Basic Logic Formulae. The Art of Proving

Costel Anghel and Mădălina Erașcu

Objectives

- Recalling basic logic formulae [1, Appendix B].
- Recalling proof techniques [2].

Remark 1 The material in this lab is useful for understanding how the verification conditions (the logical formulae generated from the program source code) are proved/disproved internally by Dafny (or any other verifier).

Consider the example below (see also the slides of the previous lecture):

```
method Min(x: int, y: int) returns (m: int)
ensures m <= x && m <= y

if x <= y {
    m := x;
    } else {
    m := y;
}
}</pre>
```

In order to prove that the program is functionally correct or partially correct for all integer variables x,y (input variables), Dafny thansforms the program into 2 verification conditions, coresponding to each branch if the \mathtt{if} statement and both should be True in order to show correctness.

Branch 1:

$$x \le y \Rightarrow x \le x \land x \le y$$

Branch 2:

$$x > y \Rightarrow y \le x \land y \le y \iff x > y \Rightarrow x > y || x = y$$

We take each of the 2 formulae and prove they are True.

• Branch 1:

$$x \leq y \Rightarrow \underbrace{x \leq x}_{\mathbb{T}} \land x \leq y \quad \Longleftrightarrow \quad x \leq y \Rightarrow x \leq y \quad \checkmark$$

• Branch 2:

$$x>y\Rightarrow y\leq x\wedge\underbrace{y\leq y}_{\mathbb{T}}\quad\Longleftrightarrow\quad\underbrace{x>y}_{K}\Rightarrow\underbrace{x>y}_{G_{2}}||\underbrace{x=y}_{G_{1}}$$

Next, we use the proof rule disjunction in the goal (see in the following pages) and prove $x > y \wedge x! = y \Rightarrow x > y \checkmark$

1 Basic logic formulae

1. Negation !X. True if and only if X is false.

2. Conjunction X && Y ("X and Y"). True if and only if X and Y are both true.

true&
$$\&X = X$$
 (Unit)
false& $\&X =$ false (Zero)
 $X\&\&X = X$ (Idempotent)
 $X\&\&!X =$ false (Law of Excluded Middle)
 $X\&\&Y = Y\&\&X$ (Commutative)
 $X\&\&(Y\&\&Z) = (X\&\&Y)\&\&Z$ (Associative) (2)

3. Disjunction $X \parallel Y$ ("X or Y"). True if and only if at least one of X or Y is true.

4. Implication X ==> Y ("if X, then Y"). False if and only if X is true and Y is false.

$$X ==> Y = |X||Y$$
 (Implication) (7)

$$X\&\&(X ==> Y) = X\&\&Y \qquad (Modus Ponens) (8)$$

$$X ==> Y$$
 =! $Y ==>!X$ (Contrapositive) (9)

$$X\&\&Y ==> Z =X ==>!Y||Z$$
 (Shunting) (10)

$$X||Y==>Z$$
 = $(X==>Z)\&\&(Y==>Z)$ (Distribution)

5. Equivalence $X \le Y$ ("if X, then Y and vice versa"). True if and only if X and Y are both true or both false.

$$X <==> Y = (X ==> Y) \&\& (Y ==> X)$$
 (Equivalence)

6. Universal and existential quantification

Remark 2 Before talking about universal and existential quantifiers, we need to talk about bound variables and free variables.

We say a variable is **bound** when it's introduced by quantifiers (\forall for universal quantification, \exists for existential quantification). When a variable is bound, it means that it has a restricted scope, and its value is dependent on that scope.

E.g. $(\forall x)(Q(x) \Longrightarrow R(x))$, since every occurrence of x is bound, the variable x is bound.

A variable is **free** when it's not bound by any quantifier within the formula. They are introduced from outside and are not limited by any local scope.

E.g. $(\exists x)P(x,y)$, since the only appearance of y is free, the variable y is free.

