Aufgabe 1. (Eigenwerte und Diagonalisierbarkeit)

- 1. Es sei $A \in GL_2(\mathbb{C})$ mit Spur A = 0. Zeigen Sie, dass A diagonalisierbar ist.
- 2. Zeigen Sie, dass jede Matrix $A \in M_3(\mathbb{R})$ einen reellen Eigenwert hat.
- 3. Folgern Sie, dass jede nicht-triagonalisierbare Matrix $A \in M_3(\mathbb{R})$ über \mathbb{C} diagonalisierbar ist.

(*Tipp*: Zeigen Sie, dass für jeden Eigenwert λ von A auch $\overline{\lambda}$ ein Eigenwert ist.)

- 4. Es sei $A \in M_n(\mathbb{C})$ und $k \geq 0$ mit $A^k = 1$. Zeigen Sie, dass A diagonalisierbar ist, und bestimmen Sie alle möglichen Eigenwerte für A.
- 5. Es sei $A \in M_2(\mathbb{C})$ mit Spur A = 0 und Spur $A^2 = -2$. Bestimmen Sie det A. Entscheiden Sie auch, ob A diagonalisierbar ist.
- 6. Es sei $A \in M_2(\mathbb{C})$ mit Spur A = 2 und Spur $A^2 = 4$. Zeigen Sie, dass A diagonalisierbar ist, und bestimmen Sie die Eigenwerte von A.
- 7. Es sei $A \in M_n(\mathbb{C})$ mit $A^2 + A = 61$ und det A = 144. Bestimmen Sie n.
- 8. Es sei $A \in M_n(\mathbb{C})$ mit $A^3 = 3A 2\mathbb{I}$ und $A^3 + A^2 = A + \mathbb{I}$. Zeigen Sie, dass $A = \mathbb{I}$.

Aufgabe 2. (Determinante und Potenzen der Spur)

Zeigen Sie für alle $A \in M_3(\mathbb{C})$ die Gleichheit

$$\det A = \frac{1}{6} (\operatorname{Spur} A)^3 - \frac{1}{2} (\operatorname{Spur} A^2) (\operatorname{Spur} A) + \frac{1}{3} (\operatorname{Spur} A^3).$$

Aufgabe 3. (Diagonalisieren)

1. Es sei

$$A := \begin{pmatrix} 2 & 1 & \cdots & 1 \\ 1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 1 & \cdots & 1 & 2 \end{pmatrix} \in \mathcal{M}_n(\mathbb{R}).$$

Bestimmen Sie die Eigenwerte von A und zeigen Sie, dass A diagonalisierbar ist.

2. Es sei

$$A := \begin{pmatrix} 0 & \mathbb{1}_n \\ \mathbb{1}_n & 0 \end{pmatrix} \in \mathcal{M}_{2n}(\mathbb{R}).$$

Geben Sie eine Basis von K^{2n} aus Eigenvektoren von A an. Bestimmen Sie anschließend $p_A(t)$ sowie det A.

(*Tipp*: A vertauscht die Basisvektoren e_i und e_{n+i} .)

Aufgabe 4. (Wurzeln und Potenzen)

Es seien

$$A \coloneqq \begin{pmatrix} 7 & -12 \\ 4 & -7 \end{pmatrix} \in \mathrm{M}_2(\mathbb{C}) \quad \mathrm{und} \quad B \coloneqq \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix} \in \mathrm{M}_2(\mathbb{C}).$$

- 1. Geben Sie eine Matrix $C \in M_2(\mathbb{C})$ mit $A = \mathbb{C}^2$ an.
- 2. Berechnen Sie B^{2017} . (*Tipp*: Ignorieren Sie ggf. zunächst den Vorfaktor $1/\sqrt{2}$.)

Aufgabe 5. (Cayley–Hamilton)

Es sei K ein Körper.

