EE 599 Lab 2 Kartik Lakhotia (klakhoti@usc.edu)

1. BARREL SHIFTER

Simulation

Original sequence $ip = \{f, e, d, c, b, a, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0\}$

Rotate by sel = 11

Output = $\{a, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, f, e, d, c, b, \}$

a. 16-element shifter

<u>Timing Report – min clock period = 2.25 ns</u>

Netlist (complete design and single layer in the shifter network):

Utilization: 1.85% LUTs used

Name ^1	Slice LUTs (14400)	Slice Registers (28800)	Bonded IOB (54)	BUFGCTRL (32)
∨ N barrel	267	522	266	1
mult_gen[0].mult_inst (multiplexer)	66	129	0	0
mult_gen[1].mult_inst (multiplexer_0)	67	129	0	0
<pre>mult_gen[2].mult_inst (multiplexer_1)</pre>	67	129	0	0
mult_gen[3].mult_inst (multiplexer_2)	67	129	0	0
Name ^1	Slice LUTs (14400)	Slice Registers (28800)	Bonded IOB (54)	BUFGCTRL (32)
∨ N barrel	1.85%	1.81%	492.59%	3.13%
mult_gen[0].mult_inst (multiplexer)	0.46%	0.45%	0.00%	0.00%
==a(-1=				
mult_gen[1].mult_inst (multiplexer_0)	0.47%	0.45%	0.00%	0.00%
	0.47% 0.47%	0.45% 0.45%	0.00%	0.00%

Power: Total = 0.27 W, dynamic = 0.18 W

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power:

Design Power Budget:

Not Specified

N/A

Junction Temperature:

Thermal Margin:

Power Supplied to off-chip devices:

Confidence level:

Low

Launch Power Constraint Advisor
Invalid switching activity

Not Specified

N/A

28.1°C

71.9°C (6.0 W)

11.5°C/W

0 W

Low

Low

b. 64-element shifter

<u>Timing Summary:</u> Min clock period = 2.8 ns

Position	Clock Name	Period (ns)	Rise At (ns)	Fall At (n	s) Add	Clock	Source Objects	Source Fil	e Sc
1	clk	2.300	0.000	1.1	50		[get_ports clk]	<unsaved< td=""><td>d cc</td></unsaved<>	d cc
Double c	lick to create a	Create Clock	constraint						
Setup			Hold			Pulse	Width		
Worst Ne	gative Slack (WNS):	-0.469 ns	Worst Hold Slac	k (WHS):	0.127 ns	Wo	rst Pulse Width Slack (W	PWS):	0.650 ns
Total Neg	gative Slack (TNS):	-480.620 ns	Total Hold Slack	(THS):	0.000 ns	Tot	tal Pulse Width Negative	Slack (TPWS):	0.000 ns
Number o	of Failing Endpoints:	1024	Number of Failir	ng Endpoints:	0	Nu	mber of Failing Endpoint	S:	0
Total Nun	nber of Endpoints:	5669	Total Number of	f Endpoints:	5669	Tot	tal Number of Endpoints		3103
Timing cons	straints are not m	et.							

Netlist:

Utilization: 10.8% slice LUTs used

Name	^1	Slice LUTs (14400)	Slice Registers (28800)	Bonded IOB (54)	BUFGCTRL (32)
> N barrel		1557	3102	1036	1
Name	^1	Slice LUTs (14400)	Slice Registers (28800)	Bonded IOB (54)	BUFGCTRL (32)
> N barrel		10.81%	10.77%	1918.52%	3.13%

$\underline{Power:}\ 0.85W,\ dynamic=0.75W$

Summary

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 0.846 W Design Power Budget: **Not Specified** Power Budget Margin: N/A Junction Temperature: 34.8°C Thermal Margin: 65.2°C (5.4 W) Effective 8JA: 11.5°C/W Power supplied to off-chip devices: 0 W Confidence level: Launch Power Constraint Advisor to find and fix invalid switching activity

Utilization: 10.8% slice LUTs used

Name	^1	Slice LUTs (14400)	Slice Registers (28800)	Bonded IOB (54)	BUFGCTRL (32)
> N barrel		1557	3102	1036	1
Name	^1	Slice LUTs (14400)	Slice Registers (28800)	Bonded IOB (54)	BUFGCTRL (32)
> N barrel		10.81%	10.77%	1918.52%	3.13%

