sandhan@iitk.ac.in

Dr. Tushar Sandhan

EE604: IMAGE PROCESSING

What does image convey

- 'A picture is worth a thousand words' H. Ibsen (1828~1906)
 - info at various scales (resolutions)
 - vary the window size (W)
 - o vary the image size itself & keeping W fixed

What does image convey

- 'A picture is worth a thousand words' H. Ibsen (1828~1906)
 - o info at various scales (resolutions)
 - vary the window size (W)
 - o vary the image size itself & keeping W fixed

Larger objects can be analyzed @ _____ resolution

What does image convey

- 'A picture is worth a thousand words' H. Ibsen (1828~1906)
 - info at various scales (resolutions)
 - vary the window size (W)
 - o vary the image size itself & keeping W fixed

Larger objects can be analyzed @ _____ resolution

Smaller ones can be analyzed @ _____ resolution

Resolution relations

- Fourier analysis
 - o info abt freq content in a signal
 - o can we find out at what time the freq has occurred?
 - STFT (Gabor'1946)
 - if the time window is short: can assume stationarity
 - o can't locate sudden signal changes (edges)
 - FT is ideal for stationary signals

upchirp

Resolution relations

- Fourier analysis
 - o info abt freq content in a signal
 - o can we find out at what time the freq has occurred?
 - STFT (Gabor'1946)
 - if the time window is short: can assume stationarity
 - can't locate sudden signal changes (edges)
 - FT is ideal for stationary signals

upchirp

downchirp

Resolution relations

- Fourier analysis
 - o info abt freq content in a signal
 - o can we find out at what time the freq has occurred?
 - STFT (Gabor'1946)
 - if the time window is short: can assume stationarity
 - can't locate sudden signal changes (edges)
 - FT is ideal for stationary signals

upchirp

downchirp

What do we need?

- Capture incremental info in the signal
 - low resolution
 - o mid res.
 - o high res.

What do we need?

- Capture incremental info in the signal
 - low resolution
 - o mid res.
 - o high res.
- Does the shape of objects change in an image?
 - o car, person, building etc.

What do we need?

- Capture incremental info in the signal
 - low resolution
 - o mid res.
 - o high res.
- Does the shape of objects change in an image?
 - o car, person, building etc.

- Do high freq. components always contain useful info?
 - noisy image
 - high freq is good near abrupt transitions (e.g. edgy regions)

- Find a space which can be fragmented in to subspaces
 - basis should be independent
 - basis functions: orthonormal
 - o a function in L^2 to control scale (freq): $(s \ or \ n)$ and space (time): $(\tau \ or \ m)$

$$\psi \in L^2 \longrightarrow \psi_{m,n}$$

- Find a space which can be fragmented in to subspaces
 - o basis should be independent
 - basis functions: orthonormal
 - o a function in L^2 to control scale (freq): $(s \ or \ n)$ and space (time): $(\tau \ or \ m)$

$$\psi \in L^2 \longrightarrow \psi_{m,n}$$

$$(\psi_{m,n},\psi_{k,l}) = \int_{-\infty}^{\infty} \psi_{m,n}(x)\psi_{k,l}(x)dx = \delta_{m,k}\delta_{n,l}$$

- Find a space which can be fragmented in to subspaces
 - basis should be independent
 - basis functions: orthonormal
 - o a function in L^2 to control scale (freq): $(s \ or \ n)$ and space (time): $(\tau \ or \ m)$

$$\psi \in L^2 \longrightarrow \psi_{m,n}$$

$$(\psi_{m,n},\psi_{k,l}) = \int_{-\infty}^{\infty} \psi_{m,n}(x)\psi_{k,l}(x)dx = \delta_{m,k}\delta_{n,l}$$

$$\delta_{ij} = \begin{cases} 0 & i \neq j \\ 1 & i = j \end{cases}$$
 $m, n, i, j \text{ are integers}$

