Homework 6 Solution

Chapter 6.

1. Find an isomorphism from the group of integers under addition to the group of even integers under addition.

Let $2\mathbb{Z}$ be the set of all even integers. Define a map $\phi: \mathbb{Z} \to 2\mathbb{Z}$ as $\phi(n) = 2n$. We claim that ϕ is an isomorphism. $\phi(n) = \phi(m) \Rightarrow 2n = 2m \Rightarrow n = m$ so it is one-to-one. For any even integer 2k, $\phi(k) = 2k$ thus it is onto. Also

$$\phi(n+m) = 2(n+m) = 2n + 2m = \phi(n) + \phi(m),$$

so it has the operation preserving property.

2. Find $Aut(\mathbb{Z})$.

Note that $\mathbb{Z}=\langle 1 \rangle$, a cyclic group generated by 1. There are two generators, 1 and -1. Because an automorphism ϕ of a cyclic group sends a generator to a generator, $\phi(1)=1$ or $\phi(1)=-1$. Because $\phi(m\cdot 1)=m\phi(1)$, for the former case we have the identity map, and for the latter case, we have $\phi(x)=-x$. Therefore $\operatorname{Aut}(\mathbb{Z})=\{\operatorname{id},\phi\}$ where $\phi(x)=-x$.

4. Show that U(8) is not isomorphic to U(10).

 $U(10) = \{1, 3, 7, 9\}$ is a cyclic group generated by 3. So 3 is an element of order 4. But all non-identity elements of $U(8) = \{1, 3, 5, 7\}$ have order 2, so there is no element of order 4. Therefore they are not isomorphic to each other.

5. Show that U(8) is isomorphic to U(12).

 $U(8)=\{1,3,5,7\}$ and $U(12)=\{1,5,7,11\}$. Take a bijective map $\phi:U(8)\to U(12)$ defined by $\phi(1)=1,\phi(3)=11,\phi(5)=5,$ and $\phi(7)=7.$ We claim that it has the operation preserving property. Because U(8) is an Abelian group, it suffices to check followings:

$$\phi(3^2) = \phi(1) = 1 = 11^2 = \phi(3)^2,$$

$$\phi(5^2) = \phi(1) = 1 = 5^2 = \phi(5)^2,$$

$$\phi(7^2) = \phi(1) = 1 = 7^2 = \phi(7)^2,$$

$$\phi(3 \cdot 5) = \phi(7) = 7 = 11 \cdot 5 = \phi(3) \cdot \phi(5),$$

$$\phi(3 \cdot 7) = \phi(5) = 5 = 11 \cdot 7 = \phi(3) \cdot \phi(7),$$

$$\phi(5 \cdot 7) = \phi(3) = 11 = 5 \cdot 7 = \phi(5) \cdot \phi(7).$$

In general, you may show that *any* bijective map $\psi:U(8)\to U(12)$ with $\psi(1)=1$ is an isomorphism.

10. Let G be a group. Prove that the mapping $\alpha(g) = g^{-1}$ for all g in G is an automorphism if and only if G is Abelian.

If α is an isomorphism, for any two elements $x, y \in G$,

$$y^{-1}x^{-1} = (xy)^{-1} = \alpha(xy) = \alpha(x)\alpha(y) = x^{-1}y^{-1}$$

So $xy = (x^{-1})^{-1}(y^{-1})^{-1} = (y^{-1}x^{-1})^{-1} = (x^{-1}y^{-1})^{-1} = (y^{-1})^{-1}(x^{-1})^{-1} = yx$, and G is Abelian.

Suppose that G is Abelian. $\alpha:G\to G$ is a bijective function, because α itself is the inverse function of α . Moreover, because

$$\alpha(xy) = \alpha(yx) = (yx)^{-1} = x^{-1}y^{-1} = \alpha(x)\alpha(y),$$

it has the operation preserving property. So α is an isomorphism.

14. Find $Aut(\mathbb{Z}_6)$.

 \mathbb{Z}_6 is a cyclic group generated by 1. There are two generators, 1,5. So for an isomorphism $\phi: \mathbb{Z}_6 \to \mathbb{Z}_6$, $\phi(1) = 1$ or $\phi(1) = 5 = -1$. We have two such isomorphisms: the identity map and $\phi(x) = -x$. Therefore $\operatorname{Aut}(\mathbb{Z}_6) = \{\operatorname{id}, \phi\}$ where $\phi(x) = -x$.

