

- Subject Physical Chemistry
- Chapter Ionic Equilibrium

By – Amit Mahajan Sir

The <u>solubility product</u> of a <u>salt</u> having general formula MX_2 , in <u>water</u> is 4×10^{-12} . The concentration of M^{2+} ions in the aqueous solution of the salt is

$$1$$
 2.0 × 10⁻⁶ M

$$1.0 \times 10^{-4} \,\mathrm{M}$$

$$(3)$$
 1.6 × 10⁻⁴ M

$$4.0 \times 10^{-10} \,\mathrm{M}$$

$$K_{SP}(MX_{2}) = 4 \times 10^{12}$$

$$IMX_{2} + H_{2}0 \Rightarrow IM^{2+} + 2 \times$$

$$S$$

$$K_{SP}(\underline{M}_{XB}) = x^{2} y^{3} (\underline{S})^{x+3}$$

$$x=1 = (1)^{2} (\underline{S})^{(2)} (\underline{S})^{1+3}$$

$$= 45^{3} = 44 \times 10^{-12}$$

$$= 5 = (10^{-12})^{12}$$

$$= 5 = 10^{-12}$$

$$= 5 = 10^{-12}$$

Let the solubility of an aqueous solution of $Mg(OH)_2$ be x then its k_{sp} is

- (2) 108 x⁵
- (3) 27 x^4
- (4) 9x

The solubility in water of a sparingly soluble salt AB_2 is 1.0×10^{-5} mol L^{-1} . Its

$$4 \times 10^{-15}$$

$$S = 10^{\circ} M$$
 $X + 7$
 $X = (1)(2)(5)$

$$\boxed{4} \quad 1 \times 10^{-10}$$

Solid BaCO₃ is gradually dissolved in a 1.0 × 10⁻⁴ M Na₂CO₃ solution. At what concentration of Ba⁺² will a precipitate begin to form? (K_{sp} ; BaCO₃ = 5.1 × 10⁻⁹)

1 $4.1 \times 10^{-5} \text{M}$ $\frac{\text{Baco}_3}{\text{SS.S}} \text{ CBaCo}_3 = \frac{1}{\text{CBa}^2} \frac{1}{\text{CC}_3} \frac{1}{\text{Na}_3} \frac{1}{\text{CC}_3} \frac{1}{\text{CC}$

Which is the correct representation of the solubility product constant of Ag₂CrO₄

$$[Ag^{+}]^{2} [CrO_{4}^{-2}]$$

Aga (9104 + 400 = 2 Ag+ + 1 G104

(2)
$$[Ag^{+}][CrO_{4}^{-2}]$$

(3)
$$[2Ag^{+}][CrO_4^{-2}]$$

$$4$$
 [2Ag⁺]² [CrO₄⁻²]

Zirconium phosphate $[Zr_3(PO_4)_4]$ dissociates into three zirconium cations of charge +4 and four phosphate anions of charge -3. If molar solubility of zirconium phosphate is denoted by and its solubility product by K_{sp} then which of the following relationship between S and K_{sp} is correct?

$$S = (K_{sp}/6912)^{1/7}$$

$$(4)$$
 S = $\{K_{sp}/(6912)^7\}$

$$S^{7} = \frac{K_{8}P}{6912}$$
 $S = \frac{K_{8}P}{6912}$

 K_{sp} of $Mg(OH)_2$ is 4.0×10^{-6} . At what minimum pH, Mg^{2+} , ions starts precipitating

