AD-781 758

TAKEOFF AND LANDING ANALYSIS COMPUTER PROGRAM (TOLA). PART III. USER'S MANUAL

Urban H. D. Lynch, et al

Air Force Flight Dynamics Laboratory Wright-Patterson Air Force Base, Ohio

April 1974

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

(Form 1473 Continued)

The TOLA program is ideal for dynamic tradeoff studies in aircraft design, landing gear design, and landing techniques. The formulation is programmed for the CDC 6000 and Cyber 70 Computer Systems. The program is programmed in Fortran Extended using the Scope 3.4 operating system.

UNCLASSIFIED

Security Classification

DOCUMENT CONT (Security classification of title, body of abstract and indexing			overall tenort is classified)
i originating activity (Corporate author) Air Force Flight Dynamics Laboratory	amora rot		CURITY CLASSIFICATION
Air Force Systems Command		26. GROUP	
Wright-Patterson Air Force Base, Ohio			
3 REPORT TITLE	AM (TOLA)		
TAKEOFF AND LANDING ANALYSIS COMPUTER PROGF Part III. User's Manual	(AM (TOLA)		
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)			
5 AUTHOR(S) (First name, middle initial, last name)		·	
Urban H. D. Lynch, Major, USAF			
John J. Dueweke			
6 REPORT DATE	78. TOTAL NO. O	F PAGES	76. NO. OF REFS
April 1974	102		<u> </u>
88. CONTRACT OR GRANT NO.	94. ORIGINATOR		
b. PROJECT NO	AFFDL-TR-	71-155, Pai	rt III
c.	90. OTHER REPO	RT NO(S) (Any of	ther numbers that may be assigned
	this report)		
10 DISTRIBUTION STATEMENT	<u> </u>		
Approved for public release; distribution o	unlimited.		
11 SUPPLEMENTARY NOTES	12 SPONSORING		
	Air Force	,	amics Laboratory
	l .	•	Force Base, Ohio
13 ABSTRACT	THI I GITE I GET		
TOLA is an acronym for <u>TakeOff</u> and <u>Land</u> part describes the use of the program.	ding <u>A</u> nalysis	s digital o	computer program. This
The basic program provides six rigid-bo motion over a flat planet and determines th	e response o	of the airc	craft to control
inputs. The dynamics of up to five independ	ient oleo-typ	e struts a	are included for
simulation of symmetrical and nonsymmetrica	al landings a	as well as	drop tests.
A maneuver logic is programmed to provi of the problem; it determines the desired to provides synthesis and attempted completion touchdown velocity vector. The landing roll reversing, spoiler deployment, and system of of acceleration to takeoff speed, followed	trim and pos n of necessa l includes w failure optic	ition in thry flare dy neel spinup ons. The ta	ne glide slope and ynamics for preseribed b and braking, thrust akeoff roll consists

The autopilots attempt to obtain smooth response with no overshoot and provide values for pitch, yaw, and roll centrol surface deflections, throttle settings for one, two, three, or four engines, and controlled (or failed, locked or constant) braking. The control response logic simulates linear control system rates and their corresponding lags to desired values.

DD . 1974.. 1473

UNCLASSIFIED

Security Classification

HAD BURN BURNESAN MARKE WARRED FRANK

UNCLASSIFIED

Security Classis.cetion						
14. KEY WORDS		K A		IK B		кc
	ROLE	WT	ROLE	WT	ROLE	WT
Takeoff and Landing Analysis						
Computer Program						
Glide Slope			Ì			
Flare						
Landing Roll						
Takeoff Roll						
Landing Gear Loads and Dynamics						
Vehicle Control						
		ĺ				
]]
		į		}		
			j	ĺ		
			Ì			
				ĺ		
			, ,			
		9				
) :		
]					
]					

UNCLASSIFIED

ia

TAKEOFF AND LANDING ANALYSIS COMPUTER PROGRAM (TOLA) Part III. User's Manual

Urban H. D. Lynch, Major, USAF John J. Dueweke

Approved for public release; distribution unlimited.

FOREWORD

Work described in this report was accomplished by the Flight Mechanics Division of the Air to be Flight Dynamics Laboratory and the Digital Computation Division of the Aeronautical Systems Division under Project 1431, "Flight Path Analysis," Task 143109, "Trajectory and Motion Analysis of Flight Vehicles." The formulation and interim documentation were completed by Major Urban H. D. Lynch. Programming was accomplished by Mr. Fay O. Young of the Digital Computation Division (ASVCP), Computer Science Center, Aeronautical Systems Division.

This report was prepared by Major Lynch and Mr. John J. Dueweke of the High Speed Aero Performance Branch (FXG), and combines the applicable portions of FDL-TDR-64-1, Part I, Volume I, with the interim documentation. The overall report is divided into four parts:

- Part I. Capabilities of the Takeoff and Landing Analysis
 Computer Program
- Part II. Problem Formulation
- Part III. User's Manual
- Part IV. Programmer's Manual

This report was submitted by the authors in June 1972.

Thi technical report has been reviewed and is approved.

PHILIA P. ANTONATOS

Chief, Flight Mechanics Division Air Force Flight Dynamics Laboratory

ABSTRACT

TOLA is an acronym for TakeOff and Landing Analysis digital computer program. This part describes the use of the program.

The basic program provides six rigid-body degrees of freedom of aerospace vehicle motion over a flat planet and determines the response of the aircraft to control inputs. The dynamics of up to five independent oleo-type struts are included for simulation of symmetrical and non-symmetrical landings as well as drop tests.

A maneuver logic is programmed to provide vehicle guidance in the various phases of the problem; it determines the desired trim and position in the glide slope and provides synthesis and attempted completion of necessary flare dynamics for a prescribed touchdown velocity vector. The landing roll includes wheel spinup and braking, thrust reversing, spoiler deployment, and system failure options. The takeoff roll consists of acceleration to takeoff speed, followed by rotation to takeoff angle of attack.

The autopilots attempt to obtain smooth response with no overshoot and provide values for pitch, yaw, and roll control surface deflections, throttle settings for one, two, three, or four engines, and controlled (or failed, locked, or constant) braking. The control response logic simulates linear control system rates and their corresponding lags to desired values.

The TOLA program is ideal for dynamic tradeoff studies in aircraft design, landing gear design, and landing techniques. The formulation is programmed for the CDC 6000 and Cyber 70 Computer Systems. The program is programmed in Fortran Extended using the Scope 3.4 operating system.

TABLE OF CONTENTS

SECT	ION	PAGE
ı	INTRODUCTION	1
11	TOLA INPUTS	2
	1. Vehicle Data	2
	2. Landing Gear Data	2
	3. Aerodynamic Data	4
	4. Propulsion Data	4
	5. Runway Data	5
	6. Optional Data	5
	7. Other Required Data	5
111	DATA FORMAT	7
	1. Card Format	7
	2. Table Format	Э
IV	DATA PREPARATION	12
	1. Data Preparation - General	12
	2. Data Preparation - Subprograms	15
	3. Data Preparation - Staging	29
	4. Data Preparation - Data Merging	40
٧	INPUT	43
	1. Basic SDF-2 Data	43
	2. Landing Gear Modification Data	49
	3. Autopilot Data	54
	4. Staging Data	64
۷ı	OUTPUT	70
	1. Trajectory Printing Muthod	70
	2. Main Airframe Output	72

Preceding page blank

TABLE OF CONTENTS (Contd)

SECT	ION		PAGE
۷I	(Co	ntd)	
	3.	Autopilot Output	76
	4.	Landing Gear Output	78
VII	F'RC	OGRAM USE	81
	1.	Glide Slope	81
	2.	Flare	83
	3.	Landing Roll	85
	1,.	Takeoff Roll	86
VIII	DEC	K SETUP	87
	1.	Deck Structure	87
	2.	Control Cards	88
	3.	CALCOMP Plotting Input	89
RE	FERE	NCES	92

SECTION 1

INTRODUCTION

The purpose of this report is to summarize and complete the documentation of Project 143109-302 "Take Off and Landing Analysis", (TOLA). TOLA is a FORTRAN modification to Option 2 (SDF-2) of FDL-TDR-64-1, "Six-Degree-of-Freedom Flight Path Study Generalized Computer Program", and allows comprehensive, quantitative calculation of aircraft takeoff and landing performance. Specifically, this report shows how to use the TOLA computer program.

The reader should at least familiarize himself with the formulation documentation before attempting to use the TOLA simulation. This documentation is contained in Volume I of this report, and in AFFDL-TR-68-111, which formulates the equations of motion for a series of nonrigid bodies.

The performance analyst will need to obtain data on the various components of a given vehicle. The types of data required are summarized under TOLA Inputs. Data Format details how the data is used.

SECTION II

TOLA INPUTS (Specify Units)

1. VEHICLE DATA

Either TOGW or landing weight lxx, lyy, lzz, lxz cg location (W.L., body station)

2. LANDING GEAR DATA

For Each Gear:

Number of tires on each gear, $\binom{n}{k}$ NTIRES

Moment of inertia of \underline{a} tire, wheel, and anything else constrained to rotale with the tire about the axle , (I_k) MOMENT

Mass of all portions of strut which move relative to outer sleeve of strut, (m_k) MASS

If there is a metering pin, $A_n = A_n(s)$ implying C = C(s).

3. AERODYNAMIC DATA

Aerodynamic Reference Area AREFF
Longitudinal Reference Length (usually M.A.C.) DIRFF
Lateral Reference Length (usually span) D2RFF

"Wind" Axes (with and without spoilers)

 $C_D \ \underline{vs}$. α for various elevator deflections

 $\mathbf{C}_{\underline{l}}$ vs. α for various elevator deflections

"Body" axes

 \mathbf{C}_{m} $\underline{\mathbf{vs}}.$ α for various elevator deflections

(Origin of moment axis system [W.L., B.S.])

 C_{ℓ} vs. β "aileron" deflection

 $C_{n} \ \underline{vs}$. β for various rudder deflections

C vs. B

 c_{ℓ_p} , c_{mq} , c_{n_r}

Of the above listed coefficients, the first 3 are mandatory. The next 3 are required if crosswinds or engine failures are to be studied. The rate coefficients may be input, also, if available.

Provision is made for coefficients with no ground effect and including full ground effect.

 Δ C $_{\rm D}$ due to gear.

4. PROPULSION DATA

"Installed" chrust as a function of Mach No. and "throttle setting." Thrust vector(s) assumed parallel to body x-axis; thus, the body y- and z-axis displacements of the thrust vector(·), YN, ZN, are required. Mass is assumed constant (therefore, No fuel is required).

5. RUNWAY DATA

6. OPTIONAL DATA

Reverse thrust

Drag chute; requires chute \mathbf{C}_{D} , \mathbf{S}_{REF} , and location of chute attachment point relative to c.g.

Wheel braking, including "controlled" braking based on a commanded "skid"

Engine failure(s)

Control variable rate lags

Effects of rotating machiner, including:

Rotation rate of machinery about its own shaft (ω_r) - ϕ MGRT

Pitch angle of shaft relative to body x-axis in

plane parallel to body x-z plane (θ_r) - THTRD

Moment of inertial of rotating machinery about

its own shaft (I_{xr}) AIXR7S

7. OTHER REQUIRED DATA

The lower and/or upper limits on the following variables are required.

Type Data	Computer Symbol
Tire deflection (for blowout)	DELTAM
Braking moments	MBL, MBU
"% skid" for controlled braking	PD
Control angular acceleration of wheel to the	
angular speed required to maintain a	
given ''%'' skid''	OMECD1
Angle of attack	ALPHDS, ALPHDL
Angle of attack rate	ALPDL

Type Data	Computer Symbol
Elevator deflection	DELQL, DELQU
Aileron deflection	DELPL, DELPU
Rudder deflection	DELRL, DELRU
Elevator deflection for takeoff, landing roll	DELQTO
Elevator deflection rate for landing roll	DELFUI
Thrust: Throttle setting above which reverse	
throttle should not be engaged	NB
Time to activate spoilers (t_{sp})	TSP
Time to reverse engines (tru)	TRV
Time to release drag chute (t _{ch})	TCH
Time to initiate wheel braking (t_{bk})	TBK
Linear rates for simulating control response lags:	
Elevator rate	DELHS
Aileron rate	DELA
Rudder rate	DELRRD
Throttle rate	NED1

SECTION III

DATA FORMAT

1. CARD FORMAT

The program input routine (READ) expects the following format.

Card Columns Field	- 1 - 6	7	8 - 10	11	12 - 66	67 - 72	73 - 80
Field	1	11	111	١٧	v	٧ı	VIII

Card Field II Not used

Card Field III - Contains the words DEC, ØCT, BCD, TRA, INT, or is blank, depending on the type of data to be loaded. The word ØCT indicates that the data is to be interpreted as octal numbers. The word BCD specifies that N binary coded decimal words (N punched in column 12) beginning in column 13 are to be loaded. The word TRA denotes to the input routine that all data has been input and to return control to the calling program. The word DEC and blank are equivalent and specifies that data loaded is decimal data.

∳CT Example	l	1 1	
Card Column	1	8	12
	NSMAIN	0CT	17
BCD Example	1	8	12
Card Column	REM	BCD	3SDF2-GEAR-MOD

The 3 in Column 12 specifies 3 words where each word is considered to be 6 characters including blanks. The largest number of 6 character words that can be loaded from one card is 9. Analysts should be very careful to see that the BCD information does not get punched into Field VI. This will cause an input error.

DEC Example

Card Column

! 8

VTABOI

DEC

2,0.,1.67,20000.,1.67

Note that the first character in Column 12 is an integer and the input routine will load only one integer per DEC card and that has to be the first number punched in Field V.

VTAB01

DEC

2.,0.,1.67,20000.,1.67

If the above card is punched, the two will now be loaded into the machine as a binary floating point number. Likewise, the other numbers will be loaded the same with the decimal point assumed right justified.

If anything other than OCT, BCD, INT, TRA or blank appears in Field II then the word DEC is assumed.

INT čxample	1	ł	1
Card Column	1	8	12
	IP IP	INT	
	IP.	INT	1,1,1,1

When the word INT is used, it is assumed that all numbers on the card will be loaded as integers. If only one integer is punched per card the INT may be punched or omitted.

Card Field IV - Not Used

Card Field V

The actual input data to the program is punched in the Field V. DEC, INT and OCT numbers must always be left adjusted; that is, data must always start in column 12 on the input card. All numbers are separated by a "comma" and the field terminates with the first blank. BCD information begins in Column 13 and the maximum number of 6-character words per card is nine. Note that since Field V ends with the first blank, the user may punch any comments in the remainder of the field.

Card Field VI

This field specifies the initial subscript of the data in Field V.

If this field is blank an initial subscript of 1 is implied. The subscript may appear anywhere within the field.

Example	1		
	l	12	67
	PZERØ	30470.4,41538.24,41538.24	1 or blank)
	PZERØ	42538.24,42538.24	4

In the example above, the number 30470.4 is loaded into the first cell of the array PZERØ. On the second card 42538.24 is loaded into the fourth cell of the array. The one and four punched in Field VI indicate the subscript for the array PZERØ.

Card Field VII

Not used as far as the input routine is concerned. This may be used as a sequence number for the card.

2. TABLE FORMAT

The various types of tables used by the program may be classed as follows:

One-Dimensional Tables

NSTRUT = Fixed point number which is the number of struts on the aircraft. For example, the number of tires on strut #2 is 6. i.e., $n_2 = f(2) = 6$.

i = independent variable values

n, = Corresponding dependent variable values

Example 2:

Aerodynamic Data

Card Column

INDAO1 \neq 1 designates that there are data in ATABO1. The first data point is for full ground effect; the second data point is for no ground effect in all aerodynamic tables.

Two-Dimensional Table

Example:	VTAB01	$X_{CG} = f(M)$
Card Column		12 N,M ₁ ,X _{CG1} ,M ₂ ,X _{CG2} ,, M _N ,X _{CGN}

N = Fixed point number equal to 2 times the number of independent variables. For a 20 point table, N would equal 20. The total number of machine cells required for this table is 41.

M; = Independent variable values

 x_{CG_1} = Corresponding dependent variable values

N - Dimensional Table

Example:	T = F(N,	M _N)	1
Card Column	T = F(N,	M_1 , M_2 , M_3 ,, M_{NNMN}	67
	TTABIO	$T_{N_1}, M_{N_1}, T_{N_2}, M_{N_1}, \dots, T_{N_{N_N}}, M_{N_1}$ $T_{N_2}, M_{N_2}, T_{N_2}, M_{N_2}, \dots, T_{N_{N_N}}, M_{N_2}$	*
	TTABIO	TN1, MNNMN, TN2, MNNMN,, TNNN, MNNMN	×

NN and NMN are fixed point numbers of independent variables. T_{N_1,M_N} ,..., $T_{N_{NNN},M_{NNMN}}$ are values of independent variables. The table subscripts

^{*}Displacement numbers required when any table exceeds (1) card. See example, page 9.

would apply to the N-dimensional table as well as the two dimensional. The total number of machine cells required for an N-dimensional table equals NN * NMN + NN + NMN. (Asterisk here indicates multiplication.)

