B-Arbre / Mécanisme de Suppression

Sup(c)

- 1) Rechercher(c) \rightarrow (i, j) avec empilement des nœuds visités
- 2) Si *i* est un nœud interne remplacer **c** par son successeur inordre **c'** (forcément dans une feuille) posons (*i*, *j*) l'adr de **c'**
- 3) Suppression de la position j (et son fils-droit) par décalages internes dans i
- 4) Si *i* devient 'sous-chargé' (underflow)
 Si un des frères de *i* est chargé à plus de 50% (contient plus du minimum)
 Redistribution avec ce frère
 Sinon

 // les frères sont donc chargés au minimum
 Fusion avec un des frères
 ⇒ suppression de val_milieu dans le père :
 (Dépiler < i, j ...>; goto 3)

1) la recherche de 40 se termine sur (i, 1)

- 1) la recherche de 40 se termine sur (i , 1)
- 2) C'est un <u>nœud interne</u>, donc on remplace 40 dans (i, 1) par son successeur inordre $42 \rightarrow (d, 1)$

- 1) la recherche de 40 se termine sur (i , 1)
- 2) C'est un nœud interne, donc on remplace 40 par son successeur inordre $42 \rightarrow (d, 1)$
- 3) On supprime **42** c-a-d (**d** , **1**) par décalages Fin de la suppression de 40

- 1) la recherche de **57** se termine sur (**f** , **1**)
- 2) C'est un <u>nœud feuille</u>
- 3) On supprime 57 par décalages

- 1) la recherche de 57 se termine sur (f, 1)
- 2) C'est un nœud feuille
- 3) On supprime 57 par décalages
- 4) le nœud f devient sous-chargé (en situation de 'underflow') son frère gauche (d) est chargé à sa capacité minimale (50 %) son frère droit (e) est chargé à plus de 50 %

- 1) la recherche de 57 se termine sur (f, 1)
- 2) C'est un nœud feuille
- 3) On supprime 57 par décalages
- 4) le nœud **f** devient sous-chargé (en situation de 'underflow') son frère gauche (d) est chargé à sa capacité minimale (50 %) son frère droit (e) est chargé à plus de 50 %
 - → Redistribution Droite-Gauche f avec e (en passant par h)

- 1) la recherche de 57 se termine sur (f, 1)
- 2) C'est un nœud feuille
- 3) On supprime 57 par décalages
- 4) le nœud **f** devient en situation de 'underflow' son frère gauche (d) est chargé à sa capacité minimale (50 %) son frère droit (e) est chargé à plus de 50 %
 - → Redistribution Droite-Gauche f avec e

Fin de la suppression de 57

1) la recherche de 24 se termine sur (a , 2)

- 1) la recherche de **24** se termine sur (**a**, **2**)
- 2) C'est un <u>nœud interne</u>, donc remplacement de 24 par le suivant inordre : 27 (c, 1)

- 1) la recherche de 24 se termine sur (a , 2)
- 2) C'est un nœud interne, donc remplacement de 24 par son suivant inordre 27 (c,1)
- 3) Suppression de **27** par décalages dans **c**
- 4) c devient sous-chargé (underflow) son unique frère (g) est chargé à sa capacité minimale

- 1) la recherche de 24 se termine sur (a , 2)
- 2) C'est un nœud interne, donc remplacement de 24 par son suivant inordre
- 3) Suppression de 27 par décalages dans c
- 4) c devient sous-chargé (underflow) son unique frère (g) est chargé à sa capacité minimale
 - \rightarrow Fusion c et g dans g (en faisant descendre une valeur : 27, du nœud père a)

- 1) la recherche de 24 se termine sur (a , 2)
- 2) C'est un nœud interne, donc remplacement de 24 par son suivant inordre
- 3) Suppression de 27 par décalages dans c
- 4) c devient sous-chargé (underflow) son unique frère (g) est chargé à sa capacité minimale
 - → Fusion c et g dans g
 - \rightarrow sup(27) dans a et libération du nœud c (car vide)

- 1) la recherche de 24 se termine sur (a , 2)
- 2) C'est un nœud interne, donc remplacement de 24 par son suivant inordre
- 3) Suppression de 27 par décalages dans c
- 4) c devient sous-chargé (underflow) son unique frère (g) est chargé à sa capacité minimale
 - → Fusion avec g
 - \rightarrow sup(27) dans a,
 - a devient sous-chargé. Son unique frère (h) est à 50 %
 - → Fusion a et h dans a (en faisant descendre 42 du père : i)

