Lecture 4: Parametric and non-parametric regression

- Kernel regression
- RKHS
- Bayesian view
- Gaussian Processes (if we have time)

Recall: Linear regression

- The optimal solution (minimizing sum-squared-error) can be computed in polynomial time in the size of the data set.
- The solution is $\mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$, where \mathbf{X} is the (normalized) data matrix, and \mathbf{y} is the column vector of (centered) target outputs.
- A very rare case in which an analytical, exact solution is possible

Recall: Linear function approximation in general

• Given a set of examples $(\mathbf{x}_i, y_i)_{i=1...m}$, we fit a hypothesis

$$h_{\mathbf{w}}(\mathbf{x}) = \sum_{k=1}^{d} w_k \phi_k(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x})$$

where ϕ_k are called *basis functions*

ullet We define the $\mathbb{R}^{m imes d}$ matrix with one row per instance: $oldsymbol{\Phi}_{m,:} = \phi(\mathbf{x}_m)^{ op}$

$$\mathbf{\Phi} = \begin{bmatrix} \phi_1(\mathbf{x}_1) & \phi_2(\mathbf{x}_1) & \dots & \phi_d(\mathbf{x}_1) \\ \phi_1(\mathbf{x}_2) & \phi_2(\mathbf{x}_2) & \dots & \phi_d(\mathbf{x}_2) \\ \vdots & & \vdots & \vdots \\ \phi_1(\mathbf{x}_m) & \phi_2(\mathbf{x}_m) & \dots & \phi_d(\mathbf{x}_m) \end{bmatrix}$$

• The hypothesis can alternatively be written as:

$$h_{\mathbf{w}}(\mathbf{x}) = \mathbf{\Phi}\mathbf{w}$$

Basis functions

- Basis functions are *fixed*
- ullet Assumption: $f(\mathbf{x})$ can be modelled by the set of weighted basis function
- Basis functions implement a form of prior knowledge

Example basis functions: Polynomials

"Global" functions: a small change in x may cause large change in the output of many basis functions.

Example basis functions: Gaussian

$$\phi_k(x) = \exp\left(-\frac{(x-\mu_k)^2}{2\sigma^2}\right)$$

- μ_k controls the position along the x-axis
- σ controls the width (activation radius)
- Usually thought as "local" functions: if σ is relatively small, a small change in x only causes a change in the output of a few basis functions (the ones with means close to x)

Recall: Solving linear models

- By linear models, we mean that the hypothesis function $h_{\mathbf{w}}(\mathbf{x})$ is a *linear* function of the parameters \mathbf{w}
- The best w is considered the one which minimizes the sum-squared error over the training data:

$$\sum_{i=1}^{m} (y_i - h_{\mathbf{w}}(\mathbf{x}_i))^2$$

• We can find the best w in closed form:

$$\mathbf{w} = (\mathbf{\Phi}^T \mathbf{\Phi})^{-1} \mathbf{\Phi}^T \mathbf{y}$$

- This solution may overfit
- ullet $oldsymbol{\Phi}^Toldsymbol{\Phi}$ may not be invertible

Regularized solution (Ridge)

- Regularization parameter $\lambda \geq 0$
- Minimize

$$J_{\lambda}(\mathbf{w}) = \frac{1}{2}(\mathbf{\Phi}\mathbf{w} - \mathbf{y})^{\top}(\mathbf{\Phi}\mathbf{w} - \mathbf{y}) + \frac{\lambda}{2}\mathbf{w}^{\top}\mathbf{w}$$

• Optimal solution (obtained by solving $\nabla J_{\lambda}(\mathbf{w}) = 0$)

$$\mathbf{w} = (\mathbf{\Phi}^{\top} \mathbf{\Phi} + \lambda \mathbf{I})^{-1} \mathbf{\Phi}^{\top} \mathbf{y}$$

ullet $oldsymbol{\Phi}^{ op} oldsymbol{\Phi} + \lambda \mathbf{I}$ is now invertible

Parametric regression

Compute

$$\mathbf{w} = (\mathbf{\Phi}^{\top} \mathbf{\Phi} + \lambda \mathbf{I})^{-1} \mathbf{\Phi}^{\top} \mathbf{y}$$

- Make prediction at new point \mathbf{x} : $\hat{f}(\mathbf{x}) = \phi(\mathbf{x})^{\top}\mathbf{w}$
- Requires to explicit the matrix Φ of size $m \times d$
- Requires to compute a matrix $\mathbf{\Phi}^{\top}\mathbf{\Phi}$ of size $d \times d$
- \Rightarrow Parametric regression scales with the number of parameters d
- \Rightarrow What if $d \to \infty$?

