Перечень классических пространств

- \mathbb{P} поле вещественных чисел \mathbb{R} или поле комплексных чисел \mathbb{C} .
- ℓ_p^m $(1\leqslant p<\infty)$ пространство векторов $x=\{\xi_k\}_{k=1}^m,$ $\xi_k\in\mathbb{P},$ наделенное нормой

$$||x|| = \left(\sum_{k=1}^{m} |\xi_k|^p\right)^{1/p}.$$

$$||x|| = \max_{1 \le k \le m} |\xi_k|.$$

- $lue{}$ Пространство c^m будем обозначать также $\ell_\infty^m.$
- $\ell_p\ (1\leqslant p<\infty)$ пространство последовательностей $x=\{\xi_k\}=\{\xi_k\}_{k=1}^\infty,\ \xi_k\in\mathbb{P},$ таких, что $\sum_{k=1}^\infty|\xi_k|^p<\infty,$ с нормой

$$||x|| = \left(\sum_{k=1}^{\infty} |\xi_k|^p\right)^{1/p}.$$

$$||x|| = \sup_{k \in \mathbb{N}} |\xi_k|.$$

- $lue{}$ Пространство m будем обозначать также символом ℓ_{∞} .
- $\mathcal{L}_0 \quad c$ пространство сходящихся последовательностей $x=\{\xi_k\}=\{\xi_k\}_{k=1}^\infty,\ \xi_k\in\mathbb{P},\ c$ нормой

$$||x|| = \sup_{k \in \mathbb{N}} |\xi_k|.$$

 \mathscr{L}_0 c_0 – пространство сходящихся к нулю последовательностей $x=\{\xi_k\}_{k=1}^\infty,\ \xi_k\in\mathbb{P},$ с нормой

$$||x|| = \max_{k \in \mathbb{N}} |\xi_k|.$$

$$\rho(x,y) = \sum_{k=1}^{\infty} \frac{1}{2^k} \cdot \frac{|\xi_k - \eta_k|}{1 + |\xi_k - \eta_k|}, \quad y = \{\eta_k\} = \{\eta_k\}_{k=1}^{\infty}, \ \eta_k \in \mathbb{P}.$$

 $\mathscr{L}_{\mathbb{D}}$ C[a,b] — пространство функций $x\colon [a,b]\to \mathbb{P},$ непрерывных на [a,b], с нормой

$$||x|| = \max_{t \in [a,b]} |x(t)|.$$

 $C^k[a,b]$ — пространство функций $x\colon [a,b]\to \mathbb{P},\ k$ раз непрерывно дифференцируемых на [a,b], с нормой

$$||x|| = \sum_{\ell=0}^{k} \max_{t \in [a,b]} |x^{(\ell)}(t)|.$$

 $\widetilde{L}_p[a,b]$ $(1\leqslant p<\infty)$ — пространство функций $x\colon [a,b]\to \mathbb{P},$ непрерывных на [a,b], с нормой

$$||x|| = \left(\int_a^b |x(t)|^p dt\right)^{1/p}.$$

 $L_p(E)$ $(1\leqslant p<\infty)$ – пространство измеримых по Лебегу функций $x\colon E\to \mathbb{P}$ таких, что $|x(t)|^p$ суммируема на E, с нормой

$$||x|| = \left(\int_E |x(t)|^p dt\right)^{1/p}.$$

Функции x и y определяют один и тот же элемент $L_p(E)$, если x(t)=y(t) для почти всех $t\in E$, т. е. x и y эквивалентны.

 \triangle Пусть E – измеримое по Лебегу подмножество \mathbb{R} .

 $L_{\infty}(E)$ — пространство измеримых по Лебегу функций $x\colon E\to \mathbb{P}$ таких, что ess $\sup_{t\in E}|x(t)|<\infty,$ с нормой

$$||x|| = \operatorname{ess\,sup}_{t \in E} |x(t)|.$$

Функции x и y определяют один и тот же элемент $L_{\infty}(E)$, если x(t)=y(t) для почти всех $t\in E$.

Величина ess sup (существенный супремум) функции x на множестве E определяется следующим образом:

$${\rm ess} \sup_{t \in E} |x(t)| = \inf \big\{ M > 0 : {\rm mes} \{ t \in E \colon |x(t)| > M \} = 0 \big\}.$$

В большинстве задач этого пособия E = [a, b].

▶ Для пространств ℓ_p^m , ℓ_p , $\widetilde{L}_p[a,b]$, $L_p(E)$, если границы для индекса p не указаны явно, задачу нужно решить для всех p, $1 \leqslant p < \infty$. Нормы в этих пространствах будем часто обозначать $\|\cdot\|_p$.

Пространство $L_1(E)$ будем обозначать также L(E).

$$\rho_{|.|}(x,y) = |x-y|.$$

 \not ел $\langle X, \rho_T \rangle$ – произвольное непустое множество X с mpueuanb- no"u метрико \ddot{u}

$$\rho_T(x,y) = \begin{cases} 1, & x \neq y, \\ 0, & x = y. \end{cases}$$

Тема 1. Метрические и линейные нормированные пространства, топология метрических пространств

Определение 1.1. Пусть X – непустое множество. Отображение $\rho\colon X^2\to\mathbb{R}$ называется метрикой на X, если для любых $x,\,y,\,z\in X$

- 1) $\rho(x,y) = 0 \iff x = y;$
- $2) \rho(x,y) = \rho(y,x);$
- 3) $\rho(x,y) \leqslant \rho(x,z) + \rho(z,y)$.

Определение 1.2. Если ρ – метрика на X, то пара $\langle X, \rho \rangle$ называется метрическим пространством.

Определение 1.3. Пусть X — линейное пространство над полем $\mathbb{P}.$ Отображение $\|\cdot\|\colon X\to\mathbb{R}$ называется *пормой на* X, если для любых $x,\,y\in X$ и $\lambda\in\mathbb{P}$

- 1) $||x|| = 0 \iff x = 0$;
- $2) \|\lambda x\| = |\lambda| \cdot \|x\|;$
- 3) $||x + y|| \le ||x|| + ||y||$.

Определение 1.4. Если $\|\cdot\|$ — норма на линейном пространстве X, то пара $\langle X,\|\cdot\|\rangle$ называется *нормированным пространством*.

• Норму в пространстве X иногда будем обозначать $\|\cdot\|_X$, метрику — ρ_X . Там, где это не вызывает непонимания, вместо $\langle X, \rho \rangle$ или $\langle X, \|\cdot\| \rangle$ будем писать метрическое (нормированное) пространство X.

Определение 1.5. Пусть $\langle X, \rho \rangle$ – метрическое пространство, $a \in X, r > 0$.

- ✓ Множество $B(a,r) = \{x \in X : \rho(x,a) < r\}$ называется *открытым шаром* с центром в точке *а* радиуса *r*.
- ✓ Множество $B[a,r] = \{x \in X : \rho(x,a) \le r\}$ называется замкнутым шаром с центром в точке a радиуса r.
- ✓ Множество $S[a,r] = \{x \in X : \rho(x,a) = r\}$ называется *сферой* с центром в точке *a* радиуса *r*.

Определение 1.6. Пусть $\langle X, \rho \rangle$ – метрическое пространство. Последовательность $\{x_n\} \subset X$ называется *сходящейся*, если существует точка $x_0 \in X$ такая, что

$$\rho(x_n, x_0) \xrightarrow[n \to \infty]{} 0.$$

Точка x_0 называется *пределом* последовательности $\{x_n\}$. В этом случае пишут

$$x_n \xrightarrow[n \to \infty]{\rho} x_0$$
 или $x_n \xrightarrow[n \to \infty]{} x_0$.

Определение 1.7. Пусть $\langle X, \rho \rangle$ — метрическое пространство, $M \subset X$.

✓ Точка $x_0 \in M$ называется *внутренней точкой* множества M, если

$$\exists r > 0 \quad B(x_0, r) \subset M.$$

✓ Точка $x_0 \in X$ называется предельной точкой множества M, если

$$\forall r > 0 \quad M \cap (B(x_0, r) \setminus \{x_0\}) \neq \varnothing.$$

• Множество внутренних точек множества M обозначают $\stackrel{\circ}{M}$ и называют *внутренностью* множества M; множество предельных точек обозначают M'.

Определение 1.8. Пусть $\langle X, \rho \rangle$ — метрическое пространство, $M \subset X$.

✓ Множество M называется ограниченным в $\langle X, \rho \rangle$, если оно содержится в некотором шаре. В частности, множество M называется ограниченным в нормированном пространстве $\langle X, \| \cdot \| \rangle$, если

$$\exists r > 0 \quad \forall x \in M \quad ||x|| \leqslant r.$$

✓ Множество M называется $\mathit{открытым}$, если каждая его точка является внутренней точкой этого множества, т. е.

$$\forall x \in M \ \exists r > 0 \quad B(x,r) \subset M.$$

- ✓ Множество M называется *замкнутым*, если оно содержит все свои предельные точки, т. е. если $M' \subset M$.
- ✓ Множество $\overline{M} = M \cup M'$ называется замыканием множества M.
- \checkmark Диаметром множества M называется величина

$$\operatorname{diam} M = \sup \{ \rho(x, y) \colon x, y \in M \}.$$

 \checkmark Расстоянием от точки $x_0 \in X$ до множества M называется величина

$$\rho(x_0, M) = \inf \{ \rho(x_0, y) \colon y \in M \}.$$

Если существует элемент $y \in M$ такой, что $\rho(x_0, y) = \rho(x_0, M)$, то говорят, что расстояние от x_0 до M достигается (на элементе y).

 \checkmark Расстоянием между множествами $A,B\subset X$ называется величина

$$\rho(A,B) = \inf\{\rho(x,y) \colon x \in A, \ y \in B\}.$$

Пример 1.1. Доказать замкнутость множества

$$M=\left\{x\in C^1[0,1]\colon x'\left(\frac{1}{2}\right)=2\right\}$$

в пространстве $C^1[0,1]$.

Решение. Пусть $x_0 \in M'$. Нам предстоит проверить, что $x_0'\left(\frac{1}{2}\right)=2$. Для всякого $\varepsilon>0$ существует элемент $x_\varepsilon\neq x_0$ такой, что $x_\varepsilon\in M\cap B(x_0,\varepsilon)$. В частности, для $\varepsilon_n=\frac{1}{n}$ $(n\in\mathbb{N})$ существует $x_n\neq x_0\colon\ x_n\in M\cap B\left(x_0,\frac{1}{n}\right)$. Имеет место свойство $x_n'\left(\frac{1}{2}\right)=2$ и справедливы оценки

$$\left| x_0' \left(\frac{1}{2} \right) - x_n' \left(\frac{1}{2} \right) \right| \leqslant \max_{t \in [0,1]} |x_0(t) - x_n(t)| +$$

$$+ \max_{t \in [0,1]} |x_0'(t) - x_n'(t)| = ||x_0 - x_n|| < \frac{1}{n}.$$

Следовательно,

$$x_0'\left(\frac{1}{2}\right) = \lim_{n \to \infty} x_n'\left(\frac{1}{2}\right) = 2,$$

т.е. $x_0 \in M$. Таким образом, $M' \subset M$, т.е. множество M замкнуто.

Пример 1.2. Доказать, что множество

$$M = \{x \in \ell_1 \colon \xi_k > -1\}$$

открыто в пространстве ℓ_1 над полем \mathbb{R} .

Решение. Пусть $x_0 = \{\xi_k^0\} \in M$. Тогда $\lim_{k \to \infty} \xi_k^0 = 0$ и $\xi_k^0 > -1$ для всех $k \in \mathbb{N}$. Следовательно,

$$\exists\,N\in\mathbb{N}\quad\forall\,k>N\qquad\xi_k^0>-\frac{1}{2},$$

а значит,

$$a = \inf_{k} \xi_k^0 > -1.$$

Положим r=a+1. Для всякого $x=\{\xi_k\}\in B(x_0,r)$ имеем

$$|\xi_k^0 - \xi_k| \le |\xi_k^0 - \xi_k| \le \sum_{k=1}^{\infty} |\xi_k^0 - \xi_k| = ||x_0 - x|| < r.$$

Следовательно,

$$\xi_k = \xi_k - \xi_k^0 + \xi_k^0 > -r + \xi_k^0 = -1 + (\xi_k^0 - a) \ge -1,$$

т. е. $x \in M$, а значит, $B(x_0,r) \subset M$. Итак, для всякого $x_0 \in M$ мы нашли r > 0 такое, что $B(x_0,r) \subset M$. Таким образом, множество M открыто.

Пример 1.3. Доказать, что множество

$$M = \{x \in C[a, b] : 3 \le x(t) < 5\}$$

не открыто и не замкнуто в пространстве C[a,b].

Решение. Множество M не является замкнутым в пространстве C[a,b], если существует $x_0 \in C[a,b]$: $x_0 \in M'$ и $x_0 \notin M$. Очевидно, что $x_0(t) \equiv 5 \notin M$. Покажем, что $x_0 \in M'$. Для этого достаточно показать, что для всякого $\varepsilon > 0$ $M \cap B(x_0,\varepsilon) \neq \varnothing$. Пусть $\varepsilon > 0$. Рассмотрим функцию

$$x(t) = x_0(t) - \min\left\{\frac{\varepsilon}{2}, 2\right\}, \quad t \in [a, b].$$

Ясно, что $x \in M$, так как $3 \leqslant x(t) < 5$. Из соотношений

$$|x(t) - x_0(t)| = \min\left\{\frac{\varepsilon}{2}, 2\right\} \leqslant \frac{\varepsilon}{2} < \varepsilon, \quad t \in [a, b],$$

следует, что $\|x-x_0\|<\varepsilon$, т.е. $x\in B(x_0,\varepsilon)$. Значит, $M\cap B(x_0,\varepsilon)\neq\varnothing$. Итак, множество M не замкнуто.

Докажем, что M не открыто. Пусть $\varepsilon > 0$. Рассмотрим функции $x_0(t) \equiv 3$ и $x(t) \equiv 3 - \frac{\varepsilon}{2}, \ t \in [a,b]$. Очевидно, что $x_0 \in M, \ x \not\in M$ и $x \in B(x_0,\varepsilon)$, т.е. $B(x_0,\varepsilon) \not\subset M$. Следовательно, множество M не является открытым.

Пример 1.4. Доказать, что множество

$$M = \left\{ x \in \ell_{\infty} \colon \xi_k > -1 \right\}$$

не является открытым в пространстве ℓ_{∞} .

Решение. Для доказательства достаточно найти точку $x_0 \in M$ такую, что для всякого $\varepsilon > 0$ шар $B(x_0, \varepsilon)$ содержит точки, не принадлежащие множеству M. Рассмотрим $x_0 = \left\{-\frac{k}{k+1}\right\}_{k=1}^{\infty}$. Очевидно, что $x_0 \in \ell_{\infty}$ и $x_0 \in M$. Пусть $\varepsilon > 0, \ k_0 \in \mathbb{N}$, рассмотрим $x_{k_0} = \{\xi_k^{k_0}\}$:

$$\xi_k^{k_0} = \begin{cases} -\frac{k}{k+1}, & k \neq k_0, \\ -1, & k = k_0. \end{cases}$$

Очевидно, что $x_{k_0} \notin M$. Подберем k_0 так, чтобы $x_{k_0} \in B(x_0, \varepsilon)$, т. е.

$$||x_0 - x_{k_0}|| = \sup_{k} \left| -\frac{k}{k+1} - \xi_k^{k_0} \right| = \left| 1 - \frac{k_0}{k_0 + 1} \right| = \frac{1}{k_0 + 1} < \varepsilon.$$

Таким образом, найдена точка $x_0 \in M$ и $x_0 \notin M$, следовательно, множество M не является открытым.

№ Доказать утверждения 1.1–1.7.

1.1. Если ρ – метрика на множестве X, то

$$\forall x, y \in X \quad \rho(x, y) \geqslant 0.$$

1.2. Если $\|\cdot\|$ – норма на линейном пространстве X, то

$$\forall x \in X \quad ||x|| \geqslant 0.$$

1.3. Нормированное пространство $\langle X, \| \cdot \| \rangle$ является метрическим пространством с метрикой

$$\rho(x,y) = ||x - y||.$$

1.4. Пусть X — метрическое пространство, $M\subset X$. Точка $x_0\in X$ является предельной точкой множества M тогда и только тогда, когда

$$\exists \{x_n\} \subset M \setminus \{x_0\} \colon \quad x_n \xrightarrow[n \to \infty]{} x_0.$$

1.5. Пусть X — метрическое пространство, $M \subset X$. Множество M замкнуто тогда и только тогда, когда

$$\forall \{x_n\} \subset M \quad \left(x_n \xrightarrow[n \to \infty]{} x_0 \quad \Longrightarrow \quad x_0 \in M\right).$$

1.6. В метрическом пространстве $\langle X, \rho \rangle$ справедливо неравенство четырехугольника:

$$\forall x, y, u, v \in X \quad |\rho(x, u) - \rho(y, v)| \le \rho(x, y) + \rho(u, v).$$

1.7. В нормированном пространстве $\langle X, \| \cdot \| \rangle$ справедливо неравенство

$$\forall x, y \in X \quad |||x|| - ||y||| \le ||x - y|| \le ||x|| + ||y||.$$

- **1.8.** Может ли нормированное пространство а) состоять из одного элемента? б) быть счетным?
- **1.9.** Пусть $X \neq \emptyset$. Можно ли на нем ввести метрику?
- **1.10.** Пусть X линейное пространство. Можно ли на нем ввести норму?

1.11. Пусть $\rho: X^2 \to \mathbb{R}$ — метрика на множестве X. Доказать, что следующие функции тоже являются метриками на X:

$$\rho_1(x,y) = \frac{\rho(x,y)}{1 + \rho(x,y)}, \qquad \rho_2(x,y) = \min\{1, \rho(x,y)\},$$
$$\rho_3(x,y) = \ln(1 + \rho(x,y)).$$

1.12. Доказать, что функция

$$\rho(n,m) = \left\{ \begin{array}{ll} 0, & n=m, \\ 1 + \frac{1}{n+m}, & n \neq m, \end{array} \right.$$

задает метрику на множестве N натуральных чисел.

1.13. В множестве X всевозможных последовательностей натуральных чисел для элементов

$$x = \{\xi_k\}_{k=1}^{\infty}, \qquad y = \{\eta_k\}_{k=1}^{\infty}$$

обозначим через $k_0(x,y)$ наименьший индекс, при котором $\xi_k \neq \eta_k$. Доказать, что

- а) формула $\rho(x,y)=\left\{ egin{array}{ll} 0,&x=y,\\ 1+\dfrac{1}{k_0(x,y)},&x
 eq y, \end{array} \right.$ задает метрику на X;
- б) аксиома треугольника выполняется в X в усиленной форме:

$$\rho(x, z) \leq \max{\{\rho(x, y), \rho(y, z)\}};$$

в) если $\rho(x,y) \neq \rho(y,z)$, то

$$\rho(x, z) = \max\{\rho(x, y), \rho(y, z)\}.$$

1.14. Каким условиям должна удовлетворять непрерывная функция $f: \mathbb{R} \to \mathbb{R}$, чтобы формула

$$\rho(x,y) = |f(x) - f(y)|$$

задавала метрику на \mathbb{R} ?

- **1.15.** Указать необходимое и достаточное условие на отображение $f\colon X\to \mathbb{P},$ при котором формула из задачи 1.14 задает метрику на X.
- **1.16.** Каким условиям должна удовлетворять функция $f: \mathbb{R} \to \mathbb{R}$, чтобы формула

$$\rho(x,y) = \left| \int_{x}^{y} f(t) \, dt \right|$$

задавала метрику на \mathbb{R} ? Рассмотреть случаи

a)
$$f \in C(\mathbb{R});$$
 $\delta \not \Rightarrow \forall r > 0 \quad f \in L_1[-r, r].$

- **1.17.** Проверить справедливость аксиом метрики в линейном пространстве s. Доказать, что пространство s ненормируемо, т. е. в нем нельзя ввести норму так, чтобы выполнялось равенство $\rho(x,y) = \|x-y\|$.
- **1.18.** Является ли линейное пространство \mathbb{P}^2 нормированным, если для $x=(\xi_1,\xi_2)\in\mathbb{P}^2$
 - a) $||x|| = \sqrt{|\xi_1|} + \sqrt{|\xi_2|};$
 - б) $||x|| = \sqrt[p]{|\xi_1|^p + |\xi_2|^p}$ при 0 ;
 - B) $||x|| = |\xi_1 \xi_2| + |\xi_1|$;
 - $\Gamma \|x\| = \max\{|\xi_1 + 2\xi_2|, |\xi_1 \xi_2|\}?$
- **1.19.** Пусть $x = (\xi_1, \xi_2) \in \mathbb{R}^2$. При каких $\alpha, \beta \in \mathbb{R}$ следующие отображения задают норму на \mathbb{R}^2 :
 - a) $||x|| = \alpha |\xi_1| + \beta |\xi_2|$;
 - 6) $||x|| = \sqrt{\alpha^2 \xi_1^2 + \beta^2 \xi_2^2};$

B)
$$||x|| = \max\{\alpha|\xi_1|, \beta|\xi_2|\}$$
?

Построить шары B[0,1] в пространстве \mathbb{R}^2 с этими нормами.

- **1.20.** Построить шары B[0,1] в пространстве \mathbb{R}^3 , если для $x=(\xi_1,\xi_2,\xi_3)\in\mathbb{R}^3$ нормы определены следующим образом:
 - a) $||x|| = \max\{\sqrt{|\xi_1|^2 + |\xi_2|^2}, |\xi_3|\};$

6)
$$||x|| = \sqrt{|\xi_1|^2 + |\xi_2|^2} + |\xi_3|$$
;

$$\mathrm{B})\ \|x\|=\max\bigg\{2|\xi_1|,\frac{1}{3}|\xi_2|,|\xi_3|\bigg\};$$

$$\Gamma) ||x|| = 2|\xi_1| + \frac{1}{3}|\xi_2| + |\xi_3|;$$

д)
$$||x|| = \sqrt{4|\xi_1|^2 + \frac{1}{9}|\xi_2|^2 + |\xi_3|^2}.$$

1.21. Пусть $x \in \ell_p^n, \ 1 \leqslant p \leqslant \infty$. Доказать, что

$$||x||_{\ell_{\infty}^n} = \lim_{p \to \infty} ||x||_{\ell_p^n}.$$

1.22. Доказать, что в пространстве c_0

$$||x|| = \sup_{k} |\xi_k| = \max_{k} |\xi_k|,$$

т.е. верхняя грань обязательно достигается, а в пространствах c и m она может не достигаться.

1.23. Можно ли в линейном пространстве непрерывно дифференцируемых на [a,b] функций определить норму следующим образом:

a)
$$||x|| = |x(b) - x(a)| + \max_{t \in [a,b]} |x'(t)|;$$

6)
$$||x|| = |x(a)| + \max_{t \in [a,b]} |x'(t)|;$$

B)
$$||x|| = \max_{t \in [a,b]} |x'(t)|;$$

1.24. Можно ли в линейном пространстве дважды непрерывно дифференцируемых на [a,b] функций определить норму следующим образом:

a)
$$||x|| = |x(a)| + |x'(a)| + \max_{t \in [a,b]} |x''(t)|;$$

6)
$$||x|| = |x(a)| + |x(b)| + \max_{t \in [a,b]} |x''(t)|;$$

B)
$$||x|| = |x(a)| + \max_{t \in [a,b]} |x''(t)|;$$

$$||x|| = |x(a)| + \max_{t \in [a,b]} |x'(t)| + \left(\int_a^b |x''(t)|^2 dt \right)^{1/2};$$

д)
$$||x|| = \max_{t \in [a,b]} |x''(t)| + \left(\int_a^b |x(t)|^2 dt\right)^{1/2}$$
?

1.25. Доказать, что в любом метрическом пространстве $\langle X, \rho \rangle$

$$\forall x \in X \ \forall r > 0 \quad 0 \leqslant \operatorname{diam} B(x, r) \leqslant 2r.$$

Привести пример метрического пространства $\langle X, \rho \rangle$ и такого элемента $x_0 \in X$, что

$$\operatorname{diam} B(x_0, 1) = \frac{1}{2}.$$

1.26. Доказать, что в любом нормированном пространстве X

$$\forall x \in X \ \forall r > 0 \quad \text{diam } B(x, r) = 2r.$$

1.27. Доказать, что в нормированном пространстве из условия $B(x_1,r_1)\subset B(x_2,r_2)$ следуют неравенства $r_1\leqslant r_2$ и $\|x_1-x_2\|\leqslant r_2-r_1$.

- **1.28.** Привести пример метрического пространства, в котором существуют шары $B(x_1,r_1)$ и $B(x_2,r_2)$ такие, что $r_1 < r_2$ и шар $B(x_2,r_2)$ лежит строго внутри шара $B(x_1,r_1)$.
- **1.29.** Привести пример метрического пространства, в котором существуют шары,
 - а) имеющие несколько центров;
 - б) совпадающие с множеством всех своих центров.
- **1.30.** Возможно ли, чтобы $B(x_1,r) = B(x_2,r)$ и $x_1 \neq x_2$ в нормированном пространстве X?
- Доказать справедливость утверждений 1.31–1.37 в метрическом пространстве (X, ρ) для $M, N \subset X, \ x \in X$.
- **1.31.** Если M ограниченное множество, то \overline{M} ограниченное множество и diam $\overline{M}=\operatorname{diam} M$.
- **1.32.** Множество M' замкнуто, т. е. $(M')' \subset M'$. Возможно ли здесь строгое включение?
- **1.33.** Если $M \subset N$, то $\overline{M} \subset \overline{N}$.
- 1.34. $\overline{\overline{M}} = \overline{M}$.
- **1.35.** $\rho(x,M) = 0 \iff x \in \overline{M}.$
- **1.36.** $\rho(x, M) = \rho(x, \overline{M}).$
- **1.37.** $\rho(M, N) = \rho(M, \overline{N}) = \rho(\overline{M}, N) = \rho(\overline{M}, \overline{N}).$
- **1.38.** Пусть для множеств M, N из метрического пространства $\langle X, \rho \rangle$ выполняется соотношение $\overline{M} \subset \overline{N}$. Следует ли отсюда, что $M \subset N$?
- **1.39.** Пусть M и N замкнуты в метрическом пространстве $\langle X, \rho \rangle$. Возможно ли, что $M \cap N = \emptyset$ и $\rho(M, N) = 0$?

1.40. В метрическом пространстве $\langle X, \rho_T \rangle$ описать все открытые и замкнутые множества.

Доказать справедливость утверждений 1.41–1.44 в нормированном пространстве X для $x \in X, \ r > 0$.

- **1.41.** B[x, r], S[x, r] замкнутые множества.
- **1.42.** B(x,r) открытое множество.
- **1.43.** $\stackrel{\circ}{B}[x,r] = B(x,r).$
- **1.44.** $\overline{B(x,r)} = B[x,r].$
- **1.45.** Верны ли утверждения 1.41–1.44 в метрическом пространстве?
- **1.46.** Описать все подмножества нормированного пространства X, которые являются одновременно открытыми и замкнутыми.
- **1.47.** Будут ли следующие множества ограниченными, открытыми, замкнутыми в пространстве ℓ_1^2 над полем \mathbb{R} :
 - a) $M = [0,1] \times \mathbb{Q};$

6)
$$M = \left\{\frac{2n-1}{n}\right\}_{n=1}^{\infty} \times (0,1);$$

- B) $M = \{(\xi_1, \xi_2) : \min\{|\xi_1|, 5|\xi_2|\} = 1\};$
- $\Gamma) \quad M = \{(\xi_1, \xi_2) \colon |\xi_1| < 1, \ |\xi_2| > 2\};$
- д) $M = \{(\xi_1, \xi_2): -4 < \xi_1^2 + \xi_2^2 2\xi_1 + 4\xi_2 \le 4\}$?
- **1.48.** Будут ли следующие множества ограниченными, открытыми, замкнутыми в $\langle X, \|\cdot\| \rangle$, $\mathbb{P} = \mathbb{R}$:
 - a) $M = \{x \in X : e^t < x(t) < 4\}, X = C[0, 1];$
 - 6) $M = \{x \in X : 0 < \xi_k < 2\}, \quad X = c_0;$

B)
$$M = \left\{ x \in X : \int_0^1 x(t) dt = 1 \right\}, \quad X = L_1[0, 1];$$

r)
$$M = \{x \in X : x(0) = 1\}, X = \widetilde{L}_1[0, 1];$$

д)
$$M = \{x \in X : \xi_k \geqslant 0\}, \quad X = \ell_2;$$

e)
$$M = \left\{ x \in X : \xi_k < \frac{k+1}{k} \right\}, \quad X = \ell_1?$$

1.49. Будут ли следующие множества открытыми, замкнутыми в пространстве C[a,b]:

a)
$$P_n = \left\{ p : p(t) = \sum_{j=0}^{m} c_j t^j, \ 0 \leqslant m \leqslant n \right\};$$

6)
$$Q_n = \left\{ p \colon p(t) = \sum_{j=0}^n c_j t^j, \ c_n \neq 0 \right\};$$

$$P = \bigcup_{n=0}^{\infty} P_n?$$

1.50. Пусть $x_0 \in C[a,b], \mathbb{P} = \mathbb{R}$. Могут ли множества

$$M = \{t \in [a, b] : x_0(t) < 1\},\$$

$$N = \{ t \in [a, b] : x_0(t) \leq 1 \}$$

быть открытыми, замкнутыми в $\langle \mathbb{R}, \rho_{|\cdot|} \rangle$?

1.51. Пусть $A \subset \mathbb{P}$. Будет ли множество

$$M_A = \{ x \in C[a, b] : \forall t \in [a, b] \quad x(t) \in A \}$$

- а) открытым в пространстве C[a, b], если множество A открыто в пространстве $\langle \mathbb{P}, \rho_{|.|} \rangle$;
- б) замкнутым в пространстве C[a,b], если множество A замкнуто в пространстве $\langle \mathbb{P}, \rho_{|\cdot|} \rangle$?

1.52. Доказать, что

- а) параллелепипед $M = \{x \in \ell_2 \colon |\xi_k| \leqslant \alpha_k\}$ ограничен в пространстве ℓ_2 тогда и только тогда, когда $\{\alpha_k\} \in \ell_2;$
- б) если все $\alpha_k \neq 0$, то эллипсоид

$$M = \left\{ x \in \ell_2 \colon \sum_{k=1}^{\infty} \left| \frac{\xi_k}{\alpha_k} \right|^2 \leqslant 1 \right\}$$

ограничен в пространстве ℓ_2 тогда и только тогда, когда $\{\alpha_k\} \in \ell_\infty.$

1.53. Доказать, что множество c_0 замкнуто в пространстве c, множество c замкнуто в пространстве ℓ_∞ .

Тема 2. Сходимость в метрическом пространстве.

Сравнение метрик и норм

Определение 2.1. Пусть ρ_1 , ρ_2 – метрики, заданные на одном множестве X. Говорят, что

✓ ρ_1 не слабее ρ_2 (ρ_2 не сильнее ρ_1), если из сходимости последовательности $\{x_n\}$ к точке x_0 в пространстве $\langle X, \rho_1 \rangle$ следует ее сходимость к x_0 в пространстве $\langle X, \rho_2 \rangle$, т. е.

$$\rho_1(x_n, x_0) \xrightarrow[n \to \infty]{} 0 \implies \rho_2(x_n, x_0) \xrightarrow[n \to \infty]{} 0;$$

✓ ρ_1 сильнее ρ_2 (ρ_2 слабее ρ_1), если ρ_1 не слабее ρ_2 и

$$\exists \{x_n\}: \quad \rho_2(x_n, x_0) \xrightarrow[n \to \infty]{} 0, \quad \text{Ho} \quad \rho_1(x_n, x_0) \xrightarrow[n \to \infty]{} 0;$$

 \checkmark ρ_1 и ρ_2 эквивалентны, если ρ_1 не слабее ρ_2 и ρ_2 не слабее ρ_1 , т. е.

$$\rho_1(x_n, x_0) \xrightarrow[n \to \infty]{} 0 \iff \rho_2(x_n, x_0) \xrightarrow[n \to \infty]{} 0.$$

Эти понятия переносятся и на нормы через метрики, ими порождаемые.

Определение 2.2. Пусть $\|\cdot\|_1$, $\|\cdot\|_2$ – две нормы, заданные на одном линейном пространстве X. Говорят, что

✓ $\|\cdot\|_1$ не слабее $\|\cdot\|_2$ ($\|\cdot\|_2$ не сильнее $\|\cdot\|_1$), и пишут $\|\cdot\|_1 \succeq \|\cdot\|_2$, ($\|\cdot\|_2 \preceq \|\cdot\|_1$), если

$$||x_n - x_0||_1 \xrightarrow[n \to \infty]{} 0 \implies ||x_n - x_0||_2 \xrightarrow[n \to \infty]{} 0;$$

✓ $\|\cdot\|_1$ сильнее $\|\cdot\|_2$ ($\|\cdot\|_2$ слабее $\|\cdot\|_1$), и пишут $\|\cdot\|_1 \succ \|\cdot\|_2$, ($\|\cdot\|_2 \prec \|\cdot\|_1$), если $\|\cdot\|_1 \succeq \|\cdot\|_2$ и

$$\exists \ \{x_n\}: \quad \|x_n-x_0\|_2 \xrightarrow[n\to\infty]{} 0, \quad \text{ho} \quad \|x_n-x_0\|_1 \xrightarrow[n\to\infty]{} 0;$$

✓ $\|\cdot\|_1$ и $\|\cdot\|_2$ эквивалентны, если

$$||x_n - x_0||_2 \xrightarrow[n \to \infty]{} 0 \iff ||x_n - x_0||_1 \xrightarrow[n \to \infty]{} 0.$$

Определение 2.3. Метрические пространства X и Y называются *гомеоморфными*, если существует отображение $\tau\colon X\to Y$ такое, что τ есть биекция X на Y и

$$x_n \xrightarrow[n \to \infty]{\rho_X} x_0 \iff \tau(x_n) \xrightarrow[n \to \infty]{\rho_Y} \tau(x_0).$$

Отображение au называется гомеоморфизмом X на Y.

Определение 2.4. Линейные нормированные пространства X и Y называются линейно гомеоморфными, если существует линейное отображение $\tau\colon X\to Y$, которое является гомеоморфизмом X на Y. Отображение τ называется линейным гомеоморфизмом X на Y.

Теорема 2.1. Пусть $\{e_k\}_{k=1}^m$ – линейно независимая система в нормированном пространстве X. Тогда

$$x_n = \sum_{k=1}^m \xi_{n,k} e_k \xrightarrow[n \to \infty]{} x_0 = \sum_{k=1}^m \xi_k e_k$$

$$\iff \xi_{n,k} \xrightarrow[n \to \infty]{} \xi_k, \quad k = 1, \dots, m.$$

Следствие 2.1. В конечномерном нормированном пространстве сходимость по норме эквивалентна покоординатной сходимости.

Пример 2.1. Сходится ли последовательность

$$x_n(t) = te^{-nt}$$

в пространствах а) C[0,1]; б) $C^1[0,1]$?

Решение. а) Сходимость последовательности $\{x_n\}$ к x в пространстве C[0,1] эквивалентна равномерной сходимости последовательности функций $\{x_n(t)\}$ к функции x(t) на отрезке [0,1] (см. задачу 2.9). Значит, если $x_n \xrightarrow[n \to \infty]{\|\cdot\|} x$, то $x_n(t) \xrightarrow[n \to \infty]{} x(t)$ поточечно на [0,1]. Найдем поточечный предел:

$$\lim_{n \to \infty} x_n(t) = \lim_{n \to \infty} t e^{-nt} = 0 = x(t).$$

Функция $x(t) \equiv 0$ принадлежит пространству C[0,1]. Проверим, сходится ли x_n к 0 в этом пространстве:

$$||x_n - 0||_{C[0,1]} = \max_{t \in [0,1]} |te^{-nt}| = \frac{1}{n} \cdot e^{-n \cdot \frac{1}{n}} \xrightarrow[n \to \infty]{} 0.$$

Таким образом, x_n сходится к 0 в пространстве C[0,1].

б) Сходимость последовательности $\{x_n\}$ к x в пространстве $C^1[0,1]$ эквивалентна равномерной сходимости на отрезке [0,1] последовательности функций $\{x_n(t)\}$ к функции x(t) и последовательности функций $\{x_n'(t)\}$ к функции x'(t) (см. задачу 2.11). Значит, если $x_n \xrightarrow[n \to \infty]{\|\cdot\|} x$, то $x_n(t) \xrightarrow[n \to \infty]{} x(t)$ поточечно на [0,1]. Так как поточечно x_n сходится к 0 (см. п. «а») и $0 \in C^1[0,1]$, осталось проверить, сходится ли x_n к 0 в этом пространстве:

$$||x_n - 0||_{C^1[0,1]} = \max_{t \in [0,1]} |te^{-nt}| + \max_{t \in [0,1]} |(1-nt)e^{-nt}| =$$

$$= \frac{1}{n} \cdot e^{-n \cdot \frac{1}{n}} + \left| 1 - n \cdot \frac{2}{n} \right| e^{-n \cdot \frac{2}{n}} \xrightarrow[n \to \infty]{} e^{-2} \neq 0.$$

Таким образом, в пространстве $C^1[0,1]$ последовательность $\{x_n\}$ не имеет предела.

Пример 2.2. Исследовать на сходимость последовательность

$$x_n(t) = \begin{cases} -1, & -1 \le t < -\frac{1}{n}, \\ nt, & |t| \le \frac{1}{n}, \\ 1, & \frac{1}{n} < t \le 1, \end{cases}$$

в пространствах а) C[-1,1]; б) $L_p[-1,1],$ $1\leqslant p<\infty;$ в) $\widetilde{L}_1[-1,1].$

Решение. а) Найдем поточечный предел

$$\lim_{n \to \infty} x_n(t) = x(t) = \begin{cases} -1, & -1 \le t < 0, \\ 0, & t = 0, \\ 1, & 0 < t \le 1, \end{cases} = \operatorname{sign} t.$$

Поскольку $x \notin C[-1,1]$, последовательность не сходится в этом пространстве.

б) Если последовательность $\{x_n\}$ сходится к некоторому элементу y в пространстве $L_p[-1,1]$, то существует подпоследовательность $\{x_{n_k}\}$, которая сходится к y почти всюду на [-1,1] (см. задачу 2.12). Но последовательность $\{x_n\}$ сама поточечно сходится к $x(t) = \operatorname{sign} t \in L_p[-1,1]$, а значит, и любая ее подпоследовательность поточечно сходится к x. Отсюда следует, что если $\{x_n\}$ сходится по норме в $L_p[-1,1]$ к элементу y, то y=x в $L_p[-1,1]$ (см. задачу 2.13). Остается проверить, сходится ли

 $\{x_n\}$ к x по норме. Имеем

$$||x_n - x||_p = \left(\int_{-1}^1 |x_n(t) - x(t)|^p dt \right)^{\frac{1}{p}} =$$

$$= \left(\int_{-\frac{1}{n}}^{\frac{1}{n}} |nt - \operatorname{sign} t|^p dt \right)^{\frac{1}{p}} \le$$

$$\le 2 \left(\int_{0}^{\frac{1}{n}} 2^p dt \right)^{\frac{1}{p}} = \frac{4}{\sqrt[p]{n}} \xrightarrow[n \to \infty]{} 0.$$

Таким образом, в пространстве $L_p[-1,1]$ последовательность $\{x_n\}$ сходится.

в) Покажем, что в пространстве $\widetilde{L}_1[-1,1]$ последовательность $\{x_n\}$ не сходится. Допустим, что $x_n \xrightarrow[n \to \infty]{} x_0$ в $\widetilde{L}_1[-1,1]$. Тогда для $x(t) = \operatorname{sign} t$ имеем

$$0 \leqslant ||x - x_0||_1 \leqslant ||x - x_n||_1 + ||x_n - x_0||_1 \xrightarrow[n \to \infty]{} 0.$$

Отсюда следует, что $||x-x_0||_1=0$. Из непрерывности функций x и x_0 на множестве $[-1,0)\cup(0,1]$ и неравенств

$$0 \leqslant \int_{-1}^{-\frac{1}{n}} |x(t) - x_0(t)| \, dt \leqslant \int_{-1}^{1} |x(t) - x_0(t)| \, dt = 0,$$

$$0 \leqslant \int_{\frac{1}{n}}^{1} |x(t) - x_0(t)| \, dt \leqslant \int_{-1}^{1} |x(t) - x_0(t)| \, dt = 0,$$

справедливых для всех $n \in \mathbb{N}$, следует, что

$$x_0(t) = \begin{cases} -1, & -1 \le t < 0, \\ 1, & 0 < t \le 1. \end{cases}$$

Но тогда функция x_0 не является непрерывной на отрезке [-1,1], т.е. $x_0 \not\in \widetilde{L}_1[-1,1]$. Итак, последовательность $\{x_n\}$ не сходится в пространстве $\widetilde{L}_1[-1,1]$.

Пример 2.3. Исследовать на сходимость последовательность $\{x_n\} = \{\xi_{nk}\}_{k=1}^{\infty}$,

$$\xi_{nk} = \begin{cases} \frac{1}{\sqrt[3]{k}}, & k \leq n, \\ \sin \frac{1}{\sqrt[3]{k}} - \sin \frac{1}{\sqrt[3]{k+1}}, & k > n, \end{cases}$$

в пространствах $c_0, c, \ell_p \ (1 \leqslant p \leqslant \infty)$.

