Projekt 1

Das klassische N-Körper-Problem (Numerische Zeitintegratoren)

(Roland Speith)

1.1 Einführung und Motivation

Das klassische N-Körper-Problem ist in der Astrophysik von großer Bedeutung für unser Verständnis der Entwicklung und Stabilität von Planetensystemen, Sternhaufen und Galaxien. Die Dynamik dieser Vielteilchensysteme wird dominiert von der paarweisen gravitativen Wechselwirkung zwischen den einzelnen Teilchen. In der numerischen Behandlung kommt es deshalb darauf an, jede dieser Zwei-Körper-Wechselwirkungen mit hoher Genauigkeit zu berücksichtigen.

Typische Teilchenzahlen der oben genannten Systeme sind ~ 10 für Planetensysteme, 10^4 bis 10^6 für Sternhaufen und bis über 10^8 bei Galaxien. Für Teilchenzahlen dieser Größenordnung lassen sich die Methoden der statistischen Mechanik nur bedingt anwenden, so dass man auf die direkte Integration aller Teilchenbahnen unter dem Einfluss ihrer wechselseitigen Gravitationskräfte angewiesen ist.

In dieser Übung sollen verschiedene numerische Verfahren zur Lösung gewöhnlicher Differenzialgleichungen untersucht werden auf ihre Eignung zur Durchführung dieser Bahnintegration. Ein wesentliches Testbeispiel wird der Vergleich mit den bekannten Lösungen des Zwei-Körper-Problems darstellen, weitere Simulationen beschränken sich aus Rechenzeitgründen auf Teilchenzahlen von N=3 bis maximal N=1000.

1.2 Das klassische N-Körper-Problem

Beim klassischen N-Körper-Problem werden die Bewegungen von N Punktmassen in ihrem gemeinsamen Gravitationsfeld bestimmt. Jedes Teilchen i mit der Masse m_i habe zur Zeit t die Position r_i und die Geschwindigkeit v_i .

Die Hamilton-Funktion dieses Systems lautet

$$H = \sum_{i=1}^{N} \frac{\mathbf{p}_{i}^{2}}{2m_{i}} - \sum_{i=1}^{N} \sum_{j=i+1}^{N} \frac{Gm_{i}m_{j}}{|\mathbf{q}_{i} - \mathbf{q}_{j}|}$$
(1.1)

mit den kanonisch konjugierten Variablen Impuls $p_i = m_i v_i$ und Ort $q_i = r_i$ für alle $i = 1 \dots N$ Punktmassen. Das Hamiltonsche Prinzip liefert die Bewegungsgleichung für das Teilchen i,

$$\dot{\boldsymbol{q}}_i(t) = \frac{\partial H}{\partial \boldsymbol{p}_i} \implies \frac{\mathrm{d}\boldsymbol{r}_i}{\mathrm{d}t} = \boldsymbol{v}_i \quad ,$$
 (1.2)

$$\dot{\boldsymbol{p}}_i(t) = -\frac{\partial H}{\partial \boldsymbol{q}_i} \implies \frac{\mathrm{d}\boldsymbol{v}_i}{\mathrm{d}t} = \boldsymbol{a}_i$$
 (1.3)

mit der Beschleunigung

$$\boldsymbol{a}_{i}(t) = \sum_{j \neq i}^{N} G m_{j} \frac{\boldsymbol{r}_{ij}}{r_{ij}^{3}} \quad . \tag{1.4}$$

Es wird später auch die Zeitableitung der Beschleunigung benötigt,

$$\dot{\boldsymbol{a}}_{i}(t) = \sum_{j \neq i}^{N} Gm_{j} \left(\frac{\boldsymbol{v}_{ij}}{r_{ij}^{3}} - \frac{3(\boldsymbol{v}_{ij} \cdot \boldsymbol{r}_{ij})}{r_{ij}^{5}} \boldsymbol{r}_{ij} \right)$$
(1.5)

wobei $\mathbf{r}_{ij} := \mathbf{r}_{j}(t) - \mathbf{r}_{i}(t), \ r_{ij} := |\mathbf{r}_{ij}|, \ \mathbf{v}_{ij} := \mathbf{v}_{j}(t) - \mathbf{v}_{i}(t), \ v_{ij} := |\mathbf{v}_{ij}|.$

Zur Berechnung aller Beschleunigungen zu einem gegebenen Zeitpunkt sind also (unter Ausnutzung der Symmetrie der Kräfte) N(N-1)/2 Summanden auszuwerten, d.h. der Rechenaufwand für große N verhält sich asymptotisch wie N^2 .

1.2.1 Das Zwei-Körper-Problem

Die Hamilton-Funktion (1.1) erlaubt für das Zwei-Körper-Problem eine Separierung in Schwerpunkts- und Relativbewegung, d.h.

$$H = H_{\rm cm} + H_{\rm rel} = \frac{\mathbf{p}_{\rm cm}^2}{2M} + \frac{\mathbf{p}^2}{2\mu} - \frac{Gm_1m_2}{r}$$
 (1.6)

mit der Gesamtmasse $M := m_1 + m_2$, der reduzierten Masse $\mu := m_1 m_2/M$, dem Abstandsvektor $\mathbf{r} := \mathbf{r}_1 - \mathbf{r}_2$, dem Abstand $\mathbf{r} := |\mathbf{r}|$, dem Relativimpuls $\mathbf{p} := \mathbf{p}_1 - \mathbf{p}_2$ und dem Schwerpunktsimpuls \mathbf{p}_{cm} .

