

Fundamentals of Information Theory

Basic Concepts

Yayu Gao

School of Electronic Information and Communications Huazhong University of Science and Technology

Email: yayugao@hust.edu.cn

- Model of communication systems
- How to characterize the information source?
- How much information a message contains?
- What is entropy?
- Joint and conditional entropy
- Relative entropy and mutual information
- Entropies in communications
- Chain Rules
- Jensen's Inequality and Log Sum Inequality
- Entropy rate: from single-outcome to sequence-outcome
- What is a Markov source?
- Differential Entropy: from discrete to continuous

- 1. 写出定义与表达式,进行计算
 - **□Joint entropy**
 - **□Conditional entropy**
 - **□**Relative entropy
 - **□**Mutual information
- 2. 说出≥2条互信息的性质
- 3. 根据Venn Diagram, 说出≥4个数学关系
- 4. 说出熵等相关概念在通信系统中的物理意义

重难点:

- > 概念及其表达式
- > 概念之间的关系
- ▶ 计算
- > 物理意义

Joint entropy: definition

• The joint entropy of a pair of discrete random variables (X, Y) with a joint distribution p(x, y) is defined as

$$H(X, Y) = -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) \log[p(x, y)]$$
$$= -E\{\log[p(x, y)]\}$$

• Do we have H(X, Y) = H(X) + H(Y)?

THE STATE OF THE S

Joint entropy: example

- There are 2 black balls and 1 white ball in the box.
- Case 1
 - X: Pick one ball and check the color, then put it back;
 - Y: Pick another ball and check the color.
- Case 2
 - X: Pick one ball and check the color, yet do not put it back;
 - Y: Pick another ball and check the color.
- What are the joint entropy of (X, Y) in these two cases?
- $H(X, Y) \leq H(X) + H(Y)$.
- When does "=" hold?
- Where is the missing information?

Conditional entropy: definition

Conditional entropy

$$H(Y|X) = \sum_{x \in \mathcal{X}} p(x)H(Y|X = x)$$

$$= -\sum_{x \in \mathcal{X}} p(x) \sum_{y \in \mathcal{Y}} p(y|x) \log [p(y|x)]$$

$$= -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) \log [p(y|x)]$$

$$= -E\{\log[p(y|x)]\}$$

- ·上式被称为,联合集XY中,集Y相对于集X的条件熵
- If X and Y are independent, H(Y|X)=?
- Can you prove it?

Conditional entropy: notes

- Do we have H(Y|X)=H(X|Y)? In general, NO.
- 集X相对于集Y的条件熵

$$H(X \mid Y) = -\sum_{XY} p(xy) \log p(x \mid y)$$

• 集 / 相对于集 / 的条件熵

$$H(Y \mid X) = -\sum_{XY} p(xy) \log p(y/x)$$

- Note: The average is taken over the joint distribution.
- DO NOT write it as

$$H(X | Y) = -\sum_{i=1}^{n} \sum_{j=1}^{m} p(x_i | y_j) \cdot \log p(x_i | y_j)$$

Venn Diagram

• What can you see?

06

Relative Entropy

Relative entropy: Motivation

$$|A - B| = \sqrt{(x_A - x_B)^2 + (y_A - y_B)^2}$$

$$|I_B - I_A| = \left| \log \left[\frac{1}{q(x)} \right] - \log \left[\frac{1}{p(x)} \right] \right| = \log \left[\frac{p(x)}{q(x)} \right]$$

How to measure the **distance** between two *p.m.f.*?

Average:
$$\sum_{x \in \mathcal{X}} p(x) \log \left[\frac{p(x)}{q(x)} \right]$$

Relative entropy (Kullback-Leibler divergence): Definition

• Definition: a measure of the information distance or the information divergence between two p.m.f., p(x) and q(x).

$$D(p(x)||q(x)) = \sum_{x \in \mathcal{X}} p(x) \log \left[\frac{p(x)}{q(x)} \right] = E_p \left\{ \log \left[\frac{p(X)}{q(X)} \right] \right\}$$

