## **Additional Notes on Lab 2**

• Linear Regression Vs. Logistic Regression

|            | Activation<br>Function | Error function (one training example)     | Gradient Descent Algorithm                                         |
|------------|------------------------|-------------------------------------------|--------------------------------------------------------------------|
| Linear     | Linear                 | half of the squared error                 | $\mathbf{w} \leftarrow \mathbf{w} + \eta (y - \hat{y}) \mathbf{x}$ |
| Regression | function               | $\frac{1}{2}(\hat{y}-y)^2$                | where $\hat{y} = f(n) = n$<br>= $w_0 x_0 + w_1 x_1 + + w_M x_M$    |
| Logistic   | Logistic               | cross-entropy error                       | $\mathbf{w} \leftarrow \mathbf{w} + \eta (y - \hat{y}) \mathbf{x}$ |
| Regression | function               | $-(y \ln \hat{y} + (1-y) \ln(1-\hat{y}))$ | where $\hat{y} = \sigma(n) = \frac{1}{1 + e^{-n}}$                 |
|            |                        |                                           | $= \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + \dots + w_M x_M)}}$       |

- You can follow the Linear Regression procedure to implement the Logistic Regression. However, unlike the Linear Regression, the Logistic Regression estimates the output value y as  $\sigma(n)$ . Thus,  $\hat{y} = \sigma(n)$  and  $0 < \hat{y} < 1$ .
- You can implement either the Stochastic version or the Batch version.
- Notice that you need to convert a probability to a class label when you predict the class label for a testing example. Thus, the prediction is 1 if  $\hat{y} \ge 0.5$ ; otherwise, it is 0.
- The following gives an example of plotting the final decision line and training/testing examples in one figure.

