Höhere Mathematik 2

Asha Schwegler

18. Juni 2022

Inhaltsverzeichnis

1	Fun	aktionen mit mehreren Variablen	2
	1.1	Partielle Ableitungen	2
	1.2	Linearisierung von Funktionen	2
	1.3	Das Newton-Verfahren für Systeme	2
		1.3.1 Vereinfachtes Newton-Verfahren	3
		1.3.2 Gedämpftes Newton-Verfahren	3
2	Aus	sgleichsrechnung	4
	2.1	Ausgleichsrechnung	4
		2.1.1 Polynominterpolation	4
		2.1.2 Spline-Interpolation	5
		2.1.3 Lineare Ausgleichsprobleme	7
		2.1.4 Nichtlineare Ausgleichprobleme	8
		2.1.5 Das Gauss-Newton Verfahren	
3	Nui	merische Integration	10
	3.1	Rechteck- und Trapezregel	10
		3.1.1 Summierte Rechkteckregle / summierte Trapezregel	10
	3.2	Simpsonregel	
		3.2.1 Summierte Simpsonregel	
	3.3	Fehler der summierten Quadraturformeln	
	3.4	Gauss-Formeln	11
	3.5	Romberg-Extrapolation	
4	Ein	führung in gewöhnliche Differentialgleichungen	11
	4.1	Problemstellung ODE	11
	4.2	Richtungsfelder DGL 1.Ordnung	
	4.3	Eulerverfahren	
	4.4	Mittelpunktverfahren	
	4.5	Das modifizierte Eulerverfahren	
	4.6	Fehlerordnung eines Verfahrens	
	4.7	Das klassische 4-Stufige Runge-Kutta Verfahren	
	•	4.7.1 Das allgemeine s-stufige Runge-Kutta Verfahren	
	4.8	Zurückführen DGL k-ter Ordnung auf k DGL 1.Ordnung	
	4.9	Lösen eines Systems von k DGL 1.Ordnung	

Funktionen mit mehreren Variablen 1

Partielle Ableitungen

$$m = f'(x_0)$$
 im Punkt $(x_0, f(x_0))$

Tangentengleichung

Beispiel: P(1,3)

$$t_x = \underbrace{f(x_1, x_2)}_{\text{f(1,3)}} + \underbrace{\frac{\delta f}{\delta x_1}(x_1^{(0)}, x_2^{(0)})}_{\text{nach } x_1} * (x_1 - x_1^{(0)}) + \underbrace{\frac{\delta f}{\delta x_2}(x_1^{(0)}, x_2^{(0)})}_{\text{nach } x_2} * (x_2 - x_2^{(0)})$$

1.2 Linearisierung von Funktionen

Jacobi-Matrix Df(x)

Jacobi-Matrix enthält sämtliche partiellen Abl.1.Ord.von f:

$$\begin{bmatrix} \frac{\delta f_1}{\delta x_1} & \frac{\delta f_1}{\delta x_2} & \cdots & \frac{\delta f_1}{\delta x_n} \\ \frac{\delta f_2}{\delta x_1} & \frac{\delta f_2}{\delta x_2} & \cdots & \frac{\delta f_2}{\delta x_n} \\ \frac{\delta f_m}{\delta x_1} & \frac{\delta f_m}{\delta x_2} & \cdots & \frac{\delta f_m}{\delta x_n} \end{bmatrix}$$
ispiel:

$$f(x) = \begin{bmatrix} f_1(x_1, x_2) \\ f_2(x_1, x_1) \end{bmatrix} = \begin{bmatrix} x_1^2 + x_2 - 11 \\ x_1 + x_2^2 - 7 \end{bmatrix}$$

$$x^{(0)} = (1,1)^T$$

Partielle Ableitung:

$$Df(x_1, x_2) = \begin{bmatrix} 2x_1 & 1\\ 1 & 2x_2 \end{bmatrix}$$

An der Stelle $x^{(0)}$

$$Df(x_1^{(0)}, x_2^{(0)}) = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

Linearisierung:

Einearisierung:
$$g(x) = f(x^{(0)}) + Df(x^{(0)}) * (x - x^{(0)})$$

$$g(x_1, x_2) = \begin{bmatrix} -9 \\ -5 \end{bmatrix} + \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} * \begin{bmatrix} x_1 - 1 \\ x_2 - 1 \end{bmatrix} = \begin{bmatrix} 2x_1 + x_2 - 12 \\ x_1 + 2x_2 - 8 \end{bmatrix}$$
 Gleichung der Tangentialebene:

Alle angelegten Tangenten an die Bildfläche $y=f(x-1,x_2)$ im Flächenpunkt $P=f(x_1^{(0)},x_2^{(0)})$

2

1.3 Das Newton-Verfahren für Systeme

- Konvergiert quadratisch wenn Df(x) regulär, und f 3-mal stetig differenzierbar ist.
- Vereinfachtes Newton Verfahren konvergiert linear.

Mögliche Abbruchkriterien: > 0

- 1. $n \ge n_{max}$ (bestimmte Anzahl Iterationen)
- 2. $||x^{n+1} x^n|| \le ||x^{n+1}|| \le$ (relativer Fehler)

3. $||x^{n+1} - x^n|| \le \text{(absoluter Fehler)}$

4. $||f(x^{n+1})|| \le (\max \text{ residual})$

Algorithmus:

1. $Df(x^n)\delta^n = -f(x^{(n)})$

2. nach δ^n auflösen

3. $x^{n+1} = x^n + \delta^n$

1.3.1 Vereinfachtes Newton-Verfahren

Konvergiert nur noch linear!!

Natürlich deutlich langsamer!

Immer wieder $Df(x^0)$ verwenden

Algorithmus:

1. $Df(x^0)\delta^n = -f(x^{(n)})$

2. nach δ^n auflösen

3. $x^{n+1} = x^n + \delta^n$

1.3.2 Gedämpftes Newton-Verfahren

Nach dem n-ten Schritt wenn $Df(x^n)$ schlecht konditioniert ist (nicht oder fast nicht invertierbar), dann $x^n + \delta^n$ verwerfen!!

3

Funktioniert auch mit vereinfachtes Newton Verfahren.

1 Probieren:

$$x^n + \frac{\delta^n}{2}$$

$$\begin{split} x^n + \frac{\delta^n}{2} \\ Mit \ der \ Bedingung: \\ \|f(x^n) + \frac{\delta^n}{2})\|_2 < \|f(x^n)\|_2 \end{split}$$

Weil wir Iteration $||f(x^n)||_2$ gegen 0 erreichen wollen

Algorithmus:

- 1. $Df(x^n)\delta^n = -f(x^{(n)})$
- 2. nach δ^n auflösen
- 3. Finde minimale aus $k \in ||f(x^n) + \frac{\delta^n}{2}||_2 < ||f(x^n)||_2$, $k_{max} = 4$ sofern nichts Anderes als sinnvoll angegeben

2 Ausgleichsrechnung

2.1 Ausgleichsrechnung

4. $x^{n+1} = x^n + \frac{\delta^n}{2^k}$

- Datenpunkte mit gewissen Streuung durch einfache Funktion annähern
- Mehr Gleichungen als unbekannte (Mehr Datenpunkte als Parameter)

2.1.1 Polynominterpolation

Gesucht: $P_n(x)$ welche n+1 Stützpunkte interpoliert Jeder Stützpunkt gibt lin. Gleichung für die Bestimmung der Koeffizienten.

Grad n so wählen, dass lin.Gleichungssystem gleich viele Gleichungen wie unbekannte Koeffizienten hat.

$$P_n(x_0) = a_0 + a_1 x_0 + a_2 x_0^2 + \dots + a_n x_0^n = y_0$$

$$P_n(x_1) = a_0 + a_1 x_1 + a_2 x_1^2 + \dots + a_n x_1^n = y_1$$

$$\vdots$$

$$\vdots$$

$$P_n(x_n) = a_0 + a_1 x_n + a_2 x_n^2 + \dots + a_n x_n^n = y_n$$

Lagrange Interpolationsformel:

Lagrangeform von $P_n(x)$:

$$P(x) = \sum_{i=0}^{n} l_i(x) y_i$$

LagrangePolynome = $l_i(x)$:

$$l_i(x) = \prod_{j=0}^n \frac{x - x_j}{x_i - x_j}$$

Stückweise Interpolation:

Interpolationspolynom erster Ordnung: n = 1

Stützpunkte so wählen: $x_{i-1}undx_{i+1}$, somit 2 Werte: n=1

Grösse des Fehlers an Stelle x wenn:

 y_i Funktionswerte (genügend oft stetig differenzierbare Funktion)

$$|f(x) - P_n(x)| \le \frac{|(x - x_0)(x - x_1)...(x - x_n)|}{(n+1!)}$$

Max der (n+1)-ten Abletung der f(x) Intervall $[x_0, x_n]$ kennen, Fehlerabschätzung nur dann möglich.

2.1.2 Spline-Interpolation

Bedingungen für S_i :

- 1. $S_i(x_i) = y_i, S_{i+1}(x+1) = y_{i+1}, ... Interpolation$
- 2. $S_i(x_{i+1}) = S_{i+1}(x_{i+1}), S_{i+1}(x_{i+2}) = S_{i+2}(x_{i+2}), \dots$ Stetiger Übergang
- 3. $S'_{i}(x_{i+1}) = S'_{i+1}(x_{i+1}), S'_{i+1}(x_{i+2}) = S'_{i+2}, ... Keine Knicke$
- 4. $S_i''(x_{i+1}) = S_{i+1}''(x_{i+1}), S_{i+1}''(x_{i+2}) = S_{i+2}'', \dots$ Gleiche Krümmung
- 5. Mindestens den Grad $3\dots$ Kubische Splines
- 3 Intervalle, 4 Stützpunkte:

$$[x_0, x_1], [x_1, x_2], [x_2, x_3]$$

A nestre

$$S_0 = a_0 + b_0(x - x_0) + c_0(x - x_0)^2 + d_0(x - x_0)^3, x \in [x_0, x_1]$$

$$S_1 = a_1 + b_1(x - x_1) + c_1(x - x_1)^2 + d_1(x - x_1)^3, x \in [x_1, x_2]$$

$$S_2 = a_2 + b_2(x - x_2) + c_2(x - x_2)^2 + d_2(x - x_2)^3, x \in [x_2, x_3]$$

3*4=12 Koeffizienten $\Longrightarrow 12$ Bedingungen

1.Interpolation der Stützpunkte:

$$1.S_0(x_0) = y_0$$

$$2.S_1(x_1) = y_1$$

$$3.S_2(x_2) = y_2$$

$$4.S_3(x_3) = y_3$$

2. Stetiger Übergang an Stellen x_1 und x_2 :

$$5.S_0(x_1) = S_1(x_1)$$

$$6.S_1(x_2) = S_2(x_2)$$

3. Erste Ableitung an Übergangstellen übereinstimmen:

$$7.S'_0(x_1) = S'_1(x_1) 8.S'_1(x_2) = S'_2(x_2)$$

4. Zweite Ableitung an Übergangstellen übereinstimmen:

$$9.S_0''(x_1) = S_1''(x_1)$$

$$10.S_1''(x_2) = S_2''(x_2)$$

=10Bedingungen

Die weiteren 2 Bedingungen können frei gewählt"werden.

Diese beziehen sich häufig auf Randstellen x_0 und x_3 .

Beispiele:

Natürliche kubische Splinefunktion:

Mit moeglichen Wendepunkt im Anfangs und Endpunkt.

$$S_0''(x_0) = 0$$

$$S_2''(x_3) = 0$$

Periodische kubische Splinefunktion:

Wenn man Periode $p = x_3 - x - 0$ hat und damit y_0 bzw. $S_0(x_0) = S_2(x_3)$ gilt

$$S_0'(x_0) = S_2'(x_3)$$

$$S_0''(x_0) = S_2''(x_3)$$

mit not-a-knot Bedingung kubische Splinefunktion:

s.d Auch dritte Ableitung in x-1, x-2 noch stetig ist. $(x_1, x_2$ keine echten Knoten)

$$S_0'''(x_1) = S'''x_1(x_1)$$

$$S_1'''(x_2) = S_2'''(x_2)$$

Algorithmus: natürliche kubische Splinefunktion

$$S_i = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3$$

Koeffizienten a_i, b_i, c_i, d_i berechnen:

1.
$$a_i = y_i$$

2.
$$h_i = x_{i+1} - x_i$$

3.
$$c_0 = 0, c_n = 0$$
 !!! (für periodisch $(s_1 = s_0)$, für not a knot $(d_0 = d_1 d_{n-2} = d_{n-1})$

4. Berechnung der Koeffizienten $c_1, c_2, c_3, ..., c_{n-1}$

• i = 1:

$$- 2(h_0 + h_1) c_1 + h_1 c_2 = 3 \frac{y_2 - y_1}{h_1} - 3 \frac{y_1 - y_0}{h_0}$$

• falls $n \ge 4$ dann für i = 2,...,n-2

6

• i = n - 1:

$$- 2(h_{n-2} + h_i) c_{n-2} + 2(h_{n-2} + h_{n-1}) c_{n-1} = 3 \frac{y_n - y_{n-1}}{h_{n-1}} - 3 \frac{y_{n-1} - y_{n-2}}{h_{n-2}}$$

5.
$$b_i = \frac{y_{i+1} - y_i}{h_i} - \frac{h_i}{3}(c_{i+1} + 2c_i)$$

6.
$$d_i = \frac{1}{3h_i}(c_{i+1} - c_i)$$

Ergibt das Gleichungssystem A c = z

- A ist immer invertierbar
- Numerische Lsg.durch Gauss-Algo
- System ist gut konditioniert
- Pivotsuche nicht erforderlich

i = 0, ..., n-1

$$A = \begin{bmatrix} & & \\ & & \end{bmatrix} c = \begin{bmatrix} & & \\ & & \end{bmatrix} = z = \begin{bmatrix} & & \\ & & \end{bmatrix}$$

2.1.3 Lineare Ausgleichsprobleme

Ausgleichsgerade: f(x) = ax + b: gesucht: $F = af_1 + bf_2 \mid a, b \in \mathbb{R}$ Basisfunktion: $f_1(x) = x$ und $f_2(x) = 1$

Form Fehlerfunktional:

$$E(f)(a,b) := \sum_{i=1}^{n} (y_i - f(x_i))^2 = \sum_{i=1}^{n} (y_i - (ax_i + b))^2)$$

minimal = patiellen Ableitung nach a,b müssen verschwinden

Nach a,b auflösen

pattenen Abertung haen
$$a,b$$
 musse
$$\begin{bmatrix} \sum_{i=1}^{n} (x_i)^2 & \sum_{i=1}^{n} (x_i) \\ \sum_{i=1}^{n} (x_i) & n \end{bmatrix} * \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{n} (x_i y_i) \\ \sum_{i=1}^{n} (y_i) \end{bmatrix}$$
Nach a,b auflösen

