THƯ VIỆN TRONG PYTHON HỖ TRỢ PHÂN TÍCH ĐỮ LIỆU

Nội dung

- 1. Thư viện numpy
- 2. Mảng và chỉ số
- 3. Thư viện matplotlib
- 4. Biểu đồ trong matplotlib
- 5. Thư viện Pandas

Thư viện trong python

- os: xử lý file và tương tác với hệ điều hành
- network và graph: làm việc với dữ liệu đồ thị, có thể làm việc với dữ liệu rất lớn (đồ thị lên đến hàng triệu đỉnh)
- regular expressions: tìm kiếm mẫu trong dữ liệu text
- Beautiful Soup: trích xuất dữ liệu từ file HTML hoặc từ website

3

Thư viện trong python

- Pandas: chuyên sử dụng cho quản lý và tương tác với dữ liệu có cấu trúc, được sử dụng rộng rãi trong việc thu thập và tiền xử lý dữ liệu
- Scikit Learn: chuyên về học máy (machine leaming), dựa trên NumPy, SciPy và matplotlib; thư viện này có sẵn nhiều công cụ hiệu quả cho học máy: các thuật toán phân lớp, hồi quy, phân cụm và giảm chiều dữ liệu
- Statsmodels: cho phép người sử dụng khai phá dữ liệu, ước lượng mô hình thống kê và kiểm định

Thư viện trong python

- SciPy (Scientific Python): dựa trên Numpy, cung cấp các công cụ mạnh, chẳng hạn như: biến đổi fourier rời rạc, đại số tuyến tính, tối ưu hóa và ma trận thưa
- NumPy (Numerical Python): thư viện chuyên về xử lý dữ liệu số (nhiều chiều); thư viện cũng chứa các hàm đại số tuyến tính cơ bản, biến đổi fourier, sinh số ngẫu nhiên nâng cao,...
- Matplotlib: sử dụng để vẽ biểu đồ, hỗ trợ rất nhiều loại biểu đồ, đồ thị khác nhau.

5

Thư viện trong python

- Theano: chuyên dùng tính toán hiệu quả các mảng nhiều chiều, sử dụng rộng rãi trong học máy
- Keras: thư viện cấp cao chuyên về học máy, sử dụng Theano,
 TensorFlow làm phụ trợ
- TensorFlow: chuyên dùng cho học máy của Google, đặc biệt là các mạng thần kinh nhân tạo
- Scrapy: thu thập thông tin trên web, rất phù hợp với việc lấy các dữ liệu theo mẫu
- SymPy: tính toán chuyên ngành dùng cho số học, đại số, toán rời rạc và vật lý lượng tử

Thư viện trong python

- Bokeh: tạo các ô tương tác, biểu đồ tổng quan trên nền web, rất hiệu quả khi tương tác với dữ liệu lớn và trực tuyến.
- Seaborn: dựa trên matplotlib, công cụ trực quan hóa (visualization) dữ liệu thống kê.
- Blaze: gói dựa trên Numpy và Pandas hướng đến dữ liệu phân tán hoặc truyền phát =>công cụ mạnh tạo diễn thị về dữ liệu lớn (big data).

7

Numpy

NumPy là thư viện bổ sungcủa python, do không có sẵn, ta phải cài đặt:

pip install numpy

Để kiểm tra xem hệ thống đã cài numpy hay không => thử import gói xem có bị báo lỗi hay không:

import numpy as np

Numpy

Đối tượng chính của NumPylà các mảng đa chiều đồng nhất (homogeneous multidimention array)

- Kiểu dữ liệu phần tử con trong mảng phải giống nhau
- Mảng có thể một chiều hoặc nhiều chiều
- Các chiều (axis) được đánh thứ tự từ 0 trở đi
- Có đến 24 kiểu số khác nhau
- Kiểu ndarray là lớp chính xử lý dữ liệu mảng nhiều chiều

