Lie Theory

October 23, 2023

Contents

1	Bac	kground 1	
	1.1	Topology	
2	Topologcial Groups		
	2.1	Introduction	
	2.2	Neighborhoods of Identity	
	2.3	Metrizable Groups	
	2.4	Homomorphisms	
	2.5	Subgroups	
	2.6	Connected Components of Topological Groups 4	
	2.7	Group Action	
	2.8	Homogeneous Spaces	
	2.9	Orbits and Homogeneous Spaces	
	2.10	Examples	
3	Lie	Group 7	
	3.1	Basics	
	3.2	Tangent Bundle to a Manifold	
	3.3	Lie Groups	
	3.4	Lie Algebra	
	3.5	Exponential Map	
	3.6	Exponential Map Formulas	
	3.7	Lie Algebras and Lie Group Homomorphisms	
		· · ·	

1 Background

1.1 Topology

Definition 1.1.1. A topological space is *locally connected* at point x if everyneighborhood of x contains a connected open neighborhood.

2 Topologcial Groups

2.1 Introduction

Definition 2.1.1. A *topological group* is a group such that

- 1. he product $p: G \times G \to G, p(g,h) = gh$, is a continuous map if $G \times G$ has the product topology;
- 2. The map $\iota:G\to G, \iota(g)=g^{-1},$ is continuous (hence, a homeomorphism, as $\iota^{-1}=\iota$).

Each element $g \in G$ defines the following maps.

- left translation: $L_g: G \to G, L_g(h) = gh;$
- right translation: $R_g: G \to G, R_g(h) = hg;$
- conjugation: $C_g: G \to G, C_g(h) = ghg^{-1}$.

2.2 Neighborhoods of Identity

An (open) neighborhood of $x \in X$, where X is a topological space, is an open set U that cointains x.

Let G be a topological group, and $1 \in G$ is the identity. V(1) refers to the set of all neighborhoods of 1.

Proposition 2.2.1 (Proposition 2.2). Let G be a t.g. (topological group), V = V(1). Then we'll have

- 1. (T1) for all $u \in V, 1 \in u$;
- 2. $(T2)u, v \in V \implies u \cap v \in V;$
- 3. (TG1) for all $u \in V$, there exists $v \in V$ s.t. $v^2 \subseteq u$;
- 4. $(TG2) u \in V \implies u^{-1} \in V;$
- 5. (TG3) $u \in V, g \in G \implies gug^{-1} \in V$.

Definition 2.2.2. Let G be a group, not necessarily topological group. A system of neighborhood of $1 \in G$ is a family of sets sastisfying (T1) to (TG3).

Definition 2.2.3. Let X be a topological space and $x \in X$. A fundamental system of neighborhoods of x is a family F of open sets containing x s.t. for all open u that contains x, there exists $v \in F$ s.t. $v \subseteq u$.

Theorem 2.2.4 (Proposition 2.5). Let G be an abstract group, V be a system of neighborhoods of 1. There exists a unique topology on G making G into a topological group and s.t. V is a fundamental system of neighborhoods of 1.

 $idea\ of\ proof.$

Proposition 2.2.5. Let G be a topological group. TFAE

1. topology of G is a Hausdorff

- 2. {1} is closed in
- 3. $\bigcap_{U \in \mathcal{V}(1)} U = \{1\}$

2.3 Metrizable Groups

Definition 2.3.1. Let G be a topological group. G is metrizable if it has a left-(or right-) invariant distance which defines the tooplogy left-invariant for all $g \in G$ and d(gx, gy) = d(x, y) for all $x, y \in G$.

Theorem 2.3.2. A topological group G is metrizable iff it has a countable system of neighborhoods of 1.

2.4 Homomorphisms

We need to talk about $G \to H$ continuous homomorphisms.

Example 2.4.1. The determinant homomorphism det : $GL_n(\mathbb{R}) \to \mathbb{R}^* = GL(1,\mathbb{R})$ is continuous.

Theorem 2.4.2. Let G, H be topological group. A group homomorphism $\phi : G \to H$ is continuous iff ϕ is continuous at $1 \in G$.

