O trabalho prático inclui: 1 relatório (2 valores), uma apresentação do trabalho (1 valor) e uma aplicação (3 valores). A avaliação é feita com recurso a um trabalho prático obrigatório e 2 frequências. Os restantes 14 valores são obtidos com a média das frequências ou Agente reflexivo baseado em modelo Os trabalhos são em grupos de 2 alunos mas a nota é individual. Agente com utilidade Agentes e ambientes Agente com objetivo Agente que aprende Leitura recomendada Agente reflexivo Datas das frequências (a realizar nas aulas teóricas): Racionalidade Ambientes Conteúdos programáticos mínimos Aplicações: perceção, robótica e PLN. Conhecimento incerto e raciocínio da disciplina Representação de conhecimento Frequência 1: 2019-10-28Frequência 2: 2020-01-06 Resolução de problemas Funcionamento da disciplina Questões práticas Introdução à IA Introdução à IA Agentes inteligentes Aprendizagem com o exame. Competências Bibliografia História da IA Programa Avaliação Objetivo Avaliação Conteúdo 3 .2 .1 lack5. Introduzir os conceitos, modelos e linguagem adequados à resolução de problemas usando as técnicas da Inteligência Artificial (IA). Aplicar os conhecimentos adquiridos na resolução de problemas Implementar o código da maioria dos assuntos estudados No final da disciplina os alunos devem ser capazes de Inteligência Artificial Ano lectivo 2019-20 Luís A. Alexandre Compreender os sistemas baseados em IA Competências Objetivo

Artificial Intelligence - A Modern Approach, S. Russell, P. Norvig, 3ªEd., 2010. PDFs das aulas teóricas; Artificial 1-2 " Introdução à IA Bibliografia Conteúdo ⊴ "Hey Siri, what's the best sushi place in town?" "DeepMind AI Reduces Google Data Centre Cooling Bill by 40%" Trabalhadores-estudante: não precisam de frequentar as aulas mas têm ainda de fazer o trabalho. Devem identificar-se junto do docente. Os slides das teóricas, as fichas práticas e o resultado das avaliações ficam disponíveis no Moodle. O enunciado do trabalho prático será apresentado na semana da primeira frequência. Horário de atendimento das aulas teóricas: marcar. Qualquer tipo de fraude implica reprovação na disciplina. Existe nota mínima para se ir a exame e vale 6 valores. Os alunos devem frequentar 80% das aulas. Questões práticas Avaliação \blacktriangle \blacktriangle ≤

A close up of a cat laying on a couch.

herd of elephants walk across a dry grass field

\sim a IA due é

0

- Não existe uma definição consensual do que é a IA.
- De facto podem-se organizar as definições segundo a seguinte tabela:

	Humanos	Racionalment
Agir	1	3
Pensar	2	4

- Sistemas que agem como os humanos Sistemas que pensam como os humanos Sistemas que agem racionalmente Sistemas que pensam racionalmente
- H 2. E. 4.
- Mas os humanos não são racionais ?!

Agir como um humano

- O teste de Turing evita o contacto directo entre o interrogador e o interrogado, pois nesse caso a máquina teria de ter a aparência física de um humano, o que não é necessário para exibir um comportamento inteligente.
- No entanto existe o teste de Turing total em que se usa também um percetuais do candidato e inclui ainda uma janela que permite que o sinal de vídeo o que permite ao interrogador testar as capacidades interrogador passe objectos ao candidato. \blacksquare
- Neste caso a máquina necessita, além das capacidades já enunciadas, das seguintes: \blacksquare

 - visão computacional: para permitir reconhecer objectos
 robótica: para permitir manipular objectos e deslocar-se

Estas 6 disciplinas compõem a maior parte da IA.

 \blacksquare

Pensar como um humano

Para podermos afirmar que um dado programa pensa como um

 \blacktriangle

humano temos de poder dizer como é que um humano pensa.

- Há duas formas de tentar perceber como é que os humanos pensam: por introspecção, tentando analisar os nossos próprios pensamentos enquanto eles ocorrem; ou por experiências psicológicas.
- Se tivermos uma teoria da mente suficientemente precisa podemos criar programas que a simulem.
- modelos que consigam aproximar os comportamentos da mente As ciências cognitivas são uma área científica onde se estudam
- Nesta área as experiências requerem sujeitos humanos ou animais. \blacktriangle
- Actualmente é bem clara a distinção entre IA e ciências cognitivas, sendo que muitas vezes se usam descobertas numa delas para ajudar a avançar o conhecimento na outra.

Agir como um humano

- Em 1950 Alan Turing propôs o teste de Turing com o objetivo de obter uma definição operacional de inteligência. \blacktriangle
- Uma máquina passa no teste se, após responder a questões colocadas por escrito, o interrogador não souber se as respostas foram dadas por um humano ou não. \blacktriangle
- Para uma máquina passar no teste precisa das seguintes capacidades:
 - processamento de linguagem natural: para poder comunicar na linguagem humana;
- representação do conhecimento: para permitir armazenar o que sabe ou ouve;
 - raciocínio automático: para poder usar a informação armazenada para responder a perguntas e chegar a conclusões aprendizagem automática: para poder adaptar-se a novas circunstâncias e detectar e extrapolar padrões.

Agir como um humano

- Será necessário agir como um humano para se ser inteligente? Não.
- Como analogia podemos pensar no que foi preciso para construir máquinas voadoras: aerodinâmica. \blacktriangle
- Os aviões não voam exactamente como os pombos, mas voam! \blacktriangle
- Da mesma forma, na IA, não se tem tentado passar o teste de Turing mas sim estudar os princípios por detrás da inteligência.
 - Desta forma julga-se que será possível criar máquinas que pensam, mesmo que não o façam da mesma forma que os humanos.

Pensar racionalmente

- Aristóteles foi um dos primeiros a tentar codificar o que se entende por pensar correctamente. lack
- levavam sempre a conclusões correctas, desde que as premissas também o fossem: "Sócrates é um homem", "Todos os homens são Os seus silogismos forneciam padrões para a argumentação que mortais", logo "Sócrates é mortal'
- Estas leis do pensamento deram início o que hoje se chama o campo da lógica. \blacktriangle
 - para as afirmações relativas a todo o tipo de coisas e relações entre Os matemáticos do século 19 desenvolveram uma notação precisa
- Já em 1965 existiam programas que, em princípio, conseguiriam resolver qualquer problema descrito em notação lógica.

Pensar racionalmente

- A abordagem à IA com base na lógica enfrenta no entanto dois obstáculos importantes:
- não é fácil pegar em conhecimento informal e escrevê-lo sob a forma de
- existe uma grande diferença entre ser capaz de resolver problemas em princípio e na prática: até problemas que envolvem algumas dúzias de factos podem esgotar os recursos computacionais disponíveis se não existir uma forma de escolher qual a ordem pela qual se deve tentar processar os factos.

Agir racionalmente

- Um agente é algo que age. Os programas computacionais chamados agentes distinguem-se dos restantes programas pelo facto de: lack
 - poderem agir de forma autónoma
- terem a capacidade de obter dados do ambiente (terem sensores)
 - estarem em funcionamento durante um período de tempo longo
 - adaptarem-se a mudanças
- serem capazes de atingir determinados objetivos.
- Um agente racional é um que age de forma a alcançar o melhor resultado, ou, em caso de existir incerteza, o melhor resultado esperado. \blacktriangle

Agir racionalmente

Conteúdo

é mais geral que a abordagem do pensamento racional pois a inferência

é apenas um dos mecanismos que permite chegar ao comportamento

racional;

baseadas no comportamento ou pensamento humano pois usa uma é mais adaptado ao desenvolvimento científico que as abordagens

definição de racionalidade clara e geral.

Nesta disciplina iremos estudar os princípios gerais dos agentes racionais e os componentes que os permitem construir.

 \blacktriangle

O estudo da IA em termos de agentes racionais tem pelo menos duas

vantagens:

História da IA

Veremos que muitas vezes não é possível fazer o mais correcto (tomar a ação óptima) devido à complexidade dos ambientes em que o

agente se insere.

Alguns marcos na história da IA

- 1969-79: Desenvolvimento dos sistemas periciais
- 1980-88: Explosão dos sistemas periciais

de

1943: McCulloch e Pitts propõem um modelo do cérebro capaz implementar as funções boolenas baseados num modelo dum

neurónio

Alguns marcos na história da IA

- 1988-93: Declínio dos sistemas periciais
- 1985-95: Regresso da popularidade das redes neuronais
- 1988- : Nova IA: vida artificial, algoritmos genéticos, soft computing
 - 1995- : Agentes
- 1997: Deep Blue vence Kasparov
- 2001- : Grandes conjuntos de dados

1950s: Primeiros programas de IA: damas, Logic Theorist, Geometry

1966-74: IA descobre a complexidade computacional. Declínio das

redes neuronais.