Remark 3 A variable can be both free and bound in a single formula. For example, y is both free and bound in this formula: $(\forall x)P(x,y) \land (\forall y)Q(y)$.

Let F be a formula that contains a free variable x. To show that, we write F by F[x]. Let G be a formula that doesn't contain variable x. Q stands for "quantifier" type so it can be either \forall or \exists . Then we have the following laws:

$$(Qx)F[x] \lor G = (Qx)(F[x] \lor G)$$

$$(Qx)F[x] \land G = (Qx)(F[x] \land G)$$

$$\neg((\forall x)F[x]) = (\exists x)(\neg F[x])$$

$$\neg((\exists x)F[x]) = (\forall x)(\neg F[x])$$

Knowing that F[x] and H[x] are two formulas containing x, here are some other laws:

$$(\forall x)F[x] \wedge (\forall x)H[x] = (\forall x)(F[x] \wedge H[x])$$

$$(\exists x)F[x] \vee (\exists x)H[x] = (\exists x)(F[x] \vee H[x])$$

Remark 4 The universal quantifier \forall and the existential quantifier \exists cannot distribute over \lor and \land :

$$(\forall x)F[x] \lor (\forall x)H[x] \neq (\forall x)(F[x] \lor H[x])$$

$$(\exists x)F[x] \land (\exists x)H[x] \neq (\exists x)(F[x] \land H[x])$$

7. Atomic formula $p(T_1, \ldots, T_n)$. True if the predicate denoted by p holds for the values of T_1, \ldots, T_n .

Remark 5 When a boolean formula equals true, we say that it holds.

1.1 Solved Exercises (Basic logic formulae)

1. De Morgan's Law proof:

$$!(X||Y) \stackrel{(1)}{=} !(!!X||!!Y) \stackrel{(3)}{=} !!(!X\&\&!Y) \stackrel{(1)}{=} !X\&\&!Y$$

2. Associativity of || proof:

$$\begin{split} X \| (Y \| Z) & \stackrel{(1)}{=} !! X \| !! (Y \| Z) & \stackrel{(3)}{=} ! (! X \& \& ! (Y \| Z)) & \stackrel{(4)}{=} ! (! X \& \& (! Y \& \& ! Z)) \\ & \stackrel{(2)}{=} ! ((! X \& \& ! Y) \& \& ! Z) & \stackrel{(4)}{=} ! (! (X \| Y) \& \& ! Z) & \stackrel{(3)}{=} !! (X \| Y) \| !! Z \\ & \stackrel{(1)}{=} (X \| Y) \| Z \end{split}$$

3. Distribution of ==> proof:

$$\begin{split} X \| Y = => Z = (X \| Y) = => Z \stackrel{(7)}{=} ! (X \| Y) \| Z \stackrel{(4)}{=} (!X \&\&!Y) \| Z \stackrel{(5)}{=} (!X \| Z) \&\& (!Y \| Z) \stackrel{(7)}{=} \\ \stackrel{(7)}{=} (X = => Z) \&\& (Y = => Z) \end{split}$$

2 The Art of Proving

A **proof** is a structured argument that a formula is true. Each proof consists of *knowledge* and a *goal*.

$$K_1,\ldots,K_n \models G$$

- Knowledge K_1, \ldots, K_n : formulae assumed to be true.
- Goal G: formula to be proved relative to knowledge.

A **proof rules** describes how a proof situation can be reduced to zero, one, or more "subsituations".

$$\frac{\ldots \models \ldots \quad \longmapsto \ldots}{K_1, \ldots, K_n \models G}$$

Rule may or may not close the (sub)proof:

- Zero substituations: G has been proved, (sub)proof is closed.
- One or more subsituations: G is proved, if all subgoals are proved.

Top-down rules: focus on G.

G is decomposed into simpler goals G_1, G_2, \ldots

Bottom-up rules: focus on K_1, \ldots, K_n .

Knowledge is extended to $K_1, \ldots, K_n, K_{n+1}$.

