La Derivada.

$$\frac{d\mathbf{0}}{dx} = \mathbf{0}$$

$$\int \mathbf{0} dx = \mathbf{0}$$

La Derivada

El cálculo se desarrolló gracias a cuatro importantes problemas en que los matemáticos trabajaron en el siglo XVII.

- 1.-El problema de la recta tangente.
- 2.- El problema de la velocidad y la aceleración.
- 3.- El problema de los mínimos y máximos.
- 4.- El problema del área.

Definición de la Derivada

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \tag{1}$$

Notación:

$$\frac{df(x)}{dx}$$
; $f'(x)$; $D_x f(x)$

Interpretación Geométrica de la derivada

Sean dos puntos sobre la curva $O\ y\ G$ construir la línea que los une. Calculamos la pendiente de la línea

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

La pendiente de la secante es $m = \frac{F(x+h) - F(x)}{x+h-x}$

$$m = \frac{F(x+h) - F(x)}{h}$$

Habitualmente $h = \Delta x$

Otra gráfica, con dos puntos P y Q mostrando la misma situación, pero ahora recorremos el punto P sobre la curva un poco más próxima al punto Q. La línea secante se hace más parecida a una línea tangente y en el límite cuando $\Delta x(h) \rightarrow 0$

$$m = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$
 o alternativamente $m = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h}$

Donde
$$\Delta y = F(x+h) - F(x)$$

Geométricamente la derivada es la pendiente de la recta tangente a la curva y = f(x) en el punto en cuestión.

Supongamos que las coordenadas de dicho punto sean (a, f(a)), entonces la ecuación de la recta tangente será:

$$y - f(a) = m_{\tan gente} (x - a)$$

Donde
$$m_{\text{tan }gente} = \frac{df(x)}{dx} \bigg|_{x=a}$$

La ecuación de la recta normal a la curva y = f(x) en el punto (a, f(a)) es:

$$y - f(a) = m_{normal}(x - a)$$

Donde
$$m_{normal} = -\frac{1}{m_{tan gente}}$$

Por ser la recta normal perpendicular a la recta tangente.

Existencia de la derivada.

La derivada existe para aquellos valores del argumento x, en los que

- 1) La función y = f(x) está dada y es continua.
- 2) El límite $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$ es finito.

La no existencia de la derivada para un valor dado ℓ indica que en el punto correspondiente de la gráfica de la función no existe una tangente determinada o esta tangente forma con el eje X un ángulo de 90° y en este caso el límite es infinito.

f(x) FUNCIÓN	f'(x) PRIMERA DERIVADA	f"(x) SEGUNDA DERIVADA
CRECIENTE	Positiva	
DECRECIENTE	NEGATIVA	
Cóncava hacia arriba	CRECIENTE	Positiva
Cóncava hacia abajo	DECRECIENTE	Negativa
Tiene un PUNTO MÁXIMO cuando la función cambia de creciente a decreciente	Cambia de positiva a negativa	
Tiene un PUNTO MÍNIMO		
cuando la función cambia de decreciente a creciente	Cambia de negativa a positiva	

Formulas básicas de derivación

1.-
$$\frac{d}{dx}(k) = 0$$
 donde k es una constante ; ejemplo $\frac{d}{dx}(7) = 0$

Ejemplos

$$\frac{d}{dx}(-5) = 0$$

$$\frac{d}{dx}(\pi) = 0$$

$$2.-\frac{d}{dx}(x^n) = nx^{n-1} \text{ ejemplo } \frac{d}{dx}(x^5) = 5x^4$$

Ejemplos

$$\frac{d}{dx}\left(x^{-\frac{3}{2}}\right) = -\frac{3}{2}x^{-\frac{3}{2}-1} = -\frac{3}{2}x^{-\frac{5}{2}}$$

$$\frac{d}{dx} \left(x^{\frac{5}{3}} \right) = \frac{5}{3} x^{\frac{5}{3} - 1} = \frac{5}{3} x^{\frac{2}{3}}$$

Demostración de la formula $\frac{d}{dx}(x^n) = nx^{n-1}$

Calcular la derivada de $f(x) = x^n$ mediante la definición $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{(x+h)^n - x^n}{h}$$

El desarrollo de $(x+h)^n$ es de acuerdo al teorema del binomio

$$(x+h)^n = x^n + nx^{n-1}h + \frac{n(n-1)}{2}x^{n-2}h^2 + \dots + nxh^{n-1} + h^n$$

$$= \lim_{h \to 0} \frac{x^{n} + nx^{n-1}h + \frac{n(n-1)}{2}x^{n-2}h^{2} + \dots + nxh^{n-1} + h^{n} - x^{n}}{h}$$

$$= \lim_{h \to 0} \left[nx^{n-1} + \frac{n(n-1)}{2}x^{n-2}h + \dots + nxh^{n-2} + h^{n-1} \right]$$

$$= nx^{n-1}$$

$$D_{x}\left(x^{n}\right) = nx^{n-1}$$

$$\frac{d\left(x^{n}\right)}{dx} = nx^{n-1}$$

3.-
$$\frac{d}{dx}(kx^n) = k\frac{d}{dx}(x^n)$$
 ejemplo $\frac{d}{dx}(7x^3) = 7\frac{d}{dx}(x^3) = (7)(3)x^2 = 21x^2$

