

WHAT IS CLAIMED IS:

1. A method for facilitating data synchronization, comprising the steps of:
 - (a) checking object store replica information corresponding to a remote object store;
 - (b) extracting a first set of objects to be synchronized with said remote object store;
 - (c) packing said first set of objects, their associated identifiers and synchronization versions into a request synchronization message;
 - (d) sending said request synchronization message to said remote object store;
 - (e) receiving a response synchronization message from said remote object store, said response synchronization message indicating a number of updated objects at the remote object store;
 - (f) resetting a corresponding set of synchronization versions to said updated objects; and
 - (g) purging off said updated objects.
2. The method of claim 1, further comprising the steps of:
 - (1) sending a request message to said remote object store if any information is missing from said object store replica information;
 - (2) receiving a response from said remote object store including a list of encoding methods; and
 - (3) registering said response in said object store replica information.
3. The method of claim 1, further comprising the steps of:
 - (1) updating objects based on said request synchronization message at said remote object store; and
 - (2) sending a response synchronization message providing a number of objects received and processed.
4. The method of claim 3, further comprising the step of:
adding a list of encoding methods to said response synchronization message if said response synchronization message is a first message sent from said remote object store.

5. The method of claim 1, further comprising the step of:
adding a field in said request synchronization message indicating whether said
request synchronization message is a last request to said remote object store.
- 5 6. A method for facilitating data synchronization, comprising the steps of:
designing an application system comprising a network of devices; ~
functionally dividing said application system into a set of primitive systems;
determining at least one appropriate basic object store for each of said set of
primitive systems; and
- 10 replacing basic object stores that belong to multiple primitive systems by
appropriate joint object stores.
7. The method of claim 6, further comprising the steps of:
receiving a first synchronization request from a first basic object store;
15 updating an object based on said first synchronization request;
receiving a second synchronization request from a second basic object store;
updating said object based on said second synchronization request; and
resolving any concurrent update conflicts in said object.
- 20 8. The method of claim 7, wherein said step of resolving conflicts includes the
steps of:
initiating a first synchronization process with said first basic object store; and
initiating a second synchronization process with said second basic object store.
- 25 9. A method for facilitating data synchronization, comprising the steps of:
exchanging update types and definitions among a set of object stores to
commence a synchronization process;
negotiating a data compression method among said set of object stores;
- 30 comparing synchronization versions of said set of object stores;
selecting a set of objects based on said comparing;
transmitting said set of objects between said set of object stores; and
transmitting meta objects associated with said set of objects between said set of
object stores, said meta objects including a synchronization version and an identifier
for each of said set of objects.

35

10. The method of claim 9, wherein said selecting step includes the steps of:
comparing objects in said set of object stores; and
selecting objects representing differences between said set of object stores.
- 5 11. A method for facilitating data synchronization, comprising the steps of:
recording information relating to a set of network links in a local database;
determining an estimated average data transfer speed, round-trip transfer time,
and packet size based on said information in said local database;
selecting a flow protocol mode based on said determining;
10 calculating a new packet size based on said determining; and
dynamically adjusting said new packet size during a synchronization process.
- 15 12. The method of claim 11, wherein said step of dynamically adjusting includes
the steps of:
increasing said new packet size during said synchronization process if a data
flow continues successfully for a period of time; and
decreasing said new packet size during said synchronization process if said
data flow fails within said period of time.
- 20 13. A computer program product for facilitating data synchronization, comprising:
(a) logic code for checking object store replica information corresponding
to a remote object store;
(b) logic code for extracting a first set of objects to be synchronized with
said remote object store;
25 (c) logic code for packing said first set of objects, their associated
identifiers and synchronization versions into a request synchronization
message;
(d) logic code for sending said request synchronization message to said
remote object store;
30 (e) logic code for receiving a response synchronization message from said
remote object store, said response synchronization message indicating a
number of updated objects at the remote object store;
(f) logic code for resetting a corresponding set of synchronization versions
to said updated objects; and
35 (g) logic code for purging off said updated objects.

14. The computer program product of claim 13, further comprising:
- (1) logic code for sending a request message to said remote object store if any information is missing from said object store replica information;
 - (2) logic code for receiving a response from said remote object store including a list of encoding methods; and
 - (3) logic code for registering said response in said object store replica information.
- 5
15. The computer program product of claim 13, further comprising:
- (1) logic code for updating objects based on said request synchronization message at said remote object store; and
 - (2) logic code for sending a response synchronization message providing a number of objects received and processed.
- 10
15. 16. The computer program product of claim 15, further comprising:
logic code for adding a list of encoding methods to said response synchronization message if said response synchronization message is a first message sent from said remote object store.
- 20
17. The computer program product of claim 13, further comprising:
logic code for adding a field in said request synchronization message indicating whether said request synchronization message is a last request to said remote object store.
- 25
18. A computer program product for facilitating data synchronization, comprising:
logic code for designing an application system comprising a network of devices;
logic code for functionally dividing said application system into a set of primitive systems;
- 30
- logic code for determining at least one appropriate basic object store for each of said set of primitive systems; and
logic code for replacing basic object stores that belong to multiple primitive systems by appropriate joint object stores.
- 35
19. The computer program product of claim 18, further comprising:

logic code for receiving a first synchronization request from a first basic object store;

logic code for updating an object based on said first synchronization request;

5 logic code for receiving a second synchronization request from a second basic object store;

logic code for updating said object based on said second synchronization request; and

logic code for resolving any concurrent update conflicts in said object.

10 20. The computer program product of claim 19, wherein said logic code for resolving conflicts includes:

logic code for initiating a first synchronization process with said first basic object store; and

15 logic code for initiating a second synchronization process with said second basic object store.

21. A computer program product for facilitating data synchronization, comprising:

logic code for exchanging update types and definitions among a set of object stores to commence a synchronization process;

20 logic code for negotiating a data compression method among said set of object stores;

logic code for comparing synchronization versions of said set of object stores;

logic code for selecting a set of objects based on said comparing;

25 logic code for transmitting said set of objects between said set of object stores; and

logic code for transmitting meta objects associated with said set of objects between said set of object stores, said meta objects including a synchronization version and an identifier for each of said set of objects.

30 22. The computer program product of claim 21, wherein said logic code for selecting includes:

logic code for comparing objects in said set of object stores; and

35 logic code for selecting objects representing differences between said set of object stores.

23. A computer program product for facilitating data synchronization, comprising:
logic code for recording information relating to a set of network links in a local
database;

5 logic code for determining an estimated average data transfer speed, round-trip
transfer time, and packet size based on said information in said local database;

10 logic code for selecting a flow protocol mode based on said determining;
logic code for calculating a new packet size based on said determining; and
logic code for dynamically adjusting said new packet size during a
synchronization process.

15 24. The computer program product of claim 23, wherein said logic code for
dynamically adjusting includes:

20 logic code for increasing said new packet size during said synchronization
process if a data flow continues successfully for a period of time; and

25 logic code for decreasing said new packet size during said synchronization
process if said data flow fails within said period of time.

30

35