Цель работы Список литературы Постановка задачи Алгоритмы прогнозирования Заключение

Адаптивный кредитный скоринг

Астахов Антон

Московский физико-технический институт

24.04.19

Цель работы

Исследуются

Методы прогнозирования вероятности дефолта клиента банка в следущие 12 месяцев

Требуется

Предложить алгоритм аккумулирования раличных исторических промежутков выплат клиента с целью прогнозирования длинной переменной

Проблемы

- извлечение максимально информативных исторических данных
- учитывание извлеченных исторических данных

Литература

- [1] Shweta Arya, Catherine Eckel, Colin Wichman. Anatomy of the credit score
- [2] Engku Muhammad Nazri E. A. Bakar. Credit scoring models: techniques and issues
- [3] Liran Einav, Mark Jenkins, Jonathan Levin. The impact of credit scoring on consumer lending.

Входные данные

Имеется информация (исторические данные) о парах (клиент, дата): ежемесячные платежы клиента банка.

Признаки клиента

Выделено признаковое подпространство из \mathbb{R}^3

- $\bullet \ utilization_3m_0_old_1_lin$
- $\bullet \ max_overdue_days_cnt_0_old_1_lin$
- $\bullet \ sloppy_0_old_1_lin$

Входные данные

Информация о платежах

- dYpX флаг достижения Y просрочек за следующие X месяцев после $curr_due_dt$. dYpX определен: $Y \in \{1..4\}, \ X \in \{1..12\}, \ Y <= X \Rightarrow U$ множество значений (Y,X)
- $curr_due_dt$ дата на которую, строится прогноз. Пусть $finish_dt$ дата созревания целевой переменной d4p12. $(curr_due_dt = finish_dt 12*len_of_month)$. $curr_due_dt \in [2008.06.05, 2019.03.07]$

Вектор логистической регресии

Для прогноза dYpX, как вероятности, определяется $curr_due_dt$ и $finish_dt$, где $curr_due_dt = finish_dt - x * len_of_month$.

Если мы имеем данные, то модель логистической регресии, обучаясь на клиентах из интрервала $(curr_due_dt - len_of_month, curr_due_dt)$, предсказывает вероятность dYpX на $finish_dt$.

Результат логистической регрессии

$$W_{y,\ x}^t\in R^3$$
 и $B_{y,\ x}^{\ t}\in R$, где $t=finish_dt.$ Обозначим $V_{y,\ x}^t=\begin{bmatrix}B_{y,\ x}^{\ t}\\W_{y,\ x}^t\end{bmatrix}.$

Вектор логистической регресии

Рис.: $V_{4,12}^t$

Использование данных

Введем понятие "созревший" месяц для переменной dYpX, как месяц, включая X следующих, принадлежит множеству месяцов, о которых у банка есть информация.

 $\exists V_{y,\,x}^t \Longleftrightarrow (t-x)$ созревший для переменной dYpX.

Базовый алгоритм

Условие

Необходимо спрогнозировать дефолт клиентов на периоде [t, t+12], то есть вероятность просрочки d4p12

Прогнозирование

Имеем $V_{4,12}^t$. С помощью этого вектора предскажем вероятность d4p12, которую должнен был бы описывать $V_{4,12}^{t+12}$

Модели

- ideal модель $V_{4\,12}^{t+12}$
- ullet not_ideal модель $V_{4,12}^t$ (базовый алгоритм)

Рабочая область

Качество на тестовых месяцах

Рабочая область

Качество на тестовых месяцах

Изменение вектора логистической регресии

Введем $\Delta V_{y,\,x}^{t,\,t+i} = V_{y,\,x}^{t+i} - V_{y,\,x}^t$ - приращение вектора весов для переменой dYpX с $finish_dt = t$ до $finish_dt = t+i$, где t итерация по месяцам.

$$\exists V_{y, x}^t \iff (\forall i > 0, j \ge 0) \exists \Delta V_{y, x}^{t-i, t-j}$$

Переформулировка задачи

предсказать $\Delta V_{4, 12}^{t, t+12}$

Изменение вектора логистической регресии

Рис.: $\Delta V_{4,12}^t$

Система векторов

Для прогнозирования вектора $\Delta V_{4,12}^{t,t+12}$ будем использовать систему векторов $\{\Delta V_{y,\,x}^{t-i,\,t-j}\}\ (Y,X)\in U, \forall i>0, j\geq 0$

Разложение по системе

$$\Delta V_{4, 12}^{t, t+12} = \sum_{y, x}^{U} C_{y, x} * \Delta V_{y, x}^{t-i, t-j}$$

Выбор системы

Подходы

- Будем разбивать нашу историю с помощью коротких просрочек: $U' = (Y, X) \in U \& X \le 6$
- В нашу систему войдут все последение данные, которые мы имеем: j=0
- Приращение вектора коротких просрочек состоит из векторов, которые вычисляются на непересекающихся интревалах времени:

$$\Delta V_{y,\,x}^{\hat{t}-x,\,t} = V_{y,\,x}^{\hat{t}} - V_{y,\,x}^{t-x}$$
 и $\Delta V_{y,\,x}^{t-2x,\,t} = V_{y,\,x}^{t-x} - V_{y,\,x}^{t-2x}$

• Делать не одно разложение для всего вектора: покомпонентно $\Delta V_{y,x}^i$, по подпрастроству(отдельно свободный член $\Delta B_{u,x}$ и $\Delta W_{u,x}$)

Выбор системы

Итоговое разложение

$$\Delta V_{4,\,12}^{t,\,t+12} = \sum_{y,\,x}^{U^{'}} C_{y,\,x} * \Delta V_{y,\,x}^{t-x,\,t} \,+\, \sum_{y,\,x}^{U^{'}} C_{y,\,x}^{'} * \Delta V_{y,\,x}^{t-2x,\,t-x}$$

Параметризация

$$C_{u,x} = a * X + b * Y + c * Y * X + d$$

Метрики обучения

- $\|\Delta V_{4,12}^{t,t+12} \Delta V(predict)_{4,12}^{t,t+12}\|$
- $LogLoss(d4p12, \sigma(X \cdot (\Delta V(predict)_{4,12}^{t,t+12} + V_{4,12}^{t}))^{T})$

Короткие вектора

Будем прогнозировать приращение вектора отдельно для $\Delta B_{u,x}$ и $\Delta W_{u,x}$.

Модели

- only last
 - $\Delta W_{4,12}^{t,t+12} = C_{y,x}^w * \Delta W_{y,x}^{t-x,t}$
 - $\Delta B_{4,12}^{t,\,t+12} = C_{u,x}^b * \Delta B_{u,x}^{t-x,\,t}$
- both

$Only_last, Both$

Вывод

Вся полезная информация содержится в 15 месяцах от текущей даты

Сравнение моделей

	roc_auc_score	log_loss
all_shorts(both)	0.653319	0.562852
all_shorts(only last)	0.65512	0.558857
d3p4(both)	0.654833	0.55493
d3p5(only last)	0.654653	0.555803
separately(only last)	0.654506	0.559405
from d3p6	0.654435	0.563361
ideal	0.656476	0.547124
not ideal	0.653658	0.554932

Заключение

Итог

- исследованы методы поправки базовой модели
- найдено окно максимальной информативности
- получена параметризация коротких векторов
- сравнены методы обучения вектора