Локальные кольца и лемма Гензеля

7 декабря 2023 года

Локальные кольца

ОПРЕДЕЛЕНИЕ: Кольцо A называется **локальным**, если в нем всего один максимальный идеал \mathfrak{m} . Поле $k = A/\mathfrak{m}$ называется его **полем** вычетов.

ПРИМЕР: Пусть \mathfrak{m} — максимальный идеал целостного кольца A. Тогда локализация $A_{\mathfrak{m}} = (A \setminus \mathfrak{m})^{-1}A$ — локальное кольцо.

Локальные кольца

ОПРЕДЕЛЕНИЕ: Кольцо A называется **локальным**, если в нем всего один максимальный идеал \mathfrak{m} . Поле $k = A/\mathfrak{m}$ называется его **полем** вычетов.

ПРИМЕР: Пусть \mathfrak{m} — максимальный идеал целостного кольца A. Тогда локализация $A_{\mathfrak{m}} = (A \setminus \mathfrak{m})^{-1}A$ — локальное кольцо.

ОПРЕДЕЛЕНИЕ: Топологией Крулля называется топология на локальном кольце с базисом окрестностей нуля $\{\mathfrak{m}^k\}$.

TEOPEMA: (Крулля о пересечении) Топология Крулля хаусдорфова тогда и только тогда, когда кольцо нетерово.

Локальные кольца

ОПРЕДЕЛЕНИЕ: Кольцо A называется **локальным**, если в нем всего один максимальный идеал \mathfrak{m} . Поле $k = A/\mathfrak{m}$ называется его полем вычетов.

ПРИМЕР: Пусть \mathfrak{m} — максимальный идеал целостного кольца A. Тогда локализация $A_{\mathfrak{m}} = (A \setminus \mathfrak{m})^{-1}A$ — локальное кольцо.

ОПРЕДЕЛЕНИЕ: Топологией Крулля называется топология на локальном кольце с базисом окрестностей нуля $\{\mathfrak{m}^k\}$.

TEOPEMA: (Крулля о пересечении) Топология Крулля хаусдорфова тогда и только тогда, когда кольцо нетерово.

Топология Крулля часто не полна (в смысле того, что не все фундаментальные последовательности сходятся). Пополнение локального кольца можно определять не топологически, а в терминах алгебры.

ОПРЕДЕЛЕНИЕ: Рассмотрим последовательность $\cdots \to A/\mathfrak{m}^3 \to A/\mathfrak{m}^2 \to A/\mathfrak{m}$. Минимальное кольцо \widehat{A} , которое можно поставить слева так, что оно согласованно отобразится на все A/\mathfrak{m}^k , называется пополнением A (в \mathfrak{m}). Отображение $A \to \widehat{A}$ инъективно, если и только если A нетерово.

Пополнения помнят не всё

ТЕОРЕМА: (структурная теорема Коэна, 1946) Пусть нетерово полное локальное кольцо содержит поле. Тогда оно имеет вид $k[[x_1,\ldots,x_n]]/I$, где k — его поле вычетов.

Пополнения помнят не всё

ТЕОРЕМА: (структурная теорема Коэна, 1946) Пусть нетерово полное локальное кольцо содержит поле. Тогда оно имеет вид $k[[x_1, \ldots, x_n]]/I$, где k — его поле вычетов.

ЗАМЕЧАНИЕ: Заметим, что в таком случае характеристика кольца равна характеристике его поля вычетов.

ПРИМЕР: Локальные кольца двух точек $x \in X$, $y \in Y$ изоморфны тогда и только тогда, когда существует **бирациональный изоморфизм** $f: X \to Y$, регулярный в x, и y = f(x). **Пополнения же** локальных колец любых двух гладких точек многообразий одной размерности изоморфны.

Пополнения помнят не всё

TEOPEMA: (структурная теорема Коэна, 1946) Пусть нетерово полное локальное кольцо содержит поле. Тогда оно имеет вид $k[[x_1, \ldots, x_n]]/I$, где k — его поле вычетов.

ЗАМЕЧАНИЕ: Заметим, что в таком случае характеристика кольца равна характеристике его поля вычетов.

ПРИМЕР: Локальные кольца двух точек $x \in X$, $y \in Y$ изоморфны тогда и только тогда, когда существует **бирациональный изоморфизм** $f \colon X \to Y$, регулярный в x, и y = f(x). **Пополнения же** локальных колец любых двух гладких точек многообразий одной размерности изоморфны.

ПРИМЕР: Пополнения локальных колец точки $(0,0) \in A^2$ у кривых $x^2 = y^2$ и $x^2 + x^3 = y^2$ изоморфны.

