

R&D SH WCASE 2020

Are you game for Game Theory?

Why Are Our Cities Dirty Even though **Everyone Likes It Clean?**

Tragedy of Commons

The marginal utility gained by an individual against his efforts to achieve common good is low. Such rationality eads to socially disadvantageous outcome

- Consider 2 players, A and B, trying to keep a surrounding clean
- A utility of 50 is achieved by BOTH players for every player that keeps the surrounding clean
- A player incurs a utility of -60 in his efforts to keep surrounding clean

	B keeps it clean	B keeps it dirty	
A keeps it clean	40,40	-10,50	
A keeps it dirty	50,-10	0,0	

When both A and B acts in self-interest, it leads to a dirty city while it would have been better off for both if they kept it clean

Do More Roads Always Mean Lesser **Traffic Congestion? NO**

Adding a high link road as shown increases the overall commute time for the 200 drivers travelling from A-B, as their individually rational choice leads to a socially disadvantageous outcome. This is called the Braess' **Paradox**

GAME THEORY

Models the conflicts and cooperation between rational and intelligent agents

Rational and Intelligent

Utilities and Strategies

- Agents A and B
- Utilities = time spent in prison (-5, -5), (0, -20)(-20, 0), (-1, -1)
- Strategies = {(C, C), (C, RS), (RS, C), (RS, RS)}

What should A and B do?

2. B remains silent

A will confess

A will confess

Both 1 and 2 have same answer Confess is a Dominant Strategy

Similarly for B. Hence (C,C) is **Dominant Strategy Equilibrium**

No Dominant Strategies!! So which strategies would the players choose?

NASH EQUILIBRIUM

No incentive to deviate from (C, C)

Will There Always be Nash equilibrium? (1,-1) (-1, 1) (-1, 1) (1, -1)

Game Theory to the rescue in complex scenarios!!

Two player zero sum games with infinite strategy space

- Players Generator (G) and Discriminator (D)
- Strategies Weights of D and G (Can we write it as a matrix ??)

EQUILIBRIUM!! What are the optimal weights?

How do we find those weights in finite time? (PPAD Complete)

Incomplete Information

(Bayesian Games)

Firms A and B in market. A wants to renovate. Private knowledge {High, Low investment}. B wants to enter the market

High-investment cost [ρ]				Low-investment cost $[1 - \rho]$	
	Enter [y]	Refrain $[1-y]$		Enter [y]	Refrain $[1-y]$
Modernize	0,–2	4,0	Modernize [x]	3,–2	7,0
Status quo	4,2	6,0	Status quo [1-x]	4,2	6,0

Sealed-bid auctions

The value for goods is private. What should be the allocation

Differential Games

(Optimal Control + Game Theory)

CAR 1 (red) vs CAR 2 (blue)

Fuel Consumption

Control Variables Accelerator pedal positions

Rates: y1(t), y2(t) Fuel Cost: p1, p2

c = (c1(t), c2(t))

Distance Vs Time, straight line for first player

Price Money: M, **Total Time**: T **Positions**: r1(t), s1(t)

r2 = r1'(t), s2 = s1'(t)**State Variables**

z = (r1, r2, s1, s2)z' = f(t,z,c)

Payoff for player 1

Applications Economics, Military, etc