2018 Estimation Theory Midexam

Warning: There is a penalty for the wrong answer (minus score). Be careful!

- (1) Suppose X and Y are independent random variables, where X is a uniform random variable on [0,1] and Y is a uniform random variable on [1,2].
 - What is the joint probability density function $f_{XY}(x,y)$?
 - Compute E[XY].
 - Let Z = X + Y. What is the probability that $1 \le Z \le 1.5$?
- (2) Let X be a uniform random variable on [-1,1]. Let Y(t) be a random process defined by Y(t)=3X+1.
 - What is the autocorrelation function $R_Y(\tau)$ of Y(t)?
 - Is Y(t) ergodic?
- (3) Consider the following system:

$$\begin{array}{rcl} x_{k+1} & = & 2x_k + w_k \\ z_k & = & x_k + v_k \end{array}$$

where w_k and v_k are white Gaussian noises whose variances are q=1 and r=5, respectively. Suppose $\hat{x}_0=1$ and $P_0=1$.

- When $z_1 = 3$, compute \hat{x}_1 and P_1 .
- What is the probability that $|x_1 \hat{x}_1| \le 5$?
- (4) Let Y = X + V where $X \sim N(a,1)$ and $V \sim N(0,1)$. Assume that X and V are uncorrelated. Suppose your estimator is given by

$$\hat{X} = \alpha a + \beta Y$$

where α and β are constant weighting values.

- Find the condition that the estimator becomes an unbiased estimator (that is, $E\{e\} = E\{X \hat{X}\} = 0$).
- What is $E\{e^2\}$ when $\alpha = \beta = 0.5$.

Total:

(1) \square \square

$$f_{XY}(x,y) = \begin{cases} 1, & \text{if } 0 \le x \le 1 \text{ and } 1 \le y \le 2\\ 0, & \text{otherwise} \end{cases}$$

- $\Box \Box E\{XY\} = E\{X\}E\{Y\} = \frac{1}{2}\frac{3}{2} = \frac{3}{4}$
- \square \square $\frac{1}{8}$
- (2) $\square \square R_Y(\tau) = \mathbb{E}\{(3X+1)^2\} = 4$
 - \square not ergodic
- (3) \Box $\hat{x}_1 = 2.5$ and $P_1 = 2.5$
 - □ □ 0.99?
- (4) $\square \square \alpha = 1 \beta$
 - \square \square $\frac{1}{2}$

O:

X:

Total:

(1) \square \square

$$f_{XY}(x,y) = \begin{cases} 1, & \text{if } 0 \le x \le 1 \text{ and } 1 \le y \le 2 \\ 0, & \text{otherwise} \end{cases}$$

- $\Box \Box E\{XY\} = E\{X\}E\{Y\} = \frac{1}{2}\frac{3}{2} = \frac{3}{4}$
- \square \square $\frac{1}{8}$
- (2) $\square \square R_Y(\tau) = \mathbb{E}\{(3X+1)^2\} = 4$
 - \square not ergodic
- (3) \square $\hat{x}_1 = 2.5$ and $P_1 = 2.5$
 - \square \square 0.99?
- (4) \square \square $\alpha = 1 \beta$
 - \square \square $\frac{1}{2}$