Non-parametric regression

• Using the identity $(\mathbf{M}^{\top}\mathbf{M} + \alpha \mathbf{I})^{-1}\mathbf{M}^{\top} = \mathbf{M}^{\top}(\mathbf{M}\mathbf{M}^{\top} + \alpha \mathbf{I})^{-1}$, the solution can be rewritten as

$$\mathbf{w} = (\mathbf{\Phi}^{\top} \mathbf{\Phi} + \lambda \mathbf{I}_d)^{-1} \mathbf{\Phi}^{\top} \mathbf{y} = \mathbf{\Phi}^{\top} (\mathbf{\Phi} \mathbf{\Phi}^{\top} + \lambda \mathbf{I}_m)^{-1} \mathbf{y}$$

- \Rightarrow The solution w is a linear combination of input points!
- \Rightarrow Exercise: Prove that $(\mathbf{M}^{\top}\mathbf{M} + \alpha \mathbf{I})^{-1}\mathbf{M}^{\top} = \mathbf{M}^{\top}(\mathbf{M}\mathbf{M}^{\top} + \alpha \mathbf{I})^{-1}$

Non-parametric regression (cont'd)

• The predictions for the input data are given by

$$\hat{\mathbf{y}} = \mathbf{\Phi} \mathbf{w} = \mathbf{\Phi} \mathbf{\Phi}^{\top} (\mathbf{\Phi} \mathbf{\Phi}^{\top} + \lambda \mathbf{I}_m)^{-1} \mathbf{y}$$

ullet The prediction for a new input point ${f x}$ is given by

$$\hat{f}(\mathbf{x}) = \phi(\mathbf{x})^{\top} \mathbf{\Phi}^{\top} (\mathbf{\Phi} \mathbf{\Phi}^{\top} + \lambda \mathbf{I}_m)^{-1} \mathbf{y}$$

- \Rightarrow The matrix $\mathbf{\Phi}\mathbf{\Phi}^{\top}$ has size $m \times m!$
- \Rightarrow The vector $\phi(\mathbf{x})^{\top} \mathbf{\Phi}^{\top}$ has size $1 \times m!$
- \Rightarrow Non-parametric regression scales with the number of data m!

Kernel trick

- Avoid the explicit mapping to the feature space
- A *kernel* is any function $k : \mathbb{R}^n \times \mathbb{R}^n \mapsto \mathbb{R}$ which corresponds to a dot product for some feature mapping ϕ :

$$k(\mathbf{x}, \mathbf{x}') = \phi(\mathbf{x})^{\top} \phi(\mathbf{x}')$$
 for some ϕ .

- Conversely, by choosing a feature map $\phi : \mathbb{R}^n \to \mathbb{R}^d$, we implicitly choose a kernel function (d may even be infinite!)
- Recall that $\phi(\mathbf{x})^{\top}\phi(\mathbf{x}') = \cos\angle(\mathbf{x},\mathbf{x}')$ where \angle denotes the angle between the vectors, so a kernel function can be thought of as a notion of *similarity*.

Kernel regression

• Let $\mathbf{K} = \mathbf{\Phi} \mathbf{\Phi}^{\top} \in \mathbb{R}^{m \times m}$ be the so-called Gram matrix:

$$\mathbf{K} = \begin{bmatrix} k(\mathbf{x}_1, \mathbf{x}_1) & k(\mathbf{x}_1, \mathbf{x}_2) & \dots & k(\mathbf{x}_1, \mathbf{x}_m) \\ k(\mathbf{x}_2, \mathbf{x}_1) & k(\mathbf{x}_2, \mathbf{x}_2) & \dots & k(\mathbf{x}_2, \mathbf{x}_m) \\ \vdots & \vdots & & \vdots \\ k(\mathbf{x}_m, \mathbf{x}_1) & k(\mathbf{x}_m, \mathbf{x}_2) & \dots & k(\mathbf{x}_m, \mathbf{x}_m) \end{bmatrix}$$

