Hackerrank: Larry's array editorial

by Mourad NOUAILI

Problem's link: https://www.hackerrank.com/challenges/larrys-array/problem

"You don't actually need to do any rotation to try and solve this; you can use a similar algorithm that is used to determine the solvability of the 15-puzzle/Tiles Game."

Boomx from hackerrenk

Formula for determining solvability

"In computer science and discrete mathematics a sequence has an **inversion** where two of its elements are out of their natural order."

Wikipédia

Given a sequence of integers (a permutation), we gonna check the sortedness of this permutation.

We need to compute the number of inversions of the given permutation.

Why we need #inversions?

The #inversions of the identity permutation $\{1, 2, 3, ..., n\} = 0$.

In the problem Larry's array, we make a rotation of three integers once each iteration.

#inversions of these three adjacency integers, will increase or decrease by 2 in each rotation.

Proof:

```
for a sequence S = \{a1, a2, a3\} such as a1 < a2 < a3.
Rotation #1: \{a2, a3, a1\} \rightarrow \text{#inversions} = 2
Rotation #2: \{a3, a1, a2\} \rightarrow \text{#inversions} = 2
Rotation #3: \{a1, a2, a3\} \rightarrow \text{#inversions} = 0
```

So, the entire computed #inversions will increase or decrease by 2 or 0. This implies that the total #inversions must be even, to be able reaching 0.

In the next part, we'll see the different algorithms to compute the number of inversions of a given sequence of positif integers.

Bad solution: O(n²)

This solution consists to compare each element a_i ($0 \le i \le n$) in the array and the all other elements a_i ($i+1 \le j \le n$), if $a_i > a_j$ increment the value of the number of inversions by 1.

```
for \ each \ entry \ a_i (0 \le a_i < n) for \ each \ entry \ a_j (i + 1 \le a_j < n) if \ a_i < a_j inv\_count \ += 1
```

C++ function's code:

```
int number_of_inversions(vector<int> A) {
  int n = A.size();
  int inv = 1;
  for (int i = 0; i < n; ++i)
    for (int j = i+1; j < n; ++j)
      inv ^= (A[i] > A[j]);
  return inv;
}
```

A way to an optimized solution

Instead computing, for each integer **a**_i in the array, how many integers are less than **a**_i.

We can work at the moment of the entering of integers:

• For each entry a_i ($1 \le a_i \le n$), compute the number of integers previously entered that are greater than a_i

In mathematics words: For each entry $\boldsymbol{a_i}$ ($1 \le a_i \le n$), search all integer $\boldsymbol{x_j}$ ($0 \le j \le i-1$), which is $\boldsymbol{x_j} > \boldsymbol{a_i}$.

To do that, we gonna use an array to accumulate the sum of number of integers that are greater than the current entry.s

For each entry **a**:

- Updating: affect one to it in the array of sum,
- Computing: to find the number of all previous integers greater than the current entry a_b
 which is sum off all ones from a_{l+1} to a_n.

All integers greater than a_i are from a_{i+1} to a_n :

A_sum: $\begin{bmatrix} 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 2 & & a_i & a_{i+1} & & a_{i+k} & a_n \end{bmatrix}$

we compute the sum of one from \boldsymbol{O} to \boldsymbol{n} , minus the sum of all ones from \boldsymbol{O} to \boldsymbol{a}_l in the array of sum:

Invserions of
$$a_i = \sum_{i=1}^{n} 1 - \sum_{i=1}^{a_i} 1$$

The general algorithm

initialize A_sum to 0
for each entry
$$a_i (1 \le a_i \le n)$$

A_sum $[a_i] \leftarrow 1$
inv_count += sum ([0, n]) - sum ([0, a_i])

<u>proof</u>

we can prove by induction.