Решение. Проверим, каким из этих пространств принадлежит $\{x_n\}$. Для всякого $n \in \mathbb{N}$ имеем

$$\lim_{k \to \infty} \xi_{nk} = \lim_{\substack{k > n \\ k \to \infty}} \xi_{nk} = \lim_{k \to \infty} \left(\sin \frac{1}{\sqrt[3]{k}} - \sin \frac{1}{\sqrt[3]{k+1}} \right) = 0.$$

Значит, $\{x_n\} \subset c_0 \subset c \subset l_\infty$. Далее, для k > n имеем

$$|\xi_{nk}| = \left| \sin \frac{1}{\sqrt[3]{k}} - \sin \frac{1}{\sqrt[3]{k+1}} \right| =$$

$$= 2 \left| \sin \frac{\sqrt[3]{k+1} - \sqrt[3]{k}}{2\sqrt[3]{k+1}\sqrt[3]{k}} \right| \cdot \left| \cos \frac{1}{2} \left(\frac{1}{\sqrt[3]{k}} + \frac{1}{\sqrt[3]{k+1}} \right) \right| \underset{k \to \infty}{\sim}$$

$$\sim 2 \sin \frac{1}{2\sqrt[3]{k(k+1)} \left(\sqrt[3]{(k+1)^2} + \sqrt[3]{k(k+1)} + \sqrt[3]{k^2} \right)} \sim$$

$$\sim \frac{1}{3k^{4/3}}.$$

Так как $x_n \in \ell_p \iff$ сходится ряд $\sum_{k=1}^{\infty} |\xi_{nk}|^p \iff$ сходится ряд

$$\sum_{k=n+1}^{\infty} |\xi_{nk}|^p \Longleftrightarrow \text{ сходится ряд } \sum_{k=1}^{\infty} \left(\frac{1}{k}\right)^{\frac{4p}{3}}, \text{ а сумма } \sum_{k=1}^{\infty} \left(\frac{1}{k}\right)^{\frac{4p}{3}}$$
 при $p\geqslant 1$ конечна, то $x_n\in\ell_p$.

Итак, последовательность $\{x_n\}$ принадлежит пространствам $c_0, c, \ell_p, 1 \le p \le \infty$. Из сходимости по норме в этих пространствах следует покоординатная сходимость. Найдем покоординатный предел, если он существует.

Для всякого фиксированного k имеем

$$\lim_{n \to \infty} \xi_{nk} = \lim_{\substack{n > k \\ n \to \infty}} \xi_{nk} = \lim_{n \to \infty} \frac{1}{\sqrt[3]{k}} = \frac{1}{\sqrt[3]{k}} = \xi_k.$$

Значит, покоординатно

$$x_n \xrightarrow[n \to \infty]{} x = \{\xi_k\}_{k=1}^{\infty} = \left\{\frac{1}{\sqrt[3]{k}}\right\}_{k=1}^{\infty},$$

и если x_n сходится по норме, то сходится к этому x.

Проверим, каким пространствам принадлежит x. Так как

$$\lim_{k \to \infty} \xi_k = \lim_{k \to \infty} \frac{1}{\sqrt[3]{k}} = 0,$$

то $x \in c_0 \subset c \subset \ell_\infty$. Ряд $\sum_{k=1}^\infty |\xi_k|^p$ сходится $\iff p > 3$, значит, $x \in \ell_p, 3 и <math>x \not\in \ell_p, 1 \leqslant p \leqslant 3$. Следовательно, при $1 \leqslant p \leqslant 3$ последовательность $\{x_n\}$ не сходится в ℓ_p .

В пространствах c_0, c, ℓ_{∞} последовательность $\{x_n\}$ сходится к x, поскольку справедливы следующие соотношения:

$$||x_n - x|| = \sup_{k \in \mathbb{N}} |\xi_{nk} - \xi_k| = \sup_{k > n} \left| \sin \frac{1}{\sqrt[3]{k}} - \sin \frac{1}{\sqrt[3]{k+1}} - \frac{1}{\sqrt[3]{k}} \right| \le$$

$$\le \sup_{k > n} \left| \sin \frac{1}{\sqrt[3]{k}} \right| + \sup_{k > n} \left| \sin \frac{1}{\sqrt[3]{k+1}} \right| + \sup_{k > n} \left| \frac{1}{\sqrt[3]{k}} \right| \le$$

$$\le \frac{2}{\sqrt[3]{n}} + \frac{1}{\sqrt[3]{n+1}} \xrightarrow[n \to \infty]{} 0.$$

В пространствах $\ell_p,\ 3 сходимость тоже есть,$

поскольку справедливы соотношения

$$||x_n - x|| = \left(\sum_{k=n+1}^{\infty} |\xi_{nk} - \xi_k|^p\right)^{\frac{1}{p}} =$$

$$= \left(\sum_{k=n+1}^{\infty} \left|\sin\frac{1}{\sqrt[3]{k}} - \sin\frac{1}{\sqrt[3]{k+1}} - \frac{1}{\sqrt[3]{k}}\right|^p\right)^{\frac{1}{p}} \le$$

$$\le \left(\sum_{k=n+1}^{\infty} \left|\sin\frac{1}{\sqrt[3]{k}} - \sin\frac{1}{\sqrt[3]{k+1}}\right|^p\right)^{\frac{1}{p}} + \left(\sum_{k=n+1}^{\infty} \left|\frac{1}{\sqrt[3]{k}}\right|^p\right)^{\frac{1}{p}}.$$

Обе последние суммы стремятся к нулю при $n \to \infty$ как остатки сходящихся рядов, так как

$$\left|\sin\frac{1}{\sqrt[3]{k}} - \sin\frac{1}{\sqrt[3]{k+1}}\right| \underset{k \to \infty}{\sim} \frac{1}{3k^{4/3}},$$

а ряды $\sum\limits_{k=1}^{\infty} \frac{1}{k^{4p/3}}$ и $\sum\limits_{k=1}^{\infty} \frac{1}{k^{p/3}}$ при p>3 сходятся.

Пример 2.4. Исследовать на сходимость последовательность

$$x_n(t) = \begin{cases} 1, & 0 \le t < \frac{1}{n}, \\ t^{-1/\pi}, & \frac{1}{n} \le t \le 1, \end{cases}$$

в пространствах $L_p[0,1], 1 \leq p < \infty$.

Решение. Поточечно последовательность функций $\{x_n(t)\}$ сходится к функции

$$x(t) = \begin{cases} t^{-1/\pi}, & 0 < t \le 1, \\ 1, & t = 0. \end{cases}$$

Так как $x \notin L_p[0,1]$ при $\frac{p}{\pi} \geqslant 1$, то последовательность $\{x_n\}$ не сходится в пространствах $L_p[0,1]$ при $p \geqslant \pi$.

Пусть $1 \leq p < \pi$. Тогда $x \in L_p[0,1]$. Покажем, что $\{x_n\}$ сходится к x в этих пространствах. Действительно, x_n и x удовлетворяют следующим условиям:

1)
$$|x(t)|^p$$
, $|x_n(t) - x(t)|^p \in L_1[0, 1]$;

2)
$$|x_n(t) - x(t)|^p \le |x(t)|^p$$
, $t \in [0, 1]$;

3)
$$|x_n(t) - x(t)|^p \xrightarrow[n \to \infty]{} 0, \quad t \in [0, 1].$$

Применяя теорему Лебега о предельном переходе под знаком интеграла, получаем

$$||x_n - x||^p = \int_0^1 |x_n(t) - x(t)|^p dt \xrightarrow[n \to \infty]{} \int_0^1 0 dt = 0.$$

Г Доказать справедливость утверждений 2.1–2.10.

2.1. Пусть X – метрическое пространство, $\{x_n\}, \{y_n\} \subset X$, $x, y, x', x'' \in X$. Тогда

a)
$$\left(x_n \xrightarrow[n \to \infty]{} x' \quad \text{if} \quad x_n \xrightarrow[n \to \infty]{} x''\right) \implies x' = x'';$$

6)
$$x_n \xrightarrow[n \to \infty]{} x \implies \forall \{x_{n_k}\} x_{n_k} \xrightarrow[k \to \infty]{} x;$$

в)
$$\{x_n\}$$
 сходится \implies $\{x_n\}$ ограничена;

$$\Gamma) \quad \left(x_n \xrightarrow[n \to \infty]{} x \quad \text{if} \quad y_n \xrightarrow[n \to \infty]{} y\right) \quad \Longrightarrow \quad \rho(x_n, y_n) \xrightarrow[n \to \infty]{} \rho(x, y).$$

2.2. Пусть X – нормированное пространство, $x, y \in X$, $\{x_n\}, \{y_n\} \subset X, \{\lambda_n\} \subset \mathbb{P}, \lambda \in \mathbb{P}$. Тогда

a)
$$\left(x_n \xrightarrow[n \to \infty]{} x \text{ if } y_n \xrightarrow[n \to \infty]{} y\right) \implies x_n + y_n \xrightarrow[n \to \infty]{} x + y;$$

б)
$$\left(\lambda_n \xrightarrow[n \to \infty]{} \lambda$$
 и $x_n \xrightarrow[n \to \infty]{} x\right) \implies \lambda_n x_n \xrightarrow[n \to \infty]{} \lambda x;$

$$\mathrm{B}) \quad x_n \xrightarrow[n \to \infty]{} x \quad \Longrightarrow \quad \|x_n\| \xrightarrow[n \to \infty]{} \|x\|.$$

- **2.3.** Сходимость последовательности в пространствах s и $\ell_p^m, 1 \leqslant p \leqslant \infty,$ эквивалентна покоординатной сходимости.
- **2.4.** Пусть X, Y линейные нормированные пространства, τ линейная биекция X на Y. Пространства X и Y линейно гомеоморфны тогда и только тогда, когда существуют такие константы $c_1, c_2 > 0$, что для любого $x \in X$

$$c_1 ||x||_X \leq ||\tau(x)||_Y \leq c_2 ||x||_X.$$

- **2.5.** Конечномерные нормированные пространства X и Y одинаковой размерности и над одним полем *линейно* гомеоморфны.
- **2.6.** Любые две нормы на конечномерном линейном пространстве эквивалентны.
- **2.7.** Пусть X номированное пространство, X_0 его конечномерное линейное подмножество. Тогда X_0 замкнуто в X.
- **2.8.** Сходимость последовательности в пространствах m, c_0, c равномерна по координатам.
- **2.9.** Сходимость последовательности в пространстве C[a,b] эквивалентна равномерной сходимости на отрезке [a,b].
- **2.10.** Сходимость последовательности $\{x_n\}$, $x_n = \{\xi_{nk}\}$ к элементу $x = \{\xi_k\}$ в пространствах ℓ_p эквивалентна выполнению следующих условий:
 - 1) $\forall k \quad \xi_{nk} \xrightarrow[n \to \infty]{} \xi_k;$
 - 2) $\forall \varepsilon > 0 \ \exists N_0(\varepsilon) \ \forall N \geqslant N_0(\varepsilon) \ \forall n \sum_{k=N+1}^{\infty} |\xi_{nk}|^p < \varepsilon^p$.

- **2.11.** Что означает сходимость последовательности в пространствах $C^k[a,b],\ k\geqslant 1$?
- **2.12.** Доказать, что если $x_n \xrightarrow[n \to \infty]{} x$ в пространстве $L_1[a,b]$, то существует подпоследовательность $\{x_{n_k}\}$ такая, что $x_{n_k}(t) \xrightarrow[k \to \infty]{} x(t)$ почти всюду на [a,b]. Верно ли это утверждение в $L_p[a,b], \ p>1$?
- **2.13.** Доказать, что если $x_n \xrightarrow[n \to \infty]{} x$ в пространстве $L_p[a,b]$ и существует подпоследовательность $\{x_{n_k}\}$ такая, что $x_{n_k}(t) \xrightarrow[k \to \infty]{} y(t)$ почти всюду на [a,b], то x=y в $L_p[a,b]$.
- **2.14.** В каких из пространств $\ell_p,\ c_0,\ c,\ m$ сходятся следующие последовательности:

a)
$$x_n = (1, 2, \dots, n, 0, 0 \dots);$$

6)
$$x_n = \left(1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, 0, 0, \dots\right);$$

B)
$$x_n = \left(\underbrace{\frac{1}{n^{\alpha}}, \frac{1}{n^{\alpha}}, \dots, \frac{1}{n^{\alpha}}}_{n}, 0, 0, \dots\right);$$

r)
$$x_n = \left(1, \frac{1}{\ln 2}, \dots, \frac{1}{\ln n}, 0, 0, \dots\right);$$

д)
$$x_n = \left(\frac{1}{2}, \frac{2}{3}, \dots, \frac{n}{n+1}, 1, 1, \dots\right);$$

e)
$$x_n = \left(\frac{\sin 1}{2}, \frac{2\sin 2}{3}, \dots, \frac{n\sin n}{n+1}, \right)$$

$$\sin(n+1), \sin(n+2), \ldots$$
;

ж)
$$x_n = \left(1, \frac{1}{2^{\alpha}}, \frac{1}{3^{\alpha}}, \dots, \frac{1}{n^{\alpha}}, 0, 0, \dots\right)$$
?

2.15. Сходятся ли в пространстве C[0,1] следующие последовательности:

a)
$$x_n(t) = t^n - t^{n+1};$$
 6) $x_n(t) = t^n - t^{2n}?$

2.16. Сходятся ли следующие последовательности в пространствах $C[0,1],\ C^1[0,1],\ L_1[0,1],\ \widetilde{L}_1[0,1]$:

a)
$$x_n(t) = \frac{t^n}{n} - \frac{t^{n+1}}{n+1};$$
 6) $x_n(t) = \frac{t^n}{n};$

B)
$$x_n(t) = \operatorname{arctg}\left(n\left(t - \frac{1}{2}\right)\right);$$
 $r) x_n(t) = ne^{-nt}?$

- **2.17.** Доказать, что последовательность $x_n(t) = \sin nt$ не сходится в пространстве $L_2[a,b]$.
- **2.18.** Пусть X нормированное пространство. Доказать, что $\|\cdot\|_1 \succeq \|\cdot\|_2 \iff \exists \ C > 0 \ \forall \ x \in X \quad \|x\|_2 \leqslant C\|x\|_1.$
- **2.19.** Доказать, что $\ell_p \subset \ell_q$, если $1 \leqslant p < q < \infty$ и для $x \in \ell_p$ $\|x\|_{\ell_p} \geqslant \|x\|_{\ell_q}.$
- **2.20.** Показать, что

$$\ell_1 \subset \ell_p \subset \ell_q \subset c_0 \subset c \subset \ell_\infty, \qquad 1$$

- **2.21.** Привести примеры, подтверждающие, что вложения в предыдущей задаче строгие.
- **2.22.** Доказать, что

$$\|\cdot\|_{\ell_1} \succeq \|\cdot\|_{\ell_p} \succeq \|\cdot\|_{\ell_q} \succeq \|\cdot\|_{\ell_\infty}, \qquad 1$$

2.23. Привести примеры, подтверждающие, что отношения в предыдущей задаче строгие, т. е.

$$\|\cdot\|_{\ell_1} \succ \|\cdot\|_{\ell_p} \succ \|\cdot\|_{\ell_q} \succ \|\cdot\|_{\ell_\infty}, \qquad 1$$

2.24. Доказать, что $L_q[a,b] \subset L_p[a,b]$, если $1 \leqslant p < q < \infty$ и для $x \in L_q[a,b]$

$$\left(\int_a^b \frac{|x(t)|^p}{b-a} dt\right)^{\frac{1}{p}} \leqslant \left(\int_a^b \frac{|x(t)|^q}{b-a} dt\right)^{\frac{1}{q}}.$$

2.25. Показать, что

$$C^k[a, b] \subset C[a, b] \subset L_q[a, b] \subset L_p[a, b] \subset L_1[a, b],$$

$$1$$

- **2.26.** Привести примеры, подтверждающие, что вложения в предыдущей задаче строгие.
- **2.27.** Доказать, что

$$\|\cdot\|_{C^{k}[a,b]} \succeq \|\cdot\|_{C[a,b]} \succeq \|\cdot\|_{L_{q}[a,b]} \succeq \|\cdot\|_{L_{p}[a,b]} \succeq \|\cdot\|_{L_{1}[a,b]},$$

$$1$$

2.28. Привести примеры, подтверждающие, что отношения в предыдущей задаче строгие, т. е.

$$\|\cdot\|_{C^{k}[a,b]} \succeq \|\cdot\|_{C[a,b]} \succeq \|\cdot\|_{L_{q}[a,b]} \succeq \|\cdot\|_{L_{p}[a,b]} \succeq \|\cdot\|_{L_{1}[a,b]},$$

$$1$$

- **2.29.** Сравнить нормы $\|\cdot\|_{\infty}$ и $\|\cdot\|_{p}$ $(1 \le p < \infty)$ на множестве $L_{\infty}[a,b]$.
- 2.30. Исследовать на сходимость последовательности

a)
$$x_n = \{\xi_{nk}\}_{k=1}^{\infty}, \quad \xi_{nk} = \begin{cases} \frac{1}{\sqrt[3]{k+1}}, & 1 \leqslant k \leqslant n, \\ \frac{1}{\sqrt{k+2}}, & k > n, \end{cases}$$

в пространствах из задачи 2.20;

б)
$$x_n(t) = n\left(\sqrt{t+\frac{1}{n}} - \sqrt{t}\right)$$
 в пространствах из задачи 2.25, если $[a,b] = [0,1];$

B)
$$x_n(t) = \begin{cases} \sqrt{n}(1-nt), & 0 \le t \le \frac{1}{n}, \\ 0, & \frac{1}{n} < t \le 1, \end{cases}$$

в пространствах $L_p[0,1]$.

- **2.31.** ★ Доказать, что последовательность $x_n(t) = \sin nt$ не сходится в пространствах $L_p[0,1]$.
- **2.32.** а) При каких значениях $\alpha \in \mathbb{R}$ и p следующие последовательности сходятся к нулю в пространствах $L_p[0,1]$:

$$x_n(t) = n^{\alpha} e^{-nt}, \quad y_n(t) = n^{\alpha} \sin nt?$$

- б) При каких значениях α и p эти последовательности имеют предел в пространствах $L_p[0,1]$?
- **2.33.** В пространстве $C^{m}[0,1]$ сравнить нормы

$$||x||_0 = \sum_{n=0}^m \max_{t \in [a,b]} |x^{(n)}(t)|,$$

$$||x||_1 = \max_{0 \le n \le m} \left(\max_{t \in [a,b]} |x^{(n)}(t)| \right),$$

$$||x||_2 = \max_{t \in [a,b]} |x(t)|.$$

- 2.34. Доказать эквивалентность следующих норм:
 - а) в пространстве непрерывно дифференцируемых

на [a,b] функций:

$$||x||_0 = \max_{t \in [a,b]} |x(t)| + \max_{t \in [a,b]} |x'(t)|,$$

$$||x||_1 = |x(a)| + \max_{t \in [a,b]} |x'(t)|,$$

$$||x||_2 = \max_{t \in [a,b]} (|x(t)| + |x'(t)|),$$

$$||x||_3 = \max_{t \in [a,b]} |x'(t)| + \int_a^b |x(t)| \, dt;$$

б) в пространстве дважды непрерывно дифференцируемых на [a, b] функций:

$$\begin{split} \|x\|_0 &= \sum_{n=0}^2 \max_{t \in [a,b]} |x^{(n)}(t)|, \\ \|x\|_1 &= |x(a)| + |x'(a)| + \max_{t \in [a,b]} |x''(t)|, \\ \|x\|_2 &= |x(a)| + \max_{t \in [a,b]} |x'(t)| + \max_{t \in [a,b]} |x''(t)|, \\ \|x\|_3 &= \max_{t \in [a,b]} |x''(t)| + \left(\int_a^b |x(t)|^2 \, dt\right)^{1/2}, \\ \|x\|_4 &= \max_{t \in [a,b]} |x(t)| + \max_{t \in [a,b]} |x''(t)|. \end{split}$$

2.35. Проверить, что отображения

$$\rho_1(x, y) = \ln(1 + |x - y|),$$

$$\rho_2(x, y) = |x - y + \operatorname{sign} x - \operatorname{sign} y|,$$

$$\rho_3(x, y) = \left| \int_x^y e^{-t^2} dt \right|$$

из \mathbb{R}^2 в \mathbb{R} являются метриками. Сравнить их.

2.36. На множестве ограниченных последовательностей

сравнить метрики ρ_s и ρ_{∞} , где

$$\rho_s(x,y) = \sum_{k=1}^{\infty} \frac{1}{2^k} \cdot \frac{|\xi_k - \eta_k|}{1 + |\xi_k - \eta_k|},$$

$$\rho_{\infty}(x,y) = \sup_k |\xi_k - \eta_k|.$$

- **2.37.** Пусть $\|\cdot\|_1$ и $\|\cdot\|_2$ эквивалентные нормы на линейном пространстве X. Доказать следующие утверждения:
 - а) если множество $M \subset X$ открыто (замкнуто) в смысле одной из этих норм, то M открыто (замкнуто) в смысле другой;
 - б) если множество $M \subset X$ ограничено в смысле одной из этих норм, то M ограничено в смысле другой.
- **2.38.** Пусть ρ_1 и ρ_2 метрики, заданные на X. Доказать, что ρ_1 не слабее ρ_2 тогда и только тогда, когда всякое множество открытое (замкнутое) в $\langle X, \rho_2 \rangle$ является открытым (замкнутым) в $\langle X, \rho_1 \rangle$.
- **2.39.** Пусть на множестве X заданы две эквивалентные метрики. Какие из свойств множества $M \subset X$ сохраняются при переходе от одной метрики к другой: открытость, замкнутость, ограниченность?
- **2.40.** Описать все метрические пространства, в которых всякое открытое множество является замкнутым.
- **2.41.** Доказать, что на любом бесконечномерном линейном пространстве можно задать две несравнимые нормы.

Тема 3. Плотность, сепарабельность

Определение 3.1. Пусть M и N – подмножества метрического пространства X. Множество M называется nлотным в множестве N, если $N \subset \overline{M}$. В частности, множество M называется aслоду aлотным в метрическом пространстве a0, если $\overline{M} = X$.

Определение 3.2. Множество M называется \overline{M} нет внутренних точек, т. е. $\overline{M}=\varnothing$.

Определение 3.3. Метрическое пространство называется *сепарабельным*, если в нем есть не более чем счетное всюду плотное множество.

Пример 3.1. Пусть M — множество алгебраических многочленов с нулевым свободным членом,

$$N = \{x \in C[0,1] \colon x(0) = 0\}.$$

Доказать, что множество M плотно в множестве N из пространства C[0,1] над $\mathbb{R}.$

Решение. Множество M плотно в N, если $N \subset \overline{M}$, т. е. любой элемент $x \in N$ либо принадлежит M, либо является предельной точкой M. Это означает, что для каждого элемента $x \in N$ и любого $\varepsilon > 0$ найдется элемент $x_{\varepsilon} \in M$ со свойством $x_{\varepsilon} \in B(x,\varepsilon)$ или, что то же самое, для каждого $x \in N$ найдется последовательность $\{x_n\} \subset M$ такая, что $x_n \xrightarrow[n \to \infty]{} x$ в пространстве C[0,1].

Пусть $x \in N$. По теореме Вейерштрасса существует последовательность многочленов $\{p_n\}$, равномерно сходящаяся к x, т.е. сходящаяся по норме пространства C[0,1] (см. задачу 2.9). Рассмотрим последовательность сдвинутых многочленов $x_n(t) = p_n(t) - p_n(0)$. Ясно, что $x_n(0) = 0$. Покажем, что последовательность $\{x_n\}$ также сходится к x в C[0,1]. Действительно,

$$||x_n - x|| = ||p_n - p_n(0) - x|| = ||p_n - x - (p_n(0) - x(0))|| \le$$

$$\le ||p_n - x|| + ||p_n(0) - x(0)|| \le 2||p_n - x|| \xrightarrow[n \to \infty]{} 0.$$

Итак, множество M плотно в N.

Отметим, что нетрудно построить последовательность $\{x_n\}$ конструктивно. Для функции $x \in C[0,1]$ рассмотрим последовательность ее многочленов Бернштейна

$$B_n(t) = \sum_{k=0}^n x\left(\frac{k}{n}\right) C_n^k t^k (1-t)^{n-k}, \quad n \geqslant 0.$$

Известно [2, гл. 4, § 5, теорема 1], что она равномерно на [0,1] сходится к x. Далее, если $x \in N$, то

$$B_n(0) = x(0) = 0.$$

Следовательно, в этом случае $B_n \in M$ и $\{B_n\}$ сходится к x в C[0,1].

Пример 3.2. Доказать, что множество

$$M = \{ x \in C[a, b] \colon x(a) = x(b) \}$$

всюду плотно в пространстве $L_p[a,b]$ над $\mathbb{R}.$

Решение. Множество M всюду плотно в пространстве $L_p[a,b]$, если $\overline{M}=L_p[a,b]$. Следовательно, нужно показать, что для каждой функции $x\in L_p[a,b]$ и любого $\varepsilon>0$ существует функция $z\in M$ такая, что $\|x-z\|_p<\varepsilon$.

Возьмем $x\in L_p[a,b]$ и $\varepsilon>0$. Так как множество C[a,b] непрерывных на отрезке [a,b] функций плотно в пространстве $L_p[a,b]$ (см. задачу 3.6), то для x существует функция $y\in C[a,b]$ такая, что $\|x-y\|_p<\frac{\varepsilon}{2}$. Для y построим непрерывную на [a,b] функцию z следующего вида:

$$z(t) = \left\{ \begin{array}{cc} y(t), & t \in [a,b-\delta], \\ y(a), & t = b, \\ \text{линейна}, & t \in [b-\delta,b]. \end{array} \right.$$

Так как z(b)=y(a)=z(a), то $z\in M.$ Подберем δ так, чтобы $\|y-z\|_p<rac{\varepsilon}{2}.$ Очевидно, что

$$\max_{t \in [a,b]} |z(t)| \leqslant \max_{t \in [a,b]} |y(t)| = ||y||_{C[a,b]} = R.$$

Отсюда

$$||y-z||_p = \left(\int_a^b |y(t)-z(t)|^p dt\right)^{\frac{1}{p}} = \left(\int_{b-\delta}^b |y(t)-z(t)|^p dt\right)^{\frac{1}{p}} \le$$

$$\le 2R\delta^{\frac{1}{p}} < \frac{\varepsilon}{2},$$

если $\delta < \left(\frac{\varepsilon}{4R}\right)^p$. Итак, мы нашли функцию $z \in M$ такую, что

$$||x - z||_p \le ||x - y||_p + ||y - z||_p < \varepsilon.$$

Пример 3.3. Доказать, что множество c_0 сходящихся к нулю последовательностей нигде не плотно в пространстве c.

Решение. Надо доказать, что $\overline{c_0}$ есть пустое множество в пространстве c. Так как c_0 – замкнутое подмножество в c (см.

задачу 1.53), то $\overset{\circ}{c_0} = \overset{\circ}{c_0}$. Надо показать, что для всякого элемента $x_0 \in c_0$ и всякого $\varepsilon > 0$ шар $B(x_0, \varepsilon) \subset c$ не принадлежит множеству c_0 .

Для $x_0=\{\xi_k^0\}\in c_0$ имеем $\xi_k^0\xrightarrow[k\to\infty]{}0.$ Значит, для $\varepsilon>0$ найдется номер k_0 такой, что $|\xi_k^0|<\frac{\varepsilon}{2}$ для $k>k_0.$

Рассмотрим $x = \{\xi_k\}$:

$$\xi_k = \begin{cases} \xi_k^0, & k \leqslant k_0, \\ \frac{\varepsilon}{4}, & k > k_0. \end{cases}$$

Тогда $x \notin c_0$, $x \in c$ и $x \in B(x_0, \varepsilon)$, так как $|\xi_k - \xi_k^0| \leqslant \frac{3}{4} \varepsilon < \varepsilon$. Следовательно, $B(x_0, \varepsilon) \not\subset c_0$.

- **3.1.** Пусть M и N множества, всюду плотные в метрическом пространстве X. Возможно ли, что $M \cap N = \emptyset$?
- **3.2.** Будут ли множество P_n всех алгебраических многочленов степени не выше n и множество P всех алгебраических многочленов
 - а) нигде не плотными в пространстве C[a, b],
 - б) всюду плотными в пространстве C[a, b]?
- **3.3.** Показать, что множество всех финитных последовательностей не является всюду плотным в пространствах c и ℓ_{∞} ; всюду плотно в пространствах c_0 и ℓ_p $(1 \leqslant p < \infty).$

№ Доказать утверждения 3.4–3.7.

- **3.4.** Множество P всех алгебраических многочленов всюду плотно в пространстве $C^1[a,b]$.
- **3.5.** Множество кусочно линейных непрерывных функций всюду плотно в пространстве C[a,b] над \mathbb{R} .

- **3.6.** Множество C[a,b] непрерывных на отрезке [a,b] функций всюду плотно в пространстве $L_p[a,b], \ 1 \leqslant p < \infty.$
- **3.7.** а) Множество алгебраических многочленов от t^2 всюду плотно в пространстве C[0,1];
 - б) множество алгебраических многочленов от t, равных нулю при t=1, всюду плотно в множестве

$$M = \{x \in C[0,1] \colon x(1) = 0\};$$

в) множество

$$M = \{x \in C[0,1] \colon x(0) = 0\}$$

всюду плотно в пространствах $\widetilde{L}_1[0,1]$ и $L_1[0,1]$, но не является всюду плотным в пространстве C[0,1];

г) множество

$$M = \left\{ x = \{\xi_k\} \in \ell_2 \colon \sum_{k=1}^{\infty} \xi_k = 0 \right\}$$

всюду плотно в пространстве ℓ_2 ;

д) множество

$$M = \left\{ x \in L_2[0,1] \colon x(t) = 0, \ t \in \left[0, \frac{1}{3}\right] \right\}$$

нигде не плотно в пространстве $L_2[0,1]$;

е) множество тригонометрических полиномов вида

$$\sum_{k=0}^{n} (a_k \cos kt + b_k \sin kt), \quad n \in \mathbb{N},$$

всюду плотно в пространствах $L_p[-\pi, \pi]$.

 \square Пусть X — метрическое пространство. Доказать утверждения 3.8–3.10.

- **3.8.** Дополнение к нигде не плотному в X множеству всюду плотно. Справедливо ли обратное утверждение?
- **3.9.** Дополнение к открытому всюду плотному в X множеству нигде не плотно.
- **3.10.** Замыкание нигде не плотного в X множества нигде не плотно.
- **3.11.** Привести пример метрического пространства X и множества в нем, которое не является нигде не плотным в X и не является всюду плотным в X.
- **№** Доказать утверждения 3.12–3.19.
- **3.12.** \star Метрическое пространство несепарабельно тогда и только тогда, когда в нем существует более чем счетное множество попарно непересекающихся шаров некоторого радиуса r>0.
- **3.13.** Пространства ℓ_p^n $(1 \leqslant p \leqslant \infty), \ \ell_p$ $(1 \leqslant p < \infty), c_0, c, C^{(k)}[a,b], C[a,b], L_p[a,b] (1 \leqslant p < \infty)$ сепарабельны.
- **3.14.** Пространство ℓ_{∞} несепарабельно.
- **3.15.** Пространство s сепарабельно.
- **3.16.** Мощность сепарабельного метрического пространства не может быть больше, чем континуум.
- **3.17.** Конечномерное нормированное пространство сепарабельно.
- **3.18.** Пусть L замкнутое линейное подмножество в нормированном пространстве $X, L \neq X$. Тогда L нигде не плотно в X.
- **3.19.** Пусть метрические пространства X и Y гомеоморфны. Тогда если одно из них сепарабельно, то сепарабельно и другое.

Тема 4. Полные метрические и нормированные пространства, пополнения

Определение 4.1. Последовательность $\{x_n\}$ элементов метрического (нормированного) пространства X называется фундаментальной, если

$$\forall \varepsilon > 0 \ \exists N(\varepsilon) \ \forall n, m > N(\varepsilon) \quad \rho(x_n, x_m) < \varepsilon.$$

Определение 4.2. Метрическое (нормированное) пространство X называется *полным*, если в нем любая фундаментальная последовательность сходится. Полное метрическое пространство называют также *пространством Фреше*, полное нормированное пространство – *банаховым пространством*.

Определение 4.3. Метрические пространства X и Y называются *изометричными* $(X\cong Y)$, если существует биекция $f\colon X\to Y$ такая, что

$$\forall x_1, x_2 \in X \quad \rho_Y(f(x_1), f(x_2)) = \rho_X(x_1, x_2).$$

Нормированные пространства X и Y называются линейно изометричными $(X\cong Y)$, если существует линейная биекция $f\colon X\to Y$ такая, что

$$\forall x \in X \quad ||f(x)||_Y = ||x||_X.$$

Теорема 4.1 (о пополнении пространства). Для любого метрического пространства $\langle X, \rho_X \rangle$ существуют полное метрическое пространство $\langle Y, \rho_Y \rangle$ и подмножество $Y_1 \subset Y$ такие, что $\langle X, \rho_X \rangle \cong \langle Y_1, \rho_Y \rangle$ и $\overline{Y_1} = Y$.

Для любого нормированного пространства $\langle X, \|\cdot\|_X \rangle$ существуют полное нормированное пространство $\langle Y, \|\cdot\|_X \rangle$ и линейное многообразие $Y_1 \subset Y$ такие, что $\langle X, \|\cdot\|_X \rangle \cong \langle Y_1, \|\cdot\|_Y \rangle$ и $\overline{Y_1} = Y$.

Определение 4.4. Полное метрическое (нормированное) пространство Y из теоремы 4.1 называется *пополнением* метрического (нормированного) пространства X.

Пример 4.1. Пусть
$$X = \left(0, \frac{\pi}{2}\right)$$
. Проверить, что $\rho(x, y) = |\csc 2x - \csc 2y|$

есть метрика на X. Доказать, что $\langle X, \rho \rangle$ – полное метрическое пространство.

Решение. Метрика ρ порождается убывающей функцией f(t)= ctg 2t. Следовательно, f – биекция $\left(0,\frac{\pi}{2}\right)$ на \mathbb{R} , а значит, $\rho(x,y)=0$ тогда и только тогда, когда x=y. Справедливость двух других аксиом метрики очевидна. Итак, $\langle X,\rho\rangle$ – метрическое пространство.

Полагая f(x) = u, f(y) = v, получаем

$$\rho(x,y) = |f(x) - f(y)| = |u - v| = \rho_{|\cdot|}(u,v) = \rho_{|\cdot|}(f(x),f(y)).$$

Так как f — биекция X на \mathbb{R} и $\rho(x,y)=\rho_{|\cdot|}(f(x),f(y))$, то метрические пространства $\langle X,\rho\rangle$ и $\langle \mathbb{R},\rho_{|\cdot|}\rangle$ изометричны. Пространство $\langle \mathbb{R},\rho_{|\cdot|}\rangle$ полное, значит, $\langle X,\rho\rangle$ — полное метрическое пространство (см. задачу 4.6).

Пример 4.2. Показать, что пространство $\langle X, \rho \rangle$, где $X = (0, +\infty),$

$$\rho(x,y) = |x \operatorname{sign}(x-1) - y \operatorname{sign}(y-1)|,$$

является неполным метрическим пространством. Найти его пополнение.

Решение. Первая аксиома метрики верна, так как метрика ρ порождается функцией $f(t) = t \operatorname{sign}(t-1)$, которая является биекцией множества X на множество $M = (-1,0] \cup (1,+\infty)$. Справедливость двух других аксиом метрики очевидна.

Полагая f(x) = u, f(y) = v, получаем

$$\rho(x,y) = |f(x) - f(y)| = |u - v| = \rho_{|\cdot|}(u,v) = \rho_{|\cdot|}(f(x),f(y)).$$

Так как f – биекция X на M и $\rho(x,y) = \rho_{|\cdot|}(f(x),f(y))$, то метрические пространства $\langle X,\rho\rangle$ и $\langle M,\rho_{|\cdot|}\rangle$ изометричны. Пространство $\langle X,\rho\rangle$ полно тогда и только тогда, когда $\langle M,\rho_{|\cdot|}\rangle$ – полное метрическое пространство (см. задачу 4.6).

Так как $M \subset \mathbb{R}$, метрическое пространство $\langle \mathbb{R}, \rho_{|\cdot|} \rangle$ полное, а M не является замкнутым множеством в этом пространстве, то пространство $\langle M, \rho_{|\cdot|} \rangle$ не является полным (см. задачу 4.4), а его пополнение — это пространство $\langle \overline{M}, \rho_{|\cdot|} \rangle = \langle [-1,0] \cup [1,+\infty), \rho_{|\cdot|} \rangle$ (см. задачу 4.5). Следовательно, $\langle X, \rho \rangle$ не является полным метрическим пространством, а его пополнение — это пространство $\langle Y, \rho_{|\cdot|} \rangle$, где $Y = [-1,0] \cup \cup [1,+\infty)$ (см. определение 4.4).

Пример 4.3. Описать пополнение множества функций, непрерывно дифференцируемых на отрезке [0,1], относительно нормы

$$||x|| = \max_{t \in [0,1]} |x(t)| + \max_{t \in \left[0, \frac{1}{2}\right]} |x'(t)|.$$

Решение. Введем следующие обозначения:

$$X = C^{1}[0,1], Y = \left\{ x \in C[0,1] \colon x \in C^{1}[0,\frac{1}{2}] \right\},$$

$$||x||_X = \max_{t \in [0,1]} |x(t)| + \max_{t \in \left[0,\frac{1}{2}\right]} |x'(t)|.$$

Докажем, что пространство $\langle X, \| \cdot \|_X \rangle$ не является полным, а $\langle Y, \| \cdot \|_X \rangle$ – полное нормированное пространство и является пополнением пространства $\langle X, \| \cdot \|_X \rangle$.

Пусть для n > 4

$$x_n(t) = \begin{cases} \frac{2}{n} - \sqrt{\frac{2}{n^2} - \left(t - \frac{3}{4}\right)^2}, & \left|t - \frac{3}{4}\right| \leqslant \frac{1}{n}, \\ \left|t - \frac{3}{4}\right|, & t \in \left[0, \frac{3}{4} - \frac{1}{n}\right) \cup \left(\frac{3}{4} + \frac{1}{n}, 1\right]. \end{cases}$$

Нетрудно проверить, что $x_n \in X$. Обозначим $x(t) = \left| t - \frac{3}{4} \right|$. Очевидно, $x \notin X$ и $x \in Y$. Так как

$$\|x_n - x\|_X = \max_{t: \left|t - \frac{3}{4}\right| \leqslant \frac{1}{n}} \left| \frac{2}{n} - \sqrt{\frac{2}{n^2} - \left(t - \frac{3}{4}\right)^2} - \left|t - \frac{3}{4}\right| \right| \leqslant \frac{3 + \sqrt{2}}{n},$$

то $x_n \xrightarrow{\|\cdot\|_X} x$, $n \to \infty$. Отсюда следует, что $\{x_n\}$ – фундаментальная последовательность в пространстве $\langle X, \|\cdot\|_X \rangle$ и сходится к $x \notin X$. Значит, $\langle X, \|\cdot\|_X \rangle$ не является банаховым пространством.

Покажем, что пространство $\langle Y, \|\cdot\|_X \rangle$ банахово. Пусть $\{x_n\}$ – фундаментальная последовательность в этом пространстве. Так как

$$||x_n - x_m||_{C[0,1]} \le ||x_n - x_m||_X,$$

то $\{x_n\}$ — фундаментальная последовательность в банаховом пространстве C[0,1]. Следовательно,

$$x_n \stackrel{[0,1]}{\Longrightarrow} x \in C[0,1], \quad n \to \infty,$$

(см. задачу 2.9). Аналогично, так как

$$||x_n - x_m||_{C^1[0,\frac{1}{2}]} \le ||x_n - x_m||_X,$$

то $\{x_n\}$ — фундаментальная последовательность в банаховом пространстве $C^1[0,\frac{1}{2}]$, значит,

$$x_n \stackrel{\left[0,\frac{1}{2}\right]}{\Rightarrow} y, \quad x_n' \stackrel{\left[0,\frac{1}{2}\right]}{\Rightarrow} y' \in C\left[0,\frac{1}{2}\right], \quad n \to \infty$$

(см. задачу 2.11). Поскольку x(t) = y(t) для $t \in \left[0, \frac{1}{2}\right]$, то на этом отрезке существует x'(t) = y'(t) и $x \in Y$, а $\|x_n - x\|_X \xrightarrow[n \to \infty]{} 0$.

Итак, фундаментальная в пространстве $\langle Y, \| \cdot \|_X \rangle$ последовательность $\{x_n\}$ сходится по $\| \cdot \|_X$ к элементу $x \in Y$. Полнота пространства $\langle Y, \| \cdot \|_X \rangle$ доказана.

Докажем, что $\langle Y, \|\cdot\|_X \rangle$ — пополнение пространства $\langle X, \|\cdot\|_X \rangle$ относительно нормы $\|\cdot\|_X$. Для этого нужно показать, что замыкание X по $\|\cdot\|_X$ есть Y.

Для любого $y\in Y$ существует последовательность $\{p_n\}$ алгебраических многочленов: $p_n \implies y,\ n\to\infty.$ Рассмотрим последовательность

$$y_n(t) = \begin{cases} y(t), & t \in \left[0, \frac{1}{2}\right], \\ p_n(t) - p_n\left(\frac{1}{2}\right) + y\left(\frac{1}{2}\right) + \\ + \left(y'\left(\frac{1}{2}\right) - p_n'\left(\frac{1}{2}\right)\right) \frac{\sin c_n\left(t - \frac{1}{2}\right)}{c_n}, & t \in \left(\frac{1}{2}, 1\right]; \end{cases}$$

здесь c_n – некоторая отличная от нуля величина, которая будет специальным образом выбрана ниже. Функции y_n непрерывно дифференцируемы на отрезке [0,1], т.е. $y_n \in X$.

