Minicourse on information, complexity and organisation in multidimensional symbolic dynamics

Effect of dynamical constraints on the computational power of multidimensional SFT

Silvere Gangloff

March 19, 2021

sgangloff@agh.edu.pl; silvere.gangloff@gmx.com

Reminder: the characterization of entropies of multidimensional SFT

Theorem[M.Hochman,T.Meyerovitch]: for all $d \ge 2$, the possible values of entropy for d-dimensional SFT are the non-negative Π_1 -computable numbers.

 Π_1 -computable: exists an algorithm which on input n outputs $r_n \in \mathbb{Q}$ s.t. $r_n \downarrow x$.

Question: what are the possible values for entropy on **irreducible** multidimensional SFT ?

Dynamical constraints and computational power: analogy with the human brain

Classes of dynamical systems containing universal computation:

Dynamical constraints and computational power: analogy with the human brain

Classes of dynamical systems containing universal computation:

Why is the human brain not a Turing machine?

Dynamical constraints and computational power: analogy with the human brain

Classes of dynamical systems containing universal computation:

Why is the human brain not a Turing machine?

Question: how do dynamical constraints affect the implementation of universal computation in multidimensional SFT ?

Question: how do dynamical constraints affect the implementation of universal computation in multidimensional SFT ?

 \boldsymbol{X} multidimensional subshift with block gluing:

Question: how do dynamical constraints affect the implementation of universal computation in multidimensional SFT ?

Question: how do dynamical constraints affect the implementation of universal computation in multidimensional SFT ?

Question: how do dynamical constraints affect the implementation of universal computation in multidimensional SFT ?

Question: how do dynamical constraints affect the implementation of universal computation in multidimensional SFT ?

Question: how do dynamical constraints affect the implementation of universal computation in multidimensional SFT ?

Question: how do dynamical constraints affect the implementation of universal computation in multidimensional SFT ?

Question: how do dynamical constraints affect the implementation of universal computation in multidimensional SFT ?

Theorem: If X is a 2-dimensional block gluing SFT, its periodic configurations are dense.

Theorem: If X is a 2-dimensional block gluing SFT, its periodic configurations are dense.

Theorem: If X is a 2-dimensional block gluing SFT, its periodic configurations are dense.

Theorem: If X is a 2-dimensional block gluing SFT, its periodic configurations are dense.

Theorem: If X is a 2-dimensional block gluing SFT, its periodic configurations are dense.

Theorem: If X is a 2-dimensional block gluing SFT, its periodic configurations are dense.

Theorem: If X is a 2-dimensional block gluing SFT, its periodic configurations are dense.

Theorem: If X is a 2-dimensional block gluing SFT, its periodic configurations are dense.

Theorem: If X is a 2-dimensional block gluing SFT, its periodic configurations are dense.

Theorem: If X is a 2-dimensional block gluing SFT, its periodic configurations are dense.

Theorem: If X is a 2-dimensional block gluing SFT, its periodic configurations are dense.

Theorem: If X is a 2-dimensional block gluing SFT, its periodic configurations are dense.

Theorem: If X is a 2-dimensional block gluing SFT, its periodic configurations are dense.

Theorem: If X is a 2-dimensional block gluing SFT, its periodic configurations are dense.

Theorem: If X is a 2-dimensional block gluing SFT, its periodic configurations are dense.

Theorem: If X is a 2-dimensional block gluing SFT, its periodic configurations are dense.

Theorem: If X is a 2-dimensional block gluing SFT, its periodic configurations are dense.

Theorem: If X is a 2-dimensional block gluing SFT, its periodic configurations are dense.

Theorem: If X is a 2-dimensional block gluing SFT, its periodic configurations are dense.

Theorem: If X is a 2-dimensional block gluing SFT, its periodic configurations are dense.

Theorem: If X is a 2-dimensional block gluing SFT, its periodic configurations are dense.

Proof: For nearest neighbour subshifts:

Implications: X not aperiodic (in particular no hierarchical structures);

Theorem: If X is a 2-dimensional block gluing SFT, its periodic configurations are dense.

