

案例2:精准营销的两阶段预测模型

《Python数据科学:技术详解与商业实践》

讲师:Ben

自我介绍

- 天善商业智能和大数据社区 讲师 -Ben
- 天善社区 ID Ben_Chang
- https://www.hellobi.com 学习过程中有任何相关的问题都可以提到技术社区数据挖掘版块。

主要内容

- 总体思路
- 分类变量的压缩(压缩单变量水平数)
 - 重编码(概化)
 - WOE转换
- 连续变量的压缩(压缩变量个数)
 - 主成分分析
 - 变量聚类

总体思路

客户营销的业务理解

背景:有一个老兵社会组织主要通过发信件和邮寄小礼物的形式募集善款。为了减少成本,该组织决定仅向最有可能提供捐款的人发放信件和礼物。目前该组织有350万条历史的营销记录,并详细的记录了营销信息与响应结果。其中该组织最感兴趣的是最近12-24月有过捐款行为的人,并希望通过数据分析完成以下两个任务:1)什么人哪类人更有可能成为潜在的捐献人;2)这类人中各人的捐献数额可能是多少哪类人捐献的额度更多。

数据准备步骤

数据质量

缺失值 阈值设 定

变量有用性

两变量 重要性 检验

信息冗余

- 分类变量水平 压缩
- 连续变量数量压缩

发现数据问题类型

- 脏数据或数据不正确
 - 比如 '0' 代表真实的0, 还是代表缺失; Age = -2003
- 数据不一致
 - 比如收入单位是万元, 利润单位是元, 或者一个单位是美元, 一个是人民币
- 数据重复
 - 这个问题在前面已经解决
- 缺失值
- 离群值

不要将变量筛选全放到建模的时候

解决方案(简单流程)

解决方案(建模标准流程)

增加该步的原 因是去除异常 值的影响

主要内容

- 分类变量的压缩(压缩单变量水平数)
 - 重编码(概化)
 - WOE转换
- 连续变量的压缩(压缩变量个数)
 - 主成分分析
 - 变量聚类

分类变量的压缩

水平变量编码转换

分类变量重编码(概化)

基于目标变量的转换-WOE

分类变量重编码(概化)

分类变量的哑变量编码法

•			虚拟变量			
<u>等级</u>	值	标签	1	<u>2</u>	<u>3</u>	<u>4</u>
教育等级	1	1st	1	0	0	0
	2	2nd	0	1	0	0
	3	3rd	0	0	1	0
	4	4rd	0	0	0	1

最后一个水平的哑变量不放入模型中,默认作为对照组。

当水平数较多时

vehicle_make ‡	freq	
FORD	1112	5
CHEVY	654	1
DODGE	533	\
TOYOTA	417	
	299	3
CHEVROLET	265	1
PONTIAC	226	5
HONDA	209	3
JEEP	199	\$
	Jan 170	

Level	D_{B1}	D_{B2}	D_{B3}	D_{B4}	D_{B5}	D_{B6}	D_{B7}	D _{B8}	
FORD	1	0	0	0	0	0	0	0	0
CHEVY	0	1	0	0	0	0	0	0	0
DODGE	0	0	1	0	0	0	0	0	0
TOYOTA	0	0	0	1	0	0	0	0	0
NA	0	0	0	0	1	0	0	0	0
CHEVR.	0	0	0	0	0	1	0	0	0
PONTIAC	0	0	0	0	0	0	1	0	0
HONDA	0	0	0	0	0	0	0	1	0
	0	0	0	0	0	0	0	0	1
	0	0	0	0	0	0	0	0	0

汽车制造商(vehicle_make)这个变量有155个水平,要 生成154个哑变量。

Quasi-Complete问题(似不完整数据问题)

汽车制造商

vehicle_make ‡	freq	•	•
3HYUNDAI		1	- 5
B50		1	5
BUIUCK		1	<u> </u>
CADALLIC		1	1
CADDY		1	
CADI		1	3
CALERA		1	3
CEHV	-	1	

是否违约

		_
	0	1
	237	62
3HYUNDAI	0	1
ACCURA	2	0 🤻
ACURA	10	1
AUDI	16	1
в50	1	0 🧳
BMW	13	2
BUICK	85	17
BUIUCK	1	0
CAD	1	1
A Company	لتختل عد	~ 0

