5.1 **Mathemtical Induction**

Principle of Mathematical Induction

To prove P(n) is true for all positive integers n, we prove the following 2 steps

Basis step: verify that P(1) is true

Inductive step: show that P(k) is true implies P(k+1) is true

P(k) is true is called the inductive hypothesis

k = 1 P(1) true

P(k) true $\Rightarrow P(k+1)$ true

Let, k = 1, then P(1), true $\Rightarrow P(2)$ true

Let, k = 2, then P(2), true $\Rightarrow P(3)$ true

Example

Show that $1+2+3+...+n=\frac{n(n+1)}{2}$, for integers $n\geq 1$

Proof by induction

Let P(n) be the statement $1 + 2 + 3 + ... + n = \frac{n(n+1)}{2}$

Basis step: P(1) is true, since $1 = \frac{1(1+1)}{2}$

Inductive step: suppose P(k) is true. And so $1 + 2 + \dots + k = \frac{k(k+1)}{2}$ Now, $1 + 2 + \dots + k + (k+1) = \frac{k(k+1)}{2} + (k+1) = \frac{k(k+1)}{2} + \frac{2(k+1)}{2} = \frac{(k+1)(k) + (k+1)(2)}{2} = \frac{(k+1)(k+2)}{2} = \frac{(k+2)(k+2)}{2} = \frac{(k+2)(k+2)}{2$ (k+1)((k+1)+1)

And so, P(k+1) is true

Therefore, P(n) is true for all integers $n \geq 1$

Example

Show that $1+3+5+...+(2n-1)=n^2$ for integers $n \ge 1$ (n terms)

Proof by induction

Let P(n) be "1 + 3 + 5 + ... + (2n - 1) = n^2 "

Basis step: P(1) is true since $1 = 1^2$

Inductive step: suppose P(k) is true. And so $1 + 3 + 5 + ... + (2k - 1) = k^2$

Now, $1 + 3 + 5 + \dots + (2k - 1) + (2k + 1) = k^2 + (2k + 1) = k^2 + 2k + 1 = (k + 1)^2$

And so, P(k+1) is true

Therefore, P(n) is true for all integers $n \geq 1$

Example

Show that $1 + 2 + 2^2 + ... + 2^n = 2^{n+1} - 1$ for all integers $n \ge 1$

Proof by induction

Let P(n) be "1 + 2 + 2² + ... + 2ⁿ = $2^{n+1} - 1$ "

Basis step: P(2) is true, since $1 = 2^{1+1} - 1$

Inductive step: suppose P(k) is true. And so, $1+2+2^2+\ldots+2^k=2^{k+1}-1$

Now, $1 + 2 + 2^2 + \dots + 2^k + 2^{k+1} = 2^{k+1} - 1 + 2^{k+1} = 2 \cdot 2^{k+1} - 1 = 2^{(k+1)+1} - 1$

And so, P(k+1) is true

Therefore, P(n) is true for all integers $n \geq 1$

Example

Show that $n < 2^n$ for all integers $n \ge 1$

Proof by induction

Let P(n) be " $n < 2^n$ "

Basis step: P(1) is true since $1 < 2^1$

Inductive step: Suppose P(k) is true. And so, $k < 2^k$

Now, $k + 1 < 2^k + 1 < 2^k + 2^k = 2 * 2^k = 2^{k+1}$

And so, P(k+1) is true

Therefore, P(n) is true for all integrs $n \ge 1$

Example

Show that $2^n < n!$ for all $n \ge 4$

Proof by induction

Let P(n) be " $2^n < n!$ "

Basis step: P(4) is true since $2^4 < 4!$

Inductive step: Suppose P(k) is true. And so, $2^k < k!$

 $\Rightarrow 2 * 2^k < 2 * k! < (k+1)k!$

 $\Rightarrow 2^{k+1} < (k+1)!$

And so, P(k+1) is true

Therefore, P(n) is true for all integers $n \geq 4$

Example

Let $F_0 = 0$, $F_n = 5 * F_{n-1} + 2$ for $n \ge 1$

Show that $2|F_n$ for all $n \ge 0$

 F_0, F_1, F_2, F_3

0, 2, 12, 62

Proof by induction

Let P(n) be the statement "2|F(n)"

Basis step: P(0) is true since 2|0

Inductive step: Suppose 2|F(k). Now, $F_{k+1} = 5F_{k+2}$

Since $2|5F_k|$ and 2|2, we have $2|(5F_{k+2})$.

