Лабораторное занятие №3

Вычисление показателей надежности для резервированных систем

Цель работы: Изучение способов и видов резервирования, освоение методов определения параметров надежности для объектов со сложной структурной схемой.

Краткие теоретические сведения

Здесь, в этом разделе, предполагается, что объекты невосстанавливаемые. Дадим несколько определений [1–5, 27–31].

Резервирование (по ГОСТ 27.002.89) – способ обеспечения надежности объекта за счет использования дополнительных средств и возможностей, избыточных ПО отношению К минимально необходимым для выполнения требуемых функций. Или резервирование – такой способ повышения надежности, при котором в объекте создается (элементная, определенная избыточность информационная ИЛИ временная).

Резерв — совокупность дополнительных средств и (или) возможностей, используемых для резервирования основного элемента объекта или его самого. В этом случае основной элемент/объект в случае отказа заменяется резервным.

Кратность резерва (по ГОСТ 27.002.89) — отношение числа резервных элементов к числу резервируемых ими элементов, выраженное несокращенной дробью. Или кратность резерва — отношение суммы основных и резервных элементов к количеству основных.

Дублирование — способ резервирования с различной кратностью резерва, при котором одновременно функционируют и основные объекты и резервные. Однако ГОСТ 27.002.89 дает более краткое определение дублирования: это резервирование с кратностью резерва один к одному.

Классификация резервированных систем производится по нескольким принципам.

- 1. По способу включения резервных элементов.
- Постоянное резервирование, при котором резервные элементы работают в том же режиме, что и основной элемент (нагруженный резерв), или с меньшей нагрузкой, например, в режиме ожидания (облегченный резерв). Недостатком постоянного резервирования является расход запаса надежности или ресурса резервных элементов.

- Включение резервных элементов путем замещения основного, вышедшего из строя. При этом резервные элементы не работают, пока работает основной (ненагруженный резерв).
- Скользящее резервирование, при котором резервные элементы заменяют любой элемент такого же типа в любой части объекта.
 - 2. По принципу резервирования объекта.
- Общее резервирование, когда элемент или объект резервируется целиком (рисунок 1).
- Раздельное резервирование, при котором резервируются элементы объекта, или группы элементов (рисунок 2).
- Мажоритарное резервирование используется в электронных объектах для ликвидации сбоев. Основу системы составляет решающий элемент, на вход которого поступают сигналы с одинаковых блоков А (рисунок 3). Если один из блоков не исправен, то возникает ошибка и сигнал отличается от других. На выходе решающего блока образуется результирующий сигнал, полученный из преобладающих сигналов на его входе, то есть без ошибки. Решающий элемент еще носит название кворум-элемента.

Рисунок 1 – Схема общего резервирования цепи

Рисунок 2 – Схема раздельного резервирования цепи

Рисунок 3 – Схема мажоритарного резервирования

Достоинством мажоритарного резервирования является независимость метода от типа отказа: будь то короткое замыкание или обрыв цепи, схема будет правильно отрабатывать отказ. Схема, показанная на рисунке 3, называется 2 из 3 (полагаем, что принцип понятен и не требует пояснений).

Необходимо отметить, что возможно использование сразу нескольких видов резервирования, тогда это будет смешанное резервирование.

Еще можно выделить резервирование с восстановлением и без восстановления. Восстановление относится к отказавшим основным и резервным блокам без нарушения работоспособности объекта и должно быть предусмотрено в эксплуатационной документации.

При горячем резервировании имеется возможность замены отказавшего элемента "на ходу" то есть без нарушения работы объекта, а при холодном – приходится выключать аппаратуру.

Расчеты надежности резервированных систем производятся исходя из следующих соображений.

При последовательном соединении элементов вероятность безотказной работы системы определяется как произведение $p_i(t)$ элементов.

При параллельном соединении элементов вероятность отказа системы определяется как произведение $q_i(t)$ элементов.

При смешанном соединении элементов схему разбивают на последовательные и параллельные участки, затем их объединяют в укрупненные схемы, заменяя их на эквивалентные схемы, и рассчитывают общую вероятность безотказной работы. Так работает метод свертки.

Если не удается разбить схему на последовательные и параллельные участки (рисунок 4), что указывает на наличие мостовой схемы соединения элементов, используют один из методов:

- логико-вероятностный;
- минимальных путей и сечений;

- эквивалентных структурных преобразований соединений «треугольник» в соединение типа «звезда»;
 - разложения структуры по «ключевым элементам».

Рисунок 4 – Схема смешанного соединения элементов

<u>Логико-вероятностный метод</u> работает следующим образом [32–34]. Строится функция работоспособности (неработоспособности) объекта, для чего перебираются все его возможные состояния. Так у элементов объекта имеется два возможных состояния (рабочее и нерабочее), тогда всего необходимо описать 2^n состояний (где n – число элементов). В таблице истинности ставится "1", если состояние неработоспособное, и "0", если состояние работоспособное. Составляются компоненты функции надежности, в которой q_i в случае "0" или p_i в случае "1". Понятно, что только половина всех ситуаций будет определять искомую величину вероятности, поэтому число состояний уменьшается до 2^{n-1}

Для рисунка 4 компонентами, отвечающими за безотказную работу, то есть позволяющие проходить сигналу через работающие блоки, будут следующие:

 $p_1 x_2 x_3 p_4 x_5$, $x_1 p_2 x_3 x_4 p_5$, $p_1 x_2 p_3 x_4 p_5$, $x_1 p_2 p_3 p_4 x_5$, где за x_i обозначено любое значение p_i или q_i .

Окончательное решение будет состоять из 16 слагаемых:

$$P_{\text{общ}} = p_1 p_2 p_3 p_4 p_5 + p_1 p_2 p_3 p_4 q_5 + p_1 q_2 q_3 p_4 q_5 + p_1 p_2 q_3 p_4 p_5 + p_1 q_2 p_3 p_4 p_5 + q_1 p_2 q_3 p_4 p_5 + q_1 p_2 p_3 p_4 q_5 + q_1 p_2 p_3 p_4 q_5 + q_1 p_2 p_3 p_4 p_5 + p_1 p_2 q_3 p_4 p_5 + p_1 q_2 p_3 q_4 p_5 + p_1 p_2 p_3 q_4 p_5 + p_1 q_2 p_3 p_4 q_5 + p_1 p_2 q_3 q_4 p_5.$$

Недостатками метода являются следующие: только два состояния для элементов; элементы являются невосстанавливаемыми, а отказы — независимые. Также требуются аккуратность и внимание, так как с ростом числа элементов, растет и число состояний объекта. Зато таким образом можно определять показатели надежности для любой структуры объекта.

Далее в методах будут использоваться термины и определения алгебры логики. Составленная формализованная модель, определяющая работоспособное состояние объекта, представляет логическую функцию F_{π} (слева от знаков равенства), которая посредством правил:

$$a \lor b = a + b - ab,$$

 $a \land b = ab,$
 $\overline{a} = 1 - a,$
(2)

преобразуется в арифметическую функцию F_a (справа от знаков равенства).

Напомним, что первое выражение в (2) показывает преобразование логической операции "ИЛИ" (дизъюнкция, логическое сложение), второе — операции "И" (конъюнкция, логическое умножение), третье — операции "НЕ" (отрицание, инверсия).

Тогда для последовательного соединения из трех блоков:

$$F_{\pi} = a \wedge b \wedge c, F_{a} = abc \Longrightarrow P_{\text{общ}} = p_{1} p_{2} p_{3}. \tag{3}$$

Для параллельного соединения трех блоков цепь рассуждений выглядит следующим образом:

$$F_{\pi} = a \lor b \lor c \lor ab \lor ac \lor bc \lor abc = a(1 \lor b \lor bc) \lor b(1 \lor a \lor ac) \lor c(1 \lor a \lor ab) = a \lor b \lor c,$$

$$F_{\alpha} = (a + b + c) - (ab + ac + bc) + abc. \tag{4}$$

Отсюда:

$$P_{\text{общ}} = (p_1 + p_2 + p_3) - (p_1 p_2 + p_1 p_3 + p_2 p_3) + p_1 p_2 p_3.$$
 (5)

Для четырех блоков формула для вычисления $P_{\text{общ}}$ дополняется тройными произведениями со знаком "+", а последнее слагаемое будет со знаком "-", то есть:

$$P_{\text{общ}} = (p_1 + p_2 + p_3 + p_3) - (p_1 p_2 + p_1 p_3 + p_1 p_4 + \dots) + (p_1 p_2 p_3 + p_1 p_2 p_4 + \dots) + (p_1 p_2 p_3 p_4) - p_1 p_2 p_3 p_4.$$

Таким же образом (по нарастающей) поступают для любого количества блоков.

Метод минимальных путей строится на следующих принципах.

Путь – последовательный набор элементов, при этом отказ любого элемента приводит к отказу всего объекта.

