

# **Machine Learning**

Rudolf Mayer October 25<sup>th</sup>, 2017



# **Outline**

- Short recap
- Decision Trees continued
- Evaluation
- Random Forests
- Evaluation, continued
- Data preparation
- SVM, intro
- SVM advancedselection, Ensemble learni, MLP/Neural Networks, Model ng, Significance testing, Feature selection



## Recap – Lecture 1







Feature extraction





- Data types & preparation
  - Categorical (e.g. size: tiny/small/large) vs. numerical (size in cm)
  - Scaling/Normalisation, 1-n coding, ..., missing values/imputation, .. → more today
- Outlook on evaluation
  - Accuracy, Training/test set, ...
    - more today





# Recap – Lecture 1 & 2

- Perceptron (1950s)
  - Linear seperation
    - by linear combination of inputs
  - Learning weights & bias



- k-NN Classification
  - Searching for k-closest neighbours
  - Classification follows majority
  - Lazy learner
  - Optimisations for finding neighbours







## Recap – Lecture 2

- Decision Tree Learning
  - Finding optimal split
  - Different criteria for optimality
  - Binary & multiple classes
  - Overfitting & (pre)pruning
  - Stability
  - Binary / n-ary trees
  - Categorical & numerical data
  - Stability







# **Outline**

- Short recap
- Decision Trees continued
- Evaluation
- Random Forests
- Evaluation, continued
- Data preparation
- SVM, intro



## **Decision Trees – more examples**

- Previous example: 2D data, x & y axis (Cartesian space)
- Input data can be of any dimensionality
  - E.g. in 3D space of numerical data: planes dividing the space along x, y or z axis
- Splits not limited to binary (i.e. > two branches)
- Input data does not have to be numerical
  - → decision trees also work on categorical data
- There can be more than two classes



| cylinders | displacement | horse power | weight | accelleration | Model year | maker   | MpG  |
|-----------|--------------|-------------|--------|---------------|------------|---------|------|
| 4         | low          | low         | low    | high          | 75-78      | Asia    | good |
| 6         | medium       | medium      | medium | medium        | 70-74      | America | bad  |
| 4         | medium       | medium      | medium | low           | 75-78      | Europe  | bad  |
| 8         | high         | high        | high   | low           | 70-74      | America | bad  |
| 6         | medium       | medium      | medium | medium        | 70-74      | America | bad  |
| 4         | low          | medium      | low    | medium        | 70-74      | Asia    | bad  |
| 4         | low          | medium      | low    | low           | 70-74      | Asia    | bad  |
| 8         | high         | high        | high   | low           | 75-78      | America | bad  |
| 8         | high         | high        | high   | low           | 70-74      | America | bad  |
| 8         | high         | medium      | high   | high          | 79-83      | America | good |
| 8         | high         | high        | high   | low           | 75-78      | America | bad  |
| 4         | low          | low         | low    | low           | 79-83      | America | good |
| 6         | medium       | medium      | medium | high          | 75-78      | America | bad  |
| 4         | medium       | low         | low    | low           | 79-83      | America | good |
| 4         | low          | low         | medium | high          | 79-83      | America | good |
| 8         | high         | high        | high   | low           | 70-71      | America | bad  |
| 4         | low          | medium      | low    | medium        | 75-78      | Europe  | good |
| 5         | medium       | medium      | medium | medium        | 75-78      | Europe  | bad  |

18/40 Records subsample (similar in UCI Machine learning repository)



| • • • • • • | • • • • • | • • • • • • | • • • • • | • • • • • • | • • • • • • • • | • • • • • • • |
|-------------|-----------|-------------|-----------|-------------|-----------------|---------------|
|             |           |             |           |             |                 |               |

| cylinders | displacement | horse power | weight | accelleration | Model year | maker   | MpG  |
|-----------|--------------|-------------|--------|---------------|------------|---------|------|
| 4         | low          | low         | low    | high          | 75-78      | Asia    | good |
| 6         | medium       | medium      | medium | medium        | 70-74      | America | bad  |
| 4         | medium       | medium      | medium | low           | 75-78      | Europe  | bad  |
| 8         | high         | high        | high   | low           | 70-74      | America | bad  |
| 6         | medium       | medium      | medium | medium        | 70-74      | America | bad  |
| 4         | low          | medium      | low    | medium        | 70-74      | Asia    | bad  |
| 4         | low          | medium      | low    | low           | 70-74      | Asia    | bad  |
| 8         | high         | high        | high   | low           | 75-78      | America | bad  |
| 8         | high         | high        | high   | low           | 70-74      | America | bad  |
| 8         | high         | medium      | high   | high          | 79-83      | America | good |
| 8         | high         | high        | high   | low           | 75-78      | America | bad  |
| 4         | low          | low         | low    | low           | 79-83      | America | good |
| 6         | medium       | medium      | medium | high          | 75-78      | America | bad  |
| 4         | medium       | low         | low    | low           | 79-83      | America | good |
| 4         | low          | low         | medium | high          | 79-83      | America | good |
| 8         | high         | high        | high   | low           | 70-71      | America | bad  |
| 4         | low          | medium      | low    | medium        | 75-78      | Europe  | good |
| 5         | medium       | medium      | medium | medium        | 75-78      | Europe  | bad  |

Entropy of data set 
$$H(X) = -\sum_{i=1}^{n} p(x_i) \log_{2} p(x_i)$$

12 samples class bad (2/3), 6 samples good (1/3)



| cylinders | displacement | horse power | weight | accelleration | Model year | maker   | MpG  |
|-----------|--------------|-------------|--------|---------------|------------|---------|------|
| 4         | low          | low         | low    | high          | 75-78      | Asia    | good |
| 6         | medium       | medium      | medium | medium        | 70-74      | America | bad  |
| 4         | medium       | medium      | medium | low           | 75-78      | Europe  | bad  |
| 8         | high         | high        | high   | low           | 70-74      | America | bad  |
| 6         | medium       | medium      | medium | medium        | 70-74      | America | bad  |
| 4         | low          | medium      | low    | medium        | 70-74      | Asia    | bad  |
| 4         | low          | medium      | low    | low           | 70-74      | Asia    | bad  |
| 8         | high         | high        | high   | low           | 75-78      | America | bad  |
| 8         | high         | high        | high   | low           | 70-74      | America | bad  |
| 8         | high         | medium      | high   | high          | 79-83      | America | good |
| 8         | high         | high        | high   | low           | 75-78      | America | bad  |
| 4         | low          | low         | low    | low           | 79-83      | America | good |
| 6         | medium       | medium      | medium | high          | 75-78      | America | bad  |
| 4         | medium       | low         | low    | low           | 79-83      | America | good |
| 4         | low          | low         | medium | high          | 79-83      | America | good |
| 8         | high         | high        | high   | low           | 70-71      | America | bad  |
| 4         | low          | medium      | low    | medium        | 75-78      | Europe  | good |
| _         |              |             |        |               |            | _       |      |

