REG. NO.: 20BCD7160

Title of the experiment :- Hall effect

Objective:

To determine the Hall cofficient of the given semiconductor crystal (Germanium)

Equipment List:

- · Electromagnet and power supply.
- · Semiconductor crystal
- · Current Source and Ammeter
- · Voltmeter
- . Connecting wires

Formula:-

The Hall-coefficient is given by,

$$R_{H} = \frac{V_{H}.t}{IB} \quad (v.m/A.tesla)$$

Here VH: Hall voltage developed

I: Eurrent passing through the sample

B: Applied magnetic field

t: Thickness of the semiconductor crystal

VH = VHB- VHO (VHB-in presence of magnetic fields

Schematics of Hall effect set up for electrons

VHO- zero field potential)

Calculations:-

Table 1:- += 0.5mm, V+0 = 191.3 mV, I= & mA

		= 0,1917		
magnetizing	-Han voltage		magnetic field (B)	RH
current (A)	V _{HB}	VH = VHB-VHO	Tesla	
1.00	128.1	VH=128.1-19.191 = 127.909	80×10 ⁻⁴	1598
1.75	89.7	VH = 89.509	144 × 104	621
2.50	47.4	VH= 47.4-0.191	211×104	223
3.25	21.8	VH= 21.8-0.191 = 21.609	260×104	830
4.00	2.8	VH = 2.8-0.191 = 2.609	298×104	8:72 8755 ×102

Mean RH = 656.144

$$\frac{-1}{DR_{H}} = \frac{V_{H}.t}{IB} = \frac{127.909 \times 0.5 \times 10^{8}}{5 \times 10^{3} \times 80 \times 10^{4}} = \frac{63.9545 \times 10^{4}}{5 \times 80}$$

$$= 0.1598 \times 10^{4}$$

Table 2: Applied magnetic field B = 80×104 Tesla

Input current	Hall voltage		RH
to the sample			
(ma)	VHB	NH = NHB - NHD	
5	135.0	VH=135-0.191 = 134.809	1685
14	91.0	$V_{H} = 91 - 0.191$ = 90.209	1135
3	65.0	$V_{H} = 65 - 0.191$ $= 64.809$	810
2	29.0	$V_{H} = 29 - 0.191$ = 28.809	36
		·	

$$\frac{1}{1.8} = \frac{V_{H} \cdot t}{1.8} = \frac{134.809 \times 0.5 \times 10^{3}}{5 \times 10^{3} \times 80 \times 10^{4}} = \frac{67.4045}{400 \times 10^{4}} = \frac{67.404}{400 \times 10^{4}}$$

$$\frac{3}{18} = \frac{135}{18} = \frac{64.809 \times 0.5 \times 10^{3}}{5 \times 10^{3} \times 80 \times 10^{4}} = \frac{22.4045}{400 \times 10^{4}} = \frac{20.0810 \times 10^{4}}{100 \times 10^{4}} = \frac{10.0810 \times 10^{4}}{100 \times 10^{4}$$

$$\frac{0}{18} = \frac{14.4045}{5.809 \times 0.5 \times 10^{2}} = \frac{14.4045}{400 \times 10^{4}} = \frac{14.4045}{400 \times 10^{4}} = 0.0360 \times 10^{4}$$

$$= 0.0360 \times 10^{4}$$

$$= 36.$$

Precautions:-

Do not exceed the electromagnet current above 4.00 A.

Result:

- 1. The Hall coefficient of the given semiconductor crystal was found to be 656-144
- 2. The Hall coefficient of the given semiconductor crystal was found to be 916.5