데이터 분석과 파이썬

데이터 분석

어떤 기존 시스템 또는 계획 중인 시스템에서 **데이터**와 **데이터**의 흐름을 체계적으로 조사하는 것 출처) 네이버 지식백과

컴퓨터 언어

- 인간이 대화하기 위하여 사용하는 언어 ex)영어, 한국어, 중국어
- 인간이 컴퓨터에게 명령을 내리기 위하여 사용하는 언어 ex)파이썬, 자바, C

코딩

인간이 컴퓨터에게 명령을 내리기 위해서 코드를 작성하는 행동

파이썬의 특징

- 언어들 중 배우기가 쉬운 편에 속합니다.
- 데이터를 다루는데 용이합니다.
- 다양한 모듈/패키지가 존재하여 활용범위가 넓습니다.

변수

데이터를 저장/관리 할 공간이 필요

부동산 데이터를 활용하여 주택 가격 변화 추이, 아파트별 전세 가격 현황 등을 분석하고자 한다면, 부동산 데이터들을 저장할 공간이 필요합니다.

이렇듯 데이터를 저장하는 공간을 코딩에서는 변수라고 부릅니다.

ㅡ 변수 만드는 방법

a = 6

데이터를 저장하는 공간 이름

저장할 데이터

변수이름, 변수명

변수값

변수명은 단순히 데이터를 저장하는 공간을 부르는 명칭으로 코딩하는 사람 마음대로 지을 수 있습니다. 다만, 아래 규칙을 지켜야 합니다.

<변수명 작성 규칙>

• A = 6 : (o) 대/소문자를 구분합니다

• a b = 6 : (x) 띄어쓰기는 할 수 없습니다.

• a_b = 6 : (o) 특수기호는 밑줄 기호만 사용할 수 있습니다.

• 1a = 6 : (x) 숫자가 맨 앞으로 오거나 숫자 단독으로 사용할 수 없습니다.

• a1 = 6 : (o) 맨 앞에 문자가 있으면 숫자를 사용할 수 있습니다.

-자료형

데이터는 종류가 다양하기 때문에 저장할 데이터의 형태에 따라 변수의 형태도 달라집니다.이를 <u>자료형</u>이라고 합니다.

파이썬에서는 아래와 같이 데이터의 형태에 따라 다양한 자료형이 존재합니다.

- 1) a=6 데이터가 <u>정수</u>일 경우 -><u>int</u>
- 2) b=3.14 데이터가 <u>실수</u>일 경우 -> <u>float</u>
- 3) c="python" 데이터가 <u>문자열</u>일 경우 -> <u>str</u>
- 4) d=[1, 2, 3, 4, 5]
 데이터가 <u>리스트</u>일 경우 -> <u>list</u>
- 5) e={"사과":"apple", "포도":"grape", "오렌지":"orange"} 데이터가 <u>딕셔너리</u>일 경우 -> <u>dict</u>
- 6) f=True 데이터가 <u>부울</u>일 경우 -> <u>bool</u>

정수/실수/문자열

- 1) a=6 데이터가 <u>정수</u>일 경우 -><u>int</u>
- 2) b=3.14 데이터가 <u>실수</u>일 경우 -> <u>float</u>

•	<pre>3) c="python"</pre>			
	데이터가 문자열일	경우	->	str

문자는 따옴표로 묶어주어야 합니다. (작은따옴표, 큰따옴표 무관)

a=5, b=2	사용법	결과
더하기	a + b	7
빼기	a – b	3
곱하기	a * b	10
나누기	a / b	2.5
몫 구하기	a // b	2
나머지 구하기	a % b	1
제곱 구하기	a ** b	25

c="데이터분석" d="시작"	사용법	결과
문자 이어주기	c + d	데이터분석시작
	c[0]	데
글자 가져오기	c[1]	0
글시 기제조기	c[1:4]	이터분
	c[-1]	석

리스트/딕셔너리

4) d=[1, 2, 3, 4, 5]
 데이터가 <u>리스트</u>일 경우 -> <u>list</u>

d=[1,2,3,4,5]	사용법	결과				
	d[0]	1				
값 가져오기	d[1]	2				
ᆹ 기시포기	d[1:4]	[2,3,4]				
	d[-1]	5				
값 수정하기	d[0]=0	[0,2,3,4,5]				
리스트 합치기	d + [6,7,8]	[0,2,3,4,5,6,7,8]				
값 추가하기	d.append(9)	[0,2,3,4,5,9]				

• 5) e={"가":1, "나":2, "다":[3,4,5]} 데이터가 <u>딕셔너리</u>일 경우 -> <u>dict</u>

	사용법	결과			
값 가져오기	e["가"]	1			
글자 가져오기	e["다"]	[3,4,5]			
값 수정하기	e["나"]=6	{"가":1, "나":6, "다 ":[3,4,5]}			
값 추가하기	e["라"]=7	{"가":1,"나":6, "다":[3,4,5], " 라":7}			

판다스 (pandas)

판다스는 데이터를 분석할 수 있는 다양한 기능을 가진 모듈을 말합니다. '엑셀'과 유사하나

1) 엑셀보다 복잡한 기능을 쉽게 사용 가능하고, 2) 대용량의 데이터를 처리할 수 있습니다.

