

UNIVERSITÀ DEGLI STUDI DI GENOVA

Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi

Corso di Laurea Triennale in Informatica Anno Accademico 2021/2022

Analisi di serie temporali

Aspetti Applicativi

Candidato Alex Valle Relatore Prof. Francesca Odone

Indice

1	Inti	coduzione 3
	1.1	Premessa
	1.2	Obbiettivi
	1.3	Tecnologie utilizzate
	1.4	Suddivisione del lavoro
2	Stu	dio dei metodi e delle applicazioni 5
	2.1	Cos'è una serie temporale
	2.2	Metodi per la gestione dei dati
		2.2.1 Pacchetti utilizzati 6
		2.2.2 Caricamento di un dataset
		2.2.3 Rinomina delle colonne relative alle serie
		2.2.4 Scelta dell'indice
		2.2.5 Individuazione dei valori nulli e possibili soluzioni 9
		2.2.6 Filtraggio
	2.3	Componenti di una serie temporale
		2.3.1 Trend
		2.3.2 Stagionalità
		2.3.3 Residui
		2.3.4 Decomposizione di una serie
	2.4	Stazionarietà
		2.4.1 Dickey Fuller Test
	2.5	Smoothing
		2.5.1 Moving average
		2.5.2 Exponential
		2.5.3 Double Exponential
	2.6	Autocorrelazione ed Autocorrelazione parziale
		2.6.1 Funzione di Autocorrelazione
		2.6.2 Funzione di Autocorrelazione Parziale
3	Ges	stione dei dataset forniti 35
	3.1	Descrizione dei dataset
	3.2	Rinomina delle colonne dei dataset
	3.3	Gestione dei valori nulli
	3.4	Scelta dell'indice di tabella per ogni dataset
	3.5	Filtraggio dei dataset
4	Ana	alisi del problema e Soluzioni 43
	4.1	Prima soluzione
		4.1.1 Idea generale
		4.1.2 Implementazione
		4.1.3 Analisi di complessità
		4.1.4 Analisi dei risultati e Conclusioni
	4.2	Seconda Soluzione
		4.2.1 Idea generale

5	Bib	liograf	ia	54
	4.3		usioni Finali	
		4.2.4	Analisi dei risultati e Conclusioni	51
		4.2.3	Analisi di complessità	51
		4.2.2	Implementazione	48

1 Introduzione

In tale capitolo introduttivo verranno spiegati gli obbiettivi e la suddivisione del tirocinio in merito al tempo disponibile, cercando di spiegare, in maniera sintetica, come è stato svolto ed organizzato.

1.1 Premessa

Lo scopo di questo elaborato è quello di descrivere l'esperienza di tirocinio svoltasi presso l'Università Degli Studi di Genova con durata complessiva di 300 ore con inizio 25 novembre 2022 e fine 27 febbraio 2023. Il tirocinio è stato svolto per la maggior parte del tempo da remoto con incontri, volti all'andamento di esso, mediante l'utilizzo di Teams (piattaforma sviluppata da Microsoft) che in presenza presso il dipartimento.

1.2 Obbiettivi

L'obbiettivo di questo tirocinio è stato quello di provare a individuare, se esistenti, uno o più metodi, relativi all'analisi di serie temporali, che permettano l'analisi di una serie di dati relative a soggeti sani e petologici con lo scopo di analizzare il cammino.

I dati utilizzati sono stati analizzati precedentemente da un gruppo di ricerca del dipartimento con tecniche differenti da quelle utilizzate durante il tirocinio quindi in caso di un metodo sicuro e soddisfacente all'analisi, i risultati ottenuti sarebbero serviti al gruppo di ricerca come un'ulteriore conferma delle analisi da loro eseguite.

1.3 Tecnologie utilizzate

Come scelta tecnologica principale per lo sviluppo, l'intero svolgimento del tirocinio, si è basato sul linguaggio di programmazione python per la sua semplicità, velocità nella scrittura di codice e ampia community che fornisce molti dei pacchetti utilizzati per eseguire analisi di ogni genere.

Per tenere traccia del lavoro e per esplorare velocemente le modifiche eseguite è stato utilizzato Git come VCS (version control system) e Github come servizio di hosting per i repository.

1.4 Suddivisione del lavoro

Per poter garantire la conoscienza necessaria allo sviluppo di un metodo relativo allo scopo del tirocinio, il lavoro è stato principalmente suddiviso in due fasi: studio dei metodi relativi all'analisi di serie temporali ed effettivo sviluppo, e ricerca, di un metodo per l'analisi del problema posto.

Nella prima fase sono stati studiati i metodi ed applicazioni di tecniche volte allo studio di serie temporali, sia da un lato pratico che da un lato teorico. Per quanto riguarda il lato pratico, queste tecniche sono state studiante mediante la ricerca di articoli e videotutorial online sull'applicazione di esse e poi, in una fase successiva,

messe in pratica con piccoli esempi mediante l'utilizzo di dataset di vario genere, forniti in maniera gratuita da siti web trovati su internet, per poterne capire meglio il funzionamento.

Per quanto riguarda il lato teorico di esse è stato necessario studiare una piccola base di statistica inferenziale ed altre nozioni generali per interpretare al meglio i risultati e le tecniche utilizzate in ambito applicativo.

Nella seconda fase si è passati alla ricerca di un metodo, che utilizzi tecniche dell'analisi di serie temporali, per risolvere il problema richiesto. Prima di essere passare allo sviluppo vero e proprio, essendo che i dati forniti erano in uno stato "grezzo", è stato necessario applicare tutte le tecniche di manipolazione dei dati come filtraggio, rinomina delle colonne, tecniche per la sostituzione di valori nulli etc... per poter ottenere un dataset pulito e lavorabile dal punto di vista applicativo.

2 Studio dei metodi e delle applicazioni

In tale capitolo verranno spiegati i metodi, le applicazioni ed i concetti generali studiati durante la prima fase del tirocinio, durata circa 1 mese, accostando ad ogni di essi una relativa implementazione e/o utilizzo.

In primo luogo si troverà una definizione di serie temporale, seguita da una spiegazione dei metodi per manipolare i dati inerenti a serie temporali su python, le componenti principali di una serie temporale e la loro visualizzazione ed infine metodi per l'analisi di essi.

Molti degli esempi forniti in questa sezione fanno riferimento a dataset disponibili al sito "UCI Machine Learning Repository" [6] più precisamente, come esempio, è stato utilizzato un dataset relativo alla qualità dell'aria della città di Beijing [9] (Pechino).

2.1 Cos'è una serie temporale

In statistica descrittiva, una serie storica (o temporale) si definisce come un insieme di variabili casuali ordinate rispetto al tempo, ed esprime la dinamica di un certo fenomeno nel tempo. Le serie storiche vengono studiate sia per interpretare un fenomeno, individuando componenti di trend, di ciclicità, di stagionalità e/o di accidentalità, sia per prevedere il suo andamento futuro [19]. In altre parole una serie storica (o temporale) è un'insieme/serie di dati capionati ed indicizzati nel tempo ad intervalli regolari come ore, giorni o anni.

In termini più matematici: indichiamo con Y il fenomeno (ad esempio il prezzo della benzina dall'anno 1970 all'anno 2010) ed indichiamo con Y_t un'ossevazione al tempo t, con t un numero intero compreso tra 1 a T, dove T è il numero totale degli intervalli o periodi. Una serie temporale viene espressa in questa maniera $Y_t = \{Y_1, Y_2, \dots, Y_T\}$.

Esempio (*Prezzo della benzina*). Se consideriamo come fenomeno Y il prezzo della benzina dal 1970 al 2010 avremmo come numero totale di osservazioni (o numero totale di periodi) T = 40 dove:

- Y_1 : prezzo della benzina all'anno 1970
- Y_2 : prezzo della benzina all'anno 1971
- $Y_T = Y_{40}$: prezzo della benzina all'anno 2010

2.2 Metodi per la gestione dei dati

In questo sottocapitolo verranno spiegati i metodi studiati ed utilizzati per la gestione dei dati in python, più nello specifico: come caricare un dataset, una possibile rinomina delle colonne ralative alle serie per una maggiore comprensione, scelta di un indice, individuazione dei valori nulli ed infine una sezione relativa al filtraggio.

Cosa viene inteso per dataset Per dataset si intende un insieme di serie (nella nostra applicazione temporali) relative ad un'unica applicazione.

Esempio (Qualità dell'aria). Consideriamo, per esempio, come applicazione le misurazioni di diversi parametri relativi alla qualità dell'aria di Genova: livello di CO_2 , livello di NO_2 e temperatura in $^{\circ}C$. In un dataset possiamo considerare ogni parametro come una serie temporale diversa ma indicizzata nel tempo in ugual maniera, quindi se queste misurazioni avvengono ogni ora avemo per ogni istante di tempo t le misurazioni per ogni parametro in quell'istante.

```
• Y_1: livello di CO_2, SO_2, NO_2 e temperatura in °C all'istante 1.
```

- Y_2 : livello di CO_2 , SO_2 , NO_2 e temperatura in °C all'istante 2.
- ..
- Y_T : livello di CO_2 , SO_2 , NO_2 e temperatura in °C all'istante T.

Ogni parametro in un dataset viene rappresentato come una colonna.

Da qusto momento in poi, nel report, quando si parlerà di dataset varrà inteso il tipo pandas.DataFrame, cioè il modo in cui un dataset viene intrpretato all'interno di python, mentre per serie si intenderà il tipo pandas.Series oppure un semplice tipo list di python.

2.2.1 Pacchetti utilizzati

Per effettuare tutte le manovre relative all'elaborazione e manipolazione dei dati sono state utilizzate funzionalità fornite da pacchetti python come pandas, numpy e scipy, essi semplificano la scrittura di codice e velocizzano il tempo di sviluppo organizzando in maniera ottimale i dati. Per essere utilizzati essi necessitano prima di essere installati tramite il gestore di pacchetti di python pip.

Snippet per l'installazione dei pacchetti

```
pip install pandas
pip install numpy
pip install scipy
```

Snippet per il caricamento in python

```
import pandas as pd
import numpy as np
from scipy import signal
```

2.2.2 Caricamento di un dataset

Per poter utilizzare i dati all'interno di python è stata utilizzata la funzionalità di pandas read_csv dove, ogni colonna fa riferimento ad una serie.

Snippet

```
dataset = pd.read_csv('data.csv')
```

2.2.3 Rinomina delle colonne relative alle serie

In qualche case, il primo passo da eseguire, è quello di rinominare le colonne relative ad ogni serie così da poter avere una rappresentazione più accurata del dataset. Tramite l'utilizzo della funzione display e del metodo head del dataset possiamo controllare i primi 5 valori di un dataset controllando anche così il nome di ogni colonna.

