2-stufiges schrägverzahntes koaxiales Getriebe Abgabe Testat 3 Gruppe 3 -11.08.2022 Prof. Dr. Lindner

Inhaltsverzeichnis

1. Anforderungsliste

2. Skizzen

- 2.1. Prinzip-Skizze
- 2.2. Entwurf-Skizze
- 2.3. Isometrische Ansichten mit Kräfteverlauf

3. Berechnungen

- 3.1. Verzahnung
 - 3.1.1. Übersetzungsverhältnis
 - 3.1.2. Zahnraddaten
 - 3.1.3. Profilverschiebung
 - 3.1.4. Zusammenfassung der Parameter
- 3.2. Passfederberechnung
- 3.3. Lagerkräfte
- 3.4. Fliehkraftkupplung
- 3.5. Festigkeitsnachweis
- 3.6. Schmierstoffberechnung

4. Zeichnungen

- 4.1. Isometrie
- 4.2. Hauptansichten
- 4.3. Schnittansichten
- 4.4. Detailansicht Lagerung

Anforderungsliste des Bohrgerät-Getriebes

Vorgegebene Werte die einzuhalten sind:

Antrieb T_{an} [Nm] = 50 Abtrieb T_{ab} [Nm] = 500 Schaltdrehzahl n_s [min⁻¹] = 1400 Antriebsdrehzahl n_{an} [min⁻¹] = 2000 Abtrieb F_B [N] = 1500 Schrägverzahnungwinkel β [°] = 20

Es gibt nur zwei verschiedene Ausführungsvarianten, da die Wellen, Zahnräder und Kupplungen immer gleichbleiben müssen. Die Varianten ergeben sich bei der Konstruktion des Gehäuses. Die erste Variante ist eine Gusskonstruktion. Die zweite ist eine Schweißkonstruktion. Im Folgenden werden beide Varianten vorgestellt.

Variante 1: Gusskonstruktion (geteilt)

- Gehäuse bestehend aus zwei Teilen. Einem Trichter für die Fliehkraftkupplung inklusive einem genormten Motorflansch, welche je nach Motor variieren kann und einem Flanschdeckel zum Fixieren der Lagerungen.
- Durch geteiltes Gehäuse sind Dauergussformen möglich
- Gehäuse bestehend aus einer Alugusslegierung zur Gewichtsreduktion
- Wellen mit vormontierten Zahnrädern, Ritzeln und Lagern werden nur noch eingesetzt.
- Schwimmende Lagerung durch Rollenlager f
 ür Vorgelegewelle
- An- und Abtriebswelle:
 - Mit Nadellager ineinander gelagert (Loslager)
 - Festlager durch Kegelrollenlager in O-Anordnung in der Gehäusewand
- Zahnräder und Ritzel durch Passfederverbindungen mit Wellen verbunden

Variante 2: Schweißkonstruktion:

- Gehäuse bestehend aus einem geschweißten Kasten und einem geschraubten Deckel:
 - o Motor wird durch Flansch am Kasten verschraubt
 - Wellen werden seitlich durch Löcher eingeschoben
 - Zahnräder, Ritzel und Lager werden im Inneren aufgeschoben
- An- und Abtriebswelle:
 - Loslager durch Rillenkugellager in Lagerblock in der Mitte des Kastens
 - Festlager durch Schrägkugellager in O-Anordnung in der Gehäusewand
- Zahnräder und Ritzel durch Passfederverbindungen mit Wellen verbunden

Es wird eine Gusskonstruktion aufgrund einfacherer Fertigung gewählt.

Allgemeine Anforderungen:

- Sicherheit gegen Dauerbruch > 1,5
- Wälzlagerlebensdauer > 10.000 h
- Koaxiale Ausrichtung der An- und Abtriebswelle
- klein- bis mittelgroße Serie (10.000 Stk.)
- bevorzugte Verwendung von Norm- und Kaufteilen
- fertigungs- und montagegerechte Konstruktion
- kostengünstige Fertigungs- und Betriebskosten
- anwendergerechte Konstruktion, welche Verletzungsgefahren minimiert
- geringe akustische Belastung
- Korrosionsschutz durch gewählte Materialien und Lackierungen
- Ölpeilung
- Öleinlass- und ablassschraube im Gehäuse
- Fliehkraftkupplung schaltet bei 1300 min⁻¹ ($\mu_0 = 0.9$)
- Rutschkupplung schaltet bei T > 50 Nm
- kompakte und gewichtssparenden Bauweise
- Reibbelege der Kupplung sind möglichst langlebig

Prinzip-Skizze

Bezeichnung	Bauteil	
n _{an}	Antriebswelle	
n _{ab}	Abtriebswelle	
D1	Dichtelement 1	
D2	Dichtelement 2	
Z1	Zahnrad 1	
Z2	Zahnrad 2	
Z3	Zahnrad 3	
Z4	Zahnrad 4	
L1	Lager 1	
L2	Lager 2	
L3	Lager 3	
L4	Lager 4	
L5	Lager 5	
L6	Lager 6	

Entwurf-Skizze

Isometrische Ansichten mit Kräfteverlauf

Momentenverlauf Anthiebswelle

Momentenverlauf Vorgelegewelle

Vereinbarte Konstanten:

Normaleingriffs- winkelwinkel:	Schrägungswinkel:	Überschlägiger Anwendungsfaktor: Belastungswert:
$\alpha_n \coloneqq 20$ °	β ≔ 20 °	$oldsymbol{B_{zul}} \coloneqq 4 \; rac{oldsymbol{N}}{oldsymbol{mm}^2} \qquad oldsymbol{K_A} \coloneqq 2.0$
Druckkraft vom Boden:	Schaltdrehzahl:	Dauerfestigkeitsschubspannung:
$F_B = 1500 N$	$n_s \coloneqq 1400 \ rpm$	$ au_{Tzul} = 50 \frac{N}{mm^2}$ (42CrMo4)

Antriebsdrehzahl:

$$n_{Antrieb} \coloneqq 2000 \ \frac{1}{min}$$

Übersetzungsverhältnis:

Antriebsmoment:

$$T_{an} = 50 \ N \cdot m$$

Theoretisch benötigte Übersetzungen:

$$\begin{array}{ll} i_1 \coloneqq 3.40 & i_2 \coloneqq 2.95 \\ i_{Gesamt} \coloneqq i_1 \cdot i_2 & i_{Gesamt} \equiv 10.03 \end{array}$$

orientiert an TB 21-11

Errechnete Übersetzungen (siehe Zahnraddaten):

$$i'_1 \coloneqq 3.381$$
 $i'_{Gesamt} \coloneqq i'_1 \cdot i'_2$

$$i'_{2} = 2.964$$

 $i'_{Gesamt} = 10.021$

Moment der Vorgelegewelle:

$$T_{Vorgelege} \coloneqq T_{an} \cdot i'_{1}$$
 $T_{Vorgelege} = 169.05 \ \textit{N} \cdot \textit{m}$

Abtriebsmoment:

$$T_{ab} \coloneqq T_{an} \cdot i'_{Gesamt}$$
 $T_{ab} = 501.064 \ N \cdot m$

10.08.2022 Seite 1 von 27

T 05 37			
$F_F = 25 N$	$n_s = 1400 \frac{1}{min}$	$\omega_s = 2 \ \pi \cdot n_s = 146.6$	08
$\mu_0 := 0.9$			
$\Delta l \coloneqq 2.5 \ mm$			
$C\!\coloneqq\!rac{F_F}{\Delta l}$		$C = 10 \frac{N}{mm}$	
F_{Flieh} :=	$m_{FK}\!\cdot\!r_{FK}\!\cdot\!\omega_s^{\;2}$	$F_{Flieh} = 0.537 \ kN$	
$F_N \coloneqq ig(F)$	$_{Flieh}$ $ 2 \cdot F_F angle$	$F_N = 0.487 \ kN$	
ers: $F_R \coloneqq \mu_0$	$\cdot F_N$	$F_R = 438.611 \ N$	
T_R := N_F	$_{K}oldsymbol{\cdot}F_{R}oldsymbol{\cdot}rac{d_{R}}{2}$	$T_R = 52.633 \ N \cdot m$	
	$\Delta l \coloneqq 2.5 \; mm$ $C \coloneqq rac{F_F}{\Delta l}$ $F_{Flieh} \coloneqq F_N = F_N \coloneqq F_N = F_$	$\mu_0 \coloneqq 0.9$ $\Delta l \coloneqq 2.5 \; mm$ $C \coloneqq \frac{F_F}{\Delta l}$ $F_{Flieh} \coloneqq m_{FK} \cdot r_{FK} \cdot \omega_s^2$ $F_N \coloneqq (F_{Flieh} - 2 \cdot F_F)$	$\mu_0\coloneqq 0.9$ $\Delta l\coloneqq 2.5~mm$ $C=10~rac{N}{mm}$ $F_{Flieh}\coloneqq m_{FK}\cdot r_{FK}\cdot \omega_s^{\ 2}$ $F_{Flieh}=0.537~kN$ $F_N\coloneqq (F_{Flieh}-2\cdot F_F)$ $F_N=0.487~kN$ Ders: $F_R\coloneqq \mu_0\cdot F_N$