- Find a space which can be fragmented in to subspaces
 - o basis should be independent
 - basis functions: orthonormal
 - o a function in L^2 to control scale (freq): $(s \ or \ n)$ and space (time): $(\tau \ or \ m)$

$$\psi \in L^2 \longrightarrow \psi_{m,n}$$

$$(\psi_{m,n},\psi_{k,l}) = \int_{-\infty}^{\infty} \psi_{m,n}(x)\psi_{k,l}(x)dx = \delta_{m,k}\delta_{n,l}$$

$$f_1(x) = x^2$$

$$f_2(x) = x^3$$

$$\delta_{ij} = \left\{ \begin{array}{ll} 0 & i \neq j \\ 1 & i = j \end{array} \right.$$

$$m, n, i, j$$
 are integers

- Find a space which can be fragmented in to subspaces
 - basis should be independent
 - basis functions: orthonormal
 - o a function in L^2 to control scale (freq): $(s \ or \ n)$ and space (time): $(\tau \ or \ m)$

$$\psi \in L^2 \longrightarrow \psi_{m,n}$$

$$(\psi_{m,n},\psi_{k,l}) = \int_{-\infty}^{\infty} \psi_{m,n}(x)\psi_{k,l}(x)dx = \delta_{m,k}\delta_{n,l}$$

$$\delta_{ij} = \begin{cases} 0 & i \neq j \\ 1 & i = j \end{cases}$$

$$m, n, i, j$$
 are integers

$$f_1(x) = x^2$$

$$f_2(x) = x^3$$

$$(f_1, f_2) = \int_{-1}^{1} x^2 \cdot x^3 dx$$

MRA: represent a function

- Wavelet is the unified parametrized family of basis functions
 - \circ wavelet ψ is called orthogonal, if the family of functions $\psi_{m,n}$ are orthogonal
 - o then a given signal can be uniquely expressed as sum of infinite series:

$$f(t) = \sum_{n,m=-\infty}^{\infty} c_{m,n} \psi_{m,n}(t)$$

MRA: represent a function

- Wavelet is the unified parametrized family of basis functions
 - \circ wavelet ψ is called orthogonal, if the family of functions $\psi_{m,n}$ are orthogonal
 - o then a given signal can be uniquely expressed as sum of infinite series:

$$f(t) = \sum_{n,m=-\infty}^{\infty} c_{m,n} \psi_{m,n}(t)$$

$$c_{m,n} = (f, \psi_{m,n})$$
 ... (from orthogonality)

• sequence of embedded subspaces of L^2 : $\{V_m\}$ where $m \in I$ (integers)

1. Assimilation

Subspaces can be embedded into each other

• sequence of embedded subspaces of L^2 : $\{V_m\}$ where $m \in I$ (integers)

Dyadic: resolution changes by a factor of 2 between spaces

- 1. Assimilation
 - Subspaces can be embedded into each other

• sequence of embedded subspaces of $L^2: \{V_m\}$ where $m \in I$ (integers)

Dyadic: resolution changes by a factor of 2 between spaces

- 1. Assimilation
 - Subspaces can be embedded into each other

$$V_0 \subset V_1 \subset V_2 \cdots V_m \subset V_{m+1}$$

• sequence of embedded subspaces of L^2 : $\{V_m\}$ where $m \in I$ (integers)

Dyadic: resolution changes by a factor of 2 between spaces

- 1. Assimilation
 - Subspaces can be embedded into each other

$$V_0 \subset V_1 \subset V_2 \cdots V_m \subset V_{m+1}$$

- 2. Completeness (full span)
 - \circ Union of all embedded subspaces spans the entire L^2

• sequence of embedded subspaces of L^2 : $\{V_m\}$ where $m \in I$ (integers)

