Representation Theory and its Applications in Physics

June 5, 2024

Presented by

Max Varverakis (mvarvera@calpoly.edu)

Outline:

- 1. Introduction to Representation Theory
- 2. Examples in Physics
- 3. The Braid Group
- 4. Physical Applications of the Braid Group

Definition

Introduction to Representation Theory

00000000000000

Let G be a group. A representation of G is a homomorphism from G to a group of operators on a linear vector space *V*. The dimension of *V* is the *dimension* or *degree* of the representation.

The Braid Group

Definition

Introduction to Representation Theory

00000000000000

Let G be a group. A representation of G is a homomorphism from G to a group of operators on a linear vector space *V*. The dimension of *V* is the *dimension* or *degree* of the representation.

The Braid Group

If X is a representation of G on a vector space V, then X is a map

$$g \in G \xrightarrow{X} X(g),$$

where X(g) is an operator on the V.

Definition of a Representation

Definition

Let G be a group. A representation of G is a homomorphism from G to a group of operators on a linear vector space V. The dimension of V is the dimension or degree of the representation.

The Braid Group

If X is a representation of G on a vector space V, then X is a map

$$g \in G \xrightarrow{X} X(g),$$

where X(g) is an operator on the V.

Remark

If V is finite-dimensional with basis $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$, then X can be realized as an $n \times n$ matrix.

$$X(gh) = X(g)X(h), \forall g, h \in G$$

The Braid Group

Properties of Representations

Group Multiplication

Representations are group morphisms, so they satisfy the group multiplication rule:

$$X(gh) = X(g)X(h), \quad \forall g, h \in G.$$

The Braid Group

Representations are group morphisms, so they satisfy the group multiplication rule:

$$X(gh) = X(g)X(h), \quad \forall g, h \in G.$$

The Braid Group

Invertibility

Introduction to Representation Theory

0000000000000

If X is a representation of G, then $X(g)^{-1} = X(g^{-1}), \forall g \in G$.

Representations are group morphisms, so they satisfy the group multiplication rule:

$$X(gh) = X(g)X(h), \quad \forall g, h \in G.$$

The Braid Group

Invertibility

Introduction to Representation Theory

0000000000000

If X is a representation of G, then $X(g)^{-1} = X(g^{-1}), \forall g \in G$.

Consequences:

Representations are group morphisms, so they satisfy the group multiplication rule:

$$X(gh) = X(g)X(h), \quad \forall g, h \in G.$$

The Braid Group

Invertibility

Introduction to Representation Theory

00000000000000

If X is a representation of G, then $X(g)^{-1} = X(g^{-1}), \forall g \in G$.

Consequences:

1. X(e) = I, where e is the identity element of the group and I is the identity operator.

Representations are group morphisms, so they satisfy the group multiplication rule:

$$X(gh) = X(g)X(h), \forall g, h \in G.$$

The Braid Group

Invertibility

Introduction to Representation Theory

00000000000000

If X is a representation of G, then $X(g)^{-1} = X(g^{-1}), \forall g \in G$.

Consequences:

- 1. X(e) = I, where e is the identity element of the group and I is the identity operator.
- **2.** In the matrix presentation of X, X(g) is invertible for all $g \in G$.

The Braid Group

Example: The Trivial Representation

Trivial Representation of a Group

For any group G, the trivial representation takes $g\mapsto 1$ for all $g\in G$.

The Braid Group

Trivial Representation of a Group

For any group G, the trivial representation takes $g \mapsto 1$ for all $g \in G$.

Comments:

Introduction to Representation Theory

0000000000000

The trivial representation is always one-dimensional.

Example: The Trivial Representation

Trivial Representation of a Group

For any group G, the trivial representation takes $g \mapsto 1$ for all $g \in G$.

Comments:

Introduction to Representation Theory

00000000000000

- The trivial representation is always one-dimensional.
- For groups with more than one element, the trivial representation is not injective, so we call it a degenerate representation.

The Braid Group

Example: The Trivial Representation

Trivial Representation of a Group

For any group G, the trivial representation takes $g \mapsto 1$ for all $g \in G$.

Comments:

Introduction to Representation Theory

aaaaaaaaaaaa

- The trivial representation is always one-dimensional.
- For groups with more than one element, the trivial representation is not injective, so we call it a degenerate representation.

The Braid Group

If a representation is injective, then it is a *faithful representation*.

Introduction to Representation Theory

00000000000000

The defining representation D of S_n encodes the action of the symmetric group on the standard basis of \mathbb{R}^n . If a permutation sends i to i, then place a 1 the i-th column and i-th row of the representation matrix.

The Braid Group

The defining representation D of S_n encodes the action of the symmetric group on the standard basis of \mathbb{R}^n . If a permutation sends i to i, then place a 1 the i-th column and i-th row of the representation matrix.

The Braid Group

E.g., in S_3 :

Introduction to Representation Theory

$$D((23)) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \qquad D((123)) = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

The defining representation D of S_n encodes the action of the symmetric group on the standard basis of \mathbb{R}^n . If a permutation sends i to i, then place a 1 the i-th column and i-th row of the representation matrix.

The Braid Group

E.g., in S_3 :

Introduction to Representation Theory

$$D((23)) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \qquad D((123)) = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

The defining representation D of S_n encodes the action of the symmetric group on the standard basis of \mathbb{R}^n . If a permutation sends i to i, then place a 1 the i-th column and i-th row of the representation matrix.

The Braid Group

E.g., in S_3 :

Introduction to Representation Theory

$$D((23)) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \qquad D((123)) = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

Example: A Faithful Representation of S_n

Defining representation of S_n

The defining representation D of S_n encodes the action of the symmetric group on the standard basis of \mathbb{R}^n . If a permutation sends i to i, then place a 1 the i-th column and i-th row of the representation matrix.

The Braid Group

E.g., in S_3 :

$$D((23)) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \qquad D((123)) = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

The defining representation of S_n is *n*-dimensional.

The defining representation D of S_n encodes the action of the symmetric group on the standard basis of \mathbb{R}^n . If a permutation sends i to i, then place a 1 the i-th column and i-th row of the representation matrix.

The Braid Group

E.g., in S_3 :

Introduction to Representation Theory

$$D((23)) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \qquad D((123)) = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

- The defining representation of S_n is *n*-dimensional.
- This representation is faithful.

The Braid Group

Representations also work for continuous groups!

Introduction to Representation Theory

Representations also work for continuous groups!

Introduction to Representation Theory

00000000000000

Let $G = \{R(\phi), 0 \le \phi < 2\pi\}$ be the group of continuous rotations in the xy-plane (V_2) about the origin.

The Braid Group

Representations also work for continuous groups!

Introduction to Representation Theory

00000000000000

Let $G = \{R(\phi), 0 \le \phi < 2\pi\}$ be the group of continuous rotations in the xy-plane (V_2) about the origin.

The Braid Group

Group operation: $R(\phi_1)R(\phi_2) = R(\phi_1 + \phi_2) = R(\phi_2)R(\phi_1)$.

Representations also work for continuous groups!

Let $G = \{R(\phi), 0 \le \phi < 2\pi\}$ be the group of continuous rotations in the xy-plane (V_2) about the origin.

The Braid Group

Group operation: $R(\phi_1)R(\phi_2) = R(\phi_1 + \phi_2) = R(\phi_2)R(\phi_1)$.

Identity Element: R(0) = I.

Introduction to Representation Theory

Representations also work for continuous groups!

Let $G = \{R(\phi), 0 \le \phi < 2\pi\}$ be the group of continuous rotations in the xy-plane (V_2) about the origin.

The Braid Group

Group operation: $R(\phi_1)R(\phi_2) = R(\phi_1 + \phi_2) = R(\phi_2)R(\phi_1)$.

Identity Element: R(0) = I.

