CIS 3223 Miniquiz 7R

Name:

Solotions

Dr Anthony Hughes

Temple ID (last 4 digits:

1 (10 pts) Complete the following table by writing T or F in each box, where T represents "true" and F represents "false". No justification required.

f	g	f = O(g)	$f = \Omega(g)$	f = o(g)
$n \log^2 n$	$n^{1.01}$	7	F	7
3^n	$11^{n/2}$	1	F	1
$n \rightarrow$	$\log n)^{100}$	Ë	て	F
5^{n+2}	$<$ 7^n	T	F	1
$n^{1.01}$	$> n \log^2 n$	F	T	F
n <	$ < \sum_{k=1}^{n} \log k $	T	F	て

1 im f(n) = 0

 $\sum_{k=1}^{n} \log k = \mathfrak{S}(n \log n)$

What is the most dominant function in the table?

2 (3 pts) Give as good big $-\theta$ estimate for each of the following functions.

(a)
$$f(n) = (n^3 + 3^n)(n^2 + \log(n^7 + 1))$$

 5^n n^2
(b) $f(n) = (2^n + 5^{n/2})(n + (\log n)^5)(n\sqrt{n} + 1000)$

$$\Theta(n^2 3^n)$$

(b)
$$f(n) = (2^n + 5^{n/2})(n + (\log n)^5)(n\sqrt{n} + 1000)$$

$$\Theta(n^{5/2} 5^{n/2})$$
 $n^2 \sqrt{n} 5^{n/2}$
 $1597 987$

3 (2 pts) Evaluate
$$\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^{16}$$

$$\begin{array}{cccc}
- & F_{M} & F_{16} \\
F_{16} & F_{55}
\end{array}$$

- 4 (6 pts) Answer the following.
- (a) Compute $-93 \mod 19$
- mod (93,19) = 17

2

- (b) Compute $13^6 \mod 11$ $\mod (13) = 2$
- 136 = 126 = 169 = 19

9

(c) Compute $2^{2024} \mod 23$

$$mod(z029, z2) = 0$$

$$2^{z024} = 2^{23} = 1$$

1

- (d) Find the smallest non-zero integer b such that $10b \equiv 0 \pmod{35}$
- gcd(10,35) = 5 b = 35 = 7

7

(e) Compute $\phi(143)$

2029/22 = 92

(f) Convert the base-3 number 121212_3 into a decimal integer.

451

120

 $12(212) = (25 \times 10[0])$ $= 5 \times 9[$ = 45[