Examining Structure-Property Relationships in Lubricating Monolayer Films through Molecular Dynamics Screening

Andrew Z. Summers, †,‡ Christopher R. Iacovella, †,‡ Peter T. Cummings, †,‡ and Clare McCabe*, †,‡,¶

†Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN

‡Center for Multiscale Modeling and Simulation, Vanderbilt University, Nashville, TN

¶Department of Chemistry, Vanderbilt University, Nashville, TN

E-mail: c.mccabe@vanderbilt.edu

Additional force field details

The OPLS force field uses the following contributions to the total potential: ¹

$$E_{\text{non-bonded}} = \sum_{i} \sum_{j>i} \left[\frac{q_i q_j e^2}{r_{ij}} + 4\epsilon_{ij} \left[\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^6 \right] \right]$$
 (1)

$$E_{\text{bond}} = \sum_{\text{bonds}} K_r (r - r_0)^2 \tag{2}$$

$$E_{\text{angle}} = \sum_{\text{angles}} K_{\theta} (\theta - \theta_0)^2 \tag{3}$$

$$E_{\text{torsion}} = \sum_{\text{torsions}} \frac{1}{2} \left[K_1(1 + \cos \phi) + K_2(1 - \cos 2\phi) + K_3(1 + \cos 3\phi) - K_4(1 - \cos 4\phi) \right] \tag{4}$$

where q_i and q_j are the partial charges on particles i and j, e is Coulomb's constant, r_{ij} is the interparticle separation, ϵ and σ are interaction-specific Lennard-Jones parameters, K_r , K_θ , and $K_{1,2,3,4}$ are force constants, r_0 is the equilibrium bond distance, θ_0 is the equilibrium angle, and ϕ is the torsion angle.

For certain molecules, such as aromatics and alkenes, improper torsions are necessary to enforce planarity.

The OPLS force field primarily utilizes improper parameters from the AMBER family of force fields, where

impropers have the following potential form:

$$E_{\text{impropers}} = \sum_{\text{impropers}} \frac{1}{2} K_{\phi} [1 + \cos(n\phi - \gamma)]$$
 (5)

where ϕ is the torsion angle, K_{ϕ} is the force constant, n is the multiplicity, and γ is the phase angle.

OPLS uses geometric mixing rules for cross-interactions:

$$\sigma_{ij} = (\sigma_{ii}\sigma_{jj})^{\frac{1}{2}} \tag{6}$$

$$\epsilon_{ij} = (\epsilon_{ii}\epsilon_{jj})^{\frac{1}{2}} \tag{7}$$

Additionally, non-bonded interactions are excluded for particles separated by one or two bonds. For particles separated by three bonds, non-bonded interactions are scaled by 0.5.

Detailed below are the OPLS parameters utilized in this work. Parameters used for silica surfaces, silane headgroups, and alkane backbones are provided first. Parameters used for each of the sixteen terminal groups are provided next, where they have been separated by terminal group chemistry.

Silica Surfaces and Alkane Backbones

		N	onbonded par	rameters		
Atom type	Element	Charge	Sigma, nm	Epsilon, kcal/mol	Reference	Notes
opls_135	С	-0.18	0.35	0.066	1	-
opls_136	С	-0.12	0.35	0.066	1	-
opls_140	H	0.06	0.25	0.03	1	-
opls_1001	О	-0.43	0.3	0.17	2	-
opls_1002	Si	0.86	0.4	0.1	2	-
opls_1003	Si	0.745	0.4	0.1	2	-
opls_1004	С	-0.12	0.35	0.066	1	-
opls_1005	О	-0.683	0.312	0.17	1	-
opls_1006	Н	0.418	0	0	1	-
opls_1007	О	-0.215	0.3	0.17	2	-
opls_1008	О	-0.215	0.3	0.17	2	-
opls_1009	Н	0.215	0.0	0	n/a	1

 $^{^1}$ Parameters for hydroxyl surface caps on silica surfaces are not available in the OPLS force field. We have used the same σ and ϵ values as the standard OPLS hydroxyl parameters and use a charge of 0.215 to maintain charge neutrality in the system.

	В	Sond parameters			
Bond	Elements	$k, kcal/mol^{-1} Å^2$	r_0, nm	Reference	Notes
opls_135-opls_136	C-C	268	0.1529	1	-
opls_135-opls_140	С-Н	340	0.109	1	-
opls_136-opls_140	С-Н	340	0.109	1	-
opls_136-opls_1004	C-C	268	0.1529	1	-
opls_1004-opls_140	С-Н	340	0.109	1	-
opls_1004-opls_1003	C-Si	200	1.85	2	-
opls_1003-opls_1005	Si-O	300	1.65	2	-
opls_1005-opls_1006	О-Н	553	0.945	1	-
opls_1003-opls_1007	Si-O	300	1.65	2	-
opls_1007-opls_1002	O-Si	300	1.65	2	-
opls_1001-opls_1002	O-Si	300	1.65	2	-
opls_1002-opls_1008	Si-O	300	1.65	2	-
opls_1008-opls_1009	О-Н	553	0.945	1	-

	Angle	parameters			
Angle	Elements	$k, kcal/mol^{-1} deg^2$	θ_0, \deg	Reference	Notes
opls_135-opls_136-opls_136	C-C-C	58.35	112.7	1	-
opls_136-opls_136-opls_136	C-C-C	58.35	112.7	1	-
opls_136-opls_136-opls_1004	C-C-C	58.35	112.7	1	-
opls_140-opls_135-opls_140	Н-С-Н	33	107.8	1	-
opls_140-opls_136-opls_140	Н-С-Н	33	107.8	1	-
opls_140-opls_1004-opls_140	Н-С-Н	33	107.8	1	-
opls_140-opls_135-opls_136	H-C-C	37.5	110.7	1	-
opls_140-opls_136-opls_136	H-C-C	37.5	110.7	1	-
opls_140-opls_136-opls_1004	H-C-C	37.5	110.7	1	-
opls_136-opls_1004-opls_1003	C-C-Si	30.47	120	2	-
opls_140-opls_1004-opls_1003	H-C-Si	37.5	110.7	n/a	1
opls_1004-opls_1003-opls_1005	C-Si-O	60	100	2	-
opls_1004-opls_1003-opls_1007	C-Si-O	60	100	2	-
opls_1005-opls_1003-opls_1005	O-Si-O	60	110	2	-
opls_1005-opls_1003-opls_1007	O-Si-O	60	110	2	-
opls_1003-opls_1005-opls_1006	Si-O-H	23.7764	122.888	2	-
opls_1003-opls_1007-opls_1002	Si-O-Si	20	145	2	-
opls_1007-opls_1002-opls_1001	O-Si-O	60	110	2	-
opls_1002-opls_1001-opls_1002	Si-O-Si	20	145	2	-
opls_1001-opls_1002-opls_1001	O-Si-O	60	110	2	-
opls_1001-opls_1002-opls_1008	O-Si-O	60	110	2	-
opls_1002-opls_1008-opls_1009	Si-O-H	23.7764	122.888	2	-

¹ H-C-Si parameters do not exist in OPLS. In the work of Lorenz et al. ² F-C-C angle parameters were also used for F-C-Si angles. Following this approach, H-C-C angle parameters have been used for H-C-Si angles.

	D	ihedral paramet	ters				
Dihedral	Elements	k1, kcal/mol	k2, kcal/mol	k3, kcal/mol	k4, kcal/mol	Reference	Notes
opls_135-opls_136-opls_136-opls_136	C-C-C-C	1.3	-0.05	0.2	0.0	3	-
opls_136-opls_136-opls_136-opls_136	C-C-C-C	1.3	-0.05	0.2	0.0	3	-
opls_136-opls_136-opls_136-opls_1004	C-C-C-C	1.3	-0.05	0.2	0.0	3	-
opls_140-opls_135-opls_136-opls_136	H-C-C-C	0.0	0.0	0.3	0.0	3	-
opls_140-opls_136-opls_136-opls_136	H-C-C-C	0.0	0.0	0.3	0.0	3	-
opls_140-opls_136-opls_136-opls_135	H-C-C-C	0.0	0.0	0.3	0.0	3	-
opls_140-opls_136-opls_136-opls_1004	H-C-C-C	0.0	0.0	0.3	0.0	3	-
opls_140-opls_1004-opls_136-opls_136	H-C-C-C	0.0	0.0	0.3	0.0	3	-
opls_140-opls_135-opls_136-opls_140	H-C-C-H	0.0	0.0	0.3	0.0	3	-
opls_140-opls_136-opls_136-opls_140	H-C-C-H	0.0	0.0	0.3	0.0	3	-
opls_140-opls_136-opls_1004-opls_140	H-C-C-H	0.0	0.0	0.3	0.0	3	-
All torsions containing silicon	X-Si-X-X, Si-X-X-X	0	0	0	0	2	1

¹ Any torsion containing a silicon atom is treated as a null torsion.

