Chapter 13: Continuous-Time Markets

Kerry Back BUSI 521/ECON 505 Rice University

Securities Market Model

Notation

- Money market account has price R with dR/R = r dt.
- n locally risky assets with dividend-reinvested prices S_i .
- $\mu = \text{vector of } n \text{ stochastic processes } \mu_i$
- $\sigma = n \times k$ matrix of stochastic processes
- $B = \text{vector of } k \text{ independent Brownian motions. } k \ge n.$
- Assume no redundant assets, meaning σ has rank n.

Asset Price Dynamics

• Assume, for each risky asset i,

$$\frac{\mathrm{d}S_{it}}{S_{it}} = \mu_{it} \, \mathrm{d}t + \sum_{j=1}^{k} \sigma_{ijt} \, \mathrm{d}B_{jt}$$

• Stacking the asset returns,

$$dS/S \stackrel{\text{def}}{=} \begin{pmatrix} dS_{1t}/S_{1t} \\ \vdots \\ dS_{nt}/S_{nt} \end{pmatrix} = \mu_t dt + \sigma_t dB_t$$

Covariance Matrix of Returns

• Drop the t subscript for simplicity. We have

$$\left(\frac{\mathrm{d}S_i}{S_i}\right)\left(\frac{\mathrm{d}S_\ell}{S_\ell}\right) = \left(\sum_{j=1}^k \sigma_{ij} \,\mathrm{d}B_j\right)\left(\sum_{j=1}^k \sigma_{\ell j} \,\mathrm{d}B_j\right)$$
$$= \sum_{j=1}^k \sigma_{ij}\sigma_{\ell j} \,\mathrm{d}t$$

Stacking the returns:

$$(dS/S) \left(\frac{dS}{S}\right)' = (\sigma dB)(\sigma dB)'$$
$$= \sigma (dB)(dB)'\sigma' = \sigma \sigma' dt = \Sigma dt$$

for $\Sigma = \sigma \sigma'$.

Intertemporal Budget Constraint

- Let ϕ_i denote the amount of the consumption good invested in risky asset i.
- Let W = wealth, C = consumption, Y = labor income.
- The intertemporal budget constraint is

$$dW = (Y - C) dt + \theta' dS + (W - \theta'S)r dt$$

where $\theta = (\theta_1, \dots, \theta_n)'$ denotes share holdings.

• Setting $\phi_i = \theta_i S_i \Rightarrow$

$$dW = (Y - C) dt + \phi' (dS/S) + (W - \phi'\iota)r dt$$

Equivalently,

$$dW = (Y - C) dt + rW dt + \phi'(dS/S - r\iota) dt$$

Equivalently,

$$dW = (Y - C) dt + rW dt + \phi'(\mu - r\iota) dt + \phi'\sigma dB$$

In Terms of Fractions of Wealth Invested

• Assuming W>0, we can define $\pi=\phi/W$ and write the intertemporal budget constraint as

$$dW = (Y - C) dt + rW dt + W\pi'(\mu - r\iota) dt + W\pi'\sigma dB$$

Equivalently,

$$\frac{\mathrm{d}W}{W} = \frac{Y - C}{W} \,\mathrm{d}t + r \,\mathrm{d}t + \pi'(\mu - r\iota) \,\mathrm{d}t + \pi'\sigma \,\mathrm{d}B$$

• If Y = C, the wealth process is said to be self financing.

First Optimization Problem

- Horizon T. No intermediate consumption (C = 0). No labor income (Y = 0). Log utility for terminal wealth. W_0 given.
- max $E[log(W_T)]$ over portfolio processes π subject to

$$\frac{\mathrm{d}W}{W} = r\,\mathrm{d}t + \pi'(\mu - r\iota)\,\mathrm{d}t + \pi'\sigma\,\mathrm{d}B$$

 Solve the wealth equation like we solved for GBM before (take logs, integrate, then exponentiate). We get

$$W_T = W_0 \exp \left(\int_0^T \left(r_t + \pi_t'(\mu_t - r_t) - \frac{1}{2} \pi_t' \Sigma_t \pi_t \right) dt + \int_0^T \pi_t' \sigma_t dB_t \right)$$

• So, $E[\log W_T]$ is

$$\log W_0 + \mathsf{E}\left[\int_0^T \left(r_t + \pi_t'(\mu_t - r_t) - \frac{1}{2}\pi_t'\Sigma_t\pi_t\right)\,\mathrm{d}t + \int_0^T \pi_t'\sigma_t\,\mathrm{d}B_t\right]$$

• Use iterated expectations to get

$$\log W_0 + \mathsf{E}_T \left[\int_0^T \mathsf{E}_t \left[r_t + \pi_t'(\mu_t - r_t) - \frac{1}{2} \pi_t' \Sigma_t \pi_t \right] \, \mathrm{d}t + \int_0^T \mathsf{E}_t [\pi_t' \sigma_t \, \mathrm{d}B_t] \right]$$

• Actually need a technical condition for this:

$$\mathsf{E} \int_0^T \pi_t' \Sigma_t \pi_t \, \mathrm{d}t < \infty$$

which implies a local martingale is a martingale.

• Conclusion is: choose π_t to maximize

$$\pi_t'(\mu_t - r_t) - \frac{1}{2}\pi_t'\Sigma_t\pi_t$$

Implies

$$\pi_t^* = \Sigma_t^{-1} (\mu_t - r_t)$$

SDF Processes

Definition of SDF Processes

- Define a stochastic process M to be an SDF process if
 - $M_0 = 1$
 - $M_t > 0$ for all t with probability 1
 - MR is a local martingale, where R denotes the price of the money market account.
 - MS_i is a local martingale, for i = 1, ..., n, where the S_i are the dividend-reinvested asset prices.
- 'Local martingale' means zero drift (no dt part).

