Math 245

James Yu

September 14, 2017

Contents

1	September 8 - September 13		
	1.1	Inner Product	1
	1.2	Cauchy-Bunyakovsky-Schwarz Inequality	2
	1.3	Orthogonality	3
	1.4	Gram-Schmidt Procedure	4
	1.5	Orthogonal Complement	5

Week 1

September 8 - September 13

1.1 Inner Product

Definition 1.1.1 (Inner Product Space). An inner product space (over \mathbb{C}) is a vector space V and a function:

$$\langle \cdot, \cdot \rangle : V \times V \to \mathbb{C}$$

satisfying:

i.
$$\langle \vec{x} + \vec{y}, \vec{z} \rangle = \langle \vec{x}, \vec{z} \rangle + \langle \vec{y}, \vec{z} \rangle$$
 for all $\vec{x}, \vec{y}, \vec{z} \in V$

ii.
$$\langle c\vec{x}, \vec{y} \rangle = c \langle \vec{x}, \vec{y} \rangle$$
 for all $\vec{x}, \vec{y} \in V$ and $c \in \mathbb{C}$

iii.
$$\langle \vec{x}, \vec{y} \rangle = \overline{\langle \vec{y}, \vec{x} \rangle}$$
 for all $\vec{x}, \vec{y} \in V$

iv.
$$\langle \vec{x}, \vec{x}, \in \rangle \mathbb{R}_{>0}$$
 if $\vec{x} \neq \vec{0}$, $\langle \vec{x}, \vec{x} \rangle = 0$ otherwise

Example 1.1.1.1 (Standard Complex Inner Product).

$$V = \mathbb{C}^n \qquad \langle (x_1, \dots, x_n), (y_1, \dots, y_n) \rangle = x_1 \overline{y_1} + \dots + x_n \overline{y_n}$$

Properties i, ii, and iii clearly hold. For iv, for any $\vec{x} = (a_1 + b_1 i, \dots, a_n + b_n i)$

$$\langle \vec{x}, \vec{x} \rangle = (a_1 + b_1 i) \overline{(a_1 + b_1 i)} + \dots + (a_n + b_n i) \overline{(a_n + b_n i)}$$

$$= a_1^2 + b_1^2 + \dots + a_n^2 + b_n^2$$
(1.1)

This is the standard complex inner product. If we replace \mathbb{C}^n with \mathbb{R}^n then we get the standard real inner product (dot product).

Example 1.1.1.2 (L^2 Inner Product).

$$V = C([0,1]) \qquad \langle f, g \rangle = \int_0^1 f\overline{g}$$

This is called the L^2 inner product on V

Example 1.1.1.3 (Frobenius Inner Product).

$$V = M_n(\mathbb{C}) \qquad \langle A, B \rangle = tr\left(A\overline{B^{\mathsf{T}}}\right)$$

This is called the Frobenius inner product on V. It satisfies iv because, for $A = (a_{ij})$, $B = (b_{ij})$ we have:

$$tr(A\overline{B^{\intercal}}) = \sum a_{ij}\overline{b_{ij}}$$

which is equivalent to the standard complex inner product.

1.2 Cauchy-Bunyakovsky-Schwarz Inequality

Definition 1.2.1 (Length). If \vec{v} is a vector in an inner product space, the length of \vec{v} is:

$$\|\vec{v}\| = \sqrt{\langle \vec{v}, \vec{v} \rangle}$$

Theorem 1.2.1 (Cauchy-Schwarz). Let $\vec{x}, \vec{y} \in V$ be vectors in an inner product space, then:

$$|\langle \vec{x}, \vec{y} \rangle| \le ||\vec{x}|| \, ||\vec{y}||$$

Proof. If $\vec{y} = \vec{0}$, this is trivial. Otherwise, for any $c \in \mathbb{C}$

$$0 \le \|\vec{x} - c\vec{y}\|^2 \tag{1.3}$$

$$\leq \|\vec{x}\|^2 - \bar{c}\langle \vec{x}, \vec{y}\rangle - c\langle \vec{y}, \vec{x}\rangle + c\bar{c}\|y\|^2 \tag{1.4}$$

