Ch2. Exchangeability and Permutations

Exchangeability expresses the idea that the sequence is equally likely to appear in any order.

▼ Definition 2.1: Exchangeability

Let $Z_1,\ldots,Z_n\in\mathcal{Z}$ be random variables with a joint distribution. We say that the random vector (Z_1,\ldots,Z_n) is *exchangeable* if, for every permutaion $\sigma\in S_n$,

$$(Z_1,\ldots,Z_n)\stackrel{d}{=}(Z_{\sigma(1)},\ldots,Z_{\sigma(n)}),$$

where $\stackrel{d}{=}$ denotes equality in distribution, and S_n is the set of all permutations on $[n]:=\{1,\dots,n\}.$

Similarly, let $Z_1,Z_2,\dots\in\mathcal{Z}$ be an infinite sequence of random variables with a joint distribution. We say that this infinite sequence is exchangeable if (Z_1,\dots,Z_n) is exchangeable for every $n\geq 1$.

Exchangeability of a sequence Z_1,\ldots,Z_n arises in the following cases:

- Z_1,\ldots,Z_n are sampled uniformly without replacement from a finite set $\{z_1,\ldots,z_N\}\subseteq\mathcal{Z}.$
- Z_1, \ldots, Z_n are drawn i.i.d. from a distribution P on \mathcal{Z} .

Throughout the book, we will assume the existence of regular conditional probabilities.

2.1 Alternative characterizations of exchangeability

Here, we give several characterizations and properties of exchangeability of a random vector (Z_1,\ldots,Z_n) .

▼ Symmetry of the joint density

Supposing $\mathcal Z$ is a countable space(Z_i 's are discrete) , and $\,p:\mathcal Z^n\to[0,1]$ be the probability mass function. Then this joint distribution is exchangeable if and only if

$$p(z_1,\ldots,z_n)=p(z_{\sigma(1)},\ldots,z_{\sigma(n)}) ext{ for all } z_1,\ldots,z_n\in\mathcal{Z} ext{ and for all } \sigma\in S_n.$$

If $\mathcal{Z}=\mathbb{R}$ and the random vector (Z_1,\ldots,Z_n) has a joint density f, then this joint distribution is exchangeable if and only if

$$f(z_1,\ldots,z_n)=f(z_{\sigma(1)},\ldots,z_{\sigma(n)})$$
 for almost every $z_1,\ldots,z_n\in\mathcal{Z}$ and for all $\sigma\in S_n$.

▼ Conditioning on the order statistics

In the case of real-valued random variables, we can calculate the distribution of (Z_1,\ldots,Z_n) as

$$(Z_1,\ldots,Z_n)\mid (Z_{(1)},\ldots,Z_{(n)})\sim rac{1}{n!}\sum_{\sigma\in S_n}\delta_{(Z_{(\sigma(1))},\ldots,Z_{(\sigma(n))})}$$

Also, each individual entry Z_i has distribution

$$Z_i \mid (Z_{(1)}, \dots, Z_{(n)}) \sim rac{1}{n} \sum_{j=1}^n \delta_{Z_{(j)}}$$
 (2.1)

And consequently, for each index and rank,

$$P(Z_i \le Z_{(k)}) \ge k/n \tag{2.2}$$

▼ Conditioning on the empirical distribution

In the case of a general space ${\mathcal Z}$ (countably-generated σ -algebra), we define

$$\widehat{P}_n = rac{1}{n} \sum_{i=1}^n \delta_{Z_i}.$$

▼ Proposition 2.2

Let $(Z_1,\ldots,Z_n)\in\mathcal{Z}^n$ be an exchangeable random vector, and let \widehat{P}_n be the empirical distribution of this vector. Then for all $i\in[n]$,

$$Z_i \mid \widehat{P}_n \sim \widehat{P}_n$$

i.e., if we condition on \widehat{P}_n , then \widehat{P}_n is itself the conditional distribution of Z_i .