Characerization of SDF Processes

• We can show: A stochastic process M>0 with $M_0=1$ is an SDF process if and only if $\mathbb{E}[\mathrm{d}M/M]=-r\,\mathrm{d}t$ and

$$(\mu - r\iota) dt = -(dS/S) \left(\frac{dM}{M}\right)$$

- Use MR = local martingale to get E[dM/M] = -r dt.
- Use $MS_i = \text{local martingale for each } i$ to get displayed equation.

No Uncertainty or Risk Neutrality

SDF process is

$$M_t = e^{-rt}$$

if r is constant or

$$M_t = \mathrm{e}^{-\int_0^t r_s \, \mathrm{d}s}$$

if r varies over time.

• So,

$$\frac{\mathrm{d}M}{M} = -r\,\mathrm{d}t$$

• With risk aversion, it is only true that the drift of dM/M is -r which we express as $\mathbb{E}[dM/M] = -r dt$

Single Period Model

- The condition E[dM/M] = -r dt parallels a single period model. Set $M_0 = 1$ and $M_1 = \tilde{m}$. Then,
 - $\Delta M/M_0 = (\tilde{m}-1)/1$
 - $E[\Delta M/M_0] = 1/R_f 1 = (1 R_f)/R_f = -r_f/R_f$
- The condition

$$(\mu - r\iota) dt = -(dS/S) \left(\frac{dM}{M}\right)$$

parallels

$$(\forall i) \quad \mathsf{E}[\widetilde{R}_i] - R_f = -R_f \operatorname{cov}(\widetilde{R}_i, \widetilde{m})$$

Prices of Risk

• Start with M being an Itô process with drift of dM/M being -r.

This means

$$\frac{\mathrm{d}M_t}{M_t} = -r_t \,\mathrm{d}t - \lambda_t' \,\mathrm{d}B_t$$

for some λ process.

- The choice of $-\lambda$ instead of $+\lambda$ is arbitrary but convenient.
- Then,

$$(\mathrm{d}S/S)\left(\frac{\mathrm{d}M}{M}\right) = -\sigma(\mathrm{d}B)(\mathrm{d}B)'\lambda = \sigma\lambda\,\mathrm{d}t$$

So,

$$(\mu - r\iota) dt = -(dS/S) \left(\frac{dM}{M}\right) \quad \Rightarrow \quad \mu - r = \sigma\lambda$$

ullet λ called price of risk process.

Projections of SDF Processes

• One solution λ of the equation $\sigma\lambda = \mu - r\iota$ is

$$\lambda_p \stackrel{\text{def}}{=} \sigma'(\sigma\sigma')^{-1}(\mu - r\iota) = \sigma'\Sigma^{-1}(\mu - r\iota)$$

• For this solution,

$$\lambda'_{p} dB = (\mu - r\iota)' \Sigma^{-1} \sigma dB$$
$$= \pi' \sigma dB$$

for $\pi = \Sigma^{-1}(\mu - r\iota)$ (the log-optimal portfolio). Thus, it is spanned by the assets.

• Every solution λ of the equation $\sigma\lambda=\mu-r\iota$ is of the form

$$\lambda = \lambda_p + \zeta$$

where ζ is orthogonal to the assets in the sense that $\sigma\zeta=0$.

Valuation

Valuation

For an asset with price process P and dividend process D,

$$P_t = \mathsf{E}_t \left[\int_t^u \frac{M_\tau}{M_t} D_\tau \, \mathrm{d}\tau + \frac{M_u}{M_t} P_u \right]$$

for any SDF process M (subject to a local martingale being a martingale).

- Ruling out bubbles, we can take u to infinity.
- Likewise, for any (W, C) satisfying the intertemporal budget constraint (assuming a local martingale is a martingale),

$$W_t = \mathsf{E}_t \left[\int_t^u \frac{M_\tau}{M_t} (C_\tau - Y_\tau), \mathrm{d}\tau + \frac{M_u}{M_t} W_u \right]$$

Ruling out Ponzi schemes, we can take u to infinity.

Complete Markets

How Many Assets do we Need?

- Assume the Brownian motions are the only sources of uncertainty.
- Then the market is complete if the rank of σ is k (as many non-redundant assets as there are Brownian motions).
- We are assuming for simplicity that there are no redundant asets (rank σ is n), so completeness is equivalent to σ being square and nonsingular.

Why Completeness?

- Martingale representation theorem: with Brownian uncertainty, every martingale Y is spanned by the Brownian motions meaning $\mathrm{d}Y = \gamma'\,\mathrm{d}B$.
- When σ is square and nonsingular, we can set $\pi = \sigma^{-1}\gamma$ to get $\mathrm{d}Y = \pi'\sigma\,\mathrm{d}B$ w, which is the stochastic part of a portfolio return.

Uniqueness of the SDF Process

- When markets are complete, there is a unique solution of $\sigma \lambda = \mu r\iota$ given by $\lambda = \sigma^{-1}(\mu r)$.
- So, there is a unique SDF process

Second Optimization Problem

 Complete markets, finite horizon, continuous consumption, no labor income. Consumption process must satisfy

$$W_0 = \mathsf{E} \int_0^T M_t C_t \, \mathrm{d}t$$

max

$$\mathsf{E} \int_0^T \mathrm{e}^{-\delta t} u(C_t) \, \mathrm{d}t$$

subject to the above constraint.

Lagrangean:

$$\mathsf{E} \int_0^T \left\{ \mathrm{e}^{-\delta t} u(C_t) - \gamma M_T C_t \right\} \, \mathrm{d}t$$

• Maximize pointwise. FOC is

$$u'(C_t) = \gamma M_t$$