Formális nyelvek szóbeli tételek kidolgozása

May 23, 2023

1 A környezetfüggetlen nyelvtan definíciója, a levezetés és a nyelvtan által generált nyelv fogalma. A reguláris nyelvtan és nyelv definíciója

1.1 környezetfüggetlen nyelvtan

- N egy ábécé, nemterminális ábécé
- Σ egy ábécé, a terminális (befejező, végső) ábécé, amire N $\bigcap \Sigma = \emptyset$
- $S \in N$ a kezdőszimbólum (vagy start szimbólum)
- P pedig A $\to \alpha$ alakú ún. átírási szabályok véges halmaza, ahol A \in N és $\alpha \in$ (N $\bigcup \Sigma$)*
- \rightarrow Példa:

$$G_1 = (\{S\}, \{a, b\}, \{S \to aSb, S \to \epsilon\}, S)$$

1.2 Közvetlen levezetés (deriváció)

Tetszőleges γ , $\beta \in (\mathbb{N} \cup \Sigma)^*$ esetén $\gamma \Rightarrow_G \beta$, ha van olyan $\mathcal{A} \to \alpha \in \mathbb{P}$ szabály és vannak olyan α' , $\beta' \in (\mathbb{N} \cup \Sigma)^*$ szavak, amelyekre fennállnak, hogy $\gamma = \alpha' A \beta'$, $\beta = \alpha' \alpha \beta'$

 \rightarrow Példa:

$$G_1 = (\{S\}, \{a, b\}, \{S \to aSb, S \to \epsilon\}, S)$$

 $bSa\Rightarrow_{G_1}baSba$ az $S\to aSb$ szabállyal $baaSa\Rightarrow_{G_1}baaa$ az $S\to\epsilon$ szabállyal

1.3 Levezetések

- $\gamma \Rightarrow_G \beta$: egy lépés (= a közvetlen levezetés)
- $\gamma \Rightarrow_C^n \beta$: $n \ge 0$ lépés $(\gamma \Rightarrow_C^0 \beta \Leftrightarrow \gamma = \beta)$
- $\gamma \Rightarrow_G^+ \beta$: legalább egy lépés
- $\gamma \Rightarrow_G^* \beta$: valamennyi (esetleg 0) lépés
- A G = (N, Σ , P, S) környezetfüggetlen nyelvtan által generált nyelv: L(G) = { $w \in \Sigma^* | S \Rightarrow_G^* w$ } \to Az $w \in \Sigma^*$ feltétel miatt w-ben nincsenek nemterminálisok, tegát nem lehet belőle "tovább lépni". \to pl. $L(G_1) = \{a^n b^n | n \ge 0\}$

1.4 környezetfüggetlen nyelvek

Egy L nyelvet környezetfüggetlen nyelv
nek hívunk, ha van olyan G környezetfüggetlen nyelv
tan, melyre L = L(G). Az összes környezetfüggetlen nyelvek halmazát CF-fel jelöljük.

^{*}A nyelv és a nyelvtan két különböző fogalom. Egy nyelv szavak egy (véges vagy végtelen) halmaza, míg egy nyelvtan egy olyan végesen specifikált (adott) eszköz, amellyel nyelvet lehet generálni. L(G) = L(G')

1.5 Reguláris nyelvtanok

Egy $G = (N, \Sigma, P, S)$ nyelvtan reguláris (vagy jobblineáris), ha P-ben minden szabály $A \to xB$ vagy $A \to x$ alakú. Reguláris nyelvtan esetén minden levezetés

$$A_1 \Rightarrow x_1 x_2 A_3 \Rightarrow \dots \Rightarrow x_1 x_2 \dots x_n A_{n+1}$$

alakú, ahol az alkalmazott szabályok

$$A_1 \to x_1 A_2, A_2 \to x_2 A_3, ..., A_n \to x_n A_{n+1}$$

Levezetést csak $A \to x$ alakú szabállyal fejezhetünk be. Ugyanez érvényes minden olyan szóra, amelyet az S kezdőszimbólumból vezetünk le.

Definíció szerint minden reguláris nyelvtan környezetfüggetlen, mert az $A \to xB$ szabályok esetén $xB \in (N \bigcup \Sigma)^*$ és az $A \to x$ szabályok esetén $x \in (N \bigcup \Sigma)^*$.

 \rightarrow Példa: $\mathbf{G}_3 \Rightarrow S \rightarrow aS|bS|\epsilon$

 $L(G_3) = \Sigma^* \text{ és } \Sigma = \{a, b\}$

abb levezetése: $S \Rightarrow aS \Rightarrow abS \Rightarrow abbs \Rightarrow abb$

Derivációt csak az $S \to \epsilon$ szabállyal tudjuk befejezni.

