

MONASH INFORMATION TECHNOLOGY

The Relational Database Model

https://powcoder.com

Add WeChat powcoder

Overview

We now have a conceptual model for Monash Software, it is time to move to the second stage and map this to a logical model Assignment Project Exam Help

https://powcoder.com
For our unit this will involve mapping to the Relational
Model in preparation for the Relationship in a RDBMS

- Relational Model
- Relational Algebra

The Relational Model

- Introduced by CODD in 1970 the fundamental basis for the relational DBMS
- Basic structure is the mathematical concept of a RELATION mapped to the 'concept' of a table (tabular representation of relation)
 - Relation abstract object
 - Table pietosaigemeenta Project Exam Help
 - Storage structure "real thing" eg. isam file of 1's and 0's
- Relational Model Terrhinglesy/powcoder.com
 DOMAIN set of atomic (indivisible) values
 - - specify - name Add WeChat powcoder
 - data type
 - data format
- Examples:
 - customer number domain 5 character string of the form xxxdd
 - name domain 20 character string
 - address domain 30 character string containing street, town & postcode
 - credit_limit domain money in the range \$1,000 to \$99,999

A Relation

- A relation consists of two parts
 - heading
 - body
- Relation Heading:
 Also called Relational Schema consists of a fixed set of attributes
 - - R (A1,A2,.....An),
 - R = https://paewcedenbuein
 - Each attribute corresponds to one underlying domain:
 - Customer Action Wheelingt powcoder
 - CUSTOMER (custno, custando, credlimit)
 - » dom(custno) = customer_number
 - » dom(custname) = name
 - » dom(custadd) = address
 - » dom(credlimit) = credit_limit

custno	custname	custadd	credlimit
--------	----------	---------	-----------

Relation Body

Relation Body

- Also called Relation Instance (state of the relation at any point in time)
 - $r(R) = \{t1, t2, t3, ..., tm\}$
 - consists of a time-varying set of n-tuples
 - Relation R consists of tuples t1, t2, t3, tm
 - Assignmentulicojectationamorticip
 - each n-tuple is an ordered list of n values
 - t = < v1, v2httpsn/powcoder.com
 - n = number of values in tuple (no of attributes) = relation degree
- In the tabular representation hat powcoder
 - Relation heading of column headings
 - Relation body ⇒ set of data rows

CI	ustno	custname	custadd	credlimit	
	SMI13	SMITH	Wide Rd, Clayton, 3168	2000	
	JON44	JONES	Narrow St, Clayton, 3168	10000	
	BRO23	BROWN	Here Rd, Clayton, 3168	10000	

Relation Properties

- No duplicate tuples
 - by definition sets do not contain duplicate elements
 - · heaceituplasmustbecumaum Help
- Tuples are unordered within a relation https://powcoder.com
 by definition sets are not ordered
 - - hence the batypbevacces sed by content
- No ordering of attributes within a tuple
 - by definition sets are not ordered

Relation Properties cont'd

- Tuple values are atomic cannot be divided
 - EMPLOYEE (eid, ename, departno, dependants)
 - Assignment Project Exam (depname, depage) multivalued
- hence no httptsvalprev (repeating) attributes allowed, called the first normal form rule

 Add WeChat powcoder

 COMPARE with tabular representation
- - normally nothing to prevent duplicate rows
 - rows are ordered
 - columns are ordered
 - tables and relations are not the same 'thing'

Q1. Which of the following statements is TRUE according the characteristics of the relational model?

- All Aaluegimae attribute cee Etochen fletelthe same domain.
- Each atthictios ne possy conderacion inct name. В.
- The order of attributes and tuples matters.

 Each intersection of a attribute and a tuple represent a single value.
- More than one statement is TRUE F.

