Autómatas finitos

Lenguajes formales, autómatas y computabilidad

DC-UBA

2do cuatrimestre 2024

Autómatas finitos

- La clase pasada vimos símbolos, alfabetos, cadenas y lenguajes
- Hoy vamos a ver una máquina abstracta que nos permite reconocer lenguajes: los autómatas finitos
- Estos reconocen exactamente una *clase* de lenguajes en particular: los **lenguajes regulares**

Jerarquía de Chomsky

 Consumen cadenas símbolo por símbolo y mantienen un estado interno.

Ejercicio 1 - Repaso y definiciones

Ejemplo motivador (Ej 1b de la práctica 1)

$$\mathcal{L}_1 = \{ \alpha \mid \alpha \in \{0,1\}^* \text{ y } |\alpha|_0 \text{ es par } \}$$

Cadenas sobre $\Sigma = \{0, 1\}$ con cantidad par de ceros.

Ejemplos de cadenas:

- Que pertenecen: 1, 00, 010, 00100010
- Que no pertenecen: 0, 10010, 1110

El autómata A_1 que reconoce \mathcal{L}_1 es,

Seguimientos de cadenas

•
$$q_p \xrightarrow[A_1]{0} q_i \xrightarrow[A_1]{1} q_i \xrightarrow[A_1]{0} q_p \checkmark$$

•
$$q_{\rho} \xrightarrow{1}_{A_1} q_{\rho} \xrightarrow{0}_{A_1} q_i \xrightarrow{1}_{A_1} q_i X$$

Definición

Autómata finito

Un AFD es una tupla de la forma

$$\mathcal{A} = \langle Q, \Sigma, \delta, q_0, F \rangle,$$

donde:

- *Q* es un conjunto de estados
- Σ es el alfabeto
- $\delta: Q \times \Sigma \rightarrow Q$ es la función de transición
- q₀ es el estado inicial
- $F \subseteq Q$ es el conjunto de estados finales

Volviendo al ejemplo

La tupla que describe a A_1 es

$$\mathcal{A}_1 = \langle \{q_p, q_i\}, \{0, 1\}, \delta, \stackrel{\text{inicial}}{q_p}, \{\stackrel{F}{q_p}\} \rangle$$

y antes dimos una representación pictórica de δ , que más formalmente está dada por la siguiente tabla

$$\begin{array}{c|c|c|c}
\delta & 0 & 1 \\
\hline
q_{\rho} & q_{i} & q_{\rho} \\
\hline
q_{i} & q_{\rho} & q_{i}
\end{array}$$

La tupla y los parciales

Para los ejercicios alcanza con el dibujo para especificar δ , no es necesario que escriban la tabla. Pero, en especial en los **parciales**,

¡No olviden la tupla!

Hay otros?

8/36

Configuraciones instantáneas

¿Cómo formalizamos que un autómata acepte una cadena?

- Vamos a definir configuraciones instantáneas, una tupla compuesta por el estado actual y lo que resta de consumir de la cadena. Representan una foto del proceso de reconocimiento de una cadena en un instante dado.
- Luego, el autómata va a transicionar entre configuraciones a medida que consume la cadena.

Ejemplo: $\alpha = 010$

Formalizando

Dado $\mathcal{A} = \langle Q, \Sigma, \delta, q_0, F \rangle$, definimos:

Configuraciones instantáneas

$$(q, \alpha) \in Q \times \Sigma^*$$

donde q es el estado actual y α es lo que resta por consumir de la cadena de entrada.

¿Cómo podemos formalizar la transición entre ellas? Podemos pasar de un estado a otro consumiendo un símbolo solo si δ nos dice que existe tal transición

Relación de transición entre configuraciones

$$(q_i, a.\alpha) \vdash_{\mathcal{A}} (q_j, \alpha) \iff \delta(q_i, a) = q_j$$

Pertenencia al lenguaje

Con todo lo que vimos, ¿Se les ocurre cómo definir el **lenguaje aceptado** por un autómata?

Lenguaje aceptado

$$\alpha \in L(A) \iff \exists q_f \in F \mid (q_0, \alpha) \vdash_{\mathcal{A}}^* (q_f, \lambda)$$

 α pertenece al lenguaje aceptado si partiendo de la configuración inicial (q_0,α) se puede consumir toda la cadena llegando a un estado final. Es decir, llegar a la configuración (q_f,λ) con $q_f\in F$.