Introduction to Representation Theory

00000000000000

Inverses: $R(\phi)^{-1} = R(-\phi) = R(2\pi - \phi)$.

Representations also work for continuous groups!

Let $G = \{R(\phi), 0 \le \phi < 2\pi\}$ be the group of continuous rotations in the xy-plane (V_2) about the origin.

The Braid Group

Group operation: $R(\phi_1)R(\phi_2) = R(\phi_1 + \phi_2) = R(\phi_2)R(\phi_1)$.

Identity Element: R(0) = I.

Introduction to Representation Theory

00000000000000

Inverses: $R(\phi)^{-1} = R(-\phi) = R(2\pi - \phi)$.

Periodicity Condition: $R(\phi \pm 2\pi) = R(\phi)$.

Representations also work for continuous groups!

Let $G = \{R(\phi), 0 \le \phi < 2\pi\}$ be the group of continuous rotations in the xy-plane (V_2) about the origin.

The Braid Group

Group operation: $R(\phi_1)R(\phi_2) = R(\phi_1 + \phi_2) = R(\phi_2)R(\phi_1)$.

Identity Element: R(0) = I.

Inverses: $R(\phi)^{-1} = R(-\phi) = R(2\pi - \phi)$.

Periodicity Condition: $R(\phi \pm 2\pi) = R(\phi)$.

Representation: Let X be a representation of R on V_2 with¹

$$X(\phi)\mathbf{e}_1 = \mathbf{e}_1 \cdot \cos \phi + \mathbf{e}_2 \cdot \sin \phi$$

$$X(\phi)\mathbf{e}_2 = -\mathbf{e}_1 \cdot \sin \phi + \mathbf{e}_2 \cdot \cos \phi$$

 $^{{}^{1}\}mathbf{e}_{1}$ and \mathbf{e}_{2} are orthonormal basis vectors of V_{2} .

Representations also work for continuous groups!

Let $G = \{R(\phi), 0 \le \phi < 2\pi\}$ be the group of continuous rotations in the xy-plane (V_2) about the origin.

The Braid Group

Group operation: $R(\phi_1)R(\phi_2) = R(\phi_1 + \phi_2) = R(\phi_2)R(\phi_1)$.

Identity Element: R(0) = I.

Inverses: $R(\phi)^{-1} = R(-\phi) = R(2\pi - \phi)$.

Periodicity Condition: $R(\phi \pm 2\pi) = R(\phi)$.

Representation: Let X be a representation of R on V_2 with¹

$$\begin{array}{l} X(\phi)\mathbf{e}_1 = \mathbf{e}_1 \cdot \cos \phi + \mathbf{e}_2 \cdot \sin \phi \\ X(\phi)\mathbf{e}_2 = -\mathbf{e}_1 \cdot \sin \phi + \mathbf{e}_2 \cdot \cos \phi \end{array} \} \implies \boxed{ X(\phi) = \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix} }$$

 $^{{}^{1}\}mathbf{e}_{1}$ and \mathbf{e}_{2} are orthonormal basis vectors of V_{2} .

Introduction to Representation Theory

○○○○○●○○○○○○

► Can you think of other ways to represent 2D rotations?

Introduction to Representation Theory

○○○○○●○○○○○○

- ► Can you think of other ways to represent 2D rotations?
- ▶ What about $e^{i\phi}$ parameterization?

00000000000000

- ► Can you think of other ways to represent 2D rotations?
- What about $e^{i\phi}$ parameterization?
- How many ways can we represent 2D rotations?

- Can you think of other ways to represent 2D rotations?
- What about $e^{i\phi}$ parameterization?
- How many ways can we represent 2D rotations?
- Are certain representations equivalent?

The Braid Group

- ► Can you think of other ways to represent 2D rotations?
- What about $e^{i\phi}$ parameterization?
- How many ways can we represent 2D rotations?
- Are certain representations equivalent?
- What does it mean for representations to be equivalent? Unique?

00000000000000 **Thoughts**

Introduction to Representation Theory

- ► Can you think of other ways to represent 2D rotations?
- What about $e^{i\phi}$ parameterization?
- How many ways can we represent 2D rotations?
- Are certain representations equivalent?
- What does it mean for representations to be equivalent? Unique?

Question

How do we classify representations of a group?

Introduction to Representation Theory

00000000000000

Two representations are equivalent if they are related by a similarity transformation.

Introduction to Representation Theory

00000000000000

Two representations are equivalent if they are related by a similarity transformation.

If two representations are equivalent, then their matrix forms have the same *trace*.

The Braid Group

Introduction to Representation Theory

00000000000000

Two representations are equivalent if they are related by a similarity transformation.

If two representations are equivalent, then their matrix forms have the same *trace*.

The Braid Group

Equivalent representations form an equivalence class.

Equivalent Representations

Definition

Introduction to Representation Theory

00000000000000

Two representations are *equivalent* if they are related by a similarity transformation.

If two representations are equivalent, then their matrix forms have the same *trace*.

The Braid Group

Equivalent representations form an equivalence class.

Definition

The *character* of a representation is the trace of the representation matrix.

Equivalent Representations

Definition

Introduction to Representation Theory

00000000000000

Two representations are *equivalent* if they are related by a similarity transformation.

If two representations are equivalent, then their matrix forms have the same *trace*.

The Braid Group

Equivalent representations form an equivalence class.

Definition

The *character* of a representation is the trace of the representation matrix.

E.g., if $q \in G$ and X is a representation of G, then the character of X(q) is $\chi(q) = \operatorname{tr}(X(q))$.

Introduction to Representation Theory

00000000000000

Two representations are *equivalent* if they are related by a similarity transformation.

If two representations are equivalent, then their matrix forms have the same *trace*.

The Braid Group

Equivalent representations form an equivalence class.

Definition

The *character* of a representation is the trace of the representation matrix.

E.g., if $g \in G$ and X is a representation of G, then the character of X(g) is $\chi(g) = \operatorname{tr}(X(g))$.

If two representations have the same character for all $q \in G$, then they are equivalent.

Introduction to Representation Theory

000000000000

Two representations are *equivalent* if they are related by a similarity transformation.

If two representations are equivalent, then their matrix forms have the same *trace*.

The Braid Group

Equivalent representations form an equivalence class.

Definition

The *character* of a representation is the trace of the representation matrix.

E.g., if $g \in G$ and X is a representation of G, then the character of X(g) is $\chi(g) = \operatorname{tr}(X(g))$.

- If two representations have the same character for all $q \in G$, then they are equivalent.
- We can use characters to classify representations.

Decomposing Representations

Definition

A representation X(G) on V is *irreducible* if there is no non-trivial invariant subspace² in V with respect to X(G). Otherwise, X(G) is *reducible*.

The Braid Group

Decomposing Representations

Definition

Introduction to Representation Theory

00000000000000

A representation X(G) on V is *irreducible* if there is no non-trivial invariant subspace² in V with respect to X(G). Otherwise, X(G) is reducible.

The Braid Group

Comments:

Decomposing Representations

Definition

A representation X(G) on V is *irreducible* if there is no non-trivial invariant subspace² in V with respect to X(G). Otherwise, X(G) is reducible.

The Braid Group

Comments:

Irreducible representations are the building blocks of all representations.

Decomposing Representations

Definition

A representation X(G) on V is *irreducible* if there is no non-trivial invariant subspace² in V with respect to X(G). Otherwise, X(G) is reducible.

Comments:

- Irreducible representations are the building blocks of all representations.
- A reducible representation can be decomposed into a direct sum of irreducible representations.

Definition

A representation X(G) on V is *irreducible* if there is no non-trivial invariant subspace² in V with respect to X(G). Otherwise, X(G) is *reducible*.

Comments:

- Irreducible representations are the building blocks of all representations.
- ► A reducible representation can be decomposed into a direct sum of irreducible representations.
- ▶ The decomposition of a representation into irreducibles is unique up to equivalence.