In each proof situation, we aim at showing that the goal is apparently true with respect to the given knowledge.

1. Conjunction $F_1 \&\& F_2$

$$\frac{K \models G_1 \quad K \models G_2}{K \models G_1 \&\& G_2} \qquad \frac{\dots, K_1 \&\& K_2, K_1, K_2 \models G}{\dots, K_1 \&\& K_2 \models G}$$

- Goal $G_1 \&\& G_2$.
 - Create two substitutions with goals G_1 and G_2 .

We have to show $G_1 \&\& G_2$.

- * We show G_1 : ... (proof continues with goal G_1)
- * We show G_2 : ... (proof continues with goal G_2)
- Knowledge $K_1 \&\& K_2$.
 - Create one substituation with K_1 and K_2 in knowledge.

We know $K_1 \&\& K_2$. We thus also know K_1 and K_2 (proof continues with current goal and additional knowledge K1 and K2).

2. Disjunction $F_1||F_2|$

$$\frac{K, !G_1 \models G_2}{K \models G_1 || G_2} \qquad \frac{\dots, K_1 \models G \dots, K_2 \models G}{\dots, K_1 || K_2 \models G}$$

- Goal $G_1 || G_2$.
 - Create one substituation where G_2 is proved under the assumption that G_1 does not hold (or vice versa):

We have to show $G_1||G_2$. We assume $!G_1$ and show $!G_2$. (proof continues with goal G_2 and additional knowledge $!G_1$)

- Knowledge $K_1 || K_2$.
 - Create two substituations, one with K_1 and one with K_2 in knowledge.

We know $K_1||K_2$. We thus proceed by case distinction:

- * Case K_1 : ... (proof continues with current goal and additional knowledge K_1).
- * Case K_2 : ...(proof continues with current goal and additional knowledge K_2).
- 3. Implication $F_1 ==> F_2$

$$\frac{K, G_1 \models G_2}{K \models G_1 ==> G_2} \qquad \qquad \frac{\ldots \models K_1 \quad \ldots, K_2 \models G}{\ldots, K_1 ==> K_2 \models G}$$

- Goal $G_1 ==> G_2$.
 - Create one substitution where G_2 is proved under the assumption that G_1 holds:

We have to show $G_1 ==> G_2$. We assume G_1 and show G_2 . (proof continues with goal G_2 and additional knowledge G_1).

- Knowledge $K_1 ==> K_2$.
 - Create two substituations, one with goal K_1 and one with knowledge K_2 .

We show $K_1 ==> K_2$:

- * We show K_1 : ... (proof continues with goal K_1)
- * We know K_2 : ... (proof continues with current goal and additional knowledge K_2).
- 4. Equivalence $F_1 <==> F_2$

$$\frac{K \models G_1 ==> G_2 \quad K \models G_2 ==> G_1}{K \models G_1 <==> G_2} \qquad \qquad \frac{\ldots \models (!)K_1 \quad \ldots, (!)K_2 \models G}{\ldots, K_1 <==> K_2 \models G}$$

- Goal $G_1 <==> G_2$.
 - Create two subsituations with implications in both directions as goals:

We have to show $G_1 <=> G_2$.

- * We show $G_1 ==> G_2$: ... (proof continues with goal $G_1 ==> G_2$).
- * We show $G_2 ==> G_1$: ... (proof continues with goal $G_2 ==> G_1$).
- Knowledge $K_1 <==> K_2$.
 - Create two subsituations, one with goal $(!)K_1$ and one with knowledge $(!)K_2$.

We show $K_1 <==> K_2$:

- * We show $(!)K_1$: ... (proof continues with goal $(!)K_1$)
- * We know $(!)K_2$: ... (proof continues with current goal and additional knowledge $(!)K_2$).
- 5. Universal Quantification $\forall x : F$

$$\frac{K \models G[x_0/x]}{K \models \forall x : G} (x_0 \text{ new for } K, G) \qquad \frac{\dots, \forall x : K, K[T/x] \models G}{\dots, \forall x : K \models G}$$

- Goal $\forall x : G$.
 - Introduce new (arbitrarily named) constant x_0 and create one substituation with goal $G[x_0/x]$.

