講義スライドのイメージ

第1回~第12回のスライド(全400枚)の中から数枚を抜粋

MI解析OJTの目的

目的

- ・ご自身の研究テーマでMI解析を実践し、スキルを身に付けて頂く
- 各部署でMIを教えられるエバンジェリストとなって頂く

本OJTの目標到達レベル

- ・ MIに必要な知識を理解すること -解析フロー、統計、機械学習等の知識
- MIを用いて解析を行うこと
 - ツールを活用(本質的な内容にフォーカス)
 - 機械学習モデルを作り、実験系の傾向の把握や、 目標物性を得る為のパラメータ予測を行う

解析OJTの進め方

OJTは4つの要素で構成されています

【必須】

定例会(講義)

【場所】

オンライン(Teams会議)

【日時】

毎週X曜13:30~15:00 (X/X~X/X)

【内容】

- ・解析ツール使い方
- ・解析の基礎知識
- ・現状報告
- ・所連絡

【必須】

宿題

【〆切】

毎週火曜12:00 (X/X~X/X)

【内容】

- ・課題の整理
- ・データの整理、加工処理
- ・解析ツールで解析
- ・報告資料作成
- ・アンケート回答

【基本的に必須】

検証実験

【実施期間(目安】

追加実験:X/X~X/X 検証実験:X/X~X/X

【内容】

- ・不足データ補充
- ・モデル精度検証

※追加実験は、モデルの精度に納得できない場合に行う。

【任意】

相談会、質問チャネル

【場所】

XX会議室 &

オンライン(Teams会議)

【日時】

毎週月曜15:00~17:00 (X/X~X/X)

【内容】

- ・宿題の相談
- ・講義内容の質問
- ・方針の相談

• MI解析OJT: スケジュール (予定)

	第1回	第2回	第3回	第4回	第5回	第6回	第7回	第8回	第9回	第10回	第11回	第12回
日程	X/X	X/X	X/X	X/X	X/X	X/X						
ガイダンス・解析ツール紹介												
解析設計書の作成												
データセットの作成												
データ理解												
データ準備												
モデル構築・評価												
実験パラメータ探索												
モデルの見直し							<u>></u>	(
解析報告書作成												
テーマ毎の報告・議論										>>	«	
全体まとめ												*
									Y			

基本的な知識を伝える期間

モデル改良の為の試行錯誤の期間

• スライド右上の印の色が、理解して欲しいスライドの優先度です

赤、黄、緑、青の順でスライドを理解して頂くと、分かり易いです。

- 3か月のOJTでお伝えする内容は膨大なので(合計400スライド)、優先度を付けました。
- ツールの使い方、解析のキホン、解析の実践的なコツ、詳細な理論… の順で理解して頂きたいと考えています。

• MI解析ツールの簡単な紹介

• Step1では、データを入力し、データの基礎分析が行えます

1変数の分布(基本統計量、ヒストグラム)

Distinct	18	Minimum	2.1	
Distinct (%)	85.7%	Maximum	3.11	
Missing	0	Zeros	0	
Missing (%)	0.0%	Zeros (%)	0.0%	
Infinite	0	Negative	0	no no no no
Infinite (%)	0.0%	Negative (%)	0.0%	grass thickness
Mean	2.655238095	Memory size	296.0 B	g

2変	数のこ	プロッ	'	数布图	図)	
0.0225				•		
0.0200				•		•
0.0175 B						
0.0150						
0.0125			•	•	•	
0.0100		•			•	
0.0075	• •		•	•		
0.0050	•	•	•			•
0.0025		•		•		
	2.2	2.4	2.6 grass_thickness	2.8	3.0	

• MI解析ツールの簡単な紹介

• Step2では、入力データから機械学習モデルが作成できます

- MI解析ツールの簡単な紹介
- Step3では、機械学習モデルから推定値を算出できます

説明変数 (因子)	のとりうる範囲を設定
変数の値範囲を設定 個別設定	
パラメータ: grass_thickness	▼ 下限値: 0 上限値: 30
変数の固定値を設定	
パラメータ: spinning_speed	✔ 固定値: 500