- When p(x) is the true p.m.f. of X, this measures the inefficiency of assuming q(x) is the p.m.f. of X.
- It is "distance-like" in many respects.
- It is not a true distance, since it
 - is not symmetric
 - does not satisfy the triangle inequality

$$D(p||q)$$
 v.s. $D(q||p)$

$$D(p||q) + D(q||r)$$
 v.s. $D(p||r)$

Asymmetry of relative entropy: Example

Let
$$x \in \mathcal{X} = \{0, 1\}$$
, $p(0) = 1 - r$, $p(1) = r$, $q(0) = 1 - s$, $q(1) = s$.

$$D(p(x)||q(x)) = p(0) \log \left[\frac{p(0)}{q(0)}\right] + p(1) \log \left[\frac{p(1)}{q(1)}\right]$$
$$= (1 - r) \log \left[\frac{1 - r}{1 - s}\right] + r \log \left[\frac{r}{s}\right]$$

$$D(q(x)||p(x)) = q(0) \log \left\lfloor \frac{q(0)}{p(0)} \right\rfloor + q(1) \log \left\lfloor \frac{q(1)}{p(1)} \right\rfloor$$
$$= (1-s) \log \left\lfloor \frac{1-s}{1-r} \right\rfloor + s \log \left\lfloor \frac{s}{r} \right\rfloor$$

- If r = s, $\Rightarrow D(p||q) = D(q||p)$
- If $r \neq s$, such as r = 1/2, s = 1/4 $\Rightarrow D(p||q) = 0.2075$ bits, D(q||p) = 0.1887 bits
- Thus, in general $D(p||q) \neq D(q||p)$.

Mutual information: Motivation

Things are commonly related; two random variables are usually related.

How to characterize the relationship between two *r.v.*'s?

- Observe X alone, the information of X is H(X).
- Knowing Y, the information of X becomes H(X|Y).
- Knowing Y, the information of X is reduced by $\Delta = H(X) - H(X|Y).$
- This reduced information Δ is the uncertainty reduction of X after knowing Y.

TOTAL OF SUBMI

Mutual information: Definition

• Definition: Mutual information is the **relative entropy** between the joint distribution and the product distribution of two random variables *X*, *Y*.

$$I(X;Y) = D[p(x,y)||p(x)p(y)]$$

$$= \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \log \left[\frac{p(x,y)}{p(x)p(y)} \right]$$

$$= E_{(X,Y)} \left\{ \log \left[\frac{p(X,Y)}{p(X)p(Y)} \right] \right\}$$

- Measure of the information one random variable (say, X) contains in another (Y)
- Special cases
 - If X and Y are independent, I(X; Y) = 0.
 - If Y = X, I(X; X) = H(X).

Some other concepts

Conditional relative entropy

$$D(p(y|x)||q(y|x)) = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \log \left[\frac{p(y|x)}{q(y|x)} \right]$$

Conditional mutual information

$$I(X; Y|Z) = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} \sum_{z \in \mathcal{Z}} p(x, y, z) \log \left[\frac{p(x, y|z)}{p(x|z)p(y|z)} \right]$$
$$= E_{p(x, y, z)} \left\{ \log \left[\frac{p(X, Y|Z)}{p(X|Z)p(Y|Z)} \right] \right\}$$

THE STATE OF THE S

Mutual information: Properties

- Symmetry: I(X;Y) = I(Y;X)
 - It is indicated in "Mutual".

• Non-negativity: *I(X;Y)* ≥ *0*

• Limits: $I(X;Y) \leq \min(H(X), H(Y))$

Mutual information vs. Entropy

$$I(X;Y) = H(X) - H(X|Y)$$

Proof:

$$H(X|Y)$$
 $I(X;Y)$ $H(Y|X)$ $H(Y)$

$$I(X;Y) = \sum_{x} \sum_{y} p(x,y) \log \left[\frac{p(x,y)}{p(x)p(y)} \right]$$

$$= \sum_{x} \sum_{y} p(x,y) \log \left[\frac{p(x|y)}{p(x)} \right]$$

$$= \sum_{x} \sum_{y} p(x,y) \log[p(x|y)] - \sum_{x} \sum_{y} p(x,y) \log[p(x)]$$

$$= -\sum_{x} p(x) \log[p(x)] - (-\sum_{x} \sum_{y} p(x,y) \log[p(x|y)])$$

$$= H(X) - H(X|Y)$$

Mutual information vs. Entropy

Venn Diagram

Expression

•
$$I(X;Y) = H(X) - H(X|Y) = H(Y) - H(Y|X) = I(Y;X)$$

•
$$I(X;Y) = H(X) + H(Y) - H(X,Y)$$

•
$$I(X; X) = H(X)$$

• Joint *p.m.f* . is:

Y	1	2	3	4	p(y)
1	1/8	1/16	1/32	1/32	1/4
2	1/16	1/8	1/32	1/32	1/4
3	1/16	1/16	1/16	1/16	1/4
4	1/4	0	0	0	1/4
p(x)	1/2	1/4	1/8	1/8	

• What is H(X), H(Y), H(X|Y), H(Y|X), H(X,Y), I(X;Y)?

$$H(X) = -\sum_{x \in \mathcal{X}} p(x) \log [p(x)]$$

$$= H\left(\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{8}\right)$$

$$= -\left[\frac{1}{2} \log(\frac{1}{2}) + \frac{1}{4} \log(\frac{1}{4}) + \frac{1}{8} \log(\frac{1}{8}) + \frac{1}{8} \log(\frac{1}{8})\right]$$

$$= 1.75 \text{ bits}$$

$$H(Y) = -\sum_{y \in \mathcal{Y}} p(y) \log [p(y)]$$

$$= H\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)$$

$$= -\left[\frac{1}{4} \log(\frac{1}{4}) + \frac{1}{4} \log(\frac{1}{4}) + \frac{1}{4} \log(\frac{1}{4}) + \frac{1}{4} \log(\frac{1}{4})\right]$$

$$= 2 \text{ bits}$$

$$\begin{split} \overline{H(X|Y)} &= \sum_{y \in \mathcal{Y}} p(y) H(X|Y = y) \\ &= \sum_{y \in \mathcal{Y}} p(y) \sum_{x \in \mathcal{X}} p(x|y) \log \left[\frac{1}{p(x|y)} \right] \\ &= -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \log \left[p(x|y) \right] \\ &= -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \log \left[\frac{p(x,y)}{p(y)} \right] \\ &= -\left[\begin{array}{c} \frac{1}{8} \log \frac{1}{8} + \frac{1}{16} \log \frac{1}{16} + \frac{1}{32} \log \frac{1}{32} + \frac{1}{32} \log \frac{1}{32} \\ + \frac{1}{16} \log \frac{1}{16} + \frac{1}{8} \log \frac{1}{8} + \frac{1}{32} \log \frac{1}{32} + \frac{1}{32} \log \frac{1}{32} \\ + \frac{1}{16} \log \frac{1}{16} + \frac{1}{16} \log \frac{1}{16} + \frac{1}{16} \log \frac{1}{16} + \frac{1}{16} \log \frac{1}{16} \\ + \frac{1}{16} \log \frac{1}{16} + 1 \log \log \frac{1}{16} + 1 \log \log \frac{1}{16} + 1 \log \log \frac{1}{16} \\ + \frac{1}{4} \log \frac{1}{16} + 0 \log \frac{1}{16} + 0 \log \frac{1}{16} + 0 \log \frac{1}{16} \\ \end{array} \right] \end{split}$$

= 1.375 bits

$$\begin{split} H(Y|X) &= \sum_{x \in \mathcal{X}} p(x) H(Y|X = x) \\ &= \sum_{x \in \mathcal{X}} p(x) \sum_{y \in \mathcal{Y}} p(y|x) \log \left[\frac{1}{p(y|x)} \right] \\ &= -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \log \left[p(y|x) \right] \\ &= -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \log \left[\frac{p(x,y)}{p(x)} \right] \\ &= -\left[\begin{array}{c} \frac{1}{8} \log \frac{1}{8} + \frac{1}{16} \log \frac{16}{4} + \frac{1}{32} \log \frac{12}{8} + \frac{1}{32} \log \frac{12}{8} \\ + \frac{1}{16} \log \frac{16}{2} + \frac{1}{8} \log \frac{1}{4} + \frac{1}{32} \log \frac{12}{8} + \frac{1}{32} \log \frac{12}{8} \\ + \frac{1}{16} \log \frac{16}{2} + \frac{1}{16} \log \frac{16}{4} + \frac{1}{16} \log \frac{16}{8} + \frac{1}{16} \log \frac{16}{8} \\ + \frac{1}{4} \log \frac{1}{2} + 0 \log \frac{0}{4} + 0 \log \frac{0}{8} + 0 \log \frac{0}{8} \end{split} \right]$$

