International Economics I

Lecture Set 2: The Ricardian Model of Trade

Tomas Rodriguez Martinez

Department of Economics and Business Universitat Pompeu Fabra

Questions

- consider two countries with different technologies (North and South)
 - 1 how does production change in open economy?
 - 2 who exports/imports what?
 - 3 which are the welfare effects of trade?
 - 4 who gains more from trade?
 - 6 what happens if more countries (e.g., China and India) open to trade?
 - 6 what happens if there is technological progress in a country (e.g., China)?
 - 7 what happens if global imbalances adjust?

Plan

- we'll answer within the framework of the Ricardian model:
 - 2 countries: home and foreign (*)
 - many goods: indexed by $i \in [1, N]$, N large $(\rightarrow \infty)$
 - 1 factor of production: labor (L and L^*)
 - mobile between sectors
 - immobile between countries
 - technologies with constant returns to scale
 - different across sectors
 - different across countries (source of comparative advantage, CA)
 - same preferences in both countries
 - perfect competition

Preview of the Answers

- 1 every country specializes in producing its goods of CA
- 2 export the goods of CA, import the rest
- 3 trade benefits both trade partners
- 4 small countries gain more from trade
- 5 trade opening in China and India benefits mainly the developed countries
- 6 technological progress:
 - benefits all countries if uniform
 - may hurt developed countries if biased
- countries losing their current account deficit (surplus) would lose (gain)

Technology

- N goods (sectors) indexed by i = 1, 2, ..., N
- home production funtions:
 - need a_{Li} units of L to produce one unit of good i

$$Q_i = \frac{L_i}{a_{Li}} \colon \ Q_1 = \frac{L_1}{a_{L1}}, \ Q_2 = \frac{L_2}{a_{L2}}, ..., \ Q_N = \frac{L_N}{a_{LN}}$$

 Q_i = units of i produced

 L_i = units of labor employed in sector i

- $1/a_{Li}$ represents home labor productivity in sector i
- foreign production functions:
 - need a_{Li}^* units of L^* to produce one unit of good i

$$Q_i^* = \frac{L_i^*}{a_{Li}^*}$$

- $1/a_{Li}^{\star}$ represents foreign labor productivity in sector i

Technology and Relative Productivity

- different technologies: $a_{Li} \neq a_{Li}^{\star}$ for all goods i = 1, 2, ..., N
 - home more productive in sector j if

$$a_{Lj} < a_{Lj}^*$$
, i.e., $\frac{a_{Lj}^*}{a_{Lj}} > 1$

- for convenience, order goods by decreasing home relative productivity

$$\frac{a_{L1}^*}{a_{L1}} > \frac{a_{L2}^*}{a_{L2}} > \dots > \frac{a_{LN}^*}{a_{LN}}$$

- draw in a graph the relative productivity line $A(i) \equiv a_{Li}^*/a_{Li}$

Relative Productivity: Graph

in perfect competition, price has to equal marginal cost

$$P_i = a_{Li} \times w$$

$$P_i^* = a_{Li}^* \times w^*$$

with $w(w^*)$ = wage at home (foreign)

- who ends up producing good i?
- the country that sells it cheaper!
 - home specializes in goods i with $P_i < P_i^*$
 - these are the sectors where home relative productivity is higher than relative wage

$$P_i < P_i^* \Longleftrightarrow \frac{a_{Li}^*}{a_{Li}} > \frac{w}{w^*}$$

- for given relative wage w/w^* :
 - home produces all goods i = 1, 2, ...z (z is the marginal commodity)

$$\frac{a_{Lz}^*}{a_{Lz}} = \frac{w}{w^*}$$

- the foreign country produces all goods i = z + 1, z + 2, ...N
- note: the autarky price of z-1 relative to z+1 is
 - in the home country

$$p = P_{z-1}/P_{z+1} = a_{Lz-1}/a_{Lz+1}$$

- in the foreign country

$$p^* = P_{z-1}^*/P_{z+1}^* = a_{Lz-1}^*/a_{Lz+1}^* > p$$

- home exports z-1 and imports z+1 as $p < p^*$ (CA as in lecture 3)

