

SM7571

吸顶式烟雾传感器

产品使用手册

文件版本: V20.7.6

SM7571 采用工业通用标准接口,方便接入 PLC, DCS 等各种仪表或系统,用于监测烟雾 2000 等状态量。内部使用了较高精度的传感内核及相关器件,确保产品具有较高的可靠性与卓越的长期稳定性,可定制 RS232、RS485、CAN、4-20mA、 $DC0^5$ V\10V、ZIGBEE、Lora、WIFI、GPRS、NB-IOT 等多种输出方式。

技术参数

技术参数	参数值
品牌	SONBEST/搜博
烟雾测量范围	0~2000ppm
烟雾最大允许误差	$\pm 7\%$
烟雾重复性测试	±5%
烟雾敏感体	热响应式
温度特性	±0.5%/℃
输出方式	RS485/4-20mA/DC0-5V
供电电源	DC9~26V/DC12~26V/DC9~26V
运行环境温度	-40~80° C
运行环境湿度	5%RH~90%RH

产品选型

产品设计了 RS485, 4-20mA, DC0-5V 多种输出方式,根据输出方式的不同,产品分为以下几种型号。

产品型号	输出方式及供电压范围
SM7571B	RS485 总线
SM7571M	4-20mA
SM7571V5	DC0-5V

产品接线

简约布局一目了然

采用PVC材质,不易腐蚀、变形、美观大方

RS485接线方法

红色

V+ 电源正极

── 绿色 V- 电源负极

_____ 黄色 A+ RS485 A+

____ 蓝色 B- RS485 B-

4-20mA接线方法

■ 红色 V+ 电源正极

■■■ 黑色 V- 电源负极

■■ 蓝色 IOUT电流输出

计算公式: W烟雾=(I-4mA)X2000/16 注意: 接线时先电源正负极,后接信号线

0~5V接线方法

红色 V+ 电源正极

■■■ 黑色 V- 电源负极

蓝色 VOUT电压输出

典型应用

安装方法

传感器采用吸顶式安装方法,安装简单,使用方便。先将 A 底板 固定在天花板上,产品 B 在底板上顺时针旋转即可

各类场所 有我就够

每天都会实时监控,适用范围广,高效检测,稳定可靠,可适用于 医院、工厂、仓库、商场等多种室内环境

■ 医院 -----

人流量较多,如果发生灾情 前可以做好应急措施

■ 商场 ■

产品数量庞大, 预警后不仅能 保障人身安全, 也能保护 相对的财产安全

■ 仓库 -----

货物量庞大,预警后发现火灾 源头可减少巨大的财产损失

RS485 型: 通讯协

议

产品使用 RS485 MODBUS-RTU 标准协议格式, 所有操作或回复命令都为 16 进制数据。设备出厂时默认设备地址为 1, 默认波特率为 9600, 8, n, 1。

1. 读取数据(功能码 0x03)

问询帧(十六进制),发送举例:查询1#设备1个数据,上位机发送命令:01 03 00 00 00 01 84 0A。

地址	功能码	起始地址	数据长度	校验码
01	03	00 00	00 01	84 OA

对于正确的问询帧,设备会响应数据: 01 03 02 00 79 79 A6,响应格式:

地址	功能码	长度	数据 1	校验码
01	03	02	00 79	79 A6

数据说明:命令中数据为十六进制,以数据 1 为例,00 79 转为十进制数值为 121,假设数据 倍率为 1,则真实值为 121/1=121,其它以此类推。

2. 数据地址表

组态地址	寄存器地址	寄存器说明	数据类型	值范围
40001	00 00	烟雾寄存器	只读	0~65535
40101	00 64	型号编码	读/写	0~65535
40102	00 65	测点总数	读/写	1~20
40103	00 66	设备地址	读/写	1~249
40104	00 67	波特率	读/写	0~6
40105	00 68	通讯模式	读/写	1~4
40106	00 69	协议类型	读/写	1~10