$$H(X,Y) = -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \log [p(x,y)]$$

$$= -\begin{bmatrix} \frac{1}{8} \log \frac{1}{8} + \frac{1}{16} \log \frac{1}{16} + \frac{1}{32} \log \frac{1}{32} + \frac{1}{32} \log \frac{1}{32} \\ + \frac{1}{16} \log \frac{1}{16} + \frac{1}{8} \log \frac{1}{8} + \frac{1}{32} \log \frac{1}{32} + \frac{1}{32} \log \frac{1}{32} \\ + \frac{1}{16} \log \frac{1}{16} + \frac{1}{16} \log \frac{1}{16} + \frac{1}{16} \log \frac{1}{16} + \frac{1}{16} \log \frac{1}{16} \\ + \frac{1}{4} \log \frac{1}{4} + 0 \log 0 + 0 \log 0 + 0 \log 0 \end{bmatrix}$$

$$= 3.375 \text{ bits}$$

H(X) = 1.75 bits, H(Y) = 2 bits, H(X|Y) = 1.375 bits, H(Y|X) = 1.625 bits

Note that H(X, Y) = H(X) + H(Y|X) = H(Y) + H(X|Y) by observation in this example.

Method 1:

$$I(X; Y) = H(X) - H(X|Y) = 1.75 - 1.375 = 0.375$$
 bit
$$I(X; Y) = H(Y) - H(Y|X) = 2 - 1.625 = 0.375$$
 bit

Method 2:

$$I(X; Y) = D [p(x,y)||p(x)p(y)]$$

$$= \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \log \left[\frac{p(x,y)}{p(x)p(y)} \right]$$

$$= \begin{bmatrix} \frac{1}{8} \log \frac{\frac{1}{8}}{\frac{1}{2} \cdot \frac{1}{4}} + \frac{1}{16} \log \frac{\frac{1}{16}}{\frac{1}{4} \cdot \frac{1}{4}} + \frac{1}{32} \log \frac{\frac{1}{32}}{\frac{1}{8} \cdot \frac{1}{4}} + \frac{1}{32} \log \frac{\frac{1}{32}}{\frac{1}{8} \cdot \frac{1}{4}} \\ + \frac{1}{16} \log \frac{\frac{1}{16}}{\frac{1}{2} \cdot \frac{1}{4}} + \frac{1}{8} \log \frac{\frac{1}{8}}{\frac{1}{4} \cdot \frac{1}{4}} + \frac{1}{32} \log \frac{\frac{1}{32}}{\frac{1}{8} \cdot \frac{1}{4}} + \frac{1}{32} \log \frac{\frac{1}{32}}{\frac{1}{8} \cdot \frac{1}{4}} \\ + \frac{1}{16} \log \frac{\frac{1}{16}}{\frac{1}{2} \cdot \frac{1}{4}} + \frac{1}{16} \log \frac{\frac{1}{16}}{\frac{1}{4} \cdot \frac{1}{4}} + \frac{1}{16} \log \frac{\frac{1}{16}}{\frac{1}{8} \cdot \frac{1}{4}} + \frac{1}{16} \log \frac{1}{16} \log \frac{1}{16} \\ + \frac{1}{4} \log \frac{\frac{1}{4}}{\frac{1}{2} \cdot \frac{1}{4}} + 0 \log 0 + 0 \log 0 + 0 \log 0 \end{bmatrix}$$

$$= 0.375 \text{ bit}$$

Entropies in Communications

- System model
 - Source sends r.v. X, destination receives r.v. Y.
 - Realization of X (or Y) is x_i (or y_i)
- How much information transmitted from source to information?
- Options: H(X), H(Y), H(X, Y), H(X|Y), H(Y|X), I(X; Y)

THE REAL PROPERTY OF THE PARTY OF THE PARTY

How much information transmitted from source to information?

- System model
 - Source sends r.v. X, destination receives r.v. Y.
- I(X;Y): information successfully transmitted from the source to the destination.

$$I(X;Y) = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \log \left[\frac{p(x,y)}{p(x)p(y)} \right] = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x)p(y|x) \log \left[\frac{p(y|x)}{p(y)} \right]$$

How much information is lost after the transmission?