Examples:

C = F(X, Y) NX = 2 = points for X NY = 2 = points for YMachine cells required $2 \times 2 + 2 + 2 = 8$ cells

C = F(X, Y, Z) NX = 20 = points for X NY = 10 = points for YNZ = 15 = points for Z

Machine cells required 20 X 10 X 15 + 20 + 10 + 15 = 3045 cells

SECTION IV

DATA PREPARATION

1. DATA PREPARATION - GENERAL

Before preparing data which may actually affect the trajectory, a certain amount of data must first be considered, including:

- a. Table size data
- b. Identification data
- c. Required data input for each case
- d. Integration data

These are pointed out in the sections to follow.

a. Table Size Data

Table sizes are read into the program by data cards that follow an STCASE TAB card. All tables are assumed dimensional (1) unless otherwise specified by data input.

Example: Define tables TTAB10 (30), ATAB01 (2), and VTAB01 (5).

Column	1	8	12					
	STCASE	ТАВ		(define 1	tables	and E	Base	case)
	TTABOI		30					
	ATAB01		2					
	VTAB01		5					
·		TRA	•	(END tabl	le defi	nitio	on)	

Stage I data follows this TRA card.

Tables can only be defined in a Base Case. The sum of all table sizes may not exceed 600 without a program modification to COMMON block COMMON/TABDIR/ in routines AUXR2, TLU, HIHO, TFFS, and AERO.

The table size definition in the Base Case must be sufficient for any table in a succeeding Merge Case with a larger table size than that found in the Base Case.

b. identification data

a. Remarks. For identification purposes, three lines of 60 characters each may be caused to be printed at each major stage.

EXAMPLE: THIS IS A SAMPLE TRAJECTORY IDENTIFICATION IS MADE BY REM

Field I	Field III	Field V	Field VI
REM	BCD	3THIS _b IS _b A _b SAMPLE	
REM	BCD	2 _b trajectory	4
REM	BCD	2 I DENTIFICATI	6
REM	BCD	3φN _b IS _b MADE _b BY _b REM	8

Here, the leading number in Field V is the number of 6 character BCD words on this card (including blanks). \star

b. Case Number. For specific identification of each case, the case number is printed at the top of each page.

EXAMPLE: CASE 3.02A4

 Field I
 Field III
 Field V

 NCASE
 BCD
 13.02A4

where, the leading I in Field III denotes that one 6-character field is to be read. Only one BCD word is allowable in the program for case number identification.

^{*}This example could be put on one card, but has been segmented here because of page limitations.

c. Required Data Input for Each Case

QTY.	UNITS	SYMBOL	PT	NOM	VALUES	REMARKS
		STCASE NCASE	BCD	0 0		Initial card (see also Merge Data) case number
		REM	8CD	Blanks	.	Remarks (maximum 30 words)
		NSTAGE	NO	1		Stage number for initiation of problem
t	SEC	TIME	YES	0.		Initial trajectory time
^t sx	SEC	TIMSX	YES	0.		Trajectory time at start of stage: i,e., t = t-t STAGE SX
t _{max}	SEC	TMAX	YES	0.		Maximum estimated flight time
Δt	SEC	DELTS	YES	.1		Autopilot time interval
		INDATM	NO	1	0	Atmosphere title and computations deleted.
					1	Computes ρ , V_S , T_A , P_A , V
		PRINT	YES			Print interval
		PRTMIN	YES			Minimum print interval

d. Integration Data

Symbol Used by READ Routine	Math Notation	Symbol used by Integration Routine	Nominal Value	Remarks
I VARBH		IVARBH	0	Use variable step, =1, Use Fixed Step
TIME	t	x	0.	Time to begin integ.
DELTS	Δt	DX	.1	Time internal to int.
AMINER	Δt _{min}	DXMIN	.001	Minimum Δt
AMAXER	Δŧ	DXMAX	10000.	Maximum Δt
RELERI	RELERI	RELERI	.00007	Rei. error tol #1
RELER2	RELER2	RELER2	.000005	Rel. error tol. #2
PRTHIN		PRTHIN	0.	Print Minimum
	TIMER	TIMER	30	Time remaining (sec) before exiting to Plot routine

2. DATA PREPARATION - SUBPROGRAMS

a. Required Data - Option 2 (2SDF)

QTY.	UNITS	SYMBOL	<u>PT</u> .	NOM.	VALUES	REMARKS
m	SLUGS	AMASS	YES	Ο.		Mass of body
Υ	DEG	GAM7D	YES	0.		Elevation flight-path angle
σ	DEG	SIG7D	YES	0.		Horizontal flight-path angle
h	FT	HGC7F	YES	0.		Geodetic altitude
x _{go}	FT	XGZ7F	YES	0.		Origin for longitudinal displacement
Y _{go}	FT	YGZ7F	YES	0.		Origin for horizontal displacement
٧ _g	FT/SEC	VG77F	YES	0.		Ground referenced velocity
X _g	FT	XG77F	YES	0.		Initial longitudinal displacement
y g	FT	YG77F	YES	0.		Initial horizontal displacement
ф	DEG	PHIBD	YES	0.		Body Euler angle, roll
Ψ	DEG	PSIBD	YES	0.		Body Euler angle, yaw
θ	DEG	THTBD	YES	0.		Body Euler angle, pitch
p	RAD/SEC	P177R	YES	0.		Inertial roll rate, body axis
q	RAD/SEC	Q177R	YES	٥.		Inertial yaw rate, body axis
r	RAD/SEC	R177R	YES	Ο.		Inertial pitch rate, body axis
ΔF _×	LBS	DLFXP	YES	0.		Generalized axial force
ΔF _V	LBS	DLFYP	YES	0.		Generalized horizontal force
ΔF _z	LBS	DLFZP	YES	0.		Generalized vertical force
ΔL _T	FTLBS	DLLTF	YES	0.		Generalized rolling moment, body
$\Delta M_{\overline{T}}$	FTLBS	DLMTF	YES	0.		Generalized pitching moment, body
ΔN _T	FTLBS	DLNTF	YES	0.		Generalized yawing moment, body
'		INDAPC	NO	0	0	Delete α, β print
					1	Print α,β
		INDADD	NO	0	1	Compute and print $\dot{\alpha},\dot{\beta}$
		INDFPA	NO	0	0	Delete print of Y.O
					1	Print Y, o
		INDFPR	NO	0	0	Delete y,o calculations
					1	Compute and print $\dot{\gamma},\dot{\sigma}$

AFFDL-TR-71-155 Part | | |

Required Data - Option 2 (2SDF) (Contd)

weday, on pace	******	. ,	•			
QTY.	UNITS	SYMBOL	PT.	NOM.	VALUES	REMARKS
		INDGCR	NO	0	0	Delete great circle range
					1	Compute and print $R_{f g}$
		INDPLA	NO	0	0	Delete platform computation
					ı	Compute platform angles with platform torqued to local geocentric
Γ =1		INDACM	NO	0	0	Delete accelerometer calculations
					1	Compute and print A _X Ay A _Z
						platform accelerometer
					2	Compute and print a _x ,a _y ,a _z
						body components of inertial acceleration
≠ 0						
F	LBS	FXB7P	YES	0.		Initial values of
F _V	LBS	FYB7P	YES	0.		summation of forces in hody-axes system including
F _z	LBS	FZB7P	YES	0.		body component of weight
		INDGRT	NO	0	0	Delete gimbal rotation Calculations
					1	Compute θ_{p} , ψ_{p} , ϕ_{p} pitch, yaw, roll
		INDRMC	ИО	0	0	Delete rotating machinery computations
					1	Include notating machinery computations
= 1						
ω_{r}	R.P.M.	OMGRT	YES	0.		Rotational rate of machinery about its own shaft
e _r	DEG	THTRD	YES	0.		Initial pitch angle of shaft perpendicular to body x-y plane
ė,	RAD/SEC	BTABOI	TI	-		Table of pitch race of shafe as function of stage time
1 _{×r}	SLUG-FT ²	AIXR7S	YĽS	0.		Moment of inertia of rotating machinery about its shaft
Things.		INDWGT	NO	0	C	Delete print of weight
					1	Print wt

AFFDL-TR-71-155 Part III

Required Data - Option 2 (2SDF) (Contd)

QTY.	UNITS	SYMBOL	PT.	NOM.	VALUES	REMARKS
		INDWIN	NO	0	9	Winds are set to zero
					1	Wind velocities specified as $f(t)$
					2	Wind velocities specified as f(h)
≠ 0					3*	Wind velocities specified as $f(R_g)$
x gw	FT/SEC	WTA801	TI	-		Table of wind velocity, plus from south to north, f(INDWIN)
ÿ gw	FT/SEC	WTABO2	TI	-		Table of wind velocity, plus from west to east, f(INDWIN)
żgw	FT/SEC	WTAB03	Tl	-		Table of wind velocity, plus from up to downward, f(INDWIN)

NOTE: *requires INDGCR = 1

b. Vehicle Physical Characteristics Subprogram (VPCS)

QTY.	UNITS	SYMBOL	PT.	NOM.	VALUES	REMARKS
		INDVPC*	NO	0	0	Vehicle physical characteristics deleted
					1	Vehicle physical characteristics subprogram used
0						
×c.g.	FT	XCGBF	YES	0	-	Longitudinal body C.G. position
Δ× _{c.g.}	FT	DXCGF	YES	0	-	xc.g xc.g. _{REF}
1 _{××}	SLUG-FT ²	AIXXBS	YES	0	•	Moment of inertia about body x axis
I уу	SLUG-FT ²	AIYYBS	YES	0	-	Moment of inertia about body y axis
1 22	SLUG-FT ²	AIZZBS	YES	0	-	Moment of inertia about body z Axis
l xy	SLUG-FT ²	AIXYBS	YES	0	-	Product of inertia, body axes
1 xz	SLUG-FT ²	AIXZBS	YES	0	-	Product of inertia, body axes
lyz	SLUG-FT ²	AIYZBS	YES	0	-	Product of inertia, body axes
i××	SLUG-FT ² /SEC	AIXXSI	YES	0	-	Rate of change of moment of inertia
iyy	SLUG-FT ² /SEC	AIYYSI	YES	0	-	Rate of change of moment of inertia
zz	SLUG-FT ² /SEC	AIZZSI	YES	0	-	Rate of change of moment of inertia
i _{xy}	SLUG-FT ² /SEC	AIXYSI	YES	0	-	Rate of change of moment of inertia
×z	SLUG-FT ² /SEC	AIXZSI	YES	0	-	Rate of change of moment of inertia
iyz	SLUG-FT ² /SEC	AIYZSI	YES	0	-	Rate of change of moment of inertia
2 _y	FT	ALYJDF	YES	0	-	Characteristic distance for jet damping force
î,	FT	ALZJDF	YES	0	-	Characteristic distance for jet damping force
k _k	FT	ALLJDF	YES	0	-	Characteristic distance for jet damping force
Î m	FT	ALMUDF	YES	0	-	Characteristic distance for jet damping moment
^C n	FT	ALNJDF	YES	0	•	Characteristic distance for jet damping moment

QTY.	UNITS	SYMBOL	PT.	NOM.	VALUES	REMARKS
1		(INDVPC)			(1)	Vehicle physical characteristics subprogram used to compute vehicle characteristics as f(MASS, TIME, or C.G.). If INDTFF = 0, then INDTSO must be input as 1 to read values below (to INDIDT). Otherwise use INDVPC = 0, input data.
×c.g.RE	FT F	XCGRF	YES	0	-	Reference longitudinal body c.g. position
× _{c.g.}	FT	VTAB01	TI	-		Table of c.g. as f(MASS)
ı xx	SLUG-FT ²	VTAB02	TI	-		Table of moment of inertia about x axis, $f(m)$
1уу	SLUG-FT ²	VTAB03	Tl	•		Table of moment of inertia about y axis, $f(n)$
zz	SLUG-FT ²	VTAB04	Tl	-		Table of moment of inertia about z axis, $f(m)$
		INDXZS	NO	0	0	XZ is not a plane of symmetry
0					1	XZ is a plane of symmetry
[' _{xy}	SLUG-FT ²	VTAB05	TI	-	-	Table of product of incrtia f(m)
l	SLUG-FT ²	VTAB07	TI	•	-	Table of product of inertial f(m)
-		(INDXZS)			1	XZ is a plane of symmetry wy = 1
		INDXYS	NO	0	0	XY is not a plane of symmetry
0					1	XY is a plane of symmetry
[i _{xz}	SLUG-FT ²	VTABO6	TI	•		Table of product of inertia f(m)
<u></u>		(INDXYS)			1	XY is a plane of symmetry $I_{xz} = 0$
		INDJDP	NO	0	0	Jet damping: $\ell_{\ell} = \ell_{m} = \ell_{n} = \ell_{y} = \ell_{z} = 0$
					1	${}^{\ell}_{\ell}, {}^{k}_{m}, {}^{\ell}_{n}, {}^{\ell}_{y}, {}^{\ell}_{z}$ are computed from tables
رگ ا	FT	VTABO8	Tì	-		Table of characteristic distance for damping force, $f(x_{c.g.})$
k _z	FT	VTABO9	TI	-		Table of characteristic distance for jet damping force, $f(x_{c.g.})$

AFFDL-TR-71-155 Part III

QTY.	UNITS	SYMBOL	PT.	NOM.	VALUES	REMARKS
l le	FT	VTABIO	т١	-		Table of characteristic distance for jet damping moment, $f(x_{c.g.})$
l m	FT	VTABil	TI	-		Table of characteristic distance for jet damping moment, $f(x_{c.g.})$
l l	FT	VTAB12	Tl	-		Table of characteristic distance for jet damping moment, $f(x_{c.g.})$
		INDIDT	NO	0	0	inertia derivatives: i
					1	Inertia derivatives are computed from tables
\ <u>_`</u>						
i××	SLUG-FT ² /SEC	VTAB13	TI	-		Table of inertia derivative, $f(t_s)$
iyy	SLUG-FT ² /SEC	VTAB14	TI	-		Table of inertia derivative, $f(t_s)$
zz	SLUG-FT ² /SEC	VTAB15	TI	-		Table of inertia derivative, $f(t_s)$
i×y	SLUG- 1772/SEC	VTAB16	Τl	-		Table of inertia derivative, $f(t_s)$
i×z	SLUG-FT ² /SEC	VTAB17	Tì	-		Table of inertia derivative, $f(t_{\underline{\alpha}})$
iyz	SLUG-FT ² /SEC	VTAB18	71	-		Table of inertia derivative, $f(t_s)$
€18	FT	EPS18	YES	0		Incremental error in X c.g.
€19	SLUG-FT ²	EPS19	YES	0		Incremental error in I
€20	SLUG-FT ²	EPS20	YES	0		Incremental error in I
ε ₂₁	SLUG-FT ²	EPS21	YES	v		Incremental error in I
ε22	SLUG-FT ²	EPS22	YES	0		Incremental error in I
ε ₂₃	SLUG-F1 ²	EPS23	YES	0		Incremental error in L
€ ₂₄	SLUG-FT ²	EPS24	YES	0		incremental error in lyz

AFFDL-TR-71-155 Part III

c. Aerodynamics Subprogram (SACS)

QTY.	UNITS	SYMBOL	PT.	NOM.	VALUE	REMARKS
		NDAER	NO	0	0	Delete aerodynamics calculations
					1	Compute aerodynamics for controlled aircraft; moderate variations (options 1-5)
0						
3	LB3	AA77P	YES	0		Axial force (body axis)
У	LBS	YA77P	YES	0		Side force (body axis)
n _f	LBS	ANA77P	YES	0		Normal force (body axis)
l l	FT-LBS	ALA77F	YES	0		Moment about body x axis
m	FT-LBS	AMA77F	YES	0		Moment about body y axis
n	FT-LBS	ANAZ7F	YES	0		Moment about body z axis

QTY.	UNITS	SYMBOL	PT.	NOM. V	ALUES	REMARKS
		(INDAER)			1	Compute Aerodynamics for Controlled Aircraft, Moderate Variations
1						
S	FT ²	AREFF	YES	0		Reference area
d ₁	FT	DIRFF	YES	0		Reference length, longitudinal
d ₂	FT	D2RFF	YES	0		Reference length, lateral
εη	-	EPS1	YES	1.		Error multiplier for C _N
ε ₂	-	EPS2	YES	0)	Incremental error in C _N
€3	-	EPS3	YES	1.		Error multiplier for $C_{f A}$
ϵ_{4}	-	EPS4	YES	0		Incremental error in ${^{\mathrm{C}}}_{\!\!\!A}$
ε ₅	-	EPS5	YES	1.		Error multiplier for $C_{ m y}$
€6	-	EPS6	YES	0		Incremental error in C _y
ε ₇		FPS7	YES	1.		Error multiplier for C_{ℓ}
€8	-	EPS8	YES	0		Incremental error in \mathfrak{C}_{ℓ}
ε9	-	EPS9	YES	1.		Error multiplier for \mathfrak{C}_{m}
€10	-	EPS10	YES	0		Incremental error in C _m
ε ₁₁	-	EPSII	YES	1.		Error multiplier for C _n
ε12	-	EPS12	YES	0		Incremental error in C _n
haero	FT	AMAXH	YES	1.E6		Aerodynamic Cut-Off Altitude:
max						h > h _{max} : Aero. = 0
						h ≤ h _{max} : h > 295,275: Constant aero. h ≤ 295,275: Compute aero.
	Aero (Data	must be subm	nitted in	body axes s	system)	
C _A	-	CAMNU	YES	0		Axial force coefficient
C _N	-	CN 1 MNU	YES	0		Normal force coefficient
c _γ	•	CYMNU	YES	0		Side force coefficient
C _e	•	CLMNU	YES	0		Rolling moment coefficient
c _m	-	CMMNU	YES	0		Pitching moment coefficient
c _n	-	C N2MNU	YES	0		Yawing moment coefficient

