Single-Cell TCR/BCR Analysis

Indu Khatri and Erik van den Akker

Leiden Computational Biology Center, LUMC, Leiden Delft Bioinformatics Lab, Delft

Single-Cell Course

Understanding regional immunity in tumor regions

Understanding regional immunity in tumor regions

Comparing immune
Microenvironment across tissues

Understanding regional immunity in tumor regions

Comparing immune
Microenvironment across tissues

Identifying novel Immune cell subtypes

Understanding regional immunity in tumor regions

Comparing immune
Microenvironment across tissues

Identifying novel Immune cell subtypes

Reconstructing the trajectory of immune cell development and differentiation

Advanced methods of integrating data types

Integrating single-cell multi-omics and spatial analysis

Questioning immune processes with multiple factors involved

Integrating single-cell multi-omics and spatial analysis

Studying immune processes

Different immune cells

Immune cells

AIM

Immune cells

- 1. T/B-cell receptor
- 2. T/B-cell binding to antigen
- 3. Diversity of T/BCR
- 4. Structure of receptors

Pertussis: vaccination and resurgence

Bordetella pertussis

- Whooping cough/pertussis
- Gram negative, aerobic bacterium
- Airborne infection (droplets)
- Infection mostly affects young children
- Important virulence factors:
 - FHA (filamentous hemagglutinin)
 - PTx (pertussis toxin)
 - Prn (pertactin)

Pertussis vaccines

- whole-cell vaccine (wP)
- acellular vaccine (aP)

US pertussis cases

50 fold increase

PERISCOPE EU Project

Source: https://periscope-project.eu/

Unique human samples to answer waning of immunity

Unique human samples to answer waning of immunity

Can We Improve Vaccine Efficacy by Targeting T and B Cell Repertoire Convergence?

Katja Fink*

Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore

Using BCRs to assess vaccine efficacy

Compare the immune repertoire between infection and vaccination settings

No memory, no attack mode

Naïve B

Naïve T

Naïve B and T cells are produced in immune system

No memory, no attack mode

After antigen encounter cells mature

Naïve B

Naïve T

Antigen experienced B-cell

Antigen experienced T-cell

Naïve B and T cells are produced in immune system

No memory, no attack mode

Naïve B Naïve T

Naïve B and T cells are produced in immune system

After antigen encounter cells mature

B-cell

Immune repertoire

No memory, no attack mode

Naïve B

Naïve T

Naïve B and T cells are produced in immune system

Memory of antigen and Attack mode is on

Reverse Vaccinology: Human immunology instructs vaccine antigen design

Immune system fighting against infections

Immune system fighting against infections

Immune system fighting against infections

Gene Expression Receptors

Gene Expression Receptors

How does our immune system can recombine to millions of receptors

By recombining between different genes and chains

How does our immune system can recombine to millions of receptors

By recombining between different genes and chains

Each receptor is composed of 2 chains: Heavy and light

Each chain is generated by a series of recombination events

How does our immune system can recombine to millions of receptors

By recombining between different genes and chains

Each receptor is composed of 2 chains: Heavy and light

Each chain is generated by a series of recombination events

Heavy locus

Light locus

V(D)J Recombination

Domain structure of Naïve B/TCR

BCR are different from TCRs

B-cells have another level of diversity

Antibody binds to antigen

Antibody binds to antigen

Antigen is foreign protein from bacteria/ virus/ infecting agent

BCR is receptor of B-cell

Antibody binds to antigen

Antigen is foreign protein from bacteria/ virus/ infecting agent

Our immune system generates millions of antibodies

BCR is receptor of B-cell

Antibody binds to antigen

Antigen is foreign protein from bacteria/ virus/ infecting agent

BCR is receptor of B-cell Our immune system generates millions of antibodies

By mutating Binding regions

Antibody binds to antigen

Antigen is foreign protein from bacteria/ virus/ infecting agent

BCR is receptor of B-cell Our immune system generates millions of antibodies

By mutating Binding regions

Domain structure of Antigen experienced BCR

Highly hypermutated by Somatic hypermutation process

Domain structure of Antigen experienced BCR

Highly hypermutated by Somatic hypermutation process

How many T/BCRs can a cell have?

