準備

複雑系特別セミナーA 10/7

データ(1標本)のベクトル表現

3×3 ピクセルの画像

123	256	2
4	4	34
5	5	5

(123, 256, 2, 4, 4, 34, 5, 5, 5)

x_1	x_2	x_3
x_4	x_5	x_6
x_7	x_8	x_9

 $(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9)$

- ■3×3 ピクセルの1枚の画像を9次元ベクトルとして表現
- ■本講義では、データの個数に関する単位として「標本」を使用。
 - n 枚の画像 $\rightarrow n$ 標本のデータ

ベクトル表記

■数式中の太字の小文字はベクトルを意味する.

$$\boldsymbol{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_d \end{pmatrix} = (x_1, x_2, \dots, x_d)^{\top} \in \mathbb{R}^d$$

- ●ベクトルは基本的に縦ベクトルを意味することに注意!!
- ●T は転置を表す記号
- ullet \mathbb{R}^d は d-次元実数空間
- ■数式中の太字ではない小文字・大文字はスカラーを意味する.
 - ●*x*, *a*, *A*, ... など
- = d = 1 のとき, $x_1 = x \in \mathbb{R}$ と表記する.
 - ℝ は 1-次元実数空間

複数データの行列表記

		x_{13} x_{43}	<i>x</i> ₂₃ <i>x</i> ₅₃	<i>x</i> ₃₃ <i>x</i> ₆₃	$\mathbf{x}_3 = (x_{13}, x_{23}, x_{33}, x_{43}, x_{53}, x_{63}, x_{73}, x_{83}, x_{93})^T$
	<i>x</i> ₁₂	x_{22}	x_{32}	<i>x</i> ₉₃	
	<i>x</i> ₄₂	x ₅₂	x ₆₂		
<i>x</i> ₁₁	x ₂₁	x_{31}	x ₉₂		
<i>x</i> ₄₁	<i>x</i> ₅₁	<i>x</i> ₆₁	$x_1 = (x_{11}, x_{21}, x_{31}, x_{41}, x_{51}, x_{61}, x_{71}, x_{81}, x_{91})^{T}$		
<i>x</i> ₇₁	x ₈₁	<i>x</i> ₉₁			

$$X = (x_1, x_2, x_3) = \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ \vdots & \vdots & \vdots \\ x_{91} & x_{92} & x_{93} \end{pmatrix}$$

データセットの行列表記

 $\blacksquare n$ 標本の d 次元データの表記:

$$X = (x_1, x_2, \dots, x_n) = \begin{pmatrix} x_{1,1} & x_{1,2} & \dots & x_{1,n} \\ x_{2,1} & x_{2,2} & \dots & x_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{d,2} & x_{d,2} & \dots & x_{d,n} \end{pmatrix}$$

- ●大文字の太字を用いて行列を表現
- ■サブインデックスの意味:

$$\chi_{j,i}$$

i:標本インデックス

j:データベクトルの要素インデックス

■*n* 標本の 1 次元データの表記:

$$(x_1, x_2, \dots, x_n)$$

行列表記

■数式中の太字の大文字は行列を意味する.

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

- ●A は m 行 n 列の行列.
- ●行列・ベクトルの理解不足の人は復習しておくこと.