PÁGINA 113

- 1 Observa el mosaico de arriba, al que se le llama multihueso. De las transformaciones que llevan H_1 a H_2 , H_3 y H_4 :
 - a) ¿Cuál o cuáles de ellas son traslaciones?
 - b) ¿Cuál es el vector que caracteriza la traslación que transforma H₁ en H₂? ¿Y el que transforma H₂ en H₃? ¿Y el que transforma H₃ en H₁?
 - a) De H₁ a H₂, y de H₁ a H₃ son traslaciones.
 - b) El vector que caracteriza la traslación que transforma H_1 en H_2 es el vector \overrightarrow{AB} .

El que transforma H_2 en H_3 es el vector \overrightarrow{BC} , y el que transforma H_3 en H_1 , \overrightarrow{CA} .

11

Soluciones a las actividades de cada epígrafe

PÁGINA 114 Pág. 1

2 En unos ejes coordenados considera el vector \vec{t} de origen (0, 0) y extremo (3, 5).

Lo designaremos, simplemente, $\vec{t}(3, 5)$.

a) Traslada los puntos A(0,-4), B(-3,-5), C(0,0) y D(5,-1) mediante este vector.

b) Comprueba que los puntos M(1, 3), N(7, -1) y X(4, 1) están alineados. Trasládalos mediante el vector \vec{t} y comprueba que sus correspondientes también están alineados.

3 a) Traslada el triángulo de vértices A(3, 1), B(4, -2) y C(8, -1) según el vector $\overrightarrow{t}(1, 4)$. Comprueba que los triángulos ABC y A'B'C' son iguales.

b) Comprueba que la recta r: y = -3 + 4x se transforma en sí misma (es doble) según la traslación descrita en el apartado a).

Para ello, toma varios puntos de r [por ejemplo, (0, -3), (1, 1), (2, 5)] y comprueba que sus transformados están también en r.

b) y = -3 + 4x

$$\mathbf{T}[(0,-3)] = (1, 1) \in r$$

$$T[(1, 1)] = (2, 5) \in r$$

$$T[(2,5)] = (3,9) \in r$$

4 Dibuja unos ejes coordenados sobre papel cuadriculado. Traza con compás la circunferencia de centro O(3, 4) y radio 5.

- a) Comprueba que la circunferencia pasa por P(0, 0), Q(6, 8) y R(3, -1).
- b) Traslada los puntos O, P, Q y R mediante la traslación T de vector $\overrightarrow{t}(6, -2)$.
- c) Comprueba que la circunferencia cuyo centro es O' = T(O) y radio 5 pasa por P', Q' y R'.
- d) Trasladando algunos de sus puntos, averigua en qué rectas se transforman el eje X y el eje Y.

d) El eje X se transforma en y = -2.

El eje Y se transforma en x = 6.

PÁGINA 115 Pág. 1

- 1 Dibuja unos ejes coordenados en una hoja de papel cuadriculado. Considera el giro G de centro O(0,0) y ángulo $\alpha = 90^{\circ}$.
 - a) Transforma mediante G los puntos A(-5,0), B(0,5), C(4,3) y señala el triángulo A'B'C' transformado del triángulo ABC.
 - b) ¿En qué se transforma la recta r que pasa por A y por B?
 - c) ¿En qué se transforma la circunferencia de centro O y radio 7?

- a) A'(0, -5); B'(-5, 0); C'(-3, 4)
- b) Se transforma en otra recta, s, perpendicular a r en A.
- c) En sí misma, es una figura doble.

PÁGINA 116

1 Señala los ejes de simetría de esta figura.

Pág. 1

- **2** Consideramos la simetría S de eje la recta y = x. Dibuja los transformados mediante S de:
 - a) Los puntos A(3, 1), B(4, 0), C(0, 4), D(5, 5).
 - b) El eje X.
 - c) El eje Y.
 - d) La circunferencia C_1 de centro (1, 4) y radio 2.
 - e) La circunferencia C_2 de centro (3, 3) y radio 5.

- A'(1, 3)
- B'(0, 4)
- C'(4, 0)
- D'(5, 5)
- El punto D es doble: D = D'.
- b) El eje X se transforma en el eje Y.
- c) El eje $\, Y \,$ se transforma en el eje $\, X \!$.
- d) Se transforma en la circunferencia de centro $C_1'(4, 1)$ y radio 2.
- e) Se transforma en sí misma, es una figura doble.

