GeneMANIA report

Created on : 16 April 2024 17:28:08

Last database update : 13 August 2021 00:00:00

Application version: 3.6.0

Networks

- Co-expression
- Physical Interactions
- Shared protein domains
- Co-localization
- Pathway
- Predicted
- Genetic Interactions

Functions

N/A

Search parameters

Organism Homo sapiens (human)

Genes CD74, CTSH, HLA-DPA1, HLA-DRB1, HLA-DQA1, HLA-DRB5, HLA-DMA,

HLA-DRA, HLA-C, HLA-DPB1

Network Automatically selected weighting method

weighting

Networks

\mathbf{A}

Abbasi-Schild-Poulter-2019 , Abu-Odeh-Aqeilan-2014 , Achuthankutty-Mailand-2019 , Agrawal-Sedivy-2010 , Ahn-Lee-2008 , Albers-Koegl-2005 , Alexander-Wang-2018 , Alexandru-Deshaies-2008 , Alizadeh-Staudt-2000 , Alsulami-Cagney-2019 , An-Sun-2017 , Andresen-Flores-Morales-2014 , Arbogast-Gros-2019 , Arijs-Rutgeerts-2009 , Arroyo-Aloy-2014 , Arroyo-Aloy-2015 , Asadi-Dhanvantari-2018

\mathbf{B}

Bailey-Hieter-2015 , Bandyopadhyay-Ideker-2010 , Banks-Washburn-2016 , Bantscheff-Drewes-2011 , Barr-Knapp-2009 , Barreiro-Alonso-Cerdán-2018 , Barrios-Rodiles-Wrana-2005 , Behrends-Harper-2010 , Behzadnia-Lührmann-2007 , Benleulmi-Chaachoua-Jockers-2016 A , Benleulmi-Chaachoua-Jockers-2016 B , Bennett-Harper-2010 , Benzinger-Hermeking-2005 , Berggård-James-2006 , Bett-Hay-2013 , Beyer-Boldt-2018 , Bhatnagar-Attie-2014 , Bild-Nevins-2006 B , BIOGRID-SMALL-SCALE-STUDIES , BIOGRID-SMALL-SCALE-STUDIES , Bishof-Seyfried-2018 , Blandin-Richard-2013 , Blomen-Brummelkamp-2015 , Blomen-Brummelkamp-2015 , Bogachek-Weigel-2014 , Boldrick-Relman-2002 , Boldt-Roepman-2016 , Botham-Schimmer-2019 , Bouwmeester-Superti-Furga-2004 , Brady-Omary-2018 , Brajenovic-Drewes-2004 , Brehme-Superti-Furga-2009 , Burington-Shaughnessy-2008 , Butland-Hayden-2014 , Byron-Humphries-2012

Cai-Conaway-2007 , Camargo-Brandon-2007 , Campos-Reinberg-2015 , Cao-Chinnaiyan-2014 , Carmon-Liu-2014 , Caron-van Attikum-2019 , CELL_MAP , Chen-Brown-2002 , Chen-Ge-2013 A , Chen-Ge-2013 B , Chen-Guan-2018 , Chen-Huang-2014 , Chen-Krogan-2018 , Chen-Yu-2018 , Chen-Zhang-2013 , Chen-Zhou-2019 , Cheng-DeCaprio-2017 , Chi-Reed-2018 , Chitale-Richly-2017 , Choi-Beutler-2019 , Choi-Busino-2018 , Choudhury-Michlewski-2017 , Christianson-Kopito-2011 , Cloutier-Coulombe-2013 , Cloutier-Coulombe-2017 , Colicelli-2010 , Colland-Gauthier-2004 , Conte-Perez-Oliva-2018 , Cooper-Green-2015 , Corominas-Iakoucheva-2014 , Couzens-Gingras-2013 , Cox-Rizzino-2013 , Coyaud-Raught-2015 , Crow-Cristea-2017

\mathbf{D}

 \mathbf{C}

Daakour-Twizere-2016 , Dabbaghizadeh-Tanguay-2018 , Dart-Wells-2015 , Das-Broemer-2019 , Davis-Glaunsinger-2015 , de Hoog-Mann-2004 , Devarajan-Ketha-

Kumar-2012 , Diner-Cristea-2015 , Dittmer-Misteli-2014 , Dobbin-Giordano-2005 , Douanne-Bidère-2019 , Drissi-Boisvert-2015 , Du-Krogan-2017

\mathbf{E}

Elliott-Gyrd-Hansen-2016 , Emdal-Olsen-2015 , Enzo-Dupont-2015 , Ertych-Bastians-2016 , Ewing-Figeys-2007

F

Fang-Lin-2011 , Faust-Frankel-2018 , Fenner-Prehn-2010 , Floyd-Pagliarini-2016 , Foerster-Ritter-2013 , Fogeron-Lange-2013 , Fonseca-Damgaard-2015 , Foster-Marshall-2013 , Fragoza-Yu-2019 , Freibaum-Taylor-2010

\mathbf{G}

Gabriel-Baumgrass-2016 , Gallardo-Vara-Bernabeu-2019 , Galligan-Howley-2015 , Gao-Reinberg-2012 , Gao-Vaziri-2016 , Garzia-Sonenberg-2017 , Gautier-Hall-2009 , Giannone-Liu-2010 , Gilmore-Washburn-2016 , Giurato-Tarallo-2018 , Glatter-Gstaiger-2009 , Gloeckner-Ueffing-2007 , Goehler-Wanker-2004 , Gordon-Krogan-2020 , Goudreault-Gingras-2009 , Greco-Cristea-2011 , Grossmann-Stelzl-2015 , Guarani-Harper-2014 , Guard-Old-2019 , Guardia-Laguarta-Przedborski-2019 , Guderian-Grimmler-2011 , Gupta-Pelletier-2015

