# Handbook of Applied Mathematics

Zeyu Wang<sup>1</sup>

September 17, 2024

 $<sup>^{\</sup>scriptscriptstyle 1}\mathrm{Email}$ : zeyu.wang.0117@outlook.com

# Contents

| M        | Mathematical Foundation                       | ••••• | 1 |
|----------|-----------------------------------------------|-------|---|
| 1        | 1 Analysis                                    |       | 2 |
|          | 1.1 Calculus                                  |       | 2 |
|          | 1.1.1 Mean value theorem                      |       | 2 |
|          | 1.1.2 Series                                  |       | 2 |
|          | 1.1.3 Multivariable calculus                  |       | 3 |
|          | 1.2 Real Analysis                             |       | 4 |
|          | 1.2.1 Lebesgue Measure                        |       | 4 |
|          | 1.3 Complex Analysis                          |       | 5 |
|          | 1.4 Important Inequalities                    |       | 5 |
|          | 1.4.1 Fundamental inequality                  |       | 5 |
|          | 1.4.2 Triangle inequality                     |       | 6 |
|          | 1.4.3 Bernoulli inequality                    |       | 6 |
|          | 1.4.4 Jensen's inequality                     |       | 6 |
|          | 1.4.5 Cauchy–Schwarz inequality               |       | 6 |
|          | 1.4.6 Hölder's inequality                     |       | 7 |
|          | 1.4.7 Young's inequality                      |       | 7 |
|          | 1.4.8 Minkowski inequality                    |       | 7 |
|          | 1.5 Special Functions                         |       | 8 |
|          | 1.5.1 Gaussian function                       |       | 8 |
|          | 1.5.2 Dirac delta function                    |       | 8 |
|          | 1.5.3 Gamma function                          |       | 8 |
|          | 1.5.4 Beta Function                           |       | 9 |
| <b>2</b> | 2 Algebra                                     | 10    | 0 |
|          | 2.1 Linear Space                              |       |   |
|          | 2.1.1 Linear map                              |       |   |
|          | 2.2 Metric Space                              |       |   |
|          | 2.2.1 Completeness & Compactness              |       |   |
|          | 2.2.2 Cover                                   |       |   |
|          | 2.2.3 Cantor's intersection Theorem           |       | 2 |
|          | 2.2.4 Cluster point                           |       | 2 |
|          | 2.3 Normed Space                              |       | 3 |
|          | 2.4 Inner Product Space                       |       | 3 |
|          | 2.4.1 Orthonormal system                      |       | 3 |
|          | 2.5 Banach Space                              |       | 4 |
|          | 2.6 Hilbert Space                             | 1     | 4 |
|          | 2.7 Single Variable Polynomial                | 1     | 4 |
|          | 2.8 Orthogonal Polynomial                     | 1     | 5 |
|          | 2.8.1 Legendre polynomial                     |       |   |
|          | 2.8.2 Chebyshev polynomial of the first kind  |       |   |
|          | 2.8.3 Chebyshev polynomial of the second kind |       |   |

## Handbook of Applied Mathematics

|                        | 2.8.4 Laguerre polynomial                          | . 16      |
|------------------------|----------------------------------------------------|-----------|
|                        | 2.8.5 Hermite polynomial (probability theory form) | . 17      |
| 3                      | Ordinary Differential Equation                     | 18        |
|                        | 3.1 General Theory                                 | . 18      |
|                        | 3.2 Exact solutions                                | . 19      |
|                        | 3.3 Important ODEs                                 | . 20      |
|                        | 3.3.1 Bernoulli differential equation              |           |
|                        | 3.3.2 Riccati equation                             | . 20      |
| 4                      | Partial Differential Equation                      | <b>21</b> |
|                        | 4.1 Poisson's Equation                             |           |
|                        | 4.2 Heat Equation                                  |           |
|                        | 4.3 Wave Equation                                  | . 21      |
| <b>5</b>               | Probability Theory                                 | <b>22</b> |
|                        | 5.1 Characteristic functions                       |           |
|                        | 5.2 Probability limit theorems                     | . 22      |
| 6                      | Stochastic Process                                 | <b>23</b> |
|                        | 6.1 Poisson process                                | . 23      |
|                        | 6.2 Markov chain                                   | . 23      |
| 7                      | Statistics                                         | <b>24</b> |
| 8                      | Graph                                              | <b>25</b> |
|                        | 8.1 Shortest Path                                  | . 25      |
|                        | 8.2 Matching                                       | . 25      |
|                        | 8.3 Network Flow                                   | . 25      |
|                        | 8.4 Tree                                           | . 25      |
| 9                      | Combinatorics                                      | 26        |
|                        | 9.1 Generating function                            | . 26      |
|                        | 9.2 Inclusion–exclusion principle                  | . 26      |
|                        | 9.3 Special Numbers                                | . 26      |
|                        | 9.3.1 Catalan number                               | . 26      |
|                        | 9.3.2 Stirling number                              | . 26      |
| $\mathbf{S}\mathbf{c}$ | cientific Computing                                | <b>27</b> |
| 10                     | Interpolation                                      | 28        |
|                        | 10.1 Polynomial Interpolation                      |           |
|                        | 10.1.1 Lagrange formula                            | . 28      |
|                        | 10.1.2 Newton formula                              | . 28      |
|                        | 10.1.3 Neville-Aitken algorithm                    | . 28      |
|                        | 10.1.4 Hermite interpolation                       | . 29      |
|                        | 10.1.5 Approximation                               | . 29      |
|                        | 10.1.6 Error analysis                              |           |
|                        | 10.2 Spline                                        |           |
|                        | 10.2.1 Cubic spline                                | . 30      |

## Handbook of Applied Mathematics

| 10.2.2 B-spline                                          | 31 |
|----------------------------------------------------------|----|
| 10.2.3 Error analysis                                    | 31 |
| 11 Integration                                           | 33 |
| 11.1 Newton-Cotes Formulas                               | 33 |
| 11.1.1 Midpoint rule                                     | 33 |
| 11.1.2 Trapezoidal rule                                  | 34 |
| 11.1.3 Simpson's rule                                    | 34 |
| 11.2 Gauss Formulas                                      | 34 |
| 12 Optimization                                          | 35 |
| 12.1 One-dimensional Line Search                         | 35 |
| 12.2 Unconstrained Optimization                          | 36 |
| 13 Initial Value Problem                                 | 39 |
| 13.1 Linear Multistep Method                             | 39 |
| 13.2 Runge-Kutta Method                                  | 39 |
| 13.3 Theoretical analysis                                |    |
| 13.3.1 Error analysis                                    |    |
| 13.3.2 Stability                                         |    |
| 13.3.3 Convergence                                       |    |
| 13.4 Important Methods                                   |    |
| 13.4.1 Forward Euler's method                            |    |
| 13.4.2 Backward Euler's method                           |    |
| 13.4.3 Trapezoidal method                                |    |
| 13.4.4 Midpoint method (Leapfrog method)                 |    |
| 13.4.6 Classical fourth-order RK method                  |    |
| 13.4.7 Third-order strong-stability preserving RK method |    |
| 13.4.8 TR-BDF2 method                                    |    |
| 14 Number Theory                                         |    |
| 14.1 Prime Number                                        |    |
| 14.1.1 Primality testing                                 |    |
| 14.1.2 Sieves                                            |    |
| Machine Learning                                         |    |
|                                                          |    |
| 15 Regression                                            |    |
| 15.1 Linear Regression                                   |    |
| 16 Decision Tree                                         |    |
| 17 Support Vector Machine                                | 48 |
| 18 Cluster                                               | 49 |
| 18.1 K-means                                             | 49 |
| 19 Neural Networks                                       | 50 |

# Part 1 Mathematical Foundation

## Analysis

#### 1.1 Calculus

#### 1.1.1 Mean value theorem

**Theorem 1.1. (Rolle's theorem)** Given  $n \ge 2$  and  $f \in C^{n-1}([a,b])$  with  $f^{(n)}(x)$  exists at each point of (a,b), suppose that  $f(x_0) = \cdots f(x_n) = 0$  for  $a \le x_0 < \cdots < x_n \le b$ , then there is a point  $\xi \in (a,b)$  such that  $f^{(n)}(\xi) = 0$ .

Theorem 1.2. (Lagrange's mean value theorem) Given  $f \in C^1([a,b])$ , then there exists  $\xi \in (a,b)$  such that

$$f'(\xi) = \frac{f(b) - f(a)}{b - a}.$$

Theorem 1.3. (Cauchy's mean value theorem) Given  $f, g \in C^1([a, b])$ , then there exists  $\xi \in (a, b)$  such that

$$(f(b) - f(a))g'(\xi) = (g(b) - g(a))f'(\xi).$$

If  $g(a) \neq g(b)$  and  $g(\xi) \neq 0$ , this is equivalent to

$$\frac{f'(\xi)}{g'(\xi)} = \frac{f(b) - f(a)}{g(b) - g(a)}.$$

Theorem 1.4. (First mean value theorems for definite integrals) Given  $f \in C([a, b])$  and g integrable and does not change sign on [a, b], then there exists  $\xi$  in (a, b) such that

$$\int_{a}^{b} f(x)g(x)dx = f(\xi) \int_{a}^{b} g(x)dx.$$

Theorem 1.5. (Second mean value theorems for definite integrals) Given f a integrable function and g a positive monotonically decreasing function, then there exists  $\xi$  in (a,b) such that

$$\int_{a}^{b} f(x)g(x)dx = g(a) \int_{a}^{\xi} f(x)dx.$$

If g is a positive monotonically increasing function, then there exists  $\xi$  in (a,b) such that

$$\int_{a}^{b} f(x)g(x)dx = g(b) \int_{\varepsilon}^{b} f(x)dx.$$

If g is a monotonically function, then there exists  $\xi$  in (a,b) such that

$$\int_a^b f(x)g(x)dx = g(a)\int_a^{\xi} f(x)dx + g(b)\int_{\xi}^b f(x)dx.$$

#### 1.1.2 Series

**Definition 1.6.** A series  $\sum_{n=1}^{\infty} a_n$  is **absolute convergent** if the series of absolute values  $\sum_{n=1}^{\infty} |a_n|$  converges.

**Theorem 1.7.** If a series is absolute convergent, then any reordering of it converges to the same limit.

Theorem 1.8. (n-th term test) If  $\lim_{n\to\infty} a_n \neq 0$ , then the series divergent.

**Theorem 1.9.** (Direct comparison test) If  $\sum_{n=1}^{\infty} b_n$  is convergent and exists N>0, for all  $n>N, \ 0\leq a_n\leq b_n$ , then  $\sum_{n=1}^{\infty} a_n$  is convergent; if  $\sum_{n=1}^{\infty} b_n$  is divergent and exists N>0, for all  $n>N, \ 0\leq b_n\leq a_n$ , then  $\sum_{n=1}^{\infty} a_n$  is divergent.

**Theorem 1.10.** (Limit comparison test) Given two series  $\sum_{n=1}^{\infty} a_n$  and  $\sum_{n=1}^{\infty} b_n$  with  $a_n \ge 0$ ,  $b_n > 0$ . Then if  $\lim_{n \to \infty} \frac{a_n}{b_n} = c \in (0, \infty)$ , then either both series converge or both series diverge.

Theorem 1.11. (Ratio test) Given  $\sum_{n=1}^{\infty} a_n$  and

$$R = \limsup_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|, r = \liminf_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|,$$

if R < 1, then the series converges absolutely; if r > 1, then the series diverges.

Theorem 1.12. (Root test) Given  $\sum_{n=1}^{\infty} a_n$  and

$$R = \limsup_{n \to \infty} \left( |a_n| \right)^{\frac{1}{n}},$$

if R < 1, then the series converges absolutely; if R > 1, then the series diverges.

**Theorem 1.13. (Integral test)** Given  $\sum_{n=1}^{\infty} f(n)$  where f is monotone decreasing, then the series converges iff the improper integral

$$\int_{1}^{\infty} f(x) \mathrm{d}x$$

is finite. In particular,

$$\int_{1}^{\infty} f(x) \mathrm{d}x \leq \sum_{n=1}^{\infty} f(n) \leq f(1) + \int_{1}^{\infty} f(x) \mathrm{d}x$$

**Theorem 1.14.** (Alternating series test) Given  $\sum_{n=1}^{\infty} (-1)^n a_n$  where  $a_n$  are all positive or negative, then the series converges if  $|a_n|$  decreases monotonically and  $\lim_{n\to\infty} a_n = 0$ .

#### 1.1.3 Multivariable calculus

**Theorem 1.15.** (Green's theorem) Let  $\Omega$  be the region in a plane with  $\partial\Omega$  a positively oriented, piecewise smooth, simple closed curve. If P and Q are functions of (x, y) defined on an open region containing  $\Omega$  and have continuous partial derivatives there, then

$$\oint_{\partial\Omega}(P\mathrm{d}x+Q\mathrm{d}y)=\iint_{\Omega}\biggl(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\biggr)\mathrm{d}x\mathrm{d}y$$

where the path of integration along C is anticlockwise.

**Theorem 1.16.** (Stokes' theorem) Let  $\Omega$  be a smooth oriented surface in  $\mathbb{R}^3$  with  $\partial\Omega$  a piecewise smooth, simple closed curve. If  $\mathbf{F}(x,y,z) = \left(F_x(x,y,z), F_y(x,y,z), F_z(x,y,z)\right)$  is defined and has continuous first order partial derivatives in a region containing  $\Omega$ , then

$$\iint_{\Omega} (\nabla \times \mathbf{F}) \cdot \mathrm{d}S(x) = \oint_{\partial \Omega} \mathbf{F} \cdot \mathrm{d}x$$

Theorem 1.17. (Gauss-Green theorem (Divergence theorem)) For a bounded open set  $\Omega \in \mathbb{R}^n$  that  $\partial \Omega \in C^1$  and a function  $\mathbf{F}(\mathbf{x}) = (F_1(\mathbf{x}), ..., F_n(\mathbf{x})) : \overline{\Omega} \to \mathbb{R}^n$  satisfies  $\mathbf{F}(\mathbf{x}) \in C^1(\Omega) \cap C(\overline{\Omega})$ ,

$$\int_{\Omega} \operatorname{div} \mathbf{F}(\mathbf{x}) d\mathbf{x} = \int_{\partial \Omega} \mathbf{F}(\mathbf{x}) \cdot \mathbf{n} dS(x),$$

where **n** is outward pointing unit normal vector at  $\partial\Omega$ .

**Definition 1.18.** An **implicit function** is a function of the form

$$F(x_1, ..., x_n) = 0,$$

where  $x_1, ..., x_n$  are variables.

