1 Grundlagen: Maß und Integral

1.1 Äußere Maße und Messbarkeit

Definition

Sei X eine Menge. Eine Abbildung

$$\mu: \mathcal{P}(X) \to [0, \infty]$$

heißt $\ddot{a}u\beta eres\ Ma\beta$ auf X, falls gilt:

(1) $\mu(\emptyset) = 0$

(2) Für $A, A_n \subset X$, $i \in \mathbb{N}$ mit $A \subset \bigcup_{i \geq 1} A_i$ gilt

$$\mu(A) \le \sum_{i>1} \mu(A_i).$$

Beobachte folgende einfache Folgerungen der Definition:

• $A \subset B \subset X \implies \mu(A) \leq \mu(B)$

•
$$A \subset B \cup \emptyset \cup \emptyset \cup \ldots \implies \mu(A) < \mu(B) + \mu(\emptyset) + \mu(\emptyset) + \cdots = \mu(B)$$

Beispiele

$$\mu_1(A) = \begin{cases} \#A, & A \text{ endlich} \\ 0, & \text{sonst} \end{cases} \qquad \mu_2(A) = \begin{cases} 1, & A \neq \emptyset \\ 0, & \text{sonst} \end{cases}$$

$$\mu_3(A) = \begin{cases} \infty, & A \neq \emptyset \\ 0, & \text{sonst} \end{cases} \qquad \mu_4(A) = \begin{cases} \infty, & A^c \text{ endlich} \\ 0, & \text{sonst} \end{cases}$$

$$\mu_5(A) = \begin{cases} 0, & A \text{ abzählbar} \\ 1, & \text{sonst} \end{cases}$$

Für die Konstruktion eines äußeren Maßes aus Rohdaten ist folgender Satz nützlich:

Satz 1.1

Sei $\mathcal{E} \subset \mathcal{P}(X)$ mit $\emptyset \in \mathcal{E}$, sei $\eta : \mathcal{E} \to [0, \infty]$ mit $\eta(\emptyset) = 0$. Dann wird durch

$$\mu(A) := \inf \left\{ \sum_{i=1}^{\infty} \eta(A_i) : A_i \in \mathcal{E}, i \in \mathbb{N}, A \subset \bigcup_{i \ge 1} A_i \right\}$$

 $(\inf \emptyset = \infty)$ für $A \subset X$ ein äußeres Maß erklärt, das von (\mathcal{E}, η) induzierte äußere Maß.

Beweis

Es ist $0 \le \mu(\emptyset) \le \sum_{i=1}^{\infty} \eta(\emptyset) = 0$, da $\emptyset \subset \bigcup_{i=1}^{\infty} \emptyset$ und $\emptyset \in \mathcal{E}$.

Seien $A, A_i \subset X$ und $A \subset \bigcup_{i>1} A_i$. Wir müssen zeigen: $\mu(A) \leq \sum_{i>1} \mu(A_i)$.

Ist für ein $i \in \mathbb{N}$ bereits $\mu(A_i) = \infty$, so sind wir fertig. Sei also $\mu(A_i) < \infty$ für alle $i \in \mathbb{N}$. Sei $\varepsilon > 0$. Dann existiert $E_{ij} \in \mathcal{E}$, $j \in \mathbb{N}$ mit $A_i \subset \bigcup_{j > 1} E_{ij}$ und

$$\mu(A_i) + \frac{\varepsilon}{2^i} \ge \sum_{j>1} \eta(E_{ij})$$
 für $i \in \mathbb{N}$.

Also gilt

$$A \subset \bigcup_{i \geq 1} A_i \subset \bigcup_{i,j \geq 1} E_{ij},$$

und daraus folgt

$$\mu(A) \leq \sum_{i,j\geq 1} \eta(E_{ij})$$

$$= \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \eta(E_{ij})$$

$$\leq \sum_{i=1}^{\infty} (\mu(A_i) + \frac{\varepsilon}{2^i})$$

$$\leq \left(\sum_{i=1}^{\infty} \mu(A_i)\right) + \varepsilon.$$

Mit $\varepsilon \to 0$ ergibt dies

$$\mu(A) \le \sum_{i=1}^{\infty} \mu(A_i).$$

Definition

Sei μ ein äußeres Maß auf X. Eine Menge $A \subset X$ heißt μ -messbar, falls für alle $M \subset X$ gilt:

$$\mu(M) = \mu(M \cap A) + \mu(M \cap A^c).$$

Die Menge aller μ -messbaren Mengen wird mit \mathcal{A}_{μ} bezeichnet.

Es genügt bereits: A ist μ -messbar genau dann, wenn für alle $M \subset X$ gilt:

$$\mu(M) \ge \mu(M \cap A) + \mu(M \cap A^c).$$

Denn wegen

$$M \subset (M \cap A) \cup (M \cap A^c) \cup \emptyset \cup \emptyset \cdots$$

gilt

$$\mu(M) \le \mu(M \cap A) + \mu(M \cap A^c) + \mu(\emptyset) + \cdots$$

Es gilt stets $\emptyset, X \in \mathcal{A}_{\mu}$.

Bemerkung: Für $Y \subset X$ ist $\mu | Y$ das durch

$$(\mu \lfloor Y)(M) := \mu(M \cap Y), \quad M \subset X$$

erklärte äußere Maß. Ferner ist $\mathcal{A}_{\mu} \subset \mathcal{A}_{\mu|Y}$. Denn für $A \in \mathcal{A}_{\mu}$ und $M \subset X$ ist

$$\mu_{\lfloor Y}(M) = \mu(Y \cap M) = \mu(Y \cap M \cap A) + \mu(Y \cap M \cap A^c)$$
$$= (\mu \lfloor Y)(M \cap A) + (\mu \lfloor Y)(M \cap A^c).$$

Ferner gilt

$$A \in \mathcal{A}_{\mu} \iff \mu = (\mu \lfloor A) + (\mu \lfloor A^c).$$

Proposition 1.2

Für ein äußeres Maß μ auf X gelten die folgenden Aussagen:

- a) \emptyset , $X \in \mathcal{A}_{\mu}$ sowie $A \in \mathcal{A}_{\mu} \iff A^{c} \in \mathcal{A}_{\mu}$.
- b) Für $A \subset X$ mit $\mu(A) = 0$ gilt $A \in \mathcal{A}_{\mu}$.
- c) Für $A_i \in \mathcal{A}_{\mu}$, $i \in \mathbb{N}$ gilt $\bigcup_{i>1} A_i \in \mathcal{A}_{\mu}$ und $\bigcap_{i>1} A_i \in \mathcal{A}_{\mu}$.
- d) Für $A \in \mathcal{A}_{\mu}$, $B \subset X$ gilt

$$\mu(A \cap B) + \mu(A \cup B) = \mu(A) + \mu(B).$$

e) Für $A_i \in \mathcal{A}_{\mu}$, $i \in \mathbb{N}$, paarweise disjunkt, gilt

$$\mu(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i).$$

f) Für $A_i \in \mathcal{A}_{\mu}$, $i \in \mathbb{N}$ und $A_i \subset A_{i+1}$ für alle $i \in \mathbb{N}$ gilt

$$\mu(\bigcup_{i=1}^{\infty} A_i) = \lim_{i \to \infty} \mu(A_i).$$

g) Für $A_i \in \mathcal{A}_{\mu}$, $i \in \mathbb{N}$ mit $\mu(A_1) < \infty$ und $A_i \supset A_{i+1}$ für alle $i \in \mathbb{N}$ gilt:

$$\mu(\bigcap_{i=1}^{\infty} A_i) = \lim_{i \to \infty} \mu(A_i).$$

Beweis

c) Seien $A_1, A_2 \in \mathcal{A}_{\mu}, M \supset X$. Dann folgt

$$\mu(M) = \mu(M \cap A_1) + \mu(M \cap A_1^c)$$

$$= \mu(M \cap A_1) + \mu(M \cap A_1^c \cap A_2) + \mu(M \cap A_1^c \cap A_2^c)$$

$$\geq \mu(M \cap (A_1 \cup (A_1^c \cap A_2))) + \mu(M \cap A_1^c \cap A_2^c)$$

$$= \mu(M \cap (A_1 \cup A_2)) + \mu(M \cap (A_1 \cup A_2)^c).$$

Daraus folgt $A_1 \cup A_2 \in \mathcal{A}_{\mu}$. Per Induktion sieht man dann, dass für $A_1, \ldots, A_n \in \mathcal{A}_{\mu}$ gilt: $\bigcup_{i=1}^n A_i \in \mathcal{A}_{\mu}$.

e) Sind $A_1, \ldots, A_n \in \mathcal{A}_{\mu}$ und paarweise disjunkt, dann gilt

$$\mu(A_1 \cup A_2) = \mu((A_1 \cup A_2) \cap A_1) + \mu((A_1 \cup A_2) \cap A_1^c) = \mu(A_1) + \mu(A_2),$$

woraus

$$\mu(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} \mu(A_i)$$

folgt. Wegen

$$\sum_{i=1}^{n} \mu(A_i) \le \mu(\bigcup_{i=1}^{\infty} A_i)$$

gilt

$$\sum_{i=1}^{\infty} \mu(A_i) \le \mu(\bigcup_{i=1}^{\infty} A_i) \le \sum_{i=1}^{\infty} \mu(A_i)$$

und damit Gleichheit.