How many T/BCRs can a cell have?

Thousands....

High throughput sequencing of T/BCRs

Length of receptor: 500-700 bases

High-throughput sequencing of T/BCR

division

Short read versus Long read

Short reads

Short read versus Long read

Short reads

long reads

Bulk versus UMI based methods

UMI: Unique molecular identifier

Likely PCR Duplicates
Unlikely PCR Duplicates

10X Genomics for ScRep-Seq offer

Simultaneous assessment of Gene Expression & V(D)J Repertoire

Expression of T-cell receptor in blue

scRep-Seq data analysis

Preprocessing and Downstream Analysis:

- Quality Control (QC)
- Map to IG/TR Germline databases
- Filter in productive rearrangements
- Cluster BCR/TCR sequences: B-cell clonal groups
- Build clonal lineages

Quality Control and assembling BCR/TCR from single-cells

Single-cell Sequencing

Quality Control and assembling BCR/TCR from single-cells

- 1. Quality Filtering
- 2. Demultiplexing
- 3. Assembling/Mapping reads
- 1. Functional rearrangements

Quality Control and assembling BCR/TCR from single-cells

Mapping of assembled contigs is done to germline database

- 1. Quality Filtering
- 2. Demultiplexing
- 3. Assembling/Mapping reads
- I. Functional rearrangements

Tools for QC and Assembling T/BCRs

BASIC: BCR and TCR assembly from single cell RNA-seq

BASIC is a semi-de novo assembly method for assembling BCR and TCR genes from single cell RNA-seq data.

BASIC – B-cell receptor assembly from single cells

The B-cell receptor enables individual B cells to identify diverse antigens, including bacterial and viral proteins. While advances in RNA-seq have enabled high throughput profiling of transcript expression in single cells, the unique task of assembling the full-length heavy and ...

Read More »

Source: https://www.rna-seqblog.com/tag/b-cell-receptor/

TraCer: T-cell-receptor reconstruction and clonality inference from single-cell RNA-Seq

BraCer: B-cell-receptor reconstruction and clonality inference from single-cell RNA-Seq

Source: https://github.com/Teichlab/tracer

Source: https://github.com/Teichlab/bracer

Assigning VDJ genes to the receptors

Role in clinical diagnostics

IMMUNOBIOLOGY AND IMMUNOTHERAPY

Biased IGH VDJ gene repertoire and clonal expansions in B cells of chronically hepatitis C virus-infected individuals

Felicia A. Tucci,¹ Simo Kitanovski,² Patricia Johansson,^{1,3} Ludger Klein-Hitpass,¹ Alisan Kahraman,⁴ Jan Dürig,³ Daniel Hoffmann,^{2,5} and Ralf Küppers^{1,5}

V(D)J Assignment

V(D)J Assignment

Which V, D and J genes recombined?

Tools for V(D)J assignments

IMGT/HighV-QUEST

IMGT/HighV-QUEST[1] (V-QUERy and STandardization) is part of IMGT®, the international ImMunoGeneTics information system® http://www.imgt.org [2].

IMGT/HighV-QUEST is the high-throughput version of IMGT/V-QUEST [3,4] for the analysis of thousands of immunoglobulin (IG) and T cell receptor (TR) rearranged nucleotide sequences (up to 150 000 sequences) per run.

IMGT/HighV-QUEST has been developed by IMGT®, the international ImMunoGeneTics Information System® to answer the problematic of the analysis of the antigen receptor data from Next-Generation Sequencing (NGS).

