Statistics in R Session-11

Contents

- Linear Regression
- Logistic Regression

We have a dataset with two attributes: distance of house from city center in Tallinn, and Rent per month.

Distance (km)	Rent(euros)
1	400
3	300
8	220
15	200
5	350

We will do descriptive statistics.

Relationship?

Correlation = 0.86

Can we predict the rent if someone tell us the distance of the house from city center?

Let's say we have two attributes, A and B. These attributes have **some** relationship.

Linear

В

We can predict one of them if another is available.

Predictor variable

Independent variable

Attribute value we know

Attribute we want to predict

Dependent variable

Outcome variable

What are independent variable and dependent variable in our example?

Distance (km)	Rent(euros)
1	400
3	300
8	220
15	200
5	350

What are independent variable and dependent variable in our example?

Slope

Steepness of the line

Interpretation: It will tell you how dependent variable change when you change the independent variable.

Salary =
$$a + 7*$$
 expense

Intercept

Some taxi charges in following manner

Base charge = 3 euro Every KM .50 euro

Intercept

The point where the line crosses x-axis.

Linear regression in R

```
Im (formula,data=<data_variable>)
Independent_variable ~ dependent_variable)
```

```
400
           300
         8 220
            200
            350
> lm(rent~distance,data=d)
Call:
lm(formula = rent ~ distance, data = d)
Coefficients:
(Intercept)
                distance
     379.80
                  -13.41
```

distance rent

How to predict?

Create a linear regression model of your data.

Supply the value of independent variable in model to predict dependent variable.

Distanc e	Rent	Model
1	400	
3	300	
8	220	
15	200	
5	350	

Rent = 379.799 - 13.406 * distance

```
> summary(my_model)
Call:
lm(formula = rent ~ distance, data = d)
Residuals:
33.61 -39.58 -52.55 21.29 37.23
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 379.799
                       36.363 10.445 0.00187 **
distance -13.406 4.517 -2.968 0.05918.
Signif. codes:
0 '***, 0.001 '**, 0.01 '*, 0.05 ', 0.1 ', 1
Residual standard error: 49.32 on 3 degrees of freedom
Multiple R-squared: 0.7459, Adjusted R-squared: 0.6612
F-statistic: 8.807 on 1 and 3 DF, p-value: 0.05918
```

Distanc e	Rent	Model
1	400	366.39
3	300	
8	220	
15	200	
5	350	

Residual standard error: 49.32 on 3 degrees of freedom

F-statistic: 8.807 on 1 and 3 DF, p-value: 0.05918

Multiple R-squared: 0.7459, Adjusted R-squared: 0.6612

Rent = 379.799 - 13.406 * distance

> summary(my_model) Call: lm(formula = rent ~ distance, data = d) ▶ Residuals:

33.61 -39.58 -52.55 21.29 37.23

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 379.799 36.363 10.445 0.00187 ** distance -13.406 4.517 -2.968 0.05918.

Signif. codes:

0 '***, 0.001 '**, 0.01 '*, 0.05 ', 0.1 ', 1

Rent = 379.799 - 13.406 * distance

Significance of variable

```
> summary(my_model)
Call:
lm(formula = rent ~ distance, data = d)
Residuals:
 33.61 -39.58 -52.55 21.29 37.23
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 379.799
                       36.363 10.445 0.00187 **
distance -13.406 4.517 -2.968 0.05918 .
Signif. codes:
0 '***, 0.001 '**, 0.01 '*, 0.05 ', 0.1 ', 1
Residual standard error: 49.32 on 3 degrees of freedom
Multiple R-squared: 0.7459, Adjusted R-squared: 0.6612
F-statistic: 8.807 on 1 and 3 DF, p-value: 0.05918
```

Rent = 379.799 - 13.406 * distance

Dista nce	Rent	Model	diff	diff * diff
1	400	366.39	33.61	1129
3	300			
8	220			
15	200			
5	350			

Take sum of diff * diff and compute its square root.

```
> summary(my_model)
Call:
lm(formula = rent ~ distance, data = d)
Residuals:
 33.61 -39.58 -52.55 21.29 37.23
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 379.799
                       36.363 10.445 0.00187 **
distance -13.406 4.517 -2.968 0.05918 .
Signif. codes:
0 '***, 0.001 '**, 0.01 '*, 0.05 ', 0.1 ', 1
Residual standard error: 49.32 on 3 degrees of freedom
Multiple R-squared: 0.7459, Adjusted R-squared: 0.6612
```

F-statistic: 8.807 on 1 and 3 DF, p-value: 0.05918

Rent = 379.799 - 13.406 * distance

Ranges from 0 to 1.

Higher is better.

You can say: the build model can explain 74% (100 * .745) variance in the data.

```
> summary(my_model)
Call:
lm(formula = rent ~ distance, data = d)
Residuals:
 33.61 -39.58 -52.55 21.29 37.23
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 379.799
                        36.363 10.445 0.00187 **
distance -13.406 4.517 -2.968 0.05918 .
Signif. codes:
0 '***, 0.001 '**, 0.01 '*, 0.05 ', 0.1 ', 1
Residual standard error: 49.32 on 3 degrees of freedom
Multiple R-squared: 0.7459, Adjusted R-squared: 0.6612
F-statistic: 8.807 on 1 and 3 DF, p-value: 0.05918
```

What are independent variable and dependent variable in our example?

Distance (km)	No. of rooms	Rent(euros)
1	1	400
3	1	300
8	1	220
15	2	200
5	2	350

Predictor variable

Independent variable

Attribute value we know

Regression

Attribute we want to predict

Dependent variable

Outcome variable

Which attribute is a strong predictor of rent?

```
> my_model <- lm(rent ~ distance + rooms, data=d)</pre>
> summary(my_model)
Call:
lm(formula = rent ~ distance + rooms, data = d)
Residuals:
 39.25 -24.69 -14.56 15.13 -15.13
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 302.281
                        51.573
                                5.861 0.0279 *
distance
            -18.026
                       4.308 -4.185 0.0526 .
                        42.934 1.782
                                        0.2168
rooms
             76.491
Signif. codes:
0 '***, 0.001 '**, 0.01 '*, 0.05 ', 0.1 ', 1
Residual standard error: 37.55 on 2 degrees of freedom
Multiple R-squared: 0.9018, Adjusted R-squared: 0.8036
F-statistic: 9.182 on 2 and 2 DF, p-value: 0.09821
```

_

Thank you