Ví dụ: Khởi tạo mảng

import numpy as np

```
x = np.range(3.0)
                                 # mang[0. 1. 2.]
                                 # mång2 x 2 toàn số 0
a = np.zeros((2, 2))
b = np.ones((1, 2))
                                 # mång 1x2 toàn số 1
c = np.full((3, 2, 2), 9)
                                 # mång 3 x 2 x 2 toàn số 9
d = np.eye(2)
                                 # ma trân đơnvi 2 x 2
e = np.random.random(3,2)
                                 # mảng 3 x 2 ngẫu nhiên [0,1)
# mảng 2 x 3 điền các số từ 1 đến 6, kiểu số nguyên 32 bit
x=np.array([[1, 2,3],[4,5,6]],np.int32)
print(x.ndim,x.size)
print(x.shape)
                                 #in "(2, 3)"
print(x.dtype)
                                 # in "dtype('int32')"
```

Ví dụ: Tạo và truy cập mảng

import numpy as np

```
 a = \text{np.array}([21, 32,83]) \ \# \ \text{tạo mảng 1 chiều} \\  \text{print}(\text{type(a)}) \qquad \# \ \text{in "<class 'numpy.ndarray'>"} \\  \text{print}(\text{a.shape}) \qquad \# \ \text{in "(3,)"} \\  \text{print}(\text{a[0],a[1],a[2]}) \qquad \# \ \text{in "1 2 3"} \\  a[0] = 1 \\  \text{print(a)} \\  b = \text{np.array}([[1, 2,3],[4, 5, 6]]) \qquad \# \ \text{tạo mảng 2 chiều} \\  \text{print}(\text{b.shape}) \qquad \# \ \text{in "(2, 3)"} \\  \text{print}(\text{b[0,0],b[0,1],b[1,0]}) \qquad \# \ \text{in "1 2 4"}
```

11

Ví dụ:

a. Viết chương trình tạo ma trận 5 x5 có chứa toàn số 0.

b. Viết chương trình tạo ma trận 4 x 3 có chứa toàn số 1.

Hướng dẫn:

Câu a:

import numpy as np
a = np.zeros((5,5))
print(a)

Câu b:

(Download bộ thư viện nump xuống)

Truy cập theo chỉ số (slicing)

```
import numpyas np

# mång 3 x 4

a = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])

# mång 2 x 2 trích xuất từ a, dòng 0+1, cột 1+2

b= a[: 2, 1:3]

# mång của numpy tham chiếu chứ không copy dữ liệu

print(a[0, 1]) # in "2"

b[0, 0] = 77 # b[0, 0] cũng là a[0, 1]

print(a[0, 1]) # in "77"
```

Ví dụ: Truy cập theo chỉ số

```
# mảng 1 chiều độ dài 4
row_r1 = a[1, :]
                                  # mång2chiều 1 x 4
row_r2 = a[1:2, :]
print(row_r1, row_r1.shape)
                                  #in ra "[5 678](4,)"
print(row_r2, row_r2.shape)
                                  #in ra "[[5 678]](1, 4)"
                                  # mảng1 chiều độ dài 3
col_r1 = a[:, 1]
                                  # mång2 chiều 3 x 1
col_r2 = a[:, 1:2]
                                  # in ra "[ 2 610](3,)"
print(col_r1, col_r1.shape)
                                  # in ra "[[ 2][6][10]] (3,1)"
print(col_r2, col_r2.shape)
```

Ví dụ: Các phép toán trên mảng

```
import numpyas np
x = np.array([[1, 2], [3, 4]], dtype=np.float64)
y = np.array([[5, 6], [7, 8]], dtype=np.float64)
                    # print(np.add(x, y)), xử lý khác list
print(x + y)
print( x - y)
                    # print(np.subtract(x, y))
print( x * y)
                    # print(np.multiply(x, y))
print(x / y)
                    # print(np.divide(x, y))
print(np.sqrt(x))
                    # khai căn tất cả các phần tử
print(2**x)
                    # tính 2 mũ các phần tử trong x
# phép nhân/chia thực hiện theo cặp phần tử của x và y
```

Ví dụ: Nhân ma trận và nghịch đảo

import numpy as np

Ví dụ: Ma trận chuyển vị

```
import numpyas np
```

```
x = np.array([[1, 2], [3, 4]])
print(x)  # in ra " [[1 2] [3   4]]"
print(x.T)  # in ra " [[1 3] [2   4]]"

y= np.array([1, 2,3])

print(y)  # in ra " [1 2 3]"
print(y.T)  # in ra " [1 2 3]"
z = np.array([[1, 2, 3]])
print(z.T)
```

