Certificate of Mailing: Date of Deposit: December 3, 2001

hereby certify under 37 C.F.R. § 1.8(a) that this correspondence is being deposited with the United States Postal Service as first class mail with sufficient postage on the date indicated above and is addressed to the

Assistant Commissioner for Patents, Washington, D.C. 20231.

Moya Kinnealey

Printed name of person mailing correspondence

Moua M

Signature of person mailing correspondence

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant:

Mark A. Exley et al.

Art Unit:

3146

Serial No.:

09/885,768

Examiner:

Not Yet Assigned

Filed:

June 19, 2001

Customer No.:

21559

Title:

Compositions and Methods of Monoclonal and Polyclonal Antibodies Specific

for T Cell Subpopulations

Assistant Commissioner For Patents

Washington, D.C. 20231

TRANSMITTAL OF SUBSTITUTE DRAWINGS TO OFFICIAL DRAFTSPERSON

In reply to the Notice To File Missing Parts that was mailed in the above-captioned case on August 14, 2001 enclosed are:

 ■ 40 sheets of substitute drawings that replace the informal drawings filed with the application.

If there are any other charges or any credits, please apply them to Deposit Account No. 03-2095.

Respectfully submitted,

Clark & Elbing LLP 176 Federal Street Boston, MA 02110

Telephone: 617-428-0200

Facsimile: 617-428-704

\\Clark-w2k1\documents\01948\01948.074002 Transmittal of formal drawings.wpd

1

FIG. 4A

FIG. 4B

FIG. 5A

FIG. 5B

ŧ

FIG. 9

A first the second of the seco

Miltenyi vs.	Dynai 4/11/01		
	PBMC	Dynal @ 40	Miltenyi @ 20
Donor 1			
Vα24/6B11	0	8.46	4.53
Vα24/Vβ11	0.01	4.85	4.71
Vα24		3.9	
Donor 2			
Vα24/6B11	0.01	0.99	5.91
Vα24/Vβ11	0.01	1.47	6.16
Vα24		0.33	
Donor 3			
Vα24/6B11	0	N/A	71
Vα24/Vβ11	0.03	N/A	72
Vα24			5.98
		in in Leani	
LKP 21 unso	orted control		
Vα24/6B11	0.01		the same
Vα24/Vβ11	e endig O	. 2961	the same

FIG. 13

Dynai Bead 1/1	9/01		
LKP 10 on 40	ug/ml 6B11 on To	СМ	
	Vα24/Vβ11	32.98	Fig. 11B
	Vα24/6B11	32	Fig. 11A
LKP 10 on TCI	M + IL15/IL7		
	Vα24/Vβ11	12.46	Fig. 11D
	Vα24/6B11	29	Fig. 11C
LKP 10 on TC	M + dex		
	Vα24/Vβ11	17.08	Fig. 11F
	Fig. 11E		
LKP 10 on TC			
	Vα24/Vβ11	4.93	Fig. 10B
	Vα24/6B11	13.81	Fig. 10A
	to the contract of the contrac	And the Common tension of the Common tension	en e

Dynal 6B1	1 Bead Prep 3/9/01	
LKP 14 un	sorted control	
3/20/01	Vα24/Vβ11	0.02%
	Vα24/6B11	0.01%
LKP 14 68	11 + PHA + auto APC	·
3/20/01	Vα24/Vβ11	0.09%
	Vα24/6B11	0%
4/20/01	Vα24/Vβ11	0.13%
	Vα24/6B11	0.00%
	Vα24	0.01%
LKP 14 68	11 + PHA + auto APC	
3/20/01	Vα24/Vβ11	0.68%
	Vα24/6B11	0.02%
4/20/01	Vα24/Vβ11	0.15%
	Vα24/6B11	0.00%
	Vo24	0.73%
4/27/01	alpha Gal Cer stim	
5/10/01	Vα24/Vβ11	2.73%
	Vα24/6B11	2.94%
unsorted c		And the second
	Vα24/Vβ11	0.01%
	Vα24/6B11	0.01%
6B11 + PH	A + auto APC	
4/20/01	Vα24/Vβ11	3.64%
	Vα24/6B11	3.75%
5/10/01	Vα24/Vβ11	5.01%
	Vα24/6B11	4.92%

