HP Docket No.: 10018148-1

CLAIMS

What is claimed is:

1	1. A method for adjusting an output driver, the method comprising the
2	steps of:
3	receiving a first signal;
4	applying the first signal to a first tuning element to generate a reference signal;
5	receiving a second signal;
6	applying the second signal to a second tuning element to generate a test signal,
7	wherein the second tuning element is configured similarly to the first tuning element;
8	sampling the reference signal to generate a time-sampled reference signal;
9	sampling the test signal to generate a time-sampled test signal;
10	integrating the time-sampled reference signal and the time-sampled test signal t
11	generate an error signal; and
12	applying the error signal to adjust an output driver.
1	2. The method of claim 1, wherein receiving a first signal comprises
2	receiving a clock signal.
1	3. The method of claim 2, wherein the clock signal comprises a frequency
2	of greater than 100MHz.
	The mostle of a facine 1 whomein analysis a the first signal to a first typing
1	4. The method of claim 1, wherein applying the first signal to a first tuning
2	element comprises reflecting the first signal towards a source of the first signal.
1	5. The method of claim 4, wherein reflecting the first signal towards the
2	source results in the reflected signal arriving at the source when a first half of the first
3	signal has completed exiting the source.
J	Signal has completed exiting the source.

6. 1 The method of claim 1, wherein receiving a second signal comprises 2 enabling reflections generated by a signal transition of the second signal and reflected by the second tuning element to damp out before a subsequent signal transition of the 3 second signal. 7. 1 The method of claim 1, wherein integrating the time-sampled reference signal and the time-sampled test signal comprises applying the signals to a feedback 2 3 loop. 8. A system, comprising: 1 a reference driver coupled to a first tuning element, the reference driver and the 2 3 first tuning element configured to receive a first input signal and generate a reference 4 signal comprising a primary reference component and a reflected reference component; a test driver coupled to a second tuning element, the test driver and the second 5 tuning element configured to receive a second input signal and generate a test signal 6 7 comprising a primary test component and a reflected test component; an integrator configured to receive the reference signal and the test signal and 8 9 generate an error signal. 9. The system of claim 8, wherein the first tuning element comprises a first 1 transmission line. 2 10. The system of claim 9, wherein the first printed circuit board trace has 1 an input end coupled to an output of the reference driver and a length that generates the 2 3 reflected reference component such that the reflected reference component reaches the output of the reference driver in synchronization with the primary reference component. 4 1 11. The system of claim 10, wherein the first transmission line has an output 2 end that is electrically open.

The system of claim 8, wherein the second tuning element comprises a

12.

second transmission line.

1

2

- 1 13. The system of claim 11, wherein the second transmission line has an input end coupled to an output of the test driver and a length substantially equal to that of the first transmission line.
- 1 14. The system of claim 13, wherein the second transmission line has an output end that is electrically open.
- 1 15. The system of claim 8, further comprising:
- 2 a delay element configured to receive the second input signal and generate a 3 control signal;
- a first sample and hold circuit coupled between the reference driver and the integrator, the first sample and hold circuit configured to generate a time-sampled reference signal in response to the control signal; and
- a second sample and hold circuit coupled between the test driver and the integrator, the second sample and hold circuit configured to generate a time-sampled test signal in response to the control signal.
- 1 16. The system of claim 8, wherein the first input signal comprises a clock 2 signal.
- 1 17. The system of claim 16, wherein the clock signal comprises a frequency of greater than 100MHz.

1	18. A system for adjusting an output driver to reduce the effect of
2	impedance mismatches between signal sources and signal traces, comprising:
3	means for generating a reference signal responsive to a first input signal,
4	wherein the reference signal emulates signal reflections due to a characteristic
5	impedance of transmission lines in the system;
6	means for generating a test signal responsive to a second input signal that
7	enables signal reflections responsive to second input signal transitions and the
8	characteristic impedance of transmission lines in the system to dampen before
9	subsequent second input signal transitions; and
0	means for generating an error signal responsive to the reference signal and the
1	test signal.
1	19. The system of claim 18, further comprising:
2	means for sampling the reference signal; and
3	means for sampling the test signal.
1	20. The system of claim 18, wherein the means for generating an error signa

2 comprises means for integrating the reference signal and the test signal.