report

Data Analysis

1 Introduction

This is an example

1.1 first

Well done,bro

1.2 second

keep going

2 Code chunk

2.1 show output only

```
## [1] 1 2 3 4 5
```

2.2 show code and output

```
print(6:10)
```

```
## [1] 6 7 8 9 10
```

- 2.3 show nothing(run code)
- 2.4 show nothing(don't run code)
- 3 Inline code

1

1

4 Table

```
x <- 1:10
y <- x^2
lmr <- lm(y ~ x)
co <- summary(lmr)$coefficients
knitr::kable(co)</pre>
```

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	-22	5.5497748	-3.964125	0.0041530
X	11	0.8944272	12.298374	0.0000018

knitr::kable(head(iris,n=5),caption='\\label{tab:iris} The first 5 rows')

Table 2: The first 5 rows

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
5.1	3.5	1.4	0.2	setosa
4.9	3.0	1.4	0.2	setosa
4.7	3.2	1.3	0.2	setosa
4.6	3.1	1.5	0.2	setosa
5.0	3.6	1.4	0.2	setosa

5 Mathematics

$$y_i = \alpha + \beta x_i + \epsilon_i, ~~ \epsilon_i \sim N(0, \sigma^2), \label{eq:yi}$$

$$y_i = \alpha + \beta_{\text{Male}} \cdot \mathbb{I}_{\text{Male}}(x),$$

6 Figures

6.1 inside code

```
x=1:100
y=0.5*x
plot(x,y)
```


Figure 1: try

6.2 outside

Figure 2: hello world