Source: http://www.imgt.org/IMGTindex/IMGTHighV-QUEST.php

Source: https://www.ncbi.nlm.nih.gov/igblast/

Assigning clonal groups and analysis

Targeted reconstruction of T cell receptor sequence from single cell RNA-seq links CDR3 length to T cell differentiation state 3

Shaked Afik, Kathleen B. Yates, Kevin Bi, Samuel Darko, Jernej Godec, Ulrike Gerdemann, Leo Swadling, Daniel C. Douek, Paul Klenerman, Eleanor J. Barnes ... Show more **Author Notes**

Autoimmune, Cholestatic and Biliary Disease 🙃 Open Access 📀 🕦

Immunoglobulin G4⁺ B-cell receptor clones distinguish immunoglobulin G 4-related disease from primary sclerosing cholangitis and biliary/pancreatic

malignancies

Marieke E. Doorenspleet, Lowiek M. Hubers, Emma L. Culver, Lucas J. Maillette de Buy Wenniger, Paul L. Klarenbeek, Roger W. Chapman, Frank Baas ... See all authors >

Brief Report 🙃 Full Access

Rapid Capture Next-Generation Sequencing in Clinical Diagnostics of Kinase Pathway Aberrations in B-Cell Precursor ALL

Udo zur Stadt PhD , Gabriele Escherich MD, Daniela Indenbirken PhD, Malik Alawi MSc, Manuela Adao, Martin A. Horstmann MD

Immune deficiencies, infection, and systemic immune disorders

Clonal expansion of CD4⁺ cytotoxic T lymphocytes in patients with IgG₄related disease

Hamid Mattoo PhD a, a, Vinay S. Mahajan MBBS, PhD a, a, Takashi Maehara DDS, PhD a, b, Vikram Deshpande MD a, Emanuel Della-Torre MD a, Zachary S, Wallace MD a, Maria Kulikova BS a, Jefte M. Drijvers MD a, Joe Daccache BS a, Mollie N. Carruthers MD a, Flavia V. Castelino MD a, James R, Stone MD, PhD a, John H, Stone MD, MPH a & M, Shiv Pillai MBBS, PhDªA⊠

Which T/B-cell clones are selected

Which T/B-cell clones are selected

What are clones?

Naïve cells
Parent Population

Which T/B-cell clones are selected

What are clones?

Naïve cells
Parent Population

Which T/B-cell clones are selected

What are clones?

Naïve cells
Parent Population

Mutations

Ad-hoc Clustering: Clonal grouping

T-cells

Same V gene Same J gene Equal CDR3 length

Ad-hoc Clustering: Clonal grouping

T-cells

Same V gene Same J gene Equal CDR3 length

B-cells

Same V gene
Same J gene
Equal CDR3 length
Sequence Identity of CDR3

Tools for clonal grouping

IMGT-Clonotype

Statistical analysis of clonal groups

Applications in time-series response data

Long-term or short-term effects on T/B-cell clones

RESEARCH ARTICLE | ADAPTIVE IMMUNITY

Shaping of infant B cell receptor repertoires by environmental factors and infectious disease

Sandra C. A. Nielsen^{1,*}, Krishna M. Roskin^{1,2,3,*}, Katherine J. L. Jackson^{1,4}, Shilpa A. Joshi¹, Parastu Nejad¹, Ji-Yeun L... + See all authors and affiliations

Science Translational Medicine 27 Feb 2019: Vol. 11, Issue 481, eaat2004 DOI: 10.1126/scitransImed.aat2004

Research article Open Access | Published: 21 June 2019

Longitudinal immunosequencing in healthy people reveals persistent T cell receptors rich in highly public receptors

Nathaniel D. Chu, Haixin Sarah Bi, Ryan O. Emerson, Anna M. Sherwood, Michael E. Birnbaum, Harlan S. Robins & Eric J. Alm

BMC Immunology 20, Article number: 19 (2019) | Download Citation ±

1099 Accesses 5 Altmetric Metrics >>

Time as an important factor in Rep-Seq studies

Sequencing BCRs on all the visits

Clonal frequencies in time-response data

Sequencing BCRs on all the visits

Time plays role in tumor settings too

Healthy versus Tumor

Sequencing TCRs where T cell clones migrate to metastasize

Time plays role in tumor settings too

Healthy versus Tumor

Sequencing TCRs where T cell clones migrate to metastasize

Treatment efficacy in immunodeficiency diseases

Sequencing TCRs where the deficiency is in generating diversity of receptors namely leukemia, SCID, vaccines

