Name: Borris A. Esplanada

Course and Section: CPE019 - CPE32S1 Date of Submission: 06/20/2024 Instructor: Engr. Roman M. Richard

Code cell #1

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

#create a pandas dataframe called "training" from the titanic-train.csv file
training = pd.read_csv("titanic_train.csv")

testinng = pd.read_csv("titanic_test.csv")

#Code cell 2

#verify the contents of the training dataframe using the pandas info() method. #training.?

training

₹		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked	=
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S	11.
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С	7
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S	
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S	
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S	
	886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.0000	NaN	S	
	887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0000	B42	S	
	888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.4500	NaN	S	
	889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000	C148	С	

Next steps:

Generate code with training

View recommended plots

#Code cell 3

#view the first few rows of the data

training.head()

→		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500
	1	2	1	1	Cumings, Mrs. John Bradley (Florence	female	38.0	1	0	PC 17599	71.283(
	4										>

Next steps:

Generate code with training

View recommended plots

```
plt.figure(figsize=(6, 4))
sns.countplot(data=training, x='Pclass', palette='viridis')
plt.title('Passenger ID Distribution')
plt.xlabel('PassengerID')
plt.ylabel('Count')
plt.show()
plt.figure(figsize=(8, 6))
sns.histplot(training['Age'].dropna(), kde=True, bins=30, color='blue')
plt.title('Passenger gender distribution')
plt.xlabel('Sex')
plt.ylabel('Count')
plt.show()
plt.figure(figsize=(6, 4))
sns.countplot(data=training, x= 'Survived', palette='Set1')
plt.title('Count of Survivors')
plt.xlabel('Survived')
plt.ylabel('Count')
plt.show()
```

<ipython-input-47-c97a4e316eb2>:2: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0.

 $\verb|sns.countplot(data=training, x='Pclass', palette='viridis')|\\$

<ipython-input-47-c97a4e316eb2>:16: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0.

sns.countplot(data=training, x= 'Survived', palette='Set1')

 $\overline{2}$

```
#Perform Simple Linear Regression
data = training [['Fare', 'Survived']].dropna ()
\# Split the data into \boldsymbol{X} and \boldsymbol{y}
X = data[['Fare']]
y= data['Survived']
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error, r2_score
# Split data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Initialize and fit the linear regression model
model = LinearRegression()
model.fit(X_train, y_train)
# Make predictions
y_pred = model.predict(X_test)
# Calculate performance metrics
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score (y_test, y_pred)
print (f"Mean Squared Error: {mse:.2f}")
print (f"R-squared: {r2:.2f}")
     Mean Squared Error: 0.22
     R-squared: 0.08
# Visualize the linear regression line
plt.figure(figsize=(8, 6))
plt.scatter (X_test, y_test, color='blue')
plt.plot(X_test, y_pred, color='red', linewidth=2)
plt.title('Linear Regression: Survived vs. Fare')
plt.xlabel('Survived')
plt.ylabel('PClass')
plt.show()
```



```
data = training [['SibSp', 'Survived']].dropna ()
# Split the data into X and y
X = data[['SibSp']]
y= data['Survived']
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error, r2_score
# Split data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Initialize and fit the linear regression model
model = LinearRegression()
model.fit(X_train, y_train)
# Make predictions
y_pred = model.predict(X_test)
# Calculate performance metrics
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score (y_test, y_pred)
print (f"Mean Squared Error: {mse:.2f}")
print (f"R-squared: {r2:.2f}")
# Visualize the linear regression line
plt.figure(figsize=(8, 6))
plt.scatter (X_test, y_test, color='red')
plt.plot(X_test, y_pred, color='green', linewidth=2)
plt.title('Linear Regression: Survived vs. Siblings or Spouse onboard')
plt.xlabel('Survived')
plt.ylabel('SibSp')
plt.show()
```

→ Mean Squared Error: 0.24 R-squared: -0.01


```
data = training [['Parch', 'Survived']].dropna ()
# Split the data into X and y
X = data[['Parch']]
y= data['Survived']
from sklearn.linear_model import LinearRegression
from \ sklearn.model\_selection \ import \ train\_test\_split
from sklearn.metrics import mean_squared_error, r2_score
# Split data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Initialize and fit the linear regression model
model = LinearRegression()
model.fit(X_train, y_train)
# Make predictions
y_pred = model.predict(X_test)
# Calculate performance metrics
mse = mean_squared_error(y_test, y_pred)
r2 = r2\_score (y\_test, y\_pred)
print (f"Mean Squared Error: {mse:.2f}")
print (f"R-squared: {r2:.2f}")
# Visualize the linear regression line
plt.figure(figsize=(8, 6))
plt.scatter (X_test, y_test, color='green')
\verb|plt.plot(X_test, y_pred, color='red', linewidth=2)|\\
plt.title('Linear Regression: Survived vs. Parch')
plt.xlabel('Survived')
plt.ylabel('Parch')
plt.show()
```

