ML (1).docx by Aditi Nayak

Submission date: 04-Aug-2024 10:04PM (UTC+0530)

Submission ID: 2427086678 **File name:** ML_1_.docx (45.29K)

Word count: 5804

Character count: 35696

CA1: Think-Pair-Share

Team Members: Aditi Nayak Barish Chetia Jil Kapadia Ishaan Bhadrike

Topic Name: Machine Learning Job Listings on Glassdoor

Referenc e No.	Methodology Used	Domain	Data Set Used	Performance	Limitations	Outcome
[1]	Adapted CRISP-DM for structured data mining. Collected data from Glassdoor using Selenium. Conducted data preparation and preprocessing. Employed multiclass classification for job position prediction. Tested 19 ML algorithms, selecting the top 5 for a heterogeneous ensemble model.	Job position classificatio n	The dataset contains 955 unique cases, including job posit 11 s such as data scientist, data engineer, analyst, machine learning, manager, director, and other job positions.	The heterogeneo us ensemble models achieved an accuracy of approximate ly 100% using soft voting.	Limited by a sample size of 955 instances. Future studies should use larger datasets for better algorithm comparison.	The paper primarily measures the classification of job positions based on variables including average salary, company size, revenue, job description, and company rating.
[2]	Content analysis of online job advertisements for AI and ML	Artificial intelligence (AI) and machine	The data set used in this study was online	The study indicates that educational	The findings may be used to improve educational	AI roles prioritize deep learning,

	positions posted on	learning	job	programs	programs and	NLP, and
	Indeed.com	(ML) job	advertisem	and hiring	hiring	computer
		advertiseme	ents posted	practices	practices,	vision, while
	Ranking of relevant	nts.	on the	should adapt	implying that	ML roles
	skills for AI and		Indeed.co	to these skill	the current	emphasize
	ML positions		m website.	demands,	state of these	statistical
				though the	may be a	modeling,
	Pairwise			focus on a	limitation.	data
	comparison of skill			single		preprocessin
	requirements			source	The scope of	g, and
	between AI and			(Indeed.com	the study was	algorithm
	ML positions) and	limited to a	development
	_			pairwise	pairwise	
				comparison	comparison	
				limit the	between AI	
				comprehensi	and ML	
				veness and	positions,	
				representati	which may not	
				veness of	capture the full	
				the findings.	range of	
					relevant	
					positions.	
					^	
					The use of job	
					advertisements	
					from a single	
					source	
					(Indeed.com)	
					may limit the	
					representativen	
					ess of the	
				19	sample.	
[3]	Formulating the job	Job	The data	Ioannis K.	The limitations	The primary
	recommendation	recommenda	set used in	Paparrizos,	include	outcome
	problem as a	tion	this study	В. В.	potential	measured in
	supervised machine		consists of	Cambazoglu	biases from	this study is
	learning problem		job	, and A.	publicly	the accuracy
			transition	Gionis	available	of predicting
	Exploiting past job		informatio	(2011)	profiles and	an
	transitions and data		n extracted	evaluated	the model's	employee's
	associated with		from	the job	dependency on	next job
	employees and		publicly	recommend	historical data,	transition
	institutions to		available	ation	which may not	using a
			employee	system's	reflect future	machine
				- J		

	predict future job		profiles on	performance	job market	learning
	transitions		the web.	through	trends.	model.
	Training a machine			experiments		
	learning model on a			that revealed		
	large dataset of job			the machine		
	transitions			learning		
	extracted from			model could		
	publicly available			accurately		
	employee profiles			predict job		
				transitions,		
				significantly		
				outperformi		
				ng a		
				baseline that		
				always		
				predicted		
				the most		
				frequent		
				institution in		
				the data.		
[4]	Evaluating studies	The domain	Utilized	1) The	Potential	The study
	that considered the	of the paper	datasets	ability of	limitations in	highlighted
	temporal and	by Radhika	from job	JRS models	model	the
	reciprocal aspects	Taneja and	recommen	to provide	performance	improvement
	of job	Dr. Ashima	der	improved	and balanced	in job
	recommendations	Mehta	systems,	recommend	distribution of	recommenda
		(2023) is job	focusing	ations by	applicants in	tions by
	Analyzing the	recommende	on	considering	current JRS	considering
	fairness of	r systems	temporal,	temporal		temporal and
	algorithms used in	(JRS).	reciprocal,	and	Limited	reciprocal
	job recommender		and	reciprocal	literature on	aspects,
	systems		fairness	aspects of	fairness of	enhanced
			aspects in	job	algorithms in	applicant
	Classifying hybrid		job	recommend	JRS, with	distribution,
	job recommender		recommen	ations.	current	but identified
	system models		dations.	2) The	approaches	limitations in
	using existing			ability of	being	fairness,
	recommender			JRS models	insufficient	bias, and
	system taxonomies			to provide a		generalizabil
				more	Lack of	ity of current
				balanced	consideration	job
				distribution	for the	recommende
				of applicants	generalizabilit	r systems.

				across similar job types. 3) The fairness and lack of bias in JRS algorithms, which is an important but often overlooked aspect of performance .	y of JRS across different datasets	
[5]	1) Operationalizing organizational culture (OC) as a word vector representation using job descriptors. 2) Validating this OC construct using language from 650,000 Glassdoor reviews 3) Applying the OC 30 istruct to Glassdoor reviews to quantify OC by sector 4) Validating the OC measure on a dataset of 341 employees and showing it explains job performance	Organization al culture	1. 650,000 Glassdoor reviews, which were used to validate the researchers' operational ization of organizatio nal culture as a word vector representati on. 2. A dataset of 341 employees, which was used to validate the researchers' measure of organizatio nal culture and its relationshi p to job	Job performance of the employees.	The study may not have directly addressed interventions or tools for improving employee functioning, and further research in this area would be valuable. The sample size used to validate the measure of organizational culture was relatively small (341 employees). Quantifying organizational culture is inherently challenging	The study operationaliz ed organization al culture using job descriptors, validated it with 650,000 Glassdoor reviews, applied it to quantify OC by sector, and demonstrate d that the OC measure explains job performance using a dataset of 341 employees, despite its inherent complexity and

