Nature of Invention: Chemical molecule and synthesis route

Applicant: ChemEverse

Inventors: Manas Todi

Chemical Formula: C₁₂H₂₅(OCH₂CH₂)₂OSO₃Na

Chemical Name: Sodium Laureth-2 Sulfate

Chemical synthesis routes:

a) LAB SCALE SYNTHESIS:

1) SO₃ Sulfation Process: [1]

Raw Materials and Chemicals:

- 1) Dodecyl alcohol/Lauryl alcohol (C₁₂H₂₆O) or fatty alcohol ethoxylate (C₁₂H₂₅(OCH₂CH₂) □ OH)
- 2) Ethylene oxide (C₂H₄O)
- 3) Sulfur trioxide (SO₃) or Chlorosulfonic acid (HSO₃CI)
- 4) Sodium hydroxide solution (NaOH, ~50 wt%)

Reaction Steps:

Step 1: Ethoxylation

```
\begin{array}{ll} C_{12}H_{25}OH + n \ C_2H_4O \rightarrow C_{12}H_{25}(OCH_2CH_2)_nOH \\ \text{(Dodecyl Alcohol)} & \text{(Ethylene Oxide)} \end{array} \\ \text{(Lauryl Alcohol Ethoxylate)} \end{array}
```

Conditions:[2]

- a) Temperature: Typically 150-180°C
- b) Pressure: Elevated pressure (~2-5 bar)
- c) Catalyst: Alkaline catalyst (e.g., KOH)

Yield: High yield (>90%)

Step 2 : Sulfation

```
C_{12}H_{25}(OCH_2CH_2)_nOH + SO_3 \rightarrow C_{12}H_{25}(OCH_2CH_2)_nOSO_3H \\ \text{(Lauryl Alcohol Ethoxylate)} \qquad \text{(Sulfur trioxide)} \qquad \text{(Lauryl Ether Sulfate (Acid form))}
```

Conditions:[3]

1) Temperature: Controlled at 25–30°C

2) Reactor type: Glass-lined stirred, jacketed reactor

3) Reaction time: ~2.5 hours under vacuum

Yield: Generally high (>95% conversion)

Step 3: Neutralization

$$C_{12}H_{25}(OCH_2CH_2)_nOSO_3H + NaOH \rightarrow C_{12}H_{25}(OCH_2CH_2)_nOSO_3Na + H_2O \\ \text{(Lauryl Ether Sulfate (Acid form))} \\ \text{(Sodium Laureth-2 Sulfate)}$$

Conditions:[3]

1) Temperature: Below 45°C

2) Neutralizing agent: Sodium hydroxide solution (~50 wt%)

Yield: High yield, typically resulting in ~70 wt% active SLES solution

Separation and Purification Steps:

- 1. Scrubbing: Gaseous by-product HCl or SO₃ vapors are scrubbed using process water to produce dilute hydrochloric acid (~33 wt%) as a by-product.
- 2. Packing and Storage: Final SLES solution (~70 wt% active matter) is packed into drums for storage and distribution.

Final Purity: Typically, the final product purity is around 70 wt% active SLES, suitable for personal care and cleaning applications.

b) Alternative Processes:

1) Ziegler-Alfol Process:[1]

Raw Materials and Chemicals:

- 1) (Ethylene) (C_2H_4)
- 2) Aluminum metal
- 3) Hydrogen gas (H₂)

Reaction Steps:

Step 1: Formation of Triethylaluminum

$$6 C_2H_4 + 2 AI + 3 H_2 \rightarrow 2 AI(C_2H_5)_3$$
(Ethylene) (Ethylene)

Step 2: Chain Growth (Oligomerization)

$$AI(C_2H_5)_3$$
+n $C_2H_4 \rightarrow AI(C_{2n+2}H_{4n+5})_3$

Conditions:[4]

1) Temperature: 60-120°C

2) Pressure: Elevated (~100 bar)

3) Catalyst: Triethylaluminum catalyst

Step 3: Oxidation to Fatty Alcohol

$$AI(C_{2n+2}H_{4n+5})_3 + O_2/H_2O \rightarrow Fatty Alcohol + AI(OH)_3$$

Trialkylaluminum air/oxygen

Temperature: 60-120°C 5

Yield: Typically high (>85%) for fatty alcohol production; explicit numeric yields depend on reaction conditions but generally high in industrial practice.

Separation Steps:

- 1) Fatty alcohols separated via distillation columns.
- 2) Purity typically >95% linear primary fatty alcohols.

Note: To produce SLES from these fatty alcohols, subsequent ethoxylation and sulfation steps described previously must be performed.

2) OXO Process (Hydroformylation Route):[1]

Raw Materials and Chemicals Needed:

- 1) Olefins (e.g., C₁₁ alkenes derived from petrochemical sources)
- 2) Carbon monoxide (CO)
- 3) Hydrogen gas (H₂)
- 4) Catalyst: Transition metals like cobalt or rhodium complexes

Reaction Steps:

Step 1: Hydroformylation

Olefin + CO +
$$H_2 \rightarrow$$
 Aldehyde

Conditions:

1) Temperature: ~90–150°C

2) Pressure: High pressure (~50–200 bar)3) Catalyst: Cobalt or rhodium complexes

Yield: typically >90% aldehyde formation under optimized conditions.

Step 2: Hydrogenation of Aldehydes

Aldehyde + $H_2 \rightarrow$ Fatty Alcohol

Temperature ~100–200°C; Pressure ~20–30 bar.

Yield: typically >95%.

Note: To produce SLES from these fatty alcohols, subsequent ethoxylation and sulfation steps described previously must be performed.

Method	Advantages	Disadvantages	Ideal Use
Ethoxylation & Sulfation	High purity, flexible scale	May require more specialized equipment	Personal care products
Ziegler Process	Selective product, consistent quality	Requires specific catalysts	Eco-friendly and sustainable products
OXO Process	High throughput, versatile feedstocks	Possible impurities in the final product	Industrial applications with cost concerns

References:

- 1) https://www.chemger.com/how-to-make-sles-liquid/
- 2) https://patents.google.com/patent/CN102276428A/en
- 3) https://cdn.intratec.us/docs/reports/previews/sles-e11a-b.pdf
- 4) https://patents.google.com/patent/US2781410A/en
- 5) http://en.shbinjia.cn/news/23.html

List the contributions of each author:

Manas Todi

- 1. Conducted a review of existing synthesis methodologies for SLES, including LAB-scale sulfation, Ziegler-Alfol process, and OXO process.
- 2. Collected and analyzed reference materials including patents and reports.
- 3. Researched and compiled optimal reaction conditions
- 4. Compared different synthesis methods in terms of efficiency, scalability, and industrial applicability based on published data.
- 5. Systematically documented reaction steps, conditions, and separation techniques.
- 6. Authored and structured the technical documentation for the invention, ensuring all chemical processes were clearly described and well-referenced.

Name	Roll No	Signature
Anshika Agrawal	230160	Anshika
Manas Todi	230627	Marion