ECE 3030 Physical Foundations of Computer Engineering

MOS Electrostatics-II

Asif Khan

Department of Electrical and Computer Engineering
Georgia Institute of Technology

Reference

Modern Semiconductor Devices for Integrated Circuits

Chapter 5: Section 5.3, 5.4, 5.5

Resources

Recorded lecture available at https://youtu.be/gU85ggnOClU

What happens when you apply V_G>Threshold?

How to create inversion?

$$n = N_c e^{(E_F - E_C)/kT}$$

The closer the Fermi level is to the conduction band, the larger is the number of electrons

$$p = N_{\nu} e^{(E_{\nu} - E_{F})/kT}$$

The closer the Fermi level is to the valence band, the larger is the number of holes

How to create inversion?

How to create inversion?

The semiconductor needs to a voltage/electrostatic potential= $2\psi_B$ for carrier inversion

Band Diagram with VG=0

Band Diagram with VG>0

Band Diagram with an applied VG

Georgia Tech

Band Diagram of MOS Capacitors