▼ Proof

We compute the conditional probability of the event $Z_i \in A$, for any $A \subseteq \mathcal{Z}$. \widehat{P}_n is a symmetric function of $Z_1,\ldots,Z_n \to \text{by lemma 2.3}$, it holds almost surely that Z_1,\ldots,Z_n are exchangeable conditional on \widehat{P}_n . Consequently,

$$P(Z_n \in A \mid \widehat{P}_n) = P(Z_i \in A \mid \widehat{P}_n),$$

holds almost surely for each i. We then have

$$\mathbb{P}(Z_n \in A \mid \widehat{P}_n) = \frac{1}{n} \sum_{i=1}^n \mathbb{P}(Z_i \in A \mid \widehat{P}_n) = \mathbb{E}\Bigg[\frac{1}{n} \sum_{i=1}^n \mathbf{1}\{Z_i \in A\} \, \bigg| \, \widehat{P}_n \Bigg] = \mathbb{E}\Big[\widehat{P}_n(A) \, \bigg| \, \widehat{P}_n \Big] = \widehat{P}_n(A).$$

▼ Lemma 2.3

Let $Z_1,\ldots,Z_n\in\mathcal{Z}$ be exchangeable, and let $f:\mathcal{Z}^n\to\mathcal{W}$ be a symmetric function, i.e., $f(z_1,\ldots,z_n)=f(z_{\sigma(1)},\ldots,z_{\sigma(n)})$ for all $z_1,\ldots,z_n\in\mathcal{Z}$ and all $\sigma\in S_n$. Then (Z_1,\ldots,Z_n) is conditionally exchangeable given $f(Z_1,\ldots,Z_n)$, in the sense that the conditional distribution

$$(Z_1,\ldots,Z_n)\mid f(Z_1,\ldots,Z_n)$$

is, almost surely, an exchangeable distribution.

▼ Proof

By definition of exchangeability, we need to verify that for any $\sigma \in S_n$ and any measurable set A, the following statement holds almost surely:

$$Pig((Z_1,\ldots,Z_n)\in A\mid f(Z_1,\ldots,Z_n)ig)=Pig((Z_{\sigma(1)},\ldots,Z_{\sigma(n)})\in A\mid f(Z_1,\ldots,Z_n)ig).$$

Equivalently, we need to show that

$$Pig((Z_1,\ldots,Z_n)\in A, f(Z_1,\ldots,Z_n)\in Big)=Pig((Z_{\sigma(1)},\ldots,Z_{\sigma(n)})\in A, f(Z_1,\ldots,Z_n)\in Big)$$

for all measurable $A\subseteq\mathcal{Z}^n,B\subseteq\mathcal{W}.$ This holds because

$$Pig((Z_1,\ldots,Z_n)\in A,f(Z_1,\ldots,Z_n)\in Big)\ =Pig((Z_{\sigma(1)},\ldots,Z_{\sigma(n)})\in A,f(Z_{\sigma(1)},\ldots,Z_{\sigma(n)})\in Big)\ =Pig((Z_{\sigma(1)},\ldots,Z_{\sigma(n)})\in A,f(Z_1,\ldots,Z_n)\in Big).$$

2.2 Permutation tests

Let $\mathcal P$ be the set of all distributions on $\mathcal Z^n$, and let $\mathcal P_{\mathrm{exch}}\subseteq \mathcal P$ be the subset of distributions for which exchangeability is satisfied. Consider a random vector (Z_1,\ldots,Z_n) drawn from some joint distribution P. We would like to perform a hypothesis test of

$$H_0:\ P\in\mathcal{P}_{\mathrm{exch}}\quad ext{versus}\quad H_1:\ P\in\mathcal{P}ackslash\mathcal{P}_{\mathrm{exch}}.$$

We fix any function $T: \mathcal{Z}^n \to \mathbb{R}$, with the intuition that a large value of our test statistic $T(Z_1, \dots, Z_n)$ will indicate evidence against exchangeability. Then we define the quantity

$$p = \frac{\sum_{\sigma \in S_n} \mathbf{1} \left\{ T(Z_{\sigma(1)}, \dots, Z_{\sigma(n)}) \ge T(Z_1, \dots, Z_n) \right\}}{n!}.$$
 (2.3)

The following result shows that the quantity defined in (2.3) is a valid p-value.

▼ Theorem 2.4

For any function $T:\mathcal{Z}^n \to \mathbb{R}$, the p-value p defined in (2.3) satisfies $\mathbb{P}_P(p \le \tau) \le \tau$ for all $\tau \in [0,1]$ and all $P \in \mathcal{P}_{\mathrm{exch}}$.