Ejemplos

$$\frac{d}{dx}\left(3x^{\frac{2}{3}}\right) = 3\frac{d}{dx}\left(x^{\frac{2}{3}}\right)$$

$$= \cancel{3} \left(\frac{2}{\cancel{3}} \right) x^{-\frac{1}{3}} = 2x^{-\frac{1}{3}}$$

4.-Teorema. Para derivar una suma o resta de derivadas

Si las funciones F y G son derivables sobre un intervalo S, entonces la función

H = f + g es derivable sobre S y

$$\frac{dH}{dx} = \frac{d}{dx} \Big[f(x) + g(x) \Big]$$

$$\frac{d}{dx}\left[f(x)+g(x)\right] = \frac{d}{dx}f(x) + \frac{d}{dx}g(x)$$

Demostración

$$H(x) = f(x) + g(x)$$

$$H(x+h) = f(x+h) + g(x+h)$$

$$\lim_{h \to 0} \frac{H(x+h) - H(x)}{h} = \lim_{h \to 0} \frac{f(x+h) + g(x+h) - f(x)g(x)}{h}$$

$$= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} + \lim_{h \to 0} \frac{g(x+h) - g(x)}{h}$$

$$= \frac{d}{dx} f(x) + \frac{d}{dx} g(x)$$

5.- Teorema Fórmula para derivar un producto de funciones

Si f y g son funciones diferenciables sobe un intervalo S, entonces la función

$$H(x) = f(x) \cdot g(x)$$
 es derivable sobre un conjunto S

$$\frac{d}{dx} \left[f(x) \cdot g(x) \right] = f(x) \cdot \frac{d}{dx} g(x) + g(x) \cdot \frac{d}{dx} f(x)$$

Demostración

Sea
$$H(x) = f(x) \cdot g(x)$$

$$H(x+h) = f(x+h) \cdot g(x+h)$$

$$\lim_{h \to 0} \frac{H(x+h) - H(x)}{h} = \lim_{h \to 0} \frac{f(x+h) \cdot g(x+h) - f(x) \cdot g(x)}{h}$$

Sumando y restando la cantidad f(x+h)g(x)-f(x+h)g(x)=0

$$\lim_{h\to 0} \frac{f\left(x+h\right)\cdot g\left(x+h\right) + f\left(x+h\right)g\left(x\right) - f\left(x+h\right)g\left(x\right) - f\left(x\right)\cdot g\left(x\right)}{h}$$

$$\lim_{h \to 0} \frac{f(x+h) \cdot \left[g(x+h) - g(x)\right] + g(x) \left[f(x+h) - f(x)\right]}{h}$$

$$\lim_{h \to 0} f(x+h) \cdot \lim_{h \to 0} \frac{\left[g(x+h) - g(x)\right]}{h} + \lim_{h \to 0} g(x) \cdot \lim_{h \to 0} \frac{\left[f(x+h) - f(x)\right]}{h}$$

$$f(x) \cdot \frac{d}{dx} g(x) + g(x) \cdot \frac{d}{dx} f(x)$$

6.- Teorema para derivar un de funciones

Si f y g son funciones diferenciables, entonces

$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x) \cdot \frac{d}{dx} f(x) - f(x) \frac{d}{dx} g(x)}{\left[g(x) \right]^2}$$

Sea

$$H(x) = \frac{f(x)}{g(x)}$$

$$H(x+h) = \frac{f(x+h)}{g(x+h)}$$

$$\lim_{h \to 0} \frac{H(x+h) - H(x)}{h} = \lim_{h \to 0} \frac{\frac{f(x+h)}{g(x+h)} - \frac{f(x)}{g(x)}}{h}$$

$$= \lim_{h \to 0} \frac{g(x) f(x+h) - f(x) g(x+h)}{g(x+h) g(x)}$$

Sumando y restando

$$f(x)g(x)-f(x)g(x)=0$$

$$=\lim_{h\to 0}\frac{g\left(x\right)f\left(x+h\right)-f\left(x\right)g\left(x\right)+f\left(x\right)g\left(x\right)-f\left(x\right)g\left(x+h\right)}{g\left(x+h\right)g\left(x\right)}$$

$$= \lim_{h \to 0} \frac{g(x) \left[\frac{f(x+h) - f(x)}{h} \right] - f(x) \left[\frac{g(x+h) - g(x)}{h} \right]}{g(x+h)g(x)}$$