			performanc		due to its	subjective
			e.		subjective and	nature.
					complex	
					nature.	
[6]	The research uses a	The domain	The dataset	The study	The paper does	The research
	combination of	is online	used for	leverages	not explicitly	demonstrates
	machine learning	recruitment	this	several ML	discuss	the efficacy
	(ML) and deep	and job	research	algorithms,	limitations, but	of combining
	learning algorithms	posting	consists of	including	common	ML and deep
	to classify fake job	analysis,	nearly	XGBoost,	challenges	learning
	postings. The	focusing on	18,000	for high	likely include	techniques in
	process involves	identifying	rows of job	accuracy in	handling	detecting
	data collection, pre-	and	postings,	classificatio	imbalanced	fake job
	processing	preventing	with 17	n. The exact	datasets, the	postings,
	(lowercasing,	fake job	columns	performance	complexity of	highlighting
	removing nulls,	postings 25	containing	metrics are	feature	the potential
	tokenization,	through the	textual and	not specified	extraction, and	for these
	punctuation	application	numerical	but the use	ensuring the	methods to
	removal), feature	of advanced	data. The	of advanced	generalizabilit	enhance
	extraction using	ML and	data was	algorithms	y of the	online
	semantic analysis	deep	sourced	like	models to	recruitment
	and natural	learning	from	XGBoost	diverse job	processes by
	language	techniques	Kaggle and	suggests an	postings.	preventing
	processing, and		the	emphasis on		data theft
	model training and		University	achieving		and
	evaluation		of Aegon	high		cybercrime.
				classificatio		
				n accuracy		
[7]	20e paper utilizes a	This	The dataset	The system's	The paper	The
	hybrid	research	comprises	15 formance	acknowledges	proposed
	recommendation	focuses on	job	is evaluated	challenges	system
	system combining	the domain	postings	using	such as	successfully
	collaborative	of job	and	precision,	handling the	enhances job
	filtering and	recommenda	candidate	recall, and	dynamic and	recommenda
	content-based	tion systems	profiles,	F1 score	temporal	tions by
	filtering. Natural	within the	sourced	metrics.	nature of job	leveraging
	language	broader	from	These	openings and	NLP and
	processing (NLP)	context of	various	metrics	managing	machine
	techniques,	online	online job	assess how	sensitive	learning. It
	including cosine	recruitment.	portals. It	well the	personal	provides
	similarity, are	It aims to	includes	recommend	information.	personalized
	employed to match	enhance job	text data	ations match	Additionally,	job
	student skills with	recommenda	about job	user	the system's	suggestions
	job requirements.	tions for	description	preferences	reliance on the	that align

	The amount and		a ala:11a	ad :l.	1:41	
	The system	students by	s, skills,	and job	quality and	with students'
	integrates machine	analyzing their	and qualificatio	requirement	completeness	skills and
	learning algorithms			s, indicating	of input data	
	to improve	resumes and	ns, which	the system's	can affect its	preferences,
	recommendation	job listings	are pre-	accuracy	recommendati	reby
	accuracy	using NLP	processed	and	on accuracy	improving
		and machine	for training	effectivenes		the
		learning	the	s in		efficiency of
			recommen	generating		the job
			dation	relevant job		search
			system	suggestions		process for
						both job
						seekers and
						employers
[8]	The study employs	This	The dataset	The system's	A significant	The
	a hybrid	research	for this	performance	limitation of	proposed job
	recommendation	focuses on	project was	is evaluated	the system is	recommenda
	algorithm tailored	the domain	sourced	by its ability	its dependency	tion system
	to dynamic user	of job	from	to provide	on the	effectively
	profiles. It updates	recommenda	Kaggle,	accurate and	completeness	matches job
	and extends	tion systems	comprising	relevant job	and accuracy	seekers with
	profiles based on	within the	student	recommend	of user	suitable
	users' historical job	broader field	data. Key	ations. It	profiles.	opportunities
	applications and	of machine	attributes	leverages	Inadequate or	based on
	behaviors. The	learning and	include	historical	outdated	their skills
	system uses feature	data science.	academic	data and	information	and
	*	It aims to				
	selection to analyze text information		percentage	user profiles	can impair the	qualification
		assist job	s, scores in	to ensure	recommendati	1 It
	from applied jobs	seekers,	algorithms,	high	on quality.	highlights
	and integrates	particularly	programmi	precision in	ditionally,	the potential
	Support Vector	college	ng	matching	the system's	of machine
	Machine (SVM) for	graduates,	concepts,	job seekers	effectiveness	learning
	classification,	by aligning	and coding	with suitable	may be	algorithms,
	ensuring	their skills	ratings.	job roles.	constrained by	particularly
	personalized and	and	This data is	Continuous	the diversity	SVM, in
	relevant job	qualification	crucial for	testing and	and scope of	enhancing
	recommendations	s with	analyzing	refinement	the dataset	the job
		suitable job	and	are integral	used for	search
		opportunitie	recommen	to	training and	process.
		s in the	ding	maintaining	evaluation	Future work
		technology	appropriate	its		aims to
		industry	job	effectivenes		expand the
			opportuniti	s in real-		dataset and
			es based on			refine the

	individual skill sets	world applications	recommenda tion algorithms for improved accuracy and relevance

