

MedicAlgorithmics / PocketECG III

Page: 1 of 47

EMC Test Report

Project Number: 3374150

Report Number: 3374150EMC06 Revision Level: 2

Client: MedicAlgorithmics

Equipment Under Test: Mobile Computer with WCDMA/GSM/WiFi/BT

Model: PocketECG III

FCC Rule Parts: Part 2, Part 22(H), Part 24(E)

IC Standards: RSS-132, Issue 3; RSS-133, Issue 6

Report issued on: 30OCT2014

Test Result: Compliant

Tested by:

Reviewed by:

Forster, EMC Engineer

Remarks:

This report details the results of the testing carried out on one sample, the results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or Testing done by SGS International Electrical Approvals in connection with distribution or use of the product described in this report must be approved by SGS international Electrical Approvals in writing.

MedicAlgorithmics / PocketECG III

Page: 2 of 47

Table of Contents

1 S	SUMMARY OF TEST RESULTS	3
1.1	Modifications Required to Compliance	3
2 G	GENERAL INFORMATION	4
2.1	CLIENT INFORMATION	/
2.1		
2.3	GENERAL INFORMATION OF EUT	
2.4		
3 U	US CELLULAR BAND	5
3.1	RF OUTPUT POWER	5
3.2		
3.3	CONDUCTED BAND EDGE AND SPURIOUS EMISSIONS	
3.4	RADIATED SPURIOUS EMISSIONS	
3.5	Effective Radiated Power	19
3.6	Frequency Stability	21
4 U	US PCS BAND	23
4.1	RF OUTPUT POWER	23
4.2	PEAK TO AVERAGE RATIO	25
4.3	OCCUPIED BANDWIDTH	27
4.4	CONDUCTED BAND EDGE AND SPURIOUS EMISSIONS	
4.5	EFFECTIVE ISOTROPIC RADIATED POWER	
4.6		
4.7	Frequency Stability	45
5 R	REVISION HISTORY	47

MedicAlgorithmics / PocketECG III

Page: 3 of 47

1 Summary of Test Results

FCC Part Sections	Test Description	Test Limit	Test Condition	Test Result		
Transmit Mode Testing						
2.1046	Conducted Output Power	N/A		Pass		
24.232(d) RSS-132 5.4 RSS-133 6.4	Peak-to-Average Ratio	<13 dB		Pass		
2.1049 22.917(a) 24.238(a)	Occupied Bandwidth	N/A	Conducted	Pass		
2.1051 22.917(a) 24.238(a)	Band Edge / Conducted Spurious Emissions	< 43 +10log ₁₀ (P _[Watts]) at band edge and for all out of band emissions		Pass		
22.913(a)(2)	Effective Radiated Power	< 7 Watts max ERP		Pass		
RSS-132 5.4	Effective Radiated Power	< 11.5 Watts max ERP		Pass		
24.232(c) RSS-133 6.4	Effective Isotropic Radiated Power	< 2 Watts max EIRP		Pass		
2.1053 22.917(a) 24.238(a) RSS-132 5.5 RSS-133 6.5	Radiated Spurious Emissions	< 43 +10log ₁₀ (P _[Watts]) at band edge and for all out of band emissions	Radiated	Pass		
2.1055 22.917(a) 24.238(a) RSS-132 5.3 RSS-132 6.3	Frequency Stability	<2.5 ppm		Pass		

Modifications Required to Compliance 1.1

None

MedicAlgorithmics / PocketECG III

Page: 4 of 47

General Information

Client Information 2.1

Name: Medicalgorithmics

Al. Jerozolimskie 81 Address:

City, State, Zip, Country: 02-001 Warsaw

Poland

Test Laboratory 2.2

Name: SGS North America, Inc.

Address: 620 Old Peachtree Road NW, Suite 100

City, State, Zip, Country: Suwanee, GA 30024, USA

Accrediting Body: A2LA

Type of lab: Testing Laboratory

Certificate Number: 3212.01

General Information of EUT 2.3

Marketing Name: PocketECG III

Model: PocketECG III

P3TR13-00013A(Conducted Measurements)

P3TR13-00020A(Conducted Measurements) Serial Number: P3TR13-00002A(Radiated Measurements)

P3TR13-00004A(Radiated Measurements)

Hardware Version: R904

Software Version 10.001-6.000-8287 Rated Voltage: 3.8 VDC, battery

Test Voltage: Fully charged 3.8 Vdc, battery

Sample Received Date: 10DEC2013

Dates of testing: 10 FEB - 03JUN2014

Operating Modes and Conditions

The EUT was exercised by connecting a CMW 500 Communications Tester to the device. The CMW was used to control signaling and power modes during testing.