Ví dụ: Đọc dữ liệu từ file

Ví dụ: Đọc dữ liệu từ file

```
import numpyas np
```

Ví dụ: Tạo mảng ngẫu nhiên

Ví dụ: Tính tổng theo các trục

import numpy as np

```
x = np.array([[1, 2], [3, 4]]) #[1,2] #[3,4]

print(np.sum(x)) # tính tổng toàn bộ x, in ra "10" print(np.sum(x, axis=0)) # tính tổng mỗi cột, in ra "[46]" print(np.sum(x, axis=1)) # tính tổng mỗi hàng, in ra "[37]"
```

21

Ví dụ: Các hàm thống kê

Thư viện matplotlib

Giới thiệu matplotlib

- Thư viện chuyên vẽ biểu đồ => mở rộng từ **numpy**
- Hỗ trợ nhiều loại biểu đồ: biểu đồ dòng, đường, tần suất (histograms), phổ, tương quan, errorcharts, scat erplots,...
- Ngoài API liên quan đến vẽ biểu đồ, matplotlib còn bao gồm một số interface: Object-Oriented API, The Scripting Interface (pyplot), The MATLAB Interface (pylab).
- Cài đặt: "pip install matplotlib"

Các bước vẽ biểu đồ

- Đã có sẵndữ liêu
- Bước 1: Chọn loại biểu đô phù hợp
 - Tùy thuộc vào loại dữ liệu
 - Tùy thuộc vào mục đích sử dụng của người dùng
- Bước 2: Thiết lập các thông số cho biểu đô
 - Thông số của các trục, ý nghĩa, tỉ lệ chia,...
 - Góc nhìn, mẫu tô, màu và các chi tiết khác
 - Các thông tin bổ sung
- Bước 3: Vẽ biểu đô
- Bước 4: Lưu ra file

Line plot

- Biểu đồ thể hiện quan hệ giữa X và Y
- Cúpháp:
 - plot([x], y, [fmt], data=None,**kwargs)
 - plot([x], y,[fmt], [x2], y2,[fmt2], ..., **kwargs)
- o "fmt" là quy cách vẽ đường
- o "data" là nhãn của dữ liệu
- o **kwargs: tham số vẽ đường
- o Vẽ nhiều lần trên một biểu đồ
- o Kết quả trả về là một list các đối 0.50
- o tượng Line 2D

Line plot

- "fmt" gồm 3 phần fmt = '[color][marker][line]
- [color]: tên màu:
 - o 'b' : blue
 - o 'g' : green
 - o 'r' :red
 - o 'c' : cyan
 - o 'm' : magenta
 - o 'y' : yellow
 - o **'b'** : black
 - o 'w' : white
 - o #rrggbb:chỉ ra mã
 - màu theo hệ RGB

- [marker] : cách đánh dấu dữ liệu
 - : hình tròn o 'o'
 - : tam giác xuống ('^', '<','>
 - : ngôisao
 - : chấm
 - : ngũ giác o 'p'
- [line] : cách vẽ đường
 - : nét liền
 - : nét đứt
 - o '-.' :gạch chấm
 - : đường chấm

Ví dụ:

import numpy as np import matplotlib.pyplot as plt

chia đoan 0-8 thành các bước 0.2

- x = np.arange(0., 8., 0.2)
- # Vẽ 3 đường:
- # màuđỏ nét đứt: $y = x^2$
- # màu xanh dương, đánh dấu ô vuông: y = x^3
- # màuxanh lá, đánh dấu tam giác: y = x^4

plt.plot(x,x**2,'r ^ ',x, x**3, 'bp', x, x **4, 'g*')

plt.show()

Ví dụ:

Cho tập dữ liệu thú cưng:

Data={'Chó':20, 'Mèo':10, 'Chuột':50, 'Heo':100, 'Chim':120, 'Cá':70}

Vẽ biểu đồ dạng cột thể hiện số lượng các thú cưng trên.

