

CS502大数据工程师直通车课程大纲(第九版)

资深大数据工程师带你从Data Infrastructure 和 大数据分析应用两个角度双管齐下,全面提升背景,赢取心仪offer.

课时安排

【第一节课】 (课程主页免费注册)

2018年9月8日 7:00 pm (PST) 2018年9月8日 10:00 pm (EST) 2018年9月9日 10:00 am (北京时间)

【课程安排】

课程长度: 12周 **开课时间**: 9/14/2018 - 12/6/2018 (美国时间)

课程时长: 8小时/周 授课语言: 中文

课程名称	美西时间	美东时间	北京时间
理论学习	周五 7:00 pm - 9:00 pm	周五 10:00 pm - 12:00 am	周六 10:00 am - 12:00 pm
项目实战 I	周六 7:00 pm - 9:00 pm	周六 10:00 pm - 12:00 am	周日 10:00 am - 12:00 pm
项目实战 Ⅱ	周一 7:00 pm - 9:00 pm	周一 10:00 pm - 12:00 am	周二 10:00 am - 12:00 pm
作业讲解与面试指导	周四 7:00 pm - 9:00 pm	周四 10:00 pm - 12:00 am	周五 10:00 am - 12:00 pm

课程负责人

课程组老师: Davy

联系方式

□ Career Consultation 项目负责人

□ 擅长面试准备与交流技巧

□ 辅导上百名学员找准求职方向

微信账号:

电子邮件: davy@bittiger.io

adadazz

【项目介绍】

本项目我们将着重训练同学们对Hadoop Ecosystem以及Apache系列软件的应用及开发能力。我们将从Hadoop生态系统的主要项目介绍开始,从使用Nutch搭建分布式爬虫开始入手,逐渐建立对Hadoop的更深层理解,能清楚理解Hadoop能解决什么问题。同时课程将教会学生在面对大规模且实时的数据时,如何熟练使用多种大数据处理分析工具,从不同数据源(包括爬虫捕捉的数据,实时导入的数据,历史数据,关系型数据库)中采集数据,并实现ETL,数据分析和数据可视化等分布加工及处理。

【项目图示】

Nutch, Flink, Sqoop, Hive Streaming

- 1. 了解Hadoop生态系统,熟悉并掌握Hadoop及MapReduce的原理、构成以及基本操作和编程
- 2. 学习并掌握基于Nutch的网络爬虫的搭建,具备使用AWS将其运行的能力,并能够针对其源代码级故障进行分析

- 3. 了解Apache开源社区以及开源软件开发流程,对Apache主要项目,如Spark, Hive, Flink, Presto等从原理到实战全方面的学习及掌握
- 4. 具备对实时大规模数据源的处理能力,能够根据数据源的不同类型,选择并熟练应用Storm、Flink、Sqoop、Oozie、Hive Streaming等常见大数据工具
- 5. 深入理解并应用Hive、Presto和Spark SQL对大规模数据进行分析处理,并应用Superset生成数据图表,完成数据可视化

Week 1 课程安排

【理论理解】

课程内容
理解Hadoop原理和构成
深入理解HDFS
深入理解Yarn
深入理解MapReduce
了解Hadoop生态系统

【项目实战】

课程内容
Hadoop系统搭建
HDFS基本操作
MapReduce编程
使用Nutch搭建网络爬虫
Nutch源代码级故障分析
使用AWS运行Nutch分布式爬虫

