

中华人民共和国国家标准

GB/T 33133.1—2016

信息安全技术 祖冲之序列密码算法 第1部分:算法描述

Information security technology—ZUC stream cipher algorithm— Part 1: Algorithm description

2016-10-13 发布

2017-05-01 实施

目 次

前	言		\coprod
弓	言		IV
1	范	5围	• 1
2	规	见范性引用文件	• 1
3	术	₹语和定义	• 1
4	符	符号和缩略语	• 2
	4.1	1 运算符	• 2
	4.2	2 符号	• 2
	4.3	3 缩略语	• 2
5	箅	\$法流程	• 2
	5.1	l 算法结构 ······	• 2
	5.2	2 线性反馈移位寄存器 LFSR	• 3
	5.3	10 14 T. T. T.	
	5.4	4 非线性函数 F ···································	• 4
	5.5	5 密钥装入	• 4
	5.6	5 算法运行	• 5
阵	录	A (规范性附录) S 盒 ··································	• 6
阵	录	B (资料性附录) 模 2 ³¹ -1 乘法和模 2 ³¹ -1 加法的实现 ····································	. 8
阵	录	C (资料性附录) 算法计算实例	• 9
参	考:	文献	13

前 言

GB/T 33133《信息安全技术 祖冲之序列密码算法》分为以下 3 部分:

- 第 1 部分:算法描述;
- ---第2部分:保密性算法;
- ---第3部分:完整性算法。

本部分为 GB/T 33133 的第1部分。

本部分按照 GB/T 1.1-2009 给出的规则起草。

本部分由国家密码管理局提出。

本部分由全国信息安全标准化技术委员会(SAC/TC 260)归口。

本部分起草单位:北京信息科学技术研究院、中国科学院软件研究所、中国科学院数据与通信保护研究教育中心、北京创原天地科技有限公司。

本部分主要起草人:冯登国、林东岱、冯秀涛、周春芳、刘辛越。

引 言

本部分的目标是保证祖冲之序列密码算法使用的正确性,为国内企业正确研发使用祖冲之算法的相关设备提供指导。

本部分修改采用如下国际标准:

ETSI/SAGE TS 35.221. Specification of the 3GPP Confidentiality and Integrity Algorithms 128-EEA3 & 128-EIA3. Document 1:128-EEA3 and 128-EIA3 Specification.

ETSI/SAGE TS 35.222. Specification of the 3GPP Confidentiality and Integrity Algorithms 128-EEA3 & 128-EIA3.Document 2:ZUC Specification.

ETSI/SAGE TS 35.223. Specification of the 3GPP Confidentiality and Integrity Algorithms 128-EEA3 & 128-EIA3.Document 3:Implementor's Test Data.

ETSI/SAGE TR 35.924. Specification of the 3GPP Confidentiality and Integrity Algorithms 128-EEA3 & 128-EIA3.Document 4:Design and Evaluation Report.

本文件的发布机构请注意,声明符合本文件时,可能涉及《一种序列密码实现方法和装置》(专利号: ZL200910086409.9)和《一种完整性认证方法》(专利号: ZL200910243440.9)相关专利的使用。

本文件的发布机构对于该专利的真实性、有效性和范围无任何立场。

该专利的持有人已向本文件的发布机构保证,他愿意同任何申请人在合理且无歧视的条款和条件下,就该专利授权许可进行谈判。该专利的持有人已在本文件的发布机构备案。相关信息可以通过以下联系方式获得:

专利持有人姓名:中国科学院数据与通信保护研究教育中心、中国科学院软件研究所地址:北京市海淀区闵庄路甲89号邮编:100093、北京市中关村南四街4号邮编:100190

