

AO4801

Dual P-Channel Enhancement Mode Field Effect Transistor

General Description

The AO4801 uses advanced trench technology to provide excellent $R_{DS(ON)}$, low gate charge and operation with gate voltages as low as 2.5V. This device is suitable for use as a load switch or in PWM applications. It may be used in a common drain arrangement to form a bidirectional blocking switch.

Features

 $V_{DS}(V) = -30V$

 $I_D = -5 A$

 $R_{DS(ON)}$ < 49m Ω (V_{GS} = -10V)

 $R_{DS(ON)}$ < 64m Ω (V_{GS} = -4.5V)

 $R_{DS(ON)}$ < 120m Ω (V_{GS} = -2.5V)

Parameter Drain-Source Voltage Gate-Source Voltage		Symbol	Maximum	Units	
		V _{DS}	-30	V	
		V _{GS}	±12		
Continuous Drain	T _A =25°C		-5		
Current ^A	T _A =70°C	I_D	-4.2	Α	
Pulsed Drain Current ^B		I _{DM}	-30		
	T _A =25°C	P _D	2	W	
Power Dissipation A	T _A =70°C	l D	1.44	VV	
Junction and Storage Temperature Range		T _J , T _{STG}	-55 to 150	°C	

Thermal Characteristics							
Parameter	Symbol	Тур	Max	Units			
Maximum Junction-to-Ambient ^A	t ≤ 10s	В	48	62.5	°C/W		
Maximum Junction-to-Ambient ^A	Steady-State	$R_{\theta JA}$	74	110	°C/W		
Maximum Junction-to-Lead ^C	Steady-State	$R_{ heta JL}$	35	40	°C/W		

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units		
STATIC PARAMETERS								
BV _{DSS}	Drain-Source Breakdown Voltage	$I_D = -250 \mu A, V_{GS} = 0 V$	-30			V		
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =-24V, V _{GS} =0V			-1	μА		
יטכט	Zero Gate Voltage Brain Guirent	T _J =55°C	;		-5	μΑ		
I_{GSS}	Gate-Body leakage current	V _{DS} =0V, V _{GS} =±12V			±100	nA		
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$ $I_{D}=-250\mu A$	-0.7	-1	-1.3	V		
$I_{D(ON)}$	On state drain current	V _{GS} =-4.5V, V _{DS} =-5V	-25			Α		
		V _{GS} =-10V, I _D =-5A		42.5	49	mΩ		
R _{DS(ON)}	Static Drain-Source On-Resistance	T _J =125°C	;		74	11122		
	Static Drain-Source On-Nesistance	V_{GS} =-4.5V, I_D =-4A		54	64	mΩ		
		V_{GS} =-2.5V, I_D =-1A		80	120	mΩ		
g FS	Forward Transconductance	V_{DS} =-5V, I_D =-5A	7	11		S		
V_{SD}	Diode Forward Voltage	I _S =-1A,V _{GS} =0V		-0.75	-1	V		
I_S	Maximum Body-Diode Continuous Curr			-3	Α			
DYNAMIC	PARAMETERS		•	•	•	•		
C _{iss}	Input Capacitance			952		pF		
C _{oss}	Output Capacitance	V_{GS} =0V, V_{DS} =-15V, f=1MHz		103		pF		
C _{rss}	Reverse Transfer Capacitance			77		pF		
R_g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz		5.9		Ω		
SWITCHI	NG PARAMETERS							
Q_g	Total Gate Charge			9.5		nC		
Q_{gs}	Gate Source Charge	V_{GS} =-4.5V, V_{DS} =-15V, I_{D} =-5A		2		nC		
Q_{gd}	Gate Drain Charge			3.1		nC		
$t_{D(on)}$	Turn-On DelayTime			12		ns		
t _r	Turn-On Rise Time	V_{GS} =-10V, V_{DS} =-15V, R_L =3 Ω ,		4		ns		
$t_{D(off)}$	Turn-Off DelayTime	R_{GEN} =6 Ω		37		ns		
t _f	Turn-Off Fall Time			12		ns		
t _{rr}	Body Diode Reverse Recovery Time	I _F =-5A, dI/dt=100A/μs		21		ns		
Q_{rr}	Body Diode Reverse Recovery Charge	I _F =-5A, dI/dt=100A/μs		13		nC		

A: The value of R_{0JA} is measured with the device mounted on $1in^2$ FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The value in any a given application depends on the user's specific board design. The current rating is based on the t≤ 10s thermal resistance rating.

B: Repetitive rating, pulse width limited by junction temperature.

C. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to lead R $_{\theta JL}$ and lead to ambient.

D. The static characteristics in Figures 1 to 6,12,14 are obtained using $80\,\mu s$ pulses, duty cycle 0.5% max.

E. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The SOA curve provides a single pulse rating.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 7: Gate-Charge Characteristics

Figure 8: Capacitance Characteristics

Figure 9: Maximum Forward Biased Safe Operating Area (Note E)

Figure 10: Single Pulse Power Rating Junction-to-Ambient (Note E)

Figure 11: Normalized Maximum Transient Thermal Impedance

SO-8 Package Data

	DIMENSIONS IN MILLIMETERS			DIMENSIONS IN INCHES			
SYMBOLS	MIN	NOM	MAX	MIN	NOM	MAX	
A	1.45	1.50	1.55	0.057	0.059	0.061	
A1	0.00		0.10	0.000		0.004	
A2		1.45			0.057		
b	0.33		0.51	0.013		0.020	
С	0.19		0.25	0.007		0.010	
D	4.80		5.00	0.189		0.197	
E1	3.80		4.00	0.150		0.157	
e	1.27 BSC			0.050 BSC			
Е	5.80		6.20	0.228		0.244	
h	0.25		0.50	0.010		0.020	
L	0.40		1.27	0.016		0.050	
aaa			0.10			0.004	
θ	0°		8°	0°		8°	

- NOTE: 1. LEAD FINISH: 150 MICROINCHES (3.8 um) MIN. THICKNESS OF Tin/Lead (SOLDER) PLATED ON LEAD 2. TOLERANCE ±0.100 mm (4 mil) UNLESS OTHERWISE SPECIFIED

- 3. COPLANARITY : 0.1000 mm 4. DIMENSION L IS MEASURED IN GAGE PLANE

PACKAGE MARKING DESCRIPTION

NOTE:

AOS LOGO PARTN - PART NUMBER CODE.
F - FAB LOCATION
A - ASSEMBLY LOCATION
Y - YEAR CODE

- WEEK CODE. - ASSEMBLY LOT CODE

SO-8 PART NO. CODE

PART NO.	CODE	PART NO.	CODE	PART NO.	CODE
AO4400	4400	AO4800	4800	AO4700	4700
AO4401	4401	AO4801	4801	AO4701	4701

RECOMMENDED LAND PATTERN

UNIT: mm

