Задачи классификации мозговой активности при помощи синолитических сетей

Власенко Даниил Владимирович

Санкт-Петербургский государственный университет Прикладная математика и информатика Вычислительная стохастика и статистические модели

Научный руководитель: к.ф.-м.н., доцент Шпилев П.В. Рецензент: руководитель отдела алгоритмической структурной биоинформатики АО "Биокад" Зенкова Н.В.

Санкт-Петербург, 2023

Данные: описание фМРТ данных

Функциональная магнитно-резонансная томография

Технология, позволяющая измерять изменения в токе крови головного мозга, вызванные нейронной активностью.

Рис. 1: Последовательных трехмерных изображений.

Рис. 2: Воксели.

Воксель

Элемент объёмного растрового изображения, содержащий значение конкретной его области, аналог пикселя в двухмерном изображении.

Данные: представление фМРТ данных в памяти компьютера

Пусть Ω — множество фМРТ, а $\Sigma=\{\mathsf{I},\;\mathsf{II}\}$ — множество режимом мозговой активности. $(\widetilde{\Omega},\widetilde{\Sigma})=\{(\omega_n,\sigma_n)\}_n$ — конечная выборка из (Ω,Σ) .

Рис. 3: Конвертирование данных в массив.

 $\omega\in\Omega$ конвертируется массив a. $a_{xyzt}\in\mathbb{R}_+$ — значение вокселя с индексами $x,\ y,\ z$ в момент времени t, а a_{xyz} — все значения вокселя с индексами $x,\ y,\ z.$

Мотивация и цель: известные результаты

- Сравнение качества классификации режимов мозговой активности с и без данных из конкретной области мозга позволяет оценить важность этой области для данных режимов (Li X. et al. 2019).
- Доказана эффективность применения методов анализа графов к данным о мозге (Li X. et al. 2019; Saueressig C. et al. 2021).
- Доказана эффективность применения синолитических сетей в анализе сложных многомерных данных (Nazarenko T. et al. 2021).

Мотивация и цель: цель работы

Цель работы

Предложить метод представления фМРТ данных в форме графов, которые будут отражать в себе полезную информацию о взаимосвязях областей мозга для последующей классификации.

Метод будет протестирован с помощью классификация на основе характеристик графов.

Рис. 4: Представление мозга в форме графа, классификация на данных графа.

Метод: вычисление значений вершин

Рис. 5: Вершины $i,\,j$ и ребро ij .

С помощью статистики $T:\{a_{xyz}\}_{xyz} \to \mathbb{R}$ вычисляются значения вершин r_i, r_j как образы от временных рядов соответствующих вокселей.

Лучший результат метода наблюдался, когда T — медианное значение.

Метод: вычисление веса ребра

Рис. 6: Вершины i, j и ребро ij.

Вес ребра w_{ij} вычисляется по следующей формуле:

$$w_{ij} = P(II|r_i, r_j) - P(I|r_i, r_j).$$

Для вычисления вероятностей используется вероятностный классификатор $Cl_{ij}:\{y|(r_i,r_j),\{(r_i^n,r_j^n)\}_n,\{y_n\}_n\}\to[0,1],$ обученный на выборке $(\widetilde{\Omega},\widetilde{\Sigma}).$

В качестве Cl_{ij} использовался метод опорных векторов.

Метод: топология

Соседние воксели

Два вокселя называются соседними, если у них есть общая сторона, ребро или угол.

Рис. 7: Соседние воксели к центральному.

В графе g ребра соединяют те вершины, которые ассоциированы с соседними вокселями. Из g удаляются ребера $\{ij: r_i < r|r_i < r||w_{ij}| < w\}_{ij}$.

Тестирование: классификация на основе характеристик графа

Вычисляются характеристики графа $\{f_u\}_u = \{F_u(g)\}_u$:

- медианный вес ребра,
- квантиль весов ребер уровня 10%,
- квантиль весов ребер уровня 90%,
- стандартное отклонение весов ребер.

C помощью классификатора $Cl:\{\{f_u\}_u|\{\{f_u^n\}_u\}_n,\{y_n\}_n\}\to\{0,1\}$, обученного на выборке $(\widetilde{\Omega},\widetilde{\Sigma})$, происходит итоговая классификация фМРТ данных ω .