## Entropy of data set:

medium

 $-1/3 \times \log_2 1/3 - 2/3 \times \log_2 2/3 = -1/3 \times \log(1/3)/\log(2) - 2/3 \times \log(2/3)/\log(2)$ 

medium

medium

 $= - 1/3 \times -1,59946 - 2/3 \times -0,58496$ 

medium

= 0,918295834

5

Europe

bad

75-78



| cylinders | displacement | horse power | weight | accelleration | Model year | maker   | MpG  |
|-----------|--------------|-------------|--------|---------------|------------|---------|------|
| 4         | low          | low         | low    | high          | 75-78      | Asia    | good |
| 4         | low          | low         | low    | low           | 79-83      | America | good |
| 4         | low          | medium      | low    | medium        | 75-78      | Europe  | good |
| 4         | medium       | low         | low    | low           | 79-83      | America | good |
| 4         | low          | low         | medium | high          | 79-83      | America | good |
| 4         | medium       | medium      | medium | low           | 75-78      | Europe  | bad  |
| 4         | low          | medium      | low    | medium        | 70-74      | Asia    | bad  |
| 4         | low          | medium      | low    | low           | 70-74      | Asia    | bad  |
| 5         | medium       | medium      | medium | medium        | 75-78      | Europe  | bad  |
| 6         | medium       | medium      | medium | medium        | 70-74      | America | bad  |
| 6         | medium       | medium      | medium | medium        | 70-74      | America | bad  |
| 6         | medium       | medium      | medium | high          | 75-78      | America | bad  |
| 8         | high         | medium      | high   | high          | 79-83      | America | good |
| 8         | high         | high        | high   | low           | 75-78      | America | bad  |
| 8         | high         | high        | high   | low           | 70-74      | America | bad  |
| 8         | high         | high        | high   | low           | 75-78      | America | bad  |
| 8         | high         | high        | high   | low           | 70-74      | America | bad  |
| 8         | high         | high        | high   | low           | 70-71      | America | bad  |

## Split on first attribute – cylinders

• Sort data set by cylinders & MpG (output variable)



| cylinders | displacement | horse power | weight | accelleration | Model year | maker   | MpG  |
|-----------|--------------|-------------|--------|---------------|------------|---------|------|
| 4         | low          | low         | low    | high          | 75-78      | Asia    | good |
| 4         | low          | low         | low    | low           | 79-83      | America | good |
| 4         | low          | medium      | low    | medium        | 75-78      | Europe  | good |
| 4         | medium       | low         | low    | low           | 79-83      | America | good |
| 4         | low          | low         | medium | high          | 79-83      | America | good |
| 4         | medium       | medium      | medium | low           | 75-78      | Europe  | bad  |
| 4         | low          | medium      | low    | medium        | 70-74      | Asia    | bad  |
| 4         | low          | medium      | low    | low           | 70-74      | Asia    | bad  |
| 5         | medium       | medium      | medium | medium        | 75-78      | Europe  | bad  |
| 6         | medium       | medium      | medium | medium        | 70-74      | America | bad  |
| 6         | medium       | medium      | medium | medium        | 70-74      | America | bad  |
| 6         | medium       | medium      | medium | high          | 75-78      | America | bad  |
| 8         | high         | medium      | high   | high          | 79-83      | America | good |
| 8         | high         | high        | high   | low           | 75-78      | America | bad  |
| 8         | high         | high        | high   | low           | 70-74      | America | bad  |
| 8         | high         | high        | high   | low           | 75-78      | America | bad  |
| 8         | high         | high        | high   | low           | 70-74      | America | bad  |
| 8         | high         | high        | high   | low           | 70-71      | America | bad  |

### Split on first attribute – cylinders

- Sort data set by cylinders & MpG (output variable)
  - Identify subsets: 4 distinct values → 4 sets



| cylinders | displacement | horse power | weight | accelleration | Model year | maker   | MpG  |
|-----------|--------------|-------------|--------|---------------|------------|---------|------|
| 4         | low          | low         | low    | high          | 75-78      | Asia    | good |
| 4         | low          | low         | low    | low           | 79-83      | America | good |
| 4         | low          | medium      | low    | medium        | 75-78      | Europe  | good |
| 4         | medium       | low         | low    | low           | 79-83      | America | good |
| 4         | low          | low         | medium | high          | 79-83      | America | good |
| 4         | medium       | medium      | medium | low           | 75-78      | Europe  | bad  |
| 4         | low          | medium      | low    | medium        | 70-74      | Asia    | bad  |
| 4         | low          | medium      | low    | low           | 70-74      | Asia    | bad  |
| 5         | medium       | medium      | medium | medium        | 75-78      | Europe  | bad  |
| 6         | medium       | medium      | medium | medium        | 70-74      | America | bad  |
| 6         | medium       | medium      | medium | medium        | 70-74      | America | bad  |
| 6         | medium       | medium      | medium | high          | 75-78      | America | bad  |
| 8         | high         | medium      | high   | high          | 79-83      | America | good |
| 8         | high         | high        | high   | low           | 75-78      | America | bad  |
| 8         | high         | high        | high   | low           | 70-74      | America | bad  |
| 8         | high         | high        | high   | low           | 75-78      | America | bad  |
| 8         | high         | high        | high   | low           | 70-74      | America | bad  |
| 8         | high         | high        | high   | low           | 70-71      | America | bad  |

## Split on first attribute – cylinders

- 4 distinct values split in 4 sets
- Compute IG compute entropy for each subset



| cylinders | displacement | horse power | weight | accelleration | Model year | maker   | MpG  |
|-----------|--------------|-------------|--------|---------------|------------|---------|------|
| 4         | low          | low         | low    | high          | 75-78      | Asia    | good |
| 4         | low          | low         | low    | low           | 79-83      | America | good |
| 4         | low          | medium      | low    | medium        | 75-78      | Europe  | good |
| 4         | medium       | low         | low    | low           | 79-83      | America | good |
| 4         | low          | low         | medium | high          | 79-83      | America | good |
| 4         | medium       | medium      | medium | low           | 75-78      | Europe  | bad  |
| 4         | low          | medium      | low    | medium        | 70-74      | Asia    | bad  |
| 4         | low          | medium      | low    | low           | 70-74      | Asia    | bad  |

5 samples class good (5/8), 3 samples class bad (3/8)  $H(X_{cylinders=4}) = -5/8 \times log_2(5/8) - 3/8 \times log_2(3/8)$  = (-5/8 log(5/8) log(2)) + (-3/8 log(3/8) log(2)) = 0,954434003



| cylinders | displacement | horse power | weight | accelleration | Model year | maker  | MpG |
|-----------|--------------|-------------|--------|---------------|------------|--------|-----|
| 5         | medium       | medium      | medium | medium        | 75-78      | Europe | bad |

1 sample class bad

$$H(X_{cylinders=5}) = 0$$



| cylinders | displacement | horse power | weight | accelleration | Model year | maker   | MpG |
|-----------|--------------|-------------|--------|---------------|------------|---------|-----|
| 6         | medium       | medium      | medium | medium        | 70-74      | America | bad |
| 6         | medium       | medium      | medium | medium        | 70-74      | America | bad |
| 6         | medium       | medium      | medium | high          | 75-78      | America | bad |

3 sample class bad  $H(X_{cylinders=6}) = 0$ 



| cylinders | displacement | horse power | weight | accelleration | Model year | maker   | MpG  |
|-----------|--------------|-------------|--------|---------------|------------|---------|------|
| 8         | high         | medium      | high   | high          | 79-83      | America | good |
| 8         | high         | high        | high   | low           | 75-78      | America | bad  |
| 8         | high         | high        | high   | low           | 70-74      | America | bad  |
| 8         | high         | high        | high   | low           | 75-78      | America | bad  |
| 8         | high         | high        | high   | low           | 70-74      | America | bad  |
| 8         | high         | high        | high   | low           | 70-71      | America | bad  |

