

Les Technologies sans fils

Plan:

- 1) Généralités
- 2) Les réseaux orientés téléphonies

GSM, GPRS, UMTS, LTE

3) Etude d'une norme particulière: 802.11

But : Communiquer avec différents systèmes sans utiliser de liaison filaire

Plusieurs normes concurrentes :

- •IrDA,
- liaison hertzienne, GSM, GPRS, UMTS, LTE (Long Term Evolution),...
- 802.11, 802.15, 802.16,...

Chaque norme correspond à une application bien spécifique.

WLAN: Wireless Local Area Network a été défini par

WECA: Wireless Ethernet Compatibility Alliance

(3com, Apple, Compaq, Dell, Lucent Technologies, Nokia,)

Utilisation de la bande ISM : Industriel, Scientifique et Médical

VLF LF MF HE VHF UHF SHF EHF IR 30 kHz 300 kHz 3 MHz 30 MHz 300 MHz 3 GHz 30 GHz 300 GHz 9 kHz THZ

VLF: Very Low Frequencies -> navigation maritime

LF: Low Frequencies -> aéronautique

MF: Medium Frequencies -> 500Khz et 2182 Khz = S.O.S, entre 535 et 1705 khz= Radio AM

<u>HF</u>: High Frequencies -> 6,7 Mhz=ISM, radio-diffusion sur onde courte

<u>VHF</u>: Very High frequencies ->entre 55 et 88 Mhz=Télé, entre 88 et 108 Mhz=radio FM,

communication satellite LEO, trafic aérien

<u>UHF</u>: Ultra High Frequencies -> entre 470 et 806 Mhz=Télé, 900, 1800, 2400 Mhz=ISM, trafic

aérien, 1600 Mhz=GPS, communication satellite LEO et MEO,

2400 Mhz = micro-onde

<u>SHF</u>: Super High Frequencies-> 5 et 5,7 Ghz = ISM, communication satellite

EHF: Extremely High Frequencies -> recherche spatiale

- Vers 1960, Création du port RS232 pour relier <u>deux</u> systèmes
- Amélioration de ce protocole pour souris et clavier -> PS2
- Evolution logique vers le sans fil, -> <u>IrDA</u>
 - •Pb : permet seulement la communication entre deux systèmes
- •Passage à l'USB pour relier plusieurs périphériques
- •Evolution logique vers le sans fil, -> Bluetooth v1.0, puis depuis 11/2004 Bluetooth v2.0
- UWB : Ultra Wide Band → successeur de usb sans fil (BP: de 3,1 à 10 Ghz)

Norme:

802.15.1 : Bluetooth v1.0 **WPAN** : Wireless Personal Area Network

802.15.2 : Amélioration de la norme sur la QoS

802.15.3 : Augmentation du débit et de la portée (54 Mbps et 100m, BP : 2,4 Ghz)

802.15.4 : Norme Zigbee (900 Mhz, 2,4 Ghz)

Norme 802.16:

- Réseau sans fil à large Bande
- Utilisation de la technologie BWA (Broadland Wireless Access)
- Débit jusqu'à 70Mb/s sur de grandes distances (20 km), BP de 2 à 11 Ghz
- Technique MIMO (Multiple Input/Multiple Output) -> plusieurs antennes en émission et en réception

Consortium WiMax (Worldwide Interoperability for Microwave Access)

Définition de la norme 802.16a, b, i,

But : relier les villages ne pouvant bénéficier de l'ADSL BLR (Boucle Local Radio)

Actuellement, 2 licences WiMax par région + 1 nationale

- deux choisis par l'ARCEP (auvergne : Maxtel et Bollore)
- une appartenant à Altitude Telecom (racheté par Iliad (free))

La norme 802.11

La norme **802.11** définit la couche 1 et 2 pour une liaison sans fil utilisant des ondes électromagnétiques :

