MATH2221 Mathematics Laboratory II

Lecture 11: Calculus and Optimization **Using MATLAB**

Gary Choi

April 1, 2025

Recall: Reading/writing files and path/file management

- Reading/writing files with specific data format
 - fopen, fprintf, fscanf, fclose
 - Easily specify number of spaces/ decimal places
- Path/file management
 - Change current directory:
 - cd('newfolderpath'), cd('..'), ...
 - Show all files in the current directory
 - dir, dir *.txt, ...
 - Include/exclude folders from your path:
 - addpath, rmpath

```
Fahrenheit
              Celsius
            -17.77778
            -17.22222
            -16.66667
            -16.11111
            -15.55556
            -15.00000
            -14.44444
            -13.88889
            -13.33333
            -12.77778
            -12.22222
            -11.66667
            -11.11111
```

Recall: Image processing in MATLAB

- Reading an image: imread
- Writing an image: imwrite
- Displaying an image:
 - imshow
 - imshowpair
- Image type conversion:
 - rgb2gray
 - imbinarize
- Image editing:
 - Imresize, imcrop, imadjust, imrotate, imwarp

Recall: Video processing in MATLAB

- Reading a video:v = VideoReader(filename)
- Reading a frame:
 - read(v,i)
 - hasFrame, readFrame
- Writing a video:
 - v = VideoWriter(filename,profile)
 open(v)
 writeVideo(v,...)
 close(v)

Calculus using MATLAB

MATLAB can be used (and is indeed very powerful) for Calculus!

Differentiation

Approximating derivatives and gradients

Integration

- Integrating numeric data
- Integrating functional expressions

Differential equations

- Solving differential equations
- Solving systems of differential equations

Differentiation using MATLAB

- Difference operator: Y = diff(X)
 - Calculates differences between adjacent elements of X
 - i.e. Y = [X(2) X(1), X(3) X(2), ..., X(m) X(m-1)]
 - If length(X) = m, then length(Y) = m-1

Example:

```
>> X = [0,1,4,9,16];
>> Y = diff(X)
Y =
1 3 5 7
```

- Computing the n-th difference: Y = diff(X,n)
 - i.e. diff(X,2) = diff(diff(X)) and so on

Example:

```
>> X = [0,1,4,9,16];
>> Y = diff(X,2)
Y =
2 2 2
```

Differentiation using MATLAB

- Approximate derivatives: Y = diff(f)/h
 - f: some function values evaluated over some domain X
 - h: step size

```
Example: For f(x) = \sin x, compute f'(x), f''(x)
h = 0.01; % step size
X = -pi:h:pi; % domain
f = sin(X); % the function values
Y = diff(f)/h; % first derivative
Z = diff(Y)/h; % second derivative
figure;
plot(X,f,'k-');hold on;
plot(X(:,1:length(Y)),Y,'r--');
plot(X(:,1:length(Z)),Z,'b-.');
legend('y = f(x)','y = df/dx','y = df^2/dx^2);
```


Differentiation using MATLAB

- Gradient operator: gradient
 - [FX,FY] = gradient(F)
 - F: a matrix
 - FX, FY: the partial derivatives $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$
- Example:

```
[X,Y] = meshgrid(0:0.2:2*pi, 0:0.2:2*pi);
Z = sin(X).*sin(Y);
[FX,FY] = gradient(Z);

figure;
contour(X,Y,Z);
hold on;
quiver(X,Y,FX,FY);
axis equal
```


More general command: [FX,FY,FZ,...,FN] = gradient(F,hx,hy,...,hN)

- Integrating numeric data: trapz
 - Trapezoidal numerical integration

$$\int_{a}^{b} f(x) \approx \frac{1}{2} \sum_{n=1}^{N} \Delta x_n (f(x_n) + f(x_{n+1}))$$

where
$$a = x_1 < x_2 < \dots < x_{N+1} = b$$
 and $\Delta x_n = x_{n+1} - x_n$

- MATLAB commands:
 - Q = trapz(Y): computes the approximate integral of Y with unit spacing
 - i.e. $Y = [f(x_1), f(x_2), ..., f(x_{N+1})]$ and $\Delta x_n = 1$ for all n
 - Q = trapz(X,Y): integrates Y with respect to the spacing specified by X
 - i.e. $Y = [f(x_1), f(x_2), ..., f(x_{N+1})]$ and $X = [x_1, x_2, ..., x_{N+1}]$

• Example: Integrate $f(x) = x^2$ in the domain [0,5]. >> Y = [0, 1, 4, 9, 16, 25]; >> Q = trapz(Y) Q = 42.5000 (Actual: $\left[\frac{x^3}{3}\right]_0^5 \approx 41.6667$)

• Example: Integrate $f(x) = \sin x$ from 0 to π >> X = 0:pi/100:pi; >> Y = sin(X); >> Q = trapz(X,Y) Q = 1.9998 (Actual: $[-\cos x]_0^{\pi} = 2$)

