Derivation of sum of output flow.

question posted 21 days ago by gmikawa

At 3:09 video clip in Lesson 3 week 4. May I ask you how you reduced the sum of output flow to $\pi(i)q(ii)$? Many thanks.

This post is visible to everyone.

Add a Response

1 response

laurent_decreusefond(Staff)

21 days ago

The flow from state i to state j is $\pi_i q_{ij}$. The output flow from state i is the sum over all over state j of the flow from i to j, that is to say $\sum_{j \neq i} \pi_i q_{ij} = \pi_i \sum_{j \neq i} q_{ij}$ but the very definition of q_{ii} is exactly $q_{ii} = -\sum_{j \neq i} q_{ij}$ so the output flow emanating from state i is $-\pi_i q_{ii}$ or $\pi_i |q_{ii}|$

hope this helps

That helps, Laurent. Thank you. This is going to be a taoutologic question, but why the sum of row i of transition rate matrix need to be zero? Was it explained somewhere?

posted 21 days ago bygmikawa

The sum is zero by construction: since we decided to set

 $q_{ii} = -\sum_{j \neq i} q_{ij}$

There is no intuitive signification to be searched for. The intuitive part is given by the p_{ij} (probability to jump from ${\pmb{I}}$ to ${\pmb{j}}$ when there is a jump) and λ_i , the parameter of the exponential which gives the sojourn time in state i. The construction of Q, the sum of the i-th row is

$$q_{ii} + \sum_{j \neq i} q_{ij} = 0$$

comes from more complex mathematical results which are beyond the scope of this course. By the way, this construction takes a lot of time to be given, needs more sophisticated prerequisites and is useless when it comes to use CTMC in practice.

posted 18 days ago bylaurent_decreusefond(Staff)

When you are given a system you want to represent by a CTMC, compute the p_{ij} and the λ_i from the description of your model and then transform them in the $oldsymbol{q_{ij}}$, which are the mathematical quantities of interest. $q_{ij}=p_{ij}\lambda_i,\quad q_{ii}=-\lambda_i$ and in the reverse way $p_{ij} = rac{q_{ij}}{|q_{ii}|}, \quad \lambda_i = |q_{ii}|$ posted 18 days ago bylaurent_decreusefond(Staff) Thank you, Laurent. posted 18 days ago bygmikawa

Showing all responses

Add a comment