1. Treść zadania

- 4. Rozważmy funkcję $f(x) = (e^x 1) / x$. Można wykazać (jak?), że $\lim_{x \to 0} f(x) = 1$
 - a) Sprawdzić tę własność obliczając wartość funkcji dla $x = 10^{-k}$ dla k = 1, ..., 15. Czy rezultaty są zgodne z oczekiwaniami?
 - b) Powtórzyć obliczenia tym razem korzystając ze wzoru:

$$f(x) = (e^x - 1) / \ln(e^x)$$
.

Porównać rezultaty z tymi uzyskanymi w punkcie a). Spróbować wyjaśnić ewentualne różnice.

Obliczenia wykonać dla zmiennych typu *float, double, long double*. Zwrócić uwagę na typ argumentów i wyników dla funkcji bibliotecznych wykorzystywanych w obliczeniach.

2. Obliczanie granicy f(x)

 $\lim_{x \to 0} (e^x - 1) = 0 \;\; {
m oraz} \;\; \lim_{x \to 0} x = 0$, zatem korzystając z reguły de l'Hospitala

liczymy pochodne licznika i mianownika i otrzymujemy $\lim_{x\to 0}\frac{(e^x-1)'}{x'}=\lim_{x\to 0}(\frac{e^x}{1})=1.$

3. Kod źródłowy

Żeby mieć jak największą kontrolę nad typem zmiennych używanych w obliczeniach, zdecydowałam się na pisanie w języku C++. Na początek napisałam funkcje podnoszące 10 do odpowiedniej potęgi dla zmiennych typu float, double i long double, ponieważ funkcja pow() przyjmuje i zwraca tylko zmienne typu double.

```
#include <iostream>
#include <cmath>

#include <cmath>

#float potega_f(int k){
    float pom=10;
    for (int i=0;i<k;i++){
        pom/=10;
    }
    return pom;

##include <iostream>

##include <iostream>
##include <iostream>

##include <iostream>
##include <iostream>
##include <iostream>
##include <iostream>
##include <iostream>
##include <iostream>
##include <iostream>
##include <iostream>
##include <iostream>
##include <iostream>
##include <iostream>
##include <iostream>
##include <iostream>
##include <iostream>
##include <iostream>
##include <iostream>
##include <iostream>
##include <iostream>
##include <iostream>
##include <iostream>
##include <iostream>
##include <iostream>
##include <iostream>
##include <iostream>
##include <iostream>
##include <iostream>
##include <iostream>
##include <iostream>
##include <iostream>
##include <iostream>
##include <iostream>
##include <iostream>
##include <iostream>
##include <iostream>
##include <iostream>
##include <iostream>
##include <iostream>
##include <iostream>
##include <iostream>
##include <iostream>
##include <iostream>
##include <iostream>
##include <iostream>
##include <iostream>
##include <iostream>
##include <iostream>
##include <iostream>
##include <iostream>
##include <iostream>
##include <iostream>
##include <iostream>
##include <iostream>
##include <iostream>
##include <iostream>
##include <iostream>
##include <iostream>
##include <iostream
```

Fragment kodu 1

Następnie napisałam funkcje obliczające wartość funkcji f(x) dla danego k (równanie z podpunktu a) nazwałam równaniem 1, a równanie z podpunktu b) równaniem 2). Liczbę e uzyskiwałam poprzez wywołanie funkcji exp(0). Wyrażenie e^x obliczałam z użyciem funkcji pow. Zarówno funkcja exp jak i pow zwracają typ double, więc wynik musiałam później rzutować na pożądany typ (jedynym sposobem uniknięcia tego, jaki udało mi się wymyślić, było znalezienie odpowiednio dokładnego przybliżenia liczby e i rzutowania go na odpowiednie typy zmiennych, tylko trzeba by przewidywać co to znaczy "odpowiednio dokładny"). Z funkcją log z biblioteki math nie było problemów, bo zwraca ona taki sam typ, jaki przyjmuje.

```
float rownanie1_float(int k){
    float pom = potega_f(k);
    return float((pow( X exp( X 1), Y pom)-1)/pom);

}

float rownanie2_float(int k){
    float pom = potega_f(k);
    return float((pow( X exp( X 1), Y pom)-1)/log( X exp( X pom)));

}

double rownanie1_double(int k){
    double pom = potega_d(k);
    return (pow( X exp( X 1), Y pom)-1)/pom;

}

double rownanie2_double(int k){
    double pom = potega_d(k);
    return (pow( X exp( X 1), Y pom)-1)/log( X exp( X pom));

}

double rownanie1_long_double(int k){
    double rownanie1_long_double(int k){
    long double rownanie1_long_double(int k){
    long double pom = potega_ld(k);
    return (long double)((pow( X exp( X 1), Y pom)-1)/pom);

}

long double rownanie2_long_double(int k){
    long double rownanie3_long_double(int k){
```

Fragment kodu 2

Na koniec w funkcji main wywoływałam w pętlach funkcje dla odpowiednich k.

