Higher Pro-Arrows: Towards a Model for Naturality Pretype Theory

Andreas Nuyts

HoTTEST May 2, 2024

https://anuyts.github.io/files/2024/natpt-hottest-pres.pdf

Introduction

Not out of an intrinsic interest in

- (directed) algebraic topology,
- ▶ synthetic (∞, ∞) -category theory.

Consequences

- Types stratified by finite dimensions (Cf. Haskell but less weird.)
- I'm not afraid of strict equality.
 I am afraid of coherence obligations.
- I don't mind if my model doesn't present spaces. But I want it to compute!
- Factorization systems are not my native language.

I want better languages for verified functional programming!

Programs should be categorically structured.

- Parametricity for free!
- Functoriality for free!
- Naturality for free!
- Variance of dependent multi-argument functions sorted out for free!

Not out of an intrinsic interest in

- (directed) algebraic topology,
- ▶ synthetic (∞, ∞) -category theory.

Consequences

- Types stratified by finite dimensions (Cf. Haskell but less weird.)
- I am afraid of coherence obligations.
- I don't mind if my model doesn't presen spaces. But I want it to compute!
- Factorization systems are not my native language.

I want better languages for verified functional programming!

Programs should be categorically structured.

- Parametricity for free!
- Functoriality for free!
- Naturality for free!
- Variance of dependent multi-argument functions sorted out for free!

Not out of an intrinsic interest in

- (directed) algebraic topology,
- ▶ synthetic (∞, ∞) -category theory.

Consequences

- Types stratified by finite dimensions (Cf. Haskell but less weird.)
- I'm not afraid of strict equality.
 - I am atraid of coherence obligations.
- I don't mind if my model doesn't presen spaces. But I want it to compute!
- Factorization systems are not my native language.

I want better languages for verified functional programming!

Programs should be categorically structured.

- Parametricity for free!
- Functoriality for free!
- Naturality for free!
- Variance of dependent multi-argument functions sorted out for free!

Not out of an intrinsic interest in

- (directed) algebraic topology,
- ▶ synthetic (∞, ∞) -category theory.

Consequences

- Types stratified by finite dimensions (Cf. Haskell but less weird.)
- I m afraid of scharges obligations
 - I am atraid of coherence obligations.
- spaces. But I want it to compute!
- Factorization systems are not my native language.

I want better languages for verified functional programming!

Programs should be categorically structured.

- Parametricity for free!
- Functoriality for free!
- Naturality for free!
- Variance of dependent multi-argument functions sorted out for free!

Not out of an intrinsic interest in

- (directed) algebraic topology,
- ▶ synthetic (∞, ∞) -category theory.

Consequences

- Types stratified by finite dimensions (Cf. Haskell but less weird.)
 - I'm not afraid of strict equality.

 I am afraid of coherence obligation:
- I don't mind if my model doesn't present spaces. But I want it to compute!
- Factorization systems are not my native language.

I want better languages for verified functional programming!

Programs should be categorically structured.

- Parametricity for free!
- ► Functoriality for free! ... and not just for Type → Type
- Naturality for free!
- Variance of dependent multi-argument functions sorted out for free!

Not out of an intrinsic interest in

- (directed) algebraic topology,
- ▶ synthetic (∞, ∞) -category theory.

Consequences

- Types stratified by finite dimensions (Cf. Haskell but less weird.)
- I'm not afraid of strict equality.I am afraid of coherence obligations
- I don't mind if my model doesn't presen spaces. But I want it to compute!
- Factorization systems are not my native language.

I want better languages for verified functional programming!

Programs should be categorically structured.

- Parametricity for free!
- ► Functoriality for free! ... and not just for Type → Type
- Naturality for free!
- Variance of dependent multi-argument functions sorted out for free!

Not out of an intrinsic interest in

- (directed) algebraic topology,
- ▶ synthetic (∞, ∞) -category theory.

Consequences

- Types stratified by finite dimensions (Cf. Haskell but less weird.)
- I m not arraid of strict equality.

 I am afraid of coherence obligation
- I don't mind if my model doesn't presen spaces. But I want it to compute!
- Factorization systems are not my native language.

I want better languages for verified functional programming!

Programs should be categorically structured.

- Parametricity for free!
- ► Functoriality for free! ... and not just for Type → Type
- Naturality for free!
- Variance of dependent multi-argument functions sorted out for free!

Not out of an intrinsic interest in

- (directed) algebraic topology,
- ▶ synthetic (∞, ∞) -category theory.

Consequences

- Types stratified by finite dimensions.
 (Cf. Haskell but less weird.)
- I'm not afraid of strict equality.
 I am afraid of coherence obligations
- I don't mind if my model doesn't present spaces. But I want it to compute!
- Factorization systems are not my native language.

I want better languages for verified functional programming!

Programs should be categorically structured.

- Parametricity for free!
- ► Functoriality for free! ... and not just for Type → Type
- Naturality for free!
- Variance of dependent multi-argument functions sorted out for free!

Not out of an intrinsic interest in

- (directed) algebraic topology,
- ▶ synthetic (∞, ∞) -category theory.

Consequences

- Types stratified by finite dimensions.
 (Cf. Haskell but less weird.)
- I'm not afraid of strict equality.I am afraid of coherence obligations.
- I don't mind if my model doesn't present spaces. But I want it to compute!
- Factorization systems are not my native language.

I want better languages for verified functional programming!

Programs should be categorically structured.

- Parametricity for free!
- ► Functoriality for free! ... and not just for Type → Type
- Naturality for free!
- Variance of dependent multi-argument functions sorted out for free!

Not out of an intrinsic interest in

- (directed) algebraic topology,
- ▶ synthetic (∞, ∞) -category theory.

Consequences

- Types stratified by finite dimensions.
 (Cf. Haskell but less weird.)
- I'm not afraid of strict equality.I am afraid of coherence obligations.
- ► I don't mind if my model doesn't present spaces. But I want it to compute!
- Factorization systems are not my native language.

I want better languages for verified functional programming!

Programs should be categorically structured.

- Parametricity for free!
- ► Functoriality for free! ... and not just for Type → Type
- Naturality for free!
- Variance of dependent multi-argument functions sorted out for free!

Not out of an intrinsic interest in

- (directed) algebraic topology,
- ▶ synthetic (∞, ∞) -category theory.

Consequences

- Types stratified by finite dimensions. (Cf. Haskell but less weird.)
- I'm not afraid of strict equality.I am afraid of coherence obligations.
- I don't mind if my model doesn't present spaces. But I want it to compute!
- Factorization systems are not my native language.

I want better languages for verified functional programming!

Programs should be categorically structured.

- Parametricity for free!
- ► Functoriality for free! ... and not just for Type → Type
- Naturality for free!
- Variance of dependent multi-argument functions sorted out for free!

So how is **Directed TT** relevant to **verified functional programming? An example problem**

Type $\stackrel{\text{List}}{\longrightarrow}$ Monoid

In plain DTT

Functoriality of List : Type \rightarrow Monoid:

- ▶ Object action: (List A, [], ++)
- Functorial action:
 - ▶ List f : List A → List B (by recursion)
 - List *f* is a monoid morphism:
 - List f preserves [] (trivial)
 - ► List *f* preserves ++ (by induction)
 - + functor laws (by induction)

Functoriality of

WriterT : Monoid \rightarrow MonadTrans

- Dbject action: WriterT W ∈ MonadTrans
 - ▶ Object action: WriterT W M ∈ Monad
 - Object action: Define WriterT W M A
 - Functorial action WriterT W M f
 - + functor laws
 - return & bind + naturality

- ... Object action: WriterT $W \in MonadTrans$
 - Functorial action WriterT W g
 - Respects return & bind
 - + functor laws
 - ▶ lift : $M \rightarrow WriterT W M + naturality$
 - Respects return & bind
- Functorial action:

- ► WriterT*hMA*
 - Respects return, bind & lift
- naturality w.r.t. A
- naturality w.r.t. *M*
- + functor laws

In plain DTT

Functoriality of List : Type \rightarrow Monoid:

- ▶ Object action: (List A, [], ++)
- ► Functorial action:
 - List f: List $A \rightarrow \text{List } B$ (by recursion)
 - List *f* is a monoid morphism:
 - List f preserves [] (trivial)
 - ► List *f* preserves ++ (by induction)
 - + functor laws (by induction)

Functoriality of

WriterT : Monoid \rightarrow MonadTrans

- Dobject action: WriterT W ∈ MonadTrans
 - Object action: WriterT W M ∈ Monad
 - Object action: Define WriterT W M A
 - Functorial action WriterT W M is
 - + functor laws
 - return & bind + naturality

- ... Object action: WriterT W ∈ MonadTrans
 - Functorial action WriterT W g
 - Respects return & bind
 - + functor laws
 - ► lift : $M \rightarrow WriterT W M + naturality$
 - Respects return & bind
- Functorial action:

- WriterT h M A
 - Respects return, bind & lift
- naturality w.r.t. A
- naturality w.r.t. M
- + functor laws

In plain DTT

Functoriality of List : Type \rightarrow Monoid:

- ▶ Object action: (List A, [], ++)
- Functorial action:
 - ▶ List f : List A → List B (by recursion)
 - List *f* is a monoid morphism:
 - List f preserves [] (trivial)
 - ► List *f* preserves ++ (by induction)
 - + functor laws (by induction)

Functoriality of

WriterT : Monoid \rightarrow MonadTrans

- Dbject action: WriterT W ∈ MonadTrans
 - ▶ Object action: WriterT W M ∈ Monad
 - Object action: Define WriterT W M A
 - Functorial action WriterT W M f
 - + functor laws
 - return & bind + naturality

- ... Object action: WriterT $W \in MonadTrans$
 - Functorial action WriterT W g
 - Respects return & bind
 - + functor laws
 - ▶ lift : $M \rightarrow WriterT W M + naturality$
 - Respects return & bind
- Functorial action:

- ► WriterT*hMA*
 - Respects return, bind & lift
- naturality w.r.t. A
- naturality w.r.t. *M*
- + functor laws

In parametric DTT

Functoriality of List : Type \rightarrow Monoid:

- ▶ Object action: (List A, [], ++)
- Functorial action:
 - List f: List $A \rightarrow \text{List } B$ (by recursion)
 - List *f* is a monoid morphism:
 - List f preserves [] (trivial)
 - ► List *f* preserves ++ (by induction)
 - + functor laws (by induction)

Functoriality of

WriterT : Monoid \rightarrow MonadTrans

- ▶ Object action: WriterT $W \in MonadTrans$
 - ▶ Object action: WriterT W M ∈ Monad
 - Object action: Define WriterT W M A
 - Functorial action WriterT W M f
 - + functor laws
 - return & bind + 📅 naturality

- ... Object action: WriterT $W \in MonadTrans$
 - Functorial action WriterT W g
 - Respects return & bind
 - + functor laws
 - ▶ lift : $M \rightarrow WriterT W M + \mathbf{1}$ naturality
 - Respects return & bind
- ► Functorial action:

- ► WriterThMA
 - Respects return, bind & lift
- naturality w.r.t. A
- maturality w.r.t. M
- + functor laws

In HoTT (assuming f, g and h = List f are isos)

Functoriality of List : Type \rightarrow Monoid:

- ▶ Object action: (List A, [], ++)
- Functorial action:
 - ▶ $\mathbf{\tilde{u}}$ List \mathbf{f} : List $A \cong \text{List } B$ (by recursion)
 - List *f* is a monoid morphism:
 - List f preserves [] (trivial)
 - List f preserves ++ (by ind.)
 - + **t** functor laws (by induction)

Functoriality of

 $WriterT : Monoid \rightarrow MonadTrans$

- Dbject action: WriterT W ∈ MonadTrans
 - ▶ Object action: WriterT W M ∈ Monad
 - Object action: Define WriterT W M A
 - Functorial action WriterT W M f
 - + # functor laws
 - return & bind + inaturality

- \dots Object action: WriterT $W \in MonadTrans$
 - Functorial action WriterT W g
 - Respects return & bind
 - + **t** functor laws
 - ► lift : $M \rightarrow WriterT W M + 11 maturality$
 - Respects return & bind
- ► **Transport** Functorial action:

 WriterT h: WriterT V ≅ WriterT W
 - ► WriterT hMA
 - Respects return, bind & lift
 - naturality w.r.t. A
 - naturality w.r.t. *M*
 - + **m** functor laws

In Naturality TT

Functoriality of List : Type \rightarrow Monoid:

- ▶ Object action: (List *A*,[],++)
- Functorial action:
 - ▶ $\mathbf{\tilde{u}}$ List \mathbf{f} : List $A \rightarrow$ List B (by recursion)
 - List *f* is a monoid morphism:
 - List f preserves [] (trivial)
 - List f preserves ++ (by ind.)
 - + **t** functor laws (by induction)

Functoriality of

WriterT : Monoid \rightarrow MonadTrans

- Object action: WriterT W ∈ MonadTrans
 - ▶ Object action: WriterT W M ∈ Monad
 - Object action: Define WriterT W M A
 - Functorial action WriterT W M f
 - + # functor laws
 - return & bind + inaturality

- ... Object action: WriterT $W \in MonadTrans$
 - ► **T** Functorial action WriterT W g
 - Respects return & bind
 - + **t** functor laws
 - ▶ lift : $M \rightarrow WriterT W M + 11 maturality$
 - Respects return & bind
- Functorial action:

- WriterT h M A
 - Respects return, bind & lift
- naturality w.r.t. A
- maturality w.r.t. M
- + **m** functor laws

WriterT $WMA := M(A \times W)$ is **covariant** w.r.t.

► W : Monoid

► *M* : Monad

▶ A : Type

ReaderT $RMA := R \rightarrow MA$ is **contravarian** w.r.t.

▶ R : Type

return : $A \rightarrow WriterTWMA$ is **natural** w.r.t.

W: Monoic

► M: Monad

► A: Type

Ignoring variance

- HoTT: only consider isomorphisms
 Not everything is an isomorphism.
- Param'ty: relations, not morphisms

Naturality T1

- Preserve isomorphisms
- Preserve relations
- Keep track of action on morphisms

- Use functoriality/naturality when possible
- Use HoTT when applicable
- Use param'ty when necessary

WriterT $WMA := M(A \times W)$ is **covariant** w.r.t.

► W : Monoid

► *M* : Monad

▶ A : Type

ReaderT $RMA := R \rightarrow MA$ is contravariant w.r.t.

▶ R : Type

return : $A \rightarrow WriterT W M A$ is **natural** w.r.t.

► W : Monoic

► M : Monad

► A: Type

Ignoring varianc

- HoTT: only consider isomorphismsNot everything is an isomorphism.
- Param'ty: relations, not morphisms
 Don't know how to compute fmac

Naturality T7

- Preserve isomorphisms
- Preserve relations
- Keep track of action on morphisms

- Use functoriality/naturality when possible
- Use HoTT when applicable
- Use param'ty when necessary

WriterT $WMA := M(A \times W)$ is **covariant** w.r.t.

► W : Monoid

► *M* : Monad

► A: Type

ReaderT $RMA := R \rightarrow MA$ is contravariant w.r.t.

▶ R : Type

return : $A \rightarrow WriterT W M A$ is **natural** w.r.t.

W : Monoid

M: Monad

▶ A : Type

Ignoring varianc

- HoTT: only consider isomorphismsNot everything is an isomorphism.
- Param'ty: relations, not morphisms
 Don't know how to compute fmac

Naturality T

- Preserve isomorphisms
- Preserve relations
- Keep track of action on morphisms

- Use functoriality/naturality when possible
- Use HoTT when applicable
- Use param'ty when necessary

WriterT $WMA := M(A \times W)$ is **covariant** w.r.t.

► W : Monoid

► *M* : Monad

► A : Type

ReaderT $RMA := R \rightarrow MA$ is contravariant w.r.t.

▶ R : Type

return : $A \rightarrow WriterT W M A$ is **natural** w.r.t.

W : Monoid

M: Monad

► A : Type

Ignoring variance

- ► HoTT: only consider **isomorphisms**
 - ② Not everything is an isomorphism.
- Param'ty: relations, not morphisms
 Don't know how to compute fmap

Naturality T

- Preserve isomorphisms
- Preserve relations
- Keep track of action on morphisms

- Use functoriality/naturality when possible
- Use HoTT when applicable
- Use param'ty when necessary

WriterT $WMA := M(A \times W)$ is **covariant** w.r.t.

► W : Monoid

► *M* : Monad

► A: Type

ReaderT $RMA := R \rightarrow MA$ is contravariant w.r.t.

▶ R : Type

return : $A \rightarrow WriterT W M A$ is **natural** w.r.t.

► W : Monoid

M: Monad

▶ A : Type

Ignoring variance

- ► HoTT: only consider isomorphisms⊗ Not everything is an isomorphism.
- Param'ty: relations, not morphisms
 Don't know how to compute fmap.

Naturality T7

- Preserve isomorphisms
- Preserve relations
- Keep track of action on morphisms

- Use functoriality/naturality when possible
- Use HoTT when applicable
- Use param'ty when necessary

WriterT $WMA := M(A \times W)$ is **covariant** w.r.t.

► W : Monoid

► *M* : Monad

▶ A : Type

ReaderT $RMA := R \rightarrow MA$ is contravariant w.r.t.

▶ R : Type

return : $A \rightarrow WriterT W M A$ is **natural** w.r.t.

► W : Monoid

M: Monad

▶ A : Type

Ignoring variance

- HoTT: only consider isomorphisms
 Not everything is an isomorphism.
- Param'ty: relations, not morphisms
 Don't know how to compute fmap.

Naturality TT

- Preserve isomorphisms
- Preserve relations
- Keep track of action on morphisms

- Use functoriality/naturality when possible
- Use HoTT when applicable
- Use param'ty when necessary

WriterT $WMA := M(A \times W)$ is **covariant** w.r.t.

► W : Monoid

M: Monad

► A: Type

ReaderT $RMA := R \rightarrow MA$ is contravariant w.r.t.

▶ R : Type

return : $A \rightarrow WriterT W M A$ is **natural** w.r.t.

► W : Monoid

► M: Monad

▶ A : Type

Ignoring variance

- HoTT: only consider isomorphisms
 Not everything is an isomorphism.
- Param'ty: **relations**, not morphisms

 Don't know how to compute fmap.

Naturality TT

- Preserve isomorphisms
- Preserve relations
- Keep track of action on morphisms

- Use functoriality/naturality when possible
- Use HoTT when applicable
- Use param'ty when necessary

Pretypes: A Note on Fibrancy

A presheaf model of DTT can account for:

- ► The existence of shapes (point, path, morphism, bridge, ...)
- ► Unary operations on shapes (src, rfl)
- ► Unary equations on shapes (src ∘ rfl = id)

- Other arities (composition, . . .)
- Specific geometries (transport, . . .

HoTT	
Kan	Comp. of & transp. along paths
Directed	
functorial	Transport along morphisms
Segal	Composition of morphisms
Rezk	Isomorphism-path univalence
Param'ty	
discrete	Homog. bridges express equality

A presheaf model of DTT can account for:

- ► The existence of shapes (point, path, morphism, bridge, ...)
- ► Unary operations on shapes (src, rfl)
- Unary equations on shapes (src o rfl = id)

- Other arities (composition, . . .)
- Specific geometries (transport, . . .)

HoTT	
Kan	Comp. of & transp. along paths
Directed	
functorial	Transport along morphisms
Segal	Composition of morphisms
Rezk	Isomorphism-path univalence
Param'ty	
discrete	Homog. bridges express equality

A presheaf model of DTT can account for:

- ► The existence of shapes (point, path, morphism, bridge, ...)
- ► Unary operations on shapes (src, rfl)
- ► Unary equations on shapes (src o rfl = id)

- Other arities (composition, . . .)
- Specific geometries (transport, . . .

