Problem 1: Memory Allocation (16points)

1.

P7		P4	P5	P6	Р3	
16/1	16/1 8/0	8/0 16/1	16/1 16/1	16/1 16/1	16/1 24/1	24/1 16/0 16/0

(16-7)+(16-1)+(16-3)+(16-5) = 48 bytes

2.

				P5		P6			P7			Р3				P4	
24/0			24/0	16/1	16/:	16/1		16/1	16/1		16/1	24/1		2	24/1	16/1	16/1

(16-7) + (16-1) + (16-3) + (16-5) = 48 bytes

3

first-fit: Yes, (24-7)+(24-1)+(16-3)+(24-5) = 72 bytes

best-fit: No, fail on the fourth step

Problem 2: Linking (18points)

- 1. [1] yes [2] global
 - [4] yes [5] global
 - [7] yes [8] local
 - [10] no [11] --
 - [12] yes [10] global
- 2. a=0x0 b=0x2 c=0x0 d=0x4
- 3. 1) 0×08048302
 - 2) 6

Problem 3: Linking (21points)

- 1 [1] LOCAL [2] GLOBAL
 - [3] .data [4] .bss [5] --
- 2 [1] 00000022 [2] R_386_PC32
 - [3] foo/.text [4] R_386_32
 - [5] R 386 32 [6] 0000001b
 - [7] 00000023 [8] a
- 3 [1] a1 30 97 04 08 [2] e8 ad ff ff ff
 - [3] a3 88 97 04 08 [4] 2c 97 04 08

Problem 4: Processor (45points)

1. (12')

Field	rcall rB valC	rret rB
Fetch	icode:ifun M1[PC]	icode:ifun M1[PC]
	rA:rB M1[PC+1]= F:rB	rA:rB M1[PC+1]= F:rB
	valC ← M4[PC+1]	valP ← PC + 2
	valP ← PC + 6	
Decode		valB ← R[rB]
Execute	valE ← valP+0	valE ← 0 + valB
Memory		
Write Back	R[rB] ← valP	
PC update	PC ← valC	PC ← valE

2. (6')

Condition	Trigger					
Target-addr Hazard	<pre>IRRET in { D_icode,E_icode,M_icode }</pre>					

	Pipeline register								
Condition	F	D	E	M	W				
Target-addr Hazard	S	В	_	_	-				

3. (6')

____卷 总___页 第____页

Condition	Trigger					
Target-addr Hazard	<pre>IRRET in { D_icode }</pre>					

	Pipeline register							
Condition	F	D	E	M	W			
Target-addr Hazard	S	В	-	-	-			

```
4. (8')
int f_pc = [
    E_icode == IRRET : E_valB;
];

bool F_stall =
    #Stalling at fetch before ret forwarding the E_valB
    D_icode == IRRET ||
    #load/use hazard (optional)
    (E_icode in { IMRMOVL, IPOPL } && E_dstM == d_srcB);
    or
    d_srcB != RNONE && d_srcB in {E_dstM,e_dstE,M_dstM,M_dstE,W_dstM,W_dstE};
    #other expression about the load/use hazard is also right!
```

```
bool D_stall =
    #load/use hazard (optional)
    E_icode in { IMRMOVL, IPOPL } && E_dstM == d_srcB;
    or
    d_srcB!=RNONE && d_srcB in {E_dstM,e_dstE,M_dstM,M_dstE,W_dstM,W_dstE}}
    #other expression about the load/use hazard is also right!

bool D_bubble =
    # Stalling at fetch while ret forwarding the E_valB
    IRET in { D_icode,}
    # but not condition for a load/use hazard (optional)
    && !(E_icode in { IMRMOVL, IPOPL } && E_dstM != d_srcB)
    or
    && !(d_srcB!=RNONE && d_srcB in
    {E_dstM,e_dstE,M_dstM,M_dstE,W_dstM,W_dstE})
```

5. (6')

Condition	F	D	Е	М	W
Load	Stall	Stall	Bubble	Normal	Normal
RRET	Stall	Bubble	Normal	Normal	Normal
Combination	Stall	B+S	Bubble	Normal	Normal
Desired	Stall	Stall	Bubble	Normal	Normal

Condition	F	D	Е	M	W
Mispredicted branch	Normal	Bubble	Bubble	Normal	Normal
RRET	Stall	Bubble	Normal	Normal	Normal
Combination	Stall	Bubble	Bubble	Normal	Normal

6. [1] 25/38 [2] 9/22 [3] 23/32 [4] 4/16

7. 不能正确 forwarding。

Decode 阶段, 需要一段时间才能读取寄存器的值, 而在 fetch 阶段一开始便需要 select pc, 无法等到 decode 读完寄存器后再 forward 过来。