Introduction to Representation Theory

000000000000000

Note: The subspace spanned by \mathbf{e}_1 (or \mathbf{e}_2) is *not* invariant under rotations!

Example: Irreducible Representation of 2D Rotations

Note: The subspace spanned by e_1 (or e_2) is *not* invariant under rotations!

Invariance of e+

Introduction to Representation Theory 000000000000000

Let
$$\mathbf{e}_{\pm}=rac{1}{\sqrt{2}}\left(\mp\mathbf{e}_{1}+i\mathbf{e}_{2}
ight)$$
. Then, $X(\phi)\mathbf{e}_{\pm}=e^{\pm i\phi}\mathbf{e}_{\pm}$.

Note: The subspace spanned by e_1 (or e_2) is *not* invariant under rotations!

Invariance of e+

Introduction to Representation Theory

000000000000000

Let
$$\mathbf{e}_{\pm}=rac{1}{\sqrt{2}}(\mp\mathbf{e}_1+i\mathbf{e}_2)$$
. Then, $X(\phi)\mathbf{e}_{\pm}=e^{\pm i\phi}\mathbf{e}_{\pm}$.

Decomposition of X

The span of each \mathbf{e}_{\perp} is an X-invariant subspace of V_2 . In this basis, we rewrite X as a direct sum of the 1D irreducible representations3:

The Braid Group

$$X(\phi) = \begin{bmatrix} e^{i\phi} & 0 \\ 0 & e^{-i\phi} \end{bmatrix}.$$

³1-dimensional representations are always irreducible!

Introduction to Representation Theory

Let $X: G \to V$ and $Y: G \to W$ be irreducible representations of a group G. If there exists a fixed linear transformation $T: V \to W$ such that TX(g) = Y(g)T for all $g \in G$, then T is either the zero map or invertible.

The Braid Group

Introduction to Representation Theory

Let $X: G \to V$ and $Y: G \to W$ be irreducible representations of a group G. If there exists a fixed linear transformation $T: V \to W$ such that TX(g) = Y(g)T for all $g \in G$, then T is either the zero map or invertible.

The Braid Group

Schur's Lemmas (pt. 1)

Lemma

Introduction to Representation Theory

00000000000000

Let $X: G \to V$ and $Y: G \to W$ be irreducible representations of a group G. If there exists a fixed linear transformation $T: V \to W$ such that TX(g) = Y(g)T for all $g \in G$, then T is either the zero map or invertible.

The Braid Group

Proof (sketch)

1. The kernel of T is invariant under X(G).

Introduction to Representation Theory

Let $X: G \to V$ and $Y: G \to W$ be irreducible representations of a group G. If there exists a fixed linear transformation $T: V \to W$ such that TX(g) = Y(g)T for all $g \in G$, then T is either the zero map or invertible.

The Braid Group

- **1.** The kernel of T is invariant under X(G).
- **2.** The image of T is invariant under Y(G).

Introduction to Representation Theory

Let $X: G \to V$ and $Y: G \to W$ be irreducible representations of a group G. If there exists a fixed linear transformation $T: V \to W$ such that TX(g) = Y(g)T for all $g \in G$, then T is either the zero map or invertible.

The Braid Group

- **1.** The kernel of T is invariant under X(G).
- **2.** The image of T is invariant under Y(G).
- 3. Since X and Y are irreducible, $ker(T) = \{0\}$ and im(T) = V or ker(T) = V and $im(T) = \{0\}.$

Introduction to Representation Theory

000000000000000

Let $X: G \to V$ and $Y: G \to W$ be irreducible representations of a group G. If there exists a fixed linear transformation $T: V \to W$ such that TX(g) = Y(g)T for all $g \in G$, then T is either the zero map or invertible.

The Braid Group

- **1.** The kernel of T is invariant under X(G).
- **2.** The image of T is invariant under Y(G).
- 3. Since X and Y are irreducible, $ker(T) = \{0\}$ and im(T) = V or ker(T) = V and $im(T) = \{0\}.$
- **4.** By the rank-nullity theorem, conclude that *T* is either the zero map or invertible.

Introduction to Representation Theory

000000000000000

Let X be an irreducible representation of a group G and T a linear operator that commutes with all X(g) for $g \in G$. Then T is a scalar multiple of the identity operator.

The Braid Group

Schur's Lemma's (pt. 2)

Lemma

Introduction to Representation Theory

000000000000000

Let X be an irreducible representation of a group G and T a linear operator that commutes with all X(g) for $g \in G$. Then T is a scalar multiple of the identity operator.

The Braid Group

Introduction to Representation Theory

000000000000000

Let X be an irreducible representation of a group G and T a linear operator that commutes with all X(q) for $q \in G$. Then T is a scalar multiple of the identity operator.

The Braid Group

Proof (sketch)

1. Consider λ to be an eigenvalue of T.

Introduction to Representation Theory

00000000000000

Let X be an irreducible representation of a group G and T a linear operator that commutes with all X(q) for $q \in G$. Then T is a scalar multiple of the identity operator.

The Braid Group

- **1.** Consider λ to be an eigenvalue of T.
- **2.** Then $T \lambda I$ is not invertible.

Schur's Lemma's (pt. 2)

Lemma

Introduction to Representation Theory

000000000000000

Let X be an irreducible representation of a group G and T a linear operator that commutes with all X(q) for $q \in G$. Then T is a scalar multiple of the identity operator.

The Braid Group

- **1.** Consider λ to be an eigenvalue of T.
- **2.** Then $T \lambda I$ is not invertible.
- **3.** By assumption, $(T \lambda I)X(g) = X(g)(T \lambda I)$ for all $g \in G$.

Schur's Lemma's (pt. 2)

Lemma

Introduction to Representation Theory

000000000000000

Let X be an irreducible representation of a group G and T a linear operator that commutes with all X(q) for $q \in G$. Then T is a scalar multiple of the identity operator.

The Braid Group

- **1.** Consider λ to be an eigenvalue of T.
- **2.** Then $T \lambda I$ is not invertible.
- **3.** By assumption, $(T \lambda I)X(g) = X(g)(T \lambda I)$ for all $g \in G$.
- **4.** By previous lemma, $T \lambda I = 0 \implies T = \lambda I$.

Corollary

Introduction to Representation Theory

00000000000000

If G is a finite abelian group, then the irreducible representations of G are one-dimensional.

Consequence of Schur's Lemmas

Corollary

If G is a finite abelian group, then the irreducible representations of G are one-dimensional.

Corollary

Introduction to Representation Theory

00000000000000

If G is a finite abelian group, then the irreducible representations of G are one-dimensional.

The Braid Group

Proof (sketch)

1. Fix $h \in G$.

Corollary

Introduction to Representation Theory

00000000000000

If G is a finite abelian group, then the irreducible representations of G are one-dimensional.

The Braid Group

- 1. Fix $h \in G$.
- **2.** Since *G* is abelian, X(h)X(g) = X(g)X(h) for all $g \in G$.

Consequence of Schur's Lemmas

Corollary

Introduction to Representation Theory

00000000000000

If G is a finite abelian group, then the irreducible representations of G are one-dimensional.

The Braid Group

- 1. Fix $h \in G$.
- **2.** Since *G* is abelian, X(h)X(g) = X(g)X(h) for all $g \in G$.
- **3.** Schur's second lemma implies $X(h) = \lambda_h I$ for some scalar λ_h .

Corollary

Introduction to Representation Theory

00000000000000

If G is a finite abelian group, then the irreducible representations of G are one-dimensional.

The Braid Group

- 1. Fix $h \in G$.
- **2.** Since *G* is abelian, X(h)X(g) = X(g)X(h) for all $g \in G$.
- **3.** Schur's second lemma implies $X(h) = \lambda_h I$ for some scalar λ_h .
- **4.** The element *h* was arbitrary, so $X(q) = \lambda_q I$ for all $q \in G$.