**Theorem 1.19.** Let  $F(\mathbf{x}, \mathbf{y}) : \mathbb{R}^{n+m} \to \mathbb{R}^m$  be a differentiable function of two variables, and  $(\mathbf{x}_0, \mathbf{y}_0)$  the point that  $F(\mathbf{x}_0, \mathbf{y}_0) = \mathbf{0}$ . If the Jacobian matrix

$$J_{F,\mathbf{y}}(\mathbf{x}_0,\mathbf{y}_0) = \left(\frac{\partial F_i}{\partial y_j}(\mathbf{x}_0,\mathbf{y}_0)\right)$$

is invertible, then there exists an open set  $\Omega \subseteq \mathbb{R}^n$  containing  $\mathbf{x}_0$  such that there exists a unique function  $f: \Omega \to \mathbb{R}^m$  such that  $f(\mathbf{x}_0) = \mathbf{y}_0$  and  $F(\mathbf{x}, f(\mathbf{y})) = \mathbf{0}$  for all  $\mathbf{x} \in \Omega$ .

Moreover, f is continuously differentiable and, denoting the left-hand panel of the Jacobian matrix shown in the previous section as

$$J_{F,\mathbf{x}}(\mathbf{x}_0,\mathbf{y}_0) = \Bigg(\frac{\partial F_i}{\partial x_j}(\mathbf{x}_0,\mathbf{y}_0)\Bigg),$$

the Jacobian matrix of partial derivatives of f in  $\Omega$  is given by

$$\left(\frac{\partial f_i}{\partial x_j}(\mathbf{x})\right)_{m \times n} = -\left(J_{F,\mathbf{y}}(\mathbf{x}, f(\mathbf{x}))\right)_{m \times m}^{-1} \left(J_{F,\mathbf{x}}(\mathbf{x}, f(\mathbf{x}))\right)_{m \times n}.$$

## 1.2 Real Analysis

## 1.2.1 Lebesgue Measure

**Definition 1.20.** Given an bounded interval  $I \in \mathbb{R}$ , denoted by  $\mathcal{E}(I)$  the **length** of the interval defined as the distance of its endpoints,

$$\mathscr{C}([a,b])=\mathscr{C}((a,b))=b-a.$$

**Definition 1.21.** For any subset  $E \subset \mathbb{R}$ , the **Lebesgue outer measure**  $m^*(E)$  is defined as

$$m^*(E) = \inf \bigg\{ \sum_{i=1}^n \mathscr{C}(I_i) : \big\{ I_i \big\}_{i=1}^n \ \text{ is a sequence of open intervals that } E \subset \bigcup_{i=1}^n I_i \bigg\}.$$

**Theorem 1.22.** If  $E_1 \subset E_2 \subset \mathbb{R}$ , then  $m^*(E_1) \leq m^*(E_2)$ .

**Theorem 1.23.** Given an interval  $I \subset \mathbb{R}$ ,  $m^*(I) = \mathcal{E}(I)$ .

**Theorem 1.24.** Given  $\{E_i \subset \mathbb{R}\}_{i=1}^n$ ,  $m^*(\bigcup_{i=1}^n E_i) \leq \sum_{i=1}^n m^*(E_i)$ .

**Definition 1.25.** The sets E are said to be **Lebesgue-measurable** if

$$\forall A \subset \mathbb{R}, m^*(A) = m^*(A \cap X) + m^*(A \cap (\mathbb{R} \setminus A))$$

and its Lebesgue measure is defined as its Lebesgue outer measure:  $m(E) = m^*(E)$ .

**Theorem 1.26.** The set of all measurable sets  $E \subset \mathbb{R}$  forms a  $\sigma$ -algebra  $\mathcal{F}$  where

- $\mathcal{F}$  contains the sample space:  $\mathbb{R} \in \mathcal{F}$ ;
- $\mathcal{F}$  is closed under complements: if  $A \in \mathcal{F}$ , then also  $(\mathbb{R} \setminus A) \in \mathcal{F}$ ;
- $\mathcal{F}$  is closed under countable unions: if  $A_i \in \mathcal{F}, i=1,...$ , then also  $(\cup_{i=1}^{\infty} A_i) \in \mathcal{F}$ .

**Definition 1.27.** A measurable space is a tuple  $(X, \mathcal{F})$  consisting of an arbitrary non-empty set X and a  $\sigma$ -algebra  $\mathcal{F} \subseteq 2^X$ .

## 1.3 Complex Analysis

**Definition 1.28.** Given an open set  $\Omega$  and a function  $f(z):\Omega\to\mathbb{C}$ , the **derivative** of f(z) at a point  $z_0\in\Omega$  is defined as the limits

$$f'(z) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0},$$

and the function is said to be **complex differentiable** at  $z_0$ .

**Definition 1.29.** A function f(z) is holomorphic on an open set  $\Omega$  if it is complex differentiable at every point of  $\Omega$ .

**Theorem 1.30.** If a complex function  $f(x + \mathbf{i}y) = u(x, y) + \mathbf{i}v(x, y)$  is holomorphic, then u and v have first partial derivatives, and satisfy the Cauchy–Riemann equations,

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 and  $\frac{\partial u}{\partial y} = \frac{\partial v}{\partial x}$ ,

or equivalently,

$$\frac{\partial f}{\partial \overline{z}} = 0.$$

Theorem 1.31. (Cauchy's integral theorem) Given a simply connected domain  $\Omega$  and a holomorphic function f(z) on it, for any simply closed contour C in  $\Omega$ ,

$$\int_C f(z) \mathrm{d}x = 0.$$

Theorem 1.32. (Residue formula) Suppose that f is holomorphic in an open set containing a toy contour  $\gamma$  and its interior, except for some points  $z_1, ..., z_n$  inside  $\gamma$ , then

$$\int_{\gamma} f(z) dz = 2\pi \mathbf{i} \sum_{k=1}^{n} \operatorname{res}_{z_{k}} f,$$

where for a pole  $z_0$  of order n,

$$\operatorname{res}_{z_0} f = \lim_{z \to z_0} \frac{1}{(n-1)!} \bigg(\frac{\mathrm{d}}{\mathrm{d}z}\bigg)^{n-1} (z-z_0)^n f(z).$$

## 1.4 Important Inequalities

## 1.4.1 Fundamental inequality

#### Theorem 1.33. (Fundamental inequality)

$$\forall x, y \in \mathbb{R}^+, \frac{2}{\frac{1}{a} + \frac{1}{b}} \le \sqrt{ab} \le \frac{a+b}{2} \le \sqrt{\frac{a^2 + b^2}{2}}, \text{ equality holds iff } a = b.$$

#### 1.4.2 Triangle inequality

#### Theorem 1.34. (Triangle inequality)

$$a, b \in \mathbb{C}, \quad ||a| - |b|| \le |a \pm b| \le |a| + |b|,$$
  
 $\mathbf{a}, \mathbf{b} \in \mathbb{R}^n, |\|\mathbf{a}\| - \|\mathbf{b}\|| \le \|\mathbf{a} \pm \mathbf{b}\| \le \|\mathbf{a}\| + \|\mathbf{b}\|.$ 

#### 1.4.3 Bernoulli inequality

#### Theorem 1.35. (Bernoulli inequality)

$$\begin{split} \forall x \in (-1, +\infty), \forall a \in [1, +\infty), & (1+x)^a \ge 1 + ax, \\ \forall x \in (-1, +\infty), \forall a \in (0, 1), & (1+x)^a \le 1 + ax, \\ \forall x \in (-1, +\infty), \forall a \in (-1, 0), & (1+x)^a \ge 1 + ax, \\ \forall x_i \in \mathbb{R}, i \in \{1, ..., n\}, & \prod_{i=1}^n (1+x_i) \ge 1 + \sum_{i=1}^n x_i, \\ \forall y \ge x > 0, & (1+x)^y \ge (1+y)^x. \end{split}$$

#### 1.4.4 Jensen's inequality

**Theorem 1.36.** (Jensen's inequality) For a real convex function  $f(x):[a,b]\to\mathbb{R}$ , numbers  $x_1...,x_n\in[a,b]$  and weights  $a_1,...,a_n$ , the Jensen's inequality can be start as

$$\frac{\sum_{i=1}^{n} a_i f(x_i)}{\sum_{i=1}^{n} a_i} \ge f \left( \frac{\sum_{i=1}^{n} a_i x_i}{\sum_{i=1}^{n} a_i} \right).$$

And for concave function f,

$$\frac{\sum_{i=1}^n a_i f(x_i)}{\sum_{i=1}^n a_i} \leq f\Bigg(\frac{\sum_{i=1}^n a_i x_i}{\sum_{i=1}^n a_i}\Bigg).$$

Equality holds iff  $x_1 = \cdots = x_n$  or f is linear on [a, b].

## 1.4.5 Cauchy–Schwarz inequality

Theorem 1.37. (Cauchy-Schwarz inequality)

**Discrete form.** For real numbers  $a_1,...a_n,b_1,...b_n \in \mathbb{R}, n \geq 2$ 

$$\sum_{i=1}^n a_i^2 \sum_{i=1}^n b_i^2 \geq \left(\sum_{i=1}^n a_i b_i\right).$$

Equality holds iff  $\frac{a_1}{b_1} = \dots = \frac{a_n}{b_n}$  or  $a_i = 0$  or  $b_i = 0$ .

Inner product form. For a inner product space V with a norm induced by the inner product,  $\forall \mathbf{a}, \mathbf{b} \in V \|\mathbf{a}\| \cdot \|\mathbf{b}\| \ge |\langle \mathbf{a}, \mathbf{b} \rangle|.$ 

Equality holds iff  $\exists k \in \mathbb{R}$ , s.t.  $k\mathbf{a} = \mathbf{b}$  or  $\mathbf{a} = k\mathbf{b}$ .

**Probability form.** For random variables X and Y,

$$\sqrt{E(X^2)} \cdot \sqrt{E(Y^2)} \ge |E(XY)|.$$

Equality holds iff  $\exists k \in \mathbb{R}$ , s.t. kX = Y or X = kY.

**Integral form.** For integrable functions  $f, g \in L^2(\Omega)$ ,

$$\left(\int_{\Omega} f^2(x) dx\right) \left(\int_{\Omega} g^2(x) dx\right) \ge \left(\int_{\Omega} f(x) g(x) dx\right)^2.$$

Equality holds iff  $\exists k \in \mathbb{R}$ , s.t. kf(x) = g(x) or f(x) = kg(x).

#### 1.4.6 Hölder's inequality

Theorem 1.38. (Hölder's inequality)

**Discrete form.** For real numbers  $a_1, ... a_n, b_1, ... b_n \in \mathbb{R}, n \geq 2$  and  $p, q \in [1, +\infty)$  that  $\left(\frac{1}{p}\right) + \left(\frac{1}{q}\right) = 1$ ,

$$\left(\sum_{i=1}^n a_i^p\right)^{\frac{1}{p}} \left(\sum_{i=1}^n b_i^q\right)^{\frac{1}{q}} \geq \left(\sum_{i=1}^n a_i b_i\right).$$

Equality holds iff  $\exists c_1, c_2 \in \mathbb{R}, c_1^2 + c_2^2 \neq 0$ , s.t.  $c_1 a_i^p = c_2 b_i^q$ .

**Integral form.** For functions  $f \in L^p(\Omega), g \in L^q(\Omega)$  and  $p, q \in [1, +\infty)$  that  $\frac{1}{p} + \frac{1}{q} = 1$ ,

$$\left(\int_{\Omega} |f(x)|^p \, \mathrm{d}x\right)^{\frac{1}{p}} \left(\int_{\Omega} |g(x)|^q \, \mathrm{d}x\right)^{\frac{1}{q}} \geq \int_{\Omega} f(x)g(x) \mathrm{d}x.$$

## 1.4.7 Young's inequality

Theorem 1.39. (Young's inequality) For  $p, q \in [1, +\infty)$  that  $\frac{1}{p} + \frac{1}{q} = 1$ ,

$$\forall a, b \in \mathbb{R}^*, \frac{a^p}{p} + \frac{b^q}{q} \ge ab.$$

Equality holds iff  $a^p = b^q$ .

## 1.4.8 Minkowski inequality

Theorem 1.40. (Minkowski inequality) For a metric space S,

$$\forall f,g \in L^p(S), p \in [1,+\infty], \|f\|_p + \|g\|_p \geq \|f+g\|_p.$$

For  $p \in (1, +\infty)$ , equality holds iff  $\exists k \geq 0$ , s.t. f = kg or kf = g.

#### 1.5 Special Functions

#### 1.5.1 Gaussian function

Definition 1.41. A Gaussian function, or a Gaussian, is a function of the form

$$f(x) = a \exp\left(-\frac{(x-b)^2}{2c^2}\right),\,$$

where  $a \in \mathbb{R}^+$  is the height of the curve's peak,  $b \in \mathbb{R}$  is the position of the center of the peak and  $c \in \mathbb{R}^+$  is the standard deviation or the Gaussian root mean square width.

Theorem 1.42. The integral of a Gaussian is

$$\int_{-\infty}^{+\infty} a \exp\left(-\frac{(x-b)^2}{2c^2}\right) dx = ac\sqrt{2\pi}.$$

**Definition 1.43.** A **normal distribution** or a **Gaussian distribution** is a continuous probability distribution of the form

$$f_{\mu,\sigma}(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\left((x-\mu)^2\right)(2\sigma^2)\right),$$

where  $\mu$  is the mean and  $\sigma$  is the standard deviation.

#### 1.5.2 Dirac delta function

**Definition 1.44.** The **Dirac delta function** centered at  $\overline{x}$  is

$$\delta(x-\overline{x})=\lim_{\varepsilon\to 0}f_{\overline{x},\varepsilon}(x-\overline{x}),$$

where  $f_{\overline{x},\varepsilon}$  is a normal distribution with its mean at  $\overline{x}$  and its standard deviation as  $\varepsilon$ .

**Theorem 1.45.** The Dirac delta function satisfies

$$\delta(x-\overline{x}) = \begin{cases} +\infty, & x=\overline{x} \\ 0, & x \neq \overline{x} \end{cases} \int_{-\infty}^x \delta(x-\overline{x}) \mathrm{d}x = \begin{cases} 1, & x \geq 0 \\ 0, & x < 0 \end{cases}$$

where  $H(x) = \int_{-\infty}^{x} \delta(x - \overline{x}) dx$  is called **Heaviside function** or **step function**.

**Theorem 1.46.** If  $f: \mathbb{R} \to \mathbb{R}$  is continuous, then

$$\int_{-\infty}^{+\infty} \delta(x - \overline{x}) f(x) dx = f(\overline{x}).$$

#### 1.5.3 Gamma function

**Definition 1.47.** The Gamma function defined on  $\mathbb{C}$  is

$$\Gamma(z) = \int_0^{+\infty} t^{z-1} e^{-t} dt,$$

where Re (z) > 0.

