Stanford CS124 | From Languages to Information (2021)

CS | 24(202 |)·课程资料包 @ShowMeAl

视频 中英双语字幕

课件 一键打包下载

笔记 官方笔记翻译

代码 作业项目解析

视频·B 站[扫码或点击链接]

https://www.bilibili.com/video/BV1YA411w7ym

课件&代码・博客[扫码或点击链接]

http://blog.showmeai.tech/cs124/

文本处理

信息检索

PageRank

编辑距离

社交网络分析

Awesome Al Courses Notes Cheatsheets是 ShowMeAl 资料库的分支系列, 覆盖最具知名度的 TOP20+ 门 AI 课程,旨在为读者和学习者提供一整套高品 质中文学习笔记和速查表。

点击课程名称,跳转至课程**资料包**页面,**一键下载**课程全部资料!

机器学习	深度学习	自然语言处理	计算机视觉			
Stanford · CS229	Stanford · CS230	Stanford · CS224n	Stanford · CS23In			
# Awesome Al Courses Notes Cheatsheets: 持续再新由						

wesome Ai Courses Notes Chedisheets.

知识图谱	图机器学习	深度强化学习	自动驾驶
Stanford · CS520	Stanford · CS224W	UCBerkeley · CS285	MIT · 6.S094

微信公众号

资料下载方式 2: 扫码点击底部菜单栏

称为 **AI 内容创作者?** 回复 [添砖加瓦]

Logistic Regression

Background: Generative and Discriminative Classifiers

Logistic Regression

Important analytic tool in natural and social sciences

Baseline supervised machine learning tool for classification

Is also the foundation of neural networks

Generative and Discriminative Classifiers

Naive Bayes is a generative classifier

by contrast:

Logistic regression is a discriminative classifier

Generative and Discriminative Classifiers

Suppose we're distinguishing cat from dog images

imagenet imagenet

Generative Classifier:

- Build a model of what's in a cat image
 - Knows about whiskers, ears, eyes
 - Assigns a probability to any image:
 - how cat-y is this image?

Also build a model for dog images

Now given a new image:

Run both models and see which one fits better

Discriminative Classifier

Just try to distinguish dogs from cats

Oh look, dogs have collars! Let's ignore everything else

Finding the correct class c from a document d in Generative vs Discriminative Classifiers

Naive Bayes

$$\hat{c} = \underset{c \in C}{\operatorname{argmax}} \quad \overbrace{P(d|c)} \quad \overbrace{P(c)}$$

Logistic Regression

$$\hat{c} = \underset{c \in C}{\operatorname{argmax}} \quad P(c|d)$$

Components of a probabilistic machine learning classifier

Given *m* input/output pairs $(x^{(i)}, y^{(i)})$:

- 1. A **feature representation** of the input. For each input observation $x^{(i)}$, a vector of features $[x_1, x_2, ..., x_n]$. Feature j for input $x^{(i)}$ is x_j , more completely $x_j^{(i)}$, or sometimes $f_j(x)$.
- 2. A classification function that computes \hat{y} , the estimated class, via p(y|x), like the **sigmoid** or **softmax** functions.
- 3. An objective function for learning, like cross-entropy loss.
- 4. An algorithm for optimizing the objective function: **stochastic gradient descent**.

The two phases of logistic regression

Training: we learn weights w and b using **stochastic gradient descent** and **cross-entropy loss**.

Test: Given a test example x we compute p(y|x) using learned weights w and b, and return whichever label (y = 1 or y = 0) is higher probability

Logistic Regression

Background: Generative and Discriminative Classifiers

Classification in Logistic Regression

Logistic Regression

Classification Reminder

Positive/negative sentiment
Spam/not spam
Authorship attribution
(Hamilton or Madison?)

Alexander Hamilton

Text Classification: definition

Input:

- a document x
- a fixed set of classes $C = \{c_1, c_2, ..., c_J\}$

Output: a predicted class $\hat{y} \in C$

Binary Classification in Logistic Regression

Given a series of input/output pairs:

 $(x^{(i)}, y^{(i)})$

For each observation x⁽ⁱ⁾

- We represent $x^{(i)}$ by a **feature vector** $[x_1, x_2, ..., x_n]$
- We compute an output: a predicted class $\hat{y}^{(i)} \in \{0,1\}$

Features in logistic regression

- For feature x_i , weight w_i tells is how important is x_i
 - $x_i = "review contains 'awesome'": <math>w_i = +10$
 - $x_j = "review contains 'abysmal'": <math>w_j = -10$
 - x_k = "review contains 'mediocre'": $w_k = -2$

Logistic Regression for one observation x

Input observation: vector $x = [x_1, x_2, ..., x_n]$ Weights: one per feature: $W = [w_1, w_2, ..., w_n]$ • Sometimes we call the weights $\theta = [\theta_1, \theta_2, ..., \theta_n]$ Output: a predicted class $\hat{y} \in \{0,1\}$

(multinomial logistic regression: $\hat{y} \in \{0, 1, 2, 3, 4\}$)

How to do classification

For each feature x_i, weight w_i tells us importance of x_i
(Plus we'll have a bias b)

We'll sum up all the weighted features and the bias

$$z = \left(\sum_{i=1}^{n} w_i x_i\right) + b$$

$$z = w \cdot x + b$$

If this sum is high, we say y=1; if low, then y=0

But we want a probabilistic classifier

We need to formalize "sum is high".