15. If *G* is a group, prove that Aut(G) and Inn(G) are groups.

Both sets are subsets of S_G , the permutation group of the set G. Because $id \in Aut(G)$ and $id = \phi_e \in Inn(G)$, we may apply a subgroup test.

Step 1. $\operatorname{Aut}(G)$. Suppose that $\alpha, \beta \in \operatorname{Aut}(G)$. Then $\alpha\beta : G \to G$ and α^{-1} are elements of S_G , so they are bijective. Therefore it is sufficient to show the operation preserving property. For any $x, y \in G$, $\alpha\beta(xy) = \alpha(\beta(xy)) = \alpha(\beta(x)\beta(y)) = \alpha(\beta(x)\alpha\beta(y)) = \alpha(\beta(x)\alpha\beta(x)) = \alpha(\alpha(x)\alpha\beta(x)) = \alpha(\alpha($

Suppose that $\alpha(a)=x, \alpha(b)=y$. Then $\alpha(ab)=\alpha(a)\alpha(b)=xy$. Thus $\alpha^{-1}(xy)=ab=\alpha^{-1}(x)\alpha^{-1}(y)$ and α^{-1} has the operation preserving property as well. Therefore $\alpha^{-1}\in \operatorname{Aut}(G)$. By the subgroup test 1, $\operatorname{Aut}(G)\leq S_G$.

Step 2. Inn(G). Let $\phi_a, \phi_b \in \text{Inn}(G)$. Then $\phi_a \phi_b(x) = \phi_a(\phi_b(x)) = \phi_a(bxb^{-1}) = abxb^{-1}a^{-1} = (ab)x(ab)^{-1} = \phi_{ab}(x)$. So $\phi_a \phi_b = \phi_{ab} \in \text{Inn}(G)$.

Note that $\phi_{a^{-1}}\phi_a(x)=\phi_{a^{-1}}(\phi_a(x))=\phi_{a^{-1}}(axa^{-1})=a^{-1}axa^{-1}(a^{-1})^{-1}=a^{-1}axa^{-1}a=x$ and $\phi_a\phi_{a^{-1}}x=\phi_a(\phi_{a^{-1}}(x))=\phi_a(a^{-1}xa)=aa^{-1}xaa^{-1}=x$. So $\phi_a^{-1}=\phi_{a^{-1}}\in \mathrm{Inn}(G)$. By the subgroup test 1, $\mathrm{Inn}(G)\leq S_G$.

24. Suppose that $\phi: \mathbb{Z}_{20} \to \mathbb{Z}_{20}$ is an automorphism and $\phi(5) = 5$. What are the possibilities for $\phi(x)$?

Because an automorphism ϕ maps a generator to a generator, $\phi(1)$ is one of 1,3,7,9,11,13,17,19. Because $\phi(5)=\phi(5\cdot 1)=5\phi(1)=5$ in \mathbb{Z}_{20} , the only possible $\phi(1)$ are 1,9,13,17. Therefore $\phi(x)=x,9x,13x,$ or 17x.

28. The group $\left\{ \begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix} \mid a \in \mathbb{Z} \right\}$ is isomorphic to what familiar group? What if \mathbb{Z} is replaced by \mathbb{R} ?

Let $G = \left\{ \begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix} \mid a \in \mathbb{Z} \right\}$. We claim that G is isomorphic to an additive group

 \mathbb{Z} . Define $\phi:G\to\mathbb{Z}$ as $\phi(\left[\begin{array}{cc}1&a\\0&1\end{array}\right])=a.$ Obviously it is a bijection map.

$$\phi(\left[\begin{array}{cc} 1 & a \\ 0 & 1 \end{array}\right]\left[\begin{array}{cc} 1 & b \\ 0 & 1 \end{array}\right]) = \phi(\left[\begin{array}{cc} 1 & a+b \\ 0 & 1 \end{array}\right]) = a+b = \phi(\left[\begin{array}{cc} 1 & a \\ 0 & 1 \end{array}\right]) + \phi(\left[\begin{array}{cc} 1 & a \\ 0 & 1 \end{array}\right]).$$

Therefore ϕ has the operation preserving property, so it is an isomorphism.

If we replace \mathbb{Z} by \mathbb{R} , then the group is isomorphic to the additive group \mathbb{R} . We can use the same isomorphism.