MedicAlgorithmics / PocketECG III

Page: 5 of 47

US Cellular Band

RF Output Power 3.1

3.1.1 Test Result

Test Description	Basic Standards	Test Result
RF Output Power	FCC Part 2.1046	Reported

3.1.2 Test Method

A radio link was established between EUT and Radio Communication Tester. The output power of the EUT was set to maximum value by using the maximum power setting on the Radio Communications Tester. The output power was measured by a spectrum analyzer with the use of a directional coupler.

MedicAlgorithmics / PocketECG III

Page: 6 of 47

3.1.3 **Test Site**

SGS EMC Laboratory, Suwanee, GA

Environmental Conditions

Temperature: 22.2 °C Relative Humidity: 47.6 % Atmospheric Pressure: 100.9 kPa

3.1.4 **Test Equipment**

Equipment	Model	Manufacturer	Asset Number	Cal Due Date
Radio Communications Tester	CMW-500	R & S	B079788	18OCT2014

Note: The calibration period equipment is 1 year.

3.1.5 Test Data

Mode	Band	Frequency (MHz)	Channel	Average Power (dBm)
GSM ⁽¹⁾	850	824-849	Max 128-251	26.3
GSM ⁽²⁾	850	824-849	Max 128-251	32.3
WCDMA	Band V	824-849	Max 4132-4233	23.2

- 1) Maximum Frame-Averaged Power
- 2) Maximum Burst-Averaged Power

MedicAlgorithmics / PocketECG III

Page: 7 of 47

Occupied Bandwidth

Test Result 3.2.1

Test Description	Basic Standards	Test Result
Occupied Bandwidth	FCC Part 2.1049	Reported

3.2.2 Test Method

The occupied bandwidth is the frequency bandwidth such that below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power by a given emission. The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts. The resolution bandwidth shall be set to as close to 1% of the selected span without being below 1%. The video bandwidth shall be set to 3 times the resolution bandwidth. Video averaging is not permitted. Where practical, a sample detector shall be used since a peak detector may produce a wider than actual bandwidth.

A radio link was established between EUT and Radio Communications Tester. The output power of the EUT was set to maximum value by using the maximum power setting on the Radio Communications Tester. The occupied bandwidth is measured using spectrum analyzer's occupied bandwidth measurement. RBW is set to 3 kHz on spectrum analyzer.

The bandwidth of 99% power can be read on spectrum analyzer.

The measurement was conducted at the center channel:

3.2.3 Test Site

SGS EMC Laboratory, Suwanee, GA

3.2.4 **Test Equipment**

Equipment	Model	Manufacturer	Asset Number	Cal Due Date
Spectrum Analyzer	ESU40	R&S	B085629	07OCT14
Radio Communications Tester	CMW-500	R&S	B085757	29OCT2014
Power Splitter	ZFRSC-183-S+	Mini-Circuits	B101743	24SEP2014
Coaxial Cable	Sucoflex 102	Huber+Suhner	B079824	29OCT2014

Note: The calibration period equipment is 1 year.

Cellular Band				
Frequency				
Mode (MHz) Bandwidth(kHz)				
GPRS 836.6		240		
EGPRS	836.6	243		
WCDMA	836.6	4144		

Date: 6.JUN.2014 10:35:03

Page: 9 of 47

Date: 6.JUN.2014 10:30:06

Date: 6.JUN.2014 10:46:55

MedicAlgorithmics / PocketECG III

Page: 10 of 47

Conducted Band Edge and Spurious Emissions

3.3.1 Test Result

Test Description	Basic Standards	Test Result
Conducted spurious emissions and Band Edge	2.1051 22.917(a)	Pass

3.3.2 Test Method

The levels of the carrier and the various conducted spurious and harmonics frequencies are measured by means of a calibrated spectrum analyzer. The emissions spectrum emanating from the EUT transmit antenna port is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. On any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB. Compliance is based on the use of a spectrum analyzer employing a resolution bandwidth of 1 MHz or greater. In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of a least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emissions bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

3.3.3 Test Site

SGS EMC Laboratory, Suwanee, GA

3.3.4 **Test Equipment**

• •				
Equipment	Model	Manufacturer	Asset Number	Cal Due Date
Spectrum Analyzer	ESU40	R&S	B085629	07OCT 2014
Radio Communications Tester	CMW-500	R&S	B079788	18 OCT 2014
Power splitter	ZFRSC-183-S+	Mini-Circuits	EA01	Verified Before Use
Attentuator	BW-S10W2+	Mini-Circuits		Verified Before Use
Attenuator	BW-S10W2+	Mini-Circuits		Verified Before Use
Signal Generator	HMC-T2240	Hittite	B0799813	Verified Before Use
Coaxial Cable	086-112SM+	Mini-Circuits	NA	Verified Before Use
Coaxial Cable	086-112SM+	Mini-Circuits	NA	Verified Before Use

Note: The calibration period equipment is 1 year.

