Лабораторная работа 4.3.2 ДИФРАКЦИЯ СВЕТА НА УЛЬТРАЗВУКОВОЙ ВОЛНЕ В ЖИДКОСТИ

А. Установка с вертикальной щелью

Аксенова Светлана

11 марта 2021 г.

Цель работы: изучение дифракции света на синусоидальной акустической решётке и наблюдение фазовой решётки методом тёмного поля.

В работе используются: оптическая скамья, осветитель, два длиннофокусных объектива, кювета с жидкостью, кварцевый излучатель с микрометрическим винтом, генератор ультразвуковой частоты, линза, вертикальная нить на рейтере, микроскоп.

1 Теоретическое введение

В работе изучается дифракция света на фазовой решётке, которая создаётся в жидоксти ультразвуковыми (УЗ) волнами и наблюдается методом тёмного поля. При прохождении УЗ-волны через жидкость в ней возникают периодические оптическим неоднородности, обусловленные разницей значений коэффициента преломления в областях сжатия и растяжения. Они играют роль своеобразной дифракционной решётки для проходящего сквозь жидкость света.

Пусть УЗ-волна распространяется вдоль оси X (рис. 1) в жидкости, налитой в стеклянную кювету. В направлении оси Z сквозь жидкость проходит световая волна, испытывающая дифракцию на акустической решётке, которую можно считать неподвижной, т.к. скорость света значительно больше скорости звука. Вызванное ультразвуком возмущение показателя преломления жидкости в нашем случае очень мало. При этом мы предполагаем, что акустическую решётку можно рассматривать как тонкий фазовый экран.

При небольших амплитудах звуковой волы показатель преломления жидкости n меняется по закону

$$n = n_0(1 + m\cos\Omega x),\tag{1}$$

где Ω - волновое число для УЗ-волны ($\Omega=2\pi/\Lambda$), Λ - длина УЗ-волны, m - глубина модуляции показателя преломления, определяемая интенсивностью ультразвуковой волны ($m\ll 1$).

Рисунок 1 – Дифракция световых волн на акустической решётке

Пусть фаза световых колебаний на передней поверхности жидкости равна нулю. Тогда на задней поверхности (т.е. в плоскости z=0) она равна

$$\phi = knL = \phi_0(1 + m\cos\Omega x),\tag{2}$$

где L - толщина слоя жидкости в кювете, k - волновое число для света ($k=2\pi/\lambda$), $\lambda=6400\pm200$ Å- длина световой волны (красный цвет), $\phi_0=kn_0L$. Таким образом, УЗ-волна в жидкости создаёт фазовую дифракционную решётку.

Условие тонкого транспоранта

$$m \ll \frac{\Lambda}{L} \sqrt{\frac{\lambda}{L}} \tag{3}$$

Следовательно, чисто фазовая акустическая решётка реализуется лишь на достаточно слабой УЗ-волне. При повышении мощности ультразвука акустическая волна начинает работать как сложная амплитудно-фазовая решётка.

После прохождения через кювету световое поле представляет совокупность не трёх, а большего числа плоских волн, распространяющихся под углами, определяемые условием

$$\Lambda \sin \theta_m = m\lambda \ (m = 0, \pm 1, \pm 2, \dots). \tag{4}$$

Каждая из этих волн соответствует одному из максимумов в дифракционной картине Фраунгофера.

Тогда, зная частоту ультразвуковой волны, можно определить скорость звука по формуле

$$v = \Lambda \nu \tag{5}$$

Рассматриваемая теория применима как для бегущий, так и для стоячих УЗ-волн.

2 Определение скорости звука по дифракционной картине

Схема установки для наблюдения дифракции света на УЗ-волнах изображена на рис. 2. В фокальной плоскости второго объектива O_2 образуется дифракционная картина, наблюдаемая при помощи микроскопа M. При этом обязательно применяют монохроматическое излучение (красный светофильтр).

Длина Λ ультразвуковой волны определяется с помощью формулы (4); в силу малости углов θ_m окончательное выражение может быть представлено в виде

$$l_m = mf \frac{\lambda}{\Lambda},\tag{6}$$

где l_m - измеренное на опыте линейное расстояние между m-м максимумом и нулевым максимумом, а $f=30~{\rm cm}\pm 1~{\rm cm}$ - фокурсное расстояние объектива.

Изменениями ширины щели S были получены оптимальные условия для наблюдениями дифракционных полос. Было получено, что при увеличении мощности ультразвука число полос уменьшилось с семи до одного, при уменьшении число полос уменьшилось до трёх.

