BEST AVAILABLE COPY

PATENT ABSTRACTS OF JAPAN

(11) Publication number:

2002-280417

(43) Date of publication of application: 27.09.2002

(51)Int.CI.

H01L 21/60

(21)Application number : 2001-170787

(71)Applicant : NEC CORP

(22)Date of filing: 06.06.2001

(72)Inventor: NISHIYAMA TOMOHIRO

TAGO MASAKI TAO TETSUYA MIKAGI IKU

(30)Priority

Priority number: 2001005977

Priority date: 15.01.2001

Priority country: JP

(54) SEMICONDUCTOR DEVICE, ITS MANUFACTURING METHOD, AND ITS MANUFACTURING EQUIPMENT

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a highly reliable electrode structure for semiconductor chip which can control the interfacial reaction of a junction even when the conventional binary composition solder is used without using solder composed of a multicomponent metallic composition, and to provide a highly reliable semiconductor device having the electrode structure and to provide a method and equipment for manufacturing the device.

SOLUTION: On an adhesive layer 5, an alloyed solder layer 8 is thinly formed for preventing the melting and diffusion of tin with respect to solder which is used mainly as lead-free solder and contains tin as the main ingredient. A composite solder alloy layer 6 which becomes two composite intermetallic compounds between the tin and alloyed solder layer 8 and between the tin and adhesive layer 5 is formed by supplying tin-based solder in the form of solder paste or solder balls and by heat-melting the solder.

LEGAL STATUS

[Date of request for examination]
[Date of sending the examiner's decision of

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2002-280417 (P2002-280417A)

(43)公開日 平成14年9月27日(2002.9.27)

(51) Int.Cl. ⁷	識別記号	FΙ		ž	i-7]-ド(多考)
H01L 21/60	3 1 1	H01L	21/60	311Q	5 F O 4 4
		:	21/92	602H	
				603E	
				604M	

審査請求 未請求 請求項の数45 OL (全 16 頁)

(21)出願番号	特顧2001-170787(P2001-170787)	(71)出顧人	000004237 日本電気株式会社
(22)出顧日	平成13年6月6日(2001.6.6)	(72)発明者	東京都港区芝五丁目7番1号 西山 知宏
(31)優先権主張番号	特顧2001-5977 (P2001-5977)		東京都港区芝五丁目7番1号 日本電気株
(32)優先日	平成13年1月15日(2001.1.15)		式会社内
(33)優先権主張国	日本(JP)	(72)発明者	田子 雅基
			東京都港区芝五丁目7番1号 日本電気株
			式会社内
		(74)代理人	100114672
			弁理士 宮本 恵司
			風砂両小や力

最終頁に続く

(54) 【発明の名称】 半導体装置及びその製造方法並びに半導体製造装置

(57)【要約】

【課題】多元系の金属組成によって構成されたハンダを使用することなく、従来使用している2元系のハンダを使用した場合であっても、接合部の界面反応を制御することができる信頼性の高い半導体チップの電極構造、該電極構造を有する信頼性の高い半導体装置及びその製造方法並びに半導体製造装置の提供。

【解決手段】接着層5上に、鉛フリーハンダとして主に使用される錫を主成分としたハンダに対して錫の溶解、拡散を防止するためのハンダ合金化層8を薄く形成し、錫系ハンダをハンダベーストもしくはハンダボールの形態で供給し、加熱溶融することにより、錫とハンダ合金化層8および錫と接着層5の各々2つの複合した金属間化合物となる複合ハンダ合金層6を形成する。

BEST AVAII ARI F COPV

【特許請求の範囲】

【請求項1】少なくとも、配線層上に形成された第1の 金属を含む接着層上に、合金ハンダからなるハンダバン プを有する半導体装置において、

前記ハンダバンプと前記接着層との間に、前記合金ハン ダの主となる金属と該金属とは異なる第2の金属とを含 む金属間化合物が形成されていることを特徴とする半導 体装置。

【請求項2】少なくとも、配線層上に形成された第1の 金属を含む接着層上に、合金ハンダからなるハンダバン 10 は11に記載の半導体装置。 プを有する半導体装置において、

前記ハンダバンプと前記接着層との間に、前記合金ハン ダの主となる金属と該金属とは異なる第2の金属との金 属間化合物と、前記接着層に含まれる前記第1の金属と 前記合金ハンダの主となる金属との金属間化合物とが複 合された合金層が形成されていることを特徴とする半導 体装置。

【請求項3】少なくとも、配線層上に形成された第1の 金属を含む接着層上に、合金ハンダからなるハンダバン プを有する半導体装置において、

前記ハンダバンプと前記接着層との間に、前記接着層上 に一旦配設され、前記ハンダバンプの形成に際して前記 合金ハンダ内に溶解される金属層を構成する第2の金属 と前記合金ハンダの主となる金属とを含む金属間化合物 が形成されていることを特徴とする半導体装置。

【請求項4】少なくとも、配線層上に形成された第1の 金属を含む接着層上に、合金ハンダからなるハンダバン プを有する半導体装置において、

前記ハンダバンプと前記接着層との間に、前記接着層上 合金ハンダ内に溶解される金属層を構成する第2の金属 と前記合金ハンダの主となる金属との金属間化合物と、 前記接着層に含まれる前記第1の金属と前記合金ハンダ の主となる金属との金属間化合物とが複合された合金層 が形成されていることを特徴とする半導体装置。

【請求項5】前記合金ハンダの主となる金属が錫である ことを特徴とする請求項1乃至4のいずれか一に記載の 半導体装置。

【請求項6】前記合金ハンダの前記錫に次いで主たる成 置。

【請求項7】前記合金ハンダに、銅が添加されているこ とを特徴とする請求項5又は6に記載の半導体装置。

【請求項8】前記第2の金属が、銅、又は、前記第1の 金属と異なる金属であり、かつ錫と金属間化合物を形成 する金属からなることを特徴とする請求項1乃至7のい ずれか一に記載の半導体装置。

【請求項9】前記接着層に含まれる前記第1の金属がニ ッケルを含むことを特徴とする請求項1乃至8のいずれ か一に記載の半導体装置。

【請求項10】前記接着層が、膜質の異なるニッケル又 はニッケル合金を積層した膜からなることを特徴とする 請求項9記載の半導体装置。

【請求項11】前記接着層が、ニッケル又はニッケル合 金と、銅又は銅合金とを積層した膜からなることを特徴 とする請求項9記載の半導体装置。

【請求項12】前記ニッケル合金が、ニッケル/パナジ ウム合金、ニッケル/燐合金、または、ニッケル/チタ ン合金のいずれかを含むことを特徴とする請求項10又

【請求項13】前記配線層と前記接着層との間に、密着 層が配設されていることを特徴とする請求項1乃至12 のいずれか一に記載の半導体装置。

【請求項14】前記密着層が、チタン又はチタン/タン グステン合金を含むことを特徴とする請求項13記載の 半導体装置。

【請求項15】配線層上に、少なくとも、第1の金属を 含む接着層を介して合金ハンダからなるハンダバンプを 形成する半導体装置の製造方法において、

20 前記ハンダバンプを形成するに際し、主となる金属とは 異なる第2の金属を添加した合金ハンダを一旦溶融した 後、冷却するととにより、前記第2の金属と前記合金ハ ンダの主となる金属とを含む金属間化合物を、前記接着 層と前記ハンダバンプとの界面に析出させることを特徴 とする半導体装置の製造方法。

【請求項16】配線層上に、合金ハンダと反応し、界面 に第1の金属間化合物を形成する第1の金属を含む接着 層を形成する工程と、主となる金属とは異なる第2の金 属を添加した合金ハンダを供給する工程と、前記合金ハ に一旦配設され、前記ハンダバンプの形成に際して前記 30 ンダを一旦溶融した後、冷却することにより、前記第1 の金属間化合物、及び、前記合金ハンダの主となる金属 と前記第2の金属との第2の金属間化合物が複合された 合金層を、前記接着層と前記合金ハンダとの界面に形成 する工程とを含むことを特徴とする半導体装置の製造方