- 1. Zeigen Sie für $A \in M_n(K)$, dass die Potenzen $\mathbb{1}, A, A^2, \ldots, A^n$ linear abhängig sind.
- 2. Es sei $A \in GL_n(K)$. Zeigen Sie, dass es ein Polynom $p \in K[t]$ mit $p(A) = A^{-1}$ gibt. Bestimmen Sie ein solches Polynom für die Matrix

$$A := \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \in GL_3(\mathbb{R}).$$

Aufgabe 6. (Simultane Diagonalisierbarkeit)

- 1. Es sei V ein endlichdimensionaler K-Vektorraum, und es seien $f,g\colon V\to V$ zwei diagonalisierbare Endomorphismen mit $f\circ g=g\circ f$. Zeigen Sie, dass auch $f\circ g$ diagonalisierbar ist.
- 2. Bestimmen Sie alle $a, b \in \mathbb{R}$, so dass die beiden reellen Matrizen

$$\begin{pmatrix} a & 1 \\ 0 & 3 \end{pmatrix}$$
 und $\begin{pmatrix} -1 & 2 \\ 0 & b \end{pmatrix}$

simultan diagonalisierbar sind.

Aufgabe 7. (Symmetrische und schiefsymmetrische Matrizen)

Es sei K ein Körper mit char $K \neq 2$. Es sei

$$\operatorname{Sym}_n(K) = \{ A \in \operatorname{M}_n(K) \mid A^T = A \}$$

der Raum der symmetrischen Matrizen und

$$Alt_n(K) = \{ A \in M_n(K) \mid A^T = -A \}$$

der Raum der schiefsymmetrischen Matrizen.

1. Zeigen Sie, dass $\operatorname{Sym}_n(K)$ und $\operatorname{Alt}_n(K)$ Untervektorräume von $\operatorname{M}_n(K)$ sind, und dass $\operatorname{M}_n(K) = \operatorname{Sym}_n(K) \oplus \operatorname{Alt}_n(K)$ gilt. (*Hinweis*: Für die Abbildung $f \colon \operatorname{M}_n(K) \to \operatorname{M}_n(K)$, $A \mapsto A^T$ gilt $f^2 = \operatorname{id}$.)

2. Geben Sie Basen von $\operatorname{Sym}_n(K)$ und $\operatorname{Alt}_n(K)$ an.

Aufgabe 8.

Es sei $f \colon V \to V$ ein Endomorphismus.

- 1. Es sei $v \in V$ ein Eigenvektor von f zum Eigenwert $\lambda \in K$. Zeigen Sie, dass v für jedes Polynom $p \in K[t]$ ein Eigenvektor von p(f) zum Eigenwert $p(\lambda)$ ist.
- 2. Es sei K algebraisch abgeschlossen und $p \in K[t]$. Zeigen Sie, dass es für jeden Eigenwert μ von p(f) einen Eigenwert λ von f mit $\mu = p(\lambda)$ gibt. (*Tipp*: Zeigen Sie zunächst, dass der Endomorphismus $(p \lambda)(f)$ nicht injektiv ist. Zerlegen Sie anschließend $p \lambda$ in Linearfaktoren.

Aufgabe 9. (Diagonalisieren über \mathbb{F}_5)

Es sei

$$A := \begin{pmatrix} 3 & 4 & 1 \\ 0 & 1 & 2 \\ 1 & 2 & 2 \end{pmatrix} \in \mathcal{M}_3(\mathbb{F}_5).$$

Bestimmen Sie eine Matrix $S \in GL_3(\mathbb{F}_5)$, so dass $S^{-1}AS$ in Diagonalform ist.

Lösungen

Lösung 5.

1. Für das charakteristische Polynom $p_A(t) = (-1)^n t^n + a_{n-1} t^{n-1} + \dots + a_1 t + a_0$ gilt nach dem Satz von Cayley-Hamilton, dass

$$0 = p_A(t) = (-1)^n A^n + a_{n-1} A^{n-1} + \dots + a_1 A + a_0 \mathbb{1}.$$

Wir haben somit eine nicht-trivale Linearkombination von 0 durch die Matrizen $A^n, A^{n-1}, \ldots, \mathbb{1}$.