Dynal 6B11 B	ead Prep 3/9/01	
LKP 13 unsor control	rted	
	Vα24/Vβ11	0.07%
	Vo24/6B11	0.06%
LKP 13 6B11	+ PHA + allo APC	
4/20/01	Vα 24/ Vβ11	1.85%
	Va24/6B11	0%
	Vα24	1.16%
5/10/01	Vα 24/ Vβ11	14.29%
	Va24/6B11	
unsorted con	trol	
	Vα 24 /Vβ11	0.01%
	Va24/6B11	0.00%
6B11 + PHA +	- auto APC	
4/20/01	Vα24/Vβ11	0.05%
	Vo24/6B11	0.06%
	Vo24	3.22%
6B11 + auto A	APC and the World	her ye - sel
4/20/01	Vα24/Vβ11	0.78%
	Vo24/6B11	0.00%
	Vα24	1%

Miltenyi Prep	#1 6B11	1/01
LKP2 +auto A	APC on TCM	
2/6/01	Vα 24/ Vβ11	26.07%
	Vα24/6B11	21%
2/23/01	Va24/6B11	10.79%
3/26/01	alpha Gal Cerstim	
4/20/01	Vα 24/ Vβ11	73.40%
	Vo24/6B11	74.66%
4/27/01	alpha Gal Cerstim	
5/14/01	Vα24/Vβ11	80.87%
	Vo24/6B11	79.98%
LKP2 +auto A	APC on TCM + 1L7/1L	.15
2/6/01	Vα24/Vβ11	16%
	Vo24/6B11	11%
3/26/01	alpha Gal Cersim	
4/20/01	Vα24/Vβ11	54.28%
	Vo24/6B11	56.89%
4/27/01	alpha Gal Cersiim	of grand and services OF SID say in
5/14/01	Vα24/Vβ11	68.05%
	Vo24/6B11	68.85%
	Va24	1.66%

FIG. 17

	Miltenyi P	rep #2	1/01	
	LKP 11 o	n Va24 + auto Al	PC + PHA	
Fig. 10C	2/23/01	Vα24/6B11	63.75%	
Fig. 10D	3/20/01	Vα24/Vβ11	1.43%	
		Vα24/6B11	0.07%	
	4/27/01	alpha Gal Cer stim		
	5/10/01	Vα24/Vβ11	24.78%	
		Vα24/6B11	14.94%	
	LKP 11 o	n 6B11 + auto Al	PC + PHA	
	2/23/01	Vα24/6B11	45.27%	
E' 400	LKP 12 o	n Va24 + auto Al	PC + PHA	
Fig. 10G	2/23/01	Vα24/6B11	33.51%	
Fig. 10H	3/20/01	Vα24/Vβ11	0.25%	
		Vα24/6B11	≈5. × 0.25%	
	4/27/01	alpha Gal Cer stim	g did Kiring og hess	13
	5/14/01	Vα24/Vβ11	0.00%	
		Vα24/6B11	0.00%	-
		Vα24	55.00%	