- 1) la recherche de 24 se termine sur (a , 2)
- 2) C'est un nœud interne, donc remplacement de 24 par son suivant inordre
- 3) Suppression de 27 par décalages dans c
- 4) c devient sous-chargé (underflow) son unique frère (g) est chargé à sa capacité minimale
 - → Fusion avec g
 - \rightarrow sup(27) dans a
 - \rightarrow Fusion avec h (libération du nœud h et de la racine i car vides)

Exercice: Suppression de 40 dans l'arbre ci-dessous

Solution : Suppression de 40 dans l'arbre ci-dessous

- remplacement de 40 par 42 dans i et suppression de 42 dans d

Solution : Suppression de 40 dans l'arbre ci-dessous

- remplacement de 40 par 42 dans i et suppression de 42 dans d
- Fusion de d et f dans d et suppression de 55 dans h

Solution : Suppression de 40 dans l'arbre ci-dessous

- remplacement de 40 par 42 dans i et suppression de 42 dans d
- Fusion de d et f dans d et suppression de 55 dans h
- Redistribution Gauche-Droite entre a et h

Détails sur la Redistribution

Le nœud X est sous-chargé, son frère droit Y contient plus du minimum

→ Redistribution Droite-Gauche

(Si Y était un frère gauche de X, le sens de la redistribution aurait été Gauche-Droite)

Détails sur la Redistribution

Après la Redistribution Droite-Gauche, les changements concernent :

- le séparateur au niveau du père P
- la dernière valeur, le dernier fils et le degré de X
- la première valeur, le premier fils et le degré de Y

Pseudo algorithme de l'opération de **redistribution** entre **X** et **Y**.

La valeur au niveau du bloc **P** (père de **X** et **Y**) et séparant les deux fils est appelée : **Séparateur**

Si **Y** est un frère-droit de **X** (**Redistribution Droite-Gauche**) :

- Le **séparateur** est affecté comme <u>dernière valeur</u> du bloc \boldsymbol{X} son fils-droit (le nouveau dernier fils de \boldsymbol{X}) sera l'ancien $Fils_1$ de \boldsymbol{Y}
- La 1ère valeur du bloc **Y** monte vers **P** comme **nouveau séparateur**
- Décalages d'une position vers la gauche dans le bloc Y, des valeurs et fils restants
- M-A-J des degrés de X et de Y: degrés(X)++ ; degré(Y)--

Si **Y** est un frère-gauche de **X** (**Redistribution Gauche-Droite**) :

- Décalage d'une position vers la droite dans le bloc X (valeurs et fils)
- Le **séparateur** est affecté comme <u>première valeur</u> de X (Val₁) son fils-gauche (c-a-d le nouveau Fils₁ de X) sera l'ancien dernier fils de Y
- La dernière valeur de **Y** monte vers **P** comme **nouveau séparateur**
- M-A-J des degrés de X et de Y: degrés(X)++ ; degré(Y)--

Détails sur la Fusion

Le nœud X est sous-chargé, son frère droit Y contient le minimum (= 50%)

→ Fusion dans le nœud de gauche (X)

(Si Y était un frère gauche de X, la fusion se ferait dans Y)

Détails sur la Fusion

Le nœud X est sous-chargé, son frère droit Y contient le minimum (= 50%)

→ Fusion dans le nœud de gauche (X)

(Si Y était un frère gauche de X, la fusion se ferait dans Y)

Pseudo algorithme de l'opération de **fusion** entre **X** et **Y**.

La valeur au niveau du nœud P père de X et Y et séparant les deux fils est appelée : Séparateur

Si Y est un <u>frère droit</u> de X (Fusion de X et Y dans X),

Le **séparateur** est ajouté comme dernière valeur de *X*

Les valeurs et fils de Y sont rajoutés à ceux déjà présents dans X; deg(X) += deg(Y)

Le nœud Y est libéré

Le **séparateur** et son *fils-droit* sont <u>supprimés du bloc **P**</u> ; deg(**P**)--

Si Y est un <u>frère gauche</u> de X (Fusion de X et Y dans Y),

Le **séparateur** est ajouté comme dernière valeur de **Y**

Les valeurs et fils de X sont rajoutés à ceux déjà présents dans Y; deg(Y) += deg(X)

Le nœud X est libéré

Le **séparateur** et son *fils-droit* sont <u>supprimés du bloc **P**</u> ; deg(**P**)--