

Convolution spatiale

Alain Boucher - IFI

Modification des valeurs d'une image

- Pour l'instant, nous avons vu surtout des transformations ponctuelles des pixels d'une image
 - Lire la valeur d'un pixel → la remplacer par une autre
- Il existe aussi des transformations locales
 - Lire la valeur de quelques pixels voisins → calculer une nouvelle valeur pour un pixel
- ...et des transformations globales
 - Lire la valeur de tous les pixels de l'image → calculer une nouvelle valeur pour un seul pixel

Transformations des pixels

Ponctuelle: $g(x_0,y_0)=T[f(x_0,y_0)]$

Locale: $g(x_0,y_0)=T[f(V)]$

V:voisinage de (x_0, y_0)

Globale: $g(x_0,y_0)=T[f(x,y)]$

par ex: TF

- La convolution discrète est un outil permettant l'utilisation de filtres linéaires ou de filtres de déplacements invariants
- L'équation générale de la convolution, notée g(x), de la fonction d'origine f(x) avec une fonction h(x) est :

$$g(x)=f(x)*h(x)=\sum_{\forall k}h(x-k)f(k)$$

- f(x) est la fonction d'origine et g(x) la fonction convoluée (résultat de la convolution)
 - Dans notre cas, une image est vue comme une fonction mathématique
- h(x) est appelé masque de convolution, noyau de convolution, filtre, fenêtre, kernel, ...

Exemple de convolution 2D

Image d'origine

Filtre de convolution (masque)

Image convoluée (résultat)

Note : par convention pratique, la taille de l'image résultat est la même que celle de l'image d'origine

Convolution numérique discrète

- En pratique, la convolution numérique d'une image se fera par une sommation de multiplications
- Un filtre de convolution est une matrice (image) généralement (mais pas toujours) de taille impaire et symétrique
 - 3x3, 5x5, 7x7, ...

Convolution d'une image par un filtre 2D :

$$I'(i,j) = I(i,j) * filtre(i,j)$$

$$I'(i,j) = \sum_{u} \sum_{v} I(i-u,j-v) \cdot filtre(u,v)$$

Convolution numérique

K

$$R(1,1) = I(0,0) K(0,0) + I(1,0) K(1,0) + I(2,0) K(2,0) + I(0,1) K(0,1) + I(1,1) K(1,1) + I(2,1) K(2,1) + I(0,2) K(0,2) + I(1,2) K(1,2) + I(2,2) K(2,2)$$

$$R(2,1) = I(1,0) K(0,0) + I(2,0) K(1,0) + I(3,0) K(2,0) + I(1,1) K(0,1) + I(2,1) K(1,1) + I(3,1) K(2,1) + I(1,2) K(0,2) + I(2,2) K(1,2) + I(3,2) K(2,2)$$

$$R(x,y) = I(x-1,y-1) \ K(0,0) + I(x, y-1) K(1,0) + I(x+1, y-1) K(2,0) + I(x-1,y) K(0,1) + I(x,y) K(1,1) + I(x+1,y) K(2,1) + I(x-1,y+1) K(0,2) + I(x,y+1) K(1,2) + I(x+1,y+1) K(2,2)$$

+ I(N-3,M-2) K(1,0) + I(N-2,M-2) K(1,1) + I(N-1,M-2) K(1,2)

+ I(N-3,M-1) K(2,0) + I(N-2,M-1) K(2,1) + I(N-1,M-1) K(2,2)

Convolution numérique

- Problème : Que faire avec les bords de l'image ?
 - Mettre à zéro (0)
 - Convolution partielle
 - Sur une portion du noyau
 - Miroir de l'image
 - f(-x,y) = f(x,y)
 - ... (pas de solution miracle)

Masque de convolution

- Le masque de convolution représente un filtre linéaire permettant de modifier l'image
- On divisera le résultat de la convolution par la somme des coefficients du masque
 - Pour éviter de modifier la luminance globale de l'image, la somme des coefficients doit être égale à 1

Deux types pour le filtrage spatial

- Filtres passe-bas
 - Atténue le bruit et les détails (basses fréquences)
 - → lissage

Filtres passe-haut

- Accentue les détails et les contours (hautes fréquences)
 - → accentuation

Le filtre moyenneur

- Le filtre moyenneur
 - Permet de lisser l'image (smoothing)
 - Remplace chaque pixel par la valeur moyenne de ses voisins
 - Réduit le bruit
 - Réduit les détails non-important
 - Brouille ou rend floue l'image (blur edges)
- Filtre dont tous les coefficients sont égaux
- Exemple de filtres moyenneurs :

1/9	1/9	1/9			1	1	1
1/9	1/9	1/9	ou	1/9	1	1	1
1/9	1/9	1/9			1	1	1

 1
 1
 1
 1

 1
 1
 1
 1
 1

 1
 1
 1
 1
 1

 1
 1
 1
 1
 1

 1
 1
 1
 1
 1

Le filtre moyenneur

Plus le filtre grossit , plus le lissage devient important et plus le **flou s'accentue!**

Exemples de filtres moyenneurs

Original

Moyenne 5x5

Moyenne 11x11

Le filtre Gaussien

Fonction gaussienne en 3D

Le filtre gaussien donnera un meilleur lissage et une meilleure réduction du bruit que le filtre moyenne

Image d'une gaussienne

$$\frac{1}{98} \times \begin{bmatrix}
1 & 2 & 3 & 2 & 1 \\
2 & 6 & 8 & 6 & 2 \\
3 & 8 & 10 & 8 & 3 \\
2 & 6 & 8 & 6 & 2 \\
1 & 2 & 3 & 2 & 1
\end{bmatrix}$$

Exemples de filtres gaussiens

Original

Gauss 5x5

Gauss 11x11

Filtres non-linéaires (autre que convolution)

- Pour nettoyer le bruit dans une image, il existe mieux que le filtre moyenneur ou le filtre gaussien
- Il s'agit du filtre médian
- C'est un filtre non-linéaire, qui <u>ne peut pas</u>
 s'implémenter comme un produit de convolution
- On remplace la valeur d'un pixel par la valeur médiane dans son voisinage NxN

Exemple de filtre médian

Original

Moyenne 3x3

Médian 3x3

a b c

FIGURE 3.37 (a) X-ray image of circuit board corrupted by salt-and-pepper noise. (b) Noise reduction with a 3 × 3 averaging mask. (c) Noise reduction with a 3 × 3 median filter. (Original image courtesy of Mr. Joseph E. Pascente, Lixi, Inc.)

Nettoyage du bruit dans une image

3 X 3 Moyenne

Bruit "poivre et sel"

5 X 5 Moyenne

7 X 7 Moyenne

Filtre médian

Image initiale

Bruit Poivre & Sel

Moyenne $\overline{\text{V8}}$

Min V8

Max V8

Médian V8

Références

(voir aussi la page web du cours)

- Caroline Rougier. Cours de Traitement d'images (IFT2730). Université de Montréal (Canada)
 - http://www-etud.iro.umontreal.ca/~rougierc/ift2730/
 - Chap10 : Filtrage : lissage, réhaussement d'images, détection de contours http://www-etud.iro.umontreal.ca/~rougierc/ift2730/cours/Cours10_IFT2730_2008_2.pdf