1956: Reunião de Dartmouth: criação do nome Artificial Intelligence

 \blacktriangle \blacksquare

1950: Turing publica paper "Computing Machinery and Intelligence" onde introduz o teste de Turing, aprendizagem automática, algoritmos genéticos e aprendizagem por reforço.

- 2006- : Deep learning
- 2011: Watson vence os campeões do Jeopardy
- 2015: Tesla autopilot

2016: IA vence campeão do

Teste de Turing

- O TT foi batido em 2014: Eugene Goosterman (chatbot). "Artificial stupidity'
 - Novas propostas:
- Winograd Schema Challenge: Paul tried to call George on the phone, but he was not [successful/available]
- Compreensão de novos média. Ex.: ver um vídeo e ser capaz de responder a questões relacionadas com o que acabou de ver. "Porque é que a Rússia invadiu a Crimeia?".

Agentes e ambientes

Um agente é algo que tem perceção do ambiente através de sensores e que pode agir sobre esse ambiente através de atuadores.

Medida de desempenho

- ► Um agente racional é aquele que toma a decisão correcta.
- Tomar a decisão correcta significa que o seu desempenho, na tarefa que está a levar a cabo, melhora.
 - Assim, para se avaliar a racionalidade é necessário possuir uma medida de desempenho do agente.
- Uma medida de desempenho contém o critério de sucesso relativo ao comportamento de um agente.
- Em geral é melhor desenhar medidas de desempenho de acordo com o acordo com o que pensamos ser o melhor comportamento do agente. que se pretende que aconteça no ambiente do que desenhá-las de
- Ex.: agente aspirador, se a medida for a quantidade de pó aspirado ele pode ficar parado num local e passar todo o tempo a aspirar e voltar a deitar fora o mesmo pó; se a medida for inversamente proporcional à quantidade de pó no chão o seu comportamento será diferente.

Conteúdo

Agentes inteligentes

Agentes e ambientes

- Um agente humano tem órgãos sensoriais para se aperceber do ambiente e mãos pernas e outras partes do corpo que lhe permitem agir sobre o ambiente.
- Um robot pode ter câmaras, sensores de proximidade ou outros braços mecânicos para interagir com o ambiente. \blacktriangle
 - Um agente de software recebe input do teclado, de ficheiros ou de pacotes da rede (sensores) e age no ambiente através do ecrã, escrevendo em ficheiros ou enviando pacotes pela rede. \blacktriangle
- Iremos assumir que todos os agentes se conseguem aperceber das suas próprias ações, mas nem sempre dos efeitos dessas ações. \blacktriangle

Racionalidade

- O que é uma decisão racional num dado instante depende das seguintes quatro coisas:
 - a medida de desempenho que define o critério de sucesso

- o conhecimento que o agente tem do ambiente as ações que o agente pode executar a sequência de observações realizadas pelos sensores do agente até ao instante actual
- para cada sequência de observações possível, um agente racional deve Estas considerações levam à seguinte definição de agente racional: desempenho, dadas as observações realizadas e o conhecimento escolher a ação que se espera que maximize a sua medida de lack

adquirido pelo agente.

Especificação de ambientes de tarefa

- Para especificarmos ambientes de tarefas temos de indicar: a medida de desempenho, o ambiente em que a tarefa se leva a cabo, os atuadores e os sensores do agente.
 - Consideremos como problema a resolver o da condução automática
 - - Primeiro: qual será a medida de desempenho mais adequada? Algumas propriedades desejáveis são:
 - chegar ao destino desejado
 - minimizar o consumo de combustível
 - minimizar o desgaste do táxi
- minimizar as infrações de trânsito minimizar o tempo das viagens
- minimizar o incómodo causado aos restantes condutores maximizar a segurança e o conforto dos passageiros
- maximizar os lucros

Alguns destes objetivos são contraditórios, logo terão de existir compromissos.