Consequence of Schur's Lemmas

Corollary

Introduction to Representation Theory

00000000000000

If G is a finite abelian group, then the irreducible representations of G are one-dimensional.

The Braid Group

- 1. Fix $h \in G$.
- **2.** Since *G* is abelian, X(h)X(g) = X(g)X(h) for all $g \in G$.
- **3.** Schur's second lemma implies $X(h) = \lambda_h I$ for some scalar λ_h .
- **4.** The element *h* was arbitrary, so $X(q) = \lambda_q I$ for all $q \in G$.
- **5.** X(G) is equivalent to the representation $g \mapsto \lambda_g$ for all $g \in G$.

Consequence of Schur's Lemmas

Corollary

Introduction to Representation Theory

00000000000000

If G is a finite abelian group, then the irreducible representations of G are one-dimensional.

The Braid Group

- 1. Fix $h \in G$.
- **2.** Since *G* is abelian, X(h)X(g) = X(g)X(h) for all $g \in G$.
- **3.** Schur's second lemma implies $X(h) = \lambda_h I$ for some scalar λ_h .
- **4.** The element *h* was arbitrary, so $X(q) = \lambda_q I$ for all $q \in G$.
- **5.** X(G) is equivalent to the representation $g \mapsto \lambda_g$ for all $g \in G$.
- 6. One-dimensional representation are irreducible.

A Note About Irreducibility

00000000000000

▶ Irreducible representations are the building blocks of all representations.

00000000000000

Irreducible representations are the building blocks of all representations.

Irreducible representations can be combined/modified to create new representations, such as:

00000000000000

- Irreducible representations are the building blocks of all representations.
- Irreducible representations can be combined/modified to create new representations, such as:

The Braid Group

Direct sums

00000000000000

- Irreducible representations are the building blocks of all representations.
- Irreducible representations can be combined/modified to create new representations, such as:

- Direct sums
- Tensor products

00000000000000

- Irreducible representations are the building blocks of all representations.
- Irreducible representations can be combined/modified to create new representations, such as:

- Direct sums
- Tensor products
- Complex conjugation⁴

⁴If the representation matrices have entries in ℂ.

00000000000000

- Irreducible representations are the building blocks of all representations.
- Irreducible representations can be combined/modified to create new representations, such as:

- Direct sums
- Tensor products
- Complex conjugation⁴
- Similarity transforms

⁴If the representation matrices have entries in ℂ.

A Note About Irreducibility

- Irreducible representations are the building blocks of all representations.
- Irreducible representations can be combined/modified to create new representations, such as:

The Braid Group

- Direct sums
- Tensor products
- Complex conjugation⁴
- Similarity transforms

How does this help in physics?

Irreducible representations can describe symmetries of physical systems with remarkably fundamental implications.

⁴If the representation matrices have entries in ℂ.

2 Examples in Physics

Skip preliminaries?

1. The quantum state of a system is described by a vector in a complex Hilbert space.

1. The quantum state of a system is described by a vector in a complex Hilbert space.

The Braid Group

2. The corresponding vectors are often called *state vectors*.

Preliminaries: Physics Conventions

- The quantum state of a system is described by a vector in a complex Hilbert space.
- 2. The corresponding vectors are often called *state vectors*.
- 3. The inner product defined on the Hilbert space is linear in the second argument:

(1)
$$\langle \phi, \lambda \psi \rangle = \lambda \langle \phi, \psi \rangle$$
 (2) $\langle \alpha \phi, \psi \rangle = \overline{\alpha} \langle \phi, \psi \rangle$

Preliminaries: Physics Conventions

- 1. The quantum state of a system is described by a vector in a complex Hilbert space.
- 2. The corresponding vectors are often called *state vectors*.
- 3. The inner product defined on the Hilbert space is linear in the second argument:

(1)
$$\langle \phi, \lambda \psi \rangle = \lambda \langle \phi, \psi \rangle$$
 (2) $\langle \alpha \phi, \psi \rangle = \overline{\alpha} \langle \phi, \psi \rangle$

Preliminaries: Physics Conventions

- The quantum state of a system is described by a vector in a complex Hilbert space.
- 2. The corresponding vectors are often called *state vectors*.
- 3. The inner product defined on the Hilbert space is linear in the second argument:

(1)
$$\langle \phi, \lambda \psi \rangle = \lambda \langle \phi, \psi \rangle$$
 (2) $\langle \alpha \phi, \psi \rangle = \overline{\alpha} \langle \phi, \psi \rangle$

- 1. The quantum state of a system is described by a vector in a complex Hilbert space.
- 2. The corresponding vectors are often called *state vectors*.
- 3. The inner product defined on the Hilbert space is linear in the second argument:

(1)
$$\langle \phi, \lambda \psi \rangle = \lambda \langle \phi, \psi \rangle$$
 (2) $\langle \alpha \phi, \psi \rangle = \overline{\alpha} \langle \phi, \psi \rangle$

4. The Hermitian conjugate or adjoint of an operator A is denoted A^{\dagger} , and is thought of as complex conjugation and transposition in matrix form.

- 1. The quantum state of a system is described by a vector in a complex Hilbert space.
- 2. The corresponding vectors are often called *state vectors*.
- 3. The inner product defined on the Hilbert space is linear in the second argument:

(1)
$$\langle \phi, \lambda \psi \rangle = \lambda \langle \phi, \psi \rangle$$
 (2) $\langle \alpha \phi, \psi \rangle = \overline{\alpha} \langle \phi, \psi \rangle$

- 4. The Hermitian conjugate or adjoint of an operator A is denoted A^{\dagger} , and is thought of as complex conjugation and transposition in matrix form.
- **5.** Operators that are self-adjoint are called *Hermitian*.

Preliminaries: Dirac notation

▶ *Dirac* or *bra-ket* notation is a convenient way to represent vectors and operators in quantum mechanics.

Preliminaries: Dirac notation

- ▶ *Dirac* or *bra-ket* notation is a convenient way to represent vectors and operators in quantum mechanics.
- ▶ A *ket* is a column (state) vector, denoted $|\psi\rangle$.

Examples in Physics

0000000000000000

Preliminaries: Dirac notation

- Dirac or bra-ket notation is a convenient way to represent vectors and operators in quantum mechanics.
- ▶ A *ket* is a column (state) vector, denoted $|\psi\rangle$.

Examples in Physics

▶ A *bra* is a row vector, $\langle \psi |$. This can be thought of as a linear functional on the relevant Hilbert space:

$$\langle \phi | (\psi) = \langle \phi, \psi \rangle.$$

- ▶ *Dirac* or *bra-ket* notation is a convenient way to represent vectors and operators in quantum mechanics.
- ▶ A *ket* is a column (state) vector, denoted $|\psi\rangle$.

Examples in Physics

0000000000000000

A *bra* is a row vector, $\langle \psi |$. This can be thought of as a linear functional on the relevant Hilbert space:

$$\langle \phi | (\psi) = \langle \phi, \psi \rangle.$$

▶ Inner product: $\langle \phi | \psi \rangle$

Introduction to Representation Theory

Preliminaries: Dirac notation

- Dirac or bra-ket notation is a convenient way to represent vectors and operators in quantum mechanics.
- ▶ A *ket* is a column (state) vector, denoted $|\psi\rangle$.
- A *bra* is a row vector, $\langle \psi |$. This can be thought of as a linear functional on the relevant Hilbert space:

$$\langle \phi | (\psi) = \langle \phi, \psi \rangle.$$

- ▶ Inner product: $\langle \phi | \psi \rangle$
- ▶ Outer product: $|\phi\rangle\langle\psi|$

- ▶ *Dirac* or *bra-ket* notation is a convenient way to represent vectors and operators in quantum mechanics.
- ▶ A *ket* is a column (state) vector, denoted $|\psi\rangle$.
- A *bra* is a row vector, $\langle \psi |$. This can be thought of as a linear functional on the relevant Hilbert space:

$$\langle \phi | (\psi) = \langle \phi, \psi \rangle.$$

- ▶ Inner product: $\langle \phi | \psi \rangle$
- Outer product: $|\phi\rangle\,\langle\psi|$
- ▶ The action of an operator *A* on a vector $|\psi\rangle$ is written as $|A\psi\rangle = A|\psi\rangle$.

