• Last time:

• Today:

- Last time:
 - Conditional independence in Bayesian Networks
- Today:

- Last time:
 - Conditional independence in Bayesian Networks
 - Sampling from Bayesian Networks
- Today:

Last time:

- Conditional independence in Bayesian Networks
- Sampling from Bayesian Networks

Today:

Given a Bayesian Network and some values, how do we calculate the probability of other values?

Last time:

- Conditional independence in Bayesian Networks
- Sampling from Bayesian Networks

• Today:

Inference

- Given a Bayesian Network and some values, how do we calculate the probability of other values?
- Given data, how do we fit a Bayesian network?

Structure

Structure

Parameters

Parameters Θ $P(B) \qquad P(S)$ P(E|B,S) $P(D|E) \qquad P(C|E)$

Inputs

Inputs

• Bayesian network structure

Inputs

- Bayesian network structure
- Bayesian network parameters

Inputs

- Bayesian network structure
- Bayesian network parameters
- Values of evidence variables

Inputs

- Bayesian network structure
- Bayesian network parameters
- Values of evidence variables

Outputs

Posterior distribution of query variables

B battery failure
S solar panel failure
E electrical system failure
D trajectory deviation
C communication loss

Inputs

- Bayesian network structure
- Bayesian network parameters
- Values of evidence variables

Outputs

Posterior distribution of query variables

Evidence

B battery failure
S solar panel failure
E electrical system failure
D trajectory deviation
C communication loss

Inference

Inputs

- Bayesian network structure
- Bayesian network parameters
- Values of evidence variables

Outputs

Posterior distribution of query variables

Given that you have detected a trajectory deviation, and the battery has not failed what is the probability of a solar panel failure?

B battery failure
S solar panel failure
E electrical system failure
D trajectory deviation
C communication loss

Inputs

- Bayesian network structure
- Bayesian network parameters
- Values of evidence variables

Outputs

Posterior distribution of query variables

Given that you have detected a trajectory deviation, and the battery has not failed what is the probability of a solar panel failure?

$$P(S = 1 \mid D = 1, B = 0)$$

$P(B) \qquad P(S)$ $E \qquad P(E \mid B, S)$ $P(D \mid E) \qquad P(C \mid E)$

B battery failure
S solar panel failure
E electrical system failure
D trajectory deviation
C communication loss

Inference

Inputs

- Bayesian network structure
- Bayesian network parameters
- Values of evidence variables

Outputs

Posterior distribution of query variables

Given that you have detected a trajectory deviation, and the battery has not failed what is the probability of a solar panel failure?

$$P(S = 1 \mid D = 1, B = 0)$$

Exact

P(B) P(S) E $P(E \mid B, S)$ $P(C \mid E)$

B battery failure
S solar panel failure
E electrical system failure
D trajectory deviation
C communication loss

Inference

Inputs

- Bayesian network structure
- Bayesian network parameters
- Values of evidence variables

Outputs

Posterior distribution of query variables

Given that you have detected a trajectory deviation, and the battery has not failed what is the probability of a solar panel failure?

$$P(S=1 \mid D=1, B=0)$$
Exact Approximate

 ${\it B}$ battery failure

S solar panel failure

E electrical system failure

D trajectory deviation

$$P(S=1 \mid D=1, B=0)$$

B battery failure

S solar panel failure

E electrical system failure

D trajectory deviation

$$P(S=1 \mid D=1, B=0) = \frac{P(S=1, D=1, B=0)}{P(D=1, B=0)}$$

B battery failure

S solar panel failure

E electrical system failure

D trajectory deviation

 $P(S=1 \mid D=1, B=0)$ P(S=1, D=1, B=0) P(D=1, B=0) P(S=1, D=1, B=0) $P(S=1, D=1, B=0) = \sum_{e,c} P(B=0, S=1, E=e, D=1, C=c)$

B battery failure
S solar panel failure
E electrical system failure
D trajectory deviation
C communication loss