We have to show $\forall x : G$. Take arbitrary x_0 .

We show $G[x_0/x]$. (proof continues with goal $G[x_0/x]$).

- Knowledge $\forall x : K$.
 - Choose term T to create one substituation with formula K[T/x] added to the knowledge.

We know $\forall x : K$ and thus also K[T/x]. (proof continues with current goal and additional knowledge K[T/x]).

6. Existential Quantification $\exists x : F$

$$\frac{K \models G[T/x]}{K \models \exists x : G} \qquad \frac{\dots, K[x_0/x] \models G}{\dots, \exists x : K \models G} (x_0 \text{ new for } K, G)$$

- Goal $\exists r \cdot G$
 - Choose term T to create one substituation with goal G[T/x]. We have to show $\exists x : G$. It suffices to show G[T/x]. (proof continues with goal G[T/x]).
- Knowledge $\exists x : K$.
 - Introduce new (arbitrarily named constant) x_0 and create one substituation with additional knowledge $K[x_0/x]$.

We know $\exists x : K$. Let x_0 be such that $K[x_0/x]$. (proof continues with current goal and additional knowledge $K[x_0/x]$).

Indirect Proofs

$$\frac{K, !G \models \mathbf{false}}{K \models G} \qquad \frac{K, !G \models F \quad K, !G \models !F}{K \models G} \qquad \frac{\dots, !G \models !K}{\dots, K \models G}$$

- Add !G to the knowledge and show a contradiction.
 - Prove that "false" is true.
 - Prove that a formula F is true and also prove that it is false.
 - Prove that some knowledge K is false, i.e. that !K is true.
 - * Switches goal G and knowledge K (negating both).

Sometimes simpler than a direct proof.

2.1 Solved Exercises (The Art of Proving)

We show
$$(\exists x : \forall y : P(x,y)) \implies (\forall y : \exists x : P(x,y))$$

We assume $(\exists x : \forall y : P(x,y))$ (11)

and show $(\forall y : \exists x : P(x, y))$

Take arbitrary
$$y_0$$
. We show $\exists x : P(x, y_0)$ (12)

From (11) we know for some
$$x_0$$
 (13)

$$\forall y : P(x_0, y) \tag{13}$$

From (13) we know

$$P(x_0, y_0) \tag{14}$$

From (14) we know (12).

3 Homework

3.1 Topic: Basic logic formulae

- 1. Prove the Unit, Zero, Idempotent, Law of Excluded Middle, and Commutative properties of \parallel stated above.
- 2. Prove the two additional variations of De Morgan's Law:

(a)
$$X||Y = !(!X\&\&!Y)$$

(b) $X\&\&Y = !(!X||!Y)$

- 3. Prove (5), and (6) defined above.
- 4. Prove the Modus Ponens (8), Contrapositive (9), Shunting (10), and (a) and (b) below:

$$(a)X\|(!X ==> Y) = X\|Y$$

 $(b) X ==> Y \&\&Z = (X ==> Y)\&\&(X ==> Z)$

5. Prove the following formula:

$$(P(x)\&\&Q(y) ==> R(x,y))\&\&!R(x,y)\&\&P(x) ==> !Q(y)$$

3.2 Topic: The Art of Proving

Prove:

(a)
$$(\exists x : p(x))$$
&& $(\forall x : p(x)) ==> \exists y : q(x,y)) ==> (\exists x, y : q(x,y))$
(b) $(\exists x : \forall y : P(x,y)) ==> (\forall y : \exists x : P(x,y))$

References

- [1] K. R. M. Leino. Program Proofs. MIT Press, 2023.
- [2] W. Schreiner. Lecture notes in formal methods in software development, 2023.