UNCLASSIFIED

AD NUMBER AD801947 LIMITATION CHANGES TO: Approved for public release; distribution is unlimited. FROM: Distribution authorized to U.S. Gov't. agencies and their contractors; Critical Technology; DEC 1966. Other requests shall be referred to Air Force Materials Laboratory, ATTN: MAAM, Wright-Patterson AFB, OH 45433. **AUTHORITY** AFML ltr dtd 12 Jan 1972

AD0801947

AFML-TR-66-293

FATIGUE, CREEP AND STRESS-RUPTURE PROPERTIES OF Ti-13V-11Cr-3A1 TITANIUM ALLOY (B120-VCA)

A. A. BLATHERWICK A. CERS

UNIVERSITY OF MINNESOTA

TECHNICAL REPORT AFML-TR-66-293

DECEMBER 1966

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of Air Force Materials Laboratory, Materials Application Division (MAAM), Wright-Patterson Air Force Base, Ohio.

AIR FORCE MATERIALS LABORATORY
RESEARCH AND TECHNOLOGY DIVISION
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO

20080815 268

NOTICES

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Copies of this report should not be returned to the Research and Technology Division unless return is required by security considerations, contractual obligations, or notice on a specific document.

FATIGUE, CREEP AND STRESS-RUPTURE PROPERTIES OF Ti-13V-11Cr-3A1 TITANIUM ALLOY (B120-VCA)

A. A. BLATHERWICK
A. CERS

UNIVERSITY OF MINNESOTA

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of Air Force Materials Laboratory, Materials Application Division (MAAM), Wright-Patterson Air Force Base, Ohio.

FOREWORD

The work reported herein was conducted by the Department of Aeronautics and Engineering Mechanics at the University of Minnesota Minneapolis, Minnesota 55455, under United States Air Force Contract AF 33(615)-1122. This contract was initiated under Project No. 7381, "Materials Applications", Task No. 738106, "Materials Information Development". The work was monitored by the Air Force Materials Laboratory, Research and Technology Division, Air Force Systems Command, Wright-Patterson Air Force Base, Dayton, Ohio with Mr. David C. Watson, MAAM acting as Project Engineer.

The following personnel and students of the University of Minnesota contributed to this program: Messrs. Roger Erickson, William Marquardt, Maurice Odegard, Roger Peterson, David Sippel, Gene Jorgenson, Adolph Johnson, Dave Reynolds, Gary Deering, Miss Sandra Thompson, and Mrs. Brigitte Hennecke.

This report covers work done during the period September 1, 1965 to June 30, 1966, with some additional data included from work done in 1958. Manuscript of this report was released by the authors in July 1966, for publication as an RTD Technical Report.

This technical report has been reviewed and is approved.

D. A. Shinn

Chief, Materials Information Branch Materials Application Division Air Force Materials Laboratory

ABSTRACT

A fatigue and creep-rupture testing program was conducted on solution-treated and aged sheet specimens of titanium alloy B-120VCA at room and elevated temperatures. Data on aged bar stock, previously tested, are also included for comparison. All tests were conducted in axial-stress machines with various combinations of alternating and mean stresses. Notched as well as smooth specimens were used.

The data are presented in the form of S-N and creep rupture diagrams, and the effect of various combinations of alternating and mean stresses is shown by means of constant-life diagrams. Creep data are given in the form of creep-time curves, and for design purposes, creep strength curves are presented.

TABLE OF CONTENTS

SECTI	ION NO	0.	PAGE
I.	SUM	MARY	1
II.	INTE	RODUCTION	1
III.	EXPI	ERIMENTAL PROGRAM, EQUIPMENT, AND PROCEDURES	2
	3.1	Testing Program	2
	3.2	Materials, Specimens, and Testing Equipment	2
		3.2.1 Test Materials	2
		3.2.2 Specimen Preparation	3
		3.2.3 Testing Equipment	3
	3.3	Testing Procedures	4
IV.	RESU	LTS AND DISCUSSION	5
	4.1	Static Tensile Data	5
	4.2	Fatigue of Aged Sheet Specimens	5
		4.2.1 S-N Diagrams	5
		4.2.2 Constant-Life Diagrams	5
	4.3	Creep of Aged Sheet Specimens	6
	4.4	Fatigue of Annealed Sheet Specimens	6
		4.4.1 S-N and Creep Rupture Diagrams	6
		4.4.2 Constant-Life Diagrams	6
	4.5	Creep of Annealed Sheet Specimens	7
	4.6	Fatigue of Aged Bar Specimens	7
		4.6.1 S-N and Creep Rupture Diagrams	7
		4.6.2 Constant-Life Diagrams	7
	4.7	Discussion	7
V.	CONC	LUDING REMARKS	8
	REFEI	RENCES	0

