RWTH Aachen University Faculty of Mathematics, Computer Science and Natural Sciences Chair of Computer Science 13 (Computer Vision) Prof. Dr. Bastian Leibe

Seminar Report

Linear and Nonlinear Filters

Alexander Skretting Matriculation Number: 445457

Jose Rigel Soeryo Soebandoro Matriculation Number: 444345

May, 2023

Advisor: George Lydakis

Linear and Nonlinear Filters

Alexander Skretting 445 457 Jose Rigel Soeryo Soebandoro 444 345

I. Introduction Both

- 1. Motivation: What problems prompts the use of filters? (Unwanted noise, enhancement of image properties to extract information)
- 2. General difference between Linear and Nonlinear Filters

II. Linear Filters Jose

- 1. Formal definition of Linear Filter Mathematical formula/definition of a linear filter
- 2. Types of Linear Filters: Box, Gaussian, Derivative General Formulas, implementation in code
- 3. Use Cases Noise Removal, Edge Detection, Image Sharpening
- 4. Convolution and Kernel *Matrix Operation*, neighboring pixels, normalization, separable convolution add implementation and code to show how matrices are used to pass pixels and transform them
- 5. Optimization of sigma values How to determine the best sigma values, what factors come into play to determine those values, what makes the best result and metrics of 'best' result
- 6. Known key differences between each types eg: How does the edges look with Box Filter vs Gaussian Filter, are there Square artifacts with Box filters?

III. Nonlinear Filters Alexander

- 1. Formal Defintion of Nonlinear Filters
- 2. Types of Nonlinear Filters: Median Filtering, Bilateral Filtering, MinFilter, MaxFilter, MeanShift Filter, CellularAutomaton etc.
- 3. Optimal Nonlinear Filtering Kushner–Stratonovich filtering
- 4. Typical applications of Nonlinear filters: Noise Removal

IV. Testing and Analysis Both

- 1. Methodology (Image sets to be used, metrics of analysis to determine quality)
- 2. Test scenarios Noise Removal, Image Sharpening, Edge Detection, Median Filtering, Morphological Filtering
- 3. Optimization of parameters based on each types of filter and how the optimization is determined.
- 4. Results based on test cases (Graph, Data Table, etc)
- 5. Tests limitations What is and is not possible to be determined based on testing
- 6. Results discussion

V. Conclusion Both

- 1. Pros and Cons of each Types of Filters Is one filter objectively better? Do they work better for different scenarios?
- 2. Limitations of Filtering
- 3. Further Analysis to be done What can supplement Filters for further use cases in image processing