Chapitre 6 Mouvements de rotation

1. Repères tournants

1. Référentiel

Un référentiel est un système d'axes permettant un repérage des espaces muni d'horloges synchronisées permettant un repérage des instants ou des durées.

2. Repère

Définition

Un repère est un système d'axes lié à un référentiel.

Pour un référentiel donné, il existe une infinité de repères. Certains sont fixes par rapport au référentiel d'étude. D'autres sont liés à l'objet dont on étudie le mouvement et sont dits mobiles.

• Le repère cylindrique

$$\overrightarrow{OM} = \rho \vec{u}_{\rho} + z \vec{u}_{z}$$

La direction des vecteurs unitaires \vec{u}_{ρ} et \vec{u}_{θ} varie au cours du temps.

Ce repère convient pour des phénomènes mettant en jeu une rotation autour d'un axe.

Correspondance avec les coordonnées cartésiennes :

$$x = \rho \cos \theta$$
 $\rho = OH = \sqrt{x^2 + y^2}$
 $y = \rho \sin \theta$ $\tan \theta = y/x$
 $z = z$ $z = z$

Le repère sphérique

$$\overrightarrow{OM} = r\overrightarrow{u}_r$$

 $z = r \cos \theta$

La direction de tous les vecteurs unitaires varie au cours du temps.

Ce repère convient pour des phénomènes mettant en jeu une rotation autour d'un point.

 θ

2. Cinématique des mouvements de rotation

1. La vitesse

La vitesse du point M par rapport à \Re est donnée par la dérivée du vecteur position du point M par rapport au temps :

$$\vec{v}_{M/\Re} = \frac{d\overline{OM}}{dt}$$

avec $[v] = \text{m.s}^{-1}$

2. Expression de la vitesse dans un repère cylindrique

Les vecteurs unitaires \vec{u}_{ρ} et \vec{u}_{θ} ne sont pas fixes*.

$$\begin{split} \vec{v}_{M/\Re} &= \frac{d \overrightarrow{OM}}{dt} = \frac{d \left(\rho \vec{u}_{\rho} + z \vec{u}_{z} \right)}{dt} = \frac{d \rho}{dt} \vec{u}_{\rho} + \rho \frac{d \vec{u}_{\rho}}{dt} + \frac{dz}{dt} \vec{u}_{z} \\ \vec{v}_{M/\Re} &= \dot{\rho} \vec{u}_{\rho} + \rho \dot{\theta} \vec{u}_{\theta} + \dot{z} \vec{u}_{z} \end{split}$$

(*) Dérivée par rapport au temps des vecteurs unitaires \vec{u}_{ρ} et \vec{u}_{θ}

 \vec{u}_{ρ} et \vec{u}_{θ} changent de direction au cours du mouvement.

Expression de ces vecteurs:

$$\vec{u}_{\rho} \begin{cases} \cos \theta \\ \sin \theta \end{cases} \qquad \vec{u}_{\theta} \begin{cases} \cos (\theta + \pi/2) = -\sin \theta \\ \sin (\theta + \pi/2) = \cos \theta \end{cases}$$

$$\vec{u}_{\rho} = \cos \theta \vec{i} + \sin \theta \vec{j} \qquad \vec{u}_{\theta} = -\sin \theta \vec{i} + \cos \theta \vec{j}$$

$$\frac{d\vec{u}_{\rho}}{d\theta} = -\sin \theta \vec{i} + \cos \theta \vec{j} \qquad \frac{d\vec{u}_{\theta}}{d\theta} = -\cos \theta \vec{i} - \sin \theta \vec{j}$$

D'où:
$$\frac{d\vec{u}_{\rho}}{d\theta} = \vec{u}_{\theta}$$
 et $\frac{d\vec{u}_{\theta}}{d\theta} = -\vec{u}_{\rho}$

On en déduit :
$$\frac{d\vec{u}_{\rho}}{dt} = \frac{d\vec{u}_{\rho}}{d\theta} \frac{d\theta}{dt} = \dot{\theta}\vec{u}_{\theta}$$
 $\frac{d\vec{u}_{\theta}}{dt} = \frac{d\vec{u}_{\theta}}{d\theta} \frac{d\theta}{dt} = -\dot{\theta}\vec{u}_{\rho}$

Finalement on a:
$$\frac{d\vec{u}_{\rho}}{dt} = \dot{\theta}\vec{u}_{\theta}$$
 et $\frac{d\vec{u}_{\theta}}{dt} = -\dot{\theta}\vec{u}_{\rho}$

3. Expression de la vitesse dans un repère sphérique

Les vecteurs unitaires de ce repère ne sont pas fixes**.

$$\vec{v}_{M/\Re} = \frac{d\vec{OM}}{dt} = \frac{d(r\vec{u}_r)}{dt} = \frac{dr}{dt}\vec{u}_r + r\frac{d\vec{u}_r}{dt} = \dot{r}\vec{u}_r + r\dot{\theta}\vec{u}_\theta + r\dot{\phi}\sin\theta\vec{u}_\varphi$$

4. L'accélération

L'accélération du point M par rapport à \Re est donnée par la dérivée du vecteur vitesse du point M par rapport au temps :

$$\vec{a}_{M/\Re} = \frac{d\vec{v}_{M/\Re}}{dt} = \frac{d}{dt} \left(\frac{d\vec{OM}}{dt} \right) = \frac{d^2 \vec{OM}}{dt^2}$$

$$\text{avec } [a] = \text{m.s}^{-2}$$

L'accélération est aussi la dérivée seconde de la position par rapport au temps.

