8 APPENDIX

8.1 Proof of Theorem 3.4

(1) The deterministic FAS recognizes the language defined by SOREFs.

PROOF. According to the definition of an FAS, for a SOREF r, and the ith subexpression of the form $r_i = r_{i_1} \& r_{i_2} \& \cdots \& r_{i_k}$ $(i, k \in \mathbb{N}, k \ge 2)$ in r, there are start marker $\&_i$ and end marker $\&_i^+$ in an FAS for recognizing the strings derived by r_i . For each subexpression r_{i_j} $(1 \le j \le k)$ in r_i , there is a concurrent marker $||_{ij}$ in an FAS for recognizing the symbols or strings derived by r_{i_j} .

 r_{ij} .

In addition, for strings recognition, an FAS recognizes a string by treating symbols in a string individually. A symbol y in a string $s \in \mathcal{L}(r)$ is recognized if and only if the current state (a set of nodes) p is reached such that $y \in p$. The end symbol \dashv is recognized if and only if the final state is reached. If y (resp. \dashv) is not consumed, then y (resp. \dashv) will be still read as the current symbol to be recognized. A SOREF *r* is a deterministic expression, every symbol in s can be uniquely matched in r, and for every symbol *l* in *r*, there must exist a state (a set of nodes) in an FAS including l. According to the transition function of an FAS, for the deterministic FAS \mathcal{A} , every symbol in s can be recognized in a state in \mathcal{A} . When the last symbol of s was recognized, the end symbol - is read as the current symbol, suppose the current state is q, q will be finally transit to the state q_f such that \dashv is consumed. Therefore, $s \in \mathcal{L}(\mathcal{A})$. Then, $\mathcal{L}(r) \subseteq \mathcal{L}(\mathcal{A})$. The deterministic FAS recognizes the language defined by SOREFs.

(2) The membership problem for deterministic FAS is decidable in polynomial time. I.e., for any string s, and a deterministic FAS \mathcal{A} , we can decide whether $s \in \mathcal{L}(\mathcal{A})$ in $O(|s||\Sigma|^2)$ time.

PROOF. An FAS recognizes a string by treating symbols in a string individually. A symbol y in a string s is recognized if and only if the current state p is reached such that $y \in p$. Let p_y denote the state (a set of nodes) p including symbol y. The next symbol of y is read if and only if y has been recognized at the state p_y . H is the node transition graph of an FAS \mathcal{A} . The number of nodes in H is $\lceil \log_2 |\Sigma| \rceil + 2|\Sigma| + 2$ (including q_0 and q_f) at most. Assume that the current read symbol is y and the current state is q:

- (1) q is a set: $|q| \ge 1$ and $\exists v \in \{||i_j\}_{i \in \mathbb{D}_{\Sigma}, j \in \mathbb{P}_{\Sigma}} \cup \Sigma : v \in q \land y \in H. > (v)$.
 - A state (set) q includes $\lceil \log_2 |\Sigma| \rceil + 2|\Sigma|$ nodes at most. For deterministic FAS, it takes $O(|\Sigma|)$ time to search the node v. Then, the state $p_y = q \setminus \{v\} \cup \{y\}$ can be reached, y is recognized. Thus, for the current state q, it takes $O(|\Sigma|)$ time to recognize y.
- (2) q is a set: $|q| \ge 1$ and $\exists \&_i \in q : y \in H.R(\&_i)$. For deterministic FAS, it takes $O(|\Sigma|)$ time to search the node $\&_i$ in state (set) q, and it also takes $O(|\Sigma|)$ time to decide whether $y \in H.R(\&_i)$. Then, the state q transits to the state $q' = q \setminus \{\&_i\} \cup H. > (\&_i)$. Then, there is a node $||_{ij} (||_{ij} \in H. > (\&_i), j \in \mathbb{P}_{\Sigma}\})$ in q' that is checked whether $y \in H. > (||_{ij})$. Case (1) will be considered. Then, for the current state q, it takes $O(|\Sigma|^2)$ time to recognize y.
- (3) q is a set: $|q| \ge 1$ and $\exists \&_i^+ \in q : y \in H.R(\&_i)$. The state including the node $\&_i^+$ will transit to the state including the node $\&_i$, case (2) is satisfied. Then, for the current state q, it takes $O(|\Sigma|^2)$ time to recognize y.
- (4) $q = q_0$.

If $y \in H$. $\succ (q_0)$, then, for deterministic FAS, it takes $O(|\Sigma|)$ time to search the state including the node y. Otherwise, a node $\&_i$ $(i \in \mathbb{D}_\Sigma)$ is searched and then is decided whether $y \in H.R(\&_i)$. Then, it takes $O(|\Sigma|^2)$ time for q to transit to the state $\{\&_i\}$. Case (2) is satisfied. Then, for the current state q, it takes $O(|\Sigma|^2)$ time at most to recognize y.

Thus, for deterministic FAS, a symbol $y \in \Sigma_s$ and a current state q, it takes $O(|\Sigma|^2)$ time at most to recognize y. When the last symbol of s was recognized, the end symbol \dashv requires to be consumed, it takes $O(|H.V|) = O(|\Sigma|)$ time to transit to the final state q_f . Let |s| denote the length of the string s, then for an FAS, it takes $O(|s||\Sigma|^2)$ time to recognize s. Therefore, the membership problem for a deterministic FAS is decidable in polynomial time (uniform)¹¹.

8.2 Proof of Theorem 4.3

PROOF. For each tuple $(u,v) \in U$ ($u \neq v$), according to the definition of *necessary interleaving* (see Definition 2.5), algorithm *ShuffleTuples* ensures that there exists two strings $s_1, s_2 \in S$ such that $P(s_1, u, v) = P(s_2, v, u) = 1$ (lines $11 \sim 12$ and lines $14 \sim 15$). u can be interleaved with v, and there does not exist the two strings or substrings s and t occurring in S such that s and t can be described by MutexStr(a, b) and MutexStr(b, a), respectively (lines $19 \sim 20$). u is necessarily interleaved with v for S. Then, according to the definition of shuffle tuple (see Definition 2.7), (u, v) is a shuffle unit.

For any two distinct symbols $u, v \in \Sigma$, if u is necessarily interleaved with v for S, in algorithm ShuffleTuples, u and v will be searched from a SCC (lines 1~3). According to the definition of necessary interleaving, we obtain the tuple (u, v) such that there exists two strings $s_1, s_2 \in S$ such that $P(s_1, u, v) = P(s_2, v, u) = 1$, (u, v) will be put into U (line 16). Moreover, there does not exist the two strings or substrings s and t occurring in S such that s and t can be described by MutexStr(a, b) and MutexStr(b, a), respectively, (u, v) will not be removed from U (lines $19\sim20$), then $(u, v) \in U$.

8.3 Proof of Theorem 4.5

PROOF. For a given undigraph F(V, E), and a tuple $(u, v) \in U_{\&}$, because of $F.E = U_{\&}$, the node u connects the node v in F. Suppose that the current given undigraph is F, the current set of shuffle units is $P_{\&}$, and u has maximum node degree. The node u and the nodes (including the node v) connected to the node u compose two different sets e_1 and e_2 ($u \in e_1, v \in e_2$), respectively. Let $\alpha = e_1 \cup e_2$.

In algorithm *ShuffleUnits*, if there exists a shuffle unit $l \in P_{\&}$ such that the intersection of the set $e \in l$ and the set $\beta \in \{e_1, e_2\}$ is not empty, either e ($e = e_1 \cup e_2$) is partitioned (line 6) or the sets β and $\alpha \setminus \beta$ are merged with e and the union of the other sets from l, respectively (line 9), and the other sets from l are copied to form a new shuffle unit (lines 8, 10). Otherwise, add the shuffle unit $[e_1, e_2]$ into $P_{\&}$ (line 11).

Therefore, there always exits a shuffle unit in $P_{\&}$ such that u and v are in two distinct sets in the shuffle unit. Then, the node u and its associated edges are removed from F, algorithm Shuffle Units recursively extract shuffle units from a new undigraph.

¹¹Note that, for non-uniform version of the membership problem for a deterministic FAS, only the string to be tested is considered as input. This indicates that $|\Sigma|$ is a constant. In this case, the membership problem for a deterministic FAS is decidable in linear time.

Thus, there is a unique shuffle unit $l \in P_{\&}$ such that u and v are in distinct sets in l.

Assume that, there exists a set e_i $(i \in \mathbb{N})$ in a shuffle unit $l \in P_{\&}$ such that e_i can be partitioned into two new sets to form a new shuffle unit. Let $l = [e_1, \cdots, e_i, \cdots, e_k]$ $(k \geq 2, k \in \mathbb{N})$, e_i is partitioned into two sets e_i^1 and e_i^2 $(e_i = e_i^1 \cup e_i^2)$, then the new shuffle unit $l' = [e_1, \cdots, e_i^1, e_i^2, \cdots, e_k]$. According to the definition of shuffle unit (see Definition 2.8), there the two elements $v_1 \in e_i^1$ and $v_2 \in e_i^2$ such that v_1 is necessarily interleaved with v_2 for S, then $(v_1, v_2) \in U_{\&}$ or $(v_2, v_1) \in U_{\&}$, there has been a unique shuffle unit $l_u \in P_{\&}$ such that v_1 and v_2 are in distinct sets in l_u . However, v_1 and v_2 are also in distinct sets in l'. There is a contradiction to the above conclusion. The assumption does not hold, then a set in a shuffle unit of $P_{\&}$ can not be partitioned into two sets, a shuffle unit in $P_{\&}$ has minimum size.

8.4 Proof of Theorem 4.7

(1) The learned FAS \mathcal{A} from a sample S is a deterministic FAS..

PROOF. H is the node transition graph of an FAS \mathcal{A} . The FAS \mathcal{A} is learned by constructing the node transition graph H. We convert the SOA G built for S to the digraph H. For the different markers $\&_i$, $\&_i^+$ and $||_{ij}$, where $i \in \mathbb{D}_\Sigma$ and $j \in \mathbb{P}_\Sigma$, they are respectively added into the SOA G by traversing the shuffle units in $P_\&$. For different shuffle units in $P_\&$, there are different start markers $\&_i$ and end markers $\&_i^+$ which are added into G. For different sets (disjoint) in a shuffle unit, there are different concurrent markers $||_{ij}$ which are added into G. The finally obtained G is the node transition graph of the learned FAS \mathcal{A} . Then, every node of H is labelled by distinct symbol. This implies that, a state (a set of nodes) does not include the nodes labelled by the same symbol.

For recognizing a string $s \in S$, according to the state transition function of the learned FAS \mathcal{A} , a symbol $y \in \Sigma_s$ (resp. \dashv) is recognized if and only if the state (set) p including the node y (resp. the final state q_f) is reached. If y (resp. \dashv) does not been consumed, there is only one next state p' is specified that the state p' including the node which can reach to the node y (resp. the node q_f) in H. Thus, each symbol $a \in \Sigma_s \cup \{\dashv\}$ can be unambiguously recognized. The FAS \mathcal{A} is a deterministic FAS.

Lemma 8.1. Let $P_{\&} = \{[e_1, e_2, \cdots, e_k]\}$ $(k \geq 2)$, and let $r(e_i)$ $(1 \leq i \leq k)$ denote a regular expression such that $e_i = \Sigma_{r(e_i)}$. Assume that the set $P_{\&}$ of shuffle units is returned by algorithm ShuffleUnits. For a given finite sample S, and a shuffle unit $l' = [e'_1, e'_2, \cdots, e'_t]$ $(t \geq 2)$, if there exists $r(e_i)$ and $r'(e'_j)$ $(1 \leq j \leq t)$: $\mathcal{L}(r(e_1)\&\cdots\&r(e_k)) \supset \mathcal{L}(r'(e'_1)\&\cdots\&r'(e'_t)) \supseteq S$, then t = k and $e_i = e'_i$.

PROOF. For $\mathcal{L}(r(e_1)\&\cdots\&r(e_k))\supset \mathcal{L}(r'(e_1')\&\cdots\&r'(e_t'))\supseteq S^{12}$, there is $t\leq k$.

For any two distinct symbols $u, v \in \Sigma$, if u is necessarily interleaved with v for S. u and v are in two distinct sets in l'. Otherwise, it will lead to $\mathcal{L}(r'(e'_1)\&\cdots\&r'(e'_t))\not\supseteq S$. Then, according to Theorem 4.5, a shuffle unit in the set $P_\&$ returned by algorithm ShuffleUnits has minimum size, then $k \le t$. Thus, there is t = k.

