STAT3006:TUTORIAL6

Examples on MH algorithm and Gibbs sampler

MCMC METHOD

- Sample from f(x)
- Construct a Markov chain $\{X_n\}$ with f(x) being its stationary distribution
- If $\{X_n\}$ is irreducible, aperiodic, f(x) is also its limiting distribution
- When n is large, X_n is very like a sample from f(x)

MH ALGORITHM

- Beginning with X_0
- We have a proposal Y from $p(y|x_0)$
 - $p(y|x_0)$ may be independent of x_0
 - $p(y|x_0)$ may be equal to $p(x_0|y)$
- Accept Y as X_1 with probability $\min(\frac{f(y)}{f(x_0)} \frac{p(x_0|y)}{p(y|x_0)}, 1)$
- So on so forth until thousands of (possibly more) samples obtained
- If trace plot becomes stable after B iterations, the period of producing first B samples are called burn-in.

GIBBS SAMPLER

- A special case of MH algorithm, but is more suitable to high dimensional sampling problems.
- f(x) is a multivariate function
- Full conditional functions $f_1(x_1|x_2,...,x_p)$, $f_2(x_2|x_1,...,x_p)$,..., $f_p(x_p|x_1,...,x_{p-1})$
- Given $x^{(0)} = (x_1^{(0)}, x_2^{(0)}, \dots, x_p^{(0)})$
- Sample $x_1^{(1)}$ from $f_1(x_1|x_2^{(0)},...,x_p^{(0)})$
- Sample $x_2^{(1)}$ from $f_2(x_2|x_1^{(1)},...,x_p^{(0)})$
- ...
- Sample $x_p^{(1)}$ from $f_p(x_p|x_1^{(1)},...,x_{p-1}^{(1)})$
- So on so forth
- Diagnosis: trace plot

EXAMPLE1: BINOMIAL-BETA

- $X \sim Binomial(n, \theta), \theta \sim Beta(a, b)$
- The marginal distribution f(x) is called Binomial-Beta distribution.
- Draw samples from f(x)
- Sample x from $f(x) \Leftrightarrow$ Sample (x, θ) from $f(x, \theta)$ and only keep x.

EXAMPLE2: BINOMIAL-BETA-POISSON

- $X \sim Binomial(n, \theta), \theta \sim Beta(a, b), n \sim Poisson(\lambda)$
- The marginal distribution f(x) is called Binomial-Beta-Poisson distribution.
- Draw samples from f(x)
- Sample x from $f(x) \Leftrightarrow$ Sample (x, θ, n) from $f(x, \theta, n)$ and only keep x.

EXAMPLE3: BIVARIATE NORMAL

- Generate samples from bivariate normal distribution $N(\mu, \Sigma)$
- Gibbs sampler:
 - What are the full conditional functions?
- MH algorithm:
 - How to choose the proposal distribution?

EXAMPLE4: POISSON PROCESS WITH A CAHNGE POINT

- $X_i \sim Poisson(\mu)$ for i = 1, 2, ..., k; $X_i \sim Poisson(\lambda)$ for i = k + 1, ..., m
- μ , k, λ are unknown; X_i (i = 1, ..., m) and m are observed data.
- Problem: estimate μ , k, λ .
- Priors on μ , k, λ :
 - k:Uniform prior on {1,2,...,m-1}
 - μ : Gamma(al,bl).
 - λ : Gamma(a2,b2)
- Draw posterior samples from $f(\mu, k, \lambda \mid X)$
- Use Gibbs sampler