- La couche physique
 - ♦ codage DSSS, FHSS, IrDA
- La couche Liaison de données
 - ◆ couche LLC et couche MAC

Cette norme permet d'avoir un débit de 1 ou 2Mb/s et elle utilise un accès au médium par compétition (méthode CSMA/CA)

(CA: Collision Avoidance)

Mais, évolution de cette norme Wi-Fi (Wireless Fidelity)

Wi-Fi

Nom de la norme	Nom	Description
802.11a	Wifi5	Débit : 54Mb/s, 8 canaux radio dans la bande de fréquence des 5 Ghz.
802.11b	Wifi	Débit : 11Mb/s, portée 300m, 3 canaux radio dans la bande de fréquence des 2,4 Ghz
802.11c	Pontage	Etablissement d'un pont pour la norme 802.11d
802.11d	International	Etablit les règles à respecter entre les différents pays pour transporter les données 802.11
802.11e	QoS	Définition d'une QoS
802.11f	Roaming	Interopérabilité entre les différents points d'accès pour permettre l'itinérance (définition de l'IAPP)
802.11g	Wifi	Débit : 54MB/s, portée 300m, compatible avec 802.11b
802.11h	?	Norme proche de HyperLan 2, réseau européen
802.11i	WPA2	Amélioration de la sécurité pour les normes a, b et g.
802.11j	?	Norme pour la communauté japonaise
802.11n	Wifi	Débit : 320 Mb/s avec intégration de la norme i

Topologies

- 2 Sortes d'équipement
 - Une station sans fil
 - un ordinateur muni d'une carte Wifi (carte PCI, PCMCIA, adaptateur USB, carte compactflash, ...)
 - Un point d'accès (Access Point) ou borne sans fil
 - joue le rôle de pont entre réseau filaire et sans fil
 - équipé : d'un émetteur/récepteur radio
 d'une carte réseau filaire
 d'un logiciel de pontage conforme à la norme 802.11d

Access Point

Topologies

♦ Mode Infrastructure

Au minimum , 1 AP + postes sans fil

BSS : Basic Service Set

- identifié par un BSSID (abrégé en SSID -> Service Set Identifier)

- Plusieurs BSS forment un ESS (Extended Service Set) relié par un DS (Système de Distribution)
 - identifié par un SSID

Possibilité de roaming si même SSID

Topologies

♦ Mode Ad-Hoc

Aucun AP, que des postes sans fil

IBSS: Independant Basic Service Set

- identifié par un SSID

• Problème pour le routage

Tout le monde doit voir tout le monde

ou

! Pc configuré comme routeur

Architecture en couches

♦ WiFI

PLCP: Physical Layer Convergence Procedure

PMD: Physical Medium Dependant

Physique -FHSS

♦ FHSS: Frequency Hoping Spread Spectrum

- Découpage de la bande de fréquence en 79 canaux de 1 Mhz, puis transmission en utilisant une combinaison de canaux connue de toutes les stations (78 combinaisons possibles)
- Emission sur un canal pendant 400ms, puis changement de canal, etc...
- Bande de fréquence entre 2,4 Ghz et 2,4835 GHz

Physique - DSSS

♦ DSSS: Direct Sequence Spread Spectrum

• Découpage de la bande de fréquence en 14 canaux de 22 Mhz, mais recouvrement des canaux -> utilisation des canaux 1, 6 et 11

Canal	1	2	3	4	5	6	7
Fréquence (Ghz)	2,412	2,417	2,422	2,427	2,432	2,437	2,442
Canal	8	9	10	#11	12 🦷	13	14
Fréquence (Ghz)	2,447	2,452	2,457	2,462	2,467	2,472	2,483

Pour éviter les collisions, on utilise le « chipping », c'est à dire faire une petite modulation pour faire apparaître plusieurs bits (séquence barker,11 bits) lorsque l'on émet un seul bit redondance de l'information _ ____

bit 1 = 10110111000, bit 0 = 01001000111

Physique - DSSS

Législation française

- Equipement fonctionnant sur 2400-2483,5 MHz autorisation de puissance :
 - 10 mW à l'intérieur
 - 2,5 mW à l'extérieur
- Equipement fonctionnant sur 2446,5-2483,5 Mhz autorisation de puissance de 100mW à l'intérieur et à l'extérieur (autorisation obligatoire ?)

