Artificial Intelligence — Decision Trees 2

Yanghui Rao Assistant Prof., Ph.D School of Data and Computer Science, Sun Yat-sen University raoyangh@mail.sysu.edu.cn

基于信息增益的ID3模型

- Class label: buy_computer="yes/no"
- Compute the mutual information (互 信息) between *D* and each attribute *A*
- H(D)=0.940
- $H(D \mid A = "age") = 0.694$
- g(D,A="age")=0.246
- g(D,A="income")=0.029
- g(D,A="student")=0.151
- $g(D,A="credit_rating")=0.048$

"age"这个属性的条件 熵最小(等价于信息 增益最大),因而首 先被选出作为根节点

g(D,A)

=H(D)

 $-H(D \mid A)$

基于信息增益的ID3模型

对于下述数据集,采用ID3算法会得到哪个属性最重要?

userID	age	income	student	credit_rating	buys_computer
u1	<=30	high	no	fair	no
u2	<=30	high	no	excellent	no
u3	3140	high	no	fair	yes
u4	>40	medium	no	fair	yes
u5	>40	low	yes	fair	yes
u6	>40	low	yes	excellent	no
u7	3140	low	yes	excellent	yes
u8	<=30	medium	no	fair	no
u9	<=30	low	yes	fair	yes
u10	>40	medium	yes	fair	yes
u11	<=30	medium	yes	excellent	yes
u12	3140	medium	no	excellent	yes
u13	3140	high	yes	fair	yes
u14	>40	medium	no	excellent	no

基于增益率的C4.5模型

• Information gain (信息增益) measure is biased towards attributes with a large number of values

• C4.5 (a successor of ID3) uses gain ratio (增益率) to overcome the problem (normalization to information gain)

• 每次选取最大增益率的属性进行划分

基于增益率的C4.5模型

• $GainRatio_A(D)=Gain_A(D)/SplitInfo_A(D)$

$$SplitInfo_{A}(D) = -\sum_{j=1}^{\nu} \frac{|D_{j}|}{|D|} \times \log_{2}(\frac{|D_{j}|}{|D|})$$

• GainRatio_{A="income"}(D)=?

基于增益率的C4.5模型

• $GainRatio_A(D)=Gain_A(D)/SplitInfo_A(D)$

$$SplitInfo_{A}(D) = -\sum_{j=1}^{\nu} \frac{|D_{j}|}{|D|} \times \log_{2}(\frac{|D_{j}|}{|D|})$$

• GainRatio_{A="income"}(D)=?

 $SplitInfo_{A="income"}(D)$

$$= -\frac{4}{14} \times \log_2(\frac{4}{14}) - \frac{6}{14} \times \log_2(\frac{6}{14}) - \frac{4}{14} \times \log_2(\frac{4}{14})$$
$$= 0.926$$

• GainRatio_{A="income"}(D)=0.029/0.926=0.031</sub>

If a data set D contains examples from n classes, gini index, gini(D) is defined as

$$gini(D) = \sum_{j=1}^{n} p_{j}(1 - p_{j}) = 1 - \sum_{j=1}^{n} p_{j}^{2}$$

where p_j is the relative frequency of class j in D.

• If n=2, then gini(D) = 2p(1-p)

• If a data set D is split into two subsets D_1 and D_2 with sizes N_1 and N_2 respectively, the gini index of the split data contains examples from n classes, the gini index gini_{split}(D) is defined as

$$gini_{split}(D) = \frac{N_1}{N}gini(D_1) + \frac{N_2}{N}gini(D_2)$$

• The attribute which provides the smallest $gini_{split}(D)$ is chosen to split the node (need to enumerate all possible splitting points for each attribute).