1 sample class good (1/6), 5 samples class bad (5/6),  $H(X_{\text{cylinders}=8}) = -1/6 \times \log_2(1/6) - 5/6 \times \log_2(5/6)$   $= (-1/6 \log(1/6) \log(2)) + (-5/6 \log(5/6) \log(2))$  = 0,650022422



| cylinders | displacement | horse power | weight | accelleration | Model year | maker   | MpG  |
|-----------|--------------|-------------|--------|---------------|------------|---------|------|
| 4         | low          | low         | low    | high          | 75-78      | Asia    | good |
| 4         | low          | low         | low    | low           | 79-83      | America | good |
| 4         | low          | medium      | low    | medium        | 75-78      | Europe  | good |
| 4         | medium       | low         | low    | low           | 79-83      | America | good |
| 4         | low          | low         | medium | high          | 79-83      | America | good |
| 4         | medium       | medium      | medium | low           | 75-78      | Europe  | bad  |
| 4         | low          | medium      | low    | medium        | 70-74      | Asia    | bad  |
| 4         | low          | medium      | low    | low           | 70-74      | Asia    | bad  |
| 5         | medium       | medium      | medium | medium        | 75-78      | Europe  | bad  |
| 6         | medium       | medium      | medium | medium        | 70-74      | America | bad  |
| 6         | medium       | medium      | medium | medium        | 70-74      | America | bad  |
| 6         | medium       | medium      | medium | high          | 75-78      | America | bad  |
| 8         | high         | medium      | high   | high          | 79-83      | America | good |
| 8         | high         | high        | high   | low           | 75-78      | America | bad  |
| 8         | high         | high        | high   | low           | 70-74      | America | bad  |
| 8         | high         | high        | high   | low           | 75-78      | America | bad  |
| 8         | high         | high        | high   | low           | 70-74      | America | bad  |
| 8         | high         | high        | high   | low           | 70-71      | America | bad  |

## Entropy of split:

$$H\left(X_{cyl}^{-}\right) = p\left(x_{cyl}^{-} = 4\right)H\left(X_{cyl}^{-} = 4\right)^{+} p\left(x_{cyl}^{-} = 5\right)H\left(X_{cyl}^{-} = 5\right)^{+} p\left(x_{cyl}^{-} = 6\right)H\left(X_{cyl}^{-} = 6\right)^{+} p\left(x_{cyl}^{-} = 8\right)H\left(X_{cyl}^{-} = 8\right)$$

$$= \frac{8}{18} \times 0,95443 + \frac{1}{18} \times 0 + \frac{3}{18} \times 0 + \frac{6}{18} \times 0,6500$$



| cylinders | displacement | horse power | weight | accelleration | Model year | maker   | MpG  |
|-----------|--------------|-------------|--------|---------------|------------|---------|------|
| 4         | low          | low         | low    | high          | 75-78      | Asia    | good |
| 4         | low          | low         | low    | low           | 79-83      | America | good |
| 4         | low          | medium      | low    | medium        | 75-78      | Europe  | good |
| 4         | medium       | low         | low    | low           | 79-83      | America | good |
| 4         | low          | low         | medium | high          | 79-83      | America | good |
| 4         | medium       | medium      | medium | low           | 75-78      | Europe  | bad  |
| 4         | low          | medium      | low    | medium        | 70-74      | Asia    | bad  |
| 4         | low          | medium      | low    | low           | 70-74      | Asia    | bad  |
| 5         | medium       | medium      | medium | medium        | 75-78      | Europe  | bad  |
| 6         | medium       | medium      | medium | medium        | 70-74      | America | bad  |
| 6         | medium       | medium      | medium | medium        | 70-74      | America | bad  |
| 6         | medium       | medium      | medium | high          | 75-78      | America | bad  |
| 8         | high         | medium      | high   | high          | 79-83      | America | good |
| 8         | high         | high        | high   | low           | 75-78      | America | bad  |
| 8         | high         | high        | high   | low           | 70-74      | America | bad  |
| 8         | high         | high        | high   | low           | 75-78      | America | bad  |
| 8         | high         | high        | high   | low           | 70-74      | America | bad  |
| 8         | high         | high        | high   | low           | 70-71      | America | bad  |

**Information Gain:**  $IG(X_A, X_B) = H(X) - p(x_A)H(X_A) - p(x_B)H(X_B)$ 



| cylinders | displacement | horse power | weight | accelleration | Model year | maker   | MpG  |
|-----------|--------------|-------------|--------|---------------|------------|---------|------|
| 4         | low          | low         | low    | high          | 75-78      | Asia    | good |
| 4         | low          | low         | low    | low           | 79-83      | America | good |
| 4         | low          | medium      | low    | medium        | 75-78      | Europe  | good |
| 4         | medium       | low         | low    | low           | 79-83      | America | good |
| 4         | low          | low         | medium | high          | 79-83      | America | good |
| 4         | medium       | medium      | medium | low           | 75-78      | Europe  | bad  |
| 4         | low          | medium      | low    | medium        | 70-74      | Asia    | bad  |
| 4         | low          | medium      | low    | low           | 70-74      | Asia    | bad  |
| 5         | medium       | medium      | medium | medium        | 75-78      | Europe  | bad  |
| 6         | medium       | medium      | medium | medium        | 70-74      | America | bad  |
| 6         | medium       | medium      | medium | medium        | 70-74      | America | bad  |
| 6         | medium       | medium      | medium | high          | 75-78      | America | bad  |
| 8         | high         | medium      | high   | high          | 79-83      | America | good |
| 8         | high         | high        | high   | low           | 75-78      | America | bad  |
| 8         | high         | high        | high   | low           | 70-74      | America | bad  |
| 8         | high         | high        | high   | low           | 75-78      | America | bad  |
| 8         | high         | high        | high   | low           | 70-74      | America | bad  |
| 8         | high         | high        | high   | low           | 70-71      | America | bad  |

Information Gain:  $IG(X_A, X_B) = H(X) - p(X_A)H(X_A) - p(X_B)H(X_B)$ 0,918295834 - 8/18 x 0,954434003 - 6/18 x 0,650022422

= 0,277428803



| ••••••    |              |             |        |               |            |         |      |
|-----------|--------------|-------------|--------|---------------|------------|---------|------|
| cylinders | displacement | horse power | weight | accelleration | Model year | maker   | MpG  |
| 4         | low          | low         | low    | high          | 75-78      | Asia    | good |
| 4         | low          | low         | low    | low           | 79-83      | America | good |
| 4         | low          | medium      | low    | medium        | 75-78      | Europe  | good |
| 4         | low          | low         | medium | high          | 79-83      | America | good |
| 4         | low          | medium      | low    | medium        | 70-74      | Asia    | bad  |
| 4         | low          | medium      | low    | low           | 70-74      | Asia    | bad  |
| 4         | medium       | low         | low    | low           | 79-83      | America | good |
| 5         | medium       | medium      | medium | medium        | 75-78      | Europe  | bad  |
| 6         | medium       | medium      | medium | medium        | 70-74      | America | bad  |
| 6         | medium       | medium      | medium | medium        | 70-74      | America | bad  |
| 6         | medium       | medium      | medium | high          | 75-78      | America | bad  |
| 4         | medium       | medium      | medium | low           | 75-78      | Europe  | bad  |
| 8         | high         | medium      | high   | high          | 79-83      | America | good |
| 8         | high         | high        | high   | low           | 75-78      | America | bad  |
| 8         | high         | high        | high   | low           | 70-74      | America | bad  |
| 8         | high         | high        | high   | low           | 75-78      | America | bad  |
| 8         | high         | high        | high   | low           | 70-74      | America | bad  |
| 8         | high         | high        | high   | low           | 70-71      | America | bad  |

## Split on second attribute – displacement

- 3 distinct values split in 3 sets
- Compute IG compute entropy for each subset



## Training the tree

Build a decision tree

- 1. Identify splits
- 2. Compute IGs
- 3. Select attribute with highest IG
  - → Model Year