FIG. 18

The state of the s

FIG. 22A

FIG. 22B

FIG. 22C

FIG. 22D

FIG. 22E

NK-T Dendritic Cell Study Sero-Negatives

FIG. 23A

								5	טפוט-ואפטמוואפט	COAL							
Date	Patient	Name	Serosatus	8	≩	Lymph	= - -	¥.	× K÷	ABS	ABS	~ ¥-i	% CD123+	% CD11c+	§ 86	ABS	ABS
	⊇			8	copies/ml	Sour	Count	Count	II Lymph	Lymph	NK-1	සු ස	DC II Leuk	DC II Leuk		CD123+DC	CD110+DC
2/3/00	Yang		0			44728	27503	4	0.0984		0.0000	0.1600	***	***		***	ŧ
2/9/00	91841		0	927		79175	64673	74	0.0935	1782	1.6655	0.1144	244	#	2400	***	:
5/11/00	42893		0			60//29	47828	-	0.0015		0.0000	0.0021	***	***		***	ŧ
5/18/00	91921		0	787		47660	32443	4	0.0084	1749	0.1468	0.0123	***	#	5300	***	ŧ
5/24/00	91960		0	621		33001	26942	8	0.5030	1150	5.7847	0.6161	ŧ	***	2000	##	***
2/25/00	91960*		0	621		33855	27347	82	0.6085	1150	6.9975	0.7533	###	#	2000	#	
2/30/00	92001		0	888		65330	46630	48	0.0735	1632	1.1991	0.1029	###		4800	***	***
00/9/9	92065		0	735		61812	20867	15	0.0243	1634	0.3965	0.0294	***	#	3800	**	ŧ
6/14/00	92145		0	796		84897	-2117-	92	90:00:0	1768	0.5415	0.0458	***		5200	#	1
8/24/00	92673		0	821		76582	51494	45	0.0588	2160	1.2692	0.0874	0.170	0.320	4000	6.80	12.80
00/8/6	40211		0	1040		69/96	6/.78/	95	0.0579	2040	1.1805	0.0711	0.057	0.027	5100	2.93	1.37
00/8/6	92800		0	622	-	82627	63397	31	0.0375	1740	0.6528	0.0489	0.043	0.084	2800	2.47	4.85
1/24/01	42959		0	0	- 1 1	153419	112395	19	0.0124		0.0000	0.0169	0.032	0.051		00:0	0.00
1/25/01	40545		0	653	ў . 10	79252	44870	15	0.0189	1452	0.2748	0.0334	0.135	0.358	3300	4.47	11.81
1/25/01	40634		0	583	Z1	44101	36543	-	0.0023	1122	0.0254	0.0027	050:0	980:0	5100	2.55	4.39
1/31/01	41214		0	***	est a	##	#	***	***	***	***	##	980:0	0.084		00:00	0.00
1/31/01	42888		0	***	s i	; ### ;	##	***	###	###	***	***	670.0	0.062		0.00	0.00
2/1/01	40086		0	850		76313	67231	42	0.0550	1700	0.9356	0.0625	980:0	0.240	2000	4.31	11.98
2/1/01	40128		0	689		61816	47823	22	0.0356	1377	0.4901	0.0460	0:030	0.043	5100	1.54	2.21
2/22/01	40059		0			111766	85872	5	0.0045		0.0000	0.0058	0.040	0.085		0.00	0.00
2/28/01	41842		0			62325	48159	12	0.0193		0.0000	0.0249	0.111	0.264		0.00	0.00
İ	'																

Serosatus: 0=seronegative, 1=HIV-1infected, 2=HIV-1 Seroconverter, 3=AIDS >0.02% NK-Tcells II lymphs considered positive

*5/25/00 (91969 blood is 24 hrs. old)

