# Reproduce simulations and plots

Bénédicte Colnet\*and Imke Mayer†

Other contributors $^{\ddagger}$ 

## October 2020

#### Abstract

This notebook allows to reproduce the simulations and plots presented in the review **Causal inference** methods for combining randomizedtrials and observational studies: a review. All the estimators have been re-written by the authors, except the calibration weighting which rely on the package genRCT.

# Contents

| Distributional shift                                                                            | 2       |        |
|-------------------------------------------------------------------------------------------------|---------|--------|
| Standard simulation                                                                             | 3       |        |
| Systematic analysis                                                                             | 6       |        |
| Strata effect                                                                                   | 23      |        |
| Focus on X1 and IPSW                                                                            | 25      |        |
| Homogeneous treatment effect                                                                    | 25      |        |
| X1 effect                                                                                       | 28      |        |
| <pre>knitr::opts_chunk\$set(echo = TRUE, verbose = FALSE, warning = FALSE, message=FALSE,</pre> | cache = | FALSE) |
| <pre># Clear any existing variables rm(list = ls())</pre>                                       |         |        |
| <pre># Set seed for reproducibility set.seed(1234)</pre>                                        |         |        |
| <pre># Load implemented functions source('./estimators_and_simulations.R')</pre>                |         |        |
| ## Warning: package 'MASS' was built under R version 4.1.2                                      |         |        |
| <pre>## ## Attaching package: 'dplyr'</pre>                                                     |         |        |
| <pre>## The following object is masked from 'package:MASS': ##</pre>                            |         |        |
| ## select                                                                                       |         |        |

<sup>\*</sup>Inria, benedicte.colnet@inria.fr

<sup>†</sup>EHESS, imke.mayer@ehess.fr

<sup>&</sup>lt;sup>‡</sup>Others contributors to this notebook through reviewing or active discussions: Julie Josse, Gael Varoquaux, Jean-Philippe Vert, Shu Yang.

```
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
       intersect, setdiff, setequal, union
##
# Libraries
library(ggplot2) # plots
library(dplyr) # data frame re arrangment
library(table1) # table for baseline
library(wesanderson) # colors
library(genRCT)
# number of repetitions in simulation
repetitions = 100
```

## Distributional shift



# Standard simulation

```
results <- compute_estimators_and_store(rep = repetitions, n = 1000, m = 10000)
## Fitting estimators..
```

```
## Fitting estimators..
```

- ## Fitting estimators..
- "" IIUUING CDUIMGUOID.
- ## Fitting estimators..
- ... -. .
- ## Fitting estimators..
- ## Fitting estimators..
  ## Fitting estimators..
- ## Fitting estimators..
- ## Titting estimators.
- ## Fitting estimators..
- "" -----
- ## Fitting estimators..
  ## Fitting estimators..
- ## Fitting estimators..
- ## Piccing escimators.
- ## Fitting estimators..
  ## Fitting estimators..
- ## Fitting estimators..

```
## Fitting estimators..
ggplot(data = melt(results), aes(x = variable, y = value)) +
   geom_boxplot(aes(fill=variable)) +
   theme bw() +
    geom_hline(aes(yintercept = 27.4, color = "Population ATE"),
               size = 0.6, linetype="dashed") +
   xlab("") +
   ylab("Estimated ATE") +
   theme(legend.title = element_blank(),
          legend.text = element_text(size=14)) +
   theme(axis.text = element_text(angle = 0, vjust = 0.5,
                                  hjust=1, size=14)) +
    scale_fill_brewer(palette = "Accent") +
    coord_flip()
```



# Systematic analysis

```
RCT_param <- c("correct", "strongbias", "exponential")</pre>
Outcome_param <- c("correct", "wrong")</pre>
total_results <- compute_estimators_and_store(rep = repetitions)</pre>
## Fitting estimators..
```

```
## Fitting estimators..
```