请注意除上述专利外,本文件的某些内容仍可能涉及专利。本文件的发布机构不承担识别这些专利的责任。

信息安全技术 祖冲之序列密码算法 第 1 部分:算法描述

1 范围

GB/T 33133 的本部分给出了祖冲之序列密码算法的一般结构,基于该结构可实现本标准其他各部分所规定的密码机制。

本部分适用于祖冲之序列密码算法相关产品的研制、检测和使用,可应用于涉及非国家秘密范畴的商业应用领域。

2 规范性引用文件

下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

GB/T 25069-2010 信息安全技术术语

3 术语和定义

GB/T 25069-2010 界定的以及下列术语和定义适用于本文件。

3.1

祖冲之序列密码算法 ZUC Stream Cipher

祖冲之序列密码算法是中国自主研制的流密码算法,是运用于下一代移动通信 4G 网络中的国际标准密码算法,该算法包括祖冲之算法、保密性算法和完整性算法三个部分。

3.2

位 bit

- 二进制数字 binary digit
- 二进制计数制中使用的数字 0 或 1。

3.3

字节 byte

一种由若干位组成的串,视作一个单位,通常代表一个字符或字符的一部分。

注 1: 对一个给定的数据处理系统,一个字节中的位数是固定的。

注 2: 一个字节通常是 8 位。

3.4

字 word

由2个以上(包含2个)比特组成的比特串。

本部分主要使用 31 比特字和 32 比特字。

3.5

字表示 word representation

本部分字默认采用十进制表示。当字采用其他进制表示时,总是在字的表示之前或之后添加指示符。例如,前缀 0x 指示该字采用十六进制表示,后缀下角标 2 指示该字采用二进制表示。

3.6

高低位顺序 bit ordering

本部分规定字的最高位总是位于字表示中的最左边,最低位总是位于字表示中的最右边。

4 符号和缩略语

4.1 运算符

下列运算符适用于本文件:

+ 算术加法运算

ab 整数 a 和 b 的乘积

= 赋值操作符

mod 整数模运算

按比特位逐位异或运算

田 模 232 加法运算

| 字符串或字节串连接符

•_H 取字的最高 16 比特

· L 取字的最低 16 比特

〈〈〈k 32 比特字循环左移 k 位

>>k 32 比特字右移 k 位

 $a \rightarrow b$ 向量 a 赋值给向量 b,即按分量逐分量赋值

4.2 符号

下列符号适用于本文件:

\$0,\$1,\$2,\$\dots,\$s_1\$ 线性反馈移位寄存器的 16 个 31 比特寄存器单元变量

 X_0, X_1, X_2, X_3 比特重组输出的 4 个 32 比特字

 R_1,R_2 非线性函数 F的 2 个 32 比特记忆单元变量

W 非线性函数 F 输出的 32 比特字

 W1
 R1与 X1进行模 232加法运算输出的 32 比特字

 W2
 R2与 X2按比特位逐位异或运算输出的 32 比特字

Z 算法每拍输出的 32 比特密钥字

k 初始种子密钥

iv 初始向量

 d_i 15 比特的字符串常量, $i=0,1,2,\dots,15$

F 非线性函数

L 输出密钥字长度

4.3 缩略语

下列缩略语适用于本文件:

LFSR 线性反馈移位寄存器(Linear Feedback Shift Register)

BR 比特重组(Bit Reorganization)

5 算法流程

5.1 算法结构

祖冲之算法由线性反馈移位寄存器(LFSR)、比特重组(BR)和非线性函数 F 组成,见图 1。

图 1 祖冲之算法结构图

5.2 线性反馈移位寄存器 LFSR

5.2.1 概述

LFSR 包括 $16 \uparrow 31$ 比特寄存器单元变量 s_0, s_1, \dots, s_{15} 。 LFSR 的运行模式有 $2 \uparrow 1$ 初始化模式和工作模式。

5.2.2 初始化模式

LFSR 接收 $1 \uparrow 31$ 比特字 u 的输入,对寄存器单元变量 s_0, s_1, \dots, s_{15} 进行更新,计算过程如下: LFSRWithInitialisationMode(u)

```
{
(1) \ v = 2^{15} s_{15} + 2^{17} s_{13} + 2^{21} s_{10} + 2^{20} s_4 + (1 + 2^8) s_0 \ \text{mod} \ (2^{31} - 1);
(2) \ s_{16} = (v + u) \ \text{mod} \ (2^{31} - 1);
(3) \ \text{MR} \ s_{16} = 0, \text{MB} \ s_{16} = 2^{31} - 1;
(4) \ (s_1, s_2, \dots, s_{15}, s_{16}) \rightarrow (s_0, s_1, \dots, s_{14}, s_{15}).
}
```

