$AD_{\underline{}}$	
	(Leave blank)

Award Number: W81XWH-08-2-0171

TITLE: Circadian Genes and Risk for Prostate Cancer

PRINCIPAL INVESTIGATOR: Ann Hsing, Ph.D.

CONTRACTING ORGANIZATION: The Geneva Foundation

Tacoma, WA 98402

REPORT DATE: November 2012

TYPE OF REPORT: Final

PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: (Check one)

X Approved for public release; distribution unlimited

☐ Distribution limited to U.S. Government agencies only; report contains proprietary information

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.

REPORT DO	CUMENTATION PAGE	Form Approved OMB No. 0704-0188
1. REPORT DATE (DD-MM-YYYY)	2. REPORT TYPE	3. DATES COVERED (From - To)
November 2012	FINAL REPORT	1 September 2008-31 October 2012
4. TITLE AND SUBTITLE		5a. CONTRACT NUMBER
		5b. GRANT NUMBER
Circadian Genes and Risk f	or Prostate Cancer	W81XWH-08-2-0171
		5c. PROGRAM ELEMENT NUMBER
6. AUTHOR(S)		5d. PROJECT NUMBER
Ann Hsing, Ph.D.		5e. TASK NUMBER
		5f. WORK UNIT NUMBER
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)	8. PERFORMING ORGANIZATION REPORT NUMBER
The Geneva Foundation		
Tacoma, WA 98402		
9. SPONSORING / MONITORING AGENCY	NAME(S) AND ADDRESS(ES)	10. SPONSOR/MONITOR'S ACRONYM(S)
	, ,	USAMRAA
US Army MRMC		
Ft Detrick, MD 21702-501	2	11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT- We hypothesize that genetic susceptibility to prostate cancer may be in part due to variations in the core circadian genes that regulate circadian rhythms and that serum sex steroid hormone levels modify the effect that circadian gene variations have on prostate cancer risk. To test this hypothesis, we genotyped and analyzed 256 SNPs in 10 circadian genes in a study of 1,169 prostate cases and 1,365 controls nested within the Prostate Cancer Prevention Trial (PCPT), a randomized placebo-controlled clinical trial to determine if finasteride (an inhibitor of androgen bioactivation) could prevent prostate cancer. Logistic regression analysis using SNPs in an additive model showed that variants in specific circadian genes are associated with prostate cancer risk and that this risk differed between men who took finasteride versus those who took the placebo. The strongest association was seen for a cluster of 9 SNPs in NPAS2, which was associated with total prostate cancer risk in the finasteride group but not in the placebo group. The most significant NPAS2 SNP was rs746924 (finasteride group OR=1.5, p=9.6x10⁻⁵ versus placebo group OR=0.95, p=0.53). In stratified analysis, the same cluster of NPAS2 variants and a second cluster of 9 SNPs on PER3 were associated with low-grade cancers (Gleason sum <7) in the finasteride group but not in the placebo group. Interestingly, risk of high-grade cancers (Gleason sum 7+) in the finasteride group was not related to either the NPAS2 or PER3 clusters of SNPs but was associated with a cluster of 7 SNPs in CRY1. These findings suggest that it may be possible to use genotyping information to identify men who might benefit from chemoprevention by finasteride and other related drugs. We also found that variations in several circadian genes correlated with serum androgen levels and that these associations may be influenced by finasteride treatment. Most notably, a cluster of 12 SNPs in NPAS2 were associated with percent change in serum testosterone levels between baseline and follow-up. These observations suggest that it is possible that the underlying biology between the association between variations in circadian genes and prostate cancer risk may involve androgens. Future studies are needed to replicate our findings, determine the functional role of the SNPs identified in our study especially as it related to androgen metabolism, and to determine the utility of genotyping information for chemoprevention strategies.

15. SUBJECT TERMS - Prostate cancer; circadian genes; circulating androgens; finasteride

16. SECURITY CLAS	SIFICATION OF:		17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON
a. REPORT	b. ABSTRACT	c. THIS PAGE	UU	22	19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18

Table of Contents

	<u>Page</u>
Introduction	5
Body	5
Key Research Accomplishments	7
Reportable Outcomes	7
Conclusion	8
References	9
Appendices	10
Supporting Data	10

INTRODUCTION:

Prostate cancer is the most commonly diagnosed cancer and the second leading cause of cancer death in men in the United States. The only established risk factors for prostate cancer are race, age. and family history (1) but data from recent genome-wide association studies indicate that genetic susceptibility also play a role in the etiology of this disease. We propose that genetic susceptibility to prostate cancer may be in part due to variations in genes from a number of pathways including the core circadian genes that regulate circadian rhythms. This hypothesis is supported by observational studies on sleep duration (2), light at night (3), rotating shift workers (4, 5), and male airline pilots (6-8), which all suggest that circadian rhythm disruptions increase prostate cancer risk. The goal of this project is to test the hypothesis that variants in circadian genes alter the risk of prostate cancer and that serum sex steroid hormone levels modify the effect of circadian polymorphisms on prostate cancer risk. Our study is nested within the Prostate Cancer Prevention Trial (PCPT), a randomized placebo-controlled clinical trial to determine if finasteride (an inhibitor of androgen bioactivation) could prevent prostate cancer. Included in our study are 1,169 cases and 1,365 controls from the PCPT. Questionnaire data, such as age, body mass index, and diabetes status, as well as serum hormone measurements from before and mid-trial are available for these subjects, which makes the PCPT an ideal setting in which to test the hypothesis that genetic susceptibility to prostate cancer may be in part due to variations in the core circadian genes that regulate circadian rhythms and that serum sex steroid hormone levels modify the effect that circadian gene variations have on prostate cancer risk...

BODY:

Our study has three specific aims, all of which utilizes genotyping data that was generated as part of the grant. The following is a summary report of each task in the statement of work:

Task 1. Data management

We have been in constant communications with the PCPT Statistical Center at the Fred Hutchinson Cancer Research Center (Seattle, WA) since the project's inception. Genotyping data for this project has been completed and incorporated into the PCPT central database as are data from serum androgen assays (completed as part of a separate study but used for Aim 2 of this study). With the PCPT Statistical Center, we have completed the quality control analysis of the data (see Task 3 below).

Task 2. Develop and perform genotyping assays on 320 SNPs (including 40 putatively functional and 270 tag SNPs as well as additional SNPs to account for control SNPs and potential SNP assay failures) of circadian genes in 1,169 cases and 1,365 controls.

We completed all genotyping assays for the study. In total, genotyping was performed for 285 single nucleotide polymorphisms (SNPs) on 1,169 cases and 1,365 controls. Thirty five SNPs were not genotyped from the original list because they could not be designed on the chosen genotyping platform or were predicted to have very low (<5%) minor allele frequencies in the reference population (HapMap Caucasian population, CEU). Study subjects who were not included in the genotyping did not have sufficiently DNA for genotyping; for these subjects, alternative strategies, including use of serum, were considered but the assays were cost-prohibitive due to additional costs involved for sample processing. A comparison of select characteristics (e.g., age, body mass index, etc) between the genotyped versus not genotyped subjects showed no significant differences

between the 2 subsets of subjects and thus we do not believe bias was introduced due to the reduced sample size.

Task 3. Monitor quality of genotyping results on an ongoing basis

Quality of the genotyping was assessed for SNPs as well as for samples:

SNPs. We assessed SNP genotyping quality by calculating completion rates (i.e., percentage of subjects for whom genotypes were called), concordance rates (for any SNP, the percentage of replicate samples that had the identical genotype called), and Hardy-Weinberg Equilibrium (HWE) p-values. Based on data from all subjects combined (N=2,534), completion rates ranged from 49% to 100%. Specifically, of the 285 SNPs that were typed, completion rates were >75% for 265 (93%) SNPs and >95% for 209 (73%) SNPs. No significant differences in completion rates were seen between cases and controls. For concordance rates, we assessed data from 228 subjects (all control subjects) for whom duplicate DNA were typed for the 285 SNPs. Concordance rate between the 228 sets of duplicate samples ranged from 50.4% to 99.6%; Of the 285 SNPs, concordance rates were >75% for 271 SNPs (96%) and >95% for 197 SNPs (69%). We also assessed Hardy-Weinberg Equilibrium for all SNPs in the control population. HWE p-values ranged from <0.0001 to 1; of the 285 SNPs typed, 265 (82%) had HWE p-value >0.001. For inclusion in subsequent analysis, we included SNPs for which completion rates were >75%, concordance rates were >75%, and HWE p-values were >0.001. In total, 256 SNPs met these criteria.

Subjects. We assessed quality of the samples for each subject by the completion rates as defined as the percentage of SNPs that were successfully genotyped on each sample. Using data from the 256 SNPs that passed quality control described above, 2,126 subjects (83.8%) had data for over 250 SNPs (97.7% completion rate) and all 2,534 subjects had data for over 192 SNPs (75% completion rate). For inclusion in subsequent analysis, we included subjects for which completion rates were >75%. In total, 1,169 prostate cases and 1,365 controls were included in subsequent analysis (Table 1).

Task 4. Gather, ship, process, and archive biospecimens

The DNAs were shipped to and genotyped at the core genotyping facility at the University of Texas Health Science Center in San Antonio. This task was the most time consuming as the PCPT biorepository at the NCI had a backlog of requests for sample preparation for genotyping. In addition, the PCPT cohort changed genotyping laboratories for all PCPT genetic studies in 2010.

Task 5. Prepare hormone data from PCPT

As part of a separately funded study, we worked with the PCPT Statistical Center on analyzing data related to serum androgen levels as part of the PCPT Program Project. Dr. Ann Hsing, the PI of the current award, led the analysis and is the senior author of the recently published main manuscript describing the results (9). We use the androgen data from this previous study, including how the variables are categorized, in Aim 2 of the current study.

Tasks 6. Perform statistical analysis

Statistical analysis has been completed for main effects of SNPs in circadian genes on prostate cancer risk (Aim 1; Tables 2-3 & Figures 1-3) and serum androgen levels (Aim 3; Tables 4-5 &

Figures 4-6). We are currently finalizing the gene- and circadian pathway-based analyses. This part of the analysis was delayed due to the updating of the statistical software used for the analysis (10), which was released in August 2012 (AdaJoint; http://dceg.cancer.gov/bb/tools/AdaJoint). We anticipate this analysis will be completed by January 2013.

For Aim 2, we are currently analyzing the joint effects between SNPs and serum androgens on prostate cancer risk. This analysis requires a higher level of statistical analysis than Aims 1 and 3 and thus takes more time to accomplish. We anticipate this analysis to be completed by April 2013.

Task 7. Prepare scientific presentations & manuscripts

Preliminary data on a subset of the genotyping data was presented at the DoD PCRP IMPaCT Meeting in Orlando, FL in March 2011.

