Introduction to Bayesian tracking

Doz. G. Bleser

Prof. Stricker

Computer Vision: Object and People Tracking

Reminder: introductory example

- Goal:
 - Estimate posterior belief or state distribution based on control data and sensor measurements
 - Information represented as probability density function
- State: position of robot in corridor
- Control data: odometry
- Measurements: door sensors

Recursive Bayesian filtering

• **Key idea 1**: Probability distributions represent our belief about the state of the dynamical system

- **Key idea 2**: Recursive cycle
 - 1. Predict from motion model
 - Sensor measurement
 - Correct the prediction ...repeat

Outline

- Reminder: Basic concepts in probability
- Terminology, notation, probabilistic laws
- Bayes filters

Joint and Conditional Probability

• Let *X* and *Y* denote two random variables:

$$p(x,y) = p(x|y)p(y)$$

 If X and Y are independent (carry no information about each other) then:

$$p(x,y) = p(x)p(y)$$
$$p(x|y) = p(x)$$

Joint and Conditional Probability: example

- Ideal cube, dice toss: G={2, 4, 6}, A={4, 5, 6}
- p(G) = ?
- p(A) = ?
- p(G,A) = ?
- p(G|A) = ?

Joint and Conditional Probability: example

• Ideal cube, dice toss: G={2, 4, 6}, A={4, 5, 6}

•
$$p(G) = \frac{1}{2}$$

$$p(A) = \frac{1}{2}$$

•
$$p(G,A) = p(\{4,6\}) = \frac{1}{3}$$

•
$$p(G|A) = \frac{p(G,A)}{p(A)} = 2 p(\{4,6\}) = \frac{2}{3}$$

Theorem of Total Probability, Marginals

Discrete case

$$\sum p(x) = 1$$

$$p(x) = \sum_{y} p(x, y)$$

$$p(x) = \sum_{y} p(x|y)p(y)$$

Continuous case

$$\int_{-\infty}^{\infty} p(x) = 1$$

$$p(x) = \int p(x, y) dy$$

$$p(x) = \int p(x|y)p(y) \, dy$$

Bayes Theorem

- In the context of state estimation:
 - Assume x is a quantity that we want to infer from y
 - \rightarrow Think of x as state and y as sensor measurement

Generative model: how state variables cause sensor measurements

$$p(x|y) = \frac{p(y|x)p(x)}{p(y)} = \frac{likelihood \cdot prior}{evidence}$$

Posterior

probability

Independent of *x*

 \rightarrow denoted as normalizer η

Important: in this lecture, we will freely use η in different equations to denote normalizers, even if their actual values differ! 9

Conditional Independence

 All rules presented so far can be conditioned on an arbitrary random variable, e.g. Z

$$p(x|y,z) = \frac{p(y|x,z)p(x|z)}{p(y|z)}$$

$$p(x,y|z) = p(x|y,z)p(y|z)$$

• Conditional Independence: x and y are independent, given that z is known y carries no information

$$p(x,y|z) = p(x|z)p(y|z) \quad \text{about } x, \text{ if } z \text{ is known}$$

$$\Leftrightarrow p(x|z) = p(x|z,y), p(y|z) = p(y|z,x)$$

→ does not necessarily imply absolute independence

Towards the state estimation problem: terminology, notation, probabilistic laws

Terminology: overview

State

Measurement model/likelihood

Motion model/transition probability

 \mathbf{x}_1 \mathbf{x}_{t-1} \mathbf{x}_t \mathbf{x}_{t+1} \mathbf{x}_{t+1} \mathbf{x}_{t+1} \mathbf{x}_{t+1} \mathbf{x}_{t+1}

Inference

State

- The environment or world is considered a dynamical system
- The state contains all information that we want to know about the system
- Notation: x_t denotes the state at time t
- A state is called complete, if it is the best predictor for the future
 → knowledge of past states, measurements, or controls carries no information about evolution of the state in the future

Markov chain

- Typical examples of states:
 - Object pose/velocity in global coordinate system → continuous, dynamic
 - 3D positions of landmarks → continuous, stationary
 - Whether a sensor is broken or not → discrete, dynamic
 - Sensor biases → discrete, stationary

State: examples

Example for people tracking in 2D images

State: example

- Object defined by a point in an image
 - position
 - velocity
 - acceleration

$$\mathbf{x}_{t} = (x, y)$$

$$\mathbf{x}_{t} = (x, y, \dot{x}, \dot{y})$$

$$\mathbf{x}_{t} = (x, y, \dot{x}, \dot{y}, \ddot{x}, \ddot{y})$$

State: examples

 Camera/object pose (rotation, translation)

Joint angles

Measurements

- Sensor measurements provide noisy (indirect) information about the state of the dynamical system under consideration
- Notation:
 - z_t denotes a measurement at time t
 - $z_{t_1:t_2}$ denotes the set of all measurements acquired from time t_1 to t_2
- Typical examples of sensor measurements:
 - Camera images (pixel-/feature-/object-level)
 - Inertial measurements
 - GPS coordinates

Control inputs

- Control inputs carry noisy information about the change of the dynamic system under consideration
- Notation:
 - $-u_t$ denotes control data at time t
 - $-u_t$ corresponds to the change of the state in time interval (t-1;t]
 - $-u_{t_1:t_2}=u_{t_1},u_{t_1+1},\dots,u_{t_2}$ denotes sequences of control data
- Typical examples of control inputs:
 - Velocity: setting the velocity of a robot to 10 cm/s for the duration of 5 seconds suggests that the robot is 50 cm ahead of its pose before
 - Odometry: odometers measure the revolution of wheels
 - No input (often the case in visual tracking)

State estimation example

- Dynamical system: tracking of billard balls by means of a camera looking from above (without spin, collision, etc.)
- **Pre-requisite:** camera pose known with respect to table

State estimation example

- Dynamical system: tracking of billard balls by means of a camera looking from above (without spin, collision, etc.)
- Pre-requisite: camera pose known with respect to table
- Which components are contained in:
 - State x_t :
 - Measurement z_t :
 - Control input u_t :

State estimation example

- Dynamical system: tracking of billard balls by means of a camera looking from above (without spin, collision, etc.)
- Pre-requisite: camera pose known with respect to table
- Which components are contained in (simple model):
 - State $x_t = (p_x, p_y, \dot{p}_x, \dot{p}_y)$ [m]
 - → position and velocity in reference frame of billard table
 - Measurement $z_t = (i_x, i_y)$ [Pixel]
 - → pixel position of ball in camera image
 - Control input $u_t = ()$
 - → empty, however, we can assume constant velocity during a time interval
- Question: how could the Markov assumption be violated here?
 - E.g. badly calibrated camera
 - Interaction with other balls or table (collisions)
 - Physical aspects: spin, friction, ...

Probabilistic generative laws

- The evolution of state and measurements is governed by probabilistic laws
- State x_t is generated stochastically from state x_{t-1} :

$$p(x_t|x_{0:t-1},z_{1:t-1},u_{1:t})$$

Assuming that the state is complete:

$$p(x_t|x_{0:t-1}, z_{1:t-1}, u_{1:t}) = p(x_t|x_{t-1}, u_t)$$

Markov assumption:

example of conditional independence

Probabilistic generative laws

• Measurement z_t is generated stochastically from state x_t :

$$p(z_t|x_{0:t}, z_{1:t-1}, u_{1:t})$$

Assuming that the state is complete:

$$p(z_t|x_{0:t}, z_{1:t-1}, u_{1:t}) = p(z_t|x_t)$$

Another Markov assumption (conditional independence)

Introductory example

Odometry input u_1: 1m forward.

