Αποδείξεις Μηδενικής Γνώσης

Διαφάνειες: Παναγιώτης Γροντάς - Αλέξανδρος Ζαχαράκης 04/12/2018

ΕΜΠ - Κρυπτογραφία (2018-2019)

Zero Knowledge 1/56

Περιεχόμενα

- Εισαγωγή
- Ορισμός Εφαρμογές στην Θ. Πολυπλοκότητας
- Σ-πρωτόκολλα
- · Witness Indistinguishable & Witness Hiding Πρωτόκολλα

Zero Knowledge 2 / 56

Εισαγωγή

Αποδείξεις

Αποδείξεις στα μαθηματικά

- Στόχος: η αλήθεια μας πρότασης
- με ενδιάμεσους συλλογισμούς
- οι οποίοι δίνουν όμως επιπλέον πληροφορίες

Πχ. απόδειξη με Αντί-Παράδειγμα Ο 15 δεν είναι πρώτος ...γιατί διαιρείται από το 3 και το 5

Ερώτημα: Μπορούμε να πειστούμε για την αλήθεια χωρίς διαρροή επιπλέον πληροφοριών - (κέρδος γνώσης);

Zero Knowledge Eισαγωγή 3

Εισαγωγή

- · Shaffi Goldwasser, Silvio Micali και Charles Rackoff, 1985
- Διαλογικά συστήματα αποδείξεων
 - Υπολογισμός ως διάλογος
 - Prover (\mathcal{P}): Θέλει να αποδείξει ότι μία συμβολοσειρά ανήκει σε μία γλώσσα (complexity style)
 - · Verifier (V): Θέλει να ελέγξει την απόδειξη
 - · Μια σωστή απόδειξη πείθει τον $\mathcal V$ με πολύ μεγάλη πιθανότητα
 - · Μια λάθος απόδειξη πείθει τον $\mathcal V$ με πολύ μικρή πιθανότητα
- Απόδειξη μηδενικής γνώσης
 - \cdot Ο $\mathcal V$ πείθεται χωρίς να μαθαίνει τίποτε άλλο κερδίζει γνώση

Μηδενική γνώση: Ιδιότητα που προστατεύει τον Ρ Πολλές θεωρητικές και πρακτικές εφαρμογές (Βραβείο Turing 2013)

Zero Knowledge Eισαγωγή 4.

Ένα εύκολο παράδειγμα

- Ο \mathcal{V} έχει αχρωματοψία
- Ο \mathcal{P} έχει δύο ταυτόσημες μπάλες, διαφορετικού χρώματος
- Μπορεί να πειστεί ο V για το ότι οι μπάλες έχουν διαφορετικό χρώμα (αφού δεν μπορεί να το μάθει);
- Ναι
 - \cdot Ο \mathcal{P} δίνει τις μπάλες στον \mathcal{V} (commit)
 - Ο \mathcal{V} κρύβει τις μπάλες πίσω από την πλάτη του (1 ανά χέρι)
 - Στην τύχη, αποφασίζει να τις αντιμεταθέσει (ή όχι)
 - \cdot Ο $\mathcal V$ παρουσιάζει τα χέρια με τις μπάλες στον $\mathcal P$ (challenge)
 - · Ο \mathcal{P} απαντάει αν άλλαξαν χέρια (response)
 - Ο \mathcal{V} αποδέχεται ή όχι
 - · Αν οι μπάλες δεν έχουν διαφορετικό χρώμα (κακόβουλος \mathcal{P}): Πιθανότητα απάτης 50%
 - Επανάληψη: Μείωση πιθανότητας απάτης (πρέπει να μαντέψει σωστά όλες τις φορές)

Zero Knowledge Eισαγωγή

Άλλα παραδείγματα

· Where's waldo 💆

- Η σπηλιά του Alladin How to explain zero-knowledge protocols to your children
- · Γνώση λύσης sudoku

Zero Knowledge Eισαγωγή 6

Εφαρμογές στην κρυπτογραφία

- · Σχήματα αυθεντικοποίησης αντί για passwords
 - Αντί για κωδικό: Απόδειξη ότι ο χρήστης τον γνωρίζει
 - Αποφεύγεται η μετάδοση και η επεξεργασία
 - · Secure Remote Password protocol (SRP RFC 2945)
- Απόδειξη ότι το κρυπτοκείμενο περιέχει μήνυμα συγκεκριμένου τύπου
- Ψηφιακές υπογραφές
- Άντι-malleability
- Γενικά: Απόδειξη ότι παίκτης ακολουθεί κάποιο πρωτόκολλο χωρίς αποκάλυψη ιδιωτικών δεδομένων του

Zero Knowledge Eισαγωγή 7 /

Μηδενικής Γνώσης

Συστήματα Αποδείξεων

Διαλογικά Συστήματα Αποδείξεων

Συμβολισμός

- \cdot Γλώσσα $\mathcal{L} \in \mathsf{NP}$
- · Πολυωνυμική Μηχανή Turing ${\cal M}$
- $\cdot \ X \in \mathcal{L} \Leftrightarrow \exists W \in \{0,1\}^{p(|X|)} : M(X,W) = 1$
- · Δύο μηχανές Turing \mathcal{P} , \mathcal{V}
- \cdot $\langle \mathcal{P}(x,w), \mathcal{V}(x) \rangle$ είναι η αλληλεπίδραση μεταξύ \mathcal{P} , \mathcal{V} με κοινή (δημόσια είσοδο) το x και ιδιωτική είσοδο του \mathcal{P} το w.
- · $out_{\mathcal{V}}\langle \mathcal{P}(\mathbf{x},\mathbf{w}),\mathcal{V}(\mathbf{x})\rangle$ η έξοδος του \mathcal{V} στο τέλος του πρωτοκόλλου