Especificação de ambientes

- Os atuadores disponíveis para o táxi são os mesmos que existem para um condutor humano: acelerador, travão e embraiagem.
 - Terá ainda de possuir um ecrã ou sintetizador de voz para comunicar com os passageiros
- Do ponto de vista dos sensores, precisa de uma ou mais câmaras de vídeo, medidor de velocidade e de distância percorrida. Um acelerómetro para ajudar a fazer as curvas mais suaves evitando acelerações exageradas. Um GPS e sensores de proximidade.
- Finalmente precisa de ter um microfone ou um teclado para poder receber informação dos passageiros. \blacksquare

Propriedades dos ambientes

- Totalmente observável versus parcialmente observável: se os sensores ruído ou mau funcionamento dos sensores, ou por não possuir um determinado sensor. Ex \ldots o nosso táxi não tem forma de saber o que ambiente pode ser parcialmente observável devido à existência de do agente tiverem acesso a todo o estado do ambiente em cada instante dizemos que o ambiente é totalmente observável. Um os outros condutores estão a pensar
- Determinístico versus estocástico: se o estado do ambiente no instante seguinte for determinado pelo estado actual e pela ação do agente então temos um ambiente determinístico. Caso contrario é

Especificação de ambientes

- De seguida devemos considerar qual será o ambiente que o táxi irá lack
- estradas (auto-estradas, estradas municipais, caminhos rurais, de sentido único, etc.) e elementos nessas mesmas estradas (peões, animais, outros carros, carros avariados, buracos no asfalto, etc.) Qualquer táxi tem de ser capaz de lidar com uma variedade de
 - O táxi tem ainda de ser capaz de interagir com os passageiros.
- Fazem ainda parte do ambiente as condições climatéricas sob as quais tem de conduzir: pode encontrar neve, chuva, muito calor, etc.
 - conduzir em diferentes países com regras de condução diferentes e nalguns casos em que a condução se faz pela faixa da esquerda e Ainda podemos considerar as possibilidades que resultam de se noutros pela da direita. \blacktriangle
- Quanto mais restrito for o ambiente de actuação mais fácil é o problema.

Exemplos de ambientes de tarefas

Tipo de agente	Medida de desempenho	Ambiente	atuadores	Sensores
Diagnóstico médico	saúde dos doentes, minimizar custos	paciente, hospital,	ecrã para perguntas, diagnósticos,	teclado para receber sintomas, análises e
	e processos legais	funcionários	tratamentos	respostas dos pacientes
Robot manipulador	Percentagem	correia	braço e	câmara e
de objectos	de obj. corretamente	transportadora e	mão	sensores de
	colocados	caixas		posição
Táxi				
automático				
Explicador de				
matemática				

Propriedades dos ambientes

- agente é dividida em episódios. As ações do agente num episódio não influenciam as ação que deverá efetuar noutro. Pelo contrário, num Episódico versus sequencial: num ambiente episódico a experiência do ambiente sequencial todas as ações influenciam o estado (ex.: guiar táxi). \blacktriangle
 - Estático versus dinâmico: se o ambiente mudar enquanto o agente está a decidir o que irá fazer, temos um ambiente dinâmico. contrário é estático. \blacktriangle
- Discreto versus contínuo: se o problema tem estados discretos (ex.: xadrez) dizemos que o ambiente é discreto, senão é contínuo (ex.: \blacktriangle
- Agente único versus multi-agente: auto-explicativo

Estático Discreto Ag. único Epis. Tot. ob. Deter. Propriedades dos ambientes Completar a tabela seguinte: Problema pal. cruzadas robot peças táxi automático xadrez monopólio

Agente reflexivo

- Estes agentes escolhem a ação a executar tendo com base a observação actual, ignorando todas as outras observações feitas
- também. Este tipo de regras são chamadas de regras condição-ação: Ex.: um condutor quando vê o carro da frente a travar, trava Se o-carro-à-frente-trava então travar

Agente reflexivo baseado em modelo

- Quando o problema não é totalmente observável podemos tentar guardar informação da parte do mundo que não está visível actualmente.
- Para isso o agente deve manter um estado interno onde armazene informação dependente das observações passadas.
- frente bastaria guardar a imagem anterior e verificar se a intensidade Para resolver o problema da detecção de travagem do veículo da das luzes de travagem tinha aumentado.
- posição dos outros veículos à volta para que, mesmo que não estivessem visíveis num dado instante, nunca corresse o risco de Para poder mudar de faixa o nosso táxi teria de ir guardando a chocar contra eles.