Die Hamilton-Funktion der Schwerpunktsbewegung $H_{\rm cm}$, d.h. der erste Term auf der rechten Seite von Gleichung (1.6), besitzt triviale Lösungen der zugehörigen kanonischen Gleichungen. Dies folgt aus der Tatsache, dass $H_{\rm cm}$ nur vom (Schwerpunkt-) Impuls $\boldsymbol{p}_{\rm cm}$ abhängt und nicht von der dazu konjugierten Variable $\boldsymbol{r}_{\rm cm}$, der (Schwerpunkt-) Koordinate. Es folgt eine gleichförmige Schwerpunktsbewegung.

Für die Hamiltonfunktion der Relativbewegung $H_{\rm rel}$ ergibt sich die Bewegungsgleichung des klassischen Zwei-Körper-Problems

$$\dot{\boldsymbol{p}} = \mu \dot{\boldsymbol{v}} = -\frac{Gm_1m_2}{r^3}\boldsymbol{r} \tag{1.7}$$

mit $\boldsymbol{v} = \boldsymbol{v}_1 - \boldsymbol{v}_2 = \boldsymbol{p}/\mu$, oder schließlich in der gewohnten Notation

$$\ddot{\boldsymbol{r}} = \dot{\boldsymbol{v}} = -\frac{GM}{r^3}\boldsymbol{r} \quad . \tag{1.8}$$

Die Lösung des Kepler-Problems stellen Kegelschnitte mit der Bahnebene dar, die Bewegung von \boldsymbol{r} beschreibt also eine Ellipse, eine Parabel oder eine Hyperbel. Neben der Energie E sind der spezifische Drehimpuls

$$\boldsymbol{j} = \boldsymbol{r} \times \boldsymbol{v} \tag{1.9}$$

und der Runge-Lenz-Vektor

$$e = \frac{\boldsymbol{v} \times \boldsymbol{j}}{GM} - \frac{\boldsymbol{r}}{r} \tag{1.10}$$

Konstanten der Zwei-Körper-Bewegung. Mit (1.8) gilt für die Zeitableitung des Drehimpulses

$$\frac{\mathrm{d}\boldsymbol{j}}{\mathrm{d}t} = \boldsymbol{v} \times \boldsymbol{v} + \boldsymbol{r} \times \dot{\boldsymbol{v}} = -\frac{GM}{r^3}(\boldsymbol{r} \times \boldsymbol{r}) = 0 \quad . \tag{1.11}$$

Für den Beweis der Konstanz von e ist eine kurze Zwischenrechnung unter Verwendung der Vektoridentität $(A \times B) \times C = B(A \cdot C) - A(B \cdot C)$ hilfreich:

$$\frac{\mathbf{j} \times \mathbf{r}}{r^3} = \frac{(\mathbf{r} \times \mathbf{v}) \times \mathbf{r}}{r^3} = \frac{\mathbf{v}}{r} - \mathbf{r} \frac{(\mathbf{r} \cdot \mathbf{v})}{r^3} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\mathbf{r}}{r}\right) \quad . \tag{1.12}$$

Damit, mit (1.8) und mit (1.11) erhält man

$$\frac{\mathrm{d}\boldsymbol{e}}{\mathrm{d}t} = -\frac{GM}{r^3} \frac{\boldsymbol{r} \times \boldsymbol{j}}{GM} - \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\boldsymbol{r}}{r}\right) = \frac{\boldsymbol{j} \times \boldsymbol{r}}{r^3} - \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\boldsymbol{r}}{r}\right) = 0 \quad . \tag{1.13}$$

Wir betrachten noch den Ausdruck

$$r \cdot e + r = \frac{r \cdot (v \times j)}{GM} = \frac{(r \times v) \cdot j}{GM} = \frac{j^2}{GM}$$
 (1.14)

Das Skalarprodukt $r \cdot e$ wird ausgedrückt durch den Winkel $\phi - \phi_0$ zwischen e und dem Positionsvektor r, so dass $re\cos(\phi - \phi_0) + r = j^2/(GM)$ und somit

$$r(\phi) = \frac{j^2/(GM)}{1 + e\cos(\phi - \phi_0)}$$
 (1.15)

gilt, was die bekannte Gleichung eines Kegelschnittes darstellt. Bei gebundener Bewegung gibt der Betrag $e=|\boldsymbol{e}|$ des Runge-Lenz-Vektors also gerade die Exzentrizität der Ellipsenbahn an. Dann betragen die Maximal- und Minimaldistanz der beiden Punktmassen

$$r_{\text{max/min}} = \frac{j^2/(GM)}{1 \pm e} \quad , \tag{1.16}$$

und die große Halbachse der Bahnellipse ergibt sich zu

$$a_{\rm e} = \frac{1}{2}(r_{\rm min} + r_{\rm max}) = \frac{j^2/(GM)}{1 - e^2}$$
 (1.17)

Gemäß des dritten Keplerschen Gesetzes ("Die Quadrate der Umlaufzeiten zweier Planeten verhalten sich wie die Kuben der großen Halbachsen ihrer Ellipsenbahnen") kann damit die Umlauffrequenz

$$\omega = \sqrt{\frac{GM}{a_{\rm e}^3}} \tag{1.18}$$

berechnet werden.