Для последовательного соединения из трех блоков существует один путь и тогда, как и в предыдущем методе (3):

$$F_{\pi} = a \wedge b \wedge c$$
, $F_{a} = abc \Longrightarrow P_{\text{общ}} = p_{1} p_{2} p_{3}$.

Для параллельного соединения число путей равно количеству элементов. Для примера из трех блоков, соединенных параллельно, аналогично методу, описанному выше (4) будет:

$$F_{\pi} = a \lor b \lor c$$

и ситуация повторяется, как и в предыдущем методе (5), или можно перейти сразу к выражению:

$$P_{\text{общ}} = 1 - (1 - p_1)(1 - p_2)(1 - p_3) = 1 - q_1 q_2 q_3, \tag{6}$$

и найти искомую величину.

Для схемы (рисунок 4) определим все возможные минимальные пути, при которых сохраняется работоспособность системы: два однозвенных 1–4 и 2–5, и два двухзвенных 1–3–5 и 2–3–4. Тогда система сохранит работоспособность при следующем условии:

$$F_{\pi} = (a \wedge d) \vee (b \wedge e) \vee (a \wedge c \wedge e) \vee (b \wedge c \wedge d),$$

и, раскрывая скобки с использованием выражений (2), получим:

$$F_a = ad + be - adbe + ace + bcd - acebcd - (ad + be - adbe)(ace + bcd - acebcd).$$

Или, учитывая (6), сразу можно получить:

$$P_{\text{общ}} = 1 - (1 - p_1 p_4)(1 - p_2 p_5)(1 - p_1 p_3 p_5)(1 - p_2 p_3 p_4). \tag{7}$$

Здесь необходимо отметить, что при боле сложных схемах, метод минимальных путей необходимо использовать с особой аккуратностью, особенно на начальном этапе, когда формулируется логическая функция F_{π} . Использование метода минимальных путей позволяет дать оценку нижней границы надежности объекта.

Метод <u>минимальных сечений</u> служит для расчета верхней границы надежности и заключается в построении сечений или разрезов. В отличие от метода минимальных путей, при параллельном соединении элементов сечение только одно, при последовательном — совпадает с количеством элементов.

При расчете схемы (рисунок 4) со смешанным соединением элементов, преобразуем ее в следующую структуру с 4 сечениями (рисунок 5). Далее следует расчет по изветстной технологии.

Рисунок 5 – Преобразование структуры при методе минимальных сечений

Метод <u>эквивалентных структурных преобразований соединений</u> <u>«треугольник» в соединение типа «звезда»</u> заключается в следующем.

Вновь используя структуру, изображенную на рисунке 4, заметим, что левая часть образует соединение типа "звезда" или мост, как показано

на рисунке 6 (а). Далее преобразуем схему рисунка 6 (а) в 6 (б), представляющей звезду.

Рисунок $6 - Преобразование структур "треугольник" <math>\rightarrow$ "звезда"

Для участка, выделенного пунктиром, определим вероятности безотказной работы блоков:

$$P_x = 1 - q_1 q_2$$
; $P_y = 1 - q_1 q_3$; $P_z = 1 - q_2 q_3$,

а затем и $P_{\text{общ}}$ всей системы.

Недостатком метода преобразования структур является неточное – приближенное значение получаемой величины вероятности безотказной работы.

Этого недостатка лишен метод разложения структуры по «ключевым элементам», который работает следующим образом.

Элемент 3 на рисунке 4 считаем ключевым элементом, у которого имеется два возможных состояния: короткое замыкание (элемент 3 абсолютно надежен) и разрыв цепи (элемент 3 неработоспособен). Сформулируем полную группу событий для элемента 3, в результате чего определим общую и полную вероятность безотказной работы системы,

$$p_{o \delta u i} = p_a + p_{\delta},$$

выполнив преобразование схемы, как показано на рисунке 7, и, учитывая надежность ключевого элемента: в схеме (а) как p_3 , а в схеме (б) – как q_3 .

Рисунок 7 — Преобразование смешанной схемы соединения элементов

Далее рассчитываются p_a и p_b , как для параллельно-последовательного случая соединения элементов.

Типовые задания

Задание 2.1.

Для смешанной схемы соединений элементов необходимо рассчитать вероятность безотказной работы, если известны $p_i(t)$. Воспользуйтесь методом свертки, или любым другим известным вам методом.

