## Bivariate analysis using Pearson correlation and scatter plot of a combination of 2 columns on Melbourne dataset

For the remaining excersices where numerical columns are needed, I will use the Melbourne Housing Market dataset

https://www.kaggle.com/anthonypino/melbourne-housing-market?select=MELBOURNE\_HOUSE\_PRICES\_LESS.csv

Some Key Details

Suburb: Suburb

Address: Address

Rooms: Number of rooms

Price: Price in Australian dollars

Method:

S - property sold;

SP - property sold prior;

PI - property passed in;

PN - sold prior not disclosed;

SN - sold not disclosed;

NB - no bid;

VB - vendor bid;

W - withdrawn prior to auction;

SA - sold after auction;

SS - sold after auction price not disclosed.

N/A - price or highest bid not available.

Type:

br - bedroom(s);

h - house,cottage,villa, semi,terrace;

u - unit, duplex;

t - townhouse;

dev site - development site;

o res - other residential.

SellerG: Real Estate Agent

Distance: Distance from CBD (Central Business District) in Kilometres

Date: Date sold

1 of 3 08/03/2022, 17:54

Regionname: General Region (West, North West, North, North east ...etc)

Propertycount: Number of properties that exist in the suburb.

Bedroom2 : Scraped # of Bedrooms (from different source)

Bathroom: Number of Bathrooms

Car: Number of carspots

Landsize: Land Size in Metres

BuildingArea: Building Size in Metres

YearBuilt: Year the house was built

CouncilArea: Governing council for the area

Lattitude: Self explanitory

Longtitude: Self explanitory

```
In [ ]:
import pandas as pd
import seaborn as sns
```

```
In [ ]:
df = pd.read_csv('melbourne_housing_prices.csv', sep=',')
df.head()
```

| Out[ ]: |   | Suburb          | Address                | Rooms | Туре | Price     | Method | SellerG  | Date      | Postcode | Regionna          |
|---------|---|-----------------|------------------------|-------|------|-----------|--------|----------|-----------|----------|-------------------|
|         | 0 | Abbotsford      | 49<br>Lithgow St       | 3     | h    | 1490000.0 | S      | Jellis   | 1/04/2017 | 3067     | Nortł<br>Metropol |
|         | 1 | Abbotsford      | 59A<br>Turner St       | 3     | h    | 1220000.0 | S      | Marshall | 1/04/2017 | 3067     | Nortł<br>Metropol |
|         | 2 | Abbotsford      | 119B Yarra<br>St       | 3     | h    | 1420000.0 | S      | Nelson   | 1/04/2017 | 3067     | Nortł<br>Metropol |
|         | 3 | Aberfeldie      | 68 Vida St             | 3     | h    | 1515000.0 | S      | Barry    | 1/04/2017 | 3040     | Wes<br>Metropol   |
|         | 4 | Airport<br>West | 92<br>Clydesdale<br>Rd | 2     | h    | 670000.0  | S      | Nelson   | 1/04/2017 | 3042     | Wes<br>Metropol   |

```
In [ ]: houseCorrelations = df.corr(method='pearson')
houseCorrelations.style.background_gradient(cmap='coolwarm', axis=None).set_p:
```

C:\Users\Stijn\AppData\Local\Temp/ipykernel\_14048/2374652365.py:2: FutureWarning: this method is deprecated in favour of `Styler.format(precision=..)`

2 of 3 08/03/2022, 17:54

houseCorrelations.style.background\_gradient(cmap='coolwarm', axis=None).set\_

| Out[ ]: |               | Rooms | Price | Postcode | Propertycount | Distance |
|---------|---------------|-------|-------|----------|---------------|----------|
|         | Rooms         | 1.00  | 0.41  | 0.09     | -0.05         | 0.27     |
|         | Price         | 0.41  | 1.00  | 0.00     | -0.06         | -0.25    |
|         | Postcode      | 0.09  | 0.00  | 1.00     | -0.00         | 0.50     |
|         | Propertycount | -0.05 | -0.06 | -0.00    | 1.00          | 0.01     |
|         | Distance      | 0.27  | -0.25 | 0.50     | 0.01          | 1.00     |

I expected distance to the business district and price to correlate negatively, I did expect a stronger correlation

```
    Out[]:
    Price
    Distance

    Price
    1.000000
    -0.253668

    Distance
    -0.253668
    1.000000
```

```
In [ ]: df.plot(kind='scatter', x='Distance',y='Price')
```

Out[ ]: <AxesSubplot:xlabel='Distance', ylabel='Price'>



The scatter plot shows the negative correlation very well.

3 of 3