模 231-1 乘法和模 231-1 加法的实现参见附录 B。

5.2.3 工作模式

LFSR 无输入,直接对寄存器单元变量 s_0 , s_1 , …, s_{15} 进行更新, 计算过程如下:

GB/T 33133.1-2016

```
LFSRWithWorkMode()
      (1) s_{16} = 2^{15} s_{15} + 2^{17} s_{13} + 2^{21} s_{10} + 2^{20} s_4 + (1+2^8) s_0 \mod (2^{31}-1);
      (2) 如果 s_{16}=0,则置 s_{16}=2^{31}-1;
      (3) (s_1, s_2, \dots, s_{15}, s_{16}) \rightarrow (s_0, s_1, \dots, s_{14}, s_{15})_{\circ}
}
```

5.3 比特重组 BR

输入为 LFSR 寄存器单元变量 s_0 , s_2 , s_5 , s_7 , s_9 , s_{11} , s_{14} , s_{15} , 输出为 4 个 32 比特字 X_0 、 X_1 、 X_2 、 X_3 。 计算过程如下:

```
BitReconstruction()
      (1) X_0 = s_{15H} \parallel s_{14L};
```

- (2) $X_1 = s_{11L} \parallel s_{9H}$;
- (3) $X_2 = s_{7L} \parallel s_{5H}$;
- (4) $X_3 = s_{2L} \parallel s_{0H}$. }

5.4 非线性函数 F

{

F 包含 2 个 32 比特记忆单元变量 R_1 和 R_2 。

F 的输入为 3 个 32 比特字 X_0 、 X_1 、 X_2 ,输出为一个 32 比特字 W。计算过程如下:

```
F(X_0, X_1, X_2)
```

(1) $W = (X_0 \oplus R_1) \boxplus R_2$;

- (2) $W_1 = R_1 \boxplus X_1$;
 - (3) $W_2 = R_2 \oplus X_2$;
 - (4) $R_1 = S[L_1(W_{1L} \parallel W_{2H})];$
 - (5) $R_2 = S[L_2(W_{2L} \parallel W_{1H})]_{\circ}$

其中 S 为 32 比特的 S 盒变换, S 盒定义见附录 A; L1 和 L2 为 32 比特线性变换, 定义如下:

$$L_1(X) = X \oplus (X \langle \langle \langle 2 \rangle \oplus (X \langle \langle \langle 10 \rangle \oplus (X \langle \langle \langle 18 \rangle \oplus (X \langle \langle \langle 24 \rangle, X \rangle \oplus (X \langle \langle \langle 18 \rangle \oplus (X \langle \langle \langle 24 \rangle, X \rangle \oplus (X \langle \langle \langle 18 \rangle \oplus (X \langle \langle (18 \rangle \oplus (X \langle \langle 18 \rangle \oplus (X \langle \langle 18 \rangle \oplus (X \langle \langle (18 \rangle \oplus (X \langle \langle 18 \rangle \oplus (X \langle \langle (18 \rangle \oplus (X \langle (18 \rangle \oplus (X \langle (18 \rangle \oplus (X \langle (18)) \oplus (X \langle \langle (18 \rangle \oplus (X \langle (18)) \oplus (X \langle (X \rangle)) \oplus (X \langle (X \langle (18)) \oplus (X \langle (X \rangle)) \oplus (X \langle (X \rangle)) \oplus (X \langle (X \rangle)) \oplus (X \langle (X \langle (18)) \oplus (X \langle (X \rangle)) \oplus (X \langle (X \Diamond)) \oplus (X \Diamond)) \oplus (X \langle (X \Diamond)) \oplus (X \langle (X \Diamond)) \oplus (X \Diamond)) \oplus (X \langle (X \Diamond)) \oplus (X \Diamond)) \oplus (X \langle (X \Diamond)) \oplus (X \Diamond)) \oplus (X \langle (X \Diamond)) \oplus (X \Diamond)) \oplus (X \langle (X \Diamond)) \oplus (X \Diamond)) \oplus (X \langle (X \Diamond)) \oplus (X \Diamond)) \oplus (X \Diamond)) \oplus (X \langle (X \Diamond)) \oplus (X \Diamond)) \oplus (X \Diamond)) \oplus (X \Diamond)) \oplus (X \Diamond)))$$