LIST OF ILLUSTRATIONS

FIGURE		PAGE
1	Diagram of Sheet Specimens.	31
2	Location of Specimen Blanks, Sheet No. 2.	32
3	Location of Specimen Blanks, Sheet No. 3.	33
4	Diagram of Bar Specimens.	34
5	S-N Fatigue Diagrams for Unnotched Specimens of Aged Sheet at $75^{\circ}\mathrm{F}$.	35
6	S-N Fatigue Diagrams for Notched Specimens of Aged Sheet at 75°F.	36
7	S-N Fatigue and Creep Rupture Diagrams for Unnotched Specimens of Aged Sheet at 600°F.	37
8	S-N Fatigue and Creep Rupture Diagrams for Notched Specimens of Aged Sheet at $600^{\circ}\mathrm{F}$.	38
9	S-N Fatigue and Creep Rupture Diagrams for Unnotched Specimens of Aged Sheet at 800°F.	39
10	S-N Fatigue and Creep Rupture Diagrams for Notched Specimens of Aged Sheet at 800°F.	40
11	Constant-Life Diagrams for Aged Sheet Specimens at 75°F.	41
12	Constant-Life Diagrams for Aged Sheet Specimens at $600^{\circ} F$.	42
13	Constant-Life Diagrams for Aged Sheet Specimens at $800^{\circ}\mathrm{F}$.	43
14	Static Creep Curves for Aged Sheet at 600°F.	44
15	Static Creep Curves for Aged Sheet at 800°F.	45
16	Creep Strength Design Curves for Aged Sheet at 600°F.	46
17	Creep Strength Design Curves for Aged Sheet at 800°F.	47
18	S-N Fatigue Diagrams for Unnotched Specimens of Annealed Sheet at $75^{\circ}\mathrm{F}$.	48
19	S-N Fatigue Diagrams for Notched Specimens of Annealed Sheet at 75°F.	49

LIST OF ILLUSTRATIONS (CONT'D)

FIGURE	I	PAGE
20	S-N Fatigue and Creep Rupture Diagrams for Unnotched Specimens of Annealed Sheet at 600°F.	50
21	S-N Fatigue and Creep Rupture Diagrams for Notched Specimens of Annealed Sheet at 600 F.	51
22	S-N Fatigue and Creep Rupture Diagrams for Unnotched Specimens of Annealed Sheet at 800°F.	52
23	S-N Fatigue and Creep Rupture Diagrams for Notched Specimens of Annealed Sheet at 800°F.	53
24	Constant-Life Diagrams for Annealed Sheet at 75°F.	54
25	Constant-Life Diagrams for Annealed Sheet at 600°F.	55
26	Constant-Life Diagrams for Annealed Sheet at 800°F.	56
27	Static Creep Curves for Annealed Sheet at 800°F.	57
28	Creep Strength Design Curves for Annealed Sheet at 800° F.	58
29	S-N Fatigue Diagrams for Unnotched Specimens of Aged Bar at 75°F.	59
30	S-N Fatigue Diagrams for Notched Specimens of Aged Bar at 75°F .	60
31	S-N Fatigue and Creep Rupture Diagrams for Unnotched Specimens of Aged Bar at $600^{\circ}\mathrm{F}$.	61
32	S-N Fatigue and Creep Rupture Diagrams for Notched Specimens of Aged Bar at $600^{\circ}\mathrm{F}$.	62
33	S-N Fatigue and Creep Rupture Diagrams for Unnotched Specimens of Aged Bar at 800°F.	63
34	S-N Fatigue and Creep Rupture Diagrams for Notched Specimens of Aged Bar at 800 F.	64
35	S-N Fatigue Diagrams for Aged Bar at A = ∞ for all Temperatures.	65
36	Constant-Life Diagrams for Aged Bar at 75°F.	66
37	Constant-Life Diagrams for Aged Bar at 600° F and 800° F.	67

LIST OF TABLES

TABLE		PAGE
I	Test Program	10
II	Chemical Composition, Heat Treatment, and Source of Test Materials	11
III	Tensile Test Data for Aged Sheet	12
IV	Tensile Test Data for Annealed Sheet	12
V	Tensile Test Data for Aged Bar	12
VI	Fatigue Test Data for Aged Sheet	13
VII	Fatigue Test Data for Annealed Sheet	19
VIII	Fatigue Test Data for Aged Bar	24
TX	Fatigue Strength of B120-VCA Sheet at 107 Cycles.	30

I. SUMMARY

An experimental program has been conducted to determine the fatigue, creep, and stress rupture properties of titanium alloy B120-VCA at room and elevated temperatures. All tests were performed in axial-stress machines capable of maintaining any alternating stress amplitude and superposing it on any desired static stress. Several ratios of alternating to mean stress (A ratios) were employed so that the complete range of stress from completely reversed (A = ∞) to static creep rupture (A = 0) was covered. All tests were run at 3600 cpm.