3 读取与修改设备地址

(1) 读取或查询设备地址

若不知道当前设备地址、且总线上只有一个设备时,可以通过命令 FA 03 00 66 00 02 31 9F 查询设备地址。

设备地址	功能码	起始地址	数据长度	校验码
FA	03	00 66	00 02	31 9F

FA 即 250 为通用地址, 当不知道地址时可以用 250 这个地址来取得真实设备地址, 00 66 为设备地址的寄存器。

对于正确的查询命令,设备会响应,比如响应数据为: 01 03 02 07 12 3A 79,其格式解析如下表所示:

设备地址	功能码	起始地址	型号编码	校验码
01	03	02	55 3C 00 01	3A 79

响应应数据中,第一个字节 01 表示当前设备的真实地址为,55 3C 转换为 10 进制为 21820 即表示当前设备主型号为 21820,后面两字节 00 01 表示该设备有一个状态量。

(2) 更改设备地址

比如当前设备地址为 1, 我们希望更改为 02, 则命令为: 01 06 00 66 00 02 E8 14。

设备地址	功能码	寄存器地址	目标地址	校验码
01	06	00 66	00 02	E8 14

更改成功后,设备会返回信息: 02 06 00 66 00 02 E8 27, 其格式解析如下表所示:

设备地址	功能码	寄存器地址	目标地址	校验码
02	06	00 66	00 02	E8 27

响应应数据中,修改成功后,第1个字节为新的设备地址,一般设备地址更改后,立即生效,此时用户需要同时将自己软件的查询命令做相应更改。

4 读取与修改波特率

(1) 读取波特率

设备默认出厂波特率为 9600, 若需要更改,可根据下表及相应通讯协议进行更改操作。比如读取当前设备的波特率 ID, 命令为: 01 03 00 67 00 01 35 D5 , 其格式解析如下。

设备地址	功能码	起始地址	数据长度	校验码
01	03	00 67	00 01	35 D5

读取当前设备的波特率编码。波特率编码: 1 为 2400; 2 为 4800; 3 为 9600; 4 为 19200; 5 为 38400; 6 为 115200。

对于正确的查询命令,设备会响应,比如响应数据为: 01 03 02 00 03 F8 45,其格式解析如下表所示:

设备地址	功能码	数据长度	波特率编码	校验码
01	03	02	00 03	F8 45

根据波特率编码,03为9600,即当前设备的波特率为9600。

(2) 更改波特率

比如将波特率从 9600 更改为 38400, 即将代码从 3 更改为 5, 则命令为: 01 03 00 66 00 01 64 15。

设备地址	功能码	寄存器地址	目标波特率	校验码
01	03	00 66	00 01	64 15

将波特率从 9600 更改为 38400, 即将代码从 3 更改为 5。新的波特率会即时生效,此时设备会失去响应,查询设备的波特率需做相应修改。

5 读取校正值

(1) 读取校正值

当数据与参照标准有误差时,我们可以通过调整"校正值"来减小显示误差。校正差值可修改范围为正负1000,即值范围为0-1000或64535-65535。比如当显示值偏小100时,我们通过增加100来校正,命令为:0103006B0001F5D6。在命令中100即十六进制0x64;如果需要减小,则可以设置负值,比如-100,对应十六制制值为FF9C,其计算方式为100-65535=65435,再转为十六进制则为0xFF9C。设备校正值是从006B开始,我们以第1个参数为例进行说明,多个参数时校正值读取与修改方法相同。

2 1 2 30 4 24 12 30 4 12 30 4 4 12 30 4 4 12 30 4 4 12 30 4 4 12 30 4 4 12 30 4 4 12 30 4 4 12 30 4 4 12 30 4				
设备地址	功能码	起始地址	数据长度	校验码
01	03	00 6B	00 01	F5 D6

对于正确的查询命令,设备会响应,比如响应数据为: 01 03 02 00 64 B9 AF,其格式解析如下表所示:

设备地址	功能码	数据长度	校正值	校验码
01	03	02	00 64	B9 AF

响应应数据中,第一个字节 01 表示当前设备的真实地址,00 6B 为第一个状态量校正值寄存器。若设备有多个参数,其它参数操作方式与此相同,一般温度、湿度有此参数,光照一般没有此项。