> 【請求項17】配線層上に、少なくとも、第1の金属を 含む接着層を介して合金ハンダからなるハンダバンブを 形成する半導体装置の製造方法において、

前記接着層上に第2の金属からなる金属層を形成し、前 分が銀であることを特徴とする請求項5記載の半導体装 40 記ハンダバンブを形成するに際し、前記金属層の全てを 前記合金ハンダに一旦溶融した後、冷却することによ り、前記第2の金属と前記合金ハンダの主となる金属と を含む金属間化合物を、前記接着層と前記ハンダバンプ との界面に析出させることを特徴とする半導体装置の製

> 【請求項18】配線層上に、合金ハンダと反応し、界面 に第1の金属間化合物を形成する第1の金属を含む接着 層を形成する工程と、前配合金ハンダと反応し、第2の 金属間化合物を形成する第2の金属からなる金属層を形 50 成する工程と、前記合金ハンダを供給する工程と、前記

合金ハンダを一旦溶融した後、冷却することにより、前 記第1の金属間化合物および前記第2の金属間化合物が 複合された合金層を、前記接着層と前記合金ハンダとの 界面に形成する工程とを含むことを特徴とする半導体装 置の製造方法。

【請求項19】前記金属層上に、更に金からなる酸化防 止膜が薄く形成されていることを特徴とする請求項17 又は18に記載の半導体装置の製造方法。

【請求項20】配線層上に、合金ハンダと反応し、界面 に第1の金属間化合物を形成する第1の金属を含む接着 10 の製造方法。 層を形成する工程と、前記合金ハンダと反応し、第2の 金属間化合物を形成する第2の金属からなる金属層を形 成する工程と、前記金属層上に錫からなる薄膜を形成 し、前記第2の金属と前記錫との合金層を予め形成する 工程と、前記合金ハンダを供給する工程とを含むことを 特徴とする半導体装置の製造方法。

【請求項21】前記配線層上に前記接着層を形成する前 に、前記配線層と前記接着層との密着性を保持する密着 層を形成する工程を含むことを特徴とする請求項15乃 至20のいずれか一に記載の半導体装置の製造方法。

【請求項22】前記ハンダバンプの形成に際し、該ハン ダバンプの前記接着層との界面の温度が、頂部の温度よ りも低くなる所定の温度勾配を設けて、前記合金ハンダ の溶融及び前記金属間化合物の析出を行うことを特徴と する請求項15乃至21のいずれか一に記載の半導体装 置の製造方法。

【請求項23】前記ハンダバンプの形成に際し、前記半 導体装置をステージに載置し、該ステージ下部に移動可 能に設けられた加熱プレートと冷却プレートとを順次前 記ステージに接触させることにより、前記合金ハンダの 30 溶融及び前記金属間化合物の析出を行うことを特徴とす る請求項15乃至22のいずれか一に記載の半導体装置 の製造方法。

【請求項24】前記加熱プレートによる加熱に際し、前 記半導体装置上部に設けた非接触加熱手段により前記半 導体装置を上方からも加熱し、前記冷却プレートによる 冷却に際して、前記非接触加熱手段による加熱を継続 し、前記ハンダバンプの頂部と前記接着層との界面との 温度勾配を大きくして前記金属間化合物の前記接着層と の界面への析出を促進することを特徴とする請求項23 40 体装置の製造方法。 記載の半導体装置の製造方法。

【請求項25】前記冷却プレートによる冷却を、2℃/ 秒以上の冷却速度で行うことを特徴とする請求項23又 は24に記載の半導体装置の製造方法。

【請求項26】前記加熱プレートによる加熱及び前記冷 却プレートによる冷却が、所定のガスの減圧雰囲気下で 行われることを特徴とする請求項23乃至25のいずれ か一に記載の半導体装置の製造方法。

【請求項27】前配所定のガスが、不活性ガス又は還元 性ガスのいずれかを含むことを特徴とする請求項26記 50 半導体装置を下方から冷却する冷却手段とを少なくとも

載の半導体装置の製造方法。

【請求項28】前記不活性ガスが、窒素又はアルゴンか らなり、前記還元性ガスが、水素又は水素を含む混合ガ スからなることを特徴とする請求項27記載の半導体装 置の製造方法。

【請求項29】前記接着層が、スパッタリングにより形 成したニッケル、ニッケル合金、銅又は銅合金のいずれ か一の単層膜又は複数の積層膜からなることを特徴とす る請求項15乃至28のいずれか一に記載の半導体装置

【請求項30】前記接着層が、無電解メッキ又は電解メ ッキにより形成したニッケル、ニッケル合金、銅又は銅 合金のいずれか一の単層膜又は複数の積層膜からなると とを特徴とする請求項15乃至28のいずれか一に記載 の半導体装置の製造方法。

【請求項31】前記接着層が、請求項29記載の膜と、 請求項30記載の膜との積層膜からなることを特徴とす る半導体装置の製造方法。

【請求項32】前記金属層が、スパッタリング、無電解 20 メッキ又は電解メッキのいずれか一又は複数の方法によ り形成した銅薄膜を含むことを特徴とする請求項15乃 至31のいずれか一に記載の半導体装置の製造方法。

【請求項33】前記金属層の膜厚が、前記合金ハンダの 溶融に際して全てが該合金ハンダ内に溶解し、前記合金 ハンダの冷却に際して少なくとも一部が該合金ハンダか ら析出する量となるように設定されていることを特徴と する請求項32記載の半導体装置の製造方法。

【請求項34】前記合金ハンダを、所定量に成形された ボールもしくはペレットにより供給することを特徴とす る請求項15乃至33のいずれか一に記載の半導体装置 の製造方法。

【請求項35】前記合金ハンダを、ハンダペーストによ り供給することを特徴とする請求15乃至34のいずれ か一に記載の半導体装置の製造方法。

【請求項36】前記合金ハンダの主となる金属が錫であ ることを特徴とする請求項15乃至35のいずれか一に 記載の半導体装置の製造方法。

【請求項37】前記合金ハンダの前記錫に次いで主たる 成分が銀であることを特徴とする請求項36記載の半導

【請求項38】前記合金ハンダに、銅が添加されている ことを特徴とする請求項36又は37に記載の半導体装 置の製造方法。

【請求項39】試料を搭載するステージと、前記試料を 加熱する加熱手段と、前記試料を下方から冷却する冷却 手段とを少なくとも有することを特徴とする半導体製造 装置。

【請求項40】はんだを有する半導体装置を搭載するス テージと、前記半導体装置を加熱する加熱手段と、前記 有することを特徴とする半導体製造装置。

【請求項41】前記加熱手段がヒータを内蔵した加熱プ レートからなり、前記冷却手段が冷媒を内蔵した冷却プ レートからなり、前記加熱プレートと前記冷却プレート とが前記ステージ下面に順次接触して熱伝導により加熱 /冷却が行われることを特徴とする請求項39又は40 に記載の半導体製造装置。

【請求項42】前記加熱手段又は前記冷却手段の少なく とも一方が、前記ステージに内蔵されていることを特徴 とする請求項39又は40に記載の半導体製造装置。

【請求項43】更に、前記ステージ上部に、前記試料又 は前記半導体装置を上方から非接触で加熱する非接触加 熱手段を有することを特徴とする請求項39乃至42の いずれか一に記載の半導体製造装置。

【請求項44】前記ステージ及び前記試料又は前記半導 体装置表面の温度を測定する温度センサと、該温度セン サの出力を参照して、前記試料又は前記半導体装置の上 面と下面との温度勾配が所定の値となるように、前記冷 却手段及び前記非接触加熱手段とを独立に制御する制御 体製造装置。

【請求項45】接着層とはんだバンプとの間に金属間化 合物を形成していることを特徴とするはんだバンプ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、半導体装置及びそ の製造方法並びに半導体製造装置に関し、特に、鉛フリ ーハンダバンプで接合された電極構造を有する半導体装 置及びその製造方法並びに該半導体装置の製造に用いる 半導体製造装置に関する。

[0002]

