Polar Coordinates

Gunja Sachdeva

Department of Mathematics BITS Pilani, Goa Campus

August 8, 2024

Recall

Algorithm to draw a polar curve:

- First graph $r = f(\theta)$ in the Cartesian $r\theta$ -plane.
- then use the Cartesian graph as a "table" and guide to sketch the polar coordinate graph

Example.
$$r = 1 + \sin\theta$$

Cardioids

The polar curve of $r=1+\sin\theta$ called a cardioid, because it's shaped like a heart.

Cardioids are graphs of polar equations having the following form

$$r = a \pm a\cos\theta$$
, $r = a \pm \sin\theta$

= azasmo

where a is a positive real number.

Symmetry tests for Polar graphs

Symmetry about the x-axis: If the point (r, θ) lies on the graph, then the point $(r, -\theta)$ or $(-r, \pi - \theta)$ lies on the graph.

(a) About the *x*-axis

Example. $r = 1 + \cos\theta$

Symmetry about the y-axis: If the point (r, θ) lies on the graph, then the point $(r, \pi - \theta)$ or $(-r, -\theta)$ lies on the graph.

(b) About the y-axis

Example. $r = 1 + \sin\theta$

Symmetry about the origin: If the point (r, θ) lies on the graph, then the point $(-r, \theta)$ or $(r, \theta + \pi)$ lies on the graph.

(c) About the origin

Example. $r^2 = \sin(2\theta)$

Plot $r = \cos(2\theta)$

We first sketch $r = \cos(2\theta)$ for $0 \le \theta \le 2\pi$, in Cartesian coordinates.

- $\theta \uparrow 0 \frac{\pi}{4}, r \downarrow 1 0.$
- $\theta \uparrow \frac{\pi}{4} \frac{\pi}{2}, r \downarrow 0 (-1).$
- and so on....

Graph of the curve $r = \cos(2\theta)$

Graph of the curve $r = \cos(2\theta)$

n=2

The resulting curve has four loops and is called a four-leaved rose.

Roses

Roses are graphs of polar equations of the forms,

$$r = a\cos(n\theta), \quad r = a\sin(n\theta)$$

The roses given by above polar equations has n petals, if n is odd and 2n petals if n is even. **Examples.**

- $r = 4\cos(4\theta)$. Since n is even, number of petals are $2 \times 4 = 8$.
- $r = 4\cos(5\theta)$. Since n is odd, number of petals are 5.

Sketch the curve $r^2 = \sin(2\theta)$

We begin by plotting r^2 (not r) as a function of θ in the Cartesian $r^2\theta$ -plane.

We pass from there to the graph of $r = \pm \sqrt{\sin(2\theta)}$ in $r\theta$ -plane.

Limacons

- The word limaçon comes from the old French for snail. There are two types of limaçons: ones without inner loop and ones with inner loop.
- Limaçons without inner loop are graphs of polar equations of the form:

$$r = a + b\cos\theta$$
 or $r = a + b\sin\theta$

where a and b are positive real numbers with a > b.

• When a < b one gets limaçons with inner loops.

Examples

Limacon without inner loop: $r = 2 + \sin \theta$.

Limacon with inner loop: $r = 1 + 2\sin\theta$.

Lemniscates

The word lemniscates comes from the Latin word for ribbon. These are the graphs of polar equations of the form

$$r^2 = a^2 \cos 2\theta, \quad r^2 = a^2 \sin 2\theta.$$

Example.
$$= 4\cos 2\theta$$

Spirals

There are many kinds of interesting spirals.

$$r=\pm heta, \quad r=e^{ heta}, \quad r=rac{ a}{ heta}.$$

Example. $r = \theta$, $0 \le \theta \le 2\pi$.

Slope of Tangents to Polar curve

To find the slope of a polar curve $r = f(\theta)$, think of the graph of f as the graph of the parametric equations

$$x = r\cos\theta = f(\theta)\cos\theta, \quad = r\sin\theta = f(\theta)\sin\theta.$$

If f is differentiable function of θ , then so are x and y and when $\frac{dx}{d\theta} \neq 0$, then

$$\frac{dy}{dx}\Big|_{(r,\theta)} = \frac{dy/d\theta}{dx/d\theta}$$

$$= \frac{\frac{d}{d\theta}(f(\theta)\sin\theta)}{\frac{d}{d\theta}(f(\theta)\cos\theta)}$$

$$= \frac{f'(\theta)\sin\theta + f(\theta)\cos\theta}{f'(\theta)\cos\theta - f(\theta)\sin\theta}$$

Remark.
$$\frac{dy}{dx} \neq \frac{dr}{d\theta}$$
.

- 1. Horizontal tangents. We locale horizontal tangents by finding the points where $\frac{dy}{d\theta} = 0$, provided $\frac{dx}{d\theta} \neq 0$.
- 2. **Vertical Tangents.** We locale horizontal tangents by finding the points where $\frac{dx}{d\theta} = 0$, provided $\frac{dy}{d\theta} \neq 0$.
- 3. Tangent through the origin. If the curve $r = f(\theta)$ passes through the origin at $\theta = \theta_0$, then $f(\theta_0) = 0$, and the slope is

$$\frac{dy}{dx}\Big|_{(0,\theta_0)} = \frac{f'(\theta_0)\sin\theta_0}{f'(\theta_0)\cos\theta_0} = \tan\theta_0.$$

Note that, there can be many tangents with different slope at origin.

Example.
$$r = 1 + \sin\theta$$

$$\frac{dy}{d\theta} = \cos\theta(1 + 2\sin\theta) = 0 \Rightarrow \theta = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{7\pi}{6}, \frac{11\pi}{6}$$

$$\frac{dx}{d\theta} = (1 + \sin\theta)(1 - 2\sin\theta) = 0 \Rightarrow \theta = \frac{3\pi}{2}, \frac{\pi}{6}, \frac{5\pi}{6}$$

$$\Theta = \Pi, \forall \Pi$$

$$\Theta = \Pi, \forall \Pi$$

$$\frac{dy}{dsc} = \frac{dy}{dx} \frac{d\theta}{d\theta} = \frac{\cos\theta(1+2\sin\theta)}{(1+2\sin\theta)(1-2\sin\theta)}$$

Verhead ton yents 0= II, SII