Most of the data was obtained from specimens cut from sheet 0.043" thick. Half of these specimens were in the annealed condition and the other half in an aged condition. Some additional data were obtained from cylindrical specimens machined from bar stock in an aged condition. Three test temperatures were employed: $75^{\circ}F$, $600^{\circ}F$, and $800^{\circ}F$. Creep and stress rupture tests were conducted only at the elevated temperatures.

II. INTRODUCTION

The demand for materials which can withstand high static and dynamic stresses under extreme temperature conditions increases as man's efforts continue to reduce travel time and to explore outer space.

In order to make use of the new materials as they are developed, engineers must have design information on the behavior of the materials in various environments. Of particular interest are the mechanical properties under dynamic stresses. This program was undertaken to provide design data on the fatigue and creep rupture properties of titanium alloy B120-VCA at room and elevated temperatures.

The primary work reported herein was on sheet material, and the testing has been accomplished in the past year. A few years ago, a fatigue program was conducted in this laboratory on B120-VCA bar stock, but the results were never reported. These data are also included in this report.

In the next section, the experimental program is briefly described, and in Section IV the results are presented and discussed.

III. EXPERIMENTAL PROGRAM, EQUIPMENT AND PROCEDURES

3.1 Testing Program

This investigation was conducted under axial load on unnotched and notched specimens of titanium alloy Bl20-VCA in sheet and bar form. The stress conditions were chosen to cover the range from completely reversed to creep-rupture, with intermediate conditions at specified ratios of alternating-to-mean stresses (A ratios). The stress amplitudes were adjusted to produce failure in a range from 10^4 to 2.6×10^7 cycles, or from 3 minutes to 120 hours at a frequency of 3600 cpm. Creep was recorded at the lower A ratios only.

Sheet specimens, 0.043 in. in thickness, were tested in both solution-treated and aged conditions with identical test programs for both heat treatments. Bar-stock specimens were tested in a solution-treated-aged condition. The testing program for the sheet and bar materials were identical, except that sheet specimens were not tested at A = 0.25. The testing program is summarized in Table I.

3.2 Materials, Specimens, and Testing Equipment

3.2.1 <u>Test Materials</u>. The chemical composition, heat treatment and the source of the B120-VCA sheet and bar materials are shown in Table II.

B120-VCA sheets, 0.043in.x36in.x96in. were received in solution-treated condition. The processing history prior to delivery to the University of Minnesota is as follows: A 3" bar was hot rolled successively in each of two perpendicular directions. The sheet was then descaled, solution-treated, pickled, and finally finished by belt grinding. This is the standard commercial treatment for this material, and no further surface treatment was given in the laboratory before testing.

A considerable amount of out-of-flatness of the sheet material was observed. Subsequent calculations, which were also experimentally verified, showed this out-of-flatness to result in bending stresses less than 5% of the applied stresses, and the material was deemed to be acceptable. As a precaution, however, the curvature of specimens was measured, but no correlation could be determined between it and observed scatter in test results. It should be noted, that in aged specimens this out-of-flatness was reduced to less than 50% by the aging temperature of 900° F which is also a stress relieving temperature for this alloy. The straightening was accomplished by holding the specimens during aging between two flat ceramic plates.

The bar material was solution-treated at 1400°F. It should be noted that this particular bar stock was produced in 1958 when some of the characteristics of this alloy were not as well established as today. While investigating the possible causes for the scatter in the fatigue data, it was determined that variable aging had occurred over the cross section of the bars. This condition possibly had been caused by a straightening operation of the bars after the solution treatment but before the aging (1). A similar dispersion is also evident in the tensile data in Table V which shows the tensile properties for two of the extreme scatter producing bars.

The effect described above was determined rather late in the program so that no duplicate tests could be performed with resolutioned and aged specimens. For this reason, the data on the bar specimens presented in this report should be accepted with some reservations.

3.2.2 Specimen Preparation. The sheet specimens were machined from the solution-treated material as received. The aged specimens were treated after machining. Figure 1 shows the sheet specimen configuration. Considerable care was exercised in the preparation of specimens. The details of equipment and procedures used in the preparation of sheet specimens are given in Reference (2).

The longitudinal axis of sheet specimens was oriented parallel to the final rolling direction of the sheets. Specimen location within sheets is shown in Figs. 2 and 3. The numbers shown are specimen numbers for identification.

