LEC010 Maximum Flow

VG441 SS2021

Cong Shi Industrial & Operations Engineering University of Michigan

The number on each edge is capacity

Qn: Push as much flow as possible from *s* to *t*

The number on each edge is capacity

Qn: Push as much flow as possible from *s* to *t*

Input

- \bullet a directed graph G, with vertices V and directed edges E
- a source vertex $s \in V$ (no edges into s)
- a sink vertex $t \in V$ (no edges out of t)
- a nonnegative and integral capacity u_e for each edge $e \in E$

Feasible solutions – flows

- Nonnegativity constraints: $f_e \ge 0$ for every edge $e \in E$
- Capacity constraints: $f_e \leq u_e$ for every edge $e \in E$
- Conservation constraints: for every vertex v other than s and t amount of flow entering v = amount of flow exiting v
- Goal: maximize flow value = flow going out of S

Attempt #1:

A Naive Greedy Algorithm

initialize $f_e = 0$ for all $e \in E$ repeat search for an s-t path P such that $f_e < u_e$ for every $e \in P$ // takes O(|E|) time using BFS or DFS if no such path then halt with current flow $\{f_e\}_{e \in E}$ else

let $\Delta = \min_{e \in P} \underbrace{(u_e - f_e)}_{\text{room on } P}$

for all edges e of P do increase f_e by Δ

• Attempt #2: Allow "undo" operations

Residual network

Ford-Fulkerson Algorithm

```
initialize f_e = 0 for all e \in E
repeat
    search for an s-t path P in the current residual graph G_f such that every
edge of P has positive residual capacity
    // takes O(|E|) time using BFS or DFS
    \mathbf{if} \ \mathrm{no} \ \mathrm{such} \ \mathrm{path} \ \mathbf{then}
         halt with current flow \{f_e\}_{e \in E}
    else
         let \Delta = \min_{e \in P} (e' \text{ s residual capacity in } G_f)
         // augment the flow f using the path P
         for all edges e of G whose corresponding forward edge is in P do
              increase f_e by \Delta
         for all edges e of G whose corresponding reverse edge is in P do
              decrease f_e by \Delta
```

• Run Ford-Fulkerson on the simple example

Exercise

How do we know we are done?

Two-Step Paradigm:

- Identify "optimality condition"
- Design an algorithm that terminates w/ the optimality condition satisfied

(s,t) cuts

"Dual" flows

Definition An (s,t) -cut of a graph G=(V,E) is a partition of V into sets A,B with $s\in A$ and $t\in B$

The capacity of an (s,t) -cut (A,B) is defined as

$$\sum_{e \in \delta^+(A)} u_e$$

Equivalence of (1) (2) (3)

Max-Flow-Min-Cut Theorem

(1) f is a maximum flow of G

(2) there is an (s,t)-cut (A,B) s.t. the value of f equals the capacity of (A,B)

(3) there is no s-t path (with positive residual capacity) in the residual G_f

- (2) there is an (s,t)-cut (A,B) s.t. the value of f equals the capacity of (A,B)implies
- (1) f is a maximum flow of G

Claim:

for every flow f and every (s,t)-cut (A,B) value of $f \leq$ capacity of (A,B)

value of
$$f = \sum_{\substack{e \in \delta^+(s) \\ \text{flow out of } s}} f_e = \sum_{e \in \delta^+(s)} f_e - \sum_{\substack{e \in \delta^-(s) \\ \text{vacuous sum}}} f_e$$

and
$$\sum_{e \in \delta^{+}(v)} f_{e} - \sum_{e \in \delta^{-}(v)} f_{e} = 0$$
flow out of v flow into of v

value of
$$f = \sum_{v \in A} \left(\sum_{e \in \delta^+(v)} f_e - \sum_{e \in \delta^-(v)} f_e \right)$$

$$= \sum_{e \in \delta^+(A)} \underbrace{f_e}_{\leq u_e} - \sum_{e \in \delta^-(A)} \underbrace{f_e}_{\geq 0}$$

$$\leq \sum_{e \in \delta^+(A)} u_e$$

$$= \text{capacity of } (A, B)$$

(1) = > (3)

(1) f is a maximum flow of G

implies

(3) there is no s-t path (with positive residual capacity) in the residual G_f

(3) = > (2)

- (3) there is no s-t path (with positive residual capacity) in the residual G_f implies
- (2) there is an (s,t) -cut (A,B) s.t. the value of f equals the capacity of (A,B)

 $A = \{v \in V : \text{ there is an } s \leadsto v \text{ path in } G_f\}$

Run BFS from s until stuck

- (1) $\forall e \in \delta^+(A), U_e f_e = 0$ (no forward edges)
- (2) $\forall e \in \delta^{-}(A), f_e = 0$ (no "flow-inducded" backward edges)

value of
$$f = \sum_{e \in \delta^{+}(A)} f_e - \sum_{e \in \delta^{-}(A)} f_e = \sum_{e \in \delta^{+}(A)} u_e = \text{cap}(A, B)$$