Διαλογικά Συστήματα Αποδείξεων: Παράδειγμα

- £ η γλώσσα του προβλήματος του διακριτού λογαρίθμου
- \cdot x ένα στιγμιότυπο του προβλήματος $\mathbf{x}=\langle p,g:\langle g \rangle=\mathbb{Z}_p^*,b\in_{\mathbb{R}}\mathbb{Z}_p^* \rangle$
- \cdot w ο 'μάρτυρας', δηλ. $a:b=g^a$

Διαλογικά Συστήματα Αποδείξεων: Πληρότητα

Μία απόδειξη μηδενικής γνώσης για την $\mathcal L$ είναι μία αλληλεπίδραση $\langle \mathcal P(x,w), \mathcal V(x) \rangle$ με τις εξής ιδιότητες:

Πληρότητα - Completeness Ο τίμιος \mathcal{P} , πείθει έναν τίμιο \mathcal{V} με βεβαιότητα

Av $\mathbf{x} \in \mathcal{L}$ kal $M(\mathbf{x}, \mathbf{w}) = 1$

$$Pr[out_{\mathcal{V}}\langle \mathcal{P}(x, w), \mathcal{V}(x)\rangle(x) = 1] = 1$$

Διαλογικά Συστήματα Αποδείξεων: Ορθότητα

Ορθότητα - Soundness

Κάθε κακόβουλος \mathcal{P} (σμβ. με \mathcal{P}^*), δεν μπορεί να πείσει τίμιο \mathcal{V} , παρά με αμελητέα πιθανότητα. Αν $x \notin \mathcal{L}$ τότε $\forall (\mathcal{P}^*, w^*)$:

$$\Pr[\mathrm{out}_{\mathcal{V}}\langle \mathcal{P}^*(\mathbf{x},\mathbf{w}^*),\mathcal{V}(\mathbf{x})\rangle(\mathbf{x})=1]=\mathrm{negl}(\lambda)$$

Παρατήρηση:

Proof of Knowledge: O \mathcal{P}^* $\delta \epsilon v$ $\epsilon i v \alpha i$ PPT. Argument of Knowledge: O \mathcal{P}^* $\epsilon i v \alpha i$ PPT.

Διαλογικά Συστήματα Αποδείξεων: Μηδενική Γνώση

Διαίσθηση

Ο $\mathcal V$ δεν μαθαίνει τίποτε εκτός από το γεγονός ότι ο ισχυρισμός του $\mathcal P$ είναι αληθής.

Ό,τι μπορεί να υπολογίσει ο $\mathcal V$ μετά την συζήτηση με τον $\mathcal P$, μπορεί να το υπολογίσει και μόνος του

ή ισοδύναμα με μια συζήτηση με κάποια TM που δεν διαθέτει τον witness (προσομοίωση συζήτησης με simulator $\mathcal S$)

(δηλαδή ουσιαστικά χωρίς τη συζήτηση με τον πραγματικό $\mathcal P$) Άρα: η συζήτηση προσθέτει μηδενική γνώση

Διαλογικά Συστήματα Αποδείξεων: Μηδενική Γνώση

Ορισμός για (Τέλεια) Μηδενική Γνώση: Για κάθε PPT $\mathcal V^*$ υπάρχει μία PPT $\mathcal S$: Av $x\in\mathcal L$ και M(x,w)=1 οι τυχαίες μεταβλητές

$$out_{\mathcal{V}^*}\langle \mathcal{P}(x,w), \mathcal{V}^*(x)\rangle(x)$$
 και $out_{\mathcal{V}^*}\langle \mathcal{S}(x), \mathcal{V}^*(x)\rangle(x)$

ακολουθούν ακριβώς την ίδια κατανομή.

κακόβουλος verifier προσπαθεί να μάθει το w είτε παθητικά είτε χωρίς να ακολουθεί το πρωτόκολλο

Απόδειξη ιδιότητας ZK: O simulator

Δεν διαθέτει τον witness

- Προσομοίωση απόδειξης στη θέση του \mathcal{P}
- · Αλληλεπιδρά με τον ${\mathcal V}$
- · Οι αλληλεπιδράσεις $\langle \mathcal{S}, \mathcal{V} \rangle$ και $\langle \mathcal{P}, \mathcal{V} \rangle$ είναι μη διακρίσιμες
- · Επιτρέπουμε και rewinds:
 - · Αν κάποια στιγμή ο $\mathcal V$ 'ρωτήσει' κάτι που δεν μπορεί να απαντήσει ο $\mathcal S$ τότε stop rewind
- · Μηδενική γνώση αν ο $\mathcal V$ κάποια στιγμή αποδεχτεί (έστω και με rewinds)
- · Γιατί: Δεν μπορεί να ξεχωρίσει τον \mathcal{P} (που διαθέτει witness) από τον \mathcal{S} (που δεν διαθέτει)
- · Αρκεί ο *S* να παραμείνει PPT
- Συγκεκριμένα: Ένας $\mathcal V$ που εξάγει πληροφορία από τον $\mathcal P$ θα εξάγει την ίδια πληροφορία και από τον $\mathcal S$ (όπου δεν υπάρχει κάτι να εξαχθεί)

Σχέση Ορθότητας - Μηδενικής Γνώσης

Ο $\mathcal S$ μοιάζει με κακό $\mathcal P^*$ (και οι δύο δεν διαθέτουν τον witness).

0 P *

- Δεν γνωρίζει w
- Ορθότητα: Δεν πρέπει να πείσει τον V
- Μπορεί να μην είναι ΡΡΤ

08

- Δεν γνωρίζει w
- ZK: Πρέπει να πείσει τον \mathcal{V}^* με rewinds
- Πρέπει να είναι ΡΡΤ

Για τον \mathcal{V}

- Στην ορθότητα πρέπει να είναι τίμιος
- Στην μηδενική γνώση όχι

Σύνθεση πρωτοκόλλων μηδενικής γνώσης

Σειριακή

Είναι δυνατή η εκτέλεση πολλών πρωτοκόλλων ΖΚ το ένα μετά το άλλο Το αποτέλεσμα ΔΙΑΘΕΤΕΙ ΖΚ

Παράλληλη

Γενικά δεν είναι δυνατή.

Η παράλληλη εκτέλεση δύο πρωτοκόλλων ΖΚ δεν παράγει πρωτόκολλο ΖΚ. Αιτία - Ιδέα

- \cdot $\mathcal{P}_{1},\mathcal{P}_{2}$ (unbounded) zero knowledge provers
- ν *: ΡΡΤ δεν μπορεί να διακρίνει τις απαντήσεις
- Σε παράλληλη εκτέλεση: Με βάση τις απαντήσεις του \mathcal{P}_1 κατασκευάζει ερωτήσεις για τον \mathcal{P}_2 από τις οποίες εξάγει γνώση για το statement του \mathcal{P}_1

Παραλλαγές Μηδενικής Γνώσης i

· Black-Box Zero Knowledge

```
\exists PPT \mathcal{S}, \forall \mathcal{V}^* out _{\mathcal{V}^*}\langle \mathcal{P}(x,w),\mathcal{V}^*(x)\rangle(x) και out _{\mathcal{V}^*}\langle \mathcal{S}^{\mathcal{V}^*}(x),\mathcal{V}^*(x)\rangle(x) να ακολουθούν ακριβώς την ίδια κατανομή. Παρατηρήσεις: Ο \mathcal{S}
```

- \cdot ισχύει για όλους τους ${\cal V}$
- \cdot έχει oracle access στον $\mathcal V$
- · δηλ. ελέγχει το input, rewind αλλά όχι το output

Παραλλαγές Μηδενικής Γνώσης ii

 Almost Perfect (Statistical) Zero Knowledge Οι κατανομές των συζητήσεων με P,S

$$\Delta(\textit{X},\textit{Y}) = \frac{1}{2} \sum_{\textit{u} \in \textit{V}} |\textit{Prob}[\textit{X} = \textit{u}] - \textit{Prov}[\textit{Y} = \textit{u}]| = \textit{negl}(\lambda), \Lambda = |\textit{x}|$$

• Computational Zero Knowledge Οι κατανομές των συζητήσεων δεν μπορούν να διαχωριστούν από κάποιον αντίπαλο με πολυωνυμική υπολογιστική ισχύ.

Παραλλαγές Μηδενικής Γνώσης iii

Honest Verifier Zero Knowledge

- Ο ν είναι τίμιος δηλ:
- ακολουθεί το πρωτόκολλο
- · τα μηνύματα του προέρχονται από την ομοιόμορφη κατανομή δεν εξαρτώνται από τα μηνύματα του $\mathcal P$
- μοντελοποιεί και παθητικό αντίπαλο

Πρακτικά: ο \mathcal{S} παράγει συζητήσεις οι οποίες έχουν ίδια κατανομή με αυθεντικές $\langle \mathcal{P}(x,w), \mathcal{V}(x) \rangle$

· Witness hiding - Witness Indistinguishable proofs

- · WH δεν μπορεί να γίνει γνωστός ολόκληρος ο μάρτυρας
- WI δεν μπορεί να γίνει διάκριση ποιου μάρτυρα από κάποιες επιλογές

Ισχύει παράλληλη σύνθεση και έχουν καλύτερη απόδοση

Διαφορά ΖΚ - ΗVZΚ

... είναι στον \mathcal{V}

- Σε HV7K:
 - Τα μηνύματα του \mathcal{V} είναι τυχαία
 - · Μπορούν να προετοιμαστούν εκ των προτέρων από τον ${\mathcal S}$
 - · Άρα ο \mathcal{V} δεν χρειάζεται (non interactive)
- Σε ZK:
 - · Τα μηνύματα του $\mathcal V$ εξαρτώνται από τα μηνύματα του $\mathcal P$

Παραλλαγές Ορθότητας

Ειδική ορθότητα (special soundness)

Υπάρχει ένας PPT αλγόριθμος (extractor), $\mathcal E$ ο οποίος αν δεχθεί πολλά transcripts του πρωτοκόλλου με το ίδιο αρχικό μήνυμα από τον $\mathcal P$ αλλά διαφορετικές προκλήσεις από τον $\mathcal V$ μπορεί να εξάγει τον witness.

Θεώρημα

Ειδική ορθότητα \Rightarrow ορθότητα με πιθανότητα false-positive $\frac{1}{|C|}$ όπου: C: το σύνολο προέλευσης των μηνυμάτων του $\mathcal V$

Ειδική ορθότητα \Rightarrow απόδειξη γνώσης

Graph Isomorphism

Ορισμός

Γραφήμάτα $G_0=(V_0,E_0)$ και $G_1=(V_1,E_1)$ με $|V_0|=|V_1|$ Ισχύει ο ισομορφισμός $G_0\cong G_1$ ανν υπάρχει $\pi:V_0\to V_1$ ώστε $(v_i,v_j)\in E_0\Leftrightarrow (\pi(v_i),\pi(v_j))\in E_1$

GIZKP

Δημόσια είσοδος: Τα γραφήματα G_0, G_1 Witness (P): π

- 1. \mathcal{P} : εφαρμόζει τυχαία μετάθεση π_1 στο V_1
- 2. Προκύπτει γράφημα $F(G_1\cong F)$ το οποίο δημοσιοποιείται στον $\mathcal V$ (δέσμευση)
- 3. \mathcal{V} : Επιλέγει ένα τυχαίο bit b και το στέλνει στον P
- 4. Av b=1 ο Ρδημοσιοποιεί $\phi_b=\pi_1: V_1 o V_F$
- 5. Av b=0 ο P δημοσιοποιεί $\phi_b=\pi_1.\pi:V_0\to V_F$ ώστε $G_0\cong F$
- 6. Ο \mathcal{V} δέχεται ανν $\phi_b(G_b) = F$
- 7. Επανάληψη k φορές