So, let $c = \frac{\langle \vec{x}, \vec{y} \rangle}{\|y\|^2}$:

$$0 \le \|\vec{x}\|^2 - \frac{\overline{\langle \vec{x}, \vec{y} \rangle}}{\|y\|^2} \langle \vec{x}, \vec{y} \rangle - \frac{\langle \vec{x}, \vec{y} \rangle}{\|y\|^2} \langle \vec{y}, \vec{x} \rangle + \frac{\langle \vec{x}, \vec{y} \rangle}{\|y\|^4} \|y\|^2$$

$$(1.5)$$

$$\leq \|\vec{x}\|^{2} - \frac{|\langle \vec{x}, \vec{y} \rangle|^{2}}{\|y\|^{2}} - \frac{|\langle \vec{x}, \vec{y} \rangle|^{2}}{\|y\|^{2}} + \frac{|\langle \vec{x}, \vec{y} \rangle|^{2}}{\|y\|^{2}}$$
(1.6)

$$\left| \langle \vec{x}, \vec{y} \rangle \right|^2 \le \left\| \vec{x} \right\|^2 \left\| \vec{y} \right\|^2 \tag{1.7}$$

$$|\langle \vec{x}, \vec{y} \rangle| \le ||\vec{x}|| \, ||\vec{y}|| \tag{1.8}$$

Remark. We can define the angle between \vec{x}, \vec{y} as $\cos^{-1} \frac{|\langle \vec{x}, \vec{y} \rangle|}{\|\vec{x}\| \|\vec{y}\|}$.

1.3 Orthogonality

Definition 1.3.1 (Orthogonality). Two vectors \vec{x}, \vec{y} are orthogonal if and only if $\langle \vec{x}, \vec{y} \rangle = 0$.

Definition 1.3.2 (Unit vector). A unit vector is a vector of length 1.

Definition 1.3.3 (Orthogonal Set). An orthogonal set is a set S where $\langle \vec{x}, \vec{y} \rangle = 0$ for all $\vec{x}, \vec{y} \in S, \vec{x} \neq \vec{y}$.

Definition 1.3.4 (Orthonormal Set). An orthonormal set is an orthogonal set in which each vector is a unit vector.

Example 1.3.4.1 (Standard Basis). The standard basis in \mathbb{R}^n is orthonormal

Theorem 1.3.1 (Orthonormal Coordinates). Let $\{\vec{v}_1, \ldots, \vec{v}_n\}$ be an orthogonal basis of an inner product space V. Then for any $\vec{x} \in V$ we have:

$$\vec{x} = \sum_{i=1}^{n} \frac{\langle \vec{x}_i, \vec{v}_i \rangle}{\|\vec{v}_i\|^2} \vec{v}_i$$

Proof. Write $\vec{x} = a_1 \vec{v}_1 + \ldots + a_n \vec{v}_n$. Then, for any i:

$$\langle \vec{x}, \vec{v}_i \rangle = \langle a_1 \vec{v}_1 + \ldots + a_n \vec{v}_n, \vec{v}_i \rangle \tag{1.9}$$

$$= a_1 \langle \vec{v}_1, \vec{v}_i \rangle + \ldots + a_n \langle \vec{v}_n, \vec{v}_i \rangle \tag{1.10}$$

$$= a_i \langle \vec{v}_i, \vec{v}_i \rangle \tag{1.11}$$

$$a_i = \frac{\langle \vec{x}, \vec{v_i} \rangle}{\|\vec{v_i}\|^2} \tag{1.12}$$

Remark. If $\{\vec{v}_1, \dots, \vec{v}_n\}$ is orthonormal, then $\vec{x} = \sum_{i=1}^n \langle \vec{x}_i, \vec{v}_i \rangle \vec{v}_i$

Remark. The $\vec{v_i}$ coordinate of \vec{x} depends only \vec{x} and $\vec{v_i}$. It does not depend on any other vectors in the basis.

Remark. In finite dimensions, inner product spaces always have orthograal bases.

Theorem 1.3.2 (Orthogonal \implies Linear Independence). Let S be an orthogonal set of non-zero vectors, then S is linearly independent.

Proof. For any $\vec{v}_1, \ldots, \vec{v}_n \in S$, set $a_1\vec{v}_1 + \ldots + a_n\vec{v}_n = \vec{0}$. By similar construction as 1.3.1, we can show for any i that:

$$a_i \langle \vec{v}_i, \vec{v}_i \rangle = 0$$

Since $\vec{v}_i \neq 0$ by assumption, $a_i = 0$ for all i.