And so P(k+1) is true

Therefore, P(n) is true for all integers $n \geq 0$

Suppose $f: A \to B \ q: B \to C$

f and g injective \Rightarrow g o f injective

f and g surjective \Rightarrow g o f surjective

f and g bijective \Rightarrow g o f bijective

5.2

Strong Induction and Well-ordering

Strong Induction

To prove P(n) is true for all positive integers, we prove the following 2 steps

Basis step: we verify that P(1) is true

Inductive step: We show that P(1), P(2), ..., P(k) are true imply that P(k+1) is true

P(1), P(2), P(k) are true is called the inductive hypothesis

P(1) true

P(1) true $\Rightarrow P(2)$ true

 $P(1), P(2) \text{ true } \Rightarrow P(3) \text{ k} + 1 = 3$

$$P(1), P(2), P(3) \Rightarrow P(4)$$
 true

Example

Show that every integer $n \geq 2$ can be written as a product of primes

Proof by strong induction

Let P(n) be "n can be written as a product of primes"

Basis step: P(2) is true, since $2 = 2 \leftarrow$ prime factor form

Inductive step: Suppose P(2), P(3), P(4), ..., P(k) are true, meaning 2, 3, 4, ..., k can be written as products of primes

case 1: if k+1 is prime, then $k+1=k+1 \leftarrow$ already in prime factor form

case 2: if k + 1 is composite, then k + 1 = a * b, where 2 < a < k + 1 and 2 < b < k + 1. But we know P(a) and P(b) are true, meaning a and b can be written as produts of primes by the inductive hypothesis And so

$$a = P_1 P_2 ... P_r$$

$$b = q_1 q_2 ... q_s$$

This means $k + 1 = a * b = (P_1 P_2 ... P_2)(q_1 q_2 ... q_s)$

And so P(k+1) is true

Therefore P(n) is true for all integers $n \geq 2$

Example

Show that every postage of 12 cents or more can be formed using 4-cent and 5-cent stamps

$$12 = 4 + 4 + 4 \cdot 14 = 4 + 5 + 5$$

$$13 = 4 + 4 + 5$$
 $15 = 5 + 5 + 5$

Proof by strong induction

Let P(n) be "n cents can be formed using 4-cent and 5-cent stamps"

Basis step: P(12), P(13), P(14), and P(15) are true

Inductive step: suppose P(12), P(13), P(14), P(15), ..., P(k) are true

For P(k+1), we know P(k-3) is true by the inductive hypothesis. And so just add one 4-cent stamp to the combination of stamps used to make (k-3) cents, we have the mix needed to make (k+1) cents. And so P(k+1) is also true.

Therefore, the statement P(n) is true for all integers $n \ge 12$

Practice

1. Show that $1 + 4 + 7 + \dots + (3n-2) = \frac{(3n-1)(n)}{2}$ by induction

P(n) is "1 + 4 + 7 + ... + (3n-2) =
$$\frac{(3n-1)(n)}{2}$$
 by induction Basis step: P(1) is true, since $1 = \frac{(3*1-1)(1)}{2}$

Induction step: Suppose P(k) is true.

$$1 + 4 + 7 + \dots + (3k-2) + (3(k+1)-2) = \frac{(3k-1)(k)}{2} + (3(k+1)-2) = \frac{(3k-1)(k)+(2)(3k+1)}{2}$$

$$= \frac{(3k^2-k)+(6k+2)}{2} = \frac{3k^2+5k+2}{2} = \frac{(3k+2)(k+1)}{2} = \frac{(3(k+1)-1)(k+1)}{2}$$

$$3k + 3 - 1 = 3k + 2 \text{ (show on side to algebraically prove the last part)}$$

And so
$$1 + 4 + 7 + \dots + (3k - 2) + (3(k + 1) - 2) = \frac{(3(k+1)-1)(k+1)}{2}$$

And so P(k+1) is true

Therefore P(n) is true for all integers n > 1

2. Show that $n < 3^n$ for all integers $n \ge 1$ by induction

Proof

P(n) is $n < 3^n$

Basis step: P(1) is true, since $1 < 3^1$

Induction step: Suppose P(k) is true, And so, $k < 3^k$ $\Rightarrow k+1 < 3^k+1 < 3^k+3^k+3^k=3*3^k=3^{k+1}$ $\Rightarrow k+1 < 3^{k+1}$

And so P(k+1) is true

Therefore P(n) is true for all integers $n \ge 1$