PATENT ABSTRACTS OF JAPAN

(11) Publication number: 04305304 A

(43) Date of publication of application: 28.10.92

(51) Int. CI

B21B 37/00 B21B 37/00

B21B 37/00 G05B 13/02

(21) Application number: 03091242

(22) Date of filing: 29.03.91

(71) Applicant:

NISSHIN STEEL CO LTD

(72) Inventor:

NARAHARA HIROSHI MATSUMOTO KENICHI SHIGA YUKINARI

(54) METHOD FOR CONTROLLING CAMBER IN HOT ROLLING MILL

(57) Abstract:

PURPOSE: To control chamber by moving a rolled stock in the width direction with edger rolls of a hot rolling mill.

CONSTITUTION: In a rolling line which is arranged with a 1st rolling equipment which is provided with a 1st stand in which a rolling load measuring means and roll gap adjusting means are provided, means for measuring the temp, and thickness of rolled stock which are provided on the inlet side of the 1st stand and means for detecting the position in the width direction of the rolled stock arranged on the inlet and outlet sides of a (n-1)th stand, and an n-th rolling equipment which is provided with a position detecting means which is provided on the inlet and outlet sides of an n-th stand provided with a rolling lead measuring means and roll gap adjusting means; feed forward control that is implemented with the edger rolls so as to correct the camber of the rolled stock by calculating wedge ratio, camber ratio and temp. difference in the width direction of the rolled stock from the measured value of the 1st rolling equipment and feedback control that the position of the edger rolls is adjusted so as to correct chamber by calculating camber by the position

ion the width direction of the rolled stock on the inlet and outlet sides of the n-th rolling mill are involved.

COPYRIGHT: (C)1992,JPO&Japio

(19)日本国特許庁 (JP) (12) 公開特許公報(A): (11)特許出願公開番号

特開平4-305304

(43)公開日 平成4年(1992)10月28日

(51) Int.Cl.*	識別記号	庁内整理番号	FI	技術表示箇所
B 2 1 B 37/00	119	7728-4E		
	BBJ			
	122 A	8315-4E		
G 0 5 B 13/02	Q	9131 – 3H		

審査請求 未請求 請求項の数2(全 8 頁)

(21)出顧番号	特顧平3-91242	(71)出願人 000004581		
		日新製鋼株式会社		
(22)出願日	平成3年(1991)3月29日	東京都千代田区丸の内3丁目4番1号		
		(72)発明者 楢原 寛		
		広島県呉市昭和町11番1号 日新製鋼株式		
		会社呉製鉄所内		
		(72)発明者 松本 謙一		
		広島県呉市昭和町11番1号 日新製鋼株式		
		会社呉製鉄所内		
		(72)発明者 志賀 幸成		
		広島県呉市昭和町11番1号 日新製鋼株式		
		会社呉製鉄所内		
	•	(74)代理人 弁理士 會我 道照 (外6名)		

(54) 【発明の名称】 熱間圧延機におけるキヤンバー制御方法

(57)【要約】 (修正有)

【目的】熱間圧延機でエッジャーロールによって圧延材 を幅方向に移動させることによるキャンバー制御方法。

【構成】圧延荷重測定手段とロールギャップ調節手段と を設けた第1スタンドと、第1スタンドの入側に設けら れた圧延材の温度計測手段と板厚計測手段と、第n-1 スタンドの入出側に圧延材の幅方向の位置検出手段とを 設けた第1圧延設備と、圧延荷重手段とロールギャップ 調節手段とを設けた第nスタンド入出側に位置検出手段 とを設けた第n圧延設備とを配設した圧延ラインにおい て、第1圧延設備の計測値から圧延材のウエッジ率、キ ャンパー率、幅方向の温度差を演算し、圧延材のキャン パーを修正するようエッジャーロールによって調整する フィードフォアード制御と第n圧延材の入出側の圧延材 の幅方向の位置によりキャンバーを演算し、キャンバー を修正するようにエッジャーロールの位置を調整するフ ィードバック制御とを含む方法。

