Universitatea Politehnica Bucuresti

Proiect TIE Motion Detector Alarm Circuit

Facultatea de electronica telecomunicatii si tehnologia informatiei

Departamentul de electronica tehnologica si tehnici de interconectare

Studenti: Borcan Vlad-Cristian Preda Mihai-Radu Ursarescu Alexandru-Marian

Coordonator: prof. dr. ing. Norocel Dragos Codreanu

Cuprins

	Pagina
Date initiale de proiectare	1
Schema electrica	2
Descrierea functionarii schemei proiectate	3
Design Rules Check	4
Cross Reference	6
Bill of Materials	7
Wirelist	9
Verificarea neturilor	11
Layer Copper Top	12
Layer Copper Bottom	13
Layer Soldermask Top	14
Layer Soldermask Bottom	15
Layer Silkscreen Top	16
Layer Assemby	17
Layer Fabrication	18
Fisier de gaurire N.C. Drill	19
Concluzii	21
Bibliografie	22

DATE INITIALE DE PROIECTARE

Scopul proiectului de fata este de a realiza design-ul PCB al unui circuit de tip alarma cu detector de miscare, conform unei scheme electrice si a unor parametrii daţi.

Proiectul PCB va fi realizat folosind numai doua straturi si anume cele externe, TOP si BOTTOM. Toate componentele vor si plasate pe TOP, trasele de semnal vor avea lățimea de **0.25 mm**, trasele de alimentare vor avea lățimea de **1.2 mm**, iar spațierea in toate cazurile va fi de **0.35 mm**.

Placa va fi una dreptunghiulară cu dimensiunea de laturilor de 75mm, respectiv 60mm, se vor plasa **4 găuri de prindere**, in cele 4 colturi ale plăcii. Fiecare gaura se va afla de distanta de **2 M** de coltul in dreptul căreia a fost plasat.

In continuare va fi prezentata o scurta descriere a circuitului, schema electrica echivalenta in programul OrCAD Capture, si layer-ele proiectului PCB.

Descrierea functionarii schemei

Această alarmă cu detector de mișcare poate detecta o persoană în mișcare de la o distanță de 1 metru. Utilizează un modul dublu emițător-receptor IR HOA1405. Când senzorul detectează razele IR reflectate, alarma va suna timp de 2 minute. Circuitul poate fi modificat pentru diverse aplicații, inclusiv sisteme de alarmă cu curent alternativ.

Elementul principal din circuitul detectorului de mișcare este senzorul dublu IR reflectiv HOA1405. Are o diodă IR încorporată și un tranzistor foto NPN. Acoperirea neagră a modulului filtrează razele de lumină vizibilă și permite razelor IR să cadă pe tranzistorul foto.

Când fototranzistorul primește raze IR, conduce. Colectorul fototranzistorului este conectat la pinul de declanșare 2 al unui temporizator monostabil de scurtă durată construit în jurul IC NE 555.

Cu valorile date de R4 și C2, ieșirea lui IC1 rămâne ridicată timp de două minute pentru a aprinde LED-ul și pentru a activa soneria. În starea de așteptare, fototranzistorul din interiorul modulului Dual Reflector rămâne neconducător, deoarece baza sa nu primește raze IR.

Când o persoană vine în fața modulului, razele IR reflectate vor declanșa tranzistorul foto și colectorul acestuia ajunge la potențialul de masă. Acest lucru declanșează sunetele monostabile și de alarmă.

Elementul principal din circuitul detectorului de mișcare este senzorul dublu IR reflectiv HOA1405. Are o diodă IR încorporată și un tranzistor foto NPN. Acoperirea neagră a modulului filtrează razele de lumină vizibilă și permite razelor IR să cadă pe tranzistorul foto.

Când fototranzistorul primește raze IR, conduce. Colectorul fototranzistorului este conectat la pinul de declanșare 2 al unui temporizator monostabil de scurtă durată construit în jurul IC NE 555.

Cu valorile date de R4 și C2, ieșirea lui IC1 rămâne ridicată timp de două minute pentru a aprinde LED-ul și pentru a activa soneria. În starea de așteptare, fototranzistorul din interiorul modulului Dual Reflector rămâne neconducător, deoarece baza sa nu primeste raze IR.

Când o persoană vine în fața modulului, razele IR reflectate vor declanșa tranzistorul foto și colectorul acestuia ajunge la potențialul de masă. Acest lucru declansează sunetele monostabile și de alarmă.

