

Universidade Federal do Piauí Laboratório de Inteligência Artificial - LINA

Introdução à Deep Learning

Bruno Vicente Alves de Lima

São redes neurais treinadas com o objetivo de copiar o sua entrada para o sua saída.

Na prática o objetivo é aprender representações (encodings) dos dados, que podem ser usadas para redução de dimensionalidade ou até mesmo compressão de arquivos.

O autoencoder foi introduzido em 1987 por Lecun et al.;

 Tradicionalmente usado para reduzir dimensionalidade e extração de características;

- Subdividido em:
 - ➤ Encoder Transforma a entrada em uma transformação Z;
 - ▶ Decoder Transforma a representação Z na reconstrução da entrada

ulletDado a entrada χ :

- Fincoder: z = f(wx + b)
- ightharpoonup Decoder: $\overline{x} = g(f(x))$

ullet Onde $\mathcal Z$ é o espaço de características e $\mathscr X$ a entrada reconstruída;

Deep Autoencoder

- ■Também chamado Stacked Autoencoder;
- Adiciona-se mais camadas ocultas;

Convolutional Autoencoder

Criação do Autoencoder usando Rede Neural Convolucional;

Treinamento Autoencoder

Usando o Gradiente Descendente e o algoritmo Backpropagation;

 Tradicionalmente usando Erro quadrático médio como função Custo;

$$L(x, \hat{x}) = ||x - \hat{x}||^2$$

Atualmente, utiliza-se também a entropia Cruzada:

$$H(p,q) = -\sum_{x} p(x) \log q(x)$$

Regularização do Autoencoder

Autoencoder Esparso

Regularização do Autoencoder

Denoising Autoencoder

Outras Redes Profundas

- Redes Neurais Recorrentes (RNN)
- ■Máquina de Boltzmman Restrita (RBM)
- Rede de Crenças Profundas

Neurais Long Short Term Memory (LSTM)

Universidade Federal do Piauí Laboratório de Inteligência Artificial - LINA

Introdução à Deep Learning

Bruno Vicente Alves de Lima