」模】整理 公众号【mathor数模】整理 公众号【mat

第一页

答卷编号:

论文题目: 电力变压器铁心柱截面的优化设计

	姓名	专业、班级	有效联系电话
参赛队员1	李龙源		数 IIII // / / /
参赛队员 2	刘晟源	IIIa t IIO I 安文 1天 』	世
参赛队员3	陈增虎		

指导教师: 西南交通大学建模指导组

参赛学校:西南交通大学

报名序号: 1231

证书邮寄地址:

610000

成都市二环路北一段 111 号西南交通大学数学学院

b模】整理 公众号【mathor数模】整理 公众号【mat

答卷编号:

b模】整理 公众号【mathor数模】整理 公众号【mat

	阅卷专家 1	阅卷专家 2	阅卷专家 3
论文等级			

摘要

本文对运用优化模型对电力变压器铁心柱截面进行了优化设计,并给出了具体的设计方案。

问题一中只有"使铁心柱有效截面积最大"这一个目标,由于叠片系数只与组成铁心柱的材料和制作工艺有关,和铁心柱的设计无关,所以我们将其作为常数处理,只考虑铁心柱的几何截面积,建立了简单的单目标规划模型。我们用 lingo 软件进行编程求解,得到问题一的最优结果: 欲使其有效截面积最大,铁心柱截面的级数应为 14,各级的宽度和厚度见正文。

问题二要求结合问题一中铁心柱截面的设计而设计出线圈内简直径和铁心柱外接圆直径的公差带。我们在问题一的基础上加入新的目标——使铁心柱有更好的截面形状——建立了多目标规划模型,选择用铁心柱截面上的所有顶点到圆心的平均距离与给定圆的半径之差来量化截面形状,利用问题一的结论,采用分层序列法将其转化为只考虑截面形状的单目标规划模型,用 lingo 软件编程实现,考虑国标中关于公差的要求,得出铁心柱外接圆直径的公差带为 650—652mm,线圈的内简直径的公差带为 652.2—652.8mm。

直题三为在前两问的基础上增加油道要求后再分别给出设计二者的设计,并指出油道的位置。我们分别在前两问中增加"被油道分割的相邻两部分铁心柱截面面积近似相等"这一目标,分别建立两个多目标规划模型。对于第一个模型,我们采用主要目标法将"面积近似相等"这一目标转化为约束,并规定了近似相等的条件;在求解过程中,由于决策变量过多,从而导致编程出现困难,所以我们采用人工搜索的方法初步判定油道所在的位置,然后再对各种可能分别进行编程实现,最终得出最优解:铁心柱的最大截面积为306913.4 mm²,油道的位置分别在第1、2级之间和第4、5级之间,铁心柱截面共分14级,各级的宽度和厚度见正文。对于第二个模型,我们采用主要目标法和分层序列法相结合的方法将两类目标分别转化成约束条件来处理,然后综合前三个模型的求解过程,用1ingo软件进行编程实现,可以得出结果如下:铁心柱外接圆直径的公差带为650

本文综合考虑了各个方面,建立了符合条件的优化模型,采用 1 ingo 编程的方法,求得的结果完全满足题目的要求,并有一定的实际应用价值。

关键词: 多目标规化 lingo 分层序列法 主要目标法

—652mm, 线圈的内筒直径的公差带为 652.2—652.8mm。

一、问题重述

电力变压器的设计中很重要的一个环节就是铁心柱的截面如何设计。我国变压器制造业通常采用全国统一的标准铁心设计图纸。根据多年的生产经验,各生产厂存在着对已有设计方案的疑问:能否改进及如何改进这些设计,才能在提高使用效果的同时降低变压器的成本。

现在以心式铁心柱为例试图进行优化设计。

电力变压器铁心柱截面在圆形的线圈筒里面。为了充分利用线圈内空间又便于生产管理,心式铁心柱截面常采用多级阶梯形结构,如图 1 所示。截面在圆内上下轴对称,左右也轴对称。阶梯形的每级都是由许多同种宽度的硅钢片迭起来的。由于制造工艺的要求,硅钢片的宽度一般取为 5 的倍数 (单位:毫米)。因为在多级阶梯形和线圈之间需要加入一定的撑条来起到固定的作用,所以一般要求第一级的厚度最小为 26 毫米,硅钢片的宽度最小为 20 毫米。

模】整理

公众号【mathor数模】整理

公众号【mat

图 1 铁心柱截面示意图

铁心柱有效截面的面积,等于多级铁心柱的几何截面积(不包括油道)乘以叠片系数。而叠片系数通常与硅钢片厚度、表面的绝缘漆膜厚度、硅钢片的平整度以及压紧程度有关。设计时希望有效截面尽量大,既节省材料又减少能量损耗。显然铁心柱的级数愈多,其截面愈接近于圆形,在一定的直径下铁心柱有效截面也愈大。但这样制造也工艺复杂,一般情况下铁心柱的级数可参照表1选取。

表 1 铁心柱截面级数的选择

铁心柱直径 mm	级数
80-195	5-7
200-265	8-10
270-390	11
400-740	12-14
760 以上	>15

问题一: 当铁心柱外接圆直径为650毫米时,如何确定铁心柱截面的级数、 各级宽度和厚度,才能使铁心柱的有效截面积最大。

问题二:实际生产中线圈的内筒直径和铁心柱的外接圆直径不是精确地相 等,而留有一定的间隙以便于安装和维修,设计的两个直径的取值范围称为各自 的公差带。因此可以在设计铁心截面时稍微增加铁心柱的外接圆的直径以使得铁 心柱有更好的截面形状。请结合铁心柱截面的设计而设计出二者的公差带。

问题三:铜导线在电流流过时发热造成的功率损耗简称为铜损;铁心在磁力 线通过时发热造成的功率损耗简称为铁损。为了改善铁心内部的散热,铁心柱直

径为380毫米以上时须设置冷却油道。简单地说,就是在某些相邻阶梯形之间留 下 6 毫米厚的水平空隙(如图 2 所示),空隙里充满油,变压器工作时油上下循 环带走铁心里的热量。具体油道数可按表 2 选取。油道的位置应使其分割的相邻 两部分铁心柱截面积近似相等。

分别针对问题一和问题二的情况,增加油道要求再给出设计,并指出油道的 位置。

铁心柱直径 mm	半圆中 6mm 油道个数
380-410	0
420-500	1
510-690	2
700-840	3

冷却油道数的选择 表 2

二、条件假设

- 1、假设铁心柱的硅钢片厚度、表面的绝缘漆膜厚度、硅钢片的平整度以及压紧 程度均相同,即铁心柱的叠片系数处处相等,为一常数;
- 2、铁心柱直径在其所对应的级数范围之内所选择的级数即使不同,制造工艺的复杂程度仍相差不大,在其范围之外则相差很大;
- 3、油道的分布在圆内上下轴对称;
- 4、铁心柱内加入油道后对铁心柱截面各级面积影响不大。

三、符号说明

问题一

- x_i : 第i级宽度的一半;
- y_i : 第i级厚度;
- n: 铁心柱截面的级数;

问题二 d:铁心柱外接圆的直径增加量;thor数模】整理

公众号【mat

- r_{ii} : 铁心柱截面上位于外接圆之内的第 $i(i=2,3,\cdots,14)$ 级顶点到圆心的距离;
- r_{2i} : 铁心柱截面上位于外接圆之外的第 $i(i=1,2,\cdots,14)$ 级顶点到圆心的距离;
- w: 铁心柱截面上各顶点到直径为 650mm 的外接圆的平均距离; 问题三
- $a \times b$: 分别表示油道在半圆内所在的位置(a < b);
- s_1 : 两个a油道之间的截面积之和;
- s_2 : 半圆内a、b油道之间的截面积之和;
- s_3 : 半圆内b油道之外的截面积之和;
- c:油道的累积厚度。
- 注:以上长度单位均为 mm。

四、问题引入与分析

4.1 问题背景的理解

铁心柱截面的设计方式是电力变压器的设计中很重要的一个环节,许多生产厂家都在想通过改进这些设计,来提高变压器使用效果的同时降低其成本。我们的目标就是根据题目中所给出的条件和数据,建立合适的数学模型,并求解,根据我们的结论,为生产厂家提供一种更好的设计,提高变压器的性价比。

4.2 铁心柱有效截面积

铁心柱有效截面积等于多级铁心柱的几何截面积(不包括油道)乘以叠片系数,而叠片系数常与硅钢片的厚度、表面的绝缘漆膜厚度、硅钢片的平整度以及

压紧程度有关。而前三个因素与硅钢片材料的选择和加工的工艺有关,不会因进 行设计制造而改变; 压紧程度则与制造铁心柱的工艺有关, 同样与铁心柱的级数、 各级宽度和厚度的设计无关。因此,进行设计时,我们要让铁心柱的有效截面积 最大即让其几何截面积最大。建模过程中我们通过控制铁心柱截面的级数、各级 宽度和厚度来使得铁心柱的有效截面积取得最优值。

4.3 公差带

我们通过查阅资料,进行讨论,认为公差带的选择要使铁心柱的截面在有效 截面积不减小的前提下形状更好, 意即使截面看起来更接近于一个圆, 我们选择 用铁心柱截面上的所有顶点到圆心的平均距离与给定圆的半径之差来量化截面 形状,得出铁心柱直径的最大值,进而得出公差带。

4.4 增加油道后的分析

增加油道后,一方面我们要使油道分割的相邻两部分铁心柱截面积近似相 等,以使得循环流动的油带走更多的热量,同时,我们还要保证增加油道设计后 的铁心柱截面的有效面积尽量大。两个目标综合考虑,再分别对问题一和问题二 重新进行设计。

五、模型建立及求解 文模】整理_{1问题一}公众号【mathor数模】整理

公众号【mat

5.1.1、模型1的建立

题目要求给出铁心柱截面的级数、各级宽度和厚度,使得铁心柱的有效截面 积最大,我所以们设决策变量为铁心柱截面的级数n、第i级的宽度的一半 x_i 、

第i级的厚度 y_i 。

文中提出"铁心柱有效截面的面积,等于多级铁心柱的几何截面积(不包括 油道) 乘以叠片系数", 而叠片系数的与硅钢片的材料和制作工艺有关, 在设计、 制造铁心柱的过程中选取不同的级数及各级厚度宽度对以上各要素来说均相差 无几,可以认为叠片系数为常量,故在此题的设计中,要求铁心柱的有效截面积 尽量大等价于要求几何截面积尽量大。

可用数学表达式表示出铁心柱的几何截面积为: $\sum_{i=1}^{n} 4x_i y_i - 2x_1 y_1$ 。

为了使铁心柱有效截面积最大,所以目标函数为:

$$\max \qquad \sum_{i=1}^{n} 4x_i y_i - 2x_1 y_1$$

由图 1 可知铁心柱截面的每个凸顶点均在其外接圆上,故有约束如下:

s. t.
$$x_i^2 + \left(\sum_{j=1}^i y_j - \frac{1}{2}y_1\right)^2 = \left(\frac{650}{2}\right)^2$$

