Michael Hanson Morrow (joint work with Uwe Nagel)

University of Kentucky

October 15, 2022

Suppose we have a sequence of related ideals I_0, I_1, I_2, \ldots living in a sequence of related polynomial rings R_0, R_1, R_2, \ldots (i.e. $I_n \subseteq R_n \forall n \geq 0$).

Simultaneously compute:

- $oldsymbol{0}$ a finite Gröbner basis for each I_n , and
- ② a finite Gröbner basis for the module of syzygies of each I_n .

Notation: for any $n \in \mathbb{N}$ define $[n] = \{1, \dots, n\}$ and set $[0] = \emptyset$.

Fix a field K and an integer c > 0. Let D : D. D. D. he the

Fix a field K and an integer c>0. Let $\mathbf{P}:\mathbf{P}_0,\mathbf{P}_1,\mathbf{P}_2,\ldots$ be the sequence defined by

$$\mathbf{P}_n = K[x_{i,j} : i \in [c], j \in [n]] \quad \forall n \ge 0.$$

Example

If c = 2 then

$$\mathbf{P}_0 = K, \ \mathbf{P}_1 = K \begin{bmatrix} x_{1,1} \\ x_{2,1} \end{bmatrix}, \ \mathbf{P}_2 = K \begin{bmatrix} x_{1,1} & x_{1,2} \\ x_{2,1} & x_{2,2} \end{bmatrix}, \ldots$$

There are maps $\mathbf{P}(\varepsilon): \mathbf{P}_m \to \mathbf{P}_n$ for each strictly increasing function $\varepsilon : [m] \to [n]$. Specifically, $\mathbf{P}(\varepsilon)$ is induced by $x_{i,j} \mapsto x_{i,\varepsilon(i)}$. We often write ε_* instead of $\mathbf{P}(\varepsilon)$.

Definition

A sequence of ideals $\mathbf{I}: \mathbf{I}_0, \mathbf{I}_1, \mathbf{I}_2, \dots$ with $\mathbf{I}_n \leq \mathbf{P}_n$ is called a **P**-ideal if $I_0 = 0$ and $\varepsilon_*(I_m) \subseteq I_n$ for all $m \le n$ and $\varepsilon : [m] \to [n]$.

Example

Let c = 1. Then the sequence $\mathbf{I}_n = \langle x_i x_i : 1 \le i < j \le n \rangle$ is a P-ideal.

inite Generation of P-ideals

A *subset* of a **P**-ideal **I** is a set $G \subseteq \bigsqcup_{n \ge 0} \mathbf{I}_n$. For all $n \ge 0$ we define the *n*-orbit of G to be the set

$$\mathrm{Orb}(G,n)=\{\varepsilon_*(g)\ :\ g\in G\cap I_m,\ \varepsilon:[m]\to [n]\}.$$

Definition

A **P**-ideal **I** is *finitely generated* if there is a finite subset $G \subset \mathbf{I}$ such that $\mathbf{I}_n = \langle \operatorname{Orb}(G, n) \rangle$ for all $n \geq 0$. In this case we write $\mathbf{I} = \langle G \rangle_{\mathbf{P}}$.

Example

The **P**-ideal $\mathbf{I}_n = \langle x_i x_j : 1 \le i < j \le n \rangle$ is finitely generated by $\{x_1 x_2\}$.

Monomial Orders

A monomial in **P** is a monomial in some P_n .

Definition

A total order < on the monomials of \mathbf{P} is called a *monomial order* on \mathbf{P} if for all monomials $\mu, \nu \in \mathbf{P}_m$ with $\mu < \nu$ we have

- **1** $\mu < a\mu < a\nu$ for all monomials $1 \neq a \in \mathbf{P}_m$, and
- $2 \mu < \varepsilon_*(\mu) < \varepsilon_*(\nu)$ for all $\varepsilon : [m] \to [n]$ with m < n.

Example

Give each \mathbf{P}_n the lex order with $x_{i,j} < x_{i',j'}$ if i < i' or i = i' and j < j'. For any monomials $\mu \in \mathbf{P}_m$ and $\nu \in \mathbf{P}_n$ we declare $\mu < \nu$ if m < n or m = n and $\mu < \nu$ in \mathbf{P}_n .

