UNIVERSIDADE FEDERAL DO AMAZONAS INSTITUTO DE CIÊNCIAS EXATAS BACHARELADO EM MATEMÁTICA

LABORATÓRIO DE FÍSICA II RELATÓRIO II - PÊNDULO SIMPLES

Diego Carvalho Soares - 21555228 Gabriel Bezerra de M. Armelin - 21550325 Jonas Miranda Cascais Júnior - 21553844

Professor: Prof. Daniela Menegon Trichês

Manaus 2016

Sumário

1	SUMO	3				
2	INT	ΓRODUÇÃO	4			
3	FU:	NDAMENTOS TEÓRICOS	5			
	3.1	Experimento I	5			
	3.2	Experimento II	6			
4	PROCEDIMENTO EXPERIMENTAL					
	4.1	Materias utilizados	8			
	4.2	Método do Experimento I	8			
	4.3	Método do Experimento II	8			
5	RESULTADOS					
	5.1	Experimento I	9			
	5.2	Experimento II	10			
6	6 CONCLUSÃO					
R	ere:	RÊNCIAS BIBLIOGRÁFICAS	14			

1. RESUMO

Este relatório apresenta a teoria e prática para a obtenção do valor da aceleração da gravidade local através de duas experiências diferentes utilizando o conceito de pêndulo simples. A primeira experiência consiste em manter fixo em 10° a inclinação do pêndulo e obter o período do pêndulo variando o comprimento do fio. Com estes dados, pudemos gerar um gráfico relacionando o período com o comprimento do fio. Via regressão linear obtemos uma reta estimada e determinamos a aceleração da gravidade igualando o coeficiente linear desta reta com o equação do período do pêndulo simples. O segundo experimento consiste em manter fixo o tamanho do fio do pêndulo e obter o período do pêndulo variando seu o ângulo de inclinação. Após isso, geramos um gráfico relacionando o período com o $sen^2(\frac{\alpha}{2})$. Com esta relação pudemos obter um equação através de regressão linear e determinar a aceleração da gravidade comparando com a equação proposta na teoria. Os resultados obtidos para a aceleração da gravidade ficaram muito próximos de 9,8 m/s^2 sendo o segundo experimento mais preciso que o primeiro.

2. INTRODUÇÃO

Este trabalho apresenta dois experimentos para obter a aceleração da gravidade localmente utilizando a teoria de pêndulo simples. Estes experimentos foram realizados no laboratório do curso de Física da Universidade Federal do Amazonas.

Para a obtenção das acelerações da gravidade, os alunos realizaram experimentos em laboratório, pesquisaram os fundamentos teóricos, e realizaram a análise de dados obtidos através dos experimentos. As atividades realizadas em cada uma destas etapas estão detalhadas nos textos a seguir para cada experimento.

3. FUNDAMENTOS TEÓRICOS

3.1 Experimento I

Este experimento consiste em obter o valor da aceleração da gravidade. Para isso, foram coletados 3 amostras do período do oscilação de pêndulo simples para cada um dos comprimentos 0,5, 0,6, 0,7, 0,8 e 0,9 metros.

Em seguida, obtemos as médias e desvio padrão para um dos comprimentos. Conforme desmostrado abaixo, a inclinação da reta do gráfico T_{md} X Comprimento representa o valor da aceleração da gravidade. A seguir apresentamos como chegamos a esta fórmula.

Primeiramente partimos da fórmula do período de um pêndulo simples:

$$T = 2\pi \sqrt{\frac{l}{g}} \tag{3.1}$$

Onde:

T: é período do pêndulo;

l: é comprimento do barbante;

g: é a aceleração da gravidade;

Aplicando o logarítmo nos dois membros:

$$log(T) = log(2\pi\sqrt{\frac{l}{g}}) \tag{3.2}$$

$$log(T) = log(2\pi) + log(\sqrt{\frac{l}{g}})$$
(3.3)

$$log(T) = log(2\pi) + \frac{1}{2}log(l) - \frac{1}{2}log(g)$$
 (3.4)

$$log(T) = log(\frac{2\pi}{\sqrt{g}}) + \frac{1}{2}log(l)$$
(3.5)

