Product Specification

Product Name: VGM128064C3W01

Product Code: M00980

	Customer					
		Approved by Customer				
Approved	Date:					

Designed Dy	Charled Dy	Approved By			
Designed By	Checked By	R&D	QA		
李初度20136.16	15/3 D 20/36.66	(影) 201.6.1)	7 St. 6.17		

TEL:0755-8204 8740 FAX:0755-8293 3160 1 / 36

CONTENT

REVIS	SION RECORD	3
UPDAT	TE FUNCTIONAL SPECIFICATION AND APPLICATION CIRCUIT	3
1 0	OVERVIEW	4
2 F	EATURES	4
3 N	MECHANICAL DATA	4
4 N	MECHANICAL DRAWING	5
5 N	MODULE INTERFACE	6
6 F	UNCTION BLOCK DIAGRAM	8
6.1	FUNCTION BLOCK DIAGRAM	8
6.2	PANEL LAYOUT DIAGRAM	8
7 A	ABSOLUTE MAXIMUM RATINGS	9
8 E	LECTRICAL CHARACTERISTICS	9
8.1	DC ELECTRICAL CHARACTERISTICS	9
8.2	ELECTRO-OPTICAL CHARACTERISTICS	
8.3	AC ELECTRICAL CHARACTERISTICS	11
9 F	UNCTIONAL SPECIFICATION AND APPLICATION CIRCUIT	18
9.1	Power ON and Power OFF Sequence	18
9.2	Application Circuit	21
9.3	EXTERNAL DC-DC APPLICATION CIRCUIT.	27
9.4	DISPLAY CONTROL INSTRUCTION	28
9.5	RECOMMENDED SOFTWARE INITIALIZATION	28
10 P	ACKAGE SPECIFICATION	29
11 R	RELIABILITY	30
11.1	RELIABILITY TEST	30
11.2	LIFETIME	30
11.3	FAILURE CHECK STANDARD	31
12 II	LLUSTRATION OF OLED PRODUCT NAME	31
13 O	OUTGOING QUALITY CONTROL SPECIFICATIONS	32
13.1	SAMPLING METHOD	32
13.2	Inspection Conditions	32
13.3	QUALITY ASSURANCE ZONES	32
13.4	INSPECTION STANDARD	33
14 P	RECAUTIONS FOR OPERATION AND STORAGE	36
14.1	PRECAUTIONS FOR OPERATION	36
14.2	Soldering	36
14.3	PRECAUTIONS FOR STORAGE	36
14.4	WARRANTY PERIOD	36

REVISION RECORD

REV.	REVISION DESCRIPTION	REV. DATE	REMARK
Y01	Initial release	2012-01-13	
A01	Update the Module Weight Update the Electro-optical Characteristics Update the Application Circuit (Internal DC/DC Mode) Update the Recommended Software Initialization Update the Package Specification	2012-03-14	Page 4 Page 10 Page 24 Page 26 Page 27
A02	Update the Function Block Diagram Update the SPI interface mode & I ² C interface mode	2012-3-16	Page 8 Page 21~23
A03	Update the Electro-optical Characteristics Update Functional Specification and Application Circuit Update the Recommended Software Initialization Update the Lifetime	2013-06-15	Page 10 Page 18-20 Page 28 Page 30

1 Overview

VGM128064C3W01 is a monochrome OLED display module with 128×64 dot matrix. The characteristics of this display module are high brightness, self-emission, high contrast ratio, slim/thin outline, wide viewing angle, wide temperature range, and low power consumption.

2 Features

Display Color: White
 Dot Matrix:128×64
 Driver IC: SH1106G

➤ Interface: 8-bit 8080,8-bit 6800, I² C, 3-wire & 4-wire SPI

 \triangleright Wide range of operating temperature: -40°C to 70°C

3 Mechanical Data

NO.	ITEM	SPECIFICATION	UNIT
1	Dot Matrix	128(W)×64(H)	-
2	Dot Size	0.21(W)×0.21(H)	mm ²
3	Dot Pitch	0.23(W)×0.23 (H)	mm ²
4	Aperture Rate	83	%
5	Active Area	29.42(W)×14.7 (H)	mm ²
6	Panel Size	34.5(W)×23 (H) ×1.2(T)	mm ³
7	Module Size	34.5 (W)×35(H) ×1.43(T)	mm ³
8	Diagonal A/A Size	1.30	inch
9	Module Weight	$2.09 \pm 10\%$	gram

TEL:0755-8204 8740 FAX:0755-8293 3160 4 / 36

4 Mechanical Drawing

5 Module Interface

	DIN NAME						
PIN NO.	PIN NAME	N. C.	4:		DESCRIPTION OF THE PROPERTY OF	UN	
1	NC(GND)	No Conr					
2	C1N		to charge pun				
3	C1P	These pi	ns are not use	d and should	oe disconnedt	ed when Vpp is	supplied externally.
4	C2P	Connect	to charge pun	np capacitor.			
5	C2N						supplied externally.
6	VDD2					r charge pump of when VPP is s	circuit. upplied externally
7	NC	No Conr					<u></u>
8	VSS	Ground.					
9	VDD1	Power su	ipply input: 1.	65 - 3.5V			
10	IM0		e the MPU int		select pads.		
			8080	I ² C	6800	4-wire SPI	3-wire SPI
11	IM1	IM0	0	0	0	0	1
		IM1	1	1	0	0	0
12	IM2	IM2	1	0	1	0	0
12	CCD	This pad	is the chip se	lect input. Wh	nen CSB= "L'	', then the chip	select becomes active,
13	CSB	and data	command I/O	is enabled.			
14	RESB		reset signal ir t operation is j				tings are initialized.
15	A0	a comma A0 = "H A0 = "L	and. ": the inputs a ": the inputs a	t D0 to D7 ar t D0 to D7 ar	e treated as di e transferred t	splay data. o the command	he data bits are data or registers. nt address of OLED
16	WRB	This is a MPU interface input pad. When connected to an 8080 MPU, this is active LOW. This pad connects to the 8080 MPU WRB signal. The signals on the data bus are latched at the rising edge of the WRB signal. When connected to a 6800 Series MPU: This is the read/write control signal input terminal. When WRB = "H": Read. When WRB= "L": Write.					
17	RDB	When co RDB sig signal is When co clock input of When RI	nal of the 808 "L".	8080 series M 0 series MPU 5800 series M s MPU.	, and the data	bus is in an out	oad is connected to the tput status when this s is used as an enable

	D0~D7	This is an 8-bit bi-directional data bus that connects to an 8-bit or 16-bit standard MPU data bus.
18~25		When the serial interface is selected, then D0 serves as the serial clock input pad (SCL) and D1 serves as the serial data input pad (SI). At this time, D2 to D7 are set to high impedance.
		When the I ² C interface is selected, then D0 serves as the serial clock input pad (SCL) and D1 serves as the serial data input pad (SDAI). At this time, D2 to D7 are set to high impedance.
26	IREF	This is a segment current reference pad. A resistor should be connected between this pad and VSS. Set the current at $12.5\mu A$.
27	VCOMH	This is a pad for the voltage output high level for common signals. A capacitor should be connected between this pad and VSS.
28	VPP	OLED panel power supply. Generated by internal charge pump. Connect to capacitor. It could be supplied externally.
29	VLSS	Ground.
30	NC(GND)	No Connection.

TEL:0755-8204 8740 FAX:0755-8293 3160 7 / 36

6 Function Block Diagram

6.1 Function Block Diagram

6.2 Panel Layout Diagram

TEL:0755- 8204 8740 FAX:0755-8293 3160 8 / 36

7 Absolute Maximum Ratings

ITEM	SYMBOL	MIN	MAX	UNIT	REMARK
DC Synnly Voltage	VDD1	-0.3	+3.6	V	IC maximum rating
DC Supply Voltage	VDD2	-0.3	+4.3	V	IC maximum rating
OLED Operating voltage	VPP	-0.3	+13.5	V	IC maximum rating
Operating Temp.	Тор	-40	+70	$^{\circ}$ C	-
Storage Temp	Tstg	-40	+85	$^{\circ}\!\mathbb{C}$	-

Note (1): All of the voltages are on the basis of "VSS = 0V".

Note (2): Permanent breakage of module may occur if the module is used beyond the maximum rating. The module can be normal operated under the conditions according to Section 8 "Electrical Characteristics". Malfunctioning of the module may occur and the reliability of the module may deteriorate if the module is used beyond the conditions.