f) Wir definieren $B_1 := A_1$, $B_2 := A_2 \setminus A_1$, $B_3 := A_3 \setminus A_2 \dots$ Nun ist $B_i \in \mathcal{A}_{\mu}$ für alle $i \in \mathbb{N}$ und die B_i sind paarweise disjunkt. Es folgt

$$\lim_{k \to \infty} \mu(A_k) = \lim_{k \to \infty} \mu(\bigcup_{i=1}^k B_i)$$

$$= \lim_{k \to \infty} \sum_{i=1}^k \mu(B_i)$$

$$= \sum_{i=1}^\infty \mu(B_i)$$

$$= \mu(\bigcup_{i=1}^\infty B_i)$$

$$= \mu(\bigcup_{i=1}^\infty A_i).$$
(nach e))

g) Es ist

$$\mu(A_1) = \mu(A_2 \cup (A_1 \setminus A_2)) = \mu(A_2) + \mu(A_1 \setminus A_2),$$

das heißt

$$\mu(A_1 \setminus A_2) = \mu(A_1) - \mu(A_2).$$

Damit zeigt man

$$\mu(A_1) - \mu(\bigcap_{i \ge 1} A_i) = \mu(A_1 \setminus \bigcap_{i \ge 1} A_i)$$

$$= \mu(A_1 \cap (\bigcap_{i \ge 1} A_i)^c)$$

$$= \mu(A_1 \cap (\bigcup_{i \ge 1} A_i^c))$$

$$= \mu(\bigcup_{i \ge 1} (A_1 \cap A_i^c))$$

$$= \lim_{i \to \infty} \mu(\underbrace{A_1 \cap A_i^c})_{=A_1 \setminus A_i}$$

$$= \lim_{i \to \infty} (\mu(A_1) - \mu(A_i))$$

$$= \mu(A_1) - \lim_{i \to \infty} \mu(A_i)$$

und damit die Behauptung.

c) Sei $M \subset X$. Wir definieren $C_k := \bigcup_{i=1}^k A_i \in \mathcal{A}_{\mu}$. Damit gilt $C_1 \subset C_2 \subset \cdots$. Sei ohne Beschränkung der Allgemeinheit $\mu(M) < \infty$. Dann gilt

$$\infty > \mu(M) = (\mu \lfloor M)(X)$$

$$= (\mu \lfloor M)(C_k) + (\mu \lfloor M)(C_k^c)$$

$$= \lim_{k \to \infty} (\mu \lfloor M)(C_k) + \lim_{k \to \infty} (\mu \lfloor M)(C_k^c)$$

$$= (\mu \lfloor M)(\bigcup_{i \ge 1} C_i) + (\mu \lfloor M)(\bigcap_{i \ge 1} C_i^c)$$

$$= (\mu \lfloor M)(\bigcup_{i \ge 1} C_i) + (\mu \lfloor M)((\bigcup_{i \ge 1} C_i)^c)$$

$$= \mu(M \cap (\bigcup_{i > 1} A_i)) + \mu(M \cap (\bigcup_{i \ge 1} A_i)^c)$$

und somit $\bigcup_{i\geq 1} A_i \in \mathcal{A}_{\mu}$.

d) Für $A \in \mathcal{A}_{\mu}$ und $B \subset X$ gilt:

$$\mu(A \cup B) = \mu((A \cup B) \cap A) + \mu((A \cup B) \cap A^c)$$
$$= \mu(A) + \mu(B \cap A^c)$$

sowie

$$\mu(B) = \mu(B \cap A) + \mu(B \cap A^c).$$

Hiermit so erhält man

$$\mu(A) + \mu(B) = \mu(A) + \mu(B \cap A) + \mu(B \cap A^c)$$
$$= \mu(B \cap A) + \mu(A \cup B).$$

Hinweis: Es ist \mathcal{A}_{μ} eine (bezüglich μ vollständige) σ -Algebra und μ ist ein σ -additives Maß auf \mathcal{A}_{μ} , wobei " \mathcal{A}_{μ} ist μ -vollständig" heißt, dass jede μ -Nullmenge in \mathcal{A}_{μ} liegt. (X, \mathcal{A}_{μ}) ist ein messbarer Raum und $(X, \mathcal{A}_{\mu}, \mu)$ ist ein Maßraum.

Definition

Sei \mathcal{A} eine σ -Algebra auf X. Ein äußeres Maß μ auf X heißt \mathcal{A} -regulär, falls $\mathcal{A} \subset \mathcal{A}_{\mu}$ gilt und zu jeder Menge $M \subset X$ ein $A \in \mathcal{A}$ existiert mit $M \subset A$ und $\mu(M) = \mu(A)$. Das äußere Maß μ heißt regulär, falls μ ein \mathcal{A}_{μ} -reguläres Maß ist.

Proposition 1.3

Sei \mathcal{A} eine σ -Algebra in X, μ ein \mathcal{A} -reguläres äußeres Maß auf X. Dann gilt:

a) Ist $M_i \subset X$, $M_i \subset M_{i+1}$ für alle $i \in \mathbb{N}$, so ist

$$\mu(\bigcup_{i>1} M_i) = \lim_{i \to \infty} \mu(M_i).$$

b) Zu jedem $M \subset X$ mit $\mu(M) < \infty$ existiert ein $A \in \mathcal{A}$, so dass für alle $B \in \mathcal{A}_{\mu}$ gilt:

$$\mu(B \cap M) = \mu(B \cap A)$$

c) Ist $M_1 \cup M_2 \in \mathcal{A}$ und $\mu(M_1 \cup M_2) = \mu(M_1) + \mu(M_2) < \infty$, so existiereren $A_1, A_2 \in \mathcal{A}$ mit $M_i \subset A_i$, i = 1, 2 und $\mu(A_i \setminus M_i) = 0$. Insbesondere ist $M_1, M_2 \in \mathcal{A}_{\mu}$.

Beweis

a) Zu jedem $i \in \mathbb{N}$ finden wir ein $A_i \in \mathcal{A}$ so dass $M_i \subset A_i$ und $\mu(M_i) = \mu(A_i)$. Dazu definieren wir $B_i := \bigcap_{i > i} A_j$. Damit gilt $M_i \subset B_i \subset A_i$, $B_i \subset B_{i+1}$ und $B_i \in \mathcal{A}$, $i \in \mathbb{N}$. Es folgt

$$\mu(\bigcup_{i\geq 1} M_i) \leq \mu(\bigcup_{i\geq 1} B_i)$$

$$= \lim_{i\to\infty} \mu(B_i)$$

$$\leq \lim_{i\to\infty} \mu(A_i)$$

$$= \lim_{i\to\infty} \mu(M_i)$$

$$\leq \lim_{i\to\infty} \mu(\bigcup_{i\geq 1} M_i).$$

b) Zu M existiert ein $A \in \mathcal{A}$ mit $M \subset A$ und $\mu(M) = \mu(A)$. Sei $B \in \mathcal{A}_{\mu}$. Dann folgt

$$\mu(A) = \mu(M) = \mu(M \cap B) + \mu(M \cap B^c)$$

$$\leq \mu(A \cap B) + \mu(M \cap B^c)$$

$$\leq \mu(A \cap B) + \mu(A \cap B^c) = \mu(A),$$

woraus Gleichheit in obigen Ungleichungen folgt. Wegen $\mu(M) < \infty$ ist auch $\mu(M \cap B^c) < \infty$, und wir können dies von zwei obigen Termen abziehen und erhalten

$$\mu(M \cap B) = \mu(A \cap B).$$

c) Zu M_1 existiert $\tilde{A}_1 \in \mathcal{A}$ mit $M_1 \subset \tilde{A}_1$ und $\mu(M_1) = \mu(\tilde{A}_1)$. Wir definieren $A_1 := \tilde{A}_1 \cap (M_1 \cup M_2)$. Für diese Menge gilt nun $M_1 \subset A_1 \subset M_1 \cup M_2$. Wir folgern

$$\mu(M_1) \le \mu(A_1) \le \mu(\tilde{A}_1) = \mu(M_1)$$

und wegen $M_1 \cup M_2 = A_1 \cup M_2$ weiter

$$\mu(A_1 \cap M_2) + \mu(A_1 \cup M_2) = \mu(A_1) + \mu(M_2)$$

$$= \mu(M_1) + \mu(M_2)$$

$$= \mu(M_1 \cup M_2)$$

$$= \mu(A_1 \cup M_2) < \infty,$$

woraus $\mu(A_1 \cap M_2) = 0$ folgt.

Nun ist $A_1 \setminus M_1 \subset A_1 \cap M_2$, also gilt $\mu(A_1 \setminus M_1) = 0$ und somit $A_1 \setminus M_1 \in \mathcal{A}_{\mu}$. Damit gilt dann $M_1 = A_1 \cap (A_1 \setminus M_1)^c \in \mathcal{A}_{\mu}$.

