

技能向上訓練 データサイエンス プログラミングコース

Google Colaboratory

- https://colab.research.g oogle.com/notebooks/in tro.ipynb
- クラウド上で実行される、Jupyter Notebook
- Googleアカウントでロ グインが必要

ランダム フォレスト

- 複数の決定木を作成し、 それぞれに予測をして もらう。
- 各予測結果をもとに、 最終予測結果を決定する。

GoogleDriveより、 「random_forest.ipynb」を 選択してください。

決定木 (DecisionTree)

■ 入力値から、複数の選択を行い、出力内容を決定する。

ノートブックを開く

■ Google Drive 上の「random_forest.ipynb」を開いてください。

ライブラリのインポート

from sklearn.model_selection import train_test_split from sklearn.metrics import * from sklearn.ensemble import RandomForestClassifier from sklearn.tree import DecisionTreeClassifier

■ sklearnライブラリの必要なパッケージをインポートする

import pandas as pd

■ また、データフレームを扱うためのpandasもインポートする

GoogleDriveのマウント

0

from google.colab import drive drive.mount('/content/drive')

データのロード

データのロード
iris_df = pd.read_csv(filepath_or_buffer="<u>/content/drive/My Drive/ensyu3/iris.csv</u>")
display(iris_df.head())

₽		SepalLength	SepalWidth	PetalLength	PetalWidth	Species
	0	5.1	3.5	1.4	0.2	Iris-setosa
	1	4.9	3.0	1.4	0.2	Iris-setosa
	2	4.7	3.2	1.3	0.2	Iris-setosa
	3	4.6	3.1	1.5	0.2	Iris-setosa
	4	5.0	3.6	1.4	0.2	Iris-setosa

sepal length (cm)	がく片の長さ		
sepal width (cm)	がく片の幅		
petal length (cm)	花弁の長さ		
petal width (cm)	花弁の幅		
Species	種類		

- 今回は、アヤメの分類を目的として作られたデータセットを使用。
- アヤメには「Iris-setosa」「Iris-versicolor」「Iris-virginica」の3種類がある。

データの分割

#目的変数の設定
obj_var = 'Species'

#説明変数と目的変数に分ける
iris_df_X = iris_df.drop(obj_var,axis=1) #説明変数(目的変数以外)
iris_df_y = iris_df[obj_var] #目的変数

#データを分割
train_X, test_X, train_y, test_y = \
train_test_split(iris_df_X, iris_df_y, test_size=0.3, stratify = iris_df_y,random_state=0)

- 読み込んだデータセットを、目的変数と説明変数に分ける
- 分けたデータを、更に訓練データとテスト用データに分ける

#説明変数と目的変数に分ける

iris_df_X = iris_df.drop(obj_var,axis=1) #説明変数(目的変数以外) iris_df_y = iris_df[obj_var] #目的変数

iris_df

SepalLength	SepalWidth	PetalLength	PetalWidth	Species
5.1	3.5	1.4	0.2	Iris-setosa
4.9	3	1.4	0.2	Iris-setosa
4.7	3.2	1.3	0.2	Iris-setosa
4.6	3.1	1.5	0.2	Iris-setosa
5	3.6	1.4	0.2	Iris-setosa
5.4	3.9	1.7	0.4	Iris-setosa
6.5	3	5.2	2	Iris-virginica
6.2	3.4	5.4	2.3	Iris-virginica
5.9	3	5.1	1.8	Iris-virginica

iris_df_X

SepalLength	SepalWidth	PetalLength	PetalWidth	
5.1	3.5	1.4	0.2	
4.9	3	1.4	0.2	
4.7	3.2	1.3	0.2	
4.6	3.1	1.5	0.2	
5	3.6	1.4	0.2	
5.4	3.9	1.7	0.4	
6.5	3	5.2	2	
6.2	3.4	5.4	2.3	
5.9	3	5.1	1.8	

目的変数を削除

目的変数のみ抽出

iris_df_y

Species
Iris-setosa
Iris-virginica
Iris-virginica
Iris-virginica

#データを分割

train_X, test_X, train_y, test_y = \
train_test_split(iris_df_X, iris_df_y, test_size=0.3, stratify = iris_df_y,random_state=0)

iris_df_X

SepalLength	SepalWidth	PetalLength	PetalWidth	
5.1	3.5	1.4	0.2	
4.9	3	1.4	0.2	
4.7	3.2	1.3	0.2	
4.6	3.1	1.5	0.2	
5	3.6	1.4	0.2	
5.4	3.9	1.7	0.4	
6.5	3	5.2	2	
6.2	3.4	5.4	2.3	
5.9	3	5.1	1.8	

SepalLength	SepalWidth	PetalLength	PetalWidth	
5.1	3.5	1.4	0.2	
4.6	4.6 3.1		0.2	
6.2	3.4	5.4	2.3	
5.4	3.9	1.7	0.4	
4.9	3	1.4	0.2	
6.5	3	5.2	2	

train_X

SepalLength	SepalWidth	PetalLength	PetalWidth		
4.7	3.2	1.3	0.2		
5	3.6	1.4	0.2		
5.9	3	5.1	1.8		

test_X

- 上記の例では、iris_df_Xを分割。iris_df_Yも同様に分割を行っている。
- test_size = 0.3 → 元のデータの3割をテスト用データ、残りを訓練データにする。
- staratify = iris_df_y → 目的変数が偏らないように分配する。