Dyadic: resolution changes by a factor of 2 between spaces

- 1. Assimilation
 - Subspaces can be embedded into each other

$$V_0 \subset V_1 \subset V_2 \cdots V_m \subset V_{m+1}$$

- 2. Completeness (full span)
 - \circ Union of all embedded subspaces spans the entire L^2

$$\bigcup_{m=-\infty}^{\infty} V_m$$
 is dense in L^2

• sequence of embedded subspaces of $L^2: \{V_m\}$ where $m \in I$ (integers)

- 3. No redundancy
 - Intersection of subspaces is a trivial set

• sequence of embedded subspaces of $L^2: \{V_m\}$ where $m \in I$ (integers)

- 3. No redundancy
 - Intersection of subspaces is a trivial set

$$\bigcap_{m=-\infty}^{\infty} V_m$$
 is trivial set {0}

• sequence of embedded subspaces of $L^2: \{V_m\}$ where $m \in I$ (integers)

- 3. No redundancy
 - Intersection of subspaces is a trivial set

$$\bigcap_{m=-\infty}^{\infty} V_m$$
 is trivial set {0}

- 4. Consistency in resolution of f(t)
 - \circ Superspace and subspace should maintain consistency of resolutions of input function f(t)

• sequence of embedded subspaces of $L^2: \{V_m\}$ where $m \in I$ (integers)

- 3. No redundancy
 - Intersection of subspaces is a trivial set

$$\bigcap_{m=-\infty}^{\infty} V_m$$
 is trivial set {0}

- 4. Consistency in resolution of f(t)
 - \circ Superspace and subspace should maintain consistency of resolutions of input function f(t)

$$f(t) \in V_m$$

iff
$$f(2t) \in V_{m+1}$$
, $\forall m \in I$

• sequence of embedded subspaces of L^2 : $\{V_m\}$ where $m \in I$ (integers)

- sequence of embedded subspaces of L^2 : $\{V_m\}$ where $m \in I$ (integers)
 - 5. Info or energy preservation
 - \circ \exists a function $\phi \in V_0$ such that $\{\phi_{0,n}(x) = \phi(x-n)\}$ is orthogonal basis for V_0 so that

- \circ ϕ is called scaling func (or father wavelet)
- \circ ϕ when contracted, then its integer translates can span any V_m :

$$V_m = span\{ \phi(2^m x - n) \}$$

- sequence of embedded subspaces of $L^2: \{V_m\}$ where $m \in I$ (integers)
 - 5. Info or energy preservation
 - \circ \exists a function $\phi \in V_0$ such that $\{\phi_{0,n}(x) = \phi(x-n)\}$ is orthogonal basis for V_0 so that

$$||f||^2 = \int_{-\infty}^{\infty} |f(x)|^2 dx = \sum_{-\infty}^{\infty} |(f, \phi_{0,n})|^2$$

- \circ ϕ is called scaling func (or father wavelet)
- \circ ϕ when contracted, then its integer translates can span any V_m :

$$V_m = span\{ \phi(2^m x - n) \}$$

- sequence of embedded subspaces of $L^2: \{V_m\}$ where $m \in I$ (integers)
 - 5. Info or energy preservation
 - \circ \exists a function $\phi \in V_0$ such that $\{\phi_{0,n}(x) = \phi(x-n)\}$ is orthogonal basis for V_0 so that

$$||f||^2 = \int_{-\infty}^{\infty} |f(x)|^2 dx = \sum_{-\infty}^{\infty} |(f, \phi_{0,n})|^2$$

- \circ ϕ is called scaling func (or father wavelet)
- \circ ϕ when contracted, then its integer translates can span any V_m :

$$V_m = span\{ \phi(2^m x - n) \}$$

- sequence of embedded subspaces of $L^2: \{V_m\}$ where $m \in I$ (integers)
 - 5. Info or energy preservation
 - \ni a function $\phi \in V_0$ such that $\{\phi_{0,n}(x) = \phi(x-n)\}$ is orthogonal basis for V_0 so that

$$||f||^2 = \int_{-\infty}^{\infty} |f(x)|^2 dx = \sum_{-\infty}^{\infty} |(f, \phi_{0,n})|^2$$

