# Variational Autoencoders- III Applications to Real World Systems

Sergei V. Kalinin

#### **PURPOSE**

- (Super-brief) introduction into Neural Networks
- What are (Variational) autoencoders?
- Key notions:
  - Encoding and decoding
  - Latent distribution
  - Latent representations
- Why invariances: rotational, translational, and scale
- Other colors of VAEs:
  - Semi-supervised
  - Conditional
  - Joint
- Real world VAE applications
- From VAEs to encoder-decoders (VED)
- Further opportunities:
  - Physics constraints
  - Representation learning
- Active learning: DKL

### Describing the building blocks

- The classical physical descriptions (symmetry, etc) can be defined locally only in Bayesian sense
- We can argue that local descriptors are simple, if not necessarily known
- And the rules that guide their emergence are also simple, if not known

### Continuous translational symmetry



Atom based descriptions



Localized subimages



#### What about 4D STEM?



## Simple VAE



### rVAE of 4D STEM



# jrVAE of 4D STEM



### Non-trivial opportunities

- Extend towards encoder-decoder architectures: structure-property relationships
- Explore adaptation beyond SO(2) group: torus,
   SO(3), etc.
- Structure DAGs in the latent space
- Applications for scattering?



### VAE for ordering nanoparticles

Model trained on a single movie frame from the well-ordered phase and applied to the entire movie



Maxim Ziatdinov, Xin Li, Shuai Zhang, Harley Pyles, David Baker, James J. De Yoreo, Sergei V. Kalinin

### VAE on ordering nanoparticles

Model trained on a single movie frame from the well-ordered phase and applied to the entire movie



Maxim Ziatdinov, Xin Li, Shuai Zhang, Harley Pyles, David Baker, James J. De Yoreo, Sergei V. Kalinin

### Encoding the particles



#### Ferroelectric domain and domain walls





# Detecting domain walls

#### Canny filter





Wall by Canny Filter



#### **DCNN** Prediction









Predicted

## rVAE analysis

#### **Latent Space**



#### **Domain Walls**



### rVAE latent space

**Latent Space** 













### rVAE with time delay





#### **Domain wall**



### rVAE with time delay

#### THE UNIVERSITY of TENNESSEE UNIVERSITY OF TENNESSEE















Domain wall evolution



Forward: t vs t+1



Latent 2

Reverse: t vs t+1





# Multilayer rVAE

#### THE UNIVERSITY of TENNESSEE UNIVERSITY OF TENNESSEE

#### Latent Space











# Pinning mechanism





#### **Encoders-Decoders**



- Use encoder-decoder architecture to transform local structure to local spectra
- And spectra to images
- Predictive within the image







# Plasmonic nanoparticles



#### **Encoders-Decoders**



### Dual VAE: structure-property relationships

SEM images: "Structure Information"



#### Hyperspectral microscope: "Property Information"



#### Dual VAE



#### **Manifold Representation**





increasing in particle number in a cluster

increasing in the peak intensity

Changing in spectrum shape

#### **Dual VAE: Predictions**



#### **Overall Particles**

