Изомерные комплексы молибдена

Карбонильные комплексы переходных металлов и их производные представляют большой интерес с точки зрения органического катализа. Один из таких комплексов — \mathbf{X} — был синтезирован из гексакарбонила молибдена посредством нескольких последовательных реакций замещения.

- 1. а) Установите формулу комплекса, если известно, что:
- комплекс моноядерный,
- массовая доля молибдена равна 21.6%,
- в комплексе лиганды только двух типов: CO и PR₃, где R алкил,
- комплекс имеет пространственные изомеры.
 - б) Укажите валентность и степень окисления металла в комплексе Х.
- 2. Сколько пространственных изомеров есть у данного комплекса? Какой из них самый устойчивый? Кратко объясните.
- 3. Менее устойчивый изомер, X_1 , получили по реакции замещения в кипящем CH_2Cl_2 при 40 °C. Навеску X_1 растворили в гептане, нагрели раствор до 65 °C и выдерживали его при этой температуре в течение 4 ч, при этом X_1 превращался в более устойчивый изомер X_2 . За ходом реакции следили, измеряя оптическую плотность раствора, D, на определенной длине волны, при которой поглощает только X_1 . Результаты представлены в таблице.

<i>t</i> , ч	0	1	2	3	4
D	0.87	0.28	0.17	0.15	0.15

- а) Рассчитайте константу равновесия реакции $X_1 = X_2$.
- б) Оцените энтальпию реакции изомеризации, используя средние значения энергии связи:

$$E(Mo-CO) = 150 \text{ кДж/моль}, E(Mo-PR_3) = 100 \text{ кДж/моль}.$$

4. Опыт, описанный в п. 3, повторили с той же навеской X_1 , но при $80\,^{\circ}$ С. Как изменятся показания оптической плотности раствора через $1\,$ ч и $4\,$ ч по сравнению с первым опытом? Поставьте знаки >, < или = в соотношения

Кратко объясните (ответ без объяснения не оценивается).

 Какой фактор – энтальпийный, энтропийный или и тот, и другой – определяет(ют) бо́льшую устойчивость изомера X₂? Объясните.

Дополнительная информация.

$$D \sim C (C$$
 — молярная концентрация вещества в растворе) $\Delta G^{\circ} = -RT \ln K$ $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$

Решение задачи 11-1 (автор: Ерёмин В.В.)

1. а) Общая формула комплекса $Mo(CO)_n(PR_3)_{6-n}$, где n = 2, 3 или 4, так как имеются пространственные изомеры.

Молярная масса комплекса: M(X) = 96 / 0.216 = 444 г/моль.

$$n = 2$$
, $M(R) = (444 - 96 - 2*28 - 4*31) / 12 = 14$ – не подходит

$$n = 3$$
, $M(R) = (444 - 96 - 3*28 - 3*31) / 9 = 19$ – не подходит

$$n = 4$$
, $M(R) = (444 - 96 - 4*28 - 2*31) / 6 = 29 - C2H5$

Формула комплекса — $Mo(CO)_4(PEt_3)_2$.

- б) Валентность МО VI, степень окисления 0, так как лиганды нейтральные частицы.
- Октаэдрические комплексы типа МХ₄Y₂ имеют *цис-транс*-изомеры, но не имеют оптических:

$$OC_{M_{1}}$$
 PR_{3} $OC_{M_{2}}$ PR_{3} $OC_{M_{3}}$ PR_{3} $OC_{M_{4}}$ PR_{3} $OC_{M_{5}}$ PR_{3} PR_{3}

Транс-изомер более устойчив из-за меньшего отталкивания объемных лигандов PEt₃.

3. а) Начальная концентрация X_1 : $C_0(X_1) = \text{const*}0.87$, равновесная концентрация X_1 : $[X_1] = \text{const*}0.15$, равновесная концентрация X_2 : $[X_2] = C_0(X_1) - [X_1] = \text{const*}0.72$.

$$K = \frac{[X_2]}{[X_1]} = \frac{C_0(X_1) - [X_1]}{[X_1]} = \frac{0.87 - 0.15}{0.15} = 4.8$$

- б) Число и тип связей в результате изомеризации не меняются, поэтому энтальпия реакции близка к 0.
- 4. При нагревании равновесие устанавливается быстрее, поэтому концентрация X₁ при 80 °C меньше, чем при 65 °C:

$$D(1 \text{ ч, } 80 \text{ °C}) < 0.28$$

При нулевой энтальпии реакции константа равновесия не зависит от температуры:

$$\ln K = -\frac{\Delta G^{\circ}}{RT} = -\frac{\Delta H^{\circ} - T\Delta S^{\circ}}{RT} = -\frac{\Delta H^{\circ}}{RT} + \frac{\Delta S^{\circ}}{R} = \frac{\Delta S^{\circ}}{R}$$

поэтому равновесные концентрации не изменятся:

$$D(4 \text{ q}, 80 \text{ °C}) = 0.15$$

5. Раз энтальпия реакции равна 0, устойчивость определяется только энтропийным фактором.

Ответ.

- 1. a) Mo(CO)₄(PEt₃)₂. б) Валентность VI, с.о. 0.
- 2. Два изомера. Транс-изомер устойчивее.
- 3. a) K = 4.8. 6) $\Delta H^{\circ} \approx 0$.
- 4. D(1 ч) уменьшится, D(4 ч) не изменится.
- 5. Энтропийный.

Система оценивания:

1	молярная масса – 1 балл	4 балла		
	правильная формула – 2 балла			
	валентность и с.о. по 0,5 балла – 1 балл			
2	число изомеров – 1 балл	2 балла		
	устойчивый изомер с объяснением – 1 балл			
	(без объяснения -0)			
3	выражение для константы равновесия – 1 балл	5 баллов		
	правильное значение $K-2$ балла			
	Оценка энтальпии			
	(расчет или качественное обоснование) – 2 балла			
4	правильный знак $D(1 \text{ ч, } 80 \text{ °C})$ с объяснением – 1.5 балла	3 балла		
	правильный знак $D(4 \text{ ч}, 80 \text{ °C})$ с объяснением – 1.5 балла			
	(любой ответ без объяснения -0 $)$			
5	Роль энтропии. (без объяснения -0)	1 балл		
	ИТОГО 15 балло			