1 | orthogonal decomposition

An orthogonal decomposition is a way of writing some vector $v \neq 0 \in V$ as the scaled other vector $u \in V$ plus an orthogonal component

Suppose
$$u,v\in V$$
, with $v\neq 0$. Set $c=\frac{\langle u,v\rangle}{\|v\|^2}$ and $w=u-cv$. Then,
$$\langle w,v\rangle=0 \text{ and } u=cv+w$$

The important algebra is just setting up a system of equations and noticing that orthogonality implies

$$0 = \langle u - cv, v \rangle$$

$$\Rightarrow 0 = \langle u - cv, v \rangle = \langle u, v \rangle - \langle cv, v \rangle$$

$$= \langle u, v \rangle - c \langle v, v \rangle$$

$$= \langle u, v \rangle - c ||v||^2$$

which can then be solved for c

2 | motivation

If we have some vector b which is not in the column space of A (there does not exist x:Ax=b) but we still want the best "approximation", then we want to take the "closest" approximation. Suppose \hat{b} is such an approximation, then we want the norm of the difference $(b-\hat{b})$ to be minimal. Thus, we want $b-\hat{b}$ to be orthogonal to the column space of A. This motivates orthogonal decomposition.

Taproot • 2021-2022 Page 1