8 Electrical Characteristics

8.1 DC Electrical Characteristics

ITEM	SYMBOL	TEST CONDITION	MIN	TYP	MAX	UNIT
Logio Supply Voltago	VDD1	22±3°C, 55±15%R.H	1.65	3.0	3.5	V
Logic Supply Voltage	VDD2	22±3°C, 55±15%R.H	2.4	3.7	4.2	V
OLED Driver Supply Voltage	VPP	22±3°C, 55±15%R.H	11.5	12	12.5	V
High-level Input Voltage	V_{IH}	-	0.8×VDD1	-	VDD1	V
Low-level Input Voltage	$V_{ m IL}$	-	VSS	-	0.2×VDD1	V
High-level Output Voltage	V_{OH}	-	0.8×VDD1	-	VDD1	V
Low-level Output Voltage	V_{OL}	-	VSS	-	0.2×VDD1	V

Note: The VPP input must be kept in a stable value; ripple and noise are not allowed.

TEL:0755-8204 8740 FAX:0755-8293 3160 9 / 36

8.2 Electro-optical Characteristics

ITEM	SYMBOL	TEST CONDITION	MIN	TYP	MAX	UNIT
Normal Mode	L_{br}	All pixels ON(1) VPP = 12V (External)	90	120	-	cd/m ²
Brightness	$\mathcal{L}_{\mathrm{br}}$	All pixels ON(2) (VPP generated by internal DC/DC)	60	80	-	Cd/III
Sleep mode current Consumption in VDD1&VDD2	ISP	During sleep,TA=+25°C		-	10	uA
Sleep mode current Consumption in VPP		During sleep,TA=+25°C VPP=9V(3)	-	-	10	uA
Normal Mode Power	Pt	All pixels ON(1) VPP = 12V (External)	-	264	318	mW
Consumption	Γţ	All pixels ON(2) (VPP generated by internal DC/DC)	-	155	186.48	mW
C.I.E(White)	(x)	v.v(CIE1021)	0.26	0.30	0.34	-
C.I.E(WIIILE)	(y)	x,y(CIE1931)	0.29	0.33	0.37	-
Dark Room Contrast	CR	-	≥2000:1	-	-	-
Response Time	-	-	-	10	-	μs
View Angle	-	-	≥160	-	-	Degree

Note(1):

Normal Mode test conditions are as follows:

Driving voltage: 12V Contrast setting: 0XE0 Frame rate: 105Hz

- Duty setting: 1/64

Note(2):

- Driving voltage: VDD2:3.7V(VPP Generated by Internal DC/DC).

Contrast setting: 0XFFFrame rate: 105HzDuty setting: 1/64

Note(3):

Sleep Mode test conditions are as follows:

- Disable Charge Pump:0XAD,0X8A.
- Set \Display OFF:0XAE

When the display OFF command is executed, power saver mode will be entered.

Sleep mode:

This mode stops every operation of the OLED display system, and can reduce current consumption nearly to a static current value if no access is made from the microprocessor. The internal status in the sleep mode is as follows:

- -Stops the oscillator circuit and DC-DC circuit.
- -Stops the OLED drive and outputs HZ as the segment/common driver output.
- -Holds the display data and operation mode provided before the start of the sleep mode.

-The MPU can access to the huilt-in display RAM.

TEL:0755-8204 8740 FAX:0755-8293 3160 10 / 36

8.3 AC Electrical Characteristics

(1) 8080-Series MPU Parallel Interface Timing Characteristics

 $(VDD1 = 1.65V \text{ to } 3.5V, TA = 25^{\circ}C)$

Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
tCYC8	System cycle time	600	-	-	ns	
tas8	Address setup time	0	-	-	ns	
tah8	Address hold time	0	-	-	ns	
tds8	Data setup time	80	-	-	ns	
tdh8	Data hold time	30	-	-	ns	
tch8	Output disable time	20	-	140	ns	CL = 100pF
tacc8	RD access time	-	-	280	ns	CL = 100pF
tcclw	Control L pulse width (WR)	200	-	-	ns	
teelr	Control L pulse width (RD)	240	-	-	ns	
techw	Control H pulse width (WR)	200	-	-	ns	
techr	Control H pulse width (RD)	200	-	-	ns	
tR	Rise time	-	-	30	ns	
tF	Fall time	-	-	30	ns	

 $(VDD1 = 2.4V \text{ to } 3.5V, TA = 25^{\circ}C)$

Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
tCYC8	System cycle time	300	-	-	ns	
tas8	Address setup time	0	-	-	ns	
tah8	Address hold time	0	-	-	ns	
tds8	Data setup time	40	-	-	ns	
tdh8	Data hold time	15	-	-	ns	
tch8	Output disable time	10	-	70	ns	CL = 100pF
tacc8	RD access time	-	-	140	ns	CL = 100pF
teclw	Control L pulse width (WR)	100	-	-	ns	
tcclr	Control L pulse width (RD)	120	-	-	ns	
techw	Control H pulse width (WR)	100	-	-	ns	
techr	Control H pulse width (RD)	100	-	-	ns	
tR	Rise time	-	-	15	ns	
tF	Fall time	-	-	15	ns	

