

Faculty of Applied Sciences B.Sc. in Computing

Academic Year 2022/2023 2nd Semester

COMP123 - 121/122

Data Communications

Data Transport Networks

(LAN Technologies)

Local Area Networks (LANs)

- usually owned by the organization that is using the network to interconnect equipment
- key elements:
 - topology
 - transmission medium
 - wiring layout
 - medium access control

LAN Topologies

Bus and Tree

Bus:

- stations attach through tap to bus
- full duplex allows transmission and reception
- transmission
 propagates throughout
 medium
- heard by all stations
- terminator at each end

Tree:

- a generalization of bus
- branching cable with no closed loops
- tree layout begins at headend and branches out
- heard by all stations

Frame Transmission on Bus LAN

C transmits frame addressed to A

Frame is not addressed to B; B ignores it

A copies frame as it goes by

Ring Topology

- a closed loop of <u>repeaters</u> joined by point-to-point links
- receive data on one link & retransmit on another
 - links unidirectional
 - stations attach to repeaters
- data transmitted in frames
 - circulate past all stations
 - destination recognizes address and copies frame

- frame circulates back to source where it is removed
- medium access control (MAC) determines when a station can insert frame

Repeaters (1/2)

- A simple and cheap <u>layer 1</u> device that regenerate the signal and forward the incoming frame
- It is not an amplifier

a. Right-to-left transmission.

b. Left-to-right transmission.

Repeaters (2/2)

- A repeater connects segments of a LAN
- A *dummy* device that has no <u>filtering</u> capacity (processing)

Star Topology

- each station connects to common central node
 - usually via two point-to-point link
 - one for transmission and one for reception

central node

- operate in broadcast fashion
- physical star, logical bus
- only one station can transmit at a time (hub)
- can act as frame switch

Ring and Star Topologies

 very high speed links over long distances potential of providing best Ring throughput • single link or repeater failure disables network uses natural layout of wiring in building best for short distances Star high data rates for small number of devices

Choice of Topology

- medium
- wiring layout
- access control

reliability

factors:

performance

expandability

Choice of Medium

- constrained by LAN topology
- capacity
 - to support the expected network traffic

- reliability
 - to meet requirements for availability
- types of data supported
 - tailored to the application
- environmental scope
 - provide service over the range of environments

Media Available

LAN Protocol Architecture

Categories of Internetworking Devices

Application

Transport

Network

Data link

Physical

Application
Transport
Network
Data link
Physical

Bridges (1/2)

➤ A <u>layer 2</u> device that connects similar LANs with <u>identical</u> physical and link layer protocols

Address	Port	
71:2B:13:45:61:41	1	
71:2B:13:45:61:42	1	Bridge Table
64:2B:13:45:61:12	2	
64:2B:13:45:61:13	2	

Bridges (2/2)

- minimal processing (uses similar protocol)
- can map between MAC formats
- reasons for use:
 - reliability
 - Performance
 - security
 - geography

Hubs

- active central element of star layout
- each station connected to hub by two UTP lines
- hub acts as a repeater
- limited to about 100m by UTP properties
- optical fiber may be used out to 500m
- physically star, logically bus
- transmission from a station seen by all others
- if two stations transmit at the same time have a collision

LAN Hubs vs Switches

Layer 2 Switch Benefits

- no change to attached devices to convert bus LAN or hub LAN to switched LAN
 - e.g. Ethernet LANs use Ethernet MAC protocol
- have dedicated capacity equal to original LAN
 - assuming switch has sufficient capacity to keep up with all devices
- scales easily
 - additional devices attached to switch by increasing capacity of layer 2

Layer 2 Switch vs. Bridge

 differences between switches & bridges:

Bridge

frame handling done in software

analyzes and forwards one frame at a time

uses store-andforward operation

Switch

performs frame forwarding in hardware

can handle multiple frames at a time

can have cutthrough operation

- layer 2 switch can be viewed as full-duplex hub
- incorporates logic to function as multiport bridge
 - new installations
 typically include layer 2
 switches with bridge
 functionality rather
 than bridges

Routers

- A faster and more sophisticated three-layer switch that forwards and routes packets based on logical address, e.g. IP address
- Usually support different protocols, e.g. network layer
- Routers can select the shortest path, and if one path has problems, it will use another path.

Gateway

- Operate at the OSI layers higher than layer 3
- Perform the function of a protocol converter.
- Two separate networks, each using totally different communications method, can be connected using a gateway.
- Gateway is used for specific network interconnection.
 No general gateways.
- It is the most complicated equipment, and very expensive.

Internetworking with Gateways

A Partitioned LAN Configuration

Characteristics of Some High-Speed LANs

	Fast Ethernet	Gigabit Ethernet	Fibre Channel	Wireless LAN
Data Rate	100 Mbps	1 Gbps, 10 Gbps, 100 Gbps	100 Mbps - 3.2 Gbps	1 Mbps - 54 Mbps
Transmission Media	UTP, STP, optical fiber	UTP, shielded cable, optical fiber	Optical fiber, coaxial cable, STP	2.4-GHz, 5-GHz microwave
Access Method	CSMA/CD	Switched	Switched	CSMA/Polling
Supporting Standard	IEEE 802.3	IEEE 802.3	Fibre Channel Association	IEEE 802.11

Gigabit Ethernet Configuration

100-Gbps Gigabit Ethernet Configuration

Single-Cell Wireless LAN Configuration

Evolution of IEEE 802.11

IEEE 802.11ac

- Published in 2013
- Operate in 5GHz band
- Support up to 256QAM
- Support MU-MIMO(Multi-user Multiple Input Multiple Output) in downlink
 - On the downlink the transmitter can use its antenna resources to transmit multiple frames to different stations, all at the same time and over the same frequency spectrum.
 - Each antenna of a MU-MIMO AP can simultaneously communicate with a different single-antenna device, such as a smartphone or tablet.

IEEE 802.11ax

- Published in 2019
- Operate on 2.4GHz and 5GHz
- Support up to 1024QAM
- Support MU-MIMO for both uplink and downlink
- Support OFDMA (Orthogonal Frequency Division Multiple Access)
 - The channel can be split into small bands and allocated to different users at the same time.

802.11 ac vs. 802.11ax

	802.11ac	802.11ax
BANDS	5 GHz	2.4 GHz and 5 GHz
CHANNEL BANDWIDTH	20 MHz, 40 MHz, 80 MHz, 80+80 MHz & 160 MHz	20 MHz, 40 MHz, 80 MHz, 80+80 MHz & 160 MHz
FFT SIZES	64, 128, 256, 512	256, 512, 1024, 2048
SUBCARRIER SPACING	312.5 kHz	78.125 kHz
OFDM SYMBOL DURATION	3.2 us + 0.8/0.4 us CP	12.8 us + 0.8/1.6/3.2 us CP
HIGHEST MODULATION	256-QAM	1024-QAM
DATA RATES	433 Mbps (80 MHz, 1 SS)	600.4 Mbps (80 MHz, 1 SS)
	6933 Mbps (160 MHz, 8 SS)	9607.8 Mbps (160 MHz, 8 SS)

Summary

- LAN topologies and transmission media
 - bus, tree, ring, star
- LAN protocol architecture
 - IEEE 802, LLC, MAC
- bridges, hubs, layer 2 switches, routers
- 802.11 standards