We are currently finalizing the gene- and circadian pathway-based analysis for Aims 1 and 3. Once the gene- and pathway-based analyses are complete, we will draft the manuscripts (separately for Aims 1 and 3) and anticipate submission of the manuscript to a peer-reviewed journal (e.g., Cancer Research, Cancer Prevention Research, etc) within 6 months time. Similarly, we anticipate completion of statistical analysis for Aim 2 by April 2013 with a subsequent manuscript to be drafted and submitted to a peer-reviewed journal within 6 month from end of analysis.

KEY RESEARCH ACCOMPLISHMENTS:

- Our study showed risks for prostate cancer related to variations in circadian genes are different between the finasteride group and the placebo group of the PCPT (Table 2). This suggests that finasteride modifies the effect that SNPs in circadian genes have on prostate cancer risk.
 - A cluster of 9 SNPs in NPAS2 was associated with total prostate cancer risk in the finasteride group but not in the placebo group (Tables 2-3 & Figure 1). The most significant NPAS2 SNP was rs746924 (finasteride group: OR=1.5, p=9.6x10⁻⁵ versus placebo group: OR=0.95, p=0.53); this SNP reached Bonferroni-corrected p-value threshold of 1.95x10⁻⁴.
 - The same cluster of NPAS2 SNPs and a cluster of 9 SNPs in PER3 were associated with risk for low-grade prostate cancer in the finasteride treated group and not in the placebo group (Tables 2-3 & Figure 2).
 - For high-grade prostate cancer, neither the NPAS2 nor the PER3 SNP clusters were associated with risk in the finasteride group but a cluster of 7 SNPs in CRY1 was associated with risk in the finasteride group but not in the placebo group (Tables 2-3 & Figure 3).
- Our study also showed correlation between some SNPs in specific circadian genes and serum androgen and SHBG levels (Table 4). These correlations also seem to be influenced by finasteride treatment (Table 4).
 - Most notably, 12 SNPs in NPAS2 were associated with percent change in serum testosterone levels between baseline and follow-up (Tables 4-5 & Figure 4).
 - No obvious cluster of SNPs in any circadian gene was associated with baseline, follow-up, or percent change in 3α diol G (Table 4 & Figure 5). Several individual SNPs in CSNK1E, NPAS2, and PER3 were correlated with 3α diol G at baseline and follow-up at p<0.01.

 Several variants in NPAS2 were associated with serum SHBG during finasteride treatment but not with change in SHBG levels between baseline and follow-up (Tables 4-5 & Figure 6)

REPORTABLE OUTCOMES: Provide a list of reportable outcomes that have resulted from this research to include:

- Presentations
 - DoD PCRP IMPaCT Meeting in Orlando, FL in March 2011.
- Manuscripts
 - o At least two manuscripts to be submitted within 6-12 months of this report
- Informatics such as databases
 - o Data from 285 SNPs have been added to the PCPT database at the statistical center.
- Funding applied for based on work supported by this award
 - R03 Circadian Genes and Aggressive Prostate Cancer in Caucasians and African Americans (PI: Ann Hsing, submitted July 2012)
- Employment or research opportunities applied for and/or received based on experience/training supported by this award
 - Co-PI (Lisa Chu) is now a Senior Staff Scientist at the Cancer Prevention Institute of California

CONCLUSION:

The goal of this project was to test the novel hypothesis that variants in circadian genes alter the risk of prostate cancer and that serum sex steroid hormone levels modify the effect of circadian polymorphisms on prostate cancer risk. Through our preliminary analysis of the data for prostate cancer risk (total, low- and high-grade cancers), we show that certain variants in specific circadian genes influences prostate cancer risk. We also show that the effects of the SNPs on prostate cancer risk are modifiable by treatment with finasteride. We see similar effects when restricting our analysis to low- and high-grade prostate cancers. These results show that it may be possible to develop methods to use genotyping information to select men who might benefit from chemoprevention. We also showed that some variations in circadian genes correlate with serum androgen levels and that this correlation may be influenced by finasteride treatment. These observations suggest that it is possible that the underlying biology between the association between variations in circadian genes and prostate cancer risk may involve androgens. Future studies are needed to replicate our findings, determine the functional role of the SNPs identified in our study especially as it related to androgen metabolism, and to determine the utility of genotyping information for chemoprevention trials.

REFERENCES:

- 1. Hsing AW, Chokkalingam AP. Prostate cancer epidemiology. Front Biosci. 2006;11:1388-413.
- 2. Kakizaki M, Inoue K, Kuriyama S, Sone T, Matsuda-Ohmori K, Nakaya N, Fukudo S, Tsuji I. Sleep duration and the risk of prostate cancer: the Ohsaki Cohort Study. Br J Cancer. 2008;99(1):176-8.
- 3. Kloog I, Haim A, Stevens RG, Portnov BA. Global Co-Distribution of Light at Night (LAN) and Cancers of Prostate, Colon, and Lung in Men. Chronobiol Int. 2009;26(1):108 25.
- 4. Kubo T, Ozasa K, Mikami K, Wakai K, Fujino Y, Watanabe Y, Miki T, Nakao M, Hayashi K, Suzuki K, Mori M, Washio M, Sakauchi F, Ito Y, Yoshimura T, Tamakoshi A. Prospective cohort study of the risk of prostate cancer among rotating-shift workers: findings from the Japan Collaborative Cohort Study. Am J Epidemiol. 2006;164(6):549-55.
- 5. Conlon M, Lightfoot N, Kreiger N. Rotating shift work and risk of prostate cancer. Epidemiology. 2007;18(1):182-3.
- 6. Band PR, Le ND, Fang R, Deschamps M, Coldman AJ, Gallagher RP, Moody J. Cohort study of Air Canada pilots: mortality, cancer incidence, and leukemia risk. Am J Epidemiol. 1996;143(2):137-43.
- 7. Irvine D, Davies DM. British Airways flightdeck mortality study, 1950-1992. Aviat Space Environ Med. 1999;70(6):548-55.
- 8. Pukkala E, Aspholm R, Auvinen A, Eliasch H, Gundestrup M, Haldorsen T, Hammar N, Hrafnkelsson J, Kyyronen P, Linnersjo A, Rafnsson V, Storm H, Tveten U. Cancer incidence among 10,211 airline pilots: a Nordic study. Aviation, space, and environmental medicine. 2003;74(7):699-706.
- 9. Kristal AR, Till C, Tangen CM, Goodman PJ, Neuhouser ML, Stanczyk FZ, Chu LW, Patel SK, Thompson IM, Reichardt JK, Hoque A, Platz EA, Figg WD, Van Bokhoven A, Lippman SM, Hsing AW. Associations of Serum Sex Steroid Hormone and 5α-Androstane-3α,17β-Diol Glucuronide Concentrations with Prostate Cancer Risk Among Men Treated with Finasteride. Cancer Epidemiol Biomarkers Prev. 2012;21(10):1823-32.
- 10. Yu K, Li Q, Bergen AW, Pfeiffer RM, Rosenberg PS, Caporaso N, Kraft P, Chatterjee N. Pathway analysis by adaptive combination of *P*-values. Genet Epidemiol. 2009;33(8):700-9.

APPENDICES:

NONE

SUPPORTING DATA:

Tables

- Table 1. Select Characteristics of Study Subjects
- Table 2. Summary of variants in circadian genes and their associations with prostate cancer
- Table 3. Odds ratios (OR) and 95% confidence intervals (CI) for total, low-, and high-grade prostate cancer in relation to SNPs in circadian genes with P-value<0.05 in the PCPT nested case-control study
- Table 4. Summary of variants in circadian genes and their associations with serum androgens and sex hormone-binding globulin (SHBG)
- Table 5. Correlation between SNPs in circadian genes and serum androgens and SHBG with P-value<0.05 in the PCPT nested case-control study

<u>Figures</u>

- Figure 1. Main effects of individual circadian gene variants on total prostate cancer risk in men in the PCPT by treatment group
- Figure 2. Main effects of individual circadian gene variants on low-grade prostate cancer risk in the PCPT by treatment group
- Figure 3. Main effects of individual circadian gene variants on high-grade prostate cancer risk in the PCPT by treatment group
- Figure 4. Correlation between individual circadian gene variants on total serum testosterone levels in the finasteride-treated men
- Figure 5. Correlation between individual circadian gene variants on serum 3α diol G levels in the finasteride-treated men
- Figure 6. Correlation between individual circadian gene variants on serum sex hormone-binding globulin (SHBG) levels in the finasteride-treated men

Table 1. Select Characteristics of Study Subjects

						Placebo Group											Finaster	asteride Group					
		To	otal				W	hite			Mi	nority			W	hite			Mi	nority			
	Cor	trols	С	ases		Co	ntrols	С	ases	Cor	trols	C	ases	Co	ntrols	С	ases	Cor	trols	С	ases		
Characteristic (categorical)	n	%	n	%	p-value	n	%	n	%	n	%	n	%	n	%	n	%	n	%	n	%		
Number of Participants	1365		1169			667		642		118		43		422		450		158		34			
Body Mass Index (BMI; Baseline)					0.09																		
Normal (BMI <25)	328	24.3%	324	28.0%		157	23.9%	192	30.2%	24	20.3%	7	16.3%	106	25.2%	117	26.2%	41	26.3%	8	23.5%		
Overweight (BMI 25 to <30)	718	53.2%	598	51.6%		357	54.4%	331	52.1%	63	53.4%	22	51.2%	234	55.7%	227	50.8%	64	41.0%	18	52.9%		
Obese (BMI >=30)	304	22.5%	237	20.4%		142	21.6%	112	17.6%	31	26.3%	14	32.6%	80	19.0%	103	23.0%	51	32.7%	8	23.5%		
Alcohol Consumption					0.25																		
Non-drinker	320	23.4%	243	20.8%		150	22.5%	132	20.6%	33	28.0%	12	27.9%	99	23.5%	90	20.0%	38	24.1%	9	26.5%		
>0 to <30 g/day Alcohol	928	68.0%	816	69.8%		458	68.7%	455	70.9%	75	63.6%	29	67.4%	281	66.6%	308	68.4%	114	72.2%	24	70.6%		
>=30 g/day Alcohol	117	8.6%	110	9.4%		59	8.8%	55	8.6%	10	8.5%	2	4.7%	42	10.0%	52	11.6%	6	3.8%	1	2.9%		
Smoking Status					0.21																		
Never Smoker	454	33.3%	414	35.4%		230	34.5%	229	35.7%	35	29.7%	15	34.9%	149	35.3%	159	35.3%	40	25.3%	11	32.4%		
Current Smoke	103	7.5%	70	6.0%		45	6.7%	34	5.3%	17	14.4%	7	16.3%	25	5.9%	26	5.8%	16	10.1%	3	8.8%		
Former Smoker	808	59.2%	685	58.6%		392	58.8%	379	59.0%	66	55.9%	21	48.8%	248	58.8%	265	58.9%	102	64.6%	20	58.8%		
Has Family History of Prostate Cancer	290	21.2%	245	21.0%	0.86	142	21.3%	135	21.0%	19	16.1%	7	16.3%	106	25.1%	101	22.4%	23	14.6%	2	5.9%		
Has Diabetes	109	8.0%	51	4.4%	<0.001	44	6.6%	21	3.3%	16	13.7%	3	7.0%	17	4.0%	21	4.7%	32	20.3%	6	17.6%		
D					-0.0001																		
Race White (Non-Hispanic)	1089	79.8%	1092	93.4%	<0.0001	667	100.0%	642	100.0%					422	100.0%	450	100.0%						
Black	130	9.5%	47	4.0%		007	100.070	042	100.070	49	41.5%	27	62.8%	722	100.070	430	100.070	81	51.3%	20	58.8%		
Other	146	10.7%	30	2.6%							58.5%	16	37.2%					77	48.7%	14	41.2%		
Gleason Sum																							
2-6			829	73.4%				499	80.3%			28	68.2%			283	65.2%			19	55.9%		
7-10			301	26.6%				122	19.6%			13	31.8%			151	34.8%			15	44.1%		
T store																							
T-stage T1 a/b/c			903	79.3%				506	80.8%			31	75.6%			341	78.0%			25	73.5%		
T2 a/b/c			221	19.4%				113	18.1%			9	22.0%			90	20.6%			9	26.5%		
T 3/4			14	1.2%				7	1.1%			1	2.4%			6	1.4%			3	20.570		
N-stage																							
N X/0			1110	99.5%				607	99.3%			41	100.0%			428	99.5%			34	100.0%		
N 1/2			6	0.5%				4	0.7%							2	0.5%						
M-stage																							
M X/0			1113	99.7%				609	99.7%			41	100.0%			429	99.8%			34	100.0%		
M1			3	0.3%				2	0.3%							1	0.2%						
Characteristics (continuous)	Mean	SD	Mean	SD		Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD		
Age (Baseline)	63.61	0.06	63.44	0.06	0.46	63.75	5.66	63.48	5.59	62.14	4.95	61.51	4.98	64.33	5.76	63.58	5.57	62.16	5.01	63.26	6.13		
	27.71	4.02	27.41	4.04	0.06	27.63	3.96	27.14	4.02	28.03	4.07	29.38	5.50	27.61	3.92	27.55	3.82	28.10	4.47	28.15	4.35		
Alcohol Consumption, g/day	9.15	14.03	10.02	14.71	0.12	9.27	13.81	9.48	13.39	9.00	16.64	6.65	10.14	9.71	14.49	11.50	16.95	7.20	11.33	5.12	7.72		
Pack-Years of Cigarettes Smoked	15.54	16.90	13.55	15.79	< 0.01	16.03	17.55	13.18	15.41	14.90	15.86	10.99	14.45	15.72	16.96	14.41	16.44	13.47	14.48	12.53	15.70		

