HW 7: Designing a custom IP for Merge Operation with Xilinx Fifo Generator

資訊所P76134082 陳冠言、醫資所Q56134102 王宇軒

Result

本次作業主要是將 Merge Operation 的硬體邏輯包裝成 Vivado 的自訂 IP, 並透過 AXI4 介面與處理器整合, 實現兩個已排序陣列合併為一個排序陣列(由大到小)的功能。系統整合後, 處理器可將資料寫入 IP, 啟動合併運算, 並於運算完成後讀回合併結果。透過 SDK 撰寫驗證程式, 並結合 Tera Term 進行序列埠通訊, 驗證硬體與軟體整合運作正確。

<RUN SIMULATION>

AFifo1, arrayFifo1 add to new window

AFifo2, arrayFifo2 add to new window

mergedFifo, mergedFifo add to new window

reset force constant = 0

fifo1WrEn = 1

fifoWrData = 32, 25, 16, 9, 6, 5, 1

fifo1WrEn = 0 fifo2WrEn = 1 fifoWrData = 20, 12, 10, 7, 5, 3

start = 1 mergedFifoRdEn = 1

merge result: mergedData = 32, 25, 20, 16, 12, 10, 9, 7, 6, 5, 5, 3, 1

Total simulation

結果:

Explain your code

- 1. FIFO 緩衝區:設計中分別使用兩個 FIFO(arrayFifo1、arrayFifo2)存放輸入的兩組已排序陣列,並用一個 mergedFifo 存放合併後的結果。FIFO 由 Xilinx FIFO Generator IP 產生,確保資料能以先進先出方式處理。
- 2. 合併邏輯: mergeCore.v 會將兩個已排序(由大到小)的陣列資料, 分別寫入兩個 FIFO(arrayFifo1 與 arrayFifo2), 並將合併後的結果(同樣由大到小排序)寫入第 三個 FIFO(mergedFifo)。整個合併過程由狀態機自動完成, 並以 done 訊號通 知處理器運算結束, 而FSM的狀態說明如下:
- IDLE: 待命狀態, 等待 start 訊號。
- READ: 同時檢查兩個 FIFO 是否有資料, 若都有資料則比較大小, 決定從哪個 FIFO 取資料。若有一個 FIFO 已空, 進入 FLUSH FIFO 狀態。
- LOAD: 將剛剛比較後選中的資料暫存到 dataLatch。
- WRITE: 將暫存資料寫入 mergedFifo。
- FLUSH_FIFO: 當其中一個 FIFO 已空, 將另一個 FIFO 剩下的資料全部搬到 mergedFifo。
- DONE:合併結束, done 設為 1, 等待 start 解除後回到 IDLE。
- 3. 狀態機設計:合併流程由狀態機控制,包括 Idle(待命)、Compare(比較)、Write (寫入)、Flush(清空剩餘資料)、Done(完成)等狀態。狀態機會根據控制暫存器 啟動運算,並於完成後更新狀態暫存器,供處理器查詢2。
- 4. AXI4 介面: merge_v1_0_S00_AXI.v 作為 AXI wrapper, 負責與處理器的資料與控制訊號溝通, 包含資料寫入、啟動、狀態查詢與結果讀取等功能。
- 5. 軟體驗證:SDK 端程式碼依據 register map, 將兩組陣列分別寫入對應暫存器, 啟動合併, 輪詢狀態暫存器, 待完成後讀回合併結果, 並透過 Tera Term 顯示驗證結果