【従来の技術】半導体装置の髙機能、髙密度化に伴い、 多ビン化した半導体チップをハンダバンプでバッケージ 用基板に接合する半導体パッケージや、ボール・グリッ ド・アレイ (BGA)型の外部端子を有する半導体パッ ケージが増加してきた。この種の半導体チップの電極で は、組立時の熱履歴や、半導体パッケージの実装時にか かる熱履歴、また使用環境下における高温状態や温度変 化により、接合部界面は金属間の反応によってその構成 れらの問題に対し、信頼性を保つことが可能な金属組成 となるように各材料を選択することが重要な要素の一つ となる。

【0003】との目的のために、通常は錫および鉛によ り構成されたハンダをパンプとして使用する場合、図5 に示すように、接着層5にニッケルや銅を使用し、その 膜厚を5μm以上に厚く形成した層を介して接合する。 そして、ニッケル層を介した場合、ハンダ中の錫とニッ ケルが反応して金属間化合物層11を形成して接合され る。また、銅層を介して接合する場合、界面は錫と銅の 50 コンベアの振動により、半導体ウェハもしくはチップが

金属間化合物層11を形成して接合される。

【0004】銅と錫との反応性はニッケルと錫の場合よ り高いが、どちらの場合においても接合時の溶融状態に おいて、また接合後の温度環境下においても拡散反応は 進み、ハンダを構成する錫が接着層5であるニッケルや 銅層を侵食していき、その結果、接合界面では錫が消費 されて鉛の濃度が高い部分が形成されたり、錫の拡散に よるカーケンダルボイドなどが発生し、強度低下を招く という問題がある。この問題を解消するために、現在で 10 は、銅やニッケル層を厚く形成する方法、もしくは、ハ ンダ中の錫を減量した鉛リッチな高融点ハンダを使用し ている。

【0005】しかしながら、近年、環境問題から鉛フリ ーハンダを使用する動きがあり、錫を主成分としたハン ダを使用する必要が生じている。この錫を主成分とした ハンダでは、銅やニッケル層を接着層5として使用した 場合、上述の課題が顕著になり、信頼性上の問題があ

【0006】一般に、これらの問題を解決するために、 手段とを備えたことを特徴とする請求項43記載の半導 20 主成分である錫にハンダぬれ性や機械的特性の観点から 銀、ビスマス、アンチモン、亜鉛などを添加したハンダ や、また、これらに銅、ニッケルなどからなる接着層5 の溶喰、拡散を防止するための元素を添加した多元系合 金のハンダを使用している。

[0007]

【発明が解決しようとする課題】しかしながら、多元系 のハンダは、その供給形態がハンダペーストやハンダボ ールを電極毎に供給するものであるため、電極各々の組 成について微量な添加元素の均一性を保つことが困難で 30 あり、微量な添加元素の均一性を保とうとすると製造コ ストを引き上げることになる。

【0008】また、溶喰や拡散防止用の添加元素の効果 は、主成分である錫に予め添加元素を固溶させておき、 接合時にハンダ中への接着層5の溶解、また固溶を最小 限にとどめるというものであるが、接合温度によって接 着層5が固溶する総量は変化し、安定して接合するため には温度を高くする必要があり、通常は過剰に固溶して しまう。この接着層5が過剰に固溶する現象を防ぐため には添加元素を多く含有しなければならないが、結果と が変化し、信頼性上の不具合を発生することがあり、こ 40 して融点が高くなり、製造時に耐熱性を考慮しなければ ならない等、製品設計上大きな問題となる。

> 【0009】更に、ハンダを溶融し、接合部を形成する ためのリフロー炉は、図15に示すように、赤外線もし くは熱風によって温度制御された予備加熱、本加熱、冷 却のエリア中をコンベアによって一定速度で通過させる 方式をとっているが、この方式では、コンベアにて一定 速度で各エリアを通過させるために温度制御が困難であ り、接合部の金属間化合物層を材料設計したとおりに形 成することはできない。また、リフロー炉内を搬送中の

7 破損したり、形成したハンダの移動によりブリッジが発 生して歩留まりを低下させる原因となっている。

【0010】本発明の第1の目的は、微量な元素を多数 添加した多元系の金属組成によって構成されたハンダを 使用することなく、従来使用している2元又は3元のハ ンダを使用した場合であっても、接合部の界面反応を制 御することができる信頼性の高い半導体チップの電極構 造を提供することにある。

【0011】また、本発明の第2の目的は、上述の電極 構造を有する信頼性の高い半導体装置及びその製造方法 10 を提供することにある。

【0012】また、本発明の第3の目的は、半導体チッ プの温度制御を正確に行い、ハンダの溶融、金属間化合 物の析出を制御することができる半導体製造装置を提供 することにある。

[0013]

【課題を解決するための手段】上記目的を達成するた め、本発明の半導体装置は、少なくとも、配線層上に形 成された第1の金属を含む接着層上に、合金ハンダから ンダバンプと前記接着層との間に、前記合金ハンダの主 となる金属と該金属とは異なる第2の金属とを含む金属 間化合物が形成されているものである。

【0014】また、本発明の半導体装置は、少なくと も、配線層上に形成された第1の金属を含む接着層上 に、合金ハンダからなるハンダバンプを有する半導体装 置において、前記ハンダバンプと前記接着層との間に、 前記合金ハンダの主となる金属と該金属とは異なる第2 の金属との金属間化合物と、前記接着層に含まれる前記 第1の金属と前記合金ハンダの主となる金属との金属間 化合物とが複合された合金層が形成されているものであ

【0015】また、本発明の半導体装置は、少なくと も、配線層上に形成された第1の金属を含む接着層上 に、合金ハンダからなるハンダバンプを有する半導体装 置において、前記ハンダバンブと前記接着層との間に、 前記接着層上に一旦配設され、前記ハンダバンブの形成 に際して前記合金ハンダ内に溶解される金属層を構成す る第2の金属と前記合金ハンダの主となる金属とを含む 金属間化合物が形成されているものである。

【0016】また、本発明の半導体装置は、少なくと も、配線層上に形成された第1の金属を含む接着層上 に、合金ハンダからなるハンダバンブを有する半導体装 置において、前記ハンダバンプと前記接着層との間に、 前記接着層上に一旦配設され、前記ハンダバンプの形成 に際して前記合金ハンダ内に溶解される金属層を構成す る第2の金属と前記合金ハンダの主となる金属との金属 間化合物と、前記接着層に含まれる前記第1の金属と前 記合金ハンダの主となる金属との金属間化合物とが複合 された合金層が形成されているものである。

【0017】本発明においては、前記合金ハンダの主と なる金属が錫であり、また、前記錫に次いで主たる成分 が銀であり、また、前記合金ハンダに、銅が添加されて いる構成とすることができる。

【0018】また、本発明においては、前記金属層を構 成する前記第2の金属が、銅、又は、前記第1の金属と 異なる金属であり、かつ錫と金属間化合物を形成する金 属からなることが好ましい。

【0019】また、本発明においては、前記接着層に含 まれる前記第1の金属がニッケルを含み、前記接着層 が、膜質の異なるニッケル又はニッケル合金を積層した 膜、又は、ニッケル又はニッケル合金と、銅又は銅合金 とを積層した膜からなることが好ましい。

【0020】また、本発明においては、前記配線層と前 記接着層との間に、密着層が配設され、前記密着層が、 チタン又はチタン/タングステン合金を含む構成とする ことができる。

【0021】本発明の半導体装置の製造方法は、配線層 上に、少なくとも、第1の金属を含む接着層を介して合 なるハンダバンブを有する半導体装置において、前記ハ 20 金ハンダからなるハンダバンブを形成する半導体装置の 製造方法において、前記ハンダバンプを形成するに際 し、主となる金属とは異なる第2の金属を添加した合金 ハンダを一旦溶融した後、冷却することにより、前記第 2の金属と前記合金ハンダの主となる金属とを含む金属 間化合物を、前記接着層と前記ハンダバンプとの界面に 析出させるものである。

> 【0022】また、本発明の半導体装置の製造方法は、 配線層上に、合金ハンダと反応し、界面に第1の金属間 化合物を形成する第1の金属を含む接着層を形成する工 30 程と、主となる金属とは異なる第2の金属を添加した合 金ハンダを供給する工程と、前記合金ハンダを一旦溶融 した後、冷却することにより、前記第1の金属間化合 物、及び、前記合金ハンダの主となる金属と前記第2の 金属との第2の金属間化合物が複合された合金層を、前 記接着層と前記合金ハンダとの界面に形成する工程とを 含むものである。