FIG. 23B

NK-T Dendritic Cell Study Sero-Positives

ABS CD11c+DC	#			***	###	#	13.26	1.87	4.58	15.98	0.00	7.28	0.00	0:00	0.00	0.00	0.00	0.00
ABS CD123+DC	*	1		***	***	***	3.57	1.82	1.37	9.03	0.00	2.14	0.00	0.00	0.00	00:00	0.00	0.00
MBC MBC	3700		999	2600	7200	4100	5100	8188	5100	99		5300						
% CD11c+ DC II Leuk	#			***	##	***	0.260	0.023	060:0	0.266	0.132	0.137	0.139	0.075	0.038	0.124	0.029	0.092
% CD123+ DC II Leuk	*			***	**	***	0.070	0.023	0.027	0.151	0.083	0.040	0.078	0.072	0.031	0.039	0.022	0.088
% NK-T II CD3	00119		0.3937	0.0040	0.0197	0.0139	0.0188	0.0027	0.0146	0.0383	***	0.0028	0.0043	0.0064	0.0191	0.0644	0.0263	0.0407
ABS NK-T	0 1371		6.8878	0.0739	0.2467	0.1322	0.3421	0.0617	0.1677	0.8295	***	0.0252	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
ABS	1813	+-	2254	2432	2088	1107	2193	3726	1530	2640	***	1219						
% NK-T II Lymph	0.0076		0.3056	0:0030	0.0118	0.0119	0.0156	0.0017	0.0110	0.0314	***	0.0021	0.0036	0.0058	0.0159	0.0520	0.0205	0.0336
NK-T Count	9	. {	SS SS	3	11	9	12	က	8	34	***	1	2	2	10	72	22	53
T-Cell Count	50339		63503	74485	55888	43105	63905	111247	54950	95888	***	35405	46321	9698/	52449	83889	95033	71338
Lymph Count	79350		8181	99/86	93116	50249	76925	181054	73001	108212	***	-48310	25088	86792	96929	103913	121798	86319
HIV copies/ml	2257		0	0	30300	167000	212000	308	0	5 12, 1,	1 14 1	g Figure	i u	くせる	,			
ABS G	635	3	669	559	999	199	89/	671	658	2/26	(##)	354	0,	0	0 ت	0		
Serosatus	-		<u> </u>	3	1	3	1	1	1	2	2	1	2	1	(unknown)	(unkarown)	1	4
Name																		
Patient ID	40263	90011	41989	40846	45555	41400	42946	20461	40177	41411	40360	41266	40646	41329	42964*	42946	41977	40605
Date	5/25/00	00,710	6/1/00	6/14/00	6/15/00	9/15/00	8/28/00	00/8/6	00/8/6	1/24/01	1/26/01	10/1/2	10/1/2	2/8/01	2/8/01	2/14/01	10/22/2	3/1/01

27/40

Serosatus: 0-seronegative, 1=HIV-1infected, 2=HIV-1 Seroconverter, 3=AIDS >0.02% NK-Tcells II lymphs considered positive

*5/25/00 (91969 blood is 24 hrs. old)

	က
	Patient ID
	Date
Ċ	7
5	S
(ק
	Ī

													6	28	3/ ₄	4	0																			
CD11c+ DC II Leuk										0.32	0.08	0.03		0.143333333	0.155026879			0.02				0.26		0.14	0.169705627			0.09			0.26		0.175	0.120208153		
CD123+ DC II Leuk										0.17	0.04	90.0		60:0	0.07			0.02				0.07		0.045	0.035355339			0.03			20.0		0.05	0.028284271		
% NK-T II CDe		0.1854	0.1144	0.0021	0.0123	0.6161	0.1029	0.0294	0.0458	0.0874	0.0489	0.0711		0.119637	0.17276109			0.0027	0.0119	0.0197	0.0139	0.0188		0.01339948	0.0068081			0.0146	0.3937	0.0040	0.0188		0.10776187	0.19071445		
% NK-T II Lymph		0.1140	0.0935	0.0015	0.0084	0.5030	0.0735	0.0243	0.0306	0.0588	0.0375	0.0579		0.091168895	0.140902923			0.0017	0.0076	0.0118	0.0119	0.0156		0.009714354	0.005328085			0.0110	0.3056	0:00:0	0.0156		0.083794556	0.147949482		
NK-T Count		51	74	-	4	166	48	15	56	45	31	26		47	45.47307			က	9	-	9	12		7.6	3.781534			8	250	8	12	11	68.25	121.2226		
T-Cell Count		27503	64673	47828	32443	26942	46630	20967	56717	51494	63390	78774		49760.09	16224.34			111237	50332	55888	43105	63905		64893.4	27002.65			54946	63503	74485	63905		64209.75	7999.796		
Count		44728	79175	60//9	47660	33001	65330	61812	84897	76582	82687	69/96		67304.545	19359.286			181054	79350	93116	50249	76925		96138.8	49941.556			73001	81811	99/86	76925		82625.75	11347.626		
copies/ ml										0								308	2257	30300	167000							0	0	0						
CD4 ABS												1040						671	635	899	199	768						658	669	228	768					
Serosatus		0	0	0	0	0	0	o	.0	0	0.	0	 "a.			50 30 14	TABLE)	÷ .	7	+	က	1.73				, ,	CTABLE	-	-	ဇ	-					a
Patient ID	SERONEGATIVES		91841	42893	91921	91960	92001	92065	92145	92673	00876	40211.		mean	SD	1)	SEROPOSITIVES (DETECTABLE)	20461	40263 Visit 330	45555 Visit 335	41400 Visit 330	42946	(t)	mean	SD		SEROPOSITIVES (UNDETECTABLE)	40177	41989 Visit 335	40846 Visit 330	42946		mean	OS	AI SEBOBOCITIVES	ALL SERVE VOLLIVE
Date		2/3/00	2/9/00	5/11/00	5/18/00	5/24/00	2/30/00	00/9/9	6/14/00	8/28/00	66/8/6	66/8/6					SEBC	66/8/6	5/25/00	6/15/00	6/15/00	8/28/00					SEBOP	66/8/6	9/1/00	6/14/00	8/28/00					

