П.2 Задача о распределении температуры в пространственной области

Выведем дифференциальное уравнение распределения температуры. Будем придерживаться схемы рассуждений из предыдущего пункта.

- **Шаг 1.** Выберем независимые переменные и искомую функцию будущей краевой задачи. Как видно из формулировки вопроса, искомой функцией удобно считать температуру u(t, x) в точке $x = (x_1, x_2, x_3)$ данной области G в трёхмерном евклидовом пространстве. Поверхность, ограничивающую область G, обозначим через ∂G . Предполагаем, что ∂G кусочно-гладкая поверхность.
- **Шаг 2.** Выберем в области G произвольную ограниченную подобласть V с кусочно-гладкой границей S, а также произвольный промежуток времени $[t_0, t_1]$.
- **Шаг 3.** Попытаемся двумя разными способами найти изменение количества теплоты в объёме V за промежуток времени $[t_0, t_1]$.

С одной стороны, на изменение температуры точек x области V от $u(t_0,x)$ до $u(t_1,x)$, при постоянных плотности ρ и теплоёмкости c среды, требуется количество теплоты

$$Q = \int_{V} c\rho \left(u(t_1, x) - u(t_0, x) \right) dV = \int_{V} \int_{t_0}^{t_1} c\rho \cdot u_t(t, x) dt dV.$$
 (10)

С другой стороны, количество Q, очевидно, складывается из количества Q_1 теплоты, выделенной за промежуток $[t_0, t_1]$ источниками тепла в области V, и из количества Q_2 теплоты, прошедшей через границу S области V за тот же промежуток $[t_0, t_1]$. При этом, если определена функция интенсивности источников тепла

$$F(t,x) = \lim_{x \in W, \, \mu(W) \to 0} \frac{Q(W)}{\mu(W)},$$

где W — произвольная окрестность точки x, $\mu(W)$ — мера Лебега (объём) этой окрестности, Q(W) — количество тепла, выделенное источниками внутри W, то

$$Q_1 = \int_{V}^{t_1} \int_{t_0}^{t_1} F(t, x) dt dV.$$
 (11)

Далее, по закону Фурье распространения тепла можем записать

$$Q_2 = \int_{t_0}^{t_1} \int_{S} \left(k \cdot (\overline{n}, \overline{\text{grad } u}) \right) dS dt . \tag{*}$$

(Здесь \overline{n} – единичный вектор внешней нормали к S). Понятно, что

$$(10) = (11) + (*).$$

Преобразуем последний интеграл, используя следующую теорему:

Теорема 1.2. (Формула Гаусса — Остроградского) Пусть в ограниченной области G с кусочно-гладкой границей S задано векторное поле $\overline{\Phi}$ класса гладкости C^1 . Пусть \overline{n} — единичный вектор внешней нормали к S. Тогда

$$\int_{S} (\overline{n}, \overline{\Phi}) dS = \int_{G} div \overline{\Phi} dG.$$

Применяя эту теорему при G = V, $\overline{\Phi} = \overline{\text{grad } u} = (u_{x_1}, u_{x_2}, u_{x_3})$, получим

$$Q_2 = \int_{t_0}^{t_1} \int_{V} k \cdot div \overline{\text{grad } u} \, dV dt = \int_{t_0}^{t_1} \int_{V} k \cdot \Delta u \, dV dt . \tag{12}$$

Учитывая теперь, что (10) = (11) + (12), а также произвол выбора области интегрирования V и промежутка $[t_0, t_1]$, можем записать:

$$c \rho \cdot u_t = F + k \cdot \Delta u$$
.

Полученное дифференциальное уравнение, полагая $f = F/c\rho$, $a^2 = k/c\rho$, записывают в виде:

$$u_t - a^2 \cdot \Delta u = f. \tag{13}$$

Определение 1.3. Уравнение (13) называется *уравнением теплопроводности*.

Заметим, что мы осуществили также и Шаг 4.

Выведем теперь <u>граничные условия</u>. Для этого, как и на **Шаге 2**, выберем в области G произвольную ограниченную подобласть V с кусочногладкой границей S. Однако теперь пусть поверхность S частично совмещается с границей ∂G нашей исходной области (см. рис.):

$$S = S_1 \cup S_2$$
, $S_1 \cap S_2 = \emptyset$, $S_1 \subset G$, $S_2 \subset \partial G$.

Рассмотрим несколько стандартных случаев.

<u>Случай 1.</u> Через границу ∂G происходит теплообмен с окружающей средой температуры $u_1 = u_1(t,x)$. Тогда предполагают, что количество теплоты ΔQ , проходящей через участок ΔS границы ∂G за промежуток времени Δt , пропорционально разности температур внутри и снаружи области:

$$\Delta Q = k_1(u - u_1)\Delta S\Delta t$$
.

Тогда можно записать аналог равенства (10) = (11) + (*):

$$\begin{split} \int\limits_{V}^{t_1} \int\limits_{t_0}^{t_1} c\rho \cdot u_t(t,x) \, dt \, dV &= \int\limits_{V}^{t_1} \int\limits_{t_0}^{t_1} F(t,x) \, dt \, dV + \int\limits_{t_0}^{t_1} \int\limits_{S_1} \left(k \cdot (\overline{n}, \overline{\operatorname{grad} u})\right) dS dt \\ &+ \int\limits_{t_0}^{t_1} \int\limits_{S_2} k_1 \cdot (u - u_1) \, dS dt \end{split} \tag{***}$$

В равенстве (**) «устремим» S_1 к S_2 так, чтобы объём V устремился к 0 (см. рис.). Тогда, учитывая произвол промежутка времени и участка границы S_2 , получим искомое граничное условие:

$$\left(k \cdot (\overline{n}, \overline{\operatorname{grad} u}) + k_1 \cdot (u - u_1)\right)\Big|_{x \in \partial G} = 0.$$
(14)

 \underline{C} лучай 2. На границе ∂G поддерживается заданный тепловой поток

q=q(t,x). Тогда последний интеграл в (**) примет вид $\int\limits_{t_0}^{t_1}\int\limits_{S_2}q(t,x)dSdt$. Вы-

полняя тот же предельный переход, что и в случае 1, получим:

$$\left(k \cdot (\overline{n}, \overline{\operatorname{grad} u}) + q\right)\Big|_{x \in \partial G} = 0.$$
 (15)

Случай 3. Граница ∂G теплоизолирована. Это частный подслучай случая 2 при $q \equiv 0$. Соответственно, вместо (15) получим

$$(\overline{n}, \overline{\operatorname{grad} u})\big|_{x \in \partial G} = 0.$$
 (16)

<u>Случай 4.</u> На границе поддерживается фиксированная температура $u_0 = u_0(t, x)$. Тогда сразу же можем записать

$$u(t,x)\big|_{x\in\partial G} = u_0(t,x). \tag{17}$$

В качестве <u>начального условия</u> задаётся температура при t = 0:

$$u(0, x) = v_0(x). (18)$$

Итак, дифференциальное уравнение (13) с граничным условием одного из видов (14) – (17) и с начальным условием (18) – это и есть краевая задача о распределении температуры.