCA CATTAGAAG AGGGCAGCGG CTTTCTATGG AAAATATGAA
 196801 CTCTCATTCA TCTCTATTCC TTCTCTAGC TATGGTCCAG CTCAGCTGTT TGGAATAAAG
 196861 TATCTATATG AAGTCTCGA ATGGTTCTCA GACTGGTTGA ACATTAGAAT CACCTGAGTA
 196921 CCTTCTAAAA TTCTTATTAC CCAGGGCATA TCTCAGAATG AGTACCAACAG GGTAGGGATA
 196981 GGATTAGGGA TCATGATCTC TGGAGTCTGG TTTAGGCACT AGTGTGTTT AAAACTACGT
 197041 TCATGAGGTG GAGGTTGCAG TGAGCCGAGA TGGGCCACT GCACTCCAAC CTGGGCGACA
 197101 GAGTGAGAGT CTGTCTCAAC AACACAAAAC AAAAAGAAC AACTACCTT GTGATTTGAA
 197161 TGCCATCCA AAATTGAGAA CCATTAGGTA AGGCCAAGCT GTATAATTAA AGAGCAGTTT
 197221 TCATTTGTCT GGTGTGGTGG CAGCTTTTG ATAAGGGAAG TATTGTGCC ATCCACATAC
 197281 CTGAGCCTCA CTCCTGAGAA CACTGGTGTG TATGTTGCTA AAATTCCCCA GGTGATTCTG
 197341 AGGTTCCCTTC CTGGATAAAA ACCACTGACC CTGGGAATGT ACCCACTGCC AATCTCCTGC
 197401 GTAAACCTTG GATACTGGGA AGCCTACAGT TGAAAATATT GGGCTTGAGA TCCTGAAACA
 197461 AATCTTGTAT TTCATTAAGA CTAATATTG GTACAGTGC ACAAATCAAG GGAATTGG
 197521 TGGCTGAGTT CTTTGTAGAAC TTTGCAATTG AAATAGGTT AAGCAGCAAT AAGTTAAAAC
 197581 TACAACCTCA GCTAAAGGAT TAAAGACAC GTGAGCTGGG TAGGATGAGG TCTAAGATTG

Figure 9 (Page 61 of 74)

150/162

197641 GGTGTGGCGG CTCATACCTG TAATCCCAGC ACTTTGGGAG ACTGAGGTGG GTGGATCACT
 197701 TGAGGTCAAGG AGTTCAAAAC CAGCCTGCC AACATGGTGA AAACCCATCT CTACTAAGAA
 197761 TACAAAAAAA TTAGCTGGC GAGGTGCCAG GCACCTGTA TCCCAGCTAC TGGGGAGGCT
 197821 GAGGGAGGAC AATCACTTGA ACTCAGGAGG CAGAGGTTGT AGTGAGCTGA GATCGCACCA
 197881 CTGCACTCCA GCCTGGGTGA CAGAGCAAGA CTCCATTAA AAAATAATA ATAATAATAA
 197941 CAATAATAAT AATTCAAGACA TATCCAGGCA TCAAACAGAT ACCTGGGGCA GATGAATAGT
 198001 CTTGAGATTG AAGTCACACA TGAAATTAG GTGGAAAATG ACATTGGAGA AATTGAGAT
 198061 TATGATGAAT GGAAATTTT CAAAGAGGAA TTTCAGGCTC TGTTCTTGAG GGGATAGATG
 198121 GACTTCAAC AGCAATAACA CAGGATTAAT GAGGACTTGG GATGTTACAT AAATTAGAGA
 198181 TGTAGATGG ATAAAGAGAT AAAAGTACTC TCTCTAAGAA CATGGGACCA GAGATAGGCT
 198241 CACTTCTAAC CATCAGATAT AACTAGCAGA CTAAACGGTC TAAAAATAAA AATCATGCC
 198301 CACTCCTGCT TAAGACATTT TAATTACTCT CAGTAACACTCT TCAGTTTTTC TACTGTGTTA
 198361 TCTTTAACTA CAGGGTTGGT CTGGGTGTGC AACACAAGAA AGCCTGGCAT ATACATGGAT
 198421 TCAAGTGTAT GCCATGTACA GGTATTCTT CATGTAATCT TTCATGTATT CTTTTTCACA
 198481 TCTGTTTTT CCTTCATTGA AGTCAATGGC TGATATTAGA TTCTACTATT CATGTGTACT
 198541 AGTTATATAT AATTGTTACA AAACAAATTA GCAAAAACTT AGTGGCTTAA AGCAACACAC
 198601 ATTATTATT ACCTAAGGTC TGTGGATAGA AGTTCTGACA TGGCTTAAC GGGTCCCTG
 198661 CTCAAGGCCT CATGTGGCTG CAATCCAGGT GTTGGCTGAG TCTGAATTCT CATCAGAGGC
 198721 TTGATTGTGG AAATTCCAC TTCCAAGCTC CCTCAGGTTT GTGAAAAT TCAGTTCTT
 198781 GCACCGGTAG AAGCTCTTG GTAGAGGCTG ATTCAACTTC TAGAGGCTGT CTGCAGTTCC
 198841 TGTCAACCCAG GGTGGAGTGC AGTGGAGCAA TCATAGCTCA CTGCAGCCTT GACCTCCAG
 198901 AATCAATCTG TTCTCCCACC TCAGCATCCT GAGTAGCTGG GACCACAAGT GTGTGCCATC
 198961 ACACCTGCCT AAAAAACAAA CAAACGAAAA AAAACCCCCA GAGAACCTTG TAGAGACAAG
 199021 CTGGTCTGGA ACTCCTGCGC TCAAGCAATT CTCCTGCCTT AGCCTAAAAG TTCTGGGATT
 199081 ATAGGTATAA GCCACCATAAC CTGGCATATG GCAAGTCTTG AGCAGGACAA ATACAGATGA
 199141 TTTATGTCTG TCTTCATGG TATTCTAGGT TATTGTTGAG ATGGTCCTCT ATTGTCTTGT
 199201 TCCATCTATT GATTAGATAA AACGTTGTC CTTCTGTTAT TTTTCAACAG TAGCTTTAT
 199261 GTGTCTCTCT TTATCTTAAA ATTCTAACCA AAGAGCTGCT CTTTCTTGG TGACTTTAC
 199321 CTTGGTTGA TCCTTCTTAA CCTCTTCTTG CCCCTGGGG CCTAAGATGA GGGCTGTTAT
 199381 CAGATGTGAG TCTATGGAA AGCAAGCAAG AGGTTCTTC GCTCCGTT AGCCTTAAAT
 199441 GTCTAGGTAG AAATCAGTCA TGGCCCTTCC AATGTGGTAC AGACCAGATC ACAGAGACAG
 199501 GGGTCTCAGC CAAGGTCTTG TGGCCTAACG CTTATAGAAA TAATGAGTGT TTACTTACTT
 199561 GGAGAACTCC CTTGGAAATAT CTTTTTTGT GAAACCTGAGG CAACTTTGG TGATTCTTG
 199621 ATGTCTTGGG AATCTGGTC TAGAGCCATT TCAACCTGAT TTCTTTCAT GTCAGTGGCA
 199681 TTTTGTGACC AGATAGTAAA TAAGTTCTAT GATGTTCACT CAGAGAAAATA CAATGACTTA
 199741 TGATGTGAAG CTTCTGTGGT TCAGCCCTTA CTTCATCTTC ATTCCCTCTT ATCTGCATCT
 199801 GTCCTCTGCT TGGGAACAAA AGTCTGGCTT CATTCTATGA CCCCCACGTT GAGTTCTTA
 199861 GTAGCACTTA CTTTCAATT AGGAGTGTCC TCACTTCTAT CCATCAGACA TAACTAGCCG
 199921 ACTAAACAGT CTAAATATAA AAATCATGTC CTACTCCTGC TGAAAACATT TTAATTACTC
 199981 CCCATCATT AATTTTTCT ACTGGGTTAT CTTTAACCTC AGAGTTGGTC TTGTGTGCAA
 200041 CACAAGAAAA CCTGGCATAT ACATGGATTC AAGTGTATGC CACGTGCATG TATTCTTCA
 200101 TGACTATTG CATGTATTCT TTTTCACATC TGTTTTTCC TCTAAAATTT ATTCCTTTT
 200161 AAAAATGAAA ATTTTGCAATT TGACTAAATT TGTCAAATTT AGTCAAATTT GTTAAAACC
 200221 ATTTTAAAAA TGTTTCCCAGA AGTTTGAGT GAAGTTAGTA CTTCAGAAAA ACTGTTTTGT
 200281 ATTTTCATG TGACCTCAGT GCACTGCTGT GCATTTCCAT TTCTGCGTCC ACACACATT
 200341 GTTTGAGGA AATATAGGAA CGACAAGATA AAGTTCAAGC TCCTGGACAT TGCATAAAAAG
 200401 ACCGTCACTGA CCTGGCCTG TTGACTTCCC TAGATTCCC GCTATTCCCT AAGTTGAGAT
 200461 TTTGGTTTG GATGCTTTGT GTTTCCCAA ATCAAATAA GGTTTTGCC TTTTATGATT
 200521 ATACAGTAAA TAAATGCTAT TTGTTGAGAA CTTAAACAA TACAAAAAAA ACCTAAGGAA
 200581 GAAAGTCAGA TTCATCTAAA AATCCTGTG GCCAGAATTA ACTACCTTAG TTATTATTTT
 200641 CTCTATCTCT CTCTCTCAAT GTATATTGG TGTAGGTATA GGGGTGTGTG TAGTGTGTGT
 200701 GTATGTATAT ATCTGTTCT ATTCTGTAT GTGGATGTGC ACAACGCCATC CTGCTTTGTA
 200761 CACTACAGTA CTAGCATTAA TCTAATGTAA TTCAATATTG TTGAAAACAT TTTAAAAAAG
 200821 CTTGTATATA TACACACACAA TACACATACAA TGATGTATG TACATATACAA CATAACAGACA

Figure 9 (Page 62 of 74)