A equação 3.5 é uma equação linear onde o período depende do comprimento do barbante. Então, ao criar um gráfico Período X Comprimento em escala logarítmica, espera-se encontrar uma reta através de regressão linear. Pode-se encontrar o valor da aceleração da gravidade igualando o coeficiente linear da reta obtida com o coeficiente linear da fórmula 3.5. As equações mostram como a aceleração da gravidade foi obtida através dos dados experimentais:

$$log(\frac{2\pi}{\sqrt{g}}) = cl$$
 cl é o valor do coeficiente da reta obtidade. (3.6)

$$\frac{2\pi}{\sqrt{g}} = e^{cl} \tag{3.7}$$

$$g = \frac{4\pi^2}{e^{2cl}} \tag{3.8}$$

O cálculo da propagação do erro foi realizado a também partir da fórmula 3.1 do período do pêndulo simples. Isolando g neste equação, obtém-se:

$$g = \frac{4\pi^2 l}{T^2} \tag{3.9}$$

Calculando a derivada de g em relação à l e T, obtém-se:

$$\Delta g = \left| \frac{\partial g(l, T)}{\partial l} \right| \Delta l + \left| \frac{\partial g(l, T)}{\partial T} \right| \Delta T \tag{3.10}$$

$$\Delta g = \frac{4\pi^2 T \Delta l + 8\pi^2 l \Delta T}{T^3} \tag{3.11}$$

3.2 Experimento II

Este segundo experimento utiliza uma equação mais geral para obter o período. Esta equação é utilizada para casos onde o ângulo é maior que 10° pois a partir deste valor, o seno α passa a divergir significativamente de α . Ela é apresentada a seguir:

$$T = 2\pi \sqrt{\frac{l}{q}} + \frac{\pi}{2} \sqrt{\frac{l}{q}} seno^2 \frac{\alpha}{2}$$
 (3.12)

Então, a partir dos dados experimentais é criado um gráfico relacionando o período médio com o seno^2 da metade ângulo. A partir deste gráfico é obtida uma função que melhor descreve os dados do gráfico via regressão linear. Esta função obtida é comparada com a função 3.12. Ao

se igualar o coeficiente linear das duas equações é possível determinar o valor da aceleração da gravidade. Então o valor da aceleração da gravidade é dado pela equação:

$$2\pi\sqrt{\frac{l}{g}} = cl \tag{3.13}$$

$$(2\pi\sqrt{\frac{l}{g}})^2 = cl^2 \tag{3.14}$$

$$4\pi^2 \frac{l}{q} = cl^2 (3.15)$$

$$g = \frac{4\pi^2 l}{cl^2} \tag{3.16}$$

Onde:

l: é comprimento do fio. Neste experimento o comprimento foi mantido fixo com o valor de 0,5 metros;

cl: é o coeficiente linear da equação estimada obtida via regressão linear;

Para calcular a progação do erro precisamos isolar g na equação 3.12. A equação abaixo apresenta a equação resultante.

$$g = \frac{l}{T^2} \left(\frac{4\pi + \pi sen^2(\frac{\alpha}{2})}{2}\right)^2 \tag{3.17}$$

Podemos obter a propagação de erro derivando essa equação em relação ao período e ao ângulo de acordo a seguinte equação:

$$\Delta g = \left| \frac{\partial g(T, \alpha)}{\partial \alpha} \right| \Delta \alpha + \left| \frac{\partial g(T, \alpha)}{\partial T} \right| \Delta T$$
 (3.18)

Que resultou em:

$$\Delta g = \frac{lT\pi^2 sin(\alpha)(cos(\alpha - 9)) + l\pi^2(cos(\alpha) - 9)^2}{8T^2}$$
 (3.19)

4. PROCEDIMENTO EXPERIMENTAL

4.1 Materias utilizados

- 1 esfera de D = 25.4mm
- 1 cronomêtro digital
- 1 régua milimetrada de 1000mm
- 1 haste redonda
- 1 porta placa
- 1 fio de 1500mm
- 1 haste redonda

4.2 Método do Experimento I

O objetivo deste experimento é determinar a aceleração da gravidade através da medição dos períodos de um pêndulo simples para algumas variações de comprimento do fio do pêndulo.

Primeiramente, utilizamos a régua milimetrada para ajustar a comprimento desejado do fio. Os comprimentos utilizados foram: 0,5, 0,6, 0,7, 0,8 e 0,9 metros. Em seguida, realizamos 3 medições do período do pêndulo para cada um destes comprimentos do fio. O fio foi inclinado em 10° em todo este experimento. Como o tempo medido pelo cronômetro é de meia oscilação, multiplicamos os valores lidos do cronômetro por 2 para obter o período.