- efficient specialization:
 - a country produces the goods of its comparative advantage
- comparative advantage:
 - the country's relative productivity is high enough so to compensate its relative cost of labor
- comparative vs absolute advantage:
 - a country doesn't need to have higher labor productivity (absolute advantage) to specialize in a good
 - even if $a_{Li}>a^*_{Li}$, can have $P_i< P^*_i$ provided that the relative wage is low enough $(w/w^*< a^*_{Li}/a_{Li}<1)$
 - absolute advantage may not be sufficient
 - even if $a_{Li} < a_{Li}^*$, can have $P_i > P_i^*$ provided that the relative wage is high enough $(w/w^* > a_{Li}^*/a_{Li} > 1)$

Relative Wage and Efficient Specialization

- if the relative wage increases:
 - home specializes in the production of fewer goods $(w/w^* \uparrow \rightarrow z \downarrow)$
 - home produces only in the sectors where its relative productivity is higher
 - home becomes on average more productive relative to the foreign country

Equilibrium in Open Economy

- how is the relative wage determined?
- supply = demand of home produced goods
- the $A\left(i\right)$ schedule represents the supply for given relative wage w/w^{*}
 - depends on technology
- demand depends on preferences and relative mass of consumers

Demand Side: Preferences

- preferences are the same in both countries
- consumers want to spend in each good the same share $\left(1/N\right)$ of their income
 - home expenditure in good $j = wL \times 1/N$
 - foreign expenditure in good $j = w^*L^* \times 1/N$
- ullet for given marginal good z
 - home expenditure in "home" goods = $wL \times z/N$
 - foreign expenditure in "home" goods = $w^*L^* \times z/N$

Demand Side: Market Clearing

- ullet equilibrium in the "home" goods market, for given specialization z
 - home income = world expenditure in "home" goods

$$wL = (wL + w^*L^*) \times z/N$$

- express this in terms of marginal commodity z and w/w^*

$$\frac{w}{w^*} = \frac{L^*}{L} \frac{z}{N-z} \equiv B\left(z, \frac{L^*}{L}\right)$$

- for given specialization pattern (z), the relative wage must clear the market
- if home specializes in more goods $(z \uparrow)$
 - relative demand of home goods (and labor) increases $(z/(N-z))\uparrow$
 - home income must increase $(w/w^*)\uparrow$ to restore the equilibrium
- \bullet to draw the demand-side, $B\left(i,\frac{L^*}{L}\right)\!,$ assume any i to be the marginal good
 - $B\left(i, \frac{L^*}{L}\right)$ is increasing in i

Equilibrium in Open Economy: Graph

Equilibrium in Open Economy: Properties

- home produces z goods and has a relative wage of w/w^*
- equilibrium values depend on:
 - technological differences between home and foreign (the slope of A(i))
 - the size of both countries (L^*/L)
- we'll see how the equilibrium varies with these variables

Equilibrium in Open Economy: Real Wage

- ullet the purchasing power of home wage in terms of good i is
 - in closed economy,

$$\frac{w}{P_i} = \frac{1}{a_{Li}} \quad \text{for } i=1,2,...,N$$

since home produces all goods

- in open economy,

$$\frac{w}{P_{i}^{I}} = \left\{ \begin{array}{ll} \frac{w}{P_{i}} = \frac{1}{a_{Li}} & \text{for } i = 1, 2, ..., z \\ \frac{w}{P_{i}^{*}} = \frac{w}{w^{*}a_{Li}^{*}} & \text{for } i = z + 1, ..., N \end{array} \right.$$

since home produces all goods up to z and the foreign country the remaining N-z.