- Ideally, H(X) should be transmitted from the source to the destination.
- H(X) = H(X|Y) + I(X;Y)
- I(X; Y) = H(X) H(X|Y)
- At Destination, after Y is received, there still exists average uncertainty about source X due to the transmission distortion in the channel.
- H(X|Y): loss entropy

How much uncertainty due to channel noise?

- Ideally, if there is no noise in the channel, there should exist deterministic relationship between the sender and the receiver.
- H(Y) = I(Y; X) + H(Y|X)
- I(Y; X) = H(Y) H(Y|X)
- At Source, after X is sent, there still exists average uncertainty about destination Y due to the channel noise.
- H(Y|X): noise entropy

Mutual information of realization: at destination

- **Before** communication, is the source sending x_i ?
 - Priori probability $p(x_i)$: uncertainty on x_i without receiving y_i
- After communication (received y_i), is the source sending x_i ?
 - Posteriori probability $p(x_i|y_i)$: uncertainty on x_i with receiving y_i

$$I(x_i; y_j) = I(x_i) - I(x_i|y_j)$$

$$= \log \left[\frac{1}{p(x_i)}\right] - \log \left[\frac{1}{p(x_i|y_j)}\right] = \log \left[\frac{p(x_i|y_j)}{p(x_i)}\right]$$

Mutual information of realization: at receiver

- Before communication, is the destination receiving y_i ?
 - Priori probability $p(y_i)$: uncertainty on y_i without sending x_i
- After communication (sent x_i), is the destination receiving y_i ?
 - Posteriori probability $p(y_j | x_i)$: uncertainty on y_j with sending x_i

$$I(y_j; x_i) = I(y_j) - I(y_j|x_i)$$

$$= \log \left[\frac{1}{p(y_i)}\right] - \log \left[\frac{1}{p(y_i|x_i)}\right] = \log \left[\frac{p(y_j|x_i)}{p(y_j)}\right]$$

Mutual information of realization: at system

- Before communication, is the source sending x_i , destination receiving y_j ?
 - X and Y are considered to be statistically independent.

$$p(x_i, y_j) = p(x_i)p(y_j)$$

$$I_{before}(x_i, y_j) = \log \left[\frac{1}{p(x_i, y_j)} \right] = \log \left[\frac{1}{p(x_i)p(y_j)} \right] = \log \left[\frac{1}{p(x_i)} \right] + \log \left[\frac{1}{p(y_j)} \right] = I(x_i) + I(y_j)$$

Mutual information of realization: at system

- After communication, is the source sending x_i , destination receiving y_j ?
 - X and Y are related due to channel characteristics.

$$p(x_i, y_j) = p(x_i)p(y_j|x_i) = p(y_j)p(x_i|y_j)$$

$$I_{after}(x_i, y_j) = \log \left[\frac{1}{p(x_i, y_j)} \right] = I(x_i, y_j)$$

Mutual information of realization: at system

观察者站在系统整体角度。 互信息为通信后整体不确定度的 减少。

$$\begin{split} I(x_i; y_j) = & [I(x_i) + I(y_j)] - I(x_i, y_j) \\ = & [-\log p(x_i) - \log p(y_j)] - [-\log p(x_i, y_j)] \\ = & \log \frac{p(x_i, y_j)}{p(x_i)p(y_j)} \end{split}$$

Mutual information of realization: equivalency

- At destination, $I(x_i; y_j) = I(x_i) I(x_i|y_j)$.
- At source, $I(y_j; x_i) = I(y_j) I(y_j|x_i)$.
- From system, $I(x_i; y_j) = I(x_i) + I(y_j) I(x_i, y_j)$

$$I(x_{i}, y_{j}) = \log \left[\frac{1}{p(x_{i}, y_{j})} \right] = \log \left[\frac{1}{p(x_{i})p(y_{j}|x_{i})} \right] = \log \left[\frac{1}{p(x_{i})} \right] + \log \left[\frac{1}{p(y_{j}|x_{i})} \right]$$

$$= I(x_{i}) + I(y_{j}|x_{i})$$

$$I(x_{i}) + I(y_{i}) - I(x_{i}, y_{j}) = I(x_{i}) + I(y_{j}) - [I(x_{i}) + I(y_{j}|x_{i})] = I(y_{j}) - I(y_{j}|x_{i})$$