2. Für das charakterische Polynom $p_A(t) = (-1)^n t^n + a_{n-1} t^{n-1} + \cdots + a_1 t + a_0$ gilt $a_0 = \det A$. Nach dem Satz von Cayley–Hamilton gilt somit, dass

$$0 = p_A(t) = (-1)^n A^n + a_{n-1} A^{n-1} + \dots + a_1 A + (\det A) \mathbb{1}.$$

Durch Umstellen dieser Gleichung ergibt sich, dass

$$\mathbb{1} = -\frac{(-1)^n A^n + a_{n-1} A^{n-1} + \dots + a_1 A}{\det A}
= A \cdot \left(-\frac{(-1)^n A^{n-1} + a_{n-1} A^{n-2} + \dots + a_1}{\det A} \right).$$

Das Inverse A^{-1} ist also durch

$$A^{-1} = -\frac{(-1)^n A^{n-1} + a_{n-1} A^{n-2} + \dots + a_1}{\det A} = p(A)$$

für das Polynom

$$p(t) := -\frac{(-1)^n t^{n-1} + a_{n-1} t^{n-2} + \dots + a_1}{\det A} = -\frac{p_A(t) - \det A}{(\det A)t} = \frac{\det A - p_A(t)}{(\det A)t}$$

gegeben.

Für die gegebene Matrix $A \in GL_3(\mathbb{R})$ gilt

$$p_A(t) = -t^3 + 3t^2 - 3t + 1.$$

Hieraus ergibt sich das Polynom $p(t) := t^2 - 3t + 3$ mit $A^{-1} = p(A)$.

Lösung 6.

1. Die Endomorphismen f und g sind simultan diagonalisierbar, da sie jeweils einzeln diagonalisierbar sind, und kommutieren. Es gibt also eine Basis \mathcal{B} von V, bezüglich der die Endomorphismen f und g durch die Matrizen

$$\mathbf{M}_{f,\mathcal{B},\mathcal{B}} = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix} \quad \text{und} \quad \mathbf{M}_{g,\mathcal{B},\mathcal{B}} = \begin{pmatrix} \mu_1 & & \\ & \ddots & \\ & & \mu_n \end{pmatrix}$$

dargestellt werden. Bezüglich \mathcal{B} wird $f \circ g$ durch die Matrix

$$\mathbf{M}_{f \circ g, \mathcal{B}, \mathcal{B}} = \mathbf{M}_{f, \mathcal{B}, \mathcal{B}} \mathbf{M}_{g, \mathcal{B}, \mathcal{B}} = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix} \begin{pmatrix} \mu_1 & & \\ & & \ddots & \\ & & & \mu_n \end{pmatrix}$$
$$= \begin{pmatrix} \lambda_1 \mu_1 & & \\ & & \ddots & \\ & & & \lambda_n \mu_n \end{pmatrix}$$

dargestellt. Also ist \mathcal{B} eine Basis von V aus Eigenvektoren von $f \circ g$, und $f \circ g$ somit diagonalisierbar.

2. Wir bezeichnen die beiden Matrizen mit

$$A_a = \begin{pmatrix} a & 1 \\ 0 & 3 \end{pmatrix}$$
 und $B_b = \begin{pmatrix} -1 & 2 \\ 0 & b \end{pmatrix}$.

Die Matrizen A_a und B_b sind genau dann simultan diagonalisierbar, wenn sie jeweils einzeln diagonalisierbar sind, und sie kommutieren.

- Die Matrix A_a ist eine obere Dreiecksmatrix, ihr charakteristisches Polynom ist also

$$p_{A_a}(t) = (t-a)(t-3).$$

Ist $a \neq 3$, so zerfällt A_a in paarweise verschiedene Linearfaktoren, weshalb A_a in diesen Fällen diagonalisierbar ist. Für a=3 ist 3 der einzige Eigenwert von $A_a=A_3$; die Matrix A_3 ist nicht diagonalisierbar, da der Eigenraum

$$(\mathbb{R}^2)_3(A_3) = \ker(A_3 - 3\mathbb{1}) = \ker\begin{pmatrix} 0 & 1\\ 0 & 0 \end{pmatrix} = \left\langle \begin{pmatrix} 1\\ 0 \end{pmatrix} \right\rangle$$

nur eindimensional ist.

Also ist A_a genau dann diagonalisierbar, wenn $a \neq 3$ gilt.

- Analog ergibt sich, dass die Matrix B_b genau dann diagonalisierbar ist, wenn $b \neq -1$ gilt.
- Es gelten

$$A_a B_b = \begin{pmatrix} a & 1 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} -1 & 2 \\ 0 & b \end{pmatrix} = \begin{pmatrix} -a & 2a+b \\ 0 & 3b \end{pmatrix}$$

und

$$B_b A_a = \begin{pmatrix} -1 & 2 \\ 0 & b \end{pmatrix} \begin{pmatrix} a & 1 \\ 0 & 3 \end{pmatrix} = \begin{pmatrix} -a & 5 \\ 0 & 3b \end{pmatrix}$$

Die Matrizen A_a und B_b kommutieren also genau dann, wenn 2a+b=5 gilt, wenn also b=5-2a gilt.

