

목차

• 프로젝트 목표

• 문제 해결의 주요 아이디어

• 가정1 기초통계 및 기초모델 설명

• 가정2,3 비교모델 설명

• F1 score 결과값 비교

프로젝트 목표

"고객은 다음 번에 어떤 제품을 다시 살까?"

구매자 장바구니의 이전 상품구<mark>매정보를 기</mark>반으로 다음 주문에 재구매 하는 상품을 분류하는 알고리즘을 <mark>구현</mark>하고 기본모델과 비교한다.

식품배송서비스 instacart

고객들은 엄청난 수의 선택의 기로에 놓인다

상품 추천의 의의

상품추천으로 고객의 1분의 시간을 줄일 때 마다 총618년의 쇼핑시간이 절약된다(미국시장 기준)

목차

• 프로젝트 목표

• 문제 해결의 주요 아이디어

• 가정1 기초통계 및 기초모델 설명

• 가정2,3 비교모델 설명

• F1 score 결과값 비교

주요 아이디어(기초 가정)

- 1. 데이터의 기초통계를 통한 insight에서 나온, 재구매 여부와 상관도가 높은 변수 생성 (날것의 데이터에서 시각화해서 확인하기 쉽다.)
- 빨리 상하거나, 보관 기간이 짧은 식품류는 재구매율이 높을 것 이다
- 특정시간대 구매자들과 재구매율은 상관관계가 높을 것이다
- 특정 기간의 구매자들과 재구매율은 상관관계가 높을 것이다 등등
- 2. 구매횟수와 재구매 여부는 상관관계가 높을 것이다
- 구매횟수가 100위 안에 드는 물건들이 재구매 여부와 상관관계가 높을 것이다.

3. 고객은 장바구니의 목록 중 구입 빈도가 높은 상품을 재구매 할 것이다.

목차

• 프로젝트 목표

• 문제 해결의 주요 아이디어

• 가정1 기초통계 및 기초모델 설명

• 가정2,3 비교모델 설명

• F1 score 결과값 비교

재구매 비율 - 추천을 할만한 가치가 있을까?

재구매 여부	count	비율
0	555793	0.4014056
1	828824	0.5985944

재구매 비율 약 60%로 과반수가 과거의 구매제품을 재구매한다.

데이터

Instacart(식품배송 서비스) 고객들의 식품 구매정보

Delivery from Local Grocery Stores Sign up to shop in your area!

고객(구매자) 20만명	고객이 구매한 상품 데이터 5만개	고객의 총 주문수 320만개
주문 ID	주문 ID	주문 ID
고객 ID	고객 ID	장바구니에 넣은 순서
주문번호 – 주문횟수 추정가능	상품 ID	주문번호 – 주문횟수 추정가능
주문 요일	상품 소분류 카테고리	주문 요일
주문 시간	상품 대분류 카테고리	주문 시간
주문일로부터 지난 날	상품 이름	이전 상품 재구매 여부

• TOP 10 상품

상품 ID	순위	상품명
2485 2	1	바나나
1317 6	2	유기농 바나나
2113 7	3	유기농 딸기
2190 3	4	유기농 새싹 시금치
4762 6	5	레몬
4776 6	6	유기농 아보카도
4720 9	7	유기농 해스 아보카 도
1679 7	8	딸기
2620 9	9	라임
2796 6	10	유기농 라즈베리

데이터 기초통계

• TOP 10 재구매 상품

상품 ID	순위	상품명
1729	1	유당제거 우유
20940	2	유기농 저지방 우유
12193	3	100% 플로리다 오렌지 주
21038	4	유기농 스펠트 또르띠야
31764	5	유기농 스파클링 생수캔
24852	6	바나나
117	7	과일 요거트
39180	8	유기농 저지방 1% 우유
12384	9	유기농 유당제거 1% 우유
24024	10	저지방 우유

• 제일먼저 장바구니에 담는 제품

상품 ID	순위	상품명
4500 4	1	흰색 다층 휴지
1188 5	2	스파클링 워터
1312 8	3	아카킨 미네랄 워터
4100	4	유기농 에스프레소 커피콩
1729	5	2% 유당 제거 우유
6729	6	쿠키 쟁반
9285	7	뼈없는 돼지고기
6848	8	파티용 텀블러
1264 0	9	Natural Spring Water
2640 5	10	두루마리 휴지

데이터 기초통계

• 하루에 주문율이 가장 높은 시간대

• 고객은 마지막 주문 이후 언제 다시 구매 하는가?

8:00-18:00까지의 주문율이 가장 높다

1주일 간격으로 식료품을 구매하는 고객이 가장 많다

데이터 기초통계 - 유기농 제품 재구매 비율

유기농 제품 재구매율은 약 64%

유기농 제품 구입자	구매율
not organic	0.5784985
organic	0.6470981

기본 모델 분석 과정

데이터 기초 통계를 통한 insight 도출

49개의 특성변수 추출

모델(Boosting) 적용

기본 모델 설명

• 기본 모델은 가정1을 기반으로 한 모델이다.