Canal 10 : Fréquence 2,457 Ghz, mais BP de 20 Mhz d'où fréquence min -> 2, 447 Ghz

Canal 9 : Fréquence 2,452 Ghz, mais BP de 20 Mhz d'où fréquence min -> 2, 442 Ghz

Donc, en France, utilisation des canaux 10 à 13 -> 1 seul AP aux USA, utilisation des canaux 1 à 11.

Interdiction du 802.11a en extérieur.

Physique - OFDM

- **♦ OFDM : Orthogonal Frequency Division Multiplexing**
 - Basé sur la fréquence des 5 Ghz ou du 2,4 Ghz
 - Division du canal principal en sous canaux utilisés en parallèle
 - Un canal principal de 20 Mhz est divisé en 52 canaux de 300 Khz
 - Modulation différente pour chacun des canaux.
 - •Très utilisé pour le 802.11a 8 canaux de 20 Mhz entre 5,15 Ghz et 5,35 Ghz

Physique - Techniques de codage

- ♦ 802.11 : utilisation de modulation de phase
 - -> codage PSK : Phase Shift Keying
 - Technique BPSK: Binary Phase Shift Keying valence = 2
 - Technique QPSK: Quadrature PSK, valence = 4, d'ou débit *2
 - Technique CCK : Complementary Code Keying, basé sur séquence de Baker
 - -> encodage de 4 bits simultanément -> débit = 5,5 Mb/s
 - -> encodage de 8 bits simultanément -> débit = 11 Mb/s

Technologie	Fréquence	Modulation	Débit max
802.11	2,4 Ghz	BPSK	1 Mb/s
802.11	2,4 Ghz	QPSK	2 Mb/s
802.11b	2,4 Ghz	DSSS, CCK (4b)	5,5 Mb/s
802.11b	2,4 Ghz	DSSS, CCK (8b)	11 Mb/s
802.11a	5 Ghz	OFDM	54 Mb/s
802.11g	2,4 Ghz	OFDM	54 Mb/s

Couche liaison de données

♦ La couche MAC

- Similaire à la couche Mac ethernet
- Fonctionnalité
 - Contôle d'accès au support
 - Contrôle d'erreur par CRC
 - Fragmentation et réassemblage
 - Gestion de l'énergie
 - Gestion de la mobilité
- Deux méthodes d'accès pour le 802.11a, b, g
 - DCF (Distributed Coordination Function): utilisation pour les données asynchrones, collisions possibles
 - PCF (Point Coordination Function): utilisation pour les données synchrones, pas de collision.

Distributed Coordination Function

♦ DCF

Basé sur un accès CSMA/CA

Pour émettre :

- On écoute le support (ondes)
- Si libre pendant un temps donné (DIFS, Distributed Inter Frame Space)

-> transmission d'une trame Ready To Send (RTS) contenant les

informations sur le volume de données et la vitesse de transmission.

- -> réception d'un Clear To Send (CTS)
- -> envoie des données
- -> récupération d'un ACK pour chaque trame

Une station qui veut émettre doit attendre la libération du support. (NAV : Network Allocation Vector)

Pourquoi un ACK pour chaque trame?

2 stations peuvent vouloir émettre en même temps sans se voir.

Distributed Coordination Function

- ◆ DCF
 - Exemple de dialogue

SIFS: Short Inter Frame Space < PIFS: Prioritary < DIFS < EIFS (Extented)

Backoff: temps d'attente aléatoire pour que toutes les stations n'émettent pas en même temps.