QTY. UNITS SYMBOL PT. NOM. VALUES REMARKS

The following tables are two-dimensional and are read as functions of Mach number, M_N . The table indicators are nominally zero but must be input as 1 if the table is to be used:

c _{Aα}	PER DEG	ATAB01	T2	-	∂C _A /∂α
c _{A_α2}	PER DEG ²	ATAB02	Т2	-	$\partial c_A / \partial \alpha^2$
c _{Aß}	PER DEG	ATAB03	T2	-	ac _A ∕aβ
c _{Ag2}	PER DEG ²	ATAB04	Т2	-	əc _A /əβ ²
c _A δq	PER DEG	ATAB05	T2	-	ac _A /ag ^d
c _{A_{δq}2}	PER DEG ²	ATAB06	Т2	-	∂¢ _A /∂δ ² q
CACB	PER DEG ²	ATAB07	Т2		ə ² c _A /∂α∂β
$c_{A_{\alpha\delta q}}$	PER DEG ²	ATAB08	T2	-	$\partial^2 c_A / \partial \alpha \partial \delta_q$
c _{Aβδq}	PER DEG ²	ATAB09	Т2	-	² c _A /∂β∂δ _q
c _{No}	-	ATAB10	T2	-	$C_N AT \alpha = \beta = 0^{\circ}$
$c_{N_{\alpha}}$	PER DEG	ATABII	Т2	-	∂C _N /∂α
c _{Na2}	PER DEG ²	ATAB12	Т2	-	$\partial c_N / \partial \alpha^2$
c _{NB}	PER DEG	ATAB13	T2	-	∂c _N /∂β
c _{Ng2}	PER DEG ²	ATAB14	Т2	-	əc _N ∕əβ ²
C _N Sq	PER DEG	ATAB15	Т2	-	^P ye√ ^d
c _{N_{\deltaq}2}	PER DEG ²	ATAB16	T2		∂C _N /∂δ ² q

QTY.	UNITS	SYMBOL	PT.	NOM. VALUES	REMARKS
c _{Naß}	PER DEG ²	ATAB17	Т2	-	ə ² c _N /
c _N αδq	PER DEG ²	ATAB18	Т2	-	a ² c _N /aαaδ _q
c _{Nβδq}	PER DEG ²	ATAB19	Т2	-	a ² c _N /aβaδ _q
c _{Nα}	PER RAD	ATAB20	Т2	-	θC _N /θ (ἀd ₁ /2V _a)
c _{NaX}	PER RAD PER FT	ATAB21	T2	-	^{∂2} C _N /∂(αd ₁ /2V _a)∂x _{c.g.}
c _{Nq}	PER RAD	ATAB22	T2	-	əc _N /ə(qd ₁ /2V _a)
CNqx	PER RAD PER FT	ATAB23	Т2	-	² C _N /∂(qd ₁ /2V _a)∂× _{c.g.}
c _{yo}	-	ATAB24	Т2	-	C_y AT $\alpha = \beta = 0^\circ$
c _{ya}	PER DEG	ATAB25	Т2	~	θ C _y /θα
$c_{y_{\alpha^2}}$	PER DEG ²	ATAB26	Т2	-	∂c _y /∂α²
c _{yg}	PER DEG	.ATAB27	T2	-	эс _у /эв
c _{yg2}	PER DEG ²	.ATAB28	T2	-	∂c _y /∂β ²
c _{yo} r	PER DEG	ATAB29	Т2	-	ac _y /aδ _r
cys2	PER DEG ²	.TAB30	Т2	-	∂C _y /∂δ ² r
$c_{\gamma_{\alpha_{\beta}}}$	PER DEG ²	ATAB31	Т2	-	a ² c _y /aαaβ
cyasr	PER DEG ²	ATAB32	T2	-	a ² c _y /aαaδ _r
c _{yβδr}	PER DEG ²	ATAB33	Т2	-	ə²c _y /əβəδ _r
c ^y B	PER RAD	ATAB34	Т2	-	θC _y /θ (βd ₂ /2V _a)
Сувх	PER RAD PER FT	ATAB35	T2	•	θ ² C _y /θ(βd ₂ /2V _a)θ× _{c.g.}

AFFDL-TR-71-155 Part III

QTY.	UNITS	SYMBOL	PT.	NOM.	VALUES	REMARKS
Cyr	PER RAD	ATAB36	Т2	-		ac _y /a(rd ₂ /2V _a)
c _{yrx}	PER RAD PER FT	ATAB37	T2	-		9 ² C _y /9(rd ₂ /2V _a)9x c.g.
C _L	-	ATAB38	Т2	-		C_{ℓ} AT $\alpha = \beta = 0^{\circ}$
Cla	PER DEG	ATAB39	T2	-		∂ c _ℓ /∂α
c _{la2}	PER DEG ²	ATAB40	Т2	-		∂c _ℓ /∂α ²
c _{lβ}	PER DEG	ATAB41	T2	-		∂C _ℓ /∂β
c _{lβ2}	PER DEG ²	ATAB42	Т2	-		∂c _ℓ /∂β²
c _{lop}	PER DEG	.ATAB43	T2	-		∂c _ℓ /∂δ _p
Clop	PER DEG ²	.ATAB44	T2	-		∂c _ℓ /∂δ ² _p
$c_{\ell_{\alpha_{\beta}}}$	PER DEG ²	ATAB45	T2	-		² c _ℓ / ³ α ³ β
Clasp	PER DEG ²	ATAB46	T2	-		² c _ℓ /2α2δ _p
clasp	PER DEG ²	ATAB47	Т2	-		² c _ℓ /2β3δ _p
clp	PER RAD	.ATAB48	Т2	-		∂C _ℓ /∂(pd ₂ /2V _a)
Clr	PER RAD	ATAB49	T2	-		∂C _ℓ /∂(rd ₂ /2V _a)
Clrx	PER RAD PER FT	ATAB50	Т2	-		$\theta^2 c_{\ell}/\theta (rd_2/2V_a)\theta x_{c.g.}$
c _{mo}	-	.ATAB51	T2	-		C _m AT α = β = 0°
c _{ma}	PER DEG	.ATAB52	T2	-		əc _m /∂α
c _{ma2}	PER DEG ²	.ATAB53	T2	-		∂c _m /∂α ²
c _{mg}	PER DEG	ATAB54	Т2	-		əc _m ∕əβ
c _{mg2}	PER DEG ²	ATAB55	Т2	•		əc _m ∕əβ²

AFFDL-TR-71-155 Part III

QTY.	UNITS	SYMBOL	<u>PT.</u>	NOM. VALUES	REMARKS
C _m δq	PER DEG	.ATAB56	Т2	•	əc _m ∕əδ _q
c _{m_{oq}2}	PER DEG ²	.ATAB57	Т2	-	∂C _m /∂δ ² q
c _{mαβ}	PER DEG ²	ATAB58	Т2	-	a ² c _m /aαaβ
c _{mαδq}	PER DEG ²	ATAB59	Τ2	-	a ² c _m /aαaδ _q
c _m βδq	PER DEG ²	ATAB60	T2	-	a ² c _m /aβaδ _q
c _m	PER RAD	.ATAB61	Т2	-	əc _m /ə(ἀd ₁ /2V _a)
c _{mà}	PER RAD PER FT	ATAB62	T2	-	² c _m /∂(ἀd ₁ /2V _a)∂× _{c.g.}
c _m q	PER RAD	.ATAB63	T2	-	∂C _m /∂(qd ₁ /2V _a)
c _{mqx}	PER RAD PER FT	ATAB64	T2	-	² c _m / ³ (qd ₁ /2V _a) ^{3×} c.g.
c _{no}	-	ATAB65	T2	-	C_n AT $\alpha = \beta = 0^{\circ}$
c _n a	PER DEG	ATAB66	T2	-	∂C <mark>n</mark> /∂α
Cn _a 2	PER DEG ²	ATAB67	Т2	-	∂c _n /∂α ²
c _n g	PER DEG	.ATAB68	T2	-	∂c _n /∂β
c _{ng2}	PER DEG ²	.ATAB69	T2	-	ac _n /aβ ²
^C n δr	PER DEG	.ATAB70	T2	-	ac _n /a6 _r
c _{nδ} ²	PER DEG ²	.ATAB71	T2	-	$\frac{\partial c_n}{\partial \delta_r^2}$
c _{nαβ}	PER DEG ²	ATAB72	T2	•	a ² c _n /aαaβ
C _{nαδr}	PER DEG ²	ATAB73	T2	-	² c _n /3α36 _r
c _{nßőr}	PER DEG ²	ATAB74	Т2	-	a ² c _n /agaa _r
c _n ,	PER RAD	ATAB75	Т2	-	əc _n /ə(βd ₂ /2V _a)

AFFDL-TR-71-155 Part III

	QTY.	UNITS	SYMBOL	PT.	NOM.	VALUES	REMARKS
	c _{ngx}	PER RAD PER FT	ATAB76	Т2	-		$\theta^2 c_n / \theta (\beta d_2 / 2V_a) \theta x_{c.g.}$
Ì	c _n r	PER RAD	.ATAB77	T2	-		∂c _n /∂(rd ₂ /2V _a)
	c _{nrx}	PER RAD PER FT	ATAB78	Т2	-		$\theta^2 c_n/\theta (rd_2/2V_a)\theta x_{c.g.}$
			INDA80	NO	0	0	Table not used
l						1	Table used
	1						
	CAO	-	.ATAB80	Т3	-		$C_A AT \alpha = \beta = 0^{\circ}$

AFFDL-TR-71-155 Part III

d. Thrust Subprogram (TFFS)

QTY.	UNITS	SYMBOL	<u>P1'.</u>	NOM.	VALUES	REMARKS
		INDTFF	NO	0	0	Thrust subprogram deleted. Required for flight plan Programmer 1 in which case no additional thrust subprogram data should be input.
					3	Airbreathing engine
<u>_</u>						
		OZTONI	NO	0	0	
					1	Converts engine thrust to necessary axes systems
		(INDTSO)		С	0	Deletes thrust conversion to body axes
0						
الب	FT-LBS	ALT 77F	YES	0		Engine roll moment, body axis
M _T	FT-LBS	AMT77F	YES	0		Engine pitch moment, body axis
N _T	FT-LBS	ANT77F	YES	0		Engine yaw moment, body axis
T _X	LBS	TXB7P	YES	0		Longitudinal thrust component, body axis
T _y	LBS	TYB7P	YES	0		Lateral thrust component, body axis
Tz	LBS	TZB7P	YES	0		Vertical thrust component, body axis
						
z _N (in)	FT	ZN	YES	0		
Y _N (IN)	FT	YN	YES	0		
- 3		(INDTFF)			3	Airbreathing engine
T	LBS	TTABIO	T5	-		Engine thrust as $f(M_{\overline{N}}, N)$
		ITIOW	NO	0	5	Number of values of N of TTAB10
		ITIOX	NO	0		Number of values of $M_{ m N}$ for TTAB10
N(IN)	-	N	YES	0		Throttle setting

3. DATA PREPARATION - STAGING

a. Staging

For a trajectory computation which requires a change in program computation and/or a change in data for computations, staging steps are used.

<u>Stage Test</u>. Termination of a stage is accomplished with the following input data:

	Field I	Field III	Field V
	AINCRS	BCD	nBBBBB CCCC
	STEST		X.X, YYY.
and/or			
	DECRES	BCD	nBBBB
	STESTD		x.x
		TRA	

where

n = number of BCD words which are symbolic in the directory (maximum of 4 parameters which cannot be exceeded (AINCRS) and 4 which cannot be less than (DECRES).

X.X YYY. values of variables

A stage requires two sets of data, each followed by a TRA card.

Primary data

FIELD I	FIELD III	FIELD V	
INDSTR		0	nominal
		1	Reset the stage time to zero and update the stage number by one
INDSP		- N	

where

INDSP = indicator for subprogram to be added or changed from
 previous stage.

N = fixed point integer value of indicator desired for stage and must be input as negative for proper initialization.

Secondary data

Any data required by added or changed subprograms, any data to be changed from preceding stage data, or any changes in auxiliary computations, are added followed by stage test data and a TRA card.

Final Stage. If a particular stage is to be the last or final stage of a problem, a final stage indicator is required prior to the final TRA card.

FIELD I	FIELD V
INDSTF	1

TRA

b. Directory-Symbols Available for Staging

In order to stage on a given variable, the symbol for this variable must be contained in the program directory. Below is a list of variables presently available for staging. They are listed alphabetically by symbol name. For a complete listing of the directory, consult the program listings. Values listed as "not used" are not calculated in this version of the program.

SYMBOL	QUANTITY	UNITS	REMARKS
AA77P	a	lbs	Axial force, body axis.
AIXXBS	I _{xx}	slug-ft ²	Moment of inertia, body x axis.
AIXXSI	i _{xx}	slug-ft ² /sec	Rate of change of moment of inertia.
AIXYBS	l _{xy}	slug-ft ²	Product of inertia, body axes
AIXYSI	i _{xy}	slug-ft ² /sec	Rate of change of product of inertia.
AIXZBS	l xz	slug-ft ²	Product of inertia body axes.
AIXZSI	i xz	slug-ft ² /sec	Rate of change of product of inertia.
ATYYBS	уу	slug-ft ²	Moment of inertia, body y axis.
ATYYST	i yy	slug-ft ² /sec	Rate of change of moment of inertia.
AIYZBS	l yz	slug-ft ²	Product of inertia, body axes.
AIYZSI	i yz	slug-ft ² /sec	Rate of change of product of inertia.
AIZZBS	l zz	slug-ft ²	Moment of inertia, body y axis.
AIZZSI	izz	slug-ft ² /sec	Rate of change of moment of inertia.
ALAMTD	$^{\lambda}$ T	deg	Thrust swivel angle. (Not used)
ALA77F	l	ft-lbs	Moment about body x axis, aerodynamic
ALB77F	L	ft-lbs	Moment about body x axis, total.
ALIFTP	L	lbs	Lift force wind axis.
ALPHD	α	deg	Angle of attack.
ALPHR1	Č.	rad/sec	Rate of change of angle of attack

AFFDL-TR-71-155 Part III

SYMBOL	QUANT ITY	UNITS	REMARKS
ALPTD	α _T	deg	Total angle of attack. (Not used)
ALT77F	L _T	ft-lbs	Engine roll moment, body axis.
AMACH	M _N	-	Mach number.
AMASES	^m f	s lugs	Fuel mass consumed. (Not used)
AMASF1	^ṁ f	slugs/sec	Rate of change of fuel mass. (Not used)
AMASS	m	s lugs	Mass
AMASS1	m	slugs/sec	Rate of change of mass.
AMA77F	m	ft-lbs	Moment about body y axis, aerodynamic.
AMB77F	M	ft-lbs	Moment about body y axis, total.
AMT77F	M _T	ft-lbs	Engine pitch moment, body axis.
ANAB7G	n a	g 's	Axial load factor, body axis. (Not used)
ANAZ7F	n	ft-lbs	Moment about body z axis, aerodynamic.
ANA77P	N _F	lbs	Normal force, body axes.
ANB77F	N	ft-lbs	Moment about body z axis, total.
ANGAMG	nγ	g's	Vertical load factor, wind axis. (Not used)
ANPSIG	n _ψ	g's	Side load factor, body axis. (Not used)
ANSIGG	n _o	g's	Side load factor, wind axis. (Not used)
ANTHTG	$^{n}_{\theta}$	g¹s	Vertical load factor, body axis. (Not used)
ANT77F	N _T	ft-lbs	Engine yaw moment, body axis.
ANUA7F	ν	ft ² /sec	Kinematic viscosity of atmosphere.
ANVW7G	n _v	g's	Axial load factor, wind axis. (Not used)
AXP7F	^A × _p	ft/sec ²	Platform acceleration, x direction.
AX77F	a x	ft/sec ²	Body component of inertial acceleration.

AFFDL-TR-71-155 Part III

SYMBOL	QUANTITY	UNITS	REMARKS
AYP7F	$A_{y_{p}}$	ft/sec ²	Platform acceleration, z direction.
AY77F	a Y	ft/sec ²	Body component of inertial acceleration.
AZP7F	Azp	ft/sec ²	Platform acceleration, z direction
AZ77D	a	ft/sec?	Body component of inertial acceleration.
BA77D	ВД	deg	Bank angle. (Not used)
BETAD	β	deg	Angle of sideslip.
BETARI	β	rad/sec	Rate of change of sideslip angle.
B177D	8	deg	Equatorial angle between geocentric and inertial coordinate systems. (Not used)
BP77D	Вр	deg	Equatorial angle between inertial and platform coordinates. (Not used)
CA	c _A	-	Axial force coefficient.
CALPG	c_{α}	rad/g	Gain factor for angle of attack. (Not used)
CBETG	c_{β}	rad/g	Gain factor for angle of sideslip. (Not used)
CD	c _D	-	Drag coefficient.
CGAMG	c _Y	-	Gain factor for flight path angle. (Not used)
CL	c	-	Lift coefficient.
CM	C _m	-	Pitching moment coefficient.
CN	C _N	-	Normal force coefficient.
CP	C _P	-	Pressure coefficient. (Not used)
CRM	c _l	-	Rolling moment coefficient.
CY	CY	-	Side force coefficient, wind axis.
CYA	cy	-	Side force coefficient, body axis.
CYM	c _n	-	Yawing moment coefficient.

