DoS Attack Detection On SDN With P4 Programmable Dataplane using Machine Learning (LSTM-BA)

1st Sya Raihan Heggi
School of Computing
Telkom University
Bandung, Indonesia
heggiraihan@student.telkomuniversity.ac.id

2nd Parman Sukarno School of Computing Telkom University Bandung, Indonesia email address or ORCID 3rd Satria Akbar Mugitama
School of Computing
Telkom University
Bandung, Indonesia
email address or ORCID

Abstract—Software-Defined Network (SDN) is a technology that has advantages in networking, such as automation, flexibility, and resource utilization. One of the SDN implementations can use P4 Language-based, where the SDN user can make specific data plane they need with programmable advantages of P4, the Software-Defined Network itself is famous for its centralized architecture, by separating Control Plane and Data Plane. But there are critical aspects of the SDN architecture, one of which is that it is vulnerable to DoS attacks that can cause the network to lose the availability principle of the CIA Triangle. A Denial of Service (DoS) attack is a criminal activity carried out to exploit the computer network, this activity has the goal of making the network inaccessible this can happen by using the flooding packet method on the computer network. Therefore we can prevent this attack by detecting the attack using an early detection system to solve this issue proposed to build an Intrusion Detection System (IDS), and the proposed system will use the anomaly-detection method based on a machine learning algorithm. The proposed system will be using the deep learning method, uses the Recurrent Neural Network (RNN) algorithm by applying the Long Short-Term Memory (LSTM) algorithm combined with the Naive Bayes algorithm (BA) so that it becomes LSTM-BA to detect DoS early and has a high accuracy value and low false-negative rate value.

Index Terms—Computer Network Security, Intrusion Detection System (IDS), Machine Learning, Deep Learning, Denial of Service (DoS).

I. Introduction

Computer Networking is a complex matter and difficult to manage this is due to the large number of equipment used on the [1] network, besides that the devices on traditional networks have designs, software, and hardware that is related to one vendor, each other vendor have different designs and devices [2], then there is a technology that changes in the context of network design and management, namely Software Defined Network or well know as SDN [1]. SDN has different characteristics when compared to tradiional networks, the difference is the separation of **control plane** and **data plane** of a network device [1], [2] SDN applies the concept of centralization to its network architecture, like a traditional network, SDN architecture network is very vulnerable to cyber attacks

[3]. There are three types of attacks targeting SDN networks. These attacks are fraud attack, intrusion attack, and malicious tampering attack [4]. One of the attacks that occurred on the SDN network was Denial of Services, although, with the centralization applied to SDN, this vulnerability itself was caused by the architecture of SDN [5].

Denial of Services or commonly known as DoS is a cybercrime with the method of sending packets excessively and aiming to exploit the resources of the network [6], the DoS attack itself is a threat to network security, on SDN this is caused by the separation of the control plane and data plane, causing a vulnerability in the SDN architecture [5], attackers are able to exploit both the control plane and data plane [7], so it will disrupt the flow rule decision and can also result in the occurrence of a bottleneck on the network. it can be harmful if there is a failure on the network component [8], there are two types of DoS attacks namely volumetric attacks such as ICMP-Flood, UDP-Flood, and TCP-SYN Flood and application-layer attacks [8]–[10], to prevent DoS attacks on the network, early detection measures can be carried out using Intrusion Detection System.

A. Related Work

Intrusion Detection System (IDS) can be used for the prevention of DoS attacks, IDS is tasked to inspecting every activity that occurs on the network [6], [11], [12], basically for detection using IDS There are two types of approaches that can be taken, namely **signature-based** and **anomaly-based**. Where both approaches have drawbacks such as low intelligence, and weak adaptability if applied traditionally. So it is not effective when implemented in many scenarios [13].

From that we need a dynamic approach that can solve this. During the last decade, there have been many surveys and reviews of the technology used in IDS, one of which is technology by applying the machine learning method, this method can be applied to Intrusion Detection System [3], [13]. machine learning methods that are commonly used are SVM, Random Forest, KNN, and technologies such as Artificial Neural Network [13].

Machine-learning can still be improved, because in general machine learning has two variations and most of them are currently still using variations of Shallow Learning, shallow learning needs to do continuous learning on the model is to update its capabilities, besides that it needs more in-depth analysis to select the features used [5], the next drawback is that the system built can only detect some type of DoS attack [3], [13], so this problem can be solved by using Deep Learning method [3], [5], Deep Learning itself was chosen to solve the problem, because of its learning ability and generalization of the existing attributes [5].

B. Paper contribution and organization

This paper proposed to use the Deep-Learning, namely Recurrent Neural Network (RNN) using the Long Short-Term Memory (LSTM) algorithm and then combined with the Naive Bayes algorithm (BA) to build a machine learning-based system.