Point Coordination Function

♦ PCF

- Permet le transfert de données temps-réel
- -> utilisation d'un AP qui prend le contrôle du support et choisit les stations ayant le droit d'émettre (mode infrastructure)
 - -> utilisation d'un temps PIFS pour prendre la main.

(non implémenté actuellement !!!)

- Le point d'accès scrute les différentes machines en mode PCF, puis passe en mode DCF s'il reste du temps.
 - -> reprend facilement la main car temps d'attente PIFS < DISF

Les Trames WiFI (1)

- 3 types de trames
 - Trames de données
 - Trames de contrôle (RTS, CTS, ACK)
 - Trames de gestion
- ♦ Toutes les trames sont composés des composants suivants :

Préambule	En- tête PLCP	Données MAC	CRC

PLCP: Physical Layer Convergence Procedure
-> renseigne sur la composition de la trame

Le préambule et le PLCP varie en fonction de l'interface physique utilisée (FHSS, DSSS, IrDA, OFDM)

Les Trames WiFI (2)

♦ FHSS

- Préambule
 - 80 bits (Synch): alternance 0 et 1 pour la synchronisation
 - 16 bits (SFD) : début de trame -> 0000110010111101
- En-tête :
 - 12 bits (Length) : longueur de la trame
 - 4 bits (Payload Signalling Field) : débit utilisé
 - 16 bits : CRC

♦ <u>DSSS</u>

- Préambule
 - 128 bits (Synch): alternance 0 et 1 pour la synchronisation
 - 16 bits (SFD): début de trame -> 11110011101010000
- En-tête :
 - 8 bits (Signal) : débit utilisé
 - 8 bits (Service): non utilisé-> que des 0
 - 16 bits (Length): longueur de la trame
 - 16 bits : CRC

Les Trames WiFI (3)

♦ IrDA

- Préambule
 - 73 bits (Synch): synchronisation
 - 4 bits (SFD) : début de trame
- En-tête :
 - 3 bits (Data rate) : débit utilisé
 - 32 bits :(Data Control Level Adjustement) : ajuste la vitesse
 - 16 bits (Length): longueur de la trame
 - 16 bits : CRC

◆ <u>OFDM</u>

- Préambule
 - 12 symboles: synchronisation
- En-tête :
 - 4 bits (Rate) : débit utilisé
 - 1 bit (Reserved): non utilisé-> que des 0
 - 4 bits (Length): longueur de la trame
 - 1 bit (Parity) : calcul de parité f
 - 10 bits : Tail+service, non utilisé -> que des 0

Les Trames WiFI (4)

Couche MAC pour les trames de données

Contrôle de trame 2 octets	Durée/ID 2 octets	Adresse 1 6 octets	Adresse 2 6 octets	Adresse 3 6 octets	Séquence 2 octets	Adresse 4 6 octets
Corps de l 0 à 2312		CR 4 oct				

◆ Contrôle de trame

1 (1 hit) 1 (1 hit) 1 (1 hit)	Version de protocole (2 bits)	Type (2 bits)	Sous-Type (4 bits)	To DS (1 bit)	From DS (1 bit)	More Frag (1 bit)	Retry (1 bit)	Power Mgt (1 bit)	More Data (1 bit)	WEP (1 bit)	Order (1 bit)
-------------------------------	-------------------------------	------------------	-----------------------	---------------	--------------------	-------------------------	------------------	-------------------------	-------------------------	----------------	------------------

Version: actuellement, 00

<u>Type</u>: 3 types, plusieurs sous-types (00 : gestion, 01:contrôle, 10 : données)

To DS ou From DS: trame vers ou en provenance du système de distribution

More fragment: 1, trame fragmenté et pas dernier fragment, 0 sinon

Retry: 1, retransmission

Power management: 1, économie d'énergie, 0 actif

More Data: 1 si d'autres donées à faire parvenir à la station

<u>WEP</u>: trame chiffrée ou non

order: Trame ordonné ou non

Les Trames WiFI (5)