판다스에서는 데이터의 형태에 따라 다음과 같이 자료형을 표현합니다.

- 해당 컬럼의 데이터가 <u>정수</u>일 경우 -><u>int64</u>
- 해당 컬럼의 데이터가 <u>실수</u>일 경우 -> <u>float64</u>
- 해당 컬럼의 데이터가 문자열일 경우 -> object
- 해당 컬럼의 데이터가 <u>날짜</u>일 경우 -> datetime
- 데이터가 <u>1차원 자료구조일</u> 경우 -> <u>Series</u>
- 데이터가 <u>2차원 자료구조일</u> 경우 -> <u>DataFrame</u>

데이터의 구조

인덱스 열 (column) 지역명 월 규모구분 연도 분양가격(m²) 서울 전체 2015 5841 0 10 서울 전용면적 60m²이하 2015 10 5652 1 서울 전용면적 60m²초과 85m²이하 2 2015 10 5882 행 (row) 서울 3 전용면적 85m²초과 102m²이하 2015 10 5721 null 서울 전용면적 102m²초과 2015 10 4 5 인천 전체 2015 10 3163 인천 전용면적 60m²이하 2015 10 3488 6 7 인천 전용면적 60m²초과 85m²이하 2015 10 3119

Series 만들기

```
Series : 1차원 자료구조
In [16]: import pandas as pd
                                     pandas 모듈 불러오기
In [17]: se=pd.Series([10,20,30,40,50])
                                     리스트로 시리즈를 만들어서 변수 se에 저장하기
In [18]: se
                                     변수 se 출력하기
Out[18]: 0
           20
           30
           40
           50
       dtype: int64
                                     변수 se의 형태(타입) 확인하기
In [19]: type(se)
Out[19]: pandas.core.series.Series
```

Dataframe 만들기

```
Dataframe : 2차원 자료구조
       df=pd.DataFrame({"가":[11,12,13,14,15],
In [26]:
                                            딕셔너리로 데이터프레임을 만들어서
                   "나":[21,22,23,24,25],
                                           변수 df에 저장하기
                   "다":[31,32,33,34,35]})
                                            변수 df 출력하기
In [27]: df
Out [27]:
          가 나 다
       0 11 21 31
        1 12 22 32
       2 13 23 33
        3 14 24 34
       4 15 25 35
                                           변수 df의 형태(타입) 확인하기
In [29]: type(df)
Out[29]: pandas.core.frame.DataFrame
```

_ 파일 불러오기

```
In [13]:
         import pandas as pd
In [14]: | df = pd.read_csv('C:/Users/fastj/Downloads/house_price.csv', engine='python')
In [15]: df
Out[15]:
              지역명
                                    규모구분 연도 월 분양가격(m²)
                                       전체 2015 10
                서울
                                                         5841
                서울
                             전용면적 60m²이하 2015 10
                                                         5652
                      전용면적 60m²초과 85m²이하 2015 10
                                                         5882
                서울 전용면적 85m²초과 102m²이하 2015 10
                                                         5721
                서울
                            전용면적 102m<sup>2</sup>초과 2015 10
                                                         5879
                인천
                                       전체 2015 10
                                                         3163
                             전용면적 60m²이하 2015 10
                인천
                                                         3488
                인천
                      전용면적 60m²초과 85m²이하 2015 10
                                                          3119
In [16]:
        type(df)
Out[16]: pandas.core.frame.DataFrame
```

csv파일 읽어와서 변수 df에 저장하기 데이터 살펴보기 – 상위/하위 별

Out [78]:				-1-			
		지역명	규모구분	연도	월	분양가격(m²)	
	0	서울	전체	2015	10	5841	
	1	서울	전용면적 60㎡이하	2015	10	5652	
	2	서울	전용면적 60m²초과 85m²이하	2015	10	5882	
	3	서울	전용면적 85m²초과 102m²이하	2015	10	5721	
	4	서울	전용면적 102㎡초과	2015	10	5879	
In [79]:	df	head(1	n)				상위 10개 데이터 보기
	GI.	noud(1	·/				
Out [79]:							
In [81]:	df.	tail()					하위 5개 데이터보기
Out [81]:							
In [85]:	df.	shape			데이터의 행과 열 개수 확인하기		
Out[85]:	(20)	2E E)					