【0023】また、本発明の半導体装置の製造方法は、 配線層上に、少なくとも、第1の金属を含む接着層を介 して合金ハンダからなるハンダバンプを形成する半導体 40 装置の製造方法において、前記接着層上に第2の金属か らなる金属層を形成し、前記ハンダバンプを形成するに 際し、前記金属層の全てを前記合金ハンダに一旦溶融し た後、冷却することにより、前記第2の金属と前記合金 ハンダの主となる金属とを含む金属間化合物を、前記接 **着層と前記ハンダバンプとの界面に析出させるものであ**

【0024】また、本発明の半導体装置の製造方法は、 配線層上に、合金ハンダと反応し、界面に第1の金属間 化合物を形成する第1の金属を含む接着層を形成する工 50 程と、前記合金ハンダと反応し、第2の金属間化合物を

形成する第2の金属からなる金属層を形成する工程と、 前記合金ハンダを供給する工程と、前記合金ハンダを 旦溶融した後、冷却することにより、前記第1の金属間 化合物および前記第2の金属間化合物が複合された合金 層を、前記接着層と前記合金ハンダとの界面に形成する 工程とを含むものである。

【0025】また、本発明の半導体装置の製造方法は、 配線層上に、合金ハンダと反応し、界面に第1の金属間 化合物を形成する第1の金属を含む接着層を形成する工 形成する第2の金属からなる金属層を形成する工程と、 前記金属層上に錫からなる薄膜を形成し、前記第2の金 属と前記錫との合金層を予め形成する工程と、前記合金 ハンダを供給する工程とを含むものである。

【0026】本発明においては、前記ハンダバンブの形 成に際し、該ハンダバンブの前記接着層との界面の温度 が、頂部の温度よりも低くなる温度勾配を設けて、前記 合金ハンダの溶融及び前記金属間化合物の析出を行うと とが好ましい。

【0027】また、本発明においては、前記ハンダバン プの形成に際し、前記半導体装置をステージに載置し、 該ステージ下部に移動可能に設けられた加熱プレートと 冷却プレートとを順次前記ステージに接触させることに より、前記合金ハンダの溶融及び前記金属間化合物の析 出を行う構成とすることができる。

【0028】また、本発明においては、前記加熱プレー トによる加熱に際し、前記半導体装置上部に設けた非接 触加熱手段により前記半導体装置を上方からも加熱し、 前記冷却プレートによる冷却に際して、前記非接触加熱 記接着層との界面との温度勾配を大きくして前記金属間 化合物の前記接着層との界面への析出を促進する構成と することもできる。

【0029】また、本発明においては、前記加熱プレー トによる加熱及び前記冷却プレートによる冷却が、所定 のガスの減圧雰囲気下で行われる構成とすることがで き、前記所定のガスが、不活性ガス又は還元性ガスのい ずれかを含むことが好ましい。

【0030】また、本発明においては、前記接着層が、 スパッタリングにより形成したニッケル、ニッケル合 金、銅又は銅合金のいずれか一の単層膜又は複数の積層 膜、又は、無電解メッキ又は電解メッキにより形成した ニッケル、ニッケル合金、銅又は銅合金のいずれか一の 単層膜又は複数の積層膜、又は、これらの積層膜からな ることが好ましい。

【0031】また、本発明においては、前記金属層が、 スパッタリング、無電解メッキ又は電解メッキのいずれ か一又は複数の方法により形成した銅薄膜を含むことが 好ましい。

厚が、前記合金ハンダの溶融に際して全てが該合金ハン ダ内に溶解し、前配合金ハンダの冷却に際して少なくと も一部が該合金ハンダから析出する量となるように設定 されていることが好ましい。

【0033】また、本発明においては、前記合金ハンダ を、所定量に成形されたボールもしくはペレットによ り、又は、ハンダペーストにより供給する構成とするこ とができる。

【0034】また、本発明の半導体製造装置は、試料を 程と、前記合金ハンダと反応し、第2の金属間化合物を 10 搭載するステージと、前記試料を下方から加熱する加熱 手段と、前記試料を下方から強制的に冷却する冷却手段 とを少なくとも有するものである。

> 【0035】また、本発明の半導体製造装置は、はんだ を有する半導体装置を搭載するステージと、前記半導体 装置を加熱する加熱手段と、前記半導体装置を下方から 冷却する冷却手段とを少なくとも有するものである。

【0036】本発明においては、前記加熱手段がヒータ を内蔵した加熱プレートからなり、前記冷却手段が冷媒 を内蔵した冷却プレートからなり、前記加熱プレートと 前記冷却プレートとが前記ステージ下面に順次接触して 熱伝導により加熱/冷却が行われる構成とすることがで きる。

【0037】また、本発明においては、更に、前記ステ ージ上部に、前記試料又は前記半導体装置を上方から非 接触で加熱する非接触加熱手段を有する構成とすること もできる。

【0038】上述した半導体チップの電極構造は、接着 層上に錫系多元合金ハンダを供給し、加熱溶融によっ て、接着層とバンプの界面に錫と接着層により形成され 手段による加熱を継続し、前記ハンダバンプの頂部と前 30 た単一の金属間化合物層が形成されているという従来の 構成に対し、錫の溶解、拡散を防止するためのハンダ合 金化層を薄く形成し、錫系2元又は3元合金ハンダをハ ンダペーストもしくはハンダボールの形態で供給し、加 熱溶融することで錫とハンダ合金化層及び錫と接着層の 各々2つの金属間化合物を複合したハンダ合金層6を形 成することを特徴としている。

> 【0039】とのように、予め接着層の上部にハンダ合 金化層を薄く設けることで、得られるハンダバンプの構 造は、錫を主成分とした2元又は3元合金ハンダと、ハ 40 ンダ中の錫とハンダ合金化層が反応した第1の金属間化 合物と、ハンダ中の錫と接着層が反応した第2の金属間 化合物とが複合してなる複合ハンダ合金層にて接合界面 を構成する。

【0040】そして、この第1および第2の金属間化合 物が複合した複合ハンダ合金層は、ハンダ溶融の際に、 薄いハンダ合金化層がすべて第1の金属間化合物層とな り、第2の金属間化合物とほぼ同時に形成されるため、 第1の金属間化合物は、第2の金属間化合物を成長させ る拡散経路を遮断するという役目を果たす。

【0032】また、本発明においては、前記金属層の膜 50 【0041】また、複合ハンダ合金層は異なる材料で構

成されているため、濃度勾配が不連続で、単一層に比べ て結晶粒界が密であるため、拡散の進行を抑制すること ができる。さらに、析出した金属間化合物の融点はハン ダ合金の融点より高いため、その後の製造プロセス時 や、実装時にハンダを再溶融してもハンダ中へは溶解し ないという効果を持つ。

【0042】従って、通常であれば拡散により成長する ハンダ中の錫と接着層との金属間化合物層は、第1の金 属間化合物が結晶粒界等の拡散経路に配置されることに や、実装後の使用環境下による温度変化に対して経時変 化が少ない信頼性の高い接合界面が得られるという効果 を奏する。

【0043】また、本発明の半導体製造装置では、半導 体チップを搭載するステージと、ステージを加熱する加 熱源と、ステージを強制的に冷却する冷却源とを含み、 予備加熱、本加熱、冷却の各段階で異なる昇温速度、冷 却速度を選択することができ、特に、冷却速度を極端に 速く、そして半導体チップの裏面から冷却することによ ってハンダと接着層との界面に複合した金属間化合物層 を形成することができる。さらに、この効果を顕著にす るために、半導体チップの上部に非接触型の加熱源を設 け、冷却プレートからの冷却時にも半導体チップ上部を 加熱することによって、半導体チップの上部と下部、具 体的にはハンダの頂部と底部の温度勾配を大きくすると とが可能となり、ハンダ界面での複合した金属間化合物 層の析出、形成をより一層促進させることが可能とな る。

[0044]