200881 AAAATGTATC CTATGTATAT TCACACATGT ATACACACTC ACACGTACAT AGAGTTTAC
 200941 ATCCATAGTT TATAATGTT GCTTTTTTT GGTCACCTT TTGCTAAGTC TTACACTTT
 201001 TTTTTTTTT TTGAGACGGA GTTTGTGT CATTGCCAG GCTTAGTGCA GTAGCGCGAT
 201061 CTCACCTCAC TGCAACCTCG ACCTCCCAGG TTCAAGCGGT TCTCCTGCCT TAGCCTCCTG
 201121 AGTAGCTGGT ACTACAGGTG TGCGCCACCA TGCCCTGGCTA ATTTTGTAG TTTTTTATA
 201181 GAGACGAGGT TTCACCATGT TGGCCAAGCT GGTCTGGAAC TCCTGACCTC AAGTGATCTG
 201241 CCTGCCTCAG ATTCCCAAAG TGCTGGATT ACAGATGTGA GCCACTGCAC CCGGCCAAGT
 201301 CTTACACATC TTTTTTTAC CACTAAACTG TTTACCCAAA CCTGATAACC CAAGTCAACA
 201361 GCTATTATGG CTCACACAAT CTTATGAAA CAAAGATACA GATATATAGA ATTTCTTGA
 201421 TTAATATTCA GAAAAAAATG GAGTCCCCTT ATACGTCTT AGTATCTGCT TTACTCATT
 201481 AAAATGTAT TACATTATAT GAAAGTATTG AGGTCAAATG TTATAGATGT GATTCAATTCT
 201541 TTTTAACTGT GTTATTTTC TGCAATGACT ATGTATCACA AAGTACTCAG TCTTCCACTG
 201601 ATGAAAATTG GGGCTATTT CAGTTGTCT TCCATTTTC TTTCTCCTC TTGGATTTTC
 201661 ACTCAATGTG TTTACTAATT TAGGAAGAAT CAATAGTTT TATGGTATTA CTTCTCCAT
 201721 TCAAGAATAT AGCATAATGGT ATAGTATAGT AGAGTACTTA GTTAAATTG GCCAGATCCT
 201781 GTTTCTGCC CTTAAATAAA ATTCTATCAT TTTCTGCCCT TGAGTCACAT TTTCTTGTGTT
 201841 CATATAATTG TTAAAAAAATG TATAGTTTC ATTCTAAGGG AACATAAAAA CTTCTTCCA
 201901 TTTCTATTCC TGTCTAGTTA ATTCTACTAT TGGGAAAAGT AACTGTTAA AAAAATTCTT
 201961 ATCTTTCCAG TCAGTTCAAC ACATTTCTT TATACCTTG TACTTTAAC CCCAGTCATG
 202021 TTGAACACTT CTTATTCCTC ACACCAAGCC TCAACGGGTT TGCTCTTCT GGAAGGTGCT
 202081 TCCCCGTAT TACTGACTTA TTCATACAC ACATGGAGAC TGGCGCAGCC CTGTTCTGCC
 202141 TGGGAAGCCT TCCCCGTATA CCCCTAGTTG GCAGGAGTCT TCATTGTTC TTTCTAGTC
 202201 ACCTGTGCAA GTTTGTATTG TTCATGTTA TCATCCTTCA TTCTAGTTG CTGTCCTAT
 202261 GTGTGGTCTC ATTCACTGGA CTCTGAACCT TTATGAAGTC ATGTCATGGG TCAGATCTTA
 202321 ATAAATTAAAT ATTGTGGAA GCTAATGTCA TGTCTAGAAT ACAGAAAATT TATCAAAAAAA
 202381 AAATATAGTA TGTTGGCTGG GCGCAGTGG TCAAGCCCGT AATCCCAGCA CTTTGGGAGG
 202441 CCGAGGCAGG AGGATCACAT GAGGTCAAGAA ATTCAAGACC AGCCTGGCCA AAATGGTGA
 202501 ACCTCATCTC TACTAAAAAT ACAAAAGTA GCCAGGCGTG GTGGTGGCCA CCTGTAATCC
 202561 CAGCTACTCA GGAGGCTGAA GCGGGAGGAT CACTTGAACCC TGGGAGGCAG AGATTGCAAT
 202621 GAGCTGAGAT CATGCCACTG CACTCCAGCC TGGCGACAG TGAGACTCCA ACTCAAATA
 202681 ATAGTAATAA TAATAATAAT AATTGTATGG AATTGAACTG CTCTGATTGG AAATAGCTGT
 202741 TTTTAAAAAA ATTATTATTT TTTAAGTCC TGGGTACATG TACAGGATGT GCAGGTTGTT
 202801 TACATAGGTA AACGTGTGCC ATGGTGAATT GCTGCACCTA TCAACCCATC ACCTAGGTAT
 202861 TAAGTACAGC ATGCATTAGC TCTTTACCT AATGTTCTCC CACACCCCA CCCCACCTC
 202921 CCCAACAGG CCCCAGTGAG TGTTGTTCCC CTCCTGTGT CCACGTGTT TCATTGTTCA
 202981 GCTCCCACTC ATAAGTGAGA ACATGAGGTG TTTGGTTTTC TGTTCTGCC TTAGCTGTTA
 203041 ATGTCAGGCC AGAGAGGCTT AAATTTTAA GGATCTCTGG ACTTTCTTC TACATTACTC
 203101 TTGATGTTA TAAATGTTAC AACTCTTTA ATTCAATTAA ATGTATACCT TATTGAGTTG
 203161 ATTTAACTGA GTTAACTTTG TTATATGAA ATCATGATTG GGAGTGAGGG GGTTAAACCA
 203221 GCTACAGAGA TCTGATTGT TGGTGGTGAA GCAATGCAAG AATTCAATTCA TTCAGTAAAC
 203281 TAATGTTAT TAAGCGTGT A CTGCTTAGT CTGTCAGAC TGCTGTAACA AAATATCATA
 203341 AACTGGGTGA CTTATAAAACA ACAAAAAATT TATTCTTAC AGTTCTGGAG GTGGGAAGTC
 203401 TAAGATTAAG GCCCTGGCAA ATTTAGTGTG TGTTGAGGAC AGGTAGCCAT CTTTTGCTG
 203461 AGTCCTAACCA TGGCAGAAGG GTTGAATAAA CTTCTTGGG TTTCTTTAT AAGGACACTA
 203521 ATCCTAGTGA TGAGGTTCT GCCCTCATGG TATAACTACT GCCCAAAGAC CCCTCCTCT
 203581 AATATTATCA CTTTGTGGGT TAGGATTCA ACATGAGTTT TGAGAGGATA CAGACATTG
 203641 GATCATAGCA CACACCATAG GACAGACACT GTGCCAAGAA TTGTGGATAT AGTGTCTC
 203701 AAAATGAACA AGATCCCCCAG AGAGAGCTG CAAAATCCAG CTATAAAATT ATGCTTTTA
 203761 AACAAATTAT GCAGTTGAA AAATCTACTC TGAATCTTAC TTGTGGCATT GAATACTTTC
 203821 GCCCACTCTT TCCTTATTAT ATTAATATT TACTCTTGTG TGGGGGATCC AGTCTCACCT
 203881 ACTTTTCTA CCAGAACTGG TATCAGCTCA TGCTCTGCCT TATGCAAATT AAGAAAATAT
 203941 CATACTTTT GGGTAAATTAGCAGAAAGTTA AGCAGAAAGAA GTTCTCCTTT CTTCTCTTC TCTCTTCTT
 204001 TCTTCTCTC TTTCTCTTC TTTCTCTTC TCTCTTCTT TCTTTCTTC TTTCTTCTT
 204061 TCTTCTTCTC TTTCTTCTT TCTTCTTCTT TTTCTTCTT TCTTCTTCTT

Figure 9 (Page 63 of 74)

204121 TTTTCCTTTC TGACAGGGTC TTGCTCTATT GCCTAGGCTG GAGTGCAGTG GTGCAATCTC
 204181 AGCTCACTGC AGCCTGAAAC TCCAGGGCTC AAGCAATCCT CCTGAGTAGC TGGGACTATA
 204241 GGCATGTGCC ACAACATCAA GCTAATTTC GCATTTTTT GTGGAGACGG GATCTCCCTA
 204301 TGTGCTAAC GCTGGCTTG GATTCTGGG CTTATGCAT TCTCCTGCCT CAGCCTCCCC
 204361 AAGTCCTGGG ATTACAGGCA TGAGCCACTG CCCCTGGCCA TTATAACTAT TTTCATTGGC
 204421 TTATCAGGCA CATGATAACT ATAATAAATC AATAACCAGA ATTTTTAAAT AAAGAAAGGA
 204481 AGGAATTGTT TCAACTCTTC CTGCTACCCC TCTATCCCTC AAAAGGGTAG GCTGAATGTT
 204541 GTCCCTCAAA GATATCCATG TCCTAATCCC CAGAACCTGT AAATATATTA CCTTATATGA
 204601 CAAAAGGGAC TTTACATGTT TAATAAGTTA AGAATTGAA GATGGGCAGA TTTTCCTGAA
 204661 TTTGCAGAT GGGCCCTAGT GTAATCACAA GGGCTTAT AAGAGACAGG CAGAAGAGTC
 204721 AGAATAAGAG AAAATACTT CAAGATGTTA CACTGCTGGC TTAAGGTGG AGGAAAGGCC
 204781 AAGAGCCAAA AAATGCAGTG GTCACTACAA GCTGAAAAGA AAAAGAAATG GATTTCCCTC
 204841 TAAAGCCTCT GGAGGGGGCA CAACCTGCC AATACCTGAA TTTGGCTCA GTGAAACCCA
 204901 TTTGGACTT CTGACCTTTA GAACGTAAA TAAATAATAA ATTTTGTGTT GTTCAAGCC
 204961 ATCACAGTTG TGGTAATTAA CTACAACAGC AATAAAATAG AATTAAATAC AGAGATCTGA
 205021 GGAGTTGAGT AGGATAAGCC TACTCCAGCA GGTTATTTG AGAGTATGGT GAGACTCACT
 205081 AGGATGGCGG AACTCAATTAA AGGAAGTCTG AAGCTGATAA GCCAGAGAGG GAAGGCTCTC
 205141 ACTTCATTT ATAAGGGTTG CGTCACACTA GGAAGATCCA ATAGCAACCA CAGTCTCAA
 205201 ATTAATGATT ACAAAATAGGA CACAATTCA AGAGTCGGGA GCCAAGCAGA AAATGGATTA
 205261 GGGAAAGACAT GGATGATATG AAACAGGAAG GAGGGGTACA AGGCAGCTTC CTGGGAAGTT
 205321 GCCAGGGCAG TCACAGTTCA CATTCTTAA GCTGTGGCA CCAAATGCAT ATGGAAAATC
 205381 TAGCTGACTT AACTGAACTC CTGAAGAGGA ATGAACACCT CATTATTGA GGAGCTACTA
 205441 CCAATTAGAA TATGTATTTC ATTTGTTCAA TAACCCCATG AGTACAGTAA CACAATCCTT
 205501 GCTTACTAA AGCGGAAGCC AATTCAAAGA GGTCAGTGA CTTGTCAG GTCAGGGAAA
 205561 AACTAGGAA GTGAATATGG GTCTGACTCC ATCACTGATT TCAGGAGCCC TGCCCTTTCC
 205621 TCCACACCCT GCCCCCTTGC TTTCAGAAAA AAAGGCTTGT TGACTGAATG GTTGTATGCA
 205681 CAGTTCAAAG CAGAAACACA CGATGACATC TTTTGAGATA CTCTAACAGT GAGAACTTGA
 205741 AAATGAAGTT AAAATAAAG CGGCAAAACC AAGCCGAGGC TTTCTGAGAA AGTGGGGCCA
 205801 AACCTGTTGC CGTCTGACTG CCACGTGGCT CACTATTAT CCCTGTAAAA ATCTGCAAA
 205861 GTATTGAAA GGGAAAGAGG GACAGAAAAC TCCCTCCTT TCCAAGTTAG CCTTATAGTC
 205921 TAGGGCTTAA AATACTGGTT TAATGGTGAA GGTAAGTGTCT TTTCTTCTTT TTGGGTAGAA
 205981 GGATTATTAC TAACTTACCA AAGGTCCATT AAGGGGAGGG AACAGTTTA GGAGAAGTCA
 206041 GAGAAAAGAC ATTAACAGCA ACATAAGGAT CTCCATCTGG TAATATTGCC TAATTCCAA
 206101 ATGAAGAGAC TCTCTGAAAA AGATAACTGA TTCAATGAAG ACCCTAGGGC AAGGCTTGAG
 206161 AAGCCACTGG TACCAATGGA CACTGTGGAC AATGGTCATT TCTCCAAGGA CGCTGTGAGT
 206221 ATTAACTGTG ATGCTGTGAT TAGTCAGACT GGGATTGGCT GTGGAATGAA ATACTGATCA
 206281 GAACTGACAA GATTGTGTT TGGGACTGTG GCTAACGAGT CTTTCAGAC TTCTATATGA
 206341 ATTTGAAATG GTCTCTCAGG AAAAGGAGAA CATGGCCGGG CCTGGTGGCT CACGCCTGTA
 206401 ATCCCAGCAC TTTGGCAGGC TGAGGCAGGC AGATCACTTG AGGTCAAGGAG TTTGAGACCA
 206461 GCCTGGCCAA CATGGTGAAA CCCTGTCTCC ACTAAAAATA CAAAAATTAG CAGGGCGTAG
 206521 CGGCGCGTGC ACCTATGCGC ATGCATAGTG CGCGTGCAG CTATTCAAGA GGCTGAGGCA
 206581 GGAGAATTGC TTGAACCCAG GATGTAGAGG TTGCAGTAGT TGAGATCATA CCACTGCAC
 206641 CCAGCCTAGG TGACAGAGTA AGACTCTGTC TCAAAAAAT AATAATAATA AAAGAAAAGG
 206701 AGAACATGAC CAAAGTTATG ATAAGACTG AAGGCAAGAA AATTGTACGC TTGTAGAGAT
 206761 CACCTAGCTT GTGCCCTCA TTGTACAGCT AAGAAAAGGC ACCCAGGGAC ATTGTGGTCA
 206821 GCACCAATTTC CTCAGAAAGA TAGGCAGATG ATGAGAGGGC CCTCAGTTT TCTAACACTG
 206881 AAGGAATTGC TTCTATGTT TCTGGTGAAC TCCTCCCCAC TCATCTGAG GATTCCAGGC
 206941 CAGAAGAAC CACTTTAAAA AAGAAACATT TAAAACCAAT TTAACAACCA ATCAAAGGCC
 207001 CTTTTATAGA AATACATTTC ATTTGCTGTT GGCGCTGTATT TATGGATCTG AGAGGGCTAG
 207061 ACTGCCAATA TTGTGACTGT TTATTATTAT TGCTGTGCT AGTATCTAGA ATATTATACA
 207121 ACATATAACA CTTTGCATT TACGAGGCAT GTCTCATACT TTTGTTTCA CTCCAAACTG
 207181 CCCAGTGAAG TAACATTATC CCAATTCTC CTATGAAACA GTGAAAGCCC TAAGAGTTT
 207241 TGAAAACCTTA CCTGGTTAC TCAATTGGG AATGGCAGAG CAGAATTCAAG TCCTTGAATA
 207301 TCCTCCCACT GCAGGTTCAT GCTCTTGAT CTAGGTGTAA CATTACTCT GAGTAAACTA

Figure 9 (Page 64 of 74)