Table 2. Summary of variants in circadian genes and their associations with prostate cancer

				ociated wit te Cancer R		Low	# SNPs asso			# SNPs associated with High-Grade Prostate Cancer Risk							
	# SNPs	Placebo	Group	Finaster	ide Group	Placebo	o Group	Finasteri	de Group		o Group		de Group				
Gene	Genotyped	p<0.01	p<0.05	. p<0.01	p<0.05	. p<0.01	p<0.05	. p<0.01	p<0.05	p<0.01	p<0.05	. p<0.01	p<0.05				
ARNTL	28	0	0	1	4	0	2	0	3	0	0	1	1				
CLOCK	14	0	0	0	1	0	0	0	0	0	0	0	1				
CRY1	22	1	4	0	1	1	5	0	0	0	0	3	7				
CRY2	16	0	0	0	0	0	0	0	0	1	2	0	0				
CSNK1E	23	0	2	0	1	0	3	0	0	1	2	0	0				
NPAS2	79	1	3	7	9	0	1	6	10	1	4	0	1				
PER1	17	0	1	0	1	0	0	0	0	0	1	0	0				
PER2	24	0	1	0	0	0	0	0	0	1	5	0	0				
PER3	30	0	0	0	3	0	1	2	9	1	6	0	1				
TIMELESS	2	0	0	0	0	0	0	0	0	0	0	0	0				
Total	255	2	11	8	20	1	12	8	22	5	20	4	11				

Table 3. Odds ratios (OR) and 95% confidence intervals (CI) for total, low-, and high-grade prostate cancer in relation to SNPs in circadian genes with P-value <0.05 in the PCPT nested case-control study