데이터 살펴보기 – 열(column) 별

In [97]: df["지역명"]
Out[97]: 0 서울
In [100]: col=["지역명","규모구분","연도"]
df[col]
Out[100]:
지역명 규모구분 연도
 전체 2015

"지역명" 열의 데이터 보기

"지역명", "규모구분", "연도" 열들의 데이터 보기

데이터 살펴보기 – 행(row) 별

```
In [102]: df.loc[1]
Out[102]: 지역명
                           서울
                     전용면적 60㎡이하
         규모구분
         연도
                         2015
                         10
         분양가격(㎡)
                           5652
        Name: 1, dtype: object
In [104]: df.loc[1:5]
Out[104]:
            지역명
                               규모구분 연도 월 분양가격(m²)
            서울
                        전용면적 60m²이하 2015 10
                                                  5652
                  전용면적 60m²초과 85m²이하 2015 10
                                                  5882
             서울 전용면적 85m²초과 102m²이하 2015 10
                                                  5721
             서울
                        전용면적 102m²초과 2015 10
                                                  5879
             인천
                                 전체 2015 10
                                                  3163
In [106]:
        df.reindex([1, 3, 5])
Out[106]:
            지역명
                              규모구분 연도 월 분양가격(m²)
            서울
                        전용면적 60m²이하 2015 10
                                                  5652
             서울 전용면적 85m²초과 102m²이하 2015 10
                                                  5721
         5
             인천
                                 전체 2015 10
                                                  3163
```

1 행의 데이터 보기

1행부터 5행까지의 데이터 보기

1행, 3행, 5행의 데이터 보기 데이터 살펴보기 – 행(row) & 열(column) 별

```
In [108]: df.loc[1, "지역명"]
Out[108]: '서울'
In [109]: df.loc[1, ["지역명","규모구분","연도"]]
Out[109]: 지역명
                        서울
                  전용면적 60㎡이하
         연도
                      2015
        Name: 1, dtype: object
In [110]: df.loc[[1,3,5], "지역명"]
Out[110]: 1
            서울
            서울
             인천
        Name: 지역명, dtype: object
In [116]: df.loc[1:5,"지역명"]
Out[116]: 1
            서울
            서울
            서울
            서울
             인천
        Name: 지역명, dtype: object
In [117]: df.loc[[1, 3, 5], ["지역명","규모구분","연도"]]
Out[117]:
            지역명
                               규모구분 연도
                        전용면적 60m<sup>2</sup>이하 2015
             서울 전용면적 85m²초과 102m²이하 2015
             인천
                                 전체 2015
```

1행 & "지역명" 열의 데이터 보기

1행 & "지역명", "규모구분", "연도" 열들의 데이터 보기

1행, 3행, 5행 & "지역명" 열의 데이터 보기

1행 ~ 5행 & "지역명" 열의 데이터 보기

1행, 3행, 5행 & "지역명", "규모구분", "연도" 열들의 데이터 보기

컬럼 이름과 형태 바꾸기

```
df의 데이터의 컬럼별 형태 보기
In [166]: df.dtypes
Out[166]: 지역명
                   object
        규모구분
                  object
        연도
                   int64
                  int64
        분양가격(㎡)
                     object
        dtype: object
                                                      컬럼 이름 바꾸기
In [167]: df=df.rename(columns={'분양가격(㎡)':'분양가'})
                                                                 컬럼의 형태 바꾸기
In [157]: df['분양가'] = df['분양가'].convert_objects(convert_numeric=True)
In [163]: df["평당분양가"]=df["분양가"]/(3.3)
                                                                 새로운 컬럼 만들기
Out[163]:
             지역명
                               규모구분 연도 월 분양가
                                                   평당분양가
              서울
                                 전체 2015 10 5841.0 1770.000000
               서운
                         정용면적 60m<sup>2</sup>이하 2015 10 5652.0 1712.727273
```

컬럼 추가하기/ 위치 지정하여 추가하기

In [173]: df["국가"] = "대한민국" df[["국가"]]

컬럼 추가하기

Out[173]:

국가

- 0 대한민국
- 1 대한민국

In [228]: df.insert(0,"국가", "대한민국") df

위치 지정하여 컬럼 추가하기

Out[228]:

	국가	지역명	규모구분	연도	월	분양가	평당분양가
0	대한민국	서울	전체	2015	10	5841.0	1770.000000
1	대한민국	서울	전용면적 60m²이하	2015	10	5652.0	1712.727273

