Федеральное государственное автономное образовательное учреждение высшего образования

Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и кибербезопасности Высшая школа компьютерных технологий и информационных систем

	Отчет №7	
по дисциплине «Аппаратное	обеспечение информаци	онно-измерительных систем»
Выполнил: студент гр. 5132703/20101	 <подпись>	Басалгин А.Д.
Руководитель: ассистент	<подпись>	Кравченко В. В.

«___» ____ 2024 г.

1. Задание

Цели работы:

 закрепить понятия и вопросы, относящиеся к математическому описанию САР в форме Коши и векторно-матричной форме;

 освоить методику преобразования моделей САР, заданных системой алгебро-дифференциальных уравнений, в векторно-матричные модели;

освоить методику и процедуры моделирования САР в среде SimInTech с использованием блока Переменные состояния.

Порядок выполнения индивидуального задания. На основе заданного варианта САР подготовьте математическую модель системы в пространстве состояний и по аналогии с демонстрационным примером выполните моделирование и исследование заданной системы (определите условия существования устойчивых процессов регулирования и их показатели качества).

Рис. Б.1. Схема САР температуры в помещении

• объект регулирования – $T_0 \frac{d\theta}{dt} + \theta = \theta_K + kf$;

датчик – U_Д = k₁θ;

• сравнивающий орган — $\Delta U = U_0 - U_n$;

• магнитный усилитель – $T_4 \frac{dU}{dt} + U = k_4 \Delta U$;

• двигатель совместно с клапаном – $T_2 \frac{d^2 \mu}{dt^2} + \frac{d \mu}{dt} = k_2 U;$

• калорифер – $T_3 \frac{d\theta_{\mathrm{K}}}{dt} + \theta_{\mathrm{K}} = k_3 \mu$,

где T_0 , T_2 , T_3 , T_4 — постоянные времени, с;

θ – значение температуры воздуха в помещении, °С;

 θ_{K} – значение температуры воздуха на выходе калорифера, °C;

 k, k_1, k_2, k_3, k_4 – коэффициенты передачи;

f – возмущающее воздействие на объект регулирования, °C;

 $U_{\rm Д}$ – падение напряжения на термодатчике, В;

 $\Delta \hat{U}$ — напряжение на выходе мостовой схемы (сигнал рассогласования), В;

 U_0 — задающий сигнал, В;

U – напряжение на выходе магнитного усилителя, В;

μ – линейное перемещение клапана, см.

Исходные уравнения САР температуры в помещении

$$T_0 \frac{d\theta}{dt} + \theta = \theta_k + kf,$$

$$T_4 \frac{du}{dt} + u = k_4 (U_0 - k_1 \theta),$$

$$T_2 \frac{d^2 \mu}{dt^2} + \frac{d\mu}{dt} = k_2 \mu,$$

$$T_3 \frac{d\theta_k}{dt} + \theta_k = k_3 \mu,$$

$$\mu = x_3, \frac{d\mu}{dt} = x_4$$

Вектор состояния

$$X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} \boldsymbol{\theta} \\ U \\ \mu \\ \dot{\mu} \\ \boldsymbol{\theta}_k \end{pmatrix}$$

Уравнения в форме Коши:

$$\dot{x_1} = -\frac{1}{T_0}x_1 + \frac{1}{T_0}x_5 + \frac{k_0f}{T_0}$$

$$\dot{x_5} = -\frac{k_4k_1}{T_4}x_1 - \frac{1}{T_4}x_2 + \frac{k_4}{T_4}u_2$$

$$\dot{x_3} = x_4$$

$$\dot{x_4} = \frac{k_2}{T_2}x_2 - \frac{1}{T_2}x_4$$

$$\dot{x_5} = \frac{k_3}{T_3}x_3 - \frac{1}{T_3}x_5$$

Введем $u_1 = 1$

$$u = \binom{u_1}{u_2} = \binom{1}{U_0}.$$

Пространство состояний

$$\dot{x} = Ax + Bu$$

$$y = Cx + Du$$

Матрицы A, B, C, D

$$A_{5\times5} = \begin{pmatrix} -\frac{1}{T_0} & 0 & 0 & 0 & \frac{1}{T_0} \\ -\frac{k_4 k_1}{T_4} & -\frac{1}{T_4} & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & \frac{k_2}{T_2} & 0 & -\frac{1}{T_2} & 0 \\ 0 & 0 & \frac{k_3}{T_3} & 0 & -\frac{1}{T_3} \end{pmatrix}$$