GI ZKP: Ιδιότητες

Πληρότητα

Αν \mathcal{P} , \mathcal{V} έντιμοι και ακολουθούν το πρωτόκολλο τότε σίγουρη αποδοχή

•
$$b = 1 : \phi_b(G_b) = \pi_1(G_1) = F$$

•
$$b = 0 : \phi_b(G_b) = \pi_1.\pi(G_0) = \pi_1(G_1) = F$$

Ορθότητα

Αν \mathcal{P} δεν έχει π ώστε $G_0 \cong G_1$ τότε σε κάθε επανάληψη:

· ο $\mathcal V$ δέχεται με πιθανότητα $\frac{1}{2}$ γιατί ο $\mathcal P^*$ δεν μπορεί να γνωρίζει και ϕ_0 και ϕ_1

GI ZKP: Μηδενική Γνώση

Κατασκευή simulator ${\cal S}$

Commitment: Επιλέγει b' και τυχαία μετάθεση π'

Υπολογίζει $F = \pi'(G_{b'})$

Challenge: Av b = b' τότε αποστολή π' αλλιώς rewind

Πιθανότητα αποδοχής σε k επαναλήψεις 2^{-k}

Αναμενόμενος χρόνος εκτέλεσης: $T_V \sum_{i=1}^{\infty} 2^{-k} = T_V$ που είναι πολυωνυμικός

3-colorability

NP-Complete

Ορισμός Γράφημα G=(V,E) Ο \mathcal{P} γνωρίζει ένα χρωματισμό $c:V \to \{1,2,3\}$ Έγκυρος χρωματισμός: Γειτονικές κορυφές έχουν διαφορετικό χρώμα $(v_i,v_j) \in E \Rightarrow c(v_i) \neq c(v_j)$

ZKP for 3-colorability

- 1. \mathcal{P} : επιλέγει μια τυχαία μετάθεση π του $\{1,2,3\}$.
 - Προκύπτει εναλλακτικός έγκυρος 3 χρωματισμός π.c του G.
 - Χρήση σχήματος δέσμευσης για τον εναλλακτικό χρωματισμό
 - Υπολογίζει $commit((\pi.c)(v_i), r_i) \forall v_i \in V$
 - · Αποστολή δεσμεύσεων στον ${\mathcal V}$
- 2. \mathcal{V} : επιλέγει μία τυχαία ακμή $(v_i, v_j) \in E$ και την στέλνει στον \mathcal{P} .
- 3. \mathcal{P} : ανοίγει τις δεσμεύσεις αποκαλύπτει τις τιμές $\pi.c(v_i), \pi.c(v_j)$ και r_i, r_j
- 4. \mathcal{V} : ελέγχει αν $\pi.c(v_i) \neq \pi.c(v_j)$ και οι δεσμεύσεις είναι έγκυρες
- 5. Επανάληψη

ZKP for 3-colorability: Ιδιότητες (Πληρότητα)

• Πληρότητα

Αν ο c είναι έγκυρος χρωματισμός τότε και ο $\pi.c$ είναι έγκυρος χρωματισμός

Το άνοιγμα των δεσμεύσεων θα γίνει αποδεκτό από ${\cal V}$

ZKP for 3-colorability: Ιδιότητες (Ορθότητα)

· Ορθότητα

Έστω \mathcal{P}^* με μη έγκυρο χρωματισμό για κάποιο γράφημα: Δηλ. τουλάχιστον 2 γειτονικές κορυφές με το ίδιο χρώμα: Πιθανότητα ανίχνευσης εξαπάτησης από $\mathcal{V}=$ Πιθανότητα επιλογής 'κακής' ακμής = $\frac{1}{|\mathcal{E}|}$ Πιθανότητα επιτυχούς εξαπάτησης από $\mathcal{P}^*=1-\frac{1}{|\mathcal{E}|}$ Σε $|\mathcal{E}|^2$ επαναλήψεις και εφόσον

$$(1+\tfrac{t}{n})^n \le e^t$$

Πιθανότητα επιτυχίας του \mathcal{P}^* :

 $(1-\frac{1}{|E|})^{|E|^2} \le e^{-|E|}$ αμελητέα ως προς το μέγεθος του γραφήματος

ZKP for 3-colorability: Ιδιότητες (Μηδενική Γνώση)

• Μηδενική Γνώση

- · Χρήση \mathcal{S} χωρίς γνώση έγκυρου χρωματισμού
- Ο \mathcal{S} επιλέγει τυχαίο χρωματισμό
- Πιθανότητα επιλογής από $\mathcal V$ ακμής με διαφορετικά χρώματα κορυφών $\frac{2}{3}$
- · Πιθανότητα επιλογής από $\mathcal V$ ακμής με ίδια χρώματα κορυφών $\frac{1}{3}$
- · Αν ο $\mathcal V$ επιλέγει 'κακή' ακμή, rewind (και εκτέλεση από την αρχή)
- Για k επιτυχείς επιλογές χρειάζονται κατά μέσο όρο 2k εκτελέσεις

ZKP for 3-colorability: Ιδιότητες (Μηδενική Γνώση)

Συμπέρασμα: Ο $\mathcal S$ δεν απαιτεί πολύ περισσότερο χρόνο από έναν $\mathcal P$ με γνώση του c

Όμως οι συζητήσεις δεν είναι πανομοιότυπες! (Γιατί;)

Τα commitments του $\mathcal P$ είναι έγκυροι χρωματισμοί, ενώ του $\mathcal S$ όχι!