207361 GGACTCTGGG CTAACAGAGA TGAAGCAAGA CAGGCTGGAT ATTAGGAGAA TCTAAGAGCA
 207421 ATCTAACGAC CATTATAATA AAATCATGAG TTCTAGACTT AAAAAAAAGGG AAAAACCTGT
 207481 TTTTTGCTT ATGCGTATAC CATAATATT ACATTATTAA TTTTTTCTC AAATTCAACC
 207541 TATACGGTGT CAAGTAATT TTTTAATAT AACATTTCC TTTAACTTAA TTTCAATTCA
 207601 TTTTCTGTG TCTACTTACA ACTTTGGCAC TAGAATTAC AATTTTTTT TAGAGGTATA
 207661 TCTCCTTAAA GGGAAAGGGTT CTGACACTGT TACATGTTCT CAATTGTTG CAAATAGGTT
 207721 AATAATTATT CCAGTGTCTC TAAGTACATA TCAACCATGC CAGTGGTCAG CCTCCATAAT
 207781 TTTATTAGCT TCTGTGCTTA TTTTGGAAAA ACATTTCCA TTACCATGAA AGACCTCAGT
 207841 TTAGGATGGT TTGGTATGTT AGCCTGATT CTGCATTCTG CTCATGCAA GAAGAAATAGG
 207901 AAACGAAGAA CTGAAATTAC CTATTGATAC AAAATCAAAG TAGCATTGAA ACCATAAAA
 207961 CTTAAGTAGG GCTTTTCATC CTTTCTCGTT AGACAGCAAC AGAGAATGGG AAGAAAAACT
 208021 AAAGTGATGG GTTGTGATA CAATTCCAGT AACATAAAAGA GCAAGGAGAA GTAGTTTGT
 208081 TGTGTTATG TTTAATATTCA AAAGCTCAAC CTAAAAGTAT TTTTCATTAT CAAACTTCCT
 208141 TCTAGAATAA ATGATTAAAA CTTGATTAA AATATACAAA TTCTCCTTA TAATACCTCA
 208201 AAATGGAGCT ACCCCATTGA GTTTTAAGCT TGTGATTAAA ATATTACGAA ACAAAAGGGG
 208261 AAGTTGTAAT AGGTAGAACAGC AGCAGTAGTC TAGGCATTAG GGGATCTGGT GCTGGCTCTG
 208321 TGCATCATGT GGTTTCAGGC AACCTTTCAA ATTTCCTACG CAAATTTCT TATCAATAAA
 208381 ATAACACAGTT GGGCCAGAGG ATCTCTGAGT CTCTTCAGC TTTCAGTGT TATAAGATTG
 208441 GAGAAGTTGG TGGGAAAGCT TTAAGTGGAG TGTAAGTAAT TGCACTGCA TGTACAGTTA
 208501 AAGAGTTGCC TTCAGCCAAG CCACGGGATC TTGCATAAAA AGTGAATCA AATAGAAAAT
 208561 GGTCCAAACT CTGGGTTTGA CCACAGATGA CTTCAGCTAG GATCTGAGTG TAGAGCAATG
 208621 AGCTGAACCTC CTGATATCCA GATGTTAGCA AGACTTGGAG GCCTTCTAAG GCAGAGCAAC
 208681 AACCAAGTATC TGTCTGGTG CTGACCTGAT CTTACTAGCA ATTGGGCCTC CATTGGGTC
 208741 CATTGTACAA AACACAACA ACAACAAACAA TAAAATCTCC AAACACCCAA AATTCAAAT
 208801 TTAGATGGAG AGATACTATT CCCAGAATTC TAGAGATATT TGGAAGCAG AAAACTATAC
 208861 TTGCCATGCT GATGAAGTCC AATTATTGCT CTTTAAATA CATTAGCTA CTTCTGAATA
 208921 TAAAATGAGT ATCTACTAAT TATTTCACAA ATCACTTGGT AAATATAGAA AGTCACAAAG
 208981 AATGAAGTGA TCATCCTGTT TTGTAACCA GAAATAGTCA TTACTGGCAC TTGTGTGAAT
 209041 CAGTTTCTAT TCCTGTATGT GGATGTGCAC AGCGTATCCT GCTTTGTACA CTAGAGTACT
 209101 AGCATTTC TAATGTAAATT CAATATTGTC GAAAACATT TAAAATAGCT TCCATCACAA
 209161 TAATCTATCA AATTGACTTG CCAGACTCTC ATTATTAGGT TAATTATCT CTAACATTAT
 209221 GCAGTCATGTA GTAATACTAC AAAGGATATT TTTGGACACA ATTTCATC TATGCCCTTC
 209281 TTATATAATCC TTCATCCTAA GGTACAGAT TATGAATATC TTTAAAGTAC GGACAAGTCT
 209341 TTAAATTTT GTGTGCAAAA ACAGTGCAGA GCCTTGAATG ATAAAATAGA GGTTTGATAT
 209401 ATGTGTTTT TTGTTGTTT GTTTGAGAC GGATTCTGC TCTGCCCCC AAGCTGTAGT
 209461 GCAGTGGCAC GATCTGGCT CACTGCAACC TTTGCCTCTT GGGTTCAAGC ATTATCCTG
 209521 CCTCAGCCTC CTTAGTAGCA GGGTCTACAG GCATGTGCCA CCACACCCGG CTGTTTTGT
 209581 ATTTTAGTA GAGATGGGT TTCACCATGT TGGCCAGGAT GATCTCGAAC ACCTGACCTC
 209641 AAGTGATCCA CCCACCTCAG TATCCCAAAG TGCTGGGATT ACAGGTGTGA GCCACTGCAC
 209701 CCGGCCGATA CATGTGTTT TAAAGTCACA GAAATTCAG ATGTCTGAA GGATTTAAAG
 209761 CAATTAAAA AATAAAAGTCA TAGAAGCTTC AATTAGGAA TGAATGGAAA ATTGATGATA
 209821 TTCTTAGGAT ATGGATTTT CCTAAAAGAA ACAATGTAT GCATCCCCAA AGATAATTG
 209881 ATTAGTATAC AAATATTAAA TTAAACATGT CCATATTTAG AGCCATGAAT TCTCTTGCC
 209941 TGTACAATA GCTGGATTAA TTCACAATTG TAGTAATTAG TCCCTGTTCA TTATAATT
 210001 CTAGGTGATA TGAAGACTTT GTCACTCAA GCAAGTGTCC ACATTGTGTG TAGCAAACAT
 210061 GAGAATAAAAC ATTTTAAACT TTAAATGTAA ATACATATTA GTGTTATGTA ATGTCATCCT
 210121 TCATGTCGA AGGCACATGG AACATTGTC TGGTGGTACA GAGGGGAGAG AAACACCATC
 210181 AGAATGAAAG GAAAGACCGC TCTGGAACTT CCCTCCTTAG CTCTTGAGCT TAGTTAAATT
 210241 GTCCTGTCTT ATGGTCTGCT ACAAGCAATA CCACCTTCA CCTTCGATG CTTCTCTGTG
 210301 GTTGATAAA GTACATGCAA TTTTCATT AATTCTTCA GCTGCACTAA GAAAGGAGCC
 210361 TTATCTTAT TGAACAGATG AGGAAATGAA TGATTAGAGA ATTTAAATGA CTAGCTCTAG
 210421 GTCACACAGC TGGAACTTAC AGCCAGATT CCTTTAACCA ATCCTGTAAC CAAAGCATA
 210481 CCAGTAGTGC CCCATAAAAT GTAAGTTATA GAGCTGTGTT GGGTCAAAAC TTTTACTGAT
 210541 GCTAAGAGGA GGCAACATTA ACAAGGGGAA ATTATTTGTG TATTATGTT TGGATTATGT

Figure 9 (Page 65 of 74)

210601 TCTCTCCATA GATAAAAGAC TGTCGTAGTA AAAGAGATTG AGGGCACAGG GAAACTCCAC
 210661 CACAAAGCGT GGTACCATTT CCCACAGAAG CTAATGGAC GGGAACCTG CCACCAAGGAA
 210721 AGGTAAAGCC ACTGCTCTTG TTTGCAGGCT ATGTTAATAA GCTGAAGCTT ATTCCGACAC
 210781 ATTTACACAT CTCTGCATCA CACTGACCT TCAGTAAAGAT ACTCCCAGTG TAACATTGGA
 210841 GCCAGCTCCA GCCCCGTGATC CTGTTGCTTT TTCCTTAGCC CCATGAAATC ATCTGCGAGA
 210901 AATTAAGCCA AATAAGCAAT AAATCCTGGG ATCTAGGGAG TGGAATAAGT TTTGGGAAAG
 210961 TCTTTTTTTT TTTTTTTTG ACTGAGTCTT GCTCTGTCTC ACAGGCTGGA GTGCAGTGGT
 211021 GCGATCTCGG CTCACTGCAA CCTCTGCCTC CGGGTTCAA GTGATTCTCC TGCCTCAGCC
 211081 TCCCAGTAG CTTGGACTAC AGGCACACAC CACCATGCC AGCTGAATT TTGTATTTT
 211141 AGTAGAGATG GAGTTTCGCC GTGTTAGCCA GGATGGTCTC GATCTCCTGA CCTCGTGATC
 211201 CACCGGCCTC GGCCTCCAA AGTGCTGGG TTACAGGCAT GGGCCACAC GCCTGGCCCG
 211261 GGAAAGTCAT TTTAAACCAA CCTATGTATG AATCCCTACT ATAATATTCT CACCAAGCGG
 211321 CTGGCTCTT CTCCTGAGCT TGAAACCTC CAGTAAAATG GAAATAATTA TTTCCCAGAC
 211381 CACCACTCTT ATCTGTGAGC TTTTTGGCC ATTAAAAATT ATTTCTTCCA TTATATTTT
 211441 ATCTGTGTC TCACAGGTT TCTCTTCTT TCACTTTAGT GCTTTCTTC AAATAAGCAG
 211501 GAAAAATCCA ATCTATCATG CACATGGAA CCCTTCAAT ATTGGTCTGT GGTTGTTCCA
 211561 TTTTATGGGG ATGCTTTAA AGAAAAAAATT TGTCCTTCA ATATATTGAA TATCTTCCAG
 211621 CACCACTCA CCTGCAAGCT TTGTTAAAAT AGTTCTACAT ATTAATTTT TTTTTTTTG
 211681 AGATTGAGTC TCATTCTGTC ACCCAGGCTG GAGTACAGTG ACATGATCTT GGCTCATTGC
 211741 AACCTCTGCC TCCTGGGTTC AAGTGATTCT CCTGACTCAG CCTCCCGAGT AGCTGGGATT
 211801 ACAGGCATGC ATCACCATGC CTGGTAATT TTTGTATTT TAGTAGAGAT GGGGTTTCAC
 211861 CATGTTGACC AGGCTGGTCT CAAACTCTG ACCTCAAGTG ATCCACCTGC CTTAGCCTCC
 211921 CAAAATGCTG GGACTACAGG CGTGAGCCAC TGCACCCCAC GTAGTTTTT TTTTTTTTA
 211981 AGTTGAACAT ATGTGAAGGC AGGACCTAGT GACACATAGC AATAACATTT CCAAGTAGAC
 212041 ATTACACTAG GGAATTAGTC AAAGTGCTCA TTTAAAGTAC CATCTCTAA ATGTATTAAA
 212101 AGAGAACCTT TGGATGTGCA ATACCTTAAT TCAAAGGCAG CTCGTTATGT ATAAACTCTC
 212161 AAGCTTTGTG ATAAACAAAT GTGCATAACA GATGGGACTA TTGACTTACA GCCCAGGGAA
 212221 TTTTATTGAC GCTGAGAAGG TTATGTGACT GGCTCTGCCA CTGTCATCCC CATTCACTTC
 212281 ATTTGGAGC AATATGACAT AAATGCCCTA CATGTGGGTT TTCTCTATTT ATCATGTGTT
 212341 TCCTATCCCC TTGAAAGATG GCCATATTG CTTTACTTGG TTATAAGATC CCATATTCCG
 212401 TGTCTTGAAG CCAACCAAAT AATTGACAA AGTGGGTTTG TAGTGTGGC TATTTGGTG
 212461 AAAAAAGAC AATGAGACTT CATGTGTCA CCAAAGTTCT ATCAGATCGA GCTGTGAGAG
 212521 AAAGGAAAAG AAAGGGTCT CAGTCAGGAT GCTCACTGCA TACATCTGTG TTGTTGTCTA
 212581 GGTCCAGATT TCTGTCATT ACGCTATGGG CTGGCTCTTA TCATGCACTT CTCAAACCTTC
 212641 ACCATGATAA CGCAGCGTGT GAGTCTGAGC ATTGCGATCA TCGCCATGGT GAACACCACT
 212701 CAGCAGCAAG GTCTATCTAA TGCCTCCACT GAGGGGCCTG TTGCAGATGC CTTCAATAAC
 212761 TCCAGCATAT CCATCAAGGA ATTTGATACA AAGGTAAGTA TGATGGAAA TAGGGCTCTT
 212821 TGGTGGAGA AAAAACTTG AAAGGAAGGC ATAGATCTTG ATTCTGTGGA GTATGGAAGT
 212881 ATACATTTCC AATGACAAAT TAAAACGTAC TGGAAACTATT TTTCTTGAG ACATTGCTTA
 212941 CTTCAATAAT AAAATAAGA TTTCATTGAG GTTATTATGA TTATAAGGTG GGGGAACGTG
 213001 AGAGTTAAAT GTGAAAATT TAAAATGGA ACAGTTATG TGATGTCCTC AATGAAAAAC
 213061 TAGGTATTAC CTGGGCACAT TCTTATAGGT TACTCAATCC TATTCACTTC TCTGCCTGTT
 213121 TTATTGTTTC TGAGCAATT TATATCCCTG TAAATTCTAT ATAACCAATA GAAATGCAA
 213181 CGATTCTTGT CCATAGCTTT GCAAATAAT TTGCCAAGA GAAAATCAG TTAAAACCTT
 213241 TCTCCACTCA CCTCCAGTT GAATTAGCCA ATTTGCTGT TTGTTGTTT GTTGTGTTT
 213301 TGAGATAGAG TCTTCCCTCG TCATTCAAGG TGAGTGCAG TGGCATGATC TCAGCTCACT
 213361 GCAGCCTCCG CCTCCGGGT TCAAGAGATT TTCCTGTCTC AGCCTCCAA GTAGCTGGGA
 213421 GTAAGGGGGC ATGCCACCGC GGCTGGCTAA TTTTGTTATT TTTAGTAGAG ACAGGGTTTC
 213481 ACTAGGCTGG TCTCGAACCTC CTGACCTCAG GTGATCCACC CGCCTCGGCC TCCCAAAGTG
 213541 TTGGGATTAC AGGTGTGAGC CACTGTGCCA GGCTCTGCTG TATATTAAA GTCTATTCTA
 213601 GCATTGCTTC CTGCTTGTGT TATGCGTGT TCTTGTAGTT TTCCCTTGAA CCAGTTATAA
 213661 CATCTTACTT ACTTCTCTCCA TTAATCAATG AGTTAAATAA AATCTTGTT GTATGTTTAT
 213721 TTTACATTAA TATGAAAACC ATGAATTAC CCAATTAAAA AAATTATCCT TAAATTATC
 213781 TTGTACTGTA CATTCCCAT GTCATCCCTA TAATTGATTA TATTACATTG