10.08.2022 Seite 2 von 27

Antriebswelle:	Vorgelegewelle:	Abtriebswelle:
$oldsymbol{d_{min1}} \coloneqq \sqrt[3]{rac{\left(16 m{\cdot} T_{an} m{\cdot} K_A ight)}{oldsymbol{\pi} m{\cdot} au_{Tzul}}}$	$d_{min2} \coloneqq \sqrt[3]{rac{\left(16 \cdot T_{Vorgelege} \cdot K_A ight)}{\pi \cdot au_{Tzul}}}$	$d_{min3} \coloneqq \sqrt[3]{rac{\left(16 \cdot T_{ab} \cdot K_A ight)}{\pi \cdot au_{Tzul}}}$
$d_{min1} = 21.677 \ mm$	$d_{min2} = 32.535 \ mm$	$d_{min3} = 46.735 \ mm$
Gewählt: $d_{W1} = 25 \ mm$	Gewählt: $d_{W2} = 35 \ mm$	Gewählt: $d_{W3} = 50 m$
ahnraddaten:		
Ritzelzähnezahlen:		
$z_1 = 21$	z_3 := 28	
$z_2 = 71$	$z_4\!\coloneqq\!83$	
$i'_1 := \frac{z_2}{z_1} = 3.381$	$i'_2 := \frac{z_4}{z_3} = 2.964$	
Damit ist $i'_1 \sim i_1$ und $i'_2 \sim i_2$		
orientiert an TB 21-12		
Modul 1,2:		
$m_{n12} \coloneqq \frac{\left(1.8 \cdot d_{W1} \cdot \cos\left(\beta\right)\right)}{z_1 - 2.5}$	$m_{n12} = 2.286 \ mm$	nach Gl. 21-63
Gerundet:	$m_{n12} := 3.0 \; mm$	nach TB 21-1
Teilkreisdurchmesser 1,2:		
$egin{aligned} d_1 &\coloneqq rac{\left(z_1 \cdot m_{n12} ight)}{\cos\left(eta ight)} \ d_2 &\coloneqq rac{\left(z_2 \cdot m_{n12} ight)}{\cos\left(eta ight)} \end{aligned}$	$d_1 = 67.043 \; mm$	nach Gl. 21-38
$d_{a} \coloneqq \frac{\left(z_2 \cdot m_{n12}\right)}{\left(z_2 \cdot m_{n12}\right)}$	$d_2 = 226.67 \ mm$	

Zahnradbreite 1	.,2:		
Zahnrad Z1:	$b_1 \coloneqq \frac{\left(2 \cdot T_{an}\right)}{{d_1}^2 \ B_{zul}}$	$b_1 = 5.562 \ mm$	nach Vereinbarung
Gewählt:	$b_1 \coloneqq 25 \ mm$ $b_2 \coloneqq b_1$		gewählt nach TB-21-13 a/b.)
Null-Achsabstar	nd 1,2:		
$a_{d1} \coloneqq \frac{\left(d_1 + d_2\right)}{2}$	-	$a_{d1} = 146.857 \ mm$	nach Gl. 21-8
Modul 3,4:			
$m_{n34} \coloneqq rac{\left(2 \cdot a_{d1}\right)}{\left(1 + \right)}$	$egin{array}{c} \cdot \cos \left(eta ight) \\ i_2 \end{pmatrix} \cdot z_3 \end{array}$	$m_{n34} = 2.495 \ mm$	nach Gl. 21-64
Gerundet:	$m_{n34} = 2.5 \ mm$		nach TB 21-1
Teilkreisdurchm	nesser 3,4:		
$d_3 \coloneqq \frac{\left(z_3 \cdot m_{n34}\right)}{\cos\left(\beta\right)}$	<u>)</u>	$d_3 = 74.492 \ mm$	
			nach Gl. 21-38
$d_4 \coloneqq \frac{\left(z_4 \cdot m_{n34}\right)}{\cos\left(\beta\right)}$	<u>/ </u>	$d_4 = 220.817 \ mm$	

Zahnradbreite 3,4:

	(o T		
Zahnrad Z3:	$b_3 = \frac{(2 \cdot T_{Vorgelege})}{}$	$b_3 = 15.232 \ mm$	nach Vereinbarung
	J 2 D		

Gewählt:
$$b_3 = 40 \text{ mm}$$
 gewählt nach TB-21-13 a/b.)

$$b_4 \coloneqq b_3$$

Null-Achsabstand 3,4:

$$a_{d2} := \frac{(d_3 + d_4)}{2}$$
 $a_{d2} = 147.655 \ mm$
 $a_{d1} = 146.857 \ mm$
nach Gl. 21-8

$$a_{d1} - a_{d2} = -0.798 \ mm$$

Die Nullachsabstände sind verschieden, a_{d1} wird angeglichen. D.h. eine negative Profilverschiebung wird an den Zahnrädern z_1 und z_2 vorgenommen, damit keine Schwächung des Ritzels entsteht.

Profilverschiebung:

Stirneingriffswinkel:

$$\alpha_t \coloneqq \operatorname{atan}\left(\frac{\tan\left(\alpha_n\right)}{\cos\left(\beta\right)}\right)$$
 $\alpha_t = 21.173$ ° nach Gl. 21-35

Betriebseingriffswinkel:

$$\alpha_{wt} \coloneqq \operatorname{acos}\left(\cos\left(\alpha_{t}\right) \cdot \frac{a_{d1}}{a_{d2}}\right) \cdot \frac{360}{2 \cdot \pi}$$
 $\alpha_{wt} = 21.959$ nach Gl. 21-21

Summe Profilverschiebungsfaktoren:

$$invlpha_{wt} \coloneqq an(lpha_{wt}) - lpha_{wt} \cdot rac{2 \cdot \pi}{360^{\circ}}$$
 $invlpha_{t} \coloneqq an(lpha_{t}) - lpha_{t} \cdot rac{2 \cdot \pi}{360^{\circ}}$ $invlpha_{t} = 0.018$

$$\Sigma x \coloneqq \frac{inv\alpha_{wt} - inv\alpha_t}{2 \cdot \tan{(\alpha_n)}} \cdot (z_1 + z_2)$$
 nach Gl. 21-56

$$\Sigma x$$
 = 0.271

Ersatzzähnezahlen:		
$\beta_b := a\cos\left(\cos\left(\beta\right) \cdot \frac{\cos\left(\alpha_n\right)}{\cos\left(\alpha_t\right)}\right)$	$\beta_b = 18.747$ °	nach Gl. 21-36
$\cos^2\left(\beta_b\right) \coloneqq \frac{1}{2} \left(1 + \cos\left(2 \cdot \beta_b\right)\right)$	$\cos^2\left(\beta_b\right) = 0.897$	Additionstheorem
$z_{n1} \coloneqq \frac{z_1}{\cos^2(\beta_b) \cdot \cos(\beta)}$	$z_{n2} \coloneqq rac{z_2}{\cos^2\left(oldsymbol{eta}_b ight) \cdot \cos\left(oldsymbol{eta} ight)}$	nach Gl. 21-47
$z_{n1} = 24.922$	$z_{n2} = 84.26$	
Sinnvolle Wahl von x_1 nach Gl. 21.3		
$\log\left(\frac{z_2}{z_2}\right)$		
$\boldsymbol{x}_1 \coloneqq \frac{\boldsymbol{\Sigma} \boldsymbol{x}}{2} + \left(0.5 - \frac{\boldsymbol{\Sigma} \boldsymbol{x}}{2}\right) \cdot \frac{\log\left(\frac{\boldsymbol{z}_2}{\boldsymbol{z}_1}\right)}{\log\left(\frac{\boldsymbol{z}_{n1} \cdot \boldsymbol{z}_{n2}}{100}\right)}$		nach Gl. 21-33
$x_1 = 0.281$		
$x_2\!\coloneqq\! \Sigma x\!-\!x_1$		
$x_2 = -0.01$		
Verschiebungen:		
$V_1 \coloneqq x_1 \cdot m_{n12}$	$V_1 = 0.844 \ mm$	
$V_2 \coloneqq x_2 \cdot m_{n12}$	$V_2 \! = \! -0.031 \; mm$	nach Gl. 21-49
$V_3 = 0 \ mm$		
$V_4 = 0 \ mm$		
aße der Zahnräder nach Profilve	rschiebung:	
Kopfhöhenänderung:		
$k\coloneqq a_{d2}-a_{d1}-m_{n12}ullet \left(x_1+x_2 ight)$	$k = -0.014 \ mm$	nach Gl. 21-23
Kopfspiel (Soll):		
$c_{12}\!\coloneqq\!0.25\!\cdot\! m_{n12}$	$c_{12}\!=\!0.75~mm$	nach S.769
$c_{34} = 0.25 \cdot m_{n34}$	$c_{34} \! = \! 0.625 \; mm$	11dC11 5./09