На отрезке $\left[\frac{1}{2},1\right]$ выполняются следующие соотношения:

$$|y_n(t) - y(t)| = \left| \left(p_n(t) - y(t) \right) + \left(y \left(\frac{1}{2} \right) - p_n \left(\frac{1}{2} \right) \right) + \left(y' \left(\frac{1}{2} \right) - p_n' \left(\frac{1}{2} \right) \right) \frac{\sin c_n (t - \frac{1}{2})}{c_n} \right| \le$$

$$\le \left| p_n(t) - y(t) \right| + \left| y \left(\frac{1}{2} \right) - p_n \left(\frac{1}{2} \right) \right| +$$

$$+ \left| y' \left(\frac{1}{2} \right) - p_n' \left(\frac{1}{2} \right) \right| \cdot \frac{1}{|c_n|}.$$

Полагая

$$c_n = n \cdot \left(1 + \left| y'\left(\frac{1}{2}\right) - p'_n\left(\frac{1}{2}\right) \right| \right),$$

получим

$$\max_{t \in \left[\frac{1}{2}, 1\right]} |y_n(t) - y(t)| \xrightarrow[n \to \infty]{} 0,$$

а значит, и

$$\max_{t \in [0,1]} |y_n(t) - y(t)| = \max_{t \in \left[\frac{1}{2}, 1\right]} |y_n(t) - y(t)| \xrightarrow[n \to \infty]{} 0.$$

Итак, для всякого $y \in Y$ существует $\{y_n\} \in X$ такая, что

$$||y_n - y||_X = \max_{t \in [0,1]} |y_n(t) - y(t)| + \max_{t \in [0,\frac{1}{2}]} |y'_n(t) - y'(t)| =$$

$$= \max_{t \in [0,1]} |y_n(t) - y(t)| \xrightarrow[n \to \infty]{} 0.$$

Следовательно, $\overline{X} = Y$ относительно $\|\cdot\|_X$.

№ Доказать утверждения 4.1–4.10.

4.1. Всякая фундаментальная последовательность в метрическом пространстве ограничена.

ൃ

- **4.2.** Если $\{x_n\}$ фундаментальная последовательность в метрическом пространстве, то $\rho(x_n, x_m) \xrightarrow[n,m\to\infty]{} 0$.
- **4.3.** Метрическое пространство полно тогда и только тогда, когда всякая фундаментальная последовательность содержит сходящуюся подпоследовательность.
- **4.4.** Пусть $\langle X, \rho \rangle$ полное метрическое пространство и $M \subset X$. Пространство $\langle M, \rho \rangle$ полно тогда и только тогда, когда множество M замкнуто в X.
- **4.5.** Пусть $\langle X, \rho \rangle$ полное метрическое пространство, $M \subset X$ и пространство $\langle M, \rho \rangle$ не является полным. Тогда пополнением этого пространства является пространство $\langle \overline{M}, \rho \rangle$.
- **4.6.** Если X и Y изометричные метрические пространства и одно из них полно, то полно и другое.
- **4.7.** Пусть линейные нормированные пространства X и Y линейно гомеоморфны. Тогда, если одно из них является полным (сепарабельным), то и другое является полным (сепарабельным).
- **4.8.** Нормированные пространства $\ell_p^n, c_0, c, \ell_p \ (1 \le p \le \infty), C[a, b], C^k[a, b], L_p[a, b] \ (1 \le p < \infty)$ полны.
- **4.9.** Метрическое пространство s является полным.
- 4.10. Конечномерное нормированное пространство полно.
- **4.11.** Показать, что пространство $\widetilde{L}_1[a,b]$ неполно. Найти его пополнение.
- **4.12.** На множестве X финитных числовых последовательностей заданы нормы

a)
$$||x||_1 = \sup_k |\xi_k|$$
, 6) $||x||_2 = \sum_{k=1}^{\infty} |\xi_k|$.

Показать, что пространства $\langle X, \| \cdot \|_1 \rangle$ и $\langle X, \| \cdot \|_2 \rangle$ не являются полными. Найти их пополнения.

- **4.13.** В цепочках пространств из задач 2.20, 2.25 найти пополнение предыдущего по норме последующего. Например, для пары $\ell_1 \subset \ell_p$ нужно найти пополнение пространства $X = \{x = \{\xi_k\} : \sum_{k=1}^{\infty} |\xi_k| < \infty\}$ по норме $\|x\|_p = (\sum_{k=1}^{\infty} |\xi_k|^p)^{1/p}$.
- **4.14.** Описать пополнение пространства вещественных алгебраических многочленов от переменной t, снабженного нормой
 - a) $||p|| = \max_{t \in [a,b]} |p(t)|;$
 - 6) $||p|| = \max_{t \in [a,b]} |p(t)| + \max_{t \in [a,b]} |p'(t)|;$
 - B) $\star \|p\| = \max_{t \in [a,b]} |p(t)| + |p'(a)|;$

 - д) $||p|| = \max_{t \in [a,b]} |p(t)| + \max_{t \in [a,b]} |p''(t)|;$
 - e) * $||p|| = \max_{k \in \{0\} \cup \mathbb{N}} \frac{|p^{(k)}(0)|}{k!};$
 - ж)* $||p|| = \sum_{k=0}^{\infty} \frac{|p^{(k)}(0)|}{k!} + \max_{t \in [-1,1]} |p(t)|.$
- **4.15.** Рассмотрим линейные пространства функций, определенных на вещественной прямой \mathbb{R} :
 - а) $C(\mathbb{R})$ все ограниченные непрерывные функции;
 - б) $C_0(\mathbb{R})$ все непрерывные функции, у которых $\lim_{t \to \infty} x(t) = 0;$
 - в) $C_1(\mathbb{R})$ все финитные непрерывные функции (т.е. функции, равные нулю вне некоторого конечного интервала).

В этих пространствах введем норму

$$||x|| = \sup_{t \in \mathbb{R}} |x(t)|.$$

Будут ли эти пространства полными? Будут ли они сепарабельными?

4.16. На множестве натуральных чисел положим

$$\rho(n,m) = \begin{cases} 1 + \frac{1}{n+m}, & n \neq m, \\ 0, & n = m. \end{cases}$$

Доказать, что $\langle \mathbb{N}, \rho \rangle$ – полное метрическое пространство. Построить последовательность замкнутых вложенных шаров, имеющих пустое пересечение.

- **4.17.** Доказать, что в полном линейном нормированном пространстве любая последовательность замкнутых вложенных шаров имеет непустое пересечение.
- **4.18.** Пусть $f \colon M \to \mathbb{P}$ инъективная функция, $\rho_f(x,y) = |f(x) f(y)|$. Доказать, что пространство $\langle M, \rho_f \rangle$ полно тогда и только тогда, когда множество f(M) замкнуто в пространстве $\langle \mathbb{P}, \rho_{|\cdot|} \rangle$.
- **4.19.** Проверить, что $\langle X, \rho_f \rangle$, где $\rho_f(x,y) = |f(x) f(y)|$, метрическое пространство. Является ли оно полным? Если нет, описать его пополнение:
 - a) $X = \mathbb{R}, \ f(x) = \operatorname{arctg} x;$
 - б) $X = \mathbb{R}, \ f(x) = x^5;$
 - B) $X = [0, \infty), f(x) = \ln(x+1);$
 - Γ) $X = [0, \infty), f(x) = e^{-x};$

д)
$$X = [-1,1), f(x) = \begin{cases} x, & x \in [-1,0], \\ x+1, & x \in (0,1); \end{cases}$$

e)
$$X = [-1, 1), f(x) = \begin{cases} x, & x \in [-1, 0), \\ x + 1, & x \in [0, 1); \end{cases}$$

ж)
$$X = \mathbb{N}, \ f(n) = \frac{1}{n}.$$

Будут ли эквивалентны метрики для пар: «а» и «б»; «в» и «г»: «д» и «е»?

- **4.20.** \bigstar Доказать, что метрическое пространство $\langle \mathbb{N}, \rho \rangle$, где $\rho(m,n) = |e^{in} e^{im}|$, не является полным. Найти его пополнение.
- **4.21.** На множестве X заданы две эквивалентные метрики. Сохраняются ли свойства полноты и сепарабельности при переходе к эквивалентной метрике?

Тема 5. Непрерывные и равномерно непрерывные отображения.Сжимающие отображения

Определение 5.1. Пусть X и Y – метрические пространства. Отображение $F\colon X\to Y$ называется

✓ непрерывным в точке $x_0 \in X$, если

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0 \ \forall x \in X$$

$$\rho_X(x, x_0) < \delta(\varepsilon) \implies \rho_Y(Fx, Fx_0) < \varepsilon;$$

- ✓ непрерывным на множестве $M \subset X$, если оно непрерывно в каждой точке множества M;
- \checkmark равномерно непрерывным на множестве $M\subset X$, если

$$\forall \varepsilon > 0 \; \exists \, \delta(\varepsilon) > 0 \; \forall \, x_1, x_2 \in M$$

$$\rho_X(x_1, x_2) < \delta(\varepsilon) \implies \rho_Y(Fx_1, Fx_2) < \varepsilon.$$

Определение 5.2. Пусть $\langle X, \rho \rangle$ – метрическое пространство. Отображение $F \colon X \to X$ называется *сэкимающим*, если

$$\exists\,\alpha\in[0,1)\,\,\forall\,x,y\in X\quad\rho(Fx,Fy)\leqslant\alpha\rho(x,y).$$

Определение 5.3. Пусть $F: X \to X$. Точка $x^* \in X$ называется неподвижной точкой отображения F, если $Fx^* = x^*$.

Теорема 5.1 (теорема Банаха). Пусть $\langle X, \rho \rangle$ – полное метрическое пространство, $F \colon X \to X$ – сжимающее отображение. Тогда существует единственная неподвижная точка отображения F.

Пример 5.1. Доказать, что отображение

$$F: C[-1,1] \to L_1[-1,1],$$

действующее по правилу

$$(Fx)(t) = (2t - 5)x(t) - 3\int_{-1}^{1} 2^{t-s} \sin x(s) \, ds,$$

равномерно непрерывно на C[-1,1].

Решение. Представим отображение F в виде F=G+H, где

$$(Gx)(t) = (2t - 5)x(t), \quad (Hx)(t) = -3\int_{-1}^{1} 2^{t-s} \sin x(s) ds.$$

Докажем, что отображения G и H равномерно непрерывны на C[-1,1], тогда и отображение F будет равномерно непрерывным на C[-1,1]. Пусть $x_1,x_2\in C[-1,1]$. Тогда

$$|(Gx_1)(t) - (Gx_2)(t)| = |(2t - 5)(x_1(t) - x_2(t))| \le$$

$$\le |2t - 5| \cdot |x_1(t) - x_2(t)| \le 7||x_1 - x_2||_{C[-1,1]}$$

и, следовательно,

$$||Gx_1 - Gx_2||_{L_1[-1,1]} = \int_{-1}^1 |(Gx_1)(t) - (Gx_2)(t)| dt \le$$

$$\le 14||x_1 - x_2||_{C[-1,1]}.$$

Из этой оценки следует равномерная непрерывность G на C[-1,1]. Для отображения H имеем

$$|(Hx_1)(t) - (Hx_2)(t)| = \left| 3 \int_{-1}^{1} 2^{t-s} (\sin x_1(s) - \sin x_2(s)) \, ds \right| \le$$

$$\le 3 \int_{-1}^{1} 2^{t-s} \cdot 2 \left| \sin \frac{x_1(s) - x_2(s)}{2} \right| \cdot \left| \cos \frac{x_1(s) + x_2(s)}{2} \right| \, ds \le$$

$$\le 6 \cdot 2^t \int_{-1}^{1} |x_1(s) - x_2(s)| \, ds \le 12 ||x_1 - x_2||_{C[-1,1]} \cdot 2^t.$$

Таким образом,

$$||Hx_1 - Hx_2||_{L_1[-1,1]} = \int_{-1}^1 |(Hx_1)(t) - (Hx_2)(t)| dt \le$$

$$\le 12||x_1 - x_2||_{C[-1,1]} \int_{-1}^1 2^t dt \le 48 \cdot ||x_1 - x_2||_{C[-1,1]}$$

и отображение H также равномерно непрерывно на C[-1,1]. §

Пример 5.2. Исследовать на равномерную непрерывность и непрерывность отображения

а)
$$(Fx)(t)=e^{-|x(t)|};$$
 б) $(Gx)(t)=x^2(t)-x(t)+1,$ действующие из $C[a,b]$ в $C[a,b].$

Решение. Так как функции

$$f(x) = e^{-|x|}$$
 и $g(x) = x^2 - x + 1$

непрерывны на \mathbb{R} , то порождаемые ими отображения F и G непрерывны в C[a,b], а равномерная непрерывность этих

отображений на C[a,b] эквивалентна равномерной непрерывности функций f и g на \mathbb{R} (см. задачу 5.5).

- а) Функция f дифференцируема на $(-\infty,0]$ и на $[0,+\infty)$. На каждом из этих множеств $|f'(x)| \leq 1$. Следовательно, функция f равномерно непрерывна на $(-\infty,0]$ и на $[0,+\infty)$. В силу непрерывности f на \mathbb{R} , она равномерно непрерывна на \mathbb{R} . Следовательно, отображение F равномерно непрерывно на C[a,b].
- б) Функция $g(x)=x^2-x+1$ не является равномерно непрерывной на \mathbb{R} , так как последовательности $x_n'=n$ и $x_n''=n+\frac{1}{n}$ обладают свойством $|x_n'-x_n''|=\frac{1}{n}\xrightarrow[n\to\infty]{}0$, но

$$|g(x'_n) - g(x''_n)| = |x'_n - x''_n| \cdot |x'_n + x''_n - 1| =$$

= $\frac{1}{n} \left| 2n + \frac{1}{n} - 1 \right| \xrightarrow[n \to \infty]{} 2 \neq 0.$

Значит, и отображение G из C[a,b] в C[a,b], порождаемое функцией g, не является равномерно непрерывным.

Приведем прямое доказательство непрерывности отображения G на C[a,b] (без ссылки на задачу 5.5). Пусть $\varepsilon>0$ и $x_0\in C[a,b]$, тогда для любой функции $x\in C[a,b]$ со свойством $\|x-x_0\|\leqslant 1$ имеем

$$|(Gx)(t) - (Gx_0)(t)| = |(x^2(t) - x(t) + 1) - (x_0^2(t) - x_0(t) + 1)| =$$

$$= |x(t) - x_0(t)| \cdot |x(t) + x_0(t) - 1| \le$$

$$\le |x(t) - x_0(t)| \cdot (|x(t) - x_0(t)| + 2|x_0(t)| + 1).$$

Следовательно,

$$||Gx - Gx_0|| = \max_{t \in [a,b]} |G(x)(t) - G(x_0)(t)| \le$$

$$\le ||x - x_0|| \cdot (||x - x_0|| + 2||x_0|| + 1) \le$$

$$\le (2 + 2||x_0||) ||x - x_0||.$$

Из этой оценки следует, что отображение G непрерывно на C[a,b] $\left(\delta(\varepsilon)=\min\left\{1,\frac{\varepsilon}{2+2\|x_0\|}\right\}\right).$

Пример 5.3. Доказать, что бесконечная система линейных алгебраических уравнений

$$23 \cdot \sum_{k=1}^{\infty} \frac{1}{5^{k+m}} \xi_k - \frac{2}{m} = \xi_m, \quad m = 1, 2, \dots,$$

имеет единственное решение в пространстве ℓ_2 .

Решение. Введем оператор $A: \ell_2 \to \ell_2$,

$$Ax = \left\{23 \cdot \sum_{k=1}^{\infty} \frac{1}{5^{k+m}} \xi_k \right\}_{m=1}^{\infty}.$$

Это оператор сжатия (см. задачу 5.16 «а»), так как

$$\sum_{k,m=1}^{\infty} \left(\frac{23}{5^{k+m}}\right)^2 = 23^2 \sum_{k=1}^{\infty} \frac{1}{25^k} \sum_{m=1}^{\infty} \frac{1}{25^m} = \frac{23^2}{24^2} < 1.$$

Полагая $y_0 = \left\{\frac{2}{m}\right\}_{m=1}^{\infty}$, $Bx = Ax - y_0$, запишем исходную систему уравнений в операторном виде:

$$Bx = x. (5.1)$$

Так как

$$\rho(Bx, By) = ||Bx - By|| = ||Ax - Ay|| = \rho(Ax, Ay)$$

и A – оператор сжатия, то и B – оператор сжатия. Следовательно, по теореме Банаха (см. теорему 5.1) операторное уравнение (5.1), а значит, и исходная система уравнений, имеет единственное решение в пространстве ℓ_2 .

5.1. Является ли непрерывным на своей области определения отображение Fx = x(1), если

a)
$$F: C[0,1] \to \langle \mathbb{R}, \rho_{|\cdot|} \rangle;$$
 6) $F: \widetilde{L}_1[0,1] \to \langle \mathbb{R}, \rho_{|\cdot|} \rangle$?

- **5.2.** Исследовать на непрерывность и равномерную непрерывность отображение $(Fx)(t) = x^2(t)$ на области определения:
 - a) $F: C[0,1] \to C[0,1];$ 6) $F: C[0,1] \to \widetilde{L}_1[0,1];$
 - B) $F \colon \widetilde{L}_1[0,1] \to \widetilde{L}_1[0,1].$
- **5.3.** Показать, что отображение (Fx)(t) = x'(t) 3x(t) непрерывно на своей области определения, если $F\colon C^1[a,b]\to C[a,b],$ и не является непрерывным, если $F\colon C^1[a,b]\subset C[a,b]\to C[a,b].$
- **5.4.** Пусть X, Y метрические пространства, $F: X \to Y$. Докажите, что F не является равномерно непрерывным на X тогда и только тогда, когда найдутся последовательности $\{x'_n\}, \{x''_n\} \subset X$ такие, что $\rho_X(x'_n, x''_n) \to 0$, а $\rho_Y(Fx'_n, Fx''_n) \not\to 0$ при $n \to \infty$.
- **5.5.** Пусть отображение $F\colon C[a,b]\to C[a,b]$ определено формулой (Fx)(t)=f(x(t)), где $f\colon \mathbb{R}\to \mathbb{R}.$ Доказать, что отображение F непрерывно (равномерно непрерывно) на C[a,b] тогда и только тогда, когда функция f непрерывна (равномерно непрерывна) на $\mathbb{R}.$
- **5.6.** Исследовать на равномерную непрерывность на C[0,2] отображение $F\colon C[0,2]\to C[0,2]$, если
 - a) $(Fx)(t) = \sqrt[3]{x(t)};$
 - 6) $(Fx)(t) = x^3(t);$
 - в) $(Fx)(t) = \operatorname{arctg} x(t);$
 - $\Gamma) (Fx)(t) = \cos x^2(t);$
 - д) $(Fx)(t) = \frac{x^2(t)}{1 + x^4(t)};$
 - e) $(Fx)(t) = \int_0^2 (t+s) \ln(1+3x^2(s)) ds$.

- **5.7.** Исследовать на равномерную непрерывность на C[0,2] отображения «а»—«е» из задачи 5.6, если $F\colon C[0,2]\to \widetilde{L}_1[0,2]$.
- **5.8.** Исследовать на непрерывность на области определения отображения

a)
$$F: C^1[0,3] \subset C[0,3] \to C[0,3],$$

 $(Fx)(t) = x(2) - 5 \int_0^t 2^s x'(s) ds;$

6)
$$F: C^1[0,1] \to C^1[0,1],$$

 $(Fx)(t) = 3x(t) + \int_0^t \ln(1+s) x(s) ds;$

B)
$$F: C^1[0,1] \subset C[0,1] \to C^1[0,1],$$

$$(Fx)(t) = 3x(t) + \int_0^t \ln(1+s) \, x(s) \, ds;$$

$$\Gamma$$
) $F: C[0,1] \to C^1[0,1],$
 $(Fx)(t) = \cos t \cdot \int_t^1 (s^2 + 4) x(s) ds.$

5.9. Будет ли отображение $F \colon \mathbb{R} \to \mathbb{R}$ сжимающим на множестве $M \subset \mathbb{R}$, если $Fx = x^3$, метрика на \mathbb{R} естественная.

a)
$$M = \left[-\frac{1}{2}, \frac{1}{2} \right];$$
 б) $M = \left[0, 2 \right];$ в) $M = \left(-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right)?$

- **5.10.** Пусть вещественная функция f дифференцируема на \mathbb{R} . Доказать, что f сжимающее отображение в пространстве $\langle \mathbb{R}, \rho_{|\cdot|} \rangle$ тогда и только тогда, когда существует $\alpha \in [0,1)$ такое, что $|f'(x)| \leq \alpha$ для всех $x \in \mathbb{R}$.
- **5.11.** Пусть вещественная функция f дифференцируема на \mathbb{R} . Доказать, что уравнение f(x) = x имеет единственное решение на \mathbb{R} , если

$$\sup_{x\in\mathbb{R}}|f'(x)|<1\qquad\text{или}\qquad \inf_{x\in\mathbb{R}}|f'(x)|>1.$$

Являются ли эти условия необходимыми для существования единственного решения?

- **5.12.** Доказать, что уравнение $2xe^x = 1$ имеет единственное решение, принадлежащее промежутку (0,1).
- **5.13.** Достаточно ли для существования неподвижной точки отображения f в полном метрическом пространстве выполнения условия $\rho(f(x), f(y)) < \rho(x, y)$ для всех $x \neq y$?
- № Доказать утверждения 5.14–5.21.
- **5.14.** Пусть $f(x) = \frac{\pi}{2} + x \arctan x$. Для любых x, y существует постоянная $\alpha < 1$ такая, что $|f(x) f(y)| \le \alpha |x y|$, но отображение f не имеет неподвижных точек.
- **5.15.** Пусть $A\colon \ell_p^n \to \ell_p^n, \ Ax = \left\{\sum_{j=1}^n a_{kj}\xi_j\right\}_{k=1}^n$. Тогда A сжимающее отображение в пространстве $\ell_p^n,$ если
 - а) $\sum_{k,j=1}^{n} |a_{kj}|^2 < 1$ при p=2;
 - б) $\max_{1 \leqslant k \leqslant n} \sum_{j=1}^{n} |a_{kj}| < 1$ при $p = \infty$;
 - в) $\max_{1 \leqslant j \leqslant n} \sum_{k=1}^{n} |a_{kj}| < 1$ при p=1.
- **5.16.** Пусть $A \colon \ell_p \to \ell_p, \ Ax = \left\{ \sum_{j=1}^{\infty} a_{kj} \xi_j \right\}_{k=1}^{\infty}$. Тогда A сжимающее отображение в пространстве ℓ_p , если
 - а) $\sum_{k,j=1}^{\infty} |a_{kj}|^2 < 1$ при p=2;
 - б) $\sup_{k\in\mathbb{N}}\sum_{j=1}^{\infty}|a_{kj}|<1$ при $p=\infty;$
 - в) $\sup_{j\in\mathbb{N}}\sum_{k=1}^{\infty}|a_{kj}|<1$ при p=1.

5.17. Бесконечная система линейных алгебраических уравнений

$$\xi_k = \sum_{j=1}^{\infty} a_{kj} \xi_j + \eta_k, \quad k = 1, 2, \dots,$$

имеет единственное решение $x=\{\xi_j\}_{j=1}^\infty\in\ell_p$ для любого $y=\{\eta_k\}_{k=1}^\infty\in\ell_p$, если выполнено условие

- а) $\sum_{k,j=1}^{\infty} |a_{kj}|^2 < 1$ при p=2;
- б) $\sup_{k\in\mathbb{N}}\sum_{j=1}^{\infty}|a_{kj}|<1$ при $p=\infty;$
- в) $\sup_{j\in\mathbb{N}}\sum_{k=1}^{\infty}|a_{kj}|<1$ при p=1.
- **5.18.** Пусть $\langle X, \rho \rangle$ полное метрическое пространство и отображение $f \colon X \to X$ таково, что некоторая его степень $g = f^n$ является сжимающим отображением. Тогда уравнение fx = x имеет единственное решение.
- **5.19.** Пусть A интегральный оператор Вольтерра:

$$Ax(t) = \int_{a}^{t} K(t, s) x(s) ds,$$

ядро K(t,s) непрерывно на треугольнике

$$\Delta = \{(t, s) : t \in [a, b], s \in [a, t]\}.$$

Тогда существует такое $m \in \mathbb{N}$, что A^m является сжимающим отображением в пространстве C[a,b].

5.20. Пусть ядро K(t,s) непрерывно на $[a,b] \times [a,b]$ и

$$\int_{a}^{b} |K(t,s)| ds \leqslant d < 1, \quad t \in [a,b].$$

Тогда интегральное уравнение Фредгольма

$$x(t) - \int_a^b K(t,s) \, x(s) \, ds = y(t)$$

имеет единственное решение $x \in C[a,b]$ для любой функции $y \in C[a,b]$.

5.21. Уравнение

$$x(t) = t^2 + \int_0^3 \sin\left(s + \frac{t}{10} \cdot x(s)\right) ds$$

имеет единственное непрерывное на [0,3] решение x(t).

5.22. Являются ли отображения $A \colon X \to X$ сжимающими, если

a)
$$(Ax)(t) = \int_0^1 e^{-t|x(s)|} ds$$
, $X = C[0, 1]$;

6)
$$(Ax)(t) = \int_0^1 e^{-t|x(s)|} ds$$
, $X = \widetilde{L}_2[0,1]$;

B)
$$(Ax)(t) = \int_0^2 t \cdot \sin x(s) \, ds, \quad X = C[0, 2];$$

$$\Gamma(Ax)(t) = \lambda \int_0^1 t^2 s^2 x(s) ds, \quad X = C[0, 1]?$$

5.23. В пространстве C[0,1] решить уравнение

$$x(t) = \lambda \int_0^t x(s)ds + t^2, \quad \lambda \neq 0.$$

- **5.24.** Доказать, что любое непрерывное отображение отрезка в себя имеет неподвижную точку.
- **5.25.** Пусть B и C отображения полного метрического пространства в себя, B и C коммутируют, B сжимающее. Доказать, что уравнение Cx=x имеет решение.

Тема 6. Компактность, предкомпактность

• Во всех определениях и теоремах этой темы через X обозначено метрическое пространство $\langle X, \rho \rangle$.

Определение 6.1. Метрическое пространство X называется компактным, если из любого открытого покрытия X можно выделить конечное подпокрытие.

Множество $M \subset X$ называется *компактным*, если компактно подпространство $\langle M, \rho \rangle$, им порожденное.

Определение 6.2. Множество $M \subset X$ называется *секвен- циально компактным*, если

$$\forall \{x_n\} \subset M \quad \exists \{x_{n_k}\} \quad \exists x_0 \in M \qquad x_{n_k} \xrightarrow[k \to \infty]{} x_0.$$

Теорема 6.1. B метрическом пространстве компактность эквивалентна секвенциальной компактности.

Теорема 6.2 (необходимые условия компактности). Если множество $M\subset X$ компактно, то M ограничено и замкнуто, а $\langle M,\rho\rangle$ – полное метрическое пространство.

Определение 6.3. Множество $M\subset X$ называется nped-компактным, если \overline{M} компактно.

Теорема 6.3. Множесство $M \subset X$ предкомпактно тогда u только тогда, когда

$$\forall \{x_n\} \subset M \quad \exists \{x_{n_k}\} \quad \exists x_0 \in X \qquad x_{n_k} \xrightarrow[k \to \infty]{} x_0.$$

Определение 6.4. Множество $A\subset X$ называется ε -сетью для множества $M\subset X$, если

$$\forall x \in M \quad \exists a \in A \quad \rho(x, a) < \varepsilon.$$

Определение 6.5. Множество $M \subset X$ называется *вполне* ограниченным, если для любого $\varepsilon > 0$ существует конечная ε -сеть для M.

Теорема 6.4. Пусть X – полное метрическое пространство, $M \subset X$. Следующие утверждения эквивалентны:

- 1) M предкомпактно;
- 2) M вполне ограничено;
- 3) из любой последовательности, принадлежащей M, можно выделить фундаментальную подпоследовательность.

Теорема 6.5 (теорема Хаусдорфа, критерий компактности в метрическом пространстве). Множесство $M \subset X$ компактно тогда и только тогда, когда оно вполне ограничено и $\langle M, \rho \rangle$ – полное метрическое пространство.

Следствие 6.1. Для того чтобы множество $M \subset X$ было предкомпактным, необходимо, а в случае полноты X и достаточно, чтобы M было вполне ограниченно.

Определение 6.6. Семейство Φ отображений $f\colon X\to \mathbb{P}$ называется *равномерно ограниченным*, если

$$\exists K > 0 \quad \forall f \in \Phi \quad \forall x \in X \qquad |f(x)| \leqslant K.$$

Определение 6.7. Пусть X – метрическое пространство с метрикой ρ . Семейство Φ непрерывных на X отображений $f\colon X\to \mathbb{P}$ называется равноственно непрерывным, если

$$\forall \ \varepsilon > 0 \quad \exists \ \delta(\varepsilon) > 0 \quad \forall \ f \in \Phi \quad \forall \ x_1, x_2 \in X$$

$$\rho(x_1, x_2) < \delta \Longrightarrow |f(x_1) - f(x_2)| < \varepsilon.$$

Пусть X — компактное метрическое пространство. Обозначим C(X) пространство непрерывных на X отображений $f\colon X\to \mathbb{P}$ с нормой

$$||f|| = \max_{x \in X} |f(x)|.$$

Теорема 6.6 (теорема Арцела – Асколли, критерий предкомпактности в C(X)). Пусть X – компактное метрическое пространство. Семейство отображений $\Phi \subset C(X)$ предкомпактно $\iff \Phi$ равномерно ограничено и равностепенно непрерывно.

Теорема 6.7. Пусть X,Y – метрические пространства, отображение $f\colon X\to Y$ непрерывно на X и множество $M\subset X$ компактно. Тогда множество f(M) компактно.

Пример 6.1. Пусть $M=\{x\in C^1[a,b]\colon |x'(t)|\leqslant c_0\}$. Доказать, что множество M предкомпактно в пространстве C[a,b] тогда и только тогда, когда существует постоянная $c_1>0$ такая, что для всех $x\in M$

$$\left| \int_{a}^{b} x(t)dt \right| \leqslant c_{1}.$$

Решение. Heoбxoдимость. Из предкомпактности множества M следует его ограниченность (см. теорему 6.2), т.е. существование постоянной K>0 такой, что для всех $x\in M$

$$||x|| = \max_{[a,b]} |x(t)| \leqslant K.$$

Отсюда получаем оценку

$$\left| \int_{a}^{b} x(t)dt \right| \leqslant \int_{a}^{b} |x(t)| dt \leqslant K(b-a) = c_{1}$$

для всех $x \in M$.

 \mathcal{A} остаточность. Для доказательства предкомпактности множества M воспользуемся теоремой Арцела – Асколли (см. теорему 6.6).

Равностепенная непрерывность семейства функций M следует из оценки

$$|x(t_1) - x(t_2)| = |x'(\xi)| \cdot |t_1 - t_2| \le c_0 |t_1 - t_2| < \varepsilon$$

для $\delta \leqslant \frac{\varepsilon}{c_0}$, справедливой для всех $x \in M$ и любых $t_1, t_2 \in [a, b]$ (применили формулу Лагранжа, $\xi \in (a, b)$).

Докажем, что семейство функций M равномерно ограничено. Согласно теореме о среднем для непрерывной функции $x \in M$ существует точка $\eta \in [a,b]$ такая, что

$$x(\eta) = \frac{1}{b-a} \int_{a}^{b} x(s) ds.$$

Из формулы Ньютона – Лейбница для $t \in [a,b]$ получаем

$$x(t) = \int_{\eta}^{t} x'(s)ds + x(\eta) = \int_{\eta}^{t} x'(s)ds + \frac{1}{b-a} \int_{a}^{b} x(s)ds.$$

Значит,

$$|x(t)| \le \int_a^b |x'(s)| \, ds + \frac{1}{b-a} \left| \int_a^b x(s) \, ds \right| \le c_0(b-a) + \frac{c_1}{b-a},$$

т. е. семейство функций M равномерно ограничено.

По теореме Арцела – Асколли множество M предкомпактно в C[a,b].

Пример 6.2. Пусть $M = \{\ln(2+t^{\alpha})\}_{\alpha \in (0,2]}$. Будет ли это множество предкомпактным (компактным) в пространствах C[0,1] и $L_1[0,1]$?

Решение. Воспользуемся теоремой 6.3. Пусть $\{x_n\} \subset M$. Тогда x_n имеет вид $x_n(t) = \ln(2 + t^{\alpha_n})$, где $\alpha_n \in (0, 2]$. Из ограниченной последовательности $\{\alpha_n\}$ можно выделить подпоследовательность $\{\alpha_{n_k}\}$ такую, что $\lim_{k \to \infty} \alpha_{n_k} = \alpha_0 \in [0, 2]$.

Если $\alpha_0 \neq 0$, то при $k \to \infty$ последовательность функций $\{x_{n_k}\}$ поточечно сходится к функции $y_1(t) = \ln(2 + t^{\alpha_0}) \in M$.

Если $\alpha_0=0$, то последовательность функций $\{x_{n_k}\}$ поточечно сходится к функции

$$y_2(t) = \begin{cases} \ln 2, & t = 0, \\ \ln 3, & t \in (0, 1], \end{cases}$$

которая не принадлежит пространству C[0,1]. Отсюда следует, что в этом случае последовательность $\{x_{n_k}\}$ и любая ее подпоследовательность не являются равномерно сходящимися на отрезке [0,1], а значит и сходящимися в пространстве C[0,1].

Итак, множество M непредкомпактно в C[0,1], так как существует последовательность $\{\widetilde{x}_n\}\in M$ (например, $\widetilde{x}_n(t)=\ln(2+t^{1/n})$), из которой нельзя выделить подпоследовательность, сходящуюся в пространстве C[0,1]. Отсюда следует, что множество M некомпактно в C[0,1].

Докажем, что множество M предкомпактно в пространстве $L_1[0,1]$. Действительно, как показано выше, из любой последовательности $\{x_n\}\subset M$ можно выделить подпоследовательность $\{x_{n_k}\}$, сходящуюся к функции y_1 или y_2 при $k\to\infty$. Функции $y_1,y_2\in L_1[0,1]$. При этом последовательности $\{x_{n_k}(t)-y_j(t)\}\ (j=1$ или 2) всюду на [0,1] поточечно сходятся к $0, |x_{n_k}(t)-y_j(t)|\leqslant 2\ln 3$, функция $y(t)\equiv 2\ln 3$ интегрируема на [0,1]. Поэтому согласно теореме Лебега о переходе к пределу под знаком интеграла

$$||x_{n_k} - y_j||_{L_1[0,1]} = \int_0^1 |x_{n_k}(t) - y_j(t)| dt \xrightarrow[k \to \infty]{} \int_0^1 0 dt = 0.$$

Итак, множество M предкомпактно в пространстве $L_1[0,1]$, так как из любой последовательности $\{x_n\} \subset M$ можно выделить сходящуюся в $L_1[0,1]$ подпоследовательность.

Покажем, что множество M некомпактно в $L_1[0,1]$. Действительно, если бы M было компактно, то оно было бы и секвенциально компактно (теорема 6.1), а значит, из последовательности $\widetilde{x}_n(t) = \ln\left(2 + t^{1/n}\right)$ можно было бы выделить подпоследовательность, сходящуюся по норме к некоторой функции из M. Но так как $\{\widetilde{x}_n\}$ сходится по норме в $L_1[0,1]$ и поточечно на [0,1] к функции y_2 , то и любая ее подпоследовательность сходится по норме и поточечно на [0,1] к y_2 . Следовательно, y_2 должна быть эквивалентна некоторой функции из M (см. задачу 2.13). Но y_2 не эквивалентна ни одной функции из M.Следовательно, M некомпактно. 8

Пример 6.3. Доказать, что для предкомпактности множества M в пространстве ℓ_1 необходимо и достаточно, чтобы оно было ограниченным и

$$\forall \ \varepsilon > 0 \quad \exists \ N_{\varepsilon} \in \mathbb{N} \quad \forall \ x = \{\xi_k\} \in M \quad \sum_{k=N_{\varepsilon}}^{\infty} |\xi_k| < \varepsilon.$$

Решение. Для доказательства можно воспользоваться следствием 6.1 из теоремы Хаусдорфа, так как пространство ℓ_1 полное.

Heoбxoдимость. Предположим, что множество M предкомпактно в пространстве ℓ_1 . Тогда для всякого $\varepsilon > 0$ существует набор $\{y_j\}_{j=1}^m \subset \ell_1 \colon M \subset \bigcup_{i=1}^m B(y_j,\varepsilon)$. Отсюда следует, что множество M ограничено. Для $y_j = \{\eta_k^j\}$ существует $N^j_arepsilon\in\mathbb{N}\colon \sum_{k=N^j}^\infty |\eta^j_k|<arepsilon$. Положим $N_arepsilon=\max_{1\le i\le m}\{N^j_arepsilon\}$. Для всякого

элемента $x \in M$ существует $y_j \colon \|x - y_j\| < \varepsilon$. Следовательно,

$$\sum_{k=N_{\varepsilon}}^{\infty} |\xi_{k}| \leqslant \sum_{k=N_{\varepsilon}}^{\infty} |\xi_{k} - \eta_{k}^{j}| + \sum_{k=N_{\varepsilon}}^{\infty} |\eta_{k}^{j}| \leqslant$$
$$\leqslant ||x - y_{j}|| + \sum_{k=N^{j}}^{\infty} |\eta_{k}^{j}| < 2\varepsilon.$$

Необходимость доказана.

Достаточность. Известно, что

$$\exists C > 0 \quad \forall x \in M \quad ||x|| \leqslant C$$

И

$$\forall \ \varepsilon > 0 \quad \exists \ N_{\varepsilon} \in \mathbb{N} \quad \forall \ x = \{\xi_k\} \in M \quad \sum_{k=N_{\varepsilon}}^{\infty} |\xi_k| < \varepsilon.$$

Докажем, что множество M предкомпактно.

Пусть $\varepsilon>0$ произвольное. Каждому $x\in M$ поставим в соответствие элемент

$$x_{\varepsilon} = (\xi_1, \xi_2, \dots, \xi_{N_{\varepsilon}}, 0, 0, \dots).$$

Справедливы неравенства

$$||x - x_{\varepsilon}|| < \varepsilon, \quad ||x_{\varepsilon}|| \le ||x|| \le C.$$

Пусть Y — подпространство пространства ℓ_1 , элементами которого являются последовательности

$$y = (\eta_1, \eta_2, \dots, \eta_{N_{\varepsilon}}, 0, 0, \dots).$$

Пространство Y конечномерно, а множество $M_{\varepsilon} = \bigcup_{x \in M} \{x_{\varepsilon}\}$ является его ограниченным подмножеством. В силу задачи 6.17 множество M_{ε} предкомпактно в пространстве Y. Следовательно, существует набор $\{y_j\}_{j=1}^m \subset Y$ такой, что $M_{\varepsilon} \subset \bigcup_{j=1}^m B(y_j, \varepsilon)$ (здесь $B(y_j, \varepsilon) \subset Y$). Покажем, что $\{y_j\}_{j=1}^m$ есть 2ε -сеть для множества M в пространстве ℓ_1 .

Для любого $x \in M$ существует y_j такой, что $\|y_j - x_\varepsilon\| < \varepsilon$ и

$$||x - y_j|| \le ||x - x_{\varepsilon}|| + ||x_{\varepsilon} - y_j|| < 2\varepsilon.$$

Таким образом, M вполне ограничено, а значит, предкомпактно. Достаточность доказана.

- **6.1.** Привести пример метрического пространства (X, ρ) и множества $M \subset X$ таких, что
 - а) M вполне ограниченно, но непредкомпактно;
 - б) M предкомпактно, но некомпактно.
- **6.2.** Будет ли предкомпактным (компактным) множество M из метрического пространства X, если
 - а) M конечно;
 - б) M сходящаяся последовательность;
 - в) M фундаментальная последовательность (рассмотреть два случая: X полное, X не полное)?
- **6.3.** Пусть на множестве X заданы метрики ρ_1 и ρ_2 , причем $\rho_1 \succeq \rho_2$. Доказать, что из предкомпактности (компактности) множества M в метрическом пространстве $\langle X, \rho_1 \rangle$ следует предкомпактность (компактность) M в метрическом пространстве $\langle X, \rho_2 \rangle$.
- **6.4.** Выяснить, при каких условиях на мощность множества X пространство $\langle X, \rho_T \rangle$ является
 - а) полным; б) сепарабельным; в) компактным.

№ Доказать утверждения 6.5–6.14.

6.5. Для предкомпактности множества M в метрическом пространстве X необходимо, а в случае полноты X – и достаточно, существование для всякого $\varepsilon>0$ предкомпактной ε -сети, т.е. предкомпактного множества $N\subset X$ такого, что

$$M \subset \bigcup_{x \in N} B(x, \varepsilon).$$

6.6. Если $\{a_1, a_2, \dots, a_k\}$ — ε -сеть для множества M из метрического пространства X, то найдется множество $\{\widetilde{a}_1, \widetilde{a}_2, \dots, \widetilde{a}_k\} \subset M$, являющееся 2ε -сетью для M.