- \circ ϕ is called scaling func (or father wavelet)
- \circ ϕ when contracted, then its integer translates can span any V_m :

$$V_m = span\{ \phi(2^m x - n) \}$$

• ϕ generates MRA: if $\{V_m\}$ is a multiresolution of L^2 and if V_0 is closed subspace generated by translates of a single function ϕ

- we have to reflect $\phi(x)$ in to the higher resolution or refined space V_1
 - \circ high resolution is with finer scale factor of 2^{-1}
- ϕ is scaling func for V_0 and since $V_0 \subset V_1$
 - \circ it becomes scaling func for V_1

- we have to reflect $\phi(x)$ in to the higher resolution or refined space V_1
 - \circ high resolution is with finer scale factor of 2^{-1}
- ϕ is scaling func for V_0 and since $V_0 \subset V_1$
 - \circ it becomes scaling func for V_1

$$\phi(x) = \sum_{-\infty}^{\infty} c_n \phi_{1,n}(x) = \sqrt{2} \sum_{-\infty}^{\infty} c_n \phi(2x - n)$$

- we have to reflect $\phi(x)$ in to the higher resolution or refined space V_1
 - \circ high resolution is with finer scale factor of 2^{-1}
- ϕ is scaling func for V_0 and since $V_0 \subset V_1$
 - \circ it becomes scaling func for V_1

$$\phi(x) = \sum_{-\infty}^{\infty} c_n \phi_{1,n}(x) = \sqrt{2} \sum_{-\infty}^{\infty} c_n \phi(2x - n)$$

$$c_n = (\phi, \phi_{1,n})$$

- we have to reflect $\phi(x)$ in to the higher resolution or refined space V_1
 - \circ high resolution is with finer scale factor of 2^{-1}
- ϕ is scaling func for V_0 and since $V_0 \subset V_1$
 - \circ it becomes scaling func for V_1

$$\phi(x) = \sum_{-\infty}^{\infty} c_n \phi_{1,n}(x) = \sqrt{2} \sum_{-\infty}^{\infty} c_n \phi(2x - n)$$

$$c_n = (\phi, \phi_{1,n})$$
 $\sum_{-\infty}^{\infty} |c_n|^2 = 1$

Scaling function in orthogonal complement?

If U & W are subspaces then their sum is the subspace

$$U+W=\{\mathbf{u}+\mathbf{w}:\mathbf{u}\in U,\mathbf{w}\in W\}$$

The direct sum is the sum of independent subspaces

$$U \oplus W$$

Scaling function in orthogonal complement?

If U & W are subspaces then their sum is the subspace

$$U+W=\{\mathbf{u}+\mathbf{w}:\mathbf{u}\in U,\mathbf{w}\in W\}$$

The direct sum is the sum of independent subspaces

$$U \oplus W$$

• $V_m \subset V_{m+1}$ thus we can define orthogonal complement of V_m in V_{m+1} as

Scaling function in orthogonal complement?

If U & W are subspaces then their sum is the subspace

$$U+W=\{\mathbf{u}+\mathbf{w}:\mathbf{u}\in U,\mathbf{w}\in W\}$$

The direct sum is the sum of independent subspaces

$$U \oplus W$$

• $V_m \subset V_{m+1}$ thus we can define orthogonal complement of V_m in V_{m+1} as

$$V_{m+1} = V_m \oplus W_m$$

Scaling function in orthogonal complement?