	p<0.01						1	Total Pros	tate Cancer	Cancer Risk					Low Grade Prostate							High Grade Prostate Cancer Risk								
	p<0.05					acebo (Group				steride (Group				cebo Group				steride Gro	ир			acebo Group				steride Gr	oup	
.	CAID	Ch		MA	-		050/ 61		M/		00	050/ 61		MA		00 050/ 61		MA		00 05	0/ 6/	M	-	00 050/ 01		MA	_	00 0		
Gene ARNTL	rs7924734		Location 13350747	0.26	0.26		0.81 - 1.1		. Controls	0.28		0.86 - 1.3		0.26		OR 95% CI 0.96 0.78 - 1.17		0.25	0.31		- 1.68 0.0157	0.25		OR 95% CI 0.97 0.67 - 1.41		. Controls	0.22	0.82 0.5		
AIUITE	rs6486121		13355770	0.20	0.20	0.00	0.86 - 1.2		0.34	0.40	-100	.04 - 1.56	0.000	0.36		1.14 0.95 - 1.36		0.25	0.42		-1.63 0.0234	0.23		0.84 0.59 - 1.19		0.37		0.97 0.7		
	rs7947951		13356030	0.31	0.33		0.91 - 1.2		0.31	0.36		.01 - 1.52		0.30	0.35	1.22 1.01 - 1.47		0.31	0.38		- 1.63 0.0262	0.32	0.27	0.78 0.54 - 1.13		0.33	0.28	0.85 0.		
	rs1026071	11	13364712	0.28	0.30		0.93 - 1.3		0.29	0.33	1.19).97 - 1.47	0.1000	0.28	0.32	1.21 1 - 1.46	0.0460	0.31	0.36	1.21 0.96	- 1.53 0.1074	0.29	0.24	0.79 0.54 - 1.14	1 0.1997	0.31	0.29	0.98 0.6	9 - 1.39	0.914
	rs969486	11	13403135	0.28	0.29	1.05	0.88 - 1.2	6 0.5595	0.31	0.26	0.81	0.66 - 0.99	0.0406	0.29	0.28	0.98 0.81 - 1.19	0.8203	0.29	0.25	0.85 0.66	- 1.08 0.1765	0.28	0.31	1.18 0.82 - 1.69	0.3721	0.28	0.27	0.93 0.6	6 - 1.31	0.664
	rs11022825	11	13456195	0.19	0.19	1.01	0.83 - 1.2	4 0.9142	0.15	0.20	1.4	1.09 - 1.8	0.007990	0.18	0.19	1.03 0.82 - 1.29	0.8229	0.17	0.20	1.21 0.92	- 1.61 0.1799	0.20	0.19	0.94 0.62 - 1.41	0.7496	0.17	0.25	1.69 1.1	5 - 2.46	0.007
CLOCK	rs6850524		56381997	0.42	0.42		0.86 - 1.1		0.43	0.41	_).75 - 1.11		0.42	0.42	1.02 0.85 - 1.22		0.42	0.40		- 1.12 0.3269		0.44	1.08 0.79 - 1.5		0.45	0.36	0.72 0.5		
	rs2087319		56461365	0.25	0.26		0.87 - 1.2			0.26		.01 - 1.58		0.24		1.09 0.9 - 1.32		0.23	0.27		5 - 1.6 0.0995	0.25	0.22	0.86 0.59 - 1.26		0.23	0.27	1.23 0.8		
CRY1	rs7974499		107341385	0.46	0.49		0.97 - 1.3			0.47		0.9 - 1.31		0.46	0.50	1.15 0.97 - 1.37		0.46	0.46		- 1.21 0.8086	0.47	0.45	0.91 0.65 - 1.26		0.46	0.54	1.38 1.0		
	rs4640029		107378724	0.42	0.47		1.04 - 1.4		0.43	0.44		0.85 - 1.23		0.42	0.47	1.21 1.01 - 1.45		0.44	0.42		- 1.16 0.5247	0.43	0.42	0.94 0.67 - 1.31		0.43	0.50	1.28 0.9		
	rs714359 rs2287161		107378845 107381140	0.22	0.20		0.75 - 1.0 0.67 - 0.9		0.21	0.23	1.1).87 - 1.38	0.4304	0.22	0.19	0.79 0.64 - 0.98 0.80 0.66 - 0.97		0.22	0.24	1.14 0.87	- 1.48 0.3454	0.22	0.24	1.12 0.77 - 1.62 0.84 0.58 - 1.21		0.23	0.22	0.94 0.6	4 - 1.38	0.752
	rs1056560		107381140	0.50	0.45		0.87 - 0.9		0.40	0.43	1 16 0	0.95 - 1.42	0.1377	0.49	0.11	1.04 0.87 - 1.24		0.42	0.43	1 04 0 82	- 1.31 0.7437	0.49	0.44	1.08 0.78 - 1.5		0.41	0.49	1.47 1.0	5 - 2 02	0.010
	rs8192440		107395106	0.36	0.39		0.96 - 1.3			0.43		0.97 - 1.46		0.36		1.08 0.9 - 1.29		0.42	0.43		- 1.26 0.9599	0.36	0.39	1.12 0.81 - 1.56		0.35	0.47	1.79 1.2		
	rs10778528		107473962	0.40	0.43		0.95 - 1.3		0.37	0.41		0.97 - 1.45		0.40		1.08 0.91 - 1.29		0.39	0.41		- 1.31 0.7558	0.41	0.42	1.07 0.78 - 1.48		0.38	0.49	1.61 1.1		
	rs10778533	12	107499077	0.18	0.16	0.91	0.74 - 1.1	1 0.3406	0.17	0.19	1.16	0.9 - 1.49	0.2591	0.18	0.16	0.90 0.71 - 1.13	0.3606	0.18	0.18	0.97 0.73	3 - 1.3 0.8491	0.17	0.16	0.95 0.62 - 1.45	0.8161	0.16	0.23	1.56 1.0	5 - 2.3	0.028
	rs1921141	12	107514641	0.39	0.37	0.9	0.77 - 1.0	6 0.2221	0.43	0.38	0.8	0.66 - 0.98	0.0289	0.39	0.37	0.93 0.77 - 1.11	0.4228	0.41	0.37	0.86 0.68	- 1.08 0.1923	0.39	0.38	0.96 0.69 - 1.35	0.8331	0.40	0.33	0.72 0.	52 - 1	0.043
	rs2204830	12	107527163	0.11	0.09	0.8	0.62 - 1.0	3 0.0882	0.08	0.08	0.88	.62 - 1.26	0.5010	0.12	0.08	0.69 0.52 - 0.92	0.0093	0.09	0.08	0.97 0.64	- 1.45 0.8740	0.09	0.12	1.33 0.82 - 2.15	0.2647	0.08	0.09	1.08 0.6	2 - 1.89	0.791
	rs11113198		107532255	0.50	0.46		0.73 - 1		0.50	0.47		.73 - 1.06		0.50		0.86 0.73 - 1.02		0.49	0.50		- 1.28 0.7877	0.49	0.52	1.16 0.84 - 1.59		0.50	0.46	0.86 0.6		
	rs4432103		107535603	0.32	0.37		1.06 - 1.4		0.31	0.36	1.21).99 - 1.48	0.0590	0.32		1.23 1.02 - 1.48		0.33	0.33	1.00 0.79	- 1.26 0.9947	0.34	0.30	0.84 0.59 - 1.2		0.32	0.42	1.58 1.1	4 - 2.18	0.005
CRY2	rs1139266		45832935	0.21	0.23		0.92 - 1.4							0.23		0.91 0.72 - 1.16						0.22	0.35	2.00 1.34 - 3.01						
CCN	rs7951225		45875392 38653575	0.18	0.19		0.87 - 1.3	0.0-0-	0.19	0.21).88 - 1.43).75 - 1.11		0.19	0.18	0.92 0.74 - 1.15		0.19	0.23		- 1.71 0.0613 - 1.21 0.7366	0.19	0.26	1.59 1.1 - 2.29 1.17 0.83 - 1.64	0.0100	0.20		1.04 0.7		0.000
CSNKIE	rs9610926 rs135715		38660871	0.30	0.28		0.75 - 1.0		0.32	0.29		0.68 - 0.99		0.40		0.82 0.67 - 0.99		0.31	0.30		- 1.21 0.7366	0.29	0.32	1.06 0.77 - 1.45		0.31	0.32	0.84 0.6		
	rs9622771		38675738	0.39	0.39		0.84 - 1.1		0.41	0.36		0.66 - 1.08		0.40	0.38	0.77 0.6 - 0.98		0.41	0.36		-1.05 0.0854	0.40	0.41	1.15 0.76 - 1.73		0.40	0.36	0.84 0.6		
	rs1997644		38715222	0.44	0.48	_	1.01 - 1.3	_	0.47	0.10		1.78 - 1.15		0.45		1.17 0.98 - 1.39		0.18	0.15		- 1.11 0.3074	0.46	0.46	1.04 0.75 - 1.44		0.48	0.50	1.13 0.8		
	rs13054361		38732824	0.08	0.07		0.69 - 1.2		0.09	0.07	0.00	0.52 - 1.07	0.00	0.08		1.13 0.83 - 1.53		0.08	0.06	0.00	- 1.17 0.2049	0.08	0.04	0.42 0.18 - 0.97		0.07	0.08	1.01 0.5		
	rs763220		38744727	0.08	0.08		0.76 - 1.4		0.06	0.07		0.78 - 1.76		0.09		0.72 0.5 - 1.03		0.07	0.06		- 1.44 0.6401	0.08	0.15	2.19 1.28 - 3.76		0.07	0.08	1.27 0.6		
	rs5757058	22	38749925	0.51	0.49	0.91	0.77 - 1.0	8 0.2685	0.51	0.50	0.96	0.79 - 1.17	0.7033	0.51	0.47	0.83 0.69 - 1	0.0485	0.51	0.48	0.86 0.68	- 1.09 0.2090	0.49	0.54	1.23 0.88 - 1.73	0.2307	0.50	0.54	1.23 0.8	9 - 1.7	0.213
NPAS2	rs10194413	2	101518910	0.08	0.10	1.24	0.93 - 1.6	4 0.1396	0.09	0.10		.79 - 1.53		0.07	0.10	1.44 1.05 - 1.96	0.0233	0.10	0.10		- 1.57 0.6824	0.09	0.07	0.82 0.44 - 1.54	0.5345	0.10	0.11	1.20 0.	72 - 2	0.501
	rs356652	2	101540415	0.08	0.09	1.18	0.89 - 1.5	5 0.2542	0.08	0.11	1.41 1	.02 - 1.95	0.0362	0.08	0.10	1.23 0.91 - 1.66	0.1877	0.09	0.11	1.27 0.89	- 1.81 0.1924	0.08	0.08	1.01 0.56 - 1.81	0.9829	0.10	0.14	1.49 0.9	4 - 2.36	0.098
	rs12712085		101565151	0.45	0.39		0.67 - 0.9		0.41	0.46		1 - 1.47		0.44		0.84 0.71 - 1		0.42	0.47		- 1.53 0.0737	0.43	0.34	0.66 0.47 - 0.92		0.45	0.47	1.09 0.8		
	rs3820787		101566234	0.37	0.33		0.7 - 0.97		0.36	0.37		0.85 - 1.28		0.36		0.92 0.77 - 1.11		0.36	0.37		- 1.33 0.7170		0.27	0.62 0.44 - 0.89		0.36	0.43	1.30 0.9		
	rs876060		101576964	0.20	0.22		0.9 - 1.35		0.20	0.23		0.98 - 1.58		0.21	0.22	1.02 0.82 - 1.27		0.20	0.26		- 1.85 0.0101	0.22	0.22	1.03 0.69 - 1.56		0.22	0.19	0.80 0.5	_	
	rs6738097		101578542	0.14	0.14	_	0.83 - 1.3		0.13	0.16		0.96 - 1.63		0.15	0.14	0.95 0.74 - 1.21 0.92 0.76 - 1.12		0.14	0.19		- 2.01 0.0079 - 1.36 0.6228	0.14	0.15	1.07 0.68 - 1.68 0.61 0.41 - 0.92		0.16	0.10	1.36 0.9		
	rs4851392 rs6719437		101581976 101599071	0.30	0.26		0.89 - 0.9		0.28	0.30		0.89 - 1.37 0.65 - 0.97		0.29	4	1.07 0.89 - 1.28		0.28	0.30	2100 0100	- 0.94 0.0130	0.28	0.20	1.02 0.73 - 1.43		0.29	0.36	1.04 0.7		0.0.0
	rs11123857		101603812	0.34	0.29		0.93 - 1.2		0.33	0.36		0.74 - 1.14		0.33	0.00	1.03 0.86 - 1.25		0.27	0.27		- 1.25 0.8166		0.34	1.47 1.06 - 2.05		0.31	0.32	0.79 0.5		0.000
	rs1053096		101612615	0.34	0.23		0.81 - 1.1		0.29	0.36		1.12 - 1.7		0.34		0.99 0.82 - 1.19		0.27	0.38		-1.72 0.0110	0.34	0.30	0.81 0.58 - 1.15		0.33		1.13 0.8		
	rs935401		101613409	0.44	0.45	1.06	0.91 - 1.2	4 0.4344	0.49	0.41	0.74	0.61 - 0.9	0.0021	0.44		1.05 0.88 - 1.24		0.46	0.41	0.78 0.62	- 0.97 0.0283	0.43	0.51	1.36 0.99 - 1.87	7 0.0552	0.44	0.38	0.78 0.5		
	rs10934	2	101622728	0.29	0.30	1.04	0.88 - 1.2	4 0.6154	0.35	0.27	0.68	0.55 - 0.84	0.0002	0.29	0.30	1.03 0.86 - 1.24	0.7475	0.33	0.26	0.70 0.55	5 - 0.9 0.0052	0.28	0.32	1.20 0.86 - 1.67	7 0.2892	0.30	0.26	0.80 0.5	6 - 1.14	0.209
	rs11695176	2	101623667	0.17	0.16	0.92	0.75 - 1.1	3 0.4281	0.19	0.14	0.67	.52 - 0.88	0.0030	0.17	0.16	0.96 0.76 - 1.2	0.7030	0.18	0.13	0.65 0.47	7 - 0.9 0.0076	0.16	0.14	0.81 0.52 - 1.27	7 0.3542	0.16	0.15	0.91 0.5	8 - 1.41	0.658
	rs746924	2	101624471	0.34	0.33	0.95	0.81 - 1.1	2 0.5304	0.29	0.38	1.49 1	.22 - 1.83	0.0001	0.34	0.33	0.98 0.82 - 1.17	0.8075	0.32	0.39	1.42 1.13	- 1.78 0.0029	0.35	0.31	0.84 0.6 - 1.17	0.2953	0.33	0.39	1.23 0.9	- 1.69	0.196
	rs4850956		101628324	0.49	0.48	0.00	0.84 - 1.1		0.43	0.52		.18 - 1.73		0.48		1.01 0.85 - 1.2		0.45	0.53		- 1.73 0.0040	0.50	0	0.93 0.68 - 1.26	0.0000	0.48	0.0-	1.11 0.8		0.000
	rs12472882		101646359	0.29	0.30		0.86 - 1.2			0.27		0.55 - 0.84		0.29		1.00 0.83 - 1.2		0.33	0.26		- 0.91 0.0068			1.21 0.87 - 1.68		0.30		0.80 0.5		
PER1	rs3809881	17		0.41	0.43		0.93 - 1.2			0.37		0.66 - 0.99		0.41		1.09 0.92 - 1.31		0.41			- 1.11 0.2787		0.40	0.88 0.64 - 1.21		0.38		0.84 0.6		
	rs8067165 rs3027267	17 17		0.40	0.36	-	0.73 - 0.9		0.39	0.41		0.89 - 1.32 0.68 - 1.4		0.40		0.86 0.73 - 1.03		0.40	0.42		- 1.43 0.2389 - 1.22 0.2683	0.39	0.37	0.94 0.68 - 1.3 0.43 0.19 - 1		0.39	0.38	0.97 0.7 1.33 0.7		
PER2	hCV27848035	_	239153948	0.08	0.08		0.67 - 1.2 0.66 - 1.0		0.09	0.08		0.68 - 1.4		0.07		1.06 0.76 - 1.48 0.93 0.73 - 1.18		0.09	0.07		- 1.22 0.2683 - 1.54 0.4834		0.04	0.43 0.19 - 1		0.07	0.09	0.83 0.7		
. cnz	rs11894535		239153946	0.16	0.13		0.71 - 1.0		0.13	0.15		0.82 - 1.32		0.15		1.05 0.84 - 1.3		0.15	0.16		-1.34 0.4634		0.08	0.52 0.32 - 0.85		0.16		1.04 0.7		
	rs2304674		239181904	0.27	0.26		0.78 - 1.1		0.28	0.28		0.82 - 1.25		0.26		1.07 0.88 - 1.29		0.28	0.27		-1.24 0.7839		0.19	0.63 0.42 - 0.93		0.28		0.92 0.6		
	rs2304673		239185922	0.15	0.13	0.00	0.64 - 1		0.15	0.15		0.8 - 1.37		0.14		0.92 0.72 - 1.18		0.15	0.15		- 1.49 0.6040		0.08	0.52 0.29 - 0.92		0.15		0.86 0.5		
PER3	rs1417986	1	7797734	0.37	0.38	1.03	0.87 - 1.2	2 0.7198	0.38	0.38	1.02 0	0.84 - 1.24	0.8396	0.37	0.38	1.02 0.85 - 1.22	0.8136	0.40	0.34	0.78 0.62	- 0.98 0.0306	0.37	0.42	1.27 0.91 - 1.77	7 0.1645	0.37	0.45	1.32 0.9	6 - 1.8	0.08
	rs2066293	1	7810543	0.27	0.29	1.12	0.94 - 1.3	4 0.2040	0.30	0.30	1.01	.82 - 1.25	0.9053	0.27	0.29	1.13 0.93 - 1.37	0.2126	0.30	0.28	0.88 0.69	- 1.12 0.3029	0.28	0.28	1.02 0.71 - 1.47	0.8989	0.29	0.38	1.38 1.0	1.9	0.047
	rs707455	1		0.42	0.43		0.91 - 1.2		0.42	0.44		0.86 - 1.26		0.41		1.13 0.95 - 1.35		0.43	0.42		- 1.18 0.6431	0.43	0.34	0.68 0.49 - 0.95		0.44		1.09 0.8		
	rs1773157	1		0.16	0.16		0.77 - 1.1		0.17	0.14		0.64 - 1.08		0.17		0.95 0.75 - 1.19		0.18	0.12		- 0.94 0.0163	0.16	0.19	1.33 0.88 - 2.02		0.15	0.18	1.12 0.7		
	rs697673	1		0.23	0.22		0.75 - 1.1		0.25	0.21	_	0.63 - 1		0.23		0.89 0.72 - 1.1		0.25	0.18		- 0.88 0.0036	0.22	0.25	1.20 0.82 - 1.75		0.23		0.91 0.6		
	rs1048785	1		0.13	0.12		0.7 - 1.12		0.11	0.13		0.89 - 1.62		0.13		0.87 0.67 - 1.13		0.11	0.15		-1.98 0.0310		0.13	1.06 0.66 - 1.71		0.11	0.10	0.91 0.5		
	rs697686 rs875994	1		0.35	0.36		0.91 - 1.2 0.79 - 1.2		0.34	0.37).92 - 1.36).91 - 1.51		0.34		1.17 0.98 - 1.4 0.95 0.76 - 1.19		0.35	0.36		- 1.31 0.6910 - 1.85 0.0245	0.37	0.26	0.61 0.42 - 0.88		0.35	0.39	1.17 0.8 0.80 0.5		
	rs875994 rs12141033	1		0.17	0.17		0.79 - 1.2		0.15	0.17		0.86 - 1.28		0.17		1.18 0.99 - 1.41		0.15	0.20		- 1.85 0.0245 - 1.19 0.6520		0.16	0.64 0.45 - 0.91		0.16	0.13	1.29 0.9		
	rs12141033 rs10462020	1		0.38	0.39		0.93 - 1.2		0.37	0.39		0.86 - 1.28		0.37	4	0.91 0.73 - 1.14		0.39	0.38		- 1.19 0.6520 - 1.84 0.0161	0.39	0.29	1.03 0.69 - 1.54		0.38	0.45	0.77 0.5		
	rs17374439	1		0.19	0.18		0.77 - 1.1		0.17	0.19		0.89 - 1.45		0.19	0.20	0.92 0.74 - 1.16		0.17	0.22		5 - 1.8 0.0232	0.18	0.19	1.03 0.69 - 1.54		0.18	0.14	0.77 0.5		
	rs12741937	1		0.16	0.16		0.78 - 1.2		0.13	0.16		0.95 - 1.65		0.16		1.06 0.84 - 1.35		0.14	0.17		- 1.68 0.1739		0.13	0.60 0.36 - 1		0.15		1.06 0.6		
	rs12731471	1		0.11	0.11		0.78 - 1.3		0.08	0.12	_	.04 - 2.05		0.11		1.10 0.83 - 1.48		0.09	0.13	_	- 2.16 0.0309	0.12	0.08	0.69 0.38 - 1.26		0.10		0.97 0.5		
	rs707476	1	7918106	0.34	0.33	0.96	0.81 - 1.1	4 0.6389	0.31	0.32	1.07	.87 - 1.31	0.51389	0.35	0.32	0.87 0.72 - 1.04	0.1289	0.32	0.33	1.07 0.85	- 1.36 0.5512	0.32	0.41	1.45 1.04 - 2.01	0.0289	0.31	0.31	0.97 0.6	9 - 1.35	0.845
	rs531485	1	7921952	0.24	0.22	0.89	0.73 - 1.0	7 0.2138	0.20	0.22	1.12	.88 - 1.44	0.3544	0.25	0.21	0.80 0.65 - 0.99		0.20	0.24	1.32 1 -	1.75 0.0542	0.22	0.28	1.41 0.97 - 2.04	1 0.0764	0.21	0.19	0.88 0.5	8 - 1.32	0.522
	rs12566535	1	7924094	0.10	0.10	0.97	0.75 - 1.2	5 0.8039	0.13	0.10	0.71	0.52 - 0.97	0.0292	0.09	0.10	1.10 0.82 - 1.47	0.5330	0.13	0.08	0.59 0.4	- 0.87 0.0060	0.10	0.05	0.44 0.21 - 0.95	0.0180	0.12	0.12	0.97 0.5	8 - 1.6	0.899