LSTM was chosen because of its advantages, it can optimize the long dependency problem that exists in the Recurrent Neural Network, besides that LSTM also can keep records of information on packets that have passed the system built [14] so that with this method the analysis of the packet is expected to be more accurate.

Another algorithm used is Naive Bayes, Naive Bayes was chosen because it is quite simple to implement and has high accuracy [14], so the proposed system will achieve better performance, so we can conclude our main contributions of the paper are as follows:

- We compare different ML algorithms to detect DoS attacks such as Naive Bayes, LSTM, ANN, and LSTM-BA. In terms of accuracy, recall, precision, and falsenegative rates.
- We compare the performance of the machine-learning model on ORG, SDN-DL, and simulation-generated datasets
- We provide P4-based data plane code for simulation, implementing deep learning intrusion detection system, and simulation features extraction code.

The present paper is organized as follows. In Sec. II we provide background on Software Defined Network, Denial of Services attacks and P4 language. In Sec. III we overview the machine learning algorithm used and explain the system we build. In Sec. IV we describe the result we get on the simulation. In Sec V we provide the conclusions and remarks.

II. BACKGROUND

A. DoS Attack

The focus of this paper is to build early detection system or can called Intrusion Detection System using machine learning approach to detect DoS attack, Denial of Service well known as DoS are one of cybesecurity attacks aim computer network and making computer network inaccessible [15], this type of attack aiming communication nodes such as network infrastructure or components, the methods use by flooding network

Fig. 1. DoS attack based on exploitation methods

with packet and make network low on resource (overwhelm), and make other user can't accessed the network for several time, currently there are several types of popular DoS attacks, namely UDP Flood, ICMP Flood, TCP Flood, HTTP Flood, HTTPS Flood [16] or we can grouping them based on their protocol like UDP, TCP, HTTP, ICMP attack, the attack can easily classified based on the methods use, the classification of target explained on Figure 1, From Figure 1 know DoS have many varieties and methods use to make network done, but have some similarity usually they overwhelm network using packet [6], and from Kapersky Lab data since the beginning of COVID-19 pandemic DoS/DDOS attack rate increase up to 20%, since online activities increased. We know the attack mainly consists of three types of attack SYN, UDP, and TCP attack, where SYN attacks are 78.20%, followed by UDP 15.17%, and followed by TCP attacks as much as 5.67%. From research conducted by Sangodoyin et al, the effects that can occur on an SDN network will affect the network performance such as throughput parameters and further jitter if the attack is carried out becomes more intense in this case using the exhaustive way method can cause a decrease in the capabilities of the SDN network, this is in itself occurs both in the control plane and in the data plane. How to minimalize DoS attack impact, we can make an early detection system and do mitigation after that, one of that solutions is making a machine-learning-based intrusion detection system.

B. Software Defined Network

Software-Defined Network (SDN) is an innovation in networking that changes how we design and manage the network itself, using SDN management, control, and create innovation that is easier and possible to implement [1], In addition, traditional networks have the properties of being closed and proprietary to the control part and have a different configuration from other vendor products, making network administrators hard to manage and configure [1], [2], SDN changes all that because SDN provides a new paradigm option that implements a centralized system it separates two parts of the network, namely the control plane that had tasked with making decisions to control the network and the data plane that in charge of doing forwarding packet according to what the control plane command [1], [17], [18].

Figure 2 explained the main difference between a traditional network with SDN is the separation of control-plane and data-plane, this architecture making SDN can implement the centralized architecture, then have advantages to modifying network from one region, SDN builds on three different

Fig. 2. Difference Between Traditional Network With SDN

layers Application, Control. and Infrastructure and all these layers are connected using southbound and northbound API to communicate with each other, currently, the well known SDN protocol is Openflow, which provides a simple and robust SDN system, but OpenFlow has disadvantages they lack programmability, for example, you can add a new header to your system, to solve this problem we can use another solution by using P4-language Dataplane.

C. P4 Language

Fig. 3. P4 Top Down Design [19]

P4 language is a high-level programming language for routers and switches, designed to allow programming on data plane components such as hardware or software switches, network interface cards, routers, etc [3], P4 is open-source language, not like OpenFlow P4 use Top-Down design, on Figure 3 described differences between OpenFlow and P4 design.

From Figure 3 main difference between P4 and OpenFlow is programmability. When developing a P4, users will make a P4-based program designed to satisfy user requirements. Then users need to compile the program before its usage either on the behavioral model or the switch. In this paper, Simulation will use the behavioral model with the Mininet simulator to simulate a DoS attack, based on Musumeci et al a P4 program composed of the following component:

• Parsers had a function to identify the allowed protocols and fields in the program. Typically, they contain the names of the used headers and their size in bits..