【特許請求の範囲】

【請求項1】 少なくとも圧延荷重測定手段(5)とロー ルギャップ調節手段(6)とを設けた第1スタンド(1)と、 該第1スタンド(1)の入側に設けられた圧延材の温度計 測手段(14)と板厚計測手段(13)と、該第 n - 1 スタンド (1)の入出側に圧延材の幅方向の位置を検出する位置検 出手段(11.12)とを設けた第1圧延設備(50)と、少なく とも圧延荷重測定手段とロールギャップ調節手段とを設 けた第 n スタンド(20)の入側に圧延材を板幅方向に移動 するエッジャーロール(27)を設け、かつ、該第nスタン ド(20)の入出側に圧延材の幅方向の位置を検出する位置 検出手段(29,30)とを設けた第 n 圧延設備(51)とを配設 した圧延ラインにおいて、第1圧延設備で計測した圧延 材の厚みや温度、圧延材の幅方向の位置、圧延荷重、ロ ールギャップとから圧延材のウェッジ率やキャンバー率 及び幅方向の温度差を演算し、これらの値によって圧延 材のキャンパーを修正するよう圧延材の幅方向のセンタ ーと圧延機のセンターとの位置関係を前記エッジャーロ ールによって調整するフィードフォアード制御と第n圧 延機の入出側の圧延材の幅方向の位置によってキャンパー ーを演算し、この値からキャンパーを修正するよう前記 エッジャーロールの位置を調整するフィードバック制御 とを含むことを特徴とする熱間圧延機におけるキャンパ 一制御方法。

前記第1圧延設備で計測した圧延材の厚 【請求項2】 みや温度、圧延材の幅方向の位置、圧延荷重、ロールギ ャップとから圧延材のウェッジ率やキャンバー率及び幅 方向の温度差を演算し、これらの値によって圧延材のキ ャンバーを修正するよう第1圧延機のロールレベルを調 整すると共に圧延材の幅方向のセンターと第π圧延機の センターとの位置関係を第n圧延設備のエッジャーロー ルによって調整するフィードフォアード制御と、第η圧 延機の入出側の圧延材の幅方向の位置によってキャンパ 一を演算し、この値からキャンパーを修正するように前 記エッジャーロールの位置を調整するフィードバック制 御と共に第η圧延機のロールレベルを調整することを特 徴とする請求項1記載の熱間圧延機におけるキャンパー 制御方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、熱間圧延機におけるキ ャンバー制御方法に関し、特にエッジャーロール(圧延 材の幅を修正する堅型ロールをいう。) によって圧延材 を幅方向に移動させることによってキャンパーを修正す る制御方法に関するものである。

[0002]

【従来の技術】従来、一般に熱間圧延ラインでの粗圧延 設備は、圧延荷重計やロールギャップ調節装置を設けた 粗圧延機と、前記粗圧延機の入側に設けた一対のエッジ

250mのスラブを20~40mの帯鋼に圧延してい る。この租圧延機に設けられているロールギャップ調整 装置は、圧延材が所定の板厚になるよう上下ロールのギ ャップ調整や、上下ロールのレベルを調整(レベリング ともいう。) する機能がある。また、一対のエッジャー ロールはロール間隔を調整して圧延材の幅をコントロー ルするために設けられている。粗圧延機で圧延されるス ラブは加熱炉によって所定温度に加熱されるが、そのス ラブは幅方向に均一に加熱されたものや、加熱条件やス ラブの装入状態等によって幅方向に温度偏差が生じたも のなどがある。

【0003】上述のようなスラブは圧延機とエッジャー ロールによって所定厚み・幅に圧延されるが、スラブの 形状・温度または圧延条件等によって、その鋼帯(以下 圧延材という。)にはキャンパー(曲がり)やウェッジ 等をが生じるときがある。従来は、このように発生した キャンバーは、ロールのレベルを調整(レベリング)す ることによって修正している。

[0004]

【発明が解決しようとする課題】しかしながら、前述の ように発生するキャンパーやウェッジはレベリングだけ では全ての形状を修正することは困難であり、次のよう な課題が存在していた。例えば、

(1) 幅方向に温度差があるスラブを圧延した場合、図 2 に示すように、幅方向に温度差があるスラブを圧延す る場合、WS(ワークサイド)とDS(ドライブサイ ド)とのロールレベルを調整することによってある程 度、キャンパーや蛇行を修正する ことが可能であって も、この温度差が長手方向に均一とは限らず、加熱炉で 30 のスラブ装入状態等によって、スラブ内で高温部がWS 倒やDS側に変化することもあり、単にレベリング調整 だけで修正することは不可能である。

