## 15 - Mar 6 Lecture

- Ai(b)
- Cramer's Rule
- 2 methods of finding the value at i,j of the inverse of a matrix
- 1) Replacing column with standard basis vector
  - 2) Using submatrices
- Parallelopipes
- Volume of an n-dimensional parallelopipe
- Visual representation of EROs on a rectangle
- VOL (T(s))

| Addition to last lecture | Assuming A, B, C, D square: $Det(ABC) = Det((AB)C) = Det(AB) Det(C) = Det(A) Det(B) Det(C)$                                                                                                                                                                                                          |  |  |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                          |                                                                                                                                                                                                                                                                                                      |  |  |
|                          | $Det(D_1 \times D_2 \times \times D_k) = Det(D_1) \times \times Det(D_k) \leftarrow general form$                                                                                                                                                                                                    |  |  |
|                          | Det(AB) = Det(BA)                                                                                                                                                                                                                                                                                    |  |  |
|                          | For those who understand dot/cross products for 3x3 matrices:                                                                                                                                                                                                                                        |  |  |
|                          | $\longrightarrow$ Det(D)= $\vec{a} \cdot (\vec{b} \times \vec{c})$ if $\vec{a}$ , $\vec{b}$ , $\vec{c}$ are the columns or rows (in order) of a matrix D.                                                                                                                                            |  |  |
|                          |                                                                                                                                                                                                                                                                                                      |  |  |
| A; (b)                   | For a nxn matrix A and length n column vector b, Ai (b) is the matrix obtained by                                                                                                                                                                                                                    |  |  |
|                          | replacing column i of A with b                                                                                                                                                                                                                                                                       |  |  |
| Ex:                      | Given A and $\vec{b}$ , what is: a) $A_1(\vec{b})$ ? b) $A_2(\vec{b})$ ?                                                                                                                                                                                                                             |  |  |
|                          |                                                                                                                                                                                                                                                                                                      |  |  |
|                          | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                               |  |  |
|                          | 7 8 9 13 13 8 9 7 8 13                                                                                                                                                                                                                                                                               |  |  |
|                          |                                                                                                                                                                                                                                                                                                      |  |  |
| Cramer's Rule            | Let A be an invertible nxn matrix. The solution to the matrix vector product                                                                                                                                                                                                                         |  |  |
| orumer g mane            | $A\vec{x} = \vec{b}$ is:                                                                                                                                                                                                                                                                             |  |  |
|                          | f 7                                                                                                                                                                                                                                                                                                  |  |  |
|                          | $\vec{X} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \end{bmatrix}$ with $x_i = \frac{\text{Det}(A_i(\vec{b}))}{\text{Det}(A)}$ for all $i = 1,, n$                                                                                                                                                       |  |  |
|                          | $\vec{X} = \begin{bmatrix} \hat{X} \\ i \end{bmatrix}$ with $X_i = \frac{\text{Det}(A)}{\text{Det}(A)}$ for all $i = 1,, n$                                                                                                                                                                          |  |  |
|                          | Y.,                                                                                                                                                                                                                                                                                                  |  |  |
|                          | [ ^n ]                                                                                                                                                                                                                                                                                               |  |  |
| E., 4                    | Need to calculate Y and Y                                                                                                                                                                                                                                                                            |  |  |
| EX. 1                    | Use Cramer's Rule to find $\vec{x}$ . Need to calculate $x_1$ and $x_2$ $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}  \vec{b} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}  \vec{X} = \begin{bmatrix} \frac{x_1}{x_2} \\ 2 \end{bmatrix} = \begin{bmatrix} -2 \\ 2 \end{bmatrix}$                     |  |  |
|                          | $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ $\overrightarrow{b} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$ $\overrightarrow{X} = \begin{bmatrix} x_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$                                                                                |  |  |
|                          |                                                                                                                                                                                                                                                                                                      |  |  |
|                          | [7                                                                                                                                                                                                                                                                                                   |  |  |
|                          | Det 2 4 [(2)(#2-(2)(2)] 8 #                                                                                                                                                                                                                                                                          |  |  |
|                          | $\chi_1 = \frac{\text{Det}(A_1(b))}{\text{Net}(A)} = \frac{[2+1]}{[2+1]} = \frac{[2+1]}{[2+1]} = \frac{8+4}{4-6} = \frac{4}{-2} = -2$                                                                                                                                                                |  |  |
|                          | $\chi_{1} = \frac{\text{Det}(A_{1}(\vec{b}))}{\text{Det}(A)} = \frac{\text{Det}\begin{bmatrix}2 & 2\\ 2 & 4\end{bmatrix}}{\text{Det}\begin{bmatrix}1 & 2\\ 3 & 4\end{bmatrix}} = \frac{[(2)(4) - (2)(2)]}{[(1)(4) - (2)(3)]} = \frac{8 - 4}{4 - 6} = \frac{4}{-2} = -2$                              |  |  |
|                          |                                                                                                                                                                                                                                                                                                      |  |  |
|                          | r. al                                                                                                                                                                                                                                                                                                |  |  |
|                          | Det   2   [(1)(2) - (2)(2)]                                                                                                                                                                                                                                                                          |  |  |
|                          | $\chi_2 = \frac{\text{perc}(A_2(b))}{\text{Der}(A)} = \frac{\begin{bmatrix} 3 & 2 \end{bmatrix}}{\begin{bmatrix} 1 & 2 \end{bmatrix}} = \frac{\begin{bmatrix} (1)(2) - (2)(3) \end{bmatrix}}{\begin{bmatrix} 1 & 2 \end{bmatrix}} = \frac{2 - 6}{4 - 6} = \frac{-4}{-2} = 2$                         |  |  |
|                          | $X_{2} = \frac{\text{Det}(A_{2}(\vec{b}))}{\text{Det}(A)} = \frac{\text{Det}\begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix}}{\text{Det}\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}} = \frac{\left[ (1)(2) - (2)(3) \right]}{\left[ (1)(4) - (2)(3) \right]} = \frac{2 - 6}{4 - 6} = \frac{-4}{-2} = 2$ |  |  |
|                          | [3 4]                                                                                                                                                                                                                                                                                                |  |  |
|                          |                                                                                                                                                                                                                                                                                                      |  |  |
|                          |                                                                                                                                                                                                                                                                                                      |  |  |
|                          |                                                                                                                                                                                                                                                                                                      |  |  |