Functional Dependency

Functional Dependency:

- A set of attributes A functionally determines an attribute B if, and only if, for each A value, there is exactly one value of B in the relation. It is denoted as A → B (A determines B, or B depends on A)

 • order_no → B (A determines B, or B depends on A)

 • order_no → B (A determines B, or B depends on A)

 - prod_no → prod_deșc
 - order_no, plattps://paywaeder.com

♦ ORDERNO	♦ ORDERDATE
10	01/MAY/19
11	02/MAY/19
12	03/MAY/19
13	04/MAY/19
14	04/MAY/19
15	05/MAY/19
16	06/MAY/19

Add WeChat pow

LINEPRICE	QTYORDERED	PRODNO	ORDERNO :
11.98	1	101	10
11.98	1	101	11
123.58	2	103	11
479.8	10	104	12
140.36	2	105	13
31.99	1	106	14
116.73	3	107	15

PRODNO PRODDESC	# PRODUNITPRICE
101 Salmon - Smoked, Sliced	11.98
COto Carlinni – Gaylan, Chinese	80.75
103 Pasta - Lasagne, Fresh	61.79
104 Melon - Cantaloupe	47.98
105 Wine - Peller Estates Late	70.18
106 Peas - Pigeon, Dry	31.99
107 Pumpkin - Seed	38.91

Relational Model Keys

- A **superkey** of a relation R is an attribute or set of attributes which exhibits only the uniqueness property
 - No two tuples of R have the same value for the superkey (Uniquenessing prentent Project Exam Help

- t1[superkey] ≠ t2[superkey]
 https://powcoder.com
 A candidate key CK of a relation R is an attribute or set of attributes which exhibits the following properties:
 - Uniqueness property (as above), and

Potentially many possible candidate keys

- No proper subset of CK has the uniqueness property (Minimality or Irreducibility property) ie. a minimal superkey
- One candidate key is chosen to be the primary key (PK) of a relation. Remaining candidate keys are termed alternate keys (AK).

Only ONE primary key (may be composed of many attributes - a composite primary key)

Q2. Given the following relation:

```
EMPLOYEE (empno, empname, empsalary, emptaxfileno) empno - employee number empname - employee name empsalary - employee salary emptaxfileno employee tax file number
```

Possible superkehtspare/powcoder.com

- A. empno, empname empsalary emptaxfilenno
- B. empno
- C. emptaxfileno, empname
- D. empname
- E. B and C
- F. A, B and C
- G. A, B, C and D

Q3. Given the following relation:

```
empno - employee number empname - employee name empname - employee name empsalary - employee salary emptaxfileno emptaxfileno employee salary emptaxfileno employee tax file number
```

How many candidates skelpowist der.com

- A. 0
 B. 1

 Add WeChat powcoder
- C. 2
- D. 3
- E. 4

Q4. Given the following relation:

```
empno - employee number empname - employee name empname - employee name empsalary - employee salary emptaxfileno emptaxfileno employee salary emptaxfileno employee tax file number
```

How many primarlythess / pistocoder.com

- A. 0
 B. 1

 Add WeChat powcoder
- C^{2}
- D. 3
- E. 4

Selection of a Primary key

- A primary key must be chosen considering the data that may be added to the table in the future
 - Names, dates of birth etc are rarely unique and as such are not a good option

 Option
 Assignment Project Exam Help
 - PK should be free of 'extra' semantic meaning and security compliant, preferably a single attribute, preferably numeric (see Table 5.3 Coronel & Morris)
 - Add WeChat powcoder
 Natural vs Surrogate primary key
 - PATIENT_TREATMENT (patient_id, physician_id, treatment_code, pt_date, pt_time, pt_result)
 - Superkey
 - CK
 - PK
 - Issues with PK?

TABLE 5.3					
	DESIRABLE PRIMARY KEY CHARACTERISTICS				
PK CHARACTERISTIC	RATIONALE				
Unique values	The PK must uniquely identify each entity instance. A primary key must be able to guarantee unique values. It cannot contain nulls.				
Nonintelligent	The PK should not have embedded semantic meaning other than to uniquely identify each entity instance. An attribute with embedded semantic meaning is probably better used as a descriptive characteristic of the entity than as an identifier. For example, a student ID of 65097 Topuld be preferred over Smith Martina Las a primary key identifier.				
No change over time	If an attribute has semantic meaning, it might be subject to updates which is why names do not make good primary keys. If Vickie Smith is the primary key, what happens if she changes her name when she gets married? If a primary key is subject to change, the foreign key values must be updated thus adding to the database work load. Furthermore, changing a primary key value means that you are baseally changing the identity of an entity. In short, the PK should be permanent and unchangeable.				
Preferably single-attribute	A primary key should have the minimum number of attributes possible (irreducible). Single-attribute primary keys are desirable but not required. Single-attribute primary keys simplify the implementation of foreign keys. Having multiple-attribute primary keys can cause primary keys of related entities to grow through the possible addition of many attributes, thus adding to the database workload and making (application) coding more cumbersome.				
Preferably numeric	Unique values can be better managed when they are numeric, because the database can use internal routines to implement a counter-style attribute that automatically increments values with the addition of each new row. In fact, most database systems include the ability to use special constructs, such as Autonumber in Microsoft Access, sequence in Oracle, or uniqueidentifier in MS SQL Server to support self-incrementing primary key attributes.				
Security-compliant	The selected primary key must not be composed of any attribute(s) that might be considered a security risk or violation. For example, using a Social Security number as a PK				