[9] The paper utilizes The system's The study The study is The paper focused on performance concludes collaborative research identifies filtering techniques, the online employs is evaluated several that hybrid specifically matrix job three using limitations: recommende factorization and kscalability recommenda datasets: metrics such r systems, nearest neighbors tion domain. (1)as accuracy issues, the which (KNN), to develop It aims to Random and cold-start integrate a scalable job match job Dataset precision. problem, and multiple recommender seekers with with 3,494 The hybrid sparsity in filtering system. These suitable job entries, approach traditional techniques, methods are postings by manually combining collaborative offer applied to user analyzing annotated; collaborativ filtering improved profiles, job their (2)e and methods. performance descriptions, and Feedback in job resumes and content-Additionally, based recommenda behavioral da, behavior on Dataset there are integrating contentjob portals. with 6.650 filtering challenges tions. It based and This entries, demonstrate with highlights the need for collaborative approach is based on vocabulary filtering to enhance applicable in user control, tag better satisfactory recommendation various feedback; results ambiguity, and evaluation accuracy and sectors like and (3) across privacy measures, personalization. e-business, Candidates different concerns, scalability social Dataset which need to solutions, datasets, media, and with outperformi be addressed and 15,625 for more e-learning, enhanced ng traditional effective and privacy and where entries, personalized containing methods in secure security recommenda job terms of recommendati frameworks application tions are recommend ons. to address crucial s matching ation existing user accuracy system gaps profiles. and and provide efficiency. more Αn aggregated accurate and dataset of personalized 26,669 job entries is recommenda also used tions for comprehen sive evaluation.

The

The system's acknowledges of this utilizes performance concludes a job recommendation research is various is evaluated limitations that using system leveraging online job data using such as the deep Deep metrics like need for largereinforcemen recommenda sources Reinforcement including scale datasets t learning tion systems. precision, Learning (DRL). It It focuses on job seeker recall, and and significant significantly involves data improving profiles, mean computational improves the collection from job the accuracy accuracy and job average resources. seekers' profiles and description precision Additionally, personalizati and job efficiency of s, and (MAP). The there are on of job descriptions, matching historical DRL-based challenges in recommenda preprocessing these job seekers interaction recommend model tions. The with suitable data. This data, feature ation system interpretability proposed job data is and handling system extraction using demonstrate neural networks, opportunitie preprocess s superior data sparsity. effectively and applying DRL s by using ed to performance Addressing matches job advanced seekers with to optimize the remove compared to these recommendation machine traditional limitations relevant job noise and process. The DRL learning methods, requires postings, extract model continuously techniques, relevant showing further enhancing learns and specifically features. improvemen research and the overall improves deep The development job search ts in recommendations reinforceme specific recommend to enhance the experience. based on user datasets system's Future work nt learning, ation interactions and within the include scalability and aims to accuracy feedback context of both and user practical address job portals structured satisfaction application. existing and and through challenges employment unstructure continuous and further websites. d data, learning and optimize the enabling adaptation recommenda the model to user tion process. to capture a interactions. comprehen sive understandi ng of user preferences and job requiremen ts.

The study

The paper

[10]

The paper proposes

The domain

The paper

[11]	The paper is based	Detection	Dataset:	Achieving	Existing	Developed a
	on the Knowledge	and	En 13 oyme	the best	methods for	51lidated
	Discovery from	classificatio	nt Scam	performance	identifying	machine
	Data (KDD) model,	n of	Aegean	with a	fraudulent	learning
	involving data	fraudulent	Dataset	Gradient	employment	system for
	acquisition,	job	(EMSCAD	Boosting	have limits in	identifying
	anonymization,	advertiseme) consisting	classifier	scalability,	categories of
	annotation, and	nts in the	of 17,880	that	interpretability	fraudulent
	feature extraction.	online job	job	combined	, and	job
	Employed various	market.	vacancies	empirical	transparency.	advertisemen
	multi-class		collected	rule-set	Common	ts,
	classification		between	based	lexical	highlighting
	algorithms to		2012 and	features,	properties may	the need for
	dessify job types		2014,	parts-of-	not be enough	ongoing
	(real job, identity		annotated	speech tags,	to capture the	research and
	theft, corporate		for fraud	and bag-of-	contextual	updated
	identity theft,		detection.	words	semantics of	datasets.
	multi-level			vectors,	employment	
	marketing).			with an F1-	adverts.	
				score of	Validation	
				0.88.	with a publicly	
					accessible	
					dataset may	
					have	
					constraints in	
					terms of	
					representativen	
					ess and label	
					quality.	
					l	

[12]	The paper conducts	Text	The dataset	Evaluation	Limitations of	The primary
[12]	data preprocessing,	classificatio	consists of	of the	the paper are:	outcome
	comparative	n within the	job titles	accuracy of	Naïve Bayes	measured in
	analysis of machine	domain of	and	the	classifiers	this study is
	learning	job titles and	description	techniques,	exhibited poor	the accuracy
	classification	descriptions,	s sourced	with Linear	classification	of different
	5chniques such as	aiming to	from	SVM	performance,	machine
	Bernoulli's Naïve	_			*	
		improve the	Kaggle,	achieving	which may hinder their	learning
	Bayes, Multinomial	accuracy of	with a total	the best		classification
	Naïve Bayes,	candidate	of 55,000	accuracy of	applicability in	techniques in
	Random Forest,	selection	samples,	96.25% on	real-world	classifying
	Linear SVM, and	processes.	including	55,000	scenarios. The	job titles
	LSVM with elastic		various job	samples.	computational	based on job
	penalty.		categories	Naïve Bayes	requirements	descriptions.
			such as	classifiers	for training	
			Administra	demonstrate	classifiers for	
			tive	d lower	each query	
			Assistant	accuracy,	document can	
			and	indicating	be excessive,	
			Customer	their	impacting	
			Service	limitations	efficiency.	
			Representa	in this		
			tive.	context.		
[13]	The proposed	Online job	The data	The web	The paper has	The system
	system employs	portals,	set consists	crawler	a limitation of	successfully
	machine learning	focusing on	of job	demonstrate	initial tests	clusters
	algorithms,	optimizing	circulars	d varying	showing the	similar job
	including web	job	extracted	accuracy	crawler's	postings,
	crawling for data	searching	from	rates,	inability to	sends
	extraction, decision	and hiring	various	achieving up	gather data,	targeted
	tree for candidate	processes.	company	to 100%	indicating	email
	selection, and K-		websites,	accuracy in	potential	notifications
	means clustering		including	later tests,	issues in the	to job
	for job demand		job	with	early stages of	seekers, and
	analysis involving		requiremen	response	implementatio	enhances the
	data extraction,		ts,	times	n.	efficiency of
	email notifications		experience	improving		job searching
	to job seekers, and		needed,	significantly		and hiring
	clustering of job		and salary	across test		processes.
	types.		offerings.	cases.		processes.
	types.		orierings.	cases.		
	•					