4.3 Método do Experimento II

O objetivo deste experimento é determinar a aceleração da gravidade através da medição dos períodos de oscilação variando o ângulo de inclinação do fio e mantendo o comprimento do fio fixo em 0,5 metros.

Primeiramente, ajustamos o comprimento do fio para 0,5 metros com a régua milimetrada. Mantemos este comprimento durante todo o experimento. Em seguida, inclinamos o fio no seguintes ângulos: 10°, 20°, 30°, 40° e 50°. Para cada um destes ângulos, coletamos 3 amostras de período. Para isso, posicionamos o fio na inclinação desejada e soltomos a espera. Por fim, coletamos o valor do período apresentado no cronômetro.

5. RESULTADOS

5.1 Experimento I

A tabela seguinte apresenta os dados do experimento I.

Tabela 5.1: Experimento 1

	Comprimento \pm 0.001 (m)	$T_1 \pm 0.001 \; (s)$	$T_2 \pm 0.001(s)$	$T_3 \pm 0.001(s)$	$T_{md} \pm 0.001(s)$	$T_{dp} \pm 0.001 \text{ (s)}$				
1	0.500	1.456	1.454	1.456	1.455	0.001				
2	0.600	1.506	1.502	1.510	1.506	0.004				
3	0.700	1.670	1.672	1.668	1.670	0.002				
4	0.800	1.846	1.852	1.850	1.849	0.003				
5	0.900	1.942	1.942	1.944	1.943	0.001				

Onde:

Comprimento: é o comprimento do fio;

 T_1, T_2 e T_3 : são as 3 amostras coletadas do período.

 T_{md} : é a média das 3 amostras;

 T_{dp} : é o desvio padrão;

Com estes dados podemos gerar um gráfico relacionando o período médio com o comprimento do fio. O gráfico seguinte apresenta o resultado obtido:

Periodo X Comprimento

Conforme verificado no gráfico, a regressão linear aproximou os dados em uma reta. Sua equação é apresentada abaixo:

$$Periodo = 0.5294 * Comprimento + 0.7153$$

$$(5.1)$$

Calculamos o valor da gravidade substituindo o valor do coeficiente linear desta equação na equação 3.8 obtida na seção de teoria. O erro foi calculado utilizando a equação ??. Então, o valor da gravidade obtido neste experimento é $9.443 \pm 0.072 \ m/s^2$.

5.2 Experimento II

A tabela seguinte apresenta os dados do experimento II.

Tabela 5.2: Experimento 2

rabeta 0.2. Emperimento 2								
	Angulo ± 1 (graus)	Seno (rad)	$Seno^2$ (rad)	$T_1 \pm 0.001 \text{ (s)}$	$T_2 \pm 0.001(s)$	$T_3 \pm 0.001(s)$	$T_{md} \pm 0.001(s)$	$T_{dp} \pm 0.001 \text{ (s)}$
1	10.000	0.087	0.008	1.426	1.424	1.424	1.425	0.001
2	20.000	0.174	0.030	1.434	1.436	1.436	1.435	0.001
3	30.000	0.259	0.067	1.444	1.446	1.450	1.447	0.003
4	40.000	0.342	0.117	1.470	1.466	1.466	1.467	0.002
5	50.000	0.423	0.179	1.498	1.498	1.496	1.497	0.001

Onde:

Angulo: é o ângulo de inclinação aplicado ao fio;

Seno: é $\sin \frac{\alpha}{2}$ e α é o ângulo da coluna anterior;

 $Seno^2$: é $\sin^2 \frac{\alpha}{2}$;

 $T_1,\,T_2$ e T_3 : são as 3 amostras coletadas do período.

 T_{md} : é a média das 3 amostras;

 T_{dp} : é o desvio padrão;

Com estes dados podemos gerar o primeiro gráfico relacionando T_{md} X Seno. Abaixo, está o resultado obtido.

Observe que o gráfico apresenta uma parte do gráfico da função seno.

Também fazendo uso da tabela acima, podemos criar o gráfico $T_{md} \ge Seno^2$. O resultado obtido está logo abaixo.