HoTT	
Kan	Comp. of & transp. along paths
Directed	
functorial	Transport along morphisms
Segal	Composition of morphisms
Rezk	Isomorphism-path univalence
Param'ty	
discrete	Homog. bridges express equality

A presheaf model of DTT can account for:

- The existence of shapes (point, path, morphism, bridge, ...)
- ► Unary operations on shapes (src, rfl)
- ► Unary equations on shapes (src ∘ rfl = id)

- Other arities (composition, ...)
- Specific geometries (transport, . . .

HoTT	
Kan	Comp. of & transp. along paths
Directed	
functorial	Transport along morphisms
Segal	Composition of morphisms
Rezk	Isomorphism-path univalence
Param'ty	
discrete	Homog. bridges express equality

A presheaf model of DTT can account for:

- The existence of shapes (point, path, morphism, bridge, ...)
- ► Unary operations on shapes (src, rfl)
- ► Unary equations on shapes (src o rfl = id)

- ► Other arities (composition, ...)
- Specific geometries (transport, ...)

HoTT	
Kan	Comp. of & transp. along paths
Directed	
functorial	Transport along morphisms
Segal	Composition of morphisms
Rezk	Isomorphism-path univalence
Param'ty	
discrete	Homog. bridges express equality

A presheaf model of DTT can account for:

- ► The existence of shapes (point, path, morphism, bridge, ...)
- ► Unary operations on shapes (src, rfl)
- ► Unary equations on shapes (src o rfl = id)

- Other arities (composition, ...)
- Specific geometries (transport, ...)

HoTT	
Kan	Comp. of & transp. along paths
Directed	
functorial	Transport along morphisms
Segal	Composition of morphisms
Rezk	Isomorphism-path univalence
Param'ty	
discrete	Homog. bridges express equality

A presheaf model of DTT can account for:

- The existence of shapes (point, path, morphism, bridge, ...)
- ► Unary operations on shapes (src, rfl)
- ► Unary equations on shapes (src ∘ rfl = id)

- ► Other arities (composition, ...)
- Specific geometries (transport, ...)

HoTT	
Kan	Comp. of & transp. along paths
Directed	
functorial	Transport along morphisms
Segal	Composition of morphisms
Rezk	Isomorphism-path univalence
Param'ty	
discrete	Homog. bridges express equality

A presheaf model of DTT can account for:

- The existence of shapes (point, path, morphism, bridge, ...)
- ► Unary operations on shapes (src, rfl)
- ► Unary equations on shapes (src ∘ rfl = id)

- ► Other arities (composition, ...)
- Specific geometries (transport, ...)

HoTT	
Kan	Comp. of & transp. along paths
Directed	
functorial	Transport along morphisms
Segal	Composition of morphisms
Rezk	Isomorphism-path univalence
Param'ty	
discrete	Homog. bridges express equality

A presheaf model of DTT can account for:

- The existence of shapes (point, path, morphism, bridge, ...)
- ► Unary operations on shapes (src, rfl)
- ► Unary equations on shapes (src o rfl = id)

- ► Other arities (composition, ...)
- Specific geometries (transport, ...)

HoTT	
Kan	Comp. of & transp. along paths
Directed	
functorial	Transport along morphisms
Segal	Composition of morphisms
Rezk	Isomorphism-path univalence
Param'ty	
discrete	Homog. bridges express equality

A presheaf model of DTT can account for:

- The existence of shapes (point, path, morphism, bridge, ...)
- ► Unary operations on shapes (src, rfl)
- ► Unary equations on shapes (src ∘ rfl = id)

- Other arities (composition, ...)
- Specific geometries (transport, ...)

HoTT	
Kan	Comp. of & transp. along paths
Directed	
functorial	Transport along morphisms
Segal	Composition of morphisms
Rezk	Isomorphism-path univalence
Param'ty	
discrete	Homog. bridges express equality

Naturality Pretype Theory

We **ignore** fibrancy for now:

- ► Functoriality & Segal fibrancy are brittle ⇒ need to consider pretypes anyway
- There are promising techniques for defining fibrancy internally:
 - Contextual fibrancy [BT17, Nuy20]
 - Amazing right adjoint [LOPS18] & Transpension [ND24]
 - Internal fibrant replacement monad [Nuy20, other?]

HoTT	
Kan	Comp. of & transp. along paths
Directed	
functorial	Transport along morphisms
Segal	Composition of morphisms
Rezk	Isomorphism-path univalence
Param'ty	
discrete	Homog. bridges express equality

Naturality Pretype Theory

We **ignore** fibrancy for now:

- ► Functoriality & Segal fibrancy are brittle ⇒ need to consider pretypes anyway
- There are promising techniques for defining fibrancy internally:
 - Contextual fibrancy [BT17, Nuy20]
 - Amazing right adjoint [LOPS18] & Transpension [ND24]
 - Internal fibrant replacement monad [Nuy20, other?]

HoTT	
Kan	Comp. of & transp. along paths
Directed	
functorial	Transport along morphisms
Segal	Composition of morphisms
Rezk	Isomorphism-path univalence
Param'ty	
discrete	Homog. bridges express equality

Naturality Pretype Theory

We **ignore** fibrancy for now:

- Functoriality & Segal fibrancy are brittle
 ⇒ need to consider pretypes anyway
- There are promising techniques for defining fibrancy internally:
 - Contextual fibrancy [BT17, Nuy20]
 - Amazing right adjoint [LOPS18] & Transpension [ND24]
 - Internal fibrant replacement monad [Nuy20, other?]

HoTT	
Kan	Comp. of & transp. along paths
Directed	
functorial	Transport along morphisms
Segal	Composition of morphisms
Rezk	Isomorphism-path univalence
Param'ty	
discrete	Homog. bridges express equality

(Aside) Actually, I'd like your feedback

Definition

A CwF is locally democratic if every arrow $\sigma: \Delta \to \Gamma$ is isomorphic to some $\pi: \Gamma.T \to \Gamma$.

Internalizing an AWFS [§8.5 of my PhD thesis

- A CwF is exactly a model of the structural rules of DTT.
- On a locally democratic CwF, the following correspond:
 - Defining an AWFS whose right replacement monad RR preserves pullbacks,
 - Modelling an internal monad RR on types
 - with a functorial action on dependent functions (+ equations)

```
\Gamma, rx : RRA \vdash Ttype 

\Gamma \vdash f : (x : A) \to T(\eta_{RR}(x)) 

\Gamma \vdash RRf : (rx : RRA) \to (RRT)(rx)
```

(Aside) Actually, I'd like your feedback

Definition

A CwF is locally democratic if every arrow $\sigma: \Delta \to \Gamma$ is isomorphic to some $\pi: \Gamma.T \to \Gamma$.

Internalizing an AWFS [§8.5 of my PhD thesis]

- A CwF is exactly a model of the structural rules of DTT.
- On a locally democratic CwF, the following correspond:
 - Defining an AWFS whose right replacement monad RR preserves pullbacks
 - Modelling an internal monad RR on types with a functorial action on dependent functions (+ equations):

$$\Gamma, rx : RRA \vdash T \text{type}
\Gamma \vdash f : (x : A) \to T(\eta_{RR}(x))
\Gamma \vdash RRf : (rx : RRA) \to (RRT)(rx)$$

(Aside) Actually, I'd like your feedback

Definition

A CwF is locally democratic if every arrow $\sigma: \Delta \to \Gamma$ is isomorphic to some $\pi: \Gamma.T \to \Gamma$.

Internalizing an AWFS [§8.5 of my PhD thesis]

- A CwF is exactly a model of the structural rules of DTT.
- On a locally democratic CwF, the following correspond:
 - Defining an AWFS whose right replacement monad RR preserves pullbacks,
 - Modelling an internal monad RR on types with a functorial action on dependent functions (+ equations):

$$\Gamma, rx : RRA \vdash T \text{type}
\Gamma \vdash f : (x : A) \to T(\eta_{RR}(x))
\Gamma \vdash RRf : (rx : RRA) \to (RRT)(rx)$$

Model-first Approach

Separation of concerns:

We need modalities to keep track of variance.

- → Instantiate MTT (Multimodal Type Theory) [GKNB21]
- The syntax is their problem!

We need substructural intervals for bridges / morphisms / paths

- Instantiate MTraS (Modal Transpension System) [ND24
- The syntax is their problem!
- Interaction with MTT is their problem!

Model-first Approach

Separation of concerns:

We need modalities to keep track of variance.

- → Instantiate MTT (Multimodal Type Theory) [GKNB21]
- The syntax is their problem!

We need substructural intervals for bridges / morphisms / paths

- Instantiate MTraS (Modal Transpension System) [ND24
- The syntax is their problem
- Interaction with MTT is their problem!

Model-first Approach

Separation of concerns:

We need modalities to keep track of variance.

- → Instantiate MTT (Multimodal Type Theory) [GKNB21]
- The syntax is their problem!

We need substructural intervals for bridges / morphisms / paths.

- Instantiate MTraS (Modal Transpension System) [ND24]
- The syntax is their problem!
- Interaction with MTT is their problem!

Model-first Approach

Separation of concerns:

We need **modalities** to keep track of **variance**.

- → Instantiate MTT (Multimodal Type Theory) [GKNB21]
- The syntax is their problem!

We need substructural intervals for bridges / morphisms / paths.

- Instantiate MTraS (Modal Transpension System) [ND24]
- The syntax is their problem!
- Interaction with MTT is their problem!

Let $R: \mathscr{C} \to \mathscr{D}$ be a functor.

$$\frac{\tau: \Gamma \to \Gamma' @ \mathscr{C}}{B\tau: B\Gamma \to B\Gamma' @ \mathscr{D}}$$

$$\Gamma \vdash T \text{ type } @ \mathscr{C}$$

$$R\Gamma \vdash RT \text{ type } @ \mathscr{D}$$

$$\frac{\Gamma \vdash t : T @ \mathscr{C}}{B\Gamma \vdash Bt : BT @ \mathscr{D}}$$

Ok, so how do we check

?
$$\triangle \vdash RT$$
 type

We check $\Gamma \vdash T$ type $@ \mathscr{C}$ and substitute with $\sigma : \Delta \to R\Gamma$

BUT: Don't bother the user. Synthesize Γ and σ

 $\Gamma\in\mathscr{C}$ should be the **universal** context Γ such that $\sigma:\Delta o R\Gamma$ exists

I.e. if $\sigma': \Delta \to R\Gamma'$ then we should have $\Gamma \to \Gamma'$.

+ some sensible laws $\sim L \dashv R$.

Let $R:\mathscr{C}\to\mathscr{D}$ be a CwF morphism.

$$\frac{\tau:\Gamma\to\Gamma'\,\mathbb{Q}\,\mathscr{C}}{B\tau:B\Gamma\to B\Gamma'\,\mathbb{Q}\,\mathcal{Q}}$$

$$\frac{\Gamma \vdash T \text{ type } @ \mathscr{C}}{R\Gamma \vdash RT \text{ type } @ \mathscr{D}}$$

$$\frac{\Gamma \vdash t : T @ \mathscr{C}}{R\Gamma \vdash Rt : RT @ \mathscr{D}}$$

Ok, so how do we check

$$\frac{?}{\Delta \vdash RT \text{ type}}$$

We check $\Gamma \vdash T$ type $@ \mathscr{C}$ and substitute with $\sigma : \Delta \to R\Gamma$

BUT: Don't bother the user. Synthesize Γ and σ .

 $\Gamma\in\mathscr{C}$ should be the **universal** context Γ such that $\sigma:\Delta o R\Gamma$ exists

I.e. if $\sigma' : \Delta \to R\Gamma'$ then we should have $\Gamma \to \Gamma'$.

+ some sensible laws $\sim L \dashv R$.

Let $R: \mathscr{C} \to \mathscr{D}$ be a CwF morphism.

$$\frac{\Gamma \operatorname{ctx} @ \mathscr{C}}{R\Gamma \operatorname{ctx} @ \mathscr{D}} \qquad \frac{\tau : \Gamma \to \Gamma' @ \mathscr{C}}{R\tau : R\Gamma \to R\Gamma' @ \mathscr{D}}$$

$$\frac{\Gamma \vdash T \text{ type } @ \mathscr{C}}{B\Gamma \vdash BT \text{ type } @ \mathscr{D}}$$

$$\frac{\Gamma \vdash T \text{ type } @ \mathscr{C}}{R\Gamma \vdash RT \text{ type } @ \mathscr{D}} \qquad \frac{\Gamma \vdash t : T @ \mathscr{C}}{R\Gamma \vdash Rt : RT @ \mathscr{D}}$$

Ok. so how do we check

?
$$\Delta \vdash RT$$
type

Let $R:\mathscr{C}\to\mathscr{D}$ be a CwF morphism.

Ok, so how do we check

?
$$\Delta \vdash RT$$
 type

We check $\Gamma \vdash T$ type $@ \mathscr{C}$ and substitute with $\sigma : \Delta \to R\Gamma$.

BUT: Don't bother the user. Synthesize Γ and σ .

 $\Gamma\in\mathscr{C}$ should be the **universal** context Γ such that $\sigma:\Delta\to R\Gamma$ exists l.e. if $\sigma':\Delta\to R\Gamma'$ then we should have $\Gamma\to\Gamma'$.

+ some sensible laws $\sim L \dashv R$.

Let $R: \mathscr{C} \to \mathscr{D}$ be a CwF morphism.

Ok, so how do we check

?
$$\Delta \vdash RT$$
 type

We check $\Gamma \vdash T$ type $@ \mathscr{C}$ and substitute with $\sigma : \Delta \to R\Gamma$.

BUT: Don't bother the user. Synthesize Γ and σ .

 $\Gamma \in \mathscr{C}$ should be the **universal** context Γ such that $\sigma : \Delta \to R\Gamma$ exists.

I.e. if $\sigma': \Delta \to R\Gamma'$ then we should have $\Gamma \to \Gamma'$.

+ some sensible laws $\sim L \dashv R$

Let $R: \mathscr{C} \to \mathscr{D}$ be a CwF morphism.

Ok, so how do we check

$$\frac{?}{\Delta \vdash RT \text{type}}$$

We check $\Gamma \vdash T$ type $@ \mathscr{C}$ and substitute with $\sigma : \Delta \to R\Gamma$.

BUT: Don't bother the user. Synthesize Γ and σ .

 $\Gamma \in \mathscr{C}$ should be the **universal** context Γ such that $\sigma : \Delta \to R\Gamma$ exists.

I.e. if $\sigma': \Delta \to R\Gamma'$ then we should have $\Gamma \to \Gamma'$.

+ some sensible laws $\sim L - R$.

Let $R: \mathscr{C} \to \mathscr{D}$ be a CwF morphism.

Ok, so how do we check

$$\frac{?}{\Delta \vdash RT \text{type}}$$

We check $\Gamma \vdash T$ type $@ \mathscr{C}$ and substitute with $\sigma : \Delta \to R\Gamma$.

BUT: Don't bother the user. Synthesize Γ and σ .

 $\Gamma \in \mathscr{C}$ should be the **universal** context $L\Delta$ such that $\eta_{\Delta} : \Delta \to RL\Delta$ exists. I.e. if $\sigma' : \Delta \to R\Gamma'$ then we should have $L\Delta \to \Gamma'$.

+ some sensible laws $\sim L \dashv R$.

Let $R: \mathscr{C} \to \mathscr{D}$ be a CwF morphism.

Ok, so how do we check

?
$$\Delta \vdash RT$$
 type

We check $\Gamma \vdash T$ type $@ \mathscr{C}$ and substitute with $\sigma : \Delta \to R\Gamma$.

BUT: Don't bother the user. Synthesize Γ and σ .

 $\Gamma \in \mathscr{C}$ should be the **universal** context $L\Delta$ such that $\eta_{\Delta} : \Delta \to RL\Delta$ exists. I.e. if $\sigma' : \Delta \to R\Gamma'$ then we should have $L\Delta \to \Gamma'$.

+ some sensible laws $\sim L \dashv R$.

MTT [GKNB21] is parametrized by a **2-category** called the **mode theory**:

- ightharpoonup modes p, q, r, \dots
- ightharpoonup modalities $\mu: p \rightarrow q$

$$\frac{\Gamma \operatorname{ctx} @ \ q}{\Gamma, \bigoplus_{\mu} \operatorname{ctx} @ \ p} \qquad \frac{\Gamma, \bigoplus_{\mu} \vdash T \operatorname{type} @ \ p}{\Gamma \vdash \langle \mu \mid T \rangle \operatorname{type} @ \ q} \qquad \frac{\Gamma, \bigoplus_{\mu} \vdash t : T @ \ p}{\Gamma \vdash \operatorname{mod}_{\mu} t : \langle \mu \mid T \rangle @ \ q}$$

ightharpoonup (2-cells $lpha:\mu\Rightarrow v$).

Semantics

- ightharpoonup is a (often presheaf) category modelling all of DTT,
- $ightharpoonup \llbracket \mu
 rbracket$ is a (weak) dependent right adjoint (DRA) [BCMMPS20] to $\llbracket \mathbf{A}_{\mu}
 rbracket$,

MTT [GKNB21] is parametrized by a **2-category** called the **mode theory**:

- ▶ modes *p*, *q*, *r*, . . .
- ightharpoonup modalities $\mu: p \rightarrow q$

ightharpoonup (2-cells $lpha:\mu\Rightarrow v$).

Semantics:

- ▶ [p] is a (often presheaf) category modelling all of DTT,
- $ightharpoonup \llbracket \mu
 rbracket$ is a (weak) dependent right adjoint (DRA) [BCMMPS20] to $\llbracket m{A}_{\mu}
 rbracket$,

MTT [GKNB21] is parametrized by a **2-category** called the **mode theory**:

- ▶ modes p, q, r, . . .
- ightharpoonup modalities $\mu: p \rightarrow q$

$$\frac{\Gamma \operatorname{ctx} @ q}{\Gamma, \triangleq_{\mu} \operatorname{ctx} @ p} \qquad \frac{\Gamma, \triangleq_{\mu} \vdash T \operatorname{type} @ p}{\Gamma \vdash \langle \mu \mid T \rangle \operatorname{type} @ q} \qquad \frac{\Gamma, \triangleq_{\mu} \vdash t : T @ p}{\Gamma \vdash \operatorname{mod}_{\mu} t : \langle \mu \mid T \rangle @ q}$$

ightharpoonup (2-cells $lpha:\mu\Rightarrow v$).

Semantics:

- ightharpoonup ||p|| is a (often presheaf) category modelling all of DTT,
- $ightharpoonup \llbracket \mu
 rbracket$ is a (weak) dependent right adjoint (DRA) [BCMMPS20] to $\llbracket m{A}_{\mu}
 rbracket$,

MTT [GKNB21] is parametrized by a **2-category** called the **mode theory**:

- ▶ modes p, q, r, . . .
- ightharpoonup modalities $\mu: p \rightarrow q$

$$\frac{\Gamma \operatorname{ctx} @ q}{\Gamma, \triangleq_{\mu} \operatorname{ctx} @ p} \qquad \frac{\Gamma, \triangleq_{\mu} \vdash T \operatorname{type} @ p}{\Gamma \vdash \langle \mu \mid T \rangle \operatorname{type} @ q} \qquad \frac{\Gamma, \triangleq_{\mu} \vdash t : T @ p}{\Gamma \vdash \operatorname{mod}_{\mu} t : \langle \mu \mid T \rangle @ q}$$

ightharpoonup (2-cells $lpha:\mu\Rightarrow v$).

Semantics:

- ightharpoonup ||p|| is a (often presheaf) category modelling all of DTT,
- $ightharpoonup \llbracket \mu
 rbracket$ is a (weak) dependent right adjoint (DRA) [BCMMPS20] to $\llbracket \mathbf{\Delta}_{\mu}
 rbracket$,

MTT [GKNB21] is parametrized by a **2-category** called the **mode theory**:

- ightharpoonup modes p, q, r, \dots
- ightharpoonup modalities $\mu: p \rightarrow q$

$$\begin{array}{c|c} \Gamma \operatorname{ctx} @ q & \Gamma, \blacksquare_{\mu} \vdash T \operatorname{type} @ p \\ \hline \Gamma, \blacksquare_{\mu} \operatorname{ctx} @ p & \Gamma \vdash \langle \mu \mid T \rangle \operatorname{type} @ q & \Gamma \vdash \operatorname{mod}_{\mu} t : \langle \mu \mid T \rangle @ q \\ \end{array}$$

ightharpoonup (2-cells lpha : $\mu \Rightarrow \nu$).