$d_{a1} \coloneqq d_1 + 2 \cdot m_{n12} + 2 \cdot V_1 + 2 \cdot V_2 + 2 \cdot V_1 + 2 \cdot V_2 + 2 \cdot V$	$d_{a1} = 74.702 \ mm$	nach Gl. 21-24
$d_{a2} \coloneqq d_2 + 2 \cdot m_{n12} + 2 \cdot V_2 + 2 \cdot V_2$	k $d_{a2} = 232.578 \ mm$	
$d_{a3} \coloneqq d_3 + 2 \boldsymbol{\cdot} m_{n34}$	$d_{a3} = 79.492 \ mm$	nach Gl. 21-40
$d_{a4} \coloneqq d_4 + 2 \cdot m_{n34}$	d _{a4} =225.817 mm	
Fußkreisdurchmesser nach Pro	ofilverschiebung:	
$d_{f1} \coloneqq d_1 - 2 ullet \left(\left(m_{n12} + c_{12} ight) - V ight.$	$d_{f1} = 61.231 \ mm$	nach Gl. 21-25
$d_{f2} \coloneqq d_2 - 2 \cdot ((m_{n12} + c_{12}) - V_{n12})$	$d_{f2} = 219.107 \ mm$	
$d_{f3} \coloneqq d_3 - 2.5 \cdot m_{n34}$	$d_{f3} = 68.242 \; mm$	nach Gl. 21-41
$d_{f4} \coloneqq d_4 - 2.5 \cdot m_{n34}$	$d_{f4} = 214.567 \ mm$	
Kopfspiel nach Profilverschieb	ung:	
$c \coloneqq a_{d2} - 0.5 \cdot \left(d_{a1} + d_{f2}\right)$	c=0.75 mm	nach Gl. 21-22c
ifen der Zahndicke am Kop	pfkreis:	
tangentiales Modul:	$m_{t12}\!\coloneqq\!rac{m_{n12}}{\cos\left(eta ight)}$	
min. Kopfdicke des Zahnes:	$s_{a12min} \coloneqq 0.2 \boldsymbol{\cdot} m_{n12}$	nach S.791
	$s_{a12min} = 0.6 \ mm$	
Stirnteilung:	$p_{t12} \coloneqq m_{t12} \cdot \pi$	nach Gl. 21-34

(S.802 - Bild 21-14) " s_{a1} " ist auf den Kopfkreis bezogen

" s_{t1} " ist in Bezug auf den tangentialen Stirnschnitt (S-S) durch das Zahnrad.

Profilwinkel am Kopfkreis:
$$lpha_{at1} \coloneqq cos\left(rac{d_1 \cdot \cos\left(lpha_t
ight)}{d_{a1}}
ight)$$

nach S.806 " $lpha_{at1}$ " entspricht

$$inv\alpha_{at1} := tan(\alpha_{at1}) - \alpha_{at1} \cdot \frac{2 \cdot \pi}{360}$$

aus Vorlesung

" $lpha_{ut1}$ " aus Roloff Matek

Kopfdicke des Zahnes an den gewählten Zahnrädern (nach Profilverschiebung):

$$s_{a1} \coloneqq d_{a1} \cdot \left(\frac{s_{t1}}{d_1} + inv\alpha_t - inv\alpha_{at1} \right)$$
 $s_{a1} = 2.055 \ \textit{mm}$

$$s_{a1} = 2.055 \ mm$$

nach Gl. 21-53

Stirnzahndicke:

$$s_{t2} \coloneqq \frac{p_{t12}}{2} + 2 \cdot V_2 \cdot \tan\left(\alpha_t\right)$$

Profilwinkel am Kopfkreis:

$$lpha_{at2} \coloneqq cos\left(rac{d_2 \cdot \cos\left(lpha_t
ight)}{d_{a2}}
ight)$$

$$inv\alpha_{at2} = \tan(\alpha_{at2}) - \alpha_{at2} \cdot \frac{2 \cdot \pi}{360}$$

Kopfdicke des Zahnes an den gewählten Zahnrädern (nach Profilverschiebung):

$$s_{a2} \coloneqq d_{a2} \cdot \left(\frac{s_{t2}}{d_2} + inv\alpha_t - inv\alpha_{at2} \right)$$

$$s_{a2} = 2.583 \ mm$$

Sowohl s_{a1} als auch s_{a2} sind > s_{a12min} . Die Zahndicke am Kopfkreis ist damit ausreichend. Zusätzliche Prüfung über TB 21-8 R/M führt zum gleichen Ergebnis.

Grundkreisdurchmesser db:

(Der Durchmesser welcher von der Normalen N-N, die durch den Berührpunkt der Zahnflanken geht, tangiert wird - Bild 21.3)

$$d_{b1} \coloneqq d_1 \cdot \cos\left(\alpha_t\right)$$
 $d_{b1} = 62.517 \ mm$

$$d_{b1} = 62.517 \ mm$$

$$d_{b2} := d_2 \cdot \cos(\alpha_t)$$
 $d_{b2} = 211.369$ mm

$$d_{10} = 211.369 \ mm$$

$$d_{b3} := d_3 \cdot \cos\left(\alpha_t\right)$$
 $d_{b3} = 69.464 \ mm$

$$d_{b2} = 69.464 \ mm$$

$$d_{b4} \coloneqq d_4 \cdot \cos\left(\alpha_t\right) \qquad d_{b4} = 205.911 \ mm$$

Profilüberdeckung:

Profilüberdeckung des ersten Zahnradpaares

$$\varepsilon_{\alpha12} \coloneqq \frac{\left(0.5 \cdot \left(\sqrt{{\boldsymbol{d_{a1}}}^2 - {\boldsymbol{d_{b1}}}^2} + \frac{z_2}{\left|z_2\right|} \cdot \sqrt{{\boldsymbol{d_{a2}}}^2 - {\boldsymbol{d_{b2}}}^2}\right) - {\boldsymbol{a_{d2}}} \cdot \sin\left(\alpha_{wt}\right)\right)}{\boldsymbol{\pi} \cdot \boldsymbol{m_{t12}} \cdot \cos\left(\alpha_t\right)}$$

nach Gl. 21-57

10.08.2022 Seite 8 von 27

	$arepsilon_{lpha12}$ $=$ 1.47	
$arepsilon_{eta12}\coloneqqrac{b_1\cdot anig(etaig)}{p_{t12}}$	$arepsilon_{eta12}\!=\!0.907$	nach Gl. 21-44
$arepsilon_{\gamma_{12}} \! \coloneqq \! arepsilon_{lpha 12} \! + \! arepsilon_{eta_{12}}$	$arepsilon_{\gamma12}\!=\!2.377$	nach Gl. 21-46

-> Profilüberdeckung des ersten Zahnradpaares ist ausreichend (nach Erklärung S. 804)

Profilüberdeckung des zweiten Zahnradpaares:

$$\varepsilon_{\alpha34} \coloneqq \frac{\left(0.5 \cdot \left(\sqrt{{d_{a3}}^2 - {d_{b3}}^2} + \frac{z_2}{\left|z_2\right|} \cdot \sqrt{{d_{a4}}^2 - {d_{b4}}^2}\right) - a_{d2} \cdot \sin\left(\alpha_{wt}\right)\right)}{\pi \cdot m_{t12} \cdot \cos\left(\alpha_t\right)}$$

$$\varepsilon_{\alpha 34} = 1.119$$

$$arepsilon_{eta34} \coloneqq rac{b_3 \cdot an(eta)}{p_{t12}}$$
 $arepsilon_{eta34} = 1.452$

$$\varepsilon_{\gamma 34} \coloneqq \varepsilon_{\alpha 34} + \varepsilon_{\beta 34} \qquad \qquad \varepsilon_{\gamma 34} = 2.57$$

-> Profilüberdeckung des zweiten Zahnradpaares ist ausreichend (nach Erklärung S. 804)

Betriebswälzkreisdurchmesser:

$d_{w1}\!\coloneqq\!rac{d_1\!\cdot\!\cos\left(lpha_t ight)}{\cos\left(lpha_{wt} ight)}$	$d_{w1} = 67.408 \; mm$	nach Gl. 21-22a
$d_{w2}\!\coloneqq\!\frac{d_{2}\!\cdot\!\cos\left(\!\alpha_{t}\!\right)}{\cos\left(\!\alpha_{wt}\!\right)}$	d_{w2} = 227.902 $m{mm}$	nach Gl. 21-22b
$d_{w3}\!\coloneqq\! d_3$	d_{w3} = 74.492 mm	
$oldsymbol{d}_{w4}\!\coloneqq\!oldsymbol{d}_{oldsymbol{4}}$	d_{w4} = 220.817 mm	

ŀ	ntrolle Achsabstand:
	$d_{w1} + d_{w2}$
	$a = \frac{w_1 + w_2}{1} = 147.655 \ mm$

identisch mit:

$$a_{d2} = 147.655 \ mm$$

$$a \coloneqq \frac{d_{w3} + d_{w4}}{2} = 147.655 \ \textit{mm}$$

Zusammenfassung:			
$d_1 = 67.043 \ mm$	$d_{b1} = 62.517 \ mm$	$d_{a1} = 74.702 \ mm$	$d_{f1} = 61.231 \ mm$
$d_2 \!=\! 226.67 \; mm$	$d_{b2} = 211.369 \ mm$	$d_{a2} = 232.578 \ mm$	$d_{f2} = 219.107 \ mm$
$d_3 = 74.492 \; mm$	$d_{b3} = 69.464 \ mm$	$d_{a3} = 79.492 \ mm$	$d_{f3} = 68.242 \ mm$
$d_4 = 220.817 \ mm$	$d_{b4} = 205.911 \ mm$	$d_{a4} = 225.817 \ mm$	d_{f4} = 214.567 mm
b ₁ =25 mm	d_{w1} =67.408 mm	$z_1 = 21$	$m_{n12} = 3 \ mm$
$b_2 = 25 \ mm$	d_{w2} = 227.902 $m{mm}$	$z_2 = 71$	
$b_3 = 40 \ mm$	$d_{w3} = 74.492 \; m{mm}$	$z_3 = 28$	$m_{n34} = 2.5 \ mm$
b ₄ =40 mm	d_{w4} =220.817 $m{mm}$	$z_4 = 83$	
$V_1 = 0.844 \ mm$	$arepsilon_{lpha12}\!=\!1.47$	$arepsilon_{lpha 34} \! = \! 1.119$	$x_1 = 0.281$
$V_2 = -0.031 \ mm$	$\varepsilon_{eta12} = 0.907$	$arepsilon_{eta34} = 1.452$	$x_2 = -0.01$
$V_3 = 0$ mm	$\varepsilon_{\gamma 12} \!=\! 2.377$	$arepsilon_{\gamma 34} = 2.57$	
$V_4 = 0$ mm			

