FIZIKA

KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

A dolgozatokat az útmutató utasításai szerint, jól követhetően kell javítani és értékelni. A javítást piros tollal, a megszokott jelöléseket alkalmazva kell végezni.

ELSŐ RÉSZ

A feleletválasztós kérdésekben csak az útmutatóban közölt helyes válaszra lehet megadni a 2 pontot. A pontszámot (0 vagy 2) a feladat mellett található szürke téglalapba, illetve a feladatlap végén található összesítő táblázatba is be kell írni.

MÁSODIK RÉSZ

Az útmutató által meghatározott részpontszámok nem bonthatók, hacsak ez nincs külön jelezve.

Az itt közölt pontszámot akkor lehet megadni, ha a dőlt betűs sorban leírt tevékenység, művelet lényegét tekintve helyesen és a vizsgázó által leírtak alapján egyértelműen megtörtént. Ha a leírt tevékenység több lépésre bontható, akkor a várható megoldás egyes sorai mellett szerepelnek az egyes részpontszámok. A "várható megoldás" leírása nem feltétlenül teljes, célja annak megadása, hogy a vizsgázótól milyen mélységű, terjedelmű, részletezettségű, jellegű stb. megoldást várunk. Az ez után következő, zárójelben szereplő megjegyzések adnak további eligazítást az esetleges hibák, hiányok, eltérések figyelembevételéhez.

A megadott gondolatmenet(ek)től eltérő helyes megoldások is értékelhetők. Az ehhez szükséges arányok megállapításához a dőlt betűs sorok adnak eligazítást, pl. a teljes pontszám hányadrésze adható értelmezésre, összefüggések felírására, számításra stb.

Ha a vizsgázó összevon lépéseket, paraméteresen számol, és ezért "kihagyja" az útmutató által közölt, de a feladatban nem kérdezett részeredményeket, az ezekért járó pontszám – ha egyébként a gondolatmenet helyes – megadható. A részeredményekre adható pontszámok közlése azt a célt szolgálja, hogy a nem teljes megoldásokat könnyebben lehessen értékelni.

A gondolatmenet helyességét nem érintő hibákért (pl. számolási hiba, elírás, átváltási hiba) csak egyszer kell pontot levonni.

Ha a vizsgázó több megoldással vagy többször próbálkozik, és nem teszi egyértelművé, hogy melyiket tekinti véglegesnek, akkor az utolsót (más jelzés hiányában a lap alján lévőt) kell értékelni. Ha a megoldásban két különböző gondolatmenet elemei keverednek, akkor csak az egyikhez tartozó elemeket lehet figyelembe venni: azt, amelyik a vizsgázó számára előnyösebb.

A számítások közben a mértékegységek hiányát – ha egyébként nem okoz hibát – nem kell hibának tekinteni, de a kérdezett eredmények csak mértékegységgel együtt fogadhatók el.

A grafikonok, ábrák, jelölések akkor tekinthetők helyesnek, ha egyértelműek (tehát egyértelmű, hogy mit ábrázol, szerepelnek a szükséges jelölések, a nem megszokott jelölések magyarázata stb.). Grafikonok esetében azonban a mértékegységek hiányát a tengelyeken nem kell hibának venni, ha egyértelmű (pl. táblázatban megadott, azonos mértékegységű mennyiségeket kell ábrázolni).

Ha a 3. feladat esetében a vizsgázó nem jelöli választását, akkor a vizsgaleírásnak megfelelően kell eljárni.

Értékelés után a lapok alján található összesítő táblázatokba a megfelelő pontszámokat be kell írni.

írásbeli vizsga 1611 2 / 8 2016. október 27.

ELSŐ RÉSZ

- 1. C
- 2. B
- 3. C
- 4. A
- 5. B
- 6. A
- 7. B
- 8. A
- 9. C
- 10. A
- 11. A
- 12. A
- 13. C
- 14. B
- 15. A
- 16. C
- 17. C
- 18. B
- 19. B
- 20. B

Helyes válaszonként 2 pont.