in an EMPLOYEE table is not a good idea.

Null in the Relational Model

- NULL is NOT a value is a representation of the fact that there is NO VALUE
- Reasons for a NULL:
 - VALUE NOT APPLICABLE empho, deptho, salary, commission
 - - commission only applies to staff in sales dept
 - VALUE UNKINOTOR://powcoder.com
 - Joe's salary is NULL, Joe's salary is currently unknown
 - VALUE DOESANDI TWECHAt powcoder
 - Tax File Number is applicable to all employees but Joe may not have a number at this time
 - VALUE UNDEFINED -
 - Certain items explicitly undefined eg. divide by zero
 - Columns Number of payments, Total payments
 - Column Average payment made
 - If Number of payments = 0 => Average undefined

Writing Relations

- Relations may be represented using the following notation:
 - RELATION NAME (attribute 1 attribute 2,...)
- The primary keytipsin permoder.com
 - Add WeChat powcoder
- Example:
 - STAFF (<u>staffid</u>, surname, initials, address, phone)

Relational Database

- A relational database is a collection of normalised relations.
- Normalisation is part of the design phase of the database and will be discussed in a later lecture.

https://powcoder.com

Example relational database:
Add WeChat powcoder

ORDER (order id, orderdate,)

ORDER LINE (order id, product_id, quantity)

PRODUCT (product id, description, unit price)

Foreign Key (FK)

- FK: An attribute/s in a relation that exists in the same, or another relation as a Primary Key.
- Referential Integrity
- A ForeigigKeycvaRue jacts Esither In atch the full primary key in a relation or be NULL.
 The pairing of PK and FK creates relationships (logical)
- The pairing of PK and FK creates relationships (logical connections) between tables when implemented in a RDBMS. Hence the abstraction away from the underlying storage model.

EMPNO	ENAME	JOB	DEPTNO	DEPTNO	DNAME	LOC	
7839	KING	PRESIDENT	10	10	ACCOUNTING	NEW YORK	
7698	BLAKE	MANAGER	30	20	RESEARCH	DALLAS	
7782	CLARK	MANAGER	10	30	SALES	CHICAGO	
7566	JONES	MANAGER	20	40	OPERATIONS	BOSTON	
			Δ	A			

MANAGER

	PROJECT_MANAGER	MANAGER_PHONE	MANAGER_ADDRESS
•	Holly B. Parker	904-338-3416	3334 Lee Rd., Gainesville, FL 37123
	Jane D. Grant	615-898-9909	218 Clark Blvd., Nashville, TN 36362
	George F. Dorts	615-227-1245	124 River Dr., Franklin, TN 29185
	vVilliam K. Moor	904-445-2719	216 Morton Rd., Stetson, FL 30155

PROJECT

	PROJECT_CODE	PROJECT_BID_PRICE
•	21-5Z	\$16,833,460.00
	25-2D	\$12,500,000.00
	25-5A	\$32,512,420.00
	25-9T	\$21,563,234.00
ļ	27-4Q	\$10,314,545.00
	29-2D	\$25,559,999.00
i i	31-7P	\$56,850,000.00

Assignment Project Exam Help
Q5. If the above two tables are to be created in a relational database, in which table would you assign the FK (and using which attribute) to create the logical link? For our specified we have a final ager may manage many projects and a project can only be managed by one manager. A manager's name (project_manageAdod We create powerous ere considered to be unique for this example:

- A. MANAGER table using project_manager attribute.
- B. PROJECT table using project_code attribute.
- C. MANAGER table using manager_phone attribute.
- D. PROJECT table using project_manager attribute
- E. None of the above, a relationship is not needed.