(**) Dérivée des vecteurs unitaires du repère sphérique

Tous les vecteurs unitaires changent de direction au cours du mouvement.

Expression de ces vecteurs :

$$\begin{split} \vec{u}_r &= \sin\theta\cos\varphi\,\vec{i} + \sin\theta\sin\varphi\,\vec{j} + \cos\theta\,\vec{k} \\ \vec{u}_\theta &= \cos\theta\cos\varphi\,\vec{i} + \cos\theta\sin\varphi\,\vec{j} - \sin\theta\,\vec{k} \\ \vec{u}_\varphi &= -\sin\varphi\,\vec{i} + \cos\varphi\,\vec{j} \end{split}$$

$$\frac{d\vec{u}_r}{dt} = \dot{\theta}\vec{u}_\theta + \dot{\varphi}\sin\theta\,\vec{u}_\varphi$$

$$\frac{d\vec{u}_{\theta}}{dt} = -\dot{\theta}\vec{u}_{r} + \dot{\varphi}\cos\theta\,\vec{u}_{\varphi}$$

5. Expression de l'accélération dans un repère cylindrique

$$\vec{a}_{M/\Re} = \frac{d\vec{v}_{M/\Re}}{dt} = \frac{d\left(\dot{\rho}\vec{u}_{\rho} + \rho\dot{\theta}\vec{u}_{\theta} + \dot{z}\vec{u}_{z}\right)}{dt}$$

$$\vec{a}_{M/\Re} = \left(\ddot{\rho} - \rho\dot{\theta}^{2}\right)\vec{u}_{\rho} + \left(\rho\ddot{\theta} + 2\dot{\rho}\dot{\theta}\right)\vec{u}_{\theta} + \ddot{z}\vec{u}_{z}$$

6. Expression de l'accélération dans un repère sphérique

$$\begin{split} \vec{a}_{M/\Re} &= \frac{d\vec{v}_{M/\Re}}{dt} = \frac{d\left(\dot{r}\vec{u}_r + r\dot{\theta}\vec{u}_\theta + r\dot{\phi}\sin\theta\,\vec{u}_\phi\right)}{dt} \\ \vec{a}_{M/\Re} &= \left(\ddot{r} - r\dot{\theta}^2 - r\dot{\phi}^2\sin\theta\right)\vec{u}_r + \left(r\ddot{\theta} + 2\dot{r}\dot{\theta} - r\dot{\phi}^2\sin\theta\cos\theta\right)\vec{u}_\theta \\ &+ \left(r\ddot{\phi}\sin\theta + 2\dot{r}\dot{\phi}\sin\theta + 2r\dot{\phi}\dot{\phi}\cos\theta\right)\vec{u}_\phi \end{split}$$

3. Mouvement circulaire uniforme

1. Définition

Le mouvement d'un point matériel est dit circulaire uniforme si le point se déplace

- sur un cercle
- à vitesse angulaire de rotation constante

2. Équations du mouvement

L'équation différentielle du mouvement est donnée par :

$$\frac{d\theta}{dt} = \omega = cte \text{ qui conduit à } \theta = \omega t + \theta_0$$

Les caractéristiques cinématiques du mouvement circulaire uniforme peuvent se déduire du schéma ci-dessus et sont données par :

R

$$\overrightarrow{OM}(t) = \rho \vec{u}_{\rho} = R \vec{u}_{\rho}$$

$$\vec{v}(t) = \frac{d\vec{OM}}{dt} = R\dot{\theta}\vec{u}_{\theta}$$
 et $\vec{a}(t) = \frac{d\vec{v}}{dt} = -R\dot{\theta}^2\vec{u}_{\rho}$

Remarques:

- Le mouvement circulaire uniforme est un mouvement accéléré dont l'accélération est centripète.
- On peut noter que : $\vec{u}_{\theta} = \vec{u}_z \wedge \vec{u}_{\rho}$.

On en déduit une expression du vecteur vitesse indépendante de la base choisie :

$$\vec{v}(t) = R\dot{\theta}\vec{u}_{\theta} = R\dot{\theta}\vec{u}_{z} \wedge \vec{u}_{\rho} = \dot{\theta}\vec{u}_{z} \wedge R\vec{u}_{\rho} = \vec{\omega} \wedge \overrightarrow{OM}$$

Où l'on a introduit le vecteur vitesse angulaire : $\vec{\omega} = \dot{\theta} \vec{u}_z$

La relation précédente est valable pour tout vecteur \vec{A} en rotation autour d'un axe. Sa dérivée par rapport au temps est donnée par :

$$\frac{d\vec{A}}{dt} = \vec{\omega} \wedge \vec{A}$$

Ainsi, on peut écrire l'accélération du point *M* sous la forme d'un double produit vectoriel :

$$\vec{a}(t) = \vec{\omega} \wedge \vec{v} = \vec{\omega} \wedge \left(\vec{\omega} \wedge \overrightarrow{OM} \right)$$