Week 2 课程安排

【理论理解】

课程内容

大规模数据处理简介

Apache和开源软件开发

Pig功能与内部原理

Spark功能与内部原理

【项目实战】

课程内容

用Hadoop进行数据分析

用Pig进行ETL

用Spark进行ETL

用Sqoop从关系型数据库导入数据

用Oozie协调工作流

Week 3 课程安排

【理论理解】

课程内容

Hive功能与内部原理

Presto简介

Spark SQL功能与原理

【项目实战】

课程内容
用Hive进行数据分析
用Presto进行数据分析
用Spark SQL进行数据分析
用Flink导入实时数据
用Superset生成数据图表

Project 2: 搜索广告平台

【项目介绍】

在本阶段中,通过高强度的实战操作,带领学生逐步了解搜索广告的基本流程和数据结构,在对搜索广告实现原理的基本了解下,指导同学们实现电商数据爬虫,模拟搜索日志数据的生成,并引入信息检索在广告中的应用,实现一个基本的搜索广告服务器 v1.0。在此基础上,通过对Spark MLlib和Spark MapReduce的学习和应用,优化原有搜索广告服务器,在对Query Understanding和排序/定价/位置分配几大核心算法的研究中,进一步探索返回广告的广度,相关度,从理论和实战中深刻理解Google、Facebook等互联网巨头是如何利用广告系统知识、分布式系统优化,机器学习和大数据处理等技术搭建电商搜索广告系统,实现广告服务器后端,健全的大数据处理pipeline,和机器学习离线训练与线上预测系统。

【项目图示】

- 1. 深入理解搜索广告的业务流程,数据结构以及query understanding,广告排序、定价、位置等搜索广告的核心算法
- 2. 熟练掌握使用消息队列实现稳定、可扩展的大规模数据爬虫(half million级别)

- 3. 理解信息检索在搜索广告中的应用,能够构建广告倒排索引和正向索引并利用Java, gRPC, memcached, mySQL 搭建分布式广告后端系统
- 4. 理解并应用Spark MapReduce做特征提取,用Spark MLlib实现 query understanding
- 5. 灵活运用machine learning 改进广告排序算法,并预测pClick及广告相关度

Week 4 课程安排

【理论理解】

课程内容	课程要点
搜索广告的业务流程	搜索广告概况搜索广告的数据结构搜索广告后台的业务流爬虫基本原理以及实现爬虫要解决的难点
数据准备	● 设计电商数据爬虫● 模拟搜索日志

【项目实战】

课程内容

配置开发环境

- Java + IntelliJ
- MemCache
- MySQL
- Spark

实现稳定,可扩展的大规模电商数据爬虫

Java + Jsoup

用reverse engineering生成大量模拟搜索日志

• Python + pipeline

【理论理解】

课程内容	课程要点
信息检索的基础	● 信息检索在搜索引擎中的应用● 倒排表● 分词
信息检索在广告中的应用	● 用户查询的预处理● 建立广告关键字倒排表● 用倒排表选择广告● 计算相关度
网络服务的理论基础	HTTP Java Servlet
设计广告服务器	
设计索引服务器	
MapReduce的理论基础	

【项目实战】

课程内容

建立广告数据索引

- 用MemCache实现倒排表
- 用MySQL实现前向索引
- 用JDBC连接MySQL

搭建广告后台服务

- 配置本地web服务器运行环境
- gRPC实现分布式索引服务器
- 用Java servlet 开发广告服务器 v1.0
- 整合分布式索引服务器返回的结果并实现广告业务逻辑

- ______ ○ 过滤广告
- 广告多样化
- 根据相关度排序

Week 6 课程安排

【理论理解】

课程内容	课程要点
Machine Learning 入门	 Gradient descent Linear regression Neural network Classification
为什么需要 Query understanding	● 展示上一个版本的缺陷
什么是 Query understanding	Query rewriteQuery intent extraction
如何实现 Query understanding	Word2VecPage Rank
Spark MapReduce 入门	Spark ContextSpark ShellSpark RDD

【项目实战】

课程内容

Spark MapReduce练习

Query rewrite

- 用spark MLlib 实现Word2Vector model
- 用Word2Vector model实现rewritten query并应用到广告服务器

实现广告服务器 v2.0: 用extended query查询广告索引,比较返回广告的广度的变化

【理论理解】

课程内容	课程要点
改进广告排序算法	 广告排序算法公式 什么是pClick 如何用machine learning 预测pClick 如何用machine learning 预测广告相关度
广告定价算法	
广告位置算法	