由于某个水平中,Y缺乏变异而导致无法计算。 由于这份数据中的许多汽车制造商只有一条记录,因此无法直接 将这个变量直接纳入分类模型中。

汽车制造商

合并不同水平

N _i
112
54
33
17
••
1
1

Level	p_i
CHRY	0.4
MITSUBISHI	0.36
MERC	0.318
DAEWOO	0.30
SUZUKI	0.29
ISUZU	0.29
MAZDA	0.28
PONTIAC	0.25
SUBARU	0.24

方法1:将频次少的水平简单 合为一类,看上去简单,但 是精度降低不大,问题是水 平数依然不少。

方法2: 根据每个水平Y=1的占比, 将值接近的划分为一类。本步骤手工 处理比较麻烦,将来学了决策树之后, 可以使用该技术进行处理。

合并不同水平的问题

Level	N;		Levei	p _i
FORD	1112		CHRY	0.4
CHEVY	654	N N	1ITSUBISHI	
DODGE	533		MERC DAEWOO	0.318 0.30
TOYOTA	417		SUZUKI	0.29
	417		ISUZU	0.29
\^/\/	4		MAZDA	0.28
WV			PONTIAC	0.25
ZX2	1		SUBARU	0.24

压缩之后的分类变量还是会生成若干个哑变量。 从道理上讲,在后续建模中,由一个分类变量生成的哑变量要么同时在模型中,要么都不在模型中。但是在模型选择变量时不能满足这个要求, 因此较好的方法是将分类变量转换为连续变量。

不要使用原始变量进行WOE转换

<u>Level</u>	N _i	$N(Y_i=1)$	$N(Y_i=0)$	$P(Y_i=1)$	$P(Y_i=0)$	$\log(p_i/1-p_i)$
FORD	1112	253	859	0.211	0.184	0.134
CHEVY	654	128	526	0.107	0.113	-0.056
DODGE	533	112	411	0.102	0.088	0.142
TOYOTA	417	78	339	0.065	0.073	-0.113
						•••
VE	1	1	0			
WV	1	0	1			
TT	1	1	0			
ZX2	1	1	0			
SUM	5845	1197	4648			这部分数 据不稳定

要使用重分组后变量进行WOE转换

Level	N _i	$N(Y_i=1)$	N(<i>Y_i=0</i>)	$P(Y_i=1)$	P(<i>Y_i=0</i>)	log(<i>P(Y_i=1)</i> /P(<i>Y_i=0)</i>)
FORD	1112	253	859	0.211	0.184	0.134
CHEVY	654	128	526	0.107	0.113	-0.056
DODGE	533	112	411	0.102	0.088	0.142
TOYOTA	417	78	339	0.065	0.073	-0.113
VE WV TT	4	3	 1	 0.0025	0.0002	2.5
ZX2						
SUM	5845	1197	4648			样本少的归为一类

说明:

基于目标变量的转换是一种思路,实际工作中的实现方法很多,目前本节讲的是思路最简单,但是操作很麻烦的做法,实际工作中并不经常使用。

连续变量的压缩

连续压缩变量的思路方法

在建模之前使用主成分、变量聚类

在建模时使用逐步法或全子集法

主成分分析的思路

主成分分析,是考察多个变量间相关性一种多元统计方法,研究如何通过少数几个主成分来揭示多个变量间的内部结构,即从原始变量中导出少数几个主成分,使它们尽可能多地保留原始变量的信息,且彼此间互不相关。

1-标准化变换

$$Z_{ij} = \frac{x_{ij} - \bar{x}_j}{s_j}, i = 1, 2, ..., n; j = 1, 2, ..., p$$

$$\bar{x}_j = \frac{\sum_{i=1}^n x_{ij}}{n}, s_j^2 = \frac{\sum_{i=1}^n (x_{ij} - \bar{x}_j)^2}{n-1}$$

2-相关系数矩阵

$$R = [r_{ij}]_p xp = \frac{Z^T Z}{n-1}$$

$$r_{ij} = rac{\sum z_{kj} \cdot z_{kj}}{n-1}, i, j = 1, 2, ..., p$$

3-求解特征值

$$|R - \lambda I_p| = 0$$

$$\frac{\sum_{j=1}^{m} \lambda_j}{\sum_{j=1}^{p} \lambda_j} \ge 0.85$$

4-主成分表达

$$U_{ij} = z_i^T b_j^o, j = 1, 2, ..., m$$

- U1称为第一主成分
- · U2 称为第二主成分
- , •••,
- · Up 称为第p 主成分

5-主成分评价

 对m 个主成分进行加权求和,
即得最终评价值,权数为每个 主成分的方差贡献率

优点:

- ①可消除评估指标之间的相关影响
- ②可减少指标选择的工作量

缺点:

- ①对提取的主成分必须给出符合实际 背景和意义的解释
- ②主成分的解释其含义一般多少带有 点模糊性

变量聚类思路

...

更多商业智能BI和大数据精品视频尽在 www.hellobi.com

BI、商业智能 数据挖掘 大数据 数据分析师 Python R语言 机器学习 深度学习 人工智能 Hadoop Hive Tableau BIFE FTI 数据科学家 **PowerBI**

