Decision and Estimation in Data Processing

Chapter II. Elements of Signal Detection Theory

The model for signal detection

Figure 1: Signal detection model

Contents:

- ▶ Information source: generates messages a_n with probabilities $p(a_n)$
- ▶ Modulator: transmits a signal $s_n(t)$ for message a_n
- Channel: adds random noise
- ▶ Sampler: takes samples from the signal $s_n(t)$
- \triangleright Receiver: **decides** what message a_n has been transmitted

Example

- ► A simple case (binary):
 - ▶ two messages a₀ and a₁
 - ▶ signals are constants (i.e. 0 for a_0 , 5 for a_1)
 - take just 1 sample
 - decide: compare with a threshold
- General case: many messages, various signals, more samples (or continuous)

Detection for the binary case

- Receiver guesses between two hypotheses:
 - $ightharpoonup H_0$: a_0 has been transmitted
 - ▶ *H*₁: *a*₁ has been transmitted
- ▶ The sample r = s + n
 - if more samples, then they are vectors $\overrightarrow{r} = \overrightarrow{s} + \overrightarrow{n}$
- ▶ Decision based on regions:
 - if r in region R_0 , then decide D_0 : was a_0
 - if r in region R_1 , then decide D_1 : was a_1
 - ▶ for single sample, regions are intervals: below/above the threshold
 - for 2 samples: regions are areas in a 2D plane, etc.
- ▶ Possible errors:
 - **false alarm**: was a_0 , but decided D_1
 - ▶ probability is $P(D_1 \cap a_0)$
 - **miss**: was a_1 , but decided D_0
 - ▶ probability is $P(D_0 \cap a_1)$

Minimum risk (cost) criterion

- How to choose the threshold? We need criteria
 - ▶ In general: how to delimit regions R_i ?
- Minimum risk (cost) criterion: assign costs to decisions, minimize average cost
 - $ightharpoonup C_{ij} = \text{cost of decision } D_i \text{ when symbol was } a_j$
 - $C_{00} = \text{cost for good } a_0 \text{ detection}$
 - $C_{10} = \text{cost for false alarm}$
 - $ightharpoonup C_{01} = \text{cost for miss}$
 - $C_{11} = \text{cost for good } a_1 \text{ detection}$
- ▶ The risk = the average cost

$$R = C_{00}P(D_0 \cap a_0) + C_{10}P(D_1 \cap a_0) + C_{01}P(D_0 \cap a_1) + C_{11}P(D_1 \cap a_1)$$

► Minimum risk criterion: minimize the risk R

Computations

- Proof on table:
 - Use Bayes rule
 - Notations: $w(r|a_i)$ (likelihood)
 - ▶ Probabilities: $\int_{R_i} w(r|a_i) dV$
- Conclusion, decision rule is

$$\frac{w(r|a_1)}{w(r|a_0)} \ge \frac{(C_{10} - C_{00})p(a_0)}{(C_{01} - C_{11})p(a_1)}$$
$$\Lambda(r) \ge K$$

- ▶ Interpretation: effect of costs, probabilities (move threshold)
- Can also apply logarithm (useful for normal distribution)

$$\ln \Lambda(r) \geqslant \ln K$$

Example at blackboard: random noise with $N(0, \sigma^2)$, one sample

Ideal observer criterion

- Minimize the probability of decision error P_e
 - ▶ definition of P_e
- ▶ Particular case of minimum risk, with
 - $C_{00} = C_{11} = 0$ (good decisions bear no cost)
 - $ightharpoonup C_{10} = C_{01}$ (pay the same in case of bad decisions)

$$\frac{w(r|a_1)}{w(r|a_0)} \geqslant \frac{p(a_0)}{p(a_1)}$$

Maximum likelihood criterion

▶ Particular case of above, with equal probability of messages

$$\frac{w(r|a_1)}{w(r|a_0)} \ge 1$$

$$\ln \frac{w(r|a_1)}{w(r|a_0)} \ge 0$$

- **Example** at blackboard: random noise with $N(0, \sigma^2)$, one sample
- **Example** at blackboard: random noise with $N(0, \sigma^2)$, **two** samples