If U & W are subspaces then their sum is the subspace

$$U+W = \{\mathbf{u} + \mathbf{w} : \mathbf{u} \in U, \mathbf{w} \in W\}$$

• The direct sum is the sum of independent subspaces

$$U \oplus W$$

• $V_m \subset V_{m+1}$ thus we can define orthogonal complement of V_m in V_{m+1} as

$$V_{m+1} = V_m \oplus W_m \qquad V_m \perp W_m$$

$$V_m \perp W_m$$

```
V_{m+1} = V_m \oplus W_m
= (V_{m-1} \oplus W_{m-1}) \oplus W_m
\vdots
= V_0 \oplus W_0 \oplus W_1 \oplus \cdots \oplus W_m
= V_0 \oplus (\bigoplus_{n=0}^m W_n).
```

$$V_{m+1} = V_m \oplus W_m$$

$$= (V_{m-1} \oplus W_{m-1}) \oplus W_m$$

$$\vdots$$

$$= V_0 \oplus W_0 \oplus W_1 \oplus \cdots \oplus W_m$$

$$= V_0 \oplus (\bigoplus_{n=0}^m W_n).$$

 $m \to \infty$

$$V_{m+1} = V_m \oplus W_m$$

$$= (V_{m-1} \oplus W_{m-1}) \oplus W_m$$

$$\vdots$$

$$= V_0 \oplus W_0 \oplus W_1 \oplus \cdots \oplus W_m$$

$$= V_0 \oplus (\bigoplus_{n=0}^m W_n).$$

$$m \to \infty$$

$$V_0 \oplus (\oplus_{n=0}^{\infty} W_n) = L^2$$

$$V_{m+1} = V_m \oplus W_m$$

$$= (V_{m-1} \oplus W_{m-1}) \oplus W_m$$

$$\vdots$$

$$= V_0 \oplus W_0 \oplus W_1 \oplus \cdots \oplus W_m$$

$$= V_0 \oplus (\bigoplus_{n=0}^m W_n).$$

$$m \to \infty$$

$$V_0 \oplus (\oplus_{n=0}^{\infty} W_n) = L^2$$

 V_0 is just a reference space (reference can be any index, i.e. resolution can scale-up or down)

$$\bigoplus_{n=-\infty}^{\infty} W_n = L^2$$

MRA: mother wavelet

- complementary space also spans L^2
 - \circ \exists a function $\psi \in W_0$ such that $\{\psi_{0,n}(x) = \psi(x-n)\}$ is orthogonal basis for W_0
 - \circ Orthogonal basis for W_m are given as:

$$\psi_{m,n}(x) = 2^{m/2}\psi(2^m x - n)$$

 $\circ \psi$ is called a mother wavelet

MRA: mother wavelet

- complementary space also spans L^2
 - \circ \exists a function $\psi \in W_0$ such that $\{\psi_{0,n}(x) = \psi(x-n)\}$ is orthogonal basis for W_0
 - \circ Orthogonal basis for W_m are given as:

$$\psi_{m,n}(x) = 2^{m/2}\psi(2^m x - n)$$

 $\circ \psi$ is called a mother wavelet

ullet ψ spans orthogonal complement subset $W_{
m m}$, while scaling function ϕ spans the subsets V_{m}

MRA: WT

wavelet

$$\psi_{a,b}(t) = \frac{1}{\sqrt{b}}\psi(\frac{t-a}{b})$$

decomposition

MRA: WT

wavelet

$$\psi_{a,b}(t) = \frac{1}{\sqrt{b}}\psi(\frac{t-a}{b})$$

decomposition

$$W(a,b) = K \int_{-\infty}^{+\infty} \psi^*(\frac{x-a}{b}) f(x) dx$$

Haar wavelet

Haar wavelet

Haar wavelet

$$\psi(t) = egin{cases} 1 & 0 \leq t < rac{1}{2}, \ -1 & rac{1}{2} \leq t < 1, \ 0 & ext{otherwise}. \end{cases}$$

Haar wavelet

$$\psi(t) = egin{cases} 1 & 0 \leq t < rac{1}{2}, \ -1 & rac{1}{2} \leq t < 1, \ 0 & ext{otherwise}. \end{cases}$$

$$\psi_{m,n}(x) = 2^{m/2}\psi(2^m x - n)$$

Conclusion

MRA

Conclusion

- MRA

☐ Image analysis in multiple resolutions

MRA

- Spaces
- Basis functions
- Wavelets