Proof: For nearest neighbour subshifts:

Implications: X not aperiodic (in particular no hierarchical structures);

Decidable language: algorithm which decides if a pattern on alphabet \mathcal{A} is in $\mathcal{L}(X)$ or not.

Density of periodic points

Theorem: If X is a 2-dimensional block gluing SFT, its periodic configurations are dense.

Proof: For nearest neighbour subshifts:

Implications: X not aperiodic (in particular no hierarchical structures);

Decidable language: algorithm which decides if a pattern on alphabet A is in $\mathcal{L}(X)$ or not.

Question: what happens in dimension 3?

Reminders: x is computable when there is an algorithm which on input n outputs r_n s.t. $|x - r_n| \le 2^{-n}$.

For X d-dim. subshift:

$$h(X) = \lim_{n} \frac{\log(N_n(X))}{n^d},$$

where $N_n(X)$ is the number of *n*-blocks appearing in configurations of X.

Theorem: For X a 2-dimensional block gluing SFT: h(X) is a computable number.

Theorem: For X a 2-dimensional block gluing SFT: h(X) is a computable number.

Theorem: For X a 2-dimensional block gluing SFT: h(X) is a computable number.

Theorem: For X a 2-dimensional block gluing SFT: h(X) is a computable number.

Theorem: For X a 2-dimensional block gluing SFT: h(X) is a computable number.

Theorem: For X a 2-dimensional block gluing SFT: h(X) is a computable number.

Theorem: For X a 2-dimensional block gluing SFT: h(X) is a computable number.

Theorem: For X a 2-dimensional block gluing SFT: h(X) is a computable number.

Theorem: For X a 2-dimensional block gluing SFT: h(X) is a computable number.

Proof:

For all $m \geq 1$: $N_{m(n+K)}(X) \geq N_n(X)^{m^2}$.

Theorem: For X a 2-dimensional block gluing SFT: h(X) is a computable number.

Proof:

For all $m \geq 1$: $N_{m(n+K)}(X) \geq N_n(X)^{m^2}$.

$$\frac{(mn)^2}{(m(n+K))^2} \frac{\log(N_n(X))}{n^2} \leq \frac{N_{m(n+K)}(X)}{(m(n+K))^2}.$$

Theorem: For X a 2-dimensional block gluing SFT: h(X) is a computable number.

Proof:

For all $m \ge 1$: $N_{m(n+K)}(X) \ge N_n(X)^{m^2}$.

$$\frac{(mn)^2}{(m(n+K))^2} \frac{\log(N_n(X))}{n^2} \le \frac{N_{m(n+K)}(X)}{(m(n+K))^2}.$$

When $m \to +\infty$:

$$\frac{n^2}{(n+K)^2} \frac{\log(N_n(X))}{n^2} \le h(X)$$

Theorem: For X a 2-dimensional block gluing SFT: h(X) is a computable number.

Proof:

For all $m \ge 1$: $N_{m(n+K)}(X) \ge N_n(X)^{m^2}$.

$$\frac{(mn)^2}{(m(n+K))^2} \frac{\log(N_n(X))}{n^2} \le \frac{N_{m(n+K)}(X)}{(m(n+K))^2}.$$

When $m \to +\infty$:

$$\frac{n^2}{(n+K)^2} \frac{\log(N_n(X))}{n^2} \le h(X) \le \frac{\log(N_n(X))}{n^2}.$$

Consider X_0 on $\mathcal{A}=\{\square, \blacksquare\}$, and \mathcal{F} the following patterns:

Consider X_0 on $\mathcal{A} = \{\square, \blacksquare\}$, and \mathcal{F} the following patterns:

Consider X_0 on $\mathcal{A} = \{\square, \blacksquare\}$, and \mathcal{F} the following patterns:

The entropy of this subshift is computable. More efficient than block gluing: *Approximating the hard square entropy constant with probabilistic methods*, **R.Pavlov**.

Consider X_0 on $\mathcal{A} = \{\square, \blacksquare\}$, and \mathcal{F} the following patterns:

The entropy of this subshift is computable. More efficient than block gluing: *Approximating the hard square entropy constant with probabilistic methods*, **R.Pavlov**.