Theorem 1.48. The Gamma function satisfies

$$\forall x \in \mathbb{C}, \ \Gamma(x+1) = x\Gamma(x),$$

$$\forall n \in \mathbb{N}^*, \Gamma(n) = (n-1)!.$$

Theorem 1.49. The Gamma function satisfies

$$\forall x \in (0,1), \Gamma(1-x)\Gamma(x) = \frac{\pi}{\sin(\pi x)},$$

which implies

$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}.$$

#### 1.5.4 Beta Function

**Definition 1.50.** For  $p, q \in \mathbb{R}^+$ , the **Beta function** is defined as

$$B(p,q) = \int_0^1 x^{p-1} (1-x)^{q-1} dx.$$

Theorem 1.51. The Beta function satisfies

$$\forall p,q \in \mathbb{R}^+, B(p,q) = B(q,p) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}.$$

Theorem 1.52. The Beta function satisfies

$$\forall p>0, \forall q>1, B(p,q)=\frac{q-1}{p+q-1}B(p,q-1),$$

$$\forall p > 1, \forall q > 0, B(p,q) = \frac{p-1}{p+q-1}B(p-1,q),$$

$$\forall p>1, \forall q>1, B(p,q)=\frac{(p-1)(q-1)}{(p+q-1)(p+q-2)}B(p-1,q-1).$$

## Algebra

## 2.1 Linear Space

**Definition 2.1.** (Linear Space) A linear space over a field  $\mathbb{F}$  is a nonempty set V with a addition and a scalar multiplication that satisfies

- (1) Associativity of addition:  $\forall \mathbf{x}, \mathbf{y} \in V, \mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$ ,
- (2) Commutativity of addition:  $\forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in V, (\mathbf{x} + \mathbf{y}) + \mathbf{z} = \mathbf{x} + (\mathbf{y} + \mathbf{z}),$
- (3) Identity element of addition:  $\exists \mathbf{0} \in V, \forall \mathbf{x}, \mathbf{x} + \mathbf{0} = \mathbf{x}$ ,
- (4) Inverse elements of addition:  $\forall \mathbf{x} \in V, \exists \mathbf{y} \in V, \text{ s.t. } \mathbf{x} + \mathbf{y} = 0,$
- (5) Compatibility of multiplication:  $\forall \mathbf{x} \in V, a, b \in \mathbb{F}, (ab)\mathbf{x} = a(b\mathbf{x}),$
- (6) Identity element of multiplication:  $\exists 1 \in \mathbb{F}, \forall \mathbf{x} \in V, 1\mathbf{x} = \mathbf{x},$
- (7) Distributivity:  $\forall \mathbf{x} \in V, a, b \in \mathbb{F}, (a+b)\mathbf{x} = a\mathbf{x} + b\mathbf{x},$
- (8) Distributivity:  $\forall \mathbf{x}, \mathbf{y} \in V, a \in \mathbb{F}, a(\mathbf{x} + \mathbf{y}) = a\mathbf{x} + b\mathbf{y}$ .

**Notation 2.2.** The dimension of a linear space V is written as  $\dim(V)$ .

**Definition 2.3.** Denoted by  $V_1, ..., V_n$  linear spaces over a field  $\mathbb{F}$ , the **product of linear spaces** is defined as

$$V_1 \times \dots \times V_n = \{ (\mathbf{v}_1, ..., \mathbf{v}_n) : \mathbf{v}_1 \in V_1, ..., \mathbf{v}_n \in V_n \},$$

which is also a linear space over  $\mathbb{F}$ .

**Definition 2.4.** Given a linear space V, a subspace  $U \subset V$  and  $\mathbf{v} \in V$ , the **coset** (or **affine subset**) is defined as

$$\overline{\mathbf{v}} = {\mathbf{w} \in V : \mathbf{w} = \mathbf{v} + \mathbf{u}, \mathbf{u} \in U}.$$

**Definition 2.5.** Given a linear space V and a subspace  $U \subset V$ , the **quotient space** is defined as

$$V/U = \{ \mathbf{v} + U : \mathbf{v} \in V \}.$$

#### 2.1.1 Linear map

**Definition 2.6.** Denoted by V and W the linear spaces over a field  $\mathbb{F}$ , a function  $f:V\to W$  is called a linear map between V and W if it satisfies

- (1) Additivity:  $\forall \mathbf{x}, \mathbf{y} \in V, f(\mathbf{x} + \mathbf{y}) = f(\mathbf{x}) + f(\mathbf{y});$
- (2) Homogeneity:  $\forall \mathbf{x} \in V, \forall k \in \mathbb{F}, f(k\mathbf{x}) = kf(\mathbf{x}).$

**Notation 2.7.** Denoted by  $\mathcal{L}(V, W)$  the set of all linear maps between V and W (it also be written as  $\mathcal{L}(V)$  if V = W).

**Theorem 2.8.** For linear space V, W over a field  $\mathbb{F}$  and linear maps  $f, g \in \mathcal{L}(V, W)$ , if we define  $\forall \mathbf{x} \in V, \forall k \in \mathbb{F}, (f+g)(\mathbf{x}) = f(\mathbf{x}) + g(\mathbf{x})$  and  $(kf)(\mathbf{x}) = kf(\mathbf{x})$ ,

then  $\mathcal{L}(V, W)$  is a linear space.

**Theorem 2.9.** For a linear map  $f \in \mathcal{L}(V, W)$ ,  $f(\mathbf{0}) = f(0\mathbf{v}) = 0$ .

**Theorem 2.10.** Given  $\mathbf{v}_1, ... \mathbf{v}_n$  the basis of linear space V and  $\mathbf{w}_1, ... \mathbf{w}_n$  the basis of linear space W, then there exists the only linear map  $f \in \mathcal{L}(V, W)$  such that

$$\forall i \in \{1, ..., n\}, f(\mathbf{v}_i) = \mathbf{w}_i.$$

**Definition 2.11.** For a linear map  $f \in \mathcal{L}(V, W)$ , the **kernal** (or **null space**) of f is defined as  $\ker(f) = \{\mathbf{v} \in V : f(\mathbf{v}) = \mathbf{0}\},$ 

where  $\ker(f)$  is a subspace of V and the number  $\dim(\ker(f))$  is the **nullity** of f which also written as  $\operatorname{nullity}(f)$ 

**Definition 2.12.** For a linear map  $f \in \mathcal{L}(V, W)$ , the **image** of f is defined as  $\operatorname{im}(f) = \{\mathbf{w} \in W : \mathbf{w} = f(\mathbf{v}) \mid \mathbf{v} \in V\}$ 

$$\operatorname{im}(f) = \{ \mathbf{w} \in W : \mathbf{w} = f(\mathbf{v}), \mathbf{v} \in V \},$$

where im(f) is a subspace of W and the number dim(im(f)) is the **dimension** (or **rank**) of f which also written as rank(f)

Theorem 2.13. (Rank–nullity theorem) For a linear map  $f \in \mathcal{L}(V, W)$ ,  $\dim(\ker(f)) + \dim(\inf(f)) = \dim(V)$ .

**Definition 2.14.** A **isomorphism** is a invertible linear map.

**Definition 2.15.** Two linear spaces are called **isomorphic** if there exists a invertible linear map between them.

**Theorem 2.16.** Two linear spaces V, W over a field  $\mathbb{F}$  are isomorphic iff  $\dim(V) = \dim(W)$ .

**Theorem 2.17.** For a linear space V that  $\dim(V) < +\infty$  and a linear map  $f \in \mathcal{L}(V)$ , the following statements are equivalent:

- (1) f is invertible;
- (2) f is injective;
- (3) f is surjective.

## 2.2 Metric Space

**Definition 2.18.** (Metric) For a nonempty set X, the metric is a function  $d: X \times X \to \mathbb{R}$  that satisfies

- (1) Positive definiteness:  $\forall \mathbf{x}, \mathbf{y} \in X, d(\mathbf{x}, \mathbf{y}) \geq 0, d(\mathbf{x}, \mathbf{y}) \Leftrightarrow \mathbf{x} = \mathbf{y},$
- (2) Symmetry:  $\forall \mathbf{x}, \mathbf{y} \in X, d(\mathbf{x}, \mathbf{y}) = d(\mathbf{y}, \mathbf{x}),$
- (3) Triangle inequality:  $\forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in V, d(\mathbf{x}, \mathbf{y}) + d(\mathbf{y}, \mathbf{z}) \ge d(\mathbf{x}, \mathbf{z}),$

**Definition 2.19.** (Metric space) A metric space is a set X provided with a metric.

Notation 2.20. (Neighbourhood) For a metric space X, the neighbourhood of  $\mathbf{x} \in X$  with radius  $\varepsilon > 0$  is defined as

$$U_X(\mathbf{x}, \varepsilon) = \{t : d(\mathbf{x}, t) < \varepsilon, t \in X\}.$$

Notation 2.21. (Punctured neighbourhood) For a metric space X, the punctured neighbourhood of  $\mathbf{x} \in X$  with radius  $\varepsilon > 0$  is defined as

$$U_X^{\circ}(\mathbf{x},\varepsilon) = U_X(\mathbf{x},\varepsilon) \smallsetminus \{\mathbf{x}\} = \{t: d(\mathbf{x},t) < \varepsilon, t \in X \smallsetminus \{\mathbf{x}\}\}.$$

#### Completeness & Compactness 2.2.1

Theorem 2.22. (Cauchy's convergence test) A sequence  $\{x_n\}$  in a metric space X is convergent (or said a cauchy sequence) iff

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}, \ \text{s.t.} \ \forall m, n > N, \|\mathbf{x}_n - \mathbf{x}_m\| < \varepsilon.$$

**Definition 2.23.** (Completeness) A metric space X is complete iff all cauchy sequence of X is convergent in X.

**Theorem 2.24.** (Supremum and infimum principle) For a nonempty set X, if the upper lower bound of X exists, then the supremum/infimum of X exists.

Theorem 2.25. (The monotone bounded convergence Theorem) For a bounded sequence  $\{\mathbf{x}_n\}$ , if it is increased, then

$$\lim_{n\to\infty}\mathbf{x}_n=\sup\{\mathbf{x}_n:n\in\mathbb{N}\}.$$

If it is decreased, then

$$\lim_{n\to\infty}\mathbf{x}_n=\inf\{\mathbf{x}_n:n\in\mathbb{N}\}.$$

#### 2.2.2 Cover

**Definition 2.26.** (Cover) For a metric space  $S \subseteq X$ , A cover of S is a set of open sets  $\{D_n\}$ satisfies

$$\forall \mathbf{x} \in X, \exists D_n, \text{ s.t. } \mathbf{x} \in D_n.$$

**Definition 2.27.** (Compactness) A metric space X is called **compact** if every open cover of X has a finite subcover.

#### Cantor's intersection Theorem

Theorem 2.28. (Cantor's intersection Theorem) For a decreasing sequence of nested nonempty compact, closed subsets  $S_n \subseteq X, n \in \mathbb{N}$  of a metric space, if  $\{S_n\}$  satisfies

$$S_0 \supset S_1, \dots, \supset S_n \supset \dots,$$

then

$$\bigcap_{k=0}^{\infty} S_k \neq \emptyset.$$

where there is only one point  $\mathbf{x} \in \bigcap_{k=0}^{\infty} S_k$  for a complete metric space.

Corollary 2.29. For decreasing sequence of nested non-empty compact, closed subsets  $S_n \in$  $X, n \in \mathbb{N}$  of a complete metric space and  $\{\mathbf{x}\} = \bigcap_{k=0}^{\infty} S_k$ , then  $\forall \varepsilon > 0, \exists N > 0, \text{ s.t. } \forall n > N, X_n \subset U_X(x, \varepsilon).$ 

$$\forall \varepsilon > 0, \exists N > 0, \text{ s.t. } \forall n > N, X_n \subset U_Y(x, \varepsilon)$$

#### 2.2.4 Cluster point

**Definition 2.30.** (Cluster point) For a metric space  $S \subseteq X$ , the cluster point of S is the point  $\mathbf{x} \in X$  satisfies

$$\forall \varepsilon > 0, U_X^{\circ}(\mathbf{x}, \varepsilon) \cup S \neq \emptyset.$$

**Theorem 2.31.** For a convergent sequence  $\{\mathbf{x}_n : n \in \mathbb{N}, \forall i \neq j, \mathbf{x}_i \neq \mathbf{x}_j\} \subseteq X$ , the point  $x = \lim_{n \to \infty} \mathbf{x}_n$  is a cluster point of X.

Theorem 2.32. (Bolzano–Weierstrass Theorem) For a metric sapce X and a bounded infinite subset  $S \in X$ , there exists at least one cluster point of X.

## 2.3 Normed Space

**Definition 2.33.** (Norm) For a linear space V over a field  $\mathbb{F}$ , the **norm** is a function  $\|\cdot\|$ :  $V \to \mathbb{F}$  that satisfies

- (1) Positive definiteness:  $\forall \mathbf{x} \in V, \|\mathbf{x}\| \ge 0, \|\mathbf{x}\| = 0 \Leftrightarrow \mathbf{x} = 0;$
- (2) Absolute homogeneity:  $\forall \mathbf{x} \in V, k \in \mathbb{F}, ||k\mathbf{x}|| = |k|||\mathbf{x}||$ ;
- (3) Triangle inequality:  $\forall \mathbf{x}, \mathbf{y} \in V, \|\mathbf{x}\| + \|\mathbf{y}\| \ge \|\mathbf{x} + \mathbf{y}\|.$

**Definition 2.34.** (Normed space) A normed space is a linear space V over the field  $\mathbb{F}$  with a norm.

## 2.4 Inner Product Space

**Definition 2.35.** (Inner product) For a linear space V over a field  $\mathbb{F}$ , the inner product on V is a function  $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{F}$  that satisfies

- (1) Positive definiteness:  $\forall \mathbf{x} \in V, \langle \mathbf{x}, \mathbf{x} \rangle \geq 0, \langle \mathbf{x}, \mathbf{x} \rangle = 0 \Leftrightarrow \mathbf{x} = 0,$
- (2) Conjugate symmetry:  $\langle \mathbf{x}, \mathbf{y} \rangle = \overline{\langle \mathbf{y}, \mathbf{x} \rangle}$ ,
- (3) Linearity in the first argument:  $\forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in V, a, b \in \mathbb{F}, \langle a\mathbf{x} + b\mathbf{z}, \mathbf{y} \rangle = a\langle \mathbf{x}, \mathbf{y} \rangle + b\langle \mathbf{z}, \mathbf{y} \rangle.$

**Definition 2.36.** (Inner product space) An inner product space is a linear space V over the field  $\mathbb{F}$  with an inner product.