- ▶ *Dirac* or *bra-ket* notation is a convenient way to represent vectors and operators in quantum mechanics.
- ▶ A *ket* is a column (state) vector, denoted $|\psi\rangle$.
- A *bra* is a row vector, $\langle \psi |$. This can be thought of as a linear functional on the relevant Hilbert space:

$$\langle \phi | (\psi) = \langle \phi, \psi \rangle.$$

- ▶ Inner product: $\langle \phi | \psi \rangle$
- lacktriangle Outer product: $\ket{\phi}ra{\psi}$
- ▶ The action of an operator *A* on a vector $|\psi\rangle$ is written as $|A\psi\rangle = A|\psi\rangle$.

Examples in Physics

Equivalent ways to write the same thing:

$$\langle \mathbf{A}^{\dagger} \phi | \psi \rangle = \langle \phi | \mathbf{A} | \psi \rangle = \langle \phi | \mathbf{A} \psi \rangle.$$

Orthonormality, Completeness, and Wavefunctions

Definition

Let $\{\ket{1}, \ket{2}, \ket{3}, \dots\}$ be an orthonormal basis for some quantum Hilbert space. In the context of physics, the orthonormality and completeness relations of the basis vectors allow any state vector $\ket{\psi}$ to be written as a linear combination of the basis vectors:

$$|\psi\rangle = \left(\sum_{n} |n\rangle \langle n|\right) |\psi\rangle = \sum_{n} |n\rangle \langle n|\psi\rangle,$$

where $\sum_{n} |n\rangle \langle n|$ is the identity operator.

Definition

Let $\{\ket{1}, \ket{2}, \ket{3}, \dots\}$ be an orthonormal basis for some quantum Hilbert space. In the context of physics, the orthonormality and completeness relations of the basis vectors allow any state vector $\ket{\psi}$ to be written as a linear combination of the basis vectors:

$$|\psi\rangle = \left(\sum_{n} |n\rangle \langle n|\right) |\psi\rangle = \sum_{n} |n\rangle \langle n|\psi\rangle,$$

where $\sum_{n} |n\rangle \langle n|$ is the identity operator.

This is just a fancy change of basis!

Orthonormality, Completeness, and Wavefunctions

Definition

Let $\{|1\rangle, |2\rangle, |3\rangle, \dots\}$ be an orthonormal basis for some quantum Hilbert space. In the context of physics, the orthonormality and completeness relations of the basis vectors allow any state vector $|\psi\rangle$ to be written as a linear combination of the basis vectors:

$$|\psi\rangle = \left(\sum_{n} |n\rangle \langle n|\right) |\psi\rangle = \sum_{n} |n\rangle \langle n|\psi\rangle,$$

where $\sum_{n} |n\rangle \langle n|$ is the identity operator.

This is just a fancy change of basis!

Definition

For a continuous basis labelled by $|x\rangle$ where x is a continuous parameter, the *wavefunction* $\psi(x)$ is the projection: $\langle x|\psi\rangle=\psi(x)$.

Preliminaries: Basic Quantum Mechanics

► Talk about probabilities and whatnot? Eigenvalues = observables? Or just mention when connecting later stuff to physics?

Let *R* denote the familiar rotation matrix representation from before.

Let *R* denote the familiar rotation matrix representation from before.

Definition

An *orthogonal matrix O* satisfies $O^{\top} = O^{-1}$.

Properties of 2D Rotations

Let R denote the familiar rotation matrix representation from before.

Definition

Introduction to Representation Theory

An orthogonal matrix O satisfies $O^{\top} = O^{-1}$.

Rotation matrices are orthogonal:

$$R(\phi)R^{\top}(\phi) = \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix} \begin{bmatrix} \cos \phi & \sin \phi \\ -\sin \phi & \cos \phi \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

Properties of 2D Rotations

Let *R* denote the familiar rotation matrix representation from before.

Examples in Physics

Definition

An orthogonal matrix O satisfies $O^{\top} = O^{-1}$.

Rotation matrices are orthogonal:

$$R(\phi)R^{\top}(\phi) = \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix} \begin{bmatrix} \cos \phi & \sin \phi \\ -\sin \phi & \cos \phi \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

Rotations preserve vector lengths:

$$R(\phi)\mathbf{x} = \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \cos \phi - x_2 \sin \phi \\ x_1 \sin \phi + x_2 \cos \phi \end{bmatrix} \implies |R(\phi)\mathbf{x}|^2 = |\mathbf{x}|^2.$$

Properties of 2D Rotations

Let *R* denote the familiar rotation matrix representation from before.

Definition

Introduction to Representation Theory

An *orthogonal matrix O* satisfies $O^{\top} = O^{-1}$.

Rotation matrices are orthogonal:

$$R(\phi)R^{\top}(\phi) = \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix} \begin{bmatrix} \cos \phi & \sin \phi \\ -\sin \phi & \cos \phi \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

Rotations preserve vector lengths:

$$R(\phi)\mathbf{x} = \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \cos \phi - x_2 \sin \phi \\ x_1 \sin \phi + x_2 \cos \phi \end{bmatrix} \implies |R(\phi)\mathbf{x}|^2 = |\mathbf{x}|^2.$$

This special property is summarized by noting det $R(\phi) = 1$ for all $\phi \in [0, 2\pi)$.

The SO(2) Group

Definition

Introduction to Representation Theory

The special orthogonal group in two dimensions, denoted SO(2), is the group of all 2×2 orthogonal matrices with determinant equal to +1.5

⁵For all intents and purposes, SO(2) is *R* from before.

Introduction to Representation Theory

The special orthogonal group in two dimensions, denoted SO(2), is the group of all 2×2 orthogonal matrices with determinant equal to +1.5

The Braid Group

Introduction to Representation Theory

The special orthogonal group in two dimensions, denoted SO(2), is the group of all 2×2 orthogonal matrices with determinant equal to +1.5

The Braid Group

Properties of SO(2):

▶ The *periodicity condition* $R(\phi + 2\pi) = R(\phi)$ is satisfied.

⁵For all intents and purposes, SO(2) is *R* from before.

Introduction to Representation Theory

The special orthogonal group in two dimensions, denoted SO(2), is the group of all 2×2 orthogonal matrices with determinant equal to +1.5

The Braid Group

- ▶ The periodicity condition $R(\phi + 2\pi) = R(\phi)$ is satisfied.
- The *identity element* is R(0) = I.

⁵For all intents and purposes, SO(2) is *R* from before.

Introduction to Representation Theory

The special orthogonal group in two dimensions, denoted SO(2), is the group of all 2×2 orthogonal matrices with determinant equal to +1.5

The Braid Group

- ▶ The periodicity condition $R(\phi + 2\pi) = R(\phi)$ is satisfied.
- The *identity element* is R(0) = I.
- ▶ SO(2) is abelian: $R(\phi_1)R(\phi_2) = R(\phi_1 + \phi_2) = R(\phi_2)R(\phi_1)$.