$$L_2(X) = X \oplus (X \langle \langle \langle 8 \rangle \oplus (X \langle \langle \langle 14 \rangle \oplus (X \langle \langle \langle 22 \rangle \oplus (X \langle \langle \langle 30 \rangle \oplus (X \langle \langle \langle \langle 30 \rangle \oplus (X \langle \langle \langle 3)) \oplus (X \langle \langle \langle \langle 30 \rangle \oplus (X \langle \langle \langle 3) \oplus (X \langle \langle \langle) \oplus (X \langle \langle \langle (X) \oplus (X \langle \langle (X) \oplus (X)) \oplus (X \langle \langle (X) \oplus (X)) \oplus (X \langle \langle (X)) \oplus (X \Diamond)) \oplus (X \langle (X)) \oplus (X \Diamond)) \oplus (X \langle (X)) \oplus (X \Diamond))$$

5.5 密钥装入

将初始密钥 k 和初始向量 iv 分别扩展为 16 个 31 比特字作为 LFSR 寄存器单元变量 so, s1, ····, s15 的初始状态。步骤如下:

a) 设 k 和 iv 分别为

$$k_0 \parallel k_1 \parallel \cdots \cdots \parallel k_{15}$$

和

$$iv_0 \parallel iv_1 \parallel \cdots \cdots \parallel iv_{15}$$

其中 k_i 和 iv_i 均为 8 比特字节,0 $\leq i \leq 15$ 。

b) 对 $0 \le i \le 15$, 有 $s_i = k_i \parallel d_i \parallel iv_i$ 。这里 d_i 为 16 比特的常量串,定义如下:

```
d_0 = 100010011010111_2,
d_1 = 0100110101111100_2,
d_2 = 110001001101011_2,
d_3 = 0010011010111110_2,
d_4 = 1010111110001001_2,
d_5 = 0110101111100010_2,
d_6 = 111000100110101_2,
d_7 = 000100110101111_2,
d_8 = 1001101011111000_2,
d_9 = 0101111100010011_2,
d_{10} = 1101011111000100_2,
d_{11} = 0011010111110001_2,
d_{12} = 1011111000100110_2,
d_{13} = 011110001001101_2,
d_{14} = 111100010011010_2,
d_{15} = 100011110101100_2.
```

5.6 算法运行

5.6.1 概述

祖冲之算法的输入参数为初始密钥 k、初始向量 iv 和正整数 L,输出参数为 L 个密钥字 Z。算法运行过程包含初始化步骤和工作步骤。

5.6.2 初始化步骤

- a) 按照 4.5 将初始密钥 k 和初始向量 iv 装入到 LFSR 的寄存器单元变量 s_0 , s_1 , ..., s_{15} 中, 作为 LFSR 的初态;
- b) 令 32 比特记忆单元变量 R₁和 R₂为 0;
- c) 重复执行下述过程 32 次:
 - 1) BitReconstruction();
 - 2) $W = F(X_0, X_1, X_2);$
 - 3) 输出 32 比特字 W;
 - 4) LFSRWithInitialisationMode (W)1).

5.6.3 工作步骤

- a) 执行下述过程:
 - BitReconstruction();
 - 2) $F(X_0, X_1, X_2)$;
 - 3) LFSRWithWorkMode().
- b) 重复计算 L 次下述过程:
 - 1) BitReconstruction();
 - 2) $Z=F(X_0,X_1,X_2) \oplus X_3$;
 - 3) 输出 32 比特密钥字 Z;
 - 4) LFSRWithWorkMode().