- ullet Solution of regularized least squares: $\mathbf{w} = \mathbf{\Phi}^{ op}(\mathbf{K} + \lambda \mathbf{I}_m)^{-1}\mathbf{y}$
- The predictions for the input data are given by

$$\hat{\mathbf{y}} = \mathbf{\Phi} \mathbf{w} = \mathbf{K} (\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{y}$$

Kernel regression (cont'd)

 \bullet The prediction for a new input point x is given by

$$\hat{f}(\mathbf{x}) = \phi(\mathbf{x})^{\top} \mathbf{\Phi}^{\top} (\mathbf{K} + \lambda \mathbf{I}_m)^{-1} \mathbf{y} = \mathbf{k}(\mathbf{x}) (\mathbf{K} + \lambda \mathbf{I}_m)^{-1} \mathbf{y}$$

where $\mathbf{k}(\mathbf{x}) \in \mathbb{R}^m$ is defined by

$$\mathbf{k}(\mathbf{x}) = egin{bmatrix} k(\mathbf{x}, \mathbf{x}_1) \\ k(\mathbf{x}, \mathbf{x}_2) \\ \vdots \\ k(\mathbf{x}, \mathbf{x}_m) \end{bmatrix}$$

- \Rightarrow Never need to compute the feature map ϕ explicitly!
- \Rightarrow Especially useful when ϕ as dimension $d \to \infty$

Example: Quadratic kernel

- Let $k(\mathbf{x}, \mathbf{x}') = (\mathbf{x}^{\top} \mathbf{x}')^2$.
- Is this a kernel?

$$k(\mathbf{x}, \mathbf{x}') = \left(\sum_{i=1}^{n} x_i x_i'\right) \left(\sum_{j=1}^{n} x_j x_j'\right) = \sum_{i,j \in \{1...n\}} x_i x_i' x_j x_j'$$
$$= \sum_{i,j \in \{1...n\}} (x_i x_j) (x_i' x_j')$$

• Hence, it is a kernel, with feature mapping:

$$\phi(\mathbf{x}) = \langle x_1^2, x_1 x_2, \dots, x_1 x_n, x_2 x_1, x_2^2, \dots, x_n^2 \rangle$$

Feature vector includes all squares of elements and all cross terms.

• Note that computing ϕ takes $O(n^2)$ but computing k takes only O(n)!

Establishing "kernelhood"

- Suppose someone hands you a function k. How do you know that it is a kernel?
- More precisely, given a function $k : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$, under what conditions can $k(\mathbf{x}, \mathbf{x}')$ be written as a dot product $\phi(\mathbf{x})^\top \phi(\mathbf{x}')$ for some feature mapping ϕ ?
- \bullet We want a general recipe, which does not require explicitly defining ϕ every time

Kernel matrix

- ullet Suppose we have an arbitrary set of input vectors ${f x}_1,{f x}_2,\dots{f x}_m$
- Recall: the *kernel matrix* (or *Gram matrix*) **K** corresponding to kernel function k is an $m \times m$ matrix such that $\mathbf{K}_{ij} = k(\mathbf{x}_i, \mathbf{x}_j)$ (notation is overloaded on purpose).
- What properties does the kernel matrix K have?
- Claims:
 - 1. **K** is symmetric
 - 2. **K** is positive semidefinite
- ullet Note that these claims are consistent with the intuition that k is a "similarity" measure (and will be true regardless of the data)

Proving the first claim

If k is a valid kernel, then the kernel matrix is symmetric

$$\mathbf{K}_{ij} = \phi(\mathbf{x}_i)^{\top} \phi(\mathbf{x}_j) = \phi(\mathbf{x}_j)^{\top} \phi(\mathbf{x}_i) = \mathbf{K}_{ji}$$

