Rozpoznávanie obrazcov - 5. cvičenie Redukcia dimenzionality

Viktor Kocur viktor.kocur@fmph.uniba.sk

DAI FMFI UK

16.3.2020

PCA princíp

PCA motivácia

PCA matematika

Vlastné vektory a čísla

Nech \mathbb{A} je matica $n \times n$, potom nenulový vektor $\vec{v} \in \mathbb{R}^n$ je vlastný vektor matice \mathbb{A} s vlastným číslom $\lambda \in \mathbb{C}$ ak platí: $\mathbb{A}\vec{v} = \lambda \vec{v}$.

Hermitovské matice

Hermitovské matice majú iba reálne vlastné čísla. Taktiež je možné vždy ku každému vlastnému číslu nájsť reálny vlastný vektor.

PCA matematika

Kovariancia

$$cov(X, Y) = \frac{\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})}{n}$$

Kovariančná matica

$$COV(X)_{i,j} = cov(X_i, X_j)$$

Kovariančná matica

Kovariančná matica je Hermitovská a pozitívne semi-definitná.

PCA matematika

Matica vlastných vektorov

Z normalizovaných vlastných vektorov $v_1...v_n$ zostavíme maticu $(v_1, v_2, ..., v_n)$. Značíme \mathbb{W} .

PCA

PCA spočíva v tom, že vlastné vektory kovariančnej matice reprezentujú ortogonálnú bázu v ktoré je kovariančná matica dát diagonálna.

PCA - postup

Naše dáta najprv centrumjeme $\vec{x}' = \vec{x} - \overline{x}$. Potom vypočítame \mathbb{W} . Nové dáta dostaneme maticovým násobením $y = \vec{x}' \mathbb{W}^T$, ak je vektor \vec{x} riadkový. Vlastné čísla korešpondujú k podielu celkovej variancie v danom smere. Podiel vlastného čísla so súčtom vlastných čísiel určuje aký podiel variancie vie daný smer vysvetliť.

Postup matlab

Načítanie dát

load data.mat

Úloha

Zobrazte si dáta v 2D plote.

Postup matlab

cov

cov(A) - vráti kovariančnú maticu A

eig

[W, vals] = eig(A) - vráti maticu W s vlastnými vektormi a maticu vals s vlastnými čislami na diagonále.

Úloha

Aplikujte na dáta PCA a zobrazte si nový plot. Ktorá zložka zodpovedá akej variancii.

Riešenie

```
load data.mat
plot(data(:,1), data(:,2), 'r*');
centered = data - mean(data);
[W, eigenvals] = eig(cov(centered))
newdata = centered * W'
plot(newdata(:,1), newdata(:,2), 'r*');
ylim([-2 2]);
xlim([-2 2]);
disp(diag(eigenvals)/sum(diag(eigenvals)))
```

Matlab - pca

рса

[coeff,score, \sim , \sim ,explained,mu] = pca(X) - vráti transformačnú maticu coeff (naše \mathbb{W}^T), transformované dáta score, percentá na koľko vysvetĺujú varianciu jednotlivé smery a stredné hodnoty X.

Platí

score == (X - mu) * coeff

Platí

X == score * coeff' + mu

Úloha

Otestujte túto funkciu na data.mat

Matlab - pca

Dáta

load ovariancancer

gscatter

gscatter(obs(:,1), obs(:,2), grp) - zobrazí body z prvého a druhého stĺpca pre dáta a pridelí im farbu podľa príslušnosti v grp

Úloha

Zistite koľko príznakov potrebujete po aplikácii PCA, aby ste s dát v obs dostali 95 percent variancie. Čo ak niektoré vlastné čísla sú nulové?

Úloha

Zobrazte si prvé dva smery po PCA pomocou gscatter.

PCA - úlohy

Úloha

Pre dáta z data.mat zobrazte smery do ktorých PCA premetie dáta v originálnej súradnicovej sústave.

Úloha

Vytvorte funkciu ktorá zoberie obrázok a ako dáta vezme jednotlivé trojice RGB pixelov. Urobí PCA na týchto dátach a nastaví na posledný (alebo posledné dva) stĺpce nulu a prekonvertuje obraz naspäť do RGB.

Úloha

Pre PCA z druhej úlohy zobrazte v novom obrázku rôzne farby, ktoré môžete v tejto reprezentácii používať.

LDA

LDA.m

[Y, W, lambdas] = LDA(X, T) - pre dáta X a triedy T vráti nové hodnoty po transformácii Y, maticu W a hodnotu jednotlivých vlastných čísel.

Pozn

Y == X * W

Úloha

Načítajte si Fisherovu databázu (load fisheriris). A poronvajte LDA a PCA.

Úloha

Pre rôzne dvojice stĺpcov nakreslite do grafu smer do ktorého bude LDA premietať dáta.

LDA

LDA.m

MdlLinear = fitcdiscr(X,T) - vráti lineárny klasifikátor, ktorý využíva LDA. V projekte asi používajte toto.

Tutorial

https://www.mathworks.com/help/stats/create-and-visualize-discriminant-analysis-classifier.html