算法计算实例参见附录 C。

附 录 A (规范性附录) S 盒

32 比特 S 盒 S 由 4 个小的 8×8 的 S 盒并置而成,即 $S=(S_0,S_1,S_2,S_3)$,其中 $S_0=S_2$, $S_1=S_3$ 。 S_0 和 S_1 的定义分别见表 A.1 和表 A.2。设 S_0 (或 S_1)的 8 比特输入为 x。将 x 视作两个 16 进制数的连接,即 $x=h \parallel l$,则表 A.1(或表 A.2)中第 h 行和第 l 列交叉的元素即为 S_0 或 S_1)的输出 S_0 (x) [或 S_1 (x)]。

设 $S ext{ a} S$ 的 32 比特输入X 和 32 比特输出Y分别为:

 $X = x_0 \parallel x_1 \parallel x_2 \parallel x_3$ $Y = y_0 \parallel y_1 \parallel y_2 \parallel y_3$

其中, x_i 和 y_i 均为 8 比特字节,i=0,1,2,3。则有 $y_i=S_i(x_i)$,i=0,1,2,3。

表 A.1 S₀盒

	0	1	2	3	4	5	6	7	8	9	A	В	С	D	E	F
0	3E	72	5B	47	CA	E0	00	33	04	D1	54	98	09	В9	6D	СВ
1	7B	1B	F9	32	AF	9D	6A	A 5	В8	2D	FC	1D	08	53	03	90
2	4D	4E	84	99	E4	CE	D9	91	DD	В6	85	48	8B	29	6E	AC
3	CD	C1	F8	1E	73	43	69	C6	B5	BD	FD	39	63	20	D4	38
4	76	7D	B2	A7	CF	ED	57	C5	F3	2C	BB	14	21	06	55	9B
5	E3	EF	5E	31	4F	7F	5A	A4	0D	82	51	49	5F	BA	58	1C
6	4A	16	D5	17	A8	92	24	1F	8C	FF	D8	AE	2E	01	D3	AD
7	3B	4B	DA	46	EB	C9	DE	9A	8F	87	D7	3A	80	6F	2F	C8
8	B1	B4	37	F7	0A	22	13	28	7C	СС	3C	89	C7	С3	96	56
9	07	BF	7E	F0	0B	2B	97	52	35	41	79	61	A6	4C	10	FE
A	ВС	26	95	88	8A	В0	A3	FB	C0	18	94	F2	E1	E5	E9	5D
В	D0	DC	11	66	64	5C	EC	59	42	75	12	F5	74	9C	AA	23
С	0E	86	AB	BE	2A	02	E7	67	E6	44	A2	6C	C2	93	9F	F1
D	F6	FA	36	D2	50	68	9E	62	71	15	3D	D6	40	C4	E2	0F
Е	8E	83	77	6B	25	05	3F	0C	30	EA	70	В7	A1	E8	A9	65
F	8D	27	1A	DB	81	Вз	A 0	F4	45	7A	19	DF	EE	78	34	60

表 A.2 S₁盒

	0	1	2	3	4	5	6	7	8	9	Α.	В	С			
<u> </u>	-		-	-	4	J	-	<u>'</u>	· •	9	A	ь		D	E	F
0	55	C2	63	71	3B	C8	47	86	9 F	3C	DA	5B	29	AA	FD	77
1	8C	C5	94	0C	A6	1A	13	00	E3	A8	16	72	40	F9	F8	42
2	44	26	68	96	81	D9	45	3E	10	76	C6	A7	8B	39	43	E1
3	3A	B5	56	2A	C0	6D	Вз	05	22	66	BF	DC	0B	FA	62	48
4	DD	20	11	06	36	C9	C1	CF	F6	27	52	BB	69	F5	D4	87
5	7F	84	4C	D2	9C	57	A4	BC	4F	9A	DF	FE	D6	8D	7A	EB
6	2B	53	D8	5C	A1	14	17	FB	23	D5	7D	30	67	73	08	09
7	EE	B7	70	3F	61	B2	19	8E	4E	E5	4B	93	8F	5D	DB	A9
8	AD	F1	AE	2E	СВ	0D	FC	F4	2D	46	6E	1D	97	E8	D1	E9
9	4D	37	A 5	75	5E	83	9E	AB	82	9D	В9	1C	E0	CD	49	89
A	01	B6	BD	58	24	A2	5F	38	78	99	15	90	50	B8	95	E4
В	D0	91	C7	CE	ED	0F	B4	6F	A 0	СС	F0	02	4A	79	C3	DE
С	A3	EF	EA	51	E6	6B	18	EC	1B	2C	80	F7	74	E7	FF	21
D	5 A	6A	54	1E	41	31	92	35	C4	33	07	0A	BA	7E	0E	34
E	88	B1	98	7C	F3	3D	60	6C	7B	CA	D3	1F	. 32	65	04	28
F	64	BE	85	9B	2F	59	8A	D7	В0	25	AC	AF	12	03	E2	F2