 $2^5 = 32$ possible assignments, but quickly gets too large

 ${\it B}$ battery failure

S solar panel failure

E electrical system failure

D trajectory deviation

Product

B battery failure

S solar panel failure

E electrical system failure

D trajectory deviation

Product

Condition

X	Υ	Z	$\phi(X,Y,Z)$			
0	0	0	0.08			. (37. 7
0	0	1	0.31	$Y = 1$ $\frac{X}{}$	Z	$\phi(X, Z)$
0	1	0	0.09 -	→ 0	0	0.09
0	1	1	0.37 -	→ 0	1	0.3
1	0	0	0.01	<i>→</i> 1	0	0.0
1	0	1	0.05	/ → 1	1	0.0
1	1	0	0.02 -	// -		
1	1	1	0.07 -			

B battery failure

S solar panel failure

E electrical system failure

D trajectory deviation

B battery failure
S solar panel failure
E electrical system failure
D trajectory deviation
C communication loss

Product

Condition

Marginalize

B battery failure
S solar panel failure
E electrical system failure
D trajectory deviation
C communication loss

Product

Condition

Marginalize

B battery failure
S solar panel failure
E electrical system failure
D trajectory deviation
C communication loss

Product

Condition

X	Υ	Z	$\phi(X,Y,Z)$			
0	0	0	0.08			- (77 =)
0	0	1	0.31 _Y	$= 1$ $\frac{X}{}$	Z	$\phi(X,Z)$
0	1	0	0.09	→ 0	0	0.09
0	1	1	0.37	→ 0	1	0.37
1	0	0	0.01	<i>→</i> 1	0	0.02
1	0	1	0.05	/ → 1	1	0.07
1	1	0	0.02	// -		
1	1	1	0.07			

Marginalize

 $2^5 = 32$ possible assignments, but quickly gets too large

Exact Inference: Variable Elimination

B battery failure

S solar panel failure

E electrical system failure

D trajectory deviation

Exact Inference: Variable Elimination

B battery failure

S solar panel failure

E electrical system failure

D trajectory deviation

Exact Inference: Variable Elimination

 $P(B \mid d^1, c^1)$

Start with

 $\phi_1(B),\phi_2(S),\phi_3(E,B,S),\phi_4(D,E),\phi_5(C,E)$

 ${\it B}$ battery failure

S solar panel failure

E electrical system failure

D trajectory deviation

 $P(B \mid d^1, c^1)$

Start with

$$\phi_1(B), \phi_2(S), \phi_3(E, B, S), \phi_4(D, E), \phi_5(C, E)$$

Eliminate D and C (evidence) to get $\phi_6(E)$ and $\phi_7(E)$

 ${\it B}$ battery failure

S solar panel failure

E electrical system failure

D trajectory deviation

 $P(B \mid d^1, c^1)$

Start with

$$\phi_1(B), \phi_2(S), \phi_3(E, B, S), \phi_4(D, E), \phi_5(C, E)$$

Eliminate D and C (evidence) to get $\phi_6(E)$ and $\phi_7(E)$

Eliminate *E*

$$\underline{\phi_8(B,S)} = \sum_e \phi_3(e,B,S)\phi_6(e)\phi_7(e)$$

 ${\it B}$ battery failure

S solar panel failure

E electrical system failure

D trajectory deviation

 $P(B \mid d^1, c^1)$

Start with

$$\phi_1(B), \phi_2(S), \phi_3(E, B, S), \phi_4(D, E), \phi_5(C, E)$$

Eliminate D and C (evidence) to get $\phi_6(E)$ and $\phi_7(E)$

Eliminate *E*

$$\phi_8(B,S) = \sum_e \phi_3(e,B,S)\phi_6(e)\phi_7(e)$$

Eliminate S

$$\phi_9(B) = \sum_s \phi_2(s)\phi_8(B,s)$$

B battery failure

S solar panel failure

E electrical system failure

D trajectory deviation

$$P(B \mid d^1, c^1)$$

Start with

$$\phi_1(B), \phi_2(S), \phi_3(E, B, S), \phi_4(D, E), \phi_5(C, E)$$

Eliminate D and C (evidence) to get $\phi_6(E)$ and $\phi_7(E)$

Eliminate *E*

$$\phi_8(B,S) = \sum_e \phi_3(e,B,S)\phi_6(e)\phi_7(e)$$

Eliminate S

$$\phi_9(B) = \sum_s \phi_2(s)\phi_8(B,s)$$

B battery failure
S solar panel failure
E electrical system failure
D trajectory deviation
C communication loss