Probabilistic generative laws

Motion

model

 $p(x_t|x_{t-1},u_t)$ This is what we model! $p(z_t|x_t)$

Measurement model

- State transition probability
 - Specifies, how the state
 evolves over time as a
 function of the previous state
 and the current control data
- (u_{t-1}) (x_{t-1}) (x_{t}) (x_{t+1}) (z_{t-1}) (z_{t}) (z_{t+1})

- Measurement probability/likelihood
 - Specifies how measurements are generated as function of the state
 - Measurements can be understood as noisy projections of the state

• • •

Dynamic Bayesian network/ Hidden Markov model

Belief

- In **Bayesian inference**, we usually want to estimate the state x_t given sequences of measurements $z_{1:t}$ and control data $u_{1:t}$ and the respective state transition $p(x_t|x_{t-1},u_t)$ and measurement probabilities $p(z_t|x_t)$
- Our estimate of the true state x_t is also called belief:

Measurement update/correction:

calculation of posterior from predicted state

$$bel(x_t) = p(x_t|z_{1:t}, u_{1:t})$$

Posterior distribution of x_t conditioned on all available data

 \rightarrow after including the current measurement z_t

Time update: calculation of predicted state from current state and control input

$$\overline{bel}(x_t) = p(x_t|z_{1:t-1}, u_{1:t})$$

Prediction of x_t before including the current measurement z_t

Introductory example

Odometry input u_1: 1m forward.

A general algorithm for state estimation (inference): Bayes filter

Recursive Bayes filter algorithm

All entities are modelled as random variables with PDFs

Recursive Bayesian filtering

- Use probability distributions to model the estimation problem
 - Prediction/time update: calculate prior belief based on dynamic model
 - Correction/measurement update: calculate posterior belief based on

Tracking pipeline

Recursive Bayes filter algorithm

```
1. Bayes_filter( bel(x_{t-1}), u_t, z_t ):

2. for all x do

3. \overline{bel}(x_t) = \text{Time\_update}( bel(x_{t-1}), u_t )

4. bel(x_t) = \text{Measurement\_update}( \overline{bel}(x_t), z_t )

5. endfor

6. return bel(x_t)
```


Measurement update step derived

$$bel(x_t)$$
 = Measurement_update($\overline{bel}(x_t)$, z_t)

$$bel(x_t) = p(x_t|z_{1:t}, u_{1:t})$$

$$= \frac{p(z_t|x_t, z_{1:t-1}, u_{1:t}) p(x_t|z_{1:t-1}, u_{1:t})}{p(z_t|z_{1:t-1}, u_{1:t})}$$

$$= \eta p(z_t|x_t) p(x_t|z_{1:t-1}, u_{1:t})$$

$$= \eta p(z_t|x_t) \overline{bel}(x_t)$$
Bayes

Markov,

normalizer

Time update step derived

$$\overline{bel}(x_t) = \text{Time_update}(\ bel(x_{t-1}),\ u_t\)$$
 Expand using marginalization
$$\overline{bel}(x_t) = p(x_t|z_{1:t-1},u_{1:t})$$

$$= \int p(x_t|x_{t-1},z_{1:t-1},u_{1:t}) \, p(x_{t-1}|z_{1:t-1},u_{1:t}) dx_{t-1}$$

$$= \int p(x_t|x_{t-1},u_t) \, p(x_{t-1}|z_{1:t-1},u_{1:t-1}) dx_{t-1}$$

$$= \int p(x_t|x_{t-1},u_t) \, bel(x_{t-1}) dx_{t-1}$$
 Markov

For a finite state space, the integral turns into a sum

Bayes update rule

$$\overline{bel}(x_t)$$

$$bel(x_t) = \eta \ p(z_t|x_t) \int p(x_t|x_{t-1},u_t) \ bel(x_{t-1}) dx_{t-1}$$
 Posterior at time t

Measurement likelihood
Measurement model

State transition probability

Dynamic model

Bayes filter algorithm

Prerequisites:

- Assumption: the world is Markov, i.e. the state is complete
- Given: 3 probability density functions:
 - Initial belief: $p(x_0)$
 - Measurement probability: $p(z_t|x_t)$
 - State transition probability: $p(x_t|x_{t-1}, u_t)$

Hands-on example of Bayesian inference

Sensor model

$$p(image \mid staircase) = 0.7$$

 $p(image \mid no staircase) = 0.2$

Prior belief

$$p(staircase) = 0.1$$

- 1. for all x do
- 2. $bel(x_t) = \eta p(z_t|x_t) \overline{bel}(x_t)$
- 3. endfor

Bayesian inference (measurement update)

$$p(staircase \mid image)$$

$$= \frac{p(image \mid staircase) p(staircase)}{p(im \mid stair) p(stair) + p(im \mid no stair) p(no stair)}$$

$$= 0.7 \bullet 0.1 / (0.7 \bullet 0.1 + 0.2 \bullet 0.9) = 0.28$$
₃₇

Tip: how to calculate the normalization

$$P(x | y) = \frac{P(y | x) P(x)}{P(y)} = \eta P(y | x) P(x)$$
$$\eta = P(y)^{-1} = \frac{1}{\sum_{x} P(y | x) P(x)}$$

Algorithm:

$$\forall x : aux_{x|y} = P(y \mid x) P(x)$$

$$\eta = \frac{1}{\sum_{x} \operatorname{aux}_{x|y}}$$

$$\forall x : P(x \mid y) = \eta \text{ aux}_{x \mid y}$$

The resulting distribution must integrate to 1

Summary: Bayes filter framework

Given:

- Stream of measurements $z_{1:t}$ and control data $u_{1:t}$
- Measurement model $p(z_t|x_t)$
- Dynamic model $p(x_t|x_{t-1},u_t)$
- Prior/Initial probability of the system state $p(x_0)$

• Wanted:

- Estimate of the state x_t of a dynamical system
- The posterior of the state is also called belief: $bel(x_t) = p(x_t|u_{1:t}, z_{1:t})$

Markov Assumption

$$p(x_t|x_{0:t-1}, z_{1:t-1}, u_{1:t}) = p(x_t|x_{t-1}, u_t)$$

$$p(z_t|x_{0:t}, z_{1:t-1}, u_{1:t}) = p(z_t|x_t)$$

Underlying Assumptions

- Static world
- Independent noise
- Perfect model, no approximation errors

Reality

Summary: Bayes filters

- Probabilistic tool for recursively estimating the state of a dynamical system from noisy measurements and control inputs.
- Based on probabilistic concepts such as the Bayes theorem, marginalization, and conditional independence.
- Make a Markov assumption according to which the state is a complete summary of the past. In real-world problems, this assumption is usually an approximation!
- Can in the presented form only be implemented for simple estimation problems, requires either...or...
 - closed form solutions for multiplication and integral
 - restriction to finite state spaces

Outlook

What is missing:

- Concrete representations for belief
- Concrete representations for probability density functions
- Implementable and tractable filter approximations
- Applicability to complex and continuous estimation problems
- Hands-on experience

Readings:

- Kalman Filtering book by Peter Maybeck, chapter 1:
 http://www.cs.unc.edu/~welch/kalman/maybeck.html
- Next lectures:
 - Filters: (Extended) Kalman filter
 - Measurement and motion models

Exercise 1

- Available at: http://av.dfki.de/images/stories/lectures/opt-ss12/exercise1.pdf
 - Simple computations (probabilistic concepts, Bayes filter)
 - Handling of Gaussians (preparation for next lecture)
- If you want feedback, hand in solutions until June 12
- Tutorial session: Thursday, 14.06.2012, 14:00-15:30, DFKI, room
 2.04 (second floor)
 - Discussion of solutions
 - Preparation for next lecture (Bayes filter with Gaussians)
- Any questions?