CSV to png and workspace

Csv name format - <name1>_<name2>_<name3>.csv no - '({ /...'

CSV to workspace: will add to workspace vectors <type>_<element>_<mesurmant parameter> :type = dB_mag or lin_mag, elemant = <name1>, mesurmant = <name2>

```
% Set the directory containing the CSV files
csv_directory = '/Users/ohadformanair/Documents/Git/AML/LAB_3p4/AML_3&4_measurmants/CS
% Set the directory for saving the plots
save_directory = '/Users/ohadformanair/Documents/Git/AML/LAB_3p4/AML_3&4_measurmants/c
%Set stat result directory
stat_directory = '/Users/ohadformanair/Documents/Git/AML/LAB_3p4/Stat_results';
```

```
% Initialize the output variables
linear_magnitude_data = [];
dB_magnitude_data = [];
phase_data = [];
% Initialize table for magnitude and phase statistics
mag_stats = table();
phase stats = table();
% Loop over each file in the directory
filelist = dir(fullfile(csv_directory, '*.csv'));
for i = 1:length(filelist)
    % Extract the filename components
    [~, filename, ~] = fileparts(filelist(i).name);
    name_parts = split(filename, '_');
    name1 = name_parts{1};
    name2 = name_parts{2};
    % Load the data from the current file
    data = readmatrix(fullfile(csv_directory, filelist(i).name), 'HeaderLines', 3);
   % Extract the frequency and formatted data columns
    frequency = data(:, 1); % Don't normalize frequency
    formatted_data = data(:, 2);
    % Calculate the magnitude and phase data
    if strcmp(name_parts(end), 'MAG')
        linear_magnitude = formatted_data;
        dB_magnitude = 20*log10(formatted_data);
        linear_phase = [];
        phase = [];
       % Calculate magnitude statistics and add to table
        mag_mean = mean(linear_magnitude);
```

```
mag_median = median(linear_magnitude);
        mag_std = std(linear_magnitude);
        mag min = min(linear magnitude);
        mag_max = max(linear_magnitude);
        mag_stats = [mag_stats; table({name1}, {name2}, mag_mean, mag_median, mag_std,
    elseif strcmp(name_parts(end), 'PHASE')
        linear_phase = formatted_data;
        phase = formatted_data;
        linear_magnitude = [];
        dB_magnitude = [];
        % Calculate phase statistics and add to table
        phase_mean = mean(linear_phase);
        phase_median = median(linear_phase);
        phase_std = std(linear_phase);
        phase_min = min(linear_phase);
        phase_max = max(linear_phase);
        phase_stats = [phase_stats; table({name1}, {name2}, phase_mean, phase_median,
        % Invalid name3 value, skip this file
        continue;
    end
    % Append the data for this file to the output variables
    linear_magnitude_data = [linear_magnitude_data; linear_magnitude];
    dB_magnitude_data = [dB_magnitude_data; dB_magnitude];
    phase_data = [phase_data; phase];
    % Create variables in the workspace for the frequency and magnitude data
    freq_varname = ['freq_' name1 '_' name2];
    assignin('base', freq_varname, frequency);
    if ~isempty(linear_magnitude)
        lin_mag_varname = ['lin_mag_' name1 '_' name2];
        assignin('base', lin mag varname, linear magnitude);
    end
    if ~isempty(dB_magnitude)
        dB_mag_varname = ['dB_mag_' name1 '_' name2];
        assignin('base', dB_mag_varname, dB_magnitude);
    end
    if ~isempty(phase)
        phase_varname = ['phase_' name1 '_' name2];
        assignin('base', phase_varname, phase);
    end
    % Display the progress
    fprintf('Processed file %d of %d: %s\n', i, length(filelist), filelist(i).name);
end
```

```
Processed file 1 of 44: ATTENUATOR10dB_S11_MAG.CSV
Processed file 2 of 44: ATTENUATOR10dB S11 PHASE.CSV
Processed file 3 of 44: ATTENUATOR10dB S21 MAG.CSV
Processed file 4 of 44: ATTENUATOR10dB_S21_PHASE.CSV
Processed file 5 of 44: ATTENUATOR10dB S22 MAG.CSV
Processed file 6 of 44: ATTENUATOR10dB S22 PHASE.CSV
Processed file 7 of 44: CIRCULATOR S11 MAG.CSV
Processed file 8 of 44: CIRCULATOR_S11_PHASE.CSV
Processed file 9 of 44: CIRCULATOR_S13_MAG.CSV
Processed file 10 of 44: CIRCULATOR_S13_PHASE.CSV
Processed file 11 of 44: CIRCULATOR_S22_MAG.CSV
Processed file 12 of 44: CIRCULATOR_S22_PHASE.CSV
Processed file 13 of 44: CIRCULATOR_S23_MAG.CSV
Processed file 14 of 44: CIRCULATOR_S23_PHASE.CSV
Processed file 15 of 44: CIRCULATOR_S31_MAG.CSV
Processed file 16 of 44: CIRCULATOR_S31_PHASE.CSV
Processed file 17 of 44: CIRCULATOR S32 MAG.CSV
Processed file 18 of 44: CIRCULATOR S32 PHASE.CSV
Processed file 19 of 44: CIRCULATOR S33 MAG.CSV
Processed file 20 of 44: CIRCULATOR S33 PHASE.CSV
Processed file 21 of 44: COUPLER S11 MAG.CSV
Processed file 22 of 44: COUPLER S11 PHASE.CSV
Processed file 23 of 44: COUPLER_S12_MAG.CSV
Processed file 24 of 44: COUPLER_S12_PHASE.CSV
Processed file 25 of 44: COUPLER S13 MAG.CSV
Processed file 26 of 44: COUPLER_S13_PHASE.CSV
Processed file 27 of 44: COUPLER S14 MAG.CSV
Processed file 28 of 44: COUPLER S14 PHASE.CSV
Processed file 29 of 44: MAGICT_S11_MAG.CSV
Processed file 30 of 44: MAGICT_S11_PHASE.CSV
Processed file 31 of 44: MAGICT_S13_MAG.CSV
Processed file 32 of 44: MAGICT_S13_PHASE.CSV
Processed file 33 of 44: MAGICT_S21_MAG.CSV
Processed file 34 of 44: MAGICT_S21_PHASE.CSV
Processed file 35 of 44: MAGICT_S33_MAG.CSV
Processed file 36 of 44: MAGICT_S33_PHASE.CSV
Processed file 37 of 44: MAGICT_S41_MAG.CSV
Processed file 38 of 44: MAGICT_S41_PHASE.CSV
Processed file 39 of 44: MAGICT_S42_MAG.CSV
Processed file 40 of 44: MAGICT S42 PHASE.CSV
Processed file 41 of 44: MAGICT S43 MAG.CSV
Processed file 42 of 44: MAGICT S43 PHASE.CSV
Processed file 43 of 44: MAGICT S44 MAG.CSV
Processed file 44 of 44: MAGICT_S44_PHASE.CSV
% Assign the output variables to the workspace
assignin('base', 'linear_magnitude_data', linear_magnitude_data);
assignin('base', 'dB_magnitude_data', dB_magnitude_data);
assignin('base', 'phase_data', phase_data);
% Display the magnitude statistics table
disp(mag_stats);
```

