## Monotone Operators and Base Splitting Schemes

Ernest K. Ryu and Wotao Yin

Large-Scale Convex Optimization via Monotone Operators

#### Main idea

Use monotone operators and base splitting schemes to derive and analyze a wide variety of classical and modern algorithms in a unified and streamlined manner:

- (i) pose the problem at hand as a monotone inclusion problem
- (ii) use one of the base splitting schemes to encode the solution as a fixed point of a related operator A
- (iii) find the solution with a fixed-point iteration.

#### **Outline**

Set-valued operators

Monotone operators

Nonexpansive and averaged operators

Fixed-point iteration

Resolvents

Proximal point method

Operator splitting

Variable metric methods

#### **Set-valued operator**

 $T: \mathbb{R}^n \rightrightarrows \mathbb{R}^n$  is a set-valued operator on  $\mathbb{R}^n$  if T maps a point in  $\mathbb{R}^n$  to a (possibly empty) subset of  $\mathbb{R}^n$ .

Other names: point-to-set mapping, set-valued mapping, multi-valued function, correspondence. For simplicity, write  $\mathbb{T}x = \mathbb{T}(x)$ .

If  $\mathbb{T}x$  is a singleton or empty for all x, then  $\mathbb{T}$  is a function or is single-valued with domain  $\{x \mid \mathbb{T}(x) \neq \emptyset\}$  and write  $\mathbb{T}x = y$  (although  $\mathbb{T}x = \{y\}$  would be strictly correct).

Graph of an operator:

$$\operatorname{Gra} \mathbb{T} = \{(x, u) \mid u \in \mathbb{T}x\} \subseteq \mathbb{R}^n \times \mathbb{R}^n.$$

We will often not distinguish  $\mathbb{T}$  and  $\operatorname{Gra} \mathbb{T}$  and write  $\mathbb{T}$  when we really mean  $\operatorname{Gra} \mathbb{T}$ .

### **Operator definitions**

Domain and range of  $\mathbb{T}$ :

dom 
$$\mathbb{T} = \{x \mid \mathbb{T}x \neq \emptyset\}, \quad \text{range } \mathbb{T} = \{y \mid y \in \mathbb{T}x, x \in \mathbb{R}^n\}$$

Image of  $C \subseteq \mathbb{R}^n$  under  $\mathbb{T}$ :  $\mathbb{T}(C) = \bigcup_{c \in C} \mathbb{T}(c)$ 

Composition of operators:

$$\mathbb{T} \circ \mathbb{S}x = \mathbb{T}\mathbb{S}x = \mathbb{T}(\mathbb{S}(x))$$

Sum of operators:

$$(\mathbb{T} + \mathbb{S})x = \mathbb{T}(x) + \mathbb{S}(x)$$

Equivalent definitions that use the graph:

$$\mathbb{TS} = \{ (x, z) \mid \exists y \ (x, y) \in \mathbb{S}, \ (y, z) \in \mathbb{T} \}$$

$$\mathbb{T} + \mathbb{S} = \{ (x, y + z) \mid (x, y) \in \mathbb{T}, \ (x, z) \in \mathbb{S} \}$$

## **Operator definitions**

Identity and zero operators:

$$\mathbb{I} = \{(x, x) \mid x \in \mathbb{R}^n\} \qquad \mathbb{0} = \{(x, 0) \mid x \in \mathbb{R}^n\}$$

So 
$$\mathbb{T} + \mathbb{0} = \mathbb{T}$$
,  $\mathbb{T}\mathbb{I} = \mathbb{T}$ , and  $\mathbb{I}\mathbb{T} = \mathbb{T}$ .

T is 
$$L$$
-Lipschitz if  $\mathcal{H}(X)$ 

$$\| \mathbb{T}x - \mathbb{T}y \| \le L \|x - y\| \qquad \forall x, y \in \text{dom } \mathbb{T}.$$

(This definition generalizes the Lipschitz continuity to functions with domain  $\mathbb{R}^n$  to operators without full domain.)

If  $\mathbb{T}$  is L-Lipschitz, it is single-valued; if  $\mathbb{T}x$  is not a singleton, then we have a contradiction by setting y=x.

#### **Operator Inverse**

The *inverse operator* of  $\mathbb{T}$ :

$$\mathbb{T}^{-1} = \{ (y, x) \mid (x, y) \in \mathbb{T} \}$$

 $\mathbb{T}^{-1}$  is always well defined ( $\mathbb{T}^{-1}$  need not be single-valued).



$$(\mathbb{T}^{-1})^{-1} = \mathbb{T}$$
 and  $\operatorname{dom} \mathbb{T}^{-1} = \operatorname{range} \mathbb{T}$ 

 $\mathbb{T}^{-1}$  is not an inverse in the usual sense since  $\mathbb{T}^{-1}\mathbb{T} \neq \mathbb{I}$  possible.

#### Zero

If  $0 \in \mathbb{T}(x)$ , x is a zero of  $\mathbb{T}$ .

Zero set of an operator  $\mathbb{T}$ :

$$\operatorname{Zer} \mathbb{T} = \{ x \, | \, 0 \in \mathbb{T} x \} = \mathbb{T}^{-1}(0)$$

Many interesting problems can be posed as finding zeros of an operator.



#### **Subdifferential**

When f is convex:

- $ightharpoonup \partial f$  is a set-valued operator
- $\operatorname{argmin} f = \operatorname{Zer} \partial f \implies 0 \in \partial f(K)$ 
  - lacktriangle when f is differentiable, write  $\nabla f$  instead of  $\partial f$

# Subdifferential of conjugate

Proof.

$$u \in \partial f(x) \quad \Leftrightarrow \quad 0 \in \partial f(x) - u \quad \text{wax} \quad \text{w$$

The last step takes the whole argument backwards.

# Subdifferential of conjugate

 $g(y) = f^*(A^{\mathsf{T}}y)$ , where f is CCP and  $\mathcal{R}(A^{\mathsf{T}}) \cap \operatorname{ridom} f^* \neq \emptyset$ ,

$$u \in \partial g(y) \quad \Leftrightarrow \quad u \in A\partial f^*(A^{\mathsf{T}}y)$$

$$\Leftrightarrow \quad u = Ax, \ x \in \partial f^*(A^{\mathsf{T}}y)$$

$$\Leftrightarrow \quad u = Ax, \ \partial f(x) \ni A^{\mathsf{T}}y$$

$$\Leftrightarrow \quad u = Ax, \ 0 \in \partial f(x) - A^{\mathsf{T}}y$$

$$\Leftrightarrow \quad u = Ax, \ x \in \operatorname*{argmin}_{z} \left\{ f(z) - \langle y, Az \rangle \right\}$$

Find element of  $\partial g$  by solving a minimization problem.

#### **Outline**

Set-valued operators

Monotone operators

Nonexpansive and averaged operators

Fixed-point iteration

Resolvents

Proximal point method

Operator splitting

Variable metric methods

### **Monotone operators**

 $\mathbb{T}$  is monotone if

$$\langle u - v, x - y \rangle \ge 0$$
  $\forall (x, u), (y, v) \in \mathbb{T}.$ 

Equivalently and more concisely,  ${\mathbb T}$  is monotone if

$$\begin{array}{ccc}
\left\langle \mathbb{T}x - \mathbb{T}y, x - y \right\rangle \geq 0 & \forall x, y \in \mathbb{R}^n. \\
\downarrow & & & & & & \\
\left\langle \mathbb{T}(x) \rightarrow \mathcal{T}(x) \right\rangle
\end{array}$$

## **Maximal monotone operators**

 $\mathbb T$  is maximal monotone if  $\not\equiv$  monotone  $\mathbb S$  such that  $\operatorname{Gra}\mathbb T\subset\operatorname{Gra}\mathbb S$  properly.

I.e., if  $\mathbb{T}$  is monotone but not maximal, then  $\exists (x, u) \notin \mathbb{T}$  such that  $\mathbb{T} \cup \{(x, u)\}$  is monotone.

Maximality is a technical but fundamental detail.

## Monotone operator example

Heaviside step function



is monotone but not maximal. Operator



is maximal monotone.



# Monotonicity of subdifferentials

If f is convex and proper, then  $\partial f$  is monotone. If f is CCP, then  $\partial f$  is maximal monotone.

Proof of monotonicity. Add 
$$f(y) \geq f(x) + \langle \partial f(x), y - x \rangle, \qquad f(x) \geq f(y) + \langle \partial f(y), x - y \rangle$$

$$\langle \partial f(x) - \partial f(y), x - y \rangle > 0$$

Maximality proved later in §10.

[subdiff. CCP]  $\subset$  [maximal monotone]

strict inclusion

## Stronger monotonicity properties

 $\mathbb{A}:\mathbb{R}^n \rightrightarrows \mathbb{R}^n$  is  $\mu$ -strongly monotone or  $\mu$ -coercive if  $\mu>0$  and

$$\langle u - v, x - y \rangle \ge \mu \|x - y\|^2 \qquad \forall (x, u), (y, v) \in \mathbb{A}.$$

A is strongly monotone if it is  $\mu$ -strongly monotone for some  $\mu \in (0, \infty)$ .

A is  $\beta$ -cocoercive or  $\beta$ -inverse strongly monotone if  $\beta > 0$ 

$$\langle u - v, x - y \rangle \ge \beta \|u - v\|^2 \qquad \forall (x, u), (y, v) \in \mathbb{A}.$$

We say  $\mathbb{A}$  is cocoercive if it is  $\beta$ -cocoercive for some  $\beta \in (0, \infty)$ .

Cocoercivity and strong monotonicity are dual:  $[\mathbb{A} \text{ is } \beta\text{-cocoercive}] \Leftrightarrow [\mathbb{A}^{-1} \text{ is } \beta\text{-strongly monotone}]$ 

Strongly monotone and cocoercive operators are monotone.

### Stronger monotonicity properties

When  $\mathbb{A}$  is  $\beta$ -cocoercive, Cauchy-Schwartz tells us

$$(1/\beta)\|x - y\| \ge \|\mathbb{A}x - \mathbb{A}y\| \qquad \forall x, y \in \mathbb{R}^n.$$

i.e., A is  $(1/\beta)$ -Lipschitz. Cocoercive operators are single-valued.

Converse is not true.

$$\mathbb{A}(x_1, x_2) = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ -x_1 \end{bmatrix}$$

is maximal monotone and Lipschitz, but not cocoercive since  $\langle \mathbb{A}x - \mathbb{A}y, x - y \rangle = 0$ .