The SO(2) Group

Definition

The special orthogonal group in two dimensions, denoted SO(2), is the group of all 2×2 orthogonal matrices with determinant equal to +1.5

The Braid Group

- ▶ The periodicity condition $R(\phi + 2\pi) = R(\phi)$ is satisfied.
- The *identity element* is R(0) = I.
- ▶ SO(2) is abelian: $R(\phi_1)R(\phi_2) = R(\phi_1 + \phi_2) = R(\phi_2)R(\phi_1)$.
- \triangleright SO(2) is *reducible* (earlier example with \mathbf{e}_{+}).

⁵For all intents and purposes, SO(2) is *R* from before.

 \blacktriangleright Consider an *infinitesimal rotation* labelled by some infinitesimal angle $d\phi$.

- \triangleright Consider an *infinitesimal rotation* labelled by some infinitesimal angle $d\phi$.
- This is equivalent to the identity plus some small rotation, which can be written as⁶

$$R(d\phi) = I - i \, d\phi J$$

The Braid Group

- ▶ Consider an *infinitesimal rotation* labelled by some infinitesimal angle $d\phi$.
- ► This is equivalent to the identity plus some small rotation, which can be written as⁶

$$R(d\phi) = I - i \, d\phi J$$

The Braid Group

▶ There are two ways to interpret $R(\phi_d \phi)$:

$$R(\phi + d\phi) = R(\phi)R(d\phi) = R(\phi)(I - id\phi J) = R(\phi) - id\phi R(\phi)J,$$
 $R(\phi + d\phi) = R(\phi) + d\phi \frac{dR(\phi)}{d\phi}$

- Consider an *infinitesimal rotation* labelled by some infinitesimal angle $d\phi$.
- This is equivalent to the identity plus some small rotation, which can be written as⁶

$$R(d\phi) = I - i \, d\phi J$$

The Braid Group

▶ There are two ways to interpret $R(\phi_d \phi)$:

$$R(\phi + d\phi) = R(\phi)R(d\phi) = R(\phi)(I - id\phi J) = R(\phi) - id\phi R(\phi)J,$$

 $R(\phi + d\phi) = R(\phi) + d\phi \frac{dR(\phi)}{d\phi}$

Equating the two expressions gives the differential equation $dR(\phi) = -id\phi R(\phi)J$.

Infinitesimal Rotations

- ► Consider an *infinitesimal rotation* labelled by some infinitesimal angle $d\phi$.
- ► This is equivalent to the identity plus some small rotation, which can be written as⁶

$$R(d\phi) = I - i \, d\phi J$$

▶ There are two ways to interpret $R(\phi_d \phi)$:

$$R(\phi + d\phi) = R(\phi)R(d\phi) = R(\phi)(I - id\phi J) = R(\phi) - id\phi R(\phi)J,$$
 $R(\phi + d\phi) = R(\phi) + d\phi \frac{dR(\phi)}{d\phi}$

- Figurating the two expressions gives the differential equation $dR(\phi) = -id\phi R(\phi)J$.
- ▶ With R(0) = I boundary condition: $R(\phi) = e^{-i\phi J}$.

⁶The constant -i is introduced for later convenience, and J is a quantity independent of ϕ .

- Consider an *infinitesimal rotation* labelled by some infinitesimal angle $d\phi$.
- This is equivalent to the identity plus some small rotation, which can be written as⁶

$$R(d\phi) = I - i d\phi J$$

The Braid Group

▶ There are two ways to interpret $R(\phi_d \phi)$:

$$R(\phi + d\phi) = R(\phi)R(d\phi) = R(\phi)(I - id\phi J) = R(\phi) - id\phi R(\phi)J,$$

 $R(\phi + d\phi) = R(\phi) + d\phi \frac{dR(\phi)}{d\phi}$

- Equating the two expressions gives the differential equation $dR(\phi) = -id\phi R(\phi)J$.
- ▶ With R(0) = I boundary condition: $|R(\phi)| = e^{-i\phi J}|$.
- We call J the *generator* of SO(2) rotations.

⁶The constant -i is introduced for later convenience, and J is a quantity independent of ϕ .

Recovering the Rotation Matrix from J

To first order in
$$d\phi$$
: $R(d\phi) = \begin{bmatrix} 1 & -d\phi \\ d\phi & 1 \end{bmatrix}$

Recovering the Rotation Matrix from J

To first order in
$$d\phi$$
: $R(d\phi) = \begin{bmatrix} 1 & -d\phi \\ d\phi & 1 \end{bmatrix}$

From before:
$$I - id\phi J = \begin{bmatrix} 1 & -d\phi \\ d\phi & 1 \end{bmatrix} \implies J = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \implies J^2 = I$$

Recovering the Rotation Matrix from J

To first order in
$$d\phi$$
: $R(d\phi) = \begin{bmatrix} 1 & -d\phi \\ d\phi & 1 \end{bmatrix}$

From before:
$$I - id\phi J = \begin{bmatrix} 1 & -d\phi \\ d\phi & 1 \end{bmatrix} \implies J = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \implies J^2 = I$$

Taylor expand:

$$R(\phi) = e^{-iJ\phi} = I - iJ\phi - I\frac{\phi^2}{2!} + iJ\frac{\phi^3}{3!} + \cdots$$

To first order in
$$d\phi$$
: $R(d\phi) = \begin{bmatrix} 1 & -d\phi \\ d\phi & 1 \end{bmatrix}$

From before:
$$I - id\phi J = \begin{bmatrix} 1 & -d\phi \\ d\phi & 1 \end{bmatrix} \implies J = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \implies J^2 = I$$

Taylor expand:

Introduction to Representation Theory

$$R(\phi) = e^{-iJ\phi} = I - iJ\phi - I\frac{\phi^2}{2!} + iJ\frac{\phi^3}{3!} + \cdots$$
$$= I\left(\sum_{n=0}^{\infty} (-1)^n \frac{\phi^{2n}}{(2n)!}\right) - iJ\left(\sum_{n=0}^{\infty} (-1)^n \frac{\phi^{2n+1}}{(2n+1)!}\right)$$

Recovering the Rotation Matrix from J

To first order in
$$d\phi$$
: $R(d\phi) = \begin{bmatrix} 1 & -d\phi \\ d\phi & 1 \end{bmatrix}$

From before:
$$I - id\phi J = \begin{bmatrix} 1 & -d\phi \\ d\phi & 1 \end{bmatrix} \implies J = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \implies J^2 = I$$

Examples in Physics

Taylor expand:

$$R(\phi) = e^{-iJ\phi} = I - iJ\phi - I\frac{\phi^2}{2!} + iJ\frac{\phi^3}{3!} + \cdots$$

$$= I\left(\sum_{n=0}^{\infty} (-1)^n \frac{\phi^{2n}}{(2n)!}\right) - iJ\left(\sum_{n=0}^{\infty} (-1)^n \frac{\phi^{2n+1}}{(2n+1)!}\right)$$

$$= I\cos\phi - iJ\sin\phi$$

Recovering the Rotation Matrix from J

To first order in
$$d\phi$$
: $R(d\phi) = \begin{bmatrix} 1 & -d\phi \\ d\phi & 1 \end{bmatrix}$

From before:
$$I - id\phi J = \begin{bmatrix} 1 & -d\phi \\ d\phi & 1 \end{bmatrix} \implies J = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \implies J^2 = I$$

Examples in Physics

Taylor expand:

$$R(\phi) = e^{-iJ\phi} = I - iJ\phi - I\frac{\phi^2}{2!} + iJ\frac{\phi^3}{3!} + \cdots$$

$$= I\left(\sum_{n=0}^{\infty} (-1)^n \frac{\phi^{2n}}{(2n)!}\right) - iJ\left(\sum_{n=0}^{\infty} (-1)^n \frac{\phi^{2n+1}}{(2n+1)!}\right)$$

$$= I\cos\phi - iJ\sin\phi$$

$$= \begin{bmatrix} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{bmatrix}.$$

Irreducible Representations of SO(2)

Process to obtaining irreducibles:

1. Let U be any representation of SO(2).

Process to obtaining irreducibles:

- **1.** Let U be any representation of SO(2).
- **2.** Same argument as before: $U(\phi) = e^{-iJ\phi}$, where *J* is not necessarily the same as before.