Snippet

display(dataset.head())

	NaN	NaN.1	NaN.2	NaN.3	NaN.4	NaN.5	NaN.6	NaN.7	NaN.8	NaN.9	NaN.10	NaN.11	NaN.12	NaN.13	NaN.14	NaN.15	NaN.16	NaN.17
0	1	2013	3	1	0	6.0	6.0	4.0	8.0	300.0	81.0	-0.5	1024.5	-21.4	0.0	NNW	5.7	Tiantan
1	2	2013	3	1	1	6.0	29.0	5.0	9.0	300.0	80.0	-0.7	1025.1	-22.1	0.0	NW	3.9	Tiantan
2	3	2013	3	1	2	6.0	6.0	4.0	12.0	300.0	75.0	-1.2	1025.3	-24.6	0.0	NNW	5.3	Tiantan
3	4	2013	3	1	3	6.0	6.0	4.0	12.0	300.0	74.0	-1.4	1026.2	-25.5	0.0	N	4.9	Tiantan
4	5	2013	3	1	4	5.0	5.0	7.0	15.0	400.0	70.0	-1.9	1027.1	-24.5	0.0	NNW	3.2	Tiantan

Figure 1: output del metodo head prima della rinomina delle colonne

Come si può notare nell'immagine 1 i nomi delle colonne non hanno nessun nome significativo, con il seguente esempio potremmo cambiare il nome delle colonne.

Snippet

	no	year	month	day	hour	pm2_5	pm10	so2	no2	co	о3	temp	pres	dewp	rain	wd	wspm	station
0	1	2013	3	1	0	6.0	6.0	4.0	8.0	300.0	81.0	-0.5	1024.5	-21.4	0.0	NNW	5.7	Tiantan
1	2	2013	3	1	1	6.0	29.0	5.0	9.0	300.0	80.0	-0.7	1025.1	-22.1	0.0	NW	3.9	Tiantan
2	3	2013	3	1	2	6.0	6.0	4.0	12.0	300.0	75.0	-1.2	1025.3	-24.6	0.0	NNW	5.3	Tiantan
3	4	2013	3	1	3	6.0	6.0	4.0	12.0	300.0	74.0	-1.4	1026.2	-25.5	0.0	N	4.9	Tiantan
4	5	2013	3	1	4	5.0	5.0	7.0	15.0	400.0	70.0	-1.9	1027.1	-24.5	0.0	NNW	3.2	Tiantan

Figure 2: output del metodo head dopo la rinomina delle colonne

Come si può notare nell'immagine 2 assegnando la lista delle colonne come attuali nomi per le serie del dataset riusciamo ad ottenere un'interpretazione più accurata.

2.2.4 Scelta dell'indice

Molte delle funzionalità fornite da pandas ed altri pacchetti python richiedono che il dataset sia indicizzato nel tempo nel corretto modo. In figura 2 si può notare che la prima colonna senza nome e la seconda colonna con nome no, indichino il numero di riga per ogni misurazione, la differenza è che la prima colonna è generata automaticamente dal pacchetto pandas, ed impostata di default come indice, mentre la seconda con nome no è fornita direttamente dal file csv precedentemente caricato. Per l'analisi della maggior parte delle serie temporali un'idicizzazione per numero di riga non è significativa, sarebbe molto più conveniente lavorare avendo come indice di tabella la data ed ora di ogni effettiva misurazione. A questo proposito il dataset caricato ci fornisce delle colonne (year, month, day e hour) indicizzate per tempo e relative ad ogni misurazione, che possono essere riformattate insieme ed usate come indice per il dataset.

Snippet

```
# unificazione delle colonne relative al tempo per ogni
# istante di tempo t in una nuova colonna
new_index_column = []
for i in range(len(dataset.year)):
new_index_column.append("%s/%s/%s %s:0:0"
    % (dataset.day[i], dataset.month[i],
       dataset.year[i], dataset.hour[i]) )
# elimina le colonne relative al tempo
del dataset["year"], dataset["month"],
    dataset["day"], dataset["hour"],
    dataset["no"]
# imposta/crea la nuova colonna date e converti in datetime
dataset['date'] = new_index_column
dataset['date'] = pd.to_datetime(dataset.date, dayfirst=True)
# imposta come index la nuova colonna date
dataset.set_index("date", inplace=True)
display(dataset.head())
```

Come si può notare dall'output del metodo head nell'immagine 3 date è stato impostato come indice di tabella e quindi da questo momento in poi possiamo accedere al dataset, scegliendo le misurazioni interessate, utilizzando la data.

Periodo di campionamento Un'altra importante modifica è impostare il periodo di campionamento del dataset, in poche parole impostare un corretto indice non

	pm2_5	pm10	so2	no2	со	о3	temp	pres	dewp	rain	wd	wspm	station
date													
2013-03-01 00:00:00	6.0	6.0	4.0	8.0	300.0	81.0	-0.5	1024.5	-21.4	0.0	NNW	5.7	Tiantan
2013-03-01 01:00:00	6.0	29.0	5.0	9.0	300.0	80.0	-0.7	1025.1	-22.1	0.0	NW	3.9	Tiantan
2013-03-01 02:00:00	6.0	6.0	4.0	12.0	300.0	75.0	-1.2	1025.3	-24.6	0.0	NNW	5.3	Tiantan
2013-03-01 03:00:00	6.0	6.0	4.0	12.0	300.0	74.0	-1.4	1026.2	-25.5	0.0	N	4.9	Tiantan
2013-03-01 04:00:00	5.0	5.0	7.0	15.0	400.0	70.0	-1.9	1027.1	-24.5	0.0	NNW	3.2	Tiantan

Figure 3: output del metodo head dopo aver impostato l'indice

basta a massimizzare il corretto funzionamento delle funzionalità di analisi delle serie temporali, bisogna anche specificare l'istante di tempo che occorre tra una misurazione e l'altra. Per fare ciò pandas fornise un metodo che imposta il periodo di campionamento a quello deiderato, nel nostro caso sappiamo che le misurazioni sono state campionate ogni ora.

Snippet

```
# imposta il periodo di capionamento
# del dataset ad ogni ora
dataset = dataset.asfreq("h")
```

2.2.5 Individuazione dei valori nulli e possibili soluzioni

La presenza di valori nulli in una serie può avere molteplici cause, ad esempio, l'impossibilità da parte dello strumento di capionare ad un certo istante di tempo t, oppure se pensiamo ad una fotocamera che acquisisce delle coordinate relative ad un soggeto, l'uscita di esso dall'obbiettivo.

Indifferentemente dal motivo per cui dei valori nulli sono presenti, in una serie o un dataset, la loro presenza può causare molti problemi sia nel corretto funzionamento di alcune funzionalità per l'analisi sia perchè non avere dei valori in determinati punti della serie, in certe applicazioni, potrebbe essere un problema. pandas fornisce dei metodi utili, e semplici, alla soluzione di questo problema ma ovviamente ogni problema è diverso e quindi, per applicazioni specifiche, potrebbe essere necessario cercare soluzioni differenti. In questa sezione ci limitiamo a descrivere le funzionalità fornite da pandas per la soluzione a questo problema.

Controllo Per controllare la presenza di valori nulli pandas fornisce un metodo chiamato isna che ritorna un dataset dove, per ogni misurazione, indica True se la misurazione è NaN altrimenti False. Sommando i valori True per ogni colonna possiamo controllare quanti valori nulli sono presenti per ogni serie.

Snippet

```
# controllo valori nulli
dataset.isna().sum()
```

```
pm2 5
              677
pm10
              597
             1118
so2
no2
              744
             1126
co
о3
              843
temp
               20
pres
               20
dewp
               20
rain
               20
               78
wd
wspm
               14
station
                0
dtype: int64
```

Figure 4: output della somma dei valori nulli relativi ad ogni serie del dataset

Come si puo notare dall'output del comando in figura 4 il nostro dataset contiene molteplici valori nulli, ora vediamo come poter risolvere il segente problema

Back fill o Forward fill pandas fornisce la possibilità di "riempire" i valori nulli in due diverse modalità tramite l'utilizzo del metodo fillna

- Back fill: permette di sostituire i valori nulli con la succesiva misurazione valida.
- Forward fill: permette di sostituire i valori nulli propagando l'ultima valida misurazione alla prossima valida.

Entrambi i metodi gestiscono i valori nulli più o meno nella stessa maniera ma la scelta di uno piuttosto che l'altro cambia da caso in caso dipendendtemente dal risultato ottenuto dopo l'utilizzo di essi.

Per i nostri esempi il risulato nell'utilizzo di un metodo piuttosto che l'altro portava comunque ad un risultato soddisfacente.

Snippet

```
# rimepimento dei valori nulli
# mediante il metodo di forward fill
dataset = dataset.fillna(method="ffill")
dataset.isna().sum()
```

Interpolazione Un possibile metodo, non fornito dalle funzionalità del pacchetto pandas, che potrebbe essere utilizzato è quello di interpolare i dati così da poter colmare i vuoti creati dai valori nulli. Questa funzionalità non è stata sviluppata in quanto non fine allo scopo di questo tirocinio ma, in certe applicazioni, si potrebbe voler utilizzare una metodologia basata su questa tecnica per ottenere una rappresentazione più accurata dei dati.

```
pm2_5
pm10
             0
             0
so2
no2
             0
             0
co
             0
03
             0
temp
pres
             0
dewp
             0
             0
rain
wd
             0
wspm
             0
station
dtype: int64
```

Figure 5: output della somma dei valori nulli relativi ad ogni serie del dataset dopo l'utilizzo del metodo fillna.

Altro metodo non convenzionale Un altro metodo non convenzionale, non presente tra le funzionalità fornite, è quello di poter eliminare i valori nulli dalle serie semplicemente eliminandoli. Ovviamente questo concetto di eliminare una misurazione nulla va contro a tutte le premesse fatte fino ad ora, non avendo così una "reale" serie temporale poichè mancherebbe una misurazione ad un determinato istante di tempo t, e molte delle analisi che si vorrebbero poter fare su una serie risulterebbero inapplicabili. Tuttavia, in qualche applicazione particolare (come vedremo in seguito), una funzionalità che semplicemente elimina i valori nulli da una serie potrebbe tornare comoda.

Snippet

```
import math as math # import del pacchetto math

def delete_nan(series: pd.Series | list):
    """ emlimina i valori nulla da una serie
    """

new_series = []

for idx, value in enumerate(series):
    if not math.isnan(value):
        new_series.append(value)

return np.array(new_series)
```

2.2.6 Filtraggio

Nella maggior parte dei casi quando si parla di serie temporali fonite direttamente da apparecchiature che eseguono le misurazioni, i dati si presentano in maniera "grezza" ed è quindi necessario filtrarli per poter rimuovere una buona parte del rumore presente. Questo passaggio è molto importante se parliamo di dati non elaborati in quanto avere del rumore in una serie temporale o, più in generale, in qualsiasi tipo di segnale, porta a leggere delle misurazioni "false". Solitamente il rumore indesiderato risiede nelle frequenze alte del segnale, quindi, a questo proposito, vediamo come poter filtrare una sorgente "grezza" di dati mediante l'utilizzo del modulo signal

del pacchetto scipy.