Συνέπεια [GMW91]

Av υπάρχουν computationally hiding bit commitment schemes τότε όλο το NP έχει αποδείξεις μηδενικής γνώσης (black box computational)

Σ-πρωτόκολλα

Σ-πρωτόκολλα

Χαλάρωση ΖΚ με τίμιο verifier

Ορισμός

Ένα πρώτόκολλο 3 γύρων με honest verifier και special soundness

- 1. Commit Ο \mathcal{P} δεσμεύεται σε μία τιμή.
- Challenge Ο V διαλέγει μία τυχαία πρόκληση. Εφόσον είναι τίμιος θεωρούμε ότι η πιθανότητα επιλογής πρόκλησης είναι ομοιόμορφα κατανεμημένη.
- 3. **Response** Ο \mathcal{P} απαντάει χρησιμοποιώντας τη δέσμευση, το μυστικό και την τυχαία τιμή.

Special Soundness

Δύο εκτελέσεις του πρωτοκόλλου με το ίδιο commitment, οδηγούν στην αποκάλυψη του witness

Zero Knowledge Σ-πρωτόκολλα 32)

Γνώση DLOG:Το πρωτόκολλο του Schnorr i

Γνωστά Στοιχεία

- · **Δημόσια:** Γεννήτορας g μιας (υπό)ομάδας τάξης q του \mathbb{Z}_p^* με δύσκολο DLP και στοιχείο $h \in \mathbb{Z}_n^*$
- **Ιδιωτικά:** Ο \mathcal{P} έχει ένα witness $x \in \mathbb{Z}_q^*$ ώστε $h = g^x \pmod{p}$

Στόχος

Απόδείξη κατοχής του χ χωρίς να αποκαλυφθεί.

Συμβολισμός Camenisch-Stadler $PoK\{(x): g^x = h \pmod{p}, h, g \in_{\mathbb{R}} \mathbb{Z}_p^*\}$

Zero Knowledge Σ-πρωτόκολλα

Γνώση DLOG:Το πρωτόκολλο του Schnorr ii

- · Commit ($\mathcal{P} \to \mathcal{V}$):
 - Τυχαία επιλογή $t \in_R \mathbb{Z}_q^*$
 - · Υπολογισμός $y = g^t \mod p$.
 - \cdot Αποστολή y στον \mathcal{V} .
- Challenge ($\mathcal{V} \to \mathcal{P}$): Τυχαία επιλογή και αποστολή $c \in_{\mathbb{R}} \mathbb{Z}_q^*$
- Response ($\mathcal{P} \to \mathcal{V}$): Ο \mathcal{P} υπολογίζει το $s = t + cx \mod q$ και το στέλνει στον \mathcal{V}
- \cdot Ο \mathcal{V} αποδέχεται αν $q^s = yh^c \pmod{p}$

Zero Knowledge Σ-πρωτόκολλα 34

Πρωτόκολλο Schnorr: Πληρότητα

· Πληρότητα

$$g^s = g^{t+cx} = g^t g^{cx} = yh^c \pmod{p}$$

Zero Knowledge Σ-πρωτόκολλα 35 /

Πρωτόκολλο Schnorr: Ορθότητα

- Ορθότητα Πιθανότητα ο \mathcal{P}^* να ξεγελάσει τίμιο verifier: $\frac{1}{q}$ αμελητέα επανάληψη για μεγαλύτερη σιγουριά
- Special soundness
 Έστω 2 επιτυχείς εκτελέσεις του πρωτοκόλλου (y, c, s) και (y, c', s')

$$gs = yhc και gs' = yhc' \Rightarrow gsh-c = gs'h-c' \Rightarrow$$
$$gs-xc = gs'-xc' \Rightarrow s - xc = s' - xc' \Rightarrow$$
$$x = \frac{c' - c}{s - s}$$

Αφού ο Ρμπορεί να απαντήσει 2 τέτοιες ερωτήσεις ξέρει το DLOG (ορθότητα και γνώση)

Zero Knowledge Σ-πρωτόκολλα 36 /

Πρωτόκολλο Schnorr: HVZK

- Διαθέτει Honest Verifier Zero Knowledge Έστω $\mathcal S$ που δεν γνωρίζει το x και τίμιος $\mathcal V$
 - · Αρχικά ο $\mathcal S$ δεσμεύεται κανονικά στο $y=g^t, t\in_{\mathbb R}\mathbb Z_q^*$
 - \cdot Ο \mathcal{V} επιλέγει $c ∈_R \mathbb{Z}_q^*$
 - Αν ο S μπορεί να απαντήσει (αμελητέα πιθανότητα) το πρωτόκολλο συνεχίζει κανονικά
 - Αλλιώς γίνεται rewind ο \mathcal{V} (ίδιο random tape)
 - \cdot Στη δεύτερη εκτέλεση ο $\mathcal S$ δεσμεύεται στο $y=g^th^{-c}, t\in_{\mathbb R}\mathbb Z_q^*$
 - \cdot Ο \mathcal{V} επιλέγει ίδιο $c ∈_R \mathbb{Z}_q^*$ (ίδιο random tape)
 - \cdot Ο S στέλνει s = t
 - \cdot Ο \mathcal{V} θα δεχτεί αφού $yh^c = g^t h^{-c} h^c = g^t = g^s$

Δηλαδή:

Η συζήτηση $(t \in_R \mathbb{Z}_q; g^t h^{-c}, c \in_R \mathbb{Z}_q, t)$ και η $(t, c \in_R \mathbb{Z}_q; g^t, c, t + xc)$ ακολουθούν την ίδια κατανομή

Zero Knowledge Σ-πρωτόκολλα 37

Πρωτόκολλο Schnorr: ZK

Μηδενική Γνώση: Δε διαθέτει

- · Ένας cheating verifier δε διαλέγει τυχαία
- \cdot Βασίζει κάθε challenge στο προηγούμενο commitment του ${\mathcal S}$
- · Στη simulated εκτέλεση δεν θα επιλέξει το ίδιο challenge
- · Αμελητέα πιθανότητα να μπορεί να απαντηθεί από τον ${\mathcal S}$

Ενίσχυση για μηδενική γνώση:

- · Προσθήκη δέσμευσης από τον $\mathcal V$ στην τυχαιότητα $\mathit{πριν}$ το πρώτο μήνυμα του $\mathcal P$ ή
- Challenge space {0,1} (γιατί;)
- \cdot Ο $\mathcal V$ έχει δύο επιλογές μόνο για επιλογή πρόκλησης.
- Αν αλλάξει, ο S μπορεί να προετοιμαστεί και για τις δύο περιπτώσεις.