MedicAlgorithmics / PocketECG III

Page: 11 of 47

3.3.5 Test Data

Test Date: 2 Aug 2012

WCDMA CH 837

MedicAlgorithmics / PocketECG III

Page: 12 of 47

GSM Ch190

Band Edges

WCDMA BandV

Date: 27.FEB.2014 14:12:21

Date: 27.FEB.2014 14:14:15

MedicAlgorithmics / PocketECG III

Page: 13 of 47

GSM 850 GPRS

Date: 27.FEB.2014 14:44:27

Date: 27.FEB.2014 14:43:18

Date: 27.FEB.2014 14:35:30

Date: 27.FEB.2014 14:36:59

MedicAlgorithmics / PocketECG III

Page: 14 of 47

Radiated Spurious Emissions

Test Result 3.4.1

Test Description	Basic Standards	Test Result
Radiated Spurious Emissions	FCC Part 2.1053 FCC Part 22.917(a)	Pass

342 Test Method

The levels of the carrier and the various conducted spurious and harmonics frequencies are measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. On any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB. Compliance is based on the use of a spectrum analyzer employing a resolution bandwidth of 1 MHz or greater. In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of a least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emissions bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

The EUT was manipulated through each of its three orthogonal axes with the measurement oriented in both vertical and horizontal polarizations.

A radio link was established between EUT and Radio Communications Tester. The output power of the EUT was set to maximum value by using the maximum power setting on the Radio Communications Tester.

The measurement was conducted at the middle channels, 4183 in RC3/SO55 and 190 in GPRS.

3.4.3 **Test Equipment**

Equipment	Model	Manufacturer	Asset Number	Cal Due Date
17 FT N TYPE COAX CABLE	HS 84133232	HUBER&SUHNER	B079661	6-Aug-2014
ANTENNA, BILOG	JB6	SUNOL	B079690	24-Sep-2014
RF CABLE - 12000MM (10KHZ - 18GHZ)	SF106	HUBER&SUHNER	B079714	6-Aug-2014
COAXIAL CABLE	SUCOFLEX 102	HUBER&SUHNER	B079824	29-Oct-2014
PREAMPLIFIER	PAM-0118P	AH Systems	385	8-Oct-2014
DRG HORN (MEDIUM)	3117	ETS-LINDGREN	B079699	25-Mar-2014
RF CABLE	SF106	HUBER&SUHNER	B085892	16-Oct-2014
WIDEBAND RADIO COMMUNICATION TESTER	CMW 500	ROHDE & SCHWARZ	B085757	24-Oct-2014

Note: The calibration period equipment is 1 year.

MedicAlgorithmics / PocketECG III

Page: 15 of 47

3.4.4 Test Data

Test Date: 21 - 30 Jan 2014

There were no spurious emissions within 20 dB of the limit.

3.4.5 **Plots**

WCDMA Band V (Vertical, 30-1600MHz)

WCDMA Band V (Horizontal, 30-1600MHz)

MedicAlgorithmics / PocketECG III

Page: 16 of 47

WCDMA Band V (Vertical, 1.6-18GHz)

WCDMA Band V (Horizontal, 1.6-18GHz)

MedicAlgorithmics / PocketECG III

Page: 17 of 47

GSM850 (Vertical, 30-1600MHz)

MedicAlgorithmics / PocketECG III

Page: 18 of 47

GSM850 (Vertical, 1.6-10GHz)

MedicAlgorithmics / PocketECG III

Page: 19 of 47

Effective Radiated Power

Test Result 3.5.1

Test Description	Basic Standards	Test Result
Effective Radiated Power	FCC Part 22.913	Pass

3.5.2 Test Method

The measurements above 1 GHz are carried out in a fully anechoic chamber. Below 1 GHz, the measurements are carried out in semi-anechoic chamber. The EUT was placed on a 0.8 meter high nonconductive table at a 3 meters test distance from the test receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT. The height of receiving antenna is varied from 1 to 4 m to find the maximum power value. A radio link was established between EUT and Radio Communications Tester. The output power of the EUT was set to maximum value by using the maximum power setting on the Radio Communications Tester. A RMS detector is used and RBW is set to 3MHz. Then the antenna height and turn table rotation is adjusted till the maximum power value is founded on spectrum analyzer.

The EUT was positioned through each of its three orthogonal axes and the highest level was reported.

