Théorème de CARATHÉODORY et systèmes diophantiens

Clarence Kineider

Leçons: 126, 151, 162

 $Référence(s): \emptyset$

On commence par énoncer et montrer le théorème de CARATHÉODORY.

Théorème : Soit E un espace vectoriel réel de dimension finie n. Soit A une partie non-vide de E. Alors l'enveloppe convexe de A est :

$$Conv(A) = \left\{ \sum_{i=1}^{n+1} \lambda_i a_i \mid \lambda_i, \dots, \lambda_{n+1} \in \mathbf{R}_+, \ a_1, \dots, a_{n+1} \in A, \ \sum_{i=1}^{n+1} \lambda_i = 1 \right\}$$

Démonstration : Soit $x = \sum_{i=1}^{p} \lambda_i a_i \in Conv(A)$ avec p minimal. Par l'absurde, supposons $p \ge n+2$. Considérons l'application linéaire

$$\phi: \begin{array}{ccc} \mathbf{R}^p & \to & E \times \mathbf{R} \\ \phi: & (\alpha_1, \dots, \alpha_p) & \mapsto & \left(\sum_{i=1}^p \alpha_i a_i, \sum_{i=1}^p \alpha_i\right) \end{array}.$$

D'après le théorème du rang, on a $dim \ker \phi = p - dim \operatorname{Im} \phi \geq p - (n+1) \geq 1$. Dit autrement, une application linéaire d'une espace de dimension p dans un espace de dimension au plus n+1>p ne peut pas être injective. Soit alors $(\alpha_1,\ldots,\alpha_p)\in\ker \phi\setminus\{0\}$.

Posons, pour tout $i \in [1, p]$, $F_i = \{t \in \mathbf{R} \mid \lambda_i + t\alpha_i \ge 0\}$, et considérons $F = \bigcap_i F_i$.

L'ensemble F est non vide car $0 \in F$. De plus, F est une intersection d'intervalles fermés de \mathbf{R} , c'est donc un intervalle fermé de \mathbf{R} . Comme $(\alpha_1,\ldots,\alpha_p) \neq (0,\ldots,0)$, il existe $i,j \in [\![1,p]\!]$ tels que $\alpha_i > 0$ et $\alpha_j < 0$, ainsi F est borné, c'est donc un segment. Soit τ sa borne inférieure. Comme F est une intersection finie, il existe i_0 tel que si $t < \tau$, $\lambda_{i_0} + ta_{i_0} < 0$. Alors $\lambda_{i_0} + \tau a_{i_0} = 0$.

Posons alors pour tout
$$i \in [1, p]$$
, $\mu_i = \lambda_i + \tau \alpha_i \ge 0$ (car $\tau \in F$). On a donc $\sum_{i=1}^p \mu_i = 1$ et $x = \sum_{i=1}^p \mu_i a_i = \sum_{\substack{i \in [1, p] \\ i \ne i}} \mu_i a_i$.

Ceci contredit la minimalité de p. On a donc $p \leq n+1$, d'où le résultat.

On montre maintenant un corollaire qui donne une CNS pour qu'un système diophantien aie une solution positive.

Corollaire: Soit $m, n \in \mathbb{N}^*$ et $A \in \mathcal{M}_{n,m}(\mathbf{Z})$. Alors le système diophantien Ax = 0 admet une solution dans \mathbb{N}^m si et seulement si $0_{\mathbb{R}^n}$ est dans l'enveloppe convexe des colonnes de A dans \mathbb{R}^n .

Démonstration : Soit $a_1, \ldots, a_m \in \mathbf{Z}^m$ les colonnes de A.

 \Rightarrow : Si le système admet une solution (x_1, \ldots, x_m) non nulle dans \mathbf{N}^m , alors $\sum_{i=1}^m \frac{x_i}{\lambda} a_i = 0$, avec $\lambda = \sum_{i=1}^n x_i$. Ainsi $0_{\mathbf{R}^n}$ s'écrit comme combinaison convexe des a_i .

 \Leftarrow : Si $0_{\mathbf{R}^n} \in Conv_{\mathbf{R}}(a_1, \dots, a_m)$, soit $l \in \mathbf{N}^*$ et $i_1, \dots, i_l \in [\![1, m]\!]$ tels que $0_{\mathbf{R}^n} \in Conv_{\mathbf{R}}(a_{i_1}, \dots, a_{i_l})$ avec l minimal. Soit $\widetilde{A} = (a_{i_1} | \dots | a_{i_l})$ et soit $r = \operatorname{rg}_{\mathbf{R}} \widetilde{A}$. Puisque $0_{\mathbf{R}^n} \in Conv_{\mathbf{R}}(a_1, \dots, a_m)$, la famille $(a_{i_1}, \dots, a_{i_l})$ est liée, donc r < l. De plus, par le théorème de Carathéodory, $l \le r + 1$. Donc r = l - 1 et dim $\ker_{\mathbf{R}} \widetilde{A} = 1$ par le théorème du rang.

Le rang est invariant par extension de corps (c'est la dimension de la plus grande sous-matrice carrée de déterminant non-nul, cette caractérisation ne dépend que des coefficients de la matrice), donc $\operatorname{rg}_{\mathbf{Q}} \widetilde{A} = 1$. Soit $\widetilde{x} \in \mathbf{Q}^l \setminus \{0\}$ un vecteur directeur de $\ker_{\mathbf{Q}} \widetilde{A}$. Alors \widetilde{x} est également un vecteur directeur de $\ker_{\mathbf{R}} \widetilde{A}$. Or il existe $\lambda_1, \ldots, \lambda_l \in \mathbf{R}_+$ tels que $\sum_{k=1}^l \lambda_k a_{i_k} = 0$ (car $0 \in \operatorname{Conv}(a_{i_1}, \ldots, a_{i_l})$), i.e. $(\lambda_1, \ldots, \lambda_l) \in \ker_{\mathbf{R}} \widetilde{A}$. Donc les coefficients de \widetilde{x} sont tous de même signe, et quitte à considérer $-\widetilde{x}$, on peut supposer qu'ils sont tous positifs.

On pose alors pour tout $i \in [1, m]$, $x_i = \begin{cases} \widetilde{x}_k \text{ si } i = i_k \in \{i_1, \dots, i_l\} \\ 0 \text{ sinon} \end{cases}$. On a alors $\sum_{i=1}^m x_i a_i = 0$ avec $x_i \in \mathbf{Q}_+$ pour tout $i \in [1, m]$. Il suffit de multiplier x par le ppcm des dénominateurs des x_i pour obtenir une solution à Ax = 0 dans \mathbf{N}^m .