Zero Knowledge Σ-πρωτόκολλα 38

Ισότητα DLOG:Το πρωτόκολλο Chaum Pedersen i

Γνωστά Στοιχεία

- Δημόσια: Γεννήτορες g_1, g_2 μιας (υπό)ομάδας τάξης q του \mathbb{Z}_p^* με δύσκολο DLP και 2 στοιχεία $h_1, h_2 \in \mathbb{Z}_p^*$
- Ιδιωτικά: Ο \mathcal{P} έχει ένα witness $x \in \mathbb{Z}_q$ ώστε $h_1 = g_1^x \bmod p$, $h_2 = g_2^x \bmod p$

Στόχος

Απόδειξη γνώσης του χ χωρίς να αποκαλυφθεί

Απόδειξη ισότητας διακριτών λογαρίθμων

 $PoK\{(x): h_1 = g_1^x \pmod{p} \land h_2 = g_2^x \pmod{p}, h_1, g_1, h_2, g_2 \in_{\mathbb{R}} \mathbb{Z}_p^*\}$

Zero Knowledge Σ-πρωτόκολλα 39 /

Ισότητα DLOG:Το πρωτόκολλο Chaum Pedersen ii

· Commit:

- \cdot Ο \mathcal{P} διαλέγει $t ∈_R \mathbb{Z}_q$
- · Υπολογίζει $y_1 = g_1^t \mod p$ $y_2 = g_2^t \mod p$
- Αποστέλλει y_1, y_2 στον $\mathcal V$
- · Challenge:

Ο $\mathcal V$ διαλέγει και αποστέλλει $c\in_{\mathbb R}\mathbb Z_a$

· Response:

Ο \mathcal{P} υπολογίζει $s = t + cx \mod q$ και το στέλνει στον \mathcal{V}

Ο \mathcal{V} δέχεται αν $q_1^s = y_1 h_1^c \pmod{p}$ και $q_2^s = y_2 h_2^c \pmod{p}$

Zero Knowledge Σ-πρωτόκολλα 40 /

Ιδιότητες Chaum-Pedersen i

• Πληρότητα

Aν $h_1 = g_1^{\mathsf{x}}$ και $h_2 = g_2^{\mathsf{x}}$ τότε:

$$g_1^s = g_1^{t+xc} = y_1 h_1^c$$

 $g_2^s = g_2^{t+xc} = y_2 h_2^c$

· Special soundness

Έστω δύο αποδεκτά transcripts με το ίδιο commitment $((y_1, y_2), c, s)$ και $((y_1, y_2), c', s')$

$$\begin{split} g_1^{\mathrm{s}} &= \mathsf{y}_1 h_1^{\mathrm{c}} \; \mathrm{kal} \; g_1^{\mathrm{s}'} = \mathsf{y}_1 h_1^{\mathrm{c}'} \Rightarrow g_1^{\mathrm{s}} h_1^{-\mathrm{c}} = g_1^{\mathrm{s}'} h_1^{-\mathrm{c}'} \\ g_2^{\mathrm{s}} &= \mathsf{y}_2 h_2^{\mathrm{c}} \; \mathrm{kal} \; g_2^{\mathrm{s}'} = \mathsf{y}_2 h_2^{\mathrm{c}'} \Rightarrow g_2^{\mathrm{s}} h_2^{-\mathrm{c}} = g_2^{\mathrm{s}'} h_2^{-\mathrm{c}'} \end{split}$$

Όπως σε Schnorr $x = \frac{s-s'}{c'-c}$

Zero Knowledge Σ-πρωτόκολλα 41/

Ιδιότητες Chaum-Pedersen ii

· Honest verifier zero knowledge

Πραγματικό transcript με $c \in_R \mathbb{Z}_q$:

$$(t \in_R \mathbb{Z}_q; (g_1^t, g_2^t), c \in_R \mathbb{Z}_q, t + xc \mod q)$$

Simulated transcript $\mu \varepsilon \in_R \mathbb{Z}_q$:

$$(t, c \in_R \mathbb{Z}_q; (g_1^t h_1^{-c}, g_2^t h_2^{-c}), c, t)$$

Ίδιες κατανομές αν $x = log_{g_1}h_1 = log_{g_2}h_2$

Zero Knowledge Σ-πρωτόκολλα 42 /

Εφαρμογές

Έλεγχος για τριάδες DH

Η τριάδα (q^a, q^b, q^c) είναι τριάδα DH (δηλ. $q^c = q^{ab}$)

Εκτελούμε $\mathsf{CP}(g_1 = g, g_2 = g^b, h_1 = g^a, h_2 = g^{ab} = g^{ba})$ με witness a

Εγκυρότητα κρυπτογράφησης El-Gamal

Δίνεται ένα ζεύγος στοιχείων του \mathbb{Z}_p^* τα (c_1, c_2) .

Να δειχθεί ότι αποτελούν έγκυρη κρυπτογράφηση ενός μηνύματος m.

Αν είναι έγκυρη τότε πρέπει

$$(c_1,c_2)=(g^r,m\cdot h^r)$$

Ισοδύναμα:

$$log_g c_1 = log_h(\frac{c_2}{m})$$

δηλ. ότι ο \mathcal{P} είναι γνώστης της τυχαιότητας

Zero Knowledge Σ-πρωτόκολλα

Σύνθεση Σ πρωτοκόλλων i

Θέωρημα

Τα Σ πρωτόκολλα διατηρούν τις ιδιότητες τους αν συνδυαστούν με τις παρακάτω σχέσεις:

- · AND
 - \cdot Ο $\mathcal P$ γνωρίζει 2 διαφορετικά w για διαφορετικές σχέσεις.
 - · Απόδειξη: 2 παράλληλες εκτελέσεις του Σ πρωτόκολλου με ίδιο challenge

Zero Knowledge Σ-πρωτόκολλα 44/

Σύνθεση Σ πρωτοκόλλων ii

Zero Knowledge Σ-πρωτόκολλα 45/

Σύνθεση Σ πρωτοκόλλων iii

· Batch-AND

Μαζική επαλήθευση πολλαπλών σχέσεων με ένα πρωτόκολλο. Για παράδειγμα:

$$(g^a,g^b,g^{ab})$$
 KAI (g^c,g^d,g^{cd}) είναι τριάδες DH Μπορώ να εκτελέσω το Chaum Pedersen για (g^{ac},g^{bd},g^{abcd})

- · EQ
 - Ο Ρ γνωρίζει τον ίδιο w για διαφορετικές σχέσεις.
 - · Chaum Pedersen
- OR
 - \cdot Ο $\mathcal P$ γνωρίζει κάποιο $\mathbf w$ για διαφορετικές σχέσεις.
 - Εφαρμογή: Απόδειξη ότι ο w ανήκει σε ένα σύνολο

Zero Knowledge Σ-πρωτόκολλα 46 /

Γενικευμένη κατασκευή αποδείξεων OR

- · Έστω $W = \{w_1, ..., w_n\}$ οι εναλλακτικοί μάρτυρες
- \cdot Για αυτόν που κατέχει ο $\mathcal P$ ακολουθεί το πρωτόκολλο
- Για τους υπόλοιπους ο P καλεί τον S ο οποίος υπολογίζει τις δεσμεύσεις που θα έκαναν τον V να δεχθεί σε μία προσομοιωμένη συζήτηση
 - · Πρόβλημα: Ο S δεν ξέρει το challenge
 - Λύση: Το επιλέγει τυχαία
- · Όλες οι δεσμεύσεις αποστέλλονται στον ${\mathcal V}$
- Ο τελευταίος απαντάει με μία τυχαία πρόκληση
- Ο \mathcal{P} ερμηνεύει την πρόκληση ως ένα μυστικό που πρέπει να χωριστεί
- · Κάθε μερίδιο θα χρησιμοποιείται στις απαντήσεις του $\mathcal P$ στο στάδιο Response
- Ο V αποδέχεται αν όλες τις απαντήσεις που έλαβε στο τελευταίο βήμα είναι έγκυρες.

Zero Knowledge Σ-πρωτόκολλα 47 /

OR-Schnorr

Υποθέτουμε ότι ο \mathcal{P} ξέρει το x_1

Zero Knowledge Σ-πρωτόκολλα

Μη διαλογικές αποδείξεις

Ερώτηση

Μπορούμε να καταργήσουμε τον \mathcal{V} ;

Ο \mathcal{P} παράγει την απόδειξη μόνος του

Η απόδειξη είναι επαληθεύσιμη από οποιονδήποτε

Common Reference String

Μία ομοιόμορφα επιλεγμένη ακολουθία bits (από κάποια έμπιστη οντότητα) ως κοινή είσοδος σε \mathcal{P} , \mathcal{V}

Χρησιμεύει για την επιλογή των μηνυμάτων που ανταλλάσσονται

Μετασχηματισμός Fiat Shamir

Αντικατάσταση της τυχαίας πρόκλησης με το αποτέλεσμα μιας ψευδοτυχαίας συνάρτησης με είσοδο τη δέσμευση (τουλάχιστον)

Συνήθως συνάρτηση σύνοψης - Η (τυχαίο μαντείο)

Zero Knowledge Σ-πρωτόκολλα 49/

Non-interactive Schnorr

Γνωστά Στοιχεία

- Δημόσια: Γεννήτορας g μιας (υπό)ομάδας τάξης q του \mathbb{Z}_p^* με δύσκολο DLP και στοιχείο $h \in \mathbb{Z}_p^*$
- Ιδιωτικά: Ο \mathcal{P} έχει ένα witness $x \in \mathbb{Z}_q^*$ ώστε $h = g^x \bmod p$

O **P**:

- Τυχαία επιλογή $t \in_R \mathbb{Z}_q$,
- · Υπολογισμός $y = g^t \mod p$
- · Υπολογισμός $c=\mathcal{H}(y)$ όπου \mathcal{H} είναι μια συνάρτηση σύνοψης που δίνει τιμές στο \mathbb{Z}_q
- · Υπολογισμός $s = t + cx \mod q$
- · Δημοσιοποίηση του (h, c, s)
- Επαλήθευση (από οποιονδήποτε) $c = \mathcal{H}(q^{s}h^{-c})$

Zero Knowledge Σ-πρωτόκολλα 50 /

Witness Indistinguishable -

Witness Hiding Protocols

Witness Indistinguishability & Witness Hiding

Χαλάρωση ΖΚ για βελτίωση απόδοσης και composability

Υποθέτουμε cheating verifier \mathcal{V}^*

- · Ορίζουμε ως $W(x) = \{w : R(x, w) = 1\}$
- Στις αποδείξεις γνώσης ο \mathcal{P} θέλει να πείσει τον \mathcal{V} ότι ξέρει έναν μάρτυρα $w \in W(x)$.
- ZK: Ο \mathcal{V}^* δεν μαθαίνει οτιδήποτε για το w.
- WH: Ο V^* δεν μαθαίνει ολόκληρο $w \in W(x)$.
- WI: Ο \mathcal{V}^* δεν μαθαίνει τίποτα για ποιο $w \in W(x)$ ξέρει ο \mathcal{P} .