Hướng dẫn:

import matplotlib.pyplot as plt Data={'Chó':20, 'Mèo':10, 'Chuột':50, 'Heo':100, 'Chim':120, 'Cá':70}

plt.bar(range(len(Data)),list(Data.values()))

olt.xticks(range(len(Data)),Data.keys())

plt.title('Thú cưng của tôi')

olt.show()

Ví du:

Giả sử có hai biểu đồ có giá trị: BT1=([1,4,6,8,3],[11,15,3,10,9]) BT2=([21,41,16,28,33],[41,25,31,12,19]) Vẽ biểu đồ để ghép 2 biểu đồ trên thành 1 biểu đồ

Hướng dẫn:

import matplotlib.pyplot as plt

plt.bar([1,4,6,8,3],[11,15,3,10,9], label = 'BT1')
plt.bar([21,41,16,28,33],[41,25,31,12,19], label= 'BT2', color = 'r')
plt.legend()

plt. xlabel('Côt số')

plt. ylabel('Cột chiều cao')

plt.title('Kết nối 2 biểu đồ')

plt.show()

Ví dụ Đọc bốn ảnh từ máy và hiện lên màn hình, sau đó lưu ra file Hướng dẫn: import matplotlib.pyplot as plt import matplotlib.image as img image1 = img.imread("abc1.png") image2 = img.imread("abc2.png") image3 = img.imread("abc3.jpg") image4 = img.imread("abc4.png") fig, axs = plt.subplots(2, 2, figsize = (8, 8)) axs[0, 0].imshow(image1)

axs[0, 0].imshow(image2)
axs[1, 0].imshow(image3)
axs[1, 1].imshow(image4)
lưu file
plt.savefig('a.png')
plt.savefig('a.pdf')
Nt.show()

Thư viện Pandas

Giới thiệu Pandas

- "pandas" là thư viện mở rộng từ numpy, chuyên để xử lý dữ liệu cấu trúc dạng bảng
- "pandas" => dạng sốnhiều của "panel data"
- Đọc dữ liệu từ nhiều định dạng
- Liên kết dữ liệu và tích hợp xử lý dữ liệu bị thiếu
- Xoay, chuyển đổi chiều của dữ liệu dễ dàng
- Tách, đánh chỉ mục và chia nhỏ các tập dữ liệu lớn dựa trên nhãn
- Có thể nhóm dữ liệu cho các mục đích hợp nhất và chuyển đổi
- Lọc dữ liệu và thực hiện query trên dữ liệu
- Xử lý dữ liệu chuỗi thời gian và lấy mẫu

Câu trúc dữ liệu trong pandas

- Dữ liệu của pandas có 3 cấu trúc chính:
 - Series (loạt): cấu trúc 1 chiều, mảng dữ liệu đồng nhất
 - Dataframe (khung): cấu trúc 2 chiều, dữ liệu trên các cột là đồng nhất (có phần giống như table trong SQL, nhưng với các dòng được đặt tên)
 - Panel (bảng): cấu trúc 3 chiều, có thể xem như một tập các dataframe với thông tin bổ sung
- Dữ liệu series gần giống kiểu array trong numpy, nhưng có điểm khác biệt quan trọng:
 - Chấp nhận dữ liệu thiếu (NaN: không xácđịnh)

Cấu trúc dataframe

- Dữ liêu 2 chiều
- Các cột có tên
- Dữ liệu trên cột là đồng nhất
- Các dòng có thể có tên
- Có thể có ô thiếu dữ liệu

	country	population	area	capital
BR	Brazil	200	8515767	Brasilia
RU	Russia	144	17098242	Moscow
IN	India	1252	3287590	New Delhi
CH	China	1357	9596961	Beijing
SA	South Africa	55	1221037	Pretoria

Cấu trúc panel

- Dữ liệu 3 chiều
- Một tập các data frame
- Các data frame có cấu trúc tương đồng
- Có thể có các thông tin bổ sung cho từng dataframe

		Open	Close
Major	Minor		
3/31/2015	IBM	23.602	132.903
	APPL	421.412	212.665
	CVX	568.055	409.201
	BHP	487.414	515.413
4/30/2015	IBM	150.868	457.895
	APPL	204.729	957.179
	CVX	90.679	888.687
	BHP	831.527	714.202
5/31/2015	IBM	788.582	922.422
	APPL	329.716	304.964
	CVX	36.578	981.508
	BHP	313.848	882.293

