exercise " comp	WIER REMIR	DATA	111111	1 - 1 - 1 - 1	
(xi, yi) i= 1,	24	Xi = number o	d units to	replace	
		y: = minutes			
		de la			
a) we know that	the HIF	ne			
$\beta_1 = \overline{y} - \beta_2 \overline{x}$					
$\hat{\beta}_2 = \frac{Sxy}{S^2x}$					
Hence, we head	to compute	Say and Sx	(not given)	
We have that	Z (xi-x)2 = 114 =	\Rightarrow S_x^2	1 Z (xi-	() ²
	AB1			= 1 . 114 =	8.769
n,				13	
Sxy = 1 5 (x	$u-x$) (y_i-y_i)				
				10 10 100	however, we know
	32				
that R=	9×v	with fxy corr	relation coe	fficient (once	g in the SIMPLE IM)
2					
fxy = 0.984	→ 1 P×	y • Jo. 984	= 0.9919		
1-1-151				2 2	-1 257 - and A51
	19309	2392 951		3y = 13 311	08.357 = 2392.951
	15 W 1 E				
	-	0.9919 · √2098 0.9919 · 144.99	58 = 143		
It is reasonabl	L To assume	0.9919.144.89 that if we	58 = 143 have on	increasing ru	mber of units to tive correlation
Lt is reasonable	L To assume	0.9919.144.89 that if we	58 = 143 have on	increasing ru	I I I I I I I I I I I I I I I I I I I
be repaired. =) Sxy =	the minute + 143.51	o.9919. 144.89 that if we	58 = 143 have on nhion incr	increasing ru	I I I I I I I I I I I I I I I I I I I
lt is reasonable	the minute + 143.51	o.9919. 144.89 that if we	58 = 143 have on nhion incr	increasing ru	I I I I I I I I I I I I I I I I I I I
be repaired, =) Sxy =	the minute + 143.51	o.9919. 144.89 that if we s of interver	58 = 143 have on nhion incr	increasing ru	I I I I I I I I I I I I I I I I I I I
be repaired, =) Sxy =	the minute + 143.51	o.9919. 144.89 that if we s of interver	58 = 143 have on nhion incr	increasing ru	I I I I I I I I I I I I I I I I I I I
It is reasonable by repaired, =) Sxy = Now we have a \beta_2 = 1	the minute + 143.51 old the elem 43.58 8.469	o.9919. 144.89 that if we is of interver cents to comp	have an thorn incr	increasing ru	I I I I I I I I I I I I I I I I I I I
It is reasonable by repaired, =) Sxy = Now we have a \beta_2 = 1	the minute + 143.51 old the elem 43.58 8.469	o.9919. 144.89 that if we s of interver	have an thorn incr	increasing ru	I I I I I I I I I I I I I I I I I I I
It is reasonable by repaired, =) Sxy = Now we have a \beta_2 = 1	the minute + 143.51 old the elem 43.58 8.469	o.9919. 144.89 that if we is of interver cents to comp	have an thorn incr	increasing ru	I I I I I I I I I I I I I I I I I I I
It is reasonable be repaired, =) Sxy = Now we have a \beta_2 = 1 and \beta_4 = 5	the minute + 143.51 off the elem 143.58 8.469	o.9919. 144.89 that if we soft interes cents to comp 16.38 38.6 = -2	S8 = 143 have on whom incr	increasing nu	tive Gorrelation
be repaired, =) Sxy = Now we have (\$2 = 1 and \$4 = 5 b) estimate of 5	the minute + 143.51 old The elem 143.58 8.469 95.768 - 16.	o.9919. 144.89 that if we so of interes ents to comp 16.38 38.6 = -2 16.38	$58 = 143$ have an whom incompare β_2 313	increasing nu case -) posi	tive Gorrelation
be repaired, =) Sxy = Now we have (\$2 = 1 and \$4 = 5 b) estimate of 5	the minute + 143.51 old The elem 143.58 8.469 95.768 - 16.	o.9919. 144.89 that if we so of interes ents to comp 16.38 38.6 = -2 16.38	$58 = 143$ have an whom incompare β_2 313	increasing nu case -) posi	tive Gorrelation
t is reasonable be repaired, =) Sxy = Now we have a \beta_2 = 1 and \beta_4 = 5 b) estimate of a alternate	the minute + 143.51 old the elem 143.58 8.469 95.763 - 16.	o.9919. 144.89 that if we so of interes ents to comp 16.38 38.6 = -2 16.38	$58 = 143$ have an whom incompare β_2 313	increasing nu	tive Gorrelation
be repaired, be repaired, Sxy = Now we have (\$2 = 1 and \$4 = 3 b) estimate of alternate We have R ² =	the minutes + 143.51 all the elem 143.58 8.769 95.763 - 16. 12 is 62 ively, the 0.984	o. 9919. 144. 89 that if we s of interes ents to comp 16. 38 38. 6 = -2 16. 38 unbased est	have on hon incr	increasing nu case -) posi Chis is biased s ² = 1 n-2	tive Gorrelation \(\frac{1}{2} (y_i - \hat{y}_i)^2 \)