D has 9 samples in buys_computer = "yes" and 5 in "no"

$$gini(D) = 1 - (\frac{9}{14})^2 - (\frac{5}{14})^2 = 0.459$$

• The attribute *income* partitions D into 10 in D_1 : {medium, high} and 4 in D_2

D has 9 samples in buys_computer = "yes" and 5 in "no"

$$gini(D) = 1 - (\frac{9}{14})^2 - (\frac{5}{14})^2 = 0.459$$

• The attribute *income* partitions D into 10 in D_1 : {medium, high} and 4 in D_2

$$gini_{income \in \{\text{medium}, \text{high}\}}(D) = \frac{10}{14}gini(D_1) + \frac{4}{14}gini(D_2)$$

$$= \frac{10}{14} \left(1 - \left(\frac{6}{10}\right)^2 - \left(\frac{4}{10}\right)^2 \right) + \frac{4}{14} \left(1 - \left(\frac{1}{4}\right)^2 - \left(\frac{3}{4}\right)^2 \right)$$

$$=0.450=gini_{income\in\{low\}}(D)$$

连续型属性的处理

• But how can we compute the gini index, information gain of an attribute that is **continuous-valued**?

连续型属性的处理

- But how can we compute the gini index, information gain of an attribute that is **continuous-valued**?
 - Given v values of A, then v-1 possible splits are evaluated. For example, the midpoint between the values a_i and a_{i+1} of A is $(a_i + a_{i+1})/2$

生成分类规则

- Represent the knowledge in the form of IF-THEN rules
- One rule is created for each path from the root to a leaf
- Each attribute-value pair along a path forms a conjunction
- The leaf node holds the prediction of classes
- Rules are easier for humans (可解释性) to understand

Overfitting problems

• An induced tree may overfit the training data, in which the performance on the training set does not generalize well to the test examples (*i.e.*, good performance on the training set while poor accuracy for unseen samples)

 The training error is 0, which classifies all warm-blooded vertebrates that do not hibernate as non-mammals

Name	Body Temperature	Four-Legged	Hibernates	Mammals?
salamander	cold-blooded	yes	yes	no
guppy	cold-blooded	no	no	no
eagle	warm-blooded	no	no	no
poorwill	warm-blooded	no	yes	no
platypus	warm-blooded	yes	yes	yes

 The training error is 0, which classifies all warm-blooded vertebrates that do not hibernate as non-mammals

Name	Body Temperature	Four-Legged	Hibernates	Mammals?
salamander	cold-blooded	yes	yes	no
guppy	cold-blooded	no	no	no
eagle	warm-blooded	no	no	no
poorwill	warm-blooded	no	yes	no
platypus	warm-blooded	yes	yes	yes

Humans, elephants and dolphins are all misclassified

- Models that make their classification decisions based on a small number of training records are susceptible to overfitting
 - Add more records for training a model

Name	Body Temperature	Four-Legged	Hibernates	Mammals?
salamander	cold-blooded	yes	yes	no
guppy	cold-blooded	no	no	no
eagle	warm-blooded	no	no	no
poorwill	warm-blooded	no	yes	no
platypus	warm-blooded	yes	yes	yes
human	warm-blooded	no	no	yes
dolphin	warm-blooded	no	no	yes
elephant	warm-blooded	yes	no	yes

Name	Body Temperature	Gives Birth	Four-Legged	Hibernates	Mammals?
porcupine	warm-blooded	yes	yes	yes	yes
cat	warm-blooded	yes	yes	no	yes
bat	warm-blooded	yes	no	yes	no
whale	warm-blooded	yes	no	no	no
salamander	cold-blooded	no	yes	yes	no
komodo dragon	cold-blooded	no	yes	no	no
python	cold-blooded	no	no	yes	no
salmon	cold-blooded	no	no	no	no
eagle	warm-blooded	no	no	no	no
guppy	cold-blooded	yes	no	no	no

