Course Code	PCS21E01J	I Course Name ADTIEIC	ARTIFICIAL INTELLIGENCE AND EXPERT SYSTEMS	Course Category	D	Discipline Elective Course	L	Т	Р	С
Course Code	FUSZIEUIS	Course Name	ARTIFICIAL INTELLIGENCE AND EXPERT STSTEMS	Course Category		Discipline Elective Course	3	0	2	4
70	%	386			- XV - VX		755	(A)	100	, S

Pre-requisite Courses	Nil	Co-requisite Courses	Nil	Progressive Courses	Nil
Course Offering Department		Computer Science	Data Book / Codes/Standards		Nil
50 50 50			4 /		79

Course Learning Rationale (CLR): The purpose of learning this course is to,	1	Learni	ng	4				Progr	ram L	earnir	ng Ou	tcome	es (PL	0)				
CLR-1: Gain knowledge about Artificial Intelligence(AI) and Heuristic search technique	1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2: Gain knowledge about Knowledge representations and Predicate logic	E	@	9	0	N								e		Ħ			
CLR-3: Understand Machine Learning and concept learning, Develop a Learning System	(Bloom)	ected Proficiency (%)	Attainment (%)	dge			6					ng	Competence		ngagement			
CLR-4: Understand and Apply real time problem using Artificial Intelligence	(B)	euc	ner	Knowledg			ning			Reasoning	ng	arning	npe	g	age			
CLR-5 : Practice the Machine Learning Models	Thinking	ofici	aj.	JO C	Thinking	ing	asc	S		380	Thinking	Le	5	ji l	g			
CLR-6 Understand the Decision tree and , Neural Network and Genetic algorithm	hi	l F	Att	2	ink	Solv	Re	Skills	논	Reg	上	cted		sasc	₹ E			
18 = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	of T	pe	be	ina	F	E	8	rg-	Work		tive		를	&	Ē	Southern	Alegary I	
Course Learning Outcomes (CLO): At the end of this course, learners will be able to:	evel	Expec	Expected	Disciplinary	Critical	Problem Solving	Analytical Reas	Research	Team	Scientific	Reflective	Self-Dire	Multicultural	Ethical Reasoning	Community	PS0 1	PS0 2	PSO 3
CLO-1: Have an understanding of AI and its challenges	3	80	70	L	Н	-	Н	L	-	-								-
CLO-2: Apply predicate logic for problem solving	3	85	75	M	Н	L	M	L	-	-								-
CLO-3: Understand the various learning methods and their applications	3	75	70	M	Н	M	Н	L	V-1	-	83 9					1		-
CLO-4: Have a thorough understanding of various ML algorithms	3	85	80	M	Н	M	Н	L	-	-								-
CLO-5: Clear understanding of the fundamentals of Neural Networks	3	85	75	Н	Н	M	Н	L	-									-51
CLO-6 Apply ML for solving real-life problems	3	85	80		Н	Н	Н	Н	220	-	83 9							្ន

Duratio	n(Hour)	15	15	15	15	15
0.1	SLO-1	Introduction to AI	Problem-Solving Agents	Hill-climbing search	Learning and Forms of Learning	Expert systems:- Introduction
S-1	SLO-2	Goal and Philosophy of Al	Toy Problem	Simulated annealing search	Inductive Learning	Basic concepts in Expert System
	SLO-1	Sub areas of Al, applications	Some real world problems	Local Beam Search	Learning Decision Trees	Structure of expert systems.
S-2			Searching for Solutions	Genetic Algorithms	Ensemble Learning	The human element in expert systems how expert systems works,
S-3	SLO-1	Applications of AI	Breadth-first search	Knowledge Based Agents	Computational Learning Theory	Problem areas addressed by expert systems
	SLO-2 History of AI		Depth-first search	Propositional Logic Introduction	Examples and Hypothesis in Learning	expert systems success factors
S-4 to S-5	SLO-1	Lab 1 : Al Techniques implementation	Lab : 4 Knowledge implementation	Lab : 7 Concept Learning task	Lab : 10 Decision tree implementation	Lab : 13 Neural Network model implementation
S-6	SLO-1	Types of Intelligence	Depth-limited search	Propositional Logic Semantics	Knowledge in Learning	Types of expert systems
5-0	SLO-2	Inductive and Deductive Reasoning	Iterative deepening depth-first search	Reasoning Patterns in Propositional Logic	Explanation based learning	Expert systems and the web
C 7	SLO-1	Human Vs Machine Intelligence	Bidirectional search	Forward and Backward Chaining	Learning used Relevant Information	Knowledge engineering and scope of knowledge
S-7	SLO-2	Agents and Environments	Comparing uninformed search strategies	Agents Based on Proportional Logic	Inductive Logic Programming	Difficulties, in knowledge acquisition methods of knowledge acquisition
S-8	SLO-1	Concept of Rationality	Avoiding Repeated States	First-Order Logic Intro	Learning with Hidden Variables	Machine learning, and intelligent agents,