TEL:0755-8204 8740 FAX:0755-8293 3160 11 / 36

8080-series parallel interface characteristics

TEL:0755-8204 8740 FAX:0755-8293 3160 12 / 36

(2)6800-Series MPU Parallel Interface Timing Characteristics

 $(VDD1 = 1.65V \text{ to } 3.5V, TA = 25^{\circ}C)$

Symbol	Parameter	Min.	Typ.	Max.	Unit	Condition
tCYC6	System cycle time	600	-	-	ns	
tAS6	Address setup time	0	-	-	ns	
tAH6	Address hold time	0	-	-	ns	
tDS6	Data setup time	80	-	-	ns	
tDH6	Data hold time	30	-	-	ns	
tOH6	Output disable time	20	-	140	ns	CL = 100pF
tACC6	Access time	-	-	280	ns	CL = 100pF
tEWHW	Enable H pulse width (Write)	200	-	-	ns	
tEWHR	Enable H pulse width (Read)	240	-	-	ns	
tEWLW	Enable L pulse width (Write)	200	-	-	ns	
tEWLR	Enable L pulse width (Read)	200	-	-	ns	
tR	Rise time	-	-	30	ns	
tF	Fall time	-	-	30	ns	

$(VDD1 = 2.4V \text{ to } 3.5V, TA = 25^{\circ}C)$

Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
tCYC6	System cycle time	300	-	-	ns	
tAS6	Address setup time	0	-	-	ns	
tAH6	Address hold time	0	-	-	ns	
tDS6	Data setup time	40	-	-	ns	
tDH6	Data hold time	15	-	-	ns	
tOH6	Output disable time	10	-	70	ns	CL = 100pF
tACC6	Access time	-	-	140	ns	CL = 100pF
tEWHW	Enable H pulse width (Write)	100	-	-	ns	
tEWHR	Enable H pulse width (Read)	120	-	-	ns	
tEWLW	Enable L pulse width (Write)	100	-	-	ns	
tEWLR	Enable L pulse width (Read)	100	-	-	ns	
tR	Rise time	-	-	15	ns	
tF	Fall time	-	-	15	ns	

TEL:0755-8204 8740 FAX:0755-8293 3160 13 / 36

6800-series parallel interface characteristics

TEL:0755-8204 8740 FAX:0755-8293 3160 14/36

(3)Serial Interface Timing Characteristics(For 4 wire SPI)

 $(VDD1 = 1.65V \text{ to } 3.5V, TA = 25^{\circ}C)$

Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
tSCYC	Serial clock cycle	500	-	-	ns	
tSAS	Address setup time	300	-	-	ns	
tSAH	Address hold time	300	-	-	ns	
tSDS	Data setup time	200	-	-	ns	
tSDH	Data hold time	200	-	-	ns	
tCSS	CS setup time	240	-	-	ns	
tCSH	CS hold time time	120	-	-	ns	
tSHW	Serial clock H pulse width	200	-	-	ns	
tSLW	Serial clock L pulse width	200	-	-	ns	
tR	Rise time	-	-	30	ns	
tF	Fall time	-	-	30	ns	

$(VDD1 = 2.4V \text{ to } 3.5V, TA = 25^{\circ}C)$

Symbol	Parameter	Min.	Typ.	Max.	Unit	Condition
tSCYC	Serial clock cycle	250	-	-	ns	
tSAS	Address setup time	150	-	-	ns	
tSAH	Address hold time	150	-	-	ns	
tSDS	Data setup time	100	-	-	ns	
tSDH	Data hold time	100	-	-	ns	
tCSS	CS setup time	120	-	-	ns	
tCSH	CS hold time time	60	-	-	ns	
tSHW	Serial clock H pulse width	100	-	-	ns	
tSLW	Serial clock L pulse width	100	-	-	ns	
tR	Rise time	-	-	15	ns	
tF	Fall time	-	-	15	ns	

Serial Interface characteristics

TEL:0755-8204 8740 FAX:0755-8293 3160 15 / 36

(4)Serial Interface Timing Characteristics(For 3 wire SPI)

