Justin B. Bird

CS 275

Hang Qi Jian Gong Lunbo Xu

Outline

- Introduction
 - Background
 - Game design and tools used
- Modeling
- Learning
- → Demo

Introduction

Background

A recently popular mobile game app, on Android and IOS. Player controls a bird, attempting to fly between columns of green pipes without coming into contact with them.

Originally created by Nguyễn Hà Đông, a Vietnamese developer.

Then a plethora of Flappy Bird copies and clones emerged, such as Squishy Bird, and even MMO version...

Many clones...

Our Game

Play Mode

How far can you fly the bird?

Learning Mode

Behavior Model: reinforcement learning

Tools

□ WebGL

A built-in JavaScript API for rendering interactive 2D/3D graphics.

🖵 Three.js

A lightweight JavaScript framework for WebGL.

Chrome

JavaScript console and debugger.

Modeling

Real vision? No

too big state space

Perception

2 pillars, 8 points, 16 float

known points: in the fovy && not occluded; unknown points marked as -1

state space = $\{<x1, y1, x2, y2, ..., x8, y8>\}$

Perception & short memory

know all 8 points more clever better results

constant

Formulation: Markov Decision Process

We want to learn a **decision policy** $a_t = \pi(s_t)$ that maximize the total reward:

$$\sum_{t=0}^{\infty} \gamma^t R_{a_t}(s_t, s_{t+1})$$

Q-Learning

If we know the exact *transition probability* and the *reward of the states*, we can solve the policy.

$$\pi(s) := \arg\max_{a} \left\{ \sum_{s'} P_{a}(s, s') \left(R_{a}(s, s') + \gamma V(s') \right) \right\}$$

Although in the game, the behavior of the bird is **deterministic**. But as we didn't model the velocity into the state, the outcome of an action is **stochastic**.

Using reinforcement learning, we want to learn the policy:

$$Q: S \times A \rightarrow \mathbb{R}$$
 state action reward

Algorithm:

$$Q_{t+1}(s_t, a_t) = \underbrace{Q_t(s_t, a_t)}_{\text{old value}} + \underbrace{\alpha_t(s_t, a_t)}_{\text{learning rate}} \times \underbrace{\underbrace{\underbrace{R_{t+1}}_{\text{reward}} + \underbrace{\gamma}_{\text{discount factor}}_{\text{estimate of optimal future value}}}_{\text{old value}} - \underbrace{Q_t(s_t, a_t)}_{\text{old value}}$$

Demo

- Perception & short-term memory
 - ~18K iterations to converge
- Perception only
 - smaller state space due to the occluded points
 - converge faster

Thank you!