Recordatorio

Recordemos que \vdash^* quiere decir aplicar \vdash cero o más veces. ¿Cuando necesitamos aplicarla cero veces? Cuando la entrada es λ .

Seguimientos de cadenas

- $(q_p, 010) \vdash_{A_1} (q_i, 10) \vdash_{A_1} (q_i, 0) \vdash_{A_1} (q_p, \lambda) \checkmark$
- $(q_p, 101) \vdash_{A_1} (q_p, 01) \vdash_{A_1} (q_i, 1) \vdash_{A_1} (q_i, \lambda) \ X$

Ejercicio 2

Enunciado

Cadenas sobre $\Sigma = \{0,1\}$ que comienzan con 01.

$$\mathcal{L}_2 = \{01\alpha \mid \alpha \in \{0,1\}^*\}$$

¿Qué tenemos que recordar? Si vimos un 0 y luego un 1 Proponemos el siguiente autómata \mathcal{A}_2 para \mathcal{L}_2 ,

¿Qué problema tiene? ¡La función de transición está incompleta!

δ	0	1
q_0	q_1	?
q_1	?	q_2
q_2	q_2	q_2

Estado trampa

Para que el autómata quede bien definido, vamos a completarlo con un **estado trampa** (o de *error*), al que van todas las transiciones no definidas y cicla sobre sí mismo con todos los símbolos del alfabeto

$$A_2 = \langle \{q_0, q_1, q_2, q_T\}, \{0, 1\}, \delta, q_0, \{q_2\} \rangle$$

Ejercicio 3

Ejercicio 3

Cadenas sobre $\Sigma = \{0, 1\}$ que terminan con 01.

$$\mathcal{L}_3 = \{ \alpha \mathbf{01} \mid \alpha \in \{0, 1\}^* \}$$

 A_3 :

Significado intuitivo de cada estado:

- q_0 : "La cadena no termina en 0 ni en 01"
- q_1 : "La cadena termina en 0"
 - q_2 : "La cadena termina en 01"

Casos de test

$$\mathcal{L}_{3} = \{ \alpha \mathbf{01} \mid \alpha \in \{0, 1\}^{*} \}$$

 A_3 :

- 0, 1, 010, 011, 1111010 X
- 01, 0001, 010101, 1100001

Alternativa

El lenguaje \mathcal{L}_3 es muy parecido a \mathcal{L}_2 , pero el autómata se ve más complicado. Nos gustaría que el formalismo nos permita expresar algo como "Puede venir cualquier cadena, siempre y cuando termine con 01", al igual que para \mathcal{L}_2 nos permitía decir "Si arranca por 01 puede seguir cualquier cadena".

Proponemos A_3' ,

Pero no cuadra con la definición que vimos antes, $\delta(q_0, 0)$ tiene más de una opción: q_0 y q_1 . ¡No es **determinístico**!

Seguimientos

 A_3' :

Para la cadena $\alpha = 101 \in \mathcal{L}_3$ tenemos dos caminos posibles

•
$$q_0 \xrightarrow{1}_{\mathcal{A}'_3} q_0 \xrightarrow{0}_{\mathcal{A}'_3} q_1 \xrightarrow{1}_{\mathcal{A}'_3} q_2 \checkmark$$

•
$$q_0 \xrightarrow[\mathcal{A}_3]{1} q_0 \xrightarrow[\mathcal{A}_3]{0} q_0 \xrightarrow[\mathcal{A}_3]{1} q_0 X$$

Alcanza con que *exista al menos un* recorrido desde el inicial a un estado final cuya etiqueta sea la cadena para que pertenezca al lenguaje. **No importa que haya otros que no sean exitosos**.