Proving the second claim

If k is a valid kernel, then the kernel matrix is positive semidefinite

Proof: Consider an arbitrary vector **z**

$$\mathbf{z}^{\top} \mathbf{K} \mathbf{z} = \sum_{i} \sum_{j} z_{i} K_{ij} z_{j} = \sum_{i} \sum_{j} z_{i} \phi(\mathbf{x}_{i})^{\top} \phi(\mathbf{x}_{j}) z_{j}$$

$$= \sum_{i} \sum_{j} z_{i} \left(\sum_{k} \phi_{k}(\mathbf{x}_{i}) \phi_{k}(\mathbf{x}_{j}) \right) z_{j}$$

$$= \sum_{k} \sum_{i} \sum_{j} z_{i} \phi_{k}(\mathbf{x}_{i}) \phi_{k}(\mathbf{x}_{j}) z_{j}$$

$$= \sum_{k} \left(\sum_{i} z_{i} \phi_{k}(\mathbf{x}_{i}) \right)^{2} \geq 0$$

Mercer's theorem

- Mercer's theorem states that the reverse is also true: Given a function $k: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$, k is a kernel if and only if, for any data set, the corresponding kernel matrix \mathbf{K} is symmetric and positive semidefinite
- The reverse direction of the proof is much harder (see e.g. Vapnik's book for details)
- This result gives us a way to check if a given function is a kernel, by checking these two properties of its kernel matrix.
- Kernels can also be obtained by combining other kernels, or by learning from data

RKHS

ullet Let $f:\mathcal{X}\mapsto\mathcal{Y}$ denote the function generating the outputs, s.t. $y=f(\mathbf{x})$

- We say that f belongs to $\mathcal K$ if $\|f\|_{\mathcal K}^2 = \|\mathbf w\|^2 < \infty$
- ullet K is known as the reproducing kernel Hilbert space (RKHS) associated with kernel k

More on RKHS

• The feature space is the RKHS

$$\mathcal{K} = \left\{ \sum_{j} \alpha_{j} \phi(\mathbf{x}_{j}) : \mathbf{x}_{j} \in \mathcal{X}, \ \alpha_{j} \in \mathbb{R} \right\}$$

with inner product $\langle \phi(\mathbf{x}), \phi(\mathbf{x}') \rangle_{\mathcal{K}} = k(\mathbf{x}, \mathbf{x}')$

• The term reproducing comes from the reproducing property of the kernel function:

$$\forall f \in \mathcal{K}, \ \mathbf{x} \in \mathcal{X} : \ f(\mathbf{x}) = \langle f(\cdot), \phi(\mathbf{x}) \rangle_{\mathcal{K}}$$

- The solution of the regularized least square in the feature space associated to a kernel function k has the form $h_{\phi}(\mathbf{x}) = \sum_{i=1}^{m} \alpha_i k(\mathbf{x}_i, \mathbf{x})$
 - \Rightarrow Show it as an exercise

This is a particular case of the representer theorem...

Representer Theorem

Theorem 1. Let $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ be a positive definite kernel and let \mathcal{K} be the corresponding RKHS.

Then for any training sample $S = \{(x_i, y_i)\}_{i=1}^m \subset \mathcal{X} \times \mathbb{R}$, any loss function $\ell : (\mathcal{X} \times \mathbb{R} \times \mathbb{R})^m \to \mathbb{R}$ and any real-valued non-decreasing function g, the solution of the optimization problem

$$\underset{f \in \mathcal{K}}{\operatorname{arg \, min}} \, \ell \left((\mathbf{x}_1, y_1, f(\mathbf{x}_1)), \cdots, (\mathbf{x}_m, y_m, f(\mathbf{x}_m)) \right) + g(\|f\|_{\mathcal{K}})$$

admits a representation of the form

$$f^*(\cdot) = \sum_{i=1}^m \alpha_i \phi(\mathbf{x}_i).$$

[Schölkopf, Herbrich and Smola. A generalized representer Theorem. COLT 2001.]

Summary

- Use feature mapping ϕ to send data from \mathcal{X} to \mathcal{K} , s.t. $f(\mathbf{x}) = \phi(\mathbf{x})^{\top}\mathbf{w}$
- ullet We can solve the system in closed-form: $\mathbf{w} = (\mathbf{\Phi}^{\top}\mathbf{\Phi})^{-1}\mathbf{\Phi}^{\top}\mathbf{y}$
- ullet Ridge regression make things invertible: $\mathbf{w} = (\mathbf{\Phi}^{\top}\mathbf{\Phi} + \lambda \mathbf{I})^{-1}\mathbf{\Phi}^{\top}\mathbf{y}$
- Parametric regression scales with feature mappings ϕ dimension d
- For large d: Non-parametric regression + kernel trick!
- No need to explicit ϕ anymore
- Different kernels to encode different prior knowledge on the function

Example kernel: Gaussian

$$k(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{\|\mathbf{x} - \mathbf{x}'\|^2}{2\rho^2}\right)$$

- Also known as squared exponential kernel
- ullet The feature space of this kernel has infinite dimension d
- We can approximate $\phi(\cdot)$ with Taylor expansion, e.g. for $x \in \mathbb{R}$

$$\phi_i(x) = \exp\left(-\frac{x^2}{2\rho^2}\right) \frac{x^{i-1}}{\rho^{i-1}\sqrt{i-1}!}$$

ullet ρ is the lengthscale or bandwidth: radius of information sharing

Gaussian kernel bandwidth

- Large bandwidth: all points contribute equally
- Small bandwidth: only local points contribute

Bandwidth vs Regularization

- Bandwidth controls smoothness
- Example: fixed $\lambda = 0.1$ vs fixed $\rho = 0.1$

Kernel hyperparameters

- Kernel hyperparameters can cause overfitting
- Sometimes prior knowledge is enough to pick *appropriate* values
- One could use cross-validation to find *good* values
- One can pick the *most likely* values

Bayesian view of regression

- Consider noisy observations $y = f(\mathbf{x}) + \epsilon$
- With Gaussian noise $\epsilon \sim \mathcal{N}(0, \sigma^2)$

$$P_{\phi}(\mathbf{y}|\mathbf{X}, \mathbf{w}) = \prod_{i=1}^{m} P_{\phi}(y_i|\mathbf{x}_i, \mathbf{w}) = \prod_{i=1}^{m} \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y_i - \phi(\mathbf{x}_i)^{\top}\mathbf{w})^2}{2\sigma^2}\right)$$
$$= \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{\|\mathbf{y} - \mathbf{\Phi}\mathbf{w}\|^2}{2\sigma^2}\right) = \mathcal{N}\left(\mathbf{\Phi}\mathbf{w}, \sigma^2 \mathbf{I}_m\right)$$

• Recall Bayes' rule: posterior = $\frac{\text{likelihood} \times \text{prior}}{\text{marginal likelihood}}$

$$P_{\phi}(\mathbf{w}|\mathbf{y}, \mathbf{X}) = \frac{P_{\phi}(\mathbf{y}|\mathbf{X}, \mathbf{w})P(\mathbf{w})}{P_{\phi}(\mathbf{y}|\mathbf{X})}$$

 \Rightarrow Marginal likelihood is independent of weights ${f w}$

Posterior distribution on parameters

• With Gaussian prior on parameters $\mathbf{w} \sim \mathcal{N}(0, \Sigma_{\mathbf{w}})$

$$P_{\phi}(\mathbf{w}|\mathbf{y}, \mathbf{X}) \propto \exp\left(-\frac{\|\mathbf{y} - \mathbf{\Phi}\mathbf{w}\|^{2}}{2\sigma^{2}}\right) \exp\left(-\frac{\mathbf{w}^{\top} \Sigma_{\mathbf{w}}^{-1} \mathbf{w}}{2}\right)$$

$$= \exp\left(-\frac{\mathbf{y}^{\top} \mathbf{y} - \mathbf{y}^{\top} \mathbf{\Phi} \mathbf{w} - \mathbf{w}^{\top} \mathbf{\Phi} \mathbf{y} + \mathbf{w}^{\top} \mathbf{\Phi}^{\top} \mathbf{\Phi} \mathbf{w} + \sigma^{2} \mathbf{w}^{\top} \Sigma_{\mathbf{w}}^{-1} \mathbf{w}}{2\sigma^{2}}\right)$$

$$= \exp\left(-\frac{\mathbf{y}^{\top} \mathbf{y} - \mathbf{y}^{\top} \mathbf{\Phi} \mathbf{w} - \mathbf{w}^{\top} \mathbf{\Phi} \mathbf{y} + \mathbf{w}^{\top} (\mathbf{\Phi}^{\top} \mathbf{\Phi} + \sigma^{2} \Sigma_{\mathbf{w}}^{-1}) \mathbf{w}}{2\sigma^{2}}\right)$$