Gains From Trade: Home

- compare the real wage in autarky and in open economy
- home real wage
 - is unchanged in terms of the goods that remain "home" $(i \le z)$

$$w/P_i^I = w/P_i = 1/a_{Li}$$
 for $i = 1, 2, ..., z$

- increases in terms of the goods of foreign specialization ($z < i \le N$)

$$\frac{w/P_i^I}{w/P_i} = \frac{w/P_i^*}{w/P_i} = \frac{a_{Li}w}{a_{Li}^*w^*} > 1 \quad \text{for } i = z+1, ..., N$$

as the foreign country has comparative advantage in these sectors $(a_{Li}^*/a_{Li} < w/w^*)$

- gains from trade:
 - home can consume
 - the same units of goods i = 1, 2, ...z
 - more units of goods i = z + 1, ..., N
 - since they are produced cheaper in the foreign country

Gains From Trade: Foreign

- compare the real wage in autarky and in open economy
- foreign real wage
 - increases in terms of "home" goods $(i \le z)$

$$\frac{w^*/P_i^I}{w^*/P_i^*} = \frac{w^*/P_i}{w^*/P_i^*} = \frac{a_{Li}^*w^*}{a_{Li}w} > 1 \quad \text{for } i = 1, 2, ..., z$$

as home has comparative advantage in these sectors $(a_{Li}^*/a_{Li}>w/w^*)$

– is unchanged in terms of goods that remain "foreign" ($z < i \le N$)

$$w^*/P_i^I = w^*/P_i^* = 1/a_{Li}^*$$
 for $i = z + 1, ..., N$

- gains from trade:
 - the foreign country can consume
 - more units of goods i = 1, 2, ...z
 - since they are produced cheaper in "home"
 - the same units of goods i = z + 1, ..., N

Gains From Trade

- the GFT for both countries depend on the difference between relative productivity and the relative wage $(a_{Li}^*/a_{Li} \& w/w^*)$:
 - the higher the difference the larger the GFT
 - in the graph, the gains are proportional to the areas between the $A\left(i\right)$ schedule and the equilibrium relative wage
 - the more diverse the trading partners (steeper $A\left(i\right)$), the larger their GFT

Gains From Trade: Graph

Country Size and Pattern of Trade

- suppose the foreign country becomes larger $(L^*/L\uparrow)$:
 - for given specialization (z), the demand for home goods increases
 - relative wage increases: $(w/w^*)' > (w/w^*)$
 - w/w^* ↑ → home loses comparative advantage in the goods with lower relative productivity $(a_{Lz'}^*/a_{Lz'} > a_{Lz}^*/a_{Lz})$
 - home specializes in less goods: z' < z
 - home average relative productivity increases
 - $-w/w^*$ ↑ → foreign acquires comparative advantage in the sectors of lower relative productivity $(a_{Lz'}^*/a_{Lz'} > a_{Lz}^*/a_{Lz})$
 - foreign specializes in more goods
 - foreign average relative productivity falls

Size and Pattern of Trade

consider home real wage as a welfare indicator:

$$\frac{w}{P_i^I} = \begin{cases} \frac{1}{a_{L^i}} & \text{for } i = 1, 2, ... z' \\ \frac{1}{a_{L^i}} & \text{for } i = z' + 1, ... z \\ \frac{1}{a_{L^i}^i} \frac{w}{w^*} & \text{for } i = z + 1, ... N \end{cases}$$

$$\left(\frac{w}{P_i^I} \right)' = \begin{cases} \frac{1}{a_{Li}} & \text{for } i = 1, 2, ... z' \\ \frac{1}{a_{Li}^*} \left(\frac{w}{w^*} \right)' & \text{for } i = z' + 1, ... z \\ \frac{1}{a_{Li}^*} \left(\frac{w}{w^*} \right)' & \text{for } i = z + 1, ... N \end{cases}$$

