Технически университет – София Електротехнически Факултет Катедра "Обща електротехника" Презентация № 7

Трифазни вериги. Основни понятия и определения. Свързване в схема "звезда" и "триъгълник"

дисципл<mark>ина "Е</mark>лектротехника и електроника 1" – ВІМ16 ОКС "Бакалавър" от Учебен план на специалност Индустриален мениджмънт, Професионално направление 5.13. Общо инженерство

ПРОЕКТ BG051PO001--4.3.04-0042 "Организационна и технологична инфраструктура за учене през

щелия живот и развитие на компетенции"

Проектът се осъществява с финансовата подкрепа на
Оперативна програма "Развитие на човешките ресурси",
съфинансирана от Европейския социален фонд на Европейския съюз
Инвестира във вашето бъдеще!

Съдържание

- Трифазна верига дефиниции
 - Понятие за трифазна система електрически величини
 - Симетрични и несиметрични системи
 - Понятие за трифазен източник
 - Понятие за трифазен консуматор
 - Съединения "звезда" и "триъгълник" на консуматор
 - 3, 4, 5 проводни трифазни вериги
- Трифазни вериги при съединение "звезда" на консуматорите
 - Линейни и фазни величини
 - Симетричен консуматор
 - Несиметричен консуматор
 - Роля на нулевия проводник
- Трифазни вериги при съединение "триъгълник " на консуматорите
 - Линейни и фазни величини
 - Предимства и особености на съединението
- Мощност при трифазни вериги
- Литература

ПРОЕКТ ВG051PO001--4.3.04-0042

Трифазна верига – дефиниции

- *Трифазна система от синусоидално изменящи се във времето* величини се нарича съвкупност от три еднородни синусоидални величини, които имат съответни амплитуди, еднакви честоти и са отместени по фаза една спрямо друга на съответен ъгъл.
- Трифазната система от синусоидално изменящи се величини е симетрична когато амплитудите и фазовите отмествания са еднакви.
 Жко някое от тези условия не е изпълнено, системата е несиметрична.

Една с<mark>иметрич</mark>на триф<mark>азна с</mark>истема от е.д.н. може да се запише по следния начин:

$$e_{A} = E_{Am} \sin \omega t$$

$$e_{B} = E_{Bm} \sin \left(\omega t - \frac{2\pi}{3}\right)$$

$$e_{C} = E_{Cm} \sin \left(\omega t - \frac{4\pi}{3}\right)$$

ПРОЕКТ ВG051PO001--4.3.04-0042

На фиг. 7.1 а са показани синусоидите на трифазна симетрична система от е.д.н., а на фиг. 7.1 б – комплексните ефективни стойности:

$$\dot{E}_{A} = E_{A}; \dot{E}_{B} = E_{B}e^{-j\frac{2\pi}{3}}; \dot{E}_{C} = E_{C}e^{j\frac{2\pi}{3}}$$

ПРОЕКТ ВG051PO001--4.3.04-0042

<u>Симетрична трифазна система от е.д.н.</u> се индуктира в намотките на трифазен променливотоков (синхронен) генератор. На фиг. 7.2 е показан принципно такъв генератор.

Трите еднакви намотки (за простота показани с по една навивка) са разположени в каналите на неподвижната част (статора) така, че техните оси сключват ъгъл $\alpha = 2\pi/3 = 120^{\circ}$ Началата на трите намотки се означават с бук<mark>вите *А, В, С*, а краищата им – с *X, Y, Z.*</mark> При въртенето на ротора на генератора (подвижната част) с постоянна ъглова Ω , неговото магнитно СКОРОСТ поле пресича неподвижните намотки статора и индуктира е.д.н. $e_{\scriptscriptstyle A}$, $e_{\scriptscriptstyle B}$, $e_{\scriptscriptstyle C}$, които образуват трифазна симетрична система.

Фиг. 7.2

ПРОЕКТ ВG051PO001--4.3.04-0042

Прието е намотките на генератора да се наричат *"фазови намотки"* или *"фази"*. За условна положителна посока на индуктираните е.д.н. e_A , e_B , e_C се приема посоката от края към началото на съответната намотка (фаза), а на фазовите напрежения u_A , u_B , u_C - от началото към края на намотките. Графичните означения на трите намотки на трифазен генератор, използвани в еквивалентните електрически схеми, са показани на фиг. 7.3 а, а на фиг. 7.3 б – означенията за идеален източник на е.д.н. При необходимост могат да се въведат и пълните вътрешни съпротивления на отделните намотки.

Ако към всяка от намотките на генератора чрез съединителни проводници се включи съответен консуматор, през така получените затворени електрически вериги ще протичат токовете

$$i_A = I_{Am} \sin(\omega t - \psi_A)$$

$$i_B = I_{Bm} \sin \left(\omega t - \frac{2\pi}{3} - \psi_B \right)$$

$$i_C = I_{Cm} \sin \left(\omega t + \frac{2\pi}{3} - \psi_C \right)$$

които образуват трифазна система токове. Амплитудите и фазовите отмествания на тези токове спрямо съответните е.д.н. зависят от съпротивленията на консуматорите. Когато $I_{Am} = I_{Bm} = I_{Cm} = I_m$ и $\Psi_A = \Psi_B = \Psi_C = \Psi$, системата се нарича <u>симетрична</u>.

Харак<mark>т</mark>ерна особеност на симетричните трифазни системи е, че сумата от моментните стойности на отделните величини е равна на нула. Така например за е.д.н. от фиг. 7.1 лесно се доказва, че $\dot{E}_A + \dot{E}_B + \dot{E}_C = 0$ и $e_A + e_B + e_C = 0$.

ПРОЕКТ BG051PO001--4.3.04-0042 "Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции" Проектът се осъществява с финансовата подкрепа на

Оперативна програма "Развитие на човешките ресурси", съфинансирана от Европейския социален фонд на Европейския съюз Инвестира във вашето бъдеще!

> Съвкупността от трифазен източник на електрическа енергия, предавателните линии и консуматорите образува трифазна електрическа верига.

Фиг. 7.4

Трифазните електри<mark>че</mark>ски вериги могат да бъдат <u>несвързани</u> веригите на отделните фази на генератора са независими една от друга (фиг. 7.4), и *свързани* – при които фазите на генератора (и консуматорите) са свързани една с друга. Недостатък на несвързаните трифазни вериги е големия брой проводници на предавателната линия (3.2=6 проводника), докато при свързаните трифазни вериги този брой намалява от 6 на 4 или 3

> ПРОЕКТ ВG051PO001--4.3.04-0042 "Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции" Проектът се осъществява с финансовата подкрепа на Оперативна програма "Развитие на човешките ресурси", съфинансирана от Европейския социален фонд на Европейския съюз Инвестира във вашето бъдеще!

проводника

Европейски съюз

Европейски социален фонд

Свързването на фазите може да стане по два начина:

ПРОЕКТ ВG051PO001--4.3.04-0042

▶свързване <u>"триъгълник"</u> Д (фиг. 7.6) – към края на първата фаза се свързва началото на втората, към края на втората – началото на третата, към края на третата – началото на първата. При свързване "триъгълник" броя на проводниците намалява на 3 – трипроводна трифазна верига.

Фиг. 7.6

В практика<mark>та</mark> фазите на генератора се свързват в <u>"звезда"</u>, а тези на консуматора могат да бъдат свързани както в <u>"звезда"</u>, така и в <u>"триъгълник"</u>.

ПРОЕКТ ВG051PO001--4.3.04-0042

На фиг. 7.7 е показана четирипроводна трифазна електрическа верига, при която нулевия и защитния проводници са обединени (с маркировка PEN).

