TOPOLOGICAL BASES

SIMON FOLDVIK 20. JANUARY 2020

Throughout this document we consider a fixed set X.

Proposition 1. If C is a collection of subsets of X, there exists a smallest topology \mathcal{T}_{C} on X containing C.

Proof. The collection \mathcal{T} of topologies on X containing \mathcal{C} is non-empty, and

$$\mathscr{T}_{\mathcal{C}}\coloneqq\bigcap_{\mathscr{T}\in\mathcal{T}}\mathscr{T}$$

is the desired topology.

Definition 2. We say a collection \mathscr{D} of subsets of X is descending if it has the property that whenever D_1 and D_2 are elements of \mathscr{D} and $x \in D_1 \cap D_2$, there exists $D \in \mathscr{D}$ such that

$$x \in D \subseteq D_1 \cap D_2$$
.

Definition 3. Let \mathcal{T} be a topology on X.

(1) By a *basis* for the topological space (X, \mathcal{T}) , we mean a descending open cover \mathcal{B} of X such that

$$\mathscr{T}_{\mathscr{B}} = \mathscr{T}$$
.

(2) By a subbasis for (X, \mathscr{T}) , we mean an open cover \mathscr{S} of X such that

$$\mathscr{T}_{\mathscr{S}}=\mathscr{T}.$$

Remark. We see that a basis for a topological space is nothing but a descending subbasis. In particular, every basis is a subbasis, but not conversely.

It is of interest to describe the topology on a set generated by a cover, descending or not, which in effect is to describe a topology in terms of a basis or a subbasis.

Lemma 4. Let $\mathscr{S} \subseteq \mathscr{P}(X)$ be a collection of sets covering X. Then the collection \mathscr{B} of sets of the form $\bigcap_{S \in \mathscr{S}_0} S$, where $\mathscr{S}_0 \subseteq \mathscr{S}$ is finite and non-empty, is a descending cover of X generating the same topology as \mathscr{S} :

$$\mathscr{T}_{\mathscr{B}}=\mathscr{T}_{\mathscr{C}}.$$

Proof. Suppose without loss of generality that $\mathscr S$ is non-empty. That $\mathscr B$ is descending follows from the fact that whenever two members of $\mathscr B$ have non-empty intersection, their intersection in fact belongs to $\mathscr B$.

Next, since $\mathscr{S} \subseteq \mathscr{B} \subseteq \mathscr{T}_{\mathscr{B}}$, it follows that

$$\mathscr{T}_{\mathscr{G}}\subseteq\mathscr{T}_{\mathscr{B}}.$$

To prove the reverse inclusion, it suffices to prove that $\mathscr{B} \subseteq \mathscr{T}_{\mathscr{S}}$. But this follows from the fact that the members of \mathscr{B} are finite intersections of sets belonging to $\mathscr{S} \subseteq \mathscr{T}_{\mathscr{S}}$.

Proposition 5. Suppose \mathcal{B} is a descending cover of X. Then the topology $\mathcal{I}_{\mathcal{B}}$ generated by \mathcal{B} may be described in the following ways:

(1) It equals the collection of all sets $V \subseteq X$ with the property that there for every $u \in V$ exists $B \in \mathcal{B}$ such that

$$u \in B \subseteq V.$$
 (1)

(2) It equals the collection of all unions over \mathscr{B} .

Proof. First let \mathscr{T} be the collection of all subsets of X having the property indicated in (1); we show that $\mathscr{T} = \mathscr{T}_{\mathscr{B}}$. Since $\mathscr{B} \subseteq \mathscr{T}_{\mathscr{B}}$, it follows that $\mathscr{T} \subseteq \mathscr{T}_{\mathscr{B}}$, and we set out to prove the reverse inclusion. To this end we first observe that $\mathscr{B} \subseteq \mathscr{T}$, so it suffices to prove that \mathscr{T} is a topology on X. Since it is clear that both \emptyset and X belong to \mathscr{T} (the collection \mathscr{B} covers X), we prove that \mathscr{T} is closed under arbitrary unions and finite intersections.

Suppose (V_j) is a family in \mathscr{T} , and let V be its union. If $u \in V$, we can pick j such that $u \in V_j$, hence a set $B \in \mathscr{B}$ with the property that

$$u \in B \subseteq V_i \subseteq V$$

showing that V belongs to \mathscr{T} .

Consider now sets V and W belonging to \mathscr{T} , and suppose $u \in V \cap W$. Pick B_V and B_W in \mathscr{B} such that

$$u \in B_V \subseteq V$$
 and $u \in B_W \subseteq W$.

Then $u \in B_V \cap B_W$, so we find $B \in \mathcal{B}$ with the property that

$$u \in B \subseteq B_V \cap B_W \subseteq V \cap W$$
,

showing that $V \cap W$ belongs to \mathscr{T} .

The equality $\mathscr{T} = \mathscr{T}_{\mathscr{B}}$ follows.

To see that $\mathscr{T}_{\mathscr{B}}$ may also be described as the collection of unions over \mathscr{B} , first observe that every such union belongs to $\mathscr{T}_{\mathscr{B}}$ as $\mathscr{B} \subseteq \mathscr{T}_{\mathscr{B}}$. Secondly, if V belongs to $\mathscr{T}_{\mathscr{B}}$, we see from the above considerations that we for each $u \in V$ may pick $B_u \in \mathscr{B}$ such that $u \in B_u \subseteq V$, hence

$$V = \bigcup_{u \in V} B_u$$

is a union over \mathscr{B} .

Corollary 6. If $\mathscr{S} \subseteq \mathscr{P}(X)$ is a collection of sets covering X, then a set $V \subseteq X$ belongs to the topology $\mathscr{T}_{\mathscr{S}}$ generated by \mathscr{S} if and only if it equals a union of sets of the form $\bigcap_{S \in \mathscr{S}_0} S$, where $\mathscr{S}_0 \subseteq \mathscr{S}$ is finite and non-empty.

Proof. Combine Lemma 4 and Proposition 5.

Proposition 7. Let \mathscr{T} be a topology on X. If \mathscr{B} is a collection of open subsets of X such that there for every open set $V \in \mathscr{T}$, and every point $u \in V$, exists $B \in \mathscr{B}$ such that

$$u \in B \subseteq V$$
,

then \mathscr{B} is a basis for (X,\mathscr{T}) .

Proof. Firstly, since $\mathscr{B} \subseteq \mathscr{T}$ by assumption, it follows that $\mathscr{T}_{\mathscr{B}} \subseteq \mathscr{T}$. To prove the reverse inclusion, suppose $V \in \mathscr{T}$. We may for every $u \in V$ pick a set $B_u \in \mathscr{B}$ such that $u \in B_u \subseteq V$, hence

$$V = \bigcup_{u \in V} B_u \in \mathscr{T}_{\mathscr{B}}.$$

It remains to prove that \mathscr{B} is a descending cover of X. Since $X \in \mathscr{T}$, we may for each point $x \in X$ find $B \in \mathscr{B}$ such that $x \in B \subseteq X$, hence \mathscr{B} covers X. To see that \mathscr{B} is descending, suppose $x \in B_1 \cap B_2$, where B_1 and B_2 are sets belonging to \mathscr{B} . Since $B_1 \cap B_2 \in \mathscr{T}$, we may by assumption find $B \in \mathscr{B}$ such that

$$x \in B \subseteq B_1 \cap B_2$$
,

and the proof is complete.