Q6. Where are the foreign keys in these two relations? Note: a supervisor is a staff member

STAFF (staff_id, surname, initials, address, phone, dept_id, supervisor_id)

DEPARTMENT(signature dept_resident)

DEPARTMENT(signature dept_resident)

- A. dept_idittptaff/platiocoder.com
- B. dept_id in department relation.
- c. staff id Adda We Chat powcoder
- D. supervisor_id in staff relation.
- E. More than one answer is correct

Data Integrity

- Entity integrity
 - Primary key value must not be NULL.
 - Note of the property of the property of the primary key must be unique
- Referential integrity://powcoder.com
 - The value and FW accept the related relation or be NULL.
- Column/Domain integrity
 - All values in a given column must come from the same domain (the same data type and range).

MANAGER

PROJECT

PROJECT_MANAGER	MANAGER_PHONE	MANAGER_ADDRESS
Holly B. Parker	904-338-3416	3334 Lee Rd., Gainesville, FL 37123
Jane D. Grant	615-898-9909	218 Clark Blvd., Nashville, TN 36362
George F. Dorts	615-227-1245	124 River Dr., Franklin, TN 29185
vVilliam K. Moor	904-445-2719	216 Morton Rd., Stetson, FL 30155

	PROJECT_CODE	PROJECT_MANAGER	PROJECT_BID_PRICE
•	21-5Z	Holly B. Parker	\$16,833,460.00
	25-2D	Jane D. Grant	\$12,500,000.00
	25-5A	George F. Dorts	\$32,512,420.00
	25-9T	Holly B. Parker	\$21,563,234.00
	27-4Q	George F. Dorts	\$10,314,545.00
	29-2D	Holly B. Parker	\$25,559,999.00
	31-7P	William K. Moor	\$56,850,000.00

Q7. Suppose that the manager: William K. Moor leaves the Assignment Project Exam Help company and we delete his record from the manager table. Which of the following actions will satisfy the data integrity constraints?

- A. The last row in PROJECT table must be deleted

 B. The PROJECT_MANAGER value in the last row of
- B. The PROJECT_MANAGER value in the last row of PROJECT table must be set to NULL (empty) ✓
- C. The PROJECT_MANAGER value in the last row of PROJECT table must be set to any string (e.g., "XYZ") X
- D. The options a and b
- E. All of the above

Relational DMLs

- Relational Calculus
- Relational Algebra
- Transform Agright ade han Towage Steam Stoll)
- Graphical Languages

 https://powcoder.com

 Exhibit the "closure" property queries on relations produce relationed WeChat powcoder

Relational Calculus

- Based on mathematical logic.
- Non-procedural.
- Primarily of the paration importance am Help
- May be used as a yardstick for measuring the power of other relational tanguages ("relational completeness").
- Operators may the applied to any pumber of relations.

Assignment Project Exam Help RA

https://powcoder.com

Mand Washat powerdenal data

Relational Algebra

- Relationally complete.
- Procedural.
- Operators Apply apprento Patore strive relations at a time.
- 8 basic operations:
 https://powcoder.com
 single relation: selection, projection
 - cartesian produkte Chrat powcoder
 - union
 - intersection
 - difference
 - division

Relational Operation PROJECT

π Assignment Project Exam Help

nno il rettrone	Manual	THAT STIES DOLLAR
PKOJET LICON	//powcode	PROJECTION PRICE
21-5Z	Holly B. Parker	\$16,833,460.00
25-2D Add	WeChat no	WESHERO
25-5A	WeChat po George F. Dorts	\$32,512,420.00
25-9T	Holly B. Parker	\$21,563,234.00
27-4Q	George F. Dorts	\$10,314,545.00
29-2D	Holly B. Parker	\$25,559,999.00
31-7P	William K. Moor	\$56,850,000.00

Relational Operation SELECT

σ

Assignme	ent Project J	Exam Help
	2000	NEW PROPERTY AND
25 Littps	Holly B. Parker //powisitode	r.com,000,000.00
25-5A	George F. Dorts	\$32,512,420.00
25- Add	WeChat po	wcoder34.00
27-4Q	George F. Dorts	\$10,314,545.00
29-2D	Holly B. Parker	\$25,559,999.00
31-7P	vVilliam K. Moor	\$56,850,000.00

Relational Operation Multiple Actions

Result = $\pi_{project_manager}(\sigma_{project_code=25-5A}PROJECT)$

SQL vs Relational Algebra in the Database

STUDENT

course	name	sid
BE	Anne	21333
BE	Dave	21876
BSc	John	21531
BSc	Tim	21623

MARK

stude	subj	mark
21333	1011	74
21333	1021	70
21333	2011	68
21531	1011	94
21531 T	1001	an

Assignment Project Exam Help

50

Q8. Which of the holy syllogy the student ids of the students who got more than 70 marks in the subject 1011.

