Semaine du 16/01 au 20/01

1 Cours

Endomorphismes d'un espace euclidien

Adjoint d'un endomorphisme d'un espace euclidien Théorème de Riesz : représentation des formes linéaires d'un espace euclidien. Adjoint d'un endomorphisme d'un espace euclidien. Propriétés de l'adjonction : linéarité, adjoint d'une composée, involutivité. Si u est un endomorphisme d'un espace euclidien de base **orthornomée** \mathcal{B} , alors $\text{mat}_{\mathcal{B}}(u^*) = \text{mat}_{\mathcal{B}}(u)^{\mathsf{T}}$. Si F est un sous-espace stable par un endomorphisme u, alors F^{\perp} est stable par u^* .

Matrices orthogonales Une matrice $M \in \mathcal{M}_n(\mathbb{R})$ est dite orthogonale si $M^TM = I_n$. Une matrice est orthogonale si et seulement si la famille de ses lignes ou de ses colonnes est orthonormée pour le produit canonique. Groupe orthogonal $O_n(\mathbb{R})$. Matrices orthogonales positives et négatives. Groupe spécial orthogonal $SO_n(\mathbb{R})$.

Isométries vectorielles Un endomorphisme d'un espace euclidien est une isométrie vectorielle s'il conserve la norme. Caractérisations des isométries parmi les endomorphismes d'un espace euclidien : conservation du produit scalaire, l'image d'une base orthonormée est une base orthonormée est une base orthonormée, l'adjoint est égal à l'inverse. Groupe orthogonal O(E). Isométries vectorielles directes et indirectes. Groupe spécial orthogonal SO(E).

 $\textbf{R\'eduction des isom\'etries} \ \ \text{Orientation d'un } \ \mathbb{R}\text{-espace vectoriel de dimension finie. Les matrices de } SO_2(\mathbb{R}) \ \ \text{sont les matrices de la}$

$$\text{forme } R(\theta) = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \text{. Les matrices de } O_2(\mathbb{R}) \setminus SO_2(\mathbb{R}) \text{ sont les matrices de la forme } S(\theta) = \begin{pmatrix} \cos\theta & \sin\theta \\ \sin\theta & -\cos\theta \end{pmatrix} \text{.}$$
 L'application $\theta \mapsto R(\theta)$ est un morphisme surjectif de $(\mathbb{R},+)$ dans $(SO_2(\mathbb{R}),\times)$ de noyau $2\pi\mathbb{Z}$. Rotation d'un plan euclidien. Les

L'application $\theta \mapsto R(\theta)$ est un morphisme surjectif de $(\mathbb{R},+)$ dans $(SO_2(\mathbb{R}),\times)$ de noyau $2\pi\mathbb{Z}$. Rotation d'un plan euclidien. Les isométries directes d'un plan euclidien sont les rotations. Les isométries indirectes d'un plan euclien sont les réflexions. Si un sous-espace vectoriel est stable par une isométrie, son orthogonal l'est également. Réduction d'une isométrie d'un espace euclidien : si $u \in O(E)$, il existe une base orthonormée de E dans laquelle la matrice de u est diagonale par blocs de la forme $\begin{pmatrix} 1 \end{pmatrix}, \begin{pmatrix} -1 \end{pmatrix}$ ou $R(\theta)$. Rotation d'un espace euclidien de dimension 3. Les isométries directes d'un espace euclidien de dimension 3 sont les rotations.

2 Méthodes à maîtriser

- Connaître les différentes caractérisations des isométries vectorielles : adjoint, conservation du produit scalaire, conservation de la norme.
- Utiliser le lien entre adjonction et transposition.
- Utiliser de préférence des bases orthonormées par défaut.
- Calculer la matrice d'un projecteur orthogonal ou d'une symétrie orthogonale.
- Déterminer si un endomorphisme est une isométrie directe/indirecte via sa matrice dans une base orthonormée; préciser le cas échéant ses éléments caractéristiques.

3 Questions de cours

Banque CCP Exercices 13, 39, 63, 78

Retour sur l'interro n°07 Soit A une partie d'un espace préhilbertien réel $(E, \langle \cdot, \cdot \rangle)$. Montrer que pour tout $a \in A$, l'application $\varphi_a \colon x \in E \mapsto \langle a, x \rangle$ est continue. En déduire que A^{\perp} est une partie fermée de E pour la norme euclidienne associée au produit scalaire.

Retour sur l'interro n°07 Montrer que $O_n(\mathbb{R})$ est une partie compacte de $\mathcal{M}_n(\mathbb{R})$.