on fait un DFS ~~ G(n)

on calcule les degrées et on donne les sommets de degrée 1: (0 6(2m)

(m) (d

(on peut aussi procéder à un tri à l'aide d'un bucket don) Q2. (a) Gn fait de la programmation dynamique:

mwore G: min { poids (x) + 2 mwoe [y] , = mwoc [y] }.

(b) On fait un 1er DFS pour trouver le sommet ele plus loin de bommet choixi arbitrairement. Ensuite, avec un 2<sup>md</sup> DFS, on pout ou x et on sugarde le sommet y le plus boin de x.

diam (T) = profondeur de y dans le 2<sup>nd</sup> porton

Q3. 6643633

On crée une file de priorilé seu [1, lwl+2] où les priocités bent les mb d'acc dans us, plus un.

Solution: Em barre des sommets. Sont que la file de prio n'est pas viole foire 6m lit le mot, à une lettre on la relie au plus petit qui n'est pas barrie et qui n'est pos dons la téquence restante; puis en boire la

Extraire le min x. Relin x à wi

Retiren 1 à la prio de Wi et 2. Si prio = 0 alous on le retire.

Q5.  $|\mathcal{I}_{m}| = n^{m-2}$ 



Q1. (a) Soient  $T_1$  et  $T_2$  deux avores convrant de poids minimum. Supposens  $T_1 \neq T_2$  d'avi  $E(T_1) \triangleq E(T_2) \neq \emptyset$ . Soif  $e \in E(T_1) \triangleq E(T_2)$  de poids min.

Sans perdre en généralité, supposons ec  $E(T_1)$ . de graphe  $T_2$  + e a un cycle C.

Soit e'e( $C \cdot le$ ) n ( $E(T_2) \cdot E(T_2)$ ).

tAloss,  $T_2 + e^2 - e$  est un evere conviront de poids < poids de  $T_2$ .

Gm condut T1 = T2.

(b) Soit E = 7 e2, ..., en ? tels que w(e2) ≤ ... ≤ w(en).
Gov pose w'(ei) := i.

Comme les poids (w'(e)) sont tous différents, alors on peut appliquer l'algorithme et avoir T.

Et, comme l'ordre défini per w'est un reffinement de l'ordre défini par w, en a que T est un ACPM pour w.

Q2. Gn considère 6: (V, 8, (V), w) où w(v,v):=d(v,v).

Gn fait n-k étapes de Kruskal.

Complexité en G((n-k) d(n)).

Soit C le résultat d'expocemment E.

Soit () um autre k-clustering.

Il existe 11,10 dans 2 composantes différentes de c'et dans la même composante de C

Cloritions que d(11,10) & E (ce qui implique exportement (C') & E).

Soit it tel que d(s, t) = E.

Si  $d(s,t) = \varepsilon < d(u,v)$  et en suit que st me crée pas de cycle alors absorde on Kruskal await choisit st.

## Q3. Utibres mon enracines

- · Reflexivate: Φ = id
- · Symétice : φ' = φ-1
- Transikuité:  $\phi' = \phi' \circ \phi$   $V_1 \xrightarrow{\phi} V_2 \xrightarrow{\phi'} \circ V_3$

$$V_1 \stackrel{\phi}{\longrightarrow} V_2 \stackrel{\phi'}{\longrightarrow} V_3$$

$$\Phi'' = \Phi' \circ \Phi$$

Mibre enracine:

- · Réflexivité : 0 = id
- Symétie :  $\phi' = \phi^{-1}$  Transitivité :  $\phi'' = \phi' \circ \phi$

Q4.

$$A \sim D$$
 are  $c$  l'isomorphisme

- aw fukr

Cop A,D con il existe un sommet de degré 4 relié à trois fauilles dons C mais pas dons A.

$$B \neq A, C, D$$
 can deg (2) = 2 et deg (·)  $\neq 2$  deg (·)  $\neq 2$ .

$$C(T-F) = \{x \in V(T-F) \mid R_{T-F}(x) = R(T-F)\}$$

$$= \{x \in V(T-F) \mid R_{T}(x) = R(T)\}$$

$$= C(T)$$

| Q6. B | récurrence   | forte su    | <b>#</b> 7. | Gemplexifé en                          | G(n), c.f. TD 5.             |
|-------|--------------|-------------|-------------|----------------------------------------|------------------------------|
| Q.a   | T~T' =       | <b>⇒</b> ∃л | e CTT),     | غ اه C(T') ,                           | $(\tau, x) \sim (\tau', x')$ |
|       | Ja.          |             |             |                                        |                              |
|       | ="           |             |             |                                        |                              |
|       | ⇒)" R(Φ(±)   |             | c a (-)     | φ ( ας=\)                              |                              |
|       | d gù.        | CLT ) = C   | ς φίζη,     | = φ(ζ(τ)).                             |                              |
| Q.g.  | Gn coloule   | . CCT) et   | C(T')       | en G(n).                               |                              |
|       | Soit x e     |             |             |                                        |                              |
|       | Pour tout 2  | 'eC(T'),    | tester (    | $(\tau, \infty) \sim (\tau', \infty')$ | ),                           |
|       | Bemplexité e | n Glass     | 2 f(ms) = ( | ο̂(f(n)+n).                            |                              |
|       |              |             |             |                                        |                              |
|       |              |             |             |                                        |                              |
|       |              |             |             |                                        |                              |
|       |              |             |             |                                        |                              |
|       |              |             |             |                                        |                              |
|       |              |             |             |                                        |                              |
|       |              |             |             |                                        |                              |
|       |              |             |             |                                        |                              |
|       |              |             |             |                                        |                              |
|       |              |             |             |                                        |                              |
|       |              |             |             |                                        |                              |
|       |              |             |             |                                        |                              |
|       |              |             |             |                                        |                              |
|       |              |             |             |                                        |                              |
|       |              |             |             |                                        |                              |
|       |              |             |             |                                        |                              |
|       |              |             |             |                                        |                              |
|       |              |             |             |                                        |                              |
|       |              |             |             |                                        |                              |
|       |              |             |             |                                        |                              |
|       |              |             |             |                                        |                              |

| I | Yrapho | biparti: |
|---|--------|----------|
|   |        |          |

Q1. S'il est bipanti et qu'il a un (2k+1)-ajeu alous

X = Y Absurds can X = 4.

Réciprogument, si 6 n'est

Q2. DFS en G(n+m) pour avoir un 2-roloxiage

II Tri topologique par élagage

Q3. On part que uev.

Nont que deg+(u) > 0 faire

Lu - un prédévasseur de u

Qh. cycle  $\Rightarrow x_1 < \dots < x_n$  dans le tri lope  $x_1 > \dots > x_n > x_1$   $x_n > x_n$ 

acyclique => tri topo

Soit is de degt (10) =0.

N 4 hi lopo de 6-N 1

Q5. On calcule tous les degt que l'on maintient.
On extrait tous les sommets de dogt = 0 (dons une pile)

