

KS091201 MATEMATIKA DISKRIT (DISCRETE MATHEMATICS)

Discrete Basic Structure: Functions

Discrete Math Team

Outline

- Definition of function
- Function arithmetic
- One-to-one functions
- Onto functions
- Bijections
- Identity functions
- Inverse functions
- Composition of functions
- Some useful functions
- Proofing problems

Definition of a function

 A function takes an element from a set and maps it to a UNIQUE element in another set

More functions

A class grade function

A string length function

Even More functions ©

Some function...

Not a valid function!

Also not a valid function!

Function arithmetic

- Let $f_1(x) = 2x$
- Let $f_2(x) = x^2$
- Let f₁ and f₂ are function from A to R. Then f₁ and f₂ are also function from A to R defined by:

One-to-one functions

- A function f: A → B is one-to-one if each element in the co-domain has a unique preimage
 - f is one to one $\leftrightarrow \forall a \forall b [f(a) = f(b) \rightarrow a = b]$
 - Or equivalently $\forall a \forall b [a \neq b \rightarrow f(a) \neq f(b)]$

A one-to-one function

A function that is not one-to-one

More on one-to-one

- Injective is synonymous with one-to-one
- A function is an injection if it is one-to-one
- Meaning no 2 values map to the same result
- Note that there can be un-used elements in the co-domain

A one-to-one function

Example

- Determine whether the function $f(x) = x^2$ from **Z** to **Z** is one to one.
- The function $f(x) = x^2$ is not one to one because for instance f(1) = f(-1) = 1, but $1 \ne -1$
- Is the function f(x) = x + 1 one to one?
- The function is one to one. (Note: $x + 1 \neq y + 1$ if $x \neq y$)

Onto functions

- A function f: A → B is onto if each element in the co-domain is an image of some preimage
 - f is onto $\leftrightarrow \forall y \exists x [f(x) = y]$

An onto function

A function that is not onto

More on onto

- Surjective is synonymous with onto
- A function is an surjection if it is onto
- Meaning all elements in the right are mapped to
- Note that there can be multiply used elements in the co-domain

An onto function

Onto vs. one-to-one

• Are the following functions onto, one-to-one, both, or neither?

1-to-1, not onto

Onto, not 1-to-1

Both 1-to-1 and onto

Not a valid function

Neither 1-to-1 nor onto

Example

- Determine whether the function $f(x) = x^2$ from **Z** to **Z** is onto.
- The function $f(x) = x^2$ is not onto because for there is no integer x with $x^2 = -1$ for instance.
- Is the function f(x) = x + 1 onto?
- The function is onto because for every integer y there is an integer x such that f(x) = y.
- (Note: f(x) = y if and only if x + 1 = y, which holds if and only if x = y 1)

Bijections

- Consider a function that is both one-to-one and onto:
- Such a function is a one-to-one correspondence, or a bijection

Identity functions

 A function such that the image and the preimage are ALWAYS equal

•
$$f(x) = 1 * x$$

$$of(x) = x + 0$$

 The domain and the co-domain must be the same set

Inverse functions

Then $f^{-1}(x) = x/2$

More on inverse functions

• Can we define the inverse of the following functions?

What is f-1(2)?

What is f-1(2)?

 An inverse function can ONLY be done defined on a bijection

• Let
$$(f \circ g)(x) = f(g(x))$$

• Let
$$f(x) = 2x + 3$$

Let
$$g(x) = 3x + 2$$

$$\circ$$
 g(1) = 5, f(5) = 13

• Thus,
$$(f \circ g)(1) = f(g(1)) = 13$$

$$(f \circ g)(a)$$
$$(f \circ g)(x) = f(g(x))$$

$$f(g(x)) = 2(3x+2)+3 = 6x+7$$

Does
$$f(g(x)) = g(f(x))$$
?

Let
$$f(x) = 2x+3$$

Let
$$g(x) = 3x+2$$

$$f(g(x)) = 2(3x+2)+3 = 6x+7$$

 $g(f(x)) = 3(2x+3)+2 = 6x+11$

Not equal!

Function composition is not commutative!

 Note: fungsi yang paling kanan dioperasikan paling awal, selanjutnya fungsi di samping kirinya, and so forth.