Methyl

Nonbonded parameters							
Atom type	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					Notes	
opls_135	С	-0.18	0.35	0.066	1	-	
opls_140	Н	0.06	0.25	0.03	1	-	

Bond parameters							
Bond	Elements	$k, kcal/mol^{-1} Å^2$	r_0, nm	Reference	Notes		
opls_135-opls_136	C-C	268	0.1529	1	-		
opls_135-opls_140	С-Н	340	0.109	1	-		

Angle parameters								
Angle	Elements	$k, kcal/mol^{-1} deg^2$	θ_0, \deg	Reference	Notes			
opls_136-opls_136-opls_135	C-C-C	58.35	112.7	1	-			
opls_136-opls_135-opls_140	С-С-Н	37.5	110.7	1	-			
opls_140-opls_135-opls_140	Н-С-Н	33	107.8	1	-			

Dihedral parameters							
Dihedral	Elements	k1, kcal/mol	k2, kcal/mol	k3, kcal/mol	k4, kcal/mol	Reference	Notes
opls_136-opls_136-opls_135	C-C-C-C	1.3	-0.05	0.2	0.0	3	-
opls_136-opls_136-opls_135-opls_140	C-C-C-H	0.0	0.0	0.3	0.0	3	-
opls_140-opls_136-opls_135-opls_140	Н-С-С-Н	0.0	0.0	0.3	0.0	3	-

Acetyl

	Nonbonded parameters								
Atom type	Element	Charge	Sigma, nm	Epsilon, kcal/mol	Reference	Notes			
opls_135	С	-0.18	0.35	0.066	1	-			
opls_282	Н	0.06	0.242	0.015	1	-			
opls_280	С	0.47	0.375	0.105	1	-			
opls_281	О	-0.47	0.296	0.21	1	-			

Bond parameters								
Bond	Elements	$k, kcal/mol^{-1} Å^2$	r_0, nm	Reference	Notes			
opls_135-opls_282	С-Н	340	0.109	1	-			
opls_135-opls_280	C-C	317	0.1522	4	-			
opls_280-opls_281	C-O	570	0.1229	4	-			
opls_280-opls_136	C-C	317	0.1522	4	-			

	Ang	le parameters			
Angle	Elements	$k, kcal/mol^{-1} deg^2$	θ_0, \deg	Reference	Notes
opls_282-opls_135-opls-282	Н-С-Н	33	107.8	1	-
opls_282-opls_135-opls_280	H-C-C	35	109.5	4	-
opls_135-opls_280-opls_281	C-C-O	80	120.4	4	-
opls_135-opls_280-opls_136	C-C-C	70	116.0	N/A	1
opls_281-opls_280-opls_136	O-C-C	80	120.4	4	-
opls_280-opls_136-opls_282	С-С-Н	35	109.5	4	-
opls_280-opls_136-opls_136	C-C-C	63	111.1	4	-
opls_282-opls_136-opls_136	H-C-C	37.5	110.7	1	-
opls_136-opls_136-opls_140	С-С-Н	37.5	110.7	1	-
opls_136-opls_136-opls_136	C-C-C	58.35	112.7	1	-

 $^{^{1}\,\}mathrm{No}$ reference found. Parameters used from GROMACS as $\mathit{is}.$

	Dihedral parameters							
Dihedral	Elements	k1, kcal/mol	k2, kcal/mol	k3, kcal/mol	k4, kcal/mol	Reference	Notes	
opls_282-opls_135-opls_280-opls_281	H-C-C-O	0.0	0.0	0.0	0.0	1	-	
opls_282-opls_135-opls_280-opls_136	H-C-C-C	0.0	0.0	0.275	0.0	1	-	
opls_135-opls_280-opls_136-opls_136	C-C-C-C	1.454	-0.144	-0.775	0.0	1	-	
opls_135-opls_280-opls_136-opls_282	C-C-C-H	0.0	0.0	0.275	0.0	1	-	
opls_281-opls_280-opls_136-opls_136	O-C-C-C	-0.277	1.228	-0.694	0.0	1	-	
opls_281-opls_280-opls_136-opls_282	O-C-C-H	0.0	0.0	0.0	0.0	1	-	
opls_280-opls_136-opls_136-opls_136	C-C-C-C	-1.697	-0.456	0.585	0.0	1	-	
opls_280-opls_136-opls_136-opls_140	C-C-C-H	0.0	0.0	-0.076	0.0	1	-	
opls_282-opls_136-opls_136-opls_136	H-C-C-C	0.0	0.0	0.3	0.0	3	-	
opls_282-opls_136-opls_136-opls_140	Н-С-С-Н	0.0	0.0	0.3	0.0	3	-	

Improper parameters								
Improper Elements γ , degrees K_{ϕ} , kcal/mol n Reference Notes								
opls_281-opls_280-opls_135-opls_136 O-C-C-C 180 21.0 2 4 -								

Amino

	Nonbonded parameters							
Atom type	e Element Charge Sigma, nm Epsilon, kcal/mol Reference Notes							
opls_909	Н	0.36	0	0	5	-		
opls_900	N	-0.9	0.33	0.17	5	-		
opls_906	С	0.06	0.35	0.066	5	-		
opls_911	Н	0.06	0.25	0.015	5	-		

Bond parameters								
Bond	Elements	$k, kcal/mol^{-1} Å^2$	r_0, nm	Reference	Notes			
opls_909-opls_900	H-N	434	0.101	5	-			
opls_900-opls_906	N-C	382	0.1448	5	-			
opls_906-opls_911	С-Н	340	0.109	5	-			
opls_906-opls_136	C-C	268	0.1529	5	-			

	Angle parameters										
Angle	Elements	$k, kcal/mol^{-1} deg^2$	θ_0, \deg	Reference	Notes						
opls_909-opls_900-opls_909	H-N-H	43.6	106.4	5	-						
opls_909-opls_900-opls_906	H-N-C	35	109.5	5	-						
opls_900-opls_906-opls_911	N-C-H	35	109.5	5	-						
opls_900-opls_906-opls_136	N-C-C	56.2	109.47	5	-						
opls_911-opls_906-opls-911	Н-С-Н	33	107.8	1	-						
opls_911-opls_906-opls_136	H-C-C	37.5	110.7	1	-						
opls_906-opls_136-opls_140	С-С-Н	37.5	110.7	1	-						
opls_906-opls_136-opls_136	C-C-C	58.35	112.7	1	-						

Dihedral parameters									
Dihedral	Elements	k1, kcal/mol	k2, kcal/mol	k3, kcal/mol	k4, kcal/mol	Reference	Notes		
opls_909-opls_900-opls_906-opls_911	H-N-C-H	0.0	0.0	0.4	0.0	5	-		
opls_909-opls_900-opls_906-opls_136	H-N-C-C	-0.19	-0.417	0.418	0.0	5	-		
opls_900-opls_906-opls_136-opls_136	N-C-C-C	2.392	-0.674	0.55	0.0	5	-		
opls_900-opls_906-opls_136-opls_140	N-C-C-H	-1.013	-0.709	0.473	0.0	5	-		
opls_911-opls_906-opls_136-opls_136	H-C-C-C	0.0	0.0	0.3	0.0	3	-		
opls_911-opls_906-opls_136-opls_140	Н-С-С-Н	0.0	0.0	0.3	0.0	3	-		
opls_906-opls_136-opls_136-opls_136	C-C-C-C	1.3	-0.05	0.2	0.0	3	-		
opls_906-opls_136-opls_136-opls_140	C-C-C-H	0.0	0.0	0.3	0.0	3	-		

Carboxyl

	Nonbonded parameters							
Atom type	Element	Element Charge Sigma, nm Epsilon, kcal/mol Reference Note						
opls_270	Н	0.45	0	0	1	-		
opls_268	О	-0.53	0.3	0.17	1	-		
opls_267	С	0.52	0.375	0.105	1	-		
opls_269	О	-0.44	0.296	0.21	1	-		

Bond parameters								
Bond	Elements	$k, kcal/mol^{-1} Å^2$	r_0, nm	Reference	Notes			
opls_270-opls_268	Н-О	553	0.0945	4	-			
opls_268-opls_267	O-C	450	0.1364	4	-			
opls_267-opls_269	C-O	570	0.1229	4	-			
opls_267-opls_136	C-C	317	0.1522	4	-			

Angle parameters										
Angle	Elements	$k, kcal/mol^{-1} deg^2$	θ_0, \deg	Reference	Notes					
opls_270-opls_268-opls_267	Н-О-С	35	113	4	-					
opls_268-opls_267-opls_269	O-C-O	80	121	6	-					
opls_268-opls_267-opls_136	O-C-C	70	108	6	-					
opls_269-opls_267-opls_136	O-C-C	80	120.4	4	-					
opls_267-opls_136-opls_140	С-С-Н	35	109.5	4	-					
opls_267-opls_136-opls_136	C-C-C	63	111.1	4	-					

Dihedral parameters									
Dihedral	Elements	k1, kcal/mol	k2, kcal/mol	k3, kcal/mol	k4, kcal/mol	Reference	Notes		
opls_270-opls_268-opls_267-opls_269	H-O-C-O	0.0	5.5	0.0	0.0	N/A	1		
opls_270-opls_268-opls_267-opls_136	H-O-C-C	1.5	5.5	0.0	0.0	N/A	1		
opls_268-opls_267-opls_136-opls_136	O-C-C-C	1.0	0.546	0.45	0.0	6	-		
opls_268-opls_267-opls_136-opls_140	O-C-C-H	0.0	0.0	0.0	0.0	6	-		
opls_269-opls_267-opls_136-opls_140	O-C-C-H	0.0	0.0	0.0	0.0	6	-		
opls_269-opls_267-opls_136-opls_136	O-C-C-C	0.0	0.546	0.0	0.0	6	-		
opls_269-opls_267-opls_136-opls_136	C-C-C-C	-2.06	-0.313	0.315	0.0	1	-		
opls_267-opls_136-opls_136-opls_140	С-С-С-Н	0.0	0.0	-0.1	0.0	1	-		

 $^{^{1}\,\}mathrm{No}$ reference found. Parameters used from GROMACS as $\mathit{is}.$

Improper parameters								
Improper Elements γ , degrees K_{ϕ} , kcal/mol n Reference Notes								
opls_269-opls_267-opls_268-opls_136 O-C-O-C 180 21.0 2 4 -								

 ${\bf Nitrile}$

	Nonbonded parameters							
Atom type	Element	Charge	Sigma, nm	Epsilon, kcal/mol	Reference	Notes		
opls_753	N	-0.56	0.32	0.17	3	-		
opls_754	С	0.46	0.33	0.066	3	-		
opls_756	С	-0.02	0.33	0.066	3	-		
opls_759	Н	0.06	0.25	0.15	3	-		

Bond parameters								
Bond	Elements	$k, kcal/mol^{-1} Å^2$	r_0, nm	Reference	Notes			
opls_753-opls_754	N-C	650	0.1157	3	-			
opls_754-opls_756	C-C	385	0.1458	3	1			
opls_756-opls_759	С-Н	340	0.109	1	-			
opls_756-opls_136	C-C	268	0.1529	1	-			

 $^{^1\,\}mathrm{GROMACS}$ parameters differ from the literature. Parameters from Ref. 3 have been used.