Table 4. Summary of variants in circadian genes and their associations with serum androgens and sex hormone-binding globulin (SHBG)

			s associated sterone at p<			s associated Diol G at p<0.		# SNPs associated with SHBG at p<0.05						
		All controls	Finasterid	e controls	All controls	Finasterid	e controls	All controls	Finasterid	le controls				
Gene	# SNPs Genotyped	Baseline	. Follow-up	. % Change	Baseline	. Follow-up	. % Change .	Baseline	. Follow-up	. % Change				
ARNTL	28	0	0	0	2	2	3	0	0	4				
CLOCK	14	0	7	0	0	0	0	3	0	5				
CRY1	22	0	3	2	0	1	0	0	0	0				
CRY2	16	4	0	1	0	0	0	0	2	1				
CSNK1E	23	1	0	2	2	2	0	4	3	1				
NPAS2	79	2	2	12	3	5	4	3	12	2				
PER1	17	2	1	1	0	2	0	1	0	1				
PER2	24	2	2	1	3	2	0	0	3	3				
PER3	30	1	1	0	5	0	0	1	1	0				
TIMELESS	2	2 0 0 0				0	0	0	0	1				
Total	255	12	16	19	15	14	7	12	21	18				

Table 5. Correlation between SNPs in circadian genes and serum androgens and SHBG with P-value <0.05 in the PCPT nested case-control study