Couche MAC pour les trames de données

Champ « durée/ID » : identifiant pour des trames polling de contrôle, ou durée pour calculer le NAV

Champ «Adresse » : même format que les adresses Mac (6 octets)

- DA: Destination Adresse: destination de la trame: individuelle ou groupe
- SA : Source Adresse : source de la trame : individuelle
- RA : Receiver Adresse : destination des données : individuelle ou groupe
- TA : Transmitter Adresse : source des données : individuelle
- BSSID : soit adresse MAC de l'AP, soit IBSS.

To DS	From DS	Adresse 1	Adresse 2	Adresse 3	Adresse 4
0	0	DA	SA	BSSID	Aucune
0	1	DA	BSSID	SA	Aucune
1	0	BSSID	SA	DA	Aucune
1.	1	RA	TA	DA	SA

Champ « contrôle de séquence » : numérotation des trames

Les Trames WiFI (6)

Couche MAC pour les trames de contrôle

Trame RTS

Contrôle de trame	Durée	RA	TA	FCS
2 octets	2 octets	6 octets	6 octets	2 octets

Trame CTS

Contrôle de trame	Durée	RA	FCS
2 octets	2 octets	6 octets	2 octets

Trame ACK

Contrôle de trame	Durée	RA	FCS
2 octets	2 octets	6 octets	2 octets

La Sécurité (1)

Quelques mot-clés pour la sécurité

- authentification
- confidentialité
- intégrité
- disponibilité
- non répudiation

♦ Les types d'attaque :

- Ecoute passive ou active → permet l'interception de données (WAR-CHALKING)
- → facile à réaliser car les données sont émises dans un rayon, difficilement détectable
- Intrusion réseau (intrusion, usurpation) par les employés, par virus,...
- Le brouillage radio (facilement détectable, mais très efficace)
- Les dénis de services

La Sécurité (2)

♦ Les contres mesures

- Limiter la puissance d'émission des bornes si possible éviter d'arroser le quartier
- Désactivation des services d'administration disponible (passwd admin) ou fermeture de port pour limiter les accès changement des mots de passes par défaut
- Changement de SSID par défaut (attribution d'un SSID)

 mais transmis en général par AP ou en méthode Ad-Hoc → Pb
- Désactivation du Broadcast du SSID
 mais visible dans les trames lors de l'association
- Filtrer les adresses MAC : utilisation des ACL (Access LISTS) des clients RLAN au niveau des bornes d'accès

mais possibilité de « voler » une adresse MAC (MAC Spoofing)

• Crypter les données

La Sécurité (3)

♦ Couche MAC pour la sécurité

Le cryptage

- Utiliser un codage pour les données

Le vecteur d'initialisation change à chaque trame envoyé, on lui rajoute 1

(assez facilement crackable si on connaît le 1er octet de M et IV)
Pb: faiblesse d'implémentation dans IV commencent à 0 puis
incrémentés de 1 à chaque envoi, vecteurs faibles

Actuellement, quelques dizaines de minutes pour cracker clé WEP

Si utilisation de WEP, alors codage supplémentaire : ssl, Ipsec, ssh,...

La Sécurité (4)

♦ Couche MAC pour la sécurité

Le cryptage (suite)

- Utiliser la norme 802.1x (WPA: Wifi protected Access ou WPA2)

=> concerne spécifiquement l'authentification

- 3 acteurs : -> le client (demandeur ou supplicant)
-> le point d'accès relais
(NAS : Network Access Server)
-> le serveur d'authentification = serveur RADIUS

codage en utilisant les trames **EAP**: Extensible Authentication Protocol

- Pour le chiffrement : remplacement de WEP par TKIP

Temporal Key Integrity Protocol (changement de clé souvent) (cela ne sert à rien de décrypter une clé si elle n'est plus utilisée)