Σχέση

- \cdot ZK \rightarrow WH και ZK \rightarrow WI (όχι όμως αντίστροφα)
- $HVZK \rightarrow WI$
- Υπο συνθήκες $WI \rightarrow WH$
- WH → WI

Witness Indistinguishability

- Πολλά μυστικά κλειδιά αντιστοιχούν στο ίδιο δημόσιο κλειδί.
- Αποδείξεις με διαφορετικά κλειδιά είναι μη διακρίσιμες.
- Γνώση δύο κλειδιών οδηγούν σε εξαγωγή ενός μυστικού.

Ορισμός

Ένα διαλογικό σύστημα αποδείξεων είναι WI αν $\forall \mathcal{V}^*$ ισχύει

$$\{\langle \mathcal{P}(w), \mathcal{V}^*(z)\rangle(x)\}_{x\in L, w\in W(x)} \equiv \{\langle \mathcal{P}(w'), \mathcal{V}^*(z)\rangle(x)\}_{x\in L, w'\in W(x)}$$

Αναπαράσταση στοιχείου σε ομάδα

Ορισμός

Έστω $\mathbb G$ ομάδα τάξης q και $g_1,g_2\in\mathbb G$. Αναπαράσταση του $h\in\mathbb G$ ως προς g_1,g_2 ονομάζεται κάθε ζεύγος $x_1,x_2\in\mathbb Z_q$ τέτοιο ώστε $h=g_1^{x_1}g_2^{x_2}$.

Αν ξέρω δύο αναπαραστάσεις του h ως προς g_1, g_2 τότε ξέρω διακριτό λογάριθμο του g_2 ως προς g_1 (βλ. Pedersen commitments)

Πρωτόκολλο Okamoto Schnorr: WI Proof of Knowledge of Representation

$$PoK\{(x_1, x_2) : h = g_1^{x_1} g_2^{x_2}, \mathbb{G}, q, g_1, g_2, h \in \mathbb{G}, \}$$

- · \mathcal{P} : $r_1, r_2 \leftarrow_R \mathbb{Z}_q$; $a \leftarrow g_1^{r_1} g_2^{r_2}$; Στέλνει a.
- · \mathcal{V} : $c \leftarrow_R \mathbb{Z}_q$; Στέλνει c.
- · \mathcal{P} : $s_1 = r_1 + x_1c$; $s_2 = r_2 + x_2c$; Στέλνει s_1, s_2 .
- · \mathcal{V} : Αποδέχεται αν $g_1^{s_1}g_2^{s_2}=ah^c$.

Πρωτόκολλο Okamoto Schnorr:Ιδιότητες

Ιδιότητες Πληρότητα και Ειδική Ορθότητα προφανείς.

WI: Έστω $h=g_1^{\mathsf{x}_1}g_2^{\mathsf{x}_2}=g_1^{\mathsf{x}_1'}g_2^{\mathsf{x}_2'}$ Τότε

$$g_1^{x_1-x_1'}g_2^{x_2-x_2'}=hh^{-1}=1$$

Για κάθε transcript (a, c, s_1, s_2) με witness x_1, x_2 και τυχαιότητα r_1, r_2 στο πρώτο βήμα υπάρχουν r_1', r_2' που δίνουν ακριβώς την ίδια συζήτηση για x_1', x_2' . Πράγματι:

$$\begin{aligned} r_1' &= r_1 + c(x_1 - x_1') \\ r_2' &= r_2 + c(x_2 - x_2') \\ a' &= g_1^{r_1} g_2^{r_2'} = g_1^{r_1 + c(x_1 - x_1')} g_2^{r_2 + c(x_2 - x_2')} = \\ &= g_1^{r_1} g_2^{r_2} g_1^{c(x_1 - x_1')} g_2^{c(x_2 - x_2')} = \\ &= a \end{aligned}$$

Πηγές

Βιβλιογραφία ί

- Παγουρτζής, Α., Ζάχος, Ε., ΓΠ, 2015. Υπολογιστική κρυπτογραφία. [ηλεκτρ. βιβλ.] Αθήνα:Σύνδεσμος Ελληνικών Ακαδημαϊκών Βιβλιοθηκών
- 2. Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography. Chapman and Hall/CRC, 2007
- 3. Oded Goldreich, The Foundations of Cryptography Volume 1, Cambridge University Press, 2001
- Paar, Christof, and Jan Pelzl. Understanding cryptography: a textbook for students and practitioners. Springer Science-Business Media, 2009.
- 5. Kiayias, Aggelos Cryptography primitives and protocols, UoA, 2015
- 6. Nigel Smart. Introduction to cryptography
- 7. Berry Schoenmakers. Cryptographic protocols, 2015.
- 8. D. Chaum and T. P. Pedersen. Wallet databases with observers. CRYPTO '92.
- 9. U. Feige and A. Shamir. 1990. Witness indistinguishable and witness hiding protocols. In STOC '90.
- R. Cramer, I. Damgard, and B. Schoenmakers. Proofs of partial knowledge and simplified design of witness hiding protocols. In CRYPTO '94.
- 11. A. Fiat and A. Shamir. How to prove yourself: practical solutions to identification and signature problems. CRYPTO '86.
- O.Goldreich, S.Micali, and A.Wigderson. Proofs that yield nothing but their validity or all languages in np have zero-knowledge proof systems. J. ACM, 38(3):690-728, July 1991.
- 13. S Goldwasser, S Micali, and C Rackoff. The knowledge complexity of interactive proof-systems. STOC '85
- Jean-Jacques Quisquater, Louis Guillou, Marie Annick, and Tom Berson. 1989. How to explain zero-knowledge protocols to your children. CRYPTO '89
- 15. Mike Rosulek, Zero-Knoweldge Proofs, with applications to Sudoku and Where's Waldo
- C.P. Schnorr. Efficient signature generation by smart cards. Journal of Cryptology. 4(3):161–174. 1991
- 17. Online Lectures by Susan Hohenberger, Rafael Pass
- 18. Matthew Green, Zero knowledge proofs: An illustrated primer
- 19. Jeremy Kuhn Zero Knowledge Proofs A Primer

Zero Knowledge Πηγές