			24			
[14]	This research	Job	Job offers	The model	Potential	The suggested
	conducts Data	recommenda	and job	aims to	limitations	methodology
	Processing:	tion systems	seeker	improve the	include the	successfully
	Transform	utilizing	interactions	matching of	quality of	groups job offers
	unstructured data	natural	, including	job offers to	scraped data,	based on
	into a structured	language	ratings,	candidates	the	common
	format, followed by	processing	likes, and	based on	effectiveness	characteristics
	textual processing	and machine	reviews,	their past	of clustering	and matches
	and clustering	learning	collected	interactions	algorithms,	them with job
	using K-means. It	techniques.	from job	and	and the need	seekers,
	matches job		search	preferences,	for continuous	improving the job
	clusters with job seeker behavior		websites.	though	model training and evaluation.	search experience
	attributes to			specific performance	and evaluation.	by making
	provide			metrics are		appropriate suggestions.
	personalized job			not detailed		Future work will
	recommendations.			in the		concentrate on
	recommendations.			summary.		fine-tuning the
				Summary.		model using
						sophisticated
						approaches such
						as Word2vec and
						assessing its
						performance.
[15]	This job	Recommend	The system	The system	The system's	This system
	recommendation	ing IT jobs	utilizes	ranks job	accuracy	provides a
	system uses text	to college	datasets of	recommend	depends on	personalized
	pre-processing, TF-	graduates	resumes,	ations based	data quality,	ranked list of job
	IDF vectorization,	and	job	on similarity	relies solely on	recommendations
	and cosine	engineers.	description	scores and	text similarity,	and career
	similarity to match		s, and	offers skill-	and is	guidance for IT
	resumes with job		required	based	currently	professionals
	descriptions based		skills for	improvemen	limited to the	based on their
	on skill sets. It also		various IT	t	IT sector.	skill set.
	suggests additional		roles.	suggestions.		
	skills for career					
	improvement.					

[16]	The system	Resume-	Utilizes	The system	Limited by the	Developed a
	employs text	based job	PDF	significantly	need for	robust
	parsing, stop word	recommenda	resumes	improves	manual input	system using
	removal,	tion systems.	and job	resume-to-	and potential	advanced
	lemmatization, TF-		description	job	inaccuracies in	NLP
	IDF, cosine		s for	matching by	text extraction.	techniques
	similarity, and K-		training	leveraging	Performance	and deep
	Nearest Neighbors		and	NLP and	can vary based	learning,
	(KNN) to match		evaluation.	deep	on resume	enhancing
	resumes with job			learning,	format and job	resume
	descriptions			providing	description	matching
	effectively.			accurate and	quality.	with job
				relevant job		descriptions
				recommend		and offering
				ations.		actionable
						feedback for
						job seekers.
		_	F 1			
[17]	Combines machine	Resume	Employs a	Achieved	Limited by the	Developed a
	learning and NLP	screening	dataset of	high .	variability in	hybrid model
	techniques,	and	resumes	accuracy in	resume	that
	including text	candidate	and job	candidate	mats and the need for a	enhances
	preprocessing, feature extraction,	ranking in recruitment.	description s for model	ranking and		resume
	and classification	recruitment.	training	resume screening,	large annotated	screening and
	algorithms, to		and	improving	dataset to train	candidate
	screen and rank		evaluation.	the	the model	ranking by
	candidates' resumes		evaluation.	relevance of	effectively	integrating
	based on job			matches	effectively	machine
	descriptions.			between		learning with
	descriptions.			resumes and		NLP,
				job		offering
				requirement		improved
				s.		efficiency in
				3.		the hiring
						process.
						Process.