び利点を明確にすべく、本発明の一実施の形態について 以下に詳述する。

【0045】[実施の形態1]まず、本発明の第1の実 施形態に係る半導体装置及びその製造方法について、図 1乃至図3を参照して以下に詳述する。図1は、本発明 の第1の実施形態に係る半導体装置のバンプ構造を示す 断面図である。また、図2及び図3は、ハンダバンプを 形成する前の電極構造を示す断面図であり、図2はハン ダをハンダボールとして供給する場合を示し、図3はハ ンダペーストとして供給する場合を示している。

【0046】図2に示すように、半導体チップ1の配線 2上には、配線2を構成する金属との密着を得る密着層 4と、ハンダと反応し合金化する接着層5と、ハンダと 合金化する接着層5とは異なる金属により薄く形成され たハンダ合金化層8とにより電極が形成され、この電極 上に錫を主成分とし、鉛を含まない2元又は3元合金の ハンダボール9が供給される。

【0047】との状態でハンダボール9を加熱溶融する と、ハンダ合金化層8はすべてハンダ中の錫と反応し、 一旦、錫中へ固溶する。それと同時にハンダ中の錫は接 50 ダ合金化層 8 ともにスパッタリングにより形成されてい

着層5を固溶する。ハンダ中の錫への固溶する総量は溶 融する温度により決定されるため、この状態で冷却を開 始すると接合界面に金属間化合物層を形成するが、本実 施形態の場合、錫中へ固溶しているハンダ合金化層8を 構成する金属と接着層を構成する金属の両方が同時に接 合界面で金属間化合物を析出するため、金属間化合物の 複合層である複合ハンダ合金層6が形成される。

【0048】ととで重要なことは、ハンダ合金化層8 は、錫系2元又は3元合金ハンダボール9の錫に対して よって成長が抑制され、組立中での繰り返しの加熱履歴 10 溶解しうるだけの量であり、且つ、冷却時に析出するよ うに考慮してその膜厚を決定する必要があり、溶解する 量が少ない場合には、冷却時に析出せずに錫中へ固溶し たままハンダバンプ7が凝固するため、このような金属 間化合物の複合層は形成されない。

> 【0049】図1は、このようにして得られたハンダバ ンプ7の断面図を示しているが、一旦、金属間化合物の 複合層として複合ハンダ合金層6が形成されると、金属 間化合物の融点は高いため、組立時にかかるハンダ溶融 温度以上の熱履歴においても接合界面での接着層5の溶 20 解現象が起きることなく、さらに溶融温度以下の熱履歴 による拡散現象も、金属間化合物の複合層が結晶粒界に 配置されるため抑制されるという効果を奏する。

【0050】より具体的に説明するために、鉛フリーハ ンダバンプとして、錫系2元合金ハンダボール9に9 6.5重量%錫/3.5重量%銀の共晶ハンダを使用す る場合の代表的な金属組成を用いて説明する。

【0051】半導体チップ1の配線2は、通常、アルミ ニウムもしくはアルミニウム合金で形成されている。密 着層4はチタン、チタン/タングステン合金等、接着層 【発明の実施の形態】上記した本発明の目的、特徴およ 30 5はニッケル/バナジウム合金等、ハンダ合金化層8は 銅等を順次スパッタリングにより形成し、電極が形成さ れる。ことで、ハンダ合金化層8である銅の膜厚は、ハ ンダボール9中に含まれる錫の比率に対し、溶解時にす べて固溶し、且つ冷却凝固時に金属間化合物として界面 に析出することができる量、すなわち過飽和な量が望ま しい。但し、銅の供給量が過剰になりすぎると、形成さ れたハンダバンプ7の表面が凹凸の激しい不均一な形状 になることや、溶融時のぬれ性が悪化し、ボイドが発生 する恐れがあるため注意を要する。

> 40 【0052】なお、密着層4にはチタン、チタン/タン グステン合金を用いているが、クロム、クロム/銅合金 でも良く、接着層5にはニッケル/パナジウム合金を用 いているが、ニッケル、ニッケル/燐合金、ニッケル/ チタン合金、ニッケル/クロム合金、銅もしくは銅合金 を使用しても良い。また、本発明の特徴の一つであるハ ンダ合金化層8は銅を使用しているが、接着層5とは異 なる材料であり、且つハンダ中の錫と金属間化合物を形 成する金属であればよい。

【0053】さらに、本実施形態では、接着層5、ハン

るが、電解メッキもしくは無電解メッキ、又はスパッタ リングとの組み合わせにより形成しても良く、異なる材 料、異なる方法の組み合わせにより形成した積層構造と しても良い。例えば、接着層5として、スパッタリング で形成したニッケル又は銅の上に、電解メッキで形成し たニッケルを積層した構造とすることもできる。なお、 成膜に際して条件を調整することにより、膜質を粒径の 小さい粒状構造とし膜の緻密性を向上させることがで き、ハンダに溶融される量を制御することができる。ま た、ハンダ合金化層 8 は、銅などの表面酸化が進みやす 10 い材料を使用するため、酸化を防止してハンダぬれ性を 向上させる目的で、ハンダ合金化層8の上に極めて薄い 金、もしくは酸化を防止してハンダぬれ性を促進させる 層を設けても良い。

13

【0054】加えて、ここではハンダとして錫系の2元 合金を用いた例を示しているが、ハンダに微量の銅を添 加した3元合金ハンダを用いても良く、その他の多元系 合金ハンダでも良い。また、本実施形態では、ハンダ合 金化層8を接着層5上に形成する構成について記載した が、ハンダ中にハンダ合金化層8を構成する元素が添加 20 されている場合には、ハンダ合金化層8は設けなくても 良い。

【0055】[実施の形態2]次に、本発明の第2の実 施形態に係る半導体装置及びその製造方法並びに半導体 製造装置について、図6乃至図13を参照して説明す る。図6乃至図8は、本発明の第2の実施形態に係る半 導体装置の構造を示す断面図である。図9及び図10 は、本実施形態に係る半導体製造装置の構造を模式的に 示す断面図である。また、図11は、半導体装置の製造 手順を示すフローチャート図であり、図12は、半導体 30 装置の製造工程の一部を示す工程断面図である。また、 図13は、本実施形態の特徴である加熱/冷却のタイミ ングを示す図である。

【0056】図6に示すように、接着層5とハンダバン ブ7の間には、ハンダ主成分の金属と接着層5を構成す る金属との金属間化合物と、予め合金ハンダ中に微量添 加、もしくは予め接着層5上に薄く形成した金属とハン ダ主成分から構成される第2の金属間化合物とが複合し ている複合ハンダ合金層6が形成された構造となってい る。この複合ハンダ合金層6はハンダバンプ形成時の加 40 熱/冷却過程において、その構成する組成と条件により 界面に析出し、構造を制御することができる。

【0057】この構造を得るための加熱/冷却過程を含 む製造方法ならびに製造装置について、図9を参照して 詳細に説明する。ハンダ供給済み半導体チップ1aはリ フロー装置内のステージ19上に設置され、リフローエ リア18は減圧及び不活性ガス又は還元性ガスの充填が 可能となっている。また、ステージ19の裏面には加熱 プレート20および冷却プレート21とがあり、このブ

とによって熱を伝達し、温度制御を行う。とこで、熱を 安定して効率良く伝達するため、ステージ19及び加熱 プレート20には熱伝導率が高く、加工が容易なカーボ ンを使用し、冷却プレート21には耐食性のあるステン レスを使用している。

【0058】なお、本実施形態ではステージ19及び加

熱プレート20としてカーボンを使用しているが、熱伝

導率が高い材料であればその他の材料を使用しても良 く、組み合わせは適宜自由に選択することができる。ま た、ステージ19は反りを極力小さく、可能な範囲で薄 く形成して熱容量を小さくすることが望ましい。 【0059】半導体チップ1aの加熱/冷却に際して、 リフローエリア18の不活性ガス充填は必要に応じて実 施する。充填するガスとしては、ハンダ表面の酸化防 止、また酸化物の還元作用のあるガス、例えば、不活性 ガスとして窒素、アルゴン等、還元性ガスとして水素、 水素を含む気体等が使用される。冷却方式については、 水冷式等により冷却された冷却プレート21をステージ 19に接触させる方式のほか、冷却気体をステージ19 裏面に吹き付ける方法などを使用することができ、本発

