Customer Segmentation Analysis

— By **Jiayi Jiang**

Contents

> 01 Problem Identification

- **O2** Exploratory Data Analysis
- O3 Customer Segmentation
- **04** Result Analysis & Recommendations

Problem Identification

Given HP's first hand data of printer and ink customers, how to maximize customer lifetime value? Defining customer lifetime value as **revenue brought by each customer**: **Printer Purchase** Number of Printers Purchased Purchase frequency Revenue = **Customer Personal Printer Supplies** Loyalty Revenue 15% **62% Drivers Supplies Consumption** Pages printed/month Ink consumption/month

To be specific:

How to increase each customer's **printing volume and frequency**, **extend duration of customer engagement**, and **boost repurchase rate**?

With current data, our solution:

Use a **machine learning** model to cluster customers with similar **purchase and usage habits,** identify **distinct features,** and provide different business recommendations accordingly

Contents

- **01** Problem Identification
- **O2** Exploratory Data Analysis
 - 03 Customer Segmentation
 - **04** Result Analysis & Recommendations

Exploratory Data Analysis

Diversified customer composition

Major markets spread across different regions of the country

Exploratory Data Analysis

\$113~\$157 Pr

Price range of 50% of purchases; avg price \$159.45

96%

Percentage of customers who purchased only once

4~5 months

Gap between first and last purchase for returning customers

Average annual ink consumption per customer per printer

Percentage of <u>Ink</u> of total consumption

Percentage of printers registered for Ink plans

66 cc

94%

37%

Contents

01 Problem Identification

- **O2** Exploratory Data Analysis
- **O3** Customer Segmentation Modeling
 - **04** Result Analysis & Recommendations

Key Definition & Assumption

Repurchased

Bought more than 2 products on different dates within 12 months

Shared account

1 registered account may contain more than 1 user

Cluster

Segment customers into distinct clusters

Feature Engineering

Outlier and Null Value Treatment

- Dropped outliers of each column
- Replaced nulls with column means, randomly assigned values based on original ratios

Calculation and Variable Pre-Selection

- Calculated '# of printers' and RFM (Recency, Frequency, Monetary) value for each customer
- Dropped variables unrelated to the current problem, Feature selection

Categorical Variable Encoding

- Transformed some of the categorical variables to dummy values

Scaling

As we are using the k-means clustering model, which groups the customers according to the distance between them, we scaled the data to avoid the influence of units

Customer "RFM" Features

Model Introduction K-means Clustering

K-Means clustering will group together customers with similar characteristics

Has the clustering worked?

To validate the clustering algorithm, we checked for significant differences in **proportions of repurchase customers** among the groups.

Contents

01 Problem Identification

- **O2** Exploratory Data Analysis
- O3 Customer Segmentation
- **O4** Result Analysis & Recommendations

Model Result & Evaluation

Choosing the number of clusters

Optimal Number of Clusters = 4

Data of each cluster

Cluster	Repurchased	# of Printers	Ink/Mo	Active Days
1	No	1	7 cc	455
2	No	1	7 cc	541
3	No	11	11 cc	584
4	Yes	2	11 cc	451

Cluster 4 contains the most of the repurchasing customers

Cluster 1 Fans who don't print much

Cluster 3 Heavy users

Cluster 2 **Print a bit every day**

Cluster 4

Recommendations Different Clusters, Different Strategies

- Frequent buyers:
 promote either cheaper or
 more pricey products
- Infrequent buyers:
 promote medium-priced
 products

Printing

- Diversified printing habits require more flexible ink plans
- Leverage Smart data that captures usage patterns to design more ink subscription options

Retention

- Improve activeness might not improve loyalty
- Ink plan subscription increases stickiness while bringing stable revenue

Thank you!

Welcome all the questions and feedback!

Appendix

Customer Interests — Repurchased VS. No Repurchase

Frequency / Ink Consumption vs Hardware Total Price

Model Evaluation

We used the elbow method to determine the optimal number of clusters (k) for our clustering algorithm.

Result

The "elbow curve" describes the "inertia", which is the sum of squared distances between each data point and its nearest centroid, against the number of clusters (k).

Decision

Our evaluation result indicates the optimal k = 4 after which the WCSS (Within Cluster Sum of Square) decreases slowly.

Model Evaluation - ARI Metric

We used the Adjusted Rand Index is clustering evaluation metric that measures the similarity between the true labels and the predicted cluster labels.

Result

We get Adjusted Rand Index = 0.05900098600331566

Decision

The value of ARI is close to zero, which indicates that the true labels and the predicted cluster labels is no better than what would be expected by chance

Discussion

Limitation and next steps

- Detailed product data and customer preference data not available
- 2. No synergy between PC and printers is considered
- 3. K-Means clustering may has less prediction power for future new data

Predict the repurchase **propensity score** for each customer to better quantify the clustering results