[18]	Employs deep	Focuses on	Utilizes a	Demonstrate	Faced	Developed
	learning techniques	resume	dataset	d superior	challenges	an advanced
	such as	parsing and	comprising	accuracy in	with handling	resume
	Convolutional	job	diverse	parsing	diverse resume	parsing
	Neural Networks	matching	resumes	resumes and	formats and	system using
	(CNNs) and	through	and job	matching	the high	deep
	Recurrent Neural	deep	description	them with	computational	learning
	Networks (RNNs)	learning,	s,	job	resources	techniques,
	` ,	aiming to	processed	descriptions	required for	offering
	for advanced	improve	to train	compared to	training deep	enhanced job
	resume parsing and	accuracy	deep	traditional	learning	matching
	job matching,	and	learning	methods,	models, which	capabilities
	aiming for higher	relevance in	models and	resulting in	can be a	and
	precision and	the	achieve	better	constraint for	improving
	contextual	recruitment	better	alignment	deployment.	the
	understanding of	process.	parsing and	with job		effectiveness
	resumes.		matching	requirement		of resume
			performanc	s and		processing in
			e.	improved		recruitment
				recruitment		
				efficiency.		
[19]	Applies	Centers on	Uses a	Achieved	Challenges	Created an
[19]	Applies Convolutional	nters on	Uses a	Achieved	Challenges	Created an
[19]	Convolutional	automated	diverse	notable	include the	effective
[19]	Convolutional Neural Networks	automated resume	diverse dataset of	notable improvemen	include the need for	effective automated
[19]	Convolutional Neural Networks (CNNs) and	automated resume screening	diverse dataset of resumes	notable improvemen ts in resume	include the need for significant	effective automated resume
[19]	Convolutional Neural Networks (CNNs) and transfer learning	automated resume screening and ranking	diverse dataset of resumes and job	notable improvemen ts in resume screening	include the need for significant computational	effective automated resume screening
[19]	Convolutional Neural Networks (CNNs) and transfer leading techniques for	automated resume screening and ranking using	diverse dataset of resumes and job description	notable improvemen ts in resume screening and	include the need for significant computational resources and	effective automated resume screening and ranking
[19]	Convolutional Neural Networks (CNNs) and transfer learning techniques for automated resume	automated resume screening and ranking using advanced	diverse dataset of resumes and job description s,	notable improvemen ts in resume screening and candidate	include the need for significant computational resources and potential	effective automated resume screening and ranking system using
[19]	Convolutional Neural Networks (CNNs) and transfer learning techniques for automated resume screening and	automated resume screening and ranking using advanced deep	diverse dataset of resumes and job description	notable improvemen ts in resume screening and candidate ranking,	include the need for significant computational resources and potential limitations in	effective automated resume screening and ranking
[19]	Convolutional Neural Networks (CNNs) and transfer leading techniques for automated resume screening and ranking, focusing	automated resume screening and ranking using advanced deep learning	diverse dataset of resumes and job description s, leveraging transfer	notable improvemen ts in resume screening and candidate ranking, demonstrati	include the need for significant computational resources and potential limitations in handling very	effective automated resume screening and ranking system using CNNs and transfer
[19]	Convolutional Neural Networks (CNNs) and transfer learning techniques for automated resume screening and ranking, focusing on extracting	automated resume screening and ranking using advanced deep	diverse dataset of resumes and job description s, leveraging	notable improvemen ts in resume screening and candidate ranking, demonstrati ng high	include the need for significant computational resources and potential limitations in	effective automated resume screening and ranking system using CNNs and transfer learning,
[19]	Convolutional Neural Networks (CNNs) and transfer leading techniques for automated resume screening and ranking, focusing	automated resume screening and ranking using advanced deep learning methods to	diverse dataset of resumes and job description s, leveraging transfer learning to	notable improvemen ts in resume screening and candidate ranking, demonstrati	include the need for significant computational resources and potential limitations in handling very diverse or	effective automated resume screening and ranking system using CNNs and transfer
[19]	Convolutional Neural Networks (CNNs) and transfer learning techniques for automated resume screening and ranking, focusing on extracting	automated resume screening and ranking using advanced deep learning methods to streamline the	diverse dataset of resumes and job description s, leveraging transfer learning to fine-tune models on	notable improvemen ts in resume screening and candidate ranking, demonstrati ng high accuracy and	include the need for significant computational resources and potential limitations in handling very diverse or unstructured resume	effective automated resume screening and ranking system using CNNs and transfer learning, leading to better
[19]	Convolutional Neural Networks (CNNs) and transfer learing techniques for automated resume screening and ranking, focusing on extracting features and	automated resume screening and ranking using advanced deep learning methods to streamline the recruitment	diverse dataset of resumes and job description s, leveraging transfer learning to fine-tune	notable improvemen ts in resume screening and candidate ranking, demonstrati ng high accuracy	include the need for significant computational resources and potential limitations in handling very diverse or unstructured resume formats	effective automated resume screening and ranking system using CNNs and transfer learning, leading to
[19]	Convolutional Neural Networks (CNNs) and transfer leading techniques for automated resume screening and ranking, focusing on extracting features and improving job	automated resume screening and ranking using advanced deep learning methods to streamline the	diverse dataset of resumes and job description s, leveraging transfer learning to fine-tune models on specific resume and	notable improvemen ts in resume screening and candidate ranking, demonstrati ng high accuracy and efficiency in	include the need for significant computational resources and potential limitations in handling very diverse or unstructured resume	effective automated resume screening and ranking system using CNNs and transfer learning, leading to better recruitment outcomes
[19]	Convolutional Neural Networks (CNNs) and transfer learning techniques for automated resume screening and ranking, focusing on extracting features and improving job candidate	automated resume screening and ranking using advanced deep learning methods to streamline the recruitment process and	diverse dataset of resumes and job description s, leveraging transfer learning to fine-tune models on specific	notable improvemen ts in resume screening and candidate ranking, demonstrati ng high accuracy and efficiency in processing	include the need for significant computational resources and potential limitations in handling very diverse or unstructured resume formats	effective automated resume screening and ranking system using CNNs and transfer learning, leading to better recruitment
[19]	Convolutional Neural Networks (CNNs) and transfer learning techniques for automated resume screening and ranking, focusing on extracting features and improving job candidate	automated resume screening and ranking using advanced deep learning methods to streamline the recruitment process and enhance	diverse dataset of resumes and job description s, leveraging transfer learning to fine-tune models on specific resume and job	notable improvemen ts in resume screening and candidate ranking, demonstrati ng high accuracy and efficiency in processing and	include the need for significant computational resources and potential limitations in handling very diverse or unstructured resume formats	effective automated resume screening and ranking system using CNNs and transfer learning, leading to better recruitment outcomes through
[19]	Convolutional Neural Networks (CNNs) and transfer learning techniques for automated resume screening and ranking, focusing on extracting features and improving job candidate	automated resume screening and ranking using advanced deep learning methods to streamline the recruitment process and enhance candidate	diverse dataset of resumes and job description s, leveraging transfer learning to fine-tune models on specific resume and job matching	notable improvemen ts in resume screening and candidate ranking, demonstrati ng high accuracy and efficiency in processing and evaluating	include the need for significant computational resources and potential limitations in handling very diverse or unstructured resume formats	effective automated resume screening and ranking system using CNNs and transfer learning, leading to better recruitment outcomes through improved
[19]	Convolutional Neural Networks (CNNs) and transfer learning techniques for automated resume screening and ranking, focusing on extracting features and improving job candidate	automated resume screening and ranking using advanced deep learning methods to streamline the recruitment process and enhance candidate selection	diverse dataset of resumes and job description s, leveraging transfer learning to fine-tune models on specific resume and job matching tasks for	notable improvemen ts in resume screening and candidate ranking, demonstrati ng high accuracy and efficiency in processing and evaluating resumes	include the need for significant computational resources and potential limitations in handling very diverse or unstructured resume formats	effective automated resume screening and ranking system using CNNs and transfer learning, leading to better recruitment outcomes through improved resume
[19]	Convolutional Neural Networks (CNNs) and transfer learning techniques for automated resume screening and ranking, focusing on extracting features and improving job candidate	automated resume screening and ranking using advanced deep learning methods to streamline the recruitment process and enhance candidate selection	diverse dataset of resumes and job description s, leveraging transfer learning to fine-tune models on specific resume and job matching tasks for improved	notable improvemen ts in resume screening and candidate ranking, demonstrati ng high accuracy and efficiency in processing and evaluating resumes compared to	include the need for significant computational resources and potential limitations in handling very diverse or unstructured resume formats	effective automated resume screening and ranking system using CNNs and transfer learning, leading to better recruitment outcomes through improved resume evaluation
[19]	Convolutional Neural Networks (CNNs) and transfer learning techniques for automated resume screening and ranking, focusing on extracting features and improving job candidate	automated resume screening and ranking using advanced deep learning methods to streamline the recruitment process and enhance candidate selection	diverse dataset of resumes and job description s, leveraging transfer learning to fine-tune models on specific resume and job matching tasks for improved performanc	notable improvemen ts in resume screening and candidate ranking, demonstrati ng high accuracy and efficiency in processing and evaluating resumes compared to traditional	include the need for significant computational resources and potential limitations in handling very diverse or unstructured resume formats	effective automated resume screening and ranking system using CNNs and transfer learning, leading to better recruitment outcomes through improved resume evaluation and