• The base case

for the first entry **a**_i:

• updating: **A_sum[a,] + 1**

A_sum:

0	0	0	0	1	0	0	0
0	1	2	••••	a_i	a_{i+1}		a_n

• Computing the number of integers greater than a_i : $sum([0, n]) - sum([0, a_i])$ remember that a_i is the first enrty, so sum([0, n]) = 1 and $sum([0, a_i]) = 1$, so #of integers greater than $a_i = 1 - 1 = 0$ (logic, because a_i is the 1^{st} entry)

• The induction hypothesis

we reach the last entry \boldsymbol{a}_{k} we suppose that the formula is correct after **updating**

$$A_sum[a_k] \leftarrow 1$$
, #inversions of $a_k = sum([0, n]) - sum([0, a_k])$

• The induction proof

A_sum:	0	1	1	11	1	1	11	1	1
	0	1	2		a_k	a_{k+1}		a_n	a_{n+1}

• Proof that the formula is correct for an extra.

The extra entry must be the last entry, which mean n+1, because all entries are a_i in [1, n]

#inversions of
$$a_{n+1} = sum([0, a_{n+1}]) - sum([0, a_{n+1}]) = 0$$

which is correct, because there is no integer in [1, n], greater than n+1.

Example:

A:

1	6	7	5	2	4	3
0	1	2	3	4	5	6

Initially, *A_sum* is initialized to zeros:

A_sum:

0	0	0	0	0	0	0	0
0	1	2	3	4	5	6	7

- For input 1: [1]
 - update $A_{\underline{sum}}$, by put one to A_sum[1]

A_sum:

0	1	0	0	0	0	0	0
0	1	2	3	4	5	6	7

- #invserions of 1=the sum of all ones \in [2,7]= $\sum_{i=1}^{7} 1 \sum_{i=1}^{1} 1 = 1 1 = 0$ there is no integer greater than 1.
- For input 6: [1, 6]
 - update **A_sum**, by put one to A_sum[6]

A_sum:

0	1	0	0	0	0	1	0
0	1	2	3	4	5	6	7

- #invserions of 6=the sum of all ones \in [7,7]= $\sum_{i=1}^{7} 1 \sum_{i=1}^{6} 1 = 2 2 = 0$ there is no integer greater than 6.
- For input 7: [1, 6, 7]
 - update **A_sum**, by put one to A_sum[7]

A_sum:

0	1	0	0	0	0	1	1
0	1	2	3	4	5	6	7

• #invserions of 7=the sum of all ones \in no range = $\sum_{i=1}^{7} 1 - \sum_{i=1}^{7} 1 = 3 - 3 = 0$ there is no integer greater than 7.

- For input 5: [1, 6, 7, 5]
 - update **A_sum**, by put one to A_sum[5]

A_sum:

0	1	0	0	0	1	1	1
0	1	2	3	4	5	6	7

- #invserions of $5 = the sum of all ones \in [6,7] = \sum_{i=1}^{7} 1 \sum_{i=1}^{5} 1 = 4 2 = 2$ there is two integers greater than 5 (7 and 6).
- For input 2: [1, 6, 7, 5, 2]
 - update **A_sum**, by put one to A_sum[2]

A_sum:

n:	0	1	1	0	0	1	1	1
	0	1	2	3	4	5	6	7

- #invserions of 2=the sum of all ones \in [3,7]= $\sum_{i=1}^{7} 1 \sum_{i=1}^{2} 1 = 5 2 = 3$ there is three integers greater than 2 (5, 7 and 6).
- For input 4: [1, 6, 7, 5, 2, 4]
 - \circ update $A_{\underline{sum}}$, by put one to A_sum[4]

A_sum:

0	1	1	0	1	1	1	1
0	1	2	3	4	5	6	7

- #invserions of $4 = the \text{ sum of all ones} \in [5,7] = \sum_{i=1}^{7} 1 \sum_{i=1}^{4} 1 = 6 3 = 3$ there is three integers greater than 4 (5, 7 and 6).
- For input 3: [1, 6, 7, 5, 2, 4, 3]
 - update **A sum**, by put one to A_sum[3]

A_sum:

0	1	1	1	1	1	1	1
0	1	2	3	4	5	6	7

∘ #invserions of 3= the sum of all ones ∈ $[4,7] = \sum_{i=1}^{7} 1 - \sum_{i=1}^{3} 1 = 7 - 3 = 4$ there is four integers greater than 3 (4, 5, 7 and 6).