Ha фиг. 7.8 е показана трифазна петпроводна електрическа верига, при която има специално изведен защитен проводник *с маркировка РЕ*, отделно от нулевия проводник маркировка N.

Фиг. 7.8

ПРОЕКТ ВG051PO001--4.3.04-0042

Трифазни вериги при съединение "звезда" на консуматорите

Свързване в "звезда" - \mathbf{Y} се получава, когато краищата на фазите на генератора се обединят в обща точка \mathbf{O} , наречена <u>звездна</u>, <u>неутрална</u> или <u>нулева</u> точка.

Ако и консуматорите са свързани по същия начин, проводникът, който съединява двете неутрални точки o и o' се нарича o и o o' се нарича o и o' се нарича o' се нарича o' и o' и o' се нарича o' и o' и o' и o' се нарича o' и o' и o' и o' се нарича o' и o' и o' и o' и o' се нарича o' и o' и

Останалите проводници на предавателната линия, които съединяват началата на фазите на генератора $(A, B \cup C)$ с началата на консуматорите $(a, B \cup C)$ се наричат <u>линейни проводници</u>.

На фиг. 7.9 е показана еквивалентна схема на трифазна електрическа верига, свързана в "звезда".

Трифазни вериги при съединение "звезда" на консуматорите

Както се вижда от фиг. 7.9, при свързване в "звезда" могат да се определят два вида напрежения:

- >Напрежение между началото и края на всяка фаза, наречено **фазно напрежение** $(u_A, u_B \text{ и } u_C \text{ за генераторите и } u_a, u_b \text{ и } u_c \text{ за консуматорите});$
- ightharpoonup Напрежение между началата на две фази, наречено **междуфазно** или **линейно напрежение** (u_{AB} , u_{BC} и u_{CA} за генераторите и u_{ab} , u_{bc} и u_{ca} за консуматорите). При това редът на индексите показва посоката на съответното напрежение (напр. u_{AB} е с посока от т. A към т. B, а u_{BA} е в обратна посока и следователно u_{AB} = u_{BA}).

Ако се запише II-ри закон на Кирхоф за мисл<mark>ения к</mark>онтур, образуван от първата и втората фаза и съответното линейно напрежение, ще се получи:

$$U_{AB} + U_B - U_A = 0$$
 или $U_{AB} = U_A - U_B$.

Аналогично за останалите линейни напрежения може да се определи:

$$U_{BC}=U_B-U_C$$
 и $U_{CA}=U_C-U_A$.

Тъй като обикновено вътрешните напрежителни падове на фазите на генератор са много малки, можем да считаме, че напреженията на изводите на генератора са числено равни на съответните е.д.н., т.е. $U_A = E_A$, $U_B = E_B$, $U_C = E_C$.

ПРОЕКТ BG051PO001--4.3.04-0042 "Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции" Проектът се осъществява с финансовата подкрепа на Оперативна програма "Развитие на човешките ресурси", съфинансирана от Европейския социален фонд на Европейския съюз

На фиг. 7.10 е показано разположението на векторите на фазните напрежения и получаването на съответните линейни напрежения, напр. $U_{AB}=U_A+\left(-U_B\right)$. При симетрична система, когато $U_A=U_B=U_C=U_{\Phi}$ и $U_{AB}=U_{BC}=U_{CA}=U_{JI}$, от триъгълника OMN се определя

$$rac{MN}{OM}=rac{U_{J/}}{U_{\phi}}=\sin 60^\circ=rac{\sqrt{3}}{2}$$
 , T.e. $U_{J/Y}=\sqrt{3}.U_{\phi Y}$.

При трифазната електрическа мрежа за ниско напрежение в нашата страна $U_{\pi}/U_{\phi} = 380/220~V$.

Трябва да се отбележи, че системата фазни и линейни напрежения на трифазните генератори винаги е симетрична, което се осигурява от тяхното конструктивно изпълнение.