Satz 1.4

Sei \mathcal{A} eine σ -Algebra in X und ν ein Maß auf \mathcal{A} . Dann wird durch

$$\mu(M) := \inf \{ \nu(A) : A \in \mathcal{A}, M \subset A \}$$

für $M \subset X$ ein \mathcal{A} -reguläres äußeres Maß auf X erklärt mit $\mu|_{\mathcal{A}} = \nu$. Ist $M \in \mathcal{A}_{\mu}$ und $\mu(M) < \infty$, so existiert ein $A \in \mathcal{A}$ mit $M \subset A$ und $\mu(A \setminus M) = 0$.

Beweis

Für $M \subset X$ sieht man leicht, dass

$$\mu(M) = \inf \left\{ \sum_{i=1}^{\infty} \nu(A_i) : A_i \in \mathcal{A}, i \in \mathbb{N}, M \subset \bigcup_{i=1}^{\infty} A_i \right\}.$$

Also ist μ das von (\mathcal{A}, ν) induzierte äußere Maß. Da ν monoton ist und nach der Definition von μ ist $\mu|_{\mathcal{A}} = \nu$.

Um die A-Regularität zu zeigen, nehmen wir ein $A \in A$ und ein $M \subset X$. Für $B \in A$ mit $M \subset B$ gilt:

$$\mu(M \cap A) + \mu(M \cap A^c) \le \nu(B \cap A) + \nu(B \cap A^c)$$
$$= \nu(B)$$

und daher

$$\mu(M \cap A) + \mu(M \cap A^c) \le \mu(M).$$

also ist $A \in \mathcal{A}_{\mu}$. Sei nun $M \subset X$ beliebig und ohne Beschränkung der Allgemeinheit $\mu(M) < \infty$. Es existiert also eine Folge $A_i \in \mathcal{A}$, $i \in \mathbb{N}$ mit $M \subset A_i$ und $\nu(A_i) \to \mu(M)$. Setze $A := \bigcap_{i \geq 1} A_i$. Dann gilt $A \in \mathcal{A}$, $M \subset A$, sowie

$$\mu(M) = \lim_{i \to \infty} \nu(A_i) \ge \nu(\bigcap_{i=1}^{\infty} A_i) = \mu(\bigcap_{i=1}^{\infty} A_i) = \mu(A) \ge \mu(M),$$

woraus $\mu(M) = \mu(A)$ folgt.

Sei schließlich $M \in \mathcal{A}_{\mu}$ mit $\mu(M) < \infty$. Es gibt ein $A \in \mathcal{A}$ mit $M \subset A$ und $\mu(M) = \mu(A) < \infty$. Dann folgt

$$\infty > \mu(A) = \mu(A \cap M) + \mu(A \cap M^c)$$
$$= \mu(M) + \mu(A \cap M^c)$$
$$= \mu(A) + \mu(A \setminus M).$$

Wegen $\mu(A) = \mu(M) < \infty$ gilt also $\mu(A \setminus M) = 0$.

Anwendung: Sei ϑ ein beliebiges äußeres Maß auf X. Dann ist $\vartheta|_{\mathcal{A}_{\vartheta}}$ ein Maß. Durch

$$\mu(M) := \inf \{ \vartheta(A) : A \in \mathcal{A}_{\vartheta}, M \subset A \}$$

wird also ein \mathcal{A}_{ϑ} -reguläres äußeres Maß auf X erklärt, das ϑ fortsetzt (also $\mu|_{\mathcal{A}_{\vartheta}} = \vartheta|_{\mathcal{A}_{\vartheta}}$).

Definition

Seien X, Y Mengen, μ ein äußeres Maß auf X und $f: X \to Y$. Dann wird durch

$$(f\mu)(M) \coloneqq \mu(f^{-1}(M))$$

für $M \subset Y$ ein äußeres Maß $f\mu$ auf Y erklärt. Man nennt $f\mu$ das Bild von μ unter f oder auch "push forward" von μ bezüglich f und schreibt hierfür auch $f_{\#}\mu$.

Bemerkung: Für $B \subset Y$ gilt

$$f^{-1}(B) \in \mathcal{A}_{\mu} \iff \forall M \subset X : B \in \mathcal{A}_{f(\mu|M)}.$$

Seien hierzu $M \subset X$, $A, B \subset Y$. Dann gilt

$$\mu(M \cap f^{-1}(A) \cap f^{-1}(B)) + \mu(M \cap f^{-1}(A) \cap f^{-1}(B)^{c})$$

$$= (\mu \lfloor M)(f^{-1}(A \cap B)) + (\mu \lfloor M)(f^{-1}(A \cap B^{c}))$$

$$= f(\mu \lfloor M)(A \cap B) + f(\mu \lfloor M)(A \cap B^{c}).$$

Insbesondere gilt: Ist $f^{-1}(A) \in \mathcal{A}_{\mu}$, so ist $A \in \mathcal{A}_{f(\mu)}$.

Sprechweisen: Sei μ ein äußeres Maß auf X. Eine Menge $N \subset X$ heißt μ -Nullmenge, falls $\mu(N) = 0$. Eine Eigenschaft \mathcal{E} gilt für μ -fast-alle $x \in X$ bzw. μ -fast-überall, falls

$$\mu(\{x \in X : \mathcal{E} \text{ gilt für } x \text{ nicht}\}) = 0.$$

Mit $\mathbb{F}_{\mu}(X,Y)$ wird die Menge aller Abbildungen $f:D\to Y$ bezeichnet mit $D\subset X$ und $\mu(X\setminus D)=0$.

Definition

Seien X, Y Mengen, μ ein äußeres Maß auf X und \mathcal{C} eine σ -Algebra in Y. Dann heißt $f \in \mathbb{F}_{\mu}(X,Y)$ μ -messbar bezüglich \mathcal{C} , falls $f^{-1}(\mathcal{C}) \subset \mathcal{A}_{\mu}$.

Beachte, dass für $f: D \to Y$ mit $\mu(X \setminus D) = 0$ gilt: $D = f^{-1}(Y) \in \mathcal{A}_{\mu}$.

Lemma 1.5

Seien X, Y Mengen, μ ein äußeres Maß auf X und $\mathcal{E} \subset \mathcal{P}(Y)$. Für $f \in \mathbb{F}_{\mu}(X, Y)$ sind äquivalent:

- a) $f^{-1}(\mathcal{E}) \subset \mathcal{A}_{\mu}$
- b) f ist μ -messbar bezüglich $\sigma(\mathcal{E})$.

Definition

Ist (X, \mathcal{T}) ein topologischer Raum, so nennt man die von den offenen Mengen erzeugte σ -Algebra $\sigma(\mathcal{T})$ die Borelsche σ -Algebra des topologischen Raumes (X, \mathcal{T}) mit der Notation $\mathfrak{B}(X)$.

Spezielle Borelsche Algebren sind $\mathfrak{B}(\mathbb{R})$, $\mathfrak{B}(\mathbb{R}^n)$, $\mathfrak{B}(\bar{\mathbb{R}}) := \{B \in \bar{\mathbb{R}} : B \cap \mathbb{R} \in \mathfrak{B}(\mathbb{R})\}.$

Definition

Sei X eine Menge, μ ein äußeres Maß auf X und $f \in \mathbb{F}_{\mu}(X, \overline{\mathbb{R}})$. Man nennt f eine μ -messbare Abbildung, falls f dies bezüglich $\mathfrak{B}(\overline{\mathbb{R}})$ ist.

Im Folgenden schreiben wir für eine Relation ϱ auf $\bar{\mathbb{R}}$, Mengen $D, D' \subset X$ und Abbildungen $f: D \to \bar{\mathbb{R}}, g: D' \to \bar{\mathbb{R}}$:

$$\{f \varrho g\} := \{x \in D \cap D' : f(x) \varrho g(x)\}$$

Lemma 1.6

Sei μ ein äußeres Maß auf X und $f \in \mathbb{F}_{\mu}(X, \mathbb{R})$. Genau dann ist f eine μ -messbare Abbildung, wenn eine der folgenden Bedingungen für alle $a \in \mathbb{R}$ erfüllt ist:

$$\{f > a\} \in \mathcal{A}_{\mu}, \qquad \{f \ge a\} \in \mathcal{A}_{\mu}, \qquad \{f < a\} \in \mathcal{A}_{\mu}, \qquad \{f \le a\} \in \mathcal{A}_{\mu}.$$

Lemma 1.7

Sei μ ein äußeres Maß auf X, seien $f, g, f_n \in \mathbb{F}_{\mu}(X, \mathbb{R}), n \in \mathbb{N}, \mu$ -messbar. Dann gilt

- (a) $\{f < g\}, \{f \le g\}, \{f = g\}, \{f \ne g\}$ sind μ -messbare Mengen.
- (b) Die Funktionen

$$f+g,$$
 $f-g,$ $f\cdot g$ (falls μ -fast-überall definiert),
$$\sup_n f_n, \qquad \inf_n f_n,$$

$$f^+ := \max\{f,0\}, \quad f^- := -\min\{f,0\}, \quad |f|,$$

$$\limsup_n f_n, \qquad \liminf_n f_n$$

sind μ -messbar.