Categorization of Selected Domain and your perception about its importance:

The problem of categorizing machine learning job role listings on Glassdoor is mostly in the domain of prediction. It is specifically concerned with the prediction and classification of work positions based on features and patterns extracted from job listings. This categorisation can aid in anticipating candidates' suitability for specific work categories, as well as trends in job needs.

Prediction Domain:

- Prediction covers a wide range of applications in which the primary purpose is to forecast or
 estimate future outcomes using current and previous data. It employs strategies for analyzing
 patterns, trends, and relationships in data in order to create informed predictions.
- Predictions offer useful insights that can help influence strategic decisions. For example, in the
 context of job postings, forecasting future demand for specific talents might assist educational
 institutions in tailoring their curriculum accordingly.
- In job role classification, this involves providing job seekers with more relevant job listings, hence
 improving their job search experience.
- Enhances job matching by providing personalized job recommendations to candidates.
- Offers insights into job market dynamics and trends.

Description:

The goal is to predict job roles and categorize listings based on the data extracted from Glassdoor.

Relevant Techniques:

- Support Vector Machine (SVM): Used for classification of job roles.
- Random Forest: Used for classification and regression tasks to identify patterns in job listings.
- Clustering: Used to group similar job listings together based on their features.

Applications:

- Predicting the type of job role based on the description and requirements.
- Classifying job listings into different categories (e.g., Data Scientist, Machine Learning Engineer, AI Researcher).
- Analyzing trends in job postings over time to predict future demand for specific roles.

Specific Importance to Machine Learning Job Role Listings:

1. Skill Gap Analysis:

 Predicting which skills are in high demand can help job seekers and professionals upskill accordingly, reducing the skill gap in the market.

2. Recruitment Strategy:

 Companies can refine their recruitment strategies by understanding which job roles are becoming more prevalent and what qualifications are most sought after.

3. Enhanced Job Matching:

 Improving the accuracy of job role classification leads to better matching of candidates with job openings, increasing job satisfaction and retention rates.

Limitations/Gaps Identified in the Research Papers with Examples

1. Sample Size:

- Small sample sizes can lead to overfitting and reduce the statistical power of the study.
 This limits the ability to draw meaningful conclusions and affects the model's performance on larger, more diverse datasets.
- Example: The study on job position classification was limited by a sample size of 955 instances, which may not be sufficient to capture the full variability of job positions and their characteristics.

2. Source Limitation:

- Reliance on data from a single source, such as a specific job board or online platform, may introduce source-specific biases. This limits the representativeness of the findings and reduces the applicability of the results to other sources or contexts.
- Example: The content analysis of online job advertisements relied solely on data from Indeed.com, potentially missing relevant job postings from other sources, thereby limiting the comprehensiveness of the analysis.

3. Data Bias and Dependency:

- Historical data and publicly available profiles often reflect past trends and may carry inherent biases. This can skew the model's predictions and reduce its accuracy in predicting future job market trends or behaviors.
- Example: The job recommendation study used publicly available profiles that may reflect outdated skills and job titles, leading to biased recommendations that do not accurately represent current job market demands.

4. Fairness and Generalizability:

- Algorithmic fairness is a c26 cal issue, as models may inadvertently favor certain groups over others. Additionally, models trained on specific datasets may not generalize well to different datasets, reducing their applicability and reliability across various contexts.
- Example: The job recommender systems study identified fairness issues where the
 algorithms performed differently across various demographic groups, and the models did
 not generalize well to datasets from different regions or industries.

5. Complexity and Subjectivity:

- Quantifying complex and subjective phenomena, such as organizational culture or job fit, poses significant challenges. These aspects are difficult to measure accurately, leading to potential inconsistencies and reduced validity of the findings.
- Example: The research on organizational culture faced difficulties in quantifying the inherently subjective and complex nature of organizational culture, leading to potential inconsistencies in the findings.

