# Alan Yu

Section: 01

TA: Supriya

# Ion Chromatography – Cations in Seawater

|    | GRADING                                                                  | Max | Points |
|----|--------------------------------------------------------------------------|-----|--------|
| 1  | Abstract                                                                 |     |        |
| 2  | Table with names and contribution of each of your partners               |     |        |
| 3  | Table summarizing important instrumental parameters such as flow         |     |        |
|    | rate, approximate pump pressure, eluent with instrumental set-up         |     |        |
| 4  | Calibration factor for pipet                                             |     |        |
| 5  | Table presenting retention times and instrumental sensitivity for single |     |        |
|    | cation with ordered list of sensitivity for different cations            |     |        |
| 6  | Calibration curves from cations                                          |     |        |
| 7  | Table presenting best fit of the calibration curves                      |     |        |
| 8  | Chromatogram of sea-water sample                                         |     |        |
| 9  | Calculation of the concentration of each identified cation in seawater   |     |        |
| 10 | Chromatogram of Unknown, No. 2                                           |     |        |
| 11 | Calculation of the concentration of cations in Unknown No, 2             |     |        |
| 12 | Table of comparison with complexometric analysis                         |     |        |
| 13 | Comparison with LEO-15                                                   |     |        |
| 14 | Answer to questions                                                      |     |        |

#### Abstract:

From the lab, the concentration of Sodium was 10066.5 ppm and 10.069 ppt. The Calcium concentration was 374.8 ppm and 374.6 ppt. For Magnesium it was 1666ppm and 1.6663 ppt.

# **Introduction:**

This lab looks at the concentrations of each cation within seawater. With these cations, Sodium, Calcium, and Magnesium, they can determine the hardness of the water. To create softer water, water softener is used which replaces the Magnesium, Calcium and Iron cations within the water with more Sodium cations. This creates water that is able to be used within households. Having hard water is not bad per se, but can create a lot of nuisances within the mechanical aspects of the household. Clogging the pipes due to high mineral content is one thing that can be avoided.

## **Experimental Methods:**



Table I: Various numerical components of Schroeder 2 Machine:

| Flow Rate     | 1.00 microL/min   |
|---------------|-------------------|
| Pump Pressure | ~1111PSI          |
| Eluent        | MSA               |
| GroupMates    |                   |
| Tim           | Solution Dilution |

| Leah | Solution Dilution |
|------|-------------------|
| Tara | Solution Dilution |

Table I contains numerical values for machine flow rate, pump pressure, and the eluent as well as group members and their tasks.

### **Results and Discussion:**

Table II: Raw Collected Data

| CaCO3 mass:            | .9984g           |
|------------------------|------------------|
| MgCl2 * 6H2O mass:     | 1.6726g          |
| NaCl mass:             | .6357g           |
| Pipette Calibration:   | 4.9995mL per 5mL |
| CCPS Prepared Solution |                  |
| CaCO3 mass:            | .9988g           |
| MgCl2 * 6H2O mass:     | 1.6734g          |
| NaCl mass:             | .6356g           |

Table II contains the data for the stock room solutions that were prepared and the pipette calibration.

Table III: Prepared Standards' Calculated Data

|           | Area         | Concentration | Sensitivity      | Retention Time |
|-----------|--------------|---------------|------------------|----------------|
|           | (microS*min) | (ppm)         | (microS*min/ppm) | (min)          |
| Sodium    | 113.00604    | 250.0811      | .45188           | 3.973          |
| Calcium   | 199.367      | 399.79        | .4987            | 6.743          |
| Magnesium | 147.6156     | 200.700       | .7355            | 5.787          |

Table III includes the area, concentration, sensitivity and retention times with the sensitivities increasing from top to bottom.

#### Calculations:

**Sodium:** Area: 403.593 microS \* .280min = 113.00604 microS\*min

Concentration: .6357g x 1mol NaCl / 58.44g NaCl x 1 mol Na+ / 1 mol NaCl x 22.99g Na+ x

1000 mg / 1 g = 250.0811 ppm

Sensitivity: 113.00604 / 250.0811 = .45188 microS\*min/ppm

**Calcium:** Area: 295.358 microS \* .675min = 199.367 microS\*min

Concentration: .9984g x 1mol CaCO3 / 100.0869g x 1mol Ca2+ / 1mol CaCO3 x 40.078g Ca2+

x 1000mg / 1g = 399.79 ppm

Sensitivity: 199.367 / 399.79 = .4987 microS\*min/ppm

**Magnesium:** Area: 292.888 microS \* .504min = 147.6156 microS\*min

Concentration: 1.6762g x 1mol MgCl2\*6H2O / 203g x 1mol Mg2+ / 1mol MgCl2\*6H2O x

