Вопрос по выбору Изучение параметров кварцевого резонатора

Иванов Роман Александрович Б01-101 Алексеев Алексей Алексеевич Б01-105

28 декабря 2022 г.

Аннотация

В курсе общей физики затрагивается тема автоколебаний и генераторов переменного тока, но предложенная схема генератора с использованием триода в качестве управляемого источника тока не практична для использования при генерации сигналов малой амплитуды. Мы задались целью собрать схему генератора переменного тока, на основе резонансного усилителя и исследовать параметры кварцевоого резонатора, использующегося в цепи.

Цель работы

Собрать схему резонансного уселителя с обратной связью. Собрать схему кварцевого генератора с последовательным резонансом. Определить добротность кварцевого резонатора, измерить его эквивалентные ёмкость и индуктивность.

В работе используются

Набор различных ёмкостей, индуктивностей, сопротивлений и проводов, микросхема KP159HT1, источник постоянного тока 12B, кварцевый резонатор, макетная плата, электронный осциллограф, генератор синусоидальных сигналов.

1 Теоретические сведения

1.1 Генераторы синусоидальных колебаний и условия самовозбуждения

В генераторах колебания электрического тока, возикшие вследствие флуктуации зарядов, не затухают, анарастают до некоторого стационарного уровня. В схемах, предназначенных для генерирования электрических колебаний, необходимо обеспечить выполнение условий самовозбуждения. В качестве таких схем используются усилители с положительной обратной связью, либо активные элементы с отрицательной диффиренциальной проводимостью, подключаемые к колебательным системам. При выполнении условий самовозбуждения колебания начинают нарастать. Рост амплитуды колебаний ограничен нелинейностью характеристик активных элементов, а также величиной питающих напряжений.

Представим генератор в виде усилителя с комплесным коэффициентос усиления K и цепи обратной связи с коэффициентос передачи β , как показано на рисунке.

Рис. 1: Структурная схема генератора на основе усилителя и цепи обратной связи

Генератор способен самовозбудиться, если на некоторой частоте обратная связь является положительной, то есть аргумент усиления в разомкнутой петле равен $2\pi n$, а модуль петлевого уситления на этой частоте больше единицы:

$$|Keta|>1$$
 или $|eta|>rac{1}{|K|}$

При выполнении этих условий амплитуда колебаний будет нарастать, а петлевое усиление снижаться из-за нелинейности цепи обратной связи. В установившемся режиме выполняются условия баланса фаз и амплитуд. В работе используется схема генератора с емкостной обратной связью. Упрощённая схема трёхточечного генератора с ёмкостной связью изображен на рисунке. Коэффициент обратной связи для этих схем равен:

$$\beta = \frac{x_{c1}}{x_c} = \frac{C}{C_1} = \frac{C_2}{C_1 + C_2}$$

Рис.2: Схема трехточечного генератора с ёмкостной обратной связью на биполярном транзисторе

1.2 Стабилизация частоты автогенераторов

Частота колебаний может меняться вследствии изменения температуры, величины питающих напряжений и по другим дистабилизирубщим причинам. Определим изменение частоты связанное с изменением параметров LC-контура. В большинстве случаев частота генерируемых колебаний близка к собственной частоте контура.

$$\omega_p = \frac{1}{\sqrt{LC}}$$

Если L и C получают приращения ΔL и ΔC , то относительный сдвиг частоты составит:

$$\frac{\Delta\omega}{\omega_p} = -\frac{1}{2} \left(\frac{\Delta L}{L} + \frac{\Delta C}{C} \right)$$

Другой источник нестабильности частоты связан с изменением величин, входящих в фазовое соотношение, что может иметь место при неизменных параметрах контура. Допустим, что в усилителе возникает сдвиг фазы $\Delta\Phi$, например, в следствии изменения питающих напряжений. В этом случае для восстановления баланса фаз частота измениться настолько, чтобы сдвиг фазы в контуре и цепи обратной связи был равным по величине и противоположным по знаку сдвигу $\Delta\Phi$. В конечном итоге $\Delta(arg(K\beta))=0$. Чтобы определить уход частоты $\Delta\omega$, обратимся к фазовой характеристике параллельного LC-контура, описываемой формулой:

$$\phi(\omega) = arg(Z) = -arctg(2Q\frac{\omega - \omega_p}{\omega_p})$$

На рисунке представленны фазовые характеристики для двух значений добротности контура Q ($Q_2 > Q_1$) и резонансной частоты 1 МГц.