Фиг. 7.10

ПРОЕКТ BG051PO001--4.3.04-0042 "Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции"

Проектът се осъществява с финансовата подкрепа на Оперативна програма "Развитие на човешките ресурси", съфинансирана от Европейския социален фонд на Европейския съюз Инвестира във вашето бъдеще!

Трифазни вериги при съединение "звезда" на консуматорите

При трифазните електрически вериги се различават също *фазни* и *линейни токове.*

Разни са токовете, които протичат през съответните фази (на генератора и на консуматорите);

>Пинейни са токовете, протичащи по проводниците на предавателната линия.

От фиг. 7.9 е ясно, че при свързване в "звезда" фазните и линейните токове са равни: $I_{\phi} = I_{\mathcal{I}}$.

Съгласно І-ви закон на Кирхоф за т. O (или т. O) токът в неутралния проводник е: $I_0 = I_A + I_B + I_C$

Големините на линейните токове зависят от съпротивленията на консуматорите,

T.e.
$$I_A = \frac{U_a}{Z_a}$$
 , $I_B = \frac{U_b}{Z_b}$, $I_C = \frac{U_c}{Z_c}$.

Когато големините и характерът на съпротивленията на консуматорите са еднакви, линейните токове също образуват симетрична система. Тогава $I_0 = I_A + I_B + I_C = 0$ и неутралният проводник е излишен, т.е. предавателната линия може да бъде изпълнена само с три проводника. (На практика подобен симетричен режим се получава много рядко, тъй като консуматорите в трите фази в общия случай не са еднакви. Поради този факт трифазните електрически мрежи, свързани в "звезда", се изпълняват с четирипроводна предавателна линия.)

ПРОЕКТ BG051PO001--4.3.04-0042 "Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции" Проектът се осъществява с финансовата подкрепа на Оперативна програма "Развитие на човешките ресурси", съфинансирана от Европейския социален фонд на Европейския съюз

Ролята на нулевия проводник е да изравнява несиметрията на фазните напрежения на консуматора при несиметричен товар.

Така например, ако се пренебрегнат напрежителните падове в линейните проводници, напреженията в краищата на консуматора ще бъдат равни на напреженията на изводите на трифазния генератор $(U_a = U_A \ , \ U_b = U_B \ , \ U_c = U_C)$ независимо от натоварването в отделните фази. Неутралните точки на източник и консуматорите ще имат еднакви потенциали.

На фиг. 7.11 е показана симетричната векторна диаграма на напреженията на консуматорите и съответните несиметрични фазни токове. Токът през нулевия проводник е равен на геометричната сума на фазните токове:

 $\vec{I}_0 = \vec{I}_a + \vec{I}_b + \vec{I}_c$

ПРОЕКТ ВG051РО001--4.3.04-0042

Когато липсва нулевият проводник, симетрични остават само линейните напрежения U_{ab} , U_{bc} и U_{ca} , т.е. запазва се симетричен триъгълника на линейните напрежения.

Фазните напрежения

$$U_a = Z_a.I_a$$
 , $U_b = Z_b.I_b$ и $U_c = Z_c.I_c$

вследствие на нееднаквия товар стават несиметрични и между звездните точки на консуматорите и на източника се получава потенциална разлика.

На фиг. 7.12 е показана векторната диаграма на при несиметричен режим на трипроводна мрежа. С прекъсната линия са изобразени симетричните напрежения на източника и потенциалната разлика $U_{0,0}$ между двете звездни точки.

ПРОЕКТ BG051PO001--4.3.04-0042 "Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции" Проектът се осъществява с финансовата подкрепа на Оперативна програма "Развитие на човешките ресурси", съфинансирана от Европейския социален фонд на Европейския съюз

От фиг. 7.12 става ясно, че при липса на нулев проводник и при ясно изразена несиметрия на консуматора, звездната точка O` на напреженията на консуматора може да се измести на значително разстояние от т. O, т.е. някои от фазните напрежения на консуматора могат да станат значително по-големи от номиналните (което може да е аварийна ситуация за консуматора, включен в тази фаза).

