

Circles Ex 16.5 Q10

Answer:

It is given that

ABCD is cyclic quadrilateral and $m \angle A = 3(m \angle C)$

We have to find $m \angle A$

Since ABCD is cyclic quadrilateral

So
$$\angle A + \angle C = 180^{\circ}$$

And

$$3\angle C + \angle C = 180^{\circ}$$

$$4\angle C = 180^{\circ}$$

$$\angle C = \frac{180^{\circ}}{4}$$
 (Given that $\angle A = 3\angle C$)

Therefore

$$\angle A = 3 \times 45^{\circ}$$
$$= 135^{\circ}$$

Hence
$$\angle A = 135^{\circ}$$

Circles Ex 16.5 Q11

Answer:

It is given that, O is the center of circle and $\angle A = 50^{\circ}$

We have to find $\angle x$ and $\angle y$

ABCD is cyclic quadrilateral and $\angle A + \angle C = 180^{\circ}$ So

$$50^{0} + y^{0} = 180^{0}$$
$$y^{0} = 180^{0} - 50^{0}$$
$$= 130^{0}$$

Clearly $\triangle OAB$ is isosceles triangle with OA = OB and $\angle OBA = \angle OAB$

Then $\angle OBA + \angle OAB + \angle AOB = 180^{\circ}$

$$\angle AOB = 180^{\circ} - (50^{\circ} + 50^{\circ}) \text{ (Since } \angle OBA = \angle OAB = 50^{\circ})$$

So $\angle AOB = 80^{\circ}$

Therefore, x = 180 - 80 = 100

Hence

$$x = 100^{\circ}$$

And
$$y = 130^{\circ}$$

********* END *******