- Control Plane (Ingress/Egress) had a function to describe order of processing rules will be applied to the packet.
- *Table* had a bunch of processing rules that form "matchaction". When packets are processed by the P4 program, the ingress pipeline is executed to look for the matching rule(s) which fits the incoming packet.

In addition, P4 defines programmable packet metadata, used to associate extra information to the packet and stateful objects that may be used to implement Finite State Machine and perform context-based processing [3].

III. MACHINE LEARNING (LSTM-BA) DOS DETECTION

A. System Overview

Fig. 4. Proposed System Architecture

As depicted on Figure 4, the system will be build with two main component, first Data collector had function to collect data from network simulation and Detection System. In Detection System will have three main module *Preprocessing* this module will preparing data from data collector matching with classification module input type, this module will contain feature selection module and normalization module on this paper we using Min-Max Scaler to Normalize data after that data will be passed to LSTM Module.

1) LSTM Module

Fig. 5. LSTM Architecture [20]

LSTM Module will contain LSTM-classifier, LSTM is an application of the Recurrent Neural Network which has the

ability to learn about long-standing dependencies [5], where the structure of the LSTM cell itself is depicted as shown in Figure 5. In Figure 5, every t time of this LSTM cell will be controlled by various logic gates, which aim to maintain or reset the values in the cell, in Figure 5 itself there are three types of gates, the gates are located sequentially from the left side, the gate consists of Forget gate (f_t) , Input gate (i_t) , and Output gate (o_t) all of which have sigmoid activation functions, then there is one gate that uses the tanh function called candidate value gate.

LSTM Classifier will be build using Tensorflow with Python programming language, this module will have sequential architecture and contains LSTM Layer, Dropout Layer, and Fully Connected Layer using RELU and Softmax activation function, this module will give LSTM prediction value output, and this value will be passed to Naive Bayes module.

2) Naive Bayes Module

Naive Module will contains Naive Bayes Classifier, Naive Bayes is a method for classifying based on Naive Bayes theory [21], this method is a classification using a simple probabilistic approach. We need to calculate a set of probabilities, by adding up the frequency and combination of values from the data held. This classification model method will consider attributes it is not interdependent.

$$P(H|E) = \frac{P(H|E)P(H)}{P(E))} \tag{1}$$

$$P(H|E) = P(E1|H) \times P(E2|H) \times \dots \times P(En|H) \times P(H) \quad (2)$$

So that values can be assigned to these attributes and the patterns resulting from these calculations will be used for classification, the Naive Bayes system itself is classified as *supervised learning* in the application of *machine-learning* [21], it defined like equation 1 and equation 2.

B. Evaluation Methods

In this paper we use parameter such as Accuracy, Precision and False Negative Rate to calculate detection system performance, to produce that we need make confusion matrix, based on Qin et al confusion matrix will be like Table I

TABLE I CONFUSION MATRIX

Real Condition	Detection Result	
	Intrusion	Normal
Intrusion	True Positive	False Negative
Normal	False Positive	True Negative

- True Positive (TP) is parameter of DoS Packet classified as DoS Condition.
- True Negative (TN) is parameter of Normal Packet classified as Normal Condition.
- False Positive (FP) is parameter of Normal Packet classified as DoS Condition.

False Negative (FN) is parameter of DoS Packet classified as Normal Condition..

based on parameter we got from Table I, we can calculate performance parameter such as Accuracy, Precision, and False Negative Rate, to calculate performance parameter we can use equation based on Li et al and Aljarwaneh et al research.

 Accuracy is a comparison of the correct classification with the total number in the dataset.

$$Acc = \frac{TP + TN}{TP + TN + FP + FN} \tag{3}$$

 Precision is part of the data that is classified as positive and has a true positive value.

$$Precision = \frac{TP}{TP + FP} \tag{4}$$

 False Negative Rate is a comparison that shows the number of incorrect packets that are classified as true.