Clonal evolution of B-cells

Constructing clonal lineages

New Results

Comment on this paper

Clonal replacement of tumor-specific T cells following PD-I blockade

Kathryn E. Yost, Ansuman T. Satpathy, Daniel K. Wells, Yanyan Qi, Chunlin Wang, Robin Kageyama, Katherine McNamara, Jeffrey M. Granja, Kavita Y. Sarin, Ryanne A. Brown, Rohit K. Gupta, Christina Curtis, Samantha L. Bucktrout, Mark M. Davis, Anne Lynn S. Chang, Howard Y. Chang

Br J Haematol. 2019 Mar;184(5):829-833. doi: 10.1111/bjh.15179. Epub 2018 Mar 13.

Clonality and clonal evolution analysis of paediatric ALL based on B-cell receptor/T-cell receptor rearrangement.

Ding LW¹, Tan KT¹, Sun QY¹, Lao ZT^{1,2}, Yang H¹, Jiang N³, Chien W⁴, Xiao JF¹, Loh XY¹, Huang ML¹, Lill M⁴, Lin DC⁴, Yeoh AEJ^{1,3}, Koeffler HP^{1,4}.

Clonal evolution of B cells in transformation from low- to high-grade lymphoma

András Matolcsy, 1,2 Elaine J. Schattner, 3,4 Daniel M. Knowles, 1 and Paolo Casali 1,4

Construction of Clonal lineages Similar to fate mapping or pseudotime trajectories

Phylogenetically tracing the path of somatic hypermutations in Antibodies

Construction of Clonal lineages

Construction of Clonal lineages

Tools for clonal lineages

Alakazam

- Clonal lineage reconstruction
- Lineage topology analysis
- Repertoire diversity
- V(D)J gene usage
- Physicochemical property analysis

IgPhyML

- Clonal lineage tree contruction
- Mutation/selection hypothesis testing

Adding structure information

Antigen-antibody interface properties: Composition, residue interactions, and features of 53 non-redundant structures

Thiruvarangan Ramaraj^{a,1}, Thomas Angel^b, Edward A. Dratz^c, Algirdas J. Jesaitis^d, and Brendan Mumey^{a,*}

This information is current as of June 6, 2019.

Antibody and Antigen Contact Residues Define Epitope and Paratope Size and Structure

James W. Stave and Klaus Lindpaintner

J Immunol 2013; 191:1428-1435; Prepublished online 24

Antibody Specific B-Cell Epitope Predictions: Leveraging Information From Antibody-Antigen Protein Complexes

Martin Closter Jespersen¹, Swapnil Mahajan², Bjoern Peters², Morten Nielsen^{1,3*} and Paolo Marcatili^{1*}

Structure of Receptors: facilitated by ScRep-Seq

Source: DeKosky BJ et al., PNAS, 2016

Structure of Receptors: facilitated by ScRep-Seq

RosettaAntibody
In-silico computational modeling

- 1. Template grafting
- 2. CDR-H3 de novo
- 3. Loop modeling

Source: DeKosky BJ et al., PNAS, 2016

Structure of Receptors: facilitated by ScRep-Seq

TGTGCGAGAGAGGTC CTCTACGGTGACTAC GGGACTGGCTACTGG TGTCAGCAGTATAAT AACTGGCCTCGGACG TTCTGTGCGAGAGAG GTCCTCTACGGTGAC TACGGGACTGGCTAC TGGTGTCAGCAGTAT Light Link Heavy VH:VL Sequence

RosettaAntibody In-silico computational modeling

- 1. Template grafting
 - 2. CDR-H3 de novo
 - 3. Loop modeling

Source: DeKosky BJ et al., PNAS, 2016

Helpful resources

tcR: a package for T cell receptor and Immunoglobulin repertoires advanced data analysis

https://cran.r-project.org/web/packages/tcR/vignettes/tcrvignette.html

- bcRep: Advanced Analysis of B Cell Receptor Repertoire Data https://cran.r-project.org/web/packages/bcRep/vignettes/vignette.html
- Immcantation Portal https://immcantation.readthedocs.io/en/stable/

Thank You

Questions?