Algorithm 1 Spectral Bridges Clustering

SpectralBridgesdata, k, p data: input dataset, k: number of clusters, p: number of Voronoi regions $centroids \leftarrow KMeansdata, p$ Initial centroids using k-means $voronoiRegions \leftarrow$ Subdivide data into Voronoi regions $graph \leftarrow \text{CreateGraph} voronoi Regions Assess connectiv$ ity between regions $clusters \leftarrow \text{WardLinkage} graph, k$ Cluster using Ward linkage-inspired approach clusters KMeansdata, p Initialize p centroids randomly Assign each point to the nearest centroid Update centroids based on assignments centroids do not change centroids Subdivide data, centroids $voronoiRegions \leftarrow \{\}$ each point x in data Find the nearest centroid for x Assign x to the corresponding Voronoi region voronoiRegions $CreateGraphvoronoiRegions\ graph\ \leftarrow\ empty\ graph\ each\ pair\ of\ regions$ (R_i, R_j) in voronoiRegions Calculate connectivity measure between R_i and R_j Add edge between R_i and R_j in graph with weight based on connectivity graph WardLinkagegraph, k $clusters \leftarrow$ Initialize each region as a separate cluster Find the pair of clusters with the smallest merging cost Merge the selected pair of clusters number of clusters equals k clusters