Рисунок 2 – Схема наблюдения дифракции на акустической решётке

ν , М Γ ц	l_m/m , mm	Λ , mm	<i>v</i> , м/с	
$1,20 \pm 0,01$	0.157 ± 0.006	$1,22 \pm 0,07$	$1469,5 \pm 88,9$	
$3,00 \pm 0,01$	$0,405 \pm 0,005$	$0,474 \pm 0,022$	$1422,2 \pm 67,3$	
$2,00 \pm 0,01$	$0,285 \pm 0,018$	0.67 ± 0.05	$1347,4 \pm 106,3$	
$1,00 \pm 0,01$	0.1380 ± 0.0009	$1,39 \pm 0,06$	$1391,3 \pm 64,2$	
$v_{ m cp} = 1407.6 \pm 102.9 \; { m m/c}$				

Таблица 1 – Результаты проведённых расчётов для четырёх выбранных частот

Оценим с помощью микрометрического винта излучателя длину звуковой волны как удвоенное расстояние между двумя наиболее чёткими дифракционными картинами и рассчитаем длину волны

$$\Lambda = 1,30 \pm 0,1$$
 mm.

По показаниям частометра была определена рабочая частота

$$\nu = 1,20 \pm 0,01 \text{ M}$$
Гц.

Оценим скорость звука по формуле (5)

$$v = 1560 \pm 17 \; \text{m/c}.$$

Далее была измерены положения дифракционных максимумов x_m для нескольких частот, для каждой из который был построен график зависимости $x_m(\pm m)$. Была проведена аппроксимация методом наименьших квадратов (рис. 3). По наклону прямой для каждой частоты было определено расстояние между соседними полосами $l_m/m = \Delta x_m/\Delta m$, по формуле (6) рассчитана длина волны Λ и скорость ультразвука по формуле (5). Результаты представлены в таблице 1. Справочная величина, взятая из [1] для температуры 20°С

$$v_{
m табл} = 1484 \; {
m m/c}.$$

Результат, полученный экспериментально, отличается от данных справочника на 16.2%.

Рисунок 3 – График зависимости $x_m(\pm m)$ для выбранных частот

3 Определение скорости ультразвука методом тёмного поля

Схема установки для наблюдения акустической решётки методом тёмного поля представлена на рис. 4. Этот опыт можно проводить только со стоячими волнами, т.к. в случае бегущей волны визуальное наблюдение оказывается невозможным, глаз не успевает следить за быстро перемещающейся волной.

Для перехода к методу тёмного поля в поле зрения микроскопа с помощью микрометрического винта была введена вертикальная проволочка: резкое изображение нити должно совпадать с резким изображением щели. После этого ставят дополнительную линзу между микроскопом и отсчётным устройством. Пластинка с миллиметровыми делениями была опущена в воду и прижата к задней (по ходу лучей) стенке кюветы. Была определена цена деления окулярной шкалы: 1 мм = 18 делений. После калибровки микроскоп не сдвигался.

Далее центральный максимум был закрыт вертикальной нитью. Тогда в поле зрения микроскопа наблюдались чередующиеся светлые и тёмные полосы, причём расстояние между тёмными полосами соответствует смещению в плоскости кюветы на $\Lambda/2$. Таким образом, долго наблюдаться характерное для метода тёмного поля удвоение числа деталей рассматриваемой структуры.

В ходе эксперимента было измерено расстояние между самыми дальными из

Рисунок 4 – Наблюдение акустической решётки методом тёмного поля

ν , М Γ ц	Число промежутков	Λ , mm	<i>v</i> , м/с	
$1,07 \pm 0,01$	200	$1,11 \pm 0,11$	$1188,9 \pm 0,1$	
$1,26 \pm 0,01$	120	0.95 ± 0.14	1200 ± 0.14	
$1,19 \pm 0,01$	120	0.95 ± 0.14	$1133,33 \pm 0,14$	
$1,02 \pm 0,01$	160	$1,11 \pm 0,14$	$1133,333 \pm 0,12$	
$v_{ m cp} = 1163.8 \pm 71.1$				

Таблица 2 – Результаты проведённых расчётов для четырёх выбранных частот для метода тёмного поля

хорошо видимых в поле зрения тёмных полос и посчитано число промежутков между ними для нескольких значений частот. Для каждой частоты были рассчитаны длина УЗ-волны и скорость звука, результаты представлены в таблице 2. Полученный результат совпадает по порядку величины с данными, полученными в прошлых пунктах и с табличной величиной.

4 Вывод

В ходе работы было изучено явление дифракции света на синуациальной акустическо решётке, была проведена оценка и расчёт скорости звука в воде. Также скорость звука в воде была расчитана с помощью метода тёмного поля.

5 Список литературы

1. Лабораторный практикум по общей физике: учеб. пособие. В трёх томах. Т.2. Оптика / А. В. Максимычев, Д. А. Александров, Н. С. Берюлёв и др.; под ред. А. В. Максимычева. - М.: МФТИ, 2014. - 446 с.

6 Приложение

Ссылка на данные и их обработку