Partial Differential Equations

2dayclean

2025/09/11

Contents

L	$\mathbf{W}\mathbf{h}$	ere PDEs come from	1
	1.1	What is PDE	1
	1.2	Homogenity and Linearity of PDE	2
		1.2.1 First order linear equations	3
	1.3	Flows, Vibrations, and Diffusion	Ę
		1.3.1 Simple transport	Ę
		1.3.2 Vibrating string	Ē
		1.3.3 Vibrating Drumhead	6
		1.3.4 Diffusion	6
		1.3.5 Heat Flow	7
		1.3.6 Stationary waves and diffusions	7
	1.4	Initial and Boundary conditions	7
	1.5	Types of second order PDE	8

1 Where PDEs come from

1.1 What is PDE

편미분방정식, PDE를 살펴보면 다음과 같은 요소가 있음을 알 수 있습니다. :(1) 하나보다 많은 독립변수들이 있습니다. (x,y,z,\cdots,t,\cdots) (2) 우리가 알고 싶어하는 함수 u가 있어서 이 독립변수들에 의해 나타납니다. 따라서, PDE란 다음과 같습니다.

Definition

PDE는 독립변수들과 미지의 함수 u, 그리고 u의 편도함수 사이의 identity(혹은 equation)이다.

또한, 이러한 PDE의 order는 식에 나타나는 도함수의 가장 높은 order를 의미합니다.

Example

PDE에는 다음과 같은 예시들이 있습니다.

- 1. $u_x + u_y = 0$ (transport equation), 더 일반적으로는, $u_x + yu_y = 0$ 이나 $u_x + a(x,y)u_y = 0$ 역시 transport equation 이라고 불립니다.
- 2. $u_{xx} + u_{yy} = 0$ (Laplace equation), $\nabla^2 u = 0$ 과 같이 쓰기도 합니다.
- 3. $u_{tt} u_{xx} = 0$ (Wave equation)
- 4. $u_t u_{xx} = 0$ (Heat equation)

1.2 Homogenity and Linearity of PDE

앞으로도 거의 계속, 2-dimensional한 case에 대해서만 다룹니다.

일반적으로, PDE를 $F(x,y,u_x,u_y,u_{xx},u_{xy},u_{yy},\cdots)=g(x,y)$ 라고 쓸 수 있을 것입니다. 이를, $\mathcal{L}[u]=g$ 와 같이 표현하면 좋을 것입니다. 특히, 일반성을 잃지 않고, $\mathcal{L}[0]=0$ 이 되도록 \mathcal{L} 을 조작할 수 있습니다. 이러한 \mathcal{L} 은 다음과 같이 set of function에서 set of function으로의 mapping으로 생각할 수 있습니다.

$$\mathcal{L}: \{\text{functions}\} \to \{\text{functions}\}$$

$$v \mapsto \mathcal{L}[v] = F(x, y, v_x, v_y, \cdots)$$

특히, domain과 codomain을 $C^{\infty}(\Omega)$ 와 같이 쓰면, \mathcal{L} 은 일종의 operator가 됩니다.

Definition 1.1

Operator $\mathcal{L}: C^{\infty}(\Omega) \to C^{\infty}(\Omega)$ 가 **linear**하다는 것은 다음을 만족하는 것입니다.

1.
$$\mathcal{L}[u+v] = \mathcal{L}[u] + \mathcal{L}[v]$$

2.
$$\mathcal{L}[cu] = c \cdot \mathcal{L}[u]$$

특히, \mathcal{L} 이 linear하다면, $\mathcal{L}[u]=0$ 은 homogeneous linear equation이라고 하고, $\mathcal{L}[u]=g(g\not\equiv 0)$ 은 inhomogeneous linear equation이라고 합니다.

Example

다음은 전부 homogeneous linear equation입니다.