#inversions of the array A = 0 + 0 + 0 + 2 + 3 + 3 + 4 = 12

Other example:

A:	7	11	8	13
	0	1	2	3

A_sum 0 0 0 0 5 0 1 2 3 4 6 7 8 9 10 11 12 13

Instead of looking for the max of the input, can convert the original array to an array with consecutive integers of size n without changing the number of inversions.

A:	7	11	8	13
	0	1	2	3
Become				
A:	1	3	2	4
	0	1	2	3

As 7 < 8 < 11 < 13 (1 < 2 < 3 < 4)

to do that:

- sort the array in an other temporary array temp
- put in a hash map structure the information {temp[i], i+1}
- run over the original array A, and convert the key A[i] by its value in the map.

temp:	7	8	11	13
	0	1	2	3

Map= $\{\{7, 1\}, \{8, 2\}, \{11, 3\}, \{13, 4\}\}$

A:	Map[7] = 1	Map[11] = 3	Map[8] = 2	Map[13] = 4
	0	1	2	3

A:

1	3	2	4
0	1	2	.3

A_sum:

:	0	0	0	0	0	
	0	1	2	3	4	

For input 1: [1]

• update: A_sum[1] = 1

A_sum:

: [0	1	0	0	0
	0	1	2	3	4

#invserions of 1=the sum of all ones $\in [2,4] = \sum_{i=1}^{4} 1 - \sum_{i=1}^{1} 1 = 1 - 1 = 0$

For input 3: [1, 3]

• update: A_sum[3] = 1

A sum:

:	0	1	0	1	0	
	0	1	2	3	4	

invserions of 3= the sum of all ones \in [4,4] = $\sum_{i=1}^{4} 1 - \sum_{i=1}^{3} 1 = 2 - 2 = 0$

For input 2: [1, 3, 2]

• update: A_sum[3] = 1

A_sum:

:	0	1	1	1	0	
	0	1	2	3	4	

invserions of 2=the sum of all ones $\in [3,4] = \sum_{i=1}^{4} 1 - \sum_{i=1}^{2} 1 = 3 - 2 = 1$

For input 4: [1, 3, 2, 4]

update: A_sum[3] = 1

A_sum:

0	1	1	1	1
0	1	2	3	4

#invserions of 4=the sum of all ones \in no range = $\sum_{i=1}^{4} 1 - \sum_{i=1}^{4} 1 = 4 - 4 = 0$

#inversions of the array A = 0 + 0 + 1 + 0 = 1

```
C++11 Code: still a quadratic complexity
Calculate the number of inversion using a array that compute the sum of all ones.
Complexity of the problem: O(t * N2)
Complexity of computing #inversions: O(N2)
#include <bits/stdc++.h>
using namespace std;
int *A sum = NULL;
int range sum(int x, int end){
 int s = 0;
 for (int i = x+1; i \le end; ++i)
  s += A sum[i];
 return s;
int* convert(int *A, int n) {;
 int *temp = new int[n];
 for (int i=0; i< n; i++)
  temp[i] = A[i];
 sort(temp, temp+n);
 map<int, int> A1;
 for (int i = 0; i < n; ++i)
  A1.insert(\{temp[i], i + 1\});
 for (int i=0; i< n; i++)
  A[i] = A1[A[i]];
 return A;
int main(){
  int t:
  cin >> t:
  while (t--) {
     int n;
     cin >> n;
     int *A = new int[n];
     for (int i = 0; i < n; ++i) {
      cin >> A[i];
     A = convert(A, n);
     A sum = new int[n+1];
     fill_n(A_sum, n+1, 0);
     int inv count = 0;
     for (int i = 0; i < n; ++i) {
      A_sum[A[i]] = 1;
      inv_count += range_sum(A[i], n);
```

```
inv_count % 2 != 0 ? cout<<"NO\n" : cout<<"YES\n";

delete[] A;
 delete[] A_sum;
}

return 0;
}
</pre>
```

Can we get better than a quadratic complexity? The answer is yes, using a Fenwick tree.