A dipole antenna (below 1 GHz) or double-ridged waveguide antenna (above 1 GHz) was substituted in place of the EUT. The substitution antenna will be driven by a signal generator. The receive antenna is varied to find the maximum response to the spectrum analyzer. Then the level of signal generator will be adjusted to achieve the same power value on the spectrum analyzer or receiver.

The ERP/EIRP of the EUT can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.

3.5.3 Test Site

3m Semi-anechoic chamber, SGS EMC Laboratory, Suwanee, GA

MedicAlgorithmics / PocketECG III

Page: 20 of 47

3.5.4 **Test Equipment**

Equipment	Model	Manufacturer	Asset Number	Cal Due Date
Receiver	ESU40	R&S	B079629	07OCT 2014
Bilog Antenna	JB6	Sunol	B079689	24 SEP 2014
Signal Generator	HMC T2240	Hittite	B079813	NCR
Coaxial Cable	Sucoflex 106	Huber+Suhner	B079714	06AUG2014
Coaxial Cable	Sucoflex 106	Huber+Suhner	B079659	06AUG2014
Radio Communications Tester	CMW-500	R&S	B085757	24 Oct 2014
Dipole	3121D-DB4	ETS-Lindgren	B085753	16 Mar 2015

Note: The calibration period equipment is 1 year.

3.5.5 Test Data

Data in last column is ERP.

			SigGen	Cable	Net to Sub		Antenna		
Freq			Out	Loss	Ant	Reading	Gain	EUT Level	ERP/EIRP
(MHz)	Pol	Mode	(dBm)	(dB)	(dBm)	(dBuV)	(dBi)	(dBuV)	(dBm)
836.5	Н	GSM EDGE	0.63	0.63	0	75.8	0.0	101.9	26.1
836.5	V	GSM EDGE	0.63	0.63	0	71.3	0.0	97.1	25.9
836.5	Н	GSM GPRS	0.63	0.63	0	75.8	0.0	107.9	32.1
836.5	V	GSM GPRS	0.63	0.63	0	71.3	0.0	103.1	31.9
836.5	Н	WCDMA	0.63	0.63	0	75.8	0.0	97.8	22.0
836.5	V	WCDMA	0.63	0.63	0	71.3	0.0	92.8	21.6

MedicAlgorithmics / PocketECG III

Page: 21 of 47

Frequency Stability

3.6.1 Test Result

Test Description	Basic Standards	Test Result
Frequency Stability	2.1055 22.917(a)	Pass

3.6.2 Test Method

The EUT was placed inside the Environmental Chamber and was left inside chamber to stabilize to set temperature for minimum of thirty minutes before any measurements were made.

3.6.3 **Test Site**

SGS EMC Laboratory, Suwanee, GA

Environmental Conditions

Temperature: 23.6 °C Relative Humidity: 56.8 % Atmospheric Pressure: 97.4 kPa

Test Equipment 3.6.4

Equipment	Model	Manufacturer	Asset Number	Cal Due Date
DC Power Supply	382280	Extech	EA03	14MAR2015
Wideband Radio Communications Tester	CMW500	Rohde & Schwarz	B085757	29OCT2014
Coaxial Cable	1302	Mini-circuits	NA	NCR
Environmental Chamber	8800	Thermotron	4476	16NOV2014

Note: The calibration period equipment is 1 year.

MedicAlgorithmics / PocketECG III

Page: 22 of 47

3.6.5 Test Data

Test Date: 03JUN2014

GSM 850

Voltage	Pow er	Temp	Frequency	Freq Dev max	Freq Dev	Deviation
%	V_{DC}	°C	Hz	Hz	ppm	%
100%	3.70	+20 (Ref)	836,519,999		+0.00	+0.000000
100%	3.70	-30	836,520,034	+34	+0.04	+0.000004
100%	3.70	-20	836,520,034	+34	+0.04	+0.000004
100%	3.70	-10	836,520,008	+8	+0.01	+0.000001
100%	3.70	0	836,519,980	-20	-0.02	-0.000002
100%	3.70	+10	836,519,965	-35	-0.04	-0.000004
100%	3.70	+20	836,519,987	-13	-0.02	-0.000002
100%	3.70	+30	836,519,998	-2	-0.00	-0.000000
100%	3.70	+40	836,519,980	-20	-0.02	-0.000002
100%	3.70	+50	836,519,993	-7	-0.01	-0.000001
115%	4.23	+20	836,519,978	-22	-0.03	-0.000003
Battery End	3.35	+20	836,519,970	-30	-0.04	-0.000004