1.
$$u_x + u_y = 0$$
, \circ $\mathbb{H} \mathcal{L} = \frac{\partial}{\partial x} + \frac{\partial}{\partial y}$

2.
$$u_{xx} + u_{yy} = 0$$
, of III $\mathcal{L} = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$

3.
$$u_{tt} - u_{xx} = 0$$
, of $\mathbb{H} \mathcal{L} = \frac{\partial^2}{\partial t^2} - \frac{\partial^2}{\partial x^2}$

4.
$$u_t - u_{xx} = 0$$
, of $\mathbb{H} \mathcal{L} = \frac{\partial}{\partial t} - \frac{\partial^2}{\partial x^2}$

Example

Transport equation의 일종인 $u_x+yu_y=0$ 은 $\mathcal{L}=\frac{\partial}{\partial x}+y\frac{\partial}{\partial y}$ 로 나타나며 linear하고 homogeneous합니다. 반면, Burger's equation이라고 불리는 $u_x+uu_y=0$ 은 linear하지 않습니다.

Example

PDE $\cos(xy^2)u_x - y^2u_y = \tan(x^2 + y^2)$ 는 $\mathcal{L} = \cos(xy^2)\frac{\partial}{\partial x} - y^2\frac{\partial}{\partial y}$ 와 같이 나타나며 linear하고 inhomogeneous 합니다.

Proposition 1.2

Superposition Principle : Linear한 \mathcal{L} 에 대해 u_1, u_2, \cdots, u_n 이 $\mathcal{L}[u] = 0$ 의 solution이라면, constants c_1, \cdots, c_n 에 대해 $\sum_{i=1}^n c_i u_i$ 또한 $\mathcal{L}[u] = 0$ 의 solution입니다.

이는 딱히 증명할 필요는 없을 것 같습니다.

Example 1.3

u = u(x,y)에 대해, $u_{xx} = 0$ 의 해를 찾아 봅시다.

Recall: u = u(x)이고 u'' = 0이라면, $u(x) = c_1x + c_2$ 이다.

해는 따라서 다음과 같습니다.

$$(u_x)_x = \frac{\partial}{\partial x}(u_x) = 0 \Longrightarrow u_x(x,y) = f(y)$$

 $\Longrightarrow u(x,y) = f(y)x + g(y)$

Example 1.4

u = u(x, y)에 대해, $u_{xx} + u = 0$ 의 해를 찾아봅시다.

u'' + u = 0의 해가 $u(x) = c_1 \cos x + c_2 \sin x$ 임을 recall하고 나면, $u(x,y) = f(y) \cos x + g(y) \sin x$

Example 1.5

u = u(x, y)에 대해, $u_{xy} = 0$ 의 해를 찾아보면,

$$u_{xy} = 0 \implies (u_x)_y = 0$$

 $\implies u_x(x,y) = g(x)$
 $\implies u(x,y) = \int g(x)dx + F(y) = G(x) + F(y)$

즉, 해는 u(x,y) = G(x) + F(y)와 같이 나타납니다.

1.2.1 First order linear equations

u=u(x,y) 꼴의 함수에 대해, $au_x+bu_y=0$ (*) 꼴의 transport equation이 주어져 있다고 합시다. 이 때, $a,b\neq 0$ 은 상수입니다. 그러면, $\mathcal{L}=a\frac{\partial}{\partial x}+b\frac{\partial}{\partial y}$ 인 1차 homogeneous linear equation인데, 이를 다음과 같은 두 가지 방법으로 풀어봅시다.

Geometric Method. 우선, v=(a,b)와 같이 표현합시다. 그러면, u의 v 방향으로의 directional derivative는 $D_v(u)=\frac{1}{\|v\|}(au_x+bu_y)$ 이고, 주어진 미분방정식 (*)은 u(x,y)가 v 방향으로의 line에 대해 전부 constant함을 의미합니다. 그리고, v 방향을 가지는 직선은 bx-ay=c 꼴입니다. u(x,y)의 값은 이 c에만 의존하게 될 것이며, 따라서 arbitary한 function f에 대해 u=f(c)=f(bx-ay)가 됩니다.

