Lesson Plan					
Teacher: Abigail Gogan	Course: Analysis & Approaches	Date: N/A			
Subject Group: Mathematics	Topic: Functions	Grade: 11			

Content 2.2:

- Functions, domain, range, graph
- Function notation and seeing a function as a mathematical model
- Inverse functions, $f^{-1}(x)$ notation, and understanding them as the reverse/undoing of a function
- Inverse function as a reflection of a function over the line y=x
- Mention command terms *plot*, *label*

Lesson Objective: introduce function notation, identifying domain and range, reading graphs and graphing functions, finding the inverse of a function, understanding the relationship of an inverse to its original function

Required Materials: <u>worksheet</u>, <u>desmos.com</u> (unless class has access to graphing calculators?), <u>geogebra.com</u>

DAY 1

Warmup / Hook (10 Minutes):

- Display on board: y = f(input) = output in terms of input = output in simple terms
- Give silly example like *make word plural function*: y = f(word) = plural version of word and have students "calculate" f(question), f(tooth), f(deer) and ask for answers/explain why they are questions, teeth, deer
- Note that the placeholder word functions the same way as a variable like x would

Introduction / Opener (10 Minutes): [Review - Activate - Recap]

- Hand out daily problems that were marked last day
- Anonymous peer assessment of last day's daily problem. Hand out the papers randomly and have students hand them back after the assessment.

Body (20 Minutes):

- Introduce numerical example like *double number function*: y = f(number) = number *2 and have them calculate f(3), f(5), f(0.5) and ask for answers/review why they are 6, 10, 1
- Make concise statement about how a function in its general form tells us something to do
 with a number. A function with a variable input will usually output some altered version of
 that number.
- Have them try to calculate y = f(x) using the double number function. Answer should be y = f(x) = 2x, which is just the general form of the function because we never specified what number x was a placeholder for
- Have them now calculate y = f(4) using the function we just defined.

- If we define a new function to be q(x) = 3x + 2:
 - describe this function in words, like how we described the double number function
 - have them calculate y = g(4)
- walk through how to check whether a function contains a certain coordinate:
 - given general form and coordinates, for example f(x) = (1/2)x + 5, (4, 8) and (10, 10)
 - Plug the x value into the function and solve: $f(4) = (\frac{1}{2})4 + 5 = 2 + 5 = 7 \neq y$ so **no**
 - If output matches y value, then coordinate is in function, if different then it is not
 - Next: $f(10) = (\frac{1}{2})10 + 5 = 5 + 5 = 10 = y$ so **yes**

Closure (10 mins):

Example of functions being used as a mathematical model:

- Video: Making a polynomial regression for a line of music
- Video: Rush E in Desmos
- ask class: what is the *x-axis* representing? (time) The *y-axis*? (pitch)
- Video: Never gonna give you up in Desmos

Assessment (10 mins): (how will you know that the lesson objective has been achieved?)

Daily problem: Students write their names on the paper with invisible ink!

- define a function that contains the points (x, y) = (2, 6) and (x, y) = (3, 10), ie. a function that satisfies $(2, 6) \in f(x)$ and $(3, 10) \in f(x)$

Reflection:

DAY 2

Warmup / Hook (10 Minutes):

- What is the difference between 3*0 and 3/0?
- What about $\sqrt{2}$ and $\sqrt{(-2)}$?
- Think-pair-share with neighbour, eventually share answers as a class
- Explain direct association with 3/0 not being allowed and x=0 not being allowed as input in f(x) = 3/x ("allowed" = definable)
- Defining $g(x) = x^2$, what value of x gives us g(x) = -2?
- Think-pair-share with neighbour
- Similarly to before, it is impossible to find a (real) input g(?) that would give us the output g(?) = -2 meaning it is an undefined output

Introduction / Opener (5 Minutes): [Review - Activate - Recap]

- Hand out daily problems that were marked last day
- Anonymous peer assessment of last day's daily problem. Hand out the papers randomly and have students hand them back after the assessment.
- Students plug the two coordinate pairs into the function and verify whether they both satisfy the equality

Body (30 Minutes):

