COMP90054 - Week 4 tutorial

Prepared by Zijie Xu. Last updated: 16 August 2023

Local search algorithms

Hill-climbing

- ullet Always explores one successor node with its state minimising h
- Requires h(s) > 0 for $s \notin S^G$ to work
- Neither complete nor optimal
 - o Might get stuck in local optima (cf. gradient descent)

Enforced Hill-climbing

- ullet Use Breadth-First Search to look for a state with strictly smaller h-value
- In general, neither complete nor optimal
 - Complete if h is goal aware

Planning in Al

- A.k.a Model-based approach (cf. program-based, learning-based)
- We specify the model for a problem, a solver compute the controller automatically

State model

- S State space S, finite and discrete
- s_0 A **known** Initial state
- S_G A set of goal states $S_G \subseteq S$
- A A set of actions, with $A(s) \subseteq A$ for each $s \in S$
- f A **deterministic** transition function $f:(a,s) \rightarrow s'$ for $a \in A(s)$
- c Positive action cost functions c(a, s)
 - A solution is an action sequence that maps S_0 into S_G
 - A solution is optimal if it minimises sum of action costs

Conformant planning

- S State space S, finite and discrete
- S_0 A set of possible initial states
- S_G A set of goal states $S_G \subseteq S$
- A A set of actions, with $A(s) \subseteq A$ for each $s \in S$
- *F* A **non-deterministic** transition function
- c **Uniform** action cost functions c(a, s)
 - A solution is an action sequence that must achieve the goal for any possible initial state and transition

MDPs - Markov Decision Processes

- S State space S, finite and discrete
- s_0 A **known** Initial state
- S_G A set of goal states $S_G \subseteq S$
- A A set of actions, with $A(s) \subseteq A$ for each $s \in S$
- $P_a(s'|s)$ Transition probabilities $P_a(s'|s)$ for $s \in S$ and $a \in A(s)$
- c Positive action cost functions c(a, s)
 - A solution is a function/policy that maps states into actions
 - A solution is optimal if it minimises expected cost to goal

POMDPs – Partially Observable Markov Decision Processes

- S State space S, finite and discrete
- b_0 An initial belief state
- b_f A final belief state
- A A set of actions, with $A(s) \subseteq A$ for each $s \in S$
- $P_a(s'|s)$ Transition probabilities $P_a(s'|s)$ for $s \in S$ and $a \in A(s)$
- $P_a(o|s)$ Sensor model that provides an observation to update belief states
 - Belief states are probability distribution over S
 - A solution is a function/policy that maps states into actions

STRIPS and PDDL

- Planning languages can be used to describe models
- STanford Research Institute Problem Solver
- Planning Domain Definition Language
- STRIPS ⊂ PDDL

A problem in STRIPS is a tuple $P = \langle F, O, I, G \rangle$

- F set of all atoms (Boolean variables)
- O set of all operators (3 elements: Pre, Add, Del)
- I Initial situation $I \subseteq F$
- Goal situation $G \subseteq F$
 - Core idea: use set of Boolean facts/atoms to represent system states
 - o We add true atoms into set and remove false atoms from set
 - We can use STRIPS to determine a state model
 - Requirements:
 - o F must contain all possible atoms
 - Negation are not allowed in *G* or *pre*