1.3 Numerische Lösung der Bewegungsgleichung: Zeitintegratoren

Um die Bahnen der Punktmassen zu berechnen, muss für jedes Teilchen i die zugehörige Bewegungsgleichung, also das System gewöhnlicher Differenzialgleichungen, das von (1.2) und (1.3) gebildet wird, mit entsprechenden Anfangswerten für Orte und Geschwindigkeiten gelöst werden. Dies ist in der Regel nur numerisch möglich, mit der Folge, dass man die Teilchenverteilung nur zu diskreten Zeiten bestimmen kann. Ausgehend von dem aktuellen Zeitpunkt $t=t_n$ wird der Ort und die Geschwindigkeit zu einem späteren Zeitpunkt $t_{n+1}=t_n+\Delta t$ berechnet, der dann neue aktuelle Zeit wird, von der aus der nächste Zeitschritt ausgeführt wird, und so fort.

Im Folgenden werden verschiedene numerische Verfahren dafür vorgestellt, die hier aus nahe liegenden Gründen Zeitintegratoren genannt werden, die sich aber allgemein zur Lösung eines Systems gewöhnlicher Differentialgleichungen der Form $\mathrm{d}y/\mathrm{d}x = f(y,x)$ mit Anfangswertbedingung eignen. Die im Weiteren auftretenden Indizes beziehen sich in der Regel auf den zugehörigen Zeitpunkt, z.B. bedeutet $r_n = r(t_n)$ etc. Zur Vereinfachung der Darstellung werden im folgenden nur Skalare betrachtet und der Teilchen-Index i weggelassen.

1.3.1 Einfache Zeitintegratoren: Das Euler-Verfahren und die Euler-Cromer-Methode

Die einfachste Möglichkeit, eine Zeitintegration durchzuführen, ergibt sich aus der Taylor-Entwicklung von Geschwindigkeit und Ort gemäß

$$v(t_n + \Delta t) = v(t_n) + a(t_n)\Delta t + O(\Delta t^2) \quad \text{und}$$
 (1.19)

$$r(t_n + \Delta t) = r(t_n) + v(t_n)\Delta t + O(\Delta t^2) , \qquad (1.20)$$

wobei die Beschleunigung a gemäß (1.4) bestimmt wird. Dies lässt sich unmittelbar für einen Algorithmus verwenden, dem so genannten Euler-Verfahren, wobei in jedem Zeitschritt die Berechnungen

$$v_{n+1} = v_n + a_n \Delta t \quad \text{und} \tag{1.21}$$

$$r_{n+1} = r_n + v_n \Delta t \tag{1.22}$$

durchgeführt werden. Da zuerst die Geschwindigkeit für den neuen Zeitpunkt berechnet wird, ergibt sich als Alternative die Euler-Cromer-Methode, bei der zur Berechnung des neuen Ortes nicht die Geschwindigkeit zum alten Zeitpunkt t_n sondern zum neuen Zeitpunkt t_{n+1} verwendet wird, also

$$v_{n+1} = v_n + a_n \Delta t \quad , \tag{1.23}$$

$$r_{n+1} = r_n + v_{n+1} \Delta t . (1.24)$$

Mitteln dieser beiden Verfahren führt zur Mittelungs-Methode

$$v_{n+1} = v_n + a_n \Delta t \quad , \tag{1.25}$$

$$r_{n+1} = r_n + \frac{1}{2} (v_n + v_{n+1}) \Delta t$$
 (1.26)

Einschub zur Verfahrensgenauigkeit

Der Nachteil dieser Verfahren besteht darin, dass ihre Genauigkeit verhältnismäßig gering ist. Sollen etwa die Teilchenbahnen für einen Zeitraum t_{max} bestimmt werden, wobei jeder Zeitschritt die Länge Δt haben soll, so sind $N_t := t_{\text{max}}/\Delta t$ Zeitschritte notwendig. Die Genauigkeit pro Zeitschritt (lokaler Fehler) ist von der Ordnung $O(\Delta t^2)$ (siehe die Taylor-Entwicklung), so dass der Gesamtfehler (globaler Fehler) der Simulation von der Ordnung $O(N_t \Delta t^2) = O(\Delta t)$ ist. Hierbei sind Rundungsfehler durch begrenzte Rechengenauigkeit der Computer noch nicht berücksichtigt.

Einschub zur Rechengenauigkeit

Wenn ϵ die Maschinengenauigkeit des Computers ist, so wächst der Fehler aufgrund der Rechenungenauigkeit mit $O(N_t\epsilon)$. Eine Verbesserung der Verfahrensgenauigkeit durch kleinere Zeitschritte Δt wird also mit einem größeren Rundungsfehler aufgrund der größeren Anzahl N_t an Zeitschritten erkauft. Bei einer N-Körper-Simulation besitzen globale Werte der Simulationsresultate wie z.B. die Gesamtenergie E also einen Fehler von $O(N_tN\epsilon)$.

