

دانشگاه صنعتی شریف دانشکدهٔ مهندسی کامپیوتر

محاسبات عددي

پاسخ تمری سری دوم فصل ۲: روشهای عددی برای حل معادلات غیرخطی

نگارش:

على مهدوى فر

شمارهٔ دانشجویی:

911.5.77

استاد:

دكتر فاطمه بهارىفرد

فروردين ۱۴۰۰

سؤال ١)

 $|f(x_n-)| < 0.05$ با شرط $x_0 = -1$, $x_1 = 0$ بین $x_0 = -1$ بین $x_0 = -1$ با شرط $x_0 = -1$ با شرط وش تنصیف:

n	a	ь	$x_n = (a+b)/2$	$f(a)f(x_n)$ علامت	f(x _n)
1	-1	0	-0.5	+	3.34375
2	-0.5	0	-0.25	_	-5.58203
3	-0.5	-0.25	-0.375	_	-1.44873
4	-0.5	-0.375	-0.4375	+	0.86310
5	-0.4375	-0.375	-0.40625	_	-0.31367
6	-0.4375	-0.40625	-0.42188	+	0.26947
7	-0.421875	-0.40625	-0.41406	_	-0.02341

روش نابجایی:

n	a	b	X _n	f(a)	f(x _n)	$f(a)f(x_n)$ علامت
1	-1	0	-0.28743	29.75	-4.41173	_
2	-1	-0.28743	-0.37945	29.75	-1.28966	_
3	-1	-0.37945	-0.40523	29.75	-0.35129	_
4	-1	-0.40523	-0.41217	29.75	-0.09384	_
5	-1	-0.41217	-0.41402	29.75	-0.02493	_

 $|x_n-1|<0.02$ با شرط توقف $x_0=0$, $x_1=1.3$ بین $y(x)=x^{10}-1$ با شرط توقف $y(x)=x^{10}-1$ بین ورش تنصیف:

					1 - 27 1 0 33
n	a	ь	$x_n = (a+b)/2$	$g(a)g(x_n)$ علامت	$g(x_n)$
1	0	1.3	0.65	+	-0.98654
2	0.65	1.3	0.975	+	-0.22367
3	0.975	1.3	1.1375	_	2.62672
	ı		l	I	ı

4	0.975	1.1375	1.05625	_	0.72849
5	0.975	1.05625	1.01562	-	0.16771

روش نابجایی:

n	a	ь	X_n	g(a)	$g(x_n)$	$g(a)g(x_n)$ علامت
1	0	1.3	0.09430	-1	-1.00000	+
2	0.09430	1.3	0.18176	-1.00000	-1.00000	+
3	0.18176	1.3	0.26287	-1.00000	-1.00000	+
4	0.26287	1.3	0.33811	-1.00000	-0.99998	+
5	0.33811	1.3	0.40788	-0.99998	-0.99987	+
6	0.40788	1.3	0.47258	-0.99987	-0.99944	+
7	0.47258	1.3	0.53257	-0.99944	-0.99816	+
8	0.53257	1.3	0.58814	-0.99816	-0.99505	+
9	0.58814	1.3	0.63954	-0.99505	-0.98855	+
10	0.63954	1.3	0.68694	-0.98855	-0.97660	+
11	0.68694	1.3	0.73045	-0.97660	-0.95676	+
12	0.73045	1.3	0.77010	-0.95676	-0.92664	+
13	0.77010	1.3	0.80591	-0.92664	-0.88443	+
14	0.80591	1.3	-0.88443	-0.88443	-0.82948	+
15	-0.88443	1.3	0.86603	-0.82948	-0.76269	+
16	0.86603	1.3	0.89046	-0.76269	-0.68658	+
17	0.89046	1.3	0.91133	-0.68658	-0.60486	+
18	0.91133	1.3	0.92888	-0.60486	-0.52179	+
19	0.92888	1.3	0.94344	-0.52179	-0.44137	+
20	0.94344	1.3	0.96495	-0.44137	-0.30011	+
21	0.96495	1.3	0.97263	-0.30011	-0.24234	+
22	0.97263	1.3	0.97872	-0.24234	-0.19354	+
23	0.97872	1.3	0.98351	-0.19354	-0.15319	+

ج) مقایسهٔ عملکرد دو روش

برای تابع f روش تنصیف در V مرحله و روش نابجایی در Δ مرحله به جواب رسید.

روش نابجایی در حالت کلی دارای مرتبهٔ همگرایی $0.618 \simeq \phi$ است ولی مرتبهٔ همگرایی روش تنصیف $0.018 \simeq \phi$ است. پس طبیعی است باتوجه به اینکه تابع $0.019 \simeq \phi$ در بازهٔ داده شده رفتار مناسب و تقریباً خطی دارد، روش نابجایی سریع تر عمل کند.