Question: closed formula for the $h(X_0)$?

The result of R.Pavlov and M.Schraudner

Computability condition (*): x rational or has an infinite continuous fraction expansion $[a_0; a_1; ...]$ such that for (t_n) s.t. $t_0 = 1$, $t_1 = a_1$ and

$$t_n = a_n t_{n-1} + t_{n-2},$$

there exists an algorithm which produces $a_1, ..., a_N$ in $a_N \cdot t_{N-1}$ steps.

The result of R.Pavlov and M.Schraudner

Computability condition (*): x rational or has an infinite continuous fraction expansion $[a_0; a_1; ...]$ such that for (t_n) s.t. $t_0 = 1$, $t_1 = a_1$ and

$$t_n = a_n t_{n-1} + t_{n-2}$$
,

there exists an algorithm which produces $a_1, ..., a_N$ in $a_N \cdot t_{N-1}$ steps.

Theorem: for $d \ge 3$ and $x = z \log(M)$ with M integer and z satisfies (*), x is entropy of a d-dimensional block gluing SFT.

The result of R.Pavlov and M.Schraudner

Computability condition (*): x rational or has an infinite continuous fraction expansion $[a_0; a_1; ...]$ such that for (t_n) s.t. $t_0 = 1$, $t_1 = a_1$ and

$$t_n = a_n t_{n-1} + t_{n-2},$$

there exists an algorithm which produces $a_1, ..., a_N$ in $a_N \cdot t_{N-1}$ steps.

Theorem: for $d \ge 3$ and $x = z \log(M)$ with M integer and z satisfies (*), x is entropy of a d-dimensional block gluing SFT.

Entropies realizable by block gluing \mathbb{Z}^d shifts of finite type, R.Pavlov, M.Schraudner.

Schema of proof: an approach by operators

Let us fix X subshift of finite type. Denote X_s the following subshift:

Schema of proof: an approach by operators

Let us fix X subshift of finite type.

Denote $\nu_s(X)$ the following subshift:

Definition: X upgradable: for all k, l, $|\mathcal{L}_{k,l}^{\text{loc}}(X)| \leq e^{h(X) \cdot kl + \gamma \cdot (k+l)}$.

Definition: X upgradable: for all k, l, l

 $|\mathcal{L}_{k,l}^{\text{loc}}(X)| \leq e^{h(X)\cdot kl + \gamma \cdot (k+l)}$

Lemma: if X is upgradable, for s large enough, $h(\nu_s(X)) = h(X)$.

Definition: X upgradable: for all k, l,

 $|\mathcal{L}_{k,l}^{\text{loc}}(X)| \leq e^{h(X) \cdot kl + \gamma \cdot (k+l)}$.

Lemma: if X is upgradable, for s large enough, $h(\nu_s(X)) = h(X)$.

Proof: (schema)

Definition: X upgradable: for all k, l, l

 $|\mathcal{L}_{k,l}^{\text{loc}}(X)| \leq e^{h(X) \cdot kl + \gamma \cdot (k+l)}$.

Lemma: if X is upgradable, for s large enough, $h(\nu_s(X)) = h(X)$.

Proof: (schema)

1. Straightforwardly, $h(X) \leq h(\nu_s(X))$.

Definition: X upgradable: for all k, l, $|\mathcal{L}_{k,l}^{loc}(X)| \leq e^{h(X) \cdot kl + \gamma \cdot (k+l)}$.

Lemma: if X is upgradable, for s large enough, $h(\nu_s(X)) = h(X)$.

Proof: (schema)

- 1. Straightforwardly, $h(X) \leq h(\nu_s(X))$.
- 2. Upgradability allows to bound $N_n(\nu_s(X))$ with

$$(n^3+1)28^{6n^2}e^{h(X)(n+2s)^3}$$

which implies $h(X) \geq h(\nu_s(X))$.

Reminder: every effective one-dimensional subshift can be simulated by a bidimensional SFT.

Reminder: every effective one-dimensional subshift can be simulated by a bidimensional SFT.

Reminder: every effective one-dimensional subshift can be simulated by a bidimensional SFT.