Ein Zahlenbeispiel zur Verdeutlichung: Beim Zwei-Körper-Problem sind je nach numerischem Verfahren ca. 100 bis 1000 Schritte pro Orbit notwendig, um pro Zeitschritt einen Fehler für der Energie in der Größenordnung der Maschinengenauigkeit einhalten zu können, also $\Delta E/E \sim 10^{-13}$. Damit summiert sich der Fehler in der Energie für einen gesamten Umlauf auf $\Delta E/E \sim 10^{-9}$. Zur Simulation der Entwicklung eines Kugelsternhaufens mit 10^6 Sternen und einem Alter von 10^4 typischen Umlaufszeiten müssten entsprechend 10^{10} Orbits mit je 1000 Zeitschritten, insgesamt also 10^{13} Zeitschritte durchgeführt werden. Damit würde der Fehler der Gesamtenergie am Ende $\Delta E \sim 100\,\%$ betragen.

1.3.2 Das Leap-Frog-Verfahren

Eine Verbesserung des Euler-Verfahrens besteht darin, die Geschwindigkeit für die Berechnung des nächsten Ortes nicht zu den Zeiten t_n oder t_{n+1} zu nehmen, sondern zum Zeitpunkt $t_{n+1/2} = t_n + \Delta t/2$. Das Schema dieses Verfahrens lautet

Anfangszeitschritt:

$$r_{1/2} = r_0 + v_0 \frac{\Delta t}{2}$$
,
Berechne $a_{1/2} = a(t_{1/2}, r_{1/2})$,

Reguläre Zeitschritte:

$$v_{n+1} = v_n + a_{n+1/2} \Delta t$$
 ,
 $r_{n+3/2} = r_{n+1/2} + v_{n+1} \Delta t$, so hritt:

Letzter Zeitschritt:

$$r_{n+1} = r_{n+1/2} + v_{n+1} \frac{\Delta t}{2}$$
.

Der Name "Leap Frog" für diesen Zeitintegrator rührt von der um jeweils eine halbe Zeitschritteinheit Δt voneinander entfernten Berechnung des Ortes und der Geschwin-

digkeit her, die Berechnungszeitpunkte "springen" auf der Zeitachse jeweils übereinander hinweg. Ort und Geschwindigkeit sind also während der Rechnung nicht gleichzeitig bekannt. Falls die Geschwindigkeit zum selben Zeitpunkt bestimmt werden soll, kann diese nachträglich über $v_{n+1/2} = (v_n + v_{n+1})/2$ berechnet werden.

Im Grenzübergang $\Delta t \to 0$ erhält man die üblichen kanonischen Gleichungen, und für endliches Δt ist dieser Integrator symplektisch, d.h. es gibt eine Hamilton-Funktion $\hat{H} = H + \Delta t^2 H_2 + \Delta t^4 H_4 + \ldots$, für welche die "Leap Frog"-Lösung korrekt ist. Das wirkt sich positiv auf die Konstanz der Erhaltungsgrößen aus.

1.3.3 Der Verlet-Algorithmus

Ein Lösungsverfahren höherer Genauigkeit ergibt sich durch Taylor-Entwicklung höherer Ordnung. Ausgehend von

$$r(t_n + \Delta t) = r(t_n) + v(t_n)\Delta t + \frac{a(t_n)}{2}\Delta t^2 + O(\Delta t^3) \quad \text{und}$$
 (1.27)

$$r(t_n - \Delta t) = r(t_n) - v(t_n)\Delta t + \frac{a(t_n)}{2}\Delta t^2 \mp O(\Delta t^3)$$
(1.28)

folgt durch Addition und Subtraktion und geeignete Umformung das Schema

$$r_{n+1} = 2r_n - r_{n-1} + a_n \Delta t^2 \quad (+O(\Delta t^4)) \quad ,$$
 (1.29)

$$v_n = \frac{r_{n+1} - r_{n-1}}{2\Delta t} \left(+O(\Delta t^2) \right) . \tag{1.30}$$

Der Vorteil dieser so genannten Verlet-Methode besteht in der sehr großen Genauigkeit bei der Ortsberechnung. Diese hängt nicht von der Geschwindigkeit ab, allerdings darf in dem angegebenen Schema auch die Beschleunigung nicht von der Geschwindigkeit abhängen, da letztere immer erst nachträglich für den jeweils vorausgehenden Zeitpunkt bestimmt wird. Außerdem ist die Geschwindigkeitsberechnung zwei Größenordnungen ungenauer als die Ortsberechnung, so dass dieses Verfahren insgesamt ideal ist für Anwendungen, bei denen im Wesentlichen nur die Teilchenbahnen von Interesse sind.

Ein weiterer Nachteil besteht darin, dass zu Beginn der Rechnung die Anfangswerte der Teilchenpositionen zu zwei Zeitpunkten gegeben sein müssen, das sind r_0 und r_{-1} , wovon in der Regel nur der erste Wert vorliegt. Nach (1.28) kann ein Wert für r_{-1} aber gemäß

$$r_{-1} = r_0 - v_0 \Delta t + \frac{a_0}{2} \Delta t^2 \tag{1.31}$$

gefunden werden.

Am Ende der Simulation muss entsprechend über das eigentliche Zeitintervall t_{max} hinaus bis zur Zeit $t_{\text{max}} + \Delta t$ gerechnet werden, um auch die Geschwindigkeit $v(t_{\text{max}})$ bestimmen zu können.