	Angle parameters										
Angle	Elements	$k, kcal/mol^{-1} deg^2$	θ_0, \deg	Reference	Notes						
opls_753-opls_754-opls_756	N-C-C	150	180	3	-						
opls_754-opls_756-opls_759	С-С-Н	35	108.5	3	-						
opls_754-opls_756-opls_136	C-C-C	58.35	112.7	3	-						
opls_759-opls_756-opls_759	Н-С-Н	33	107.8	1	-						
opls_759-opls_756-opls_136	H-C-C	37.5	110.7	1	-						
opls_756-opls_136-opls_140	С-С-Н	37.5	110.7	1	-						
opls_756-opls_136-opls_136	C-C-C	58.35	112.7	1	-						

Dihedral parameters								
Dihedral	Elements	k1, kcal/mol	k2, kcal/mol	k3, kcal/mol	k4, kcal/mol	Reference	Notes	
opls_753-opls_754-opls_756-opls_136	N-C-C-C	0.0	0.0	0.0	0.0	3	-	
opls_753-opls_754-opls_756-opls_759	N-C-C-H	0.0	0.0	0.0	0.0	3	-	
opls_754-opls_756-opls_136-opls_136	C-C-C-C	1.3	-0.05	0.2	0.0	N/A	1	
opls_754-opls_756-opls_136-opls_140	C-C-C-H	0.0	0.0	0.366	0.0	3	-	
opls_759-opls_756-opls_136-opls_136	H-C-C-C	0.0	0.0	0.3	0.0	3	-	
opls_759-opls_756-opls_136-opls_140	Н-С-С-Н	0.0	0.0	0.3	0.0	3	-	
opls_756-opls_136-opls_136-opls_136	C-C-C-C	1.3	-0.05	0.2	0.0	3	-	
opls_756-opls_136-opls_136-opls_140	С-С-С-Н	0.0	0.0	0.3	0.0	3	-	

¹ Parameters don't exist in GROMACS or the literature. Parameters for alkane C-C-C-C dihedrals have been used.

Cyclopropyl

	Nonbonded parameters									
Atom type Element Charge Sigma, nm Epsilon, kcal/mol Reference Notes										
opls_140	Н	0.06	0.25	0.03	N/A	1				
opls_711	С	-0.12	0.35	0.066	N/A	1				
opls_712	С	-0.06	0.35	0.066	N/A	1				

 $[\]overline{\ }^{1}$ No reference found. Parameters used from GROMACS as is.

Bond parameters										
Bond	Elements	$k, kcal/mol^{-1} Å^2$	r_0, nm	Reference	Notes					
opls_711-opls_140	С-Н	340	0.1088	N/A	1					
opls_711-opls_712	C-C	260	0.1509	N/A	1					
opls_712-opls_140	С-Н	340	0.1088	N/A	1					
opls_712-opls_136	C-C	280	0.151	N/A	1					

 $^{^{1}}$ No reference found. Parameters used from GROMACS $as\ is.$

	Ang	le parameters			
Angle	Elements	$k, kcal/mol^{-1} deg^2$	θ_0, \deg	Reference	Notes
opls_140-opls_711-opls_140	Н-С-Н	35	114.3	N/A	1
opls_140-opls_711-opls_711	H-C-C	37.5	117.2	N/A	1
opls_140-opls_711-opls_712	H-C-C	37.5	117.2	N/A	1
opls_711-opls_711-opls_712	C-C-C	30	60	N/A	1
opls_711-opls_712-opls_711	C-C-C	30	60	N/A	1
opls_711-opls_711-opls_140	С-С-Н	37.5	117.2	N/A	1
opls_711-opls_712-opls_140	С-С-Н	37.5	117.2	N/A	1
opls_711-opls_712-opls_136	C-C-C	37.5	117.2	N/A	1
opls_140-opls_712-opls_136	H-C-C	35	114.3	N/A	1
opls_712-opls_136-opls_136	C-C-C	58.35	112.7	N/A	2
opls_712-opls_136-opls_140	С-С-Н	37.5	110.7	N/A	1

 $[\]overline{\ }^1$ No reference found. Parameters used from GROMACS as is.

 $^{^2\,\}mathrm{Parameters}$ not found in GROMACS or the literature. Alkane C-C-C parameters have been used.

	Dihedral parameters									
Dihedral	Elements	k1, kcal/mol	k2, kcal/mol	k3, kcal/mol	k4, kcal/mol	Reference	Notes			
opls_140-opls_711-opls_711-opls_140	Н-С-С-Н	0.0	0.0	0.3	0.0	N/A	1			
opls_140-opls_711-opls_711-opls_712	H-C-C-C	0.0	0.0	0.3	0.0	N/A	1			
opls_140-opls_711-opls_712-opls_711	H-C-C-C	0.0	0.0	0.3	0.0	N/A	1			
opls_140-opls_711-opls_712-opls_140	Н-С-С-Н	0.0	0.0	0.3	0.0	N/A	1			
opls_140-opls_711-opls_712-opls_136	H-C-C-C	0.0	0.0	0.3	0.0	N/A	1			
opls_711-opls_711-opls_712-opls_140	C-C-C-H	0.0	0.0	0.3	0.0	N/A	1			
opls_711-opls_711-opls_712-opls_136	C-C-C-C	1.3	-0.05	0.2	0.0	N/A	1			
opls_711-opls_712-opls_711-opls_140	C-C-C-H	0.0	0.0	0.3	0.0	N/A	1			
opls_711-opls_712-opls_136-opls_136	C-C-C-C	1.3	-0.05	0.2	0.0	N/A	2			
opls_711-opls_712-opls_136-opls_140	C-C-C-H	0.0	0.0	0.3	0.0	N/A	1			
opls_140-opls_712-opls_136-opls_136	H-C-C-C	0.0	0.0	0.3	0.0	N/A	3			
opls_140-opls_712-opls_136-opls_140	Н-С-С-Н	0.0	0.0	0.3	0.0	N/A	4			
opls_712-opls_136-opls_136-opls_136	C-C-C-C	1.3	-0.05	0.2	0.0	N/A	2			
opls_712-opls_136-opls_136-opls_140	С-С-С-Н	0.0	0.0	0.3	0.0	N/A	3			

 $^{^{\}rm 1}\,{\rm No}$ reference found. Parameters used from GROMACS as is.

² Parameters not found in GROMACS or the literature. Parameters for alkane C-C-C-C dihedrals have been used. ³ Parameters not found in GROMACS or the literature. Parameters for alkane C-C-C-H dihedrals have been used. ⁴ Parameters not found in GROMACS or the literature. Parameters for alkane H-C-C-H dihedrals have been used.

Vinyl

Nonbonded parameters										
Atom type Element Charge Sigma, nm Epsilon, kcal/mol Reference Notes										
opls_144	Н	0.115	0.242	0.03	1	-				
opls_143	С	-0.23	0.355	0.076	1	-				
opls_142	С	-0.115	0.355	0.076	1	-				

Bond parameters										
Bond	Elements	$k, kcal/mol^{-1} Å^2$	r_0, nm	Reference	Notes					
opls_144-opls_143	С-Н	340	0.108	4	-					
opls_143-opls_142	C-C	549	0.134	4	-					
opls_142-opls_144	С-Н	340	0.108	4	-					
opls_142-opls_136	C-C	317	0.151	4	-					

Angle parameters										
Angle	Elements	$k, kcal/mol^{-1} deg^2$	θ_0, \deg	Reference	Notes					
opls_144-opls_143-opls_144	Н-С-Н	35	117	N/A	1					
opls_144-opls_143-opls_142	H-C-C	35	120	7						
opls_143-opls_142-opls_136	C-C-C	70	124	N/A	1					
opls_143-opls_142-opls_144	С-С-Н	35	120	7						
opls_144-opls_142-opls_136	H-C-C	35	117	N/A	1					
opls_142-opls_136-opls_136	C-C-C	63	111.1	4						
opls_142-opls_136-opls_140	С-С-Н	35	109.5	4						

 $^{^{1}}$ No reference found. Parameters used from GROMACS as is.

Dihedral parameters									
Dihedral	Elements	k1, kcal/mol	k2, kcal/mol	k3, kcal/mol	k4, kcal/mol	Reference	Notes		
opls_144-opls_143-opls_142-opls_136	H-C-C-C	0.0	14.0	0.0	0.0	N/A	1		
opls_144-opls_143-opls_142-opls_144	Н-С-С-Н	0.0	14.0	0.0	0.0	N/A	1		
opls_143-opls_142-opls_136-opls_136	C-C-C-C	0.346	0.405	-0.904	0.0	N/A	1		
opls_143-opls_142-opls_136-opls_140	C-C-C-H	0.0	0.0	-0.372	0.0	1	-		
opls_144-opls_142-opls_136-opls_136	H-C-C-C	0.0	0.0	0.3	0.0	N/A	2		
opls_144-opls_142-opls_136-opls_140	Н-С-С-Н	0.0	0.0	0.318	0.0	N/A	1		
opls_142-opls_136-opls_136-opls_136	C-C-C-C	1.3	-0.05	0.2	0.0	N/A	1		
opls_142-opls_136-opls_136-opls_140	C-C-C-H	0.0	0.0	0.366	0.0	N/A	1		

 $^{^{1}}$ No reference found. Parameters used from GROMACS as is. 2 Parameters not found in GROMACS or the literature. Parameters for alkane C-C-C-H dihedrals have been used.