AFFDL-TR-71-155 Part III

SYMBOL	QUANTITY	UNITS	REMARKS
DELPD	$^{\delta}$ p	deg	Control deflection to induce a moment about the x axis.
DELQD	δ _q	deg	Control deflection to induce a moment about the y axis.
DELRD	δ _r	deg	Control deflection to induce a moment about the z axis.
DLFXP	∆F _×	1b	Generalized axial force.
DLFYP	∆F _y	lbs	Generalized horizontal force.
DLFZP	ΔF _z	lbs	Generalized vertical force.
DLLTF	$^{\Delta L}$ T	ft-1b	Generalized rolling moment, body axis.
DLMTF	$^{\Delta M}T$	ft-lb	Generalized pitching moment, body axis.
DLNTF	$^{\Delta N}T$	ft-1b	Generalized yawing moment, body axis
DRAGP	D	lbs	Drag force, wind axis
DTC2R	ΔθC ₂	rad	Pitch attitude command correction due to temperature and temperature rate. (Not used)
DXCGF	$^{\Delta X}$ cg	ft	X _{cg} -X _{cg} _{ref}
DYNPP	q*	lbs/ft ²	Dynamic pressure.
DYNPPI	• 4 *	lbs/ft ² sec	Rate of change of dynamic pressure.
FXB7P	F _x	lbs	Summation of force components, body x axis.
FXE7P	F _{×e}	lbs	Summation of force components, planet X_e axis. (Not used)
FYB7P	F _y	lbs	Summation of force components, body y axis.
FYE7P	Fye	lbs	Summation of force components, planet Ye axis. (Not Used)
FZB7P	Fz	lbs	Summation of force components, body z axis.

AFFDL-TR-71-155 Part III

SYMBOL	QUANTITY	UNITS	REMARKS
FZE7P	F _z e	lbs	Summation of force components, planet Z_e axis. (Not used)
GAMDD	Y_{D}	deg	Geodetic elevation flight path angle. (Not used)
GAM7D	Υ	deg	Elevation flight path angle.
GXB7F	g _x	ft/sec ²	Gravity component, body x axis.
GXE7F	g _X e	ft/sec ²	Gravity component, earth X_e earth X_e axis. (Not used)
GXG7F	gX	ft/sec ²	Gravity component, geocentric horizon coordinate.
GX17F	g _X .	ft/sec ²	Gravity component, inertial X axis.
GYB7F	9 _y	ft/sec ²	Gravity component, body y axis.
GYE7F	g _{Ye}	ft/sec ²	Gravity component, earth Y_e axis. (Not used)
GY17F	gyį	ft/sec ²	Gravity component, inertial Y axis.
GZB7F	g _z	ft/sec ²	Gravity component, body z axis.
GZE7F	gz _e	ft/sec ²	Gravity component, earth $\mathbf{Z}_{\mathbf{e}}$ axis. (Not used)
GZG7F	g _z	ft/sec ²	Gravity component, geocentric coordinate.
GZ17F	9 _{Z.}	ft/sec ²	Gravity component, inertial Z axis.
HGC7F	h	ft	Geodetic altitude.
OMXGR	^ω χ _g	rad/sec	x_g component of planet rotation rate. (Not used)
OMZGR	^ω Z g	rad/sec	$\mathbf{Z}_{\mathbf{g}}$ component of planet rotation rate. (Not used)
PA77P	P	lbs/ft ²	Atmospheric pressure.
PHIAD	ϕ_{A}	deg	Aerodynamic roll angle. (Not used)
PHIBD	φ	deg	Body Euler angle, roll.

AFFDL-TR-71-155 Part III

SYMBOL	QUANTITY	UNITS	REMARKS
PHIGD	$\phi_{\mathbf{g}}$	deg	Geodetic latitude. (Not used)
PHILD	Φ	deg	Geocentric latitude. (Not used)
PHIPD	φ _p	deg	Angle between body axis and platform axis.
PHITD	$^{\phi}$ T	deg	Rotation angle of plane of thrust swivel. (Not used)
P177R	р	rad/sec	Inertial angular rate of body about x axis.
P177R1	P	rad/sec ²	Rate of change of p.
PSIBD	Ψ	deg	Body Euler angle, yaw.
PSIPD	Ψp	deg	Angle between body axis and platform axis.
QA770	q _A	deg/sec	Aeroelastic body-bending angular rate. (Not used)
Q177R	q	rad/sec	Inertial angular rate of body about y axis.
Q177R1	ġ	rad/sec ²	Rate of change of q.
RA77D	r _A	deg/sec	Aeroelastic body-bending angular rate. (Not used)
RD77N	R_{D}	n.mi.	Total distance traveled over planet surface. (Not used)
RG77N	Rg	n.mi.	Great circle range.
RHOAS	ρ	slugs/ft ³	Atmospheric density.
R177R	r	rad/sec	inertial angular rate of body about z axis.
R177R1	ř	rad/sec ²	Rate of change of r.
RPHLF	R_{Φ_L}	ft	Local planet radius. (Not used)
R777F	R	ft	Distance from center of planet to body.
SIDEP	Y	16	Side force, wind axis.

AFFDL-TR-71-155 Part | | |

SYMBOL	QUANTITY	UNITS	REMARKS
SIGDD	σD	deg	Geodetic horizontal flight-path angle. (Not used)
SIG7D	σ	deg	Horizontal flight path angle.
SIG7R1	Ġ	rad/sec	Rate of change of horizontal flight path angle.
TA77R	T	°R	Temperature of the atmosphere.
TE77P	T	lbs	Engine thrust.
THL7D	θ_{L}	deg	Longitude. (Not used)
THTBD	θ	deg	Body Euler angle, pitch.
THTPD	θ _p	deg	Angle between body and platform axis.
THTRD	θr	deg	Pitch angle between rotating machinery axis and platform axis.
TIME	t	sec	Flight time.
TIMES	ts	sec	Stage time.
TSTGR	T _e	°R	Equilibrium stagnation temperature. (Not used)
TSTGRI	† _e	°R/sec	Equilibrium stagnation temperature rate. (Not used)
TS77R	Ts	°R	Skin temperature. (Not used)
TS77R1	τ̈́ς	°R/sec	Rate of change of skin temperature. (Not used)
TVACP	T _{vac}	lbs	Vacuum thrust.
ТХА7Р	τ_{X_A}	lbs	Longitudinal thrust component, wind axis.
ТХВ7Р	TX	lbs	Longitudinal thrust component, body axis.
TXE7P	$T_{X_{\mathbf{e}}}$	lbs	Longitudinal thrust component, planet X _e axis. (Not used)
ТҮА7Р	TYA	lbs	Lateral thrust component, wind axis.

AFFDL-TR-71-155 Part III

SYMBOL	QUANTITY	UNITS	REMARKS
ТҮВ7Р	T_{Y}	lbs	Lateral thrust component, body axis.
TYE7P	T _{Ye}	lbs	Lateral thrust component, planet Y _e axis. (Not used)
TZA7P	$^{T}_{Z_{A}}$	lbs	Vertical thrust component, wind axis.
TZB7P	T_{Z}	lbs	Vertical thrust component, body axis.
TZE7P	T _Z e	lbs	Vertical thrust component, planet Z_e axis. (Not used)
U777F	u	ft/sec	Inertial velocity component, body x axis.
U777F1	ů	ft/sec ²	Rate of change of u component of velocity.
VA77F	v _A	ft/sec	Airspeed.
VD77F	v_D	ft/sec	Velocity decrement due to drag. (Not used)
VGRVF	V grav	ft/sec	Velocity decrement due to gravity. (Not used)
VG77F	۷ _g	ft/sec	Ground referenced speed.
V 1 7 7 F	V	ft/sec	Inertial velocity.
VP77F	V _p	ft/sec	Velocity decrement due to rocket nozzle back pressure. (Not used)
VS77F	v _s	ft/sec	Local speed of sound.
VTHEF	VTHEO	ft/sec	Theoretical velocity increment due to $T_{\mbox{VAC}}$. (Not used)
V777F	v	ft/sec	Inertial velocity component, body y axis.
V777F1	Ÿ	ft/sec ²	Rate of change of v component of velocity.
WTR7P	Wt	16	Weight of vehicle.
W777F	w	ft/sec	Inertial velocity component, body z wis.

AFFDL-TR-71-155 Part III

SYMBOL	QUANTITY	UNITS	REMARKS
W777F1	w	ft/sec ²	Rate of change of w component of velocity.
XCGBF	x _{cg}	ft	Longitudinal body center-of-gravity position.
XD77D	x_D	d e g	Great circle downrange. (Not used)
XD77N	x _D	n.mi.	Great circle downrange. (Not used)
XE77F	Х _е	ft	Planet referenced coordinate. (Not used)
XGW7F1	х gw	ft/sec	North-south wind velocity.
XG77F	х _g	ft	Local geocentric displacement.
X177F	X	ft	Inertial coordinate.
YA77P	У	lbs	Side force, body axis.
YD77D	$Y_{\overline{D}}$	deg	Great circle crossrange. (Not used)
YD77N	Y_{D}	n.mi	Great circle crossrange. (Not used)
YE77F	Ye	ft	Planet referenced coordinate. (Not used)
YGW7F1	Ϋ́ _{gw}	ft/sec	East-west wind velocity.
YG77F	Yg	ft	Local geocentric displacement.
Y177F	Y	ft	inertial coordinate.
ZE77F	Z _e	ft	Planet referenced coordinate. (Not used)
ZGW7F1	ż _{gw}	ft/sec	Vertical wind velocity.
ZG77F	z _g	ft	Local geocentric displacement.
Z177F	Z	ft	Inertial coordinate.

4. DATA PREPARATION - DATA MERGING

To eliminate reproducing a large number of cards for successive cases with similar input data, a data merge of a "base" case and a succeeding case or cases can be made. A "base" case is a complete set of input data. A "merge" case is data which differs from the "base" case. Control of this merging facility is controlled by the "STCASE" or start case card.

The STCASE Card

The first card of each case must be the <u>STCASE</u> card. This card has the same fields as the general card format and has the following meanings:

Field I	Field II	Field III	Meaning
STCASE			Execute this case as a base case.
STCASE		NOXEQ	This case is a base case, but no computation of it is desired.
STCASE	MRG		This case is to be merged with the last base case which has preceded it.
STCASE	MRG	NOXEQ	This is a merge case, but is not to be executed. This set-up should be used, since physically removing data cards will accomplish the same function.

In order to illustrate the use of the data merge, a sample case could be set up as:

Note that there is a one-to-one correspondence of TRA cards between the base and its merged case. The cards of the merged case would follow directly behind the base case. Succeeding merge cases will use the last preceding base case. Any combination of base and merge cases, regardless of execution or no execution, may be run on a given job. The final stage of both the base case and each succeeding merge case must contain the INDSTF card. A merge case may contain any number of stages irrespective of the number of stages in the base case. However, there must be a one-to-one correspondence of stages up to the point of departure.

PROFILE OF INPUT DATA CARDS FOR BASE CASE AND MERGE CASE

MERGE CASE (To Follow Base Case)

SECTION V

INPUT

The data deck setup will be explained in the order that the deck actually appears. A typical data deck input is shown; however, depending on the kind of problem, all the data shown here may not be required. This will be explained later.

1. BASIC SDF-2 DATA

Column:	1	8	12
	\$DATA		
	STCASE	TAB	
	ATABOI		2
	ATAB02		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	ATAB10		2
	ATABII		2
	ATAB12		2
	ATAB15		2
	ATAB16		2
	ATAB27		2
	ATAB28		2
	ATAB43		2
	ATAB44 ATAB48		2
	ATAB51		2
	ATAB51		2
	ATAB53		2
	ATAB56		2
	ATAB57		2
	ATAB61		2
	ATAB63		2
	ATAB68		2
	ATAB69		2
	ATAB70		2
	ATAB71		2
	ATAB77		2
	ATAB80		2
	TTABIO		29
	VTAB01		5
	VTAB02		5
	VTAB03		5
	VTAB04		>
	VTAB06 FTAB02		2
	FTAB02		50
	CTABO1		17
	CTABO1		17
	CTABO3		17 17
	CTAB04		17
	WTAB01		11
	WTAB02		11
	WTAB03		11
	FTAB01	TRA	90
		IRM	

The STCASE TAB card (note columns) indicates the beginning of the data deck. This card indicates that all tables used by the program will now be sized. This is followed by cards indicating the tables names and sizes. There are basically five kinds of tables that must be sized: aerodynamics, thrust, vehicle physical properties, wind tables, and landing mod tables. There are 80 possible aerodynamics tables named ATABO1 - ATAB80. The relationship between the table name and a particular aerodynamic coefficient is shown on pages 26-30. Only those tables actually used need to be sized. Because of the assumptions made in Reference 1 (pgs 146, 224-225), each aerodynamic table has a size of two. The thrust table is TTABlO. Because of the assumptions made in Reference 1, thrust table has only two independent variables (i.e., throttle setting and Mach number). There are seven possible vehicle physical properties tables named VTAB01 - VTAB07 (see pgs 21-22). There are three landing mod tables named FTABO1, FTABO2, FTAB03. FTAB01 is the force-deflection curve (i.e., $f_k(\delta_l)$, pg 99, Reference 1) for a single tire. There is an option to use an equation for the force-deflection curve in which case FTABOl is not needed. FTABO2 is the runway perturbation table (i.e., $\epsilon(X_{Rk})$, pg 110, Reference 1). FTABO3 is the tire-runway coefficient of friction table (i.e, μ_k , pgs 99-100, Reference 1). The CTAB01-CTAB04 tables are for the strut orifice coefficients (see Paragraph 2, Landing Gear Modification Data). The last card indicating a table name and size is followed by a TRA card (see pg 13). The table-size cards between the STCASE TAB and TRA cards can have any order.

AFFDL-TR-71-155 Part III

Column:	1	8	12
	STCASE		
	RFM	BCD	3SDF2-GEAR-MOD
	NCASE	BCD	1G-MOD
	IVARBH		0
	TMAX		100.
	AMINER		.00005
	PRTMIN		.02
	AMAXER		.1
	DFLTS		.1
	PRINT		.1
	AMASS		19762.852
	HGC7F		120.824
	THIBD		3.5896
	GAM7D		-3.
	VG77F		220.
	RWHGR		0.
	INDAPC		1
	INDADD		1
	INDEPA		1
	INDPLA		1
	INDACM		2
	INDGRT		1
	INDWGT		1
	INDVPC		1
	XCGRF		0.
	VTAB01		2,0.,1.67,20000.,1.67
	VTAB02		2,0.,31.8E+06,20000.,31.8E+06
	VTABO3		2,0.,29.4E-06,20000.,29.4E+06
	VTAB04		2,0.,57.0E+06,20000.,57.0E+06
	INDXZS		
	VTAB06		2,0.,2.39F+06,20000.,2.39E+06

The STCASE, REM, and NCASE cards are discussed on pgs 14 and 15.

The next seven cards from IVARBH to PRINT contain integration information. IVARBH must have a zero value. TMAX is the maximum time span (in seconds) expected for a particular calculation. If the actual time variable in the program exceeds TMAX, the problem will stop. AMINER is the minimum integration interval allowed by the variable step Runge-Kutta (VSRK) integration technique. It is wise to set AMINER to a very small value to allow the VSRK the flexibility to pick as small an integration interval as it needs. There is no need to "second guess" a reasonable value for AMINER and run the risk of picking a value too large.

The data on the next four cards PRTMIN, AMAXER, DELTS, PRINT must-repeat must-conform to the following relationship:

PRTMIN ≤ AMAXER ≤ DELTS ≤ PRINT.

PRINT is the output print interval. DELTS is the time interval at which all autopilot calculations are updated (that is, so far as the VSRK integration technique is concerned, all control variables remain constant for the time interval DELTS). AMAXER is the maximum integration interval allowed by the VSRK integration technique. PRTMIN is the lower bound on the output print interval. Data output on a PRTMIN condition will only occur when the VSRK has picked an integration interval smaller than PRTMIN and remains at this integration interval long enough for the time span to exceed PRTMIN. Output on a PRTMIN condition is an indication that the data is changing rapidly. The PRTMIN option was added primarily to output the landing gear data at a sufficient frequency to see the detail gear response. If PRTMIN is given a small value (i.e., 0.01 sec, etc.) one must be willing to accept a large volume of data output. When PRTMIN is made zero, data output will only occur at the PRINT interval.

The cards beginning with AMASS down to and including INDWGT are required data for the original SDF-2 Option (see pages 17-19). All input data on those pages is applicable except the following:

- 1) INDADD must have the value 1
- 2) INDPLA must have the value 1
- 3) INDACM must have the value 2
- 4) INDGRT must have the value 1

The cards beginning with INDVPC and ending with VTABO6 are the vehicle physical properties (see pgs 20-23). INDVPC must have the value 1. Data format for the VTAB tables is shown on pg 8. Since Reference 1, pg 146, makes the assumption of constant mass, only two data points are needed in each of the VTAB tables. RWHGR is an added input and represents runway altitude (ft).

AFFDL-TR-71-155 Part III

Column:	1	12
	INDAER	1
	AREFF	6200.
	DIRFF	30.9
	D2RFF	219.
	INDAOI	1
	ATABO1	.0065,.00748
	INDA02	1
	ATAB02	.437E-3,.542E-3
	INDATO	1
	ATAB10	1.34,1.12
	INDATI	1
	ATABI 1	.1112,.1038
	INDA12	1
	ATAB12	224E-2,1263E-2
	INDA15	1
	ATAB15	00746,00819
	INDA16	1
	ATAB16	.000142,.000158
	INDA27	1 2226 2226
	ATAB27	0236,0236
	INDA28	1 2675-2 2675-2
	ATAB28 INDA43	. 267E-3, . 267E-3 I
	ATAB43	.230E-3,.230E-3
	INDA44	1
	ATAB44	.212E-4,.212E-4
	INDA48)
	ATAB48	45,45
	INDA51	1
	ATAB51	.0439,.2439
	INDA52	1
	ATAB52	0312,0241
	INDA53	1
	ATAB53	.630E-3,.293E-3
	INDA56	1
	ATAB56	.0315,.0346
	INDA57	1
	ATAB57	6E-3,667E-3
	INDA61	1
	ATAB61	-8., -8.
	INDA63	1
	ATAB63	-24.,-24.
	INDA68	1005 0 1005 0
	ATAB68	.182E-2,.182E-2
	INDA69	1015-3 1015 3
	ATAB69	.101E-3,.101E-3
	INDA70	1085-3 1085-3
	ATAB70	.158E-2,.158E-2

AFFDL-TR-71-155
Part III

Column:	1	12
	INDA71	1
	ATAB71	346E-5,346E-5
	INDA77	1
	ATAB77	323,323
	INDA80	1
	ATAB80	.139155

The next series of cards beginning with INDAER and ending with ATAB80 contain aerodynamic data. INDAER may have one of two values. A zero value deletes the aerodynamics calculations (note that no aerodynamic data is needed here). The only place this option would have value is in the study of vehicle impact where there is no atmosphere. A one value for INDAER causes the aerodynamic calculations to be made. Pages 24-30 show the possible aerodynamic input data. Figure 8 of Reference i, specifically the block entitled "Summation of Aerodynamic Forces and Moment Coefficients," shows the form of the aerodynamic coefficient equations. Due to the requirements of the autopilot (see Reference 1, pgs 224-225), input data for the C_{Λ} and C_{N} coefficients must be the C_{D} and C_{L} coefficients, respectively, in the pseudo wind axes system. The C_y , C_ℓ , C_m , C_n coefficients must be body axis data. As discussed in Reference 1 (pg 225), only two data points are needed for each aerodynamic table used, the first data point is for full ground effect and the second is for no ground effect.

Column:	1	12	67
	INDTFF	3	
	INDTSO	ĺ	
	IT!OW	5	
	ITIOX	4	
	TTAB10	-2.,-1.,0.,1.,2.	
	TTABIO	0123	6
	TTABlo	-13000.,-800.,0.,2200.,37400.	10
	TTAB10	-20500.,-3400.,-900.,1300.,34600.	15
	TTAB10	-30500.,-7500.,-1700.,500.,31600.	20
	TTAB10	-4300.,-14300.,-2600.,-400.,28400.	25

The next series of cards beginning with INDTFF and ending with the last TTABIO card pertain to engine thrust data. The indicator INDTFF must (see Section IV para 3b for exception) have the value 3. INDTSO should always have a one value (see pgs 21 and 31). ITIOW indicates the

number of throttle settings stored in the thrust table. Its value must be at least 5 (that is, one must store thrust data at least at the five throttle settings -2., -1., 0., 1., 2. - see Reference 1, pg 225). ITIOX indicates the number of Mach data points in the thrust table. The first TTAB10 card lists the throttle setting points in ascending order, followed by the Mach points in ascending order. The rest of the TTAB10 table contains the thrust data for one engine for fixed Mach (start with lowest Mach) and ascending throttle setting. The last data in the table is for the highest Mach setting and ascending throttle setting. The "displacement numbers" on the far right side of the TTAB10 cards is explained on pg 9.

2. LANDING GEAR MODIFICATION DATA

NSTRUT is the number of landing gears on the aircraft. It is synonymous with the variable K in Reference 1 (pg 74). The program is presently limited to a maximum value of 5 for NSTRUT. A minimum of 3 struts is necessary to support the aircraft on the runway. MASS is an array of the masses (i.e., m, see Reference 1, pgs 71 and 84) in slugs, of the main strut (i.e., strut, wheel frame, tires, etc.) of each landing gear. In each gear array there must be NSTRUT data points. The order of the data points is arbitrary but must be consistent in all gear arrays. If the data for the array exceeds that which can be put on one card, displacement numbers must be put on the following cards for that array. The arrays RX, RY, and RZ are the body coordinates R_{kx} , R_{ky} , R_{kz} , respectively, in feet, of the landing gear position vector $(\overline{R}_k)_{\Omega}$ (Reference 1, pg 74 and Eq 114, pg 82) from the vehicle nomina' mass center. It is these three gear position arrays that determine the appropriate order of the data in the other landing gear arrays. RX is positive in the forward mose direction. RY is positive out the right wing direction. RZ is positive down. THETAD is the array of angles θ_{k} (Reference 1, pgs 74 and 80) in degrees. ERDEG is the runway elevation angle E_R (Reference 1, pg 81) in degrees. RGR is the fixed distance R_{QR} (Reference 1, pg 81) in ft. NTIRES is an array of the number of tires $n_{\mathbf{k}}$ (Reference 1, pg 99) on each strut axia. RZERO is an array of

AFFDL-TR-71-155 Part III

Column:

1	12	67
NSTRUT	5	
MASS	46.62149,132.0942,132.0942,132.0942	
MASS	132.3942	5
RX	62.34333,-1.42,-1.42,-19.75333,-19.75333	
RY	0.,-12.9375,12.937512.9375,12.9375	
RZ	0.,0.,0.,0.,0.	
THETAD	0.,0.,0.,0.	
ERDEG	0.	
RGR	1917.	
NTIRES	4.,6.,6.,6.	
RZERO	2.011666,2.011666,2.011666,2.011666	
RZESO	2.011666	5
DE : M	.83333,.83333,.83333,.83333,.83333	
RLT	1.E+05	
IFD	1	
AI	125472.2,141992.9,141992.9,141992.9	
ΑI	141992.9	5
BI	1.32,1.293,293,1.293	,
FTAB02	2,0.,0.,1.E+05,0.	
_	14,, 0., .01, .2, .325, .3, .035, .4	
FTAB03		10
FTAB03	.065, .5, .09, .6, .15, .76, .2, .8, .24, .76	10 20
TAB03	.325,.65,.5,.6,.7,.56,1,53,100.,.53	20
MOMENT	13.5,15.0,15.0,15.0,15.0	
MB	0.,0 0.,0.,0.	
RF	18.13666, 18.55416, 18.55416, 18.327 16	-
RF	18.55416	5
VZ	and and the second of the second	
PZERO	304/0.4,41538.24,41538.24	
PZE1.0	41538.24,41538.24	4
VZERO	.5579861,1.162662,1.162662	
VZERO	1.162662,1.162663	4
A	.492222,.722222,.722222	
A	.722222,.722222	
P20	375840.,346154.4,346154.4	
P20	346154.4,346154.4	4
٧2 ن	.6060243,1.1179398,1.1179398	
V20	1.1/79398.1.1179398	4
A2	. 394444, . 5118055, . 5118055	
A2	.5118055,.5\\\ 18055	4
iL	0	
S2T	.9062:,.784166,.784166	
S2T	.784¥66;7 ⁸ 4¥66	
ES2	.020833,.020833020833	
ES2	.620833,.020833	4
C 2 L	240.,240.,240.,240.	

Column:	1	12	67
	INDCOL	1	
	NSMAIN	2	
	CTABOI	0.,2.1,1.,2.,3.,45.	
	CTABOI	30243024.,2160.,2160.,2160.	8
	CTAB01	2160.,2160.,2160.,2160.	14
	INDCO2	1	14
	CTABO2	0.,2.1,1.,2.,3.,4.,5.	
	CTABO2	3024.,3024.,2160.,2160.,2160.,2160.	8
	CTABO2	2160.,2160.,2160.,2160.	14
	INDSO3	1	4
	NS2NDY	; 2	
	CTABO3	0.,1.,1.,2.,3.,4.5.	
	CTABO3	72.,72.,72.,72.,72.,72.,72.,72.,72.,72.	8
	INDCG4]	O
	CTABO4	0.,1.,1.,2.,3.,4.,5.	
	CTABO4	720.,720.,720.,720.	8
	TABO4	/20.,720.,720.,720.	13
	MASS2	3.108099,3.108099,3.108099	כי
	(ASS2	3.108009,3.108099	Ł,
	MUS	0.,0.,0.,0.,0.,	-1
	ES	.02 333,.020833,.020833	
	ES	.020833,.02083?	4
	SB	1.83332.2.08333.2.08333	7
	SB	2.08333,2.68333	4
	CASK	1.,0.,0.	~
		* * * * * * : ** *	

AFFDL-TR-71-155 Part | | |

the outside tire radius rok (Reference 1, pg 110) in feet. DELTAM is an array of maximum tire deflections in feet. If actual tire deflections exceed these values, the tire is assumed to blowout and the program stops. RLT is the runway length in feet. IFD is an indicator which determines whether the tire force-deflection curves $f_k(\delta_k)$ (Reference 1, pg 99) are input as tables (i.e., table FTABOI) or in equation form. If IFD has the value one, the tire force deflection curves assume the equation form $a_k^-(\delta_k^-)$ b_k^- . The a_k^- and b_k^- constants are stored in the AI and BI arrays, respectively. The units of the data in the AI and BI arrays must be such that when $\delta_{\mathbf{k}}$ is in feet, the function is in pounds. If IFD has the value zero, the tire force deflection curves are contained in a single two-dimensional table FTABO1. This table setup is similar to the thrust table TTABIO. The NSTRUT indicator (already input) is synonymous with the ITIOX indicator of TTABIO and indicates the number of forcedeflection curves contained in FTABO1. The NDELTA indicator (not shown) indicates the number of δ_k points in each table f_k (δ_k). The NDELTA card is followed by the FTABO1 table which lists the NDELTA $\delta_{\mathbf{k}}$ points (in ft) in ascending order, followed by the gear numbers (i.e., 1., 2., 3., etc., up to NSTRUT). The actual force data (lbs) for gear 1 then follows for ascending $\delta_{\mathbf{L}}$. This is followed by the force data for gear 2, then gear 3 etc., until there are NSTRUT tables contained in FTABO1. FTAB02 is the runway perturbation table $\varepsilon(X_{Rk})$ (Reference 1, pg 110). The independent variable is X_R in feet and the dependent variable is the runway perturbation ϵ in feet. FTABO3 is the tire-runway coefficient of friction table μ_k (Reference 1, pg 99). The independent variable is "Pskdk" (Reference 1, pg 218) whose range is 0. - 1.0. All tires are assumed to have the same $\mu_{\boldsymbol{k}}$ properties. Note the difference in format for gear array input and gear table input (pgs. 9-10).

MOMENT is an array of the moments of inertial I_k (slug - ${\rm ft}^2$) of a single tire-wheel combination (Reference 1, pgs 215-216) on each strut. MB is an array of the initial values given to the braking moment $M_{\rm Bk}$ (1b - ft). The values in the MB array are normally zero (Reference 1, pg 216). The RF array is the fully extended axle position $r_{\rm Fk}$ (Reference 1, pg 82) in feet. VZ is the velocity $V_{\rm O}$ (ft/sec) in Reference 1, pg 135.

Its value should be zero. The PZERO array is the preload pressure Pok (1b/ft²) of the upper air chamber (Reference 1, pg 86) for each gear. The VZERO arrary is the preload volume V_{Ok} (ft³) of the upper air chamber (Reference 1, pg 86) for each gear. The A array is the area AL (ft²) of the main piston (Reference 1, pg 86) for each strut. The P20, V20, A2 arrays are the preload pressure P_{ok2} (1b/ft²), preload volume $V_{ok2}(ft^3)$, and piston area $A_{k2}(ft^2)$ (Reference 1, pg 86), respectively, for the Lacondary air chamber in each strut. An IL indicator value of O includes the secondary piston and air chamber in the gear-strut simulation. An IL indicator value of 1 removes the secondary piston and air chamber from the mear-strut simulation. The S2T array is the maximum allowed displacement S_{k2T} (it) of the secondary piston (Reference 1, pg 95-97) for each strut. The ES2 array is the integration accuracy constraint E_{cto} (ft) for the secondary piston position of each strut. The C2L array is the linear drag coefficient C_{k2l} (lb-sec/ft) of the secondary piston (Reference 1, pg 88) for each strut. The CTABO1 table is the nonlinear damping coefficient of the main orifice $C_k(1b-\sec^2/ft^2)$ for main strut compression (Reference 1, pg 93) for each strut. The CABO2 table is the manlinear damping coefficient of the main orifice C_L(1b-sec²/ft²) for main strut extension for each strut. The CTABO3 table is the nonlinear damping coefficient of the secondary orifice C_{L2} (lb-sec²/ft²) for main strut compression (Reference 1, pg 93) for ach strut. The CTAPO4 table is the nonlinear damping coefficient of the secondary orifice C_{k2} (lb-sec $^2/\mathrm{ft}^2$) for main strut extension for each strut. Each of the CTAB tables is two-dimensional and similar in input format to the FTABOI table. The two independent variables are strut position and strut number. The CTAB tables each begin with the strut deflections followed by the strut numbers. The remainder of the data in each table is the value of the orifice coefficient for increasing strut deflection beginning with strut 1. NSMAIN is the number of Independent strut positions stored for each main strut in tables CTABOL and CTABO2. NS2NDY is the number of independent secondary piston positions stored for each strut in tables CTABO3 and CTABO4. If a table is to be used, its associated indicator (i.e., INDCO), etc.) is needed.

The MASS2 array is the mass M_{k2} (slugs) of each secondary piston (Reference 1, pg 92) in each strut. The array MUS is the coefficient of sliding friction μ_{sk} at the wing gear root (i.e., where the main strut is supported by the wing) for each strut (Reference 1, pg 88). The ES array is the integration accuracy constraint E_{Sk} (ft) for the main strut position (Reference 1, pg 95-97) of each strut. The SB array is the maximum allowed displacement S_{kb} (ft) of the main strut (Reference 1, pg 95-97) for each strut. The CASK array is an array of indicators denoting whether or not the corresponding gear is castered (i.e., its wheels allowed to align themselves with the axle velocity vector). A one value causes the gear to be castered. A zero value fixes the orientation of the axle relative to the body axes system.

3. AUTOPILOT DATA

A zero value for the INDAUT indicator deletes all autopilot calculations; a one value causes the autopilot calculations to be made.

a. Engine Data

Column:	1	12
	IN	4
	ZN	5.41,3.39,3.39,5.41
	YN	61.8,39.7,-39.7,-61.8
	N	1.975,-1.,-1.,1.975

The IN indicator is used to indicate the number of engines on the aircraft (Reference 1, pg 197). A minimum of one engine and a maximum of four engines can be simulated. The ZN and YN arrays are the Z, Y body coordinates (in ft) of each engine thrust vector origin. Because of the throttle autopilot, the data in the ZN and YN arrays must correspond to the engine physical arrangement in one direction along the wing. As discussed in Reference 1 (pg 227), the thrust vectors are assumed parallel to the

AFFDL-TR-71-155 Part | | |

X longitudinal body axis; therefore, the engine X coordinates are not needed. The N array contains the initial throttle settings for each engine.

b. Drag Chute Data

Column:	1	12
	ics	0
	CDCH	0.
	SSH	0.
	XCH	0.
	YCH	0.
	ZCH	0.

ICS the drag chute indicator signal (Reference 1, pgs 63 & 179), is usually initialized at a zero value. The variables CDCH, SSH, XCH, YCH and ZCH are the variables $^{\rm C}_{\rm DCH}$, $^{\rm S}_{\rm SH}$ (ft²), $^{\rm X}_{\rm CH}$ (ft), $^{\rm Y}_{\rm CH}$ (ft) and $^{\rm Z}_{\rm CH}$ (ft) respectively (Reference 1, pgs 61 & 62).

c. Phase Begin - Terminate Data

Column:	1	12
	ITO	0
	HF	100.
	NF	0
	XRF	100.
	HRF	25.
	DELTAH	3.
	KP	Ö
	TI	٥.
	NLRI	1
	VS	10.
	XS	10000.
	TS	40.
	HS	0.