شکل ۱: تابع f در بازهٔ ۱_ تا ۰

برای تابع g روش تنصیف در ۵ مرحله و روش نابجایی در x مرحله به جواب رسید. زیرا همانطور که مشاهده می شود این تابع در ابتدای بازهٔ داده شده مقدار بسیار کم در مقایسه با انتهای بازه دارد، در نتیجه x_n در هر مرحله نزدیک به ابتدای بازه می ماند و روش نابجایی به کندی به پاسخ همگرا می شود.

شکل ۲: تابع g در بازهٔ • تا ۱٫۳ . تصویر از کتاب چاپرا برداشته شده است.

سؤال ٢)

الف) تابع f پیوسته است و $f(0)f(1) \simeq -0.84147 < 0$ پس بنابر قضیهٔ بولزانو، f(0,1) در بازهٔ $f(0,1) \sim -0.84147 < 0$ دریشه دارد. مشتق تابع f برابر است با $f(x) = -1 - \cos(x)$:

$$-1 \le \cos(x) \le 1 \rightarrow -2 \le f'(x) = -1 - \cos(x) \le 0$$

مشتق تابع f (به جز در مضارب f) منفی است پس تابع f اکیداً نزولی است. بنابر قضیهٔ مقدار میانگین میدانیم هر تابع اکیداً یکنوا، حداکثر یک ریشه دارد. پس تابع f در بازهٔ f در بازهٔ در اکنوا، حداکثر یک ریشه دارد.

 \mathbf{x}_{n} از رابطهٔ زیر به دست می آید: \mathbf{x}_{n} در روش وتری دنبالهٔ \mathbf{x}_{n}

$$x_{n+1} = \frac{x_{n-1} f(x_n) + x_n f(x_{n-1})}{f(x_n) + f(x_{n-1})}$$

با شروع از $x_0=0$, $x_1=1$ داريم:

n=1: $x_2 = 0.54304$ $f(x_2) = -0.05979$

n=2: $x_3 = 0.50809$ $f(x_3) = 0.00540$

n=3: $x_4 = 0.51099$ $f(x_4) = -0.00002$

n=4: $x_5 = 0.51097$ $f(x_5) = -0.00000$

n=5: $x_6 = 0.51097$ $f(x_6) = 0.00000$

پس ریشه با 4D برابر است با:

 $\alpha \simeq 0.5110 \quad (4D)$

باترج به صورت سند ، کانی است یک شال نقل بیاویم از آجی با شرایط داده شده که با ردی ا نیوتون - رانسون با مرتبهای به جز ۲ همراست ، (۲ - ۱) = (۲ ر نظر کشرید :

اندن دیالهٔ (مر) که از روش نونون - راندن برست می آید را درنظ بغیرید.

 $\chi_{n+1} = \chi_n - \frac{f(\chi_n)}{f'(\chi_n)} = \chi_n - \frac{(\chi_n - \alpha)^{\frac{1}{2}}}{f(\chi_n - \alpha)} = \frac{\chi_n - \chi_n - \chi_n + \chi_n - \alpha^{\frac{1}{2}}}{f(\chi_n - \alpha)}$

 $\rightarrow \chi_{n+1} = \frac{\chi_{n-\alpha}^{\gamma}}{\gamma(\chi_{n-\alpha})} = \frac{\chi_{n+\alpha}}{\gamma} \longrightarrow \chi_{n+1} - \alpha = \frac{\chi_{n-\alpha}}{\gamma}$

ره درم) نسع: math.stackexchange استال شارة (٢٥٥٥)

تابع کم که در آن به ریت با مکر سه است را به صورت (۱۳۰ و ۱۳۰ و ۱۳۰ مرت کر از از بر از بر کرد بر بر کرد بر بر که اکان نزدیک به ه داری:

 $x \approx \alpha \rightarrow f(x) = m(x-\alpha)^{m-1}g(x) + (x-\alpha)^{m}g'(x) \approx m(x-\alpha)^{m-1}g(x)$

 $\chi_{n+1} = \chi_n - \frac{f(\chi_n)}{f'(\chi_n)} \approx \chi_n - \frac{(\chi_n - \alpha)^m g(\chi)}{m(\chi_n - \alpha)^m g(\chi)} = \chi_n - \frac{1}{m}(\chi_n - \alpha)$

 $\lambda_{n+1} \approx \alpha + \frac{m-1}{m} \left(\frac{\chi_{n} - \alpha}{e_{n}} \right) \rightarrow \frac{e_{n+1}}{e_{n}} \approx \frac{m-1}{m}$ $\frac{m-1}{m} e_{n} \approx \frac{m-1}{m} e_{n}$ $\frac{m-1}{m} e_{n} \approx \frac{m-1}{m}$ $\frac{m-1}{m} e_{n} \approx \frac{m-1}{m}$ $\frac{m-1}{m} e_{n} \approx \frac{m-1}{m}$ $\frac{m-1}{m} e_{n} \approx \frac{m-1}{m}$ $\frac{m-1}{m} e_{n} \approx \frac{m-1}{m}$

سؤال ۴)

تابع g را به صورت $g(x)=\sin\sqrt{x}$ انتخاب می کنیم.