Let $\mathcal{L}(r(e_1)\&\cdots\&r(e_k))\supset \mathcal{L}(r'(e_1')\&\cdots\&r'(e_k'))\supseteq S$. If there exists $1\leq i\leq k$ such that $e_i\neq e_i'$, then $r(e_i)\neq r'(e_i')$, there exists a string s' such that $s'\in \mathcal{L}(r'(e_1')\&\cdots\&r'(e_k'))$ but $s'\notin \mathcal{L}(r(e_1)\&\cdots\&r(e_k))$. Then, $\mathcal{L}(r(e_1)\&\cdots\&r(e_k))\not\supset \mathcal{L}(r'(e_1')\&\cdots\&r'(e_k'))$. Therefore, $e_i=e_i'$ for any $1\leq i\leq k$. \square

(2) There does not exist an FAS \mathcal{A}' , which is learned from S such that $\mathcal{L}(\mathcal{A}) \supset \mathcal{L}(\mathcal{A}') \supseteq S$. The FAS \mathcal{A} is a precise representation of S.

PROOF. The FAS \mathcal{A} is learned by constructing the corresponding node transition graph H. We convert the SOA G built for S to the digraph H by traversing shuffle units in $P_{\&}$, which is obtained from Algorithm 3. The built SOA G is a precise representation of S [18]

Assume that there exists an FAS \mathcal{A}' learned from S such that $\mathcal{L}(\mathcal{A}) \supset \mathcal{L}(\mathcal{A}') \supseteq S$. For the node transition graph H' of the FAS \mathcal{A}' , H' should be constructed from the SOA G built for S, otherwise, the above assumption can not hold. Suppose that there is the set $P'_{\&}$ of shuffle units such that the digraph H' can be constructed from the SOA G by traversing shuffle units in $P'_{\&}$.

For each shuffle unit $l \in P_{\&}$, let $l = [e_1, \cdots, e_k]$ $(k \ge 2)$, according to Algorithm 4, there are corresponding start marker $\&_m$ and end marker $\&_m^+$ $(m \in \mathbb{D}_{\Sigma})$ are added into G. Let \mathcal{B} denote the constructed FAS. The FAS \mathcal{B} can recognize the shuffled strings which consist of the symbols in $\bigcup_{1 \le i \le k} e_i$. Let $S_\&$ denote the set of the above shuffled strings extracted from S.

Then, for constructing FAS \mathcal{A}' , for each shuffle unit $l' \in P_{\&}'$ and $l' = [e'_1, \cdots, e'_t]$ $(t \geq 2)$, we obtain the currently constructed FAS \mathcal{B}' by adding the corresponding start marker $\&_n$ and end marker $\&_n^+$ $(n \in \mathbb{D}_{\Sigma})$ into G. If $\mathcal{L}(\mathcal{B}) \supset \mathcal{L}(\mathcal{B}') \supseteq S_{\&}$, then there exists $r(e_i)$ and $r'(e'_j)$ $(1 \leq j \leq t)$ such that $\mathcal{L}(r(e_1)\&\cdots\&r(e_k)) \supset \mathcal{L}(r'(e'_1)\&\cdots\&r'(e'_t)) \supseteq S_{\&}$ (Let $\mathcal{L}(\mathcal{B}) = \mathcal{L}(r(e_1)\&\cdots\&r(e_k))$ and $\mathcal{L}(\mathcal{B}') = \mathcal{L}(r'(e'_1)\&\cdots\&r'(e'_t))$.). According to Lemma 8.1, there are t = k and $e_i = e'_i$, then there is l = l'.

This implies that, if $\mathcal{L}(\mathcal{A}) \supset \mathcal{L}(\mathcal{A}') \supseteq S$, there is $P_{\&} = P'_{\&}$. For digraphs H and H', they are both constructed from the SOA G, then there is $\mathcal{A} = \mathcal{A}'$ and $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}') \supseteq S$. There is a contraction to the initial assumption. Therefore, the initial assumption does not hold, the FAS \mathcal{A} is a precise representation of S.

8.5 Proof of Theorem 5.2

(1) r is a SOREF..

PROOF. H is the node transition graph of the learned FAS. Algorithm InfSOREF mainly transforms the constructed digraph H to r by using algorithm Soa2Sore. According to the definition of an FAS, every symbol labels a node of H at most once. H is also an SOA if we respect markers $(\&_i, \&_i^+ \text{ and } ||_{ij}, i \in \mathbb{D}_{\Sigma}, j \in \mathbb{P}_{\Sigma})$ as alphabet symbols, and the algorithm Soa2Sore transforms the digraph H to a SORE r_s . r is obtained by introducing shuffle operators into r_s , and every alphabet symbol in r occurs once. r is a SOREF.