(程式碼圖片)

```
Untitled 1* × mergeCore.v ×
     C:/verilog/ip_repo/merge/merge_1.0/hdl/mergeCore.v
       ٥
                                              *timescale Ins / Ips
       //
// Create Date: 03/21/2020 12:34:37 PM
// Design Name:
// Module Name: mergeCore
// Project Name:
// Target Devices:
                                                     Description: Merge two sorted FIFOs into one sorted stream (descending order)
                                                     Dependencies: arrayFifo, mergedFifo
                                                    //
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
                                              module mergeCore(
input clock,
input reset,
input start,
input [31:0] fifo*Date,
input [71:0] fifo*Date,
input fifo*D*FE,
input fifo*D*FE,
input [91:0] mergedFifo*RdEn,
output [91:0] mergedFifo*Rdbata,
output wag done
Untitled 1* × mergeCore.v ×
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             ? 🗆 🖰
     C:/verilog/ip_repo/merge/merge_1.0/hdl/mergeCore.v
     ٥
     wixe fifolEmpty, fifo2Empty;
wixe [31:0] fifolData, fifo2Data;
                                                   reg fifolRdEn, fifo2RdEn;
reg mergeFifoWrEn;
reg [31:0] mergeFifoData;
                                                 reg [31:0] dataLatch;
reg fromFifol;
                                                     reg [2:0] state;
                                                                                             m IDLE = 3'd0,

READ = 3'd1,

LOAD = 3'd2,

WRITE = 3'd3,

FLUSH_FIFO = 3'd4,

DONE = 3'd5;
                                                    localparam IDLE
                                                                  READ
LOAD
                                                    always 0(posedae clock) begin
if (reset) begin
(state = IDEE;
fifoRMEn = 1'b0;
fifoRMEn = 1'b0;
done = 1'b0;
done = 1'b0;
dataLatch = 32'd0;
fronfriol = 1'b0;
end else begin
fifoRMEn = 1'b0;
mercs=FifoRMEn = 1'b0;
Untitled 1* × mergeCore.v ×
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ? 🗆 🖸
     C:/verilog/ip_repo/merge/merge_1.0/hdl/mergeCore.v
     \mathsf{Q}_{\mathsf{i}} \mid \begin{picture}(20,10) \put(0,0){\line(1,0){10}} \put(0,0){\line(1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Φ
  fifo2RdEn <= 1'b0;
mergeFifoWrEn <= 1'b0;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     ^
                                                                     case (state)

IDLE: begin

done <= 1'b0;

if (start) state <= READ;
end
                                                                                               READ: begin
                                                                                               EEAD: begin

if (fifolEmpty && fifo2Empty) begin

if (fifolEmb > fifo2Data) begin #/DESCENDING ORDER

fromFifol = 1'bi;

end else begin

fromFifol == 1'bi;

fifo2DEE == 1'bi;

end

state <= LORD;

ord else if (fifo[Embty && fifo2Dataty) begin

growlete; if (fifo[Embty && fifo2Dataty) begin
                                                                                          state ~ LAM1;
end else if (fifolEmpty b& fifo2Empty) begin
state ~ LAM2;
end else begin
state ~ FLEMS-FIFO;
if (fifolEmpty) fifolRAEm ~ 1'bl;
else if (fifo2Empty) fifo2RAEm ~ 1'bl;
                                                                                                 __ond.cegin
dstalatch <- fromFifol ? fifolData : fifo2Data;
state <= WRITE;
end.
```

```
Untitled 1* × mergeCore.v ×
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                ? 🗆 🖸
      C:/verilog/ip_repo/merge/merge_1.0/hdl/mergeCore.v
      *
    91 : 92 93 · 0 94 · 0 95 ÷ 0 95 ÷ 0 95 ÷ 0 101 ė 0 102 ÷ 103 ė 0 101 ė 0 102 ÷ 103 ė 0 101 ė 0 102 ÷ 103 ė 0 101 ė 0 1
                                                                                                                                                         LUMU: begin

dataLatch <= frowFifol ? fifolData : fifo2Data;

state <= WRITE;

end
                                                                                                                                                            LOAD: begin
                                                                                                                                                 WRITE: begin
mergeFifoWrEn <= 1'bl;
mergeFifoWsta <= dataLatch;