More concisely express  $\mu$ -strong monotonicity as

$$\langle \mathbb{A}x - \mathbb{A}y, x - y \rangle \ge \mu \|x - y\|^2 \qquad \forall x, y \in \mathbb{R}^n,$$

and, when  $\mathbb A$  is a priori known or assumed to be single-valued, express  $\beta$ -cocoercivity as

$$\langle \mathbb{A}x - \mathbb{A}y, x - y \rangle \ge \beta \|\mathbb{A}x - \mathbb{A}y\|^2 \qquad \forall x, y \in \mathbb{R}^n.$$

# Stronger monotonicity properties: Maximality

A is maximal  $\mu$ -s.m. if  $\not\equiv \mu$ -s.m. B such that  $\operatorname{Gra} \mathbb{A} \subset \operatorname{Gra} \mathbb{B}$  properly. A is maximal  $\beta$ -coco. if  $\not\equiv \beta$ -coco. B such that  $\operatorname{Gra} \mathbb{A} \subset \operatorname{Gra} \mathbb{B}$  properly.

[Maximal coco.] and [maximal s.m.] are dual: [A is maximal  $\beta$ -coco.]  $\Leftrightarrow$  [A<sup>-1</sup> is maximal  $\beta$ -s.m.].

If  $\mathbb{A}$  cocoercive,  $[\mathbb{A} \text{ maximal}] \Leftrightarrow [\operatorname{dom} \mathbb{A} = \mathbb{R}^n]$ . (We prove this in §10.) Therefore, " $\mathbb{A} \colon \mathbb{R}^n \to \mathbb{R}^n$  is  $\beta$ -cocoercive" implicitly asserts  $\operatorname{dom} \mathbb{A} = \mathbb{R}^n$  and maximality of  $\mathbb{A}$ .

# Stronger monotonicity properties: CCP functions

#### Assume f is CCP. Then

- ▶ [f is  $\mu$ -strongly convex]  $\Leftrightarrow$  [ $\partial f$  is  $\mu$ -strongly monotone]
- ▶ [f is L-smooth]  $\Leftrightarrow$  [ $\partial f$  is L-Lipschitz]  $\Leftrightarrow$  [ $\partial f$  is (1/L)-cocoercive]
- ▶ [f is  $\mu$ -strongly convex]  $\Leftrightarrow$  [ $f^*$  is  $(1/\mu)$ -smooth]

For  $\partial f$ , Lipschitz = cocoercive.

For monotone operators, Lipschitz  $\neq$  cocoercive.

# Stronger monotonicity properties examples

Operator on  $\mathbb R$  is monotone if its graph is a nondecreasing curve in  $\mathbb R^2$ . Vertical portions, then multi-valued. Continuous with no end points, then maximal. Slope  $\geq \mu$ , then  $\mu$ -strongly monotone. Slope  $\leq L$ , then L-Lipschitz. Lipschitz and cocoercivity coincide.



# **Operations preserving monotonicity**

- ▶  $\mathbb{T}$  (maximal) monotone, then  $\mathbb{S}(x) = y + \alpha \mathbb{T}(x+z)$  (maximal) monotone for any  $\alpha > 0$  and  $y, z \in \mathbb{R}^n$ .
- ightharpoonup T (maximal) monotone, then  $m T^{-1}$  (maximal) monotone.
- ightharpoonup T and S monotone,  $\mathbb{T} + \mathbb{S}$  monotone.
- ▶  $\mathbb{T}$  and  $\mathbb{S}$  maximal monotone and  $\operatorname{dom} \mathbb{T} \cap \operatorname{int} \operatorname{dom} \mathbb{S} \neq \emptyset$ , then  $\mathbb{T} + \mathbb{S}$  maximal monotone.
- $ightharpoonup \mathbb{T} \colon \mathbb{R}^n \rightrightarrows \mathbb{R}^n$  monotone and  $M \in \mathbb{R}^{n \times m}$ , then  $M^\intercal \mathbb{T} M$  monotone.
- ▶  $\mathbb{T}$  maximal and  $\mathcal{R}(M) \cap \operatorname{int} \operatorname{dom} \mathbb{T} \neq \emptyset$ , then  $M^{\intercal}\mathbb{T}M$  maximal.

Proofs of maximality in §10.

# Operations preserving monotonicity: Concatenation

If  $\mathbb{R}: \mathbb{R}^n \rightrightarrows \mathbb{R}^n$  and  $\mathbb{S}: \mathbb{R}^m \rightrightarrows \mathbb{R}^m$ , then  $\mathbb{T}: \mathbb{R}^{n+m} \rightrightarrows \mathbb{R}^{n+m}$ 

$$\mathbb{T}(x,y) = \{(u,v) \mid u \in \mathbb{R}x, v \in \mathbb{S}y\}$$

the concatenation of  $\mathbb R$  and  $\mathbb S$ , is (maximal) monotone if  $\mathbb R$  and  $\mathbb S$  are.

Use notation

$$\mathbb{T} = \begin{bmatrix} \mathbb{R} \\ \mathbb{S} \end{bmatrix}, \qquad \mathbb{T}(x, y) = \begin{bmatrix} \mathbb{R}x \\ \mathbb{S}y \end{bmatrix}.$$

# Operations preserving stronger monotonicity properties

 $\mathbb{T}$  is  $\mu$ -s.m., then  $\alpha \mathbb{T}$  is  $(\alpha \mu)$ -s.m. for  $\alpha > 0$ .

 $\mathbb{T}$  is  $\mu$ -s.m. and  $\mathbb{S}$  monotone, then  $\mathbb{T} + \mathbb{S}$  is  $\mu$ -s.m.

 $\mathbb{T}\colon\mathbb{R}^n\rightrightarrows\mathbb{R}^n$  is  $\mu$ -s.m., and  $M\in\mathbb{R}^{n imes m}$  has rank m, then  $M^\intercal\mathbb{T}M$  is  $(\mu\sigma_{\min}^2(M))$ -s.m.

 $\mathbb{T}\colon\mathbb{R}^n\to\mathbb{R}^n$  is L-Lipschitz and  $M\in\mathbb{R}^{n imes m}$ , then  $M^\intercal\mathbb{T}M$  is  $(L\sigma^2_{\max}(M))$ -Lipschitz.

### **Example: Affine operators**

Affine operator  $\mathbb{T}(x) = Ax + b$ :

- ightharpoonup [T maximal monotone]  $\Leftrightarrow$  [A + A<sup>T</sup>  $\succeq$  0]
- $ightharpoonup [\mathbb{T} = \nabla f \text{ for CCP } f] \Leftrightarrow [A = A^{\mathsf{T}} \text{ and } A \succeq 0]$
- ▶ T is  $\lambda_{\min}(A + A^{\intercal})/2$ -strongly monotone if  $\lambda_{\min}(A + A^{\intercal}) > 0$  and  $\sigma_{\max}(A)$ -Lipschitz.

### **Example: Continuous operators**

 $\mathbb{T} \colon \mathbb{R}^n \rightrightarrows \mathbb{R}^n$  is continuous if  $\operatorname{dom} \mathbb{T} = \mathbb{R}^n$ ,  $\mathbb{T}$  is single-valued, and  $\mathbb{T}$  is continuous as a function.

A continuous monotone operator  $\mathbb{T} \colon \mathbb{R}^n \to \mathbb{R}^n$  is maximal.

Maximality is only in question with discontinuous or set-valued operators.

## **Example: Differentiable operators**

We say an operator is differentiable if it is continuous and differentiable.

For differentiable  $\mathbb{T} \colon \mathbb{R}^n \to \mathbb{R}^n$ ,

- $ightharpoonup [\mathbb{T} \text{ monotone}] \Leftrightarrow [D\mathbb{T}(x) + D\mathbb{T}(x)^{\intercal} \succeq 0, \forall x]$
- $[\mathbb{T} \ \mu\text{-s.m.}] \Leftrightarrow [D\mathbb{T}(x) + D\mathbb{T}(x)^{\intercal} \succeq 2\mu I, \ \forall x]$
- $ightharpoonup [\mathbb{T} L$ -Lipschitz]  $\Leftrightarrow [\sigma_{\max}(D\mathbb{T}(x)) \leq L, \forall x]$

Continuously differentiable monotone  $\mathbb{T}$ ,  $[\mathbb{T} = \nabla f \text{ for CCP } f] \Leftrightarrow [D\mathbb{T}(x) \text{ symmetric } \forall x]$  (When n=3, this is  $\nabla \times \mathbb{T} = 0$  condition of electromagnetic potentials.)

## **Example: Saddle subdifferential**

For convex-concave  $\mathbf{L} \colon \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R} \cup \{\pm \infty\}$ , saddle subdifferential operator  $\partial \mathbf{L} \colon \mathbb{R}^n \times \mathbb{R}^m \rightrightarrows \mathbb{R}^n \times \mathbb{R}^m$ :

$$\partial \mathbf{L}(x,u) = \begin{bmatrix} \partial_x \mathbf{L}(x,u) \\ \partial_u(-\mathbf{L}(x,u)) \end{bmatrix}$$

Zer  $\partial \mathbf{L}$  is the set of saddle points of  $\mathbf{L}$ , i.e.,  $[0 \in \partial \mathbf{L}(x^*, u^*)] \Leftrightarrow [(x^*, u^*)]$  is a saddle point of  $\mathbf{L}$ ]

For most well-behaved ("closed proper") convex-concave saddle functions, their saddle subdifferentials are maximal monotone. We avoid this notion and instead verify the maximality of saddle subdifferentials on a case-by-case basis.

### **Example: KKT operator**

Consider

minimize 
$$f_0(x)$$
 subject to  $f_i(x) \leq 0, \quad i = 1, \dots, m$   $h_i(x) = 0, \quad i = 1, \dots, p,$ 

 $f_0, \ldots, f_m$  are CCP and  $h_1, \ldots, h_p$  are affine. Lagrangian

$$\mathbf{L}(x,\lambda,\nu) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x) - \delta_{\mathbb{R}^m_+}(\lambda)$$

is convex-concave. Consider the Karush-Kuhn-Tucker (KKT) operator

$$\mathbb{T}(x,\lambda,\nu) = \begin{bmatrix} \partial_x \mathbf{L}(x,\lambda,\nu) \\ -\mathbb{F}(x) + \mathbb{N}_{\mathbb{R}^m_+}(\lambda) \\ -\mathbb{H}(x) \end{bmatrix},$$

where

$$\mathbb{F}(x) = \begin{bmatrix} f_1(x) \\ \vdots \\ f_m(x) \end{bmatrix}, \qquad \mathbb{H}(x) = \begin{bmatrix} h_1(x) \\ \vdots \\ h_p(x) \end{bmatrix}.$$

## **Example: KKT operator**

$$\mathbb{T}(x,\lambda,\nu) = \begin{bmatrix} \partial_x \mathbf{L}(x,\lambda,\nu) \\ -\mathbb{F}(x) + \mathbb{N}_{\mathbb{R}^m_+}(\lambda) \\ -\mathbb{H}(x) \end{bmatrix} = \begin{bmatrix} \partial_x \mathbf{L}(x,\lambda,\nu) \\ \partial_\lambda (-\mathbf{L}(x,\lambda,\nu)) \\ \partial_\nu (-\mathbf{L}(x,\lambda,\nu)) \end{bmatrix}$$

 $\mathbb{T}$  is a special case of the saddle subdifferential, so monotone.

