AMENDMENTS TO THE CLAIMS

Claims 1-13 (Canceled)

Claim 14 (New): A crystallized glass for an optical filter substrate, which consists, as represented by mol% based on the following oxides, essentially of:

SiO₂:

30 to 65%,

Al₂O₃:

5 to 35%,

TiO₂+ZrO₂:

1 to 15%,

Na₂O:

0 to 30%,

K₂O:

5 to 30%, provided K_2O (%) $\geq Na_2O$ (%),

Li₂O:

0 to 15%,

MgO:

0 to 15%,

CaO:

0 to 15%,

SrO:

0 to 15%,

BaO:

0 to 15%,

ZnO:

0 to 15%,

 B_2O_3 :

0 to 15%,

 P_2O_5 :

0 to 15%,

 Y_2O_3 :

0 to 15%,

and which has an average linear expansion coefficient α_L of from 95×10^{-7} /°C to 130×10^{-7} /°C at from -30°C to 70°C, and which has a crystal or solid solution of $Na_{4-x}K_xAl_4Si_4O_{16}$ ($1 < x \le 4$) precipitated therein.

Claim 15 (New): The crystallized glass for an optical filter substrate according to Claim 14, wherein MgO: 1 to 15%.

Claim 16 (New): The crystallized glass for an optical filter substrate according to Claim 14, which has an average linear expansion coefficient α_H of from 80×10^{-7} /°C to 155×10^{-7} /°C at from 190°C to 220°C.

Claim 17 (New): The crystallized glass for an optical filter substrate according to Claim 14, which has an average linear expansion coefficient $\alpha_{\rm H}$ of from 110×10^{-7} /°C to 145×10^{-7} /°C.

Claim 18 (New): The crystallized glass for an optical filter substrate according to Claim 14, which has a Young's modulus of at least 85 GPa.

Claim 19 (Original): The crystallized glass for an optical filter substrate according to Claim 14, which has an absorptivity coefficient of at most 0.03 mm⁻¹ for a light having a wavelength of 1550 nm.

Claim 20 (New): An optical filter comprising

an optical filter substrate made of a crystallized glass for an optical filter substrate, which has an average linear expansion coefficient α_L of from 95×10⁻⁷/°C to 130×10⁻⁷/°C at from -30°C to 70°C, and which has a crystal or solid solution of Na_{4-x}K_xAl₄Si₄O₁₆ (1 < x ≤ 4) precipitated therein; and

a dielectric multilayer film formed on the substrate.

Claim 21 (New): The optical filter according to Claim 20, wherein the crystallized glass consists, as represented by mol% based on the following oxides, essentially of:

SiO ₂ :	30 to 65%
Al ₂ O ₃ :	5 to 35%,
TiO ₂ +ZrO ₂ :	1 to 15%,
Na ₂ O:	0 to 30%,
K ₂ O:	5 to 30%,
Li ₂ O:	0 to 15%,
MgO:	0 to 15%,
CaO:	0 to 15%,
SrO:	0 to 15%,
BaO:	0 to 15%,
ZnO:	0 to 15%,
B ₂ O ₃ :	0 to 15%,
P ₂ O ₅ :	0 to 15%,
Y_2O_3 :	0 to 15%.

Claim 22 (New): The optical filter according to Claim 20, wherein the crystallized glass consists, as represented by mol% based on the following oxides, essentially of:

SiO₂:

30 to 65%,

Al₂O₃:

5 to 35%,

 TiO_2+ZrO_2 :

1 to 15%,

Na₂O:

0 to 30%,

K₂O:

5 to 30%, provided K_2O (%) $\geq Na_2O$ (%),

Li₂O:

0 to 15%,

MgO:

0 to 15%,

CaO:

0 to 15%,

SrO:

0 to 15%,

BaO:

0 to 15%,

ZnO:

0 to 15%,

 B_2O_3 :

0 to 15%,

 P_2O_5 :

0 to 15%,

 Y_2O_3 :

0 to 15%,

and which has an average linear expansion coefficient α_L of from 95×10^{-7} /°C to 130×10^{-7} /°C at from -30°C to 70°C, and which has a crystal or solid solution of $Na_{4-x}K_xAl_4Si_4O_{16}$ ($1 < x \le 4$) precipitated therein.

Claim 23 (New): The optical filter according to Claim 22, wherein MgO: 1 to 15%.

Claim 24 (New): The optical filter according to Claim 20, wherein the crystallized glass has an average linear expansion coefficient $\alpha_{\rm H}$ of from $80\times10^{-7}/{\rm ^{\circ}C}$ to $155\times10^{-7}/{\rm ^{\circ}C}$ at from 190°C to 220°C.

Claim 25 (New): The optical filter according to Claim 20, wherein the crystallized glass has an average linear expansion coefficient $\alpha_{\rm H}$ of from 110×10^{-7} /°C to 145×10^{-7} /°C.