Allgemeine Definition:

Gegeben:

n-Wertepaare: $(x_i, y_i), i = 1, ..., n$ Basisfunktionen: $(f_1, ..., f_m)[a, b]$

Ansatzfunktionen: $f := \lambda_1 f_1 + ... + \lambda_m f_m$

Lineares Ausgleichproblem mit Fehlerfunktional:

$$E(f) = \|y - f(x)\|_{2}^{2} = \sum_{i=1}^{n} (y_{i} - \sum_{i=1}^{m} \lambda_{j} * f_{j} * (x_{i}))^{2} = \|y - A\lambda\|_{2}^{2}$$

Fehlergleichungssystem: $A\lambda = y$

$$\mathbf{A} = \begin{bmatrix} f_1(x_1) & f_2(x)(x_1) & \dots & f_m(x_1) \\ f_1(x_2) & f_2(x_2)(x_1) & \dots & f_m(x_2) \\ \vdots & & & & \\ f_1(x_n) & f_2(x_n)(x_n) & \dots & f_m(x_n) \end{bmatrix} * y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \lambda \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{bmatrix}$$

$$\mathbf{Normalgleichungen:} \ \frac{\delta E(f)(\lambda_1, \dots, \lambda_m)}{\delta \lambda_j}$$

Normalgleichungssystem: $A^T A \lambda = A^T y$

Lösung: λ beinhaltet gesuchte Prameter des linearen Ausgleichproblems Verfahren am Besten mit QR-Zerlegung

2.1.4Nichtlineare Ausgleichprobleme

Allgemeines Ausgleichproblem:

Fehlerfunktional:

 $f_p = \text{Ansatzfunktion}$

$$E(f)(a,b) := \sum_{i=1}^{n} (y_i - f_p(\lambda_1, \lambda_2, ..., \lambda_m, x_1))^2 = \begin{bmatrix} y_1 - f_p(\lambda_1, \lambda_2, ..., \lambda_m, x_1) \\ y_2 - f_p(\lambda_1, \lambda_2, ..., \lambda_m, x_2) \\ \vdots \\ y_n - f_p(\lambda_1, \lambda_2, ..., \lambda_m, x_n) \end{bmatrix}_{\parallel_2^2} = \begin{bmatrix} y_1 - f_p(\lambda_1, \lambda_2, ..., \lambda_m, x_1) \\ \vdots \\ y_n - f_p(\lambda_1, \lambda_2, ..., \lambda_m, x_n) \end{bmatrix}$$

 $||y - f(\lambda)||_2^2$

$$f(\lambda) := f(\lambda_1, \lambda_2, \dots, \lambda_m) := \begin{bmatrix} f_p(\lambda_1, \lambda_2, \dots, \lambda_m) \\ f_p(\lambda_1, \lambda_2, \dots, \lambda_m) \\ \vdots \\ f_p(\lambda_1, \lambda_2, \dots, \lambda_m) \end{bmatrix} := \begin{bmatrix} f_p(\lambda_1, \lambda_2, \dots, \lambda_m, x_1) \\ f_p(\lambda_1, \lambda_2, \dots, \lambda_m, x_2) \\ \vdots \\ f_p(\lambda_1, \lambda_2, \dots, \lambda_m) \end{bmatrix},$$

$$V = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ y_n \end{bmatrix}$$

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ \vdots \\ y_n \end{bmatrix}, \ \lambda = \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \\ \lambda_n \end{bmatrix}$$

Falls Ansatzfunktionen linear in den Parametern \implies

Spezialfall des Ausgleichsproblems: $f(\lambda) = A\lambda \implies \text{Allg.Ausgleichsproblem} = \text{Minimums einer Funktion}$

Schritte:

- 1. Normalgleichungen aufstellen (part.Abl.von f)
- 2. $\lambda_i = 0$
- 3. Nichtlineare Gleichungssystem lösen

2.1.5Das Gauss-Newton Verfahren

Quadratmittelproblem: Problem einen Vektor x zu finden für den E(x) minimal wird.

Nichtlineare Ausgleichsprobleme: $g(\lambda) := y - f(\lambda)$

Fehlerfunktional: $E(\lambda) := ||g(\lambda)||_2^2 = ||y - f(\lambda)||_2^2$

Gauss-Newton-Verfahren: Lin.Ausgl.RG + Newton-Verfahren = $g(\lambda) = g(\lambda^{(0)}) + Dg(\lambda^{(0)}) * (\lambda - \lambda^{(0)})$

= Verallg.Tangentgleichung!!

$$Dg(\lambda^0) = \begin{bmatrix} \frac{\delta g_1}{\lambda_1} (\delta \lambda^0) & \frac{\delta g_1}{\lambda_2} (\delta \lambda^0) & \dots & \frac{\delta g_1}{\lambda_m} (\delta \lambda^{(0)}) \\ \frac{\delta g_2}{\lambda_1} (\delta \lambda^0) & \frac{\delta g_2}{\lambda_2} (\delta \lambda^0) & \dots & \frac{\delta g_2}{\lambda_m} (\lambda^{(0)}) \\ \vdots & & & & \\ \frac{\delta g_n}{\lambda_1} (\delta \lambda^0) & \frac{\delta g_n}{\lambda_2} (\delta \lambda^0) & \dots & \frac{\delta g_n}{\lambda_m} (\delta \lambda^{(0)}) \end{bmatrix}$$

Minimum Fehlerfunktionals:
$$E(\lambda) = \underbrace{\|g(\lambda^{(0)})\|}_{\mathbf{y}} + \underbrace{Dg(\lambda^{0})}_{\mathbf{-A}} * \underbrace{\lambda - \lambda^{0}}_{\delta}$$

Normagleichungssystem:
$$A^T A \delta = A^T y = Dg(\lambda^0)^T Dg(\lambda^0) \delta = Dg(\lambda^0)^T * g(\lambda^0) \Longrightarrow$$
 QR-Zerlegung: $Dg(\lambda^0) = QR \ge R\delta = -Q^T g(\lambda^0)$ \Longrightarrow Lösung: $\Lambda = (\lambda^0) + \delta$

Schritte:

- 1. Berechne Funktion
 - $g(\lambda) := y f(\lambda)$
 - $Dg(\lambda)$
- 2. k = 0,1...

$$\delta^k$$
 als Lösung: $min\|g(\lambda^k) + Dg(\lambda^k) * \delta^k\|_2^2$
 $\implies Dg(\lambda^k)^T * Dg(\lambda^k) \delta^k = Dg(\lambda^k)^T * g(\lambda^k)$

nach nach δ^k auflösen durch QR-Zerlegung.

- $Dg(\lambda^k) = Q^k R^k$
- $R^k \delta^k = -(Q^k)^T g(\lambda^k)$
- 3. Setze: $\lambda^{k+1} = \lambda^k + \delta^k$

Korrektur δ^k nur akzeptiert wenn Fehlerfunktional zur Abnahme führt: **Fehlerfunktional** $E(\lambda^{k+1}) = \|g(\lambda^{k+1})\|_2^2 < \|g(\lambda^k)\|_2^2 = E(\lambda^k)$

Gedämpftes Gauss-Newton-Verfahren

- 1. Berechne Funktion:
 - $g(\lambda) := y f(\lambda)$
 - $Dg(\lambda)$
- 2. k = 0,1...:

$$\delta^{k} \text{ als L\"osung: } \min \|g(\lambda^{k}) + Dg(\lambda^{k}) * \delta^{k}\|_{2}^{2}$$

$$\implies Dg(\lambda^{k})^{T} * Dg(\lambda^{k}) \delta^{k} = Dg(\lambda^{k})^{T} * g(\lambda^{k})$$

nach nach δ^k auflösen durch QR-Zerlegung.

- $Dg(\lambda^k) = Q^k R^k$
- $R^k \delta^k = -(Q^k)^T q(\lambda^k)$

3. Finde das minimale
$$p \in 0,1,...,p_{max}$$

$$\underbrace{\|\lambda^{(k)} + \frac{\delta^k}{2^p}\|_2^2}_{\lambda^{(k+1)}} < \|g(\lambda^{(k)})\|_2^2$$

4. Falls kein min. p gefunden: p=0 und weiterfahren

5. Setze:
$$\lambda^{(k)} + \frac{\delta^{(k)}}{2^p}$$

Abbruchkriterium:
$$\|\frac{\delta^{(k)}}{2^p}\| < TOL$$

Keine Grantie, dass die Näherung max. Abstand von TOL zum ges. Min. ist.

3 Numerische Integration

- Summierte Rechteckregel ist genauer als die summierte Trapezregel
- Summierte Simpsonregel ist am genaustren(verglichen mit sum.Recht.und Trap.)
- Faktor Fehlerabschätzung summ. Rechteckregel
 < summ. Trap. Regel
 =2

Rechteck- und Trapezregel 3.1

Annäherung bestimmtes Integral.

Rechtecksregel / Mittelpunktsregel:

$$Rf = f(\frac{a+b}{2}) * (b-a)$$

$$Tf = \frac{f(a) + f(b)}{2} * (b - a)$$

3.1.1 Summierte Rechkteckregle / summierte Trapezregel

$$\frac{b-a}{n}$$
; $x_i = a + i*$ h; $x_n = b$; (i=0,...,n-1)

$$Rf(h) = h * \sum_{i=0}^{n-1} f(x_i + \frac{h}{2})$$

$$Tf(h) = h * (\frac{f(a) + f(b)}{2} + \sum_{i=1}^{n-1} f(x_i))$$

 $n = Anzahl Subintervalle [x_i, x_{i+1}]$

3.2Simpsonregel

$$Sf = \frac{(b-a)}{6}(f(a) + 4f(\frac{a+b}{2}) + f(b))$$

3.2.1 Summierte Simpsonregel

$$Sf(h) = \frac{h}{3} \left(\frac{1}{2} f(a) + \sum_{i=1}^{n-1} f(x_i) + 2 \sum_{i=1}^{n} f(\frac{x_{i-1+x_i}}{2}) + \frac{1}{2} f(b) \right)$$

10

3.3 Fehler der summierten Quadraturformeln

$$\begin{split} &|\int_a^b f(x)dx - Rf(h)| \leq \frac{h^2}{24}(b-a)*max|f''(x)| \\ &|\int_a^b f(x)dx - Tf(h)| \leq \frac{h^2}{12}(b-a)*max|f''(x)| \\ &|\int_a^b f(x)dx - Sf(h)| \leq \frac{h^4}{2880}(b-a)*max|f^{(4)}(x)| \\ &\text{Schritte berechnen bis Tol. erreicht:} \\ &\frac{h^2}{24}(b-a) \leq Tol \mid *\frac{24}{(b-a)} \text{etc...} (\text{Analog für andere Formel}) \end{split}$$

3.4 Gauss-Formeln

 x_i Stützstellen müssen nicht äquidistant sein \implies so wählen, dass $\int_a^b f(x)dx$ optimal approximiert. a_i, x_i so wählen, dass Fehlerordnung möglichst hoch bzw. Fehler möglichst klein.

Gauss-Formeln für
$$\mathbf{n=1,2,3:} \int_a^b f(x) dx \sim \frac{b-a}{2} \sum_{i=1}^n a_i f(x_i)$$

$$\mathbf{n=1:} G_1 f = (b-a) * f(\frac{b+a}{2})$$

$$\mathbf{n=2:} G_2 f = \frac{b-a}{2} [f(-\frac{1}{\sqrt{3}} * \frac{b-a}{2} + \frac{b+a}{2})]$$

$$\mathbf{n=3:} G32 f = \frac{b-a}{2} [\frac{5}{9} * f(-\sqrt{0.6} * \frac{b-a}{2} + \frac{b+a}{2}) + \frac{3}{9} * f(\frac{b+a}{2})] + \frac{b-a}{2} [\frac{5}{9} * f(-\sqrt{0.6} * \frac{b-a}{2} + \frac{b+a}{2})]$$

3.5 Romberg-Extrapolation

$$T_{j0} = Tf(\underbrace{\frac{b-a}{2^{j}}}_{(=\mathrm{h})}), \text{ Für j=0,1,...,m-k}$$

$$T_{jk} = \underbrace{\frac{4^{k} * T_{j+1,k-1} - T_{j,k-1}}{4^{k} - 1}}, \text{ Für k=1,2,...,m und j=0,1,...,m-k}$$

= Näherungen der Fehlerordnung 2k+2 gegeben.

Romberg-Folge:
$$h_j = \frac{b-a}{2}$$

 $n_j = 2^j, x_i = a + ih_j$

Abbildung 1: RombergExtrapolation.

4 Einführung in gewöhnliche Differentialgleichungen

4.1 Problemstellung ODE

$$y^{n}(x) = f(x, y(x), y'(x), ..., y^{(n-1)}(x))$$

gesucht: $y = y(x) \implies$ Lösungen im Intervall [a,b]

Bemerkungen:

- 1. Neben den ODE gibt es noch die partiellen
- 2. Es gibt Systeme von Diff.Gleichungen, die u.Umständen gekoppelt sind, z.B gekoppelte Schwingungen
- 3. Allgemeine Lösung: DGL n-ter Ordnung enthält noch n unabhängige Parameter (Integrationskonstante unbestimmter Integrale)
- 4. Unterscheidung Anfangs- oder Randwertproblem, bei Anwendung numerischer Verfahren

Definition Anfangswertproblem (AWP)

1.Ordnung:

Gesucht: Spezifische Lösungskurve y = y(x), durch vorgegebenen $P = (x_0, y(x_0))$

Gegeben: y'(x) = f(x, y(x)) und Anfangswert $y(x_0)$

2.Ordnung:

Gesucht: Spezifische Lösungskurve y = y(x), durch vorgegebenen $P = (x_0, y(x_0))$ und im Punkt x_0 vorgegebene Steigung $y'(x_0) = m$

Gegeben: y''(x) = f(x, y(x), y'(x)) und Anfangswerte $y(x_0), y'(x_0)$

4.2 Richtungsfelder DGL 1.Ordnung

Linienelement: Pfeil.

Tangente y'(x) = f(x, y(x)) durch Pfeil graphisch anzeigen, diese geben in jedem Punkt, die Richtung der Lösungskurve an.

Idee: Lösung AWP dem Richtungsfeld möglichst genau zu folgen ⇒ Diskretisierung benötigt:

Intervall [a,b] =
$$[x_i, x_{i+1}]$$

h = $\frac{b-a}{}$

$$x_i = a + i * h$$
$$x_{i+1} = x_i + h$$

$$y_{i+1} = y_i + Steigung$$

4.3 Eulerverfahren

$$y'(x) = f(x, y(x)), y_0 = y(a), x_0 = a$$

Algorithmus:

Geg AWP:

$$y'(x) = f(x, y(x)), y_0 = y(a)$$

Verfahren:

$$x_{i+1} = x_i + h$$

$$y_{i+1} = y_i + h * f(x_i, y_i)$$

4.4Mittelpunktverfahren

Algorithmus:

Geg AWP:

$$\overline{y'(x)} = \overline{f(x, y(x))}, y_0 = y(a)$$

$$\overline{x_{h/2}} = x_i + \frac{h}{2}$$

$$y'(x) = f(x, y(x)), y_0 = y_0$$

Verfahren:
 $x_{h/2} = x_i + \frac{h}{2}$
 $y_{h/2} = y_i + \frac{h}{2} * f(x_i, y_i)$
 $x_{i+1} = x_i + h$

$$r_{i+1} = r_i + \tilde{h}$$

```
y_{i+1} = y_i + h * f(x_{h/2}, y_{h/2})
```

4.5 Das modifizierte Eulerverfahren

Algorithmus: Geg AWP: $y'(x) = f(x, y(x)), y_0 = y(a)$ Verfahren: $x_{i+1} = x_i + h$ $yEuler_{i+1} = y_i + h * f(x_i, y_i)$ $k1 = f(x_i, y_i)$ $k2 = f(x_i, yEuler_{i+1})$ $y_{i+1} = y_i + h * (\frac{k1 + k2}{2})$

4.6 Fehlerordnung eines Verfahrens

```
Lokaler Fehler: Fehler nach einem Verfahren \frac{\varphi(x_i,h) := y(x_{i+1}) - y_{i+1}}{\varphi(x_i,h) := y(x_{i+1}) - y_{i+1}} Konsistenzordung p falls: \varphi(x_i,h) \leq C * h^{p+1} \implies \text{genügend kleine h und C} > 0
```

Globaler Fehler: Gesamtfehler also nach n-Iterationen $y(x_n) - y_n$

Konvergenzordung p falls: $|y(x_n) - y_n| \le C * h^p \implies$ genügend kleine h und C>0

- Für die hier betrachteten Verfahren: Konsistenzordung = Konvergenzordung
- Verwendbar: Nur Verfahren mit Konvergenzordung p $\geq 1 \implies$ Globaler Fehler gegen 0.

Eulerverfahren: p = 1Mittelpunktsregel: p = 2Mod.Eulerverfahren: p = 2

4.7 Das klassische 4-Stufige Runge-Kutta Verfahren

```
Algorithmus:

\frac{\text{Geg AWP:}}{y'(x) = f(x, y(x)), y_0 = y(a)}
\frac{\text{Verfahren:}}{x_{i+1} = x_i + h}
k1 = f(x_i, y_i)
k2 = f(x_i + \frac{h}{2}, y_{i+1} + \frac{h}{2})
k3 = f(x_i + \frac{h}{2}, y_{i+1} + \frac{h}{2} * k2)
k4 = f(x_i + h, y_{i+1} + h * k3)
y_{i+1} = y_i + h * \frac{1}{6}(k1 + 2k2 + 2k3 + k4)
```

4.7.1 Das allgemeine s-stufige Runge-Kutta Verfahren

$$K_{n} = f(x_{i} + c_{n} * h, y_{i} + h * \sum_{m=1}^{n-1} a_{nm} k_{m})$$
 n=1,...,s
 $y_{i+1} = y_{i} + h * \sum_{n=1}^{s} b_{n} k_{n}$
s = Stufenzahl, a_{nm}, b_{n}, c_{n} = Konstanten

Euler-Verfahren,s=1

Mittelpunkt-Verfahren.s=2

$$\begin{array}{c|c|c}
0 & & \\
0.5 & 0.5 & \\
\hline
& 0 & 1 & \\
\end{array}$$

Modifiziertes-Verfahren,s=2

$$\begin{array}{c|cccc}
0 & & & \\
1 & 1 & & & \\
& 0.5 & 0.5 & \end{array}$$

Klass.Runge-Kutta Verfahren, s=4

```
\begin{array}{c|ccccc} 0 & & & & & & \\ 0.5 & 0.5 & & & & & \\ 0.5 & 0 & 0.5 & & & & \\ 1 & 0 & 0 & 1 & & & \\ \hline & \frac{1}{6} & \frac{1}{3} & \frac{1}{3} & \frac{1}{6} \end{array}
```

 $\begin{array}{lll} \textbf{def} & interpolate_runge_kutta_custom (f, x, h, y0): \\ & s = 4 \end{array}$

for i in range (x.shape [0] - 1):

```
k = np.full(s, 0, dtype=np.float64)

for n in range(s):
    k[n] = f(x[i] + (c[n] * h), y[i] + h * np.sum([a[n][m] * k[m] for m in range(n - 1)]))

y[i + 1] = y[i] + h * np.sum([b[n] * k[n] for n in range(s)])

return y
```

