

Table of contents

- Overview
- Properties of CBDC
- Implications of society, government
- Concerns of privacy and security
- Programmability constraints
- Should CBDC issued by local banks, central banks?
- How CBDC can be implemented in real world?
- Existing simulators

Overview

- Virtual fiat currency
- It is **NOT** cryptocurrency (Unregulated)
- Types:
 - Retail (general-purpose)
 - Meant for average consumers and the general public for conducting daily transactions
 - Wholesale
 - Meant for exchanging and trading among private banks and central banks

Properties

- Convertible, acceptable and available
- Global financial inclusivity
- Simplified financial services infrastructure
- Secure, instant and resilient
- Available and throughput
- Scalable and interoperable

Implications of society, government

- Society
 - Increase financial inclusion
 - Faster and cheaper cross-border payments
 - Less usage of cash
- Government
 - More visibility into economy, tax evasion
 - Impact on traditional banking models
 - Greater control and oversight

Concerns of privacy & security

- Tracing & monitoring transactions
- Anonymity (risk of money laundering)
- Data breach
- System failure & Cyber attacks
- Cyber crime
- Secure storage

Programmability constraints

- Balance flexibility with stability
- Clear, enforceable and transparent
- Legal & regulatory constraints
- International coordination
- Scalability
- Governance
- Interoperability

Should CBDC issued by local banks, central banks?

- CBDC Issuer: Central Banks
 - Maintains financial stability
 - Government-backed trust
 - Centralized supply management
 - Potential for government control
 - Competition with banking sector
- CBDC Issuer: Local Banks
 - Existing customer relationships
 - Maintains banking sector
 - Innovative applications possible
 - Fragmentation and instability risk
 - Limited trust and adoption

- Define the parameters of the digital currency:
 - Initial coin supply
 - Block time
 - Reward for mining block
 - Mining difficulty
- Choose Programming Language:
 - Python, C++. (Which tech stack we should use according to you?)

- Implement the Database
 - Centralized or distributed database

- Develop UI
 - View the transactions
 - Submit transaction
 - Check balance
 - Display current state of digital currency (current coin supply, number of transactions)
 - (Are these features, okay? In addition to that what other features we should add)

- Test
 - Network congestion
 - Double spending attacks
- Deploy

Existing simulators

- Crypto Miner Tycoon
 - https://store.steampowered.com/app/2304990/Crypto_Miner_Tycoon_Simulator_Starter_Edition/
- OpenCBDC Project Hamilton CBDC
 - https://dci.mit.edu/opencbdc
- Paid simulators
- Agent-Based Simulator by Financial Network Analytics

Agent-Based Simulator by Financial Network Analytics

- Based on behavior and interaction of agents in financial system
- Agent Classes:
 - A central bank
 - A commercial Bank
 - Merchants
 - Consumers

Key Outputs of Agent-Based Simulator

- Composition of Consumer's wealth
- Diffusion of means of payments
- Bank deposits
- Interest rates
- Size of economy