Задача 1. Доказать, что в частично упорядоченном множетве наибольший элемент может быть только один.

Множество всех отображений множества A во множество B обозначим B^A или $A \to B$.

Задача 2. Установить биекцию между множествами $A \times B \to C$ и $A \to (B \to C)$.

Задача 3. Установить биекцию между множествами 2^A и $A \to \{0,1\}$

Задача 4. Пусть $2\mathbb{N}$ множество четных чисел. Доказать, что порядки $(2\mathbb{N}, \leq)$ и (\mathbb{N}, \leq) изоморфны.

Задача 5. Определим произведение двух линейных порядков. Пусть $P_1=(A_1,\leq_1)$ и $P_2=(A_2,\leq_2)$ два линейных порядка.

Тогда их произведение – это декартово произведение $A_1 \times A_2$, на котором задан порядок \leq_{12} лексикографичечки. Это означает, что пары из $A_1 \times A_2$ сортируются сначала по второму элементу, потом по первому. То есть две пары $(a_1,a_2), (b_1,b_2) \in A_1 \times A_2$ сравниваются так: если $a_2 < b_2$ (то есть $a_2 \leq_2 b_2$ & $a_2 \neq b_2$), тогда мы полагаем сразу $(a_1,a_2) \leq_{12} (b_1,b_2)$, если $a_2 = b_2$, то $(a_1,a_2) \leq_{12} (b_1,b_2) \Leftrightarrow a_1 \leq b_1$. Таким образом:

$$(a_1, a_2) \leq_{12} (b_1, b_2) \Leftrightarrow (a_2 \leq_2 b_2 \& a_2 \neq b_2) \lor (a_2 = b_2 \& a_1 \leq_1 b_1)$$

Заметим, что полученный порядок также является линейным (то есть выполняются аксиомы: рефл, антисимм, транз, линейности). (Докажите это)

Пусть $\omega = (\mathbb{N}, \leq)$, $2 = (\{0, 1\}, \leq)$. Доказать, что $\omega \cong 2\omega$, но при этом $\omega \not\cong \omega 2$ Символ \cong обозначает изоморфизм.

Задача 6.

- а) Пусть $A = \{1, 4, 2, 7, 3\}$. Какие пары нужно добавить в отношение $R_1 = \{(1, 4), (2, 7)\}$, чтобы оно стало отношением эквивалентности. (Найдите решение, при котором добавляется минимальное количество пар). Какими будут в итоге классы эквивалентности.
- б) Рассмотрим частичный порядок, элементы которого это всевозможные дополнения R_1 до отношения эквивалентности.

$$Eqv(R_1) = (\{r \subset A^2 \mid R_1 \subset r \& r - \text{отношение эквивалентности}\}, \subset)$$

Есть ли в этом частичном порядке наименьший и наибольший элемент?

- в) Правда ли, что любое отношение можно дополнить до отношения экивалентности. Описать минимальное дополнение до отношения эквивалентности на языке теории графов.
- г) Какие пары нужно добавить в отношение $R_2 = \{(1,4),(1,7),(4,2),(2,3)\}$, чтобы оно стало отношением частичного порядка? (Найдите решение, при котором добавляется минимальное количество пар) Нарисовать диаграмму полученного частичного порядка.

Определение. Диаграмма частичного порядка (A, \leq) – это граф, вершины которого – это элементы множества A. Вершины a и b соединяются ребром, если a < b и нет промежуточных элементов, то есть $\neg(\exists x: a < x < b)$ (a < b означает как обычно $a \leq b$ & $a \neq b$) Принято рисовать большие элементы выше чем меньшие.

в) Найти максимальные элементы полученного частичного порядка. Какие пары нужно добавить, чтобы появился наибольший элемент.

г) Рассмотрим частичный порядок,

$$Pos(R) = (\{r \subset A^2 \mid R \subset r \& r - \text{отношение частичного порядка}\}, \subset)$$

Есть ли наибольший элемент в $Pos(R_2)$? Если нет, привести пример максимального элемента в $Pos(R_2)$, который не является наибольшим? Есть ли наименьший элемент в $Pos(R_2)$?

д) Все то же самое для $Pos(R_3)$, где $R_3 = \{(1,4), (1,7), (4,2)\}.$

Задача 7. Доказать теорему про классы эквивалентности.

Если на множестве задано отношение эквивалентности, то множество распадается на непересекающиеся классы эквивалентности, внутри которых элементы находятся в отношении (эквивалентны), а два элемента из разных классов не эквивалентны

Задача 8.

Отношение предпорядка

Если отношение $R \subset A \times A$ рефлексивно и транзитивно, оно называется отношением предпорядка

Доказать, что если \leq отношение предпорядка, заданное на множестве A, то отношение

$$Eq = \{(a, b) \in A \times A : a \le b \& b \le a\}$$

является отношением эквивалентности.

Множество классов эквивалености обозначим A', на этом множестве задано отношение \leq' естественным образом индуцированное отношением \leq . Доказать, что \leq' – отношение частичного порядка на множестве A'

Примеры отношений предпорядка:

- 1) множество A имеет не большую мощность чем B, если существует биекция из множества A на подмножество множества B.
 - 2) решение задачи A сводится к решению задачи B,

Задача 9.

а) Доказать, что порядок ({3,4,6,1},:), (: означает «делится») и порядок

$$(\{\{1\},\{1,3\},\{1,4\},\{1,3,6\}\},\subset)$$

изоморфны.

б) Доказать, что любой частичный порядок изоморфен частичному порядку с отношением \subset .

Задача 10.

Пусть (A, \leq_A) частичный порядок.

Определение. Элемент $a \in A$ называется верхней границей множества $B \subset A$, если $\forall x \in B : x \leq a$. То есть a больше всех элементов B, при этом сам элемент a может как находится в B так и не находится. Если он находится в B, тогда он является наибольшим элементом в B.

Определение. Наименьшая из всех верхних границ называется верхняя грань или supremum. Точнее говоря sup(B) – это наименьший элемент частичного порядка

$$(\{x\mid x$$
 – верхняя граница $B\},\leq_A)$

Верхняя грань не всегда существует.

Аналогично, нижняя грань или infimum – это наибольшая из всех нижних границ.

Определение. Если в частичном порядке (A, \leq_A) каждое двухэлементное множество имеет верхнюю и нижнюю грань, A называется решетка.

Обычно обозначают $a \lor b = \sup\{a, b\}, a \land b = \inf\{a, b\}$

- а) Доказать, что в решетке каждое конечное непустое множество имеет верхнюю и нижнюю грань.
 - б) Доказать, что (N, :) решетка. Что в ней будет играть роль верхней и нижней грани?
- в) Доказать, что для произвольного множества $U, (2^U, \subset)$ решетка. Что в ней будет играть роль верхней и нижней грани?