Question	Answer	Marks	Guidance
(a)	$4\cos^4 x + \cos^2 x - 3 = 0 \Rightarrow (4\cos^2 x - 3)(\cos^2 x + 1) = 0$	M1	Attempt to solve 3 term quartic (or quadratic in another variable).
	$\Rightarrow \left[\cos^2 x = \right] \frac{3}{4} \left[\cos^2 x = -1\right]$	A1	If M0 scored then SC B1 is available for sight of $\frac{3}{4}$ [and -1].
	$\Rightarrow \cos x = \left[\pm\right] \sqrt{their \frac{3}{4}} \mathbf{OE} \left[=\pm\frac{\sqrt{3}}{2}\right]$	M1	Square rooting 'their $\cos^2 x$ '. Allow without \pm . May be implied by correct final answer(s). Ignore $\sqrt{-1}$.
	$[x =] \frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6}$	A1 A1 FT	Dependent on preceding M1 only. Exact answers needed. A1 for any 2 correct answers A1 A1 for 4 correct answers and no others inside the range $0 \le x \le 2\pi$ A0 A1 FT can be awarded for two exact answers that are $2\pi - their\frac{\pi}{6}$ and $\frac{5\pi}{6}$, within the range $0 \le x \le 2\pi$.
			SC : If all 4 answers given in degrees (30, 150, 210, 330) or non-exact (AWRT 0.524, 2.62, 3.67, 5.76 or 0.167π , 0.833π , 1.17π , 1.83) and no others then SC B1 .
		5	

Question	Answer	Marks	Guidance
(b)	$\cos^2 x = \frac{-1 - \sqrt{1 + 16k}}{8} < 0 \text{ [} \therefore \text{ no solutions]}.$	B1	State that this root is less than 0, needs to be linked to $\cos^2 x$. Can be achieved by substituting a value for $k \ge 0$.
	$[\cos^2 x] = \frac{-1 \pm \sqrt{1 + 16k}}{8}$	*M1	Must use quadratic formula. Allow any value of k but not ± 3 . Condone $+$ rather than \pm .
	Substituting $k = 5$ and obtain 1 from the formula	DM1	Or argue logically if $k > 5 \implies 1 + 16k > 81 \implies >1$.
	$\cos^2 x = 1 \text{ or } \cos^2 x > \text{ or } \geqslant 1$	A1	Needs to be linked to $\cos^2 x$.
	Concluding statement having considered both \pm cases. \therefore no solutions	A1	Dependent upon all previous marks having been scored.
	Alternative method for question (b)		
	$\cos^2 x = \frac{-1 - \sqrt{1 + 16k}}{8} < 0 \text{ [} \therefore \text{ no solutions]}.$	B1	State that this root is less than 0, needs to be linked to $\cos^2 x$. Can be achieved by substituting a value for $k \ge 0$.
	$[\cos^2 x] = \frac{-1 \pm \sqrt{1 + 16k}}{8}$	*M1	Must use quadratic formula. Allow any value of k but not ± 3 . Condone $+$ rather than \pm .
	$\frac{-1 + \sqrt{1 + 16k}}{8} * 1 \Rightarrow -1 + \sqrt{1 + 16k} * 8 \Rightarrow 1 + 16k * 81$	DM1	* represents any inequality or =.
	k * 5	A1	* represents any inequality or =.
	Concluding statement having considered both \pm cases. \therefore no solutions	A1	Dependent upon all previous marks having been scored.
		5	