- **6.7.** Множество $M \subset \ell_p^n$ предкомпактно \iff оно ограничено в ℓ_p^n .
- **6.8.** Множество $M \subset c_0$ предкомпактно \iff оно ограничено в c_0 и

$$\forall \ \varepsilon > 0 \quad \exists \ N = N(\varepsilon) \in \mathbb{N} \quad \forall \ n > N \quad \forall \ x = \{\xi_k\} \in M$$
$$|\xi_n| < \varepsilon.$$

6.9. Множество $M \subset c_0$ предкомпактно \iff $\exists x_0 = \{\xi_k^0\} \in c_0 \quad \forall \ n \in \mathbb{N} \quad \forall \ x = \{\xi_k\} \in M \quad |\xi_n| \leqslant |\xi_n^0|.$

6.10. Множество $M \subset c$ предкомпактно \iff оно ограничено в c и

$$\forall \ \varepsilon > 0 \quad \exists \ N = N(\varepsilon) \in \mathbb{N} \quad \forall \ n, m > N \quad \forall \ x = \{\xi_k\} \in M$$
$$|\xi_n - \xi_m| < \varepsilon.$$

6.11. Множество $M \subset \ell_p, \ 1 \leqslant p < \infty,$ предкомпактно \iff оно ограничено в ℓ_p и

$$\forall \ \varepsilon > 0 \quad \exists \ N = N(\varepsilon) \in \mathbb{N} \quad \forall \ x = \{\xi_k\} \in M$$
$$\sum_{k=N}^{\infty} |\xi_k|^p < \varepsilon.$$

6.12. * *Критерий М. Рисса.* Множество $M \subset L_p[a,b]$ предкомпактно \iff оно ограничено в $L_p[a,b]$ и равностепенно непрерывно в среднем, т. е.

$$orall$$
 $arepsilon>0$ \exists $\delta=\delta(arepsilon)>0$ \forall $h,\ |h|<\delta, \ orall$ $x\in M$
$$\int_a^b|x(t+h)-x(t)|^p\,dt (считаем $x(t)=0,$ если $t
ot\in[a,b]$).$$

6.13. \star *Критерий А. Н. Колмогорова.* Множество $M \subset L_p[a,b]$ предкомпактно \iff оно ограничено в $L_p[a,b]$ и

$$\forall \ \varepsilon > 0 \quad \exists \ \delta = \delta(\varepsilon) > 0 \quad \forall \ h, \ 0 < h < \delta, \quad \forall \ x \in M$$

$$\int_a^b |x_h(t) - x(t)|^p \, dt < \varepsilon,$$

где

$$x_h(t) = \frac{1}{2h} \int_{t-h}^{t+h} x(\tau) d\tau$$

(считаем x(t) = 0, если $t \notin [a, b]$).

6.14. \star Множество $M\subset L_p(\mathbb{R})$ предкомпактно \Longleftrightarrow оно ограничено в $L_p(\mathbb{R})$ и равностепенно непрерывно в среднем, т. е.

$$\forall \ \varepsilon > 0 \quad \exists \ \delta = \delta(\varepsilon) > 0 \quad \forall \ h, \ |h| < \delta, \quad \forall \ x \in M$$

$$\int_{-\infty}^{\infty} |x(t+h) - x(t)|^p \, dt < \varepsilon$$

И

$$\forall \ \varepsilon > 0 \quad \exists \ A = A(\varepsilon) > 0 \quad \forall \ x \in M$$
$$\int_{-\infty}^{-A} |x(t)|^p \, dt + \int_{A}^{\infty} |x(t)|^p \, dt < \varepsilon.$$

- 6.15. Доказать, что в метрическом пространстве
 - а) если множество M предкомпактно, то оно ограничено;
 - б) множество M компактно тогда и только тогда, когда оно предкомпактно и замкнуто.
- **6.16.** Пусть метрические пространства X и Y гомеоморфны и τ гомеоморфизм X на Y. Доказать, что множество M предкомпактно в X тогда и только тогда, когда множество $\tau(M)$ предкомпактно в Y.

- **6.17.** Доказать, что предкомпактность (компактность) множества в конечномерном нормированном пространстве эквивалентна его ограниченности (ограниченности и замкнутости).
- **6.18.** Пусть M некоторое множество алгебраических многочленов степени не выше n. Указать условия на коэффициенты многочленов, необходимые и достаточные для предкомпактности множества M в пространстве C[a,b].
- **6.19.** Доказать, что множество $\{\sin nt\}_{n\in\mathbb{N}}$ ограниченно, замкнуто, непредкомпактно в пространстве $L_2[a,b]$.
- **6.20.** Являются ли следующие множества предкомпактными (компактными) в пространствах C[0,1] и $L_p[0,1]$:

a)
$$M = \{t^n\}_{n \in \mathbb{N}};$$
 6) $M = \{(\alpha t)^n\}_{n \in \mathbb{N}};$

B)
$$M = \{\sin nt\}_{n \in \mathbb{N}}; \quad \Gamma$$
) $M = \{\sin \alpha t\}_{\alpha \in [a,b]};$

д)
$$M = \{\sin \alpha t\}_{\alpha \in [a,b)};$$

e)
$$M = \{\sin(t+\alpha)\}_{\alpha \in [a,b)}; \quad \mathfrak{R} \not \approx M = \{\sin(t+n)\}_{n \in \mathbb{N}};$$

3)
$$M = \left\{ e^{t-\alpha} \right\}_{\alpha \in [0,+\infty)};$$

и)
$$M = \left\{ \operatorname{arctg} \alpha \left(t - \frac{1}{2} \right) \right\}_{\alpha \in \mathbb{R}};$$

$$K) M = \left\{ n \left(\sqrt[3]{t + \frac{1}{n}} - \sqrt[3]{t} \right) \right\}_{n \in \mathbb{N}}?$$

- **6.21.** Являются ли следующие множества предкомпактными (компактными) в пространстве C[a,b]:
 - a) $\{x \in C^1[a,b] : |x(t)| \leq B_0, |x'(t)| \leq B_1\};$
 - 6) $\{x \in C^1[a,b] : |x(a)| \leq B_0, |x'(t)| \leq B_1\};$

B)
$$\{x \in C^2[a,b]: |x(t)| \leq B_0, |x'(t)| \leq B_1, |x''(t)| \leq B_2\};$$

$$\Gamma \gg \{x \in C^2[a,b]: |x(t)| \leq B_0, |x''(t)| \leq B_1\};$$

д)
$$\{x \in C^2[a,b]: |x'(t)| \leq B_0, |x''(t)| \leq B_1\};$$

e)
$$\{x \in C[a, b] : |x(t)| \le B_0,$$

 $|x(t_1) - x(t_2)| \le L|t_1 - t_2|\};$

ж)
$$\left\{x \in C[a,b]:\right.$$

ж)
$$\left\{x \in C[a,b]: \\ x(t) = \int_a^t y(\tau) d\tau, \ y \in \widetilde{L}_1[a,b], \ |y(\tau)| \leqslant B\right\}?$$

6.22. Доказать предкомпактность следующих множеств в пространстве C[0,1] над полем $\mathbb{P} = \mathbb{R}$:

a)
$$\star \left\{ x \in C^1[0,1] : \int_0^1 (|x'(t)|^2 + |x(t)|^2) dt \leqslant B \right\};$$

6) $\left\{ x \in C^1[0,1] : \int_0^1 |x'(t)|^p dt \leqslant 1, \ 1$

Являются ли следующие множества предкомпактны-6.23. ми в пространстве $L_2[0,1]$:

a)
$$M = \{t^{\alpha}\}_{{\alpha} > -\frac{1}{2}};$$

б)
$$M = \{(\ln t)^n\}_{n \in \mathbb{N}};$$

B)
$$M = \left\{ x \in L_2[0,1] : \\ x(t) = \int_0^t y(\tau) d\tau, \int_0^1 |y(\tau)|^2 d\tau \leqslant 1 \right\} ?$$

6.24. Являются ли следующие множества предкомпактными в пространстве $L_2(\mathbb{R})$:

a)
$$M = \left\{ \frac{1}{1 + (t + \alpha)^2} \right\}_{\alpha \in \mathbb{R}};$$

6)
$$M = \left\{ \frac{|t|^{\beta}}{1 + (t + \alpha)^2} \right\}_{|\alpha| < 1, \beta \in \left(-\frac{1}{4}, \frac{1}{2}\right)}$$
?

6.25. Пусть X – одно из пространств $c_0, c, \ell_p \ (1 \le p \le \infty),$

$$M = \left\{ x \in X \colon |\xi_k| \leqslant k^{-\frac{1}{3}} \right\}.$$

Будет ли множество M компактным в X?

6.26. Доказать, что множество

$$M = \left\{ x \in \ell_3 \colon \sum_{k=1}^{\infty} |\xi_k|^3 \ln(k+1) \leqslant 1 \right\}.$$

компактно в пространствах $c_0, c, \ell_p \ (3 \leqslant p \leqslant \infty).$

6.27. Доказать, что множество

$$M = \left\{ x \in \ell_p \colon |\xi_k| \leqslant |\xi_k^0| \right\}$$

компактно в пространствах ℓ_p $(1 \leqslant p < \infty) \iff x_0 = \{\xi_k^0\} \in \ell_p.$

6.28. Доказать, что множество

$$M = \left\{ x \in \ell_p \colon \sum_{k=1}^{\infty} |\xi_k|^p |\alpha_k| \leqslant 1, \ \alpha_k \neq 0, \ k \in \mathbb{N} \right\}$$

компактно в пространствах ℓ_p , $1 \leqslant p < \infty$, $\Longleftrightarrow \alpha_k \xrightarrow[k \to \infty]{} \infty$.

6.29. Доказать, что множество M предкомпактно в пространстве $s \iff$

$$\forall k \in \mathbb{N} \quad \exists C_k > 0 \quad \forall x = \{\xi_k\} \in M \quad |\xi_k| \leqslant C_k.$$

6.30. Пусть A и B – подмножества нормированного пространства X. Доказать, что

- а) A и B компакты \Rightarrow множество A + B компакт;
- б) A и B предкомпакты \Rightarrow множество A+B предкомпакт;
- в) A компакт, B замкнуто \Rightarrow множество A+B замкнуто. Будет ли A+B замкнутым, если A и B замкнуты?
- **6.31.** Всегда ли достигается расстояние между точкой и замкнутым множеством в полном нормированном пространстве?
- **6.32.** Пусть A компактное, а B замкнутое множества в метрическом пространстве $\langle X, \rho \rangle$ и $A \cap B = \emptyset$. Доказать, что $\rho(A,B) > 0$.
- **6.33.** Пусть A и B компактные множества в метрическом пространстве, $A \cap B = \emptyset$. Доказать, что расстояние между ними достигается на некоторой паре точек, т. е.

$$\exists x \in A, y \in B \quad \rho(A, B) = \rho(x, y).$$

6.34. Докажите, что в нормированном пространстве расстояние от точки до любого конечномерного линейного подмножества достигается.

Тема 7. Выпуклые множества,подпространствав нормированных пространствах

Определение 7.1. Множество M называется

✓ выпуклым в линейном пространстве, если

$$\forall \ x,y \in M \quad \forall \ \alpha \in (0,1) \quad \alpha x + (1-\alpha)y \in M;$$

✓ строго выпуклым в нормированном пространстве, если

$$\forall x, y \in M \quad \forall \alpha \in (0,1) \quad \alpha x + (1-\alpha)y \in \stackrel{\circ}{M}.$$

Определение 7.2. Нормированное пространство X называется *строго выпуклым*, если его единичный шар B[0,1] – строго выпуклое множество.

Определение 7.3. Нормированное пространство X называется *строго нормированным*, если в нем

$$||x + y|| = ||x|| + ||y||, \quad x \neq 0, \ y \neq 0, \implies \exists \ \lambda > 0 \quad y = \lambda x.$$

Теорема 7.1. Нормированное пространство строго нормированно \iff оно строго выпукло.

Определение 7.4. Пусть X — нормированное пространство. Множество $M \subset X$ называется линейным многообразием, если

$$\forall \ x,y \in M \quad x+y \in M \quad \text{(линейность)},$$

$$\forall \ x \in M \quad \forall \ \alpha \in \mathbb{P} \quad \alpha x \in M \quad \text{(однородность)}.$$

Замкнутое линейное многообразие называется nodnpo-cmpa+cmpo-km.

Определение 7.5. Пусть M — подмножество линейного пространства X. Линейной оболочкой $\langle M \rangle$ множества M называется наименьшее линейное многообразие, содержащее M.

Линейная оболочка любого непустого множества $M\subset X$ обязательно существует и совпадает с пересечением всех линейных многообразий, содержащих M. Линейную оболочку множества M составляет множество всевозможных линейных комбинаций $\sum_{k=1}^n \alpha_k x_k$ конечных наборов элементов $\{x_k\}_{k=1}^n \subset M$ и коэффициентов $\{\alpha_k\}_{k=1}^n \subset \mathbb{P}$.

Определение 7.6. Пусть M — подмножество линейного пространства X. Выпуклой оболочкой $\operatorname{conv} M$ множества M называется наименьшее выпуклое множество, содержащее M.

Выпуклая оболочка любого непустого множества $M\subset X$ обязательно существует и совпадает с пересечением всех выпуклых множеств, содержащих M. Выпуклую оболочку множества M составляет множество всевозможных выпуклых комбинаций $\sum_{k=1}^n \theta_k x_k$ конечных наборов элементов $\{x_k\}_{k=1}^n \subset M$ и коэффициентов $\{\theta_k\}_{k=1}^n \subset \mathbb{R}$ таких, что $\theta_k \geqslant 0, \ 1 \leqslant k \leqslant n,$ и $\sum_{k=1}^n \theta_k = 1.$

Пример 7.1. Будут ли следующие множества выпуклыми в пространстве \mathbb{R}^n :

a)
$$M = \left\{ x \in \mathbb{R}^n \colon \sum_{k=1}^n |\xi_k|^3 \leqslant 1 \right\};$$

6) $M = \left\{ x \in \mathbb{R}^n \colon \sum_{k=1}^n |\xi_k|^{\frac{1}{3}} \leqslant 1 \right\}?$

Решение. а) Заметим, что

$$\left(\sum_{k=1}^{n} |\xi_k|^3\right)^{\frac{1}{3}} = ||x||_{\ell_3^n}.$$

Значит, $M=B[0,1]\subset \ell_3^n.$ Покажем, что это выпуклое множество.

Пусть $x', x'' \in M, \ \alpha \in (0,1).$ Тогда для $x = \alpha x' + (1-\alpha)x''$ имеем

$$||x||_{\ell_3^n} = ||\alpha x' + (1 - \alpha)x''||_{\ell_3^n} \leqslant \alpha ||x||_{\ell_3^n} + (1 - \alpha)||x''||_{\ell_3^n} \leqslant 1,$$

т. е. $x \in B[0,1]$ и множество M выпукло.

б) Покажем, что множество M не является выпуклым. Возьмем $x'=(1,0,0,\dots,0),\ x''=(0,0,\dots,0,1)\in\mathbb{R}^n,\ \alpha=\frac12.$ Тогда

$$x = \alpha x' + (1 - \alpha)x'' = \left(\frac{1}{2}, 0, 0, \dots, 0, \frac{1}{2}\right)$$

И

$$\left(\frac{1}{2}\right)^{\frac{1}{3}} + \left(\frac{1}{2}\right)^{\frac{1}{3}} = \frac{2}{\sqrt[3]{2}} = 2^{\frac{2}{3}} > 1,$$

т. е. $x \notin M$, а значит, множество M не выпукло.

Пример 7.2. Будет ли множество

$$M = \left\{ x \in L_2[-1, 1] : \int_{-1}^{1} \frac{1}{\sqrt[4]{|t|}} x(t) dt = 0 \right\}$$

подпространством в пространстве

a)
$$L_2[-1,1]$$
; 6) $L_1[-1,1]$?

Решение. Из включения $L_2[-1,1] \subset L_1[-1,1]$ (см. задачу 2.26) следует, что $M \subset L_2[-1,1] \subset L_1[-1,1]$.

Множество M — линейное многобразие, так как для любых $x_1,x_2\in M$ и $\lambda_1,\lambda_2\in \mathbb{P}$

$$\int_{-1}^{1} \frac{1}{\sqrt[4]{|t|}} (\lambda_1 x_1(t) + \lambda_2 x_2(t)) dt = 0.$$

Докажем, что множество M замкнуто в пространстве $L_2[-1,1]$ и не замкнуто в пространстве $L_1[-1,1]$.

а) Пусть $\{x_n\} \subset M$ и $x_n \xrightarrow[n \to \infty]{} x$ в пространстве $L_2[-1,1]$. Неравенство Коши – Буняковского дает следующую оценку:

$$\left| \int_{-1}^{1} \frac{1}{\sqrt[4]{|t|}} x(t) dt \right| = \left| \int_{-1}^{1} \frac{1}{\sqrt[4]{|t|}} (x(t) - x_n(t)) dt \right| \leqslant$$

$$\leqslant \left(\int_{-1}^{1} \frac{dt}{\sqrt{|t|}} \right)^{\frac{1}{2}} \left(\int_{-1}^{1} |x(t) - x_n(t)|^2 dt \right)^{\frac{1}{2}} = \left\| \frac{1}{\sqrt[4]{|t|}} \right\| \cdot \|x - x_n\|.$$

Следовательно, $x \in M$ и множество M замкнуто в пространстве $L_2[-1,1]$, а значит является подпространством в $L_2[-1,1]$.

б) Рассмотрим последовательность $\{x_n\} \subset M$,

$$x_n(t) = \begin{cases} -|t|^{-\frac{3}{4}}, & t \in \left[-1, -\frac{1}{n}\right), \\ 0, & t \in \left[-\frac{1}{n}, \frac{1}{n}\right], \\ |t|^{-\frac{3}{4}}, & t \in \left(\frac{1}{n}, 1\right], \end{cases}$$

и элемент $x(t) = \sin t \cdot |t|^{-\frac{3}{4}} \in L_1[-1,1]$. В пространстве $L_1[-1,1]$

$$||x_n - x|| = \int_{-\frac{1}{n}}^{\frac{1}{n}} |t|^{-\frac{3}{4}} dt \xrightarrow[n \to \infty]{} 0.$$

Однако $x \notin L_2[-1,1]$, а значит, $x \notin M$. Это означает, что множество M не замкнуто, следовательно, оно не является подпространством в $L_1[-1,1]$.

Пример 7.3. Доказать, что пространство C[a,b] не является строго нормированным.

Решение. Достаточно привести пример отрезка $[x_1, x_2]$, который принадлежит единичной сфере S[0,1] пространства C[a,b] (см. задачу 7.15). Рассмотрим две функции:

$$x_1(t) = \frac{t-a}{b-a}, \quad x_2(t) \equiv 1.$$

Обе функции линейные и $x_1(a) = 0$, $x_1(b) = 1$, следовательно, $||x_1|| = ||x_2|| = 1$, т. е. $x_1, x_2 \in S[0, 1]$. Для функции

$$\varphi_{\alpha}(t) = \alpha x_1(t) + (1 - \alpha)x_2(t) = \alpha \frac{t - a}{b - a} + (1 - \alpha), \quad \alpha \in [0, 1],$$

имеем $\varphi_{\alpha}(a) = 1 - \alpha$, $\varphi_{\alpha}(b) = 1$. Так как φ_{α} – линейная функция, то $\|\varphi_{\alpha}\| = 1$. Следовательно, $\varphi_{\alpha} \in S[0,1]$ для любого $\alpha \in [0,1]$. Значит, $[x_1,x_2] \in S[0,1]$ и пространство C[a,b] не является строго нормированным.

- **7.1.** Доказать, что пересечение любого семейства выпуклых множеств из линейного пространства выпуклое множество. Является ли выпуклым объединение двух выпуклых множеств?
- 7.2. Пусть $\{M_k\}_{k=1}^n$ семейство выпуклых множеств из линейного пространства над полем $\mathbb{P}, \, \{\lambda_k\}_{k=1}^n \subset \mathbb{P}. \,$ Доказать, что множество

$$\sum_{k=1}^{n} \lambda_k M_k$$

выпукло.

7.3. Множество $x_0 + L$, где L – линейное многообразие из линейного пространства, называется *афинным многообразием*. Доказать, что всякое афинное многообразие является выпуклым множеством. Будет ли оно линейным многообразием?

- 7.4. Доказать, что замыкание выпуклого множества из нормированного пространства выпуклое множество. Является ли замкнутой выпуклая оболочка замкнутого множества?
- **7.5.** Доказать, что внутренность выпуклого множества из нормированного пространства выпукла.
- **7.6.** Доказать, что шары $B[x_0, r]$, $B(x_0, r)$ из нормированного пространства выпуклы. Будет ли выпуклым множеством сфера $S[x_0, r]$?
- **7.7.** Доказать, что аксиома треугольника в определении нормы эквивалентна выпуклости шара B[0,1].
- **7.8.** В пространстве ℓ_1 найти плотное выпуклое множество, не совпадающее с ℓ_1 .
- **7.9.** Будут ли следующие множества выпуклыми в вещественном пространстве C[a,b]:
 - а) алгебраические многочлены степени точно n;
 - б) алгебраические многочлены степени не выше n;
 - в) непрерывные возрастающие функции;
 - г) непрерывные монотонные функции;
 - д) $M = \{x \in C[a,b] \colon ||x||_{L_p[a,b]}^p \leqslant r\};$
 - е) $M = \{x \in C[a,b] \colon x(t) < x_0(t), \ t \in [a,b] \}$, где x_0 некоторая функция из C[a,b]?
- **7.10.** Доказать, что следующие множества являются выпуклыми в пространстве ℓ_2 :
 - а) параллелепипед

$${x = \{\xi_k\} \in \ell_2 \colon |\xi_k| \leqslant \alpha_k, \ \{\alpha_k\} \in \ell_2\};}$$

б) эллипсоид

$$\left\{ x \in \ell_2 \colon \sum_{k=1}^{\infty} \left| \frac{\xi_k}{\alpha_k} \right|^2 \leqslant 1, \ \{\alpha_k\} \in \ell_{\infty}, \ \alpha_k \neq 0 \right\}.$$

Компактны ли они?

- **7.11.** Пусть X_0 конечномерное линейное подмножество в нормированном пространстве X. Доказать, что X_0 подпространство в X.
- **7.12.** Пусть L_1, L_2 подпространства в нормированном пространстве X, причем L_1 конечномерно. Доказать, что множество $L_1 + L_2$ является подпространством в X.
- **7.13.** Будут ли следующие множества подпространствами в пространстве C[-1,1] над полем \mathbb{R} :
 - а) монотонные функции из C[-1,1];
 - б) четные функции из C[-1,1];
 - в) алгебраические многочлены степени не выше n;
 - г) алгебраические многочлены;
 - д) непрерывно дифференцируемые функции;
 - e) $\{x \in C[-1,1] : x(0) = 0\};$

ж)
$$\left\{ x \in C[-1,1] \colon \int_{-1}^{1} x(t) dt = 0 \right\};$$

3)
$$\left\{ x \in C[-1,1] : \int_{-1}^{1} \frac{x(t)}{t} dt = 0 \right\};$$

и)*
$$\left\{ x \in C[-1,1] : \exists B_x > 0 \ \forall \ t_1, t_2 \in [-1,1] \right\}$$

$$|x(t_1) - x(t_2)| \le B_x |t_1 - t_2|^{\alpha}$$

для некоторого $0 < \alpha \leqslant 1$?

7.14. Будет ли множество M подпространством в пространстве X, если

a)
$$\star M = \left\{ x = \{ \xi_k \} \in \ell_p \colon \sum_{k=1}^{\infty} \xi_k = 0 \right\},\$$

 $X = \ell_p, \ p = 1, \ p = 2, \ p = \infty;$

- 6) $M = c_0, X = c;$
- B) $M=c, X=\ell_{\infty};$
- Γ) $M = \ell_1, X = c_0;$

д)
$$M = \left\{ x = \{\xi_k\}_{k=1}^n : \xi_k \geqslant 0, \ 1 \leqslant k \leqslant n \right\}, \ X = \ell_2^n;$$

e)
$$M = \left\{ x = \{\xi_k\} \in \ell_2 : \sum_{k=1}^{\infty} \frac{1}{k} \xi_k = c \right\}, \ X = \ell_2;$$

- ж) $M = L_q[a, b], X = L_p[a, b], 1 \le p < q < \infty$?
- **7.15.** Доказать, что нормированное пространство является строго нормированным \iff сфера S[0,1] не содержит никакого отрезка.
- **7.16.** Покажите, что пространства ℓ_p^n , ℓ_p , $L_p[a,b]$ строго нормированные пространства при 1 и не являются строго нормированными, если <math>p=1 или $p=\infty$.
- **7.17.** Покажите, что пространства c_0 , c, C[a,b], $C^k[a,b]$ не являются строго нормированными.
- **7.18.** Пусть X строго выпуклое нормированное пространство, множество $M \subset X$ выпукло, $x_0 \in X \setminus M$ и

$$N = \{x \in M : \rho(x_0, M) = \rho(x_0, x)\} \neq \emptyset.$$

Доказать, что мощность множества N равна единице.

- **7.19.** Привести пример нормированного пространства X, выпуклого множества $M \subset X$ и точки $x_0 \in X \setminus M$ таких, что расстояние от точки x_0 до множества M реализуется неединственным образом.
- **7.20.** Достигается ли расстояние от элемента x_0 до множества M, а если достигается, то будет ли ближайший элемент единственным?

a)
$$X = C[-1, 1], x_0(t) = 1,$$

 $M = \{x \in C[-1, 1] : x(0) = 0\};$

6)
$$X = \widetilde{L}_2[-1,1], \ x_0(t) = 1,$$

 $M = \left\{ x \in \widetilde{L}_2[-1,1] : x(0) = 0 \right\};$

B)
$$X = L_2[-1, 1], \ x_0(t) = e^t,$$

$$M = \left\{ x \in L_2[-1, 1] \colon x(t) = \sum_{k=1}^{10} (a_k \cos kt + b_k \sin kt) \right\};$$

r)
$$X = \ell_1^2, x_0 = (1, 0),$$

 $M = \{x = (\xi_1, \xi_2) \in \ell_1^2 \colon \xi_1 = 0\};$

д)
$$X = \ell_1^2$$
, $x_0 = (1,0)$,
 $M = \{x = (\xi_1, \xi_2) \in \ell_1^2 : \xi_1 = \xi_2\}$.

7.21. Пусть $\|\cdot\|_1$ и $\|\cdot\|_2$ — эквивалентные нормы на линейном пространстве X, пространство X строго выпукло в смысле одной из этих норм. Будет ли оно строго выпукло в смысле другой?

Тема 8. Евклидовы и гильбертовы пространства

Определение 8.1. Пусть X — линейное пространство над полем \mathbb{P} . Отображение $(\cdot,\cdot)\colon X^2\to \mathbb{P}$ называется *скалярным произведением* на X, если

- 1) $\forall x \in X \quad (x,x) \geqslant 0$;
- $2) \quad (x,x) = 0 \quad \Longleftrightarrow \quad x = 0;$
- 3) $\forall x, y, z \in X \ \forall \lambda, \mu \in \mathbb{P} \ (\lambda x + \mu y, z) = \lambda(x, z) + \mu(y, z)$ (линейность по первому аргументу);
- 4) $\forall x,y \in X \quad (x,y) = \overline{(y,x)}$ (здесь черта означает комплексное сопряжение).

Определение 8.2. Линейное пространство со скалярным произведением называется *евклидовым пространством*.

Теорема 8.1. Для любых двух элементов x, y евклидова пространства X выполняется неравенство Коши-Буняковского

$$|(x,y)| \leqslant \sqrt{(x,x)}\sqrt{(y,y)};$$

выражение $||x|| = \sqrt{(x,x)}$ задает норму на X.

Определение 8.3. Полное евклидово пространство называется *гильбертовым пространством*.

Определение 8.4. Пусть X — нормированное пространство.

✓ Система векторов $\{e_{\alpha}\}$ ⊂ X называется *нормированной*, если

$$\forall \alpha \quad ||e_{\alpha}|| = 1.$$

- ✓ Система векторов $\{e_{\alpha}\}$ ⊂ X называется *полной* в X, если $\overline{\langle \{e_{\alpha}\}\rangle} = X$.
- ✓ Система векторов $\{e_{\alpha}\}_{n\in\mathbb{N}}$ в бесконечномерном нормированном пространстве X называется базисом, если

$$\forall x \in X \quad \exists! \{\lambda_n\} \subset \mathbb{P} \colon \quad x = \sum_{n=1}^{\infty} \lambda_n e_n.$$

Определение 8.5. Пусть X – евклидово пространство. Говорят, что элементы $x,y\in X$ ортогональны, и пишут $x\perp y$, если (x,y)=0. Множество элементов, ортогональных множеству $M\subset X$, обозначают M^\perp , т. е.

$$M^{\perp} = \{ x \in X \colon \forall \ y \in M \quad x \perp y \}.$$

Если $x \in M^{\perp}$, пишут также $x \perp M$.

Если M – подпространство X, то множество M^{\perp} называют ортогональным дополнением M (до X).

Определение 8.6. Пусть X – евклидово пространство.

✓ Система векторов $\{e_{\alpha}\}$ $\subset X$ называется *ортогональной*, если

$$\forall \alpha, \beta \ (\alpha \neq \beta \implies e_{\alpha} \perp e_{\beta}).$$

✓ Система векторов $\{e_{\alpha}\}$ ⊂ X называется *ортонормированной*, если она ортогональная и нормированная, т. е.

$$\forall \alpha, \beta \quad (e_{\alpha}, e_{\beta}) = \begin{cases} 1, & \alpha = \beta; \\ 0, & \alpha \neq \beta. \end{cases}$$

Таким образом, если $\{e_{\alpha}\}$ – ортогональная система и все $e_{\alpha} \neq 0$, то $\left\{\frac{e_{\alpha}}{\|e_{\alpha}\|}\right\}$ – ортонормированная система.

✓ Система векторов $\{e_{\alpha}\}\subset X$ называется тотальной, если

$$(\forall \alpha \ x \bot e_{\alpha}) \implies x = 0.$$

Теорема 8.2 (теорема Шмидта об ортогонализации). Для любой счетной линейно независимой системы векторов $\{x_n\}$ в евклидовом пространстве X существует ортонормированная система векторов $\{e_n\}$ такая, что

$$\forall n \in \mathbb{N} \quad \langle x_1, x_2, \dots, x_n \rangle = \langle e_1, e_2, \dots, e_n \rangle.$$

Ортогонализация проводится по следующей схеме. Полагаем $e_1 = \frac{x_1}{\|x_1\|}$. Если построены элементы e_1, \ldots, e_n , то

$$\widetilde{e}_{n+1} = x_{n+1} - \sum_{k=1}^{n} (x_{n+1}, e_k) e_k, \quad e_{n+1} = \frac{\widetilde{e}_{n+1}}{\|\widetilde{e}_{n+1}\|}.$$

Определение 8.7. Пусть M — линейное многообразие в евклидовом пространстве X. Ортогональной проекцией вектора x на M называется вектор $y \in M$ такой, что $(x-y) \perp M$. Ортогональную проекцию x на M будем обозначать $\Pr_M(x)$.

Определение 8.8. Пусть $\langle X, \rho \rangle$ — метрическое пространство, $x \in X$ и $M \subset X$. Величина

$$\rho(x, M) = \inf \{ \rho(x, y) \colon y \in M \}$$

называется расстоянием от элемента x до множества M или наилучшим приближением элемента x множеством M. Если существует элемент $y \in M$ такой, что $\rho(x,y) = \rho(x,M)$, то говорят, что расстояние от x до M достигается, а y называют элементом наилучшего приближения элемента x множеством M.

Теорема 8.3. Если M – конечномерное подпространство евклидова пространства X, то для любого $x \in X$ существует элемент наилучшего приближения $y \in M$; при этом $y = \Pr_M(x)$.

Теорема 8.4. Если M – подпространство гильбертова пространства X, то для любого $x \in X$ существует элемент наилучшего приближения $y \in M$; при этом $y = \Pr_M(x)$.

Определение 8.9. Пусть $\{e_n\}_{n=1}^{\infty}$ — ортонормированная система в евклидовом пространстве X. Рядом Фурье элемента $x \in X$ (по ортонормированной системе $\{e_n\}$) называется ряд

$$\sum_{n=1}^{\infty} c_n(x) e_n, \quad \text{где} \quad c_n(x) = (x, e_n).$$

Теорема 8.5 (экстремальное свойство коэффициентов ряда Фурье). Если $\{e_n\}_{n=1}^{\infty}$ – ортонормированная система в евклидовом пространстве X, то

$$\widehat{x}_m = \sum_{n=1}^m c_n(x) e_n = \Pr_{\langle e_1, e_2, \dots, e_m \rangle} (x).$$

Таким образом, \hat{x}_m – элемент наилучшего приближения вектора x элементами из $\langle e_1, e_2, \dots, e_m \rangle$.

Теорема 8.6. Если M – подпространство гильбертова пространства X, то $X = M \oplus M^{\perp}$.

Теорема 8.7. Пусть $\{e_n\}$ – счетная ортонормированная система в евклидовом пространстве. Следующие условия эквивалентны:

- 1) $\{e_n\}$ замкнута, т. е. $\forall x \in X \|x\|^2 = \sum_{n=1}^{\infty} |(x, e_n)|^2$;
- 2) $\{e_n\}$ basuc e X;
- 3) $\{e_n\}$ полна в X.

Утверждение 8.1. В любом евклидовом пространстве существуют максимальные (по включению) ортонормированные системы.

Теорема 8.8 [1, с. 65, теорема 2.7.1]. Пусть $\{e_{\gamma}\}$ — максимальная ортонормированная система в гильбертовом пространстве X. Тогда

- 1) $\{e_{\gamma}\}$ тотальная в X (и, следовательно, полная);
- 2) $\forall \ x \in X$ множество $\Gamma(x) = \{\gamma \colon (x,e_\gamma) \neq 0\}$ не более чем счетно;
 - 3) $\forall x \in X \quad x = \sum_{\gamma \in \Gamma(x)} (x, e_{\gamma}) e_{\gamma}$.

Замечание. Теорема 8.8 позволяет назвать максимальную ортонормированную систему $\{e_{\gamma}\}$ в гильбертовом пространстве X базисом.

Пример 8.1. В пространстве ℓ_2 найти ортогональное дополнение до подпространства

$$L = \left\{ x = \{ \xi_k \} \in \ell_2 \colon \xi_1 - 2\xi_3 + 3\xi_4 = 0 \right\},\,$$

ортогональную проекцию элемента $x_0 = \left\{ \left(-\frac{1}{3}\right)^k \right\}_{k=1}^\infty$ на L, расстояние от x_0 до L и до L^\perp .

Решение. Из определения подпространства L следует, что

$$L = \{z_0\}^{\perp}$$
, где $z_0 = (1, 0, -2, 3, 0, 0, \ldots)$.

Докажем, что $L^{\perp} = \langle z_0 \rangle$. Используя задачу 8.16, получаем, что $\{z_0\}^{\perp} = \overline{\langle z_0 \rangle}^{\perp}$. Так как одномерное линейное множество замкнуто в пространстве ℓ_2 , то (см. задачу 8.21)

$$L^{\perp} = \{z_0\}^{\perp \perp} = \overline{\langle z_0 \rangle}^{\perp \perp} = \overline{\langle z_0 \rangle} = \langle z_0 \rangle.$$

Найдем ортогональную проекцию элемента x_0 на L. Заметим, что L – подпространство в ℓ_2 (см. задачу 8.13). Значит, $\ell_2 = L \oplus L^{\perp} = L \oplus \langle z_0 \rangle$, а $x_0 = y + z$, где $y \in L, z \in \langle z_0 \rangle$. Следовательно,

$$\Pr_L(x_0) = y = x_0 - \alpha z_0.$$

Чтобы найти α , запишем скалярное произведение

$$0 = (y, z_0) = (x_0, z_0) - \alpha(z_0, z_0),$$

отсюда

$$\alpha = \frac{(x_0, z_0)}{(z_0, z_0)} = -\frac{2}{9} \cdot \frac{1}{14} = -\frac{1}{63}.$$

Итак,

$$\Pr_L(x_0) = \left\{ \left(-\frac{1}{3} \right)^k \right\}_{k=1}^{\infty} + \frac{1}{63} (1, 0, -2, 3, 0, 0, \dots).$$

Для нахождения $\rho(x_0, L)$ применим теорему Пифагора (см. задачу 8.12 «а»): $||x_0||^2 = ||y||^2 + ||z||^2$. Так как

$$||x_0||^2 = \frac{1}{8}, \quad ||z||^2 = ||\alpha z_0||^2 = \frac{1}{63^2} \cdot 14 = \frac{2}{567},$$

то

$$\rho(x_0, L) = ||z|| = \sqrt{\frac{2}{567}},$$

$$\rho(x_0, L^{\perp}) = \|y\| = \sqrt{\|x_0\|^2 - \|z\|^2} = \sqrt{\frac{1}{8} - \frac{2}{567}} = \frac{1}{18}\sqrt{\frac{551}{14}}.$$

Пример 8.2. В пространстве $L_2[-1,1]$ найти элемент наилучшего приближения для $x(t) = 1 + t^{-\frac{1}{3}}$ подпространством $L = \langle t, t^2, t^3 \rangle$.

Решение. Множество L — подпространство гильбертова пространства $L_2[-1,1]$, поэтому по теореме 8.3 существует $y \in L$ — элемент наилучшего приближения вектора x элементами из L и $y = Pr_L(x)$. Ортонормируем линейно независимую систему $\{t, t^2, t^3\}$ в пространстве $L_2[-1, 1]$. Новую систему обозначим $\{e_1, e_2, e_3\}$. Тогда $L = \langle e_1, e_2, e_3 \rangle$ и по теореме 8.5

$$y = \Pr_L(x) = \sum_{k=1}^{3} (x, e_k)e_k.$$

Найдем y. Пусть $x_k(t)=t^k,\ k=1,2,3$. Элементы x_1 и x_2 ортогональны. Подберем $\alpha_1,\alpha_2\in\mathbb{R}$ так, чтобы элемент $\widetilde{x}_3=x_3+\alpha_1x_1+\alpha_2x_2$ был ортогонален x_1 и x_2 , т. е. чтобы выполнялись соотношения

$$0 = (\widetilde{x}_3, x_1) = \int_{-1}^{1} (t^3 + \alpha_1 t + \alpha_2 t^2) t \, dt = \frac{2}{5} + \frac{2}{3} \alpha_1,$$

$$0 = (\widetilde{x}_3, x_2) = \int_{-1}^{1} (t^3 + \alpha_1 t + \alpha_2 t^2) t^2 dt = \frac{2}{5} \alpha_2.$$

Отсюда $\alpha_1=-\frac{3}{5},\ \alpha_2=0$ и $\widetilde{x}_3=t^3-\frac{3}{5}t.$ Система функций $\{x_1,x_2,\widetilde{x}_3\}$ ортогональна. Чтобы нормировать ее, вычислим нормы:

$$||x_1|| = \left(\int_{-1}^1 t^2 dt\right)^{\frac{1}{2}} = \sqrt{\frac{2}{3}}, \quad ||x_2|| = \left(\int_{-1}^1 t^4 dt\right)^{\frac{1}{2}} = \sqrt{\frac{2}{5}},$$

$$\|\widetilde{x}_3\| = \left(\int_{-1}^1 \left(t^3 - \frac{3}{5}t\right)^2 dt\right)^{\frac{1}{2}} = \frac{2}{5}\sqrt{\frac{2}{7}}.$$

В результате отсюда получаем ортонормированную систему $\{e_1, e_2, e_3\}$, где

$$e_1 = \sqrt{\frac{3}{2}}t$$
, $e_2 = \sqrt{\frac{5}{2}}t^2$, $e_3 = \frac{5}{2}\sqrt{\frac{7}{2}}\left(t^3 - \frac{3}{5}t\right)$.

Вычислим коэффициенты Фурье:

$$(x, e_1) = \sqrt{\frac{3}{2}} \int_{-1}^{1} \left(1 + t^{-\frac{1}{3}}\right) t \, dt = \frac{6}{5} \sqrt{\frac{3}{2}},$$

$$(x, e_2) = \sqrt{\frac{5}{2}} \int_{-1}^{1} \left(1 + t^{-\frac{1}{3}}\right) t^2 \, dt = \frac{2}{3} \sqrt{\frac{5}{2}},$$

$$(x, e_3) = \frac{5}{2} \sqrt{\frac{7}{2}} \int_{-1}^{1} \left(1 + t^{-\frac{1}{3}}\right) \left(t^3 - \frac{3}{5}t\right) dt = -\frac{24}{55} \sqrt{\frac{7}{2}}.$$

Итак,

$$y = \frac{9}{5}t + \frac{5}{3}t^2 - \frac{42}{11}\left(t^3 - \frac{3}{5}t\right) = \frac{45}{11}t + \frac{5}{3}t^2 - \frac{42}{11}t^3.$$

В евклидовом пространстве проверить тождества 8.1–8.3.

8.1. Равенство параллелограмма

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2).$$

8.2.
$$4(x,y) = ||x+y||^2 - ||x-y||^2$$
, если $\mathbb{P} = \mathbb{R}$.

8.3. Полярное тождество

$$4(x,y) = \|x+y\|^2 - \|x-y\|^2 + i \|x+iy\|^2 - i \|x-iy\|^2$$
, если $\mathbb{P} = \mathbb{C}$.

№ Доказать утверждения 8.4–8.7.