Design Rule Check

Date and Time: 05/25/23 15:05:52

Checking Schematic: SCHEMATIC1

Checking Electrical Rules

Checking For Single Node Nets

Checking For Unconnected Bus Nets

Checking Physical Rules

Checking Pins and Pin Connections

Checking Schematic: SCHEMATIC1

INFO(ORCAP-2242): Checking Incorrect Pin Group Assignment

Report for Invalid References

Report for Duplicate References

Checking Entire Design: PROIECT TIE

Checking Power Pin Visibility

Checking Normal Convert View Sync

INFO(ORCAP-36105): Checking Missing Pin Numbers

Checking Device with Zero pins

INFO(ORCAP-36101): Checking Missing PCB Footprint Property

Checking Name Property for Hierarchical Instances

INFO(ORCAP-2211): Check High Speed Properties Syntax

INFO(ORCAP-2212): Check Power Ground Mismatch

QUESTION(ORCAP-1589): Net has two or more aliases - possible short?

U3,VCC VCC +12V

SCHEMATIC1, PAGE1 (3.30, 1.20)

Reporting	Unused Refdes in multiple	part packages
Part	Quantity	Reference

Cross-Reference

Revised: Thursday, May 25, 2023 Revision:

Design Name: C:\USERS\RADU\DOCUMENTS\TIE\PROIECT\TIE PROIECT ARHIVA\PROIECT TIE.DSN

Cross Reference June 1,2023 15:59:04 Page1

Item Part Reference SchematicName SheetLibrary

1 1K R1 SCHEMATIC1/PAGE1 1 C:\CADENCE\SPB 17.2\TOOLS\ CAPTURE\LIBRARY\DISCRETE.OLB 1K 2 R2 SCHEMATIC1/PAGE1 C:\CADENCE\SPB 17.2\TOOLS\ CAPTURE\LIBRARY\DISCRETE.OLB 3 10nF C1 SCHEMATIC1/PAGE1 1 C:\CADENCE\SPB 17.2\TOOLS\ CAPTURE\LIBRARY\DISCRETE.OLB 100k R4 SCHEMATIC1/PAGE1 1 C:\CADENCE\SPB 17.2\TOOLS\ CAPTURE\LIBRARY\DISCRETE.OLB 100uF/16V C2 SCHEMATIC1/PAGE1 5 1 C:\CADENCE\SPB 17.2\ TOOLS\CAPTURE\LIBRARY\DISCRETE.OLB 470 R3 SCHEMATIC1/PAGE1 1 C:\CADENCE\SPB 17.2\TOOLS\ CAPTURE\LIBRARY\DISCRETE.OLB 555 U3 SCHEMATIC1/PAGE1 1 C:\CADENCE\SPB 17.2\TOOLS\ CAPTURE\LIBRARY\PSPICE\IR SENSOR.OLB CON₂ J1 SCHEMATIC1/PAGE1 1 C:\CADENCE\SPB 17.2\ TOOLS\CAPTURE\LIBRARY\CONNECTOR.OLB 9 IR sensor U5 SCHEMATIC1/PAGE1 C:\CADENCE\SPB 17.2\ TOOLS\CAPTURE\LIBRARY\PSPICE\IR SENSOR.OLB 10 buzzer U4 SCHEMATIC1/PAGE1 1 C:\CADENCE\SPB 17.2\ TOOLS\CAPTURE\LIBRARY\PSPICE\IR SENSOR.OLB SCHEMATIC1/PAGE1 1 11 led D1 C:\CADENCE\SPB 17.2\TOOLS\ CAPTURE\LIBRARY\DISCRETE.OLB

BOM

Bill Of Materials			June 1,2023	15:57:29	Page1
Item Quantity			Reference Part		
1	1	C1	10nF		
2	1	C2	100uF/16V		
3	1	D1	led		
4	1	J1	CON2		
5	2	R1,F	R2 1k		
6	1	R3	470		
7	1	R4	100k		
8	1	U3	555		
9	1	U4	buzzer		
10	1	U5	IR sensor		