\mathbf{H}

Han-Bassik-2017 A , Han-Bassik-2017 B , Hanson-Clayton-2014 , Hauri-Beisel-2016 , Hauri-Gstaiger-2013 , Havrylov-Redowicz-2009 , Havugimana-Emili-2012 , Hayes-Urbé-2012 , Hegele-Stelzl-2012 A , Hegele-Stelzl-2012 B , Heidelberger-Beli-2018 , Hein-Mann-2015 , Hermjakob-Apweiler-2004 , Herr-Helleday-2015 , Hoffmeister-Längst-2017 , Horlbeck-Gilbert-2018 A , Horlbeck-Gilbert-2018 B , Hosp-Selbach-2015 , Hou-Chen-2018 , Hou-Huang-2017 , Hu-Woods-2019 , Hu-Yin-2019 , Hubel-Pichlmair-2019 , Huber-Hoelz-2017 , HUMANCYC , Humphries-Humphries-2009 , Hussain-Aldaz-2018 , Hutchins-Peters-2010 , Huttlin-Gygi-2015 , Huttlin-Harper-2017 , Hüttenhain-Krogan-2019

T

I2D-BIND-Fly2Human , I2D-BIND-Mouse2Human , I2D-BIND-Rat2Human , I2D-BIND-Worm2Human , I2D-BIND-Yeast2Human , I2D-BioGRID-Fly2Human , I2D-BioGRID-Mouse2Human , I2D-BioGRID-Rat2Human , I2D-BioGRID-Worm2Human , I2D-BioGRID-Yeast2Human , I2D-Chen-Pawson-2009-PiwiScreen-Mouse2Human , I2D-Formstecher-Daviet-2005-Embryo-Fly2Human , I2D-Formstecher-Daviet-2005-Head-Fly2Human , I2D-Giot-Rothbert-2003-High-Fly2Human , I2D-Giot-Rothbert-2003-Low-Fly2Human , I2D-INNATEDB-Mouse2Human , I2D-IntAct-Fly2Human , I2D-IntAct-Mouse2Human , I2D-IntAct-Rat2Human , I2D-IntAct-Worm2Human , I2D-IntAct-Yeast2Human , I2D-Krogan-Greenblatt-2006-Core-Yeast2Human , I2D-Krogan-Greenblatt-2006-NonCore-Yeast2Human , I2D-Li-Vidal-2004-CE-DATA-Worm2Human , I2D-Li-Vidal-2004-CORE-1-Worm2Human , I2D-Li-Vidal-2004-CORE-2-Worm2Human , I2D-Li-Vidal-2004-CORE-1-Worm2Human , I2D-Li-Vidal-2004-COR

2004-interolog-Worm2Human , I2D-Li-Vidal-2004-literature-Worm2Human , I2D-Li-Vidal-2004-non-core-Worm2Human , I2D-Manual-Mouse2Human , I2D-Manual-Rat2Human, I2D-MGI-Mouse2Human, I2D-MINT-Fly2Human, I2D-MINT-Mouse2Human, I2D-MINT-Rat2Human, I2D-MINT-Worm2Human, I2D-MINT-Yeast2Human, I2D-MIPS-Yeast2Human, I2D-Ptacek-Snyder-2005-Yeast2Human, I2D-Stanyon-Finley-2004-CellCycle-Fly2Human, I2D-Tarassov-PCA-Yeast2Human, I2D-Tewari-Vidal-2004-TGFb-Worm2Human, I2D-vonMering-Bork-2002-High-Yeast2Human, I2D-vonMering-Bork-2002-Low-Yeast2Human, I2D-vonMering-Bork-2002-Medium-Yeast2Human, I2D-Wang-Orkin-2006-EScmplx-Mouse2Human, I2D-Wang-Orkin-2006-EScmplxIP-Mouse2Human, I2D-Wang-Orkin-2006-EScmplxlow-Mouse2Human, I2D-Yu-Vidal-2008-GoldStd-Yeast2Human, IMID, Ingham-Pawson-2005, Innocenti-Brown-2011, INTERPRO, Iradi-Borchelt-2018, IREF-bhf-ucl, IREF-bind, IREF-bindtranslation, IREF-biogrid, IREF-corum, IREF-dip, IREF-hpidb, IREF-hprd, IREF-huri, IREF-innatedb, IREF-intact, IREF-intcomplex, IREF-matrixdb, IREF-mbinfo, IREF-mint, IREF-mppi, IREF-quickgo, IREF-reactome, IREF-SMALL-SCALE-STUDIES, IREF-SMALL-SCALE-STUDIES, IREF-spike, IREFuniprotpp, IREF-virushost, Ivanochko-Arrowsmith-2019

\mathbf{J}

Jain-Parker-2016 , Jang-Trono-2018 , Jeronimo-Coulombe-2007 , Jiang-de Kok-2017 , Jin-Pawson-2004 , Jirawatnotai-Sicinski-2011 , Johnson-Kerner-Wichterle-2015 , Johnson-Shoemaker-2003 , Jones-MacBeath-2006 , Joshi-Cristea-2013 , Jozwik-Carroll-2016 , Jäger-Krogan-2011

\mathbf{K}

Kahle-Zoghbi-2011 , Kaltenbach-Hughes-2007 , Kang-Shin-2015 , Karras-Soengas-2019 , Kato-Sternberg-2014 , Katsogiannou-Rocchi-2014 , Kawahara-Paes Leme-2017 , Keller-Lee-2014 , Kennedy-Kolch-2020 A , Kennedy-Kolch-2020 B , Khanna-Parnaik-2018 , Kim-Major-2015 , Kneissl-Grummt-2003 , Koch-Hermeking-2007 , Kotlyar-Jurisica-2015 , Kristensen-Foster-2012 , Kumar-Maddika-2017 , Kumar-Vertegaal-2017 , Kupka-Walczak-2016 , Kärblane-Sarmiento-2015 , Kırlı-Görlich-2015

${f L}$

 $Lambert-Gingras-2015 \;,\; Lampert-Peter-2018 \;,\; Lau-Ronai-2012 \;,\; Lee-Choi-2016 \;,\; Lee-Choi-2017 \;,\; Lee-Jeong-2017 \;,\; Lee-Jou-2019 \;,\; Lee-Mayr-2019 \;,\; Lee-Songyang-2011 \;,\; Lehner-Sanderson-2004 \; A \;,\; Lehner-Sanderson-2004 \; B \;,\; Leung-Jones-2014 \;,\; Leung-Miller-2017 \;,\; Li-Chen-2015 \;,\; Li-Dorf-2011 \; A \;,\; Li-Dorf-2011 \; B \;,\; Li-Dorf-2014 \;,\; Li-Fu-2017 \;,\; Li-Haura-2013 \;,\; Li-Hung-2019 \;,\; Li-Lu-2018 \;,\; Li-Wang-2016 \;,\; Li-Zhou-2017 \;,\; Liebelt-Vertegaal-2020 \;,\; Lim-Zoghbi-2006 \;,\; Lin-Smith-2010 \;,\; Lip-Guthrie-2015 \;,\; Liu-Chen-2019 \;,\; Liu-Sun-2019 \;,\; Liu-Takahashi-2017 \;,\; Liu-Tan-2018 \;,\; Liu-Varjosalo-2018 \;,\; Liu-Wang-2012 \;,\; Liu-Xu-2018 \;,\; Liu-Yang-2019 \;,\; Llères-Lamond-2010 \;,\; Loch-Strickler-2012 \;,\; Low-Heck-2014 \;,\; Lu-Bohr-2017 \;,\; Lu-Zhang-2013 \;,\; Luck-2010 \;,\; Luc$

