POLSCI 9590: Methods I

OLS Regression I

Dave Armstrong

Videos

In the videos for today, we learned about:

OLS Regression

- Understanding Least Squares
- Interpreting Model Output

Data

Residual Sums of Squares

Contour Plot of RSS

Model

```
mod <- lm(y \sim x)
summary(mod)
##
## Call:
## lm(formula = y \sim x)
##
## Residuals:
      Min 1Q Median
                                 3Q
                                        Max
## -1.43079 -0.29872 -0.01345 0.35675 1.13206
##
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.92693
                      0.05003 38.51 <2e-16 ***
## x
            2.92367
                      0.08321 35.13 <2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5003 on 98 degrees of freedom
## Multiple R-squared: 0.9265, Adjusted R-squared: 0.9257
## F-statistic: 1234 on 1 and 98 DF, p-value: < 2.2e-16
```


Interpretation

- When x is equal to zero, we *expect* y to be 1.927.
- For every one-unit increase in x, we expect y to increase by 2.924.

Other Numbers in the Output: Coefficient Table.

- Std. Error is the standard error of the coefficient how variable is that quantity if repeated sampling.
- ullet to value is $rac{
 m Estimate}{
 m Std.~Error}$. This t-statistic is on $n-df_{mod}$ degrees of freedom where n is the sample size and df_{mod} is the number of parameters estimated by the model.
- Pr(>|t|) is the p-value testing $H_0: \beta=0$ against the alternative $H_A: \beta\neq 0$. For a one-sided alternative (assuming you got the direction right), divide this value by 2.

Other Numbers in the Output: Model Fit

- Residual Standard Error is $\sqrt{\frac{\sum_{i=1}^n e_i^2}{n-df_{mod}}}$ this is the standard deviation of the residuals. Compare to the standard deviation of y.
- Multiple R-squared is the proportion of variance explained in y by all of the independent variables. It is also the squared correlation between observed y values and the predicted y values from the model.
- Adjusted R-squared more on this next week
- F-statistic tests the joint (often called "omnibus") hypothesis: $H_0: \alpha=\beta=0$ against the alternative that at least one of the terms doesn't equal zero.

Making a Plot

Example: Demonstrations and Corruption

```
demo <- rio::import("demo.dta")
demo <- rio::factorize(demo)
dmod1 <- lm(demodays ~ corrupt, data=demo)
summary(dmod1)</pre>
```

```
##
## Call:
## lm(formula = demodays ~ corrupt, data = demo)
##
## Residuals:
               10 Median
                                      Max
## -2.1432 -0.9761 0.0017 0.7912 2.5923
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.53404
                          0.29601
                                    5.182 1.83e-06 ***
## corrupt
               0.32384
                        0.05286
                                    6.126 3.98e-08 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.136 on 74 degrees of freedom
## Multiple R-squared: 0.3365, Adjusted R-squared: 0.3275
## F-statistic: 37.53 on 1 and 74 DF, p-value: 3.978e-08
```

- For every one-unit increase in corruption, we expect demonstrations to increase by 0.32.
 - $^{\circ}$ This is a statistically significant finding because p < 0.05.
- When corruption is zero, we would expect demonstrations to be approximately 1.5.

Is the Result Substantively Significant?

One way we could figure this out is by seeing how big of a change in y a standard deviation change in x makes:

```
s <- sd(demo$corrupt, na.rm=TRUE)
s*0.32</pre>
```

[1] 0.7943325

Now, let's see how big of a change that is for the DV:

```
.79/sd(demo$demodays, na.rm=TRUE)
```

[1] 0.5700975

It's about 57% of a standard deviation in terms of the expected change in y. That is pretty good. The bigger this number, the more substantively interesting the result is.

Plot

Categorical IVs

With categorical IVs, we need to transform them before we can use them in our regression. We need to make a *dummy variable* (one that has only values 0 and 1) for each level of the IV.

Categorical IVs (2)

We can't actually include *all* of the dummies for each category because they are *perfectly collinear*.

ullet If there are m categories, we can actually represent all of the relevant information in m-1 dummy variables.