OF



### First level of Decision Tree

Modelyear=70-74
0 7 Modelyear=75-78
2 5 Modelyear=79-83
4 0

Predict bad Predict good



## **Recursion Step**





# **Recursion Step**





## Second level of tree

Only one node from first level needs expansion

- Identify splits

   (on all attributes
   except modelyear)
- 2. Compute IGs
- 3. Select attribute with highest IG
  - displacement OR weight

| Attribute     | Attr.Value | good     | bad  | Distribution | Entropy           | Info Gain |
|---------------|------------|----------|------|--------------|-------------------|-----------|
| cylinders     | 4          | 2        | 1    |              | 0.9183            |           |
|               | 5          | 0        | 1    |              | 0                 |           |
|               | 6          | 0        | 1    |              | 0                 |           |
|               | 8          | 0        | 2    |              | 0                 |           |
|               |            |          |      | Spli         | t <b>" 0.3936</b> | 0.5247    |
| displacement  | low        | 2        | 0    |              | 0                 |           |
|               | medium     | 0        | 3    |              | 0                 |           |
|               | high       | 0        | 2    |              | 0                 |           |
|               |            |          |      | Spli         | t <b>" 0</b>      | 0.918     |
| horse power   | low        | 1        | 0    |              | 0                 |           |
|               | medium     | 1        | 3    |              | 0.8113            |           |
|               | high       | 0        | 2    |              | 0                 |           |
|               |            |          |      | Spli         | t 0.4636          | 0.4547    |
| weight        | low        | 2        | 0    |              | 0                 |           |
|               | medium     | 0        | 3    |              | 0                 |           |
|               | high       | 0        | 2    |              | 0                 |           |
|               |            |          |      | Spli         | t <b>" 0</b>      | 0.9183    |
| accelleration | low        | 0        | 3    |              | 0                 |           |
|               | medium     | 1        | 1    |              | 1.                |           |
|               | high       | 1        | 1    |              | 1.                |           |
|               |            |          |      | Spli         | t 0.5714          | 0.346     |
| maker         | Asia       | 1        | 0    |              | 0                 |           |
|               | America    | 0        | 3    |              | 0                 |           |
|               | Europe     | <u>1</u> | , _2 |              | 0.9183            |           |
|               |            |          |      | Spli         | t 0.3936          | 0.524     |



## Second level of tree





# Play-golf decision tree

# 'Play golf/tennis' data set

| Outlook  | Temperature | Humidity | Windy | Play?      |
|----------|-------------|----------|-------|------------|
| sunny    | 85          | 85       | false | Don't Play |
| sunny    | 80          | 90       | true  | Don't Play |
| overcast | 83          | 78       | false | Play       |
| rain     | 70          | 96       | false | Play       |
| rain     | 68          | 80       | false | Play       |
| rain     | 65          | 70       | true  | Don't Play |
| overcast | 64          | 65       | true  | Play       |
| sunny    | 72          | 95       | false | Don't Play |
| sunny    | 69          | 70       | false | Play       |
| rain     | 75          | 80       | false | Play       |
| sunny    | 75          | 70       | true  | Play       |
| overcast | 72          | 90       | true  | Play       |
| overcast | 81          | 75       | false | Play       |
| rain     | 71          | 80       | true  | Don't Play |

 Solve it at home as an exercise!

 Discussion next lecture



## **Decision Trees: Algorithm in detail**

- For each leaf node
  - If not all data from the same class (or other stopping criterion)
    - For each attribute
      - Identify possible splits of samples into (two or more) subspaces
    - Compute best split (over all attributes!)
      - Based on a split goodness measure/criterion
  - Until data in all leaf nodes is pure (same class)
    - Or cannot be distinguished (When can this happen?)
    - Or other stopping criterion fullfilled (e.g. maximum depth)



## **Decision Trees: Algorithm in detail**

- For each attribute
  - Identify possible splits of samples into (two or more) subspaces
    - categorical variables? (e.g. size with values "small" / "medium" / "large")
      - By each variable value, i.e. split into 3 sub-branches
      - Or one value vs. other values: small vs. rest, medium vs rest, large vs. rest (split into 2 sub-branches)
      - Difference?
    - numerical variables? (e.g. size in centimeters)
      - sort values & split between each pair of values
      - → How many candidate splits?



# **Outline**

- Short recap
- Decision Trees continued
- Evaluation
- Random Forests
- Evaluation, continued
- Data preparation
- SVM, intro



#### **Evaluation**

- When we use a machine learning model, we want to know how good it is (effectiveness)
  - To know how confident we can be in the predictions
  - To know which algorithm to use
  - **—** ....
- → Model validation

- Need to measure performance of an algorithm
  - Test on (labelled) data
  - Several different measures
- Orthogonal topic: efficiency, i.e. required runtime
  - More on that later



## **Evaluation (effectiveness)**

- Binary classification (classes true/false)
  - Table of confusion (contingency table)

|                 |       | Actual                                                 |                                   |                                       |
|-----------------|-------|--------------------------------------------------------|-----------------------------------|---------------------------------------|
|                 |       | true                                                   | false                             |                                       |
|                 | true  | True positive<br>(TP)                                  | False positive (FP, Type I error) | <b>Precision</b> $\frac{TP}{TP + FP}$ |
| Test<br>outcome | false | False negative<br>(FN, Type II error)                  | True negative<br>(TN)             |                                       |
|                 |       | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ |                                   | Accuracy  TP + TN  # samples          |

- Examples of Type I & II errors?
  - Which is worse?



### **Evaluation measures**

|       | true                                  | false                                |
|-------|---------------------------------------|--------------------------------------|
| true  | True positive<br>(TP)                 | False positive<br>(FP, Type I error) |
| false | False negative<br>(FN, Type II error) | True negative<br>(TN)                |

Accuracy: # correctly predicted samples

$$\frac{TP + TN}{TP + FP + TN + FN} = \frac{TP + TN}{\# samples}$$

- Inverse: Error rate
- Precision  $\frac{TP}{TP + FP}$
- Recall  $\frac{TP}{TP + FN}$
- F-Measure: trade-off between precision and recall; F1:

$$\frac{2 * (precision * recall)}{(precision + recall)}$$

Value ranges?



#### **Evaluation:** data

- Which data to do evaluation on?
- The samples used for training?
  - Why not?
  - Would not tell us how good the model works for unknown data
    - Which is however why we train a model in first place ...
  - If we test on training data we are biased
    - Fully grown decision trees will be 100% on training data
    - Perceptron on linear separable data: training data will be 100% correctly "predicted"
    - K-NN, Naïve Bayes: not necessarily 100% correct on training data.
       Still biased!
    - Similar for other algorithms, e.g. SVMs, ...
  - Want to actually find out: how will model perform on unseen data!