0.01Mg Cl_2 is:

$$1$$
 2 + $\log 2$

$$\left(\begin{array}{c}2\end{array}\right)$$
 2 – $\log 2$

$$\boxed{4} \quad 12 - \log 2$$

$$\frac{2 - \log 2}{12 + \log 2} = \frac{\sum_{i=1}^{M_{i}} \sum_{i=1}^{M_{i}} \sum_{j=1}^{M_{i}} \sum_{$$

$$4 \times 10^{4} = 70 \text{ H}$$
 $2 \times 10^{4} = 70 \text{ H}$
 $2 \times 10^{3} \text{ M}$
 $2 \times 10^{3} \text{ M}$
 $3 \times 10^{4} = 14 - 90 \text{ H}$
 $4 \times 10^{4} = 14 - 90 \text{ H}$
 $4 \times 10^{4} = 14 - 90 \text{ H}$
 $4 \times 10^{4} = 14 - 90 \text{ H}$
 $4 \times 10^{4} = 14 - 90 \text{ H}$
 $4 \times 10^{4} = 14 - 90 \text{ H}$
 $4 \times 10^{4} = 14 - 90 \text{ H}$
 $4 \times 10^{4} = 14 - 90 \text{ H}$
 $4 \times 10^{4} = 14 - 90 \text{ H}$
 $4 \times 10^{4} = 14 - 90 \text{ H}$
 $4 \times 10^{4} = 14 - 90 \text{ H}$
 $4 \times 10^{4} = 14 - 90 \text{ H}$
 $4 \times 10^{4} = 14 - 90 \text{ H}$
 $4 \times 10^{4} = 14 - 90 \text{ H}$
 $4 \times 10^{4} = 14 - 90 \text{ H}$
 $4 \times 10^{4} = 14 - 90 \text{ H}$
 $4 \times 10^{4} = 14 - 90 \text{ H}$
 $4 \times 10^{4} = 14 - 90 \text{ H}$
 $4 \times 10^{4} = 14 - 90 \text{ H}$
 $4 \times 10^{4} = 14 - 90 \text{ H}$
 $4 \times 10^{4} = 14 - 90 \text{ H}$
 $4 \times 10^{4} = 14 - 90 \text{ H}$
 $4 \times 10^{4} = 14 - 90 \text{ H}$
 $4 \times 10^{4} = 14 - 90 \text{ H}$
 $4 \times 10^{4} = 14 - 90 \text{ H}$
 $4 \times 10^{4} = 14 - 90 \text{ H}$
 $4 \times 10^{4} = 14 - 90 \text{ H}$
 $4 \times 10^{4} = 14 - 90 \text{ H}$
 $4 \times 10^{4} = 14 - 90 \text{ H}$
 $4 \times 10^{4} = 14 - 90 \text{ H}$
 $4 \times 10^{4} = 14 - 90 \text{ H}$
 $4 \times 10^{4} = 14 - 90 \text{ H}$
 $4 \times 10^{4} = 14 - 90 \text{ H}$
 $4 \times 10^{4} = 14 - 90 \text{ H}$
 $4 \times 10^{4} = 14 - 90 \text{ H}$
 $4 \times 10^{4} = 14 - 90 \text{ H}$
 $4 \times 10^{4} = 14 - 90 \text{ H}$
 $4 \times 10^{4} = 14 - 90 \text{ H}$
 $4 \times 10^{4} = 14 - 90 \text{ H}$
 $4 \times 10^{4} = 14 - 90 \text{ H}$
 $4 \times 10^{4} = 14 - 90 \text{ H}$
 $4 \times 10^{4} = 14 - 90 \text{ H}$
 $4 \times 10^{4} = 14 - 90 \text{ H}$
 $4 \times 10^{4} = 14 - 90 \text{ H}$
 $4 \times 10^{4} = 14 - 90 \text{ H}$
 $4 \times 10^{4} = 14 - 90 \text{ H}$
 $4 \times 10^{4} = 14 - 90 \text{ H}$
 $4 \times 10^{4} = 14 - 90 \text{ H}$
 $4 \times 10^{4} = 14 - 90 \text{ H}$

Ans. (3)

The pH of an aqueous solution of Ba(OH)₂ is 10. If the K_{sp} of Ba(OH)₂ is 1 × 10⁻⁹, then the concentration of Ba⁺² ions in the solution in mol L⁻¹ is

$$1 \times 10^{-2}$$
 PH Ba(OH) = 10 Ksp Ba(OH) = 10⁻⁹

4
$$1 \times 10^{-5}$$

POH = 14 - PH

= 14 - 10 = H

 $TOH = 10^{-4} M$

The K_{sp} for Cr (OH)₃ is 1. 6 × 10⁻³⁰. The molar solubility of this compound in water is

$$\sqrt{1}$$
 $\sqrt[2]{1.6 \times 10^{-30}}$

$$(2)$$
 $\sqrt[4]{1.6 \times 10^{-30}}$

$$\sqrt[4]{\frac{1.6\times10^{-30}}{27}}$$

$$\frac{1.6 \times 10^{-30}}{27}$$

$$k_{3}\rho = 1.6 \times 10^{-30}$$
 $S = ?$
 $k_{5}\rho = 2 \times 77 (5) \times 4 \times 7$
 $1.6 \times 10^{-30} = (1)(3)(5)$
 $1.6 \times 10^{-30} = 27 S^{4}$
 $S = (1.6 \times 10^{-30}) + (1.6 \times 10^{-30}) +$

The molar solubility (in mol L⁻¹) of a sparingly soluble salt MX_4 is s. The corresponding solubility product is K_{sp} . s is given in terms of K_{sp} by the

relation

$$s = \left(\frac{K_{Sp}}{128}\right)^{1/4}$$

relation
$$S = \frac{K_{sp}}{128}^{1/4} \quad \text{Asp} = \text{Asp} = \text{Asp}^{1/4} \quad \text{The second of the second of$$

$$S = \left(\frac{K_{Sp}}{256}\right)^{1/5}$$

$$s = (256 \, Ksp)^{1/5} \, \text{kg} = 256 \, \text{S}^{5}$$

(4)
$$s = (256 \, Ksp)^{1/4}$$
 $S^5 = Ksp$

$$S^{3} = \frac{K_{8}P}{256}$$

$$S = \frac{K_{8}P}{256}$$

The solubility of CaF_2 in water at 20°C is 15.6 mg per dm³ solution. What will be the solubility product of CaF_2 ? (3-2) (3-2)

$$(1)$$
 4.0×10^{-4} $K_{5p} = ?$ $S = 15.6 \text{ mg/L}$

$$32.0 \times 10^{-12}$$
 = $(1) \otimes) (5) + 2 = 1000$

$$= 45^{3}$$

$$= 4 \times (2 \times 10^{-4})^{3}$$

$$= 4 \times (2 \times 10^{-4})^{3}$$

$$= 4 \times (2 \times 10^{-4})^{3}$$

$$= 4 \times (2 \times 10^{-12})^{3}$$

$$= 32 \times 10^{-12}$$

Given the solubility product A_3B_2 is 2×10^{-30} . What will be the solubility in moles/

litre?

$$\left(\frac{10-28}{5400}\right)^{1/5}$$

$$K_{50} = \frac{1}{2} \gamma^{3} (S)^{3+3} \propto = 3 \cdot 7 = 2$$

$$2 \times 10^{30} = (3) (2)^{3} (S)$$

$$= 27 \times 4 (S)$$

$$2 \times 10^{-30} = S^{5}$$

$$(0) = (3) (2)^{3} (S)$$

$$= 27 \times 4 (S$$

A salt M_2X_3 dissolves in water such that its solubility is x mole/litre. Its K_{SP} is

- $\begin{pmatrix} 1 \end{pmatrix}$ x^5
- (2) $6x^2$
- $\sqrt{3} \quad 108x^5$
- \bigcirc 4 6 x^5

$$K_{50} = 3 yi (5)^{3+3i}$$

3555/

Solubility product of 2.8×10^{-10} at 25°C. Calculate solubility of the salt in

0.1M AgNO₃ solution

$$S = 7$$
.

 2.8×10^{-9} mole/litre

$$(2)$$
 2.8 × 10⁻¹⁰ mole/litre

$$(3)$$
 3.2 × 10⁻⁹ mole/litre

$$4$$
 3.2 × 10⁻¹² mole/litre

$$2.8 \times 10^{10} = 10^{1} \times \text{LUJ}$$

 $2.8 \times 10^{10} = 10^{1} \times \text{LUJ}$
 $2.8 \times 10^{10} = 10^{1} \times \text{LUJ}$

If s is the molar solubility of Ag₂SO₄, then

$$(2) [Ag^+] = s$$

$$(3) [2Ag^+] = s$$

$$[SO_4^{2-}] = s$$

$$\frac{1}{1} Ag_2 SO_4 + \frac{1}{1} SO_4 +$$

The aqueous solution of which of the following sulphides would contain maximum concentration of S^{2-} ions.

MnS (
$$K_{sp} = 1.1 \times 10^{-21}$$
)
$$\frac{\text{ZnS}(K_{sp} = 1.1 \times 10^{-23})}{\text{ZnS}(K_{sp} = 1.1 \times 10^{-23})}$$

2
$$ZnS(K_{sp} = 1.1 \times 10^{-23})$$

3 PbS
$$(K_{sp} = 1.1 \times 10^{-35})$$

$$\frac{\text{CuS}(K_{sp} = 1.1 \times 10^{-30})}{3 \times 5 \text{ J}}$$

$$S = IS^{3-7}$$

$$K_{SP} = X IV_{CS}X + Y$$

$$K_{SP} = S^{2}$$

$$S = JK_{SP}$$

Which of the following salts has maximum solubility

all
$$S(=1)$$
 $\gamma = 1$ \Rightarrow $K_{SP} = S^2 \Rightarrow S = \sqrt{K_{SP}}$

1 HgS,
$$K_{sp} = 1.6 \times 10^{-54}$$

PbSO₄,
$$K_{sp} = 1.3 \times 10^{-8}$$

3 ZnS,
$$K_{sp} = 7.0 \times 10^{-26}$$

4 AgCl,
$$K_{sp} = 1.7 \times 10^{-10}$$

The necessary condition for saturated solution is $\frac{\lambda \rho}{\rho} - \frac{\lambda \rho}{\rho}$

- Product of ionic concentrations = Solubility product
- 2 Product of ionic concentrations < solubility product
- (3) Product of ionic concentrations > solubility product
- 4 None of the above

Which of the following expressions shows the saturated solution of PbSO₄?

$$K_{sp} (PbSO_4) = \underline{[Pb^{2+}]}^{l} \underline{[SO_4^{2-}]}^{l}$$

- (2) $K_{sp} (PbSO_4) > [Pb^{2+}] [SO_4^{2-}]$
- (3) $K_{sp} (PbSO_4) = [Pb^+] [SO_4^-]$

The correct relation between K_{sp} and solubility for the salt $\underline{KAl}(SO_4)_2$ is

2=1

- 1 4 s³
- $4 s^4$
 - (3) 27 s⁴
 - 4 None

$$=(1)(1)(2)(5)(+1+2)$$

A precipitate of AgCl is formed when equal volumes of the following are mixed.

$[K_{sp} \text{ for AgCl} = 10^{-10}]$

- $1 \quad 10^{-4} \text{ M} \text{ AgNO}_3 \text{ and } 10^{-7} \text{M HCl}$
- 2 10^{-5} M AgNO₃ and 10^{-7} M HCl
- 10^{-5} M AgNO₃ and 10^{-4} M HCl
- (4) 10⁻⁶M AgNO₃ and 10⁻⁶M HCl