The bar specimens shown in Fig. 4 were prepared after the aging treatment. A detailed description of techniques and equipment used during the specimen preparation is given in References (3) and (4). A slight deviation from the techniques described in these references consisted in the use of rolled specimen threads. The reason for using rolled threads was the combination of the relatively high notch sensitivity of this material and the rather small size bar stock (0.6 in. diameter). Initial trials with a section of 1/4 in. diameter (0.25 in. dia.) and cut thread resulted in thread failure. Further reduction of the test section to less than 0.2 in. diameter was found to be impractical. The commonly observed eccentricity of a rolled thread could be well tolerated because of the characteristics of the unique grip-specimen assembly and its alignment.

3.2.3 <u>Testing Equipment</u>. All tests were performed in axial stress fatigue-dynamic creep machines described in a previous publication (5). The alternating forces are produced by a mechanical oscillator operating at 3600 cpm. Mean forces may be

superimposed by means of calibrated helical springs, thus providing means for testing at various alternating-to-mean stress ratios. The preload is automatically controlled, keeping the mean forces constant and compensating for specimen elongation during a test.

For testing at A ratios larger than 1.0, including reversed stress, $A=\omega$, a specimen buckling restrainer as described previously (2) was used. The boron nitride, previously used as the friction-reducing element, exhibited a rather high degree of reaction with the titanium test material. This reaction appeared to be dependent to quite a degree on the relative motion between specimens and buckling restrainer. This conclusion was based on the observation that less adhesion occurred between the boron and the specimens with notched than with unnotched specimens.

Because of the boron-titanium reactivity, a buckling restrainer lubricant other than boron nitride was required. Solid compacts and sprayed film of tungsten disulfide (WS2) were investigated and found to perform satisfactorily with the B120-VCA titanium at the test conditions described in this report. though annealed WS₂ compacts provided sufficient lubrication, their relative softness caused gradual loosening of the buckling restrainer. Aged compacts were found to provide a much longer lubricant life. The use of the less expensive WS₂ spray coating was investigated and found to perform satisfactorfly. The surface plates of the buckling restrainer, which come in direct contact with the specimen, were surface ground and sprayed with the WS₂. A combination of four coatings on the specimen and the buckling restrainer appeared to give optimum coating life. The main breakdown of the coating observed at the ends of the buckling restrainer resulted in fretting damage to the test specimen. By increasing the overall length of the buckling restrainer, the areas of the most fretting damage were moved into the specimen fillets, thus minimizing fretting damage to the test section.

The tests at elevated temperatures were conducted in resistance type furnaces controlled to plus-minus 5°F by Honeywell proportioning control systems as described previously for sheet specimens (2) and for bar specimens (6).

Creep was measured with a linear variable differential transformer type extensometer which has been previously described (4).

3.3 <u>Testing Procedures</u>

The testing procedures used during the tests of sheet specimens were as previously described (2). After holding the specimen at the test temperature for a period sufficient for the grip and specimen assembly to reach a thermal equilibrium, the mean

load was applied. Thereafter the alternating load was applied. The "soaking period" was determined by observing the time required for the drift of an extensometer to terminate. This soaking period was kept constant for all tests.

During the tests of the bar specimens, the sequence of the application of the alternating and mean loads was reversed, i.e., the alternating loads were applied before the mean load. In any case, the reported time to failure is the time from the instant when full load (mean plus alternating) is reached.

The reported creep time curves show the total elongation after the full load was applied. To determine creep strain, corrections for creep in the specimen fillets were made as previously described (4).

IV. RESULTS AND DISCUSSION

4.1 Static Tensile Data

The results of short-time static tensile tests are given in Tables III through V. In Table III, the data for aged B120-VCA sheets are listed for the three test temperatures. Table IV contains the data on annealed B120-VCA sheet specimens, and in Table V the tensile data for the aged bar specimens are given for room temperature only. All of these data appear to fall in the range of published values. Their value to this report is primarily to characterize the materials.

4.2 Fatigue of Aged Sheet Specimens

- 4.2.1 The <u>S-N Diagrams</u> for this material are given in Figs. 5 through 10. The captions indicate the various conditions. At $75^{\circ}F$, no tests were run at A = 0 and therefore only the two curves for A = 1.0 and A = ∞ are given. At $600^{\circ}F$ and $800^{\circ}F$, three curves are given for each condition. To avoid overlapping of the A = 0 curves, the notched and unnotched diagrams are given in separate figures.
- 4.2.2 <u>Constant-Life Diagrams</u>. As a more convenient way of presenting these data for design purposes, the constant-life diagrams are given in Figs. 11 through 13. These diagrams give the combinations of alternating and mean stresses which may be imposed for a given life. In Fig. 11, the 75°F data are shown for both notched and unnotched specimens. The average ultimate tensile strength was plotted along the A=0 line for the room temperature diagram.

