# COMP4418, 2017 – Assignment 3

#### Z5045582

## Yunhe Zhang

## 1. Social Choice and Game Theory

```
(a)
the domination set of each alternative
a {b, d, f, g}
b {c, d, e, g}
c {a, d, e, f, g}
d {e, f, g}
e {a, f, g}
f {b, g}
g {}
```

#### • the uncovered set:

Alternative in two steps:

```
a {b, c, d, e, f, g} ✓
b {a, c, d, e, f, g} ✓
c {a, b, d, e, f, g} ✓
d {a, b, e, f, g} ✗
e {a, b, d, f, g} ✗
f {b, c, d, e, g} ✗
g {}
```

The uncovered set is {a, b, c}

• the top cycle:

The top cycle is {a, b, c, d, e, f}

• the set of Copeland winners:

the set of Copeland winners is {c}

• the set of Banks winners:

maximal acyclic subgraph length is 5  $b \Rightarrow c \Rightarrow d \Rightarrow e \Rightarrow g$   $c \Rightarrow a \Rightarrow d \Rightarrow f \Rightarrow g$  the set of Banks winners is  $\{b, c\}$ 

#### • the set of Condorcet winners:

no alternative is satisfied, so the set of Condorcet winners is {}

### **(b)**

Pure Nash equilibria

(A, E)

(B, D)

Mixed Nash equilibria

Player 1 plays A with p, plays B with 1 - p

$$4p + 6(1 - p) = 5p + 4(1 - p)$$

$$4p + 6 - 6p = 5p + 4 - 4p$$

$$3p = 2$$

$$p = 2 / 3$$

Player 2 plays D with q, plays E with 1 - q

$$2q + 8(1 - q) = 6q + 4(1 - q)$$

$$2q + 8 - 8q = 6q + 4 - 4q$$

$$8q = 4$$

$$q = 1 / 2$$

Mixed Nash equilibria

$$(A, B) = (2/3, 1/3)$$

$$(D, E) = (1/2, 1/2)$$

# 2. Decision Making

# (a)

- 1. Blackjack: (D) POMDP
- 2. Candy Crush: (B) MDP
- 3. Chess: (E) None/Other
- 4. Minesweeper: (D) POMDP
- 5. Snakes and Ladders: (A) MP
- 6. Texas Hold 'em Poker: (E) None/Other

(b)  

$$\pi(S1) = Stay$$
  
 $\pi(S2) = Stay$   
 $\pi(S3) = Stay \text{ or Leave}$ 

If the discount factor is very high, the value of state is hard to converge, so consider the value of state with state transition, I determine the S1 stay is positive, leave is negative or 0; S2 stay is 0, leave is negative; S3 both are negative.

(c)  

$$\pi(S1) = Stay$$
  
 $\pi(S2) = Leave$   
 $\pi(S3) = Stay \text{ or Leave}$ 

Since the discount factor is very low, the future part could be ignored, thus just chose the action whose associated reward is higher.

(d)

|    | V0(s) | V0(s, S) | V0(s, L) | V1(s) | V1(s, S) | V1(s, L) | V2(s) | V2(s, S) | V2(s, L) | V3(s) |
|----|-------|----------|----------|-------|----------|----------|-------|----------|----------|-------|
| s1 | 0     | 1        | 0        | 1     | 1.6      | 3        | 3     | 2.8      | 2.82     | 2.82  |
| s2 | 0     | 0        | 5        | 5     | 3        | 4.7      | 4.7   | 7.82     | 4.94     | 7.82  |
| s3 | 0     | -2       | -2       | -2    | -3.2     | -3.2     | -3.2  | -3.92    | -3.92    | -3.92 |

(e)



(f)

Since agent uses  $\pi$  this could see as Markov process problem

when 
$$i = 0$$
  
 $v_0(s1) = v_0(s2) = v_0(s3) = 0$   
when  $i > 0$   
 $v_i(s1)$   
 $= u(s1, L) + \delta P(s1, L, s2) v_i(s2)$   
 $= \delta v_i(s2)$   
 $v_i(s2)$   
 $= u(s2, L) + \delta (P(s2, L, s1) * v_{i-1}(s1) + P(s2, L, s3) * v_{i-1}(s3))$   
 $= 5 + \delta (0.5 * v_i(s1) + 0.5 * v_i(s3))$   
 $v_i(s3)$   
 $= u(s3, S) + \delta P(s3, S, s3) v_i(s3)$   
 $= -2 + \delta v_i(s3)$   
According to  
 $(1) v_i(s1) = \delta v_i(s2)$   
 $(2) v_i(s2) = 5 + \delta (0.5 * v_i(s1) + 0.5 * v_i(s3))$   
 $(3) v_i(s3) = -2 + \delta v_i(s3)$ 

Get:

$$(1) v_i(s1) = \frac{\delta(10-12\delta)}{(1-\delta)*(2-\delta^2)}$$

$$(2) v_i(s2) = \frac{10-12\delta}{(1-\delta)*(2-\delta^2)}$$

$$(3) v_i(s3) = \frac{-2}{1-\delta}$$

When  $\delta$  is very high like  $\delta = 0.999$ 

Vi of all 3 states will be negative. This could part support my intuition. To fully support my intuition, need to consider more actions.

Consider about other possible policy like

 $\pi_2(S1) = Stay$ ,  $\pi_2(S2) = Stay$ ,  $\pi_2(S3) = Stay$  or Leave (since two action result in same value)

Then

$$\begin{aligned} v_i(s1) &= \frac{1}{1-\delta} & \text{which is positive if } \delta \text{ is very high} \\ v_i(s2) &= 0 & \text{always } 0 \\ v_i(s3) &= \frac{-2}{1-\delta} & \text{which is negative is } \delta \text{ is very high} \end{aligned}$$

$$\begin{split} \pi_3(S1) = & \text{Stay}, \ \pi_3(S2) = \text{Leave}, \ \pi_2(S3) = \text{Stay or Leave} \\ v_i(s1) = & \frac{1}{1-\delta} & \text{which is positive if } \delta \text{ is very high} \\ v_i(s2) = & \frac{10-11\delta}{2-2\delta} & \text{which is negative is } \delta \text{ is very high} \\ v_i(s3) = & \frac{-2}{1-\delta} & \text{which is negative is } \delta \text{ is very high} \end{split}$$

$$\begin{split} \pi_4(S1) &= \text{Leave}, \, \pi_4(S2) = \text{Stay}, \, \pi_4(S3) = \text{Stay or Leave} \\ v_i(s1) &= 0 & \text{always } 0 \\ v_i(s2) &= 0 & \text{always } 0 \\ v_i(s3) &= \frac{-2}{1-\delta} & \text{which is negative is } \delta \text{ is very high} \end{split}$$

Thus  $\pi_2(S1) = Stay$ ,  $\pi_2(S2) = Stay$ ,  $\pi_2(S3) = Stay$  or Leave is the best. After considering more actions, my intuition in 2b is supported.

When  $\delta$  is very low like  $\delta = 0.001$ 

Vi of all 3 states will be close to their reward of action in  $\pi$ 

 $v_i(s1)$  close to 0

 $v_i(s2)$  close to 5

 $v_i(s3)$  close to -2

It supports my intuition of question 2c since vi is close to action associated reward, so the higher associated reward action will be the optimal policy.