Tạo dữ liệu series

import **pandas** as pd

import numpy as np

S= pd.**Series**(np.random.randint(500, size = 10))

```
Edit Shell Debug Options Window Help
print(S)
                          Python 3.9.5 (tags/v3.9.5:0a7dcbd, May 3 2021, 17:27:52)
                          D64)] on win32
                          Type "help", "copyright", "credits" or "license()" for more
print(S.index)
                                      ====== RESTART: D:\Documents\Python\OkNguyen.
print(S.values)
                               180
                               307
                               168
                               103
                               399
                                14
                               134
                               286
                          dtype: int32
                          RangeIndex(start=0, stop=10, step=1)
[103 180 227 307 168 103 399 14 134 286]
```

```
Ví dụ
import pandas as pd
import numpy as np
chi_so = ["Chó", "Mèo", "Chuột", "Heo", "Chim", "Cá"]
gia_ tri = [20, 10, 50,100, 120, 70]
S= pd.Series(gia_tri, index=chi_so)
                            IDLE Shell 3.9.5
print(S)
                            File Edit Shell Debug Options Window Help
                            Python 3.9.5 (tags/v3.9.5:0a7dcbd, May 3 2021, 17:27:52) [MSC v.1928 64 bit
print(S.index)
                            D64)] on win32
Type "help", "copyright", "credits" or "license()" for more information.
print(S.values)
                                           === RESTART: D:\Documents\Python\OkNguyen.py =
                            Chó
Mèo
                            Chuột
Heo
                                     50
                                    100
120
                            Chim
Cá
                            dtype: int64
Index(['Chó', 'Mèo', 'Chuôt', 'Heo', 'Chim', 'Cá'], dtype='object')
[ 20  10  50  100  120  70]
```

Ví dụ:

Cho tập dữ liệu sau:

Data={ "Xuat Sac": 1, "Tot":2, "Kha":3, "Trung Bình": 4, "Yeu":5, "Kem":6" } Viết code xuất tập Data trên ra màn hình.

Phép toán trên series

- Thực hiện phéptoán trên series như sau:
 - Nếu là phép toán giữa 2 series, thì các giá trị cùng chỉ số sẽ thực hiện phép toán với nhau, trường hợp không có giá trị ở cả 2 series thì trả về NaN
 - Nếu là phép toán giữa series và 1 số, thì thực hiện phép toán trên số đó với tất cả các giá trị trong series

Một số phương thức

- S.axes: trả về danh sách các chỉ muc của S
- S.dtype: trả về kiểu dữ liệu cácphần tử củaS
- S.empty: trả về True nếu S rỗng
- S.ndim: trả về số chiều của S(1)
- S.size: trả về số phần tử của S
- S.values: trả về list các phần tử của S
- S.head(n):trả về n phần tử đầu tiên của S
- S.tail(n): trả vền phần tử cuối cùng của S

Khởi tạo dataframe

pandas.DataFrame(data,index,columns,dtype,copy)

Trongđó:

- 'data': nhận giá trị từ nhiều kiểu khác nhau như list, dictionary,
 ndarray, series,...và cả các DataFrame khác
- 'index': nhãn chỉ mục hàng của dataframe
- 'columns': nhãn chỉ muc côt của dataframe
- 'dtype': kiểu dữ liệu cho mỗi cột
- 'copy': nhận giá trị True/False để chỉ dữ liệu có được copy sang
 vùng nhớ mới không, mặc định là False

Ví dụ:

```
Tạo dataframe từ list
A = [['Anh',1],["Em",2],["Chi]",200]]
df = pd.DataFrame(A)
print(df)
```

Tạo dataframe từ dictionary các list

```
crimes_rates = {
   "Year":[1960,1961,1962,1963,1964],
   "Population":[179323175,182992000,185771000,188483000,191141
   000],   "Total":[3384200,3488000,3752200,4109500,4564600],
   "Violent":[288460,289390,301510,316970,364220]
}
crimes_dataframe = pd.DataFrame(crimes_rates)
print(crimes_dataframe)
```

Đọc dữ liệu từ file.csv

import pandas as pd
d = pd.read_csv("a.csv")
print(d)

Xem dữ liệu

import pandas as pd
import matplotlib.pyplot as plt
d = pd.read_csv("a.csv", index_col = 0)
d.describe()

Kết hợp giữa pandas và matplotlib

```
import pandas as pd
import matplotlib.pyplot as plt
d = pd.read_csv("a.csv", index_col = 0)
d.area.plot(kind='bar')
plt.show()
```