Coordinate Method. 좌표계 (x',y')를 잡아서 $au_x+bu_y=u_{x'}$ 와 같이 만들 수 있다면 문제가 아주 쉬워질 것입니다. 간단하게, y'=bx-ay, 그리고 x'=ax+by와 같이 좌표계를 설정합시다. (이는 Method 1에 전적으로 의존합니다.) 그러면, chain rule에 의하여,

$$\frac{\partial}{\partial x}u(x',y') = \frac{\partial u}{\partial x'}\frac{\partial x'}{\partial x} + \frac{\partial u}{\partial y'}\frac{\partial y'}{\partial x} = au_{x'} + bu_{y'}$$
$$\frac{\partial}{\partial y}u(x',y') = bu_{x'} - au_{y'}$$

가 성립하고, 따라서 $u_{x'}=0$ 으로 쓸 수 있습니다. 이제, u=f(y')=f(bx-ay)라고 쓸 수 있습니다.

Example

$$u_x + yu_y = 0$$

주어진 미분방정식은 $(1,y)\cdot \nabla u(x,y)=0$ 으로 쓸 수 있습니다. 즉, u의 (x,y) 점에서 (1,y) 방향으로의 도함수가 0입니다. 따라서, $\frac{dy}{dx}=\frac{y}{1}$ 인 curve에서 constant하고, 이 curve는 $y=Ce^x$ 와 같이 나타납니다. 이제 u의 값은 이 C에 의해서만 결정되므로, $u(x,y)=f(C)=f(y\cdot e^{-x})$ 라고 쓸 수 있습니다.

Example

 $4u_x - 3u_y = 0$, initial condition : $u(0, y) = y^3$

주어진 미분방정식의 일반적인 해는 u(x,y)=f(-3x-4y)입니다. 조건에 의해 $u(0,y)=f(-4y)=y^3$ 이므로, $f(\omega)=-\frac{\omega^3}{64}$ 이고, 따라서 $u(x,y)=\frac{1}{64}(3x+4y)^3$ 입니다.

Example

 $au_x + bu_y + cu = 0$

주어진 미분방정식에 대해 x' = ax + by와 y' = bx - ay를 통해 좌표 변환을 시행하면,

$$(a^2 + b^2)u_{x'}(x', y') + cu(x', y') = 0$$

을 얻습니다. 따라서, $u(x',y')=f(y')\exp\left[-\frac{c}{a^2+b^2}x'\right]$ 이고, 최종적으로는

$$u(x,y) = f(bx - ay) \exp \left[-\frac{c}{a^2 + b^2} (ax + by) \right]$$

가 됩니다.

Example

$$u_x + 2xy^2 u_y = 0$$

이젠 기계적으로 풀 수 있을 것 같습니다. $\frac{dy}{dx}=\frac{2xy^2}{1}$ 인 curve는 $C=x^2+\frac{1}{y}$ 처럼 나타나고, 따라서 $u=f(x^2+\frac{1}{y})$ 가 됩니다.

Example

 $yu_x + xu_y = 0$, initial condition : $u(0, y) = e^{-y^2}$ 마찬가지로, 결과만 쓰면 : $u(x, y) = \exp(x^2 - y^2)$

이번에는 간단히 linear nonhomogeneous equation을 푸는 방법에 대해 알아봅시다. 먼저, 다음과 같은 미분방정식을 생각합시다.

$$u_x + u_y + u = e^{x+2y}$$
$$u(x,0) = 0$$

우선, nonhomogeneous에 대해 handle하는 법을 생각해봅시다.

Proposition 1.6

 $\mathcal{L}[u]=g$ (*)와 같은 미분방정식을 생각합시다. 그리고, $u_0(x,y)$ 가 $\mathcal{L}[u]=0$ 의 general solution이고 $u_p(x,y)$ 가 $\mathcal{L}[u]=g$ 의 특정한 한 solution이라고 둡시다. 그러면 u_0+u_p 는 늘 (*)의 solution이고, 이는 \mathcal{L} 의 linearity에 의해 자명합니다.

반면, v가 (*)의 solution이라면, $\mathcal{L}[v-u_p]=0$ 이므로 $v=u_p+u_0$ 입니다. 즉, 모든 solution은 u_0+u_p 꼴입니다.

