ASTRAZIONE PROCEDURALE

Laboratorio 6 - Funzioni

Marco Alberti

Programmazione e Laboratorio, A.A. 2021-2022

Ultima modifica: 28 ottobre 2021

Attenzione! Questo materiale didattico è per uso personale dello studente ed è coperto da copyright. Ne sono vietati la riproduzione e il riutilizzo anche parziale, ai sensi e per gli effetti della legge sul diritto d'autore.

Potenza

La funzione potenza, definita nel file linkato dal titolo, gestisce esponenti nulli o negativi? Se necessario, estenderla a questi casi.

Testarla chiamandola con parametri attuali significativi.

$$2^{3} = 8$$
 $2^{9} = 1$
 $2^{-3} = 0.125$
 $1 \mid 2^{3} = 0.125$

$$2^{-n} = \frac{1}{2^n}$$

REFACTORING

Radice quadrata

Il programma linkato nel titolo dà in output la radice quadrata dell'input approssimata con il metodo babilonese. Modificarlo come segue:

- scrivere una funzione media che restituisca la media aritmetica dei suoi due parametri di tipo.float;
- scrivere una funzone radq che approssimi con metodo babilonese la radice quadrata del suo parametro di tipo float, chiamando la funzione media dove opportuno;
- chiamare la funzione radq nel main dove opportuno.

Testare il programma invocandolo con input significativi.

Giorno della settimana

Esercizio

Il giorno della settimana di una data qualunque si può ottenere dal resto della divisione del giorno giuliano della data per 7 (lunedì se il resto è 0, martedì se il resto è 1, e così via fino a domenica se il resto è 6).

Scrivere una funzione di nome giorno avente

- tre parametri interi rappresentanti giorno, mese e anno:
- valore di ritorno di tipo carattere; la funzione deve restituire l'iniziale minuscola del giorno della settimana (ad esempio 'g' per giovedì), oppure 'M' se il giorno è mercoledì.

La funzione deve calcolare il giorno giuliano chiamando la funzione già presente nel codice linkato dal titolo di questo esercizio.

Maiuscole

Scrivere una funzione di nome toUpperCase con un argomento c di tipo carattere che restituisca

- se c è una lettera minuscola, la corrispondente lettera maiuscola;
- c altrimenti.

Ad esempio:

- toUpperCase('a') → 'A';
- toUpperCase('A') → 'A';
- toUpperCase('3') → '3'.

Utilizzare la funzione in un programma che stampi a video la riga scritta dall'utente, con le lettere minuscole sostituite da maiuscole. Ad esempio, se l'utente scrive 10 novembre, il programma deve stampare 10 NOVEMBRE.

PΙ

Si scriva una funzione in linguaggio C che calcola, per un numero $n \ge 1$, il valore della funzione matematica $\Pi(n)$, definita come il numero di numeri primi minori o uguali a n.

$$\Pi(1) = 0$$
 $\Pi(2) = 1$
 $\Pi(3) = 2$
 $\Pi(4) = 2$
 $\Pi(5) = 3$
 $\{2, 3\}$
 $\{2, 3\}$

Scrivere un programma per testare la funzione.

Approssimazione

Scrivere una funzione di prototipo float sen(float x, int n) che approssimi il valore della funzione seno come somma dei primi n termini del suo sviluppo in serie di Taylor:

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$$

La funzione deve a sua volta chiamare le due funzioni di prototipo

- float potenza (float base, int esponente) (che restituisce base elevato alla esponente-esima potenza)
- long long fattoriale(int n) (che restituisce n!)
 float