Examen de Càlcul amb Vàries Variables

- 1. (2 punts)
 - a) Estudiar la continuïtat a l'origen de la funció:

$$f(x,y) = \begin{cases} \frac{x^2 + y^2}{x^2 y + y^3 - x} &, & (x,y) \neq (0,0), \\ 0 &, & (x,y) = (0,0). \end{cases}$$

- b) Trobar la direcció \hat{u} per la qual la derivada direccional de f(x,y) s'anul·la en el punt (1,1).
- 2. (3 punts) Trobar els extrems de la funció $T(x, y, z) = x^2 + y^2 + z^2$ sobre la intersecció de les esferes

$$(x - \sqrt{3})^2 + y^2 + z^2 = 3$$
 i $x^2 + (y - 1)^2 + z^2 = 1$.

- 3. **(2 punts)**
 - a) Calculeu la integral

$$\iint_T xy \ dx \, dy \,,$$

on T és la regió sombrejada de la següent figura:

b) Idem realitzant el canvi de variables:

$$s = x - y^2,$$

$$t = x + y^2.$$

4. (3 punts) Verificar el teorema de Gauss al cilindre $x^2 + y^2 \le R^2$, $0 \le z \le L$, amb el camp vectorial $\vec{F} = (xy^2, z, x^2z^2)$.

1