GIET UNIVERSITY, GUNUPUR – 765022

B. Tech (First Semester) Regular Examinations, January - 2024

23BBSES10002 - Elements of Mechanical Engineering

(Common to all branches)

Time: 3 hrs Maximum: 60 Marks

	• 41	• 1 4 1		• 1• 4 1 1
/ I ha figures	in the	riaht hana	1 marain	indicate marks)
THE HEULES	111 1111	. Hiziit Haii	ı maizm	mulcale mainst
(· 	

PART – A		$(2 \times 5 = 10 \text{ Marks})$		
Q.1	. Answer ALL questions	CO#	Blooms Level	
a.	What is the free body diagram? Explain it with a suitable example.	CO1	K2	
b.	Differentiate between static and dynamic friction.	CO2	K1	
c.	Define intensive and extensive properties with examples.	CO3	K1	
d.	What is a PMM1? Why is it impossible?	CO4	K2	
e.	Write down the various benefits of industrial robot	CO6	K2	

PART - B (10 x 5 = 50 Marks)

Answer ALL questions Marks

Blooms Level

2. a. An Electric light fixture weighing 15N hangs from a point C, by two strings AC and BC. AC is inclined at 60° to the horizontal and BC at 45° to the vertical as shown in figure, Determine the forces in the strings AC and BC

5 CO1 K3

CO#

b. Find the Reaction at A and B.

5 CO1 K3

c. Determine the reaction and the forces in each member of a simple triangle truss supporting two loads as shown in figure.

10 co1

K3

3.a. Block A weighing 1000N rests over block B which weights 2000N as shown in figure. Block A is tied to wall with a horizontal string. If the coefficient of friction between A and B is 1/4 and between B and floor is 1/3, what should be the value of P to move the block B, if P is applied horizontally.

- b. Define angle of friction, angle of repose, coefficient of friction with a suitable sketch.
 - 5 соз кз

CO2

K3

5

(OR)

c. Find the centroid of the lamina as shown in Figure.

5 CO2 K3

d. Two blocks A and B of weight 4KN and 2KN respectively are in equilibrium position as shown in figure. Coefficient of friction for both surfaces are same as 0.25, make calculations for the force P required to move the block A.

5 CO3 K3

4.a. What is Heat Transfer? Explain different modes of heat transfer.

5 CO4

K2

b.	A vessel of capacity 5m ³ contains oxygen at 2bar, 45°C. Calculate the mass of the oxygen.	5	CO4	К3
	(OR)			
c.	If a gas of volume 6000 cm^3 and at pressure of 100 kPa is compressed quasistatically according to $pV^2 = \text{constant}$ until the volume becomes 2000 cm^3 , determine the final pressure, work transfer, Heat Transfer, Change in internal Energy and Change in Enthalpy.	10	CO4	К3
5.a.	With neat sketch Explain the working principle of 4 stroke IC engine?	10	CO5	K2
	(OR)			
b.	A turbine operates under steady flow condition receiving air at pressure 15 bar, internal energy 2700 kJ/kg, specific volume 0.17 m³/kg and velocity 100 m/sec. Exhaust air from the turbine is at 0.1 bar with internal energy 2175 kJ/kg, specific volume 15 m³/kg and velocity 300 m/sec. The turbine develops 35 kw and heat lost over the surface of turbine is 20 kJ/kg. Determine the air flow rate through the turbine.	10	CO5	К3
6.a.	Convert the following reading of pressure to Kpa assuming that the Barometers reading in 760 mm of Hg i) 40 cm of HG vacuum ii) 1.2 met of H ₂ O gauge	6	CO6	К3
b.	Find the surface tension in a soap bubble of 40 mm diameter, when the inside pressure is 0.5 N/m ² above atmospheric pressure. (OR)	4	CO6	K3
c.	Explain briefly about the basic components of CNC Machine.	5	CO6	K2
d.	Write A note on "Flexible Manufacturing System (FMS)".	5	CO6	K2

--- End of Paper ---