Project 1 COVID-19 Cases Prediction

Objectives

- Solve a regression problem with deep neural networks (DNN).
- Understand basic DNN training tips e.g. hyper-parameter tuning, feature selection, regularization, ...
- Get familiar with PyTorch.
- Due date: Thursday Sep 5, 2024 (23:59)

Requirement

- Python 3
- Pytorch:
 - Documentation: https://pytorch.org/docs/stable/index.html
 - Tutorial: https://www.dataquest.io/blog/pytorch-for-beginners/

Task Description

• Given survey results in the past 3 days in a specific state in U.S., then predict the percentage of new tested positive cases in the 3rd day.

Data -- Delphi's COVID-19 Surveys

- Conducted surveys via facebook (every day & every state)
- Survey: symptoms, COVID-19 testing, social distancing, mental health, demographics, economic effects, ...

Data -- Delphi's COVID-19 Surveys

certain state of the U.S.

some samples

survey

state

(data we are using)

Data -- Delphi's COVID-19 Surveys

- States (40, encoded to one-hot vectors)
 - o e.g. AL, AK, AZ, ...
- COVID-like illness (4)
 - e.g. cli,ili (influenza-like illness), ...
- Behavior Indicators (8)
 - e.g. wearing_mask, travel_outside_state,...
- Mental Health Indicators (5)
 - o e.g. anxious, depressed, ...
- Tested Positive Cases (1)
 - tested_positive (this is what we want to predict)

Percentage

Data -- One-hot Vector

One-hot vectors:

Vectors with **only one element equals to one** while others are zero.

Usually used to encode discrete values.

Data -- Training

covid.train.csv (2700 samples)

tested positive

Data -- Testing

covid.test.csv (893 samples)

Evaluation Metric

Root Mean Squared Error (RMSE)

Hints

- Feature selection (what other features are useful?)
- DNN architecture (layers? dimension? activation function?)
- Training (mini-batch? optimizer? learning rate?)
- L2 regularization

Deliverable

- PDF Report (40%)
 - methodology (e.g., network structure, training tips, hyperparameters, etc.)
 - empirical results and evaluation
 - conclusion
- Python Code (60%)
 - Code is required to avoid plagiarism.
- Grading:
 - Total (100):
 - Code (60) + Report (40)