Satz 1.8

Ist μ ein äußeres Maß auf X, so ist $f \in \mathbb{F}_{\mu}(X, \mathbb{R})$ genau dann μ -messbar, wenn für alle $M \subset X$, $a, b \in \mathbb{R}$ mit a < b gilt

$$\mu(M) \ge \mu(M \cap \{f \le a\}) + \mu(M \cap \{f \ge b\}).$$

Beweis

Sei f zunächst μ -messbar. Dann gilt mit $a < b, M \subset X$:

$$\mu(M) \ge \mu(M \cap \{f \le a\}) + \mu(M \cap \{f > a\})$$
$$\ge \mu(M \cap \{f \le a\}) + \mu(M \cap \{f \ge b\})$$

Jetzt gelte die Bedingung des Satzes für alle $M \subset X$, a < b. Zu zeigen ist: $\{f \leq r\} \in \mathcal{A}_{\mu}$ für beliebige $r \in \mathbb{R}$. Sei $M \subset X$ beliebig mit $\mu(M) < \infty$. Für $i \in \mathbb{N}$ sei

$$A_i := M \cap \{r + \frac{1}{i+1} \le f \le r + \frac{1}{i}\}.$$

Wir zeigen mit vollständiger Induktion, dass

$$\mu(\bigcup_{i=0}^{n} A_{2i+1}) \ge \sum_{i=1}^{n} \mu(A_{2i+1})$$

gilt.

Für n=0 ist dies klar. Die Ungleichung gelte für ein $n \in \mathbb{N}$.

$$\mu(\bigcup_{i=0}^{n+1} A_{2i+1}) \ge \mu(\bigcup_{i=0}^{n+1} A_{2i+1} \cap \{f \ge \underbrace{r + \frac{1}{2n+2}}\}) + \mu(\bigcup_{i=0}^{n+1} A_{2i+1} \cap \{f \le \underbrace{r + \frac{1}{2n+3}}\})$$

$$= \mu(\bigcup_{i=0}^{n} A_{2i+1}) + \mu(A_{2n+3})$$

$$\ge \sum_{i=0}^{n} \mu(A_{2i+1}) + \mu(A_{2n+3})$$

$$\ge \sum_{i=0}^{n+1} \mu(A_{2i+1})$$

Analog zeigt man

$$\mu(\bigcup_{i=1}^{n} A_{2i}) \ge \sum_{i=1}^{n} \mu(A_{2i})$$

und erhält zusammen

$$\sum_{i=1}^{\infty} \mu(A_i) \le 2\mu(M) < \infty.$$

Sei $\varepsilon>0$. Dann gibt es ein $n\in\mathbb{N}$ mit $\sum_{i\geq n}\mu(A_i)<\varepsilon$. Zunächst schätzen wir ab

$$\mu(M \cap \{r < f < r + \frac{1}{n}\}) \le \mu(M \cap \{r < f \le r + \frac{1}{n}\})$$

$$= \mu(M \cap \bigcup_{i=n}^{\infty} \{r + \frac{1}{i+1} \le f \le r + \frac{1}{i}\})$$

$$= \mu(\bigcup_{i=n}^{\infty} A_i)$$

$$\le \sum_{i \ge n} \mu(A_i) < \varepsilon$$

und damit

$$\mu(M \cap \{f \le r\}) + \mu(M \cap \{f > r\})$$

$$\le \mu(M \cap \{f \le r\}) + \mu(M \cap \{r < f < r + \frac{1}{n}\}) + \mu(M \cap \{f \ge r + \frac{1}{n}\})$$

$$\le \mu(M) + \varepsilon.$$

Satz 1.9

Seien μ ein äußeres Maß auf $X, f: X \to [0, \infty]$ eine μ -messbare Abbildung und $(r_n)_{n \in \mathbb{N}}$ eine Folge in $[0, \infty)$ mit $\lim_{n \to \infty} r_n = 0$ und $\sum_{n=1}^{\infty} r_n = \infty$. Dann gibt es eine Folge $(A_n)_{n \in \mathbb{N}}$

 μ -messbarer Mengen mit

$$f = \sum_{n>1} r_n \mathbb{1}_{A_n}.$$

Beweis

Setze $A_1 := \{ f \ge r_1 \}$ und $A_n := \{ f \ge r_n + \sum_{j=1}^{n-1} r_j \mathbb{1}_{A_j} \}, n > 1.$

Behauptung: Es ist $f \geq \sum_{i=1}^{n} r_i \mathbb{1}_{A_i}$, $n \in \mathbb{N}$. Dies gilt für n = 1, und wenn es für ein $n \in \mathbb{N}$ gilt, dann folgt: Ist $x \notin A_{n+1}$, dann ist

$$f(x) \ge \sum_{i=1}^{n} r_i \mathbb{1}_{A_i}(x) + \underbrace{r_{n+1} \mathbb{1}_{A_{n+1}}(x)}_{=0}$$

nach Induktionsvoraussetzung. Ist dagegen $x \in A_{n+1}$, so gilt nach der Definition von A_{n+1}

$$f(x) \ge \sum_{i=1}^{n} r_i \mathbb{1}_{A_i}(x) + r_{n+1} = \sum_{i=1}^{n} r_i \mathbb{1}_{A_i}(x) + r_{n+1} \underbrace{\mathbb{1}_{A_{n+1}}(x)}_{=1}.$$

Folglich ist $f \geq \sum_{i=1}^{\infty} r_i \mathbb{1}_{A_i}$.

Annahme: Es gelte $f(x) > \sum_{i=1}^{\infty} r_i \mathbb{1}_{A_i}(x)$ für ein $x \in X$.

Also ist $\sum_{i=1}^{\infty} r_i \mathbbm{1}_{A_i}(x) < \infty$. Da $\sum_{i=1}^{\infty} r_i = \infty$ gilt, muss es eine Folge natürlicher Zahlen $(j_k)_{k \in \mathbb{N}}$ geben mit $\mathbbm{1}_{A_{j_k}}(x) = 0$ für alle $k \in \mathbb{N}$. Wegen $\lim_{k \to \infty} r_{j_k} = 0$ gibt es ein $k \in \mathbb{N}$ mit

$$r_{j_k} < f(x) - \sum_{j=1}^{\infty} r_j \mathbb{1}_{A_j}(x)$$

und damit

$$\begin{split} f(x) &> \sum_{j=1}^{\infty} r_{j} \mathbb{1}_{A_{j}}(x) + r_{j_{k}} \\ &\geq \sum_{j=1}^{j_{k}-1} r_{j} \mathbb{1}_{A_{j}}(x) + r_{j_{k}}. \end{split}$$

Das bedeutet $x \in A_{j_k}$ im Widerspruch zu $\mathbbm{1}_{A_{j_k}}(x) = 0.$

1.2 Integration

In diesem Abschnitt wird generell vorausgesetzt, dass X eine Menge und μ ein äußeres Maß auf X ist.

Definition

Eine μ -Treppenfunktion auf X ist eine μ -messbare Abbildung $h \in \mathbb{F}_{\mu}(X,\mathbb{R})$ mit abzählbarer Wertemenge im(h) und

$$\sum_{\substack{r \in \operatorname{im}(h) \\ r < 0}} r \cdot \mu(\{h = r\}) > -\infty \quad \text{ oder } \quad \sum_{\substack{r \in \operatorname{im}(h) \\ r > 0}} r \cdot \mu(\{h = r\}) < \infty.$$

Ist h eine μ -Treppenfunktion auf X, so wird durch

$$\int h d\mu = \sum_{r \in \operatorname{im}(h)} r \cdot \mu(\{h = r\})$$

das μ -Integral von h erklärt, wobei " $0\cdot\infty\coloneqq 0$ " gelte.

Bemerkung: (1) Es gilt

$$\int hd\mu = \int h^+d\mu - \int h^-d\mu.$$

(2) $h = \mathbb{1}_A, A \in \mathcal{A}_\mu$ ist eine μ -Treppenfunktion, $\int \mathbb{1}_A d\mu = \mu(A)$.

Lemma 1.10

Seien h, g μ -Treppenfunktionen auf X. Es gelte $\int h^+ d\mu < \infty$ und $\int g^+ d\mu < \infty$ oder $\int h^- d\mu < \infty$ und $\int g^- d\mu < \infty$. Dann ist h + g eine μ -Treppenfunktion und es gilt

$$\int (h+g)d\mu = \int hd\mu + \int gd\mu.$$

Beweis

Es gilt zunächst $h+g \in \mathbb{F}_{\mu}(X,\mathbb{R})$. Zur Additivität: Wir definieren $A(r,s) := \{h = r\} \cap \{g = s\}$ für $r,s \in \mathbb{R}$. Die Voraussetzungen des Lemmas stellen sicher, dass die nachfolgend vorgenommenen Vertauschungen der Summationsreihenfolge zulässig sind. Es gilt damit

$$\int hd\mu + \int gd\mu = \sum_{r \in \text{im}(h)} r \cdot \mu(\{h = r\}) + \sum_{s \in \text{im}(g)} s \cdot \mu(\{g = s\})$$

$$= \sum_{r \in \text{im}(h)} r \cdot \sum_{s \in \text{im}(g)} \mu(A(r, s)) + \sum_{s \in \text{im}(g)} s \cdot \sum_{r \in \text{im}(h)} \mu(A(r, s))$$

$$= \sum_{\substack{r \in \text{im}(h) \\ s \in \text{im}(g)}} t \cdot \sum_{\substack{r \in \text{im}(h) \\ s \in \text{im}(g) \\ r+s=t}} \mu(A(r, s))$$

$$= \sum_{\substack{t \in \text{im}(g+h) \\ s \in \text{im}(g) \\ r+s=t}} t \cdot \mu(\bigcup_{\substack{r \in \text{im}(h) \\ s \in \text{im}(g) \\ r+s=t}} A(r, s))$$

$$= \sum_{\substack{t \in \text{im}(g+h) \\ s \in \text{im}(g) \\ r+s=t}} t \cdot \mu(\{g+h=t\})$$

$$= \int (h+g)d\mu.$$

Übung: Zeige, dass $\int (g+h)^+ d\mu < \infty$ oder $\int (g+h)^- d\mu < \infty$ gilt.

