Rapport TER

Yves Appriou, Eva Morton, Sebastian Straut

February 3, 2025

Contents

1	Introduction	2
2	Définition d'un champ de Markov ?à modifier	2
3	Echantillonnage de réalisations de champs de Markov 3.1 Algorithme de Gibbs	
4	11	

Figure 1: image 1

- 1 Introduction
- 2 Définition d'un champ de Markov ?à modifier
- 3 Echantillonnage de réalisations de champs de Markov

3.1 Algorithme de Gibbs

On s'intéresse maintenant plus en détail à l'algorithme de Gibbs, développé dans les années 1960. Celui-ci se construit de la façon suivante :

- \bullet On choisit tout d'abord un pixel s_{ij} aléatoirement dans l'image.
- On calcule ensuite l'énergie locale $U_s(x_0=\lambda_i|\mathcal{V}_s), \forall \lambda_i \in \mathbb{E}$ pour chacun

des états possibles. On obtient alors le vecteur des énergies locales suivant :

$$U(x_0) = \begin{pmatrix} U_s(x_0 = \lambda_1 | \mathcal{V}_s) \\ U_s(x_0 = \lambda_2 | \mathcal{V}_s) \\ \dots \\ U_s(x_0 = \lambda_k | \mathcal{V}_s) \end{pmatrix}$$

• On produit alors, à partir de cette mesure, une réalisation de la loi de Gibbs :

$$\mu = P(x_1 = \lambda) = \frac{1}{Z} \begin{pmatrix} \exp(-U_s(x_0 = \lambda_1 | \mathcal{V}_s)) \\ \exp(-U_s(x_0 = \lambda_2 | \mathcal{V}_s)) \\ \dots \\ \exp(-U_s(x_0 = \lambda_k | \mathcal{V}_s)) \end{pmatrix}, Z = \sum_{i \in \mathbb{E}} U_s(x_1 = i | \mathcal{V}_s)$$

La probabilité que le site s_{ij} prenne la valeur λ_i au temps n+1 est donc donnée par le $i^{\grave{e}me}$ élément du vecteur de la loi de Gibbs.

• Enfin, on tire dans \mathbb{E} muni de la loi μ , et on remplace par l'état tiré. Pour le modèle d'Ising, par exemple, on a $\mathbb{E} = \{0, 1\}$;

3.2 Algorithme de Metropolis

- On choisit tout d'abord un pixel s_{ij} aléatoirement dans l'image.
- On récupère l'état du site s_{ij} , noté λ_s et à valeurs dans \mathbb{E} , puis on calcule l'énergie locale du site :

$$U_s(x_0 = \lambda_s | \mathcal{V}_s)$$

- On tire ensuite un état $\lambda_r \in \mathbb{E}$ muni de \mathcal{U} , la loi uniforme sur \mathbb{E} .
- On calcule l'énergie locale du nouveau site r_{ij} après changement d'état :

$$U_r(x_0 = \lambda_r | \mathcal{V}_r = \mathcal{V}_s)$$

• On obtient alors la différence des énergies locales :

$$\Delta U = U_r(x_0 = \lambda_r | \mathcal{V}_r) - U_s(x_0 = \lambda_s | \mathcal{V}_s)$$

- Ainsi:
 - 1. Si $\Delta U < 0$, on remplace l'état du site s_{ij} par λ_r ;
 - 2. Sinon, on tire une probabilité p, et si $p < \exp(-\Delta U)$, on accepte le changement de l'état du site s_{ij} par λ_r .

- 4 Applications aux algorithmes de restauration d'images
- 4.1 Modèle d'Ising
- 4.2 Modèle de Potts
- 4.3 Algorithme du recuit simulé