Semantics:

- $ightharpoonup \llbracket p \rrbracket$ is a (often presheaf) category modelling all of DTT,
- $ightharpoonup \llbracket \mu
 rbracket$ is a (weak) dependent right adjoint (DRA) [BCMMPS20] to $\llbracket \mathbf{A}_{\mu}
 rbracket$,

MTT [GKNB21] is parametrized by a **2-category** called the **mode theory**:

- ▶ modes p, q, r, . . .
- ightharpoonup modalities $\mu: p \rightarrow q$

ightharpoonup (2-cells lpha : $\mu \Rightarrow \nu$).

Semantics:

- ightharpoonup ||p|| is a (often presheaf) category modelling all of DTT,
- $ightharpoonup \llbracket \mu
 rbracket$ is a (weak) dependent right adjoint (DRA) [BCMMPS20] to $\llbracket \mathbf{A}_{\mu}
 rbracket$,

MTT [GKNB21] is parametrized by a 2-category called the mode theory:

- ightharpoonup modes p, q, r, \dots
- ightharpoonup modalities $\mu: p \rightarrow q$

$$\begin{array}{c|c} \hline \mathsf{C}\mathsf{c}\mathsf{t}\mathsf{x} @ q & \hline & \Gamma, \blacksquare_{\mu} \vdash T \mathsf{t}\mathsf{y}\mathsf{p}\mathsf{e} @ \rho \\ \hline \Gamma, \blacksquare_{\mu} \mathsf{c}\mathsf{t}\mathsf{x} @ \rho & \hline & \Gamma \vdash \langle \mu \mid T \rangle \mathsf{t}\mathsf{y}\mathsf{p}\mathsf{e} @ q & \hline & \Gamma \vdash \mathsf{mod}_{\mu} \, t : T @ \rho \\ \hline \end{array}$$

ightharpoonup (2-cells $lpha:\mu\Rightarrow
u$).

Semantics:

- ▶ [p] is a (often presheaf) category modelling all of DTT,
- $ightharpoonup \llbracket \mu
 rbracket$ is a (weak) dependent right adjoint (DRA) [BCMMPS20] to $\llbracket \mathbf{A}_{\mu}
 rbracket$,

Idea: Treat

$$\exists (u : \mathbb{U}) \ \dashv \ \exists [u] \ \dashv \ \forall (u : \mathbb{U}) \ \dashv \ [u]$$

 $\Sigma(u : \mathbb{U}) \ \dashv \ \Omega[u] \ \dashv \ \Pi(u : \mathbb{U})$

as modalities.

Problem: They bind / depend on variables. (Not supported by MTT.)

- $\Xi \in Psh(\mathscr{W})$
- ▶ Pick any old functor $\square \ltimes \mathbb{U} : \mathcal{W} \to \mathcal{W}$
- Shape context extension is $(\sqcup \ltimes \mathbb{U})_! : Psh(\mathscr{W}) \to Psh(\mathscr{W})$
- $\exists_{\mathbb{U}}^{\int\Xi} \dashv \exists_{\mathbb{U}}^{f\Xi} : \int_{\mathscr{W}} \Xi \to \int_{\mathscr{W}} (\Xi, u : \mathbb{U})$

$$\begin{bmatrix} \exists_{n}^{\exists n} \end{bmatrix} + \begin{bmatrix} \exists_{n}^{\exists n} \end{bmatrix}$$

$$\begin{bmatrix} \exists_{n}^{\exists n} \end{bmatrix} + \begin{bmatrix} \exists_{n}$$

Idea: Treat

$$\exists (u : \mathbb{U}) \ \dashv \ \exists [u] \ \dashv \ \forall (u : \mathbb{U}) \ \dashv \ [u]$$

$$\Sigma(u : \mathbb{U}) \ \dashv \ \Omega[u] \ \dashv \ \Pi(u : \mathbb{U})$$

as modalities.

Problem: They bind / depend on variables. (Not supported by MTT.)

- $\mathbf{\Xi} \in \operatorname{Psh}(\mathscr{W})$
- ▶ Pick any old functor $\square \ltimes \mathbb{U} : \mathcal{W} \to \mathcal{W}$
- Shape context extension is $(\sqcup \ltimes \mathbb{U})_! : Psh(\mathscr{W}) \to Psh(\mathscr{W})$
- $\exists_{\mathbb{U}}^{f \equiv} \dashv \exists_{\mathbb{U}}^{f \equiv} : f_{\mathscr{W}} \equiv \to f_{\mathscr{W}} (\Xi, u : \mathbb{U})$

$$\begin{bmatrix} \exists_{0}^{\exists u} \\ \exists_{0}^{\exists u} \end{bmatrix} + \begin{bmatrix} \exists_{0}^{\forall u} \\ \exists_{0}^{\exists u} \end{bmatrix} + \begin{bmatrix} \exists_{0}^{\exists \exists_{$$

Idea: Treat

$$\exists (u : \mathbb{U}) \ \dashv \ \exists [u] \ \dashv \ \forall (u : \mathbb{U}) \ \dashv \ [u]$$

$$\Sigma(u : \mathbb{U}) \ \dashv \ \Omega[u] \ \dashv \ \Pi(u : \mathbb{U})$$

as modalities.

Problem: They bind / depend on variables. (Not supported by MTT.)

- $\mathbf{\Xi} \in \operatorname{Psh}(\mathscr{W})$
- ▶ Pick any old functor $\square \ltimes \mathbb{U} : \mathcal{W} \to \mathcal{W}$
- Shape context extension is $(\sqcup \ltimes \mathbb{U})_! : Psh(\mathscr{W}) \to Psh(\mathscr{W})$
- $\exists_{\mathbb{U}}^{f \equiv} \dashv \exists_{\mathbb{U}}^{f \equiv} : f_{\mathscr{W}} \equiv \to f_{\mathscr{W}} (\Xi, u : \mathbb{U})$

Idea: Treat

$$\exists (u : \mathbb{U}) \ \dashv \ \exists [u] \ \dashv \ \forall (u : \mathbb{U}) \ \dashv \ [u]$$

$$\Sigma(u : \mathbb{U}) \ \dashv \ \Omega[u] \ \dashv \ \Pi(u : \mathbb{U})$$

as modalities.

Problem: They bind / depend on variables. (Not supported by MTT.)

- $ightharpoonup \Xi \in \mathrm{Psh}(\mathscr{W})$
- ▶ Pick any old functor $\sqcup \ltimes \mathbb{U} : \mathcal{W} \to \mathcal{W}$
- Shape context extension is $(\sqcup \ltimes \mathbb{U})_! : Psh(\mathscr{W}) \to Psh(\mathscr{W})$
- $\exists_{\mathbb{U}}^{\int\Xi} \dashv \exists_{\mathbb{U}}^{f\Xi} : \int_{\mathscr{W}} \Xi \to \int_{\mathscr{W}} (\Xi, u : \mathbb{U})$

$$\begin{bmatrix} \exists_{n}^{\exists n} \end{bmatrix} + \begin{bmatrix} \exists_{n}^{\exists n} \end{bmatrix}$$

$$\begin{bmatrix} \exists_{n}^{\exists n} \end{bmatrix} + \begin{bmatrix} \exists_{n}$$

Idea: Treat

$$\exists (u : \mathbb{U}) \ \dashv \ \exists [u] \ \dashv \ \forall (u : \mathbb{U}) \ \dashv \ [u]$$

 $\Sigma(u : \mathbb{U}) \ \dashv \ \Omega[u] \ \dashv \ \Pi(u : \mathbb{U})$

as modalities.

Problem: They bind / depend on variables. (Not supported by MTT.)

- $ightharpoonup \Xi \in \mathrm{Psh}(\mathscr{W})$
- ▶ Pick any old functor $\sqcup \ltimes \mathbb{U} : \mathcal{W} \to \mathcal{W}$
- Shape context extension is $(\sqcup \ltimes \mathbb{U})_! : Psh(\mathscr{W}) \to Psh(\mathscr{W})$
- $\exists_{\mathbb{U}}^{f \equiv} \dashv \exists_{\mathbb{U}}^{f \equiv} : f_{\mathscr{W}} \equiv \to f_{\mathscr{W}} (\Xi, u : \mathbb{U})$

$$\begin{bmatrix} \exists_{n}^{\exists n} \\ \exists_{n}^{\exists n} \end{bmatrix} + \begin{bmatrix} \exists_{n}^{\forall n} \\ \exists_{n}^{\exists n} \end{bmatrix} + \begin{bmatrix} \exists_{n}^{\exists \exists_{n}^{\exists n} \end{bmatrix} +$$

Idea: Treat

$$\exists (u : \mathbb{U}) \ \dashv \ \exists [u] \ \dashv \ \forall (u : \mathbb{U}) \ \dashv \ [u]$$

 $\Sigma(u : \mathbb{U}) \ \dashv \ \Omega[u] \ \dashv \ \Pi(u : \mathbb{U})$

as modalities.

Problem: They bind / depend on variables. (Not supported by MTT.)

- $ightharpoonup \Xi \in \operatorname{Psh}(\mathscr{W})$
- ▶ Pick any old functor $\sqcup \ltimes \mathbb{U} : \mathcal{W} \to \mathcal{W}$
- Shape context extension is $(\sqcup \ltimes \mathbb{U})_! : \operatorname{Psh}(\mathscr{W}) \to \operatorname{Psh}(\mathscr{W})$
- $ightharpoonup \exists_{\mathbb{T}}^{f \equiv} \dashv \exists_{\mathbb{T}}^{f \equiv} : f_{\mathscr{W}} \equiv \rightarrow f_{\mathscr{W}}(\Xi, u : \mathbb{U})$

$$\begin{bmatrix} \exists_{n}^{\exists n} \\ \exists_{n}^{\exists n} \end{bmatrix} + \begin{bmatrix} \exists_{n}^{\forall n} \\ \exists_{n}^{\exists n} \end{bmatrix} + \begin{bmatrix} \exists_{n}^{\exists \exists_{n}^{\exists n} \end{bmatrix} +$$

Idea: Treat

$$\exists (u : \mathbb{U}) \ \dashv \ \exists [u] \ \dashv \ \forall (u : \mathbb{U}) \ \dashv \ [u]$$

$$\Sigma(u : \mathbb{U}) \ \dashv \ \Omega[u] \ \dashv \ \Pi(u : \mathbb{U})$$

as modalities.

Problem: They bind / depend on variables. (Not supported by MTT.)

- $ightharpoonup \Xi \in \operatorname{Psh}(\mathscr{W})$
- ▶ Pick any old functor $\sqcup \ltimes \mathbb{U} : \mathcal{W} \to \mathcal{W}$
- Shape context extension is $(\sqcup \ltimes \mathbb{U})_! : Psh(\mathscr{W}) \to Psh(\mathscr{W})$
- $\Rightarrow \exists_{\mathbb{U}}^{\int \Xi} \dashv \exists_{\mathbb{U}}^{\int \Xi} : \int_{\mathscr{W}} \Xi \to \int_{\mathscr{W}} (\Xi, u : \mathbb{U})$

Idea: Treat

$$\exists (u : \mathbb{U}) \quad \dashv \quad \exists [u] \quad \dashv \quad \forall (u : \mathbb{U}) \quad \dashv \quad [u]$$

$$\Sigma(u : \mathbb{U}) \quad \dashv \quad \Omega[u] \quad \dashv \quad \Pi(u : \mathbb{U})$$

as modalities.

Problem: They bind / depend on variables. (Not supported by MTT.)

- $ightharpoonup \Xi \in \mathrm{Psh}(\mathscr{W})$
- ▶ Pick any old functor $\sqcup \ltimes \mathbb{U} : \mathcal{W} \to \mathcal{W}$
- Shape context extension is $(\bigsqcup \ltimes \mathbb{U})_! : \operatorname{Psh}(\mathscr{W}) \to \operatorname{Psh}(\mathscr{W})$

Idea: Treat

$$\exists (u : \mathbb{U}) \ \dashv \ \exists [u] \ \dashv \ \forall (u : \mathbb{U}) \ \dashv \ \widecheck{\Omega}[u]$$

 $\Sigma(u : \mathbb{U}) \ \dashv \ \Omega[u] \ \dashv \ \Pi(u : \mathbb{U})$

as modalities

Problem: They bind / depend on variables. (Not supported by MTT.)

- $\Xi \in Psh(\mathscr{W})$
- ▶ Pick any old functor $\sqcup \ltimes \mathbb{U} : \mathcal{W} \to \mathcal{W}$
- Shape context extension is $(\sqcup \ltimes \mathbb{U})_! : Psh(\mathscr{W}) \to Psh(\mathscr{W})$
- $\exists_{\mathbb{U}}^{\int\Xi} \dashv \exists_{\mathbb{U}}^{\int\Xi} : \int_{\mathscr{W}} \Xi \to \int_{\mathscr{W}} (\Xi, u : \mathbb{U})$

$$\begin{bmatrix} \exists_{\Pi} \\ \exists_{\Pi} \end{bmatrix} + \begin{bmatrix} \exists_$$

Introduction: Wrapping up

- ► We want to preserve **relations**, **morphisms** and **isomorphisms**.
- ▶ We need variance → MTT
- ► We need intervals → MTraS
- ► We need **fibrancy** → future work (internal)
- For now, we care about:
 - a mode theory.
 - a presheaf model for each mode,
 - an adjunction for each modality,
 - a functor for each interval.

Three Approaches to the Model

Tamsamani & Simpson's model of *n*-Categories

Tamsamani (1999) Simpson (1997) see Cheng & Lauda (2004)

- ightharpoonup A set of **nodes** Γ_0
- A set of edges Γ₁
- $\blacktriangleright \ \Gamma_{src}, \Gamma_{tgt}: \Gamma_1 \to \Gamma_0 \ and \ \Gamma_{rfl}: \Gamma_0 \to \Gamma_1$

A simplicial set Γ has

- For each n, a set of n-simplices Γ_n (nodes, edges, triangles, tetrahedra, ...)
- For each monotonic $f: \{0..m\} \hookrightarrow \{0..n\},$ a **face map** $\Gamma_f: \Gamma_n \to \Gamma_m$ (vertices of, edges of, faces of, ...)
- ► For each monotonic $f: \{0..m\} \rightarrow \{0..n\}$, a **degeneracy map** $\Gamma_f: \Gamma_n \rightarrow \Gamma_m$ (flat tetrahedra)

It is a diagram in Set:

It is a diagram in Set:

- ightharpoonup A set of **nodes** Γ_0
- A set of edges Γ₁
- $\blacktriangleright \ \Gamma_{src}, \Gamma_{tgt} : \Gamma_1 \to \Gamma_0 \ and \ \Gamma_{rfl} : \Gamma_0 \to \Gamma_1$

A simplicial set Γ has

- For each n, a set of n-simplices Γ_n (nodes, edges, triangles, tetrahedra, ...)
- For each monotonic $f: \{0..m\} \hookrightarrow \{0..n\},$ a **face map** $\Gamma_f: \Gamma_n \to \Gamma_m$ (vertices of, edges of, faces of, ...)
- For each monotonic $f: \{0..m\} \rightarrow \{0..n\}$ a **degeneracy map** $\Gamma_f: \Gamma_n \rightarrow \Gamma_m$ (flat tetrahedra)

It is a presheaf over RG:

It is a diagram in Set

- ightharpoonup A set of **nodes** Γ_0
- A set of edges Γ₁
- $\blacktriangleright \ \Gamma_{src}, \Gamma_{tgt}: \Gamma_1 \to \Gamma_0 \ and \ \Gamma_{rfl}: \Gamma_0 \to \Gamma_1$

A simplicial set Γ has:

- For each n, a set of n-simplices Γ_n (nodes, edges, triangles, tetrahedra, ...)
- For each monotonic $f: \{0..m\} \hookrightarrow \{0..n\},$ a **face map** $\Gamma_f: \Gamma_n \rightarrow \Gamma_m$ (vertices of, edges of, faces of, . . .)
- For each monotonic $f: \{0..m\} \rightarrow \{0..n\}$, a **degeneracy map** $\Gamma_f: \Gamma_n \rightarrow \Gamma_m$ (flat tetrahedra)

It is a presheaf over RG:

It is a diagram in Set:

- ightharpoonup A set of **nodes** Γ_0
- A set of edges Γ₁
- $\blacktriangleright \ \Gamma_{src}, \Gamma_{tgt} : \Gamma_1 \to \Gamma_0 \ and \ \Gamma_{rfl} : \Gamma_0 \to \Gamma_1$

A simplicial set Γ has:

- For each n, a set of n-simplices Γ_n (nodes, edges, triangles, tetrahedra, ...)
- For each monotonic $f: \{0..m\} \hookrightarrow \{0..n\},$ a **face map** $\Gamma_f: \Gamma_n \rightarrow \Gamma_m$ (vertices of, edges of, faces of, ...)
- ► For each monotonic $f: \{0..m\} \rightarrow \{0..n\}$, a **degeneracy map** $\Gamma_f: \Gamma_n \rightarrow \Gamma_m$ (flat tetrahedra)

It is a presheaf over RG:

It is a presheaf over Δ :

Simplex category \triangle

 Δ is a skeleton of NonEmptyFinLinOrd

- ightharpoonup A set of **nodes** Γ_0
- A set of edges Γ₁
- $\blacktriangleright \ \Gamma_{src}, \Gamma_{tgt} : \Gamma_1 \to \Gamma_0 \ and \ \Gamma_{rfl} : \Gamma_0 \to \Gamma_1$

A simplicial set Γ has:

- For each n, a set of n-simplices Γ_n (nodes, edges, triangles, tetrahedra, ...)
- For each monotonic $f: \{0..m\} \hookrightarrow \{0..n\},$ a **face map** $\Gamma_f: \Gamma_n \to \Gamma_m$ (vertices of, edges of, faces of, ...)
- ► For each monotonic $f: \{0..m\} \rightarrow \{0..n\}$, a **degeneracy map** $\Gamma_f: \Gamma_n \rightarrow \Gamma_m$ (flat tetrahedra)

It is a presheaf over RG:

It is a presheaf over Δ :

Simplex category Δ

 Δ is a skeleton of NonEmptyFinLinOrd

Nerve $N(\mathscr{C})$ of a category \mathscr{C}

Simplicial set whose:

- nodes are objects
- edges are morphisms
- triangles are commutative diagrams
- \triangleright $(n \ge 3)$ -simplices uniquely exist

Segal condition

Q: When is a simplicial set the nerve of a category?

A: If every chain of n edges

 $\bullet \longrightarrow \bullet \longrightarrow \cdots \longrightarrow \bullet \longrightarrow \bullet$

is the **spine** (Hamiltonian path) of a unique *n*-simplex. I.e. if compositions uniquely exist.

Categories \simeq Segal simplicial sets

Nerve $N(\mathscr{C})$ of a category \mathscr{C}

Simplicial set whose:

- nodes are objects
- edges are morphisms
- triangles are commutative diagrams
- \triangleright $(n \ge 3)$ -simplices uniquely exist

Segal condition

Q: When is a simplicial set the nerve of a category?

A: If every chain of n edges

is the **spine** (Hamiltonian path) of a unique *n*-simplex. I.e. if compositions uniquely exist.

Categories \simeq Segal simplicial sets

Nerve $N(\mathscr{C})$ of a category \mathscr{C}

Simplicial set whose:

- nodes are objects
- edges are morphisms
- triangles are commutative diagrams
- $(n \ge 3)$ -simplices uniquely exist

Segal condition

Q: When is a simplicial set the nerve of a category?