【0060】更に、リフローエリア18の上方に赤外線 など非接触型加熱源22を設けることにより、ハンダを 上方より加熱しつつ、かつ、半導体チップ1aを裏面よ り冷却することが可能となり、半導体チップ1aの上部 と下部との間の温度勾配を大きくすることによって、ハ ンダ接合界面に所望の金属間化合物層が析出しやすくな り、複合ハンダ合金層6を形成するための詳細な温度制 御が可能となる。

明の効果を実現できる冷却能力の範囲で任意の方法が選

択可能である。

【0061】なお、半導体製造装置としては、上述の装 置構成のほか、図10に示すように、ステージ19a内 部に加熱源、冷却源、又はその双方が組み込まれたよう な方式でもよく、ヒータを組み込んだり、温媒、冷媒を 流すことによって加熱/冷却を実現することができる。 また、ハンダバンプを形成する半導体の形態は、チップ 状態に限定されず、ウェハ上への一括形成も可能であ

【0062】次に、図11及び図12を参照して、本実 施形態の半導体装置の製造手順について説明する。な お、図11(a)は、加熱/冷却源として加熱プレート 20と冷却プレート21のみを使用し、大気中でリフロ ーする場合の手順を示し、図11(b)は、加熱源とし て更に非接触型加熱源22を用い、リフローエリア18 に不活性ガスを充填する場合の手順を示している。 【0063】まず、ステップS101、S201におい

て、半導体チップ1の接着層5、又はその上に形成した ハンダ合金化層 8 上にハンダ合金およびフラックスを所 定量供給する。供給の方法としては、図7に示したハン レートのいずれかをステージ19の裏面に接触させるこ 50 ダボール搭載法や、図8に示した電解ハンダメッキ法、

またはその他にハンダペースト印刷法など、所定量のハ ンダが供給可能な方法を適宜選択することができる。 【0064】次に、ステップS102、S202におい て、ハンダ供給済みの半導体チップ1aをリフロー装置 内のステージ19上に設置し(図12(a)参照)、リ フローエリア18を密閉して所定の圧力まで減圧した後 (ステップS203)、窒素、水素または水素を含む混 合ガスで充填する(ステップS204)。この工程は、 リフローエリア18を低酸素濃度または還元性雰囲気に することによってハンダの濡れ性を改善するために行う 10 にし、半導体チップ1 aを上下から加熱する。そして、 ものであり、濡れ性に起因する不具合がない場合は、図 11(a) に示すように適宜省いても良い。

15

【0065】次に、ステップS103、S205におい て、ステージ19の裏面に設定温度に加熱された加熱プ レート20を接触させ、ハンダの温度を融点以上の所定 温度まで上昇させて溶融する(図12(b)参照)。な お、非接触型加熱源22を備えた装置の場合は、この加 熱源も稼働させて加熱を行う。この加熱工程において、 溶融したハンダに接した界面では接着層5を構成する金 属がハンダ中に溶解していく。また、接着層5の上層に 20 濡れ性改善層17を形成している場合には、濡れ性改善 層17、接着層5の順にハンダ内への溶解が進む。

【0066】その後、ステップS104、S206にお いて、加熱プレート20をステージ19から離し、冷却 プレート21をステージ19裏面に接触させて冷却を開 始する(図12(c)参照)。 CCで、半導体チップ1 aは裏面側から冷却されるため、図の上方から下方に向 かって急激に温度が低下して大きな温度勾配が生じ、溶 融したハンダは接着層5側から凝固する。この凝固プロ セスにおいて、ハンダより融点の高い金属間化合物は、 接着層5が析出するための核となり、接着層5付近に錫 と接着層5の原子との金属間化合物の初晶を析出する。 【0067】析出する金属間化合物は、ハンダの主成分 である錫と接着層5を構成する金属との金属間化合物 と、ハンダの主成分の錫とハンダ内の接着層5とは異な る、例えば、ハンダ合金化層8を構成する金属との金属 間化合物、もしくは錫と濡れ性改善層 17を構成する金 属との金属間化合物であり、これらは同時に接着層5付 近に析出して両相が複合した複合ハンダ合金層6が形成 され(図6参照)、バンプ形成が完了する(ステップS 105、S208)。なお、冷却過程でのハンダ内の温 度勾配は、冷却速度が速いほど顕著になり初晶が接着層 付近に析出しやすくなるため、冷却速度は速い方が良 く、例えば、2℃/秒以上であることが望ましい。

【0068】接着層5界面近傍における冷却速度を大き くするには、ステージ19下方の加熱プレート20によ る加熱とリフローエリア18上方に設けた赤外線ヒータ などの非接触型加熱源22による加熱とを同時に行い、 ステップ206において冷却プレート21による冷却を 開始した後も、非接触型加熱源22により上部からの加 50 合金を1~5μm程度の厚さでスパッタリングにより形

熱を継続すればよく、この上方からの加熱と下方からの 冷却とを組み合わせることによってはんだ供給済み半導 体チップの温度差が大きくなり、効果的に金属間化合物 を析出させることができる。

【0069】この動作を図13を参照して説明する。図 13には、ステージ19表面温度と、加熱プレート20 及び冷却プレート21の切り替えのタイミング、および 非接触型加熱源22のON/OFFのタイミングを示し ている。非接触型加熱源22は加熱初期よりONの状態 ハンダの融点以上の所定温度になった時点、あるいは、 ハンダの融点以上の所定温度になってから一定の時間が 経過した時点で加熱プレート20から冷却プレート21 に切り換えて冷却を開始するが、非接触型加熱源22は ハンダの融点 (図中: Tm) より数℃ (図中: △T) 低 い温度T1に下がるまでONの状態を維持する。こうす ることによって融点近傍でのハンダ内の温度勾配をより 顕著にし、確実に接着層5近傍に金属間化合物を析出さ せることができる。

【0070】なお、このような制御を行うには、ステー ジ19の温度又は半導体チップの表面温度を検出する温 度センサを設け、この温度センサからの出力を参照し て、プレートの切り替え、非接触型加熱源22のON/ OFFを行えば良く、これらの動作を自動的に行う制御 手段をリフロー装置に設けることによって作業が容易と なる。また、本実施形態では、半導体チップ上へのバン プ形成について記載したが、半導体ウエハを取り扱う場 合も同様の方法でバンプを形成することが可能である。 【0071】とのように、本実施形態の半導体製造方法 30 及び該製造方法に用いる半導体製造装置では、加熱プレ ート20、冷却プレート21、および非接触型加熱源2 2の設定温度、ON/OFFのタイミングを調整すると とにより、半導体チップの温度及び表裏面の温度勾配を 正確に制御することが可能であり、確実にハンダバンプ 7と接着層5との界面に金属間化合物を析出することが できる。また、半導体チップ1aもしくは半導体ウェハ はリフロープロセス中に搬送する必要が無いことから、 破損や形成したハンダの移動によるブリッジの危険性が なく、歩留まりを向上させることができる。

[0072]

【実施例】上記した本発明の実施の形態についてさらに 詳細に説明すべく、本発明の実施例について図面を参照 して具体的に説明する。

【0073】[実施例1]本発明の第1の実施形態で示 した半導体装置の具体的な製造方法について、図2を参 照して説明する。まず、半導体チップ1上に形成された アルミニウム合金の配線2上に、密着層4としてチタン およびチタン/タングステン合金を順次スパッタリング する。この上に、接着層5としてニッケル/バナジウム 成し、さらにハンダ合金化層8として、銅をスパッタリングより形成する。このときの銅の膜厚としては、順次スパッタリングにより形成された電極の直径が略120μmで、錫と銀の共晶合金からなるハンダボールの直径が略150μmである場合、略0.8μmが最も適する。

