Design and Analysis of Algorithms

L05: Analysis Framework

Dr. Ram P Rustagi Sem IV (2019-H1) Dept of CSE, KSIT rprustagi@ksit.edu.in

Resources

- Text book I: Levitin
- https://brainly.com/

Algorithm Analysis

Analysis

- Detailed examination of the elements or structure of something, typically as a basis for discussion or interpretation.
- Mathematics: the part of mathematics concerned with the theory of functions and the use of limits, continuity, and the operations of calculus.
- Analysis of algorithms:
 - Investigation of an algorithm's efficiency w.r.t. running time and memory space.

Algorithm Analysis

- Issues:
 - Correctness
 - Time efficiency
 - Space efficiency
 - Optimality
- Approaches:
 - Theoretical analysis
 - Empirical analysis
- From practical point of view:
 - Efficiency concerns are primary
 - Space (memory) is no more an issue today
 - Difference: secondary, primary, cache
 - We will mostly study time efficiency

Time vs Space Efficiency

- Consider multiplication of any two digit numbers
 - Example: Multiply 79 * 67
- Time efficiency requires computation
 - Number of multiplications (single digit): 4
 - Number of additions (single digit): 5 (or 4)
 - Total mathematical operations: 9
 - Total space requirement: 14 digits
- Space (memory) efficiency
 - Store all multiplication values in an 100x100 array.
 - Then do a lookup.
 - Time requirement: 2 lookup
 - Space requirement: 10000 memory locations

Measuring Input Size

Representing a polynomial:

```
-P_n(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0
```

- I/p size: n+1
 - or n (+1 is fixed and ignored, inconsequential)
- At times choice of parameter specifying the input size is important
 - Consider nxn matrix multiplication
 - Is input size n or n²?
 - If considering matrix order: size is n
 - If consider number of elements: size is n²
 - Latter is preferred as it works for nxm matrix too

Input Size and Operation Examples

Pro	ble	m
-----	-----	---

Input size measure Basic operation

Searching for key in a list of n items

Number of list's items, i.e. n

Key comparison

Multiplication of two matrices

Matrix dimensions or total number of elements

Multiplication of two numbers

Checking primality of a given integer n number of digits (in binary representation)

Division

Typical graph problem

number of vertices Visiting a vertex or and/or edges

traversing an edge

Empirical Analysis of Time Efficiency

- Select a specific (typical) sample of inputs
- Choices:
 - Physical unit of time (e.g., milliseconds), or
 - Count actual number of basic operation's executions
- Physical unit of time varies depending upon computer being used, operations available
 - Count of basic operations is considered.
 - This is further approximated, need not be actual value
- Analyze the empirical data

Theoretical Analysis: Time Efficiency

- Time efficiency is analyzed by determining the number of repetitions of the <u>basic operation</u> as a function of <u>input size</u>
- Basic operation: the operation that contributes the most towards the running time of the algorithm
 - T (n) $\approx c_{op}C(n)$
 - −C_{op} is cost of operation
 - -C (n) represents number of operations

Time Efficiency

- Consider sum of n numbers
 - Total sum operations C(n) = n-1 ≈ n

$$-T(n) = c_{op}C(n) = c_{op}n$$

$$-T(2n) = c_{op}C(2n) = c_{op}(2n) = c_{op}2n$$

- -T(2n)/T(n) = 2
- -T(10n)/T(n) = 10
- Summary: C_{op} does not play a role when comparing the performance on two inputs.
 - Order of growth is more important.
 - Lower order terms and constants multiple are not important
 - These are subsumed in order of growth.

Best, Worst and Average case

- For some algorithms, efficiency depends on form of input:
- Worst case: $C_{worst}(n) \max \text{ over inputs size } n$
- Best case: $C_{\text{best}}(n)$ min over inputs of size n
- Avg case: $C_{avg}(n)$ "average" over inputs of size n
 - Number of times the basic operation will be executed on typical input
 - NOT the average of worst and best case
 - Expected number of basic operations considered as a random variable under some assumption about the probability distribution of all possible inputs.
 - So, avg = expected under uniform distribution.

