TD: Plus longue séquence croissante

Dominique Michelucci, Université de Dijon

7 décembre 2012

Un tableau non trié d'entiers $E[0], \ldots E[n-1]$ est donné. Le problème est de calculer la longueur de la séquence croissante la plus longue. Note : dans cette séquence, tout élément (sauf le dernier) est inférieur ou égal à son élément suivant. Par exemple, si E = [0; 300; 100; 200; 1000; 400; 500; 1100; 900; 800; 600; 700; -100], alors les séquences croissantes les plus longues ont 7 éléments. L'une d'elles est [0; 100; 200; 400; 500; 600; 700].

Proposez une méthode en temps polynomial $(O(n^2))$. Par exemple, définir récursivement LT[i], comme étant la longueur de la séquence croissante la plus longue qui se termine (et utilise) E_i . LT[0] = 1. Définissez LT[i] en fonction de $LT[0], \ldots LT[i-1]$. Exemple :

	i	0	1	2	3	4	5	6	7	8	9	10	11	12
ĺ	E_i	0	300	100	200	1000	400	500	1100	900	800	600	700	-100
	LT_i	1	2	2	3	4	4	5	6	6	6	6	7	1

Cette méthode est en temps $O(n^2)$. Donnez une méthode en $O(n \log n)$. Piste : stockez dans un tableau V[l] la dernière valeur de la séquence de longueur l. Quand vous cherchez quelle est la plus longue séquence croissante que peut prolonger E_i , vous pouvez procéder par dichotomie dans le tableau V. Il faut aussi gérer L, la plus grande longueur courante des séquences croissantes. N'oubliez pas de mettre à jour le tableau V. Exemple :

	i	0	1	2	3	4	5	6	7	8	9	10	11	12
Γ	E_i	0	300	100	200	1000	400	500	1100	900	800	600	700	-100
Γ	LT_i	1	2	2	3	4	4	5	6	6	6	6	7	1
	V_i	-	-100	100	200	400	500	600	700	_	_	_	_	_

La suite suppose pour simplifier que tous les éléments E_i sont distincts.

- Q : Soit S_k la sous séquence formée par les E_i dont la LT (longueur terminale) vaut k. Que constatez-vous? Prouvez le.
- Q. Soit E_i le premier (i minimum) élément tel que LT[i] = l, avec l > 1. Prouver que E_i prolonge E_k , où k est l'élément le plus à gauche (k maximum, k < i) tel que LT[k] = l - 1; autrement dit, il est inutile de vérifier que E[k] < E[i]: il l'est.
- Q : Quelle est la longueur de la séquence commune la plus longue entre une séquence croissante et une séquence décroissante? (Tous les E_i sont distincts)
 - \mathbf{Q} : Soit L la longueur de la séquence croissante la plus longue.
- ${\bf Q}$: quelle application de cette partition minimale en séquences décroissantes ? En déduire que toute partition en séquences décroissantes a au minimum L séquences décroissantes.

 ${\bf Q}$: En déduire une méthode pour partitionner une séquence en un nombre minimum de séquences décroissantes.

- Q : Soit S_k la sous séquence formée par les E_i dont la LT (longueur terminale) vaut k. Que constatez-vous? Prouvez le.
 - R : Elles sont décroissantes. Preuve triviale.
- Q. Soit E_i le premier (i minimum) élément tel que LT[i] = l, avec l > 1. Prouver que E_i prolonge E_k , où k est l'élément le plus à gauche (k maximum, k < i) tel que LT[k] = l - 1; autrement dit, il est inutile de vérifier que E[k] < E[i]: il l'est.
 - R: trivial, cf Q précédente.
- Q : Quelle est la longueur de la séquence commune la plus longue entre une séquence croissante et une séquence décroissante? (Tous les E_i sont distincts)
- R : la séquence commune la plus longue a soit 0 soit 1 seul élément en commun. Si elle en a deux (a,b dans cet ordre, ou plus), alors a < b et a > b, contradiction.
- ${\bf Q}$: soit L la longueur de la séquence croissante la plus longue. En déduire que toute partition en séquences décroissantes a au minimum K séquences décroissantes.
- R : soit K la séquence croissante la plus longue, de longueur L. Soient $D_1, D_2, \ldots D_d$ une partition en séquences décroissantes (il y a donc d séquences décroissantes dans cette partition). Tout élément E_i de K se trouve dans exactement une seule des D_1 ou D_2 ou $\ldots D_d$. Mais chaque D_j ne peut contenir qu'un seul des éléments de K. Donc $d \geq L$.
- R : Soit $D_1, D_2, \dots D_d$ une partition en séquences décroissantes. On a vu que $d \geq L$. Il manque une preuve d'existence pour que le plus petit des d soit vraiment égal à L. Mais c'est donné par une question précédente. Donc : la longueur de la séquence croissante la plus longue est le nombre minimum de séquences décroissantes des partitions en séquence décroissantes.
- \mathbf{Q} : En déduire une méthode pour partitionner une séquences en un ensemble de séquences décroissantes.
- R : calculez la LT_i maximum : L par la méthode en $O(n \log n)$. Soient $S_1, \ldots S_L$ (S_k la sous séquence formée par les E_i dont la LT vaut k) : elles partitionnent la séquence en L séquences décroissantes.
 - Q : quelle application de cette partition minimale en séquences décroissantes?
- R : le tri par monotonie, pour des ensembles gigantesques qui ne rentrent pas en mémoire centrale ; ils sont d'abord partitionnés en séquences décroissantes ; chacune est sauvegardé sur disque ; ensuite ces fichiers triés sont fusionnés : c'est comme le tri par fusion mais il peut y avoir bien plus que 2 listes (ou fichiers) à fusionner ; il faut parcourir séquentiellement ces fichiers ; un tas (heap) est utilisé pour stocker les "têtes" de ces fichiers ; quand la tête du fichier F_k est traitée, il faut avancer la tête de lecture dans le fichier F_k et insérer (ou remplacer) dans le tas. On espère que le tas rentre en mémoire centrale. Pour un ensemble aléatoire de n éléments, que vaut L? Question mathématiquement non triviale, mais il est facile de mesurer. Sujet de TP possible...