▼ Proof

Step 1: a CDF inequality. First, for any $z \in \mathcal{Z}^n$, write $z_{\sigma} = (z_{\sigma(1)}, \dots, z_{\sigma(n)})$ to denote the permuted vector for any permutation $\sigma \in S_n$. We define

$$F(v;z) = rac{\sum_{\sigma \in S_n} \mathbf{1}\{-T(z_\sigma) \leq v\}}{n!}.$$

We can observe that $F(\cdot;z)$ is the cumulative distribution function (CDF) for the $-T(z_{\sigma})$, when $\sigma \in S_n$ is drawn uniformly at random.

We therefore have

$$\mathbb{P}_{\sigma}\left(F(-T(z_{\sigma});z)\leq \tau\right)\leq \tau,$$

where the probability is taken with respect to $\sigma \in S_n$ drawn uniformly at random, from the following basic property of CDFs:

If the random variable X has CDF F, then $\mathbb{P}(F(X) \leq \tau) \leq \tau$ for all $\tau \in [0, 1]$.

Step 2: using exchangeability. From the exchangeability assumption on $Z=(Z_1,\ldots,Z_n)$, it holds that $Z\stackrel{d}{=} Z_\sigma$ when $\sigma\in S_n$ is drawn uniformly at random.

Next, we observe that p = F(-T(Z); Z). Therefore,

$$\mathbb{P}(p \leq \tau) = \mathbb{P}(F(-T(Z); Z) \leq \tau) = \mathbb{P}(F(-T(Z_{\sigma}); Z_{\sigma}) \leq \tau) = \mathbb{P}(F(-T(Z_{\sigma}); Z) \leq \tau).$$

Finally, by step 1, $\mathbb{P}(F(-T(Z_{\sigma});Z) \leq \tau \mid Z) \leq \tau$ almost surely. Therefore, by the tower law, $\mathbb{P}(F(-T(Z_{\sigma});Z) \leq \tau) \leq \tau$.

To avoid the computational burden, it is common to sample M permutations and obtain the p-value

$$p = \frac{1 + \sum_{m=1}^{M} \mathbf{1} \left\{ T(Z_{\sigma_m(1)}, \dots, Z_{\sigma_m(n)}) \ge T(Z_1, \dots, Z_n) \right\}}{1 + M}.$$
 (2.4)

▼ Theorem 2.5

For any function $T:\mathcal{Z}^n\to\mathbb{R}$, the p-value p defined in (2.4) satisfies $\mathbb{P}_P(p\leq \tau)\leq \tau$ for all $\tau\in[0,1]$ and all $P\in\mathcal{P}_{\mathrm{exch}}$, where the probability is now taken with respect to both the random draw of $(Z_1,\ldots,Z_n)\sim P$, and the permutations σ_1,\ldots,σ_M sampled uniformly at random (with replacement) from S_n .

Examples

To apply the permutation test, we need to specify a choice of the test statistic T. If the statistic captures the deviations from exchangeability that we expect may occur, then it will lead to a powerful test. We illustrate this with several common examples in the case of real-valued data, $\mathcal{Z} = \mathbb{R}$.

▼ Testing equality of distributions

Suppose that we have two independent samples , with n_0 many draws from P_0 and $n_1=n-n_0$ many draws from P_1 . Let $Z_1,\ldots,Z_{n_0}\overset{\mathrm{i.i.d.}}{\sim}P_0$ and $Z_{n_0+1},\ldots,Z_n\overset{\mathrm{i.i.d.}}{\sim}P_1$.

If $P_0=P_1$, then the Z_i 's are i.i.d. from a single shared distribution $P_0=P_1$, and therefore exchangeability holds.

We might choose the test statistic

$$T(z_1,\dots,z_n) = \left|rac{1}{n_0}\sum_{i=1}^{n_0}z_i - rac{1}{n_1}\sum_{i=n_0+1}^{n}z_i
ight|$$

Or the Kolmogorov--Smirnov statistic

$$T(z_1,\dots,z_n) = \sup_{v \in \mathbb{R}} \left| rac{1}{n_0} \sum_{i=1}^{n_0} \mathbf{1}\{z_i \leq v\} - rac{1}{n_1} \sum_{i=n_0+1}^n \mathbf{1}\{z_i \leq v\}
ight|,$$

which measures the maximum difference between the two empirical cumulative distribution functions (CDFs).