$$\propto \exp\left((\mathbf{w} - \mathbf{b})^{\top} \mathbf{A}^{-1} (\mathbf{w} - \mathbf{b})\right)$$

where $\mathbf{A}^{-1} = \sigma^{-2}(\mathbf{\Phi}^{\top}\mathbf{\Phi} + \sigma^{2}\Sigma_{\mathbf{w}}^{-1})$ and $\mathbf{b} = (\mathbf{\Phi}^{\top}\mathbf{\Phi} + \sigma^{2}\Sigma_{\mathbf{w}}^{-1})^{-1}\mathbf{\Phi}^{\top}\mathbf{y}$ \Rightarrow The posterior distribution is Gaussian!

Predictive distribution

The pointwise posterior predictive distribution is a normal distribution

$$\tilde{f}(\mathbf{x})|\mathbf{x}_1,\ldots,\mathbf{x}_m,y_1,\ldots,y_m \sim \mathcal{N}\left(\hat{f}(\mathbf{x}),s^2(\mathbf{x})\right)$$

of expectation

$$\hat{f}(\mathbf{x}) = \phi(\mathbf{x})^{\top} (\mathbf{\Phi}^{\top} \mathbf{\Phi} + \sigma^{2} \Sigma_{\mathbf{w}}^{-1})^{-1} \mathbf{\Phi}^{\top} \mathbf{y}$$
$$= \phi(\mathbf{x})^{\top} \Sigma_{\mathbf{w}} \mathbf{\Phi}^{\top} (\mathbf{\Phi} \Sigma_{\mathbf{w}} \mathbf{\Phi}^{\top} + \sigma^{2} \mathbf{I}_{m})^{-1} \mathbf{y}$$

and variance

$$\begin{split} s^2(\mathbf{x}) &= \sigma^2 \phi(\mathbf{x})^\top (\mathbf{\Phi}^\top \mathbf{\Phi} + \sigma^2 \Sigma_{\mathbf{w}}^{-1})^{-1} \phi(\mathbf{x}) \\ &= \phi(\mathbf{x})^\top \Sigma_{\mathbf{w}} \phi(\mathbf{x}) - \phi(\mathbf{x})^\top \Sigma_{\mathbf{w}} \mathbf{\Phi}^\top (\mathbf{\Phi}^\top \Sigma_{\mathbf{w}} \mathbf{\Phi} + \sigma^2 \mathbf{I}_m)^{-1} \mathbf{\Phi} \Sigma_{\mathbf{w}} \phi(\mathbf{x}) \\ &\to \text{using Sherman-Morrison} \end{split}$$

Reinterpreting regularization

Recall kernel regression predictions:

$$\hat{f}(\mathbf{x}) = \mathbf{k}(\mathbf{x})^{\top} (\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{y}$$

• Using prior $\Sigma_{\mathbf{w}} = \frac{\sigma^2}{\lambda} \mathbf{I}_d$, the predictive mean rewrites as:

$$\hat{f}(\mathbf{x}) = \phi(\mathbf{x})^{\top} \Sigma_{\mathbf{w}} \mathbf{\Phi}^{\top} (\mathbf{\Phi} \Sigma_{\mathbf{w}} \mathbf{\Phi}^{\top} + \sigma^{2} \mathbf{I}_{m})^{-1} \mathbf{y}$$

$$= \phi(\mathbf{x})^{\top} \frac{\sigma^{2}}{\lambda} \mathbf{\Phi}^{\top} \left(\mathbf{\Phi} \frac{\sigma^{2}}{\lambda} \mathbf{\Phi}^{\top} + \sigma^{2} \mathbf{I}_{m} \right)^{-1} \mathbf{y}$$

$$= \mathbf{k}(\mathbf{x})^{\top} (\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{y}$$

 $\Rightarrow \lambda$ encodes some prior on weights ${f w}$

Reinterpreting regularization (cont'd)