Рис.3: График $\phi(f_0)$

Проведя следующие выкладки получаем:

$$\Delta\omega = -\frac{\Delta\Phi}{d\phi/d\omega}; \frac{\Delta\omega}{\omega_p} = -\frac{\Delta\Phi}{\omega_p(d\phi/d\omega)}; |d\phi/d\omega| = 2Q/\omega_p$$

Таким образом получаем, чем больше добротность контура, тем выше стабильность частоты, что выдно из графика. Обычные контуры имеют добротность Q редко превышающую значение 100-200, поэтому относительная нестабильность частоты генераторов, использующих стандартные контуры, имеет порядок $10^{-3}-10^{-4}$, чего недостаточно для многих практических целей. В нашей работе с целью повышения стабильности генератора используется кварцевый резонатор.

1.3 Кварцевый резонатор

В высокодобротных резонаторах используют кристаллический кварц, в котором наблюдаются прямой и обратный пьезоэффекты. При прямом пьезоэлектрическом эффекте механическая сила, приложенная к определённым граням кристалла, деформируя его, вызывает появление электрических зарядов на поверхности кристалла. Причём величина заряда пропорциональна приложенной силе, а знак заряда зависит от направления силы. Обратный пьезоэлектрический эффект состоит в том, что размещение кристалла пьезоэлектрика в электрическом поле вызывает электрическую поляризацию кристалла, механические напряжения в нём, под действием которых кристалл деформируется. Отключение электрического поля вызывает возврат упругого кристалла к его первоначальной форме. При этом тело кристалла, в зависимости от его крепления, совершает более или менее длительные затухающие колебания. Частота колебаний связана с видом вызываемой электрической поляризацией деформации (сжатие-растяжение по длине, ширине или толщине, кручение, контурные колебания, изгиб, сдвиг), геометрическими размерами и физическими свойствами колеблющегося кристалла. Таким образом, пьезоэлектрический кристалл обладает набором резонансных частот. Наиболее высокочастотными являются колебания, вызванные деформациями по толщине.

Рис.4: Примеры конструкций кварцевых резонаторов Поведение кварца вблизи резонансной частоты достаточно хорошо описывает схема, по-казаная на рис.5. Зависимость от частоты активной и реактивной составляющей полного импеданса кварца ($Z_k = R + jX$) показана на рис.6.

Рис.5: эквивалентная схема кварца.

Рис.6: зависимость реактивного и активного сопротивления от чат
стоты Элементы L_k, C_k, r_k образуют последовательный колебательный контур, с собственной ча-

стотой $f_k = \frac{1}{2\pi\sqrt{L_kC_k}}$

С учётом ёмкости кварце держателя C_0 (5 - 10 пФ) в схеме на рис.5 будет наблюдаться параллельный резонанс на частоте

$$f_0 = \frac{1}{2\pi\sqrt{L_k \frac{C_k C_0}{C_0 + C_k}}} = f_k \sqrt{1 + \frac{C_k}{C_0}}$$

Так как эквивалентная ёмкость кварца мала ($C_k << C_0$), то частота пареллельного резонанса близка к частоте последовательного

$$f_0 = f_k 1 + \frac{C_k}{2C_0}$$

Разность частот f_0 и f_k представляет собой величину порядка $(10^{-4}-10^{-3})f_k$, которая уменьшается, если параллельно кварцу присоединяется дополнительная ёмкость С внешней цепи, тогда получаем

$$f_0 - f_k = \frac{C_k}{2(C_0 + C)} f_k$$

2 Ход работы

На стандартной манетной плате, имеющей контактные гнёзда, соберём схему резонансного усилителя, изображенную на рис.7.

Рис.7: Схема резонансного усилителся

Выходом усилителся является напряжение U_{out} , а напряжение U_{out1} используется как выход цепи обратной связи. эти напряжения связаны соотношением

$$\beta = \frac{U_{out1}}{U_{out}} = \frac{C_3}{C_3 + C_4} = \frac{1}{7}$$

Измерим коэфициент уселения. Для этого изменяя амплитуду входного сигнала будем измерять амплитуду выходного. Так-как из-за паразитных ёмкостей при подключении осциллографа напрямую к выходу U_{out} изменяется собственная частота колебаний LC-контура, соответственно меняется коэфициент усиления на частоте 1Мгц, будем измерять выходное напряжение U_{out1} . Данные занесём в таблицу

U_{in} , MB	U_{out} , MB
10	36
20	75
40	160
60	250
80	320
100	396
120	474
140	544
160	609
180	672
200	736
220	795
240	845
260	895
280	940
300	983

Получим, что на линейном участке коэфициент усиление равен

$$K = 27, 3$$

Учитывая, что коэфициент обратной связи $\beta=\frac{1}{7},$ получим, что

$$|K\beta| = 3,9$$

Что удовлетворяет условию самовозбуждения. С помощью осциллографа найдём резонансную частоту и определим добротность контура по полосе пропускания на уровне 0,7 относительно максимума

$$f_p = 1 \ \mathrm{M} \Gamma$$
ц $Q = \frac{f_p}{\Delta f_{0,7}} = 20$

Уберём источник переменного напряжения U_{in} и подключим на вход обратную связь, убедившись, что схема генерирует синусоидальный сигнал изменим собственную частоты LC-контура, параллельно подключив ёмкость $\Delta C=10$ - 15 пФ и определим изменение частоты коллебаний без кварца

$$f = 988$$
 к Γ ц $\Delta f = 14$ к Γ ц

Стабилизируем генерируемый сигнал, собрав следующую схему.

Рис.8: Схема кварцевого генератора

Настроим контур на 1Мгц и вместо резистора R подключим кварцевый резонатор, измерим частоту генирируемых колебаний, после чего рассторим контур и найдём разность частот

$$f_k = 1000,004$$
КГц $f = 999,996$ Кгц $\Delta f_k = 8$ Гц

Из следующего соотношения определим добротность кварца

$$\frac{\Delta f_k}{\Delta f} = \frac{Q}{Q_k} \ Q_k = 35000$$

Измерим электрические параметры кварцевого резонатора, подключив последовательно с кварцем конденсатор C_s емкостью 150 пФ и измерив изменение частоты генерируемых колебаний Δf_k . Из слежующих соотношений определим параметры кварца

$$\Delta f_k/f_k = C_k/2C_s$$

$$L_k = 1/(4\pi^2 f_k^2 C_k)$$

$$\rho_k = \sqrt{L_k/C_k}$$

$$r_k = \rho_k/Q_k$$

$$\Delta f_k = 500 \ \Gamma$$
ц $C_k = 0, 15 \ \Pi\Phi$ $L_k = 0, 17 \ \Gamma$ н $\rho_k = 1 \ \mathrm{MOm}$ $r_k = 29 \ \mathrm{Om}$

3 Вывод

Мы собрали резонансный усилитель напряжения и убедились, что с помощью цепи обратной связи из усилителя можно получить генератор сигналов. Пронаблюдав сильные изменения частоты генирируемого сигнала при расстройке LC-контура, мы стабилизировали генератор, используя кварцевый осциллятор. Так же, на примере кварцевого генератора мы измерили электрические параметры кварцевого резонатора.

Список Литературы

Список литературы

- [1] Альтшуллер Г.Б. Кварцевая стабилизация частоты. М., "Связь"1974
- [2] Куклев Л.П. Генераторы синусоидальных колебаний и нелинейные преобразователи сигналов: Учебное пособие. -М.: МФТИ, 2009.
- [3] Шитиков Г.Т. , Цыганков П.Я. , Орлов О.М. Высокостабильные кварцевые автогенераторы М. "Советское радио" 1974
- [4] Смагин Л.Г. и Ярославский М.И. Пьезоэлектричество кварца и кварцевые резонаторы М. "Энергия" 1970