A: If every chain of *n* edges

 $\bullet \longrightarrow \bullet \longrightarrow \cdots \longrightarrow \bullet \longrightarrow \bullet$

is the **spine** (Hamiltonian path) of a unique *n*-simplex. I.e. if compositions uniquely exist.

Categories \simeq Segal simplicial sets

Let $(\mathscr{V}, I, \otimes)$ be a monoidal category.

A \mathscr{V} -enriched category \mathscr{C} has:

- A (big) set of objects
- For each $x, y \in \text{Obj}(\mathscr{C})$, a **Hom-thing** $\text{Hom}(x, y) \in \text{Obj}(\mathscr{V})$,
- $ightharpoonup id_x: I \to \operatorname{Hom}(x,x)$
- $\qquad \circ : \operatorname{Hom}(y,z) \otimes \operatorname{Hom}(x,y) \to \operatorname{Hom}(x,z)$

Strict *n*-category

- A 0-category is a set.
- ► An (n+1)-category is a category enriched over n-categories.

Q: Can we understand higher categories via simplicial sets?

Cheng & Lauda's Guidebook: [CL04]
A thousand times yes!

Tamsamani & Simpson: [Sim97,Tam99 One such time yes!

→ using double / n-fold categories

Let $(\mathcal{V}, \top, \times)$ be a cartesian category.

A \mathscr{V} -enriched category \mathscr{C} has:

- A (big) set of objects
- For each $x, y \in \text{Obj}(\mathscr{C})$, a **Hom-thing** $\text{Hom}(x, y) \in \text{Obj}(\mathscr{V})$,
- $ightharpoonup id_x : \top \to \operatorname{Hom}(x,x)$

Strict *n*-category

- A 0-category is a set.
- ► An (n+1)-category is a category enriched over n-categories.

Q: Can we understand higher categories via simplicial sets?

Cheng & Lauda's Guidebook: [CL04]
A thousand times yes!

Tamsamani & Simpson: [Sim97,Tam99 One such time yes!

→ using double / n-fold categories

Let $(\mathcal{V}, \top, \times)$ be a cartesian category.

A \mathscr{V} -enriched category \mathscr{C} has:

- A (big) set of objects
- For each $x, y \in \text{Obj}(\mathscr{C})$, a **Hom-thing** $\text{Hom}(x, y) \in \text{Obj}(\mathscr{V})$,
- $ightharpoonup id_x : \top \to \operatorname{Hom}(x,x)$

Strict n-category

- A 0-category is a **set**.
- ► An (n+1)-category is a category enriched over n-categories.

Q: Can we understand higher categories via simplicial sets?

Cheng & Lauda's Guidebook: [CL04]
A thousand times yes!

Tamsamani & Simpson: [Sim97,Tam99 One such time yes!

→ using double / n-fold categories

Let $(\mathcal{V}, \top, \times)$ be a cartesian category.

A \mathscr{V} -enriched category \mathscr{C} has:

- A (big) set of objects
- For each $x, y \in \text{Obj}(\mathscr{C})$, a **Hom-thing** $\text{Hom}(x, y) \in \text{Obj}(\mathscr{V})$,
- $ightharpoonup id_x : \top \to \operatorname{Hom}(x,x)$
- $\qquad \circ : \operatorname{Hom}(y,z) \times \operatorname{Hom}(x,y) \to \operatorname{Hom}(x,z)$

Strict n-category

- A 0-category is a set.
- An (n+1)-category is a category enriched over n-categories.

Q: Can we understand higher categories via simplicial sets?

Cheng & Lauda's Guidebook: [CL04] A thousand times ves!

Tamsamani & Simpson: [Sim97,Tam99] One such time **yes!**

→ using double / n-fold categories

- objects
- horiz. arrows / (1)-arrows (1-cells)
- vertical arrows / (2)-arrows (trivial)
- squares (2-cells)

and can be defined as a **bisimplicial set** $\mathscr{C} \in \operatorname{Psh}(\Delta \times \Delta)$ satisfying the **Segal condition** in each dimension.

A T&S 2-category is:

- objects
- horiz. arrows / (1)-arrows (1-cells)
- vertical arrows / (2)-arrows (trivial)
- squares (2-cells)

and can be defined as a **bisimplicial set** $\mathscr{C} \in \operatorname{Psh}(\Delta \times \Delta)$ satisfying the **Segal condition** in each dimension.

A T&S 2-category is:

- objects
- horiz. arrows / (1)-arrows (1-cells)
- vertical arrows / (2)-arrows (trivial)
- squares (2-cells)

and can be defined as a **bisimplicial set** $\mathscr{C}\in \mathrm{Psh}(\Delta\times\Delta)$ satisfying the **Segal condition** in each dimension.

A T&S 2-category is:

- objects
- horiz. arrows / (1)-arrows (1-cells)
- vertical arrows / (2)-arrows (trivial)
- squares (2-cells)

and can be defined as a **bisimplicial set** $\mathscr{C}\in \mathrm{Psh}(\Delta\times\Delta)$ satisfying the **Segal condition** in each dimension.

A T&S 2-category is:

- objects
- horiz. arrows / (1)-arrows (1-cells)
- vertical arrows / (2)-arrows (trivial)
- squares (2-cells)

and can be defined as a **bisimplicial set** $\mathscr{C} \in \operatorname{Psh}(\Delta \times \Delta)$ satisfying the **Segal condition** in each dimension.

A T&S 2-category is:

- objects
- horiz. arrows / (1)-arrows (1-cells)
- vertical arrows / (2)-arrows (trivial)
- squares (2-cells)

and can be defined as a **bisimplicial set** $\mathscr{C}\in \mathrm{Psh}(\Delta\times\Delta)$ satisfying the **Segal condition** in each dimension.

A T&S 2-category is:

a double category whose vertical arrows are trivial.

An *n*-fold category is:

an *n*-simplicial set $\mathscr{C} \in \operatorname{Psh}(\Delta^n)$ satisfying the **Segal condition** in each dimension.

A T&S *n*-category is:

an *n*-fold category where only

- (1)-arrows, (1-cells)
- ► (1,2)-squares, (2-cells)
- (1,2,3)-cubes, (3-cells)
- ...

can be non-trivial.

Pretypes

- objects
- horiz. arrows / (1)-arrows (1-cells)
- vertical arrows / (2)-arrows (trivial)
- squares (2-cells)

and can be defined as a **bisimplicial set** $\mathscr{C}\in \mathrm{Psh}(\Delta\times\Delta)$ satisfying the **Segal condition** in each dimension.

A T&S 2-category is:

a double category whose vertical arrows are trivial.

An *n*-fold category is:

an *n*-simplicial set $\mathscr{C} \in \mathrm{Psh}(\Delta^n)$ satisfying the **Segal condition** in each dimension.

A T&S *n*-category is:

an *n*-fold category where only

- ► (1)-arrows, (1-cells)
- (1,2)-squares, (2-cells)
- ► (1,2,3)-cubes, (3-cells)
- **.**..

can be non-trivial.

Pretypes!

- objects
- horiz. arrows / (1)-arrows (1-cells)
- vertical arrows / (2)-arrows (trivial)
- squares (2-cells)

and can be defined as a bisimplicial set $\mathscr{C} \in \operatorname{Psh}(\Delta \times \Delta)$ satisfying the Segal condition in each dimension.

A T&S 2-category is:

a double category whose vertical arrows are trivial.

An *n*-fold category is:

an *n*-simplicial set $\mathscr{C} \in \operatorname{Psh}(\Delta^n)$ satisfying the Segal condition in each dimension.

A T&S *n*-category is:

an *n*-fold category where only

- ► (1)-arrows, (1-cells)
- ► (1,2)-squares, (2-cells)
- ► (1,2,3)-cubes, (3-cells)
- **.**..

can be non-trivial.

Pretypes!

Three Approaches to the Model

Pro-arrow Equipments

Richard J. Wood (1982, 1985)

(Pro-arrow) Equipment

An equipment \mathscr{C} is a double category with

- objects
- ightharpoonup arrows (\rightarrow)
- ▶ pro-arrows (→)
- squares

such that every arrow $\varphi : x \to y$ has "graph" pro-arrows

$$\varphi^{\ddagger}: x \nrightarrow y, \qquad \varphi^{\dagger}: y \nrightarrow x$$

such that (...).

Example (Set

Set is an equipment with:

- sets
- functions
- relations
 - identity relation: equality

$$(R; S)(x,z) = \exists y.R(x,y) \land S(y,z)$$

ightharpoonup proofs that $R(a,b) \Rightarrow S(fa,gb)$

$$\begin{array}{ccc}
A & \xrightarrow{R} & B \\
\downarrow & & \downarrow \\
C & \xrightarrow{S} & D
\end{array}$$

(Pro-arrow) Equipment

An equipment \mathscr{C} is a double category with

- objects
- ightharpoonup arrows (\rightarrow)
- ▶ pro-arrows (→)
- squares

such that every arrow $\varphi: x \to y$ has "graph" pro-arrows

$$\varphi^{\ddagger}: x \nrightarrow y, \qquad \varphi^{\dagger}: y \nrightarrow x$$

such that (...).

Example (Set)

Set is an equipment with:

- sets
- functions
- relations
 - identity relation: equality

$$(R;S)(x,z) = \exists y.R(x,y) \land S(y,z)$$

ightharpoonup proofs that $R(a,b) \Rightarrow S(fa,gb)$

$$\begin{array}{ccc}
A & \xrightarrow{R} & B \\
\downarrow & & \downarrow \\
C & \xrightarrow{S} & D
\end{array}$$

(Pro-arrow) Equipment

An equipment \mathscr{C} is a double category with

- objects
- ightharpoonup arrows (\rightarrow)
- ▶ pro-arrows (→)
- squares

such that every arrow $\varphi: x \to y$ has "graph" pro-arrows

$$\varphi^{\ddagger}: x \nrightarrow y, \qquad \varphi^{\dagger}: y \nrightarrow x$$

such that (...).

Example (Set)

Set is an equipment with:

- sets
- functions
- relations
 - identity relation: equality

$$(R;S)(x,z) = \\ \exists y.R(x,y) \land S(y,z)$$

ightharpoonup proofs that $R(a,b) \Rightarrow S(fa,gb)$

$$\begin{array}{ccc}
A & \xrightarrow{R} & B \\
\downarrow & & \downarrow g \\
C & \xrightarrow{S} & D
\end{array}$$

(Pro-arrow) Equipment

An equipment \mathscr{C} is a double category with

- objects
- ightharpoonup arrows (\rightarrow)
- ▶ pro-arrows (→)
- squares

such that every arrow $\varphi: x \to y$ has "graph" pro-arrows

$$\varphi^{\ddagger}: x \nrightarrow y, \qquad \varphi^{\dagger}: y \nrightarrow x$$

such that (...).

Example (Cat)

Cat is an **equipment** with:

- categories
- functors
- ▶ profunctors $\mathscr{P}: \mathscr{A}^{\mathsf{op}} \times \mathscr{B} \to \mathsf{Set}$
 - identity profunctor: Hom

$$(\mathscr{P};\mathscr{Q})(x,z) =$$
coend
$$\exists y.\mathscr{P}(x,y) \times \mathscr{Q}(y,z)$$

 $ightharpoonup \ rac{ ext{end}}{orall} \ a,b.\mathscr{P}(a,b) \Rightarrow \mathscr{Q}(\textit{F}\,a,\textit{G}\,b)$

Example (Cat)

Cat is a T&S 2-category with:

- categories
- functors
- trivial (2)-arrows

en

▶ nat. transformations \forall a.Hom(Fa, Ga)

.e.
$$\forall a, b. \operatorname{Hom}(a, b) \Rightarrow \operatorname{Hom}(Fa, Gb)$$

To get **heterogeneous** nat. transformations: **drop** T&S's triviality condition!

Example (Cat)

Cat is an **equipment** with:

- categories
- functors
- ▶ profunctors $\mathscr{P}: \mathscr{A}^{\mathsf{op}} \times \mathscr{B} \to \mathsf{Set}$
 - identity profunctor: Hom

$$(\mathscr{P}; \mathscr{Q})(x,z) =$$
coend
$$\exists y. \mathscr{P}(x,y) \times \mathscr{Q}(y,z)$$

 $\stackrel{\mathsf{end}}{\blacktriangleright} \overset{\mathsf{end}}{\forall} a, b. \mathscr{P}(a, b) \Rightarrow \mathscr{Q}(Fa, Gb)$

Example (Cat)

Cat is a T&S 2-category with:

- categories
- functors
- ► trivial (2)-arrows

end

nat. transformations \forall a.Hom(Fa, Ga) i.e. \forall a,b.Hom(a,b) \Rightarrow Hom(Fa, Gb)

To get **heterogeneous** nat. transformations: **drop** T&S's triviality condition!

Example (Cat)

Cat is an **equipment** with:

- categories
- functors
- ▶ profunctors $\mathscr{P}: \mathscr{A}^{\mathsf{op}} \times \mathscr{B} \to \mathsf{Set}$
 - identity profunctor: Hom

$$(\mathscr{P},\mathscr{Q})(x,z) =$$
coend
$$\exists y.\mathscr{P}(x,y) \times \mathscr{Q}(y,z)$$

 $\stackrel{\mathsf{end}}{\blacktriangleright} \overset{\mathsf{end}}{\forall} a, b. \mathscr{P}(a, b) \Rightarrow \mathscr{Q}(Fa, Gb)$

Example (Cat)

Cat is a T&S 2-category with:

- categories
- functors
- trivial (2)-arrows

end

nat. transformations \forall a.Hom(Fa, Ga) i.e. \forall a, b.Hom(a, b) \Rightarrow Hom(Fa, Gb)

To get **heterogeneous** nat. transformations: **drop** T&S's triviality condition!

Example (Cat)

Cat is an **equipment** with:

- categories
- functors
- **profunctors** \mathscr{P} : $\mathscr{A}^{\mathsf{op}} \times \mathscr{B} \to \mathsf{Set}$
 - identity profunctor: Hom

$$(\mathscr{P},\mathscr{Q})(x,z) =$$
coend
$$\exists y.\mathscr{P}(x,y) \times \mathscr{Q}(y,z)$$

 $\blacktriangleright \ \ \stackrel{\mathsf{end}}{\forall} \ a, b. \mathscr{P}(a, b) \Rightarrow \mathscr{Q}(\mathit{F}\, a, \mathit{G}\, b)$

Three Approaches to the Model

Set is ...

- A large set
- A category
- An equipment

Cat is ...

- A category
- A 2-category
- An equipment

Eqmnt is ...

- An equipment
- © A 2-equipmen

Eqmnt has:

Objects Equipments

Arrows Equipment functors

Pro-arrows Equipment profunctors:

Contain arrows and pro-arrows

Pro-pro-arrows Equipment pro-profunctors:

rac

Cubes ...

Higher Equipment

An *n*-equipment is an *n*-fold category (...)

$$\Rightarrow \mathscr{C} \in \mathrm{Psh}(\Delta^n_{\dagger, \ddagger})$$

Set is ...

- A large set
- A category
- An equipment

Cat is ...

- A category
- A 2-category
- An equipment

Eqmnt is ...

- An equipment
- © A 2-equipment

Eqmnt has:

Objects Equipments

Arrows Equipment functors

Pro-arrows Equipment profunctors:

Contain arrows and pro-arrows

Pro-pro-arrows Equipment pro-profunctors:

Squares ...

Cubes ...

Higher Equipment

An n-equipment is an n-fold category (...)

$$\Rightarrow \mathscr{C} \in \mathrm{Psh}(\Delta^n_{\dagger,\pm})$$

Set is ...

- A large set
- A category
- An equipment

Cat is ...

- A category
- A 2-category
- An equipment

Eqmnt is ...

- An equipment
- 3 A 2-equipment

Eqmnt has:

Objects Equipments

Arrows Equipment functors

Pro-arrows Equipment profunctors:

Contain arrows and pro-arrows

Pro-pro-arrows Equipment pro-profunctors:

Squares ...

Cubes ...

Higher Equipment

An *n*-equipment is an *n*-fold category (...)

 $\Rightarrow \mathscr{C} \in \mathrm{Psh}(\Delta^n_{\dagger,\dagger})$

Set is ...

- A large set
- A category
- An equipment

Cat is ...

- A category
- A 2-category
- An equipment

Eqmnt is ...

- An equipment
- O A 2-equipment

Eqmnt has:

Objects Equipments

Arrows Equipment functors

Pro-arrows Equipment profunctors:

Contain arrows and pro-arrows

Pro-pro-arrows Equipment pro-profunctors:

Contain pro-arrows

Squares ...

Cubes ...

Higher Equipment

An *n*-equipment is an *n*-fold category (...)

 $\Rightarrow \mathscr{C} \in \mathrm{Psh}(\Delta^n_{\dagger,\pm})$

Set is ...

- A large set
- A category
- An equipment

Cat is ...

- A category
- A 2-category
- An equipment

Eqmnt is ...

- An equipment
- © A 2-equipment

Eqmnt has:

Objects Equipments

Arrows Equipment functors

Pro-arrows Equipment profunctors:

Contain arrows and pro-arrows

Pro-pro-arrows Equipment pro-profunctors:

Contain pro-arrows

Squares ...

Cubes ...

Higher Equipment

An *n*-equipment is an *n*-fold category (...)

$$\Rightarrow \mathscr{C} \in \mathrm{Psh}(\Delta^n_{\dagger,\ddagger})$$

- "Equipment pro-profunctors"!? Are you making this up?
- Only partially.

For any category \mathscr{W} , $Psh(\mathscr{W})$ models **DTT**, with a universe U^{HS}

Let $W \in \mathrm{Obj}(\mathscr{W})$.

- A W-cell of UHS contains
 - a notion of dependent W-cells

Looking at this differently

Define $\mathscr{W} :\cong \mathscr{W}$. If $W \in \mathrm{Obj}(\mathscr{W})$, then $\mathrm{pro}\,W \in \mathrm{Obj}(\mathscr{W})$.

Consider $U_{\mathscr{W}}^{HS} \in Psh(\mathscr{W})$.

- Param'ty: U of discrete types is not discrete.
 - → Edges express het. equality; pro-edges express relations.
- Directed: U of Segal types is not Segal
 - Arrows express morphisms; pro-arrows express profunctors
 - Triangles express commutativity; pro-triangles are boundary predicate

- "Equipment pro-profunctors"!?
 Are you making this up?
- Only partially.

For any category \mathcal{W} , $Psh(\mathcal{W})$ models **DTT**, with a universe U^{HS} .

Let $W \in \mathrm{Obj}(\mathcal{W})$.

- a notion of dependent W-cells
- for all V ∈ Obj(W/W),
 a notion of dependent V-cells

Looking at this differently

Define $\dot{\mathscr{W}} :\cong \mathscr{W}$. If $W \in \operatorname{Obj}(\mathscr{W})$, then $\operatorname{pro} W \in \operatorname{Obj}(\mathscr{W})$.

Consider $U_{**}^{HS} \in Psh(***)$.

- Param'ty: U of discrete types is not discrete.
 - Edges express het. equality; pro-edges express relations.
- Directed: U of Segal types is not Segal
 - pro-arrows express profunctors
 - Triangles express commutativity; pro-triangles are boundary predicate

- "Equipment pro-profunctors"!?
 Are you making this up?
- Only partially.

For any category \mathcal{W} , $Psh(\mathcal{W})$ models **DTT**, with a universe U^{HS} .

Let $W \in \mathrm{Obj}(\mathscr{W})$.

A pro W-cell of UHS contains:

- a notion of dependent W-cells
- ▶ for all $V \in \text{Obj}(\mathcal{W}/W)$, a notion of dependent V-cells

Looking at this differently

Define $\mathscr{W}:\cong\mathscr{W}$. If $W\in\operatorname{Obj}(\mathscr{W})$, then $\operatorname{pro}W\in\operatorname{Obj}(\mathscr{W})$.

Consider $U_{W}^{HS} \in Psh(\mathscr{W})$.