Optimized solution

As we saw, in the array A_sum , we have a **point update** $(A_sum[A[i]] = 1)$ and a **range query** (sum from $A_sum[i+1]$ to $A_sum[max(A[i])]$.

We gonna use a Fenwick tree to resolve this problem in O (t * N * \log N) The complexity of computing the #of inversions = O(N \log N)

If you wanna more details on Fenwick trees, see my github: https://github.com/Mourad-NOUAILI/advanced-tutorials

How to build the Fenwick tree?

Update (point update)

In a BIT, the updating begin by a node and then all its parents until reaching or up bounding the index of greatest node.

To get the parent of a node, we add the least significant bit (LSB) to the index of that node.

The formula is: parent(index) = index + (index & -index)

We start by node 1:

To find the parent of 1, we add to 1, the LSB of 1:

$$1 \quad 0 \rightarrow 2 \text{ in decimal}$$

To find the parent of 2, we add to 2, the least significant bit (LSB) of 2:

1 0 0
$$\rightarrow$$
 4 in decimal

To find the parent of 4, we add to 4, the least significant bit (LSB) of 4:

we did 1, 2, 4. it remains 3, 5, 6, 7 Let's construct all the parents of 3:

we construct 5:

we construct 7:

This is the updating Fenwick tree.

Query (point query or point get sum)

For implementing get sum, we need to visualize the BIT in a different way.

Accumulating the values of all parent of a node until reaching the index 0. To get the parents of a node, we remove the least significant bit (LSB) from the index of that node.

The formula is: parent(index) = index - (index & -index)

1 0 (0)
-
1 0 (LSB of 2)
0 0
$$\rightarrow$$
 0 in decimal

0 1 1 (3)

-

0 0 1 (LSB of 3)

0 1 0
$$\rightarrow$$
 2 in decimal

1 0 0 (4)

-
1 0 0 (LSB of 4)

0 0 0
$$\rightarrow$$
 0 in decimal

1 1 0 (6)

- 0 1 0 (LSB of 6)

1 0 0
$$\rightarrow$$
 7 in decimal

To get the sum of the first n elements: we start from the n+1th element and we accumulate the values of all parents of the n+1th node until reaching the dummy index (0).

For example: to compute *the sum from 0 to 6 in the original array*, we start from the 7^{th} node in the BIT tree, then the 6^{th} and the 4^{th} node.

Example

A:	1	6	7	5	2	4	3
	0	1	2	3	4	5	6

tree:	0	0	0	0	0	0	0	0
		1	2	3	4	5	6	7

• For input 1: [1]

• update the tree: update(1, 1):

tree:

0	1	1	0	1	0	0	0
0	1	2	3	4	5	6	7

 \circ sum_range(2, 7) = sum(0, 7) – sum (0, 1)

• sum(0, 7) = 1

• sum(0, 1) = 1

 $sum_range(2, 7) = 1 - 1 = 0$

- For input 6: [1, 6]
 - update the tree: update(6, 1):

0	1	1	0	1	0	1	0
0	1	2	3	4	5	6	7

- \circ sum_range(7, 7) = sum(0, 7) sum (0, 6)
 - sum(0, 7) = 2

• sum(0, 6) = 2

 $sum_range(7, 7) = 2 - 2 = 0$

- For input 7: [1, 6, 7]
 - update the tree: update(7, 1):