 $(VDD1 = 1.65V \text{ to } 3.5V, TA = 25^{\circ}C)$

Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
tscyc	Serial clock cycle	500	-	-	ns	
tsds	Data setup time	200	-	-	ns	
tsdн	Data hold time	200	-	-	ns	
tcss	CS setup time	240	-	-	ns	
tсsн	CS hold time time	120	-	-	ns	
tshw	Serial clock H pulse width	200	-	-	ns	
tslw	Serial clock L pulse width	200	1	1	ns	
tr	Rise time	-	-	30	ns	
tf	Fall time	-	-	30	ns	

 $(VDD1 = 2.4V \text{ to } 3.5V, TA = 25^{\circ}C)$

Symbol	Parameter	Min.	Typ.	Max.	Unit	Condition
tscyc	Serial clock cycle	250	ı	-	ns	
tsds	Data setup time	100	1	-	ns	
tsdн	Data hold time	100	1	-	ns	
tcss	CS setup time	120	ı	-	ns	
tcsh	CS hold time time	60	ı	-	ns	
tshw	Serial clock H pulse	100	1	-	ns	
tslw	Serial clock L pulse	100	-	-	ns	
tr	Rise time	-	1	15	ns	
tf	Fall time	-	ı	15	ns	

Serial Interface characteristics

TEL:0755-8204 8740 FAX:0755-8293 3160 16 / 36

(5)I² C Interface Timing Characteristics

 $(VDD1 = 1.65V \text{ to } 3.5V, TA = 25^{\circ}C)$

Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
fSCL	SCL clock frequency	DC	-	400	kHz	
TLOW	SCL clock Low pulse width	1.3	-	-	uS	
THigh	SCL clock H pulse width	0.6	-	-	uS	
TSU:data	data setup time	100	-	-	nS	
THD:data	data hold time	0	-	0.9	uS	
Tr	SCL, SDA rise time	20+0.1C b	-	300	nS	
Tf	SCL, SDA fall time	20+0.1C b	-	300	nS	
Cb	Capacity load on each bus line	-	-	400	pF	
TSu:sTAr t	Setup timefor re-START	0.6	-	-	uS	
THD:start	START Hold time	0.6	-	-	uS	
Tsu:stop	Setup time for STOP	0.6	-	-	uS	
TBUF	Bus free times between STOP and START condition	1.3	-	-	uS	

Serial Interface characteristics

TEL:0755-8204 8740 FAX:0755-8293 3160 17/36

9 Functional Specification and Application Circuit

9.1 Power ON and Power OFF Sequence

9.1.1 Built-in DC-DC pump power is being used immediately after turning on the power:

Power ON Sequence:

TEL:0755-8204 8740 FAX:0755-8293 3160 18 / 36

9.1.2 External power is being used immediately after turning on the power:

Power ON Sequence:

TEL:0755-8204 8740 FAX:0755-8293 3160 19 / 36

9.1.3 Power OFF

Power OFF Sequence:

Note: There will be no damages to the display module if the power sequences are not met.

TEL:0755-8204 8740 FAX:0755-8293 3160 20 / 36

9.2 Application Circuit

9.2.1 Under external VPP Mode, the charge Pump Setting (ADh) must be set as follow:

ADh:DC-DC Control Mode Set 8Ah:DC-DC is disable

(1). The configuration for 8080-parallel interface mode, external VPP is shown in the following diagram:

Pin connected to MCU interface: D[7:0], RDB, WRB, A0, RESB, CSB

Recommended components

C2, C3: 4.7µF/25V.ROHS (Tantalum Capacitors)

C1: 0.1uF-0603-X7R±10%.ROHS

R1: 0603 1/10W +/-5% 750Kohm.ROHS

TEL:0755-8204 8740 FAX:0755-8293 3160 21 / 36

(2). The configuration for 6800-parallel interface mode, external VPP is shown in the following diagram:

Pin connected to MCU interface: D[7:0], RDB, WRB, A0, RESB, CSB

Recommended components

C2, C3: 4.7µF/25V.ROHS (Tantalum Capacitors)

C1: 0.1uF-0603-X7R±10%.ROHS

R1: 0603 1/10W +/-5% 750Kohm.ROHS

TEL:0755-8204 8740 FAX:0755-8293 3160 22 / 36

(3). The configuration for 4-wire SPI interface mode, external VPP is shown in the following diagram:

Pin connected to MCU interface: SCL,SI,A0, RESB,CSB

Recommended components

C2, C3: 4.7µF/25V.ROHS (Tantalum Capacitors)

C1: 0.1uF-0603-X7R±10%.ROHS

R1: 0603 1/10W +/-5% 750Kohm.ROHS

TEL:0755-8204 8740 FAX:0755-8293 3160 23 / 36

(4). The configuration for 3-wire SPI interface mode, external VPP is shown in the following diagram:

Pin connected to MCU interface: SCL,SI,RESB

Recommended components

C2, C3: 4.7µF/25V.ROHS (Tantalum Capacitors)

C1: 0.1uF-0603-X7R±10%.ROHS

R1: 0603 1/10W +/-5% 750Kohm.ROHS

TEL:0755-8204 8740 FAX:0755-8293 3160 24/36

(5). The configuration for I² C interface mode, external VPP is shown in the following diagram:

Pin connected to MCU interface: SCL,SDA,SA0, RESB

SA0	I ² C Address
0	0x78
1	0x7a

Recommended components

C2, C3: 4.7µF/25V.ROHS (Tantalum Capacitors)

C1: 0.1uF-0603-X7R±10%.ROHS

R1: 0603 1/10W +/-5% 750Kohm.ROHS

R2,R3: 0603 1/10W +/-5% 10Kohm.ROHS

TEL:0755-8204 8740 FAX:0755-8293 3160 25 / 36

9.2.2 Under Internal DC/DC Mode, the charge Pump Setting (ADh) must be set as follow:

ADh: DC-DC Control Mode Set

8Bh:DC-DC is will be turned on when display on

The configuration for VPP Generated by Internal DC/DC Circuit is shown in the following diagram:

Pin connected to MCU interface: D[7:0], RDB, WRB, A0, RESB, CSB, IM0, IM1, IM2

Recommended components

C1: 0.1uF-0603-X7R±10%.ROHS

C2,C3,C6: 4.7µF/25V.ROHS (Tantalum Capacitors)

C4,C5: 1µF/25V.ROHS (Tantalum Capacitors)

R1: 0603 1/10W +/-5% 750Kohm.ROHS

TEL:0755-8204 8740 FAX:0755-8293 3160 26 / 36

9.3 External DC-DC application circuit

Recommend component

The C1 : 1 uF-0603-X7R±10%.ROHS

The C2 : 1 uF-0603-X7R \pm 10%.ROHS

The C3 : $220 pF-0603-X7R\pm10\%$.ROHS

The R1 : 0603 1/10W +/-1% 10Kohm.ROHS

The R2 : 0603 1/10W +/-1% 110Kohm.ROHS

The R3 : 0603 1/10W +/-5% 2Kohm.ROHS

The R4 : 0603 1/10W +/-5% 1Kohm.ROHS

The R5 : 0603 1/10W +/-5% 10Kohm.ROHS

The L1 : 22uH

The U1 : R1200

The U2 : FDN338P

The U3 : 8050

TEL:0755-8204 8740 FAX:0755-8293 3160 27/36

9.4 Display Control Instruction

Refer to SH1106G IC Specification.

9.5 Recommended Software Initialization

```
Void Init IC()
{
   Write Command(0xAE);
                              //Set Display Off
   Write Command(0xD5);
                              //Display divide ratio/osc. freq. mode
   Write Command(0x80);
   Write Command(0xA8);
                              //Multiplex ration mode:63
   Write Command(0x3F);
   Write Command(0xD3);
                              //Set Display Offset
   Write Command(0x00);
   Write Command(0x40);
                              //Set Display Start Line
   Write Command(0xAD);
                               //DC-DC Control Mode Set
   Write Command(0x8B);
                              //DC-DC ON/OFF Mode Set
   Write Command(0x32);
                              //Set Pump voltage value
   Write Command(0xA1);
                              //Segment Remap
   Write Command(0xC8);
                              //Set COM Output Scan Direction
   Write Command(0xDA);
                               //Common pads hardware: alternative
   Write Command(0x12);
   Write Command(0x81);
                              //Contrast control
   Write Command(0xFF);
   Write Command(0xD9);
                               //Set pre-charge period
   Write Command(0x22);
   Write Command(0xDB);
                               //VCOM deselect level mode
                             //
   Write Command(0x2C);
   Write Command(0xA4);
                              //Set Entire Display On/Off
   Write Command(0xA6);
                              //Set Normal Display
   Write_Command(0xAF);
                              //Set Display On
```

TEL:0755-8204 8740 FAX:0755-8293 3160 28 / 36

10 Package Specification

3) order(1),

fix trays with tape

Controlled Seal

7

After tray be packaged, wrap the package in a

6

Detail

ROHS MARI

small cartons in 1 big carton

(4) Use vaccum bag to package of desiccant into the vacuum bag the tray and add 5 bags

The inner carton adhesive tape. and master carton must be sealed with

Fill up the gap with tray.