(2) There does not exist a SOREF r' such that $\mathcal{L}(r) \supset \mathcal{L}(r') \supseteq S$.

PROOF. Assume that there exists a SOREF r' such that $\mathcal{L}(r) \supset \mathcal{L}(r') \supseteq S$. Theorem 4.7 demonstrates that the FAS \mathcal{A} returned by algorithm *LearnFAS* is a precise representation of S. Then, there is $\mathcal{L}(r) \supset \mathcal{L}(r') \supseteq \mathcal{L}(\mathcal{A}) \supseteq S$, otherwise, for the SOREF r', there is an equivalent FAS \mathcal{A}' such that \mathcal{A} is not a precise representation of $S(\mathcal{L}(\mathcal{A}') \supset \mathcal{L}(\mathcal{A}) \supseteq S)$.

Additionally, the node transition graph H of the learned FAS \mathcal{A} can be considered as an SOA if we respect markers $\&_i$, $\&_i^+$ and $||_{ij}$ $(i \in \mathbb{D}_{\Sigma}, j \in \mathbb{P}_{\Sigma})$ as alphabet symbols. Then, for recognizing the language denoted by H, we can replace the ith $(i \in \mathbb{N})$ subexpression rb_i of form $r1\& \cdots \& r_k$ $(k \ge 2)$ in r (resp. r') with $rs_i = (||_{i1}r_1| ||_{i2}r_2| \cdots ||_{ik}r_k)$, we replace rb_i with rs_i for each

¹²For simplicity of proof, let $r(e_1)$ & \cdots & $r(e_k)$ denote that there exists $r(e_i)$ such that $r(e_1)$ & \cdots & $r(e_k)$ is a regular expression supporting shuffle.

 $i \in \mathbb{N}$ (the reverse process with respect to lines 3~5 in algorithm *InfSOREF*), finally we obtain the expression r_s (resp. r_s'). Then, there is $\mathcal{L}(r_s) \supset \mathcal{L}(r_s') \supseteq \mathcal{L}(H)$.

However, $r_s = Soa2Sore(\mathcal{A}.H)$, r_s can be regarded as a SORE. According to Theorem 27 presented in [18], a SORE r_s is transformed from the digraph H by using algorithm Soa2Sore, there does not exist a SORE r_s' such that $\mathcal{L}(r_s) \supset \mathcal{L}(r_s') \supseteq \mathcal{L}(H)$. There is a contradiction. The initial assumption does not hold. There does not exist a SOREF r' such that $\mathcal{L}(r) \supset \mathcal{L}(r') \supseteq S$. r is a precise representation of any given finite sample.

8.6 Proof of Theorem 5.3

PROOF. According to Theorem 3.4, an FAS can recognize the language defined by SOREFs. This implies that, for any given SOREF r, an equivalent FAS $\mathcal A$ can be constructed from the SOREF r. There must exist a finite sample S derived by r such that $\mathcal A = LearnFAS(S)$ ($\mathcal L(\mathcal A) \supseteq S$). The FAS $\mathcal A$ is transformed to a SOREF r' by using algorithm InfSOREF. According to Theorem 5.2, algorithm InfSOREF returns a SOREF which is a precise representation of S. Thus, $\mathcal L(r') = \mathcal L(\mathcal A) = \mathcal L(r) \supseteq S$.

Note that, r' and r are SOREFs where every alphabet symbol occurs at most once. r' does not comprise the redundant operators that is ensured by subroutine Soa2Sore [18] and lines $3{\sim}5$ in algorithm InfSOREF. For the redundant operators and regular expression e occurring in r^{13} , if there is a simplified regular expression e': $\Sigma_e = \Sigma_{e'}$ and $\mathcal{L}(e) = \mathcal{L}(e')$, then e = e' (such as $(e^+)^+ = e^+$, $(e^?)^? = e^?$, $((e^+)^?)^+ = (e^+)^?$, etc.) [4, 6, 18]. Therefore, for any given SOREF r, there exists a finite sample S such that r = InfSOREF(S).

 $^{^{13}\}mbox{Usually, the SOREF}\ r$ provided by users does not comprise the redundant operations.