Reminder: every effective one-dimensional subshift can be simulated by a bidimensional SFT.

$$X_{\alpha} = \overline{\{\sigma^n(w_{\alpha}) : n \geq 0\}}$$
:

Reminder: every effective one-dimensional subshift can be simulated by a bidimensional SFT.

$$X_{\alpha} = \overline{\{\sigma^n(w_{\alpha}) : n \geq 0\}}: N_n(X_{\alpha}) = (n+1).$$

Reminder: every effective one-dimensional subshift can be simulated by a bidimensional SFT.

Take $\alpha \in [0, 1[$ with condition (*).

$$X_{\alpha} = \overline{\{\sigma^n(w_{\alpha}) : n \geq 0\}}: N_n(X_{\alpha}) = (n+1).$$

Adding random bits on the 1 symbols: upper bound $(n+1)2^{\lceil \alpha \cdot n \rceil} \leq (n+1)2^{\alpha n+1}$.

Reminder: every effective one-dimensional subshift can be simulated by a bidimensional SFT.

Take $\alpha \in [0, 1[$ with condition (*).

$$X_{\alpha} = \overline{\{\sigma^n(w_{\alpha}) : n \geq 0\}}: N_n(X_{\alpha}) = (n+1).$$

Adding random bits on the 1 symbols: upper bound $(n+1)2^{\lceil \alpha \cdot n \rceil} \leq (n+1)2^{\alpha n+1}$.

Stacking copies of this subshift: $\leq (n+1)2^{\alpha n^2 + n}$ (upgradable).

The question of the limit between computability and uncomputability.

- 1. Two "computability regimes": w/wo block gluing. How to characterize the limit?
- 2. What are the exact conditions under which uncomputability phenomena can appear ?

Consider a function $f: \mathbb{N} \to \mathbb{N}$, non-decreasing and computable.

Consider a function $f : \mathbb{N} \to \mathbb{N}$, non-decreasing and computable. A subshift is f-block gluing when:

Consider a function $f: \mathbb{N} \to \mathbb{N}$, non-decreasing and computable. A subshift is f-block gluing when:

Consider a function $f: \mathbb{N} \to \mathbb{N}$, non-decreasing and computable. A subshift is f-block gluing when:

Question: for which functions f the entropy (resp. language) is forced to be computable (resp. decidable)?

Distortion operator

Transformation on configurations of X subshift on alphabet $\{a, b, c, d\}$:

Distortion operator

Transformation on configurations of X subshift on alphabet $\{a, b, c, d\}$:

Induces an operator ${\mathcal T}$ on subshifts.

Theorem: if X has linear block gluing on sublattices, $\mathcal{T}(X)$ has linear block gluing on infinite vertical stripes separated by O(n) columns.

Theorem: if X has linear block gluing on sublattices, $\mathcal{T}(X)$ has linear block gluing on infinite vertical stripes separated by O(n) columns.

Theorem: if X has linear block gluing on sublattices, $\mathcal{T}(X)$ has linear block gluing on infinite vertical stripes separated by O(n) columns.

Theorem: if X has linear block gluing on sublattices, $\mathcal{T}(X)$ has linear block gluing on infinite vertical stripes separated by O(n) columns.

Theorem: if X has linear block gluing on sublattices, $\mathcal{T}(X)$ has linear block gluing on infinite vertical stripes separated by O(n) columns.

Theorem: if X has linear block gluing on sublattices, $\mathcal{T}(X)$ has linear block gluing on infinite vertical stripes separated by O(n) columns.

Distortion and aperiodicity

Set of possible gluing positions:

Distortion and aperiodicity

Set of possible gluing positions:

After one distortion:

Set of possible gluing positions:

After one distortion:

Then a horizontal version of the operator:

Theorem: if X is aperiodic, then $\mathcal{T}(X)$ is aperiodic.

Theorem: if X is aperiodic, then $\mathcal{T}(X)$ is aperiodic.

Idea of the proof: if $\mathcal{T}(X)$ has a periodic configuration, the "distortion configuration" is also periodic.

Theorem: if X is aperiodic, then $\mathcal{T}(X)$ is aperiodic.

