Improving high-dimensional prediction by empirical Bayes learning from co-data

Mark van de Wiel^{1,2,3}, Magnus Münch^{1,4}

¹Dep of Epidemiology and Biostatistics, VU University medical center
 ²Dep of Mathematics, VU University, Amsterdam, NL
 ³MRC Biostatistics unit, Cambridge University, UK (Visiting Fellow)
 ⁴Mathematical Institute, Leiden University, NL

Our group: www.bigstatistics.nl

Setting

Prediction or Diagnosis

Primary data

- ▶ Variables i = 1, ..., p; Individuals j = 1, ..., n; p > n
- ightharpoonup Focus on binary response Y_j (e.g. case vs control)
- Measurements $\mathbf{X}_j = (X_{1j}, \dots, X_{pj})$
- ▶ Goal: find f such that $Y_i \approx f(\mathbf{X}_i)$
- Here, f: logistic regression
- Some form of regularization required

Focus

Differential regularization based on prior information:
 co-data

Co-data

Definition Co-data: any information on the *variables* that does not use the response labels of the primary data

Co-data

Definition Co-data: any information on the *variables* that does not use the response labels of the primary data

Primary Data

Use of co-data

Groups: Co-data determine *G* prior groups of variables

Idea: Use different penalty weights $\lambda_1, \ldots, \lambda_G$ across G co-data-based groups.

Use of co-data

Groups: Co-data determine *G* prior groups of variables

Idea: Use different penalty weights $\lambda_1, \ldots, \lambda_G$ across G co-data-based groups. G = 3:

E.g. Ridge: $\operatorname{argmax}_{\beta} \{ \mathcal{L}(\mathbf{Y}; \beta) - \sum_{g=1}^{G} \lambda_g ||\beta_g||_2 \}$

→ **CV** not attractive

Empirical Bayes (EB)

Empirical Bayes: estimate hyper-parameters from data

Relation penalty parameters ↔ hyper-parameters (prior)

Empirical Bayes (EB)

Empirical Bayes: estimate hyper-parameters from data

Relation penalty parameters ↔ hyper-parameters (prior)

E.g. logistic ridge: $\beta_i \sim N(0, \sigma_g^2), i \in \text{group}_g; \lambda_g = 1/(2\sigma_g^2)$:

$$\mathrm{argmax}_{\boldsymbol{\beta}}\{\mathcal{L}(\mathbf{Y};\boldsymbol{\beta}) - \sum_{g=1}^{G} \lambda_g ||\boldsymbol{\beta}_g||_2\} = \hat{\boldsymbol{\beta}}_{\boldsymbol{\lambda}} = \hat{\boldsymbol{\beta}}_{\boldsymbol{\sigma}}^{\mathsf{MAP}} = \mathsf{mode}(\pi_{\boldsymbol{\sigma}}(\boldsymbol{\beta}|\mathbf{Y}))$$

Previous work

- **EB**: Morris, Carlin & Louis, Efron, George, Casella, Van Houwelingen, etc.
- Blog: David Robinson: varianceexplained.org
- Review: EB for high-dimensional prediction*
 - High-dimensional vs low-dimensional
 - ▶ Theory on EB estimator $(p \uparrow)$ for simple linear case
 - Various EB methodologies
 - Spike-and-slab

^{*}VdW, Münch, arXiv, to appear: Scand J Stat

Previous work

- **EB**: Morris, Carlin & Louis, Efron, George, Casella, Van Houwelingen, etc.
- Blog: David Robinson: varianceexplained.org
- Review: EB for high-dimensional prediction*
 - High-dimensional vs low-dimensional
 - ▶ Theory on EB estimator $(p \uparrow)$ for simple linear case
 - Various EB methodologies
 - Spike-and-slab
- Groups: group-lasso (Meier et al.) + many versions thereof

^{*}VdW, Münch, arXiv, to appear: Scand J Stat

Formal EB: Maximum marginal Likelihood

$$\beta = (\beta_1, \dots, \beta_p)$$
. Prior(s): $\pi_{\alpha}(\beta)$, $\alpha = (\alpha_1, \dots, \alpha_K)$

Marginal likelihood maximization:

$$\hat{\alpha} = \operatorname{argmax}_{\alpha} \operatorname{ML}(\alpha), \text{ with } \operatorname{ML}(\alpha) = \int_{\beta} \mathcal{L}(\mathbf{Y}; \beta) \pi_{\alpha}(\beta) d\beta,$$

Formal EB: Maximum marginal Likelihood

$$\beta = (\beta_1, \dots, \beta_p)$$
. Prior(s): $\pi_{\alpha}(\beta)$, $\alpha = (\alpha_1, \dots, \alpha_K)$