조건에 따라 컬럼 추가하기

```
    In [229]:

    df ["평가"] = df ["평당분양가"] > 1500

    df

    Out [229]:

    국가 지역명
    규모구분 연도 월 분양가 평당분양가 평가

    0 대한민국 서울
    전체 2015 10 5841.0 1770.0000000 True
```

조건에 따라 컬럼 추가하기 (조건에 성립하면 True, 성립하지 않으면 False 값 넣기)

```
1 대한민국 서울 전용면적 60m²이하 2015 10 5652.0 1712.727273 True
2 대한민국 서울 전용면적 60m²초과 85m²이하 2015 10 5882.0 1782.424242 True
In [231]: df.loc[df["평당분양가"] > 1500, "평가"] = "비쌈"
df.loc[df["평당분양가"] <= 1500, "평가"] = "보통"
```

조건에 따라 컬럼 추가하기 (조건에 따라 특정 값 넣기)

Out [231]:

	국가	지역명	규모구분	연도	월	분양가	평당분양가	평가
0	대한민국	서울	전체	2015	10	5841.0	1770.000000	비쌈
1	대한민국	서울	전용면적 60m²이하	2015	10	5652.0	1712.727273	비쌈
2	대한민국	서울	전용면적 60㎡초과 85㎡이하	2015	10	5882.0	1782.424242	비쌈
3	대한민국	서울	전용면적 85㎡초과 102㎡이하	2015	10	5721.0	1733.636364	비쌈
4	대한민국	서울	전용면적 102㎡초과	2015	10	5879.0	1781.515152	비쌈
5	대한민국	인천	전체	2015	10	3163.0	958.484848	보통
6	대한민국	인천	전용면적 60m²이하	2015	10	3488.0	1056.969697	보통

조건이 2개 이상일 경우 & 활용해서 컬럼 추가하기

```
In [232]: df.loc[df["평당분양가"] < 800, "평가"] = "저렴" df.loc[(df["평당분양가"] >= 800) & (df["평당분양가"] <= 1500), "평가"] = "보통" df.loc[df["평당분양가"] > 1500, "평가"] = "비쌈" df
```

Out[232]:

	국가	지역명	규모구분	연도	월	분양가	평당분양가	평가
0	대한민국	서울	전체	2015	10	5841.0	1770.000000	비쌈
1	대한민국	서울	전용면적 60m²이하	2015	10	5652.0	1712.727273	비쌈

조건이 2개 이상일 경우, 2개의 조건 모두 참 일 때 값을 넣고 싶다면..

조건이 2개 이상일 경우 | 활용해서 컬럼 추가하기

In [233]: df.loc[(df["지역명"] == "서울") | (df["지역명"] == "인천") | (df["지역명"] == "경기") ,"광역권"]="수도권" df

Out[233]:

국가	지역명	규모구분	연도	월	분양가	평당분양가	평가	광역권
0 대한민국	서울	전체	2015	10	5841.0	1770.000000	비쌈	수도권
1 대한민국	서울	전용면적 60m²이하	2015	10	5652.0	1712.727273	비쌈	수도권
2 대한민국	서울	전용면적 60m²초과 85m²이하	2015	10	5882.0	1782.424242	비쌈	수도권
3 대한민국	서울	전용면적 85㎡초과 102㎡이하	2015	10	5721.0	1733.636364	비쌈	수도권
4 대한민국	서울	전용면적 102㎡소과	2015	10	5879.0	1781.515152	비쌈	수도권
5 대한민국	인천	전체	2015	10	3163.0	958.484848	보통	수도권

조건이 2개 이상일 경우, 2개의 조건 중 하나라도 참 일 때 값을 넣고 싶다면..

사용

컬럼 확인하기 / 위치 조정하기

데이터프레임의 컬럼 확인하기

```
In [218]: df.columns
```

Out[218]: Index(['국가', '지역명', '규모구분', '연도', '월', '분양가', '평당분양가', '평가', '광역권'], dtype='object')

컬럼 위치 조정하기

In [234]: df=pd.DataFrame(df, columns=['국가', '광역권','지역명', '규모구분', '연도', '월', '분양가', '평당분양가', '평가']) df

Out[234]:

국가	광역권	지역명	규모구분	연도	월	분양가	평당분양가	평가
0 대한민국	수도권	서울	전체	2015	10	5841.0	1770.000000	비쌈
1 대한민국	수도권	서울	전용면적 60m²이하	2015	10	5652.0	1712.727273	비쌈
2 대한민국	수도권	서울	전용면적 60m²초과 85m²이하	2015	10	5882.0	1782.424242	비쌈

_ 컬럼 삭제하기

컬럼 삭제하기

In [59]: df=df.drop("국가", axis=1)

df

Out[59]:

	광역권	지역명	규모구분	연도	월	분양가	평당분양가	평가	연도(str)	월(str)	날짜
0	수도권	서울	전체	2015	10	5841.0	1770.000000	비쌈	2015	10	2015-10-01
1	수도권	서울	전용면적 60m²이하	2015	10	5652.0	1712.727273	비쌈	2015	10	2015-10-01
2	수도권	서울	전용면적 60㎡초과 85㎡이하	2015	10	5882.0	1782.424242	비쌈	2015	10	2015-10-01
3	수도권	서울	전용면적 85m²초과 102m²이하	2015	10	5721.0	1733.636364	비쌈	2015	10	2015-10-01

axis=1 → 열을 뜻함

axis=0 → 행을 뜻함

수학/통계 연산 활용하기

In [24]: df.describe()

Out[24]:

	연도	월	분양가	평당분양가
count	3655.000000	3655.000000	3424.000000	3424.000000
mean	2017.046512	6.441860	3140.904206	951.789153
std	1.098849	3.611217	1148.059496	347.896817
min	2015.000000	1.000000	1868.000000	566.060606
25%	2016.000000	3.000000	2390.000000	724.242424
50%	2017.000000	6.000000	2792.000000	846.060606
75%	2018.000000	10.000000	3408.000000	1032.727273
max	2019.000000	12.000000	8272.000000	2506.666667

In [25]: df["분양가"].mean()

Out [25]: 3140.904205607477

In [26]: df["분양가"].max()

Out[26]: 8272.0

In [27]: df["분양가"].min()

Out[27]: 1868.0

해당 데이터프레임의 통계값 보기

※ 연산 가능한 컬럼들만 확인가능

평균값 보기

최댓값 보기

최솟값 보기

index 정렬하기

df.sort_index(axis=0, ascending=False)[:5] 내림차순 정렬하기 In [28]: Out [28]: 국가 광역권 지역명 규모구분 연도 뭘 분양가 평당분양가 평가 3654 대한민국 990.606061 보통 NaN 제주 전용면적 102m²초과 2019 4 3269.0 3653 대한민국 전용면적 85m²초과 102m²이하 2019 NaN 3226.0 977.575758 보통 3652 대한민국 NaN 전용면적 60m²초과 85m²이하 2019 4 3475.0 1053.030303 보통 3651 대한민국 제주 NaN 전용면적 60m²이하 2019 4 3804.0 1152.727273 보통 3650 대한민국 NaN 제주 4 3441.0 1042.727273 보통 오름차순 정렬하기 df.sort index(axis=0, ascending=True)[:5] In [29]: Out [29]: 국가 광역권 지역명 연도 분양가 평당분양가 평가 규모구분 0 대한민국 수도권 10 5841.0 1770.000000 비쌈 서울 1 대한민국 수도권 서울 전용면적 60m²이하 2015 10 5652.0 1712.727273 2 대한민국 수도권 서울 전용면적 60m²초과 85m²이하 2015 10 5882.0 1782.424242 비쌈 3 대한민국 수도권 전용면적 85m²초과 102m²이하 2015 10 5721.0 1733.636364 비쌈 4 대한민국 수도권 서울 전용면적 102㎡초과 2015 10 5879.0 1781.515152 비쌈

컬럼 별로 정렬하기

지역명 별로 정렬하기 In [30]: df.sort_values(by='지역명')[:5] Out[30]: 국가 광역권 지역명 연도 월 분양가 평당분양가 평가 386 대한민국 2 2290.0 693.939394 저렴 NaN 강원 전용면적 60m²이하 2016 385 대한민국 NaN 강원 2016 2 2173.0 658.484848 저렴 1409 대한민국 NaN 강원 전용면적 102m²초과 2017 2 2251.0 682.121212 저렴 2514 대한민국 강원 3 2923.0 885.757576 보통 NaN 전용면적 102m²초과 2018 2513 대한민국 NaN 강원 전용면적 85m²초과 102m²이하 2018 3 2830.0 857.575758 보통 분양가 별로 정렬하기 df.sort_values(by='분양가', ascending=**False**)[:5] Out[32]: 국가 광역권 지역명 규모구분 연도 월 분양가 평당분양가 평가 3572 대한민국 수도권 전용면적 60m²초과 85m²이하 2019 4 8272.0 2506.666667 비쌈 3487 대한민국 수도권 전용면적 60m²초과 85m²이하 2019 3 8191.0 2482.121212 비쌈 2 8141.0 2466.969697 비쌈 3402 대한민국 수도권 전용면적 60m²초과 85m²이하 2019 3317 대한민국 수도권 전용면적 60m²초과 85m²이하 2019 1 8105.0 2456.060606 비쌈 서울 전용면적 85m²초과 102m²이하 2018 5 8098.0 2453.939394 비쌈 2638 대한민국 수도권