- (2) キャンパーがある圧延材を圧延する場合、前段の 圧延機でキャンバーが生じた圧延材を後段の圧延機で圧 延する場合、ロールに噛み込まれる前記圧延材の進入角 度は変わるので、これによってキャンバーが益々助長さ れ、従来のレベリング調整だけでは対応できなくなる。
- (3) 板厚偏差 (ウェッジ) がある圧延材を圧延する場 合、レベリング調整でウェッジ率を変えずに出側キャン 40 パーを修正することは理論的に可能であるが、コイル内 でウェッジ率やその偏差方向が変わると、応答性の遅い 電動圧下装置では対応できず、応答性の優れた油圧圧下 装置を設けた圧延機が必要となる。
- (4) 圧延機のセンターと圧延材の幅センターとにズレ (オフセンターという。)が生じた場合、このようにオ フセンターがあると左右の圧下率に差が生じキャンバー が発生する場合がある。この様なとき、従来のエッジャ ロールの機能(従来は、幅を調整するためのみにエッジ ャロールを設け、単にロール間隔を調整する機能だけで ャーロールによって構成され、該租圧延機によって厚み 50 あって、圧延材全体を幅方向に移動さす機能はない。)

では圧延材を幅方向に移動さすことによってオフセンターを修正することは不可能であった。又、レベリング調整だけでキャンバーを修正することもできない。

(5) ワークロールの摩擦係数の差がWS側とDS例と で生じた場合、ロールの摩擦係数が長手方向に差がある と、圧延材は横ずれしキャンパーが発生する。このよう* *なときはロール替えを行うことによって対応していた。 以上のような条件でキャンパーが発生するのであるが、 この現象を示す一般理論式を、図2の温度偏差の場合に 基づき説明する。すなわち、出側キャンパー ρ。は、次 の

【数1】

$$\rho_{\bullet} = \frac{\rho_{i}}{\lambda^{2}} + \frac{1}{\lambda^{2}} \times \frac{\omega_{i}}{V_{i}} - \frac{\omega_{\bullet}}{V_{\bullet}} \cdot \cdot \cdot (1)$$

但し、po:出側キャンバー

ρi: 入側キャンバー

入2: 板伸び

ω。: 出倒角速度

ωi:入製角速度

Vi: 入側バー速度

V: 出側バー速度

$$\lambda = \frac{V_0}{V_i} \qquad \qquad \cdot \cdot \cdot (2)$$

但し、 $\frac{\rho_{\perp}}{\lambda_{\perp}}$ の項は、入間キャンバーによる進入角度変化による出側キャンバーへの影響

 $\frac{1}{\lambda^2}$ $\frac{\partial i}{\partial i}$ の項は、入側角速度変化と出個キャンバーとの関係

○・ の項は、出個角速度変化と出開キャンバーとの関係を各々表わしている。

の(1)式で表すことができる。

【0005】本発明は、以上のような課題を解決するためになされたもので、特に、前述の(1)式に示した現象理論に基づき、従来のレベリング調整によってキャンパーを修正する方法以外に、キャンパー率等を演算しつつ圧延材を幅方向に移動させることにより、キャンパーを修正するようにした熱間圧延機におけるキャンパー制御方法を提供することを目的とする。

[0006]

【課題を解決するための手段】本発明による熱間圧延機におけるキャンパー制御方法は、少なくとも圧延荷重測定手段とロールギャップ調節手段とを設けた第1スタンドと、該第1スタンドの入側に設けられた圧延材の温度計測手段と板厚計測手段と、該第n-1スタンドの入出側に圧延材の幅方向の位置を検出する位置検出手段とを設けた第1圧延設備と、少なくとも圧延荷重測定手段とロールギャップ調節手段とを設けた第nスタンドの入側に圧延材を板幅方向に移動するエッジャーロールを設け、かつ、該第nスタンドの入出側に圧延材の幅方向の位置を検出する位置検出手段とを設けた第n圧延設備と