Proof. \implies is obvious. Let's look at the other direction.

Note that $\phi \circ L_g = L_{\phi(g)} \circ \phi$ as maps $G \to H$ because

$$(\phi \circ L_q)(g') = \phi(gg') = \phi(g)\phi(g') = (L_{\phi(q)} \circ \phi)(g').$$

Then

$$\phi = L_{\phi(g)} \circ \phi \circ L_{g^{-1}}$$

is continuous at g, as $L_{g^{-1}}$ is continuous at g, ϕ continuous at 1, and $L_{\phi(g)}$ continuous everywhere.

Theorem 2.4.3. A map $\phi: G \to H$ is a group homomorphism (G, H are just groups) iff

$$gr(\phi) := \{(g, \phi(g)) \mid g \in G\} \subseteq G \times H.$$

Proposition 2.4.4. Let X and Y be topological spaces, such that Y is Hausdorff. A map $\phi: X \to Y$ is continuous if and only if its graph $gr(\phi)$ is closed and the projection $p(x, \phi(x)) = x$ is a homeomorphism.

Proof. Suppose ϕ is continuous. Then

$$gr(\phi) = \theta^{-1}(\Delta y)$$
 w.r.t. $\theta: X \times Y \to Y \times Y$

is closed, since tehta is continuous and Δy is closed.

Theorem 2.4.5. Suppose G, H are topological groups, H is Hausdorff. The map $G \to H$ is a continuous homomorphism iff $gr(\phi)$ is a closed subgroup and $p: gr(\phi) \to G$ is a homeomorphism.

2.5 Subgroups

Let G be a topological group. $H \subseteq G$ is a topological subgroup if H is a topological group w.r.t. the induced topology.

Proposition 2.5.1. Let G be a topological group. If $H \subseteq G$ a subgroup, which is open. Then H is also closed.

Proof. Consider

$$Y = \bigcup_{g \in G - H} gH.$$

Y is open, as it is a union of open sets. H is also closed, as G-Y=H. Hence, H is closed. \square

Proposition 2.5.2. G a topological group, $H \subseteq G$ a subgroup. Then \overline{H} is also a subgroup of G.

Proof. Note that $A \subseteq X$ (subset of a topological space), $x \in \overline{A}$ iff for all open U that contains $x, U \cap A \neq \emptyset$. Then we check the followings.

1. \overline{H} is closed under $m: G \times G \to G$.

2.6 Connected Components of Topological Groups

A connected space cannot be written as the union of two disjoint open sets.

A *connected component* of a point $x \in X$ is the union of all connected sets containing x, which is also the maximal connected set containing x.

A $connected \ component$ of X is a maximal connected subset.

If $A\subseteq X$ is connected, then the closure \overline{A} is connected. Thus, every connected component is closed.

Let G be a topological group, G_0 is the connected component of $1 \in G$.

Proposition 2.6.1. G_0 is a closed normal subgroup of G. The connected components of G are exactly gG_0 for $g \in G$.

A *neighborhood* N of $x \in X$ is a subset $N \subseteq X$, $x \in N$ and there exists an open $U \subseteq X$ s.t $x \in U \subseteq N$.

A space is *locally connected* if for every open neighborhood of every point contains a connected open neighborhood.

Proposition 2.6.2. If G is locally conencted, then G_0 is open.

Proposition 2.6.3. If G connected, $U \in \mathcal{V}(1)$, then $G = \bigcup_{n \geq 1} U^n$.

2.7 Group Action

Suppose G a group, X a set.

Definition 2.7.1. A *left action* of a group G on a set X is a function that associates to $g \in G$ a map $a(g) : X \to X$ which satisfies the properties: 1. $a(1) = \mathrm{id}_X$, that is, a(1)(x) = x, for every $x \in X$; 2. $a(gh) = a(g) \circ a(h)$.

Definition 2.7.2. Let $\phi_x: G \times X \to X, \phi_y: G \times Y \to Y$. A map $f: X \to Y$ is G-equivariant if

$$\phi_y(g, f(x)) = f(\phi_x(g, x)).$$

Same stroy for topological groups.