$\underline{Power:}\ 0.85W,\ dynamic=0.75W$

Summary

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 0.846 W Design Power Budget: **Not Specified** Power Budget Margin: N/A Junction Temperature: 34.8°C Thermal Margin: 65.2°C (5.4 W) Effective 8JA: 11.5°C/W Power supplied to off-chip devices: 0 W Confidence level: Launch Power Constraint Advisor to find and fix invalid switching activity

On-Chip Power Dynamic: 0.746 W (88%) Clocks: 0.077 W (10%) 88% Signals: 0.059 W (8%)(4%) Logic: 0.033 W 0.577 W (78%) 12% Device Static: 0.101 W (12%)

2. SYSTOLIC ARRAY

a. Matrix size = 4×4

Clocks required to multiply two $n \times n$ matrices = 3n - 2

Input and output matrix values at the end of computation can be seen at the top left of the waveform below.

$$ipA = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 6 \end{bmatrix}, ipB = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 6 \end{bmatrix}, omat = \begin{bmatrix} 14 & 20 & 26 & 32 \\ 20 & 30 & 40 & 50 \\ 26 & 40 & 54 & 68 \\ 32 & 50 & 68 & 86 \end{bmatrix}$$

Simulation waveform: (takes 10 cycles to compute output – from 65 ns to 165 ns)

Schematics (for 3×3 matrix multiplier for clarity):

Utilization Report:

Timing Report: Min clock period = 6ns

Power Consumption: 2.65 W, dynamic power = 2.52W Most of the power is in I/O though. Large amount of IO (three 16×16 matrices) is also affecting the synthesis results.

Summary

b. 32×32 matrix multiplication

Utilization: design doesn't fit on this fpga

Timing Report: Min clock period = 6.7ns

Dulco Width

erup		noid		Pulse Width	
Worst Negative Slack (WNS):	-0.716 ns	Worst Hold Slack (WHS):	0.140 ns	Worst Pulse Width Slack (WPWS):	2.500 ns
Total Negative Slack (TNS):	-38.261 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns
Number of Failing Endpoints:	127	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0
Total Number of Endpoints:	49317	Total Number of Endpoints:	49317	Total Number of Endpoints:	25248
•	Total Negative Slack (TNS): Number of Failing Endpoints:	Worst Negative Slack (WNS): -0.716 ns Total Negative Slack (TNS): -38.261 ns Number of Failing Endpoints: 127	Worst Negative Slack (WNS): -0.716 ns Worst Hold Slack (WHS): Total Negative Slack (TNS): -38.261 ns Total Hold Slack (THS): Number of Failing Endpoints: 127 Number of Failing Endpoints:	Worst Negative Slack (WNS): -0.716 ns Worst Hold Slack (WHS): 0.140 ns Total Negative Slack (TNS): -38.261 ns Total Hold Slack (THS): 0.000 ns Number of Failing Endpoints: 127 Number of Failing Endpoints: 0	Worst Negative Slack (WNS): -0.716 ns Worst Hold Slack (WHS): 0.140 ns Worst Pulse Width Slack (WPWS): Total Negative Slack (TNS): -38.261 ns Total Hold Slack (THS): 0.000 ns Total Pulse Width Negative Slack (TPWS): Number of Failing Endpoints: 127 Number of Failing Endpoints: 0 Number of Failing Endpoints:

Hold

Timing constraints are not met.

invalid switching activity

Satur

Power: Didn't model successfully

Summary

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation. Total On-Chip Power: 10.868 W (Junction temp exceeded!) Design Power Budget: **Not Specified** Power Budget Margin: N/A Junction Temperature: 125.0°C Thermal Margin: -50.3°C (-3.9 W) Effective 0JA: 11.5°C/W Power supplied to off-chip devices: 0 W Confidence level: Launch Power Constraint Advisor to find and fix

On-Chip Power Dynamic: 10.117 W (93%) Clocks: 0.133 W (1%)Signals: (5%)93% 0.548 W (7%) Logic: 0.746 W 87% **I/O**: 8.690 W (87%) 7% Device Static: 0.747 W