1.4 Gram-Schmidt Procedure

Given a basis $\{\vec{w}_1, \dots \vec{w}_n\}$ for a (finite dimensional) inner product space V, the Gram-Schmidt gives an orthogonal basis for V as follows:

Step ① Set
$$\vec{v}_1 = \vec{w}_1$$

Step ② Set
$$\vec{v}_2 = \vec{w}_2 - \frac{\langle \vec{w}_2, \vec{v}_1 \rangle}{\|\vec{v}_1\|^2} \vec{v}_1$$

. . .

Step ① Set
$$\vec{v}_i = \vec{w}_i - \sum_{j=1}^{i-1} \frac{\langle \vec{w}_2, \vec{v}_i \rangle}{\|\vec{v}_i\|^2} \vec{v}_i$$

Claim 1.4.1. $\{\vec{v}_1,\ldots,\vec{v}_n\}$ is an orthogonal basis of V

Proof. We first check that $\{\vec{v}_1, \ldots, \vec{v}_n\}$ is orthogonal.

We proceed by induction on i. If n = 1, we are vacuously done.

Otherwise, assume that $\{\vec{v}_1, \dots, \vec{v}_i\}$ is orthogonal. For any $1 \leq j \leq i$ we have:

$$\langle \vec{v}_{i+1}, \vec{v}_j \rangle = \left\langle \vec{w}_{i+1} - \sum_{k=1}^i \frac{\langle \vec{w}_{i+1}, \vec{v}_k \rangle}{\|\vec{v}_k\|^2} \vec{v}_k, \vec{v}_j \right\rangle$$

$$(1.13)$$

$$= \left\langle \vec{w}_{i+1} - \frac{\langle \vec{w}_{i+1}, \vec{v}_j \rangle}{\|\vec{v}_i\|^2} \vec{v}_j, \vec{v}_j \right\rangle$$

$$(1.14)$$

$$= \langle \vec{w}_{i+1}, \vec{v}_j \rangle - \frac{\langle \vec{w}_{i+1}, \vec{v}_j \rangle}{\|\vec{v}_i\|^2} \|\vec{v}_j\|^2$$
(1.15)

$$= \langle \vec{v}_{i+1}, \vec{v}_j \rangle - \langle \vec{v}_{i+1}, \vec{v}_j \rangle \tag{1.16}$$

$$=0 (1.17)$$

Furthermore, $\vec{v_i} \neq \vec{0}$. For i = 1 we have $\vec{v_1} = \vec{w_1} \neq \vec{0}$ by assumption. Otherwise, we have $\vec{v_i} = \vec{w_i} - \vec{x}$ for $x \in \text{span}\{\vec{w_1}, \dots, \vec{w_{i-1}}\}$. Thus $\vec{v_i}$ is a nonzero linear combination of $\{\vec{w_1}, \dots, \vec{w_i}\}$ and is therefore non-zero.

Thus $\{\vec{v}_1, \dots, \vec{v}_n\}$ is a set of n vectors in an n-dimensional space that are orthogonal and nonzero. By 1.3.2 they are linearly independent, and thus a basis of V.

Remark. To obtain an orthonormal basis of V, simply divide each \vec{v}_i by its length. This is called normalizing.

1.5 Orthogonal Complement

Definition 1.5.1 (Orthogonal Complement). Let V be an inner product space and $W \subset V$ a subspace. The orthogonal complement of W is:

$$W^{\perp} = \{ \vec{v} \in V : \langle \vec{v}, \vec{w} \rangle = 0 \text{ for all } \vec{w} \in W \}$$

Example 1.5.1.1 (Orthogonal complement of entire space is empty).

$$W = V W^{\perp} = \{ \vec{v} \in V : \langle \vec{v}, \vec{w} \rangle = 0 \text{ for all } \vec{w} \in V \} = \{ \vec{0} \}$$

$$because \ \langle \vec{v}, \vec{v} \rangle = 0 \implies \vec{v} = \vec{0}$$

Example 1.5.1.2 (Orthogonal complement of empty subspace is the entire space).

$$W = \left\{ \vec{0} \right\}$$

$$W^{\perp} = V$$

Example 1.5.1.3 (Orthogonal complement of a line is a plane).

$$V = \mathbb{R}^3$$
 $W = \{(0, 0, z) : z \in \mathbb{R}\}$ $W^{\perp} = \{(x, y, 0) : x, y \in \mathbb{R}\}$