Division with Remainder

Remark

Any monomial order < on **P** restricts to a monomial order $<_n$ on \mathbf{P}_n for all n > 0.

Definition

Let $f \in \mathbf{P}_n$ and let $G \subseteq \mathbf{P}$. A remainder of f modulo G (with respect to <) is defined to be a remainder of f modulo Orb(G, n)(with respect to $<_n$).

Remainders of f modulo G can be computed in finite time [CLO].

Gröbner Bases

Given a monomial order < on \mathbf{P} one defines $\text{Im}(f) \in \mathbf{P}_n$, $\text{It}(f) \in \mathbf{P}_n$ and $\text{Ic}(f) \in K$ for any $f \in \mathbf{P}_n$.

Definition

Fix a monomial order < on \mathbf{P} and let \mathbf{I} be a \mathbf{P} -ideal. A subset $G \subseteq \mathbf{I}$ is called a *Gröbner basis* for \mathbf{I} (with respect to <) if

$$\langle \operatorname{Im}(\mathbf{I}) \rangle_{\mathbf{P}} = \langle \operatorname{Im}(G) \rangle_{\mathbf{P}}$$

where $\operatorname{Im}(\mathbf{I}) = \{\operatorname{Im}(f) : f \in \mathbf{I}\}\$ and $\operatorname{Im}(G) = \{\operatorname{Im}(g) : g \in G\}.$

Remark

A set $G \subseteq I$ forms a Gröbner basis for I if and only if Orb(G, n) forms a Gröbner basis for I_n with respect to $<_n$ for all $n \ge 0$.

S-Polynomials and Critical Pairs

Definition

The *S*-polynomial of $f, g \in \mathbf{P}_n$ is the combination

$$S(f,g) = \frac{\operatorname{lcm}(\operatorname{Im}(f),\operatorname{Im}(g))}{\operatorname{lt}(f)}f - \frac{\operatorname{lcm}(\operatorname{Im}(f),\operatorname{Im}(g))}{\operatorname{lt}(g)}g.$$

Definition

Let $B \subseteq \mathbf{P}$ and let $m \ge 0$. A tuple

$$(\sigma_*(f), \tau_*(g)) \in \operatorname{Orb}(B, m) \times \operatorname{Orb}(B, m)$$

is called a *critical pair* if $m = |\operatorname{im}(\sigma) \cup \operatorname{im}(\tau)|$. The set of all critical pairs of B is denoted C(B).

Important: the set C(B) is finite if B is finite.

Buchberger's Criterion

Theorem (M, Nagel)

A generating set G of a P-ideal I forms a Gröbner basis for I if and only if each S(f,g) with $(f,g) \in C(G)$ has a remainder of zero modulo G.

Key idea: any S-polynomial $S(\sigma_*(f), \tau_*(g))$ can be written as $\rho_*(S(\overline{\sigma}_*(f), \overline{\tau}_*(g)))$ where $(\overline{\sigma}_*(f), \overline{\tau}_*(g))$ is a critical pair.

Buchberger's Algorithm

Let < be a monomial order on **P** and let $G \subset \mathbf{P}$ be a finite set.

- Are there $(f,g) \in C(G)$ such that S(f,g) has a nonzero remainder modulo G?
- ② If so, append the remainder to G and repeat.
- 3 Terminates by a Noetherianity argument (see [NR19]).
- **4** Computes a finite Gröbner basis for $\langle G \rangle_{\mathbf{P}}$.

Let c=2 and let $B=\{x_{2,1}^2+x_{1,1}\in \mathbf{P}_1, x_{2,2}+x_{1,2}x_{1,1}\in \mathbf{P}_2\}$. Using Macaulay2, we can compute a Gröbner basis for $\langle B\rangle_{\mathbf{P}}$. It consists of the elements

$$\begin{aligned} x_{2,1}^2 + x_{1,1} &\in \mathbf{P_1} \\ x_{2,2} + x_{1,2}x_{1,1} &\in \mathbf{P_2} \\ x_{1,2}^2 x_{1,1}^2 + x_{1,2} &\in \mathbf{P_2} \\ x_{1,3}^2 + x_{1,3}x_{1,1} &\in \mathbf{P_3} \\ x_{1,3}x_{1,2} - x_{1,3}x_{1,1} &\in \mathbf{P_3} \\ x_{1,3}x_{1,1}^3 + x_{1,3} &\in \mathbf{P_3} \end{aligned}$$

Example

Let c=1 and consider the elements $x_1 \in \mathbf{P}_1$ and $x_2x_3 \in \mathbf{P}_3$. We have a relation

$$x_2\varepsilon_*(x_1)-x_2x_3=x_2x_3-x_2x_3=0\in\mathbf{P}_3$$

where $\varepsilon: [1] \to [3]$ is the map given by $1 \mapsto 3$. Such a relation is an example of a syzygy on the elements x_1 and x_2x_3 .

