HW Jan 31, Johannes Byle

3.14
$$m\dot{v} = -\dot{m}v_{ex} + F^{ext}$$
 $\dot{v} = \frac{kv_{ex}}{m} - \frac{b}{m}v$
 $v = e^{-\frac{b}{m}t}(\int e^{\frac{b}{m}t}\frac{kv_{ex}}{m}dt + C)$
 $v = \frac{kv_{ex}}{m}e^{-\frac{b}{m}t}(\int e^{\frac{b}{m}t}dt + C)$
 $v = \frac{kv_{ex}}{m}e^{-\frac{b}{m}t}(\int e^{\frac{b}{m}t}dt + C)$
 $v = \frac{kv_{ex}}{m}(e^{-\frac{b}{m}t}(e^{\frac{b}{m}t} + C))$
 $v = \frac{kv_{ex}}{m}(e^{-\frac{b}{m}t}(e^{\frac{b}{m}t} - e^{-\frac{b}{m}t}))$
 $v = \frac{kv_{ex}}{b}(1 - e^{-\frac{b}{m}t})$
 $v = \frac{kv_{ex}}{b}(1 - (\frac{m}{m_0})^{\frac{b}{m}})$
3.21 $\theta = \frac{\pi}{2}$
 $r = \frac{1}{M}\int_0^\theta \int_0^R r\sin\theta rdrd\theta$
 $r = \frac{4}{3\pi}R$
3.25 $L = mr^2\omega$
 $L_1 = L_2 = mr_1^2\omega_1 = mr_2^2\omega_2$
 $\omega_2 = \frac{r_1^2\omega_1}{r_2^2}$
3.34 $t = \frac{2v_0}{g} = \frac{n2\pi}{\omega_0}$
 $v_0 = \frac{n\pi g}{\omega_0}$