**Theorem 2.37.** Given a inner product space V and the norm defined as  $\|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$  satisfies  $\forall \mathbf{x}, \mathbf{y} \in V, \|\mathbf{x} + \mathbf{y}\|^2 + \|\mathbf{x} - \mathbf{y}\|^2 = 2 \|\mathbf{x}\|^2 + 2 \|\mathbf{y}\|^2$ .

#### 2.4.1 Orthonormal system

**Definition 2.38.** A subset W of an inner product space V is called textsf{orthonormal} if

$$\forall \mathbf{u}, \mathbf{v} \in S, \langle \mathbf{u}, \mathbf{v} \rangle = \begin{cases} 0, & u \neq v \\ 1, & u = v. \end{cases}$$

**Definition 2.39.** The **Gram-Schmidt process** takes in a finite or infinite independent list  $(\mathbf{u}_1, \mathbf{u}_2, ...)$  and output two other lists  $(\mathbf{v}_1, \mathbf{v}_2, ...)$  and  $(\mathbf{u}_1^*, \mathbf{u}_2^*, ...)$  by

$$\mathbf{v}_{n+1} = \mathbf{u}_{n+1} - \sum_{i=1}^{n} \langle \mathbf{u}_{n+1}, \mathbf{u}_k^* \rangle \mathbf{u}_k^*,$$

$$\mathbf{u}_{n+1}^* = \frac{\mathbf{v}_{n+1}}{\|\mathbf{v}_{n+1}\|},$$

with the recursion basis as  $\mathbf{v}_1 = \mathbf{u}_1$ .

**Definition 2.40.** Let  $(\mathbf{u}_1^*, \mathbf{u}_2^*, ...)$  be a finite or infinite orthonormal list. The **orthogonal expansion** or **Fourier expansion** for an arbitrary  $\mathbf{w}$  is the series

$$\sum_{i=1}^{n} \langle \mathbf{w}, \mathbf{u}_i^* \rangle \mathbf{u}_i^*,$$

where the constants  $\langle \mathbf{w}, \mathbf{u}_i^* \rangle$  are known as the **Fourier coefficients** of  $\mathbf{w}$  and the term  $\langle \mathbf{w}, \mathbf{u}_i^* \rangle \mathbf{u}_i^*$  is the **projection** of  $\mathbf{w}$  on  $\mathbf{u}_i^*$ .

Theorem 2.41. (Minimum properties of Fourier expansions) Let  $\mathbf{u}_1^*, \mathbf{u}_2^*, ...$  be an orthonormal system and let  $\mathbf{w}$  be arbitrary. Then

$$\forall a_1,...,a_n, \|\mathbf{w} - \sum_{i=1}^n \langle \mathbf{w}, \mathbf{u}_i^* \rangle \mathbf{u}_i^* \| \leq \|\mathbf{w} - \sum_{i=1}^n a_i \mathbf{u}_i^* \|,$$

where  $\|\mathbf{w} - \sum_{i=1}^{n} a_i \mathbf{u}_i^*\|$  is minimized only when  $a_i = \langle \mathbf{w}, \mathbf{u}_i^* \rangle$ .

Theorem 2.42. (Bessel inequality) Let  $\mathbf{u}_1^*, \mathbf{u}_2^*, \dots$  be an orthonormal system and let  $\mathbf{w}$  be arbitrary. Then

$$\sum_{i=1}^{n} |\langle \mathbf{w}, \mathbf{u}_{i}^{*} \rangle| \leq \|\mathbf{w}\|^{2}.$$

## 2.5 Banach Space

Definition 2.43. (Banach space) A Banach space is a complete normed vector space.

## 2.6 Hilbert Space

**Definition 2.44.** (Hilbert space) A Hilbert space is a inner product space that is also ce with respect to the distance function induced by the inner product complete metric space.

## 2.7 Single Variable Polynomial

**Definition 2.45.** Denoted by  $\mathbb{V}$  a linear space and x the variable, a (single variable) polynomial over  $\mathbb{V}$  is defined as

$$p_{n(x)} = \sum_{i=0}^n c_i x^i,$$

where  $c_0, ..., c_n \in \mathbb{V}$  are constants that called the **coefficients of the polynomial**.

**Definition 2.46.** Given a polynomial  $p(x) = \sum_{i=0}^{n} c_i x^i$  where  $c_n \neq 0$ , the degree of p(x) is marked as deg(p(x)) = n. In particular, the degree of zero polynomial p(x) = 0 is  $deg(0) = -\infty$ .

**Theorem 2.47.** Denoted by  $\mathbb{P}_n = \{p : \deg(p) \leq n\}$  the set of polynomials with degree no more than  $n \ (n \geq 0)$ , and  $\mathbb{P} = \bigcup_{n=0}^{\infty} \mathbb{P}_n$  the set contains all polynomials, then  $\mathbb{P}_n$  is a linear space and satisfies

$$\{0\}=\mathbb{P}_0\subset\mathbb{P}_1\subset\cdots\subset\mathbb{P}_n\subset\cdots\mathbb{P}$$

**Theorem 2.48.** (Vieta's formulas) Given a polynomial  $p \in \mathbb{P}_n$  with the coefficients being real or complex numbers, denoted by  $x_1, ..., x_n$  the complex roots, then

$$\begin{cases} x_1 + \dots + x_n &= -c_{n-1}, \\ \sum\limits_{i=1}^n \sum\limits_{j=i+1}^n x_i x_j &= c_{n-2}, \\ & \dots \\ \prod\limits_{i=1}^n x_i &= (-1)^n c_0, \end{cases}$$

where  $c_n = 1$  WLOG.

## 2.8 Orthogonal Polynomial

**Definition 2.49.** Given a weight function  $\rho(x):[a,b]\to\mathbb{R}^+$ , satisfies

$$\int_{a}^{b} \rho(x) dx > 0, \int_{a}^{b} x^{k} \rho(x) dx > 0 \text{ exists.}$$

The set of **orthogonal polynomials** on [a,b] with the weight function  $\rho(x)$  is defined as

$$\{p_i, i \in \mathbb{N}\} \subset L_\rho([a,b]) = \Bigg\{f(x): \int_a^b f^2(x) \rho(x) \mathrm{d}x < \infty \Bigg\}.$$

where  $\{p_i, i \in \mathbb{N}\}$  are calculate from  $\{x^n, n \in \mathbb{N}\}$  using the Gram-Schmidt process with the inner product

$$\forall f,g \in L_{\rho}([a,b]), \langle f,g \rangle = \int_{a}^{b} \rho(x)f(x)g(x)\mathrm{d}x.$$

**Theorem 2.50.** Orthogonal polynomials  $p_{n-1}(x), p_n(x), p_{n+1}(x)$  satisfies

$$p_{n+1}(x) = (a_n + b_n x)p_n(x) + c_n p_{n-1}(x).$$

where  $a_n, b_n, c_n$  are depends on [a, b] and  $\rho$ .

**Theorem 2.51.** The orthogonal polynomial  $p_n(x)$  on [a,b] with the weight function  $\rho(x)$  has n roots on (a,b).

#### 2.8.1 Legendre polynomial

**Definition 2.52.** The **Legendre polynomial** is defined on [-1,1] with the weight function  $\rho(x) = 1$ .

**Theorem 2.53.** The Legendre polynomials  $\{p_i(x), i \in \mathbb{N}\}$  satisfies

$$\int_{-1}^1 p_i(x)p_j(x)\mathrm{d}x = \begin{cases} \frac{2}{2i+1}, & i=j\\ 0, & i\neq j. \end{cases}$$

**Theorem 2.54.** The Legendre polynomial  $p_{n-1}, p_n, p_{n+1}$  satisfies

$$p_{n+1}(x) = \frac{2n+1}{n+1} x p_n(x) - \frac{n}{n+1} p_{n-1}(x).$$

**Example 2.55.** The first three terms of Legendre polynomials is

$$p_0(x)=1, \quad p_1(x)=x, \quad p_2(x)=\frac{3}{2}x^2-\frac{1}{2}.$$

#### 2.8.2 Chebyshev polynomial of the first kind

**Definition 2.56.** The Chebyshev polynomial of the first kind is defined on [-1,1] with the weight function  $\rho(x) = \frac{1}{\sqrt{1-x^2}}$ .

**Theorem 2.57.** The Chebyshev polynomials of the first kind  $\{p_i(x), i \in \mathbb{N}\}$  satisfies

$$\int_{-1}^1 \frac{1}{\sqrt{1-x^2}} p_i(x) p_j(x) \mathrm{d}x = \begin{cases} \pi & i=j=0 \\ \frac{\pi}{2} & i=j\neq 0 \\ 0 & i\neq j. \end{cases}$$

**Theorem 2.58.** The Chebyshev polynomial of the first kind  $p_{n-1}, p_n, p_{n+1}$  satisfies  $p_{n+1}(x) = 2xp_n(x) - p_{n-1}(x)$ .

**Example 2.59.** The first three terms of Chebyshev polynomials of the first kind is  $p_0(x) = 1$ ,  $p_1(x) = x$ ,  $p_2(x) = 2x^2 - 1$ .

#### 2.8.3 Chebyshev polynomial of the second kind

Definition 2.60. The Chebyshev polynomial of the second kind is defined on [-1,1] with the weight function  $\rho(x) = \sqrt{1-x^2}$ .

**Theorem 2.61.** The Chebyshev polynomials of the second kind  $\{p_i(x), i \in \mathbb{N}\}$  satisfies

$$\int_{-1}^1 \sqrt{1-x^2} p_i(x) p_j(x) \mathrm{d}x = \begin{cases} \frac{\pi}{2}, & i=j \\ 0, & i \neq j. \end{cases}$$

**Theorem 2.62.** The Chebyshev polynomial of the second kind  $p_{n-1}, p_n, p_{n+1}$  satisfies  $p_{n+1}(x) = 2xp_n(x) - p_{n-1}(x)$ .

**Example 2.63.** The first three terms of Chebyshev polynomials of the second kind is  $p_0(x) = 1$ ,  $p_1(x) = 2x$ ,  $p_2(x) = 4x^2 - 1$ .

#### 2.8.4 Laguerre polynomial

**Definition 2.64.** The **Laguerre polynomial** is defined on  $[0, +\infty)$  with the weight function  $\rho(x) = x^{\alpha} e^{-x}$ .

**Theorem 2.65.** The Laguerre polynomial  $\{p_i(x), i \in \mathbb{N}\}$  satisfies

$$\int_0^{+\infty} x^{\alpha} e^{-x} p_i(x) p_j(x) \mathrm{d}x = \begin{cases} \frac{\Gamma(n+\alpha+1)}{n!}, & i=j \\ 0, & i \neq j. \end{cases}$$

**Theorem 2.66.** For  $\alpha=0$ , the Laguerre polynomial  $p_{n-1},p_n,p_{n+1}$  satisfies  $p_{n+1}(x)=(2n+1-x)p_n(x)-n^2p_{n-1}(x).$ 

**Example 2.67.** For  $\alpha=0$ , the first three terms of Laguerre polynomial is  $p_0(x)=1, \quad p_1(x)=-x+1, \quad p_2(x)=x^2-4x+2.$ 

## 2.8.5 Hermite polynomial (probability theory form)

**Definition 2.68.** The **Hermite polynomial** is defined on  $(-\infty, +\infty)$  with the weight function  $\rho(x) = \left(\frac{1}{\sqrt{2\pi}}\right)e^{-\frac{x^2}{2}}$ .

**Theorem 2.69.** The Hermite polynomial  $\{p_i(x), i \in \mathbb{N}\}$  satisfies

$$\int_0^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} p_i(x) p_j(x) \mathrm{d}x = \begin{cases} n!, & i=j \\ 0, & i \neq j. \end{cases}$$

**Theorem 2.70.** For  $\alpha=0$ , the Hermite polynomial  $p_{n-1},p_n,p_{n+1}$  satisfies  $p_{n+1}(x)=xp_n(x)-np_{n-1}(x).$ 

**Example 2.71.** For  $\alpha=0$ , the first three terms of Hermite polynomial is  $p_0(x)=1, \quad p_1(x)=x, \quad p_2(x)=x^2-1.$ 

## **Ordinary Differential Equation**

**Definition 3.1.** Given a function F, an **explicit ordinary differential equation** of order n takes the form

$$\mathbf{F}(\mathbf{u}^{(n-1)},...,\mathbf{u}',\mathbf{u},t) = \mathbf{u}^{(n)},$$

an **implicit ordinary differential equation** of order n takes the form

$$\mathbf{F}\big(\mathbf{u}^{(n)},...,\mathbf{u}',\mathbf{u},t\big)=\mathbf{0},$$

**Definition 3.2.** An ODE is **autonomous** if it does not depend on the variable x.

**Definition 3.3.** A ODE is **linear** if can be written as

$$\sum_{i=0}^{n} A_i(t)\mathbf{u}^{(i)} + \mathbf{r}(t) = \mathbf{0},$$

where  $A_i(t)$  and r(t) are continuous functions of t.

**Definition 3.4.** A linear ODE is **homogeneous** if  $\mathbf{r}(t) = 0$ , and there is always the trivial solution  $\mathbf{u} \equiv \mathbf{0}$ .

**Definition 3.5.** An ODE is **separable** if can be written as

$$P_1(x)Q_1(y) = P_2(x)Q_2(y)\frac{\mathrm{d}y}{\mathrm{d}x}.$$

**Definition 3.6.** For initial value  $(\mathbf{u}_0, t_0) \in \mathbb{R}^n \times \mathbb{R}$ ,  $T \ge t_0$  and  $\mathbf{f} : \mathbb{R}^n \times [t_0, T] \to \mathbb{R}^n$ , the **initial value problem** (IVP) is to find  $u(t) \in C^1([t_0, T])$  satisfies

$$\mathbf{u}' = \mathbf{f}(\mathbf{u}, t), \quad \mathbf{u}(t_0) = \mathbf{u}_0.$$

**Theorem 3.7.** Given an IVP, denoted by  $u_0 = u, u_i, i = 1, ..., n$  the *i*th derivative of u, then the ODE

$$\mathbf{F}(\mathbf{u}^{(n-1)},...,\mathbf{u}',\mathbf{u},t) = \mathbf{u}^{(n)}$$

can be written as an IVP,

$$\begin{pmatrix} \mathbf{u}_0' \\ \vdots \\ \mathbf{u}_{n-2}' \\ \mathbf{u}_{n-1}' \end{pmatrix} = \begin{pmatrix} \mathbf{u}_1 \\ \vdots \\ \mathbf{u}_{n-1} \\ \mathbf{F}(\mathbf{u}_{n-1},...,\mathbf{u}_1,\mathbf{u}_0,t) \end{pmatrix}.$$

#### 3.1 General Theory

**Theorem 3.8.** (Peano existence theorem) Given an IVP with an open set  $\Omega \subseteq \mathbb{R}^n \times \mathbb{R}$ , if  $\mathbf{f}(\mathbf{u},t) \in C(\Omega)$  and  $(\mathbf{u}_0,t_0) \in \Omega$ , then there is a local solution  $\tilde{\mathbf{u}}: U \to \mathbb{R}^n$  satisfies the IVP, where U is a neighbourhood of  $t_0$  in  $\mathbb{R}$ .