Calderwood-2020, Lum-Cristea-2018, Luo-Elledge-2009

\mathbf{M}

Mak-Moffat-2010 , Malinová-Verheggen-2017 , Mallon-McKay-2013 , Malovannaya-Qin-2010 , Malty-Babu-2017 , Markson-Sanderson-2009 , Martin-Elledge-2017 , Maréchal-Zou-2014 , Matsumoto-Nakayama-2005 , Matsuoka-Elledge-2007 , McCracken-Blencowe-2005 , McFarland-Nussbaum-2008 , McNamara-D'Orso-2016 , Meek-Piwnica-Worms-2004 , Menon-Litovchick-2019 , Milev-Mouland-2012 , Miyamoto-Sato-Yanagawa-2010 , Mohammed-Carroll-2013 , Moon-Kim-2014 , Moutaoufik-Babu-2019 , Mugabo-Lim-2018 , Muller-Demeret-2012 , Murakawa-Landthaler-2015

\mathbf{N}

Nakamura-Groth-2019 , Nakayama-Ohara-2002 , Napolitano-Meroni-2011 , Narayan-Bennett-2012 , Nassa-Weisz-2019 , Nathan-Goldberg-2013 , NCI_NATURE , Neganova-Lako-2011 , Newman-Keating-2003 , Noguchi-Kawahara-2018 , Nowak-Sommer-2019

O

Oliviero-Cagney-2015 , Ol
iviero-Cagney-2016 , Olma-Pintard-2009 , Oláh-Ovádi-2011 , Ouyang-Gill-2009

\mathbf{P}

Panigrahi-Pati-2012 , Pankow-Yates-2015 , Pao-Virdee-2018 , Papp-Lamia-2015 , Pech-Settleman-2019 , Perez-Hernandez-Yáñez-Mó-2013 , Perez-Perri-Espinosa-2016 , Perou-Botstein-1999 , Perou-Botstein-2000 , Persaud-Rotin-2009 A , Persaud-Rotin-2009 B , Petschnigg-Stagljar-2014 , PFAM , Phillips-Corn-2013 , Pichlmair-Superti-Furga-2011 , Pichlmair-Superti-Furga-2012 , Pilling-Cooper-2017 , Pladevall-Morera-Lopez-Contreras-2019 , Ptushkina-Ray-2017

\mathbf{R}

Raisner-Gascoigne-2018 , Ramachandran-LaBaer-2004 , Raman-Harper-2015 , Ramaswamy-Golub-2001 , Ravasi-Hayashizaki-2010 , REACTOME , Reinke-Keating-2010 , Reinke-Keating-2013 , Rengasamy-Walsh-2017 , Reyniers-Taymans-2014 , Richter-Chrzanowska-Lightowlers-2010 , Rieger-Chu-2004 , Rivera-Paes Leme-2018 , Rodriguez-von Kriegsheim-2016 , Roewenstrunk-de la Luna-2019 , Rolland-Vidal-2014 , Rosenbluh-Hahn-2016 , Rosenwald-Staudt-2001 , Ross-Perou-2001 , Roth-Zlotnik-2006 , Rowbotham-Mermoud-2011 , Roy-Pardo-2014 , Roy-Parent-2013 , Rual-Vidal-2005

5

Saez-Vilchez-2018 , Sahni-Vidal-2015 , Saito-Kobarg-2017 , Sala-Ampe-2017 , Salvetti-Greco-2016 , Sang-Jackson-2011 , Sato-Conaway-2004 , Savidis-Brass-2016 , Schadt-Shoemaker-2004 , Schiza-Diamandis-2018 , Scholz-Taylor-2016 , Scifo-Lalowski-2015 , Scott-Guy-2017 , Scott-Schulman-2016 , Shami Shah-Baskin-2019 ,

Shen-Chen-2019 , Shen-Mali-2017 , Sherman-Teitell-2010 , Simabuco-Zanchin-2019 , Singh-Moore-2012 , So-Colwill-2015 , Sokolina-Stagljar-2017 , Soler-López-Aloy-2011 , Sowa-Harper-2009 , Srivas-Ideker-2016 , St-Denis-Gingras-2015 , St-Denis-Gingras-2016 , Stehling-Lill-2012 , Stehling-Lill-2013 , Stelzl-Wanker-2005 , Stuart-Kim-2003 , Sundell-Ivarsson-2018 , Suter-Wanker-2013 , Swayampakula-Dedhar-2017

${f T}$

 $\label{thm:consequence} Taipale-Lindquist-2014\ ,\ Takahashi-Conaway-2011\ ,\ Tang-Wang-2019\ ,\ Tarallo-Weisz-2011\ ,\ Teixeira-Gomes-2010\ ,\ Teixeira-Laman-2016\ A\ ,\ Teixeira-Laman-2016\ B\ ,\ Thalappilly-Dusetti-2008\ ,\ Thompson-Luchansky-2014\ ,\ Tiemann-Kani-2019\ ,\ Tomkins-Manzoni-2018\ ,\ Tong-Moran-2014\ ,\ Toyoshima-Grandori-2012\ ,\ Trepte-Wanker-2018\ A\ ,\ Trepte-Wanker-2018\ B\ ,\ Tsai-Cristea-2012\)$