Claim 26 (New): The optical filter according to Claim 20, wherein the crystallized glass has a Young's modulus of at least 85 GPa.

Claim 27 (New): The optical filter according to Claim 20, wherein the crystallized glass has an absorptivity coefficient of at most 0.03 mm⁻¹ for a light having a wavelength of 1550 nm.

Claim 28 (New): A crystallized glass for an optical filter substrate, which consists, as represented by mol% based on the following oxides, essentially of:

SiO₂:

35 to 60%,

 Al_2O_3 :

10 to 30%,

 TiO_2+ZrO_2 :

1 to 15%,

Na₂O:

4 to 20%,

K₂O:

4 to 20%,

CaO+SrO+BaO

0.1 to 10%,

MgO:

0 to 10%,

 B_2O_3 :

0 to 10%,

 P_2O_5 :

0 to 10%,

and which has an average linear expansion coefficient α_L of from 95×10^{-7} /°C to 130×10^{-7} /°C at from -30°C to 70°C, and which has a crystal or solid solution precipitated therein.

Claim 29 (New): The crystallized glass for an optical filter substrate according to Claim 28, wherein K_2O (%) $\geq Na_2O$ (%).

Claim 30 (New): The crystallized glass for an optical filter substrate according to Claim 28, wherein MgO: 1 to 15%.

Claim 31 (New): The crystallized glass for an optical filter substrate according to Claim 28, which has an average linear expansion coefficient $\alpha_{\rm H}$ of from $80\times10^{-7}/^{\circ}{\rm C}$ to $155\times10^{-7}/^{\circ}{\rm C}$ at from $190^{\circ}{\rm C}$ to $220^{\circ}{\rm C}$.

Claim 32 (New): The crystallized glass for an optical filter substrate according to Claim 28, which has an average linear expansion coefficient $\alpha_{\rm H}$ of from 110×10^{-7} /°C to 145×10^{-7} /°C.

Claim 33 (New): The crystallized glass for an optical filter substrate according to Claim 28, which has a Young's modulus of at least 85 GPa.

Claim 34 (New): The crystallized glass for an optical filter substrate according to Claim 28, which has an absorptivity coefficient of at most 0.03 mm⁻¹ for a light having a wavelength of 1550 nm.

Claim 35 (New): An optical filter comprising

an optical filter substrate made of a crystallized glass for an optical filter substrate, which consists, as represented by mol% based on the following oxides, essentially of:

35 to 60%,

SiO₂:

 Al_2O_3 : 10 to 30%,

 TiO_2+ZrO_2 : 1 to 15%,

Na₂O: 4 to 20%,

 K_2O : 4 to 20%,

CaO+SrO+BaO 0.1 to 10%,

MgO: 0 to 10%,

 B_2O_3 : 0 to 10%,

 P_2O_5 : 0 to 10%,

and which has an average linear expansion coefficient α_L of from 95×10⁻⁷/°C to 130×10⁻⁷/°C at from -30°C to 70°C, and which has a crystal or solid solution precipitated therein; and a dielectric multilayer film formed on the substrate.

Claim 36 (New): The optical filter according to Claim 35, wherein the crystallized glass has K_2O (%) $\geq Na_2O$ (%).

Claim 37 (New): The optical filter according to Claim 35, wherein the crystallized glass has MgO: 1 to 15%.

Claim 38 (New): The optical filter according to Claim 35, wherein the crystallized glass has an average linear expansion coefficient $\alpha_{\rm H}$ of from $80\times10^{-7}/^{\circ}{\rm C}$ to $155\times10^{-7}/^{\circ}{\rm C}$ at from 190°C to 220°C.

Claim 39 (New): The optical filter according to Claim 35, wherein the crystallized glass has an average linear expansion coefficient $\alpha_{\rm H}$ of from 110×10^{-7} /°C to 145×10^{-7} /°C.

Claim 40 (New): The optical filter according to Claim 35, wherein the crystallized glass has a Young's modulus of at least 85 GPa.

Claim 41 (New): The optical filter according to Claim 35, wherein the crystallized glass has an absorptivity coefficient of at most 0.03 mm⁻¹ for a light having a wavelength of 1550 nm.

Claim 42 (New): The crystallized glass for an optical filter substrate according to Claim 14, wherein K_2O (%) $\geq 1.5 \text{ Na}_2O$ (%).

Claim 43 (New): The optical filter according to Claim 22, wherein K_2O (%) ≥ 1.5 Na₂O (%).

Claim 44 (New): The crystallized glass for an optical filter substrate according to Claim 29, wherein K_2O (%) $\geq 1.5 \text{ Na}_2O$ (%).

Claim 45 (New): The optical filter according to Claim 36, wherein the crystallized glass has K_2O (%) $\geq 1.5 \text{ Na}_2O$ (%).