6. Imbalanced Datasets:

- Handling imbalanced datasets, where certain classes are underrepresented, can lead to biased mode that perform poorly on minority classes. This impacts the overall accuracy and fairness of the model's predictions.
- Example: The classification of fake job postings likely dealt with an imbalanced dataset
 where legitimate job postings vastly outnumbered fake ones, resulting in a model that
 could struggle to accurately identify the minority class of fake postings.

7. Dynamic and Temporal Nature:

- The dynamic and temporal nature 12 data, such as job openings that change frequently, requires models to adapt quickly. Static models may fail to capture these changes, leading to outdated or inaccurate predictions.
- Example: Hybrid recommendation systems had to manage the dynamic nature of job openings, which change frequently. A static model might fail to adapt to these changes, resulting in outdated job recommendations.

8. Cold-Start Problem and Sparsity:

- The cold-start problem occurs when there is insufficient data to make accurate recommendations for new users or items. Data sparsity, where there are few interactions or data points, further complicates the effectiveness of recommendation systems.
- Example: Collaborative filtering techniques in job recommendation systems faced the
 cold-start problem when recommending jobs to new users with no prior interaction
 history, and sparsity issues where limited data points made it difficult to make accurate
 recommendations.

9. Privacyand Security Concerns:

- Ensuring the privacy and security of sensitive personal information is crucial. Data
 breaches or mishandling of personal data can lead to significant ethical and legal issues,
 affecting the trustworthiness of the research.
- Example: Studies on job recommender systems had to ensure the privacy and security of
 users' personal information, such as job application histories and preferences, which, if
 mishandled, could lead to ethical and legal challenges.

10. Feature Extraction and Selection:

- Effective feature extraction and selection are critical for model performance. Poorly
 chosen features can lead to suboptimal models, while complex feature extraction
 processes can increase computational costs and reduce model interpretability.
- Example: The research on job classification and recommendation often struggled with feature extraction and selection, where the complexity of identifying relevant features from job descriptions and user profiles could impact the performance and interpretability of the models.

How the limitation from researchers needs to be resolved:

Mitigating the limitations of prior studies is imperative for enhancing machine learning models' performance and applicability in the context of analyzing job role listings on Glassdoor.

1.Small Dataset Size

Limitations:

The lack of data in many studies is a serious issue, which results in overfitting and consequently, low generalizability.

Solutions:

- Data Augmentation: Increase the size of the dataset by creating synthetic data through various methods.
- Web scraping: To create a more varied and comprehensive dataset, keep pulling job listings from Glassdoor.
- Data Collaboration: Work together to exchange and combine data resources with other institutions or researchers..
- 4. **Transfer Learning**: Take advantage of pre-trained models that are related to the task and fine-tune them on the job listings dataset to benefit from large datasets from similar domains.

2.Scalability Issues

Limitations:

Models seem to have a problem when it comes to dealing with large data sizes, which in turn causes inefficiencies to arise.

Solutions:

- Distributed Computing: Using frameworks such as Apache Spark and Hadoop to implement a
 distributed data processing approach would be a great alternative for large data processing.
- 2. **Cloud Computing**: Get cloud platforms to support as many resources as needed in order to scale computing resources easily. For example AWS or Google Cloud.
- 3. **Efficient Algorithms**: Choose algorithms that are specifically designed to operate on large datasets efficiently, for instance, XGBoost for classification tasks.

3.Bias and Fairness

Limitations:

The AI's heavy reliance on unbalanced data may produce racy or wrongful results.

Solutions:

- 1. **Bias Detection and Mitigation**: Techniques, for instance, using resampling, reweighting, or adversarial debiasing, to detect and eliminate bias in the dataset should be applied.
- 2. **Fairness Metrics**: Evaluate the model by using fairness metrics and standardize the discipline of different pairs (e.g. demographic parity, equalized odds).
- 3. **Diverse Data Collection**: Diversity in the data might be achieved by including various job roles and industries in the dataset which may subsequently remove bias effects.

4. Feature Extraction

Limitation:

A factor influencing the model's accuracy is the difficulty of extracting features from job descriptions.

Solutions:

- 1. **Expert NLP Methods**: Use an extensive array of natural language processing (NLP) tools, such as Word2Vec, BERT, and GPT, among others, to generate rich feature representations of text.
- 2. **Domain-Specific Ontologies**: Create or utilize existing ontologies and taxonomies specific to certain job roles to improve the feature extraction process.
- 3. **Text Preprocessing**: Conduct extensive text preprocessing, encompassing NER (named entity recognition), stemming and lemmatization, to enhance feature quality.

5. Model Interpretability

Limitation:

The primary reason we are unable to comprehend neural networks at all is that they are non-linear deep networks that are obviously difficult to explain.

Solutions:

- Resources telep with Interpretability: Use tools to illustrate the explanations of the model predictions, such as SHAP (Shapley Additive explanations) or LIME (Local Interpretable Modelagnostic Explanations).
- Simple Models: In a given case where it is feasible, it is better to select simple models such as decision trees, or methods like linear regression, which are not complex in nature and therefore more interpretable.
- Model Explainability: Enhancing the transparency of the model by using explainability
 frameworks will be the solution to the problem, which will, in turn, help the stakeholders to
 comprehend how the model makes its decisions.

6.Handling Unbalanced Data

Limitations:

Unbalanced data from job listings, such as when a role's number is greater than others.

Solutions:

- Techniques for Resampling: To balance the dataset, apply undersampling or oversampling techniques (such as SMOTE).
- 2. Class Weights: Adjust the learning algorithm so that the underrepresented groups are given varying class weights to indicate their relative importance.
- Anomaly Detection: To identify and handle uncommon job roles as the anomaly, apply anomaly detection techniques.

7. Evaluation Metrics and Validation:

Limitations:

Inadequate validation methods and evaluation metrics can cause an algorithm's performance to be estimated incorrectly.