- ## Fitting estimators..
- ## Fitting estimators..
- ## Fitting estimators..
- ## Fitting estimators..
- "" IICCING COCIMACOID.
- $\begin{tabular}{ll} \begin{tabular}{ll} \beg$
- $\begin{tabular}{ll} \begin{tabular}{ll} \beg$
- ## Fitting estimators..
  ## Fitting estimators..
- ## Ficting estimators.
- ## Fitting estimators..
- ## FICCING ESCIMATORS.
- ## Fitting estimators..
  ## Fitting estimators..
- ## Fitting estimators..
- ## Piccing escimators.
- ## Fitting estimators..
  ## Fitting estimators..
- ## Fitting estimators..
- ## Fitting estimators..

```
## Fitting estimators..
total_results n = 1000
total_results$m = 49000
total_results$param_RCT = "correct"
total_results$outcome = "correct"
for (m in c(10000)){
  for (rct_param in RCT_param){
      for (outcome_param in Outcome_param){
        results <- compute_estimators_and_store(rep = repetitions,
                                                 n = 1000, m = m,
                                                 misRCT = rct_param,
                                                 misoutcome = outcome_param)
        results$n <- rep(1000, nrow(results))</pre>
        results$m <- rep(m, nrow(results))</pre>
        results$param_RCT <- rep(rct_param, nrow(results))</pre>
       results$outcome <- rep(outcome_param, nrow(results))</pre>
        total_results <- rbind(total_results, results)</pre>
      }
 }
}
## Fitting estimators..
```

```
## Fitting estimators..
```

- ## Fitting estimators..
- ## Fitting estimators..
- ## Fitting estimators..
- ## Fitting estimators..
- ## litting estimators.
- ## Fitting estimators..
- ## Ficting estimators.
- ## Fitting estimators..
  ## Fitting estimators..

```
## Fitting estimators..
```

## Fitting estimators..

## Fitting estimators..
## Fitting estimators..

## Fitting estimators..

## Fitting estimators..

## Fitting estimators..
## Fitting estimators..

## Fitting estimators..

## Fitting estimators..

## Fitting estimators..

## Fitting estimators..
## Fitting estimators..

## Fitting estimators..

## Fitting estimators..

## Fitting estimators..

## Fitting estimators..
## Fitting estimators..

## Fitting estimators..

## Fitting estimators..

```
## Fitting estimators..
```

## Fitting estimators..
## Fitting estimators..
## Fitting estimators..
## Fitting estimators..

```
## Fitting estimators..
```

## Fitting estimators..

```
## Fitting estimators..
## Fitting estimators..
## Fitting estimators..
```

## Fitting estimators..

```
## Fitting estimators..
```

- ## Fitting estimators..
- ## Fitting estimators..
  ## Fitting estimators..
- "" Titting Cotimators.
- ## Fitting estimators..
- ## Fitting estimators..
  ## Fitting estimators..
- ## Fitting estimators..
- ## Fitting estimators..
- ## Piccing escimators.
- ## Fitting estimators..
  ## Fitting estimators..
- ## Fitting estimators..

```
## Fitting estimators..
## Fitting estimators..
## Fitting estimators..
## Fitting estimators..
```

## Fitting estimators..

```
## Fitting estimators..
## Fitting estimators..
```

## Fitting estimators..

... -. .

## Fitting estimators..

"" Fitting estimators.

## Fitting estimators..

## Fitting estimators..

## Fitting estimators..

## Fitting estimators..

## Fitting estimators..
## Fitting estimators..

## FICCING escimators.

## Fitting estimators..

## Fitting estimators..
## Fitting estimators..

## Fitting estimators..

## Fitting estimators..

## Fitting estimators..

## Fitting estimators..

## Fitting estimators..

## Fitting estimators..

## Fitting estimators..

## Fitting estimators..

## Fitting estimators..

```
## Fitting estimators..
```

## Fitting estimators..

```
## Fitting estimators..
## Fitting estimators..
```

- ## Fitting estimators..
- ## Fitting estimators.. ## Fitting estimators..
- ## Fitting estimators.. ## Fitting estimators..
- ## Fitting estimators..
- ## Fitting estimators..

```
## Fitting estimators..
```

