Classificazione di utensili

Di:

Alessandro Preziosa

Mattia Zirpoli

Introduzione

Descrizione del problema

Classificazione di tipi di utensili su sfondi vari

Obiettivo: classificare strumenti da lavoro.

Il training set comprende 10 classi di oggetti: forbice, metro, pinza, chiave, martello, cacciavite, avvitatore, pappagallo, lima, pennarello.

5 tipi di sfondi: legno, cartone, gomma nera, piastrelle, uniforme bianco.

Dati

• Training Set: 91 immagini di un oggetto singolo

• Test Set: 27 immagini di più oggetti (con oggetti estranei)

Descrizione e analisi dei dati e assunzioni

ANALISI DEI DATI

- Gli sfondi potrebbero non essere omogenei
- Utensili della stessa classe possono avere diverse grandezze e colori
- Ombre e riflessi che possono creare problemi
- Alcuni utensili potrebbero cambiare forma (per esempio forbici aperte/chiuse)
- Possibili oggetti sconosciuti (non utensili)
- Immagini presenti hanno diverse risoluzioni e rapporto di forma (4/3 e 16/9)

ASSUNZIONI

- Oggetti all'interno dei bordi senza toccarli
- Oggetti non si toccano fra loro
- Dieci possibili classi di utensili
- Immagini orientate orizzontalmente

Esempi foto del train set

Esempi foto del test set

Scelte e motivazioni

- Creazione di un dataset di immagini con un solo utensile su sfondo bianco
- Creazione delle immagini di ground truth annotata a mano (pixel-based)
- Prova di diverse tecniche di segmentazione per scegliere quella più adatta

Nota: noi elaboriamo tutte le immagini alla dimensione di 154x205 pixel.

Considerazioni: il thresholding funziona bene (solo) sulle immagini con sfondi uniformi, come pure kmeans sul valore di grigio dei pixel.

- sauvola su finestra 30x30
- kmeans sul valore di grigio dei pixel.

- sauvola su finestra 30x30
- kmeans sul valore di grigio dei pixel.

raw

raw

- Aggiunta di immagini su sfondi diversi(uno o più oggetti) e relative immagini annotate
- Prove con altre tecniche di segmentazione per scegliere quella più adatta su tutte le immagini

Prove fatte

- Filtraggio
- Binarizzazione Adattiva
- Gradiente
- Segmentazione con K-means (su colore e su lbp)
- Segmentazione con Morfologia
- Sharpening

- Trasformazione degli spazi colore
- Binarizzazione con Otsu
- Classificazione Sfondo con knn
- Diversi classificatori per lo sfondo
- Ecc...

(alcune) Prove fatte

kmeans su lbp, dim 30x30, step 2 raw

 Considerazioni: nessuno dei metodi di segmentazione fin qui testati si è dimostrato efficace nella segmentazione accurata di tutti i tipi di immagini. Viene dunque utilizzato il metodo di segmentazione "classificazione dello sfondo".

Pipeline di elaborazione

Pipeline di elaborazione

Metodo di segmentazione

Metodo scelto:

classificazione dello sfondo + active contours

Classificatore: KNN (k=3) su deviazione standard con tile di 30x30 300 iterazioni di active contours + Closing morfologico con elemento strutturale a disco di raggio 2

Procedura di segmentazione:

- 1. Per ogni pixel viene considerato un intorno 30x30
- 2. Viene calcolata la deviazione standard
- 3. Il dato viene passato al classificatore

Si ottiene una segmentazione sommaria

- 1. Viene utilizzato active contours sull'immagine originale partendo dai bordi presenti nell'immagine segmentata.
- 2. Viene effettuato un closing morfologico

output classificazione sfodo output di activeCouturs raw

output classificazione sfodo output di activeCouturs

raw

output classificazione sfodo output di activeCouturs

Metodo di segmentazione: risultato finale

Metodo di segmentazione

Stime numeriche di accuratezza

Labelling Componenti connesse

Risultato Ideale vs. realtà

Features Classificazione

- Rapporto Assi dell'ellissi che include l'oggetto
- Numero di eulero
- Circolarità = (4*Area*pi)/(Perimeter²).
- Solidity = numero pixel nel convex hull / num pixel totali oggetto
- Media deviazione standard pixel dell'oggetto
- Momenti di Hu

Nota: le features sono normalizzate ("min-max")

Classifico gli oggetti: uso un classificatore ad albero

Classificazione oggetti

Classificazione oggetti: risultati su test e train set rispettivamente

7 -> avvitatore

Alcune classi hanno prestazioni molto scarse, probabilmente dovute alla minor presenza di campioni di tali classi nel set di test, causando così errori nella classificazione.