The ITO indicator is the takeoff-landing indicator (Reference 1, pgs 180 & 182). A zero value is used for a landing problem and a one value for a takeoff problem. HF is the flare altitude $h_{\rm F}$ (ft) (Reference 1, pg 182). NF is the NF glide slope termination indicator (see Reference 1, pg 182). An NF value of zero allows the problem to go into the flare phase when the $h_{\rm F}$ altitude is reached. An NF value of one terminates the problem at the glide slope end (i.e., $h_{\rm F}$ altitude). The variables

XRF and HRF are the initial values of the variables X_{RF} (ft) and h_{RF} (ft) (Reference 1, pgs 164 and 182). They are primarily used to start the problem in the "hold mode". DELTAH is the variable δ_{h} (ft) (Reference 1, pgs 180 & 182). Because of possible high flare guidance acceleration (i.e., ${\rm A_{hR}})$ as flare termination is reached, $\delta_{\rm h}$ should always have a nonzero positive value. KP is an indicator (Reference 1, pgs 180 & 182) used to start the problem in the landing roll phase. A KP value of zero allows the program to establish its own time of impact, T_1 , and a XP value of one requires the impact time T₁ (sec) to be read into the program as TI. NLRI is the NLR indicator (Reference 1, pgs 180 & 182). An NLRI value of one stops the problem on impact, and a value of zero allows the problem to continue after impact and terminate on one of the three rurway stopping condition V_S (ft/sec), X_S (ft), T_S (sec) (Reference 1, pg 182) which are input as VS, XS, and TS, respectively. HS is the runway altitude $\boldsymbol{h}_{\varsigma}$ (ft), at which the takeoff roll is terminated (Reference 1, pgs 178 & 181).

d. Takeoff Condition Data

Column:		12
	VATO	0.
	ALPHT()	0.

VATO and ALPTHO are takeoff conditions $\rm V_{ATO}$ (ft/sec) and $\rm \alpha_{TO}$ (deg) respectively (Reference 1, pgs 178 and 181).

e. Glide Slope Maneuver Data

Column:	1	12
	VD	220.
	DELVE	Ο.
	EPSGS	3.
	ALPHDS	-5.
	ALPHDL	14.
	HCG	20.56
	DELEPS	. 05
	RFH	5.
	PGS	. 04
	DELSIG	. 1
	REY	10.
	PHIC	1.0

AFFDL-7.R-71-155 Part | | | |

VD is the desired inertial velocity down the glide slope V_d (ft/sec) (Reference 1, pg 152). DELVE is the velocity error Δ V_e (ft/sec) which should be input as zero. EPSGS is the glide slope elevation $\epsilon_{\rm GS}$ (deg) (Reference 1, pg 148). ALPHDS and ALPHDL are the lower and upper limits $\alpha_{\rm GS}$ (deg) and $\alpha_{\rm dL}$ (deg), respectively (Reference 1, pg 160) for the glide slope desired angle of attack. HCG is the variable $h_{\rm CG}$ (ft) (Reference 1, pg 148). DELEPS is the allowed vertical glide slope angular error $\delta_{\rm E}$ (deg). RFH is the rate feedback constant RF $_h$ (sec) and PGS is the phugoid control constant PG $_{\rm S}$ (deg/ft) (Reference 1, pgs 151 & 157). DELSIG is the allowed horizontal glide slope angular error $\delta\sigma$ (deg), RFY is the rate feedback constant RF $_{\rm F}$ (sec), and PHIC is the roll control angle $\phi_{\rm C}$ (deg) (Reference 1, pgs 149, 151, 153).

f. Flare Maneuver Data

Column:	1	12
	XTD	100.
	HTD	25.
	OTXV	200.
	VHTD	-1.
	LIR	0
	LD	5000.
	DA	.02
	TL	5000.
	TU	126000

XTD is the variable x_{TD} (ft) which locates the runway beginning with respect to the glide slope origin (Reference 1, pg 167). HTD, VXTD and VHTD are the initial desired touchdown conditions h_{TD} (ft), V_{xTD} (ft/sec), and V_{hTD} (ft/sec), respectively. IIR is the indicator IR (Reference 1, pg 173) and should always have a zero initial value. LD is the expected runway landing distance L_D (ft). DA is the accuracy (in deg) of the α_d search done to solve the nonlinear simultaneous equations (Reference 1, pgs 171 & 176. Equations 299 and 300) for the flare α_d , T_d commands. TL (1bs) and TU (1bs) are the lower and upper bounds, respectively, on the desired thrust, T_d , in the flare.

g. Hold Maneuver Data

Column:	1		12
	ALPDES		6.5896
	TTD		47073.
	KF	INT	1,1,1,1
	PM		11.

If the problem is started in the hold mode, α_d (deg) and T_d (lbs) must be input to the problem as the variables ALPDES and TTD, respectively. KE is the "kill engine" indicator array (Reference 1, pgs 172, 198, & 203). This allows the option to pull the throttles back to forward idle (if the engines are not in a fixed mode) in the hold mode. A one value in the array exercises the kill power option for that particular engine, and a zero value leaves that particular engine at the previous fixed thrust level. PM is the tail down constraint angle P_m (deg) (Reference 1, pgs 172 & 177).

h. Landing Roll Maneuver Data

Column:	1	12
	TSP	1.
	TRV	3.
	TCH	0.
	TBK	2.
	ISS	0.
	ILR	0
	IBS	0

TSP, TRV, TCH and TBK are the variables $t_{\rm SP}$ (sec), $t_{\rm rv}$ (sec), $t_{\rm ch}$ (sec), and $t_{\rm bk}$ (sec), respectively (Reference 1, pg 179). ISS, ILR, and IBS are the initial values of the indicators ISS, ILR, and IBS, respectively (Reference 1, pg 179). These indicators are normally input as zero (note ISS is the only indicator that is floating point).

i. Engine Failure Stage Data

Column:	1	8	12
	IC XRF1	INT	1,1,1,1
	ITI XRF2	INT	1,1,1,1
	IT2 Hl	INT	1,1,1,1 0.
	1H1 H2	INT	1,1,1,1 0.
	IH2 HR1	INT	1,1,1,1
	IHR1 HR2	INT	1,1,1,1 0.
	THR2	INT	1,1,1,1
	ITRI TR2	INT	1,1,1,1
	ITR2	INT	1,1,1,1

The IC array contains the initial values for the IC (1) array (Reference 1, pgs 183 ϵ 184). A one value in the array indicates the engine is working, and a zero value indicates engine failure. Reference 1, pg 184 and the following indicates the other variables:

AFFDL-TR-71-155 Part | | |

TR1 -
$$t_{rl}$$
 (sec)

ITR1 - ITR1(I)

TR2 - t_{r2} (sec)

ITR2 - ITR2(I)

j. Brake Condition Stage Data

Column:	1	8	12
	I B	INT	0,1,1,1,1
	TBK1		100.
	IBK1	INT	0,1,1,1,1
	TBK2		100.
	1BK2	INT	0,1,1,1,1

The IB array contains the initial values of the brake condition array I_{Bi} (Reference 1, pgs 183 & 185). The variables TBK1 and TBK2 are t_{bk1} (sec) and t_{bk2} (sec), respectively. The arrays IBK1 and IBK2 are the arrays $I_{Bk1}(I)$ and $I_{Bk2}(I)$, respectively.

k. Pitch Autopilot Data

Column:	1	12	1	12
	ALPDL	1.	DFLQC2	0.
	RFALPH	.5	TST	5.0
	DELALA	.01	DELQF	Ō.
	PSH	-20.	DELFDI	1.
	PSH2	-20.	DELQTO	0.
	RFALP2	. 5	DELQL	-15.
	DFLQC	0.	DELQU	25.

ALPDL (deg/sec) is the maximum α_d allowed in the pitch autopilot (Reference 1, pg 191) RFALPH is the rate feedback constant $R_{F\alpha}$ (sec) (Reference 1, pgs 188 & 189). DELALA is the allowed angular error $\Delta\alpha_a$ (deg). PSH is the overcontrol sensitivity PS $_H$ (deg/deg) (note sign). RFALP2 and PSH2 are the flare, hold, landing roll & takeoff values for RF $_{\alpha}$ and PS $_H$, respectively (Reference 1, pg 189). DELQC and DELQC2 are the "bang-bang" control magnitude δ_{qc} (deg) (Reference 1, pg 189 & 191) for glide slope and flare (etc), respectively. TST is the nose-over time t $_{st}$ (sec) (Reference 1, pgs 188 DELED1 is the angular

rate $\delta_{\rm F}$ (deg/sec) and DELQF is the final nose-over elevator deflection $\delta_{\rm qF}$ (deg) (Reference 1, pgs 188 & 189). DELQTO is the takeoff elevator initial deflection $\delta_{\rm qTO}$ (deg). DELQL and DELQU are the lower and upper elevator deflection limits $\delta_{\rm qL}$ (deg) and $\delta_{\rm qu}$ (deg), respectively (Reference 1, pgs 188 & 190).

1. Yaw Autopilot Data

Column:	.1	12
	RFB	.5
	DELBA	.05
	PSR	10.
	RFPSI	.5
	DPSIA	.05
	PSPS!	-10.
	DELRL	-35.
	DELRU	35.

RFB is the rate feedback constant R $_{F\beta}$ (sec) (Reference 1, pgs 192 & 193) DELBA is the allowed angular error $\Delta\beta_a(\text{deg})$. PSR is the overcontrol constant PS $_R$ (deg/deg). RFPSI is the rate feedback constant R $_{F\psi}$ (sec) (Reference 1, pgs 192 & 193). DPSIA is the allowed angular error $\Delta\psi_a(\text{deg})$. PSPSI is the overcontrol constant (note sign) PS $_\psi$ (deg/deg). DELRL and DELRU are the lower δ_{rL} (deg) and upper δ_{ru} (deg) rudder deflection limits respectively.

m. Roll Autopilot Data

Column:	1	12
	RFPHI	.5
	DPHIA	.05
	PSA	-15.
	DELPL	-60.
	DELPU	60.

RFPHI is the rate feedback constant $R_{F\varphi}$ (sec) (see Reference I, pgs 194 & 195). DPHIA is the allowed angular error $\Delta\varphi_a(\text{deg})$. PSA is the control constant PS $_A$ (deg/deg). DELPL and DELPU are the lower δ_{PL} (deg) and upper δ_{PL} (deg) aileron deflection limits respectively.

n. Throttle Autopilot Data

Column:	1	8	12	67
	TF	INT	0,1,1,0	
	NDF		0.,-1.,-1.,0.	
	l R	INT	1,1,1,1	
	NB		1.05,1.05,1.05,1.05	
	NLR		-2.,-2.,-2.,-2.	
	NTO		2.,2.,2.,2.	
	K2		.5	
	К3		.5,.5,.5,.3333,.3333	
	Κ4		-5, -5, -5, -5, -3333, -3333, -3333, -3333	
	К4		. 25, . 25, . 25	9

The TF array is the throttle fix indicator array TF (1) (Reference 1, pg 204). The NDF array is the fixed throttle setting array $N_{dF}(1)$. The IR array is the engine reverse capability indicator array IR (1) (Reference 1, pgs 198, 204, 208, 210, 212-215). The NB array is the engine throttle constraint array for reverse N_B (1). The NLR array is the reverse throttle setting array for landing, N_{LR} (1). The NTO array is the takeoff throttle setting array N_{TO} (1). K2 is the engine load factor $k_{(2)121}$ (Reference 1, pgs 203 & 204). The K3 array contains the engine load factor constants $k_{(3)131}$, $k_{(3)232}$, $k_{(3)121}$, $k_{(3)1231}$, $k_{(3)1232}$, in that order. The K4 array contains the engine load factor constants $k_{(4)141}$, $k_{(4)232}$, $k_{(4)343}$, $k_{(4)242}$, $k_{(4)2342}$, $k_{(4)2343}$, $k_{(4)1341}$, $k_{(4)1343}$, $k_{(4)12342}$, $k_{(4)12343}$, in that order.

o. Brake Autopilot Data

Column:	1	12
	MBC	0.,0.,0.,0.,0.
	PD	.01
	DELTAW	.001
	OMECDI	20.
	MBL	0.,0.,0.,0.,0.
	MBU	3.65,3.65,3.65,3.65,3.65

The MBC array is the constant braking array $\rm M_{BCI}(lb{-}ft)$ (Reference 1, pgs 217 & 218. PD is the desired percent skid $\rm P_D$. DELTAW is the allowed fraction wheel speed error, $\Delta\omega$. $\rm \phi MECDI$ is the control tire angular acceleration $\dot{\omega}_{c} \frac{\rm rad}{\rm sec^2}$. The arrays MBL and MBU are lower nl $_{\rm BLI}$ (1b-ft) and upper $\rm M_{Bui}$ (1b-ft) braking moment limit arrays (Reference 1, pgs 219 \$ 222).

AFFDL-TR-71-155

p. Control Response Data

Column:	1	12
	DELHS	25.
	DELRRD	35.
	DELA	60.
	NEDI	.125

DELHS, DELRRD, DELA, and NED1 are the control variable rates $\delta_{HS} \left(\frac{\text{deg}}{\text{sec}}\right)$, $\delta_{RD} \left(\frac{\text{deg}}{\text{sec}}\right)$, $\delta_{A} \left(\frac{\text{deg}}{\text{sec}}\right)$, and $\hat{N}_{E} \left(\frac{1}{\text{sec}}\right)$, respectively (Reference 1, pg 224).

q. Initialization

Column:	1	12	1	12
	IAP	1	MANLOG	1
	HR	0.	PITCHP	1
	DELQN	0.	YAWAUP	1
	DELQDE	.07227	ROLLAP	1
	DELQD	.07227	THROAP	1
	DELPD	0.	BRAKAP	1
	DELRD	0.	CONTRP	1
	AUXICP	1	INDICP	1

IAP, HR, DELQN, DELQDE, DELQD, DELPD, and DELRD are initial input values of IAP, $h_R(ft)$, $\delta_{qn}(\deg)$, $\delta_{qd}(\deg)$, $\delta_{q}(\deg)$, $\delta_{q}(\deg)$, $\delta_{p}(\deg)$, $\delta_{r}(\deg)$, respectively (Reference 1, list of symbols).

r. Accopilot Output Indicators

There are nine categories of autopilot output: auxiliary computations, maneuver logic, pitch autopilot, yaw autopilot, roll autopilot, throttle autopilot, brake autopilot, tontrol response, and status indicators. The following nine indicators: AUXICP, MANLOG, PITCHP, YAWAUP, ROLLAP, THROAP, BRAKAP, CONTRP, INDICP are associated respectively to the nine categories of autopilot output. The indicators initially have a zero value which eliminates all autopilot output. If the indicator on input is given a one value, the output will be printed. See Section III, paragraph 2, for details. If used, these indicators follow the initialization card inputs just discussed.

s. Plot Tape Data

A magnetic tape may be used to output selected rigid body data and selected landing gear data. A request or label card is needed after the $J\phi B$ card to mount a tape. The following data is also required in the first stage of the data decks.

Card Column:	<u> </u>	12
	IPLT	ī
	ISDF)
	ISTPLI	1
	ISTPL2	1
	ISTPL3	1
	ISTPL4	1
	ISTPL5	1

IPLT = 1 denotes that data will be saved on a tape for plotting. ISDF = 1 denotes rigid body data will be saved on tape. ISTPL1 = 1, ISTPL2 = 1, ISTPL3 = 1, ... etc., denote that data for landing gears numbers 1, 2, 3, ... etc., will be saved on tape. ISDF = 1 saves L_m , M_m , N_m , q, θ_p , ψ_p , φ_p , F_{zm} , a_z , z_g , h_g , X_g , Y_q , a_x , x_g at each printed time. ISTPLk = 1 saves F_{Tk} , S_{Fk} , δ_k , P_k , P_{2k} , S_k , S_k , S_k , S_{2k} ,

4. STAGING DATA

Pages 32-33 explain the basic staging options available. One additional staging option was added which will be explained later. The general staging logic is so built that almost any kind of staging can be done. As shall be seen, the specific staging done in large part controls the time efficiency of the program and parts of the staging is a must to even get the program to run.

a. Staging Gears into Program

The added calculations to account for the landing gears is voluminous and time consuming. Even though the gear computations can be made and

correct answers obtained during varicle free flight (i.e. glade slope and flare), these calculations are unnecessary. The following staging is therefore done first:

Column:	1	8	12
	INDLG		0
	ISTAGE		Э
	DECRES	BCD	1 HR
	STESTD		25.
		TRA	-
	INDLG		-1

The zero INDLG indication prevents the geometal culations from being made. As the aircraft nears the ground and impact approaches (this is sensed by a decreasing test on the runway altitude, h_R (ft), the gear calculations are staged into the program. In this particular test, the gear calculations were staged in when $h_R \leq 25$ ft. The change in data required is a value of -1 for the INDLG indicator. Note that the particular value of h_R for this stage must be sufficiently greater than h_{cg} to insure that impact does not occur before the stage is made. When the gears are staged in, the initial values of main structosition, S_k , main struct velocity, \hat{S}_k , so ondary piston position, S_{k2} , secondary piston velocity, \hat{S}_{k2} , and tire angular rate, ω_{Tk} , are all automatically zero. If the problem begins on the runway, as in the takeoff roll, the initial values in the arrays \hat{S}_k , \hat{S}_k , \hat{S}_{k2} , \hat{S}_{k2} and ω_{Tk} must be read in. This is done through the following variables which are placed immediately after the INDLG \hat{S}_k card:

This gear stage is always the first stage and is considered a must for a time efficient program.

b. Smooth Impact Stage

The second stage (also a must) can be looked up as an impending impact stage.

