Two Fundamentally different types of data:

Continuous

Discrete

Descriptive Statistics - continuos variables

Central tendency MEAN (average)

$$X = \begin{bmatrix} 7 \\ 10 \\ 12 \\ 12 \\ 10 \\ 5 \\ 10 \end{bmatrix}$$

Average or mean: central tendency

$$\bar{x}$$
: $(7 + 10 + 12 + 12 + 10 + 5 + 10) / 7 = aprox. 9.43$

$$\bar{x} = \frac{\sum_{i=1}^{N} x_i}{N} = \frac{(7+10+\ldots+5+10)}{N}$$

$$\frac{1}{N} \sum_{i=1}^{N} x_i = \frac{1}{7} (66)$$

$$X = \begin{bmatrix} 7 \\ 10 \\ 12 \\ 12 \\ 10 \\ 5 \\ 10 \end{bmatrix}$$

Average or mean:

$$\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i = \frac{1}{7} + \frac{1}{7} \cdot 10 + \frac{1}{7} \cdot 12 + \frac{1}{7} \cdot 12 + \frac{1}{7} \cdot 10 + \frac{1}{7} \cdot 5 + \frac{1}{7} \cdot 10$$

$$= \frac{1}{7} \cdot 7 + \frac{3}{7} \cdot 10 + \frac{2}{7} \cdot 12 + \frac{1}{7} \cdot 5$$

$$= (0.14)7 + (0.43)10 + (0.29)12 + (0.14)5$$

$$\bar{x} = \sum_{All \ x} x = P(x) * x$$
 Weighted average

Later in you careers - in papers, for example - you will see this kind of things:

"Expected value", the mean of a random variable

$$E[X] = \int x f(x) dx$$

Let's see it in practice.
This is a "distribution"....

What would you say is the mean (or average) age here?

In most cases, the mean conveys a lot of information regarding a distribution

In most cases, the mean conveys a lot of information regarding a distribution

In many cases it doesn't show the whole story

In many cases it doesn't show the whole story

In some cases it is not informative at all: uniform distribution

Dispersion Variance and Standard Deviation

- On average girls grades slightly better,
- Girls grades much more consistent,
- Many fewer top scoring girls

$$X = \begin{bmatrix} 7 \\ 10 \\ 12 \\ 12 \\ 10 \\ 5 \\ 10 \end{bmatrix}$$
 Mean
$$\bar{x} = \frac{\sum_{i=1}^{N} x_i}{N} = 9.46$$

$$\bar{x} = \frac{\sum_{i=1}^{N} x_i}{N} = 9.46$$

$$X - \bar{x} = \begin{bmatrix} (7 - 9.46) \\ (10 - 9.46) \\ (12 - 9.46) \\ (12 - 9.46) \\ (10 - 9.46) \\ (5 - 9.46) \\ (10 - 9.46) \end{bmatrix} \qquad X - \bar{x} = \begin{bmatrix} -2.43 \\ 0.57 \\ 2.57 \\ 2.57 \\ 0.57 \\ -4.43 \\ 0.57 \end{bmatrix}$$

$$\sum_{i=1}^{N} (x_i - \bar{x}) = 0$$

$$X - \bar{x} = \begin{bmatrix} 2.43 \\ 0.57 \\ 2.57 \\ 2.57 \\ 0.57 \\ -4.43 \\ 0.57 \end{bmatrix}$$

$$\sum_{i=1}^{N} (x_i - \bar{x}) = 0$$

$$X - \bar{x} = \begin{bmatrix} (7 - 9.46) \\ (10 - 9.46) \\ (12 - 9.46) \\ (10 - 9.46) \\ (10 - 9.46) \\ (5 - 9.46) \\ (10 - 9.46) \end{bmatrix} \qquad X - \bar{x} = \begin{bmatrix} -2.43 \\ 0.57 \\ 2.57 \\ 2.57 \\ 0.57 \\ -4.43 \\ 0.57 \end{bmatrix}$$

$$\sum_{i=1}^{N} (x_i - \bar{x}) = 0$$

$$\sum_{i=1}^{N} (x_i - \bar{x})^2 = \sum_{i=1}^{N} (7 - 9.46)^2 \atop (12 - 9.46)^2 \atop (12 - 9.46)^2 \atop (10 - 9.46)^2 \atop (5 - 9.46)^2 \atop (10 - 9.46)^2 \end{bmatrix} = \sum_{i=1}^{N} \begin{bmatrix} 5.9 \\ 0.33 \\ 6.6 \\ 6.6 \\ 0.33 \\ 19.6 \\ 0.33 \end{bmatrix}$$