Figure 9 (Page 66 of 74)

213841 GACCTAGCTT ATTTACAATG AGTACATAAA TTTATTGTCT CCAGTCCTTC CTCCATTATC
 213901 CCGTCTACAT ATCCACACTG AGTAGATTCA CTACTCAGGA ATCTGGACA CCTTCAGTT
 213961 GCCAAACATG CAGTGTTCAC TGGACATGCT GTGTCCTTC AGAATTGGG CCTGCTTCTC
 214021 AGCACACTCA CATCTGCTAT CAATGACCCA TGGAAAGTTT TTGCCCTGAG CAAGCCAGAG
 214081 TCCCTGTTAG TTTCTTCCAA ATGCTACAAG TTCACTTTG CTATTTTTC CGATGAGATA
 214141 AAATTTTCTT TTTTGACTTT CTACAAATCA TAGTCATTTT TCAAGGGATA GTTCAAGTAT
 214201 TGCTTCCTTT CTGGGACCTT CCCAAATTAT TATTTCTCC TCTCAAAGTC TCTGTTTAT
 214261 TTATGTTCAT CCTCAAATCT TGATTCTCAC ATGAATCATA TACCTTGTAT TATTTATAGT
 214321 TTTTTGAGT AGGTAAAATA TTTCATATTT TATATTCTT GGCTCTCTAC TTTATAGCAT
 214381 GATGCCAGAT ATTTAGGGC CTTACTGCAT TTATTTTTA TTTTATTTA AAATCTATTT
 214441 TATTTTTAT TTATTTATTT TAAAATCTAT TTATTTTTAG GTAAATATTC AGGTAATATA
 214501 ATTTATGTAA TTATTTAGGA ATTTAGGTA GTTATTTAA AATAATTCAA ATTATTTATT
 214561 GAGTTATATC AGAAGAATGT GATCTTATTC ATTTGTAATA TGTGTTTAG GAACTCAGTT
 214621 CAGCCAGGGC AGACCCATAAT TCCCACACTT GACTTTCTT TTTAATTAGG CACTGATTT
 214681 GTTAAAGAGT TCAGTAAAGT TTTGTGTGT TGTTTTAAAA AATTCTTGA TATAAGAGTC
 214741 AAGATGTTAC TCAACTTTA CTAGAACCAA AATAGAGGAA GTGCTTCAC AGATGAAATA
 214801 TCTCTCAATG TTTCTTCCA TTTACTTCTT CCTATTATTC ATCTATATAA TCATTTCTT
 214861 TACCTCTTTT CTTCATTTCT TCTGTTTTTC TCTCCTACTA AGACAAAGCAA ATTAGGGTA
 214921 TAATTGGTTA TTTGGGAAGG TAGGAAGAAT ACAGAGAGAA ACAAAATCA ATATTTATA
 214981 CTAGGGTCTC ACTAACCTCA AGCAACTCTG ACTGTAAGT AGATTTCAT AATAGGACTT
 215041 CTTGACAAAG AGTTTCCCTA TTTTCCCCC AGGCTCTGT GTATCAATGG AGCCCAGAAA
 215101 CTCAGGGTAT CATCTTCTAGC TCCATCAACT ATGGGATAAT ACTGACTCTG ATCCCAAGTG
 215161 GATATTTAGC AGGGATATTT GGAGCAAAAA AAATGCTTGG TGCTGGTTG CTGATCTCTT
 215221 CCCTCTCAC CCTCTTACA CCACTGGCTG CTGACTTCGG AGTGATTTG GTCATCATGG
 215281 TTCGGACAGT CCAGGGCATG GCCCAGGTAT CCAGATACTT TCTCATTCTT GGTGGGATCC
 215341 AGATTTCTGA ATTCTACAAA ATATCAAAGG TCTTAATGAT TTTCATTCA GGGATGGCA
 215401 TGGACAGGTC AGTTTACTAT TTGGGCAAGG TGGCTCCTC CACTTGAACG AAGCAAGCTC
 215461 ACCACCATTG CAGGATCAGG TAAGTGTGCA CAGATGGGTC ATAGCTTGT CATCTGTTCC
 215521 ATCCCACGT GTCTTATCTT CTATGAATCA AATGGTTGG GGAAGAGAGA GAAAAAGTAC
 215581 TGCTGAAAAA TTCAACAATA TAAGACACTT GCATCACAAA TAGGAAAGAT GCATCTGTGC
 215641 AGTAAAGACA TTGAAGCTT GAAGTAGAAA AAACCATTGT GAGCTAGGTT TCAGCTCAGA
 215701 AAAGCCTTAG TAGTCAGAAA AGCCTTAGTA GTCAAGAAAAG CTTGTCGGA AAAAGTTAA
 215761 ACCTTTAAGA ATTGCACACA TGGAAAAAGA TCAAGTAAGC TATATATACA CCATCTTAGC
 215821 AATGATTTG AAGTGAGAAT TAAGGCTACC ACAGCTCCAG GTGGTAAGGA GAGAAATCAG
 215881 GCTGGAAGAG TTTGAAGTTT CTGTATTATT CTAAGCTCTT TACTATTCTA TTATGAGCTC
 215941 ATTAATTCTC ACAACAAACCC TCTCATATAA GTACCATTTC AAATTCTTAT TTTACAGAGA
 216001 AGGGAGTTAA GGAAGGTGGA GATTAAGAAA ATTGCCAAA TACAAATAGC CAGCAGGTGG
 216061 TAGGTCTGAG ATTTAAGCCC ATGCAGATT TAGGCCAGA GCAGACATTC TCAATCACTA
 216121 TGCTAGACTG CTTTCCATG GTATGTGATC CTACTCAGGC CTCTACAGCT TTATCATTGC
 216181 TGTCTCCCC AGCCTGTCGT GCTGAGAGTA TATACTCGAA GAGCAGAACT AAAATTCCAT
 216241 CCAGCTCTC ACTCCTAGGT CCACTACACA GTCGCATCCT GCAGACTTTT ACCTCAAGCA
 216301 ACCCTCCTGC GTTCTGCTT CCTTCCATCA TAGTTGTAAC CATCTCCTCT ATTGCAAAT
 216361 ACTATCTGCT GATCTCTCTC TTCTAGACTG GTTCTTTCA ACCTTCTTCC CACCAAAACC
 216421 AAGTTAGCTT GCTAAAATAA AGATGGCCCA TTTTACTCA CCCGTTGAG AATTTCAT
 216481 GTGTTCTTC ATGCTTACAG AGTAAAGCCT GACCTCTTAA TTGCATGAAT ACAAAAGTTC
 216541 TTAGCCATCT GGGCCCAACC TTGTTCCACT CAACTCCCT GTGCAAGCAT GGCTCCAGTG
 216601 GCACTGGACA TTGGCTGCTC TCCACATAGA TCTGCACTGC ACTTCCCTCT GGCTCTGCTC
 216661 CCGTTAGTTT ATATGCTGG AAAGTTCTT GCCCCGTGTC CTTGTGCCAA AATTCCATCT
 216721 ATCCTATTGC ATAGCTTATG TAAAAACTTC CTAAACCTTT TTTTTTTTT TTTTTTTTT
 216781 TTTTTTTTTT TTTTTGAGA CGGTGTCTCA CTCTTCCGCC CAGGCCGGAC TGCAGTAGCG
 216841 CTATCTCGGC TCACTGCAAG CTCCGCCTCC CGGGTTACAG CCATTTCTCT GCCTCAGCCT
 216901 CCCGAGTAGC TGGGACTACA GGCGCCTGCC ACCATGACCG GCTAATTTT TGTATTTTA
 216961 GTAGAGACGG GGTTCAAGC CAGGATGGTC TCAATCTCT GACCTCGTGA TCCGCCGCC
 217021 TCGGCCTCCC AAAGTGTGTC GATTACAGGC GTGAGCCACC GTGCCGGCC AAAACTTCCT

Figure 9 (Page 67 of 74)