**Theorem 3.9.** (Picard–Lindelöf theorem) Given an IVP with an open set  $\Omega \subseteq \mathbb{R}^n \times \mathbb{R}$ , if  $\mathbf{f}(\mathbf{u},t): \Omega \to \mathbb{R}^n$  is continuous in t and Lipschitz continuous in  $\mathbf{u}$  and  $(\mathbf{u}_0,t_0) \in \Omega$ , then there is a unique local solution  $\tilde{\mathbf{u}}: U \to \mathbb{R}^n$  satisfies the IVP, where U is a neighbourhood of  $t_0$  in  $\mathbb{R}$ .

Theorem 3.10. (Comparison theorem) Given two IVPs

$$\mathbf{u}_1' = \mathbf{f}_1(\mathbf{u}_1, t), \quad \mathbf{u}_1(t_0) = \mathbf{u}_0,$$

$$\mathbf{u}_2'=\mathbf{f}_2(\mathbf{u}_2,t),\quad \mathbf{u}_2(t_0)=\mathbf{u}_0,$$

and a open set  $\Omega \subseteq \mathbb{R}^n \times \mathbb{R}$ , if for all  $(\mathbf{u}, t) \in \Omega$ ,  $\mathbf{f}_1(\mathbf{u}, t) < \mathbf{f}_2(\mathbf{u}, t)$ , then

$$\begin{cases} \mathbf{u}_1(t) > \mathbf{u}_2(t), & t > t_0, (\mathbf{u}_1(t),t), (\mathbf{u}_2(t),t) \in \Omega, \\ \mathbf{u}_1(t) < \mathbf{u}_2(t), & t < t_0, (\mathbf{u}_1(t),t), (\mathbf{u}_2(t),t) \in \Omega, \end{cases}$$

#### 3.2 Exact solutions

**Example 3.11.** Given an initial point  $(y_0, x_0)$ , and a separable equation

$$P_1(x)Q_1(y) = P_2(x)Q_2(y)\frac{\mathrm{d}y}{\mathrm{d}x},$$

the solution of the equation is

$$\int_{x_0}^x \frac{P_1(t)}{P_2(t)}\mathrm{d}t = \int_{y_0}^y \frac{Q_2(t)}{Q_1(t)}\mathrm{d}t.$$

**Example 3.12.** Given an initial point  $(y_0, x_0)$ , and a first-order homogeneous equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = F\left(\frac{y}{x}\right),$$

the solution of the equation is

$$\int_{x_0}^x \frac{1}{x} \mathrm{d}x = \int_{\frac{y_0}{x_0}}^{\frac{y}{x}} \frac{1}{F(t) - t} \mathrm{d}t.$$

**Example 3.13.** Given an initial point  $(y_0, x_0)$ , and a first-order separable equation

$$yM(xy) + xN(xy)\frac{\partial y}{\partial x} = 0,$$

the solution of the equation is

$$\int_{x_0}^x \frac{1}{x} \mathrm{d}x = \int_{y_0 x_0}^{yx} \frac{N(t)}{t(N(t) - M(t))} \mathrm{d}t,$$

where C is a constant.

**Example 3.14.** Given a *n*th-order, linear, inhomogeneous, constant coefficients equation

$$\sum_{i=0}^{n} a_i \frac{\partial^i y}{\partial x^i} = 0,$$

the solution of the equation is

$$\sum_{i=1}^k \left(\sum_{j=1}^{m_i} c_{ij} x^{j-1}\right) e^{\alpha_i x},$$

where  $\left\{ c_{ij}\right\}$  are constants and  $\alpha_{i}$  is the root of

$$\sum_{i=0}^{n} a_i x^i = 0$$

that repeated  $m_i$  times.

#### 3.3 Important ODEs

#### 3.3.1 Bernoulli differential equation

Definition 3.15. The Bernoulli differential equation takes the form

$$y' + P(x)y = Q(x)y^n,$$

where  $n \neq 0, 1$ .

**Theorem 3.16.** The solution of the Bernoulli differential equation is

$$y = (z(x))^{\frac{1}{1-n}},$$

where z(x) is the solution of

$$z' + (1-n)P(x)z + (1-n)Q(x) = 0.$$

#### 3.3.2 Riccati equation

Definition 3.17. The Riccati equation takes the form

$$y' = q_0(x) + q_1(x)y + q_2(x)y^2,$$

where  $q_0(x) \neq 0, q_2(x) \neq 0$ .

**Theorem 3.18.** If u is one particular solution of the Riccati equation, the general solution is obtained as  $y = u + \frac{1}{v}$ , where v satisfies

$$v' + (q_1(x) + 2q_2(x)u)v + q_2(x).$$

## Partial Differential Equation

**Definition 4.1.** A 2th order partial differential equation in  $\mathbb{R}^n$  takes the form

$$\sum_{i=0}^n \sum_{j=0}^n a_{ij}(\mathbf{x}) u_{x_i x_j} + \sum_{i=0}^n b_i(\mathbf{x}) u_{x_i} + c(\mathbf{x}) u(\mathbf{x}) = f(\mathbf{x}),$$

where  $a_{ij}(\mathbf{x}) = a_{ji}(\mathbf{x})$ .

**Definition 4.2.** Let  $A(\mathbf{x}) = (a_{ij}(\mathbf{x}))_{n \times n}$  be a symmetric matrix, and  $\lambda_1 \ge \cdots \ge \lambda_n$  the eigenvalues of A at  $\mathbf{x}_0$ , then

- The equation is **elliptic** at  $\mathbf{x}_0$  if for i=1,...,n,  $\lambda_i < 0$
- The equation is **parabolic** at  $\mathbf{x}_0$  if  $\lambda_1 = 0$  and for  $i = 2, ..., n, \lambda_i < 0$ ;
- The equation is hyperbolic at  $\mathbf{x}_0$  if  $\lambda_1 > 0$  and for  $i = 2, ..., n, \lambda_i < 0$ ;

**Definition 4.3.** The boundary conditions for the unknown function y, constants  $c_0, c_1$  specified by the boundary conditions, and known scalar functions g, h specified by the boundary conditions, where

- Dirichlet boundary condition: y = g;

- Neumann boundary condition: ∂y/∂n = g;
  Robin boundary condition: c₀y + c₁∂y/∂n = g where c₀, c₁ ≠ 0;
  Mixed boundary condition: y = g and c₀y + c₁∂y/∂n = h where c₀, c₁ ≠ 0;
  Cauchy boundary condition: y = g and ∂y/∂n = h.

#### Poisson's Equation 4.1

**Definition 4.4.** A **Poisson's equation** in  $\mathbb{R}^n$  takes the form

$$-\Delta u = f(\mathbf{x}),$$

where  $\Delta$  is the Laplace operator,  $u, f : \mathbb{R}^n \to \mathbb{R}$  and  $\mathbf{x} \in \mathbb{R}^n$ .

#### 4.2 Heat Equation

**Definition 4.5.** A **Heat equation** in  $\mathbb{R}^n \times \mathbb{R}$  takes the form

$$\frac{\partial u}{\partial t} - a^2 \Delta u = f(\mathbf{x},t),$$

where  $\Delta$  is the Laplace operator on  $\mathbb{R}^n$ ,  $u, f : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$  and  $\mathbf{x} \in \mathbb{R}^n$ .

#### Wave Equation 4.3

**Definition 4.6.** A Wave equation in  $\mathbb{R}^n \times \mathbb{R}$  takes the form

$$\frac{\partial^2 u}{\partial t^2} - a^2 \Delta u = f(\mathbf{x},t),$$

where  $\Delta$  is the Laplace operator on  $\mathbb{R}^n$ ,  $u, f : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$  and  $\mathbf{x} \in \mathbb{R}^n$ .

## **Probability Theory**

**Definition 5.1.** A probability space is a triple  $(\Omega, \mathcal{F}, P)$  consisting of

- the sample space  $\Omega$ : an arbitrary non-empty set;
- the  $\sigma$ -algebra  $\mathcal{F} \subseteq 2^{\Omega}$ : a set of subsets of  $\Omega$ , called events, such that
  - $\mathcal{F}$  contains the sample space:  $\Omega \in \mathcal{F}$ ;
  - $\mathcal{F}$  is closed under complements: if  $A \in \mathcal{F}$ , then also  $(\Omega \setminus A) \in \mathcal{F}$ ;
  - $\mathcal{F}$  is closed under countable unions: if  $A_i \in \mathcal{F}, i=1,...$ , then also  $(\bigcup_{i=1}^{\infty} A_i) \in \mathcal{F}$ ;
- the probability measure  $P: \mathcal{F} \to [0,1]$ : a function such that
  - ▶ P is countably additive (also called σ-additive): if  $\{A_i\}_{i=1}^{\infty} \subseteq \mathcal{F}$  is a countable collection of pairwise disjoint sets, then  $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$ ;
  - the measure of the entire sample space is equal to one:  $P(\Omega) = 1$ .

#### 5.1 Characteristic functions

## 5.2 Probability limit theorems

## **Stochastic Process**

- 6.1 Poisson process
- 6.2 Markov chain

Chapter 7
Statistics

## Graph

- 8.1 Shortest Path
- 8.2 Matching
- 8.3 Network Flow
- 8.4 Tree

## Combinatorics

- 9.1 Generating function
- 9.2 Inclusion-exclusion principle
- 9.3 Special Numbers
- 9.3.1 Catalan number
- 9.3.2 Stirling number

# Part 2 Scientific Computing

## Interpolation

## 10.1 Polynomial Interpolation

#### 10.1.1 Lagrange formula

**Definition 10.1.** To interpolate given points  $(x_0, f(x_0)), ..., (x_n, f(x_n))$ , the Lagrange formula is

$$p_n(x) = \sum_{i=0}^n f(x_i) l_i(x),$$

where the elementary Lagrange interpolation polynomial (or fundamental polynomial) for pointwise interpolation  $l_k(x)$  is

$$l_k(x) = \prod_{i=0}^n \frac{x - x_i}{x_k - x_i}.$$

In particular, for  $n = 0, l_0(x) = 1$ .

#### 10.1.2 Newton formula

**Definition 10.2.** The kth divided difference  $(k \in \mathbb{N}^+)$  on the table of divided differences

where the divided differences satisfy

$$\begin{split} f[x_0] &= f(x_0), \\ f[x_0,...,x_k] &= \frac{f[x_1,...,x_k] - f\left[x_0,...,x_{\{k-1\}}\right]}{x_k - x_0}. \end{split}$$

Corollary 10.3. Suppose  $(i_0,...,i_k)$  is a permutation of (0,...,k). Then

$$f[x_0,...,x_k] = f\Big[x_{i_0},...,x_{i_k}\Big].$$

**Theorem 10.4.** For distinct points  $x_0, ..., x_n$  and x, we have

$$f(x) = f[x_0] + f[x_0, x_1](x - x_0) + \dots + f[x_0, ..., x_n] \prod_{i=0}^{n-1} (x - x_i) + f[x_0, ..., x_n, x] \prod_{i=0}^{n} (x - x_i).$$

**Definition 10.5.** The **Newton formula** for interpolating the points  $(x_0, f(x_0)), ..., (x_n, f(x_n))$  is

$$p_n(x) = f[x_0] + f[x_0, x_1](x - x_0) + \dots + f[x_0, ..., x_n] \prod_{i=0}^{n-1} (x - x_i).$$

#### 10.1.3 Neville-Aitken algorithm

**Definition 10.6.** Denote  $p_0^{[i]}(x) = f(x_i)$  for i = 0, ..., n. For all k = 0, ..., n - 1 and i = 0, ..., n - k - 1, define

$$p_{k+1}^{[i]}(x) = \frac{(x-x_i)p_k^{[i+1]}(x) - \big(x-x_{x+k+1}\big)p_k^{[i]}(x)}{x_{i+k+1}-x_i}.$$

Then each  $p_k^{[i]}(x)$  is the interpolating polynomial for the function f at the points  $x_i, ..., x_{\{i+k\}}$ . In particular,  $p_n^{[0]}(x)$  is the interpolating polynomial of degree n for the function f at the points  $x_0, ..., x_n$ .

#### 10.1.4 Hermite interpolation

**Definition 10.7.** Given distinct points  $x_0, ..., x_k$  in [a, b], non-negative integers  $m_0, ..., m_k$ , and a function  $f \in C^M[a, b]$  where  $M = \max_{i=0,...,k} (m_i)$ , the **Hermite interpolation problem** seeks a polynomial p(x) of the lowest degree satisfies

$$\forall i \in \{0,...,k\}, \forall \mu \in \{0,...,m_i\}, p^{(\mu)}(x_i) = f^{(\mu)}(x_i).$$

**Definition 10.8.** (Generalized divided difference) Let  $x_0, ..., x_k$  be k+1 pairwise distinct points with each  $x_i$  repeated  $m_i + 1$  times; write  $N = k + \sum_{i=0}^k m_i$ . The Nth divided difference associated with these points is the cofficient of  $x^N$  in the polynomial p that uniquely solves the Hermite interpolation problem.

Corollary 10.9. The nth divided difference at n+1 "confluent" (i.e. identical) points is

$$f[x_0,...,x_0] = \frac{1}{n!}f^{(n)}(x_0),$$

where  $x_0$  is repeated n+1 times on the left-hand side.

#### 10.1.5 Approximation

**Definition 10.10.** Given condition functions  $c_0, ..., c_k : \mathbb{P}_n \to \mathbb{R}^+$ , the **Approximation problem** seeks a polynomial  $p_n(x)$  of the given degree n satisfies a unconstrained optimization

$$\min_{p_n \in \mathbb{P}_n} \sum_{i=0}^k c_i \Big( p_n^{(m_i)} \Big).$$

where condition function c(p) includes but is not limited to

$$|p^{(m)}(x)|, (p_n^{(m)}(x))^2, \int_a^b |p^{(m)}| dx, \int_a^b (p^{(m)})^2 dx.$$

**Example 10.11.** For non-negative integers  $m_0, ..., m_k$  and condition functions  $c_i(p_n) = (p_n^{(m_i)}(x))^2$ , denote by

$$p_n(x) = \sum_{i=0}^n c_i x^i$$

the polynomial of the given degree n, then the mth derivative of  $p_n$  is

$$p_n^{(m)}(x) = \sum_{i=m}^n \frac{i!}{(i-m)!} c_i x^{i-m}.$$

All above implies the least squares system

$$\begin{cases} p_n^{(m_0)}(x) = \sum_{i=m_0}^n \frac{i!}{(i-m_0)!} c_i x^{i-m_0} = 0, \\ \dots \\ p_n^{(m_k)}(x) = \sum_{i=m_k}^n \frac{i!}{(i-m_k)!} c_i x^{i-m_k} = 0, \end{cases}$$

which can be solved by algorithms such as Householder transformation.