Bemerkung: Sei h eine μ -Treppenfunktion mit $h \ge 0$, dann gilt $\int h d\mu \ge 0$. Mit Lemma 1.10 folgt für μ -Treppenfunktionen h, g:

$$h \le g \implies \int h d\mu \le \int g d\mu$$

Definition

Sei $f \in \mathbb{F}_{\mu}(X, \overline{\mathbb{R}})$. Eine μ -Oberfunktion (bzw. μ -Unterfunktion) von f ist eine μ -Treppenfunktion h auf X mit $f \leq h$ μ -fast-überall auf X (bzw. $h \leq f$ μ -fast-überall auf X).

Durch

$$\int^* f d\mu \coloneqq \inf \left\{ \int h d\mu : h \text{ ist eine } \mu\text{-Oberfunktion von } f \right\}$$

wird das μ -Oberintegral von f erklärt. Analog wird durch

$$\int_* f d\mu \coloneqq \sup \left\{ \int h d\mu : h \text{ ist eine } \mu\text{-}\text{Unterfunktion von } f \right\}$$

das μ -Unterintegral von f erklärt.

Lemma 1.11

Für $f, g \in \mathbb{F}_{\mu}(X, \overline{\mathbb{R}})$ gelten die folgenden Aussagen:

- (1) $\int_{*} f d\mu = -\int_{*}^{*} (-f) d\mu$.
- (2) Gilt μ -fast-überall $f \leq g$, so ist $\int_{-\pi}^{\pi} f d\mu \leq \int_{\pi}^{\pi} g d\mu$ und $\int_{\pi} f d\mu \leq \int_{\pi}^{\pi} g d\mu$.
- (3) Gilt μ -fast-überall $f \geq 0$, so ist $\int_{*}^{*} f d\mu \geq 0$ und $\int_{*}^{} f d\mu \geq 0$.
- (4) Gilt $\int_{0}^{*} f d\mu < \infty$, so auch $\int_{0}^{*} f^{+} d\mu < \infty$ und $f < \infty$ μ -fast-überall.
- (5) Für $c \in (0, \infty)$ gilt $\int_{*}^{*} (cf) d\mu = c \cdot \int_{*}^{*} f d\mu$ und $\int_{*} (cf) d\mu = c \cdot \int_{*}^{*} f d\mu$.
- (6) Ist $\int^* f d\mu < \infty$ und $\int^* g d\mu < \infty$, so ist $f + g \in \mathbb{F}_{\mu}(X, \mathbb{R})$ und

$$\int_{-\infty}^{\infty} (f+g)d\mu \le \int_{-\infty}^{\infty} f d\mu + \int_{-\infty}^{\infty} g d\mu.$$

Analog gilt: Ist $\int_* f d\mu > -\infty$ und $\int_* g d\mu > -\infty$, so ist $f + g \in \mathbb{F}_{\mu}(X, \mathbb{R})$ und

$$\int_{*} (f+g)d\mu \ge \int_{*} fd\mu + \int_{*} gd\mu.$$

 $(7) \int_{*} f d\mu \le \int_{*} f d\mu.$

Beweis

Übung

Bemerkung: Ist h eine μ -Treppenfunktion, so ist h eine μ -Oberfunktion und eine μ -Unterfunktion von h. Das heißt insbesondere

$$\int hd\mu \le \int_{*} hd\mu \le \int_{*} hd\mu \le \int hd\mu.$$

Definition

Ist $f \in \mathbb{F}_{\mu}(X, \overline{\mathbb{R}})$ eine μ -messbare Abbildung und stimmt das μ -Oberintegral mit dem μ -Unterintegral von f überein, so wird durch

$$\int f d\mu := \int_{*}^{*} f d\mu = \int_{*} f d\mu$$

das μ -Integral von f erkärt. Man sagt in diesem Fall, dass das μ -Integral von f existiert. Ist $\int f d\mu \in \mathbb{R}$, so heißt f μ -integrierbar.

Satz 1.12

Sei $f \in \mathbb{F}_{\mu}(X, \mathbb{R})$ nicht-negativ und μ -messbar. Dann existiert das μ -Integral von f. Es gilt $\int f d\mu \geq 0$ und

$$\int f d\mu = \sup \left\{ \int h d\mu : h \text{ ist } \mu\text{-Unterfunktion, im}(h) \text{ ist endlich} \right\}.$$

Beweis

Ist $\mu(\{f=\infty\}) > 0$, dann ist für jedes $n \in \mathbb{N}$ die Funktion $n \cdot \mathbb{1}_{\{f=\infty\}}$ eine μ -Unterfunktion von f und

$$\int_{*}^{*} f d\mu \geq \int_{*} f d\mu \geq \int n \cdot \mathbb{1}_{\{f = \infty\}} d\mu = n \cdot \mu(\{f = \infty\}) \to \infty \text{ für } n \to \infty.$$

Also ist $\int_{*}^{*} f d\mu = \int_{*}^{} f d\mu = \infty$.

Sei jetzt $f < \infty$ μ -fast-überall. Für $t \in (1, \infty)$ sei

$$U_t \coloneqq \sum_{n \in \mathbb{Z}} t^n \cdot \mathbb{1}_{\{t^n \le f < t^{n+1}\}}.$$

Offenbar ist

$$U_t \leq f \leq tU_t$$

 μ -fast-überall, d.h. U_t ist eine μ -Unterfunktion von f, tU_t eine μ -Oberfunktion von f. Damit gilt

$$\int_{-\infty}^{\infty} f d\mu \le \int t U_t d\mu = t \cdot \int U_t d\mu \le t \int_{\infty}^{\infty} f d\mu.$$

Ist $\int_* f d\mu < \infty$, dann folgt $\int^* f d\mu \leq \int_* f d\mu$ aus $t \to 1$. Ist dagegen $\int_* f d\mu = \infty$, so ist $\int^* f d\mu = \int_* f d\mu = \infty$.

Satz 1.13

Seien $f, g \in \mathbb{F}_{\mu}(X, \bar{\mathbb{R}})$ μ -messbar. Dann gilt:

(1) Sei $c \in \mathbb{R} \setminus \{0\}$. Es existiert $\int f d\mu$ genau dann, wenn $\int (cf) d\mu$ existiert. In diesem Fall ist

$$\int (cf)d\mu = c \cdot \int f d\mu.$$

(2) Angenommen, es existieren $\int f d\mu$ und $\int g f \mu$ und $(\int f d\mu, \int g d\mu) \neq (\pm \infty, \mp \infty)$. Dann ist $f + g \in \mathbb{F}_{\mu}(X, \overline{\mathbb{R}}), \int (f + g) d\mu$ existiert und

$$\int (f+g)d\mu = \int fd\mu + \int gd\mu.$$

(3) Ist $f \leq g$ μ -messbar und existiert $\int g d\mu$ (bzw. $\int f d\mu$), so existiert auch $\int f d\mu$ (bzw. $\int g d\mu$), und es gilt in jedem Fall

$$\int f d\mu \le \int g d\mu.$$

Beweis

(1) Es existiere $\int f d\mu$. Sei c > 0. Dann folgt

$$\int_{-\infty}^{\infty} (cf)d\mu = c \cdot \int_{-\infty}^{\infty} f d\mu = c \cdot \int_{\infty}^{\infty} f d\mu = \int_{\infty}^{\infty} (cf)d\mu.$$

Sei c < 0. Dann folgt

$$\int_{-\pi}^{\pi} (cf) d\mu = \int_{-\pi}^{\pi} (-c)(-f) d\mu = (-c) \cdot \int_{\pi}^{\pi} (-f) d\mu = (-c) \cdot (-1) \int_{\pi}^{\pi} f d\mu$$
$$= c \cdot \int_{\pi}^{\pi} f d\mu = c \int_{\pi}^{\pi} f d\mu = (-c) \int_{\pi}^{\pi} (-f) d\mu = \int_{\pi}^{\pi} (-c)(-f) d\mu = \int_{\pi}^{\pi} (cf) d\mu.$$

(2) Seien f, g μ -integrierbar. Dann ist $f, g < \infty$ μ -fast-überall, und somit ist $f + g \in \mathbb{F}_{\mu}(X, \overline{\mathbb{R}})$. Ferner gilt

$$\int f d\mu + \int g d\mu = \int_{*}^{*} f d\mu + \int_{*}^{*} g d\mu \ge \int_{*}^{*} (f+g) d\mu$$
$$\ge \int_{*} (f+g) d\mu \ge \int_{*}^{*} f d\mu + \int_{*}^{*} g d\mu = \int f d\mu + \int g d\mu,$$

woraus die Aussage folgt.