Arguments based on total duality tell us:

$$[0 \in \mathbb{T}(x^*, \lambda^*, \nu^*)] \Leftrightarrow [x^* \text{ primal sol., } (\lambda^*, \nu^*) \text{ dual sol., strong duality}]$$

## Monotone inclusion problem

Monotone inclusion problem:



where A is monotone.

Many interesting problems can be formulated this way.

#### **Outline**

Set-valued operators

Monotone operators

Nonexpansive and averaged operators

Fixed-point iteration

Resolvents

Proximal point method

Operator splitting

Variable metric methods

# Nonexpansive and contractive operators

 ${\mathbb T}$  is nonexpansive if

$$\|\mathbb{T}x - \mathbb{T}y\| \le \|x - y\| \qquad \forall x, y \in \text{dom } \mathbb{T},$$

i.e., 1-Lipschitz.  ${\mathbb T}$  is a contraction if L-Lipschitz with L<1.

Mapping a pair of points by a contraction reduces their distance; mapping by a nonexpansive operator does not increase their distance.

#### Properties:

- ▶ If  $\mathbb{T}$  and  $\mathbb{S}$  nonexpansive, then  $\mathbb{T}\mathbb{S}$  nonexpansive.
- ▶ If  $\mathbb{T}$  or  $\mathbb{S}$  furthermore contractive, then  $\mathbb{T}\mathbb{S}$  contractive.
- ▶ If  $\mathbb{T}$  and  $\mathbb{S}$  nonexpansive, then  $\theta \mathbb{T} + (1 \theta) \mathbb{S}$  with  $\theta \in [0, 1]$  nonexpansive.
- ▶ If  $\mathbb{T}$  is furthermore contractive and  $\theta \in (0,1]$ , then  $\theta \mathbb{T} + (1-\theta) \mathbb{S}$  contractive.

#### **Averaged operators**

For  $\theta \in (0,1)$ ,  $\mathbb{T}$  is  $\theta$ -averaged if  $\mathbb{T} = (1-\theta)\mathbb{I} + \theta \mathbb{S}$  for nonexpansive  $\mathbb{S}$ . Operator is averaged if  $\theta$ -averaged for some  $\theta \in (0,1)$ . Operator is firmly nonexpansive if (1/2)-averaged.

 $\mathbb{T}$  and  $\mathbb{S}$  are averaged, composition  $\mathbb{T}\mathbb{S}$  is averaged. (Proof later in §13.)

Averagedness is the basis for convergence of many splitting methods.

#### **Averaged operators**



Illustration of classes of contractive, averaged, and nonexpansive operators. The figure illustrates the relationship contractive  $\subset$  averaged  $\subset$  nonexpansive. The precise meaning of these figures will be defined in §13.

#### **Outline**

Set-valued operators

Monotone operators

Nonexpansive and averaged operators

Fixed-point iteration

Resolvents

Proximal point method

Operator splitting

Variable metric methods

### **Fixed points**

x is a fixed point of  $\mathbb{T}$  if  $x = \mathbb{T}x$ .

Fix 
$$\mathbb{T} = \{x \mid x = \mathbb{T}x\} = (\mathbb{I} - \mathbb{T})^{-1}(0)$$

Fix  $\mathbb{T}$  can contain nothing (e.g.  $\mathbb{T}x = x + 1$ ) or many points (e.g.  $\mathbb{T}x = |x|$ ).

### **Fixed points**

When  $\mathbb{T} \colon \mathbb{R}^n \to \mathbb{R}^n$  is nonexpansive,  $\operatorname{Fix} \mathbb{T}$  is closed and convex.

**Proof.** Fix  $\mathbb{T}$  is closed since  $\mathbb{T} - \mathbb{I}$  is continuous.

Suppose  $x, y \in \text{Fix } \mathbb{T}$ ,  $\theta \in [0, 1]$ , and  $z = \theta x + (1 - \theta)y$ . Since  $\mathbb{T}$  is nonexpansive,

$$||Tz - x|| \le ||z - x|| = (1 - \theta)||y - x||,$$

Similarly,

$$||\mathbb{T}z - y|| \le \theta ||y - x||.$$

So the triangle inequality

$$||x - y|| \le ||\mathbb{T}z - x|| + ||\mathbb{T}z - y||$$

holds with equality and  $\mathbb{T}z$  is on the line segment between x and y. From  $\|\mathbb{T}z - y\| = \theta \|y - x\|$ , we conclude  $\mathbb{T}z = \theta x + (1 - \theta)y = z$ .

### **Fixed-point iteration**

The fixed-point iteration (FPI) is

$$x^{k+1} = \mathbb{T}x^k$$

for  $k=0,1,\ldots$ , where  $x^0\in\mathbb{R}^n$  is some starting point and  $\mathbb{T}\colon\mathbb{R}^n\to\mathbb{R}^n$ .

The FPI is used to find a fixed point of  $\mathbb{T}$ . Clearly, the algorithm stays at a fixed point if it starts at a fixed point.

Two steps of using FPI: (i) find a suitable operator whose fixed points are solutions to a monotone inclusion problem of interest. (ii) show that the iteration converges to a fixed point.

In general, FPI need not converge. We provide two guarantees.

### **FPI** with contractive operators

If  $\mathbb{T}: \mathbb{R}^n \to \mathbb{R}^n$  is a contraction with L < 1, then FPI is a contraction mapping algorithm. For  $x^* \in \operatorname{Fix} \mathbb{T}$ ,

$$||x^k - x^*|| \le L||x^{k-1} - x^*|| \le \dots \le L^k||x^0 - x^*||.$$

Basis of classic Banach fixed-point theorem. When  $\mathbb T$  is a contraction, convergence is simple.

In many optimization setups, however, a contraction is too much to ask for. We need convergence under weaker assumptions.

### **FPI** with averaged operators

If  $\mathbb{T} : \mathbb{R}^n \to \mathbb{R}^n$  is averaged, FPI is called an averaged or the Krasnosel'skiĭ–Mann iteration.

#### Theorem 1.

Assume  $\mathbb{T} \colon \mathbb{R}^n \to \mathbb{R}^n$  is  $\theta$ -averaged with  $\theta \in (0,1)$  and  $\operatorname{Fix} \mathbb{T} \neq \emptyset$ . Then  $x^{k+1} = \mathbb{T} x^k$  with any starting point  $x^0 \in \mathbb{R}^n$  converges to one fixed point, i.e.,

$$x^k \to x^*$$

for some  $x^* \in \operatorname{Fix} \mathbb{T}$ . The quantities  $\operatorname{dist}(x^k, \operatorname{Fix} \mathbb{T})$ ,  $||x^{k+1} - x^k||$ , and  $||x^k - x^*||$  for any  $x^* \in \operatorname{Fix} \mathbb{T}$  are monotonically nonincreasing with k. Finally, we have

$$\operatorname{dist}(x^k,\operatorname{Fix}\mathbb{T})\to 0$$

and

$$||x^{k+1} - x^k||^2 \le \frac{\theta}{(k+1)(1-\theta)} \operatorname{dist}^2(x^0, \operatorname{Fix} \mathbb{T}).$$

#### Discussion of Theorem 1

When  $\mathbb{T}$  is nonexpansive but not averaged, we can use  $(1 - \theta)\mathbb{I} + \theta\mathbb{T}$  with  $\theta \in (0, 1)$  since  $\operatorname{Fix} \mathbb{T} = \operatorname{Fix} ((1 - \theta)\mathbb{I} + \theta\mathbb{T})$ .

For example,  $\mathbb{T} \colon \mathbb{R}^2 \to \mathbb{R}^2$ 

$$\mathbb{T}x = \begin{bmatrix} -0.5 & 0\\ 0 & 1 \end{bmatrix} x$$

is (3/4)-averaged with  $\operatorname{Fix} \mathbb{T} = \{(0, z) \mid z \in \mathbb{R}\}.$ 



FPI with respect to  $\mathbb{T}$  converges to one fixed point, which depends on the staring put  $x^0$ .

#### Proof outline of Theorem 1

Assume nonnegative sequences  $V^0, V^1, \ldots$  and  $S^0, S^1, \ldots$  satisfy

$$V^{k+1} \le V^k - S^k.$$

Consequences: (i)  $V^k$  is monotonically nonincreasing (although  $V^k \to 0$  possible) (ii)  $S^k \to 0$ . To see why, sum both sides from 0 to k to get

$$\sum_{i=0}^{k} S^{i} \le V^{0} - V^{k+1} \le V^{0}.$$

Taking  $k \to \infty$  gives us

$$\sum_{i=0}^{\infty} S^i \le V^0 < \infty.$$

 $S^0, S^1, \ldots$  is summable. By summability,  $S^k \to 0$ .  $V^k$  is a the Lyapunov function and  $S^k$  the summable term. This is the summability argument.

### **Proof of Theorem 1**

#### **Stage 1.** Note the identity

$$||(1-\theta)x + \theta y||^2 = (1-\theta)||x||^2 + \theta||y||^2 - \theta(1-\theta)||x - y||^2.$$

 $\mathbb{T} = (1 - \theta)\mathbb{I} + \theta \mathbb{S}$ , where  $\mathbb{S}$  is N.E. Then

$$x^{k+1} = \mathbb{T}x^k = (1-\theta)x^k + \theta Sx^k.$$

For any  $x^* \in \operatorname{Fix} \mathbb{T}$ ,

$$||x^{k+1} - x^{\star}||^{2}$$

$$= (1 - \theta)||x^{k} - x^{\star}||^{2} + \theta||\mathbf{S}(x^{k}) - x^{\star}||^{2} - \theta(1 - \theta)||\mathbf{S}(x^{k}) - x^{k}||^{2}$$

$$\leq (1 - \theta)||x^{k} - x^{\star}||^{2} + \theta||x^{k} - x^{\star}||^{2} - \theta(1 - \theta)||\mathbf{S}(x^{k}) - x^{k}||^{2}$$

$$= \underbrace{||x^{k} - x^{\star}||^{2}}_{=V^{k}} - \underbrace{\theta(1 - \theta)||\mathbf{S}(x^{k}) - x^{k}||^{2}}_{=S^{k}}.$$
(1)

### **Proof of Theorem 1**

Now establish the monotonic decreases. Core inequality (1) tells us

$$||x^{k+1} - x^*|| \le ||x^k - x^*||.$$

Minimize both sides with respect to  $x^* \in \operatorname{Fix} \mathbb{T}$ :

$$\operatorname{dist}(x^{k+1}, \operatorname{Fix} \mathbb{T}) \leq \operatorname{dist}(x^k, \operatorname{Fix} \mathbb{T}).$$

This is called Fejér monotonicity.