Marginal likelihood maximization:

$$\hat{\boldsymbol{\alpha}} = \operatorname{argmax}_{\boldsymbol{\alpha}} \operatorname{ML}(\boldsymbol{\alpha}), \text{ with } \operatorname{ML}(\boldsymbol{\alpha}) = \int_{\boldsymbol{\beta}} \mathcal{L}(\mathbf{Y}; \boldsymbol{\beta}) \pi_{\boldsymbol{\alpha}}(\boldsymbol{\beta}) d\boldsymbol{\beta},$$

Optimization hard, because of the high-dimensional integral

- Laplace approximation (Shun & McCullagh, JRSSB, 1995)
- EM on Gibbs samples (Casella, Biostatistics, 2001) or on Variational Bayes approximation (Part II: Elastic Net).
- Moment estimation

EB using moments: group-regularized ridge

Estimate σ_a^2 ($\lambda_g \propto \sigma_a^{-2}$), for ridge: $\beta_i \sim N(0, \sigma_a^2)$, $i \in \text{group } g$

EB using moments: group-regularized ridge

Estimate σ_g^2 ($\lambda_g \propto \sigma_g^{-2}$), for ridge: $\beta_i \sim N(0, \sigma_g^2)$, $i \in \text{group } g$

Intuitive Idea:

- **1.** Run an initial ridge regression with one λ
- **2.** For g = 1, 2, consider mean squares of coefficients:

$$MS_g = \frac{1}{p_g} \sum_{i \in \text{group } g} \hat{\beta}_i^2$$

3. If MS_g is large then σ_g^2 should be large (hence λ_g small)

EB using moments: group-regularized ridge

Estimate σ_g^2 ($\lambda_g \propto \sigma_g^{-2}$), for ridge: $\beta_i \sim N(0, \sigma_g^2)$, $i \in \text{group } g$

Intuitive Idea:

- **1.** Run an initial ridge regression with one λ
- **2.** For g = 1, 2, consider mean squares of coefficients:

$$MS_g = \frac{1}{p_g} \sum_{i \in \text{group } g} \hat{\beta}_i^2$$

3. If MS_g is large then σ_g^2 should be large (hence λ_g small)

More difficult, because $E(MS_g)$ depends also on variables *not in* group g (biased estimation)

EB using moment estimation†

Two-group example: estimate σ_1^2 , σ_2^2 ($\lambda_g \propto \sigma_g^{-2}$), for ridge:

$$\beta_i \sim N(0, \sigma_1^2), i \in \text{group 1}, \beta_i \sim N(0, \sigma_2^2), i \in \text{group 2}$$

Idea: equate empirical moment(s) to theoretical ones

[†]Details: Van de Wiel et al., Stat Med, 2016

EB using moment estimation†

Two-group example: estimate σ_1^2, σ_2^2 ($\lambda_g \propto \sigma_g^{-2}$), for ridge:

$$\beta_i \sim N(0, \sigma_1^2), i \in \text{group 1}, \beta_i \sim N(0, \sigma_2^2), i \in \text{group 2}$$

Idea: equate empirical moment(s) to theoretical ones

$$\begin{split} &\frac{1}{\rho_1} \sum_{i \in \text{group 1}} \hat{\beta}_i^2 \approx \frac{1}{\rho_1} \sum_{i \in \text{group 1}} E_{\beta} \left[E[\hat{\beta}_i^2(\mathbf{Y}) | \beta] \right] := f_1(\sigma_1^2, \sigma_2^2) \\ &\frac{1}{\rho_2} \sum_{i \in \text{group 2}} \hat{\beta}_i^2 \approx \frac{1}{\rho_2} \sum_{i \in \text{group 2}} E_{\beta} \left[E[\hat{\beta}_i^2(\mathbf{Y}) | \beta] \right] := f_2(\sigma_1^2, \sigma_2^2), \end{split}$$

Result: System of equations $\mathbf{b}_{\text{data}} = A\mathbf{x}$, $\lambda_a^{-1} \propto \hat{\sigma}_a^2 = x_a$.

[†]Details: Van de Wiel et al., Stat Med, 2016

Shrink the shrinkage parameters[‡]

Co-data may consist of many groups (e.g. pathways)

$$\rightarrow \hat{\sigma}^2 = A^{-1} \mathbf{b}_{data}$$
 instable \rightarrow over-fitting.

[‡]Details: Novianti et al., *Bioinformatics*, 2017

Shrink the shrinkage parameters[‡]

Co-data may consist of many groups (e.g. pathways)

$$ightarrow \hat{\sigma}^2 = \mathcal{A}^{-1} \mathbf{b}_{\text{data}}$$
 instable $ightarrow$ over-fitting.

Solution: shrink A to stable target matrix, e.g. T = diag(A):

$$\tilde{A}_a = qA + (1-q)T$$

Effect of shrinkage

Real data, random groups of variables; Penalties: $\lambda_g = \lambda_g' \lambda_g'$: lambda multiplier; $\log_2(\lambda_g')$ should $\approx \log_2(1) = 0$

Left: No Shrinkage; Right: Shrinkage

Suppose we want variable selection...