Összesen 40 pont.

MÁSODIK RÉSZ

1. feladat

Adatok:
$$L = 1.5 \text{ m}, M = 2 \text{ kg}, g = 9.8 \frac{\text{m}}{\text{s}^2}$$

A <u>jobb oldali</u> (tehát az m tömegű testtel terhelt oldalon lévő) alátámasztási pontra vonatkozó forgatónyomaték-egyensúly helyes felírása:

6 pont (bontható)

A forgatónyomaték-egyenletnek bármely helyes felírása elfogadható, pl.

$$M \cdot g \cdot \frac{L}{6} = m \cdot g \cdot \frac{L}{3}$$
 vagy $\frac{2M}{3} \cdot g \cdot \frac{L}{3} = m \cdot g \cdot \frac{L}{3} + \frac{M}{3} \cdot g \cdot \frac{L}{6}$

Két pontot ér, ha a vizsgázó világosan jelöli (rajzon vagy írásban), hogy a jobb oldali alátámasztásra, mint forgáspontra kell az egyenletet felírni, a mérlegegyenlet egy-egy helyesen felírt oldala 2–2 pontot ér.

Az egyenlet rendezése és a keresett tömeg meghatározása:

$$2 + 1 pont$$

$$m = \frac{M}{2}$$
, azaz $m = 1$ kg.

A két alátámasztási pontra ható erő meghatározása:

$$3 + 3$$
 pont

A bal oldali alátámasztási pontra nem hat erő (3 pont).

A jobb oldalira $(M + m) \cdot g = 29,4$ N erő hat (3 pont).

Összesen 15 pont.

2. feladat

Adatok:
$$E_n = -\frac{2.2}{n^2}$$
 aJ, $h = 6.63 \cdot 10^{-34}$ J·s, $c = 3 \cdot 10^8 \frac{\text{m}}{\text{s}}$

A hidrogénatom által kibocsátott legrövidebb hullámhosszúságú foton energiájának meghatározása:

9 pont (bontható)

A legkisebb hullámhosszhoz a legnagyobb energia tartozik, ezért azt a két szomszédos állapotot kell megkeresni, amelyek között maximális az energiakülönbség (2 pont).

Ezek az n=2, illetve az n=1 kvantumszámhoz tartozó elektronállapotok (2 pont). A foton energiája így

$$\varepsilon = \frac{-2.2 \text{aJ}}{2^2} - \frac{-2.2 \text{aJ}}{1^2} = 1,65 \text{aJ} \text{ (képlet + számítás, 3 + 2 pont)}$$

A foton hullámhosszának meghatározása és a hullámhossztartomány megnevezése:

6 pont (bontható)

$$\lambda = \frac{\mathbf{h} \cdot \mathbf{c}}{c} \approx 1.2 \cdot 10^{-7} \,\mathrm{m} = 120 \,\mathrm{nm} \,(\text{k\'eplet} + \text{sz\'am\'it\'as}, 2 + 2 \,\mathrm{pont})$$

Ez az UV- vagy röntgen tartományba esik (2 pont). (Mindkét válasz elfogadható.)

Összesen 15 pont.

3/A feladat

a) Az egyes időpontokhoz tartozó útértékek meghatározása:

5 pont (bontható)

A függőleges és vízszintes koordináták leolvasása után a megtett utak meghatározhatók:

$$t = 0.055 \text{ s} \rightarrow s \sim 2.5 \text{ cm}$$

$$t = 0.11 \text{ s} \rightarrow s \sim 5.3 \text{ cm}$$

$$t = 0.165 \text{ s} \rightarrow s \sim 9.2 \text{ cm}$$

$$t = 0.22 \text{ s} \rightarrow s \sim 13.8 \text{ cm}$$

$$t = 0.275 \text{ s} \rightarrow s \sim 19.1 \text{ cm}$$

$$t = 0.33 \text{ s} \rightarrow s \sim 24.4 \text{ cm}$$

(Öt vagy hat útérték helyes meghatározása 5 pontot ér, négy útérték 4 pontot, három útérték 3 pontot, két útérték 2 pontot, egy helyes útérték pedig 1 pontot ér.)

