

Wydział Informatyki	Imię i nazwis. 1. Kawa Mi d 2. Smyda T d	chał	Rok: II	Grupa: 5	Zespół:			
PRACOWNIA FIZYCZNA WFiIS AGH	Temat: Modelowani	Temat: Modelowanie pola elektrycznego						
Data wykonania: 17.10.2023	Data oddania: 21.10.2023	Zwrot do popr.:	Data oddania:	Data zaliczenia:	OCENA:			

Modelowanie pola elektrycznego

Ćwiczenie nr 31

Kawa Michał Smyda Tomasz

Spis treści

1	$\mathbf{W}\mathbf{step}$									
	1.1 Cel ćwiczenia									
	1.2 Opis ćwiczenia									
	1.2.1 Sposób analityczny									
	1.2.2 Sposób doświadczalny									
2	Układ pomiarowy									
3	Przebieg doświadczenia									
4	Wyniki pomiarów									
5	Opracowanie wyników pomiarów									
	5.1 Wnętrze kondensatora płaskiego									
	5.2 Zewnętrze kondensatora płaskiego									
	5.3 Wnętrze kondensatora cylindrycznego									
6	Wykresy									
	6.1 Kondensator płaski									
	6.2 Kondensator cylindryczny									
	6.3 Wizualizacja zmierzonych wartości									
	6.3.1 Kondensator płaski									
	6.3.2 Kondensator cylindryczny									
7	Wnioski									

1 Wstęp

1.1 Cel ćwiczenia

Celem ćwiczenia jest wyznaczenie powierzchni ekwipotencjalnych i wektorów natężenia pola elektrycznego na płaszczyźnie dla różnych konfiguracji elektrod.

1.2 Opis ćwiczenia

Ładunki elektryczne, które nieruchomo zawieszone są w przestrzeni wytwarzają pole elektrostatyczne. Ponieważ jest to pole zachowawcze można określić na nim potencjał. Wyznaczyć go można za pomocą wzorów Gaussa, Poissona lub Laplace'a, albo doświadczalnie.

1.2.1 Sposób analityczny

Kondensator Płaski Wewnątrz kondensatora pole jest jednorodne, a potencjał V rośnie od zera dla elektrody uziemionej do wartości równej napięciu zasilania.

$$E = \frac{U}{d}$$

$$V(x) = \frac{U}{d}x$$

gdzie: U - napięcie generatora, d - odległość między okładkami

Kondensator Cylindryczny Przy założeniu, że potencjał elektrody zewnętrznej jest równy zero, wartość potencjału oraz natężenia pola elektrycznego w punkcie odległym o r od osi kondensatora jest dana wzorem:

$$V(r) = \frac{U}{\ln\left(\frac{r_z}{r_w}\right)} \ln\left(\frac{r}{r_z}\right)$$

$$E(r) = -\frac{U}{r \ln\left(\frac{r_z}{r_w}\right)}$$

gdzie: r_z - promień zewnętrzny, r_w - promień wewnętrzny

1.2.2 Sposób doświadczalny

Pole elektrostatyczne jest trudne do wyznaczenia w sposób analityczny oraz doświadczalny. Jest tak, ponieważ wprowadzenie odpowiedniej sondy je zaburza. Do modelowania można użyć pola elektrycznego stacjonarnego przepływu prądu w obszarze o stałej oporności właściwej, ponieważ zachowuje się podobnie do pola elektrostatycznego, a jest znacznie łatwiejsze w badaniu. Przybliżoną wartość natężenia elektrycznego otrzymujemy obliczając numerycznie gradient potencjału:

$$E_x = -\frac{\partial V}{\partial x} \approx \frac{V(x+h,y) - V(x,y)}{h}$$

$$E_y = -\frac{\partial V}{\partial y} \approx \frac{V(x, y+k) - V(x, y)}{k}$$

gdzie: h, k - kroki siatki

2 Układ pomiarowy

Rysunek 1: Układ z modelem kondensatora cylindrycznego

W skład układu pomiarowego wchodzą następujące elementy:

- 1. Cyfrowy woltomierz
- 2. Sonda pomiarowa
- 3. Zasilacz
- 4. Płyty modelowe, które odpowiadają różnym typom kondensatorów:
 - Płaskiemu
 - \bullet Cylindrycznemu