• Still using $\Sigma_{\mathbf{w}} = \frac{\sigma^2}{\lambda} \mathbf{I}_d$, the predictive variance rewrites as:

$$s^{2}(\mathbf{x}) = \phi(\mathbf{x})^{\top} \Sigma_{\mathbf{w}} \phi(\mathbf{x}) - \phi(\mathbf{x})^{\top} \Sigma_{\mathbf{w}} \mathbf{\Phi}^{\top} (\mathbf{\Phi}^{\top} \Sigma_{\mathbf{w}} \mathbf{\Phi} + \sigma^{2} \mathbf{I}_{m})^{-1} \mathbf{\Phi} \Sigma_{\mathbf{w}} \phi(\mathbf{x})$$

$$= \phi(\mathbf{x})^{\top} \frac{\sigma^{2}}{\lambda} \phi(\mathbf{x}) - \phi(\mathbf{x})^{\top} \frac{\sigma^{2}}{\lambda} \mathbf{\Phi}^{\top} \left(\mathbf{\Phi}^{\top} \frac{\sigma^{2}}{\lambda} \mathbf{\Phi} + \sigma^{2} \mathbf{I}_{m} \right)^{-1} \mathbf{\Phi} \frac{\sigma^{2}}{\lambda} \phi(\mathbf{x})$$

$$= \frac{\sigma^{2}}{\lambda} k_{\lambda}(\mathbf{x}, \mathbf{x}) \quad \text{with}$$

$$k_{\lambda}(\mathbf{x}, \mathbf{x}') = k(\mathbf{x}, \mathbf{x}') - \mathbf{k}(\mathbf{x})^{\top} (\mathbf{K} + \lambda \mathbf{I}_{m})^{-1} \mathbf{k}(\mathbf{x}')$$

Joint distribution

- ullet Suppose you *query* your model at locations ${f X}_*$
- Extend the prior to include query points:

$$egin{aligned} \begin{bmatrix} \mathbf{f} \ \mathbf{f}_* \end{bmatrix} | \mathbf{X}, \mathbf{X}_* &\sim \mathcal{N} \left(\mathbf{0}, egin{bmatrix} \mathbf{K}_{\mathbf{X},\mathbf{X}} + & \mathbf{K}_{\mathbf{X},\mathbf{X}_*} \ \mathbf{K}_{\mathbf{X}_*,\mathbf{X}_*} \end{bmatrix}
ight) \ \mathbf{y} | \mathbf{f} &\sim \mathcal{N} (\mathbf{f}, \sigma^2 \mathbf{I}) \end{aligned}$$

• Using joint normality of f_* and y:

$$egin{bmatrix} \mathbf{y} \ \mathbf{f}_* \end{bmatrix} \sim \mathcal{N} \left(\mathbf{0}, egin{bmatrix} \mathbf{K}_{\mathbf{X},\mathbf{X}} + \lambda \mathbf{I} & \mathbf{K}_{\mathbf{X},\mathbf{X}_*} \ \mathbf{K}_{\mathbf{X}_*},\mathbf{X} & \mathbf{K}_{\mathbf{X}_*},\mathbf{X}_* \end{bmatrix}
ight)$$

Pointwise posterior distribution

- ullet At each point $\mathbf{x} \in \mathcal{X}$, we have a distribution $\mathcal{N}\left(\hat{f}(\mathbf{x}), s^2(\mathbf{x})\right)$
- \bullet We can sample from these $\tilde{f}(\mathbf{x}) \sim \mathcal{N}\left(\hat{f}(\mathbf{x}), s^2(\mathbf{x})\right)$

Gaussian Process (GP)

- By considering the covariance between *every points in the space*, we get a distribution over functions!
- Posterior distribution on *f*:

$$P[f|\mathbf{X}, \mathbf{y}] \sim \mathcal{N}\left(\left[\hat{f}(\mathbf{x})\right]_{\mathbf{x} \in \mathcal{X}}, \frac{\sigma^2}{\lambda} \left[k_{\lambda}(\mathbf{x}, \mathbf{x}')\right]_{\mathbf{x}, \mathbf{x}' \in \mathcal{X}}\right)$$

Sampling from a Gaussian Process

- Generalization of normal probability distribution to the function space
 - From a normal distribution we sample variables
 - From a GP we sample *functions*!

