

Investigating time series neural data: Experimental design & signal processing practices

Dr Saugat Bhattacharyya

Content

- EEG Signal Analysis
 - Common Pre-processing methods
 - Time-Domain
 - Time-frequency
- Brain Computer Interfacing- An Introduction
- Collaborative BCI

Activity in the Brain

Recording Neural Activity

Trambaillo, Falk. 2018

Existence of EEG

- The neuronal firing inside the brain generates electrical signals.
- These electrical signals picked up from the scalp by metallic electrodes are called EEG signals.
- Summation of excitatory and inhibitory postsynaptic potentials

What do EEG look like?

Basic Pipeline

Pre-processing

Processing (Analysis)

Time Cosuming
Tedious
Signal Processing
Do it well, Do it once

Hypothesis driven Exploratory Often done multiple times

EEG Frequency Chart

Waveform	Frequency Range (in Hz)	Amplitude (in μV)	Occurrence
Gamma rhythm	30-50		Excitement
Beta rhythm	18-30	< 10	Alert/eyes open, arousal, anterior scalp
Alpha rhythm	8-13	0-40	Adults, older children, relaxed wakefulness/eye closed, parietal, occipital temporal regions
Mu rhythm	7-11	0-20	Asymmetric, asynchronous between 2 sides at times unilateral, central parietal, attenuates with contra-lateral extremity movement, thought of movement, or tactile stimulation; no reaction to eye opening and closing
Theta rhythm	4-7	40-60	Childhood, light sleep, temporal areas through adolescence
Delta rhythm	0.5-4	40-200	Sleep
Delta rhythm	0.5-3	40-200	Infancy, deep sleep, coma
Lambda & K complex & sleep spindles	Not defined solely in terms of rhythm		Deep sleep

Possible Pre-processing Steps

- Import Data and Channel Locations
- Filter the data
- Downsample
- Extract Data: Epoch the data around important events
- Baseline correction: Subtract pre-stimulus baseline
- Adjust marker values
- Manual trial rejection
- Identify bad channels
- Re-reference the data
- Run ICA to clean data

Pre-processing: Filtering

- Remove high frequency artefacts, low frequency drifts
- Notch filters at 50/60 Hz to attenuate electrical line noise
- Recommended to apply a High-pass filter at 0.1 or 0.5Hz to minimize slow drifts
- Band-pass, Band-stop, High, Low Filters
- FIR and IIR filters
 - FIR filters are more stable; less likely to introduce nonlinear phase distortions
 - Computational costs higher to IIR
- scipy.signal (https://docs.scipy.org/doc/scipy/reference/signal.html)

Pre-processing: Filtering

Pre-processing: Spatial Filtering

- Bipolar: the voltage difference between two electrode pairs
- Laplacian $V_i^{Lap} = V_i^{ER} \sum_i g_{ij} V_j^{ER} \quad \text{where} \quad g_{ij} = (d_{ij} \sum_i \frac{1}{d_{ij}})^{-1}$
- Common Average Referencing (CAR)

Figure 3. For a clinical EEG array, a mean or weighted mean of green electrodes would be subtracted from the red electrode for each spatial filter listed [7].

Pre-processing: Spatial Filtering

Small Laplacian

Cz= Cz-1/8*(FC1+FCz+FC2+C2+CP2+C Pz+CP1+C1)

FC3=??

Pre-processing: Spatial Filtering

Ulster University

Small Laplacian

Cz= Cz-1/8*(FC1+FCz+FC2+C2+CP2+C Pz+CP1+C1)

FC3= FC3-1/8*(FC5+F5+F3+F1+FC1+C1+ C3+C5)

Pre-processing: Downsampling

 Nyquist Theory – minimum digital sampling frequency must be > twice the maximum frequency in analogue

signal

Pre-processing: Epoching

Pre-processing: Baseline Correction

• Baseline correction is a linear operation because we are just computing the average of the points from the baseline period and subtracting this average from each point in the waveform.

Tanner 2016, Journal of Neuroscience Methods

Preprocessing: Artefact Removal

Blinks
Eye-movements
Muscle activity
EKG/ECG
Skin potentials
Alpha waves

Preprocessing: Artefact Removal

Blinking

- Avoid contact lenses
- Build 'blink breaks' into your paradigm
- If subject is blinking too much tell them

EMG

Ask subjects to relax, shift position, open mouth slightly

Alpha waves

- Ask subject to get a decent night's sleep beforehand
- Have more runs of shorter length talk to subject in between
- Jitter ISI alpha waves can become entrained to stimulus

most common contaminants of the EEG signal.

Linear Regression

- The main assumption in this approach is that each EEG channel can be expressed as the sum of noise-free EEG signal and a fraction of the source artifact available through EOG electrodes.
- Let S be the recorded EEG signal which can be expressed as the sum of noise-free EEG signal E and EOG or eye blink signal B multiplied by a weight matrix W.

$$S = WB + E$$

W describes the contribution of the EOG artifact in each EEG channel

ICA

 Independent component analysis (ICA) is a blind source separation (BSS) technique that is widely used in an array of signal processing applications.