Definition 2.7.3. Let G be a topological group, X a topological space, an *action* G on X should be continuous. In other words, G acts on X by homeomorphisms ϕ_g .

Action is *transitive* if X = Gx for some $x \in X$. We define the *orbit* of x to be $Gx = \{gx \mid g \in G\}$. A *stabilizer* or *isotropy subgroup* of x is $G_x = \{g \in G \mid gx = x\}$.

An action is an effective action or faithful if $gx = x, \forall x \in X \implies g = 1$, equivalently, $\bigcap_{x \in X} G_x = \{1\}$.

Proposition 2.7.4.

$$G/G_x \to X$$
 where $gG_x \mapsto gx$.

This map is equivariant.

Proposition 2.7.5. Suppose that the action of G on X is continuous and that X is a Hausdorff space. Then, any isotropy subgroup $G_x, x \in X$, is closed.

2.8 Homogeneous Spaces

Let G be a topological group.

Definition 2.8.1. A homogeneous G-space is just G/H for a subgroup H of G.

Definition 2.8.2. A topological space X without regards to group is *homogeneous* if for all $x, y \in X$, there exists a homeomorphism $\phi : X \to X$ s.t. $\phi(x) = y$.

Topology on G/H is that of a quotient: $\pi:G\to G/H$. In other words, $U\subseteq G/H$ open if $\pi^{-1}(U)\subseteq G$ open.

Note: action of G on G/H is continuous:

$$G \times G/H \to G/H$$
 where $(x, gH) \mapsto xgH$.

Proposition 2.8.3. We have the following facts.

1. G/H is a homogeneous space in the sense of topology.

- 2. $\pi: G \to G/H$ is an open map (it takes open sets to open sets).
- 3. H compact implies that π is a closed map.
- 4. G/H is Hausdorff iff H is closed.
- 5. G/H discrete iff H open. (HW2)
- 6. If G is compact, G/H discrete and finite iff H is open.
- 7. $H \triangleleft G$ implies G/H is a topological group.
- 8. $H := \overline{\{1\}}$. Then H is a normal subgroup of G, and G/H is Hausdorff topological group.

Proof of 1. Consider left translation

$$L_x: gH \mapsto xgH.$$

This is a homeomorphism since $L_{x^{-1}}$ is an inverse and both are continuous. \square

Proof of 2. We need to show that $\pi^{-1}\pi(U)$ is open. (Omitted, just do image preimage and write it as union of right cosets).

Proof of 3. Take $F \subseteq G$ closed, if H is a compact subset, then $FH \subseteq G$ is closed. (From a proposition from textbook).

Notice that $\pi(F)$ closed iff $\pi^{-1}\pi(F)$ closed, and the latter equals to FH. \square

Proof of 4. We first show \implies . Note that $H=\pi^{-1}(H)$, which is a point of G/H, so it's closed. Thus H is closed.

Then we show \Leftarrow . Consider the homeomorphism

$$f: G/H \times G/H \to G \times G/H \times H$$
 where $(g_1H, g_2H) \mapsto (g_1, g_2)H \times H$.

Denote $\Delta = \{(gH, gH)\}$. Then $f(\Delta) = \{(g, g)H \times H\}$ is closed iff $\pi_{G \times G}^{-1} f(\Delta)$ is closed, which equals to $\{(g_1, g_2) \mid g_1 H = g_2 H\} = \{(g_1, g_2) \mid g_1^{-1} g_2 \in H\}$. \square

Let G be a topological group, $H \subseteq G$ a subgroup.

Proposition 2.8.4. If H and G/H are compact, then so is G.

Proof.

$$\pi:G\to G/H$$

is a *perfect map*, i.e., a continuous subjective closed map with compact fibers $\pi^{-1}(x), \forall x \in G/H$.

Proposition 2.8.5. If G/H and H are connected, then so is G.