\mathbf{U}

Ugidos-Vandenbroeck-2019

\mathbf{V}

Van Acker-Dewilde-2019 , Van Alstyne-Pellizzoni-2018 , Van Quickelberghe-Gevaert-2018 , van Wijk-Timmers-2009 , Vandamme-Angrand-2011 , Varier-Vermeulen-2016 , Varjosalo-Gstaiger-2013 A , Varjosalo-Gstaiger-2013 B , Varjosalo-Superti-Furga-2013 , Vastrik-Stein-2007 , Venkatesan-Vidal-2009 , Viita-Vartiainen-2019 , Vinayagam-Wanker-2011 , Virok-Fülöp-2011 , Vizeacoumar-Moffat-2013 , von Hundelshausen-Weber-2017

\mathbf{W}

Wallach-Kramer-2013 , Wan-Emili-2015 , Wang-Balch-2006 , Wang-Cheung-2015 , Wang-He-2008 , Wang-Huang-2017 , Wang-Liu-2019 , Wang-Maris-2006 , Wang-Xiong-2019 , Wang-Xu-2015 , Wang-Yang-2011 , Watanabe-Fujita-2018 , Weimann-Stelzl-2013 A , Weimann-Stelzl-2013 B , Weinmann-Meister-2009 , Weishäupl-Schmidt-2019 , Weith-Meyer-2018 , Whisenant-Salomon-2015 , Wilkinson-Coba-2019 , Willingham-Muchowski-2003 , Winczura-Jensen-2018 , Wong-O'Bryan-2012 , Woods-Monteiro-2012 A , Woods-Monteiro-2012 B , Woodsmith-Sanderson-2012 , Wu-Garvey-2007 , Wu-Li-2007 , Wu-Ma-2012 , Wu-Stein-2010 , Wu-Stein-2010

Xiao-Brown-2018 , Xiao-Lefkowitz-2007 , Xie-Cong-2013 , Xie-Green-2012 , Xie-Zhang-2017 , Xu-Ye-2012 , Xu-Zetter-2016

\mathbf{Y}

 \mathbf{X}

Yachie-Roth-2016 , Yadav-Varjosalo-2017 , Yamauchi-Maeda-2018 , Yang-Brasier-2015 , Yang-Chen-2010 , Yang-Maurer-2018 , Yang-Vidal-2016 , Yang-Wang-2018 , Yao-Stagljar-2017 A , Yao-Stagljar-2017 B , Yatim-Benkirane-2012 , Yeung-Dougan-2019 , Yu-Chow-2013 , Yu-Engel-2018 , Yu-Vidal-2011 , Yue-Liu-2018

\mathbf{Z}

Zanon-Pichler-2013 , Zeller-Wei-2006 , Zhang-Shang-2006 , Zhang-Vermeulen-2017 , Zhang-Wang-2018 , Zhang-Wheeler-2014 , Zhang-Xu-2018 , Zhang-Zou-2011 , Zhao-Krug-2005 , Zhao-Yang-2011 , Zhong-Vidal-2016 , Zhou-Conrads-2004 , Zhou-Hanemann-2016 , Zhu-Liu-2018

Genes

Gene	Description	Rank
HLA- DRB5	major histocompatibility complex, class II, DR beta 5 [Source:HGNC Symbol;Acc:HGNC:4953]	N/A
HLA- DQA1	major histocompatibility complex, class II, DQ alpha 1 [Source:HGNC Symbol;Acc:HGNC:4942]	N/A
HLA- DRB1	major histocompatibility complex, class II, DR beta 1 [Source:HGNC Symbol;Acc:HGNC:4948]	N/A
CTSH	cathepsin H [Source:HGNC Symbol;Acc:HGNC:2535]	N/A
HLA- DPB1	major histocompatibility complex, class II, DP beta 1 [Source:HGNC Symbol;Acc:HGNC:4940]	N/A
HLA- DPA1	major histocompatibility complex, class II, DP alpha 1 [Source:HGNC Symbol;Acc:HGNC:4938]	N/A
HLA-DRA	major histocompatibility complex, class II, DR alpha [Source:HGNC Symbol;Acc:HGNC:4947]	N/A
HLA-DMA	major histocompatibility complex, class II, DM alpha [Source:HGNC Symbol;Acc:HGNC:4934]	N/A
CD74	CD74 molecule [Source:HGNC Symbol;Acc:HGNC:1697]	N/A
HLA-C	major histocompatibility complex, class I, C [Source:HGNC Symbol;Acc: $\operatorname{HGNC:4933}]$	N/A
HLA- DQB1	major histocompatibility complex, class II, DQ beta 1 [Source:HGNC Symbol;Acc:HGNC:4944]	1
HLA-DMB	major histocompatibility complex, class II, DM beta [Source:HGNC Symbol;Acc:HGNC:4935]	2
HLA- DRB3	major histocompatibility complex, class II, DR beta 3 [Source:HGNC Symbol;Acc:HGNC:4951]	3
HLA-DOA	major histocompatibility complex, class II, DO alpha [Source:HGNC Symbol;Acc:HGNC:4936]	4
HLA- DQA2	major histocompatibility complex, class II, DQ alpha 2 [Source:HGNC Symbol;Acc:HGNC:4943]	5
HLA-DOB	major histocompatibility complex, class II, DO beta [Source:HGNC Symbol;Acc:HGNC:4937]	6
AL662796.		7
HLA- DRB4	major histocompatibility complex, class II, DR beta 4 [Source:HGNC Symbol;Acc:HGNC:4952]	8

Gene	Description	Rank
B2M	beta-2-microglobulin [Source:HGNC Symbol;Acc:HGNC:914]	9
HLA- DQB2	major histocompatibility complex, class II, DQ beta 2 [Source:HGNC Symbol;Acc:HGNC:4945]	10
AL645941. 2	novel protein	11
HLA-A	major histocompatibility complex, class I, A [Source:HGNC Symbol;Acc: $\operatorname{HGNC:4931}]$	12
HLA-F	major histocompatibility complex, class I, F [Source:HGNC Symbol;Acc: HGNC:4963]	13
CSTA	cystatin A [Source:HGNC Symbol;Acc:HGNC:2481]	14
HLA-G	major histocompatibility complex, class I, G [Source:HGNC Symbol;Acc: $\operatorname{HGNC:}4964]$	15
HLA-B	major histocompatibility complex, class I, B [Source:HGNC Symbol;Acc: HGNC:4932]	16
CD4	CD4 molecule [Source:HGNC Symbol;Acc:HGNC:1678]	17
HLA-E	major histocompatibility complex, class I, E [Source:HGNC Symbol;Acc: HGNC:4962]	18
TAPBP	TAP binding protein [Source:HGNC Symbol;Acc:HGNC:11566]	19
CTSF	cathepsin F [Source:HGNC Symbol;Acc:HGNC:2531]	20

