

Keilriemen eines Motors*

Der Keilriemen eines Motors läuft über vier Rollen. Diese sind in der nachstehenden nicht maßstabgetreuen Abbildung als Kreise mit den Mittelpunkten A, B, C und D dargestellt.

a) Ein Teil des Keilriemens liegt auf der Geraden b, die durch den Punkt P verläuft und normal auf die Strecke AP steht.

Es gilt:
$$A = (427 | 273), P = (472,2 | 279,4)$$

1) Stellen Sie eine Gleichung der Geraden b in Parameterform auf.

[0/1 P.]

Die Gerade a verläuft durch die Punkte R und S.

Es gilt:
$$a: X = \begin{pmatrix} 387 \\ 295 \end{pmatrix} + t \cdot \begin{pmatrix} 22 \\ 40 \end{pmatrix}$$
 mit $t \in \mathbb{R}$

- 2) Ermitteln Sie die Koordinaten des Schnittpunkts S der Geraden a und b. [0/1 P.]
- 3) Berechnen Sie den spitzen Winkel α zwischen den Geraden a und b. [0/1 P.]

In der obigen Abbildung ist der Vektor \overrightarrow{v} eingezeichnet.

4) Ermitteln Sie den zugehörigen Einheitsvektor \overrightarrow{v}_0 . [0/1 P.]

Bundesministerium Bildung, Wissenschaft und Forschung

b) 1) Zeichnen Sie in der unten stehenden Abbildung den Winkel γ so ein, dass gilt:

$$\cos(\gamma) = \frac{\overline{CD}^2 - \overline{BD}^2 - \overline{BC}^2}{-2 \cdot \overline{BD} \cdot \overline{BC}}$$
 [0/1 P.]

Es gilt: $\overline{BC} = 335$, B = (447 | 72) und $C = (121 | y_C)$ mit $y_C > 0$ (Abmessungen in mm).

2) Berechnen Sie die Koordinate y_c .

[0/1 P.]

Bundesministerium

Bildung, Wissenschaft und Forschung

Möglicher Lösungsweg

a1)
$$\overrightarrow{AP} = \begin{pmatrix} 45,2 \\ 6,4 \end{pmatrix}$$

 $b: X = \begin{pmatrix} 472,2 \\ 279,4 \end{pmatrix} + s \cdot \begin{pmatrix} -6,4 \\ 45,2 \end{pmatrix}$ mit $s \in \mathbb{R}$

a2)
$$\binom{387}{295} + t \cdot \binom{22}{40} = \binom{472,2}{279,4} + s \cdot \binom{-6,4}{45,2}$$

Berechnung des Schnittpunkts mittels Technologieeinsatz:

$$S = (453|415)$$

a3)
$$\alpha = \arccos\left(\frac{\binom{22}{40} \cdot \binom{-6,4}{45,2}}{\frac{22}{40} \cdot \frac{-6,4}{45,2}}\right)$$

$$\alpha = 36.86...^{\circ}$$

a4)
$$\vec{v}_0 = \frac{1}{\left| \begin{pmatrix} 22 \\ 40 \end{pmatrix} \right|} \cdot \begin{pmatrix} 22 \\ 40 \end{pmatrix} = \begin{pmatrix} 0.4819... \\ 0.8762... \end{pmatrix}$$

- a1) Ein Punkt für das richtige Aufstellen der Gleichung der Geraden b in Parameterform.
- a2) Ein Punkt für das richtige Ermitteln der Koordinaten des Schnittpunkts S.
- a3) Ein Punkt für das richtige Berechnen des spitzen Winkels α .
- a4) Ein Punkt für das richtige Ermitteln des Einheitsvektors \vec{v}_0 .

b2)
$$y_C = \sqrt{335^2 - (447 - 121)^2} + 72 = 149,12...$$

- **b1)** Ein Punkt für das richtige Einzeichnen des Winkels γ .
- **b2)** Ein Punkt für das richtige Berechnen der Koordinate y_c .