Proof. Suppose G is not connected, then there exists $A \bigsqcup B = G$, $A, B \neq \emptyset$ open, disjoin $\subseteq G$. Then $\pi(A), \pi(B) \neq \emptyset$, open because π is always open, $\pi(A) \cup \pi(B) = G/H$, which is connected. Therefore $\pi(A) \cap \pi(B) \neq \emptyset$. Thus there exists $gH \in G/H$ s.t. $gH \cap A \neq \emptyset$ and $gH \cap B \neq \emptyset$.

2.9 Orbits and Homogeneous Spaces

Homogeneous space G/G_x , we hav ea bijection:

$$G/G_x \to G \cdot x$$
 where $gG_x \mapsto gx$.

Proposition 2.9.1. Let $G \times X \to X$ be a continuous and transitive action of G on X. Fix $x \in X$ and consider the bijection

$$\xi_x: G/G_x \to X \text{ given by } \xi_x(gG_X) = gx.$$

Then ξ_x is continuous with respect to the quotient topology in G/G_x .

Proposition 2.9.2. Let $G \times X \to X$ be a topological transitive group action. Suppose G is locally compact and spearable (i.e., has a countable dense subset) and X is Hausdorff and locally compact, Then

$$\xi_x: G/G_x \to X = G \cdot x \quad \forall x \in X$$

is a homeomorphism.

2.10 Examples

We have

$$O(N) = \{ g \in GL(n, \mathbb{R}) \mid gg^T = I_n(\det g = 1) \}.$$

O(n) acts on \mathbb{R}^n with orbits being $S_r^{n-1} - \{x \in \mathbb{R}^n \mid |x| = r\}, r \geq 0$.

Induction implies that O(n), SO(n) are compact, SO(n) connected.

Also $SL(n,\mathbb{R})$ is connected, as it has for n > -2 has 2 orbits on $\mathbb{R}^n : \{0\}, \mathbb{R}^n - \{0\}$. Also $SL(n,\mathbb{C})$ is connected.

Consider unitary groups

$$U(n) = \{ g \in GL(n, \mathbb{C}) \mid gg^{-T} - I_n(\det g = 1) \}.$$

 $GL(n,\mathbb{F})$ acts on \mathbb{P}^{n-1} , which is the set of lines through 0 in \mathbb{F}^n .

 $Gr_k(n,\mathbb{F})$ is the set of k-dimensional subspaces of \mathbb{F}^n , which is the quotient of the set of $n \times k$ -matrices of rank k by $GL(k,\mathbb{F})$ acting on the right.

3 Lie Group

3.1 Basics

Definition 3.1.1. A Lie group G is a group and a manifold such that

$$m: G \times G \to G$$

is smooth.

The composition of two smooth maps is smooth.

Proposition 3.1.2. The inverse map $\iota: G \to G$ is a diffeomorphism with

$$d\iota_q = -(dL_{q^{-1}})_1 \circ (dR_{q^{-1}})_q.$$

Particularly, $\iota_1 = -\operatorname{id}$.

3.2 Tangent Bundle to a Manifold

A fiber bundle is a structure (E, B, π, F) , where E, B, and F are topological spaces and $\pi: E \to B$ is a continuous surjection satisfying a local triviality condition outlined below. The space B is called the base space of the bundle, E the total space, and F the fiber. The map π is called the projection map (or bundle projection). We shall assume in what follows that the base space B is connected.

We require that for every $x \in B$, there is an open neighborhood $U \subseteq B$ of x (which will be called a trivializing neighborhood) such that there is a homeomorphism $\varphi: \pi^{-1}(U) \to U \times F$ (where $\pi^{-1}(U)$ is given the subspace topology, and $U \times F$ is the product space) in such a way that π agrees with the projection onto the first factor. That is, the following diagram should commute:

ADD THIS!

Denote the tangent bundle

$$TM = \bigcup_{x \in M} T_x M$$
 $T_x M = \{ m(t) \mid m(0) = x \} / \sim .$

3.3 Lie Groups

Let TG be the tangent bundle to a Lie group G. We define

$$d(L_q)_h: T_hG \to T_{qh}G$$
 where $h'(t) \mapsto (gh)'(t)$.