17

【0074】こうして形成された電極に錫96.5重量%/銀3.5重量%の共晶ハンダボール9をフラックスとともに供給し、共晶ハンダボールの融点である221℃以上の温度で加熱し、ハンダボール9を溶解する。ハ 10ンダボール9はハンダ合金化層8の銅を一旦すべて溶解し、冷却とともにハンダは半球形状となり、界面にニッケル/錫の金属間化合物および、銅/錫の金属間化合物の複合したハンダ合金層6を形成し、接合を完了する。【0075】こうして形成されたハンダバンプの断面を分析すると、図1に示すように、界面には上述のニッケル/錫の金属間化合物および、銅/錫の金属間化合物の複合した複合ハンダ合金層6を形成しており、ハンダ中には銅がほとんどの存在しないことを確認している。

【0076】 このハンダバンプ7は、界面に形成したニ 20 ッケル/錫の金属間化合物および、銅/錫の金属間化合物の複合した複合ハンダ合金層6の存在より、この後にハンダ溶融温度以上に加熱履歴を加えても、接着層5であるニッケルの溶解や拡散によって著しく信頼性を低下させる反応層の形成を抑制するという効果を示す。

【0077】 この効果と、複合ハンダ合金層6の存在形態について説明する。これら複合ハンダ合金層6は、ニッケル/錫の金属間化合物層及び銅/錫の金属間化合物が、各々その粒界に対して互いに拡散経路を遮断するように存在する形態により拡散が抑制される場合と、もう一つの形態として、ニッケルと銅の固溶体に対して錫が金属間化合物を形成し、3元系の金属間化合物として存在する場合があり、この3元系の金属間化合物として存在する場合においても、拡散するための経路が複合して存在するニッケル、銅により遮断されるため相互拡散が抑制される。

【0078】とこで、ハンダ合金化層8は略 0.8μ m し、代が最適としたが、その効果は膜厚 0.6μ mから1.2 ケル μ mの間においても充分に発揮される。また、密着層 4、接着層5の膜厚は、半導体装置の製造上の都合によ 40 なる。り適宜変更されても問題ない。 【00

【0079】[実施例2]次に、本発明の第2の実施例について説明する。本実施例の半導体装置は、前記した第1の実施例と同様に、半導体チップ1上に形成されたアルミニウム合金の配線2上に、密籍層4としてチタンおよびチタン/タングステン合金を順次スパッタリングし、この上に接着層5としてニッケル/バナジウム合金を1~5μm程度の厚さにスパッタリングにより形成し、さらにハンダ合金化層8として銅をスパッタリングより形成して電極が形成される。このときの銅の膜厚と

しては、順次スパッタリングにより形成された電極の直径が略 120μ mで、錫と銀の共晶合金からなるハンダボール9の直径が略 150μ mである場合、略 0.8μ mが最も適する。

【0080】ことで、本実施例では、この銅のハンダ合金化層8上に、更に鍋を厚さ0.5~1.0μm供給し、220℃以上に加熱することにより銅と錫の金属間化合物およびニッケルと錫の金属間化合物の複合した複合ハンダ合金層6を予め形成することを特徴とし、この後に所定のハンダを供給してバンプを形成しても前記した第1の実施例と同様の効果をもたらすことが可能である。

【0081】なお、前記した第1及び第2の実施例では、ハンダをハンダボール9の状態で供給する場合について示したが、図3に示すようにハンダベースト10として供給することもできる。

【0082】[実施例3]次に、本発明の第3の実施例について、図4を参照して説明する。図4は、本発明の第1の実施形態で示した構造の半導体チップを実装した20 半導体装置の構造を示す断面図である。図4に示すように、フリップチップタイプの半導体装置は、半導体チップ1上に形成されたアルミニウム合金の配線2上に密管層4としてチタンおよびチタン/タングステン合金を順次スパッタリングする。この上に接着層5としてニッケル/パナジウム合金を1~5μm程度の厚さにスパッタリングにより形成し、さらにハンダ合金化層8としてシーングにより形成し、さらにハンダ合金化層8としては順次スパッタリングにより形成された電極の直径が略120μmで、錫と銀の共晶合金からなるハンダボ30 ール9の直径が略150μmである場合、略0.8μmが最も適する。

【0083】とうして形成された電極に錫96.5重量%/銀3.5重量%の共晶ハンダボール9をフラックスとともに供給し、共晶ハンダボールの融点である221 で以上の温度で加熱し、ハンダボール9を溶解する。ハンダボール9はハンダ合金化層8の銅を一旦すべて溶解し、冷却とともにハンダは半球形状となり、界面にニッケル/錫の金属間化合物および、銅/錫の金属間化合物の複合したハンダ合金層6を形成し、ハンダバンプ7となる

【0084】一方、予めハンダバンブ7と同組成のハンダを供給した電極を持つ基板12を用意し、この基板12の電極に半導体チップ1を位置合せし、加熱溶融して接合する。接合後には機械的強度および耐湿性を向上させるため、ハンダバンブ7の間隙を封止樹脂14により充填する。その後、さらに半導体チップ1のハンダバンブ7と同じ組成のハンダをBGA外部端子13として加熱溶融させて取り付ける。

し、さらにハンダ合金化層8として銅をスパッタリング 【0085】ここで、最初に取り付けられている半導体 より形成して電極が形成される。このときの銅の膜厚と 50 チップ1のハンダバンプ7は、本製造プロセスにおいて 融点以上の加熱を繰り返し受けているが、本発明のハン ダバンプ7では、加熱による接着層の溶解、拡散を抑制 することができるため、歩留まり良く、信頼性の高い半 導体装置を提供することができる。

19

【0086】[実施例4]次に、本発明の第2の実施形 態で示した半導体製造装置を用いた半導体装置の製造方 法について図7及び図8を参照して説明する。図7及び 図8は、第4の実施例に係る半導体チップの構造を示す 断面図であり、(a)は濡れ性改善層を接着層上に設け た構造を示し、(b)は濡れ性改善層を含まない構造を 10 示している。

【0087】図7に示すように、本実施例の半導体チッ プは、AI電極上に無電解メッキ法により接着層5のニ ッケル/燐層を約5μmの厚さで形成し、その上に濡れ 性改善層17として約0.05μmの金メッキを施す。 電極の直径は約120 µmである。また、ハンダはボー ル搭載法により供給し、直径150μm、組成は錫9 6.5重量%/銀3.0重量%/銅0.5重量%のボー ルを使用している。

をリフロー装置内のステージ19上に設置し、リフロー エリア18内を約10Paまで減圧した後、窒素ガスを 充填する。リフローエリア18内の圧力が大気圧まで戻 った後は窒素の流量を約15リットル/分とする。次 に、約290℃に加熱した加熱プレート20をステージ 19に接触させ、ハンダの融点である220℃を超えて から約75秒後に加熱プレート20を離し、続いて、冷 却プレート21をステージ19に接触させて室温まで冷 却する。この場合、最高温度は265±2℃、融点以上 の時間は85±2秒であり、冷却速度は約4℃/秒であ 30 った。なお、本願発明者の実験によれば、冷却速度は約 2℃/秒以上であれば本発明の効果を奏することを確認 している。また、ステージ19に接触させるプレートを 加熱プレート20から冷却プレート21に切り換えるタ イミングを温度により制御するとロット間の温度ばらつ きの影響を受けやすいため、融点以上の時間で制御する 方が望ましい。

【0089】上記方法により形成した半導体チップにつ いて、バンブ断面を観察し元素分析を実施したところ、 接着層5/ハンダバンプ7界面に約1μmの錫、銅、ニ 40 ッケルで構成される金属間化合物層が接着層5を覆うよ うに形成されているのが確認された。これは、錫と銅、 錫とニッケルの金属間化合物が複合して形成された層で あると考えられる。

【0090】本発明の構造を有するバンブ付き半導体チ ップ(図6)と従来のリフロー工程により作製したバン プ付き半導体チップ(図14)とを150℃のオーブン 内に3000時間保管し、両者の固相拡散による接着層 5 (無電解Ni層)の食われ速度を比較した。その結 果、従来工程で作製されたバンプ付き半導体チップのN 50 解、拡散を防止するためのハンダ合金化層を薄く形成

i 層が約1.2μm食われたのに対し、本発明ではNi 層の食われは0.1μm程度であり、本発明の構造は接 着層5の溶解、固相拡散による食われ防止に大きな効果 があることが確認された。

