

HOLZ:

High-Order Entropy Encoding of Lempel-Ziv Factor Distances

Tokyo Medical and Dental University
Gonzalo Navarro
University of Chile
Nicola Prezza
Ca' Foscari University

b a a b ba bb

(4,2)

(3.2)

Lempel-Ziv 77 (LZ)

text factorization

$$T = \begin{bmatrix} F_1 & F_2 & \dots \end{bmatrix}$$

- used for lossless compression like in gzip, zip, 7zip, etc.
- LZ reads a text from left to right while
 - maintaining the read text in a dictionary and
 - replacing the remaining text with references into the dictionary

soundness

need always a suitable reference in the dictionary

soundness

need always a suitable reference in the dictionary

pre-handling:

- prepend all distinct characters to T
- \Rightarrow have a reference with length ≥ 1

$$T = baabbabbabb$$

- take longest candidate as reference
- factorize T into $T = F_1 \cdots F_z$,

$$T = baabbabb$$
-1 0 1 2 3 4 5 6 4/29

- take longest candidate as reference
- factorize T into $T = F_1 \cdots F_z$,

- take longest candidate as reference
- factorize T into $T = F_1 \cdots F_z$,

$$T = baabbabbabb$$

- take longest candidate as reference
- factorize T into $T = F_1 \cdots F_z$,

- take longest candidate as reference
- factorize T into $T = F_1 \cdots F_z$,

pair encoding

- represent each factor as a pair of distance and length
- to obtain compression, we encode the pairs with an universal coder like Elias γ code

$$(1,1)$$
 $(3,1)$ $(4,2)$ $(3,2)$

$$T = ba$$

$$-1 \ 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 6/27$$

$$(1,1)$$
 $(3,1)$ $(4,2)$ $(3,2)$

$$(1,1)$$
 $(3,1)$ $(4,2)$ $(3,2)$

$$T = \begin{bmatrix} b & a & b \\ -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 6/27 \end{bmatrix}$$

$$(1,1)$$
 $(3,1)$ $(4,2)$ $(3,2)$

since a reference points always to the already read part, we can decompress the text

however in practice:

the distances do not compress well! (1,1) (3,1) (4,2) (3,2)

$$T = baabbabb$$

representing distances

new representation:

- pre-processing: compute lengths and starting positions of all factors
- compute the distance based on a list maintaining all prefixes of the read text
- this list is sorted colex(icographically)
- we call the resulting distance holz offset (high order Lempel-Ziv)

colex(icographic) order

= sort according to the lexicographic order of the reversed strings

Example	aaab	abaa
	aaba	aaba
	abaa	bbba
	bbba	aaab
lexico	graphic	—
	order	colex. order

notations

- T[i..j] : substring; like T[0..2] = aab
- T[i...] : suffix; like T[3...] = babb
- *T*[-1..*j*] : prefix
- •ε: empty string (length 0)
- assume binary alphabet (extension to general ordered alphabets is easy)

holz: overview

- let $T_p := T[-1..p]$
- $T_{-2} = \varepsilon$, $T_{-1} = b$, $T_0 = ba$, $T_1 = baa ...$
- suppose we want to compute factor F_x starting at T[p...]
- arrange T_{-2} , ..., T_{p-1} in colex. order to get $T_{\pi(1)} \prec_{\text{colex}} ... \prec_{\text{colex}} T_{\pi(p+2)}$ with π ranking the prefix in colex. order

computing offsets

- $T_{\pi(1)}$ $\prec_{\text{colex}} \ldots \prec_{\text{colex}} T_{\pi(p+2)}$
- let r be given by $\pi(r) = p-1$
- let t be rank closest to r among those with $T[\pi(t)+1...]$ having F_x as a prefix
- F_x's holz offset is r t

precomputation: sort

•
$$T_{-2} = \varepsilon$$

•
$$T_{-1} = b$$

•
$$T_0$$
 = ba

in colex. order

$$T = baabbabb$$
-1 0 1 2 3 4 5 6 12/3

precomputation: sort

•
$$T_{-2} = \varepsilon$$

•
$$T_{-1} = b$$

•
$$T_0$$
 = ba

in colex. order

1
$$T_{-2} =$$
 2 $T_0 =$ ba 3 $T_{-1} =$ b

$$T = baabbabb$$
-1 0 1 2 3 4 5 6 12/2

precomputation: sort

•
$$T_{-2} = \varepsilon$$

•
$$T_{-1} = b$$

•
$$T_0$$
 = ba

in colex. order

remaining suffix $\begin{array}{c|ccc} T_{-2} & \text{baabbabb} \\ T_{0} & \text{baabbabb} \\ T_{-1} & \text{baabbabb} \end{array}$

$$p = 1$$

$$T = b a b b a b b$$
-1 0 1 2 3 4 5 6 12/2

- $F_1 = T[1]$ is first factor
- starting position of F_1 is p=1
- $F_p = F_1$ starts after $T_{p-1}=T_0$
- rank of $T_{p-1} = T_0$ is r = 2 r t = 2 3 = -1
- rank of T_{-1} is t = 3

remaining suffix

$$1 T_{-2} = baabbabb$$

$$T_{-1} = b aabbabb$$

$$r - t = 2 - 3 = -1$$

$$T = b a b b a b b$$
-1 0 1 2 3 4 5 6 13/2

- add T_1
- p = 2
- r = 2
- t = 1
- r t = 1

remaining suffix

$$1) T_{-2} = baabbabb$$

$$(2)$$
 T_1 =baa|bbabb

$$T_0 = ba|abbabb$$

$$T_{-1} = b | aabbabb$$

$$T = b a b b a b b$$
-1 0 1 2 3 4 5 6 14/

- add *T*₂
- p = 3
- r = 5
- t = 1
- $| \cdot r t | = 4$

remaining suffix

- $\begin{array}{|c|c|c|}\hline 1 & T_{-2} & \underline{ba}abbabb \\ \hline \end{array}$
- $T_1 = baa|bbabb|$
- $T_0 = ba|abbabb$
 - $T_{-1} = b \mid aabbabb$
- (5) T_2 =baab|babb