	P<0.01			Testosterone All Controls Finasteride Group Controls											3α Diol G		Sex Hormone-Binding Globulin (SHBG)							
1	P<0.05				All Controls			Finasteride	Group Co	itrols			All Controls		Finasteride G	iroup Controls		All Controls		Finasteride G				
					Baseline			Follow-up		Percent Chan	ge		Baseline		Follow-up	Percent Change		Baseline		Follow-up	Percent Change			
Gene		Chr Loca		β		p-value	β	95% CI p-valu		95% CI	p-value	β	95% CI p-value	β	95% CI p-value	β 95% CI p-value	β	95% CI p-value	β	95% CI p-value	β 95% CI p-1			
ARNTL	rs12421920					0.4252		-37.89, 32.11 0.871		-9.6, 6.54	0.7102	0.05	-0.03, 0.13 0.2095	-0.28	-0.47, -0.09 0.0036	-0.19 -0.36, -0.03 0.0222	0.02	-0.03, 0.08 0.4199	0.05	-0.04, 0.14 0.2671	-0.02 -0.08, 0.03 0.			
			3355770	-0.69		0.9068		-21.16, 21.08 0.997		-7.43, 2.25	0.2954	-0.05	-0.1, 0 0.0702	0.11	-0.01, 0.22 0.0665	0.12 0.02, 0.22 0.0214	0.01	-0.03, 0.04 0.7161	0.00	-0.05, 0.06 0.8631	-0.01 -0.04, 0.02 0.			
	rs1026071		3364712	0.54	-,	0.9306	0.73	-20.96, 22.41 0.947		-8.26, 1.71	0.1991	-0.05	-0.11, 0 0.0426	0.11	-0.01, 0.22 0.0699	0.13 0.02, 0.23 0.0152	0.03	0, 0.06 0.0904	0.02	-0.03, 0.08 0.3990	-0.02 -0.06, 0.01 0.			
			3385316	5.60	,	0.3087	-5.79	-25.2, 13.62 0.559	- 0.0-	-4.16, 4.79	0.8890	-0.05	-0.1, -0.01 0.0263	-0.06	-0.17, 0.04 0.2397	-0.03 -0.12, 0.07 0.5746	0.00	-0.03, 0.03 0.9425	0.02	-0.03, 0.07 0.3592	0.03 0, 0.06 0.			
			3411534			0.5184		-13.51, 38.61 0.345		-5.02, 7	0.7471	0.03	-0.03, 0.1 0.3160	0.12	-0.02, 0.26 0.0950	-0.01 -0.13, 0.12 0.9161	0.01	-0.03, 0.05 0.7062	-0.01	-0.08, 0.05 0.6878	-0.04 -0.08, 0 0.			
	rs3761862		3424506	-6.07		0.4612		-39.52, 15.34 0.388 -14.28, 26.31 0.561		-1.64, 10.97	0.1478	-0.04	-0.11, 0.03 0.2701	-0.10	-0.25, 0.04 0.1699	-0.05 -0.18, 0.08 0.4439 0.05 -0.04, 0.15 0.2700	-0.03	-0.08, 0.01 0.1549	-0.01	-0.05, 0.09 0.5232	0.06 0.02, 0.1 0.			
	rs7103068 rs876226		3429961 3441444	-2.47		0.9385		-14.28, 26.31 0.561 -20.91, 17.69 0.870		-5.27, 4.09 -3.72, 5.17	0.8054	0.00	-0.04, 0.06 0.7207 -0.06, 0.03 0.4589	0.15	0.04, 0.26 0.0066 -0.03, 0.18 0.1628	0.05 -0.04, 0.15 0.2700 0.02 -0.07, 0.11 0.6286	0.00	-0.03, 0.04 0.8193 -0.05, 0.02 0.3459	0.00	-0.06, 0.04 0.6484 -0.05, 0.05 0.8815	0.00 -0.03, 0.03 0.			
CLOCK	rs491381	_	6274764	1.50	, , , , ,	0.8206		-19.12, 27.94 0.713		-5.75, 5.1	0.7303	0.01	-0.05, 0.07 0.7284	-0.05	-0.18, 0.08 0.4477	-0.03 -0.15, 0.08 0.5564	0.01	-0.01, 0.06 0.2040	0.00	-0.05, 0.07 0.8268	-0.04 -0.08, -0.01 0.			
CLOCK	rs13120134		5274764	7.83		0.2053	24.46	1.96, 46, 96 0.033		-5.75, 5.1	0.9362		-0.06, 0.04 0.7455	0.03	-0.1, 0.15 0.6769	0.06 -0.05, 0.16 0.2920	0.02		0.01	-0.03, 0.07 0.8268	0.00 -0.03, 0.04 0.			
	rs1801260			-11.62		0.0656	-25.99	-47.394.58 0.017		-8.18, 1.73	0.2029	0.02	-0.03, 0.07 0.4885	0.05	-0.06, 0.17 0.3579	0.00 -0.11, 0.1 0.9271	-0.04	-0.07.0 0.0387	-0.01	-0.07, 0.04 0.6219	0.04 0.0.07 0.			
	rs3792603			-5.30		0.3042	-19.39	-37.4, -1.39 0.035	0.00	-7.02, 1.55	0.2122	0.02	-0.02, 0.06 0.3992	0.02	-0.08, 0.12 0.6705	0.04 -0.05, 0.12 0.4016	-0.02	,	0.00	-0.05, 0.04 0.8907	0.02 0, 0.05 0.			
	rs11932595		6323597	-8.48		0.1310	-24.76	-43.755.77 0.011		-8.65, 0.14	0.0583	0.00	-0.04, 0.05 0.8571	0.09	-0.01, 0.19 0.0920	0.03 -0.06, 0.12 0.4951	-0.02	0.00,0.00	-0.03	-0.07, 0.02 0.3224	0.03 0.0.06 0.			
	rs2070062			-11.83		0.0611	-25.99	-47.39, -4.58 0.017		-8.18, 1.73	0.2029	0.02	-0.03, 0.07 0.4745	0.05	-0.06, 0.17 0.3579	0.00 -0.11, 0.1 0.9271	-0.04	-0.07. 0 0.0334	-0.01	-0.07, 0.04 0.6219	0.04 0, 0.07 0.			
	rs2101476			-11.69		0.0629		-46.64, -4.28 0.019		-8.02, 1.79		0.02	-0.03, 0.07 0.4772	0.05	-0.06, 0.17 0.3641	0.00 -0.11, 0.1 0.9250	-0.04	-0.07.0 0.0347		-0.07, 0.04 0.5475	0.03 0.0.07 0.			
	rs2412664		6457387	-8.66		0.1981	-30.22	-53.05, -7.39 0.009	8 -3.79	-8.94, 1.37	0.1510	0.04	-0.02, 0.09 0.2221	0.08	-0.05, 0.2 0.2287	0.04 -0.07, 0.15 0.4366	-0.03	-0.07. 0 0.0829	-0.02	-0.08, 0.04 0.5085	0.02 -0.01, 0.06 0.			
CRY1	rs10861683	12 107	7381560	-2.19	-14.41, 10.02	0.7248	-11.38	-33.89, 11.13 0.322	3 -8.66	-13.8, -3.53	0.00102	-0.02	-0.07, 0.04 0.5183	0.03	-0.1, 0.15 0.6735	0.04 -0.07, 0.14 0.5001	0.02	-0.02, 0.05 0.2974	0.05	-0.01, 0.11 0.1028	-0.02 -0.06, 0.01 0.			
				-13.36		0.1381	-42.44	-76.6, -8.29 0.015	3 -3.86	-11.8, 4.08	0.3413	0.01	-0.06, 0.09 0.7178	-0.08	-0.27, 0.1 0.3784	-0.14 -0.3, 0.03 0.1004	-0.02		-0.05	-0.14, 0.04 0.3079	-0.02 -0.07, 0.03 0.			
				-14.10	-31.61, 3.42	0.1149	-43.46	-77.06, -9.85 0.011	6 -3.28	-11.08, 4.52	0.4101	0.02	-0.06, 0.09 0.6543	-0.07	-0.25, 0.12 0.4746	-0.14 -0.3, 0.02 0.0852	-0.02	-0.07, 0.03 0.4151	-0.04	-0.13, 0.04 0.3170	-0.01 -0.07, 0.04 0.			
	rs12315175	12 107	7499272	7.99	-5.37, 21.35	0.2415	28.27	4.28, 52.26 0.021	4 5.99	0.46, 11.53	0.0345	-0.02	-0.08, 0.03 0.4317	-0.02	-0.16, 0.11 0.7082	0.02 -0.09, 0.13 0.7379	-0.01	-0.05, 0.03 0.6230	0.00	-0.06, 0.06 0.9431	0.00 -0.04, 0.04 0.			
	rs2204830	12 107	7527163	0.53	-17.64, 18.7	0.9545	-6.32	-42.21, 29.57 0.730	2 -1.10	-9.37, 7.17	0.7945	0.07	0, 0.15 0.0633	0.19	0, 0.39 0.0486	0.05 -0.12, 0.21 0.6010	-0.02	-0.07, 0.04 0.5627	-0.06	-0.16, 0.03 0.1856	0.00 -0.05, 0.06 0.			
CRY2	rs11823366	11 45	5828332	-19.73	-39.32, -0.14	0.0486	-8.75	-46.38, 28.88 0.648	7 5.20	-3.46, 13.86	0.2395	-0.06	-0.14, 0.03 0.1857	-0.04	-0.24, 0.17 0.7179	0.00 -0.18, 0.18 0.9820	0.00	-0.05, 0.06 0.9739	-0.01	-0.1, 0.09 0.8850	0.01 -0.04, 0.07 0.			
	rs1139266	11 45	5832935	-15.73	-30.73, -0.74	0.0400						0.01	-0.06, 0.07 0.8814				-0.04	-0.08, 0.01 0.0891						
	rs11607883	11 45	5839709	-11.68	-22.81, -0.55	0.0400	-12.93	-33.28, 7.42 0.213	7 2.02	-2.67, 6.7	0.4001	-0.03	-0.08, 0.02 0.2552	-0.04	-0.15, 0.07 0.4671	-0.05 -0.15, 0.05 0.2999	-0.03	-0.06, 0.01 0.1022	-0.05	-0.1, 0 0.0661	-0.01 -0.04, 0.02 0.			
	rs7121775		5864323	-5.04	-17.77, 7.68	0.4376	-7.93	-31.45, 15.59 0.509	0 1.77	-3.66, 7.19	0.5238	-0.02	-0.08, 0.03 0.4655	-0.01	-0.13, 0.12 0.9183	-0.01 -0.12, 0.1 0.8441	-0.01	-0.05, 0.02 0.4592	-0.06	-0.13, 0 0.0381	-0.02 -0.06, 0.01 0.			
	rs2292910	11 45	5903613	-12.96	-24.71, -1.22	0.0307	-13.34	-34.76, 8.07 0.222	8 2.74	-2.19, 7.68	0.2768	-0.02	-0.07, 0.03 0.5090	-0.02	-0.13, 0.1 0.7525	-0.03 -0.13, 0.08 0.6146	-0.02	-0.05, 0.02 0.3145	-0.06	-0.11, 0 0.0337	-0.01 -0.05, 0.02 0.			
	rs1554338		5906830		-29.52, 16.34		8.09	-32.24, 48.42 0.694		4.23, 22.52	0.0044	-0.05	-0.15, 0.05 0.3476	0.02	-0.2, 0.24 0.8291	0.02 -0.17, 0.21 0.8500	0.03	-0.04, 0.09 0.4021	0.01	-0.09, 0.11 0.8494	0.03 -0.03, 0.09 0.			
CSNK1E	rs6001074	22 38	8655597	-2.30	-13.68, 9.08	0.6920	2.39	-18.73, 23.51 0.824	7 3.55	-1.31, 8.41	0.1528	-0.01	-0.06, 0.04 0.6573	-0.10	-0.21, 0.01 0.0867	-0.01 -0.11, 0.09 0.7770	0.02	-0.01, 0.05 0.2496	-0.02	-0.07, 0.04 0.4929	-0.04 -0.07, -0.01 0.			
	rs135715		8660871	-6.70	-	0.2249	-15.32	-34.7, 4.07 0.122		-9.35, -0.42	0.0326	0.01	-0.03, 0.06 0.5893	0.03	-0.08, 0.13 0.6267	-0.02 -0.11, 0.07 0.6261	-0.01	0.0., 0.00	0.01	-0.04, 0.06 0.6178	0.03 0, 0.06 0.			
	rs12485196		8662396	16.85	3, 30.71	0.0173	11.47	-13.22, 36.17 0.363		-5.25, 6.23	0.8682	-0.01	-0.07, 0.05 0.7075	0.06	-0.07, 0.19 0.3767	0.06 -0.05, 0.18 0.2988	0.01		0.00	-0.07, 0.06 0.9358	0.01 -0.03, 0.04 0.			