Idea of the proof: if $\mathcal{T}(X)$ has a periodic configuration, the "distortion configuration" is also periodic.

By straightening the curves, one construct a periodic configuration of X.

Theorem: if X is aperiodic, then $\mathcal{T}(X)$ is aperiodic.

Idea of the proof: if $\mathcal{T}(X)$ has a periodic configuration, the "distortion configuration" is also periodic.

By straightening the curves, one construct a periodic configuration of X.

Consequence: there exists an aperiodic linear block gluing bidimensional SFT.

Theorem: if X is aperiodic, then $\mathcal{T}(X)$ is aperiodic.

Idea of the proof: if $\mathcal{T}(X)$ has a periodic configuration, the "distortion configuration" is also periodic.

By straightening the curves, one construct a periodic configuration of X.

Consequence: there exists an aperiodic linear block gluing bidimensional SFT.

Proof: apply the distortion operator on Robinson tilings.

Theorem: if X is aperiodic, then $\mathcal{T}(X)$ is aperiodic.

Idea of the proof: if $\mathcal{T}(X)$ has a periodic configuration, the "distortion configuration" is also periodic.

By straightening the curves, one construct a periodic configuration of X.

Consequence: there exists an aperiodic linear block gluing bidimensional SFT.

Proof: apply the distortion operator on Robinson tilings.

Also: there exists a bidimensional linear block gluing SFT with undecidable language.

Regime transition for bidimensional SFT: entropy

Theorem[G.,Sablik]: for all $d \ge 2$, the possible values of entropy for linear block gluing d-dimensional SFT are the Π_1 -computable non-negative real numbers.

Regime transition for bidimensional SFT: entropy

Theorem[G.,Sablik]: for all $d \ge 2$, the possible values of entropy for linear block gluing d-dimensional SFT are the Π_1 -computable non-negative real numbers.

Theorem[G.,Sablik]: For all f such that $f(n) = o(\log(n))$, the entropy of any f-block gluing bidimensional SFT is computable.

Regime transition for bidimensional SFT: entropy

Theorem[G.,Sablik]: for all $d \ge 2$, the possible values of entropy for linear block gluing d-dimensional SFT are the Π_1 -computable non-negative real numbers.

Theorem[G.,Sablik]: For all f such that $f(n) = o(\log(n))$, the entropy of any f-block gluing bidimensional SFT is computable.

See Quantified block gluing, aperiodicity and entropy for multidimensional SFT, S.Gangloff, M.Sablik.

Hierarchical structures and computation areas:

Implementation of computing machines in hierarchical structures:

a_0'	a'_1	a' ₂	чn _{a3}	a4	a ₅	a ₆	a ₇
a_0'	a'_1	a_2'	$q_{h_{a_2}}$	a4	a ₅	a ₆	a ₇
a_0'	a_1'	$q_{a_2}^2$	аз	a4	a ₅	a ₆	a ₇
a_0'	$q^1_{a_1}$	a ₂	аз	a4	a ₅	a ₆	a ₇
$q_{a_0}^0$	<i>a</i> ₁	a ₂	a ₃	a ₄	a ₅	a ₆	a ₇
a'_0	a'_1	a' ₂	$q_{h_{a_3}}$	a ₄	a ₅	a ₆	a ₇
a' ₀	a' ₁	a' ₂	9 _h 9 _h	a ₄	a ₅	a ₆	a ₇
a' ₀ a' ₀	a' ₁ a' ₁ a' ₁	a' ₂ a' ₂ q ² q ²	9 _{h_{a3} 9_{ha3} a₃}	a ₄ a ₄	a ₅ a ₅	a ₆ a ₆	а ₇ а ₇
a'_0	a'_1 a'_1 a'_1 $q^1_{a_1}$	a_{2}' a_{2}' $q_{a_{2}}^{2}$ a_{2}	9 _{h_{a3}} 9 _{h_{a3}}	a ₄ a ₄ a ₄	a ₅ a ₅ a ₅	a ₆ a ₆ a ₆	a ₇ a ₇ a ₇

Control sets:

Control sets:

Control sets:

Obstacles to linear block gluing

- 1. **Degenerated behavior** of the computing machines (infinite computation areas, without initialisation).
- 2. Rigidity of hierarchical structures.

