

Yeshwantrao Chavan College of Engineering

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)
Hingna Road, Wanadongri, Nagpur - 441 110
NAAC A++

Ph.: 07104-237919, 234623, 329249, 329250 Fax: 07104-232376, Website: www.ycce.edu

Department of Computer Technology

Vision of the Department

To be a well-known centre for pursuing computer education through innovative pedagogy, value-based education and industry collaboration.

Mission of the Department

To establish learning ambience for ushering in computer engineering professionals in core and multidisciplinary area by developing Problem-solving skills through emerging technologies.

Session 2025-2026

Vision: Dream of where you want.	Mission: Means to achieve Vision

Program Educational Objectives of the program (PEO): (broad statements that describe the professional and career accomplishments)

PEO1	Preparation	P: Preparation	Pep-CL abbreviation
PEO2	Core Competence	E: Environment	pronounce as Pep-si-lL
		(Learning Environment)	easy to recall
PEO3	Breadth	P: Professionalism	
PEO4	Professionalism	C: Core Competence	
PEO5	Learning	L: Breadth (Learning in	
	Environment	diverse areas)	

Program Outcomes (PO): (statements that describe what a student should be able to do and know by the end of a program)

Keywords of POs:

Engineering knowledge, Problem analysis, Design/development of solutions, Conduct Investigations of Complex Problems, Engineering Tool Usage, The Engineer and The World, Ethics, Individual and Collaborative Team work, Communication, Project Management and Finance, Life-Long Learning

PSO Keywords: Cutting edge technologies, Research

"I am an engineer, and I know how to apply engineering knowledge to investigate, analyse and design solutions to complex problems using tools for entire world following all ethics in a collaborative way with proper management skills throughout my life." *to contribute to the development of cutting-edge technologies and Research*.

Integrity: I will adhere to the Laboratory Code of Conduct and ethics in its entirety.

Name and Signature of Student and Date

(Signature and Date in Handwritten)

Mithilesh Lohakare

30/08/25

Yeshwantrao Chavan College of Engineering

Ph.: 07104-237919, 234623, 329249, 329250 Fax: 07104-232376, Website: www.ycce.edu

Department of Computer Technology

Vision of the Department

To be a well-known centre for pursuing computer education through innovative pedagogy, value-based education and industry collaboration.

Mission of the Department

To establish learning ambience for ushering in computer engineering professionals in core and multidisciplinary area by developing Problem-solving skills through emerging technologies.

Session	2025-26 (ODD)	Course Name	Computer vision Lab
Semester	5	Course Code	CT
Roll No	57	Name of Student	Mithilesh Lohakare

Practical Number	2				
Course Outcome	Upon successful completion of the course the students will be able to				
	1. Apply image enhancement and smoothing techniques to				
	improve image quality for further analysis.				
	2. Extract meaningful features from images using descriptors such as HOG and SIFT.				
	3. Implement and evaluate modern object detection methods				
	including YOLO and R-CNN.				
	4. Analyze and develop solutions for motion estimation, object				
	recognition, and facial expression recognition				
	using classical and learning-based methods.				
Aim	Write a program to apply convolution process on an input image for				
	image smoothing				
Problem Definition	Use Matlab and Google colab for doing image soothing using				
	Guassian filter and Average filter.				
Theory	Filters for image smoothing.				
(100 words)	The averaging filter is a simple smoothing technique where each				
	pixel value is replaced by the mean of its neighbors. For example, a				
	3×3 averaging filter (ones(3,3)/9) assigns equal weight (1/9) to all				
	surrounding pixels, resulting in uniform blurring and noise				
	reduction, though edges may become less sharp. In contrast, the				
	Gaussian filter uses a weighted average based on the Gaussian				
	distribution (fspecial('gaussian',[5 5],1.5)), where central pixels are				
	given higher importance than distant ones. This produces a				
	smoother and more natural blur, effectively reducing noise while				
	preserving edges better than the averaging filter.				
Procedure and	Algorithm:				
Execution	• Start				
	 Read the input image. 				
(100 Words)	 Convert it to grayscale and double format. 				
	 Define a 3×3 averaging filter and apply convolution. 				
	• Define a 5×5 Gaussian filter with $\sigma = 1.5$ and apply				
	convolution.				
	 Normalize both filtered results for display. 				
	 Display Original, Averaging Filter, and Gaussian Filter outputs side by side. 				
	End				
	▼ EIIU				

Yeshwantrao Chavan College of Engineering

(An Autonomous Institution affiliated to Rashtrasant Tukadoji Maharaj Nagpur University)
Hingna Road, Wanadongri, Nagpur - 441 110
NAAC A++

Ph.: 07104-237919, 234623, 329249, 329250 Fax: 07104-232376, Website: www.ycce.edu Code: clear: clc; close all; original image rgb = imread('pp.jpg'); original image gray = rgb2gray(original image rgb); original image double = double(original image gray); averaging filter = ones(3,3)/9; smoothed image avg = conv2(original image double, averaging filter, 'same'); gaussian filter = fspecial('gaussian', [5 5], 8); smoothed image gaussian = conv2(original image double, gaussian filter, 'same'); smoothed image avg norm = mat2gray(smoothed image avg); smoothed image gaussian norm = mat2gray(smoothed image gaussian);

figure;

subplot(1,3,1), imshow(original_image_gray), title('Original Grayscale');

subplot(1,3,2), imshow(smoothed_image_avg_norm),
title('Averaging Filter');

subplot(1,3,3), imshow(smoothed_image_gaussian_norm),
title('Gaussian Filter');

Output:

Output Analysis	The results clearly show the effect of both filters on the image. The
	Averaging filter produces a uniformly blurred image where all
	pixels in the neighborhood contribute equally, leading to loss of
	sharpness but still retaining basic structures. On the other hand, the
	Gaussian filter provides a smoother and more natural blur because
	it assigns higher weights to central pixels and lower weights to those
	farther away.
Link of student	https://github.com/mithileshlohakare/CV_Lab
Github profile where	
lab assignment has	

Yeshwantrao Chavan College of Engineering

Ph.: 07104-237919, 234623, 329249, 329250 Fax: 07104-232376, Website: www.ycce.edu

Department of Computer Technology

Vision of the Department

To be a well-known centre for pursuing computer education through innovative pedagogy, value-based education and industry collaboration.

Mission of the Department

To establish learning ambience for ushering in computer engineering professionals in core and multidisciplinary area by developing Problem-solving skills through emerging technologies.

been uploaded					
Conclusion	Both filters reduce noise, but their effects differ. The Averaging filter is simple and effective for basic smoothing, though it reduces image details. The Gaussian filter provides smoother results with less distortion, making it more suitable for practical image processing applications.				
Plag Report	Sentence wise results				
(Similarity index < 12%)	Sources	Similarity	0.004	100	
1270)	Priyadarshini J L College of Engineering PJLCE Nagpur (2) Compare text	2%	90% Unique Content	70% Plagiarized content	
	Nagar Yuwak Shikshan Sanstha's Yeshwantrao Chavan College of Engin eering ② Compare text https://www.ycce.edu/wp-content/uploads/2023/01/principal-di		✓ COMPLETED 100%		
	138 ML Pract1 PDF Python (Programming Language) - Scribd Compare text https://www.scribd.com/document/86/7363264/138-ML-pract1	4%			
Date	30/08/25				