注: S_0 盒和 S_1 盒数据均为十六进制表示。

附 录 B (资料性附录) 模 2³¹-1 乘法和模 2³¹-1 加法的实现

B.1 模 231-1 乘法

两个 31 比特字模 $2^{31}-1$ 乘法可以快速实现。特别地,当其中一个字具有较低的汉明重量时,可以通过 31 比特的循环移位运算和模 $2^{31}-1$ 加法运算实现。例如,计算 $ab \mod (2^{31}-1)$,其中 $b=2^i+2^j+2^j$ 。则

 $ab \mod(2^{31}-1)=(a\langle\langle\langle\langle_{31}i\rangle\rangle+(a\langle\langle\langle\langle_{31}j\rangle\rangle+(a\langle\langle\langle\langle_{31}k\rangle)\mod(2^{31}-1))$ ……(B.1) 式中: $\langle\langle\langle\langle_{31}表示 31$ 比特左循环移位运算。

B.2 模 231-1加法

在 32 位处理平台上,两个 31 比特字 a 和 b 模 $2^{31}-1$ 加法运算 $c=a+b \mod (2^{31}-1)$ 可以通过下面的两步计算实现:

- a) c=a+b;
- b) c = (c & 0x7FFFFFFF) + (c) > 31).

附 录 C (资料性附录) 算法计算实例

C.1 测试向量 1(全 0)

输入:

输出:

z1:27bede74

z2:018082da

初始化:

线性反馈移位寄存器初态:

i	S_{0+i}	S_{1+i}	S_{2+i}	S_{3+i}	S_{4+i}	S_{5+i}	S_{6+i}	S_{7+i}
0	0044d700	0026bc00	00626Ь00	00135e00	00578900	0035e200	00713500	0009af00
8	004d7800	002f1300	006bc400	001af100	005e2600	003c4d00	00789a00	0047ac00
t	X_{0}	X_1	X_2	X_3	$R_{\scriptscriptstyle 1}$	R_2	W	S 15
0	008f9a00	f100005e	af00006b	6Ь000089	67822141	62a3a55f	008f9a00	4563cb1b
1	8ac7ac00	260000d7	780000e2	5e00004d	474a2e7e	119e94bb	4fe932a0	28652a0f
2	50cacb1b	4d000035	13000013	890000c4	c29687a5	e9b6eb51	291f7a20	7464f744
3	e8c92a0f	9a0000bc	c400009a	e2000026	29c272f3	8cac7f5d	141698fb	3f5644ba
4	7eacf744	ac000078	f100005e	350000af	2c85a655	24259cb0	e41b0514	006a144c
5	00d444ba	cb1b00f1	260000d7	af00006b	cbfbc5c0	44c10b3a	50777f9f	07038Ь9Ь
6	0e07144c	2a0f008f	4d000035	780000e2	e083c8d3	7abf7679	0abddcc6	69b90e2b
7	d3728b9b	f7448ac7	9a0000bc	13000013	147e14f4	b669e72d	aeb0b9c1	62a913ea
8	c5520e2b	44ba50ca	ac000078	c400009a	982834a0	f095d694	8796020c	7b591cc0
9	f6b213ea	144ce8c9	cb1b00f1	f100005e	e14727d6	d0225869	5f2ffdde	70e21147
初	始化后线性	反馈移位寄存	字器状态:					
i	S_{0+i}	S_{1+i}	S_{2+i}	S_{3+i}	S_{4+i}	S_{5+i}	S_{6+i}	S_{7+i}
0	7ce15b8b	747ca0c4	6259dd0b	47a94c2b	3a89c82e	32b433fc	231ea13f	31711e42
8	4ccce955	3fb6071e	161d3512	7114b136	5154d452	78c69a74	4f26ba6b	3e1b8d6a

有限状态机内部状态:

 $R_1 = 14$ cfd44c

 $R_2 = 8c6 de800$

GB/T 33133.1-2016

密钥流:

t	X_{\circ}	X_1	X_2	X_3	R_1	R_2	z	S_{15}
0	7c37ba6b	b1367f6c	1e426568	dd0bf9c2	3512bf50	a0920453	286dafe5	7f08e141
1	fe118d6a	d4522c3a	e955463d	4c2be8f9	c7ee7f13	0c0fa817	27bede74	3d383d04
2	7a70e141	9a74e229	071e62e2	c82ec4b3	dde63da7	b9dd6a41	018082da	13d6d780

C.2 测试向量 2(全 1)

输入:

输出:

z1:0657cfa0

z2:7096398b

初始化:

线性反馈移位寄存器初态:

=>	线住区项移位可行船 初念:												
i	S_{0+i}	S_{1+i}	S_{2+i}	S_{3+i}	S_{4+i}	S_{5+i}	$S_{\mathfrak{6}+i}$	S_{7+i}					
0	7fc4d7ff	7fa6bcff	7fe26bff	7f935eff	7fd789ff	7fb5e2ff	7ff135ff	7f89afff					
8	7fcd78ff	7faf13ff	7febc4ff	7f9af1ff	7fde26ff	7fbc4dff	7ff89aff	7fc7acff					
t	X_{\circ}	X_1	X_2	X_3	R_1	R_2	W	S_{15}					
0	ff8f9aff	f1ffff5e	afffff6b	6bffff89	b51c2110	30a3629a	ff8f9aff	76e49a1a					
1	edc9acff	26ffffd7	78ffffe2	5effff4d	a75b6f4b	1a079628	8978f089	5e2d8983					
2	bc5b9a1a	4dffff35	13ffff13	89ffffc4	9810b315	99296735	35088 b 79	5b9484b8					
3	Ь7298983	9affffbc	c4ffff9a	e2ffff26	4c5bd8eb	2d577790	c862a1cb	2db5c755					
4	5b6b84b8	acffff78	f1ffff5e	35ffffaf	a13dcb66	21d0939f	4487d3e3	60579232					
5	c0afc755	9alafff1	26ffffd7	afffff6b	cc5ce260	0c50a8e2	83629fd2	29d4e960					
6	53a99232	8983ff8f	4dffff35	78ffffe2	dada0730	b516b128	ac461934	5e02d9e5					
7	bc05e960	84b8edc9	9affffbc	13ffff13	2bbe53a4	12a8a16e	1bf69f78	7904dddc					
8	f209d9e5	c755bc5b	acffff78	c4ffff9a	4a90d661	d9c744b4	ec602baf	0c3c9016					
9	1879dddc	9232b729	9alafff1	f1ffff5e	76bc13d7	a49ea404	2cb05071	0b9d257b					
初	始化后线性	反馈移位寄存	字器状态:										
i	S_{0+i}	S_{1+i}	S_{2+i}	S_{3+i}	S_{4+i}	S_{5+i}	$S_{\mathfrak{6}+i}$	S_{7+i}					
0	09a339ad	1291d190	25554227	36c09187	0697773Ь	443cf9cd	6a4cd899	49e34bd0					
8	56130Ь14	20e8f24c	7a5b1dcc	0c3cc2d1	1cc082c8	7f5904a2	55b61ce8	1fe46106					
10													

有限状态机内部状态:

 $R_1 = b8017bd5$

 $R_2 = 9 \text{ce} 2 \text{de} 5 \text{c}$

密钥流:

t	X_{\circ}	X_1	X_2	X_3	R_1	R_2	z	S 15
0	3fc81ce8	c2d141d1	4bd08879	42271346	aa131b11	09d7706c	668b56df	13f56dbf
1	27ea6106	82c8f4b6	0b14d499	91872523	251e7804	caac5d66	0657cfa0	0c0fe353
2	181f6dbf	04a21879	f24c93c6	773b4aaa	d94e9228	91d88fba	7096398b	10fleecf

C.3 测试向量 3(随机)

输入:

...