Mean Squared Error: 0.24

✓ PART 2

Step 1: Create the dataframe

a) Import pandas and the csv file

```
#Code cell 1
import pandas as pd
import numpy as np
```

#create a pandas dataframe called "training" from the titanic-train.csv file
training = pd.read_csv("titanic_train.csv")

#Code cell 2

 $\mbox{\tt \#verify}$ the contents of the training dataframe using the pandas info() method. $\mbox{\tt \#training.?}$

training.info()

Rangeindex: 891 entries, 0 to 890											
Data	columns (tot	al 12 columns):									
#	Column	Non-Null Count	Dtype								
0	PassengerId	891 non-null	int64								
1	Survived	891 non-null	int64								
2	Pclass	891 non-null	int64								
3	Name	891 non-null	object								
4	Sex	891 non-null	object								
5	Age	714 non-null	float64								
6	SibSp	891 non-null	int64								
7	Parch	891 non-null	int64								
8	Ticket	891 non-null	object								
9	Fare	891 non-null	float64								
10	Cabin	204 non-null	object								
11	Embarked	889 non-null	object								
<pre>dtypes: float64(2), int64(5), object(5)</pre>											
memory usage: 83.7+ KB											

Are there missing values in the data set?

Yes, there is a lot of data in the values of the Titanic Train dataset.

#Code cell 3 #view the first few rows of the data

training.head()

₹	Pas	sengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked	
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S	ıl.
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С	
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S	
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily Mav Peel)	female	35.0	1	0	113803	53.1000	C123	S	

```
Next steps: Generate code with training View recommended plots
```

```
print(training.columns)
#code cell 4
```

training["Sex"]= training["Sex"].apply(lambda toLabel: 0 if toLabel == 'male' else 1)

#code cell 5
training.head()

₹	Pass	engerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked	
	0	1	0	3	Braund, Mr. Owen Harris	0	22.0	1	0	A/5 21171	7.2500	NaN	S	ıl.
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	1	38.0	1	0	PC 17599	71.2833	C85	С	
	2	3	1	3	Heikkinen, Miss. Laina	1	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S	
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily Mav Peel)	1	35.0	1	0	113803	53.1000	C123	S	
Next	steps:	Generate	e code with	training	View recommended plots									

```
#code cell 6
training['Age'].fillna(training['Age'].mean(), inplace=True)

#code cell 7
#verify that the missing values for the age variable have been eliminated.
missing_age_count = training['Age'].isna().sum()
print("No. of missing values in 'Age' column: ", missing_age_count)
No. of missing values in 'Age' column: 0
```

What is the value that was used to replace the missing ages

· Fillna was employed to substitute for the absent ages.

#Use code to answer the question above
training.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
 # Column
                Non-Null Count Dtype
 0 PassengerId 891 non-null
    Survived 891 non-null
                              int64
 1
    Pclass
                891 non-null
                             int64
    Name
                891 non-null
                              object
                             int64
                891 non-null
    Sex
    Age
                891 non-null
                             float64
    SibSp
                891 non-null
                               int64
             891 non-null
                              int64
    Parch
 8 Ticket
                891 non-null
                              object
    Fare
                891 non-null
                               float64
                204 non-null
 10 Cabin
                               object
 11 Embarked
                889 non-null
                               object
dtypes: float64(2), int64(6), object(4)
memory usage: 83.7+ KB
```

Step 3: Train and Score the Decision Tree Model

```
#code cell 8
#create the array for the target values
y_target = training["Survived"].values

#code cell 9
columns = ["Fare", "Pclass", "Sex", "Age", "SibSp"]
#create the variable to hold the features that the classifier will use
X_input = training[list(columns)].values
```