Networks

Co-expression Co-expression	51.52%
Alizadeh-Staudt-2000	7.30%
Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Alizadeh et al (2000). Nature	
Co-expression with 92,360 interactions from supplementary material	
Rosenwald-Staudt-2001	4.63%
Relation of gene expression phenotype to immunoglobulin mutation genotype in B cell chronic lymphocytic leukemia. Rosenwald et al (2001) . $J \ Exp \ Med$	
Co-expression with 118,097 interactions from supplementary material	
Roth-Zlotnik-2006	4.50%
Gene expression analyses reveal molecular relationships among 20 regions of the human CNS. Roth et al (2006). Neurogenetics	
Co-expression with 683,844 interactions from GEO	
Arijs-Rutgeerts-2009	4.22%
Mucosal gene expression of antimicrobial peptides in inflammatory bowel disease before and after first infliximab treatment. Arijs et al (2009) . $PLoS\ One$	
Co-expression with 676,695 interactions from GEO	
Mallon-McKay-2013	3.95%
StemCellDB: the human pluripotent stem cell database at the National Institutes of Health. Mallon et al (2013). Stem Cell Res	
Co-expression with 602,113 interactions from GEO	
Ramaswamy-Golub-2001	3.33%
Multiclass cancer diagnosis using tumor gene expression signatures. Ramaswamy et al (2001). Proc Natl Acad Sci U S A	
Co-expression with 284,829 interactions from supplementary material	
Chen-Brown-2002	3.17%
Gene expression patterns in human liver cancers. Chen et al (2002). Mol Biol Cell	
Co-expression with 291,300 interactions from supplementary material	
Innocenti-Brown-2011	2.79%
Identification, replication, and functional fine-mapping of expression quantitative trait loci in primary human liver tissue.	
Innocenti et al (2011). PLoS Genet	
Co-expression with 620,205 interactions from GEO	
Wu-Garvey-2007	2.61%
The effect of insulin on expression of genes and biochemical pathways in human skeletal muscle. Wu et al (2007). Endocrine	
Co-expression with 275,155 interactions from GEO	
Rieger-Chu-2004	2.44%
Toxicity from radiation therapy associated with abnormal transcriptional responses to DNA damage. Rieger et al (2004). $Proc$ Natl Acad Sci U S A	
Co-expression with 266,879 interactions from GEO	
Bild-Nevins-2006 B	2.34%
Oncogenic pathway signatures in human cancers as a guide to targeted the rapies. Bild et al (2006) . $Nature$	
Co-expression with 285,368 interactions from GEO	

Co-expression	51.52%
Wang-Maris-2006	1.92%
Integrative genomics identifies distinct molecular classes of neuroblastoma and shows that multiple genes are targeted by regional alterations in DNA copy number. Wang et al (2006). Cancer Res	
Co-expression with 270,388 interactions from GEO	
Jiang-de Kok-2017	1.84%
Omics-based identification of the combined effects of idiosyncratic drugs and inflammatory cytokines on the development of drug- induced liver injury. Jiang et al (2017). <i>Toxicol Appl Pharmacol</i> Co-expression with 444,959 interactions from GEO	
	1.79%
Dobbin-Giordano-2005 Interlaboratory comparability study of cancer gene expression analysis using oligonucleotide microarrays. Dobbin et al (2005). Clin Cancer Res	1.79/0
Co-expression with 452,322 interactions from GEO	
Burington-Shaughnessy-2008	1.45%
Tumor cell gene expression changes following short-term in vivo exposure to single agent chemotherapeutics are related to survival in multiple myeloma. Burington et al (2008). Clin Cancer Res	
Co-expression with 295,320 interactions from GEO	
Perou-Botstein-2000	1.25%
Molecular portraits of human breast tumours. Perou et al (2000). Nature	
Co-expression with 189,373 interactions from supplementary material	
Ross-Perou-2001	0.66%
A comparison of gene expression signatures from breast tumors and breast tissue derived cell lines. Ross et al (2001). Dis Markers Co-expression with 146,858 interactions from supplementary material	
Wang-Cheung-2015	0.60%
Genetic variation in insulin-induced kinase signaling. Wang et al (2015). Mol Syst Biol Co-expression with 422,896 interactions from GEO	
Boldrick-Relman-2002	0.52%
Stereotyped and specific gene expression programs in human innate immune responses to bacteria. Boldrick et al (2002). $Proc$ $Nath\ Acad\ Sci\ U\ S\ A$	
Co-expression with 116,197 interactions from supplementary material	
Perou-Botstein-1999	0.23%
Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. Perou et al (1999). $Proc\ Natl\ Acad\ Sci\ U\ S\ A$	
Co-expression with 68,200 interactions from supplementary material	
Physical Interactions	20.02%
IREF-mint	5.08%
Physical Interactions with 14,408 interactions from iRefIndex	
IREF-spike	4.55%
Physical Interactions with 20,971 interactions from iRefIndex	
IREF-SMALL-SCALE-STUDIES	3.01%
Physical Interactions with 75,496 interactions from iRefIndex	

