1

Assignment 5

Sujal - AI20BTECH11020

Download all python codes from

https://github.com/sujal100/

Probability_and_Random_variable/tree/main/exercise 5/codes

and latex codes from

https://github.com/https://github.com/sujal100/ Probability_and_Random_variable/blob/main /exercise 5/exercise 5 main tex.tex

1 Problem [GATE(2003)EC-61]

Let X and Y be two statistically independent random variables uniformly distributed in the ranges (-1, 1) and (-2, 1) respectively. Let Z = X + Y, then the probability that $[Z \le -2]$ is

(a) zero (b)
$$\frac{1}{6}$$
 (c) $\frac{1}{3}$ (d) $\frac{1}{12}$

2 Solution

Let be the probability densities of random variables X, Y and Z.

$$p_X(x) = \Pr(X = x)$$
 (2.0.1)

$$p_Y(y) = \Pr(Y = y)$$
 (2.0.2)

$$p_Z(z) = \Pr(Z = z)$$
 (2.0.3)

The pdf of Z(= X + Y) will be convolution of pdf of X and pdf of Y as shown below.

$$p[Z \le z] = \int_{-\infty}^{z} f_{Z}(z)dz$$

$$p[Z \le -2] = \int_{-\infty}^{-2} f_{Z}(z)dz$$

$$= \text{Area } [z \le -2]$$

$$= \frac{1}{2} \times \frac{1}{6} \times 1 = \frac{1}{12}$$

Hence (D) is correct option.