$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x) \frac{d}{dx} f(x) - f(x) \frac{d}{dx} g(x)}{[g(x)]^2}$$

Ejemplo . Calcular la derivada de la función f(x) = sen(x), mediante la definición

Sea
$$f(x) = sen(x)$$

Calcular

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$f(x+h) = sen(x+h)$$

$$\lim_{h\to 0} \frac{sen(x+h)-sen(x)}{h}$$

$$\lim_{h \to 0} \frac{sen(x)\cos(h) + sen(h)\cos(x) - sen(x)}{h}$$

$$\lim_{h\to 0} \frac{sen(x)(\cos(h)-1)+sen(h)\cos(x)}{h}$$

$$sen(x)lim_{h\to 0} \frac{\cos(h)-1}{h} + \cos(x)lim_{h\to 0} \frac{sen(h)}{h}$$

Donde
$$\lim_{h \to 0} \frac{\cos(h) - 1}{h} = 0$$
 y $\lim_{h \to 0} \frac{\sin(h)}{h} = 1$

$$sen(x)(0) + cos(x)(1)$$

$$\frac{d}{dx}sen(x) = \cos(x)$$

Ejemplo . Calcular la derivada de la función $f(x) = \cos(x)$, mediante la definición

Sea
$$f(x) = \cos(x)$$

Calcular

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$f(x+h) = \cos(x+h)$$

$$\lim_{h \to 0} \frac{\cos(x+h) - \cos(x)}{h}$$

$$\lim_{h\to 0} \frac{\cos(x)\cos(h) - sen(x)sen(h) - \cos(x)}{h}$$

$$\cos(x)\lim_{h\to 0}\frac{\cos(h)-1}{h}-sen(x)\lim_{h\to 0}\frac{sen(h)}{h}$$

$$\cos(x)(0)$$
 – $sen(x)(1)$

$$\frac{d}{dx}\cos(x) = -sen(x)$$

Ejemplo

Derivar la expresión y simplificar

$$H(x) = \frac{sen x + \cos x}{sen x - \cos x}$$

Usando la fórmula para la división
$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x) \cdot \frac{d}{dx} f(x) - f(x) \frac{d}{dx} g(x)}{\left[g(x) \right]^2}$$

$$\frac{d}{dx} \left[\frac{sen \, x + \cos x}{sen \, x - \cos x} \right] = \frac{\left(sen \, x - \cos x \right) \cdot \frac{d}{dx} \left(sen \, x + \cos x \right) - \left(sen \, x + \cos x \right) \frac{d}{dx} \left(sen \, x - \cos x \right)}{\left[sen \, x - \cos x \right]^2}$$

$$\frac{d}{dx} \left[\frac{sen \, x + \cos x}{sen \, x - \cos x} \right] = \frac{\left(sen \, x - \cos x \right) \cdot \left(\cos x - sen \, x \right) - \left(sen \, x + \cos x \right) \left(\cos x + sen \, x \right)}{\left[sen \, x - \cos x \right]^2}$$

$$\frac{d}{dx} \left[\frac{sen \, x + \cos x}{sen \, x - \cos x} \right] = \frac{sen \, x \cdot \cos x - sen^2 x - \cos^2 x + \cos x \cdot sen \, x - sen \, x \cdot \cos x - sen^2 x - \cos^2 x - \cos x \cdot sen \, x}{\left[sen \, x - \cos x \right]^2}$$

$$\frac{d}{dx} \left[\frac{sen x + \cos x}{sen x - \cos x} \right] = \frac{-2sen^2 x - 2\cos^2 x}{\left[sen x - \cos x \right]^2} = -2 \frac{\left(sen^2 x + \cos^2 x \right)}{\left[sen x - \cos x \right]^2} = -\frac{2}{\left[sen^2 x - 2sen x \cdot \cos x + \cos^2 x \right]}$$

$$\frac{d}{dx} \left[\frac{sen \, x + \cos x}{sen \, x - \cos x} \right] = -\frac{2}{\left[1 - 2sen \, x \cdot \cos x \right]}$$

Ejemplo

Derivar la siguiente expresión

$$f(x) = x^2 sen x + \frac{1}{x} + \pi$$

La función es la suma de tres términos que son: $x^2 sen x$, $\frac{1}{x} y \pi$ entonces se emplea la derivada de una suma de funciones

$$\frac{d}{dx}\left(x^2sen\,x + \frac{1}{x} + \pi\right) = \frac{d}{dx}\left(x^2sen\,x\right) + \frac{d}{dx}\left(x^{-1}\right) + \frac{d}{dx}\left(\pi\right)$$