## Fitting estimators..

```
data <- total_results[2:nrow(total_results),]</pre>
write.csv(data, file = "./results.csv")
data$relative.size <- ifelse(data$m == 10000, "10%", "other")</pre>
data bis <- data
\#colnames(data\_bis)[colnames(data\_bis) == 'AIPSW'] <- 'AIPSW (Doubly-robust)'
DF <- melt(data_bis ,</pre>
           id.vars = c("param_RCT", "outcome", "relative.size"),
           measure.vars = c("RCT", "IPSW", "IPSW.norm",
                             "Stratification.n.10", "G.formula",
                             "AIPSW", "CW", "ACW"))
DF$param_RCT <- ifelse(DF$param_RCT == "correct",</pre>
                       "1. RCT with weak shift",
                       ifelse(DF$param_RCT == "exponential",
                               "RCT mis-specification",
                               "2. RCT with strong shift"))
DF$outcome <- ifelse(DF$outcome == "correct", "Correct Y", "Mis-specified Y")</pre>
ggplot(data = DF[DF$relative.size == "10%" & DF$param_RCT != "2. RCT with strong shift",],
       aes(x = variable, y = value)) +
    geom boxplot(aes(fill=variable)) +
    facet_grid(outcome~param_RCT) +
    theme bw() +
    geom_hline(aes(yintercept = 27.4, color = "ATE"), size = 0.6, linetype="dashed") +
    xlab("") +
    ylab("Estimated ATE") +
    theme(legend.title = element_blank(),
          legend.position="bottom", legend.box = "horizontal") + # no title in legend
    theme(axis.text = element_text(angle = 45, vjust = 0.5, hjust=1, size=10)) +
  scale_fill_brewer(palette = "Accent")
```



geom\_hline(aes(yintercept = 27.4, color = "Population ATE"), size = 0.6, linetype="dashed") +

geom\_boxplot(aes(fill=variable)) +

 $\#geom\_jitter(alpha = 0.2, size = 0.2, width = 0.2) +$ 

facet\_wrap(~param\_RCT) +

ylab("Estimated ATE") +

xlab("") +





## Strata effect

```
RCT <- c()
Stratification.n.3 <- c()
Stratification.n.5 <- c()
Stratification.n.7 <- c()
Stratification.n.9 <- c()
Stratification.n.11 <- c()
Stratification.n.13 <- c()
Stratification.n.15 <- c()
for (i in 1:repetitions){
  DF <- simulate_continuous(n = 1000, m = 10000)
  RCT <- c(RCT, compute_mean_diff_RCT(DF))</pre>
  Stratification.n.3 <- c(Stratification.n.3, compute_stratification(DF, nb_strat = 3))
  Stratification.n.5 <- c(Stratification.n.5, compute_stratification(DF, nb_strat = 5))
  Stratification.n.7 <- c(Stratification.n.7, compute_stratification(DF, nb_strat = 7))
  Stratification.n.9 <- c(Stratification.n.9, compute_stratification(DF, nb_strat = 9))</pre>
  Stratification.n.11 <- c(Stratification.n.11, compute_stratification(DF, nb_strat = 11))
  Stratification.n.13 <- c(Stratification.n.13, compute_stratification(DF, nb_strat = 13))
  Stratification.n.15 <- c(Stratification.n.15, compute_stratification(DF, nb_strat = 15))
```

```
}
results_strata <- data.frame(RCT, Stratification.n.3,</pre>
                              Stratification.n.5, Stratification.n.7,
                              Stratification.n.9, Stratification.n.11,
                              Stratification.n.13, Stratification.n.15)
DF <- melt(results_strata,</pre>
           measure.vars = c("RCT", "Stratification.n.3",
                             "Stratification.n.5", "Stratification.n.7",
                             "Stratification.n.9", "Stratification.n.11",
                             "Stratification.n.13", "Stratification.n.15"))
ggplot(data = DF, aes(x = variable, y = value)) +
    geom_boxplot(aes(fill=variable)) +
    theme bw() +
    geom_hline(aes(yintercept = 27.4, color = "Population ATE"), size = 0.6, linetype="dashed") +
    xlab("") +
    ylab("Estimated ATE") +
    theme(legend.title = element_blank(),
          legend.text = element_text(size=11)) + # no title in legend
     theme(axis.text = element_text(angle = 0, vjust = 0.5, hjust=1, size=10, face="bold")) +
            scale_fill_brewer(palette = "viridix") +
  coord_flip()
Stratification.n.15
Stratification.n.13
                                                                     RCT
                                                                       Stratification.n.3
Stratification.n.11
                                                                       Stratification.n.5
                                                                       Stratification.n.7
 Stratification.n.9
                                                                       Stratification.n.9
                                                                       Stratification.n.11
 Stratification.n.7
                                                                       Stratification.n.13
                                                                       Stratification.n.15
 Stratification.n.5
                                                                       Population ATE
 Stratification.n.3
             RCT
```