Filtro di Butterworth Per poter rimuovere una buona parte del rumore, come scelta generale, in questo tirocinio, si è utilizzato il filtro di Butterworth che permette di regolare parametri come la frequenza di taglio e l'inclinazione (slope) della curva di taglio.

Figure 6: Filtro di Butterworth normalizzato.

Per poter apprezzare la differenza tra un segnale filtrato da un segnale "grezzo" seguirà un esempio su come questo filtro possa essere applicato tramite l'utilizzo delle funzionalià fornite dal modulo precedentemente citato.

Esempio (Utilizzo del filtro di Butterworth). Consideriamo un segnale la cui distanza tra ogni misurazione è di $\frac{1}{30}$ di secondo, presenta una frequenza di campionamento di 30Hz.

Figure 7: Segnale non filtrato.

In figura 7 possiamo notare come nel segnale in questione sia presente parecchio rumore, facilmente visibile da tutti i picchi presenti nel grafico. Proviamo ad applicare

il filtro di Butterworth con una frequenza di taglio sulle 2Hz ed un'inclinazione della curva di taglio di 5, lasciando così passare le basse frequenze.

Snippet

Figure 8: Segnale filtrato.

In figura 8 viene rappresentato il segnale dopo l'applicazione del filtro passa basse di Butterworth, come si può notare una buona parte del rumore non è più presente e non avendo i picchi presentati nella sua versione non filtrata.

Scelta dei parametri e del filtro Dipendendtemente dal tipo di filtraggio che si vuole ottenere conviene applicare un filtro piuttosto che un altro e la sua relativa scelta dei parametri cambia da applicazione ad applicazione e dal tipo di risultato che si vuole ottenere.

2.3 Componenti di una serie temporale

In questo sottocapitolo ci soffermeremo a spiegare le componenti principali che compongono una serie temporale per poterne analizzare l'andamento e/o eventuali pattern ricorrenti sull'intera serie.

Molte volte è utile suddividere una serie temporale in più diverse componenti distinte per poter analizzare singolarmente il loro comportamento e riuscire ad inferire sul generale andamento della serie. Possiamo quindi pensare ad una serie temporale come un insieme di 3 componenti principali: Trend (andamento/tendenza), Stagionalità e Residui (più comunemente detta Noise).

2.3.1 Trend

La componente di trend è un pattern nei dati che mostra che mostra il movimento (andamento) di una serie verso valori relativamente più alti o più bassi in un lungo periodo di tempo. In altre parole, si osserva una tendenza quando la serie temporale presenta una pendenza crescente o decrescente. La tendenza di solito si verifica per un certo periodo di tempo e poi scompare, non si ripete. Ad esempio, una nuova canzone, che diventa di tendenza per un po' di tempo e poi scompare. Non c'è alcuna possibilità che torni in tendenza [8].

Il trend potrebbe essere:

- Uptrend: L'analisi delle serie temporali mostra un andamento generale al rialzo, quindi si tratta di Uptrend.
- **Downtrend**: L'analisi delle serie temporali mostra un andamento al ribasso, quindi si tratta di un downtrend.
- Trend orizzontale o stazionario: Se non si osserva alcun pattern, si parla di trend orizzontale o stazionario.

Nella pratica il trend viene calcolato utilizzando delle tecniche di smoothing come moving average (questo argomento verrà successivamente trattato in una sezione dedicata) e quindi stimato.

Esempio (esempio pratico di trend). Consideriamo come serie temporale una serie la cui per ogni osservazione abbiamo la media giornaliera delle temperature nella città di Beijing a partire dal 01/01/2013 al 01/01/2017.

Figure 9: Media giornaliera delle temperature nella città di Beijing.

Consideriamo ora un periodo di un anno (365 giorni) il trend avrà un grafico come il seguente

Figure 10: Trend della media giornaliera delle temperature nella città di Beijing.

Per poter capire meglio il grafico in figura 10 pensiamo che oggi sia il 01/01/2014 e volgiamo sapere, con periodo un anno, il trend. Quello che facciamo è prendere i precedenti 365 giorni e ne calcoliamo la media, se è positiva abbiamo un tred crescente, se negativa abbiamo un trend decrescente mentre se è 0 allora abbiamo un trend orizzontale. Se eseguiamo questo passaggio per ogni giornata otteniamo il grafico in figura 10.

2.3.2 Stagionalità

La stagionalità è un aspetto cruciale dell'analisi delle serie temporali. Poiché le serie temporali sono indicizzate in avanti nel tempo, sono soggette a fluttuazioni stagionali. Ad esempio, ci aspettiamo che le vendite di gelati siano maggiori nei mesi estivi e minori in quelli invernali.

La stagionalità può manifestarsi in diversi intervalli di tempo, come giorni, settimane o mesi. La chiave per l'analisi delle serie temporali è capire come la stagionalità influisce sulle nostre serie [3].

In sintesi possiamo quindi pensare alla stagionalità come un pattern che si ripete ad intervalli/periodi specifici nel tempo.

Esempio (esempio pratico di stagionalità). Se consideriamo come serie temporale, la stessa medesima serie utilizzata precedentemente nell'esempio sopra del trend, quindi una serie la cui ogni osservazione indica la media giornaliera delle temperature nella città di Beijing a partire dal 01/01/2013 al 01/01/2017

Figure 11: Media giornaliera delle temperature nella città di Beijing.

e consideriamo un periodo di un anno (365 giorni) la stagionalità avrà un grafico come il seguente

Figure 12: Stagionalità della media giornaliera delle temperature nella città di Beijing.

2.3.3 Residui

La componente di residui, o più comunemente detta noise, può essere considerata come la parte restante tra il trend e la stagionalità, quindi una sorta di errore.

Un metodo per poter capire meglio come rappresenta la componente di residui è considerare, ad esempio, una serie temporale con tred orizzontale e nessun pattern stagionale, ed applicare la definizione di residui, quindi tutto quello che rimane tolto il trend e la stagionalità.

Esempio (esempio pratico di stagionalità). Se consideriamo la serie temporale utilizzata negli esempi del trend e della stagionalità, la componente dei residui avrà un grafico come il seguente

Figure 13: Residui della media giornaliera delle temperature nella città di Beijing.

2.3.4 Decomposizione di una serie

Esistono due modalità distinte per la decomposizione di una serie temporale nelle sue 3 componenti principali. La prima modalità è detta additiva in cui le componenti vengono semplicemente sommate, mentre la seconda è detta moltiplicativa dove le componenti, come suggerisce il termine, vengono moltiplicate.

Decomposizione additiva Una decomposizione additiva consiste nella somma delle componenti. Se consideriamo una serie temporale ad un istante t allora essa sarà composta da

$$y_t = S_t + T_t + R_t$$

dove y_t è l'osservazione, S_t è la componente di stagionalità, T_t è la componente di Trend ed R_t è la componente dei residui, tutti all'istante di tempo t.

Figure 14: Decomposizione additiva (escluso residui). [ref imag [4]]

Decomposizione moltiplicativa Una decomposizione moltiplicativa consiste nella moltiplicazione delle componenti. Se consideriamo una serie temporale ad un istante t allora essa sarà composta da

$$y_t = S_t \times T_t \times R_t$$

dove y_t è l'osservazione, S_t è la componente di stagionalità, T_t è la componente di Trend ed R_t è la componente dei residui, tutti all'istante di tempo t.

Figure 15: Decomposizione moltiplicativa (escluso residui). [ref imag [4]]

Scelta della modalità di decomposizione La sceltà della modalità di decomposizione di una serie temporale è importate poichè la sua decomposizione potrebbe apparire insensata scelta la modalità sbagliata. Una decomposizione additiva è principalmente appropriata se il magnitudo della stagionalità non varia con il livello della serie temporale mentre se, la variazione della componente di stagionalità, appare proporzionale al livello della serie una modalità moltiplicativa potrebbe essere più appropriata.

Decomposizione in python Vediamo ora come poter decomporre una serie temporale utilizzando la funzione seasonal_decompose fornita dalle funzionalità del pacchetto statsmodels.

Installazione del pacchetto

pip install statsmodels

Snippet

```
# import del pacchetto
from statsmodels.tsa.seasonal import seasonal_decompose
# periodo utlizzato per il calcolo di trend e stagionalità
periodo = 365
```

decomposizione della seire

decomposition = seasonal_decompose(serie, period=periodo)

trend = decomposition.trend # trend

 $\verb"residui" = \verb"decomposition.resid" \# residui"$

2.4 Stazionarietà

In questo sottocapitolo verrà spiegato il concetto di stazionarietà di una serie temporale e come poter capire se la serie interessata sia stazionaria.

Stazionarietà di una serie temporale Per essere stazionaria una serie temporale deve soddisfare una lista di requisiti:

1. Media costante nel tempo: La media della serie non deve essere una funzione del tempo. Il grafico rosso, in figura 16, non è stazionario perché la media aumenta nel tempo [5].

Figure 16: Media non costante nel tempo.

2. Varianza costante nel tempo: La varianza della serie non deve essere funzione del tempo. Questa proprietà è nota come omoscedasticità. Nel grafico rosso, in figura 17, si noti la variazione della varianza dei dati nel tempo [5].

Figure 17: Varianza non costante nel tempo.

3. Covarianza costante nel tempo: Infine, la covarianza del termine i e del termine (i+m) non deve essere funzione del tempo. Nel grafico, in figura 18, si può notare che lo spread diventa più vicino all'aumentare del tempo. Pertanto, la covarianza non è costante nel tempo per la "serie rossa" [5].

Figure 18: Coviarianza non costante nel tempo.

Per capire meglio il concetto di covarianza costante nel tempo consideriamo una sequanza di variabili casuali, esse si definiscono con stazionarietà debole o stazionarietà della covarianza se:

- Tutti i termini della sequenza hanno la stessa media.
- La covarianza tra due termini qualsiasi della sequenza dipende solo dalla posizione relativa dei due termini e non dalla loro posizione assoluta.

Per posizione relativa di due termini si intende la distanza che li separa l'uno dall'altro nella sequenza mentre per posizione assoluta, si riferisce al punto in cui si trovano nella sequenza [12].

Figure 19: Stazionarietà della covarianza.

L'importanza di una serie stazionaria L'importanza di avere una serie temporale stazionaria deriva dal fatto che molti dei teoremi che a livello statistico valgono per le variabili casuali indipendenti valgono anche per variabili casuali stazionarie [5].

