Práctico 4 Matemática Discreta I – Año 2019/1 **FAMAF**

- 1. a) Calcular el resto de la división de 1599 por 39 sin tener que hacer la división. (Ayuda: $1599 = 1600 - 1 = 40^2 - 1$).
 - b) Lo mismo con el resto de 914 al dividirlo por 31.
- 2. Sea $n \in \mathbb{N}$. Probar que todo número de la forma $4^n 1$ es divisible por 3.
- 3. Probar que el resto de dividir n^2 por 4 es igual a 0 si n es par y 1 si n es impar.
- 4. a) Probar las reglas de divisibilidad por 2, 3, 4, 5, 8, 9 y 11.
 - b) Decir por cuáles de los números del 2 al 11 son divisibles los siguientes números:

12342 5176 314573 899.

5. Sean a, b, c números enteros, ninguno divisible por 3. Probar que

$$a^2 + b^2 + c^2 \equiv 0 \pmod{3}$$
.

- 6. Hallar la cifra de las unidades y la de las decenas del número 7¹⁵.
- 7. Hallar el resto en la división de x por 5 y por 7 para:
 - a) $x = 1^8 + 2^8 + 3^8 + 4^8 + 5^8 + 6^8 + 7^8 + 8^8$;
 - b) $x = 3 \cdot 11 \cdot 17 \cdot 71 \cdot 101$.
- 8. Hallar todos los x que satisfacen:

a) $x^2 \equiv 1$ (4) b) $x^2 \equiv x$ (12) c) $x^2 \equiv 2$ (3) d) $x^2 \equiv 0$ (12) e) $x^4 \equiv 1$ (16) f) $3x \equiv 1$ (5)

e)
$$x^4 \equiv 1 \ (16)$$

$$d) \ x^2 \equiv 0 \ (12)$$

$$f) 3x \equiv 1 (5)$$

9. Sean $a, b, m \in \mathbb{Z}, d > 0$ tales que $d \mid a, d \mid b$ y $d \mid m$. Probar que la ecuación $a \cdot x \equiv b(m)$ tiene solución si y sólo si la ecuación

$$\frac{a}{d} \cdot x \equiv \frac{b}{d} \left(\frac{m}{d} \right)$$

tiene solución.

10. Resolver las siguientes ecuaciones:

a)
$$2x \equiv -21$$
 (8) b) $2x \equiv -12$ (7) c) $3x \equiv 5$ (4).

1

c)
$$3x \equiv 5$$
 (4)

- 11. Resolver la ecuación 221 $x \equiv 85$ (340). Hallar todas las soluciones x tales que $0 \le x < 340$.
- 12. (i) Encontrar todas las soluciones de la ecuación en congruencia

$$36 x \equiv 8 \quad (20)$$

usando el método visto en clase.

- (ii) Dar todas las soluciones x de la ecuación anterior tales que -8 < x < 30.
- 13. (i) Encontrar todas las soluciones de la ecuación en congruencia

$$21 x \equiv 6$$
 (30)

usando el método visto en clase.

- (ii) Dar todas las soluciones x de la ecuación anterior tales que 0 < x < 35.
- 14. Dado $t \in \mathbb{Z}$, decimos que t es inversible módulo m si existe $h \in \mathbb{Z}$ tal que $th \equiv 1 (m)$.
 - a) ¿Es 5 inversible módulo 17?
 - b) Probar que t es inversible módulo m, si y sólo si (t, m) = 1.
 - c) Determinar los inversibles módulo m, para m = 11, 12, 16.
- 15. Encontrar los enteros cuyos cuadrados divididos por 19 dan resto 9.
- 16. Probar que todo número impar a satisface: $a^4 \equiv 1(16)$, $a^8 \equiv 1(32)$, $a^{16} \equiv 1(64)$. ¿Se puede asegurar que $a^{2^n} \equiv 1(2^{n+2})$?
- 17. Encontrar el resto en la división de a por b en los siguientes casos:
 - a) $a = 11^{13} \cdot 13^8; \quad b = 12;$
- c) $a = 123^{456}$; b = 31;

b) $a = 4^{1000}$; b = 7;

- $d) \ a = 7^{83}; \ b = 10.$
- 18. Obtener el resto en la división de 2^{21} por 13; de 3^8 por 5 y de 8^{25} por 127.
- 19. a) Probar que no existen enteros no nulos tales que $x^2 + y^2 = 3z^2$.
 - b) Probar que no existen números racionales no nulos a, b, r tales que $3(a^2+b^2) = 7r^2$.
- 20. Probar que si (a, 1001) = 1 entonces 1001 divide a $a^{720} 1$.
 - (*): ejercicios opcionales de mayor dificultad.

Matemática Discreta I FAMAF

- 21. (*) ¿Para qué valores de n es $10^n 1$ divisible por 11?
- 22. (*) Probar que para ningún $n \in \mathbb{N}$ se puede partir el conjunto $\{n, n+1, \ldots, n+5\}$ en dos partes disjuntas no vacías tales que los productos de los elementos que las integran sean iguales.
- 23. (*) El número 2^{29} tiene nueve cifras y todas distintas. ¿Cuál dígito falta? (No está permitido el uso de calculadora).