문자열로 변환하기

문자열 변환하기

```
In [33]: df["연도(str)"] = df["연도"].astype('str')
df["월(str)"] = df["월"].astype('str')

df["날짜"] = df["연도(str)"] + "-" + df["월(str)"]

df
```

Out[33]:

	국가	광역권	지역명	규모구분	연도	월	분양가	평당분양가	평가	연도(str)	월(str)	날짜
0 [대한민국	수도권	서울	전체	2015	10	5841.0	1770.000000	비쌈	2015	10	2015-10
1 [대한민국	수도권	서울	전용면적 60m²이하	2015	10	5652.0	1712.727273	비쌈	2015	10	2015-10
2 [대한민국	수도권	서울	전용면적 60m²초과 85m²이하	2015	10	5882.0	1782.424242	비쌈	2015	10	2015-10

문자열을 이어서 새로운 컬럼의 값으로 넣기

Datetime으로 변환하기

```
In [34]: df.dtypes
Out[34]:
        국가
                    object
        광역권
                     object
        지역평
                     object
        규모구분
                      object
        연도
                     int64
                    int64
        분양가
                    float64
        평당분양가
                     float64
        평가
                    object
        연도(str)
                    object
        월(str)
                   object
        날짜
                    object
        dtype: object
In [35]: df['날짜'] = pd.to_datetime(df['날짜'])
In [37]:
        df.dtypes
Out[37]: 국가
                          object
        광역권
                           object
        지역명
                           object
        규모구분
                            object
        연도
                           int64
                          int64
        분양가
                          float64
        평당분양가
                           float64
        평가
                          object
        연도(str)
                          object
        월(str)
                         object
        날짜
                   datetime64[ns]
        dtype: object
```

datatime 형태로 변환하기

연 또는 월 데이터만 가져오기

```
In [40]: df['날짜'].dt.year
                                                      연 데이터만 가져오기
Out [40]: 0
              2015
              2015
             2015
             2015
             2015
              2015
              2015
In [41]: df['날짜'].dt.month
                                                      월 데이터만 가져오기
Out[41]: 0
              10
              10
              10
             10
             10
```

비어 있는 값 확인하기

비어 있는 값 확인하기

Out[49]:

	국가	광역권	지역명	규모구분	연도	월	분양가	평당분양가	평가	연도(str)	월(str)	날짜
1	5 대한민국	NaN	부산	전체	2015	10	3112.0	943.030303	보통	2015	10	2015-10-01
1	6 대한민국	NaN	부산	전용면적 60m²이하	2015	10	2950.0	893.939394	보통	2015	10	2015-10-01
1	7 대한민국	NaN	부산	전용면적 60㎡초과 85㎡이하	2015	10	2999.0	908.787879	보통	2015	10	2015-10-01
1	8 대한민국	NaN	부산	전용면적 85m²초과 102m²이하	2015	10	2957.0	896.060606	보통	2015	10	2015-10-01
1	9 대한민국	NaN	부산	전용면적 102㎡초과	2015	10	3500.0	1060.606061	보통	2015	10	2015-10-01

비어 있는 값에 값 채우기

비어 있는 값에 값 채우기

In [50]: df.loc[df["광역권"].isnull(), "광역권"] = "비수도권"
In [51]: df[df["광역권"].isnull()]

Out[51]:

국가 광역권 지역명 규모구분 연도 월 분양가 평당분양가 평가 연도(str) 월(str) 날짜

In [52]: df.tail()

Out[52]:

	국가	광역권	지역명	규모구분	연도	월	분양가	평당분양가	평가	연도(str)	월(str)	날짜
3650	대한민국	비수도권	제주	전체	2019	4	3441.0	1042.727273	보통	2019	4	2019-04-01
3651	대한민국	비수도권	제주	전용면적 60m²이하	2019	4	3804.0	1152.727273	보통	2019	4	2019-04-01
3652	대한민국	비수도권	제주	전용면적 60㎡초과 85㎡이하	2019	4	3475.0	1053.030303	보통	2019	4	2019-04-01
3653	대한민국	비수도권	제주	전용면적 85m²초과 102m²이하	2019	4	3226.0	977.575758	보통	2019	4	2019-04-01
3654	대한민국	비수도권	제주	전용면적 102㎡초과	2019	4	3269.0	990.606061	보통	2019	4	2019-04-01

새로운 컬럼 만들어서 비어 있는 값에 값 채우기 (1)

새로운 컬럼 만들어서 비어 있는 값에 값 채우기 (1)

In [60]: df[df["분양가"].isnull()]

Out[60]:

	광역권	지역명	규모구분	연도	월	분양가	평당분양가	평가	연도(str)	월(str)	날짜
28	비수도권	광주	전용면적 85m²초과 102m²이하	2015	10	NaN	NaN	False	2015	10	2015-10-01
29	비수도권	광주	전용면적 102㎡초과	2015	10	NaN	NaN	False	2015	10	2015-10-01
34	비수도권	대전	전용면적 102㎡초과	2015	10	NaN	NaN	False	2015	10	2015-10-01

In [61]: df.loc[df["분양가"].isnull(), "분양가(not null)"] = df["분양가"].mean()

In [62]: df[df["분양가"].isnull()]

Out[62]:

	광역권	지역명	규모구분	연도	월	분양가	평당분양가	평가	연도(str)	월(str)	날짜	분양가(not null)
28	비수도권	광주	전용면적 85㎡초과 102㎡이하	2015	10	NaN	NaN	False	2015	10	2015-10-01	3140.904206
29	비수도권	광주	전용면적 102㎡초과	2015	10	NaN	NaN	False	2015	10	2015-10-01	3140.904206
34	비수도권	대전	전용면적 102㎡초과	2015	10	NaN	NaN	False	2015	10	2015-10-01	3140.904206

새로운 컬럼 만들어서 비어 있는 값에 값 채우기 (2)

새로운 컬럼 만들어서 비어 있는 값에 값 채우기 (2)

In [64]: df['평당분양가(not null)'] = df['평당분양가'].fillna(0)

In [65]: df[df["평당분양가"].isnull()]

Out[65]:

	광역권	지역명	규모구분	연도	월	분양가	평당분양가	평가	연도(str)	월(str)	날짜	분양가(not null)	평당분양가(not null)
28	비수도권	광주	전용면적 85m²초과 102m²이하	2015	10	NaN	NaN	False	2015	10	2015-10-01	3140.904206	0.0
29	비수도권	광주	전용면적 102㎡초과	2015	10	NaN	NaN	False	2015	10	2015-10-01	3140.904206	0.0
34	비수도권	대전	전용면적 102㎡초과	2015	10	NaN	NaN	False	2015	10	2015-10-01	3140.904206	0.0
81	비수도권	제주	전용면적 60m²이하	2015	10	NaN	NaN	False	2015	10	2015-10-01	3140.904206	0.0

특정 조건에 해당하는 데이터 검색하기 (1)

등호 활용하여 특정 조건에 해당하는 데이터 검색하기

In [73]: df[df["지역명"] == "부산"]

Out[73]:

	광역권	지역명	규모구분	연도	월	분양가	평당분양가	평가	날짜
15	비수도권	부산	전체	2015	10	3112.0	943.0	보통	2015-10-01
16	비수도권	부산	전용면적 60㎡이하	2015	10	2950.0	893.0	보통	2015-10-01
17	비수도권	부산	전용면적 60m²초과 85m²이하	2015	10	2999.0	908.0	보통	2015-10-01

부등호 활용하여 특정 조건에 해당하는 데이터 검색하기

In [76]: df[df["평당분양가"] > 2000]

Out [76]:

	광역권	지역명	규모구분	연도	월	분양가	평당분양가	평가	날짜
88	수도권	서울	전용면적 85m²초과 102m²이하	2015	11	7092.0	2149.0	비쌈	2015-11-01
428	수도권	서울	전용면적 85m²초과 102m²이하	2016	3	7179.0	2175.0	비쌈	2016-03-01
511	수도권	서울	전용면적 60m²이하	2016	4	6618.0	2005.0	비쌈	2016-04-01

특정 조건에 해당하는 데이터 검색하기 (2)

여러 특정 값에 해당하는 데이터 검색하기

In [77]: df[df["규모구분"].isin(["전용면적 60㎡이하", "전용면적 60㎡초과 85㎡이하"])]

Out [77]:

	광역권	지역명	규모구분	연도	월	분양가	평당분양가	평가	날짜
1	수도권	서울	전용면적 60m²이하	2015	10	5652.0	1712.0	비쌈	2015-10-01
2	수도권	서울	전용면적 60m²초과 85m²이하	2015	10	5882.0	1782.0	비쌈	2015-10-01
6	수도권	인천	전용면적 60㎡이하	2015	10	3488.0	1056.0	보통	2015-10-01

특정 문자가 들어가 있는 데이터 검색하기

In [98]: df[df["규모구분"].str.contains("102㎡")]

Out[98]:

	광역권	지역명	규모구분	연도	월	분양가	평당분양가	평가	날짜
3	수도권	서울	전용면적 85m²초과 102m²이하	2015	10	5721.0	1733.0	비쌈	2015-10-01
4	수도권	서울	전용면적 102㎡초과	2015	10	5879.0	1781.0	비쌈	2015-10-01
8	수도권	인천	전용면적 85m²초과 102m²이하	2015	10	3545.0	1074.0	보통	2015-10-01