A megtett utak ábrázolása grafikonon:

7 pont (bontható) s (cm) 22 18 14 10 6 2 0,05 0,1 0,15 0,2 0,25 0,3 0.35 t(s)

A megfelelően megrajzolt és feliratozott tengelyek 1–1 pontot érnek, a hat útérték helyes ábrázolása 5 pontot, öt útértéké 4 pontot, négy útértéké 3 pontot, három útértéké 2 pontot, két helyes útérték ábrázolása pedig 1 pontot ér.

b) Az átlagsebesség felírása és kiszámítása:

4 pont (bontható)

$$v = \frac{s}{t} = \frac{24.4 \text{ cm}}{0.33 \text{ s}} = 74 \frac{\text{cm}}{\text{s}}$$

(Képlet + számítás, 2 + 2 pont. Amennyiben a vizsgázó nem a legutolsó pont adatait helyettesíti a képletbe, nem jár pont.)

c) Az átlagos gyorsulás felírása és kiszámítása:

4 pont (bontható)

$$a = \frac{2s}{t^2} = \frac{2 \cdot 0,244 \text{ m}}{(0,33 \text{ s})^2} = 4,5 \frac{\text{m}}{\text{s}^2}$$

(Képlet + számítás, 2 + 2 pont. Amennyiben a vizsgázó nem a legutolsó pont adatait helyettesíti a képletbe, nem jár pont.)

Összesen 20 pont.

3/B feladat

Az iránytű elfordulásának részletes magyarázata:

8 pont (bontható)

Az ebonitrúd a dörzsölés hatására elektromosan feltöltődik (2 pont).

Az iránytűhöz közelítő rúd elektromos tere az iránytűben töltésmegosztást hoz létre.

(2 pont)

Az iránytű <u>ellentétes töltésű végeire</u> (2 pont) az elektromos térben <u>ellentétes erők</u> (2 pont) hatnak, amitől az iránytű elfordul.

Az alumíniumpalást hatásának magyarázata:

4 pont (bontható)

Az alumíniumpalástban létrejövő <u>töltésmegosztás</u> (2 pont) az iránytű környezetében <u>leárnyékolja</u> (vagy <u>kioltja</u>) (2 pont) az elektromos teret.

Vagy: Az alumíniumpalást Faraday-kalitkaként viselkedik, a belsejében az elektromos térerősség 0, így az iránytűre az ebonitrúd nem fejt ki semmilyen hatást.

(Ha a vizsgázó utal a töltések átrendeződésére valamilyen értelmes módon, akkor az első két pont megadandó, ha ennek következményeként értelmezi a belső tér nulla voltát, akkor a második két pont is megadandó.)

Annak magyarázata, hogy miért nem szünteti meg a hatást az üveghenger:

2 pont

Az üveghenger szigetelő, így benne <u>nem jön létre töltésmegosztás</u>, így <u>nem is árnyékolja</u> le az elektromos teret, azaz/vagy benne nem nulla a térerősség, mint a fémek belsejében.

A Faraday-kalitka ismertetése:

4 pont (bontható)

A Faraday-kalitka egy (tömör vagy hálós falú) <u>zárt fémkalitka</u> (2 pont). Mivel fémből van, a belsejében az elektromos térerősség nulla, így a benne tartózkodó személyeket <u>megóvja</u> a villámcsapástól (2 pont).

Egy tetszőleges példa megadása az árnyékolás jelenségére

2 pont

Bármely, az előbbitől eltérő példa elfogadható, pl. érzékeny műszerek leárnyékolása fémházzal a külső elektromágneses sugárzás ellen, vagy a gázpalackok villámvédelme fémráccsal stb.

Összesen 20 pont.