Syzygies of **P**-ideals have been studied in the context of free resolutions and complexes in [FN21] and [FN22].

How do we compute them?

Definition

A sequence $\mathbf{M} : \mathbf{M}_0, \mathbf{M}_1, \mathbf{M}_2, \dots$ of modules is a **P**-module if

- each M_n is a P_n -module,
- 2 there is a K-linear map $\mathbf{M}(\varepsilon)$: $\mathbf{M}_m \to \mathbf{M}_n$ for all strictly increasing $\varepsilon : [m] \to [n]$, and
- **3** for all $a \in \mathbf{P}_m$ the diagram

commutes, where the vertical maps are multiplication by the indicated element.

P-Modules

Definition

Let M be a P-module. A P-submodule of M is a sequence of modules $N: N_0, N_1, N_2, \ldots$ such that each N_n is a P_n -submodule of M_n and $M(\varepsilon)(N_m) \subseteq N_n$ for all $\varepsilon: [m] \to [n]$.

Example

The P-ideals are precisely the P-submodules of P.

Syzygies

Definition

Let **M** and **N** be **P**-modules. A **P**-linear map $\varphi : \mathbf{M} \to \mathbf{N}$ is a collection of P_n -linear maps $\varphi_n: M_n \to N_n$ such that the diagram

$$\begin{array}{c|c}
\mathbf{M}_{m} & \xrightarrow{\varphi_{m}} & \mathbf{N}_{m} \\
\mathbf{M}(\varepsilon) \downarrow & & & \downarrow \mathbf{N}(\varepsilon) \\
\mathbf{M}_{n} & \xrightarrow{\varphi_{n}} & \mathbf{N}_{n}
\end{array}$$

commutes for all $\varepsilon : [m] \to [n]$.

Definition

The *kernel* of a **P**-linear map $\varphi: \mathbf{M} \to \mathbf{N}$ is the **P**-submodule of **M** given by $\ker(\varphi)_n = \ker(\varphi_n)$ for all $n \ge 0$.

Free **P**-Modules

Definition

Fix integers $d_1, \ldots, d_s \geq 0$ and define the sequence $\mathbf{F} : \mathbf{F}_0, \mathbf{F}_1, \mathbf{F}_2$ via

$$\mathbf{F}_n = igoplus_{\substack{1 \leq i \leq s \\ \pi: [d_i] o [n]}} \mathbf{P}_n e_{\pi,i}$$

with maps $F(\varepsilon)$: $F_m \to F_n$ induced by $e_{\pi,i} \mapsto e_{\varepsilon \circ \pi,i}$. We call F a free P-module with basis $\{e_{\mathrm{id}_{[d:1]},i}\}$.

Example

Let **F** have basis $\{e_{\mathrm{id}_{[2]}}\}$. Then **F**_n is a free **P**_n-module of rank $\binom{n}{2}$ for all n > 0.

Remark

Any $\varphi : \mathbf{F} \to \mathbf{M}$ is determined by where the $e_{\mathsf{id}_{[d:]},i}$ are sent.

The following concepts for **P**-ideals generalize to **P**-modules:

- Finite generation
- Monomial orders
- Division with remainder
- S-polynomials
- Gröbner bases

Computing Syzygies

Let $B = \{b_1, \dots, b_s\} \subset \mathbf{P}$ be a Gröbner basis with $b_i \in \mathbf{P}_{d_i}$ and let \mathbf{F} be a free \mathbf{P} -module with basis $\{e_{\mathsf{id}_{[d_i]}, i}\}$.

Let $\varphi: \mathbf{F} \to \mathbf{P}$ be the map induced by $e_{\mathrm{id}_{[d_i]},i} \mapsto b_i$. We wish to compute a finite Gröbner basis for the syzygy module of $\langle B \rangle_{\mathbf{P}}$, i.e. $\mathrm{Syz}(B) := \ker(\varphi)$.