이제, coordinate method를 이용합니다. 우선, 다음과 같이 좌표 변환을 수행합니다.

$$\begin{cases} x' = x + y \\ y' = x - y \end{cases} \Longrightarrow 2u_{x'} + u = \exp\left(\frac{3}{2}x' - \frac{1}{2}y'\right)$$

integrating factor method를 이용합니다. $e^{x'/2}$ 를 양변에 곱해주면,

$$\begin{aligned} 2e^{\frac{1}{2}x'}u_{x'} + e^{\frac{1}{2}x'}u &= e^{2x' - \frac{1}{2}y'} \\ \frac{\partial}{\partial x'}(2e^{\frac{1}{2}x'}u) &= e^{2x' - \frac{1}{2}y'} \\ e^{\frac{1}{2}x'}u &= \frac{1}{4}e^{2x' - \frac{1}{2}y'} + f(y') \\ u(x',y') &= \frac{1}{4}e^{\frac{3}{2}x' - \frac{1}{2}y'} + \frac{1}{2}e^{-\frac{1}{2}x'}f(y') \\ u(x,y) &= \frac{1}{4}e^{x+2y} + \frac{1}{2}e^{-\frac{1}{2}(x+y)}f(x-y) \\ u(x,0) &= \frac{1}{4}e^{x} + \frac{1}{2}e^{-\frac{1}{2}x}f(x) &= 0 \\ & (\therefore f(x) &= -\frac{1}{2}e^{\frac{3}{2}x}) \\ u(x,y) &= \frac{1}{4}\exp(x+2y) - \frac{1}{4}\exp(x-2y) \end{aligned}$$

이렇게 해를 얻을 수 있습니다.

1.3 Flows, Vibrations, and Diffusion

이 절에서는 다양한 물리적인 PDE를 유도하는 방법을 배웁니다.

1.3.1 Simple transport

u(t,x)를 x-방향으로 pipe를 따라 수평하게 흐르는 유체의 밀도라고 두면, flow의 속도 c에 대해 다음이 성립할 것입니다.

$$\forall h > 0, u(x,t) = u(x+ch,t+h)$$

양변을 h에 대해 미분한 후 h = 0을 대입하면, $u_t + cu_x = 0$ 을 얻습니다.

1.3.2 Vibrating string

u(t,x)를 시간 t에 위치 x에서의 줄의 수직한 변위라고 두고, 다음과 같은 몇가지 물리적인 가정을 합시다.

- 1. 줄은 uniform한 density ρ 를 갖습니다.
- 2. 줄은 완벽히 탄성적이어서 장력은 접선 방향으로만 작용합니다.
- 3. 줄에 걸리는 다른 힘은 없습니다.
- 4. 줄은 오로지 수직 방향으로만 진동합니다.
- 5. 진동의 진폭은 충분히 작습니다. (0에 가깝습니다.)

이제 시간 t와 위치 x에서의 줄에 걸리는 장력을 T(x,t)와 같이 두도록 합시다. 그러면, line segment $[x_0,x_1]$ 에 대해 걸리는 힘은 오로지 끝점에서의 장력 뿐입니다. 이제, 각각의 위치에서 힘을 분석합니다.

● *x*₀에서 장력 :

Horizontal:
$$T(x_0, t) \cos \theta_0 = T(x_0, t) \frac{1}{\sqrt{1 + u_x(x_0, t)^2}}$$

Vertical: $T(x_0, t) \sin \theta_0 = T(x_0, t) \frac{u_x(x_0, t)}{\sqrt{1 + u_x(x_0, t)^2}}$

x₁에서 장력:

Horizontal:
$$T(x_1,t)\frac{1}{\sqrt{1+u_x(x_1,t)^2}}$$

Vertical:
$$T(x_1, t) \frac{u_x(x_1, t)}{\sqrt{1 + u_x(x_1, t)^2}}$$

따라서, 합력은 다음과 같이 주어집니다.

