# **Principles of Programming Languages**CS 314

Recitation 2



Context-free grammar

Derivation

Parse tree

Context-free grammar

Derivation

Parse tree

Specify a DFA using a transition diagram and a formal FSA specification <S, s, F, T> that recognizes the following language:

"All strings of 0's and 1's that, when interpreted as a binary number, are divisible by 5. In other words, value(binary number) modulo 5 = 0."



Context-free grammar

Derivation

Parse tree

{ w | w has at least three 1}

{ w | w has at least three 1}

#### CFG:

<\$> ::= <A>1<A>1<A>1<A>

<Α>::=0<Α> | 1<Α> | ε

{ w | |w| is odd, and the symbol in the middle of w is 0 }

{ w | |w| is odd, and the symbol in the middle of w is 0 }

#### CFG:

Specify a context-free grammar in BNF notation that generates the following language.

{  $a^{3n}b^{3n}c^{3n}d^{4n} \mid n \ge 0$ }, with alphabet  $\Sigma = \{a, b, c, d\}$ 

Specify a context-free grammar in BNF notation that generates the following language.

{  $a^{3n}b^{3n}c^{3n}d^{4n} \mid n \ge 0$ }, with alphabet  $\Sigma = \{a, b, c, d\}$ 

Not a context-free grammar!

Context-free grammar

Derivation

Parse tree

#### Given a CFG:

Give a leftmost and a rightmost derivation for the sentence: i+i\*i

### RUTGERS

## Derivation – Solution

| <e></e> |                    | <e></e> |                         |
|---------|--------------------|---------|-------------------------|
| ⇒L      | <e>+<t></t></e>    | ⇒R      | <e>+<t></t></e>         |
| ⇒L      | <t>+<t></t></t>    | ⇒R      | <e>+<t>*<f></f></t></e> |
| ⇒L      | <f>+<t></t></f>    | ⇒R      | <e>+<t>*i</t></e>       |
| ⇒L      | i+ <t></t>         | ⇒R      | <e>+<f>*i</f></e>       |
| ⇒L      | i+ <t>*<f></f></t> | ⇒R      | <e>+i*i</e>             |
| ⇒L      | i+ <f>*<f></f></f> | ⇒R      | <t>+i*i</t>             |
| ⇒L      | i+i* <f></f>       | ⇒R      | <f>+i*i</f>             |
| ⇒L      | i+i*i              | ⇒R      | i+i*i                   |

Given a CFG:

<E>::=<E>+<T>|<E>-<T>|<T>
<T>::=<T>\*<F>|<T>/<F>|<F>
<F>::=(<E>)|i

sentence: i+i\*i

Context-free grammar

Derivation

Parse tree

Show the corresponding parse trees for the derivations we got in last example

#### Given a CFG:

sentence: i+i\*i

$$\Rightarrow$$
L i+

$$\Rightarrow$$
L i+\*

$$\Rightarrow$$
L i+\*

$$\Rightarrow$$
L  $i+i*$ 

Show the corresponding parse trees for the derivations we got in last example

#### Given a CFG:

sentence: i+i\*i

$$\Rightarrow$$
L i+

$$\Rightarrow$$
L i+\*

$$\Rightarrow$$
L i+\*

$$\Rightarrow$$
L i+i\*



Context-free grammar

Derivation

Parse tree

## Ambiguous Grammars - Example

#### Given grammar:

```
<exp> ::= <exp> <oper><exp> |(<exp>)|i
<oper>::= +|-|*|/
```

Show that the above grammar is ambiguous.

## RUTGERS

# Ambiguous Grammars - Solution

For the sentence i+i\*i, it has two distinct rightmost derivations.

So the grammar is ambiguous.

```
<exp> ::= <exp> <oper><exp> |(<exp>)|i
<oper>::= +|-|*|/
```

```
(1)
                               (2)
<exp>
                               <exp>
     <exp><oper><exp>
                                     <exp><oper><exp>
⇒R
     <exp><oper>i
                                     <exp><oper><exp><oper><exp>
     <exp>*i
\Rightarrow R
                                     <exp><oper>i
                                     <exp><oper><exp>*i
     <exp><oper><exp>*i
⇒R
     <exp><oper>i*i
                                     <exp><oper>i*i
\Rightarrow R
     <exp>+i*i
                                     <exp>+i*i
\Rightarrow R
                               \Rightarrow R
     i+i*i
                                    i+i*i
⇒R
                               ⇒R
```