Introduction to Machine Learning Applications

Spring 2023

Dimensionality reduction

Minor Gordon

gordom6@rpi.edu

Curse of dimensionality

When dimensionality increases, data becomes increasingly sparse in the space that it occupies

Dimensionality reduction

• Purpose:

- Avoid curse of dimensionality
- Reduce amount of time and memory required by algorithms
- Allow data to be more easily visualized
- May help to eliminate irrelevant features or reduce noise

Techniques

- Principal Component Analysis (PCA)
- Singular Value Decomposition
- Others: supervised and non-linear techniques

Feature selection

- Redundant features
 - Duplicate much or all of the information contained in one or more other attributes
 - Example: purchase price of a product and the amount of sales tax paid
- Irrelevant features
 - Contain no information that is useful for the task at hand
 - Example: students' ID is often irrelevant to the task of predicting students'
 GPA
- Many techniques developed, especially for classification

Feature creation

- Create new attributes that can capture the important information in a data set much more efficiently than the original attributes
- Three general methodologies:
 - Feature extraction
 - Example: extracting edges from images
 - Feature construction
 - Example: dividing mass by volume to get density
 - Mapping data to new space
 - Example: Fourier and wavelet analysis

Principal Component Analysis

Step-1: Standardization

Step-2: Compute covariance matrix

Step-3: Compute the eigenvalues and eigenvectors of the covariance matrix

Step-4: Sort the eigenvalues in a decreasing order

Step-5: Choose the top-k eigenvectors which are the principal components – these will be the transformed feature vectors (reorient the data is the common approach)

Dimensionality Reduction PCA Example

Learning PCA

- Making sense of principal component analysis, eigenvectors & eigenvalues
- StatQuest: Principal Component Analysis (PCA), Step-by-Step