(2) 更改校正值

比如当前状态量偏小,我们希望将其真实值加1,当前值加100校正操作命令为:0106006B0064F9FD。

设备地址	功能码	寄存器地址	目标地址	校验码
01	06	00 6B	00 64	F9 FD

操作成功后,设备会返回信息: 01 06 00 6B 00 64 F9 FD,成功更改后,参数立即生效。

4-20mA 电流型: 烟雾与电流计算

例设量程为 $0^{\sim}2000$ ppm,模拟量输出为 $4^{\sim}20$ mA 电流信号时,烟雾与电流的计算关系如公式所示: $C=(2000-0)*(X-4)\div(20-4)+0$,其中 2000 为烟雾量程上限,0 为量程下限,20 为电流输出量程上限,4 为下限,X 为当前读出的电流值,C 为计算出来的烟雾值,常用数值列表如下:

电流 X(mA)	烟雾值 C(ppm)	计算过程
4	0.0	$(2000-0)*(4-4) \div (20-4)+0$
5	125. 0	$(2000-0)*(5-4) \div (20-4)+0$
6	250.0	$(2000-0)*(6-4) \div (20-4)+0$
7	375. 0	$(2000-0)*(7-4) \div (20-4)+0$
8	500. 0	$(2000-0)*(8-4) \div (20-4)+0$
9	625. 0	$(2000-0)*(9-4) \div (20-4)+0$
10	750. 0	$(2000-0)*(10-4) \div (20-4)+0$
11	875. 0	$(2000-0)*(11-4) \div (20-4)+0$
12	1000. 0	$(2000-0)*(12-4) \div (20-4)+0$
13	1125. 0	$(2000-0)*(13-4) \div (20-4)+0$
14	1250. 0	$(2000-0)*(14-4) \div (20-4)+0$
15	1375. 0	$(2000-0)*(15-4) \div (20-4)+0$
16	1500. 0	$(2000-0)*(16-4) \div (20-4)+0$
17	1625. 0	$(2000-0)*(17-4) \div (20-4)+0$
18	1750. 0	$(2000-0)*(18-4) \div (20-4)+0$
19	1875. 0	$(2000-0)*(19-4) \div (20-4)+0$
20	2000. 0	$(2000-0)*(20-4) \div (20-4)+0$

如表所示, 当测量值 8mA 时, 当前烟雾为 500ppm。

DC0-5V 电压型: 烟雾与电压计算

例设量程为 0^2 2000ppm,模拟量输出为 0^2 5V 电压信号时, 烟雾与电压的计算关系如公式所示: $C=(2000-0)*(X-0)\div(5-0)+0$, 其中 2000 为烟雾量程上限,0 为量程下限,5 为电压输出量程上限,0 为下限, X 为当前读出的电压值, C 为计算出来的烟雾值, 常用数值列表如下:

电压 X(V)	烟雾值 C(ppm)	计算过程
0	0.0	$(2000-0)*(0-0) \div (5-0)+0$

1	400.0	$(2000-0)*(1-0) \div (5-0)+0$
2	800. 0	$(2000-0)*(2-0) \div (5-0)+0$
3	1200. 0	$(2000-0)*(3-0) \div (5-0)+0$
4	1600. 0	$(2000-0)*(4-0) \div (5-0)+0$
5	2000. 0	$(2000-0)*(5-0) \div (5-0)+0$

如表所示, 当测量值 2.5V 时, 当前烟雾为 1000ppm。

免责声明

本文档提供有关产品的所有信息,未授予任何知识产权的许可,未明示或暗示,以及禁止发言等其它方式授予任何知识产权的许可?除本产品的销售条款和条件声明的责任 , 其他问题公司概不承担责任。并且,我公司对本产品的销售和使用不作任何明示或暗示的担保,包括对产品的特定用途适用性,适销性或对任何专利权,版权或其它知识产权的侵权责任等均不作担保,本公司可能随时对产品规格及产品描述做出修改,恕不另行通知。

联系我们

公 司: 上海搜博实业有限公司

地 址: 上海市宝山区南东路 215 号 8 幢

中文站: http://www.sonbest.com 国际站: http://www.sonbus.com

SKYPE: soobuu

邮 箱: sale@sonbest.com

电 话: 86-021-51083595 / 66862055 / 66862075 / 66861077