2.4.1 Dickey Fuller Test

Ci sono due modi per verificare la stazionarietà di una serie temporale. Il primo consiste nell'osservare i dati. Visualizzando i dati dovrebbe essere facile identificare una variazione della media o una variazione dei dati. Per una valutazione più accurata esiste il test di Dickey-Fuller [5].

In statistica, il test di Dickey Fuller verifica l'ipotesi nulla della presenza di una radice unitaria in un modello autoregressivo di una serie temporale. L'ipotesi alternativa

è diversa a seconda della versione del test utilizzata, ma di solito è la stazionarietà o la trend-stazionarietà [20].

Modello autoregressivo Senza scendere troppo nei dettagli matematici diamo solamente la definizione di cos'è un modello autoregressivo: In statistica, econometria ed elaborazione dei segnali, un modello autoregressivo (AR) è una rappresentazione di un tipo di processo casuale; come tale, viene utilizzato per descrivere alcuni processi variabili nel tempo in natura, economia, comportamento, ecc. Un semplice modello AR è

$$y_t = \rho y_{t-1} + u_t$$

dove y_t è la nostra osservazione all'istante di tempo t, ρ è un coefficiente e u_t è l'errore (assunta essere white noise, quindi stazionaria) [20].

In altre parole se pensiamo alla nostra serie temporale ogni osservazione ad istante t dipende da un numero arbitrario osservazioni precedenti più un errore.

Utilizzo del test nella pratica Per poter utilizzare questo test nella pratica verranno sfruttate le funzionalità del modulo statsmodels.tsa.stattools fornite dal pacchetto statsmodels precedentemente utilizzato. Più precisamente la funzione fornita dal modulo è il test di "Dichey-Fuller aumentato" che fornisce un numero negativo, questo più è negativo tanto maggiore è il rifiuto dell'ipotesi nulla che esista una unit root ad un certo livello di confidenza [13].

Snippet

```
# import del modulo stattools
import statsmodels.tsa.stattools as sts

# esecuzione del test
adf = sts.adfuller(serie)

# test statistic
print('T-stat : {}'.format(adf[0]))

# p-value
print('P-value : {}'.format(adf[1]))

# numero di osservazioni utilizzate
print('n-val-used: {}'.format(adf[3]))

# valori critici
print('Valori critici:')
print('\t1% : {}'.format(adf[4]["1%"]))
print('\t5% : {}'.format(adf[4]["5%"]))
print('\t10% : {}'.format(adf[4]["10%"]))
```

T-stat : -2.026639644095428 P-value : 0.27501605636147636

n-val-used: 1455 Valori critici:

1% : -3.4348523191002123 5% : -2.8635284734563364 10% : -2.567828646449617

Figure 20: Output dello snippet sopra indicato (augmented dickey Fuller test).

In questo caso facendo riferimento all'output ottenuto, in figura 20, il valore interessato è T-stat, esso è da confrontare con i valori delle variabili relative alle percentuali di valore critico. Per ogni valore critico controlliamo se T-stat è maggiore o minore, nel nostro caso T-stat è maggiore del valore critico che si riferisce al 10% quindi si ha più del 10% di possibilità che la nostra ipotesi nulla non sia rifiutata. In altre parole abbiamo più del 10% di possibilità che la nostra serie temporale non sia stazionaria. Solitamente per considerare una serie temporale stazionaria si necessita almeno di 5% quindi un livello di confidenza (che il test rifiuti l'ipotesi nulla e che quindi vede la nostra serie stazionaria) del 95%. Per semplificarci la vita possiamo direttamente controllare il valore di p-value (valore comprso tra 0 < p-value < 1), se esso risulta minore di 0.05 possiamo considerare la serie stazionaria.

Come rendere una serie stazionaria Nel caso ci trovassimo difronte ad una serie temporale non stazionaria esistono diverse tecniche per renderla stazionaria. Una delle tecniche più comuni, e che solitamente funziona per molte applicazioni, è calcolare la prima differenza (differenza di prim'ordine). Se consideriamo come Y una serie temporale e con \hat{Y} la medesima dopo aver calcolato la prima differenza ogni osservazione di essa sarà definita come

$$\hat{y}_t = y_{t+1} - y_t$$

dove \hat{y}_t è un'ossevazione di \hat{Y} ed y_t un'ossevazione di Y, ad un istante di tempo t.

2.5 Smoothing

In questa sezione parleremo di alcuni dei metodi che permettono di "levigare" le serie temporali così da poter essere successivamente analizzate.

2.5.1 Moving average

In statistica, la moving average (media mobile), chiamata anche rolling mean, è un calcolo che consente di analizzare dei dati creando una serie di medie di diversi sottoinsiemi dell'insieme dei dati.

Data una serie di numeri e un sottoinsieme fisso spesso chiamato finestra (window), il primo elemento della media mobile si ottiene prendendo la media del sottoinsieme fisso iniziale della serie di numeri. Poi il sottoinsieme finestra viene modificato "spostandosi in avanti", escludendo il primo numero della serie e includendo il valore successivo nel sottoinsieme [17].

Da un punto di vista matematico se consideriamo Y la serie originale e \hat{Y} la sua rolling mean serie, e definiamo k dimensione della finestra, numero intero positivo, le osservazioni per ogni punto della rolling mean sono definite da

$$\hat{y}_t = \frac{1}{k} \sum_{n=1}^k y_{t-n}$$

con \hat{y}_t e y_t rispettivamente osservazioni della rolling mean serie e della serie originale all'istante di tempo t.

Snippet

```
rolling_serie,
index=serie.index[(window-1)//2 : -(window-1)//2])
```

Esempio (Diversi valori per la finestra). Consideriamo come esempio la serie che descrive la media giornaliera delle temperature nella città di Benjing. Se applichiamo la funzione di rolling mean con diversi valori per la finestra, otterremmo dei grafici come quelli mostrati in figura 21.

Figure 21: Funzione di rolling mean applicata a diversi valori per la finestra.

2.5.2 Exponential

Lo smoothing esponenziale è una tecnica di regola empirica per "levigare" i dati delle serie temporali utilizzando la funzione finestra esponenziale. Mentre nella rolling mean semplice le osservazioni passate vengono ponderate in modo uguale, le funzioni esponenziali vengono utilizzate per assegnare pesi esponenzialmente decrescenti nel tempo. Si tratta di una procedura di facile apprendimento e di facile applicazione per effettuare alcune determinazioni basate su ipotesi precedenti dell'utente, come la stagionalità [16].

Da un punto di vista matematico se consideriamo Y la serie originale e \hat{Y} la sua exponential smoothing serie, dove $\hat{y}_0 = y_0$, cioè la prima osservazione della exponential smoothing serie è inizializzata con il primo valore della serie originale, allora le osservazioni successive per ogni punto della exponential smoothing serie sono definite come

$$\hat{y}_t = \alpha y_t + (1 - \alpha)\hat{y}_{t-1}$$

con α numero intero positivo devinito nell'intervallo $0 < \alpha < 1$, \hat{y}_t e y_t rispettivamente osservazioni della exponential smoothing serie e della serie originale all'istante di tempo t definito in $t \in [1, ..., N]$ con N numero totale delle osservazioni della serie originale.

Snippet

def smooth_exponential(serie: list | pd.Series, alpha: float):

Esempio (Diversi valori per alpha). Consideriamo come esempio la serie che descrive la media giornaliera delle temperature nella città di Benjing. Se applichiamo la funzione di exponential smoothing per diversi valori di alpha, otterremmo dei grafici come quelli mostrati in figura 22.

Figure 22: Funzione di exponential smoothing applicata a diversi valori di alpha.

2.5.3 Double Exponential

La tecnica di double exponential smoothing viene utilizzata nella previsione delle serie temporali quando i dati hanno una tendenza lineare ma non un andamento stagionale [11]. Questo tipo di smoothing utilizza lo stesso parametro alpha (α) della tecnica di exponential smoothing vista precedentemente più un ulteriore parametro beta (β) che regola l'ammontare della componente di trend.

La decomposizione della serie ci aiuterà, quindi otteniamo così due componenti: il livello ed il trend. Con la funzione di exponential smoothing precedente abbiamo imparato a prevedere il livello; ora applicheremo lo stesso exponential smoothing al trend, assumendo che la direzione futura delle variazioni della serie temporale dipenda dalle variazioni precedenti. Di conseguenza, otterremmo le seguenti serie di

funzioni [10]:

$$\hat{y}_0 = y_0
\ell_0 = y_0
b_0 = y_1 - y_0

\ell_t = \alpha y_t + (1 - \alpha)(\ell_{t-1} + b_{t-1})
b_t = \beta(\ell_t - \ell_{t-1}) + (1 - \beta)b_{t-1}$$

dove alpha, beta sono interi positivi nell'intervallo (0,1), ℓ_t componente che regola il livello, b_t componente che regola il trend, ed infine \hat{y}_t , y_t rispettivamente osservazioni all'istante di tempo t della double exponential serie \hat{Y} e della serie originale Y.

 $\hat{y}_{t+1} = \ell_t + b_t$

Esempio (Diversi valori per alpha). Consideriamo come esempio la serie che descrive la media giornaliera delle temperature nella città di Benjing. Se applichiamo la funzione di double exponential smoothing per diversi valori di alpha e beta, otterremmo dei grafici come quelli mostrati in figura 23 e 24.

Figure 23: Funzione di double exponential smoothing applicata a diversi valori di alpha e beta.

Figure 24: Funzione di double exponential smoothing applicata a diversi valori di alpha e beta.

2.6 Autocorrelazione ed Autocorrelazione parziale

In questa sezione verranno presentate le funzioni di autocorrelazione ed autocorrelazione parziale utilizzate nell'analisi di serie temporali per poter trovare pattern e la correlazione diretta o indiretta della serie con una sua versione spostata lungo l'asse temporale.

Nota che per molte applicazioni (come l'analisi di pattern) che utilizzano le funzioni di autocorrelazione ed autocorrelazione parziale, le serie temporali devono essere stazionarie.

2.6.1 Funzione di Autocorrelazione

L'autocorrelazione definisce il grado di dipendenza tra i valori assunti da una funzione campionata nel suo dominio in ascissa.

Se è dimostrata l'autocorrelazione tra due valori, al cambiare delle peculiarità di uno di essi varierà anche l'altro.