217081 AAATCTTATA ATTATTATCA ATTTATCCTC AGATATACTT CCACGTACAT TGTAGTTTA
 217141 TTATATTTAT ATTTACATC TTTTTTTCA AATTGCAGTT TGGGACCCAT TAGTGAGTCA
 217201 TAAAATCCAT TGAGCGGGTT AAAATCATTA TTTTAAAAAA TGAGTAGAAT AGAATAGAAA
 217261 TTGTTGGAGT GCATTGGACA TGGTAAAGTT AAATATCGAT TCATGAAACC ATCGTTGAG
 217321 GCATATGTGT GTGGTTGTAT GTACAAGTGT TTATGCATAT TGGTGTGTGT GTTATGTTAC
 217381 CCTGTAAAAT GCATTCTTA CTATAGGTCT CTGTGAAATA TGTGCTTGT TGTTTTTAA
 217441 TGTAGACTTC CAAAGCCTAC ATGGCATTTC ACTAGTGACA ATCAATTAA TTCACATTAA
 217501 TCTCTCCAAT TGGACCAGAA GCTCTTGAG GGCAGGGGCT GTATCTTACC GATTTTGTAA
 217561 AGTCTTCAT TTCCTGCCCT TAGCCTCATA TTAGATCATG CAAGAATGCA ACTGTAATCA
 217621 CAAGAAAATG CTAATGGGCT GTGATAGCAG AGAGTTACTG TGACAAACTA AGGGATTAG
 217681 ATTTGGTCAC ATTGGTGTG AGGAGCCATT GAAGAACATCAG AGAGTGTGTT ACTATTATT
 217741 GTTAATTTA ATTATATCAT ATTACTTTAC TGGGGAAAAT CTGTGAGCTA TTTTAGAAAT
 217801 AAATACTCTC ATTGCCCAAT AATTCTAAGT CTGCCACCTC ACTGTTGGGA CATTGTTAG
 217861 GGAGGCCACG AAGTCTCAGC CTTTGATATT TTCATAAGTG TTTTCTCCC TTTTCCTTT
 217921 AGGGTCAGCA TTTGGATCCT TCATCATCCT CTGTGTGGG GGACTAATCT CACAGGCCCT
 217981 GAGCTGGCCT TTTATCTTCT ACATCTTGG TGAGTCACCT TCTCTTAAAT CCTAATGCCT
 218041 CCATTCCTG AGCATCCATT TTGGCACCTA CACCACCCAC ATTCTCCTA TATGAAAGAA
 218101 AATGTCCTT ATCAAATGGA AGATGATAAA AAATGTCAAC GGTTGGTATC ATTTTTAAC
 218161 TAGTCACACA ACCTGATTAA CACCTTCCTG GTGGTTCTGG GAAGCCACAC GCAAAAGGTA
 218221 GAGGAGTTGA CTATTCACAT GGCAACCCACC GACTTGTGAT GCAGTCTTGT CCTTCCATAT
 218281 CAAGCACCTT CTGCAGAACAT TCTACCACCA CATCTGAAGT GCCTGCTATA TGCAAGTTAG
 218341 ATGTCAAAGA TAGTGAAGTA CATTTCAT GTGCTTCAT ATTTCATTAT AATTATTATT
 218401 TCTGTCCAAG ATGCCCTTCAT CCTGTTCTCT ACCAAGTTAA TCTTGAAAG TTCAATTCAA
 218461 ATGTTCCCTT CCCCCATGGGC CCTTCCAGGG CTTACCCCTGT CAGATTCTGG CATTCTCTCC
 218521 TTTATGATAT TTCCCTCTCA GGTTATGTT GTGTGAATT ATTTATTTCT CTTTTCTTT
 218581 CCACTAGACT GTGAAATGCT TGAGGCAAGG AATCCATTCT ATGTTTCAT CACTGGGTG
 218641 TCATCATGGT GCCTGATTAA TAGCTTAAAT AAAAAAGAAT CAGTGAATCC AGTAATTAGA
 218701 GGGGATTAA AGAAAATAG TCCTCAGAAAT CTTTTAACAT AGAATGTTCT TCAAATAAGG
 218761 AATTCCAATA ATAAGACAAT TTTCTACACT TGATTTGTT TTTATAGCCA ATGGTGTCA
 218821 TTAAATATAG TCCTGGCCTG AATGGCTTC TCATTAATGA TGCTAATTAT TTTGGTTTGT
 218881 ACATGTTAAC CAGGTATTGT AAAAAAATAT TTCTTTGGG AATCCATAAT GGATGTTATGG
 218941 CTTGAATACA AATAATACTG TCTCTTGAA GTGCATTGGA AATTTTCCC TGCCACATGA
 219001 TTTCATGGAA GGTTGTTCG TGTATGTATG ACTGCAAACC TGACTATTCA GATCTTCCGC
 219061 AACAAAGACAA CTTATGTGTG CATTAAGAAG TTGCTGCCTA AAATACATAA CACTGTAATC
 219121 ATTGGAGACT TTAAAGTAAT TAATCAGCTA TGCAATGCCA CGCTCCTGTT ATCTCCAGAG
 219181 GGCTCTGACA TTGACAAATG GTGGCTTCT ATTGAGACG TAATATCTAA AAAGCTTTAA
 219241 CAGGTTTGTAA GAAGGATTGA AAGAAAGAAT GGGAACATTI AGGTCTTAT GGTAGAATAA
 219301 GCATTAATTG ATTAGTGTGT AGAAGGGAGA GGCATGCCAC TTCAGAGGAA ACTTCCTTCC
 219361 CCCAGTAAAC AAATCTACCT AAAAACTAAT TTTATCCCTT CTTCCCAGGT AGCACTGGCT
 219421 GTGTCTGCTG TCTCCATGG TTCACAGTGA TTTATGATGA CCCATGCAT CACCGTGCA
 219481 TAAGTGTAG GGAAAAGGAG CACATCCTGT CCTCACTGGC TCAACAGGTAA CAGTGCACAC
 219541 CTTGTACCTG TGGCCCATGC AGAGGTCTCT AGGGCAGGGT GTGGATCTCC TCTGAGAGGC
 219601 ACCATCTTGG CTGCTCTAA ACTCATGCTG ATTAGATCTT TCTTTTCAGC CCAGTTCTCC
 219661 TGGACGAGCT GTCCCCATAA AGGCAGATGGT CACATGCCTA CCACTTGGG CCATTTCT
 219721 GGGTTTTTC AGCCATTCT GGTTATGCAC CATCATCCTA ACATACCTAC CAACGTATAT
 219781 CAGTACTCTG CTCCATGTTA ACATCAGAGA TGTGAGTTA CTTCCTATAC TTCTACGAAA
 219841 ATGATAATGG TAATAAGGAG AAACAGTCT GTGTTACCTA TTACATTCTG GCTTTACATA
 219901 TAACCATTAA TTTAACCTTC ACAATGACCT TGAGAGAGGC ATTGTTATAA TTCCCTTTTC
 219961 ACAGATGTGG AAACAGGACA CTTAGAGGTG AGATAACTTG CCCCAGGGTG CACAATACTA
 220021 AGTGATAGAG CTGCTGCAGC ATCCATATTCA TTAACCACTA TGCTATACTA CCACACCAGC
 220081 TGATTCCAAA GCTTCTTTA GAAATAATAT TGCTGGGCCA GGCATGGTGG CTCATGCCTG
 220141 TAATTCCAGC ACTTTGGGAG GCCGAGGCAG GCAGATCATG AGGTCAGGAA TGCAAGACCA
 220201 GCCTGACCAA TATGGTTAC TAAATATCAT CTACTAAAAA TACAAAATT AGCCAGGTGT
 220261 GGTGGCAGGC ACCTGTAATC CCAGCTATTG AGGAGGCTGA GACAGGAGAA TCGCTTGAAAC

Figure 9 (Page 68 of 74)

157 / 162

220321 CCAGGAGGTG GAGGGTGCAT TGAGCCAAGA TCATGCCACT GCACTCCAGC CTGGCGACA
 220381 GAGTAAGACT CCGTTCAAA AACAAAAAAC CCAAGAAATT AATATTGCTT TTATCTGGAG
 220441 CCCAGAGTGA TGCAGCTTCT GGCCCTCTTA TCTGAGACAG TGTTCTTTA GTGTGAAAAA
 220501 GGATGCTAAT TTTCCCCCAA ACAACCCACA GTATCATGGG GGTAAGTTAA TGGCTGGTCT
 220561 GTGTAACTGA CAAATTGG TGCTAACGTA TCTCTATAAC TACTCTGTAT AAACCTCCTT
 220621 CCTTCAGAGT GGAGTTCTGT CCTCCCTGCC TTTTATTGCT GCTGCAAGCT GTACAATT
 220681 AGGAGGTCAG CTGGCAGATT TCCCTTGTC CAGGAATCTT CTCAGATTGA TCACTGTGCG
 220741 AAAGCTCTTT TCATCTCTTG GTAAGGATAA CGCTGTGGGC CCATTTAACC AATCCCTTT
 220801 CTGCACATGG TCTCAGAGGG TTCCCTGACA GCATGTCTC ATTGCCAGG GCTCCTCCTT
 220861 CCATCAATAT GTGCTGTGGC CCTGCCCTT GTGCCCTCCA GTTACGTGAT ACCATTATT
 220921 TTGCTGATAC TTATTCCTGG GACCAGTAAC CTATGTACT CAGGGTTTAT CATCAACACC
 220981 TTAGATATCG CCCCCAGGTA AGAGCTCTAC CTGTTTTTC CCCTCCTCCA GACCCCTCCA
 221041 GAGGTGTTAG ACCTCAGTGG TCGCCGTGAA ACTCTTAAT GTTACTGACA TTGCACTAAT
 221101 GCCAGAATGA CAAATAACTA CAAATATCTG TCTGTGGCCA TTTTAGAAC ACAAATGTG
 221161 GCATTTTAG AACAACAATT TCCAATCTG GCCAGTAATC ATTTGACAA AAACCTTCCC
 221221 AAGCTTCCCT AACAGAGATT GAACTGTGTA TGCTGGAAA AGGCCACAC ACAGGTGATT
 221281 TGAAAAGTT TCCATGGTGT TGTCATATT AGCTACCACA TATATATATA TATATATATA
 221341 TATATATATA TATATATATA TACAGTCACA ATAAGCCAGC TCCTGTGCCA
 221401 AGACTTGCCA TATATCAACA CATCTAATCC TCACAGTTAT ATTAGGTAGG CCCTATTGTT
 221461 ATCCCCATT TATAAGGGAG AAGGCTGAGG CACAAGGAGG TAAATGGTG TGACTATGGT
 221521 CACATAAAGG CAGAGCCAGG ATTTGGACTG GGGGAGTCTG GCTTGGAGT CTGTGTCTG
 221581 CCCGTTGCAC AAACCTGGCTT CTACACTGAG CAGCCAGGGT AAAGAAACGT GGTTCCCAGA
 221641 GAGACTGCAT TGCTCCCTGG TTATTGACTT GGTAGATTGG TAATTCAGG TTTGGCAAAT
 221701 AGACATTGCC CTGAATGTCT TTAGGTGAAT GAAAAACTGC ATTAAGCAA ATGACTTTGC
 221761 CATTAGAGCT GAATTGCATT AAAGTTGAGT TGCTGCAGAA GCTGTAGGTG GCTTCTATA
 221821 TAAAATCATT TATAAAATCA TCTTCCATA GATATGCAAG TTTCTCATG GGAATCTCAA
 221881 GGGGATTG GCTCATCGCA GGAATCATCT CTTCCACTGC CACTGGATTC CTCATCAGTC
 221941 AGGTTGGTC AGTTTATTGA ACATCTTCAA GTGGCAGGTA TTGTTTTAGG TGGTGGAGAT
 222001 ACACACGGTG CTCTAAAGAT CTGGATGGCA ACACAATTAC TCTATTACA TGAGCCTCTA
 222061 AATCAGACTC TGGTAGGTCA GATTTCCAG AGGAAGAAAA ATATAAGCTT ATTTCTCAA
 222121 GATGAATAGA TGTTAGATTG ATTAAAATGA GCTGTTCCGG TGCAAGAAC AGCACGTATG
 222181 ACTTCCTAGA GGTACATGAG CATGAAACAG TTCTTAGTTA TGACCAGAAAT GAAAGACACA
 222241 TGTCAAGGAA TAGCAAGAGA CGAAGACAGA GGGGAAAG AAGATCATGA AGAATATGTT
 222301 CAGACTAATC CAATTTTAA AAAATCACAA AAGGGAAACA AAGTGTCTA GCCAGTTA
 222361 AAGATAATT TATGTCAGGA AACAGATCGG CTGTGAGACA TTGCAAGGAG GCTTGCTCGG
 222421 TGTTGGAAA TGCAAGGCTCA TGAGGAAGAT GAAAAGACAG ACCCAGGGCAG GGATGGAAGG
 222481 ACTGACTAGA ACCAACTTAC AAAGAGAAGT TTTGTTTTA CTACATTCT ATGTGATCAA
 222541 GTTCCCAGGT TAATATTGTA CTAAACTGCT AGGAATCCAC TGTGACTATA ATGCTGGAAA
 222601 TGACTTAGTA GGGCTTCTG AGGAGGGTCA CACAGAAGAC CAAAGAGAAC TCATGTTGAA
 222661 TTGAGATGGG TTATAGTGT AGTTGTCAAC AGCCAATACA GAAACAAAAA AAAACAAAAC
 222721 AAACAGCAAC AACAAACAACA ACAAAAAAAA AAAACAGAGA AGACACAAAC ACAATGCCAC
 222781 AATGCCATT TAGGCATAAT TTTAAATGAG TAATATTATA TGTTGAAATC CAAATTTCA
 222841 GAAAAACATT AGTGTATTAA ATTGTTGTTT AAAGAAATAA CCATCTCAAC TCAGAACCCCC
 222901 ATGTGCATT TGGCCATTGTT GTTCCAATA GTTCATAAA CTTTCTTAAG TAACTACTGC
 222961 ACATTGTTCC TTATATTCT TGTGATCAAC ATTGCAATAC ACAACTGGGA GGGCTACTAG
 223021 AACTGGTGTGTA GAAGGAACCT GTGAGATTGA TCATTTCTC TGTTTTTAC ATCTAGGATT
 223081 TTGAGTCTGG TTGGAGGAAT GTCTTTTCC TGTCTGCTGC AGTCAACATG TTTGGCTGG
 223141 TCTTTACCT CACGTTGGA CAAGCAGAAC TTCAAGACTG GGCCAAAGAG AGGACCCCTA
 223201 CCCGCTCTG AGGACATAAA GTTACAAACT TAAATGTGGT ACTGAGCATG AACTTTTAA
 223261 ACATTTTTA CTTCTCTCCA TATTCTGAC CATAGACTCA GCAGTTCTTA ACTCTGGCTG
 223321 TGTGTTAGTC TTCCCTGGGG AGCCTTATA AGACACTGAT ACTTGGGACC CACTCCAGAG
 223381 ATTCTGAATG AATTGGTCTG GGGTGGAAC CAGATACTAC TAATTTTAG ATACTCCTTA
 223441 GAGGTTTCTA GCATGCGCCC GGGGTTGACA ACAGCTGGAC AAACCTGAAA AGTCAATTCA
 223501 TGTGGCCTTT GAATTTCTC CATTGGAAAG TACTAAATAA ATAAAAATTC ATGTGAAAAT