#### 10.1.6 Error analysis

**Theorem 10.12.** Let  $f \in C^n[a, b]$  and suppose that  $f^{(n+1)}(x)$  exists at each point of (a, b). Let  $p_n(x) \in \mathbb{P}_n$  denote the unique polynomial that coincides with f at  $x_0, ..., x_n$ . Define

$$R_n(f;x) = f(x) - p_n(x), \quad$$

as the Cauchy remainder of the polynomial interpolation.

If  $a \le x_0 < \cdots < x_n \le b$ , then there exists some  $\xi \in (a,b)$  satisfies

$$R_n(f;x) = \frac{f^{\{(n+1)\}}(xi)}{(n+1)!} \prod_{i=0}^n (x-x_i)$$

where the value of  $\xi$  depends on  $x, x_0, ..., x_n$  and f.

**Theorem 10.13.** For the Hermite interpolation problem, denote  $N = k + \sum_{i=0}^{k} m_i$ . Denote by  $p_N(x) \in \mathbb{P}_N$  the unique solution of the problem. Suppose  $f^{(N+1)}(x)$  exists in (a,b). Then there exists some  $\xi \in (a,b)$  satisfies

$$R_N(f;x) = \frac{f^{(N+1)}(\xi)}{(N+1)!} \prod_{i=0}^k (x-x_i)^{m_i+1}.$$

#### 10.2 Spline

**Definition 10.14.** Given nonnegative integers n, k, and a strictly increasing sequence  $a = x_1 < \cdots < x_N = b$ , the set of **spline** functions of degree n and smoothness class k relative to the partition  $\{x_i\}$  is

$$\mathbb{S}_{n}^{k} = \left\{s: s \in C^{k}[a,b]; \forall i \in \{1,...,N-1\}, s \mid_{[x_{i},x_{i+1}]} \in \mathbb{P}_{n}\right\},$$

where  $x_i$  is the **knot** of the spline.

#### 10.2.1 Cubic spline

**Definition 10.15. (Boundary conditions of splines)** The followings are common boundary conditions of cubic splines.

- The complete cubic spline s satisfies s'(a) = f'(a), s'(b) = f'(b);
- The cubic spline with specified second derivatives s satisfies s''(a) = f''(a), s''(b) = f''(b);
- The natural cubic spline s satisfies s''(a) = s''(b) = 0;
- The not-a-knot cubic spline s satisfies s'''(x) exists at  $x = x_2$  and  $x = x_{N-1}$ .
- The **periodic cubic spline** s satisfies s(a) = s(b), s'(a) = s'(b), s''(a) = s''(b).

**Theorem 10.16.** Denote  $m_i = s'(x_i), M_i = s''(x_i)$  for  $s \in \mathbb{S}^2_3$ , then

$$\forall i = 2, 3, ..., N-1, \quad \lambda_i m_{i-1} + 2m_i + \mu_i m_i + 1 = 3\mu_i f[x_i, x_{i+1}] + 3\lambda_i f[x_{i-1}, x_i],$$

$$\forall i = 2, 3, ..., N - 1, \quad \mu_i M_{i-1} + 2M_i + \lambda_i m_{i+1} = 6f[x_{i-1}, x_i, x_{i+1}],$$

where

$$\mu_i = \frac{x_i - x_{i-1}}{x_{i+1} - x_{i-1}}, \quad \lambda_i = \frac{x_{i+1} - x_i}{x_{i+1} - x_{i-1}}.$$

In particular,  $m_i$  and  $M_i$  should be replaced to the derivatives given at the boundary.

**Theorem 10.17.** Cubic spline  $s \in \mathbb{S}_3^2$  from the linear system of  $\lambda_i, \mu_i, m_i, M_i$  and the boundary conditions.

#### 10.2.2 B-spline

Definition 10.18. B-splines are defined recursively by

$$B_i^{n+1}(x) = (x-x_{i-1})\big(x_{i+n}-x_{i-1}\big)B_i^n(x) + \frac{x_{i+n+1}-x}{x_{i+n+1}-x_{i-1}}B_{i+1}^n(x),$$

where recursion base is the B-spline of degree zero

$$B_i^0(x) = \begin{cases} 1, & x \in (x_{i-1}, x_i], \\ 0, & \text{otherwise.} \end{cases}$$

**Theorem 10.19.** The  $\{B_i^n(x)\}$  forms a basis of  $\mathbb{S}_n^{n-1}$ .

**Definition 10.20.** For  $N \in \mathbb{N}^*$ , the support of a  $B_i^n(x)$  is

$$\mathrm{supp}\ \{B_i^n(x)\} = \overline{\{x \in \mathbb{R} : B_i^n(x) \neq 0\}} = \big[x_{i-1}, x_{i+n}\big].$$

Theorem 10.21. (Integrals of B-splines) The average of a B-spline over its support only depends on its degree,

$$\frac{1}{t_{i+n}-t_{i-1}}\int_{t_{i-1}}^{t_{i+n}}B_i^n(x)\mathrm{d}x=\frac{1}{n+1}.$$

Theorem 10.22. (Derivatives of B-splines) For  $n \geq 2$ , we have

$$\forall x \in \mathbb{R}, \quad \frac{\mathrm{d}}{\mathrm{d}x} B_i^n(x) = \frac{n B_i^{n-1}(x)}{x_{i+n-1} - x_{i-1}} - \frac{n B_{i+1}^{n-1}(x)}{x_{i+n} - x_i}.$$

For n=1, it holds for all x except  $x_{i-1}, t_i, t_{i+1}$ , where the derivative of  $B_i^1(x)$  is not defined.

#### 10.2.3 Error analysis

## Handbook of Applied Mathematics

**Theorem 10.23.** Suppose a function  $f \in C^4[a, b]$ , is interpolated by a complete cubic spline or a cubic spline with specified second derivatives at its end points. Then

$$\forall m=0,1,2, |f^{(m)}(x)-s^{(m)}(x)| \leq c_m h^{4-m} \max_{x \in [a,b]} |f^{(4)}(x)|,$$

where 
$$c_0 = \frac{1}{16}, c_1 = c_2 = \frac{1}{2}$$
 and  $h = \max_{i=1,\dots,N-1} \lvert x_{i+1} - x_i \rvert.$ 

## Integration

**Definition 11.1.** A weighted quadrature formula  $I_n(f)$  is a linear function

$$I_n(f) = \sum_{i=1}^n w_i f(x_i),$$

which approximates the integral of a function  $f \in C[a, b]$ ,

$$I(f) = \int_{a}^{b} \rho(x)f(x)\mathrm{d}x,$$

where the weight function  $\rho \in [a, b]$  satisfies  $\forall x \in (a, b), \rho(x) > 0$ . The points  $\{x_i\}$  at which the integrand f is evaluated are called nodes or abscissas, and the multipliers  $\{w_i\}$  are called weights or coefficients.

**Definition 11.2.** A weighted quadrature formula has (polynomial) degree of exactness  $d_E$  iff

$$\forall f \in \mathbb{P}_{d_E}, \quad E_n(f) = 0,$$

$$\exists g \in \mathbb{P}_{d_n+1}, \text{ s.t. } E_n(g) \neq 0$$

where  $\mathbb{P}_d$  denotes the set of polynomials with degree no more than d.

**Theorem 11.3.** A weighted quadrature formula  $I_n(f)$  satisfies  $d_E \leq 2n-1$ .

**Definition 11.4.** The error or remainder of  $I_n(f)$  is

$$E_n(f) = I(f) - I_n(f),$$

where  $I_n(f)$  is said to be convergent for C[a,b] iff

$$\forall f \in C[a, b], \lim_{n \to +\infty} E_n(f) = 0.$$

**Theorem 11.5.** Let  $x_1, ..., x_n$  be given as distinct nodes of  $I_n(f)$ . If  $d_E \ge n-1$ , then its weights can be deduced as

$$\forall k \in \{1,...,n\}, w_k = \int_a^b \rho(x) l_k(x) \mathrm{d}x,$$

where  $l_k(x)$  is the elementary Lagrange interpolation polynomial for pointwise interpolation applied to the given nodes.

#### Newton-Cotes Formulas 11.1

**Definition 11.6.** A Newton-Cotes formula is a formula based on approximating f(x) by interpolating it on uniformly spaced nodes  $x_1,...,x_n \in [a,b]$ .

#### 11.1.1 Midpoint rule

**Definition 11.7.** The midpoint rule is a formula based on approximating f(x) by the constant  $f\left(\frac{a+b}{2}\right)$ . For  $\rho(x) \equiv 1$ , it is simply

$$I_M(f)=(b-a)f\bigg(\frac{a+b}{2}\bigg).$$

**Theorem 11.8.** For  $f \in C^2[a, b]$ , with weight functino  $\rho \equiv 1$ , the error (remainder) of midpoint rule satisfies

$$\exists \xi \in [a,b], \text{ s.t. } E_M(f) = \frac{\left(b-a\right)^3}{24}f''(\xi).$$

Corollary 11.9. The midpoint rule has  $d_E = 1$ .

#### 11.1.2 Trapezoidal rule

**Definition 11.10.** The **trapezoidal rule** is a formula based on approximating f(x) by the straight line that connects (a, f(a)) and (b, f(b)). For  $\rho(x) \equiv 1$ , it is simply

$$I_T(f) = \frac{b-a}{2}(f(a)+f(b)).$$

**Theorem 11.11.** For  $f \in C^2[a, b]$ , with weight functino  $\rho \equiv 1$ , the error (remainder) of trapezoidal rule satisfies

$$\exists \xi \in [a,b], \ \text{s.t.} \ E_T(f) = -\frac{{(b-a)}^3}{12} f''(\xi).$$

Corollary 11.12. The trapezoidal rule has  $d_E=1$ .

#### 11.1.3 Simpson's rule

**Definition 11.13.** The **Simpson's rule** is a formula based on approximating f(x) by the quadratic polynomial that goes through the points  $(a, f(a)), \left(\frac{a+b}{2}, f\left(\frac{a+b}{2}\right)\right)$  and (b, f(b)). For  $\rho(x) \equiv 1$ , it is simply

$$I_S(f) = \frac{b-a}{6} \bigg( f(a) + 4f\bigg(\frac{a+b}{2}\bigg) + f(b) \bigg).$$

**Theorem 11.14.** For  $f \in C^4[a, b]$ , with weight functino  $\rho \equiv 1$ , the error (remainder) of Simpson's rule satisfies

$$\exists \xi \in [a,b], \ \text{s.t.} \ E_T(f) = -\frac{(b-a)^5}{2880} f^{(4)}(\xi).$$

Corollary 11.15. The Simpson's rule has  $d_E = 3$ .

#### 11.2 Gauss Formulas

**Theorem 11.16.** For an interval [a,b] and a weight function  $\rho:[a,b]\to\mathbb{R}$ , the nodes for gauss formula  $I_n(f)$  is the root of the *n*th order orthogonal polynomial on [a,b] with the weight function  $\rho(x)$ .

**Theorem 11.17.** A Gauss formula  $I_n(f)$  has  $d_E = 2n - 1$ .

## **Optimization**

## 12.1 One-dimensional Line Search

**Definition 12.1.** Given a function  $f: \mathbb{R}^n \to \mathbb{R}$ , a initial point  $\mathbf{x}$  and a direction  $\mathbf{d}$ , denoted by  $\varphi(\alpha) = f(\mathbf{x} + \alpha \mathbf{d})$ , a **one-dimensional line search** method solves the problem

$$\varphi(\alpha) = \min_{t \in \mathbb{R}^+} \varphi(t).$$

Method 12.2. (Success-failure method) For a one-dimensional line search problem, the success-failure method is an inexact one-dimensional line search method to solve the interval  $[a, b] \in [0, +\infty)$  that exact solution  $\alpha^* \in [a, b]$ , where we

- (1) Choose initial value  $\alpha_0 \in [0, +\infty)$ ,  $h_0 > 0$ , t > 0 (commonly choose t = 2), calculate  $\varphi(\alpha_0)$  and let k = 0;
- (2) Let  $\alpha_{k+1} = \alpha_k + h_k$  and calculate  $\varphi(\alpha_{k+1})$ , if  $\varphi(\alpha_{k+1}) < \varphi(\alpha_k)$ , then go to (3), otherwise go to (4);
- (3) Let  $h_{k+1}=th_k,$   $\alpha=\alpha_k,$  k=k+1, and go to (2);
- (4) If k = 0, then let  $h_k = -h_k$  and go to (2), otherwise stop and the solution [a, b] satisfies  $a = \min\{\alpha, \alpha_k\}, \quad b = \max\{\alpha, \alpha_k\}.$

**Definition 12.3.** A general form of one-dimensional line search method is the following three steps:

- (1) **Initialization**: given initial point **x** and acceptable error  $\varepsilon > 0$ ,  $\delta > 0$ ;
- (2) **Iteration**: calculate the direction **d** and step size  $\alpha$  that  $f(\mathbf{x} + \alpha \mathbf{d}) = \min_{t \in \mathbb{R}^+} f(\mathbf{x} + t\mathbf{d})$  and let  $\mathbf{x} = \mathbf{x} + \alpha \mathbf{d}$ ;
- (3) **Stop condition**: if  $\|\nabla f(\mathbf{x})\| \leq \varepsilon$  or  $U_{\mathbb{R}^n}(x, \delta)$  includes the exact solution, then the current  $\mathbf{x}$  is the solution.

where the iteration step are repeated until  $\mathbf{x}$  satisfies the stop condition.