1.6 Reguláris nyelvek

Egy L nyelvet reguláris nyelvnek hívunk, ha van olyan G reguláris nyelv
tan, melyre L = L(G). Az összes reguláris nyelvek halmazát REQ-gel jelöljük. Például az \emptyset , az { $a^nb^m|n,m\geq 0$ } nyelv, és minden véges nyelv reguláris. REQ \subseteq CF

2 Véges automata fogalma, felismert nyelv, kiterjesztések és ezek ekvivalenciája

2.1 Véges automaták fogalma

2.1.1 Determinisztikus automata

Az $M = (Q, \Sigma, \beta, q_0, F)$ rendszert determinisztikus automatának nevezzük, ahol:

- Q Egy nem üres, véges halmaz, az állapotok halmaza
- Σ Egy ábécé, az input ábécé
- $q_0 \in Q$ Kezdőállapot
- $\bullet \ F \subseteq Q$ A végállapotok halmaza
- $\beta:Q$
x $\Sigma \to Q$ Egy leképezés, az átmenetfüggvény

Gráfként:

M konfiguráció
inak halmaza: C = $Qx\Sigma^*$

A $(q, a_1...a_n)$ konfiguráció azt jelenti, hogy M a q állapotbanvan és az $a_1...a_n$ szót kapja inputként.

Átmeneti reláció:

- (q, w) , (q', w') C esetén (q, w) $\vdash_{M} (q^{'}, w^{'}),$ ha w = aw', valamely $a \in \Sigma$ -ra és $\beta(q, a) = q'$
- $(q, w) \vdash_{M} (q', w')$, egy lépés
- (q, w) $\vdash_{M}^{n} (q', w')$, n ≥ 0 lépés
- (q, w) $\vdash_{M}^{+} (q^{'}, w^{'})$, legalább 1 lépés
- (q, w) $\vdash_{M}^{*} (q^{'}, w^{'})$, valamennyi (esetleg 0) lépés

Az M = (Q, Σ , β , q_0 , F) automata által felismert nyelven az L(M) = { $w \in \Sigma^* | (q_0, w) \vdash_M^* (q, \epsilon)$ és $q \in F$ }

2.1.2 Nemdeterminisztikus automata

Az $M = (Q, \Sigma, \beta, q_0, F)$ rendszert Nemdeterminisztikus automatának nevezzük, ahol:

- Q egy nem üres, véges halmaz, az állapotok halmaza
- $\bullet~\Sigma$ egy ábécé, az input ábécé
- $q_0 \in Q$ a kezdőállapot
- $F \subseteq Q$ a végállapotok halmaza
- $\beta: Qx\Sigma \to \mathcal{P}(Q)$ egy leképezés, az átmenetfüggvény

Nemdeterminisztikus: egy input szimbólum hatására egy állapotból több állapotba is átmehet.

 \rightarrow Példa: $\beta(q, a) = \{q_1, ..., q_n\}$

Az átmeneti reláció és a felismert nyelv nemdeterminisztikus autmoatákra:

$$(q, w), (q', w') \in C$$
 esetén $(q, w) \vdash_M (q', w')$, ha $w = aw'$, valamely $a \in \Sigma$ -ra és $q' \in \beta(q, a)$

Az M = (Q, Σ, β, q_0, F) automata által felismert nyelven az L(M) = { $w \in \Sigma^* | (q_0, w) \vdash_M^* (q, \epsilon)$ valamely $q \in F$ -re } nyelvet értjük.

Az M = (Q, Σ, β, q_0, F) nemdeterminisztikus automata teljesen definiált, ha minden $q \in Q$ és $a \in \Sigma$ esetén $\beta(q, a)$ legalább egy elemű

☐ TÉTEL:

Testszőleges $\mathbf{M} = (Q, \Sigma, \beta, q_0, F)$ nemdeterminisztikus automatához megadható olyan $M' = (Q', \Sigma, \beta', q_0, F)$ teljesen definiált automata, melyre $\mathbf{L}(\mathbf{M}) = \mathbf{L}(M')$.

• BIZONYÍTÁS:

Ha M teljesen definiált, akkor legyen $M^{'}=M$. Különben legyen $Q^{'}=Q\bigcup\{q_c\}$, ahol $q_c\notin Q$, vagyis egy új állapot \Rightarrow csapda állapot.

Továbbá, minden $q \in Q$ és $a \in \Sigma$ esetén legyen

$$\beta(q, a) = \begin{cases} \beta(q, a), \text{ ha } \beta(q, a) \neq \emptyset \\ \{q_c\}, \text{ ha } \beta(q, a) = \emptyset \end{cases}$$
 (1)

Végül, minden $a \in \Sigma$ -ra, legyen $\beta'(q_c, a) = \{q_c\}$

□ TÉTEL:

Egy nyelv akkor és csak akkor ismerhető fel nemdeterminisztikus automatával, ha felismerhető determinisztikus automatával.

• BIZONYÍTÁS:

- Ha egy nyelv felismerhető determinisztikus automatával, akkor felismerhető nemdeterminisztikus automatával is.
- Fordítva: Legyen $M = (Q, \Sigma, \beta, q_0, F)$ egy nemdeterminisztikus automata. Megadunk egy $M' = (Q', \Sigma, \beta', q'_0, F')$ determinisztikus automatát, amelyre L(M') = L(M).

 A konstrukció neve: hatványhalmaz konstrukció