を配設した圧延ラインにおいて、第1圧延設備で計測した圧延材の厚みや温度、圧延材の幅方向の位置、圧延荷重、ロールギャップとから圧延材のウェッジ率やキャンパー率及び幅方向の温度差を演算し、これらの値によって圧延材のキャンパーを修正するよう圧延材の幅方向のセンターと圧延機のセンターとの位置関係を前記エッジャーロールによって調整するフィードフォアード制御と第n圧延機の入出側の圧延材の幅方向の位置によってキャンパーを演算し、この値からキャンパーを修正するよう前記エッジャーロールの位置を調整するフィードバック制御とを含む方法である。

【0007】さらに詳細には、前記第1圧延設備で計測した圧延材の厚みや温度、圧延材の幅方向の位置、圧延荷重、ロールギャップとから圧延材のウェッジ率やキャンパー率及び幅方向の温度差を演算し、これらの値によって圧延材のキャンバーを修正するよう第1圧延機のロールレベルを調整すると共に圧延材の幅方向のセンターと第1圧延機のセンターとの位置関係を第1圧延設備のエッジャーロールによって調整するフィードフォアード50 制御と、第1圧延機の入出側の圧延材の幅方向の位置に

よってキャンバーを演算し、この値からキャンバーを修 正するように前記エッジャーロールの位置を調整するフ ィードパック制御と共に第n圧延機のロールレベルを調 整する方法である。

[0008]

【作用】本発明による熱間圧延機におけるキャンパー制 御方法においては、第n-1圧延設備で計測した圧延材 の厚みや温度、圧延材の幅方向の位置、圧延荷重、ロー ルギャップとから圧延材のウェッジ率やキャンパー率及 び幅方向の温度差を演算し、これらの値から圧延材のキ ャンパーを修正するよう圧延材の幅方向のセンターと圧 延機のセンターとの位置関係をフィードフォアード制御 を介して前記エッジャー ロールによって調整すると共 に、第n圧延機の入出側の圧延材の幅方向の位置によっ てキャンパーを演算し、この値からキャンパーを修正す るように前記エッジャーロールの位置をフィードパック 制御によって調整することにより、キャンパーを制御す ることができる。なお、前述のエッジャーロールを制御 する手段と従来のレベリングによる調整方法とを併用す ることによって、より効果的にキャンバーを修正するこ とができる。

[0009]

【実施例】以下、図面と共に本発明による熱間圧延機に おけるキャンバー制御方法の好適な実施例について詳細 に説明する。図1から図14迄は本発明による熱間圧延 機におけるキャンパー制御方法を示すもので、図1は熱 間圧延機を示す構成図、図2、5、8、11、13は圧 延状態を示す平面構成図、図3.4.6,7.9,1 0. 12. 14. 15は圧延材(板)を示す断面図であ る.

【0010】図1において、符号1で示されるものは第 1圧延設備50をなす第1スタンドであり、この第1ス タンド1は、圧延材2を圧延する一対の第1水平ミル 3、一対の中間ロール4、圧延荷重測定手段であるロー ドセル 5、ロールギャップ調節手段である第1スクリュ 6、第1圧下7から構成され、前記第1圧下7の第1レ ベリング検出器8からの第1レベリング検出信号8aは 第1スタンドウェッジ率・キャンパー率制御装置10に 入力されている。

【0011】前記第1ロードセル5からの第1荷重信号 5 a、前記第1スタンド1の両側に設けられた第1入側 横ズレ計11及び出側横ズレ計12 (圧延材2の幅方向 の位置を検出する位置検出手段をなす) からの第1入側 横ズレ信号11a及び第1出側横ズレ信号12aは前記 第1スタンドウェッジ率・キャンバー率制御装置10に 入力されている。

【0012】また、前配第1入側横ズレ計11の上流側 に設けられた板厚計測手段であるウェッジ計13及び温 度計測手段である測温計14からのウェッジ信号13a 及び測温信号14aは、前記第1スタンドウェッジ率・ キャンパー率制御装置 10に入力されていると共に、こ

の制御装置10からの第1スタンドレベリング修正信号 10aが前記第1圧下7に入力されている。

【0013】前記制御装置10からの入側ウェッジ率1 0 b、入側キャンパー率10 c、入側幅方向温度差10 dは、第nスタンドキャンパー率制御装置15に入力さ れており、この制御装置15からのレベリング信号15 a及び第nキャンパー制御信号15bは、レペリング装 置16及び油圧ジャッキ制御部17に各々入力されてい

