Homework 1: Problem 8

David Denberg

March 12, 2019

Part A

The reversed recurrence relation is:

$$y_n = \frac{e - y_{n+1}}{n+1}$$

The first few terms in the map $g_k(y_N) = y_k$ are:

$$g_N(y_N) = y_N$$

$$g_{N-1}(y_N) = \frac{e - g_N}{N} = \frac{e - y_N}{N}$$

$$g_{N-2}(y_N) = \frac{e - g_{N-1}}{N} = \frac{e(N-1) + y_N}{N(N-1)}$$

$$g_{N-3}(y_N) = \frac{e - g_{N-2}}{N} = \frac{e(N-1)^2 + y_N}{N(N-1)(N-2)}$$

After a few terms we observe that $g_k(y_N)$ is linear in terms of y_N . The derivative can be written as:

$$g'_k(y_N) = \frac{(-1)^{N-k}k!}{N!}$$

And the condition number (cond g_k)(y_N) is:

$$(\text{cond } g_k)(y_N) = \left| \frac{y_N k!}{y_k N!} \right|$$

The ratio y_N/y_k is upper bounded by 1 for all k < N, so:

$$(\text{cond } g_k)(y_N) = \frac{k!}{N!}$$

Part B

To achieve a relative error of ϵ in y_k given a relative error of $\epsilon_{y_N} = 1$ one has to solve the following equation for N:

$$\epsilon = (\text{cond } g_k)(y_N)\epsilon_{y_N}$$

$$\epsilon = \frac{k!}{N!}$$

$$N! = \frac{k!}{\epsilon}$$

N can be determined through trial and error in a while loop.

Part C

For eps = 2^{-53} and k = 20 the value of N is 32. (Code used: partC.m)

Part D

Using the code in part D.m the value computed using the backwards recurrence relation was 0.1238038307625699..., and the value computed using MATLAB's 'integral' function was 0.1238038307625699... . The relative error between the two values is 0.1238038307625699...