▼ Testing if a new data point is an outlier

Suppose that we would like to test whether a particular data point---say, the last data point Z_n ---is an outlier relative to the rest of the sequence.

For example, conjecture that Z_n is more likely to be unusually large relative to the other Z_i 's. In this case, we could consider the test statistic

$$T(z_1,\ldots,z_n)=\sum_{i=1}^n \mathbf{1}\{z_n>z_i\}.$$

For this particular test statistic, the permutation test p-value can be simplified. Observe that

$$T(Z_{\sigma(1)},\ldots,Z_{\sigma(n)}) = \sum_{i=1}^n \mathbf{1}\{Z_{\sigma(n)} > Z_{\sigma(i)}\} = \sum_{i=1}^n \mathbf{1}\{Z_{\sigma(n)} > Z_i\},$$

which captures the position of $Z_{\sigma(n)}$ relative to the original sequence.

Examining this quantity, we can then see that $T(Z_{\sigma(1)},\ldots,Z_{\sigma(n)})\geq T(Z_1,\ldots,Z_n)\iff Z_{\sigma(n)}\geq Z_n$. Therefore, the p-value can be simplified as

$$p = rac{\sum_{\sigma \in S_n} \mathbf{1}ig\{T(Z_{\sigma(1)}, \dots, Z_{\sigma(n)}) \geq T(Z_1, \dots, Z_n)ig\}}{n!}$$

$$=rac{1}{n!}\sum_{\sigma\in S_n}\mathbf{1}\{Z_{\sigma(n)}\geq Z_n\}=rac{1}{n!}\sum_{i=1}^n\sum_{\substack{\sigma\in S_n\ \sigma(n)=i}}\mathbf{1}\{Z_i\geq Z_n\}=rac{1}{n}\sum_{i=1}^n\mathbf{1}\{Z_i\geq Z_n\}.$$

In fact, this example can be derived in a simpler way, without the terminology of permutation tests. By definition of p, we can verify that, for any $\tau \in [0,1]$,

$$p = rac{1}{n} \sum_{i=1}^n \mathbf{1}\{Z_i \geq Z_n\} \leq au \iff Z_n > Z_{(k)} \quad ext{for } k = \lceil (1- au)n
ceil.$$

By (2.2) we know that exchangeability of Z_1, \ldots, Z_n implies that $\mathbb{P}(Z_n > Z_{(k)}) \leq 1 - k/n \leq \tau$, which directly verifies the validity of the p-value. We state this result formally in the following corollary:

▼ Corollary 2.6

Let $Z_1,\ldots,Z_n\in\mathbb{R}$ be exchangeable. Then $p=rac{\sum_{i=1}^n \mathbf{1}\{Z_i\geq Z_n\}}{n}$ satisfies $P(p\leq au)\leq au$ for all $au\in[0,1]$.

▼ Appendix: order statistics, quantiles, and CDFs

Deterministic properties

Definition 2.7: Order statistics of a finite list

Let $k \in [n]$. Then the kth order statistic of $z \in \mathbb{R}^n$, written as $z_{(k)}$, is defined as

$$z_{(k)} = \inf \left\{ v : \sum_{i=1}^{n} \mathbb{1} \left\{ z_i \le v \right\} \ge k \right\}.$$

Definition 2.8: CDF of a finite list

The CDF of $z \in \mathbb{R}^n$ is the function $\widehat{F}_z : \mathbb{R} \to [0,1]$ defined as

$$\widehat{F}_z(v) = \frac{1}{n} \sum_{i=1}^n \mathbb{1} \left\{ z_i \le v \right\}.$$

Definition 2.9: Quantile of a finite list

For any $\tau \in [0,1]$, the τ -quantile of $z \in \mathbb{R}^n$ is defined as

Quantile
$$(z; \tau) = \inf \{ v : \widehat{F}_z(v) \ge \tau \}$$
.