	rs1997644			-10.00		0.0770	-9.24	-29.29, 10.8 0.366		-1.05, 8.2	0.1307		-0.04, 0.05 0.7805	0.05	-0.06, 0.16 0.3704	0.03 -0.07, 0.12 0.5406		-0.07, -0.01 0.0116	-	-0.12, -0.02 0.0090	0.03 0, 0.06 0.			
			J, L 113L	-11.63	23.73, 0.32	0.0610		-29.47, 14.95 0.522		-1.39, 8.55	0.1592	-0.01	-0.07, 0.04 0.6186	0.04	-0.08, 0.16 0.5389	0.02 -0.08, 0.13 0.6766	-0.03	-0.07, 0 0.0438	-0.06	-0.11, 0 0.0408	0.02 -0.02, 0.05 0.			
			8732824					-36.98, 32.19 0.892		0.88, 16.73	0.0300		-0.05, 0.12 0.3653	0.01	-0.18, 0.19 0.9548	-0.02 -0.18, 0.14 0.8087	-0.06	-0.11, 0 0.0482	-0.03	-0.12, 0.06 0.5105	0.01 -0.04, 0.07 0.			
	rs5757055		8740853	6.41		0.2646	4.18	-16.56, 24.91 0.693		-5.89, 3.79	0.6705		-0.09, 0.01 0.0892	-0.05	-0.16, 0.06 0.3830	-0.01 -0.11, 0.09 0.8394	0.04	0.01, 0.07 0.0181	0.06	0, 0.11 0.0415	0.00 -0.03, 0.03 0.			
	rs5750597			10.35 7.83	0.20, 20.00	0.2214	22.46	-8.16, 53.07 0.151		-6.01, 7.65	0.8146	0.10	0.03, 0.17 0.0076 0.04, 0.15 0.0014	0.22	0.05, 0.38 0.0094	0.05 -0.09, 0.2 0.4597	0.00	-0.04, 0.05 0.9244	0.03	-0.05, 0.11 0.4065	0.00 -0.05, 0.05 0.			
NDACO	rs6001098	_	8743302	7.05	,	0.2413	11.75	-13, 36.59 0.351		-0.68, 10.69		0.05	0.0., 0.20	0.15	0.01, 0.20 0.0323	0.05 0.00, 0.15 0.5505	0.00	-0.04, 0.03 0.8639 -0.06, 0.02 0.2806	0.01	-0.06, 0.07 0.8435	0.01 0.01, 0.05 0.			
NPAS2	rs7565018 rs6740234		1397139 1408323	2.41	-	0.5110	-15.08 -18.27	-38.04, 7.88 0.198 -42.56, 6.02 0.141		-5.27, 5.69 -5.99, 5.23	0.9398	-0.02	-0.07, 0.04 0.6030 -0.06, 0.06 0.9444	0.03	-0.1, 0.16 0.6485 -0.08, 0.19 0.4185	0.05 -0.06, 0.16 0.3498 0.04 -0.07, 0.16 0.4478	-0.02		-0.07	-0.13, 0 0.0395	0.00 -0.03, 0.04 0.			
	rs17024814		1426316	2.41		0.7293		-25.83, 52.09 0.509		-6.5, 11.46	0.00	0.00	-0.13, 0.06 0.4853	0.03	-0.08, 0.34 0.2152	0.20 0.02, 0.39 0.0289	-0.02	0.00,0.00	-0.07	0.20,0 0.0000	0.00 -0.06, 0.06 0.			
	rs17024869		1460043			0.3598		-25.04, 44.85 0.578		-16.170.13			-0.06, 0.11 0.5274	0.13	-0.05, 0.33 0.1632	0.00 -0.17, 0.17 0.9884	-0.04			-0.12, 0.06 0.4671	-0.03 -0.09, 0.02 0.			
	rs7557936		1460446	4.10		0.5149	-27 71	-49.745.69 0.014		-10.17, -0.13		0.05	0, 0.1 0.0686	0.05	-0.07, 0.17 0.4361	-0.04 -0.15, 0.06 0.3999	-0.04	0.1, 0.01		-0.13, -0.02 0.0137	-0.01 -0.05, 0.02 0.			
	rs7598826			3.82		0.5009	-8.56	-28.01, 10.88 0.388		-5.79, 3.17		0.06	0.01. 0.11 0.0109	0.11	0.01, 0.22 0.0364	-0.01 -0.1, 0.08 0.8567	0.00	-0.03, 0.03 0.9986		-0.11, -0.01 0.0148	-0.02 -0.05.0 0.			
	rs983287			10.14	-, -	0.1327	-14.46	-37.52, 8.59 0.219		-11.35, -0.76		0.05	0.0.11 0.0615	0.08	-0.04, 0.21 0.1903	-0.02 -0.13.0.09 0.6969	-0.01	,		-0.11, 0.01 0.0763	-0.02 -0.05, 0.02 0.			
	rs2871389		1495174			0.8090	-16.55	-37.61, 4.5 0.124		-9.76, -0.07		0.04	-0.01, 0.09 0.1035	0.08	-0.04, 0.19 0.1912	-0.03 -0.13, 0.07 0.5485	-0.03	-0.07.0 0.0584	-0.06	-0.12, -0.01 0.0218	-0.02 -0.05, 0.01 0.			
	rs6723452		1505074			0.7947	17.78	-4.28, 39.84 0.114		-3.78, 6.42		-0.06	-0.11, 0 0.0371	-0.06	-0.18, 0.06 0.3618	0.03 -0.07, 0.13 0.5658	0.00	-0.03, 0.04 0.9485	0.07	0.01, 0.12 0.0220	0.03 -0.01, 0.06 0.			
	rs6740935						12.77	-9.44, 34.97 0.260		0.24, 10.13	0.0405	-0.01	-0.06, 0.05 0.8127	-0.04	-0.16, 0.08 0.5274	-0.03 -0.13, 0.08 0.6104	0.01	-0.02, 0.05 0.5161	0.02	-0.04, 0.08 0.4869	0.02 -0.01, 0.06 0.			
	rs2117714					0.6650	3.67	-21.14, 28.48 0.772	0 8.63	2.86, 14.39	0.0036	0.03	-0.03, 0.09 0.2834	0.09	-0.05, 0.23 0.2171	0.05 -0.07, 0.17 0.4296	0.00	-0.04, 0.04 0.9470	-0.05	-0.12, 0.01 0.1017	0.01 -0.03, 0.05 0.			
	rs4851377			-7.87	-18.95, 3.2	0.1639	-11.73	-31.52, 8.06 0.246	0 5.22	0.67, 9.76	0.0250	0.05	0, 0.09 0.0639	0.06	-0.05, 0.16 0.3037	0.01 -0.08, 0.11 0.7755	-0.01	-0.04, 0.03 0.7070		-0.13, -0.03 0.0011	-0.02 -0.05, 0.01 0.			
	rs7570190		1528047	-3.66	-18.35, 11.04	0.6258	5.44	-21.1, 31.98 0.688	0 7.95	1.82, 14.07	0.0113	0.00	-0.07, 0.06 0.9108	0.05	-0.1, 0.2 0.5063	0.02 -0.11, 0.15 0.7544	0.01	-0.04, 0.05 0.7633	-0.03	-0.1, 0.03 0.3270	0.01 -0.04, 0.05 0.			
	rs13026599	2 101	1541270	1.38	-13.13, 15.88	0.8525	-1.55	-28.91, 25.81 0.911	6 -6.83	-13.1, -0.56	0.0334	-0.03	-0.09, 0.03 0.3859	-0.10	-0.24, 0.05 0.2044	-0.07 -0.2, 0.06 0.2960	0.00	-0.04, 0.04 0.9634	0.07	0, 0.14 0.0465	0.02 -0.02, 0.06 0.			
	rs3754674		1549761	6.03	-5.16, 17.23	0.2909	19.31	-0.88, 39.51 0.061	6 5.20	0.56, 9.85	0.0287	-0.02	-0.07, 0.03 0.4310	-0.04	-0.15, 0.07 0.4821	-0.02 -0.12, 0.08 0.6904	0.03	0, 0.06 0.0854	0.03	-0.02, 0.08 0.2312	0.02 -0.01, 0.05 0.			
	rs13025524		1550181	6.11	,	0.3085	13.35	-7.88, 34.58 0.218	-	0.82, 10.56	0.0226	-0.02	-0.07, 0.03 0.4936	-0.04	-0.15, 0.08 0.5180	-0.01 -0.11, 0.09 0.8861	0.02	-0.01, 0.06 0.1948	0.02	-0.04, 0.07 0.5321	0.03 -0.01, 0.06 0.			
	rs895521		1552095	-6.22	. ,	0.3297	-13.15	-35.16, 8.85 0.242		-5.15, 5.01	0.9776	0.06	0, 0.11 0.0403	0.08	-0.04, 0.2 0.1733	-0.02 -0.12, 0.08 0.6975	-0.02		-0.07	-0.13, -0.01 0.0137	-0.02 -0.05, 0.02 0.			
	rs7605434		1558984		,	0.9921	-29.48	-59.76, 0.8 0.057		-14.61, -0.67	0.0323	0.03	-0.05, 0.1 0.4768	0.14	-0.02, 0.3 0.0913	0.03 -0.11, 0.17 0.6747		-0.07, 0.03 0.5481		-0.14, 0.02 0.1391	-0.07 -0.12, -0.03 0.			
	rs12712085		1565151	6.65	,	0.2353	10.02	-9.71, 29.76 0.320		-4.38, 4.72		0.00	-0.06, 0.03 0.5969	-0.11	-0.21, 0 0.0493	-0.11 -0.21, -0.02 0.0153	0.04	,	0.05	0, 0.1 0.0474	-0.01 -0.04, 0.02 0.			
	rs3820787		1566234	8.59	,	0.1412		-11.31, 30.87 0.364		-4.85, 4.88	0.9952	-0.03	-0.08, 0.02 0.1775	-0.18	-0.3, -0.07 0.0015	-0.14 -0.24, -0.04 0.0061	0.03		0.05	0, 0.11 0.0657	0.00 -0.04, 0.03 0.			
	rs4851390		1571705	-5.52		0.4252	-17.86	-40.94, 5.22 0.130		-9.02, 1.62	0.1740	0.00	-0.06, 0.05 0.8746	0.13	0.01, 0.25 0.0417	0.11 0, 0.22 0.0510	-0.04	-0.08, 0 0.0477	-0.06	-0.11, 0 0.0717	0.00 -0.04, 0.03 0.			
	rs4851392			2.30		0.7105	16.44	-5.82, 38.71 0.148		-4.4, 5.88	0.7778	-0.02	-0.07, 0.03 0.4007	-0.12	-0.24, 0 0.0526	-0.12 -0.23, -0.02 0.0214	0.00		0.05	-0.01, 0.1 0.1239	0.00 -0.04, 0.03 0.			
	rs2305159			-5.25		0.4333	-25.96	-49.7, -2.22 0.032	8 -2.32	-7.64, 3	0.3932	0.00	-0.06, 0.05 0.8608	0.07	-0.06, 0.2 0.2955	0.03 -0.08, 0.14 0.5642	0.00	-0.04, 0.04 0.9700	-0.07	-0.13, -0.01 0.0200	-0.03 -0.07, 0 0.			
	rs1542178		1595475	1.87	,	0.7571	12.39	-8.98, 33.77 0.256		-4.95, 4.87	0.9878	-0.03	-0.08, 0.03 0.3242	-0.06	-0.17, 0.06 0.3303	-0.05 -0.15, 0.05 0.3608	0.00	-0.03, 0.03 0.9682	0.06	0, 0.11 0.0444	0.01 -0.03, 0.04 0.			
	rs2278727		1598677	-6.03	- /	0.3766		-38.38, 12.35 0.315		-7.49, 3.74	0.5126	0.02	-0.04, 0.07 0.5800	0.17	0.03, 0.3 0.0147	0.08 -0.03, 0.2 0.1663	-0.01		-0.05	-0.12, 0.01 0.1063	-0.03 -0.06, 0.01 0.			
	rs11123857		1603812	-14.25	-26.17, -2.33	0.0193	-13.66	-35.54, 8.23 0.222		-4, 6.1	0.6836	0.01	-0.04, 0.06 0.6752	0.04	-0.08, 0.16 0.4948	0.03 -0.07, 0.13 0.5773		-0.06, 0.01 0.1402		-0.08, 0.03 0.4242	0.03 -0.01, 0.06 0.			
	rs11695176		1623667 1635989	14.68 -13.73	0.02, 20.00	0.0423	17.51 -5.70	-7.76, 42.78 0.175 -35.03. 23.62 0.703		-7.65, 4.02 -3.95, 9.56	0.5430	0.00	-0.06, 0.06 0.9242 -0.05, 0.09 0.5792	-0.04	-0.17, 0.1 0.5897 -0.18, 0.13 0.7475	-0.01 -0.13, 0.11 0.8373 -0.01 -0.15, 0.12 0.8396		-0.02, 0.06 0.4537 -0.06, 0.03 0.4013	-0.01	0, 0.13 0.0563 -0.09, 0.06 0.7085	-0.01 -0.05, 0.03 0. 0.05 0.009 0.			
	rs17663389										0.4157													