- We can also integrate functional expressions
- MATLAB command: q = integral(fun,xmin,xmax)
 - fun: a functional expression defined using a function handle (@(x) ...) or a function file (.m)
 - xmin: lower limit
 - xmax: upper limit
 - can also handle improper integral
- Example: $\int_0^1 \sin(\cos(\tan x)) dx$ >> f = @(x) sin(cos(tan(x))); >> q = integral(f,0,1) q = 0.6596

```
• Example: \int_0^\infty e^{-x^4} (\ln x)^3 dx
>> f = @(x) exp(-x.^4).*log(x).^3;
>> q = integral(f,0,lnf)
q =
-5.9905
```

- Double integral: q = integral2(fun,xmin,xmax,ymin,ymax)
 - Similar to the 1D case
 - xmin, xmax must be scalar
 - ymin, ymax can be scalar or function handle of x
- Example: Integrate $f(x,y) = \frac{\sin x + \cos y}{\sqrt{x^2 + y^2 + 1}}$ over the triangular region bounded by $0 \le x \le 1$ and $0 \le y \le 1 x$. >> $f = @(x,y) (\sin(x) + \cos(y))$./sqrt(x.^2+y.^2+1); >> ymax = @(x) 1-x; >> $q = \frac{\sin x + \cos y}{\sqrt{x^2 + y^2 + 1}}$ over the triangular region bounded by $0 \le x \le 1$ and $0 \le y \le 1 - x$.
- Triple integral: q = integral3(fun,xmin,xmax,ymin,ymax,zmin,zmax)
 - Similar to the 2D case, where ymin, ymax can be function handles (of x) and zmin, zmax can be function handles (of x and y)

- Basic idea:
 - Replace derivatives with finite difference
 - $y'(x_n) \approx \frac{y_{n+1} y_n}{h}$ (forward difference)
 - $y'(x_n) \approx \frac{y_n y_{n-1}}{h}$ (backward difference)
 - $y'(x_n) \approx \frac{y_{n+1} y_{n-1}}{2h}$ (central difference)
 - Then solve the differential equation using linear algebra methods and/or iterative schemes
- Example: Solve $\frac{dy}{dx} = f(x, y) = 2x 3xe^y + 1$ with y(0) = 0
 - Using forward difference, we have

$$\frac{y_{n+1} - y_n}{h} = 2x_n - 3x_n e^{y_n} + 1 \Longrightarrow y_{n+1} = y_n + h(2x_n - 3x_n e^{y_n} + 1)$$

which can be computed using a for-loop

Example:

```
y = zeros(1,101);
x = linspace(0,1,101);
h = 0.01;
for n = 1:100
    y(n+1) = y(n)+h*(2*x(n) - 3*x(n)*exp(y(n))+1);
end
figure;
plot(x,y);
xlabel('x')
ylabel('y')
```


Remark:

- For backward difference, we have $\frac{y_n y_{n-1}}{h} = f(x_n, y_n)$
- May not be able to express y_n in terms of x_n , y_{n-1} explicitly
- In this case, we may need to solve a matrix equation using \ or solve a nonlinear equation using fsolve or fzero

- A very powerful ODE solver in MATLAB: ode45
 - Solve $\frac{dy}{dt} = f(t, y)$ with $y(t_0) = y_0$
 - Based on a type of Runge-Kutta methods (see MATH3230 and 3240)
- MATLAB command: [t,y] = ode45(odefun,tspan,y0)
 - odefun: function handle or function file for f(t, y)
 - tspan: [t0, tf], where t0 is the starting point and tf is the ending point
 - y0: the initial condition (i.e. $y(t_0) = y_0$)
- Example: Solve $y' = 2t \sin y + 3$ in the time interval [0,5] with $y_0 = 0$ >> [t,y] = ode45(@(t,y) 2*t*sin(y)+3, [0,5], 0); >> figure; >> plot(t,y,'-o');

- Note: ode45 can also solve systems of ODEs
 - In [t,y] = ode45(odefun,tspan,y0), use a vector for odefun and y0

```
• Example: Solve \begin{cases} x'(t) = y(t) + 2 \\ y'(t) = (1 - x(t))y(t) - x(t) \end{cases}
   with x(0) = 0, y(0) = 1 in the time interval [0,3]
   [t,y] = ode45(@(t,y)[y(2)+2; ...
                  (1-y(1))*y(2)-y(1)], [0,3], [0;1]);
   figure;
   plot(t,y,'-o');
   legend('x(t)','y(t)')
```


- What about high-order ODE/ODE systems?
 - Try to rewrite them as first-order ODE systems
 - Then use ode45
- Example: y'' + p(t)y' + q(t)y = r(t)
 - Let $y_1(t) = y$, $y_2(t) = y'$
 - Then we have $\begin{cases} y_1' = y_2 \\ y_2' = r(t) p(t)y_2 q(t)y_1 \end{cases}$
 - a first-order ODE system!
- More generally, every n-th order linear ODE can be rewritten as a system of n first-order ODEs