L'autocorrelazione è uno strumento matematico usato frequentemente nella teoria dei segnali per l'analisi di funzioni o di serie di valori. Essa è la correlazione del segnale (o più in generale del valore di una variabile) con se stesso; in altre parole il segnale all'istante di tempo t viene confrontato con un altro valore di se stesso ritardato di una quantità τ (senza tale ritardo il segnale è logicamente sempre uguale) per verificare quanto si somigli (più precisamente quanto si correli) all'avanzare del tempo. Possiamo dedurre che se un segnale varia lentamente nel tempo, il valore degli istanti y(t) e $y(t+\tau)$ sarà pressoché simile (l'autocorrelazione avrà segno positivo), mentre se varia rapidamente, il valore di tali istanti sarà molto diverso e l'autocorrelazione assume un valore prossimo allo zero. L'autocorrelazione si utilizza spesso per cercare porzioni periodiche che si ripetono all'interno di un segnale, in modo tale da determinare la presenza di un segnale periodico che è stato sepolto da un rumore, o identificare la frequenza fondamentale di un segnale [15].

Informalmente, è la somiglianza tra le osservazioni di una variabile casuale in funzione dell'intervallo di tempo che le separa [14].

Definizione matematica

Caso continuo Dato un segnale f(t) continuo ed indicizzato nel tempo, l'autocorrelazione $R_{ff}(\tau)$ è definita come la cross-correlazione di f(t) con se stesso avente un ritardo di τ

$$R_{ff}(\tau) = \int_{-\infty}^{\infty} f(t+\tau) \overline{f(t)} dt = \int_{-\infty}^{\infty} f(t) \overline{f(t-\tau)} dt$$

dove $\overline{f(t)}$ indica il complesso coniugato fi f(t). Nota come il parametro t nell'integrale è una variabile fittizia ed è solo necessaria a calcolare l'integrale. Non ha un significato specifico [14].

Caso discreto Nel caso discreto la funzione di autocorrelazione è definita come:

$$R_{ff}(\tau) = \mathbb{E}\left[f(t)\overline{f(t-\tau)}\right] = \mathbb{E}\left[f(t+\tau)\overline{f(t)}\right]$$

Normalizzazione del caso discreto La normalizzazione della funzione di autocorrelazione nel caso discreto ci fornisce la possibilità di avere una visualizzazione con valori compresi tra [-1,1]. Sottraendo la media prima della moltiplicazione si ottiene la funzione di autocovarianza

$$K_{ff}(\tau) = \mathbb{E}\left[\left(f(t+\tau) - \mu \right) \overline{\left(f(t) - \mu \right)} \right] = \mathbb{E}\left[f(t+\tau) \overline{f(t)} \right] - \mu \overline{\mu}$$

dove μ è la media.

La funzione di autocorrelazione normalizzata viene definita come

$$\rho_{ff}(\tau) = \frac{K_{ff}(\tau)}{\sigma^2} = \frac{\mathbb{E}\left[\left(f(t+\tau) - \mu\right)\overline{\left(f(t) - \mu\right)}\right]}{\sigma^2}$$

Implementazione della funzione di autocorrelazione ed esempi Vediamo ora come poter implementare la funzione di autocorrelazione (normalizzata).

```
Snippet (shift di una funzione)
def shift(X, n):
    """ Shifta di n periodi la funzione X
    # controllo per n
    if not isinstance(n, int):
        raise Exception('n deve essere un valore intero')
    X_copy = X.copy() # copia e rendi numpy array
    if not isinstance(X_copy, np.ndarray):
        X_{copy} = np.array(X_{copy})
    # se si shifta troppo impostiamo n
    # alla lunghezza della funzione X
    if np.abs(n) > len(X):
        n = np.sign(n) * len(X)
    # dato n shiftiamo la funzione verso sinistra
    # dato -n shiftiamo la funzione verso destra
    for i in range(np.abs(n)):
        # togliamo il primo o lultimo valore
        # in base a dove vogliamo shiftare
        X_{copy} = X_{copy}[1:] \text{ if } np.sign(n) == 1 \text{ else } X_{copy}[:-1]
        # shifta la funzione aggiungendo uno
        # 0 in testa o in coda in base a dove
        # vogliamo shiftare
```

```
X_copy = np.insert(X_copy, 0 if np.sign(n) == -1
            else len(X_copy), 0)
    return X_copy.tolist() if not isinstance(X, np.ndarray) \
        else np.array(X_copy)
Snippet (singola autocorrelazione)
    def singola_autocorrelazione(X: list | np.ndarray,
    tau: int, normalizzazione = True) -> float:
    """ Eseque una signola autocorrelazione data la latenza
    .....
    # controllo per tau
    if not isinstance(tau, int) and tau < 0:
        raise Exception('tau deve essere un intero \
            maggiore di 0')
    # controllo che X sia un array numpy
    if not isinstance(X, np.ndarray):
        X = np.array(X)
    if normalizzazione:
        mean = X.mean()
        var = X.var()
        # f(t-tau) - mu
        primo_termine = shift(X - mean, -tau)
        \# coniugato(f(t)- mu)
        secondo_termine = np.conjugate(X - mean)
                                                     ... / sigma^2
        return np.mean( primo_termine * secondo_termine ) / var
    # espettazione[f(t-tau)]
                                   * coniugato(f(t)) ]
    return np.mean( shift(X, -tau) * np.conjugate(X) )
Snippet (funzione di autocorrelazione)
def funzione_autocorrelazione(
    X: list | np.ndarray,
    norm = True
    ) -> list | np.ndarray:
```

Esempio (Autocorrelazione). Prendiamo come esepio un segnale la cui velocità cambia di "poco" nel tempo.

Figure 25: Autocorrelazione del segnale.

In figura 25 possiamo notare come l'autocorrelazione non normalizzata del segnale varia di poco nel tempo per segnali che variano lentamente.

Consideriamo ora più segnali la cui velocità cresce velocemente nel tempo.

Figure 26: Autocorrelazione dei segnali.

In figura 26 possiamo notare come l'autocorrelazione non normalizzata dei segnai varia maggiormente nel tempo per segnali che variano velocemente.

Possiamo quindi osservare come segnali con minima variazione nel tempo avranno anche una minima variazione nell'autocorrelazione non normalizzata, mentre segnali che hanno un'ampia variazione tra un'osservazione e quella successiva avranno una maggiore variazione anche nell'autocorrelazione non normalizzata.

Un'ulteriore osservazione che nasce dagli esempi sopra è che i segnali più correlati tra loro sono i segnali con una variazione minore nel tempo, mentre i segnali meno correlati saranno i segnali con una maggior variazione.

2.6.2 Funzione di Autocorrelazione Parziale

L'autocorrelazione parziale, riassume la relazione tra un'osservazione di una serie temporale e le osservazioni di fasi temporali precedenti, come la normale autocorrelazione con la diversità che le relazioni delle osservazioni intermedie vengono rimosse. In sostanza, le correlazioni indirette vengono eliminate lasciando visibile solamente l'effetto diretto [1].

Potreste, ad esempio, essere interessati alla relazione diretta tra i consumi di oggi e quelli di un anno fa. Non vi importa nulla di ciò che accade nel mezzo.

Il consumo dei 12 mesi precedenti ha un effetto sul consumo degli 11 mesi precedenti e il ciclo continua fino al periodo più recente. Nelle stime di autocorrelazione parziale, questi effetti indiretti vengono ignorati [2].

Calcolo della funzione di autocorrelazione parziale La funzione di autocorrelazione parziale teorica di una serie temporale stazionaria può essere calcolata utilizzando l'algoritmo di Durbin-Levinson:

$$\phi_{n,n} = \frac{\rho(n) - \sum_{k=1}^{n-1} \phi_{n-1,k} \rho(n-k)}{1 - \sum_{k=1}^{n-1} \phi_{n-1,k} \rho(k)}$$

dove $\phi_{n,k} = \phi_{n-1,k} - \phi_{n,n}\phi_{n-1,n-k}$ per $1 \le k \le n-1$ and $\rho(n)$ è la funzione di autocorrelazione [18].

Quando è utile l'autocorrelazione parziale La funzione di autocorrelazione parziale gioca un ruolo molto importante, nell'analisi di serie temporali, per l'identificazione dei lag "importanti" per un modello autoregressivo (AR). Essendo che lo scopo del tirocinio è analizzare serie temporali senza eseguire nessuna predizione sui dati con modelli autoregressivi, non verrà data un'iplementazione della formula presente sopra.

Pacchetto per l'utilizzo La funzione pacf, del modulo statsmodels.tsa.stattools, e la funzione plot_pacf, del modulo statsmodels.graphics.tsaplots, forniscono rispettivamente un'implementazione della funzione di autocorrelazione parziale ed il grafico di essa.

3 Gestione dei dataset forniti

Da questa sezione in poi il tirocinio entrò nella sua seconda fase di durata 1 mese e le succesive sezioni e sottosezioni, inclusa la medesima, saranno in ordine cronologico di lavoro.

L'obbiettivo di questa sezione è spiegare le scelte applicative che sono state attuate per l'elaborazione dei dataset e descriverne il loro contenuto, per riuscirne a capire le analisi, le soluzioni ed i risultati ottenuti nelle seguenti sezioni.

3.1 Descrizione dei dataset

Durante il tirocinio sono stati forniti più dataset. Ogni dataset era relativo ad un soggetto, sano o patologico, con una specifica camminata, più nel dettaglio i dataset erano relativi a camminate normali, sulle punte o tacco punta. Ogni dataset era formato da più serie temporali, quindi indicizzate nel tempo, relative alla posizione di un particolare giunto (esempio: piede destro, piede sinistro, naso ...)

Campionamento dei dati I dati relativi ad ogni dataset sono stati ottenuti girando un video del soggetto in posizione laterale e lasciato camminare, avanti ed indietro per un corridoio, davanti all'obiettivo della telecamera. Successivamente, i video registrati, sono stati analizzati utilizzando una libreria open source che, con un algoritmo di machine learning, riconosce i punti relativi alle giunture interessate. Per ogni frame del video è stato quindi possibile fornire la posizione dei giunti in pixel, sia sull'asse delle ascisse che delle ordinate, in riferimento al pixel (0,0) del frame analizzato.

Il campionamento dati e la successiva trasformazione di essi in dataset, contenenti le posizioni dei giunti di ogni soggetto, è stata svolta dal gruppo di ricerca del dipartimento che successivamente ci ha fornito i dataset elaborati.

Esempio (Giuntura del naso). Se per esempio prendiamo la giuntura del naso relativa ad uno dei dataset, indifferentemente dal fatto che esso sia relativo ad un soggetto sano o patologico, essa presenta nel dataset una serie chiamata x_naso e y_naso che rappresentano rispettivamente la posizione x ed y ad ogni frame acquisito dal video.

Frequenza di campionamento La fotocamera utilizzata per registrare i video ha una frequenza di campionamento di 30Hz, quindi ogni misurazione è distante dalla successiva circa 33,3ms. Detto ciò la fotocamera riuscirà a captare periodicità che avvengono al massimo ogni 66,6ms (15Hz), logicamente per sapere quando un certo evento inizia e finisce abbiamo bisogno di almeno 2 misurazioni, più che sufficienti a captare periodicità che risultino significative all'analisi del movimento di un soggetto.