여러 조건을 모두 만족하는 데이터 검색하기

3079 비수도권

3504 비수도권

3589 비수도권

부산

부산

여러 조건을 모두 만족하는 데이터 검색하기

```
df[df["평당분양가"] > 1300 & d`f["지역명"] == "부산"]
       TypeError
                                           Traceback (most recent call last)
       C:\ProgramData\Anaconda3\Iib\site-packages\pandas\core\ops.py in na op(x, y)
          1303
                     trv:
       -> 1304
                          result = op(x, y)
                     except TypeError:
          1305
※ 각각의 조건을 괄호() 로 묶어주어야 한다.
In [92]: df[(df["평당분양가"] > 1300) & (df["지역명"] == "부산")]
Out[92]:
              광역권 지역명
                                      규모구분 연도 월 분양가 평당분양가 평가
                                                                           날짜
        2993 비수도권
                     부산 전용면적 85m²초과 102m²이하 2018 9 4456.0
                                                           1350.0 보통 2018-09-01
                     부산 전용면적 85m²초과 102m²이하 2018 10 4349.0
        3078 비수도권
                                                           1317.0 보통 2018-10-01
```

전용면적 102m²초과 2018 10 4434.0

전용면적 102m²초과 2019 3 4344.0

전용면적 102m²초과 2019 4 4344.0

1343.0 보통 2018-10-01

1316.0 보통 2019-03-01

1316.0 보통 2019-04-01

여러 조건 중 하나만 성립해도 데이터 검색하기

여러 조건 중 하나만 성립해도 데이터 검색하기

In [99]: df[(df["평당분양가"] > 1300) | (df["지역명"] == "부산")]

Out[99]:

	광역권	지역명	규모구분	연도	월	분양가	평당분양가	평가	날짜
0	수도권	서울	전체	2015	10	5841.0	1770.0	비쌈	2015-10-01
1	수도권	서울	전용면적 60m²이하	2015	10	5652.0	1712.0	비쌈	2015-10-01
2	수도권	서울	전용면적 60㎡초과 85㎡이하	2015	10	5882.0	1782.0	비쌈	2015-10-01
3	수도권	서울	전용면적 85m²초과 102m²이하	2015	10	5721.0	1733.0	비쌈	2015-10-01
4	수도권	서울	전용면적 102㎡초과	2015	10	5879.0	1781.0	비쌈	2015-10-01
15	비수도권	부산	전체	2015	10	3112.0	943.0	보통	2015-10-01
16	비수도권	부산	전용면적 60m²이하	2015	10	2950.0	893.0	보통	2015-10-01

특정 조건으로 컬럼 검색하기

전용면적 102m²초과 2015-10-01

In [96]: df.loc[df["지역명"] == "서울", ["평당분양가"]] 특정 조건으로 컬럼 검색하기 Out[96]: 평당분양가 1770.0 1712.0 2 1782.0 1733.0 1781.0 특정 조건으로 여러 컬럼 검색하기 In [97]: df.loc[df["지역명"] == "서울", ["규모구분", "날짜","평당분양가"]] Out [97]: 규모구분 날짜 평당분양가 전체 2015-10-01 1770.0 전용면적 60m²이하 2015-10-01 1712.0 2 전용면적 60m²초과 85m²이하 2015-10-01 1782.0 3 전용면적 85m²초과 102m²이하 2015-10-01 1733.0

1781.0

피벗테이블로 보기

```
In [101]: pd.pivot_table(df,index="지역명", values="평당분양가")
Out [101]:
                평당분양가
         지역명
               701.033816
          경기 1179.009302
          경남 825.325581
        pd.pivot_table(df,index=["지역명","규모구분"], values="평당분양가")
Out[104]:
                                   평당분양가
         지역명
                           규모구분
          강원
                    전용면적 102m<sup>2</sup>초과 733.953488
                     전용면적 60㎡이하
                                   679.395349
               전용면적 60m<sup>2</sup> 초과 85m<sup>2</sup>이하 675.418605
               전용면적 85m²초과 102m²이하 752.342857
                              전체 673.604651
                    전용면적 102m'초과 1299.116279
          경기
                     전용면적 60 m²이하 1175.162791
피벗 테이블 : 여러 데이터 중에서 자신이 원하는 데이터만을 가지고
원하는 행과 열에 데이터를 배치하여 새로운 보고서를 만드는 기능
```

지역별 평당분양가 피벗테이블로 보기

지역별/규모별 평당분양가 피벗테이블로 보기

파일로 저장하기

csv 파일로 저장하기

In [163]: df.to_csv("C:/Users/fastj/Downloads/house_price_upgrade.csv")