Solutions:

Obstacles to linear block gluing

- 1. **Degenerated behavior** of the computing machines (infinite computation areas, without initialisation).
- 2. Rigidity of hierarchical structures.

Solutions:

1. **Simulate** degenerated behaviors of the machines everywhere.

Obstacles to linear block gluing

- 1. **Degenerated behavior** of the computing machines (infinite computation areas, without initialisation).
- 2. Rigidity of hierarchical structures.

Solutions:

- 1. Simulate degenerated behaviors of the machines everywhere.
- Use a distortion operator to render the structure more flexible.

Simulating degenerated behavior: functional subdivision

Completing a pattern p:

Completing a pattern p:

Completing a pattern *p*:

Two cases:

Completing a pattern *p*:

Two cases:

1. Encoding part $\in p$: complete machine layer according to it.

Completing a pattern *p*:

Two cases:

- 1. Encoding part $\in p$: complete machine layer according to it.
- 2. Encoding part $\notin p$: choose encoding parts on the opposite side.

Completing a pattern *p*:

Two cases:

- 1. Encoding part $\in p$: complete machine layer according to it.
- 2. Encoding part $\notin p$: choose encoding parts on the opposite side.

As a consequence, the construction has gluing property on sublattices.

Adding random bits \rightarrow operator \mathcal{T}' :

With this we have $h(\mathcal{T}'(X)) = h(X) + 1$.

Adding random bits \rightarrow operator \mathcal{T}' :

With this we have $h(\mathcal{T}'(X)) = h(X) + 1$. Rigid segments of fixed length r:

Adding random bits \rightarrow operator \mathcal{T}' :

With this we have $h(\mathcal{T}'(X)) = h(X) + 1$. Rigid segments of fixed

length r:

Adding random bits \rightarrow operator \mathcal{T}' :

With this we have $h(\mathcal{T}'(X)) = h(X) + 1$. Rigid segments of fixed

length r:

we have:

$$h(\mathcal{T}'_r(X)) = h(X) + \frac{\log(1+r)}{r}$$

Abstract of the results:

Abstract of the results:

Question: how to discriminate subshift of finite type with computable entropy/non-computable entropy on the liminal area ?

The question of intermediate gap functions

Question[G.,Sablik, also related by M.Hochman]: does there exist some f-block gluing subshift with undecidable language and such that $\log(n) << f(n) = o(n)$?

Question[G.,Sablik, also related by M.Hochman]: does there exist some f-block gluing subshift with undecidable language and such that $\log(n) << f(n) = o(n)$?

Question[G.,Sablik, also related by M.Hochman]: does there exist some f-block gluing subshift with undecidable language and such that $\log(n) << f(n) = o(n)$?

Question[G.,Sablik, also related by M.Hochman]: does there exist some f-block gluing subshift with undecidable language and such that $\log(n) << f(n) = o(n)$?

Question[G.,Sablik, also related by M.Hochman]: does there exist some f-block gluing subshift with undecidable language and such that $\log(n) << f(n) = o(n)$?

Question[G.,Sablik, also related by M.Hochman]: does there exist some f-block gluing subshift with undecidable language and such that $\log(n) << f(n) = o(n)$?

Question[G.,Sablik, also related by M.Hochman]: does there exist some f-block gluing subshift with undecidable language and such that $\log(n) << f(n) = o(n)$?

Question[G.,Sablik, also related by M.Hochman]: does there exist some f-block gluing subshift with undecidable language and such that $\log(n) << f(n) = o(n)$?

Natural idea for $f(n) = \sqrt{n}$ (fails):

Problems: it is actually linear block gluing.

Reminder: entropy dimension (when exists):

$$D(X) = \lim_{n} \frac{\log(N_n(X))}{\log(n)}.$$

Reminder: entropy dimension (when exists):

$$D(X) = \lim_{n} \frac{\log(N_n(X))}{\log(n)}.$$

Minimal subshift: every pattern in $\mathcal{L}(X)$ appears in every configuration of X.