Solutions:

- 1. **Robust Validation**: To make sure the model is generalizing well to new, unseen data and not just memorizing the training set, cross-validation should be employed.
- Comprehensive Metrics: The 27 verall assessment of the performance can be obtained by means of
 the multi-metrics evaluation, such as, accuracy, precision, recall, and F1 score for classification;
 silhouette score and Davies-Bouldin index for clustering.
- 3. **Real-World Testing**: The experimental tests can be performed in the real-world settings with the live data in order to validate the model performance in practice.

8. Data Privacy and Security

Limitations:

Keeping data private and secure is one of the biggest challenges especially in connection with sensitive jobrelated data.

Solutions:

- Data Anonymization: The job offers must not contain any personal information in order to protect privacy.
- 2. **Secure Data Storage**: Use strong security controls for data storage and processing, such as encryption an control, to back up your data.
- 3. **Compliance**: Ensure compliance with data protection laws (e.g., GDPR, CCPA) when processing job listing data to make your company trustworthy.

We can improve the robustness, scalability, and fairness of your machine learning models and obtain more accurate and trustworthy insights from Glassdoor job listings by leveraging the gaps that have been identified and the solutions that have been proposed.

Concluding Remarks

Significance of the Selected Domain:

The domain of Prediction, specifically in the context of categorizing machine learning job role listings on Glassdoor, is highly significant for several reasons:

1. Enhanced Job Matching:

- Candidate Suitability: By accurately predicting and classifying job roles, candidates can
 be better matched with positions that suit their skills and experiences. This leads to a
 more efficient job search process and increases the chances of job satisfaction and
 retention.
- Employer Efficiency: Employers can streamline their hiring progress by identifying and prioritizing candidates who are best suited for specific roles, thus reducing time-to-hire and improving overall recruitment efficiency.

2. Trend Analysis:

- Market Insights: Analyzing trends in job postings over time helps in understanding the
 evolving demands of the job market. This information is invaluable for both job seekers
 and educational institutions to align their skills and curriculum with market needs.
- Future Demand: Predicting future demand for specific roles enables proactive career planning for individuals and strategic workforce planning for organizations.

3. Skill Development:

- Educational Guidance: Educational institutions can use these insights to update their programs and courses, ensuring they are aligned with industry requirements. This prepares students better for the job market, enhancing their employability.
- Professional Growth: Professionals can identify emerging skills and roles, allowing them to upskill and stay competitive in their careers.

Final Thoughts:

The task of categorizing machine learning job role listings using SVM, Random Forest, and Clustering is a compelling application of predictive analytics. It demonstrates the power of machine learning in transforming raw data into actionable insights. By addressing the limitations and leveraging the strengths of these techniques, we can significantly enhance the efficiency and effectiveness of the job market for both candidates and employers. This project not only contributes to the academic and professional growth of students but also provides practical solutions to real-world challenges in the employment sector.

	CIN	$I \wedge I$	TTV	RFP	ODT
UKI	יוורי	u A I	1 I Y	KFP	UKI

%
SIMILARITY INDEX

3%
INTERNET SOURCES

3%
PUBLICATIONS

3%

STUDENT PAPERS

PRIMARY SOURCES

Amir Shachar. "Introduction to Algogens", Open Science Framework, 2024

1 %

Publication

papers.ssrn.com
Internet Source

<1%

Submitted to Sheffield Hallam University

Student Paper

<1%

www.irjmets.com

Internet Source

<1%

Marcel Naudé, Kolawole John Adebayo, Rohan Nanda. "A machine learning approach to detecting fraudulent job types", AI & SOCIETY, 2022

<1%

Publication

Submitted to Reykjavík University
Student Paper

<1%

insights2techinfo.com

Internet Source

<1%

8 Submitted to ESCP-EAP
Student Paper

<1%

9	Submitted to University of the West Indies Student Paper	<1%
10	J. Himabindu Priyanka, Nikhat Parveen. "DeepSkillNER: An automatic screening and ranking of resumes using hybrid deep learning and enhanced spectral clustering approach", Multimedia Tools and Applications, 2023 Publication	<1%
11	journals.nawroz.edu.krd Internet Source	<1%
12	Submitted to College of Estate Management Student Paper	<1%
13	Submitted to University of Exeter Student Paper	<1%
14	Submitted to University of Wales Institute, Cardiff Student Paper	<1%
15	www.mdpi.com Internet Source	<1%
16	Submitted to Jose Rizal University Student Paper	<1%
16		<1 _%

Ginel Dorleon, Nathalie Bricon-Souf, Imen 19 Megdiche, Olivier Teste. "Absolute Redundancy Analysis Based on Features Selection", 2021 4th International Conference on Data Science and Information Technology, 2021

Publication

- ijsr.net 20 Internet Source
- practicaldatascience.co.uk 21 **Internet Source**
- www.fastercapital.com 22 Internet Source
- R Maruthaveni, B Dhivya, M Hariharan, R 23 Siva. "FIREnet 2.0: Advanced Neural Framework for Smart Fire Detection & Localization", 2023 2nd International Conference on Automation, Computing and Renewable Systems (ICACRS), 2023

Publication

D. Mhamdi, R. Moulouki, M.Y. El Ghoumari, M. Azzouazi, L. Moussaid. "Job Recommendation based on Job Profile Clustering and Job Seeker Behavior", Procedia Computer Science, 2020

<1%

1 %
I %
1 %
1 %
1%
1%

Exclude matches Off

Exclude quotes Off
Exclude bibliography On

ML (1).docx

PAGE 1	
PAGE 2	
PAGE 3	
PAGE 4	
PAGE 5	
PAGE 6	
PAGE 7	
PAGE 8	
PAGE 9	
PAGE 10	
PAGE 11	
PAGE 12	
PAGE 13	
PAGE 14	
PAGE 15	
PAGE 16	
PAGE 17	
PAGE 18	
PAGE 19	
PAGE 20	
PAGE 21	
PAGE 22	