Поради тази причина на нулевия проводник в четирипроводна трифазна мрежа не се поставя предпазител със стопяема вложка или изключвател (наличието на нулев проводник изравнява потенциалите на т. О и т. О`, тъй като ги свързва накъсо).

Трифазни вериги при съединение "триъгълник" на консуматорите

Схема на трифазна електрическа верига, при която източникът е свързан в "звезда", консуматорът – в "триъгълник" може да се изобрази както е показано на фиг. 7.13.

Фиг. 7.13

ПРОЕКТ ВG051PO001--4.3.04-0042

Свързването в "триъгълник" – Δ се получава като към края на първата фаза на консуматора се свързва началото на втората фаза – началото на третата, а края на третата – към началото на първата фаза. Както се вижда от фиг. 7.13 при това свързване фазните и линейните напрежения на консуматора са равни:

$$U_{J\!I\!\Delta} = U_{arPhi\!\Delta}$$

ightharpoonupТоковете в пр<mark>оводници</mark>те на предавателната линия между източника и консуматора I_A , I_B и I_C се наричат **линейни токове** (положителната им посока е от генератора към консуматора);

≽Токовете във фазите на консуматора се наричат **фазни токове** и се означават с двоен индекс: I_{ab} , I_{bc} и I_{ca} (положителните им посоки се избират: от a към b; от b към c и от c към a).

ПРОЕКТ BG051PO001--4.3.04-0042 "Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции" Проектът се осъществява с финансовата подкрепа на Оперативна програма "Развитие на човешките ресурси", съфинансирана от Европейския социален фонд на Европейския съюз

Токовете в отделните фази на консуматора се определят по закона на Ом:

$$\dot{I}_{ab} = \frac{\dot{U}_{ab}}{Z_{ab}}$$
; $\dot{I}_{bc} = \frac{\dot{U}_{bc}}{Z_{bc}}$; $\dot{I}_{ca} = \frac{\dot{U}_{ca}}{Z_{ca}}$

Линейните и фазните токове са свързани по между си чрез зависимости съгласно I^{su} закон на Кирхоф за отделните възли $\underline{a}, \underline{b}$ и \underline{c} :

За възел
$$\underline{a}$$
: $I_A + I_{ca} - I_{ab} = 0 \rightarrow I_A = I_{ab} - I_{ca}$

За възел
$$\underline{b}$$
: $I_B + I_{ab} - I_{bc} = 0 \rightarrow I_B = I_{bc} - I_{ab}$

За възел
$$\underline{c}$$
: $I_C + I_{bc} - I_{ca} = 0 \rightarrow I_C = I_{ca} - I_{bc}$

ПРОЕКТ ВG051PO001--4.3.04-0042

На фиг. 7.14 е показана векторната диаграма на токовете и напреженията при свързване на консуматора в "триъгълник" (в най-общия случай товарите в отделните фази имат различен характер).

Фиг 7 14

- Изхожда се от триъгълника на фазните напрежения (те са равни на линейните напрежения на генератора), които при подходящо взаимно разположение образуват равностранен триъгълник.
- Фазните токове са в най-общо положение спрямо съответните фазни напрежения.
- Векторите на линейните токове се построяват съгласно получените зависимости:

$$I_{A} = I_{ab} - I_{ca} \rightarrow I_{A} = I_{ab} + (-I_{ca})$$
 $I_{B} = I_{bc} - I_{ab} \rightarrow I_{B} = I_{bc} + (-I_{ab})$
 $I_{C} = I_{ca} - I_{bc} \rightarrow I_{C} = I_{ca} + (-I_{bc})$

ПРОЕКТ ВG051PO001--4.3.04-0042

"Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции"
Проектът се осъществява с финансовата подкрепа на Оперативна програма "Развитие на човешките ресурси", съфинансирана от Европейския социален фонд на Европейския съюз

При симетричен товар $Z_{ab}=Z_{bc}=Z_{ca}=Z_{\phi}=z_{\phi}e^{j\varphi}$ фазните токове са равни помежду си по големина и са отместени по фаза спрямо фазните напрежения на един и същи ъгъл φ , а помежду си са отместени на 120°, т.е. фазните токове образуват симетрична трифазна система.

Линейните токове се получават чрез геометрично сумиране на векторите на фазните токове, напр. $I_A = I_{ab} + (-I_{ca})$.

От
$$\Delta OMN$$
 следва $MN/ON = \frac{I_{JJ}}{I_{\phi}} = \sin 60^{\circ} = \frac{\sqrt{3}}{2}$.

Следователно
$$I_{\it N} = \sqrt{3}.I_{\it \Phi} \Delta$$

ПРОЕКТ ВG051PO001--4.3.04-0042

Мощност при трифазни вериги

Моментната мощност при трифазните електрически вериги се получава като сума от моментните мощности на отделните фази

$$p = p_a + p_b + p_c = u_a \cdot i_a + u_b \cdot i_b + u_c \cdot i_c$$

Ако се приеме, че фазните напрежения на консуматора се изменят както е.д.н. на източника, т.е.

$$u_a = U_{am} \sin \omega t; u_b = U_{bm} \sin \left(\omega t - \frac{2\pi}{3} \right); u_c = U_{cm} \sin \left(\omega t - \frac{4\pi}{3} \right)$$

а фазните токове са отместени от съответните напрежения на ъгли φ_a , φ_b и φ_c , изразът за p добива вида: $p=U_{am}\sin\omega t.I_{am}\sin(\omega t-\varphi_a)+$

$$U_{bm}\sin\left(\omega t - \frac{2\pi}{3}\right)I_{bm}\sin\left(\omega t - \frac{2\pi}{3} - \varphi_b\right) +$$

$$U_{cm} \sin \left(\omega t - \frac{4\pi}{3}\right) I_{cm} \sin \left(\omega t - \frac{4\pi}{3} - \varphi_c\right)$$

ПРОЕКТ ВG051PO001--4.3.04-0042

Освен това е известно, че мощността само на една фаза се определя с израза:

$$p_{a} = U_{am}I_{am}\sin\omega t.\sin(\omega t - \varphi_{a}) = U_{am}I_{am}\frac{1}{2}\left[\cos\varphi_{a} - \cos(2\omega t - \varphi_{a})\right] = U_{a}I_{a}\cos\varphi_{a} - U_{a}I_{a}\cos\varphi_{a}.\cos2\omega t - U_{a}I_{a}\sin\varphi_{a}.\sin2\omega t ,$$

а по аналогия могат да се запишат изразите и за p_b и p_c

$$p_{b} = U_{b}I_{b}\cos\varphi_{b} - U_{b}I_{b}\cos\varphi_{b}.\cos2\left(\omega t - \frac{2\pi}{3}\right) - U_{b}I_{b}\sin\varphi_{b}.\sin2\left(\omega t - \frac{2\pi}{3}\right)$$

$$p_{c} = U_{c}I_{c}\cos\varphi_{c} - U_{c}I_{c}\cos\varphi_{c}.\cos2\left(\omega t - \frac{4\pi}{3}\right) - U_{c}I_{c}\sin\varphi_{c}.\sin2\left(\omega t - \frac{4\pi}{3}\right)$$

Общата активна мощност на трифазната верига, която е равна на средната стойност на моментната мощност, се получава като сума от активните мощности на консуматорите в трите отделни фази:

$$P = P_a + P_b + P_c = U_a I_a \cos \varphi_a + U_b I_b \cos \varphi_b + U_c I_c \cos \varphi_c$$

≽<u>"Уравновесена"</u> система <mark>– к</mark>оято е симетричн<mark>а и по напр</mark>ежение и по ток.

