Evolutionary Firefighting Lab MA-INF 1315

Martin Kretschmer

Uni Bonn Institut für Informatik

30. March 2017

Content

- Introduction
- 2 Enclosing Fire
- 3 Highway Protection

Introduction

- Introduction
- 2 Enclosing Fire
- 3 Highway Protection

Catching the fire on a Grid

- grid graph
 - vertices $\mathbb{Z} \times \mathbb{Z}$
 - edges $\{((v, w), (x, y)) \mid |v x| + |w y| = 1\}$
- fire starts at (0,0) at time t=0
- place f agents at non-burning vertices for protection
- fire spreads to each unprotected neighbor
- objective: enclose fire

Previous results

- fire can be enclosed for f=2 optimally in 8 steps with 18 burning cells
- fire can not be enclosed for f = 1 (not even in quarter plane)
- fire can be enclosed for f > 1.5
- fire can not be enclosed for f = 1.5

Evolutionary Algorithms

- optimization inspired by biological evolution
- improves population P over many generations
- individual defined by set of parameters (genome)
- key mechanisms:
 - selection
 - inheritance
 - mutation
 - fitness evaluation

Introduction

- Introduction
- 2 Enclosing Fire
- Highway Protection

- Example
 - start: (0, -1)
 - sequence: ((N, F), (NE, F), (SE, B), (SE, F), (E, B))

- Example
 - start: (0, -1)
 - sequence: ((N, F), (NE, F), (SE, B), (SE, F), (E, B))

- Example
 - start: (0, -1)
 - sequence: ((N, F), (NE, F), (SE, B), (SE, F), (E, B))

- Example
 - start: (0, -1)
 - sequence: ((N, F), (NE, F), (SE, B), (SE, F), (E, B))

- Example
 - start: (0, -1)
 - sequence: ((N, F), (NE, F), (SE, B), (SE, F), (E, B))

- Example
 - start: (0, -1)
 - sequence: ((N, F), (NE, F), (SE, B), (SE, F), (E, B))

- Example
 - start: (0, -1)
 - sequence: ((N, F), (NE, F), (SE, B), (SE, F), (E, B))

Simulation

- account idea tells when to protect next cell
 - account $> 1 \Rightarrow$ protect next cell \Rightarrow decrease account by 1
 - spread fire
 - increase account by budget f
- fitness
 - number of burning cells "at the end"

Fitness Development

Fitness Development

Failed Strategies f = 1.6

Failed Strategies f = 1.6

Benchmark

Highway Protection

- 1 Introduction
- 2 Enclosing Fire
- 3 Highway Protection

Highway Protection

- fire starts at (0,0)
- horizontal highway at distance $m \Rightarrow H = \{(i, m) \mid i \in \mathbb{Z}\}$
- objective: protect H from catching fire (as long as possible)
- good strategies unknown

Genome

- version 1 (scattered)
 - sequence is list of exact coordinates
 - ((1,2),(5,-10),(-3,4),(4,0),...)
- version 2 (connected)
 - sequence is list of directions (as before)
 - ((N, F), (NE, F), (S, B), (SW, B), ...)

Fitness evaluation

- needs to allow gradual improvements
- higher fitness when
 - fire takes longer to reach highway
 - fewer vertices are burning
 - vertices closer to highway have higher significance

• scattered genome, random initialization

• realization: best strategy can only improve

• scattered genome, manual initialization $(0, m), (-1, m), (1, m), (-2, m), (2, m), \dots$

• time to reach highway never improved

• connected genome, random start point

• connected genome, start close to outbreak

Compare f = 2.0

Compare f = 1.5

Compare f = 1.3

Compare f = 1.1

$\overline{\text{Compare } f = 1.0}$

Animations

Lets see some animations

Remaining

- still a lot of room for experiments
 - different genome
 - different fitness function
- theoretical results
 - possible with f = 1.5
 - impossible with f = 1, done!
 - possible with f < 1.5?

End

Thank you for your attention!

 \bullet f=1 but first reach level of outbreak

 \bullet f = 1 but first reach level of outbreak

• f = 1 but first reach level of outbreak

 \bullet f = 1 but first reach level of outbreak