1.3.4 Das Hermite-Schema Predictor-Corrector-Integratoren

Ein weiteres Verfahren höherer Genauigkeit erhält man mit dem so genannten Hermite-Schema. In einem ersten Schritt, der sog. "Prediction", berechnet man Orte und Geschwindigkeiten (wieder aus einer Taylor-Entwicklung) zu

$$v_{n+1}^p = v_n + a_n \Delta t + \frac{1}{2} \dot{a}_n \Delta t^2 \quad , \tag{1.32}$$

$$r_{n+1}^p = r_n + v_n \Delta t + \frac{1}{2} a_n \Delta t^2 + \frac{1}{6} \dot{a}_n \Delta t^3$$
 (1.33)

(p steht für "predicted"), wobei die Beschleunigung a_n und ihre Zeitableitung \dot{a}_n gemäß (1.4) und (1.5) aus den Orten r_n und den Geschwindigkeiten v_n zur Zeit t_n berechnet werden.

Mit Hilfe der so gewonnenen Positionen r_{n+1}^p und Geschwindigkeiten v_{n+1}^p können nun für alle Teilchen über (1.4) und (1.5) die Beschleunigung und ihre ersten Ableitung zum Zeitpunkt t_{n+1} bestimmt werden:

$$a_{n+1}^p = a(t_{n+1}, r_{n+1}^p)$$
 und $\dot{a}_{n+1}^p = \dot{a}(t_{n+1}, r_{n+1}^p, v_{n+1}^p)$. (1.34)

Ebenso könnte man a_{n+1} und \dot{a}_{n+1} aus einer Taylor-Reihe berechnen:

$$a_{n+1} = a_n + \dot{a}_n \Delta t + \frac{1}{2} a_n^{(2)} \Delta t^2 + \frac{1}{6} a_n^{(3)} \Delta t^3 ,$$
 (1.35)

$$\dot{a}_{n+1} = \dot{a}_n + a_n^{(2)} \Delta t + \frac{1}{2} a_n^{(3)} \Delta t^2$$
 (1.36)

Durch Gleichsetzen der beiden Ansätze und Auflösen erhält man die sog. Hermite-Interpolation für die zweite und dritte Ableitung der Beschleunigung:

$$\frac{1}{2}a_n^{(2)} = -3\frac{a_n - a_{n+1}^p}{\Delta t^2} - \frac{2\dot{a}_n + \dot{a}_{n+1}^p}{\Delta t} , \qquad (1.37)$$

$$\frac{1}{6}a_n^{(3)} = 2\frac{a_n - a_{n+1}^p}{\Delta t^3} + \frac{\dot{a}_n + \dot{a}_{n+1}^p}{\Delta t^2} . {1.38}$$

Im abschließenden "Correction"-Schritt können damit die im "Prediction"-Schritt gewonnenen Werte für die Orte und Geschwindigkeiten auf eine höhere Ordnung korrigiert werden zu

$$v_{n+1}^c = v_{n+1}^p + \frac{1}{6}a_n^{(2)}\Delta t^3 + \frac{1}{24}a_n^{(3)}\Delta t^4 , \qquad (1.39)$$

$$r_{n+1}^c = r_{n+1}^p + \frac{1}{24}a_n^{(2)}\Delta t^4 + \frac{1}{120}a_n^{(3)}\Delta t^5$$
 (1.40)

(mit c für "corrected").

Zur Vermeidung von Asymmetrien der paarweisen Kräfte muss darauf geachtet werden, zunächst r_{n+1}^c und v_{n+1}^c für alle Teilchen zu berechnen, bevor die Positionen und Geschwindigkeiten gemäß $r_{n+1} = r_{n+1}^c$ und $v_{n+1} = v_{n+1}^c$ für den nächsten Zeitschritt aktualisiert werden. Nachdem der Vorgang für alle Teilchen durchgeführt wurde, kann ein

neuer Zeitschritt mit der Berechnung der Beschleunigungen und ihrer Zeitableitungen beginnen.

Innerhalb dieses Verfahrens ist es leicht möglich, individuelle Zeitschritte einzuführen, d.h. die Korrektur an einem gegebenen Zeitpunkt nur für eine Teilmenge der Teilchen durchzuführen. Das Verfahren ist jedoch nicht symplektisch, d.h. seine Lösungen sind nicht darstellbar als Lösungen der kanonischen Gleichungen einer Hamilton-Funktion, die sich nur leicht von der des gegebenen Problems unterscheidet. Dadurch weist dieses Verfahren im Allgemeinen immer eine leichte Drift der Erhaltungsgrößen wie der Energie auf.

Gegenüber Methoden wie dem Leap Frog muss die Summe über alle Teilchen hier zweimal durchgeführt werden, da sowohl a als auch \dot{a} berechnet werden müssen, was besonders bei größeren Teilchenzahlen schnell wachsenden Rechenzeitbedarf bedeutet.

