## **Mathematics 227**

## Review

1. Consider the matrix

$$A = \left[ \begin{array}{cc} 0 & 2 \\ 1 & 1 \end{array} \right].$$

What is the characteristic equation of *A*?

What are the eigenvalues of A?

Find a basis for the eigenspaces.

2. Suppose that A is a  $2 \times 2$  matrix having eigenvectors  $\mathbf{v}_1 = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$  and  $\mathbf{v}_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$  and associated eigenvalues  $\lambda_1 = -2$  and  $\lambda_2 = 4$ . Find  $A \begin{bmatrix} 1 \\ 0 \end{bmatrix}$  and  $A^2 \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ .

3. Suppose that  $\lambda=0$  is an eigenvalue of A. What does this say about the invertibility of A?

If A is invertible and  $\lambda$  is an eigenvalue, explain why  $\frac{1}{\lambda}$  is an eigenvalue of  $A^{-1}$ .

4. Consider the matrix  $A=\begin{bmatrix} -15 & 26 \\ -10 & 17 \end{bmatrix}$  Identify the type of dynamical system this matrix defines and sketch a phase portrait.



5. Consider the matrix  $A = \begin{bmatrix} -1 & 0 & 2 \\ -2 & -2 & -4 \\ 0 & 0 & -2 \end{bmatrix}$ . Can you find a basis for  $\mathbb{R}^3$  consisting of eigenvectors of A?

6. The populations of two species R and S in year k are denoted by  $R_k$  and  $S_k$ . Their populations in the following year are given by

$$R_{k+1} = R_k + S_k$$
  
$$S_{k+1} = 0.5R_k + 1.5S_k.$$

Denote the state vector  $\mathbf{x}_k = \begin{bmatrix} R_k \\ S_k \end{bmatrix}$ . Find the matrix A such that  $\mathbf{x}_{k+1} = A\mathbf{x}_k$ .

Identify the type of this dynamical system and sketch a phase portrait.



After a very long time, what is the ratio of the populations  $R_k/S_k$  and what is the growth rate of the populations?

7. Consider the matrix  $A = \begin{bmatrix} 0.2 & 0.2 & 0.1 \\ 0.5 & 0.8 & 0.2 \\ 0.3 & 0.0 & 0.7 \end{bmatrix}$ .

Find the eigenvalues of A.

Find a steady-state vector q.

What happens to a Markov chain that begins with the initial state vector  $\mathbf{x}_0 = \begin{bmatrix} 0.5 \\ 0 \\ 0.5 \end{bmatrix}$  ?

Does the Perron-Frobenius theorem apply to this Markov chain? Explain why or why not.