目標範囲を	満たす為の、	説明変数(因子))の推定値を	算出(複数))
grass_thickness	additive_mount	spinning_temperature	spinning_speed	winding_length	nonconformity_rate
2.91	122.85	0.00	0.00	0.00	0.00
2.57	121.00	0.00	613.07	868.24	0.00
2.36	124.50	1060.38	0.00	2040.73	0.00
2.57	120.82	0.00	603.96	980.49	0.00

• データ理解の目的とそれに必要な作業: 相関関係

相関関係を確認する

説明変数同士の相関を確認する

説明変数間で相関が強すぎると**多重共線性***が出る (相関が強い説明変数同士では微小変化に過敏に 反応、予測が不安定になる)。

説明変数に多重共線性があると、その説明変数の係数値 (目的変数に及ぼす影響力)が定まらない!

第3回資料

- ・【参考スライド】多重共線性の見つけ方 その②
- 複数回モデルを作り、それぞれのSHAP値(or FI値)を見比べて、毎回変動している説明変数を見つける

1回目のモデルのSHAP値

モデルを構築する毎に、x1とx2の値が変動している

この不安定さは、多重共線性が原因と考えられる どちらか1つを削除するか、統合するかして、 再度モデル構築すると良い

多重共線性にある変数の係数値はトレードオフの傾向にある

- x1の係数が大きな値になった時、
- x 2 は逆に小さくなる。
- なので全体(目的変数の予測値)としては、 大きくズレる事はない。

- 【参考スライド】多重共線性があると発生する弊害
- 多重共線性がある説明変数のペアは、係数「b」の値が不安定になる。

機械学習モデル(重回帰モデル)

$$y = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_3 + e$$

1回目	2回目	3回目	4回目	5回目
0.36	1.02	0.06	20.6	10.5

x1の係数b1が定まらない! (b2も同様)

係数bの値が不安定になる理由

$$y = b_0 + b_1 x_1 + b_2 x_2 + e$$

$$b_1$$
の分散 = $\frac{\sigma^2}{\sum x_1^2 (1 - r_{12})}$

x₁と x₂ の相関

分散が大きいと **b1**の取りうる 範囲も広がる

b₁の分散(多重共線性が無い場合とある場合)

- 【参考スライド】過学習回避の方法その②
- 過学習を抑制する手法の1例 Lasso回帰

俯瞰図

第4回資料

- 【参考スライド】過学習回避の方法その②
- Lasso回帰

min
$$E(\mathbf{w}) + \frac{\alpha}{2} \sum_{i=0}^{M} |w_i|^q$$
 誤差項 正則化項

係数値の組合せ(w0,w1)に対する誤差Eの領域 係数値の組合せ(w0,w1)に対する誤差Eの値 175 150 Ε 100 75 俯瞰図 50 25 $^{-4}$ $_{-3}$ $_{-2}$ $_{-1}$ $_{0}$ $_{1}$ $_{2}$ $_{3}$ $_{4}$ ΜJ $^{-1}$

- 【参考スライド】過学習回避の方法その②
- Lassoの他にもRidgeがある

min
$$E(\mathbf{w}) + \frac{\alpha}{2} \sum_{i=0}^{M} |w_i|^q$$
 誤差項 正則化項

min
$$E(\mathbf{w}) + \frac{\alpha}{2} \sum_{i=0}^{M} (w_i)^2$$
 誤差項 正則化項

• MI解析OJTの成果 (中澤担当分、一部抜粋)

目的	解析パターン	結果
割れ難く痕が付きにくい、折り曲げ用フィルムの製造条件を検討	組成最適化+ 製造プロセス検討	新知見を獲得、検討継続
環境にやさしい素材を使い(非強化)、長期耐熱に優れ たプラスチック材料の開発	組成最適化	チャンピオンデータを獲得。検討継続
某装置の性能予測を行うモデルの作成。	製造プロセス検討 (サロゲートモデ ル)	予期していた知見を獲得、課題解決の見 通しが立った。部分的に制度が低い為、 データ蓄積を継続。