Das iterierte zeitumkehrbare Hermite-Verfahren

Speziell für die Anwendung bei N-Körper-Simulationen hat Makino (1997) erkannt, dass das Hermite-Verfahren durch den Verzicht auf den höchsten Term der Korrektur von r_{n+1}^c und durch eine iterierbare, zeitumkehrbare Form der Korrektur verbessert werden kann. Nach Weglassen des Terms höchster Ordnung für r_{n+1}^c in Gleichung (1.40) erhält man durch Einsetzten von (1.32), (1.33), (1.37) und (1.38) in (1.39) und (1.40) und durch geeignetes Umformen

$$v_{n+1}^c = v_n + \frac{1}{2} \left(a_{n+1}^p + a_n \right) \Delta t + \frac{1}{12} \left(\dot{a}_{n+1}^p - \dot{a}_n \right) \Delta t^2 \quad , \tag{1.41}$$

$$r_{n+1}^c = r_n + \frac{1}{2} \left(v_{n+1}^c + v_n \right) \Delta t + \frac{1}{12} \left(a_{n+1}^p - a_n \right) \Delta t^2$$
 (1.42)

Trotz der Übereinstimmung der Formeln läuft dieses Verfahren algorithmisch aber völlig anders ab als das normale Hermite-Verfahren (selbst wenn man dieses iterieren würde): Zuerst wird v_{n+1}^c berechnet und dann noch im gleichen Schritt in die Berechnung von r_{n+1}^c eingesetzt. Dadurch wird die Konvergenz beschleunigt, aber auch eine Zeitsymmetrie des Algorithmus erreicht (wie sie z.B. auch beim Leap Frog vorhanden ist, nicht aber beim normalen Hermite-Verfahren).

Die Iteration findet dadurch statt, dass mit den neuen Werten für r_{n+1}^c und v_{n+1}^c auch die Größen a_{n+1}^p und \dot{a}_{n+1}^p erneut berechnet werden können und damit wiederum neue Werte für r_{n+1}^c und v_{n+1}^c bestimmt werden. Schon nach zwei Iterationen zeigt sich eine erhebliche Verbesserung der Eigenschaften des Integrators, vor allem für kleine Teilchenzahlen. Der numerische Aufwand steigt allerdings durch jede Iteration, da jeweils eine zusätzliche Berechnung von a_{n+1}^p und \dot{a}_{n+1}^p für alle Teilchen notwendig ist. Im Allgemeinen genügen jedoch zwei Iterationen.

Die Berechnung von $a_n^{(2)}$ und $a_n^{(3)}$ gemäß der Hermite-Interpolation (1.37) und (1.38) ist streng genommen nicht mehr nötig. Da jedoch bei hohen Teilchenzahlen der Aufwand dafür gering ist, werden diese gerne zusätzlich bestimmt, um eine bessere Anpassungsformel für den Zeitschritt (siehe Aufgaben, Gleichung (1.66)) verwenden zu können.

1.3.5 Runge-Kutta Integratoren

Für eine Diskussion der populären Runge-Kutta Integratoren wird auf die Literatur verwiesen, z.B. auf Kapitel 16.1 der alten Dokumentation zur Programm-Bibliothek *Numerical Recipes* (Kapitel 17.1 der aktuellen Version). Die alte Dokumentation ist online frei verfügbar auf http://www.nr.com/ unter dem Punkt *Obsolete Versions*.

Runge-Kutta-Integratoren eignen sich zur Berechnung beliebiger gewöhnlicher Differenzialgleichungen (sofern diese nicht zu "steif" sind, d.h. alle auftretenden Zeitskalen von ähnlicher Größenordnung sind), also zur numerischen Lösung einer Gleichung der Form

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x,y) \quad , \tag{1.43}$$

wobei y der Vektor der Größen darstellt, die bezüglich der Variable x integriert werden sollen, und f als "rechte Seite" der Gleichung eine beliebige Funktion von x und y sein kann. Für den Fall, dass Gleichung (1.43) eine Bewegungsgleichung ist, gilt entsprechend

$$x = t$$
 , $y = \begin{pmatrix} \mathbf{r}_i \\ \mathbf{v}_i \end{pmatrix}$ und $f = \begin{pmatrix} \mathbf{v}_i \\ \mathbf{a}_i \end{pmatrix}$. (1.44)

Im Prinzip kann das in Abschnitt 1.3.1 vorgestellte Euler-Verfahren (1.21) auch als ein (sehr einfaches) Runge-Kutta-Verfahren aufgefasst werden:

$$y_{n+1} = y_n + \Delta t \, f(t_n, y_n) \quad . \tag{1.45}$$

Im Allgemeinen sind Runge-Kutta-Verfahren aber Mehrschrittverfahren, bei denen ein Zeitschritt in Zwischenschritte unterteilt wird, was die Berechnung der Funktion f an zusätzlichen Zeitpunkten zwischen t_n und t_{n+1} erfordert. Im Folgenden werden zwei Beispiele vorgestellt.

Das Halbschritt- bzw. Mittelpunktsverfahren (Runge-Kutta 2. Ordnung)

Schema:

$$k_1 = \Delta t f(t_n, y_n) \quad , \tag{1.46}$$

$$k_2 = \Delta t f(t_n + \frac{1}{2}\Delta t, y_n + \frac{1}{2}k_1) , \qquad (1.47)$$

$$y_{n+1} = y_n + k_2 (+O(\Delta t^3))$$
 (1.48)

Hierbei sind k_1 und k_2 temporäre Zwischengrößen.

