Deep Dive Into Catalyst: Apache Spark's Optimizer

Yin Huai, yhuai@databricks.com

About me

Software engineer at Databrick

Apache Spark committer and PMC member

One of the original developers of Spark SQL

Before joining Databricks: Ohio State Universit

About Databricks

TEAM

Started Spark project (now Apache Spark) at UC Berkeley in 2009

MISSION

Making Big Data Simple

PRODUCT

Unified Analytics Platform

Overview

Spark SQL applies structured views to data from different systems stored in different kinds of formats.

Why structure APIs?

Dataframe

```
data.groupBy("dept").avg("age")
```

SQL

```
select dept, avg(age) from data group by 1
```

RDD

```
data.map { case (dept, age) => dept -> (age, 1) }
    .reduceByKey { case ((a1, c1), (a2, c2)) => (a1 + a2, c1 + c2)}
    .map { case (dept, (age, c)) => dept -> age / c }
```


Why structure APIs?

- Structure will limit what can be expressed.
- In practice, we can accommodate the vast majority of computations.

Limiting the space of what can be expressed enables optimizations.

Why structure APIs?

Runtime performance of aggregating 10 million int pairs (secs)

How to take advantage of optimization opportunities?

Get an optimizer that automatically finds out the most efficient plan to execute data operations specified in the user's program

Catalyst: Apache Spark's Optimizer

How Catalyst Works: An Overview

How Catalyst Works: An Overview

Trees: Abstractions of Users' Programs

```
SELECT sum(v)
FROM (
  SELECT
    t1.id,
    1 + 2 + t1.value AS v
  FROM t1 JOIN t2
  WHERE
    t1.id = t2.id AND
    t2.id > 50000) tmp
```

Trees: Abstractions of Users'

Prespression

```
SELECT sum(v)
FROM
  SELECT
    t1.id,
    1 + 2 + t1.value AS v
  FROM t1 JOIN t2
  WHERE
    t1.id = t2.id AND
    t2.id > 50000) tmp
```

- An expression represents a new value, computed based on input values
 - e.g. 1 + 2 + t1.value
- Attribute: A column of a dataset (e.g. t1.id) or a column generated by a specific data operation (e.g. v)

Trees: Abstractions of Users'

Logical Plan

- A Logical Plan describes computation on datasets without defining how to conduct the computation
- output: a list of attributes generated by this Logical Plan, e.g. [id, v]
- constraints: a set of invariants about the rows generated by this plan, e.g. t2.id > 50000
- statistics: size of the plan in rows/bytes. Per column stats (min/max/ndv/nulls).

Physical Plan

 A Physical Plan describes computation on datasets with specific definitions on how to conduct the computation

A Physical Plan is executable

How Catalyst Works: An Overview

Transformations

- Transformations without changing the tree type (Transform and Rule Executor)
 - Expression => Expression
 - Logical Plan => Logical Plan
 - Physical Plan => Physical Plan
- Transforming a tree to another kind of tree
 - Logical Plan => Physical Plan

Transform

 A function associated with every tree used to implement a single rule

Transform

- A transformation is defined as a Partial Function
- Partial Function: A function that is defined for a subset of its possible arguments

```
val expression: Expression = ...
expression.transform {
  case Add(Literal(x, IntegerType), Literal(y, IntegerType)) =>
    Literal(x + y)
}
```

Case statement determines if the partial function is defined for a given input

Combining Multiple Rules

Predicate Pushdown

Combining Multiple Rules

Combining Multiple Rules

Before transformations

After transformations

Combining Multiple Rules: Rule Executor

A Rule Executor transforms a Tree to another same type Tree by applying many rules defined in batches

Transformations

- Transformations without changing the tree type (Transform and Rule Executor)
 - Expression => Expression
 - Logical Plan => Logical Plan
 - Physical Plan => Physical Plan
- Transforming a tree to another kind of tree
 - Logical Plan => Physical Plan

From Logical Plan to Physical Plan

- A Logical Plan is transformed to a Physical Plan by applying a set of Strategies
- Every Strategy uses pattern matching to convert a Logical Plan to a Physical Plan

- Analysis (Rule Executor): Transforms an Unresolved Logical Plan to a Resolved Logical Plan
 - Unresolved => Resolved: Use Catalog to find where datasets and columns are coming from and types of columns
- Logical Optimization (Rule Executor): Transforms a Resolved Logical Plan to an Optimized Logical Plan
- Physical Planning (Strategies + Rule Executor):
 - Phase 1: Transforms an Optimized Logical Plan to a Physical Plan
 - Phase 2: Rule executor is used to adjust the physical plan to make it ready for execution

Put what we have learned in action

Use Catalyst's APIs to customize Spark

Roll your own planner rule

```
import org.apache.spark.sql.functions.
// tableA is a dataset of integers in the ragne of [0, 19999999]
val tableA = spark.range(20000000).as('a)
// tableB is a dataset of integers in the ragne of [0, 9999999]
val tableB = spark.range(10000000).as('b)
// result shows the number of records after joining tableA and tableB
val result = tableA
  .join(tableB, $"a.id" === $"b.id")
  .groupBy()
  .count()
result.show()
```

This takes 4-8s on Databricks Community edition

```
result.explain()
== Physical Plan ==
*HashAggregate(keys=[], functions=[count(1)])
+- Exchange SinglePartition
 +- *HashAggregate(keys=[], functions=[partial_count(1)])
   +- *Project
     +- *SortMergeJoin [id#642L], [id#646L], Inner
       :- *Sort [id#642L ASC NULLS FIRST], false, 0
       : +- Exchange hashpartitioning(id#642L, 200)
          +- *Range (0, 20000000, step=1, splits=8)
       +- *Sort [id#646L ASC NULLS FIRST], false, 0
         +- Exchange hashpartitioning(id#646L, 200)
           +- *Range (0, 10000000, step=1, splits=8)
```

Exploit the structure of the problem

We are joining two intervals; the result will be the intersection of these intervals


```
// Import internal APIs of Catalyst
import org.apache.spark.sql.Strategy
import org.apache.spark.sql.catalyst.expressions.{Alias, EqualTo}
import org.apache.spark.sql.catalyst.plans.logical.{LogicalPlan, Join, Range}
import org.apache.spark.sql.catalyst.plans.Inner
import org.apache.spark.sql.execution.{ProjectExec, RangeExec, SparkPlan}
case object IntervalJoin extends Strategy with Serializable {
 def apply(plan: LogicalPlan): Seq[SparkPlan] = plan match {
   case Join(
     Range(start1, end1, 1, part1, Seq(o1)), // mathces tableA
     Range(start2, end2, 1, part2, Seq(o2)), // matches tableB
     if ((o1 semanticEquals e1) && (o2 semanticEquals e2)) |
          ((o1 semanticEquals e2) && (o2 semanticEquals e1)) =>
       // See next page for rule body
   case _ => Nil
```

```
// matches cases like:
// tableA: start1----end1
// tableB: ...-end2
if ((end2 >= start1) && (end2 <= end2)) {
 // start of the intersection
 val start = math.max(start1, start2)
 // end of the intersection
 val end = math.min(end1, end2)
 val part = math.max(part1.get0rElse(200), part2.get0rElse(200))
 // Create a new Range to represent the intersection
 val result = RangeExec(Range(start, end, 1, Some(part), o1 :: Nil))
 val twoColumns = ProjectExec(
   Alias(o1, o1.name)(exprId = o1.exprId) :: Nil,
   result)
 twoColumns :: Nil
} else {
 Nil
```

Hook it up with Spark

```
spark.experimental.extraStrategies = IntervalJoin :: Nil
```

Use it

result.show()

This now takes ~0.5s to complete

```
result.explain()
== Physical Plan ==
*HashAggregate(keys=[], functions=[count(1)])
+- Exchange SinglePartition
   +- *HashAggregate(keys=[], functions=[partial_count(1)])
      +- *Project
         +- *Project [id#642L AS id#642L]
            +- *Range (0, 10000000, step=1, splits=8)
```

Contribute your ideas to Spark

110 line patch took a user's query from "never finishing" to 200s.

Overall 200+ people have contributed to the analyzer/optimizer/planner in the last 2 years.

Try Apache Spark in Databricks!

UNIFIED ANALYTICS PLATFORM

- Collaborative cloud environment
- Free version (community edition)

DATABRICKS RUNTIME 3.0

- Apache Spark optimized for the cloud
- Caching and optimization layer -DBIO
- Enterprise security DBES

Try for free today. databricks.com

Thank you!

What to chat?

Find me after this talk or at Databricks booth 3-3:40pm

