Relatorio da E	xperiência de Op	tica Geométrica	
Turno:	Grupo:	_ Data:	
Número:	Nome: _		
Número:	Nome: _		
	a por palavras s		ES da sessão de Laboratório: o trabalho que irá realizar na sessão
1.0.1 Equaç Escreva no se como as suas	guinte quadro to	das as equações necessár	rias para calcular as grandezas, bem

2 Relatório

2.1 Montagem Experimental

Desenhe um diagrama das diversas montagens experimentais que realizou. Inclua em anexo es esquemas de traçado de raios em papel milimétrico.						

2.2 Cálculo do índice de refracção de um vidro acrílico

Preencha as seguintes tabelas indicando apenas os algarismos significativos. Terá que verificar as contas com auxílio da calculadora, para um dos ensaios e na presença do docente. Todos os ângulos deverão ser indicados em graus.

2.2.1 Face plana

$$\epsilon_{\theta_i} = \underline{\hspace{1cm}} \, ^{\circ}; \, \epsilon_{\theta_t} = \underline{\hspace{1cm}} \, ^{\circ}; \, \epsilon_{\theta_r} = \underline{\hspace{1cm}} \, ^{\circ}$$

Ensaio	θ_i	$\sin \theta_i$	θ_r esq.	θ_t esq.	θ_r dir.	θ_t dir.	$\overline{ heta_t}$	$\sin \overline{\theta_t}$
1		±					±	士
2		土					土	土
3		土					土	土
4		土					土	土
5		土					土	土
6		土					土	土
7		土					土	土
8		土					土	土
9		土					土	土

Valor obtido pelo gráfico: $\overline{n}_{vidro} = \underline{\qquad} \pm \underline{\qquad}$

2.2.2 Face cilíndrica

$$\epsilon_{\theta_i} = \underline{\hspace{1cm}} ^{\circ}; \, \epsilon_{\theta_t} = \underline{\hspace{1cm}} ^{\circ}; \, \epsilon_{\theta_r} = \underline{\hspace{1cm}} ^{\circ}$$

Ensaio	θ_i	$\sin \theta_i$	θ_r esq.	θ_t esq.	θ_r dir.	θ_t dir.	$\overline{ heta_t}$	$\sin \overline{\theta_t}$
1		土					±	±
2		土					土	土
3		土					土	土
4		土					土	±
5		土					土	士
6		土					土	土
7		土					土	土
8		土					±	±
9		土					土	土

Valor obtido pelo gráfico: $\overline{n}_{vidro} = \underline{\qquad} \pm \underline{\qquad}$

$\mathbf{2.2.3}$ Ângulo-limite

Para o cálculo do desvio à exatidão, considere como exato o valor médio das medições anteriores.

Ensaio	θ_{lim} esq.	θ_{lim} dir.	$\overline{ heta}_{lim}$	Desv. Exatidão
1			土	
2			土	
3			土	

Ângulo limite: $\overline{\theta}_{lim} = \underline{\qquad} \pm \underline{\qquad}$

Valor obtido pelo ângulo limite: $\overline{n}_{vidro} = \underline{\qquad} \pm \underline{\qquad}$

2.3 Polarização da luz – ângulo de Brewster

Ângulo de Brewster calculado (use para n o valor medido): $\theta_B =$ _____

Ensaio	θ_{Bmin}	θ_{Bmax}	$\overline{ heta_B}$	Desv. Exatidão
1			土	
2			士	
3			土	

2.4 Distância focal de uma lente convergente

2.4.1 Método direto

Distância entre lente colimadora e fonte luminosa: _____ mm

Ensaio	$f_{min} \text{ (mm)}$	f_{max} (mm)	\overline{f} (mm)
1			
2			土
3			

2.4.2 Método da equação dos focos conjugados e ampliação

1) Distância entre lente convergente e objecto: $D_O = \underline{\hspace{1cm}} \pm \underline{\hspace{1cm}} mm$

Ensaio	D_I^{min} (mm)	D_I^{max} (mm)	$\overline{D_I} \pm \epsilon_{D_i} \; (\text{mm})$	$A = \overline{D_I}/D_O$	f (mm)
1			土	土	±
2			土	土	土
3			土	土	士

$$\overline{f} = \underline{\qquad} \pm \underline{\qquad} \text{ (mm)}; \overline{A} = \underline{\qquad} \pm \underline{\qquad}$$

Ensaio	$h_O \text{ (mm)}$	$\epsilon_{h_O} \; (\mathrm{mm})$	$h_I \text{ (mm)}$	$\epsilon_{h_I} \; (\mathrm{mm})$	Ampliação A	\overline{A}
1					土	
2					土	土
3					土	

2) Distância entre lente convergente e objecto: $D_O = \underline{\hspace{1cm}} \pm \underline{\hspace{1cm}} mm$

Ensaio	$D_I^{min} \text{ (mm)}$	D_I^{max} (mm)	$\overline{D_I} \pm \epsilon_{D_i} \; (\text{mm})$	$A = \overline{D_I}/D_O$	f (mm)
1			土	土	±
2			土	土	士
3			土	土	±

$$\overline{f} = \underline{\qquad} \pm \underline{\qquad} (mm); \overline{A} = \underline{\qquad} \pm \underline{\qquad}$$

Ensaio	$h_O \text{ (mm)}$	$\epsilon_{h_O} \; (\mathrm{mm})$	$h_I \text{ (mm)}$	$\epsilon_{h_I} \; (\mathrm{mm})$	Ampliação A	\overline{A}
1					土	
2					土	土
3					土	

Analise e comente os re	esultados que obteve u	sando o método dire	ecto e o método (dos focos
conjugados.				

2.5 Distância focal de uma lente divergente

Distância entre lentes e objecto: $D_O = __ \pm __ mm$

Ensaio	$D_I^{min} \text{ (mm)}$	D_I^{max} (mm)	$\overline{D_I} \pm \epsilon_{D_i} \; (\mathrm{mm})$	$f \pm \epsilon_f \; (\text{mm})$
1	土	土	±	土
2	土	土	土	土

$$\overline{f} = \underline{\qquad} \pm \underline{\qquad} (mm);$$

2.6 Análise, Conclusões e Comentários
2.0 Analise, Conclusões e Confettarios

-		