2

marking at the inner carton and master carton need adhesive new RoHS [f the customer has special needs with the RoHS making,

FAX:0755-8293 3160 TEL:0755-8204 8740 29/36

11 Reliability

11.1 Reliability Test

NO.	ITEM	CONDITION	QUANTITY
1	High Temperature (Non-operation)	85℃,240hrs	4
2	Low Temperature (Non-operation)	-40°C,240hrs	4
3	High Temperature (Operation)	70℃,240hrs	4
4	Low Temperature (Operation)	-40°C,240hrs	4
5	High Temperature / High Humidity (Operation)	60℃,90%RH,240hrs	4
6	Thermal shock (Non-operation)	-40°C~85°C(-40°C/30min;transit/3min;85°C/30mi n;transit/3min) 1cycle: 66min,30cycles	4
7	Vibration	Frequency: 5~50Hz,0.5G Scan rate: 1 oct/min Time: 2 hrs/axis Test axis: X,Y, Z	1 Carton
8	Drop	Height: 100 cm Sequence: 1 angle, 3 edges and 6 faces	1 Carton

Test and measurement conditions

- 1. All measurements shall not be started until the specimens attain to temperature stability, the stable time is at least 15 minutes.
- 2. The degradation of polarizer is ignored for item 5.
- 3. The tolerance of temperature is $\pm 3^{\circ}$ C, and the tolerance of relative humidity is $\pm 5\%$.

Evaluation criteria

- 1. The function test is OK.
- 2. No observable defects.
- 3. Luminance: ≥50% of initial value.
- 4. Current consumption: within \pm 50% of initial value.

11.2 Lifetime

End of lifetime is specified as 50% of initial brightness and the test pattern at operating condition is 50% alternating checkerboard.

ITEM	MIN	MAX	UNIT	CONDITION
Operation Life Time	16,000	-	hrs	80 cd/m ² , 50% alternating checkerboard, 22±3°C, 55±15% RH

TEL:0755-8204 8740 FAX:0755-8293 3160 30 / 36

11.3 Failure Check Standard

After the completion of the described reliability test, the samples were left at room temperature for 2 hrs prior to conducting the failure test at 22±3°C; 55±15% RH.

12 Illustration of OLED Product Name

TEL:0755-8204 8740 FAX:0755-8293 3160 31 / 36

13 Outgoing Quality Control Specifications

13.1 Sampling Method

- (1) GB/T 2828.1-2003/ISO2859-1: 1999, inspection level II, normal inspection, single sample inspection
- (2) AQL: Major 0.65; Minor 1.0

13.2 Inspection Conditions

The environmental conditions for test and measurement are performed as follows.

Temperature: 22±3°C Humidity: 55±15%R.H Fluorescent Lamp: 30W

Distance between the Panel & Lamp: ≥50cm Distance between the Panel & Eyes: ≥30cm

Viewing angle from the vertical in each direction: ≤45°

(See the sketch below)

13.3 Quality Assurance Zones

TEL:0755-8204 8740 FAX:0755-8293 3160 32 / 36

13.4 Inspection Standard

Definition of Φ&L&W (Unit: mm)

I . Appearance Defects

NO.	ITEM		CRITE	RIA		CLASSIFICATION
1	Polarizer Black or White spot, Dirty spot, Foreign matter, Dent on the polarizer	Average Diameter (mm) Φ≤0.15 0.15<Φ≤0.30 Φ>0.30	Zone A Igno 3 0		Number Zone C Ignore	Minor
2	Scratch/line on the glass/Polarizer	Width (mm) W≤0.03 0.03 <w≤0.08 w="">0.08</w≤0.08>	Length mm) L≤5.0	Accept Zone A, Ignore 3		Minor
3	Polarizer Bubble	Average Diameter (mm) $\Phi > 0.5$ $0.2 < \Phi \leq 0.5$ $\Phi \leq 0.2$	Zo	Acceptable Number Zone A,B Zone C 0 3 Ignore		Minor
4	Any Dirt & Scratch on Polarizer's Protective Film	Ignore f	Acceptable			
5	Glass Crack		Major ile.			