Fact 2.10: Conversion between order statistics and quantiles.

For any $z \in \mathbb{R}^n$, for all $\tau \in (0, 1]$,

$$z_{(\lceil \tau n \rceil)} = \text{Quantile}(z; \tau).$$

Fact 2.11: Conversion between order statistics and CDFs.

For any $z \in \mathbb{R}^n$, for all $k \in [n]$,

$$\widehat{F}_z(z_{(k)}) \ge \frac{k}{n}$$

with equality in the case that all elements of z are distinct.

Fact 2.12: Conversion between quantiles and CDFs.

The following equivalences hold for any $z \in \mathbb{R}^n$:

- (i) $\widehat{F}_z(v) = \sup\{\tau : \text{Quantile}(z;\tau) \le v\}$ for all $v \in \mathbb{R}$;
- (ii) Quantile $\left(z; \widehat{F}_z(v)\right) \leq v$ for all $v \in \mathbb{R}$;
- (iii) \widehat{F}_z (Quantile $(z; \tau)$) $\geq \tau$ for all $\tau \in [0, 1]$;

and furthermore, as a special case of (iii),

(iv) If all elements of z are distinct, \widehat{F}_z (Quantile $(z;\tau)$) = $\frac{\lceil \tau n \rceil}{n}$ for all $\tau \in [0,1]$.

Fact 2.13

Let $f: \mathbb{R} \to \mathbb{R}$ be a monotone nondecreasing function. Furthermore, for $z \in \mathbb{R}^n$, let $f(z) \in \mathbb{R}^n$ denote the elementwise application of f to z. Then,

- (i) For all $k \in [n]$, $f(z)_{(k)} = f(z_{(k)})$.
- (ii) For all $\tau \in (0, 1]$, Quantile $(f(z); \tau) = f(\text{Quantile}(z; \tau))$.
- (iii) If additionally f is a strictly increasing function, then for all $v \in \mathbb{R}$, $\widehat{F}_{f(z)}(f(v)) = \widehat{F}_z(v)$.

Fact 2.14

For any vector $z \in \mathbb{R}^n$ and any permutation σ on [n], let $z_{\sigma} = (z_{\sigma(1)}, \dots, z_{\sigma(n)})$, i.e., the entries of z are permuted according to σ . We have that

- (i) For all $k \in [n]$, $(z_{\sigma})_{(k)} = z_{(k)}$.
- (ii) For all $\tau \in [0, 1]$, Quantile $(z_{\sigma}; \tau) = \text{Quantile}(z; \tau)$.
- (iii) For all $v \in \mathbb{R}$, $\widehat{F}_{z_{\sigma}}(v) = \widehat{F}_{z}(v)$.

Properties under exchangeability

Fact 2.15

Assume $Z \in \mathbb{R}^n$ is exchangeable, and fix any $i \in [n]$. Then we have that

- (i) For any $k \in [n]$, $\mathbb{P}(Z_i \leq Z_{(k)}) \geq k/n$ and $\mathbb{P}(Z_i < Z_{(k)}) \leq (k-1)/n$.
- (ii) For all $\tau \in [0,1]$, $\mathbb{P}(Z_i \leq \text{Quantile}(Z;\tau)) \geq \tau$ and, if $\tau > 0$, $\mathbb{P}(Z_i < \text{Quantile}(Z;\tau)) < \tau$.
- (iii) For all $\tau \in [0, 1]$, $\mathbb{P}\left(\widehat{F}_Z(Z_i) \le \tau\right) \le \tau$ and $\mathbb{P}\left(\widehat{F}_Z(Z_i) \ge \tau\right) \ge 1 \tau$.

Furthermore, if all elements of Z are distinct almost surely,

- (iv) For any $k \in [n]$, $\mathbb{P}(Z_i \leq Z_{(k)}) = k/n$.
- (v) For all $\tau \in [0,1]$, $\mathbb{P}(Z_i \leq \text{Quantile}(Z;\tau)) = \frac{\lceil n\tau \rceil}{n}$.
- (vi) For all $\tau \in [0,1]$, $\mathbb{P}\left(\widehat{F}_Z(Z_i) \le \tau\right) = \frac{\lfloor n\tau \rfloor}{n}$.