MAT2120 Number Theory Homework, September 26th

Suhyun Park (20181634)

Department of Computer Science and Engineering, Sogang University

Theorem 1. For a > 0, $b > 0 \in \mathbb{Z}$,

$$(a, b)[a, b] = ab.$$

Lemma 1. For $k > 0 \in \mathbb{Z}$, [ka, kb] = k[a, b].

Proof. Since $ka \mid [ka, kb], k \mid [ka, kb]$.

Let l = [a, b] and km = [ka, kb]. Then

$$ka \mid km \Rightarrow a \mid m$$
 and $kb \mid km \Rightarrow b \mid m$.

Hence m is a common multiple of a and b, giving that

$$m \ge l$$
 (1)

because l is the least common multiple of a and b.

Similarily,

$$a \mid l \Rightarrow ka \mid kl$$
 and $b \mid l \Rightarrow kb \mid kl$.

Hence kl is a common multiple of ka and kb, giving that

$$kl \ge km \Rightarrow l \ge m$$
 (2)

because km is the least common multiple of ka and kb.

By (1) and (2), we can conclude that l = m. Therefore

$$[ka, kb] = km = kl = k[a, b].$$

Proof (Conclusion of Proof of Theorem). Let d = (a, b). Then $d \mid a$ and $d \mid b$ is true by definition.

Hence we let $a = a_0 d$, $b = b_0 d$. Then $(a_0, b_0) = 1$.

Now we want to show that $[a_0, b_0] = a_0b_0$. Since $a_0 \mid [a_0, b_0]$, we let $[a_0, b_0] = ka_0$.

Since $b_0 \mid [a_0, b_0] \Rightarrow b_0 \mid ka_0$ and $(a_0, b_0) = 1$, we know that $b_0 \mid k$. Thus, $b_0 a_0 \le ka_0$.

Note that ka_0 is the least common multiple of a_0 , b_0 and b_0a_0 is the common multiple of a_0 , b_0 , thus $b_0a_0 \ge ka_0$. Hence $a_0b_0 = ka_0 = [a_0, b_0]$.

Using Lemma 1, we can conclude that

$$(a, b) [a, b]$$

= $d [a_0 d, b_0 d]$
= $d^2 [a_0, b_0]$
= $d^2 a_0 b_0 = (da_0) (db_0)$
= ab .

Theorem 2. Let b be a positive integer with b > 1. Then every positive integer n can be expressed in unique form of

$$n = a_k b^k + a_{k-1} b^{k-1} + \dots + a_1 b^1 + a_0$$

where $a_i \in \mathbb{Z}$, $0 \le a_i \le b-1$ for $i = 0, 1, \dots, k$ and $a_k \ne 0$.

Proof. We use the division algorithm. For $0 \le a_0 < b$, we can express n as

$$n = q_0 b + a_0$$
.

If $q_0 \ge b$, we can express q_0 as

$$q_0 = q_1 b + a_1$$
.

We can repeat this process for q_i while $q_i \ge b$. This gives

$$n = q_0b^1 + a_0$$

$$= q_1b^2 + a_1b^1 + a_0$$

$$\vdots$$

$$= a_kb^k + a_{k-1}b^{k-1} + \dots + a_1b^1 + a_0.$$

Now we want to show that such a_0, a_1, \dots, a_k uniquely exists. Let

$$n = a'_k b^k + a'_{k-1} b^{k-1} + \dots + a'_1 b^1 + a'_0.$$

Then

$$a_k b^k + a_{k-1} b^{k-1} + \dots + a_1 b^1 + a_0 = a'_k b^k + a'_{k-1} b^{k-1} + \dots + a'_1 b^1 + a'_0$$

$$\Rightarrow q_0 b^1 + a_0 = q'_0 b^1 + a'_0.$$

$$\Rightarrow (q_0 - q'_0) b^1 = a'_0 - a_0.$$

If $q_0 \neq q_0'$, $b \mid (a_0' - a_0)$, but since $0 \leq a_0, a_0' < b, -b < a_0' - a_0 < b$, which falls into contradiction. Hence $q_0 = q_0'$ and also $a_0 = a_0'$. Similarly we can repeat this process for q_i to show that $a_i = a_i'$ for $0 \leq i \leq k$, proving that a_0, a_1, \dots, a_k uniquely exists.