因为在多级阶梯形和线圈之间需要加入一定的撑条来起到固定的作用,所以 一般要求第一级的厚度最小为 26 毫米, 硅钢片的宽度最小为 20 毫米, 故约束如 **王** 下:

s.t.
$$x_n \ge 10$$

$$y_1$$
 ≥ 26

由于制造工艺的要求, 硅钢片的宽度一般取为 5 的倍数, 所以约束如下:

s. t.
$$\left\lceil \frac{2x_i}{5} \right\rceil = \frac{2x_i}{5}$$

所给的各个决策变量均为正数,非负约束如下:

s. t.
$$x_i > 0$$

$$y_i > 0$$

综上,可建立模型如下:

| 模】整理

公炎等 Thathor 数模 **整**理

公众号【mat

s. t.
$$x_i^2 + \left(\sum_{j=1}^i y_j - \frac{1}{2}y_1\right)^2 = \left(\frac{650}{2}\right)^2 \qquad (i = 1, 2, \dots, n)$$

$$x_n \ge 10 \qquad (n = 12, 13, 14)$$

$$y_1 \ge 26$$

$$\left[\frac{2x_i}{5}\right] = \frac{2x_i}{5} \qquad (i = 1, 2, \dots, n)$$

$$x_i > 0 \qquad (i = 1, 2, \dots, n)$$

$$y_i > 0 \qquad (i = 1, 2, \dots, n)$$

5.1.2 模型 1 的求解

该模型为简单的单目标规划,但是可行解的求解范围太大,用 lingo 软件试算发现求解需要耗费很长时间,在此,我们结合题意,根据我们的基本假设和模型自身的要求,增加以下两个约束。

由图 1 可知,级数越大该级的宽度就越小,所以约束如下:

s. t.
$$x_i > x_2 > \dots > x_n$$
 $(n = 12, 13, 14)$

显然,铁心柱几何截面积不会超过其外接圆的面积,故约束如下:

s. t.
$$\sum_{i=1}^{n} 4x_i y_i - 2x_1 y_1 \le \pi \left(\frac{650}{2}\right)^2 \qquad (n = 12, 13, 14)$$

由于取整函数 $\left[\frac{2x_i}{5}\right] = \frac{2x_i}{5}$ $(i=1,2,\dots,n)$ 不好表示,我们将其表示为如

下形式:

s. t.
$$2x_i = 5k$$
 $(i = 1, 2, \dots, n) (k = 1, 2, \dots)$

由假设 2 可知, 当铁心柱外接圆直径为 650mm 时, 铁心柱截面级数选 12、 13、14,制造工艺的复杂程度相差不大,所以符合要求的级数n只有 12、13、14三个。由于数量较少,在求解时我们将分别对n=12,n=13,n=14三种情况 进行求解。

我们用 1ingo 软件编程求解 (n=14 时的程序见附录 8.1), 求解的结果如下。 最大级数取不同值时所求得的铁心柱最大几何截面积:

级数 n	12	13	14
最大几何截面积/mm	318921. 9	319922.8	320739.8

由假设可知,级数为12、13、14时制造工艺的复杂程度相差不大,故无须 考虑级数影响。比较可知当n=14时铁心柱的几何截面积最大,为 320739. 8 mm², 即有效截面积最大,故级数为 14。(n=14 时的程序见附录 8.1,运行结果见附 录 8.2)

整理 lingo 软件的运行结果得到每一级的厚度和宽度分别如下:

级数	1	2	3	4	5	6	7
厚度/mm	113. 58	32. 48	35. 73	26. 55	25. 56	21. 18	20.86
宽度/mm	640.00	625.00	600.00	575.00	545.00	515.00	480.00
级数	8	9	10	11	12	13	14
厚度/mm	20.07	18.89	15. 76	14. 45	12.72	11. 26	8. 44
宽度/mm	440.00	395. 00	350.00	300.00	245. 00	180.00	105. 00

5.2 问题二

5.2.1 模型 2 的建立

问题二要求在问题一的基础上考虑稍微增加铁心柱的外接圆直径以使得铁 心柱有更好的截面形状,进而设计出线圈的内筒直径和铁心柱的外接圆直径的公 差带,由于题目中没有给出线圈的内筒直径的任何数据,并且要求设计出,所以 我们在建模中并没有考虑线圈的内筒直径,只是单从铁心柱的外接圆直径出发, 按照国标中关于公差带的要求,考虑变压器设计中关于线圈的内筒和铁心柱的外 接圆周的间隙大小,找到最合适的铁心柱外接圆直径,然后考虑实际情况对线圈 的内筒直径的公差带进行设计。

该模型借鉴了模型1中的思想、内容和结果,只考虑了级数为14时的情况, 以此为基础来建立该模型。

我们设的决策变量除了模型 1 中的第i级的宽度的一半 x_i 、第i级的厚度 y_i 外,又增加了铁心柱外接圆的直径增加量d。

公众号【mat

问题二是承问题一而来,要考虑使铁心柱的有效截面积最大,即铁心柱几何 截面积最大,目标函数为:

Max
$$\sum_{i=1}^{14} 4x_i y_i - 2x_1 y_1$$

为了使铁心柱有更好的截面形状,我们让铁心柱截面的各级顶点(包括圆内 13*4 个和圆外 14*4 个) 到直径为 650mm 的外接圆的圆周的距离最小, 即各级顶 点到圆心的平均距离接近于直径为 650mm 的外接圆的半径,用w来量化这个距离 可以表示为:

$$w = \left| \frac{1}{27} \left(\sum_{i=1}^{14} r_{1i} + \sum_{i=1}^{14} r_{2i} \right) - \frac{650}{2} \right|$$

其中 r_i 表示铁心柱截面上位于外接圆之内的第 $i(i=2,3,\cdots,14)$ 级顶点到圆心

的距离, r_{2i} 表示铁心柱截面上位于外接圆之外的第 $i(i=1,2,\cdots,14)$ 级顶点到圆心

$$r_{2i} = \frac{650 + d}{2}$$
 $(i = 1, 2, \dots, 14)$

故目标函数为:

Min
$$\left| \frac{1}{27} \left(\sum_{i=1}^{14} r_{1i} + \sum_{i=1}^{14} r_{2i} \right) - \frac{650}{2} \right|$$

铁心柱截面的每个凸顶点均在其外接圆上,故有约束如下:

s. t.
$$x_i^2 + \left(\sum_{j=1}^i y_j - \frac{1}{2}y_1\right)^2 = \left(\frac{650 + d}{2}\right)^2 \qquad (i = 1, 2, \dots, 14)$$

其余约束均和问题一中的部分约束相同,不再详述,分别如下:

s. t.
$$x_{14} \ge 10$$

$$y_1 \ge 26$$

$$\left[\frac{2x_i}{5}\right] = \frac{2x_i}{5} \qquad (i = 1, 2, \dots, 14)$$

$$x_i > 0 \qquad (i = 1, 2, \dots, 14)$$

$$y_i > 0 \qquad (i = 1, 2, \dots, 14)$$

综上,可建立模型2如下:

kjfuilkfjkenvnalitikjgnva;'9898573002jfkfmaknf

Max
$$\sum_{i=1}^{14} 4x_i y_i - 2x_1 y_1$$
Min
$$\left| \frac{1}{27} \left(\sum_{i=1}^{14} r_{1i} + \sum_{i=1}^{14} r_{2i} \right) - \frac{650}{2} \right|$$
s. t.
$$r_{1i} = \sqrt{x_i^2 + \left(\sum_{j=1}^{14} y_j - \frac{1}{2} y_1 \right)^2} \qquad (i = 2, 3, \dots, 14)$$

$$r_{2i} = \frac{650 + d}{2} \qquad (i = 1, 2, \dots, 14)$$

$$x_i^2 + \left(\sum_{j=1}^{i} y_j - \frac{1}{2} y_1 \right)^2 = \left(\frac{650 + d}{2} \right)^2 \qquad (i = 1, 2, \dots, 14)$$

$$x_{14} \ge 10$$

公众學【mathor数模】整理

$$\left[\frac{2x_i}{5}\right] = \frac{2x_i}{5} \qquad (i = 1, 2, \dots, 14)$$

$$x_i > 0 \qquad (i = 1, 2, \dots, 14)$$

$$y_i > 0 \qquad (i = 1, 2, \dots, 14)$$

5.2.2 模型 2 的求解

求解的难点在于该模型有两个目标,分别为:

Max
$$\sum_{i=1}^{14} 4x_i y_i - 2x_1 y_1$$

$$\lim \left| \frac{1}{27} \left(\sum_{i=1}^{14} r_{1i} + \sum_{i=1}^{14} r_{2i} \right) - \frac{650}{2} \right|$$

问题二是在问题一的结果的基础上改进铁心柱截面的形状, 所以不论铁心柱 截面形状因直径增大而如何变化,其最小截面积都应该不小于问题一所得到的最 优结果,故第一个关于铁心柱的截面积的目标函数可以转化为约束,如下:

s. t.
$$\sum_{i=1}^{14} 4x_i y_i - 2x_1 y_1 \ge 320739.8$$

同模型一的求解相似,该模型也是可行解的求解范围太大,用 1ingo 软件求 解需要耗费更长时间,因此,同模型一的求解类似,我们根据基本假设和模型自 身的要求,增加以下两个约束。

s. t. $x_i > x_2 > \dots > x_{14}$

$$\sum_{i=1}^{14} 4x_i y_i - 2x_1 y_1 \le \pi \left(\frac{650 + d}{2}\right)^2$$

同样将约束 $\left[\frac{2x_i}{5}\right] = \frac{2x_i}{5}$ $(i=1,2,\dots,n)$ 表示为如下形式:

s. t.
$$2x_i = 5k$$
 $(i = 1, 2, \dots, n) (k = 1, 2, \dots)$

由于不知道w的最大值,故无法对w的大小进行量化,所以我们先用 lingo 软件进行编程试算,由试算的结果估计量化的条件。

令 d=0 ,可以得到其最大值 $w_{\max}=w_0=5.770227$,程序见附录 8.3。

取消对d的约束,用lingo编程试算,得出当d=12.03826时

我们查阅了公差设计的国家标准, 当d 太大时影响铁心柱的制造和变压器的 性能,所以 d 不可能取到最优值12.03826。考虑直径大小为 650mm, 我们商定以 下条件 $d \le 2$, $w \le \frac{w_{\text{max}}}{2} \approx 2.885$; 当二者不能同时满足,即 $w \le 2.885$ 时的最优解 为d > 2时,取d = 2。

我们将目标修改为如下形式:

Min
$$\left| \frac{1}{27} \left(\sum_{i=1}^{14} r_{1i} + \sum_{i=1}^{14} r_{2i} \right) - \frac{650}{2} \right| - 2.885$$

加入以下约束:

 $d \leq 2$ s.t.