- Back to intro example, we identified that:
 - x = 0 is not a valid input for the function f(x) = 3/x but all other inputs are definable
 - This actually tells us what is called **domain**: "x (input) can be anything except for 0"
 - y = g(?) = -2 is not a valid output of the function $g(x) = x^2$
 - using <u>desmos.com</u> we can observe that no negative numbers are valid outputs of this function. this tells us about what is called **range**: "y (output) can be any non-negative number"
- The way I remember which one goes with which variable is that we always say "domain and range" and we always write coordinates as (x, y). can also imagine f(domain) = range
- Bracket notation:
 - exclusive () works like < and >
 - D: (3, 4) is equivalent to 3 < x < 4
 - inclusive [] works like ≤ and ≥
 - R: [5, 6] is equivalent to $5 \le y \le 6$
- have class try examples $R: [0, \infty)$ and $6.9 < x \le 7.5$
- on <u>desmos.com</u>, graph A: $\sqrt{(x^2 + (y 1)^2)} = 2$ and B: y = sinx 3 have students define domain and range for both
 - answer: (A) D: [-2, 2], R: [-1, 3] and (B) D: (-∞, ∞), R: [-4, -2]

15 min lecture ↑, 15 min activity ↓

- have students gather in groups of 3-4. Using <u>geogebra.com</u> to graph functions quickly, each group must find a function with one of the following domain and range pairs:
 - D: (-∞, ∞), R: [0, ∞)
- D: [0, ∞), R: [0, ∞)
- D: [1, 3], R: [-5, -3] -
- D: $(-\infty, \infty)$, R: [-3, 3]
- some function ideas to help groups get started (display on the board after 5 mins in groups):

-
$$y = x^2$$
, $y = \sqrt{x}$, $y = |x|$, $y = \sin x$, $y^2 + x^2 = 1$, $y = -x$, $y = 1/x$, $y = \ln x$, $y = 3^x$

- Have students write their answers on the board (to be graphed) and explain their process for deciding on their functions. possible answers:
 - y = |x|

- $V = \sqrt{X}$
- $(x-2)^2 + (1/4)y^2 = 1$
- y = 3sinx

Closure (5 Minutes):

- If needed, fix any of the functions that didn't quite satisfy the given domain and range
- Mention things like public domain (ideas that anyone can use without copyright, input of ideas into other art), field goal range (distance of a football kicker, output of kick)

Assessment (10 minutes): (how will you know that the lesson objective has been achieved?)

Daily problem: Students write their names on the paper with invisible ink!

- what is the range of the function y = f(x) = 4? try graphing it on scrap paper/the back of your paper if you are stuck
- are the following statements the same? explain using bracket notation:
 - x is any non-negative number

- x is any positive number

Reflection:

DAY 3

Warmup / Hook (10 Minutes):

Have students do this independently and then compare with a neighbour afterwards:

- Define a function which takes in a number and outputs that number plus 1
 - (answer) f(x) = x + 1
- Display on the board: what is the opposite of adding 1 to a number?
 - (answer) *subtracting 1 from a number*
- Define a function which takes in a number and outputs the opposite of adding 1 to that number
 - (answer) g(x) = x 1; note the importance of choosing a new letter so that we don't get the functions confused with one another
- Have students compare answers with a neighbour

Introduction / Opener (5 Minutes): [Review - Activate - Recap]

- Hand out daily problems that were marked last day
- Anonymous peer assessment of last day's daily problem. Hand out the papers randomly and have students hand them back after the assessment.
- answers are R: [4, 4] and no, because of the 0 in the middle; D: $[0, \infty)$ versus D: $(0, \infty)$

Body (30 Minutes):

- Go through examples of finding inverse of a function using the switching variables trick
 - y = f(x) = x + 2, switch to x = y + 2, rearrange to get inverse y = x 2
 - y = g(x) = x/4, switch to x = y/4, rearrange to get inverse y = 4x
- model inverse function notation: $f^{-1}(x) = x 2$, $g^{-1}(x) = 4x$
- note that worksheet contains terms *plot* and *label*
 - define *plotting a point* as calculating a coordinate pair that exists in the function and accurately placing it on the graph
 - define *labelling* as writing on your graph the following: title, x-axis, y-axis, horizontal axis title, vertical axis title, units/scale and sketch out an example on board
- inductive definition of function inverse (worksheet) (20 mins)

Closure (5-10 Minutes):

- Ask for groups' final observations/similarities
- If groups are not getting there, ask for any special observations about the diagonal line *y=x* (draw it on the board for reference)
- Reiterate that though it doesn't work for 100% of functions, usually the inverse of a function just looks like the regular function if it were mirrored across the y = x line
- if students need more explanation, draw an example like f(x) = 3x 4 and $f^{-1}(x) = (1/3)(x + 4)$

Assessment (5-10 minutes): (how will you know that the lesson objective has been achieved?)

Daily problem: Students write their names on the paper with invisible ink!

- if we try to find the inverse of an inverse function (ie. the inverse of the inverse of a function), what do we get? Explain your reasoning using examples of both written functions and graphs.

				•	
ъ	ef	ΙО	ct	10	'n
	ч	ıc	•	ш	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,