【0014】次に、符号20で示されるものは、第n圧 延設備51をなす第nスタンドであり、この第nスタン ド20は、圧延材2を圧延する一対の第2水平ミル2 1、一対の中間ロール22、第nロードセル23、第n スクリュ24及び第n圧下25とから構成され、この第 nスタンド20の上流側には、垂直ミル油圧ジャッキ2 6により作動するエッジャーロールとしての一対の垂直 ミル27 (図では1個のみ開示)が配設され、この垂直 ミル油圧ジャッキ26には前記油圧ジャッキ制御部17 からのジャッキ制御信号17aが供給されている。

【0015】前記第n圧下25には、前記レベリング装 置16からのレベル制御信号16aが入力され、この第 n圧下25に接続された第nレベリング検出器28から の第nレベリング検出信号28aが第nスタンドキャン バー率制御装置15に入力され、前記第nスタンド水平 ミル20の両側位置には、入側横ズレ計29及び出側横 ズレ計30 (幅方向の位置を検出する位置検出装置をな す)が配設されている。

【0016】前記各機ズレ計29、30の入側機ズレ信 30 号29 a 及び出側機ズレ信号30 a は、第n スタンドキ ャンパー演算器 3 1 に入力され、この第 n スタンドキャ ンパー演算器31の演算信号31aは、前記第nスタン ドキャンパー率制御装置15に入力されていると共に、 前記ロードセル23からの第2荷重信号23aも前記第 ηスタンドキャンパー率 制御装置 15に入力されてい

【0017】次に、前述の構成の熱間圧延機を用いてキ ャンパー制御を行う場合について説明する。

【0018】 (実施例1)まず、幅方向に温度差がある スラブよりなる圧延材2を圧延する場合、図2に示すよ うに、高温側(DS)が低温側(WS)より伸び、低温 側 (WS) に曲がりキャンパーが生じる。しかし、エッ ジャーロールである垂直ミル27によって圧延材2を幅 方向に移動させることにより、次のような作用でキャン バーを修正することができる。前記低温側(WS)と高 温側(DS)の先進率fw、fd、後進率gw、gd、入側 ・出側のキャンバー、角速度、バー速度を各々ρi. ρο、ωi、ωο、Vi、Voとし、入側の低温側(WS) と高温側(DS)の後方長力をTw、Td、板幅をWと 50 すると、周知のごとく、入出側のキャンパーと角速度の

間に数1の(1)式の関係が成立する。

[0019]

【数1】

*【0020】また、次の数2の(2)式が得られる。 【数 2】

8

$$\frac{Wi}{Vi} = \frac{1}{W} \cdot \frac{gdf}{1-g} = \frac{1}{W} \cdot \frac{1}{1-g} \left\{ \frac{\partial g}{\partial h_0} h_0 df + \frac{\partial g}{\partial h_0} h idf + \frac{\partial f}{\partial T} \times T df \right\} \cdot \cdot \cdot (3)$$

但し、edf=ed-sw

8 : 平均後進率

ho:出倒板厚

bi:入園板庫

T: 後方張力

 $h \cdot df = h \cdot d - h \cdot u$

hidf-bid-bio

Tdf = Td - Te

【0021】今、次の圧延状態を考えると

入例ウェッジゼロ⇒hidf=0, $\omega_0 = 0$

入側キャンパーゼロ $\Rightarrow \rho i = 0$

Tw = Td

幅方向温度差 WS<DS

前述の(1)式より次の数3の(4)式を得る。

[0022]

【数3】

$$\rho_{\bullet} = \frac{1}{\lambda^{2}} \cdot \frac{\omega i}{V i} - \frac{\omega_{\bullet}}{V_{\bullet}} \qquad (4)$$

【0023】また、同上圧延状態で前述の(2)式より、 次の数4の(5)式を得る。

[0024]

【数4】

$$\frac{\omega i}{V} = \frac{1}{W} \cdot \frac{1}{1-\alpha} \cdot \frac{\partial a}{\partial b} h_{\alpha} df \cdot \cdot \cdot (5)$$

【0025】ここで、(5)式を(4)式に代入すると、次の 数5の(6)式を得る。

[0026]

【数5】

$$\rho = \frac{1}{\lambda^{\pm}} \cdot \frac{1}{W} \cdot \frac{1}{1-u} \left\{ \frac{\partial u}{\partial h} - h \cdot dt + \frac{\partial f}{\partial T} \cdot T dt \right\} - \frac{\partial u}{\nabla h} = Q \cdot \cdot \cdot \cdot (7)$$

*

を保ち、定常状態において、ロールバイト部のオフセン ターが△×となる。この時、

 $h_0 dI = A S dI + B \Delta x + C P dI \cdot \cdot \cdot (8)$

但し、SdfはWS、DSのスクリュー位置差。 ・

次に、(8)式のSdf=0より

 $h_a di = B \Delta x + C P di = 0 \ge t \Delta \delta$.