最终的求解模型如下:

Min
$$\left| \frac{1}{27} \left(\sum_{i=1}^{14} r_{1i} + \sum_{i=1}^{14} r_{2i} \right) - \frac{650}{2} \right| - 2.885$$
s. t.
$$r_{1i} = \sqrt{x_i^2 + \left(\sum_{j=1}^{14} y_j - \frac{1}{2} y_1 \right)^2} \qquad (i = 2, 3, \dots, 14)$$

$$r_{2i} = \frac{650 + d}{2} \qquad (i = 1, 2, \dots, 14)$$

$$x_i^2 + \left(\sum_{j=1}^{i} y_j - \frac{1}{2} y_1 \right)^2 = \left(\frac{650 + d}{2} \right)^2 \qquad (i = 1, 2, \dots, 14)$$

$$x_{14} \ge 10$$

$$y_1 \ge 26$$

$$2x_i = 5k$$
 $(i = 1, 2, \dots, 14) (k = 1, 2, \dots)$

$$x_i > 0 \qquad \qquad (i = 1, 2, \dots, 14)$$

$$y_i > 0 \qquad \qquad \left(i = 1, 2, \dots, 14\right)$$

$$\sum_{i=1}^{14} 4x_i y_i - 2x_1 y_1 \ge 320739.8$$

$$x_i > x_2 > \cdots > x_{14}$$

$$\sum_{i=1}^{14} 4x_i y_i - 2x_1 y_1 \le \pi \left(\frac{650 + d}{2}\right)^2$$

 $d \leq 2$

lingo 程序见附录 8.4,运行结果见附录 8.5,整理如下。

当d=2时取得最优解,为 1. 353357,此时 $w_y=4.238357=73.4522%\times w_{max}$,没有

减小一半,但是考虑实际情况,我们选择d=2为最优解,此时的铁心柱截面积 为 320750.0 mm², 比之前增加了 10.2 mm², 各级的宽度和厚度如下:

级数	1	2	3	4	5	6	7
厚度/mm	167. 94	31. 14	23. 63	23. 95	20.00	20. 41	17. 52
宽度/mm	630.00	610.00	590.00	565.00	540.00	510.00	480.00
级数	8	9	10	11	12	13	14
厚度/mm	15. 28	15. 53	13. 47	13. 26	12. 56	11. 39	10.49
宽度/mm	450.00	415.00	380.00	340.00	295. 00	245.00	185.00

所以,铁心柱外接圆直径的公差带为650—652mm。

由于线圈的内筒直径的最小值要比铁心柱外接圆直径的最大值大,经查阅标 准,我们发现二者之间的间隙很小,所以我们商定选择其公差带为 652.2— 652.8mm。

综上,我们设计的铁心柱外接圆直径的公差带为 650—652mm,线圈的内筒 直径的公差带为 652. 2—652. 8mm。

5.3 问题三

5.3.1.1 模型 3.1 的建立

问题三为在问题一和问题二的基础上的进一步优化设计,模型 3.1 即为在模 型1的基础上增加目标和约束,从而得出更优化的设计。

在该模型中,决策变量除了模型 1 中的铁心柱截面的级数n、第i级的宽度 的一半 x_i 、第i级的厚度 y_i 外,我们有增加了决策变量。由题目可知直径为 650mm 时半圆中 6mm 油道的个数为 2, 我们假定油道所在的位置表示为油道两边级数中

级数较高的一级,所以增加决策变量 $a \times b(a < b)$,分别表示油道所在的位置。

该模型的基本目标同模型 1 一样,为铁心柱几何截面积的最大值,目标如下:

Max
$$\sum_{i=1}^{n} 4x_i y_i - 2x_1 y_1 \qquad (n = 12, 13, 14)$$

问题三增加了油道,由题意油道的位置应使其分隔的相邻两部分铁心柱截面积近似相等,设两个a油道之间的截面积之和为 s_1 ,a、b油道之间的截面积之和为 s_2 ,

b油道之外的截面积之和为 s_3 。则目标函数为:

Min
$$|s_1 - s_2|$$

Min
$$|s_2 - s_3|$$

Min | s₃-s₁ | _{其中}, 公众号【mathor数模】整理

公众号【mat

$$s_1 = \sum_{i=1}^{a} 4x_i y_i - 2x_1 y_1$$

$$s_2 = \sum_{i=a}^{b-1} 2x_i y_i$$

$$s_3 = \sum_{i=b}^n 2x_i y_i$$

铁心柱截面的每个凸顶点均在其外接圆上,故有约束如下:

s. t.
$$x_i^2 + \left(\sum_{j=1}^i y_j - \frac{1}{2}y_1 + c\right)^2 = \left(\frac{650}{2}\right)^2 \qquad (i = 1, 2, \dots, n) \ (n = 12, 13, 14)$$

其中, c表示油道的累积厚度, 表达式为:

$$c = \begin{cases} 0, (i = 1, ..., a - 1) \\ 6, (i = a, ..., b - 1) \\ 12, (i = b, ..., n) \end{cases}$$
 $(n = 12, 13, 14)$

其余约束均同模型1中的部分约束:

s. t.
$$x_n \ge 10$$
 $(n = 12, 13, 14)$

$$y_1 \ge 26$$

$$\left\lceil \frac{2x_i}{5} \right\rceil = \frac{2x_i}{5} \qquad \left(i = 1, 2, \dots, n \right)$$

$$x_i > 0$$

$$x_i > 0 \qquad \qquad (i = 1, 2, \dots, n)$$

$$y_i > 0$$

$$y_i > 0 \qquad (i = 1, 2, \dots, n)$$

综上,建立模型如下:

$$\sum_{i=1}^{n} 4x_i y_i - 2x_1 y_1$$

$$(n=12,13,14)$$

$$|s_1-s_2|$$

$$|s_2 - s_3|$$

$$|s_3-s_1|$$

$$s_1 = \sum_{i=1}^{a} 4x_i y_i - 2x_1 y_1$$
公众号 【mathor数模】整理

$s_2 = \sum 2x_i y_i$

$$s_3 = \sum_{i=b}^n 2x_i y_i$$

$$x_i^2 + \left(\sum_{j=1}^i y_j - \frac{1}{2}y_1 + c\right)^2 = \left(\frac{650}{2}\right)^2$$

$$(i=1,2,\cdots,n)$$

$$c = \begin{cases} 0, (i = 1, ..., a - 1) \\ 6, (i = a, ..., b - 1) \\ 12, (i = b, ..., n) \end{cases}$$

$$x_n \ge 10$$

$$x_n \ge 10$$
 $(n = 12, 13, 14)$

$$y_1$$
 ≥ 26

$$\left\lceil \frac{2x_i}{5} \right\rceil = \frac{2x_i}{5} \qquad \left(i = 1, 2, \dots, n \right)$$

$$x_i > 0$$

$$x_i > 0 \qquad \qquad \left(i = 1, 2, \dots, n\right)$$

$$y_i > 0$$

$$y_i > 0 \qquad \qquad \left(i = 1, 2, \dots, n\right)$$

$$a < b \qquad (a, b = 1, 2, \dots, n)$$

5. 3. 1. 2 模型 3. 1 的求解

由于该模型决策变量较多,难以用 lingo 编程,所以我们选择先人工选出油 道的位置,即确定 $a \setminus b$ 的值,然后再进行编程求解。确定油道的位置即将铁心 柱截面积分为近似相等的 5 个部分,由于油道分布上下对称,故我们只考虑半个 圆。首先,由于铁心柱内加入油道后对铁心柱截面各级面积影响不大,所以我们 先借助问题一的结果计算出各级的面积,然后进行初步筛选出一些可能的油道的

位置,经计算发现,只有 $\begin{cases} a=2 \\ b=5 \end{cases}$, $\begin{cases} a=2 \\ b=6 \end{cases}$ 两组比较接近,两种位置下的油道之间

分级	1	2—4	5—14
部分面积/mm²	72690.05	57007. 32	67017. 55
分级	1	2—5	6—14
部分面积/ mm²	72690.05	70936. 33	53088. 55

的面积如下:

整理 通过以上的处理,使得a和b两个决策变量的范围大大缩小,在编程的过程入号 【mat

中只需分开考虑 $\begin{cases} a=2 \\ b=5 \end{cases}$, $\begin{cases} a=2 \\ b=6 \end{cases}$ 两组值,减少了两个变量。

该模型又是一个多目标规划模型, 求解难点在于将多目标转化为单目标。模 型的目标函数如下:

Max
$$\sum_{i=1}^{n} 4x_i y_i - 2x_1 y_1$$
 $(n = 12, 13, 14)$
Min $|s_1 - s_2|$
Min $|s_2 - s_3|$
Min $|s_3 - s_1|$

由题意,油道的位置应使其分割的相邻两部分铁心柱截面积近似相等,所可 以将后三个目标转化为约束条件来处理,对任意两个面积求比,使其小于某个大 于1的定值。我们认为近似相等可以考虑成任意两个面积中,较小的应不小于最 大的面积的80%, 若小于则不应认为近似相等。所以后三个目标转化为约束条件 后为:

s. t.
$$\frac{s_1}{s_2} \le 1.25$$

$$\frac{s_2}{s_1} \le 1.25$$

$$\frac{s_1}{s_3} \le 1.25$$

$$\frac{s_3}{s_1} \le 1.25$$

$$\frac{s_3}{s_2} \le 1.25$$

$$\frac{s_2}{s_3} \le 1.25$$

同问题一求解过程,另增加和修改一些约束如下:

$$\sum_{i=1}^{n} 4x_i y_i - 2x_1 y_1 \le \pi \left(\frac{650}{2}\right)^2 \qquad (n = 12, 13, 14)$$

公众³号>··· Thatho(r数4模4) 整理

$$2x_i = 5k$$
 $(i = 1, 2, \dots, n) (k = 1, 2, \dots)$

综上,转化之后的求解模型为:

$$\sum_{i=1}^{n} 4x_i y_i - 2x_1 y_1$$

$$(n=12,13,14)$$

$$\frac{s_1}{s_2} \le 1.25$$

$$\frac{s_2}{s_1} \le 1.25$$

$$\frac{s_1}{s_3} \le 1.25$$

$$\frac{s_3}{s_1} \le 1.25$$

$$\frac{s_3}{s_2} \le 1.25$$

$$\frac{s_2}{s_3} \le 1.25$$

$$s_1 = \sum_{i=1}^{a} 4x_i y_i - 2x_1 y_1$$

$$s_2 = \sum_{i=a}^{b-1} 2x_i y_i$$

$$s_3 = \sum_{i=b}^n 2x_i y_i$$

$$x_i^2 + \left(\sum_{j=1}^i y_j - \frac{1}{2}y_1 + c\right)^2 = \left(\frac{650}{2}\right)^2$$
 $(i = 1, 2, \dots, n)$

$$c = \begin{cases} 0, (i = 1, ..., a - 1) \\ 6, (i = a, ..., b - 1) \\ 12, (i = b, ..., n) \end{cases}$$

$$x_n \ge 10$$

$$(n=12,13,14)$$

公众号《mathor数模》整理

$$2x_i = 5k$$
 $(i = 1, 2, \dots, n) (k = 1, 2, \dots)$

$$x_i > 0 \qquad \qquad (i = 1, 2, \dots, n)$$

$$y_i > 0 \qquad \qquad (i = 1, 2, \dots, n)$$

$$\sum_{i=1}^{n} 4x_i y_i - 2x_1 y_1 \le \pi \left(\frac{650}{2}\right)^2 \qquad (n = 12, 13, 14)$$

$$x_i > x_2 > \dots > x_n$$
 $(n = 12, 13, 14)$

用 1ingo 软件进行编程,在编程过程中n分别取 12、13、14 三个值, a和 b分别取 $\begin{cases} a=2 \\ b=5 \end{cases}$ $\begin{cases} a=2 \\ b=6 \end{cases}$ 两组值,共有6种不同的取值组合。

经运行发现,只有当
$$n=14$$
,
$$\begin{cases} a=2\\b=5 \end{cases}$$
时才可以取到最优解($n=14$,
$$\begin{cases} a=2\\b=5 \end{cases}$$
时

的程序见附录 8.6, 运行结果见附录 8.7), 其他 5 种组合均没有最优解。按此种 情况得出的油道之间的面积如下:

分级	1	2—4	5—14
部分面积/mm²	72690.03	58221. 24	58890. 42

可以看出三者之间的比符合要求。

此时铁心柱的最大截面积为 306913.4 mm²,油道的位置为第 1、2 级之间和 第 4、5 级之间,铁心柱截面共分 14 级,各级的宽度和厚度如下:

kjfuilkfjkcnvnalitikjgnva;'9898573002jfkfmaknf

级数	1	2	3	4	5	6	7	
厚度/mm	113. 58	34. 81	33. 24	29.84	21.47	19. 52	19. 42	
宽度/mm	640.00	620.00	595. 00	565.00	530.00	500.00	465. 00	
级数	8	9	10	11	12	13	14	
厚度/mm	18.82	15. 95	15. 14	13.87	12. 16	9. 98	8. 13	
宽度/mm	425.00	385. 00	340.00	290.00	235. 00	175.00	100.00	

