Quiz, 10 questions

size of the hidden layers $n^{[l]}$ Key concepts on Deep Neural Networks

Quiz,	₁₀	gue	stio	ns

Corre	
	weight matrices $W^{[l]}$
Un-s	elected is correct
Corre	number of layers L in the neural network $oxed{ extbf{ect}}$
	activation values $a^{[l]}$
Un-s	elected is correct
	number of iterations
Corre	ect
	learning rate $lpha$
Corre	ect
~	1 / 1 point
3.	
	of the following statements is true?
0	The deeper layers of a neural network are typically computing more complex features of the input than the earlier layers.
Corre	ert .
COIT	
	The earlier layers of a neural network are typically computing more complex features of the input than the deeper layers.

Quiz, 10 question £1 point

4.

Vectorization allows you to compute forward propagation in an L-layer neural network without an explicit for-loop (or any other explicit iterative loop) over the layers l=1, 2, ..., L. True/False?

- 67	- 10	т	
- 0		l ru	16
	//	110	•

Correct

Forward propagation propagates the input through the layers, although for shallow networks we may just write all the lines ($a^{[2]}=g^{[2]}(z^{[2]})$, $z^{[2]}=W^{[2]}a^{[1]}+b^{[2]}$, ...) in a deeper network, we cannot avoid a for loop iterating over the layers: ($a^{[l]}=q^{[l]}(z^{[l]})$, $z^{[l]}=W^{[l]}a^{[l-1]}+b^{[l]}$, ...).

1/1 point

5.

Assume we store the values for $n^{[l]}$ in an array called layers, as follows: layer_dims = $[n_x, 4,3,2,1]$. So layer 1 has four hidden units, layer 2 has 3 hidden units and so on. Which of the following for-loops will allow you to initialize the parameters for the model?

```
1 for(i in range(1, len(layer_dims)/2)):
2  parameter['W' + str(i)] = np.random.randn(layers[i], layers[i-1])) * 0.01
3  parameter['b' + str(i)] = np.random.randn(layers[i], 1) * 0.01
```

```
1 for(i in range(1, len(layer_dims)/2)):
2  parameter['W' + str(i)] = np.random.randn(layers[i], layers[i-1])) * 0.01
3  parameter['b' + str(i)] = np.random.randn(layers[i-1], 1) * 0.01
```

```
1 for(i in range(1, len(layer_dims))):
2  parameter['W' + str(i)] = np.random.randn(layers[i-1], layers[i])) * 0.01
3  parameter['b' + str(i)] = np.random.randn(layers[i], 1) * 0.01
```


1 for(i in range(1, len(layer_dims))):

Key concepts or the parameter ['b' + str(i)] = np.random.randn(layers[i], layers[i-1])) * 0.01

Quiz, 10 questions

Correct

1/1 point

6.

Consider the following neural network.

How many layers does this network have?

igcup The number of layers L is 4. The number of hidden layers is 3.

Correct

Yes. As seen in lecture, the number of layers is counted as the number of hidden layers + 1. The input and output layers are not counted as hidden layers.

The number of lav	Jare T. is 3	The number	of hidden I:	ware ic 2
The number of la	yers L is \mathfrak{I} .	THE HUITIDE	of fliddell is	ayers is s.

- The number of layers L is 4. The number of hidden layers is 4.
- The number of layers L is 5. The number of hidden layers is 4.

1 / 1

During forward propagation, in the forward function for a layer l you need to know what is the activation function in a layer (Sigmoid, tanh, ReLU, etc.). During backpropagation, the corresponding backward function also needs to know what is the activation function for layer l, since the gradient depends on it. True/False?

0	True
nee	ect as you've seen in the week 3 each activation has a different derivative. Thus, during backpropagation you d to know which activation was used in the forward propagation to be able to compute the correct vative.
	False
~	1/1 point
8. There	are certain functions with the following properties:
the nu	ompute the function using a shallow network circuit, you will need a large network (where we measure size by mber of logic gates in the network), but (ii) To compute it using a deep network circuit, you need only an entially smaller network. True/False?
0	True
Corr	ect
	False

1/1 point

9.

Consider the following 2 hidden layer neural network: Key concepts on Deep Neural Networks

Which of the following statements are True? (Check all that apply).

Un-selected is correct

Key concepts on Deep Neural Networks $W^{[2]}$ will have shape (3, 4) Quiz, 10 questions
Correct Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.
$b^{[2]}$ will have shape (1, 1)
Un-selected is correct
$W^{[2]}$ will have shape (3, 1)
Un-selected is correct
$b^{[2]}$ will have shape (3, 1)
Correct Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$.
$W^{[3]}$ will have shape (3, 1)
Un-selected is correct
$b^{[3]}$ will have shape (1, 1)
Correct Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$.
$W^{[3]}$ will have shape (1, 3)
Correct Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.
$b^{[3]}$ will have shape (3, 1)
Un-selected is correct

Quiz, 10 questions

10.

Whereas the previous question used a specific network, in the general case what is the dimension of W^{[l]}, the weight matrix associated with layer l?

 $W^{[l]}$ has shape $(n^{[l]}, n^{[l-1]})$

Correct

True

 $W^{[l]}$ has shape $(n^{[l-1]}, n^{[l]})$

 $W^{[l]}$ has shape $(n^{[l+1]}, n^{[l]})$

 $W^{[l]}$ has shape $(n^{[l]}, n^{[l+1]})$

