

IGC HK EXAM

WJEC - Physics

Circular Motion

IGC HK Exam - WJEC Circular Motion

Please be noted that these questions are from WJEC official past paper If there is any copyrighted issue please contact us at wjec@igchkshop.dpdns.org

IGC HK Exam - WJEC is NOT a subsidiary of WJEC or any exam board.

5. A piece of string is threaded through a hollow narrow cylinder. Two small objects, P and Q, with masses 0.010 kg and 0.090 kg respectively are attached to the ends of the string, as shown.

A student holds the cylinder and sets the 0.010 kg mass rotating in a horizontal circle of radius R, which is kept constant at 0.50 m. The time for 10 rotations is recorded. The tension in the string provides both the centripetal force on P and an upward force to hold Q in equilibrium.

The measurement is repeated for different values of *R*. All measurements are recorded in the table overleaf.

(a) Show that the speed, v, of mass P for each measurement is given by:

ν =	$\frac{2\pi R}{T}$	where	T is the	rotatior	٦.			[1]

(b) Complete the table.

_	ú	٠	۰	

<i>R</i> / m	Time for 10 rotations / s	Period T/s	$v / m s^{-1}$	v^2 / m^2 s ⁻²
0.50	4.7			
0.60	5.2			
0.70	5.6			
0.80	6.0			
0.90	6.3			

(i) Assuming that OP is horizontal, write an equation relating the centripetal force to

	v and R .	[2]
(ii)	Hence, by using the equation for the forces acting on mass Q, show that:	
	$v^2 = 9g R$	
	where g is the acceleration due to gravity.	[3]

(ii)	Determine a value for g.	[3]
(iii)	Suggest a way in which the experiment can be improved.	[1]
()	ouggest a way in which the experiment can be improved.	۲.,

O				-l-!l-4-!l-			Marks a	vailable			
Question			IVIA	rking details		AO1	AO2	AO3	Total	Maths	Prac
5 (a)		•			e. in one rotation) =						
	2πR an	$2\pi R$ and speed = distance / time = $\frac{2\pi R}{T}$					1		1	1	1
	Alternative:										
	$\omega = \frac{2\pi}{T}$	and $v = \omega$	R								
(b)	R/m	Time of	T/s	v / m s ⁻¹	v² / m² s-²						
		10 rot /s	1 /0	V/1113	7111 3						
	0.50	4.7	0.47	6.68	44.6						
	0.60	5.2	0.52	7.25	52.6						
	0.70	5.6	0.56	7.85	61.6						
	0.80	6.0	0.60	8.38	70.2						
	0.90	6.3	0.63	8.98	80.6						
	T colun	T column: All values correct (1)									
		For column v all values correct (1)									
				rrect ecf (1)	-d 0 0 -i- f (4)		4		4	4	4
	Consis	tent use of s	sig tigs in	each column ar	nd 2 or 3 sig figs (1)						

٥	O		Marking details		Marks av				
Question		11			AO2	AO3	Total	Maths	Prac
	(c)	(i)	Centripetal force = $0.010 \frac{v^2}{R}$						
			(1 for $\frac{mv^2}{R}$; 1 if value inserted for m)		1		2	1	2
		(ii)	Forces acting on mass Q: $0.090 \ g - \tau = 0$ τ : tension (1) So $\tau = 0.090 \ g$. Substitution for τ into (c)(i) (1) $0.090 \ g = 0.010 \ \frac{v^2}{R}$						
			$v^2 = \frac{0.090g}{0.010} R$ $v^2 = 9g R \text{ clear and convincing working (1)}$		3		3	2	3

Questio		Marking details		Marks a	vailable			
Zuestioi		marking details	AO1	AO2	AO3	Total	Maths	Prac
(d)	(i)	Axes, suitable choice scales (no multiples of 3) and labels on both axes (1) – scales to occupy more than half of paper All points plotted correctly to ±½ small square division (2) 4 points plotted correctly to ±½ small square division award 1 mark 1-3 points plotted correctly to ±½ small square division award 0 marks						
		Line of best fit (1)		4		4	4	4

A	estion	Marking details		Marks av				
Qu	estion	marking details	AO1	AO2	AO3	Total	Maths	Prac
	(ii)	gradient = $\frac{50.0}{0.56}$ = 89.286 m s ⁻² ; find gradient from best fit line (1)						
		also gradient = $9g$ general method (1)						
		9g = 89.286						
		$g = \frac{1}{9} 89.286 = 9.92 \text{ m s}^{-2}$ unit mark (1)			3	3	3	3
		(Accept $g = 8.8$ to 10.8 m s ⁻² i.e. uncertainty of ~10%.)						
		Use of single data point award a maximum of 2 marks						
	(iii)	Take measurements for each value of R several times or measure time of more rotations or use of video capture or increase radius and period Accept repeat readings Don't accept have an assistant			1	1		1
		Question 5 total	1	13	4	18	15	18

1.	(a)	A car travels at a constant speed of 45.0 km h ⁻¹ around a curve in the road with a radius of 80 m.								
		(i)	Explain why the car is accelerating.	[2]						
		(ii)	Calculate the angular velocity of the car (in rad s ⁻¹) as it travels around the curv	ve. [2]						
		(iii)	Calculate the acceleration of the car and state its direction.	[3]						
	(b)		uss how the application of science enables cars to travel safely around curves.							

	Questio	_	Manking dataila		Marks a	vailable			
	Questio	on	Marking details	AO1	AO2	AO3	Total	Maths	Prac
1	(a)	(i)	Velocity [of car] is changing [with time] (1) because its direction is changing [so the car is accelerating] (1) or There is a resultant force (1)	2			2		
		(ii)	[towards the centre] due to friction / grip (1) $v = \frac{45 \times 10^3}{60 \times 60} = 12.5 \text{ m s}^{-1} \text{ (conversion) (1)}$ $\omega = \frac{v}{r} = \frac{12.5}{80} = 0.156 \text{ rad s}^{-1} \text{ substitution and calculation (1)}$		2		2	2	
		(iii)	$a = \frac{v^2}{r} = \frac{(12.5)^2}{80} \text{ substitution (ecf) (1) [Alt: use } a = \omega^2 r]$ $= 1.95 \text{ ms}^{-2} \text{ (1)}$ Direction: towards centre (of 'circular' motion) (1)	1	1		3	2	
	(b)		Either: Any two × (1) of these points - Appropriate tyre design for friction - Banking of road [for contribution from normal contact force] - Appropriate surface - Suspension set-up - Anti-roll bars. (or any sensible answers, one referring to road and the other to the car)			2	2		
			Or any one sensible point (1) + explanation of the role of physics (1) [
			Question 1 total	4	3	2	9	4	0

4.	A satellite orbiting the Earth completes one revolution in 105 minutes.									
		Mass of the Earth = 6.0×10^{24} kg, radius of the Earth = 6400 km								
	(a)	Explain what is meant by the term radian.	[2]							
	(b)	Calculate the satellite's angular velocity, ω , in rad s ⁻¹ .	[3]							
	(c)	The gravitational force on the satellite is given by $\frac{GM_{\rm E}m}{R^2}$ where m is the mass of the satellite, $M_{\rm E}$ is the mass of the Earth and R is the radius of the orbit. Show that:	е							
		$R = \sqrt[3]{\frac{GM_{\rm E}}{\omega^2}}$	[2]							

(d)	Determine the height of the satellite above the surface of the Earth.	[3]
(e)	The mass of the Moon is 7.3×10^{22} kg and its radius is 1740 km. Discuss whether a satellite would be able to orbit the Moon with a period of 105 minutes.	[3]

Question		Marking details	Marks available							
			A01	AO2	AO3	Total	Maths	Prac		
4	(a)	Angle where (1) accept diagram showing angle arc length equals the radius or approximately 57.3° or $2\pi = 360^{\circ}$ (1)	2			2				
	(b)	Period, $T = 105 \times 60 = 6300$ [s] or 105 [min] (1) Substitution (regardless of unit): $\omega = \frac{2\pi}{T} = \frac{2\pi}{6300}$ (1) = 9.97×10^{-4} [rad s ⁻¹](1)	1	1		3	3			
	(c)	$m\omega^{2}R = \frac{GM_{E}m}{R^{2}} $ (1) Accept $\frac{mv^{2}}{r} = \frac{GM_{E}m}{R^{2}}$ $R^{3} = \frac{GM_{E}}{\omega^{2}} $ [so: $R = \sqrt[3]{\frac{GM_{E}}{\omega^{2}}}$] (1)		2		2	1			
	(d)	Substitution: $R = \sqrt[3]{\frac{(6.67 \times 10^{-11}) (6.0 \times 10^{24})}{(9.97 \times 10^{-4})^2}} \text{ ecf (1)}$ R = 7 380 k[m] (1) Altitude above the surface of the Earth = 7 380 – 6 400 = 980 k[m] (1)	1	1		3	3			
	(e)	$R = \sqrt[3]{\frac{(6.67\times 10^{-11})(7.3\times 10^{22})}{(9.97\times 10^{-4})^2}} \mathbf{ecf} \ (1)$ $R = 1 \ 698 \ k[m] \ (1)$ Correct conclusion based on candidate's answer e.g. not possible since inside Moon (1) Alternative: Substituting into equation to calculate period or to calculate mass (1) Correct answer e.g. to period (1) Correct conclusion based on period / mass e.g. period longer so not possible, mass smaller so not possible (1)			3	3	1			

0	Marking details	Marks available							
Question		AO1	AO2	AO3	Total	Maths	Prac		
	Alternative: Can also work centripetal acceleration (1.7) (1) Calculate gravitational acceleration (1.6) (1) Not possible (since gravity too weak) (1)								
	Question 4 total	4	6	3	13	8	0		

2.	(a)	Expl	ain what is meant by centripetal force and state its direction.	[2]
	(b)		nall sphere of mass 30 g at the end of a light string rotates in a horizontal circle of us 0.80 m and completes 10 revolutions in 15 s. Show that the speed of the sphere is 3.35 m s ⁻¹ .	f [2]
		(ii)	Calculate the centripetal force on the sphere.	[2]

(c) The sphere now rotates in a **vertical** circle of the same radius, from a point that is 1.20 m above the ground. The speed at the top of the circle is 3.35 m s⁻¹.

	Calc	ulate the	tension in t	he string at	the top of t	the circle.			[2]
(d)	(i)	Calcula	ite the spee	d of the sph	ere when it	reaches th	e bottom o	f the circle	

(ii)	A student claims that if the string breaks when the sphere is at the top of the circle it will reach the ground at a horizontal distance of approximately 2m a from the point of release. Investigate if her claim is correct, justifying your an	wav

		4!	Manting datatle	Marks available							
Question		estion	Marking details	AO1	AO2	AO3	Total	Maths	Prac		
2	(a)		Is the [resultant] force for circular motion (1) It is directed towards the centre [of the circle] (1)	2			2				
	(b)	(i)	$T = \frac{15}{10} = 1.5 \text{ s or } f = \frac{10}{15} = 0.67 \text{ [Hz] (1)}$ $v = \frac{2\pi r}{r} = \frac{2\pi (0.8)}{1.5} \text{ (1)} [= 3.35 \text{ m s}^{-1}]$ Alternative: Total distance = $1.6\pi \times 10 \text{ (1)}$ $v = \frac{1.6\pi \times 10}{15} \text{ (1)} [= 3.35 \text{ m s}^{-1}]$	1	1		2	2			
		(ii)	Substitution: $F = \frac{mv^2}{r} = \frac{(30 \times 10^{-3}) \times 3.35^2}{0.8} (1)$ = 0.42 [N] (1) Alternative: $F = mro^2 = (30 \times 10^{-3}) \times 0.8 \times \left(\frac{2\pi}{1.5}\right)^2 (1)$ = 0.42 [N](1)	1	1		2	2			
	(c)		Force = Tension + mg (1) Tension = Force - mg = 0.42 ecf - (30 × 10 ⁻³)(9.81) = 0.13 [N] (1) Award 1 mark for 0.7 [N]		2		2	1			

0	Maddin v datatla			Marks a	vailable		
Question	Marking details		AO2	AO3	Total	Maths	Prac
(d) (i)	Conservation of energy or implied (1) Full substitution or good algebra e.g. $\frac{1}{2}mv_b^2 = mgh + \frac{1}{2}mv^2$ OR Initial KE = 0.17 [J] and PE loss = 0.47 [J] (implied by final KE = 0.64 J) OR $v_b = \sqrt{2gh + v^2}$ (1) Final velocity = 6.53 [m s ⁻¹] (1) Alternative: Use of $v^2 = u^2 + 2ax$ with $u = 3.35$ m s ⁻¹ and $a = 9.81$ m s ⁻² (1) Correct answer = 6.53 [m s ⁻¹] (1) Some statement of why this equation works e.g. due to conservation of energy, we can consider a particle dropping with initial downward speed of 3.35 (1) Accept – this equation shouldn't work but it does! Alternative: Use of $v^2 = u^2 + 2ax$ with $u = 0$ gives $v = 5.6$ [m s ⁻¹] (1) Pythagoras applied i.e. $\sqrt{3.35^2 + 5.6^2}$ (1) Correct answer = 6.53 [m s ⁻¹] (1)		3		3	2	
(ii)	Use of $x = ut + \frac{1}{2}at^2$ for the vertical motion or 2 other usable equations (1) $t = \sqrt{\frac{2x}{g}} = \sqrt{\frac{2(1.2+0.8)}{9.81}} = 0.64 [\text{s}] (1)$ For the horizontal motion: horizontal distance from point of released = $vt = 3.35 \times 0.64 \text{ecf} (1)$ = 2.14 [m] so claim is correct (1) ecf Accept 2.14 \approx 2			4	4	3	
	Question 2 total	4	7	4	15	10	0