4.8 Zurückführen DGL k-ter Ordnung auf k DGL 1.Ordnung

```
Beispiel (3.Ordnung):
\overline{y''' + 5y'' + 8'y + 6y} = 10e^{-x}
y(0) = 2, y'(0) = y'(0) = 0
1.Schritt:
Nach höchsten Ableitung auflösen:
y''' = 10e^{-x} - 5y'' - 8y' - 6y
2.Schritt:
Hilfsfunktionen bis (höchsten-1)Ableitung:
z_1(x) = y(x)
z_2(x) = y'(x)
z_3(x) = y''(x)
Hilfsfunktionen ableiten und in z_3' = y''' einsetzen:
z'_1(x) = y(x) = (z_2)

z'_2(x) = y''(x) = (z_3)
z_3'(x) = y'''(x)

z_3'(x) = 10e^{-x} - 5z_3 - 8z_2 - 6z_1
4.Schritt:
DGL in vektorieller form:
weil DGL 3.Ord, als LGL schreiben möglich: z' = Az + b
      \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}
                    1
                        , b=
                                10e^{-x}
```

Beispiel Eulerverfahren:

$$\begin{array}{l} a \, = \, 0 \, . \\ b \, = \, 1 \, . \\ h \, = \, 0 \, .1 \\ n \, = \, np \, . \, \mathbf{int} \, ((\, b\text{--}a) \, / \, h) \\ rows \, = \, 4 \end{array}$$

4.9 Lösen eines Systems von k DGL 1.Ordnung

Hier $y^{(i)}$ = Vektor nach i-ten Iteration!!!

Rezept Lösungsverfahren: Beispiel $x_{i+1} = x_i + h$ $y^{(i+1)} = y^i + h * f(x_i, y^{(i)})$ $y''' = 10e^{-x} - 5y'' - 8y' - 6y$ System $z' = \begin{bmatrix} z_1' \\ z_2' \\ z_3 \end{bmatrix} = \begin{bmatrix} z_2 \\ 10e^{-x} - 5z_3 - 8z_2 - 6z_1 \end{bmatrix} = f(x, z)$ $z(0) = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} z_1^{(0)} \\ z_2^{(0)} \\ z_3^{(0)} \end{bmatrix}$ i=0: $f(x_0, z^{(0)}) = \begin{bmatrix} z_2^{(0)} \\ z_3^{(0)} \\ 10e^{-x_0} - 5z_3^{(0)} - 8z_2^{(0)} - 6z_1^{(0)} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ -2 \end{bmatrix}$ $x_1 = x_0 + h = 0.5$ $z^{(1)} = z^{(0)} + h * f(x_0, z^{(0)}) = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} + 0.5 \begin{bmatrix} 0 \\ 0 \\ -2 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ -1 \end{bmatrix}$ i=1:

```
f(x_0, z^{(0)}) = \begin{bmatrix} z_2^{(1)} \\ z_3^{(1)} \\ 10e^{-x_0} - 5z_3^{(1)} - 8z_2^{(1)} - 6z_1^{(1)} \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \\ 0.9347 \end{bmatrix}
x_2 = x_1 + h = 1
z^{(2)} = z^{(1)} + h * f(x_1, z^{(1)}) = \begin{bmatrix} 2 \\ 0 \\ -1 \end{bmatrix} + 0.5 \begin{bmatrix} 0 \\ -1 \\ 0.9347 \end{bmatrix} = \begin{bmatrix} 2 \\ -0.5 \\ -1.4673 \end{bmatrix}
```

```
a = 0
b = 60
h = 0.1
n = int((b-a)/h)
c = 0.16
m = 1
1 = 1.2
g = 9.81
rows = 2
phi0 = np.pi/2
x = np. zeros(n+1)
z = np.zeros([rows, n+1])
x[0] = a
z[:,0] =np.array([phi0,0],dtype=np.float64)
\mathbf{def} \ \mathbf{f}(\mathbf{x},\mathbf{z}):
     return np. array ([z[1], -((c/m)*z[1]) - (g/1)*np. sin(z[0])])
for i in range (x.shape [0] - 1):
     x[i+1]=x[i]+h
     k1 = f(x[i], z[:,i])
     k2 \; = \; f \left( \, x \, [ \; i \; ] \; + \; \left( \, h \; / \; \; 2 \, .0 \, \right) \, , \; \; z \, [ \, : \; , \; i \; ] \; + \; \left( \, h \; / \; \; 2 \, .0 \, \right) \; * \; k1 \, \right)
     k3 = f(x[i] + (h / 2.0), z[:,i] + (h / 2.0) * k2)
     k4 = f(x[i] + h, z[:,i] + h * k3)
     z[:, i+1] = z[:, i] + h * (1 / 6.0) * (k1 + 2 * k2 + 2 * k3 + k4)
```