16.230

Serostatus: 0=HIV-1 seronegative, 1=HIV-1 infected, 3=AIDS > 0.02% NK-Tcells II lymphs considered positive

30/40

	: Percen	: Percent of cells expr	expressing both markers out of the total number of cells collected	arkers out	of the total	/number of ce	ils collected		
Run		Control	New Onset		Control	New Onset		Control	New Onset
		6B11FC	6B11FC		6B11 FC	6B11FC		VB11PE	VB11PE
1	VA24 PE	0.05	0.07	VB11PE	0.03	90.0	VA24FC	9.0	0.05
2		0.10	0.17		0.13	0.28		0.05	0.08
3	6	0.05	0.17		00:00	0.23		9.0	0.22
4		90.0	0.33		0.03	0.32		0.09	0.26
2	į	0.03	0.03		0.02	00.00		0.03	00.00
9		90.0	0.23		80'0	0.21		0.09	0.23
7	,	90.0	60.0		90.0	0.14		0.08	0.12
	Avg	0.05	0.16	Avg,	0.05	0.18	Avg.	90.00	0.1ଣ
	Std. Dev	0.03	0.10	Std.Dev.	0.05	0.11	Std. Dev.	0.03	0.10
	· .								
	Table 1: Per	cent of cells e	Table 1: Percent of cells expressing both markers out of the	h markers		gated population	lon		
Run	**************************************	Control	New Onset		Control	New Onset		Control	New Onset
		6B11 FC	6B11 FC		SB11 FC	6B11 FC		VB11 PE	VB11 PE
1	VA24 PE	0.02	0.08	VB11PE	60.03	60.0	VA24 FC	0.04	90.0
7		0.11	0.17		0.14	0:30		90.0	0.09
3		90.0	0.19		00.0	0.25		0.05	0.24
4		0.07	0.34		0.03	0.33		0.10	0.27
2		-0.05	0.04		0.04	00.00		0.04	00.00
9		0.07	0.29		0.10	0.27		0.11	0.29
7		0.07	0.12		60:0	0.17		60:0	0.15
	Avg.	0.08	0.18	Avg.	0.06	0.20	Avg.	0.07	0.16
	Std. Dev	0.03	0.11	Std.Dev.	0.05	0.12	Std. Dev.	0.03	0.11
		0.03506137			0.021871			0.088943	

FIG. 25A

Table 1. Genes differentially expressed between natural killer T cell clones ME10 and GW4