Таблица 8 – Типовые варианты к заданию

Таолица о — Гипов	ые варианты к заданию
№ варианта	Исходные данные
лу варианта	$p_1(t)$ $p_2(t)$ $p_3(t)$ $p_4(t)$ $p_5(t)$
13	1 5 4 4 3
1	0,8 0,95 0,9 0,85 0,75
2	0,8 0,997 0,97 0,91 0,81
3	0,9 0,998 0,97 0,98 0,95
46	1 3 5 5
4	0,91 0,998 0,97 0,98 0,95
5	0,84 0,95 0,86 0,84 0,88
6	0,96 0,85 0,89 0,89 0,92
79	2 4 5 1 3 4 3 3 5 2

продолжение таол	ицы о				
7	0,96	0,81	0,97	0,95	0,83
8	0,98	0,86	0,93	0,86	0,88
9	0,96	0,88	0,87	0,98	0,93
1012	_ 1	2	3 2	4	4 4 5
10	0,82	0,93	0,85	0,97	0,88
11	0,98	0,83	0,86	0,91	0,91
12	0,99	0,84	0,88	0,83	0,97
1315	1	2	3	2 — 4 — 3 — 5	5
13	0,89	0,87	0,91	0,98	0,86
14	0,91	0,99	0,86	0,86	0,995
15	0,81	0,97	0,86	0,95	0,996
1618	1	2	3 4 1	4 4 3	2
16	0,91	0,92	0,98	0,81	0,85
17	0,94	0,97	0,89	0,81	0,85
18	0,91	0,98	0,94	0,93	0,83

Задание 2.2.

Для заданной схемы соединений элементов необходимо рассчитать вероятность безотказной работы, если известны $p_i(t)$. Воспользуйтесь методами минимальных путей и минимальных сечений. Сравните результаты расчетов.

Таблица 9 – Типовые варианты к заданию

No	•	Исх	одные дан	ные	
№ варианта	$p_1(t)$	$p_2(t)$	$p_3(t)$	$p_4(t)$	$p_5(t)$
18		2	4	1 5	
1	0,94	0,97	0,94	0,88	0,997
2	0,91	0,89	0,83	0,91	0,84
3	0,93	0,89	0,83	0,94	0,98
4	0,98	0,87	0,93	0,92	0,89
5	0,95	0,93	0,97	0,92	0,82
6	0,95	0,85	0,98	0,85	0,92
7	0,93	0,85	0,82	0,98	0,83
8	0,98	0,86	0,97	0,95	0,97

Продолжение таблицы 9 2 3 1 5 9...16 2 3 5 9 0,97 0,81 0,94 0,86 0,92 10 0,96 0,89 0,81 0,97 0,95 11 0,94 0,95 0,84 0,85 0,83 12 0,93 0,96 0,9 0,992 0,85 13 0,93 0,995 0,991 0,88 0,87 14 0,97 0,85 0,84 0,997 0,97 15 0,88 0,96 0,93 0,97 0,84 0,92 16 0,87 0,84 0,82 0,81 1 3 5 3 17...24 2 17 0,97 0,84 0,89 0,81 0,98 18 0,93 0,85 0,83 0,88 0,87 19 0,95 0,87 0,86 0,97 0,82 20 0,98 0,85 0,97 0,86 0,88 21 0,97 0,92 0,91 0,81 0,85 0,95 0,96 0,88 22 0,93 0,81

Задание 2.3.

23

24

Для смешанной схемы соединений элементов необходимо рассчитать вероятность безотказной работы, если известны $p_i(t)$. Воспользуйтесь логико-вероятностным методом.

0,93

0,92

0,91

0,91

0,94

0,997

0,87

0,89

0,87

0,83

Таблица 10 – Типовые варианты к заданию

Таолица 10 – Типс	Исходные данные				
№ варианта	$p_1(t)$	$p_2(t)$	$p_3(t)$	$p_4(t)$	$p_5(t)$
18		2	1	4 5	
1	0,98	0,85	0,87	0,91	0,94
2	0,91	0,82	0,81	0,995	0,88
3	0,98	0,81	0,99	0,83	0,94
4	0,91	0,87	0,89	0,96	0,97
5	0,97	0,94	0,88	0,90	0,94
6	0,93	0,87	0,84	0,83	0,85
7	0,91	0,91	0,98	0,84	0,88
8	0,98	0,88	0,96	0,85	0,86
916		2	3	5	
9	0,997	0,93	0,91	0,81	0,96
10	0,95	0,94	0,97	0,83	0,89
11	0,92	0,85	0,95	0,98	0,88
12	0,95	0,87	0,94	0,86	0,92
13	0,91	0,93	0,83	0,85	0,91
14	0,93	0,92	0,83	0,89	0,99
15	0,93	0,88	0,82	0,98	0,80
16	0,98	0,87	0,95	0,94	0,83

продолжение таки	,				
1724		5	3	4	
17	0,96	0,81	0,99	0,88	0,83
18	0,97	0,80	0,89	0,95	0,86
19	0,64	0,97	0,82	0,99	0,98
20	0,97	0,83	0,89	0,99	0,82
21	0,91	0,97	0,96	0,86	0,84
22	0,96	0,89	0,98	0,99	0,84
23	0,95	0,88	0,97	0,96	0,85
24	0,99	0,90	0,83	0,92	0,81

Задание 2.4.