Why can co-data help?

Suppose we want variable selection...

Nicest solution: A coherent framework for EB estimation in a group-regularized elastic net setting§

[§]Part II

Suppose we want variable selection...

Nicest solution: A coherent framework for EB estimation in a group-regularized elastic net setting§

Ad-hoc solution:

- 1. Estimate group penalties from ridge regression, possibly for multiple groupings
- Select k variables by introducing non-grouped L₁ penalty
- Refit the model using the selected variables and their respective L₂ penalties

§Part II

Software[¶]

R-package GRridge, Github + Bioconductor

[¶]To be discussed during course

Software[¶]

R-package GRridge, Github + Bioconductor

- Allows iteration; CVlik as stopping criterion
- Allows multiple sources of co-data, as groups
- Allows overlapping groups, e.g. pathways
- Auxiliary functions for co-data processing
- Built-in CV for comparison with ridge & lasso

[¶]To be discussed during course

Part II: Group-regularized elastic net

Group of feature j: g_i .

$$g_j = 1$$

$$g_i = 2$$

$$g_j = G$$

Group-regularized elastic net

Model

$$\begin{split} Y_i | \boldsymbol{\beta} &\sim \mathsf{Bern}(\mathsf{expit}(\boldsymbol{X}_i^\mathsf{T} \boldsymbol{\beta})), \\ \beta_j &\stackrel{\textit{ind}}{\sim} \mathsf{exp} \left[-\frac{1}{2} \left(\alpha \lambda \cdot \sqrt{\lambda_{g(j)}'} |\beta_j| + (1-\alpha) \lambda \cdot \lambda_{g(j)}' \beta_j^2 \right) \right] \end{split}$$

- Shrinks estimates towards zero
- 'Global' α and λ determine overall shrinkage
- Elastic net with penalty weights $w_{g(j)} = (\lambda'_{g(j)})^{1/2}$: $\alpha \lambda |w_{g(j)} \cdot \beta_j| + (1 \alpha) \lambda (w_{g(j)} \cdot \beta_j)^2$

Penalty parameter estimation

Cross-validation

Prohibitively slow and unstable with even few groups

Hybrid CV and Empirical Bayes

- Fix α and estimate λ by CV for global shrinkage
- Empirical Bayes estimation of λ' by MML

Maximum marginal likelihood (MML)

$$\hat{oldsymbol{\lambda}}' = \operatorname{argmax}_{oldsymbol{\lambda}'} \int_{oldsymbol{eta}} \mathcal{L}(oldsymbol{Y};oldsymbol{eta}) \pi_{oldsymbol{\lambda}'}(oldsymbol{eta}) doldsymbol{eta}$$

Latent variables

Extra latent variables (Polson et al., 2013; Li & Nin, 2010)

- $\omega | \beta \sim \prod_{i=1}^n \mathcal{PG}(1, |\mathbf{X}_i^\mathsf{T} \beta|)$, independent of Y_i
- ullet $eta| au\sim\prod_{j=1}^{p}\mathcal{N}\left(0,rac{ au_{j}-1}{\lambda_{g(j)}'(1-lpha)\lambda au_{j}}
 ight)$ and

$$m{ au} \sim \prod_{j=1}^{p} \mathcal{TG}\left(rac{1}{2}, rac{8(1-lpha)}{lpha^2 \lambda}, (1, \infty)
ight)$$

Latent variables

Extra latent variables (Polson et al., 2013; Li & Nin, 2010)

- $\omega | \beta \sim \prod_{i=1}^n \mathcal{PG}(1, |\mathbf{X}_i^\mathsf{T} \beta|)$, independent of Y_i
- $eta | au \sim \prod_{j=1}^{p} \mathcal{N}\left(0, rac{ au_{j}-1}{\lambda_{g(j)}'(1-lpha)\lambda au_{j}}
 ight)$ and $m{ au} \sim \prod_{j=1}^{p} \mathcal{TG}\left(rac{1}{2}, rac{8(1-lpha)}{lpha^{2}\lambda}, (1, \infty)
 ight)$

Computational reasons

- ω renders logistic part 'easy': it disappears in the calculations
- ullet au makes posterior calculations of eta easier

EM algorithm

Recap Casella (2001):

$$\boldsymbol{\lambda}^{\prime(k+1)} = \text{argmax}_{\boldsymbol{\lambda}^\prime} \mathbb{E}_{\boldsymbol{\omega},\boldsymbol{\beta},\boldsymbol{\tau}|\boldsymbol{Y}} \left[\log \mathcal{L}_{\boldsymbol{\lambda}^\prime}(\boldsymbol{Y},\boldsymbol{\omega},\boldsymbol{\beta},\boldsymbol{\tau};\boldsymbol{\lambda}^{\prime(k)}) \right].$$