We'd like a principled classifier that gives us a probability, just like Naive Bayes did

We want a model that can tell us:

$$p(y=1|x;\theta)$$

$$p(y=0|x;\theta)$$

The problem: z isn't a probability, it's just a number!

$$z = w \cdot x + b$$

Solution: use a function of z that goes from 0 to 1

$$y = \sigma(z) = \frac{1}{1 + e^{-z}} = \frac{1}{1 + \exp(-z)}$$

The very useful sigmoid or logistic function

Idea of logistic regression

We'll compute w·x+b

And then we'll pass it through the sigmoid function:

$$\sigma(w \cdot x + b)$$

And we'll just treat it as a probability

Making probabilities with sigmoids

$$P(y=1) = \sigma(w \cdot x + b)$$

$$= \frac{1}{1 + \exp(-(w \cdot x + b))}$$

$$P(y=0) = 1 - \sigma(w \cdot x + b)$$

$$= 1 - \frac{1}{1 + \exp(-(w \cdot x + b))}$$

$$= \frac{\exp(-(w \cdot x + b))}{1 + \exp(-(w \cdot x + b))}$$

By the way:

$$P(y=0) = 1 - \sigma(w \cdot x + b) = \sigma(-(w \cdot x + b))$$

$$= 1 - \frac{1}{1 + \exp(-(w \cdot x + b))}$$
Because
$$= \frac{\exp(-(w \cdot x + b))}{1 + \exp(-(w \cdot x + b))}$$

$$= \frac{1 - \sigma(x) = \sigma(-x)}{1 + \exp(-(w \cdot x + b))}$$

Turning a probability into a classifier

$$\hat{y} = \begin{cases} 1 & \text{if } P(y=1|x) > 0.5\\ 0 & \text{otherwise} \end{cases}$$

0.5 here is called the decision boundary

The probabilistic classifier $P(y=1) = \sigma(w \cdot x + b)$

Turning a probability into a classifier

$$\hat{y} = \begin{cases} 1 & \text{if } P(y=1|x) > 0.5 & \text{if } w \cdot x + b > 0 \\ 0 & \text{otherwise} & \text{if } w \cdot x + b \le 0 \end{cases}$$

Classification in Logistic Regression

Logistic Regression

Logistic Regression

Logistic Regression: a text example on sentiment classification

Sentiment example: does y=1 or y=0?

It's hokey . There are virtually no surprises , and the writing is second-rate . So why was it so enjoyable ? For one thing , the cast is great . Another nice touch is the music . I was overcome with the urge to get off the couch and start dancing . It sucked me in , and it'll do the same to you .

It's hokey. There are virtually no surprises, and the writing is cond-rate. So why was it so enjoyable? For one thing, the cast is ereal. Another nice touch is the music Dwas overcome with the urge to get off the couch and start dancing. It sucked main, and it'll do the same to $x_1 = 3$. $x_1 = 3$ $x_5 = 0$ $x_6 = 4.19$ $x_4 = 3$

Var	Definition	Value in Fig. 5.2
$\overline{x_1}$	$count(positive lexicon) \in doc)$	3
x_2	$count(negative lexicon) \in doc)$	2
x_3	<pre> 1 if "no" ∈ doc 0 otherwise </pre>	1
\mathcal{X}_4	$count(1st and 2nd pronouns \in doc)$	3
x_5	$\begin{cases} 1 & \text{if "!"} \in \text{doc} \\ 0 & \text{otherwise} \end{cases}$	O
x_6	log(word count of doc)	ln(66) = 4.19

Classifying sentiment for input x

Var	Definition	Val	5.2
$\overline{x_1}$	count(positive lexicon) ∈ doc)	3	
x_2	$count(negative lexicon) \in doc)$	2	
x_3	<pre> 1 if "no" ∈ doc 0 otherwise </pre>	1	
χ_4	count(1st and 2nd pronouns ∈ doc)	3	
<i>x</i> ₅	<pre></pre>	$0 \\ \ln(66) =$	4.19

Suppose
$$w = [2.5, -5.0, -1.2, 0.5, 2.0, 0.7]$$

$$b = 0.1$$

Classifying sentiment for input x

$$p(+|x) = P(Y = 1|x) = \sigma(w \cdot x + b)$$

$$= \sigma([2.5, -5.0, -1.2, 0.5, 2.0, 0.7] \cdot [3, 2, 1, 3, 0, 4.19] + 0.1)$$

$$= \sigma(.833)$$

$$= 0.70$$

$$p(-|x) = P(Y = 0|x) = 1 - \sigma(w \cdot x + b)$$

= 0.30

We can build features for logistic regression for any classification task: period disambiguation

This ends in a period.

The house at 465 Main St. is new.