Sei nun $\int f d\mu = \infty$. Nach Voraussetzung gilt dann $\int g d\mu > -\infty$ und damit $g > -\infty$ μ -fast-überall. Das heißt $f + g \in \mathbb{F}_{\mu}(X, \overline{\mathbb{R}})$. Ferner gilt

$$\infty \ge \int_{*}^{*} (f+g)d\mu \ge \int_{*} (f+g)d\mu \ge \int_{*} fd\mu + \int_{*} gd\mu = \infty.$$

Analog kann der Fall $\int f d\mu = -\infty$ gezeigt werden.

(3) Sei $\int g d\mu < \infty$, das heißt $f \leq g < \infty$ μ -fast-überall. Dann ist $(f-g)\mathbb{1}_{\{g>-\infty\}} \in F_{\mu}(X, \mathbb{R})$ nicht positiv. Wegen $f \leq g < \infty$ μ -fast-überall ist $g + (f-g)\mathbb{1}_{\{g>-\infty\}} = f$ und damit ergibt (2)

$$\int g d\mu \ge \int g d\mu + \int (f - g) \mathbb{1}_{\{g > -\infty\}} d\mu = \int f d\mu.$$

Satz 1.14

Sei $f \in \mathbb{F}_{\mu}(X, \bar{\mathbb{R}})$ μ -messbar. Dann gilt:

(1) $\int f^+ d\mu$, $\int f^- d\mu$ existieren stets. Es existiert $\int f d\mu$ genau dann, wenn $\int f^+ d\mu < \infty$ oder $\int f^- d\mu < \infty$. In diesem Fall ist

$$\int f d\mu = \int f^+ d\mu - \int f^- d\mu.$$

Ferner ist

$$\Big| \int f d\mu \Big| \le \int |f| d\mu.$$

(2) Ist f μ -integrierbar, so auch |f|.

Beweis

(1) Es existiere $\int f d\mu$. Ist $\int f d\mu < \infty$, so ist $\int f^+ d\mu < \infty$ nach Lemma 1.11 (4). Ist dagegen $\int f d\mu = \infty$, so ist $\int (-f) d\mu = -\infty$ und daher $\int f^- d\mu = \int (-f)^+ d\mu < \infty$.

Umgekehrt sei $\int f^+ d\mu < \infty$ oder $\int f^- d\mu < \infty$. Dann existiert nach Satz 1.13 (2) das Integral $\int (f^+ - f^-) d\mu$ wegen Satz 1.13 (1) ist $\int f d\mu = \int f^+ d\mu - \int f^- d\mu$.

Stets existiert das Integral von |f| und

$$\int |f| d\mu = \int (f^+ + f^-) d\mu = \int f^+ d\mu + \int f^- d\mu \ge \Big| \int f^+ d\mu - \int f^- d\mu \Big| = \Big| \int f d\mu \Big|.$$

(2) Ist f μ -integrierbar, so folgt aus (1), dass $\int f^+ d\mu < \infty$ und $\int f^- d\mu < \infty$.

Satz 1.15 (Lemma von Fatou)

Sei $f_n \in \mathbb{F}_n(X, \mathbb{R}), n \in \mathbb{N}$, mit $f_n \geq 0$ und μ -messbar. Dann gilt

$$\int \liminf_{n \to \infty} f_n d\mu \le \liminf_{n \to \infty} \int f_n d\mu.$$

Beweis

Sei $\varepsilon \in (0,1)$. Sei h eine μ -Unterfunktion von $\liminf_{n\to\infty} f_n$ mit $\operatorname{im}(h) = \{r_1,\ldots,r_m\} \subset [0,\infty)$ (vergleiche Satz 1.12). Für $i=1,\ldots,m$ und $n\in\mathbb{N}$ sei

$$A_{i,n} := \{h = r_i\} \cap \{\inf_{k > n} f_k \ge \varepsilon \cdot r_i\} \in A_{\mu}.$$

Es gilt $A_{i,n} \subset A_{i,n+1}$ für i = 1, ..., m und $n \in \mathbb{N}$. Für μ -fast-alle $x \in X$ mit $h(x) = r_i$ gilt:

$$\varepsilon r_i < r_i \le \liminf_{n \to \infty} f_n(x) = \sup_{n \in \mathbb{N}} \inf_{k \ge n} f_k(x).$$

Es gibt ein $n \in \mathbb{N}$ mit $\varepsilon r_i < \inf_{k > n} f_k(x)$, das heißt $x \in A_{i,n}$. Also

$$\mu(\{h=r_i\}) = \mu(\bigcup_{n \in \mathbb{N}} A_{i,n}).$$

Die Mengen $A_{i,n}$, $i=1,\ldots,m$, sind paarweise disjunkt und aus ihrer Definition folgt, dass

$$\sum_{i=1}^{m} \varepsilon r_i \mathbb{1}_{A_{i,n}}$$

eine μ -Unterfunktion von f_n ist.

Hiermit gilt

$$\lim_{n \to \infty} \inf \int f_n d\mu \ge \lim_{n \to \infty} \inf \sum_{i=1}^m \varepsilon r_i \mu(A_{i,n})$$

$$= \sum_{i=1}^m \varepsilon r_i \lim_{n \to \infty} \inf \mu(A_{i,n})$$

$$= \sum_{i=1}^m \varepsilon r_i \mu(\bigcup_{n \in \mathbb{N}} A_{i,n})$$

$$= \varepsilon \sum_{i=1}^m r_i \mu(\{h = r_i\})$$

$$= \varepsilon \int h d\mu.$$

Es folgt

$$\int \liminf_{n \to \infty} f_n d\mu \le \frac{1}{\varepsilon} \liminf_{n \to \infty} \int f_n d\mu$$

für ein beliebiges $\varepsilon \in (0,1)$. Lässt man ε gegen 1 gehen, so folgt die Behauptung.

Satz 1.16 (von der monotonen Konvergenz)

Ist $f_n \in \mathbb{F}_{\mu}(X, \overline{\mathbb{R}})$ μ -messbar, $n \in \mathbb{N}$, $0 \le f_1 \le f_2 \le \cdots$, so gilt

$$\lim_{n \to \infty} \int f_n d\mu = \int \lim_{n \to \infty} f_n d\mu.$$

Beweis

Grenzwerte und Integrale existieren offenbar. Es gilt

$$\lim_{n \to \infty} \int f_n d\mu \le \int \lim_{n \to \infty} f_n d\mu$$

$$\le \lim_{n \to \infty} \int f_n d\mu. \qquad (\text{nach Satz } 1.15)$$

Satz 1.17 (Lebesgue)

Sei $f_n \in \mathbb{F}_{\mu}(X,\mathbb{R})$, $n \in \mathbb{N}$ eine konvergente Folge μ -messbarer Funktionen. Es existiere eine μ -integrierbare Funktion $g \in \mathbb{F}_{\mu}(X,\mathbb{R})$ mit $|f_n| \leq g$ μ -fast-überall für jedes $n \in \mathbb{N}$. Dann sind f_n und $f := \lim_{n \to \infty} f_n$ μ -integrierbar und

$$\lim_{n \to \infty} \int f_n d\mu = \int f d\mu.$$

Schärfer gilt sogar

$$\lim_{n \to \infty} \int |f - f_n| d\mu = 0.$$

Beweis

Wegen $|f_n|, |f| \leq g$ ist $\int |f_n| d\mu < \infty$ und $\int |f| d\mu < \infty$. Die Folge $(2g - |f_n - f|)_{n \in \mathbb{N}}$ nichtnegativer Funktionen in $\mathbb{F}_{\mu}(X, \mathbb{R})$ konvergiert für $n \to \infty$ μ -fast-überall gegen 2g. Mit dem Lemma von Fatou (Satz 1.15) folgt:

$$\int 2gd\mu - \limsup_{n \to \infty} \int |f_n - f| d\mu = \liminf_{n \to \infty} \int (2g - |f_n - f|) d\mu$$

$$\geq \int \underbrace{\lim_{n \to \infty} \inf(2g - |f_n - f|)}_{=2g} d\mu = \int 2gd\mu$$

also

$$\lim_{n \to \infty} \int |f_n - f| d\mu = 0.$$

Notation: Für $A \subset X$ und $f \in \mathbb{F}_{\mu}(X, \overline{\mathbb{R}})$ sei

$$\int_A^* f d\mu \coloneqq \int^* \mathbb{1}_A f d\mu \qquad \text{und} \qquad \int_{*A} f d\mu \coloneqq \int_* \mathbb{1}_A f d\mu.$$

Existiert das μ -Integral von $\mathbb{1}_A \cdot f$, so setzt man

$$\int_A f d\mu \coloneqq \int \mathbb{1}_A f d\mu.$$

Lemma 1.18

(Übungsblatt 2, Aufgabe 4) Sei $f_n \in \mathbb{F}_{\mu}(X, \mathbb{R}), n \in \mathbb{N}$, eine Folge nichtnegativer Funktionen. Dann gilt

$$\int_{-\infty}^{\infty} \int_{n=1}^{\infty} f_n d\mu \le \sum_{n=1}^{\infty} \int_{-\infty}^{\infty} f_n d\mu.$$

Satz 1.19

Sei $g \in \mathbb{F}_{\mu}(X, \mathbb{R})$ eine nichtnegative Funktion. Dann wird durch

$$\psi(A) := \int_A^* g d\mu, \ A \subset X,$$

ein äußeres Maß auf X definiert. Es gilt $\mathcal{A}_{\mu} \subseteq \mathcal{A}_{\psi}$. Ist g sogar μ -messbar und $f \in \mathbb{F}_{\mu}(X, \mathbb{R})$ μ -messbar, dann existiert $\int f d\psi$ genau dann, wenn $\int f g d\mu$ existiert. In diesem Fall gilt

$$\int f d\psi = \int f g d\mu.$$

Beweis

Es gilt $\psi(\emptyset) = 0$. Die Subsigmaadditivität folgt direkt aus Lemma 1.18.