Training set

Name	Body Temperature	Gives Birth	Four-Legged	Hibernates	Mammals?
human	warm-blooded	yes	no	no	yes
pigeon	warm-blooded	no	no	no	no
elephant	warm-blooded	yes	yes	no	yes
leopard shark	cold-blooded	yes	no	no	no
turtle	cold-blooded	no	yes	no	no
penguin	warm-blooded	no	no	no	no
eel	cold-blooded	no	no	no	no
dolphin	warm-blooded	yes	no	no	yes
spiny anteater	warm-blooded	no	yes	yes	yes
gila monster	cold-blooded	no	yes	yes	no

Testing set

The training error is 0
The error rate on the testing set is 30%

The training error rate is 20% The error rate on the testing set is 10%

- The training error can be reduced by increasing the model complexity
 - When the tree becomes too large, the training error rate continues to decrease
- While the test (generalization) error can be large because the model may accidentally fit some of the noise points in the training data
 - Too many branches, some may reflect anomalies due to noise or outliers

- The generalization error is estimated as the sum of
 - Training error
 - A penalty term for model complexity
- The training error for T_L is $e(T_L)=4/24=0.167$
- The training error for T_R is $e(T_R)=6/24=0.25$

Decision Tree, T_R

- In the case of a decision tree, let
 - *L* be the number of leaf nodes.
 - n_l be the l-th leaf node.
 - $m(n_l)$ be the number of training records classified by n_l .
 - $r(n_l)$ be the number of misclassified records by n_l .
 - $\zeta(n_l)$ be a penalty term associated with the node n_l .
- The resulting error e_c of the decision tree can be estimated as follows:

$$e_c = \frac{\sum_{l=1}^{L} \left(r(n_l) + \zeta(n_l) \right)}{\sum_{l=1}^{L} m(n_l)}$$

- We consider the previous two decision trees T_L and T_R .
- We assume that the penalty term is equal to 0.5 for each leaf node.
- The error estimate for T_L is

$$e_c(T_L) = \frac{4 + 7 \times 0.5}{24} = \frac{7.5}{24} = 0.3125$$

• The error estimate for T_R is

$$e_c(T_R) = \frac{6+4\times0.5}{24} = \frac{8}{24} = 0.3333$$

- Based on this penalty term, T_L is better than T_R .
- For a binary tree, a penalty term of 0.5 means that a node should always be expanded into its two child nodes if it improves the classification of at least one training record.
- This is because expanding a node, which is the same as adding 0.5 to the overall error, is less costly than committing one training error.

- Suppose the penalty term is equal to 1 for all the leaf nodes.
- The error estimate for T_L becomes 0.458.
- The error estimate for T_R becomes 0.417.
- Based on this penalty term, T_R is better than T_L .
- A penalty term of 1 means that a node should not be expanded unless it reduces the misclassification error by more than one training record.

决策树剪枝

- Two approaches to avoid overfitting
 - Prepruning: Halt tree construction early do not split a node if this would result in the goodness measure falling below a threshold
 - Difficult to choose an appropriate threshold
 - Postpruning: Remove branches from a "fully grown" tree—get a sequence of progressively pruned trees
 - Use a set of data different from the training data to decide which is the "best pruned tree"

决策树的选取方法

- Separate training and testing sets
- Use cross validation, *e.g.*, *k*-fold cross validation
 - Partition data set into k parts
 - Training on random (*k*-1) parts, testing on 1 part
 - Repeat *k* times

总结

- Deal with one attribute each time
- Continuous random variables should be split to discrete random variables

参考资料

- 两个连续变量的线性相关度,用协方差或相关系数来衡量
 - 非线性相关度: Maximal Information Coefficient (MIC). Detecting novel associations in large data sets, *Science*, 2011.
- 两个离散变量的相关度,用互信息度量
 - 互信息倾向于选择取值更多的离散型属性: A framework to adjust dependency measure estimates for chance, SDM, 2016.
 - Entropy evaluation based on confidence intervals of frequency estimates: application to the learning of decision trees, ICML, 2015.
 - Standardized mutual information for clustering comparisons: one step further in adjustment for chance, *ICML*, 2014.