Not end

$$x_1 = \begin{cases} 1 & \text{if "} Case(w_i) = \text{Lower"} \\ 0 & \text{otherwise} \end{cases}$$
 $x_2 = \begin{cases} 1 & \text{if "} w_i \in \text{AcronymDict"} \\ 0 & \text{otherwise} \end{cases}$
 $x_3 = \begin{cases} 1 & \text{if "} w_i = \text{St. \& } Case(w_{i-1}) = \text{Cap"} \\ 0 & \text{otherwise} \end{cases}$

Classification in (binary) logistic regression: summary Given:

- a set of classes: (+ sentiment,- sentiment)
- a vector x of features [x1, x2, ..., xn]
 - o x1= count("awesome")
 - x2 = log(number of words in review)
- A vector w of weights [w1, w2, ..., wn]
 - w_i for each feature f_i

$$P(y=1) = \sigma(w \cdot x + b)$$

$$= \frac{1}{1 + e^{-(w \cdot x + b)}}$$

Logistic Regression

Logistic Regression: a text example on sentiment classification

Learning: Cross-Entropy Loss

Logistic Regression

Wait, where did the W's come from?

Supervised classification:

- We know the correct label y (either 0 or 1) for each x.
- But what the system produces is an estimate, \hat{y}

We want to set w and b to minimize the **distance** between our estimate $\hat{y}^{(i)}$ and the true $y^{(i)}$.

- We need a distance estimator: a loss function or a cost function
- We need an optimization algorithm to update w and b to minimize the loss.

Learning components

A loss function:

cross-entropy loss

An optimization algorithm:

stochastic gradient descent

The distance between \hat{y} and y

We want to know how far is the classifier output:

$$\hat{y} = \sigma(\mathbf{w} \cdot \mathbf{x} + \mathbf{b})$$

from the true output:

We'll call this difference:

$$L(\hat{y}, y) = \text{how much } \hat{y} \text{ differs from the true } y$$

Intuition of negative log likelihood loss = cross-entropy loss

A case of conditional maximum likelihood estimation

We choose the parameters w,b that maximize

- the log probability
- of the true y labels in the training data
- given the observations x

Deriving cross-entropy loss for a single observation x

Goal: maximize probability of the correct label p(y|x)

Since there are only 2 discrete outcomes (0 or 1) we can express the probability p(y|x) from our classifier (the thing we want to maximize) as

$$p(y|x) = \hat{y}^y (1 - \hat{y})^{1-y}$$

noting:

if y=1, this simplifies to \hat{y} if y=0, this simplifies to $1-\hat{y}$

Deriving cross-entropy loss for a single observation x

Goal: maximize probability of the correct label p(y|x)

Maximize:
$$p(y|x) = \hat{y}^y (1 - \hat{y})^{1-y}$$

Now take the log of both sides (mathematically handy)

Maximize:
$$\log p(y|x) = \log [\hat{y}^y (1-\hat{y})^{1-y}]$$

= $y \log \hat{y} + (1-y) \log (1-\hat{y})$

Whatever values maximize log p(y|x) will also maximize p(y|x)

Deriving cross-entropy loss for a single observation x

Goal: maximize probability of the correct label p(y|x)

Maximize:
$$\log p(y|x) = \log \left[\hat{y}^y (1-\hat{y})^{1-y}\right]$$

= $y \log \hat{y} + (1-y) \log(1-\hat{y})$

Now flip sign to turn this into a loss: something to minimize

Cross-entropy loss (because is formula for cross-entropy(y, \hat{y}))

Minimize:
$$L_{CE}(\hat{y}, y) = -\log p(y|x) = -[y\log \hat{y} + (1-y)\log(1-\hat{y})]$$

Or, plugging in definition of \hat{y} :

$$L_{\text{CE}}(\hat{y}, y) = -\left[y\log\sigma(w\cdot x + b) + (1 - y)\log(1 - \sigma(w\cdot x + b))\right]$$

We want loss to be:

- smaller if the model estimate is close to correct
- bigger if model is confused

Let's first suppose the true label of this is y=1 (positive)

It's hokey . There are virtually no surprises , and the writing is second-rate . So why was it so enjoyable ? For one thing , the cast is great . Another nice touch is the music . I was overcome with the urge to get off the couch and start dancing . It sucked me in , and it'll do the same to you .

True value is y=1. How well is our model doing?

$$p(+|x) = P(Y = 1|x) = \sigma(w \cdot x + b)$$

$$= \sigma([2.5, -5.0, -1.2, 0.5, 2.0, 0.7] \cdot [3, 2, 1, 3, 0, 4.19] + 0.1)$$

$$= \sigma(.833)$$

$$= 0.70$$
(5.6)

Pretty well! What's the loss?

$$L_{CE}(\hat{y}, y) = -[y \log \sigma(w \cdot x + b) + (1 - y) \log (1 - \sigma(w \cdot x + b))]$$

$$= -[\log \sigma(w \cdot x + b)]$$

$$= -\log(.70)$$

$$= .36$$

Suppose true value instead was y=0.

$$p(-|x) = P(Y = 0|x) = 1 - \sigma(w \cdot x + b)$$

= 0.30

What's the loss?

$$L_{\text{CE}}(\hat{y}, y) = -[y \log \sigma(w \cdot x + b) + (1 - y) \log (1 - \sigma(w \cdot x + b))]$$

$$= -[\log (1 - \sigma(w \cdot x + b))]$$

$$= -\log (.30)$$

$$= 1.2$$

The loss when model was right (if true y=1)

$$L_{CE}(\hat{y}, y) = -[y \log \sigma(w \cdot x + b) + (1 - y) \log (1 - \sigma(w \cdot x + b))]$$

$$= -[\log \sigma(w \cdot x + b)]$$

$$= -\log(.70)$$

$$= .36$$

Is lower than the loss when model was wrong (if true y=0):

$$L_{CE}(\hat{y}, y) = -[y \log \sigma(w \cdot x + b) + (1 - y) \log (1 - \sigma(w \cdot x + b))]$$

$$= -[\log (1 - \sigma(w \cdot x + b))]$$

$$= -\log (.30)$$

$$= 1.2$$

Sure enough, loss was bigger when model was wrong!