```
#code cell 10
#import the tree module from the sklearn library
from sklearn import tree
#create clf_train as a decision tree classifier object
clf_train = tree.DecisionTreeClassifier(criterion="entropy", max_depth=3)
#train the model using the fit() method of the decision tree object.
#Supply the method with the input variable X input and the target variable y target
clf_train = clf_train.fit(X_input, y_target)
#code cell 11
clf_train.score(X_input,y_target)
    0.8226711560044894
Step 6: Visualize the Tree
#code cell 12
from sklearn.tree import export_graphviz
dot_file_path = "titanic.dot"
with open(dot_file_path, 'w') as f:
  f = export_graphviz(clf_train, out_file=f, feature_names=columns)
!apt-get install graphviz
    Reading package lists... Done
     Building dependency tree... Done
     Reading state information... Done
     graphviz is already the newest version (2.42.2-6).
     0 upgraded, 0 newly installed, 0 to remove and 45 not upgraded.
#code cell 13
#run the Graphviz dot command to convert to convert the .dot file to .png
!dot -Tpng ./titanic.dot -o ./titanic.png
#code cell 14
#import the Image module from the Ipython.display library
from IPython.display import Image
Image(filename = "./titanic.png")
\overline{\mathcal{F}}
                                                                         Sex <= 0.5
                                                                       entropy = 0.961
                                                                       samples = 891
                                                                      value = [549, 342]
                                                                True
                                                                                       False
                                                     Fare <= 26.269
                                                                                          Pclass <= 2.5
                                                     entropy = 0.699
                                                                                          entropy = 0.824
                                                     samples = 577
                                                                                          samples = 314
                                                    value = [468, 109]
                                                                                         value = [81, 233]
                           Age <= 13.5
                                                      SibSp \le 2.5
                                                                                          Fare <= 28.856
                                                                                                                     Fare <= 23.35
                          entropy = 0.558
                                                     entropy = 0.924
                                                                                          entropy = 0.299
                                                                                                                      entropy = 1.0
                          samples = 415
                                                     samples = 162
                                                                                          samples = 170
                                                                                                                     samples = 144
                         value = [361, 54]
                                                    value = [107, 55]
                                                                                                                     valuė = [72, 72]
                                                                                          value = [9, 161]
```

What describes the group that had the most deaths by number? Which group had the most survivors?

entropy = 0.964

samples = 139

value = [85, 54]

entropy = 0.477

samples = 400

value = [359, 41]

entropy = 0.567

samples = 15

value = [2, 13]

entropy = 0.258

samples = 23

value = [22, 1]

entropy = 0.469

samples = 70

value = [7, 63]

entropy = 0.141

samples = 100

value = [2, 98]

entropy = 0.977

samples = 117

value = [48, 69]

entropy = 0.503

samples = 27

value = [24, 3]

• In the sex category, males were the group with the highest mortality toll. Conversely, when it comes to survivors' age, the average age of survivors is higher than 13.5.

Part 3

```
#code cell 15
#import the file into the 'testing' dataframe.
path = "titanic_test.csv"
testing = pd.read_csv(path)
testing.info()
    <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 418 entries, 0 to 417
     Data columns (total 11 columns):
                      Non-Null Count Dtype
     # Column
     0
         PassengerId 418 non-null
                                      int64
         Pclass
                      418 non-null
                                      int64
         Name
                      418 non-null
                                      object
      3
                      418 non-null
         Sex
                                      object
      4
         Age
                      332 non-null
                                      float64
         SibSp
                      418 non-null
                                      int64
     6
         Parch
                      418 non-null
                                      int64
         Ticket
                      418 non-null
                                      object
      8
         Fare
                      417 non-null
                                      float64
         Cabin
                      91 non-null
                                      object
     10 Embarked
                      418 non-null
                                      object
     dtypes: float64(2), int64(4), object(5)
     memory usage: 36.0+ KB
```

How many records are in the data set?

• 418

Which important variables(s) are missing values and how many are missing?

• The number 86 is missing from the Age category. Conversely, the Fare category's missing value is 1.

```
#code cell 16
#replace the Gender labels in the testing dataframe
# Hint: look at code cell 4
testing["Sex"] = testing["Sex"].apply(lambda toLabel: 0 if toLabel == 'male' else 1)
training.head()
```

₹	1	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked	
	0	1	0	3	Braund, Mr. Owen Harris	0	22.0	1	0	A/5 21171	7.2500	NaN	S	ıl.
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	1	38.0	1	0	PC 17599	71.2833	C85	С	
	2	3	1	3	Heikkinen, Miss. Laina	1	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S	
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily	1	35.0	1	0	113803	53.1000	C123	S	

Next steps: Generate code with training View recommended plots