【0091】なお、上記第4の実施例では、ハンダをハ ンダボール9の状態で供給する場合について示したが、 図8に示すようにハンダベースト10として供給すると ともできる。

【0092】[実施例5]次に、本発明の第5の実施例 に係る半導体装置について説明する。なお、本実施例 は、非接触型加熱源を備えたリフロー装置を用いた半導 体装置の製造方法について記載するものである。

【0093】本実施例の半導体チップは、AI電極上に 密着層を介してスパッタリングによりニッケル/バナジ ウムの接着層5を厚さ約1μm形成し、さらに上層に濡 れ性改善層17の銅をスパッタリングにより約0.4μ m形成する。電極の大きさは第4の実施例と同じく直径 約120 µ m である。ハンダは、組成が錫96.5 重量 %/銀3.5%の2元共晶、直径が150µmのボール 【0088】その後、ハンダ供給済み半導体チップ1a 20 をボール搭載法にて半導体チップ1の電極上に供給し

> 【0094】半導体チップをリフロー装置のステージ1 9上に設置した後の減圧、窒素ガス流量は第4の実施例 と同じである。本実施例では、リフローエリア18上方 に非接触型加熱源22(赤外線ヒータ)を設けた装置を 使用し、加熱は加熱プレート20と非接触型加熱源22 の双方を用いて行った。加熱プレート20の温度は28 5℃に設定し、加熱プレート20から冷却プレート21 へ切り換えるタイミングは第4の実施例と同じく融点の 220℃を超えてから約75秒後とした。非接触型加熱 源22は、ステージ19表面温度がハンダの融点より5 ℃低い215℃でOFFにした。この場合、最高温度は 262±2℃、融点以上の時間は84±2秒、冷却速度 は約4℃/秒であった。なお、冷却速度は約2℃/秒以 上であればよいのは、前記した第4の実施例と同様であ る。

> 【0095】以上の製造方法でバンプ形成したバンプ付 き半導体チップのパンプ断面を観察、元素分析を行った ところ、接着層5/ハンダバンブ7界面には前記した第 4の実施例と同じく、錫、銅、ニッケルで構成される金 属間化合物層が約0.8μmの厚さで形成されていた。 【0096】なお、第4の実施例では接着層5(ニッケ ル)の上に錫/銀/銅の3元系ハンダを供給するため、 電解メッキ法によるハンダ供給は出来ないが、本実施例 では接着層5 (ニッケル)上に予め銅層を形成している ので錫/銀の2元系ハンダを使用することができ、電解 メッキ法によるハンダ供給も可能である。

[0097]

【発明の効果】以上説明したように、本発明は、錫の溶

し、合金ハンダをハンダペーストもしくはハンダボール の形態で供給し、加熱溶融することにより、ハンダを構 成する金属とハンダ合金化層およびハンダを構成する金 属と接着層の各々2つの複合した金属間化合物となるハ ンダ合金層を形成することを特徴とするものであり、予 め接着層の上部に設けたハンダ合金化層を薄く設けると とにより、得られるハンダバンプの構造は、合金ハンダ と、ハンダを構成する金属とハンダ合金化層が反応した 第1の金属間化合物と、ハンダを構成する金属と接着層 が反応した第2の金属間化合物とが複合してなる金属間 10 を示す断面図である。 化合物層にて接合界面が形成され、この第1 および第2 の金属間化合物が複合した金属間化合物層は、第1の金 属間化合物が薄いハンダ合金化層がすべて金属間化合物 層となり、第2の金属間化合物とほぼ同時に形成され

21

【0098】従って、第1の金属間化合物は、第2の金 属間化合物を成長させる拡散経路を遮断するという役目 を果たし、通常であれば拡散により成長するハンダ中の 錫と接着層との金属間化合物層は、第1の金属間化合物 が結晶粒界等の拡散経路に配置されることで成長が抑制 20 され、組立中での繰り返しの加熱履歴や、実装後の使用 環境下による温度変化に対して経時変化少ない信頼性の 髙い接合界面を得ることができ、従来の錫系2元合金を 使用した低コストに形成できるハンダバンブ構造を有す る半導体装置を提供することができる。

【0099】また、本発明において提言する半導体チッ プの電極上に形成されたハンダバンプ接続部の構造は、 接着層界面に複合金属間化合物層を形成することで接着 層のハンダ中への溶解・拡散を抑制し、パッケージの組 立時にかかる融点以上の熱履歴や実使用環境下での熱履 30 る。 歴でも金属間化合物層の異常成長による強度低下が無 く、信頼性の高い半導体装置を提供することができる。 これは錫と鉛の共晶ハンダよりも錫の含有率が高く、信 頼性上の問題が顕著である鉛フリーハンダにおいて特に 効果を発揮する。

【0100】更に、本発明では、リフロー装置に半導体 チップを下方から加熱/冷却する加熱ブレート及び冷却 プレートと、半導体チップを上方から加熱する非接触型 加熱源とを備えているため半導体チップの詳細な温度制 御が可能であり、また、加熱プレートから冷却プレート へ切り替えた後も非接触型加熱源で半導体チップを上方 から加熱することにより、半導体チップ表裏面の温度勾 配を大きくすることができ、接合部の金属間化合物層を 材料設計通りに形成することができる。また、本発明の リフロー装置では、プロセス中に半導体チップまたは半 導体ウェハを搬送する必要がないため、半導体チップの 破損や形成したハンダの移動によるブリッジが発生する 危険性がなく、歩留りを向上させることができる。

【0101】なお、本発明は上記各実施例に限定され ず、本発明の技術思想の範囲内において、各実施例は適 50 16 フラックス

宜変更され得ることは明らかである。

【図面の簡単な説明】

【図1】本発明の第1の実施形態に係る半導体装置の構 造を示す断面図である。

【図2】本発明の第1の実施形態に係るハンダバンプ形 成前の半導体装置の構造を示す断面図である。

【図3】本発明の第1の実施形態に係るハンダバンブ形 成前の半導体装置の構造を示す断面図である。

【図4】本発明の第3の実施例に係る半導体装置の構造

【図5】従来の技術を示す断面図である。

【図6】本発明の第2の実施形態に係る半導体装置の構 造を示す断面図である。

【図7】本発明の第2の実施形態に係るハンダバンブ形 成前の半導体装置の構造を示す断面図である。

【図8】本発明の第2の実施形態に係るハンダバンプ形 成前の半導体装置の他の構造を示す断面図である。

【図9】本発明の第2の実施形態に係るリフロー装置の 構成を示す断面図である。

【図10】本発明の第2の実施形態に係るリフロー装置 の他の構成を示す断面図である。

【図11】本発明の第2の実施形態に係る半導体装置の 製造工程を示すフロー図である。

【図12】本発明の第2の実施形態に係る半導体装置の 製造工程を示す断面図である。

【図13】本発明の第2の実施形態に係る半導体装置の 製造工程における加熱/冷却のタイミングを説明するた めの図である。

【図14】従来の半導体装置の構造を示す断面図であ

【図15】従来のバンプリフロー装置を示す図である。 【符号の説明】

- 1 半導体チップ
- 1a ハンダ供給済み半導体チップ
- 2 配線
- 3 絶縁膜
- 4 密着層
- 5 接着層
- 6 複合ハンダ合金層
- 7 ハンダバンプ

7a 錫系多元合金ハンダバンプ

- 8 ハンダ合金化層
- 9 ハンダボール
- 10 ハンダペースト
- 11 金属間化合物層
- 12 基板
- 13 BGA外部端子
- 14 封止樹脂
- 15 単一金属間化合物

特開2002-280417 (13)24

17 漏れ性改善層

18 リフローエリア

19 ステージ

19a 加熱源付きステージ

*20 加熱プレート

21 冷却プレート

22 非接触型加熱源

23 単一金属間化合物層

【図1】

23

【図2】

【図3】

【図4】

【図5】

【図6】

フロントページの続き

(72)発明者 田尾 哲也

東京都港区芝五丁目7番1号 日本電気株

式会社内

(72)発明者 三ケ木 郁

東京都港区芝五丁目7番1号 日本電気株 式会社内

Fターム(参考) 5F044 QQ03 QQ04 QQ05