TEL:0755-8204 8740 FAX:0755-8293 3160 33 / 36

6	Corner Chip		Minor
		t= Glass thickness Accept a≤2.0mm or b≤2.0mm, c≤t	
7	Corner Chip on Cap Glass	t= Glass thickness Accept a≤1.5mm or b≤1.5mm, c≤t	Minor
8	Chip on Contact Pad	t= Glass thickness Accept a \leq 3.0mm or b \leq 0.8mm, c \leq t (on the contact pin) a \leq 3.0mm or b \leq 1.5mm, c \leq t (outside of the contact pin)	Minor
9	Chip on Face of Display	t= Glass thickness Accept $a \le 1.5 \text{mm} \text{ or } b \le 1.5 \text{mm}, c \le t$	Minor
10	Chip on Cap Glass	t= Glass thickness Accept $a \le 3.0 \text{mm} \text{ or } b \le 1.5 \text{mm}, t/2 \le c \le t$	Minor
11	Stain on Surface	Stain removable by soft cloth or air blow is acceptable.	Minor
12	TCP/FPC Damage	 Crack, deep scratch, deep hole and deep pressure mark on the TCP/FPC are not acceptable. Terminal lead twisted or broken is not allowable. Copper exposed is not allowed by naked eye inspection. 	Minor
13	Dimension Unconformity	Checking by mechanical drawing.	Major

TEL:0755-8204 8740 FAX:0755-8293 3160 34/36

II . Displaying Defects

NO.	ITEM	CRITERIA			CLASSIFICATION
1	Black/White spot Dirty spot Foreign matter	Average Diameter (mm) Φ≤0.10 0.10<Φ≤0.20 Φ>0.20	Pieces Pour Zone A,B Ignore 3 0	ermitted Zone C Ignore	Minor
2	No Display	Not allowable.			Major
3	Irregular Display	Not allowable.			Major
4	Missing Line (row or column)	Not allowable.			Major
5	Short	Not allowable.			Major
6	Flicker	Not allowable.			Major
7	Abnormal Color	Refer to the SPEC.			Major
8	Luminance NG	Refer to the SPEC.			Major
9	Over Current	Refer to the SPEC.			Major

TEL:0755-8204 8740 FAX:0755-8293 3160 35 / 36

14 Precautions for operation and Storage

14.1 Precautions for Operation

- (1) Since OLED panel is made of glass, do not apply any mechanical shock or impact or excessive force to it when installing the OLED module. Any strong mechanical impact due to falling dropping etc. may cause damage (breakage or cracking).
- (2) The polarizer on the OLED surface is made of soft material and is easily scratched. Please take most care when handing. When the surface of the polarizer of OLED Module is contaminated, please wipe it off gently by using moisten soft cloth with isopropyl alcohol, do not use water, ketone or aromatics. If there is saliva or water on the OLED surface, please wipe it off immediately.
- (3) When handling OLED module, please be sure that the body and the tools are properly grounded. And do not touch I/O pins with bare hands or contaminate I/O pins, it will cause disconnection or defective insulation of terminals.
- (4) Do not attempt to disassemble or process the OLED module.
- (5) OLED module should be used under recommended operating conditions shown in the specification. Since the higher voltage leads to the shorter lifetime, be sure to use the specified operating voltage.
- (6) Foggy dew, moisture condensation or water droplets deposited on surface and contact terminals will cause polarizer stain or damage, the deteriorated display quality and electrochemical reaction then leads to shorter life time and permanent damage to the module probably. Please pay attention to the environmental temperature and humidity.
- (7) An afterimage is created by the difference in brightness between unused dot and the fixed dot, according to the decrease of brightness of the emitting time. Therefore, to avoid having an afterimage, the full set should be thoroughly used instead of using a fixed dot. When the fixed dot emits, an afterimage can be created.
- (8) Flicker could be come out at full on display. And it disappears when frame frequency increase, but brightness decreases too.

14.2 Soldering

- (1) Soldering should be performed only on the I/O terminals.
- (2) Use soldering irons with proper grounding and no leakage.
- (3) Iron: no higher than 300° C and $3\sim4$ sec during soldering.

14.3 Precautions for Storage

- (1) Please store OLED module in a dark place. Avoid exposure to sunlight, the light of fluorescent lamp or any ultraviolet ray.
- (2) Keep the environment temperature between 10°C and 35°C and the relative humidity less than 60%. Avoid high temperature and high humidity.
- (3) Keep the OLED modules stored in the container when shipped from supplier before using them is recommended.
- (4) Do not leave any article on the OLED module surface for an extended period of time.

14.4 Warranty period

Visionox Display Co., Ltd. warrants for a period of 12 months from the shipping date when stored or used under normal condition.

TEL:0755-8204 8740 FAX:0755-8293 3160 36 / 36