Figure 12 gives the 600° F data, and Fig. 13 the 800° F data. The crossing of the notched and unnotched curves at low A ratio is a rather common behavior and is an indication that, in this region, creep is more pronounced than fatigue.

4.3 Creep of Aged Sheet Specimens.

Figures 14 and 15 give the static creep-time curves for aged sheet at 600°F and 800°F respectively. In Figs. 16 and 17 the creep-strength design diagrams are given for 600°F and 800°F respectively. These families of curves give the maximum stress that may be imposed for a given time without exceeding a given amount of creep strain.

4.4 Fatigue of Annealed Sheet Specimens.

4.4.1 The S-N and Creep Rupture Diagrams for this material are given in Figs. 18 through 23, the captions indicating the pertinent test conditions. Families of curves for the various A ratios are included in the graphs, all but the 75 F figures including the creep rupture curve (A = 0).

There is considerable scatter in these data, particularly at A = 1.0. This scatter may be due partly to some bending stresses resulting from slight curvature of the specimens. The sheets from which the specimens were cut were slightly warped. Calculations of the effect of this curvature indicated that the bending stresses would not exceed 5% of the applied stresses. Furthermore, no correlation could be discerned between low points and specimens with more initial curvature. On the other hand, the bending-stress argument is supported by the fact that there is somewhat less dispersion in the data for A = ∞ , where buckling restrainers would tend to reduce bending effects. Also, the lesser scatter of the data for aged specimens, which were much straighter, gives additional credence to the bending-stress explanation.

4.4.2 The <u>Constant-Life Diagrams</u> for annealed sheet specimens are given in Figs. 24 through 26. Again, the average ultimate tensile strength was plotted along the A = 0 line at 75°F. The unnotched curves for 600°F and 800°F are nearly straight lines, or even slightly concave upward. This is in contrast to the usual behavior which is quite concave downward for smooth specimens. The notched curves (dashed) are quite typical, being concave upward in the high A range and crossing over the unnotched curves in the low A region.

4.5 Creep of Annealed Sheet Specimens

Figure 27 gives the static creep-time curves for annealed sheet specimens at 800°F. No data were obtained on this material at other temperatures. The inversion of the 80,000 psi and 100,000 psi curves from 0 to 20 hours is probably the result of scatter in the data rather than the real behavior of the material.

In Fig. 28, the creep strength design curves are given for a number of levels of creep strain.

4.6 Fatigue of Aged Bar Specimens

4.6.1 The <u>S-N and Creep Rupture Diagrams</u> for aged bar specimens are given in Figs. 29 through 34 for the conditions indicated in the captions. Considerable scatter is evident, and it is felt that the variable aging of the bars, discussed in Section III, is primarily responsible for this dispersion.

Figure 35 gives a comparison of the S-N Curves for A = ∞ for the various test temperatures. Considering the scatter, there does not appear to be much effect of temperature, in this range, on the fatigue life for A = ∞ .

4.6.2 The <u>Constant-Life Diagrams</u> for bar specimens are given in Figs. 36 and 37 for the three test temperatures. The average ultimate tensile strength was plotted along the A = 0 line at 75° F.

These curves are quite normal in appearance, the notched curves crossing the unnotched ones in the low A range, indicating that creep is predominant in this region.

4.7 <u>Discussion</u>

The fatigue curves are, in general, quite normal in appearance and shape. It is worth noting that the S-N diagrams are quite flat, especially at elevated temperatures. Stresses only 10 to 15% above the fatigue limit may cause failure in just a few thousand cycles. The creep rupture curves, in particular, are very flat.

As a means of gaining over-all comparisons of results on the different material conditions, temperature effects, and the effect of notches, data on fatigue strengths at $A = \infty$ and 10^{\prime} cycles are listed in Table IX. One observation is that the fatigue strength at the elevated temperatures is almost as high as at room temperatures. This result is probably due in part to some aging of the

annealed specimens which occurs at elevated temperatures during the tests. Some additional aging also takes place in the aged specimens, which were only partially aged prior to testing (12 hours at 900° F).

Comparing the data for annealed and aged specimens, it is evident that the fatigue strength of aged material is not much higher than that of the annealed sheet. This result, again, is probably due to some aging of the annealed material during the test.

The fatigue notch factor, $K_{\rm f}$, is also listed in Table IX. This value is the ratio of the fatigue strength of an unnotched specimen to that of a notched specimen at the same test conditions. It appears that the annealed sheet is slightly more notch sensitive than the aged material.