25

30

10

15

20

**Estimated ATE** 

# Focus on X1 and IPSW

```
rct_ate <- c()</pre>
ipsw <- c()
ipsw_x1_only <- c()</pre>
ipsw_wo_x1 \leftarrow c()
gformula <- c()
for (i in 1:repetitions){
  DF <- simulate_continuous(n = 1000, m = 10000)
  # naive estimator
  rct ate <- c(rct ate,
                mean(DF[DF$A == 1 \& DF$V == 1, "Y"]) -
               mean(DF[DF$A == 0 & DF$V == 1, "Y"]))
  ipsw <- c(ipsw, compute_ipsw(DF, normalized = FALSE))</pre>
  #ipsw with X1 only
  ipsw_x1_only <- c(ipsw_x1_only, compute_ipsw(DF, normalized = FALSE, covariates = "X1"))</pre>
  #ipsw without X1
  ipsw_wo_x1 <- c(ipsw_wo_x1, compute_ipsw(DF, normalized = FALSE, covariates = "-X1"))</pre>
  gformula <- c(gformula, compute_gformula(DF))</pre>
}
results_ipsw <- data.frame("RCT" = rct_ate,</pre>
                        "IPSW" = ipsw,
                        "IPSW-X1" = ipsw_x1_only,
                        "IPSW-without-X1" = ipsw_wo_x1,
                        "G.formula" = gformula)
```

# Homogeneous treatment effect

```
results_simple <- compute_estimators_and_store(rep = repetitions, misoutcome = "+a")

## Fitting estimators..

## Fitting estimators..</pre>
```

```
## Fitting estimators..
## Fitting estimators..
```

## Fitting estimators..

## Fitting estimators..

## Fitting estimators..
## Fitting estimators..

## Fitting estimators..

r riccing escimators.

## Fitting estimators..

## Fitting estimators..
## Fitting estimators..

## Fitting estimators..

## Fitting estimators..

## Fitting estimators..

## Fitting estimators..

```
## Fitting estimators..
ggplot(data = melt(results_simple), aes(x = variable, y = value)) +
    geom_boxplot(aes(fill=variable)) +
    theme_bw() +
    geom_hline(aes(yintercept = 27.4, color = "Population ATE"),
               size = 0.6, linetype="dashed") +
   xlab("") +
   ylab("Estimated ATE") +
   theme(legend.title = element_blank(), legend.text = element_text(size=14)) +
   theme(axis.text = element_text(angle = 0, vjust = 0.5, hjust=1, size=14)) +
    scale_fill_brewer(palette = "Accent") +
    coord flip()
```



## X1 effect

```
rct_ate <- c()</pre>
ipsw <- c()
ipsw_x1_only <- c()</pre>
ipsw_wo_x1 <- c()</pre>
gformula <- c()
for (i in 1:repetitions){
  DF <- simulate_continuous(n = 1000, m = 10000)
  # naive estimator
  rct_ate <- c(rct_ate,</pre>
                mean(DF[DF$A == 1 \& DF$V == 1, "Y"]) -
               mean(DF[DF$A == 0  \& DF$V == 1, "Y"]))
  ipsw <- c(ipsw, compute_ipsw(DF, normalized = FALSE))</pre>
  #ipsw with X1 only
  ipsw_x1_only <- c(ipsw_x1_only, compute_ipsw(DF, normalized = FALSE, covariates = "X1"))</pre>
  #ipsw without X1
  ipsw_wo_x1 <- c(ipsw_wo_x1, compute_ipsw(DF, normalized = FALSE, covariates = "-X1"))</pre>
```