Notice that then

$$d(L_q)_1: T_1G \simeq T_qG.$$

Moreover,

$$G \times T_1 G \simeq TG$$
 where $(g, v) \mapsto (g, d(L_q)_1 v)$.

Thus, TG is trivial as a vector bundle for a Lie group G. i.e. G is parallelizable.

3.4 Lie Algebra

Proposition 3.4.1.

$$[\phi*X,\phi*Y] = \phi*([X,Y]).$$

Definition 3.4.2. Let G be a Lie group. A vector field X on G is said to be

• right invariant if, for every $g \in G, (R_g)_* X = X$. In detail,

$$d(R_a)_k(X(h)) = X(hg)$$

for every $g, h \in G$;

• left invariant if, for every $g \in G, (L_g)_* X = X$, that is,

$$d(L_q)_h(X(h)) = X(gh).$$

Definition 3.4.3. We define Maurer-Cartan forms, which are differential 1 forms on G with values in T_1G . They are defined by right or left translations by

$$\omega_g^r(v) = d\left(R_{g^{-1}}\right)_q(v) \quad \text{ and } \quad \omega_g^l(v) = d\left(L_{g^{-1}}\right)_q(v)$$

for $g \in G$ and $v \in T_aG$.

Proposition 3.4.4. If $X \in Vect(G)$ is right-invariant, then $\omega^r(X) = X(1)$, the constant T_1G -valued function. Similarly, if X is left-invariant, then $\omega^l(X) = X(1)$.

Definition 3.4.5. We define the set of right invariant fields as

$$Inv_r = \bigcap_{g \in G} ker\left((R_g)_* - Id_{vect(G)}\right) \subseteq Vect(G).$$

Theorem 3.4.6. Let $Inv_r \cong T_1G \cong Inv_e$

Definition 3.4.7. $\mathfrak{g} = (Inv_r, [,])$ is the *Lie algebra* of a Lie group G.

Proposition 3.4.8. This bracket gives the following bracket on T_1G :

$$A \in T_1G \to A^r(g) = d(R_q)_1A.$$

Moreover

$$[A, B] := [A, B]_r = [A^r, B^r](1).$$

Proposition 3.4.9. Let $A, B \in T_1G$. Then, $[A, B]_r = -[A, B]_l$.

$$[A, B] = -[A, B]_e = BA - AB.$$

3.5 Exponential Map

Remarks on flows on manifolds.

Let X be a vector field on manifold $M, X \in C^{\infty}(M, TM)$. A flow ϕ_t^x defined by $\phi_t^x(x) = x(t), t \in (-\epsilon, \epsilon)$, and $\frac{dx}{dt} = X(x), x(0) = x$.

Another notation is $X_t = \phi_t^x$.

WTS

$$X_{s+t} = X_s \circ X_t = X_t \circ X_s.$$

Take $X \in \mathfrak{g} = Inv^r$ right invariant vector field

Then $X_t(g)$ the flow equals to g(t) and is given by

$$\frac{dg}{dt} = X(g), \quad g(0) = g.$$

For $g \in G, g(t) : (-\epsilon, \epsilon) \to G$.

Lemma 3.5.1. For $X \in Inv^r$, we have

$$X_t(gh) = X_t(g)h \quad \forall g, h \in G.$$

Theorem 3.5.2. A right-invariant vector field X is complete, i.e., defined for all $t \in \mathbb{R}$.

G a lie group, $\mathfrak{g} = T_1 G$ its lie algebra.

Definition 3.5.3. The exponential map

$$\exp:\mathfrak{g}\to G$$

is defined by $X \in \mathfrak{g}$ generates the right invariant vector field $X^r(g) = d(R_g)_1 X, g \in G$.

Then we create a flow, denoted by $X_t^r = g(t)$, for $\frac{dg(t)}{gt} = X^r(g(t)), g(0) = g$, which gives that $X_t^r(1)|_{t=1} = \exp(X)$.

