Лист №1. Конверсия и редукция

 λ -исчисление, 2024

- 1.1. Перепишите в формальной нотации: $y(\lambda x.\ xy(\lambda z.w.\ yz))$
 - Перепишите в упрощённом виде: $(\lambda v'(\lambda v''((((\lambda vv)v')v'')((v''(\lambda v'''(v'v'')))v''))))$
- 1.2. Положим $X\equiv \mathsf{SI}$. Покажите, что XXXX=X(X(XX)). Правда ли, что $X^nX=XX^{\sim n}$ справедливо для всех $n\in\mathbb{N}_0$?
- 1.3. Покажите, что выражение имеет нормальную форму:
 - $[\mathbf{a}] \ (\lambda y.\ yyy)((\lambda a.b.\ a)\mathbf{I}(\mathbf{SS})),$
- [b] SSSS,
- $[c]^*$ S(SS)(SS)S.
- 1.4. Найдите λ -выражение M, такое, что $\forall N \in \Lambda: MN = MM$.
- 1.5. Докажите, что **не** существует такого $F \in \Lambda$, что $\forall M, N \in \Lambda : F(MN) = M$.
- 1.6. Пусть $A \equiv \mathsf{SKKK}$. Постройте такое λ -выражение M, чтобы выполнялась конверсия $\mathsf{SIMK}A = \mathsf{SMSK}A$.
- 1.7. Докажите, что правило η -конверсии ($\lambda x.\ Mx = M,\ \forall M, x: x \notin \mathrm{TV}(M)$) эквивалентно тому, что «функции равны, если равны их значения»:

$$Mx = Nx \Rightarrow M = N, \quad \forall M, N, x : x \notin TV(MN).$$

- 1.8. Докажите, что: [a] $\mathbf{I} \# \mathbf{K}$, [b] $\mathbf{I} \# \mathbf{S}$, [c]* xy # xx.
 - Постройте последовательность $M_0, M_1, ...$, такую, что $M_i \,\#\, M_i$, если $i \neq j$.
- 1.9. Докажите, что $P \# Q \iff (\lambda + (P = Q)) \vdash \mathbf{K} = \mathbf{K}_*$
- 1.10. Постройте последовательность λ -выражений M_0, M_1, \dots так, чтобы $M_0 = v$ и для любого $n \in \mathbb{N}_0$ выполнялось $M_{n+1} = M_{n+2} M_n$.
- 1.11. Докажите, что $\forall M \in \Lambda: \, \exists N \in \Lambda: \, N$ $\longrightarrow_{\beta} M$, причём N в β -нормальной форме.
- 1.12. Обозначим через $M \uparrow N$ условие $\exists L : (L \twoheadrightarrow M) \land (L \twoheadrightarrow N)$. Покажите, что: [a] $(\lambda x.\ ax)b \uparrow (\lambda y.\ yb)a$, [b] $(\lambda x.\ xc)c \uparrow (\lambda x.\ xx)c$, [c] $(\lambda x.\ bx)c \uparrow (\lambda x.\ x)bc$
- 1.13. Постройте λ -выражения со следующими редукционными графами:

- 1.14. Нарисуйте редукционные графы следующих λ -выражений:
 - [a] $(\lambda x. \mathbf{I} xx)(\lambda x. \mathbf{I} xx)$,

- [b] $(\lambda x. \mathbf{I}(xx))(\lambda x. \mathbf{I}(xx))$
- 1.15. Пусть $M\equiv AAx$, где $A\equiv \lambda a,x,z.$ z(aax). Докажите, что редукционный граф ${\rm Gr}(M)$ содержит n-мерный куб при всех $n\in\mathbb{N}_0.$

1.16. Покажите, что концептуально существует только одно λ -выражение (а именно Ω), имеющее следующий редукционный граф:

1.17. Расширим множество λ -выражений двумя константами δ, ε . Также добавим новое правило редукции: $\delta MM \to \varepsilon$ для любого $M \in \Lambda \cup \{\delta, \varepsilon\}$. Докажите, что в получившейся системе **не** выполняется теорема Чёрча-Россера.

Подсказка: найдите выражения $C.\ D$ такие, что

$$Cx \twoheadrightarrow \delta x(Cx),$$

 $D \twoheadrightarrow CD.$

Докажите, что $D \twoheadrightarrow \varepsilon$ и $D \twoheadrightarrow C\varepsilon$, но у ε и $C\varepsilon$ нет общего редукта.

- 1.18. Пусть \beth_1 и \beth_2 коммутирующие отношения на множестве X. Покажите, что $\mathrm{Trans}(\beth_1)$ и $\mathrm{Trans}(\beth_2)$ также коммутируют.
- 1.19. λ -выражение M сильно нормализуется (нотация $\mathrm{SN}(M)$), если **не** существует бесконечного редукционного пути, начинающегося в M. Докажите, что:
 - [а] $SN(M) \Rightarrow M$ имеет нормальную форму;
 - [b] $SN(M) \Rightarrow Gr(M)$ конечен. Верно ли обратное?
- 1.20. Рассмотрим

$$\begin{split} \operatorname{SN}_0 &\coloneqq \{M \in \Lambda \mid \operatorname{SN}(M)\}, \\ \operatorname{SN}_{n+1} &\coloneqq \{M \in \Lambda \mid \forall N_1, N_2, ..., N_k \in \operatorname{SN}_n : MN_1N_2...N_k \in \operatorname{SN}_n\}. \end{split}$$

Докажите, что

- [а] $SN_1 \subset SN_0$, но $SN_1 \neq SN_0$.
- $[b] \ \mathrm{SN}_1 = \mathrm{SN}_2 = \mathrm{SN}_3 = \dots$