- A. σ Add WeChmapewycoder
- B. $\sigma_{\text{mark} > 70}$ (MARK)
- C. $\sigma_{\text{mark} > 70 \text{ AND subj} = 1011} (\pi_{\text{stude}} (\text{MARK}))$
- $\sigma_{\text{mark} > 70 \text{ AND subi} = 1011} \text{ (MARK)}$
- E. $\pi_{\text{stude}} (\sigma_{\text{mark} > 70 \text{ AND subj} = 1011} (\text{MARK}))$

JOIN

- Join operator used to combine data from two or more relations, based on a common attribute or attributes.
- Different types: - Different types: - Project Exam Help
 - theta-join
 - equi-join https://powcoder.com
 - natural join dd WeChat powcoder
 - outer join

THETA JOIN (Generalised join)

(Relation_1) $\bowtie_{\scriptscriptstyle F}$ (Relation_2)

- F is a Apreidinate (it Privite tvalued fliet) in which is of the form Relation_1.a, θ Relation2.b, https://powcoder.com
 • CUSTOMER.cust_no θ ORDER.cust_no
- θ is one of the Mardant arithmedic comparison operators, i.e. <, \le , =, \ge , >
- Most commonly, θ is equals (=), but can be any of the operators
 - EMPLOYEE.emp sal > SALARYSCALE.step 5

STUDENT

course	name	sid
BE	Anne	21333
BE	Dave	21876
BSc	John	21531
BSc	Tim	21623

MARK

stude	subj	mark
21333	1011	74
21333	1021	70
21333	2011	68
21531	1011	94
	T 1	

Assignment Project I

Exiam I	Help	90
21623	1011	50

Q9. How many rows are generated when the product (Cartesian Product) of the STUDENT and MARK relations is taken? i.e. the number of the STUDENT and MARK.

- A. 24
- B. 6
- C. 18
- D. 7
- E. none of the above

STUDENT

course	name	sid
BE	Anne	21333
BE	Dave	21876
BSc	John	21531
BSc	Tim	21623

MARK

stude	subj	mark
21333	1011	74
21333	1021	70
21333	2011	68
21531	1011	94
Exam	Help	90
21623	1011	50

Assignment Project

Q10. How many columns are generated when the product (Cartesian Product) of the STUDENT and MARK relations is taken? i.e. the number of columns in SYCOLORT X MARK.

- A. 9
- B. 6
- C. 5
- D. 7
- E. none of the above

NATURAL JOIN

S ⁻	TUDENT			MARK	
ID	Name		ID	Subj	Marks
1	Alice		1		95
Ass	signme	nt Pro	ject ₂ Exa	μ_5H	elp
Step 1: STUDENT X MARK Step 2: delete rows where ID	https://s do not mate	//pow chloselect	<u>ç</u> oder.cc	1045 M	90
STUDEN ID	IT. Name Add V	Wark VeCh	at powc	Mar oder	ks
1	Alice	1	1004	95	
1	Alice	2	1045	55	
1	Alice	1	1045	90	
Z	ROD	1	1004	95	
2	Bob	2	1045	55	
		_			

DUD

1045

90

NATURAL JOIN

```
STUDENT
                                                     MARK
                   ID
                            Name
                                               ID
                                                      Subj
                                                            Marks
                   Assignment Project Exam Help
                   2
                            Bob
                                                      1045
                                                            55
                         https://powcoder.com
                                                            90
Step 1: STUDENT X MARK
Step 2: delete rows where IDs do not match (select =)
Step 3: delete duplicate columns (preject Wax) Chat powcoder
                                  MARK.ID
            STUDENT.I
                                             Subj
                                                        Marks
                       Name
            D
                       Alice
                                             1004
                                  1
                                                        95
                       Alice
                                             1045
                                                        90
            2
                       Bob
                                             1045
                                                        55
```


