<u>Data Structure and Algorithms</u> <u>Session: January'2020 - April'2020</u>

1. Course Number and Name:

CSE 2001, Data Structure and Algorithms

2. Credits and Course Format:

4 Credits, 3 Classes/Week, 1 hr/Class; 1 Lab./Week, 2 hrs/Lab.

3. Target Students:

Programme: B.Tech. (2nd Semester)

Branch: All

4. Instructor's Names:

1. Mr. Santosh Kumar Behera, Faculty (CSE), ITER

Contact # santoshbehera@soa.ac.in

2. Dr. Manoranjan Parhi, Faculty (CSE), ITER

Contact # manoranjanparhi@soa.ac.in

3. Srikant Kumar Sahoo, Faculty(CSE), ITER

Contact # srikantsahoo@soa.ac.in

4.Mrs. Alakananda Tripathy, Faculty (CSE), ITER

Contact #alkanandatripathy@soa.ac.in

5.Mrs. Gayatri Nayak, Faculty (CSE), TER

Contact #gayatrinayak@soa.ac.in

6.Dr. Nilimarani Das, Faculty (CA), ITER

Contact #nilimadas@soa.ac.in

7.Dr. Sharmila Subudhi (CSIT), ITER

Contact sharmilasubudhi#@soa.ac.in

8.Mr. Jyotiprakash Sahoo, Faculty (CSIT), ITER

Contact #jyotiprakashsahoo@soa.ac.in

9.Mr. Ajit Mohapatra, Faculty (CSIT), ITER

Contact #ajitmahapatra@soa.ac.in

10.Dr. Prabhat Sahu, Faculty (CSE), ITER

Contact #prabhatsahu@soa.ac.in

11. Dr. Vikash Singh Faculty (CSE), ITER

Contact #vikashsingh@soa.ac.in

12. Laxminath Tripathy, Faculty(CSE), ITER

Contact #laxminathtripathy@soa.ac.in

13.Dr.Dibya Ranjan Das Adhikary, Faculty(CSE), ITER

Contact #dibyadasadhikary@soa.ac.in

14. Dr. Shatarupa Dash, Faculty(CSE), ITER

Contact #shatarupadash@soa.ac.in

Institute of Technical Education & Research, SOA University

4. Text Book and References:

Text book

1. (T1) Data Structures and Algorithms in java by Goodrich and Tamassia, Wiley India

5. Specific Course Information:

a. Course Description:

Java primer, Object oriented design, fundamental data structures, algorithm analysis, recursion, stacks, queues, List, trees

b. Prerequisites and/or Co requisites:

Prerequisite: CSE 1001(ICP)

6. Course Learning Outcomes:

By the end of course through lectures, readings, homeworks, lab assignments and exams, students will be able to demonstrate the abilities:

- (1) Ability to state and explain the basic programming syntax, semantics, building blocks.
- (2) Ability to develop java applications using the programming tools like conditional statements, looping, arrays, methods and structure.
- (3) Ability to analyze, debug and test the programs and correctly predict their output.
- (4) Ability to differentiate behaviors of different data structures and their memory representation.
- (5)Ability to choose the appropriate data structures that efficiently model the problem of interest.
- (6) Ability to apply advanced programming technique for developing solution of different problems.

7. Brief List of Topics to Be Covered: (L: Lecture, P: Practical)

Contact Hours	Topics to be covered. Topics to be covered	Remarks(if any)		
Week #1:				
L01	Introduction to the course and CO, PO			
L02	Object and classes			
L03	Object and classes contd			
P01	EXPERIMENT 1: Java premier Programming Assignments			
Week # 2:				
L04	Object and classes contd			
L05	Java Packages			
L06	Testing and debugging			
P02	EXPERIMENT 2: Assignment Based on Object Oriented Design			
Week # 3:				
L07	Inheritance			
L08	Inheritance contd			
L09	Inheritance contd			
P03	EXPERIMENT 3: Assignment Based on Object Oriented Design Contd			
Week # 4:				
L10	Interfaces and Abstract Classes			
L11	Interfaces and Abstract classes contd			
L12	Exceptions			
P04	EXPERIMENT 4: Assignment Based on Exceptions, Generics and Recursions			
Week # 5:				
L13	Exceptions Contd			
L14	Casting and Generics			
L15	Casting and Generics contd, Nested classes			
P05	EXPERIMENTS 5: Assignments based on Exceptions			
Week #6:				
L16	Fundamental Of Data Structures			
L17	Empirical Analysis			

L18	Common Mathematical Functions				
P 06 Week # 7					
L 19	BigOh Notation				
L 20	BigOh Notation contd				
L 21	Foundation of Recursion				
P 07	EXPERIMENT 7 : Assignments based on Recursion.				
	Week # 8:				
L 22	Application of Recursion				
L 23	Single Linked List				
L 24	Single Linked List contd				
P 08	EXPERIMENT 8 : Assignment based on Single Linked List				
Week # 9:					
L 25	Circular Linked List				
L 26	Double Linked List				
L 27	Double Linked List contd				
P 09	EXPERIMENT 9 : Assignment based on Double Linked list				
Week # 10:					
L 28	Fundamentals of Stack, Stack using Array				
L 29	Stack using Linked List				
L 30	Stack Application, Matching Parentheses				
P 10	EXPERIMENT 10 : Assignment based on Stack				
Week # 11:					
L 31	Fundamentals of Queue, Queue using Array				
L 32	Queue using Linked List				
L 33	Circular Queue				
P 11	EXPERIMENT 11 : Assignment based on stack contd				
Week # 12:					
L 34	Tree Definitions and properties				

L 35	Binary Trees		
L 36	Tree Representation using Linked List		
P 12	EXPERIMENT 12:Assignment based on Queue		
Week # 13:			
L 37	Tree Representation using Array		
L 38	Tree Traversal		
L 39	Tree Traversal contd, Binary Search Tree		
P 13	EXPERIMENT 13:Assignment based on queue		

8. Evaluation scheme (under GP1):

Assignments: 20%
Attendance: 5%
Mid semester: 15%
End semester(Lab. Test): 15%
End semester(Theory): 45%