Sei $A \in \mathcal{A}_{\mu}$ und $M \subset X$ mit $\psi(M) < \infty$. Sei $\varepsilon > 0$ beliebig. Dann existiert eine μ -Oberfunktion h zu $\mathbb{1}_M \cdot g$ mit $h \geq 0$ und

$$\int h d\mu \leq \int^* 1\!\!1_M g d\mu + \varepsilon.$$

Dann ist $\mathbbm{1}_A \cdot h$ eine μ -Oberfunktion zu $\mathbbm{1}_{M \cap A} \cdot g$ und $\mathbbm{1}_{A^c} \cdot h$ ist eine μ -Oberfunktion zu $\mathbbm{1}_{M \cap A^c} \cdot g$. Daher folgt

$$\psi(M \cap A) + \psi(M \cap A^c) = \int^* \mathbb{1}_{M \cap A} g d\mu + \int^* \mathbb{1}_{M \cap A^c} g d\mu$$

$$\leq \int \mathbb{1}_A \cdot h d\mu + \int \mathbb{1}_{A^c} \cdot h d\mu$$

$$= \int h d\mu \leq \int^* \mathbb{1}_M g d\mu + \varepsilon = \psi(M) + \varepsilon.$$

Sei nun g μ -messbar und $f \in \mathbb{F}_{\mu}(X, \overline{\mathbb{R}})$ und sei zunächst $f \geq 0$. Also existieren $\int f d\psi$ und $\int g f d\mu$. Es gibt eine Folge $(r_j)_{j \in \mathbb{N}}$ in $(0, \infty)$ und $(A_j)_{j \in \mathbb{N}}$ in A_{μ} mit $f = \sum_{j=1}^{\infty} r_j \mathbb{1}_{A_j}$. Zweimalige

Anwendung des Satzes von der monotonen Konvergenz (Satz 1.16) ergibt

$$\int f d\psi = \int \sum_{j=1}^{\infty} r_j \mathbb{1}_{A_j} d\psi$$

$$= \sum_{j=1}^{\infty} r_j \int \mathbb{1}_{A_j} d\psi$$

$$= \sum_{j=1}^{\infty} r_j \psi(A_j)$$

$$= \sum_{j=1}^{\infty} r_j \int \mathbb{1}_{A_j} g d\mu$$

$$= \int \left(\sum_{j=1}^{\infty} r_j \mathbb{1}_{A_j}\right) g d\mu$$

$$= \int f g d\mu.$$

Sei nun f eine beliebige μ -messbare Funktion. Wegen $(fg)^{\pm} = f^{\pm} \cdot g$ gilt $\int f^{\pm} d\psi < \infty$ genau dann, wenn $\int (fg)^{\pm} d\mu < \infty$. Somit existiert $\int f d\psi$ genau dann, wenn $\int fg d\mu$ existiert und

$$\int f d\psi = \int f^+ d\psi - \int f^- d\psi = \int f^+ g d\mu - \int f^- g d\mu = \int (f^+ - f^-) g d\mu = \int f g d\mu. \quad \blacksquare$$

Satz 1.20

Sei $f \in \mathbb{F}_{\mu}(X, \mathbb{R})$ μ -integrierbar. Dann gibt es zu jedem $\varepsilon > 0$ ein $\delta > 0$ derart, dass für alle $A \in \mathcal{A}_{\mu}$ mit $\mu(A) < \delta$ gilt

$$\int_{A} |f| d\mu < \varepsilon.$$

Beweis

Betrachte $g_n := \min\{|f|, n\}, n \in \mathbb{N}$. Es gilt $0 \le g_n \nearrow |f|$ für $n \to \infty$. Damit ist

$$\lim_{n\to\infty}\int g_n d\mu = \int |f| d\mu < \infty.$$

Zu einem vorgegebenem $\varepsilon>0$ gibt es ein $N\in\mathbb{N}$ mit

$$0 \le \int |f| d\mu - \int g_N d\mu < \frac{\varepsilon}{2}.$$

Für $A \in \mathcal{A}_{\mu}$ mit $\mu(A) < \frac{\varepsilon}{2N} =: \delta$ folgt nun

$$\int_{A} |f| d\mu = \int_{A} \underbrace{(|f| - g_{N})}_{\geq 0} d\mu + \int_{A} g_{N} d\mu$$

$$\leq \int \underbrace{(|f| - g_{N})}_{\geq 0} d\mu + N \cdot \mu(A)$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Seien $X, Y \neq \emptyset$ Mengen mit äußeren Maßen μ auf X, ν auf Y. Durch

$$(\mu \times \nu)(M) := \inf\{\sum_{i=1}^{\infty} \mu(A_i)\nu(B_i) : A_i \in \mathcal{A}_{\mu}, B_i \in \mathcal{A}_{\nu}, i \in \mathbb{N}, M \subset \bigcup_{i=1}^{\infty} (A_i \times B_i)\}$$

wird ein äußeres Maß auf $X \times Y$ erklärt, nämlich das von $\mathcal{E}_0 := \{A \times B : A \in \mathcal{A}_{\mu}, B \in \mathcal{A}_{\nu}\}$ und λ mit $\lambda(A \times B) := \mu(A) \cdot \nu(B)$ für $A \in \mathcal{A}_{\mu}, B \in \mathcal{A}_{\nu}$ induzierte äußere Maß.

Satz 1.21 (Fubini)

Seien $X,Y\neq\emptyset$ Mengen mit äußeren Maßen μ auf X und ν auf Y. Dann gelten folgende Aussagen:

- (1) $\mathcal{A}_{\mu} \otimes \mathcal{A}_{\nu} \subset \mathcal{A}_{\mu \times \nu}$ und $(\mu \times \nu)(A \times B) = \mu(A) \cdot \nu(B)$ für $A \in \mathcal{A}_{\mu}, B \in \mathcal{A}_{\nu}$.
- (2) Das Maß $\mu \times \nu$ ist $\mathcal{A}_{\mu} \otimes \mathcal{A}_{\nu}$ -regulär.
- (3) Existiert das $(\mu \times \nu)$ -Integral von $f \in \mathbb{F}_{\mu \times \nu}(X \times Y, \overline{\mathbb{R}})$ und gilt $\{f \neq 0\} \subset \bigcup_{i=1}^{\infty} M_i$, $M_i \in \mathcal{A}_{\mu \times \nu}$, $(\mu \times \nu)(M_i) < \infty$, $i \in \mathbb{N}$, so gilt:

 $f(\cdot,y) \in \mathbb{F}_{\mu}(X,\overline{\mathbb{R}})$ ist μ -messbar für ν -fast-alle $y \in Y$. Es ist $\int f(x,y)\mu(dx) \nu$ -messbar und $\iint f(x,y)\mu(dx)\nu(dy)$ existiert (und symmetrisch in x und y) und schließlich:

$$\int f d(\mu \times \nu) = \iint f(x, y) \mu(dx) \nu(dy) = \iint f(x, y) \nu(dy) \mu(dx).$$

Beweis

Wir setzen

 $\mathcal{E} \coloneqq \{M \subset X \times Y : \mathbb{1}_M(\cdot,y) \in \mathbb{F}_{\mu}(X,\bar{\mathbb{R}}) \text{ ist μ-messbar für ν-fast-alle } y \in Y,$

$$\int \mathbb{1}_M(x,y)\mu(dx) \in \mathbb{F}_{\nu}(Y,\bar{\mathbb{R}}) \text{ ist } \nu\text{-messbar}\}.$$

Für $M \in \mathcal{E}$ sei

$$\varrho(M) := \iint \mathbb{1}_M(x,y)\mu(dx)\nu(dy).$$

Wir zeigen zwei Hilfsbehauptungen:

 (α) Ist $M_j \in \mathcal{E}, j \in \mathbb{N}$, eine Folge paarweise disjunkter Mengen, so ist $\bigcup_{j=1}^{\infty} M_j \in \mathcal{E}$, denn:

$$\mathbb{1}_{\bigcup_{j=1}^{\infty} M_j}(\cdot, y) = \sum_{j=1}^{\infty} \mathbb{1}_{M_j}(\cdot, y)$$

ist μ -messbar für ν -fast-alle $y \in Y$ und

$$\int \mathbb{1}_{\bigcup_{j=1}^{\infty} M_j}(x,y)\mu(dx) = \sum_{j=1}^{\infty} \int \mathbb{1}_{M_j}(x,y)\mu(dx)$$

ist ν -messbar.