WCDMA

Voltage	Pow er	Temp	Frequency	Freq Dev max	Freq Dev	Deviation
%	V_{DC}	°C	Hz	Hz	ppm	%
100%	3.70	+20 (Ref)	836,600,000		+0.00	+0.000000
100%	3.70	-30	836,599,981	-19	-0.02	-0.000002
100%	3.70	-20	836,599,980	-20	-0.02	-0.000002
100%	3.70	-10	836,599,983	-17	-0.02	-0.000002
100%	3.70	0	836,599,983	-18	-0.02	-0.000002
100%	3.70	+10	836,599,977	-23	-0.03	-0.000003
100%	3.70	+20	836,599,981	-19	-0.02	-0.000002
100%	3.70	+30	836,600,020	+20	+0.02	+0.000002
100%	3.70	+40	836,599,980	-20	-0.02	-0.000002
100%	3.70	+50	836,600,009	+9	+0.01	+0.000001
115%	4.23	+20	836,599,994	-6	-0.01	-0.000001
Battery End	3.35	+20	836,599,993	-7	-0.01	-0.000001

MedicAlgorithmics / PocketECG III

Page: 23 of 47

US PCS Band

RF Output Power

4.1.1 Test Result

Test Description	Basic Standards	Test Result
RF Output Power	FCC Part 2.1046	Pass

4.1.2 Test Method

A radio link was established between EUT and Radio Communication Tester. The output power of the EUT was set to maximum value by using the maximum power setting on the Radio Communications Tester. The output power was measured by a spectrum analyzer with the use of a directional coupler.

For CDMA Band 1, the measurement will be conducted at three channels: 25, 600, and 1175 (low, middle and high channels of the N American PCS Band).

MedicAlgorithmics / PocketECG III

Page: 24 of 47

4.1.3 **Test Site**

SGS EMC Laboratory, Suwanee, GA

Environmental Conditions

Temperature: 25.6 °C Relative Humidity: 55.2 % Atmospheric Pressure: 97.6 kPa

4.1.4 **Test Equipment**

Equipment	Model	Manufacturer	Asset Number	Cal Due Date
Radio Communications Tester	CMW-500	R & S	B079788	18 OCT 2014

Note: The calibration period equipment is 1 year.

4.1.5 Test Data

Mode	Band	Frequency (MHz)	Channel	Average Power (dBm)
GSM ⁽¹⁾	1900	1850-1910	Max 512-810	24.0
GSM ⁽²⁾	1900	1850-1910	Max 512-810	30.1
WCDMA	Band II	1850-1910	Max 9262-9538	23.0

¹⁾ Maximum Frame-Averaged Power

²⁾ Maximum Burst-Averaged Power

MedicAlgorithmics / PocketECG III

Page: 25 of 47

4.2 Peak to Average Ratio

4.2.1 Test Result

Test Description	Basic Standards	Test Result
Peak to Average Ratio	FCC Part 24.232(d)	Pass

4.2.2 Test Method

Clause 6.0 of 971168 D01 Power Meas License Digital Systems v01 was used to determine peak-toaverage ratio.

4.2.3 Test Site

SGS EMC Laboratory, Suwanee, GA

4.2.4 **Test Equipment**

Equipment	Model	Manufacturer	Asset Number	Cal Due Date
Spectrum Analyzer	ESU40	R&S	B085629	07OCT 2014
Radio Communications Tester	CMW-500	R&S	B079788	18 OCT 2014
Power splitter	ZFRSC-183-S+	Mini-Circuits	EA01	Verified Before Use
Attentuator	BW-S10W2+	Mini-Circuits		Verified Before Use
Attenuator	BW-S10W2+	Mini-Circuits		Verified Before Use
Signal Generator	HMC-T2240	Hittite	B0799813	Verified Before Use
Coaxial Cable	086-112SM+	Mini-Circuits	NA	Verified Before Use
Coaxial Cable	086-112SM+	Mini-Circuits	NA	Verified Before Use

Note: The calibration period equipment is 1 year.

MedicAlgorithmics / PocketECG III

Page: 26 of 47

4.2.5 Test Data

Mode	Band	Center Frequency (MHz)	Channel	Peak to Average ratio (dB)
GSM	1900	1880	661	0.5
GPRS	1900	1880	661	0.5
EGPRS	1900	1880	661	0.5
WCDMA	Band II	1880	9400	3.5

MedicAlgorithmics / PocketECG III

Page: 27 of 47

Occupied Bandwidth

4.3.1 Test Result

Test Description	Basic Standards	Test Result
Occupied Bandwidth	FCC Part 2.1049 FCC Part 24.238(a)	Reported

4.3.2 Test Method

The occupied bandwidth is the frequency bandwidth such that below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power by a given emission. The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts. The resolution bandwidth shall be set to as close to 1% of the selected span without being below 1%. The video bandwidth shall be set to 3 times the resolution bandwidth. Video averaging is not permitted. Where practical, a sample detector shall be used since a peak detector may produce a wider than actual bandwidth.