$$B_{5\times2} = \begin{pmatrix} \frac{k_0 f}{T_0} & 0 \\ 0 & \frac{k_4}{T_4} \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Регулируемой величиной является температура внутри помещения θ (x_1), она будет единственным выходом.

$$C_{1\times 5} = (1 \quad 0 \quad 0 \quad 0 \quad 0), D = (0)$$

Вариант 1.1: Таблица Б.1. Значения параметров элементов САР

Вариант	T0, C	T2, C	T3, C	T4, C	k	k1, B/°C	k_2 , cm/(B·c)	k ₃ , °C/cм	K ₄	f, 'C
1	1000	0,060	20	0,5	0,2	0,2	0,002	10	2	-11

Структурная схема:

Скрипт:

```
const
   T_0 = 1000, T_2 = 0.060, T_3 = 20, T_4 = 0.5,
   k_0 = 0.2, k_1 = 0.2, k_2 = 0.002, k_3 = 10, k_4 = 2, f = -11;
    n = 5;
5
    A = [[-1/T_0, 0, 0, 0, 1/T_0];
        [-k_4*k_1/T_4, -1/T_4,0,0,0];
        [0,0,0,1,0];
        [0, k_2/T_2, 0, -1/T_2, 0];
        [0,0,k_3/T_3,0,-1/T_3]
10
    B = ([[k_0*f/T_0, 0];
          [0, k_4/T_4];
          [0, 0];
          [0, 0];
          [0, 0]]);
C = [[1, 0, 0, 0, 0]];
x\theta = [[0,0,0,0,0]];
```

Параметры блока «Переменные состояния»:

Войства	Параметры Общие По	spital british	льные слои			
Название		РМИ	Формула	Значение ▲		
Число вы	ходов	yc		1		
Число вхи	одных воздействий	uc		2		
Число пе	ременных состояния	XC	n ·	5		
Начальны	ые условия (Nx)	y0	x0	[0,0,0,0,0]		
Матрица	A(Nx*Nx)	Α	transp(A)	[[-0.001,-0.8,0,0,0]		
Матрица	B(Nu*Nx)	В	transp(B)	[[-0.0022,0,0,0,0];[
Матрица	D(Nu*Ny)	D		[[0];[0]]		
Матрица	C(Nx*Ny)	С	transp(C)	[[1];[0];[0];[0];[0]]		

График при и0=15

—— График

$$y(+\infty) = 75$$

 $t_{\pi\pi} = 4915 \text{ c}$
 $y_{\text{co}} = y(+\infty) - y(t_{\pi\pi}) = 6.05$

График при и0=8

$$y(+\infty) = 40.5$$

 $t_{\text{пп}} = 5725 \text{ c}$
 $y_{\text{co}} = y(+\infty) - y(t_{\text{пп}}) = 3.25$

График при и0=3.95

$$y(+\infty) = 20.26$$

 $t_{\pi\pi} = 5714 \text{ c}$
 $y_{\text{co}} = y(+\infty) - y(t_{\pi\pi}) = 1.62$

Система устойчива при любом значении U_0 . установившееся значение температуры попадает в заданный диапазон $20\pm1\,^{\circ}$ С при U_0 от 3.75 до 4.15 В.

Наилучшие показатели переходного процесса достигаются при $U_0=3.95~\mathrm{B}.$

2. Вывод

В ходе лабораторной работы были закреплены понятия и вопросы, относящиеся к математическому описанию САР в форме Коши и векторноматричной форме, освоена методика преобразования моделей САР, заданных системой алгебро-дифференциальных уравнений, в векторно-матричные модели, освоена методика и процедуры моделирования САР в среде SimInTech с использование блока Переменные состояния. Была получена устойчивая модель САР температуры в помещении.