CSE404 Homework 04 Eden Seo

Team Evaluation

- 1. Brendan Rizzo
 - a. Worked with me, Eden Seo, to solve problem 2 part a and b, which is exercise 3.3
- 2. Richard Huang
 - a. Solved problem 1 part a by himself and explained to us how he got the answer.
- 3. Jiashang Cao
 - a. Solved problem 1 part b
- 4. Eden Seo
 - a. Worked with Brendan to solve problem 2 part a and b, and solved part c and d by myself.
- 1.
- a. Derive the optimal w that minimizes $E_2(w)$

i.
$$E_2(w) = ||Xw - y||^2 + \lambda ||w||^2$$

ii.
$$E_2(w) = ((Xw)' - y')(Xw - y) + \lambda(w' * w) = (X'w' - y')(Xw - y) + \lambda(w' * w)$$

iii. =
$$X'w'Xw - X'w'y - y'Xw + y'y + \lambda(w'*w)$$
, where $y'Xw = X'w'y$

iv.
$$= X'w'Xw - 2X'w'y + y'y + \lambda(w' * w)$$

v. To minimize $E_2(w)$, differentiate with respect to w

vi.
$$2X'Xw - 2X'y + \lambda w$$
, where $\frac{d}{dx}X^TAX = 2AX$

vii.
$$2X'Xw - 2X'y + \lambda w = 0 \implies 2X'Xw + \lambda w = 2X'y$$

viii. $w(2X'X + \lambda * I) = 2X'y$, where I is an identity matrix

ix.
$$w = \frac{2X'y}{2X'Y+3}$$

1.

	Problem 1:
a.	$E_{z}(\omega) = \left \left \left \left \left \right \right \right ^{2} + \lambda \left \left \left \omega\right \right \right ^{2}$
	$E_z(\omega) = ((\chi \omega)' - \gamma')(\chi \omega - \gamma) + \lambda(\omega' \cdot \omega)$
	$= (\chi'\omega' - \gamma')(\chi_{\omega} - \gamma) + \lambda(\omega' \cdot \omega)$
	$= X'\omega'\chi\omega - X'\omega'\gamma - X'\omega'\gamma + \gamma'\gamma + \lambda(\omega'\cdot\omega), \gamma'\chi\omega = X'\omega'\gamma$
	To minimize Ez(w), differentiate wit w
	$E_2(\omega) = \omega' X' X \omega - 2 \omega' X' Y + Y' Y + \lambda(\omega', \omega)$
	After differentiating wrt ω : , $\frac{d}{dx} X^T A X = Z A X$
	$2x'X\omega - 2x'y + \lambda\omega$
	2x'xw - 2x'y + xw = 0
	$2x'xw + \lambda w = 2x'y$
	$\omega(2x'x + \lambda \cdot \vec{1}) = 2x'y$
	$\omega = \frac{2x'y}{}$ optimal $\omega = \frac{(2x'x + \lambda)^{-1}(2x'y)}{}$
	(ZX,X+X)

(hand-written work is much easier to see, so here it is.)

b. From 1a, we got optimal $w = (2X^TX + \lambda)^{-1}(2X^TY)$. In this case, the solution holds only when $2X^TX + \lambda$ is CSE404 Homework 04 Eden Seo

> non singular, and since $\lambda > 0$ and it is an user specific parameter, the new objective function overcomed the singularity problem of X^TX using the parameter λ .

- 2. Exercise 3.3 in LFD
 - a. Show that H is symmetric.

i.
$$H^T = (X(X^TX)^{-1}X^T)^T = (X^T(X^TX)^{-T}X) = (X^T(XX^T)^{-1}X) =$$

since X^TX is invertible, $H^T = (X(X^TX)^{-1}X^T) = H$

b. Show that $H^K = H$ for any positive integer K.

i.
$$H^K = (X(X^TX)^{-1}X^T)^K = \frac{XX^T}{X^TX} * \frac{XX^T}{X^TX} * \dots \frac{XX^T}{X^TX}$$
 (for K amount of time)
ii. since X^TX is invertible, $\frac{XX^T}{X^TX}$ is equal to $\frac{X^TX}{X^TX}$ which is equal to 1.

- iii. So no matter how many time H is multiplied by itself, it will still be the same.
- iv. If K = 2

1.
$$(X(X^TX)^{-1}X^T) * (X(X^TX)^{-1}X^T) = X(X^TX)^{-1}(X^TX)(X^TX)^{-1}X^T = X(X^TX)^{-1}X^T$$

- c. Show that Show that $(I H)^K = I H$ for any positive integer K.
 - i. if K = 2

1.
$$(I-H)^2 = (I-H)(I-H) = II - IH - HI + H^2 = I - 2H + H^2$$
, and since $H^2 == H, I - 2H + H = I - H$

- ii. Since I^k , where K is a positive integer, is equal to I and H^K is always equal to H,
- iii. it would always become I H
- d. Show that trace(H) = d + 1
 - i. Lets say that $A = X(X^TX)^{-1}$ and $B = X^T$
 - 1. $trace(AB) = trace(BA) = trace(X(X^TX)^{-1}X^T) =$ $trace(XX^T(X^TX)^{-1})$ which is equal to $\frac{trace(I_{(d+1)*(d+1)})}{trace(I_{(d+1)*(d+1)})} =$

d+1

2. *So* trace(H) = d + 1