Figure 9 (Page 69 of 74)

223561 GATCACTGAT AAATATCTTC ATGGTGGGGC AGGTTATTGG ATGCAGAGAA GATCTGCTCG
 223621 GAATTGTAGC CATATGTTAC AGATCTCAGC ACCGATCAGA ACTGTAAGC TATAATCCCC
 223681 AGAATTAAAG TTTTATTAT TTTTATACA TTGTAACAA TAGACGTTA TTTATGTGAT
 223741 TAAATTCTAT TAAAATTTAC ATGCTAAAT AAAATAGACC ATTTCAAT TATTTAGATC
 223801 CAGATATTC CATCAGATTA AACAGATATT TATTTATCCT AGCCCAATTG CAAGAGATTA
 223861 ATGATGAGAA AATGACCAAT ACAAGATTA ATAATGAGG TTAACCTAGA AATCAAGGAC
 223921 AGAGAAGATA GAACTGGAA GCTTGTATTG TGAGAAGAAT GAATGTGAAG GAAGGCAATG
 223981 TAGACACTTC CAGAAGGGAT AGCAATATAG TTTAGACCAT ATAATGAAAA TTGGAGAGAG
 224041 ATGACAGAGA CACTTCAG TGAAATGACA ATTATATGG GGGAGAAAAA TATTGAAGAC
 224101 ATAACAAGAT GAGAAAAGGC ATAGAAATGT ATCACATACA AGGCATAGAA GTGTATCACA
 224161 TACAAGAGAA GTTCCCTTTG AGCGTAGAAA AAGATAATT AACCTTCTTC ATATTTTCT
 224221 TACTTTCCA AGATACTCAG ATAGGCAGCG TCAACTCTAA CAGGAATTAA TTTGGCTCCT
 224281 AACACTTAAG ACATATCCTT TAGTTGTCT CCTCACACAG AACTGATTCT GGTTTGCCA
 224341 CAACATGTCT AGAGAAGAAG TTCCCACCAT ATTTAAATC CTATTAAGAA ACTGCTTCCA
 224401 CAAGAACCTT GGGCTAATTC AGCAGATGAA GAGAATCTCC TAATGCAAAT CAATGGGTAT
 224461 TTTTGAGCAA GTTTTCAGA AAAACAGAGT GTCAGGCCCT GAGGGTGGTA CTAAGATGAG
 224521 AACATTGATT TTGCCCTCAT GATATTGACA ACACAAAGAG GAAAGGGGT TTGCAGAAAA
 224581 CTAAGAAGAAG AAGTAGAAGA AAAAGAAAG ACATAGTATA ATAGGTAGTC AAATTATGTA
 224641 CAGAAAAAAAG AGGAAAAAAAG ACCAAAAAAAG GGTGGGGGAC AGACAACCCA ACTAAAAAAT
 224701 GGGCAATGA CTTGAACAGG GACTTCATAA AAGAGAAAAT GTAAGTGGCT CCTTAACATA
 224761 TAAAAGATG TTCAACTTCA TTAGTCATTA CAGAAATGAA AATCAAAACT ACAATGAAAT
 224821 ACCACTATAA AATTAACAA TGGATAAAAT GAAAGGAGAT GGAAACAAA ATGTTGCCAG
 224881 ACATGTGGAG CAACTGGAAC TTTCATACGT TAGGAATGTG AACTTGGAA AGCTGCTCGG
 224941 CAATATCTCC TAAAGCTAAA TGTACAATTC CAGTGAATCA GACATTTAC TTAGAAATGC
 225001 ACATATACAT CCATAAAACA TGTACAACAA TGTTCATAGG AGCACTATCT GTAATAGCCT
 225061 GAACAGGAAG TTGTCGTGTA AAAAGAAAT GAGTAATAA ACCACGGTCT ATTTGTATAG
 225121 CAATGAGAAT TAACAGACCC CAATATATAA TAGATGAATG GGTCTCATAA GCACAATATT
 225181 GATTAAAGGA AGACAAAACG CACATTCTT TAAAGGTTA TAAAATACTT TTTAAAGAA
 225241 GCTACAACCA ATCCGTCCTG TAAAAATCA GTGAGCGATT TCCCTTGTGC AGGGATGGGG
 225301 GTTGTGGCTG GATGGATGGT ACTTAAGAAG TGCTCCTGGG GTACTAGAA TATTTTATT
 225361 CTTGACTTGG ATGTGTGTTT ACTTTGTGAA TATTGTACAT TTATGATTG TGCACGTTA
 225421 TGAATGTAGA AAATAAAACA GAAAGCAAT TCAAAGTATC ATCCTTTGA GAGCTTCTGC
 225481 TCTGACTTCG TTTGACCAA TGGAGCAGTT GGGAAAGGGGT CTTGGTCCTT CGGTCCCTTG
 225541 CTTTTTTTTT TTTTTTTTT TTTTAGACAG AGTCTCACTC TGTCGCCGG GCTGGAGTGC
 225601 AGTGGCTCGA TCTTAGCTCA CTGAAAGCTT TGCTCTCCGG GTTCATGCCA TTCTCCTGCC
 225661 TCAGCCTCCC CAGTAGCTGG GACTACAGGC ACCTGCCACC ATGCCCGCT AATTTTTGT
 225721 ATTTTTAGT AGAGACGGGG TTTCACCATG TTAGCCAGGA TGGTCTCGAT CTCCTGACCT
 225781 CGTGATCCGC CCACCTGAGC CTCCCAAAGT GCTGGGATTA CAGGTGTGAG CCACCGCGCC
 225841 CGGCCCTGG TCCTCTGCTT TCATGTTCTT CTTGGTCTGT TTCCCTCTCC TCTTTGTTG
 225901 GAACTTCCAG TATCAGAGCA GGAAGGAAGG CAATGGGTCA ATCGATGCTG TCAGCTTTG
 225961 GATCAAACCTG CAAGTTCTCA AACAGAAAAA TTAATGAGCT CAGGCTTGA AGAAACCATG
 226021 ACCCTGAAAG CATCAGTTGC TTCAATTGC ATCAGTTGCC ACGGGTGATA AGAACAAATGA
 226081 TGAATCAGAA TGCCTAGGTT TTCCCAGCAG CTTCTCTGAG GTTTCCCAG CAGCTTCTCT
 226141 GATTGATTCC TGACAGATGA CTTGGTGTG TCAGACTTTC AGGGTATCTT TCCTTATGTG
 226201 ATGGTTTGAG GAAGAGTTAC CATTACACATT CCTAATGGCT TCAGAAATAGA TGCAATTGTG
 226261 AACTGATAGG AAACATTCT AATTCACTTC CCCTCCCCAT CCCTAAAGGA TTGTTTCTAA
 226321 CAATAGTCAT GAAAATTAAT TCACTTTCT CAAATAGTTT ATTGTCACT ACCTAATGAT
 226381 GAGATGACTT ACTTTTCTC CTTGACTGTT AAATATTATG AATTATATTA ATGTATTCT
 226441 TAATGTTGAG CTTTCCCTTG AATATTCTT TGATGTACGA CAGAATTGA TTCACATAA
 226501 GTTTATTTAG GACTTTGGCT GATGTACTGA TATATGAGAT TGGCTCTGTA TGCATACATG
 226561 TGTGTTGTGT ATCTTTTTG TGCTGGATA TGGAGCTTAT GCTGATTCA AAAACAAGAA
 226621 AGGAGAACTT TCCTTTTCC CCATTACTCT GAAAAGATT GACTAGAATG GAATTTTAT
 226681 AATTGCTGTT GTTATTTGAA AGCTTGAAAG CATTGGTTTG TAAAATCAT GCAGGCTGAA
 226741 AGCCATTTG AGGAGACTTT GATAACTTTC TCAATTCTC TCAGTTACTG GTCTTTAAG

Figure 9 (Page 70 of 74)

226801 GGGTTTTATA TTTTCCTTG ATCAATTG ACCATTTATG TTATCTTGA GGATCATCTA
 226861 TTTTACACAC TATTAAAGT ATATTGCAA AAATTCACACT GTTTTATCAG GCTATCTTT
 226921 TAATAATATA TTCATTTAT CTATATCTGA GTTTTAGCT TCTTGTACT TCTGACCCAA
 226981 TTGCATGTGT GCTTCTTTC TCCTTCATTA GACTACTAG TCATTACTA ATTTTAAGAA
 227041 TAGCTGTCT TTTATTTATT TACTTATTTA TTTTGAGAC GGAGTCTCAC TCTGTCACCC
 227101 AGGCTGGAGT GCAGTGGCGC GATCTGGCT CACTGCAACC TCCGCCTCCC GGGTTCAAGT
 227161 GATTCTCCTG CCTCAGACTC CCGAGTAGCT GGGATTACAG TCATGCACCA CCATGTCTGG
 227221 CTAATTCTG TATTTTAAT AGAGATGGGG TTTGCCATG TTGGCCAAGC TGGTCTCAA
 227281 CTCCTGACCT TAGATGATCT ACCCACCTG GCCTCCAAA GTGCTGGAT TACAGGCATG
 227341 AGCCACTGCG CCCAGCCCTG CTTGTCTTT TATTTTATAT TTGATTAGCT TTATCTTTA
 227401 TCAAGCTTAT GTCCTATTTC CTTTGCTTT ACTTCATATA AATTTGTTT TGGATAGTTT
 227461 ATTATTTTT CATTAAATTA TGAAACAGGT TAAAGCTTAG AGGAAAATTG CTCCTCTAAG
 227521 TCCACTTTG TGGGCAGATT ACATTTGCT GTGTTGTGCT CCCAAATTCA TTGTTCTTT
 227581 AATGCTTTAT TTCTCAAGTT ATAACCTAT ATAGAAAAA AGTGGCTGTT GACTCTCAGC
 227641 TTTTTTTTT TTTTTTTTT TTTTTTGTA GATACAGGGGA TCTTGTGTG TTGCTCAGGC
 227701 TGGTCTGAAA CTCCTGGCTT CAAGGGATCC TCCTGCCTTG GTCTCACAAA ATGCTGGGAT
 227761 GACAGACATG AGACACCATG CCCAGCCATG TCTCTCTCCT TATATATAAT AAGAAAACAG
 227821 ACACACTGAG GCATCCTATC ATCTCACTCT TGGTTCACT ACTGTTCTCT GGAAGTTTG
 227881 CTCTGACCTT TTGCAGTTAA TGTTAAATT TTGCATTGAG TAGTTCCAT AGAAGAATTA
 227941 TAGCATTTGC ATTCTGTTGG GTATTATACT TTTCACTGTT ATTTGAACAT AATTGAGGG
 228001 CTGAAACCAA GATGAGGCAA GTGAGGTGCC CAGGAAGCAA TATTTAAGGA GGCATCCTT
 228061 CTTAGGCTCA TGCAAGAAC GAATTGGCAC ATGAGAGTGA GTGCCCTCCTT AATTTGAGT
 228121 GCTGGACACT TCTTGCTCAC TTAGCATAAC CCTGGACAAT GAAGTGTGTT TTGTTTTGTT
 228181 TTTTCATGTC CATCCTTAT CTTCTTCAT CTCAAAACAT TTCAATGGAG TATTTTTTG
 228241 GAGCAGTACT TGGATGAGCC TCTGAGTCCC ACAGTAGCTG AGAATTATT TCATAGTACT
 228301 CTTTATGATC ACTGTGGAGC CTTAAACAT TGTAATATTA ACTTAGCTGG GAACAGAAAT
 228361 TTTGTTCCAC AATTGCTTT ATTCAAGAACA GTATTGACTT CCTGCTAGTC TCTTCTGATG
 228421 TCCAATATGA GGAAGTCTAG TTAGCCAGCT ACTTTTGTA GGAGAGCTAT GTTTAGGCTA
 228481 GGTGCTATAG GATTCTCTT ATCCTGGAA TCCTTCACCA AGATGTGCCA AGGTGTTAAT
 228541 CATTTCCTCT TGCTTTTGG CTGGGGTCT TAGAGTTCC TTCGATTTG TTTTATTTAG
 228601 TGATTGTCCT CAATTGTTT TCTTTACTAA GAATCTCTCT TCTATTATC TGTATGGTAA
 228661 AACCTGTTG CCCATCTTTC TGTTTCTGC TGACTTTCAT TTTGGACCT TTTACTTTGC
 228721 TTTCTCCATG GACTTTTGG TAGTGGAGGC AGGCAAACAC TTTCCAAAGT CTTTCTCAAT
 228781 TTCCATCAAT TTCAACTTAT TTCTAAAT TGCCCTCAGAA TGCCCTATG TCCACAATAT
 228841 CCCTCCTTCC ACTTTAGAAA GGAAAGGCAT CCACACTTTA TTTAGGTGCA ATGCCCTGAAG
 228901 TGAAACACT TTCTGGTTGT CAACAAAGGA GTACTTCAA ATATTGGTTT GGGGATAACC
 228961 TGCTAATGAT TAACACATT ACCTGGCTC TTGGTTTGCC TGCTCCCTCT TCTTTATCT
 229021 GCTGTGTGTA TTTTTTTAA TCACTGAGAA TATGCACAGT ATTGTATGTT TTATTATAAG
 229081 AGAGGACTGG CCAGAGTGGG AATGTTCTGA ATTCAAGATA ACTGAAGCAG TACAGGATAG
 229141 GAACTCATT TTTCAAATGA AGCTGGCATA TTTCCCAGA GCACCAAATT TCAATATATA
 229201 TTAAAAAAC TTGATATGAA TGATACAATA AAGGGTTAG AACTTTATT AAAATAAACT
 229261 TATGTCATGA AATACTTATT CTAATTATAG TCACTCTTCA TCTTATTTC TCTTATAACA
 229321 TGTTTAATGT TTTCTTTTAT TTACAAAACA ATTATTTTT TGATAAAAG TTTAGAAAT
 229381 CAAGTTAAA ATATTCAAAG GAATGCCTAA AGTTTCAAA ATTCTTTAC ATGTTGTACA
 229441 ATCAAAAGAG TCTGAAGACC ATTTAGCTAT CCAAATTGTT TATTTTAAG CAGTATCCCT
 229501 TCTAATATT ACTATTATA ATCCTTAAA ATTGCCCTTA GCACAGGAGA ATTGCTTGAA
 229561 CCCAGGAGAC GGAGGTTGCA GTGAGCCAC ACAGTGCCAC TGCCCTCCAG CCTCGGCGAC
 229621 AGAGTGGAGAC TCTGTCTCAA AAAAAAAA AAAAAAAA AAAAAAGGCC AAAACAAAT
 229681 AAACAAACAA AAAATCCGC CTTAACATTA TTTGTTCACTT AAAAACCTTC TTTAATACTA
 229741 CTAGTTCCC TTTCCTCTCA GCCCATTGTC ATATTGAT TTTTATCACT TGCTTTGTAG
 229801 GACATATGAG GTTTTGTTT TTTTTTTTT TTGGAGATGC AGTCTCCCTC TGTTGCCCGT
 229861 GCTGGAGTGC AATGGCGCAA TCTTGGCTCA CTGCAACCTC TGCCCTCTGG GTTCAAGCAA
 229921 TTCTCCTGCC TCAGCCTTCC AAGTAGCTGG GATTACAGGC ACCCACTACC ACGCCTGGCT
 229981 AATTTTGTA TTTCTGGTAG AGACGGGGTT TCACCATGTT GGCCAGGCTG GTCTCGAACT