0	1	1	0	1	0	1	1
0	1	2	3	4	5	6	7

- \circ sum_range(8, 7) = sum(0, 7) sum (0, 7)
 - sum(0, 7) = 3

• sum(0, 7) = 3

 $sum_range(8, 7) = 3 - 3 = 0$

- For input 5: [1, 6, 7, 5]
 - update the tree: update(5, 1):

0	1	1	0	1	1	2	1
0	1	2	3	4	5	6	7

- \circ sum_range(6, 7) = sum(0, 7) sum (0, 5)
 - sum(0, 7) = 4

• sum(0, 5) = 2

 $sum_range(5, 7) = 4 - 2 = 2$

- For input 2: [1, 6, 7, 5, 2]
 - update the tree: update(2, 1):

0	1	2	0	2	1	2	1
0	1	2	3	4	5	6	7

- \circ sum_range(3, 7) = sum(0, 7) sum (0, 2)
 - sum(0, 7) = 5

• sum(0, 2) = 2

 $sum_range(3, 7) = 5 - 2 = 3$

- For input 4: [1, 6, 7, 5, 2, 4]
 - update the tree: update(4, 1):

0	1	2	0	3	1	2	1
0	1	2	3	4	5	6	7

- \circ sum_range(5, 7) = sum(0, 7) sum (0, 4)
 - sum(0, 7) = 6

• sum(0, 4) = 3

 $sum_range(5, 7) = 6 - 3 = 3$

- For input 3: [1, 6, 7, 5, 2, 4, 3]
 - update the tree: update(3, 1):

0	1	2	1	4	1	2	1
0	1	2	3	4	5	6	7

- \circ sum_range(4, 7) = sum(0, $\overline{7}$) sum (0, 3)
 - sum(0, 7) = 7

• sum(0, 3) = 3

sum_range(4, 7) = 7 - 3 = 4#inversions of the array = 0 + 0 + 0 + 2 + 3 + 3 + 4 = 12

```
C++11 Code:
Calculate the number of inversion using a Fenwick tree.
Complexity of the problem: O(t * N * log N) (logarithmic)
Complexity of computing the #inversions: O(N log N)
#include <bits/stdc++.h>
using namespace std;
int *tree = NULL;
int n;
void update(int i, int value){
 while(i <= n)
  tree[i]+=value;
  i+=(i\&-i);
int sum(int i){
 int sm=0;
 while(i>0){
  sm+=tree[i];
  i=(i\&-i);
 }
 return sm;
int range sum(int i, int j){
return sum(j)-sum(i);
int* convert(int *A){;
 int *temp = new int[n];
 for (int i=0; i< n; i++)
  temp[i] = A[i];
 sort(temp, temp+n);
 map<int, int> A1;
 for (int i = 0; i < n; ++i)
  A1.insert(\{temp[i], i + 1\});
 for (int i=0; i< n; i++)
  A[i] = A1[A[i]];
 return A;
```

```
int main(){
  int t;
  cin >> t;
  while (t--) {
     cin >> n;
     int *A = new int[n];
     for (int i = 0; i < n; ++i) {
      cin >> A[i];
     A = convert(A);
     tree = new int[n+1];
     fill n(tree, n+1, 0);
     int inv count = 0;
     // O(N * log N)
     for (int i = 0; i < n; ++i) {
      update(A[i], 1);
      inv_count += range_sum(A[i], n);
     inv_count&1?cout<<"NO\n":cout<<"YES\n";
     delete[] A;
     delete[] tree;
  }
  return 0;
```

References

- http://www.cs.bham.ac.uk/~mdr/teaching/modules04/java2/TilesSolvability.html
- https://en.wikipedia.org/wiki/Parity of a permutation
- https://www.geeksforgeeks.org/binary-indexed-tree-or-fenwick-tree-2/
- https://en.wikipedia.org/wiki/Inversion (discrete mathematics)