Reminder: entropy dimension (when exists):

$$D(X) = \lim_{n} \frac{\log(N_n(X))}{\log(n)}.$$

Minimal subshift: every pattern in $\mathcal{L}(X)$ appears in every configuration of X.

Theorem[G.,Sablik]: the values of entropy dimension on minimal tridimensional SFT are the numbers in $[0,2] \cap \Delta_2$.

Reminder: entropy dimension (when exists):

$$D(X) = \lim_{n} \frac{\log(N_n(X))}{\log(n)}.$$

Minimal subshift: every pattern in $\mathcal{L}(X)$ appears in every configuration of X.

Theorem[G.,Sablik]: the values of entropy dimension on minimal tridimensional SFT are the numbers in $[0,2] \cap \Delta_2$.

Ideas of proof: 1. Computing machines control sparse random bits.

Reminder: entropy dimension (when exists):

$$D(X) = \lim_{n} \frac{\log(N_n(X))}{\log(n)}.$$

Minimal subshift: every pattern in $\mathcal{L}(X)$ appears in every configuration of X.

Theorem[G.,Sablik]: the values of entropy dimension on minimal tridimensional SFT are the numbers in $[0,2] \cap \Delta_2$.

Ideas of proof: 1. Computing machines control sparse random bits.

2. Counters alternative all possible behaviors.

Reminder: entropy dimension (when exists):

$$D(X) = \lim_{n} \frac{\log(N_n(X))}{\log(n)}.$$

Minimal subshift: every pattern in $\mathcal{L}(X)$ appears in every configuration of X.

Theorem[G.,Sablik]: the values of entropy dimension on minimal tridimensional SFT are the numbers in $[0,2] \cap \Delta_2$.

Ideas of proof: 1. Computing machines control sparse random bits.

- 2. Counters alternative all possible behaviors.
- **3**. Using Fermat numbers $2^{2^n} + 1$ as periods (co-primes, encoding respecting minimality).

 \triangleright As we impose dynamical constraints: \uparrow in complexity

 \triangleright As we impose dynamical constraints: \uparrow in complexity \ne algorithmic complexity.

 \triangleright As we impose dynamical constraints: \uparrow in complexity \neq algorithmic complexity.

How to formalise it?

ightharpoonup As we impose dynamical constraints: \uparrow in complexity \neq algorithmic complexity.

How to formalise it?

How does the dynamical system work ? (for instance human brain) \rightarrow identification of *objects* [structures, signals, machines,...] in the system and their relations.

 \triangleright As we impose dynamical constraints: \uparrow in complexity \ne algorithmic complexity.

How to formalise it?

How does the dynamical system work ? (for instance human brain) \rightarrow identification of *objects* [structures, signals, machines,...] in the system and their relations.

Cognitively this seems to correspond to the faculty of understanding.

 \triangleright As we impose dynamical constraints: \uparrow in complexity \ne algorithmic complexity.

How to formalise it?

How does the dynamical system work ? (for instance human brain) \rightarrow identification of *objects* [structures, signals, machines,...] in the system and their relations.

Cognitively this seems to correspond to the faculty of **understanding**.

Reverse approach: given a system, how to identify functional parts.

Relation with the notion of organisation.

Relation with the notion of organisation.

Hypothesis: optimisation between algorithmic complexity of invariants/dynamical constraints \Rightarrow organisedness.

Relation with the notion of organisation.

Hypothesis: optimisation between algorithmic complexity of invariants/dynamical constraints ⇒ organisedness.

Formalising these phenomena \rightarrow development of a formalism for:

Relation with the notion of organisation.

Hypothesis: optimisation between algorithmic complexity of invariants/dynamical constraints ⇒ organisedness.

Formalising these phenomena \rightarrow development of a formalism for:

1. limits on information transport imposed by space-time.

Relation with the notion of organisation.

Hypothesis: optimisation between algorithmic complexity of invariants/dynamical constraints ⇒ organisedness.

Formalising these phenomena \rightarrow development of a formalism for:

- 1. limits on information transport imposed by space-time.
- 2. how dynamical constraints prevent enforcing universal computation *in* configurations.