AUTOMATY A GRAMATIKY

Pavel Surynek

Univerzita Karlova v Praze

Matematicko-fyzikální fakulta Katedra teoretické informatiky a matematické logiky

13

Uzávěrové vlastnosti
Nerozhodnutelné problémy
Ricova věta
Postův korespondenční
problém
Nerozhodnutelnost u gramatik

Uzávěrové vlastnosti (1)

- rekurzivní a rekurzivně spočetné jazyky jsou uzavřené na konečný průnik a konečné sjednocení
 - jsou-li L₁ a L₂ rekurzivní resp. rekurzivně spočetné jazyky, pak L₁∩L₂ i L₁∪L₂ jsou rekurzivní resp. rekurzivně spočetné jazyky
 - mějme TS T₁ a T₂ 1-páskové, že L(T₁)=L₁ a L(T₂)=L₂
 - zkonstruujeme dvoupáskové TS T a T', že $L(T) = L_1 \cap L_2$, $L(T') = L_1 \cup L_2$
 - na druhou pásku zkopíruje vstup
 - na první pásce simuluje T₁
 - na druhé pásce simuluje T₂ paralelně
 - T přijme, když obě simulace přijmou
 - T' přijme, když aspoň jedna simulace přijme
 - v rekurzivním případě vždy oba simulované TS zastaví
 - v rekurzivně spočetném může jeden či oba simulované TS běžet navždy

Uzávěrové vlastnosti (2)

- rekurzivní a rekurzivně spočetné jazyky jsou uzavřené na konkatenaci
 - jsou-li L₁ a L₂ rekurzivní resp. rekurzivně spočetné jazyky, pak L₁.L₂ je rekurzivní resp. rekurzivně spočetný jazyk
 - mějme TS T₁ a T₂ 1-páskové, že L(T₁)=L₁ a L(T₂)=L₂
 - rekurzivně spočetný případ
 - zkonstruujeme nedeterministický 2-páskový TS T, že L(T) = L₁.L₂
 - T nedeterministicky uhádne rozdělení vstupního slova w = u.v
 - přesune v na druhou pásku
 - na první pásce (tedy nad u) simuluje T₁
 - na druhé pásce (tedy nad v) simuluje T₂
 - když oba simulované TS přijmou, přijme i T
 - rekurzivní případ
 - nedeterminismus nelze použít, protože převod na deterministický případ nezachovává zastavení při nepřijímání
 - zkonstruujeme deterministický (více-páskový) TS T', že L(T') = L₁.L₂
 - T' otestuje všechna rozdělení vstupního slova w = u.v.
 - simulace stejně jako pro rekurzivně spočetný případ

Uzávěrové vlastnosti (3)

rekurzivní a rekurzivně spočetné jazyky jsou uzavřené na iteraci

□ je-li L rekurzivní resp. rekurzivně spočetný jazyk, pak L* je rekurzivní

resp. rekurzivně spočetný jazyk

mějme TS T 1-páskový, že L(T)=L

rekurzivně spočetný případ

zkonstruujeme nedeterministický
 2-páskový TS T, že L(T') = L*

T' nedeterministicky uhádne počet dělení a samo dělení w = u₁.u₂...u_n

- na druhé pásce postupně simuluje práci T nad u₁,u₂,...,u_n
- T' přijme, pokud všechny simulace přijmou
- rekurzivní případ
 - opět je nutno nahradit nedeterministické uhádnutí dělení vstupního slova
 - zkonstruujeme deterministický (více-páskový) TS T", že L(T") = L*
 - T" otestuje všechna možná dělení w = u₁.u₂...u_n
 - simulace stejně jako v rekurzivně spočetném případě

Uzávěrové vlastnosti (4)

- rekurzivní a rekurzivně spočetné jazyky jsou uzavřené na zrcadlový obraz
 - L rekurzivní resp. rekurzivně spočetný jazyk, pak L^R je rekurzivní resp. rekurzivně spočetný jazyk
 - mějme TS T 1-páskový, že L(T)=L
 - zkonstruujeme TS T', že L(T')=L
 - T' bude skoro stejný jako T
 - ale nejprve zrcadlově otočí vstupní slovo
 - konstrukce funguje pro rekurzivně spočetný i rekurzivní případ
- rekurzivní a rekurzivně spočetné jsou uzavřené na inverzní homomorfismus
 - zkonstruujeme TS T'', že $L(T'')=h^{-1}(L)$, kde $h: Y \to X^*$ je homomorfismus
 - T" na vstup w∈Y* aplikuje h
 - na h(w) simuluje T
 - když simulovaný T přijme, T" také přijme
 - konstrukce opět funguje pro rekurzivně spočetný i rekurzivní případ
- rekurzivně spočetné jazyky jsou uzavřené na homomorfismus
 - zkonstruujeme nedeterministický TS T''', že L(T''')=h(L)
 - pro vstup $\mathbf{w} \in \mathbf{Y}^*$ \mathbf{T}''' nedeterministicky uhádne $\mathbf{u} \in \mathbf{X}^*$, že $\mathbf{h}(\mathbf{u}) = \mathbf{w}$; \mathbf{T}''' přijme w, jestliže \mathbf{T} přijme x