【项目实战】

课程内容

pClick 预测

- 用Spark map reduce 实现pClick 特征工程并实现特征提取pipeline
- 用Spark MLlib 预测pClick

实现广告服务器 v3.0

- 实现改进后的排序算法
- 跟v2.0的结果比较

Project 3: ElasticDB - 高可用性、可动态扩展的分布式数据 库系统

【项目介绍】

本阶段课程将通过对现今最大电商平台的研究与分析,深入了解并从多个角度分析其workload,了解如何设计aws,如何设计load balancer,如何设计分布式数据系统等。课程将带领同学们理论上从TPCW Benchmark,分布式系统设计思路原则CAP,负载均衡的原理和MySQL replication 工作原理入手,根据电商平台的用户需求,研究分布式系统性能的控制与设计,测试与监控,最终实现高可靠性、可动态扩展的分布式数据库系统,达到实时处理经典OLTP的查询请求,实时动态显示资源使用和系统性能,以最优的经济动态增加/减少系统处理能力保证系统性能的最优等功能。

【项目图示】

- 1. 理解电商平台例如Amazon.com的主要功能
- 2. 理解为什么有秒杀访问量
- 3. 理解云计算平台的经济学原理
- 4. 理解分布式系统性能、可用性、可扩展性
- 5. 达到熟练掌握设计、分析、部署、测试分布式系统的目的

- 6. 实现高可用性的分布式数据库系统
- 7. 实现动态扩展的分布式数据库系统
- 8. 动态控制分布式系统性能
- 9. 掌握CAP原理在分布式系统中的设计和实际运用

Week 8 课程安排

【理论理解】

课程内容	课程要点
电商平台的那些事	 ● 电商平台的昨天今天与明天 ● 电商平台上面的workload分析 ○ 浏览Browsing ○ 订单Ordering ○ 从数据读写角度来分析workload ● OLTP和OLAP对比
TPCW benchmark 介绍与部署	 TPCW benchmark介绍 ○ 为什么要用TPCW benchmark ○ 经典的多层体系结构 ■ HTTP 与 WWW ■ 前端与后端的通讯 ○ Client Emulator
分布式系统设计思路原则CAP	
负载均衡的原理和使用	● 常用负载均衡的方法● 分布式数据库负载均衡的特殊性
MySQL replication 工作原理	 Master-Slave的架构 在CAP原理下,如何让MySQL牺牲C来换取AP MySQL replication可扩展性实现原理

【项目实战】

课程内容

在AWS云计算平台上部署TPCW benchmark

- 运行TPCW benchmark
- 运行Client Emulator

实现Load balancer

- 下载,安装,设置,部署MySQL replication
- Routing不同的查询到MySQL replication
- 学习Load balancer部分代码

Week 9 课程安排

【理论理解】

课程内容	课程要点
数据库系统的可用性	● 可用性定义 ● 如何解决可用性的问题
数据库系统的可扩展性	可扩展性定义以及Scale in/out, Scale up/down区别如何解决可扩展性的问题
电商平台的用户需求	 Service Level Agreement是什么 Availability的SLA Performance的SLA
控制系统设计	 系统建模 控制系统的三大组成 检测装置 控制装置 执行装置 自动控制原理在计算机系统中的使用
控制系统和TPCW平台的融合来 控制分布式系统性能	 收集检测分布式数据库查询响应时间 基于EasyRules的java规则引擎 ○ 规则的设置 ○ 规则的触发 如何做到 0 down time的scale in/out 执行MySQL replication的scale in/out

系统瓶颈分析	什么是瓶颈数据库系统和瓶颈之间的一般关系CPU, memory, IO bound查询
分布式数据库系统实际测试	系统动态访问量和时间之间的关系分布式数据库系统在访问量变化时动态调整资源
分布式数据库系统性能和资源监 控	● 监控数据的存储与访问● 基于CanvasJS的动态曲线绘制● 基于浏览器的动态曲线展示
项目总结和方向扩展	 新的架构 模型的准确性 控制器的使用 系统响应时间和稳定性