1. 기초 통계를 통해 얻은 insight로 재구매 여부와 연관도가 높은 변수들만 뽑고 정제하여 특성변수로 만들었다.(49개)

2. 이 변수들이 정말 재구매 여부와 연관도가 높은지 정확도를 검증한 다.(boosting의 역할)

특성변수 생성

기초통계를 바탕으로 총 49개의 특성변수 생성

1	user_orders	고객의 총 주문수	
<u>'</u>	user_orders		
2	user_period	교객의 첫 주문부터 마지막 주문이 일어난 때	
		까지의 기간	
3	user_mean_days_since_prior	주문 기간 평균	
4	user_total_products	주문한 총 <u>상품</u> 수	
5	user_reorder_ratio	sum(reordered==1)/sum(order_number>1)	
6	user_distinct_products	n_distinct(product_id)	
7	user_average_basket	user_total_products/user_orders	
8	user_last2	최근 2번째 주문 후 지난 일수	
9	user_last3	최근 3번째 주문 후 지난 일수	
10	user_interval_mean_last3	최근 1,2,3번째 주문 후 지난 일수 평균	
11	user_mean_order_dow	고객의 주문 요일 평균	
12	user_mean_order_hour_of_day	고객의 주문 시간 평균	

모델 적용 (Boosting)

목차

• 프로젝트 목표

• 문제 해결의 주요 아이디어

• 가정1 기초통계 및 기초모델 설명

• 가정2,3 비교모델 설명

• F1 score 결과값 비교

비교모델1 분석 - 구매횟수 주요변수 모델

구매횟수 상위 1000 개 상품 추출

상품에 대한 고객별 구매 횟수와 product_id 변수화

모델 (Boosting) 적용

상위 1000개 품목 F1 score 예측 값 구하 기

비교 모델1 설명

• 비교 모델1은 가정2를 기반으로 한 모델이다.

1. 구매율이 높은 상위 100개 상품에 대한 구매 횟수를 주요한 (재구매 여부와 상관도가 높은) 변수로 보고 있기 때문에 횟수에 의미를 담는 모델링을 한다.(one-hot-encoding)

2. 구매 횟수가 정말 재구매 여부와 연관도가 높은지 정확도를 검증한다 (boosting의 역할)

비교모델2 분석 - LDA모델 사용

LDA 모형을 통한 변수 추출

기본모형의 특성변수+ LDA 모형을 통한 변수

모델 (Boosting) 적용

상위 1000개 품목 F1 score 예측 값 구하기

비교 모델2 설명

• 비교 모델2는 가정3를 기반으로 한 모델이다.

1. 고객 i 의 j 번째 장바구니의 상품 목록을 하나의 문서로 간주하고 상품을 단어로 하여 LDA 적용

2. 유저들의 상품목록에서 뽑아낸 최다빈도수 상품(토픽)이 실제 재구매 상품과 얼마나 합치하는지를 검증한다(boosting의 역할)

목차

• 프로젝트 목표

• 문제 해결의 주요 아이디어

• 가정1 기초통계 및 기초모델 설명

• 가정2,3 비교모델 설명

• F1 score 결과값 비교

F1 SCORE에 대한 설명

$$F_1 = 2 \cdot rac{1}{rac{1}{ ext{recall}} + rac{1}{ ext{precision}}} = 2 \cdot rac{ ext{precision} \cdot ext{recall}}{ ext{precision} + ext{recall}}.$$

- Recall : 재현율
- 찾아야 할 것 중에 실제로 찾은 비율은?
- 컴퓨터가 True라 한 것 중에 실제 True의 비율
 - Precision : 정밀도
 - 예측한 것 중에 정답의 비율은?
 - 실제 True중 컴퓨터가 True라 한 것의 비율

• F1 Score: recall과 precision의 조화평균

F1 최적값을 얻기 위한 분류 기준값 그래프

Threshold에 대한 설명

• Threshold는 재구매 여부(0 혹은 1)를 가르는 기준이다.

• 각 가정에 대한 정확도가 재구매로 연결 될 것이다 혹은 아니다로 판별하는 기준이 필요하기 때문에 threshold라는 분류 기준값을 두는 것이다.

- 위의 그래프는 이 분류 기준값에 따른 f1(결과값)을 나타낸 것이다.
 - F1값이 가장 높이 나오는 분류 기준값을 사용한다.

상위 1000개 상품에 대한 모델별 validation 값 비교

기본모델 - 최적의 F1 SCORE(49개 변수)

```
f1 preci recall n.recom n.real n.collect train 0.3953946 0.3712652 0.5016135 8.988684 6.374700 3.527749 valid 0.4045941 0.3786994 0.5205823 6.157477 4.171669 2.411833 비교모델1 - 최적의 F1 SCORE(구매횟수 변수화 모델 f1 preci recall n.recom n.real n.collect valid 0.26646464 0.17385137 1.948614 30.22617 4.171669 4.0140160
```

비교모델2 최적의 F1 SCORE(LDA 잠재변수)

```
f1 preci recall n.recom n.real n.collect
train 0.3958211 0.3708507 0.5013715 8.986504 6.374700 3.538044
valid <u>0.4054196</u> 0.3794870 0.5217257 6.157609 4.171669 2.414694
```

결과값

• 비교모델2의 f1 결과값이 가장 높게 나왔다.

• 비교모델2의 알고리즘이 재구매 여부 판단에 가장 높은 정확성을 보인다고 볼 수 있다.