**Definition 12.4.** Given a method, denoted by  $\{\mathbf{x}_k\}$  the sequence of the iteration and  $\mathbf{x}^*$  the exact solution, the method is  $(\mathbf{Q}\text{-})$  linear convergence if

$$\lim_{k \rightarrow \infty} \frac{\|\mathbf{x}_{k+1} - \mathbf{x}^*\|}{\|\mathbf{x}_k - \mathbf{x}^*\|} \in (0,1),$$

the method is (Q-)sublinear convergence if

$$\lim_{k \rightarrow \infty} \frac{\|\mathbf{x}_{k+1} - \mathbf{x}^*\|}{\|\mathbf{x}_k - \mathbf{x}^*\|} = 1,$$

the method is (Q-)superlinear convergence if

$$\lim_{k \to \infty} \frac{\|\mathbf{x}_{k+1} - \mathbf{x}^*\|}{\|\mathbf{x}_k - \mathbf{x}^*\|} = 0.$$

For a superlinear convergence method, the method is r-order linear convergence if

$$\lim_{k \to \infty} \frac{\|\mathbf{x}_{k+1} - \mathbf{x}^*\|}{\|\mathbf{x}_k - \mathbf{x}^*\|^r} \in [0, +\infty),$$

where when r = 2 is called (Q-)quadratic convergence.

Remark 12.5. There is another R-convergence for judging a sequence which use another Qconvergence sequence as the boundary of  $\{\|\mathbf{x}_k - x^*\|\}$ , but is not needed here.

Method 12.6. (Golden section method) Given the initial point x, an interval [a, b] and  $\delta > 0$ ,

- The iteration step is:
  - (1) Calculate the two testing points  $\lambda = a + (1 k)(b a)$  and  $\mu = a + k(b a)$ where  $k = \frac{\sqrt{5}-1}{2}$  is the golden ratio;
  - (2) If  $\varphi(\lambda) > \varphi(\mu)$ , let  $a = \lambda$ , otherwise let  $b = \mu$ .
- The stop condition is  $b a \le \delta$ ;
- The solution is  $\mathbf{x} + \frac{a+b}{2}\mathbf{d}$ .

**Theorem 12.7.** The golden section method is a **linear convergent** method.

Method 12.8. (Fibonacci method) Given the initial point x, an interval [a, b] and  $\delta > 0$ ,

- The k-th iteration step is:
  - (1) Calculate the two testing points  $\lambda = a + \frac{F_k}{F_{k+2}}(b-a)$  and  $\mu = a + \frac{F_{k+1}}{F_{k+2}}(b-a)$ where  $F_k$  is the k-th fibonacci number and k;
  - (2) If  $\varphi(\lambda) > \varphi(\mu)$ , let  $a = \lambda$ , otherwise let  $b = \mu$ .
- The stop condition is  $b a \le \delta$ ;
- The solution is  $\mathbf{x} + \frac{a+b}{2}\mathbf{d}$ .

**Theorem 12.9.** The Fibonacci method is a **linear convergent** method.

Method 12.10. (Bisection method) Given the initial point x, an interval [a, b] and  $\delta > 0$ ,

- The iteration step is:
  - (1) Calculate the midpoint  $m = \frac{a+b}{2}$  and  $\varphi(m)$ ;
  - (2) If  $\nabla f(m) \cdot d < 0$ , let a = m, otherwise let b = m.
- The stop condition is  $b a \le \delta$ ;
- The solution is  $\mathbf{x} + \frac{a+b}{2}\mathbf{d}$ .

**Theorem 12.11.** The bisection method is a **linear convergent** method.

Method 12.12. (Newton's method) Given the initial point x and  $\varepsilon > 0$ ,

- The iteration step is:
- (1) Calculate  $(\nabla^2 f(\mathbf{x}))^T \cdot \mathbf{d}$  and  $(\nabla f(\mathbf{x}))^T \cdot \mathbf{d}$ ; (2) Let  $\mathbf{x} = \mathbf{x} \frac{(\nabla f(\mathbf{x}))^T \cdot \mathbf{d}}{(\nabla^2 f(\mathbf{x}))^T \cdot \mathbf{d}}$ ; The stop condition is  $(\nabla f(\mathbf{x}))^T \cdot \mathbf{d} \leq \varepsilon$ ;
- The solution is  $\mathbf{x}$ .

**Theorem 12.13.** The Newton's method is a quadratic convergent method.

## Unconstrained Optimization

**Definition 12.14.** Given a convex function  $f : \mathbb{R}^n \to \mathbb{R}$ , a unconstrained optimization method solves the problem

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$$

by

- (1) **Initialization**: given initial point **x** and acceptable error  $\varepsilon > 0$ ,  $\delta > 0$ ;
- (2) **Iteration**: calculate the direction **d** and step size  $\alpha$ , then let  $\mathbf{x} = \mathbf{x} + \alpha \mathbf{d}$ ;
- (3) **Stop condition**: if  $\|\nabla f(\mathbf{x})\| \leq \varepsilon$  or  $U_{\mathbb{R}^n}(\mathbf{x}, \delta)$  includes the exact solution, then the current  $\mathbf{x}$  is the solution.

Method 12.15. (Gradient descent method) Given the initial point x and  $\varepsilon > 0$ ,

- The iteration step is:
  - (1) Calculate  $\mathbf{d} = -\nabla f(\mathbf{x})$  and step size  $\alpha$  by a line search method;
  - (2) Let  $\mathbf{x} = \mathbf{x} + \alpha \mathbf{d}$ ;
- The stop condition is  $\|\nabla f(\mathbf{x})\| \leq \varepsilon$ ;
- The solution is  $\mathbf{x}$ .

**Theorem 12.16.** The gradient descent method is a **linear convergent** method.

Method 12.17. (Quasi-Newton method) Given the initial point  $\mathbf{x}$ ,  $\varepsilon > 0$  and a matrix  $H \in \mathbb{R}^{n \times n}$  (usually the identity matrix),

- The k-th iteration step is:
  - (1) Calculate  $\mathbf{d}_k = -H_k \nabla f(\mathbf{x}_k)$  and step size  $\alpha_k$  by a line search method;
  - (2) Let  $\mathbf{x}_k = \mathbf{x}_k + \alpha_k \mathbf{d}_k$  and  $H_{k+1} = r_k(H_k)$  where the function  $r_k$  is a **update** depends on  $\mathbf{x}_k$ ,  $\mathbf{x}_{k+1}$ ,  $\nabla f(\mathbf{x}_k)$  and  $\nabla f(\mathbf{x}_{k+1})$ ;
- The stop condition is  $\|\nabla f(\mathbf{x}_k)\| \le \varepsilon$ ;
- The solution is  $\mathbf{x}_k$  that satisfies the stop condition.

**Definition 12.18.** Let  $\mathbf{s}_k = \mathbf{x}_{k+1} - \mathbf{x}_k$  and  $\mathbf{y}_k = \nabla f(\mathbf{x}_{k+1}) - \nabla f(\mathbf{x}_k)$ , the **Symmetric Rank-1 update (SR1)** is

$$H_{k+1} = H_k + \frac{\left(\mathbf{s}_k - H_k \mathbf{y}_k\right) \left(\mathbf{s}_k - H_k \mathbf{y}_k\right)^T}{\left(\mathbf{s}_k - H_k \mathbf{y}_k\right)^T \mathbf{y}_k}.$$

The **DFP update** is a rank-2 update defined as

$$H_{k+1} = H_k + \frac{\mathbf{s}_k \mathbf{s}_k^T}{\mathbf{s}_k^T \mathbf{y}_k} - \frac{H_k \mathbf{y}_k \mathbf{y}_k^T H_k}{\mathbf{y}_k^T H_k \mathbf{y}_K}.$$

The BFGS update is a rank-2 update defined as

$$H_{k+1} = H_k + \left(1 + \frac{\mathbf{y}_k^T H_k \mathbf{y}_k}{\mathbf{s}_k^T \mathbf{y}_k}\right) \frac{\mathbf{s}_k \mathbf{s}_k^T}{\mathbf{s}_k^T \mathbf{y}_k} - \frac{\mathbf{s}_k \mathbf{y}_k^T H_k + H_k \mathbf{y}_k \mathbf{s}_k^T}{\mathbf{s}_k^T \mathbf{y}_K}.$$

**Theorem 12.19.** The Quasi-Newton method is a **superlinear convergent** method.

Method 12.20. (Newton's method) Given the initial point x and  $\varepsilon > 0$ ,

- The iteration step is:
  - (1) Calculate  $\mathbf{d} = -(\nabla^2 f(\mathbf{x}))^{-1} \nabla f(\mathbf{x})$  and step size  $\alpha$  by a line search method;
  - (2) Let  $\mathbf{x} = \mathbf{x} + \alpha \mathbf{d}$ ;
- The stop condition is  $\|\nabla f(\mathbf{x})\| \le \varepsilon$ ;
- The solution is  $\mathbf{x}$ .

## Handbook of Applied Mathematics

 ${\bf Theorem~12.21.~The~Newton's~method~is~a~{\bf quadratic~convergent~method}.}$ 

## Initial Value Problem

**Notation 13.1.** To numerically solve the IVP, we are given initial condition  $\mathbf{u}_0 = \mathbf{u}(t_0)$ , and want to compute approximations  $\{\mathbf{u}_k, k=1,2,...\}$  such that

$$\mathbf{u}_k \approx \mathbf{u}(t_k),$$

where k is the uniform time step size and  $t_n = nk$ .

## 13.1 Linear Multistep Method

**Definition 13.2.** For solving the IVP, an s-step **linear multistep method** (LMM) has the form

$$\sum_{j=0}^{s} \alpha_{j} \mathbf{u}_{n+j} = k \sum_{j=0}^{s} \beta \mathbf{f} \left( \mathbf{u}_{n+j}, t_{n+j} \right),$$

where  $\alpha_s = 1$  is assumed WLOG.

**Definition 13.3.** An LMM is **explicit** if  $\beta_s = 0$ , otherwise it is **implicit**.

## 13.2 Runge-Kutta Method

Definition 13.4. An s-stage Runge-Kutta method (RK) is a one-step method of the form

$$\begin{aligned} \mathbf{y}_i &= \mathbf{f} \Bigg( \mathbf{u}_n + k \sum_{j=1}^s a_{ij} \mathbf{y}_j, t_n + c_i k \Bigg), \\ \mathbf{u}_{i+1} &= \mathbf{u}_i + k \sum_{j=1}^s b_j \mathbf{y}_j, \end{aligned}$$

where i = 1, ..., s and  $a_{ij}, b_j, c_i \in \mathbb{R}$ .

**Definition 13.5.** The textsf{Butcher tableau} is one way to organize the coefficients of an RK method as follows

The matrix  $A = \left(a_{ij}\right)_{s \times s}$  is called the RK matrix and  $\mathbf{b} = (b_1, ..., b_s)^T$ ,  $\mathbf{c} = (c_1, ..., c_s)^T$  are called the RK weights and the RK nodes.

**Definition 13.6.** An s-stage **collocation method** is a numerical method for solving the IVP, where we

- (1) choose s distinct collocation parameters  $c_1, ..., c_s$
- (2) seek s-degree polynomial p satisfying  $\forall i = 1, 2, ..., s$ ,  $\mathbf{p}(t_n) = \mathbf{u}_n$  and  $\mathbf{p}'(t_n + c_i k) = \mathbf{f}(\mathbf{p}(t_n + c_i k), t_n + c_i k)$ ,
- (3) set  $\mathbf{u}_{n+1} = \mathbf{p}(t_{n+1})$ .

Theorem 13.7. The s-stage collocation method is an s-stage IRK method with

$$a_{ij} = \int_0^{c_i} l_j(\tau) \mathrm{d} \tau, \quad b_j = \int_0^1 l_j(\tau) \mathrm{d} \tau,$$

where i,j=1,...,s and  $l_k(\tau)$  is the elementary Lagrange interpolation polynomial.

#### 13.3 Theoretical analysis

**Definition 13.8.** A function  $\mathbf{f}: \mathbb{R}^n \times [0, +\infty) \to \mathbb{R}^n$  is **Lipschitz continuous** in its first variable over some domain

$$\Omega = \{(\mathbf{u}, t) : \|\mathbf{u} - \mathbf{u}_0\| \le a, t \in [0, T]\}$$

iff

$$\exists L \geq 0, \ \text{s.t.} \ \forall (\mathbf{u},t) \in \Omega, \quad \|\mathbf{f}(\mathbf{u},t) - \mathbf{f}(\mathbf{v},t) \leq \|\mathbf{u} - \mathbf{v}\|.$$

#### 13.3.1 Error analysis

**Definition 13.9.** The local truncation error  $\tau$  is the error caused by replacing continuous derivatives with numerical formulas.

**Definition 13.10.** A numerical formulas is **consistent** if  $\lim_{k\to 0} \tau = 0$ .

#### 13.3.2 Stability

**Definition 13.11.** The **region of absolute stability** (RAS) of a numerical method, applied to  $\mathbf{u}' = \lambda \mathbf{u}, \quad \mathbf{u}_0 = \mathbf{u}(t_0),$ 

is the region  $\Omega$  that

$$\forall \mathbf{u}_0, \quad \forall \lambda k \in \Omega, \quad \lim_{n \to +\infty} \mathbf{u}_n = 0.$$

**Definition 13.12.** The **stability function** of a one-step method is a function  $R: \mathbb{C} \to \mathbb{C}$  that satisfies

$$\mathbf{u}_{n+1} = R(z)\mathbf{u}_n$$

for the  $\mathbf{u}' = \lambda \mathbf{u}$  where Re  $(E(\lambda)) \leq 0$  and  $z = k\lambda$ .

**Definition 13.13.** A numerical method is **stable** or **zero stable** iff its application to any IVP with  $f(\mathbf{u}, t)$  Lipschitz continuous in  $\mathbf{u}$  and continuous in t yields

$$\forall T > 0, \quad \lim_{k \to 0, Nk = t} \|\mathbf{u}_n\| < \infty.$$

**Definition 13.14.** A numerical method is  $\mathbf{A}(\alpha)$ -statble if the region of absolute stability  $\Omega$  satisfies

$$\{z \in \mathbb{C} : \pi - \alpha \le \arg(z) \le \pi + \alpha\} \subseteq \Omega.$$

**Definition 13.15.** A numerical method is **A-statble** if the region of absolute stability  $\Omega$  satisfies

$$\{z \in \mathbb{C} : \text{Re } (z) \leq 0\} \subseteq \Omega.$$

**Definition 13.16.** A one-step method is **L-stable** if it is A-stable, and its stability function satisfies

$$\lim_{z \to \infty} |R(z)| = 0.$$

**Definition 13.17.** An one-step method is **I-stable** iff its stability function satisfies  $\forall y \in \mathbb{R}, |R(y\mathbf{i})| \leq 1.$ 

**Definition 13.18.** An one-step method is **B-stable** (or **contractive**) if for any contractive ODE system, every pair of its numerical solutions  $\mathbf{u}_n$  and  $\mathbf{v}_n$  satisfy

$$\forall n \in \mathbb{N}, \|u_{n+1} - v_{n+1}\| \le \|u_n - v_n\|.$$

**Definition 13.19.** An RK method is **algebraically stable** iff the RK weights  $b_1, ..., b_s$  are nonnegative, the **algebraic stability matrix**  $M = (b_i a_{ij} + b_i a_{ji} - b_i b_j)_{s \times s}$  is positive semidefinite.