Problémy formálně

- rozhodovací problém (rozhodovací úloha)
 - intuitivně
 - otázka typu ano/ne o nekonečně mnoha (spočetně mnoha) instancích
 - formálně
 - problém je jazyk L
 - slovo w kóduje instanci
 - w∈L, jestliže je odpověď na instanci kódovanou w "ANO"
 - přirozeně máme pojmy (algoritmicky) rozhodnutelný a

(algoritmicky) nerozhodnutelný problém

odpovídá rekurzivnímu resp. nerekurzivnímu jazyku

Př.: Otázka: má daný neorientovaný graf G Hamiltonovskou kružnici?

Instance: všechny neorientované grafy.

Nerozhodnutelnost a Ricova věta

- existují i jiné (praktické) nerozhodnutelné problémy než L
 - nechť P je nějaká vlastnost jazyka L (L je nekonečný, L je regulární, bezkontextový, ...)
 - \Box $L_P = \{ k \acute{o} d(T) \mid L(T) \text{ má vlastnost P } \}$
- Ricova věta (Rice's theorem)
 - L_p je rozhodnutelný pouze pro dvě triviální vlastnosti P
 - a sice pro vlastnost splňenou všemi rekurzivně spočetnými jazyky (always true) a pro vlastnost, kterou nesplňuje žádný rekurzivně spočetný jazyk (always false)
 - □ jinak je L_P nerozhodnutelný
- □ **redukce** jazyka<mark>L na jazyk K, kde L,K⊆X*</mark>
 - je TS, který vždy zastaví a libovolné w∈X* převede na v∈X* tak, že w∈L ⇔ v∈K
 - výstup je realizován na výstupní pásce
 - TS s výstupem ... transducer
- když najdeme redukci jazyka L na rozhodnutelný jazyk K, pak je L rozhodnutelný
 - TS rozhodující K a TS provádějící převod dohromady ukazují rozhodnutelnost L
 - obměna: když L není rozhodnutelný, nemůže být ani K rozhodnutelný

Automaty a gramatiky 13 Pavel Surynek, 2015

Ricova věta a převody (1)

- pro **netriviální** vlastnost P (≠ always true, always false)
 - najdeme redukc<mark>i L_{II} na L_P</mark>
 - pak, jelikož je L_u není rozhodnutelný, nemůže být ani L_p
 - předpoklady
 - jazyk Ø nemá vlastnost P
 - pokud tomu tak není, vezmeme místo P doplněk P (Pc)
 - kdyby byl L_P rozhodnutelný, je i L_{PC} rozhodnutelný
 - nechť L je libovolný rekurzivně spočetný jazyk, který má vlastnost P; T, je TS, $\check{z}e L(T_1) = L$
- sestrojíme TS, který pro vstup kód(T)111w vytvoří kód(T'), kde L(T') bude mít vlastnost P ⇔ T přijímá w
 - T' vznikne přeprogramováním T
 - T' bude mít dvě virtuální pásky
 - na 2. pásku zapíše w a simuluje T na 2. pásce
 - když T přijme w, T' simuluje T, na svém vstupu x z 1.pásky
 - když T₁ přijme x, T' přijme
 - obě virtuální pásky budou simulovány v jedné skutečné pásce
 - kódujeme jednopáskové TS

Ricova věta a převody (2)

- když T přijímá w, pak
 - zkonstruovaný TS T' přijímá L, protože v tomto případě T' simuluje T_L, pro který L(T_L)=L
 - □ jelikož L má vlastnost P, má rovněž L(T') vlastnost P
 - kód(T')∈L_P
- když T nepřijímá w, pak
 - zkonstruovaný TS T' nepřijímá žádné slovo, tedy L(T')= Ø, o němž jsme předpokládali, že vlastnost P nemá
 - kód(T')∉Lp
- celkem
 - □ T přijímá w ⇔ zkonstruovaný TS T' má vlastnost P
 - konstruování T' z T a w (pomocí TS) je redukce L_u na L_p