В качестве Cl использовался метод опорных векторов.

Тестирование: данные (Horikawa T., Kamitani Y. 2019)

Рис. 8: Наблюдение или воображение объекта.

Внутригрупповое тестирование: разделение выборки

	seen		imagined		
	training	test	training	test	
sub-01	17	7	14	6	44
sub-02	17	7	14	6	44
sub-03	17	7	14	6	44
sub-04	17	7	14	6	44
sub-05	16	8	14	6	44
	84	36	70	30	220
	120		100		~~0

Таблица 1: Разделение выборки на тренировочную и тестовую части.

Данные не независимые, однако позволяют проверить, возможно ли предсказать поведение людей, на которых метод обучался.

Внутригрупповое тестирование: характеристики графов

Рис. 9: Распределения характеристик графов для всей выборки фМРТ, когда T — медианное значение вокселя, $r=1,\,w=0$, где imagined mode — режим визуализации на основе памяти, seen mode — режим зрительного восприятия.

Внутригрупповое тестирование: результаты

	seen	imagined
seen	36	0
imagined	1	29

Таблица 2: Матрица классификации когда T — медианное значение вокселя, $r=1,\,w=0.2$, где imagened — режим визуализации на основе памяти, seen — режим зрительного восприятия

Для сравнения результатов использовался метод класса Decoder из библиотеки nilearn (Abraham A. 2014).

	Точность
${\sf Synolitic\ networks} + {\sf SVM}$	98.5%
nilearn.Decoder	100%

Таблица 3: Точность классификации синолитического метода и метода nilearn.Decoder.

Межгрупповое тестирование

Было проведено 5 запусков метода так, что при каждом запуске тестовая выборка состояла из всех фМРТ одного испытуемого, остальные фМРТ попадали в обучающую выборку.

	Средняя точность	Дисперсия
$\overline{Synolitic}$ networks $+$ SVM	51.6%	0.46%
nilearn.Decoder	39.54%	2.45%

Таблица 4: Средняя точность и дисперсия классификации для синолитического метода и метода nilearn. Decoder.

Результаты

- На языке Python был реализован метод представления данных фМРТ в форме графов, в основе которого лежит идея синолитических сетей.
- По результатам тестирования метод оказался внутригрупповым и неэффективным при межгрупповом применении.
- Было проверено, что синолитические сети применимы в сфере изучения функционирования мозга, но требуются дополнительное развитие данной области.

Код BKP и его документация выложены в открытый доступ, DOI: 10.5281/zenodo.7927929.

Синолитические сети

Есть с.в. $\omega=(\omega_1,\dots,\omega_k)$. На основе ω будет строится граф g=(V,E,R,W), где

- ullet $V=\{i\}_i$ множество вершин,
- ullet $R=\{r_i\}_i$ множество значений вершин,
- ullet $E = \{ij\}_{ij}$ множество неориентированных ребер,
- $W = \{w_{ij}\}_{ij}$ множество весов ребер.

Синолитическая сеть

Представление с.в. ω в форме графа g, в котором вершины V отражают признаки $(\omega_1,\ldots,\omega_k)$, а ребра E отражают взаимосвязи между признаками $(\omega_1,\ldots,\omega_k)$.

При этом вес любого ребра w_{ij} вычисляется на основе значений инцидентных ребру вершин r_i , r_j таким образом, чтобы нести полезную для классификации информацию.

Межгрупповое тестирование: разделение выборки

	seen		imagined		
	training	test	training	test	
sub-01	0	24	0	20	44
sub-02	24	0	20	0	44
sub-03	24	0	20	0	44
sub-04	24	0	20	0	44
sub-05	24	0	20	0	44
	96	24	80	20	220
	120		100		220

Таблица 5: Разделение выборки на тренировочную и тестовую части.

Межгрупповое тестирование: характеристики графов

Рис. 10: Распределения характеристик графов для всей выборки фМРТ, когда T — медианное значение вокселя, $r=1,\,w=0$, где imagined mode — режим визуализации на основе памяти, seen mode — режим зрительного восприятия.