$$FNR = \frac{FN}{TP + FP} \tag{5}$$

IV. EVALUATION RESULT

A. Evaluation Scenario

B. Evaluation Result

V. CONCLUSION

REFERENCES

- N. Feamster, J. Rexford, and E. Zegura, "The road to sdn: an intellectual history of programmable networks," ACM SIGCOMM Computer Communication Review, vol. 44, no. 2, pp. 87–98, 2014.
- [2] T. A. Tang, D. McLernon, L. Mhamdi, S. A. R. Zaidi, and M. Ghogho, "Intrusion detection in sdn-based networks: Deep recurrent neural network approach," in *Deep Learning Applications for Cyber Security*. Springer, 2019, pp. 175–195.
- [3] F. Musumeci, V. Ionata, F. Paolucci, F. Cugini, and M. Tornatore, "Machine-learning-assisted ddos attack detection with p4 language," in *ICC 2020-2020 IEEE International Conference on Communications* (ICC). IEEE, 2020, pp. 1–6.
- [4] Y. Qin, J. Wei, and W. Yang, "Deep learning based anomaly detection scheme in software-defined networking," in 2019 20th Asia-Pacific Network Operations and Management Symposium (APNOMS). IEEE, 2019, pp. 1–4.
- [5] M. P. Novaes, L. F. Carvalho, J. Lloret, and M. L. Proença, "Long short-term memory and fuzzy logic for anomaly detection and mitigation in software-defined network environment," *IEEE Access*, vol. 8, pp. 83 765–83 781, 2020.
- [6] N. Moustafa, J. Hu, and J. Slay, "A holistic review of network anomaly detection systems: A comprehensive survey," *Journal of Network and Computer Applications*, vol. 128, pp. 33–55, 2019.
- [7] A. Sangodoyin, T. Sigwele, P. Pillai, Y. F. Hu, I. Awan, and J. Disso, "Dos attack impact assessment on software defined networks," in *International Conference on Wireless and Satellite Systems*. Springer, 2017, pp. 11–22.
- [8] M. S. Elsayed, N.-A. Le-Khac, S. Dev, and A. D. Jurcut, "Ddosnet: A deep-learning model for detecting network attacks," in 2020 IEEE 21st International Symposium on" A World of Wireless, Mobile and Multimedia Networks" (WoWMoM). IEEE, 2020, pp. 391–396.
- [9] S. R. Talpur and T. Kechadi, "A survey on ddos attacks: Router-based threats and defense mechanism in real-world data centers," in 2016 Future Technologies Conference (FTC). IEEE, 2016, pp. 978–984.
- [10] O. Yevsieieva and S. M. Helalat, "Analysis of the impact of the slow http dos and ddos attacks on the cloud environment," in 2017 4th International Scientific-Practical Conference Problems of Infocommunications. Science and Technology (PIC S&T). IEEE, 2017, pp. 519–523.

- [11] S. Anwar, J. Mohamad Zain, M. F. Zolkipli, Z. Inayat, S. Khan, B. Anthony, and V. Chang, "From intrusion detection to an intrusion response system: fundamentals, requirements, and future directions," *Algorithms*, vol. 10, no. 2, p. 39, 2017.
- [12] B. B. Zarpelão, R. S. Miani, C. T. Kawakani, and S. C. de Alvarenga, "A survey of intrusion detection in internet of things," *Journal of Network* and Computer Applications, vol. 84, pp. 25–37, 2017.
- [13] M. Zhang, J. Guo, B. Xu, and J. Gong, "Detecting network intrusion using probabilistic neural network," in 2015 11th International Conference on Natural Computation (ICNC). IEEE, 2015, pp. 1151–1158.
- [14] Y. Li and Y. Lu, "Lstm-ba: Ddos detection approach combining lstm and bayes," in 2019 Seventh International Conference on Advanced Cloud and Big Data (CBD). IEEE, 2019, pp. 180–185.
- [15] V. Zlomislić, K. Fertalj, and V. Sruk, "Denial of service attacks, defences and research challenges," *Cluster Computing*, vol. 20, no. 1, pp. 661– 671, 2017.
- [16] M. Aamir and M. Arif, "Study and performance evaluation on recent ddos trends of attack & defense," *International Journal of Information Technology and Computer Science*, vol. 5, no. 8, pp. 54–65, 2013.
- [17] H. Polat, O. Polat, and A. Cetin, "Detecting ddos attacks in software-defined networks through feature selection methods and machine learning models," *Sustainability*, vol. 12, no. 3, p. 1035, 2020.
- [18] S. Azodolmolky, Software defined networking with OpenFlow. Packt Publishing, 2013, vol. 153.
- [19] P4.org, "P4 Language Evolution," https://opennetworking.org/news-andevents/blog/p4-language-evolution/, 2015, [Daring; diakses 23-Oktober-20211.
- [20] X.-H. Le, H. V. Ho, G. Lee, and S. Jung, "Application of long short-term memory (lstm) neural network for flood forecasting," *Water*, vol. 11, no. 7, p. 1387, 2019.
- [21] A. Mehmood, M. Mukherjee, S. H. Ahmed, H. Song, and K. M. Malik, "Nbc-maids: Naïve bayesian classification technique in multiagent system-enriched ids for securing iot against ddos attacks," *The Journal of Supercomputing*, vol. 74, no. 10, pp. 5156–5170, 2018.