Cross-Entropy Loss

Logistic Regression

Stochastic Gradient Descent

Logistic Regression

Our goal: minimize the loss

Let's make explicit that the loss function is parameterized by weights θ =(w,b)

• And we'll represent \hat{y} as $f(x; \theta)$ to make the dependence on θ more obvious

We want the weights that minimize the loss, averaged over all examples:

$$\hat{\theta} = \underset{\theta}{\operatorname{argmin}} \frac{1}{m} \sum_{i=1}^{m} L_{CE}(f(x^{(i)}; \theta), y^{(i)})$$

Intuition of gradient descent

How do I get to the bottom of this river canyon?

Look around me 360° Find the direction of steepest slope down Go that way

Our goal: minimize the loss

For logistic regression, loss function is convex

- A convex function has just one minimum
- Gradient descent starting from any point is guaranteed to find the minimum
 - (Loss for neural networks is non-convex)

Let's first visualize for a single scalar w

Q: Given current w, should we make it bigger or smaller?

A: Move w in the reverse direction from the slope of the function

Let's first visualize for a single scalar w

Q: Given current w, should we make it bigger or smaller?

A: Move w in the reverse direction from the slope of the function

Let's first visualize for a single scalar w

Q: Given current w, should we make it bigger or smaller?

A: Move w in the reverse direction from the slope of the function

Gradients

The **gradient** of a function of many variables is a vector pointing in the direction of the greatest increase in a function.

Gradient Descent: Find the gradient of the loss function at the current point and move in the **opposite** direction.

How much do we move in that direction?

- The value of the gradient (slope in our example) $\frac{d}{dw}L(f(x;w),y)$ weighted by a **learning rate** η
- Higher learning rate means move w faster

$$w^{t+1} = w^t - \eta \frac{d}{dw} L(f(x; w), y)$$

Now let's consider N dimensions

We want to know where in the N-dimensional space (of the N parameters that make up θ) we should move.

The gradient is just such a vector; it expresses the directional components of the sharpest slope along each of the *N* dimensions.

Imagine 2 dimensions, w and b

Visualizing the gradient vector at the red point

It has two dimensions shown in the x-y plane

Real gradients

Are much longer; lots and lots of weights

For each dimension w_i the gradient component i tells us the slope with respect to that variable.

- "How much would a small change in w_i influence the total loss function L?"
- We express the slope as a partial derivative ∂ of the loss ∂w_i

The gradient is then defined as a vector of these partials.

The gradient

We'll represent \hat{y} as $f(x; \theta)$ to make the dependence on θ more obvious:

$$\nabla_{\theta} L(f(x;\theta),y)) = \begin{bmatrix} \frac{\partial}{\partial w_1} L(f(x;\theta),y) \\ \frac{\partial}{\partial w_2} L(f(x;\theta),y) \\ \vdots \\ \frac{\partial}{\partial w_n} L(f(x;\theta),y) \end{bmatrix}$$

The final equation for updating θ based on the gradient is thus

$$\theta_{t+1} = \theta_t - \eta \nabla L(f(x; \theta), y)$$

What are these partial derivatives for logistic regression?

The loss function

$$L_{CE}(\hat{y}, y) = -[y \log \sigma(w \cdot x + b) + (1 - y) \log (1 - \sigma(w \cdot x + b))]$$

The elegant derivative of this function (see textbook 5.8 for derivation)

$$\frac{\partial L_{\text{CE}}(\hat{y}, y)}{\partial w_{i}} = [\sigma(w \cdot x + b) - y]x_{j}$$

```
function STOCHASTIC GRADIENT DESCENT(L(), f(), x, y) returns \theta
     # where: L is the loss function
             f is a function parameterized by \theta
             x is the set of training inputs x^{(1)}, x^{(2)}, ..., x^{(m)}
             y is the set of training outputs (labels) y^{(1)}, y^{(2)}, ..., y^{(m)}
\theta \leftarrow 0
repeat til done
   For each training tuple (x^{(i)}, y^{(i)}) (in random order)
      1. Optional (for reporting):
                                               # How are we doing on this tuple?
         Compute \hat{y}^{(i)} = f(x^{(i)}; \theta)
                                               # What is our estimated output \hat{y}?
                                               # How far off is \hat{y}^{(i)}) from the true output y^{(i)}?
         Compute the loss L(\hat{y}^{(i)}, y^{(i)})
      2. g \leftarrow \nabla_{\theta} L(f(x^{(i)}; \theta), y^{(i)})
                                               # How should we move \theta to maximize loss?
      3. \theta \leftarrow \theta - \eta g
                                               # Go the other way instead
return \theta
```

Hyperparameters

The learning rate η is a hyperparameter

- too high: the learner will take big steps and overshoot
- too low: the learner will take too long

Hyperparameters:

- Briefly, a special kind of parameter for an ML model
- Instead of being learned by algorithm from supervision (like regular parameters), they are chosen by algorithm designer.