Table 5. Correlation between SNPs in circadian genes and serum Androgens and SHBG with P-value<0.05 in the PCPT nested case-control study (cont.)

	P<0.01		,	•			Testosterone									3α Diol G	3					Sex Hormone-Binding Globulin (SHBG)							
	P<0.05		1	All Controls			Fina	steride Gr	oup Con	trols			All Control	ls		Fina	asteride G	roup Co	ntrols			All Contro	s		Fina	steride Gr	oup Co	ntrols	
				Baseline			Follow-up		1	Percent Chang	ge		Baseline			Follow-up	р	- 1	Percent Chai	nge		Baseline			Follow-up)	F	Percent Chan	ige
Gene	SNP	Chr Location	β	95% CI	p-value	ue β 95% CI p-value β 95% CI p-value β		95% CI	p-value	β	95% CI	p-value	β	95% CI	p-value	β	95% CI	p-value	β	95% CI	p-value	β	95% CI	p-value					
PER1	rs3809882	17 7999589	13.01	1.64, 24.37	0.0251	21.97	0.39, 43.55	0.0467	-0.10	-5.1, 4.89	0.9679	-0.03	-0.07, 0.02	0.3103	0.02	-0.1, 0.13	0.7749	0.04	-0.06, 0.14	0.4500	0.02	-0.01, 0.05	0.2147	0.05	0, 0.11	0.0535	-0.01	-0.05, 0.02	0.4626
	rs9894356	17 8006312	-13.37	-26.15, -0.58	0.0407	-18.22	-42.57, 6.14	0.1435	-1.77	-7.38, 3.84	0.5372	0.01	-0.04, 0.07	0.6730	0.02	-0.11, 0.15	0.7708	0.00	-0.12, 0.11	0.9559	0.01	-0.03, 0.05	0.5533	-0.03	-0.09, 0.04	0.3936	-0.01	-0.05, 0.03	0.5991
	rs9912048	17 8008535	8.54	-3, 20.09	0.1470	-6.16	-26.49, 14.16	0.5525	-2.71	-7.39, 1.96	0.2565	0.01	-0.04, 0.06	0.7787	0.11	0, 0.22	0.0431	0.05	-0.04, 0.15	0.2644	0.03	0, 0.07	0.0441	-0.04	-0.09, 0.01	0.1329	-0.05	-0.08, -0.02	0.0032
	rs7215658	17 8010164	4.10	-9.35, 17.55	0.5504	6.08	-18.37, 30.54	0.6261	-2.21	-7.84, 3.43	0.4433	-0.02	-0.08, 0.04	0.4643	-0.14	-0.28, -0.01	0.0318	-0.05	-0.16, 0.07	0.4302	0.00	-0.03, 0.04	0.8370	0.02	-0.04, 0.08	0.5309	-0.02	-0.06, 0.02	0.2630
	rs3027267	17 8090895	5.52	-15.07, 26.11	0.5995	-22.57	-58.64, 13.51	0.2210	-10.41	-18.8, -2.01	0.0156	0.03	-0.06, 0.12	0.5134	0.13	-0.06, 0.32	0.1759	0.04	-0.13, 0.2	0.6851	0.01	-0.05, 0.07	0.6751	-0.01	-0.1, 0.08	0.8420	-0.03	-0.08, 0.03	0.3323
PER2	rs7558403	2 239103749	-8.07	-19.51, 3.38	0.1673	-1.62	-22.2, 18.96	0.8777	-0.57	-5.21, 4.06	0.8084	-0.05	-0.1, 0	0.0343	0.03	-0.08, 0.14	0.6050	0.05	-0.05, 0.15	0.3126	-0.03	-0.06, 0	0.0821	-0.02	-0.07, 0.04	0.5722	0.02	-0.01, 0.05	0.1804
	rs4663863	2 239121733	7.12	-5.84, 20.07	0.2821	6.33	-17.59, 30.25	0.6044	-4.12	-9.62, 1.38	0.1430	0.06	0.01, 0.12	0.0251	0.00	-0.13, 0.13	0.9709	-0.06	-0.17, 0.05	0.2938	0.01	-0.03, 0.05	0.6309	0.06	0, 0.12	0.0556	-0.01	-0.05, 0.03	0.6269
	rs6722019	2 239128117	14.76	3.65, 25.87	0.0094	0.74	-19.41, 20.89	0.9426	1.11	-3.53, 5.75	0.6391	0.06	0.01, 0.1	0.0208	0.04	-0.07, 0.15	0.4350	-0.06	-0.15, 0.04	0.2168	0.03	0, 0.06	0.0690	-0.01	-0.06, 0.04	0.6875	-0.03	-0.06, 0	0.0353
	rs2305174	2 239133324	7.06	-9.77, 23.89	0.4112	9.04	-20.79, 38.87	0.5529	3.55	-3.36, 10.46	0.3143	-0.02	-0.1, 0.05	0.5498	-0.16	-0.33, 0	0.0497	-0.06	-0.2, 0.08	0.4118	0.00	-0.05, 0.04	0.9226	0.03	-0.05, 0.11	0.4096	0.00	-0.05, 0.05	0.9508
	rs56386336	2 239153948	-0.55	-15.56, 14.46	0.9427	-28.04	-56.47, 0.39	0.0539	0.28	-6.34, 6.9	0.9340	-0.01	-0.07, 0.06	0.8140	0.08	-0.08, 0.23	0.3331	-0.01	-0.14, 0.13	0.8912	-0.02	-0.06, 0.02	0.3211	-0.09	-0.17, -0.02	0.0132	-0.02	-0.06, 0.02	0.3567
	rs11894535	2 239177073	-7.84	-21.54, 5.87	0.2627	-39.70	-65.93, -13.47	0.0032	0.03	-6.04, 6.1	0.9931	0.02	-0.04, 0.08	0.4760	0.06	-0.08, 0.2	0.4280	-0.02	-0.14, 0.1	0.7646	-0.02	-0.06, 0.02	0.2999	-0.10	-0.17, -0.03	0.0037	-0.02	-0.06, 0.02	0.2406
	rs2304673	2 239185922	-1.93	-17.08, 13.23	0.8031	-32.10	-60.99, -3.21	0.0300	-0.80	-7.49, 5.9	0.8158	0.00	-0.07, 0.06	0.9714	0.08	-0.07, 0.24	0.3070	-0.02	-0.15, 0.12	0.8272	-0.02	-0.06, 0.02	0.3556	-0.09	-0.16, -0.01	0.0264	-0.02	-0.07, 0.02	0.2705
	rs7595976	2 239215744	-0.83	-12.09, 10.42	0.8848	12.99	-7.21, 33.19	0.2082	1.71	-2.96, 6.38	0.4728	0.00	-0.05, 0.05	0.9941	-0.07	-0.18, 0.04	0.1967	0.00	-0.09, 0.1	0.9261	0.00	-0.03, 0.03	0.8776	0.03	-0.02, 0.08	0.2984	0.03	0, 0.06	0.0456
	rs7599697	2 239231477	12.17	0.99, 23.35	0.0331	12.12	-7.8, 32.04	0.2337	-1.19	-5.75, 3.36	0.6084	-0.01	-0.06, 0.04	0.7006	0.06	-0.05, 0.16	0.3194	0.04	-0.06, 0.13	0.4618	0.01	-0.02, 0.05	0.3646	0.03	-0.02, 0.08	0.2149	-0.03	-0.06, 0	0.0756
	rs6737780	2 239235287	-11.22	-23.84, 1.39	0.0815	9.35	-13.57, 32.27	0.4243	5.31	0.03, 10.59	0.0496	0.01	-0.05, 0.06	0.8273	-0.10	-0.23, 0.02	0.0953	-0.05	-0.16, 0.05	0.3344	-0.02	-0.05, 0.02	0.3237	0.00	-0.06, 0.06	0.9332	0.04	0.01, 0.07	0.0236
PER3	rs1417986	1 7797734	-2.39	-13.54, 8.76	0.6744	4.39	-14.96, 23.75	0.6567	-0.64	-5.11, 3.82	0.7774	-0.08	-0.13, -0.03	0.0012	-0.03	-0.14, 0.07	0.5174	0.05	-0.04, 0.14	0.2765	0.00	-0.03, 0.03	0.8935	0.04	-0.01, 0.09	0.1146	0.00	-0.03, 0.03	0.8420
	rs2066293	1 7810543	-4.60	-16.76, 7.55	0.4580	8.37	-12.27, 29.01	0.4272	2.15	-2.63, 6.93	0.3789	-0.08	-0.13, -0.03	0.0020	-0.05	-0.16, 0.07	0.4168	0.03	-0.06, 0.13	0.5019	-0.01	-0.05, 0.02	0.4943	0.04	-0.02, 0.09	0.1949	0.01	-0.03, 0.04	0.7369
	rs2640908	1 7889941	-16.36	-30.65, -2.07	0.0251	-9.45	-34.04, 15.14	0.4518	3.14	-2.52, 8.8	0.2772	-0.06	-0.13, 0	0.0417	-0.07	-0.21, 0.06	0.2703	0.00	-0.12, 0.12	0.9991	-0.03	-0.07, 0.01	0.1686	-0.01	-0.08, 0.05	0.6754	0.02	-0.01, 0.06	0.2143
	rs707476	1 7918106	-6.00	-17.79, 5.8	0.3192	14.84	-6.72, 36.41	0.1781	2.20	-2.78, 7.17	0.3876	-0.05	-0.1, 0	0.0404	-0.08	-0.19, 0.04	0.1982	-0.03	-0.14, 0.07	0.5139	-0.02	-0.05, 0.02	0.3747	0.05	-0.01, 0.1	0.1138	0.03	0, 0.06	0.0817
	rs579992	1 7927981	-4.22	-22.67, 14.22	0.6539	0.63	-33.25, 34.51	0.9711	-1.53	-9.33, 6.27	0.7009	-0.11	-0.19, -0.03	0.0070	-0.06	-0.24, 0.12	0.5277	0.05	-0.11, 0.21	0.5747	-0.03	-0.08, 0.02	0.2677	0.02	-0.06, 0.11	0.5843	0.02	-0.03, 0.07	0.4554
	rs1040397	1 7952427	4.07	-7.29, 15.43	0.4828	20.84	0.31, 41.38	0.0473	1.14	-3.66, 5.94	0.6422	0.02	-0.03, 0.07	0.5007	0.01	-0.1, 0.13	0.8016	-0.02	-0.12, 0.08	0.7451	0.04	0.01, 0.07	0.0103	0.06	0, 0.11	0.0405	0.00	-0.03, 0.04	0.7952
TIMELES	S rs774047	12 56815922	5.22	-5.59, 16.03	0.3439	7.42	-11.97, 26.82	0.4535	-0.03	-4.5, 4.44	0.9891	-0.03	-0.07, 0.02	0.2335	-0.07	-0.17, 0.04	0.2222	-0.03	-0.12, 0.06	0.5082	0.01	-0.02, 0.04	0.4084	0.02	-0.03, 0.07	0.3700	-0.03	-0.06, 0	0.0241

Figure 1. Main effects of individual circadian gene variants on total prostate cancer risk in men in the PCPT by treatment group

Figure 2. Main effects of individual circadian gene variants on low-grade prostate cancer risk in the PCPT by treatment group

Figure 3. Main effects of individual circadian gene variants on high-grade prostate cancer risk in the PCPT by treatment group

Figure 4. Correlation between individual circadian gene variants on total serum testosterone levels in the finasteride-treated men

Figure 5. Correlation between individual circadian gene variants on serum 3α diol G levels in the finasteride-treated men

Figure 6. Correlation between individual circadian gene variants on serum sex hormone-binding globulin (SHBG) levels in the finasteride-treated men