- home welfare:
 - is unchanged in terms of the goods that remain "home" $(i \le z')$
 - increases in terms of the goods that shift to "foreign" $(z' < i \le z)$
 - since they become cheaper due to efficient specialization:

$$\left(\frac{w}{w^*}\right)' > \frac{a_{Li}^*}{a_{Li}} \rightarrow \frac{1}{a_{Li}^*} \left(\frac{w}{w^*}\right)' - \frac{1}{a\left(z\right)} > 0$$

- increases in terms of the goods that remain "foreign"
 - since they become cheaper due to $(w/w^*)'/a_{Li}^* > (w/w^*)/a_{Li}^*$

• consider foreign real wage as a welfare indicator:

$$\frac{w^*}{P_i^I} = \begin{cases} \frac{1}{a_{Li}} \frac{w^*}{w} & \text{for } i = 1, 2, ... z' \\ \frac{1}{a_{Li}} \frac{w^*}{w} & \text{for } i = z' + 1, ... z \\ \frac{1}{a_{Li}} \frac{w^*}{w} & \text{for } i = z + 1, ... N \end{cases}$$

$$\left(\frac{w}{P_i^I} \right)' = \begin{cases} \frac{1}{a_{Li}} \left(\frac{w^*}{w} \right)' & \text{for } i = 1, 2, ... z' \\ \frac{1}{a_{Li}^*} & \text{for } i = z' + 1, ... z \\ \frac{1}{a_{Li}^*} & \text{for } i = z + 1, ... N \end{cases}$$

- foreign welfare:
 - falls in terms of the goods that remain "home" $(i \le z')$
 - since home goods become more expensive due to higher relative wage
 - falls in terms of the goods that shift to "foreign" $(z' < i \le z)$
 - since they become more expensive due to low foreing productivity

$$\left(\frac{w}{w^*}\right)' > \frac{a_{Li}^*}{a_{Li}} > \frac{w}{w^*} \to \frac{1}{a_{Li}} \frac{w^*}{w} - \frac{1}{a_{Li}^*} < 0$$

- is unchanged in terms of the goods that remain "foreign"
- note: not all GFT are lost!

- what did we learn from this exercise?
- small countries gain more from trade
 - can specialize in few sectors, where they have the highest relative productivity
 - can import more goods at a cheaper price
- advanced countries benefit from China and India opening to trade (the South becomes larger)
 - can specialize in sectors of higher technological advantage (e.g., PCs, ICT etc...)
 - import cheaper in sectors with less advanced technology (e.g., textiles)

(Uniform) Technological Progress and Trade

- foreign relative productivity increases in all sectors: $(a_{Li}^*)' < a_{Li}^* \rightarrow A(i) \downarrow \text{ for all } i$
 - for given relative wage, home stops producing the goods in which it loses enough relative productivity $z \downarrow (1 \rightarrow 2)$
 - for given w/w^* and specialization in less goods, relative demand falls
 - the relative wage has to fall reflecting the fall in home relative productivity $(w/w^*)' < w/w^*$ (2 \rightarrow 3)
 - overall: z' < z and w/w^* falls by less than home relative productivity $|\Delta\left(w/w^*\right)| < |\Delta A\left(i\right)| = |\Delta a_{Li}^*|$
 - the foreign country specializes in more sectors and enjoys higher relative wage due to technological improvement

Technological Progress and Pattern of Trade

consider home real wage as a welfare indicator:

$$\begin{split} \frac{w}{P_i^I} &= \begin{cases} \frac{1}{a_{L^i}} & \text{for } i = 1, 2, ... z' \\ \frac{1}{a_{L^i}} & \text{for } i = z' + 1, ... z \\ \frac{L^i}{a_{L^i}} \frac{w}{w^*} & \text{for } i = z + 1, ... N \end{cases} \\ \begin{pmatrix} \frac{w}{P_i^I} \end{pmatrix}' &= \begin{cases} \frac{1}{a_{L_i}} & \text{for } i = 1, 2, ... z' \\ \frac{1}{(a_{L_i}^*)'} \left(\frac{w}{w^*}\right)' & \text{for } i = z' + 1, ... z \\ \frac{1}{(a_{L_i}^*)'} \left(\frac{w}{w^*}\right)' & \text{for } i = z + 1, ... N \end{cases} \end{split}$$