Var1	Var2	mag_mean	mag_median	mag_std	mag_min	mag_max
{'ATTENUATOR10dB'}	{'S11'}	0.16397	0.17282	0.035995	0.087018	0.22521
{'ATTENUATOR10dB'}	{'S21'}	0.31421	0.31912	0.017231	0.27307	0.34011
{'ATTENUATOR10dB'}	{'S22'}	0.093437	0.088995	0.029913	0.043255	0.16793
{'CIRCULATOR' }	{'S11'}	0.49783	0.51505	0.14108	0.28723	0.68689

```
{'CIRCULATOR'
                       {'S13'}
                                     0.76035
                                                   0.75967
                                                                0.069075
                                                                                0.61367
                                                                                             0.90136
{'CIRCULATOR'
                       {'S22'}
                                     0.55653
                                                  0.59575
                                                                 0.13933
                                                                                0.33223
                                                                                             0.73661
{'CIRCULATOR'
                       {'S23'}
                                                                                             0.27525
                                     0.24892
                                                  0.24827
                                                                0.013325
                                                                                0.22471
{'CIRCULATOR'
                       {'S31'}
                                                                                0.27417
                                     0.33749
                                                  0.33856
                                                                0.029507
                                                                                             0.39551
                       {'S32'}
{'CIRCULATOR'
                                     0.72664
                                                  0.74376
                                                                 0.10954
                                                                                0.52562
                                                                                             0.89943
{'CIRCULATOR'
                       {'S33'}
                                     0.49268
                                                   0.48455
                                                                0.089414
                                                                                0.36707
                                                                                             0.63779
{'COUPLER'
                       {'S11'}
                                     0.17728
                                                   0.17136
                                                                 0.08728
                                                                               0.012918
                                                                                             0.36812
{'COUPLER'
                       {'S12'}
                                     0.94952
                                                                0.018375
                                                                                0.88912
                                                                                              0.9896
                                                  0.95142
{'COUPLER'
                       {'S13'}
                                    0.074495
                                                  0.075058
                                                               0.0064454
                                                                               0.059652
                                                                                            0.090273
{'COUPLER'
                       {'S14'}
                                   0.0058987
                                                 0.005521
                                                                0.002993
                                                                             0.00061361
                                                                                            0.013538
                       {'S11'}
                                                                                             0.51578
{'MAGICT'
                                     0.26583
                                                  0.22323
                                                                 0.12873
                                                                               0.070193
                       {'S13'}
{'MAGICT'
                                     0.58715
                                                  0.58667
                                                                0.025565
                                                                                0.51528
                                                                                             0.64796
                       {'S21'}
                                     0.3587
{'MAGICT'
                                                  0.36393
                                                                0.029809
                                                                                 0.2876
                                                                                             0.41046
                       {'S33'}
                                                                                0.47595
{'MAGICT'
                                     0.55396
                                                  0.55514
                                                                0.034313
                                                                                             0.67052
                       {'S41'}
{'MAGICT'
                                                                                0.56437
                                     0.65161
                                                  0.65684
                                                                0.039543
                                                                                             0.72828
                       {'S42'}
{'MAGICT'
                                     0.64722
                                                   0.65225
                                                                0.038255
                                                                                0.56088
                                                                                             0.72784
{'MAGICT'
                       {'S43'}
                                   0.0075694
                                                0.0078122
                                                               0.0032121
                                                                             0.00024736
                                                                                            0.017084
{'MAGICT'
                       {'S44'}
                                     0.35495
                                                   0.39884
                                                                 0.11997
                                                                               0.090516
                                                                                             0.49761
```