Functional category	Accession no.	Common name	Cluster (row, column)	Functional category	Accession no.	Common name	Cluster (row, column)
Surface recep	tor				V00536	IFN-γ	(1,2)
	.U38276	Semaphorin III	(1,1)		M13207	GM-CSF	(1,2)
	U82169	Frizzled	(1,1)		M16441	TNF-α	(1,2)
	M32315	TNF-R	(1,2)		X02910	TNF-α	(1,2)
	U03397	4-1BB	(1,2)		X04688	(L-5	(1,2)
	577812	VEGF-R	(1,2)		U31120	IL-13	(1,2)
	X01057	IL-2Rα	(1,2)		M37435	M-CSF	(1,2)
	Y00285	IGF-R II	(1,2)		U02020	PBEF	(1,2)
	L08096	CD27	(1,2)		U37518	TRAIL	(1,2)
	Z30426	CD69	(1,2)		U46461	Dishevelled homolog	(1,2)
	U76764	CD97	(1,2)		M90391	IL-16	(2,3)
	U60800	CD100	(1,2)	Nuclear prot			(2,5)
	M24283	Rhinovirus-R	(1,2)	manear pro-	U73477	Nuclear pp32	(1,1)
	U19906	Arginine vasopressin-R	(1,2)		U62962	Int-6	(1,2)
	Z48042	p137	(1,2)		L25931	Lamin B receptor	(1,3)
	D79206	Ryudocan	(1,3)		M17733	Thymosin-β4	(2,3)
	HT3125	CD44	(1,3)	Transcription		mymosin-p-	(2,3)
	L39064	IL-9R	(2,1)	Transcription	M69043	ΙκΒα	(1,2)
	X14046	CD37	(2,1)		X58072	GATA-3	
	L31584	EBI-1			U43185	STAT-5A	(1,2)
		LPAP	(2,1)			Jun-B	(1,2)
	X97267		(2,1)		X51345		(1,2)
	M33680	TAPA-1	(2,2)		X56681	Jun-D	(1,2)
	M63175	AMFR	(2,2)		U15460	B-ATF	(1,2)
	U60975	gp250	(2,2)		HT4899	C-myc	(1,2)
	Z50022	C21orf3	(2,2)		L00058	C-myc	(1,2)
	U90546	Butyrophilin BT4	(2,3)		M13929	C-myc	(1,2)
	U90552	Butyrophilin BT5	(2,3)		U26173	NF-IL3A	(1,2)
	X96719	AICL	(2,3)		M97796	Id-2	(1,2)
Cytoskeleton					M96843	Id-2B	(1,2)
	U80184	Flightless I homolog	(1,1)		D14826	CREM	(1,2)
	X00351	β-Actin	(1,2)		568271	CREM	(1,2)
	U20582	Actin-like peptide	(1,2)		J03827	Y box BP	(1,2)
	X82207	β-Centractin	(1,2)		U09412	ZNF134	(1,2)
	X98534	VASP	(1,2)		U13044	NRF-2α	(1,2)
	D83735	Calponin	(2,1)	•	U22431	HIF-1α	(1,2)
	J00314	<i>β</i> -Tubulin	(2,3)		X78925	HZF-2	(1,2)
	M21812	Myosin LC	(2,3)		Z47727	RNA POL2K	(1,2)
	X98411	Myosin-IE	(2,3)		J04076	EGR-2	(1,3)
Kinase/phosp	hatase				D61380	DJ-1	(1,3)
	X79510	PTP D1	(1,1)		HT4567	PC4	(1,3)
	L10717	ITK	(1,2)		HT4921	BTF-3 homolog	(2,1)
	X60673	AK3	(1,2)		L41067	NFAT-4C	(2,3)
	X85545	PKX-1	(1,2)		L78440	STAT-4	(2,3)
	D13720	LYK	(1,2)		M82882	ELF-1	(2,3)
	HT1153	Nm23-H2\$	(1,2)		M83667	NF-IL6	(2,3)
	M30448	CK II B	(1,2)	Signal transc	duction		
	M90299	Glucokinase	(1,2)	المريكة والكاللان	HT5108	TRAP-3	(1,1)
	U08316	ISPK-1	(1,2)		X80200	MLN62	(1,1)
	X80910	PPP1CB	(1,2)		U20158	SLP-76.	(1,2)
	X93920	DUSP-6	(1,2)		U26710	Cbl-b	(1,2)
	U24152	PAK-1	(1,3)		D78132	RHEB	(1,2)
	D11327	PTPN7	(1,3)	Alcelant &	M63573	SCYLP	(1,2)
	U15932	DUSP-5			M75099	FK506 BP	(1,2)
	L16862	GRK-6	(2,1)	and the state	Z35227	TTF	(1,2)
	L27071	TXK	(2,1)		U19261	EBV-independent	(1,3)
	J03805	PPP2CB	(2,1)		M28209	RAB-1	
	HT3678	CLK-1	(2,2)		D78577	14-3-3-Eta	(2,2) (2,3)
	U66464	HPK-1			X89399	ins(1345)P4 BP	
		DAG kinase	(2,3)	DNA SAAA-L		113(1343)F4 BF	(2,3)
	X62535		(2,3)	RNA Metabo		DAID DE	(2.4)
Cidokina	M31724	PTP-1B	(2,3)		D38251	RNP B5	(1,1)
Cytokine	1100022	LT O	/1 4\		U90547	RNP homolog	(1,1)
	U89922	LT-β	(1,1)		X17567	RNP B	(1,2)
	J00219	IFN-γ	(1,2)		M29064	RNP B1	(1,2)