11

Soluciones a las actividades de cada epígrafe

PÁGINA 117

1 Completa, en tu cuaderno, los siguientes mosaicos:

Soluciones a "Ejercicios y problemas"

PÁGINA 118 Pág. 1

Practica

- **1** $\nabla \nabla \nabla$ a) Representa en papel cuadriculado la figura H_1 obtenida a partir de H mediante la traslación del vector $\vec{t}_1(3, 2)$.
 - b) Dibuja la figura H_2 transformada de H_1 mediante la traslación $\vec{t}_2(2,-6)$.

- c) Di cuál es el vector de la traslación que permite obtener H_2 a partir de H.
- d) ¿Qué traslación habría que aplicar a H_2 para que se transformase en H?

- a) y b) en la figura.
- c) Es el vector $\overrightarrow{t}(5, -4)$ que es la suma de \overrightarrow{t}_1 y \overrightarrow{t}_2 .
- d) Habría que aplicar una traslación de vector $-\vec{t}(-5, 4)$.
- **2** $\nabla \nabla \nabla$ Hacemos un giro de centro O que transforma M en N.
 - a) Indica en qué puntos se transforman O, A, B, N y P.
 - b) ¿En qué se transforma la recta que pasa por A y C? ¿Y el triángulo OPD?

Es un giro de centro O y $\alpha = -90^{\circ}$.

a) $O \rightarrow O$ es el único punto doble.

$$A \to B \qquad B \to C \qquad N \to P \qquad P \to Q$$

$$I = I$$

$$P \rightarrow O$$

b) Recta
$$AC \to \text{Recta } BD$$
 $\widehat{OPD} \to \widehat{OQA}$

$$\widehat{OPD} \rightarrow \widehat{OQA}$$

3 VVV Halla las coordenadas de los vértices del cuadrilátero ABCD, transformado mediante:

b) La simetría de eje Y.

$$A'(-6, -1)$$

 $B'(-3, -3)$
 $C'(-4, -4)$

D'(-6, -4)

A'(6, 1)B'(3, 3)C'(4, 4)D'(6, 4)

Soluciones a "Ejercicios y problemas"

VV ¿Cuáles son los ejes de simetría de las siguientes figuras?

Pág. 2

- a) Solo tiene un eje de simetría, que es la recta que une los centros.
- b) Una de las diagonales del cuadrado.
- c) Un eje de simetría.
- d) Dos ejes de simetría: la recta que une los centros y la recta que pasa por los puntos de corte de las circunferencias.
- e) Cuatro ejes de simetría.

b) Identifica, en cada uno de ellos, algunos movimientos que lo transformen en sí mismo.

- b)Para la figura A:
 - Traslaciones de vector $\vec{t}(1, 3)$ o $\dot{t}(2, 0)$.
 - Simetrías de ejes e_1 , e_2 , e_3 .

Para la figura B:

- Giros de centro O y ángulos $\alpha_1 = 60^{\circ}, \ \alpha_2 = 120^{\circ}...$
- Traslación de vector \vec{t}_1 , \vec{t}_2 , \vec{t}_3 .

Soluciones a la Autoevaluación

PÁGINA 118

1 Averigua las coordenadas de los vértices del triángulo transformado del *ABC* mediante cada uno de los siguientes movimientos:

- a) La traslación de vector \vec{t} .
- b) La simetría de eje X.
- c) La simetría de eje Y.
- d) El giro de centro O y ángulo -90° (90° en el sentido de las agujas del reloj).

a)
$$A'(4, 0)$$
; $B'(5, 3)$; $C'(10, 4)$

b)
$$A'(1, -2)$$
; $B'(2, -5)$; $C'(7, -6)$

c)
$$A'(-1, 2)$$
; $B'(-2, 5)$; $C'(-7, 6)$

d)
$$A'(2, -1)$$
; $B'(5, -2)$; $C'(6, -7)$

2 Dibuja en papel cuadriculado un mosaico a partir de esta pieza:

Busca una forma de engranarlas distinta de esta:

