MATH 222 - Assignment 3

Daniel Frankcom March 2017

- 1. (a) This problem can be modeled as the number of ways to put a plus sign between 16 1s, which is equivalent to $2^{n-1} = 2^{16-1} = 2^{15} = 32768$ compositions.
 - (b) This problem can be modeled in the same manner, however this time we will treat each set of 2 1s (1+1) as an object, since our summands must be even.

 $\therefore 2^{(\frac{n}{2})-1} = 2^{8-1} = 2^7 = 128$ compositions

- 2. (a) Since we are limited to exactly 7 runs, we cannot have 2 runs of A next to each other, as this would result in less than exactly 7. Therefore there are 2 cases:
 - i. There are 3 runs of A and 4 runs of B In this case, we must distribute 7 wins for A among 3 runs, which is equivalent to counting the number of integer solutions to $x_1 + x_2 + x_3 = 7$, where x_i represents the run of A in the list

We must ensure however that each bin has at least one element, so we can modify our question slightly to be number of integer solutions to $y_1 + y_2 + y_3 = 4$, assuming that each run already contains 1 element.

from left to right.

- : the number of possible winner lists when there are 3 runs of A and 4 runs of B is $\binom{6}{2}\binom{8}{3} = (15)(56) = 840$
- ii. There are 4 runs of A and 3 runs of B Using a similar process to that above, we get $\binom{7}{3}\binom{7}{2} = 735$

We can then add these 2 possibilities together to compute the total number of list outcomes: 840 + 735 = 1575 lists

(b) Here we must distribute 15 wins among 7 runs, which is equivalent to counting the number of integer solutions to $x_1 + x_2 + \cdots + x_7 = 15$, where x_i represents the run number from left to right.

We know that there must be at least 1 win each each run however, as otherwise there would be less than the required 7 runs.

... we can rewrite our equation to be $x_1 + x_2 + \cdots + x_7 = 8$. The number of integers that satisfy this is $\binom{w+r-1}{r-1} = \binom{8+7-1}{7-1} = \binom{14}{6}$.

This means that we have $\binom{14}{6}$ arrangements of wins for our runs, however we know that there cannot be an A run and a B run next to each other, as this would diminish the total number of runs.

Therefore our runs must alternate A and B, so there are 2 cases:

- i. Our list starts with an A run
- ii. Our list starts with a B run

For each of these cases there are $\binom{14}{6}$ ways to arrange our wins, so there are $2\binom{14}{6}$ possible lists in total.

$$\therefore 2\binom{14}{6} = 2(3003) = 6006$$
 possible lists

3. Since we have lower bounds on x_3 and x_4 , we can rewrite the equation by assuming that x_3 already contains 3, and that x_4 already contains 4.

The equation then becomes $x_1 + x_2 + x_3 + x_4 = 15$

Due to the upper bounds on our integers, this problem can now be written as an inclusion/exclusion question.

Let N be the total number of integer solutions to $x_1 + x_2 + x_3 + x_4 = 15$

with no restrictions on any of the variables.
$$\therefore \binom{r+n-1}{n-1} = \binom{15+4-1}{4-1} = \binom{18}{3} = 816$$

Let C_1 be the condition that $x_1 \geq 6$

Let C_2 be the condition that $x_2 \geq 7$

Let C_3 be the condition that $x_3 \geq 7$

Let C_4 be the condition that $x_4 \ge 6$

Then the answer to this question can be computed by $N(\bar{C}_1\bar{C}_2\bar{C}_3\bar{C}_4)$

 $N(C_1)$ is the number of solutions to $x_1 + x_2 + x_3 + x_4 = 15$ where $x_1 \ge 6$

This can be re-written as $x_1 + x_2 + x_3 + x_4 = 9$ where x_1 has no restrictions $\therefore \binom{r+n-1}{n-1} = \binom{9+4-1}{4-1} = \binom{12}{3} = 220$ $N(C_2)$ is the solutions to $x_1 + x_2 + x_3 + x_4 = 8$ where x_2 has no restrictions $\therefore \binom{r+n-1}{n-1} = \binom{8+4-1}{4-1} = \binom{11}{3} = 165$ $N(C_3)$ and $N(C_4)$ have the same number of solutions as $N(C_2)$ and $N(C_1)$

 $N(C_iC_j)$ is shown by $x_1 + x_2 + x_3 + x_4 = 15$ where $x_i \ge 6$ and $x_j \ge 7$ This is equivalent to $x_1 + x_2 + x_3 + x_4 = 2$ with no restrictions $\therefore \binom{r+n-1}{n-1} = \binom{2+4-1}{4-1} = \binom{5}{3} = 10$

$$\therefore \binom{r+n-1}{n-1} = \binom{2+4-1}{4-1} = \binom{5}{3} = 10$$

There are 4 such combinations of this case set.

