```
import numpy as np
import pandas as pd
import os
```

```
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn import svm
from sklearn.metrics import accuracy_score
from sklearn.neighbors import KNeighborsClassifier
from sklearn import metrics
from sklearn.model_selection import cross_val_score
from sklearn import preprocessing
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
import joblib
from sklearn.metrics import accuracy_score
```

df = pd.read_csv("/content/collegePlace.csv")
df.head()

	Age	Gender	Stream	Internships	CGPA	Hostel	HistoryOfBacklogs	Placed0r
0	22	Male	Electronics And Communication	1	8	1	1	
1	21	Female	Computer Science	0	7	1	1	
2	22	Female	Information Technology	1	6	0	0	
4)

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2966 entries, 0 to 2965
Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype
0	Age	2966 non-null	int64
1	Gender	2966 non-null	object
2	Stream	2966 non-null	object
3	Internships	2966 non-null	int64
4	CGPA	2966 non-null	int64
5	Hostel	2966 non-null	int64
6	HistoryOfBacklogs	2966 non-null	int64
7	PlacedOrNot	2966 non-null	int64

dtypes: int64(6), object(2)
memory usage: 185.5+ KB

```
df.isnull().sum()
```

Age	0	
Gender	0	
Stream	0	
Internships	0	
CGPA	0	
Hostel	0	
HistoryOfBacklogs	0	
PlacedOrNot		
dtype: int64		

```
def transformationplot(feature):
   plt.figure(figsize=(12,5))
   plt.subplot(1,2,1)
   sns.distplot(feature)
transformationplot(np.log(df['Age']))
```

<ipython-input-6-1af2f448342d>:4: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(feature)


```
df = df.replace(['male'],[0])
df = df.replace(['Female'],[1])
```

df = df.replace(['Computer Science','Information Technology','Electronics And Communicatio

df = df.drop(['Hostel'],axis=1)

df

	Age	Gender	Stream	Internships	CGPA	HistoryOfBacklogs	PlacedOrNot
0	22	Male	2	1	8	1	1
1	21	1	0	0	7	1	1
2	22	1	1	1	6	0	1
3	21	Male	1	0	8	1	1
4	22	Male	3	0	8	0	1
2961	23	Male	1	0	7	0	0
2962	23	Male	3	1	7	0	0
2963	22	Male	1	1	7	0	0
2964	22	Male	0	1	7	0	0
2965	23	Male	5	0	8	0	1

2966 rows × 7 columns

```
plt.figure(figsize=(12,5))
plt.subplot(121)
sns.distplot(df['CGPA'],color='r')
```

<ipython-input-11-f92659182652>:3: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(df['CGPA'],color='r')
<Axes: xlabel='CGPA', ylabel='Density'>

plt.figure(figsize=(12,5))
plt.subplot(121)
sns.distplot(df['PlacedOrNot'],color='r')

<ipython-input-12-5e468beb8a0d>:3: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with #plotting the count plot plt.figure(figsize=(20,5))

plt.subplot(1,4,1)

sns.countplot(x=df["Gender"])

plt.show()


```
plt.figure(figsize=(20,5))
plt.subplot(131)
sns.countplot(df['PlacedOrNot'],x=df['CGPA'])
```

<Axes: xlabel='PlacedOrNot', ylabel='count'>

sns.countplot(df['PlacedOrNot'],x=df['Stream'])

<Axes: xlabel='PlacedOrNot', ylabel='count'>

performing feature scaling operation using standard scalar as x part of the dataset # there different type of values in the columns sc=StandardScaler()

```
x = df['PlacedOrNot']
y = df['CGPA']

x_train,x_test,y_train,y_test = train_test_split(x,y,test_size = 0.4,stratify = x,random_s

classifier = Sequential()
#add input layer and first hidden layer
classifier.add(keras.layers.Dense (6, activation = 'relu', input_dim = 6))
```

classifier.add(keras.layers.Dropout (0.50))

#add 2nd hidden layer

```
classifier.add(keras.layers.Dense (6, activation = 'relu'))
classifier.add(keras.layers.Dropout (0.50))
#final or output layer
classifier.add(keras.layers.Dense (1, activation = 'sigmoid'))
 #Compiling the model
loss_1 = tf. keras.losses.BinaryCrossentropy()
classifier.compile(optimizer = "Adam", loss = loss_1, metrics = ['accuracy'])
#fitting the model
classifier.fit(x_train, Y_train, batch_size = 20, epochs = 100)
classifier = svm.SVC(kernel='linear')
classifier.fit(x_train,y_train)
x_train_prediction = classifier.predict(x_train)
training_data_accuracy = accuracy_score(x_train_prediction,x_train)
print('Accuracy score of the training data:', training_data_accuracy)
best k = {"Regular":0}
best_score= {"Regular":0}
for k in range(3, 50, 2):
## Using Regular training set
knn temp = KNeighborsClassifier(n neighbors=k)
                                                                          #Instantiate the
knn temp.fit(X train, Y train)
                                                                          # Fit the model t
knn_temp_pred = knn_temp.predict(X_test)
                                                                          # Predict on the
score = metrics.accuracy score (Y test, knn temp pred)*100
                                                                          # Get accuracy
if score >= best_score["Regular"] and score < 100:
                                                                          # Store best para
  best_score["Regular"] = score
   best_k["Regular"] = k
## Instantiate the models
knn = KNeighborsClassifier(n_neighbors=best_k["Regular"])
## Fit the model to the training set
knn.fit(X train, Y train)
knn_pred = knn.predict(X_test)
testd = accuracy_score (knn_pred, Y_test)
import tensorflow as tf
from tensorflow import keras
```

```
from keras.models import Sequential
from tensorflow.keras import layers
classifier = Sequential()
#add input layer and first hidden layer
classifier.add(keras.layers.Dense (6, activation = 'relu', input_dim = 6))
classifier.add(keras.layers.Dropout (0.50))
#add 2nd hidden layer
classifier.add(keras.layers.Dense (6, activation = 'relu'))
classifier.add(keras.layers.Dropout (0.50))
#final or output layer
classifier.add(keras.layers.Dense (1, activation = 'sigmoid'))
                                               Traceback (most recent call last)
     NameError
     <ipython-input-9-b6b12966572d> in <cell line: 1>()
     ----> 1 classifier = Sequential()
           3
           4 #add input layer and first hidden layer
           5 classifier.add(keras.layers.Dense (6, activation = 'relu', input_dim = 6))
     NameError: name 'Sequential' is not defined
      SEARCH STACK OVERFLOW
 #Compiling the model
loss_1 = tf. keras.losses.BinaryCrossentropy()
classifier.compile(optimizer = "Adam", loss = loss_1, metrics = ['accuracy'])
     NameError
                                               Traceback (most recent call last)
     <ipython-input-5-052ca7f92f47> in <cell line: 3>()
           1 #Compiling the model
     ----> 3 loss_1 = tf. keras.losses.BinaryCrossentropy()
           5 classifier.compile(optimizer = "Adam", loss = loss_1, metrics =
     ['accuracy'])
     NameError: name 'tf' is not defined
     SEARCH STACK OVERFLOW
#fitting the model
classifier.fit(x train, y train, batch size = 20, epochs = 100)
```

• 0s completed at 8:59 PM