Exercici 22. Demostreu que, si $n \geq 3$, el centre de S_n només conté la identitat.

Solució.

- \bullet S_n és un grup simètric d'ordre n!
- Definim el centre d'un grup com el conjunt d'elements que commuten amb tots els elements del grup. És a dir,

$$Z(G) := \{ \rho \in G \mid \forall \sigma \in G, \ \rho \sigma = \sigma \rho \}.$$

Donada $\rho \neq Id$, existeixen $i,j, i \neq j$ tals que $\rho(i) = j$; i com que $n \geq 3$, podem agafar $k \neq i, j$. Sigui $\sigma = (j, k)$ la transposició que intercanvia j i k. Llavors,

 $\sigma(\rho(\sigma^{-1}(i)) = \sigma(\rho(i)) = \sigma(j) = k$, mentre que $\rho(i) = j$; per tant, $\sigma\rho\sigma^{-1} \neq \rho$, o sigui $\sigma\rho \neq \rho\sigma$. Així, ρ no pertany al centre (perquè no commuta amb σ).

El que veiem, doncs, és que per a tota permutació de S_n diferent de la identitat podem trobar una transposició amb la qual no commuta. En conseqüència, per a $n \geq 3$, el centre només podrà ser la permutació identitat.