- add T_3 and T_4
- p = 5
- r = 4
- $\bullet t = 2$
- r t = 2

```
1 T_{-2} = | baabbabb

2 T_1 = baa | bbabb

3 T_0 = ba | abbabb

4 T_4 = baabba | bb

5 T_{-1} = b | aabbabb

6 T_2 = baab | babb

7 T_3 = baabb | abb
```

experiments

- datasets from Pizza & Chili corpus
- take 20 MB prefix of each dataset,
- compute LZ factorization,
- encode pairs with Elias γ code,
- compare compression ratios

experiments

dataset	σ	z [K]	H ₀	H ₂	H ₄
cere	5	8492	2.20	1.79	1.78
coreutils	235	3010	5.45	2.84	1.31
dblp.xml	96	3042	5.22	1.94	0.89
dna	14	12706	1.98	1.92	1.91
e.coli	11	8834	1.99	1.96	1.94
english	143	5478	4.53	2.89	1.94
inf uenza	15	876	1.97	1.93	1.91
kernel	160	1667	5.38	2.87	1.47
para	5	8254	2.17	1.83	1.82
pitches	129	10407	5.62	4.28	2.18
proteins	25	8499	4.20	4.07	2.97
sources	111	4878	5.52	2.98	1.60
worldleaders	89	408	4.09	1.74	0.73

• z : #factors

• [K] : 10³ (kilo)

• σ: alphabet size

• H_k: k-th order empirical entropy

compression ratio (lower = better)

(Elias γ encoded)

experiments

dataset	σ	z [K]	H ₀	H ₂	H ₄
cere	5	8492	2.20	1.79	1.78
coreutils	235	3010	5.45	2.84	1.31
dblp.xml	96	3042	5.22	1.94	0.89
dna	14	12706	1.98	1.92	1.91
e.coli	11	8834	1.99	1.96	1.94
english	143	5478	4.53	2.89	1.94
inf uenza	15	876	1.97	1.93	1.91
kernel	160	1667	5.38	2.87	1.47
para	5	8254	2.17	1.83	1.82
pitches	129	10407	5.62	4.28	2.18
proteins	25	8499	4.20	4.07	2.97
sources	111	4878	5.52	2.98	1.60
worldleaders	89	408	4.09	1.74	0.73

• z : #factors

• [K] : 10³ (kilo)

• σ: alphabet size

• H_k: k-th order empirical

entropy

holz is only worse when H_k is high!

compression ratio (lower = better)

(Elias γ encoded)

about compression ratio

why are the holz offsets smaller than the distances most of the time?

answer sketch:

- contexts before the references are similar to the contexts before the factors ⇒ offsets are small
- similar observation for the Burrows-Wheeler transform (BWT) obtaining compression close to *k*-th order entropy via so-called *compression boosting* [Ferragina, Manzini '04]

algorithmic aspects

problem:

how to maintain the colex. order of the prefixes?

idea: use dynamic BWT

- index processed text in reverse order
 (BWT maintains suffixes in lex. order)
- ⇒ reversed BWT maintains prefixes in colex. order
- $n H_k + o(n \lg \sigma)$ space
- O(n lg n / lg lg n) time

 H_k : k-th order empirical entropy

[Policriti, Prezza '18] + [Munro, Nekrich '15]

offsets via BWT

- T[-1..n] = baabbabb
- T^R\$ = bbabbaab\$ (reverse T and append artificial character \$)
- pre-compute BWT(ab\$)
- invariant: have BWT($T^R[n-p+1..n+2]$ \$) computed when computing factor F_x starting at T[p..]

BWT(ab\$)

F	L
\$	b
a	\$
b	а

r: place of \$

t : reference

$$T = b a a b b a b b$$
-1 0 1 2 3 4 5 6 22/27

BWT: prepend a character

[Crochemore+ '15]: Given a character **a** we want to prepend 1) replace L[i] = \$ with **a** 2) if L[i] is now the *j-th* **a** in L[1...i], insert \$ at L[k], where F[k] is the *j-th* **a** of F

BWT: prepend a character

[Crochemore+ '15]:
Given a character a we want to prepend
1) replace L[i] = \$ with a
2) if L[i] is now the j-th a in L[1..i],
 insert \$ at L[k], where F[k] is the j-th a of F

$$T = baabbaabba$$

BWT(abaab\$)

F L

\$ b

a b

a a

b a

b b

a

b

BWT(babaab\$)

Ĺ

\$ b

a b

a a

a 🗲 \$

b \ a

b **** b

b a

BWT(baab\$)

26 / 27

T = baabbabb

summary

- LZ compressors usually represent factors by pairs of lengths and distances
- distances compress badly
- exchange distances with holz offsets:
 distance within the list of prefixes of the research
 - = distance within the list of prefixes of the read text maintained in colex. order
- for low-entropy texts, holz offsets provide empirically better compression ratios

future work

dynamic BWT is practical bottleneck wrt. time