密钥 k: 3d 4c 4b e9 6a 82 fd ae b5 8f 64 1d b1 7b 45 5b

初始向量 iv: 84 31 9a a8 de 69 15 ca 1f 6b da 6b fb d8 c7 66

输出:

z1:14f1c272

z2:3279c419

初始化:

线性反馈移位寄存器初态:

i	S_{0+i}	S_{1+i}	S_{2+i}	S_{3+i}	S_{4+i}	S_{5+i}	S_{6+i}	S_{7+i}
0	1ec4d784	2626bc31	25e26b9a	74935ea8	355789de	4135e269	7ef13515	5709afca
8	5acd781f	47af136b	326bc4da	0e9af16b	58de26fb	3dbc4dd8	22f89ac7	2dc7ac66
t	$X_{\mathfrak{o}}$	X_1	X_2	X_3	R_1	R_2	\mathbf{w}	S_{15}
0	5b8f9ac7	f16b8f5e	afca826b	6b9a3d89	9c62829f	5df00831	5b8f9ac7	3c7b93c0
1	78f7ac66	26fb64d7	781ffde2	5ea84c4d	3d533f3a	80ff1faf	4285372a	41901ee9
2	832093c0	4dd81d35	136bae13	89de4bc4	2ca57e9d	d1db72f9	3f72cca9	411efa99
3	823d1ee9	9ac7b1bc	c4dab59a	e269e926	0e8dc40f	60921a4f	8073d36d	24b3f49f
4	4967fa99	ac667b78	f16b8f5e	35156aaf	16c81467	da8e7d8a	a87c58e5	74265785
5	e84cf49f	93c045f1	26fb64d7	afca826b	50c9eaa4	3c3b2dfd	d9135e82	481c5b9d
6	90385785	1ee95b8f	4dd81d35	781ffde2	5985 7b 80	be0fbdc1	fd2ceb1e	4b7f87ed
7	96ff5b9d	fa9978f7	9ac7b1bc	136bae13	9528f8ea	bcc7f7eb	8d89ddde	0e633ce7
8	1cc687ed	f49f8320	ac667b78	c4dab59a	c59d2932	e1098a64	46b676f2	643ae5a6
9	c8753ce7	5785823d	93c045f1	f16b8f5e	755ebae8	3f9e6e86	eef1a039	625ac5d7
初	始化后线性	反馈移位寄存	字器状态:					
i	S_{0+i}	S_{1+i}	S_{2+i}	S_{3+i}	S_{4+i}	S_{5+i}	$S_{\mathfrak{6}+i}$	S_{7+i}
0	10da5941	5b6acbf6	17060ce1	35368174	5cf4385a	479943df	2753bab2	73775d6a
8	43930a37	77b4af31	15b2e89f	24ff6e20	740c40b9	026a5503	194b2a57	7a9a1cff

GB/T 33133.1-2016

有限状态机内部状态:

 $R_1 = 860a7dfa$

 $R_2 = bf0e0ffc$

密钥流:

t	X_{0}	X_1	X_2	X_3	R_1	R_2	z	S_{15}
0	f5342a57	6e20ef69	5d6a8f32	0ce121b4	129d8b39	2d7cdce1	3ead461d	3d4aa9e7
1	7a951cff	40b92b65	0a374ea7	8174b6d5	ab7cf688	c1598aa6	14f1c272	71db1828
2	e3b6a9e7	550349fe	af31e6ee	385a2e0c	3cec1a4a	9053cc0e	3279c419	258937da

注:上述祖冲之算法计算实例中数据全部采用十六进制表示。

参考文献

- [1] ETSI/SAGE TS 35.221. Specification of the 3GPP Confidentiality and Integrity Algorithms 128-EEA3 & 128-EIA3. Document 1:128-EEA3 and 128-EIA3 Specification.
- [2] ETSI/SAGE TS 35.222. Specification of the 3GPP Confidentiality and Integrity Algorithms 128-EEA3 & 128-EIA3. Document 2: ZUC Specification.
- [3] ETSI/SAGE TS 35.223. Specification of the 3GPP Confidentiality and Integrity Algorithms 128-EEA3 & 128-EIA3. Document 3: Implementor's Test Data.
- [4] ETSI/SAGE TR 35.924. Specification of the 3GPP Confidentiality and Integrity Algorithms 128-EEA3 & 128-EIA3. Document 4: Design and Evaluation Report.