Introduction to Databases

Databases

2018-2019

Jesús Correas – jcorreas@ucm.es

Departamento de Sistemas Informáticos y Computación Universidad Complutense de Madrid

(Based on slides from Mercedes García Merayo and Luis Garmendia)

Bibliography

- Basic Bibliography:
 - R. Elmasri, S.B. Navathe. Fundamentals of Database Systems (6th ed). Addison-Wesley, 2010. (in Spanish: Fundamentos de Sistemas de Bases de Datos (5a ed). Addison-Wesley, 2007).
 Chapters 1 and 2.
- Additional Bibliography:
 - A. Silberschatz , H. F. Korth, S. Sudarshan. Database Systems
 Concepts (5th ed) McGraw-Hill, 2006. (in Spanish: Fundamentos de Bases de Datos (5a ed) McGraw-Hill, 2006).
 Chapter 1.

Contents

- Introduction. Information storage and representation.
- Definition of Database. Example.
- Database Management System.
 - Characteristics.
 - Properties.
 - Operation languages.
- Actors in a DBMS.
- Architecture of a DBMS.
- Database Design.

Information storage and representation

- All computer systems need to represent information, and to store and manipulate data.
- We have used **files** in the subjects on programming:
 - ► Provide persistency,
 - Allow different modes to access the data: sequential (text files),
 direct (binary files).
- We have also seen several kinds of data structures.
- However, in all cases it is defined in terms of the physical structure of the storage devices (disks, memory).
- The structure of the information required by a sw application can be extremely complex.

We have to use techniques to **represent and store information** independently of the **device** and the **storage mode**.

An Example of Database

- University database: System for managing university information.
- Elements (*entities*): information regarding students, subjects, departments, professors, grades, requirements, ...
- Information items (attributes): properties that the elements of the system hold: student age, # credits of a subject, subject classification (core, elective), itinerary, classroom, ...
- Relations between elements:
 - Students enrol in several subjects.
 - ▶ Each subject is proposed by a department.
 - A subject must be taught by at least one educator.
 - ► Each educator works in one department (and only one).
 - Subjects may have enrolment requirements.
 - ► Each subject (or group) has a maximum number of students that can enrol to it.

•

An Example of Database

- **Operations** that must be available in the university database:
 - Query the list of students enrolled to a given subject.
 - Query the academic record of a student.
 - ▶ Compute the average grade of a subject in a given course.
 - Cancel the enrolment of a student to a subject.
 - Create a new subject in the database.
 - ▶ Query the students that have passed all compulsory subjects and have an average grade above 8 out of 10 (e.g., for request a grant).
 - Query the students that have been taught by the same educator in two or more subjects.
 - **...**

Information Storage and Representation

The database system must provide a solution to the following issues:

- Avoid inconsistencies produced by duplicate information: redundancy.
- Allow the representation of complex relations among the data in the database.
- Allow several ways of efficient access to data:
 - ► Complex queries, multiple *views* of the data.
- Homogeneous and uniform format of the data.
- Mechanisms for ensuring data integrity.
- Allow complex operations as if they were atomic.
- Centralized data storage: allow concurrent access.
- Security in data accesses (prevent from unauthorized access).
- safety and recovery from system failures.

Definition of Database

Database systems provide an integral solution to all these issues.

Database (DB)

Is a collection of related data.

- A DB represents some specific aspect of the real world: the universe of discourse (or "miniworld").
- It is a logically coherent collection of data with some inherent meaning.
- It is built with a specific purpose, an intended group of users, and a set of applications for this data.
- We will focus on a specific type of DB: relational databases.

Database System

- A Database Management System (DBMS) is a general-purpose set of programs that allow us to build and maintain a database.
- General purpose: the DBMS is the same for any database.

$$Database System = DB + DBMS$$

A Database System provides a series of characteristics:

Database System. Characteristics

1. A DB System is self-descriptive:

- ► The definition of a DB is stored in a special DB named **catalog** that contains the structure of de DB.
- This information is called meta-data.

2. Insulation between programs and data:

- ► The structure of the DB is stored separately from the access programs: we can modify the DB structure without requiring the modification of (all) programs that access to its data.
- 3. A DB System provides an abstract view of data:
 - A conceptual representation of data.
 - ▶ Hides the storage and implementation details of operations on the data.

Database System. Characteristics

- 4. A DB System supports multiple views of the data:
 - ▶ A **subset** of the data (e.g., for a professor, show the data of just the students enrolled to his subject).
 - ▶ A partial view of the data (e.g., hiding confidential information).
 - Virtual data, derived from other data: consolidated information, summarized data, etc. that is not actually stored in the DB.
- 5. Sharing of data among multiple concurrent users:
 - ► The data is stored in a single storage that can be accessed by multiple users and applications.
 - Use of transactions to control concurrent accesses.
- Security against unauthorized acceses and safety against system failures.
- 7. Efficiency.

Concurrency. **ACID** Properties

- Relational DBMS can group multiple operations that modify data in a single transaction.
 - Example: in the University Database, when a student enrols in a subject, the system must:
 - ★ Increment the number of students enrolled in the group.
 - ★ Register the subject in the student's academic record.
 - **★** Update the accounting system to allow the payment.
- A DBMS must provide the ACID properties on transactions:
 - ▶ **Atomicity:** Inside a transaction, either all operations are performed completely, or none of them is performed.
 - Consistency: A query must be consistent with the state of the database when the query starts executing.
 - Isolation: A unfinished transaction is invisible to the rest of the world (other transactions).
 - Durability: When a transaction is finished with a commit instruction, it is impossible that the database discards it (unless it is undone by another transaction).

Languages operating on a DBMS

- Several languages are used for defining and operating a DB:
 - ▶ DDL: Data **Definition** Language.
 - ★ Used to define the structure (schema) of the DB.
 - ★ Constraints: domain, referential integrity, assertions.
 - ★ Logic and physical access mechanisms (storage).
 - ⋆ DB object creation and removal (tables, indices, etc.)
 - DML: Data Manipulation Language.
 - * Complex queries:

```
SELECT dpt.name, subj.name FROM dpt, subj
WHERE dpt.id = subj.idDpt AND subj.credits > 9
```

- ★ Data modification: INSERT, DELETE, UPDATE.
- DCL: Data Control Language.
 - ★ Access control to data in a DB.
 - ★ User definitions, roles, user groups.
- The standard language for **relational DB** is **SQL** (*Structured Query Language*), that contains the three languages.

DBMS Structure

Actors participating in a DB system

- End users use the DB by means of applications with preconfigured DML instructions.
- Advanced users use a (more sophisticated) query language or SQL.
- Application developers create applications that use DML.
- DB designers build the conceptual and logic structure of the DB.
- DB administrators:
 - ▶ Define and modify the DB schema.
 - Define the storage, access and physical organization of the DB.
 - Create user roles and assign access permissions to data.
 - ▶ Maintenance: security, safety, *backup & recovery*, efficiency (indices, resource consumption, deadlocks, optimization, etc.).

DBMS Operating Structure

- DBMS use a client-server architecture:
 - ► The clients are application programs, web browsers (invoking server-side associated programs), etc. that make queries to the DB.
 - ▶ The server processes requests from clients.
 - ▶ DBMS administration tools are also clients that connect to the DBMS.

DBMS Operating Structure

Query processor.

- Translate SQL sentences into DB internal operations.
- DML sentences can be extremely complex: execution plans must be generated.
- ▶ The most efficient plan (w.r.t. DB statisics) is chosen.

• Transaction manager and concurrency control.

- Supports multiple simultaneous accesses.
- Guarantees DB consistency (ACID properties).

Storage manager.

 Provides the interface with the low-level DB structures: file system manager, intermediate memory (in Oracle, datafiles, System Global Area, redo log, etc.)

Database design

- A database is an essential component of the information system of an organization.
- DB (and I.S.) design is performed in several steps:
- 1. Requirements Collection and Analysis.
- 2. Conceptual Design.
 - A conceptual data model is built using the requirements.
 - ▶ High-level description: physical storage details are not specified.
 - We will use the Entity-Relationship Model (ER).
- 3. Logical Design.
 - Translates the conceptual schema into a logical data model.
 - ▶ **Normalization** techniques are used to detect and solve potential issues.
 - The result is a data model that can be implemented in a specific DBMS.
 - ▶ We will use the **Relational Model (MR).**
- 4. Physical Design.
 - ▶ Refinement for performance optimization.
 - ► File organization, indices, de-normalization, etc.

Outline of the rest of the course

In the next classes we will study different aspects of databases in the following order:

- 2. Conceptual Design: The Entity-Relationship Model.
- 3. Logical Design: The Relational Database Model. Relational Algebra.
- 4. SQL: Structured Query Language.
- 5. Introduction to PL/SQL and Triggers.
- 6. Introduction to Transactions and Concurrency Control.
- 7. Advanced Concepts.