即ち、 $\Delta x = (C / B) P d l の状態を作り出すことによ$ り、(7)式の∂g/∂ho·hodf=0、∂g/∂hi·hidf= 0、 $\partial I/\partial T \cdot TdI = 0$ となり、 $\rho_0 = 0$ の状態での圧

【0030】また、エッジャーによる入側オフセンター 40 夕ー制御により、過渡期(図5)、定常域(図8)共 に、WS、DSの幅方向温度差によるキャンパー及び蛇 行を防止することができる。

> 【0031】 (実施例2) キャンパーがある圧延材を圧 延する場合。圧延材がすでにキャンパーが生じている と、ロールに噛み込まれる圧延材の進入角が変化し、出 側ではキャンパーが益々助長される。しかし、エッジャ ーロールによって圧延材を幅方向に移動さすと、次の様 な作用でキャンバー修正することができる。

【0 0 3 2】数 1 の(1)式の中のρ i / λ²で決まるρ o が 延が可能となる。すなわち、エッジャーによるオフセン 50 発生する。この場合従来のアクチュエータでは進入角を

【0027】従って、前述の(6)式より、幅方向温度差 20 による変形抵抗の差より発生する出側ウェッジhodfに 比例したキャンバーροが発生する。ここでhoマ>hod のため、

圧下率ではで▼<ァd

先進率 f ▼< f d

後進率gw<gd

となり、キャンバーはWS側へ曲がり、入側もWS側へ 傾き、WS側へAxの蛇行を生じる。

【0028】このキャンバーを奪とする方法として、入 側エッジャーによりミルセンターと圧延材2の板センタ 30 一を変える方法につてい述べる。まず、エッジャーをミ ルセンターに対し、ΔxだけDS側へオフセンター状態 とする。この時、前述のTwは引張り、Tdは圧縮張力 となり、次の数6の(7)式が成り立つΔxが存在し、こ れにより出側キャンパーをゼロとすることができる。

[0029]

【数6】

制御することは困難であったが、上流で検出されたキャンパーのバー長手方向の値を記憶し、ρiの変化による 進入角変化分エッジャーのオフセンター量をフィードフォワード制御する。当該スタンド横ズレ計によりロール パイト位置が一定となるようにエッジャーオフセンター 量のフィードバック制御を行う。前述の各方法で入側キャンパーの出側キャンバーへの影響を除去することができる。

【0033】(実施例3)板厚偏差(ウェッジ)が生じている圧延材を圧延する場合。図11のように入側のウェッジがDS側の厚大のときは、圧延材WS側に曲がりキャンバーが生じる。

圧下率 ァ♥<ァd

先進率 f ▼< f d

後進率 g w < g d

となり、板はWS側に曲がり又、WS側に蛇行する又、 出側のウェッジはDS厚大となる。しかし、図13のようにエッジャーロールをDS側幅方向に移動さすと、次 の様な作用でキャンバーを修正することができる。エッ ジャーアジロスト幅方向の制御によりオフセンター $\Delta \times 20$ たげズラして $f = f \cdot d$ 、 $g = g \cdot d$ 状態で制御することが できる又、パー内でのウェッジの変化においてもそれに*

*応じてΔxの量を制御することにより、上記制御が可能である。この場合、出側の素材ウェッジを修正することはできないが、ウェッジは許容して最も圧延の障害となるキャンパー防止を優先して制御することができる。

10

【0034】(実施例4)圧延機のセンターと圧延材の幅センターとにズレ(オフセンターという。)が生じている場合。オフセンターを持った状態で、圧延材をロールに噛み込ませると、左右の圧下率(レベル)に差が生じ、キャンパーが発生する。しかし、エッジャーロールを幅方向に移動さすと、次の様な作用でキャンパーを修正することができる。