 $N(C_iC_j)$ is shown by $x_1 + x_2 + x_3 + x_4 = 15$ where $x_i, x_j \ge 6$

This is equivalent to $x_1 + x_2 + x_3 + x_4 = 3$ with no restrictions $\therefore {r+n-1 \choose n-1} = {3+4-1 \choose 4-1} = {6 \choose 3} = 20$

$$\therefore \binom{r+n-1}{n-1} = \binom{3+4-1}{4-1} = \binom{6}{3} = 20$$

There are 2 such combinations of this case set.

 $N(C_iC_j)$ is shown by $x_1 + x_2 + x_3 + x_4 = 15$ where $x_i, x_j \ge 7$

This is equivalent to $x_1 + x_2 + x_3 + x_4 = 1$ with no restrictions $\therefore \binom{r+n-1}{n-1} = \binom{1+4-1}{4-1} = \binom{4}{3} = 4$

$$\therefore \binom{r+n-1}{n-1} = \binom{1+4-1}{4-1} = \binom{4}{3} = 4$$

There are 2 such combinations of this case set.

The intersections containing both 3 and 4 conditions all have 0 solutions, as there is no way to sum 3 values that follow any of the conditions and achieve a result that is equal to 15.

$$\bar{N} = N - \sum N(C_i) + \sum N(C_iC_j)$$

= 816 - (2 * 220 + 2 * 165) + (4 * 10 + 2 * 20 + 2 * 4) = 816 - 770
= 88 integer solutions within the given bounds

4. Let N be the number of permutations of the 9 digits, or 9! Let C_i be the condition that digit i is immediately followed by i+1, where $i = 1, 2, \dots, 8$

Then the answer to this question can be computed by $N(\bar{C}_1\bar{C}_2...\bar{C}_8)$

 $N(C_i)$ can be modeled by grouping together i and i+1, treating them as a single digit. By doing this, the number of permutations becomes 8! $N(C_iC_i)$ can be modeled by grouping together the 2 sets of digits, resulting in 7! Note that it does not matter if we have 3 digits consecutively, as the resulting number of movable objects remains the same.

 $N(C_1C_2...C_8)$ results in 1! as by this point all digits are grouped.

$$\bar{N} = N - \sum N(C_i) + \sum N(C_iC_j) - \dots + N(C_iC_j \dots C_8)$$

= 9! - (8)8! + (7)7! - \dots + 1
= 362880 - 322560 + 35280 - 4320 + 600 - 96 + 18 - 4 + 1
= 71799 permutations

5. $\sum_{k=0}^{n-1} (-1)^k \binom{n}{k} (n-k)^m$ can be used to model the number of onto functions 2 given sets, and in our case n=m=9

$$= \sum_{k=0}^{8} (-1)^k {8 \choose k} (8-k)^9$$

$$= 8^9 - (8)7^9 + (28)6^9 - (56)5^9 + (70)4^9 - (56)3^9 + (28)2^9 - 8$$

$$= 1451520 \text{ functions}$$

We then need to remove the functions in which f(x) = x for all even x. There are 4 even numbers in the set, and each represents the number of onto mappings from a set of size 8 to another set of size 8.

Therefore the number of onto mappings in which f(x) = x for any x is:

$$=4\sum_{k=0}^{7} (-1)^k {7 \choose k} (7-k)^8$$

$$=4(7^8-(7)6^8+(21)5^8-(35)4^8+(35)3^8-(21)2^8+7)$$

$$=4(141120)$$

$$=564480 \text{ functions}$$

$$\therefore 1451520-564480$$

$$=887040 \text{ functions that fulfill the condition}$$

6. When dividing by 12, there are 12 possible remainders, therefore in 13 chosen integers, at least 2 must have the same remainder.

Our integers a, b can be written as $a = 12k_1 + r$ and $b = 12k_2 + r$

$$\therefore a - b = 12k_1 + r - 12k_2 - r$$

$$\therefore a - b = 12(k_1 - k_2)$$

 $\therefore 12(a-b) = k_1 - k_2$ which implies that 12|a-b since $k_1 - k_2$ is an integer