Descrizione delle serie relative ad un dataset I giunti forniti dai dataset sono: naso, torace, spalla destra, gomito destro, polso destro, spalla sinistra, gomito sinistro, polso sinistro, cresta iliaca, anca destra, ginocchio destro, caviglia destra, anca sinistra, ginocchio sinistro, caviglia sinistra, occhio destro, occhio sinistro, zigomo

destro, zigomo sinistro, piede sinistro (3 posizioni), piede destro (3 posizioni). Per ognuno di questi giunti è presente una misura della posizione sull'asse delle ascisse, una misura della posizione sull'asse delle ordinate ed una misura di likelihood cioè un numero tra 0 ed 1 che esprime quanto siamo sicuri di aver trovato il giunto nella posizione giusta (questa misurazione è stata ignorata).

3.2 Rinomina delle colonne dei dataset

I dataset sono stati forniti sprovvisti di una rappresentazione significativa per ogni colonna quindi, come prima operazione, sono state ridenominate tutte le colonne.

Senza scendere troppo nei dettagli implementativi di come questa operazione è stata eseguita, poichè una tecnica per la ridenominazione delle colonne è stato fornita nella sezione precedente, vediamo come i dataset si presentano prima e dopo l'applicazione di essa.

	NaN	NaN.1	NaN.2	NaN.3	NaN.4	NaN.5	NaN.6	NaN.7	NaN.8	NaN.9	
0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
1	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
2	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
3	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
4	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	

Figure 27: Dataset prima della ridenominazione delle colonne.

	x_naso	y_naso	l_naso	x_torace	y_torace	l_torace	x_spalla_dx	y_spalla_dx	l_spalla_dx	x_gomito_dx	
0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
1	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
2	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
3	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
4	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	

Figure 28: Dataset dopo la ridenominazione delle colonne.

Come possiamo notare dalle figure 27 e 28 i nomi delle colonne dei dataset sono state ridenominate, esse ora rappresentano meglio la realtà ed il loro accesso su python facilitato in è possibile accedervi utilizzando il comando dataset_name.nome_giunto invece che dataset_name['nome_giunto'].

3.3 Gestione dei valori nulli

Nei dataset forniti erano presenti dei valori nulli causati dall'uscita del soggetto dall'obbiettivo e quindi l'impossibilità, da parte dell'algoritmo di machine learning, di ottenere una posizione per i giunti interessati.

Essendo che l'obbiettivo finale del tirocinio non è quello di eseguire delle predizioni sulle serie temporali ma quello di inferire sui dati utilizzando le tecniche dell'analisi di serie temporali, i valori nulli sono stati semplicemente eliminati. In questa maniera

consideriamo consecutivi dati che effettivamente non lo sarebbero ma questo non è stato un problema nelle succesive analisi poichè la maggior parte dei valori nulli era presente nei momenti in cui il soggetto si girava per eseguire un'ulteriore camminata davanti all'obiettivo.

Guardiamo ora una esempio di serie prima e dopo l'eliminazione dei valori nulli così da avere un'idea di come i dati si presentano.

Figure 29: Piede destro posizione 1 con valori nulli.

Figure 30: Anca destra con valori nulli.

Come possiamo notare dai grafici in figura 29 e 30 le serie contengono valori nulli nei punti in cui il soggetto esce dall'obiettivo girandosi per un'altra camminata davanti all'obiettivo.

Figure 31: Piede destro posizione 1 senza valori nulli.

Figure 32: Anca destra senza valori nulli.

Guardando i grafici rappresentati in figura 31 e 32 possiamo notare come i valori nulli sono stati eliminati considerando così ogni camminata davanti all'obiettivo continua.

3.4 Scelta dell'indice di tabella per ogni dataset

Un'osservazione che nasce spontanea dall'osservazione dei grafici in figura 29, 30, 31 e 32 e dalle tabelle in figura 27 e 28 è che i dataset non sono indicizzati nel tempo utilizzando la classica indicizzazione come anno/mese/giorno ora:minuti:secondi ma sono indicizzati in base al frame di acquisizione quindi al numero di riga della tabella. Questo non è un problema dal punto di vista dell'analisi di ogni serie poichè noto il frame di acquisizione e la frequenza di campionamento si riuscirà facilmente a risalire ai secodni.

Nel nostro caso, sapendo che i dati sono stati acquisiti con una frequenza di campionamento di 30Hz, e presa una qualsiasi misurazione ad un certo frame risaliremo al secondo di tempo con la seguente formula

$$S_{\texttt{frame}} = \frac{\texttt{frame}}{30}$$

dove S_f sono i secondi trascorsi dal frame 0 al frame frame è il numero del frame interessato.

3.5 Filtraggio dei dataset

Come si può notare dai grafici in figura 29, 30, 31 e 32 le serie dei dataset contengono molto rumore causato da una sbagliata lettura della posizione, di ogni giunto, da parte dell'algoritmo di machine learning.

Come spiegato nella precedente sottosezione sul filtraggio, il rumore risiede principalemente nelle alte frequenze di un segnale.

In linea teorica si è pensato che tutte le frequenze più alte di 2Hz possano essere rumore, quindi in sostanza si andranno ad eliminare tutte le periodicità e movimenti periodici che avvengono sotto 0.5secondi.

Una soluzione migliore sarebbe stata quella di analizzare ogni serie e, per ciascuna di esse, aplicare un filtro con una frequenza di taglio ottimale così da non eliminare informazioni importanti. Per lo scopo di questo tirocinio, come verrà spiegato in seguito, ci soffermeremo sull'analisi dei giunti relativi al piede e quindi una frequenza di taglio di 2Hz potrebbe essere sufficiente a non perdere nessuna informazione importante.

Per fare un esempio pratico supponiamo che l'intervallo di tempo tra due successivi istanti di contatto con il terreno dello stesso piede (stride), per un soggetto sano, avviene in media ogni 0.8secondi, allora il la frequenza di taglio scelta non elimina la periodicità interessata e riusciremo ad individuarla nel grafico.

Nella pratica se applichiamo una frequenza di taglio di 2Hz il segnale rimane con del rumore e delle periodicità indesiderate, questo è duvuto al cruciale ruolo che svolge l'ordine del filtro. Dopo svariati tentativi si è riuscito ad ottenere un risultato soddisfacente utilizzando una frequenza di taglio di 1.2Hz con un ordine di filtro 10.

Guardiamo ora il risultato finale, ottenuto dopo l'applicazione del filtro con i parametri descritti precedentemente, ed una serie non filtrata.

Figure 33: Piede destro posizione 1 di un soggetto sano prima dell'applicazione del filtro.

Figure 34: Piede destro posizione 1 di un soggetto patologico prima dell'applicazione del filtro.

Come possiamo notare dai grafici in figura 33 e 34 le serie non sono filtrate e contengono molto rumore.

Figure 35: Piede destro posizione 1 di un soggetto sano dopo l'applicazione del filtro.

Figure 36: Piede destro posizione 1 di un soggetto patologico dopo l'applicazione del filtro.

l'effetto sinusoidale del grafico rappresenta l'andamento del passo di un soggetto, nello specifico se consideriamo il coefficiente angolare delle rette tangenti ai punti del grafico, quindi la sua derivata prima, e consideriamo come inizio del passo il primo

punto in cui la derivata è uguale a 0 la fine di un passo sarà il punto successivo in cui la sua derivata prima è uguale a 0.

Dai grafici in figura 35 e 36 possiamo notare come il filtro ha rimosso il rumore presente dalle serie e come l'effetto sinusoidale rimasto rappresenta l'andamento del passo di un soggetto. nello specifico se consideriamo il coefficiente angolare delle rette tangenti ai punti del grafico, quindi la sua derivata prima, e consideriamo come inizio del passo il primo punto in cui la derivata è uguale a 0 la fine di un passo sarà il successivo punto in cui la sua derivata prima è uguale a 0.

Detto ciò un'ulteriore osservazione possibile sui grafici in figura 35 e 36 è che si può notare la presenza della periodicità relativa ad un'andata e ritorno del soggetto, essendo che sicuramente avviene più lentamente della periodicità di uno stride, essa risiede nelle frequenze "molto basse". Per cercare di isolare maggiornmente la caratteristica del passo si è deciso di eliminare questa periodicità andando a filtrare con un filtro passa alte le frequenze "bassissime" o almeno abbastanza basse da rimuovere solamente quella periodicità senza incidere sulle componenti che caratterizzano lo stride di un soggetto. Dopo qualche tentativo è stato deciso di utilizzare un filtro passa alte con frequenza di taglio 0.5Hz (periodicità che si ripetono ogni 2secondi e superiori) con un ordine di filtro di 10.

Vediamo ora i grafici delle due serie rappresentate in figura 35 e 36 a confronto prima e dopo l'ultima fase di filtraggio.

Figure 37: Piede destro posizione 1 di un soggetto sano prima e dopo l'applicazione dell'ultima fase di filtraggio.

Figure 38: Piede destro posizione 1 di un soggetto patologico prima e dopo l'applicazione dell'ultima fase di filtraggio.

Come possiamo notare dai grafici in figura 37 e 38 la componente periodica di andata e ritorno è stata eliminata e consideriamo il secondo grafico di ogni figura possiamo notare come i massimi locali delle componenti sinusoidali rappresentino l'inizio di ogni passo del soggetto, quindi i frame che intercorrono tra un punto di masssimo locale e quello successivo rappresentano uno stride di un soggetto.

4 Analisi del problema e Soluzioni

In questa sezione verrà descritto il problema affrontato, le soluzioni scelte ed i rispettivi risultati ottenuti.

Problema affrontato Il problema affrontato chiedeva di trovare pattern, anomalie e/o inferire sui dati forniti, per ottenere, come risultato, informazioni su di essi mediante l'utilizzo di tecniche dell'analisi di serie temporali, e quindi successivamente capire se quest'ultime possano essere utilizzate come tencniche ausiliarie per l'analisi a problemi di questa tipologia.

Per riuscire risolvere il problema posto e per questioni di tempo, il problema è stato ridotto all'analisi dei soli giunti del piede, più in particolare, il tirocinio si è basato sulla ricerca di uno o più metodi utili a trovare la durata del passo (stride) di un soggetto con una successiva analisi dei risultati.

Risultati attesi Come risultato atteso è stata presa in considerazione l'eventualità della non riuscita dell'obbiettivo finale, quindi l'impossibilità di trovare, tramite le tecniche dell'analisi di serie temporali, una possibile soluzione al problema.

