

## **Probability**

1

- 1. **Probability** is a quantitative measure of uncertainty.
- In the experimental approach to probability, we find the probability of the occurrence of an event by actually performing the experiment a number of times and adequate recording of the happening of event.
- 3. In the **theoretical approach** to probability, we try to predict what will happen without actually performing the experiment.
- 4. The experimental probability of an event approaches to its theoretical probability if the number of trials of an experiment is very large.
- 5. An **outcome** is a result of a single trial of an experiment.
- 6. The word **'experiment'** means an operation which can produce some well defined outcome(s).

There are two types of experiments:

- i. **Deterministic experiments:** Experiments which are repeated under identical conditions produce the same results or outcomes are called deterministic experiments.
- ii. **Random or Probabilistic experiment**: If an experiment, when repeated under identical conditions, do not produce the same outcome every time but the outcome in a trial is one of the several possible outcomes, then it is known as a random or probabilistic experiment.

In this chapter, the term experiment will stand for random experiment.

- 7. The collection of all possible outcomes is called the **sample space**.
- An outcome of a random experiment is called an elementary event.
- 9. An event associated to a random experiment is a **compound event** if it is obtained by combining two or more elementary events associated to the random experiment.
- 10. An event A associated to a random experiment is said to occur if any one of the elementary events associated to the event A is an outcome.
- 11. An elementary event is said to be **favorable** to a compound event *A*, if it satisfies the definition of the compound event *A*. In other words, an elementary event *E* is favorable to a compound event *A*, if we say that the event *A* occurs when *E* is an outcome of a trial.
- 12. In an experiment, if two or more events have equal chances to occur or have equal probabilities, then they are called **equally likely events**.
- 13. The theoretical probability (also called classical probability) of an event E, written as P(E), is defined as

Number of outcomes favourable to E

Number of all possible outcomes of the experiment









14. For two events A and B of an experiment:

If P(A) > P(B) then event A is more likely to occur than event B.

If P(A) = P(B) then events A and B are equally likely to occur.

- 15. An event is said to be **sure event** if it always occur whenever the experiment is performed. The probability of sure event is always one. In case of sure event elements are same as the sample space.
- 16. An event is said to be **impossible event** if it never occur whenever the experiment is performed. The probability of an impossible event is always zero. Also, the number of favorable outcome is zero for an impossible event.
- 17. Probability of an event lies between 0 and 1, both inclusive, i.e.,  $0 \le P(A) \le 1$
- 18. If E is an event in a random experiment then the event 'not E' (denoted by  $\bar{E}$ ) is called the **complementary event** corresponding to E.
- 19. The sum of the probabilities of all elementary events of an experiment is 1.
- 20. For an event E, P(E) = 1 P(E), where the event E representing 'not E' is the complement of event E.

## 21. Suits of Playing Card

A pack of playing cards consist of 52 cards which are divided into 4 suits of 13 cards each. Each suit consists of one ace, one king, one queen, one jack and 9 other cards numbered from 2 to 10. Four suits are named as spades, hearts, diamonds and clubs.









## 22. Face Cards

King, queen and jack are face cards.



23. The formula for finding the geometric probability of an event is given by:

$$P(E) = \frac{\text{Measure of the specified part of the region}}{\text{Measure of the whole region}}$$

Here, 'measure' may denote length, area or volume of the region or space.