• Horizontal (H):
$$T(x_1,t)\frac{1}{\sqrt{1+u_x(x_1,t)^2}} - T(x_0,t)\frac{1}{\sqrt{1+u_x(x_0,t)^2}}$$

• Vertical (V):
$$T(x_1,t) \frac{u_x(x_1,t)}{\sqrt{1+u_x(x_1,t)^2}} - T(x_0,t) \frac{u_x(x_0,t)}{\sqrt{1+u_x(x_0,t)^2}}$$

조건 (5)에서 $|u_x| << 1$ 이고 (거의 0) 따라서 $\sqrt{1 + u_x(x_0, t)^2} \simeq \sqrt{1 + u_x(x_1, t)^2} \simeq 1$ 입니다. 또, 조건 (4)에서 (\mathbf{H}) = 0이어야 함을 알 수 있습니다. 이로부터, $T(x_1, t) - T(x_0, t) = 0$ 이므로 T := T(x, t)를 constant라고 가정할 수 있습니다. (왜 T가 time-invariant 한가?) Vertical에서만 분석하면 다음과 같습니다.

$$(\mathbf{V}) \simeq Tu_x(x_1, t) - Tu_x(x_0, t) \simeq (\mathbf{mass}) \times (\mathbf{acceleration})$$

$$= \int_{x_0}^{x_1} \rho u_{tt}(x, t) dt$$

$$= \rho \int_{x_0}^{x_1} u_{tt}(x, t) dt$$

$$Tu_{xx}(x_0, t) = \rho u_{tt}(x_0, t)$$

이제, $c=\sqrt{T/\rho}$ 와 같이 정의하면 $u_{tt}-c^2u_{xx}=0$ 이라는 wave equation을 얻을 수 있습니다.

1.3.3 Vibrating Drumhead

Drumhead 영역에서, u(x,y,t)를 위치 (x,y)와 시간 t에서 drumhead의 equilibrium position으로부터의 변위(displacement)로 씁시다. 그러면, 1D vibration과 마찬가지로, 작은 closed region D에서 다음과 같은 식을 세울 수 있습니다.

$$F = \int_{\partial D} T \frac{\partial u}{\partial n} ds$$

여기서 $\frac{\partial u}{\partial n}$ 은 단순히 n 방향, 즉 outward unit normal vector로의 도함수를 의미합니다. 간단히,

$$\int_{\partial D} T \frac{\partial u}{\partial n} ds = \int_{\partial D} T \nabla u \cdot n ds$$

$$= \iint_{D} \nabla \cdot (T \nabla u) ds$$

$$= \iint_{D} T (u_{xx} + u_{yy}) dx dy$$

처럼 나타낼 수 있습니다. 그러므로,

$$\iint_D T(u_{xx} + u_{yy}) dx dy = \iint_D \rho u_{tt} dx dy$$

가 임의의 영역 D에서 성립합니다. 이는 곧, $\rho u_{tt} = T(u_{xx} + u_{yy}) = T\Delta u$ 임을 의미합니다. 마찬가지의 방법으로, 3D case에서도 $u_{tt} = c^2(u_{xx} + u_{yy} + u_{zz})$ 임을 알 수 있습니다.

1.3.4 Diffusion

얇은 관 안에 유체가 가득 찬 경우를 생각합시다. 이제, u(x,t)를 위치 x와 시간 t에서의 물질의 밀도라고 하고, 다음을 가정합니다.

- 1. 유체는 직접 흐르지 않습니다. 즉, Convection이 일어나지 않습니다.
- 2. 유체 안의 화학종에 대해, 그 화학종의 diffusion은 Fick's law를 따릅니다.

구간 $[x_0, x_1]$ 안에 담긴 유체의 총 질량은 다음과 같을 것입니다.

$$M(t; x_0, x_1) = \int_{x_0}^{x_1} u(x, t) dx$$

따라서, 물질 보존 식에 의해 다음이 성립합니다.

$$\begin{split} \frac{dM}{dt} &= k \left(\frac{\partial u}{\partial x}(x_1, t) - \frac{\partial u}{\partial x}(x_0, t) \right) \\ &= \frac{d}{dt} \int_{x_0}^{x_1} u(x, t) dx \\ &= \int_{x_0}^{x_1} \frac{\partial u}{\partial t}(x, t) dx \end{split}$$