A radio link was established between EUT and Radio Communications Tester. The output power of the EUT was set to maximum value by using the maximum power setting on the Radio Communications Tester. The occupied bandwidth is measured using spectrum analyzer's occupied bandwidth measurement. RBW is set to 3 kHz on spectrum analyzer.

The bandwidth of 99% power can be read on spectrum analyzer.

4.3.3 Test Site

SGS EMC Laboratory, Suwanee, GA

4.3.4 **Test Equipment**

Equipment	Model	Manufacturer	Asset Number	Cal Due Date
Spectrum Analyzer	ESU40	R&S	B085629	07OCT 2014
Radio Communications Tester	CMW-500	R&S	B079788	18 OCT 2014
Power splitter	ZFRSC-183-S+	Mini-Circuits	EA01	Verified Before Use
Attentuator	BW-S10W2+	Mini-Circuits		Verified Before Use
Attenuator	BW-S10W2+	Mini-Circuits		Verified Before Use
Signal Generator	HMC-T2240	Hittite	B0799813	Verified Before Use
Coaxial Cable	086-112SM+	Mini-Circuits	NA	Verified Before Use
Coaxial Cable	086-112SM+	Mini-Circuits	NA	Verified Before Use

Note: The calibration period equipment is 1 year.

Page: 28 of 47

4.3.5 Test Data

PCS Band					
	Frequency				
Mode	(MHz)	Bandwidth(kHz)			
GPRS	1880	240			
EGPRS	1880	242			
WCDMA	1880	4144			

GSM **GPRS**

Date: 6.JUN.2014 10:59:16

EGPRS

Date: 6.JUN.2014 11:04:10

Date: 6.JUN.2014 11:28:55

MedicAlgorithmics / PocketECG III

Page: 30 of 47

Conducted Band Edge and Spurious Emissions

4.4.1 Test Result

Test Description	Basic Standards	Test Result
Radiated spurious emissions and Band Edge	2.1051 24.238(a)	Pass

4.4.2 Test Method

The levels of the carrier and the various conducted spurious and harmonics frequencies are measured by means of a calibrated spectrum analyzer. The emissions spectrum emanating from the EUT transmit antenna port is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. On any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB. Compliance is based on the use of a spectrum analyzer employing a resolution bandwidth of 1 MHz or greater. In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of a least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emissions bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

4.4.3 Test Site

SGS EMC Laboratory, Suwanee, GA

4.4.4 **Test Equipment**

Equipment	Model	Manufacturer	Asset Number	Cal Due Date
Spectrum Analyzer	ESU40	R&S	B085629	07OCT 2014
Radio Communications Tester	CMW-500	R&S	B079788	18 OCT 2014
Coaxial Cable	086-112SM+	Mini-Circuits	NA	Verified Before Use
Coaxial Cable	086-112SM+	Mini-Circuits	NA	Verified Before Use

Note: The calibration period equipment is 1 year.

MedicAlgorithmics / PocketECG III

Page: 31 of 47

4.4.5 Test Data

GSM CH661

MedicAlgorithmics / PocketECG III

Page: 32 of 47

WCDMA, CH 9400

MedicAlgorithmics / PocketECG III

Page: 33 of 47

Band Edges WCDMA

Date: 27.FEB.2014 14:17:49

Date: 27.FEB.2014 14:16:10

Date: 27.FEB.2014 14:25:23

Date: 27.FEB.2014 14:26:51

Test Report Number: 3374150EMC06 Rev: 2 MedicAlgorithmics / PocketECG III

Page: 34 of 47

Date: 27.FEB.2014 14:29:34

Date: 27.FEB.2014 14:30:49

MedicAlgorithmics / PocketECG III

Page: 35 of 47

Effective Isotropic Radiated Power

4.5.1 Test Result

Test Description	Basic Standards	Test Result
Effective Radiated Power	FCC Part 24.232(c)	Pass

4.5.2 Test Method

The measurements above 1 GHz are carried out in a fully anechoic chamber. Below 1 GHz, the measurements are carried out in semi-anechoic chamber. The EUT was placed on a 0.8 meter high nonconductive table at a 3 meters test distance from the test receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT. The height of receiving antenna is varied from 1 to 4 m to find the maximum power value. A radio link was established between EUT and Radio Communications Tester. The output power of the EUT was set to maximum value by using the maximum power setting on the Radio Communications Tester. A RMS detector is used and RBW is set to 3MHz. Then the antenna height and turn table rotation is adjusted till the maximum power value is founded on spectrum analyzer.

The EUT was positioned through each of its three orthogonal axes and the highest level was reported.