| Ex.2:                   | Use Cramer's Rule to find x.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         | [3 -2 1] [1] [X <sub>1</sub> ] [3/8]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                         | $A\vec{X} = \vec{b} \text{ with } A = \begin{bmatrix} 3 & -2 & 1 \\ 1 & 1 & -1 \end{bmatrix} \text{ and } \vec{b} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & $ |
|                         | [020] [1] [X <sub>3</sub> ] [7/8]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                         | Det(A) = 8 Det(A <sub>2</sub> ( $\overrightarrow{b}$ )) = Det $\begin{bmatrix} 1 & -2 & 1 \\ 0 & 1 & -1 \\ 1 & 2 & 0 \end{bmatrix}$ = 3 $X_1 = \frac{Det(A_2(\overrightarrow{b}))}{Det(A)} = \frac{3}{8}$ (Skipped finding the det) $\begin{bmatrix} 1 & 2 & 1 \\ 1 & 2 & 0 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                         | $Det(A) = 8$ $Det(A_1(\vec{b})) = Det(0   -1) = 3$ $X_1 = \frac{Det(A_1(\vec{b}))}{2} = \frac{3}{8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                         | (Skipped finding the det) to save space                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                         | $Det(A_{2}(\vec{b})) = Det\begin{bmatrix} 3 & 1 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix} = 4 \qquad X_{2} = \frac{Det(A_{2}(\vec{b}))}{Det(A)} = \frac{4}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                         | $Det(A_2(\vec{b})) = Det   0 - 1   = 4 $ $X_2 = \frac{Det(A_2(\vec{b}))}{2} = \frac{4}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                         | 0 1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                         | $Det(A_3(\vec{b})) = Det\begin{bmatrix} 3 & -2 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = 7 \qquad x_3 = \frac{Det(A_3(\vec{b}))}{Det(A)} = \frac{7}{8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                         | 0 2 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Finding Inverse at i,j  | This is a way to find the value at i,j when A is inverted. This method is ideal for finding a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (using standard basis   | specific value of $A^{-1}$ , but it should <u>NOT</u> be used to find $A^{-1}$ in its entirety.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| vector)                 | (A-1) i, j = Det(Ai(êj)) standard basis vector vector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                         | i,j <sup>th</sup> entry of A <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                         | note the order                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Alternative Formula for | $(B^{-1})_{i,j} = (-1)^{i+j} \xrightarrow{\text{Det}(B(i,i))} \leftarrow \text{Recall} : B(i,j) \text{ is } B \text{ with row } i \text{ and column } j \text{ removed (submatrix)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Finding Inverse at i,j  | (B) <sub>i,j</sub> Det(B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (using submatrix)       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Ex 1:                   | Given A, find (A-1)2,1 using method 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                         | [1 -3 2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                         | $A = \begin{bmatrix} 1 & -3 & 2 \\ 1 & -1 & 1 \\ 2 & 0 & 0 \end{bmatrix}$ Det(A) = -2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                         | $ (A^{-1})_{2,1} = \frac{\text{Det}(A_2(\vec{e}_2))}{\text{Det}(A)} = \frac{\text{Det}\begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \\ 2 & 0 & 0 \end{bmatrix}}{-2} = \frac{2}{-2} = -1 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                         | $\begin{bmatrix} (A^{-1}) & Det(A_2(\vec{e}_3)) & Det \begin{bmatrix} 2 & 0 & 0 \end{bmatrix} & 2 & -1 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                         | Det(A) -2 -2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                         | e <sub>1</sub> in 2nd col                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                         | Find $(A^{-1})_{2,2}$ using method 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                         | Find $(A^{-1})_{2,1}$ using method 2. $(A^{-1})_{2,1} = (-1)^{i+j} \frac{\text{Det}(A(j,i))}{\text{Det}(A)} = (-1)^{2+1} \frac{\text{Det}(A(1,2))}{-2} = (-1)^3 \frac{\text{Det}\begin{bmatrix}1 & 1 \\ 2 & 0\end{bmatrix}}{-2} = (-1)\frac{(1)(0)-(1)(2)}{-2} = (-1)^{\frac{-2}{2}} = -1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