**Theorem 13.20.** The order of accuracy of an implicit A-stable LMM satisfies  $p \leq 2$ . An explicit LMM cannot be A-stable.

**Theorem 13.21.** No ERK method is A-stable.

**Theorem 13.22.** An RK method is A-stable if and only if it is I-stable and all poles of its stability function R(z) have positive real parts.

**Theorem 13.23.** If an A-stable RK method with a nonsingular RK matrix A is stiffly accurate, then it is L-stable.

**Theorem 13.24.** If an A-stable RK method with a nonsingular RK matrix A satisfies

$$\forall i \in \{1, ..., s\}, \quad a_{i1} = b_i,$$

then it is L-stable.

**Theorem 13.25.** B-stable one-step methods are A-stable.

Theorem 13.26. An algebraically stable RK method is B-stable and A-stable.

#### 13.3.3 Convergence

**Definition 13.27.** A numerical method is convergent iff its application to any IVP with  $\mathbf{f}(\mathbf{u}, t)$  Lipschitz continuous in  $\mathbf{u}$  and continuous in t yields

$$\forall T > 0, \quad \lim_{k \to 0} \mathbf{u}_{nk=T} \mathbf{u}_n = \mathbf{u}(T).$$

**Theorem 13.28.** A numerical method is convergent iff it is consistent and stable.

## 13.4 Important Methods

#### 13.4.1 Forward Euler's method

**Definition 13.29.** The forward Euler's method solves the IVP by  $\mathbf{u}_{n+1} = \mathbf{u}_n + k\mathbf{f}(\mathbf{u}_n, t_n)$ .

**Theorem 13.30.** The region of absolute stability for forward Euler's method is  $\{z \in \mathbb{C} : |1+z| \leq 1\}.$ 

#### 13.4.2 Backward Euler's method

**Definition 13.31.** The **backward Euler's method** solves the IVP by  $\mathbf{u}_{n+1} = \mathbf{u}_n + k\mathbf{f}(\mathbf{u}_{n+1}, t_{n+1}).$ 

**Theorem 13.32.** The region of absolute stability for backward Euler's method is  $\{z \in \mathbb{C} : |1-z| \ge 1\}.$ 

#### 13.4.3 Trapezoidal method

Definition 13.33. The trapezoidal method solves the IVP by

$$\mathbf{u}_{n+1} = \mathbf{u}_n + \frac{k}{2} \big( \mathbf{f}(\mathbf{u}_n, t_n) + \mathbf{f} \big( \mathbf{u}_{n+1}, t_{n+1} \big) \big).$$

Theorem 13.34. The region of absolute stability for trapezoidal method is

$$\left\{ z \in \mathbb{C} : \left| \frac{2+z}{2-z} \right| \ge 1 \right\}.$$

#### 13.4.4 Midpoint method (Leapfrog method)

**Definition 13.35.** The **midpoint method (Leapfrog method)** solves the IVP by  $\mathbf{u}_{n+1} = \mathbf{u}_{n-1} + 2k\mathbf{f}(\mathbf{u}_n, t_n)$ .

**Theorem 13.36.** The region of absolute stability for midpoint method is

$$\left\{z\in\mathbb{C}:\left|z\pm\sqrt{1+z^2}\right|\leq 1\right\}\stackrel{?}{=}\{0\}.$$

#### 13.4.5 Heun's third-order RK method

Definition 13.37. The Heun's third-order formula is an ERK method of the form

$$\begin{cases} \mathbf{y}_1 &= \mathbf{f}(\mathbf{u}_n, t_n), & 0 & 0 & 0 \\ \mathbf{y}_2 &= \mathbf{f}\left(\mathbf{u}_n + \frac{k}{3}\mathbf{y}_1, t_n + \frac{k}{3}\right), & \frac{1}{3} & \frac{1}{3} & 0 & 0 \\ \mathbf{y}_3 &= \mathbf{f}\left(\mathbf{u}_n + \frac{2k}{3}\mathbf{y}_2, t_n + \frac{2k}{3}\right), & \frac{2}{3} & 0 & \frac{2}{3} & 0 \\ \mathbf{u}_{n+1} &= \mathbf{u}_n + \frac{k}{4}(\mathbf{y}_1 + 3\mathbf{y}_3). & \frac{1}{4} & 0 & \frac{3}{4} \end{cases}$$

#### 13.4.6 Classical fourth-order RK method

Definition 13.38. The classical fourth-order RK method is an ERK method of the form

$$\begin{cases} \mathbf{y}_1 &= \mathbf{f}(\mathbf{u}_n, t_n), \\ \mathbf{y}_2 &= \mathbf{f}\left(\mathbf{u}_n + \frac{k}{2}\mathbf{y}_1, t_n + \frac{k}{2}\right), \\ \mathbf{y}_3 &= \mathbf{f}\left(\mathbf{u}_n + \frac{k}{2}\mathbf{y}_2, t_n + \frac{k}{2}\right), \\ \mathbf{y}_4 &= \mathbf{f}(\mathbf{u}_n + k\mathbf{y}_3, t_n + k), \\ \mathbf{u}_{n+1} &= \mathbf{u}_n + \frac{k}{6}(\mathbf{y}_1 + 2\mathbf{y}_2 + 2\mathbf{y}_3 + \mathbf{y}_4). \end{cases} \qquad \frac{1}{2} \begin{vmatrix} 0 & 0 & 0 & 0 \\ \frac{1}{2} & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & \frac{1}{6} & \frac{1}{3} & \frac{1}{3} & \frac{1}{6} \end{cases}$$

#### 13.4.7 Third-order strong-stability preserving RK method

Definition 13.39. The third-order strong-stability preserving RK method is an ERK method of the form

$$\begin{cases} \mathbf{y}_1 &= \mathbf{u}_n + k\mathbf{f}(\mathbf{u}_n, t_n), \\ \mathbf{y}_2 &= \frac{3}{4}\mathbf{u}_n + \frac{1}{4}\mathbf{y}_1 + \frac{1}{4}k\mathbf{f}(\mathbf{y}_1, t_n + k), \\ \mathbf{u}_{n+1} &= \frac{1}{3}\mathbf{u}_n + \frac{2}{3}\mathbf{y}_2 + \frac{2}{3}k\mathbf{f}(\mathbf{y}_2, t_n + \frac{k}{2}). \end{cases}$$

which can also be written as

written as 
$$\begin{cases} \mathbf{y}_1 &= \mathbf{f}(\mathbf{u}_n, t_n), & 0 & 0 & 0 \\ \mathbf{y}_2 &= \mathbf{f}(\mathbf{u}_n + k\mathbf{y}_1, t_n + k), & 1 & 1 & 0 & 0 \\ \mathbf{y}_3 &= \mathbf{f}\left(\mathbf{u}_n + \frac{1}{4}k\mathbf{y}_1 + \frac{1}{4}k\mathbf{y}_2, t_n + \frac{1}{2}\right), & \frac{1}{2} & \frac{1}{4} & \frac{1}{4} & 0 \\ \mathbf{u}_{n+1} &= \mathbf{u}_n + \frac{k}{6}(\mathbf{y}_1 + \mathbf{y}_2 + 4\mathbf{y}_3). & \frac{1}{6} & \frac{1}{6} & \frac{2}{3} \end{cases}$$

#### 13.4.8 TR-BDF2 method

**Definition 13.40.** The TR-BDF2 method is an one-step method of the form

$$\begin{cases} \mathbf{u}_* &= \mathbf{u}_n + \frac{k}{4} \Big( \mathbf{f}(\mathbf{u}_n, t_n) + \mathbf{f} \Big( \mathbf{u}_*, t_n + \frac{k}{2} \Big) \Big), \\ \mathbf{u}_{n+1} &= \frac{1}{3} \big( 4 \mathbf{u}_* - \mathbf{u}_n + k \mathbf{f} \big( \mathbf{u}_{n+1}, t_{n+1} \big) \big). \end{cases}$$

# **Number Theory**

#### 14.1 Prime Number

**Definition 14.1.** A **prime number** (or a **prime**) is a natural number greater than 1 that is not a product of two smaller natural numbers.

**Definition 14.2.** A **composite number** (or a **composite**) is a natural number greater than 1 that is a product of two smaller natural numbers.

#### 14.1.1 Primality testing

**Theorem 14.3.** For a integer  $n \in \mathbb{N}$ , if it is a product of two natural number a and b than  $a \leq b$ , then

$$1 \le a \le \sqrt{n} \le b \le n$$
.

Method 14.4. (Trial division) Given a integer n, the trial division method divides n by each integer from 2 up to  $\sqrt{n}$ . Any such integer dividing n evenly establishes n as composite, otherwise it is prime.

**Theorem 14.5. (Fermat's little theorem)** For a prime number p and a number a that gcd(a, p) = 1, then  $a^{p-1} \equiv 1 \pmod{p}$ 

**Method 14.6.** The **Miller-Rabin** algorithm is a method of primality testing, where given a number n, where we

- (1) determine directly for small numbers such as p=2.
- (2) factorize the number  $p = u \times 2^t$ ;
- (3) choose a number a that gcd(a, p) = 1, and calculate  $a^u, a^{u \times 2}, a^{u \times 2^2}, ..., a^{u \times 2^{t-1}}$ ;
- (4) if  $a^u \equiv 1 \pmod{p}$ , or  $\exists a^{u \times k}, k < t$  that  $a^{u \times k} \equiv p 1 \pmod{p}$  then p passes the test, otherwise, p is a composite number;
- (5) repeat above steps to eliminate error.

For numbers less than  $2^{32}$ , choose  $a \in \{2, 7, 61\}$  is enough, for numbers less than  $2^{\{64\}}$ , choose  $a \in \{2, 325, 9375, 28178, 450775, 9780504, 1795265022\}$  is enough.

#### 14.1.2 Sieves

Method 14.7. (Sieve of Eratosthenes) Given a upper limit n, the sieve of Eratosthenes solves all the prime numbers up to n by marking composite numbers, where we

- (1) create a list of consecutive integers from 2 to n:  $\{2, 3, 4, ..., n\}$ ;
- (2) initially, let p = 2, the smallest prime number;
- (3) enumerate the multiples of p by counting in increments of p from 2p to n, and mark them in the list;
- (4) find the smallest number in the list greater than p that is not marked;
- (5) if there was no such number, the method is terminated and the numbers remaining not marked in the list are all the primes below n, otherwise let p now equal the new number which is the next prime, and repeat from step (3).

# Part 3 Machine Learning

## Regression

## 15.1 Linear Regression

**Definition 15.1.** Given a data set  $\{(\mathbf{x}_i, y_i), i \in \{1, ..., m\}\}$  where  $\mathbf{x}_i \in \mathbb{R}^n$ , the linear regression seeks  $\tilde{\mathbf{w}} \in \mathbb{R}^n$  and  $\tilde{b} \in \mathbb{R}$  such that

$$f(\mathbf{x}_i) = \tilde{\mathbf{w}}^T \mathbf{x}_i + \tilde{b} \approx y_i.$$

In general, we choose mean square error to estimate the error between  $f(\mathbf{x}_i)$  and  $y_i$ , which implies

$$\left(\tilde{\mathbf{w}}, \tilde{b}\right) = \mathop{\arg\min}_{\mathbf{w} \in \mathbb{R}^n, b \in \mathbb{R}} \sum_{i=1}^m \left(f(\mathbf{x}_i) - y_i\right)^2 = \mathop{\arg\min}_{\mathbf{w} \in \mathbb{R}^n, b \in \mathbb{R}} \sum_{i=1}^m \left(\mathbf{w}^T x + b - y_i\right)^2.$$

**Theorem 15.2.** Given a data set  $\{(\mathbf{x}_i, y_i), i \in \{1, ..., m\}\}$  where  $\mathbf{x}_i \in \mathbb{R}^n$ , let

$$X = \begin{pmatrix} \mathbf{x}_1^T & 1 \\ \vdots & 1 \\ \mathbf{x}_m^T & 1 \end{pmatrix}, \mathbf{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix},$$

if  $X^TX$  is invertible, the solution of linear regression can be written as

$$\begin{pmatrix} \mathbf{w} \\ b \end{pmatrix} = \left( X^T X \right)^{-1} X^T \mathbf{y}.$$

Chapter 16
Decision Tree

# Chapter 17 Support Vector Machine

## Cluster

#### K-means 18.1

**Definition 18.1.** Given points  $\mathbf{x}_1,...,\mathbf{x}_m \in \mathbb{R}^n$ , k-means clustering aims to partition the points into  $k \leq n$  sets  $S = \{S_1, ..., S_k\}$  satisfies

$$S = \operatorname*{arg\,min}_{S} \bigg\{ \sum_{i=1}^{k} \sum_{\mathbf{x} \in S_{i}} \lVert \mathbf{x} - \mathbf{\mu}_{i} \rVert^{2} \bigg\},$$

where  $\mu_i$  is the mean (centroid) of points in  $S_i$ , i.e. denoted by  $|S_i|$  the size of  $S_i$ ,

$$\mu_i = \frac{1}{|S_i|} \sum_{\mathbf{x} \in S_i} \mathbf{x}.$$

**Theorem 18.2.** Denoted by  $\mathbf{x}_1,...,\mathbf{x}_m \in \mathbb{R}^n$  the points and  $S = \{S_1,...,S_k\}$  sets given by Kmeans,

$$S = \operatorname*{arg\,min}_{S} \Bigg\{ \sum_{i=1}^{k} \frac{1}{|S_i|} \sum_{\mathbf{x}, \mathbf{y} \in S_i} \lVert \mathbf{x} - \mathbf{y} \rVert^2 \Bigg\}.$$

Method 18.3. (K-means clustering) Denoted by  $S^{(t)} = \left\{S_1^{(t)}, ..., S_k^{(t)}\right\}$  the sets given by k-means at t-th step and  $\mu_i^{(t)}$  the mean of  $S_i^{(t)}$ , the algorithm proceeds by (1) Assignment: Assign each point to the cluster with the nearest mean,

$$S_i^{(t)} = \left\{\mathbf{x}_p : \forall j \in \{1,...,k\}, \|\mathbf{x}_p - \mathbf{\mu}_i^{(t)}\|^2 \leq \|\mathbf{x}_p - \mathbf{\mu}_j^{(t)}\|^2\right\};$$

(2) **Update**: Recalculate means (centroids) of each cluster,

$$\mu_i^{(t)} = \frac{1}{|S_i^{(t)}|} \sum_{\mathbf{x} \in S_i^{(t)}} \mathbf{x}.$$

# Chapter 19 Neural Networks