•

 Once the components have been identified, to remove the EOG artifacts, one can visually determine which independent component corresponds to eye-blinks or movements based on the following criteria.

ICA

Presence of frontal topography (for blinks, shown on left) and bilateral with opposite sign frontal topography (for horizontal eye-movements, shown in right) in scalp map

ICA

- mne.preprocessing.ICA
- (https://mne.tools/stable/generate d/mne.preprocessing.ICA.html)

Basic Pipeline

Processing (Analysis)

Processing

- Time Domain Analysis
 - Event Related Potentials
- Frequency Domain Analysis
- Time-Frequency Analysis
 - Wavelet Transform

Event Related Potentials (ERPs)

- electrical brain responses to events/ stimuli based on time-locked EEG portions
- can measure the time course of processing in tens of ms
- can reveal brain areas related to cortical processing
 - scalp current density and source modeling analyses
 - time-frequency analyses
- allow us to observe how processing changes with development and how it relates to later cognitive outcome

ERPs-Assumptions

ERP-averaging is based on the following assumtions:

(Regan, 1989)

- 1. The background EEG acts as noise for the ERP-signal
- 2. The signal waveform is generated by a process that stays stationary from trial to trial
- 3. The noise, background EEG, is produced by a stationary random process
- 4. The noise samples are uncorrelated from trial to trial

Possible problems:

- The background EEG is not always random in relation to stimuli.
 - E. g. 50 Hz electric current can create a regular rhythm to the background EEG.
- A psychological process, reflected in ERP-signal, may not remain the same during the entire measurement session, e. g. due to arousal state effects

ERPs-Example

Averaged across 100 stimulus presentations

ERP at a single electrode

Effect of nr of stimulus presentations on the signal-to-noise ratio /SN

ERP Waveforms

^{*}Definition based on APA dictionary of psychology

Frequency Domain

Fourier Transform:

$$F(j\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t}dt$$

Morlet Wavelet

- Wavelets overcome limitations of methods such as the Fourier transform by enabling a view of changes across both time and frequency.
- shape of a sinusoid, weighted by a Gaussian kernel, and they can therefore capture local oscillatory components in the time series.
- Wavelets have variable resolution in time and frequency.

$$\psi(t) = e^{2j\pi ft} e^{\frac{-t^2}{2\sigma}}$$

Morlet Wavelet

- Wavelet transformation then essentially involves convolving the complex wavelet with the EEG signal and moving it along the time axis (known as **translation**) and doing this with wavelets of varying frequencies (known as **scaling**).
- higher frequency wavelets can achieve better localization in time, while low frequency wavelets lose some information in time as they are stretched out.

wavelets of frequency 1, 5, 10 and 20 Hz

Morlet Wavelet

- Most important parameternumber of cycles
- As the number of cycles is increased the width of the Gaussian increases.
- When we take the FFT of these Gaussians, we see that the Gaussian with lower number of cycles is spread more in the frequency domain compared to the Gaussian with higher number of cycles.

Morlet Wavelet-Choosing the number of cycles (n)

- the wavelet with higher *n* has wider spread than wavelet with lower *n*, which can be interpreted as poorer temporal localization as *n* increases.
- For temporal-focussed analysis, choose **lower n**
- For frequency-focussed analysis, choose **higher n**

mne.time_frequency.tfr_morlet
mne.time_frequency.tfr_array_morlet
(https://mne.tools/stable/time_frequency.html)

Interpreting TF analysis

Interpreting TF analysis

Event-related desynchronization (ERD) during MI. Time-frequency (TF) plots show the percentage change in power from baseline (i.e. from -0.5 s to 0 s) for MI flexion trials (left panels) and MI extension trials (right panels). MI started at time point zero and was performed for 1.5 s. Vertical lines indicate the chosen time interval for the statistical analysis (i.e. from 0.5 s to 1.5 s). The solid blue line on the bottom reflects MI-related power changes within the 10–25 Hz SMR frequency range.

Spychala et al, 2020

Representation of EEG analysis

Topographical maps

→ plot EEG data on a map of the brain. Data is interpolated between electrodes.

ERP maps → potential changes

Time-frequency maps → time-frequency changes

Brain-Computer Interfacing

Brain-computer interfacing?

- "A Brain-Computer Interface is a communication system that do not depend on peripheral nerves and muscles" [Wolpaw et al. 2000]
- A technology which allows a human to control a computer, peripheral, or other electronic device with thought.

Motivation

 is to give disable people to communicate, to operate prostheses, and even to operate wheelchairs using brain signals.