Jariable

Jariable

$$P(B \mid d^{1}, c^{1}) \propto \phi_{1}(B) \sum_{s} \left(\phi_{2}(s) \sum_{e} \left(\phi_{3}(e \mid B, s) \phi_{4}(d^{1} \mid e) \phi_{5}(c^{1} \mid e)\right)\right)$$

VS

 $P(B \mid d^{1}, c^{1}) \propto \sum_{s} \sum_{e} \phi_{1}(B) \phi_{2}(s) \phi_{3}(e \mid B, s) \phi_{4}(d^{1} \mid e) \phi_{5}(c^{1} \mid e)$

 $P(B \mid d^1, c^1)$

Start with

$$\phi_1(B), \phi_2(S), \phi_3(E, B, S), \phi_4(D, E), \phi_5(C, E)$$

Eliminate D and C (evidence) to get $\phi_6(E)$ and $\phi_7(E)$

Eliminate *E*

$$\phi_8(B,S) = \sum_e \phi_3(e,B,S)\phi_6(e)\phi_7(e)$$

Eliminate S

$$\phi_9(B) = \sum_s \phi_2(s)\phi_8(B,s)$$

B battery failure
S solar panel failure
E electrical system failure
D trajectory deviation
C communication loss

$$P(B \mid d^1, c^1) \propto \phi_1(B) \sum_{s} \left(\phi_2(s) \sum_{e} \left(\phi_3(e \mid B, s) \phi_4(d^1 \mid e) \phi_5(c^1 \mid e) \right) \right)$$

VS

$$P(B \mid d^1, c^1) \propto \sum_{s} \sum_{e} \phi_1(B) \phi_2(s) \phi_3(e \mid B, s) \phi_4(d^1 \mid e) \phi_5(c^1 \mid e)$$

Choosing optimal order is NP-hard

Approximate Inference

B battery failure

S solar panel failure

E electrical system failure

D trajectory deviation

 $P(b^1 \mid d^1, c^1) \approx \frac{\sum_i (b^{(i)} = 1 \land d^{(i)} = 1 \land c^{(i)} = 1)}{\sum_i (d^{(i)} = 1 \land c^{(i)} = 1)}$

B battery failure

S solar panel failure

E electrical system failure

D trajectory deviation

B battery failure
S solar panel failure
E electrical system failure
D trajectory deviation
C communication loss

B battery failure

S solar panel failure

E electrical system failure

D trajectory deviation

C communication loss

$$P(b^1 \mid d^1, c^1) \approx \frac{\sum_i (b^{(i)} = 1 \land d^{(i)} = 1 \land c^{(i)} = 1)}{\sum_i (d^{(i)} = 1 \land c^{(i)} = 1)}$$

В	S	Е	D	C
0	0	1	1	0
0	0	0	0	0
1	0	1	0	0
1	0	1	1	1 ←
0	0	0	0	0
0	0	0	1	0
0	0	0	0	1
0	1	1	1	1 ←
0	0	0	0	0
0	0	0	1	0

Analogous to

B battery failure

S solar panel failure

E electrical system failure

D trajectory deviation

C communication loss

$$P(b^1 \mid d^1, c^1) \approx \frac{\sum_i (b^{(i)} = 1 \land d^{(i)} = 1 \land c^{(i)} = 1)}{\sum_i (d^{(i)} = 1 \land c^{(i)} = 1)}$$

В	S	Е	D	C
0	0	1	1	0
0	0	0	0	0
1	0	1	0	0
1	0	1	1	1 ←
0	0	0	0	0
0	0	0	1	0
0	0	0	0	1
0	1	1	1	1 ←
0	0	0	0	0
0	0	0	1	0

Analogous to **unweighted particle filtering**

B battery failure

S solar panel failure

E electrical system failure

D trajectory deviation

 $P(b^{1} | d^{1}, c^{1}) \approx \frac{\sum_{i} w_{i}(b^{(i)} = 1 \wedge d^{(i)} = 1 \wedge c^{(i)} = 1)}{\sum_{i} w_{i}(d^{(i)} = 1 \wedge c^{(i)} = 1)}$ $= \frac{\sum_{i} w_{i}(b^{(i)} = 1)}{\sum_{i} w_{i}}$

B battery failure

S solar panel failure

E electrical system failure

D trajectory deviation

B battery failure
S solar panel failure
E electrical system failure
D trajectory deviation
C communication loss

$$P(b^{1} \mid \underline{d^{1}, c^{1}}) \approx \frac{\sum_{i} w_{i}(b^{(i)} = 1 \land d^{(i)} = 1 \land c^{(i)} = 1)}{\sum_{i} w_{i}(d^{(i)} = 1 \land c^{(i)} = 1)}$$
$$= \frac{\sum_{i} w_{i}(b^{(i)} = 1)}{\sum_{i} w_{i}}$$

В	S	Е	D	С	Weight
1	0	1	1	1	$P(d^1 e^1)P(c^1 e^1)$
0	1	1			$P(d^1 \mid e^1) \overline{P(c^1 \mid e^1)}$
0	0	0	1	1	$P(d^1 e^0)P(c^1 e^0)$
0	0	0	1	1	$P(d^1 e^0)P(c^1 e^0)$
0	0	1	1	1	$P(d^1 \mid e^1)P(c^1 \mid e^1)$

B battery failure
S solar panel failure
E electrical system failure
D trajectory deviation
C communication loss

$$P(b^{1} | d^{1}, c^{1}) \approx \frac{\sum_{i} w_{i}(b^{(i)} = 1 \wedge d^{(i)} = 1 \wedge c^{(i)} = 1)}{\sum_{i} w_{i}(d^{(i)} = 1 \wedge c^{(i)} = 1)}$$
$$= \frac{\sum_{i} w_{i}(b^{(i)} = 1)}{\sum_{i} w_{i}}$$

Weight	С	D	Е	S	В
$P(d^1 e^1)P(c^1 e^1)$	1	1	1	0	1
$P(d^1 e^1)P(c^1 e^1)$	1	1	1	1	0
$P(d^1 e^0)P(c^1 e^0)$	1	1	0	0	0
$P(d^1 e^0)P(c^1 e^0)$	1	1	0	0	0
$P(d^1 \mid e^1)P(c^1 \mid e^1)$	1	1	1	0	0

Analogous to

B battery failure
S solar panel failure
E electrical system failure
D trajectory deviation
C communication loss

$$P(b^{1} | d^{1}, c^{1}) \approx \frac{\sum_{i} w_{i}(b^{(i)} = 1 \wedge d^{(i)} = 1 \wedge c^{(i)} = 1)}{\sum_{i} w_{i}(d^{(i)} = 1 \wedge c^{(i)} = 1)}$$

$$= \frac{\sum_{i} w_{i}(b^{(i)} = 1)}{\sum_{i} w_{i}}$$

$$\boxed{B \quad S \quad E \quad D \quad C \qquad Weight}$$

$$\boxed{1 \quad 0 \quad 1 \quad 1 \quad 1 \quad P(d^{1} | e^{1})P(c^{1} | e^{1})}$$

$$\boxed{0 \quad 1 \quad 1 \quad 1 \quad P(d^{1} | e^{1})P(c^{1} | e^{1})}$$

$$\boxed{0 \quad 0 \quad 0 \quad 1 \quad 1 \quad P(d^{1} | e^{0})P(c^{1} | e^{0})}$$

$$\boxed{0 \quad 0 \quad 0 \quad 1 \quad 1 \quad P(d^{1} | e^{0})P(c^{1} | e^{0})}$$

$$\boxed{0 \quad 0 \quad 1 \quad 1 \quad P(d^{1} | e^{0})P(c^{1} | e^{0})}$$

$$\boxed{0 \quad 0 \quad 1 \quad 1 \quad P(d^{1} | e^{0})P(c^{1} | e^{0})}$$

Analogous to weighted particle filtering

Approximate Inference: Gibbs Sampling

B battery failure

S solar panel failure

E electrical system failure

D trajectory deviation

Approximate Inference: Gibbs Sampling

Markov Chain Monte Carlo (MCMC)

B battery failure

S solar panel failure

E electrical system failure

D trajectory deviation

Approximate Inference: Gibbs Sampling

B battery failure
S solar panel failure
E electrical system failure
D trajectory deviation
C communication loss

Markov Chain Monte Carlo (MCMC)

Learning

Inputs

Inputs

• Data, D

Inputs

- Data, D
- Priors (?)

