SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO-MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK

Anto Čabraja

PARALELNI ALGORITMI ZA PROBLEM GRUPIRANJA PODATAKA

Diplomski rad

Voditelj rada: prof. dr. sc. Goranka Nogo

Zagreb, srpanj 2014.

Ovaj diplomski rad obranjen je dana	pred ispitnim povjerenstvom
u sastavu:	
1.	, predsjednik
2.	, član
3.	, član
Povjerenstvo je rad ocijenilo ocjenom	·
	Potpisi članova povjerenstva:
	1.
	2.
	3.

Sadržaj

Sa	držaj	
	0.1	Problem grupiranja podataka
	0.2	Primjena
	0.3	Pregled rada
1	Mod	leliranje problema grupiranja
	1.1	Osnovni pojmovi
	1.2	Matematičko modeliranje problema
	1.3	Metode razvoja algoritama za grupiranje
	1.4	Upravljanje podacima
2	Met	aheuristike
	2.1	Prirodom inspirirani algoritmi
	2.2	Reprezentacija podataka
	2.3	Analiza rezultata
3	Pozi	nati algoritmi i analiza
	3.1	Alg 1
	3.2	Alg 2
	3.3	Alg 3
4	Teh	nike za paralelizaciju algoritama
	4.1	Osnovni pojmovi MPI tehnologije
	4.2	Topologija
	4.3	Prednosti paralelizacije i cijena komunikacije
5	Kon	strukcija paralelnih algoritama za grupiranje
	5.1	Algoritam 1 heurisika
	5.2	Algoritam 2 iterativno
	5.3	Algoritam 3 hibrid

iv	SADRŽAJ

6	Osta	ale moderne metode	15
	6.1	Programiranje na grafičkim karticama	15
	6.2	MapReduce metoda	15
Bi	bliog	rafija	17

Uvod

- 0.1 Problem grupiranja podataka
- 0.2 Primjena
- 0.3 Pregled rada

Modeliranje problema grupiranja

1.1 Osnovni pojmovi

Kako bi u daljnjem razmatranju bilo jednostavnije objašnjavati strukture i same implementacije algoritama potrebno je problem grupiranja reprezentirati osnovnim pojmovima. U nastavku ćemo formalno definirati sve komponente od kojih se problem grupiranja sastoji.

Definicija 1.1.1. *Uzorak* je apstraktna struktura podataka koja reprezentira stvarne podatke s kojima raspolaže algoritam za grupiranje.

Definicija 1.1.2. *Svojstvo* je vrijednost ili struktura koja predstavlja jednu značajku danog podatka unutar uzorka.

Definicija 1.1.3. *Udaljenost* između uzoraka definiramo kao funkciju $f: D - > \mathbb{R}$, gdje je D skup svojstava danih uzoraka

Definicija 1.1.4. Za uzorke kažemo da su **blizu** jedan drugome ako je njihova udaljenost manja od unaprijed zadane veličine

Definicija 1.1.5. *Klaster* je skup uzoraka koji su u prostoru podataka blizu. Ako su uzorci identični onda je njihova udaljenost uvijek 0

Definicija 1.1.6. *Jednistveno grupiranje* je postupak grupiranja kada svaki uzorak pripada jednom i samo jednom klasteru.

Definicija 1.1.7. *Nejasno ili nejedinstveno grupiranje* je postupak grupiranja gdje jedan uzorak može biti u više klastera.

Napomena 1.1.8. U radu ćemo promatrati jedinstveno grupiranje tako da će sve daljnje definicje i modeliranja predpostavljati da želimo dobiti disjunktne klastere. Jedinstveno grupiranje (eng: hard clustering) je ujedno i teži problem.

1.2 Matematičko modeliranje problema

Definicija grupiranja podataka nije jedinstvena. U literati se na različite načine pokušava opisati ovaj postupak. Neki od pokušaja opisne definicije su:

- 1. Grupiranje podataka je postupak otkrivanja homogenih¹ grupa uzoraka unutar skupa svih danih uzoraka.
- Grupiranje podataka je postupak određivanja koji su uzorci slični te ih svrstati u isti klaster.

Za modelirali problem neće nam biti dovoljne opisne definicije. U ovom slučaju opisne definicje mogu poslužiti samo kao intuicija o ćemu se zapravo radi kada govorimo o grupiranju. U nastavku ćemo pomoću definiranih pojmova u poglavlju 1.1 matematički opisati problem grupiranja podataka.