- Param'ty: U of discrete types is not discrete.
 - Edges express het. equality; pro-edges express relations.
- Directed: U of Segal types is not Segal
 - Arrows express morphisms;
 - pro-arrows express profunctors.
 - Triangles express commutativity; pro-triangles are boundary predicates.

- "Equipment pro-profunctors"!?
 Are you making this up?
- Only partially.

For any category \mathcal{W} ,

 $Psh(\mathcal{W})$ models **DTT**, with a universe U^{HS}.

Let $W \in \mathrm{Obj}(\mathscr{W})$.

A pro W-cell of UHS contains:

- a notion of dependent W-cells
- ▶ for all $V \in \text{Obj}(\mathcal{W}/W)$, a notion of dependent V-cells

Looking at this differently

Define $\mathscr{W} :\cong \mathscr{W}$. If $W \in \mathrm{Obj}(\mathscr{W})$, then $\mathrm{pro}\, W \in \mathrm{Obj}(\mathscr{W})$.

Consider $U_{W}^{HS} \in Psh(\mathscr{W})$.

- Param'ty: U of discrete types is not discrete.
 - Edges express het. equality; pro-edges express relations.
 - Directed: U of Segal types is not Segal
 - Arrows express morphisms;
 - pro-arrows express profunctors.
 - Triangles express commutativity;
 pro-triangles are boundary predicates

- "Equipment pro-profunctors"!?
 Are you making this up?
- Only partially.

For any category \mathscr{W} ,

 $Psh(\mathcal{W})$ models **DTT**, with a universe U^{HS}.

Let $W \in \mathrm{Obj}(\mathscr{W})$.

A pro W-cell of UHS contains:

- a notion of dependent W-cells
- ▶ for all $V \in \text{Obj}(\mathcal{W}/W)$, a notion of dependent V-cells

Looking at this differently

Define $\mathscr{W} :\cong \mathscr{W}$. If $W \in \operatorname{Obj}(\mathscr{W})$, then $\operatorname{pro} W \in \operatorname{Obj}(\mathscr{W})$.

Consider $U_{\mathscr{W}}^{HS} \in Psh(\mathscr{W})$

- Param'ty: U of discrete types is not discrete.
 - Edges express het. equality; pro-edges express relations.
 - Directed: U of Segal types is not Segal
 - Arrows express morphisms;
 - pro-arrows express profunctors.
 - Iriangles express commutativity; pro-triangles are boundary predicates.

- "Equipment pro-profunctors"!?
 Are you making this up?
- Only partially.

For any category \mathcal{W} , $Psh(\mathcal{W})$ models **DTT**, with a universe U^{HS} .

Let $W \in \mathrm{Obj}(\mathcal{W})$.

A pro W-cell of UHS contains:

- a notion of dependent W-cells
- ▶ for all $V \in \text{Obj}(\mathcal{W}/W)$, a notion of dependent V-cells

Looking at this differently

Define $\dot{\mathscr{W}}:\cong\mathscr{W}$. If $W\in\operatorname{Obj}(\mathscr{W})$, then $\operatorname{pro}W\in\operatorname{Obj}(\dot{\mathscr{W}})$. Consider $U^{HS}_{\mathscr{W}}\in\operatorname{Psh}(\dot{\mathscr{W}})$.

- Param'ty: U of discrete types is not discrete.
 - Edges express het. equality; pro-edges express relations.
 - Directed: U of Segal types is not Segal.
 - Arrows express morphisms;
 - pro-arrows express profunctors.
 - Triangles express commutativity;
 pro-triangles are boundary predicates

- "Equipment pro-profunctors"!?
 Are you making this up?
- Only partially.

For any category \mathcal{W} , $Psh(\mathcal{W})$ models **DTT**, with a universe U^{HS} .

Let $W \in \text{Obj}(\mathcal{W})$. A pro W-cell of U^{HS} contains:

- a notion of dependent W-cells
- ▶ for all $V \in \text{Obj}(\mathcal{W}/W)$, a notion of dependent V-cells

Looking at this differently

Define $\dot{\mathscr{W}}:\cong \mathscr{W}$. If $W\in \mathrm{Obj}(\mathscr{W})$, then $\mathrm{pro}\,W\in \mathrm{Obj}(\dot{\mathscr{W}})$. Consider $\mathsf{U}^{\mathsf{HS}}_{\mathscr{W}}\in \mathrm{Psh}(\dot{\mathscr{W}})$.

- Param'ty: U of discrete types is not discrete.
 - Edges express het. equality; pro-edges express relations.
 - Directed: U of Segal types is not Segal
 - Arrows express morphisms;
 - pro-arrows express profunctors.
 - Iriangles express commutativity;
 pro-triangles are boundary predicates

- "Equipment pro-profunctors"!?
 Are you making this up?
- Only partially.

For any category \mathcal{W} , Psh(\mathcal{W}) models **DTT**, with a universe U^{HS}.

Let $W \in \text{Obj}(\mathcal{W})$. A pro W-cell of U^{HS} contains:

- a notion of dependent W-cells
- ▶ for all $V \in \text{Obj}(\mathcal{W}/W)$, a notion of dependent V-cells

Looking at this differently

Define $\dot{\mathscr{W}}:\cong \mathscr{W}$. If $W\in \mathrm{Obj}(\mathscr{W})$, then $\mathrm{pro}\,W\in \mathrm{Obj}(\dot{\mathscr{W}})$. Consider $\mathsf{U}^{\mathrm{HS}}_{\mathscr{W}}\in \mathrm{Psh}(\dot{\mathscr{W}})$.

- Param'ty: U of discrete types is not discrete.
 - → Edges express het. equality; pro-edges express relations.
- ▶ Directed: U of Segal types is not Segal
 - Arrows express morphisms; pro-arrows express profunctors.
 - → Triangles express commutativity; pro-triangles are boundary predicate.

- "Equipment pro-profunctors"!?
 Are you making this up?
- Only partially.

For any category \mathcal{W} ,

 $Psh(\mathcal{W})$ models **DTT**, with a universe U^{HS}.

Let $W \in \mathrm{Obj}(\mathcal{W})$.

A pro W-cell of UHS contains:

- a notion of dependent W-cells
- ▶ for all $V \in \text{Obj}(\mathcal{W}/W)$, a notion of dependent V-cells

Looking at this differently

Define $\mathscr{W}:\cong \mathscr{W}$. If $W\in \mathrm{Obj}(\mathscr{W})$, then $\mathrm{pro}\,W\in \mathrm{Obj}(\mathscr{W})$.

Consider $U_{\mathscr{W}}^{HS} \in Psh(\mathscr{W})$.

- Param'ty: U of discrete types is not discrete.
 - → Edges express het. equality; pro-edges express relations.
- ▶ Directed: U of Segal types is not Segal.
 - Arrows express morphisms;pro-arrows express profunctors.
 - → Triangles express commutativity; pro-triangles are boundary predicates.

- "Equipment pro-profunctors"!?
 Are you making this up?
- Only partially.

For any category \mathcal{W} ,

 $Psh(\mathcal{W})$ models **DTT**, with a universe U^{HS}.

Let $W \in \mathrm{Obj}(\mathcal{W})$.

A pro W-cell of UHS contains:

- a notion of dependent W-cells
- ▶ for all $V \in \text{Obj}(\mathcal{W}/W)$, a notion of dependent V-cells

Looking at this differently

Define $\dot{\mathscr{W}} :\cong \mathscr{W}$.

If $W \in \text{Obj}(\mathcal{W})$, then $\text{pro } W \in \text{Obj}(\dot{\mathcal{W}})$.

Consider $U_{\mathscr{W}}^{HS} \in Psh(\mathscr{W})$.

 $U_{\mathscr{W}}^{HS}$ is a **category** internal to $Psh(\mathring{\mathscr{W}})$

- \rightarrow U_W^{HS} is a **simplicial set** internal to Psh(\dot{W})
- $\rightarrow U_{\mathscr{W}}^{\text{dir}} \in Psh(\mathscr{W} \times \Delta).$
- © Directed layer on top of your favorite TT!

In particular

$$\operatorname{Psh}(\top)$$
 (sets)

$$\mathsf{J}_{\Delta}^{\mathsf{dir}} \in \mathsf{Psh}(\dot{\Delta} \! imes \! \Delta)$$
 (eqmnts)

$$U_{\dot{\Lambda} \times \Lambda}^{dir} \in Psh(\Delta \times \Delta \times \Delta)$$
 (2-eqmnts)

- "Equipment pro-profunctors"!?
 Are you making this up?
- Only partially.

For any category \mathcal{W} ,

 $Psh(\mathcal{W})$ models **DTT**, with a universe U^{HS}.

Let $W \in \text{Obj}(\mathcal{W})$.

A pro W-cell of UHS contains:

- a notion of dependent W-cells
- ▶ for all $V \in \text{Obj}(\mathcal{W}/W)$, a notion of dependent V-cells

Looking at this differently

Define $\mathscr{W} :\cong \mathscr{W}$.

If $W \in \text{Obj}(\mathcal{W})$, then $\text{pro } W \in \text{Obj}(\dot{\mathcal{W}})$.

Consider $U_{\mathscr{W}}^{HS} \in Psh(\mathscr{W})$.

 $U_{\mathscr{W}}^{HS}$ is a **category** internal to $Psh(\mathscr{W})$

- \rightarrow U_W^{HS} is a **simplicial set** internal to Psh(\dot{W})
- $\rightarrow U_{\mathscr{W}}^{\mathsf{dir}} \in \mathsf{Psh}(\mathscr{W} \times \Delta).$
- Directed layer on top of your favorite TT!

In particular:

$$Psh(\top)$$
 (sets)
 $U^{dir}_{\top} \in Psh(\Delta)$ (categories $U^{dir}_{\Delta} \in Psh(\dot{\Delta} \times \Delta)$ (egmnts)

 $\mathsf{U}^{\mathsf{dir}}_{\dot{\Delta} \times \Delta} \in \mathsf{Psh}(\Delta \times \Delta \times \Delta)$ (2-eqmnts)

- "Equipment pro-profunctors"!?
 Are you making this up?
- Only partially.

For any category \mathcal{W} ,

 $Psh(\mathcal{W})$ models **DTT**, with a universe U^{HS}.

Let $W \in \mathrm{Obj}(\mathcal{W})$.

A pro W-cell of UHS contains:

- a notion of dependent W-cells
- ▶ for all $V \in \text{Obj}(\mathcal{W}/W)$, a notion of dependent V-cells

Looking at this differently

Define $\dot{\mathscr{W}} :\cong \mathscr{W}$.

If $W \in \text{Obj}(\mathcal{W})$, then $\text{pro } W \in \text{Obj}(\dot{\mathcal{W}})$.

Consider $U_{\mathscr{W}}^{HS} \in Psh(\mathscr{W})$.

 $U_{\mathscr{W}}^{HS}$ is a **category** internal to $Psh(\mathscr{W})$

- \rightarrow U^{HS} is a **simplicial set** internal to Psh(\dot{W})
- $\rightarrow U_{\mathscr{W}}^{\text{dir}} \in Psh(\mathscr{W} \times \Delta).$
- Directed layer on top of your favorite TT!

In particular:

$$Psh(\top)$$
 (sets)

$$U_{\text{r}}^{\text{dir}} \in \text{Psh}(\Delta)$$
 (categories)

$$\mathsf{U}^{\mathsf{dir}}_{\underline{\Delta}} \in \mathsf{Psh}(\dot{\underline{\Delta}} \times \underline{\Delta})$$
 (eqmnts)

$$\mathsf{U}^{\mathsf{dir}}_{\dot{\Delta} \times \Delta} \in \mathsf{Psh}(\dot{\Delta} \times \dot{\Delta} \times \Delta)$$
 (2-eqmnts)

By nature, classifiers (typically) do **NOT** contain themselves:

- All of mankind is not an example of a human.
- ► The world's literature is not an example of a book.

Forcing things to be otherwise is (a priori) unreasonable.

Classifiers of collection-like objects:

- Set is more than a (large) set.
- Cat is more than a (large) category.

- Provide the user with the unscathed classifier and the truncation modality.
- → Use **multimode** type theory.

By nature, classifiers (typically) do **NOT** contain themselves:

- All of mankind is not an example of a human.
- ► The world's literature is not an example of a book.

Forcing things to be otherwise is (a priori) unreasonable.

Classifiers of collection-like objects:

- Set is more than a (large) set.
- Cat is more than a (large) category.

- → Provide the user with the unscathed classifier and the truncation modality.
- → Use **multimode** type theory.

By nature, classifiers (typically) do **NOT** contain themselves:

- All of mankind is not an example of a human.
- The world's literature is not an example of a book.

Forcing things to be otherwise is (a priori) unreasonable.

Classifiers of collection-like objects:

- Set is more than a (large) set.
- Cat is more than a (large) category.

- → Provide the user with the unscathed classifier and the truncation modality.
- Use multimode type theory.
- Fixpoints: ∞Grpd is a (large) ∞-groupoid.

By nature, classifiers (typically) do **NOT** contain themselves:

- All of mankind is not an example of a human.
- ► The world's literature is not an example of a book.

Forcing things to be otherwise is (a priori) unreasonable.

Classifiers of collection-like objects:

- ► Set is more than a (large) set.
- Cat is more than a (large) category.

- → Provide the user with the unscathed classifier and the truncation modality.
- Use multimode type theory.

 \ldots and while I am ranting \ldots

Grothendieck Construction

Given a category $\mathscr C$ and a functor $\mathscr D:\mathscr C\to \operatorname{Anws}($

i.e. eqmnt functor \mathscr{H} : $\mathsf{FPro}(\mathscr{C}) \to \mathsf{Cat}$

the category $\int_{\mathscr{C}} \mathscr{D}$ has:

- ▶ objects $(c, d \in \mathcal{D}(c))$
- morphisms

$$\left(c_1 \stackrel{\gamma}{\rightarrow} c_2, \mathscr{D}(\gamma)(d_1) \stackrel{\delta}{\rightarrow} d_2\right)$$

 $Anws(Cat) \in Cat is truncated.$

 $\mathsf{FPro} \dashv \mathsf{Arws} : \mathsf{Eqmnt} \to \mathsf{Cat}$

Arws Discards pro-arrows

FPro Freely adds "graph" pro-arrows

Pros Discards arrows

$$\int_{\mathscr{C}} \mathscr{D} \qquad \qquad \mathsf{Pros}(\oint_{\mathsf{FPro}(\mathscr{C})} \mathscr{H})$$

$$\mathsf{Pros}(\mathsf{Fst}) \downarrow$$

$$\mathscr{C} \qquad \qquad \mathsf{Pros}(\mathsf{FPro}(\mathscr{C}))$$

Grothendieck Construction

Given a category & and

a functor $\mathscr{D}:\mathscr{C}\to \mathsf{Arws}(\mathsf{Cat})$,

i.e. eqmnt functor $\mathscr{H}: \mathsf{FPro}(\mathscr{C}) \to \mathsf{Cat},$

the category $\int_{\mathscr{C}} \mathscr{D}$ has:

- ▶ objects $(c, d \in \mathscr{D}(c))$
- morphisms

$$\left(c_1 \xrightarrow{\gamma} c_2, \mathscr{D}(\gamma)(d_1) \xrightarrow{\delta} d_2\right)$$

 $Arws(Cat) \in Cat is truncated.$

 $\mathsf{FPro} \dashv \mathsf{Arws} : \mathsf{Eqmnt} \to \mathsf{Cat}$

Arws Discards pro-arrows

FPro Freely adds "graph" pro-arrows

Pros Discards arrows

Grothendieck Construction

Given a category & and

a functor $\mathscr{D}:\mathscr{C}\to \mathsf{Anvs}(\mathsf{Cat})$,

i.e. **eqmnt functor** \mathscr{H} : $\mathsf{FPro}(\mathscr{C}) \to \mathsf{Cat}$

the category $\int_{\mathscr{C}} \mathscr{D}$ has:

- ▶ objects $(c, d \in \mathscr{D}(c))$
- morphisms

$$\left(c_1 \xrightarrow{\gamma} c_2, \mathscr{D}(\gamma)(d_1) \xrightarrow{\delta} d_2\right)$$

 $Arws(Cat) \in Cat$ is truncated.

 $\mathsf{FPro} \dashv \mathsf{Arws} : \mathsf{Eqmnt} \to \mathsf{Cat}$

Arws Discards pro-arrows

FPro Freely adds "graph" pro-arrows

Pros Discards arrows

Grothendieck Construction

Given a category & and

a functor $\mathscr{D}:\mathscr{C}\to \mathsf{Arws}(\mathsf{Cat})$,

i.e. **eqmnt functor** $\mathscr{H}: \mathsf{FPro}(\mathscr{C}) \to \mathsf{Cat}$

the category $\int_{\mathscr{C}} \mathscr{D}$ has:

- ▶ objects $(c, d \in \mathscr{D}(c))$
- morphisms

$$\left(c_1 \xrightarrow{\gamma} c_2, \mathscr{D}(\gamma)(d_1) \xrightarrow{\delta} d_2\right)$$

 $Arws(Cat) \in Cat$ is **truncated**.

 $\mathsf{FPro} \dashv \mathsf{Arws} : \mathsf{Eqmnt} \to \mathsf{Cat}$

Arws Discards pro-arrows

FPro Freely adds "graph" pro-arrows
Pros Discards arrows

$$\int_{\mathscr{C}} \mathscr{D} \qquad \qquad \mathsf{Pros}(\oint_{\mathsf{FPro}(\mathscr{C})} \mathscr{H})$$
 $\mathsf{Pros}(\mathsf{Fst}) \downarrow$
 $\mathsf{Pros}(\mathsf{FPro}(\mathscr{C}))$

Grothendieck Construction

Given a category \mathscr{C} and a functor $\mathscr{D}:\mathscr{C}\to \mathsf{Arws}(\mathsf{Cat})$,

i.e. **eqmnt functor** $\mathscr{H}:\mathsf{FPro}(\mathscr{C})\to\mathsf{Cat},$

the category $\int_{\mathscr{C}} \mathscr{D}$ has:

- ▶ objects $(c, d \in \mathscr{D}(c))$
- morphisms

$$\left(c_1 \xrightarrow{\gamma} c_2, \mathscr{D}(\gamma)(d_1) \xrightarrow{\delta} d_2\right)$$

 $Arws(Cat) \in Cat$ is **truncated**.

 $\mathsf{FPro} \dashv \mathsf{Arws} : \mathsf{Eqmnt} \to \mathsf{Cat}$

Arws Discards pro-arrows

FPro Freely adds "graph" pro-arrows
Pros Discards arrows

Grothendieck Construction

Given a category $\mathscr C$ and a functor $\mathscr D:\mathscr C\to\operatorname{Arws}(\operatorname{Cat}),$

i.e. **eqmnt functor** $\mathscr{H}: \mathsf{FPro}(\mathscr{C}) \to \mathsf{Cat}$

the category $\int_{\mathscr{C}} \mathscr{D}$ has:

- ▶ objects $(c, d \in \mathscr{D}(c))$
- morphisms

$$\left(c_1 \xrightarrow{\gamma} c_2, \mathscr{D}(\gamma)(d_1) \xrightarrow{\delta} d_2\right)$$

 $Arws(Cat) \in Cat$ is **truncated**.

 $\mathsf{FPro} \dashv \mathsf{Arws} : \mathsf{Eqmnt} \to \mathsf{Cat}$

Arws Discards pro-arrows

FPro Freely adds "graph" pro-arrows

Pros Discards arrows

Let's generalize from FPro (\mathscr{C}) to $\mathscr{E} \in$ Eqmnt.

$$\int_{\mathscr{C}} \mathscr{D}$$
 $\operatorname{Pros}(\oint_{\operatorname{\mathsf{FPro}}(\mathscr{C})} \mathscr{H})$ $\operatorname{Pros}(\operatorname{\mathsf{Fst}}) \downarrow$ \mathscr{C} $\operatorname{Pros}(\operatorname{\mathsf{FPro}}(\mathscr{C}))$

Grothendieck Construction

Given a category $\mathscr C$ and a functor $\mathscr D:\mathscr C\to\operatorname{Arws}(\operatorname{Cat})$, i.e. eqmnt functor $\mathscr H:\operatorname{FPro}(\mathscr C)\to\operatorname{Cat}$, the category $\int_{\mathscr C}\mathscr D$ has:

- ▶ objects $(c, d \in \mathscr{D}(c))$
- morphisms

$$\left(c_1 \xrightarrow{\gamma} c_2, \mathscr{D}(\gamma)(d_1) \xrightarrow{\delta} d_2\right)$$

 $Arws(Cat) \in Cat$ is **truncated**.

 $\mathsf{FPro} \dashv \mathsf{Arws} : \mathsf{Eqmnt} \to \mathsf{Cat}$

Arws Discards pro-arrows

FPro Freely adds "graph" pro-arrows

Pros Discards arrows

Let's generalize from FPro (\mathscr{C}) to $\mathscr{E} \in$ Eqmnt.

$$\int_{\mathscr{C}} \mathscr{D}$$
 $\operatorname{Pros}(\oint_{\operatorname{\mathsf{FPro}}(\mathscr{C})} \mathscr{H})$ $\operatorname{\mathsf{Pros}}(\operatorname{\mathsf{Fst}})$ \downarrow $\operatorname{\mathsf{Pros}}(\operatorname{\mathsf{FPro}}(\mathscr{C}))$

Grothendieck Construction

Given a category $\mathscr C$ and a functor $\mathscr D:\mathscr C\to\operatorname{Arws}(\operatorname{Cat})$, i.e. eqmnt functor $\mathscr H:\operatorname{FPro}(\mathscr C)\to\operatorname{Cat}$, the category $\int_{\mathscr C}\mathscr D$ has:

- ▶ objects $(c, d \in \mathscr{D}(c))$
- morphisms

$$\left(c_1 \xrightarrow{\gamma} c_2, \mathscr{D}(\gamma)(d_1) \xrightarrow{\delta} d_2\right)$$

 $Arws(Cat) \in Cat$ is **truncated**.

 $\mathsf{FPro} \dashv \mathsf{Arws} : \mathsf{Eqmnt} \to \mathsf{Cat}$

Arws Discards pro-arrows

FPro Freely adds "graph" pro-arrows

Pros Discards arrows

"Equipment of elements"

Given an **eqmnt** $\mathscr E$ and an **eqmnt functor** $\mathscr H:\mathscr E\to\mathsf{Cat},$ the category $\oint_{\mathscr E}\mathscr H$ has:

- ▶ objects $(c, d \in \mathcal{H}(c))$
- morphisms

$$\left(c_1 \stackrel{\gamma}{\to} c_2, d_1 \mapsto_{\mathscr{H}(\gamma)} d_2\right)$$

pro-arrows

$$\left(c_1 \overset{p}{\nrightarrow} c_2, d_1 \overset{\delta}{\rightarrow}_{\mathscr{H}(p)} d_2\right)$$

 \approx cat. of elements internal to Psh(Δ)

 $Arws(Cat) \in Cat$ is **truncated**.

FPro
$$\dashv$$
 Arws : Eqmnt \rightarrow Cat

Arws Discards pro-arrows

FPro Freely adds "graph" pro-arrows

Pros Discards arrows

"Equipment of elements"

Given an **eqmnt** $\mathscr E$ and an **eqmnt functor** $\mathscr H:\mathscr E\to\mathsf{Cat},$ the category $\oint_{\mathscr E}\mathscr H$ has:

- ▶ objects $(c, d \in \mathcal{H}(c))$
- morphisms

$$\left(c_1 \stackrel{\gamma}{\rightarrow} c_2, d_1 \mapsto_{\mathscr{H}(\gamma)} d_2\right)$$

pro-arrows

$$\left(c_1 \overset{p}{\nrightarrow} c_2, d_1 \overset{\delta}{\rightarrow}_{\mathscr{H}(p)} d_2\right)$$

 \approx cat. of elements internal to Psh(Δ)

 $Arws(Cat) \in Cat$ is **truncated**.

FPro \dashv Arws : Eqmnt \rightarrow Cat

Arws Discards pro-arrows

FPro Freely adds "graph" pro-arrows

Pros Discards arrows

"Equipment of elements"

Given an **eqmnt** $\mathscr E$ and an **eqmnt functor** $\mathscr H:\mathscr E\to\mathsf{Cat},$ the category $\oint_{\mathscr E}\mathscr H$ has:

- ▶ objects $(c, d \in \mathcal{H}(c))$
- morphisms

$$\left(c_1 \stackrel{\gamma}{\to} c_2, d_1 \mapsto_{\mathscr{H}(\gamma)} d_2\right)$$

pro-arrows

$$\left(c_1 \stackrel{p}{\nrightarrow} c_2, d_1 \stackrel{\delta}{\rightarrow}_{\mathscr{H}(p)} d_2\right)$$

 \approx cat. of elements internal to Psh(Δ)

 $Arws(Cat) \in Cat$ is **truncated**.

FPro
$$\dashv$$
 Arws : Eqmnt \rightarrow Cat

Arws Discards pro-arrows

FPro Freely adds "graph" pro-arrows

Pros Discards arrows

$$\begin{array}{ccc} & & \operatorname{Pros}(\oint_{\mathsf{FPro}(\mathscr{C})}\mathscr{H}) \\ & & & \operatorname{Pros}(\mathsf{Fst}) \\ & & & & \operatorname{Pros}(\mathsf{FPro}(\mathscr{C})) \end{array}$$

"Equipment of elements"

Given an **eqmnt** $\mathscr E$ and an **eqmnt functor** $\mathscr H:\mathscr E\to\mathsf{Cat},$ the category $\oint_{\mathscr E}\mathscr H$ has:

- ▶ objects $(c, d \in \mathcal{H}(c))$
- morphisms

$$\left(c_1 \stackrel{\gamma}{\rightarrow} c_2, d_1 \mapsto_{\mathscr{H}(\gamma)} d_2\right)$$

pro-arrows

$$\left(c_1 \overset{p}{\nrightarrow} c_2, d_1 \overset{\delta}{\rightarrow}_{\mathscr{H}(p)} d_2\right)$$

 \approx cat. of elements internal to Psh(Δ)

 $Arws(Cat) \in Cat$ is **truncated**.

FPro \dashv Arws : Eqmnt \rightarrow Cat

Arws Discards pro-arrows

FPro Freely adds "graph" pro-arrows

Pros Discards arrows

"Equipment of elements"

Given an **eqmnt** $\mathscr E$ and an **eqmnt functor** $\mathscr H:\mathscr E\to\mathsf{Cat},$ the category $\oint_{\mathscr E}\mathscr H$ has:

- ▶ objects $(c, d \in \mathcal{H}(c))$
- morphisms

$$\left(c_1 \stackrel{\gamma}{\rightarrow} c_2, d_1 \mapsto_{\mathscr{H}(\gamma)} d_2\right)$$

pro-arrows

$$\left(c_1 \overset{p}{\nrightarrow} c_2, d_1 \overset{\delta}{\rightarrow}_{\mathscr{H}(p)} d_2\right)$$

 \approx cat. of elements internal to Psh(Δ)

 $Arws(Cat) \in Cat$ is **truncated**.

FPro \dashv Arws : Eqmnt \rightarrow Cat

Arws Discards pro-arrows

FPro Freely adds "graph" pro-arrows

Pros Discards arrows

Three Approaches to the Model

Degrees of Relatedness (RelDTT)

Nuyts and Devriese (2018) @ LICS

- Relational version of what NatTT intends to be
- Perhaps alienating
 - Goes beyond Reynolds' parametricity
 - Much less than higher category theory
- Explains several known relational modalities
- ► Has the virtue of existence as a type system

Degrees of Relatedness (ReIDTT)

Nuyts and Devriese (2018) @ LICS

- Relational version of what NatTT intends to be
- Perhaps alienating:
 - Goes beyond Reynolds' parametricity
 - Much less than higher category theory
- Explains several known relational modalities
- Has the virtue of existence as a type system

- Parametricity is about relations,
- Equip types with multiple, proof-relevant relations s \(t \) indexed by degree is
 - Just one for small types (Bool, $\mathbb{N} \to \mathbb{N}, \dots$),
 - More for larger types $(U_0 \rightarrow U_0, Grp, ...)$.
 - Proofs called i-edges
- Describe function behaviour by saying how functions influence degree of relatedness,
- This explains
 - parametricity
 - ad hoc polymorphism
 - . irrelevance
 - .. shape-irrelevance
 - aspects of algebra, unions, intersections, Prop, ...

- Parametricity is about relations,
- - ightharpoonup Just **one** for **small types** (Bool, $\mathbb{N} \to \mathbb{N}, \ldots$),
 - More for larger types $(U_0 \rightarrow U_0, Grp, ...)$.
 - Proofs called i-edges
- Describe function behaviour by saying how functions influence degree of relatedness,
- This explains
 - parametricity
 - ad hoc polymorphism
 - . irrelevance
 - .. shape-irrelevance
 - aspects of algebra, unions, intersections, Prop, ...

- Parametricity is about relations,
- **Equip types with multiple, proof-relevant relations** $s \sim_i t$ indexed by degree i:
 - \triangleright Just one for small types (Bool, $\mathbb{N} \to \mathbb{N}, \ldots$),
 - More for larger types $(U_0 \rightarrow U_0, Grp, ...)$.
 - Proofs called i-edges
- Describe function behaviour by saying how functions influence degree of relatedness,
- This explains
 - parametricity
 - ad hoc polymorphism
 - . irrelevance
 - .. shape-irrelevance
 - aspects of algebra, unions, intersections, Prop, ...

- Parametricity is about relations,
- **Equip types with multiple, proof-relevant relations** $s \sim_i t$ indexed by **degree** i:
 - ightharpoonup Just **one** for **small types** (Bool, $\mathbb{N} \to \mathbb{N}, \ldots$),
 - More for larger types $(U_0 \rightarrow U_0, Grp, ...)$.
 - Proofs called i-edges
- Describe function behaviour by saying how functions influence degree of relatedness,
- This explains
 - parametricity
 - ad hoc polymorphism
 - . irrelevance
 - .. shape-irrelevance
 - aspects of algebra, unions, intersections, Prop, . . .

- Parametricity is about relations,
- **Equip types with multiple, proof-relevant relations** $s \sim_i t$ indexed by **degree** i:
 - ▶ Just **one** for **small types** (Bool, $\mathbb{N} \to \mathbb{N}, \ldots$),
 - **More** for **larger** types $(U_0 \rightarrow U_0, Grp, ...)$.
 - Proofs called i-edges
- Describe function behaviour by saying how functions influence degree of relatedness,
- This explains
 - parametricity
 - ad hoc polymorphism
 - . irrelevance
 - .. shape-irrelevance
 - aspects of algebra, unions, intersections, Prop, ...

- Parametricity is about relations,
- **Equip types with multiple, proof-relevant relations** $s \sim_i t$ indexed by **degree** i:
 - ▶ Just **one** for **small types** (Bool, $\mathbb{N} \to \mathbb{N}, \ldots$),
 - ▶ More for larger types $(U_0 \rightarrow U_0, Grp, ...)$.
 - Proofs called i-edges.
- Describe function behaviour by saying how functions influence degree of relatedness,
- This explains
 - parametricity
 - ad hoc polymorphism
 - . irrelevance
 - .. shape-irrelevance
 - aspects of algebra, unions, intersections, Prop, . . .

- Parametricity is about relations,
- **Equip types with multiple, proof-relevant relations** $s \sim_i t$ indexed by **degree** i:
 - ▶ Just **one** for **small types** (Bool, $\mathbb{N} \to \mathbb{N}, \ldots$),
 - ▶ More for larger types $(U_0 \rightarrow U_0, Grp, ...)$.
 - Proofs called i-edges.
- Describe function behaviour by saying how functions influence degree of relatedness,
- This explains
 - parametricity
 - ad hoc polymorphism
 - . irrelevance
 - .. shape-irrelevance
 - aspects of algebra, unions, intersections, Prop, ...

- Parametricity is about relations,
- **Equip types with multiple, proof-relevant relations** $s \sim_i t$ indexed by **degree** i:
 - ▶ Just **one** for **small types** (Bool, $\mathbb{N} \to \mathbb{N}, \ldots$),
 - **More** for **larger** types $(U_0 \rightarrow U_0, Grp, ...)$.
 - Proofs called i-edges.
- Describe function behaviour by saying how functions influence degree of relatedness,
- This explains
 - parametricity
 - ad hoc polymorphism
 - . irrelevance
 - .. shape-irrelevance
 - aspects of algebra, unions, intersections, Prop, ...

- Reflexivity: $(a:A) \curvearrowright_i^A (a:A)$ (Semantically, prop. eq. = def. eq.
- **Degradation:** $((a:A) \curvearrowright_i^R (b:B)) \rightarrow ((a:A) \curvearrowright_{i+1}^R (b:B))$
- **Dependency:** $(a:A) \curvearrowright_i^R (b:B)$ presumes $R:A \curvearrowright_{i+1}^U B$
- ▶ **Identity extension:** $(a:A) \curvearrowright_0^A (b:A)$ means a=b:A. \rightsquigarrow heterogeneous \curvearrowright_0 serves as heterogeneous equality.

- ► Reflexivity: $(a = b : A) \rightarrow (a : A) \curvearrowright_i^A (b : A)$ (Semantically, prop. eq. = def. eq.)
- **Degradation:** $((a:A) \curvearrowright_i^R (b:B)) \rightarrow ((a:A) \curvearrowright_{i+1}^R (b:B))$
- **Dependency:** $(a:A) \curvearrowright_i^R (b:B)$ presumes $R:A \curvearrowright_{i+1}^U B$
- ▶ Identity extension: $(a:A) \curvearrowright_0^A (b:A)$ means a=b:A. \rightsquigarrow heterogeneous \curvearrowright_0 serves as heterogeneous equality.

- ► Reflexivity: $(a = b : A) \rightarrow (a : A) \curvearrowright_i^A (b : A)$ (Semantically, prop. eq. = def. eq.)
- **Degradation:** $((a:A) \curvearrowright_i^R (b:B)) \rightarrow ((a:A) \curvearrowright_{i+1}^R (b:B))$
- **Dependency:** $(a:A) \curvearrowright_i^R (b:B)$ presumes $R:A \curvearrowright_{i+1}^U B$

- ► Reflexivity: $(a = b : A) \rightarrow (a : A) \curvearrowright_i^A (b : A)$ (Semantically, prop. eq. = def. eq.)
- **Degradation:** $((a:A) \curvearrowright_i^R (b:B)) \rightarrow ((a:A) \curvearrowright_{i+1}^R (b:B))$
- **Dependency:** $(a:A) \curvearrowright_i^R (b:B)$ presumes $R:A \curvearrowright_{i+1}^U B$
- ▶ Identity extension: $(a : A) \frown_0^{\circ} (b : A)$ means a = b : A. \sim heterogeneous \frown_0 serves as heterogeneous equality.

- ► Reflexivity: $(a = b : A) \rightarrow (a : A) \curvearrowright_i^A (b : A)$ (Semantically, prop. eq. = def. eq.)
- **Degradation:** $((a:A) \curvearrowright_i^R (b:B)) \to ((a:A) \curvearrowright_{i+1}^R (b:B))$
- **Dependency:** $(a:A) \curvearrowright_i^R (b:B)$ presumes $R:A \curvearrowright_{i+1}^U B$
- ldentity extension: $(a:A) \curvearrowright_0^A (b:A)$ means a=b:A.
 - \sim heterogeneous \sim_0 serves as heterogeneous equality.

$$(a:A) \curvearrowright_0^A (b:A)$$

$$(a: A) \cap_{0}^{R} (b: B)$$

$$R: (A: U^0) \frown_1^{U^0} (B: U^0)$$

$$P: (G: \mathsf{Grp}) \curvearrowright_{\mathsf{1}}^{\mathsf{Grp}} (H: \mathsf{Grp})$$

$$Q: (G: \mathsf{Grp}) \frown_1^V (M: \mathsf{Monoid})$$

$$V: (\operatorname{Grp}: \operatorname{U}^1) \curvearrowright_2^{\operatorname{U}^1} (\operatorname{Monoid}: \operatorname{U}^1)$$

Equality.

Heterogeneous equality along ...

Any relation R.

Any logical/algebraic relation P

Any logical/algebraic relation Q along . . .

$$(a:A) \curvearrowright_0^A (b:A)$$

$$(a: A) \frown_{0}^{R} (b: B)$$

$$R: (A: U^0) \frown_1^{U^0} (B: U^0)$$

$$P: (G: Grp) \curvearrowright_{1}^{Grp} (H: Grp)$$

$$Q: (G: \mathsf{Grp}) \frown_1^V (M: \mathsf{Monoid})$$

$$V: (\operatorname{Grp}: \operatorname{U}^1) \curvearrowright_2^{\operatorname{U}^1} (\operatorname{Monoid}: \operatorname{U}^1)$$

Equality.

Heterogeneous equality along ...

Any relation R.

Any logical/algebraic relation P

Any logical/algebraic relation Q along . . .

$$(a:A) \curvearrowright_0^A (b:A)$$

$$(a:A) \curvearrowright_0^R (b:B)$$

$$R: (A: U^0) \frown_1^{U^0} (B: U^0)$$

$$P: (G: \mathsf{Grp}) \frown_{1}^{\mathsf{Grp}} (H: \mathsf{Grp})$$

$$Q: (G: \mathsf{Grp}) \frown_1^V (M: \mathsf{Monoid})$$

$$V: (\mathsf{Grp}:\mathsf{U}^1) \curvearrowright_2^{\mathsf{U}^1} (\mathsf{Monoid}:\mathsf{U}^1)$$

Equality.

Heterogeneous equality along ...

Any relation R.

Any logical/algebraic relation P.

Any logical/algebraic relation Q along . . .

$$(a:A) \curvearrowright_0^A (b:A)$$

$$(a: A) \frown_{0}^{R} (b: B)$$

$$R: (A: U^0) \frown_1^{U^0} (B: U^0)$$

$$P: (G: Grp) \curvearrowright_1^{Grp} (H: Grp)$$

$$Q: (G: \mathsf{Grp}) \frown_1^V (M: \mathsf{Monoid})$$

$$V: (Grp: U^1) \frown_2^{U^1} (Monoid: U^1)$$

Equality.

Heterogeneous equality along ...

Any relation R.

Any logical/algebraic relation P.

Any logical/algebraic relation Q along ...

$$(a:A) \curvearrowright_0^A (b:A)$$

$$(a:A) \curvearrowright_0^R (b:B)$$

$$R: (A: U^0) \frown_1^{U^0} (B: U^0)$$

$$P: (G: Grp) \curvearrowright_1^{Grp} (H: Grp)$$

$$Q: (G: Grp) \curvearrowright_1^V (M: Monoid)$$

$$V: \left(\mathsf{Grp}:\mathsf{U}^1\right) \frown_{\mathsf{2}}^{\mathsf{U}^1} \left(\mathsf{Monoid}:\mathsf{U}^1\right)$$

Equality.

Heterogeneous equality along ...

Any relation R.

Any logical/algebraic relation P.

Any logical/algebraic relation Q along ...

$$(a:A) \curvearrowright_0^A (b:A)$$

$$(a:A) \curvearrowright_0^R (b:B)$$

$$R: (A: U^0) \frown_1^{U^0} (B: U^0)$$

$$P: (G: Grp) \curvearrowright_{1}^{Grp} (H: Grp)$$

$$Q: (G: Grp) \curvearrowright_1^V (M: Monoid)$$

$$V: (Grp: U^1) \frown_2^{U^1} (Monoid: U^1)$$

Equality.

Heterogeneous equality along ...

Any relation R.

Any logical/algebraic relation P.

