Exercice 10. On considère la suite $(u_n)_{n\in\mathbb{N}}$ de fonctions $u_n:[0,1]\to\mathbb{R}$ définies par $u_0(x)=1$ et, si $n\geq 1$,

$$u_n(x) = \begin{cases} \frac{(-1)^n}{n!} (x \ln(x))^n & \text{si } x \in]0,1], \\ 0 & \text{si } x = 0. \end{cases}$$

- 1. Pour tout $n \in \mathbb{N}$, vérifier que u_n est continue sur [0,1].
- 2. En intégrant par parties, calculer $\int_0^1 u_n(x) dx$ pour tout $n \in \mathbb{N}$.
- 3. Montrer que la série de fonctions $(\sum_{n\in\mathbb{N}} u_n)$ converge normalement sur [0,1], et calculer sa somme.
- 4. En déduire que

$$\int_0^1 \frac{1}{x^x} \, \mathrm{d}x \, = \, \sum_{n=1}^\infty \frac{1}{n^n} \, .$$

$$y = \operatorname{ac} \ln x$$
 $\sum \frac{-1}{n!} y^h = \exp(-y) = \frac{1}{x^x}$

$$g' = \log x + \frac{x}{x} = \log x + 1 = 0 \iff x = e^{-1}$$

Sup
$$|g(c)| = |g(e^{-1})|$$

= $-e^{-1}|ne^{-1}|$
= $e^{-1} \approx 0.369$

$$\sum \| v_n \| \leq \sum \left(\frac{(e^{-1})^n}{n!} = \exp(e^{-1}) \right)$$

De plus
$$U_n(x) = \frac{-1}{n!}^n (g(x))^n$$
 cont