$$\sum_{i=1}^{N} (x_i - \bar{x})^2 = \sum_{i=1}^{N} \begin{bmatrix} (7 - 9.46)^2 \\ (10 - 9.46)^2 \\ (12 - 9.46)^2 \\ (10 - 9.46)^2 \\ (5 - 9.46)^2 \\ (10 - 9.46)^2 \end{bmatrix} = \begin{bmatrix} 5.9 \\ 0.33 \\ 6.6 \\ 6.6 \\ 0.33 \\ 19.6 \\ 0.33 \end{bmatrix}$$

$$\frac{\sum_{i=1}^{N} (x_i - \bar{x})^2}{N} = 39.7/7 = 5.67$$

This is the Variance

$$\sigma^2 = \frac{\sum_{i=1}^{N} (x_i - \bar{x})^2}{N}$$

Let "y" be the deviation form the mean, squared

$$y = (x_i - \bar{x})^2$$

 $\sigma^2 = \bar{y}$

Variance is the average of the deviations form the mean, squared

By computing the "Standard deviation" we get thing back to scale

$$\sigma = \sqrt{\sigma^2} = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \bar{x})^2}{N}} = 2.38$$

It computes the "average deviation" from the mean

Same variance but different means

Same mean but different variance

Something to think about ...

Let "X", with
$$\bar{x} = \mu$$

What is the mean of X+1?

What is the standard deviation of X+1?

Mode

$$X = \begin{bmatrix} 7 \\ 10 \\ 12 \\ 12 \\ 10 \\ 5 \\ 10 \end{bmatrix}$$

"The most frequent value of X"

$$Mode(X) = 10$$

Median

"a" is the median of X if 50% or more of observations take on values equal or lower than "a"

$$P(X \le a) \ge 0.5$$

	10
	12
X =	12
	10
	5
	[10]

Х	Freq.	Percent	Cum.
5	1	14.29	14.29
7	1	14.29	28.57
10	3	42.86	71.43
12	2	28.57	100.00
Total	7	100.00	

Median(X) = 10

Х	Freq.	Percent	Cum.
.043255	1	3.23	3.23
.066943	1	3.23	6.45
.0722964	1	3.23	9.68
.0880495	1	3.23	12.90
.1288747	1	3.23	16.13
.1327082	1	3.23	19.35
.1359006	1	3.23	22.58
.1749891	1	3.23	25.81
.1778325	1	3.23	29.03
.2468877	1	3.23	32.26
.2775184	1	3.23	35.48
.2977743	1	3.23	38.71
.3325624	1	3.23	41.94
.3764437	1	3.23	45.16
.4087105	1	3.23	48.39
.4242016	1	3.23	51.61
.4476188	1	3.23	54.84
.4675523	1	3.23	58.06
.5160881	1	3.23	61.29
.5346152	1	3.23	64.52
.5536171	1	3.23	67.74
.5662265	1	3.23	70.97
.6794177	1	3.23	74.19
.6817465	1	3.23	77.42
.7124024	1	3.23	80.65
.7551366	1	3.23	83.87
.7677861	1	3.23	87.10
.7767794	1	3.23	90.32
.8302209	1	3.23	93.55
.8745816	1	3.23	96.77
.9339853	1	3.23	100.00
Total	31	100.00	

Median(X) = 0.42

Percentiles

"a" is the "p" percentile of X if p% or more of observations take on values equal or lower than "a"

$$P(X \le a) \ge p/100$$

The median is the percentile 50:

$$P(X \le a) \ge 50/100 = 0.5$$

$$X = \begin{bmatrix} 7 \\ 10 \\ 12 \\ 12 \\ 10 \\ 5 \\ 10 \end{bmatrix}$$

Х	Freq.	Percent	Cum.
5	1	14.29	14.29
7	1	14.29	28.57
10	3	42.86	71.43
12	2	28.57	100.00
Total	7	100.00	