% Display the phase statistics table
disp(phase_stats);

Var1		Var2	phase_mean	phase_median	phase_std	phase_min	phase_max
	-						
{'ATTENUATOR10dB'}	}	{'S11'}	-106.63	-112.83	21.144	-147.07	-65.95
{'ATTENUATOR10dB'}	}	{'S21'}	4.5724	13.198	104.3	-178.73	179.34
{'ATTENUATOR10dB'}	}	{'S22'}	-43.578	-93.802	125.89	-179.48	178.21
{'CIRCULATOR' }	}	{'S11'}	-17.616	-47.636	108.08	-179.88	179.29
{'CIRCULATOR' }	}	{'S13'}	9.3243	44.271	117.41	-178.7	178.78
{'CIRCULATOR' }	}	{'S22'}	-17.353	-53.338	111.48	-178.28	178.29
{'CIRCULATOR' }	}	{'S23'}	-0.27321	-2.5134	73.447	-128.83	131.45
{'CIRCULATOR' }	}	{'S31'}	-27.124	-27.364	78.233	-164.09	101.42
{'CIRCULATOR' }	}	{'S32'}	4.8117	44.873	120.88	-179.92	179.99
{'CIRCULATOR' }	}	{'S33'}	-39.843	-43.619	88.738	-178.68	178.86
{'COUPLER' }	}	{'S11'}	-103.65	-108.24	24.778	-160.38	-15.819
{'COUPLER' }	}	{'S12'}	14.222	26.107	105.11	-179.84	178.21
{'COUPLER' }	}	{'S13'}	2.7499	-17.162	113.27	-179.69	179.68
{'COUPLER' }	}	{'S14'}	17.013	27.333	94.461	-178.69	177.4
{'MAGICT' }	}	{'S11'}	-40.4	-56.221	101.67	-175.88	179.62
{'MAGICT' }	}	{'S13'}	6.3671	26.09	102.6	-179.6	178.91
{'MAGICT' }	}	{'S21'}	32.364	41.459	99.256	-178.87	177.98
{'MAGICT' }	}	{'S33'}	13.712	33.198	109.57	-178.85	179.68
{'MAGICT' }	}	{'S41'}	11.355	25.422	103.16	-177.9	179.89
{'MAGICT' }	}	{'S42'}	8.712	22.353	102.86	-179.75	177.4
{'MAGICT' }	}	{'S43'}	-1.9307	0.43641	105.34	-179.7	178.99
{'MAGICT' }	}	{'S44'}	-52.3	-67.433	81.351	-179.07	176.99

```
% Get unique values of Var1
Var1_vals = unique(mag_stats.Var1);
% Define figure width and height
fig_width = 800;
fig_height = 600;
% Loop over each unique value of Var1
for i = 1:length(Var1_vals)
```

```
% Subset the table to only include rows with the current Var1 value
subset = mag stats(strcmp(mag stats.Var1, Var1 vals{i}),:);
% Get unique values of Var2 for this subset
Var2_vals = unique(subset.Var2);
% Initialize empty arrays for the statistics
mag mean = [];
mag_median = [];
mag_std = [];
mag min = [];
mag_max = [];
% Loop over each unique value of Var2 for this subset
for j = 1:length(Var2_vals)
    % Subset the table to only include rows with the current Var1 and Var2 values
    subsubset = subset(strcmp(subset.Var2, Var2_vals{j}),:);
    % Check if each statistic is available for this subset
    if ~any(ismissing(subsubset.mag_mean))
        mag_mean(j) = subsubset.mag_mean;
    if ~any(ismissing(subsubset.mag_median))
        mag_median(j) = subsubset.mag_median;
    if ~any(ismissing(subsubset.mag_std))
        mag_std(j) = subsubset.mag_std;
    end
    if ~any(ismissing(subsubset.mag_min))
        mag_min(j) = subsubset.mag_min;
    end
    if ~any(ismissing(subsubset.mag max))
        mag_max(j) = subsubset.mag_max;
    end
end
% Create new figure with specified size
fig = figure('Position', [0, 0, fig_width, fig_height]);
% Plot the statistics for this Var1 value
bar([mag_mean' mag_median' mag_std' mag_min' mag_max'])
xticklabels(Var2_vals)
xtickangle(45)
legend({'Mean','Median','Std','Min','Max'},'Location','Best')
title(sprintf('Mag Stats for %s', Var1_vals{i}))
grid on
% Save the figure as a PNG file
```

filename = fullfile(stat_directory, sprintf('mag_stats_%s.png', Var1_vals{i}));
 saveas(fig, filename);
end


```
% Save the table as a CSV file
filename = fullfile(stat_directory, 'mag_stats.csv');
writetable(mag_stats, filename);
```

the plot title will be: <name1>: <name2> <name3>
the y axis will be: Phase(deg) if <name3> is PHASE, if MAG it will be: Magnitude (unit less)
the x axis is frequency.

```
set in script:
csv_directory = 'path/to/csv/files'
plot_directory = 'path/to/save/plots'
plot_mag_dB = (true for dB, false for linear)
```

```
% Set smoothing options
```

```
smoothing_enabled = false; % Set to true to enable smoothing
smoothing_window_size = 1; % Size of the smoothing window (odd number)
% Set plot type options
is_bode_plot = false; % Set to true for Bode plot, false for linear magnitude plot
```

```
% Get a list of all CSV files in the directory
filelist = dir(fullfile(csv_directory, '*.csv'));
% Loop over each file in the directory
for i = 1:length(filelist)
   % Extract the filename components
    [~, filename, ~] = fileparts(filelist(i).name);
    name_parts = strsplit(filename, '_');
    name1 = name_parts{1};
    name2 = name_parts{2};
    name3 = name_parts{3};
   % Load the data from the current file
    data = readmatrix(fullfile(csv_directory, filelist(i).name), 'HeaderLines', 3);
   % Extract the frequency and formatted data columns
    frequency_data = data(:, 1);
    formatted_data = data(:, 2);
    % Smooth the data if enabled
    if smoothing_enabled
        smoothed data = smooth(formatted data, smoothing window size);
    else
        smoothed_data = formatted_data;
    end
    % Plot the magnitude and phase data in a Bode or linear plot
    if strcmp(name3, 'MAG')
        mag_data = smoothed_data;
        % Find the corresponding phase file
        phase_filename = fullfile(csv_directory, [name1 '_' name2 '_PHASE.csv']);
        phase_data = readmatrix(phase_filename, 'HeaderLines', 3);
        phase_data = phase_data(:, 2);
        % Create the plot
        if is_bode_plot
            % Bode plot
            figure;
            subplot(2,1,1);
            semilogx(frequency_data/1e9, 20*log10(abs(mag_data)));
            ylabel('Magnitude (dB)');
            grid on;
            hold on:
            subplot(2,1,2);
```

```
semilogx(frequency_data/1e9, unwrap(phase_data));
            ylabel('Phase (deg)');
            xlabel('Frequency (GHz)');
            grid on;
            title(sprintf('Bode: %s-%s', name1, name2));
            filename = fullfile(save_directory, ['Bode-' name1 '_' name2 '.png']);
        else
            % Linear plot with subplots
            figure;
            subplot(2,1,1);
            plot(frequency_data/1e9, mag_data);
            ylabel('Magnitude');
            grid on;
            title(sprintf('Linear Magnitude: %s-%s', name1, name2));
            % Add subplot for phase data
            subplot(2,1,2);
            plot(frequency_data/1e9, unwrap(phase_data));
            ylabel('Phase (deg)');
            xlabel('Frequency (GHz)');
            grid on;
            title(sprintf('Linear Phase: %s-%s', name1, name2));
            % Save the figure with the name1_name2_LINMAG.png
            filename = fullfile(save_directory, ['LinMag-' name1 '_' name2 '.png']);
            saveas(gcf, filename);
        end
        % Save the figure
        saveas(gcf, filename);
        % Close the figure
        close(qcf);
    end
end
```