- home welfare:
 - is unchanged in terms of the goods that remain "home" $(i \le z')$
 - increases in terms of the goods that switch to "foreign" $(z' < i \le z)$
 - become cheaper due to efficient specialization
 - increases in terms of the goods that remain "foreign"
 - become more expensive due to lower relative wage: $\left(w/w^*\right)' < \left(w/w^*\right)$
 - become cheaper due to higher foreign productivity: $\left(a_{Li}^{*}\right)' < a_{Li}^{*}$
 - overall: foreign goods become cheaper since $\left|\Delta\left(w/w^*\right)\right|<\left|\Delta a_{Li}^*\right|$

consider foreign real wage as a welfare indicator:

$$\begin{split} \frac{w^*}{P_i^I} &= \begin{cases} \frac{1}{a_{Li}} \frac{w^*}{w} & \text{for } i = 1, 2, ... z' \\ \frac{1}{a_{Li}} \frac{w^*}{w} & \text{for } i = z' + 1, ... z \\ \frac{1}{a_{Li}^*} & \text{for } i = z + 1, ... N \end{cases} \\ \begin{pmatrix} \frac{w}{P_i^I} \end{pmatrix}' &= \begin{cases} \frac{1}{a_{Li}} \left(\frac{w^*}{w} \right)' & \text{for } i = 1, 2, ... z' \\ \frac{1}{(a_{Li}^*)'} & \text{for } i = z' + 1, ... z \\ \frac{1}{(a_{Li}^*)'} & \text{for } i = z + 1, ... N \end{cases} \end{split}$$

- foreign welfare:
 - increases in terms of the goods that remain "home" $(i \le z')$
 - become cheaper due to lower relative wage $(w/w^*)' < (w/w^*)$
 - increases in terms of the goods that switch to "foreign" $(z' < i \le z)$
 - become cheaper as foreign higher productivity outweighs higher relative wage
 - increases in terms of the goods that remain "foreign"
 - become cheaper due to higher foreign productivity

- what did we learn from this exercise?
- both trade partners gain if one experiences technological progress in all sectors
- the country that experences it gains more
- we should not be afraid of technological progress in poor countries, as long as it is uniform...

Technological Catch-Up and GFT

- suppose, as in Samuelson (2004), that:
 - home (North) starts with an absolute advantage in all sectors: $a_{Li}^*>a_{Li}$ for all i
 - foreign (South) catches up in technology in all sectors: $(a_{Li}^*)' = a_{Li}$
- this maximizes world production
 - as if the North (e.g., the US) produced everything for all the world
- South gains
 - reaches the level of per capita GDP of the North
- North loses all the GFT, as it goes back to its closed-economy equilibrium
 - the US stop enjoying cheap textiles import from China

Transport Costs and Non-Tradeable Goods

- suppose there is a transport cost:
 - to get one unit of foreign good, home consumers have to buy t>1 units $(t={\sf iceberg\ cost})$
 - the price of i for home consumers is

$$P_i = wa_{Li}$$
 if i produced in home $tP_i^* = tw^*a_{Li}^*$ if i produced in foreign

- the price of i for foreign consumers is

```
tP_i = twa_{Li} if i produced in home P_i^* = w^*a_{Li}^* if i produced in foreign
```