Wir erhalten also ingesamt, dass die Matrizen A_a und B_b genau dann simultan diagonalisierbar sind, wenn b = 5 - 2a und $b \neq -1$ gelten (der Fall a = 3 entspricht dem Fall b = -1).

Lösung 7.

1. Es gilt $(A^T)^T = A$ für alle $A \in M_n(K)$, und somit $f^2 = \mathrm{id}_{M_n(K)}$ für die Abbildung $f \colon M_n(K) \to M_n(K)$, $A \mapsto A^T$. Also gilt q(f) = 0 für das Polynom $q(t) := t^2 - 1 \in K[t]$.

Das Polynom q zerfällt in Linearfaktoren q(t)=(t-1)(t+1), und da char $K\neq 2$ gilt, sind die beiden Linearfaktoren verschieden. Da $m_f\mid q$ gilt, folgt damit, dass m_f in die beiden möglichen Linearfaktoren t-1 und t+1 zerfällt. Somit ist f diagonalisierbar mit möglichen Eigenwerten 1 und -1.

Es gilt also

$$M_n(K) = M_n(K)_1(f) \oplus M_n(K)_{-1}(f).$$

Dabei gelten

$$M_n(K)_1(f) = \{A \in M_n(K) \mid A^T = A\} = Sym_n(K)$$

sowie

$$M_n(K)_1(f) = \{A \in M_n(K) \mid A^T = -A\} = Alt_n(K).$$

- 2. Für die Standardbasis $(E_{ij})_{i,j=1,...,n}$ von $M_n(K)$ gilt $f(E_{ij}) = E_{ij}^T = E_{ji}$.
 - Die Basisvektoren E_{ii} sind also bereits Eigenvektoren von f zum Eigenwert 1.
 - Für $i \neq j$ werden die Basisvektoren E_{ij} und E_{ji} von f miteinander vertauscht. Man kann deshalb E_{ij} und E_{ji} durch die beiden Vektoren

$$E_{ij} + E_{ji}$$
 und $E_{ij} - E_{ji}$

ersetzen, wobei $E_{ij}+E_{ji}$ ein Eigenvektor von f zum Eigenwert 1 ist, und $E_{ij}-E_{ji}$ ein Eigenvektor zum Eigenwert -1.

Somit erhält man insgesamt die folgende Basis von $M_n(K)$, bestehend aus Eigenvektoren von f:

$${E_{ii} \mid i = 1, ..., n} \cup {E_{ij} + E_{ji} \mid 1 \le i < j \le n} \cup {E_{ij} - E_{ji} \mid 1 \le i < j \le n}.$$

Für $\operatorname{Sym}_n(K) = \operatorname{M}_n(K)_1(f)$ ergibt sich somit die Basis

$${E_{ii} | i = 1, ..., n} \cup {E_{ij} + E_{ji} | 1 \le i < j \le n},$$

und für $Alt_n(K) = M_n(K)_{-1}(f)$ die Basis

$${E_{ij} - E_{ji} \mid 1 \le i < j \le n}.$$

Lösung 8.

1. Nach Annahme gilt $f(v) = \lambda v$. Induktiv ergibt sich damit für alle $k \geq 0$, dass $f^k(v) = \lambda^k v$ gilt. Für ein beliebiges Polynom

$$p(t) = a_n t^n + a_{n-1} t^{n-1} + \dots + a_1 t + a_0 \in K[t]$$

ergibt sich damit, dass

$$p(f)(v) = (a_n f^n + a_{n-1} f^{n-1} + \dots + a_1 f + a_0 \operatorname{id}_V)(v)$$

$$= a_n f^n(v) + a_{n-1} f^{n-1}(v) + \dots + a_1 f(v) + a_0 \operatorname{id}_V(v)$$

$$= a_n \lambda^n v + a_{n-1} \lambda^{n-1} v + \dots + a_1 \lambda v + a_0 v$$

$$= (a_n \lambda^n + a_{n-1} \lambda^{n-1} + \dots + a_1 \lambda + a_0) v$$

$$= p(\lambda) v.$$

Da nach Annahme auch $v \neq 0$ gilt, ist v somit ein Eigenvektor von p(f) zum Eigenwert $p(\lambda)$.