$$median(X) = p50(X) = 10$$

Х	Freq.	Percent	Cum.
.043255	1	3.23	3.23
.066943	1	3.23	6.45
.0722964	1	3.23	9.68
.0880495	1	3.23	12.90
.1288747	1	3.23	16.13
.1327082	1	3.23	19.35
.1359006	1	3.23	22.58
.1749891	1	3.23	25.81
.1778325	1	3.23	29.03
.2468877	1	3.23	32.26
.2775184	1	3.23	35.48
.2977743	1	3.23	38.71
.3325624	1	3.23	41.94
.3764437	1	3.23	45.16
.4087105	1	3.23	48.39
.4242016	1	3.23	51.61
.4476188	1	3.23	54.84
.4675523	1	3.23	58.06
.5160881	1	3.23	61.29
.5346152	1	3.23	64.52
.5536171	1	3.23	67.74
.5662265	1	3.23	70.97
.6794177	1	3.23	74.19
.6817465	1	3.23	77.42
.7124024	1	3.23	80.65
.7551366	1	3.23	83.87
.7677861	1	3.23	87.10
.7767794	1	3.23	90.32
.8302209	1	3.23	93.55
.8745816	1	3.23	96.77
.9339853	1	3.23	100.00
Total	31	100.00	

p30(X) = 0.2468

p90(X) = 0.8302

Descriptive Statistics - discrete variables

Dichotomous case: proportion is the only parameter

$$X = \begin{bmatrix} Male \\ Male \\ Female \\ Male \\ Male \\ Male \\ Male \\ Female \end{bmatrix} \begin{array}{c} p = P(Male) \\ q = P(Female) = 1 - p \\ Male \\ Male \\ Female \\ Female \\ Total \end{array} \begin{array}{c} p = P(Male) \\ 2 & 28.57 \\ Male & 5 & 71.43 & 100.00 \\ \hline Total & 7 & 100.0$$

Proportion can be also expressed as a mean

$$X = \begin{bmatrix} 1\\1\\0\\1\\1\\1\\0 \end{bmatrix}$$

$$\bar{x} = \frac{\sum_{i=1}^{N} x_i}{N} = \frac{(1+1+0+1+1+1+0)}{7} = 0.71 = p$$

$$q = 1 - p = 1 - \bar{x}$$

Proportion can be also expressed as a mean

$$X = \begin{bmatrix} 1\\1\\0\\1\\1\\0 \end{bmatrix}$$

$$\bar{x} = \frac{\sum_{i=1}^{N} x_i}{N} = \frac{(1+1+0+1+1+1+0)}{7} = 0.71 = p = P(1) = P(Male)$$

$$q = 1 - p = 1 - \bar{x}$$

Why does this work? Recall that

$$\bar{x} = \sum_{\text{All } \mathbf{x}} x = P(x) * x$$
 Weighted average

$$\bar{x} = P(1) * 1 + P(0) * 0 = p * 1 + (1 - p) * 0 = p$$

Dispersion? Variance/SD?

Variance

$$X = \begin{bmatrix} 1\\1\\0\\1\\1\\0 \end{bmatrix} \qquad \sigma^2 = p(1-p) \qquad (X-p)^2 = \begin{bmatrix} 0.08\\0.08\\0.51\\0.08\\0.08\\0.82\\0.51 \end{bmatrix} \qquad P[(1-p)^2] = p$$

$$\sigma = \sqrt{p(1-p)} \qquad (X-p)^2 = \begin{bmatrix} 0.08\\0.08\\0.08\\0.08\\0.82\\0.51 \end{bmatrix}$$

Why?
$$\sigma^2 = \frac{\sum_{i=1}^{N} (x_i - \bar{x})^2}{N} = \overline{(x_i - \bar{x})^2} =$$

$$\sigma^2 = P[(1 - p)^2] * (1 - p)^2 + P[(0 - p)^2] * (0 - p)^2$$

$$= p * (1 - p)^2 + (1 - p) * (0 - p)^2$$

$$= p * (1 - 2p + p^2) + (1 - p) * p^2$$

$$= p - 2p^2 + p^3 + p^2 - p^3$$

 $= p - p^2 = p(1 - p)$

Many valued discrete variables:

$$X = egin{bmatrix} A \ B \ C \ A \ B \ C \ A \end{bmatrix}$$

The number of parameters for a variable with k categories is k-1

Here k=3, so we need k-1=2 parameters

$$P[A] = p = 3/7$$

$$P[B] = q = 2/7$$

$$P[C] = 1 - (p + q) = 1 - 5/7 = 2/7$$

Variance

$$\sigma^2 = p * q * (1 - p - q)$$

$$\sigma = \sqrt{p * q * (1 - p - q)}$$