state <= READ;
end
                                                                                                                                      FLUSH FIFO: begin
                                                                                                                                                                ⇒nd else begin
state ← DONE;
end
end
                                                                                                                                                         DONE: begin

done <= 1'b1;

if (!start)

state <= INIF-
    Untitled 1* × mergeCore.v ×
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               C:/verilog/ip_repo/merge/merge_1.0/hdl/mergeCore.v
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 ×
          Φ
                                                                                                                                                         if (!start)
state ← IDLE;
end
        121 © 0 0 122 © 0 123 © 0 124 © 0 125 © 0 124 © 125 © 0 125 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 0 126 © 
                                                                                  end
endcase
end
end
                                                                                           #FIFO instantations
arrayFifo arrayFifol (
.clk(clock),
.srst(reset),
.din(fifoWrData),
                                                                                                              .wr_en(fifolWrEn),
.rd_en(fifolRdEn),
.dout(fifolRata),
                                                                                                                       .full().
                                                                                                                           .empty(fifolEmpty)
                                                                                        errayFifo arrayFifo2 (
.clk(clock),
.srst(reset),
.din(fifoWrData),
.wr_en(fifo2WrEn),
.rd_en(fifo2Data),
.full()
                                                                                                                     .full(),
.empty(fifo2Empty)
                                                                              mergedFifo mergedFifo (
clk(clock)
    Untitled 1* × mergeCore.v ×
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    ? 🗆 🖸
             C:/verilog/ip_repo/merge/merge_1.0/hdl/mergeCore.v
             \mathsf{Q}_{1} \mid \, \sqsubseteq \, \mid \, \Leftrightarrow \, \mid \, \, \not > \, \mid \, \, \not \& \, \mid \, \, \sqsubseteq \, \mid \, \, \sqsubseteq \, \mid \, \, \bigsqcup \, \mid \, \, \not \times \, \mid \, \not / \mid \, \mid \, \sqsubseteq \, \sqsubseteq \, \mid \, \, \, \, \bigcirc
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 ٠
                                                                                                            .wr_en(fifolWrEn),
.rd_en(fifolRdEn),
.dout(fifolBata),
.full(),
.enpty(fifolEnpty)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ^
          errayFifo arrayFifo2 (
.clk(clock),
.srst(reset),
.din(fifOWTNEta),
.vr_en(fifo2WETA),
.rd_en(fifo2WETA),
.dout(fifo2Deta),
.full(),
.enutv(fifo2Enutv)
                                                                                                                         .empty(fifo2Empty)
                                                                                        mergedFifo mergedFifo (
.clk(clock),
.srst(reset),
.din(mergeFifoWEta),
.vr_en(mergeFifoWEta),
.rd_en(mergedFifoWEta),
.dout(mergedFifoRdBata),
.full(),
.empty()
                                                                                                                         .enpty()
                                                                                             );
                                                                           endmodule
```

Lesson learned

- IP 設計流程熟悉:學會如何從 Verilog 硬體描述語言設計出自訂 IP, 並透過 Vivado 工具進行包裝與測試, 熟悉 Xilinx IP 開發與整合流程。
- FIFO Generator 應用: 實際操作 Xilinx FIFO Generator, 理解 FIFO 在資料緩衝與佇列處理的應用與重要性。
- 硬體/軟體協同設計:體會到硬體與軟體協同設計的重要性,從 register map 規劃 到 AXI 介面設計,確保處理器與自訂 IP 能順利互動。
- 狀態機與流程控制:深入理解狀態機在硬體運算流程控制的角色,學會設計簡潔 且可維護的狀態切換邏輯。
- 系統整合與驗證:從 IP 包裝、Block Design 建置、HDL Wrapper 生成、bitstream 燒錄到 SDK 驗證, 完整經歷 FPGA 系統開發與驗證流程。
- 除錯與驗證經驗:學會如何利用 SDK、Tera Term 等工具進行系統除錯與驗證, 提升問題排查與解決能力。