Any logical/algebraic relation Q along ...

$$(a:A) \curvearrowright_0^A (b:A)$$

$$(a:A) \curvearrowright_0^B (b:B)$$

$$R: (A:U^0) \curvearrowright_1^{U^0} (B:U^0)$$

$$P: (G:Grp) \curvearrowright_1^{Grp} (H:Grp)$$

$$Q: (G:Grp) \curvearrowright_1^V (M:Monoid)$$

$$V: (Grp:U^1) \curvearrowright_0^{U^1} (Monoid:U^1)$$

Equality.

Heterogeneous equality along ...

Any relation R.

Any logical/algebraic relation P.

Any logical/algebraic relation Q along ...

par: types \rightarrow values

if:
$$(\mathbf{par} \mid X : \mathsf{U}^0) \to B X$$

$$R: X \stackrel{\bigcup^{0}}{\bigcirc_{0}} Y \qquad \qquad \downarrow$$

$$R: X \stackrel{\bigcup^{0}}{\bigcirc_{1}} Y \longrightarrow if_{X} \stackrel{BR}{\bigcirc_{0}} if_{Y}$$

$$\downarrow$$

$$\uparrow$$

con : types \rightarrow types

$$B: U^{0} \rightarrow U^{0}$$

$$BX = Bool \rightarrow X \rightarrow X \rightarrow X$$

$$X = Y \longrightarrow BX = BY$$

$$\downarrow \qquad \qquad \downarrow$$

$$X \nearrow_{0}^{U^{0}} Y \longrightarrow BX \nearrow_{0}^{U^{0}} BY$$

$$\downarrow \qquad \qquad \downarrow$$

$$X \nearrow_{1}^{U^{0}} Y \longrightarrow BX \nearrow_{1}^{U^{0}} BY$$

\overline{par} : types \rightarrow values

if:
$$(\mathbf{par} \mid X : \mathsf{U}^0) \to B X$$

$$X = Y \longrightarrow if_X = if_Y$$

$$\downarrow \qquad \qquad \downarrow$$

$$R: X \bigcirc_0^{U^0} Y \qquad \qquad \downarrow$$

$$R: X \bigcirc_1^{U^0} Y \longrightarrow if_X \bigcirc_0^{BR} if_Y$$

$$\downarrow \qquad \qquad \downarrow$$

$$B: U^{0} \rightarrow U^{0}$$

$$BX = Bool \rightarrow X \rightarrow X \rightarrow X$$

$$X = Y \longrightarrow BX = BY$$

$$\downarrow \qquad \qquad \downarrow$$

$$X \nearrow_{0}^{U^{0}} Y \longrightarrow BX \nearrow_{0}^{U^{0}} BY$$

$$\downarrow \qquad \qquad \downarrow$$

$$X \nearrow_{1}^{U^{0}} Y \longrightarrow BX \nearrow_{1}^{U^{0}} BY$$

$par : types \rightarrow values$

if:
$$(\mathbf{par} \mid X : \mathsf{U}^0) \to B X$$

$$B: U^{0} \rightarrow U^{0}$$

$$BX = Bool \rightarrow X \rightarrow X \rightarrow X$$

$$X = Y \longrightarrow BX = BY$$

$$\downarrow \qquad \qquad \downarrow$$

$$X \nearrow_{0}^{U^{0}} Y \longrightarrow BX \nearrow_{0}^{U^{0}} BY$$

$$\downarrow \qquad \qquad \downarrow$$

$$X \nearrow_{1}^{U^{0}} Y \longrightarrow BX \nearrow_{1}^{U^{0}} BY$$

$$\downarrow \qquad \qquad \downarrow$$

$$\downarrow \qquad \qquad \downarrow$$

$$\downarrow \qquad \qquad \downarrow$$

$$\downarrow \qquad \qquad \downarrow$$

$$\uparrow \qquad \qquad \downarrow$$

$par : types \rightarrow values$

if:
$$(\mathbf{par} \mid X : \mathsf{U}^0) \to B X$$

$$B: U^{0} \to U^{0}$$

$$BX = Bool \to X \to X \to X$$

$$X = Y \longrightarrow BX = BY$$

$$\downarrow \qquad \qquad \downarrow$$

$$X \nearrow_{0}^{U^{0}} Y \longrightarrow BX \nearrow_{0}^{U^{0}} BY$$

$$\downarrow \qquad \qquad \downarrow$$

$$X \nearrow_{1}^{U^{0}} Y \longrightarrow BX \nearrow_{1}^{U^{0}} BY$$

$$\downarrow \qquad \qquad \downarrow$$

$par : types \rightarrow values$

if:
$$(\mathbf{par} \mid X : \mathsf{U}^0) \to B X$$

$$B: U^{0} \to U^{0}$$

$$BX = Bool \to X \to X \to X$$

$$X = Y \longrightarrow BX = BY$$

$$\downarrow \qquad \qquad \downarrow$$

$$X \curvearrowright_{0}^{U^{0}} Y \longrightarrow BX \curvearrowright_{0}^{U^{0}} BY$$

$$\downarrow \qquad \qquad \downarrow$$

$$X \curvearrowright_{1}^{U^{0}} Y \longrightarrow BX \curvearrowright_{1}^{U^{0}} BY$$

$$\downarrow \qquad \qquad \downarrow$$

$$\downarrow \qquad \qquad \downarrow$$

$$\downarrow \qquad \qquad \downarrow$$

$$\downarrow \qquad \qquad \downarrow$$

$$\uparrow \qquad \qquad \downarrow$$

The Mode Theory

- ▶ Modes are **depths** $p \in \mathbb{Z}_{\geq -1}$
- Modalities $\mu : p \to q$ are functions $\{0 \le ... \le q\} \to \{(=) \le 0 \le ... \le p \le T\} : i \mapsto i \cdot \mu$ where $f : (\mu \mid x : A) \to B(x)$ sends

$$(r:x \curvearrowright^A_{i\cdot\mu} y) \rightarrow f(x) \curvearrowright^B_i(r) f(y)$$

Modal types

$$\mathsf{mod}_{\mu}\,x \frown_{i}^{\langle \mu|A
angle}\,\mathsf{mod}_{\mu}\,y \ = \ x \frown_{i\cdot\mu}^{A}\,y$$

2-cells are degree-wise inequalities.

Depth p is modelled in cubical sets with p+1 different dimension flavours.

The Mode Theory

- ▶ Modes are **depths** $p \in \mathbb{Z}_{\geq -1}$
- Modalities $\mu: p \to q$ are functions $\{0 \le ... \le q\} \to \{(=) \le 0 \le ... \le p \le T\} : i \mapsto i \cdot \mu$ where $f: (\mu \mid x : A) \to B(x)$ sends

$$(r:x \curvearrowright^{\mathbf{A}}_{i\cdot \mu} y) \rightarrow f(x) \curvearrowright^{\mathbf{B}(r)}_{i} f(y).$$

Modal types:

$$\operatorname{\mathsf{mod}}_{\mu} x \frown^{\langle \mu | A \rangle}_{i} \operatorname{\mathsf{mod}}_{\mu} y = x \frown^{A}_{i \cdot \mu} y$$

2-cells are degree-wise inequalities.

Depth p is modelled in cubical sets with p+1 different dimension flavours.

The Mode Theory

- ▶ Modes are **depths** $p \in \mathbb{Z}_{\geq -1}$
- Modalities $\mu: p \to q$ are functions $\{0 \le ... \le q\} \to \{(=) \le 0 \le ... \le p \le T\} : i \mapsto i \cdot \mu$ where $f: (\mu \mid x : A) \to B(x)$ sends

$$(r:x \curvearrowright^{\mathbf{A}}_{i\cdot \mu} y) \rightarrow f(x) \curvearrowright^{\mathbf{B}(r)}_{i} f(y).$$

Modal types:

$$\operatorname{\mathsf{mod}}_{\boldsymbol{\mu}} x \frown_{i}^{\langle \boldsymbol{\mu} | A \rangle} \operatorname{\mathsf{mod}}_{\boldsymbol{\mu}} y = x \frown_{i \cdot \boldsymbol{\mu}}^{\boldsymbol{A}} y$$

2-cells are degree-wise inequalities.

Depth p is modelled in cubical sets with p+1 different dimension flavours.

The Mode Theory

- ▶ Modes are **depths** $p \in \mathbb{Z}_{\geq -1}$
- Modalities $\mu: p \to q$ are functions $\{0 \le ... \le q\} \to \{(=) \le 0 \le ... \le p \le T\}: i \mapsto i \cdot \mu$ where $f: (\mu: x: A) \to B(x)$ sends

$$(r:x \curvearrowright^{A}_{i\cdot\mu} y) \rightarrow f(x) \curvearrowright^{B(r)}_{i} f(y).$$

Modal types:

$$\operatorname{\mathsf{mod}}_{\boldsymbol{\mu}} x \frown_{i}^{\langle \boldsymbol{\mu} | A \rangle} \operatorname{\mathsf{mod}}_{\boldsymbol{\mu}} y = x \frown_{i \cdot \boldsymbol{\mu}}^{\boldsymbol{A}} y$$

2-cells are degree-wise inequalities.

Depth p is modelled in cubical sets with p+1 different dimension flavours.

The Mode Theory

- ▶ Modes are **depths** $p \in \mathbb{Z}_{\geq -1}$
- Modalities $\mu: p \to q$ are functions $\{0 \le ... \le q\} \to \{(=) \le 0 \le ... \le p \le T\}: i \mapsto i \cdot \mu$ where $f: (\mu \mid x : A) \to B(x)$ sends

$$(r:x \curvearrowright_{i\cdot\mu}^A y) \rightarrow f(x) \curvearrowright_i^{B(r)} f(y).$$

Modal types:

$$\operatorname{\mathsf{mod}}_{\boldsymbol{\mu}} x \frown_{i}^{\langle \boldsymbol{\mu} | A \rangle} \operatorname{\mathsf{mod}}_{\boldsymbol{\mu}} y = x \frown_{i \cdot \boldsymbol{\mu}}^{A} y$$

2-cells are degree-wise inequalities.

Depth p is modelled in cubical sets with p+1 different dimension flavours.

Three Approaches to the Model

Higher Pro-arrows: Directifying Degrees of Relatedness

- ► Equip types with **multiple**, **proof-relevant relations** $s \rightarrow_i t$ indexed by **degree** i
 - Proofs called *i*-jets (pro $^{i-1}$ -arrows).
- Describe function behaviour by saying how functions influence degree and orientation of jets.

- ► Reflexivity: $(a = b : A) \rightarrow ((a : A) \curvearrowright_i^A (b : A))$ (Semantically, prop. eq. = def. eq.)
- **Degradation:** $((a:A) \curvearrowright_i^R (b:B)) \to ((a:A) \curvearrowright_{i+1}^R (b:B))$
- **Dependency:** $(a:A) \curvearrowright_i^R (b:B)$ presumes $R:A \curvearrowright_{i+1}^U B$
- **Identity extension:** $(a:A) \curvearrowright_0^A (b:A)$ means a=b:A. → heterogeneous \curvearrowright_0 serves as heterogeneous equality.

Pretypes

- ▶ Reflexivity: $(a = b : A) \rightarrow ((a : A) \rightarrow_i^A (b : A))$
- **Companion** φ^{\ddagger} / **conjoint** φ^{\dagger} : $((a:A) \rightarrow_i^J (b:B))$ → $((a:A) \leadsto_{i+1}^J (b:B))$
- ▶ Dependency: $(a:A) \rightarrow_i^J (b:B)$ presumes $J:A \rightarrow_{i+1}^U B$

- ► Reflexivity: $(a = b : A) \rightarrow ((a : A) \curvearrowright_i^A (b : A))$ (Semantically, prop. eq. = def. eq.)
- **Degradation:** $((a:A) \curvearrowright_i^R (b:B)) \to ((a:A) \curvearrowright_{i+1}^R (b:B))$
- **Dependency:** $(a:A) \curvearrowright_i^R (b:B)$ presumes $R:A \curvearrowright_{i+1}^U B$
- ldentity extension: $(a:A) \curvearrowright_0^A (b:A)$ means a = b:A. → heterogeneous \curvearrowright_0 serves as heterogeneous equality.

Pretypes!

- ▶ Reflexivity: $(a = b : A) \rightarrow ((a : A) \rightarrow_i^A (b : A))$
- **Companion** φ^{\ddagger} / **conjoint** φ^{\dagger} : $((a:A) \rightarrow_i^J (b:B))$ → $((a:A) \leadsto_{i+1}^J (b:B))$
- **Dependency:** $(a:A) \rightarrow_i^J (b:B)$ presumes $J:A \rightarrow_{i+1}^U B$

- ► Reflexivity: $(a = b : A) \rightarrow ((a : A) \curvearrowright_i^A (b : A))$ (Semantically, prop. eq. = def. eq.)
- **Degradation:** $((a:A) \curvearrowright_i^R (b:B)) \to ((a:A) \curvearrowright_{i+1}^R (b:B))$
- **Dependency:** $(a:A) \curvearrowright_i^R (b:B)$ presumes $R:A \curvearrowright_{i+1}^U B$
- ldentity extension: (a:A) $\curvearrowright_0^A (b:A)$ means a=b:A. \leadsto heterogeneous \curvearrowright_0 serves as heterogeneous equality.

Pretypes!

- ▶ Reflexivity: $(a = b : A) \rightarrow ((a : A) \rightarrow_i^A (b : A))$
- **Companion** φ^{\ddagger} / **conjoint** φ^{\dagger} : $((a:A) \rightarrow_i^J (b:B))$ → $((a:A) \leadsto_{i+1}^J (b:B))$
- ▶ Dependency: $(a:A) \rightarrow_i^J (b:B)$ presumes $J:A \rightarrow_{i+1}^U B$

- ► Reflexivity: $(a = b : A) \rightarrow ((a : A) \curvearrowright_i^A (b : A))$ (Semantically, prop. eq. = def. eq.)
- **Degradation:** $((a:A) \curvearrowright_i^R (b:B)) \rightarrow ((a:A) \curvearrowright_{i+1}^R (b:B))$
- **Dependency:** $(a:A) \curvearrowright_i^R (b:B)$ presumes $R:A \curvearrowright_{i+1}^U B$
- ▶ **Identity extension:** $(a:A) \curvearrowright_0^A (b:A)$ means a=b:A. \sim heterogeneous \sim_0 serves as heterogeneous equality.

Pretypes!

- ▶ Reflexivity: $(a = b : A) \rightarrow ((a : A) \rightarrow_i^A (b : A))$
- **▶** Companion φ^{\ddagger} / conjoint φ^{\dagger} : $((a:A) \rightarrow_i^J (b:B)) \rightarrow ((a:A) \rightsquigarrow_{i+1}^J (b:B))$
- **Dependency:** $(a:A) \rightarrow_i^J (b:B)$ presumes $J:A \rightarrow_{i+1}^U B$

- ► Reflexivity: $(a = b : A) \rightarrow ((a : A) \curvearrowright_i^A (b : A))$ (Semantically, prop. eq. = def. eq.)
- **Degradation:** $((a:A) \curvearrowright_i^R (b:B)) \to ((a:A) \curvearrowright_{i+1}^R (b:B))$
- **Dependency:** $(a:A) \curvearrowright_i^R (b:B)$ presumes $R:A \curvearrowright_{i+1}^U B$
- ▶ **Identity extension:** $(a:A) \curvearrowright_0^A (b:A)$ means a = b:A. \sim heterogeneous \sim_0 serves as heterogeneous equality.

Pretypes!

- ▶ Reflexivity: $(a = b : A) \rightarrow ((a : A) \rightarrow_i^A (b : A))$
- **▶** Companion φ^{\ddagger} / conjoint φ^{\dagger} : $((a:A) \rightarrow_i^J (b:B)) \rightarrow ((a:A) \rightsquigarrow_{i+1}^J (b:B))$
- ▶ Dependency: $(a:A) \rightarrow_i^J (b:B)$ presumes $J:A \rightarrow_{i+1}^U B$

$$(a: A) \rightarrow_0^f (b: B)$$

$$f: (A: U^0) \to_1^{U^0} (B: U^0)$$

$$\varphi: (G: \mathsf{Grp}) \to_1^{\mathsf{Grp}} (H: \mathsf{Grp})$$

$$\psi$$
 : $(G$: Grp $) o ^\mathscr{P}_1$ $(M$: Monoid $)$

$$\mathscr{P}: (\mathsf{Grp}:\mathsf{U}^1) \to_2^{\mathsf{U}^1} (\mathsf{Monoid}:\mathsf{U}^1)$$

a maps to b along ...

Any function f.

Any morphism φ .

Any heterogeneous morphism ψ along . . .

e.g.
$$\mathscr{S} = \operatorname{Hom}_{\mathsf{Monoid}}(U_{\mathsf{Grp}} \sqcup, \sqcup)$$

$$(a: A) \rightarrow_0^f (b: B)$$

$$f:(A:U^0)\rightarrow_1^{U^0}(B:U^0)$$

$$\varphi: (G: \mathsf{Grp}) \to_1^{\mathsf{Grp}} (H: \mathsf{Grp})$$

$$\psi:(G:\mathsf{Grp}) o_1^\mathscr{P}(M:\mathsf{Monoid})$$

$$\mathscr{P}: (\mathsf{Grp}:\mathsf{U}^1) \to_2^{\mathsf{U}^1} (\mathsf{Monoid}:\mathsf{U}^1)$$

a maps to b along ...

Any function f.

Any morphism φ .

Any heterogeneous morphism ψ along . . .

e.g.
$$\mathscr{P} = \operatorname{Hom}_{\mathsf{Monoid}}(U_{\mathsf{Grp}} \sqcup, \sqcup)$$

$$(a: A) \rightarrow_0^f (b: B)$$

$$f: (A: U^0) \rightarrow_1^{U^0} (B: U^0)$$

$$\varphi: (G: Grp) \rightarrow_1^{Grp} (H: Grp)$$

$$\psi:(G:\mathsf{Grp}) o^{\mathscr{P}}_1(M:\mathsf{Monoid})$$

$$\mathscr{P}: (\mathsf{Grp}:\mathsf{U}^1) \to_2^{\mathsf{U}^1} (\mathsf{Monoid}:\mathsf{U}^1)$$

a maps to b along ...

Any function f.

Any morphism φ .

Any heterogeneous morphism ψ along . . .

e.g.
$$\mathscr{P} = \operatorname{Hom}_{\mathsf{Monoid}}(U_{\mathsf{Grp}} \sqcup, \sqcup)$$

$$(a:A) \rightarrow_0^f (b:B)$$

$$f: (A: U^0) \rightarrow_1^{U^0} (B: U^0)$$

$$\varphi: (G: Grp) \rightarrow_1^{Grp} (H: Grp)$$

$$\psi: (G: Grp) \rightarrow_1^{\mathscr{P}} (M: Monoid)$$

$$\mathscr{P}: (\mathsf{Grp}:\mathsf{U}^1) \to_2^{\mathsf{U}^1} (\mathsf{Monoid}:\mathsf{U}^1)$$

a maps to b along ...

Any function f.

Any morphism φ .

Any heterogeneous morphism ψ along . . .

e.g.
$$\mathscr{P} = \operatorname{Hom}_{\mathsf{Monoid}}(U_{\mathsf{Grp}} \sqcup, \sqcup)$$

$$(a:A) \rightarrow_0^f (b:B)$$

$$f: (A: U^0) \to_1^{U^0} (B: U^0)$$

$$\varphi: (G: Grp) \rightarrow_1^{Grp} (H: Grp)$$

$$\psi: (G: Grp) \rightarrow_1^{\mathscr{P}} (M: Monoid)$$

$$\mathscr{P}: (\mathsf{Grp}:\mathsf{U}^1) \to_2^{\mathsf{U}^1} (\mathsf{Monoid}:\mathsf{U}^1)$$

a maps to b along ...

Any function f.

Any morphism φ .

Any heterogeneous morphism ψ along . . .