NATURAL JOIN

STUDENT

31352KT				1417 11 11 1	
	ID	Name	ID	Subj	Marks
	1Ass	igmment Pro	ject E	xam !	Help
	2	Bob	2	1045	55
1: STUDENT X MA	ΔRK	https://pow	coder.	com	90
2: delete rows wh	nere IDs d	do not match (select =	at pov	vcode	er
	ID	Name	Subj	Mark	
	1	Alice	1004	95	
	1	Alice	1045	90	
	2	Bob	1045	55	

A natural join of STUDENT and MARK

MARK

Step Step **STUDENT**

course	name	sid
BE	Anne	21333
BE	Dave	21876
BSc	John	21531
BSc	Tim	21623

MARK

stude	subj	mark
21333	1011	74
21333	1021	70
21333	2011	68
21531	1011	94
21531	1021	90
21623	1011	50

Assignment Project

Q11. Which of the following statements returns a natural join of the two relations on the student ids (sid and stude)?

- A. σ_{sid = stude} (STYPEN Well-RK) powcoder
- B. $\pi_{\text{course, name, sid, subj, mark}}$ ($\sigma_{\text{sid = stude}}$ (STUDENT X MARK))
- C. $\sigma_{\text{sid} = \text{stude}} (\pi_{\text{course, name, sid, subj, mark}} (\text{STUDENT X MARK}))$
- D. All of the above
- E. None of the above

OUTER JOIN

STU	JDENT	MARK		
ID	Name	ID	Subj	Marks
1	Alice	1	1004	95
2	Assignment Pro	ject ² Exa	11945H	[elp
3	Chris	1	1045	90
	Chris https://powo	coderico	m_4	100

No information for Chris (no make, d.e. j. Wen Christian protection of the student, e.g. quit uni)

ID	Name	Subj	Marks
1	Alice	1004	95
1	Alice	1045	90
2	Bob	1045	55

FULL OUTER JOIN

ST	UDENT			MAR	<	
ID		Name		ID	Subj	Marks
1		Alice	M	1	1004	95
2	Assi	gnment	Project	Exa	m₩e	15
3		Chris		1	1045	90
		https://p	owcode	er4co	m_{1004}	100
Get (incomple	te) information	of both Chris	and stu	dent with	ID 4
	ID	Add We	eChat po)WC(ger	
	1	Alice	1004	95		
	1	Alice	1045	90		
	2	Bob	1045	55		
	3	Chris	Null	Nul	I	
	4	Null	1004	100		

LEFT OUTER JOIN

STUDENT		r	MARK		
ID	Name	II	D	Subj	Marks
1	Alice	1	I	1004	95
² Assi	griment F	Project	Exa	1045H	élp
3	Chris	1		1045	90
	https://po	wcod•	er.cc)100 4	100
← Get	(incomplete) info		_		
ID	AddneWe(Chat po		oder	
1	Alice	1004	95		
1	Alice	1045	90		
2	Bob	1045	55		
3	Chris	Null	Nι	ıll	

RIGHT OUTER JOIN

ST	UDENT			MAF	RK	
ID	Na	ıme		ID	Subj	Marks
1	Ali	ce		1	1004	95
2	Assign	nmen	t Přoje	cf E	Exaller F	Help
3	Ch	ıris		1	1045	90
	ht	tps://	powco	der		100
	Get (incompl	dete) infor	rmation of the eChat	e stude POV	ent with ID 4 VGALE1	$A \rightarrow$
	1	Alice	1004		95	
	1	Alice	1045		90	
	2	Bob	1045		55	
	4	Null	1004		100	

S		_	117
•		 - 1	
•	ıu		u

course	name	sid
BE	Anne	21333
BE	Dave	21876
BSc	John	21531
BSc	Tim	21623

MARK

stude	subj	mark
21333	1011	74
21333	1021	70
21333	2011	68
21531	1011	94
21531	1021	90
		U

Assignment Project Example 21623

Q12. Consider the above relations.

Assume that we wattps://ipotwcodertoom!ain the information of all students (Anne, Dave, John and Tim). Which of the following is WRONA ad tystowood delt

- Left outer join on STUDENT and MARK
- Right outer join on MARK and STUDENT B.
- Right outer join on STUDENT and MARK
- D. Full outer join on STUDENT and MARK
- Select if (B and C are wrong)
- Select if (B, C and D are wrong)