A dipole antenna (below 1 GHz) or double-ridged waveguide antenna (above 1 GHz) was substituted in place of the EUT. The substitution antenna will be driven by a signal generator. The receive antenna is varied to find the maximum response to the spectrum analyzer. Then the level of signal generator will be adjusted to achieve the same power value on the spectrum analyzer or receiver.

The ERP/EIRP of the EUT can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.

4.5.3 Test Site

3m Semi-anechoic chamber, SGS EMC Laboratory, Suwanee, GA

MedicAlgorithmics / PocketECG III

Page: 36 of 47

4.5.4 **Test Equipment**

Equipment	Model	Manufacturer	Asset Number	Cal Due Date
Spectrum Analyzer	ESU40	R&S	B085629	07OCT 2014
Bilog Antenna	JB6	Sunol	B079689	24 SEP 2014
Signal Generator	HMC T2240	Hittite	B079813	NCR
Coaxial Cable	Sucoflex 106	Huber+Suhner	B079714	06AUG2014
Coaxial Cable	Sucoflex 106	Huber+Suhner	B079659	06AUG2014
Radio Communications Tester	CMW-500	R&S	B085757	24 Oct 2014
DRWG antenna	3117	ETS-Lindgren	B079699	25MAR2014
Coaxial Cable	Sucoflex 102	Huber+Suhner	B079822	29OCT2014

Note: The calibration period equipment is 1 year.

4.5.5 Test Data

The highest measured EIRP is reported below for each mode.

Freq (MHz)	Pol	Mode	SigGen Out (dBm)	Cable Loss (dB)	Net to Sub Ant (dBm)	Reading (dBuV)	Antenna Gain (dBi)	EUT Level (dBuV)	ERP / EIRP (dBm)
1880	Н	GSM-EDGE	0.96	0.96	0	70.7	4.7	93.6	27.7
1880	V	GSM-EDGE	0.96	0.96	0	69.2	4.7	92.7	28.3
1880	Н	GSM-GPRS	0.96	0.96	0	70.7	4.7	97.6	31.7
1880	V	GSM-GPRS	0.96	0.96	0	69.2	4.7	96.2	31.7
1880	Н	WCDMA	0.96	0.96	0	70.7	4.7	88.7	22.7
1880	V	WCDMA	0.96	0.96	0	69.2	4.7	86.9	22.5

MedicAlgorithmics / PocketECG III

Page: 37 of 47

Radiated Spurious Emissions

4.6.1 Test Result

Test Description	Basic Standards	Test Result
Radiated Spurious Emissions	FCC Part 2.1053 FCC Part 22.917(a)	Pass

4.6.2 Test Method

The levels are measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. On any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB. Compliance is based on the use of a spectrum analyzer employing a resolution bandwidth of 1 MHz or greater. In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of a least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emissions bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

The EUT was manipulated through each of its three orthogonal axes with the measurement oriented in both vertical and horizontal polarizations.

A radio link was established between EUT and Radio Communications Tester. The output power of the EUT was set to maximum value by using the maximum power setting on the Radio Communications Tester.

The measurement was conducted at the middle channel.

MedicAlgorithmics / PocketECG III

Page: 38 of 47

4.6.3 **Test Equipment**

Equipment	Model	Manufacturer	Asset Number	Cal Due Date
17 FT N TYPE COAX CABLE	HS 84133232	HUBER&SUHNER	B079661	6-Aug-2014
Spectrum Analyzer	ESU40	R&S	B085629	7-Oct-2014
ANTENNA, BILOG	JB6	SUNOL	B079690	24-Sep-2014
RF CABLE - 12000MM (10KHZ - 18GHZ)	SF106	HUBER&SUHNER	B079714	6-Aug-2014
COAXIAL CABLE	SUCOFLEX 102	HUBER&SUHNER	B079824	29-Oct-2014
PREAMPLIFIER	PAM-0118P	AH Systems	385	8-Oct-2014
DRG HORN (MEDIUM)	3117	ETS-LINDGREN	B079699	25-Mar-2014
RF CABLE	SF106	HUBER&SUHNER	B085892	16-Oct-2014

Note: The calibration period equipment is 1 year.

MedicAlgorithmics / PocketECG III

Page: 39 of 47

4.6.4 Test Data

Test Date: 21 - 30 Jan 2014

There were no other emissions within 20 dB of the limit.