Fixed-point residual:  $\mathbb{T}(x^k) - x^k = x^{k+1} - x^k$ . We view  $\|\mathbb{T}(x^k) - x^k\|$  as a measure of optimality for FPI. Since  $\mathbb{T}$  is nonexpansive,

$$||x^{k+1} - x^k|| = ||\mathbb{T}x^k - \mathbb{T}x^{k-1}|| \le ||x^k - x^{k-1}||.$$

### **Proof of Theorem 1**

Sum (1) from 0 to k

$$||x^{k+1} - x^*||^2 \le ||x^0 - x^*||^2 - \frac{1-\theta}{\theta} \sum_{j=0}^{\kappa} ||\mathbb{T}x^j - x^j||^2$$

Reorganize

$$\sum_{j=0}^{k} \|\mathbb{T}x^{j} - x^{j}\|^{2} \le \frac{\theta}{1-\theta} \|x^{0} - x^{\star}\|^{2} - \frac{\theta}{1-\theta} \|x^{k+1} - x^{\star}\|^{2}$$

Monotonicity of  $||x^{k+1} - x^k||$ 

$$(k+1)\|x^{k+1} - x^k\|^2 \le \sum_{j=0}^k \|x^{j+1} - x^j\|^2 \le \frac{\theta}{1-\theta} \|x^0 - x^\star\|^2$$

Conclude

$$||x^{k+1} - x^k||^2 \le \frac{\theta}{(k+1)(1-\theta)} ||x^0 - x^*||^2.$$

Minimizing the right-hand side with respect to  $x^* \in \operatorname{Fix} \mathbb{T}$ 

$$||x^{k+1} - x^k||^2 \le \frac{\theta}{(k+1)(1-\theta)} \operatorname{dist}^2(x^0, \operatorname{Fix} \mathbb{T}).$$

## Convergence proof of Theorem 1

**Stage 2.** Now show  $x^k \to x^*$  for some  $x^* \in \operatorname{Fix} \mathbb{T}$  with the steps:

- (i)  $x^k$  has an accumulation point (ii) this accumulation point is a solution (iii) this is the only accumulation point.
  - (i) Consider any  $\tilde{x}^{\star} \in \operatorname{Fix} \mathbb{T}$ . Then (1) tells us that  $x^0, x^1, \ldots$  lie within the compact set  $\{x \mid \|x \tilde{x}^{\star}\| \leq \|x^0 \tilde{x}^{\star}\|\}$ , and  $x^0, x^1, \ldots$  has an accumulation point  $x^{\star}$ .
- (ii) Accumulation point  $x^*$  satisfies  $\mathbb{T}(x^*) x^* = 0$ , as  $\mathbb{T}(x^k) x^k \to 0$  and  $\mathbb{T} \mathbb{I}$  is continuous, i.e.,  $x^* \in \operatorname{Fix} \mathbb{T}$ .
- (iii) Apply (1) to this accumulation point  $x^* \in \operatorname{Fix} \mathbb{T}$  to conclude  $\|x^k x^*\|$  monotonically decreases to 0, i.e., the entire sequence converges to  $x^*$ .

#### **Termination criterion**

 $||x^{k+1} - x^k|| < \varepsilon$  can be used as a termination criterion. Specific setups may have specific and better termination criteria.

We avoid the discussion of termination criterion for simplicity.

### Methods: Gradient descent

Consider

$$\underset{x \in \mathbb{R}^n}{\operatorname{minimize}} \ f(x),$$

where f is CCP and differentiable.

$$[x \in \operatorname{argmin} f] \Leftrightarrow [x = (\mathbb{I} - \alpha \nabla f)(x) \text{ for any nonzero } \alpha \in \mathbb{R}]$$

The FPI

$$x^{k+1} = x^k - \alpha \nabla f(x^k)$$

is gradient method or gradient descent, and  $\alpha$  is the step size.

#### Methods: Gradient descent

Assume f is L-smooth. By cocoercivity,

$$\begin{split} & \| (\mathbb{I} - (2/L)\nabla f)x - (\mathbb{I} - (2/L)\nabla f)y \|^2 \\ & = \|x - y\|^2 - \frac{4}{L} \left( \langle x - y, \nabla f(x) - \nabla f(y) \rangle - \frac{1}{L} \|\nabla f(x) - \nabla f(y)\|^2 \right) \\ & \leq \|x - y\|^2. \end{split}$$

Therefore,  $\mathbb{I} - \alpha \nabla f$  is averaged for  $\alpha \in (0, 2/L)$  since

$$\mathbb{I} - \alpha \nabla f = (1 - \theta) \mathbb{I} + \theta (\mathbb{I} - (2/L) \nabla f),$$

where  $\theta = \alpha L/2 < 1$ .

 $x^k \to x^*$  if a solution exists with rate

$$\|\nabla f(x^k)\|^2 = O(1/k),$$

for any  $\alpha \in (0, 2/L)$ .

If f is strongly convex, FPI is a contraction.

## Methods: Forward step method

Consider

where  $\mathbb{F} \colon \mathbb{R}^n \to \mathbb{R}^n$ .

 $[x \in \operatorname{Zer} \mathbb{F}] \Leftrightarrow [x \in \operatorname{Fix} (\mathbb{I} - \alpha \mathbb{F}) \text{ for any nonzero } \alpha \in \mathbb{R}]$ 

The FPI

$$x^{k+1} = x^k - \alpha \mathbb{F} x^k,$$

is the forward step method.

 $x^k \to x^\star$  if  $\mathbb F$  is  $\beta$ -cocoercive,  $\alpha \in (0,2\beta)$ , and  $\operatorname{Fix} \mathbb F \neq \emptyset$ . Contraction for small  $\alpha > 0$  if  $\mathbb F$  is strongly monotone and Lipschitz.

### Methods: Dual ascent

Consider primal-dual problem pair

$$\begin{array}{ll} \underset{x \in \mathbb{R}^n}{\text{minimize}} & f(x) \\ \text{subject to} & Ax = b, \end{array} \qquad \underset{u \in \mathbb{R}^m}{\text{maximize}} & -f^*(-A^\intercal u) - b^\intercal u \end{array}$$

and its associated Lagrangian

$$\mathbf{L}(x,u) = f(x) + \langle u, Ax - b \rangle.$$

Gradient method on 
$$g(u)=f^*(-A^\intercal u)+b^\intercal u$$
, the FPI on  $\mathbb{I}-\alpha \nabla g$  
$$x^{k+1}=\operatorname*{argmin}_x\mathbf{L}(x,u^k)$$
 
$$u^{k+1}=u^k+\alpha(Ax^{k+1}-b)$$

Uzawa method or dual ascent. ( $\nabla g$  characterized in page 11.)

### Methods: Dual ascent

If f is  $\mu$ -strongly convex, then

$$\nabla g(u) = -A\nabla f^*(-A^{\mathsf{T}}u) + b$$

is Lipschitz with parameter  $\sigma_{\max}^2(A)/\mu$ .

If f is  $\mu$ -strongly convex, total duality holds, and  $0<\alpha<2\mu/\sigma_{\max}^2(A)$ , then  $x^k\to x^\star$  and  $u^k\to u^\star$ .

### **Outline**

Set-valued operators

Monotone operators

Nonexpansive and averaged operators

Fixed-point iteration

#### Resolvents

Proximal point method

Operator splitting

Variable metric methods

### Resolvent and reflected resolvent

Resolvent A:

$$\mathbb{J}_{\mathbb{A}} = (\mathbb{I} + \mathbb{A})^{-1}$$

Reflected resolvent of A:

$$\mathbb{R}_{\mathbb{A}} = 2\mathbb{J}_{\mathbb{A}} - \mathbb{I}$$

also called Cayley operator or reflection operator. Often use  $\mathbb{J}_{\alpha\mathbb{A}}$  and  $\mathbb{R}_{\alpha\mathbb{A}}$  with  $\alpha > 0$ .

If  $\mathbb{A}$  is maximal monotone,  $\mathbb{R}_{\mathbb{A}}$  is a nonexpansive (single-valued) with  $\operatorname{dom} \mathbb{R}_{\mathbb{A}} = \mathbb{R}^n$ , and  $\mathbb{J}_{\mathbb{A}}$  is a (1/2)-averaged with  $\operatorname{dom} \mathbb{J}_{\mathbb{A}} = \mathbb{R}^n$ .

### Nonexpansiveness of $\mathbb{R}_{\mathbb{A}}$ and $\mathbb{J}_{\mathbb{A}}$

Proof of nonexpansiveness and averagedness.

**Proof.** Assume  $(x, u), (y, v) \in \mathbb{J}_{\mathbb{A}}$ . Then

$$x \in u + \mathbb{A}u, \qquad y \in v + \mathbb{A}v.$$

By monotonicity of A,

$$\langle (x-u) - (y-v), u-v \rangle \ge 0$$

and

$$||(2u - x) - (2v - y)||^2 = ||x - y||^2 - 4\langle (x - u) - (y - v), u - v \rangle$$
  
$$\leq ||x - y||^2.$$

So  $\mathbb{R}_{\mathbb{A}}$  is NE and  $\mathbb{J}_{\mathbb{A}}=(1/2)\mathbb{I}+(1/2)\mathbb{R}_{\mathbb{A}}$  is (1/2)-averaged.

### Domain of $\mathbb{R}_{\mathbb{A}}$ and $\mathbb{J}_{\mathbb{A}}$

Minty surjectivity theorem:  $\operatorname{dom} \mathbb{J}_{\mathbb{A}} = \mathbb{R}^n$  when  $\mathbb{A}$  is maximal monotone.

This result is easy to intuitively see in 1D but is non-trivial in higher dimensions. We prove this in §10.

## Zero set of a maximal monotone operator

Zer A is a closed convex set when A is maximal monotone.

**Proof.** Zer  $\mathbb{A} = \operatorname{Fix} \mathbb{J}_{\mathbb{A}}$  since

$$0 \in \mathbb{A}x \quad \Leftrightarrow \quad x \in x + \mathbb{A}x \quad \Leftrightarrow \quad \mathbb{J}_{\mathbb{A}}x = x.$$

Since  $\mathbb{J}_{\mathbb{A}}$  is nonexpansive,  $\operatorname{Fix} \mathbb{J}_{\mathbb{A}} = \operatorname{Zer} \mathbb{A}$  is a closed convex set.

Note that proof relies on maximality through  $dom \mathbb{J}_{\mathbb{A}} = \mathbb{R}^n$ .

## **Example: Monotone linear operator**

Let A be a monotone linear operator represented by a symmetric matrix.

Then,  $\mathbb A$  has eigenvalues in  $[0,\infty)$  and  $\mathbb J_{\mathbb A}=(\mathbb I+\mathbb A)^{-1}$  has eigenvalues in (0,1].

$$\mathbb{R}_{\mathbb{A}} = 2\mathbb{J}_{\mathbb{A}} - \mathbb{I} = (\mathbb{I} - \mathbb{A})(\mathbb{I} + \mathbb{A})^{-1} = (\mathbb{I} + \mathbb{A})^{-1}(\mathbb{I} - \mathbb{A}),$$

is the Cayley transform of  $\mathbb{A}$  and has eigenvalues in (-1,1].

# **Example:** Complex number as operator on $\mathbb{R}^2 \cong \mathbb{C}$

Identify  $z \in \mathbb{C}$  with a linear operator from  $\mathbb{C}$  to  $\mathbb{C}$  defined by multiplication, i.e.,  $z \colon x \mapsto zx$ .

Equip complex numbers with inner product  $\langle x, y \rangle = \operatorname{Re} x \overline{y}$ .





 $z \in \mathbb{C}$  is monotone if and only if  $\operatorname{Re} z \geq 0$ . Resolvent  $(1+z)^{-1}$  for monotone z is in disk with center 1/2 and radius 1/2 excluding origin.

### Resolvent of subdifferential

For CCP f and  $\alpha > 0$ ,

$$\mathbb{J}_{\alpha\partial f} = \operatorname{Prox}_{\alpha f}.$$

#### Proof.

$$z = (I + \alpha \partial f)^{-1}(x) \quad \Leftrightarrow \quad z + \alpha \partial f(z) \ni x$$

$$\Leftrightarrow \quad 0 \in \partial_z \left( \alpha f(z) + \frac{1}{2} ||z - x||^2 \right)$$

$$\Leftrightarrow \quad z = \operatorname*{argmin}_z \left\{ \alpha f(z) + \frac{1}{2} ||z - x||^2 \right\}$$

$$\Leftrightarrow \quad z = \operatorname{Prox}_{\alpha f}(x)$$

# Resolvent of subdifferential of conjugate

If  $g(u) = f^*(A^{\mathsf{T}}u)$ , f CCP, and  $\operatorname{ridom} f^* \cap \mathcal{R}(A^{\mathsf{T}}) \neq \emptyset$ , then

$$v = \operatorname{Prox}_{\alpha g}(u) \Leftrightarrow x \in \operatorname{argmin}_{x} \left\{ f(x) - \langle u, Ax \rangle + \frac{\alpha}{2} ||Ax||^{2} \right\}$$
  
 $v = u - \alpha Ax.$ 

#### Proof.

$$v = (I + \alpha \partial g)^{-1}(u)$$

$$\Leftrightarrow v + \alpha A \partial f^{*}(A^{\mathsf{T}}v) \ni u$$

$$\Leftrightarrow v + \alpha A x = u, \ x \in \partial f^{*}(A^{\mathsf{T}}v)$$

$$\Leftrightarrow v = u - \alpha A x, \ \partial f(x) \ni A^{\mathsf{T}}v$$

$$\Leftrightarrow v = u - \alpha A x, \ \partial f(x) \ni A^{\mathsf{T}}(u - \alpha A x)$$

$$\Leftrightarrow v = u - \alpha A x, \ x \in \underset{x}{\operatorname{argmin}} \left\{ f(x) - \langle u, Ax \rangle + \frac{\alpha}{2} \|Ax\|^{2} \right\}.$$

# Projection is a resolvent

If  $C \subset \mathbb{R}^n$  is nonempty closed convex, then

$$\mathbb{J}_{\mathbb{N}_C} = \operatorname{Prox}_{\delta_C} = \Pi_C.$$

The resolvent generalizes the projection operator in this sense.

## KKT operator for linearly constrained problems

Consider the Lagrangian

$$\mathbf{L}(x,u) = f(x) + \langle u, Ax - b \rangle$$

which generates the primal problem

We can compute its resolvent with

$$\mathbf{J}_{\alpha\partial\mathbf{L}}(x,u) = (y,v) \quad \Leftrightarrow \quad \begin{aligned}
y &= \operatorname{argmin}_{z} \left\{ \mathbf{L}_{\alpha}(z,u) + \frac{1}{2\alpha} ||z - x||^{2} \right\} \\
v &= u + \alpha (Ay - b),
\end{aligned}$$

where  $\mathbf{L}_{lpha}$  is the augmented Lagrangian

$$\mathbf{L}_{\alpha}(x,u) = f(x) + \langle u, Ax - b \rangle + \frac{\alpha}{2} ||Ax - b||^2.$$

## KKT operator for linearly constrained problems

**Proof.** For any  $\alpha > 0$ ,

$$(y,v) = \mathbb{J}_{\alpha\partial\mathbf{L}}(x,u) \quad \Leftrightarrow \quad \begin{bmatrix} x \\ u \end{bmatrix} \in \begin{bmatrix} y \\ v \end{bmatrix} + \alpha \begin{bmatrix} \partial f(y) + A^{\mathsf{T}}v \\ b - Ay \end{bmatrix}$$
$$\Leftrightarrow \quad \begin{bmatrix} x \\ u \end{bmatrix} \in \alpha \begin{bmatrix} \partial f(y) \\ b \end{bmatrix} + \begin{bmatrix} I & \alpha A^{\mathsf{T}} \\ -\alpha A & I \end{bmatrix} \begin{bmatrix} y \\ v \end{bmatrix}.$$

Left-multiply invertible matrix

$$\begin{bmatrix} I & -\alpha A^{\mathsf{T}} \\ 0 & I \end{bmatrix}$$

to get

$$\Leftrightarrow \begin{bmatrix} x - \alpha A^{\mathsf{T}} u \\ u \end{bmatrix} \in \alpha \begin{bmatrix} \partial f(y) - \alpha A^{\mathsf{T}} b \\ b \end{bmatrix} + \begin{bmatrix} I + \alpha^2 A^{\mathsf{T}} A & 0 \\ -\alpha A & I \end{bmatrix} \begin{bmatrix} y \\ v \end{bmatrix}.$$

First line is independent of v, so we can compute y first and then v. (This is the Gaussian elimination technique of §3.4.)

## KKT operator for linearly constrained problems

Reorganize to get

$$0 \in \partial f(y) + A^{\mathsf{T}}u - \alpha A^{\mathsf{T}}(Ay - b) + (1/\alpha)(y - x)$$
$$v = u + \alpha(Ay - b),$$

and conclude

$$y = \underset{z}{\operatorname{argmin}} \left\{ f(z) + \langle u, Az - b \rangle + \frac{\alpha}{2} ||Az - b||^2 + \frac{1}{2\alpha} ||z - x||^2 \right\}$$
$$v = u + \alpha (Ay - b).$$

### Resolvent identities

Let A maximal monotone and  $\alpha > 0$ .

If 
$$\mathbb{B}(x) = \mathbb{A}(x) + t$$
, 
$$\mathbb{J}_{\alpha \mathbb{B}}(u) = \mathbb{J}_{\alpha \mathbb{A}}(u - \alpha t).$$

If 
$$\mathbb{B}(x) = \mathbb{A}(x-t)$$
,

$$\mathbb{J}_{\alpha \mathbb{B}}(u) = \mathbb{J}_{\alpha \mathbb{A}}(u - t) + t.$$

If 
$$\mathbb{B}(x) = -\mathbb{A}(t-x)$$
,

$$\mathbb{J}_{\alpha \mathbb{B}}(u) = t - \mathbb{J}_{\alpha \mathbb{A}}(t - u).$$

## Inverse resolvent identity

Inverse resolvent identity:

$$\mathbb{J}_{\alpha^{-1}\mathbb{A}}(x) + \alpha^{-1}\mathbb{J}_{\alpha\mathbb{A}^{-1}}(\alpha x) = x,$$

for maximal monotone A and  $\alpha > 0$ .

When  $\alpha = 1$ ,

$$\mathbb{J}_{\mathbb{A}} + \mathbb{J}_{\mathbb{A}^{-1}} = \mathbb{I}.$$

Moreau identity: a special case, for CCP f

$$\operatorname{Prox}_{\alpha^{-1}f}(x) + \alpha^{-1}\operatorname{Prox}_{\alpha f^*}(\alpha x) = x.$$

Consequence:  $\text{Prox}_{\alpha f}$  and  $\text{Prox}_{\alpha f^*}$  require same computational cost.

### Reflected resolvent identities

If A is maximal monotone and single-valued and  $\alpha > 0$ ,

$$\mathbb{R}_{\alpha \mathbb{A}} = (\mathbb{I} - \alpha \mathbb{A})(\mathbb{I} + \alpha \mathbb{A})^{-1}.$$

Proof.

$$\mathbb{R}_{\alpha \mathbb{A}} = 2(\mathbb{I} + \alpha \mathbb{A})^{-1} - \mathbb{I}$$

$$= 2(\mathbb{I} + \alpha \mathbb{A})^{-1} - (\mathbb{I} + \alpha \mathbb{A})(\mathbb{I} + \alpha \mathbb{A})^{-1}$$

$$= (\mathbb{I} - \alpha \mathbb{A})(\mathbb{I} + \alpha \mathbb{A})^{-1}.$$

2nd line by Exercise 2.1.

### Reflected resolvent identities

If A is maximal monotone (but not necessarily single-valued) and  $\alpha > 0$ ,

$$\mathbb{R}_{\alpha \mathbb{A}}(\mathbb{I} + \alpha \mathbb{A}) = \mathbb{I} - \alpha \mathbb{A}.$$

**Proof.** For  $x \in \text{dom } \mathbb{A}$ ,

$$\mathbb{R}_{\alpha \mathbb{A}}(\mathbb{I} + \alpha \mathbb{A})(x) = 2(\mathbb{I} + \alpha \mathbb{A})^{-1}(\mathbb{I} + \alpha \mathbb{A})(x) - (\mathbb{I} + \alpha \mathbb{A})(x)$$

$$= 2\mathbb{I}(x) - (\mathbb{I} + \alpha \mathbb{A})(x)$$

$$= (\mathbb{I} - \alpha \mathbb{A})(x)$$

2nd line by Exercise 2.1. For  $x \notin \text{dom } \mathbb{A}$ , both sides are empty.