Ex 2: Given A and Det(A), what is 
$$A^{-1}$$
? (just to show concept – will never use this to find entire inverse)
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
Det(A) = ad-bc = (1)(4) - (2)(3) = 4 - 6 = -2

$$(A^{-1})_{1,1} = \frac{\text{Det}(A_1(\vec{e}_1))}{\text{Det}(A)} = \frac{\text{Det}\begin{bmatrix}1 & 2\\ 0 & 4\end{bmatrix}}{-2} = \frac{(1)(4)-(2)(0)}{-2} = \frac{4}{-2} = -2$$

$$(A^{-1})_{1,2} = \frac{\text{Det}(A_1(\vec{e}_2))}{\text{Det}(A)} = \frac{\text{Det}\begin{bmatrix}0 & 2\\1 & 4\end{bmatrix}}{-2} = \frac{(0)(4) - (2)(1)}{-2} = \frac{-2}{-2} = 1$$

$$(A^{-1})_{2,1} = \frac{\text{Det}(A_2(\vec{e_i}))}{\text{Det}(A)} = \frac{\text{Det}\begin{bmatrix}1\\3\\0\end{bmatrix}}{-2} = \frac{(1)(0) - (1)(3)}{-2} = \frac{-3}{-2} = \frac{3}{2}$$

$$(A^{-1})_{2,2} = \frac{\text{Det}(A_2(\vec{e}_2))}{\text{Det}(A)} = \frac{\text{Det}\begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix}}{-2} = \frac{(1)(1)-(0)(3)}{-2} = \frac{1}{-2} = -\frac{1}{2} \implies A^{-1} = \begin{bmatrix} -2 & 1 \\ 3/2 & -1/2 \end{bmatrix}$$

$$e_2 \text{ in 2nd col}$$

Parallelopipe and vol (parallelopipe)

If A is a nxn matrix, then the n-dimensional volume of the n-dimensional parallelopipe defined by the columns of A is Det(A).

2D parallelopipe (parallelogram)

3D parallel opipe





Why does volume = | Det(A) | ?

Let's look at a 2D case, a rectangle.

This rectangle is created by the vectors [a], [o] — yaxis

We know that Area of Rectangle = | a x d |

Let's confirm this using |Det(A)|.

$$|\text{Det}(A)| = \left| \text{Det} \begin{bmatrix} a & 0 \\ 0 & d \end{bmatrix} \right| = \left| (a)(d) - (o)(o) \right| = \left| ad \right|$$



## end

| Assuming | A, B,   | CID | square: |
|----------|---------|-----|---------|
| 7,000    | **, **, |     | 7       |

| Add to last lecture | Det ((AB)c) = Det (AB) Det (C) = Det (A) Det (B) Det (C) |  |
|---------------------|----------------------------------------------------------|--|
|                     | Det ( D, D2 Dk ) = Det (D1) Det (Dk)                     |  |
|                     | Not (AD) - Not (AD)                                      |  |

## Cramer's Rule

For a nxn matrix A and length n column vector b,

Ai (b) is the matrix obtained by replacing column i of A with b.