Pero el primer sumando es una multiplicación de funciones y entonces para este primer sumando se emplea la fórmula de derivar un producto de funciones

$$\frac{d}{dx}\left(x^2sen\,x + \frac{1}{x} + \pi\right) = x^2\,\frac{d}{dx}\left(sen\,x\right) + sen\,x \cdot \frac{d}{dx}\left(x^2\right) + \frac{d}{dx}\left(x^{-1}\right) + \frac{d}{dx}\left(\pi\right)$$

$$\frac{d}{dx}\left(x^2 sen x + \frac{1}{x} + \pi\right) = x^2 \cdot \cos x + sen x \cdot 2x - x^{-2}$$

$$\frac{d}{dx}\left(x^2sen\,x + \frac{1}{x} + \pi\right) = x^2 \cdot \cos x + 2x \cdot sen\,x - \frac{1}{x^2}$$

Ejemplos

$$\frac{d}{dx}(x^3\cos x)$$

Es un producto de funciones y en consecuencia usamos la derivada de un producto

$$\frac{d}{dx}(x^3\cos x) = x^3 \frac{d}{dx}(\cos x) + \cos x \frac{d}{dx}(x^3)$$
$$= x^3(-\sin x) + (\cos x)(3x^2)$$
$$= -x^3\sin x + 3x^2\cos x$$

Algunos ejemplos de aplicaciones de la recta tangente

Ejemplo.

Encontrar la ecuación de la recta tangente y la normal a la gráfica $f(x) = 4x - x^2$ en el punto x=1.

$$f(1) = 4(1) - (1)^2$$

$$f(1)=3$$

La pendiente es la derivada de la función f evaluada en el punto (1,3)

Mediante la definición de derivada

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$\lim_{h\to 0} \frac{f(1+h)-f(1)}{h}$$

Sea $h = \Delta x$

$$\lim_{h\to 0} \frac{f\left(1+\Delta x\right)-f\left(1\right)}{\Delta x} \text{ o alternativamente } \lim_{h\to 0} \frac{f\left(1+h\right)-f\left(1\right)}{h}$$

$$f(1+h) = 4(1+h)-(1+h)^2$$
 y $f(1) = 4(1)-(1)^2$

$$f(1+h) = 4+4h-(1+2h+h^2)$$

$$f(1+h) = 4+4h-1-2h-h^2$$

$$f(1+h)=3+2h-h^2$$

$$f(1) = 4-1$$

$$f(1) = 3$$

$$\lim_{h \to 0} \frac{f(1+h) - f(1)}{h} = \lim_{h \to 0} \frac{3 + 2h - h^2 - 3}{h}$$

$$=\lim_{h\to 0}\frac{2h-h^2}{h}$$

$$= \lim_{h \to 0} 2 - h$$

$$=2$$

La otra alternativa es usando las fórmulas de derivación.

$$m = \frac{d\left(4x - x^2\right)}{dx}\bigg|_{x=1}$$

La pendiente es la derivada de la función evaluada en el punto

$$m = 4 - 2x\big|_{x=1}$$

$$m = 4 - 2(1)$$

$$m=2$$

La ecuación de la recta tangente es:

$$y - y_1 = m(x - x_1)$$

$$y-3=2(x-1)$$

En forma general es: y = 2x + 1

La ecuación de la normal

$$y - y_1 = m(x - x_1)$$

Donde
$$m_2 = \frac{-1}{m_1}$$

$$m_2 = \frac{-1}{2}$$

$$y-3=-\frac{1}{2}(x-1)$$

$$x + 2y = 7$$

Ejemplo. Encontrar la ecuación de la recta tangente y la normal a la gráfica

$$f(x) = x^3 - 3x^2 - x + 5$$
. En el punto $P(3,2)$

15

Aquí encontraremos la pendiente mediante la aplicación de las fórmulas de derivación

$$m = \frac{d\left(x^3 - 3x^2 - x + 5\right)}{dx}\bigg|_{x=3}$$

$$m = 3x^2 - 6x - 1\Big|_{x=3}$$

$$m = 3(3)^2 - 6(3) - 1$$

$$m=8$$

La ecuación de la recta tangente es:

$$y - y_1 = m(x - x_1)$$

$$f(3) = (3)^3 - 3(3)^2 - (3) + 5$$

$$f(3) = 27 - 27 - 3 + 5$$

$$f(3)=2$$

$$y-2=8(x-3)$$

En forma general es: y = 8x - 22

La ecuación de la normal

$$y - y_1 = m(x - x_1)$$

Donde
$$m_2 = \frac{-1}{m_1}$$

$$m_2 = \frac{-1}{8}$$

$$y-2=-\frac{1}{8}(x-3)$$

$$x + 8y = 19$$

Observación: Puede no haber tangente, si

- a) f es discontinua en x = a
- b) La gráfica de f tenga una esquina en $\left(a,f\left(a\right)\right)$

Teorema.

Si f es diferenciable en un número ℓ , entonces f es continua en ℓ