Conclusioni

Conclusioni

- Numero elevato di classificazioni sbagliate
- Features per la classificazione non abbastanza discriminanti
- Dataset poco numeroso per alcune classi
- Segmentazione visivamente accettabile (comunque migliorabile), ma limitante per quanto riguarda la classificazione di oggetti.

Coeff. di jaccard sul test set, come segmentazione uso la ground truth:

Ricorda che il classificatore non è allenato sul test set e quindi non devo aspettarmi risultati perfetti.

Contributo

Mattia Zirpoli

- Funzione calcolo momenti di Hu
- Creazione maggior parte delle Ground Truth Singole
- Segmentazione manuale GT multiple
- Esperimenti segmentazione e classificazione (iniziale) (segmentazione morfologica, thresholding su intervallo)
- Funzione visualizzazione percentuale errori (bargraph)

Alessandro Preziosa

- Funzioni valutazione segmentazione e classificazione
- Trainer classificatori sfondo e oggetti
- Funzione Estrazione features
- Calcolo alcuni descrittori
- Funzione d'appoggio per lettura immagini
- Esperimenti segmentazione (kmeans, segm. Via classificaz, sauvola, thresholding globale)

Contributo

Diapositive di Supporto

Segmentazione K-means su LBP (tile 30x30, step 15)

Segmentazione via Morfologia

- **Ipotesi**: Separare oggetto e sfondo velocemente
- **Metodo:** Binarizzazione adattiva dello smoothing morfologico, con apertura della binarizzazione
- Conclusioni: Risultati interessanti, ma inutilizzabili per un'effettiva segmentazione

Risultati:

Segmentazione con gradiente

Segmentazione con gradiente

Segmentazione Sauvola

Classificazione oggetti (train set) con la gt al posto della segmentazione

Altri Classificatori: Ensemble, SVM, Tree, Neural Network, KNN, Bavesiano (provati sul train set diviso)

Prove con classificatori di oggetti: Classification Tree

Altri classificatori di oggetti: KNN (k=10)

KNN

- Le immagini sono tutte riscalate a 154x205px
- Il training usa come feature la deviazione standard
- La deviazione standard è calcolata su tile 15x15 usando uno step di 1px
- K = 3

Funzionamento Algoritmo KNN:

Un oggetto da classificare è un punto nello spazio n-dimensionale, con ogni dimensione che corrisponde ad una feature. Uso il train Set per piazzare punti nello spazio ed associare loro un etichetta (classe). Per classificare dati (punti) mai visti (senza l'etichetta) ... vado a guardare I suoi k punti più vicini: Guardo la loro etichetta e quella più popolare tra I k vicini sarà quella che darò al punto. Solo I dati del train set "votano" per le label degli altri.

Altri classificatori: optimized cTree

Altri classificatori: automatico

Funzionamento Active Contours

- Utilizza l'algoritmo di Chan-Vese
- Partiziona l'immagine in due regioni background e foreground
- Definisce una «level-set function»
- La level-set function viene evoluta tramite l'equazione di Eulero-Lagrange
- L'obiettivo è minimizzare una funzione «energia» composta da due termini
 - Energia interna «Smoothness»
 - Energia esterna «Differenza tra regioni»

Active Contours — Level Set Function

- Descrive il contorno tra le regioni di background e foreground
- Minimizza la funzione di energia in base all'equazione di Eulero-Lagrange
- Si ferma in due casi
 - Massimo di iterazioni raggiunto
 - Funzione energia minimizzata

Equazione di Eulero-Lagrange

- Descrive come dovrebbe cambiare la Level-Set Function ad ogni iterazione per minimizzare la funzione energia
- È un'equazione differenziale alle derivate parziali
- Garantisce che la soluzione converga al minimo locale della funzione «energia»