- **8.4.** \star В нормированном пространстве X можно ввести скалярное произведение, согласующееся с нормой в X, т. е. такое, что $\|x\| = \sqrt{(x,x)}$, тогда и только тогда, когда для любых $x,y \in X$ выполняется равенство параллелограмма (см. задачу 8.1).
- **8.5.** Скалярное произведение в евклидовом пространстве непрерывно по совокупности переменных.
- **8.6.** Пусть X евклидово пространство, последовательности $\{x_n\}, \ \{y_n\} \subset B[0,1] \subset X$ таковы, что $(x_n,y_n) \xrightarrow[n \to \infty]{} 1$. Тогда $\|x_n-y_n\| \xrightarrow[n \to \infty]{} 0$.
- **8.7.** Евклидово пространство является строго нормированным.
- **8.8.** Проверить, что следующие линейные пространства над полем $\mathbb P$ являются гильбертовыми:

а)
$$\ell_2^n$$
, если $(x,y) = \sum_{k=1}^n \xi_k \overline{\eta}_k$;

б)
$$\ell_2$$
, если $(x,y) = \sum_{k=1}^{\infty} \xi_k \overline{\eta}_k$;

в)
$$L_2[a,b]$$
, если $(x,y)=\int_a^b x(t)\overline{y(t)}\,dt;$

г)
$$L_2(\mathbb{R})$$
, если $(x,y) = \int_{-\infty}^{\infty} x(t)\overline{y(t)} dt$;

- д) H_c линейное пространство функций, определенных на \mathbb{R} , отличных от нуля на не более чем счетном множестве точек и таких, что $\sum\limits_t |x(t)|^2 < \infty$ со скалярным произведением $(x,y) = \sum\limits_t x(t) \overline{y(t)}$.
- **8.9.** Доказать, что пространство H_c (см. задачу 8.8) несепарабельно.

- **8.10.** Показать, что в нормированных пространствах c_0 , c, $C[a,b], \ell_p^n, \ell_p, L_p[a,b], L_p(\mathbb{R})$ при $1 \leqslant p \leqslant \infty, p \neq 2$, нельзя ввести скалярное произведение, согласующееся с нормами этих пространств.
- **8.11.** Доказать, что следующие линейные пространства над полем \mathbb{P} являются евклидовыми, но не гильбертовыми:
 - а) пространство непрерывных на [a,b] функций со скалярным произведением

$$(x,y) = \int_{a}^{b} x(t) \overline{y(t)} dt;$$

б) пространство суммируемых по модулю последовательностей со скалярным произведением

$$(x,y) = \sum_{k=1}^{\infty} \xi_k \, \overline{\eta_k};$$

в) $\widetilde{W}_2^1[a,b]$ — пространство непрерывно дифференцируемых на [a,b] функций со скалярным произведением

$$(x,y) = \int_a^b \left(x(t) \overline{y(t)} + x'(t) \overline{y'(t)} \right) dt.$$

- **8.12.** Пусть X евклидово пространство, $x,y\in X$. Доказать, что
 - а) если $x \perp y$, то $\|x+y\|^2 = \|x\|^2 + \|y\|^2$ (теорема Пифагора);
 - б) если $\mathbb{P} = \mathbb{R}$, то справедлива теорема, обратная теореме Пифагора;
 - в) если $\mathbb{P} = \mathbb{C}$, то теорема, обратная теореме Пифагора, несправедлива;

- г) если $\mathbb{P} = \mathbb{C}$, то $x \perp y$ тогда и только тогда, когда $\|\lambda x + \mu y\|^2 = \|\lambda x\|^2 + \|\mu y\|^2$ для любых $\lambda, \mu \in \mathbb{C}$.
- Пусть X евклидово пространство, $M,N\subset X$. Доказать утверждения 8.13–8.17.
- **8.13.** M^{\perp} подпространство в X.
- **8.14.** Если $M \subset N$, то $M^{\perp} \supset N^{\perp}$.
- **8.15.** $M \subset M^{\perp \perp} \bowtie M^{\perp} = M^{\perp \perp \perp}.$
- **8.16.** $M^{\perp} = \overline{\langle M \rangle}^{\perp}$.
- **8.17.** Пусть $\overline{\langle M \rangle} = X$. Тогда из условия $x \perp M$ следует, что x = 0.
- **8.18.** Пусть X гильбертово пространство, $M\subset X$. Доказать, что $\overline{\langle M\rangle}=X$ тогда и только тогда, когда $M^\perp=\{0\}.$
- **8.19.** \star Пусть X неполное евклидово пространство. Показать, что из равенства $M^{\perp}=\{0\}$, вообще говоря, не следует, что $\overline{\langle M \rangle}=X$.
- **8.20.** \star Доказать, что всякое неполное евклидово пространство X содержит подпространство X_0 такое, что $X_0 \neq X$ и $X_0^{\perp} = \{0\}$.
- **8.21.** Пусть X гильбертово пространство, $M\subset X$. Доказать, что $M^{\perp\perp}=\overline{\langle M\rangle}.$
- 8.22. ★ Привести пример евклидова пространства X и множества $M\subset X$, для которого $M^{\perp\perp}\neq \overline{\langle M\rangle}$.
- **8.23.** Пусть M и N подпространства в гильбертовом пространстве $X, M \perp N$. Доказать, что M+N подпространство в X.

- **8.24.** Найти замыкание множества M в пространстве $L_2[-1,1],$ если
 - a) $M = \langle \{t^{2k-1}\}_{k \in \mathbb{N}} \rangle$; 6) $M = \langle \{t^{2k-2}\}_{k \in \mathbb{N}} \rangle$.
- **8.25.** В пространстве ℓ_2 рассмотрим подпространства

$$M = \left\{ x = \{ \xi_k \} \in \ell_2 \colon x = (\xi_1, 0, \xi_3, 0, \xi_5, 0, \ldots) \right\},$$

$$N = \left\{ x = \{ \xi_k \} \in \ell_2 \colon x = \left(\xi_1, \xi_1, \xi_3, \frac{\xi_3}{3}, \xi_5, \frac{\xi_5}{5}, \ldots \right) \right\}.$$

Показать, что $\overline{M+N}=\ell_2$, но $M+N\neq\ell_2$, т. е. множество M+N не является подпространством в ℓ_2 .

- **8.26.** В пространстве $L_2[0,1]$ найти $M^{\perp},$ если M множество
 - а) многочленов от t;
 - б) многочленов от t^2 ;
 - в) алгебраических многочленов с нулевым свободным членом;
 - г) алгебраических многочленов с нулевой суммой коэффициентов;
 - д) функций из пространства $L_2[0,1]$, которые равны нулю почти всюду на отрезке $\left[0,\frac{1}{2}\right]$;
 - е) функций $x \in L_2[0,1]$ таких, что $\int_0^1 x(t) \, dt = 0$.
- **8.27.** В пространстве $\widetilde{L}_2[-1,1]$ найти M^{\perp} , если M множество функций из $\widetilde{L}_2[-1,1]$, равных нулю
 - а) при $t \le 0$; б) при t = 0.
- **8.28.** В пространстве ℓ_2 найти M^{\perp} , если

a)
$$M = \left\{ x = \{\xi_k\} \in \ell_2 \colon \sum_{k=1}^{10} \xi_k = 0 \right\};$$

6)
$$M = \left\{ x = \{ \xi_k \} \in \ell_2 : \\ \xi_2 - 3\xi_3 - \xi_5 = 0, \ \xi_1 + 2\xi_2 + 4\xi_3 = 0 \right\};$$

B)
$$M = \left\{ x = \{ \xi_k \} \in \ell_2 \colon \sum_{k=1}^{\infty} \xi_k = 0 \right\};$$

$$\Gamma$$
) $\star M = \left\{ x_n = \left(1, \frac{1}{2^n}, \frac{1}{2^{2n}}, \frac{1}{2^{3n}}, \dots \right), n \in \mathbb{N} \right\}.$

8.29. Пусть H_0 — подпространство в гильбертовом пространстве $H, x \in H$ и x = y + z, где $y \in H_0, z \in H_0^{\perp}$. Доказать, что

$$\rho(x, H_0) = \rho(x, y) = ||z||,$$

$$\rho(x, H_0^{\perp}) = \rho(x, z) = ||y||.$$

8.30. Пусть H_0 – одномерное подпространство в гильбертовом пространстве $H, x_0 \in H_0, x_0 \neq 0$. Доказать, что для любого $x \in H$

$$\rho(x, H_0^{\perp}) = \frac{|(x, x_0)|}{\|x_0\|}.$$

8.31. В пространстве $L_2[0,1]$ найти $\rho(x,H_1)$, если $x(t)=t^2$,

$$H_1 = \left\{ x \in L_2[0,1] : \int_0^1 x(t) dt = 0 \right\}.$$

8.32. В пространстве ℓ_2 найти $\rho(x, H_1)$, если $x = (1, 0, 0, \ldots)$,

$$H_1 = \left\{ x = \{\xi_k\} \in \ell_2 \colon \sum_{k=1}^{10} \xi_k = 0 \right\}.$$

8.33. Найти ортогональную проекцию элемента

$$x_0 = \left\{\frac{1}{k}\right\}_{k=1}^{\infty} \in \ell_2$$

на подпространство L, а также расстояния $\rho(x_0,L)$ и $\rho(x_0,L^\perp)$, если

a)
$$L = \{x = \{\xi_k\} \in \ell_2 : \xi_1 - 3\xi_3 + \xi_5 = 0\};$$

б) $L = \langle x_1, x_2, x_3 \rangle$, где

$$x_1 = (1, 0, -1, 0, 0, \ldots),$$

 $x_2 = (0, 1, 0, -1, 0, 0, \ldots),$
 $x_3 = (0, 0, 1, 0, -1, 0, 0, \ldots).$

- **8.34.** В пространстве $L_2[-1,1]$ построить ортогональную проекцию элемента $x \in L_2[-1,1]$ на подпространство четных функций.
- **8.35.** Для $x \in L_2[-1,1]$ найти многочлен наилучшего приближения $p \in P_n, \ n=0,1,2,$ если

a)
$$x(t) = e^t$$
; 6) $x(t) = t^3$.

- **8.36.** \star Построить пример евклидова пространства X, линейного многообразия $L \subset X$ и элемента $x \in X$, для которых не существует ортогональной проекции x на L.
- **8.37.** Доказать, что в сепарабельном евклидовом пространстве всегда существует ортонормированный базис.
- **8.38.** Доказать, что во всяком гильбертовом пространстве существует ортонормированный базис.
- **8.39.** Найти ортонормированный базис в пространстве H_c (см. задачу 8.8 «д»).
- **№** Доказать утверждения 8.40–8.46.
- 8.40. Система функций

$$\left.\frac{1}{\sqrt{2\pi}}, \left\{\frac{\sin nt}{\sqrt{\pi}}\right\}_{n \in \mathbb{N}}, \left\{\frac{\cos nt}{\sqrt{\pi}}\right\}_{n \in \mathbb{N}}$$

является ортонормированным базисом в пространстве $L_2[-\pi,\pi]$, если $\mathbb{P}=\mathbb{R}$.

- **8.41.** Система функций $\{\cos nt\}_{n=0}^{\infty}$ является ортогональным базисом в пространстве $L_2[0,\pi]$ над \mathbb{R} . Замыкание в $L_2[-\pi,\pi]$ множества $\langle \{\cos nt\}_{n=0}^{\infty} \rangle$ есть множество четных функций в $L_2[-\pi,\pi]$.
- **8.42.** Система функций $\{\sin nt\}_{n=1}^{\infty}$ является ортогональным базисом в пространстве $L_2[0,\pi]$ над \mathbb{R} . Замыкание в $L_2[-\pi,\pi]$ множества $\langle \{\sin nt\}_{n=1}^{\infty} \rangle$ есть множество нечетных функций в $L_2[-\pi,\pi]$.
- **8.43.** В пространстве $L_2[a,b]$ над полем $\mathbb{P} = \mathbb{R}$ есть ортонормированные базисы, состоящие из
 - а) алгебраических многочленов;
 - б) ступенчатых функций;
 - в) тригонометрических многочленов;
 - г) функций, лежащих в заданном плотном в $L_2[a,b]$ линейном многообразии.
- **8.44.** Система функций $\{e^{2\pi int}\}_{n\in\mathbb{Z}}$ является ортонормированным базисом в пространстве $L_2[0,1]$ над \mathbb{C} .
- **8.45.** Ортогональное дополнение к системе функций $\left\{e^{2\pi int}\right\}_{n\in\mathbb{Z}}$ в пространстве $L_2[a,b]$ над $\mathbb C$
 - 1) состоит из нуля при $|a b| \le 1$;
 - 2) отлично от нуля при |a b| > 1.
- **8.46.** На отрезке [0,1] рассмотрим систему функций Радемахера

$$x_0(t) = 1, \quad x_n(t) = \begin{cases} (-1)^k, & t \in \left(\frac{k}{2^n}, \frac{k+1}{2^n}\right), \\ 0, & t = \frac{k}{2^n}, \end{cases}$$

если $n \in N$, $k = 0, 1, 2, 2^2, \dots, 2^{n-1}$. Эта система ортонормирована в пространстве $L_2[0, 1]$, но не является базисом.

8.47. Показать, что система многочленов Лежандра

$$p_n(t) = c_n \frac{d^n}{dt^n} (t^2 - 1)^n, \quad n = 0, 1, 2, \dots,$$

получающаяся при ортогонализации системы функций $1, t, t^2, \ldots$ в пространстве $L_2[-1, 1]$, является ортогональным базисом в пространстве $L_2[-1, 1]$.

- **8.48.** В пространстве $L_2[-1,1]$ найти M^{\perp} , если $M = \{\cos \pi t, t\}$.
- **8.49.** В линейном пространстве функций, измеримых по Лебегу на $\mathbb R$ и таких, что интеграл

$$\int_{-\infty}^{+\infty} e^{-t^2} |x(t)|^2 dt$$

конечен, положим

$$(x,y) = \int_{-\infty}^{+\infty} e^{-t^2} x(t) y(t) dt.$$

Полученное пространство $L_{2,q}(\mathbb{R})$ будет гильбертовым с весом $q(t)=e^{-t^2}$. Ортогонализация системы функций $1,t,t^2,\ldots$ в пространстве $L_{2,q}(\mathbb{R})$ с весом q(t) дает систему многочленов Чебышева – Эрмита, полную в $L_{2,q}(\mathbb{R})$. Найти первые три многочлена этой системы.

8.50. В линейном пространстве функций, измеримых по Лебегу на $[0, +\infty)$ и таких, что интеграл

$$\int_0^{+\infty} e^{-t} |x(t)| \, dt$$

конечен, положим

$$(x,y) = \int_0^{+\infty} e^{-t} x(t) y(t) dt.$$

Полученное пространство $L_{2,p}(0,+\infty)$ будет гильбертовым с весом $p(t)=e^{-t}$. Ортогонализация системы функций $1,t,t^2,\ldots$ в пространстве $L_{2,p}(0,+\infty)$ с весом $p(t)=e^{-t}$ дает систему многочленов Чебышева – Лагерра, полную в $L_{2,p}(0,+\infty)$. Найти первые три многочлена этой системы.

Тема 9. Функционалы и операторы в линейных нормированных пространствах

Пусть X, Y — линейные нормированные пространства над одним и тем же полем \mathbb{P} . Отображение A, действующее из пространства X в пространство Y, называют *оператором*, а если $Y = \mathbb{P}$, то A называют *функционалом*. Через D(A) будем обозначать область определения A и сокращенно писать $A: D(A) \subset X \to Y$; если D(A) = X, будем писать $A: X \to Y$.

Определение 9.1. Оператор (функционал) A называется

✓ непрерывным в точке $x_0 \in D(A)$, если

$$\forall \varepsilon > 0 \quad \exists \, \delta = \delta(\varepsilon) > 0 \quad \forall \, x \in D(A)$$
$$\|x - x_0\|_X < \delta \implies \|Ax - Ax_0\|_Y < \varepsilon;$$

- ✓ непрерывным, если он непрерывен в каждой точке D(A);
- \checkmark ограниченным, если A переводит каждое ограниченное множество из D(A) в ограниченное;

✓ линейным, если D(A) – линейное многообразие и для любых $x_1,x_2\in D(A)$ и $\lambda_1,\lambda_2\in \mathbb{P}$

$$A(\lambda_1 x_1 + \lambda_2 x_2) = \lambda_1 A x_1 + \lambda_2 A x_2.$$

Теорема 9.1. Оператор (функционал) A непрерывнен в точке $x_0 \in D(A)$ тогда и только тогда, когда для любой последовательности $\{x_n\} \subset D(A)$

$$x_n \xrightarrow[n \to \infty]{} x_0 \implies Ax_n \xrightarrow[n \to \infty]{} Ax_0.$$

Теорема 9.2. Для линейного оператора A следующие условия эквивалентны:

- 1) A непрерывен;
- 2) A непрерывен в точке x = 0;
- 3) A ограничен;
- 4) существует K > 0 такое, что $||Ax|| \leqslant K||x||$ для всех $x \in D(A)$.

Теорема 9.3 (неравенство Гельдера). Пусть числа $p,q\in(1,\infty)$ являются сопряженными показателями, т. е. связаны соотношением $\frac{1}{p}+\frac{1}{q}=1$. Тогда для любых функций $f\in L_p(E),\ g\in L_q(E)$ их произведение fg суммируемо $(fg\in L(E))$ и имеет место неравенство Гельдера

$$\left| \int_{E} f(x)g(x) \, dx \right| \leqslant \|f\|_{p} \, \|g\|_{q}.$$

Если $\mathbb{P} = \mathbb{R}$, неравенство Гельдера обращается в равенство тогда и только тогда, когда функции f и g удовлетворяют хотя бы одному из следующих двух условий:

 (Γ') существует константа C_1 такая, что

$$f = C_1 |g|^{q-1} \operatorname{sign} g$$
 п. в. на E ;

 (Γ'') существует константа C_2 такая, что

$$g = C_2 |f|^{p-1} \operatorname{sign} f$$
 n. e. Ha E .

Множество линейных непрерывных операторов, определенных на X со значениями в Y, будем обозначать $\mathcal{L}(X,Y)$. Если Y=X, то будем кратко писать $\mathcal{L}(X)$ вместо $\mathcal{L}(X,X)$. Отметим, что $\mathcal{L}(X,Y)$ есть линейное пространство над \mathbb{P} . Пространство $\mathcal{L}(X,\mathbb{P})$ линейных непрерывных функционалов на X называется сопряжеенным κ пространству X и обозначается X^* .

Пример 9.1. Пусть оператор $A \colon C^1[a,b] \to C[a,b]$ действует по правилу

$$(Ax)(t) = x(a) + x'(a)(t - a).$$

Проверить, является ли A линейным, ограниченным, непрерывным?

Решение. Линейность A легко проверить по определению. По теореме 9.2 свойства ограниченности и непрерывности для A эквивалентны, поэтому достаточно проверить лишь одно из них. В данном случае проще исследовать A на ограниченность.

Пусть E — произвольное ограниченное множество из $D(A)=C^1[a,b]$. Докажем, что множество $A(E)=\{Ax:x\in E\}$ также ограничено.

Ограниченность E означает, что найдется число K такое, что для всех $x \in E$ $\|x\| \leqslant K$, т. е. в данном случае

$$||x|| = ||x||_{C^1[a,b]} = \max_{t \in [a,b]} |x(t)| + \max_{t \in [a,b]} |x'(t)| \leqslant K.$$
 (9.1)

Используя неравенство (9.1), оценим ||Ax||. По условию

$$||Ax|| = ||Ax||_{C[a,b]} = \max_{t \in [a,b]} |(Ax)(t)| = \max_{t \in [a,b]} |x(a) + x'(a)(t-a)|.$$

Для любого $t \in [a,b]$ справедлива следующая цепочка соотношений:

$$|x(a) + x'(a)(t - a)| \leq |x(a)| + |x'(a)||t - a| \leq$$

$$\leq |x(a)| + |x'(a)|(b - a) \leq$$

$$\leq \max\{1, b - a\} \cdot (|x(a)| + |x'(a)|) \leq$$

$$\leq \max\{1, b - a\} \cdot \max_{t \in [a, b]} \{|x(t)| + |x'(t)|\} \leq$$

$$\leq \max\{1, b - a\} \cdot ||x|| \leq \max\{1, b - a\} \cdot K.$$

Отсюда

$$||Ax|| = \max_{t \in [a,b]} |x(a) + x'(a)(t-a)| \le \max\{1, b-a\} \cdot K.$$

Следовательно, множество A(E) ограничено.

Итак, оператор A — линейный, ограниченный и непрерывный.

Пример 9.2. Функционал $f\colon \widetilde{L}_2[0,1] \to \mathbb{R}$ действует по правилу

$$f(x) = |x(1)|.$$

Проверить, является ли f линейным, ограниченным, непрерывным?

Решение. Очевидно, f не является линейным, поскольку если $\lambda < 0$ и $x(1) \neq 0$, то $f(\lambda x) = |\lambda x(1)| \neq \lambda |x(1)| = \lambda f(x)$.

1. Докажем сначала, что f разрывен в точке $x_0(t) \equiv 0$. Поскольку $f(x_0) = |x_0(1)| = 0$, мы должны построить последовательность функций $\{x_n\} \subset \widetilde{L}_2[0,1]$ такую, что $||x_n - x_0|| \to 0$, а $f(x_n) = |x_n(1)| \not\to 0$ при $n \to \infty$. Рассмотрим последовательность

$$x_n(t) = t^n, \qquad n = 1, 2, \dots.$$

Ясно, что $f(x_n) = 1$. С другой стороны,

$$||x_n|| = ||x_n||_{\widetilde{L}_2[0,1]} = \left(\int_0^1 t^{2n} dt\right)^{1/2} = \frac{1}{\sqrt{2n+1}} \xrightarrow[n \to \infty]{} 0.$$

Таким образом, f терпит разрыв в точке x_0 , а значит, не является непрерывным на всем пространстве $\widetilde{L}_2[0,1]$.

Докажем, что f не является непрерывным в любой другой точке из $\widetilde{L}_2[0,1]$. Для этого рассмотрим последовательность

$$\widetilde{x}_n(t) = x_0(t) + (-1)^n t^n.$$

Имеем

$$\|\widetilde{x}_n - x_0\| = \|(-1)^n t^n\| \xrightarrow[n \to \infty]{} 0,$$

$$f(\widetilde{x}_n) = |x_0(1) + (-1)^n| \xrightarrow[n \to \infty]{} f(x_0) = |x_0(1)|.$$

2. Докажем теперь, что f не ограничен. Для этого модифицируем последовательность $\{x_n\}$ следующим образом:

$$\overline{x}_n(t) = \frac{x_n(t)}{\|x_n\|}, \quad n = 1, 2, \dots$$

Тогда $\|\overline{x}_n\| = 1$ и, следовательно, множество $\{\overline{x}_n : n \in \mathbb{N}\}$ ограничено. С другой стороны, множество $\{f(\overline{x}_n) = \frac{1}{\|x_n\|} : n \in \mathbb{N}\}$, очевидно, не ограничено.

Можно доказать неограниченность f и несколько иначе. Функционал f есть суперпозиция линейного функционала $g\colon \widetilde{L}_2[0,1]\to\mathbb{R},\ g(x)=x(1)$ и функционала (функции) $\phi\colon\mathbb{R}\to\mathbb{R},\ \phi(y)=|y|.$ Функция ϕ непрерывна в точке x=0. Отсюда следует, что g разрывен в точке 0, поскольку в противном случае f, как суперпозиция непрерывных функционалов, был бы непрерывным в точке 0. Поскольку g линейный и разрывный, то g не ограничен. Это означает, что образ единичного шара $B=\{x\in\widetilde{L}_2[0,1]\colon\|x\|\leqslant 1\}$ при отображении g, т. е. множество $g(B)=\{x(1)\colon x\in B\}$ не ограничено. Но g(B) ограничено или не ограничено одновременно с множеством $f(B)=\{|x(1)|\colon x\in B\}.$ Следовательно, множество f(B) не ограничено и функционал f не ограничен.

Пример 9.3. Проверить, является ли оператор J, заданный формулой Jx=x, ограниченным и непрерывным, если

a)
$$D(J) = X = L_q[0,1], \quad Y = L_p[0,1], \quad p < q;$$

6)
$$D(J) = L_q[0,1], \quad X = L_p[0,1], \quad Y = L_q[0,1], \quad p < q$$

Решение. Очевидно, что оператор вложения одного линейного нормированного пространства в другое является линейным. Следовательно, в силу теоремы 9.2 ограниченность и непрерывность этого оператора эквивалентны.

а) Оператор J является ограниченным и непрерывным, так как при p < q имеет место строгое вложение $L_q[a,b] \subset L_p[a,b],$

причем $\|\cdot\|_q$ сильнее нормы $\|\cdot\|_p$, а значит, выполняется условие 4 теоремы 9.2.

б) Заметим, что функция $x(t) = t^{-\alpha}$ при $\frac{1}{q} \leqslant \alpha < \frac{1}{p}$ принадлежит пространству $L_p[0,1]$, но не принадлежит пространству $L_q[0,1]$. Для произвольного α с таким свойством рассмотрим последовательность $\{x_n\}_{n=1}^{\infty}$:

$$x_n(t) = \begin{cases} 0, & t \in \left[0, \frac{1}{n}\right], \\ t^{-\alpha}, & t \in \left(\frac{1}{n}, 1\right]. \end{cases}$$

Она принадлежит обоим пространствам и поточечно сходится к x при $n \to \infty$. При этом

$$||x_n - x||_p \xrightarrow[n \to \infty]{} 0, \qquad ||x_n||_q \xrightarrow[n \to \infty]{} \infty.$$

Следовательно, оператор J не является непрерывным, а значит, и ограниченным.

В задачах **9.1–9.9** X – линейное нормированное пространство. Проверить, является ли функционал $f:D(f)\subset X\to \mathbb{P}$ линейным, ограниченным, непрерывным.

9.1.
$$f(x) = \int_0^1 |x(t)| dt,$$
 a) $D(f) = X = C[0, 1];$ 6) $D(f) = X = L_p[0, 1].$

9.2.
$$f(x) = \left| x \left(\frac{1}{2} \right) \right|$$
,
a) $D(f) = X = C[0, 1]$; 6) $D(f) = X = \widetilde{L}_2[0, 1]$.

9.3.
$$f(x) = x'(t_0), t_0 \in [0, 1],$$

a) $D(f) = X = C^1[0, 1];$

б)
$$D(f)$$
 – множество полиномов, $X = C[0, 1];$

B)
$$D(f) = C^1[0,1], X = L_p[0,1].$$

9.4.
$$f(x) = \int_0^1 x'(t) \cos t \, dt$$
, $D(f) = C^1[0, 1]$, $X = C[0, 1]$.

9.5.
$$f(x) = \int_0^1 x'(t) \sin t \, dt, \ D(f) = C^1[0,1], \ X = L_p[0,1].$$

9.6.
$$f(x) = x'(0) + 5$$
, $D(f) = C^{1}[0, 1]$, $X = C[0, 1]$.

9.7.
$$f(x) = \sup_{k} \xi_k, \ D(f) = X = m \text{ над } \mathbb{R}.$$

9.8.
$$f(x) = \max_{t \in [0,1]} x(t),$$

а)
$$D(f) = X = C[0,1]$$
 над \mathbb{R} ;

б)
$$D(f) = C[0,1], X = L_p[0,1]$$
 над \mathbb{R} .

9.9.
$$f(x) = \sum_{k=1}^{\infty} \xi_k,$$

$$M = \left\{ x = \{ \xi_k \}_{k=1}^{\infty} : \text{ ряд } \sum_{k=1}^{\infty} \xi_k \text{ сходится } \right\},$$
 a) $D(f) = X = \ell_1;$ б) $D(f) = M, X = m;$ в) $D(f) = \ell_n \cap M, X = \ell_n, 1$

- **9.10.** Пусть X бесконечномерное линейное нормированное пространство. Привести пример оператора $A\colon X\to X,$ который не является линейным и ограниченным, но непрерывен на X.
- **9.11.** Оператор A определен на пространстве ℓ_2 формулой $Ax = \{\alpha_k \xi_k\}$, $x = \{\xi_k\}$. Найти необходимые и достаточные условия на последовательность $\alpha = \{\alpha_k\}$, при которых $A \in \mathcal{L}(\ell_2)$.
- В задачах **9.12–9.25** X,Y линейные нормированные пространства. Проверить, является ли оператор $A\colon D(A)\subset X\to Y$ линейным, ограниченным, непрерывным.

9.12.
$$(Ax)(t) = tx'(t),$$

a)
$$A: C^{1}[a, b] \to C[a, b];$$

6)
$$D(A) = C^{1}[a, b], X = Y = C[a, b].$$

9.13.
$$(Ax)(t) = x^2(t),$$

a)
$$A: C[a,b] \to C[a,b];$$

6)
$$D(A) = \{x \in L_p[a, b] : x^2(t) \in L_p[a, b] \},$$

 $X = Y = L_p[a, b].$

9.14.
$$(Ax)(t) = \sqrt{|x(t)|},$$

a)
$$A \colon C[a,b] \to C[a,b];$$
 6) $A \colon L_p[a,b] \to L_p[a,b].$

9.15.
$$\star$$
 $(Ax)(t) = \sqrt[k]{|x(t)|}, k \in \mathbb{N}, A: L_p[a, b] \to L_p[a, b].$

9.16.
$$Ax = \{\xi_k^2\}_{k=1}^{\infty},$$

a)
$$A: c \to c;$$
 6) $A: \ell_p \to \ell_p$.

9.17.
$$Ax = \{\sqrt{|\xi_k|}\}_{k=1}^{\infty},$$

a)
$$A: c_0 \to c_0$$
; 6) $A: m \to m$;

B)
$$D(A) = \{x = \{\xi_k\} \in \ell_p : Ax \in \ell_p\}, X = Y = \ell_p.$$

9.18.
$$Ax = \{\operatorname{sign} \xi_k\}, A: m \to m, \mathbb{P} = \mathbb{R}.$$

9.19.
$$(Ax)(t) = e^t x(t) + x(0), \quad A : \widetilde{L}_1[0,1] \to \widetilde{L}_1[0,1].$$

9.20.
$$Ax = \{|\xi_k|\}_{k=1}^{\infty},$$

a)
$$A: \ell_p \to \ell_p$$
; 6) $A: c \to c$.

9.21.
$$Ax = \{|\xi_k|^m\}_{k=1}^{\infty}, m \in \mathbb{N},$$

9.22.
$$Ax = \{|\xi_k|^{\alpha}\}_{k=1}^{\infty}, \quad \alpha > 0,$$

a)
$$\star D(A) = \{x = \{\xi_k\} \in \ell_p : Ax \in \ell_p\}, X = Y = \ell_p;$$

б)
$$A: c \to c$$
.

9.23.
$$(Ax)(t) = x(a) + x'(a)(t-a),$$

 $D(A) = C^{1}[a, b], X = Y = C[a, b].$

9.24.
$$(Ax)(t) = \frac{|x(t)| - x(t)}{2},$$

 $A: C[0,2] \to L_2[0,2].$

9.25.
$$(Ax)(t) = \sum_{k=0}^{m} \frac{x^{(k)}(a)(t-a)^k}{k!},$$

- a) $D(A) = C^m[a, b], X = Y = C[a, b];$
- б) $A \colon C^m[a,b] \to C[a,b].$
- **9.26.** Докажите, что во всяком бесконечномерном линейном нормированном пространстве X можно определить разрывный линейный функционал f с D(f) = X.

Тема 10. Нормы линейных функционалов и операторов

Определение 10.1. Пусть X, Y — линейные нормированные пространства над полем $\mathbb{P}, A \colon X \to Y$ — линейный ограниченный оператор. *Нормой* оператора A называется величина

$$||A|| = \sup_{||x|| \le 1} ||Ax||.$$

Справедливы равенства

$$||A|| = \sup_{\|x\|=1} ||Ax|| = \sup_{x \neq 0} \frac{||Ax||}{\|x\|} = \inf\{K : \forall x \in X \quad ||Ax|| \leqslant K||x||\}.$$

Если в пространстве X существует элемент x такой, что $\|x\|=1$ и $\|Ax\|=\|A\|$, то говорят, что норма A достижения, если же такого элемента не существует, норма A недостижения.

Пример 10.1. Оператор $A \colon C[0,2] \to C[0,2]$ задан формулой

$$(Ax)(t) = \int_0^t x(s) \, ds.$$

Найти норму A, выяснить, является ли она достижимой.

Решение. Сначала оценим ||A|| сверху:

$$\begin{split} \|Ax\| &= \max_{t \in [0,2]} \left| \int_0^t x(s) \, ds \right| \leqslant \max_{t \in [0,2]} \int_0^t |x(s)| \, ds \leqslant \\ &\leqslant \max_{t \in [0,2]} \max_{s \in [0,1]} |x(s)| \int_0^t 1 \, ds = \max_{t \in [0,2]} \|x\|t = \|x\| \cdot 2. \end{split} \tag{10.1}$$

Таким образом, мы получили оценку $||Ax|| \le 2 ||x||$, следовательно $||A|| \le 2$. Если взять $x(t) \equiv 1$, все неравенства (10.1) обратятся в равенства. Значит, ||A|| = 2, норма достигается. &

Пример 10.2. Функционал $f \colon C[0,3] \to \mathbb{R}$ задан формулой

$$f(x) = \int_0^2 tx(t) dt - \int_2^3 tx(t) dt.$$

Найти норму f, выяснить, является ли она достижимой.

Решение. Мы можем записать f в виде

$$f(x) = \int_0^3 \varphi(t) \cdot x(t) \, dt, \quad$$
где $\varphi(t) = \begin{cases} t, & t \in [0,2], \\ -t, & t \in (2,3]. \end{cases}$

Сначала оценим ||f|| сверху:

$$|f(x)| = \left| \int_0^3 \varphi(t) \cdot x(t) \, dt \right| \stackrel{(*)}{\leqslant} \int_0^3 |\varphi(t) \cdot x(t)| \, dt \stackrel{(**)}{\leqslant}$$

$$\leqslant \max_{t \in [0,3]} |x(t)| \int_0^3 |\varphi(t)| \, dt = ||x|| \cdot \frac{9}{2}.$$

$$(10.2)$$

Следовательно, $\|f\| \leqslant \frac{9}{2}$. Проанализируем, возможна ли ситуация, когда оба неравенства в (10.2) обратятся в равенство. Неравенство (*) обращается в равенство, когда функция $\varphi(t) \cdot x(t)$ сохраняет знак п. в. на [0,3], что для непрерывной функции x возможно, только если $x(t) \geqslant 0, t \in [0,2)$,

и $x(t) \leqslant 0$, $t \in (2,3]$. Неравенство (**) обращается в равенство, когда |x(t)|= const на [0,3]. Таким образом, «идеальная» функция должна иметь вид

$$x(t) = \begin{cases} 1, & t \in [0, 2), \\ -1, & t \in (2, 3]. \end{cases}$$

Функция x не определена в точке t=2. При этом ясно, что доопределить функцию x так, чтобы она стала непрерывной в этой точке, невозможно. Рассмотрим последовательность функций

$$x_n(t) = \begin{cases} 1, & t \in \left[0, 2 - \frac{1}{n}\right], \\ n(2 - t), & t \in \left(2 - \frac{1}{n}, 2 + \frac{1}{n}\right), \\ -1, & t \in \left[2 + \frac{1}{n}, 3\right]. \end{cases}$$

Нетрудно проверить, что $||x_n||=1,$ а $|f(x_n)|\to \frac{9}{2}$ при $n\to\infty.$ Поскольку

$$||f|| = \sup_{\|x\|=1} |f(x)| \ge |f(x_n)| \xrightarrow[n \to \infty]{} \frac{9}{2},$$

то $||f|| \geqslant \frac{9}{2}$, а значит, $||f|| = \frac{9}{2}$.

Из приведенных выше рассуждений следует, что не существует такого элемента x, для которого $\|x\|=1$ и $|f(x)|=\frac{9}{2}$, следовательно, норма не достигается.

Пример 10.3. Оператор $A \colon L_1[0,1] \to C[0,1]$ задан формулой

$$(Ax)(t) = \int_0^1 (e^t + e^{-s})x(s) \, ds.$$

Найти норму A.

Решение. Сначала оценим ||A|| сверху:

$$\begin{split} \|Ax\| &= \max_{t \in [0,1]} \left| \int_0^1 (e^t + e^{-s}) x(s) \, ds \right| \leqslant \\ &\leqslant \max_{t \in [0,1]} \int_0^1 (e^t + e^{-s}) |x(s)| \, ds \leqslant \\ &\leqslant \max_{t \in [0,1]} \max_{s \in [0,1]} (e^t + e^{-s}) \int_0^1 |x(s)| \, ds = (e+1) \|x\|. \end{split}$$

Итак, $||A|| \leq e+1$. Выражение (e^t+e^{-s}) достигает своего максимума по s в точке s=0. Рассмотрим последовательность функций, сосредоточенных в окрестности 0:

$$x_n(s) = \begin{cases} 1, & s \in \left[0, \frac{1}{n}\right], \\ 0, & s \in \left(\frac{1}{n}, 1\right]. \end{cases}$$

Ясно, что $||x_n|| = \frac{1}{n}$. При этом

$$||Ax_n|| = \max_{t \in [0,1]} \int_0^{\frac{1}{n}} (e^t + e^{-s}) ds =$$

$$= \max_{t \in [0,1]} \left(\frac{e^t}{n} - e^{-1/n} + 1 \right) = \frac{e}{n} - e^{-1/n} + 1,$$

$$\lim_{n \to \infty} \frac{\|Ax_n\|}{\|x_n\|} = \lim_{n \to \infty} n \left(\frac{e}{n} - e^{-1/n} + 1 \right) = e + 1.$$

Таким образом, $\|A\|\geqslant e+1.$ Оценка сверху и оценка снизу совпали, значит, $\|A\|=e+1.$

т В задачах 10.1–10.8 вычислить норму функционала.

10.1.
$$f(x) = \int_0^3 (s^3 - 9s)x(s) ds,$$

a) $X = C[0, 3];$ 6) $X = L_1[0, 3].$

10.2.
$$f(x) = \int_{-1}^{3} (s^3 - 9s)x(s) ds,$$

a)
$$X = C[-1, 3];$$
 6) $X = L_1[-1, 3].$

$$K = L_1[-1, 3].$$

10.3.
$$f(x) = \int_0^{\frac{\pi}{2}} \sin^3 s \cdot \cos s \cdot x(s) \, ds,$$

a)
$$X = C\left[0, \frac{\pi}{2}\right]$$

a)
$$X = C\left[0, \frac{\pi}{2}\right];$$
 6) $X = L_1\left[0, \frac{\pi}{2}\right];$

B)
$$X = L_p \left[0, \frac{\pi}{2} \right], \ 1$$

10.4.
$$f(x) = 2 \int_0^{\frac{1}{2}} x(s)ds - \int_{\frac{1}{2}}^1 x(s)ds$$
,

a)
$$X = C[0, 1];$$

a)
$$X = C[0,1];$$
 6) $X = L_1[0,1].$

Выяснить, является ли норма достижимой.

10.5.
$$f(x) = 2 \int_0^{\frac{1}{3}} x(s)ds - \int_{\frac{2}{3}}^1 x(s)ds$$
,

a)
$$X = C[0,1];$$
 6) $X = L_1[0,1].$

6)
$$X = L_1[0,1].$$

Выяснить, является ли норма достижимой.

10.6.
$$f(x) = \alpha x(0) + \beta \int_0^1 x(t)dt$$
, $X = C[0,1]$.

10.7.
$$f(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{2^n} \xi_n$$
, a) $X = c_0$; 6) $X = m$.

a)
$$X = c_0;$$

$$6) X = m.$$

Выяснить, является ли норма достижимой.

10.8.
$$f(x) = \int_0^1 \sqrt{t}x(t^2)dt$$
,

a)
$$X = C[0, 1];$$

a)
$$X = C[0,1];$$
 6) $X = L_2[0,1];$

B)
$$X = L_3[0,1].$$

10.9. Пусть
$$f(x) = \int_{-1}^{1} \frac{x(s)}{\sqrt[3]{s}} ds$$
. Для каких значений p ,

 $1 \leqslant p \leqslant \infty$, f является непрерывным функционалом в пространстве $L_p[-1,1]$? Найти норму f.

В задачах 10.10−10.23 вычислить норму оператора.

10.10.
$$(Ax)(t) = \int_{1}^{2} (2t+s)x(s)ds,$$

a) $A: C[1,2] \to C[0,1];$ 6) $A: L_{1}[1,2] \to C[0,1];$
b) $A: L_{1}[1,2] \to L_{1}[0,1].$

10.11.
$$(Ax)(t) = \int_{1}^{2} (2t - s)x(s)ds,$$

a) $A: C[1,2] \to C[0,1];$ 6) $A: L_{1}[1,2] \to C[0,1];$
b) $A: L_{1}[1,2] \to L_{1}[0,1].$

10.12.
$$(Ax)(t) = x\left(\frac{t^2}{2}\right)$$
,
a) $A: C[0,2] \to C[0,2];$ 6) $A: C[0,2] \to L_1[0,2]$.

10.13.
$$(Ax)(t) = \int_0^t (t-s)x(s)ds, \quad A \colon C[0,\pi] \to C[0,\pi].$$

10.14.
$$Ax = (0, \xi_1, \xi_2, \ldots), A: \ell_p \to \ell_p.$$

10.15.
$$Ax = (\xi_2, \xi_3, \xi_4, ...), A: \ell_n \to \ell_n.$$

10.16.
$$Ax = (\xi_2, \xi_3, \xi_1 + \xi_2, \xi_4, \xi_5, ...),$$

a) $A: \ell_1 \to \ell_1;$ 6) $\not \approx A: \ell_2 \to \ell_2;$ B) $A: m \to m.$

10.17.
$$A: \ell_p \to \ell_p,$$

$$a) Ax = \left\{ \left(1 + \frac{1}{n} \right)^n \xi_n \right\}_{n=1}^{\infty};$$

$$6) Ax = \left\{ \left(1 + \frac{1}{n} \right)^{n+1} \xi_n \right\}_{n=1}^{\infty}.$$

10.18.
$$Ax = \{ne^{-n/3}\xi_n\}_{n=1}^{\infty}, A: \ell_1 \to \ell_1.$$

10.19.
$$Ax = \{\alpha_n \xi_n\}_{n=1}^{\infty}, |\alpha_n| \le c, A: \ell_p \to \ell_q, 1 \le p \le q \le \infty.$$

10.20.
$$Jx = x$$
,

a)
$$J: C^{1}[a, b] \to C[a, b];$$

6)
$$J: L_q[a,b] \to L_p[a,b], \quad 1 \leq p < q \leq \infty;$$

B)
$$J: \ell_p \to \ell_q$$
, $1 \leqslant p < q \leqslant \infty$.

10.21.
$$(Ax)(t) = \varphi(t)x(t),$$

a)
$$A: C[a,b] \to C[a,b], \quad \varphi \in C[a,b];$$

6)
$$A: L_2[a, b] \to L_1[a, b], \quad \varphi \in L_2[a, b];$$

B)
$$A: L_p[a,b] \to L_p[a,b],$$

$$\varphi(t) = \begin{cases} 5\cos t, & t \in \mathbb{Q} \cap [a, b], \\ -3\sin t, & t \in \mathbb{I} \cap [a, b]. \end{cases}$$

10.22.
$$(Ax)(t) = \varphi(t)x(t), \qquad A: L_p[0,2] \to L_p[0,2],$$

a)
$$\varphi(t) = \begin{cases} 0, & t \in \left[0, \frac{3}{2}\right], \\ 1, & t \in \left(\frac{3}{2}, 2\right]; \end{cases}$$
 6) $\varphi(t) = t^2;$

B)
$$\varphi(t) = t(t-1)(t-2)$$
.

10.23.
$$(Ax)(t) = x'(t), A: C^1[0,1] \to C[0,1].$$

Для каких α оператор $(Ax)(t) = x(t^{\alpha})$ линеен и непре-10.24. рывен в X? Найти норму A, если он ограничен.

a)
$$A: C[0,1] \to C[0,1];$$
 6) $A: L_2[0,1] \to L_2[0,1].$

6)
$$A: L_2[0,1] \to L_2[0,1].$$

Для каких α, β оператор $(Ax)(t) = t^{\beta}x(t^{\alpha})$ линеен и 10.25. ограничен в $L_2[0,1]$? Найти его норму A, если он ограничен.

10.26. Функционал $f:X \to \mathbb{R}$ задан формулой $f(x) = \int_{-b}^{b} \varphi(s)x(s) \, ds, \; \varphi \in C[a,b]$. Докажите, что

а) если
$$X = C[a, b]$$
, то $||f|| = \int_a^b |\varphi(s)| \, ds$;

б) если
$$X = L_1[a,b]$$
, то $||f|| = \max_{s \in [a,b]} |\varphi(s)|$.

10.27. Оператор A задан формулой

$$(Ax)(t) = \int_{c}^{d} K(t,s)x(s) ds, \quad K(t,s) \in C([a,b] \times [c,d]).$$

Докажите, что

а) если $A: C[c,d] \to C[a,b]$, то

$$||A|| = \sup_{t \in [a,b]} \int_{c}^{d} |K(t,s)| ds;$$

б) если $A: L_1[c,d] \to C[a,b]$, то

$$||A|| = \sup_{t \in [a,b], s \in [c,d]} |K(t,s)|;$$

в) если $A: L_1[c,d] \to L_1[a,b]$, то

$$||A|| = \sup_{s \in [c,d]} \int_a^b |K(t,s)| dt.$$

- **10.28.** Пусть X нормированное, а Y банахово пространства и A_0 линейный оператор с $D(A_0) \subset X$ и $R(A_0) \subset Y$, причем $\overline{D(A_0)} = X$ и на $D(A_0)$ оператор ограничен. Докажите, что оператор A_0 можно продолжить по непрерывности на все пространство X, т.е. существует оператор $A \in \mathcal{L}(X,Y)$ такой, что $Ax = A_0x$ для любого $x \in D(A_0)$, причем $\|A\| = \|A_0\|$ и продолжение единственно.
- **10.29.** Оператор A задан формулой

$$(Ax)(t) = \int_0^1 K(t,s)x'(s) \, ds,$$

где функция K(t,s) и ее производная $K_s'(t,s)$ непрерывны на $[0,1]\times[0,1],\ D(A)=C^1[0,1],\ X=Y=C[0,1].$ Продолжите оператор A по непрерывности на C[0,1].

Тема 11. Сходимость последовательности линейных операторов

Определение 11.1. Пусть X, Y – линейные нормированные пространства. Говорят, что последовательность операторов $\{A_n\} \subset \mathcal{L}(X,Y)$ сходится к оператору $A \colon X \to Y$

✓ поточечно (или сильно), если для любого $x \in X$

$$||A_n x - Ax||_Y \xrightarrow[n \to \infty]{} 0;$$

✓ равномерно, если она сходится к A по норме, т. е.

$$||A_n - A|| \xrightarrow[n \to \infty]{} 0.$$

Если последовательность операторов $\{A_n\}$ сходится к оператору A равномерно, то она сходится к A и поточечно.

Определение 11.2. Говорят, что последовательность операторов $\{A_n\} \subset \mathcal{L}(X,Y)$ сходится (поточечно или равномерно), если существует оператор $A\colon X\to Y$, удовлетворяющий соответствующему условию из определения 11.1.

Теорема 11.1 (критерий поточечной сходимости). Π усть X – банахово пространство, Y – нормированное пространство. Последовательность операторов $\{A_n\}\subset \mathcal{L}(X,Y)$ сходится поточечно к оператору $A \in \mathcal{L}(X,Y)$ тогда и только тогда, когда

- 1) (числовая) последовательность $\{||A_n||\}$ ограничена;
- 2) найдется множество $M\subset X$ такое, что $\overline{\langle M
 angle}=X$ $u \ A_n x \xrightarrow[n \to \infty]{} Ax \ для любого <math>x \in M$ (здесь $\langle M \rangle$ – линейная оболочка M, а черта означает замыкание множества).

Пример 11.1. Сходится ли последовательность функционалов

$$f_n(x) = \int_0^1 y_n(t) x(t) dt, \qquad (11.1)$$

где

$$y_n(t) = \begin{cases} 0, & 0 \leqslant t < \frac{1}{2} - \frac{1}{n}; \\ \frac{n}{2} \left(t - \frac{1}{2} \right) + \frac{1}{2}, & \frac{1}{2} - \frac{1}{n} \leqslant t \leqslant \frac{1}{2} + \frac{1}{n}; \\ 1, & \frac{1}{2} + \frac{1}{n} < t \leqslant 1, \end{cases}$$

- а) поточечно в L[0,1]; б) поточечно в C[0,1]; в) равномерно в C[0,1]; г) равномерно в L[0,1]?

Решение. а) Пусть $x \in L[0,1]$. Проверим, что для последовательности функций $\{y_n(t) x(t)\}$ выполняются условия теоремы Лебега о предельном переходе под знаком интеграла. Функции $y_n(t) x(t)$ измеримы, имеют суммируемую мажоранту: $|y_n(t) x(t)| \leq |x(t)|$ и для всех $t \in [0,1] \lim_{n \to \infty} y_n(t) x(t) = y(t) x(t),$ где

$$y(t) = \begin{cases} 0, & 0 \leqslant t < \frac{1}{2}; \\ \frac{1}{2}, & t = \frac{1}{2}; \\ 1, & \frac{1}{2} < t \leqslant 1. \end{cases}$$

Поэтому по теореме Лебега

$$\lim_{n \to \infty} \int_0^1 y_n(t) \, x(t) \, dt = \int_0^1 y(t) \, x(t) \, dt.$$

Положим

$$f(x) = \int_0^1 y(t) x(t) dt.$$
 (11.2)

Очевидно, что $f \in (L[0,1])^*$. Таким образом, в пространстве L[0,1] последовательность $\{f_n\}$ поточечно сходится к f.

- б) Если $x \in C[0,1]$, то так же, как в предыдущем пункте, $f_n(x) \xrightarrow[n \to \infty]{} f(x)$, которая задается формулой (11.2). Этот функционал непрерывен и в пространстве C[0,1], т.е. $f \in (C[0,1])^*$. Таким образом, последовательность $\{f_n\}$ поточечно сходится к f в пространстве C[0,1].
- в) Покажем, что $\{f_n\}$ равномерно сходится к f в C[0,1]. Справедлива цепочка неравенств

$$\begin{aligned} |(f_n - f)(x)| &\leqslant \int_0^1 |y_n(t) - y(t)| \, |x(t)| \, dt \leqslant \\ &\leqslant ||x||_{C[0,1]} \cdot \int_0^1 |y_n(t) - y(t)| \, dt = \\ &= ||x||_{C[0,1]} \cdot \int_{\frac{1}{2} - \frac{1}{n}}^{\frac{1}{2} + \frac{1}{n}} |y_n(t) - y(t)| \, dt = \frac{1}{2n} \, ||x||_{C[0,1]}. \end{aligned}$$

Следовательно, $||f_n - f|| \le \frac{1}{n}$, т. е. $\{f_n\}$ равномерно сходится к f в C[0,1].

г) Если последовательность $\{f_n\}$ сходится равномерно, то ее равномерный предел должен совпадать с поточечным пределом. В пункте «а» мы доказали, что поточечно $\{f_n\}$ сходится к функционалу f, определенному формулой (11.2). Оценим

 $||f_n - f||$. Для этого рассмотрим последовательность

$$x_n(t) = \begin{cases} 0, & 0 \leqslant t < \frac{1}{2} - \frac{1}{n}; \\ n, & \frac{1}{2} - \frac{1}{n} \leqslant t \leqslant \frac{1}{2}; \\ -n, & \frac{1}{2} < t \leqslant \frac{1}{2} + \frac{1}{n}; \\ 0, & \frac{1}{2} + \frac{1}{n} < t \leqslant 1. \end{cases}$$

Ясно, что $||x_n|| = 2$ и

$$||f_n - f|| \ge \left| (f_n - f) \left(\frac{x_n}{2} \right) \right| = \int_{\frac{1}{2} - \frac{1}{n}}^{\frac{1}{2} + \frac{1}{n}} |y_n(t) - y(t)| \cdot \frac{n}{2} dt = \frac{1}{4}.$$

Следовательно, $||f_n - f|| \not\to 0$ при $n \to \infty$ и последовательность $\{f_n\}$ не сходится равномерно в пространстве L[0,1].

Отметим, что в будущем можно вычислять (оценивать) $||f_n - f||$, применяя теорему 12.4. По этой теореме

$$||f_n - f|| = ||y_n - y||_{L_{\infty}[0,1]} = \frac{1}{2}.$$

Пример 11.2. Сходится ли последовательность операторов

$$A_n x = \left(\frac{\xi_n}{n}, \frac{\xi_{n+1}}{n+1}, \dots, \frac{\xi_{2n}}{2n}, 0, 0 \dots\right), \qquad A_n : c_0 \to \ell_1,$$

поточечно? Сходится ли она равномерно?

Решение. Если последовательность операторов $\{A_n\}$ сходится к некоторому оператору A поточечно, то для всех $x \in c_0$ $\|A_n x - Ax\|_{\ell_1} \xrightarrow[n \to \infty]{} 0$. Из сходимости по норме в пространстве ℓ_1 следует покоординатная сходимость. Покоординатно $A_n x \to 0$, значит, оператор A может быть только нулевым.

Убедимся, что последовательность $\{A_n\}$ поточечно сходится к оператору A=0. Действительно,

$$||A_n x - 0x||_{\ell_1} = \sum_{k=n}^{2n} \left| \frac{\xi_k}{k} \right| \leqslant \max_{n \leqslant k \leqslant 2n} |\xi_k| \cdot \sum_{k=n}^{2n} \frac{1}{k} \leqslant$$
$$\leqslant \max_{n \leqslant k \leqslant 2n} |\xi_k| \cdot \frac{n+1}{n} \xrightarrow[n \to \infty]{} 0,$$

так как $x \in c_0$.

Если бы последовательность операторов $\{A_n\}$ сходилась к некоторому оператору B равномерно, она сходилась бы к этому же оператору поточечно. Мы уже доказали, что $\{A_n\}$ поточечно сходится к A=0, следовательно, B может быть только нулевым, но $\{A_n\}$ не сходится к нулевому оператору равномерно. Чтобы показать это, рассмотрим следующую последовательность $\{x_n\} \in c_0$:

$$x_n = (\underbrace{1, 1, \dots, 1}_{2n}, 0, 0, \dots), \quad n \in \mathbb{N}.$$

Имеем

$$||A_n - 0|| = ||A_n|| \ge ||A_n x_n|| = \sum_{k=n}^{2n} \frac{1}{k} \ge \frac{n+1}{2n} \ge \frac{1}{2}.$$

Пример 11.3. Исследовать на поточечную и равномерную сходимость последовательность функционалов $\{f_n\} \subset C^*[0,2],$

$$f_n(x) = \int_0^2 \frac{n}{n^2 t^2 + 1} x(t) dt.$$

Решение. Докажем поточечную сходимость последовательности $\{f_n\}$, используя теорему 11.1. Имеем (см. задачу 10.26)

$$||f_n|| = \int_0^2 \frac{n}{n^2 t^2 + 1} dt = \operatorname{arctg} 2n \leqslant \frac{\pi}{2}.$$

Множество многочленов плотно в C[0,2], т.е. $\overline{\langle M \rangle} = C[0,2]$, если $M = \{t^k\}_{k=0}^{\infty}$.

Пусть $k \in \mathbb{N}$. Тогда

$$f_n(t^k) = \int_0^2 \frac{nt^k}{n^2t^2 + 1} dt \leqslant \max_{t \in [0,2]} |t^{k-1}| \cdot \int_0^2 \frac{nt}{n^2t^2 + 1} dt =$$
$$= 2^{k-1} \cdot \frac{\ln(4n^2 + 1)}{2n} \xrightarrow[n \to \infty]{} 0.$$

Для k=0 имеем

$$f_n(t^0) = \int_0^2 \frac{n}{n^2 t^2 + 1} dt = \arctan 2n \xrightarrow[n \to \infty]{} \frac{\pi}{2}.$$

Таким образом, на множестве M

$$f_n(x) \xrightarrow[n \to \infty]{} f(x) = \frac{\pi}{2} x(0).$$

Согласно критерию поточечной сходимости последовательность $\{f_n\}$ поточечно сходится к f на C[0,2].

Равномерной сходимости на C[0,2] нет. Действительно, пусть

$$x_n(t) = \begin{cases} 1 - n^2 t, & 0 \le t < \frac{1}{n^2}, \\ 0, & \frac{1}{n^2} \le t \le 2. \end{cases}$$

Tогда $||x_n|| = 1$,

$$||f_n - f|| = \sup_{\|x\|=1} |f_n(x) - f(x)| \ge |f_n(x_n) - f(x_n)| =$$

$$= \left| \int_0^{\frac{1}{n^2}} \frac{n}{n^2 t^2 + 1} x_n(t) dt - \frac{\pi}{2} x_n(0) \right| =$$

$$= \left| \int_0^{\frac{1}{n^2}} \frac{n}{n^2 t^2 + 1} x_n(t) dt - \frac{\pi}{2} \right| \xrightarrow[n \to \infty]{} \frac{\pi}{2},$$

так как

$$\left| \int_0^{\frac{1}{n^2}} \frac{n}{n^2 t^2 + 1} \, x_n(t) \, dt \right| \leqslant \int_0^{\frac{1}{n^2}} \frac{n}{n^2 t^2 + 1} \, dt =$$

$$= \operatorname{arctg} nt \Big|_{0}^{\frac{1}{n^2}} = \operatorname{arctg} \frac{1}{n} \xrightarrow[n \to \infty]{} 0.$$

11.1. Доказать, что последовательность операторов

$$\{A_n\} \subset \mathcal{L}(\ell_2), \qquad A_n x = \left(\xi_1, \frac{\xi_2}{2}, \frac{\xi_3}{3}, \dots, \frac{\xi_n}{n}, 0, 0, \dots\right)$$

равномерно сходится к оператору A: $Ax = \left\{\frac{\xi_n}{n}\right\}_{n=1}^{\infty}$.

- **11.2.** Сходится ли последовательность операторов $\{A_n\}\subset \mathcal{L}(\ell_p),\ 1\leqslant p\leqslant \infty,\ A_nx=(\underbrace{0,\dots,0}_n,\xi_1,\xi_2,\dots)$ поточечно? Сходится ли она равномерно?
- **11.3.** Сходится ли последовательность операторов $\{A_n\}$, где $A_n x = (\xi_1, \xi_2, \dots, \xi_n, 0, 0, \dots)$, поточечно, если а) $\{A_n\} \subset \mathcal{L}(\ell_p)$; б) $\{A_n\} \subset \mathcal{L}(c_0)$; в) $\{A_n\} \subset \mathcal{L}(c)$? Сходится ли $\{A_n\}$ равномерно?
- **11.4.** Пусть $\alpha = \{\alpha_n\}_{n=1}^{\infty} \in \ell_{\infty},$ $A_n x = (\alpha_1 \xi_1, \alpha_2 \xi_2, \dots, \alpha_n \xi_n, 0, 0, \dots).$

При каких α последовательность $\{A_n\}$ сходится равномерно в пространстве X?

- а) $X=\ell_p,\ 1\leqslant p\leqslant \infty;$ б) X=c; в) $X=c_0.$ При каких α последовательность $\{A_n\}$ сходится в пространстве X поточечно?
- 11.5. Доказать, что последовательность операторов

$$\{A_n\} \subset \mathcal{L}(C[0,1]), \quad (A_n x)(t) = \int_0^t \sum_{k=0}^n \frac{s^k}{k!} x(s) \, ds$$

равномерно сходится к оператору A:

$$(Ax)(t) = \int_0^t e^s x(s) \, ds.$$

11.6. Пусть $A_n : D(A_n) \subset C[0,1] \to C[0,1], \ D(A_n) = C^1[0,1],$ $\mathbb{P} = \mathbb{R}$ и

$$(A_n x)(t) = n \left[x \left(\left(1 - \frac{1}{n} \right) \left(t + \frac{1}{n} \right) \right) - x \left(\left(1 - \frac{1}{n} \right) t \right) \right].$$

Доказать, что

- а) A_n линейный непрерывный оператор при любом $n \in \mathbb{N}$;
- б) последовательность операторов $\{A_n\}$ поточечно сходится к оператору $D,\ (Dx)(t)=x'(t);$
- в) последовательность операторов $\{A_n\}$ не сходится равномерно.
- **11.7.** Сходится ли последовательность $\{A_n\} \subset \mathcal{L}(L_1[0,2]),$

$$(A_n x)(t) = \begin{cases} x(t), & 0 \le t \le 1 - \frac{1}{n}, \\ 0, & 1 - \frac{1}{n} < t \le 2, \end{cases}$$

равномерно? Сходится ли $\{A_n\}$ поточечно?

- **11.8.** \star Доказать, что последовательность операторов $(A_n x)(t) = x\left(t^{\frac{n+1}{n}}\right)$ в пространстве C[0,1] поточечно сходится к единичному оператору, но не сходится равномерно.
- **11.9.** При каких α последовательность функционалов $\{f_n\} \subset (C[0,1])^*,$

$$f_n(x) = \int_0^1 n^{\alpha} t^n x(t) dt,$$

сходится равномерно? При каких α последовательность $\{f_n\}$ сходится поточечно?

11.10. Выяснить характер сходимости последовательности функционалов $\{f_n\}$:

a)
$$f_n(x) = \int_{-\pi}^{\pi} x(t) \cos nt \, dt$$
, $X = L_2[-\pi, \pi]$;

6)
$$f_n(x) = x\left(\frac{1}{n}\right), \quad X = C[0,1];$$

B)
$$f_n(x) = \int_0^1 (t^n - t^{n+1})x(t) dt$$
, $X = L_p[0,1]$;

r)
$$f_n(x) = \int_{-1}^{1} x(t) \arctan dt$$
, $X = C[-1, 1]$;

д)
$$f_n(x) = \int_{-1}^{1} x(t) \arctan dt$$
, $X = L[-1, 1]$.

11.11. Пусть X – одно из пространств ℓ_p ($1 \le p \le \infty$), c, c_0 . В каких пространствах последовательность $\{f_n\} \subset X^*$ сходится равномерно, в каких – поточечно, если

a)
$$f_n(x) = \xi_n;$$
 6) $f_n(x) = \sum_{k=1}^n \frac{\xi_k}{k}$?

Тема 12. Линейные непрерывные функционалы

Теорема 12.1 (теорема Хана – Банаха. Продолжение линейного непрерывного функционала с сохранением нормы). Пусть $\langle X, \| \cdot \| \rangle$ – линейное нормированное пространство над полем \mathbb{P} , X_0 – линейное многообразие в X и f_0 – линейный непрерывный функционал на $\langle X_0, \| \cdot \| \rangle$. Тогда f_0 может быть продолжен до некоторого линейного непрерывного функционала f на X c сохранением нормы, m. e. max, что

$$||f_0||_{X_0^*} = ||f||_{X^*}.$$

Теорема 12.2 (геометрический смысл нормы линейного функционала). Пусть X – нормированное пространство. Если $f \in X^*, f \neq 0$, то

$$\rho(0, f^{-1}(1)) = \frac{1}{\|f\|}.$$

Определение 12.1. Пусть X — линейное нормированное пространство, $f \in X^*, \ c \in \mathbb{P}$. Γ иперплоскостью в X называется множество

$$f^{-1}(c) = \{x \in X : f(x) = c\}.$$

Геометрическая интерпретация теоремы Хана — Банаха. Уравнение $f_0(x)=1$ задает в пространстве $\langle X_0,\|\cdot\|\rangle$ гиперплоскость L_0 , которая является плоскостью в $\langle X,\|\cdot\|\rangle$ и лежит на расстоянии $1/\|f_0\|$ от нуля. Продолжая функционал f_0 без увеличения нормы на все пространство $\langle X,\|\cdot\|\rangle$, мы получаем функционал $f\in X^*$, порождающий гиперплоскость $L=f^{-1}(1)$ в X. При этом L содержит в себе L_0 и тоже лежит на расстоянии $1/\|f_0\|$ от нуля в X.

Теорема 12.3. Пусть $X=c_0$ или $X=c,\ Y=\ell_1;$ или $X=\ell_p,\ Y=\ell_q\ \Big(1\leqslant p<\infty, \frac{1}{p}+\frac{1}{q}=1\Big).$ Справедливы следующие утверждения.

Для любого $f \in X^*$ существует единственный элемент $y = \{\eta_k\} \in Y$ такой, что для всех $x = \{\xi_k\} \in X$

$$f(x) = \sum_{k=1}^{\infty} \xi_k \eta_k. \tag{12.1}$$

Обратно, любой элемент $y \in Y$ порождает функционал $f \in X^*$ по формуле (12.1). В обоих случаях $||f|| = ||y||_Y$.

Теорема 12.4. Для любого $f \in (L_p[a,b])^*$ $(1 \leqslant p < \infty)$ существует единственный элемент $y \in L_q[a,b]$ $\left(\frac{1}{p} + \frac{1}{q} = 1\right)$ такой, что

$$f(x) = \int_{a}^{b} x(t)y(t) dt, \qquad x \in L_{p}[a, b].$$
 (12.2)

Обратно, любой элемент $y \in L_q[a,b]$ порождает функционал $f \in (L_p[a,b])^*$ по формуле (12.2). В обоих случаях $\|f\| = \|y\|_{L_q[a,b]}$.

Кратко теоремы 12.3 и 12.4 можно сформулировать так:

$$(c_0)^* \cong \ell_1;$$

$$\checkmark$$
 $c^* \cong \ell_1;$

$$\checkmark (\ell_p)^* \cong \ell_q, \ 1 \leqslant p < \infty, \ \frac{1}{p} + \frac{1}{q} = 1;$$

✓
$$(L_p[a,b])^* \cong L_q[a,b], 1 \leqslant p < \infty, \frac{1}{p} + \frac{1}{q} = 1.$$

Символ \cong означает изоморфизм нормированных пространств, т. е. существование между этими пространствами линейной биекции, сохраняющей нормы.

Нетрудно проверить, что
$$(\ell_p^n)^* \cong \ell_q^n, \ 1 \leqslant p \leqslant \infty, \ \frac{1}{p} + \frac{1}{q} = 1.$$

Теорема 12.5. Пусть H – гильбертово пространство. Для любого $f \in H^*$ существует единственный элемент $y \in H$ такой, что

$$f(x) = (x, y), \qquad x \in H.$$
 (12.3)

Обратно, любой элемент $y \in H$ порождает функционал $f \in H^*$ по формуле (12.3). В обоих случаях $||f|| = ||y||_H$.

Изоморфизм au между H^* и H будет сопряженно-линейным, т. е.

$$\forall \ \alpha, \beta \in \mathbb{P} \ \forall \ \varphi, \psi \in H^* \quad \tau(\alpha \varphi + \beta \psi) = \overline{\alpha} \tau(\varphi) + \overline{\beta} \tau(\psi).$$

Определение 12.2. Пусть X — линейное нормированное пространство, $\{x_n\} \subset X, x \in X$. Последовательность элементов $\{x_n\}$ называется

- \checkmark сильно сходящейся κx , если она сходится κx по норме;
- \checkmark слабо сходящейся κ x, если для любого $f \in X^*$ числовая последовательность $\{f(x_n)\}$ сходится κ f(x).

Определение 12.3. Пусть X — линейное нормированное пространство, $\{f_n\} \subset X^*, f \in X^*, X^{**} = (X^*)^*$ — второе сопряженное к X.

Последовательность функционалов $\{f_n\}$ называется

✓ сильно сходящейся κf , если она сходится κf по норме;

- ✓ *слабо сходящейся κf , если она сходится κf поточечно;
- ✓ слабо сходящейся κ f, если для любого $\mathcal{F} \in X^{**}$ числовая последовательность $\{\mathcal{F}(f_n)\}$ сходится κ $\mathcal{F}(f)$.

Определение 12.4. Пусть X — линейное нормированное пространство, f — линейный функционал, $f \colon D(f) \subset X \to \mathbb{P}$. Множество $f^{-1}(0) = \{x \in D(f) \colon f(x) = 0\}$ называется ядром функционала f и обозначается $\ker f$. Коразмерностью ядра функционала f (codim $\ker f$) называется размерность алгебраического дополнения ядра функционала в линейном пространстве D(f).

Пример 12.1. Пусть
$$X = \mathbb{R}^2, \ x = (\xi_1, \xi_2) \in X,$$

$$||x|| = \max\{|\xi_1|, |\xi_2|\}; \qquad X_0 = \{x \in \mathbb{R}^2 : \xi_2 = 0\};$$

функционал f_0 задан на подпространстве X_0 формулой $f_0(x)=2\xi_1$. Найти функционал f, который является продолжением функционала f_0 с X_0 на X с сохранением нормы.

Решение. 1. Найдем норму искомого функционала:

$$||f|| = ||f_0|| = \sup_{\substack{x \in X_0 \\ x \neq 0}} \frac{|f_0(x)|}{||x||} = \sup_{\substack{\xi_1 \in \mathbb{R} \\ \xi_1 \neq 0}} \frac{|2\xi_1|}{\max\{|\xi_1|, |0|\}} = 2.$$

Известно, что расстояние от гиперплоскости

$$f^{-1}(1) = \{x \in X : f(x) = 1\}$$
 (12.4)

до начала координат выражается формулой (см. задачу 12.2)

$$\rho(0, f^{-1}(1)) = \frac{1}{\|f\|} = \frac{1}{2}.$$
(12.5)

2. Выберем базис в X:

$$e_1 = (1,0), \qquad e_2 = (0,1).$$

Любой элемент $x = (\xi_1, \xi_2) \in X$ можно представить в виде

$$x = \xi_1 e_1 + \xi_2 e_2.$$

Тогда любой линейный функционал, определенный на X, имеет вид

$$f(x) = \xi_1 f(e_1) + \xi_2 f(e_2) = \xi_1 \eta_1 + \xi_2 \eta_2.$$

Таким образом, чтобы найти f, надо найти η_1 и η_2 . Согласно (12.4), гиперплоскость $f^{-1}(1)$ задается уравнением $\xi_1\eta_1 + \xi_2\eta_2 = 1$. Следовательно, чтобы определить η_1 и η_2 , достаточно построить гиперплоскость, обладающую свойством (12.5) и содержащую $f_0^{-1}(1)$.

3. Справедливо следующее включение:

$$f_0^{-1}(1) \subset f^{-1}(1)$$
.

Найдем $f_0^{-1}(1)$, т.е. точку $x_0=(\xi_1^0,\xi_2^0)\in X_0$ со свойством $f_0(x_0)=1$. Имеем

$$f_0(x_0) = 2\xi_1^0 = 1, \qquad \xi_2^0 = 0.$$

Таким образом, $x_0 = \left(\frac{1}{2}, 0\right)$. При этом

$$||x_0|| = \max\left\{ \left| \frac{1}{2} \right|, |0| \right\} = \frac{1}{2},$$

т. е. $x_0 \in S\left[0, \frac{1}{2}\right]$, а точнее, $x_0 \in S\left[0, \frac{1}{2}\right] \cap f^{-1}(1)$.

4. Уравнение $\xi_1\eta_1+\xi_2\eta_2=1$ на плоскости задает прямую. Если прямая, проходящая через точку x_0 , пересекает шар $B\left(0,\frac{1}{2}\right)$, расстояние от тех ее точек, которые находятся внутри шара, до начала координат меньше, чем $\frac{1}{\|f_0\|}$. Таким образом, гиперплоскость $f^{-1}(1)$ не должна пересекать шар $B\left(0,\frac{1}{2}\right)$. В данном случае гиперплоскость – это прямая

линия, касательная к шару $B\left[0,\frac{1}{2}\right]$ в точке x_0 ; ее уравнение мы можем вывести из геометрических соображений. Оно имеет вид $\xi_1=\frac{1}{2}$ или $2\xi_1=1$. Следовательно (см. (12.4)), $f(x)=2\xi_1$, $x\in X$.

Пример 12.2. Пусть
$$X = \mathbb{R}^2$$
, $x = (\xi_1, \xi_2) \in X$, $||x|| = 2|\xi_1| + 3|\xi_2|$; $X_0 = \{x \in \mathbb{R}^2 : \xi_1 = 0\}$;

функционал f_0 задан на подпространстве X_0 формулой $f_0(x) = \xi_2$. Найти функционал f, который является продолжением функционала f_0 с X_0 на X с сохранением нормы.

Решение. Найдем норму искомого функционала:

$$||f|| = ||f_0|| = \sup_{\substack{x \in X_0 \\ x \neq 0}} \frac{|f_0(x)|}{||x||} = \sup_{\substack{\xi_2 \in \mathbb{R} \\ \xi_2 \neq 0}} \frac{|\xi_2|}{2|0| + 3|\xi_2|} = \frac{1}{3}.$$

Далее, рассуждая как в предыдущей задаче, найдем $f_0^{-1}(1)$, т. е. точку $x_0 = (\xi_1^0, \xi_2^0) \in X_0$ со свойством $f_0(x_0) = 1$. Имеем

$$f_0(x_0) = \xi_2^0 = 1, \qquad \xi_1^0 = 0.$$

Таким образом, $x_0 = (0, 1)$. При этом

$$||x_0|| = 2 \cdot |0| + 3 \cdot |1| = 3,$$

т. е. $x_0 \in S[0,3]$, а точнее, $x_0 \in S[0,3] \cap f^{-1}(1)$.

В пространстве с заданной нормой через точку $x_0 = (0,1)$ можно провести много прямых, не пересекающих шар B(0,3). Поэтому продолжение функционала f_0 в данном случае не единственно. Из геометрических соображений выводим, что множество таких прямых описывается уравнением

$$\xi_2 = k\xi_1 + 1, \qquad -\frac{2}{3} \leqslant k \leqslant \frac{2}{3}.$$

Следовательно, искомый функционал имеет вид

$$f(x) = -k\xi_1 + \xi_2, \qquad -\frac{2}{3} \leqslant k \leqslant \frac{2}{3}.$$

- **12.1.** Пусть $X = \mathbb{R}^2$. Описать $Y \cong X^*$, если
 - a) $||x|| = \sqrt{a^2 \xi_1^2 + b^2 \xi_2^2}$ (a > 0, b > 0);
 - 6) $||x|| = \max\{|a\xi_1|, |b\xi_2|\}$ (a > 0, b > 0);
 - B) $||x|| = |a\xi_1| + |b\xi_2|$ (a > 0, b > 0);
 - $\Gamma) ||x|| = |2\xi_1 \xi_2| + |2\xi_1 + \xi_2|;$
 - д) $||x|| = \max\{|\xi_1 3\xi_2|, |\xi_2|\};$
 - e) $||x|| = \sqrt{2|\xi_1 \xi_2|^2 + |\xi_1 + \xi_2|^2}$.
- **12.2.** Путь X линейное нормированное пространство, $f \in X^*, \ f \neq 0, \ C \in \mathbb{P}$. Доказать, что

$$\rho(x_0, f^{-1}(C)) = \frac{|f(x_0) - C|}{\|f\|}.$$

- **12.3.** Найти продолжение линейного непрерывного функционала с одномерного подпространства в двумерном вещественном нормированном пространстве с сохранением нормы:
 - 1) $||x|| = \sqrt{8\xi_1^2 + \frac{1}{4}\xi_2^2}, \quad X_0 = \{x \in \mathbb{R}^2 : \xi_2 = 2\xi_1\},$ $f_0(x) = -6\xi_1;$
 - 2) $||x|| = \max\{|\xi_1|, |\xi_1 2\xi_2|\}, \quad f_0(x) = \xi_2,$
 - a) $X_0 = \{x \in \mathbb{R}^2 : \xi_2 = 3\xi_1\};$
 - 6) $X_0 = \{x \in \mathbb{R}^2 : \xi_2 = \xi_1\};$
 - 3) $||x|| = |\xi_1 + \xi_2| + |2\xi_1 4\xi_2|, \quad f_0(x) = 9\xi_1,$
 - a) $X_0 = \{x \in \mathbb{R}^2 : \xi_2 = 0\};$
 - 6) $X_0 = \{x \in \mathbb{R}^2 : \xi_1 2\xi_2 = 0\}.$
- **12.4.** Указать условие единственности продолжения (с сохранением нормы) функционала с одномерного подпространства двумерного вещественного нормированного пространства.

- **12.5.** Доказать, что норма линейного непрерывного функционала достижима тогда и только тогда, когда достижимо расстояние от нуля до гиперплоскости $f^{-1}(1)$.
- **12.6.** Пусть $f \in X^*$, $f \neq 0$. Доказать, что $\operatorname{Ker} f$ замкнутое линейное многообразие, codim $\operatorname{Ker} f = 1$.
- **12.7.** Пусть f неограниченный линейный функционал, заданный на всюду плотном линейном подмножестве нормированного пространства X. Доказать, что $\ker f$ плотно в X, $\operatorname{codim} \operatorname{Ker} f = 1$ на D(f).
- **12.8.** В пространствах C[0,3] и $L_1[0,3]$ найти расстояние от элемента x_0 до гиперплоскости M. Достижимо ли это расстояние?

a)
$$M = \left\{ x : \int_0^3 x(t) dt = 1 \right\}, \quad x_0 = 2^t;$$

6) $M = \left\{ x : \int_0^2 t \, x(t) \, dt - \int_2^3 t \, x(t) \, dt = 0 \right\}, \quad x_0 = t^2.$

12.9. В линейном нормированном пространстве X найти расстояние от элемента x_0 до множества M:

a)
$$X = L_2[0, 1], \quad M = \left\{ x(t) : \int_0^1 t^{-\frac{1}{3}} x(t) dt = 0 \right\},$$

 $x_0(t) = t;$

6)
$$X = C[0,1], M = \begin{cases} x(t) : x(0) + \int_0^1 x(t) dt = 2 \end{cases}, x_0(t) = \cos t;$$

B)
$$X = C[0,1], \quad M = \{x(t): x(0) = x(1)\},$$
 $x_0(t) = \sin t;$

r)
$$X = L_1 \left[-\frac{\pi}{3}, \frac{\pi}{3} \right], \quad x_0(t) = t + 1,$$

$$M = \left\{ x(t) : \int_{-\frac{\pi}{2}}^{\frac{\pi}{3}} x(t) \sin t \, dt > 1 \right\};$$

д)
$$X = \ell_1, \quad M = \left\{ x : \sum_{n=1}^{\infty} \frac{n}{n+1} \, \xi_n \leqslant \frac{1}{2} \right\},$$

$$x_0 = \left\{ \frac{1}{n^2} \right\}_{n=1}^{\infty};$$

e)
$$X = c_0, M = \left\{ x : \sum_{n=1}^{\infty} \frac{(-1)^n}{2^n} \xi_n = 1 \right\},$$

 $x_0 = \left\{ \frac{1}{3^n} \right\}_{n=1}^{\infty}.$

- **12.10.** Исследовать на сильную и слабую сходимость в c_0 и ℓ_p последовательность элементов $x_n = \{\delta_{nk}\}_{n=1}^{\infty}$.
- **12.11.** При каких a > 0 последовательность $\{t^n\}_{n=1}^{\infty}$ сходится сильно в C[0,a], при каких слабо?
- **12.12.** Показать, что последовательность $x_n(t) = \sin nt$ не сходится сильно в $L_2[0,\pi]$ и в $C[0,\pi]$. Сходится ли она слабо?
- 12.13. Доказать, что последовательность элементов

$$x_n(t) = \begin{cases} n, & t \in \left[0, \frac{1}{n^p}\right], \\ 0, & t \in \left(\frac{1}{n^p}, 1\right], \end{cases}$$

слабо сходится в $L_p[0,1], 1 , а сильно не сходится.$

12.14. Исследовать на сильную, слабую и *слабую сходимость последовательность функционалов $f_n \in X^*$, если

a)
$$X = L_2[-\pi, \pi], \quad f_n(x) = \int_{-\pi}^{\pi} x(t)e^{int}dt;$$

6)
$$f_n(x) = \xi_n$$
, $X = c_0$ u $X = \ell_p$ $(1 ;$

B)
$$f_n(x) = \sum_{n=1}^n \frac{\xi_n}{n}, \quad X = \ell_p \quad (1$$

- **12.15.** Пусть $\{f_n\} \subset X^*$. Указать связь между различными видами сходимости: сильная, слабая и *слабая. Показать, что они, вообще говоря, неэквивалентны.
- **12.16.** Пусть $X = C^1[-1,1]$, $\varepsilon > 0$, $f_{\varepsilon}(x) = \frac{1}{2\varepsilon} (x(\varepsilon) x(-\varepsilon))$, f(x) = x'(0). Доказать, что f_{ε} *слабо сходится к f при $\varepsilon \to 0$, а сильно не сходится.

Тема 13. Сопряженные операторы

Пусть X – линейное нормированное пространство, $x^* \in X^*$, значение функционала x^* на элементе x будем обозначать $\langle x, x^* \rangle$, т. е. $\langle x, x^* \rangle \equiv x^*(x)$.

Определение 13.1. Пусть X, Y – линейные нормированные пространства, $A \in \mathcal{L}(X,Y)$. Сопряженным κ A называется оператор $A^* \colon Y^* \to X^*$, который функционалу $y^* \in Y^*$ ставит в соответствие функционал $(A^*y^*) \in X^*$ по правилу

$$\langle x, A^* y^* \rangle = \langle Ax, y^* \rangle, \quad x \in X.$$
 (13.1)

Известно, что $A^* \in \mathcal{L}(Y^*, X^*)$ и $||A^*|| = ||A||$.

Определение 13.2. Пусть H_1, H_2 – гильбертовы пространства, $A \in \mathcal{L}(H_1, H_2)$. Эрмитово сопряженным к A называется оператор $A^{\otimes} \colon H_2 \to H_1$, действующий по правилу

$$(x, A^{\otimes}y) = (Ax, y), \quad x \in H_1, \ y \in H_2.$$
 (13.2)

Если $A \in \mathcal{L}(H_1)$ совпадает с A^{\otimes} , то A называется самосопряженным или эрмитовым.

Известно, что $A^{\otimes} \in \mathcal{L}(H_2, H_1)$ и $||A^{\otimes}|| = ||A||$.

Подчеркнем, что в отличие от сопряженного оператора эрмитово сопряженный оператор действует в исходных пространствах H_2 , H_1 , а не в сопряженных к ним.

При решении задач удобно работать не в самих сопряженных пространствах, а в изоморфных им пространствах функций или последовательностей, см. теоремы 12.3, 12.4. Пусть μ изоморфизм X^* на X', а ν – изоморфизм Y^* на Y'. Оператору $A^*\colon Y^*\to X^*$ поставим в соответствие оператор $A'\colon Y'\to X'$ по формуле

$$A'y' = \mu A^* \nu^{-1} y', \quad y' \in Y'.$$

Положим $y' = \nu y^*$, тогда $A'y' = \mu A^*y^*$ и

$$A^*y^* = \mu^{-1}A'\nu y^*, \quad y^* \in Y^*,$$

т. е. $A^* = \mu^{-1} A' \nu$.

