

(ia) 3521 iois www.elitecampinas.com.br

PROFESSOR DANILO

ATIVIDADE AVALIATIVA 9° ANO - ROBÓTICA - 23/02/2024

NOME:	NOTA:	
-------	-------	--

ATIVIDADE 2 DE 4

ATIVIDADE DE LABORATÓRIO

Caso você tenha faltado, veja a apresentação de slides utilizada pelo professor acessando o link clicando no QR-Code abaixo (no caso de estar com o arquivo aberto em seu celular) ou leia o código (caso tenha a folha impressa).

Figura 1: Clique ou leia o código acima

3 pontos

1. Observe o kit que usamos em sala de aula abaixo **GND** GND 5\/ 9V B6 B7 B8 B4 B5

Note que adicionamos nomes para os bornes. De acordo com o experimento feito em sala de aula, quais os valores das tensões obtidas nas medidas a seguir? Obs.: para quem faltou, use as medidas apresentadas no primeiro vídeo que consta na apresentação (link/QR-Code acima).

a) Tensão entre um dos bornes GND e o borne 5V: (1 ponto)

b) Tensão entre um dos bornes GND e o borne 9V: (1 ponto)

c) Tensão entre um dos bornes GND e os bornes a seguir: (1 po	onto)
B2:	
B3:	
B4:	
B5:	
B6:	
B7:	
DO.	

Em linguagem de programação C, que usaremos ao longo deste ano, faremos uso da chamada lógica booleana. Veja os símbolos que usaremos para proposições lógicas em C:

Lógicos	
&&	And (e)
II	Or (ou)
!	Not (não)

Assim, sejam duas proposições A e B, ponde cada uma delas ser verdadeira (V) ou falsa (F). Vamos construir uma tabela onde colocaremos à direita o resultado de uma operação lógica. Para facilitar, vejamos em exemplos.

OPERADOR "E"

Α	В	A && B
V	V	V
V	F	F
F	V	F
F	F	F

Observe a terceira coluna: só temos A && B igual à V se tanto A quanto B for V, isto é, "A e B é verdadeiro se e somente se A for verdadeiro e B for verdadeiro". Basta que um seja falso para que A && B seja falso.

Note que o operador && funciona como uma multiplicação. Pense na tabela acima como se F fosse igual à 0 (zero) e V diferente de 0.

Assim:

Α	В	A && B
1	1	1 * 1 = 1
1	0	1 * 0 = 0
0	1	0 * 1 = 0
0	0	0 * 0 = 0

OPERADOR "OU"

Α	В	A && B
V	V	V
V	F	V
F	V	V
F	F	F

Observe a terceira coluna: temos A | B igual à F se tanto A quanto B for F, isto é, "A e B é falso se e somente se A for falso e B for falso". Basta que um seja verdadeiro para que A || B seja verdadeiro.

Note que o operador || funciona como uma soma. Pense na tabela acima como se F fosse igual à 0 (zero) e V diferente de 0. Ou seja, 1 + 1 = 2 que é diferente de zero, portanto é verdadeiro e igual à 1. Isso mesmo, qualquer número diferente de zero, na lógica que estamos usando aqui (chamada álgebra Booleana) é 1!

Assim:

Α	В	A B
1	1	1 + 1 = 2 =1
1	0	1 + 0 = 1
0	1	0 + 1 = 1
0	0	0 * 0 = 0

OPERADOR "NOT". OU DE NEGAÇÃO

O	,
Α	!A
V	F
F	V

Esse é o mais simples: basta inverter a proposição.

www.**eritecampinas**.com.br

PROFESSOR DANILO	ATIVIDADE AVALIATIV	/A 9° ANO – ROBÓTICA – 23/02	2/2024
EXPRESSÃO LÓGICA			1 ponto
Imagine que você tenha uma expressão lógica do tipo $!((V \&\& V) F).$ Ela será equivalente à V ou F e podemos resolver essa expressão como se fosse uma operação matemática. Resolvendo a expressão acima, temos: $!((V \&\& V) F) = !((V) F) = !(V F) = !(F) = !(F) = V.$	5. ((((F V) && F) && V) && V) =	1 ponto
Ou seja, a expressão corresponde à Verdadeiro.			
Seguindo este exemplo, resolva as expressões lógicas a seguir:			
2. ((((V && V) && V) && F) =	3. ((((V && !(F V)) && V) && F) =	1 ponto
3. (((V F) F) F) =	7. ((V && F) && (F && !(V F))) =	1 ponto
4. (!((V && V) V) && V) =	8. ((*	V && F) && !(F && (V F))) =	1 ponto