Department of Computer Science University of Bristol

Image Processing and Computer Vision

www.ole.bris.ac.uk/bbcswebdav/courses/COMS30121_2018/content www.ole.bris.ac.uk/bbcswebdav/courses/COMSM0020_2018/content

Lecture 06

Object Detection Basics I

Andrew Calway | Sion Hanunna | Tilo Burghardt

What is 'Object Recognition'?

- Object Recognition aims at bridging the 'semantic gap' between...
 - given pixel values, and
 - meaningful objects (grouping of pixels + classification of groups)
- > image regions need to be found and assigned with semantic labels from a space of object classes
- Why do shape detection and segmentation rarely work for real-world object detection?
 - high intra-class, low inter-class variance
 - classes are rarely well defined
 - change of illumination, scale, pose + deformation, occlusion...
- → object recognition is a difficult task

Variable visual

First Real-time Detection Method: Viola & Jones' (2001) (previous baseline standard for off-the-shelf method for several years)

Selected Example Algorithm: Viola & Jones' Real-time Method (2001)

Our Agenda:

- Viola Jones technique overview
- Sliding Window Detectors
- Haar-like Features
- Feature Extraction and Integral Images
- Weak Classifiers
- Boosting and Classifier Evaluation
- Cascades of Boosted Classifiers

Best description of full details available in consolidated paper by Viola and Jones, International Journal of Computer Vision, 2004

Shift and Scale Invariance: Sliding Window Detectors

- image is tested for object presence window-by-window
- the window is `slided' and `scaled' throughout the image
- each resulting window is judged w.r.t. an object model giving a response indicating object presence or absence

Basic Object Model Idea: Characteristic Set of Block Features

Viola & Jones' (2001)

Integral Images

$$II(-1,y) = 0;$$
 $II(x,y) = II(x-1,y) + A(x,y);$

$$A(x,-1) = 0;$$
 $A(x,y) = A(x,y-1) + \mathbf{I}(x,y).$

Fast 'BlockImage' Calculation of Block Average

Haar-like Feature Response

Adapted from Viola & Jones' (2001)

Annotated Training Data (representing single windows)

Positive Samples (e.g. FACE) ... $(x_i, y_i = 1)$, $w_i = 1$

Negative Samples (e.g. NO-FACE) ... $(x_i, y_i = 0)$, $w_i = 1$

Supervised Object-class Learning: AdaBoost

Strong Classifier Output

(also see paper by Viola and Jones 2004)

ROC Curves for Performance Analysis

On Window Resolution