شرایط همگرایی روش نقطه ثابت برای تابع g در بازهٔ (a,b)=(0.5,1) با شروع از $x_0=0.5$ را بررسی می کنیم:

 $g(x){\in}(a,b)$ برای هر $x{\in}(a,b)$ داشته باشیم (۱

 $0.5 < x < 1 \ \, \Rightarrow \ \, 0.70710678118 < \sqrt{x} < 1 \ \, \Rightarrow \ \, 0.64963 < \sin \sqrt{x} < 0.84148 \ \, \Rightarrow \ \, 0.5 < g(x) < 1 \ \, \checkmark$

|g'(x)| حاشته باشیم $x \in (a,b)$ برای هر (۲

$$g(x) = \sin \sqrt{x} \rightarrow g'(x) = \frac{1}{2\sqrt{x}} \cos \sqrt{x}$$

مشاهده می شود که قدرمطلق مقدار تابع اکیداً کوچکتر از ۱ است.

شكل ٣: تابع g'(x) از 0.5 تا 1

الگوریتم نقطه ثابت را با شروع از x_0 =0.5 تا جایی که اختلاف دو عدد دنباله کمتر از 0.002 بشود اجرا می کنیم:

n=1: $x_1 = g(x_0) = 0.6496$ $|x_1 - x_0| = 0.1496$

n=2: $x_2 = g(x_1) = 0.7215$ $|x_2-x_1| = 0.0719$

n=3: $x_3 = g(x_2) = 0.7509$ $|x_3-x_2| = 0.0294$

n=4: $x_4 = g(x_3) = 0.7621$ $|x_4-x_3| = 0.0112$

n=5: $x_5 = g(x_4) = 0.7663$ $|x_5 - x_4| = 0.0042$

n=6: $x_6 = g(x_5) = 0.7678$ $|x_6 - x_5| = 0.0015$

پس ریشهٔ تابع f با 3D برابر است با:

 $\alpha \simeq 0.768 \quad (3D)$

این دیالہ را میزانیم راحل نیزر روش نظر نات با $\frac{\chi(\chi'+\mu_b)}{\mu_{\chi'}+\mu_b} = \chi(\chi'+\mu_b)$ در نظر نبریکی.

مشعآت و ما در نقطهٔ ثابت (عار - الله) محاجب می کشیم.

$$g'(x) = \frac{\psi(b-x')}{(b+v'x')}$$
 \longrightarrow $g'(\sqrt{b}) = 0$

$$g''(x) = \frac{-+ h h x (b-x')}{(b+rx')^r} \longrightarrow g''(5b) = 0$$

$$g^{(r)}(x) = \frac{-4\lambda b \left(b^{r} | \lambda b x^{r} + 9x^{r}\right)}{(b + r^{r} x)^{k}} \longrightarrow g^{(r)}(\sqrt{b}) = \frac{r}{rb} \neq 0$$

سط نبور و حول طاکر می توسیم:

(اعرام) = g(اقرام) + g'(اقرام) + g'((iقرام) + g'(iقرام) + g'(iig) + g'(ii

あくEnく 2n

To LEn Lan

س رسهٔ هنرای <u>m=۲ است. نرخ هزای ۲ = ۵ است.</u>

کد این سؤال در کنار فایل PDF با نام « $PDF_{\rm p6.py}$ » آپلود شدهاست.

```
mnt > data > Uni > Term4 > Mohasebat > homework > 2 > 🔮 HW2 98106072 p6.py > ...
      from math import *
      import sys
      f_string = input()
      g string = input()
      n, x = map(float, input().split())
      f = eval("lambda x: " + f_string)
      g = eval("lambda x: " + g_string)
 10
      for i in range(int(n)):
 11
               x = x - f(x)/g(x)
 13
           except ZeroDivisionError:
 14
 15
               print('zero division')
               sys.exit()
 16
 17
      print('answer:', '{:.5f}'.format(x) )
 18
```

شکل ۴:کد سوال ۶ به زبان پایتون

توضیح کد: در خطوط ۴ و ۵، دو رشته مربوط به عبارتهای ریاضی تابع f و مشتق آن از کاربر گرفته می شود. در خط ۶، دو عدد f (تعداد گامها) و f (حدس اولیه) از کاربر گرفته می شود.

در خطوط ۸ و ۹، به کمک دستور eval توابع f و g در کد برنامه براساس رشتهٔ ورودی از کاربر تعریف می شود. در خطوط ۱۱ تا ۱۶، گام روش نیوتون_رافسون انجام می شود: در هر مرحله x جدید از روی x قبل بازنویسی می شود و اگر خطای تقسیم بر صفر رخ داد، عبارت «zero division» چاپ می شود و برنامه خارج می شود. اگر خطا رخ نداد، در خط ۱۸، آخرین مقدار x با ۵ رقم اعشار چاپ می شود.

Sample Input	Sample Output
log(x-1) + cos(x-1) 1/(x-1) - sin(x-1) 20 1.65	answer: 1.39775
x**3 - 3*x 3*x**2 - 3 10 1	zero division