(β) Ist $M_j \in \mathcal{E}$, $j \in \mathbb{N}$, $M_1 \supset M_2 \supset \cdots$ sowie $\varrho(M_1) < \infty$, so gilt $\bigcap_{j \geq 1} M_j \in \mathcal{E}$, denn:

$$\mathbb{1}_{\bigcap_{j=1}^{\infty} M_j}(\cdot, y) = \lim_{j \to \infty} \mathbb{1}_{M_j}(\cdot, y)$$

ist μ -messbar für ν -fast-alle $y \in Y$ und

$$\int \mathbb{1}_{\bigcap_{j=1}^{\infty} M_j}(x,y)\mu(dx) = \lim_{j \to \infty} \int \mathbb{1}_{M_j}(x,y)\mu(dx)$$

ist ν -messbar.

Betrachte nun folgende Mengensysteme:

$$\mathcal{E}_0 := \{ A \times B : A \in \mathcal{A}_\mu, \ B \in \mathcal{A}_\nu \},$$

$$\mathcal{E}_1 := \{ \bigcup_{i=1}^\infty G_i : G_i \in \mathcal{E}_0 \},$$

$$\bigcup_{i=1}^{\infty} G_i \cdot G_i \subset \mathcal{O}_0,$$

$$\mathcal{E}_2 := \{ \bigcap_{j>1}^{\infty} H_j : H_j \in \mathcal{E}_1 \}.$$

Für $A \times B \in \mathcal{E}_0$ ist $\mathbb{1}_{A \times B}(\cdot, y) = \mathbb{1}_A \cdot \mathbb{1}_B(y)$ μ -messbar für alle $y \in Y$ und $\int \mathbb{1}_{A \times B}(x, y) \mu(dx) = \mu(A) \cdot \mathbb{1}_B(y)$ ist ν -messbar. Also ist $A \times B \in \mathcal{E}$, und damit $\mathcal{E}_0 \subset \mathcal{E}$.

Für $A \times B \in \mathcal{E}_0$, $C \times D \in \mathcal{E}_0$ ist

$$(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D) \in \mathcal{E}_0$$

und

$$(A \times B) \setminus (C \times D) = \left(\underbrace{(A \setminus C) \times B}\right) \stackrel{\bullet}{\cup} \left(\underbrace{(A \cap C) \times (B \setminus D)}_{\in \mathcal{E}_0}\right).$$

Jede abzählbare Vereinigung von Mengen aus \mathcal{E}_0 kann als abzählbare Vereinigung von paarweise disjunkten Mengen aus \mathcal{E}_0 erhalten werden, das heißt $\mathcal{E}_1 \subset \mathcal{E}$ nach (α) .

Da \mathcal{E}_1 stabil bezüglich der Bildung endlicher Durchschnitte ist, folgt mit Hilfe von (β)

$$\{\bigcap_{i=1}^{\infty} H_i : H_i \in \mathcal{E}_1, i \in \mathbb{N}, \varrho(H_1) < \infty\} \subset \mathcal{E}.$$

Behauptung: Für $M \subset X \times Y$ gilt

$$(\mu \times \nu)(M) = \inf{\{\varrho(V) : M \subset V, V \in \mathcal{E}_1\}}$$

und es gibt zu M ein $W \in \mathcal{E}_2$ mit $M \subset W$ und $(\mu \times \nu)(M) = (\mu \times \nu)(W) = \varrho(W)$.

Nachweis: Für $i \in \mathbb{N}$ sei $A_i \times B_i \in \mathcal{E}_0$ mit $M \subset \bigcup_{i=1}^{\infty} (A_i \times B_i) =: V \in \mathcal{E}_1$. Dann gilt

$$\mathbb{1}_V \le \sum_{i=1}^{\infty} \mathbb{1}_{A_i \times B_i},$$

wobei Gleichheit gilt, falls die Mengen $A_i \times B_i$ paarweise disjunkt sind. Somit erhält man

$$\varrho(V) \le \sum_{i=1}^{\infty} \varrho(A_i \times B_i) = \sum_{i=1}^{\infty} \mu(A_i)\nu(B_i),$$

wobei auch hier Gleichheit gilt, falls die Mengen $A_i \times B_i$, $i \in \mathbb{N}$, paarweise disjunkt sind.

Der erste Teil der Behauptung folgt somit aus

$$(\mu \times \nu)(M) = \inf\{\sum_{i=1}^{\infty} \mu(A_i)\nu(B_i) : A_i \times B_i \in \mathcal{E}_0, i \in \mathbb{N}, M \subset \bigcup_{i=1}^{\infty} (A_i \times B_i)\}$$
$$= \inf\{\varrho(V) : M \subset V, V \in \mathcal{E}_1\}.$$

Ist $(\mu \times \nu)(M) < \infty$, so existieren $V_i \in \mathcal{E}_1$, $i \in \mathbb{N}$, $M \subset V_i$ mit

$$\lim_{i \to \infty} \varrho(V_i) = (\mu \times \nu)(M).$$

Setze $M \subset W := \bigcap_{i=1}^{\infty} V_i \in \mathcal{E}_2$. Es gilt

$$(\mu \times \nu)(M) \le (\mu \times \nu)(W) \le \lim_{i \to \infty} \varrho(V_i) = \varrho(W) = (\mu \times \nu)(M).$$

Ist $(\mu \times \nu)(M) = \infty$, so setze $W := X \times Y \in \mathcal{E}_2$.

Nun beweisen wir die eigentlichen Aussagen des Satzes:

(1) Sei $A \times B \in \mathcal{E}_0$. Zunächst gilt offenbar

Für ein beliebiges $V \in \mathcal{E}_1$ mit $A \times B \subset V$ gilt

$$(\mu \times \nu)(A \times B) = \inf\{\rho(V) : A \times B \subset V, V \in \mathcal{E}_1\} = \rho(A \times B) = \mu(A)\nu(B).$$

Für $T \subset X \times Y$ und $U \in \mathcal{E}_1$ mit $T \subset U$ sind $U \cap (A \times B)$ und $U \cap (A \times B)^c$ disjunkte Mengen in \mathcal{E}_1 . Wir erhalten so

$$(\mu \times \nu)(T \cap (A \times B)) + (\mu \times \nu)(T \cap (A \times B)^c)$$

$$\leq \rho(U \cap (A \times B)) + \rho(U \cap (A \times B)^c) = \rho(U).$$

Bildet man das Infimum über alle $U \in \mathcal{E}_1$ mit $U \supset T$, so ergibt diese Ungleichung

$$(\mu \times \nu)(T \cap (A \times B)) + (\mu \times \nu)(T \cap (A \times B)^c) \le (\mu \times \nu)(T)$$

woraus $A \times B \in \mathcal{A}_{\mu \times \nu}$ folgt.

- (2) Ist $M \subset X \times Y$ und $(\mu \times \nu)(M) < \infty$, so gibt es $W \in \mathcal{E}_2$ mit $\varrho(W) < \infty$ und mit der gewünschten Eigenschaft $(\mu \times \nu)(M) = (\mu \times \nu)(W)$.
- (3) Sei $f = \mathbb{1}_M$, $M \in \mathcal{A}_{\mu \times \nu}$ und $(\mu \times \nu)(M) < \infty$. Zu M existiert ein $W \in \mathcal{E}_2$ mit $M \subset W$ und $(\mu \times \nu)(M) = (\mu \times \nu)(W) = \varrho(W)$.

Fall 1: $(\mu \times \nu)(M) = 0$. Dann gilt $\varrho(W) = 0$ und $\mathbb{1}_M(\cdot, y) = 0$ μ -fast-überall für ν -fast-alle $y \in Y$. Insbesondere ist $M \in \mathcal{E}$ und $\varrho(M) = 0$.

Fall 2: $(\mu \times \nu)(M) > 0$. Dann gilt $(\mu \times \nu)(W \setminus M) = 0$, $M \subset W$. Fall 1 liefert $W \setminus M \in \mathcal{E}$ und $\varrho(W \setminus M) = 0$. Also ist $\mathbbm{1}_M(\cdot,y) = (\mathbbm{1}_W - \mathbbm{1}_{W \setminus M})(\cdot,y)$ μ -messbar für ν -fast-alle $y \in Y$ und $\mathbbm{1}_M(\cdot,y) = \mathbbm{1}_W(\cdot,y)$ μ -fast-überall für ν -fast-alle $y \in Y$. Insbesondere ist $M \in \mathcal{E}$ und $\varrho(M) = \varrho(W) = (\mu \times \nu)(M)$.