Improper parameters								
Improper Elements γ , degrees K_{ϕ} , kcal/mol n Reference Notes								
opls_142-opls_143-opls_144-opls_144	С-С-Н-Н	180	21.0	2	N/A	1		
opls_143-opls_142-opls_136								

 $^{^{1}}$ No reference found. Parameters used from GROMACS as is.

Fluorophenyl

Nonbonded parameters										
Atom type	Element	Charge	Sigma, nm	Epsilon, kcal/mol	Reference	Notes				
opls_719	F	-0.22	0.285	0.061	8	-				
opls_718	С	0.22	0.355	0.07	8	-				
opls_145	С	-0.115	0.355	0.07	1	-				
opls_146	Н	0.115	0.242	0.03	1	-				
opls_149	С	-0.005	0.35	0.066	1	-				
opls_140	Н	0.06	0.25	0.03	1	-				

Bond parameters								
Bond	Elements	$k, kcal/mol^{-1} Å^2$	r_0, nm	Reference	Notes			
opls_719-opls_718	F-C	420	0.1354	9	-			
opls_718-opls_145	C-C	469	0.14	4	-			
opls_145-opls_146	С-Н	367	0.108	10	-			
opls_145-opls_145	C-C	469	0.14	4	-			
opls_145-opls_149	C-C	317	0.151	4	-			
opls_149-opls_140	С-Н	340	0.109	1	-			
opls_149-opls_136	C-C	268	0.1529	1	-			

	Ang	le parameters			
Angle	Elements	$k, kcal/mol^{-1} deg^2$	θ_0, \deg	Reference	Notes
opls_719-opls_718-opls_145	F-C-C	80	120	9	-
opls_718-opls_145-opls_146	С-С-Н	35	120	4	-
opls_718-opls_145-opls_145	C-C-C	63	120	5	-
opls_146-opls_145-opls_145	H-C-C	35	120	4	-
opls_145-opls_718-opls_145	C-C-C	63	120	5	-
opls_145-opls_145-opls_145	C-C-C	63	120	5	-
opls_145-opls_145-opls_149	C-C-C	70	120	4	-
opls_145-opls_149-opls_136	C-C-C	63	114	4	-
opls_145-opls_149-opls_140	С-С-Н	35	109.5	4	-
opls_149-opls_136-opls_136	C-C-C	58.35	112.7	1	-
opls_149-opls_136-opls_140	С-С-Н	37.5	110.7	1	-
opls_140-opls_149-opls_140	Н-С-Н	33	107.8	1	-

		Dihedral pa	arameters				
Dihedral	Elements	k1, kcal/mol	k2, kcal/mol	k3, kcal/mol	k4, kcal/mol	Reference	Notes
opls_719-opls_718-opls_145-opls_145	F-C-C-C	0.0	7.25	0.0	0.0	5	-
opls_719-opls_718-opls_145-opls_146	F-C-C-H	0.0	7.25	0.0	0.0	5	-
opls_718-opls_145-opls_145-opls_145	C-C-C-C	0.0	7.25	0.0	0.0	5	-
opls_718-opls_145-opls_145-opls_146	C-C-C-H	0.0	7.25	0.0	0.0	5	-
opls_146-opls_145-opls_718-opls_145	H-C-C-C	0.0	7.25	0.0	0.0	5	-
opls_146-opls_145-opls_145-opls_146	Н-С-С-Н	0.0	7.25	0.0	0.0	5	-
opls_146-opls_145-opls_145-opls_145	H-C-C-C	0.0	7.25	0.0	0.0	5	-
opls_146-opls_145-opls_145-opls_149	H-C-C-C	0.0	7.25	0.0	0.0	5	-
opls_145-opls_145-opls_145	C-C-C-C	0.0	7.25	0.0	0.0	5	-
opls_145-opls_145-opls_149	C-C-C-C	0.0	7.25	0.0	0.0	5	-
opls_145-opls_718-opls_145-opls_145	C-C-C-C	0.0	7.25	0.0	0.0	5	-
opls_145-opls_145-opls_149-opls_136	C-C-C-C	0.0	0.0	0.0	0.0	1	-
opls_145-opls_145-opls_149-opls_140	C-C-C-H	0.0	0.0	0.0	0.0	1	-
opls_145-opls_149-opls_136-opls_136	C-C-C-C	1.3	-0.05	0.2	0.0	N/A	1
opls_145-opls_149-opls_136-opls_140	С-С-С-Н	0.0	0.0	0.462	0.0	1	-

¹ No reference found. Parameters used from GROMACS as is. GROMACS uses same parameters as alkane C-C-C-C.

Improper parameters							
Improper	Elements	γ , degrees	K_{ϕ} , kcal/mol	n	Reference	Notes	
opls_719-opls_718-opls_145-opls_145	F-C-C-C	180	2.2	2	5	-	
opls_146-opls_145-opls_718-opls_145	H-C-C-C	180	2.2	2	5	-	
opls_146-opls_145-opls_145-opls_145	H-C-C-C	180	2.2	2	5	-	
opls_149-opls_145-opls_145-opls_145	C-C-C-C	180	2.2	2	5	-	

Hydroxyl

Nonbonded parameters								
Atom type	Element Charge Sigma, nm Epsilon, kcal/mol Re					Notes		
opls_155	Н	0.418	0	0	1	-		
opls_154	О	-0.683	0.312	0.17	1	-		
opls_157	С	0.145	0.35	0.066	1	-		
opls_140	Н	0.06	0.25	0.03	1	-		

Bond parameters								
Bond	Elements	$k, kcal/mol^{-1} Å^2$	r_0, nm	Reference	Notes			
opls_155-opls_154	Н-О	553	0.0945	4	-			
opls_154-opls_157	O-C	320	0.141	4	-			
opls_157-opls_140	С-Н	340	0.109	1	-			
opls_157-opls_136	C-C	268	0.1529	1	_			

	Angle parameters									
Angle	Elements	$k, kcal/mol^{-1} deg^2$	θ_0, \deg	Reference	Notes					
opls_155-opls_154-opls_157	Н-О-С	55	108.5	4	-					
opls_154-opls_157-opls_136	O-C-C	50	109.5	4	-					
opls_154-opls_157-opls_140	О-С-Н	35	109.5	4	-					
opls_140-opls_157-opls_140	Н-С-Н	33	107.8	1	-					
opls_140-opls_157-opls_136	H-C-C	37.5	110.7	1	-					
opls_157-opls_136-opls_136	C-C-C	58.35	112.7	1	-					
opls_157-opls_136-opls_140	С-С-Н	37.5	110.7	1	-					

	Dihedral parameters							
Dihedral	Elements	k1, kcal/mol	k2, kcal/mol	k3, kcal/mol	k4, kcal/mol	Reference	Notes	
opls_155-opls_154-opls_157-opls_136	H-O-C-C	-0.356	-0.174	0.492	0.0	1	-	
opls_155-opls_154-opls_157-opls_140	Н-О-С-Н	0.0	0.0	0.45	0.0	1	-	
opls_154-opls_157-opls_136-opls_136	O-C-C-C	1.711	-0.5	0.663	0.0	1	-	
opls_154-opls_157-opls_136-opls_140	O-C-C-H	0.0	0.0	0.468	0.0	1	-	
opls_140-opls_157-opls_136-opls_136	H-C-C-C	0.0	0.0	0.3	0.0	3	-	
opls_140-opls_157-opls_136-opls_140	Н-С-С-Н	0.0	0.0	0.3	0.0	3	-	
opls_157-opls_136-opls_136-opls_136	C-C-C-C	1.3	-0.05	0.2	0.0	3	-	
opls_157-opls_136-opls_136-opls_140	C-C-C-H	0.0	0.0	0.3	0.0	3	-	

Isopropyl

	Nonbonded parameters								
Atom type Element Charge Sigma, nm Epsilon, kcal/mol Reference Notes									
opls_140	Н	0.06	0.25	0.03	1	-			
opls_135	С	-0.18	0.35	0.066	1	-			
opls_137	С	-0.06	0.35	0.066	1	-			

Bond parameters								
Bond	Elements	$k, kcal/mol^{-1} Å^2$	r_0, nm	Reference	Notes			
opls_140-opls_135	H-C	340	0.109	1	-			
opls_135-opls_137	C-C	268	0.1529	1	-			
opls_137-opls_140	С-Н	340	0.109	1	-			
opls_137-opls_136	C-C	268	0.1529	1	-			

	Angle parameters									
Angle	Elements	$k, kcal/mol^{-1} deg^2$	θ_0, \deg	Reference	Notes					
opls_140-opls_135-opls_140	Н-С-Н	33	107.8	1	-					
opls_140-opls_135-opls_137	H-C-C	37.5	110.7	1	-					
opls_135-opls_137-opls_135	C-C-C	58.35	112.7	1	-					
opls_135-opls_137-opls_140	С-С-Н	37.5	110.7	1	-					
opls_135-opls_137-opls_136	C-C-C	58.35	112.7	1	-					
opls_140-opls_137-opls_136	H-C-C	37.5	110.7	1	-					
opls_137-opls_136-opls_136	C-C-C	58.35	112.7	1	-					
opls_137-opls_136-opls_140	С-С-Н	37.5	110.7	1	-					

