Scalability

50.037 Blockchain Technology Paweł Szałachowski

Scalability

- "Scalability is the capability of a system, network, or process to handle a growing amount of work, or its potential to be enlarged to accommodate that growth."
- Horizontal and vertical scaling

Blockchain Stack

- Network: propagate transactions
 - Latency, bandwidth, # of nodes, ...
- Consensus: order Txs
 - # of nodes, # of Txs (throughput)
- RSM: Txs validation, contract execution, ...
 - State size, execution complexity, ...
- Apps: use the current state to implement some logic

Current State

Throughput

• Bitcoin: 7 tx/s

• Ethereum: 10 tx/s

Visa: 50k tx/s

Strategy

Faster tx processing

Faster consensus

Parallel execution

Why needed?

- Adoption
 - Real-world apps require high throughput and low latency
- Inverse scale effect
 - Fees

Blockchain Performance

- Bandwidth:
 - How many Txs can be processed?
- Latency
 - What is the consensus delay?
- Mining power utilization
 - The ratio between the mining power of the current chain and the mining power of the entire blockchain (describes stale block rate too), describes security
- Fairness
 - A miner should benefit from rewards proportionally to its mining power

Naive Improvements

- Blocks not every 10 minutes, but e.g., every 10 seconds
 - More forks => less mining power utilization => weaker security
- Larger blocks (very controversial topic BTW)
 - It takes longer to propagate
 - More forks =>
 - Bitcoin -> Bitcoin Cash -> Bitcoin ABC vs Bitcoin SV

Security vs Performance

- Seems like Nakomoto consensus has some inherent tradeoffs
 - Security vs performance tradeoff
- Does it have to be like that?
 - We cannot significantly increase block or make them very frequent
- Design space
 - Why we need PoW?
 - Does it have to be combined with transactions propagation?

- https://www.usenix.org/node/194907 (paper, slides, talk)
- Insights
 - In Bitcoin, leader election and transaction serialization is combined
 - Why do not try to decouple it?
 - Elect leader via PoW and let her commit transactions
 - (Different order than in Bitcoin)

- Key blocks
 - Used for PoW-based leader election, i.e., H(header) < T
 - Point to the previous block (key or microblock)
 - The strongest-chain rule
- Microblocks

- Generated by leader, at a defined rate
- Contain header (with PrevHash) and a set of transactions

- Incentives
 - Leaders get rewards and tx fees
 - The next leader gets 60% of the previous tx fees (why?)
- Confirmations
 - Short forks will be frequent
- Microblock forks may be malicious
 - Entry with a proof of fraud can invalidate the revenue of malicious leaders

- Much better scalability and performance than Bitcoin
- Many systems build on this or similar ideas
- Everyone validates Txs
 - Throughput limited by a single machine
 - Can we do better?

Sharding

Sharding

- The concept from database processing
- Divide transactions into groups and let different nodes process them
- Horizontal scaling
 - Throughput increases linearly as the network grows
- Ideas: establish identities via PoW, divide work, run BFT

Sharding

Sharding: Elastico

https://dl.acm.org/citation.cfm?id=2978389

- 1. Use PoW to establish identities
 - ID = H(R, IP, PubKey, Nonce) < T
 - R is security-critical, see below
- 2. Assign committees (use randomness of IDs)
 - Each committee has C members and a directory server (w/ members)
- 3. Propose a block within a committee
 - Run BFT agreement, valid blocks have 2C/3 + 1 signatures
- 4. Final committee to union all data blocks
 - Run BFT to produce a final block, that is then broadcast to everyone
 - R generated using R_x of final committee members

7 H(R,1P,...)=000...101 H(R, 1821.) = 000...111 H (R,18,) = 000...001 H(R,1Ph.)= 000.011 f1(R,1Pr.)= 000...10

Sharding: Elastico

- Multiple improvements (ongoing research)
 - ZILLIQA, OmniLedger, Chainspace, Saber, ...

Reading

- https://fc16.ifca.ai/bitcoin/papers/CDE+16.pdf
- https://eprint.iacr.org/2016/555.pdf
- + inline references