【项目实战】

课程内容

实现高可用性和可扩展性

- 演示在某个mysql server停用的时候系统可用性的变化,以及如何检测某个mysql server的运行情况。通过添加新的mysql server来实现高可用性。
- 演示在用户访问量增加的情况下系统响应时间的增加;以及用户访问量减少的情况下系统响应 时间的减少,明确通过系统的可扩展性达到稳定系统响应时间的目的
- 基于ECA(事件-条件-动作)框架来实现可扩展性控制器的检测,控制,执行

实现高可用性和可扩展性数据库的系统动态展示

- 收集分析系统状态常用工具dstats应用
- 创建系统状态数据库
- 基于CanvasJS的系统状态实时显示

【项目介绍】

本阶段项目将会从最基础的大数据框架出发,分析它们的优势劣势,学习当前业界最火的系统架构,并将其应用到我们的项目当中,从而构建出一个高性能的基于流数据处理平台的实时数字货币(BTC,BCH,ETH,LTC)分析系统。课程将带领学员从理论到实战,逐步深化对分布式系统的理解,学习高性能数据pipeline搭建的设计理念,并在实践中,亲身体会如何基于Kafka实现数据采集读取层,如何基于Cassandra实现数据持久层,以及如何基于Spark实现流数据的分析。学员将使用AWS,搭建起属于自己的云服务并使用Docker技术,简单快速拥有属于自己大数据平台,经历一个完整的流数据处理平台的搭建过程,并在这个过程中,深究其内部原理,对于每一个技术栈做到知其然,还知其所以然,而不再是简单的利用API的调用。

【项目图示】

- 1. 学习、理解并掌握大数据框架的学习路线和方法;理解并灵活运用SMACK架构,解决大数据实际问题
- 2. 熟悉掌握AWS原理及常用工具,比如EC2、EMR等,并学会如何在AWS上部署Zookeeper、Kafka、Cassandra:

- 3. 深化对分布式分布式系统(Distributed System)的特性和实现原理的理解,对分布式消息队列 (Distributed Message Queue)、分布式数据库(Distributed Database)、分布式批处理 (Distributed Batch Processing)以及分布式调度(Distributed Scheduling)从理论架构到实际应用 的全方面掌握
- 4. 熟悉掌握通过命令行操作Kafka, Zookeeper, Cassandra及Spark的能力, 并能够搭建完整的流数据处理平台
- 5. 了解Kafka/Cassandra/Mesos等主流大数据工具的常见Failure Case,并学习掌握如何进行 Failure Recovery

Week 10 课程安排

【理论理解】

课程内容	课程要点
Kafka介绍	 Kafka架构 内部实现原理 Kafka事故情景及灾难恢复 业内常见应用案例
Zookeeper介绍	 Zookeeper架构 内部实现原理 Zookeeper事故情景及灾难恢复 业内常见应用案例

【项目实战】

【理论理解】

课程内容	课程要点		
NoSql 数据库介绍	● NoSql 数据库特点及介绍		
Cassandra介绍	 Cassandra架构 内部实现原理 Cassandra事故情景及灾难恢复 业内常见应用案例 		

【项目实战】

课程内容
通过命令行操作Cassandra
Cassandra API
基于Cassandra实现数据持久层

Week 12 课程安排

【理论理解】

课程内容	课程要点
Spark介绍	 Spark架构 内部实现原理 Spark常用API 业内常见应用案例
Mesos介绍	 Mesos架构 内部实现原理 Mesos事故情景及灾难恢复 业内常见应用案例

【项目实战】

课程内容

通过命令行使用Spark实现批数据处理

通过命令行使用Spark实现流数据处理

基于Spark实现数据处理层

备注:课程大纲仅供参考,请以老师实际上课为准。