Column:	1	8	12
	AINCRS	BCD	4DDELT10DELT2DDELT4DDELT5
	STEST		-1.,-1.,-1.
		TRA	
	PRINT		.01
	DELTS		.01
	AMAXER		.001
	PRTMIN		0.

The heights of each wheel bottom surface (see $\delta_{\mathbf{k}}$ in Appendix II) above the runway (note this is a negative value) are given the names DDELT1 --- DDELT5. As these numbers approach zero, impact occurs. On this particular test, the stage was performed when bottom surface of wheels 1, 2, 4, or 5 was less than one foot off the runway. At this point the required data change is a small VSRK maximum interval, that is AMAXER. This insures a smooth impact. Note that when AMAXER is changed. the integration data constraint PRTMIN \leq AMAXER \leq DELTS \leq PRINT must still hold. Note also that the \mathbf{h}_{R} value in the initial stage must be large enough to insure that the wheel bottom surfaces are at least one foot off the runway (in this case) when the gears are stage in. The reason for this is that the variables DDELT1 --- DDELT5 don't even exist until the gear calculations are staged in. This is a good time to assert an important point about the staging logic: that is, the stages will only occur in the order they appear in the data deck. Therefore, one must make sure that the stages are in the proper sequence and staged on the variables appropriate to sense that sequence.

c. Efficient AMAXER Stage

The small AMAXER of the previous stage was used solely to insure a smooth impact. To leave AMAXER at this small value would not be very

time efficient, thereby severely limiting the capability of the VSRK integration interval. As soon as impact occurs occurs and the VSRK technique has had an opportunity to pick an appropriate integration interval, AMAXER should be staged back to a reasonable value. This is done as follows:

Column:	11	8	12_
	AINCRS	BCD	4DELTA1DELTA2DELTA4DELTA5
	STEST		.1,.1,.1,.1
		TRA	
	PRINT		.08
	AMAXER		.04
	DELTS		. 04

The tire deflections DELTA1 --- DELTA5 are used as the staging variable. The particular tire deflection in this stage was 0.1 foot.

d. Spoiler Aero Stage

If the aircraft is landing, the next stage is spoiler actuation (if spoilers exist on the aircraft). The staging variable is the spoiler actuation signal ISS. The required data change is the appropriate

Column:	1	8	12
	AINCRS	BCD	1155
	STEST		1.
		TRA	
	ATABIO		.030,.030
	ATAB11		.1162,.1162
	ATAB12		0.,0.
	ATAB51		. 3439, . 3439
	ATAB52		0327,0327
	ATAB53		0.,0.
	ATAB80		. 267 267

aerodynamic coefficient tables with spoilers activated. Since the spoiler signal is based on a specific time after timpact, t_{sp} , one has to make sure that the staging tire deflection of the previous stage is not too large so as not to occur before t_{sp} . If t_{sp} is very small (i.e., like 0. etc.), then the spoiler stage may have to be placed before the efficient AMAXER stage.

e. Bounce Stage

A combination of high sink rate, no spoilers (or late spoiler actuation), stiff landing gear strut, and a light aircraft can create a situation where the entire aircraft may bounce completely off the runway. To sense this condition, the staging logic had to be modified. By giving the ISTAGE indicator a value of one (it was initially zero), all four variables (not just one) in the stage testing logic must meet the increasing or decreasing constraints before the stage is performed. The bounce stage is therefore as follows:

Column: 1	8	12
ISTAGE		1
DECRES	BCD	4DELTA1DELTA2DELTA4DELTA5
STESTD		0.,0.,0.,0.
	TRA	
AMAXER		.001
DELTS		.01
PR!NT		.01
ISTAGE		0
AINCRS	BCD	4DDELTIDDELT2DDELT4DDELT5
STFST		.1,.1,.1,.1
	TRA	
AMAXER		. 05
DELTS		.1
PRINT		.1

First a decreasing test is done to check if the aircraft bounced; that is, see if the tire deflections DELTA1 --- DELTA5 have reached zero. AMAXER is then given a small value, as before, to insure a second smooth impact. ISTAGE is given a zero value again and a second stage similar to the efficient AMAXER stage follows. This staging is sufficient to get the aircraft through one complete bounce. As many bounce stayes as one feels is needed can be used.

f. Data Deck End

The last stage is ended with the following cards:

This concludes the data deck setup.

SECTION VI

OUTPUT

The time intervals for computer output are PRTMIN and PRINT (see discussion on pages 47-48). As previously discussed, the PRTMIN option should not be used unless one is really interested in the high frequency response of the landing gears. The long term response of the gears and main airframe can be approximated by a PRINT value of about 0.1 or 0.2 seconds. The selection of a PRINT value should, however, be tempered by the frequency of the specific output to be examined. The reason for this print interval caution is that there can be as much as 50 lines of output each time a PRTMIN or PRINT option is exercised. For the computer system available to AFFDL, experience has shown the TOLA problem to be output bound in such a case. Therefore, use of a PRINT interval smaller than that which is needed will result in a computation time longer than needed.

1. TRAJECTORY PRINTING METHOD

The printing of a trajectory may be divided into four categories.

- a. <u>Initial Printing</u> The printing of specific values at the first stage and at each subsequent major stage.
- b. <u>Code Printing</u> The printing of codes which will identify the variables which are to be obtained in the coming time history print.
- c. <u>Time History Printing</u>. The printing of values specified at the requested points of the trajectory.
- d. <u>Diagnostic Error Printing</u> The printing of errors detected by the program.

All input data involved for a case is printed on the output page preceding the computation of the first stage printout. Also, data read in at stage times will be printed out between the stages of the trajectory output.

Initial print is designed to print certain value: which will be constant during the trajectory and serves as a reminder of what values have been used for these constants.

Code printing is performed once per major stage \odot identify the time history.

The time history print is designed to print in a minimum space. That is, if a certain variable is not desired as output, it is not printed and other desired variables are moved in the print format accordingly.

The entire printing is controlled to print on a page 11 x 14 inches and will print a maximum of 54 lines per page. Page ejection and line control are provided by the subroutines DEF and LINES.

There are three basic kinds of TOLA output: main airframe, autopilot, and landing gears.

2. MAIN AIRFRAME OUTPUT

There are two places during the run which may print a set of symbols, initial print and time history print. This section will present (1) the computer symbol, (2) its associated engineering symbol (if any), (3) the unit of measure, and (4) remarks.

(1) <u>Initial Print</u>

None

(2) Time History Print

Symbol	Quantity	<u>Units</u>	Remarks
ALPHD	α	deg	Angle of attack
ALPHD1	α	deg/sec	Rate of change of angle of attack
AMACH		deg/ sec	Mach Number
	KN		
AX77F	^a x	ft/sec ²	Body component of inertial acceleration
AXP7F	A _{xp}	ft/sec ²	Platform acceleration
AY77F	ay	ft/sec ²	Body component of inertial acceleration
AYP7F	Ayp	ft/sec ²	Platfo a acceleration
AZ77F	az	ft/sec ²	Body component of inertial acceleration
AZP7F	Azp	ft/sec ²	Plat orm acceleration
BETAD	β	eg	Angle of sideslip
BETADI	β	deg/sec	Rate of change of angle of sideslip
DYNPP	q*	lbs/ft ²	Dynamic pressure
FCX	F _{cx}	lbs	Body component of drag chute force
FCY	Fcy	lbs	Body component of drag chute force
FCZ	F _{cz}	lbs	Body component of drag chute force
FDC	FDC	lbs	Total drag chute force
GAM7D	Υ	deg	Elevation flight path angle
GAM7R1	Ý	rad/sec	Rate of change of elevation flight path angle
HGC 7F	h	ft	Geodetic altitude
PHIPD	Фр	d e g	Angle between body axis and platform axis

Symbol	Quantity	Units	Remarks
P177R		rad/sec	Inertial angular rate of body x axis
PSIPD	$^{\psi}$ p	d e g	Angle between body axis and platform axis
Q177R	q	rad/sec	Inertial angular rate of body, y axis
RG77N	R _g	naut. miles	Approx. range from launch point
R17 7 R	r	rad/sec	Inertial angular rate of body, z axis
SIG7D	σ	deg	Horizontal flight path angle
SIG7R1	σ	rad/sec	Rate of change of horizontal flight path angle
TI!TPD	$\theta_{\mathbf{p}}$	deg	Angle between body axis and platform axis
THTRD	θr	deg	Pitch angle between rotating machinery axis and body axis
TIME	t	sec	Flight Time
TIMES	ts	sec	Stage Time
U777F	u	ft/sec	Inertial velocity component along body x axis
V777F	V	ft/sec	Inertial velocity component along body y axis
VA77F	v _A	ft/sec	Airspeed
VG77F	t_g	ft/sec	Cround referenced speed
W777F	W	ft/sec	Initial velocity component along body z axis
WT R 7P	v_{t}	lbs	Weight of body
XG77F	Хg	ft	Downrange
XG 77F1	х _́	ft/sec	Rate of change of downrange
YG77F	Yg	ft	Crossrange
YG77F!	Ý _g	tt/sec	Rate of change of crossrange
ZG77F1	g	ft/sec	Rate of change of altitude

Aerodynamic Forces and Moments - SACS

(1) <u>Initial Print</u>

None

(2) Time History Print

Symbc1	Quantity	Units	Remarks
CA	c _A	-	Axial force coefficient
CAVAH	c _{Ao}	-	C_a at $\alpha = \beta = 0^{\circ}$
CM	C _m		Pitching moment coefficient
CN	CN	-	Normal force coefficient
CRM	c ₁	-	Rolling moment coefficient
CY	c _y	-	Side force coefficient (body axis)
CYM	c _n	~	Yawing moment coefficient

Engine Thrust and Fuel Flow - TFFS

(1) <u>Initial Print</u>

None

(2) Time History Print

Symbol	Quantity	<u>Units</u>	Remarks
Mt	MT	ft-1bs	Net engine pitch moment
NT	N _T	ft-lbs	Net engine yaw moment
T(I)	Τ;	lbs	Actual thrust array

Vehicle Physical Characteristics - VPCS

(1) Initial Print

AMASS

Symbol .	Quantity	<u>Units</u>	Remarks	
AREFF	S	ft ²	Reference area	
DIRFF	ď	ft	Reference length for longitudinal aerodynamics	
D2RFF	^d 2	ft	Reference length for lateral and directional aerodynamics	
XCGRF	X _{C.G.REF}	ft	Longitudinal position of center of gravity	
(2) Time History Print				
Symbol .	Quantity	<u>Units</u>	Remarks	

slugs Vehicle mass

3. AUTOPILOT OUTPUT

The autopilot printout is divided into nine categories: auxiliary computations, maneuver logic, pitch autopilot, yaw autopilot, roll autopilot, throtale autopilot, brake autopilot, control response, and status indicators. Depending on the values of the autopilot output indicators, (see Section II Para. 3r pg. 24) any combination of the nine categories can appear in the autopilot output.

a. Auxiliary Computations Output (AUXICP=!)

The output variables here are X, (ft), Y_R (ft), Z_R (ft), \dot{X}_R (ft/sec), \dot{Y}_R (ft/sec), \dot{Z}_R (ft/sec), \dot{Y}_P (deg/sec), and ϕ_P (deg/sec) (see Ref. i, pg 226) whose column designations are XR, YR, ZR, XRD1, YRD1, ZRD1, PSIPD1, and PHIPD1 respectively.

b. Maneuver Logic Output (MANL &G=1)

The output variables here depend on whether the problem phase is glide slope, flare, landing roll, or takeoff roll.

(1) Glide Slope Output (IAP=1)

The variables on put here are $V_c(ft/s\epsilon z)$, $V_{ad}(ft/sec)$, $\gamma_R(d\epsilon g)$, $Q_R(1b/ft^2)$, C_{LR} , $\alpha_d(deg)$, $L_R(1bs)$, $D_R(1bs)$, $T_d(1bs)$, $h_{GS}(ft)$, $R_R(ft)$, $h_{ea}(ft)$, $h_{eT}(ft)$, $h_{pa}(ft)$, $h_{pt}(ft)$, and $\phi_d(deg)$ (see Cof.), pgs 160 & 161) whose column designations are VE, VAD, SAMPR, QR, CLR, ALPDES, LR, DR, TD, HGS, RR, HEA, HE, HET, HPT, and PHIDES respectively.

(2) Flare Output (IAP=2,3)

The variables output here are $t_x(sec)$, $t_h(sec)$, $x_{TD}(ft)$, $h_{TD}(ft)$, $v_{xTD}(ft/sec)$, $v_{hTD}(ft/sec)$, $v_{RF}(ft)$, $v_{RF}(ft)$, $v_{RF}(ft/sec)$, v_{RF}

(3) Landing Roll Output (IAP=4)

The variables output here are ISS, ILR, ICS. IBS, $T_{\parallel}(sec)$, and $t_{\parallel}(sec)$ (Reference 1, pg 195) whose column designations are ISS, ILR, ICS, IBS, T1, and TR, respectively.

(4) Takeoff Roll (147=5, 6)

There is no specific output for the maneuver logic of the takeoff roll phase.

c. Pitch Autopilot Output (PITCHP=1)

The variables output here are $\delta_{qq}(\deg)$, $\alpha_{e}(\deg)$, $\dot{\alpha}(\frac{\deg}{\sec})$, $\dot{\alpha}_{d}(\frac{\deg}{\sec})$, $\alpha_{eT}(\deg)$, and $\delta_{qd}(\deg)$ (Reference 1, pg 189) whose column designations are DELQN, ALPHAE, ALPHAI, ALPDDI ALPHET, and DELQDE. respectively.

d. Yaw Autopilot Output (YAWAUP=1)

The variables output here are $\delta_{\rm rn}({\rm deg})$, $\beta_{\rm e}({\rm deg})$, $\beta_{\rm ei}({\rm deg})$, $\delta_{\rm rd}({\rm deg})$, $\psi_{\rm e}({\rm deg})$, and $\psi_{\rm eT}({\rm deg})$ (Reference i, pg 193) whose column designations are DELQR, BETAD1, BETAET, DELRDE, PSIE, and PSIET, respectively.

e. Poll Autopilot Output (RoLLAP=1)

The variables output here are $\phi_e(\text{deg})$, $\phi_{eT}(\text{deg})$, and $\delta_{pd}(\text{deg})$ (Reference 1, pg 195) whose column designations are PHIE, PHIET, and DELPDE, respectively.

f. Throttle Autopilot Output (THR¢AP≈1)

The variables output here are the two arrays $N_d(I)$ and $T_d(I)$ (Reference I, pgs 196-216) whose column designations are ND (IN) and TD (IN), respectively.

g. Brake Autopilot Output (BRAKAP=1)

The basic output variable here is the braking moment array M_{Bi} (lb-ft). When the braking signal (IBS = 1) is given in the landing roll, arrays ω_{TRi} ($\frac{rad}{sec}$), $\dot{\omega}_{TRi}$ ($\frac{rad}{sec}$), and ω_{TEi} ($\frac{rad}{sec}$) (Reference 1, pg 221) are also output. The array output names are MB(1), OMEGATRO1(1), and OMEGATE(1), respectively.

h. Control Response (CΦNTRP=1)

The variables output here are $\delta_{i}(\frac{\deg}{\sec})$, $\delta_{i}(\frac{\deg}{\sec})$, $\delta_{i}(\frac{\deg}{\sec})$, $\delta_{i}(\frac{\deg}{\sec})$, $\delta_{i}(\frac{\deg}{\sec})$, $\delta_{i}(\deg)$, δ_{i

i. Status Indicator Output (INDICP=1)

The problem phase indicator IAP and the indicator arrays IC(I) and I_{BI} are output here under the names IAP, IC(I) and IB(I), respectively.

4. LANDING GEAR OUTPUT

The kind and amount of gear output depends on the indicator INDLG.

a. INDLG = -1

This value of the indicator is used to stage in the gears and do all calculations required to obtain strut positions, velocities, and wheel speeds. Gear output under this condition is as follows:

Viriable	Output Name
+6 _K (ft)	DELTA
$P_{K}^{(1b/ft^2)}$	P
$P_{K2}^{(1b/ft^2)}$	P2
r _{TK} (16s)	FT

AFFDL-TR-71-155 Part III

Variable	Output Name	Variable	Output Name
ft/sec ²)	SR	F _{TRA} (1bs)	FTRA
S _{FK} (1bs)	SF	F _{TRB} (1bs)	FTRB
$Q_{K}^{\cdot,ft}/sec^{2}$	AA	F _{TRC} (1bs)	FTRC
F _{CK2} (lbs)	FC2	M _{TX} (1b-ft)	MTX
^μ κ	MUVP	M _{TY} (16-ft)	MTY
$V_{GPTK}^{ft/sec}$	VGPT	M _{TZ} (1b-ft)	MTZ
F _{TRXK} (1bs)	FTRX	F _{XM} (1bs)	FXM
F _{TRYK} (1bs)	FTRY	F _{YM} (1bs)	FYM
F _{TR3K} (lbs)	FTRZ	F _{3M} (1bs)	FZM
M _{AK} (1b-ft)	MA	L _M (1b-ft)	LM
M _{BK} (1b-ft)	мв	M _M (1b-ft)	мм
δ _K (ft)	DDELTA	N _M (16-ft)	NM
$\ddot{s}_{K}(^{ft}/sec^{2})$	SD2		
$\dot{s}_{K}^{(ft/sec)}$	SDI		
s _K (ft)	S		
$\ddot{s}_{K2}(^{ft}/sec^2)$	S2D2		
$\dot{s}_{K2}^{(ft/sec)}$	S 2 D 1		
S _{K2} (ft)	\$2		
$\dot{\omega}_{TK}^{(rad/sec^2)}$	OMETDI		
TK (rad/sec)	OMET		

AFFDL-TR-71-155 Part !!!

