CONCORDIA UNIVERSITY

DEPARTMENT OF COMPUTER SCIENCE AND SOFTWARE ENGINEERING

COMP232 MATHEMATICS FOR COMPUTER SCIENCE

ASSIGNMENT 3 Winter 2019

Due Date: March 22, 2019

1. Let the function $f: \mathbb{R} \longrightarrow \mathbb{R}$ be given by

$$f(x) = \frac{x+1}{x-1}$$
 if $x \neq 1$, $f(x) = 1$ if $x = 1$.

Draw the graph of f versus the values of x. Is f a bijection (*i.e.*, one-to-one and onto)? If yes then give a proof and derive a formula for f^{-1} . If no then explain why not.

2. Let $f: \mathbb{Z}^2 \longrightarrow \mathbb{Z}^2$ be defined as f(m,n) = (m-n,n). Is f indeed a properly defined function from \mathbb{Z}^2 to \mathbb{Z}^2 ? Is f a bijection, *i.e.*, one-to-one and onto? If yes then give a proof and derive a formula for f^{-1} . If no then explain why not.

Also derive a formula for the composite function f_k , for $k \in \mathbb{Z}^+$. Here f_2 denotes the composite function $f \circ f$, f_3 denotes the composite function $f \circ f \circ f$, etc. (You are asked to derive the formula for f_k for general $k \in \mathbb{Z}^+$.) Is f_k a bijection? If yes then give a proof and derive a formula for its inverse f_k^{-1} . If no then explain why not.

3. If A and B are sets and $f:A\longrightarrow B$, then for any subset S of A we define

$$f(S) = \{b \in B : b = f(a) \text{ for some } a \in S\}$$
.

Similarly, for any subset T of B we define the *pre-image* of T as

$$f^{-1}(T) = \{a \in A : f(a) \in T\}$$
.

Note that $f^{-1}(T)$ is well defined even if f does not have an inverse!

Now let $f: \mathbb{R} \to \mathbb{R}$ be defined as $f(x) = x^2$. Let S_1 denote the closed interval [-2,1], that is all $x \in \mathbb{R}$ that satisfy $-2 \le x \le 1$, and let S_2 be the open interval (-1,2), that is all $x \in \mathbb{R}$ that satisfy -1 < x < 2. Also let $T_1 = S_1$ and $T_2 = S_2$.

Determine

$$f(S_1 \cup S_2)$$
, $f(S_1) \cup f(S_2)$, $f(S_1 \cap S_2)$, $f(S_1) \cap f(S_2)$,

and

$$f^{-1}(T_1 \cup T_2)$$
, $f^{-1}(T_1) \cup f^{-1}(T_2)$, $f^{-1}(T_1 \cap T_2)$, and $f^{-1}(T_1) \cap f^{-1}(T_2)$.

- 4. (a) Prove that $|-x| = -\lceil x \rceil$ and $\lceil -x \rceil = -\lceil x \rceil$.
 - (b) Give a proof by cases that $\lfloor 4x \rfloor = \lfloor x \rfloor + \lfloor x + \frac{1}{4} \rfloor + \lfloor x + \frac{1}{2} \rfloor + \lfloor x + \frac{3}{4} \rfloor$.
- (a) Use the Euclidean algorithm to determine whether or not the years 1812 and 2013 are relatively prime.
 - (b) Let $k, m, n \in \mathbb{Z}^+$, where k and m are relatively prime. Prove that if k|mn then k|n.
- 6. (a) Prove that if $n \in \mathbb{Z}^+$ is odd then $n^2 \equiv 1 \pmod{8}$.
 - (b) Prove that for any $m, n \in \mathbb{Z}^+$ the number $\gcd(m+n, mn) \gcd(m, n)$ is even. Hint: Consider the cases that arise depending on whether n and m are both even, both odd, or one is even and the other odd.
- 7. (a) Without computing the value of 100!, determine how many zeros are at the end of this number when it is written in decimal form. Justify your answer.
 - (b) Find all solutions to $m^2 n^2 = 105$, for which both m and n are integers.

Hint: Both proofs rely on the Factorization Theorem.

- 8. (a) Suppose that Hilbert's Grand Hotel is fully occupied, but the hotel closes all the even numbered rooms for maintenance. Show that all guests can remain in the hotel.
 - (b) Show that a countably infinite number of guests arriving at Hilbert's fully occupied Grand Hotel can be given rooms without evicting any current guest.
- 9. Determine whether each of these sets is countable or uncountable. For those that are countably infinite, exhibit a one-to-one correspondence between the set of positive integers and that set.
 - (a) integers not divisible by 3
 - (b) integers divisible by 5 but not by 7
 - (c) the real numbers with decimal representations consisting of all 1s
 - (d) the real numbers with decimal representations of all 1s or 9s