Для смешанной схемы соединений элементов необходимо рассчитать вероятность безотказной работы, если известны $p_i(t)$. Воспользуйтесь методом эквивалентных структурных преобразований соединений «треугольник» в соединение типа «звезда».

Таблица 11 – Типовые варианты к заданию

таолица тт типо	1	ты к эаданг			
No populativo		Ися	кодные дан	ные	
№ варианта	$p_1(t)$	$p_2(t)$	$p_3(t)$	$p_4(t)$	$p_5(t)$
16	2	5	3 4		3 5
1	0,93	0,92	0,81	0,88	0,95
2	0,94	0,84	0,87	0,92	0,91
3	0,98	0,97	0,93	0,83	0,81

Продолжение табл	ицы 11				
4	0,98	0,99	0,87	0,96	0,87
5	0,99	0,98	0,95	0,85	0,88
6	0,97	0,88	0,93	0,91	0,94
712	2	3	5		3 5
7	0,92	0,83	0,95	0,87	0,89
8	0,94	0,84	0,98	0,93	0,83
9	0,97	0,91	0,96	0,95	0,98
10	0,91	0,84	0,88	0,92	0,82
11	0,99	0,95	0,87	0,98	0,94
12	0,96	0,98	0,97	0,93	0,86
1318	3	2	5	3 2 5	4
13	0,92	0,97	0,94	0,84	0,95
14	0,96	0,84	0,85	0,82	0,83
15	0,98	0,86	0,86	0,94	0,81
16	0,93	0,94	0,91	0,88	0,87
17	0,93	0,87	0,97	0,86	0,76
18	0,99	0,81	0,96	0,98	0,87
1924	3	2	5 2	4 3 5 5	5
19	0,93	0,96	0,95	0,87	0,91
20	0,99	0,89	0,85	0,95	0,82

	<u>'</u>				
21	0,98	0,96	0,82	0,97	0,93
22	0,91	0,89	0,84	0,85	0,98
23	0,995	0,992	0,81	0,91	0,82
24	0,94	0,96	0,85	0,93	0,86

Задание 2.5.

Для смешанной схемы соединений элементов необходимо рассчитать вероятность безотказной работы, если известны $p_i(t)$. Воспользуйтесь методом разложения структуры по «ключевым элементам».

Таблица 12 – Типовые варианты к заданию

Таолица 12 Типо	И от от того того того того того того то				
№ варианта			одные дан		
1	$p_1(t)$	$p_2(t)$	$p_3(t)$	$p_4(t)$	$p_5(t)$
18	1	3	5	2 3 4	5
1	0,94	0,96	0,99	0,86	0,87
2	0,98	0,94	0,99	0,95	0,96
3	0,94	0,95	0,84	0,93	0,82
4	0,93	0,84	0,91	0,95	0,88
5	0,95	0,94	0,84	0,93	0,94
6	0,97	0,95	0,83	0,93	0,85
7	0,91	0,83	0,86	0,99	0,92
8	0,96	0,92	0,93	0,87	0,95
916	3	2	5	4 2 3 4	1
9	0,98	0,94	0,81	0,97	0,84

продолжение таол	ицы 12				
10	0,95	0,97	0,88	0,91	0,82
11	0,99	0,82	0,89	0,93	0,94
12	0,98	0,89	0,83	0,84	0,91
13	0,91	0,94	0,97	0,93	0,88
14	0,93	0,85	0,96	0,84	0,82
15	0,96	0,88	0,93	0,95	0,91
16	0,92	0,82	0,93	0,95	0,84
1724		4 5	5		3
17	0,99	0,82	0,94	0,74	0,88
18	0,92	0,94	0,99	0,89	0,91
19	0,97	0,98	0,88	0,83	0,81
20	0,96	0,82	0,98	0,84	0,88
21	0,95	0,82	0,84	0,83	0,97
22	0,97	0,85	0,86	0,93	0,95
23	0,93	0,91	0,86	0,85	0,94
					, ,