Optimization using MATLAB

- We can use MATLAB to solve various optimization problems!
 - Unconstrained optimization
 - Constrained optimization

- Remarks:
 - Similar to many numerical optimization schemes,
 MATLAB optimization solvers are typically based on gradient descent
 - They typically return a local minimum but not necessarily the global minimum

fminbnd: single-variable optimization problem on a fixed interval

- Find a (local) minimum of a single-variable function on a fixed interval $\min_{x} f(x) \text{ with } x_1 < x < x_2$
- MATLAB command: [x,fval] = fminbnd(fun,x1,x2)
 - fun: Function to minimize
 - x1: Lower bound
 - x2: Upper bound
 - x: the solution x
 - fval: the value of the objective function at x
- Example: Minimize $x^3 e^x$ in (0,1) $f = @(x) x^3 - exp(x);$ [x,fval] = fminbnd(f,0,1) x = fval = 0.9100x = 0.9100

- More generally, we have x = fminbnd(fun,x1,x2,options)
 - options: control the displayed information, maximum number of iterations, etc.
 - e.g. options = optimset('Display','iter','MaxIter',20);

fminunc: Unconstrained optimization of multivariable function

Find the minimum of a multivariable function without constraints

$$\min_{x_1,x_2,\dots,x_n} f(x_1,x_2,\dots,x_n)$$

- MATLAB command: [x,fval] = fminunc(fun,x0)
 - fun: Function to minimize
 - x0: the initial guess (a vector with the size being the number of variables in f)
 - x: the solution x (a vector)
 - fval: the value of the objective function at x
- Example: Minimize $f(x_1, x_2) = 3x_1^2 + 2x_1x_2 + x_2^2 4x_1 + 5x_2$ $f = @(x)3*x(1)^2 + 2*x(1)*x(2) + x(2)^2 - 4*x(1) + 5*x(2);$ x0 = [1,1]; % initial guess

$$[x,fval] = fminunc(f,x0)$$

 $x = fval = -16.3750$

fminunc: Unconstrained optimization of multivariable function

- More generally, we have [x,fval] = fminunc(fun,x0,options)
 - As in fminbnd, we can use options to control the displayed information, maximum number of iterations, etc.
 - e.g. options = optimset('Display','iter','MaxIter',20);
- Additionally, we can specify the gradient to improve the optimization process
 - Use a function file (.m) to create fun with both the function and the gradient
 - Set options = optimoptions('fminunc', 'SpecifyObjectiveGradient',true)

```
• Example: f(x_1, x_2) = x_1^2 + x_2 + 100 \sin x_1 x_2

Step 1: create a function

function [f,g] = myfun(x)

% the objective function f

f = x(1)^2 + x(2) + 100 \sin(x(1) \cos(x(1));

% the gradient g

g = [2 \cos(x(1)) + 100 \cos(x(1)) \cos(x(1));

1 + 100 \cos(x(1)) \cos(x(1));

end
```

```
Step 2: run fminunc

>> x0 = [0,1];

>> fun = @myfun;

>> options = optimoptions('fminunc', ...
'SpecifyObjectiveGradient', true);

>> [x,fval] = fminunc(fun,x0,options)

x =

-0.9205   1.6947

fval =

-97.4521
```

fmincon: Constrained optimization of multivariable function

Find minimum of constrained nonlinear multivariable function

$$\min_{x} f(x) \text{ such that } \begin{cases} c(x) \le 0\\ ceq(x) = 0\\ A \cdot x \le b\\ Aeq \cdot x = beq\\ lb \le x \le ub, \end{cases}$$

- MATLAB command: [x,fval] = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)
 - Can set the inputs as [] if they are not applicable

Reminder: Lab 9 this week

January

Sun	Mon	Tue	Wed	Thu	Fri	Sat
			1	2	3	4
5	6	7	8	9	10	11
12	13	14	15	16	17	18
19	20	21	22	23	24	25
26	27	[28]	[29]	[30]	[31]	

February

Sun	Mon	Tue	Wed	Thu	Fri	Sat
						[1]
[2]	[3]	4	5	6	7	8
9	10	11	12	13	14	15
16	17	18	19	20	21	22
23	24	25	26	27	28	1

March

Sun	Mon	Tue	Wed	Thu	Fri	Sat
2	[3]	[4]	[5]	[6]	[7]	[8]
9	10	11	12	13	14	15
16	17	18	19	20	21	22
23	24	25	26	27	28	29
30	31					

April

Sun	Mon	Tue	Wed	Thu	Fri	Sat
		1	2	3	4	5
6	7	8	9	10	11	12
13	14	15	16	17		

Thank you!

Next time:

Symbolic computation using MATLAB