10.08.2022 Seite 10 von 27

Passfederberechnung:

Werkstoff Passfeder E295 GC

$$S_F \coloneqq 1.1$$
 $Re \coloneqq 420 \ \frac{N}{mm^2}$ $p_{fzul} \coloneqq \frac{Re}{S_F}$ $p_{fzul} = 381.818 \ \frac{N}{mm^2}$

$$arphi \coloneqq 1$$
 für n=1 $n_{Pass} \coloneqq 1$ $K_{\lambda} \coloneqq 1$ $K_{A} = 2$

Antriebswelle - Fliehkraftkupplung

für Wellendurchmesser 25mm: -Passfeder DIN 6885 - A8x7x25

$$h_{Pass} = 7 \, mm$$
 $l_{Pass} = 25 \, mm$ $h = 3.0 \, mm$

$$b_{Pass} \coloneqq 8$$
 mm $l'_{Pass} \coloneqq l_{Pass} - b_{Pass}$ $d_{Kritisch1} \coloneqq 25$ mm

$$p_m \coloneqq \frac{2 \cdot K_A \cdot T_{an} \cdot K_\lambda}{d_{Kritisch1} \cdot h \cdot l'_{Pass} \cdot n_{Pass} \cdot \varphi} = 156.863 \frac{N}{mm^2} \qquad p_m < p_{fzul} \qquad \text{nach Gl. 12-1}$$

Werkstoff Passfeder E295 GC

$$S_F \coloneqq 1.1$$
 $Re \coloneqq 420 \ \frac{N}{mm^2}$ $p_{fzul} \coloneqq \frac{Re}{S_F}$ $p_{fzul} = 381.818 \ \frac{N}{mm^2}$

$$\varphi := 1$$
 für n=1 $n_{Pass} := 1$ $K_{\lambda} := 1$ $K_{A} = 2$

Abtriebswelle - Rutschkupplung

für Wellendurchmesser 50mm: -Passfeder DIN 6885 - A14x9x36

$$h_{Pass} = 9 \, \, mm$$
 $l_{Pass} = 36 \, \, mm$ $h = 4 \, \, mm$

$$b_{Pass} \coloneqq 14 \, \, \boldsymbol{mm} \quad l'_{Pass} \coloneqq l_{Pass} - b_{Pass} \qquad \boldsymbol{d_{Kritisch2}} \coloneqq 50 \, \, \boldsymbol{mm}$$

$$p_m \coloneqq \frac{2 \cdot K_A \cdot T_{an} \cdot K_\lambda}{d_{Kritisch2} \cdot h \cdot l'_{Pass} \cdot n_{Pass} \cdot \varphi} = 45.455 \frac{N}{mm^2} \qquad \text{nach Gl. 12-1}$$

Werkstoff Passfeder E295 GC

$$S_F \coloneqq 1.1 \qquad Re \coloneqq 420 \frac{N}{mm^2} \qquad p_{fzul} \coloneqq \frac{Re}{S_F} \qquad p_{fzul} = 381.818 \frac{N}{mm^2}$$
 nach TB 12-1b
$$\varphi \coloneqq 1 \qquad \text{für n=1} \qquad n_{Pass} \coloneqq 1 \qquad K_\lambda \coloneqq 1 \qquad K_A = 2$$

10.08.2022 Seite 11 von 27

	für Wellendurchm	esser 35mm: -	Passfeder DIN 6885 - A	10x8x25
	$h_{Pass} = 8 mm$	_{Pass} ≔25 mm	<i>h</i> := 3 <i>mm</i>	
	$b_{Pass} \coloneqq 10 \boldsymbol{mm}$	$'_{Pass} \coloneqq l_{Pass} - b_{Pass}$	$d_{Kritisch3} \coloneqq 35 mm$	
p_m :=	$=rac{2\cdot K_A\cdot T_{an}\cdot l}{d_{Kritisch3}\cdot h\cdot l'_{Pass}\cdot l}$	$\frac{K_{\lambda}}{n_{Pass} \cdot \varphi} = 126.984$	$rac{N}{mm^2}$	nach Gl. 12-1
			$p_m < p_{fzul}$	

Vorauswahl der Lagergrößen: (Vorauswahl erfolgte durch Schätzung der wirklichen Lagerbelastungen, Anpassung der Lagerung erfolgte nach Ermittlung der Lagerkräfte)

Festlager Abtriebswelle:		. 1	
D C IN	$n_{Antrieb} = (2 \cdot 10)$	$\frac{1}{min}$	
$P = 6 \ kN$ $p = 3$	$n \coloneqq rac{n_{Antrieb}}{i'_{Gesamt}}$	$L_{10h} = 10000 \; hr$	
$oldsymbol{C_{erf}} \coloneqq oldsymbol{P} \cdot \sqrt[p]{rac{n \cdot L_{10h}}{10^6}}$	nach Gl. 14.1 (Faktor 60 weggelassen wegen den	C_{erf} = 29.574 kN	
Festlager Antriebswelle:	Einheiten)		
$P \coloneqq 2.5 \; kN$	$p \coloneqq 3$	$n \coloneqq n_{Antrieb}$	$L_{10h} := 10000 \; hr$
$C_{erf} \! \coloneqq \! P \! \cdot \! \sqrt[p]{ rac{n \cdot L_{10h}}{10^6} }$		$C_{erf}\!=\!26.566~kN$	
Festlager Vorgelegewelle:			
$P \coloneqq 4 kN$	p := 3	$n \coloneqq rac{n_{Antrieb}}{{i'}_1}$	$L_{10h} := 10000 \; hr$
$C_{erf} \coloneqq P \cdot \sqrt[p]{rac{n \cdot L_{10h}}{10^6}}$	nach Gl. 14.1	$C_{\it erf}$ = 28.321 $\it kN$	

10.08.2022 Seite 12 von 27

Loslager An-/Abtrie											
P :=6 kN	$p \coloneqq 3$	eig.:	n := i	n_{Antr}		$n_{Antri} \ i'_{Gesan}$		L_1	.0h	= 100	00 /
		3,3333				Gesan	nt				
$C_{erf} \coloneqq P \cdot ^{i}$	$\sqrt{rac{n \cdot L_{10h}}{10^6}}$			C_{er}	$_f = 6$	1.564	kN				
	V 10°										
Loslager Vorgelege	ewelle:										
$P \coloneqq 6.5 \ kN$	p :=3	eig.:	$n \coloneqq$	n_{Antr}	rieb			L_{10h} :	= 10	0000	hr
		3,3333		i'_1				1011			
$oldsymbol{C_{erf}} \coloneqq oldsymbol{P} oldsymbol{\cdot}^p oldsymbol{oldsymbol{\cdot}}$	$n \cdot L_{10h}$		-	y _	46 O	21 k/	т				
erf I	10^{6}			erf —	40.0	121 h u 1					
gorkräfte op der An		chnitt:									
gerkräfte an der An Antriebsmoment Wälzkreisdurchmes	ntriebswelle: $T_{an}\!=\!50~ extbf{N}$	$N \cdot m$									
Antriebsmoment	ntriebswelle: $T_{an}\!=\!50~ extbf{N}$	√· · m 08 mm				X_2 :=	23.5	5 mn	n		
Antriebsmoment Wälzkreisdurchmes	atriebswelle: $T_{an}\!=\!50~\text{N}$ $\text{Sser}~d_{w1}\!=\!67.40$ $X_1\!\coloneqq\!26.5$	√· · m 08 mm	gskraf	t nac	ch Gl	Ī				= 1.48	34 k
Antriebsmoment Wälzkreisdurchmes Wirkabstände Zahnrad Z1 F_{tZ1}	atriebswelle: $T_{an}\!=\!50~\text{N}$ $\text{Sser}~d_{w1}\!=\!67.40$ $X_1\!\coloneqq\!26.5$	V·m 08 mm mm Umfanç				Ī)	F_t	_{:Z1} =	= 1.48	
Antriebsmoment Wälzkreisdurchmes Wirkabstände Zahnrad Z1 F_{tZ1}	atriebswelle: $T_{an} = 50 \text{ N}$ $\text{SSER} \ d_{w1} = 67.40$ $X_1 \coloneqq 26.5$ $\coloneqq \frac{2 \cdot T_{an}}{d_{w1}}$	V·m 08 mm mm Umfang	lkraft	nac	ch Gl	. 21.70	2	F_t	_{:Z1} =		1 <i>kI</i> \
Antriebsmoment Wälzkreisdurchmes Wirkabstände Zahnrad Z1 F_{tZ1} F_{aZ1} F_{rZ1} Loslager F_{L1y} :=	Intriebswelle: $T_{an} = 50 \text{ N}$ Since $d_{w1} = 67.40$ $X_1 \coloneqq 26.5$ $\lim_{t \to \infty} \frac{2 \cdot T_{an}}{d_{w1}}$ $\lim_{t \to \infty} F_{tZ1} \cdot \tan{(\beta)}$	$N \cdot m$ $08 \ mm$ mm Umfano $(2n)$ Radi	lkraft	nac	ch Gl	. 21.7	2	F_t	$Z_{1} =$ $aZ_{1} =$ $cZ_{1} =$	=0.54	1 kN 75 k

