Uncertainty Quantification for Electronic System Design

Ivan Ukhov, Petru Eles, and Zebo Peng

Embedded Systems Laboratory Linköping University, Sweden

Outline

Dynamic Steady-State Temperature Analysis and Reliability Optimization

Statistical Analysis of Process Variation Based on Indirect Measurements

Probabilistic Analysis of Power and Temperature Under Process Variation

Temperature-Centric Reliability Analysis and Optimization Under Process Variation

Outline

Dynamic Steady-State Temperature Analysis and Reliability Optimization

Statistical Analysis of Process Variation Based on Indirect Measurements

Probabilistic Analysis of Power and Temperature Under Process Variation

Temperature-Centric Reliability Analysis and Optimization Under Process Variation

Temperature Analysis

* Transient

Power

Temperature

Temperature Analysis

* Static steady state

Power

Temperature

Temperature Analysis

* Dynamic steady state

Power

Temperature

Our Goal

Given:

- * Multiprocessor system
- * Periodic dynamic power profile

Find:

* Dynamic steady-state temperature profile

Such that:

* Accurate and fast

* Repetitive transient analysis

* Static-steady-state approximation

- * Slow
- * Inaccurate

$$C\frac{dq(t)}{dt} + G(q(t) - q_{amb}) = p(t)$$

$$s_{i+1} = Es_i + Fp_i$$

 $s_{\text{start}} = s_{\text{end}}$

- * Analytical
- * Exact
- * Fast

* Thermal-cyclic fatigue

Our Goal

Given:

- * Multiprocessor system
- * Periodic application

Find:

* Schedule

Such that:

- * Lifetime maximized
- * Energy minimized

- * Dynamic steady-state temperature analysis
- * Genetic algorithm with multiple objectives

Outline

Dynamic Steady-State Temperature Analysis and Reliability Optimization

Statistical Analysis of Process Variation Based on Indirect Measurements

Probabilistic Analysis of Power and Temperature Under Process Variation

Temperature-Centric Reliability Analysis and Optimization Under Process Variation

Temperature

Temperature

Our Goal

Our Goal

Quantity of interest

$$Q \longrightarrow U$$

Indirect
Incomplete
Noisy

 $Q \longrightarrow U$

Indirect
Incomplete
Noisy

Primary

Comprehensive

Efficient

Bayesian Inference

$$p(u|Q) \propto p(Q|u) \times p(u)$$

u Channel length

q Temperature

$$P(u < u_*)$$

$$P(u < u_*)$$

Outline

Dynamic Steady-State Temperature Analysis and Reliability Optimization

Statistical Analysis of Process Variation Based on Indirect Measurements

Probabilistic Analysis of Power and Temperature Under Process Variation

Temperature-Centric Reliability Analysis and Optimization Under Process Variation

Our Goal

Given:

- * Multiprocessor system
- * Process variation

Find:

Probability distributions of transient power and temperature profiles

Such that:

* Accurate and fast

Our Solution

Uncertainty Quantification

Uncertainty Quantification

Monte Carlo

Monte Carlo

Monte Carlo

49

Our Solution

50

$$\theta(\xi) \approx \sum_{\alpha} \hat{\theta}_{\alpha} \psi_{\alpha}(\xi)$$

$$\hat{\theta}_{\alpha} = \langle \theta, \psi_{\alpha} \rangle$$

Quadratures

Power and Temperature

Quadratures

Tensor product

Quadratures

Tensor product

Sparse grid

Our Solution

- * Arbitrary probability distributions
- * Spacial correlations
- * Leakage-temperature interplay

Outline

Dynamic Steady-State Temperature Analysis and Reliability Optimization

Statistical Analysis of Process Variation Based on Indirect Measurements

Probabilistic Analysis of Power and Temperature Under Process Variation

Temperature-Centric Reliability Analysis and Optimization Under Process Variation

Our Goal

Given:

- * Multiprocessor system
- * Process variation

Perform:

* Reliability analysis

Such that:

* Accurate and fast

Reliability Analysis

Survival function

Survival Function

$$R(t|\theta)$$

Survival Function

$$R(t|\theta)$$

$$\theta = (\theta_1, \theta_2, ...)$$

$$\theta_i = f_i(\text{system simulation})$$

Our Solution

$$\theta_i(\xi) \approx \sum_{\alpha} \hat{\theta}_{i,\alpha} \psi_{\alpha}(\xi)$$

Quadratures

Tensor product

Sparse grid

Quadratures

Reliability Optimization

- * Thermal-cyclic fatigue
- * Dynamic steady-state temperature analysis

Our Goal

Given:

- * Multiprocessor system
- * Process variation

Find:

* Schedule

Such that:

*

Our Goal

Such that:

- * Expected energy minimized
- * Probability of burn constrained
- * Probability of wear-out constrained

Thank you! Questions?

https://users.ece.cmu.edu/~iukhov