Das klassische Runge-Kutta-Verfahren 4. Ordnung

Schema:

$$k_1 = \Delta t f(t_n, y_n) \quad , \tag{1.49}$$

$$k_2 = \Delta t f(t_n + \frac{1}{2}\Delta t, y_n + \frac{1}{2}k_1) , \qquad (1.50)$$

$$k_3 = \Delta t f(t_n + \frac{1}{2}\Delta t, y_n + \frac{1}{2}k_2) ,$$
 (1.51)

$$k_4 = \Delta t f(t_n + \Delta t, y_n + k_3) \quad , \tag{1.52}$$

$$y_{n+1} = y_n + \frac{1}{6}k_1 + \frac{1}{3}k_2 + \frac{1}{3}k_3 + \frac{1}{6}k_4 \quad (+O(\Delta t^5)) \quad .$$
 (1.53)

Für den Spezialfall einer Bewegungsgleichung ergibt sich daraus

$$\tilde{v}_1 = a_n \Delta t \quad , \tag{1.54}$$

$$\tilde{r}_1 = v_n \Delta t \quad , \tag{1.55}$$

$$\tilde{v}_2 = a(t_n + \frac{1}{2}\Delta t, r_n + \frac{1}{2}\tilde{r}_1)\Delta t \quad , \tag{1.56}$$

$$\tilde{r}_2 = (v_n + \frac{1}{2}\tilde{v}_1)\Delta t \quad , \tag{1.57}$$

$$\tilde{v}_3 = a(t_n + \frac{1}{2}\Delta t, r_n + \frac{1}{2}\tilde{r}_2)\Delta t \quad ,$$
 (1.58)

$$\tilde{r}_3 = (v_n + \frac{1}{2}\tilde{v}_2)\Delta t \quad , \tag{1.59}$$

$$\tilde{v}_4 = a(t_n + \Delta t, r_n + \tilde{r}_3)\Delta t \quad , \tag{1.60}$$

$$\tilde{r}_4 = (v_n + \tilde{v}_3)\Delta t \quad , \tag{1.61}$$

$$v_{n+1} = v_n + \frac{1}{6}\tilde{v}_1 + \frac{1}{3}\tilde{v}_2 + \frac{1}{3}\tilde{v}_3 + \frac{1}{6}\tilde{v}_4 \quad (+O(\Delta t^5)) \quad . \tag{1.62}$$

$$r_{n+1} = r_n + \frac{1}{6}\tilde{r}_1 + \frac{1}{3}\tilde{r}_2 + \frac{1}{3}\tilde{r}_3 + \frac{1}{6}\tilde{r}_4 \quad (+O(\Delta t^5)) \quad .$$
 (1.63)

1.4 Literatur

C.L. Siegel Himmelsmechanik

K. Stumpff Himmelsmechanik I-III

T. Pang An Introduction to Computational Physics

Press, Teukolsky, Vetterling, Flannery Numerical Recipes

Makino, J. et al. Astrophysical Journal Vol. 480, p. 432 (1997)

Makino, J., Aarseth, S.J. Proc. Astron. Soc. Japan Vol. 44, p. 141 (1992)

Aarseth, S.J. Celest. Mechanics and Dyn. Astron. Vol. 73, p. 127 (1999)

1.4. LITERATUR 11

Aufgaben

Für die folgenden Aufgaben sollte G=1 gesetzt und die Gesamtmasse des Systems jeweils immer auf M=1 normiert werden. Dadurch hat eine typische System-Zeit (z.B. die Kreisbahn-Umlaufzeit an einem bestimmten Radius) immer den gleichen Wert unabhängig von der Teilchenzahl N. Außerdem sollen alle Positionen und Geschwindigkeiten jeweils auf den Schwerpunkt des Systems bezogen werden.

Anfangsverteilungen der Punktmassen

Sie finden unter http://www.pit.physik.uni-tuebingen.de/~speith/Projekt1 die Dateien

mit Muster-Inputdaten für Systeme mit 2, 3 sowie 100 und 1000 Teilchen (die letzten beiden wurden so erzeugt, dass die Dichteverteilung einem sog. Plummer-Modell entspricht, welches einen homogenen Kern und eine stark abfallende Dichte nach außen besitzt und Kugelsternhaufen beschreibt).

In der ersten Zeile jeder Datei stehen die Größen

$$N, t_{\text{max}}, \eta$$

 $(N: \text{Teilchenzahl}, t_{\text{max}}: \text{maximale Integrationszeit}, \eta: \text{Zeitschrittparameter}).$ In den folgenden 3N Zeilen finden sich die Massen, Positionen, und Geschwindigkeiten der Teilchen.

Teilaufgabe 1: Das Programm

Schreiben Sie ein N-Körper-Simulationsprogramm, das die obigen Inputdaten liest und nach direkter Kraftberechnung vorwärts integriert. Legen Sie das Programm am besten so an, dass sich die verschiedenen Zeitintegratoren austauschen lassen.

Bereiten Sie zur Kontrolle des jeweils verwendeten Zeitintegrators eine Berechnung der Erhaltungsgrößen Gesamtenergie, Gesamtimpuls, Gesamtdrehimpuls und Schwerpunktsbewegung zu jedem Zeitschritt vor.

Programmieren Sie die in der Vorlesung vorgestellten Zeitintegratoren in das Programm. Für das Runge-Kutta-Verfahren kann alternativ zur Implementierung des klassischen Runge-Kutta-Verfahrens 4. Ordnung auch versucht werden, keine eigene Unterroutine zu schreiben, sondern die in den *Numerical Recipes* vorgestellten Routinen odeint, rkqs und rkck zu verwenden.

Bestimmung der Zeitschrittweite Δt

Es gibt immer die Möglichkeit, für die gesamte Simulation jeweils eine feste Zeitschrittweite zu verwenden, z.B.

$$\Delta t = \eta$$
 oder, wenn das nicht ausreicht, $\Delta t = \eta^2$. (1.64)

Damit sollten auch die Tests von Teilaufgabe 2 durchgeführt werden.