Physical Interactions	20.02%
IREF-hprd	2.08%
Physical Interactions with 33,375 interactions from iRefIndex	
Hubel-Pichlmair-2019	1.64%
A protein-interaction network of interferon-stimulated genes extends the innate immune system landscape. Hubel et al (2019). Nat	
Immunol Physical Interactions with 2,707 interactions from BioGRID	
	1.02%
Huttlin-Harper-2017 Architecture of the human interactome defines protein communities and disease networks. Huttlin et al (2017). Nature	1.02/0
Physical Interactions with 55,868 interactions from BioGRID	
Rual-Vidal-2005	0.79%
Towards a proteome-scale map of the human protein-protein interaction network. Rual et al (2005). Nature	
Physical Interactions with $4{,}031$ interactions from iRefIndex	
Huttlin-Gygi-2015	0.70%
The BioPlex Network: A Systematic Exploration of the Human Interactome. Huttlin et al (2015). Cell	
Physical Interactions with 23,384 interactions from BioGRID	
IREF-intact	0.62%
Physical Interactions with 117,269 interactions from iRefIndex	
BIOGRID-SMALL-SCALE-STUDIES	0.53%
Physical Interactions with 79,201 interactions from BioGRID	
Li-Wang-2016	0.00%
Defining the Protein-Protein Interaction Network of the Human Protein Tyrosine Phosphatase Family. Li et al (2016). Mol Cell Proteomics	
Physical Interactions with 1,476 interactions from BioGRID	
Kennedy-Kolch-2020 A	0.00%
Extensive rewiring of the EGFR network in colorectal cancer cells expressing transforming levels of KRAS ^{G13D} . Kennedy et al (2020). Nat Commun	
Physical Interactions with 4,232 interactions from BioGRID	
Rolland-Vidal-2014	0.00%
A proteome-scale map of the human interactome network. Rolland et al (2014). Cell	
Physical Interactions with 13,057 interactions from BioGRID	
Grossmann-Stelzl-2015	0.00%
Phospho-tyrosine dependent protein-protein interaction network. Grossmann et al (2015). Mol Syst Biol	
Physical Interactions with 620 interactions from BioGRID	
Lehner-Sanderson-2004 B	0.00%
A protein interaction framework for human mRNA degradation. Lehner et al (2004). Genome Res	
Physical Interactions with 427 interactions from BioGRID	
Raman-Harper-2015	0.00%
Systematic proteomics of the VCP-UBXD adaptor network identifies a role for UBXN10 in regulating ciliogenesis. Raman et al (2015) . Nat Cell Biol	
Physical Interactions with 271 interactions from BioGRID	

