L'appareil respiratoire

I) Formation des voies aériennes :

-> Nait à partir du diverticule respiratoire dérivé de l'intestin primitif (partie caudale de l'intestin pharyngien) qui donne le revêtement épithélial, le reste nait à partir du mésenchyme environnant.

-> Commence à partir de 4 semaines et s'étend au-delà de la naissance

A) Diverticule respiratoire :

- -> Apparait comme une gouttière sur la face ventrale de l'intestin primitif (partie caudale de l'intestin pharyngien) à 4 semaines.
- -> Cette gouttière se transforme en tube entouré du mésenchyme qui le sépare progressivement de l'intestin primitif.
- -> Cette séparation se fait par l'apparition de replis trachéooesophagiens puis d'une cloison oeso-trachéale puis une séparation sauf au niveau de l'orifice initiale.
- -> Cette gouttière se transforme en tube rectiligne :
- à extrémité caudale borgne
- à extrémité céphalique qui reste lié à l'intestin primitif par un orifice qui sera l'orifice laryngé
- -> Si anomalie de cloisonnement Fistule oeso-trachéale qui peut être associée à une atrésie

B) Les bourgeons bronchiques :

- -> Division de l'extrémité caudale en 2 bougeons (bronches souches droite et gauche)
- -> Puis division de façon asymétriques
- en 3 bourgeons à droites (bronches lobaires droites)
- en 2 bourgeons à gauche (bronches lobaires gauches)
- -> Le segment proximal donne la trachée
- -> Les bronches lobaires se divisent de façon dichotomique (chaque bronche se divise en 2 branches) avec diminution du calibre au fur et à mesure des divisions jusqu'au bronchioles.
- -> La division bronchique s'étend de 5 semaines jusqu'à 24 semaines

C) La paroi des voies aériennes :

- -> La paroi est faite d'un épithélium d'origine endodermique mais aussi d'un tissu conjonctif avec des faisceaux de fibres musculaires lisses et du cartilage.
- -> L'origine de ces 3 dernières structures est le mésenchyme au contact du diverticule respiratoire.
- -> Il y a une induction réciproque entre mésenchyme et endoderme.

II) Stades de développement du poumon :

- -> Le parenchyme se forme progressivement autour de la voie aérienne, en 4 période successive :
- Stade pseudo-glandulaire
- Stade canalaire
- Stade sacculaire
- Stade alvéolaire

Epithélium dérivé de l'endoderme

Mésenchyme dérivé de la splanchnopleure

A) Stade pseudo-glandulaire: (6-16 semaines)

- -> L'arbre respiratoire réalise plusieurs générations (16) de ramifications aboutissant à la formation des bronchioles terminales.
- -> A 16 semaines les voies aériennes sont formées, mais pas les structures des échanges gazeux.
- -> Durant cette période l'aspect histologique du poumon ressemble à celui d'une glande exocrine d'où le nom pseudo-glandulaire.

B) Stade canalaire: (16 à 28 semaines)

- -> Cette étape correspond à la mise en place des bronchioles respiratoires et de leur réseau capillaire.
- -> Chaque bronchiole terminale se divise en 2 voir plusieurs bronchioles respiratoires.
- -> Le mésoderme qui entoure ces formations épithéliales devient très vascularisé

Bronchiole respiratoire

C) Stade sacculaire: (28 à 36 semaines)

- -> Le revêtement épithélial cubique des bronchioles respiratoires s'aplatit et leurs cavités se dilatent pour former des sacs aériens ou alvéoles primitives.
- -> Le réseau capillaire devient dense, et entre en contact étroit avec les sacs alvéolaires.

D) Stade alvéolaire : (36 semaines à 8-10 ans)

- -> Chaque sac aérien ou alvéole primitive est partiellement cloisonné donnant les alvéoles définitives
- -> La production d'alvéoles se poursuit jusqu'à l'âge de 8 ans. Environ 50 millions d'alvéoles existent dans les poumons du nouveau né à terme, contre 300 à 500 millions dans les poumons adultes. Une bronchiole respiratoire donne environ 200 alvéoles.

E) Maturation pulmonaire: (à partir de 28 semaines)

- -> Des cellules alvéolaires spécifiques, les pneumocytes de type II, sécrètent le surfactant pulmonaire, un mélange de phospholipides et de protéines tensioactives
- -> Au cours de l'expiration, il empêche l'affaissement de l'alvéole.
- -> Le surfactant s'oppose à l'extravasation du contenu des capillaire vers l'alvéole (action « anti-oedème du poumon »).
- -> L'insuffisance de la production de surfactant est la cause du syndrome de détresse respiratoire des enfants prématurés (5 à 10 % des prématurés sont atteints, les formes les plus graves se rencontrant avant 32 semaines), appelé aussi maladie des membranes hyalines (MMH).
- -> Différentes hormones stimulent la synthèse de surfactant et accélèrent ainsi la maturation pulmonaire fœtale. Parmi ces hormones : les glucocorticoïdes. En cas de risque, d'accouchement prématuré, l'administration de glucocorticoïdes pourrait prévenir la MMH.

Stade canalaire

Stade alvéolaire

III) Physiologie de la respiration fœtale :

- -> Avant la naissance le poumon n'assure aucun échange gazeux. L'hématose est assurée par le poumon maternel, via le placenta.
- -> Les espaces pulmonaires sont remplis de liquide sécrété par les cellules alvéolaires.
- -> Les mouvements respiratoires du fœtus (présents vers 14 semaines) expulsent ce liquide dans la cavité amniotique. Le liquide amniotique : 20% liquide pulmonaire + 80% l'urine fœtale.
- -> Au moment de la naissance, le liquide présent dans le poumon est éliminé par 2 voies :
- 1/3 du liquide est expulsé au moment de l'accouchement du fait de la pression exercée sur la cage thoracique du nouveau-né.
- 2/3 restants sont absorbés par les capillaires sanguins et lymphatiques qui entourent les alvéoles et les bronches.
- -> Des mouvements respiratoires apparaissent à partir de 14 semaines. Ces mouvements n'ont, bien entendu, aucun rôle dans les échanges gazeux, mais ils permettent d'entraîner les muscles respiratoires qui doivent être opérationnels dès la naissance.

IV) Anomalies pulmonaires:

A) Hypoplasie des poumons :

- -> Réduction du nombre de segments ou de sacs terminaux, selon le stade du développement qui a été perturbé.
- -> Elle est secondaire dans 80% des cas à une :
- · Compression du thorax par l'utérus maternel en cas d'oligoamnios
- · Compression du thorax par le liquide amniotique en cas de hydramnios
- Compression du tissu pulmonaire par une masse intra-thoracique : malformation kystique du poumon, hernie diaphragmatique congénitale.
- Réduction des mouvements respiratoires fœtaux en cas de :
- myopathie congénitale
- malformations du SNC

B) Malformation adénomatoïde kystique du poumon (MAKP) :

- -> Elle représente 1/4 des malformations congénitales des poumons
- -> Il s'agit de masses intra-pulmonaires constituées d'une prolifération excessive de bronchioles terminales sans formations alvéolaires

C) Autres anomalies:

- -> Agénésie pulmonaire : absence de développement d'un ou des deux bourgeons pulmonaires.
- -> Résultat : absence d'un ou des deux poumons.

