CS3230: Assignment for Week 6 Solutions

Due: Sunday, 27th Feb 2022, 11:59 pm SGT.

- 1. As in the naive algorithm, we begin by comparing P[1..m] and T[1..m], character by character. If these two strings are the same, then we can proceed to compare P[1..m] with T[m+1..2m]; this is because P[1..m] cannot be the same as T[i+1..i+m] for any i < m due to the assumption that all characters in P are different (in particular, since T[i+1] = P[i+1] and $P[i+1] \neq P[1]$, it must be that $T[i+1] \neq P[1]$). Similarly, if P[1..m] and T[1..m] are not the same, then assume that $P[j] \neq T[j]$ is the first mismatch. If P[1] = T[j], we can compare P[1..m] with T[j..j+m-1], while if $P[1] \neq T[j]$, we can compare P[1..m] with T[j+1..j+m]. Since each character in T is compared at most twice, the algorithm runs in time O(n).
- 2. Create a hash table of size $\Theta(n^2)$. For each pair $a \in A, b \in B$, insert a+b into the hash table, resolving collision by chaining. For each $c \in C$, we then check whether 2022+c is in the hash table; if so, we return Yes. Otherwise, if for every $c \in C$ we do not return Yes, we return No. Correctness is obvious: if a+b-c=2022 for some $a \in A, b \in B, c \in C$, then a+b=2022+c is in the table and we return Yes. On the other hand, if $a+b-c\neq 2022$ for all a,b,c, then for

no c is it the case that 2022 + c is in the table, and we return No.

For the running time, since we insert $O(n^2)$ elements into the hash table, recall from Claim 5.3.2 in the lecture notes that if the table has size $\Theta(n^2)$, then the expected number of collisions for each inserted element is O(1) (the expectation is over the choice of hash function drawn from a universal family). Hence, the algorithm runs in expected time $O(n^2)$.

3. The proof is by induction. For the base case $k=1, X=x_1$ is indeed uniformly distributed over the only number you have seen. For the inductive step, suppose that after you have seen x_1, \ldots, x_{k-1}, X is uniformly distributed over the k-1 numbers. Upon the arrival of $x_k, X=x_k$ with probability $\frac{1}{k}$, while for each $1 \le i < k, X=x_i$ with probability $\left(1-\frac{1}{k}\right) \cdot \frac{1}{k-1} = \frac{1}{k}$. Hence, X is uniformly distributed over the k numbers, completing the induction.