Dataset #2: Movie Ratings

Load the Data

```
In [21]:
```

```
import numpy as np
import pandas as pd

import warnings
warnings.simplefilter('ignore', DeprecationWarning)

# dataset
datatrain = pd.read_csv('/Users/WeikangFan/Desktop/Movies_train.csv')
datatest = pd.read_csv('/Users/WeikangFan/Desktop/Movies_test.csv')
```

Pre-Process the Movies Dataset

```
In [22]:
```

```
%load_ext rmagic import rpy2 as Rpy
```

The rmagic extension is already loaded. To reload it, use: %reload ext rmagic

In [23]:

```
%%R
train <- read.csv("Movies_train.csv")
sort <- sort(train$Length, decreasing = TRUE)
sort[1:50]</pre>
```

```
[1] 5220 2880 1100 873 647 566 555
                                    501
                                        485
                                             480
                                                 480
                                                      418
                                                          41
  410 407
[16] 402 399
              390
                  390
                       360
                           358
                               358
                                    321
                                        320
                                             320
                                                 316
                                                      316
                                                          31
 312 311
[31] 306 302
              301
                  300
                       300
                           300 300 299
                                        298
                                             294
                                                 293
                                                      288
 285 285
[46] 285 285
              279 278
                      278
```

We could find that only a very small proportion of the training set observations (33 observations in total) have Length values larger than 300.

In [24]:

%%R

hist(train\$Length[train\$Length <= 300])</pre>

Histogram of train\$Length[train\$Length <= 300]

From the histogram above we could find that Length values between 200 and 300 are rare too.

In [25]:

%%R

length(train\$Length[train\$Length <= 200])/length(train\$Length)</pre>

[1] 0.9958428

Length values no more than 200 take more than 99% of the whole sample. I decide to use the observaions with Length no more than 200 to train the classifier, so we can avoid the effects of some huge outliers.

Moreover, I use the mean value to substitute the NAs in Budget, and use the logs of Year, Length, Budget, and Votes intead of their original values.

In [26]:

```
datatrain = datatrain.loc[datatrain['Length'] <= 200]

from numpy import log1p
datatrain['Year'] = [log1p(max(datatrain['Year']) - i) for i in datatrain['Year']
] datatrain['Budget'] = datatrain['Budget'].fillna(datatrain['Budget'].dropna().me
an())
datatrain['Length'] = [log1p(i) for i in datatrain['Length']]
datatrain['Budget'] = [log1p(i) for i in datatrain['Budget']]
datatrain['Votes'] = [log1p(i) for i in datatrain['Votes']]

datatest['Year'] = [log1p(max(datatest['Year']) - i) for i in datatest['Year']]
datatest['Budget'] = datatest['Budget'].fillna(datatest['Budget'].dropna().mean
())
datatest['Length'] = [log1p(i) for i in datatest['Length']]
datatest['Budget'] = [log1p(i) for i in datatest['Budget']]
datatest['Yotes'] = [log1p(i) for i in datatest['Yotes']]</pre>
```

Variable Selection

The dataset has the following variables:

Title	movie title
Year	year released
Length	length in minutes
Budget	production budget in US dollars (usually NA)
Votes	number of voting IMDB users
R1	approximate percentage of users voting for rating: 1
R2	approximate percentage of users voting for rating: 2
R3	approximate percentage of users voting for rating: 3
R4	approximate percentage of users voting for rating: 4
R5	approximate percentage of users voting for rating: 5
R6	approximate percentage of users voting for rating: 6
R7	approximate percentage of users voting for rating: 7
R8	approximate percentage of users voting for rating: 8
R9	approximate percentage of users voting for rating: 9
R10	approximate percentage of users voting for rating: 10
MPAA	MPAA parental guidance rating (blank, NC-17, PG, PG-13, R)
Action	1 if Action, 0 otherwise
Animation	1 if Animation, 0 otherwise
Comedy	1 if Comedy, 0 otherwise
Drama	1 if Drama, 0 otherwise
Documentary	1 if Documentary, 0 otherwise
Romance	1 if Romance, 0 otherwise
Short	1 if Short Film, 0 otherwise

Among those variables, Length is negatively correlated with Short: movies of higher Length has Short = 0, and movies of lower Length has Short = 1. The following correlation table computed by R agrees with my assumption.

In [28]:

```
%%R
train <- read.csv("/Users/WeikangFan/Desktop/Movies_train.csv")
cor(train[,c('Length','Short')])</pre>
```

```
Length Short
Length 1.0000000 -0.6655172
Short -0.6655172 1.0000000
```

And compared with the predictor set including MPAA, the predictor set without MPAA gives better prediction results. Title has no correlation with Rating, hence I finally decide to use all the variables except for Title, MPAA, and Short.

Prediction: Use Random Forest

I have tried various methods and random forest definitely beats all the others.

Use random forest to train the classifier and make predictions

```
In [29]:
```

```
x_train = datatrain.drop(["Rating", "Title", "Short", "MPAA"],1)
y_train = datatrain.Rating
x_test = datatest.drop(["Rating", "Title", "Short", "MPAA"],1)

# use Random Forest to predict
from sklearn.ensemble import RandomForestClassifier
np.random.seed(1234)
rf = RandomForestClassifier(n_estimators=500, max_features='auto').fit(x_train,y_train)
pred = rf.predict(x_test)
```

Write the result to a text file

```
In [31]:
```

```
# Write results to a txt file
def two_digit_value(x):
    return ("%3.1f" % x)
    # return a value of the form X.Y, where X and Y are digits
output_str = "\n".join(map(two_digit_value, pred))
f = open('/Users/WeikangFan/Desktop/output-movie.txt', 'w')
f.write(output_str);
f.close()
```

The correction rate is 51.41% according to the mooshak.