All variables are explicitly defined in Reference 1 except + δ_k and S_{Fk} + δ_k is only the positive value of δ_k (Reference 1, Eq. 199). If δ_k is negative, + δ_k is given a zero value; + δ_k represents the actual tire deflection. S_{Fk} is the sum of forces resisting main strut movement, that is

$$S_{FK} = -P_{AK} + F_{CK2} - C_{K2} \dot{S}_{K2} | \dot{S}_{K2} | - C_{K2L} \dot{S}_{K2} + F_{FK} | \dot{S}_{K} |$$
 (see Eq. 139 Ref. 1).

b. INDLG = 2

This value of the indicator is used in the Stiff Strut Stage. Since the strut positions, velocities, and wheel speeds are fixed in this stage, only the following output is made: ${}^{+\delta}_{K}$, ${}^{F}_{TK}$, ${}^{\mu}_{K}$, ${}^{F}_{TRXK}$, ${}^{F}_{TRYK}$, ${}^{F}_{TR3K}$, ${}^{\delta}_{K}$, ${}^{S}_{K}$, ${}^{F}_{TRA}$, ${}^{F}_{TRB}$, ${}^{F}_{TRC}$, ${}^{M}_{TX}$, ${}^{M}_{TY}$, ${}^{M}_{TZ}$, ${}^{F}_{XM}$, ${}^{F}_{YM}$, ${}^{F}_{3M}$, ${}^{L}_{M}$, ${}^{M}_{M}$ and ${}^{N}_{M}$.

The output column names remain unchanged from the previous case.

Several closing comments are appropriate as regards the output. As was mentioned on pg 48, the autopilot calculations are only updated every time interval DELTS. If a PRTMIN is reached, an autopilot output may or may not occur depending on how PRTMIN falls within the DELTS interval. Autopilot output will always appear on a PRINT condition. However, to make the autopilot output pertain to the specific data in the SDF-2 output, the PRINT interval must be the same as DELTS or an integer multiple of DELTS.

SECTION VII

PROGRAM USE

The amount of specific data needed in the data deck depends on the problem phase to be studied. TOLA was designed for conventional, powered aircraft and therefore has certain limitations when applied to unconventional vehicles. These limitations are also closely associated with the problem phase to be studied.

1. GLIDE SLOPE

There are two basic glide slope assumptions: The glide slope elevation angle, $\varepsilon_{\rm GS}$ is small; the vehicle is powered. Both are valid assumptions for conventional, powered aircraft. As such, the powered vehicle can maintain a specific glide slope position and velocity down the glide slope subject to different wind conditions and aerodynamic changes due to ground effect. An unpowered vehicle, however, does not have this glide slope control flexibility. For a given longitudinal trim, the glide slope angle and ground speed are fixed and depend on wind conditions. The logic for glide slope control of such a vehicle is not in TOLA. At best, TOLA can be used to confirm unpowered vehicle glide slope performance for specific known steady state conditions. As such, use of the TOLA glide slope phase is predominantly limited to conventional, powered vehicles.

To do a glide slope calculation requires specific SDF-2 data input and specific autopilot data input. The only landing gear data needed is the $R_{\mbox{\scriptsize qR}}$ input.

a. Glide Slope SDF-2 Data Input

All basic SDF-2 data input (see Section II para I) is meeded. The aircraft must be started close to the desired glide slope position and velocity and be trimmed approximately for the desired conditions. This requires inputs of the proper magnitude for the following SDF-2 variables: HGC7F, THTBD, GAM7D, VG77F, ATAB5I, and RGR. If winds are involved, the inputs must include the WTAB tables.

b. Glide Slope Autopilot Data Input

All engine data (see Section II para 3a) must be input. The throttle settings, N, should be close to that required for trimmed power. No drag chute data (see Section II para 3h) is needed. Only ITO, HF, and NF are required in the phase begin data (see Section II para 3c). ITO must have a zero value and NF sould have a one value to end the calculation at the HF altitude. The other phase begin input data is not needed unless one desires the calculation to go into the flare phase, hold mode, etc. No takeoff data is needed (see Section II para 3d).

All glide slope maneuver data is needed (see Section !! para 3e). The data input here requiring careful scrutiny is ALPHDL, DELEPS, DELSIG, RFH, PGS, RFY, and PHIC. ALPHDL should not exceed the stall conditions for the aircraft. DELEPS and DELSIG determine the accuracy of the glide slope position control and should be approximately 0.1 degree. To see the long period motion after a perturbation (i.e., wind changes, engine failures, etc.), PGS and PHIC must be zero. If it is desired to control the long period oscillations, RFH, PGS, RFY, and PHIC must be appropriately selected in sign and magnitude, which can be selected easily with a knowledge of basic aircraft performance and the aircraft input data. The flare, hold, and landing roll maneuver data (see Section II para 3f, 3g, 3h) is not needed. Engine failure in the glide slope is staged through the variables H1 and H2 (see Section II para 3i) and their associated arrays IHI and IH2. No brake condition data (see Section II para 3j) is needed for the glide slope. The four autopilots pitch, yaw, roll, and throttle must be built by judicious selections of the constants associated with each.

(1) Pitch Autopilot. The data input here (see Section II para 3k) is, for the most part, self explanatory. That data input requiring careful examination is ALPDL, DELALA, RFALPH, and PSH. ALPDL is used to detect a discontinuous change in α_d (for example, on wind changes and transition from glide slope to flare logic) thru the $\dot{\alpha}_d$ term, and prevent the large $\dot{\alpha}_d$ rate from entering the autopilot (see Appendix I). The ALPDL value must be larger than the $\dot{\alpha}_d$ expected in the flare.

Since the discontinuities α_d produce very large rates, it is safe to pick a sizeable value for ALPDL (i.e., like 2 or 3 deg/sec) and be assured that legitimate α_d signals are not limited. DELALA determines the accuracy of the angle of attack control. A DELALA value of 0.01-0.02 degree is sufficient for good control. The constants RFALPH and PSH determine the pitch control of the aircraft. It is left up to the user to choose appropriate values for the particular aircraft system being simulated. Suffice it to say, that values can be easily obtained (with a basic knowledge of aircraft pitch performance and the aircraft input data) that control the aircraft to the α_d command.

- (2) Yaw Autopilot. The data input here (see Section II para 3£) is self explanatory. As with the pitch autopilot, the appropriate values of the constants RFB, PSR, RFPSI, and PSPSI, depend on the aircraft system and are to be determined by the user.
- (3) Roll Autopilot. Comments on the data input here (see Section !| para 3m) is much the same as with the yaw autopilot.
- (4) Throttle Autopilot. The data input here (see Section II para 3n) is self explanatory.

No brake autopilot data input (see Section II para 30) is needed for the glide slope. The control response data input (Section II para 3p) is need for the glide slope; the data is self explanatory. The initialization input data (see Section II para 3q) and the autopilot output indicators (Section II para 3r) are self explanatory. No specific staging (see Section II para 4) is needed in the glide slope except the cards at the end of the data deck (see Section II para 4g).

2. FLARE

The flare guidance laws develop a constant acceleration maneuver appropriately limited by touchdown conditions. To achieve the requested acceleration vector in general requires two control degrees of freedom (i.e., angle of attack and power). Upper and lower bounds exist on both

angle of attack and power, so a situation can exist where the requested acceleration vector is outside the control capability of the aircraft. In such a case, the control variable magnitudes used are those that give the least vector error in the requested acceleration vector. The additional input (i.e., other than that required for glide slope) for the flare is as follows:

All gear input data (see Section II para 2) is needed. In the phase begin input (see Section II para 3c) NF must be given a zero value. As previously discussed (Section II para 3c), DELTAH should always have a nonzero, positive value (i.e., like 1. ft). However, if a decrab or tail down constraint maneuver is expected, DELTAH should be large enough (note DELTAH is approximately the distance between the bottom tire surface of the main gears and the runway) to give the autopilot sufficient time to perform the required maneuver. NLRI should have the value one to stop the calculation on impact.

All flare maneuver input data (see Section II para 3f) is needed. That data requiring careful input is DA, TL, and TU. For an accurate flare α_d search, DA should be 0.01-0.02 degree, etc. DA should at least be as small as DELALA in the pitch autopilot. TL and TU determine the thrust range allowed during the flare maneuver. If the vehicle is not powered, TL and TU must be given zero values. In the hold maneuver data (see Section II para 3g), the kill engine indicator array, KE, and the tail down constraint PM are needed. Engine failure (see Section II para 3i) in the flare is staged on the runway altitudes HR1, HR2, and their associated arrays IHR1 and IHR2. In the pitch autopilot input (see Section II para 3k), PSH2, RFALP2, and DELQC2 must be added. Note that in the yaw autopilot data input, the overcontrol constants PSR and PSPSI must have opposite signs. Two stages are required to get the flare to terminate on runway impact: stage gears into program; smooth impact stage (see Section II paras 4a and 4b).

To start the problem in the flare requires the data input of HGC7F to be (Section II para 1) less than the flare altitude HF (see Section II para 3c). To start the problem in the hold mode requires the appropriate input of XRF and HRF (Section II para 3c and Reference 1, pg 182) and the input of ALPDES and TTD (Section II para 3g).

3. LANDING ROLL

The vehicle impact section of the landing roll problem is general in that it can simulate the ground impact of a rigid main structure with up to five independent oleo struts. The control logic for the landing roll, however, is specialized to aerodynamic lifting vehicles which land horizontally. Impact of unconventional aircraft and vehicles which do not land horizontally can be determined, however, under the restriction that all control variables remain fixed.

a. Horizontal Landing

If a drag chute is employed, the chute data (Section II para 3b) must be input. If the problem starts after impact, KP must have a one value (Section II para 3c) and the time of impact, TI, must be given an initial value. The indicator NLRI must have a zero value. The runway stopping conditions VS, XS, and TS must also be input.

All landing roll maneuver data (Section II para 3h) must be input. Engine failure in the landing roll is sequenced through the variables TRI and TR2 (Section II para 3i) and their associated indicator arrays ITRI and ITR2. The brake condition input data (Section II para 3j) is needed. In the pitch autopilot data (Section II para 3k), TST, DELQF, and DELFDI must be input. The brake autopilot data (Section II para 3o) is needed. Note that the MBL array should always contain zeros and that DELTAW must be small enough to give accurate control around PD (the relationship between DELTAW and PD depends on the shape of the coefficient of friction - percent skid table, FTABO3 around the value PD). The first three stages (Section II paras 4a, 4b, and 4c) are a must. The spoiler aero stage is needed if spoilers are used in the landing roll. The rest of the stages can be included at the users descretion.

AFFDL-TR-71-155 Part | | |

b. Fixed Control Variables

The usefulness of this option for unconventional vehicles (such as STOL and VSTOL) depends upon the reality of the fixed control variable assumption. A constant body oriented thrust vector can be obtained by input of DLFXP, DLFYP, and DLFZP in the SDF2 data (see pg 17) along with an INDTFF value at zero (see pg 52; this will zero the thrust received from the thrust routine). Fixed pitch, yaw, and roll trim can be obtained by eliminating all input of aerodynamic coefficients associated with elevator, rudder, and aileron deflections (note this automatically zeros these coefficient) and by appropriate input of ATAB10, ATAB24, ATAB38, ATAB51, ATAB65, and ATAB80 (see pgs 26-30). The aerodynamics can be completely deleted by an INDAER indicator value of zero (see pg 51).

4. TAKEOFF ROLL

The takeoff roll should start from a near equilibrium condition for the aircraft strut system with the engines at the takeoff throttle setting. The takeoff termination altitude, HS (Section II para 3c ~ this is normally the altitude to clear a 50~ft obstacle) is needed. The takeoff condition data (Section II para 3d) is needed. Engine failure during takeoff can be staged on the variables XRF1 and XRF2 (Section II para 3i) through their associated arrays IT1 and IT2. DELQTO must be added to the pitch autopilot (Section II para 3k). The first three stages (Section II paras 4a, 4b and 4c) are a must.

SECTION VIII

DECK SETUP

1. DECK STRUCTURE

Running the TOLA computer program requires a particular deck setup.

The deck structure is presented as a guide only in determining this setup.

An end of record (EOR) card is a 7, 8, 9 punched in column 1 and an end of job (EOJ) card is a 6, 7, 8, 9 punched in column 1.

2. CONTROL CARDS

A. Execute TOLA where TOLA is a binary file on permanent file TOLACP, Cyle 1.

(Job card)

ATTACH, TOLA, TOLACP, ID=XXXXXXX, CY=1.

TOLA.

(end of record)

[Data cards]

(end of job)

B. Execute TOLA where TOLA is a binary file on permanent file TOLACP, Cycle 1; generate a data tape; and generate a CALCOMP plot tape from the data tape. The plot program is a binary file on permanent file TOLAPLT, Cycle 1.

(Job card)

ATTACH, TOLA, TOLACP, ID=XXXXXXX, CY=1.

LABEL, TAPE 13, W, L, = PLTDATA, VSN=LXXXXX. RING IN

TOLA.

REWIND, TAPE 13.

REQUEST, TAPE7, HI, N, VSN=LXXXXX. RING IN

ATTACH, PLTOLA, TOLAPLT, ID=XXXXXXXX, CY=1.

PLTOLA.

(end of record)

[Data cards for TOLA]
(end of record)
[Data cards for PLTOLA]
(end of job)

C. If the TOLA computer program is on MT, replace the "ATTACH,TOLA, TOLACP, ID=XXXXXXX,CY=1." card with the following card in examples a and b above:

REQUEST, TOLA, MT, E, VSN=LXXXXX. RING OUT

3. CALCOMP PLOTTING INPUT

The following data is required in order to generate CALCOMP plots by the PLOT Tape Generating Program (PLTOLA).

- A. Data somerated on file TAPE13 (disk or tape) by TOLA. The input required by TOLA to generate data on file TAPE13 is described in V.3.s., page 64.
- B. The following may be read from cards on the input file using the NAMELIST feature of Fortran Extended with the group name of INPUT. If the value of any variable is the same as its nominal value, it is not necessary to read it as input.

AFFDL-TR-71-155 Part III

VARIABLE	NOMINAL		
NAME	VALUES	VALUES	DESCRIPTION
NCASES	1		Number of sets of data or cases to be plotted
ISDFR	1	0	Rigid body data is stored on tape Rigid body data is not stored on tape
ISDF	0	0	Do not plot rigid body data Plot rigid body data
ISTPR(i)	1	0	Landing gear data for gear i is stored on tape Landing gear data for gear i is not stored on tape
ISTPL(i)	0	0	Do not plot landing gear data for landing gear i. Do plot landing gear data for landing gear i.
IL	0	0 1	Do plot lower chamber pressure and 2nd piston plots. Do not plot lower chamber pressure and 2nd piston plots.
TFIRST	0.		Trajectory time to begin plotting
TLAST	0.		Trajectory time to stop plotting If both TFIRST=TLAST=0., the entire time history on tape will be plotted.
PLTINT	1	K	Plot every Kth point
FCTR	1.0		The current factor all coordinates are multiplied by. That is, the plot is made larger or smaller if FCTR is greater than 1. or less than 1. For example, if it is desired that the plots to be 25% of the original size, let FCTR=.25
XL	7.2		Length of X-axis of plot in inches
YL	5.0		Length of Y-axis of plot in inches

- C. Some examples of data input are as follows:
- (1) Example No. 1. Plot rigid body variables and landing gear variables for gears 1, 3, and 5. Plot every point, and plot entire time history. Assume rigid body and landing gear variables for gears 1,3, and 5 are stored on TAPE13. The input will be as follows:

\$INPUT ISDF=1, ISTPR=1,0,1,0,1, ISTPL=1,0,1,0,1\$

(2) Example No. 2. Plot landing gear variables for gear No. 3. Plot every other point from time = 4. to time = 10. seconds. Assume rigid body and landing gear variables for gears 1,2,3,4, and 5 are stored on TAPE13 for time = 0 to 20. seconds. The input will be as follows:

\$INPUT ISTPL(3)=1, YFIRST=4., TLAST=10., PLTINT=2\$

(3) Example No. 3. Plot rigid body variables and landing gear variables for gear No. 5. Plot every point and plot entire time history. Assume rigid body and landing gear variables for gears 1,3, and 5 are stored on tape 13. Desire that the size of graphs to be 50% of the original size where the original size of the X-axis is 8 inches and the Y-axis is 6 inches. The input will be as follows:

\$INPUT ISDF=1, ISTPR=1,0,1,0,1,1STPL(5)=1,XL=8.,YL=6.,FCTR=.5\$

REFERENCE

 AFFDL-TR-71-155, Urban H. D. Lynch, Captain, USAF, and Dueweke, John J., "Takeoff and Landing Analysis Computer Program; Part II -Problem Formulation," June, 1971, Air Force Flight Dynamics Laboratory, Wright-Patterson AFB, Ohio.