# Training & Test set split

- Really unseen data doesn't have labels
  - "Simulate" "unseen" data
  - "Holdout method"
  - Split labelled data into training and test (validation) sets
    - E.g. ~80% training, 20% test, 66% 33%
    - Linear (first 80%), randomised, ...
- Performance on test set is an estimate for generalisation ability of our model
- Results can vary a **lot** according to how split is done!
  - → Cross validation



- Split data into e.g. 10 parts of equal sizes
- This is called 10-fold cross validation
- repeat 10 times:
  - use 9 parts for training (training set)
  - calculate performance on remaining part (test set)
- Estimate of performance is average (mean) of the validation set performances





- Estimate of performance is average (mean)
- In addition to mean, compute standard deviation
  - Indication on how stable the results are in the folds
    - → lower standard deviation is better ...
  - Standard deviation to be considered when comparing cross-validation performances from different classifiers

| Classifier |       |      |
|------------|-------|------|
| / Fold     | 1     | 2    |
| 1          | 91,80 | 86,7 |
| 2          | 82,30 | 87   |
| 3          | 84,40 | 87,1 |
| 4          | 93,00 | 85,7 |
| 5          | 81,60 | 86,8 |
| 6          | 87,40 | 86,4 |
| 7          | 82,40 | 87,2 |
| 8          | 92,10 | 86,5 |
| 9          | 91,90 | 86,5 |
| 10         | 87,40 | 86,5 |
| Mean       | 87,4  | 86,6 |
| Stdv       | 4,6   | 0,4  |
|            |       |      |



- Which classifier is better:
  - Average 87,4%, standard deviation 4,8%
    - (87,4% 4,8)
  - Average 86,6%, standard deviation 0,4%
    - (86,6% 0,4)
    - More on that later: significance testing



- Results obtained via cross-validation are generally much more reliable
  - Parameter of 10 often used
  - Fewer folds on smaller and larger sample size

To have not too small test/training sets

Due to computational reasons

- Number of folds increases runtime!
  - More-or-less linear with *n*
  - Might not be that critical why?
    - · Can be parallelised



### Leave-p-out Cross validation

- A type of exhaustive cross-validation
  - Use p observations in test (validation) set
    - Remaining samples are in training set
  - Repeated for all combinations to cut p samples
  - Quickly becomes computationally infeasible
    - 100 samples, p=30
      - 3 x 10<sup>25</sup> combinations!

- Special case: p=1, leave-one-out cross validation
  - Test/validation set contains one sample
  - Number of combinations?
    - n



### **Bootstrapping**

- A bootstrap sample is a random subset of the data sample
  - Test set is also random sample
- Data points may be selected repeatedly
  - i.e. selection with replacement
- An arbitrary number of bootstrap samples may be used

 Bootstrapping is an alternative to cross validation and holdout method (training-test split)



# **Example: Bootstrapping**





# **Example: Bootstrapping**





### **Outline**

- Short recap
- Decision Trees continued
- Evaluation
- Random Forests
- Evaluation, continued
- Data preparation
- SVM, intro



#### **Random Forests**

- Combination of Decision Trees and bootstrapping concepts
- Proposed ~1995 by Leo Breiman & Adele Cutler
- Basic Idea & Name: a large number of decision trees is "grown in the forest", each on a different bootstrap sample



#### **Random Forests**

- For each tree: use bootstrap sample
- For each tree, only a random number of the original variables is available
  - i.e. small selection of columns
  - much smaller than original number
  - Change at each tree node!
- Grow trees to maximal extend
  - No stopping
  - No pruning
  - (they are rather small anyhow)



|    | Ir | С   | utp | ut    |    |  |
|----|----|-----|-----|-------|----|--|
| 12 | A  | 0.1 | 501 | red   | I  |  |
| 8  | В  | 1.2 | 499 | red   | II |  |
| 9  | В  | 1.1 | 504 | blue  | II |  |
| 15 | A  | 1.8 | 480 | green | II |  |
| 2  | C  | 1.0 | 511 | red   | I  |  |
| -2 | C  | 0.7 | 512 | green | II |  |
| 7  | C  | 0.4 | 488 | cyan  | I  |  |
| 7  | A  | 0.6 | 491 | cyan  | I  |  |
| 10 | A  | 1.5 | 500 | cyan  | I  |  |
| 0  | C  | 0.3 | 505 | blue  | II |  |
| 9  | В  | 1.9 | 502 | blue  | II |  |



Input Output

|    |   | •   |     |       |    |
|----|---|-----|-----|-------|----|
| 12 | A | 0.1 | 501 | red   | Ι  |
| 8  | В | 1.2 | 499 | red   | II |
|    |   |     |     |       |    |
| 15 | A | 1.8 | 480 | green | II |
| 2  | C | 1.0 | 511 | red   | Ι  |
|    |   |     |     |       |    |
| 7  | C | 0.4 | 488 | cyan  | Ι  |
| 7  | A | 0.6 | 491 | cyan  | Ι  |
|    |   |     |     |       |    |
| 0  | С | 0.3 | 505 | blue  | II |
|    |   |     |     |       |    |

Bootstrap sample



| ut | )utp | Input O |     |     |   |    |  |
|----|------|---------|-----|-----|---|----|--|
|    | I    | red     | 501 | 0.1 | A | 12 |  |
|    | II   | red     | 499 | 1.2 | В | 8  |  |
|    |      |         |     |     |   |    |  |
|    | II   | green   | 480 | 1.8 | A | 15 |  |
|    | I    | red     | 511 | 1.0 | C | 2  |  |
|    |      |         |     |     |   |    |  |
|    | Ι    | cyan    | 488 | 0.4 | C | 7  |  |
|    | I    | cyan    | 491 | 0.6 | A | 7  |  |
|    |      |         |     |     |   |    |  |
|    | II   | blue    | 505 | 0.3 | С | 0  |  |
|    |      |         |     |     |   |    |  |

?



|    | Ir | С   | )utp | u     |    |  |
|----|----|-----|------|-------|----|--|
| 12 | A  | 0.1 | 501  | red   | I  |  |
| 8  | В  | 1.2 | 499  | red   | II |  |
|    |    |     |      |       |    |  |
| 15 | A  | 1.8 | 480  | green | II |  |
| 2  | C  | 1.0 | 511  | red   | I  |  |
|    |    |     |      |       |    |  |
| 7  | C  | 0.4 | 488  | cyan  | Ι  |  |
| 7  | A  | 0.6 | 491  | cyan  | I  |  |
|    |    |     |      |       |    |  |
| 0  | С  | 0.3 | 505  | blue  | II |  |
|    |    |     |      |       |    |  |

?



|    | Ir | С   | utp |       |    |
|----|----|-----|-----|-------|----|
| 12 | A  | 0.1 | 501 | red   | I  |
| 8  | В  | 1.2 | 499 | red   | II |
|    |    |     |     |       |    |
| 15 | A  | 1.8 | 480 | green | II |
| 2  | C  | 1.0 | 511 | red   | Ι  |
|    |    |     |     |       |    |
| 7  | C  | 0.4 | 488 | cyan  | Ι  |
| 7  | A  | 0.6 | 491 | cyan  | I  |
|    |    |     |     |       |    |
| 0  | С  | 0.3 | 505 | blue  | II |
|    |    |     |     |       |    |





| _  | Ir | С   | utp |       |    |
|----|----|-----|-----|-------|----|
| 12 | A  | 0.1 | 501 | red   | I  |
| 8  | В  | 1.2 | 499 | red   | II |
|    |    |     |     |       |    |
| 15 | A  | 1.8 | 480 | green | II |
| 2  | C  | 1.0 | 511 | red   | Ι  |
|    |    |     |     |       |    |
| 7  | C  | 0.4 | 488 | cyan  | Ι  |
| 7  | A  | 0.6 | 491 | cyan  | Ι  |
|    |    | _   | _   |       |    |
| 0  | С  | 0.3 | 505 | blue  | II |
|    |    |     |     |       |    |





Input Output

|    | T. | iput |     |       | utp |
|----|----|------|-----|-------|-----|
| 12 | A  | 0.1  | 501 | red   | I   |
| 8  | В  | 1.2  | 499 | red   | II  |
|    |    |      |     |       |     |
| 15 | A  | 1.8  | 480 | green | II  |
| 2  | C  | 1.0  | 511 | red   | Ι   |
|    |    |      |     |       |     |
| 7  | C  | 0.4  | 488 | cyan  | Ι   |
| 7  | A  | 0.6  | 491 | cyan  | Ι   |
|    |    |      | _   |       |     |
| 0  | С  | 0.3  | 505 | blue  | II  |
|    |    |      |     |       |     |

!! Select new attributes at each tree node!!