Transport Costs and Non-Tradeable Goods

- efficient specialization for given relative wage:
 - home produces goods $i \le z$ with

$$twa_{Lz} = w^*a_{Lz}^* \iff w/w^* = A(z)/t$$

- foreign produces goods $i \ge z^*$ with

$$wa_{Lz^*} = tw^*a_{Lz^*}^* \Longleftrightarrow w/w^* = A(z^*) * t$$

- $-A(z^*)*t>A(z)/t$ → goods $z < i < z^*$ are non tradeable
- goods market equilibrium/balanced trade:

$$\frac{N-z^*}{N}wL = \frac{z}{N}w^*L^*$$

Transport Costs and Non-Tradeable Goods

Empirical Evidence and Applications

- limits of the model:
 - predicts perfect specialization: not observed
 - unable to address the redistributive effects of trade: only one factor
 - difficult to apply the baseline model to a world with many countries: which relative productivities?
- validity:
 - predicts that comparative, and not absolute, advantage determine the pattern of trade
 - evidence from 1963 on the US and the UK, 26 sectors :
 - the US had absolute advantage in all sectors, but exported in only half of them
 - the US exported more in the sectors where its relative productivity was higher

A Ricardian Model for Quantitative Analysis

- extension: Eaton and Kortum (2002)
 - many goods and countries + transport costs
 - for each good, instead of relative productivity, focus on the probability that a country is the most efficient producer
 - estimate model parameters so to reproduce the pattern of trade
- may use the model to evaluate quantitatively:
 - the gains from trade
 - the effects of a drop in transport costs and/or tariffs
 - the effects of technological progress
 - the effects of trade opening in a country (e.g., China)
 - the effects of global imbalances (and rebalancing)
 - more...

Quantifying the Gains from Trade

- in the model without trade costs + same preferences:
 - each country consumes a fraction of its production equal to its GDP as a share of world GDP
 - in reality, due to trade barriers, countries consume much more in domestic products
 - between 1996 and 2006 the expenditure share in domestic goods dropped significantly (globalization)
 - welfare effect:
 - gains from trade increased
 - effect of a 25% drop in trade costs
 - world trade/GDP doubles
 - gains are positive and decreasing in country size

Quantifying the GFT

Real Wage Response to a Decrease in Trade Barriers

Application: Gobal Imbalances

- some countries transfer (lend) wealth to others (e.g., via trade surplus or capital flows) → global imbalances
- in recent years, China has been transferring billions of \$ to the US
- how does the imbalance affect the welfare of both?
- how would a rebalancing of the current account affect welfare?

Unbalanced Trade (% world GDP)

Current Account Surpluses (2011)

Country	CA in US\$ bill.	CA as % GDP	Country	CA in US\$ bill.	CA as % GDP
Algeria	19.697	9.955	Japan	119.304	2.034
Argentina	-0.299	-0.067	Korea	26.505	2.375
Australia	-33.522	-2.254	Kuwait	70.8	43.98
Austria	8.147	1.947	Mexico	-11.073	-0.96
Brazil	-52.48	-2.105	Netherlands	70.901	8.46
Canada	-48.906	-2.812	Norway	70.289	14.48
Chile	-3.222	-1.297	Pakistan	0.214	0.102
China	201.72	2.764	Peru	-3.341	-1.885
Colombia	-9.978	-3.046	Portugal	-15.339	-6.449
Denmark	22.178	6.68	Russia	98.834	5.341
Egypt	-6.088	-2.583	Singapore	56.989	21.932
Finland	-3.124	-1.186	Spain	-52.174	-3.526
France	-54.169	-1.95	Sweden	37.73	6.927
Germany	203.929	5.653	Switzerland	69.538	10.524
Greece	-29.353	-9.808	Thailand	11.87	3.434
Hong Kong	12.908	5.297	Turkey	-77.141	-9.962
India	-62.756	-3.435	United Kingdom	-46.578	-1.916
Ireland	2.484	1.123	United States	-465.928	-3.091
Israel	1.907	0.783	Uruguay	-1.442	-3.087
Italy	-71.67	-3.26	Venezuela	27.205	8.597

Application: Gobal Imbalances

- suppose China (*) transfers T to the US
 - suppose all goods are traded
 - technology, A(i), is unchanged
 - $B\left(i,L^*/L\right)$ is unchanged too, as China and the US spend T in the same way as before (1/N) in each good)
 - trade balance equilibrium requires that US import export equal the transfer

$$T = \frac{N-z}{N} (wL + T) - \frac{z}{N} (w^*L^* - T)$$

• result: no effect on w/w^* nor $z \to$ no welfare effect!

