2. Computation of $\Delta \boldsymbol{A}_{k+1}$ and $\Delta \boldsymbol{B}_{k+1}$

We illustrate the computation of ΔA_{k+1} and ΔB_{k+1} . The component $D_{k+1}^T E_{1,k}$ of $\Delta A_{1,k+1}$ is taken as an example to illustrate the recursion calculation manner.

$$D_{k+1}^{T} E_{1,k} = d_{k+1}^{T} \Delta x_{k+1}^{p} J_{k}^{T} E_{1,k}$$
 (S1)

If we compute (S1) directly, the computational complexity is $O(kp^2m_1^2)$ and increases continually. We should compute $J_k^T E_{1,k}$ recursively.

$$\mathbf{J}_{k}^{T} \mathbf{E}_{1,k} = \begin{bmatrix} \mathbf{J}_{k-1} \tilde{\mathbf{J}}_{k} \\ \Delta \mathbf{x}_{k}^{p} \mathbf{R}_{k-1} \tilde{\mathbf{J}}_{k} \end{bmatrix}^{T} \begin{bmatrix} \mathbf{E}_{1,k-1} - \mathbf{J}_{k-1} \left(\Delta \mathbf{x}_{k}^{p} \right)^{T} \mathbf{h}_{k} \\ \mathbf{h}_{k} \end{bmatrix} \\
= \tilde{\mathbf{J}}_{k}^{T} \mathbf{J}_{k-1}^{T} \left(\mathbf{E}_{1,k-1} - \mathbf{J}_{k-1} \left(\Delta \mathbf{x}_{k}^{p} \right)^{T} \mathbf{h}_{k} \right) + \left(\Delta \mathbf{x}_{k}^{p} \mathbf{R}_{k-1} \tilde{\mathbf{J}}_{k} \right)^{T} \mathbf{h}_{k} \\
= \tilde{\mathbf{J}}_{k}^{T} \mathbf{J}_{k-1}^{T} \mathbf{E}_{1,k-1} - \tilde{\mathbf{J}}_{k}^{T} \mathbf{J}_{k-1}^{T} \mathbf{J}_{k-1} \left(\Delta \mathbf{x}_{k}^{p} \right)^{T} \mathbf{h}_{k} + \tilde{\mathbf{J}}_{k}^{T} \mathbf{R}_{k-1}^{T} \left(\Delta \mathbf{x}_{k}^{p} \right)^{T} \mathbf{h}_{k}$$
(S2)

The recursion of $J_k^T J_k$ is:

$$\boldsymbol{J}_{k}^{T}\boldsymbol{J}_{k} = \tilde{\boldsymbol{J}}_{k}^{T}\boldsymbol{J}_{k-1}^{T}\boldsymbol{J}_{k-1}\tilde{\boldsymbol{J}}_{k} + \tilde{\boldsymbol{J}}_{k}^{T}\boldsymbol{R}_{k-1}^{T}\left(\Delta\boldsymbol{x}_{k}^{p}\right)^{T}\Delta\boldsymbol{x}_{k}^{p}\boldsymbol{R}_{k-1}\tilde{\boldsymbol{J}}_{k}$$
(S3)

As $\tilde{J}_k = I - \frac{(\Delta x_k^p)^T \Delta x_k^p R_{k-1}}{1+c_k}$, $D_{k+1}^T E_{1,k}$ can be calculated recursively based on (S1)-(S3). Similarly, other components of ΔA_{k+1} and ΔB_{k+1} can also be computed recursively.

The computational complexity of $\tilde{\boldsymbol{J}}_k^T \boldsymbol{J}_{k-1}^T \boldsymbol{J}_{k-1} \tilde{\boldsymbol{J}}_k$ is $O(p^2 m_1^2)$ based on the associative law of multiplication. As $\Delta \boldsymbol{x}_k^p$ is a vector, the computational complexity of (S1) is $O(p^2 m_1^2)$ by reasonable arrangement of matrix calculation order. It is understandable because each component contains at least one vector. Similarly, other components of $\Delta \boldsymbol{A}_{k+1}$ and $\Delta \boldsymbol{B}_{k+1}$ need $O(p^2 m_1^2)$. In conclusion, the computational complexity of $\Delta \boldsymbol{A}_{k+1}$ and $\Delta \boldsymbol{B}_{k+1}$ is $O(p^2 m_1^2)$ per update, which is independent of the number of existing samples.