The fatigue strength of the aged sheet is considerably less than that of the bar stock. This observation is to be expected for two primary reasons. First, the bar stock was aged more completely (72 hours compared to 12 for the sheet). Second, the fatigue strength of round bar specimens is generally higher than that of sheet specimens of the same material. The sharp corners of sheet specimens are weak spots for crack nucleation, and more rapid crack propagation occurs in sheet specimens.

V. CONCLUDING REMARKS

This testing program was undertaken primarily for the purpose of obtaining fatigue design data on titanium alloy B120-VCA sheet material in both the solution-treated and the aged conditions at room and elevated temperatures. The results are given in the form of S-N diagrams and constant-life diagrams. It is important that users recognize that the curves presented are the best representation of the material properties that can be determined from the data obtained. There is considerable scatter in the data, however, and this fact should be well recognized when the curves are used for design purposes.

REFERENCES

- 1. Private Communication from Mr. P. F. Darby, Crucible Steel Company of America, Midland Research Laboratory, August 15, 1960.
- 2. Blatherwick, A. A. and Cers, A. E., "Fatigue, Creep and Stress-Rupture Properties of Nicrotung, Super A-286 and Inconel 718", AFML-TR 65-447, September 1965.
- Vitovec, F. H. and Binder, H. F., "Effects of Specimen Preparation on Fatigue", WADC TR 56-289, August 1956.
- 4. Vitovec, F. H. and Lazan, B. J., "Fatigue, Creep and Rupture Properties of Heat Resistant Materials", WADC TR 56-181, August 1956.
- Lazan, B. J., "Dynamic Creep and Rupture Properties of Temperature Resistant Materials Under Tensile Fatigue Stress", Proc. ASTM, Vol. 49, pp. 757-787, 1949.
- 6. Vitovec, F. H., "Fatigue, Creep and Rupture Properties of the Alloys Udimet 500, Hastelloy R-235 and GMR-235", WADC TR 58-340, October 1958.
- 7. Cers, A. E. and Blatherwick, A. A., "Fatigue and Stress Rupture Properties of Inconel 713C, V-57C and Titanium Alloys 7A1-3Mo-Ti and MST 821 (8AL-2Cb-1Ta-Ti)", WADD TR 60-426, July 1960.

 $\begin{array}{c} \text{TABLE I} \\ \text{Test Program} \end{array}$

Test Temperature (^O F)	75		600		800	
Specimen K _t	1.0	3.0	1.0	3.0	1.0	3.0
Stress Ratio A = 00	AN AG CB	AN AG CB	AN AG CB	AN AG CB	AN AG CB	AN AG CB
1.0	AN AG CB	AN AG CB	AN AG CB	AN AG CB	AN AG CB	AN AG CB
0.25	- - -	-	CB - -	CB - -	CB - -	CB - -
0.0		-	AN AG CB	AN AG CB	AN AG CB	AN AG CB

AN - Annealed Sheet, 0.043" Thickness

AG - Aged Sheet, 0.043" Thickness

CB - Aged Bar, 0.600" Diameter

TABLE II
Chemical Composition, Heat Treatment, and
Source of Test Materials

Type of Alloy		B120-VCA Bar (Ti-13V-11Cr-3A1)		
Source	of America	Crucible Steel Co. of America Titanium Division		
Chemical Composition	Fe 0.14 II 0.028 AI 3.0 IV 13.5 Cr 11.2	C 0.04 N 0.02 AI 3.7 Va 12.5 Cr 10.7 H ₂ 0.0090 Ti Balance (73+)		
Received as	0.043" Sheet (0.6" dia. bar		
Heat Treatment	30 min., Air cool. 3	S.T. at 1400°F for 30 min., Air cool; + Age at 900°F for 72 hrs. in Argon		
Specimen Preparation	University of Minnesota	University of Minnesota		

TABLE III

Tensile Test Data for Aged Sheet

$ \begin{array}{c} \texttt{Temperature} \\ F \end{array} $	UTS (ksi)	0.2% YS (ksi)	Elong. (%)	Reduction of Area(%)	$(10^6 psi)$
75	174.2	156.4	6.6	15.0	15.4
75	174.8	158.4	7.6	16.3	15.1
75	174.4	155.4	7.6	15.9	15.6
600	154.5	124.8	6.3	9.0	14.6
600	157.4	127.8	7.1	13.5	14.9
600	157.1	128.4	8.9	18.7	14.9
800	150.4	121.8	10.2	20.0	13.7
800	148.5	122.0	7.1	17.9	13.8
800	149.2	123.3	9.2	22.6	13.9