		Dihadral no	ramatare				
Dihedral parameters							
Dihedral	Elements	k1, kcal/mol	k2, kcal/mol	k3, kcal/mol	k4, kcal/mol	Reference	Notes
opls_140-opls_135-opls_137-opls_140	H-C-C-H	0.0	0.0	0.3	0.0	3	-
opls_140-opls_135-opls_137-opls_135	H-C-C-C	0.0	0.0	0.3	0.0	3	-
opls_140-opls_135-opls_137-opls_136	H-C-C-C	0.0	0.0	0.3	0.0	3	-
opls_140-opls_137-opls_136-opls_136	H-C-C-C	0.0	0.0	0.3	0.0	3	-
opls_140-opls_137-opls_136-opls_140	H-C-C-H	0.0	0.0	0.3	0.0	3	-
opls_135-opls_137-opls_136-opls_136	C-C-C-C	1.3	-0.05	0.2	0.0	3	-
opls_135-opls_137-opls_136-opls_140	C-C-C-H	0.0	0.0	0.3	0.0	3	-
opls_137-opls_136-opls_136-opls_136	C-C-C-C	1.3	-0.05	0.2	0.0	3	-
opls_137-opls_136-opls_136-opls_140	C-C-C-H	0.0	0.0	0.3	0.0	3	-

Methoxy

	Nonbonded parameters								
Atom type	Element	Charge	Sigma, nm	Epsilon, kcal/mol	Reference	Notes			
opls_185	Н	0.03	0.25	0.03	1	-			
opls_181	С	0.11	0.35	0.066	1	-			
opls_180	0	-0.4	0.29	0.14	1	-			
opls_182	C	0.14	0.35	0.066	1	-			

Bond parameters								
Bond	Elements	$k, kcal/mol^{-1} Å^2$	r_0, nm	Reference	Notes			
opls_185-opls_181	H-C	340	0.109	1	-			
opls_181-opls_180	C-O	320	0.141	4	-			
opls_180-opls_182	O-C	320	0.141	4	-			
opls_182-opls_185	С-Н	340	0.109	1	-			
opls_182-opls_136	C-C	268	0.1529	1	-			

Angle parameters								
Angle	Elements	$k, kcal/mol^{-1} deg^2$	θ_0, \deg	Reference	Notes			
opls_185-opls_181-opls_185	Н-С-Н	33	107.8	1	-			
opls_185-opls_181-opls_180	H-C-O	35	109.5	4	-			
opls_181-opls_180-opls_182	C-O-C	60	109.5	4	-			
opls_180-opls_182-opls_136	O-C-C	50	109.5	4	-			
opls_180-opls_182-opls_185	О-С-Н	35	109.5	4	-			
opls_185-opls_182-opls_185	Н-С-Н	33	107.8	1	-			
opls_185-opls_182-opls_136	H-C-C	37.5	110.7	1	-			
opls_182-opls_136-opls_136	C-C-C	58.35	112.7	1	-			
opls_182-opls_136-opls_140	С-С-Н	37.5	110.7	1	-			

Dihedral parameters							
Dihedral	Elements	k1, kcal/mol	k2, kcal/mol	k3, kcal/mol	k4, kcal/mol	Reference	Notes
opls_185-opls_181-opls_180-opls_182	H-C-O-C	0.0	0.0	0.76	0.0	1	-
opls_181-opls_180-opls_182-opls_136	C-O-C-C	0.65	-0.25	0.67	0.0	1	-
opls_181-opls_180-opls_182-opls_185	С-О-С-Н	0.0	0.0	0.76	0.0	1	-
opls_180-opls_182-opls_136-opls_136	O-C-C-C	1.711	-0.5	0.663	0.0	1	-
opls_180-opls_182-opls_136-opls_140	O-C-C-H	0.0	0.0	0.468	0.0	1	-
opls_185-opls_182-opls_136-opls_136	H-C-C-C	0.0	0.0	0.3	0.0	3	-
opls_185-opls_182-opls_136-opls_140	Н-С-С-Н	0.0	0.0	0.3	0.0	3	-
opls_182-opls_136-opls_136-opls_136	C-C-C-C	1.3	-0.05	0.2	0.0	3	-
opls_182-opls_136-opls_136-opls_140	C-C-C-H	0.0	0.0	0.3	0.0	3	-

 ${\bf Nitro}$

	Nonbonded parameters								
Atom type	Element	Charge	Sigma, nm	Epsilon, kcal/mol	Reference	Notes			
opls_761	0	-0.37	0.296	0.17	3	-			
opls_760	N	0.54	0.325	0.12	3	-			
opls_764	С	0.08	0.35	0.066	3	-			
opls_763	Н	0.06	0.25	0.015	3	-			

Bond parameters								
Bond	Elements	$k, kcal/mol^{-1} Å^2$	r_0, nm	Reference	Notes			
opls_761-opls_760	O-N	550	0.1225	3	-			
opls_760-opls_764	N-C	375	0.149	3	-			
opls_764-opls_763	С-Н	340	0.109	1	-			
opls_764-opls_136	C-C	268	0.1529	1	-			

	Angle parameters									
Angle	Elements	$k, kcal/mol^{-1} deg^2$	θ_0, \deg	Reference	Notes					
opls_761-opls_760-opls_761	O-N-O	80	125	3	-					
opls_761-opls_760-opls_764	O-N-C	80	117.5	3	-					
opls_760-opls_764-opls_763	N-C-H	35	105	3	-					
opls_760-opls_764-opls_136	N-C-C	63	111.1	3	-					
opls_763-opls_764-opls_763	Н-С-Н	33	107.8	1	-					
opls_763-opls_764-opls_136	H-C-C	37.5	110.7	1	-					
opls_764-opls_136-opls_136	C-C-C	58.35	112.7	1	-					
opls_764-opls_136-opls_140	С-С-Н	37.5	110.7	1	-					

	Dihedral parameters							
Dihedral	Elements	k1, kcal/mol	k2, kcal/mol	k3, kcal/mol	k4, kcal/mol	Reference	Notes	
opls_761-opls_760-opls_764-opls_136	O-N-C-C	0.0	0.4	0.0	0.0	3	-	
opls_761-opls_760-opls_764-opls_763	O-N-C-H	0.0	0.0	0.0	0.0	3	-	
opls_760-opls_764-opls_136-opls_136	N-C-C-C	-1.54	-0.214	0.0	0.0	3	1	
opls_760-opls_764-opls_136-opls_140	N-C-C-H	0.0	0.0	-0.225	0.0	3	-	
opls_763-opls_764-opls_136-opls_136	H-C-C-C	0.0	0.0	0.3	0.0	3	-	
opls_763-opls_764-opls_136-opls_140	Н-С-С-Н	0.0	0.0	0.3	0.0	3	-	
opls_764-opls_136-opls_136-opls_136	C-C-C-C	1.3	-0.05	0.2	0.0	3	-	
opls_764-opls_136-opls_136-opls_140	С-С-С-Н	0.0	0.0	0.3	0.0	3	-	

 $^{^{\}rm 1}\,\mathrm{Parameters}$ did not exist in GROMACS. Parameters from Ref. 3 have been used.

Nitrophenyl

	Nonbonded parameters							
Atom type	Element	Charge	Sigma, nm	Epsilon, kcal/mol	Reference	Notes		
opls_761	O	-0.37	0.296	0.17	3	-		
opls_767	N	0.65	0.325	0.12	3	-		
opls_768	С	0.09	0.355	0.07	3	-		
opls_145	С	-0.115	0.355	0.07	1	-		
opls_146	Н	0.115	0.242	0.03	1	-		
opls_149	С	-0.005	0.35	0.066	1	-		
opls_140	Н	0.06	0.25	0.03	1	-		

	Bond parameters									
Bond	Elements	$k, kcal/mol^{-1} Å^2$	r_0, nm	Reference	Notes					
opls_761-opls_767	O-N	550	0.1225	3	-					
opls_767-opls_768	N-C	400	0.146	3	-					
opls_768-opls_145	C-C	469	0.14	5	-					
opls_145-opls_146	С-Н	367	0.108	10	-					
opls_145-opls_149	C-C	317	0.151	4	-					
opls_149-opls_140	С-Н	340	0.109	1	-					
opls_149-opls_136	C-C	268	0.1529	1	-					

	Ang	le parameters			
Angle	Elements	$k, kcal/mol^{-1} deg^2$	θ_0, \deg	Reference	Notes
opls_761-opls_767-opls_761	O-N-O	80	125	3	-
opls_761-opls_767-opls_768	O-N-C	80	117.5	3	-
opls_767-opls_768-opls_145	N-C-C	85	120	3	-
opls_768-opls_145-opls_145	C-C-C	63	120	5	-
opls_768-opls_145-opls_146	С-С-Н	35	120	4	-
opls_145-opls_768-opls_145	C-C-C	63	120	4	-
opls_146-opls_145-opls_768	H-C-C	35	120	4	-
opls_146-opls_145-opls_145	H-C-C	35	120	4	-
opls_145-opls_145-opls_145	C-C-C	63	120	5	-
opls_145-opls_145-opls_149	C-C-C	70	120	4	-
opls_145-opls_149-opls_136	C-C-C	63	114	4	-
opls_145-opls_149-opls_140	С-С-Н	35	109.5	4	-
opls_140-opls_149-opls_140	Н-С-Н	33	107.8	1	-
opls_140-opls_149-opls_136	H-C-C	37.5	110.7	1	-
opls_149-opls_136-opls_136	C-C-C	58.35	112.7	1	-
opls_149-opls_136-opls_140	С-С-Н	37.5	110.7	1	-

		Dihedral pa	arameters				
Dihedral	Elements	k1, kcal/mol	k2, kcal/mol	k3, kcal/mol	k4, kcal/mol	Reference	Notes
opls_761-opls_767-opls_768-opls_145	O-N-C-C	0.0	1.15	0.0	0.0	3	-
opls_767-opls_768-opls_145-opls_145	N-C-C-C	0.0	7.25	0.0	0.0	5	-
opls_767-opls_768-opls_145-opls_146	N-C-C-H	0.0	7.25	0.0	0.0	5	-
opls_768-opls_145-opls_145-opls_145	C-C-C-C	0.0	7.25	0.0	0.0	5	-
opls_768-opls_145-opls_145-opls_146	C-C-C-H	0.0	7.25	0.0	0.0	5	-
opls_146-opls_145-opls_768-opls_145	H-C-C-C	0.0	7.25	0.0	0.0	5	-
opls_146-opls_145-opls_145-opls_146	Н-С-С-Н	0.0	7.25	0.0	0.0	5	-
opls_146-opls_145-opls_145-opls_145	H-C-C-C	0.0	7.25	0.0	0.0	5	-
opls_146-opls_145-opls_145-opls_149	H-C-C-C	0.0	7.25	0.0	0.0	5	-
opls_145-opls_145-opls_145	C-C-C-C	0.0	7.25	0.0	0.0	5	-
opls_145-opls_145-opls_149	C-C-C-C	0.0	7.25	0.0	0.0	5	-
opls_145-opls_768-opls_145-opls_145	C-C-C-C	0.0	7.25	0.0	0.0	5	-
opls_145-opls_145-opls_149-opls_136	C-C-C-C	0.0	0.0	0.0	0.0	1	-
opls_145-opls_145-opls_149-opls_140	C-C-C-H	0.0	0.0	0.0	0.0	1	-
opls_145-opls_149-opls_136-opls_136	C-C-C-C	1.3	-0.05	0.2	0.0	N/A	1
opls_145-opls_149-opls_136-opls_140	С-С-С-Н	0.0	0.0	0.462	0.0	1	-

¹ No reference found. Parameters used from GROMACS as is. GROMACS uses same parameters as alkane C-C-C-C.

Improper parameters									
Improper	Elements	γ , degrees	K_{ϕ} , kcal/mol	n	Reference	Notes			
opls_767-opls_768-opls_145-opls_145	N-C-C-C	180	2.2	2	5	-			
opls_146-opls_145-opls_768-opls_145	H-C-C-C	180	2.2	2	5	-			
opls_146-opls_145-opls_145-opls_145	H-C-C-C	180	2.2	2	5	-			
opls_149-opls_145-opls_145-opls_145	C-C-C-C	180	2.2	2	5	-			

Perfluoromethyl

	Nonbonded parameters								
Atom type	tom type Element Charge Sigma, nm Epsilon, kcal/mol Reference Notes								
$opls_965$	F	-0.12	0.295	0.053	11	-			
opls_961	С	0.36	0.35	0.066	11	-			

Bond parameters								
Bond	Elements	$k, kcal/mol^{-1} Å^2$	r_0, nm	Reference	Notes			
opls_965-opls_961	F-C	367	0.1332	11	-			
opls_961-opls_136	C-C	268	0.1529	11	-			

Angle parameters									
Angle	Elements	$k, kcal/mol^{-1} deg^2$	θ_0, \deg	Reference	Notes				
opls_965-opls_961-opls_965	F-C-F	77	109.1	11	-				
opls_965-opls_961-opls_136	F-C-C	50	109.5	11	-				
opls_961-opls_136-opls_136	C-C-C	58.35	112.7	1	-				
opls_961-opls_136-opls_140	С-С-Н	37.5	110.7	1	-				

Dihedral parameters									
Dihedral	Elements	k1, kcal/mol	k2, kcal/mol	k3, kcal/mol	k4, kcal/mol	Reference	Notes		
opls_965-opls_961-opls_136-opls_136	F-C-C-C	0.0	0.0	0.463	0.0	12	1		
opls_965-opls_961-opls_136-opls_140	F-C-C-H	0.0	0.0	0.29	0.0	12	1		
opls_961-opls_136-opls_136-opls_136	C-C-C-C	0.104	-0.312	0.048	-0.083	12	1		
opls_961-opls_136-opls_136-opls_140	C-C-C-H	0.0	0.0	0.133	0.0	12	1		

¹ These parameters are not in GROMACS, as the GROMACS parameters do not distinguish between dihedrals for fluorinated and hydrogenated carbons.

Phenyl

	Nonbonded parameters								
Atom type	Element	Charge	Sigma, nm	Epsilon, kcal/mol	Reference	Notes			
opls_145	С	-0.115	0.355	0.07	1	-			
opls_146	Н	0.115	0.242	0.03	1	-			
opls_149	С	-0.005	0.35	0.066	1	-			
opls_140	Н	0.06	0.25	0.03	1	-			

	Bond parameters								
Bond	Elements	$k, kcal/mol^{-1} Å^2$	r_0, nm	Reference	Notes				
opls_146-opls_145	H-C	367	0.108	10	-				
opls_145-opls_149	C-C	317	0.151	4	-				
opls_149-opls_140	С-Н	340	0.109	1	-				
opls_149-opls_136	C-C	268	0.1529	1	-				
opls_145-opls_145	C-C	469	0.14	4	-				

	Angle parameters									
Angle	Elements	$k, kcal/mol^{-1} deg^2$	θ_0, \deg	Reference	Notes					
opls_146-opls_145-opls_145	H-C-C	35	120	4	-					
opls_145-opls_145-opls_145	C-C-C	63	120	5	-					
opls_145-opls_145-opls_149	C-C-C	70	120	4	-					
opls_145-opls_149-opls_136	C-C-C	63	114	4	-					
opls_145-opls_149-opls_140	С-С-Н	35	109.5	4	-					
opls_140-opls_149-opls_140	Н-С-Н	33	107.8	1	-					
opls_140-opls_149-opls_136	H-C-C	37.5	110.7	1	-					
opls_149-opls_136-opls_136	C-C-C	58.35	112.7	1	-					
opls_149-opls_136-opls_140	С-С-Н	37.5	110.7	1	-					

Dihedral parameters									
Dihedral	Elements	k1, kcal/mol	k2, kcal/mol	k3, kcal/mol	k4, kcal/mol	Reference	Notes		
opls_146-opls_145-opls_145-opls_146	Н-С-С-Н	0.0	7.25	0.0	0.0	5	-		
opls_146-opls_145-opls_145-opls_145	H-C-C-C	0.0	7.25	0.0	0.0	5	-		
opls_146-opls_145-opls_145-opls_149	H-C-C-C	0.0	7.25	0.0	0.0	5	-		
opls_145-opls_145-opls_145	C-C-C-C	0.0	7.25	0.0	0.0	5	-		
opls_145-opls_145-opls_149	C-C-C-C	0.0	7.25	0.0	0.0	5	-		
opls_145-opls_145-opls_149-opls_136	C-C-C-C	0.0	0.0	0.0	0.0	1	-		
opls_145-opls_145-opls_149-opls_140	C-C-C-H	0.0	0.0	0.0	0.0	1	-		
opls_145-opls_149-opls_136-opls_136	C-C-C-C	1.3	-0.05	0.2	0.0	N/A	1		
opls_145-opls_149-opls_136-opls_140	С-С-С-Н	0.0	0.0	0.462	0.0	1	-		

 $^{^{1}}$ No reference found. Parameters used from GROMACS as is. GROMACS uses same parameters as alkane C-C-C-C.

Improper parameters								
Improper Elements γ , degrees K_{ϕ} , kcal/mol n Reference 1						Notes		
opls_146-opls_145-opls_145-opls_145	H-C-C-C	180	2.2	2	5	-		
opls 149-opls 145-opls 145-opls 145	C-C-C-C	180	2.2	2	5	-		

Pyrrole

	Nonbonded parameters							
Atom type	Element	Charge	Sigma, nm	Epsilon, kcal/mol	Reference	Notes		
opls_547	Н	0.118	0.242	0.03	10	-		
opls_546	Н	0.155	0.242	0.03	10	-		
opls_544	С	-0.149	0.355	0.07	10	-		
opls_543	С	-0.163	0.355	0.07	10	-		
opls_542	N	-0.239	0.325	0.17	10	-		
opls_545	Н	0.317	0	0	10	-		
opls_679	С	0.035	0.35	0.066	N/A	1		
opls_140	Н	0.06	0.25	0.03	1	-		

¹ No reference found. Parameters used from GROMACS as is.

	Bond parameters									
Bond	Elements	$k, kcal/mol^{-1} Å^2$	r_0, nm	Reference	Notes					
opls_547-opls_544	H-C	367	0.108	10	-					
opls_544-opls_543	C-C	546	0.1367	10	-					
opls_546-opls_543	H-C	367	0.108	10	-					
opls_543-opls_542	C-N	427	0.1381	10	-					
opls_542-opls_545	N-H	434	0.101	10	-					
opls_544-opls_544	C-C	469	0.1424	10	-					
opls_543-opls_679	C-C	317	0.1504	N/A	1					
opls_679-opls_140	С-Н	340	0.109	1	-					
opls_679-opls_136	C-C	268	0.1529	1	-					

 $[\]overline{\ }^{1}$ No reference found. Parameters used from GROMACS $as\ is.$

Angle parameters							
Angle	Elements	$k, kcal/mol^{-1} deg^2$	θ_0, \deg	Reference	Notes		
opls_546-opls_543-opls_544	H-C-C	35	132.1	10	-		
opls_546-opls_543-opls_542	H-C-N	35	121.6	10	-		
opls_543-opls_544-opls_547	С-С-Н	35	125.7	10	-		
opls_543-opls_544-opls_544	C-C-C	70	107.3	10	-		
opls_543-opls_542-opls_545	C-N-H	35	120	10	-		
opls_543-opls_542-opls_543	C-N-C	70	109.8	10	-		
opls_547-opls_544-opls_544	H-C-C	35	127.5	10	-		
opls_545-opls_542-opls_543	H-N-C	35	120	10	-		
opls_542-opls_543-opls_544	N-C-C	70	107.7	10	-		
opls_542-opls_543-opls_679	N-C-C	70	121.6	N/A	1		
opls_544-opls_543-opls_679	C-C-C	70	132.1	N/A	1		
opls_543-opls_679-opls_136	C-C-C	63	114	N/A	1		
opls_543-opls_679-opls_140	С-С-Н	35	109.5	N/A	1		
opls_140-opls_679-opls_140	Н-С-Н	33	107.8	1	-		
opls_140-opls_679-opls_136	H-C-C	37.5	110.7	1	-		
opls_679-opls_136-opls_136	C-C-C	58.35	112.7	1	-		
opls_679-opls_136-opls_140	С-С-Н	37.5	110.7	1	-		

¹ No reference found. Parameters used from GROMACS as is.