t is reasonable be repaired, =) Sxy = Now we have a \beta_2 = 1 and \beta_4 = 5 b) estimate of a alternate	the minutes + 143.51 all the elem 143.58 8.769 95.763 - 16. 12 is 62 ively, the 0.984	o. 9919. 144. 89 that if we s of interes ents to comp 16. 38 38. 6 = -2 16. 38 unbased est	have on hon incr	increasing nu case -) posi	tive Gorrelation \(\frac{1}{2} (y_i - \hat{y}_i)^2 \)
be repaired. Sxy = Sxy = Now we have B2 = and B4 = b) estimate of o alternate We have R ² = and we know	the minute + 143.51 all the elem 13.58 8.469 95.768 - 16. 2 is 62 ively, the 0.984 That R ²	o.9919. 144. 89 that if we s of interes ents to comp 16.38 38. G = -2 and the second cultiple ssr ssr	have on hon income bute β_2	increasing nu case -) posi this is biased s s² = 1 n-2 n (yi-y)	tive Gorrelation \(\frac{1}{2} (y_i - \hat{y}_i)^2 \)
be repaired, be repaired, sxy = Now we have \beta = 1 and \beta = 2 and \beta = 3 alternat We have R ² = and we know => SSR = R ²	the minute + 143.51 all the elem 13.58 8.769 95.763 - 16. 2 is 62 ively, the 0.984 That R 2.55T =	o. 9919. 144. 89 that if we s of interes cents to comp 16. 38 38. 6 = -2 16. 38 unhair seal est ssr o. 184. 31108.	S8 = 143 have on whom incr suite β ₂ SI Marc is where SST 357 = 30	increasing nu case —) posi Chis is biased s ² = 1 n-2 n = 1 i=1 (yi-y) clo c2	hive Gorrelation \[\frac{1}{2} (y_i - \hat{y}_i)^2 \] \[\frac{2}{4} = 31108.357 \]
be repaired, =) Sxy = Now we have (\$2 = 1 and \$4 = 3 b) estimate of a alternot We have \$R^2 = and we know	the minute + 143.51 all the elem 13.58 8.769 95.763 - 16. 2 is 62 ively, the 0.984 That R 2.55T =	o. 9919. 144. 89 that if we s of interes cents to comp 16. 38 38. 6 = -2 16. 38 unhair seal est ssr o. 184. 31108.	S8 = 143 have on whom incr suite β ₂ SI Marc is where SST 357 = 30	increasing nu case —) posi Chis is biased s ² = 1 n-2 n = 1 i=1 (yi-y) clo c2	hive Gorrelation \[\frac{1}{2} (y_i - \hat{y}_i)^2 \] \[\frac{2}{4} = 31108.357 \]
be repaired, be repaired, sxy = Now we have \beta = 1 and \beta = 2 and \beta = 3 alternat We have R ² = and we know => SSR = R ²	the minute + 143.51 all the elem 13.58 8.769 95.763 - 16. 2 is 62 ively, the 0.984 That R 2.55T =	o. 9919. 144. 89 that if we s of interes cents to comp 16. 38 38. 6 = -2 16. 38 unhair seal est ssr o. 184. 31108.	S8 = 143 have on whom incr suite β ₂ SI Marc is where SST 357 = 30	increasing nu case —) posi Chis is biased s ² = 1 n-2 n = 1 i=1 (yi-y) clo c2	hive Gorrelation \[\frac{1}{2} (y_i - \hat{y}_i)^2 \] \[\frac{2}{4} = 31108.357 \]

EXERCISE 4	BACTERIA MORTALITY DATA
	i + E: E: ~ N(0, 6²) uid
	- a - a - Nu 19) na
N= 15	
I value re	efers to the observed value of the Text statistic when testing
(Ho: Br =	
4	
(H1: Br ≠	
We know	that the text stanishic is T = Br - 0 N th-2 = t13
	Jvar (Br)
hence the	observed value is
· Por Ba	i: Be 49.162 - 2.16
	Jya (β,) 22. ₹6
	
· for B	$\hat{\beta}_2$ = t^{ob5} \Rightarrow $\sqrt{\hat{v}_o(\hat{\beta}_2)}$ = $\frac{\hat{\beta}_2}{t^{ob5}}$ = $\frac{19.46}{t^{ob5}}$ = 2.498
	√û(ĝ₁) tob3 -4.49
The p-value	for Bs = O is gobs = PHO (IT) > 1 tobs ()
	= 2 IPH3 (T > Itobs)
	= 2 PH. (T> 2.16)
	= 2 (1- PH (T < 2.16)) -2.16 2.16
	0.975 = 0.05
	0.025
\(\text{Ho} : \(\text{R}^2 = 0 \)	
) Hz : R2 = 0	in the case of the simple linear model, is equivalent to
	Texting the significance of B2.
	From the Table, we know that the prolue of the corresponding
	The corresponding
	test is 2065 < 0.0001. Hence, we reject to in both tests.
7 -	
	luots have a cloor quadratic pattern
_ This is	supposting that the model was not correctly specified, and
a qu	adratic component is needed:
	$Yi = \beta_1 + \beta_2 \times i + \beta_3 \times i^2 + \varepsilon i$
	5,5,000
	nata
	Università degli Studi di Millano - Bicocca
	BICOCCA Bicocca Docente Docente
	BICOCCA Prova scritta di
	Manage