

Microsimulación

Docente: Daniel Ciganda

4^{ta} Clase

10 de Septiembre de 2025

MBA: Definición y Características

- Definición: Modelos computacionales en los que los sistemas de referencia se representan como una colección de entidades autónomas (agentes) que toman decisiones de acuerdo a un conjunto de reglas.
- Permiten modelar el **ambiente** en el que existen las entidades que consituyen el sistema y la interacción agente-ambiente.
- Permiten analizar como las acciones e interacciones de los agentes dan forma a la dinámica del sistema (bottom-up). Vincula los niveles micro y macro.

1

AC unidimensional: regla y numeración (Wolfram)

- Rejilla 1D de celdas indexadas por i = 1, ..., n, con estados $s_i(t) \in \{0, 1\}$.
- **Vecindad**: $(s_{i-1}(t), s_i(t), s_{i+1}(t))$.
- Actualización discreta: $s_i(t+1) = f(s_{i-1}(t), s_i(t), s_{i+1}(t))$.
- Numeración de Wolfram: ordenar las 8 tripletas 111,110,101,100,011,010,001,000; las salidas forman $b_7b_6\cdots b_0$; el número de la regla es $\sum_{k=0}^7 b_k 2^k$.

Temas Clave y Aplicaciones de los AC

 Complejidad desde la Simplicidad: Es el tema central. Reglas locales y deterministas pueden generar una increíble riqueza de comportamientos globales (orden, caos, complejidad).

Aplicaciones:

- Modelado de fenómenos naturales (patrones en conchas, copos de nieve).
- Simulación de tráfico, flujos de fluidos y propagación de incendios.
- Criptografía y generación de números aleatorios (usando reglas caóticas como la 30).

Figure 1: El patrón en la concha del *Conus textile*.

Game of Life

- Creado por J.H. Conway en 1970.
- Juego sin jugadores solo requiere un input inicial.
- Las celdas tienen inicialmente dos estados: vivas o muertas

Figure 2: Game of Life

Reglas:

- Cualquier célula viva con menos de dos vecinos vivos muere: despoblación.
- Cualquier célula viva con dos o tres vecinos vivos continua viviendo.
- Cualquier célula viva con mas de tres vecinos vivos, muere: sobrepoblación.
- Cualquier célula muerta con exactamente tres vecinos vivos, revive: reproducción.

De Celdas Pasivas a Agentes Activos

Característica	Autómatas Celulares (AC)	Modelos Basados en Agentes (MBA)
Entidad	Celda (pasiva, con estado simple).	Agente (activo, con atributos y estado interno).
Reglas	Idénticas y uniformes para todas las celdas.	Heterogéneas, individuales, pueden adaptarse.
Ambiente	Cuadrícula regular (lattice).	Flexible (cuadrícula, red, espacio continuo).
Movimiento	El estado cambia, la celda es estática.	Los agentes pueden moverse en el ambiente.
Interacción	Con vecinos locales fijos (Moore, von Neumann).	Flexible (local, a distancia, o en red).

 Los MBA son una generalización de los AC, permitiendo mayor realismo para modelar sistemas complejos, especialmente los sociales.

Sistemas Complejos: Definición

- Los Sistemas Complejos son sistemas no reducibles, caracterizados por:
 - Emergencia
 - · No linealidad / Feedbacks.
 - · Umbrales / Puntos de quiebre.
 - · Dependencia del camino.

Sistemas Complejos − > Emergencia

Emergencia: Un proceso por el cual entidades superiores, patrones o regularidades resultan de la interacción entre entidades inferiores o mas simples, las cuales no exhiben las propiedades de las estructuras resultantes.

${\bf Sistemas\ Complejos-> Emergencia> Flocking}$

Figure 3: Las tres reglas del modelo Boids:

- 1) Separación
- 2) Alineamiento
 - 3) Cohesión

Simulación boids

${\bf Sistemas\ Complejos-> Emergencia}$

La mano Invisible de Adam Smith.

Auto-organización.

Schelling's "Micromotives and Macrobehavior" (1978):

Racionalidad a nivel individual puede resultar en irracionalidad en el nivel colectivo.

"I'm terrified I might bite the invisible hand of the market."

${\bf Sistemas\ Complejos-> Feedbacks}$

Los patrones y entidades que emergen de la acción e interacción de los individuos afectan las acciones futuras de los individuos que a su vez modifican las estructuras emergentes (Normas, instituciones, ciudades).

Debate Estructura vs Acción: Habitus Bourdie, Teoría de la estructuración de Giddens.

Figure 4: Loop Estructura / Acción.

ABM: Main Ideas -> Feedbacks entre Niveles

Figure 5: Feedbacks Positivos en el Retraso de la Fecundidad Ciganda & Villavicencio (2017).

Sistemas Complejos — > Feedbacks

Feedback Negativo ocurre cuando el resultado de un sistema, proceso o mecanismo afecta el input de manera que tiende a reducir la fluctuaciones en el resultado.

Contribuyen con el equilibrio de un sistema.

Figure 6: Feedback Negativo.

"Ya nadie va a ese lugar, siempre está lleno de gente." — Yogi Berra

Sistemas Complejos — > Feedbacks

- Un Feedback positivo ocurre cuando el efecto de una disrupción menor en el sistema resulta en un incremento en la magnitud de la perturbación. Es decir: A produce más de B, que a su vez produce más de A.
- Ejemplos → Crecimiento de la población, conflicto violento, efectos de redes.
- Dependencia del camino: Movimientos anteriores determinan las posibilidades futuras.

${\bf Sistemas\ Complejos-> Feedbacks}$

Sistemas Complejos -> Umbrales y Puntos de Quiebre

Umbral:

- Un punto / momento el que se desencadena un cambio en el comportamiento del sistema.
- · Modelos de comportamiento colectivo de Granovetter.
- Umbral: El número o proporción de otras personas que tienen que participar de una dinámica social antes de que yo participe.
 - → Disturbios, espiral del silencio.

Punto de Quiebre:

- Un punto crítico en el que el comportamiento de un sistema cambia de manera dramática e irreversible.
- · Implica un cambio entre equilibrios.
 - → Corrida bancaria.

Sistemas Complejos: Racionalidad Limitada, Aprendizaje y Adaptación

- Los problemas más interesantes en las ciencias sociales emergen de la interacción entre actores que no son ni extremadamente brillantes ni completamente incapaces.
- Los MBA permiten relajar supuestos comunmente utilizados con respecto a la toma de decisiones: Racionalidad pura, optimización, información perfecta y simétrica.
- Los agentes pueden aprender y adaptarse, comportarse de manera estratégica e irracional.

