058

059 060 061

062 063 064

065 066 067

068

075

076

085

086

090

091

093

094

095

096

097 098

099

100

101

102

000	
001	
002	
003	
004	
005	
006	
007	
800	
009	
010	
011	
012	
013	
014	
015	
016	
017	
018	
019	
020	
021	
022	
023	
024	
025	
026	
027	
028	
029	
030	
031	
032	
033	
034	
035	
036 037	
038	
039	
040	
040	
042	
042	
043	
044	
045	
046	
048	
049	
050	
051	
050	

053

Dense SIFT BoVW Image Classification: Function-level Breakdown and Pipeline Overview

Anonymous CVPR submission

Paper ID ****

Abstract

We dissect an enhanced Bag-of-Visual-Words (BoVW) image-classification pipeline implemented in version3.pv. Instead of reporting empirical results, this report focuses on (i) the role of each major function, and (ii) how these functions interoperate to form a coherent training-to-inference workflow.

1. Pipeline at a Glance

The pipeline can be summarised in five sequential stages:

- 1. Dense SIFT Extraction
- 2. PCA + KMeans Vocabulary Learning
- 3. BoVW Histogram Encoding
- 4. Feature Standardisation
- 5. Linear SVM Training / Prediction

Each stage corresponds to a dedicated function set in version3.py (Table??).

2. Key Functions

2.1. Feature-related

extract_dense_sift(img) Applies CLAHE, samples keypoints on a 4 px grid across four scales, and returns d=128-dimensional SIFT descriptors with ℓ_2 normalisation.

build_vocabulary(training_dir,...)

Aggregates descriptors from all classes, standardises them, projects to 128-D PCA space, and learns a 1000-word MiniBatchKMeans codebook. It outputs the fitted scaler, PCA model, and KMeans object.

extract_bow_features(img, scaler, pca, vocabform coverage, crucial for fine-grained classes. Converts an arbitrary image into a BoVW histogram by: (1) dense SIFT, (2) PCA projection, (3) FAISS nearest-centre lookup, (4) ℓ_1 normalisation.

2.2. Data Loading

load_training_data() Iterates over labelled folders, calls extract_bow_features, and yields a feature ma-070 trix $\mathbf{H}_{\text{train}} \in \mathbb{R}^{n \times 1000}$ and label vector. 072

load_test_data() Mirrors the above but records file073 names instead of labels. 074

2.3. Model Training and Evaluation

train_svm_classifier() Performs a standardisa-077 tion pass, prints class distribution, runs a 5-fold grid search⁰⁷⁸ over Linear-SVM hyper-parameters, and finally fits the best 079 One-Vs-Rest estimator.

predict_and_save() Applies the feature scaler, ob-082 tains decision values / predictions, prints sanity-check083 statistics, and writes ordered results to disk.

3. Putting It Together: main ()

Listing 1 outlines the chronological invocation order and 088 data objects exchanged between functions. 089

- 1. Vocabulary Building build_vocabulary
- 2. Training Feature Matrix load_training_data 092
- 3. Classifier Training train_svm_classifier
- 4. Model Serialisation via pickle
- 5. Test Feature Matrix load_test_data
- 6. Inference predict_and_save

4. Design Rationale

Dense vs. Sparse SIFT. Dense sampling guarantees uni-103

PCA Before Clustering. A 128-D projection preserves 105 most variance while lowering memory and speeding up both 106 KMeans and FAISS search.

<pre>scaler, pca, kmeans = build_vocabulary()</pre>
<pre>X_train, y = load_training_data(scaler, pca, kmeans)</pre>
<pre>clf, feat_scaler = train_svm_classifier(X_train, y)</pre>
<pre>pickle.dump((), open('model.pkl','wb'))</pre>
<pre>X_test, fnames = load_test_data(scaler, pca, kmeans)</pre>
<pre>predict_and_save(clf, feat_scaler, X_test, fnames)</pre>
Figure 1. Core control flow (pseudo-code).
EAICS Quantization Command with houts force
FAISS Quantisation. Compared with brute-force

FAISS Quantisation. Compared with brute-force search, FAISS scales to millions of descriptors with negligible loss in assignment accuracy.

Linear SVM Choice. Empirically sufficient for high-dim BoVW histograms; training remains fast with the dual optimisation mode.

5. Conclusion

Each function in version3.py encapsulates a self-contained step of the classical BoVW pipeline. Understanding their interfaces clarifies how data flow and hyper-parameters interact, enabling straightforward modification or replacement (e.g., swapping SIFT for ORB, or Linear-SVM for logistic regression).

References

- [1] D. Lowe. Distinctive Image Features from Scale-Invariant Keypoints. *IJCV*, 2004.
- [2] J. Johnson and H. Zhang. Billion-scale similarity search with GPUs. *IEEE TKDE*, 2019.
- [3] F. Pedregosa *et al.* Scikit-learn: Machine Learning in Python. *JMLR*, 2011.