24.305g Mg2+ x 1000mg / 1g = 200.700 ppm

Sensitivity: 147.6156 / 200.700= .7355 microS\*min/ppm

Table IV: CCPS, Unknown and Seawater Samples

| Sodium    | Concentration | Height(µS) | Width(min) | Area     | Retention  |
|-----------|---------------|------------|------------|----------|------------|
|           | (ppm)         |            |            | (µS*min) | Time (min) |
| CCPS 2mL  | 5.00084       | 9.297      | 0.248      | 2.3056   | 3.883      |
| CCPS 4mL  | 10.00168      | 18.293     | 0.249      | 4.555    | 3.887      |
| CCPS 6mL  | 15.00252      | 27.253     | 0.248      | 6.754    | 3.887      |
| Calcium   | Concentration | Height(µS) | Width(min) | Area     | Retention  |
|           | (ppm)         |            |            | (µS*min) | Time (min) |
| CCPS 2mL  | 7.999         | 7.336      | 0.576      | 4.226    | 7.317      |
| CCPS 4mL  | 15.998        | 14.706     | 0.568      | 8.353    | 7.287      |
| CCPS 6mL  | 23.997        | 21.907     | 0.564      | 12.356   | 7.253      |
| Magnesium | Concentration | Height(µS) | Width(min) | Area     | Retention  |
|           | (ppm)         |            |            | (µS*min) | Time (min) |
| CCPS 2mL  | 4.007         | 7.637      | 0.474      | 3.62     | 6.007      |
| CCPS 4mL  | 8.014         | 10.05      | 0.468      | 4.7034   | 6.003      |
| CCPS 6mL  | 12.021        | 15.06      | 0.461      | 6.943    | 5.99       |
| Unknown   | Concentration | Height(µS) | Width(min) | Area     | Retention  |
| Sample 2  | (ppm)         |            |            | (µS*min) | Time (min) |
| Sodium    | 16.672        | 30.418     | 0.248      | 7.544    | 3.887      |
| Calcium   | 16.32         | 15.012     | 0.563      | 8.452    | 7.283      |
| Magnesium | 7.944         | 10.157     | 0.472      | 4.794    | 6          |
| Seawater  | Concentration | Height(µS) | Width(min) | Area     | Retention  |
|           | (ppm)         |            |            | (µS*min) | Time (min) |
| Sodium    | 10066.5       | 181.48     | 0.251      | 45.551   | 3.92       |
| Calcium   | 374.8         | 3.364      | 0.577      | 1.941    | 7.333      |
| Magnesium | 1666          | 21.621     | 0.465      | 10.054   | 5.983      |

This table includes the concentrations in ppm, height in microSiemens, width in minutes, the area calculated and the retention times of each ion within the respective solutions.

Table V: Best fit

| Sodium    | Y = .4525x |
|-----------|------------|
| Calcium   | Y = .5179x |
| Magnesium | Y = .6035x |

This table includes the best fit lines for each ion.

# Calculations:

Pipette Calibration:

4.9995mL / 5mL = .9998 calibrated factor

### **CCPS Calibrations:**

**NaCl:** .6356g NaCl x 1mol NaCl / 58.44g NaCl x 1mol Na+ / 1mol NaCl x 22.99g Na+ x 1000mg / 1g = 250.042ppm

2mL: 250.042 ppm x 2mL = 100mL x M = 5.00084 ppm

4mL: 250.042 ppm x 4mL = 100mL x M = 10.00168 ppm

6mL: 250.042ppm x 6mL = 100mL x M = 15.00252 ppm

4mL Area:  $18.293 \text{ x} .249 = 4.555 \,\mu\text{S*min}$ 

6mL Area:  $27.253 \text{ x} .248 = 6.754 \,\mu\text{S*min}$ 

 $\label{eq:caco3} \textbf{CaCO3:.} .9988g \ x \ 1mol \ CaCO3 \ / \ 100.0869g \ x \ 1mol \ Ca2+ \ / \ 1mol \ CaCO3 \ x \ 40.078g \ Ca2+ \ x \ 1000mg \ / \ 1g = 399.95 \ ppm$ 

2mL: 399.95 ppm x <math>2mL = 100mL x M = 7.999 ppm

4mL: 399.95 ppm x 4mL = 100mL x M = 15.998 ppm

6mL: 399.95 ppm x 6mL = 100mL x M = 23.997 ppm

2mL Area:  $7.336 \times .576 = 4.226 \mu S*min$ 

4mL Area:  $14.706 \times .568 = 8.353 \mu S*min$ 

6mL Area:  $21.907 \text{ x } .564 = 12.356 \mu \text{S*min}$ 

**MgCl2\*6H2O:**  $1.6734g \times 1 \text{mol MgCl2*6H2O} / 203g \times 1 \text{mol Mg2+} / 1 \text{mol MgCl2*6H2O} \times 24.305g \text{ Mg2+} \times 1000 \text{mg} / 1g = 200.35 \text{ ppm}$ 