3 Przebieg doświadczenia

- 1. Uklad podłączono zgodnie ze schematem
- $2.\ \,$ Za pomocą sondy zbadano napięcie w wyznaczonych punktach oraz na zewnątrz kondensatora
- 3. Następnie zamieniono płytę na model kondensatora cylindrycznego
- 4. Pomiary powtórzono
- 5. Pomiary zostały zapisane

4 Wyniki pomiarów

Lp.	x	V_a	V_b	V_c	$V_{dośw.}$	
	[mm]	[V]	[V]	[V]	[V]	
1.	10	2,07	2,38	2,17	2,21	
2.	20	3,09	3,38	3,33	3,27	
3.	30	4,20	4,51	4,48	4,40	
4.	40	5,20	5,47	5,56	5,41	
5.	50	6,27	6,62	6,54	6,48	
6.	60	7,35	7,73	7,51	7,53	

Tabela 1: Wyniki pomiarów dla wnętrza kondensatora płaskiego

7,33	7,59	8,17										
7,15	$7,\!51$	7,98										
6,79	7,06	7,59		górna okładka kondensatora								
6,38	6,68	7,05										
5,87	6,11	6,32	6,43	•	•	$7,\!35$	•		7,73	٠		7,51
5,36	5,48	5,55	5,70	•	•	6,27	•	•	6,62	•		6,54
4,57	4,91	4,98	5,02	•	•	5,20			5,47			5,56
4,33	4,34	4,23	4,15	•	•	4,20			4,51			4,48
3,86	3,71	3,42	3,23		•	3,09			3,38			3,33
3,34	3,10	2,70	2,42			2,07			2,38			2,17
2,90	2,57	2,04										
2,53	2,12	1,65	dolna okładka kondensatora									
2,15	1,89	$1,\!46$										
2,00	1,71	1,38										

Tabela 2: Wyniki pomiarów dla punktów wewnątrz oraz zewnątrz kondensatora płaskiego

Lp.	x	V_a	V_b	V_c	$V_{dośw.}$	
	[mm]	[V]	[V]	[V]	[V]	
1.	25	7,60	6,95	7,06	7,20	
2.	33	6,16	$5,\!36$	6,25	5,92	
3.	40	5,08	$4,\!49$	5,25	4,94	
4.	47	4,33	3,71	4,60	4,21	
5.	53	3,73	$3,\!15$	3,93	3,60	
6.	59	3,05	2,62	3,34	3,00	
7.	68	2,48	2,07	2,69	$2,\!41$	
8.	74	2,04	1,63	2,08	1,92	
9.	82	1,69	1,13	1,63	1,48	
10.	88	1,37	0,74	1,05	1,05	

Tabela 3: Wyniki pomiarów dla kondensatora cylindrycznego

5 Opracowanie wyników pomiarów

5.1 Wnętrze kondensatora płaskiego

] Na początku obliczamy V_{teor} dla każdego punktu x:

$$U = 10 \text{ V}$$

$$d = 70 \text{ mm}$$

$$V_{1teor} = \frac{10}{70} \cdot 10 \left[\frac{\text{V}}{\text{mm}} \cdot \text{mm} \right] = 1,429 \text{ V}$$

Obliczamy również $E_{\textit{dośw}}$. dla x^* :

$$E_{dośw.} = \frac{V_{n+1} - V_n}{x_{n+1} - x_n}$$
$$x^* = \frac{x_{n+1} + x_n}{2}$$

Dla x_1^* obliczamy wartość $E_{1dośw}$:

$$x_1^* = \frac{20+10}{2} \text{ [mm]} = 15 \text{ mm}$$

$$E_{1dośw.} = \frac{3,27-2,21}{20-10} \left[\frac{\text{V}}{\text{mm}} \right] = 106 \left[\frac{\text{V}}{\text{m}} \right]$$

Analogicznie wyliczamy pozostałe wartości x_i^* oraz $E_{idośw.}$ dla $i \in \{2...5\}$