Input Output

|    |   | ipac |     |       | <u>иср</u> |
|----|---|------|-----|-------|------------|
| 12 | A | 0.1  | 501 | red   | I          |
| 8  | В | 1.2  | 499 | red   | II         |
|    |   |      |     |       |            |
| 15 | A | 1.8  | 480 | green | II         |
| 2  | С | 1.0  | 511 | red   | Ι          |
|    |   |      |     |       |            |
| 7  | С | 0.4  | 488 | cyan  | Ι          |
| 7  | A | 0.6  | 491 | cyan  | Ι          |
|    | _ |      | _   |       |            |
| 0  | С | 0.3  | 505 | blue  | II         |
|    |   |      |     |       |            |





Input Output

| _  |   |     |     |       |    |
|----|---|-----|-----|-------|----|
| 12 | A | 0.1 | 501 | red   | I  |
| 8  | В | 1.2 | 499 | red   | II |
|    |   |     |     |       |    |
| 15 | A | 1.8 | 480 | green | II |
| 2  | C | 1.0 | 511 | red   | I  |
|    |   |     |     |       |    |
| 7  | C | 0.4 | 488 | cyan  | Ι  |
| 7  | A | 0.6 | 491 | cyan  | Ι  |
|    |   | _   | _   |       |    |
| 0  | С | 0.3 | 505 | blue  | II |
|    |   |     |     |       |    |





Input Output

|    | <u> </u> | iput |     |       | utp |
|----|----------|------|-----|-------|-----|
| 12 | A        | 0.1  | 501 | red   | Ι   |
| 8  | В        | 1.2  | 499 | red   | II  |
|    |          |      |     |       |     |
| 15 | A        | 1.8  | 480 | green | II  |
| 2  | C        | 1.0  | 511 | red   | I   |
|    |          |      |     |       |     |
| 7  | C        | 0.4  | 488 | cyan  | I   |
| 7  | A        | 0.6  | 491 | cyan  | I   |
|    |          |      |     |       |     |
| 0  | C        | 0.3  | 505 | blue  | II  |
|    |          |      |     |       |     |

!! Select new attributes at each tree node!!





Input Output

| _  |   | ipac |     |       | <del>ucp</del> |
|----|---|------|-----|-------|----------------|
| 12 | A | 0.1  | 501 | red   | Ι              |
| 8  | В | 1.2  | 499 | red   | II             |
|    |   |      |     |       |                |
| 15 | A | 1.8  | 480 | green | II             |
| 2  | C | 1.0  | 511 | red   | I              |
|    |   |      |     |       |                |
| 7  | C | 0.4  | 488 | cyan  | Ι              |
| 7  | A | 0.6  | 491 | cyan  | I              |
|    |   |      |     |       |                |
| 0  | С | 0.3  | 505 | blue  | II             |
|    |   |      |     |       |                |





| Input | C | utput |
|-------|---|-------|
|       |   |       |

| =11   313 |   |     |     |       |    |  |  |
|-----------|---|-----|-----|-------|----|--|--|
| 12        | A | 0.1 | 501 | red   | I  |  |  |
| 8         | В | 1.2 | 499 | red   | II |  |  |
|           |   |     |     |       |    |  |  |
| 15        | A | 1.8 | 480 | green | II |  |  |
| 2         | C | 1.0 | 511 | red   | I  |  |  |
|           |   |     |     |       |    |  |  |
| 7         | C | 0.4 | 488 | cyan  | Ι  |  |  |
| 7         | A | 0.6 | 491 | cyan  | I  |  |  |
|           |   |     |     |       |    |  |  |
| 0         | С | 0.3 | 505 | blue  | II |  |  |
|           |   |     |     |       |    |  |  |





#### **Random Forests**

- Train a number of trees
  - Tens, hundreds or sometimes even more
- Classify new data by majority voting of the individual trees
  - Count which class is predicted by most trees



#### **Classification with Random Forests**





#### **Properties of Random Forests**

- Only few parameters (number of trees, number of variables for split)
  - Good default values, rather robust
- Still mostly simple concepts
- Very high accuracy for many data sets
- No over-fitting when selecting large number of trees

- Becomes slow with higher number of trees
  - Can be parallelised



### **Outline**

- Short recap
- Decision Trees continued
- Evaluation
- Random Forests
- Evaluation, continued
- Data preparation
- SVM, intro



#### **Confusion Matrix**

- Matrix of classification results per class
  - Size (# classes) x (# classes)
- For each actual class plot the predicted classes
- Shows accuracy for single classes
- Indicates which classes are confused



### **Confusion Matrix: Example**

|       | Grey | Black | Red | Accuracy |
|-------|------|-------|-----|----------|
| Grey  | 5    | 3     | 0   | 0.625    |
| Black | 2    | 3     | 1   | 0.500    |
| Red   | 0    | 1     | 12  | 0.920    |
|       |      |       |     | 0.740    |

- Ideally: numbers only in the diagonal
- In other cells: indicates misclassification



#### **Confusion Matrix**

- Important to analyse mistake patterns
  - Which classes get mixed up?

|    |    |    | cl | assi | fied | as |    |    |    |    |                |
|----|----|----|----|------|------|----|----|----|----|----|----------------|
| a  | b  | c  | d  | e    | f    | g  | h  | i  | j  | k  | genre          |
| 34 | 3  | 0  | 0  | 2    | 8    | 0  | 0  | 2  | 10 | 1  | a = Country    |
| 9  | 39 | 0  | 1  | 1    | 4    | 0  | 0  | 0  | 5  | 1  | b = Folk       |
| 0  | 2  | 47 | 0  | 1    | 4    | 1  | 0  | 1  | 4  | 0  | c = Grunge     |
| 0  | 2  | 0  | 39 | 0    | 3    | 1  | 6  | 8  | 0  | 1  | d = Hip-Hop    |
| 2  | 3  | 3  | 0  | 34   | 4    | 10 | 0  | 0  | 4  | 0  | e = Metal      |
| 10 | 3  | 9  | 4  | 4    | 11   | 3  | 2  | 1  | 11 | 2  | f = Pop        |
| 5  | 2  | 5  | 0  | 10   | 2    | 36 | 0  | 0  | 0  | 0  | g = Punk Rock  |
| 2  | 0  | 0  | 10 | 0    | 3    | 0  | 40 | 2  | 1  | 2  | h = R&B        |
| 0  | 1  | 0  | 7  | 0    | 1    | 0  | 2  | 45 | 0  | 4  | i = Reggae     |
| 8  | 1  | 8  | 1  | 3    | 5    | 1  | 1  | 1  | 27 | 4  | j = Slow Rock  |
| 1  | 0  | 0  | 0  | 0    | 1    | 0  | 1  | 3  | 2  | 52 | k = Children's |