31. Suppose that $\phi:G\to \overline{G}$ is an isomorphism. Show that $\phi^{-1}:\overline{G}\to G$ is an isomorphism.

Because ϕ^{-1} is also a bijective map, it suffices to show the operation preserving property. For $x,y\in \overline{G}$, there are a,b such that $\phi(a)=x,\phi(b)=y$. Then $\phi(ab)=\phi(a)\phi(b)=xy$. So

$$\phi^{-1}(xy) = ab = \phi^{-1}(x)\phi^{-1}(y)$$

and ϕ^{-1} is an isomorphism.

32. Suppose that $\phi: G \to \overline{G}$ is an isomorphism. Show that if K is a subgroup of G, then $\phi(K) = \{\phi(k) \mid k \in K\}$ is a subgroup of \overline{G} .

Because $\phi(e) \in \phi(K)$, $\phi(K) \neq \emptyset$. Let $x,y \in \phi(K)$. Then $x = \phi(a)$, $y = \phi(b)$ for some $a,b \in K$. Then $xy = \phi(a)\phi(b) = \phi(ab) \in \phi(K)$ because $ab \in K$. Also because $a^{-1} \in K$, $x^{-1} = (\phi(a))^{-1} = \phi(a^{-1}) \in \phi(K)$. By subgroup test 1, $\phi(K) \leq \overline{G}$.

34. Prove or disprove that U(20) and U(24) are isomorphic.

In U(20), $3^2 = 9$, $3^3 = 27 = 7$, $3^4 = 81 = 1$. So |3| = 4. On the other hand, in U(24), all non-identity elements have order two. Therefore they are not isomorphic to each other.

39. Let \mathbb{C} be the complex numbers and

$$M = \left\{ \left[\begin{array}{cc} a & -b \\ b & a \end{array} \right] \mid a, b \in \mathbb{R} \right\}.$$

Prove that \mathbb{C} and M are isomorphic under addition and that \mathbb{C}^* and M^* , the nonzero elements of M, are isomorphic under multiplication.

Define a map $\phi:\mathbb{C}\to M$ as $\phi(a+bi)=\left[egin{array}{cc} a & -b \\ b & a \end{array}\right]$. It is bijective.

$$\phi(\begin{bmatrix} a & -b \\ b & a \end{bmatrix} + \begin{bmatrix} c & -d \\ d & c \end{bmatrix}) = \phi(\begin{bmatrix} a+c & -(b+d) \\ (b+d) & (a+c) \end{bmatrix})$$

$$=(a+c)+(b+d)i=(a+bi)+(c+di)=\phi(\left[\begin{array}{cc}a&-b\\b&a\end{array}\right])+\phi(\left[\begin{array}{cc}c&-d\\d&c\end{array}\right])$$

So ϕ is an isomorphism.

On the other hand, if we restrict ϕ to \mathbb{C}^* , then ϕ is a bijective map between \mathbb{C}^* and M^* , and

$$\phi(\begin{bmatrix} a & -b \\ b & a \end{bmatrix} \begin{bmatrix} c & -d \\ d & c \end{bmatrix}) = \phi(\begin{bmatrix} ac - bd & -(ad + bc) \\ ad + bc & ac - bd \end{bmatrix})$$

$$= ac - bd + (ad + bc)i = (a + bi)(c + di) = \phi(\begin{bmatrix} a & -b \\ b & a \end{bmatrix})\phi(\begin{bmatrix} c & -d \\ c & d \end{bmatrix}).$$

Therefore ϕ restricted to \mathbb{C}^* is an isomorphism between \mathbb{C}^* and M^* .

48. Let ϕ be an isomorphism from a group G to a group \overline{G} and let a belong to G. Prove that $\phi(C(a)) = C(\phi(a))$.

Let $x \in \phi(C(a))$. Then there is $y \in C(a)$ such that $\phi(y) = x$. $x\phi(a) = \phi(y)\phi(a) = \phi(ya) = \phi(ay) = \phi(a)\phi(y) = \phi(a)x$. So $x \in C(\phi(a))$. Therefore $\phi(C(a)) \subset C(\phi(a))$.

Conversely, suppose that $x \in C(\phi(a))$. There is $y \in G$ such that $\phi(y) = x$. $\phi(ya) = \phi(y)\phi(a) = x\phi(a) = \phi(a)x = \phi(a)\phi(y) = \phi(ay)$. Because ϕ is one-to-one, ya = ay and $y \in C(a)$. Therefore $x = \phi(a) \in \phi(C(a))$. So $C(\phi(a)) \subset \phi(C(a))$ and $C(\phi(a)) = \phi(C(a))$.