Useful functions

 Floor: [x] means take the greatest integer less than or equal to the number

• Ceiling: [x] means take the lowest integer greater than or equal to the number

• round(x) = floor(x+0.5) = $\lfloor x+0.5 \rfloor$

Sample floor/ceiling questions

Find these values

$$\lfloor \frac{1}{2} + 1 \rfloor = \lfloor \frac{3}{2} \rfloor = 1$$

$$[0 + 1 + \frac{1}{2}] = [3/2] = 2$$

Ceiling and floor properties

Let n be an integer

(1a)
$$\lfloor x \rfloor = n$$
 if and only if $n \le x < n+1$

(1b)
$$\lceil x \rceil = n$$
 if and only if $n-1 < x \le n$

(1c)
$$\lfloor x \rfloor = n$$
 if and only if $x-1 < n \le x$

(1d)
$$\lceil x \rceil = n$$
 if and only if $x \le n < x+1$

$$(2) x-1 < \lfloor x \rfloor \le x \le = \lceil x \rceil < x+1$$

$$(3a) \quad \lfloor -x \rfloor = -\lceil x \rceil$$

(3b)
$$\overline{ \left[-x \right] } = - \left[x \right]$$

$$(4a) \quad \lfloor x+n \rfloor = \lfloor x \rfloor + n$$

$$(4b) \quad \lceil x+n \rceil = \lceil x \rceil + n$$

Ceiling property proof

- Prove rule $4a: \lfloor x+n \rfloor = \lfloor x \rfloor + n$
 - Where *n* is an integer
 - Will use rule $1a: \lfloor x \rfloor = n$ if and only if $n \le x < n+1$
- Direct proof!
 - Let $m = \lfloor x \rfloor$
 - Thus, $m \le x < m+1$ (by rule 1a)
 - Add n to both sides: $m+n \le x+n < m+n+1$
 - By rule 4a, $m+n = \lfloor x+n \rfloor$
 - Since $m = \lfloor x \rfloor$, m+n also equals $\lfloor x \rfloor + n$
 - Thus, $\lfloor x \rfloor + n = m + n = \lfloor x + n \rfloor$

Factorial

• Factorial is denoted by n!

$$on! = n * (n-1) * (n-2) * ... * 2 * 1$$

- Thus, 6! = 6 * 5 * 4 * 3 * 2 * 1 = 720
- Note that 0! is defined to equal 1

 Let f be a function from A to B, and let S and T be subsets of A. Show that

$$a) f(S \cup T) = f(S) \cup f(T)$$

$$b) f(S \cap T) \subseteq f(S) \cap f(T)$$

- \bullet f(SUT) = f(S) U f(T)
- Will show that each side is a subset of the other
- Two cases!
- Show that $f(SUT) \subseteq f(S) \cup f(T)$
 - Let $b \in f(SUT)$. Thus, b=f(a) for some $a \in SUT$
 - Either $a \in S$, in which case $b \in f(S)$
 - Or a∈T, in which case b∈f(T)
 - Thus, $b \in f(S) \cup f(T)$
- Show that $f(S) \cup f(T) \subseteq f(S \cup T)$
 - Let $b \in f(S) \cup f(T)$
 - Either $b \in f(S)$ or $b \in f(T)$ (or both!)
 - Thus, b = f(a) for some $a \in S$ or some $a \in T$
 - In either case, b = f(a) for some $a \in S \cup T$

- \circ f(S \cap T) \subseteq f(S) \cap f(T)
- Let $b \in f(S \cap T)$. Then b = f(a) for some $a \in S \cap T$
- This implies that $a \in S$ and $a \in T$
- Thus, $b \in f(S)$ and $b \in f(T)$
- Therefore, $b \in f(S) \cap f(T)$

- Let f be an invertible function from Y to Z
- Let g be an invertible function from X to Y
- Show that the inverse of $f \circ g$ is:
 - $(f \circ g)^{-1} = g^{-1} \circ f^{-1}$

• Thus, we want to show, for all $z \in Z$ and $x \in X$

$$((f \circ g) \circ (g^{-1} \circ f^{-1}))(z) = z$$

$$((g^{-1} \circ f^{-1}) \circ (f \circ g))(x) = x$$

$$((f \circ g) \circ (g^{-1} \circ f^{-1}))(z) = (f \circ g)((g^{-1} \circ f^{-1})(z))$$

$$= (f \circ g)(g^{-1}(f^{-1}(z)))$$

$$= f(g(g^{-1}(f^{-1}(z)))$$

$$= f(f^{-1}(z))$$

$$= z$$

The second equality is similar