вом

Nr Crt	Referinta	Componenta	Descriere	Montare	Capsula	Producator	Distributor	Datasheet	Link distributor	Cantitate	Pret bucata(RON)	Cantitate Minima	Pret Total(RON)
1	. 555	NE555	Precision Timer IC, Timing Microseconds to Hours, TTL, Astable, Monostable, 4.5 V to 16 V, SOIC-8	SMD	SOIC8	Texas Instruments	Farnell	https://www.ti.com/lit	https://ro.farnell.com/	1	5.95	5 1	5.95
2	HOA1405	IR sensor	Reflective Photo Interrupter, EE-SB5 Series, Phototransistor, Panel Mount, 5 mm, 50 mA, 4 Vr	THT	JUMPER4	OMRON ELECTRONIC COMPONENTS	Farnell	https://www.farnell.c	https://ro.farnell.com/	1	41.75	5 1	41.75
3	R1,R2	1k	Through Hole Resistor, 1 kohm, MF25, 250 mW, ± 1%, Axial Leaded, 250 V	тнт	RES500	MULTICOM PRO	Farnell	https://www.farnell.c	https://ro.farnell.com/	2	2 0.45	10	4.5
4	R3	470	Through Hole Resistor, 470 ohm, MCF, 250 mW, ± 5%, Axial Leaded, 250 V	THT	RES500	MULTICOM PRO	Farnell	https://www.farnell.c	https://ro.farnell.com/	1	0.23	10	2.3
5	R4	100k	Through Hole Resistor, 100 kohm, MCF, 250 mW, ± 5%, Axial Leaded, 250 V	THT	RES500	MULTICOM PRO	Farnell	https://www.farnell.c	https://ro.farnell.com	1	0.23	10	2.3
6	C1	10n	General Purpose Film Capacitor, Metallized PET Stacked, Radial Box - 2 Pin, 10000 pF, ± 5%, 40 V	тнт	CAPK06	EPCOS	Farnell	https://www.farnell.c	https://ro.farnell.com/	1	0.84		j 4.2
7	C2	100u	Electrolytic Capacitor, 100 μF, 16 V, ± 20%, Radial Leaded, 2000 hours @ 85°C, Polar	THT	CAP196	KEMET	Farnell	https://connect.keme	https://ro.farnell.com	1	0.4	10) 4
8	Led	LED	Flashing LED, Pro Signal 3mm Red Flashing LEDs, Red, 3mm, 500 mcd, 1.8 Hz	THT	Cap196	PRO SIGNAL	Farnell	https://www.farnell.c	https://ro.farnell.com/	1	10.08	. 1	10.08
9	Buzzer	buzzer	Audio Indicator, 3 V to 28 V, Continuous, 90 dB, Sounder, 5 mA, Panel Mount	THT	JUMPER2	PROJECTS UNLIMITED	Farnell	https://www.farnell.c	https://ro.farnell.com/p	1	13.95	5 1	13.95
	•	•		•			•	•			•	Total	89.03

Wire list

Wire List

Revised: Thursday, May 25, 2023 C:\USERS\VLAD BORCAN\DESKTOP\TIE PROIECT ARHIVRevision:

<pre><< Component List >>> 10nF 100uF/16V led CON2 1k 1k 1k 470 100k 555 buzzer IR sensor</pre>	C1 C2 D1 J1 R1 R2 R3 R4 U3	CAPCK06 CAP196 CAP196 JUMPER2 RES500 RES500 RES500 RES500 SOIC8 JUMPER2
IR sensor	U5	JUMPER4
<<< Wire List >>> NODE REFERENCE PIN #	PIN NAME	

NODE	REFERENCE	PIN #	PIN NAME	PIN TYPE	PART VALUE
[00001]	+12V R1 R4 U3 U3 J1 R2	1 1 4 8 1	1 1 RST VCC 1	Passive Passive Input Power Passive Passive	1k 100k 555 555 CON2 1k
[00002]	GND C1 C2 U3 D1 U4 J1 U5	1 2 1 2 1 2 3 4	1 2 GND CATHODE 1 2 3	Passive Passive Power Passive Passive Passive Passive	10nF 100uF/16V 555 led buzzer CON2 IR sensor IR sensor
[00003]	N001441 R3 D1	2 1	2 ANODE	Passive Passive	470 led
[00004]	N001781 C1 U3	2 5	2 CV	Passive Input	10nF 555
[00005]	N00401 R1 U5	2 1	2 1	Passive Passive	1k IR sensor

[00006]	N00405 U3 U5 R2	2 2 2	TRG 2 2	Input Passive Passive	555 IR sensor 1k
[00007]	N00695				
	R3	1	1	Passive	470
	U3	3	0UT	Output	555
	U4	2	2	Passive	buzzer
[80000]	N00702				
	R4	2	2	Passive	100k
	C2	1	1	Passive	100uF/16V
	U3	6	THR	Input	555
	U3	7	DSCHG	Passive	555