Důsledky Ricovy věty

- máme nepřeberné množství nerozhodnutelných jazyků
 - □ pro každou netriviální vlastnost P, je L_P nerozhodnutelný

```
L<sub>P</sub> = { kód(T) | L(T) je regulární }
P je regularita
L<sub>P</sub> = { kód(T) | L(T) je bezkontextový }
P je bezkontextovost
L<sub>P</sub> = { kód(T) | L(T) obsahuje palindrom }
P je palindromovitost
L<sub>P</sub> = { kód(T) | L(T) = Ø }
P je prázdnost
L<sub>P</sub> = { kód(T) | L(T) = X* }
L<sub>P</sub> = { kód(T) | | L(T) | >3 }
atd...
```

- kód(T) lze nahlížet jako program
 - o tom, co dělají programy, nelze programem téměř nic rozhodnout

Postův korespondenční problém (1)

- instance Postova korespondenčního problému (PKP) je konečná posloupnost dvojic neprázdných slov nad nějakou abecedou X
 - \square $(w_1,x_1), (w_2,x_2), ..., (w_n,x_n) n \in \mathbb{N}, w_i, x_i \in X^*$ pro i=1,2,...,n
 - instance PKP má řešení, jestliže
 existují indexy i₁,i₂,...,ik s k∈N kde
 ij∈{1,2,...,n} pro j = 1,2,...,k, že
 - $w_{i_1}.w_{i_2}...w_{i_k} = x_{i_1}.x_{i_2}...x_{i_k}$
- modifikovaný PKP (mPKP)
 - skoro stejný jako PKP, ale řešení musí začít první dvojicí, tj.
 - $\mathbf{w}_{1}\mathbf{w}_{i_{1}}.\mathbf{w}_{i_{2}}...\mathbf{w}_{i_{k}} = \mathbf{x}_{1}\mathbf{x}_{i_{1}}.\mathbf{x}_{i_{2}}...\mathbf{x}_{i_{k}}$

```
Př.: a) instance PKP
(0,01), (100,001)
nemá řešení
b) instance mPKP
(0,01), (100,001),
(110,10)
má řešení
c) instance mPKP
(110,10), (0,01),
(100,001)
nemá řešení
```

Postův korespondenční problém (2)

PKP pomocí mPKP

- vyzkoušíme všechny možné dvojice jako počáteční v mPKP
 - pokud aspoň jeden vytvořený mPKP má řešení, má řešení PKP

mPKP pomocí PKP

- použijeme nové symboly # a \$
 - za každý symbol prvního z každé dvojice slov přidat #
 - před každý symbol druhého z každé dvojice slov přidat #
 - přidat dvojici (\$,#\$)
 - slouží k zakončení
 - přidat další kopii první dvojice slov, kde bude přidán # na začátek prvního z dvojice slov
 - vynuceno použití na začátku výsledné posloupnosti

```
Př.: instance mPKP

(110,10)
(0,01),
(100,001)

ekvivalentní instance PKP
(1#1#0#, #1#0)
(0#, #0#1),
(1#0#0#, #0#0#1)
($, #$)
(#1#1#0#, #1#0)
```

Nerozhodnutelnost PKP (1)

- \Box $L_{PKP} = \{ k\acute{o}d(I) | I je instance PKP, která má řešení \}$
- □ $L_{mPKP} = \{ kód(I) \mid I \text{ je instance mPKP, která má řešení } \}$
- □ ukážeme, že L_{mPKP} je nerozhodnutelný
 - tím pádem ani L_{PKP} nebude rozhodnutelný
 - popsali jsme redukční algoritmus pro převod L_{mPKP} na L_{PKP}
 - návod na vytvoření TS, který z kódu instance mPKP vytvoří kód instance PKP při zachování řešitelnosti
 - □ redukce L_u na L_{mPKP}
 - pro daný TS T = (Q, {0,1}, δ , q_0 , b, F) a w (zadané jako kód(T)111w) vytvoříme instanci I mPKP, že I má řešení \Leftrightarrow (λ , q_0 , w) \vdash_T * (λ , f,b), kde f∈F
 - existuje posloupnost konfigurací $K_1, K_2, ..., K_m$ s $m \in \mathbb{N}_0$, že $(\lambda, q_0, w) \vdash_T K_1 \vdash_T K_2 \vdash_T ... \vdash_T K_m \vdash_T (\lambda, f, b)$
 - posloupnost konfigurací sestavíme jako výsledné slovo v mPKP
 - nový symbol @ bude oddělovat konfigurace

Nerozhodnutelnost PKP (2)

