Lesson 6 – Operations with Algebraic Vectors in \mathbb{R}^3

PART A: Vectors in \mathbb{R}^3 expressed in terms of Unit Vectors

Just as we expressed the vector \overrightarrow{OP} in terms of unit vectors $\hat{\imath}$ and $\hat{\jmath}$ in R^2 , we can extend the use of standard basis vectors to include a third dimension. The unit vectors $\hat{\imath}$, $\hat{\jmath}$ and \hat{k} are chosen in R^3 . The unit vectors still have a magnitude of 1, but \hat{k} is a vector that lies along the *z*-axis (whereas $\hat{\imath}$ lies along the *x*-axis and $\hat{\jmath}$ lies along the *y*-axis).

In three-dimensional space, there are three standard basis vectors

$$\hat{i} = [1,0,0]$$
 $\hat{j} = [0,1,0]$ $\hat{k} = [0,0,1]$

Standard basis vectors are unit vectors.

In figure 1, vector $\overrightarrow{OP} = [a, b, c]$. Like we did in R², we can now write this vector in terms of the standard basis vectors as follows:

The position vector \overrightarrow{OP} , whose tail is at the origin and whose head is located at point P, can be represented as either $\overrightarrow{OP} = [a,b,c]$ or $\overrightarrow{OP} = a\vec{\imath} + b\vec{\jmath} + c\vec{k}$, where O(0,0,0) is the origin, P(a,b,c) is any point in \mathbb{R}^3 , and $\vec{\imath}$, $\vec{\jmath}$ and \vec{k} are the standard unit vectors along the x-, y- and z-axes, respectively.

Example 1: Write each vector $\overrightarrow{OA} = [4,2,-9]$, $\overrightarrow{OB} = [-7,5,3]$ and $\overrightarrow{OC} = [-2,-8,-2]$ using the *standard basis vectors*.

Example 2: Write each vector $\overrightarrow{OM} = 4\vec{i} - 7\vec{j} + 3\vec{k}$ and $\overrightarrow{ON} = -5\vec{i} - 8\vec{k}$ in component form.

Example 3: Given $\vec{a} = -\vec{i} + 2\vec{i} + \vec{k}$, $\vec{b} = 2\vec{i} - 3\vec{k}$ and $\vec{c} = \vec{i} - 3\vec{i} + 2\vec{k}$, determine $2\vec{a} + \vec{b} - \vec{c}$.	
Method 1: Standard Unit Vectors	Method 2: Components
Method 1: Standard Only Vectors $ \frac{2(-2+2)+2+2-32-(2-3)+22}{2-22+2+22-32-22-2+32-22} $ $=-32+91-32$ $=(-3,9,-3]$	ラー[-1,2,1] b=[0,2,-3]

PART B: Magnitude of the Position Vector

Given that $\overrightarrow{OP} = [a, b, c] = a\vec{\imath} + b\vec{\jmath} + c\vec{k}$, we can determine

$$\left|\overrightarrow{OP}\right| = \sqrt{(a)^2 + (b)^2 + (c)^2}$$

Example 4: If A(7, -11, 13) and B(4, -7, 25) are two points in \mathbb{R}^3 , determine each of the following:

a) $|\overrightarrow{OA}|$

b)
$$|OB|$$

$$= \int 4^{\circ} + (-7)^{\circ} + a5^{\circ}$$

$$= \int |b| + 49 + 625$$

$$= \int |a| + 49 + 625$$

PART C: Magnitude of a Vector

To find the magnitude of a vector, use the formula for the distance between two points.

Magnitudes in \mathbb{R}^3

If $A(x_1, y_1, z_1)$ and $B(x_2, y_2, z_2)$ are two points, then

$$|\overrightarrow{AB}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

(**Recall**: the vector $\overrightarrow{AB} = [x_2 - x_1, y_2 - y_1, z_2 - z_1]$ is the related position vector)

Example 5: Find the position vector and the magnitude of the vector \overline{AB} with A(1,3,-6) and B(7,-3,4).

$$\frac{AB}{B} = [7-1, -3-3, 4-(-\omega)]$$

$$\frac{AB}{B} = [6, -6, 10]$$

$$1AB = [6+(-6)^{2} + (0^{2} +$$