

IBM Data Science Capstone Project

Case Study: SpaceX

CONDUCTED BY:

AMAR HAIQAL BIN CHE HUSSIN

EXECUTIVE SUMMARY

INTRODUCTION

METHODOLOGY

RESULTS

CONCLUSIONS

TABLE OF CONTENTS

01 Executive Summary

EXECUTIVE SUMMARY

This presentation outlines the methodology of this Capstone project which includes:

EDA

Dashboard via Dash

Classification Predictive Analysis

EXECUTIVE SUMMARY

The results manifested that:

- higher payload will increase the chance of a successful landing
- The highest success rate is seen from the orbit ES-L1, SSO, HEO and GEO
- KSC-LC39A Has the highest Success Rate
- Decision Tree is the best model for classification in this project

INTRODUCTION

PROJECT BACKGROUND

- This project aims to predict if the first stage of the SpaceX Falcon 9 rocket will land successfully.
- This will give us insights on the cost for launching a Falcon 9 and supports
 that Falcon 9 is cheaper to operate than its competitions

VS.

CompanyZ

USD165,000,000

INTRODUCTION

PROBLEM STATEMENT

- The parameters and variables of the rocket may affect the success rate of the landing
- There is a need to visualize and predict the best condition to maximize the rocket success landing rate

03 Methodology

1. Data Collection & Wrangling

Data Collection (API)

1. Data Collection & Wrangling

Data Collection (Wikipedia)

2. Interactive Visual Analytics & EDA

Data Wrangling

3.Interactive Visual Analytics

4.Predictive Analysis

04 Results

It is deduced that from this chart, as **more** successful landing as the number of flight increased

A direct intuition suggested that higher payload will increase the chance of a successful landing

However, it is hard to obtain more insights from this graph as the **trend is not visible** enough

Success Rate vs. Orbit

The highest success rate is seen from the orbit **ES-L1**, **SSO**, **HEO** and **GEO**

Orbit vs. Flight Number

It is observed that the **LEO orbit** shows a trend of **high frequency of successful rate at increasing flight number**

However, the **rest of it shows no visible relationship**

ES-L1,SSO, HEO and GEO has the highest success rate, thus supports the previous statement and bar charts

The highest success rate is seen from the orbit **ES-L1**, **SSO**, **HEO** and **GEO**

However, higher payload seems to affect the success rate of **GTO orbit**

The highest success rate is seen from the orbit **ES-L1**, **SSO**, **HEO** and **GEO**

All Launch Sites

All Launch Sites

Launch Outcomes

Launch Site and its Proximites

Launch Site and its Proximites

Pie Chart for Launch Site

Total Success Launches By all sites

Highest Launch Success

Total Success Launches for site KSC LC-39A

Payload vs. Launch Outcome

From 0 – 4000kg, all has Success Rate

Payload vs. Launch Outcome

Predictive Analysis

Accuracy (Train and Test)

Logistic Regression

84.642%

83.33%

KNN

84.82%

83.34%

SVM

84.821%

83.34%

Decision Tree

90.35%

77.78%

4.Predictive Analysis

Confusion Matrix

Logistic Regression **KNN**

SVM

Decision Tree

Conclusion

- higher payload will increase the chance of a successful landing
- The highest success rate is seen from the orbit ES-L1, SSO, HEO and GEO
- KSC-LC39A Has the highest Success Rate
- Site in Florida has the highest success rate
- Decision Tree is the best model for classification in this project

GitHub Sources

- 1. Data Collection API
- 2. Data Collection with Web Scraping API
- 3. <u>EDA</u>
- 4. EDA with SQL
- 5. EDA with Visualization
- 6. <u>Dashboard</u>
- 7. Folium Lab
- 8. Predictive Analysis