### **Outline**

Set-valued operators

Monotone operators

Nonexpansive and averaged operators

Fixed-point iteration

Resolvents

Proximal point method

Operator splitting

Variable metric methods

### Proximal point method

Consider

where  $\mathbb{A}$  is maximal monotone. Equivalent to finding  $x \in \operatorname{Fix} \mathbb{J}_{\alpha \mathbb{A}}$ .

The FPI

$$x^{k+1} = \mathbb{J}_{\alpha \mathbb{A}}(x^k)$$

is the proximal point method (PPM) or proximal minimization.

PPM converges to a solution if one exists, since  $\mathbb{J}_{\alpha \mathbb{A}}$  is averaged.

### Methods of multipliers

Consider the primal-dual problem pair

$$\begin{array}{ll} \underset{x \in \mathbb{R}^n}{\text{minimize}} & f(x) \\ \text{subject to} & Ax = b, \end{array} \qquad \underset{u \in \mathbb{R}^m}{\text{maximize}} & -f^*(-A^\intercal u) - b^\intercal u \end{array}$$

generated by the Lagrangian  $\mathbf{L}(x,u) = f(x) + \langle u, Ax - b \rangle$ .

Augmented Lagrangian:

$$\mathbf{L}_{\alpha}(x,u) = f(x) + \langle u, Ax - b \rangle + \frac{\alpha}{2} ||Ax - b||^2.$$

## Method of multipliers

Assume  $\mathcal{R}(A^{\intercal}) \cap \operatorname{ridom} f^* \neq \emptyset$ . Write  $g(u) = f^*(-A^{\intercal}u) + b^{\intercal}u$ .

The FPI 
$$u^{k+1}=\mathbb{J}_{\alpha\partial g}(u^k)$$
 
$$x^{k+1}\in \operatorname*{argmin}_x\mathbf{L}_\alpha(x,u^k)$$
 
$$u^{k+1}=u^k+\alpha(Ax^{k+1}-b)$$

is the method of multipliers. ( $\text{Prox}_{\alpha g}$  calculation in pages 62 and 67.)

If a dual solution exists and  $\alpha > 0$ , then  $u^k \to u^*$ .

## Proximal method of multipliers

The FPI 
$$(x^{k+1}, u^{k+1}) = \mathbb{J}_{\alpha \partial \mathbf{L}}(x^k, u^k)$$

$$x^{k+1} = \underset{x}{\operatorname{argmin}} \left\{ \mathbf{L}_{\alpha}(x, u^{k}) + \frac{1}{2\alpha} ||x - x^{k}||^{2} \right\}$$
$$u^{k+1} = u^{k} + \alpha (Ax^{k+1} - b)$$

is the proximal method of multipliers. ( $\mathbb{J}_{\alpha\partial\mathbf{L}}$  calculation in page 64.)

If total duality holds and  $\alpha > 0$ , then  $x^k \to x^*$  and  $u^k \to u^*$ .

#### **Outline**

Set-valued operators

Monotone operators

Nonexpansive and averaged operators

Fixed-point iteration

Resolvents

Proximal point method

Operator splitting

Variable metric methods

## **Operator splitting**

Operator splitting: split a monotone inclusion problem into smaller simpler components.

Specifically, transform monotone inclusion problems  $x \in \operatorname{Zer}(\mathbb{A} + \mathbb{B})$  or  $x \in \operatorname{Zer}(\mathbb{A} + \mathbb{B} + \mathbb{C})$  into fixed-point equations constructed from  $\mathbb{A}$ ,  $\mathbb{B}$ ,  $\mathbb{C}$ , and their resolvents.

Unified approach: formulate optimization problem as monotone inclusion problem, apply a splitting scheme, and use the FPI.

## Forward-backward splitting

Consider

$$\inf_{x\in\mathbb{R}^n}\quad 0\in(\mathbb{A}+\mathbb{B}),$$

where A and B maximal monotone, A single-valued.

For  $\alpha > 0$ ,

$$0 \in (\mathbb{A} + \mathbb{B})x \quad \Leftrightarrow \quad 0 \in (\mathbb{I} + \alpha \mathbb{B})x - (\mathbb{I} - \alpha \mathbb{A})x$$
$$\Leftrightarrow \quad (\mathbb{I} + \alpha \mathbb{B})x \ni (\mathbb{I} - \alpha \mathbb{A})x$$
$$\Leftrightarrow \quad x = \mathbb{J}_{\alpha \mathbb{B}}(\mathbb{I} - \alpha \mathbb{A})x.$$

So 
$$[x \in \operatorname{Zer}(\mathbb{A} + \mathbb{B})] \Leftrightarrow [x \in \operatorname{Fix} \mathbb{J}_{\alpha \mathbb{B}}(\mathbb{I} - \alpha \mathbb{A})].$$

 $\mathbb{J}_{\alpha\mathbb{B}}(\mathbb{I} - \alpha\mathbb{A})$  is forward-backward splitting (FBS).

## Forward-backward splitting

Assume A is  $\beta$ -cocoercive and  $\alpha \in (0, 2\beta)$ .

Forward step  $\mathbb{I} - \alpha \mathbb{A}$  and backward step  $(\mathbb{I} + \alpha \mathbb{B})^{-1}$  are averaged. So the composition  $\mathbb{J}_{\alpha \mathbb{B}}(\mathbb{I} - \alpha \mathbb{A})$  is averaged.

FPI with FBS

$$x^{k+1} = \mathbb{J}_{\alpha \mathbb{B}}(x^k - \alpha \mathbb{A} x^k)$$

converges if  $\alpha \in (0, 2\beta)$  and  $\operatorname{Zer}(\mathbb{A} + \mathbb{B}) \neq \emptyset$ .

## **Backward-forward splitting**

Similar splitting with permuted order:

$$0 \in (\mathbb{A} + \mathbb{B})x \quad \Leftrightarrow \quad (\mathbb{I} + \alpha \mathbb{B})x \ni (\mathbb{I} - \alpha \mathbb{A})x$$

$$\Leftrightarrow \quad z = (\mathbb{I} - \alpha \mathbb{A})x, \ z \in (\mathbb{I} + \alpha \mathbb{B})x$$

$$\Leftrightarrow \quad z = (\mathbb{I} - \alpha \mathbb{A})x, \ \mathbb{J}_{\alpha \mathbb{B}}z = x$$

$$\Leftrightarrow \quad z = (\mathbb{I} - \alpha \mathbb{A})\mathbb{J}_{\alpha \mathbb{B}}z, \ \mathbb{J}_{\alpha \mathbb{B}}z = x$$

So 
$$[x \in \text{Zer}(\mathbb{A} + \mathbb{B})] \Leftrightarrow [z \in \text{Fix}(\mathbb{I} - \alpha \mathbb{A})\mathbb{J}_{\alpha \mathbb{B}}, x = \mathbb{J}_{\alpha \mathbb{B}}z].$$

 $(\mathbb{I} - \alpha \mathbb{A})\mathbb{J}_{\alpha \mathbb{B}}$  is backward-forward splitting (BFS).

## **Backward-forward splitting**

FPI with BFS

$$x^{k+1} = \mathbb{J}_{\alpha \mathbb{B}} z^k$$
$$z^{k+1} = x^{k+1} - \alpha \mathbb{A} x^{k+1}$$

converges if  $\alpha \in (0, 2\beta)$  and  $Zer(\mathbb{A} + \mathbb{B}) \neq \emptyset$ .

BFS is FBS with the order permuted. BFS is more natural to work with in some setups considered in §5 and §6.

### Peaceman-Rachford splitting

Consider

$$find _{x \in \mathbb{R}^n} \quad 0 \in (\mathbb{A} + \mathbb{B})x,$$

where A and B maximal monotone.

For  $\alpha > 0$ , (2nd step uses identity of page 70)

$$0 \in (\mathbb{A} + \mathbb{B})x \quad \Leftrightarrow \quad 0 \in (\mathbb{I} + \alpha \mathbb{A})x - (\mathbb{I} - \alpha \mathbb{B})x$$

$$\Leftrightarrow \quad 0 \in (\mathbb{I} + \alpha \mathbb{A})x - \mathbb{R}_{\alpha \mathbb{B}}(\mathbb{I} + \alpha \mathbb{B})x$$

$$\Leftrightarrow \quad 0 \in (\mathbb{I} + \alpha \mathbb{A})x - \mathbb{R}_{\alpha \mathbb{B}}z, \quad z \in (\mathbb{I} + \alpha \mathbb{B})x$$

$$\Leftrightarrow \quad \mathbb{R}_{\alpha \mathbb{B}}z \in (\mathbb{I} + \alpha \mathbb{A})\mathbb{J}_{\alpha \mathbb{B}}z, \quad x = \mathbb{J}_{\alpha \mathbb{B}}z$$

$$\Leftrightarrow \quad \mathbb{J}_{\alpha \mathbb{A}}\mathbb{R}_{\alpha \mathbb{B}}z = \mathbb{J}_{\alpha \mathbb{B}}z, \quad x = \mathbb{J}_{\alpha \mathbb{B}}z$$

$$\Leftrightarrow \quad 2\mathbb{J}_{\alpha \mathbb{A}}\mathbb{R}_{\alpha \mathbb{B}}z - z = \mathbb{R}_{\alpha \mathbb{B}}z, \quad x = \mathbb{J}_{\alpha \mathbb{B}}z$$

$$\Leftrightarrow \quad 2\mathbb{J}_{\alpha \mathbb{A}}\mathbb{R}_{\alpha \mathbb{B}}z - \mathbb{R}_{\alpha \mathbb{B}}z = z, \quad x = \mathbb{J}_{\alpha \mathbb{B}}z$$

$$\Leftrightarrow \quad \mathbb{R}_{\alpha \mathbb{A}}\mathbb{R}_{\alpha \mathbb{B}}z = z, \quad x = \mathbb{J}_{\alpha \mathbb{B}}z.$$

So  $[x \in \text{Zer}(\mathbb{A} + \mathbb{B})] \Leftrightarrow [z \in \text{Fix} \mathbb{R}_{\alpha \mathbb{A}} \mathbb{R}_{\alpha \mathbb{B}}, x = \mathbb{J}_{\alpha \mathbb{B}} z].$ 

 $\mathbb{R}_{\alpha \mathbb{A}} \mathbb{R}_{\alpha \mathbb{B}}$  is Peaceman–Rachford splitting (PRS).

