Homework Assignment 5

Due May 3rd by midnight

SDS 384-11 Theoretical Statistics

- 1. In class, you upper bounded the Rademacher complexity of a function class. Now you will derive a lower bound.
 - (a) For function classes \mathcal{F} with function values in [0,1], prove that $E\|\hat{P}_n P\|_{\mathcal{F}} \geq \frac{\mathcal{R}_{\mathcal{F}}}{2} \sqrt{\frac{\log 2}{2n}}$. Hint: may be it is easier to start from $\mathcal{R}_{\mathcal{F}}$ and show that $\mathcal{R}_F \leq 2E\|\hat{P}_n P\|_{\mathcal{F}} + \sqrt{\frac{2\log 2}{n}}$. In order to do this, you would need to add and subtract E[f(X)] and then use triangle inequality.
 - (b) Now prove that $||P \hat{P}_n||_{\mathcal{F}} \geq E||P \hat{P}_n||_{\mathcal{F}} \epsilon$ with probability at least $1 \exp(-cn\epsilon^2)$ for some constant c.
 - (c) Recall the class of all subsets with finite size in [0,1]? Prove that then Rademacher complexity of this class is at least 1/2. What does this imply?
- 2. In this exercise, we explore the connection between VC dimension and metric entropy. Given a set class S with finite VC dimension ν , we show that the function class $\mathcal{F}_S := 1_S, S \in \mathcal{S}$ of indicator functions has metric entropy at most

$$N(\delta; \mathcal{F}_{\mathcal{S}}, L^{1}(P)) \leq \left(\frac{K \log(3e/\delta)}{\delta}\right)^{\nu}$$
 For a constant K (1)

Let $\{1_{S^1}, \ldots, 1_{S^N}\}$ be a maximal delta packing in the $L^1(P)$ norm, so that:

$$||1_{S_i} - 1_{S_j}||_1 = E[|1_{S_i}(X) - 1_{S_j}(X)|] > \delta$$
 for all $i \neq j$

This is an upper bound on the δ covering number.

- (a) Suppose that we generate n samples X_i , i = 1, ..., n drawn i.i.d. from P. Show that the probability that every set S_i picks out a different subset of $\{X_1, ..., X_n\}$ is at least $1 \binom{N}{2}(1-\delta)^n$.
- (b) Using part (a), show that for $N \geq 2$ and $n = \lceil 2 \log N/\delta \rceil$, there exists a set of n points from which \mathcal{S} picks out at least N subsets, and conclude that $N \leq \left(\frac{3e \log N}{\nu \delta}\right)^{\nu}$.
- (c) Use part (b) to show that Eq (1) holds with $K := 3e^2/(e-1)$. Hint: Note that you have $\frac{N^{1/\nu}}{\log N} \le \frac{3e}{\nu\delta}$. Let $g(x) = x/\log x$. We are solving for $g(m^{1/\nu}) \le 3e/\delta$. Prove that $g(x) \le y$ implies $x \le \frac{e}{e-1}y\log y$.
- 3. We will find the covering number of ellipses in this problem. Given a collection of positive numbers $\{\mu_j, j=1...d\}$, consider the ellipse

$$\mathcal{E} = \{\theta \in \mathcal{R}^d : \sum_i \theta_i^2 / \mu_i^2 \le 1\}$$

(a) Show that

$$\log N(\epsilon; \mathcal{E}, ||.||_2) \ge d \log(1/\epsilon) + \sum_{j=1}^d \log \mu_j$$

(b) Now consider an infinite-dimensional ellipse, specified by the sequence $\mu_j = j^{-2\beta}$ for some parameter $\beta > 1/2$. Show that

$$\log N(\epsilon; \mathcal{E}, ||.||_2) \ge C \left(\frac{1}{\epsilon}\right)^{1/2\beta},$$

where $\|\theta - \theta'\|_{\ell_2}^2 = \sum_{j=1}^{\infty} (\theta_i - \theta_j)^2$ is the squared ℓ_2 -norm on the space of square summable sequences.