```
#code cell 17
#Use the fillna method of the testing dataframe column "Age"
#to replace missing values with the mean of the age values.
testing["Age"].fillna(testing["Age"].mean(), inplace=True)
testing["Fare"].fillna(testing["Fare"].mean(), inplace=True)
```

#code cell 18 #verify the data preparation steps. Enter and run both the info and head #methods from here, by entering and running one and then the other. testing.head(10)

₹	Pas	ssengerId	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked	
	0	892	3	Kelly, Mr. James	0	34.5	0	0	330911	7.8292	NaN	Q	ıl.
	1	893	3	Wilkes, Mrs. James (Ellen Needs)	1	47.0	1	0	363272	7.0000	NaN	S	
	2	894	2	Myles, Mr. Thomas Francis	0	62.0	0	0	240276	9.6875	NaN	Q	
	3	895	3	Wirz, Mr. Albert	0	27.0	0	0	315154	8.6625	NaN	S	
	4	896	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	1	22.0	1	1	3101298	12.2875	NaN	S	
	5	897	3	Svensson, Mr. Johan Cervin	0	14.0	0	0	7538	9.2250	NaN	S	
	6	898	3	Connolly, Miss. Kate	1	30.0	0	0	330972	7.6292	NaN	Q	
	7	899	2	Caldwell, Mr. Albert Francis	0	26.0	1	1	248738	29.0000	NaN	S	
	8	900	3	Abrahim, Mrs. Joseph (Sophie Halaut Easu)	1	18.0	0	0	2657	7.2292	NaN	С	
	9	901	3	Davies, Mr. John Samuel	0	21.0	2	0	A/4 48871	24.1500	NaN	S	

Next steps:

Generate code with testing

#code cell 19

#create the variable X_{input} to hold the features that the classifier will use $X_{input} = testing[list(columns)].values$

#Code cell 20

#apply the model to the testing data and store the result in a pandas dataframe.
#Use X_input as the argurment for the predict() method of the clf_train classifier object
target_labels = clf_train.predict(X_input)

#convert the target array into a pandas dataframe using the pd.DataFrame() method and target as argument
target_labels = pd.DataFrame({'Est_Survival':target_labels, 'Name':testing['Name']})
testing.head(20)

View recommended plots

₹	Р	assengerId	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked	==
	0	892	3	Kelly, Mr. James	0	34.50000	0	0	330911	7.8292	NaN	Q	11.
	1	893	3	Wilkes, Mrs. James (Ellen Needs)	1	47.00000	1	0	363272	7.0000	NaN	S	
	2	894	2	Myles, Mr. Thomas Francis	0	62.00000	0	0	240276	9.6875	NaN	Q	
	3	895	3	Wirz, Mr. Albert	0	27.00000	0	0	315154	8.6625	NaN	S	
	4	896	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	1	22.00000	1	1	3101298	12.2875	NaN	S	
	5	897	3	Svensson, Mr. Johan Cervin	0	14.00000	0	0	7538	9.2250	NaN	S	
	6	898	3	Connolly, Miss. Kate	1	30.00000	0	0	330972	7.6292	NaN	Q	
	7	899	2	Caldwell, Mr. Albert Francis	0	26.00000	1	1	248738	29.0000	NaN	S	
	8	900	3	Abrahim, Mrs. Joseph (Sophie Halaut Easu)	1	18.00000	0	0	2657	7.2292	NaN	С	
	9	901	3	Davies, Mr. John Samuel	0	21.00000	2	0	A/4 48871	24.1500	NaN	S	
	10	902	3	llieff, Mr. Ylio	0	30.27259	0	0	349220	7.8958	NaN	S	
	11	903	1	Jones, Mr. Charles Cresson	0	46.00000	0	0	694	26.0000	NaN	S	
	12	904	1	Snyder, Mrs. John Pillsbury (Nelle Stevenson)	1	23.00000	1	0	21228	82.2667	B45	S	
	13	905	2	Howard, Mr. Benjamin	0	63.00000	1	0	24065	26.0000	NaN	S	
	14	906	1	Chaffee, Mrs. Herbert Fuller (Carrie Constance	1	47.00000	1	0	W.E.P. 5734	61.1750	E31	s	
	15	907	2	del Carlo, Mrs. Sebastiano (Argenia Genovesi)	1	24.00000	1	0	SC/PARIS 2167	27.7208	NaN	С	
	16	908	2	Keane, Mr. Daniel	0	35.00000	0	0	233734	12.3500	NaN	Q	
	17	909	3_	Assaf Mr Gerios_	0_	21 00000_			2692	7_2250 .	_ NaN_		

Next steps: Generate code with testing View recommended plots

#code cell 21

 $\hbox{\tt\#import the numpy library as np}\\$

```
import numpy as np
# Load data for all passengers in the variable all_data
path = "titanic_train.csv"
all_data = pd.read_csv(path)
# Merging using the field Name as key, selects only the rows of the two datasets that refer to the same passenger
testing_results = pd.merge(target_labels, all_data[['Name', 'Survived']], on=['Name'])
# Compute the accuracy as a ratio of matching observations to total osbervations. Store this in in the variable acc.
acc = np.sum(testing_results['Est_Survival'] == testing_results['Survived']) /float(len(testing_results))
# Print the result
print(acc)

#code cell 22
#import the titanic_all.csv file into a dataframe called all_data. Specify the list of columns to import.
path = "titanic_train.csv"
all_data = pd.read_csv(path, usecols=['Survived','Pclass','Sex','Age','SibSp','Fare'])
```