Large Numbers

Michael Simkin

December 2019

The goal is to find the shortest and simplest definition of fastest growing sequence.

Using Conway's chained arrow notation \rightarrow we define function F_0 as follows:

$$F_0(1) = 2 \tag{1}$$

$$F_0(n+1) = \underbrace{F_0(n) \to F_0(n) \to \dots \to F_0(n)}_{F_0(n) \text{ times}}$$
(1)

We then define $F_k(n)$ recursively as follows:

$$F_{k+1}(n) = \underbrace{F_k(F_k(\dots(F_k(n))\dots)}_{F_k(n) \text{ times}}$$
(3)

Finally we define $Q_n = F_n(n)$. It's impossible to have any intuition of Q_n growth.