Course Introduction

What (and how) are we going to learn?

Yordan Darakchiev

Technical Trainer iordan93@gmail.com

Table of Contents

- Course objectives
- Prerequisites
- Curriculum
- Course schedule
- Trainer
- Lecture format
- Final exam
- Some learning resources

Course Objectives

Teaching computers how to do stuff

Course Objectives

- Learn the basics of how data modelling works
- Learn what machine learning is and how it helps make decisions, automate tasks, etc.
 - Apply mathematical intuition
- Learn what the basic algorithms are and how they work
- Apply machine learning to real data to get insights
- Do at least one complete project
 - Data preparation
 - Choosing algorithms
 - Model training, improvement, and selection
 - Presenting a complete solution
 - Communicating results and ensuring reproducibility

Prerequisites

Programming Basics

- Familiarity with Python is required
- Software development experience is a plus

Math Concepts

- Know some algebra, statistics, and calculus
- Have basic logic and intuition

Intermediate English

Understand what is written on the slides

Scientific Mindset

- Know how to work with data
- Be open to (and not afraid of) challenges

Course Format Details

Curriculum, schedule, trainer, lecture format, exam

Curriculum

- Introduction to machine learning
- Linear and logistic regression
- Model training and improvement
- Tree and ensemble models
- Support vector machines
- Clustering
- Dimensionality reduction
- Introduction to neural networks

Course Schedule

- Lessons
 - 10 lectures x ~ 3 hours each on-site
- Homework
 - Quiz: 0.25 0.5 hours
 - Questions to check your understanding
 - Lab: 2 4 hours
 - "Real-life" practice
- Extracurricular activities: 0+ hours
 - The more the better :)
- Practical exam
 - Preparation at home 4+ hours
 - On-site defense: 10 minutes

Final Exam

- Practical project
 - Work on your own
 - No teams allowed
 - Present your results (documentation, code, models, Web services, etc.) in a limited amount of time
- Work on a given assignment
 - Perform research
 - Scientific papers, community forums, etc.
 - Analyze the data
 - Train one or more machine learning algorithms
 - Select and improve models
 - Document all your findings
 - Communicate the results
 - Optionally... do whatever you like :D

Grading Scheme

- Quizzes: up to 20%
 - Due 2 weeks after the lecture date
 - Most questions allow for 3 attempts
- Labs: up to 10%
 - Due at the end of the course
 - "Unlimited" attempts
- Final exam: up to 70%
 - Develop at your own pace
 - Upload deadline: 1 November 2019, 12:00:00 GMT+2
 - On-site defense: 3 November 2019, 09:00:00 GMT+2
 - To qualify: at least 4 / 20 points from quizzes and labs
- Forum / Facebook group activity: bonus up to 10%

Grading and Course Certificate

- All students will be graded on a scale from 2.00 to 6.00
 - The same way the standard grading in Bulgaria works
- Everyone who scores ≥ 5.00 (total) on the course will get a certificate from SoftUni

 Starting point for a new career or continuing education in your current field

Career assistance

- The SoftUni career center will help you find work
- Official and recognizable
 - Employers value certificates
- Proof of hard work :)
 - Shareable and verifiable

Who Am I?

- Programmer
 - .NET / full-stack Web developer
- Machine learning engineer
 - Multiple projects, mainly image processing
- Trainer
 - Various programming courses
 - Scientific (and popular) lectures
- Scientist / Enthusiast
 - BSc (July 2016), MSc (February 2018) in Astrophysics
 - Currently pursuing a PhD

Learning Resources

Learn more and share your knowledge

SoftUni Course Pages

- Official Web page of this course
 - https://softuni.bg/trainings/2317/machine-learning-september-2019
- Forum category
- Facebook group
- Ask and answer questions
 - I will try to answer your questions as well
- Post what you've learned
 - Links to resources, code snippets, ideas, tips and tricks
- Share your problems (homework or not) and help solve them
- Create and maintain a community
 - A critical part of software development and science

Online Resources

Books

- "How not to be wrong" Jordan Ellenberg
- "The Elements of Statistical Learning" Stanford (free PDF)
- Some parts of <u>Deep Learning</u> Ian Goodfellow
- ... and anything else you can find

Websites

- Communities: <u>Kaggle</u>, <u>Quora</u>, <u>Stack Exchange</u>
- Online courses: <u>Coursera</u>, <u>edX</u>, <u>MIT OCW</u>, <u>Stanford</u>, etc.
- "Big players": Microsoft, Google, Facebook, Amazon, IBM, Apple, etc.

YouTube

<u>FunFunFunction</u>, <u>Daniel Shiffman</u>, <u>Siraj Raval</u>, <u>AsapSCIENCE</u>,
<u>Veritasium</u>, <u>Vsauce</u>, <u>TedEd</u>, <u>CrashCourse</u>, <u>Mind Your Decisions</u>,
<u>Infinite Series</u>, <u>Numberphile</u>, <u>Computerphile</u>, <u>Vi Hart</u>, <u>3Blue1Brown</u>,
<u>blackpenredpen</u>, <u>Mathologer</u>, and many more

Questions?