За уравновесена система активната мощност е $P=3U_{\phi}I_{\phi}\cos{\phi_{\phi}}$ ("ф" - фазна величина)

ightharpoonupравновесените системи се характеризират с това, че тяхната моментна мощност p остава постоянна във времето и е равна на активната мощност

$$p = P = 3U_{\phi}I_{\phi}\cos\varphi_{\phi}$$

ПРОЕКТ BG051PO001--4.3.04-0042
"Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции"
Проектът се осъществява с финансовата подкрепа на Оперативна програма "Развитие на човешките ресурси", съфинансирана от Европейския социален фонд на Европейския съюз

Мощност при трифазни вериги

Ако в израза за активната мощност $P = U_{\phi} I_{\phi} \cos \varphi_{\phi}$ фазните величини се заменят с линейните:

3a "Y" -
$$U_{J\! Y}=\sqrt{3}.U_{\Phi Y}$$
 ; $I_{J\! Y}=I_{\Phi Y}$ 3a " Δ " - $U_{J\! \Delta}=U_{\Phi \Delta}$; $I_{J\! \Delta}=\sqrt{3}.I_{\Phi \Delta}$

❖За активната мощност в уравновесени трифазни системи се получава :

3a "Y" –
$$P = 3\frac{U_{\pi}}{\sqrt{3}}I_{\pi}\cos\varphi_{\phi} = \sqrt{3}U_{\pi}I_{\pi}\cos\varphi_{\phi}$$

3a "Δ" -
$$P = 3U_{\pi} \frac{I_{\pi}}{\sqrt{3}} \cos \varphi_{\phi} = \sqrt{3}U_{\pi}I_{\pi} \cos \varphi_{\phi}$$

ПРОЕКТ ВG051PO001--4.3.04-0042

<u>Реактивната</u> и <u>пълната</u> <u>мощност</u> при трифазна верига са равни на сумата от съответните фазни мощности:

$$Q = Q_a + Q_b + Q_c = U_a I_a \sin \varphi_a + U_b I_b \sin \varphi_b + U_c I_c \sin \varphi_c$$

$$S = S_a + S_b + S_c = U_a I_a + U_b I_b + U_c I_c$$

❖ За уравн<mark>овесена тр</mark>ифазна сис<mark>те</mark>ма:

$$Q = 3U_{\phi}I_{\phi}\sin\varphi_{\phi} = \sqrt{3}U_{\pi}I_{\pi}\sin\varphi_{\phi}$$
$$S = 3U_{\phi}I_{\phi} = \sqrt{3}U_{\pi}I_{\pi}$$

ПРОЕКТ ВG051PO001--4.3.04-0042

Предимства на трифазните вериги

- 1. Възможност за получаване на два вида напрежения фазно и <u>линейно</u> от една и съща електрическа мрежа
- 2. Възможност за създаване на въртящо се магнитно поле, което лежи в основата на принципа на действие на електрическите машини за променлив ток

ПРОЕКТ ВG051PO001--4.3.04-0042

5 Литература

Основна:

- 1. Цветков Д. и др., Електротехника и електроника, печат ЕТ "Здравков", София, 1997.
- 2. Цветков Д. и др., Основи на електротехниката и електрониката, изд. Техника, София, 1989.
- 3. Папазов С., С. Фархи, Теоретична електротехника, Техника, София, 1990.

Допълнителна:

1. Kuphaldt T. R., Lessons In Electric Circuits, Volume II – AC, Sixth Edition, 2006, Open Book Project collection.

ПРОЕКТ ВG051PO001--4.3.04-0042

"Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции"

Проектът се осъществява с финансовата подкрепа на Оперативна програма "Развитие на човешките ресурси", съфинансирана от Европейския социален фонд на Европейския съюз Инвестира във вашето бъдеще!