Example: Sequential Search

```
   Algorithm: SequentialSearch(A [ 0 . . n-1 ] , K)

// searches for a value K in a given array by sequential searching
// Input: an array A[0..n-1], and key K
// Output: Index of the element that matches K
-1, if element is not found
i←0
while i < n and A[i] \neq K do
   i \leftarrow i+1
if i < n then</pre>
   return i
else
 return -1
```

What is Worst, Best and Average case analysis?

Sequential Search: Avg Case Analysis

- Let p be the probability of finding key K
 - Thus, probability of not finding K is (1-p)
- Probability of finding K at position i is same i.e. p/n
- The exepected number of searches $C_{avg}(n)$ is given by

$$1*p/n+2*p/n+...+n*p/n+(1-p)*n$$

= $(p/n)(1+2+...+n) + (1-p)*n$
= $(p/n)*n(n+1)/2 + (1-p)*n$
= $p*(n+1)/2 + (1-p)*n$

• When p=1 i.e. search is always successful

$$C_{avg}(n) = (n+1)/2 \approx n/2$$

• When p=0 i.e. search is failure

$$C_{avg}(n) = n$$

Sequential Search Analysis

- Computation of average case analysis is lot more complex than best case and worst case.
- For this specific problem

$$C_{\text{avg}}(n) = (C_{\text{worst}}(n) + C_{\text{best}}(n))/2$$

 This is not true in general and can't be simplified this way. Not a legitimate way.

Order of Growth

n	log ₂ n	$\sqrt{\mathbf{n}}$	n	nlog ₂ n	n ²	n ³	2 n	n!
10	3.3	3.16	10	33.2	102	10 ³	10 ³	3.6*106
102	6.6	10	102	664	104	106	1.3*10 ³⁰	9.3*10157
103	10	31.6	103	9965	106	109		
104	13.2	100	104	1.3*105	108	1012		
105	16.5	316.2	105	1.6*106	1010	1015		
106	20	1000	106	2.0*107	1012	1018		

Amortised Efficiency

- So far, efficiency is related to a single run of algorithm.
- In some cases, single run can be very expensive, but subsequent run can be much cheaper
 - Real life example:
 - To drink water, dig a well.
 - -First time very costly, subsequently minimal cost
 - Giving a lecture first time on new topic
 - -Subsequent lectures on same topic much easier
- Thus, amortise the cost over n operations

Exercises - A

- For the following algorithms (problems), identify
 - Natural input size metric
 - Basic operation
 - Count of basic operation (average case)
- P01: Computing sum of n numbers
- P02: Computing factorial(n)
- P03: Finding largest element of n numbers
- P04: List all prime numbers <n using Sieve method
- P05: Multiplying 2 numbers each of n digits

Exercises-B

- Glove selection: There are 22 gloves in a drawer: 5 pairs of red gloves, 4 pairs of yellow, and 2 pairs of green.
- You select two gloves in the dark and can check them only after a selection has been made. What is the smallest number of gloves you need to select to have (guarantee) the following:

(Hint: Gloves are left and right side)

- At least one matching pair? (worst case)
- At least one matching pair in the best case?
- At least one matching pair of each color? (worse case)
- Ans:
 - one matching pair: worst case: 12, best case: 2
 - one matching pair of each color: 21

Exercises-C

Missing socks: Imagine that after washing 5 distinct pairs of socks, you discover that two socks are missing. Of course, you would like to have the largest number of complete pairs remaining. Thus, you are left with 4 complete pairs in the best-case scenario and with 3 complete pairs in the worst case. Assuming that the probability of disappearance for each of the 10 socks is the same, find the probability of

- Q C₁:The best-case scenario;
- Q C₂:The worst-case scenario;
- Q C_{3:} The number of pairs you should expect in the average case.
- Answers:
 - C_1 : 5/45 = 1/9
 - C_2 : 40/45 = 8/9
 - C_3 : $4*1/9 + 3*8/9 = 28/9 = <math>3^{1/9}$

Summary: Analysis Framework

- Both time and space efficiencies are measured as functions of the algorithm's input size
- Time efficiency is measured by counting the number of times the base operation of algorithm is executed.
- Space efficiency is measured by counting the number of extra memory units consumed by algo.
- Efficiency for same algorithm may vary significantly for inputs of same size.
 - Worst case, Best case, and Average case
- Framework primary interest in order of growth
 - Running time of algorithm