Any profunctor ${\mathscr P}$

e.g. $\mathscr{P} = \operatorname{Hom}_{\mathsf{Monoid}}(U_{\mathsf{Grp}} \sqcup, \sqcup)$

$$(a:A) \rightarrow_0^f (b:B)$$

$$f: (A: U^0) \rightarrow_1^{U^0} (B: U^0)$$

$$\varphi: (G: Grp) \rightarrow_1^{Grp} (H: Grp)$$

$$\psi: (G: Grp) \rightarrow_1^{\mathscr{P}} (M: Monoid)$$

$$\mathscr{P}: (\mathsf{Grp}:\mathsf{U}^1) \to_2^{\mathsf{U}^1} (\mathsf{Monoid}:\mathsf{U}^1)$$

a maps to b along ...

Any function f.

Any morphism φ .

Any heterogeneous morphism ψ along . . .

e.g.
$$\mathscr{P} = \operatorname{Hom}_{\mathsf{Monoid}}(U_{\mathsf{Grp}} \sqcup, \sqcup)$$

lim⊕

lim[⊕]

lim[⊕]

lim[⊕]

ftr[⊕]

lim[⊕]

lim[⊖]

lim[⊖]

lim[⊖]

lim[⊖]

lim[⊖]

NatPT instantiates MTT (Multimode Type Theory) with:

- ▶ Modes are **dimensions** $p \in \mathbb{N}$ (+ you can mark a degree i < n as symmetric)
- Modalities $\mu : p \rightarrow q$ are certain functions

$$\{0,\ldots,q-1\}\to\{(=),0,\ldots,p-1,\top\}\times\{\circledast,\oplus,\ominus,\otimes\}$$
 where $f:(\mu:x:A)\to B(x)$ sends

$$(r: x \rightarrow_{i \cdot \mu}^{A} y) \rightarrow f(x) \rightarrow_{i}^{B(r)} f(y)$$

Modal types

2-cells are degree-wise inequalities.

NatPT instantiates MTT (Multimode Type Theory) with:

- ▶ Modes are dimensions $p \in \mathbb{N}$ (+ you can mark a degree i < n as symmetric)
- Modalities $\mu : p \rightarrow q$ are certain functions

$$\{0,\ldots,q-1\}\to\{(=),0,\ldots,p-1,\top\}\times\{\circledast,\oplus,\ominus,\otimes\}$$
 where $f:(\mu:x:A)\to B(x)$ sends

$$(r: x \rightarrow_{i \cdot \mu}^{A} y) \rightarrow f(x) \rightarrow_{i}^{B(r)} f(y).$$

Modal types

$$\mathsf{mod}_{\mu}\,x o_{l}^{\langle \mu | A
angle} \,\mathsf{mod}_{\mu}\,y \quad = \quad x o_{l \cdot \mu}^{A}\,y$$

2-cells are degree-wise inequalities

NatPT instantiates MTT (Multimode Type Theory) with:

- ▶ Modes are **dimensions** $p \in \mathbb{N}$ (+ you can mark a degree i < n as symmetric)
- Modalities $\mu : p \rightarrow q$ are certain functions

$$\{0, \dots, q-1\} \to \{(=), 0, \dots, p-1, \top\} \times \{\circledast, \oplus, \ominus, \otimes\}$$

where $f: (\mu \mid x : A) \rightarrow B(x)$ sends

$$(r: x \rightarrow_{i\cdot\mu}^{A} y) \rightarrow f(x) \rightarrow_{i}^{B(r)} f(y).$$

Modal types

$$\operatorname{\mathsf{mod}}_{\boldsymbol{\mu}} x \multimap_{i}^{\langle \boldsymbol{\mu} | A \rangle} \operatorname{\mathsf{mod}}_{\boldsymbol{\mu}} y = x \multimap_{i \cdot \boldsymbol{\mu}}^{A} y$$

2-cells are degree-wise inequalities.

NatPT instantiates MTT (Multimode Type Theory) with:

- ▶ Modes are **dimensions** $p \in \mathbb{N}$ (+ you can mark a degree i < n as symmetric)
- Modalities $\mu : p \rightarrow q$ are certain functions

$$\{0,\dots,q-1\} \to \{ (=),0,\dots,p-1,\top \} \times \{\circledast,\oplus,\ominus,\otimes \}$$

where $f: (\mu \mid x : A) \rightarrow B(x)$ sends

$$(r: x \rightarrow_{i\cdot\mu}^{A} y) \rightarrow f(x) \rightarrow_{i}^{B(r)} f(y).$$

Modal types:

$$\operatorname{\mathsf{mod}}_{\boldsymbol{\mu}} x \to_{i}^{\langle \boldsymbol{\mu} | A \rangle} \operatorname{\mathsf{mod}}_{\boldsymbol{\mu}} y = x \to_{i \cdot \boldsymbol{\mu}}^{\boldsymbol{A}} y$$

2-cells are degree-wise inequalities

NatPT instantiates MTT (Multimode Type Theory) with:

- ▶ Modes are **dimensions** $p \in \mathbb{N}$ (+ you can mark a degree i < n as symmetric)
- Modalities $\mu : p \rightarrow q$ are certain functions

$$\{0,\ldots,q-1\}\to\{(=),0,\ldots,p-1,\top\}\times\{\circledast,\oplus,\ominus,\otimes\}$$

where $f: (\mu \mid x : A) \rightarrow B(x)$ sends

$$(r: x \rightarrow_{i\cdot\mu}^{A} y) \rightarrow f(x) \rightarrow_{i}^{B(r)} f(y).$$

Modal types:

$$\operatorname{\mathsf{mod}}_{\boldsymbol{\mu}} x \to_{i}^{\langle \boldsymbol{\mu} | A \rangle} \operatorname{\mathsf{mod}}_{\boldsymbol{\mu}} y = x \to_{i \cdot \boldsymbol{\mu}}^{\boldsymbol{A}} y$$

2-cells are degree-wise inequalities.

Three Approaches to the Model

The Model

The Twisted Prism Functor

 Δ is a skeleton of (hence \simeq) NEFinLinOrd.

Twisted Prism Functor [PK20

 $\sqcup \ltimes \mathbb{I} : \mathsf{NEFinLinOrd} \to \mathsf{NEFinLinOrd}$ $W \mapsto W^\mathsf{op} \uplus_{<} W$

$$a \longrightarrow b \qquad \mapsto \qquad (a,0) \longleftarrow (b,0)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad$$

MTraS shape modelled by $\square \bowtie \mathbb{I}$ reconciles:

- ► Hom as a contra-/covariant bifunctor.
- ► Hom as a constrained function type.

I as an MTraS-shape is better behaved on ⋈:

Twisted Cube Category ⋈ [PK20]

(Roughly) the subcategory of NEFinLinOrd (or Δ) generated by \top and $\square \ltimes \mathbb{I}$.

- \rightarrow Use \bowtie instead of \triangle .
- Pinyo & Kraus carve ⋈ out of graph category.

The Twisted Prism Functor

 Δ is a skeleton of (hence \simeq) NEFinLinOrd.

Twisted Prism Functor [PK20]

 $\sqcup \ltimes \mathbb{I} : \mathsf{NEFinLinOrd} \to \mathsf{NEFinLinOrd} : W \mapsto W^\mathsf{op} \uplus_{<} W$

MTraS shape modelled by $\square \ltimes \mathbb{I}$ reconciles:

- ► Hom as a contra-/covariant bifunctor.
- ► Hom as a constrained function type

I as an MTraS-shape is better behaved on ⋈:

Twisted Cube Category ⋈ [PK20]

(Roughly) the subcategory of NEFinLinOrd (or Δ) generated by \top and $\square \ltimes \mathbb{I}$.

- \rightarrow Use \bowtie instead of \triangle .
- Pinyo & Kraus carve ⋈ out of graph category.

The Twisted Prism Functor

 Δ is a skeleton of (hence \simeq) NEFinLinOrd.

Twisted Prism Functor [PK20]

 $\sqcup \ltimes \mathbb{I} : \mathsf{NEFinLinOrd} \to \mathsf{NEFinLinOrd} : W \mapsto W^\mathsf{op} \uplus_{<} W$

MTraS shape modelled by $\square \bowtie \mathbb{I}$ reconciles:

- Hom as a contra-/covariant bifunctor,
- ► Hom as a constrained function type.

 \mathbb{I} as an MTraS-shape is better behaved on \bowtie :

Twisted Cube Category ⋈ [PK20]

(Roughly) the subcategory of NEFinLinOrd (or Δ) generated by \top and $\square \ltimes \mathbb{I}$.

- \rightarrow Use \bowtie instead of \triangle .
- Pinyo & Kraus carve ⋈ out of graph category.

The Twisted Prism Functor

 Δ is a skeleton of (hence \simeq) NEFinLinOrd.

Twisted Prism Functor [PK20]

 $\sqcup \bowtie \mathbb{I} : \mathsf{NEFinLinOrd} \to \mathsf{NEFinLinOrd} : W \mapsto W^\mathsf{op} \uplus_{<} W$

$$a \longrightarrow b \qquad \mapsto \qquad igg(a,0) \longleftarrow (b,0) \ \downarrow \qquad \downarrow \ (a,1) \longrightarrow (b,1)$$

MTraS shape modelled by $\square \bowtie \mathbb{I}$ reconciles:

- Hom as a contra-/covariant bifunctor,
- ► Hom as a constrained function type.

 \mathbb{I} as an MTraS-shape is better behaved on \bowtie :

Twisted Cube Category ⋈ [PK20]

(Roughly) the subcategory of NEFinLinOrd (or Δ) generated by \top and $\square \ltimes \mathbb{I}$.

- \rightarrow Use \bowtie instead of \triangle .
- Pinyo & Kraus carve ⋈ out of graph category.

The Twisted Prism Functor

 Δ is a skeleton of (hence \simeq) NEFinLinOrd.

Twisted Prism Functor [PK20]

 $\sqcup \ltimes \mathbb{I} : \mathsf{NEFinLinOrd} \to \mathsf{NEFinLinOrd} : W \mapsto W^\mathsf{op} \uplus_{<} W$

$$a \longrightarrow b \qquad \mapsto \qquad igg(egin{aligned} (a,0) &\longleftarrow (b,0) \\ & & & \downarrow \\ (a,1) &\longleftarrow (b,1) \end{aligned}$$

MTraS shape modelled by $\square \bowtie \mathbb{I}$ reconciles:

- Hom as a contra-/covariant bifunctor,
- ► Hom as a constrained function type.

 \mathbb{I} as an MTraS-shape is better behaved on \bowtie :

Twisted Cube Category ⋈ [PK20]

(Roughly) the subcategory of NEFinLinOrd (or Δ) generated by \top and $\square \bowtie \mathbb{I}$.

- \rightarrow Use \bowtie instead of \triangle .
- Pinyo & Kraus carve ⋈ out of graph category.

Jet Set of dimension *n*

Set equipped with *n* Prop-valued **jet-relations** \rightarrow *i* such that:

- \rightarrow_i is reflexive
- \rightarrow_i implies \rightsquigarrow_{i+1}
- ▶ Intervals $(\multimap_i) = \{0 \multimap_i 1\}$
- ▶ Twisted prism functor $\square \bowtie (|->_i|)$ only **op**s degree if
- ▶ **Jet cubes** are generated by \top and $\square \ltimes (\multimap_i)$
 - What is a morphism of jet cubes?

Jet Set of dimension *n*

Set equipped with *n* Prop-valued **jet-relations** \rightarrow *i* such that:

- \rightarrow_i is reflexive
- \rightarrow_i implies \rightsquigarrow_{i+1}
- ▶ Intervals $(\rightarrow_i) = \{0 \rightarrow_i 1\}$
- **Twisted prism** functor $\sqcup \ltimes (| \rightarrow_i |)$ only **op**s degree *i*
- ▶ **Jet cubes** are generated by \top and $\square \ltimes (\multimap_i)$
 - What is a morphism of jet cubes?

Jet Set of dimension *n*

Set equipped with *n* Prop-valued **jet-relations** \rightarrow *i* such that:

- \rightarrow_i is reflexive
- \rightarrow_i implies \rightsquigarrow_{i+1}
- ▶ Intervals $(\rightarrow_i) = \{0 \rightarrow_i 1\}$
- **Twisted prism** functor $\bigsqcup \bowtie (| \rightarrow_i |)$ only **op**s degree *i*
- ▶ **Jet cubes** are generated by \top and $\square \ltimes (|\rightarrow_i|)$
 - What is a morphism of jet cubes?

- ▶ What interval operations do you want? \rightarrow Cube_M \cong Kleisli(M)^{op}
- ▶ Do you want diagonals? $\Rightarrow \exists \in \{\Box, \Box\}$
- ► Turns out only Cube and Cube really work.

- ▶ What interval operations do you want? \Rightarrow Cube_M \cong Kleisli(M)^{op}
- ► Turns out only Cube_{0.1.¬} and Cube_{FreeBoolAla} really work

- ▶ What interval operations do you want? \rightarrow Cube $_M^{\square} \cong \text{Kleisli}(M)^{\text{op}}$
- ► Turns out only Cube_{0.1.¬} and Cube_{FreeBoolAla} really work

- ▶ What interval operations do you want? \Rightarrow Cube $_M^{\square} \cong$ Kleisli $(M)^{op}$
- ▶ Do you want diagonals? $\Rightarrow \exists \in \{\Box, \Box\}$
- ► Turns out only Cube_{0.1.¬} and Cube_{FreeBoolAlg} really work.

- ▶ What interval operations do you want? \rightarrow Cube $_M^{\square} \cong \text{Kleisli}(M)^{\text{op}}$
- ► Turns out only Cube_{0.1.¬} and Cube_{FreeBoolAla} really work

- ▶ What interval operations do you want? \Rightarrow Cube_M \cong Kleisli(M)^{op}
- ▶ Do you want diagonals? $\Rightarrow \exists \in \{\Box, \varnothing\}$
- ► Turns out only Cube_{0.1.¬} and Cube_{FreeBoolAla} really work.

When is a morphism of cubes a morphism of jet cubes?

Semantic Modalities

Three Approaches to the Model

- [BCMMPS20] Birkedal, L., Clouston, R., Mannaa, B., Møgelberg, R. E., Pitts, A. M., & Spitters, B. (2020). Modal dependent type theory and dependent right adjoints. MSCS, 30(2), 118–138. https://doi.org/10.1017/S0960129519000197
 - [BT17] Boulier, S., & Tabareau, N. (2017). Model structure on the universe in a two level type theory. https://hal.archives-ouvertes.fr/hal-01579822
 - [CL04] Cheng, E., & Lauda, A. (2004). Higher-Dimensional Categories: an illustrated guide book. http://eugeniacheng.com/guidebook/
 - [GKNB21] Gratzer, D., Kavvos, G. A., Nuyts, A., & Birkedal, L. (2021). Multimodal Dependent Type Theory. LMCS, Volume 17, Issue 3. https://doi.org/10.46298/lmcs-17/3:11)2021
 - [HS97] Hofmann, M., & Streicher, T. (1997). Lifting Grothendieck Universes. Unpublished note.
 - [LOPS18] Licata, D. R., Orton, I., Pitts, A. M., & Spitters, B. (2018). Internal Universes in Models of Homotopy Type Theory. FSCD 2018. https://doi.org/10.4230/LIPIcs.FSCD.2018.22
 - [ND18] Nuyts, A., & Devriese, D. (2018). Degrees of Relatedness: A Unified Framework for Parametricity, Irrelevance, Ad Hoc Polymorphism, Intersections. Unions and Aloebra in Dependent Type Theory. LICS 2018.
 - [ND24] Nuyts, A., & Devriese, D. (2024). Transpension: The Right Adjoint to the Pi-type. Accepted at LMCS.
 - [Nuv20] Nuvts. A. (2020). Contributions to Multimode and Presheaf Type Theory [Phdthesis. KU Leuven]. https://lirias.kuleuven.be/3065223
 - [NVD17] Nuyts, A., Vezzosi, A., & Devriese, D. (2017). Parametric quantifiers for dependent type theory. PACMPL, 1(ICFP), 32:1-32:29. https://doi.org/10.1145/3110276
 - [PK20] Pinyo, G., & Kraus, N. (2020). From Cubes to Twisted Cubes via Graph Morphisms in Type Theory, TYPES 2019 / LIPIcs.
 - [Sim97] Simpson, C. (1997), Limits in n-categories, ArXiv alg-geom/9708010
 - [Tam99] Tamsamani, Z. (1999). Sur des notions de n-categorie et n-groupoide non strictes via des ensembles multi-simpliciaux (On the notions of a nonstrict n-category and n-groupoid via multisimplicial sets). K-Theory, 16(1), 51–99.
 - [Woo82] Wood, R. J. (1982). Abstract pro arrows I. Cahiers de Topologie et Géométrie Différentielle. 23(3), 279–290.
 - [Woo85] Wood, R. J. (1985). Proarrows II. Cahiers de Topologie et Géométrie Différentielle Catégoriques, 26(2), 135-168.

Thanks!

Questions?

- ▶ i-edge relations
- **Dependency:** $r: a \curvearrowright_i^R b$ presumes $R: A \curvearrowright_{i+1}^U B$
- **Degradation:** $a \sim_i b \Rightarrow a \sim_{i+1}$
- Modalities change indices:

n-equipments

- ▶ *i*-jet (proⁱ⁻¹-arrow) relations \rightarrow_i
- **Dependency:** $j: A \rightarrow_{i}^{J} b$ presumes $J: A \rightarrow_{i+1}^{U} E$
- Companion / conjoint: $(\pm, \dagger): a \rightarrow b \Rightarrow a \Leftrightarrow b \rightarrow b$
- Modalities change indices & orientation:

- ightharpoonup *i-edge* relations \sim_i
- **Dependency:**

$$r: a \curvearrowright_{i=1}^{R} b$$
 presumes $R: A \curvearrowright_{i=1}^{U} B$

Degradation

$$a \frown_i b \Rightarrow a \frown_{i+1} b$$

Modalities change indices:

n-equipments

- ▶ *i*-jet (proⁱ⁻¹-arrow) relations \rightarrow_i
- **▶** Dependency:

$$j: a \rightarrow_{i}^{J} b$$
 presumes $J: A \rightarrow_{i+1}^{U} B$

► Companion / conjoint

$$(\ddagger,\dagger):a\rightarrow_i b\Rightarrow a\rightsquigarrow_{i+1} b$$

Modalities change indices & orientation

- ► *i*-edge relations \frown_i
- **Dependency:**

$$r: a \curvearrowright_i^R b$$
 presumes $R: A \curvearrowright_{i+1}^U B$

Degradation:

$$a \frown_i b \Rightarrow a \frown_{i+1} b$$

Modalities change indices:

n-equipments

- ▶ *i*-jet (proⁱ⁻¹-arrow) relations \rightarrow_i
- **▶** Dependency:

$$j: a \rightarrow_i^J b$$
 presumes $J: A \rightarrow_{i+1}^U B$

► Companion / conjoint:

$$(\ddagger,\dagger):a\rightarrow_i b\Rightarrow a\rightsquigarrow_{i+1} b$$

Modalities change indices & orientation

- ▶ i-edge relations ¬i
- **Dependency:**

$$r: a \curvearrowright_{i=1}^{R} b$$
 presumes $R: A \curvearrowright_{i=1}^{U} B$

Degradation:

$$a \frown_i b \Rightarrow a \frown_{i+1} b$$

Modalities change indices:

n-equipments

- ▶ *i*-jet (proⁱ⁻¹-arrow) relations \rightarrow_i
- **Dependency:**

$$j: a \rightarrow_{i}^{J} b$$
 presumes $J: A \rightarrow_{i+1}^{U} B$

► Companion / conjoint:

$$(\ddagger,\dagger):a \rightarrow_i b \Rightarrow a \rightsquigarrow_{i+1} b$$

Modalities change indices & orientation:

irr: values \rightarrow values

irr: values \rightarrow values

irr : values \rightarrow values

irr: values \rightarrow values

irr: values \rightarrow values

irr: values \rightarrow values