Stochastic Gradient Descent

Logistic Regression

Logistic Regression

Stochastic Gradient Descent: An example and more details

Working through an example

One step of gradient descent

A mini-sentiment example, where the true y=1 (positive)

Two features:

```
x_1 = 3 (count of positive lexicon words)
```

$$x_2 = 2$$
 (count of negative lexicon words)

Assume 3 parameters (2 weights and 1 bias) in Θ^0 are zero:

$$w_1 = w_2 = b = 0$$

 $\eta = 0.1$

 $w_1 = w_2 = b = 0;$

Update step for update θ is:

$$x_1 = 3; x_2 = 2$$

$$\theta_{t+1} = \theta_t - \eta \nabla L(f(x; \theta), y)$$

where
$$\frac{\partial L_{\text{CE}}(\hat{y}, y)}{\partial w_i} = [\sigma(w \cdot x + b) - y]x_i$$

$$\nabla_{w,b} = \begin{bmatrix} \frac{\partial L_{\text{CE}}(\hat{y}, y)}{\partial w_1} \\ \frac{\partial L_{\text{CE}}(\hat{y}, y)}{\partial w_2} \\ \frac{\partial L_{\text{CE}}(\hat{y}, y)}{\partial b} \end{bmatrix}$$

Update step for update θ is:

$$w_1 = w_2 = b = 0;$$

 $x_1 = 3; x_2 = 2$

$$\theta_{t+1} = \theta_t - \eta \nabla L(f(x; \theta), y)$$

where
$$\frac{\partial L_{\text{CE}}(\hat{y}, y)}{\partial w_j} = [\sigma(w \cdot x + b) - y]x_j$$

$$\nabla_{w,b} = \begin{bmatrix} \frac{\partial L_{\text{CE}}(\hat{y}, y)}{\partial w_1} \\ \frac{\partial L_{\text{CE}}(\hat{y}, y)}{\partial w_2} \\ \frac{\partial L_{\text{CE}}(\hat{y}, y)}{\partial b} \end{bmatrix} = \begin{bmatrix} \frac{\partial L_{\text{CE}}(\hat{y}, y)}{\partial w_2} \\ \frac{\partial L_{\text{CE}}(\hat{y}, y)}{\partial b} \end{bmatrix}$$

Update step for update θ is:

$$w_1 = w_2 = b = 0;$$

 $x_1 = 3; x_2 = 2$

$$\theta_{t+1} = \theta_t - \eta \nabla L(f(x; \theta), y)$$

where
$$\frac{\partial L_{\text{CE}}(\hat{y}, y)}{\partial w_i} = [\sigma(w \cdot x + b) - y]x_i$$

$$\nabla_{w,b} = \begin{bmatrix} \frac{\partial L_{\text{CE}}(\hat{y},y)}{\partial w_1} \\ \frac{\partial L_{\text{CE}}(\hat{y},y)}{\partial w_2} \\ \frac{\partial L_{\text{CE}}(\hat{y},y)}{\partial b} \end{bmatrix} = \begin{bmatrix} (\sigma(w \cdot x + b) - y)x_1 \\ (\sigma(w \cdot x + b) - y)x_2 \\ \sigma(w \cdot x + b) - y \end{bmatrix}$$

 $w_1 = w_2 = b = 0;$

Update step for update θ is:

$$x_1 = 3; x_2 = 2$$

$$\theta_{t+1} = \theta_t - \eta \nabla L(f(x; \theta), y)$$

where
$$\frac{\partial L_{\text{CE}}(\hat{y}, y)}{\partial w_i} = [\sigma(w \cdot x + b) - y]x_i$$