TABLE IV
Tensile Test Data for Annealed Sheet

$\underset{F}{\texttt{Temperature}}$	UTS (ksi)	0.2% YS (ksi)	Elong. (%)	Reduction of Area (%)	$(10^{\mathrm{E}}_{\mathrm{psi}})$
75	141.7	134.1	15.91	29.6	13.7
75	136.2	131.2	15.10	28.5	14.8
75	137.8	133.2	18.33	31.3	13.9
600	116.4	102.4	18.38	28.2	13.3
600	115.5	102.9	15.65	30.3	13.4
800	115.7	98.1	14.04	26.7	12.4
800	115.2	98.4	14.20	28.9	11.9
800	116.5	99.4	14.86	25.0	12.8

	UTS (ksi)	0.2% YTS (ksi)	Elong. (%)	Reduction of Area(%)	$(10^{\mathrm{E}}_{\mathrm{psi}})$
75	203.2	185.9	3.00	18.3	15.8
75	193.2	178.1	0.76	5.8	15.7
75	186.5	171.5	2.02	19.2	16.0
75	209.9	195.2	2.08	16.0	16.5
75	207.3	189.8	2.60	18.2	15.8

TABLE VI Fatigue Test Data For Aged Sheet Test Temperature $75^{\circ}F$

Spec. No.	$_{\rm K_{\rm t}}^{\rm Spec.}$	Stress Ratio	$\underset{S_{\mathfrak{m}}}{Applied}$	Stress,	KSI S _c	Time to Rupture Hours Kilocycles	
9310 9313 9332 9130 9318 9319 9416 9362 9361	1.0 1.0 1.0 1.0 1.0 1.0 1.0	80 80 80 80 80 80 80 80 80	0 0 0 0 0 0 0	37.50 40.00 42.50 42.50 45.00 45.00 50.00 60.00	37.50 40.00 42.50 42.50 45.00 45.00 50.00 60.00	112.40 24,280.0 T.S 120.18 25,960.0 T.S 0.43 93.5 0.50 108.0 0.23 49.7 0.27 58.1 0.25 54.0 0.12 25.3 0.12 25.5	
9229 9289 9148 9489 9159 9136 9457 9176 9160	3.0 3.0 3.0 3.0 3.0 3.0 3.0	80 80 80 80 80 80 80 80 80 80 80 80 80 8	0 0 0 0 0 0 0	20.00 21.00 21.50 23.00 24.00 24.00 25.00 26.00 27.50	20.00 21.00 21.50 23.00 24.00 24.00 25.00 26.00 27.50	117.69 25,420.0 T.8 0.28 61.1 0.30 64.8 113.07 24,420.0 T.8 0.28 60.5 10.29 2,223.0 0.22 47.5 0.18 37.8 0.13 28.8	
9419 9259 9382 9371 9373 9494 9113 9177 9337 9354 9341 9363	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	25.00 27.50 28.75 30.0 30.0 30.0 32.5 32.5 35.0 40.0 47.5 55.0	25.00 27.50 28.75 30.0 30.0 30.0 32.5 32.5 35.0 40.0 47.5 55.0	50.00 55.00 57.50 60.0 60.0 65.0 65.0 70.0 80.0 95.0 110.0	114.51 24,730.0 T.S 118.56 25,610.0 T.S 0.25 54.0 0.20 43.2 0.20 43.2 0.17 36.1 0.25 54.0 0.15 32.4 0.19 41.0 0.08 16.2 0.06 10.8 0.03 7.1	

T.S. - Test Stopped

TABLE VI (Continued)

Fatigue Test Data for Aged Sheet

Test Temperature 75°F

Spec. No.	Spec. K _t	Stress Ratio	Applied S _m	Stress, S _a	KSI S _c	Time t Hours	o Rupture Kilocycles	
9276 9118 9215 9143 9232 9404 9295 9155 9475 9133	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	13.75 14.25 14.25 15.00 15.00 15.00 16.00 16.00 17.00	13.75 14.25 14.25 15.00 15.00 15.00 16.00 16.00 17.00	27.50 28.50 28.50 30.00 30.00 30.00 30.00 32.00 32.00 34.00	282.33 0.28 143.06 39.69 0.17 0.26 0.21 0.17 0.15	60,980.0 61.1 30,900.0 8,573.0 36.1 56.2 45.4 36.1 32.4 32.4	T.S.
			Test Ter	mperatur	e 600°F			
9346 9473 9350 9355 9317 9265 9320 9365 9339 9497 9123 9405 9298 9470 9471 9261	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	80 80 80 80 80 80 80 80 80 80 80 80 80 8	0 0 0 0 0 0 0 0 0	37.50 40.00 42.50 42.50 45.00 45.00 47.50 47.50 47.50 50.00 50.00 55.00 60.00	37.50 40.00 42.50 42.50 45.00 45.00 47.50 47.50 47.50 50.00 50.00 55.00 60.00	120.00 101.65 33.61 47.57 0.12 117.15 0.14 49.82 33.95 0.17 0.15 0.13 0.11	25,920.0 21,960.0 7,260.0 10,270.0 26.1 25,300.0 30.0 10,760.0 7,333.0 36.1 32.4 28.7 23.7 28.7 19.9 18.4	T.S.

