

Automating Feature Engineering for Supervised Learning? *methods, open-source tools and prospects.*

Dr. Thorben Jensen
Jonas Jostmann

INFORMATIONSFABRIK

Dr. Thorben Jensen tjensen@informationsfabrik.de

Content

• Feature Engineering

Open-Source Tools

Case Study

Feature Engineering

Workload in Supervised Learning

Machine Learning eliminates the need for detailed programming effort. (Arthur Samuel, 1959)

AutoML eliminates the need for detailed Machine Learning effort.

Feature Engineering in Practice

DATE	SALES (TARGET)
2014-04-29	5923
2014-04-30	5870
2014-05-01	0
2014-05-02	6790
2014-05-03	5498

WEEKDAY	OPEN	STATE HOLIDAY
Friday	1	0
Saturday	1	0
Thursday	0	1
Friday	1	0
Saturday	1	0

"BRIDGE DAY"	LAG(OPEN)
0	1
0	1
0	1
1	0
0	1

Current Challenge & Vision for Automated Feature Engineering

CHALLENGES

Time-consuming task

Good features require domain knowledge

Features often not transferable between data

VISION

- Easy setup (data and config)
- Handle time in data
- Features self-explanatory
- High potential complexity of features
- Minimal "garbage" features

Open Source Tools

Options for Automated Feature Engineering

GENERATION

Options for Automated Feature Engineering

DIMENSIONALITY REDUCTION

Combine similar features, e.g. PCA.

TRANSFORMATION

Apply operators (+, *, Min, ...)

RELATIONAL OPERATIONS | FEATURES

SQL-like operations

TIME-SERIES

Pre-defined functions (e.g. trend)

PRE-TRAINED EMBEDDINGS

Extract "features" with pre-trained models

META-LEARNING

Predict good features based on previous datasets

FILTERING

Select features by testing interrelation with target variable.

WRAPPING

Search best feature set, by model performance.

Options for Automated Feature Engineering

ENERATION

DIMENSIONALITY REDUCTION

Combine similar features, e.g. PCA.

TRANSFORMATION

Apply operators (+, *, Min, ...)

RELATIONAL

SQL-like operations

TIME-SERIES OPERATIONS | FEATURES

Pre-defined functions (e.g. trend)

PRE-TRAINED EMBEDDINGS

Extract "features" with pre-trained models

META-LEARNING

Predict good features based on previous datasets

autofeat)

TSFRESH

WRAPPING

Search best feature set, by model performance.

FILTERING

Select features by testing interrelation with target variable.

TSFRESH

Database Tables:

OrderID	Customer ID
1	2
2	•••
3	•••
4	2
•••	•••

ID	OrderID	ProductId
1	1	3
2	1	1
3	•••	•••
4	4	3
•••		

ProductID	Price
1	\$100
2	
3	\$200
4	

Features on Customer?

Aggregations (per value):

- sum
- trend
- time_since_first

Deep Feature, d=1

•

Transformations (per entity):

- month
- weekday
- num_words

Deep Feature, d=2

•

Dase Column		1
ProductID	Price	
1	\$100	
2		
3	\$200	J,
4		

Page Column

OrderID	Customer ID	SUM(Product.Price)
1	2	\$300
2		
3		
4	2	\$200

TSFRESH

Numerous features:

- linear_trend(x, "slope")
- mean_change(x)
- autocorrelation(x, lag: int)
- spkt_welch_density(x, ...)
- ...

Filtering most promising features:

- 1. Variables tested individually
- 2. Statistical tests on interaction with target variable
- 3. Discarding variables with low significance

https://tsfresh.readthedocs.io

"Feature Engineering" Pipeline

https://epistasislab.github.io/tpot/

Case Study

Goals and Dataset

• Goals:

- Test libraries at default settings
- Achieve **general understanding** of tools
- Compare performance

Machine-learning Task

- Time series forecasting ("Rossmann Challenge")
- XGBoost with fixed settings

Out of scope

Not finding best library in general

Design of Experiment

Results Performance: methods at default usage

Order of performance:

- 1. TPOT
- 2. TSFRESH
- 3. Featuretools / Manual
- 5. Base

Adding features helped

Results Performance: selecting features with TSFRESH-method

additional selection

- - "Filtering" benefited featuretools
 - Filtering did not help others:
 - Manual features are often meaningful
 - TPOT's features selected by optimizer

Comparing engineered features to ,base' features

feature

Comparison of Libraries (at default settings)

Features self-explanatory

High potential complexity of features

Minimal "garbage" features

Discussion & Conclusion

Conclusion on "Automated Feature Engineering"

- Preparation of data was still required
 - E.g. preventing time-related data leakage
- "Full automation" possible with default settings, but stays below potential
 - Default settings might be limiting, e.g. featuretools
- Human intervention would be beneficial

Outlook

- Code open to Reviews and Pull Requests: github.com/informationsfabrik/feature-engineering
- Can we find "better" default parameters for libraries?
- Open Source Libraries for other methods, e.g. Meta Learning?
- Best way to combine manual and automated Feature Engineering?
 - What do you do or recommend?

TAK

DANK U WEL

谢谢

KÖSZÖNÖM CHOKRANE **GRACIAS**

TERIMA KASIH THANK YOU

GRAZIE

dziękuję MERCI

TESEKKÜR EDERIM

TÄNAN

СПАСИБО

ARIGATÔ

HVALA