Ex. 
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$
  $\vec{b} = \begin{bmatrix} 11 \\ 12 \\ 13 \end{bmatrix}$   $A_2(\vec{b}) = \begin{bmatrix} 11 & 2 & 3 \\ 12 & 5 & 6 \\ 13 & 8 & 9 \end{bmatrix}$   $A_3(\vec{b}) = \begin{bmatrix} 1 & 2 & 11 \\ 4 & 5 & 12 \\ 7 & 8 & 13 \end{bmatrix}$ 

<u>Cramer's Rule</u>: Let A be an invertible nxn matrix, then the solution to the matrix vector product  $A\vec{x} = \vec{b}$  is:

$$\vec{X} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \text{ with } x_i = \frac{\text{Det}(A_i(\vec{b}))}{\text{Det}(A)} \text{ for all } i=1,...,n.$$

## Ex.

use (ramer's Rule to find  $\vec{x}$ 

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \qquad \vec{b} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$

$$\begin{array}{ccc}
A_{2}(\overline{b}) & A_{2}(\overline{b}) \\
Det \begin{bmatrix} 2 & 2 \\ 2 & 4 \end{bmatrix} = 4 & Det \begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix} = -4 & Det (A) = -2
\end{array}$$

$$X_1 = \frac{4}{-2} = -2 \qquad X_2 = \frac{-4}{-2} = 2 \quad \Rightarrow \stackrel{\checkmark}{X} = \begin{bmatrix} -2 \\ 2 \end{bmatrix}$$

Ex. Use (ramer's Rule to find x

$$A\overrightarrow{x} = \overrightarrow{b} \quad \text{with} \quad A = \begin{bmatrix} 3 & -2 & 1 \\ 1 & 1 & -1 \\ 0 & 2 & 0 \end{bmatrix} \qquad \overrightarrow{b} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

Det 
$$(A) = 8$$
  
Det  $(A_2(\vec{b})) = 3$   $\Rightarrow \vec{\chi} = \begin{bmatrix} 3/8 \\ 4/8 \end{bmatrix}$   
Det  $(A_2(\vec{b})) = 4$   
Det  $(A_3(\vec{b})) = 7$ 

|                                            | If A is a nxn matrix, then the n-dimensional volume of the n-dimensional                                                                                                 |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                            | parallelopipe defined by the columns of A is I Det CA)                                                                                                                   |
|                                            |                                                                                                                                                                          |
|                                            | 2D parallel opipe (parallelogram)                                                                                                                                        |
|                                            | 3D parallelopipe                                                                                                                                                         |
|                                            |                                                                                                                                                                          |
| 2D - case (rectangle)                      | [ ], [ ] Area:   a x d                                                                                                                                                   |
| - F Case (restaingle)                      | [ 0 ], [ 0 ]                                                                                                                                                             |
|                                            | 1 [0.07]                                                                                                                                                                 |
| Think of EROS  as row operations on shape. | $\left  \begin{array}{c c} a & 0 \\ 0 & d \end{array} \right  =  ad $                                                                                                    |
| as row oper-                               |                                                                                                                                                                          |
| 0 At _                                     |                                                                                                                                                                          |
|                                            | Visually, what does $R_1' = R_1 + \frac{1}{2}R_2$ look like?                                                                                                             |
|                                            | moves point to the right                                                                                                                                                 |
|                                            | Row repl. does not change area and does not change det.                                                                                                                  |
|                                            |                                                                                                                                                                          |
|                                            | <u></u>                                                                                                                                                                  |
|                                            |                                                                                                                                                                          |
|                                            | Visually, what does Ri = 2Ri look like?                                                                                                                                  |
|                                            |                                                                                                                                                                          |
|                                            |                                                                                                                                                                          |
|                                            | a ·                                                                                                                                                                      |
|                                            |                                                                                                                                                                          |
|                                            | $R_1 \longleftrightarrow R_3$                                                                                                                                            |
|                                            | T   7777                                                                                                                                                                 |
|                                            | ?                                                                                                                                                                        |
|                                            | <u> </u>                                                                                                                                                                 |
| _                                          |                                                                                                                                                                          |
| a, b, c must be                            | $\vec{a} \cdot (\vec{b} \times \vec{c})$ if $\vec{a}, \vec{b}, \vec{c}$ are the columns (or rows) of a matrix D, then: Det(D) = $\vec{a} \cdot (\vec{b} \times \vec{c})$ |
| in order                                   | - Come / II who he are the columns con remain of a main by them. Det (D) - a (B a C)                                                                                     |
| only for 3×3                               | If $T: \mathbb{R}^n \to \mathbb{R}^n$ is a linear transformation with corresponding matrix A and S is any                                                                |
| Dat (Cross                                 | bounded region in $\mathbb{R}^n$ (i.e. not infinite), then vol $(T(S)) =  Det(A)  \cdot vol(S)$                                                                          |
| Doticio                                    | bonuded tedios in it fire not intinited) then Apr (1(2)) = 1 per cust, April 2                                                                                           |
| •                                          |                                                                                                                                                                          |
|                                            | Area of unit circle is $\pi$ .                                                                                                                                           |
|                                            | Area of ellipse $A = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$ $A = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$ $\Rightarrow ab \pi$                               |
|                                            | '⊷ L∪ ÞJ ⇒ abπ '                                                                                                                                                         |
|                                            |                                                                                                                                                                          |
|                                            |                                                                                                                                                                          |
|                                            |                                                                                                                                                                          |