

FACULTÉ DES SCIENCES ET DE GÉNIE
DÉPARTEMENT DE GÉNIE ÉLECTRIQUE ET DE GÉNIE INFORMATIQUE

GEL-19962 Analyse de signaux Jérôme Genest

Examen partiel

Date: Mercredi le 8 novembre 2006

Durée: de 13h30 à 15h20

Salle: PLT-2700 et 2341

Cet examen vaut 40% de la note finale.

Remarques:

- i) L'utilisation d'une calculatrice est permise.
- ii) Aucun document n'est permis durant l'examen.
- iii) Seule la liste des formules fournie à la fin du questionnaire est permise.
- iv) Votre carte d'identité doit être placée sur votre bureau en conformité avec le règlement de la Faculté.

Problème 1 (15 points)

Contrôle de la fuite spectrale

- a) Mulitplication par une boîte.
 - Tracez l'enveloppe (i.e. seulement la fenêtre multiplant le cosinus) de la fonction $f(t) = \cos(100\pi t) \cdot \text{Rect}(t/2)$.
 - Calculez et tracez la transformation de Fourier $F(\omega)$ de f(t).
 - Calculez la largeur entre les premiers zéros de chaque côté du lobe principal de $F(\omega)$, autour de $w_o = 100\pi$.
 - Donnez le taux de descente (asymptotique) des lobes secondaires de $F(\omega)$.
- b) Multiplication par un triangle
 - Tracez l'enveloppe de la fonction $g(t) = \cos(100\pi t) \cdot \text{Tri}(t)$.
 - Calculez et tracez la transformation de Fourier $G(\omega)$ de g(t).
 - Calculez la largeur entre les premiers zéros de chaque côté du lobe principal de $G(\omega)$, autour de $w_o = 100\pi$.
 - Donnez le taux de descente (asymptotique) des lobes secondaires de $G(\omega)$.
- c) Multiplication par une fenêtre en cosinus
 - Tracez l'enveloppe de la fonction $h(t) = \cos(100\pi t) \cdot \cos(\pi t/2) \cdot \text{Rect}(t/2)$.
 - Calculez et tracez la transformation de Fourier $H(\omega)$ de h(t).
 - Calculez la largeur entre les premiers zéros de chaque côté du lobe principal de $H(\omega)$, autour de $w_o = 100\pi$.
 - Donnez le taux de descente (asymptotique) des lobes secondaires de $H(\omega)$.
- d) Discutez la relation entre largeur des lobes principaux (largeur à mi-hauteur) et la descente des lobes secondaires.
- e) Les signaux f(t), g(t), h(t) sont-ils à énergie ou à puissance finie?

Problème 2 (5 points)

Calculez la transformation de Fourier de f(t) = 1/t.

Problème 3 (15 points)

Fonction périodique

- a) Calculez la transformation de Fourier $F(\omega)$ de la fonction f(t) illustrée ci-haut.
- b) Vérifiez votre résultat pour $T_o = 2a = 2b$. (Vous pouvez vérifier le résultat à n'importe quelle étape intermédiaire calculée en a))
- c) Quelle est l'énergie dans une période de f(t)?
- d) Quelle est la puissance totale de f(t)?

Problème 4 (5 points)

Calculez f(t) si $F(\omega) = j \frac{\sin^2(w)}{w}$.