Let's say that x_a is the dummy variable for x=a and so forth. We know if the categoris are exhaustive and mutually exclusive (which they will be for a single variable):

$$egin{aligned} x_a+x_b+x_c&=1\ x_a&=1-x_b-x_c \end{aligned}$$

In words,

- ullet if I know the observation is in category b, I know for certain that it is not in category a
- if I know that it is not it categories b or c, then it must be in category a.

Categorical IVs (3)

If we have m categories, we need m-1 dummy variables to represent those categories in our regression model.

Reference Category

```
xmod <- lm(y ~ x, data=df)
summary(xmod)</pre>
```

```
##
## Call:
## lm(formula = y \sim x, data = df)
## Residuals:
      Min
               10 Median
                                     Max
## -3.7753 -2.4069 -0.4901 2.1859 5.5868
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 13.5394
                          0.9201 14.715 2.04e-14 ***
              11.4286
                        1.3012 8.783 2.13e-09 ***
## xb
              12.4098
                        1.3012 9.537 3.88e-10 ***
## xc
## Signif. codes: 0 '***' 0.001 '**' 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 2.91 on 27 degrees of freedom
## Multiple R-squared: 0.8064, Adjusted R-squared: 0.792
## F-statistic: 56.22 on 2 and 27 DF, p-value: 2.365e-10
```


Interpretation

- (Intercept): When $x_b=0$ and $x_c=0$ (which we know is when $x_a=1$), we would expect y to be 13.54. This is significantly different from zero.
- xb: The difference between the mean of y when x=a and the mean of y when x=b is 11.43. So, we would expect y to be 13.54+11.43=24.97 when x=b. This difference is statistically significant.
- xc: The difference between the mean of y when x=a and the mean of y when x=c is 12.41. So, we would expect y to be 13.54+12.41=25.95 when x=c. This difference is statistically significant.

Interpretation: Equation

The model above, suggests the following equation:

$$\hat{y} = 13.54 + 11.43 \times x_b + 12.41 \times x_c$$

So, we could get predictions for each category:

•
$$x = a \rightarrow \hat{y} = 13.54 + 11.43 \times 0 + 12.41 \times 0 = 13.54$$

$$ullet x = b
ightarrow \hat{y} = 13.54 + 11.43 imes 1 + 12.41 imes 0 = 24.97$$

$$ullet x = c
ightarrow \hat{y} = 13.54 + 11.43 imes 0 + 12.41 imes 1 = 25.95$$

Looking at Comparisons

R Python Stata

Type: response

```
avg_predictions(xmod, variables="x")
##
   x Estimate Std. Error
                           z Pr(>|z|)
                                          S 2.5 % 97.5 %
         13.5
                    0.92 14.7
                               <0.001 160.4 11.7
                                                    15.3
         25.0
                    0.92 27.1
                               <0.001 536.3 23.2
                                                    26.8
         25.9
                    0.92 28.2 <0.001 578.9 24.1
## C
                                                    27.8
## Columns: x, estimate, std.error, statistic, p.value, s.value, conf.low, conf.high
## Type: response
avg_predictions(xmod, variables="x", hypothesis = "pairwise")
##
    Term Estimate Std. Error
                                 z Pr(>|z|)
                                               S 2.5 % 97.5 %
   a - b -11.429
                        1.3 -8.783 <0.001 59.1 -13.98 -8.88
   a - c - 12.410
                       1.3 -9.537 <0.001 69.2 -14.96 -9.86
   b – c
         -0.981
                        1.3 -0.754   0.451   1.1   -3.53   1.57
## Columns: term, estimate, std.error, statistic, p.value, s.value, conf.low, conf.high
```


Plotting Predictions

```
plot_predictions(xmod, condition="x") +
  geom_point(data=df, aes(x=x, y=y), position=position_jitter(widtheme_classic()
```


Exercises: Demonstrations

Using the demonstrations data, do the following:

Q1

- 1. Regress demodays on one of the other quantitative variables (that's not corrupt).
- 2. Interpret the regression.
- 3. Plot the regression line.

Q1

- 1. Regress demodays on one of the qualitative variables in the data set.
- 2. Interpret the regression.
- 3. Plot the regression line.