EE2003: Computer Organisation

REPORT

Assignment 2

8085 Microprocessor Architecture

Introduction

The assignment has been implemented in 2 ways. The assignment cannot be implemented using only 1 nested subroutine and an 8-bit register loop in each subroutine as even if we give 255 (or 0xFF) to the registers, the required time delay cannot be achieved. The clock frequency given is **5MHz** and the required Time Delay is **288.5ms**.

Implementation A : Using 3 subroutines

Instruction		T-states	
LXI SP,0FFFH		10	
JMP start		10	
DELAY3:		PUSH PSW	12
MVI B,02H			7
LOOP3:		DCR B	4
J	JNZ LC	OOP3	10/7
POP PSW		10	
ſ	RET		10
DELAY2	2:	PUSH PSW	12
MVI E,0EAH		7	
LOOP2:	:	CALL DELAY3	18
DCR E		4	
JNZ LOOP2		10/7	
POP PSW		10	
i	RET		10
DELAY1	l:	PUSH PSW	12
MVI D,40H			7
LOOP1a	a:	CALL DELAY2	18
DCR D		4	

	JNZ LOOP1a		
	MVI D	,19Н	7
LOOP1b: DCR D			4
	JNZ LC	OOP1b	10/7
	POP P	SW	10
	RET		10
start:	MVI A,	00H	7
ADI 0FEH			7
ADI 01H			7
LXI B,1234H			10
LXI D,5678H			10
LXI H,0ABCDH			10
CALL DELAY1			18
hlt			>=5

Calculation of Time Delay:

Time period = $T = 1/f = \frac{1}{2}$ micro seconds = 0.2 micro seconds

Time to execute instructions outside the loops = (10+10+7+7+7+18+12+7+10+10+10)*T

= 21.6 micro seconds

Time to execute Delay3 = t3*0.2

$$= (12+7+2*(4+10)-3+10+10)*T$$

= 12.8 micro seconds

Time to execute Delay2 = t2*0.2

$$= ((12+7+234*(18+t3+4+10)-3+10+10)*T$$

= 4500 micro seconds

Time to execute Delay1 =
$$((12+7+64*(18+t2+4+10)-3+7+25*(4+10)-3+10+10)*T$$

= 288487.6 micro seconds

Total time = Time to execute instructions outside the loops + Time to execute Delay1
= 288.5 ms

The register values were found using trial and error method.

The values of registers and flag before calling subroutine:

The values of registers and flag after program execution:

NOTE: The registers BC have not been pushed to stack before using the subroutine and hence their values are changed.

Implementation A : Using 2 subroutines

Instruction		
LXI SP,0FFFH	10	
JMP start	10	
DELAY2:	PUSH PSW	12
MVI E,0FFH	7	
LOOP2:	DCR E	4
JNZ L	10/7	
POP PSW		10
RET		10
DELAY1:	PUSH PSW	12
MVI D,0FFH	7	
LOOP1a:	CALL DELAY2	18
DCR D		4
JNZ L	JNZ LOOP1a	
MVI [D,8DH	7
LOOP1b:	CALL DELAY2	18
DCR	4	
JNZ L	JNZ LOOP1b	

MVI	D,7DH	7
LOOP1c:	DCR D	4
JNZ L	.OOP1c	10/7
POP	PSW	10
RET		10
start: MVI	4,00H	7
ADI 0FEH	7	
ADI 01H	7	
LXI B,1234H	10	
LXI D,5678H	10	
LXI H,0ABCI	10	
CALL DELAY	18	
hlt	>=5	

Calculation of Time Delay:

Time period = $T = 1/f = \frac{1}{2}$ micro seconds = 0.2 micro seconds

Time to execute instructions outside the loops = (10+10+7+7+7+18+12+7+10+10+10)*T

= 21.6 micro seconds

Time to execute Delay2 = t2*0.2

= (12+7+255*(4+10) -3 +10 + 10)*T

= 721.2 micro seconds

Time to execute Delay1 =
$$(12+7+(255+141)*(18+t2+4+10)-3-3+7+7+125*(4+10)-3+10+10)*T$$

= 288488.4 micro seconds

Total time = Time to execute instructions outside the loops + Time to execute Delay1
= 288.5 ms

The register values were found using trial and error method.

The values of registers and flag before calling subroutine:

The values of registers and flag after program execution:

