Interpretable Machine Learning with R

Dean Allsopp

SatRday Newcastle

April 6, 2019

Why "Interpretable" Machine Learning?

In the beginning...

Linear Models

Let there be light...

- Coefficients
- Residual plots
- QQ plots
- Leverage plots

Kaggle Era DS...

It's all about the error score

Darkness falls...

- Complex Features
- Complex Models
- Hyperparameter Search

But what is it actually doing to predict this result?

Just hypothetically important?

What constitutes the best medical treatment for recovery?

See Rich Caruana

What? — Data (Features/Instances)

How? – does the Model work?

Why? – do we get this Prediction?

How well do you understand the data?

EDA

Data Explorer

Univariate Distribution

Histogram

Correlation Analysis

chas_1 -	-0.06	-0.04	0.06	0.09	0.09	0.09	-0.1	-0.01	-0.04	-0.12	0.05	-0.05	0.18	-4	1
chas_0+	0.06	0.04	-0.06	-0.09	-0.09	-0.09	0.1	0.01	0.04	0.12	-0.05	0.05	-0.18	1	-1
medv-	-0.39	0.36	-0.48	-0.43	0.7	-0.38	0.25	-0.38	-0.47	-0.51	0.33	-0.74	1	-0.18	0.18
istat -	0.46	-0.41	0.6	0.69	-0.61	0.6	-0.5	0.49	0.54	0.37	-0.37	. 1	-0.74	0.05	-0.05
b-	-0.39	0.18	-0.36	-0.38	0.13	-0.27	0.29	-0.44	-0.44	-0.18	4,	-0.37	0.33	-0.05	0.05
ptratio =	0.29	-0.39	0.38	0.19	-0.36	0.26	-0.23	0.46	0.46	- 5	-0.18	0.37	-0.51	0.12	-0.12
tax-	0.58	-0.31	0.72	0.67	-0.29	0.51	-0.53	0.91	1)	0.46	-0.44	0.54	-0.47	0.04	-0.04
rad -	0.63	-0.31	0.6	0.61	-0.21	0.46	-0.49	3	0.91	0.46	-0.44	0.49	-0.38	0.01	-0.01
dis -	-0.38	0.66	-0.71	-0.77	0.21	-0.75	1	-0.49	-0.53	-0.23	0.29	-0.5	0.25	0.1	-0.1
age -	0.35	-0.57	0.64	0.73	-0.24	ार्	-0.75	0.46	0.51	0.26	-0.27	0.6	-0.38	-0.09	0.09
rm-	-0.22	0.31	-0.39	-0.3	1	-0.24	0.21	-0.21	-0.29	-0.36	0.13	-0.61	0.7	-0.09	0.09
nox-	0.42	-0.52	0.76	1)	-0.3	0.73	-0.77	0.61	0.67	0.19	-0.38	0.59	-0.43	-0.09	0.09
indus -	0.41	-0.53	1	0.76	-0.39	0.64	-0.71	0.6	0.72	0.38	-0.36	0.6	-0.48	-0.06	0.06
zn =	-0.2	Ť	-0.53	-0.52	0.31	-0.57	0.66	-0.31	-0.31	-0.39	0.18	-0.41	0.36	0.04	-0.04
crim -	7	-0.2	0.41	0.42	-0.22	0.35	-0.38	0.63	0.58	0.29	-0.39	0.46	-0.39	0.06	-0.06
	шио	Ę	enpui	пок	E	e e de	- sp	Features	tax	ptistio -	Ф	lstat *	- Ареш	chas 0	ald a

reatures

Kind of Model Interpretation?

Agnostic

Exploit Internal Logic

Versus

System Identification Approach

Scope of Model Interpretation?

Global

Local

Model

Instance

#1: Global

What do you want to understand about the features and the model?

Variable Importance Plot

DALEX/VIP (agnostic)

randomForestExplainer

Why highlight VIP?

Permutation

random Forest Explainer

What about Interactions?

IML

Partial Dependence Plot

DALEX/IML/plotmo

Accumulated Local Effects Plot

DALEX/IML

What If?

Ceteris Paribus Plot

DALEX

#2: Local

Local Interpretable Model-Agnostic Explanations

lime

Generate data points based on training data

Compute complex model predictions from the generated data to find the 'most useful features'

Fit a local linear model for the 'most useful features' and use the feature coefficients as reason codes

Shapley Values (Coalition Attribution)

IML/ShapleyR/Shapper/ ExplainPrediction

Actual prediction: 25.75 Average prediction: 22.56

BreakDown (Feature Contributions)

iBreakDown*

Gotchas?

Stability?
Fidelity?
Scope?

Foundations

Interpretable Data Performant Model "Variable Importances"... Linearity Assumptions... Collinearity Computation Time

Conclusion

Compare different ML Models

Compare different Interpretation Approaches

Consider Local and Global

Combine Multiple Perspectives

Clear

Opaque

More transparent models?

Rule Ensembles

pre

Recommendations:

```
Data - [Data Explorer]
Local - Shapley Values [IML]
Global - Variable Importance [DALEX]
Plots - ALE, Ceteris Paribus [DALEX]
Plots - ALE, PDP, ICE [IML]
```

Thanks for Listening!

dean_allsopp@hotmail.com