

MLIA-LIP6@TREC-CAsT2021:

Feature augmentation for query recontextualization and passage ranking

Nawel Astouati¹

Thomas Gerald¹

Maya Touzari¹

Jian-Yun Nie²

Laure Soulier¹

nie@iro.umontreal.ca

¹Sorbonne Université, CNRS, LIP6, F-75005 Paris, France ²University of Montreal, Montreal, Canada

TREC CAST 2021

Turn	Query
1	How do I build a cheap driveway?
2	Which is cheaper: concrete or asphalt?
3	Really? What type of product?
4	Who knew? Which is more environmentally
	friendly?
5	No. Which type of driveway is better for
	the environment ?
6	And most low-maintenance?
7	Really? What about asphalt?
8	Is sealing worth it?

Reference to previous queries

Reference to previous documents

TREC-CAST 2021 MLIA-LIP6 submission

What information is required to contextualize query in conversational IR?

- Focus on the reformulation part
- Evaluate pipeline (Reformulation and Ranking) based on different features
 - Raw queries
 - Previous reformulated queries
 - Previous documents
 - Queries generated from previous documents
- End2End version of the pipeline

Corpora

Copora

- CANARD [4]
 - Conversational queries corpus with reformulations and short answer.
- CASTuR [5]
 - Conversational queries with relevant utterances + our own manually rewritten queries
- MSMarco-Passage Ranking [6]
 - Passage ranking corpus with couples of query-document

TREC CAST - Model

4

Pipeline models

Once breast cancer breaks out, how likely is it to spread?

Training:

Reformulation based on T5 model [7]

We fine-tune on the CANARD dataset + CASTUR dataset (manual query rewriting).

Inputs: reformulated queries + current query

Ranking with Pretrained Mono-T5 [1]

t5_monot5 (Whole Conversation)

- Previous queries
- Previous documents
- Current Queries

Rewritt5_monot5 (online reformulation)

- Previous reformulated queries (automatic rewritten utterance)
- Previous documents
- Current Queries

t5_doc2query (intent on the context)

- Previous reformulated queries (automatic)
- Queries formulated on previous documents (Doc2Queries [2])
- Current queries

T5-Colbert

Objective

 Injecting IR signals in the reformulation module to solve the ranking task in a end-to-end fashion

The T5-Colbert model:

- Reformulation module (T5-pretrained)
- Feedforward (between T5 embedding and BERT input)
- Ranking Module (configuration Colbert [3])

Optimization

$$E(f \circ g) = \sum_{c_i \in C} \left[\mathcal{L}_{ref}(f_{\theta}(c_i), r_i) \right]$$
 (1)

$$+ \sum_{d_p \in \mathbf{D}_{i,p}} \sum_{d_n \in \mathbf{D}_{i,n}} \mathcal{L}_{rank} \Big(g(f_{\theta,e}(c_i), d_p), g(f_{\theta,e}(c_i), d_n) \Big) \Big]$$
 (2)

T5-Colbert : Training Corpus

Unified Corpus

- Conversational queries extracted from CANARD Corpus
- Documents are extracted from MSMarco Passages:
 - a. Retrieved Top 200 documents from MonoT5 reranking
 - b. Select first 4 documents as positive documents for the current query
 - c. Last 4 documents as negative document for the current query

123.836 negative/positive pairs (30.959 queries) for training and 1152 for validation

Ranking Performances (x 100)

Model	NDCG@3	NDCG@5	NDCG@500	MAP@500
t5_monot5 Rewritt5_monot5 t5_doc2query	38.7 36.9 37.7	39.0 37.2 37.9	33.6 33.1 33.5	19.5 18.9 19.7
E2E (t5colbert)	15.3	15.8	31.4	10.1

Pipeline results

- T5-monoT5 for short range metrics
- T5-doc2query gets similar performances at longer range

E2E evaluation

- Using Sparse ranking (based on TREC baseline documents)
- Difficult to assess the relevance of the dataset (alignment of query-documents)