$$\nabla_{w,b} = \begin{bmatrix} \frac{\partial L_{\text{CE}}(\hat{y},y)}{\partial w_1} \\ \frac{\partial L_{\text{CE}}(\hat{y},y)}{\partial w_2} \\ \frac{\partial L_{\text{CE}}(\hat{y},y)}{\partial b} \end{bmatrix} = \begin{bmatrix} (\boldsymbol{\sigma}(w \cdot x + b) - y)x_1 \\ (\boldsymbol{\sigma}(w \cdot x + b) - y)x_2 \\ \boldsymbol{\sigma}(w \cdot x + b) - y \end{bmatrix} = \begin{bmatrix} (\boldsymbol{\sigma}(0) - 1)x_1 \\ (\boldsymbol{\sigma}(0) - 1)x_2 \\ \boldsymbol{\sigma}(0) - 1 \end{bmatrix} = \begin{bmatrix} (\boldsymbol{\sigma}(0) - 1)x_1 \\ (\boldsymbol{\sigma}(0) - 1)x_2 \\ \boldsymbol{\sigma}(0) - 1 \end{bmatrix} = \begin{bmatrix} (\boldsymbol{\sigma}(0) - 1)x_1 \\ (\boldsymbol{\sigma}(0) - 1)x_2 \\ \boldsymbol{\sigma}(0) - 1 \end{bmatrix} = \begin{bmatrix} (\boldsymbol{\sigma}(0) - 1)x_1 \\ (\boldsymbol{\sigma}(0) - 1)x_2 \\ \boldsymbol{\sigma}(0) - 1 \end{bmatrix} = \begin{bmatrix} (\boldsymbol{\sigma}(0) - 1)x_1 \\ (\boldsymbol{\sigma}(0) - 1)x_2 \\ \boldsymbol{\sigma}(0) - 1 \end{bmatrix} = \begin{bmatrix} (\boldsymbol{\sigma}(0) - 1)x_1 \\ (\boldsymbol{\sigma}(0) - 1)x_2 \\ \boldsymbol{\sigma}(0) - 1 \end{bmatrix} = \begin{bmatrix} (\boldsymbol{\sigma}(0) - 1)x_1 \\ (\boldsymbol{\sigma}(0) - 1)x_2 \\ \boldsymbol{\sigma}(0) - 1 \end{bmatrix} = \begin{bmatrix} (\boldsymbol{\sigma}(0) - 1)x_1 \\ (\boldsymbol{\sigma}(0) - 1)x_2 \\ \boldsymbol{\sigma}(0) - 1 \end{bmatrix} = \begin{bmatrix} (\boldsymbol{\sigma}(0) - 1)x_1 \\ (\boldsymbol{\sigma}(0) - 1)x_2 \\ \boldsymbol{\sigma}(0) - 1 \end{bmatrix} = \begin{bmatrix} (\boldsymbol{\sigma}(0) - 1)x_1 \\ (\boldsymbol{\sigma}(0) - 1)x_2 \\ \boldsymbol{\sigma}(0) - 1 \end{bmatrix} = \begin{bmatrix} (\boldsymbol{\sigma}(0) - 1)x_1 \\ (\boldsymbol{\sigma}(0) - 1)x_2 \\ \boldsymbol{\sigma}(0) - 1 \end{bmatrix} = \begin{bmatrix} (\boldsymbol{\sigma}(0) - 1)x_1 \\ \boldsymbol{\sigma}(0) - 1 \end{bmatrix} = \begin{bmatrix} (\boldsymbol{\sigma}(0) - 1)x_1 \\ \boldsymbol{\sigma}(0) - 1 \end{bmatrix} = \begin{bmatrix} (\boldsymbol{\sigma}(0) - 1)x_1 \\ \boldsymbol{\sigma}(0) - 1 \end{bmatrix} = \begin{bmatrix} (\boldsymbol{\sigma}(0) - 1)x_1 \\ \boldsymbol{\sigma}(0) - 1 \end{bmatrix} = \begin{bmatrix} (\boldsymbol{\sigma}(0) - 1)x_1 \\ \boldsymbol{\sigma}(0) - 1 \end{bmatrix} = \begin{bmatrix} (\boldsymbol{\sigma}(0) - 1)x_1 \\ \boldsymbol{\sigma}(0) - 1 \end{bmatrix} = \begin{bmatrix} (\boldsymbol{\sigma}(0) - 1)x_1 \\ \boldsymbol{\sigma}(0) - 1 \end{bmatrix} = \begin{bmatrix} (\boldsymbol{\sigma}(0) - 1)x_1 \\ \boldsymbol{\sigma}(0) - 1 \end{bmatrix} = \begin{bmatrix} (\boldsymbol{\sigma}(0) - 1)x_1 \\ \boldsymbol{\sigma}(0) - 1 \end{bmatrix} = \begin{bmatrix} (\boldsymbol{\sigma}(0) - 1)x_1 \\ \boldsymbol{\sigma}(0) - 1 \end{bmatrix} = \begin{bmatrix} (\boldsymbol{\sigma}(0) - 1)x_1 \\ \boldsymbol{\sigma}(0) - 1 \end{bmatrix} = \begin{bmatrix} (\boldsymbol{\sigma}(0) - 1)x_1 \\ \boldsymbol{\sigma}(0) - 1 \end{bmatrix} = \begin{bmatrix} (\boldsymbol{\sigma}(0) - 1)x_1 \\ \boldsymbol{\sigma}(0) - 1 \end{bmatrix} = \begin{bmatrix} (\boldsymbol{\sigma}(0) - 1)x_1 \\ \boldsymbol{\sigma}(0) - 1 \end{bmatrix} = \begin{bmatrix} (\boldsymbol{\sigma}(0) - 1)x_1 \\ \boldsymbol{\sigma}(0) - 1 \end{bmatrix} = \begin{bmatrix} (\boldsymbol{\sigma}(0) - 1)x_1 \\ \boldsymbol{\sigma}(0) - 1 \end{bmatrix} = \begin{bmatrix} (\boldsymbol{\sigma}(0) - 1)x_1 \\ \boldsymbol{\sigma}(0) - 1 \end{bmatrix} = \begin{bmatrix} (\boldsymbol{\sigma}(0) - 1)x_1 \\ \boldsymbol{\sigma}(0) - 1 \end{bmatrix} = \begin{bmatrix} (\boldsymbol{\sigma}(0) - 1)x_1 \\ \boldsymbol{\sigma}(0) - 1 \end{bmatrix} = \begin{bmatrix} (\boldsymbol{\sigma}(0) - 1)x_1 \\ \boldsymbol{\sigma}(0) - 1 \end{bmatrix} = \begin{bmatrix} (\boldsymbol{\sigma}(0) - 1)x_1 \\ \boldsymbol{\sigma}(0) - 1 \end{bmatrix} = \begin{bmatrix} (\boldsymbol{\sigma}(0) - 1)x_1 \\ \boldsymbol{\sigma}(0) - 1 \end{bmatrix} = \begin{bmatrix} (\boldsymbol{\sigma}(0) - 1)x_1 \\ \boldsymbol{\sigma}(0) - 1 \end{bmatrix} = \begin{bmatrix} (\boldsymbol{\sigma}(0) - 1)x_1 \\ \boldsymbol{\sigma}(0) - 1 \end{bmatrix} = \begin{bmatrix} (\boldsymbol{\sigma}(0) - 1)x_1 \\ \boldsymbol{\sigma}(0) - 1 \end{bmatrix} = \begin{bmatrix} (\boldsymbol{\sigma}(0) - 1)x_1 \\ \boldsymbol{\sigma}(0) - 1 \end{bmatrix} = \begin{bmatrix} (\boldsymbol{\sigma}(0) - 1)x_1 \\ \boldsymbol{\sigma}(0) - 1 \end{bmatrix} = \begin{bmatrix} (\boldsymbol{\sigma}(0) - 1)x_1 \\ \boldsymbol{\sigma}(0) - 1 \end{bmatrix} = \begin{bmatrix} (\boldsymbol{\sigma}(0) - 1)x_1 \\ \boldsymbol{\sigma}(0) - 1 \end{bmatrix} = \begin{bmatrix} (\boldsymbol{\sigma}(0) - 1)x_1 \\ \boldsymbol{\sigma}(0) - 1 \end{bmatrix} = \begin{bmatrix} (\boldsymbol{\sigma}(0) - 1)x_1 \\ \boldsymbol{\sigma}(0) - 1 \end{bmatrix} = \begin{bmatrix} (\boldsymbol{\sigma}(0) - 1)x_1 \\ \boldsymbol{\sigma}(0) - 1 \end{bmatrix} = \begin{bmatrix} (\boldsymbol{\sigma}(0) - 1)x_1 \\ \boldsymbol{\sigma}(0) - 1 \end{bmatrix} = \begin{bmatrix} (\boldsymbol{\sigma}(0) - 1)x_1$$