5.2 Zewnętrze kondensatora płaskiego

Dla każdego punktu możemy obliczyć wartość składowych wektora E:

$$E_x = \frac{V(x+h,y) - V(x,y)}{h}$$

$$E_y = \frac{V(x, y+k) - V(x, y)}{k}$$

Dla pierwszego punktu mamy:

$$h = k = 10 \text{ mm}$$

$$V(0,0) = 7,33 \text{ V}$$

$$V(10,0) = 7,59 \text{ V}$$

$$V(0,10) = 7,15 \text{ V}$$

$$E_x = \frac{7,59 - 7,33}{10} \left[\frac{\text{V}}{\text{mm}} \right] = 26 \left[\frac{\text{V}}{\text{m}} \right]$$

$$E_y = \frac{7,15 - 7,33}{10} \left[\frac{\text{V}}{\text{mm}} \right] = -18 \left[\frac{\text{V}}{\text{m}} \right]$$

Analogicznie wyliczamy pozostałe wartości.

5.3 Wnętrze kondensatora cylindrycznego

Dla pierwszego puntku wewnątrz kondensatora:

$$r_w = 20 \text{ mm}$$

$$r_z = 95 \text{ mm}$$

$$r = 25 \text{ mm}$$

$$U = 10 \text{ V}$$

$$V_{1teor} = \frac{10}{\ln\left(\frac{95}{20}\right)} \cdot \ln\left(\frac{25}{90}\right) [\text{ V}] = -8,22 \text{ V}$$

Obliczamy również x_1^* oraz $E_{1dośw.}$:

$$\begin{split} x_1^* &= \frac{25 + 33}{2} \, [\text{ mm}] = 29 \, [\text{ mm}] \\ E_{1dośw.} &= \frac{5,92 - 7,20}{33 - 25} \, \left[\frac{V}{\text{mm}} \right] = -160 \, \left[\frac{\text{V}}{\text{m}} \right] \\ E_{1teor.} &= -\frac{10}{25 \ln \left(\frac{95}{20} \right)} \left[\frac{V}{\text{mm}} \right] \approx -256,72 \, \left[\frac{\text{V}}{\text{m}} \right] \end{split}$$

Analogicznie wyliczamy pozostałe wartości.

6 Wykresy

6.1 Kondensator płaski

Kondensator płaski

Rysunek 2: Wykres zależności potencjału od położenia dla wnętrza kondensatora płaskiego

Rysunek 3: Wykres zależności natężenia pola od położenia dla wnętrza kondensatora płaskiego

6.2 Kondensator cylindryczny

Rysunek 4: Wykres zależności potencjału od położenia dla wnętrza kondensatora cylindrycznego

Rysunek 5: Wykres zależności natężenia pola od położenia dla wnętrza kondensatora cylindrycznego

6.3 Wizualizacja zmierzonych wartości

Aby zwizualizować wyniki posłużyliśmy się programem, który został napisany przez starszych kolegów. Kod źródłowy programu jest udostępniony publicznie i znajduje się pod adresem: LINK

6.3.1 Kondensator płaski

Wektory natężenia pola elektrycznego uzyskaliśmy licząc pochodną napięcia w dwóch osiach, a następnie tworząc wektor ze składowych. Każda z dwóch składowych wektora pochodnej została obliczona jako różnica wartości napięcia w dwóch sąsiadujących punktach podzielona przez odległość między tymi punktami.

Rysunek 6: Wizualizacja zmierzonego pola elektrycznego kondensatora płaskiego

6.3.2 Kondensator cylindryczny

W celu wyznaczenia linii ekwipotencjalnych pola kondensatora cylindrycznego został wyznaczony teoretyczne punkt o danym napięciu na każdym z trzech ramion. Następnie w oparciu na trzy takie punkty został narysowany okrąg.

Rysunek 7: Wizualizacja zmierzonego pola elektrycznego kondensatora cylindrycznego

7 Wnioski

Zgodnie z oczekiwaniami potencjał wewnątrz kondensatora maleje od jednej podkładki zasilanej do drugiej, która jest uziemiona. Wyniki praktyczne są dosyć zbliżone do teoretycznych. Wartość natężenie pola nie jest stała dla kondensatora płaskiego, najprawdopodobniej przez błąd pomiaru spowodowany niedokładnością sondy, która zależała od przyłożonej siły oraz tym że modele były często wykorzystywane, co mogło je zużyć, a w konsekwencji negatywnie wpłynąć na otrzymane wyniki.