 $h_0 df = A S df + B \Delta x + C P df$. . . (9)

(9) 式の Δ x Ω ho df を生じ先進率、後進率変化分キャンパー、蛇行が発生する。この場合、従来のアクチュエーターでは制御困難であったが、入側の横ズレ計 2 9 により最先端よりオフセンター Δ x = 0 とするようにエッジャーアジャストのオフセンター量の制御を行うことにより出側キャンパー、蛇行を防止することができる。但し、前述の Ω df は数 7 Ω の(10) 式となる。

20 [0035]

【数7】

$$Pdf = \frac{\partial P}{\partial hi} \cdot hidf + \frac{\partial P}{\partial h_0} \cdot h_0 df + \frac{\partial P}{\partial T} T \alpha f \cdot \cdot \cdot (10)$$

【0036】(実施例5) ワークロールのWSとDSに 摩擦係数が生じた場合。摩擦係数に差が生じると、キャ ンパーが発生しロール替えを行っていた。しかし、エッ ジャーロールを幅方向に移動さすと、次の数8の(11)式※ ※の様な作用でキャンバーを修正することができる。

[0037]

【数8】

$$h_{\bullet}df = \frac{1}{-M+Q} \cdot \frac{\partial P}{\partial \mu} \mu df \cdot \cdot \cdot (11)$$

ここで、M :スタンドミル定数

Q : 板の塑性係数

<u> 3 P</u>: 卓線係数μの圧延度力 Pに対する影響係数

μdf:ワークロール福方向のWS、DSの摩擦係数μの差

hedf:ワークロール幅方向のWS、DSの出側板厚の差

μdfの変化分hodfが発生、出側にキャンバーが発生す 40 る。入出側に設けた横ズレ計29、30により出側のキャンバーを実剤し、ροが零となるようにエッジャーアジャストの幅方向の制御を行う。以上のように数種の例について説明したが、実操業においては、これらの異なった現象が複合して発生する。従って、最も効果的な制御方法としては、温度、キャンバー、ウェッジ等を検出し、演算(予測)しながら、従来のレベリング調整と共に、新たにエッジャーロールをフィードフォアード制御とフィードバック制御によって移動させキャンバーを移正することができる。

0 [0038]

【発明の効果】本発明による熱間圧延ラインにおけるキャンパー制御方法は、以上のように構成されているため、次のような効果を得ることができる。すなわち、キャンパー率やウェッジ率等を演算し、エッジャーロールを幅方向に移動させてオフセンター量を調整するので、圧延材のキャンパーを効果的に修正することができる。これによって、圧延材の安定通板が可能になり、キャンパーによるミスロールがなくなり、歩留まり向上や操業率向上等が可能になった。

50 【図面の簡単な説明】

制物团场

11

【図1】本発明による熱間圧延機を示すプロック構成図 である。 【図2】非制御状態を示す平面図である。 【図3】図2のA部の板の断面図である。 【図4】図2のB部の板の断面図である。

【図5】制御開始状態を示す平面図である。

【図6】図5のA部の板の断面図である。

【図7】図5のB部の板の断面図である。

【図8】定常状態を示す平面図である。

【図9】図8のA部の断面図である。

【図10】図8のB部の断面図である。

【図11】制御状態を示す平面図である。

【図12】図11のB部の断面図である。

【図13】制御状態を示す平面図である。

【図14】図13のA部の断面図である。

【図15】図13のB部の断面図である。

【符号の説明】

第1スタンド

5 ロードセル (圧延荷重測定手段)

第1スクリュ (ロールギャップ調節手段) 6

12

横ズレ計(位置検出手段) 1 1

1 2 横ズレ計(位置検出手段)

13 ウェッジ計 (板厚計測手段)

10 14 測温計 (温度計測手段)

> 20 第nスタンド

27 垂直ミル (エッジャーロール)

5 0 第1圧延設備

5 1 第n圧延設備

【図1】 [図3]

[図2] [図4] [図5]

[図6] [図7] 【図9】

This Page is inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS
IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
BLURED OR ILLEGIBLE TEXT OR DRAWING
SKEWED/SLANTED IMAGES
☐ COLORED OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REPERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.
As rescanning documents will not correct images problems checked, please do not report the problems to the IFW Image Problem Mailbox