Poor man's survey on Generative Models

•••

Sepehr Sameni University of Tehran

What is generative modeling?[1]

Today I will use the following definition of a generative model:

A model is generative if it places a joint distribution over all observed dimensions of the data.

Generative versus discriminative supervised learning[1]

Consider a supervised learning task with features X and labels Y:

- Generative models want to learn P(X, Y).
- Discriminative models want to learn P(Y | X).

"... one should solve the [classification] problem directly and never solve a more general problem as an intermediate step ... " Vapnik (1998)

- Sample efficiency[2]
- Unsupervised proxy
- Beyond P(Y | X)

Generative models: beyond P(Y | X)[1]

What can you do with a generative model?

- Compute arbitrary conditionals and marginals.
- Compare the probabilities of different examples.
- Reduce the dimensionality of the data.
- Identify interpretable latent structure.
- Fantasize completely new data.

Generative Methods

- Old methods
- Autoregressive
- Variational methods
- Generative Adversarial Networks
- Flow based
- Energy based
- Mix & Match!

Old Methods

- GMM
- N-gram
- LDA

Autoregressive Models I

Autoregressive generative models over high-dimensional data $\mathbf{x} = (x_1, \dots, x_n)$ factor the joint distribution as a product of conditionals:

$$p(\mathbf{x}) = p(x_1, \dots, x_n) = \prod_{i=1} p(x_i | x_1, \dots, x_{i-1})$$

Autoregressive Models II (text)

Modern Language Modeling[3]

Autoregressive Models III (image)

- Pixel RNN[4]
- Pixel CNN[5]

Difficulties:

- Order
- Speed

Autoregressive Models IV (image++)

Subscale pixel networks[6]

Autoregressive Models V (audio)

- Sample RNN[7]
- WaveNet[8]
- Parallel WaveNet[9]

Variational Models I

$$\begin{split} \log P(X) &= \log P(X|z) + \log P(z) - \log P(z|X) \\ E_{z \sim P(z|X)}[\log P(X)] &= \log P(X) = E_{z \sim P(z|X)}[\log P(X|z) + \log P(z) - \log P(z|X)] \\ \log P(X) &= E_{z \sim P(z|X)}[\log P(X|z)] - K_{DL}(P(z|X)||P(z)) \\ \log P(X) - K_{DL}(Q(z|X)||P(z|X)) &= E_{z \sim Q(z|X)}[\log P(X|z)] - K_{DL}(Q(z|X)||P(z)) \end{split}$$

Variational Models II (text)

- Text VAE [10]
- Z-Forcing [11]

Variational Models III (audio) [12]

GAN I[13]

GAN II (big-gan)[14]

GAN III (pggan++)[15]

GAN IV(use cases)

- Pix2pix[16]
- Super res[17]
- Time series prediction[??]

Flow Based Models I

- Real NVP[18]
- Glow[19]
- FloWaveNet[20]

Flow Based Models II(ODE)[21, 22]

Figure 1: FFJORD transforms a simple base distribution at t_0 into the target distribution at t_1 by integrating over learned continuous dynamics.

Figure 2: Comparison of trained FFJORD and Glow models on 2-dimensional distributions including multi-modal and discontinuous densities.

Energy Based Models[23]

$$p(x) = \frac{e^{-E(x;\theta)}}{Z(\theta)}; \quad Z(\theta) = \int e^{-E(y;\theta)} dy$$

(a) conditional CIFAR10 EBM samples

Model	Inception Score
Unconditional CIFAR10	
PixelCNN	4.60
DCGAN	6.40
Ours (single)	6.43
Ours (10 historical ensemble)	6.79
Conditional CIFAR10	
Improved GAN	8.09
Ours	8.52
Spectral Normalization GAN	8.59

(b) Table of Inception Scores

Mix & Match

- Adversarial AE[24]
- AliGAN[25]
- VAE + PixelCNN[26]
- ODE + VAE[22]
- EBGAN[27]

• ...

References I

- 1. R Adams "A Tutorial on Deep Probabilistic Generative Models"
- 2. A Ng "On Discriminative vs. Generative classifiers: A comparison of logistic regression and naïve Bayes"
- 3. Y Kim "Character-Aware Neural Language Models"
- 4. A Oord "Pixel Recurrent Neural Networks"
- 5. A Oord "Conditional Image Generation with PixelCNN Decoders"
- 6. J Menick "Generating High Fidelity Images with Subscale Pixel Networks and Multidimensional Upscaling"
- 7. S Mehri "SampleRNN: An Unconditional End-to-End Neural Audio Generation Model"

References II

- 8. A Oord "WaveNet: A Generative Model for Raw Audio"
- 9. A Oord "Parallel WaveNet: Fast High-Fidelity Speech Synthesis"
- 10. S Bowman "Generating Sentences from a Continuous Space"
- 11. A Goyal "Z-Forcing: Training Stochastic Recurrent Networks"
- 12. A Oord "Neural Discrete Representation Learning"
- 13. I Goodfellow "Generative Adversarial Networks"
- 14. A Brock "Large Scale GAN Training for High Fidelity Natural Image Synthesis"

References III

- 15. T Karras "A Style-Based Generator Architecture for Generative Adversarial Networks"
- 16. P Isola "Image-to-Image Translation with Conditional Adversarial Networks"
- 17. X Wang "Image-to-Image Translation with Conditional Adversarial Networks"
- 18. L Dinh "Density estimation using Real NVP"
- 19. D Kingma "Glow: Generative Flow with Invertible 1x1 Convolutions"
- 20. S Kim "FloWaveNet : A Generative Flow for Raw Audio"
- 21. R Chen "Neural Ordinary Differential Equations"

References IV

- 22. W Grathwohl "FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models"
- 23. T Du "Implicit Generation and Generalization with Energy-Based Models"
- 24. A Makhzani "Adversarial Autoencoders"
- 25. V Dumoulin "Adversarially Learned Inference"
- 26. I Gulrajani "PixelVAE: A Latent Variable Model for Natural Images"
- 27. J Zhao "Energy-based Generative Adversarial Network"