決定木の生成

- #決定木の生成
 dtc = DecisionTreeClassifier()
 dtc.fit(X_train,y_train)
- DecisionTreeClassifier(ccp_alpha=0.0, class_weight=None, criterion='gini', max_depth=None, max_features=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, presort='deprecated', random_state=None, splitter='best')

- 訓練データをもとに、決定木を作成する。
- 既にあるライブラリを使用するので、決定木作成のアルゴリズムを組む必要はない。

正解率の表示

#テストデータで正解率確認
y_pred = dtc.predict(X_test)
accuracy_score(y_test,y_pred)

 Γ 0.9555555555556

- 作成した決定木を使用し、テスト用データでの結果を得る。
- その後、正解データと比較し、正答率を表示する。

結果の確認

#確認

```
result = pd.DataFrame(test_y)
result["pred"] = pred_y
```

display(result)

■ 正解の値と、予測値を並べて表示してみる。

決定木の表示

from sklearn import tree import pydotplus from IPython.display import Image from graphviz import Digraph dot_data = tree.export_graphviz(dtc, out_file=None, feature_names=iris_df_X.columns.values, filled=True, proportion=True) graph = pydotplus.graph_from_dot_data(dot_data) Image(graph.create_png())

この値が0なら、単一のクラスしかない。これが小さくなるように、各ノードが生成される。

ランダムフォレストのアルゴリズム

- 訓練データから、いく つかのデータを抜き、 決定木を作成する。
- 同じ決定木が出来ない よう、抜くデータは変 える。
- 完成した複数の決定木 の結果をもとに最終結 果を割り出す。

ランダムフォレストを実行し、正答率表示

ランダムフォレストモデルを生成 # n_estimators 決定木をいくつ生成するか(デフォルトは10) clf = RandomForestClassifier(random_state=0, n_estimators=10) clf = clf.fit(train_X, train_y) # 結果検証 rdf_y_pred = clf.predict(<u>test_X</u>) accuracy_score(y_test,rdf_y_pred) 0.977777777777777

- 正答率が少し増えている。
- 決定木の数を変えて、いろいろ試してみよう。

変数重要度の表示

■ 推測に影響のある変数ほど、高い数値が出る。

Borutaを使用して、特徴量の抽出

- Borutaとは、必要と思われる特徴量を選択してくれるライブラリです。
- 初期段階でこのライブラリは使用できないので、pipコマンドでインストールをします。

■ pipは、Pythonのパッケージ管理ツールで、ライブラリのインストールにも使用できます。

ダミーデータの追加

- Borutaの性能を測る前に、アヤメのデータセットにあらかじめダミーデータを追加します。
- Borutaを実行した結果、ダミーデータを除外したら成功です。

import numpy as np #100列分のダミーデータを追加 df_lie = pd.DataFrame(np.random.randint(0,10,size=(150, 100)), columns=['dummy']*100) iris_df_L = pd.concat([iris_df, df_lie], axis=1) display(iris_df_L.head())

ランダムフォレストアルゴリズムを利用して Borutaの実行

#borutaで、特徴量の抽出 from boruta import BorutaPy rf = RandomForestClassifier(random_state=0, n_estimators=10) iris_dfL_X = iris_df_L.drop(obj_var,axis=1) #説明変数(目的変数以外) iris_dfL_y = iris_df_L[obi_var] #目的変数 (trainL_X, testL_X, trainL_y, testL_y) = train_test_split(iris_dfL_X, iris_dfL_y, test_size=0.3, random_state=0) feat_selector = BorutaPy(rf, n_estimators='auto', # 特徴量の数に比例して、木の本数を増やす verbose=2, # 0: no output,1: displays iteration number,2: which features have been selected already alpha=0.05, # 有意水準 max_iter=10, # 試行回数 random_state=1

実行

feat_selector.fit(trainL_X.values, trainL_y.values)

結果

Confirmed: Tentative: Rejected:

95

特徴量数:104

重要な特徴量:4

どちらとも言えない:5

必要ない:95

何が選択されたかを確認

- print(feat_selector.support_)
- True True True False Fal

- 先頭の4つが選択されている。(True)
- ダミーデータは後ろに追加しているので、正しく選択されいる事がわかる。

選択されたデータのみを抜き出す

train_X_selected = trainL_X.iloc[:,feat_selector.support_]
test_X_selected = testL_X.iloc[:,feat_selector.support_]
display(train_X_selected.head())
display(test_X_selected.head())

- feat_selector.support_が「True」のデータを抜き出し、新たなデータフレームを作成する。
- 今回は、元々のデータに戻るだけなので、意味はない。

機械故障率

- 機械の故障率を求めるデータセットを使用して、故障予測を行ってみる。
- データダウンロード先
 - https://github.com/IBM/iot-predictiveanalytics/blob/master/data/iot_sensor_dataset.csv

	footfall	atemp	selfLR	ClinLR	DoleLR	PID	outpressure	inpressure	temp	fail
1	0	7	7	1	6	6	36	3	1	1
2	190	1	3	3	5	1	20	4	1	0
3	31	7	2	2	6	1	24	6	1	0
4	83	4	3	4	5	1	28	6	1	0
5	640	7	5	6	4	0	68	6	1	0
6	110	3	3	4	6	1	21	4	1	0
7	100	7	5	6	4	1	77	4	1	0
8	31	1	5	4	5	4	21	4	1	0