Kip > Ksp
$$\Rightarrow$$
 Soll p.b.t of Ag U

Xip = $LAg^{+}TLUT$
 $V_{1} = VL$
 $V_{2} = aVL$
 $V_{3} = aVL$
 $V_{4} = aVL$
 $V_{4} = aVL$
 $V_{5} = aVL$
 $V_{6} = aVL$
 $V_{7} = aVL$
 $V_{8} = aVL$
 $V_{8} = aVL$
 $V_{9} = aVL$
 $V_{1} = aVL$
 $V_{2} = aVL$
 $V_{3} = aVL$
 $V_{4} = aVL$
 $V_{5} = aVL$
 $V_{7} = aVL$
 $V_{8} = aVL$
 $V_{8} = aVL$
 $V_{1} = aVL$
 $V_{2} = aVL$
 $V_{3} = aVL$
 $v_{1} = aVL$
 $v_{2} = aVL$
 $v_{3} = aVL$
 $v_{4} = aVL$
 $v_{5} = aVL$
 $v_{7} = aVL$
 $v_{8} = aVL$
 $v_{1} = aVL$
 $v_{1} = aVL$
 $v_{2} = aVL$
 $v_{3} = aVL$
 $v_{4} = aVL$
 $v_{5} = aVL$
 $v_{7} = aVL$
 $v_{8} = aVL$
 $v_{1} = aVL$
 $v_{1} = aVL$
 $v_{2} = aVL$
 $v_{3} = aVL$
 $v_{4} = aVL$
 $v_{5} = aVL$
 $v_{7} = aVL$
 $v_{7} = aVL$
 $v_{7} = aVL$
 $v_{7} = aVL$
 $v_{8} = aVL$
 $v_{1} = aVL$
 $v_{1} = aVL$
 $v_{2} = aVL$
 $v_{3} = aVL$
 $v_{4} = aVL$
 $v_{5} = aVL$
 $v_{7} = aVL$
 $v_{8} = aVL$
 $v_{1} = aVL$
 $v_{1} = aVL$
 $v_{2} = aVL$
 $v_{3} = aVL$
 $v_{4} = aVL$
 $v_{5} = aVL$
 $v_{7} = aVL$
 $v_{7} = aVL$
 $v_{7} = aVL$
 $v_{7} = aVL$
 $v_{8} = aVL$
 $v_{1} = aVL$
 $v_{1} = aVL$
 $v_{2} = aVL$
 $v_{3} = aVL$
 $v_{4} = aVL$
 $v_{5} = aVL$
 $v_{7} = aVL$
 $v_{7} = aVL$
 $v_{8} = aVL$
 $v_{1} = aVL$
 $v_{1} = aVL$
 $v_{2} = aVL$
 $v_{3} = aVL$
 $v_{4} = aVL$
 $v_{5} = aVL$
 $v_{7} = aVL$
 $v_{8} = aVL$
 $v_{1} = aVL$
 $v_{1} = aVL$
 $v_{2} = aVL$
 $v_{3} = aVL$
 $v_{4} = aVL$
 $v_{5} = aVL$
 $v_{7} = aVL$
 $v_{7} = aVL$
 $v_{7} = aVL$
 $v_{7} = aVL$
 $v_{1} = aVL$
 $v_{1} = aVL$
 $v_{1} = aVL$
 $v_{2} = aVL$
 $v_{3} = aVL$
 $v_{4} = aVL$
 $v_{5} = aVL$
 $v_{7} = aVL$
 $v_{7} = aVL$
 $v_{8} = aVL$
 $v_{1} = aVL$
 $v_{1} = aVL$
 $v_{2} = aVL$
 $v_{3} = aVL$
 $v_{4} = aVL$
 $v_{5} = aVL$
 $v_{7} = aVL$
 $v_{7} = aVL$
 $v_{8} = aVL$
 $v_{8} = aVL$
 $v_{1} = aVL$
 $v_{1} = aVL$
 $v_{2} = aVL$
 $v_{3} = aVL$
 $v_{4} = aVL$
 $v_{5} = aVL$
 $v_{7} = aVL$
 $v_{7} = aVL$
 $v_{8} = aVL$
 $v_{8} = aVL$
 $v_{8} = aVL$
 $v_{1} = aVL$
 $v_{1} = aVL$
 $v_{2} = aVL$
 $v_{3} = aVL$
 $v_{4} = aVL$
 $v_{5} = aVL$
 $v_{7} = aVL$
 $v_{8} = aV$