FIG. 25B

Functional category	Accession no.	Common name	Cluster (row, column)
	HT110	RNP A/B	(1,2)
	Z23064	RNP G	(1,2)
	HT3238	RNP K	(1,2)
	X52979	RNP SmB	(1,2)
	U15009	RNP SmD3	(1,2)
	X85372	RNP Sm F	(1,2)
	U30827	SF SRp40	(1,2)
	X70944	SF (PTP-associated)	(1,2)
	M60858	Nucleolin	(1,2)
	U10323	NF45	(1,2)
	U38846	Stimulator of TAR	(1,2)
•	X59417	PROS-27	(1,2)
•	X59892	IFN-independent y2	(1,2)
	X66899	EWS	(1,2)
	X71428	fus	(1,2)
	X72727	Tunp	(1,2)
	X75755	PR264	(1,2)
	Z24724	Poly A site	(1,2)
	L28010	RNP F	(1,3)
	HT4788	RNP I	(1,3)
	L03532	M4	(1,3)
	U69546	RNA BP	(2,3)
Apoptosis	,	1-1-	
	Z23115	Bcl-X _L	(1,2)
	U45878	IAP-1	(1,2)
	U11821	Fas ligand	(1,2)
	S81914	IEX-1	(1,2)
Ch	U37546	MIHC	(1,2)
Chemokine	1422470	145.4	44.5
	M23178	MIP-1α	(1,2)
	J04130	MIP-1β	(1,2)
	M69203 L19686	MCP-1	(1,2)
Protein meta		MIF	(1,3)
riotein meta	.D28473	ILE-tRNA synthase	/1 2\
•	U09510	GLY-tRNA synthase	(1,2)
1 1 1 4 1	L25085		(1,2)
• • • • •	X74801		(1,2)
•	X77584	Chaperonin cctg Chaperonin cctg Thioredoxin	(1,2) (1,2)
	Y00281	Ribophorin I	
	Y10807	ARG-methyltransferase	(1,2) (1,3)
9	D13748	EIF-4AI	(1,3) (1,3)
•	X55733	EIF-4B 125% and 900%	
	X76648	Glutaredoxin/	(2,1)
	A/0040	Giddaredoxiii	(2,3)

Genes populating the six expression clusters for the 11 gene functional categories shown in Fig. 2 are listed. Each gene is identified by GenBank accession no. [or The Institute for Genomic Research (TIGR) identifier for HT designations], followed by a common name and the specific cluster into which it fell (row, column).

FIG. 25(

FIG. 26 C

FIG. 26D

36/40

FIG. 27A

anti-CD3
CIR/CD1a
CIR/CD1b
CIR/CD1c
CIR/CD1d

FIG. 27 B

37/40

FIG. 28B

FIG. 28A

39/40