Seite 14 von 27

Festlager $F_{F1x} = F_{az}$	71		F_{F1x} $=$ $0.54~$ kN
$F_{F1y} \!\coloneqq\! F_{tZ}$	$_{1}-F_{L1y}$		$F_{F1y} = 0.786 \; kN$
F_{F1z} := F_{rZ}	$_1-F_{L1z}$		F_{F1z} =0.634 kN
gerkräfte an der Vorge	elegewelle:		
Moment an der Vorge	legewelle: T_{Vorgel}	$_{ege} = 169.05 \ N$ •	m
Wälzkreisdurchmessei	$d_{w2} = 227.902$ mm		$d_{w3} = 74.492 \ \textit{mm}$
Wirkabstände	$X_3 \coloneqq 26 \ \textit{mm}$	$X_4 \coloneqq 21 \; mm$	$X_5 \coloneqq 36.5 \; mm$
Zahnrad Z2	$F_{aZ2} \coloneqq -F_{aZ1}$	$\boldsymbol{F}_{tZ2}\!\coloneqq\!-\boldsymbol{F}_{tZ1}$	$F_{rZ2} \coloneqq -F_{rZ1}$
Zahnrad Z3	$F_{tZ3} \coloneqq rac{2 \cdot T_{Vorgelege}}{d_{w3}}$		$F_{tZ3} = 4.539 \ kN$
	$F_{aZ3} = F_{tZ3} \cdot an(eta)$		$F_{aZ3} = 1.652 \ kN$
	$F_{rZ3} := \frac{F_{tZ3} \cdot \tan\left(\alpha_n\right)}{\cos\left(\beta\right)}$	-	$F_{rZ3} = 1.758 \text{ kN}$
Loslager	$F_{L2y} := -\frac{F_{tZ2} \cdot X_3 + F_{tZ2}}{X_3 + Z_2}$	$\frac{1}{X_4 + X_5} \cdot \left(X_3 + X_4\right)$	$F_{L2y} = -2.093 \ kN$
		$d_{aZ2} \cdot \frac{d_{w2}}{2} + F_{rZ3} \cdot$	$(X_3+X_4)+F_{aZ3} \cdot \frac{d_{w3}}{2}$
	DES	$X_3 + X_4 +$	X_5
			$F_{L2z} = 1.168 \ kN$
Festlager	$F_{F2x}\!\coloneqq\!F_{aZ3}\!+\!F_{aZ2}$		$F_{F2x} = 1.112 \; kN$
	$F_{F2y} \coloneqq -F_{tZ2} - F_{tZ3} -$	F_{L2y}	$F_{F2y} = -0.962 \ kN$
	$F_{F2z} := F_{rZ2} - F_{rZ3} + F_{rZ3}$	r_{L2z}	$F_{F2z} = -1.164 \text{ k/N}$

Die Lagerkräfte	F_{L2y} , F_{F2y}	und	F_{F2z}	wurden im	Freischnitt falsch	
herum orientiert an weitere Berechnung daher folgt:						
$F_{L2y}\!\coloneqq\!2.093~\textit{kN} \\ F_{F2y}\!\coloneqq\!0.962~\textit{kN} \\ F_{F2z}\!\coloneqq\!1.164~\textit{kN}$						
Lagerkräfte an der Abtrie	bswelle:					
Bodenkraft	$F_B \coloneqq 1.5 \ \textit{kN}$					
Abtriebsmoment	$T_{ab} = 501.064$	$N \cdot m$				
Wälzkreisdurchmesser	$d_{w4} = 220.817$	mm				
Wirkabstände	$X_6 = 27.5 \ mn$	ı		X_7 ::	= 41 <i>mm</i>	
Zahnrad Z4	$F_{aZ4} := -F_{aZ3}$		$F_{tZ4}\coloneqq$	$-F_{tZ3}$	$F_{rZ4} \coloneqq -F_{rZ3}$	
	$F_{tZ4}\!\coloneqq\!rac{2m{\cdot T_{ab}}}{d_{w4}}$			F	$F_{tZ4} = 4.538 \ kN$	
	$F_{aZ4} \coloneqq F_{tZ3} \cdot ta$	$\operatorname{an}(\boldsymbol{\beta})$		F	$T_{aZ4} = 1.652 \ kN$	
	$F_{rZ4} = \frac{F_{tZ4} \cdot \mathbf{t}}{\cos}$	$\frac{\operatorname{an}\left(lpha_{n} ight)}{\left(eta ight)}$		F	$F_{rZ4} = 1.758 \ kN$	
Loslager	$F_{L3y} \coloneqq \frac{-F_{tZ4}}{X_6 + Z_6}$	$\frac{X_7}{X_7}$	$d_{\cdots 4}$	F	$T_{L3y} = -2.716 kN$	
	$F_{L3z} := \frac{-F_{rZ4}}{}$	$X_7 - F_{aZ}$ $X_6 + X_7$	$4 \cdot \frac{w_4}{2}$	F	$F_{L3z} = -3.715 \text{ kN}$	
Festlager	$F_{F3x} \coloneqq -F_{aZ4}$	$+F_B$		I	$T_{F3x} = -0.152 \ kN$	
	$F_{F3y} \coloneqq -F_{tZ4}$	$-F_{L3y}$		F	$F_{F3y} = -1.822 \ kN$	
	$F_{F3z} \coloneqq -F_{rZ4}$	$-F_{L3z}$		I	$F_{F3z} = 1.957 kN$	

10.08.2022 Seite 15 von 27

herum orientiert angenommen, da	F_{E3z} und F_{F3y} wurden im Freischnitt föraus resultiert ihr negativer Wert. Für die intierung der Kraftvektoren positiv angenom	
F_{L3z} := 3.715 kN F_{F3y} := 1.822 kN		
Wälzlagerberechnung:		
Festlager Antriebswelle: (62205)		
$C_0 \coloneqq 7.8 \; kN$	aus WLK	
$F_a \coloneqq \left F_{F1x} \right = 0.54 \ $ kN	aus Freischnitt	
$F_r := \sqrt[2]{F_{F1y}^2 + F_{F1z}^2} = 1.01 \text{ kN}$		
F	daraus ergibt sich nach TB	
$\frac{F_a}{C_0}$ = 0.069 $\frac{F_a}{F_r}$ = 0.535 nach	Seite 538 14-3a X und Y zu:	$X \coloneqq 1$ $Y \coloneqq 0.55$
$e \coloneqq 1.14$	aus TB14-3a	
01111	495 51 96	
$P \coloneqq X \cdot F_r + Y \cdot F_a = 1.307 \text{ k/N}$	nach Gl. 14.6	
$p\!\coloneqq\!3$ für Kugellager	nach Seite 565	
$C \coloneqq 19.3 \text{ kN}$	nach WLK	
$L_{10h} \coloneqq \frac{10^6}{n_{Antrieb}} \cdot \left(\frac{C}{P}\right)^p = 26831 \; hr$	nach Gl. 14.5a (Faktor 60 weggelassen wegen den Einheiten)	

10.08.2022 Seite 16 von 27

Loslager Antriebswelle: (6004)

 $F_a := 0$ **kN** aus Freischnitt

$$F_r := \sqrt[2]{\left(F_{L1y} + F_{L1z}\right)^2} = 0.638 \ kN$$

$$P := F_r = 0.638 \ kN$$

Seite 538

$$p = \frac{10}{3}$$

für Rollenlager

$$C = 9.3 \text{ kN}$$

aus WLK

$$L_{10h} \coloneqq rac{10^6}{n_{Antrieb} - rac{n_{Antrieb}}{i'_{Gesamt}}} \cdot \left(rac{C}{P}
ight)^p = 70105 \; extbf{hr}$$