The Braid Group

Irreducible Representations of SO(2)

Process to obtaining irreducibles:

Introduction to Representation Theory

- **1.** Let U be any representation of SO(2).
- **2.** Same argument as before: $U(\phi) = e^{-iJ\phi}$, where *J* is not necessarily the same as before.

The Braid Group

3. SO(2) is abelian: Schur's Lemmas \implies all irreducible representations are 1D.

Irreducible Representations of SO(2)

Process to obtaining irreducibles:

- **1.** Let U be any representation of SO(2).
- **2.** Same argument as before: $U(\phi) = e^{-iJ\phi}$, where J is not necessarily the same as before.
- 3. SO(2) is abelian: Schur's Lemmas \implies all irreducible representations are 1D.
- **4.** Each invariant subspace is spanned by an eigenvector of J:

$$J\left|m
ight
angle = m\left|m
ight
angle \,, \ U(\phi)\left|m
ight
angle = e^{-iJ\phi}\left|m
ight
angle = e^{-im\phi}\left|m
ight
angle \,.$$

Process to obtaining irreducibles:

- **1.** Let U be any representation of SO(2).
- 2. Same argument as before: $U(\phi) = e^{-iJ\phi}$, where J is not necessarily the same as before.

The Braid Group

- 3. SO(2) is abelian: Schur's Lemmas \implies all irreducible representations are 1D.
- **4.** Each invariant subspace is spanned by an eigenvector of *J*:

$$egin{aligned} J\left|m
ight
angle = m\left|m
ight
angle \,, \ U(\phi)\left|m
ight
angle = \mathrm{e}^{-iJ\phi}\left|m
ight
angle = \mathrm{e}^{-im\phi}\left|m
ight
angle \,. \end{aligned}$$

5. Periodicity of SO(2) $\implies e^{-i2\pi m} = 1 \implies m \in \mathbb{Z}$.

Process to obtaining irreducibles:

- **1.** Let U be any representation of SO(2).
- **2.** Same argument as before: $U(\phi) = e^{-iJ\phi}$, where *J* is not necessarily the same as before.
- 3. SO(2) is abelian: Schur's Lemmas \implies all irreducible representations are 1D.
- **4.** Each invariant subspace is spanned by an eigenvector of *J*:

$$egin{aligned} J\left|m
ight
angle &= m\left|m
ight
angle \,, \ U(\phi)\left|m
ight
angle &= e^{-iJ\phi}\left|m
ight
angle &= e^{-im\phi}\left|m
ight
angle \,. \end{aligned}$$

5. Periodicity of SO(2) $\implies e^{-i2\pi m} = 1 \implies m \in \mathbb{Z}$.

Theorem

The single-valued irreducible representations of SO(2) are defined as

$$U^m(\phi) = e^{-im\phi}, \ \forall \ m \in \mathbb{Z}.$$

▶ In 3 spatial dimensions, every rotation can be thought of a rotation in a plane with some perpendicular axis of rotation \mathbf{n} : $R_{\mathbf{n}}(\theta)$.

Examples in Physics

00000000000000000

- ▶ In 3 spatial dimensions, every rotation can be thought of a rotation in a plane with some perpendicular axis of rotation \mathbf{n} : $R_{\mathbf{n}}(\theta)$.
- ▶ Rotations in a plane are isomorphic to SO(2): $R_n(\theta) = e^{-i\theta J_n}$ for some generator J_n .

Examples in Physics

00000000000000000

- ▶ In 3 spatial dimensions, every rotation can be thought of a rotation in a plane with some perpendicular axis of rotation \mathbf{n} : $R_{\mathbf{n}}(\theta)$.
- ▶ Rotations in a plane are isomorphic to SO(2): $R_n(\theta) = e^{-i\theta J_n}$ for some generator J_n .
- ▶ The standard generators along each axis $\{J_x, J_y, J_z\}$ form a basis for all rotation generators: $J_n = n_x J_x + n_y J_y + n_z J_z$.

Generalization to 3 Spatial Dimensions

Examples in Physics

- ▶ In 3 spatial dimensions, every rotation can be thought of a rotation in a plane with some perpendicular axis of rotation \mathbf{n} : $R_{\mathbf{n}}(\theta)$.
- ▶ Rotations in a plane are isomorphic to SO(2): $R_n(\theta) = e^{-i\theta J_n}$ for some generator J_n .
- ▶ The standard generators along each axis $\{J_x, J_y, J_z\}$ form a basis for all rotation generators: $J_n = n_x J_x + n_y J_y + n_z J_z$.

Consequence: Any rotation in Euclidean 3-space can be written in terms of the generators:

$$R_{\mathbf{n}}(\theta) = e^{-i\theta J_{\mathbf{n}}} = e^{-i\theta(n_x J_x + n_y J_y + n_z J_z)} = e^{-i\theta \mathbf{n} \cdot \mathbf{J}}.$$

Examples in Physics

- ▶ In 3 spatial dimensions, every rotation can be thought of a rotation in a plane with some perpendicular axis of rotation \mathbf{n} : $R_{\mathbf{n}}(\theta)$.
- ▶ Rotations in a plane are isomorphic to SO(2): $R_n(\theta) = e^{-i\theta J_n}$ for some generator J_n .
- The standard generators along each axis $\{J_x, J_y, J_z\}$ form a basis for all rotation generators: $J_{\mathbf{n}} = n_x J_x + n_y J_y + n_z J_z$.

Consequence: Any rotation in Euclidean 3-space can be written in terms of the generators:

$$R_{\mathbf{n}}(\theta) = e^{-i\theta J_{\mathbf{n}}} = e^{-i\theta(n_x J_x + n_y J_y + n_z J_z)} = e^{-i\theta \mathbf{n} \cdot \mathbf{J}}.$$

Definition

The special orthogonal group in three dimensions, denoted SO(3), is the group of all 3×3 orthogonal matrices with determinant equal to +1. SO(3) rotations are generated by the components of the Hermitian generator $\mathbf{J} = [J_x, J_y, J_z]^{\top}$.

Connection to Quantum Mechanics

Using a similar process to generate SO(3) invariant subspaces that correspond to irreducible representations, we summarize the results in a theorem:

Connection to Quantum Mechanics

Examples in Physics

00000000000000000

Using a similar process to generate SO(3) invariant subspaces that correspond to irreducible representations, we summarize the results in a theorem:

Theorem

The irreducible representations of SO(3) are labelled by $j=0,\frac{1}{2},1,\frac{3}{2},2,\ldots$, and the 2j+1 eigenvectors spanning an invariant subspace are labelled by their eigenvalues: $m=-j,-j+1,\ldots,j-1,j.$

Using a similar process to generate SO(3) invariant subspaces that correspond to irreducible representations, we summarize the results in a theorem:

The Braid Group

Theorem

Introduction to Representation Theory

The irreducible representations of SO(3) are labeled by $j=0,\frac{1}{2},1,\frac{3}{2},2,\ldots$, and the 2j+1eigenvectors spanning an invariant subspace are labelled by their eigenvalues: $m = -i, -i + 1, \ldots, i - 1, j.$

Consequences:

Connection to Quantum Mechanics

Examples in Physics

Using a similar process to generate SO(3) invariant subspaces that correspond to irreducible representations, we summarize the results in a theorem:

Theorem

The irreducible representations of SO(3) are labeled by $j=0,\frac{1}{2},1,\frac{3}{2},2,\ldots$, and the 2j+1 eigenvectors spanning an invariant subspace are labelled by their eigenvalues: $m=-j,-j+1,\ldots,j-1,j$.