Fragment kodu 3

4. Analiza wyników

(Nie wstawiałam wyników do tabeli, ponieważ traciły wtedy resztki czytelności.)

Równanie 1

```
float, rownanie 1
k=1: 1.71828186511993408203125
k=2: 1.05170917510986328125
k=3: 1.00501668453216552734375
k=4: 1.000500202178955078125
k=5: 1.00004994869232177734375
k=6: 1.0000050067901611328125
k=7: 1.000000476837158203125
k=8: 1
k=9: 1
k=10: 1
k=11: 1.0000002384185791015625
k=12: 1.00000011920928955078125
k=13: 1.00008904933929443359375
k=14: 0.9992008209228515625
k=15: 0.9992008209228515625
```

```
double, rownanie 1
k=1: 1.718281828459045990795598298427648842334747314453125
k=2: 1.0517091807564771244187795673497021198272705078125
k=3: 1.0050167084167949127504471107386052608489990234375
k=4: 1.0005001667140975314396200701594352572216796875
k=5: 1.00005000166714097531439620070159435272216796875
k=6: 1.0000050000069649058787035755813121795654296875
k=7: 1.0000004999621834311795964822522364556789398193359375
k=8: 1.00000004993621834311795964822522364656789398193359375
k=9: 0.9999999392252888070332453571609221398830413818359375
k=10: 1.0000000827403707770457685910514555871486663818359375
k=11: 1.0000000827403707770457685910514555871486663818359375
k=12: 1.0000800827403707770457685910514555871486663818359375
k=14: 0.99920072216264077535896603876608423888683319091796875
k=15: 0.99920072216264077535896603876608423888683319091796875
k=2: 1.05170918075647712441877956734970211982727856078125
k=3: 1.0050167084167949127504471107386052608489990234375
k=4: 1.00008084996218365333262162453209498882403564453125
k=5: 1.00050001667140975422816417950144796122913248836994171142578125
k=6: 1.000000804933680260444097520622364072551135905086994171142578125
k=6: 1.00000082740370999198793733331314115275745280086994171142578125
k=9: 0.9999999993922529029132060390816505446309747680034970855712890625
k=11: 1.00000082740370999198793733331314115275745280086994171142578125
k=13: 1.00000082740370999198793733331314115275745280086994171142578125
k=13: 1.00000082740370999198793733331314115275745280086994171142578125
k=14: 0.999200722162640886489688718530288724650745280086994171142578125
```

Wszystkie typy zmiennych na początku zbliżały się do 1, jednak co zaskakujące, dla k=14 i dla k=15 dały wynik mniejszy od 1. W przypadku typu float najłatwiej można zaobserwować, że od pewnego momentu (k=10) funkcja rzekomo najpierw rośnie, a potem maleje (co nie może być prawdą, bo jest to funkcja monotoniczna). Dodatkowo można zauważyć, że long double dał dokładniejsze wyniki niż double (tj. dla większych k na pewno niepoprawne, ale z większą liczbą miejsc po przecinku).

Równanie 2

```
float, rownanie 2
k=1: 1.71828186511993408203125
k=2: 1.05170917510986328125
k=3: 1.00501668453216552734375
k=4: 1.000500202178955078125
k=5: 1.00004994869232177734375
k=6: 1.0000050067901611328125
k=7: 1.000000476837158203125
k=8: 1
k=9: 1
k=10: 1
k=11: 1
k=12: 1
k=13: 1
k=14: 1
k=15: 1
```

Wyniki dla równania 2 są dużo bardziej wiarygodne, ponieważ wszystkie wyniki są malejące, jednak double dał takie same przybliżenia jak long double.

5. Wnioski

Oba równania, które zbiegają do 1, dały różne wyniki. Nie potrafię sensownie wytłumaczyć, dlaczego tak się stało (podejrzanymi są biblioteki i kompilator). Przydatną informacją, jaką udało mi się zdobyć podczas tego ćwiczenia, jest to, że większość funkcji matematycznych obsługuje typ double i często nie ma znaczenia, czy użyjemy double czy long double- wynik może być podobny.

6. Dane techniczne

• Język programowania: C++

Kompilator: g++ (toolchain: MinGW)System: Windows Server 2019

• Procesor: Intel Core i7-7700HQ 2.8 GHz