5. 3. 2. 1 模型 3. 2 的建立

该模型为总结以上三个模型,综合考虑各个方面得出的一个综合模型。由模 型 3.1 的结果可以知,该模型中的油道位置为第 1、2 级之间和第 4、5 级之间,

铁心柱截面共分 14 级,即
$$n=14$$
,
$$\begin{cases} a=2\\b=5 \end{cases}$$

我们设的决策变量有第i级的宽度的一半 x_i 、第i级的厚度 y_i ,铁心柱外接

整理 的直径增加量d。 一 加强大,有以类自标。 整理 公众号【mat

Max
$$\sum_{i=1}^{14} 4x_i y_i - 2x_1 y_1$$

为了使铁心柱有更好的截面形状,有以下目标:

Min
$$\left| \frac{1}{27} \left(\sum_{i=1}^{14} r_{1i} + \sum_{i=1}^{14} r_{2i} \right) - \frac{650}{2} \right|$$

其中,

$$r_{1i} = \sqrt{x_i^2 + \left(\sum_{j=1}^{14} y_j - \frac{1}{2} y_1 + c\right)^2}$$
 $(i = 2, 3, \dots, 14)$
$$r_{2i} = \frac{650 + d}{2}$$
 $(i = 1, 2, \dots, 14)$

为了使油道相邻的两部分的铁心柱截面积近似相等,有以下目标:

Min
$$|s_1 - s_2|$$

Min
$$|s_2 - s_3|$$

Min
$$|s_3 - s_1|$$

其中,

$$s_1 = \sum_{i=1}^{a} 4x_i y_i - 2x_1 y_1$$

$$s_2 = \sum_{i=a}^{b-1} 2x_i y_i$$

$$s_3 = \sum_{i=1}^n 2x_i y_i$$

铁心柱截面的每个凸顶点均在其外接圆上,故有约束如下:

s. t.
$$x_i^2 + \left(\sum_{j=1}^i y_j - \frac{1}{2}y_1 + c\right)^2 = \left(\frac{650 + d}{2}\right)^2 \qquad (i = 1, 2, \dots, 14)$$

其中, c表示油道的厚度, 表达式为:

$$c = \begin{cases} 0, (i = 1, ..., a - 1) \\ 6, (i = a, ..., b - 1) \\ 12, (i = b, ..., n) \end{cases}$$

其余约束均同模型2中的部分约束:

s.t. 公众写《mathor数模》整理

公众号【mat

$$y_1 \ge 26$$

$$\left[\frac{2x_i}{5}\right] = \frac{2x_i}{5} \qquad (i = 1, 2, \dots, 14)$$

$$x_i > 0 \qquad \qquad \left(i = 1, 2, \dots, 14\right)$$

$$y_i > 0 \qquad \qquad \left(i = 1, 2, \dots, 14\right)$$

综上,模型3.2如下:

Min
$$\left| \frac{1}{27} \left(\sum_{i=1}^{14} r_{1i} + \sum_{i=1}^{14} r_{2i} \right) - \frac{650}{2} \right|$$

Max
$$\sum_{i=1}^{14} 4x_i y_i - 2x_1 y_1$$

Min
$$|s_1 - s_2|$$

Min
$$|s_2 - s_3|$$

Min
$$|s_3 - s_1|$$

s. t.
$$r_{1i} = \sqrt{x_i^2 + \left(\sum_{j=1}^{14} y_j - \frac{1}{2} y_1 + c\right)^2}$$
 $(i = 2, 3, \dots, 14)$

kjfuilkfjkenvnalitikjgnva;'9898573002jfkfmaknf

$$r_{2i} = \frac{650 + d}{2}$$
 $(i = 1, 2, \dots, 14)$

$$(i=1,2,\cdots,14)$$

$$s_1 = \sum_{i=1}^a 4x_i y_i - 2x_1 y_1$$

$$s_2 = \sum_{i=a}^{b-1} 2x_i y_i$$

$$s_3 = \sum_{i=1}^n 2x_i y_i$$

$$x_i^2 + \left(\sum_{j=1}^i y_j - \frac{1}{2}y_1 + c\right)^2 = \left(\frac{650 + d}{2}\right)^2$$
 $(i = 1, 2, \dots, 14)$

$$c = \begin{cases} 0, (i=1) \\ 6, (i=2,3,4) \end{cases}$$

$c = \begin{cases} 0, (i=1) \\ 6, (i=2,3,4) \\ 2, (i=1) \\ 4 \end{cases}$ 公众号 (i=1) 公众 (i=1) 公众号 (i=1) 公众号 (i=1) 公众 (i=1) 公众号 (i=1) 公众 (i=

$$x_{14} \ge 10$$

$$y_1 \ge 26$$

$$\left[\frac{2x_i}{5}\right] = \frac{2x_i}{5} \qquad (i = 1, 2, \dots, 14)$$

$$x_i > 0$$

$$x_i > 0 \qquad \qquad \left(i = 1, 2, \dots, 14\right)$$

$$y_i > 0$$

$$y_i > 0 \qquad \qquad (i = 1, 2, \dots, 14)$$

5. 3. 2. 2 模型 3. 2 的求解

由公差设计的国家标准可知, 当直径大小为 650mm 时, d 的范围应限制在 $d \leq 2$.

该模型有5个目标,分别如下:

Min
$$\left| \frac{1}{27} \left(\sum_{i=1}^{14} r_{1i} + \sum_{i=1}^{14} r_{2i} \right) - \frac{650}{2} \right|$$

Max
$$\sum_{i=1}^{14} 4x_i y_i - 2x_1 y_1$$

Min
$$|s_1 - s_2|$$

Min
$$|s_2 - s_3|$$

Min

$$|s_3-s_1|$$

和之前的三个模型的处理方法相同,我们将后四个模型分别转化为约束条件如下:

s. t.
$$\sum_{i=1}^{14} 4x_i y_i - 2x_1 y_1 \ge 306913.4$$

$$\frac{s_1}{s_2} \le 1.25$$

$$\frac{s_2}{s_1} \le 1.25$$

$$\frac{s_1}{s_2} \le 1.25$$

| 模】整理

公众号。《mathor数模】整理

$$\frac{s_3}{s_2} \le 1.25$$

$$\frac{s_2}{s_3} \le 1.25$$

由公差设计的国家标准可知,当直径大小为 650mm 时,d 的范围应限制在 $d \le 2$ 。约束为:

s.t.

 $d \leq 2$

为缩小 1ingo 的选择范围,增加运算速度,特增加以下两个约束:

s. t.
$$\sum_{i=1}^{14} 4x_i y_i - 2x_1 y_1 \le \pi \left(\frac{650 + d}{2}\right)^2$$

$$x_i > x_2 > \dots > x_{14}$$

其余约束均与之前的模型相同或相近。 综上,用 lingo 进行求解的模型如下:

Min
$$\left| \frac{1}{27} \left(\sum_{i=1}^{14} r_{1i} + \sum_{i=1}^{14} r_{2i} \right) - \frac{650}{2} \right|$$

s. t.
$$\sum_{i=1}^{14} 4x_i y_i - 2x_1 y_1 \ge 306913.4$$

$$\frac{s_1}{s_2} \le 1.25$$

$$\frac{s_2}{s_1} \le 1.25$$

$$\frac{s_1}{s_3} \le 1.25$$

$$\frac{s_3}{s_1} \le 1.25$$

$$\frac{s_3}{s_2} \le 1.25$$

$$\frac{s_2}{s_3} \le 1.25$$

模】整理

$$r_{2i} = \frac{650 + d}{2}$$
 $(i = 1, 2, \dots, 14)$

$$s_1 = \sum_{i=1}^{a} 4x_i y_i - 2x_1 y_1$$

$$s_2 = \sum_{i=a}^{b-1} 2x_i y_i$$

$$s_3 = \sum_{i=b}^n 2x_i y_i$$

$$x_i^2 + \left(\sum_{j=1}^i y_j - \frac{1}{2}y_1 + c\right)^2 = \left(\frac{650 + d}{2}\right)^2$$
 $(i = 1, 2, \dots, 14)$

$$c = \begin{cases} 0, (i = 1) \\ 6, (i = 2, 3, 4) \\ 12, (i = 5, ..., 14) \end{cases}$$

$$d \leq 2$$

$$\sum_{i=1}^{14} 4x_i y_i - 2x_1 y_1 \le \pi \left(\frac{650 + d}{2} \right)^2$$

$$x_i > x_2 > \dots > x_{14}$$

$$2x_i = 5k$$
 $(i = 1, 2, \dots, 14) (k = 1, 2, \dots)$

$$x_{14} \ge 10$$

$$y_1 \ge 26$$

$$x_i > 0 \qquad \qquad \left(i = 1, 2, \dots, 14\right)$$

$$y_i > 0$$
 $(i = 1, 2, \dots, 14)$

lingo 程序见附录 8.8,运行结果见附录 8.9,整理如下: 当d=2时取得最优解,为 4.463426。当d=0时无最优解,故得不到最大值,但由假设加入油道后铁心柱截面改变不大,可以用模型 2 的最大值 $w_{max}=5.770227$

结果来近似看作该模型中d=0时的最大值,此时 $w_2=4.463426=77.3527% \times w_{max}$,

比模型 2 的结果更差,仍然没有减小一半。考虑实际情况,我们选择 d=2 为最优解,此时的铁心柱截面积为 306945.0 mm^2 ,比之前增加了 31.6 mm^2 ,各级的宽

宽度/mm 645.00 545.00 620.00 595.00 570.00 520.00 490.00 级数 8 9 10 11 12 13 14 厚度/mm 15.97 16. 19 14.02 13.80 13.08 11.05 11.90 宽度/mm 460.00 425.00 390.00 350.00 305.00 255.00 195.00

此时的各油道之间的面积如下:

分级	1	2—4	5—14
部分面积/mm²	61458.04	62813. 30	59930. 17

可以看出三者比较接近,很好得做到了油道的位置使其分割的相邻两部分铁心柱截面积近似相等。

所以,铁心柱外接圆直径的公差带为 650—652mm。由于线圈的内筒直径的最小值要比铁心柱外接圆直径的最大值大,经查阅标准,我们发现二者之间的间隙很小,经讨论,选择其公差带为 652.2—652.8mm。

六、模型评价与改进

6.1模型的评价

- (1)在问题一中,对问题进行分析,忽略了一些对问题结果影响较小的量,如叠片系数等,使模型简单化,有利于模型的建立与求解;
- (2)在问题二中,选择用铁心柱截面上的所有顶点到圆心的平均距离与给 定的圆的半径之差来量化截面形状,做法巧妙,简单易行;
- (3)在问题三中,利用分层序列法和主要目标法将多目标规划问题转化为单目标规划,有利于模型的求解;
- (4)在用 1 ingo 编程过程中采取增加约束的方法来缩小最优解的搜索范围, 大大缩短了运行时间。
- 6.2 模型的改进

- (1) 在求解过程中忽略了一些对结果影响较小的量, 若想模型更加精确, 则必须重新考虑这些量,如假设2可以放弃,考虑铁心柱包含级数不同则工艺复 杂程度不同的现实条件;
- (2) 在求解模型 3.1 的过程中,要使结果更精确须按模型来编程统一求解, 而不是先求出油道的位置再求其他量。

七、参考文献

[1]谢金星,薛毅. 优化建模与 LINDO/LINGO 软件. 北京:清华大学出版社,2005. [2] 唐焕文,贺明峰. 数学模型引论(第三版).北京: 高等教育出版社,2005. [3]中华人民共和国国家标准 GB/T 1810—2009. 网址: http://www.bzfxw.com/

八、附录

附录清单:

- 8.1 模型 1 的程序
- 8.2 模型1的运行结果
- 8.3 模型 2 的 d = 0 时程序
- 8.4 模型 2 的最终模型的程序 8.5 模型 2 的最终模型的运行结果 hor数模 】 数 其

公众号【mat

- 8.6 模型 3.1 的程序
- 8.7 模型 3.1 的运行结果
- 8.8 模型 3.2 的程序
- 8.9 模型 3.2 的运行结果
- 8.1 模型 1 的程序

MODEL:

Title 1;

sets:

!y 为厚度,x 为宽度的一半,临时变量 k 用于保证宽度为 5 的倍数;

Piece/1..14/:y, x, k;

endsets

!目标函数:几何面积;

[Square] $\max = s$;

s=(@sum(Piece(i): x(i)*y(i))-0.5*x(1)*y(1))*4;

!约束第一级厚度和长度;

x(1)>=10;

y(1)>=26;

!各级厚度和宽度的一半符合勾股定理;

 $x(1)^2+(0.5*y(1))^2 = 325^2;$

```
(@sum(Piece(i)li #LE# 2
                          :(y(i)))-0.5*y(1))^2
                                                      (x(2))^2
                                                                    325^2;
(@sum(Piece(i)li #LE# 3
                          :(y(i)))-0.5*y(1))^2
                                                      (x(3))^2
                                                                    325^2;
                                                 +
(@sum(Piece(i)li #LE# 4
                          :(y(i)))-0.5*y(1))^2
                                                      (x(4))^2
                                                                    325^2;
                                                 +
                          :(y(i)))-0.5*y(1))^2
                                                                    325^2;
(@sum(Piece(i)li #LE# 5
                                                      (x(5))^2
                                                 +
                          :(y(i)))-0.5*y(1))^2
(@sum(Piece(i)li #LE# 6
                                                      (x(6))^2
                                                                    325^2;
                                                 +
                          :(y(i)))-0.5*y(1))^2
(@sum(Piece(i)li #LE# 7
                                                      (x(7))^2
                                                                    325^2;
                                                 +
(@sum(Piece(i)li #LE# 8
                          :(y(i)))-0.5*y(1))^2
                                                      (x(8))^2
                                                                    325^2;
                                                 +
(@sum(Piece(i)li #LE# 9
                          :(y(i)))-0.5*y(1))^2
                                                      (x(9))^2
                                                                    325^2;
                                                 +
(@sum(Piece(i)li #LE# 10 :(y(i)))-0.5*y(1))^2
                                                                   325^2;
                                                     (x(10))^2 =
                                                 +
(@sum(Piece(i)li #LE# 11 :(y(i)))-0.5*y(1))^2
                                                     (x(11))^2 =
                                                                  325^2;
                                                +
(@sum(Piece(i)li #LE# 12 :(y(i)))-0.5*y(1))^2
                                                     (x(12))^2 =
                                                                   325^2;
                                                 +
(@sum(Piece(i)li #LE# 13 :(y(i)))-0.5*y(1))^2
                                                     (x(13))^2 =
                                                                   325^2;
                                                +
(@sum(Piece(i)li \#LE\# 14 :(y(i)))-0.5*y(1))^2
                                                     (x(14))^2 =
                                                                   325^2;
                                                 +
```

!总几何面积小于外接圆面积;

s<=3.14159265*(650/2)^2; !随着级数的增加硅钢片宽度依次减少;thor数模】整理

@for(Piece(i)li#GT#1:x(i-1)>x(i));

!约束硅钢片宽度必须为5的倍数;

@for(Piece(i):x(i)*2=5*k(i));

@for(Piece(i):@Gin(k(i)));

END

8.2 模型1的运行结果

Local optimal solution found at iteration: 2256 320739.8 Objective value:

Model Title: 1

Value Variable Reduced Cost S 320739.8 0.000000Y(1)113.5782 0.000000 Y(2)32.47877 0.000000 Y(3)35.73214 0.000000Y(4)26.55445 0.000000Y(5)25.55781 0.000000Y(6) 21.17731 0.000000 Y(7)20.85651 0.000000 Y(8) 20.07140 0.000000 Y(9)18.88861 0.000000Y(10) 15.75520 0.000000

模】	越刊	kji	fuilkfjkenvnal	litikjgnva;'9898573002jfkfma	aknf 4 1	****	[mat
175 4		AMJ	V(11)	14.45270		AMJ	
			Y(11)	14.45279	0.000000		
			Y(12)	12.71542	0.000000		
			Y(13) Y(14)	11.26045 8.441656	0.000000		
			X(1)	320.0000	0.000000		
			X(1) X(2)	312.5000	0.000000		
			X(3)	300.0000	0.000000		
			X(4)	287.5000	0.000000		
			X(5)	272.5000	0.000000		
			X(6)	257.5000	0.000000		
			X(7)	240.0000	0.000000		
			X(8)	220.0000	0.000000		
			X(9)	197.5000	0.000000		
			X(10)	175.0000	0.000000		
			X(11)	150.0000	0.000000		
			X(12)	122.5000	0.000000		
	##/+ TITI	\wedge	, ,	90.00000	0.000000	$\wedge \wedge \Box$	
模】	整理	公众亏	X(13) X(14)	t nQ _{2.50000} 人	0.000000	公众号	L ma
			K(1)	128.0000	-145.2751		
			K(2)	125.0000	112.7999		
			K(3)	120.0000	-57.32147		
			K(4)	115.0000	19.00682		
			K(5)	109.0000	-24.79220		
			K(6)	103.0000	15.48301		
			K(7)	96.00000	10.46695		
			K(8)	88.00000	6.210686		
			K(9)	79.00000	-16.71846		
			K(10)	70.00000	2.200478		
			K(11)	60.00000	-1.454684		
			K(12)	49.00000	5.100330		
			K(13)	36.00000	-4.531788		
			K(14)	21.00000	1.519799		
			Row	Slack or Surplus	Dual Price		
			SQUARE	320739.8	1.000000		
			2	-0.3667184E-02	1.000000		
			3	310.0000	0.000000		
			4	87.57817	0.000000		
			5	0.000000	0.2641348		
			6	0.000000	0.2800560		
			7	0.000000	0.1999999		
			8	0.000000	0.1979487		
			9	0.000000	0.1693841		
			10	0.000000	0.1765095		

₩	整理	kjft	ıilkfjkenvnaliti	kjgnva;'9898573002jfkfma			T mo t
人(民)	至注	公从与		IIUI 数X作吴 』	楚珲	公从与	L mat
			11	-0.1985224E-02	0.1825267		
			12	-0.1542503E-08	0.1881133		
			13	-0.1746230E-08	0.1743469		
			14	-0.1877197E-08	0.1825742		
			15	-0.1848093E-08	0.1907642		
			16	-0.1993612E-08	0.2159257		
			17	-0.1688022E-08	0.2401614		
			18	-0.1789886E-08	0.3273765		
			19	11090.95	0.000000		
			20	7.500000	0.000000		
			21	12.50000	0.000000		
			22	12.50000	0.000000		
			23	15.00000	0.000000		
			24	15.00000	0.000000		
			25	17.50000	0.000000		
			26	20.00000	0.000000		
文模 】	整理	公众号	[% at	$O_{22.50000}^{22.50000}$	0.000000 0.000000	公众号	[mat
			29	25.00000	0.000000		
			30	27.50000	0.000000		
			31	32.50000	0.000000		
			32	37.50000	0.000000		
			33	0.000000	29.05503		
			34	0.000000	-22.55998		
			35	0.000000	11.46429		
			36	0.000000	-3.801363		
			37	0.000000	4.958440		
			38	0.000000	-3.096603		
			39	0.000000	-2.093391		
			40	0.000000	-1.242137		
			41	0.000000	3.343693		
			42	0.000000	-0.4400957		
			43	0.000000	0.2909369		
			44	0.000000	-1.020066		
			45	0.000000	0.9063577		
			46	0.000000	-0.3039597		

8.3 模型 2 的 d = 0 时程序

MODEL:

Title 2;

sets:

!y 为厚度,x 为宽度的一半,临时变量 k 用于保证宽度为 5 的倍数;

```
Piece/1..14/:y, x, k;
```

```
d1/1..13/:r1;
endsets
!目标函数;
min=@abs(dis);
!d 为直径增加的量;;
dis=(@sum(d1(i):r1(i)) +
                         r2)/27 - 650/2;
r2 = ((650+d)/2)*14;
!s 为几何面积;
s=(@sum(Piece(i): x(i)*y(i))-0.5*x(1)*y(1))*4;
               + (@sum(Piece(i)li#LE#1
                                           y(i)-0.5*y(1)^2)^0.5;
r1(1) = (x(2)^2)
r1(2) = (x(3)^2 + (@sum(Piece(i)li#LE#2))
                                           :y(i))-0.5*y(1))^2)^0.5;
r1(3) = (x(4)^2 + (@sum(Piece(i)li#LE#3))
                                           :y(i))-0.5*y(1))^2 )^0.5;
r1(4) = (x(5)^2
               + (@sum(Piece(i)li#LE#4
                                           y(i)-0.5*y(1)^2 -0.5;
               + (@sum(Piece(i)li#LE#5
                                           y(i)-0.5*y(1)^2)^0.5;
r1(5) = (x(6)^2)
r1(6) = (x(7)^2)
               + (@sum(Piece(i)li#LE#6
                                           y(i)-0.5*y(1)^2 -0.5;
r1(7) = (x(8)^2
               + (@sum(Piece(i)li#LE#7
                                           y(i)-0.5*y(1)^2 -0.5;
                                           y(i)-0.5*y(1)^2)^0.5;
r1(8) = (x(9)^2)
               + (@sum(Piece(i)li#LE#8
                                           :y(i))-0.5*y(1))^2 )^0.5;
r1(9) = (x(10)^2 + (@sum(Piece(i)li#LE#9))
r1(10)=(x(11)^2 + (@sum(Piece(i)li#LE#10))
                                           :y(i))-0.5*y(1))^2)^0.5;
                                           :y(i))-0.5*y(1))^2)^0.5;
r1(11)=(x(12)^2 + (@sum(Piece(i)li#LE#11))
r1(12)=(x(13)^2 + (@sum(Piece(i)li#LE#12))
                                           :y(i))-0.5*y(1))^2)^0.5;
r1(13)=(x(14)^2 + (@sum(Piece(i)li#LE#13))
                                           :y(i))-0.5*y(1))^2)^0.5;
!约束第一级厚度和长度;
x(1)>=10;
y(1)>=26;
!各级厚度和宽度的一半符合勾股定理;
x(1)^2+(0.5*y(1))^2=((650+d)/2)^2;
(@sum(Piece(i)li #LE# 2 :(y(i)))-0.5*y(1))^2
                                                  (x(2))^2
                                                               ((650+d)/2)^2;
(@sum(Piece(i)li #LE# 3 :(y(i)))-0.5*y(1))^2
                                                  (x(3))^2 =
                                                               ((650+d)/2)^2;
(@sum(Piece(i)li \#LE\# 4 : (y(i))) - 0.5*y(1))^2
                                                  (x(4))^2 = ((650+d)/2)^2;
(@sum(Piece(i)li #LE# 5 :(y(i)))-0.5*y(1))^2
                                                               ((650+d)/2)^2;
                                                  (x(5))^2
```

 $(x(6))^2$

 $((650+d)/2)^2$;

(@sum(Piece(i)li #LE# 6 :(y(i)))-0.5*y(1))^2

```
(@sum(Piece(i)li #LE# 7 :(y(i)))-0.5*y(1))^2
                                          (x(7))^2
                                                      ((650+d)/2)^2;
(@sum(Piece(i)li #LE# 8 :(y(i)))-0.5*y(1))^2
                                          (x(8))^2
                                                      ((650+d)/2)^2;
(@sum(Piece(i)li \#LE\# 9 : (y(i))) - 0.5*y(1))^2
                                          (x(9))^2 =
                                                      ((650+d)/2)^2;
(@sum(Piece(i)li #LE# 10:(y(i)))-0.5*y(1))^2
                                           (x(10))^2 =
                                                      ((650+d)/2)^2;
(@sum(Piece(i)li #LE# 11:(y(i)))-0.5*y(1))^2
                                           (x(11))^2 =
                                                      ((650+d)/2)^2;
(@sum(Piece(i)li #LE# 12:(y(i)))-0.5*y(1))^2
                                           (x(12))^2 =
                                                      ((650+d)/2)^2;
(@sum(Piece(i)li #LE# 13:(y(i)))-0.5*y(1))^2
                                           (x(13))^2 =
                                                      ((650+d)/2)^2;
(@sum(Piece(i)li #LE# 14:(y(i)))-0.5*y(1))^2
                                           (x(14))^2 =
                                                      ((650+d)/2)^2;
!总几何面积小于外接圆面积大于问题一所求解出的面积 320746.1;
s<=3.14159265*((650+d)/2)^2;
s = 320739.8;
!d 为直径增加的量;
d=0;
!随着级数的增加硅钢片宽度依次减小;
@for(Piece(i)li#GT#1:x(i-1)>x(i));
!约束硅钢片宽度必须为5的倍数;
                           mathor数模】整理
@for(Piece(i):x(i)*2=5*k(i));
@for(Piece(i):@Gin(k(i)));
@free(dis);
END
8.4 模型2的最终模型的程序
MODEL:
Title 2;
sets:
!y 为厚度, x 为宽度的一半, 临时变量 k 用于保证宽度为 5 的倍数;
    Piece/1..14/:y, x, k;
    d1/1..13/:r1;
endsets
!目标函数;
min=dis;
!d 为直径增加的量,;
dis=@abs((@sum(d1(i):r1(i)) + r2)/27 - 650/2)-2.885;
r2 = ((650+d)/2)*14;
```

vnm..,.,fkjasfisir;jlglg[wkldkjsfiuejslfsdndnjdjkgjkd

!s 为几何面积;

!约束第一级厚度和长度:

s=(@sum(Piece(i): x(i)*y(i))-0.5*x(1)*y(1))*4;

```
r1(1) = (x(2)^2 + (@sum(Piece(i) | i#LE#1))
                                             :y(i))-0.5*y(1))^2)^0.5;
                                             :y(i))-0.5*y(1))^2)^0.5;
r1(2) = (x(3)^2 + (@sum(Piece(i) | i#LE#2)
r1(3) = (x(4)^2 + (@sum(Piece(i) | i#LE#3))
                                             :y(i))-0.5*y(1))^2)^0.5;
                                             :y(i))-0.5*y(1))^2)^0.5;
r1(4) = (x(5)^2 + (@sum(Piece(i) | i#LE#4)
r1(5) = (x(6)^2 + (@sum(Piece(i) | i#LE#5)
                                             :y(i))-0.5*y(1))^2)^0.5;
r1(6) = (x(7)^2 + (@sum(Piece(i) | i#LE#6)
                                             :y(i))-0.5*y(1))^2)^0.5;
r1(7) = (x(8)^2 + (@sum(Piece(i) | i#LE#7))
                                             :y(i))-0.5*y(1))^2)^0.5;
r1(8) = (x(9)^2 + (@sum(Piece(i) | i#LE#8)
                                             :y(i))-0.5*y(1))^2)^0.5;
r1(9) = (x(10)^2 + (@sum(Piece(i) | i#LE#9)
                                             :y(i))-0.5*y(1))^2)^0.5;
r1(10) = (x(11)^2 + (@sum(Piece(i) | i#LE#10))
                                             :y(i))-0.5*y(1))^2)^0.5;
r1(11) = (x(12)^2 + (@sum(Piece(i) | i#LE#11))
                                             :y(i))-0.5*y(1))^2)^0.5;
r1(12) = (x(13)^2 + (@sum(Piece(i) | i#LE#12))
                                             :y(i))-0.5*y(1))^2)^0.5;
r1(13) = (x(14)^2 + (@sum(Piece(i) | i#LE#13))
                                             :y(i))-0.5*y(1))^2)^0.5;
```

模】整理 公众号【mathor数模】整理 公众号【mat

```
x(1) >= 10;
y(1) > = 26;
!各级厚度和宽度的一半符合勾股定理:
x(1)^2+(0.5*y(1))^2 = ((650+d)/2)^2;
(@sum(Piece(i)|i #LE# 2 : (y(i)))-0.5*y(1))^2
                                                          (x(2))^2
                                                    +
                                                                      =
((650+d)/2)^2:
(@sum(Piece(i)|i \#LE\# 3 : (y(i)))-0.5*y(1))^2
                                                          (x(3))^2
                                                    +
                                                                      =
((650+d)/2)^2;
(@sum(Piece(i)|i \#LE\# 4 : (y(i)))-0.5*y(1))^2
                                                          (x(4))^2
                                                    +
                                                                      =
((650+d)/2)^2;
                                                          (x(5))^2
(@sum(Piece(i)|i \#LE\# 5 : (y(i)))-0.5*y(1))^2
                                                    +
                                                                      =
((650+d)/2)^2;
                                                          (x(6))^2
(@sum(Piece(i)|i \#LE\# 6 : (y(i)))-0.5*y(1))^2
                                                    +
                                                                      =
((650+d)/2)^2;
(@sum(Piece(i) | i #LE# 7 : (y(i))) -0.5*y(1))^2
                                                          (x(7))^2
                                                    +
                                                                      =
((650+d)/2)^2:
                                                          (x(8))^2
(@sum(Piece(i)|i \#LE\# 8 : (y(i)))-0.5*y(1))^2
                                                    +
                                                                      =
((650+d)/2)^2;
(@sum(Piece(i)|i #LE# 9 : (y(i)))-0.5*y(1))^2
                                                          (x(9))^2
                                                    +
                                                                      =
((650+d)/2)^2;
(@sum(Piece(i) | i #LE# 10:(y(i)))-0.5*y(1))^2
                                                           (x(10))^2 =
                                                    +
((650+d)/2)^2;
```

```
(@sum(Piece(i) | i #LE# 11:(y(i)))-0.5*y(1))^2
                                                        (x(11))^2 =
((650+d)/2)^2;
(@sum(Piece(i) | i #LE# 12:(y(i)))-0.5*y(1))^2
                                                        (x(12))^2 =
                                                 +
((650+d)/2)^2;
(@sum(Piece(i)|i #LE# 13:(y(i)))-0.5*y(1))^2
                                                        (x(13))^2 =
((650+d)/2)^2;
(@sum(Piece(i) | i #LE# 14:(y(i)))-0.5*y(1))^2
                                                        (x(14))^2 =
                                                 +
((650+d)/2)^2;
!总几何面积小于外接圆面积大于问题一所求解出的面积 320746.1;
s \le 3.14159265*((650+d)/2)^2;
s > = 320739.8;
```

!d 为直径增加的量;

 $d \le 2$;

!随着级数的增加硅钢片宽度依次减小;

@for(Piece(i) | i#GT#1:x(i-1)>x(i));

@for(Piece(i):@Gin(k(i)));

@free(dis);

END

8.5 模型2的最终模型的运行结果

Local optimal solution found at iteration:

Objective value: 1.353357

Model Title: 2

Variable	Value	Reduced Cost
DIS	1.353357	0.000000
R2	4564.000	0.000000
D	2.000000	0.000000
S	320750.0	0.000000
Y(1)	167.9405	0.000000
Y(2)	31.14276	0.000000
Y(3)	23.63498	0.000000
Y(4)	23.94729	0.000000
Y(5)	19.99573	0.000000
Y(6)	20.41243	0.000000
Y(7)	17.52296	0.000000
Y(8)	15.27826	0.000000

35504

模】	越 班	kjfuilkfjkenv	nalitikjgnva;'9898573002jfkfma	aknf	一份介号	C mat
		V(0)	15.53074	0.000000		
		Y(9) Y(10)	13.47215	0.000000		
		Y(10)	13.47213	0.000000		
		Y(11)	12.55739	0.000000		
		Y(12)	11.38603	0.000000		
		Y(14)	10.49275	0.000000		
		X(1)	315.0000	0.000000		
		X(2)	305.0000	0.000000		
		X(3)	295.0000	0.000000		
		X(4)	282.5000	0.000000		
		X(5)	270.0000	0.000000		
		X(6)	255.0000	0.000000		
		X(7)	240.0000	0.000000		
		X(8)	225.0000	0.000000		
		X(9)	207.5000	0.000000		
		X(10)	190.0000	0.000000		
L John W	==/- TITI	, , ,	170.0000	0.000000		
[模]	整理	公众号 X(11) X(12)	athQ47.5000 程】	0.000000	公众号	(mat
		X(13)	122.5000	0.000000		
		X(14)	92.50000	0.000000		
		K(1)	126.0000	0.9219800E-01		
		K(2)	122.0000	-0.8906100E-04		
		K(3)	118.0000	0.5290333E-03		
		K(4)	113.0000	-0.1307716E-03		
		K(5)	108.0000	0.3894418E-03		
		K(6)	102.0000	-0.1715088E-03		
		K(7)	96.00000	-0.1603211E-03		
		K(8)	90.00000	0.1985509E-03		
		K(9)	83.00000	-0.1888513E-03		
		K(10)	76.00000	0.6863168E-04		
		K(11)	68.00000	-0.1418659E-04		
		K(12)	59.00000	-0.8588932E-04		
		K(13)	49.00000	-0.5406388E-04		
		K(14)	37.00000	-0.2710792E-01		
		R1(1)	316.3479	0.000000		
		R1(2)	316.6639	0.000000		
		R1(3)	314.7336	0.000000		
		R1(4)	315.2297	0.000000		
		R1(5)	313.6893	0.000000		
		R1(6)	314.4058	0.000000		
		R1(7)	315.1206	0.000000		
		R1(8)	314.1771	0.000000		
		R1(9)	315.1504	0.000000		
		R1(10)	314.7634	0.000000		

/模】	爽 [里	kjft	uilkfjkenvnal	itikjgnva;'9898573002jfkfm	aknf	→☆☆号	[ma
			R1(11)	314.8527	0.000000		
			R1(11)	314.8327	0.000000		
			R1(12)	315.4774	0.000000		
		N	(13)	313.9323	0.000000		
			Row	Slack or Surplus	Dual Price		
			1	1.353357	-1.000000		
			2	0.000000	-1.000000		
			3	0.000000	0.3703704E-01		
			4	-0.1052007E-02	0.000000		
			5	0.000000	0.3703704E-01		
			6	0.000000	0.3703704E-01		
			7	0.000000	0.3703704E-01		
			8	-0.1067171E-05	0.3703704E-01		
			9	0.000000	0.3703704E-01		
			10	0.000000	0.3703704E-01		
			11	0.000000	0.3703704E-01		
模】	整理	公众号		0.0000000 0.0000000	0.3703704E-01 0.3703704E-01	公众号	I ma
			14	0.000000	0.3703704E-01		
			15	0.000000	0.3703704E-01		
			16	0.000000	0.3703704E-01		
			17	0.000000	0.3703704E-01		
			18	305.0000	0.000000		
			19	141.9405	0.000000		
			20	0.000000	0.5853840E-04		
			21	0.000000	0.5848004E-04		
			22	0.000000	0.5883870E-04		
			23	-0.9160208E-03	0.5874611E-04		
			24	0.000000	0.5903458E-04		
			25	-0.1949957E-08	0.5890005E-04		
			26	-0.1396984E-08	0.5876645E-04		
			27	-0.1338776E-08	0.5894293E-04		
			28	0.000000	0.5876090E-04		
			29	-0.1309672E-08	0.5883314E-04		
			30	-0.1004082E-08	0.5881644E-04		
			31	-0.1702574E-08	0.5869998E-04		
			32	-0.1658918E-08	0.5861171E-04		
			33	-0.2604793E-08	0.000000		
			34	13125.94	0.000000		
			35	10.15627	0.000000		
			36	0.000000	0.5083133		
			37	10.00000	0.000000		
			38	10.00000	0.000000		
			39	12.50000	0.000000		

【模】	越阳	kjfu	ilkfjkenvnalit	tikjgnva;'9898573002jfkfma	aknf	₩☆早	T m
		AMJ	40	12 50000		4/1/ 3	
			40 41	12.50000 15.00000	0.000000		
			42	15.00000	0.000000		
			43	15.00000	0.000000		
			44	17.50000	0.000000		
			45	17.50000	0.000000		
			46	20.00000	0.000000		
			47	22.50000	0.000000		
			48	25.00000	0.000000		
			49	30.00000	0.000000		
			50	0.000000	-0.1843960E-01		
			51	0.000000	0.1781220E-04		
			52	0.000000	-0.1058067E-03		
			53	0.000000	0.2615433E-04		
			54	0.000000	-0.7788836E-04		
			55	0.000000	0.3430176E-04		
_ 1:1: T	#/ / / TIII	\wedge		0.000000	0.3206422E-04	八人口	
【模】	整理	公众号	Mat	$C_{0.000000}$	-0.3971018E-04	公众号	L m
			58	0.000000	0.3777025E-04		
			59	0.000000	-0.1372634E-04		
			60	0.000000	0.2837318E-05		
			61	0.000000	0.1717786E-04		
			62	0.000000	0.1081278E-04		
			63	0.000000	0.5421584E-02		
	MODEL: Title : sets: !y 为厚	度, x 为宽度的一半 ece/114/:y, x,		量 k 用于保证宽度	为 5 的倍数;		
	!s 为几	函数; t]max = s; .何面积; m(Piece(i): x(i)*	kv (i))-0	5*v(1)*v(1))*4·			
		9一级厚度和长度; 10;	, (1/) 0.				

vnm...,fkjas fisir;jlglg[wkldkjs fiuejslfsdndnjdjkgjkd

```
!各级厚度和宽度的一半符合勾股定理;
! 当级数为1时, c=0;
x(1)^2+(0.5*y(1))^2 = 325^2;
! 当级数为 2^{\sim}4 时, c=6;
(@sum(Piece(i)|i #LE# 2
                                                          (x(2))^2
                          : (y(i)) -0.5*y(1) + 6)^2
325^2;
(@sum(Piece(i) | i #LE# 3
                          : (y(i)) -0.5*y(1) + 6)^2
                                                          (x(3))^2
325^2;
(@sum(Piece(i)|i #LE# 4
                          : (y(i)) -0.5*y(1) + 6)^2
                                                          (x(4))^2
325^2;
!当级数为 5~14 时,c=12;
                          : (y(i)) -0.5*y(1)+12)^2
                                                          (x(5))^2
(@sum(Piece(i) | i #LE# 5
325^2;
(@sum(Piece(i) | i #LE# 6
                          : (y(i)) -0.5*y(1)+12)^2
                                                          (x(6))^2
325^2:
(@sum(Piece(i) | i #LE# 7 : (y(i)))-0.5*y(1)+12)^2
                                                          (X(7))
(@sum(Piece(i)|i #LE# 8
                                                          (x(8))^2
                          : (y(i)) -0.5*y(1)+12)^2
```

325²:

```
325^2;
(@sum(Piece(i)|i \#LE\# 9 : (y(i)))-0.5*y(1)+12)^2
                                                              (x(9))^2
                                                         +
325^2;
(@sum(Piece(i) | i \#LE\# 10 : (y(i))) -0.5*y(1)+12)^2
                                                              (x(10))^2 =
325^2;
                                                              (x(11))^2 =
(@sum(Piece(i) | i \#LE\# 11 : (y(i))) -0.5*y(1)+12)^2
325^2;
(@sum(Piece(i) | i \#LE\# 12 : (y(i))) -0.5*y(1)+12)^2
                                                              (x(12))^2 =
                                                         +
325^2:
(@sum(Piece(i) | i \#LE\# 13 : (y(i))) -0.5*y(1)+12)^2
                                                              (x(13))^2 =
                                                         +
325^2;
(@sum(Piece(i) | i \#LE\# 14 : (y(i))) -0.5*y(1)+12)^2
                                                              (x(14))^2 =
                                                        +
325^2;
```

!油道将硅钢片级数分为三部分 $1,2^{\sim}4,5^{\sim}14,s1$ 为级数 1 的面积, s2 为级数 $2^{\sim}4$ 的面积, s3 为级数 $5^{\sim}14$ 的面积;

```
s1 = y(1)*x(1)*2;
s2 = @sum(Piece(i) | i\#GE\#2 \#AND\# i\#LE\#4 : x(i)*y(i))*2;
s3 = @sum(Piece(i) | i\#GE\#5 \#AND\# i\#LE\#14:x(i)*y(i))*2;
!各部分面积之比小于 1.25:
s1/s2 \le 1.25;
s2/s1 \le 1.25;
s2/s3 \le 1.25;
```

```
s3/s2 \le 1.25;
s3/s1 \le 1.25;
s1/s3 \le 1.25;
```

!总几何面积小于外接圆面积;

 $s \le 3.14159265*(650/2)^2$;

!随着级数的增加硅钢片宽度依次减小;

@for(Piece(i) | i#GT#1:x(i-1)>x(i));

!约束硅钢片宽度必须为5的倍数;

@for(Piece(i):x(i)*2=5*k(i));

@for(Piece(i):@Gin(k(i)));

END

8.7 模型 3.1 的运行结果

Local optimal solution found at iteration: Objective value:

Model Title: 3.1

Variable	Value	Reduced Cost
S	306913.4	0.000000
S 1	72690.03	0.000000
S2	58221.24	0.000000
S3	58890.42	0.000000
Y(1)	113.5782	0.000000
Y(2)	34.80702	0.000000
Y(3)	33.24253	0.000000
Y(4)	29.84350	0.000000
Y(5)	21.46674	0.000000
Y(6)	19.51672	0.000000
Y(7)	19.42194	0.000000
Y(8)	18.81641	0.000000
Y(9)	15.95241	0.000000
Y(10)	15.13643	0.000000
Y(11)	13.86801	0.000000
Y(12)	12.15530	0.000000
Y(13)	9.983512	0.000000
Y(14)	8.131214	0.000000
X(1)	320.0000	0.000000
X(2)	310.0000	0.000000
X(3)	297.5000	0.000000

	## TIT	/ kj	fuilkfjkenvn	alitikjgnva;'9898573002jfkfma	aknf	/\	
模】	整理	公众亏		thor致模】	验理	一公众号	L ma
			X(4)	282.5000	0.000000		
			X(5)	265.0000	0.000000		
			X(6)	250.0000	0.000000		
			X(7)	232.5000	0.000000		
			X(8)	212.5000	0.000000		
			X(9)	192.5000	0.000000		
			X(10)	170.0000	0.000000		
			X(11)	145.0000	0.000000		
			X(12)	117.5000	0.000000		
			X(13)	87.50000	0.000000		
			X(14)	50.00000	0.000000		
			K(1)	128.0000	-4.402954		
			K(2)	124.0000	48.97440		
			K(3)	119.0000	8.643642		
			K(4)	113.0000	9.237711		
			K(5)	106.0000	-3.398487		
模】	整理	公众号	K(6) K(7)	th 93.00000	15.50809 10.54750	公众号	I ma
			K(8)	85.00000	-15.33233		
			K(9)	77.00000	5.881529		
			K(10)	68.00000	2.069373		
			K(11)	58.00000	-1.587015		
			K(12)	47.00000	-5.222487		
			K(13)	35.00000	4.997315		
			K(14)	20.00000	-3.462229		
				Slack or Surplus	Dual Price		
			OBJECT		1.000000		
			2	-0.4363892E-04	1.000000		
			3	310.0000	0.000000		
			4	87.57817	0.000000		
			5	0.000000	0.3521799		
			6	0.000000	0.2561577		
			7	0.000000	0.2292900		
			8	0.000000	0.2178213		
			9	-0.3075982E-04	0.1594482		
			10	0.000000	0.1685402		
			11	0.000000	0.1761435		
			12	0.000000	0.1626651		
			13	0.000000	0.1718500		
			14	0.000000	0.1805101		
			15	0.000000	0.1890939		
			16	0.000000	0.1980093		
			17	0.000000	0.2396169		

模】	整理	kjfu	ıilkfjkenvnali	tikjgnva;'9898573002jfkfma			T mo f
【行天』	正注	ムメウ	Liliat	1101 英人1天 1	验理	公从亏	L mat
			18	0.000000	0.3113995		
			19	0.000000	0.000000		
			20	0.000000	0.000000		
			21	-0.2181962E-04	0.000000		
			22	0.1486090E-02	0.000000		
			23	0.4490478	0.000000		
			24	0.2613632	0.000000		
			25	0.2385062	0.000000		
			26	0.4398418	0.000000		
			27	0.1567320E-01	0.000000		
			28	24917.37	0.000000		
			29	10.00000	0.000000		
			30	12.50000	0.000000		
			31	15.00000	0.000000		
			32	17.50000	0.000000		
			33	15.00000	0.000000		
模】	整理	公众号	34 35at	0.00000	0.000000 0.000000	公众号	C mat
			36	20.00000	0.000000		
			37	22.50000	0.000000		
			38	25.00000	0.000000		
			39	27.50000	0.000000		
			40	30.00000	0.000000		
			41	37.50000	0.000000		
			42	0.000000	0.8805908		
			43	0.000000	-9.794881		
			44	0.000000	-1.728728		
			45	0.000000	-1.847542		
			46	0.000000	0.6796975		
			47	0.000000	-3.101618		
			48	0.000000	-2.109499		
			49	0.000000	3.066466		
			50	0.000000	-1.176306		
			51	0.000000	-0.4138745		
			52	0.000000	0.3174031		
			53	0.000000	1.044497		
			54	0.000000	-0.9994630		

8.8 模型 3.2 的程序

MODEL:

Title 3.2;

55

0.000000

0.6924458

```
sets:
!y 为厚度, x 为宽度的一半, 临时变量 k 用于保证宽度为 5 的倍数;
   Piece/1..14/:y, x, k;
   d1/1..13/:r1;
endsets
!目标函数;
[Object]min=@abs(dis);
!d 为直径增加的量,;
dis=(@sum(d1(i):r1(i)) + r2)/27 - 650/2;
r2=((650+d)/2)*14;
s=(@sum(Piece(i): x(i)*y(i))-0.5*x(1)*y(1))*4;
! 当级数为 1 时, c=0;
```

! 当级数为 $2^{\sim}4$ 时, c=6;

$r1(2) = (x(3)^2 + (@sum(Piece(i) | i #LE#2 : y(i)) - 0.5*y(1) + 6)^2)^0.5$ r1(3) = (x(4)^2/+ (@sum(Piece(i) | i#LE#3 | zy(i)) = 0.5*y(1)+6)^2)^0.5;

 $r1(1) = (x(2)^2 + (@sum(Piece(i)|i#LE#1 : y(i))-0.5*y(1))^2)^0.5;$

```
r1(4) = (x(5)^2 + (@sum(Piece(i) | i \#LE \# 4 : y(i)) - 0.5 * y(1) + 6)^2)^0.5;
!当级数为 5~14 时,c=12;
                                             :y(i))-0.5*y(1)+12)^2)^0.5;
r1(5) = (x(6)^2 + (@sum(Piece(i) | i#LE#5)
r1(6) = (x(7)^2 + (@sum(Piece(i) | i#LE#6)
                                             :y(i))-0.5*y(1)+12)^2)^0.5;
r1(7) = (x(8)^2 + (@sum(Piece(i) | i#LE#7))
                                             :y(i))-0.5*y(1)+12)^2)^0.5;
r1(8) = (x(9)^2 + (@sum(Piece(i) | i#LE#8)
                                             :y(i))-0.5*y(1)+12)^2)^0.5;
                                             :y(i))-0.5*y(1)+12)^2)^0.5;
r1(9) = (x(10)^2 + (@sum(Piece(i) | i#LE#9))
                                             :y(i))-0.5*y(1)+12)^2)^0.5;
r1(10) = (x(11)^2 + (@sum(Piece(i) | i#LE#10))
r1(11) = (x(12)^2 + (@sum(Piece(i) | i#LE#11 : y(i)) - 0.5*y(1) + 12)^2)^0.5;
r1(12) = (x(13)^2 + (@sum(Piece(i) | i#LE#12 : y(i)) - 0.5*y(1) + 12)^2)^0.5;
r1(13) = (x(14)^2 + (@sum(Piece(i) | i\#LE\#13 : y(i)) - 0.5*y(1) + 12)^2)^0.5
```

```
x(1) > = 10;
y(1) > = 26;
!各级厚度和宽度的一半符合勾股定理:
! 当级数为 1 时, c=0:
x(1)^2+(0.5*y(1))^2 = ((650+d)/2)^2;
!当级数为 2~4 时,c=6;
(@sum(Piece(i) | i #LE# 2 : (y(i))) -0.5*y(1)+6)^2
                                                       (x(2))^2
((650+d)/2)^2;
(@sum(Piece(i)|i \#LE\# 3 : (y(i)))-0.5*y(1)+6)^2
                                                       (x(3))^2
                                                  +
((650+d)/2)^2:
```

```
kjfuilkfjkenvnalitikjgnva;'9898573002jfkfmaknf
                                                             (x(4))^2
(@sum(Piece(i)|i \#LE\# 4 : (y(i))) -0.5*y(1)+6)^2
((650+d)/2)^2;
! 当级数为 5~14 时,c=12;
(@sum(Piece(i)|i \#LE\# 5 : (y(i)))-0.5*y(1)+12)^2
                                                             (x(5))^2
((650+d)/2)^2;
(@sum(Piece(i)|i \#LE\# 6 : (y(i)))-0.5*y(1)+12)^2
                                                             (x(6))^2
                                                       +
((650+d)/2)^2:
(@sum(Piece(i) | i \#LE\# 7 : (y(i))) -0.5*y(1)+12)^2
                                                             (x(7))^2
                                                       +
((650+d)/2)^2;
                                                             (x(8))^2
(@sum(Piece(i) | i \#LE\# 8 : (y(i))) -0.5*y(1)+12)^2
                                                       +
((650+d)/2)^2;
                                                             (x(9))^2
(@sum(Piece(i) | i \#LE\# 9 : (y(i))) - 0.5*y(1) + 12)^2
((650+d)/2)^2;
                                                             (x(10))^2 =
(@sum(Piece(i) | i #LE# 10:(y(i)))-0.5*y(1)+12)^2
((650+d)/2)^2;
                                                             (x(11))^2 =
(@sum(Piece(i) | i \#LE\# 11:(y(i)))-0.5*y(1)+12)^2
                                                       +
((650+d)/2)^2:
(@sum(Piece(i)/i/#LE# 12!(g(i))) 0.5*y(1)+12)^2
((650+d)/2)^2;
(@sum(Piece(i) | i #LE# 13:(y(i)))-0.5*y(1)+12)^2
                                                             (x(13))^2 =
                                                       +
((650+d)/2)^2;
(@sum(Piece(i) | i #LE# 14:(y(i)))-0.5*y(1)+12)^2
                                                             (x(14))^2 =
                                                       +
((650+d)/2)^2;
!油道将硅钢片级数分为三部分 1, 2^{\sim}4, 5^{\sim}14, s1 为级数 1 的面积, s2 为级数 2^{\sim}4
的面积, s3 为级数 5^{\sim}14 的面积;
s1 = y(1)*x(1)*2;
s2 = @sum(Piece(i) | i\#GE\#2 \#AND\# i\#LE\#4 : x(i)*y(i))*2;
s3 = @sum(Piece(i) | i\#GE\#5 \#AND\# i\#LE\#14:x(i)*y(i))*2;
!各部分面积之比小于 1.25;
s1/s2 \le 1.25;
s2/s1 \le 1.25;
s2/s3 \le 1.25;
s3/s2 \le 1.25;
s3/s1 \le 1.25;
s1/s3 \le 1.25;
!总几何面积小于外接圆面积;
s \le 3.14159265 * ((650+d)/2)^2;
```

s > = 306939.5;

 $d \le 2$;

```
!随着级数的增加硅钢片宽度依次减小;
```

@for(Piece(i) | i#GT#1:x(i-1)>x(i));

!约束硅钢片宽度必须为5的倍数;

@for(Piece(i):x(i)*2=5*k(i));

@for(Piece(i):@Gin(k(i)));

@free(dis);

END

8.9 模型 3.2 的运行结果

Local optimal solution found at iteration: 15023

Objective value:

4.463426

Model Title: 3.2 【mathor数模】

Variable	Value	Reduced Cost
DIS	-4.463426	0.000000
R2	4564.000	0.000000
D	2.000000	0.000000
S	306945.0	0.000000
S 1	61458.04	0.000000
S2	62813.30	0.000000
S3	59930.17	0.000000
Y(1)	95.28379	0.000000
Y(2)	47.23427	0.000000
Y(3)	32.42706	0.000000
Y(4)	24.97185	0.000000
Y(5)	14.66556	0.000000
Y(6)	17.72151	0.000000
Y(7)	18.39831	0.000000
Y(8)	15.97201	0.000000
Y(9)	16.19162	0.000000
Y(10)	14.02483	0.000000
Y(11)	13.79835	0.000000
Y(12)	13.08421	0.000000
Y(13)	11.90143	0.000000
Y(14)	11.04545	0.000000
X(1)	322.5000	0.000000
X(2)	310.0000	0.000000
X(3)	297.5000	0.000000
X(4)	285.0000	0.000000

- 4	击行 工工	kjfuilkf	jkenvnalitikjgnva;'98	398573002jfkfma	aknf		Z mo
模】	整理	公从专【	mathor	奴悮』	楚理	公从亏	L ma
		X	5) 272.	5000	0.000000		
		X	6) 260.0	0000	0.000000		
		X	7) 245.0	0000	0.000000		
		X	8) 230.0	0000	0.000000		
		X	9) 212.:	5000	0.000000		
		X()	10) 195.0	0000	0.000000		
		X()	11) 175.0	0000	0.000000		
		X(:	12) 152.:	5000	0.000000		
		X(:	13) 127.:	5000	0.000000		
		X(:	14) 97.50	0000	0.000000		
		K(1) 129.0	0000	0.9520840E-01	1	
		K(2) 124.0	0000	-0.1450222E-03	}	
		K(3) 119.0	0000	-0.1385026E-03	•	
		K(4) 114.0	0000	-0.1320586E-03	•	
		K(5) 109.0	0000	-0.1256651E-03	}	
		K(6) 104.0	0000	0.3541867E-03	3	
- +## T	违行 TCD	K(7) 98.00	0000	-0.1640342E-03		7
【模】	整理		8) at n G _{2.00}	00001天	0.2120316E-03	。公众号	L ma
		K(9) 85.00	0000	-0.1939160E-03	}	
		K()	10) 78.00	0000	0.7788230E-04	4	
		K(:	11) 70.00	0000	-0.8137616E-05	i e	
		K()	12) 61.00	0000	-0.8346105E-04	.	
		K()	13) 51.00	0000	-0.4708703E-04		
		K(:	14) 39.00	0000	-0.2861625E-01		
		R1(1) 313.6	5395	0.000000		
		R1(2) 314.1	1373	0.000000		
		R1(3) 314.6	5343	0.000000		
		R1(4) 315.1	1305	0.000000		
		R1(5) 315.6	5260	0.000000		
		R1(6) 314.1	1672	0.000000		
		R1(7) 314.8	3825	0.000000		
		R1(8) 313.8	3985	0.000000		
		R1(9) 314.8	3726	0.000000		
		R1(:	10) 314.4	1455	0.000000		
		R1(:	1) 314.4	1952	0.000000		
		R1(:	2) 315.0)809	0.000000		
		R1(315.4	1774	0.000000		
				Surplus	Dual Price		
		OB		463426	-1.000000		
				00000	1.000000		
				00000	0.3703704E-0)1	
				5496E-02	0.000000		
			5 0.00	00000	0.3703704E-0)1	

- 七	击行 工田	kjfu	ıilkfjkenvnal	itikjgnva;'9898573002jfkfma	ıknf		Z mod
人作吴 』	整理	公从写	Imai	「川〇「女人代子」		公从与	(ma
			6	0.000000	0.3703704E-01		
			7	-0.1240608E-06	0.3703704E-01		
			8	-0.4327461E-07	0.3703704E-01		
			9	-0.1162022E-05	0.3703704E-01		
			10	0.000000	0.3703704E-01		
			11	0.000000	0.3703704E-01		
			12	0.000000	0.3703704E-01		
			13	0.000000	0.3703704E-01		
			14	0.000000	0.3703704E-01		
			15	0.000000	0.3703704E-01		
			16	0.000000	0.3703704E-01		
			17	0.000000	0.3703704E-01		
			18	312.5000	0.000000		
			19	69.28379	0.000000		
			20	0.000000	0.5904396E-04		
			21	0.000000	0.5895038E-04		
模】	整理	公众号	²² 23 1	-0.9518000E-04 -0.1161243E-07	0.5885727E-04 0.5876459E-04	公众号	[mat
			24	-0.1082414E-02	0.5867236E-04		
			25	-0.2663000E-08	0.5894480E-04		
			26	-0.1979060E-08	0.5881088E-04		
			27	-0.6170012E-08	0.5899525E-04		
			28	-0.5456968E-08	0.5881273E-04		
			29	-0.3637979E-08	0.5889261E-04		
			30	-0.3274181E-08	0.5888330E-04		
			31	-0.6330083E-08	0.5877384E-04		
			32	-0.4089088E-08	0.5869998E-04		
			33	-0.6577466E-08	0.000000		
			34	0.000000	0.000000		
			35	-0.4267951E-04	0.000000		
			36	-0.6500669E-03	0.000000		
			37	0.2715760	0.000000		
			38	0.2279482	0.000000		
			39	0.2018918	0.000000		
			40	0.2959000	0.000000		
			41	0.2748604	0.000000		
			42	0.2245058	0.000000		
			43	26930.91	0.000000		
			44	5.494803	0.000000		
			45	0.000000	0.5086825		
			46	12.50000	0.000000		
			47	12.50000	0.000000		
			48	12.50000	0.000000		
			49	12.50000	0.000000		

枚模】	整理	kjfu	ilkfjkenvnal	itikjgnva;'9898573002jfkfm	aknf	公众号	C mat
			50	12.50000	0.000000		
			51	15.00000	0.000000		
			52	15.00000	0.000000		
			53	17.50000	0.000000		
			54	17.50000	0.000000		
			55	20.00000	0.000000		
			56	22.50000	0.000000		
			57	25.00000	0.000000		
			58	30.00000	0.000000		
			59	0.000000	-0.1904168E-01		
			60	0.000000	0.2900443E-04		
			61	0.000000	0.2770052E-04		
			62	0.000000	0.2641173E-04		
			63	0.000000	0.2513302E-04		
			64	0.000000	-0.7083735E-04		
			65	0.000000	0.3280684E-04		
	整理	公众号	66 67 1	0.000000	-0.4240632E-04 0.3878320E-04	公众号	C mat
			68	0.000000	-0.1557646E-04		_
			69	0.000000	0.1627523E-05		
			70	0.000000	0.1669221E-04		
			71	0.000000	0.9417406E-05		
			72	0.000000	0.5723249E-02		