		Dihedral pa	arameters				
Dihedral	Elements	k1, kcal/mol	k2, kcal/mol	k3, kcal/mol	k4, kcal/mol	Reference	Notes
opls_546-opls_543-opls_544-opls_547	Н-С-С-Н	0.0	7.25	0.0	0.0	N/A	1
opls_546-opls_543-opls_544-opls_544	H-C-C-C	0.0	7.25	0.0	0.0	N/A	1
opls_546-opls_543-opls_542-opls_545	H-C-N-H	0.0	3.0	0.0	0.0	N/A	1
opls_546-opls_543-opls_542-opls_543	H-C-N-C	0.0	3.2	0.0	0.0	N/A	1
opls_543-opls_544-opls_544-opls_543	C-C-C-C	0.0	7.25	0.0	0.0	N/A	1
opls_543-opls_544-opls_544-opls_547	C-C-C-H	0.0	7.25	0.0	0.0	N/A	1
opls_543-opls_542-opls_543-opls_544	C-N-C-C	0.0	3.2	0.0	0.0	N/A	1
opls_543-opls_542-opls_543-opls_679	C-N-C-C	0.0	3.2	0.0	0.0	N/A	1
opls_544-opls_543-opls_542-opls_543	C-C-N-C	0.0	3.2	0.0	0.0	N/A	1
opls_544-opls_543-opls_542-opls_545	C-C-N-H	0.0	3.2	0.0	0.0	N/A	1
opls_544-opls_544-opls_543-opls_542	C-C-C-N	0.0	7.25	0.0	0.0	N/A	1
opls_544-opls_544-opls_543-opls_679	C-C-C-C	0.0	7.25	0.0	0.0	N/A	1
opls_547-opls_544-opls_543-opls_542	H-C-C-N	0.0	7.25	0.0	0.0	N/A	1
opls_545-opls_542-opls_543-opls_679	H-N-C-C	0.0	3.2	0.0	0.0	N/A	1
opls_542-opls_543-opls_679-opls_136	N-C-C-C	1.7	-0.6	0.0	0.0	N/A	1
opls_542-opls_543-opls_679-opls_140	N-C-C-H	0.0	0.0	0.42	0.0	N/A	1
opls_547-opls_544-opls_543-opls_679	H-C-C-C	0.0	7.25	0.0	0.0	N/A	1
opls_544-opls_543-opls_679-opls_136	C-C-C-C	0.0	0.0	0.0	0.0	N/A	1
opls_544-opls_543-opls_679-opls_140	C-C-C-H	0.0	0.0	0.0	0.0	N/A	1
opls_543-opls_679-opls_136-opls_136	C-C-C-C	1.3	-0.05	0.2	0.0	N/A	2
opls_543-opls_679-opls_136-opls_140	C-C-C-H	0.0	0.0	0.462	0.0	N/A	1
opls_140-opls_679-opls_136-opls_136	H-C-C-C	0.0	0.0	0.3	0.0	N/A	1
opls_140-opls_679-opls_136-opls_140	Н-С-С-Н	0.0	0.0	0.3	0.0	N/A	1
opls_679-opls_136-opls_136-opls_136	C-C-C-C	1.3	-0.05	0.2	0.0	N/A	1
opls_679-opls_136-opls_136-opls_140	C-C-C-H	0.0	0.0	0.3	0.0	N/A	1

¹ No reference found. Parameters used from GROMACS as is.
² Parameters don't exist in GROMACS or the literature. Parameters for C(aromatic)-C-C-C dihedrals have been used.

Improper parameters						
Improper	Elements	γ , degrees	K_{ϕ} , kcal/mol	n	Reference	Notes
opls_546-opls_543-opls_542-opls_544	H-C-N-C	180	2.2	2	5	-
opls_547-opls_544-opls_543-opls_544	H-C-C-C	180	2.2	2	5	-
opls_679-opls_543-opls_542-opls_544	C-C-N-C	180	2.2	2	5	-
opls_545-opls_542-opls_543-opls_543	H-N-C-C	180	2.0	2	4	-

Additional details on molecular descriptors

Molecular descriptor	Description	Category		
Approximate Surface Area	Approximation of molecular surface area using the approach defined by Labute ¹³	Size		
Asphericity	Measure of molecular shape (from Baumgartner ¹⁴); $A = 0$ for spherical shape, $A = 1$ for highly prolate shapes, and $A = 0.25$ for oblate shapes	Shape		
Balaban J	Related to connectivity, degree of branching ¹⁵	Complexity		
Bertz C _T	Measure of molecular complexity through connectivity 16	Complexity		
Chi0, Chi1	Connectivity indices ¹⁷	Complexity		
Chi0n - Chi4n	Connectivity indices over various molecular fragments (0=atoms, 1=one bond fragments, 2=two bond fragments, etc.) ¹⁷	Complexity		
Chi0v - Chi4v	Valence connectivity indices (0=atoms, 1=one bond fragments, 2=two bond fragments, etc.) 17	Complexity		
Eccentricity	Shape descriptor calculated from the inertia matrix (0=spherical, 1=linear), from Arteca ¹⁸	Shape		
Hall-Kier alpha	Modifying term for kappa descriptors, related to shape/flexibility ¹⁹	Shape		
Hall-Kier kappa1	Alpha-modified topological shape descriptor; related to complexity/number of cycles (rings) in the bond graph ¹⁹	Shape		
Hall-Kier kappa2	Alpha-modified topological shape descriptor; related to degree of star-like bond graph vs. linearity ¹⁹	Shape		
Hall-Kier kappa3	Alpha-modified topological shape descriptor; related to "centrality" of branching ¹⁹	Shape		
Hydrogen bond factor	Developed in this work; related to ability for formation of inter-monolayer hydrogen bonds	Charge distribution, Misc.		
IPC	Complexity/connectivity descriptor estimated from adjacency matrix of bond graph 20	Complexity		

Molecular descriptor	Description	Category	
Inertial shape factor	Characterization of molecular shape from principal moments of inertia $(pm_2/(pm_1 * pm_3)$, where pm1-3 are the three principal moments), from Todeschini and Consoni ¹⁹	Shape	
$\log P$	Octanol - water partition coefficient estimated through the method of Wildman and Crippen; ²¹ measure of hydrophobicity	Charge distribution/Misc.	
Molar refractivity	Estimation of molecular polarizability; calculated through the method of Wildman and Crippen ²¹	Size	
Molecular weight	_	Size	
Molecular weight (heavy atoms)	Molecular weight excluding hydrogens	Size	
Normalized principal moments ratios (NPR1, NPR2)	Used to characterize molecular shape, from Sauer and Schwarz ²²	Shape	
Number of heavy atoms	Number of non-hydrogen atoms	Size	
Number of rotatable bonds	_	Size/Shape	
Number of valence electrons	_	Size	
Plane of best fit	Measure of molecular planarity (0=planar, increasing with less planarity) ²³	Shape	
Principal moments of inertia (PMI1, PMI2, PMI3)	Three principal moments of inertia for the molecule (1=smallest, 3=largest)	Shape	
Radius of gyration	(From Arteca ¹⁸) Characterizes molecular shape, specifically elongation	Shape/Size	
Spherocity	Measure of molecular shape (0=spherical, 1=flat), from Robinson et al. ²⁴	Shape	
Topological polar surface area	Estimation of surface area of only polar atoms, from Ertl et al. ²⁵	Charge distribution	

Molecular descriptor	Description	Category
Total hydrophobic VSA	Sum of SA contributions from atoms with	Charge distribution
	$-0.20 \le q < 0.20$	
Total negative van der Waals	Sum of SA contributions from atoms with $q <$	Charge distribution
surface area (VSA)	0.0	
Total negative polar VSA	Sum of SA contributions from atoms with $q <$	Charge distribution
	-0.20	
Total polar VSA	Sum of SA contributions from atoms with	Charge distribution
	q > 0.20	
Total positive VSA	Sum of SA contributions from atoms with $q >$	Charge distribution
	0.0	
Total positive polar VSA	Sum of SA contributions from atoms with $q \geq$	Charge distribution
	0.20	
Fractional hydrophobic VSA	Total hydrophobic VSA / Total VSA	Charge distribution
Fractional negative VSA	Total negative VSA / Total VSA	Charge distribution
Fractional negative polar VSA	Total negative polar VSA / Total VSA	Charge distribution
Fractional polar VSA	Total polar VSA / Total VSA	Charge distribution
Fractional positive VSA	Total positive VSA / Total VSA	Charge distribution
Fractional positive polar VSA	Total positive polar VSA / Total VSA	Charge distribution

Mean-based estimation of chemically-dissimilar tribology

As an initial attempt at exploring how the mixing of monolayer chemistries alters tribological response, the COF and adhesion of chemically-dissimilar monolayers was predicted from the results calculated for chemically-identical systems using a simple arithmetic mean. For example, the COF and adhesion of a "hydroxyl-methyl" system is estimated by taking the average of the COF and adhesion calculated for the "hydroxyl-hydroxyl" and "methyl-methyl" systems. If the estimation over-predicts the actual value, that would suggest that the mixing of monolayer chemistries provides an advantageous route to improving monolayer tribological performance. The actual vs. expected values for both COF and adhesion using this ap-

Figure S1: Predicted values of a. COF and b. adhesive force for chemically-dissimilar monolayer systems, as calculated by the mean of the values obtained for chemically identical systems, compared to the actual values. The y=x line is drawn in black for reference, while the dashed red line represents a linear regression of the data. Each unique surface chemistry (averaged over five monolayer surface configurations) is represented by a single point, and errors bars represent a single standard deviation calculated from the estimation of these five configurations.

proach are shown in Fig. S1. Interestingly, from Fig. S1a it is observed that the COF of chemically-dissimilar systems is reasonably-approximated by the averaging of values from the chemically-identical systems, as the COF of nearly all chemically-dissimilar systems is predicted correctly within error of the measurement.