Inputs

- Data, D
- Priors (?)

Outputs

ullet Bayesian network structure, G

Inputs

- Data, D
- Priors (?)

- ullet Bayesian network structure, G
- Bayesian network parameters, θ

For discrete R.V.s:

$$\dim(\theta_X) = (|\operatorname{support}(X)| - 1) \prod_{Y \in Pa(X)} |\operatorname{support}(Y)|$$

$$P(X|P_a(X)) = P(X|Y_a|Y_3)$$

$$P(X|Y_a|Y_2=1,Y_2=1,Y_3=1) : |\operatorname{parameters}(Y_a)|$$

$$|\operatorname{P}(X|Y_a=1,Y_2=1,Y_3=1)|$$

$$C^{2}N(M_{4}\sigma_{c})$$

 $C^{2}N(aE+b,\sigma_{c})$

Structure Learning Example

Maximum Likelihood

Maximum Likelihood

Bayesian

Maximum Likelihood

$$\hat{\theta} = \arg\max_{\theta} P(D \mid \theta)$$

Maximum Likelihood

$$\hat{\theta} = \underset{\theta}{\operatorname{arg\,max}} P(D \mid \theta)$$

$$P(D \mid \theta) = \prod_{i} P(o_i \mid \theta)$$

Maximum Likelihood

$$\hat{\theta} = \underset{\theta}{\operatorname{arg\,max}} P(D \mid \theta)$$

$$P(D \mid \theta) = \prod_{i} P(o_i \mid \theta)$$

$$\hat{\theta} = \underset{\theta}{\operatorname{arg\,max}} \sum_{i} \log P(o_i \mid \theta)$$

Bayesian

Maximum Likelihood

$$\hat{\theta} = \underset{\theta}{\operatorname{arg\,max}} P(D \mid \theta)$$

$$P(D \mid \theta) = \prod_{i} P(o_i \mid \theta)$$

$$\hat{\theta} = \arg\max_{\theta} \sum_{i} \log P(o_i \mid \theta)$$

Multinomial:

$$P(B=1) = N$$
 $\hat{\theta}_i = \frac{n_i}{\sum_{j=1}^k n_j}$

Maximum Likelihood

$$\hat{\theta} = \underset{\theta}{\operatorname{arg\,max}} P(D \mid \theta)$$

$$P(D \mid \theta) = \prod_{i} P(o_i \mid \theta)$$

$$\hat{\theta} = \arg\max_{\theta} \sum_{i} \log P(o_i \mid \theta)$$

Multinomial:

$$\hat{\theta}_i = \frac{n_i}{\sum_{j=1}^k n_j}$$

Bayesian

$$\hat{\theta} = \mathbb{E}_{\theta \sim p(\cdot \mid D)}[\theta] = \int \theta p(\theta \mid D) \, d\theta$$

Maximum Likelihood

$$\hat{\theta} = \underset{\theta}{\operatorname{arg\,max}} P(D \mid \theta)$$

$$P(D \mid \theta) = \prod_{i} P(o_i \mid \theta)$$

$$\hat{\theta} = \arg\max_{\theta} \sum_{i} \log P(o_i \mid \theta)$$

Multinomial:

$$\hat{\theta}_i = \frac{n_i}{\sum_{j=1}^k n_j}$$

Bayesian

$$\hat{\theta} = \mathbb{E}_{\theta \sim p(\cdot | D)}[\theta] = \int \theta p(\theta | D) \, d\theta$$

$$\rho(\theta | D) \propto \rho(D | \theta) \rho(\theta)$$

Multinomial:

$$p(\theta_{1:n} \mid \alpha_{1:n}, m_{1:n}) = \underbrace{\operatorname{Dir}(\theta_{1:n} \mid \alpha_1 + m_1, \dots, \alpha_n + m_n)}_{\alpha_i}$$