cover, get-free proteomies approach identifies INP5 and JAMP as modulators of GPCR stability. Roy et al (2013). Mol adoctors of adoctors of special Interactions with 114 interactions from illeffinder. Sermon-Liu-2014 SPOJ GR4 functions via IQGAP1 to potentiate Witt signaling. Carron et al (2014). Proc Natl Acad Sci U S A Institute methods in IQGAP1 to potentiate Witt signaling. Carron et al (2014). Proc Natl Acad Sci U S A Institute way ampakula-Dedhar-2017 Lea interactions with 129 interactions from illeffinder. Wayampakula-Dedhar-2017 Lea interactions with 126 interaction from illeffinder. Wang-Xiong-2019 O.00 Applied blacemations with 126 interactions from illeffinder. Vang-Xiong-2019 O.00 Dapical Interactions with 126 interactions from illeffinder. Vang-Xiong-2019 O.00 All placema membrane localization of ubiquitin ligase complex underlies 3 M syndrome development. Wang et al (2019). J Internations with 600 interactions from BioGRID techning-Lill-2012 Mail placematic with 147 interactions from BioGRID techning-Lill-2019 Mail placematic report Interactions of Wills and FHH Cluster in Distinct Signaling Pathways. Redrigues et al (2012). Science based interactions with 147 interactions from BioGRID fanson-Clayton-2014 Landifying biological pathways that underlie primordial short stature using network analysis. Hanson et al (2014). J Mol adoctived Latsumoto-Nakayama-2005 Superal Interactions with 1728 interactions from BioGRID Latsumoto-Nakayama-2005 Latsumoto-Nakayama-2005 Latsumoto-Nakayama-2005 Latsumoto-Nakayama-2016 Lateractions with 503 interactions from BioGRID Lateractions with 1505 interactions from BioGRID Lateractions with 1505 interactions from BioGRID Lateractions with 1505 interactions from BioGRID	Physical Interactions	20.02%
Appeal Interactions with 114 interactions from Refindex Carmon-Liu-2014 SepO-LGIR functions via IQGAP1 to potentiate Witt signaling. Carmon et al (2014). Proc Natl Acad Sci U S A Inspired Interactions with 129 interactions from Refindex Wayarmpakula-Dedhar-2017 An interaction of metabolic enzyme carbonic anhydrase IX reveals novel roles in tumor cell migration and invadopodia/ MP14-mediated in vasion. Seayampakula et al (2017). Oncogene spixal Interactions with 129 interactions from Refindex Vang-Xiong-2019 O.00 paired plaema membrane localization of ubiquitin ligase complex underlies 3-M syndrome development. Wang et al (2019). J tin Incest tin Incest techning-Lill-2012 MS19 assembles interactions with 609 interactions from BioGRID tething-Lill-2012 MS19 assembles interactions with 147 interactions from BioGRID tething-Lill-2018 MS19 assembles interactions of PHD3 and FHI Cluster in Distinct Signaling Pathways. Rodriguez et al (2016). Cell Rep typical Interactions with 2,086 interactions from BioGRID Ianson-Clayton-2014 almson-Clayton-2014 Ianson-Clayton-2014 Ianson-Clayton-2014 Ianson-Clayton-2015 Ianson-Clayton-2016 Ianson-Clayton-2018 Ia	Roy-Parent-2013	0.00%
ASTHORNILIU-2014 SPO-LGR4 functions with 129 interactions from Bedfadex Wayarmpakula-Dedhar-2017 to interactions with 129 interactions from BioGRID MP14-mediatorions with 120 interactions from BioGRID MP36-second Interactions with 120 interactions from BioGRID techniques—von Kriegsheim-2016 Monogenee Monogenee Wang-Xiong-2019 papired plasma membrane localization of ubiquitin ligase complex underlies 3-M syndrome development. Wang et al (2019). J interactions with 180 interactions from BioGRID techning-Lill-2012 MS19 assembles iron-sulfur proteins required for DNA metabolism and genomic integrity. Stehling et al (2012). Science bysical Interactions with 147 interactions from BioGRID todriguez-von Kriegsheim-2016 abstrate-Trapped Interactors of PID3 and FIII Cluster in Distinct Signaling Pathways. Rochiguez et al (2016). Cell Rephysical Interactions with 2,035 interactions from BioGRID tanson-Clayton-2014 ansion-clayton-2014 ansion-clayton-with 1,728 interactions from BioGRID fatsumoto-Nakayama-2005 Jatsumoto-Nakayama-2005 Jatsumoto-Naka	Novel, gel-free proteomics approach identifies RNF5 and JAMP as modulators of GPCR stability. Roy et al (2013) . $Mol\ Endocrinol$	
SPO LGR4 functions via IQGAP1 to potentiate Wnt signaling. Carmon et al (2014). Proc Natl Acad Sci U S A hysical Interactions with 129 interactions from iRefindes wayampakula-Dedhar-2017 0.00 MPH-mediated wassion. Swayampakula et al (2017). Oacogesee thysical Interactions with 120 interactions from iRefindes Wang-Xiong-2019 0.00 spaired plasma membrane localization of ubiquitin ligase complex underlies 3 M syndrome development. Wang et al (2019). J fine facest wassian interactions with 609 interactions from BioGRID tehling-Lill-2012 0.00 MS19 assembles iron-sulfur proteins required for DNA metabolism and genomic integrity. Stehling et al (2012). Science hysical Interactions with 147 interactions from BioGRID todriguez-von Kriegsheim-2016 abstrate-Trapped Interactors of PID3 and FIII Cluster in Distinct Signaling Pathways. Rodriguez et al (2016). Cell Replications with 2,635 interactions from BioGRID tanson-Clayton-2014 tanson-Clayton-2015 tanson-Clayton-2015 flatsumoto-Nakayama-2005 flatsumoto-Nakayama-2006 flatsumoto-Nakayama-2007 flatsumoto-Nakayama-2007 in-Wang-2012 cotomic identification of common SCF ubiquitin ligase FBXO6-interacting glycoproteins in three kinds of cells. Lin et al (2012). Proteomic Res hysical Interactions with 311 interactions from BioGRID in-Wang-2012 cotomic identification of common SCF ubiquitin ligase FBXO6-interacting glycoproteins in three kinds of cells. Lin et al (2012). Proteomic Res hysical Interactions with 503 interactions from BioGRID in-Wang-2012 cotomic identification of common SCF ubiquitin ligase FBXO6-interacting glycoproteins in three kinds of cells. Lin et al (2012). Proteomic Res hysical Interactions with 513 interactions from BioGRID in-Wang-2018 RMA mediators preferential mc-sup-8c/sup-A mRNA methylation in 3'UTR and near stop codon and associates with terractive polyadenylation. Yue et al (2018). Cell Disease hysical Interactions with 1,502 interactions from BioGRID	Physical Interactions with 114 interactions from iRefIndex	
wayampakula-Dedhar-2017 be interactions of metabolic enzyme carbonic anhydrase IX reveals novel roles in tumor cell migration and invadopodia/ MP14-inclinted invasion. Swayampakula et al (2017). Oncogone: hysical Interactions with 126 interactions from Refindex Vang-Xiong-2019 0.00 Oncognity plasma membrane localization of ubiquitin ligase complex underlies 3-M syndrome development. Wang et al (2019). J in Invast. hysical Interactions with 609 interactions from BioGRID tehling-Lill-2012 MS19 assembles non-sulfur proteins required for DNA metabolism and genomic integrity. Stehling et al (2012). Science hysical Interactions with 147 interactions from BioGRID todriguez-von Kriegsheim-2016 abstrate-Trapped Interactions of PH03 and PHR Cluster in Distinct Signaling Pathways. Rodriguez et al (2016). Cell Rep hysical Interactions with 2,635 interactions from BioGRID Ianson-Clayton-2014 leantifying biological pathways that underlie primordial short stature using network analysis. Hanson et al (2014). J Mol inderinal mysical Interactions with 1,728 interactions from BioGRID Iatsumoto-Nakayama-2005 auge-scale analysis of the human ubiquitin-related proteome. Matsumoto et al (2005). Proteomics hysical Interactions with 311 interactions from BioGRID in-Wang-2012 concentic identification of common SCF ubiquitin ligase FBXO6-interacting glycoproteins in three kinds of cells. Liu et al (2012). Proteome Res hysical Interactions with 593 interactions from BioGRID in-Wang-2016 cu-Zetter-2016 cu-Zetter-2016 cu-Diaz-2018 RNA mediates preferential m <sup-8c s<="" sup-8c="" td=""><td>Carmon-Liu-2014</td><td>0.00%</td></sup-8c>	Carmon-Liu-2014	0.00%
wayampakula-Dedhar-2017 be interactione of metabolic enzyme carbonic anhydrase IX reveals novel roles in tumor cell migration and invadopodia/ MP14-mediated invasion. Swayampakula et al (2017). Oncogene hysical Interactions with 126 interactions from iRefindex Vang-Xiong-2019 0.00 papired plasma membrane localization of ubiquitin ligase complex underlies 3-M syndrome development. Wang et al (2019). J find Interactions with 609 interactions from BioGRID tehling-Lill-2012 MS19 assembles iron-sulfur proteins required for DNA metabolism and genomic integrity. Stehling et al (2012). Science hysical Interactions with 147 interactions from BioGRID todriguez-von Kriegsheim-2016 abstrate-Trapped Interactors of PHD3 and FHI Cluster in Distinct Signaling Pathways. Rodriguez et al (2016). Cell Replaysical Interactions with 2,035 interactions from BioGRID fanson-Clayton-2014 anson-Clayton-2014 further of the human ubiquitin-related proteome. Matsumoto et al (2005). Proteomics hysical Interactions with 311 interactions from BioGRID fatsumoto-Nakayama-2005 arge-scale analysis of the human ubiquitin-related proteome. Matsumoto et al (2005). Proteomics hysical Interactions with 331 interactions from BioGRID fin-Wang-2012 o.00 o.00 in-Wang-2012 o.00 o.00 further actions with 593 interactions from BioGRID further actions with 593 interactions from BioGRID further actions with 593 interactions from BioGRID further actions with 719 interactions from BioGRID	RSPO-LGR4 functions via IQGAP1 to potentiate W nt signaling. Carmon et al (2014). Proc Natl Acad Sci U S A	
he interactions of metabolic enzyme carbonic anhydrase IX reveals novel roles in tumor cell migration and invadopodia/ MP14-mediated invasion. Swayampakula et al (2017). Oncogene hysical Interactions with 126 interactions from iRefindex Vang-Xiong-2019 0.00 papired plasma membrane localization of ubiquitin ligase complex underlies 3-M syndrome development. Wang et al (2019). J lin Invest hysical Interactions with 669 interactions from BioGRID tehling-Lill-2012 0.00 MS19 assembles iron-sulfur proteins required for DNA metabolism and genomic integrity. Stehling et al (2012). Science hysical Interactions with 147 interactions from BioGRID todriguez-von Kriegsheim-2016 1.00 1.	Physical Interactions with 129 interactions from iRefIndex	
MP14-mediated invasion. Swayampalcula et al (2017). One ogene hysical Interactions with 126 interactions from iRefindex Vang-Xiong-2019 0.00 paired plasma membrane localization of ubiquitin ligase complex underlies 3-M syndrome development. Wang et al (2019). J line Invest hysical Interactions with 699 interactions from BioGRID tehling-Lill-2012 0.00 MS19 assembles iron-sulfur proteins required for DNA metabolism and genomic integrity. Stehling et al (2012). Science hysical Interactions with 147 interactions from BioGRID todriguez-von Kriegsheim-2016 0.00 distrate-Trapped Interactors of PHD3 and FHH Cluster in Distinct Signaling Pathways. Rodriguez et al (2016). Cell Rep hysical Interactions with 2,035 interactions from BioGRID Ianson-Clayton-2014 0.00 dentifying biological pathways that underlie primordial short stature using network analysis. Hanson et al (2014). J Mol adocrinal distractions with 1,728 interactions from BioGRID Jatsumoto-Nakayama-2005 10.00 Jatsumoto-Nakayama-2005 10.00 Jatsumoto-Nakayama-2005 10.00 Jarge-scale analysis of the human ubiquitin-related proteome. Matsumoto et al (2005). Proteomics hysical Interactions with 311 interactions from BioGRID Jacobs of the human ubiquitin-related proteome. Matsumoto et al (2005). Proteomics hysical Interactions with 33 interactions from BioGRID Jacobs of the human ubiquitin related proteome identification of common SCF ubiquitin ligase FBXO6-interacting glycoproteins in three kinds of cells. Liu et al (2012). Proteome Res hysical Interactions with 33 interactions from BioGRID Jacobs of the man and proteins are supplied to the interaction with X-linked inhibitor of apoptosis protein. Xu et al (2016). J Mol all Biol Jacobs of the man and proteins are supplied to the interaction with X-linked inhibitor of apoptosis protein. Xu et al (2016). J Mol all Biol Jacobs of the man and proteins are supplied to the proteins of the man and proteins are supplied to the proteins of the man and proteins are supplied to the proteins of the proteins and	Swayampakula-Dedhar-2017	0.00%
Wang-Xiong-2019 apaired plasma membrane localization of ubiquitin ligase complex underlies 3-M syndrome development. Wang et al (2019). J lin Invest lin Invest lins Investigated Interactions with 609 interactions from BioGRID MS19 assembles iron-sulfur proteins required for DNA metabolism and genomic integrity. Stabiling et al (2012). Science hysical Interactions with 147 interactions from BioGRID dodriguez-von Kriegsheim-2016 abstrate-Trapped Interactions of PHD3 and FIH Cluster in Distinct Signaling Pathways. Rodriguez et al (2016). Cell Rep hysical Interactions with 2,035 interactions from BioGRID lanson-Clayton-2014 entifying biological pathways that underlie primordial short stature using network analysis. Hanson et al (2014). J Mol adoctrical districtions with 1,728 interactions from BioGRID Matsumoto-Nakayama-2005 arge-scale analysis of the human ubiquitin-related proteome. Matsumoto et al (2005). Proteomics hysical Interactions with 311 interactions from BioGRID in-Wang-2012 0.00 contrologic identification of common SCF ubiquitin ligase FBXO6-interacting glycoproteins in three kinds of cells. Liu et al (2012). Proteomic Res hysical Interactions with 593 interactions from BioGRID in-Wang-2016 0.00 cur-Zetter-2016 0.00 line-Res with 1,593 interactions from BioGRID fue-Liu-2018 RRMA mediates preferential m		