Figure 9 (Page 71 of 74)

160/162

230041 CCTGACCTCA AGTGATCCAC AATCCTTGGC CTCCCAAAGT GCTATGATTA CAAGCATGAG
 230101 CCACCTGCCA AGCCAGAATA TATGTTCAT TTGAGTCCTT TAACAAAGTC ATAAGAATT
 230161 TAGGAATTCA GTTACTTTCT TGAGAAAATC TCTGAAAAGA TGCCAATAAT TTGTAGC^{CAA}
 230221 TTATATTGAT TTCTCTTTT CATATTGAGA ATTGTTTTT AAAAAGTTG TATGTGTGAA
 230281 GATTTTGCA CTGTAGTTAA AGAAACCACC TGTTGTTGG TTAAGCCATA AGTACATGTA
 230341 TTCAAATAAA TTGAGGTGGG GTTACTCTGA GAATCAAAGG AAAACCTGAA GAAACAGGCA
 230401 GCCTCAAAAG GTCTTAGCTG TAGCAACTTG CTCCATTGTT GAAATAAATA GGCTTGAACT
 230461 TGTATTTCC CTCTACTCAA CATTAAAGGT CTCAGAAGAT AATATAATTG GTGAAATTAA
 230521 AGTAAAGTGC TCACCTTTT GCTTTAACAA ACCCTAGAGA GCTGGTAGGC AGAGCCTCAA
 230581 CAGACCGTT TAGCTTCAA AGGGAGTCA GGACACCATG ATTCACGACC ACAATACATC
 230641 ACACATAATT GAGAAAAGAT AGTTCACCA AATAAAGTTG AAATGTCGAC AAGAAGGGGT
 230701 AAGAAATCTT GGAAATAGGT TTATATAAA TTTATTTTT CCTTTTTAT TGTTATGGAA
 230761 TAGGACCAGT TCTACTTAAG CCACCCATT GCCAAAATAA AGTGAGAATC GTTCTTTTG
 230821 GGGACTCCTC TTTGTAGCTC CAAGTGCAC TAACAATTCT TAGGACCTGA GCTATAAGCC
 230881 AGGTGATTTG AGTTAATATG ATCAATTATT TCATTTAAAT GGCTCTAATG TGCAGAGGGA
 230941 ACGGAGCCC TCAGCATTCC CTGCAGGGAA CTGCAGTGGC TTTTATCAAC TTGAACAGCT
 231001 AGCTTTCAAC TGTTTGAAA TCACCTTCAG GGTGGTCATG TAGTTGCTTT TTTGAAATCA
 231061 GAAGATGATT CTGCCTCTT TAATATGTGA CTCCTCAGAT TCAGAAAGTG CTCGCTAGTC
 231121 TTAAGAGTGA ATTACCCCTCA GTGGTCAGC GCTTATGAAC CCACATCTAA CCCTATCCCC
 231181 TGGGGGAACG ATCAGAGAAA TTGGTGCAT GGACATAAGA GGAAGGCACA GTGAAGCAGA
 231241 GAGCCCCGCA TGATGAAAAT CAGTGGACAG CATCATTATT TACAACCTTG TAATCACCA
 231301 GGAGCATGAA AATCCAGGCC AATCTGGCAC CATGAGCTCT AATTTTTGTT GGAGTTCTTG
 231361 GAACCGATTG TGATGAATGA CTGTTTAGCC ATTTTAGAGT GTGGCATAAG TGGCTGCTGG
 231421 CATAACAGAGG TTGGATGTAAC CGGGCCCTT GCCCTCTCTT ATGAACATAG ACAGGAACTA
 231481 AACGTGTCATAGGTTCC AAATGGTGGC CTGAATACTA TTTACAACTA AGGTACAATG
 231541 AAATTGAGTA AGTCTTTCC TCTTTGCAG ATACCATCAT TATTCAATA TTTCTTCAA
 231601 GTTAACATT TGTATTTGGT AATTTTTAAT AGAAATGTAA TAATTGCTTC TCAAGTTAG
 231661 TCTTTAGTCT TAAGGTTGAT GCTCTCCATG TCCTTCCAAA AAAAGGTATG TTGCTTTAT
 231721 TATATCCTCG CCTTCAGATG GGATTATTCC ATTTGTTCT TTGTTAATAT ATACTTGAG
 231781 CCACTTTTT TGTGGCTCTG GGTGAGATGC TATAGGTACA ATGACAAGTG ATACGTGTTG
 231841 TGTCCTGTC AAAAAAGTGG ATAGCTTAAG TGGTACTTT TACCTCCACT CCAAATATAT
 231901 GTATCACACA CCAGCCGTAT GCCAGGCACC ACTCTAGGTG CTAGGGATAC AGCAGTAAAC
 231961 AGACAAATGC AACCCCTGCC CATGTGAAAG AGAATAAGAC AATAAAATAAG TAAAGTGCAT
 232021 GTTATATGGA GGTGGCAAAT GCTAAAAAGA AAAATTAAGC AGGCAAGAGG ACTCATTGAA
 232081 AAGATGACAT TTGGGAAAAA GCCCATGTAT ATATGTTCTA TTGGTTTTAT TTCTCTGGAG
 232141 AGCCCTGACT AATACACAAT GACTTTGAGA AGTTACTGGC TTTTGATTTA TCACACTATT
 232201 CGGAGTGCCTG AGAGCCTCT TAGTGTGTAT TCAGTGTGTTT AAGAGAGCTT GTGGATGAAT
 232261 AATAAAATAGG AAAAAATTAA TCCAAACTTA AGCCTTGCTT TAGGTAAAAG GGCTCCTCTT
 232321 ACAAGGTAGA AGGTTATTAT TTGACATTAA AATCCAACGT AAGACTAATA AGACTAATTA
 232381 ATTAAAAGTT TTTAAATCAC AACTGCGTGC AAAATAAATG GAACTGCCAT GCTCGCCAAG
 232441 TGTGCATGAG TGGTGTGCAT GGGAGACAGC ACGAAGCTAA TCCCACTCAT CTTGCAGGTT
 232501 GCTCCATTTC TCTCCTAAAA TCAGTAAGAC AGAAGCTGGT CAGATTATCA AGAGCCCTAG
 232561 TAAACACAG CAGTAGCATT TGGAAGGGGT TGCTCTCATT AGGCAGTGCC TGACCACAAAC
 232621 AAGAGATGAA CAAGCCCTGT ATCTGAAGCC ATCATGCCTA GTTATGGTCC CCGACTGTT
 232681 ATGATGCCTG GAAGGGAGGC CCCCTGCACC CTAGAAAGCT GGGTGGGTT TACTGTCTGC
 232741 TTTACTGCTA AAAACCTCT TCTTTGGATC TGGACTTTAC CTCTATCTGA TTTTTTTTTC
 232801 TAATATATGAA TTTGGCACTG AGTCTGTCAC TGCTGCTAAC TCAGCAGTTC TAGGGTCATT
 232861 GCCCCATTGC CTCACAGAAA GAATTCATA GCTTCCAGCA TCCTCTCTCC TTCAATTATAC
 232921 TTTGATTTCA GCATTGCTAT TTTTCTCTT GGGTGTGCA GCTCTCTC TCCTTCCCAT
 232981 GTCTTGTTGG TTTTCTGCTA ACTCCTGCTT TTTTCTTTT TTTTTTTTG AGACGGAGTC
 233041 TCGTTCTGTC ACCCAGGCTG GAGTGCAGTG GCACAATCTC GGCTCACTGC AACCTCCGCC
 233101 TCCCAGGGTTCA AAGCTATTCT CCTGCCTCAG CCTCCCAAGT AGCTGGGACT ACAGGCGCTC
 233161 ACCACTATGC CCCACTAATT TTTGTATTAGT TAGTATTGCT GTCATCAATC CACATGTCCA
 233221 GAAGCACCTA GAAACTCTAA TTCTTTGTAG GTATCAAACC CTAGGACTCT TTCCTCTAAT

Figure 9 (Page 72 of 74)