Пополнения что-то помнят

ПРЕДЛОЖЕНИЕ: Пополнение нетерова кольца нетерово.

Пополнения что-то помнят

ПРЕДЛОЖЕНИЕ: Пополнение нетерова кольца нетерово.

ОПРЕДЕЛЕНИЕ: Топология Крулля на модуле M над локальным кольцом A определяется так же, как на кольце: базой окрестностей нуля служит $\{\mathfrak{m}^k M\}$. Пополнение модуля — это предел $\widehat{M}=\lim(M/\mathfrak{m}^k M)$. Это модуль над пополнением \widehat{A} .

Пополнения что-то помнят

ПРЕДЛОЖЕНИЕ: Пополнение нетерова кольца нетерово.

ОПРЕДЕЛЕНИЕ: Топология Крулля на модуле M над локальным кольцом A определяется так же, как на кольце: базой окрестностей нуля служит $\{\mathfrak{m}^k M\}$. Пополнение модуля — это предел $\widehat{M} = \text{lim}(M/\mathfrak{m}^k M)$. Это модуль над пополнением \widehat{A} .

ПРЕДЛОЖЕНИЕ: Всякий гомоморфизм A-модулей $M \to N$ продолжается до гомоморфизма $\widehat{M} \to \widehat{N}$, причем если последовательность $0 \to M \to M' \to M'' \to 0$ точная, то ее образ $0 \to \widehat{M} \to \widehat{M'} \to \widehat{M''} \to 0$ также точен.

Иначе говоря, пополнение определяет функтор $A{\operatorname{\mathsf{-mod}}} \to \widehat{A}{\operatorname{\mathsf{-mod}}}$, и этот функтор **точен.**

Лемма Гензеля

ЛЕММА: (К. Гензель, 1897) Пусть многочлен f(x) с целыми коэффициентами имеет простой корень по модулю p. Тогда он имеет простой корень по любому модулю p^n .

Лемма Гензеля

ЛЕММА: (К. Гензель, 1897) Пусть многочлен f(x) с целыми коэффициентами имеет простой корень по модулю p. Тогда он имеет простой корень по любому модулю p^n .

Иначе говоря, простой корень многочлена с целыми коэффициентами поднимается в пополнение $\mathbb Z$ в идеале (p) — кольцо p-адических чисел. Это полное локальное кольцо характеристики 0. Его поле вычетов — $\mathbb F_p$.

Лемма Гензеля

ЛЕММА: (К. Гензель, 1897) Пусть многочлен f(x) с целыми коэффициентами имеет простой корень по модулю p. Тогда он имеет простой корень по любому модулю p^n .

Иначе говоря, простой корень многочлена с целыми коэффициентами поднимается в пополнение $\mathbb Z$ в идеале (p) — кольцо p-адических чисел. Это полное локальное кольцо характеристики 0. Его поле вычетов — $\mathbb F_p$.

ДОКАЗАТЕЛЬСТВО: Пусть $f(x_n) = 0 \mod p^n$, $x_n \in \{0, \dots, p^n - 1\}$. Будем искать x_{n+1} в виде $x_n + p^n \delta$, $\delta \in \{0, \dots, p - 1\}$. Распишем по биному Ньютона: $f(x_{n+1}) = f(x_n) + p^n \delta f'(x_n) \mod p^{n+1}$. Но $f(x_n) = p^n \alpha \mod p^{n+1}$ для какого-то $\alpha \in \{0, \dots, p - 1\}$, так что можно написать $f(x_{n+1}) = p^n (\alpha + f'(x_n)\delta) \mod p^{n+1}$. Значит, чтобы получить $f(x_{n+1}) = 0 \mod p^{n+1}$, необходимо выполнить равенство $\alpha + f'(x_n)\delta = 0 \mod p$. Но $f'(x_n) = f'(x_0) \neq 0 \mod p$, так что имеем право положить $\delta = -\alpha/f'(x_0) \mod p$.

Лемма Гензеля

ЛЕММА: (К. Гензель, 1897) Пусть многочлен f(x) с целыми коэффициентами имеет простой корень по модулю p. Тогда он имеет простой корень по любому модулю p^n .

Иначе говоря, простой корень многочлена с целыми коэффициентами поднимается в пополнение $\mathbb Z$ в идеале (p) — кольцо p-адических чисел. Это полное локальное кольцо характеристики 0. Его поле вычетов — $\mathbb F_p$.