Turn | Query

Results: Reformulation

Turn	Query
1	I heard Bernie Sanders was ill recently.
	What happened?
2	What did the doctors do?
3	How did it affect the campaign?
4	How did he attempt to regain the pub-
	lic's confidence?
5	Okay. What did the records say?
'	

Previous Queries Information

Previous Documents Information

Model	Reformulation					
Query	How did he attempt to regain the public's confidence?					
$t5_monot5$	How did Sen Bernie Sanders attempt to regain the public s confidence in his ability to serve					
$Rewritt5_monot5$	How did Sen Bernie Sanders attempt to regain the public					
	s confidence in his ability to serve as president?					
$t5_doc2query$	How did Bernie Sanders attempt to regain the public s confidence?					
E2E	How did Bernie Sanders attempt to regain the public's confidence?					
Query	Okay. What did the records say?					
$t5_monot5$	What did the records say about Sen Bernie Sanders?					
$Rewritt5_monot5$	What did the records say about Sen Bernie Sanders?					
$t5_doc2query$	What did the records say about Sen Bernie Sanders?					
E2E	Okay. What did the records say about Bernie Sanders 's					
	heart attack?					

Conclusion

Submitted approaches

- Pipeline Model
 - Better using non reformulated queries
- T5-Colbert
 - Low performances:
 - Training set pairing issues
 - Hyperparameters search
 - Missing time to effectively use dense retrieval

What's next?

- Training with all configuration
- Better optimization of E2E model

References

- [1] R. Nogueira, Z. Jiang, R. Pradeep, and J. Lin. Document ranking with a pretrained sequence-to-sequence model. In EMNLP, pages 708–718. Association for Computational Linguistics, 2020.
- [2] R. Nogueira, W. Yang, J. Lin, and K. Cho. Document expansion by query prediction. CoRR, abs/1904.08375, 2019.
- [3] O. Khattab and M. Zaharia. Colbert: Efficient and effective passage search via contextualized late interaction over BERT. In SIGIR conference on research and development in Information Retrieval, pages 39–48. ACM, 2020.
- [4] A. Elgohary, D. Peskov, and J. Boyd-Graber. Can you unpack that? learning to rewrite questions-in-context. In Empirical Methods in Natural Language Processing, 2019.
- [5] M. Aliannejadi, M. Chakraborty, E. A. Rıssola, and F. Crestani. Harnessing evolution of multi-turn conversations for effective answer retrieval. In Proceedings of 2020 Conference on Human Information Interaction and Retrieval (CHIIR), CHIIR '20, 2020.

- [6] T. Nguyen, M. Rosenberg, X. Song, J. Gao, S. Tiwary, R. Majumder, and L. Deng. MS MARCO: A human generated machine reading comprehension dataset. In T. R. Besold, A. Bordes, A. S. d'Avila Garcez, and G. Wayne. Neural Information Processing Systems (NIPS 2016)
- [7] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu. Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res., 21:140:1–140:67, 2020.

Different features (CAST 2020)

Modèle	map	recip_rank	ndcg
allHistory-R_T5	0.136	0.294	0.213
RighHistory-R_T5	0.127	0.224	0.204
allHistory+Passage_T5	0.126	0.284	0.203
RightHistory+Passage_T5	0.110	0.256	0.181
allHistory-R+Passage_T5	0.132	0.289	0.219
RightHistory-R+Passage_T5	0.124	0.220	0.205

Doc2Query Features

				Modèle	map	recip_rank	ndcg
Modèle	map	recip_rank	ndcg	21.60			
OnlyPassages_T5	0.108	0.230	0.182	BM25	0.050	0.142	0.135
				D1405.14 FF		0.450	0.444
allHistory-R+doc2query _T5	0.116	0.258	0.183	BM25+MonoT5	0.060	0.153	0.111
allRewrittenHistory_T5+				Raw_colbert	0.126	0.262	0.183
doc2query_(BM25+Mono T5)	0.078	0.177 0.137	0.137	Naw_colbert	0.126	0.262	0.183
,				AllRewrittenH_T5+Colbert	0.123	0.222	0.135
				AIII/EWITHEIIH_15+Colbert	0.123	U.ZZZ	0.133