Projeto Integrador IV: Extração e Visualização de Dados CrawlerJobs

Humberto Vieira de Castro¹, Mario Roberto de Castro¹, Paulo Henrique Leite¹

¹Ciências da Computação – Centro Universitário Senac São Paulo (SENAC-SP) Av. Engenheiro Eusébio Stevaux, 823, São Paulo – SP

{humbertovieira.castro, marico.castro, leite.paulohf}@gmail.com

Abstract. (Pedir pra laurana traduzir) Este artigo descreve o trabalho relativo ao desenvolvimento de um web Crawler com o objetivo de extrair dados nos principais sites de empregos no Brasil. Além disto, é apresentado a solução proposta pela equipe em relação a visualização dos dados extraídos, uma parte muito importante do projeto desenvolvido. O artigo detalha toda a elaboração do projeto, trazendo seus aspectos técnicos, as dificuldades encontradas na implementação, os recursos pedagógicos utilizados, algoritmos implementados e o resultado final obtido.

Resumo. Este artigo descreve o trabalho relativo ao desenvolvimento de um web Crawler com o objetivo de extrair dados nos principais sites de empregos no Brasil. Além disto, é apresentado a solução proposta pela equipe em relação a visualização dos dados extraídos, uma parte muito importante do projeto desenvolvido. O artigo detalha toda a elaboração do projeto, trazendo seus aspectos técnicos, as dificuldades encontradas na implementação, os recursos pedagógicos utilizados, algoritmos implementados e o resultado final obtido.

1. Introdução

O objetivo deste trabalho é o desenvolvimento de um web crawler que seja capaz de extrair dados dos principais sites de empregos. Além disto, ele também é utilizado para manter a base de dados sempre atualizada.

Para armazenar todos os dados extraídos pelo crawler, foi usado um banco de dados relacional, através deste, é possível gerenciar todo o conteúdo obtido e garantir a integridade dos dados.

Após a mineração e normalização das informações obtidas, foi desenvolvido um site para a visualização destes dados. A visualização foi criada a partir do processing.js, este faz uma ponte entre processing e javaScript, permitindo a criação gráfica de dados em 2d e 3d.

Afim de trazer a melhor experiência para os usuários, foi criado algumas personas para executar testes de usabilidade. Através destas, é possível perceber padrões de dificuldade entre usuários durante a navegação. Com os padrões estabelecidos, a criação de uma plataforma simples e usual para todos se torna mais fácil.

2. O projeto

Anualmente, milhões de profissionais utilizam sites de empregos para conseguir entrar no mercado de trabalho e através destes é possível ter acesso a mais de 2 milhões de

vagas para se candidatar, estas são diariamente publicadas por mais de 100 mil empresas registradas no mercado brasileiro, segundo a Catho.

Com o objetivo de analisar o mercado brasileiro, foi desenvolvido um sistema que busca vagas de empregos armazenadas nos principais sites de contratação (Catho, infoJobs, Manager e Empregos), através deste é possível verificar informações de salário médio por cargo, região e cidade, as profissões mais procuradas pelas empresas no momento atual e até mesmo a escolaridade e requisitos mais procurados por elas.

2.1. Etapas do projeto

A primeira parte do projeto remetesse ao desenvolvimento de um web Crawler capaz de minerar dados nas principais plataformas de empregos. As plataformas escolhidas pela equipe foram: Catho, infoJobs, Manager e Empregos.

A segunda etapa consiste no tratamento das informações extraídas, buscando padrões e fazendo a devida separação dos dados por categorias. Após este tratamento, o conteúdo será inserido em um banco de dados responsável em armazenar e manter as informações sempre atualizadas.

A terceira etapa consiste em um trabalho de visualização de dados, onde uma plataforma de visualização gráfica deverá ser desenvolvida para permitir que o usuário acesse as informações derivadas do banco de dados.

3. Desenvolvimento

(Em desenvolvimento)

3.1. Dificuldades e soluções

O projeto é constituído por dois grandes desafios, a extração de dados feita através de um crawler e a visualização deste conteúdo.

(Em desenvolvimento)

Outro problema encontrado pela equipe durante o desenvolvimento do projeto foi em relação ao robots.txt, como o próprio nome já diz, robots.txt é um arquivo de texto que funciona como filtro para os robôs dos sites de busca, ou seja, para o seu crawler. Ele tem como função controlar as permissões de acesso as páginas dos sites, informando quais dados podem ou não serem indexados.

É importante lembrar que o robots.txt não previne que o crawler acesse os diretórios e arquivos dos sites, ele funciona mais como uma espécie de placa na porta de entrada, dizendo o que pode ou não ser acessado, ou seja, é necessário que a pessoas tenha bom senso moral e ético para respeitar a placa.

3.1.1. Extração de dados usando API

Para projetos que estão começando, onde tempo é um problema, a API pode ser uma grande aliada, pois além de ser algo simples de utilizar, contribui para o crescimento do seu projeto, tornando-o mais completo.

Ao desenvolver um crawler, deve ser levado em consideração a forma que os dados estão sendo obtidos, em geral, é possível obter as informações desejadas de várias formas diferentes, como por exemplo, extrair os dados diretamente de um HTML, entretanto, para assegurar a durabilidade do crawler desenvolvido, é preferível a escolha de uma plataforma que possua uma API própria para esse tipo de serviço, caso contrário, se ocorrer alterações no HTML, o sistema de mineração pode ser comprometido e parar de funcionar, neste caso, deve ser feito alguns tratamentos no processo de extração para dificultar esta depreciação.

(Em desenvolvimento)

3.1.2. Extração de dados usando HTML

(Em desenvolvimento)

3.1.3. Criação de um web crawler

(Em desenvolvimento)

3.1.4. Escolhendo a visualização de dados

(Em desenvolvimento)

3.2. Aprendizado de novas tecnologias

(Em desenvolvimento)

3.2.1. Node.js

(Em desenvolvimento)

3.2.2. Plataforma Azure

(Em desenvolvimento)

3.2.3. Linguagem SQL

(Em desenvolvimento)

3.2.4. Processing.js

(Figure 1 Em desenvolvimento).

4. Resultados e discussões

(Em desenvolvimento)

Figura 1. Figura exemplo - Em desenvolvimento.

5. References

Bibliographic references must be unambiguous and uniform. We recommend giving the author names references in brackets, e.g. [Knuth 1984], [Boulic and Renault 1991], and [Smith and Jones 1999].

The references must be listed using 12 point font size, with 6 points of space before each reference. The first line of each reference should not be indented, while the subsequent should be indented by 0.5 cm.

Referências

Boulic, R. and Renault, O. (1991). 3d hierarchies for animation. In Magnenat-Thalmann, N. and Thalmann, D., editors, *New Trends in Animation and Visualization*. John Wiley & Sons ltd.

Knuth, D. E. (1984). The T_FX Book. Addison-Wesley, 15th edition.

Smith, A. and Jones, B. (1999). On the complexity of computing. In Smith-Jones, A. B., editor, *Advances in Computer Science*, pages 555–566. Publishing Press.