233281 CACAATATAT AATCCCTGAT TCCCCAACAC GGTCTTTCA TATACATTTT CCACTGTACA
 233341 TACTTTCTGA CCTGGAAAGC TCTTACACAA ACACGCCCTC CCCTAGGAAG CCTTTATAAA
 233401 TGTTCCCAGG AAGAACATCGT CACCCAAACAG TGTCTTGTC ACATCTTAGG TTCTACACCT
 233461 TTATTTGTTA TATCTGAATG TAATCTCCA GAGGGTGTAA TCATCTTTT TTTTGAGATG
 233521 GAGTCTTGCT TTGCTGCCA GGCTGGAGTG CAGTGGCATG ATCTCGGCTC ACAGCAACCT
 233581 CCACCTCCTG GGTTCAAGTG ATTCTCCTGC CTCAGCCTCC TGAGTAGCTG GGATTACAGA
 233641 CGTGTGTACAC CACACCTGGC TAATTTTGT ATTTTTAGTA GAGACAGGGT TTCACCGTGT
 233701 TGGAAGGCTT TCCTCGAAC TCCCAAACTC AGGTGATCCA CCCACCTCAG CCTCCCAAAG
 233761 TGCTGGGATT ACAGGTGTGA GCCACCAGT CCAGCCCCAT CTTTTCTTT TAGTTTAGTT
 233821 CTTAACAAAT AGTCTGACAC AAAGTGGATA TAACAATATT TTGAATTATG AATAACTAAA
 233881 TGAATATTTCA CAGATTCCT GGTGCTCTCA AAGTTTATG TTACAAAAGA AAAACAAGTC
 233941 TAAAATACCT GCCTCAAGTT TTTATCTGTA CTATGATTC AAACCAAATA AAAAACAGGT
 234001 GGGGTAAAAA CTGAAACAGG AAATACATAT AACTGAAAAA TTTGGTATG TTAGTATGAT
 234061 AATACTAGGT CATTTTCCT GTTCCCTCAA CTTCATTTTCA TATAGCAATA AAAAGAAACA
 234121 AGTAAATGTATGTTAATTTA ATTTAAAAGA AGTAGTCTAC CATCTCTCT GTAAAAAGA
 234181 AAAAAGTATT TTAAAAAATT ATCTCTGGAA GGATACACAG GGAACATTGC TCTGGTTCT
 234241 TCCAAGAGAG AAATGAGGAA CTAGAGAGCA TGCCCAAGTG GGGTTTGCT TTTGTTTTG
 234301 TTTGTCTATC TGTTAGCTTT TTATTATTT CTTTGTAGG TTTGAATTTC AAACCACATA
 234361 AATCTGTTAC ATGCTCATAA TAATAAGTT AAAATAAAAC TTTGGCTGG GTGCAATGAC
 234421 TTACACCTGT AATCCAGCG CTTTGGGAAG CAGAGGTGGG AGGATACTTG AGGCCAGGAA
 234481 TTTGAGATCA GCCTGGCAA CATAGTGAGA CCCTGCCTCT GTAGAAATAA ACAAAATTA
 234541 GCTGGATATG GTGGTGCATG CTTGTACTCC TAGCTACTTG GGAGGTTGAG GCAGGAGGAT
 234601 CCTTGAGTC CAGGAGTTG AGGCTGCAGT GAGCTATAAT CACCCACTGC ACTATAGCAT
 234661 GGGCAATAAG GTGAGAACTT GTCTAAAAAA AAAAAGGGGG GGGGGAAACA AATAAATAAA
 234721 TATAAACAAA ACTTTGTTT CAAAATATGT AATATTTAGC ACTAAAGAAT TCTGAATTGT
 234781 AGAGCTAAAA AGTACTTAAA AGTTAATAAC TATTGTCTCC TTAAAAGAA TTGTTATCAA
 234841 AGTATAATT TTATCCAGAA AATCATCCAT ATCAGCAAGC TAAACTTTCT CAAAATGACA
 234901 TATCCATGTA ATTAGCTCCC AGGTAATTAG CAGGCAGCCT CTACTCAGGT TGAGTATTCC
 234961 TAATCTAAAA ATTGGAAATT CAAAATGCTC CAAAATCTGC AACTTTTGA ATGCTAACAT
 235021 GATTCTAAA GGAGTGTCA TGGAGTATT CAGATTTGG ATTTTTGGAT TTGAGATACT
 235081 CAGTATAATG CAAACATTCC AAATCTGAAA AAATCTGAAA TACTTCTGGT TCTAAGCATA
 235141 AGGGATACTC AACGTGTGTT AGCTAATTAG ACCCTTCATG GTCTCTCTA GACCTCAGCT
 235201 TCTTCAAGGT AACCTCTATC CTCACCTCTA ATAGCATGAA CTTTTCTGTT TTAGAATAAT
 235261 TTGGATTTTC AGGAAAGTTG CAAAGATAGT ACAAAAGACAG TACAGGAGAG TTCCCATATA
 235321 TCTTCACCT AGCTTCCCC CATTGTTAGG ATTTTACATT ATTATGATAC ATTGTCAAA
 235381 TATAAGCAAC TCACATTGAT ACATGAAACT CTATTAACCA AACCCTAGAC TTTATGTGGA
 235441 TTTCACCACT GTTCCACTA ATGTTTTCTT TCTGTTCCAA GGTCCAATCT GGAATACAC
 235501 ACTGCATTTT CTTGTCTAT CTCCTAGTC TTTTTTGTG TGTCACAATG TCTCAGTCTT
 235561 TTCTTGCTTT TCATGACCTT AACAGTCCTG AAGATCATT GCTTTTTTT CATAATTACA
 235621 CGGGAGTTAT AGATTTTTG AAATAATACC ACAAGGGCAA AGGGCCCTTC TTGTCACATC
 235681 ATTTTAGGGA GAACATGATA TCCACATGAC ATCACTGATA TTAACCTTCA TCATGTGGTT
 235741 TAGGTAATGT TTCAGGTTTCTACTGCAA AGTGATTTTT TTCCCTTAAT TTAGCCCACC
 235801 TGAACCTATC AATTTGTTT TCTTCCATGA CTAATACATT TGTTATTATA GCTAAAACCT
 235861 CATTGGGGCC AAATCTTAGA TCATGTAAT TTTCTTCTAT ATTTTATTCT AAAAGCTTGT
 235921 AATGTTGAT ACATTCTAAA AGATGTAATG TTTGATACAT TACATCTAGT CTTTGATT
 235981 ATTTTAGTT ACTTTGTTAAGGTGTGAG AGATGTCCTC AGTTTCACTT TATTAACACA
 236041 TTGTGGTGTGTT CCAGTACTAT TTGTTGCTAA GACTATCTT TTTCCATTGA TTACCTTGC
 236101 CTTAGTTGGC AATATTTTG TTGGTTTATT TCTAGACTGT TTATCTCACTT CCACTGATT
 236161 GTGTCTATCT TTTTGACAAA ACTGTTGATT ACAGTAAGCT TTGAAATAGT TCATTTTTG
 236221 TGTCAACTTG ACTGAGTCAG GGGATAACCA GCTATCTGGT TAAACATTAT TTCTGGCTGT
 236281 GTTGTGAGC GTGTTCTGG ATGAGATTAG CTTTGAATA GGTGATCCTA GTAAAGTAA
 236341 CTGTCTTCC CAGTGTGGAT GGCATTATGC CACCTGATAT TCAGGGTCTG AATAGAAGAA
 236401 AAGGCAGAGG AAGGGGAAT TTGGGCCTTT TTTCTGCCT CACTGCTTGA GCTGGGACAT
 236461 CTCATCTGGT CTCCTGCTCT TGAACGGAA TTTACATCAT CAGTTCCCTCT GGTTCTCAGG

Figure 9 (Page 73 of 74)

162/162

236521 CCTTCAGATT CAGACTGAAT CATAACCACCA GCTTCCCTGG GTCTCCAGCT TGCAGATTAC
236581 AGATCATGGG ACTCCTCATC TTCCATAAAT GCATGAGCCA ATTCAAGTCTA TGTCCTTGAA
236641 AACTGCCCA CTGCAGATTAA AGGCTTTTT CCACTAGGTG AAATAAAGAA GCTTGTAGA
236701 CAGATTTCCC TTCATCCAGT GCCCTCTCCT CTTTAAGTTA CAACACATTG GCTACACCTA
236761 AGTGCAGGGG TGGGGATGAG GGTATAGTCC TCTTGTGTTGC TGAGAAGAGA ACTGTATTGG
236821 GAAAGCTCTA GAAGTGTGTTG ATACATACAT AAACAAGGCA TGGTTTTGC ACTTAATTTC
236881 ACATTACATT TTTCCCAGAA AAAAAGGAAT GTATAGGCAT CACGTAAC TG TACTAGCTGG
236941 AGTCATTCTT CCTGATTATC AAAGGTAAAC AGTTATTAAT CCTATACCAA GATGTCAAGG
237001 AGAAAGTACTT TTGGAACACA AGGAATTCTC TGGGAGTCCT TACTACTCTC AAGCCCAGTG
237061 AAAAAGTTAA TGAAAAACTA TAGTACCTTC CTATAAGCTG GATGACTAAT TACCAGGCTC
237121 ATTTAGGAAT TTGCCTTACC AAGTAAAACA TAAGGGCAGC TGAGGTGCTG ACTGAAGACA
237181 AATGGAGCAT AGAATAAGAG TAGTAAAGAA TGCCAAAAAT GCTGTCATGT ATCCATTGAC
237241 AAAAGGAGCT ATAAAGCCTT TAGGTATTTT CACACTTGCT CTGTTACGTA AATGTATGTG
237301 TGTGTGTGTG TGTGTGTGTG TGTGTG

Figure 9 (Page 74 of 74)

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US97/17658

A. CLASSIFICATION OF SUBJECT MATTER

IPC(6) : C07H 21/04; C12Q 1/68; C12N 15/63, 15/85; C12P 21/02
US CL : 536/23.5; 435/6, 70.1, 325, 320.1

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 536/23.5; 435/6, 70.1, 325, 320.1

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

APS, DIALOG'S BIOTECH cluster.

hemochromatosis, BTF1, BTF2, BTF3, BTF4, NTP-3, NTP-4, RoRet, butyrophilin, type 1 sodium transport

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A, P	RUDDY, D.A. et al. A 1.1-Mb transcript map of the hereditary hemochromatosis locus. Genome Research. May 1997, Vol. 7, No. 5, pages 441-456, see entire document.	1-20, 22-77
X	FISCHER, L. et al. Cloning of the 62-kilodalton component of basic transcription factor BTF2. Science. 04 September 1992, Vol. 257, pages 1392-1395, see entire document.	28-33, 71
X	MARGOTTIN, F. et al. Participation of the TATA factor in transcription of the yeast U6 gene by RNA polymerase C. Science. 25 January 1991, Vol. 251, pages 424-426, see entire document.	22-27, 70

Further documents are listed in the continuation of Box C.

See patent family annex.

• Special categories of cited documents:	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
A document defining the general state of the art which is not considered to be of particular relevance	"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
E earlier document published on or after the international filing date	"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
I document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"&"	document member of the same patent family
O document referring to an oral disclosure, use, exhibition or other means		
P document published prior to the international filing date but later than the priority date claimed		

Date of the actual completion of the international search

20 JANUARY 1998

Date of mailing of the international search report

12 FEB 1998

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Faximile No. (703) 308-2220

Authorized officer
F. PIERRE VANDERVEGT

Telephone No. (703) 308-0196

INTERNATIONAL SEARCH REPORT

International application No. PCT/US97/17658

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	ZHENG, X.M. et al. Sequencing and expression of complementary DNA for the general transcription factor BTF3. Nature. 05 April 1990, Vol. 344, pages 556-559, see entire document.	34-39, 72
X	PANTEGHINI, M. Electrophoretic fractionation of 5'-nucleotidase. Clinical Chemistry. February 1994, Vol. 40, No. 2, pages 190-196, see entire document.	52-57, 75
X ----	BURT, M. J. et al. A 4.5-megabase YAC Contig and physical map over the hemochromatosis gene region. Genomics. 15 April 1996, Vol. 33, No. 2, pages 153-158, see entire document.	1-6 ----
A	VERNET, C. et al. Evolutionary study of multigenic families mapping close to the human MHC Class I region. J. Mol. Evol. November 1993, Vol. 37, No. 6, pages 600-612, see abstract in particular.	7-20, 22-77
A		1-20, 22-77

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US97/17658

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.:
because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.:
because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. Claims Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

Please See Extra Sheet.

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

The additional search fees were accompanied by the applicant's protest.

No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORTInternational application No.
PCT/US97/17658**BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING**

This ISA found multiple inventions as follows:

This application contains the following inventions or groups of inventions which are not so linked as to form a single inventive concept under PCT Rule 13.1. In order for all inventions to be searched, the appropriate additional search fees must be paid.

Group I, claim(s)1-20, drawn to polynucleotide sequences containing at least one polymorphic site, polypeptides encoded thereby, antibodies to said polypeptides and a method to determine the presence of the HFE gene mutation.

Group II, claim 21, drawn to the lymphoblastoid line atcc crl-12371.

Group III, claim(s) 22-27 and 70, drawn to BTP1 nucleic acids, gene products, vectors and antibodies.

Group IV, claim(s)28-33 and 71, drawn to BTP2 nucleic acids, gene products, vectors and antibodies.

Group V, claim(s) 34-39 and 72, drawn to BTP3 nucleic acids, gene products, vectors and antibodies.

Group VI, claim(s) 40-45 and 73, drawn to BTP4 nucleic acids, gene products, vectors and antibodies.

Group VII, claim(s) 46-51 and 74, drawn to BTP5 nucleic acids, gene products, vectors and antibodies.

Group VIII, claim(s) 52-57 and 75, drawn to NPT3 nucleic acids, gene products, vectors and antibodies.

Group IX, claim(s) 58-63 and 76, drawn to NPT4 nucleic acids, gene products, vectors and antibodies.

Group X, claim(s) 64-69 and 77, drawn to RoRet nucleic acids, gene products, vectors and antibodies.

The inventions listed as Groups I-X do not relate to a single inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons: Groups I and III-X are drawn to physically different genes and their gene products and each therefore constitutes a separate invention. The lymphoblastoid cell line of Group II is not dependent upon the vectors of any of the Groups I and III-X and therefore constitutes a separate invention. Accordingly, the claims are not so linked by a special technical feature within the meaning of PCT Rule 13.2 so as to form a single inventive concept.