$$\mathcal{N}_{\mathcal{S}} \in \mathcal{S}$$

$$f \in L_1(\mathcal{S}^2_{\epsilon}), \xi \in \mathcal{M}\&c_{\eta}(f), \eta \in \mathcal{D}_{d,\triangle} \setminus \mathcal{N} \in \mathcal{S}$$

is the averaged Taylor polynomial of degree d associated with $\tau_{\mathcal{E}}$; $c_n(f)$ is a linear combination of $\{c_{\xi}(f)\}_{\xi\in\mathcal{M}_n}$, $\mathcal{M}_{\eta}\subseteq\operatorname{star}^{\lambda}(\tau_{\eta})$, τ_{η} is the triangle that

1: Illustration of quasi-interpolation operator
$$Q$$
. Here $c_{\xi}(f) = 0$

Figure 1: Illustration of quasi-interpolation operator Q. Here $c_{\xi}(f) = \gamma_{\xi}(F_{d,\tau_{\xi}}f)$ is the B-coefficients corresponding to ξ , τ_{ξ} is the triangle that contains ξ , $F_{d,\tau_{\xi}}f$

contains η .