Consequences:

▶ One can obtain the explicit form of **J** and subsequently its components J_x , J_y , J_z . These are precisely the angular momentum operators in quantum mechanics.

Connection to Quantum Mechanics

Using a similar process to generate SO(3) invariant subspaces that correspond to irreducible representations, we summarize the results in a theorem:

Theorem

The irreducible representations of SO(3) are labeled by $j=0,\frac{1}{2},1,\frac{3}{2},2,\ldots$, and the 2j+1 eigenvectors spanning an invariant subspace are labelled by their eigenvalues: $m=-j,-j+1,\ldots,j-1,j$.

Consequences:

- ▶ One can obtain the explicit form of **J** and subsequently its components J_x , J_y , J_z . These are precisely the angular momentum operators in quantum mechanics.
- ▶ The eigenvalues of J^2 and J_z are j(j+1) and m, respectively⁷. In quantum physics, these eigenvalues correspond to the observable total angular momentum and its z-component.

⁷Typically, the *z*-axis is chosen as the standard axis.

Using a similar process to generate SO(3) invariant subspaces that correspond to irreducible representations, we summarize the results in a theorem:

Theorem

Introduction to Representation Theory

The irreducible representations of SO(3) are labeled by $j=0,\frac{1}{2},1,\frac{3}{2},2,\ldots$, and the 2j+1 eigenvectors spanning an invariant subspace are labelled by their eigenvalues: $m=-j,-j+1,\ldots,j-1,j$.

Consequences:

- ▶ One can obtain the explicit form of **J** and subsequently its components J_x , J_y , J_z . These are precisely the angular momentum operators in quantum mechanics.
- ▶ The eigenvalues of J^2 and J_z are j(j+1) and m, respectively⁷. In quantum physics, these eigenvalues correspond to the observable total angular momentum and its z-component.
- ► This generalizes to other types of angular momentum, such as spin angular momentum!

⁷Typically, the *z*-axis is chosen as the standard axis.

Connection to Quantum Mechanics: Punchline

Connection to Quantum Mechanics: Punchline

Discretization of Angular Momentum for Free

Arguably the most defining characteristic of quantum mechanics is that classically measurable quantities become discretized (quantized) when observed on the quantum scale. Without any physical motivation, the irreducible representations of SO(3) gave it to us for free!

Connection to Quantum Mechanics: Punchline

Discretization of Angular Momentum for Free

Arguably the most defining characteristic of quantum mechanics is that classically measurable quantities become discretized (quantized) when observed on the quantum scale. Without any physical motivation, the irreducible representations of SO(3) gave it to us for free!

Now is an appropriate time to let some tears out.

Discretization of Angular Momentum for Free

Arguably the most defining characteristic of quantum mechanics is that classically measurable quantities become discretized (quantized) when observed on the quantum scale. Without any physical motivation, the irreducible representations of SO(3) gave it to us for free!

The Braid Group

Now is an appropriate time to let some tears out.

But that's not all folks!

Introduction to Representation Theory

1. The *commutator* of two operators A and B is defined as [A, B] = AB - BA.

Introduction to Representation Theory

- 1. The *commutator* of two operators A and B is defined as [A, B] = AB BA.
- 2. The *Hamiltonian* operator \hat{H} is the quantum mechanical operator corresponding to the total energy of a system.

The Braid Group

Conservation of Angular Momentum

1. The *commutator* of two operators A and B is defined as [A, B] = AB - BA.

Examples in Physics

00000000000000000

2. The *Hamiltonian* operator \hat{H} is the quantum mechanical operator corresponding to the total energy of a system.

Theorem (Ehrenfest)

If a time-independent Hermitian operator commutes with the Hamiltonian, then the physical observable corresponding to the operator is conserved.

Conservation of Angular Momentum

1. The *commutator* of two operators A and B is defined as [A, B] = AB - BA.

Examples in Physics

2. The *Hamiltonian* operator \hat{H} is the quantum mechanical operator corresponding to the total energy of a system.

Theorem (Ehrenfest)

If a time-independent Hermitian operator commutes with the Hamiltonian, then the physical observable corresponding to the operator is conserved.

Consequences

1. Any system with radial symmetry is invariant under SO(3) rotations, so $[\hat{H}, \mathbf{J}] = 0$.

Conservation of Angular Momentum

- 1. The *commutator* of two operators A and B is defined as [A, B] = AB BA.
- 2. The *Hamiltonian* operator \hat{H} is the quantum mechanical operator corresponding to the total energy of a system.

Theorem (Ehrenfest)

If a time-independent Hermitian operator commutes with the Hamiltonian, then the physical observable corresponding to the operator is conserved.

Consequences

- **1.** Any system with radial symmetry is invariant under SO(3) rotations, so $[\hat{H}, \mathbf{J}] = 0$.
- 2. Conservation of angular momentum is a direct result of the radial symmetry of the system.

_

- 1. The *commutator* of two operators A and B is defined as [A, B] = AB BA.
- **2.** The *Hamiltonian* operator \hat{H} is the quantum mechanical operator corresponding to the total energy of a system.

Theorem (Ehrenfest)

If a time-independent Hermitian operator commutes with the Hamiltonian, then the physical observable corresponding to the operator is conserved.

Consequences

Introduction to Representation Theory

- **1.** Any system with radial symmetry is invariant under SO(3) rotations, so $[\hat{H}, \mathbf{J}] = 0$.
- 2. Conservation of angular momentum is a direct result of the radial symmetry of the system.
- **3.** Similar arguments can be made for the continuous group of translations in space, leading to the conservation of linear momentum for translationally invariant systems.

1. The j = 1/2 irreducible representation of SO(3) describes fermions. A modified periodicity condition due to the half-integer representation leads to spinors!

The Braid Group

Introduction to Representation Theory

1. The i = 1/2 irreducible representation of SO(3) describes fermions. A modified periodicity condition due to the half-integer representation leads to spinors!

The Braid Group

- 2. We can take tensor products of the irreducibles of SO(3) to obtain multi-particle states. arriving at results such as:
 - Clebsch-Gordan coefficients

1. The i = 1/2 irreducible representation of SO(3) describes fermions. A modified periodicity condition due to the half-integer representation leads to spinors!

The Braid Group

- 2. We can take tensor products of the irreducibles of SO(3) to obtain multi-particle states. arriving at results such as:
 - Clebsch-Gordan coefficients
 - singlet versus triplet states

1. The i = 1/2 irreducible representation of SO(3) describes fermions. A modified periodicity condition due to the half-integer representation leads to spinors!

The Braid Group

- 2. We can take tensor products of the irreducibles of SO(3) to obtain multi-particle states. arriving at results such as:
 - Clebsch-Gordan coefficients
 - singlet versus triplet states
 - the Pauli exclusion principle

Introduction to Representation Theory

- Formal definitions.
- Physical/intuitive visualization and interpretation.
- Standard generators.
- Automorphisms of $\pi_1(\mathbb{D}_n)$.
- Braid relations in this picture.
- 1D Reps.
- Burau representation.
- Note on faithfulness.
- Unitary representation from reduced Burau.

4 Physical Applications of the Braid Group

Rotations of Quantum Hilbert Space

- 1D action on Hilbert space, permuting particles, compare/contrast to bosons/fermions.
- Talk about nontrivial braiding effects.
- Example of unitary braid rep acting on Hilbert space.

Anyons: A Consequence of Braiding

- ► Introduce anyons.
- Discuss how anyons are described by the braid group.
- Fusion rules, abelian vs nonabelian anyons.
- Non-interacting anyons.
- Non-interacting anyons in harmonic potential.
- Nontrivial braiding effects anyone?
- Applications of anyons! (quantum computing, topological quantum field theory, FQHE, etc.)

Acknowledgements, questions, references (?)