#### **Confusion Matrix**

- Important to analyse mistake patterns
  - Which classes get mixed up

| classified as |    |    |    |    |    |    |    |    |    |    |                |
|---------------|----|----|----|----|----|----|----|----|----|----|----------------|
| a             | b  | c  | d  | e  | f  | g  | h  | i  | j  | k  | genre          |
| 34            | 3  | 0  | 0  | 2  | 8  | 0  | 0  | 2  | 10 | 1  | a = Country    |
| 9             | 39 | 0  | 1  | 1  | 4  | 0  | 0  | 0  | 5  | 1  | b = Folk       |
| 0             | 2  | 47 | 0  | 1  | 4  | 1  | 0  | 1  | 4  | 0  | c = Grunge     |
| 0             | 2  | 0  | 39 | 0  | 3  | 1  | 6  | 8  | 0  | 1  | d = Hip-Hop    |
| 2             | 3  | 3  | 0  | 34 | 4  | 10 | 0  | 0  | 4  | 0  | e = Metal      |
| 10            | 3  | 9  | 4  | 4  | 11 | 3  | 2  | 1  | 11 | 2  | f = Pop        |
| 5             | 2  | 5  | 0  | 10 | 2  | 36 | 0  | 0  | 0  | 0  | g = Punk Rock  |
| 2             | 0  | 0  | 10 | 0  | 3  | 0  | 40 | 2  | 1  | 2  | h = R&B        |
| 0             | 1  | 0  | 7  | 0  | 1  | 0  | 2  | 45 | 0  | 4  | i = Reggae     |
| 8             | 1  | 8  | 1  | 3  | 5  | 1  | 1  | 1  | 27 | 4  | j = Slow Rock  |
| 1             | 0  | 0  | 0  | 0  | 1  | 0  | 1  | 3  | 2  | 52 | k = Children's |
| 47            | 69 | 65 | 63 | 62 | 23 | 69 | 76 | 71 | 42 | 77 | Precision      |
| 57            | 65 | 78 | 65 | 57 | 18 | 6  | 67 | 75 | 45 | 87 | Recall         |



# **Confusion Matrix: Example**

|            | BigClass | SmallClass | Accuracy |
|------------|----------|------------|----------|
| BigClass   | 490      | 0          | 100      |
| SmallClass | 10       | 0          | 0        |
|            |          |            | 0.98     |



### **Evaluation measures – averages**

- Previous measures are micro-averaged
- Do not indicate issues with imbalanced classes

- Alternative: macro-averaged measures
  - Compute precision, recall, ... per class
  - Average class-results



#### **Evaluation – micro average**

|            | BigClass | SmallClass | Accuracy |
|------------|----------|------------|----------|
| BigClass   | 490      | 0          | 100      |
| SmallClass | 10       | 0          | 0        |
|            |          |            | 0.98     |

• Accuracy: 
$$\frac{TP + TN}{TP + FP + TN + FN} = \frac{TP + TN}{\# samples}$$



## **Evaluation – macro average**

|            | BigClass | SmallClass | Accuracy |
|------------|----------|------------|----------|
| BigClass   | 490      | 0          | 100      |
| SmallClass | 10       | 0          | 0        |
|            |          |            | 0.5      |

• Accuracy: 
$$\frac{1}{|C|} \sum_{i=1}^{|C|} \frac{TP_i + TN_i}{TP_i + FP_i + TN_i + FN_i}$$



### Performance per class

- Important to consider when
  - imbalanced classes
  - Performance of a particular class is more important

- Examples ?
  - Health prediction
  - Classify sensitive documents, ...
  - Spam filter
  - Identify malicious software



#### **Costs of misclassification**

- Cost / loss functions
  - Measures per class with weighted averages
  - Higher weight to classes where errors are more severe
  - → Requires expert knowledge to identify weights



### **Effectiveness & Efficiency**

- Effectiveness: quality of classification
  - Accuracy, precision, recall, F1, ...

- Efficiency: computational efficiency (speed, runtime) of a classification
- Performance: often used as synonym for either effectiveness OR efficiency!



### **Effectiveness & Efficiency**

- What is more important?
- Trade-off between effectiveness & efficiency
- Differentiate between efficiency on
  - Training (learning) a model
  - Classification

 Efficiency is more relevant if model needs to be (re-)trained frequently



#### **Evaluation**

- Need to know how "good" a classifier is
  - → Train model on (labelled) training data
  - → Test on (labelled) test data
  - → Measure performance on test data

- Performance
  - Several different measures ...



- Overfitting: model is trained too specific to learning examples
  - Examples of classifiers?

- Generalisation: ability of model to perform well on the general problem
  - i.e. the real distribution that generated the training data



• Distributions of two classes (Gaussian, different mean)





Points drawn from that distributions





- Train e.g. a k-nn with k=1
- Assign each point to the closest neighbour
  - → decision boundaries half-way between points of different class





- Train e.g. a k-nn with k=1
- Assign each point to the closest neighbour
  - → decision boundaries half-way between points of different class

Classify according to closes point





Train e.g. a k-nn with k=1





Train e.g. a k-nn with k=1: good classifier?





- Bayes Optimal Classifier:
  - Simple probabilistic classifier
    - Classification by taking the most likely output value for a given input
    - I.e. the highest probability
  - Probabilities normally not known ...
    - Estimate probability densities based on samples



Bayes optimal classifier: estimation of probability density function





Bayes optimal classifier: estimation of probability density function





### Trade-off complexity vs. generalization





### **Evaluation: recap & outlook**

- Table of confusion → accuracy, precision, ...
- Cross-validation
- Bootstrapping
- Micro vs. macro averaging
  - Confusion matrix
  - Cost functions
- Overfitting & Generalisation
- Evaluation measures for regression
- ROC curves, Area under curve, kappa statistic
- Significance testing
- Bias & Variance



### **Outline**

- Short recap
- Decision Trees continued
- Evaluation
- Random Forests
- Evaluation, continued
- Data preparation
- SVM, intro



### **Data Preparation**

Vital step for machine learning (supervised and unsupervised)

- ML algorithm will always give you a model
  - Quality of that model depends highly on the quality of the input data
- "Garbage in, Garbage out"

- One major goal of data preparation:
  - Eliminate "wrong influence" of variables
- Already discussed
  - 1-n / one hot encoding, scaling/normalisation



### **Analysis of correlation**

- Data set might contain input variables that directly depend on each other
  - Might have unproportional weight on output prediction
  - Might be beneficial to treat such variables
- → Finding dependencies with (pair wise) analysis of correlation important pre-processing step
- E.g. Pearson correlation coefficient for linear dependence



### **Correlation – examples**

#### direct / indirect / none







Age of Car





#### **Pearson Correlation Coefficient**

Denoted as r/ρ

$$r = \frac{\text{cov}(X, Y)}{\sigma \sigma} =$$

$$= \frac{\sum (x - \overline{x})(y - \overline{y})}{\sqrt{(\sum (x - \overline{x})^2)\sqrt{(\sum (y - \overline{y})^2}}}$$

cov(X,Y) = covariance  $\sigma(X) = standard deviation of X$  $x = \mu_X = mean of X$ 





High Degree of positive (direct) correlation





Moderate Positive Correlation





Moderate Negative Correlation



r = -.80

Exam score



No Correlation





### **Output variable transformation**

- Classification requires categorical output
  - continuous output = regression
- Classification methods can be applied by discretising output variable
  - Loss of prediction precision
  - More classes → higher precision
    - But also more difficult to learn ...