Duratio	tion(Hour) 15		15	15	15	15	
	SLO-2	Structure of Agents	Searching with Partial Information	Models for first-order logic	The EM Algorithm	Selecting an appropriate knowledge acquisition method	
S-9 to S-10	SLO-1 Problem solving Agents		Lab : 5 Implementations of FOPL and Rules	Lab: 8 Design a Learning System	Lab: 11 Implementation of Decision tree and K- Mean algorithm	Lab : 14 Implementation of Multi-layer neural network	
S-11	SLO-1 The Nature of Environments		Environments Informed (Heuristic) Search Strategies Symbols and interpretations for first-order logic Instance Based Learning		Instance Based Learning	Societal impacts reasoning in artificial intelligence,	
	SLO-2 Agent Programs		Greedy best-first search	Terms for first-order logic	Introduction to Neural Networks	Inference with rules, with frames	
0.40	SLO-1	Simple reflex agents	A* search	Atomic sentences in First Order Logic	Single layer feed-forward neural networks	Model based reasoning,	
S-12	SLO-2 Model-based reflex agents		Memory-bounded heuristic search	Assertions and queries in first-order logic	Multi layered feed-forward neural networks	Case based reasoning,	
C 12	SLO-1	Goal-based agents	The effect of heuristic accuracy on performance	Knowledge Engineering in First-Order Logic	Reinforcement Learning	Explanation & meta knowledge	
S-13	SLO-2	Utility-based agents	Inventing admissible heuristic functions	Propositional vs. First-Order Inference	Passive and Active Reinforcement Learning	Meta knowledge inference with uncertainty representing uncertainty	
S-14 to S- 15	SLO-1	Lab 3: Implementation of intelligent agents	Lab: 6 Implementation of Ontology and FOL	Lab: 9 Implementation of candidate elimination algorithm	Lab: 12 Implementation of ID3 algorithm	Lab : 15 Applying Backpropagation and genetic algorithm	

Learning Resources		Rich Elaine & Kevin Knight – Artificial Intelligence – Tata McGraw F Machine Learning. Tom Mitchell. First Edition, McGraw-Hill, 1997. 1, 2, 3, 4, 8 and 9)	
--------------------	--	---	--

- Peter Flach, —Machine Learning: The Art and Science of Algorithms that Make Sense of Datall, First Edition, Cambridge University Press, 2012.
 Stephen Marsland, —Machine Learning —An Algorithmic Perspective, Second Edition, Chapman and Hall/CRC Machine Learning and Pattern Recognition Series, 2014.

Leanning P	Assessment			Con	tingue Learning Acc	eccment/50% Wei	ahtago)			Final Fyan	ingtion (EOO)
Bloom's		CLA -	1 (10%)	CLA – 2 (10%)		sessment(50% Weightage) CLA – 3 (20%)		CLA-	4# (10%)		nination (50% ghtage)
	evel of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%
	Understand		1	1							
Level 2	Apply	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%
	Analyze			ST-	A TO BY						
Level 3	Evaluate	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%
	Create			1 111	A SECTION !	THE .	LEADI				
	Total	10	00 %	10	00 %	1	00 %	1	00 %	10	00%

[#] CLA - 4 can be from any combination of these: Assignments, Seminars, Short Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers									
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts							
Mr. S. Karthik, Assistant Consultant, Tata Consultancy Services	Dr. S. Sasikala, Associate Professor and Head, Dept. of Computer Science, University of Madras	Dr. Sweety Bakyarani. E Dr. Sabeen							