Conversely, Fig. S1b shows that the force of adhesion is not well predicted by this approach. It appears that if one monolayer in a system is terminated by a polar functional group and the other is terminated by a nonpolar functional group, the adhesive force will be most similar to that of the pure nonpolar system, rather than an average of the two. As a result, when predicting the adhesive force for chemically-dissimilar systems featuring a mixture of polar and nonpolar groups using mean data from chemically-identical systems, adhesion values are over-estimated, as evidenced by the high concentration of points below the y=x line in Fig. S1b.

Details on construction of silica surfaces

Silica surfaces are carved from an amorphous silica bulk, as in our previous work. ²⁶ Bulk silica was generated by putting a stoichiometric ratio of Si and O into a 5nm x 5nm x 5nm box at a density of 2.2g/mL. The procedure of Litton and Garofalini ²⁷ was then followed, whereby the system was heated to 10000K, followed by a step-wise annealing through intermediate temperatures of 8000, 6000, 4000, 3000, 2000, and 1000K before ending at 300K. The ReaxFF force field ²⁸ was used to model silicaon and oxygen bonding, and parameters from Fogarty et al. were used. ²⁹ Surfaces were then carved from the amorphous silica bulk using an analytical approach to achieve a hydroxyl density of 5 OH/nm² by bridging neighboring surface oxygens, ^{30,31} using the mBuild package. ^{32,33} This approach yields amorphous silica surfaces that lack inplane attachment site order (which is not the case for crystalline surface models) and feature an atomic scale surface roughness of roughly 0.11nm, similar to values obtained in previous work using synthesis mimetic simulations to mimic the "piranha" treatment of surfaces typical in experiment. ³⁴

References

- (1) Jorgensen, W. L.; Maxwell, D. S.; Tirado-Rives, J. Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids. *Journal of the American Chemical Society* 1996, 118, 11225–11236.
- (2) Lorenz, C.; Webb, E.; Stevens, M.; Chandross, M.; Grest, G. Frictional dynamics of perfluorinated self-assembled monolayers on amorphous SiO2. Tribology Letters 2005, 19, 93–98.
- (3) Price, M. L. P.; Ostrovsky, D.; Jorgensen, W. L. Gas-phase and liquid-state properties of esters, nitriles, and nitro compounds with the OPLS-AA force field. *Journal of Computational Chemistry* 2001, 22, 1340–1352.
- (4) Weiner, S. J.; Kollman, P. A.; Nguyen, D. T.; Case, D. A. An all atom force field for simulations of proteins and nucleic acids. *Journal of Computational Chemistry* **1986**, *7*, 230–252.
- (5) Rizzo, R. C.; Jorgensen, W. L. OPLS All-Atom Model for Amines: Resolution of the Amine Hydration Problem. Journal of the American Chemical Society 1999, 121, 4827–4836.
- (6) Price, D. J.; Roberts, J. D.; Jorgensen, W. L. Conformational Complexity of Succinic Acid and Its Monoanion in the Gas Phase and in Solution: Ab Initio Calculations and Monte Carlo Simulations. Journal of the American Chemical Society 1998, 120, 9672–9679.
- (7) Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz, K. M.; Ferguson, D. M.; Spellmeyer, D. C.; Fox, T.; Caldwell, J. W.; Kollman, P. A. A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules. *Journal of the American Chemical Society* 1995, 117, 5179–5197.
- (8) Jorgensen, W. L.; Ulmschneider, J. P.; Tirado-Rives, J. Free Energies of Hydration from a Generalized Born Model and an All-Atom Force Field. The Journal of Physical Chemistry B 2004, 108, 16264–16270.
- (9) Jorgensen, W. L.; Schyman, P. Treatment of Halogen Bonding in the OPLS-AA Force Field: Application to Potent Anti-HIV Agents. Journal of Chemical Theory and Computation 2012, 8, 3895–3901.
- (10) McDonald, N. A.; Jorgensen, W. L. Development of an All-Atom Force Field for Heterocycles. Properties of Liquid Pyrrole, Furan, Diazoles, and Oxazoles. The Journal of Physical Chemistry B 1998, 102, 8049–8059.

- (11) Watkins, E. K.; Jorgensen, W. L. Perfluoroalkanes: Conformational Analysis and Liquid-State Properties from ab Initio and Monte Carlo Calculations. The Journal of Physical Chemistry A 2001, 105, 4118–4125.
- (12) Pádua, A. A. H. Torsion Energy Profiles and Force Fields Derived from Ab Initio Calculations for Simulations of Hydrocarbon-Fluorocarbon Diblocks and Perfluoroalkylbromides. The Journal of Physical Chemistry A 2002, 106, 10116–10123.
- (13) Labute, P. A widely applicable set of descriptors. Journal of Molecular Graphics and Modelling 2000, 18, 464–477.
- (14) Baumgärtner, A. Shapes of flexible vesicles at constant volume. The Journal of Chemical Physics 1993, 98, 7496–7501.
- (15) Balaban, A. T. Highly discriminating distance-based topological index. Chemical Physics Letters 1982, 89, 399–404.
- (16) Bertz, S. H. The first general index of molecular complexity. Journal of the American Chemical Society 1981, 103, 3599–3601.
- (17) Hall, L. H.; Kier, L. B. The Molecular Connectivity Chi Indexes and Kappa Shape Indexes in Structure-Property Modeling. *Reviews in Computational Chemistry* **2007**, 367–422.
- (18) Arteca, G. A. Molecular Shape Descriptors. Reviews in Computational Chemistry 2007, 191–253.
- (19) Todeschini, R.; Consonni, V. Handbook of Molecular Descriptors. *Methods and Principles in Medicinal Chemistry* **2000**,
- (20) Bonchev, D.; Trinajstić, N. Information theory, distance matrix, and molecular branching. *The Journal of Chemical Physics* **1977**, *67*, 4517–4533.
- (21) Wildman, S. A.; Crippen, G. M. Prediction of Physicochemical Parameters by Atomic Contributions. *Journal of Chemical Information and Computer Sciences* 1999, 39, 868–873.
- (22) Sauer, W. H. B.; Schwarz, M. K. Molecular Shape Diversity of Combinatorial Libraries: A Prerequisite for Broad Bioactivity. *Journal of Chemical Information and Computer Sciences* **2003**, *43*, 987–1003.
- (23) Firth, N. C.; Brown, N.; Blagg, J. Plane of Best Fit: A Novel Method to Characterize the Three-Dimensionality of Molecules. *Journal of Chemical Information and Modeling* **2012**, *52*, 2516–2525.

- (24) Robinson, D. D.; Barlow, T. W.; Richards, W. G. Reduced Dimensional Representations of Molecular Structure. *Journal of Chemical Information and Computer Sciences* **1997**, *37*, 939–942.
- (25) Ertl, P.; Rohde, B.; Selzer, P. Fast Calculation of Molecular Polar Surface Area as a Sum of Fragment-Based Contributions and Its Application to the Prediction of Drug Transport Properties. *Journal of Medicinal Chemistry* **2000**, *43*, 3714–3717.
- (26) Summers, A. Z.; Iacovella, C. R.; Cummings, P. T.; MCabe, C. Investigating Alkylsilane Monolayer Tribology at a Single-Asperity Contact with Molecular Dynamics Simulation. *Langmuir* 2017, 33, 11270–11280.
- (27) Litton, D. A.; Garofalini, S. H. Modeling of hydrophilic wafer bonding by molecular dynamics simulations. *Journal of Applied Physics* **2001**, *89*, 6013–6023.
- (28) van Duin, A. C. T.; Strachan, A.; Stewman, S.; Zhang, Q.; Xu, X.; Goddard, W. A. ReaxFFSiOReactive Force Field for Silicon and Silicon Oxide Systems. *The Journal of Physical Chemistry A* **2003**, *107*, 3803–3811.
- (29) Fogarty, J. C.; Aktulga, H. M.; Grama, A. Y.; van Duin, A. C. T.; Pandit, S. A. A reactive molecular dynamics simulation of the silica-water interface. *The Journal of Chemical Physics* **2010**, *132*, 174704.
- (30) Zhuravlev, L. The surface chemistry of amorphous silica. Zhuravlev model. *Colloids and Surfaces A:*Physicochemical and Engineering Aspects 2000, 173, 1–38.
- (31) Hartkamp, R.; Siboulet, B.; Dufrêche, J.-F.; Coasne, B. Ion-specific adsorption and electroosmosis in charged amorphous porous silica. *Physical Chemistry Chemical Physics* **2015**, *17*, 24683–24695.
- (32) mBuild amorphous silica recipe. https://github.com/mosdef-hub/mbuild/blob/master/mbuild/recipes/silica_interface.py.
- (33) Klein, C.; Sallai, J.; Jones, T. J.; Iacovella, C. R.; McCabe, C.; Cummings, P. T. A Hierarchical, Component Based Approach to Screening Properties of Soft Matter. *Molecular Modeling and Simulation* **2016**, 79–92.
- (34) Black, J. E.; Iacovella, C. R.; Cummings, P. T.; McCabe, C. Molecular Dynamics Study of Alkylsilane Monolayers on Realistic Amorphous Silica Surfaces. *Langmuir* **2015**, *31*, 3086–3093.