### Missing values

- For some samples, not all attribute values are known
  - E.g. not captured by typist, broken sensors, change in capturing method/experiment design, ...
- Some ML algorithms can handle missing values
  - k-NN: skip distance computation for attributes that have missing value
  - Naive Bayes: omit values from probability computation

| gender | age | smoker | eye colour | distance |
|--------|-----|--------|------------|----------|
| male   | 19  | yes    | green      | -        |
| female | 44  | yes    | grey       | 2 + 25   |
| male   | 77  | yes    | grey       | 1 + 68   |
| male   | 21  | yes    | green      | 0 + 2    |



| gender | age | smoker | eye colour | distance      |
|--------|-----|--------|------------|---------------|
| male   | 19  | yes    | green      |               |
| ?      | 44  | yes    | grey       | <b>1</b> + 25 |
| male   | 77  | yes    | ?          | 0 + 68        |
| male   | 21  | yes    | green      | 0 + 2         |



### Missing values

- For some samples, not all attribute values are known
- Some ML algorithms can handle missing values
- Solutions for other algorithms
  - Deletion of sample
    - Bad when only few labelled samples
    - Not always an option when you have missing values in the test set...!
  - Imputation
    - Substitute missing value



- Substitution of a missing value
- Different methods
  - Mean value of the attribute (computed from other samples)
  - Random selection of value from another sample
  - Regression using other attributes to predict



- Clustering - values of cluster centroid



 Nearest Neighbour – value of closest sample (computed by similarity of other attributes)





- When is imputation useful?
- Most useful when the number of labelled samples (w/o missing values) is small
  - Relatively easy to identify

- When samples with missing values contain otherwise important information
  - Difficult to identify



- How to test for the effectiveness of data imputation?
- Example experiment setup:
  - Experiment #1
    - 1. Delete samples with missing values
    - 2. Split into training & test set
    - 3. Compute performance on test set
  - Experiment #2
    - 1. Perform data imputation
    - 2. Split into training & test set
    - 3. Compute performance on test set

| gender | age | smoker | eye<br>colour |
|--------|-----|--------|---------------|
| male   | 19  | no     | green         |
| ?      | 44  | yes    | grey          |
| male   | 77  | no     | ?             |
| male   | 21  | yes    | green         |
| female | 51  | ?      | green         |
| female | 81  | yes    | grey          |

| gender | age | smoker        | eye<br>colour |
|--------|-----|---------------|---------------|
| male   | 19  | no            | green         |
| male   | 21  | yes           | green         |
| female | 81  | yes           | grey          |
|        |     | $\overline{}$ |               |

Train Test

| gender | age | smoker | eye<br>colour |
|--------|-----|--------|---------------|
| male   | 19  | no     | green         |
| male   | 44  | yes    | grey          |
| male   | 77  | no     | green         |
| male   | 21  | yes    | green         |
| female | 51  | yes    | green         |
| female | 81  | yes    | grey          |
| K      |     |        | 7             |

Test

Compare results from Exp #1 & #2?

**Train** 



| gender   | age | smoker | eye<br>colour |  |
|----------|-----|--------|---------------|--|
| male     | 19  | no     | green         |  |
| ?        | 44  | yes    | grey          |  |
| • • male | 77  | no     | ?             |  |
| male     | 21  | yes    | green         |  |
| female   | 51  | ?      | green         |  |
| female   | 81  | yes    | grey          |  |
|          |     |        |               |  |

- Experiment setup:
  - Split data into training & test set

| gender | age | smoker | eye    |
|--------|-----|--------|--------|
|        |     |        | colour |
| Male   | 77  | No     | ?      |
| Male   | 21  | Yes    | green  |
| Female | 81  | Yes    | grey   |

Train

| gender | age | smoker | eye<br>colour |
|--------|-----|--------|---------------|
| male   | 19  | no     | green         |
| ?      | 44  | yes    | grey          |
| female | 51  | ?      | green         |

Test

- Experiment #1
  - 1. Delete samples with missing values in training set?
  - 2. Compute performance on test set?
- Experiment #2
  - Perform data imputation
  - 2. Compute performance on test set
- Compare results from Exp #1 & #2!



### **Outline**

- Short recap
- Decision Trees continued
- Evaluation
- Random Forests
- Evaluation, continued
- Data preparation
- SVM, intro



### **Support Vector Machines**

- Concept introduced by Vladimir Vapnik in 1960s
  - Heavily used & researched in last decade(s)
- Rather sophisticated mathematical model

Also known as maximum margin classifier

- Basic concepts
  - Linear separation
  - Optimisation of hyperplane
  - Soft margin & kernel function
    - When linear separation is not possible



# Linear separation





# **Linear separation**

Separating line #1





















- Which other classifier(s) use linear separation?
- What's the difference to SVMs?

- Optimization
  - maximisation of margin separating items
- · Later: soft margin, kernels, ...



- All separations are valid
  - Which separation is the best?

- Margin of a linear classifier:
   width that boundary could be increased to
  - before hitting any data-point
- Support Vectors are those data-points that the margin pushes up against
- What's the minimum number of support vectors?











Which separation/margin is the best?

Claim: bigger margin is better

- Intuitive illustration example
  - Assumption in previous dataset: samples are drawn from probability distribution
  - E.g. two Gaussians with different means (& variances)
  - Now, draw more samples from these distributions to increase our data set (training/testing)





Draw more samples from the distribution





Draw more samples from the distribution

→ Line #3 not separating anymore





Draw more samples from the distribution

→ Line #4 still separating





Draw even more samples from the distribution





Draw even more samples from the distribution

→ Line #3 separates even worse





Draw even more samples from the distribution

→ Line #4 still separating





Which separation/margin is the best?

- Claim: bigger margin is better
- Intuitive demonstration
  - The bigger the margin → the better is the separating plane fitting to slightly different data
  - I.e. less "overfitting", more generalization
- Next lecture: how to optimise the margin
  - Using Lagrange multipliers, quadratic programming,

. .



#### **Outline**

- Short recap
- Decision Trees continued
- Evaluation
- Random Forests
- Evaluation, continued
- Data preparation
- SVM, intro: soft margin



#### Soft margin

- SVMs optimise the decision boundary ...
- ... but still rely on linear separation!
- 1. Sometimes linear separation not possible
- 2. Sometimes, linear separation would lead to a badly generalising model
  - When?



## **Bad generalisation**





#### **Bad generalisation**

• Wider margin might be better





## Linear separation not possible





#### Linear separation not possible

"Acceptable" hyperplane could still be found





#### Soft margin

- Sometimes linear separation not possible, or
- Linear separation would lead to a badly generalising model

#### → Soft margin

- Hyper plane that splits "as cleanly as possible/desirable"
- While maximising margin



## **Soft Margin**





## **Soft Margin**





### Soft margin

- Introduction of slack variables
  - penalises misclassification
  - adapt constraint

$$y_i (\mathbf{w} \cdot \mathbf{x}_i - \mathbf{b}) \ge 1 - \xi_i$$
 for all i

Penalise non-zero ξi

$$\rightarrow$$
 min  $\|\mathbf{w}\| + C \sum_{i=1}^{n} \xi_{i}$ 

- Using Lagrange multipliers, similar to "hard-margin" case
- Implications?



#### Soft margin

- Introduction of slack variables for optimisation problem
  - penalises misclassification
- Implications ?
  - Not necessarily 100% classification accuracy on training set
  - Even if linearly separable

- Optimisation: trade off between large margin and small error penalty (controlled by C)
  - Trade-off between fitting to training data and general model
- C becomes part of optimisation problem
  - Sometimes called the "complexity parameter"



#### **Outline**

- Short recap
- Decision Trees continued
- Evaluation
- Random Forests
- Evaluation, continued
- Data preparation
- SVM, intro: outlook on kernels



#### Non-linearly separable data

"Acceptable" hyperplane can not be found





#### Non-linearly separable data

Data would be easily separable by a polynom





## Non-linearly separable data

••••••••••





#### New coordinate $z=x^2$





### New coordinate $z=x^2$

\_\_\_\_\_





#### **SVM Outlook**

- Kernel projection into high dimensional space
  - Kernel perceptron & difference to SVMs
  - "Kernel trick"



# **Questions?**