## Peaceman-Rachford splitting

 $\mathbb{R}_{\alpha\mathbb{A}}\mathbb{R}_{\alpha\mathbb{B}}$  merely nonexpansive. FPI with PRS

$$z^{k+1} = \mathbb{R}_{\alpha \mathbb{A}} \mathbb{R}_{\alpha \mathbb{B}}(z^k)$$

may not converge.

## Douglas-Rachford splitting

Average to ensure convergence.

FPI with  $\frac{1}{2}\mathbb{I} + \frac{1}{2}\mathbb{R}_{\alpha\mathbb{A}}\mathbb{R}_{\alpha\mathbb{B}}$ , Douglas–Rachford splitting (DRS), is

$$x^{k+1/2} = \mathbb{J}_{\alpha \mathbb{B}}(z^k)$$

$$x^{k+1} = \mathbb{J}_{\alpha \mathbb{A}}(2x^{k+1/2} - z^k)$$

$$z^{k+1} = z^k + x^{k+1} - x^{k+1/2}$$

converges for any  $\alpha > 0$  if  $\operatorname{Zer}(\mathbb{A} + \mathbb{B}) \neq \emptyset$ .

## Davis-Yin splitting

Consider

$$find_{x \in \mathbb{R}^n} \quad 0 \in (\mathbb{A} + \mathbb{B} + \mathbb{C})x,$$

where  $\mathbb{A}$ ,  $\mathbb{B}$ ,  $\mathbb{C}$  maximal monotone,  $\mathbb{C}$  single-valued.

For  $\alpha > 0$ ,

$$0 \in (\mathbb{A} + \mathbb{B} + \mathbb{C})x \quad \Leftrightarrow \quad (1/2)\mathbb{I} + (1/2)\mathbb{T}z = z, \quad x = \mathbb{J}_{\alpha\mathbb{B}}z,$$
$$\mathbb{T} = \mathbb{R}_{\alpha\mathbb{A}}(\mathbb{R}_{\alpha\mathbb{B}} - \alpha\mathbb{C}\mathbb{J}_{\alpha\mathbb{B}}) - \alpha\mathbb{C}\mathbb{J}_{\alpha\mathbb{B}}.$$

Davis-Yin splitting (DYS)

$$\frac{1}{2}\mathbb{I} + \frac{1}{2}\mathbb{T} = \mathbb{I} - \mathbb{J}_{\alpha\mathbb{B}} + \mathbb{J}_{\alpha\mathbb{A}}(\mathbb{R}_{\alpha\mathbb{B}} - \alpha\mathbb{C}\mathbb{J}_{\alpha\mathbb{B}})$$

## **Davis-Yin splitting**

If  $\mathbb C$  is  $\beta$ -cocoercive and  $\alpha \in (0,2\beta)$ , then  $(1/2)\mathbb I + (1/2)\mathbb T$  is averaged. We prove this in §13.

FPI with DYS

$$x^{k+1/2} = \mathbb{J}_{\alpha \mathbb{B}}(z^k)$$

$$x^{k+1} = \mathbb{J}_{\alpha \mathbb{A}}(2x^{k+1/2} - z^k - \alpha \mathbb{C}x^{k+1/2})$$

$$z^{k+1} = z^k + x^{k+1} - x^{k+1/2}$$

converges for  $\alpha \in (0, 2\beta)$  if  $\operatorname{Zer}(\mathbb{A} + \mathbb{B} + \mathbb{C}) \neq \emptyset$ .

DYS reduces to:

- ▶ BFS when  $\mathbb{A} = 0$
- ightharpoonup FBS when  $m I\!B=0$
- ▶ DRS when  $\mathbb{C} = 0$
- ightharpoonup PPM when  $\mathbb{A} = \mathbb{C} = 0$

## **Splitting for convex optimization**

In §3, we combine the base splittings (FBS, DRS, DYS) with various techniques to derive many methods.

For now, we directly apply the base splittings to convex optimization.

## Proximal gradient method

Consider

$$\underset{x \in \mathbb{R}^n}{\operatorname{minimize}} \quad f(x) + g(x),$$

where f, g CCP and f differentiable.

$$[x \in \operatorname{argmin}(f+g)] \Leftrightarrow [x \in \operatorname{Zer}(\nabla f + \partial g)]$$

FPI with FBS

$$x^{k+1} = \operatorname{Prox}_{\alpha q}(x^k - \alpha \nabla f(x^k))$$

is the proximal gradient method. If solution exists, f is L-smooth, and  $\alpha \in (0, 2/L)$ , then  $x^k \to x^*$ .

## Proximal gradient method

#### Equivalent to

$$x^{k+1} = \operatorname*{argmin}_{x} \left\{ f(x^k) + \langle \nabla f(x^k), x - x^k \rangle + g(x) + \frac{1}{2\alpha} \|x - x^k\|_2^2 \right\},$$

which uses a first-order approximation of f about  $x^k$ .

When 
$$g = \delta_C$$
 
$$x^{k+1} = \Pi_C(x^k - \alpha \nabla f(x^k))$$

is the projected gradient method.

## **DRS** for convex optimization

Primal-dual problem pair

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} \quad f(x) + g(x) \qquad \underset{u \in \mathbb{R}^n}{\text{maximize}} \quad -f^*(-u) - g^*(u) \qquad (2)$$

generated by

$$\mathbf{L}(x, u) = f(x) + \langle x, u \rangle - g^*(u),$$

where f, g CCP.

Primal problem equivalent to

$$\inf_{x \in \mathbb{R}^n} \quad 0 \in (\partial f + \partial g)x$$

when total duality holds. (Proof a few slides later.)

## **DRS** for convex optimization

**FPI** with DRS:

$$x^{k+1/2} = \text{Prox}_{\alpha g}(z^k)$$

$$x^{k+1} = \text{Prox}_{\alpha f}(2x^{k+1/2} - z^k)$$

$$z^{k+1} = z^k + x^{k+1} - x^{k+1/2}$$

If total duality holds and  $\alpha > 0$ , then  $x^k \to x^*$  and  $x^{k+1/2} \to x^*$ . In §9, we furthermore show  $z^k \to z^* = x^* + \alpha u^*$ .

DRS requires f and g to be CCP and  $\alpha \in (0, \infty)$ . Prox-grad requires f to be L-smooth and  $\alpha \in (0, 2/L)$ .

DRS useful when evaluating  $\operatorname{Prox}_{\alpha f}$  and  $\operatorname{Prox}_{\alpha g}$  are easy. Prox-grad useful when evaluating  $\nabla f$  and  $\operatorname{Prox}_{\alpha g}$  are easy. PPM useful when evaluating  $\operatorname{Prox}_{\alpha(f+g)}$  is easy.

### **Example: LASSO and ISTA**

Consider  $A \in \mathbb{R}^{m \times n}$ ,  $b \in \mathbb{R}^m$ ,  $\lambda > 0$  and the LASSO problem

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} \quad \frac{1}{2} ||Ax - b||^2 + \lambda ||x||_1.$$

FPI with DRS

$$x^{k+1/2} = (I + \alpha A^{\mathsf{T}} A)^{-1} (z^k + \alpha A^{\mathsf{T}} b)$$

$$x^{k+1} = S(2x^{k+1/2} - z^k; \alpha \lambda)$$

$$z^{k+1} = z^k + x^{k+1} - x^{k+1/2},$$

converges for any  $\alpha > 0$ . FPI with FBS (prox-grad)

$$x^{k+1} = S(x^k - \alpha A^{\mathsf{T}}(Ax^k - b); \alpha \lambda)$$

is the Iterative Shrinkage-Thresholding Algorithm (ISTA). This converges for  $0 < \alpha < 2/\lambda_{\max}(A^{\intercal}A)$ .  $(S(x; \kappa) = \operatorname{Prox}_{\kappa \|\cdot\|_1}(x) \text{c.f. } \S 1.)$ 

DRS uses the matrix inverse  $(I + \alpha A^{\mathsf{T}} A)^{-1}$ , which can be prohibitively expensive to compute when m and n are large. FBS is the more computationally effective splitting for large-scale LASSO problems.

## **DYS** for convex optimization

Primal-dual problem pair

$$\underset{x \in \mathbb{R}^n}{\operatorname{minimize}} \quad f(x) + g(x) + h(x) \qquad \underset{u \in \mathbb{R}^n}{\operatorname{maximize}} \quad -(f+h)^*(-u) - g^*(u)$$

generated by the Lagrangian

$$\mathbf{L}(x,u) = f(x) + h(x) + \langle x, u \rangle - g^*(u).$$

FPI with DYS:

$$x^{k+1/2} = \operatorname{Prox}_{\alpha g}(z^k)$$

$$x^{k+1} = \operatorname{Prox}_{\alpha f}(2x^{k+1/2} - z^k - \alpha \nabla h(x^{k+1/2}))$$

$$z^{k+1} = z^k + x^{k+1} - x^{k+1/2}$$

If total duality holds, h is L-smooth, and  $\alpha \in (0, 2/L)$ , then  $x^k \to x^\star$  and  $x^{k+1/2} \to x^\star$ . In §9, we furthermore show  $z^k \to z^\star = x^\star + \alpha u^\star$ .

## Necessity and sufficiency of total duality

Role of total duality in splitting methods:

$$\operatorname{argmin}(f+g) = \operatorname{Zer}(\partial f + \partial g) \neq \emptyset \quad \Leftrightarrow \quad \text{total duality holds between (2)}$$

Therefore,

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} \quad f(x) + g(x) \qquad \Leftrightarrow \qquad \underset{x \in \mathbb{R}^n}{\text{find}} \quad 0 \in (\partial f + \partial g)(x)$$

when total duality holds.

## Necessity and sufficiency of total duality

**Proof.** First, assume that total duality holds. Then  $x^* \in \operatorname{argmin}(f+g)$  if and only if  $(x^*, u^*)$  is a saddle point of

$$\mathbf{L}(x, u) = f(x) + \langle x, u \rangle - g^*(u)$$

for some  $u^{\star} \in \mathbb{R}^n$ , and

$$(x^{\star}, u^{\star})$$
 is a saddle point of  $\mathbf{L}$   $\Leftrightarrow$   $0 \in \partial \mathbf{L}(x^{\star}, u^{\star})$   $\Leftrightarrow$   $0 \in \partial_x \mathbf{L}(x^{\star}, u^{\star}), \ 0 \in \partial_u(-\mathbf{L})(x^{\star}, u^{\star})$   $\Leftrightarrow$   $-u^{\star} \in \partial f(x^{\star}), \ u^{\star} \in \partial g(x^{\star})$   $\Leftrightarrow$   $0 \in (\partial f + \partial g)(x^{\star}).$ 

We conclude  $\operatorname{argmin}(f+g) = \operatorname{Zer}(\partial f + \partial g) \neq \emptyset$ .