Neka je $\mathbf{U} = \{U_1, U_2, \dots, U_n\}$ skup od n uzoraka,te neka je $U_i = (s_1, s_2, \dots, s_d)$ reprezentiran d-dimenzionalnim vektorom gdje s_i predstavlja jedno svojstvo. Ovako definiran \mathbf{U} moguće je reprezentirati kao matricu $\mathbf{S}_{d \times n}$. Svaki stupac te matrice predstavlja jedan uzorak iz danog skupa \mathbf{U} .

$$\mathbf{S}_{d \times n} = \begin{pmatrix} s_{1,1} & s_{1,2} & \cdots & \cdots & s_{1,n} \\ s_{2,1} & s_{2,2} & \cdots & \cdots & s_{2,n} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ s_{d,1} & s_{d,2} & \cdots & \cdots & s_{d,n} \end{pmatrix}$$
(1.1)

Iz definicje 1.1.6 te iz navedenog formalnog zapisa dajemo formalnu definiciju problema grupiranja.

Definicija 1.2.1. *Skup od k klastera* $C = \{C_1, C_2, ..., C_k\}$ *je skup sa sljedećim svojstvima:*

- $C_i \neq \Phi$
- $C_i \cap C_i = \Phi$, $\forall i, j \ i \neq j$
- $\bigcup_{i=1}^k C_i = \mathbf{U}$

Napomena 1.2.2. *U terminima matrice* \mathbb{Z} *to znači da se svaki* C_i *zapravo sastoji od stupaca matrice* \mathbb{Z} .

Definicija 1.2.3. *Problem grupiranja* u skup od k klastera C je ekvivalentan problemu da $\forall c, c' \in C_i$ udaljenost od c do c' je manja od udaljenosti c do bilo kojeg drugog $c'' \in C_j$ $j \neq i$

¹podaci koji se ne mogu smisleno separirati

5

Zapravo problem grupiranja je pronalazak najpogodnije particije za ${\bf C}$ u skupu svih mogućih particija. Prema napomeni 1.2.2 to znači da se zapravo radi o problemu raspodjele n stupaca matrice ${\bf Z}$ u k skupova

1.3 Metode razvoja algoritama za grupiranje

1.4 Upravljanje podacima

Meta-heuristički pristup problemu

- 2.1 Prirodom inspirirani algoritmi
- 2.2 Reprezentacija podataka
- 2.3 Analiza rezultata

Poznati algoritmi i analiza

- 3.1 Alg 1
- 3.2 Alg 2
- 3.3 Alg 3

Tehnike za paralelizaciju algoritama

- 4.1 Osnovni pojmovi MPI tehnologije
- 4.2 Topologije
- 4.3 Prednosti paralelizacije i cijena komunikacije

Konstrukcija paralelnih algoritama za grupiranje

5.1 Algoritam 1 heurisika

Opis

Analiza

5.2 Algoritam 2 iterativno

Opis

Analiza

5.3 Algoritam 3 hibrid

Opis

Analiza

Ostale moderne metode

- 6.1 Programiranje na grafičkim karticama
- 6.2 MapReduce metoda

Bibliografija

- [1] I. Autor, Naslov Knjige, Samizdat, 2052.
- [2] D. E. Dutkay, D. Han, Q. Sun i E. Weber, *Hearing the Hausdorff dimension*, (2009), http://arxiv.org/abs/0910.5433.
- [3] S. Kurepa, Convex functions, Glasnik Mat.-Fiz. Astr. Ser. II 11 (1956), br. 2, 89–93.
- [4] _____, Funkcionalna analiza, Školska Knjiga, 1981.

Sažetak

Ukratko ...

Summary

In this ...

Životopis

Na slici 1.1.7 se nalazi 3D graf neke funkcije.

Slika 6.1: Druga slika

kao i jedna vrlo komplicirana formula koja slijedi iz $(\ref{eq:constraint})$

$$\sum_{i=1}^{\infty} A_{x_1} \times A_{\alpha_2} \oslash \iint_{\Omega} x^2 \ddagger \limsup_{n \in \mathbb{N}} \frac{\alpha + \theta + \gamma}{n^{\omega}} \text{ je u stvari } \biguplus_{r \in \mathbb{Q}} \overline{\Xi_i} \underbrace{\Theta}_{\substack{j \in \mathbb{C} \\ j \ni i \mathbb{Q}}} \Upsilon^{kj} \Psi \hbar|_{\{\alpha\}}.$$