AFND- λ

Los autómatas que veníamos viendo hasta ahora eran **determinísticos**, en cada momento tenían una sola acción posible. \mathcal{A}_3' es un autómata finito **no determinístico**, que en cada paso puede tener más de una alternativa para elegir. Al igual que los AFDs, son una tupla $\mathcal{A}=\langle Q,\Sigma,\delta,q_0,F\rangle$ pero cambia la función de transición:

$$\delta: Q \times (\Sigma \cup \lambda) \to \mathcal{P}(Q)$$

- En lugar de un solo estado, devuelve un conjunto
- Además de transiciones por un símbolo de la entrada, podemos transicionar por $\lambda^{\,1}$ sin consumir ningún símbolo

Diferencia con bibliografía

Se suele diferenciar entre AFNDs con y sin transiciones λ (a veces llamadas ϵ), pero para nosotros va a ser lo mismo.

¹No confundir con la cadena λ , es una notación

Volviendo al ejercicio

La tupla que describe a \mathcal{A}_3' es

$$\mathcal{A}_3' = \langle \{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, \{q_2\} \rangle$$

donde δ está dada por la siguiente tabla,

δ	0	1	λ
q_0	$\{q_0, q_1\}$	$\{q_0\}$	Ø
q_1	Ø	{ <i>q</i> ₂ }	Ø
q_2	Ø	Ø	Ø

AFNDs no hacen trampa

δ	0	1	λ
q_0	$\{q_0, q_1\}$	$\{q_0\}$	Ø
q_1	Ø	{ q ₂ }	Ø
q_2	Ø	Ø	Ø

Trampas en AFNDs

Observen que **en AFNDs no es necesario completar con un estado trampa**. La imagen de δ son los conjuntos y asumimos que si una transición no está en el dibujo, va a \emptyset

Relación ⊢ y lenguaje

Las configuraciones instantáneas son las mismas que para AFDs, ¿pero cómo es la relación entre ellas? Hay dos casos: consumiendo un símbolo o por λ

Relación de transición entre configuraciones

$$(q_i, a.\alpha) \vdash_{\mathcal{A}} (q_j, \alpha) \iff q_j \in \delta(q_i, a)$$

 $(q_i, \alpha) \vdash_{\mathcal{A}} (q_j, \alpha) \iff q_j \in \delta(q_i, \lambda)$

La definición del lenguaje es idéntica

Lenguaje aceptado

$$\alpha \in L(\mathcal{A}) \iff \exists q_f \in F \mid (q_0, \alpha) \vdash_{\mathcal{A}}^* (q_f, \lambda)$$

Seguimientos

 A_3' :

Para la cadena $\alpha = 101 \in L_3$ tenemos dos caminos posibles

- $(q_0, 101) \vdash_{\mathcal{A}'_3} (q_0, 01) \vdash_{\mathcal{A}'_3} (q_1, 1) \vdash_{\mathcal{A}'_3} (q_2, \lambda) \checkmark$
- $(q_0, 101) \vdash_{\mathcal{A}_3'} (q_0, 01) \vdash_{\mathcal{A}_3'} (q_0, 1) \vdash_{\mathcal{A}_3'} (q_0, \lambda)$

Por la definición de lenguaje aceptado, alcanza con que *exista al menos una* secuencia de configuraciones que lleve a un estado final consumiendo toda la cadena para que pertenezca al lenguaje. **No importa que otras secuencias no lleven a aceptar**.

Más seguimientos

$$A_3'$$
:

Para la cadena $\beta = 010 \notin \mathcal{L}_3$ tenemos tres caminos posibles

•
$$(q_0, 010) \vdash_{\mathcal{A}'_3} (q_0, 10) \vdash_{\mathcal{A}'_3} (q_0, 0) \vdash_{\mathcal{A}'_3} (q_1, \lambda) X$$

 $(q_0, 010) \vdash_{\mathcal{A}'_3} (q_0, 10) \vdash_{\mathcal{A}'_3} (q_0, 0) \vdash_{\mathcal{A}'_3} (q_0, \lambda) X$

Consumen toda la cadena pero no llegan a un estado final

•
$$(q_0,010) \vdash_{\mathcal{A}_3'} (q_1,10) \vdash_{\mathcal{A}_3'} (q_2,0)$$
 ? X

Llega a un estado final **pero no consume toda la** cadena

Aclaración sobre lenguaje aceptado

Lenguaje aceptado

$$\alpha \in L(\mathcal{A}) \iff \exists q_f \in F \mid (q_0, \alpha) \vdash_{\mathcal{A}}^* (q_f, \frac{\lambda}{\lambda})$$

¡Hay que consumir toda la cadena!