$$\underbrace{\frac{\alpha_i}{\sum_{j=1}^n \alpha_j}}$$

 $P(G \mid D)$

$$P(G \mid D) \propto P(G)P(D \mid G)$$

$$= P(G) \int P(D \mid \theta, G)p(\theta \mid G) d\theta$$

$$\begin{split} P(G \mid D) &\propto P(G)P(D \mid G) \\ &= P(G) \int P(D \mid \theta, G)p(\theta \mid G) \, \mathrm{d}\theta \\ \\ P(G \mid D) &= P(G) \prod_{i=1}^n \prod_{j=1}^{q_i} \frac{\Gamma(\alpha_{ij0})}{\Gamma(\alpha_{ij0} + m_{ij0})} \prod_{k=1}^{r_i} \frac{\Gamma(\alpha_{ijk} + m_{ijk})}{\Gamma(\alpha_{ijk})} \end{split}$$

$$P(G \mid D) \propto P(G)P(D \mid G)$$

$$= P(G) \int P(D \mid \theta, G)p(\theta \mid G) d\theta$$

$$P(G \mid D) = P(G) \prod_{i=1}^{n} \prod_{j=1}^{q_i} \frac{\Gamma(\alpha_{ij0})}{\Gamma(\alpha_{ij0} + m_{ij0})} \prod_{k=1}^{r_i} \frac{\Gamma(\alpha_{ijk} + m_{ijk})}{\Gamma(\alpha_{ijk})}$$

$$\log P(G \mid D)$$

$$= \log P(G) + \sum_{i=1}^{n} \sum_{j=1}^{q_i} \left(\log \left(\frac{\Gamma(\alpha_{ij0})}{\Gamma(\alpha_{ij0} + m_{ij0})} \right) + \sum_{k=1}^{r_i} \log \left(\frac{\Gamma(\alpha_{ijk} + m_{ijk})}{\Gamma(\alpha_{ijk})} \right) \right)$$

$$P(G \mid D) \propto P(G)P(D \mid G)$$

$$= P(G) \int P(D \mid \theta, G)p(\theta \mid G) d\theta$$

$$P(G \mid D) = P(G) \prod_{i=1}^{n} \prod_{j=1}^{q_i} \frac{\Gamma(\alpha_{ij0})}{\Gamma(\alpha_{ij0} + m_{ij0})} \prod_{k=1}^{r_i} \frac{\Gamma(\alpha_{ijk} + m_{ijk})}{\Gamma(\alpha_{ijk})}$$

$$\log P(G \mid D)$$

$$= \log P(G) + \sum_{i=1}^{n} \sum_{j=1}^{q_i} \left(\log \left(\frac{\Gamma(\alpha_{ij0})}{\Gamma(\alpha_{ij0} + m_{ij0})} \right) + \sum_{k=1}^{r_i} \log \left(\frac{\Gamma(\alpha_{ijk} + m_{ijk})}{\Gamma(\alpha_{ijk})} \right) \right)$$

$$P(G \mid D) \propto P(G)P(D \mid G)$$

$$= P(G) \int P(D \mid \theta, G)p(\theta \mid G) d\theta$$

$$P(G \mid D) = P(G) \prod_{i=1}^{n} \prod_{j=1}^{q_i} \frac{\Gamma(\alpha_{ij0})}{\Gamma(\alpha_{ij0} + m_{ij0})} \prod_{k=1}^{r_i} \frac{\Gamma(\alpha_{ijk} + m_{ijk})}{\Gamma(\alpha_{ijk})}$$

$$\log P(G \mid D)$$

$$= \log P(G) + \sum_{i=1}^{n} \sum_{j=1}^{q_i} \left(\log \left(\frac{\Gamma(\alpha_{ij0})}{\Gamma(\alpha_{ij0} + m_{ij0})} \right) + \sum_{k=1}^{r_i} \log \left(\frac{\Gamma(\alpha_{ijk} + m_{ijk})}{\Gamma(\alpha_{ijk})} \right) \right)$$

NP-Hard

Markov Equivalent iff

1. Same undirected edges

Markov Equivalent iff

- 1. Same undirected edges
- 2. Same set of immoral vstructures

Markov Equivalent iff

- 1. Same undirected edges
- 2. Same set of immoral vstructures

Recap

Inference

Inputs

G, O, evidence

Output
Probability of query variables
given evidence

Learning

Inputs Dates, Prior