Oft ist es jedoch besser, den Zeitschritt jeweils an die aktuellen Gegebenheiten während der Rechnung anzupassen. So kann die Länge des Zeitschrittes z.B. von der aktuellen Krümmung der Teilchenbahn abhängig gemacht werden. Dann wird der Zeitschritt gemäß

$$\Delta t = \eta \min_{i=1...N} \left(\frac{|\boldsymbol{a}_i(t_n)|}{|\dot{\boldsymbol{a}}_i(t_n)|} \right)$$
 (1.65)

aus den Beschleunigungen und ihren Zeitableitungen berechnet.

Auf diese Weise sollten auch die Zeitschritte im Programm bestimmt werden. Sofern das nicht möglich ist, kann die Bedingung (1.64) verwendet werden, z.B. für den Anfangs-Zeitschritt falls zu Beginn alle Geschwindigkeiten $v_i = 0$ sind.

Für die Hermite-Schemata kann zusätzlich noch auf die höheren Ableitungen der Beschleunigungen aus dem vorhergehenden Zeitschritt zurückgegriffen werden. Hier lautet eine entsprechende Formel für die Zeitschrittweite

$$\Delta t = \eta \min_{i=1...N} \left(\sqrt{\frac{|\boldsymbol{a}||\boldsymbol{a}^{(2)}| + |\dot{\boldsymbol{a}}|^2}{|\dot{\boldsymbol{a}}||\boldsymbol{a}^{(3)}| + |\boldsymbol{a}^{(2)}|^2}} \right) \quad . \tag{1.66}$$

Bei dem Runge-Kutta-Integrator aus den *Numerical Recipes* sollte statt eigener Zeitschrittweitenberechnung die in den Routinen vorgesehene automatische Schrittweitensteuerung genutzt werden.

Teilaufgabe 2: Das Zwei-Körper-Problem

Testen Sie die Eigenschaften der verschiedenen Zeitintegratoren anhand einer Simulation des Zwei-Körper-Problems. Berechnen Sie zusätzlich für jeden Zeitschritt den spezifischen Drehimpuls \boldsymbol{j} , Gleichung (1.9), den Runge-Lenz-Vektor \boldsymbol{e} , Gleichung (1.10), und die große Halbachse $a_{\rm e}$, Gleichung (1.17).

Die Qualität des verwendeten Zeitintegrators kann durch verschiedene Kriterien geprüft werden (dabei ist es am praktischsten, etwa zwei Zeiteinheiten lang zu rechnen). Überprüfbar sind

• die Konstanz von E, |j|, |e|, a_e und der Schwerpunktsbewegung. Außerdem die Lage von j senkrecht zur Bahnebene und von e in der Bahnebene.

Plotten Sie log $|E-E^{\rm start}|$, log $||e|-|e^{\rm start}||$, log $|a_{\rm e}-a_{\rm e}^{\rm start}|$, als Funktion der Zeit für verschiedene Zeitschrittweitenparameter η (z.B. 0.5, 0.1, 0.05, 0.01, etc.). Statt der großen Halbachse kann auch $r_{\rm max}$ oder $r_{\rm min}$ überprüft werden.

Die Verwendung des Logarithmus ist sinnvoll, weil es hier, besonders in der Anfangsphase, um die Diskussion sehr kleiner Abweichungen (und deren Unterschiede für die verschiedenen Zeitintegratoren) geht.

Variieren Sie die Geschwindigkeit des zweiten Teilchens in der Startdatei, so dass Bahnen verschiedener Elliptizität auftreten. Beobachten Sie das Verhalten der Qualität des jeweiligen Integrators (Genauigkeit bei gleichem η und $t_{\rm max}$) bei zunehmender Exzentrizität.

¹Als Plot-Routine kann gnuplot aufgerufen werden, für eine online Dokumentation siehe http://www.gnuplot.info/documentation.html, ein kurzes Tutorial findet sich auch auf der Webpage des Versuchs, http://www.pit.physik.uni-tuebingen.de/~speith/Projekt1

1.4. LITERATUR 13

Teilaufgabe 3: Das N-Körper-Problem

Führen Sie die Untersuchung von $\log |E - E^{\text{start}}|$ als Funktion von η für 100 bzw. 1000 Teilchen durch. Was beobachten Sie? Wie verändert sich der numerische Aufwand (CPU-Zeit für eine Zeiteinheit) mit der Teilchenzahl N?

Anmerkung: Für sinnvolle Messwerte kann es notwendig werden, nur ein wesentlich kürzeres Zeitintervall $t_{\rm max}$ als die oben angegebenen zwei Zeiteinheiten zu berechnen. Auch kann die Rechenzeit für 1000 Punktmassen auf langsameren Computern so groß werden, dass diese Simulation praktisch nicht durchgeführt werden kann.

In vielen Fällen kann man bei den obigen Experimenten erleben, dass eine explosionsartige Energieveränderung auftritt und die Teilchen plötzlich auseinander laufen. Dies ist ein Problem aller gewöhnlichen N-Körper-Zeitintegratoren, wenn zwei Teilchen sich sehr nahe kommen. Es wird durch numerische Abschneidefehler (des 1/r-Potentials) hervorgerufen. Versucht man die Genauigkeit zu halten, tritt ein Einfrieren des Zeitschrittes auf.