Verificarea Net-urilor

Layer Copper Top

Layer Copper Bottom

Layer Soldermask Top

Layer Soldermask Bottom

Layer Silkscreen Top

Layer Assembly

Layer Fabrication

	DRILL CHART: TOP	to BOTTOM						
ALL UNITS ARE IN MILS								
FIGURE	FINISHED_SIZE	PLATED	QTY					
•	13.0	PLATED	8					
0	36.0	PLATED	20					
0	42.0	PLATED	2					
X	125.0	NON-PLATED	4					

STACKUP TABLE									
	Unit = Mils								
#	NAME	TYPE	THICKNESS	TOLERANCE					
		SURFACE	AIR	0	+0/-0				
1	TOP	CONDUCTOR	COPPER	1.2	+0/-0				
		DIELECTRIC	FR-4	8	+ 0 / - 0				
2	BOTTOM	CONDUCTOR	COPPER	1.2	+ 0 / - 0				
		SURFACE	AIR	0	+ () / - ()				
		TOTAL	10.4						

Fisier de gaurire N.C. Drill

Processing NC Parameters file 'nc param.txt' ...

NC PARAMETERS

SCALE

FORMAT 2.5 MACHINE-OFFSET x:0.00000 y:0.00000 (inch) FEEDRATE 1 COORDINATES **ABSOLUTE** OUTPUT-UNITS **ENGLISH** COL-OKDER
REPEAT-CODES
SUPPRESS **INCREASING** YES SUPPRESS-LEAD-ZEROES NO SUPPRESS-TRAIL-ZEROES NO SUPPRESS-EOUAL NO TOOL-SELECT NO HEADER none LEADER 12 **ASCII** CODE SEPARATE NO SEPARATE-ROUTING NO OPTIMIZE DRILLING NO ENHANCED EXCELLON NO

1.000000

WARNING(SPMHMF-358): Design precision is the same as that of the drill output file data.

WARNING(SPMHMF-359): Data rounding errors may still be possible.

Drill files being output to directory

'C:/Users/Radu/Documents/TIE/Proiect/TIE proiect arhiva' ...

'PROIECT TIE_v2-1-2.drl' created for holes connecting TOP and BOTTOM

Num S	Size +	/- Tol	erance	Plating	Quant	ity	
1. 13.00 2. 36.00 3. 42.00	0.0	000/	0.0000 0.0000 0.0000	PLATE PLATE PLATE	D	8 20 2	
4. 125.0		-		NON_PL		_	4
Total hole	es:			34			

---- Total head travel: 2.57 feet (0.78 meters)

Concluzii

Schema electrica a fost realizata in Orcad Capture, folosind atat simboluri din librariile programului, cat si simboluri realizat in mod special pentru acest proiect, pentru buzzer si senzorul de IR. Dupa verificarea DRC si a net-urilor, schema electrica a fost transmisa catre PCB Editor. Aici a fost realizat conturul placii si gaurile de prindere, apoi s-au plasat componentele pe placa, lasandu-se suficient spatiu pentru trasee. Trasarea efectiva a durat aproximativ o jumatate de ora si a incercat sa minimizeze lungimea traseelor si trecerile de pe o parte pe alta a placii. Mai mult de atat, avand multe componente THT, am incercat si sa rutam pe stratul "Bottom" legaturile dintre acestea, pentru a pastra stratul "Top" pentru legaturile integratului. In final, s-a realizat stratul "Silkscreen", s-au generat fisierele gerber, N.C. Drill si s-a alcatuit acest proiect.

In concluzie, proiectarea PCB necesita o atentie deosebita la detalii si o cunoastere buna a scopului pentru care este proiectat un anumit circuit. Cand acesta din urma nu este specificat, cade la latitudinea proiectantului sa-i gaseasca o aplicatie practica si sa conceapa design-ul cu aceasta utilizare in minte. Pentru o alarma de miscare al carei scop este sa alerteze stapanul cand animalul de companie pleaca sau vine de afara, senzorul si buzzer-ul trebuie puse astfel incat sa identifice miscarea, repsectiv sa atraga atentia stapanului, in timp ce placa fizica trebuie sa fie pusa suficient de departe incat un catel curios sau o pisica curioasa sa nu o darame.

Acest proiect a fost realizat folosind principiul "trei capete sunt mai bune decat unul". Fiecare membru al echipei a participat si s-a implicat in fiecare pas de proiectare, folosindu-ne in principal de "brainstorming" si cunostintele fiecaruia pentru a lua deciziile importante privind proiectul.

Bibliografie

- https://www.electroschematics.com/motion-detector-alarm/
 https://ro.farnell.com
 https://octopart.com