Proces dysocjacji jonowej soli

Cele nauczania

Uczeń:

- definiuje pojęcia: dysocjacja jonowa (elektrolityczna) soli, elektrolit (A),
- wymienia rodzaje odczynu roztworu (A),
- dzieli sole ze względu na ich rozpuszczalność w wodzie (A),
- wyjaśnia, na czym polega dysocjacja jonowa (elektrolityczna) soli (B),
- zapisuje równania dysocjacji jonowej (elektrolitycznej) wybranych soli (C),
- podaje nazwy jonów powstających podczas dysocjacji jonowej (elektrolitycznej) wybranych soli (C),
- określa rozpuszczalność soli w wodzie na podstawie tabeli rozpuszczalności wodorotlenków i soli (C),
- bezpiecznie posługuje się odczynnikami chemicznymi oraz szkłem i sprzetem laboratoryjnym (C),
- zapisuje wzory i nazwy soli na podstawie wzorów i nazw jonów (C),
- zapisuje równania dysocjacji elektrolitycznej soli rozpuszczalnych w wodzie (C),
- opisuje przebieg doświadczenia chemicznego, podaje obserwacje i formułuje wniosek (D).

Realizowane wymagania szczegółowe z podstawy programowej

Uczeń

 pisze równania dysocjacji elektrolitycznej soli rozpuszczalnych w wodzie (VII. 4).

Metody

- pokaz,
- metoda praktyczna.

Materiały i środki dydaktyczne

- podręcznik dla klasy ósmej szkoły podstawowej, J. Kulawik, T. Kulawik, M. Litwin, *Chemia Nowej Ery*, Nowa Era, Warszawa 2018,
- zeszyt ćwiczeń dla klasy ósmej szkoły podstawowej, M. Mańska, E. Megiel, *Chemia Nowej Ery*, Nowa Era, Warszawa 2018,
- Multiteka Chemia Nowej Ery dla klasy ósmej,
- karta pracy dołączona do scenariusza,
- gra dydaktyczna Chemiczne domino.

Przebieg lekcji

Część nawiązująca

- 1. Nauczyciel sprawdza prace domowe.
- Nawiązanie do poprzednich lekcji i przypomnienie wiadomości na temat soli.

Nauczyciel zadaje pytania:

- Co to sa sole?
- Jak zbudowane są sole?
- W jaki sposób tworzy się nazwy i wzory soli?
- Na czym polega dysocjacja jonowa?

Uczniowie odpowiadaja.

 Nauczyciel rozdaje karty pracy i prosi o wykonanie zadania 1.

Cześć właściwa

- 1. Nauczyciel przedstawia temat lekcji, cele nauczania oraz kryteria sukcesu w jezyku ucznia (s. 39).
- 2. Nauczyciel pokazuje film *Badanie rozpuszczalności* wybranych soli w wodzie (Multiteka). Następnie przypomina, jak należy się posługiwać tabelą rozpuszczalności soli i wodorotlenków w wodzie (na podstawie tabeli 4., podręcznik, s. 65) i wprowadza definicję dysocjacji jonowej soli. Uczniowie rozwiązują zadanie 2. z karty pracy.
- Nauczyciel prosi o wykonanie zadania 2. (podręcznik, s. 68). Chętni uczniowie zapisują na tablicy równania reakcji chemicznych. Nauczyciel weryfikuje poprawność zapisów.
- 4. Uczniowie (w parach) grają w *Chemiczne domino* (s. 43) zgodnie z instrukcją w karcie pracy.
- Po zakończeniu gry uczniowie wybierają po pięć kostek ze wzorami sumarycznymi soli i jonami, a następnie wykonują zadanie 3. z karty pracy.

Część podsumowująca

- Nauczyciel podsumowuje lekcję, zwracając uwagę na nowe pojęcia.
- 2. Nauczyciel ocenia pracę uczniów.
- 3. Zadanie pracy domowej:
 - zadanie 3. z podręcznika, s. 68,
 - zadania 11. i 12. z zeszytu ćwiczeń, s. 37,
 - dla chętnych: zadanie 4. z karty pracy; zadanie 4. z podręcznika, s. 68.

Uwagi o przebiegu lekcji

Nauczyciel korzysta na lekcji z materiałów multimedialnych z *Multiteki Chemia Nowej Ery*:

 film Badanie rozpuszczalności wybranych soli w wodzie.

Lista materiałów dostępnych w *Multitece Chemia Nowej* Ery dla klasy ósmej znajduje się na s. 121.

Nauczyciel przed lekcją przygotowuje zestawy do gry *Chemiczne domino* dołączonej do scenariusza.

Dysocjacja jonowa soli

		imię i nazwisko ucznia		
_	data		klasa	_

■ Uzupełnij tabelę.

Ni	Wzór sumaryczny soli	Wartościowość		
Nazwa soli		metalu	reszty kwasowej	
siarczan(IV) wapnia				
siarczek miedzi(I)				
azotan(V) potasu				
	K ₃ PO ₄			
	Fe ₂ (SO ₃) ₃			
	CuSO ₄			
		II	I	
		II	II	
		II	III	

Zapisz obserwacje i sformułuj wniosek do doświadczenia chemicznego pokazanego przez nauczyciela. Uzupełnij równania reakcji dysocjacji jonowej podanych soli.