Next, assume  $\operatorname{argmin}(f+g) = \operatorname{Zer}(\partial f + \partial g) \neq \emptyset$ . Then any  $x^{\star} \in \operatorname{argmin}(f+g)$  satisfies  $0 \in (\partial f + \partial g)(x^{\star})$ . By a similar chain of arguments,  $(x^{\star}, u^{\star})$  is a saddle point of  $\mathbf{L}$  for some  $u^{\star} \in \mathbb{R}^n$ , and we conclude total duality holds.

## **Discussion: Fixed-point encoding**

Fixed-point encoding establishes a correspondence between solutions of a monotone inclusion problem and fixed points of a related operator.

PPM, FBS, BFS, DRS, DYS are fixed-point encodings.

## **Discussion: Why resolvent?**

Splittings use resolvents or direct evaluations of single-valued operators. Why not use other operators such as  $(\mathbb{I} - \alpha \mathbb{A})^{-1}$ ?

- ► Computational convenience; evaluating something like  $(\mathbb{I} \alpha \partial f)^{-1}$  is often difficult.
- Single-valued operators are algorithmically actionable; we can compute and store a vector but not a set in  $\mathbb{R}^n$  on a computer. Multi-valued operators are useful mathematically. Single-valued operators are useful algorithmically.

## **Discussion: Role of maximality**

 $x^{k+1} = \mathbb{T} x^k$  becomes undefined if  $x^k \notin \text{dom } \mathbb{T}$ . In Theorem 1, we implicitly assumed  $\text{dom } \mathbb{T} = \mathbb{R}^n$ , satisfied with resolvents of maximal monotone operators. (Theoretical necessity.)

In practice, for non-maximal monotone operators (e.g. subgradient operator of a nonconvex function) we cannot efficiently compute the resolvent. (Practical necessity.)

## **Discussion: Computational efficiency**

Base splitting methods are useful when the subroutines are efficient to compute. The DRS iteration

$$z^{k+1} = \left(\frac{1}{2}\mathbb{I} + \frac{1}{2}\mathbb{R}_{\alpha\mathbb{A}}\mathbb{R}_{\alpha\mathbb{B}}\right)z^k$$

always converges, but it is most useful when  $\mathbb{R}_{\alpha\mathbb{A}}$  and  $\mathbb{R}_{\alpha\mathbb{B}}$  are efficient.

For a given an optimization problem, there is more than one method. Trick: find a method using computationally efficient split components.

### **Example: Consensus technique**

Consider

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} \quad \sum_{i=1}^m g_i(x)$$

where  $g_1, \ldots, g_m$  are CCP. Equivalent to

$$\begin{array}{ll} \underset{\mathbf{x} \in \mathbb{R}^{nm}}{\text{minimize}} & \sum_{i=1}^{m} g_i(x_i) \\ \text{subject to} & \mathbf{x} \in C, \end{array}$$

where  $\mathbf{x} = (x_1, \dots, x_m)$  and

$$C = \{(x_1, \dots, x_m) \mid x_1 = \dots = x_m\}$$

is the consensus set. Equivalent to

$$\inf_{\mathbf{x} \in \mathbb{R}^{nm}} \quad 0 \in \begin{bmatrix} \partial g_1(x_1) \\ \vdots \\ \partial g_m(x_m) \end{bmatrix} + \mathbb{N}_C(\mathbf{x}),$$

assuming  $\bigcap_{i=1}^m \operatorname{int} \operatorname{dom} g_i \neq \emptyset$ .

### **Example: Consensus technique**

Projection onto the consensus set is simple averaging:

$$\Pi_C \mathbf{x} = \overline{\mathbf{x}} = (\overline{x}, \overline{x}, \dots, \overline{x}), \qquad \overline{x} = \frac{1}{m} \sum_{i=1}^m x_i.$$

**DRS** 

$$x_i^{k+1} = \operatorname{Prox}_{\alpha g_i} (2\overline{z}^k - z_i^k)$$
 for  $i = 1, \dots, m$ ,  
 $\mathbf{z}^{k+1} = \mathbf{z}^k + \mathbf{x}^{k+1} - \overline{\mathbf{z}}^k$ 

converges for any  $\alpha > 0$ , if  $\bigcap_{i=1}^{m} \operatorname{int} \operatorname{dom} g_i \neq \emptyset$  and a solution exists. This method is well-suited for parallel distributed computing.

## **Example:** Forward-Douglas-Rachford

Consider

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} \quad \sum_{i=1}^m (f_i(x) + g_i(x)),$$

where  $g_1, \ldots, g_m$  are CCP and  $f_1, \ldots, f_m$  are L-smooth. With the consensus technique, equivalent to

DYS

$$x_i^{k+1} = \operatorname{Prox}_{\alpha g_i} (2\overline{z}^k - z_i^k - \alpha \nabla f_i(\overline{z}^k)) \qquad \text{for } i = 1, \dots, m,$$
$$\mathbf{z}^{k+1} = \mathbf{z}^k + \mathbf{x}^{k+1} - \overline{\mathbf{z}}^k,$$

is generalized forward-backward or forward-Douglas–Rachford. Converges if total duality holds,  $\bigcap_{i=1}^{m} \operatorname{int} \operatorname{dom} g_i \neq \emptyset$ , and  $\alpha \in (0, 2/L)$ .

#### **Outline**

Set-valued operators

Monotone operators

Nonexpansive and averaged operators

Fixed-point iteration

Resolvents

Proximal point method

Operator splitting

Variable metric methods

#### Variable metric methods

The Euclidean norm played a special role:

$$\operatorname{Prox}_{f}(x_{0}) = \underset{x}{\operatorname{argmin}} \left\{ f(x) + \frac{1}{2} ||x - x_{0}||^{2} \right\},\,$$

is defined with  $\|\cdot\|$  and Theorem 1 is stated in terms of  $\|\cdot\|$ .

Variable metric methods generalize with the M-norm, defined as  $||x||_M^2 = x^\intercal M x$  for  $M \succ 0$ .

Why? (i) A good choice of M can act as a preconditioner and reduce the number of iterations needed. (ii) Sometimes  $\mathbb A$  has structure and a well chosen M cancels terms to make  $(M+\mathbb A)^{-1}$  easy to evaluate. (c.f. §3)

Disclaimer: despite the name, the generalization only works with M-norms, which are induced by the inner product  $\langle x,y\rangle_M=x^\intercal My$ , but not other metrics, such as the  $\ell^1$ -norm.

#### Variable metric PPM

If A maximal monotone and  $M \succ 0$ , then  $M^{-1/2} \mathbb{A} M^{-1/2}$  maximal monotone and the PPM

$$y^{k+1} = (\mathbb{I} + M^{-1/2} \mathbb{A} M^{-1/2})^{-1} y^k$$

converges.

Change of variables  $x^k = M^{-1/2}y^k$  give

$$(\mathbb{I} + M^{-1/2} \mathbb{A} M^{-1/2}) y^{k+1} \ni y^k$$
$$(\mathbb{I} + M^{-1} \mathbb{A}) x^{k+1} \ni x^k$$

and

$$x^{k+1} = \mathbb{J}_{M^{-1}\mathbb{A}}x^k$$
$$= (M + \mathbb{A})^{-1}Mx^k,$$

variable metric PPM.  $x^k$  inherit convergence from  $y^k$ .

### Variable metric FBS

Let A and B be maximal monotone and let A be single-valued.

FBS with  $M^{-1/2}\mathbb{A}M^{-1/2}$  and  $M^{-1/2}\mathbb{B}M^{-1/2}$ , after change of variables,

$$x^{k+1} = (M + \mathbb{B})^{-1} (M - \mathbb{A}) x^k$$
$$= \mathbb{J}_{M^{-1} \mathbb{B}} (\mathbb{I} - M^{-1} \mathbb{A}) x^k.$$

is variable metric FBS.

Converges if  $\mathbb{I} - M^{-1/2} \mathbb{A} M^{-1/2}$  is averaged.

## **Proximal interpretation**

When  $\mathbb{A} = \nabla f$  and  $\mathbb{B} = \partial g$ , then

$$\mathbb{J}_{M^{-1}\partial g}(\mathbb{I} - M^{-1}\nabla f)x = \operatorname*{argmin}_{z \in \mathbb{R}^d} \left\{ g(z) + \langle \nabla f(x), z \rangle + \frac{1}{2} \|z - x\|_M^2 \right\}.$$

Interpretation: Variable metric FBS is prox-grad with the norm  $\|\cdot\|_M$ .

If A is  $\beta$ -cocoercive, then  $M^{-1/2}\mathbb{A}M^{-1/2}$  is  $(\beta/\|M^{-1}\|)$ -cocoercive. So variable metric FBS converges if  $\|M^{-1}\| < 2\beta$ .

# Averagedness with respect to $\|\cdot\|_M$

Assume  $M \succ 0$ . T is nonexpansive in  $\|\cdot\|_M$  if

$$\|\mathbb{T}x - \mathbb{T}y\|_M \le \|x - y\|_M \qquad \forall x, y \in \text{dom } \mathbb{T}.$$

For  $\theta \in (0,1)$ ,  $\mathbb{T}$  is  $\theta$ -averaged in  $\|\cdot\|_M$  if  $\mathbb{T} = (1-\theta)\mathbb{I} + \theta \mathbb{S}$  for some  $\mathbb{S}$  that is nonexpansive in  $\|\cdot\|_M$ .

 $[M^{-1/2}\mathbb{T}M^{-1/2} \text{ nonexp. (in } \|\cdot\|)] \Leftrightarrow [M^{-1}\mathbb{T} \text{ nonexp. in } \|\cdot\|_M]$  Because

$$||M^{-1/2}\mathbb{T}M^{-1/2}x - M^{-1/2}\mathbb{T}M^{-1/2}y||^2 \le ||x - y||^2$$

is equivalent to

$$||M^{-1}\mathbb{T}\tilde{x} - M^{-1}\mathbb{T}\tilde{y}||_{M}^{2} \le ||\tilde{x} - \tilde{y}||_{M}^{2}$$

with the change of variables  $M^{-1/2}x = \tilde{x}$  and  $M^{-1/2}y = \tilde{y}$ .