2. Die Abbildung $p(f) - \mu \operatorname{id}_V$ ist nicht injektiv, da μ ein Eigenwert von p(f) ist. Für das Polynom $q(t) := p(t) - \mu$ ist also die Abbildung q(f) nicht injektiv.

Da K algebraisch abgeschlossen ist, zerfällt q(t) in Linearfaktoren

$$q(t) = (t - \lambda_1) \cdots (t - \lambda_n).$$

Da die Komposition

$$q(f) = (f - \lambda_1 \operatorname{id}_V) \circ \cdots \circ (f - \lambda_n \operatorname{id}_V)$$

nicht injektiv ist, muss bereits eine der Abbildungen $f - \lambda_i$ id $_V$ nicht injektiv sein (denn die Komposition injektiver Abbildungen ist ebenfalls wieder injektiv). Für ein entsprechendes i ist dann $\lambda \coloneqq \lambda_i$ ein Eigenwert von f, da $f - \lambda$ id $_V$ nicht injektiv ist.

Da λ eine Nullstelle von $q(t) = p(t) - \mu$ ist, gilt dabei $0 = q(\lambda) = p(\lambda) - \mu$, und somit $\mu = p(\lambda)$.

Lösung 9.

Es gilt

$$p_A(t) = -t^3 + t^2 + 4t + 1$$

Durch Ausprobieren ergibt sich für $p_A(t)$ die Nullstelle $\lambda_1 = 1$. Durch Abspalten eines entsprechendes Linearfaktors ergibt sich, dass

$$-t^3 + t^2 + 4t + 1 = -(t^3 - t^2 + t - 1) = -(t - 1)(t^2 + 1) = -(t - 1)(t^2 - 4)$$
$$= -(t - 1)(t - 2)(t + 2) = -(t - 1)(t - 2)(t - 3).$$

Die Eigenwerte von A sind also 1, 2 und 3. (Da $p_A(t)$ in paarweise verschiedene Linearfaktoren zerfällt, erkennt man bereits, dass A diagonalisierbar ist.) Die jeweils zugehörigen Eigenräume sind

$$(\mathbb{F}_5)_1(A) = \ker(A - \mathbb{1}) = \ker\begin{pmatrix} 2 & 4 & 1 \\ 0 & 0 & 2 \\ 1 & 2 & 1 \end{pmatrix} = \left\langle \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix} \right\rangle = \left\langle \begin{pmatrix} 2 \\ 4 \\ 0 \end{pmatrix} \right\rangle = \left\langle \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} \right\rangle,$$

$$(\mathbb{F}_5)_2(A) = \ker(A - 2\mathbb{1}) = \ker\begin{pmatrix} 1 & 4 & 1 \\ 0 & 4 & 2 \\ 1 & 2 & 0 \end{pmatrix} = \left\langle \begin{pmatrix} -2 \\ 1 \\ -2 \end{pmatrix} \right\rangle = \left\langle \begin{pmatrix} 3 \\ 1 \\ 3 \end{pmatrix} \right\rangle = \left\langle \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} \right\rangle,$$

und

$$(\mathbb{F}_5)_3(A) = \ker(A - 3\mathbb{1}) = \ker\begin{pmatrix} 0 & 4 & 1 \\ 0 & 3 & 2 \\ 1 & 2 & 4 \end{pmatrix} = \ker\begin{pmatrix} 0 & -1 & 1 \\ 0 & -2 & 2 \\ 1 & 2 & 4 \end{pmatrix}$$
$$= \left\langle \begin{pmatrix} -3 \\ 1 \\ -1 \end{pmatrix} \right\rangle = \left\langle \begin{pmatrix} 2 \\ 1 \\ 4 \end{pmatrix} \right\rangle = \left\langle \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix} \right\rangle.$$

Für die Matrix

$$S := \begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 3 \\ 0 & 1 & 2 \end{pmatrix} \in GL_3(\mathbb{F}_5)$$

gilt also

$$S^{-1}AS = \begin{pmatrix} 1 & & \\ & 2 & \\ & & 3 \end{pmatrix}.$$