# Gaussian Mixture Models

Martin Jaggi Last updated on: November 28, 2023

Machine Learning Course - CS-433 Nov 28, 2023 credits to Mohammad Emtiyaz Khan & Rüdiger Urbanke **EPFL** 

#### Motivation

K-means forces the clusters to be spherical, but sometimes it is desirable to have elliptical clusters. Another issue is that, in K-means, each example can only belong to one cluster, but this may not always be a good choice, e.g. for data points that are near the "border". Both of these problems are solved by using Gaussian Mixture Models.

## Clustering with Gaussians

The first issue is resolved by using full covariance matrices  $\Sigma_k$  instead of isotropic covariances.

$$p(\mathbf{X} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}, \mathbf{z}) = \prod_{n=1}^{N} \prod_{k=1}^{K} \left[ \mathcal{N} \left( \mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k} \right) \right]^{z_{nk}}$$

## **Soft-clustering**

The second issue is resolved by defining  $z_n$  to be a random variable. Specifically, define  $z_n \in \{1, 2, \dots, K\}$  that follows a multinomial distribution.

$$p(z_n = k) = \pi_k$$
 where  $\pi_k > 0, \forall k$  and  $\sum_{k=1}^K \pi_k = 1$   
This leads to soft-clustering as opposed to having "hard" assignments.



#### Gaussian mixture model

Together, the likelihood and the prior define the joint distribution of Gaussian mixture model (GMM):

$$\begin{aligned} & p(\mathbf{X}, \mathbf{z} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi}) \\ &= \prod_{n=1}^{N} p\left(\mathbf{x}_{n} \mid z_{n}, \boldsymbol{\mu}, \boldsymbol{\Sigma}\right) p\left(z_{n} \mid \boldsymbol{\pi}\right) \\ &= \prod_{n=1}^{N} \prod_{k=1}^{K} \left[ \mathcal{N}\left(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right) \right]^{z_{nk}} \prod_{k=1}^{K} \left[ \pi_{k} \right]^{z_{nk}} \end{aligned}$$

Here,  $\mathbf{x}_n$  are observed data vectors,  $z_n$  are latent unobserved variables, and the unknown pa rameters are given by  $\boldsymbol{\theta} := \{\boldsymbol{\mu}_1, \dots, \boldsymbol{\mu}_K, \boldsymbol{\Sigma}_1, \dots, \boldsymbol{\Sigma}_K, \boldsymbol{\pi}\}.$ 

#### Marginal likelihood

GMM is a latent variable model with  $z_n$  being the unobserved (latent) variables. An advantage of treating  $z_n$  as latent variables instead of parameters is that we can marginalize them out to get a cost function that does not depend on  $z_n$ , i.e. as if  $z_n$  never existed.

Specifically, we get the following marginal likelihood by marginalizing  $z_n$  out from the likelihood:







 $p(\mathbf{x}_n \mid \boldsymbol{\theta}) = \sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$  0 0.5 1 0 Deriving cost functions this way is good for statistical efficiency. Without a latent variable model, the number of parameters grows at rate  $\mathcal{O}(N)$ . After marginalization, the growth is reduced to  $\mathcal{O}(D^2K)$  (assuming  $D, K \ll N$ ).

#### Maximum likelihood

To get a maximum (marginal) likelihood estimate of  $\theta$ , we maximize the following:

$$\max_{\boldsymbol{\theta}} \sum_{n=1}^{N} \log \sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)$$

Is this cost convex? Identifiable? Bounded?