Die Drehzahl am Loslager ergibt sich durch die gleiche Drehrichtung der Wellen

zu:
$$n_{Antrieb} - \frac{n_{Antrieb}}{i'_{Gesamt}} = (1.8 \cdot 10^3) \frac{1}{min}$$

$$mit$$
 $i'_{Gesamt} = 10.021$

Festlager Vorgelegewelle: (NUP204)

$$C_0 = 24.7 \ kN$$
 aus WLK

$$F_a := |F_{F2x}| = 1.112 \text{ kN}$$
 aus Freischnitt

$$F_r = \sqrt[2]{F_{F2y}^2 + F_{F2z}^2} = 1.51 \text{ kN}$$

$$\frac{F_a}{C_0} = 0.045$$
 $\frac{F_a}{F_r} = 0.736$

weil 0.02<
$$\frac{F_a}{C_0}$$
 <=0.5 ergibt sich e zu:

$$e\coloneqq 0.51 \cdot \left(\frac{F_a}{C_0}\right)^{0.233} = 0.248$$
 aus TB14-3a Fußnote

$$Y = 0.866 \left(\frac{F_a}{C_0}\right)^{-0.229} = 1.762$$

$$P := X \cdot F_r + Y \cdot F_a = 2.804 \ kN$$

$$p \coloneqq 3$$
 für Kugellager

		N Antrijah	
$I_{\bullet} := 10^6$	$\binom{C}{p}^{p} = 15491 \ br$	mit $n_{Abtrieb} \coloneqq rac{n_{Antrieb}}{i'_{Gesamt}}$	
$L_{10h} \coloneqq rac{10^6}{n_{Abtrieb}} \cdot \left(rac{1}{1} ight)$	P) = 10431 W	nach Gl. 14.5a	
Loslager Abtriebswelle: (N	U208)		
$F_a \coloneqq 0$ kN aus Freischi	nitt		
$F_r \coloneqq \sqrt[2]{F_{L3y}^2 + F_{L3z}^2} =$	4.602 kN		
$P \coloneqq F_r = 4.602 \ kN$	Seite 538		
$p \coloneqq 3$	für Kugellage	er	
$C \coloneqq 63 \ kN$	aus WLK		

 $L_{10h} \coloneqq rac{10^6}{n_{Antrieb}} - rac{n_{Antrieb}}{i'_{Gesamt}} \cdot \left(rac{C}{P}
ight)^p = 23750 \; hr$

Die Drehzahl am Loslager ergibt sich durch die gleiche Drehrichtung der Wellen

zu:
$$n_{Antrieb} - \frac{n_{Antrieb}}{i'_{Gesamt}} = \left(1.8 \cdot 10^3\right) \frac{1}{min}$$

Seite 19 von 27

mit $i'_{Gesamt} = 10.021$

Zusammenfassung Lebensdauern:

Antriebswelle - Loslager	$L_{10h} = 70105 \; hr$	
Antriebswelle - Festlager	$L_{10h} \coloneqq 26831 \; \pmb{hr}$	
Vorgelegewelle - Loslager	$L_{10h}\!\coloneqq\!37827$ hr	
Vorgelegewelle - Festlager	$L_{10h} \coloneqq 43849 \; \pmb{hr}$	
Abtriebswelle - Loslager	$L_{10h} \coloneqq 23750 \; hr$	
Abtriebswelle - Festlager	$L_{10h} \coloneqq 15491 \; \pmb{hr}$	

Festigkeitsnachweis der Wellen:

Antriebswelle:

Kraft- und Momentenverläufe (siehe auch Isometrie der Antriebswelle):

Y-Z-Ebene: X-Y-Ebene: X-Z-Ebene:

Schnitt entlang s_1 (positives Schnittufer) $s_{1max} \coloneqq 26.5 \cdot mm$ $s_{1min} \coloneqq 0 \cdot mm$ $Mt(s_1) \coloneqq 0$ $N_x \coloneqq 0$

 $Q_y\left(s_1\right) \coloneqq -F_{L1y} = -0.697 \text{ kN}$ $Q_z\left(s_1\right) \coloneqq -F_{L1z} = 0.059 \text{ kN}$

 $Mb_{z}\left(s_{1}
ight)\coloneqq-F_{L1y}ullet s_{1} \qquad \qquad Mb_{y}\left(s_{1}
ight)\coloneqq-F_{L1z}ullet s_{1}$

 $Mb_z(s_{1max}) = -18.477 \ N \cdot m$ $Mb_y(s_{1max}) = 1.575 \ N \cdot m$

 $Mb_z(s_{1min}) = 0 \ \boldsymbol{N} \cdot \boldsymbol{m}$ $Mb_u(s_{1min}) = 0 \ \boldsymbol{N} \cdot \boldsymbol{m}$

Schnitt entlang s_2 (negatives Schnittufer) $s_{2max} = 23.5 \cdot mm$ $s_{2min} = 0 \cdot mm$

 $Mt\left(s_{2}\right)\coloneqq50\ \emph{N}\cdot\emph{m}$ $N_{x}\coloneqq-F_{F1x}=-0.54\ \emph{kN}$ $N_{x}\coloneqq-F_{F1x}=-0.54\ \emph{kN}$

 $Q_y\left(s_2
ight) \coloneqq F_{F1y} = 0.786 \,\, kN$ $Q_z\left(s_2
ight) \coloneqq F_{F1z} = 0.634 \,\, kN$

 $Mb_z(s_2) \coloneqq -F_{F1z} \cdot s_2$ $Mb_u(s_2) \coloneqq -F_{F1z} \cdot s_2$

 $Mb_z(s_{2max}) = -18.477 \ N \cdot m$ $Mb_y(s_{2max}) = -14.9 \ N \cdot m$

 $Mb_z(s_{2min}) = 0 \ \mathbf{N} \cdot \mathbf{m}$ $Mb_y(s_{2min}) = 0 \ \mathbf{N} \cdot \mathbf{m}$

Statischer & dynamischer Festigkeitsnachweis Antriebswelle:

 $Rz := 6.3 \ \mu m$ $d_{Kritisch1} := 25 \ mm$ $Rm := 1100 \ \frac{N}{mm^2}$

 $Wb_1 := \frac{\pi}{32} \cdot (d_{Kritisch1})^3 = 1533.98 \ mm^3$ $W_{t1} := \frac{\pi}{16} \cdot (d_{Kritisch1})^3 = 3067.96 \ mm^3$

Flächenträgheitsmoment aus TB11-3

10.08.2022 Seite 20 von 27

$Mb_{res1} \coloneqq \sqrt{Mb_z \left(s_{2max} ight)^2}$	$+Mb_y\left(s_{2max} ight)^2$	$T_{max} \coloneqq T_{an}$	da das Anfahren mit Anlaufkupplung erfolgt
$R_{p0.2N} = 900 \; rac{N}{mm^2}$		$K_t = 1 - 0.34$	$ \cdot \log \left(\frac{d_{Kritisch1}}{16 \ mm} \right) = 0.934 $
nach TB 1-1		nacl	h TB 3-11
Biegung:		Torsion:	
$\sigma_{bmax} \coloneqq \frac{Mb_{res1}}{Wb_1} = 15.47$	1 N		
Wb_1	mm ²	$ au_{tmax} \coloneqq \frac{T_{an}}{\mathbf{T}}$	$=16.297 \frac{N}{mm^2}$
	nach Dild 2 2	<i>VV</i> _{t1}	mm²
TZ MIL	nach Bild 3-2	TZ (TI	
$\sigma_{ba} \coloneqq \frac{K_A \cdot Mb_{res1}}{Wb_1} = 30.9$	047 <u>N</u>	$\tau_{ta} = \frac{K_A \cdot T_a}{W}$	$\frac{n}{m} = 32.595 \frac{N}{mm^2}$
VV 0 ₁	mm	VV t1	mm .
	N	$1.2 \cdot R_{\circ}$	20 2N • K+ N
$\sigma_{bF} \coloneqq 1.2 \cdot R_{p0.2N} \cdot K_t = 1$	$008.829 \frac{1}{mm^2}$	$ au_{tF}\coloneqq rac{ au_{tF}}{ au_{tF}}$	$\frac{1}{\sqrt{3}} = 582.448 \frac{N}{mm^2}$
	nach Flowchar		,,,
$\sigma_{bWN} = 550 \frac{N}{mm^2}$		$ au_{tWN} \coloneqq 330 - 10$	N 2
Titill	aus TB 1-1	7	TICITE STATE OF THE STATE OF TH
	uus ID I I		
$eta_{kb}\!\coloneqq\!2.5$		$\beta_{kt} \coloneqq 2.2$	
	aus TB 3-8 mit	: Rm =1100N/m	m^2, wegen Passfeder
(d)		
$K_g \coloneqq 1 - 0.2 \cdot \frac{\log\left(rac{d_{Kriti}}{7.5 \text{ n}} ight)}{\log\left(20\right)}$	$\frac{scn1}{nm}$		TD 2 44
$K_g = 1 - 0.2 \cdot \frac{1}{\log(20)}$	$\frac{7}{0} = 0.92$	aus	TB 3-11c
$K := 1 - 0.22 \log \left(Rz \right)$	$\left \cdot \left(\log \left(-Rm \right) \right) - 1 \right $	-0.87 aus	TR 3-10
$K_{0\sigma} = 1 - 0.22 \log \left(\frac{Rz}{\mu m} \right)$	$\left \begin{array}{c c} \log & \overline{N} \end{array} \right ^{-1}$	aus	
	()	
	aus TB 3-10	$K_{0 au} \coloneqq 0$	$0.575 \cdot K_{0\sigma} + 0.425 = 0.925$
77			
$K_V \coloneqq 1$		alis	TB 3-12

$$K_{Db} \coloneqq \left(\frac{\beta_{kb}}{K_g} + \frac{1}{K_{0\sigma}} - 1\right) \cdot \frac{1}{K_V} = 2.868$$

$$K_{Dt} \coloneqq \left(\frac{\beta_{kt}}{K_g} + \frac{1}{K_{0\tau}} - 1\right) \cdot \frac{1}{K_V} = 2.473$$
aus Bild 3-27
$$\operatorname{nach} \operatorname{Gl. 3-16}$$

$$\sigma_{bGW} \coloneqq K_t \cdot \frac{\sigma_{bWN}}{K_{Db}} = 179.121 \frac{N}{mm^2}$$

$$\operatorname{nach} \operatorname{Gl. 3-17}$$

$$\operatorname{nach} \operatorname{Gl. 3-17}$$

$$S_F \coloneqq \frac{1}{\sqrt{\left(\frac{\sigma_{bmax}}{\sigma_{bF}}\right)^2 + \left(\frac{\tau_{tmax}}{\tau_{tF}}\right)^2}} = 31.3$$

$$\operatorname{nach} \operatorname{Bild} \operatorname{3-30}$$

$$S_D \coloneqq \frac{1}{\sqrt{\left(\frac{\sigma_{ba}}{\sigma_{bGW}}\right)^2 + \left(\frac{\tau_{ta}}{\tau_{tGW}}\right)^2}} = 3.2$$

$$\operatorname{nach} \operatorname{Bild} \operatorname{3-31}$$

$$\operatorname{Ergebnis:} \operatorname{Die} \operatorname{Antriebswelle} \operatorname{ist} \operatorname{dauerfest.}$$

Vorgelegewelle:

Y-Z-Ebene:	X-Y-Ebene:	X-Z-Ebene	9:	
	g s_3 (positives Schnittufer)	$s_{3max} \coloneqq 26$.5 • mm	$s_{3min}\!\coloneqq\!0$ • mm
$Mt\left(s_{3}\right)\coloneqq0$	$N_x \coloneqq 0$		$N_x = 0$	
	$Q_y\left(s_3\right) \coloneqq -F_{L2y} = -2$	2.093 kN	$Q_{z}\left(s_{3}\right) \coloneqq$	$F_{L2z} = 1.168 \ kN$
	$Mb_zig(s_3ig)\coloneqq -F_{L2y}ullet s_3$		$Mb_yig(s_3ig)$	$\coloneqq F_{L2z} \! \cdot \! s_3$
	$Mb_z\left(s_{3max}\right) = -55.46$	65 N·m	$Mb_y ig(s_{3m}$	$(ax) = 30.964 \ N \cdot m$
	$Mb_z\left(s_{3min}\right) = 0 \; \boldsymbol{N \cdot n}$	ı	$Mb_y (s_{3m}$	$_{in}) = 0 \; \boldsymbol{N} \cdot \boldsymbol{m}$
	(positives Schnittufer)	$s_{4max} = 21$		$s_{4min}\coloneqq 0 \cdot mm$
$N_x \coloneqq -F_{aZ3} = -1.$	N_x	$:= -F_{aZ3} = -1$	1.052 KIV	

10.08.2022 Seite 22 von 27

$$\begin{aligned} Q_y(s_1) &\coloneqq -F_{L2y} + F_{tZ3} = 2.446 \text{ kN} & Q_z(s_1) &\coloneqq F_{L2z} - F_{rZ3} = -0.59 \text{ kN} \\ Mb_z(s_4) &\coloneqq -F_{L2y} \cdot (s_{3max} + s_4) + F_{tZ3} \cdot s_4 & Mb_y(s_4) &\coloneqq F_{L2z} \cdot (s_{3max} + s_4) - F_{rZ3} \cdot s_4 - F_{aZ3} \cdot \frac{d_{w3}}{2} \\ Mb_z(s_{4max}) &= -4.104 \text{ N·m} & Mb_y(s_{4max}) = -42.945 \text{ N·m} \\ Mb_z(s_{4max}) &= -55.465 \text{ N·m} & Mb_y(s_{4min}) = -30.565 \text{ N·m} \\ Y-Z-\text{Ebene:} & Mt(s_4) &\vDash T_{Vorgelege} = 169.05 \text{ N·m} \\ Schnitt entlang s_5 (negatives Schnittufer) & s_{5max} &\coloneqq 26 \cdot mm & s_{5min} &\coloneqq 0 \cdot mm \\ Mt(s_5) &\coloneqq 0 & N_z &\coloneqq -F_{F2x} = -1.112 \text{ kN} & N_x &\coloneqq -F_{F2x} = -1.112 \text{ kN} \\ Q_y(s_5) &\coloneqq -F_{F2y} &= -0.962 \text{ kN} & Q_z(s_5) &\coloneqq -F_{F2z} &= -1.164 \text{ kN} \\ Mb_z(s_5) &\coloneqq -F_{F2y} &= -0.962 \text{ kN} & Mb_y(s_5) &\coloneqq F_{F2z} \cdot s_5 \\ Mb_z(s_{5max}) &= -25.012 \text{ N·m} & Mb_y(s_{5max}) &= 30.264 \text{ N·m} \\ Mb_z(s_{5min}) &= 0 \text{ N·m} & Mb_y(s_{5min}) &= 0 \text{ N·m} \end{aligned}$$
Statischer & dynamischer Festigkeitsnachweis Vorgelegewelle:
$$Rz &\coloneqq 6.3 \text{ } \mu\text{m} & d_{Kritisch2} &\coloneqq 35 \text{ } m\text{m} & Rm &\coloneqq 1100 \text{ } \frac{N}{mm^2} \\ Wb_2 &\coloneqq \frac{\pi}{32} \cdot (d_{Kritisch2})^3 &= 4209.24 \text{ } mm^3 & W_{f2} &\coloneqq \frac{\pi}{16} \cdot (d_{Kritisch2})^3 &= 8418.49 \text{ } mm^3 \\ Mb_{res2} &\coloneqq \sqrt{Mb_z(s_{3max})}^2 + Mb_y(s_{3max})^2 \\ R_{p0.2N} &\coloneqq 900 \text{ } \frac{N}{mm^2} & \text{nach TB 1-1} & K_t &\coloneqq 1 - 0.34 \cdot \log\left(\frac{d_{Kritisch2}}{16 \text{ } mm}\right) &= 0.884 \\ \text{Biegung} & \text{Torsion} \\ \sigma_{bmaz} &\coloneqq \frac{Mb_{res2}}{Wb_2} &= 9.507 \text{ } \frac{N}{mm^2} & \tau_{ta} &\coloneqq \frac{K_A \cdot Mb_{res2}}{Wt_2} &= 20.081 \text{ } \frac{N}{mm^2} \\ \sigma_{ba} &\coloneqq \frac{K_A \cdot Mb_{res2}}{Wb_2} &= 19.014 \text{ } \frac{N}{mm^2} & \tau_{ta} &\coloneqq \frac{K_A \cdot Tvorgelege}{Wt_2} &= 40.162 \text{ } \frac{N}{mm^2} \\ \sigma_{bF} &\coloneqq 1.2 \cdot R_{p0.2N} \cdot K_t &= 955.171 \text{ } \frac{N}{mm^2} & \tau_{tF} &\coloneqq \frac{12 \cdot R_{p0.2N} \cdot K_t}{\sqrt{3}} &= 551.468 \text{ } \frac{N}{mm^2} \end{aligned}$$

$\sigma_{\text{MMN}} = 550 - \frac{N}{}$		$\tau_{\text{max}} = 330 - N$	_
$\sigma_{bWN} = 550 \frac{N}{mm^2}$		$ au_{tWN} = 330 \; \frac{N}{mm^2}$	2
$eta_{kb}\!\coloneqq\!2.8$		$\beta_{kt} = 2.6$ Rm =	B 3-8 mit :1100N/mm^2, wege rungsring
$K_g \coloneqq 1 - 0.2 \cdot \frac{\log\left(\frac{d_{Kr}}{7.5}\right)}{\log\left(\frac{2}{5}\right)}$	$\frac{\overline{mm}}{0} = 0.897$		aus TB 3-11c
$K_{0\sigma} \coloneqq 1 - 0.22 \log \left(\frac{R}{\mu r} \right)$	$\left(\frac{z}{n}\right) \cdot \left(\log\left(\frac{Rm}{20\frac{N}{mm^2}}\right)\right)$	1 = 0.87	aus TB 3-10
K_{V} := 1	aus TB 3-12	$K_{0 au}\!\coloneqq\!0.575{ullet} K_{0\sigma}$	+0.425 = 0.925
$K_{Db} \coloneqq \left(\frac{\beta_{kb}}{K_g} + \frac{1}{K_{0\sigma}} - \frac{1}{K$	-1) $\cdot \frac{1}{K_V} = 3.271$	$K_{Dt} \coloneqq \left(\frac{\beta_{kt}}{K_g} + \frac{1}{K_{0\tau}}\right)$	$\left(-1\right) \cdot \frac{1}{K_V} = 2.979$
σ_{bGW} := K_t • $\frac{\sigma_{bWN}}{K_{Db}}$ =	$=148.726 \frac{N}{mm^2}$	$ au_{tGW} \!\!\coloneqq\! K_t \! \cdot \! rac{ au_{tWN}}{K_{Dt}}$	$=97.973 \frac{N}{mm^2}$
	$S_F \coloneqq rac{1}{\sqrt{\left(rac{\sigma_{bmax}}{\sigma_{bF}} ight)^2}} +$	$-\frac{1}{\left(rac{ au_{tmax}}{ au_{tF}} ight)^2} = 26.491$	
	$S_D \coloneqq \frac{1}{\sqrt{\left(\frac{\sigma_{ba}}{\sigma_{bGW}}\right)^2}} +$	$-rac{\left(au_{ta} ight)^2}{\left(au_{tGW} ight)^2}$ = 2.329	
	Ergebnis: Die Vorgeleg	ewelle ist dauerfest.	