$$I(y_{j}, x_{i}) = \log \left[\frac{1}{p(y_{j}, x_{i})} \right] = \log \left[\frac{1}{p(y_{j})p(x_{i}|y_{j})} \right] = \log \left[\frac{1}{p(y_{j})} \right] + \log \left[\frac{1}{p(x_{i}|y_{j})} \right]$$

$$= I(y_{j}) + I(x_{i}|y_{j})$$

$$I(x_{i}) + I(y_{i}) - I(y_{i}, x_{i}) = I(x_{i}) + I(y_{i}) - [I(y_{i}) + I(x_{i}|y_{i})] = I(x_{i}) - I(x_{i}|y_{i})$$

Mutual information: micro-level vs. macro-level

- Mutual information of realization at the micro-level
 - $I(x_i; y_j) = \log \left[\frac{p(x_i, y_j)}{p(x_i)p(y_j)} \right] = \log \left[\frac{p(x_i|y_j)}{p(x_i)} \right] = \log \left[\frac{1}{p(x_i)} \right] \log \left[\frac{1}{p(x_i|y_j)} \right]$
 - At destination: $I(x_i; y_j) = I(x_i) I(x_i|y_j)$
 - At source: $I(y_j; x_i) = I(y_j) I(y_j|x_i)$
 - From system: $I(x_i; y_j) = I(x_i) + I(y_j) I(x_i, y_j)$
- Mutual information at the macro-level

$$I(X;Y) = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \log \left[\frac{p(x,y)}{p(x)p(y)} \right] = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x)p(y|x) \log \left[\frac{p(y|x)}{p(y)} \right]$$

Mutual information: micro-level vs. macro-level

$$I(X; Y) = D[p(x, y)||p(x)p(y)]$$

$$= \sum_{x_i \in \mathcal{X}} \sum_{y_j \in \mathcal{Y}} p(x_i, y_j) \log \left[\frac{p(x_i, y_j)}{p(x_i)p(y_j)} \right]$$

$$= \sum_{x_i \in \mathcal{X}} \sum_{y_j \in \mathcal{Y}} p(x_i, y_j) I(x_i; y_j)$$

$$= E_{X,Y}[I(x; y)]$$
Non-negativity: $I(X; Y) \ge 0$

An example communication system

Given a discrete source of $\begin{bmatrix} X \\ p(X) \end{bmatrix} = \begin{bmatrix} x_1 & x_2 \\ 0.2 & 0.8 \end{bmatrix}$, the output messages pass through a noise channel; then, the received messages are modeled using $Y = [y_1, y_2]$.

• self-information in event x_1 : $I(x_1) = \log \frac{1}{p(x_1)} = 2.322$ bits

$$p(y_1) = \sum_{x_i} p(x_i) p(y_1|x_i) = 0.335$$

$$I(x_1; y_1) = \log_2\left(\frac{p(y_1|x_1)}{p(y_1)}\right) = \log_2\left(\frac{7/8}{0.335}\right) = 1.39 \text{ bits}$$

$$I(x_1; y_2) = \log_2\left(\frac{p(y_2|x_1)}{p(y_2)}\right) = -2.42 \text{ bits}$$

What does it mean?

- Model of communication systems
- How to characterize the information source?
- How much information a message contains?
- What is entropy?

Outline

- Joint and conditional entropy
- Relative entropy and mutual information
- Entropies in communications
- Chain Rules
- Jensen's Inequality and Log Sum Inequality
- Entropy rate: from single-outcome to sequence-outcome
- What is a Markov source?
- Differential Entropy: from discrete to continuous

- 1. 写出定义与表达式,进行计算
 - **□**Joint entropy
 - **□Conditional entropy**
 - **□**Relative entropy
 - **□**Mutual information
- 2. 说出≥2条互信息的性质
- 3. 根据Venn Diagram, 说出≥4个数学关系
- 4. 说出熵等相关概念在通信系统中的物理意义

重难点:

- > 概念及其表达式
- > 概念之间的关系
- > 计算
- > 物理意义

Thank you!

My Homepage

Yayu Gao

School of Electronic Information and Communications Huazhong University of Science and Technology

Email: yayugao@hust.edu.cn