Proposition 3.5.4. By doing the same procedure using left-invariant vector field X^l gives the same result:

$$X_t^l(1) \mid_{t=1} = X_t^r(1) \mid_{t=1} = \exp(X).$$

Moreover,

$$X_t^l(1) = X_t^r(1) \quad \forall t \in \mathbb{R}.$$

Proof. Denote $g(t_0) = X_t^r(1), g(0) = 1$. It's sufficient to show that $\frac{dg}{dt} = X^l(g)$. We know that

$$\begin{split} \frac{dg}{dt} &= \frac{d}{dt} \left(X_t^r(1) \right) = \frac{d}{ds} \left(X_{s+t}^r(1) \right) |_{s=0} \\ &= \frac{d}{ds} \left(X_t^r(X_s^r(1)) \right) |_{s=0} \\ &= \frac{d}{ds} \left(X_t^r(1) X_s^r(1) \right) |_{s=0} \\ &= \frac{d}{ds} \left(L_{X_t^r(1)} X_s^r(1) \right) |_{s=0} \\ &= d(L_{X_t^r(1)})_1 \frac{d}{ds} \left(X_s^r(1) \right) |_{s=0} \\ &= d(L_{X_t^r(1)})_1 X^r(1) \\ &= d(L_{X_t^r(1)})_1 X \\ &= X^l(X_t^r(1)) \\ &= X^l(g(t)) \end{split}$$
 chain rule

We have

$$X_t(1): (\mathbb{R}, t) \to G.$$

a homomorphism, sometimes we call it a *one-parametric* subgroup of G generated by a right invariant vector field X^r .

Q: What is $X_t^r(1)$ and $X_t^l(1)$ via exp?

A: Suppose Y a vector field on M. Suppose we run a corresponding flow Y_t on M. Let $a \in \mathbb{R}$, then $(aY)_t = Y_{at}$ whenever flow Y_{at} and Y_t are defined.

$$(tY)_s|_{s=1} = Y_t.$$

10

Applying this to $M = G, Y = X^r$ at $g = 1, tX^r = (tX)^r$, we have

$$\exp(tX) = (tX)_s^r(1)|_{s=1} = (tX^r)_s(1)|_{s=1} = X_t^r(1).$$

Then

$$X_t^r(1) = \exp(tX)$$
 $X_t^l(1) = \exp(tX)$.

From office hour: $(\phi_*X)(y) = (d\phi)_{\phi^{-1}(y)}X(\phi^{-1}(y))$ pushforward

3.6 Exponential Map Formulas

One formula is that

$$\exp((s+t)X) = \exp(sX)\exp(tX) = \exp(tX)\exp(sX), \quad \forall x, t \in \mathbb{R}, x \in \mathfrak{g}.$$

This implies that for all X,

$$\{\exp(tX) \mid t \in \mathbb{R}\}\$$

is an abelian subgroup of G.

Take $X \in \mathfrak{g}, X^r \in Inv^r, g \in \mathfrak{g}$, we have

$$X_t^r(g) = X_t^r(1)g$$
 because $X_t^r(gh) = X_t^r(g) = h$.

This implies that

$$X_t^r(g) = X_t^r(1)g = \exp(tX)g$$
, similarly $X_t^l(g) = g \exp(tX)$.

We also have

- 1. $\exp(0) = 1$;
- 2. $\exp(nX) = \exp(X)^n$ for all $n \in \mathbb{Z}$;
- 3. $\exp(X)^{-1} = \exp(-X)$.

Note that $\mathfrak{g} \cong \mathbb{R}^N$, so $T_y \mathfrak{g} = \mathfrak{g}$ for all $y \in \mathfrak{g}$.

Proposition 3.6.1. exp : $\mathfrak{g} \to G$ is smooth, and

$$d(\exp)_0: T_0\mathfrak{g} \to T_1G \quad where \quad X \mapsto X.$$

In other words, $d(\exp)_0 = id_{\mathfrak{g}}$.

