HW4 CS289A

Antonio Rohit De Lima Fernandes

Question 1:

- 4. Using a learning rate of 0.5
 - a. $\mu^{(0)} =$
 - 0.9526
 - 0.7311
 - 0.7311
 - 0.2689
 - b. $\beta^{(1)} =$
 - -1.0008
 - 1.8101
 - -2.6092
 - c. $\mu^{(1)} =$
 - 0.9438
 - 0.8606
 - 0.3102
 - 0.1419
 - d. $\beta^{(2)} =$
 - -0.8722
 - 2.2867
 - -3.6905

Question 2:

- 1. Code (bCourses)
- 2. Min Predicted Value: 1953.85

Max Predicted Value: 2045.55

They are close to what the values should be, but not exactly.

RSS: 467M

3. β₀: 1951.12

Rest of β values:

Question 3:

1. Batch Gradient Descent

$$\beta^{(t+1)} = \beta^{(t)} + \eta \nabla_{\beta} \ell \left(\beta^{(t)} \right)$$

Using the gradient derived in question 1:

2. Stochastic Gradient with constant learning rate

$$\beta^{(t+1)} = \beta^{(t)} + \eta \left(y_{i_t} - \mu_{i_t}(\beta^{(t)}) \right) x_{i_t}$$

The graphs clearly look different from the batch gradient method above: The curve is not smooth, and does not decrease monotonically, though it does decrease over many iterations. This is because the gradient taking a single a single point may not point in the right direction, but over many samples, averages out in the right direction.

3. Stochastic Gradient with Variable Learning Rate

Using a variable learning rate seems to smoothen the graphs somewhat. I believe this to be a good idea so that once we are close to the minimum, the steps are smaller, and the code converges to this minimum.