2mL: 200.35 ppm x 2mL = 100mL x M = 4.007 ppm

4mL: 200.35 ppm x 4mL = 100mL x M = 8.014 ppm

6mL: 200.35 ppm x 6mL = 100mL x M = 12.021 ppm

2mL Area:  $7.637 \times .474 = 3.620 \mu S*min$ 

4mL Area:  $10.05 \text{ x} .468 = 4.7034 \ \mu\text{S*min}$ 

6mL Area:  $15.05 \times .461 = 6.943 \mu S*min$ 

#### **Unknown Solution #2:**

**Na+:** Area =  $30.418 \times .248 = 7.544 \mu S*min$ 

Best fit: y=.4525x; x = concentration

7.544 / .4525 = 16.672 ppm

Ca2+: Area =  $15.012 \text{ x} .563 = 8.452 \mu \text{S*min}$ 

Best fit: y = .5179x; x = concentration

8.452 / .5179 = 16.320 ppm

**Mg2+:** Area =  $10.157 \times .472 = 4.794 \mu S*min$ 

Best fit: y = .6035x; x = concentration

4.794 / .6035 = 7.944 ppm

#### Seawater:

Na+: Area =  $181.48 \times .251 = 45.551 \mu S*min$ 

Concentration: 45.551 / .4525 = 100.665 ppm x 100 dilution factor = 10066.5 ppm

Concentration after correction: (10066.5 / .9998) = 10068.51 ppm / 1000 = 10.069 ppt

Ca2+: Area =  $3.364 \times .577 = 1.941 \mu S*min$ 

Concentration: 1.941 / .5179 = 3.748 ppm x 100 dilution factor = 374.8 ppm

Concentration after correction: 374.8 / .9998 = 374.57 ppm / 1000 = .3746 ppt

**Mg2+:** Area =  $21.621 \times .465 = 10.054 \mu S*min$ 

Concentration: 10.054 / .6035 = 16.660 ppm x 100 dilution factor = 1666 ppm

Concentration after correction: 1666 / .9998 = 1666.33 ppm / 1000 = 1.6663 ppt

Table VI: Complexometric and LEO-15 Comparison

| Cation    | Cation Chromatography | Complexometric | LEO-15     |
|-----------|-----------------------|----------------|------------|
| Sodium    | 10.069 ppt            | N/A            | 10.560 ppt |
| Calcium   | .3746 ppt             | .348 ppt       | .4 ppt     |
| Magnesium | 1.6663 ppt            | 1.144 ppt      | 1.272 ppt  |

This table compares the values of this lab to complexometric titration and the LEO-15.

Comparing the values from this lab to the complexometric lab, the Calcium values were about the same but the Magnesium values had a huge gap between 1.6663 ppt and 1.144 ppt. Comparing this lab to the LEO-15<sup>1</sup>, the sodium value was about .5 ppt off from 10.069 ppt to 10.560 ppt. For Calcium, it was roughly on point between .3746 ppt and .4 ppt. For Magnesium, there was a gap again between 1.6663 ppt and 1.272 ppt. This error can be due to the machine or even the seawater from the location just having a high amount of Sodium and Magnesium concentrations.

# **Chromatograms and Graphs:**



Figure 1. DI water run 1 Chromatogram



Figure 2. Sodium Chromatogram



Figure 3. Calcium Chromatogram



Figure 4. Magnesium Chromatogram



Figure 5. CCPS 2mL dilution Chromatogram



Figure 6. CCPS 4mL dilution Chromatogram



Figure 7. CCPS 6mL dilution Chromatogram



Figure 8. Unknown Solution 2 Chromatogram



Figure 9. DI water Run 2 Chromatogram



Figure 10. Seawater Chromatogram, first peak is sodium, second is magnesium, third is calcium



Figure 11. Sodium Calibration Curve



Figure 12. Calcium Calibration Curve



Figure 13. Magnesium Calibration Curves

# Lab Questions:

- 1. To how many units on the syringe does 100 microliters correspond?
  - a. 10 units, 10 microL = 1 unit
- 2. Why is it good practice to run the most dilute sample first?
  - a. Running the most dilute allows for the lessening of sticking to the machine when the solutions are pumped afterwards.
- 3. By what factor have you diluted the seawater? Is diluting 4mL of seawater to 100mL reasonable?
  - a. It was diluted by a factor of 100x and diluting 4mL to 100mL is just a dilution factor of 25x.