Propriedades dos ambientes

único S S N N N Discreto S N N S S S Estático S N N S S S sign s s s s $\sigma z z \sigma z$ Completar a tabela seguinte: Problema pal. cruzadas robot peças táxi automático xadrez monopólio

Agente reflexivo

Este tipo de agente lida bem com problemas totalmente observáveis. \blacktriangle

Mas se o carro da frente não tiver a luz de travagem central pode ser complicado olhando apenas para uma imagem saber se está a travar

Agente reflexivo baseado em modelo

- Para manter esta informação actualizada são precisas duas coisas:
- como é que o mundo funciona independentemente das observações; como é que as ações do agente influenciam o mundo.
- Esta informação de como é que o mundo funciona é um modelo do
 - mundo.

Os agentes que os usam são agentes baseados em modelos

Agentes inteligentes Agente com objetiv

Agente com objetivo

- Saber o estado actual do ambiente não chega muitas vezes para decidir o que fazer.
- ► Por exemplo, chegado a um cruzamento o táxi pode seguir em 3 direções: qual escolher?
- A resposta depende de onde o táxi pretende ir. Isto significa que os agentes precisam de um objetivo, neste caso, o local para onde o passageiro pretende ir.
- ▶ O agente neste caso combina a informação acerca das suas possíveis ações com o seu objetivo para decidir qual a ação a tomar.
- ► Por vezes o agente pode ter de executar uma longa sequência de ações até atingir o seu objetivo.

Luís A. Alexandre (UBI) Inteligência Artíficial Ano lectivo 2

Agente com utilidade

- Os objetivos normalmente não são suficientes para se ter um comportamento de qualidade na maioria dos ambientes.
- ► Por ex.: existem muitas ações que podem levar o táxi ao seu destino (objetivo) algumas são mais rápidas, outras mais seguras outras mais
- Para dizer que um estado é preferível a outro dizemos que tem mais utilidade para o agente (o agente fica mais "feliz").
- Uma função de utilidade faz corresponder a um estado (ou a uma sequência de estados) um número real que indica o respectivo grau de utilidada.

Luís A. Alexandre (UBI) Inteligência Artificial Ano lectivo 2019

Agente que aprende

- Já descrevemos vários tipos de agente.
- Partimos do princípio que as regras são programadas, no entanto existe outra possibilidade: é que o agente aprenda por si só quais as melhores ações a tomar.
- Isto, além de facilitar a vida ao criador do agente, permite que este trabalhe em ambientes que desconhece inicialmente, de forma a que se torna mais competente do que o seu conhecimento inicial poderia permitir.

:andre (UBI) Inteligência Artificial Ano lectivo 2019-2

Accepted intelligentee Accepte com objetivo

Agente com objetivo

- Este tipo de tomada de decisão é bastante diferente do caso reflexivo: aqui o agente tem de se confrontar com questões do género: "o que acontecerá se eu fizer isto?"
- De notar que o agente neste caso também poderia chegar à conclusão que deveria travar quando o carro da frente travasse sem ser necessário introduzir essa regra explicitamente: basta que soubesse como o mundo funciona (o modelo) e que observasse que quando o carro da frente trava, abranda, logo para não lhe bater terá que travar.

. Alexandre (UBI) Inteli

Ano lectivo 2019-20

Agentes inteligentes

Agente com utilidade

- ► Existem dois casos em que é necessária esta função:
- quando existem objetivos contraditórios (p.ex., chegar rapidamente e da forma mais segura) a função utilidade ajuda a encontrar o equilíbrio entre eles
 - quando existem vários objetivos e não se sabe se será possível atingi-los, a função de utilidade ajuda a pesar a probabilidade de sucesso face à importância de cada objetivo.

Alexandre (UDI)

Agentes inteligentes Agente que aprende

Agente que aprende

- ► Um agente que aprende tem vários componentes:
- elemento de aprendizagem: que leva a que existam melhoramentos no comportamento do agente.
- elemento de desempenho: que é usado para selecionar quais as ações a tomar.
 - o elemento de aprendizagem usa informação de um crítico que indica como é que o agente se está a comportar e como é que deve ser alterado o elemento de desempenho.
- o último componente é o gerador de problemas que sugere ações (exploração do espaço de estados) e permite que o agente se comporte de forma sub-óptima por vezes com o intuito de poder, a médio prazo, obter melhores resultados.

Luís A. Alexandre (UBI) Inteligência Artificial Ano le