EM algorithm

Recap Casella (2001):

$$\boldsymbol{\lambda}^{\prime(k+1)} = \text{argmax}_{\boldsymbol{\lambda}^\prime} \mathbb{E}_{\boldsymbol{\omega}, \boldsymbol{\beta}, \boldsymbol{\tau} | \boldsymbol{Y}} \left[\log \mathcal{L}_{\boldsymbol{\lambda}^\prime} (\boldsymbol{Y}, \boldsymbol{\omega}, \boldsymbol{\beta}, \boldsymbol{\tau}; \boldsymbol{\lambda}^{\prime(k)}) \right].$$

Exact expectation is difficult, options:

- Monte Carlo approximation: slow
- Laplace approximation: not accurate in high dimensional space
- Variational Bayes: fast and accurate (for the posterior mean)

Empirical-variational Bayes

Variational Bayes

Approximate posterior factorizes:

$$egin{aligned} p(\omega,eta, au|\mathbf{Y})&pprox q(\omega)q(eta)q(au)=:Q \ &\downarrow \ &\mathbb{E}_{p(\omega,eta, au|\mathbf{Y})}\left[\log\mathcal{L}_{\lambda'}(\cdot)
ight]&pprox \mathbb{E}_{Q}\left[\log\mathcal{L}_{\lambda'}(\cdot)
ight]=:f(\lambda') \end{aligned}$$

Empirical-variational Bayes

Variational Bayes

Approximate posterior factorizes:

$$egin{aligned} p(\omega,eta, au|\mathbf{Y})&pprox q(\omega)q(eta)q(au)=:Q \ &\downarrow \ &\mathbb{E}_{p(\omega,eta, au|\mathbf{Y})}\left[\log\mathcal{L}_{\lambda'}(\cdot)
ight]&pprox \mathbb{E}_{Q}\left[\log\mathcal{L}_{\lambda'}(\cdot)
ight]=:f(\lambda') \end{aligned}$$

EM algorithm

- E-step is an iterative VB algorithm itself to find Q.
- M-step, $\operatorname{argmax}_{\lambda'} f(\lambda')$, is now convex and easily solved.

Automatic feature selection

Feature selection

1. Plug estimated penalty parameters into frequentist elastic net:

$$\hat{\boldsymbol{\beta}} := \operatorname{argmax}_{\boldsymbol{\beta}} \log \mathcal{L}(\mathbf{Y}; \boldsymbol{\beta}) + \frac{\alpha \lambda}{2} \sum_{i=1}^{p} \sqrt{\lambda'_{g(j)}} |\beta_j| + \frac{(1-\alpha)\lambda}{2} \sum_{i=1}^{p} \lambda'_{g(j)} \beta_j^2$$

- **2.** Adjust λ until desired number of features selected
 - The L₁-norm penalty term ensures automatic feature selection
 - Estimated penalty multipliers may enhance predictive performance

Example: Cervical cancer

Goal: Detect CIN3 lesions, to be removed surgically

Example: Diagnostics for cervical cancer

Data:

- microRNA sequencing data on self-samples
- *n* = 56: 32 Normal, 24 CIN3
- p = 772 (after filtering lowly abundant ones).
- Sqrt-transformed
- Standardized

Co-data: Conservation status

- 1. Non-conserved, human only (552)
- 2. Conserved across mammals (72)
- 3. Broadly conserved, across most vertebrates (148)

Co-data results

Clinician:

"That's all nice, but does the predictive accuracy improve?"

Performance under variable selection

AUC assessed by LOOCV

Extensions, other co-data applications

Generalized ridge: covariance structures (in progress)

Random Forest: Allows flexible co-data.**

Networks: Bayesian SEM: VB + EB + prior network^{††}

Hybrid Bayes-Empirical Bayes: $\lambda_g = \lambda \lambda_g'$, $\lambda \sim$ hyper-prior, λ_g' fixed. Example in the Review.

**Te Beest, et al., BMC Bioinf, 2017

††Leday, Kpogbezan, et al., Ann Appl Stat, 2016; Biom J, 2017

Thanks

Magnus Münch (Leiden Univ / VUmc)

Thanks

Magnus Münch (Leiden Univ / VUmc)

Cervical cancer data: Saskia Wilting (Erasmus MC), Barbara Snoek (VUmc)

Co-data: Putri Novianti (VUmc)

Stats: Wessel van Wieringen, Carel Peeters (VUmc); Aad van der Vaart (Leiden Univ)

QUESTIONS?^{‡‡}

COURSE: Please install GRridge, gren and dependencies prior to the course.

See https://magnusmunch.github.io/co-data_learning/

^{‡‡}Slides available via: www.bigstatistics.nl