Application: Gobal Imbalances With Non-Tradeables

- suppose that goods $z < i < z^*$ are non-tradeables
 - trade balance equilibrium requires:

$$T = \frac{N - z^*}{N} \left(wL + T \right) - \frac{z}{N} \left(w^*L^* - T \right)$$

- which implies

$$wL = \frac{z^* - z}{N - z}T + \frac{z}{N - z}w^*L^*$$

 result: the transfer increases relative demand for US goods and hence its relative wage

Application: Gobal Imbalances With Non-Tradeables

- Dekle, Eaton and Kortum (2008) take data from 2004
 - lenders (CA/GDP): China (+4%), Japan, (+3.9%), Germany (+3.8%),
 Norway (+14%)
 - borrowers (CA/GDP): US (-5.6%), Spain (-5.1%), Portugal (-7%), UK (-1.5%)
- calculate the wage adjustment needed to eliminate global imbalances
 - lenders (Δw): China (+1.5%), Japan, (+3.3%), Germany (+2.5%), Norway (+13%)
 - borrowers (Δw): US (-4.5%), Spain (-1.6%), Portugal (-2.5%), UK (-1.5%)
 - note: Spain's CA/GDP is by now +0.7% (wages dropped substantially)

Application: Technological Progress and Welfare in the Global Economy

- consider the Ricardian model à la Eaton and Kortum
- Di Giovanni, Levchenko y Zhang (2014) quantify for 74 countries the effects of
 - uniform progress in China
 - biased progress in China (catching up with the US)
- results:
 - the world gains from a biased progress more than a uniform one (+0.42% vs 0.01%)
 - the US and almost all countries gain from China's biased progress

Technological Progress in China and Global Welfare

Panel B: Welfare Gains from Balanced Growth in China

	Mean	Median	$_{ m Min}$	$_{\rm Max}$	Countries
China	11.43				
OECD	0.01	0.02	-0.01	0.04	22
East and South Asia	0.03	0.04	-0.05	0.09	12
East. Europe and Cent. Asia	0.01	0.01	-0.02	0.06	11
Latin America and Caribbean	-0.01	0.00	-0.06	0.04	15
Middle East and North Africa	-0.01	-0.01	-0.07	0.02	6
Sub-Saharan Africa	0.00	0.01	-0.02	0.02	8

Panel C: Welfare Gains from Unbalanced Growth in China

	Mean	Median	Min	Max	Countries
China	10.57				
OECD	0.17	0.12	-0.07	0.77	22
East and South Asia	0.84	0.74	0.22	1.70	12
East. Europe and Cent. Asia	0.42	0.34	0.07	1.52	11
Latin America and Caribbean	0.50	0.49	0.09	1.68	15
Middle East and North Africa	0.48	0.52	0.19	0.77	6
Sub-Saharan Africa	0.23	0.21	-0.03	0.57	8

Technological Progress in China and Global Welfare

- why do countries benefit from China's unbalanced technical progress?
- China has a technology equal to the world average

- if China adopts the more advanced US technology
- lacktriangleright world technological diversity increases ightarrow gains for all

Summary

- comparative advantage based on technological diversity
 - a country specializes in the sectors where its relative productivity more than compensates its relative wage
- trade benefits both trading partners
- trade is more beneficial for small countries
- technological progress in a country,
 - if uniform, is beneficial for both trading partners
 - if biased towards the sectors of its comparative disadvantage, may hurt the trading partner