4.6.5 Test Plots

WCDMA Band II (Vertical, 30-3000MHz)

WCDMA Band II (Horizontal, 30-3000MHz)

MedicAlgorithmics / PocketECG III

Page: 40 of 47

WCDMA Band II (Vertical, 3-18GHz)

WCDMA Band II (Horizontal, 3-18GHz)

MedicAlgorithmics / PocketECG III

Page: 41 of 47

WCDMA Band II (Vertical, 18-19GHz)

WCDMA Band II (Horizontal, 18-19GHz)

MedicAlgorithmics / PocketECG III

Page: 42 of 47

GSM1900 (Vertical, 30-3000MHz)

GSM1900 (Horizontal, 30-3000MHz)

MedicAlgorithmics / PocketECG III

Page: 43 of 47

GSM1900 (Vertical, 3-18GHz)

GSM1900 (Horizontal, 3-18GHz)

MedicAlgorithmics / PocketECG III

Page: 44 of 47

GSM1900 (Vertical, 18-19GHz)

GSM1900 (Horizontal, 18-19GHz)

MedicAlgorithmics / PocketECG III

Page: 45 of 47

Frequency Stability

4.7.1 Test Result

Test Description	Basic Standards	Test Result
Frequency Stability	2.1055 24.238(a)	Pass

4.7.2 Test Method

The EUT was placed inside the Environmental Chamber and was left inside chamber to stabilize to set temperature for minimum of thirty minutes before any measurements were made. EUT was tested at BC10 channel 684, BC 1 channel 600, and BC0 channel 384.

4.7.3 Test Site

SGS EMC Laboratory, Suwanee, GA

Environmental Conditions

Temperature: 23.6 °C Relative Humidity: 56.8 % Atmospheric Pressure: 97.4 kPa

4.7.4 **Test Equipment**

Equipment	Model	Manufacturer	Asset Number	Cal Due Date
DC Power Supply	382280	Extech	EA03	14MAR2015
Wideband Radio Communications Tester	CMW500	Rohde & Schwarz	B085757	29OCT2014
Coaxial Cable	1302	Mini-circuits	NA	NCR
Environmental Chamber	8800	Thermotron	4476	16NOV2014

Note: The calibration period equipment is 1 year.

MedicAlgorithmics / PocketECG III

Page: 46 of 47

4.7.5 **Test Data**

Test Date: 03JUN2014

GSM 1900

Voltage	Pow er	Temp	Frequency	Freq Dev max	Freq Dev	Deviation
%	V_{DC}	°C	Hz	Hz	ppm	%
100%	3.70	+20 (Ref)	1,880,000,000		+0.00	+0.000000
100%	3.70	-30	1,880,000,024	+24	+0.01	+0.000001
100%	3.70	-20	1,880,000,033	+33	+0.02	+0.000002
100%	3.70	-10	1,880,000,099	+99	+0.05	+0.000005
100%	3.70	0	1,880,000,067	+67	+0.04	+0.000004
100%	3.70	+10	1,880,000,056	+56	+0.03	+0.000003
100%	3.70	+20	1,880,000,049	+49	+0.03	+0.000003
100%	3.70	+30	1,880,000,035	+35	+0.02	+0.000002
100%	3.70	+40	1,879,999,980	-20	-0.01	-0.000001
100%	3.70	+50	1,879,999,749	-251	-0.13	-0.000013
115%	4.23	+20	1,879,999,982	-18	-0.01	-0.000001
Battery End	3.35	+20	1,879,999,978	-22	-0.01	-0.000001

WCDMA Band II

Voltage	Pow er	Temp	Frequency	Freq Dev max	Freq Dev	Deviation
%	V_{DC}	°C	Hz	Hz	ppm	%
100%	3.70	+20 (Ref)	1,880,000,000		+0.00	+0.000000
100%	3.70	-30	1,880,000,024	+24	+0.01	+0.000001
100%	3.70	-20	1,879,999,951	-49	-0.03	-0.000003
100%	3.70	-10	1,879,999,959	-41	-0.02	-0.000002
100%	3.70	0	1,880,000,037	+37	+0.02	+0.000002
100%	3.70	+10	1,879,999,958	-42	-0.02	-0.000002
100%	3.70	+20	1,880,000,046	+46	+0.02	+0.000002
100%	3.70	+30	1,880,000,042	+42	+0.02	+0.000002
100%	3.70	+40	1,879,999,938	-62	-0.03	-0.000003
100%	3.70	+50	1,880,000,006	+6	+0.00	+0.000000
115%	4.23	+20	1,880,000,034	+34	+0.02	+0.000002
Battery End	3.35	+20	1,879,999,993	-7	-0.00	-0.000000

MedicAlgorithmics / PocketECG III

Page: 47 of 47

5 Revision History

Revision Level	Description of changes	Revision Date
0	Initial release	09JUN2014
1	Clarified the maximum powers were reported. Clarified ERP results. Corrected EIRP limits and added clarification.	15OCT2014
2	Clarified EIRP data.	30OCT2014