Physical Interactions	20.02%
Choi-Beutler-2019	
$ LMBR1L \ regulates \ lymphopoies is through \ Wnt/ \ catenin \ signaling. \ Choi \ et \ al \ (2019). \ Science $ Physical Interactions with 928 interactions from BioGRID	
Lee-Mayr-2019	0.00%
Gain of Additional BIRC3 Protein Functions through 3'-UTR-Mediated Protein Complex Formation. Lee et al (2019). Mol Cell Physical Interactions with 1,759 interactions from BioGRID	
Kumar-Vertegaal-2017	0.00%
The STUbL RNF4 regulates protein group SUMOylation by targeting the SUMO conjugation machinery. Kumar et al (2017). Nat $Commun$	
Physical Interactions with 1,198 interactions from BioGRID	
Giurato-Tarallo-2018	0.00%
Quantitative mapping of RNA-mediated nuclear estrogen receptor $$ interactome in human breast cancer cells. Giurato et al (2018). Sci Data	
Physical Interactions with 2,161 interactions from BioGRID	
Shared protein domains	14.94%
PFAM	8.64%
Shared protein domains with 471,533 interactions from Pfam	
INTERPRO	6.30%
Shared protein domains with 621,159 interactions from InterPro	
Co-localization	6.85%
Chen-Huang-2014	6.76%
Using an in situ proximity ligation assay to systematically profile endogenous protein-protein interactions in a pathway network. Chen et al (2014) . J Proteome Res	
Co-localization with 559 interactions from BioGRID	
Johnson-Shoemaker-2003	0.08%
$ \label{eq:condition} Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Johnson et al (2003). \textit{Science} \\ Co-localization with 426,464 interactions from GEO $	
Pathway	6.18%
Wu-Stein-2010	6.18%
A human functional protein interaction network and its application to cancer data analysis. Wu et al (2010). Genome Biol Pathway with 78,117 interactions from supplementary material	
Predicted	0.49%
Wu-Stein-2010	0.49%
A human functional protein interaction network and its application to cancer data analysis. Wu et al (2010). Genome Biol	
Predicted with 89,967 interactions from supplementary material	
Genetic Interactions	0.00%
Xiao-Brown-2018	0.00%
Etanom moletal facilitation film in the firm of atomic and a total distribution of the control o	

 $Estrogen-regulated\ feedback\ loop\ limits\ the\ efficacy\ of\ estrogen\ receptor-targeted\ breast\ cancer\ therapy.\ Xiao\ et\ al\ (2018).\ Proc$

 $Natl\ A\ cad\ Sci\ U\ S\ A$

Genetic Interactions 0.00%

Xiao-Brown-2018

Genetic Interactions with 684 interactions from BioGRID