α 1	
Obserwa	ıcje:

Probówka 1.
Probówka 2.
Probówka 3.

Wniosek:

Równania reakcji dysocjacji jonowej:

$KNO_3 \xrightarrow{H_2O}$	+
CuSO ₄ $\xrightarrow{\text{H}_2\text{O}}$	+

3 Zapisz wzory sumaryczne pięciu soli wybranych z gry Chemiczne domino i zapisz równania reakcji dysocjacji jonowej tych soli oraz nazwy powstałych jonów.

Wzór sumaryczny soli	Równanie reakcji dysocjacji jonowej soli	Nazwy powstałych jonów
		-

4 Oblicz stężenie procentowe roztworu, który otrzymano w wyniku rozpuszczenia siarczanu(VI) magnezu w takiej ilości wody, że na każdy anion siarczanowy przypada 57 cząsteczek wody. Przyjmij, że masa substancji rozpuszczonej jest równa masie cząsteczek tej soli $(m_{\rm H}=1~{\rm u},\,m_{\rm O}=16~{\rm u},\,m_{\rm Mg}=24~{\rm u},\,m_{\rm S}=32~{\rm u}).$

Obliczenia:

Chemiczne domino

Potnij kartkę wzdłuż przerywanych linii. Otrzymane elementy utworzą kostki domina.

Instrukcja gry

Wersja I

- · W grze biorą udział dwie osoby.
- Każdy gracz otrzymuje siedem kostek domina; pozostałe kostki kładziemy wzorami do dołu na stole.
- Osoba rozpoczynająca grę kładzie na stole dowolną kostkę.
- · Uczestnicy gry kolejno dokładają odpowiednie kostki do dowolnego końca łańcucha.
- Jeśli gracz nie ma odpowiedniej kostki, dobiera ja losowo spośród kostek ułożonych wzorami do dołu na stole.
- Jeśli dobrana kostka nie pasuje do ułożonego domina, gracz dobiera kolejną kostkę, aż do wyczerpania kostek bądź trafienia na kostkę odpowiednią.
- Jeśli kostki się skończą, a gracz nie zdobędzie kostki pasującej do łańcucha, traci kolejkę.
- Wygrywa gracz, który jako pierwszy pozbędzie się wszystkich kostek.
- Poprawnie ułożone domino powinno utworzyć zamknięty łańcuch.

Wersja II

- Uczniowie (w parach) rozkładają kostki domina wzorami do góry na stole.
- Uczniowie na czas układają kostki domina.
- Wygrywają trzy pierwsze pary, którym udało się ułożyć całe domino.
- Poprawnie ułożone domino powinno utworzyć zamknięty łańcuch.

		9	Y	0	r	
<u>~</u>	NaCl	${ m MgSO}_4$	FeSO ₃	Na⁺, Br⁻	K+, MnO ₄ -	Mg ²⁺ , Cl ⁻
	Na ₂ SiO ₃	Li ⁺ , SO ₃ ²⁻	Ag+, NO ₃ -	CuSO_4	Na ₂ CO ₃	K+, SO ₃ ²⁻
	Fe ₂ (SO ₄) ₃	Mg ²⁺ , NO ₃ ⁻	K ₂ SO ₃	Ni ²⁺ , SO ₄ ²⁻	FeCl_2	Fe ²⁺ , SO ₃ ²⁻
	Na ₂ S	Ca ²⁺ , Cl ⁻	Zn(NO ₃) ₂	Na+, CO ₃ ²⁻	Cu ²⁺ , SO ₄ ²⁻	Fe ²⁺ , Cl ⁻
	Na ₃ PO ₄	Pb ²⁺ , NO ₃ -	Cu ²⁺ , CrO ₄ ²⁻	Al(NO ₃) ₃	Na ₂ SO ₄	Al³+, Cl-
	$\text{Li}_2 \text{SO}_3$	Na+, PO ₄ ³⁻	Ba ²⁺ , S ²⁻	Ca(NO ₃) ₂	Al ³⁺ , NO ₃ ⁻	BaS
	$Mg(NO_3)_2$	Na+, S²-	K+, CO ₃ ²⁻	AgNO_3	FeBr ₃	Zn²+, NO₃⁻
	Pb(NO ₃) ₂	Fe ³⁺ , SO ₄ ²⁻	K ₂ S	Fe ³⁺ , Br ⁻	Ca ²⁺ , NO ₃ ⁻	KMnO_4
	Mg ²⁺ , SO ₄ ²⁻	Li ⁺ , SO ₄ ²⁻	Cu ²⁺ , NO ₃ ⁻	$\text{Al}_2(\text{SO}_4)_3$	CaCl ₂	Na ⁺ , SO ₄ ²⁻
3	MgCl_2	K+, S ²⁻	${ m Li_2SO_4}$	CuCrO ₄	NaBr	Na⁺, Cl⁻
0	NiSO ₄	Na+, SiO ₃ ²⁻	AlCl₃	Cu(NO ₃) ₂	Al ³⁺ , SO ₄ ²⁻	${ m K_2CO_3}$

Wytnij kostki domina wzdłuż przerywanych linii.