ДОКАЗАТЕЛЬСТВО: Пусть $f(x_n) = 0 \mod p^n$, $x_n \in \{0, \dots, p^n - 1\}$. Будем искать x_{n+1} в виде $x_n + p^n \delta$, $\delta \in \{0, \dots, p - 1\}$. Распишем по биному Ньютона: $f(x_{n+1}) = f(x_n) + p^n \delta f'(x_n) \mod p^{n+1}$. Но $f(x_n) = p^n \alpha \mod p^{n+1}$ для какого-то $\alpha \in \{0, \dots, p - 1\}$, так что можно написать $f(x_{n+1}) = p^n (\alpha + f'(x_n)\delta) \mod p^{n+1}$. Значит, чтобы получить $f(x_{n+1}) = 0 \mod p^{n+1}$, необходимо выполнить равенство $\alpha + f'(x_n)\delta = 0 \mod p$. Но $f'(x_n) = f'(x_0) \neq 0 \mod p$, так что имеем право положить $\delta = -\alpha/f'(x_0) \mod p$.

ЗАМЕЧАНИЕ: Это доказательство работает и для многочленов с коэффициентами в \mathbb{Z}_p .

Гензелевы кольца

ОПРЕДЕЛЕНИЕ: Пусть (A, \mathfrak{m}) — локальное кольцо. Оно называется гензелевым, если для всякого многочлена $f(x) \in A[x]$ корень многочлена f mod \mathfrak{m} поднимается до корня f.

Гензелевы кольца

ОПРЕДЕЛЕНИЕ: Пусть (A, \mathfrak{m}) — локальное кольцо. Оно называется **гензелевым,** если для всякого многочлена $f(x) \in A[x]$ корень многочлена f mod \mathfrak{m} поднимается до корня f.

ПРЕДЛОЖЕНИЕ: Полные локальные кольца гензелевы.

ПРИМЕР: Кольцо $\mathbb{C}[[t]]$ гензелево. Иначе говоря, если $f_t(x) \in \mathbb{C}[[t]][x]$ — многочлен, коэффициенты которого — степенные ряды, и x_0 — корень $f_0(x)$, то он продолжается до степенного ряда x_t такого, что $f_t(x_t) = 0$. Иначе говоря, гензелевость — алгебраическая версия **теоремы о неявных функциях.**

Гензелевы кольца

ОПРЕДЕЛЕНИЕ: Пусть (A, \mathfrak{m}) — локальное кольцо. Оно называется **гензелевым,** если для всякого многочлена $f(x) \in A[x]$ корень многочлена f mod \mathfrak{m} поднимается до корня f.

ПРЕДЛОЖЕНИЕ: Полные локальные кольца гензелевы.

ПРИМЕР: Кольцо $\mathbb{C}[[t]]$ гензелево. Иначе говоря, если $f_t(x) \in \mathbb{C}[[t]][x]$ — многочлен, коэффициенты которого — степенные ряды, и x_0 — корень $f_0(x)$, то он продолжается до степенного ряда x_t такого, что $f_t(x_t) = 0$. Иначе говоря, гензелевость — алгебраическая версия **теоремы о неявных функциях.**

ПРИМЕР: Кольцо формальных рядов от двух переменных, удовлетворяющих алгебраическому уравнению, **гензелево**, но не полно.

ЗАМЕЧАНИЕ: Иначе говоря, гензелевость — аналог алгебраической замкнутости для локальных колец.

Гензелевы кольца

ОПРЕДЕЛЕНИЕ: Пусть (A, \mathfrak{m}) — локальное кольцо. Оно называется **гензелевым,** если для всякого многочлена $f(x) \in A[x]$ корень многочлена f mod \mathfrak{m} поднимается до корня f.

ПРЕДЛОЖЕНИЕ: Полные локальные кольца гензелевы.

ПРИМЕР: Кольцо $\mathbb{C}[[t]]$ гензелево. Иначе говоря, если $f_t(x) \in \mathbb{C}[[t]][x]$ — многочлен, коэффициенты которого — степенные ряды, и x_0 — корень $f_0(x)$, то он продолжается до степенного ряда x_t такого, что $f_t(x_t) = 0$. Иначе говоря, гензелевость — алгебраическая версия **теоремы о неявных функциях.**

ПРИМЕР: Кольцо формальных рядов от двух переменных, удовлетворяющих алгебраическому уравнению, **гензелево**, но не полно.

ЗАМЕЧАНИЕ: Иначе говоря, гензелевость — аналог алгебраической замкнутости для локальных колец.

TEOPEMA: Локальное кольцо гензелево тогда и только тогда, когда всякая конечная алгебра над ним есть произведение локальных колец. ■