Update step for update θ is:

$$w_1 = w_2 = b = 0;$$

 $x_1 = 3; x_2 = 2$

$$\theta_{t+1} = \theta_t - \eta \nabla L(f(x; \theta), y)$$

where
$$\frac{\partial L_{\text{CE}}(\hat{y}, y)}{\partial w_i} = [\sigma(w \cdot x + b) - y]x_i$$

$$\nabla_{w,b} = \begin{bmatrix} \frac{\partial L_{\text{CE}}(\hat{y},y)}{\partial w_1} \\ \frac{\partial L_{\text{CE}}(\hat{y},y)}{\partial w_2} \\ \frac{\partial L_{\text{CE}}(\hat{y},y)}{\partial b} \end{bmatrix} = \begin{bmatrix} (\sigma(w \cdot x + b) - y)x_1 \\ (\sigma(w \cdot x + b) - y)x_2 \\ \sigma(w \cdot x + b) - y \end{bmatrix} = \begin{bmatrix} (\sigma(0) - 1)x_1 \\ (\sigma(0) - 1)x_2 \\ \sigma(0) - 1 \end{bmatrix} = \begin{bmatrix} -0.5x_1 \\ -0.5x_2 \\ -0.5 \end{bmatrix} = \begin{bmatrix} -1.5 \\ -1.0 \\ -0.5 \end{bmatrix}$$

$$\nabla_{w,b} = \begin{bmatrix} \frac{\partial L_{\text{CE}}(\hat{y},y)}{\partial w_1} \\ \frac{\partial L_{\text{CE}}(\hat{y},y)}{\partial w_2} \\ \frac{\partial L_{\text{CE}}(\hat{y},y)}{\partial h} \end{bmatrix} = \begin{bmatrix} (\sigma(w \cdot x+b) - y)x_1 \\ (\sigma(w \cdot x+b) - y)x_2 \\ \sigma(w \cdot x+b) - y \end{bmatrix} = \begin{bmatrix} (\sigma(0)-1)x_1 \\ (\sigma(0)-1)x_2 \\ \sigma(0)-1 \end{bmatrix} = \begin{bmatrix} -0.5x_1 \\ -0.5x_2 \\ -0.5 \end{bmatrix}$$

Now that we have a gradient, we compute the new parameter vector θ^1 by moving θ^0 in the opposite direction from the gradient:

$$\theta_{t+1} = \theta_t - \eta \nabla L(f(x; \theta), y)$$
 $\eta = 0.1;$

$$\theta^1 =$$

$$\nabla_{w,b} = \begin{bmatrix} \frac{\partial L_{\text{CE}}(\hat{y},y)}{\partial w_1} \\ \frac{\partial L_{\text{CE}}(\hat{y},y)}{\partial w_2} \\ \frac{\partial L_{\text{CE}}(\hat{y},y)}{\partial h} \end{bmatrix} = \begin{bmatrix} (\sigma(w \cdot x + b) - y)x_1 \\ (\sigma(w \cdot x + b) - y)x_2 \\ \sigma(w \cdot x + b) - y \end{bmatrix} = \begin{bmatrix} (\sigma(0) - 1)x_1 \\ (\sigma(0) - 1)x_2 \\ \sigma(0) - 1 \end{bmatrix} = \begin{bmatrix} -0.5x_1 \\ -0.5x_2 \\ -0.5 \end{bmatrix} = \begin{bmatrix} -1.5 \\ -1.0 \\ -0.5 \end{bmatrix}$$

