Spektrometrija žarkov γ s scintilacijskim spektrometrom

Martin Šifrar

19. januar 2023

8.1 Naloga

- 1. Prilagodite valovod na generator mikrovalov.
- 2. Izmerite frekvenco valovanja s pomočjo v valovod vgrajenega resonatorja.
- 3. Posnemite rodove klistronovega delovanja v odvisnosti od odbojne napetosti.
- 4. Izmerite moči, ki jih porablja termistor v vrhovih najmočnejših rodov.
- 5. Z osciloskopom posnemite krivulji ubranosti za valovod, ki je zaključen z bremenom, in za kratko sklenjeni valovod.

8.2 Meritve

Na valovod pritrdimo trobljo in nastavimo ubiralko in odbojno napetost tako, da je signal maksimalen. To nastavitev obdržimo skozi vse kasnejše meritve. Frekvenco valovanja določimo tako, da z vrtenjem mikrometerskega vijaka spreminjamo dimenzijo resonančne votline in opazujemo signal na merilni sondi. Ko signal pade (pravzaprav opazimo dva minimuma, ki sta zelo blizu skupaj), je vijak v položaju

$$x_{\rm vijak} = 410 \pm 1,$$

iz česar preko umeritvene tabele 1 izračunamo frekvenco

$$\nu = (11.05 \pm 0.01) \, \mathrm{GHz}.$$

Zdaj prečešemo celoten obseg odbojne napetosti in poiščemo vse rede delovanja klistrona. Nekateri izmed teh so šibkejši in jih težje opazimo. Pri teh odbojnih napetostih nato z bolometrom izmerimo še moč P_m , tj. moč, ki se porablja na termistorju. Meritve so predstavljene v prvih dveh stolpci tabele 2. Ko kasneje izračunamo ubranost s, bomo pravo moč P (zadnji stolpec tabele 2) izračunali kot

$$P = \frac{P_m}{1 - |r_R|^2},\tag{8.1}$$

pri čemer je rekflekcijski koeficient r_R definiran kot

$$|r_R|^2 = \left(\frac{1-s}{1+s}\right)^2.$$

Z valovodom, zaključenim z bolometrom, pomerimo umeritveno krivuljo. To naredimo tako, da počasi premaknemo voziček s sondo, zraven pa na osciloskopu beležimo položaj vozička in izmerjeno vrednost na sondi (jakost). Enako meritev ponovimo še z valovodom, ki je zaključem s steno (je kratko staknjen). Dobljena poteka sta vidna na sliki 2. Da iz meritev potenciometra lahko izračunamo razdaljo, izmerimo še razliko med ekstremoma položaja vozička

lega	$ u [\mathrm{GHz}] $
100	10.0
300	9.0
500	8.0

Tabela 1: Umeritvena tabela mikrometerskega vijaka resonančne votline.

Slika 1: Nastavitev ubiralke, pri kateri je signal maksimalen. To nastavitev, ki jo obdržimo skozi vse meritve.

$$l = (4.6 \pm 0.2) \,\mathrm{cm}$$
.

Prvo iz korena razmerja amplitud v krivulji ubranosti (slika 3) izračunamo parameter ubranosti s, ki ima vrednost

$$s = 0.494 \pm 0.001$$
.

Zdaj z odčitano razdaljamo x_{\min} in valovno dolžino λ izračunamo produkt

$$\beta x_{\min} = 2\pi \frac{x'_{\min}}{\lambda'},$$

katerega vrednost je

$$\beta x_{\min} = 1.10 \pm 0.08.$$

Končno izračunamo še relativno reaktanco bremena kot

$$\frac{\eta_R}{Z_0} = \frac{(s^2 - 1)\tan\beta x_{\min}}{1 + s^2\tan^2\beta x_{\min}}.$$

Dobimo vrednost

$$\frac{\eta_R}{Z_0} = -0.76 \pm 0.02,$$

in njegovo relativno rezistanco kot $\frac{\xi_R}{Z_0} = \left(1 - \frac{\eta_R}{Z_0} \tan \beta x_{\min}\right) s$. Dobimo

$$\frac{\xi_R}{Z_0} = 1.23 \pm 0.04.$$

Absolutna vrednost relativne (proti $\mathbb{Z}_0)$ impedance bremena je torej

$$\left| \frac{Z_R}{Z_0} \right| = 1.45 \pm 0.04.$$

Slika 2: Poteki jakosti na sondi in potenciometra (položaja sonde) za valovod, zaključen z bolometrom (zgoraj) in valovod, zaključen z steno (spodaj).

$U_o\left[\mathrm{V}\right]$	$P_m [mW]$	P[mW]
-30.2	0.10	0.11
-55.7	0.22	0.25
-92.8	0.38	0.43
-148.3	0.56	0.63
-230.1	0.52	0.59
-359.8	0.38	0.43

Tabela 2: Odbojne napetosti v vseh najdenih redovih delovanja klistrona in moč na termistorju P_m . V zadnjem stolpcu je predstavljena tudi prava moč valovanja P, ki jo izračunamo s pomočjo ubranosti s preko enačbe 8.1.

Slika 3: Krivulji ubranosti za valovod, zaključen z bolometrom (zelena) in valovod, zaključen z steno (oranžna). S črno črtkano črto so narisane parabole, ki jih prilagodimo posameznim vrhovom, da natančneje odčitamo njihov položaj.