따라서,

$$\int_{x_0}^{x_1} \frac{\partial u}{\partial t}(x,t) = k \left[\frac{\partial u}{\partial x}(x_1,t) - \frac{\partial u}{\partial x}(x_2,t) \right]$$

$$\lim_{x_1 \to x_0} \frac{1}{x_0 - x_1} \int_{x_0}^{x_1} \frac{\partial u}{\partial t}(x,t) dx = \lim_{x_1 \to x_0} k \frac{1}{x_1 - x_0} \left[\frac{\partial u}{\partial x}(x_1,t) - \frac{\partial u}{\partial x}(x_0,t) \right]$$

$$\therefore u_t(x_0,t) = k u_{xx}(x_0,t)$$

인데, x_0 은 임의적이므로 $u_t = ku_{xx}$ 라고 쓸 수 있습니다.

마찬가지로, 3D Diffusion 역시 같은 방법으로 유도되어 $u_t = k\Delta u$ 라고 쓸 수 있습니다.

1.3.5 Heat Flow

공간 상의 물질에 대해, u(x,y,z,t)를 위치 (x,y,z)와 시간 t에서 물질의 온도라고 정의합시다. 그러면,

$$\iint_{D} c\rho u dx dy dz =: H(t)$$

$$\iint_{D} c\rho u_{t} dx dy dz = \iint_{\partial D} k(\nabla u \cdot n) dS = \iint_{D} \nabla \cdot (k\nabla u) dx dy dz$$

이므로, $c\rho u_t = \nabla \cdot (k\nabla u)$ 를 얻습니다. k가 상수라면, $c\rho u_t = k\nabla^2 u$ 이므로 Diffusion eq.와 일치합니다.

1.3.6 Stationary waves and diffusions

말 그대로 steady-state인 상황입니다. $\Delta u = 0$ 을 Laplace equation이라고 합니다.

1.4 Initial and Boundary conditions

 $u := u(\overrightarrow{x}, t)$ 에 대해, 다음과 같은 조건들을 생각할 수 있습니다.

- 1. Initial condition(I. C.) : Fixed t_0 에 대해, $u(\overrightarrow{x},t_0)=\phi(\overrightarrow{x})$ 혹은 $\frac{\partial u}{\partial t}(\overrightarrow{x},t_0)=\psi(\overrightarrow{x})$ 라고 합니다.
- 2. Boundary condition(B. C.)
 - (a) Dirichlet B.C. : u=g on ∂D 인 조건을 의미합니다.
 - (b) Neumann B.C. : $\frac{\partial u}{\partial n} = \nabla u \cdot n = g$ on ∂D 인 조건을 의미합니다.
 - (c) Robin B.C. : $\frac{\partial u}{\partial n} + \alpha u = g$ on ∂D 인 조건을 의미합니다. (Mixed condition)

1.5 Types of second order PDE

함수 u=u(x,y)에 대해, 모든 linear homogeneous second order PDE는 다음과 같이 쓸 수 있습니다.

$$a_{11}u_{xx} + 2a_{12}u_{xy} + a_{22}u_{yy} + a_1u_x + a_2u_y + a_0u = 0$$

특히, $u_{xy} = u_{yx}$ 이므로 다음과 같은 symmetric matrix를 자연스럽게 생각할 수 있습니다.

$$D = \begin{bmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{bmatrix}$$

이제, D를 이용해 PDE를 세 가지로 분류할 수 있습니다.

- 1. Elliptic case : $a_{12}^2 a_{11}a_{22} > 0 \ (\det(D) < 0)$
 - 이 경우에는 (적절한 변수변환을 통해) $u_{xx}+u_{yy}+\cdots=0$ 꼴로 바꿀 수 있습니다.
 - e.g.) Laplace equation, $u_{xx} + u_{yy} = 0$
- 2. Hyperbolic case : det(D) > 0

이 경우에는
$$u_{xx} - u_{yy} + \cdots = 0$$
 꼴로 바꿀 수 있습니다.

- e.g.) Wave equation, $u_{xx} u_{yy} = 0$
- 3. Parabolic case : det(D) = 0

이 경우에는
$$u_{xx} + \cdots = 0$$
 꼴로 바꿀 수 있습니다.

e.g.) Heat equation,
$$u_{xx} - u_y = 0$$