Computing Syzygies

Definition

For any $i, j \in [s]$, $\sigma : [d_i] \to [m]$ and $\tau : [d_i] \to [m]$ with $m \ge \max(d_i, d_i)$ we can use the division algorithm to write

$$S(\sigma_*(b_i), au_*(b_j)) = \sum_\ell \mathsf{a}_{i,j,\ell}^{\sigma, au} \mathsf{P}(\pi_{i,j,\ell}^{\sigma, au})(b_{k_{i,j,\ell}^{\sigma, au}})$$

for some $a_{i,i,\ell}^{\sigma,\tau} \in \mathbf{P}_m$ and $\mathbf{P}(\pi_{i,i,\ell}^{\sigma,\tau})(b_{k_i^{\sigma,\tau}}) \in \mathrm{Orb}(B,m)$. Define

$$s_{i,j}^{\sigma,\tau} = \textit{m}_{i,j}^{\sigma,\tau} \textit{e}_{\sigma,i} - \textit{m}_{i,j}^{\tau,\sigma} \textit{e}_{\tau,j} - \sum_{\ell} \textit{a}_{i,j,\ell}^{\sigma,\tau} \textit{e}_{\pi_{i,j,\ell}^{\sigma,\tau},k_{i,j,\ell}^{\sigma,\tau}} \in \textbf{F}_{\textit{m}}$$

where

$$m_{i,j}^{\sigma, au} = rac{\mathsf{lcm}(\sigma_*(\mathsf{Im}(b_i)), au_*(\mathsf{Im}(b_j)))}{\sigma_*(\mathsf{Im}(b_i))} \in \mathbf{P}_m.$$

Theorem (M, Nagel)

There exists a monomial order on **F** with respect to which the $s_{i,j}^{\sigma,\tau}$ with $(\sigma_*(b_i), \tau_*(b_j)) \in \mathcal{C}(B)$ form a finite Gröbner basis for $\operatorname{Syz}(B)$.

For the classical version of this theorem, see [E95, Chapter 15].

Remark

If G forms a Gröbner basis for $\operatorname{Syz}(B)$ then $\operatorname{Orb}(G, n)$ forms a Gröbner basis for $\operatorname{Syz}(B)_n$ for all $n \ge 0$.

Syzygy Example

Let **F** be the free **P**-module with basis $\{e_{id_{[2]}}\}$ and let $B = \{x_{1,1}x_{2,2} - x_{1,2}x_{2,1} \in \mathbf{P}_2\}$ so that $(\langle B \rangle_{\mathbf{P}})_n$ is the ideal of \mathbf{P}_n generated by the 2×2 minors of the matrix

$$\begin{bmatrix} x_{1,1} & x_{1,2} & \cdots & x_{1,n} \\ x_{2,1} & x_{2,2} & \cdots & x_{2,n} \end{bmatrix}.$$

Using Macaulay2 we compute a Gröbner basis for Syz(B):

$$x_{1,2}e_{13} - x_{1,1}e_{23} - x_{1,3}e_{12} \in \mathbf{F}_3$$

 $-x_{2,3}e_{12} + x_{2,2}e_{13} - x_{2,1}e_{23} \in \mathbf{F}_3.$

Note: $e_{ij} \leftrightarrow e_{\pi}$ where $\pi : [2] \rightarrow [3]$ is given by $1 \mapsto i$ and $2 \mapsto j$.

References

- [CLO] D. Cox, J. Little, D. O'Shea, *Ideals, Varieties, and* Algorithms, Springer (2006).
- [E95] D. Eisenbud, Commutative algebra with a view toward algebraic geometry, Springer (1995).
- [FN21] N. Fieldsteel, U. Nagel, Minimal and cellular free resolutions over polynomial OI-algebras, Preprint, arXiv:2105.08603, 2021.
- [FN22] N. Fieldsteel, U. Nagel, Buchsbaum-Eisenbud complexes of Ol-modules, Preprint, arXiv:2206.12960, 2022.
- [NR19] U. Nagel, T. Römer, Fl- and Ol-modules with varying coefficients, J. Algebra **535** (2019), 286-322.