AMENDMENTS TO THE CLAIMS

1-45. Cancell d.

- 46. **(Previously Presented)** A cationic vinyl addition polymer comprising in polymerized form
- (a) at least one non-ionic monomer having a non-aromatic hydrophobic monomer:
- (b) at least one cationic monomer; and
- (c) (meth)acrylamide;

wherein the cationic vinyl addition polymer is prepared from a monomer mixture comprising from 75 to 95 mole% of (meth)acrylamide;

(a) said at least one non-ionic monomer having a non-aromatic hydrophobic group comprising a monomer represented by the general formula (IV)

$$CH_2 = C - R_1$$
 R_8 (IV)
 $O = C - A - B - N$
 R_9

wherein R_1 is H or CH_3 ; A and B represent a single bond between C and N (O=C–NR₈R₉); R_8 and R_9 are each H or a substituent containing an alkyl group having from 1 to 6 carbon atoms, at least one of R_8 and R_9 being a substituent containing an alkyl group having from 2 to 6 carbon atoms;

- (b) said at least one cationic monomer comprising a cationic monomer selected from the group consisting of:
 - (i) cationic monomers represented by the general formula (I):

$$CH_2 = C - R_1$$
 R_2 (I)
 $O = C - A - B - N^+ - R_4$ $X^ R_3$

wherein R_1 is H or CH_3 ; R_2 and R_3 are each H or an alkyl group having from 1 to 3 carbon atoms; A is O or NH; B is an alkylene group of from 2 to 4 carbon atoms or a hydroxy propylene group; R_4 is a non-aromatic hydrocarbon group containing from 4 to 8 carbon atoms; and X^- is an anionic counterion;

(ii) cationic monomers represented by the general formula (III):

$$CH_2 = C - R_1$$
 R_2 (III)
 $O = C - A - B - N^+ - R_7$ X^-
 R_3

wherein R_1 is H or CH_3 ; R_2 and R_3 are each H or an alkyl group having from 1 to 3 carbon atoms; A is O or NH; B is an alkylene group of from 2 to 4 carbon atoms, or a hydroxy propylene group; R_7 is H, an alkyl group having from 1 to 3 carbon atoms, a benzyl group or a phenylethyl group; and X^- is an anionic counterion;

- (iii) and mixtures thereof.
- 47. **(Original)** The cationic vinyl addition polymer of claim 46, wherein the (meth)acrylamide is acrylamide.

48-51. Cancelled.

- 52. **(Original)** The cationic vinyl addition polymer of claim 46, wherein the non-aromatic hydrophobic group is an alkyl group selected from n-propyl, iso-propyl, n-butyl, iso-butyl and t-butyl.
- 53. (Original) The cationic vinyl addition polymer of claim 46, wherein the cationic vinyl addition polymer comprises in polymerized form a cationic monomer represented by the general formula (I):

$$CH_{2} = C - R_{1} \qquad R_{2}$$

$$| \qquad | \qquad |$$

$$O = C - A - B - N^{+} - R_{4} \quad X^{-}$$

$$| \qquad |$$

$$R_{3}$$

wherein R_1 is H or CH_3 ; R_2 and R_3 are each H or an alkyl group having from 1 to 3 carbon atoms; A is O or NH; B is an alkylene group of from 2 to 4 carbon atoms or a hydroxy propylene group; R_4 is a non-aromatic hydrocarbon group containing from 4 to 8 carbon atoms; and X^- is an anionic counterion.

54. Cancelled.

55. (**Previously Presented**) The cationic vinyl addition polymer of claim 46, wherein the cationic vinyl addition polymer is prepared from a monomer mixture comprising from 5 to 25 mole% of non-ionic monomer having a non-aromatic hydrophobic group, and from 95 to 75 mole% of at least one cationic monomer and (meth)acrylamide.

(New) The cationic vinyl addition polymer of claim 46, wherein the cationic vinyl addition polymer comprises in polymerized form a cationic monomer represented by the general formula (I):

$$CH_2 = C - R_1$$
 R_2 (I)
 $O = C - A - B - N^+ - R_4$ X^-
 R_3

wherein R_1 is H or CH_3 ; R_2 and R_3 are each H or an alkyl group having from 1 to 3 carbon atoms; A is O or NH; B is a hydroxy propylene group; R_4 is a non-aromatic hydrocarbon group containing from 4 to 8 carbon atoms; and X^- is an anionic counterion.

57. **(New)** The cationic vinyl addition polymer of claim 46, wherein the cationic vinyl addition polymer comprises in polymerized form a cationic monomer represented by the general formula (III):

$$CH_2 = C - R_1$$
 R_2 (III)
 $O = C - A - B - N^+ - R_7$ X^-
 R_3

wherein R_1 is H or CH_3 ; R_2 and R_3 are each H or an alkyl group having from 1 to 3 carbon atoms; A is O or NH; B is a hydroxy propylene group; R_7 is H, an alkyl group having from 1 to 3 carbon atoms, a benzyl group or a phenylethyl group; and X^- is an anionic counterion.