Proof. $\exp(X)$ is smooth because $X^r(g) = d(R_g)_1 X$ depends smoothly on X. Then flow $X_t^r(g)$ depends smoothly on X^r . Thus specialization of $X_t^r(g)$ at g = 1, t = 1 is also smooth as a function of X. Thus

$$\exp(X) = X^r(1)|_{t=1}$$

is smooth.

Now let's compute the differential.

$$d(\exp)_0(X) = \frac{d}{dt} \left(\exp(0 + tX) \right) |_{t=0}$$
$$= \frac{d}{dt} \left(X_t^r(1) \right)_{t=0}$$
$$= X^r(1)$$
$$= X$$

By inverse function theorem, $\exp:\mathfrak{g}\to G$ is a diffeomorphism locally near $0\in\mathfrak{g}$, i.e. there is an open neighborhood $U\subseteq\mathfrak{g}$ of 0 and an open neighborhood $V\subseteq G$ of 1 such that

$$\exp|_U:U\to V$$

is a diffeo-morphism.

Theorem 3.6.2. If G is connected, then for all $g \in G$, there exists $x_1, \ldots, x_n \in \mathfrak{g}$ such that $g = \exp(x_1) \cdots \exp(x_n)$.

Proof. Let G be a connected topological group, V any open neighborhood of 1. Then $G = \bigcup_{n \geq 1} V^n$. For all $g \in G$, there exists n such that $g \in V^n$. In other words, $g = v_1 \cdots v_n$ where $v_i \in V$.

Take V from the previous remark about exp a locally diffeomorphism locally near 0, we have $v_i = \exp(x_i)$ for some $x_i \in U$.

3.7 Lie Algebras and Lie Group Homomorphisms

Let G, H be Lie groups. A *Lie group homomorphism* $\phi : G \to H$ is a smooth map which is a group homomorphism.

We claim that for a group homomorphism $\phi: G \to H$. For ϕ to be a Lie group homomorphism, it's enough to check the differentiability just at g = 1.

Notice that

$$\phi = R_{\phi(q)} \circ \phi \circ R_{q^{-1}}.$$

For h close to g in G, we have

$$\phi(h) = (R_{\phi(q)} \circ \phi)(hg^{-1}).$$

Therefore, $(d\phi)_1$ exists implies $d(R_{\phi(g)} \circ \phi)_1$ exists, and then $(d\phi)_g$ exists.

Proposition 3.7.1 (Lemma 5.14). Let G and H be Lie groups with Lie algebras \mathfrak{g} and \mathfrak{h} , respectively. Let $\phi: G \to H$ be a differentiable homomorphism and take $X \in \mathfrak{g}$. Then, for every $g \in G$, it holds

$$d\phi_q(X^r(g)) = Y^r(\phi(g)) \quad d\phi_q(X^l(g)) = Y^l(\phi(g)),$$

where $Y = d\phi_1(X)$.

This proposition shows that X^r and Y^r (same with X^l and Y^l) are ϕ -related, i.e. $d\phi_x(X(x)) = Y(\phi(x))$.

Proposition 3.7.2. Let G and H be Lie groups with Lie algebras \mathfrak{g} and \mathfrak{h} , respectively. Let $\phi: G \to H$ be a differentiable homomorphism and take $X \in \mathfrak{g}$. Then,

$$\phi(\exp(X)) = \exp(d\phi_1(X)).$$

Proposition 3.7.3 (Proposition A.2). Let $\phi: M \to N$ be a differentiable map and X_1, X_2 vector fields on M. Suppose that Y_1 and Y_2 are vector fields on N that are ϕ -related to X_1 and X_2 , respectively. Then $[X_1, X_2]$ and $[Y_1, Y_2]$ are ϕ -related.

Proposition 3.7.4 (Proposition 5.16). Let G and H be Lie groups with Lie algebras $\mathfrak g$ and $\mathfrak h$, respectively. Let $\phi: G \to H$ be a differentiable homomorphism. Then, $d\phi_1: \mathfrak g \to \mathfrak h$ is a homomorphism, that is,

$$d\phi_1[X,Y] = [d\phi_1 X, d\phi_1 Y]$$

with left or right invariant brackets.