In caso positivo, quindi di una possibile soluzione al problema posto, i risultati attesi potrebbero essere:

- Capacità da parte del metodo sviluppato di rilevare la durata del passo.
- Capacità da parte del metodo sviluppato di rilevare incorrettamente la durata del passo.
- Impossibilità da parte del metodo sviluppato di rilevare un passo.

4.1 Prima soluzione

In questa sezione verrà mostrata la prima soluzione al problema posto, nello specifico verrà spiegata in breve l'idea generale, l'implementazione di alcuni dei metodi utilizzati, l'analisi dei risultati, l'analisi della complessità ed infine le conclusioni.

4.1.1 Idea generale

L'idea generale, fulcro di questa soluzione, ruota intorno all'analisi della funzione di autocorrelazione. Quest'ultima viene utilizzata per riconoscere pattern o una sorta di correlazione tra i dati non visibile direttamente.

4.1.2 Implementazione

Mediante l'ausilio del test di Dickey-Fuller ed il calcolo della prima differenza è stato possibile rendere le serie stazionarie, preparandole così alla successiva analisi di autocorrelazione.

```
Snippet (Prima differenza)
    def compute_first_diff(series: list | np.ndarray):
        """ Calcola la prima differenza
        11 11 11
        if not isinstance(series, np.ndarray):
            series = np.array(series)
        return series[1:] - series[:len(series)-1]
Snippet (Metodo per rendere la serie stazionaria)
    def make_stationary(series, max_steps = 30):
        """ Rende la serie stazionaria mediante il calcolo
            della prima differenza
        step = 0
                   # numero di step
        s_copy = series.copy() # copia della serie
        # fino a quando il test ritornca che la serie
        # non è stazionaria oppure sono stati superati
        # il massimo di step
        while(sts.adfuller(series)[1] > 0.05
            and step < max_steps):</pre>
            # calcola la prima differenza
            serie = compute_first_diff(series)
            step += 1
        # se max_step è superato, non si è riusciti
        # a rendere la serie stazionaria
        if step > 30:
            series = s_copy
        return series
```

Avendo reso ogni serie stazionaria guardiamo alcuni dei grafici relativi all'autocorrelazione di serie appartenenti a dataset dei soggetti 6 ed 8.

Figure 39: Soggetto 6 autocorrelazione x piede destro posizione 1.

Figure 40: Soggetto 8 autocorrelazione x piede destro posizione 1.

Da come si può notare dai grafici in figura 39 e 40 l'autocorrelazione sembra riconoscere la durata di un passo in corrispondenza dei massimi locali.

Utilizzando la funzione argrelextrema del modulo statsmodels.tsa.stattools all'output della funzione di autocorrelazione è stato possibile recuperare gli argomenti (indici della lista) dei massimi locali. Per esempio se prendiamo in considerazione il grafico 39 gli argomenti dei massimi locali sono

$$[45, 95, 152, 197, 245, 297, 347, 395, 454, 504, 549, 592, 636, 678]$$

dove ogni argomento fa riferimento all'istante di tempo t, quindi al frame, in cui uno stride si ripete.

Questo ovviamente succede in linea teorica, non sempre è detto che il grafico dell'autocorrelazione riesca ad ottenere con precisione quest'informazione, soprattutto se i dati non sono filtrati correttamente.

Continuado con l'implementazione del metodo, calcolando la distanza tra un argomento e l'altro troveremo la durata di quel determinato passo. Prendendo sempre

in considerazione la lista di agromenti sopra e calcolandone la prima differenza otterremo

$$[50, 57, 45, 48, 52, 50, 48, 59, 50, 45, 43, 44, 42]$$

dove ogni elemento rappresenta la durata di un singolo stride.

Se calcoliamo la media otterremo la durata media di uno stride, che per la lista sopra sarà di 48.69frame cioè 1.623secondi.

```
Snippet (Metodo per il calcolo dello stride)
    def stride(serie: list | np.ndarray):
        """ Calcola la durata di uno stride
            assumendo che la serie sia stazionaria
        11 11 11
        # redi la serie un array numpy
        if not isinstance(serie, np.ndarray):
            serie = np.array(serie)
        # funzione di autocorrelazione
        acf = funzione_autocorrelazione(serie)
        # prende qli argomenti massimi locali della acf
        arg_max_locali = argrelextrema(acf, np.greater)[0]
        # differenza tra gli argomenti massimi locali
        arg_max_locali_diff = compute_first_diff(arg_max_locali)
        # calcola durata media di uno stride
        media_stride = arg_max_locali_diff.mean()
        if not isinstance(serie, np.ndarray):
            arg_max_locali_diff = arg_max_locali_diff.tolist()
        return arg_max_locali_diff, media_stride
```

Questa serie di metodi è stata successivamente applicata ad ogni dataset ottenendo così la durata media di uno stride per ogni posizione del piede destro e sinistro. Per fare ciò è stato creato un "mini" programma che esegue automaticamente queste istruzioni ad ogni serie.

4.1.3 Analisi di complessità

Assumendo che la serie fornita sia già stazionaria la complessità di questo algoritmo deriva pricipalmente dalla complessità della funzione funzione_autocorrelazione e dalla complessità della funzione shift utilizzata dalla funzione di autocorrelazione.

Se consideriamo n come la lunghezza della serie, la funzione di autocorrelazione cicla n volte mentre la funzione di shift cicla $1, 2, 3, \ldots, (n-2), (n-1), n$ volte quindi otterremo una complessità temporale $O(n \log n)$.

La complessità spaziale dell'algoritmo è O(n).

4.1.4 Analisi dei risultati e Conclusioni

Per seplicità, i risultati verranno analizzati considerano un passo completo, cioè la somma degli stride del piede destro e sinistro. Per fare chiarezza mostriamo un'immagine.

Figure 41: Camminata di un soggetto [7].

Considerando la figura 41 stiamo valutando il periodo (durata) che parte dalla prima striscia verde fino all'ultima striscia verde, quindi dall'inizio di una fase iniziale di doppio appoggio fino all'inzio di un'altra fase iniziale di doppio appoggio.

Detto ciò, compariamo ora la durata media dei passi completi dei soggetti sani e patologici.

Si è trovato che la durata media di un passo completo con camminata normale è di rispettivamente 68,84 frame (2,294 secondi) per i soggetti sani e di 81,71 frame (2,723 secondi) per i soggetti patologici. I soggetti patologici, con camminata normale, hanno quindi una durata di passo completo maggiore del 19,84% rispetto alla durata di un passo completo, con camminata normale, dei soggetti sani.

Applicando lo stesso ragionamento alle camminata tacco-punta e punta si è riscontrato che i soggetti patologici, con camminata tacco-punta, hanno una durata di passo completo maggiore del 8.28% rispetto alla durata di un passo completo, con camminata tacco-punta, dei soggetti sani, mentre nella camminata punta si è riscontrata una durata maggiore del 43,04%.

I risultati ottenuti analizzando i dati delle camminate tacco-punta e punta non

possono ritenersi affidabili in quanto le percentuali e le medie sono state calcolate con troppe poche osservazioni.

Premessa sui risultati I risultati sopra ottenuti non sono da prendere come riferimento in quanto essi sono ottenuti mediante l'ausilio di un metodo non totalmente sicuro. Il metodo utilizzato è sperimentale e tantomeno fine allo scopo del tirocinio quindi potrebbe giungere a rislutati non corretti poichè la funzione di autocorrelazione potrebbe rilevare pattern e correlazioni diverse da quelle aspettate ed anche perchè questa tecnica è stata applicata a seire filtrate in un certo modo.

4.2 Seconda Soluzione

In questa sezione verrà mostrata la seconda soluzione al problema posto, nello specifico verrà spiegata in breve l'idea generale, l'implementazione di alcune parti relative all'algoritmo, l'analisi dei risultati, l'analisi della complessità ed infine le conclusioni.

4.2.1 Idea generale

In questa soluzione al problema si è pensato di considerare la scoposizione delle serie nelle loro componenti quali trend, stagionalità e residui. Nello specifico l'idea è nata pensado che possiamo considerare ad un passo (stride) di un soggetto come ad un evento periodico che si ripete più o meno in ugual maniera nel tempo ad uno specifico periodo. Considerando quindi la scoposizione nelle tre compnenti di una serie, la stagionalità ad un determinato periodo potrebbe rappresentare l'informazione che stiamo cercando di ottenere. Questo avviene solamente il linea teorica in quanto non è detto che il passo di un soggetto avvenga sempre ad intervalli precisi ma l'idea è che ad un certo periodo la stagionalità raccolga la maggior parte dell'informazione cercata.

Essendo che questo processo si può provare attuare solamente guardando il grafico della stagionalità si è pensato di automatizzarlo cercando un algoritmo che, data una serie temporare relativa ad un giunto, esso dia come risultato un periodo la cui stagionaità raccolga la maggior parte dell'informazione di un passo. Per fare ciò è stato necessario comparare due serie, o meglio detto, è stato necessario comparare la serie relativa ad un giunto divisa a metà considerando le due metà come serie separate. Successivamente si è calcolata la stagionalità su più periodi per entrambe le serie. In linea teorica i periodi con stagionalità simili sarebbero dovute essere i pattern che occorrono in entrambe le serie, mentre le stagionalità "diverse" sarebbero dovute essere pattern che non rientrano in entrambe probabilmente dovuto ad altre motivazioni quali, ad esempio, del rumore ancora presente.

4.2.2 Implementazione

Per prima cosa è necessario dividere una serie relativa ad un giunto di un soggetto in due e decidere su quali periodi calcolare la stagionalità.

Successivamente per ogni periodo si è calcolata la stagionalità delle due parti calcolandone la differenza quindi l'errore tra le due stagionalità. Per calcolare la stagionalità è stata utilizzata la funzione seasonal_decompose del modulo statsmodels.tsa.seasonal relativo al pacchetto statsmodels, mentre per il calcolo dell'errore le due stagionalità sono state convertite nel dominio delle frequenze, utilizzando la trasformata di Fourier, e calcolata la differenza di ampiezza tra frequenze. L'algoritmo è stato creato per poter accettare anche serie divise in più di due parti.

Vediamo ora come è stata implementata la funzione che esegue il calcolo dell'errore.

```
Snippet (Calcolo dell'errore tra stagionalità)
    def freq_error(season_1: list, season_2: list):
        # prendi la lunghezza minima
        min_len = 0
        if len(season_1) < len(season_2):</pre>
            min_len = len(season_1)
        else:
            min_len = len(season_2)
        # calcolo della trasformata di
        # Fourier tra stagionalità
        fft_season_1 = sft.fft(season_1, min_len)
        fft_season_2 = sft.fft(season_2, min_len)
        # calcolo del magnitudo per ogni trasformata
        fft_season_1_m = np.abs(fft_season_1) / len(season_1)
        fft_season_2_m = np.abs(fft_season_2) / len(season_2)
        # differenza tra frequenze
        fft_diff = []
        for idx in range(min_len//2):
            fft_diff.append(fft_season_1_m[idx] - fft_season_2_m[idx])
        # calcolo dell'errore quadratico medio
        return np.power(fft_diff, 2).mean()
Vediamo ora il metodo principale.
Snippet (Metodo per la soluzione al problema (2))
    def soluzione_2(seriesList, periods):
        seriesList =
                 lista che contiene la serie divisa in due parti
                quindi due liste
        periods =
                lista di interi, è la lista che
```

```
contiene i periodi su cui calcolare
        la stagionalità
11 11 11
# per ogni periodo
errors = []
for j, period in enumerate(periods):
    # non è possibile calcolare
    # la stagionalità per il periodo 0
    if period == 0:
        raise Exception('stagionalità non calcolabile \
            con periodo 0')
    # calcola l'errore le parti della serie
    aux_errors = []
    for idx, series in enumerate(seriesList):
        # stagionalità della prima parte
        season = seasonal_decompose(
            series, period=period).seasonal
        for idx in range(idx+1, len(seriesList)):
            # stagionalità della seconda parte
            # (e altre parti)
            aux_season = seasonal_decompose(
                seriesList[idx], period=period).seasonal
            # calcolo dell'errore tra stagionalità
            aux_errors.append(
                freq_error(season, aux_season)
            )
    errors.append(np.mean(aux_errors))
return np.min(errors), periods[np.argmin(errors)], errors
```

Come possiamo vedere dall'implementazione come risultato otteniamo l'errore minimo, il periodo associato all'errore minimo e la lista contenente, per ogni periodo, l'errore associato.

In una fase successiva è stata creata una funzione che permette di analizzare la lista relativa agli errori per ogni periodo creando dei grafici che indicano i periodi "salienti". L'implementazione di quet'ultima non verrà data ma il concetto è che per periodi piccoli l'errore è sempre il minimo e crescente e, dopo un certo periodo,

l'errore inizia ad aumentare drasticamente per poi diminuire successivamente dopo aver trovato una stagionalià nuovamente simile tra le due serie. Per capire meglio consideriamo la lista degli errori tra 1 e 30, in questo range l'errore è crescente per ogni periodo, dal periodo 31 in poi l'errore aumenta drasticamente fino al periodo 80 per poi diminuire nuovamente ed ad un certo punto riaumentare. Questo è dovuto appunto al fatto che quando le stagionalità non si "assomigliano" l'errore sarà alto mentre per stagionalità simili l'errore è minimo o comunque molto basso.

4.2.3 Analisi di complessità

Consideriamo come m il numero di sottoinsiemi, di ugual lunghezza, creati a partire da una serie (negli esempi sopra abbiamo sempre considerato di dividere la serie in due parti), n la lunghezza di un sottoinsieme, S la complessità della funzione seasonal_decompose e tenuto conto che il periodo massimo su cui è possibile calcolare quest'ultima è di (m/2), la complessità temporale della seconda soluzione è $O((n/2)m\log(m)Sn\log(n))$ mentre la complessità spaziale sarà O(n+2n+(n/2)) quindi O(n).

4.2.4 Analisi dei risultati e Conclusioni

Analizziamo ora qualche grafico cercando di capire meglio come rappresentare i risultati del metodo spiegato nella sezione precedente.

Figure 42: Grafico degli errori per ogni periodo relativo al piede sinitro posizione 1 del soggetto patologico 6.

Figure 43: Grafico degli errori per ogni periodo relativo al piede sinitro posizione 1 del soggetto sano 8.

Figure 44: Grafico degli errori per ogni periodo relativo al piede sinitro posizione 1 del soggetto patologico 21.

Nei grafici in figura 42, 43 e 44 sono rappresentati gli errori sull'asse delle ordinate ed i periodi, a cui ogni errore è associato, sull'asse delle ascisse. Le linee rosse verticali rappresentano i punti salienti, calcolate mediante l'asulio di una funzione che utilizza la media e deviazione standard della differenza tra un errore e quello successivo.

Controllando diversi grafici si è potuto notato che, per molte serie, in prossimità del periodo relativo ad un passo (stride) l'errore inizia ad alzarsi, in questo modo dovrebbe essere possibile calcolare la durata di un passo. Questo però non succede sempre, con alcune serie questo fenomeno non si manifesta o comunque si manifesta ma non in corrispondenza del periodo legato ad un passo, rendendo quindi impossibile reperire l'informazione necessaria.

Questo potrebbe essere causato dal fatto che la funzione di seasonal decompose "aggiusta" la componente di residui per riuscire ad ottenere una periodicità nella componente di stagionalità.

Tenendo a mente le considerazioni fatte fino questo punto possiamo quindi considerare i risultati ottenuti, e di conseguenza questa soluzione, come non validi, essendo che non si ha la sicurezza di poter ottenere risultati coerenti per la ricerca dell'informazione interessata.

4.3 Conclusioni Finali

Prendendo in considerazione la prima soluzione, spiegata nella sezione precedente, possiamo concludere che la funzione di autocorrelazione può essere utilizzata per la soluzione a problemi di questa tipologia, più in particolare essa può essere utilizzata per trovare pattern e/o caratteristiche presenti nei dati, che dal grafico potrebbero non essere evidenti.

La seconda soluzione proposta invece non è stata utile allo scopo di trovare un singolo passo relativo ad un soggetto. Normalmente consideriamo azioni abituali, come ad esempio il passo, come pattern, di un determinato periodo, che si ripetono nel tempo quando invece nella realtà non è così. Tuttavia, l'algoritmo presentato nella seconda soluzione, potrebbe essere utilizzato in altre applicazioni la cui necessità ricade sul trovare periodi in cui occorrono stagionalità simili appartenenti a serie temporali diverse, oppure esso potrebbe essere preso come spunto implementativo per la creazione di un ulteriore algoritmo.

In conclusione, possiamo constatare che le tecniche utilizzate per l'analisi di serie temporali possono essere d'aiuto per una prima analisi non accurata del problema, non sostituendo però le tecniche tuttora utilizzate per analisi a problemi di questa tipologia.

5 Bibliografia

Bibliografia

- [1] medium by Marv. What's The Difference Between Autocorrelation and Partial Autocorrelation For Time Series Analysis? [Online; controllata il 8-marzo-2021]. 2021. URL: https://emel333.medium.com/interpreting-autocorrelation-partial-autocorrelation-plots-for-time-series-analysis-23f87b102c64.
- [2] analyticsindiamag BY VIJAYSINH LENDAVE. What are autocorrelation and partial autocorrelation in time series data? [Online; controllata il 6-febbraio-2022]. 2022. URL: https://analyticsindiamag.com/what-are-autocorrelation-and-partial-autocorrelation-in-time-series-data/.
- [3] medium towardsdatascience by Egor Howell. Seasonality of Time Series. [Online; controllata il 26-ottobre-2022]. 2022. URL: https://towardsdatascience.com/seasonality-of-time-series-5b45b4809acd.
- [4] medium towardsdatascience by Spencer Hayes. Finding Seasonal Trends in Time-Series Data with Python. [Online; controllata il 8-giugno-2021]. 2021. URL: https://towardsdatascience.com/finding-seasonal-trends-in-time-series-data-with-python-ce10c37aa861.
- [5] Sean Abu. Seasonal ARIMA with Python. [Online; controllata il 22-marzo-2016]. 2016. URL: http://www.seanabu.com/2016/03/22/time-series-seasonal-ARIMA-model-in-python/.
- [6] Dheeru Dua and Casey Graff. *UCI Machine Learning Repository*. 2017. URL: http://archive.ics.uci.edu/ml.
- [7] Dott. Cristian Francavilla. Analisi del cammino. [Online; controllata il 19-gennaio]. URL: https://www.cristianfrancavilla.it/analisi-del-cammino/.
- [8] geeksforgeeks. What is a trend in time series? [Online; controllata il 30-maggio-2022]. 2022. URL: https://it.wikipedia.org/wiki/Serie_storica.
- [9] Zhang S. Guo B. Dong A. He J. Xu Z. Chen S.X. Cautionary Tales on Air-Quality Improvement in Beijing. 2017. URL: https://archive.ics.uci. edu/ml/datasets/Beijing+Multi-Site+Air-Quality+Data.
- [10] Dmitriy Sergeyev. Topic 9. Part 1. Time series analysis in Python. [Online]. 2022. URL: https://mlcourse.ai/book/topic09/topic9_part1_time_series_python.html#double-exponential-smoothing.
- [11] Simplifiern. An Introduction to Exponential Smoothing for Time Series Fore-casting in Python. [Online; controllata il 30-settembre-2022]. 2022. URL: https://www.simplifiern.com/exponential-smoothing-for-time-series-forecasting-in-python-article.
- [12] StatLect. Covariance stationary. [Online]. URL: https://www.statlect.com/glossary/covariance-stationary#:~:text=A%20sequence%20of%20random%20variables,not%20on%20their%20absolute%20position..
- [13] Wikipedia. Augmented Dickey-Fuller test Wikipedia, L'enciclopedia libera. [Online; controllata il 30-novembre-2022]. 2022. URL: https://en.wikipedia.org/w/index.php?title=Augmented_Dickey%E2%80%93Fuller_test&action=history.

- [14] Wikipedia. Autocorrelation Wikipedia, L'enciclopedia libera. [Online; controllata il 3-gennaio-2023]. 2023. URL: https://en.wikipedia.org/wiki/Autocorrelation.
- [15] Wikipedia. Autocorrelazione Wikipedia, L'enciclopedia libera. [Online; controllata il 17-gennaio-2023]. 2023. URL: https://it.wikipedia.org/wiki/Autocorrelazione.
- [16] Wikipedia. Exponential smoothing Wikipedia, L'enciclopedia libera. [Online; controllata il 4-febbraio-2023]. 2023. URL: https://en.wikipedia.org/wiki/Exponential_smoothing.
- [17] Wikipedia. Moving average Wikipedia, L'enciclopedia libera. [Online; controllata il 16-dicembre-2022]. 2022. URL: https://en.wikipedia.org/wiki/Moving_average.
- [18] Wikipedia. Partial autocorrelation function Wikipedia, L'enciclopedia libera. [Online; controllata il 31-gennaio-2023]. 2023. URL: https://en.wikipedia.org/wiki/Partial_autocorrelation_function.
- [19] Wikipedia. Serie Storica Wikipedia, L'enciclopedia libera. [Online; controllata il 30-gennaio-2022]. 2022. URL: https://it.wikipedia.org/wiki/Serie_storica.
- [20] Wikipedia. Serie Storica Wikipedia, L'enciclopedia libera. [Online; controllata il 30-marzo-2022]. 2022. URL: https://en.wikipedia.org/wiki/Dickey%E2%80%93Fuller_test.