10.08.2022 Seite 24 von 27

Abtriebswelle:

Kraft- und Momentenverläufe (siehe auch Isometrie der Abtriebswelle):

Y-Z-Ebene: X-Y-Ebene: X-Z-Ebene:

Schnitt entlang s_6 (positives Schnittufer)

$$Mt\left(s_{6}\right)\coloneqq-T_{ab}$$
 $N_{x}\coloneqq-F_{B}=-1.5$ **kN** $N_{x}\coloneqq-F_{B}=-1.5$ **kN**

$$Q_{y}\left(s_{6}\right) \coloneqq 0 \qquad \qquad Q_{z}\left(s_{6}\right) \coloneqq 0$$

$$Mb_{z}(s_{6}) := 0$$
 $Mb_{y}(s_{6}) := 0$

Schnitt entlang s_7 (positives Schnittufer) $s_{7max} = 41 \cdot mm$ $s_{7min} = 0 \cdot mm$

$$Mt\left(s_{7}\right) \coloneqq -T_{ab}$$
 $N_{x} \coloneqq -F_{B} - F_{F3x} = -1.348 \ kN$ $N_{x} \coloneqq -F_{B} - F_{F3x} = -1.348 \ kN$

$$Q_y\left(s_7
ight) \coloneqq F_{F3y} = 1.822 \text{ kN}$$
 $Q_z\left(s_7
ight) \coloneqq -F_{F3z} = -1.957 \text{ kN}$

$$Mb_{z}\left(s_{7}\right)\coloneqq F_{F3y}\bullet s_{7}$$
 $Mb_{y}\left(s_{7}\right)\coloneqq F_{F3z}\bullet s_{7}$

$$Mb_z(s_{7max}) = 74.702 \ \textbf{N} \cdot \textbf{m}$$
 $Mb_y(s_{7max}) = 80.235 \ \textbf{N} \cdot \textbf{m}$

$$Mb_z\left(s_{7min}\right) = 0 \ \boldsymbol{N} \cdot \boldsymbol{m}$$
 $Mb_y\left(s_{7min}\right) = 0 \ \boldsymbol{N} \cdot \boldsymbol{m}$

Schnitt entlang s_8 (negatives Schnittufer) $s_{8max} = 27.5 \ \textit{mm}$ $s_{8min} = 0 \cdot \textit{mm}$

$$Mt\left(s_{8}\right)\coloneqq0$$
 $N_{x}\coloneqq0$ $N_{x}\coloneqq0$

$$Q_{y}(s_{8}) := -F_{L3y} = -2.716 \text{ kN}$$
 $Q_{z}(s_{8}) := -F_{L3z} = -3.715 \text{ kN}$

$$Mb_z(s_8) \coloneqq F_{L3y} \cdot s_8$$
 $Mb_y(s_8) \coloneqq -F_{L3z} \cdot s_8$

$$Mb_z(s_{8max}) = 74.69 \ N \cdot m$$
 $Mb_y(s_{8max}) = -102.163 \ N \cdot m$

$$Mb_z(s_{8min}) = 0 \ \boldsymbol{N} \cdot \boldsymbol{m}$$
 $Mb_y(s_{8min}) = 0 \ \boldsymbol{N} \cdot \boldsymbol{m}$

Statischer & dynamischer Festigkeitsnachweis Abtriebswelle:

 $Rz \coloneqq 6.3 \ \mu m$ $d_{Kritisch3} \coloneqq 55 \ mm$ $Rm \coloneqq 1100 \ \frac{N}{mm^2}$

$$Wb_3 := \frac{\pi}{32} \cdot \left(\frac{d_{Kritisch3}^4 - (42 \ mm)^4}{d_{Kritisch3}} \right) = 10779.46 \ mm^3$$

 $W_{43} := \frac{\pi}{10^{-4}} \cdot \left(\frac{d_{Kritisch3}^{4} - (42 \ mm)^{4}}{10^{-4}} \right) = 21558.93 \ mm^{3}$

	$d_{Kritisch3}$
$Mb_{res3} \coloneqq \sqrt{Mb_z \left(s_{8max}\right)^2} + Mb_y \left(s_8\right)$	max) $\frac{2}{2}$
$R_{p0.2N} \coloneqq 900 \; rac{N}{mm^2}$ nach TB 1-	-1 $K_t = 1 - 0.34 \cdot \log \left(\frac{d_{Kritisch3}}{16 \ \textit{mm}} \right) = 0.818$
Biegung	Torsion
$\sigma_{bmax} \coloneqq \frac{Mb_{res3}}{Wb_3} = 11.74 \; \frac{N}{mm^2}$	$ au_{tmax} \coloneqq \frac{oldsymbol{T_{ab}}}{W_{t3}} = 23.242 \; rac{oldsymbol{N}}{oldsymbol{mm}^2}$
$\sigma_{ba} \coloneqq \frac{\textbf{\textit{K}}_{\textbf{\textit{A}}} \cdot Mb_{res3}}{Wb_3} = 23.48 \; \frac{\textbf{\textit{N}}}{\textbf{\textit{mm}}^2}$	$ au_{ta} \coloneqq rac{ extbf{K}_{ extbf{A}} \! \cdot \! extbf{T}_{ab}}{ extbf{W}_{t3}} \! = \! 46.483 \; rac{ extbf{N}}{ extbf{mm}^2}$
$\sigma_{bF} \coloneqq 1.2 \cdot R_{p0.2N} \cdot K_t = 883.092 \frac{1}{m}$	$egin{array}{cccc} oldsymbol{N} & & & & & & & & & & & & & & & & & & &$
$\sigma_{bWN} \coloneqq 440 \; rac{N}{mm^2}$	$ au_{tWN}$:= 330 $\dfrac{N}{mm^2}$
aus TB 3-9 Rm =1100	
eta_{kb} := 2.3	$eta_{kt} \!\coloneqq\! 1.55$ wegen Pressverband
$K_g \coloneqq 1 - 0.2 \cdot rac{\log\left(rac{d_{Kritisch3}}{7.5 \ \emph{mm}} ight)}{\log\left(20 ight)} = 0.8$	aus TB 3-11c
$K_{0\sigma} := 1 - 0.22 \log \left(\frac{Rz}{\mu m}\right) \cdot \left(\log \left(\frac{Rz}{20}\right)\right)$	auc TR 3-10
K_V := 1 aus TB 3-1	$K_{0\tau}\!\coloneqq\!0.575\boldsymbol{\cdot} K_{0\sigma}\!+\!0.425\!=\!0.925$
$K_{Db} \coloneqq \left(\frac{\beta_{kb}}{K_g} + \frac{1}{K_{0\sigma}} - 1\right) \cdot \frac{1}{K_V} = 2$	$K_{Dt} := \left(\frac{\beta_{kt}}{K_g} + \frac{1}{K_{0\tau}} - 1\right) \cdot \frac{1}{K_V} = 1.869$
$\sigma_{bGW} \coloneqq K_t \cdot \frac{\sigma_{bWN}}{K_{Db}} = 128.375 \frac{1}{m}$	$rac{N}{nm^2}$ $ au_{tGW} \coloneqq K_t \cdot rac{ au_{tWN}}{K_{Dt}} = 144.394 \; rac{N}{mm^2}$

$$S_F \coloneqq \frac{1}{\sqrt{\left(\frac{\sigma_{bmax}}{\sigma_{bF}}\right)^2 + \left(\frac{\tau_{tmax}}{\tau_{tF}}\right)^2}} = 21.06$$

$$S_D \coloneqq \frac{1}{\sqrt{\left(\frac{\sigma_{ba}}{\sigma_{bGW}}\right)^2 + \left(\frac{\tau_{ta}}{\tau_{tGW}}\right)^2}} = 2.701$$

Ergebnis: Die Abtriebswelle ist dauerfest.

Schmierstoffberechnung

Für Auslegung eines Schmierstoffes für das Getriebe muss zuerst die benötigte kinematische Nennviskosität des Schmieröles bestimmt werden. Diese erhalten wir über TB 20-7 a) mit Hilfe des

Kraft-Geschwindigkeits-Faktors $\frac{k_s}{v}$. Es wird die Umfangsgeschwindigkeit und Durchmesser von

Zahnrad 4 gewählt.

$$u \coloneqq rac{z_4}{z_3}$$
 $n_{Abtrieb} \coloneqq rac{n_{Antrieb}}{i'_{Gesamt}}$

$$\underline{k_s} := \left(3 \cdot \frac{F_{tZ4}}{b_4 \cdot d_4} \cdot \frac{u+1}{u}\right) \cdot \frac{1}{\pi \cdot d_4 \cdot n_{Abtrieb}} = 0.893 \frac{s}{m} \cdot MPa$$

Durch das Ablesen von TB 20-7 a) ergibt sich ca. ein Wert von: $\nu_{40} = 2.3 \cdot 10^2 \cdot \frac{mm^2}{s}$

Gewähltes Schmieröl:

DIN 51517 - CLP 220: Umlaufschmieröl auf Basis eines Mineralöls (C) mit Zusatzstoffen für erhöhten Korrosionsschutz, Alterungsbeständigkeit (L), sowie Herabsetzung der Reibung und des Verschleißes (P).

Geeignet für kinematische Viskositäten von $\nu_{40} \coloneqq 198\dots 242 \ \frac{{\it mm}^2}{\it s}$ - ISO VG 220 (220).

10.08.2022 Seite 27 von 27