- konstrukce mPKP
 - 1. dvojice
 - \blacksquare (@,@q₀w@)
 - další dvojice
 - (x,x) pro x∈X
 - pro kopírování
 - **(@,@)**
 - pro zakončení kroku výpočtu
 - pro každý q∈Q a x∈(X-{b})
 - $(qx, yp) kdykoli \delta(q, x) = (p, y, +1)$
 - $(qx, py) kdykoli \delta(q, x) = (p, y, 0)$
 - (zqx, pzy) kdykoli $\delta(q, x) = (p, y, -1)$ a z∈X
 - technické opatření pro zpracování b (narazíme na oddělovač @)
 - (q@, yp@) kdykoli δ(q, b) = (p, y, +1)
 - (q@, py@) kdykoli $\delta(q, b) = (p, y, 0)$
 - (zq@, pzy@) kdykoli δ (q, b) = (p, y, -1) a z∈X
 - přijímání a mazání pásky; pro f∈F a x, y∈X
 - (xfy,f)
 - (@fy, @f)
 - (xf@,f@)
 - (f@@,@)

```
Př.: δ(q,C) = (p, E, +1)
... @AB
... @ABqCD@AB
```

... @Abqcb@Ab

... @ABqCD@

... @ABqCD@ABEpD@

```
Př.: ... @ABfCDE@AfDE@fE@f@@ ... @ABfCDE@AfDE@fE@f@@
```

Nerozhodnutelnost u gramatik (1)

- pro bezkontextové gramatiky G_1 a G_2 je nerozhodnutelné, zda $L(G_1) \cap L(G_2) = \emptyset$
 - přesněji $\{kód(G_1)\#kód(G_2) \mid G_1 \text{ a } G_2 \text{ jsou bezkontextové gramatiky a } L(G_1)\cap L(G_2)=\emptyset \}$ je nerozhodnutelný jazyk (není rekurzivní)
 - mějme instanci PKP (w_1,x_1) , (w_2,x_2) , ..., (w_n,x_n) nad abecedou X
 - položíme $V_T = X \cup \{a_1, a_2, ..., a_n\}$
 - $G_1 = (\{S\}, V_T, S, \{S \rightarrow w_i Sa_i | w_i a_i | i=1,2,...,n\})$
 - generuje slova w_{i1}.w_{i2}...w_{ik}a_{ik}.a_{ik-1}...a_{i1}
 - $G_2 = (\{S\}, V_T, S, \{S \rightarrow x_i Sa_i | x_i a_i | i=1,2,...,n\})$
 - generuje slova x_{i1}.x_{i2}...x_{ik}a_{ik}.a_{ik-1}...a_{i1}
 - instance PKP má řešení $\Leftrightarrow L(G_1) \cap L(G_2) \neq \emptyset$
- pro bezkontextovou gramatiku G je nerozhodnutelné, zda G je jednoznačná
 - □ G = ({S, S₁, S₂}, V_T, S, {S → S₁ | S₂} U {S₁ → w_iS₁a_i | w_ia_i | i=1,2,...,n} U {S₂ → x_iS₂a_i | x_ia_i | i=1,2,...,n})
 - □ (instance PKP má řešení ⇔ G je víceznačná)

Nerozhodnutelnost u gramatik (2)

- pro bezkontextovou gramatiku G je nerozhodnutelné, zda L(G)=X*
 - $G_1 = (\{S\}, V_T, S, \{S \rightarrow w_i Sa_i | w_i a_i | i=1,2,...,n\})$
 - generuje slova w_{i1}.w_{i2}...w_{ik}a_{ik}.a_{ik-1}...a_{i1}
 - $G_2 = (\{S\}, V_T, S, \{S \rightarrow x_i Sa_i | x_i a_i | i=1,2,...,n\})$
 - generuje slova x_{i1}.x_{i2}...x_{ik}a_{ik}.a_{ik-1}...a_{i1}
 - L(G₁) a L(G₂) jsou deterministické bezkontextové jazyky
 - z uzavřenosti na doplněk jsou deterministické bezkontextové i -L(G₁) a -L(G₂)
 - z uzavřenosti bezkontextových jazyků na konečná sjednocení existuje bezkontextová gramatika G, že $L(G) = -L(G_1) \cup -L(G_2)$
 - instance PKP má řešení \Leftrightarrow $L(G_1) \cap L(G_2) \neq \emptyset \Leftrightarrow -L(G_1) \cup -L(G_2) \neq X^* \Leftrightarrow L(G) \neq X^*$
- následující problémy jsou rovněž nerozhodnutelné:
 - □ L(G) = R pro bezkontextovou gramatiku G a regulární jazyk R
 - za R zvolme X*
 - R ⊆ L(G) pro bezkontextovou gramatiku G a regulární jazyk R
 - za R zvolme X*
 - \Box L(G₁)=L(G₂) pro bezkontextové gramatiky G₁ a G₂
 - G_1 taková, že $L(G_1) = X^*$
 - L(G₁)⊆L(G₂) pro bezkontextové gramatiky G₁ a G₂
 - G_1 taková, že $L(G_1) = X^*$