Sampling from a Gaussian Process: How to

Observe that

$$\mathcal{N}\left(\left[\hat{f}(\mathbf{x})\right]_{\mathbf{x}\in\mathcal{X}}, \frac{\sigma^2}{\lambda}\left[k_{\lambda}(\mathbf{x}, \mathbf{x}')\right]_{\mathbf{x}, \mathbf{x}'\in\mathcal{X}}\right)$$

defines a $|\mathcal{X}|$ -dimensional multivariate Gaussian distribution

- If \mathcal{X} is continuous (e.g. $\mathcal{X} = [-1,1]$), $|\mathcal{X}| = \infty$
- ullet We can consider a discrete, finite, set $\mathbb{X}\subset\mathcal{X}$ and sample from

$$\mathcal{N}\left(\left[\hat{f}(\mathbf{x})\right]_{\mathbf{x}\in\mathbb{X}}, \frac{\sigma^2}{\lambda}\left[k_{\lambda}(\mathbf{x}, \mathbf{x}')\right]_{\mathbf{x}, \mathbf{x}'\in\mathbb{X}}\right)$$

ullet This will result in a function \widetilde{f} evaluated at every $\mathbf{x} \in \mathbb{X}$

Learning the hyperparameters

- ullet If we assume that $\Sigma_{\mathbf{w}} = \mathbf{I}_d$, then we have $\lambda = \sigma^2$
- Recall: multivariate normal density

$$P(\mathbf{y}|\boldsymbol{\theta}) = \frac{\exp\left(-\frac{1}{2}\mathbf{y}^{\top}(\mathbf{K}_{\boldsymbol{\theta}} + \sigma^{2}\mathbf{I}_{m})^{-1}\mathbf{y}\right)}{\sqrt{(2\pi)^{D}|\mathbf{K}_{\boldsymbol{\theta}} + \sigma^{2}\mathbf{I}_{m}|}}$$

• Maximize the marginal likelihood $\mathcal{L} = \log P(\mathbf{y}|\boldsymbol{\theta})$ w.r.t. kernel hyperparameters (e.g. ρ) and noise σ :

$$\mathcal{L} = -\frac{1}{2}\mathbf{y}^{\top}(\mathbf{K}_{\theta} + \sigma^{2}\mathbf{I}_{m})^{-1}\mathbf{y} - \frac{D}{2}\log(2\pi) - \frac{1}{2}\log|\mathbf{K}_{\theta} + \sigma^{2}\mathbf{I}_{m}|$$

Anatomy of marginal likelihood

• Marginal likelihood:

$$\mathcal{L} = \log P(\mathbf{y}|\boldsymbol{\theta}) = -\frac{1}{2}\mathbf{y}^{\top}(\mathbf{K}_{\boldsymbol{\theta}} + \sigma^{2}\mathbf{I}_{m})^{-1}\mathbf{y} - \frac{1}{2}\log|\mathbf{K}_{\boldsymbol{\theta}} + \sigma^{2}\mathbf{I}_{m}|$$

- 1st term: quality of predictions; 2nd term: model complexity
- Trade-off (from Rasmussen & Williams, 2006):

Gradient-based optimization

• Compute gradients:

$$\frac{\partial \mathcal{L}}{\partial \theta_i} = \frac{1}{2} \mathbf{y}^{\top} (\mathbf{K}_{\theta} + \sigma^2 \mathbf{I}_m)^{-1} \frac{\partial (\mathbf{K}_{\theta} + \sigma^2 \mathbf{I}_m)}{\partial \theta_i} (\mathbf{K}_{\theta} + \sigma^2 \mathbf{I}_m)^{-1} \mathbf{y}$$
$$- \frac{1}{2} \operatorname{Tr} \left((\mathbf{K}_{\theta} + \sigma^2 \mathbf{I}_m)^{-1} \frac{\partial (\mathbf{K}_{\theta} + \sigma^2 \mathbf{I}_m)}{\partial \theta_i} \right)$$

- Minimize the negative
- Non-convex optimization task

Summary

- ullet Normal priors on the weights distribution o Gaussian Process
- ullet Regularization o prior on the weights covariance
- GP provides a posterior distribution on functions
 - Expectation: kernel regression model
 - Covariance → confidence intervals
- Sample discretized functions from a GP