Observe que a regressão linear aproximou este dados para uma reta. A equação desta reta está logo abaixo:

$$Periodo = 0.4169 * sen^2 + 1.4209 (5.2)$$

Obtemos o valor experimental da aceleração da gravidade substituindo o valor do coeficiente linear obtido acima na equação 3.17. O erro foi obtido utilizando a equação 3.19. Portanto, o valor estimado da aceleração da gravidade é $9.777 \pm 0.112 \ m/s^2$.

6. CONCLUSÃO

Após a realização dos experimentos e análise dos resultados obtidos, é possível responder algumas perguntas abaixo:

1 Faça um comentário sobre a influência da variação angular no pêndulo simples em cada experiência.

No primeiro experimento, o ângulo de inclinação do pêndulo foi mantido constante e próximo de 10°. Neste caso, o seno do ângulo é próximo do valor do ângulo, portanto, a equação 3.12 pode ser simplificada para a equação 3.1. O que significa um reta quando plotar o perido em função do comprimento.

Já no segundo experimento, o ângulo varia mais de 10° e, portanto, é preciso utilizar a equação geral do período 3.12. Como esta equação tem o termo seno ao quadrado, este termo resultará em um número bem próximo de zero tornando o outro termo de fato dominante na equação. Este outro termo é justamento o termo utilizado no experimento de pêndulo simples. Então, pode-se dizer que um gráfico relacionado o período com o sen ao quadrado será muito próximo de uma reta.

2 Compare o valor da aceleração da gravidade, obtidos nas duas experiências e verifique qual obteve melhor precisão. Comente as possíveis fontes de erros.

No experimento I concluímos que a função obtida experimentalmente coincide com a esperada. Três argumentos que suportam esta conclusão é que o regressor linear identificou uma reta a partir dos dados experimentais o que esperávamos na teoria (ver 3.5). O segundo argumento é que o coeficiente angular da reta obtida via regressão linear ficou com valor de aproximadamente 0,5 o que já era esperado pela teoria conforme demonstrado na equação 3.5. O terceiro argumento é que obtemos um valor da aceleração da gravidade muito próximo ao valor de 9,8 m/s^2 determinado pelo escopo do trabalho.

No experimento II, no gráfico T X sen $(\frac{\alpha}{2})$ obtemos uma curva muito parecida com uma semiparábola ou um parte da função seno. Este resultado coincide com a teria. No gráfico T X sen^2 $(\frac{\alpha}{2})$ obtemos uma reta que também coincide com o resultado esperado na teroria visto que o efeito de multiplicar a função sen por ela mesma causou uma apliação da curva obtida anteriormente. Esta ampliação tornou a curva mais linear. Ao comparar os valores da aceleração da gravidade obtido experimentalmente com 9,8, observamos que o valor experimental muito próximo de 9,8. Ele ficou dentro da margem de erro.

Comparando os dois experimentos, observa-se que o segundo experimento obteve um valor mais preciso que o primeiro experimento.

3 Quais das duas experiências descrevem um movimento harmônico simples? Justifique.

A primeira experiência descreve um movimento harmônico simples por que a frequência é mantida constante durante o experimento.

4 Explique em quais condições um pêndulo pode ser usado como um relôgio?

De acordo com Wikipedia (2017), para um relógio de pêndulo ser um medidor de tempo preciso, a amplitude do movimento deve ser mantida constante apesar de as perdas por atrito afetarem todo o sistema mecânico. Variações na amplitude, tão pequenas quanto 4° ou 5°, fazem um relógio adiantar cerca de 15 segundos por dia, o que não é tolerável mesmo num relógio caseiro. Para manter constante a amplitude é necessário compensar com um peso ou mola, fornecendo energia automaticamente, compensando as perdas devidas ao atrito.

REFERÊNCIAS BIBLIOGRÁFICAS

Halliday, R.; Krane, D.; Resnick. 1996. Física 1. Vol. 1. Livros Técnicos e Científicos Editora.

— . 1998. Física 2. Vol. 2. Livros Técnicos e Científicos Editora.

Nussenzveig, H.M. 1997. Curso de Física Básica 2. Vol. 1. Edgard Bucher Ltda.

Wikipedia. 2017. "Relógio de Pêndulo Acessado Em 23-01-2017." https://pt.wikipedia.org/wiki/Relógio_de_pêndulo.