## Known-Item Search

#### Goal

To develop a content-based video retrieval system that can be used for finding small video segments of interest based on a query in a large dataset of videos. This type of task is referred to as known item search.

#### Problems

- How to find different segments in a video?
- What type of queries to allow?

#### Dataset - V3C100

- It is subset of a much larger dataset(V3C-1), consisting of 100 videos.
- Each item in the dataset consists of a MP4 file and meta-data.

#### **Shot Detection**

 FFMPEG's scdet was used to detect scene change in the video, with a threshold of 2 and sc\_pass of 0

ffmpeg -i <src\_path> -vf "scdet=s=0:t=2" <target\_path>

## Queries

| Query  | Model / Library | Description                                                |
|--------|-----------------|------------------------------------------------------------|
| Text   | CLIP ViT-L/14   | Find relevant segments using a text query                  |
| Image  | CLIP ViT-L/14   | Find relevant segments which a similar to the target image |
| Object | YOLOv8          | Filter segments based on objects present in it             |
| Word   | EasyOCR         | Filter segments based on words present in it               |
| Color  | Pillow          | Filter segments based on the dominant colour in it         |

## Text and Image Query





### Color Query



#### Overview



#### Data Extraction



## Inserting into DB

id text PRIMARY KEY
video\_id text
frame\_id text
timestamp float
objects text[]
colors int[][]
image\_vector vector(768)
text text[]



## Scoring of Segments



## Settings

| Parameter            | Type           | Description                                                                                                                                                                                                                               |
|----------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Max Results          | Integer        | Limits the number of frames returned by the database query                                                                                                                                                                                |
| Max Text Similarity  | Float          | Maximum threshold for cosine similarity between the query text and the frame                                                                                                                                                              |
| Color Radius         | Integer        |                                                                                                                                                                                                                                           |
| Max Image Similarity | Float          | Maximum threshold for cosine similarity between the query image and the frame                                                                                                                                                             |
| Contains             | any, all, only | Defines how to look for objects in the frame any: the frame contains any of the defined objects all: the frame contains all of the defined objects, the frame may contain more only: the frame contains all and only the defined objects. |

### Limitations and Improvements

- OpenAl's CLIP model is limited to English language, text query in any other language will lead to unexpected results. This limitation can be avoided with the use of a translation into English before encoding the text query.
- The objects that can be detected are limited to the YOLO classes. This
  limitation can be avoided with the use of a different object detection model
  such as YOLO World, but this approach introduces new problems. As now
  the user has to define the objects.
- Currently, the system only utilises visual element of the video. It would also be useful for the user if they can perform a search based on the audio content of the video as well. A speech to text model can be used to convert the spoken words into text.

# Demo