Un autómata finito solo acepta una cadena si puede consumirla toda y terminar en un estado final. No alcanza solo con llegar a un estado final, **tiene que consumir toda la cadena**.

Esto suele generar confusión sobre todo con autómatas no determinísticos.

Ejercicio 4 - Unión

Ejercicio 4

 $\mathcal{L}_4 = \mathcal{L}_1 \cup \mathcal{L}_3$. Con $\mathcal{L}_1 =$ cadenas con cantidad par de 0s y $\mathcal{L}_3 =$ cadenas que terminan en 01. ¿Qué significa \mathcal{L}_4 ? Cadenas que terminen en 01 **o** tengan cantidad par de 0s.

Pista: ¿Cómo podemos usar A_1 y A_3 ?

Ejercicio 4 - Unión

$$\mathcal{A}_4 = \langle \{I, q_0, q_1, p_0, p_1, p_2\}, \{0, 1\}, \delta, I, \{q_0, p_2\} \rangle$$

Ejercicio 5.a

a. Con $\mathcal{L}_2=$ cadenas que comienzan por 01, $\mathcal{L}_2^c=$ cadenas que no comienzan por 01

Pista: ¿Cómo podemos usar A_2 ?

Convención del trampa implícito

Vamos a tomar el estado trampa como **implícito** cuando un autómata sea determinístico (no haya más de una opción) pero tenga δ indefinida para algunas transiciones.

Ejercicio 5.a

a. Con $\mathcal{L}_2=$ cadenas que comienzan por 01, $\mathcal{L}_2^c=$ cadenas que no comienzan por 01

Pista: ¿Cómo podemos usar A_2 ?

¡Invertimos los estados finales!

Pero 111 $\notin \mathcal{L}_2$ (no arranca con 01) y, ¡no la reconoce! **El autómata tiene que estar completo**, sino perdemos cadenas.

Ejercicio 5.a

a. \mathcal{L}_{2}^{c} = cadenas que no comienzan por 01

Ejercicio 5.b

a. \mathcal{L}_3^c = cadenas que no terminan con 01

Candidato:

¡No funciona! Aceptamos cadenas demás como 01 (en particular en este caso aceptamos Σ^*). Para cada cadena que aceptábamos, había caminos que no aceptaban. Entonces si invertimos los finales, esos caminos pueden pasar a ser de aceptación (excepto que se traben) y aceptamos cadenas que no deberíamos.

El autómata tiene que ser determinístico.

Ejercicio 5.b

b. \mathcal{L}_3^c = cadenas que no terminan con 01

Ejercicio 6 - Reversa

Ejercicio 6

 \mathcal{L}^r_4 , con $\mathcal{L}_4=\mathcal{L}_1\cup\mathcal{L}_3$, cadenas que terminan en 01 o tienen cantidad par de 0s

Ejercicio 6 - Reversa

$$\mathcal{A}_{4}^{r} = \langle \{I, J, q_{0}, q_{1}, p_{0}, p_{1}, p_{2}\}, \{0, 1\}, \delta, J, \{I\} \rangle$$

Operaciones en general

Unión

Dados A_1 y A_2 AFs, para obtener $L(A_1) \cup L(A_2)$ agregar un nuevo estado inicial con transiciones λ a los iniciales de A_1 y A_2 .

Complemento

Dado un AF**D completo**, invertir los finales: $F' = F \setminus Q$

Reversa

Dado un AFND- λ , obtener $\mathcal{A}' = \langle Q', \Sigma, \delta', q'_0, F' \rangle$ tal que:

- $Q' = Q \cup \{q'_0\}$ (nuevo inicial)
- $\delta'(q'_0, \lambda) = F$ (arrancar por los finales)
- $q_2 \in \delta'(q_1, a) \iff q_1 \in \delta(q_2, a)$ (dar vuelta flechas)
- $F' = \{q_0\}$ (terminar con iniciales)

Conclusiones

Vimos,

- AFDs, AFNDs y sus definiciones formales
- La importancia de que cada estado tenga un propósito claro
- Problemas que son más sencillos de resolver con AFNDs
- Algunos autómatas para operaciones entre lenguajes: Unión, complemento, reversa (más en la práctica)

Ya pueden hacer toda la práctica 2