

ו המעגל נמצא במצב מתמיד, ובזמן (3 המפסק נפתח. מצא את הזרם t=0 ואת המתח כמסומן.

: נתון (4

$$C=1\mu F,\,R=2k\Omega,\,e_s=30\cos\left(2\pi10^3t\right),v_C(0)=1$$
 המפסק נסגר בזמן . מצא את הזרם כמסומן .t>0 בזמן

נניח שיש לנו שליטה על הפאזה ϕ של גנרטור נניח שיש לנו שליטה על המתח. האם קיימת פזה ϕ כזו שכניסה של $30\cos\left(2\pi10^3t+\phi\right)$

: נתון המעגל הבא עם המתחים הבאים (5

$$V_1(t) = Vu(t)$$

$$V_2(t) = Ve^{-(t-D)}u(t-D)$$

כאשר D הינו קבוע השהייה. חשב ושרטט את מתח הקבל.

נתון המעגל הבא כאשר:

$$C = 1\mu F, \quad R_1 = R_{21} = 1$$

$$V_{in} = \begin{cases} -1V & t < 0 \\ 2V & t > 0 \end{cases}$$

והדיודה אידיאלית.

- י א מהם המתחים $V_C \left(t = 0^+ \right)$ ו א מהם המתחים (א
- $-\infty \le t \le \infty$ בתחום $V_{_{G}}(t)$ מצא ביטוי עבור
- וערכי t בנקודות בהן העקום נשבר. כמו כן ציין עבור , כולל ערכי עבור , שרטט את עבור , שרטט את עבור , עבור , עבור ערכי ערכי אסימפטוטות.
 - $t \geq 0$ חשב עבור .t = 0 המתג נמצא במצב הנוכחי הרבה זמן, וממותג כמסומן בזמן (7
 - $V_C(t), V_0(t)$.1
 - $8k\Omega$, $160k\Omega$ איזה אחוז מהאנרגיה ההתחלתית האגורה בקבל מתפזרת דרך הנגדים .2 ודרך מקור חזרם:

