# SLIIT ACADEMY BSc (IT) Year 2, Semester 1



Design and Analysis of Algorithms
Introduction to Asymptotic notations
Anuruddha Abeysinghe
anuruddha.a@sliit.lk

### Lecture Overview

- Asymptotic Notations
  - O Notation
  - **⊕** Notation
  - $\boldsymbol{\Omega}$  Notation
- Selection Sort Algorithm
- Bubble Sort Algorithm



### **Asymptotic Notations**

What is Asymptotic Notation?

Asymptotic notations are the <u>mathematical notations</u> used to describe the running time of an algorithm. It used when the input tends towards a particular value or a limiting value.

Why we need of Asymptotic Notation?

- Ignore machine dependent constants.
- RAM Model have some problems.
- Exact analysis is very complicated
- Sufficiently large size of n.
- Growth of T(n) as n --> ∞

Step count is determined to be

$$c_1 n^2 + c_2 n + c_3$$
,  $c_1 > 0$ 

Let's take the ratio  $r(n) = \frac{c_2 n + c_3}{c_1 n^2}$ 



When n is large r(n) tends to zero.

• Since the term  $c_2n + c_3$  is not significant ,the run time is approximately

$$c_1 n^2$$

Let n<sub>1</sub>and n<sub>2</sub> be two large values of n. Therefore

$$\frac{t(n_1)}{t(n_2)} \longrightarrow \frac{n_1^2}{n_2^2}$$

Therefore the run time is expected to increase by a factor of 4 when the instance size is double(2).

Suppose that programs A and B perform the same task. Assume that one person has determined the step counts of these programs to be  $t_A(n)=2n^2+3n$  and  $t_B(n)=13n$ .

- Which program is the faster one ?
- What is the answer, if the step count of the program B is 2<sup>n</sup>+n<sup>2</sup>?

### **Graphs of functions**



There are three notations.

- **O** Notation
- **⊕** Notation
- $\Omega$  Notation

- Focus on what's important by abstracting away loworder terms and constant factors.
- How we indicate running times of algorithms.
- A way to compare "sizes" of functions:
  - O ≈ ≤ -- Consider the Upper Bound
  - $\Omega \approx \geq$  -- Consider the **Lower Bound**
  - $\Theta \approx =$  -- Consider the Both(Average)

### Big O - Notation

- Introduced by Paul Bechman in 1892.
- We use Big O-notation to give an <u>upper bound</u> on a function.

#### **Definition:**

```
O(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}.
```

Eg: What is the big O value of f(n)=2n + 6?

$$g(n)=n$$
 therefore  $f(n)=O(n)$ 

 $a_n x^n + ... + a_1 x + a_0$  is  $O(x^n)$  for any real numbers  $a_n, ..., a_0$  and any nonnegative number n.

### Big O - Notation(Contd.)

Find the Big Oh value for following fragment of code.

```
for i \leftarrow 1 to n for j \leftarrow 1 to i O(n^2)

Print j
```

### Big O - Notation(Contd.)

```
Assignment (s \leftarrow 1)
```

Addition (s+1)

Multiplication (s\*2)

Comparison (S<10)

O(1)

### Big O - Notation(Contd.)

Find the Big O value for the following functions.

(i) 
$$T(n) = 3 + 5n + 3n^2$$

(ii) 
$$f(n)= 2^n + n^2 + 8n + 7$$

(iii) 
$$T(n) = n + logn + 6$$

#### **Answers:**

- (i)  $O(n^2)$
- (ii)  $O(2^n)$
- (iii) O(n)

### Back to the example

#### Alternative calculation:

|                                      | COSt                                      | umes                |                           |
|--------------------------------------|-------------------------------------------|---------------------|---------------------------|
| $sum \leftarrow 0$                   | $c_1$                                     | 1                   |                           |
| for $i \leftarrow 1$ to $n$          | $c_2$                                     | n+1                 |                           |
| $sum \leftarrow sum + A[i]$          | $c_3$                                     | n                   |                           |
| $T(n) = c_1 + c_2 (n+1) + c_3 n = ($ | $(c_1 + c_2) + (c_1 + c_2) + (c_1 + c_2)$ | $(c_2 + c_3) n = c$ | $_4$ + $\mathbf{c_5}$ $n$ |
| $\rightarrow O(n)$                   |                                           |                     |                           |

Proof:  $c_4 + c_5 n \le c n \rightarrow \text{TRUE for } n \ge 1 \text{ and } c \ge c_4 + c_5$ 

### $\Omega$ - Notation

Which will provide the lower bound of the function.

#### **Definition:**

 $\Omega(g(n)) = \{ f(n) : \text{there exist positive constants c and } n_0 \text{ such that } 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0 \}$ 

ex:Find the  $\Omega$  value of the of functions.

(i) 
$$f(n)=6 *2^n + n^2$$

(ii) 
$$f(n)=3n + 2$$

#### $\Omega$ -notation

 $\Omega(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0 \}$ .



g(n) is an *asymptotic lower bound* for f(n).

### Θ - Notation

This is used when the function f can be bounded both from above and below by the same function g.

#### **Definition:**

 $\Theta(g(n)) = \{ f(n): \text{ there exist positive constant } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}$ 

### Θ - Notation

#### Θ-notation

 $\Theta(g(n)) = \{f(n) : \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}$ .

Lecture Notes for Chapter 3: Growth of Functions



g(n) is an *asymptotically tight bound* for f(n).

### **Analysis of Selection Sort Algorithm**

- This is an another efficient algorithm for sorting small number of elements.
- Selection Sort Algorithm consist of 5 main steps.
  - 1. Initialize the "min" as leftmost element
  - 2. Search the minimum value in the list
  - 3. Swap with leftmost value and minimum value
  - 4. leftmost "min" incremented by 1, to go for next occurance
  - 5. Repeat the process until the numbers are sorted

### Pseudocode for Selection Sort

```
Selection-SORT(A)
1 \text{ for } i = 1 \text{ to } n - 1
2 \quad min = i
       for j = i+1 to n
          if A[j] < A[min] then
              min = j;
         end if
      end for
        swap A[min] and A[i]
    end for
```

### Pseudocode for Bubble Sort

```
Bubble-SORT(A)
1 \text{ for } i = 1 \text{ to } n - 1
       for j = 1 to n-i
          if A[i] > A[i+1] then
3
               swap A[i] and A[i+1]
         end if
        end for
end for
```

### **Activity**

- Convert this number set into Acsending Order using,
  - Selection Sort
  - Bubble Sort

| 1.     3     9     7     4     1     5 |  |
|----------------------------------------|--|
|----------------------------------------|--|

# Questions???

# Thank You