Now that we have a gradient, we compute the new parameter vector θ^1 by moving θ^0 in the opposite direction from the gradient:

$$\theta_{t+1} = \theta_t - \eta \nabla L(f(x; \theta), y)$$
 $\eta = 0.1;$

$$eta^1 = \left[egin{array}{c} w_1 \\ w_2 \\ b \end{array} \right] - eta \left[egin{array}{c} -1.5 \\ -1.0 \\ -0.5 \end{array} \right]$$

$$\nabla_{w,b} = \begin{bmatrix} \frac{\partial L_{\text{CE}}(\hat{y},y)}{\partial w_1} \\ \frac{\partial L_{\text{CE}}(\hat{y},y)}{\partial w_2} \\ \frac{\partial L_{\text{CE}}(\hat{y},y)}{\partial h} \end{bmatrix} = \begin{bmatrix} (\sigma(w \cdot x + b) - y)x_1 \\ (\sigma(w \cdot x + b) - y)x_2 \\ \sigma(w \cdot x + b) - y \end{bmatrix} = \begin{bmatrix} (\sigma(0) - 1)x_1 \\ (\sigma(0) - 1)x_2 \\ \sigma(0) - 1 \end{bmatrix} = \begin{bmatrix} -0.5x_1 \\ -0.5x_2 \\ -0.5 \end{bmatrix} = \begin{bmatrix} -1.5 \\ -1.0 \\ -0.5 \end{bmatrix}$$

Now that we have a gradient, we compute the new parameter vector θ^1 by moving θ^0 in the opposite direction from the gradient:

$$egin{aligned} heta_{t+1} &= & heta_t - \eta \,
abla L(f(x; heta),y) \end{aligned} \qquad \eta = 0.1; \ heta^1 &= \left[egin{aligned} w_1 \ w_2 \ h \end{array}
ight] - \eta \left[egin{aligned} -1.5 \ -1.0 \ -0.5 \end{array}
ight] = \left[egin{aligned} .15 \ .1 \ .05 \end{array}
ight] \end{aligned}$$

$$\nabla_{w,b} = \begin{bmatrix} \frac{\partial L_{\text{CE}}(\hat{y},y)}{\partial w_1} \\ \frac{\partial L_{\text{CE}}(\hat{y},y)}{\partial w_2} \\ \frac{\partial L_{\text{CE}}(\hat{y},y)}{\partial b} \end{bmatrix} = \begin{bmatrix} (\sigma(w \cdot x + b) - y)x_1 \\ (\sigma(w \cdot x + b) - y)x_2 \\ \sigma(w \cdot x + b) - y \end{bmatrix} = \begin{bmatrix} (\sigma(0) - 1)x_1 \\ (\sigma(0) - 1)x_2 \\ \sigma(0) - 1 \end{bmatrix} = \begin{bmatrix} -0.5x_1 \\ -0.5x_2 \\ -0.5 \end{bmatrix} = \begin{bmatrix} -1.5 \\ -1.0 \\ -0.5 \end{bmatrix}$$

Now that we have a gradient, we compute the new parameter vector θ^1 by moving θ^0 in the opposite direction from the gradient:

$$egin{align} heta_{t+1} &= & heta_t - \eta \,
abla L(f(x; heta),y) & \eta = 0.1; \ heta^1 &= & egin{bmatrix} w_1 \ w_2 \ h \end{bmatrix} - \eta egin{bmatrix} -1.5 \ -1.0 \ -0.5 \end{bmatrix} = egin{bmatrix} .15 \ .1 \ 05 \end{bmatrix} \end{aligned}$$

Note that enough negative examples would eventually make w₂ negative

Mini-batch training

Stochastic gradient descent chooses a single random example at a time.

That can result in choppy movements

More common to compute gradient over batches of training instances.

Batch training: entire dataset

Mini-batch training: m examples (512, or 1024)

Logistic Regression

Stochastic Gradient Descent: An example and more details

Stanford CS124 | From Languages to Information (2021)

CS | 24(202 |)·课程资料包 @ShowMeAl

视频 中英双语字幕

课件 一键打包下载

笔记 官方笔记翻译

代码 作业项目解析

视频·B 站[扫码或点击链接]

https://www.bilibili.com/video/BV1YA411w7ym

课件&代码・博客[扫码或点击链接]

http://blog.showmeai.tech/cs124/

文本处理

信息检索

PageRank

编辑距离

社交网络分析

Awesome Al Courses Notes Cheatsheets是 ShowMeAl 资料库的分支系列, 覆盖最具知名度的 TOP20+ 门 AI 课程,旨在为读者和学习者提供一整套高品 质中文学习笔记和速查表。

点击课程名称,跳转至课程**资料包**页面,**一键下载**课程全部资料!

机器学习	深度学习	自然语言处理	计算机视觉		
Stanford · CS229	Stanford · CS230	Stanford · CS224n	Stanford · CS23In		
# Awasoma Al Courses Notes Chartsheets: 挂绫面新由					

wesome Ai Courses Notes Chedisheets.

知识图谱	图机器学习	深度强化学习	自动驾驶
Stanford · CS520	Stanford · CS224W	UCBerkeley · CS285	MIT · 6.S094

微信公众号

资料下载方式 2: 扫码点击底部菜单栏

称为 **AI 内容创作者?** 回复 [添砖加瓦]