Questions and Algorithms for Lab-2

1- Reverse the array of given size	'n' by using	the tem	porary vai	riable.
2- Write a program to print union	and interse	ction of	two array	of 'n' dimension.
3- Consider two-dimensional array following operations on array	y of MXN di	mensior	n. Insert th	e element in matrix and perform the
a) Display the transpose o	f array			
b) Calculate and display th	ne addition (of two 2	D Matrix	
c) Calculate and display th	ne multiplica	ntion of	2D array	
4- Consider the following scenario	for a squar	e matrix	(
	1	2	3	
	4	5	6	
	7	8	9	
Once the square matrix is rotated				
i) by 90 degree in a clockwise dire	ction then t	he trans	sformed m	atrix will be as follows
	7	4	1	
	8	5	2	
	9	6	3	
ii) by 180 degree in a clockwise di	rection will l	lead to f	ollowing	
	9	8	7	
	6	5	4	
	3	2	1	
iii) by 90 degree in a anti-clockwis	e direction t	then the	transforn	ned matrix will be as follows
	3	6	9	
	2	5	8	
	1	4	7	
ii) Matrix rotation by 180 degree i	n anti-clock	wise dir	ection will	lead to following
	9	8	7	
	6	5	4	
	3	2	1	
Write a program for the above-me	entioned sce	enarios.	(Use both	brute force and in-place approach):

CSE2011- Data Structures and Algorithm

In-place algorithms: are the algorithms that does not takes extra memory in order to perform the task; except few constant additional memory requirements.

1st approach: using brute force approach using extra space and using the observation

Algorithm:

Rotate(Arr,dim)

Step-1 create one temporary matrix with same dimension

Step-2 for i=0 to dim

Step-3 for j=0 to dim

Step-4 ArrTemp[j][n-i-1]=Arr[i][j];

Step-5 end inner loop

Step-6 end outer loop

Step-7 Exit

2nd Approach: using Transpose and Rotation

Logic: Transpose → rotation

Algorithm:

Rotate(Arr,dim)

Step-1 for i=0 to dim

Step-2 for j=0 to dim

Step-3 Swap Arr[j][i] with Arr[i][j]//Transpose

Step-4 end inner loop

Step-5 end outer loop

Step-6 for i=0 to dim

Step-7 for j=0 to dim/2

Step-8 Swap Arr[i][j] with Arr[i][dim-j-1]

Step-9 end inner loop

Step-10 end outer loop

- 5- Create Sparse Matrix as Triplet representation and perform following operation
- i) Print new representation of sparse matrix
- ii) Addition operation of 2 sparse matrix
- iii) Transpose of sparse matrix

CSE2011- Data Structures and Algorithm

Logic: count the non zero element present in the array. create one matrix of size 3X[count].

Algorithm

SparseMatrix(Arr, row,col)

Step-1 declare and initialize count

Step-2 for i=0 to row

Step-3 for j=0 to col

Step-4 if arr[i][j] is the non zero element

Increment count

Step-5 end inner loop

Step-6 end outer loop

Step-7 define the matrix of size 3Xsize and k=0

Step-8 for i=0 to row

Step-9 for j=0 to col

Step-10 if arr[i][j] is the non zero element

SparseMat[0][k]=row;

SparseMat[1][k]=col; SparseMat[2][k]=Arr[i][j]

Increment k

Step-11 end outer loop

Step-12 end inner loop

Step-13 for i=0 to 2

Step-14 for j=0 to size

Print SparseMat[i][j];

End inner loop

End outer loop

Step-15 exit