NWI-IMC061 – Applied Cryptography

Personalized Appendix, Academic Year 2021–2022 Sequence Number: 8

Appendix to Question 1

Your question will be about PHOTON.

The article can be found at https://eprint.iacr.org/2011/609.pdf (skip technicalities of Section 4).

Appendix to Question 2

Consider the following tweakable block cipher $\widetilde{M}:\{0,1\}^{2k}\times\{0,1\}^n\times\{0,1\}^n\to\{0,1\}^n$, that uses a key $(K,L)\in\{0,1\}^{2k}$ to map a tweak $T\in\{0,1\}^n$ and an input $Y\in\{0,1\}^n$ to a output $Z\in\{0,1\}^n$:

Appendix to Question 3

Consider the following parameters: b=1600, k=123, and m=1354. Consider the following nonce-based authenticated encryption scheme SmaDa (for Small Data), that gets as input a key K of k bits, a nonce N of k bits, and a message M whose length is exactly m bits, and that generates a ciphertext and tag as follows:

$$C||T = \operatorname{left}_{m+k}(f(K||N||0^m)) \oplus (M||0^k),$$

where $left_{m+k}$ returns the leftmost m+k bits of its input (and thus truncates the rightmost k bits in your case).

(The personalized appendix continues on the next page!)

Appendix to Question 4

The encryption cryptosystem is given below.

KeyGen:

- 1. Choose a random $x \stackrel{\$}{\leftarrow} \mathbb{Z}_q$
- 2. Choose $\ell = 4$
- 3. Compute $y \leftarrow g^{25x}$ in G
- 4. Output public key pk = (y, e) and private key sk = x and public parameters (p, ℓ, g)

Encrypt: To encrypt a message M

- 1. Choose a random $k \stackrel{\$}{\leftarrow} \mathbb{Z}_q$ and
- 2. Compute ciphertext pair $(C_1, C_2) \leftarrow (g^{k+\ell}, y^k M)$ as

Decrypt: Decrypt ciphertext as $M \leftarrow y^{\ell} \cdot C_2 \cdot C_1^{-x}$

The remaining parameter used in your personalized version of the assignment is N=15.

Appendix to Question 5

The prover \mathcal{P} is in possession of the secret key $\mathsf{sk} = (s_1, \ldots, s_{14})$. The corresponding public key is $\mathsf{pk} = (P_1, \ldots, P_{14})$, where $P_i = g^{s_i}$ for all $i \in \{1, \ldots, 14\}$. The protocol $\mathsf{ID}_{\mathsf{Schnorr2}}$ is given below.

The remaining parameter used in your personalized version of the assignment is $\lambda = 256$ and the bit length of q is $\log_2 q = 232$.