Convergence of the Power Method: Complete Proof

Setup and Assumptions

Let $A \in \mathbb{R}^{n \times n}$ be a square matrix. We make the following assumptions:

Assumption 1 (Diagonalizability). A has n linearly independent eigenvectors $\{v_1, v_2, \ldots, v_n\}$ forming a basis of \mathbb{R}^n .

Assumption 2 (Distinct Dominant Eigenvalue). The eigenvalues of A can be ordered such that

$$|\lambda_1| > |\lambda_2| \ge |\lambda_3| \ge \dots \ge |\lambda_n| \tag{1}$$

where λ_1 is called the dominant eigenvalue.

Assumption 3 (Non-zero Projection). The initial vector $v^{(0)}$ has a non-zero component in the direction of the dominant eigenvector v_1 , i.e., when written as

$$v^{(0)} = \sum_{i=1}^{n} \alpha_i v_i \tag{2}$$

we have $\alpha_1 \neq 0$.

Main Convergence Theorem

Theorem 1 (Convergence of Power Method). Under Assumptions 1-3, the normalized iterates

$$x^{(k)} = \frac{A^k v^{(0)}}{\|A^k v^{(0)}\|} \tag{3}$$

satisfy

$$x^{(k)} \to \pm \frac{v_1}{\|v_1\|}$$
 (4)

as $k \to \infty$, where the sign depends on the phase of λ_1^k . Moreover, the convergence is geometric with rate

$$\left\| x^{(k)} - \pm \frac{v_1}{\|v_1\|} \right\| = O\left(\left| \frac{\lambda_2}{\lambda_1} \right|^k \right) \tag{5}$$

Proof

Step 1: Eigenvalue Decomposition

Since $\{v_1, \ldots, v_n\}$ form a basis (Assumption 1), we can write

$$v^{(0)} = \sum_{i=1}^{n} \alpha_i v_i \tag{6}$$

where $\alpha_1 \neq 0$ by Assumption 3.

Step 2: Applying Powers of A

By linearity and the eigenvalue equation $Av_i = \lambda_i v_i$:

$$A^k v^{(0)} = A^k \left(\sum_{i=1}^n \alpha_i v_i \right) \tag{7}$$

$$= \sum_{i=1}^{n} \alpha_i A^k v_i \tag{8}$$

$$= \sum_{i=1}^{n} \alpha_i \lambda_i^k v_i \tag{9}$$

Step 3: Factoring Out the Dominant Term

Factor out λ_1^k :

$$A^k v^{(0)} = \lambda_1^k \left(\alpha_1 v_1 + \sum_{i=2}^n \alpha_i \left(\frac{\lambda_i}{\lambda_1} \right)^k v_i \right)$$
 (10)

Step 4: Convergence of the Direction

By Assumption 2, $\left|\frac{\lambda_i}{\lambda_1}\right| < 1$ for all $i \geq 2$. Therefore:

$$\lim_{k \to \infty} \left(\frac{\lambda_i}{\lambda_1}\right)^k = 0 \quad \text{for } i \ge 2$$
 (11)

This gives:

$$\lim_{k \to \infty} \frac{A^k v^{(0)}}{\lambda_1^k} = \alpha_1 v_1 \tag{12}$$

Step 5: Normalized Iterates

The normalized iterate is:

$$x^{(k)} = \frac{A^k v^{(0)}}{\|A^k v^{(0)}\|} \tag{13}$$

$$= \frac{\lambda_1^k \left(\alpha_1 v_1 + \sum_{i=2}^n \alpha_i \left(\frac{\lambda_i}{\lambda_1}\right)^k v_i\right)}{\left\|\lambda_1^k \left(\alpha_1 v_1 + \sum_{i=2}^n \alpha_i \left(\frac{\lambda_i}{\lambda_1}\right)^k v_i\right)\right\|}$$
(14)

$$= \frac{\lambda_1^k}{|\lambda_1|^k} \cdot \frac{\alpha_1 v_1 + \sum_{i=2}^n \alpha_i \left(\frac{\lambda_i}{\lambda_1}\right)^k v_i}{\left\|\alpha_1 v_1 + \sum_{i=2}^n \alpha_i \left(\frac{\lambda_i}{\lambda_1}\right)^k v_i\right\|}$$
(15)

Let $\theta_k = \arg(\lambda_1^k)$. Then $\frac{\lambda_1^k}{|\lambda_1|^k} = e^{i\theta_k}$ (or ± 1 if λ_1 is real). As $k \to \infty$:

$$x^{(k)} \to e^{i\theta_k} \frac{\alpha_1 v_1}{\|\alpha_1 v_1\|} = e^{i\theta_k} \frac{v_1}{\|v_1\|} \cdot \frac{\alpha_1}{|\alpha_1|}$$
 (16)

For real matrices with real dominant eigenvalue: $x^{(k)} \to \pm \frac{v_1}{\|v_1\|}$

Step 6: Convergence Rate Analysis

To quantify the convergence rate, consider the error:

$$A^{k}v^{(0)} = \lambda_{1}^{k}\alpha_{1}v_{1}\left(1 + \sum_{i=2}^{n} \frac{\alpha_{i}}{\alpha_{1}} \left(\frac{\lambda_{i}}{\lambda_{1}}\right)^{k} \frac{v_{i}}{v_{1}}\right)$$

$$(17)$$

The dominant error term comes from λ_2 :

$$\left\| x^{(k)} - \frac{v_1}{\|v_1\|} \right\| \sim \left| \frac{\alpha_2}{\alpha_1} \right| \left| \frac{\lambda_2}{\lambda_1} \right|^k \left\| \frac{v_2}{\|v_1\|} \right\| \tag{18}$$

Therefore, the convergence is geometric with ratio $\rho = \left| \frac{\lambda_2}{\lambda_1} \right|$.

Key Observations

- 1. Convergence Rate: The ratio $\rho = |\lambda_2/\lambda_1|$ determines convergence speed.
 - If $|\lambda_2| \ll |\lambda_1|$: fast convergence
 - If $|\lambda_2| \approx |\lambda_1|$: slow convergence
- 2. Number of Iterations: To reduce error by factor ϵ :

$$k \approx \frac{\log \epsilon}{\log |\lambda_2/\lambda_1|} \tag{19}$$

3. Rayleigh Quotient: The eigenvalue estimate

$$\lambda^{(k)} = \frac{(x^{(k)})^T A x^{(k)}}{(x^{(k)})^T x^{(k)}}$$
 (20)

converges to λ_1 at rate $O(|\lambda_2/\lambda_1|^{2k})$ (quadratic convergence for eigenvalue).