Target group:

- Amyotropic Lateral Sclerosis
- Cervical spinal injury
- Stroke paralysis
- Celebral palsy
- Amputee, etc

Nicolelis, 2001

BCI in Rehabilitation

- 1. Thought Controlled Wheelchair
- 2. Upper Limb Prosthesis
- 3. Cursor Control
- 4. Virtual Keyboard

BCI in Everyday Life

https://emotiv-website-uploads-live.s3.amazonaws.com/uploads/2019/05/bci-gaming-world-of-warcraft-1.png

https://cdn.thenewstack.io/medi a/2016/12/ac3d5887-braincomputer-interface-robotic-arm-1.jpg

https://www.ireviews.com/content/uploads/ 2017/08/7.jpeg

https://cakedigit.com/wp-content/uploads/2017/01/coca.png

https://www.armytechnology.com/features/featur ebrain-computer-interfacingmilitary-mindcontrol/attachment/featurebrain -computer-interfacing-militarymind-control-4/

Motor Imagery (ERD/ERS)

- Rolandic mu rhythm (8-12 Hz) and the central beta rhythm (16-24 Hz)
- Movement Imagination/Execution

P300

 Event-related potential (ERP) associated to the presence of uncommon targets or infrequent stimuli to which a user is paying attention

Steady-State Visual Evoked Potential

 SSVEP: The amplitude of the response is modulated by the frequency of the stimulus.

Error Related Potential

- User's awareness to erroneous respo
- Typical occurrences that elicits ErrP:
 - Choice reaction tasks
 - Feedback tasks
 - Observation tasks

* Spuler, et al., Frontiers Human Neuroscience, 2015

BCI Types

BCI Types

Active

Passive

Reactive

Movement attempt/ intention Mental imagerybased

Cognitive Monitoring Brain State Detection P300based SSEPbased

Hybrid BCIs combine types of BCIs and other inputs

A Generic BCI system

Designing Experiments

- Do not underestimate the importance of good experiment design
- Produce meaningful and interpretable results
 - Implications for theories
 - · Inspire new research
- Pilot test your experiment behaviourally

Event Markers

- Triggers that are sent from stimulus delivering computer to the EEG amplifier
- Recorded as separate channel
- Encode specific events such as stimulus onset or responses, etc.

https://pressrelease.brainproducts.com/wp-content/gallery/1602_ST/GUI_NavigationBar_Markers.jpg

Designing Experiments

Intra- and Intertrial Timing

- Ideal to have experiment events within a trial separated by several hundred milliseconds
- Intervals between two trials (Inter-trial intervals):
 - Baseline normalisation
 - Frequencies to analyse
- Constant or Variable
- Number of trials required?
- Signal-to-Noise Ratio
- Big the effect is
- Type of analysis
- Electrodes & Sampling Rate- Dependent on the type of analysis

Individual Decision Making

- Decision accuracy could degrade with:
 - Limited processing time
 - Quantity and complexity of data
 - Irrelevant information, audiovisual clutters/distractors
 - High-stakes, timepressured situations
- Mental state of the operator also affects decision accuracy
 - Fatigue/alertness
 - Mental workload
 - Attention level

Groups

- Most animals and humans live within groups. Why?
- A group can do things that individuals alone can't:
 - Augmented action capabilities: Members of a group can join forces to do something that is beyond the strength or endurance of a single individual
 - Increased sensing capabilities: A group has a much higher probability of finding resources and noticing danger
 - Increased cognition and intelligence: groups show emergent cognition and intelligent behaviours which are more powerful than those of the individual members.

Collaborative Decision Making

• Power of crowds: groups have augmented wisdom. This is why human decisions are routinely made by committees (where members' knowledge, intelligence, experience and creativity are melded to improve outcomes).

• Groups could fail: under- and overconfidence biases, reduced member effort, time constraints, strong leadership, ...

Collaborative BCIs (cBCIs)

- Use data from multiple brains
- First studies in the 2010s with simple perceptual tasks (faces/cars)

Our cBCIs Framework

- Users report individual decisions
- Brain signals used to decode the decision confidence of each participant
- Group decisions made by weighing individual decisions according to the confidence estimates

Data recording and processing

EEG Data (64 electrodes)

Reference to earlobes

Band-pass filter 0.15-40 Hz

EOG correction

Epoching

Baseline correction

Response-locked epoch

Confidence estimation

- Training epochs grouped on the basis of the correctness of the decision of the user
 - Label = -1 for correct decisions
 - Label = +1 for incorrect decisions

Group simulation

Individuals perform the same experiment

Individual data combined offline in **all possible groups** of a given size *m*

Average performance of *m*-sized groups

Aggregating individual opinions

Traditional groups

One head = One vote

Confidence-based groups

Confidence reported by the participants

BCI-assisted groups

Confidence decoded from the EEG

Bringing collaborative BCIs out of the lab

Dynamic, realistic environment

- We used Unity3D to generate a **dynamic environment** where a soldier is walking along a corridor with multiple doorways present on both sides
- Task: Decide whether the characters appearing wear a helmet or a cap

Bhattacharyya et al., NER'19

Brightness increased by 40% for presentation purposes.

Your turn! Count the caps

Brightness increased by 40% for presentation purposes.

Existence of brain markers for correct and incorrect decisions

Existence of brain markers for confidences

Stimuli-Locked Event

Existence of brain markers for confidences

Response-Locked Event

Difference in Behaviour...

Reflected on cBCI performance...

What's next?

Non-binary decision-making

Decision-making in **multisensory** environments

Can we **train** people to trust their gut feeling (work with cBCls)?

BCI-based group selection

Whythorophoppe

Monthermonthall

Munumber

Communication

AI-Human Teaming

Collaborating between Human and Machine

s.bhattacharyya@ulster.ac.uk