Если H_1 , H_2 – гильбертовы пространства, $\widetilde{\mu}$ – сопряженнолинейная изометрия H_1^* на H_1 , описанная в теореме 12.5, а $\widetilde{\nu}$ – соответствующая сопряженно-линейная изометрия H_2^* на H_2 , то $A^* = \widetilde{\mu}^{-1} A^{\otimes} \widetilde{\nu}$.

 $lue{}$ Ответы к задачам даны в терминах A' и X', Y', соответствующие изоморфизмы μ , ν описаны в теоремах 12.3, 12.4. В том случае, когда оба пространства гильбертовы, в ответе приведен эрмитово сопряженный оператор.

Пример 13.1. Пусть $A\colon L_5[0,1]\to L_3[0,1],\ (Ax)(t)=e^tx(t).$ Найти сопряженный оператор.

Решение. Оператор A^* действует из $(L_3[0,1])^*$ в $(L_5[0,1])^*$. По теореме 12.4 пространство $(L_5[0,1])^*$ изоморфно пространству $L_{5/4}[0,1]$ $\left(\frac{1}{5}+\frac{4}{5}=1\right)$, а пространство $(L_5[0,1])^*$ – пространству $L_{5/4}[0,1]$ $\left(\frac{1}{5}+\frac{4}{5}=1\right)$, т. е. существуют линейные изометрии ν , μ , переводящие $(L_3[0,1])^*$ на $L_{3/2}[0,1]$ и $(L_5[0,1])^*$ на $L_{5/4}[0,1]$ соответственно. Таким образом, можно изобразить схему:

$$x \in L_{5}[0,1] \xrightarrow{A} L_{3}[0,1] \ni Ax$$

$$x^{*} = A^{*}y^{*} \in (L_{5}[0,1])^{*} \xleftarrow{A^{*}} (L_{3}[0,1])^{*} \ni y^{*}$$

$$\downarrow \mu \qquad \qquad \downarrow \nu$$

$$\mu A^{*}y^{*} = A'y \in L_{5/4}[0,1] \xleftarrow{A'} L_{3/2}[0,1] \ni \nu y^{*} = y$$

Сопряженный оператор определяется с помощью равенства (13.1). Зная общий вид линейного функционала в пространстве $L_3[0,1]$, можем записать

$$\langle Ax, y^* \rangle = \int_0^1 (Ax)(t) \cdot (\nu y^*)(t) dt = \int_0^1 e^t x(t) y(t) dt.$$
 (13.3)

С другой стороны, в пространстве $L_5[0,1]$

$$\langle x, A^* y^* \rangle = \int_0^1 x(t)(\mu A^* y^*)(t) dt = \int_0^1 x(t)(A'y)(t) dt.$$
 (13.4)

Подставив в (13.1) правые части (13.3) и (13.4), для всех $x \in X$ получим равенство

$$\int_0^1 x(t)e^t y(t) dt = \int_0^1 x(t)(A'y)(t) dt.$$

Следовательно,

$$(A'y)(t) = e^t y(t).$$

Пример 13.2. Пусть $A: \ell_2 \to \ell_2^3, Ax = (\xi_1 - \xi_2, \xi_5 + 3\xi_3, \xi_6),$ $x = (\xi_1, \xi_2, \ldots)$. Найти сопряженный оператор.

Решение. Пространства ℓ_2 и ℓ_2^3 являются гильбертовыми, поэтому ищем эрмитово сопряженный оператор A^{\otimes} . Схема в этом случае имеет вид

$$x = (\xi_1, \xi_2, \dots) \in \quad \ell_2 \quad \xrightarrow{A} \quad \ell_2^3 \quad \ni Ax = (\mu_1, \mu_2, \mu_3)$$
$$(\nu_1, \nu_2, \dots) = A^{\otimes} y \in \quad \ell_2 \quad \xleftarrow{A^{\otimes}} \quad \ell_2^3 \quad \ni y = (\eta_1, \eta_2, \eta_3).$$

Применяем формулу (13.2):

$$(Ax,y) = \sum_{k=1}^{3} \mu_k \overline{\eta_k} = (\xi_1 - \xi_2) \overline{\eta_1} + (\xi_5 + 3\xi_3) \overline{\eta_2} + \xi_6 \overline{\eta_3} =$$

$$= \xi_1 \overline{\eta_1} + \xi_2 \overline{(-\eta_1)} + \xi_3 \overline{3\eta_2} + \xi_5 \overline{\eta_2} + \xi_6 \overline{\eta_3} =$$

$$= \sum_{k=1}^{\infty} \xi_k \overline{\nu_k} = (x, A^{\otimes} y).$$

Таким образом,

$$A^{\otimes}y = (\eta_1, -\eta_1, 3\eta_2, 0, \eta_2, \eta_3, 0, 0, \ldots).$$

Пример 13.3. Пусть $A \colon L_2(\mathbb{R}) \to L_2(\mathbb{R}), (Ax)(t) = x(t+t_0), t_0 \in \mathbb{R}$. Найти сопряженный оператор. Является ли A самосопряженным?

Решение. Пространство $L_2(\mathbb{R})$ является гильбертовым. В этом случае ищем эрмитово сопряженный оператор $A^{\otimes} \colon L_2(\mathbb{R}) \to L_2(\mathbb{R})$ по формуле (13.2):

$$(Ax,y) = \int_{-\infty}^{\infty} (Ax)(t) \cdot \overline{y(t)} dt = \int_{-\infty}^{\infty} x(t+t_0) \overline{y(t)} dt =$$
$$= \int_{-\infty}^{\infty} x(t) \overline{y(t-t_0)} dt = (x, A^{\otimes}y) = \int_{-\infty}^{\infty} x(t) \overline{(A^{\otimes}y)(t)} dt.$$

Таким образом,

$$(A^{\otimes}y)(t) = y(t - t_0).$$

æ

Если $t_0 \neq 0$, то $A^{\otimes} \neq A$ и A – несамосопряженный.

Пример 13.4. Пусть оператор A действует из пространства $L_2[0,1]$ в пространство $L_2[1,3]$ по правилу

$$(Ax)(t) = \int_0^1 (t + e^s)x(s) ds.$$

Найти сопряженный оператор.

Решение. Эрмитово сопряженный оператор A находим по формуле (13.2). Он действует из пространства $L_2[1,3]$ в $L_2[0,1]$. Пусть $x \in L_2[0,1]$, а $y \in L_2[1,3]$. Имеем с использованием теоремы Фубини [4, гл. V, § 6, теорема 5]

$$(Ax,y) = \int_{1}^{3} (Ax)(s) \cdot \overline{y(s)} \, ds = \int_{1}^{3} \left(\int_{0}^{1} (s+e^{\tau})x(\tau) \, d\tau \right) \overline{y(s)} \, ds =$$

$$= \int_{1}^{3} \left(\int_{0}^{1} (s+e^{\tau})x(\tau) \overline{y(s)} \, d\tau \right) \, ds =$$

$$= \int_{0}^{1} \left(\int_{1}^{3} (s+e^{\tau})x(\tau) \overline{y(s)} \, ds \right) \, d\tau =$$

$$= \int_{0}^{1} x(\tau) \overline{\left(\int_{1}^{3} (s+e^{\tau})y(s) \, ds \right)} \, d\tau = (x, A^{\otimes}y) =$$

$$= \int_{0}^{1} x(\tau) \overline{(A^{\otimes}y)(\tau)} \, d\tau.$$

Отсюда

$$(A^{\otimes}y)(t) = \int_{1}^{3} (s+e^{t})y(s) ds.$$

В задачах **13.1–13.20** найти сопряженный оператор. Выяснить, является ли исходный оператор самосопряженным в случае, если он действует в гильбертовых пространствах.

13.1.
$$A: \ell_2 \to \ell_2^2$$
, $Ax = (\xi_1 - \xi_2, \xi_5 + 3\xi_3)$.

13.2.
$$A: \ell_2 \to \ell_2, \quad Ax = (\xi_2, \xi_4, \xi_6, 0, 0, \ldots).$$

13.3.
$$A: L_2[0,1] \to L_2[-1,0], \quad Ax(t) = \int_0^1 e^{t\pm s} x(s) \, ds.$$

13.4.
$$A, B : \ell_2 \to \ell_2,$$

a) $Ax = (0, \xi_1, \xi_2, \xi_3, \ldots);$ 6) $Bx = (\xi_2, \xi_3, \xi_4, \ldots).$

13.5.
$$A: \ell_2 \to \ell_2, \quad Ax = \{\alpha_k \xi_k\}_{k=1}^{\infty}, \quad |\alpha_k| \leqslant c.$$

13.6.
$$A: \ell_2 \to \ell_2,$$

$$Ax = \left(2\xi_3 - \xi_1, \xi_2 + 4\xi_1, 6\xi_1, \frac{3}{4}\xi_4, \frac{4}{5}\xi_5, \dots, \frac{n}{n+1}\xi_{n+1}, \dots\right).$$

13.7.
$$A: L_2[-3,3] \rightarrow L_2[-3,3], Ax(t) = \int_t^3 (4st - 5s^2)x(s) ds.$$

13.8.
$$A: \ell_2 \to c_0, Ax = x.$$

13.9.
$$A: \ell_1 \to \ell_1, \quad Ax = (\xi_1 + \xi_2, \xi_3 + \xi_4, \xi_5 + \xi_6, \ldots).$$

13.10.
$$A: L_2[0,1] \to L_2[0,1], \quad Ax(t) = e^{it}x(t).$$

13.11.
$$A: L_3[0,1] \to L_5[0,1], \quad Ax(t) = \int_0^t ts^2 x(s) \, ds.$$

13.12.
$$A: L_2\left[0, \frac{\pi}{2}\right] \to L_2\left[0, \frac{\pi}{2}\right], \quad Ax(t) = (3 + \cos 2t)x(t).$$

13.13.
$$A: \ell_p^n \to \ell_q^m, Ax = \left\{ \sum_{\ell=1}^n a_{k\ell} \xi_\ell \right\}_{k=1}^m.$$

13.14.
$$Ax = (\alpha_n \xi_n, \alpha_{n+1} \xi_{n+1}, \ldots), \{\alpha_k\} \in m,$$

a) $A: \ell_1 \to \ell_4;$ b) $A: \ell_1 \to c_0.$

13.15. $A: \ell_2 \to \ell_3, Ax = (0, 0, 0, \xi_4, \xi_5, \xi_6, \ldots).$

13.16.
$$Ax = \left\{ \sum_{\ell=1}^{5} \left(2^{i}k + (2+i)\ell \right) \xi_{\ell} \right\}_{k=1}^{3},$$

a) $A: \ell_{3}^{5} \to \ell_{5}^{3};$ 6) $A: \ell_{2}^{5} \to \ell_{2}^{3}.$

13.17.
$$A: L_3[0,1] \to L_3[0,1], (Ax)(t) = x(\sqrt{t}).$$

13.18.
$$A: L_4[1,2] \to L_2[2,3], (Ax)(t) = \cos(\pi t) \int_1^2 x(s) ds.$$

13.19.
$$A: L_2(\mathbb{R}) \to L_2(\mathbb{R}), (Ax)(t) = e^{it}x(3t-2).$$

- **13.20.** $A: \ell_1 \to \ell_2, Ax = x.$
- **13.21.** Пусть $A, A_0 \in \mathcal{L}(X, Y), B, B_0 \in \mathcal{L}(H_1, H_2), C \in \mathcal{L}(Z, X),$ $D \in \mathcal{L}(H_3, H_1),$ пространства H_1, H_2, H_3 гильбертовы. Докажите, что

$$\begin{split} (\lambda A)^* &= \lambda A^*, & (\lambda B)^\otimes &= \overline{\lambda} B^\otimes, \\ (A^{-1})^* &= (A^*)^{-1}, & (B^{-1})^\otimes &= (B^\otimes)^{-1} \\ (\text{если } \exists \, A^{-1} \in \mathcal{L}(Y,X), \, \exists \, B^{-1} \in \mathcal{L}(H_2,H_1)), \\ (A+A_0)^* &= A^* + A_0^*, & (B+B_0)^\otimes &= B^\otimes + B_0^\otimes, \\ (AC)^* &= C^*A^*, & (BD)^\otimes &= D^\otimes B^\otimes. \end{split}$$

Тема 14. Обратные операторы

Определение 14.1. Пусть X, Y – линейные нормированные пространства, оператор $A \colon D(A) \subset X \to Y$ называется *обратимым*, если для любого $y \in Im(A)$ уравнение Ax = y имеет единственное решение.

Если A обратим, то каждому $y \in Im(A)$ можно поставить в соответствие единственный элемент $x \in D(A)$, являющийся решением уравнения Ax = y. Оператор, осуществляющий это соответствие, называется обратным κA и обозначается A^{-1} .

Линейный оператор A, действующий из X в Y, обратим тогда и только тогда, когда

$$\operatorname{Ker} A = \{0\},$$
 (14.1)

где $\operatorname{Ker} A = \{x \in X \colon Ax = 0\}$ – ядро оператора A.

Нетрудно проверить, что если A – линейный оператор и A^{-1} – обратный к A, то A^{-1} также линеен.

Теорема 14.1 (теорема Банаха о непрерывности обратного оператора). Пусть X и Y – банаховы пространства, $A \in \mathcal{L}(X,Y), A$ – биекция X на Y. Тогда существует обратный оператор A^{-1} и он непрерывен.

Пример 14.1. Выяснить, обратим ли оператор A, действующий в пространстве X. Если обратим, найти A^{-1} .

a)
$$X = C[0,1], \quad (Ax)(t) = \int_0^t x(s) \, ds.$$

6)
$$X = \ell_p$$
, $Ax = (0, \xi_1, 0, \xi_2, 0, \xi_3, \ldots)$.

B)
$$X = m$$
, $Ax = (\xi_1, \xi_2^2, \xi_3^2, \xi_4^2, \ldots)$.

Решение. а) Оператор, заданный формулой

$$(Ax)(t) = \int_0^t x(s) \, ds,$$

является линейным в C[0,1]. Обозначим y(t)=Ax(t). Если функция $x\in \operatorname{Ker} A$, то $y(t)\equiv 0$. Так как функция y — это интеграл с переменным верхним пределом, то для $x\in \operatorname{Ker} A$ получаем

$$x(t) = y'(t) \equiv 0.$$

Следовательно, оператор A обратим. При этом обратный оператор задается формулой

$$A^{-1}y(t) = y'(t).$$

Найдем область определения A^{-1} . Покажем, что $D(A^{-1})$ или, то же самое, Im(A) совпадает с множеством

$$M = \{ y \in C^1[0,1] : y(0) = 0 \}.$$

Действительно, если $x\in C[0,1]$, то функция y(t)=Ax(t) непрерывно дифференцируема как интеграл с переменным верхним пределом и $y(0)=\int_0^0 x(s)\,ds=0$, т.е. $D(A^{-1})\subset M$. С другой стороны, для $y\in M$ имеем x(t)=y'(t); следовательно,

$$Ax(t) = \int_0^t x(s) \, ds = \int_0^t y'(s) \, ds = y(t) - y(0) = y(t),$$

т. е. $M \subset D(A^{-1})$. Таким образом, действительно, $D(A^{-1}) = M$.

б) Обозначим $y=Ax=(\eta_1,\eta_2,\eta_3,\ldots)$. Ясно, что оператор A, заданный формулой $Ax=(0,\xi_1,0,\xi_2,0,\xi_3,\ldots)$, является линейным в ℓ_p . Проверим, обратим ли он. Если $Ax=(0,\xi_1,0,\xi_2,0,\xi_3,\ldots)=(0,0,0,\ldots)$, то $x=(0,0,0,\ldots)$ и в силу (14.1) A обратим. Обратный оператор задается формулой

$$A^{-1}y = (\eta_2, \eta_4, \eta_6, \ldots).$$

Покажем, что $D(A^{-1}) = Im(A) = M$, где

$$M = \{ y = (\eta_1, \eta_2, \eta_3, \dots) \in \ell_p : \eta_{2j-1} = 0, \ j \in \mathbb{N} \}.$$
 (14.2)

Действительно, для $x \in \ell_p$ последовательность $y = Ax \in \ell_p$, поскольку

$$\sum_{k=1}^{\infty} |\eta_k|^p = \sum_{j=1}^{\infty} |\eta_{2j}|^p = \sum_{j=1}^{\infty} |\xi_j|^p,$$

т. е. $D(A^{-1}) \subset M$. Обратно, для $y \in M$ последовательность $x = A^{-1}y = (\eta_2, \eta_4, \eta_6, \ldots) \in \ell_p$, поскольку

$$\sum_{k=1}^{\infty} |\xi_k|^p = \sum_{k=1}^{\infty} |\eta_{2k}|^p = \sum_{j=1}^{\infty} |\eta_j|^p,$$

т. е. $M \subset D(A^{-1})$. Таким образом, равенство $D(A^{-1}) = M$ проверено.

в) Оператор, заданный формулой $Ax = (\xi_1, \xi_2^2, \xi_3^2, \xi_4^2, \ldots)$, не является линейным в пространстве m. По определению оператор обратим, если для любого $y \in Im(A)$ уравнение

$$Ax = y \tag{14.3}$$

имеет единственное решение. Рассмотрим произвольный

$$y \in Im(A) = \{y = \{\eta_k\} \in m: \eta_k \geqslant 0, k \geqslant 2\},$$
 если $\mathbb{P} = \mathbb{R},$

$$y = \{\eta_k\} \in Im(A) = m$$
, если $\mathbb{P} = \mathbb{C}$.

Тогда $x_1=(\eta_1,\sqrt{\eta_2},\sqrt{\eta_3},\ldots)$ и $x_2=(\eta_1,-\sqrt{\eta_2},-\sqrt{\eta_3},\ldots)$ являются решениями уравнения (14.3). Следовательно, оператор A необратим.

В задачах **14.1–14.12** выяснить, является ли оператор обратимым. Если обратим, найти обратный. Будет ли обратный оператор непрерывным?

14.1.
$$A, B: \ell_1 \to \ell_1, \quad Ax = (0, \xi_1, \xi_2, \ldots), \quad Bx = (\xi_2, \xi_3, \ldots).$$

14.2.
$$A: C[-1,1] \to C[-1,1],$$

 $(Ax)(t) = \int_{-1}^{t} (1 + \operatorname{sign} s) x(s) ds.$

14.3.
$$A: \ell_2 \to \ell_2, \quad Ax = \left\{\lambda_n \xi_n\right\}_{n=1}^{\infty}, \sup_{n} |\lambda_n| < \infty.$$

14.4.
$$A: D(A) \subset C[0,1] \to C[0,1], (Ax)(t) = x'(t),$$

a)
$$D(A) = C^1[0,1];$$

6)
$$D(A) = \{x \in C^1[0,1] : x(0) = 0\};$$

B)
$$D(A) = \{x \in C^1[0,1] : x(0) = x'(1)\};$$

$$\Gamma) D(A) = \{x \in C^1[0,1] : x(0) = kx(1)\}.$$

14.5.
$$A: \ell_1 \to \ell_1, \ Ax = (\xi_1, \xi_2^3, \xi_3^5, \dots, \xi_k^{2k-1}, \dots).$$

14.6.
$$(Ax)(t) = \sqrt{t}x(t),$$

a)
$$A: C[0,1] \to C[0,1];$$
 6) $A: L_1[0,1] \to L_1[0,1].$

14.7.
$$A: C[0,1] \to C[0,1], (Ax)(t) = x(t) + \int_0^1 e^{s+t} x(s) ds.$$

14.8.
$$A: C^1[a,b] \to C[a,b], (Ax)(t) = (t^2+1)x(t).$$

14.9.
$$A: L_3[a,b] \to L_1[a,b], (Ax)(t) = x^3(t).$$

14.10.
$$A: \ell_1 \to \ell_2, Ax = x.$$

- **14.11.** $A: D(A) \subset \ell_2 \to \ell_1, \ D(A) = \{x \in \ell_2 : Ax \in \ell_1\}, Ax = \{n\xi_n\}.$
- **14.12.** $A: D(A) \subset C[0,1] \to C[0,1], (Ax)(t) = x''(t),$ $D(A) = \{x \in C^2[0,1] : x(0) = x(1) = 0\}.$
- **14.13.** Пусть $A \in \mathcal{L}(X,Y), X$ банахово пространство, A инъективно. Докажите, что A^{-1} непрерывен тогда и только тогда, когда Im(A) банахово пространство.

Тема 15. Спектр линейного оператора

Пусть X – банахово пространство над полем \mathbb{C}, A – линейный оператор, $A\colon D(A)\subset X\to X, E$ – тождественный оператор из X в X.

Число $\lambda \in \mathbb{C}$ называется регулярной точкой оператора A, если $\mathrm{Ker}\,(A-\lambda E)=\{0\},\ Im(A-\lambda E)=X$, оператор $(A-\lambda E)^{-1}$ ограничен, т. е. оператор $(A-\lambda E)^{-1}$ существует и $(A-\lambda E)^{-1}\in \mathcal{L}(X)$.

Множество всех регулярных точек оператора A называется pезольвентным множеством оператора A и обозначается $\rho(A)$.

Множество $\mathbb{C}\setminus \rho(A)$ называется спектром оператора A и обозначается $\sigma(A)$.

Операторная функция $R_A: \rho(A) \to \mathcal{L}(X)$, определенная формулой $R_A(\lambda) = (A - \lambda E)^{-1}$, называется резольвентой оператора A.

Число $\lambda \in \mathbb{C}$ называется собственным значением оператора A, если существует элемент $e_{\lambda} \in X$ такой, что $e_{\lambda} \neq 0$ и $Ae_{\lambda} = \lambda e_{\lambda}$. При этом e_{λ} называется собственным вектором оператора A, соответствующим собственному значению λ .

Множество собственных значений оператора A называется $\partial ucкретным$ спектром оператора A (или точечным спектром)

и обозначается $\sigma_d(A)$. Ясно, что все собственные значения оператора A принадлежат $\sigma(A)$.

Часто спектр оператора A делят на три части: $\sigma_d(A)$ – $movevenum{\check{u}},$

$$\sigma_c(a) = \{\lambda \in \sigma(A) \setminus \sigma_d(A) : \overline{Im(A - \lambda E)} = X\}$$
 – непрерывный, $\sigma_r(a) = \{\lambda \in \sigma(A) \setminus \sigma_d(A) : \overline{Im(A - \lambda E)} \neq X\}$ – остаточный.

Теорема 15.1. Пусть X – банахово пространство над \mathbb{C} , $A \in \mathcal{L}(X)$.

1. Если $|\lambda| > ||A||$, то $\lambda \in \rho(A)$ и при этом

$$R_A(\lambda) = -\sum_{n=0}^{\infty} \frac{1}{\lambda^{n+1}} A^n.$$

- 2. Спектр $\sigma(A)$ замкнут $u \sup\{|\lambda| : \lambda \in \sigma(A)\} \leqslant ||A||$.
- 3. $\sigma(A) \neq \emptyset$.

Определение 15.1. Пусть X и Y – нормированные пространства. Оператор $A\colon D(A)\subset X\to Y$ называется замкнутым, если для любой последовательности $\{x_n\}\subset D(A)$ из условий $x_n\xrightarrow[n\to\infty]{}x_0$ и $Ax_n\xrightarrow[n\to\infty]{}y_0$ следует, что $x_0\in D(A)$ и $Ax_0=y_0$.

Теорема 15.2. *Если* $\rho(A) \neq \emptyset$, то A замкнут.

Пример 15.1. Пусть

$$\varphi(t) = \begin{cases} \operatorname{tg} t, & t \in \left[0, \frac{\pi}{4}\right], \\ 0, & t \in \left[-\frac{\pi}{4}, 0\right), \end{cases} (Ax)(t) = \varphi(t) \cdot x(t),$$

a)
$$X = C\left[-\frac{\pi}{4}, \frac{\pi}{4}\right];$$
 6) $X = L_2\left[-\frac{\pi}{4}, \frac{\pi}{4}\right].$

Найти спектр и резольвенту оператора A. Провести классификацию точек спектра. **Решение.** Множество значений функции $\varphi(t)$ есть отрезок [0,1]. Если $\lambda \not\in [0,1]$, то уравнение $(A-\lambda E)x=y$ разрешимо для всякого y и в пространстве $C\left[-\frac{\pi}{4},\frac{\pi}{4}\right]$, и в пространстве $L_2\left[-\frac{\pi}{4},\frac{\pi}{4}\right]$. Его решение $x(t)=(\varphi(t)-\lambda)^{-1}y(t)$, при этом для обоих пространств справедлива оценка

$$||x|| \le \max_{t \in \left[-\frac{\pi}{4}, \frac{\pi}{4}\right]} |(\varphi(t) - \lambda)^{-1}| \cdot ||y||.$$

Значит, для всякого $\lambda \notin [0,1]$ существует оператор $(A-\lambda E)^{-1}$, определенный и ограниченный на X; т. е. эти значения λ являются регулярными; другими словами, $\mathbb{C}\setminus [0,1]\subset \rho(A)$.

Если $\lambda=0$, то уравнение $(A-\lambda E)x=0$ имеет нетривиальное решение как в случае «а», так и в случае «б». Например,

$$x(t) = \begin{cases} -t, & t \in \left[-\frac{\pi}{4}, 0 \right), \\ 0, & t \in \left[0, \frac{\pi}{4} \right]. \end{cases}$$

Поэтому $0 \in \sigma_d(A)$.

Пусть $\lambda \in (0,1]$ и точка $t_0 \in \left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$ такова, что tg $t_0 = \lambda$. Уравнение $(A - \lambda E)$ x = 0 имеет единственное решение $x(t) \equiv 0$ в $C\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$ и x(t) эквивалентно 0 в $L_2\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$. Следовательно, точки полуинтервала (0,1] не могут быть точками дискретного (точечного) спектра оператора A.

Уравнение $(A-\lambda E)\,x=y$ неразрешимо при $y(t)\equiv 1$ ни в случае «а», ни в случае «б». В случае «а» его формальное решение

$$x(t) = (\varphi(t) - \lambda)^{-1} = \begin{cases} -\lambda^{-1}, & t \in \left[-\frac{\pi}{4}, 0 \right), \\ (\operatorname{tg} t - \lambda)^{-1}, & t \in \left[0, \frac{\pi}{4} \right] \setminus \{t_0\} \end{cases}$$

терпит разрыв в точке t_0 со свойством $\operatorname{tg}(t_0) = \lambda$. В случае «б», как нетрудно видеть, функция $|x(t)|^2$ неинтегрируема по Риману в несобственном смысле на отрезке $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$, а значит,

неинтегрируема и по Лебегу. Поэтому она не принадлежит и $L_2\left[-\frac{\pi}{4},\frac{\pi}{4}\right]$. Следовательно, $(0,1]\subset\sigma(A)$.

Итак,
$$\sigma(A) = [0, 1], \ \sigma_d(A) = \{0\},\$$

$$(R_A(\lambda)y)(t) = (\varphi(t) - \lambda)^{-1}y(t).$$

Осталось среди точек (0,1] выделить точки непрерывного и остаточного спектра. Если $\lambda \in (0,1]$, то все функции $y(t) \in Im(A-\lambda E)$ равны 0 в точке t_0 (tg $t_0=\lambda$). Отсюда мы заключаем, что в пространстве $C\left[-\frac{\pi}{4},\frac{\pi}{4}\right]$ замыкание $\overline{Im(A-\lambda E)}$ не совпадает с $C\left[-\frac{\pi}{4},\frac{\pi}{4}\right]$. Поэтому полуинтервал (0,1] является остаточным спектром A, т. е. $(0,1]=\sigma_r(A)$.

Убедимся, что в пространстве $L_2\left[-\frac{\pi}{4},\frac{\pi}{4}\right]$ точки (0,1] являются точками непрерывного спектра оператора A. Для этого достаточно показать, что для любого $y\in L_2\left[-\frac{\pi}{4},\frac{\pi}{4}\right]$ найдется последовательность $\{y_n\}\subset (A-\lambda E)X$ такая, что $y_n\to y$ при $n\to\infty$. Пусть $\lambda\in (0,1)$. Рассмотрим последовательность $\{x_n\}\subset L_2\left[-\frac{\pi}{4},\frac{\pi}{4}\right]$:

$$x_n(t) = y(t) \cdot \begin{cases} -\lambda^{-1}, & t \in \left[-\frac{\pi}{4}, 0 \right); \\ (\operatorname{tg} t - \lambda)^{-1}, & t \in \left[0, t_0 - \frac{1}{n} \right] \cup \left[t_0 + \frac{1}{n}, \frac{\pi}{4} \right]; \\ 0, & t \in \left(t_0 - \frac{1}{n}, t_0 + \frac{1}{n} \right), \end{cases}$$

для достаточно больших n. Имеем

$$\begin{split} y_n(t) &= \Big((A - \lambda E) x_n \Big)(t) = \\ &= \begin{cases} y(t), & t \in \left[-\frac{\pi}{4}, t_0 - \frac{1}{n} \right] \cup \left[t_0 + \frac{1}{n}, \frac{\pi}{4} \right]; \\ 0, & t \in \left(t_0 - \frac{1}{n}, t_0 + \frac{1}{n} \right), \end{cases} \end{split}$$

$$||y - y_n||^2 = \int_{t_0 - \frac{1}{n}}^{t_0 + \frac{1}{n}} |y(t)|^2 dt.$$

В силу свойства абсолютной непрерывности интеграла Лебега последнее выражение стремится к 0 при $n \to \infty$. Отсюда $y_n \xrightarrow[n \to \infty]{} y$. Значит, в случае «б» точки интервала (0,1) принадлежат непрерывному спектру оператора A.

Аналогично доказывается, что $\lambda = 1 \in \sigma_c(A)$. Таким образом, $\sigma_c(A) = (0,1]$.

Пример 15.2. Пусть
$$Ax = \left\{ \frac{n+1}{n} \xi_n \right\}_{n=1}^{\infty}$$
, а) $X = \ell_1$; 6) $X = \ell_{\infty}$.

Найти спектр и резольвенту оператора A. Провести классификацию точек спектра.

Решение. Найдем сначала дискретный спектр оператора *А*. Для этого решим однородное уравнение

$$Ax - \lambda x = 0 \tag{15.1}$$

или, эквивалентно, систему уравнений

$$\left(\frac{n+1}{n} - \lambda\right)\xi_n = 0, \qquad n \in \mathbb{N}. \tag{15.2}$$

Если $\lambda \neq \frac{n+1}{n}$ для любого $n \in \mathbb{N}$, то эта система имеет только тривиальное решение. Если же $\lambda = \frac{n_0+1}{n_0}$ для некоторого $n_0 \in \mathbb{N}$, то существует нетривиальное решение системы (15.2):

$$\xi_n = \begin{cases} 1, & n = n_0, \\ 0, & n \neq n_0, \end{cases} \qquad n \in \mathbb{N},$$

т.е. уравнение (15.1) имеет нетривиальное решение $x=\{\delta_{n_0k}\}_{k=1}^\infty$ для $\lambda=\frac{n_0+1}{n_0}$. Следовательно, для любого $\lambda=\frac{n+1}{n},\ n\in\mathbb{N},$ уравнение (15.1) имеет нетривиальное

решение $x=\{\delta_{nk}\}_{k=1}^{\infty}$. Значит, $\sigma_d(A)=\left\{\frac{n+1}{n}\right\}_{n\in\mathbb{N}}$ в обоих случаях.

Пусть теперь $\lambda \not\in \sigma_d(A)$. Для $y = \{\eta_n\} \in X$ решим неоднородное уравнение

$$Ax - \lambda x = y$$

или, эквивалентно, систему уравнений

$$\left(\frac{n+1}{n}-\lambda\right)\xi_n=\eta_n, \qquad n\in\mathbb{N}.$$

Формальное решение этой системы есть

$$x = \{\xi_n\} = \left\{\frac{\eta_n}{\frac{n+1}{n} - \lambda}\right\} = (A - \lambda E)^{-1}y.$$

Это решение принадлежит пространству X, если

a)
$$||x|| = \sum_{n=1}^{\infty} \frac{|\eta_n|}{\left|\frac{n+1}{n} - \lambda\right|} < \infty;$$
 6) $||x|| = \sup_{n} \frac{|\eta_n|}{\left|\frac{n+1}{n} - \lambda\right|} < \infty.$

Пусть $d=\inf_n\left|\frac{n+1}{n}-\lambda\right|$. Поскольку $\frac{n+1}{n}\xrightarrow[n\to\infty]{}$ 1, то если $\lambda\neq 1$, то d>0 и $\|x\|\leqslant\frac{\|y\|}{d}<\infty$ в обоих случаях. Таким образом, если $\lambda\neq 1$ и $\lambda\neq\frac{n+1}{n}$, $n\in\mathbb{N}$, то неоднородное уравнение $Ax-\lambda x=y$ разрешимо для всякого $y\in X$. Так как оператор $A-\lambda E$ — линейная непрерывная биекция банахова пространства X на X, то по теореме Банаха оператор $(A-\lambda E)^{-1}$ непрерывен на X. Значит, λ является регулярным значением.

Пусть $\lambda=1$. Поскольку спектр – множество замкнутое, то из того, что $\sigma_d(A)=\left\{\frac{n+1}{n}\right\}_{n\in\mathbb{N}}$, можно сразу заключить, что

 λ – точка спектра. Итак,

$$\sigma(A) = \{1\} \cup \left\{\frac{n+1}{n}\right\}_{n \in \mathbb{N}}, \qquad R_A(\lambda)y = \left\{\frac{\eta_n}{\frac{n+1}{n} - \lambda}\right\}_{n \in \mathbb{N}}.$$

Определим, принадлежит ли $\lambda=1$ остаточному или непрерывному спектру. Формально имеем $(A-E)^{-1}y=\{n\eta_n\}$. Так как множество финитных последовательностей плотно $\frac{1}{2} B = \frac{1}{2} B$

В случае «б»

$$y = (A - E)x = \left\{\frac{\xi_n}{n}\right\} \in c_0.$$

Как известно, c_0 есть замкнутое подпространство ℓ_{∞} и $c_0 \neq \ell_{\infty}$. Отсюда $\overline{Im(A-\lambda E)} \subset c_0 \neq \ell_{\infty}$. Поэтому в случае «б» $1 \in \sigma_r(A)$.

В задачах **15.1–15.11** найти спектр и резольвенту оператора $A \in \mathcal{L}(X)$. Провести классификацию точек спектра.

15.1.
$$X = \ell_2, Ax = (\xi_1 - \xi_2, \xi_1 + \xi_2, \xi_3, \xi_4, \dots, \xi_n, \dots).$$

15.2.
$$X = \ell_1, \ Ax = \left\{\frac{1}{n}\,\xi_n\right\}.$$

15.3.
$$X = \ell_p \ (1 \leqslant p \leqslant \infty), \ Ax = (\xi_2, \xi_3, \dots, \xi_n, \dots).$$

15.4.
$$\star X = \ell_p \ (1 \leqslant p \leqslant \infty), \ Ax = (0, \xi_1, \xi_2, \dots, \xi_n, \dots).$$

15.5.
$$X = C\left[\frac{\pi}{4}, \pi\right], \ (Ax)(t) = \sin t \cdot x(t).$$

15.6.
$$X = L_1[0,1], (Ax)(t) = \sqrt{t} \cdot x(t).$$

15.7.
$$X = C[0, 2\pi], (Ax)(t) = e^{it} \cdot x(t).$$

15.8.
$$X = L_2[0, 1],$$

$$(Ax)(t) = \begin{cases} 5x(t), & 0 \le t \le \frac{1}{3}, \\ 0, & \frac{1}{3} < t \le 1. \end{cases}$$

15.9.
$$X = C[1,2], (Ax)(t) = \int_1^t x(s) ds.$$

15.10.
$$X = C[0,1], (Ax)(t) = \int_0^1 (t-s)x(s) ds.$$

15.11.
$$\star X = C[0,1], (Ax)(t) = x(0) + t \cdot x(1).$$

В задачах **15.12–15.15** доказать, что оператор $A\colon D(A)\subset X\to X$ замкнут, найти его спектр; в задачах **15.12–15.14** найти резольвенту в тех случаях, когда она существует.

15.12.
$$X = \ell_2$$
, $Ax = \{n\xi_n\}$, $D(A) = \{x \in \ell_2 : Ax \in \ell_2\}$.

15.13.
$$X = L_1[0,1], (Ax)(t) = \frac{x(t)}{\sqrt{t}},$$
 $D(A) = \{x \in L_1[0,1] : Ax \in L_1[0,1]\}.$

15.14.
$$X = C[a, b], (Ax)(t) = x'(t),$$

a) $D(A) = C^1[a, b];$ 6) $D(A) = \{x \in C^1[a, b] : x(a) = 0\};$
B) $D(A) = \{x \in C^1[a, b] : x(a) = x(b)\}.$

15.15.
$$X = C[0, \pi], \quad (Ax)(t) = x''(t),$$

a) $D(A) = \{x \in C^2[0, \pi] : x(0) = x(\pi) = 0\};$
b) $D(A) = \{x \in C^2[0, \pi] : x'(0) = x'(\pi) = 0\};$
b) $D(A) = \{x \in C^2[0, \pi] : x(0) = x(\pi), \quad x'(0) = x'(\pi)\};$
c) $D(A) = \{x \in C^2[0, \pi] : x(0) = x'(0) = 0\}.$

- **15.16.** Пусть Ax = x, a) $A: C[a, b] \to C[a, b]$;
 - 6) $A: C^1[a,b] \subset C[a,b] \to C[a,b]$.

Замкнут ли оператор A? Найти его спектр, определить характер точек спектра.

- Доказать утверждения 15.17–15.22.
- **15.17.** Пусть $A\colon D(A)\subset X\to X,\ A$ линейный оператор, $\lambda_0\in\mathbb{C}.$ Тогда
 - a) $\sigma(A + \lambda_0 E) = \sigma(A) + \lambda_0$;
 - б) $\sigma(\lambda_0 A) = \lambda_0 \sigma(A)$, если $\lambda_0 \neq 0$.
- **15.18.** Пусть $A \colon D(A) \subset X \to X, \ A$ линейный оператор, существует оператор A^{-1} . Тогда $\sigma_d(A^{-1}) = \left(\sigma_d(A)\right)^{-1},$ где $\left(\sigma_d(A)\right)^{-1} = \left\{\frac{1}{\lambda} : \ \lambda \in \sigma_d(A)\right\}.$
- **15.19.** Если $A \in \mathcal{L}(X)$ и $0 \notin \sigma(A)$, то $\sigma(A^{-1}) = 1/\sigma(A)$.
- **15.20.** Пусть $A \in \mathcal{L}(X)$. Тогда если существует последовательность $\{x_n\} \subset X$ такая, что $\|x_n\| = 1$ и $\|Ax_n \lambda x_n\| \to 0$ при $n \to \infty$, то $\lambda \in \sigma(A)$.
- **15.21.** Пусть $A \in \mathcal{L}(X)$ и $n \in \mathbb{N}$. Тогда
 - а) $\sigma_d(A^n) = \left(\sigma_d(A)\right)^n$, где $\left(\sigma_d(A)\right)^n = \{\lambda^n: \ \lambda \in \sigma_d(A)\};$
 - б) $\sigma(A^n) = (\sigma(A))^n$, где $(\sigma(A))^n = {\lambda^n : \lambda \in \sigma(A)}.$
- **15.22.** Пусть $A \in \mathcal{L}(H), \ H$ гильбертово пространство. Тогда
 - a) $\sigma(A^{\otimes}) = \overline{\sigma(A)};$
 - б) $\lambda \in \sigma_d(A) \implies \overline{\lambda} \in \sigma_d(A^{\otimes}) \cup \sigma_r(A^{\otimes});$
 - $\mathrm{B}) \ \lambda \in \sigma_r(A) \implies \overline{\lambda} \in \sigma_d(A^{\otimes});$
 - $\Gamma) \ \sigma_c(A^{\otimes}) = \overline{\sigma_c(A)}.$

- **15.23.** Возможно ли, что $A \in \mathcal{L}(X), \ A^2 = 0, \ \lambda \in \sigma_d(A), \ \lambda \neq 0$?
- **15.24.** Построить линейный оператор, для которого спектром является данное замкнутое множество в комплексной плоскости.
- **15.25.** Построить линейный оператор, для которого множество собственных значений совпадает с заданным множеством в комплексной плоскости.

Тема 16. Вполне непрерывные (компактные) операторы

Определение 16.1. Пусть X, Y — линейные нормированные пространства. Оператор $A \colon X \to Y$ называется компактным, если он каждое ограниченное множество переводит в предкомпактное.

Непрерывный компактный оператор называется \emph{enone} $\emph{непрерывным}.$

Любой компактный оператор является ограниченным.

Для линейных операторов понятия *компактный* и *вполне непрерывный* совпадают.

Линейный оператор A компактен тогда и только тогда, когда предкомпактно множество A(B[0,1]).

Линейная комбинация вполне непрерывных (компактных) операторов является вполне непрерывным (компактным) оператором.

Теорема 16.1. Пусть X – линейное нормированное пространство, Y – банахово пространство, $\{A_n\}\subset \mathcal{L}(X,Y)$ –

последовательность компактных операторов. Если последовательность $\{A_n\}$ сходится по норме к оператору A, то A – линейный компактный оператор.

Теорема 16.2. Пусть X, Y, Z – линейные нормированные пространства. Если $A \in \mathcal{L}(X,Y)$, а $B \in \mathcal{L}(Y,Z)$ и хотя бы один из них компактен, то оператор BA компактен.

Следствие 16.1. Пусть X, Y – бесконечномерные линейные нормированные пространства, оператор $A \in \mathcal{L}(X,Y)$ компактен и $\operatorname{Ker} A = \{0\}$. Тогда A^{-1} – неограниченный линейный оператор.

Теорема 16.3. Если X – бесконечномерное банахово пространство над полем \mathbb{C} и $A \in \mathcal{L}(X)$ – вполне непрерывный оператор, то $\sigma(A) = \sigma_d(A) \cup \{0\}$, $\sigma_d(A)$ не более чем счетный.

Пример 16.1. Будет ли оператор $A \colon C[0,\pi] \to C[0,\pi],$ действующий по правилу

$$(Ax)(t) = \sin(3t) \cdot x(t),$$

вполне непрерывным?

Решение. Докажем, что оператор A не является вполне непрерывным. Построим ограниченное множество (последовательность) функций $\{x_n\}$ так, чтобы множество $\{Ax_n\}$ не являлось предкомпактным. По теореме Арцела множество функций M предкомпактно в пространстве C[a,b] тогда и только тогда, когда M равномерно ограничено и равностепенно непрерывно. Мы будем строить множество $\{x_n\}$ так, чтобы множество $\{Ax_n\}$ не являлось равностепенно непрерывным.

Возьмем произвольную точку $t_0 \in (0,\pi)$, в которой $\sin(3t_0) \neq 0$. Определим последовательность непрерывных функций $\{x_n\}$ следующим образом: $x_n(t)=0$ вне промежутка $\left(t_0-\frac{1}{n},t_0+\frac{1}{n}\right),\,x_n(t_0)=\frac{1}{\sin(3t_0)},\,$ а на отрезках $\left[t_0-\frac{1}{n},t_0\right],\,$ $\left[t_0,t_0+\frac{1}{n}\right]$ функция x_n линейна.

Множество $\{Ax_n\}$ не является равностепенно непрерывным, если существует $\varepsilon > 0$ такое, что для любого $\delta > 0$ найдутся точки $t',t'' \in [0,\pi]$ и функция $Ax_n(t)$ со свойством

$$|t'-t''|<\delta$$
, a $|(Ax_n)(t')-(Ax_n)(t'')|\geqslant \varepsilon$.

Положим $\varepsilon=1,\ t'=t_0,\ t''=t_0+\frac{\delta}{2}$ и выберем номер n из условия $\frac{1}{n}<\frac{\delta}{2}.$ Тогда

$$\left| (Ax_n)(t') - (Ax_n)(t'') \right| = 1 - 0 = \varepsilon.$$

Следовательно, оператор A не является вполне непрерывным.

Пример 16.2. Будет ли оператор $A: L[0,1] \to L[0,1],$

$$(Ax)(t) = \sqrt{t} \cdot x(t),$$

вполне непрерывным?

Решение. Докажем, что оператор A не является вполне непрерывным. Для этого достаточно привести пример множества M, ограниченного в L[0,1] и такого, что его образ N=A(M) непредкомпактен в L[0,1]. Рассмотрим множество функций $N=\{y_n\}_{n=1}^{\infty}$,

$$y_n(t) = \begin{cases} 2^n, & t \in E_n, \\ 0, & t \in [0, 1] \setminus E_n, \end{cases} E_n = \left[1 - \frac{1}{2^n}, 1\right].$$

Убедимся, что множество N ограничено, но непредкомпактно. Действительно, $\|y_n\|=\int_{E_n}2^n\,dt=1$, и, следовательно, N ограничено. Далее, если n>m (для определенности), то $E_n\subset E_m$ и

$$||y_n - y_m|| = \int_{E_n} (2^n - 2^m) dt + \int_{E_m \setminus E_n} 2^m dt >$$

$$> \int_{E_n} (2^n - 2^m) dt = 1 - \frac{2^m}{2^n} \ge \frac{1}{2}.$$

Поскольку расстояние между любыми двумя элементами последовательности $\{y_n\}$ больше $\frac{1}{2}$, из нее нельзя выделить сходящуюся подпоследовательность; значит, множество N не предкомпактно. Возьмем в качестве множества M прообраз N, т. е.

$$M = \left\{ \frac{y_n}{\sqrt{t}} \right\}.$$

Нам осталось проверить, что M ограничено. Функция $\frac{1}{\sqrt{t}}$ на промежутке $\left[\frac{1}{2},1\right]$, а значит, и на каждом множестве E_n , ограничена числом 2. Отсюда легко заключаем, что

$$\left\| \frac{y_n}{\sqrt{t}} \right\| = \int_{E_n} \left| \frac{y_n(t)}{\sqrt{t}} \right| dt \leqslant 2||y_n|| = 2.$$

Таким образом, мы доказали, что оператор A не является предкомпактным.

Пример 16.3. Доказать, что оператор $A: C[0,1] \to L[0,1]$,

$$(Ax)(t) = \int_0^t x(s) \, ds,$$

вполне непрерывен.

Решение. Оператор A можно представить в виде суперпозиции двух линейных операторов: $A = J \cdot A_0$, где

$$(A_0x)(t) = \int_0^t x(s) ds, \qquad A_0 \colon C[0,1] \to C[0,1],$$

 $(Jy)(t) = y(t), \qquad J \colon C[0,1] \to L[0,1].$

Покажем, что оператор J непрерывен, а оператор A_0 вполне непрерывен. Отсюда по теореме 16.2 будет следовать, что оператор A вполне непрерывен.

Непрерывность оператора J легко следует из оценки

$$||Jy|| = \int_0^1 |y(t)| dt \le \max_{t \in [0,1]} |y(t)| = ||y||.$$

Докажем, что оператор A_0 вполне непрерывен. Пусть M – ограниченное подмножество из C[0,1]. Убедимся, что для его образа, т.е. для множества $N=A_0(M)$, выполняются условия теоремы Арцела, и, значит, оно предкомпактно. Пусть число R>0 таково, что для любого $x\in M$ выполняется неравенство $\|x\|\leqslant R$. Тогда для $y\in N=A_0(M)$ имеем

$$||y|| = \max_{t \in [0,1]} \left| \int_0^t x(s) \, ds \right| \leqslant R,$$

т.е. множество N ограничено. Далее, семейство функций N равностепенно непрерывно, поскольку

$$|y(t') - y(t'')| = \left| \int_{t'}^{t''} x(s) \, ds \right| \leqslant R|t'' - t'| < \varepsilon,$$

если $|t''-t'|<\delta=\frac{\varepsilon}{R}$. Итак, мы проверили, что множество N предкомпактно. Таким образом, вполне непрерывность оператора A_0 , а значит и оператора A, доказана.

В задачах **16.1–16.10** выяснить, является ли оператор вполне непрерывным.

16.1.
$$(Ax)(t) = \int_2^5 e^{ts} x(s) ds,$$

a) $A: C[2,5] \to C[2,5];$ 6) $A: L_2[2,5] \to L_2[2,5];$
B) $A: C[2,5] \to L_1[2,5];$ Γ $A: L_1[2,5] \to C[2,5].$

16.2.
$$(Ax)(t) = x(t^{2/3}), A: C[0,1] \to C[0,1].$$

16.3.
$$Ax = \left\{\frac{\xi_k}{k}\right\}_{k=1}^{\infty}, A: \ell_1 \to \ell_2.$$

16.4.
$$(Ax)(t) = \operatorname{tg} t \cdot x(t), \ A \colon C\left[0, \frac{\pi}{4}\right] \to C\left[0, \frac{\pi}{4}\right].$$

16.5.
$$(Ax)(t) = \ln(1+t) \cdot x(t), A: C^{1}[0,2] \to C[0,2].$$

16.6.
$$(Ax)(t) = \int_0^t \sin(ts) \cdot x(s) \, ds + 3x(t), \ A \colon C[0,1] \to C[0,1].$$

16.7.
$$(Ax)(t) = \int_0^t \sin(ts) \cdot x(s) \, ds + x\left(\frac{1}{2}\right),$$

 $A \colon C[0,1] \to C[0,1].$

16.8.
$$Ax = x$$
,

a)
$$A: C[a,b] \to L_2[a,b];$$
 6) $A: C^1[a,b] \to C[a,b];$

B)
$$A: \ell_1 \to \ell_2$$
.

16.9.
$$Ax = (0, \xi_1, 0, \xi_2, 0, \xi_3, 0, \xi_4, \ldots), A: \ell_p \to \ell_p.$$

16.10.
$$Ax = (0, \xi_1, 0, \xi_2, 0, \xi_3, 0, 0, 0, \dots), A: \ell_p \to \ell_p.$$

- **16.11.** Доказать, что оператор $(Ax)(t) = \int_{c}^{d} K(t,s)x(s)\,ds$ с ядром $K(t,s) \in C\big([a,b] \times [c,d]\big)$ является вполне непрерывным, если
 - a) $A: C[c,d] \to C[a,b];$ 6) $A: C[c,d] \to L_p[a,b];$
 - $\mathrm{B})\ A \colon L_p[c,d] \to C[a,b]; \qquad \mathrm{r})\ A \colon L_p[c,d] \to L_q[a,b].$
- **16.12.** Пусть $A, B \in \mathcal{L}(X,Y)$, оператор A вполне непрерывный, оператор B не является вполне непрерывным. Будет ли оператор A+B вполне непрерывным?
- **16.13.** Для каких $\{\alpha_k\}_{k=1}^{\infty}$ оператор $Ax = \{\alpha_k \xi_k\}_{k=1}^{\infty}$, $A: \ell_p \to \ell_p \ (1 \leqslant p \leqslant \infty)$ вполне непрерывен?

в В задачах **16.14–16.17** выяснить, является ли оператор A вполне непрерывным.

16.14.
$$\bigstar (Ax)(t) = \int_0^1 \frac{x(s)}{|t-s|^{\alpha}} ds, \ A \colon C[0,1] \to C[0,1].$$

16.15.
$$(Ax)(t) = \begin{cases} x(t), & t \in [1, 2]; \\ 0, & t \in [0, 3] \setminus [1, 2]; \end{cases} A: L_2[0, 3] \to L_2[0, 3].$$

16.16.
$$(Ax)(t) = x'(t), A: C^1[a, b] \to C[a, b].$$

16.17.
$$(Ax)(t) = x''(t), A: C^2[a,b] \to C[a,b].$$

в В задачах **16.18–16.22** выяснить, является ли оператор A компактным, вполне непрерывным.

16.18.
$$(Ax)(t) = |x(t)|,$$

a) $A: C[a, b] \to C[a, b];$ 6) $A: L_p[a, b] \to L_p[a, b].$

16.19.
$$(Ax)(t) = \cos(x(t)), A: C[a, b] \to C[a, b].$$

16.20.
$$(Ax)(t) = x^2(t), A: C^1[a,b] \to C[a,b].$$

16.21.
$$Ax = \{\xi_k^2\}_{k=1}^{\infty}, A: \ell_p \to \ell_p.$$

16.22.
$$Ax = \left\{\frac{\xi_k^2}{k^2}\right\}_{k=1}^{\infty}, A: \ell_2 \to \ell_2.$$

16.23.
$$A \colon C[0,1] \to \langle \mathbb{R}, \|\cdot\|_{|\cdot|} \rangle$$
, Ax равно наибольшему значению аргумента t , при котором $x(t)$ принимает наибольшее значение.

16.24.
$$Ax = {\text{sign } \xi_k}, A: m \to m, \mathbb{P} = \mathbb{R}.$$

Тема 17. Интегральные уравнения

Пусть X – банахово пространство, $A: X \to X$ – компактный линейный оператор. Рассмотрим четыре уравнения:

(1)
$$x = Ax + y;$$
 (1*) $x^* = A^*x^* + y^*;$
(1°) $z = Az;$ (1*°) $z^* = A^*z^*.$

(1°)
$$z = Az;$$
 $(1^{*\circ})$ $z^* = A^*z^*.$

Следующие теоремы Фредгольма устанавливают связь между свойствами решений этих четырех уравнений.

Теорема 17.1 (альтернатива Фредгольма).

Следующие утверждения эквивалентны:

- 1) уравнение (1) разрешимо при любом у;
- (1°) уравнение (1°) имеет только нулевое решение;
- 3) уравнение (1^*) разрешимо при любом y;
- 4) уравнение $(1^{*\circ})$ имеет только нулевое решение.

Теорема 17.2. Однородные уравнения (1°) и $(1^{*\circ})$ имеют одно и то же и притом конечное число линейно независимых решений.

Теорема 17.3. Уравнение (1) разрешимо для тех и только для тех y, которые ортогональны каждому решению z^* уравнения (1^{*0}), т. е. $\langle y, z^* \rangle = 0$.

Уравнение (1*) разрешимо для тех и только для тех y^* , которые ортогональны каждому решению z уравнения (1°), $m.e. \langle z, y^* \rangle = 0.$

Важными частными случаями уравнения (1) являются интегральные уравнения Фредгольма

$$x(t) = \int_{a}^{b} K(t, s) x(s) ds + y(t)$$
 (17.1)

и Вольтерра

$$x(t) = \int_a^t K(t, s)x(s) ds + y(t).$$

Ясно, что для уравнения Фредгольма оператор A задается равенством $(Ax)(t)=\int_a^b K(t,s)\,x(s)\,ds$, а для уравнения Вольтерра — равенством $(Ax)(t)=\int_a^t K(t,s)\,x(s)\,ds$. Функция K(t,s) называется ядром интегрального оператора A.

Если ядро $K \in L_2([a,b]^2)$, то A – компактный оператор в $L_2[a,b]$. Если ядро K непрерывно по совокупности переменных, то A – компактный оператор в C[a,b].

Некоторые методы решения интегральных уравнений

1. Уравнения с вырожденным ядром

Ядро K(t,s) называется *вырожденным*, если оно представимо в виде

$$K(t,s) = \sum_{\ell=1}^{n} P_{\ell}(t)Q_{\ell}(s).$$

Можно считать, что $\{P_\ell\}_{\ell=1}^n$ — линейно независимая система функций.

Уравнение (17.1) в этом случае можно записать следующим образом:

$$x(t) = \sum_{\ell=1}^{n} P_{\ell}(t) \int_{a}^{b} Q_{\ell}(s)x(s) ds + y(t).$$
 (17.2)

Обозначим $\int_a^b Q_\ell(s)x(s)\,ds=q_\ell$. Тогда, если решение уравнения (17.1) существует, оно имеет вид

$$x(t) = \sum_{\ell=1}^{n} q_{\ell} P_{\ell}(t) + y(t).$$
 (17.3)

Подставив это выражение для x в уравнение (17.1), получим для неизвестных коэффициентов $\{q_\ell\}_{\ell=1}^n$ систему линейных уравнений. Решение уравнения (17.1) сводится к решению системы n линейных уравнений. Этот метод решения называют «методом неопределенных коэффициентов».

2. Уравнения Вольтерра

Пусть $P \in C^1[a,b]$ и $P(t) \neq 0, \ t \in [a,b]; \ Q \in C[a,b],$ тогда для уравнений Вольтерра вида

$$x(t) = P(t) \int_a^t Q(s) x(s) ds + y(t)$$

в пространстве C[a,b] нахождение решения эквивалентно решению следующей задачи Коши, если $y \in C^1[a,b]$:

$$\left(\frac{x(t) - y(t)}{P(t)}\right)' = Q(t)x(t), \qquad x(a) = y(a).$$

3. Нахождение решений в виде ряда

Уравнение

$$x = \lambda A x + y \tag{17.4}$$

в случае непрерывной обратимости оператора $E-\lambda A$ равносильно соотношению $x=(E-\lambda A)^{-1}y$. Поэтому если $\|\lambda A\|<1$, то

$$x = \sum_{n=0}^{\infty} \lambda^n A^n y. \tag{17.5}$$

Известно, что если A — оператор Вольтерра и ядро $K(t,s)\in C([a,b]^2)$ или $K\in L_2([a,b]^2)$, то в C[a,b] и в $L_2[a,b]$

соответственно оператор $E-\lambda A$ непрерывно обратим и существуют такие число $\alpha>0$ и номер N, что для всех n>N справедлива оценка $\|\lambda^n A^n\| \leqslant \alpha^n/n!$. Следовательно, ряд (17.5) сходится и его сумма является решением уравнения (17.4).

Пример 17.1. Решить интегральное уравнение

$$x(t) - \lambda \int_{-1}^{1} (ts - t^{2}s^{2}) x(s) ds = t^{2} + t^{4}$$

и найти спектр соответствующего интегрального оператора в пространстве C[-1,1].

Решение. Ядро интегрального оператора

$$(Ax)(t) = \int_{-1}^{1} (ts - t^2s^2) x(s) ds$$

вырожденное, поэтому уравнение можно решать методом неопределенных коэффициентов. Вынесем функции, зависящие от t, за знак интеграла и запишем исходное уравнение в виде

$$x(t) = \lambda \left(t \int_{-1}^{1} sx(s) \, ds - t^2 \int_{-1}^{1} s^2 x(s) \, ds \right) + t^2 + t^4.$$
 (17.6)

Отсюда следует, что если решение уравнения (17.6) существует, то оно имеет вид

$$x(t) = \lambda(t \cdot c_1 - t^2 \cdot c_2) + t^2 + t^4.$$
 (17.7)

Подставив (17.7) в (17.6), получим тождество (на [-1,1])

$$\lambda(c_1t - c_2t^2) + t^2 + t^4 \equiv$$

$$\equiv \lambda \left(t \int_{-1}^{1} \left(s\lambda(c_1s - c_2s^2) + s(s^2 + s^4) \right) ds - t^2 \int_{-1}^{1} \left(s^2\lambda(c_1s - c_2s^2) + s^2(s^2 + s^4) \right) ds \right) + t^2 + t^4.$$

Приравняв коэффициенты при t и t^2 , получим два уравнения:

$$c_1 - \int_{-1}^{1} (\lambda s(c_1 s - c_2 s^2) + s(s^2 + s^4)) ds = 0,$$
$$-c_2 + \int_{-1}^{1} (\lambda s^2(c_1 s - c_2 s^2) + s^2(s^2 + s^4)) ds = 0.$$

Вычислив интегралы, получим систему линейных уравнений для нахождения c_1 и c_2 :

$$\begin{cases} \left(1 - \frac{2}{3}\lambda\right)c_1 = 0, \\ \left(1 + \frac{2}{5}\lambda\right)c_2 = \frac{24}{35}. \end{cases}$$

Определитель системы $\Delta(\lambda)=\left(1-\frac{2}{3}\lambda\right)\left(1+\frac{2}{5}\lambda\right)$ обращается в 0 при $\lambda_1=\frac{3}{2}$ и $\lambda_2=-\frac{5}{2}$.

Если $\lambda \neq \lambda_1, \lambda_2$, то система имеет единственное решение $c_1=0,\ c_2=\frac{24}{35}\left(1+\frac{2}{5}\lambda\right)^{-1},$ а решением исходного уравнения является функция

$$x(t) = -\frac{24\lambda}{35 + 14\lambda}t^2 + t^2 + t^4.$$

Если $\lambda = \frac{3}{2}$, то система, а значит и интегральное уравнение, имеет неединственное решение:

$$c_1 = c$$
, $c_2 = \frac{3}{7}$; $x(t) = ct + \frac{5}{14}t^2 + t^4$.

Если $\lambda = -\frac{5}{2},$ то система, а значит и интегральное уравнение, неразрешимы.

Осталось найти спектр оператора A. Оператор A является вполне непрерывным, так как его ядро непрерывно на

 $[0,1] \times [0,1]$. Из теоремы 16.3 следует, что $\sigma(A) = \sigma_d(A) \cup \{0\}$. Итак, надо найти собственные значения оператора A, т. е. решить уравнение $Ax - \lambda x = 0$. Решив его методом неопределенных коэффициентов, мы получим значения $\mu_1 = \lambda_1^{-1} = \frac{2}{3}$, $\mu_2 = \lambda_2^{-1} = -\frac{2}{5}$. Таким образом,

$$\sigma(A) = \left\{0, \frac{2}{3}, -\frac{2}{5}\right\}.$$

Пример 17.2. В пространстве C[0,a] решить интегральное уравнение

$$x(t) = e^{t^2 + 2t} + 2 \int_0^t e^{t^2 - s^2} x(s) ds$$
 (17.8)

методом нахождения решения в виде ряда (см. (17.5)).

Решение. Уравнение (17.8) содержит интегральный оператор, который задается формулой

$$(Ax)(t) = \int_0^t e^{t^2 - s^2} x(s) \, ds = \int_0^t K_1(t, s) \, x(s) \, ds,$$
$$K_1(t, s) = e^{t^2 - s^2}.$$

Тогда функция

$$K_2(t,s) = \int_s^t e^{t^2 - \tau^2} e^{\tau^2 - s^2} d\tau = e^{t^2 - s^2} (t - s)$$

является ядром оператора A^2 , функция

$$K_3(t,s) = \int_s^t e^{t^2 - \tau^2} e^{\tau^2 - s^2} (\tau - s) d\tau = e^{t^2 - s^2} \frac{(t - s)^2}{2!}$$

есть ядро оператора A^3 , функция

$$K_n(t,s) = e^{t^2 - s^2} \frac{(t-s)^{n-1}}{(n-1)!}$$

есть ядро оператора A^n . Отсюда

$$\left(\sum_{n=0}^{\infty} \lambda^n A^n x\right)(t) =$$

$$= x(t) + \lambda \sum_{n=1}^{\infty} \int_0^t e^{t^2 - s^2} \frac{\lambda^{n-1} (t-s)^{n-1}}{(n-1)!} x(s) ds =$$

$$= x(t) + \lambda \int_0^t e^{t^2 - s^2} e^{\lambda(t-s)} x(s) ds.$$

Уравнение (17.8) есть уравнение вида $x=\lambda Ax+y$, где $\lambda=2$, $y=e^{t^2+2t}$. Ряд $\sum\limits_{n=0}^{\infty}\lambda^nA^n$ сходится, значит, решением уравнения (17.8) является функция

$$x(t) = e^{t^2 + 2t} + 2\int_0^t e^{t^2 - s^2} e^{2(t-s)} e^{s^2 + 2s} ds = e^{t^2 + 2t} (1 + 2t).$$

Пример 17.3. В пространстве C[-1,1] решить интегральное уравнение

$$x(t) = e^{t} + \frac{1}{2} \int_{-1}^{1} (ts + t^{2}s^{2})x(s) ds$$

методом нахождения решения в виде ряда (см. (17.5)).

Решение. Здесь

$$(Ax)(t) = \int_{-1}^{1} K_1(t,s) x(s) ds, \qquad K_1(t,s) = ts + t^2 s^2.$$

Ядро оператора A^2 имеет вид

$$K_2(t,s) = \int_{-1}^{1} (t\tau + t^2\tau^2)(\tau s + \tau^2 s^2) d\tau =$$

$$= \int_{-1}^{1} (t\tau^2 s + t^2\tau^4 s^2) d\tau = \frac{2}{3} ts + \frac{2}{5} t^2 s^2,$$

ядро A^3 имеет вид

$$K_3(t,s) = \int_{-1}^{1} (t\tau + t^2\tau^2) \left(\frac{2}{3}\tau s + \frac{2}{5}\tau^2 s^2\right) d\tau =$$
$$= \left(\frac{2}{3}\right)^2 ts + \left(\frac{2}{5}\right)^2 t^2 s^2,$$

ядро A^n имеет вид

$$K_n(t,s) = \left(\frac{2}{3}\right)^{n-1} ts + \left(\frac{2}{5}\right)^{n-1} t^2 s^2.$$

Отсюда для $n \geqslant 1$

$$(\lambda^n A^n x)(t) = \lambda \int_{-1}^1 \left(\left(\frac{2}{3} \lambda \right)^{n-1} ts + \left(\frac{2}{5} \lambda \right)^{n-1} t^2 s^2 \right) x(s) ds$$

И

$$\|\lambda^n A^n\| \leqslant 2|\lambda| \left(\left(\frac{2}{3} |\lambda| \right)^{n-1} + \left(\frac{2}{5} |\lambda| \right)^{n-1} \right).$$

Следовательно, если $|\lambda| < \frac{3}{2}$, то ряд $\sum_{n=0}^{\infty} \lambda^n A^n$ сходится и

$$((E - \lambda A)^{-1}x)(t) = \left(\sum_{n=0}^{\infty} \lambda^n A^n x\right)(t) =$$

$$= x(t) + \lambda \sum_{n=1}^{\infty} \int_{-1}^{1} \left(\left(\frac{2}{3}\lambda\right)^{n-1} t s + \left(\frac{2}{5}\lambda\right)^{n-1} t^2 s^2\right) x(s) ds =$$

$$= x(t) + \lambda \int_{-1}^{1} \left(\frac{ts}{1 - \frac{2}{3}\lambda} + \frac{t^2 s^2}{1 - \frac{2}{5}\lambda}\right) x(s) ds.$$

Решением исходного уравнения является функция

$$x(t) = \left(E - \frac{1}{2}A\right)^{-1}(e^t) = e^t + \frac{3}{2e}t + \frac{5(e^2 - 5)}{8e}t^2.$$

В задачах **17.1**—**17.8** найти решение интегрального уравнения Фредгольма с вырожденным ядром

$$x(t) - \lambda \int_{a}^{b} K(t, s) x(s) ds = y(t)$$

и спектр соответствующего интегрального оператора в пространстве C[a,b].

17.1.
$$K(t,s) = t^2 - ts$$
, $y(t) = t^2 + t$, $[a,b] = [-1,1]$.

17.2.
$$K(t,s) = t - s$$
, $y(t) = t$, $[a,b] = [0,1]$.

17.3.
$$K(t,s) = \sin(2t+s), \quad y(t) = \pi - 2t, \quad [a,b] = [0,\pi].$$

17.4.
$$K(t,s) = \sin s + s \cos t$$
, $y(t) = 1 - \frac{2t}{\pi}$, $[a,b] = [0,\pi]$.

17.5.
$$K(t,s) = \sin(t-2s)$$
, $y(t) = \cos 2t$, $[a,b] = [0,\pi]$.

17.6.
$$K(t,s) = \sin(t-s), \quad y(t) = \cos t, \quad [a,b] = [0,\pi].$$

17.7.
$$K(t,s) = \sin t \cos s - \sin 2t \cos 2s + \sin 3t \cos 3s$$
, $y(t) = \cos t$, $[a,b] = [0,2\pi]$.

17.8.
$$K(t,s) = e^{2t+s}$$
, $y(t) = t$, $[a,b] = [-1,1]$, $\lambda = \frac{3}{2}$.

17.9. Пусть
$$K_i(t,s) \in C([a,b] \times [a,b]), i = 1, 2,$$

$$(A_i x)(t) = \int_a^t K_i(t, s) x(s) ds,$$

$$(B_i x)(t) = \int_a^b K_i(t, s) x(s) ds.$$

Доказать, что

$$(A_1 A_2 x)(t) = \int_a^t K(t, s) x(s) ds$$

с ядром

$$K(t,s) = \int_{s}^{t} K_1(t,\tau)K_2(\tau,s) d\tau;$$

$$(B_1B_2x)(t) = \int_a^b K(t,s) x(s) ds$$

с ядром

$$K(t,s) = \int_a^b K_1(t,\tau)K_2(\tau,s) d\tau.$$

🖙 Решить интегральное уравнение Вольтерра

$$x(t) = y(t) + \lambda \int_0^t K(t, s) x(s) ds$$

в пространстве C[0,b], решив соответствующее ему дифференциальное уравнение (задачи **17.10–17.14**) при $\lambda=1$ и методом нахождения решения в виде ряда (см. (17.5)) (задачи **17.15–17.18**).

17.10. a)
$$K(t,s) = 1$$
, $y(t) = \frac{t^2}{2} + t$;
6) $K(t,s) = -1$, $y(t) = \frac{t^2}{2}$.

17.11.
$$K(t,s) = s^2$$
, $y(t) = t^3 + 2$.

17.12.
$$K(t,s) = s - t$$
, a) $y(t) = t$; b) $y(t) = \cos t$.

17.13.
$$K(t,s) = 4(t-s), y(t) = e^t.$$

17.14.
$$K(t,s) = 2e^{t-s}$$
, $y(t) = \sin t$.

17.15.
$$K(t,s) = \frac{1+t^2}{1+s^2}$$
, $y(t) = 1+t^2$.

17.16.
$$K(t,s) = t - s$$
, $y(t) = 1$, $\lambda > 0$.

17.17.
$$K(t,s) = \frac{2 + \cos t}{2 + \cos s}, \quad y(t) = e^{\lambda t} \sin t.$$

17.18.
$$K(t,s) = 2^{\sin t - \sin s}, \quad y(t) = 2^{\sin t}.$$

В задачах 17.19—17.21 решить интегральное уравнение Фредгольма

$$x(t) - \lambda \int_{a}^{b} K(t, s) x(s) ds = y(t)$$

методом нахождения решения в виде ряда (см. (17.5)).

17.19.
$$K(t,s) = te^s$$
, $y(t) = e^{-2t}$, $[a,b] = [1,2]$.

17.20.
$$K(t,s) = 1 + (2t-1)(2s-1), \quad y(t) = t^2, \quad [a,b] = [0,1].$$

17.21.
$$K(t,s) = \sin t \sin s + \cos t \cos s, \quad y(t) = \sin \frac{t}{2},$$
 $[a,b] = \left[-\frac{\pi}{2}, \frac{\pi}{2}\right].$

Тема 18. Исследование некоторых операторов

Дополнительно к изложенному в предыдущих темах теоретическому материалу при решении задач могут оказаться полезными следующие факты.

Пусть H, H_1 — гильбертовы пространства, $A \in \mathcal{L}(H, H_1)$. Тогда $\|A\|^2 = \|A^{\otimes}A\|$.

Если $A\in\mathcal{L}(H),\ A=A^\otimes$ и A – компактный оператор, то $\|A\|=\max\{|\lambda|\colon \lambda\in\sigma_d(A)\}.$

18.1. Пусть
$$\mathbb{P} = \mathbb{R}$$
, $A \colon L_{2k+1}[0,1] \to L_1[0,1]$, $k \in \mathbb{N}$,

$$(Ax)(t) = x^{2k+1}(t).$$

Найти оператор A^{-1} . Будут ли операторы A и A^{-1} непрерывными, ограниченными, равномерно непрерывными, компактными, вполне непрерывными?

18.2. Пусть $\{e_k\}_{k=1}^{\infty}$ — ортонормированная система в гильбертовом пространстве $H, \ \xi_k = (x, e_k)$ для $x \in H, A_j \colon H \to \ell_2, \ j = 1, 2, \ A_1 x = \{\xi_k\}_{k=1}^{\infty}, \ A_2 x = \{\eta_k\}_{k=1}^{\infty},$

где
$$\eta_k = \begin{cases} 0, & k=2\ell-1, \ \ell \in \mathbb{N}; \\ \xi_\ell/\ell, & k=2\ell. \end{cases}$$
 Доказать, что операторы A_1 и A_2 непрерывны. Будут ли они вполне непрерывными? Найти $\|A_j\|, \ A_j^{\otimes}, \ j=1,2,$ и $A_j^{-1},$ если они существуют.

- **18.3.** Пусть H гильбертово пространство, H_1 его подпространство; $H_2 = H_1^{\perp}, \ A_j \in \mathcal{L}(H_j), \ j=1,2, \ A=A_1+A_2.$ Доказать, что $\|A\| = \max\{\|A_1\|, \|A_2\|\}.$
- В задачах 18.4—18.10 провести исследование операторов:
- 1. Являются ли они непрерывными, замкнутыми, ограниченными, компактными, вполне непрерывными?
 - 2. Существует ли A^{-1} ? Если да, то найти его.
 - 3. Найти норму для ограниченных операторов.
 - 4. Найти спектр оператора A (кроме 18.5, 18.9).
- $5.~\mathrm{B}$ задачах 18.4,~18.7,~18.8,~18.10 найти сопряженный оператор.

18.4.
$$A: L_2[0,1] \to L_2[0,1], \quad (Ax)(t) = \int_0^t x(s) \, ds.$$

18.5.
$$A: L[0,1] \to C[0,1], \quad (Ax)(t) = \int_0^t x(s) \, ds - 3x(t).$$

18.6.
$$A: D(A) \subset C[0,1] \to C[0,1],$$

$$D(A) = \{x \in C^1[0,1], \ x(0) = 0\},$$

$$(Ax)(t) = x'(t) + \varphi(t) x(t), \ \ \varphi \in C[0,1].$$

18.7.
$$A: L_2[0,1] \to L_2[0,1],$$

$$(Ax)(t) = \int_0^1 (s \ln t - t \ln s) x(s) ds.$$

18.8.
$$A: \ell_2 \to \ell_2,$$

$$Ax = \left(0, \frac{\xi_1}{2}, \frac{\xi_2}{3}, \dots, \frac{\xi_k}{k+1}, \dots\right);$$

$$B: D(B) \subset \ell_2 \to \ell_2, D(B) = \{x \in \ell_2 : Bx \in \ell_2\},\ Bx = (2\xi_2, 3\xi_3, \dots, k\xi_k, \dots).$$

18.9.
$$A: C[-1,1] \to C[-1,1],$$

$$(Ax)(t) = \int_{-1}^{t} x(s) ds - \int_{0}^{1} sx(s) ds.$$

18.10.
$$A: \ell_2 \to \ell_2, \ Ax = (\xi_1 - \xi_2, \xi_2 - \xi_3, \xi_3 - \xi_4, \ldots).$$

Тема 19. Обобщенные функции

Определение 19.1. *Носителем функции* $\varphi : \mathbb{R} \to \mathbb{P}$ называется множество supp $\varphi = \overline{\{x \in \mathbb{R} \colon \varphi(x) \neq 0\}}$.

Множество бесконечно дифференцируемых функций с компактным носителем обозначают \mathcal{D} . Функции, принадлежащие \mathcal{D} , образуют линейное пространство. В пространстве \mathcal{D} определим сходимость. Последовательность $\{\varphi_n\}\subset \mathcal{D}$ сходится к функции $\varphi\in \mathcal{D}$, если существует компакт K такой, что носители всех функций φ_n и функции φ содержатся в K и для любого $m=0,1,2,\ldots$ последовательность $\varphi_n^{(m)}\overset{K}{\rightrightarrows}\varphi^{(m)}$ при $n\to\infty$. Пространство с такой сходимостью называется пространством основных функций и обозначается также \mathcal{D} .

Обобщенной функцией или распределением на \mathbb{R} называется всякий линейный секвенциально непрерывный функционал на пространстве основных функций \mathcal{D} . Множество обобщенных функций обозначают \mathcal{D}' .

На множестве \mathcal{D}' рассматривают *слабую сходимость, т. е. последовательность обобщенных функций $\{f_n\} \subset \mathcal{D}'$ сходится к $f \in \mathcal{D}'$, если

$$\forall \varphi \in \mathcal{D} \quad \langle \varphi, f_n \rangle \xrightarrow[n \to \infty]{} \langle \varphi, f \rangle.$$

Пространство \mathcal{D}' с такой сходимостью называется пространством обобщенных функций произвольного роста.

Всякая интегрируемая на любом отрезке (компакте) функция $f \colon \mathbb{R} \to \mathbb{P}$ порождает обобщенную функцию $\{f\}$ по формуле

$$\forall \varphi \in \mathcal{D} \quad \langle \varphi, \{f\} \rangle = \int_{\mathbb{R}} \varphi(x) f(x) \, dx.$$

Такие обобщенные функции называются регулярными. Все остальные обобщенные функции называются сингулярными.

Определение 19.2. Произведение функции $\alpha \in C^{\infty}(\mathbb{R})$ на обобщенную функцию f определяется формулой

$$\forall \varphi \in \mathcal{D} \quad \langle \varphi, \alpha \cdot f \rangle = \langle \alpha \cdot \varphi, f \rangle.$$

Определение 19.3. Производной $D^m f$ порядка m обобщенной функции f называется функционал, определяемый формулой

$$\forall \varphi \in \mathcal{D}' \quad \langle \varphi, D^m f \rangle = (-1)^m \langle D^m \varphi, f \rangle.$$

Нетрудно проверить, что D^mf – снова обобщенная функция.

Теорема 19.1 (свойства операции дифференцирования).

- 1. D^m линейный секвенциально непрерывный оператор, действующий в \mathcal{D}' .
- 2. Всякая обобщенная функция имеет производные всех порядков.
- 3. Если функция f непрерывно (кусочно непрерывно) дифференцируема, то $D\{f\} = \{Df\}$.
 - 4. Если функция α бесконечно дифференцируема на \mathbb{R} , то

$$D(\alpha \cdot f) = D\alpha \cdot f + \alpha \cdot Df.$$

Теорема 19.2 (о существовании первообразной обобщенной функции). Пусть $f \in \mathcal{D}'$. Тогда существует $g \in \mathcal{D}'$ такая, что Dg = f. При этом если $Dg = Dg_1$, то $g - g_1 = \mathrm{const.}$

Примеры обобщенных функций:

1) δ -функция:

$$\langle \varphi, \delta \rangle = \varphi(0);$$

 $\delta(x-c)$ – сдвинутая δ -функция:

$$\langle \varphi, \delta(x-c) \rangle = \varphi(c);$$

 $2) \chi$ – функция Хевисайда:

$$\langle \varphi, \chi \rangle = \int_0^\infty \varphi(x) \, dx;$$

3) функция $\mathcal{P}\frac{1}{x}$:

$$\begin{split} &\left\langle \varphi, \mathcal{P} \frac{1}{x} \right\rangle = V.p. \int_{-\infty}^{\infty} \varphi(x) \frac{1}{x} \, dx = \\ &= \lim_{\varepsilon \to +0} \left(\int_{-R_{\varphi}}^{-\varepsilon} \varphi(x) \frac{dx}{x} + \int_{\varepsilon}^{R_{\varphi}} \varphi(x) \frac{dx}{x} \right) = \int_{-R_{\varphi}}^{R_{\varphi}} \frac{\varphi(x) - \varphi(0)}{x} \, dx, \end{split}$$

где R_{φ} такое, что $\operatorname{supp} \varphi \subset [-R_{\varphi}, R_{\varphi}].$

Пример 19.1. Найти производную от распределения

$$f(x) = \begin{cases} \ln x, & x > 1; \\ x, & x \leqslant 1. \end{cases}$$

Распределение f является регулярным, поэтому по определению производной мы получаем равенства

$$\langle \varphi, Df \rangle = -\langle D\varphi, f \rangle = -\langle \varphi', f \rangle = -\int_{\mathbb{R}} \varphi'(x) f(x) dx.$$

Возьмем этот интеграл по частям и учтем, что $\lim_{x \to \pm \infty} \varphi(x) = 0$:

$$-\int_{\mathbb{R}} \varphi'(x)f(x) dx = -\int_{-\infty}^{1} \varphi'(x)x dx - \int_{1}^{\infty} \varphi'(x)\ln x dx =$$

$$= -\varphi(x)x\Big|_{-\infty}^{1} + \int_{-\infty}^{1} \varphi(x) dx - \varphi(x)\ln x\Big|_{1}^{\infty} + \int_{1}^{\infty} \frac{\varphi(x)}{x} dx =$$

$$= -\varphi(1) + \int_{-\infty}^{1} \varphi(x) dx + \int_{1}^{\infty} \frac{\varphi(x)}{x} dx.$$

Положим $g(x)=\begin{cases} \dfrac{1}{x}, & x>1;\\ 1, & x\leqslant 1,\\ \text{ся в виде } Df(x)=-\delta(x-1)+g(x). \end{cases}$ тогда производная f запишет-

19.1. Найти производные первого порядка от распределений

а)
$$\chi(t)$$
; б) sign t ; в) $\delta(t-t_0)$; г) $|t|$; д) $\ln |t|$;

e)
$$\chi(t)\cos t$$
; ж) $f(t) = \begin{cases} e^t, & t > 0; \\ 1, & t \leq 0; \end{cases}$

3)
$$f(t) = \begin{cases} \ln(t+1), & t \ge 0; \\ e^t, & t < 0. \end{cases}$$

19.2. Найти производные третьего порядка от распределений

a)
$$f(t) = \begin{cases} 2e^t, & t \leq 0; \\ 1 + 2t, & t > 0; \end{cases}$$

б)
$$f(t) = |t^3 - 1|$$
; в) $f(t) = |t| \cdot \sin t$; г) $|t^2 - 4|$.

19.3. Найти производные порядка m от распределений

a)
$$\delta(t)$$
; 6) $|t|$; B) $\chi(t) \cos t$; $\Gamma(t) \chi(t) t^{m+k}$.

19.4. Найти пределы следующих функций в пространстве \mathcal{D}' при $\varepsilon \to +0$:

a)
$$f_{\varepsilon}(t) = \begin{cases} \frac{1}{2\varepsilon}, & |t| \leqslant \varepsilon; \\ 0, & |t| > \varepsilon; \end{cases}$$

б)
$$f_{\varepsilon}(t) = \frac{\varepsilon}{\pi(t^2 + \varepsilon^2)};$$
 в) $f_{\varepsilon}(t) = \frac{1}{t}\sin\frac{t}{\varepsilon}.$

19.5. Решить уравнения в пространстве D':

a)
$$t \cdot f(t) = 0$$
; 6) $(t - 1) \cdot f(t) = 0$;

B)
$$t \cdot f(t) = 1$$
; $\Gamma(t-1) \cdot t \cdot f(t) = 0$.

19.6. Решить дифференциальные уравнения в пространстве D':

a)
$$t \cdot f'(t) = 1$$
; 6) $t^2 \cdot f'(t) = 1$; B) $t^2 \cdot f'(t) = \delta(t)$;

$$\Gamma$$
) $f'(t) - t \cdot f(t) = \delta''(t)$; д) $f'(t) + t \cdot f(t) = \delta'(t)$.

Для заметок

Для заметок