T.S. - Test Stopped

TABLE VI (Continued) Fatigue Test Data for Aged Sheet Test Temperature $600^{\circ}\mathrm{F}$

Spec. No.	Spec. K _t	Stress Ratio	Applied S _m	Stress, S _a	KSI S _c	Time t Hours	to Rupture Kilocycles	
9485 9482 9156 9162 9151 9487 9228 9206 9293 9221 9140 9484 9132 9488 9158 9164 9224 9139	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		20.0 21.5 23.0 23.0 24.0 24.0 24.0 25.0 26.0 26.0 27.5 28.5 28.5 30.0 30.0	20.0 21.5 23.0 23.0 24.0 24.0 24.0 25.0 26.0 26.0 27.5 27.5 28.5 30.0 30.0	113.80 117.08 0.22 140.85 0.18 35.19 0.17 0.20 19.49 5.76 10.72 3.79 31.14 0.63 0.13 0.13 0.10	24,580.0 25,290.0 46.9 30,430.0 39.5 7,601.0 36.1 37.2 43.2 4,210.0 1,244.0 2,313.0 818.6 6,726.0 136.1 28.7 27.9 20.7	T.S. T.S.
9166 9372 9386 9456 9496 9303 9345	1.0 1.0 1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0 1.0 1.0	27.5 30.0 30.0 32.5 35.0	25.0 27.5 30.0 30.0 32.5 35.0 40.0	50.0 55.0 60.0 60.0 65.0 70.0 80.0	113.332 82.70 0.23 5.39 1.00 0.15 0.09		T.S.

T.S. - Test Stopped

TABLE VI (Continued) Fatigue Test Data for Aged Sheet Test Temperature $600^{\circ}\mathrm{F}$

Spec. No.	Spec. K _t	Stress Ratio	Applied S _m	Stress, S _a	KSI S _c		o Rupture Kilocycles	
9134 9167 9212 9282 9299 9491 9296 9208	3.0 3.0 3.0 3.0 3.0 3.0 3.0	1.0 1.0 1.0 1.0 1.0 1.0	15.0 15.5 15.5 16.3 16.3 17.0 18.0	15.0 15.5 15.5 16.3 16.3 17.0 18.0	30.0 31.0 31.0 32.5 32.5 32.5 34.0 36.0	135.61 114.17 0.15 0.12 0.17 2.07 0.14 0.17	29,290.0 24,600.0 32.4 26.4 36.1 447.1 30.2 36.1	T.S.
9422 9343 9467 9315 9308 9383 9307 9351 9174 9493	3.0 1.0 1.0 1.0 1.0 1.0 1.0	1.0 0 0 0 0 0 0 0	18.0 140.0 145.0 150.0 152.5 152.5 155.0 157.5 160.0	18.0 0 0 0 0 0 0 0 0	36.0 14.0 145.0 150.0 152.5 152.5 155.0 155.0 157.5 160.0	0.17 159.75 135.92 113.00 116.83 117.59 114.78 0	36.1 0 0 0	T.S. T.S. T.S. T.S. T.S.
9142 9455 9163 9116 9226 9474	3.0 3.0 3.0 3.0 3.0	0 0 0 0 0	160.0 161.0 162.0 162.5 165.0 170.0	0 0 0 0 0	160.0 161.0 162.0 162.5 165.0 170.0	139.67 138.00 164.08 0 0		T.S. T.S. T.S.

T.S. - Test Stopped

TABLE VI (Continued)
Fatigue Test Data for Aged Sheet

Test	Temperature	800°F
------	-------------	-------

Spec. No.	$_{K_{t}}^{Spec.}$	Stress Ratio	Applied S _m	Stress,	KSI S _C	Time Hours	to Rupture Kilocycles	
9257 9256 9129 9385 9414 9490 9359 9114 9347 9316 9413 9357 9236 9125 9263 9111	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	88 88 88 88 88 88 88 88 88 88 88 88 88	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	42.5 45.0 47.5 50.0 50.0 50.0 52.5 52.5 55.0 55.0 57.5 60.0 65.0	42.5 45.0 47.5 50.0 50.0 50.0 52.5 52.5 55.0 55.0 57.5 60.0 65.0	113.9 117.7 10.1 8.6 0.0 8.1 32.2 73.3 5.5 0.0 0.0 0.0	25,440.0 2,195.0 1,877.0 1,758.0 4,758.0 6,964.0 1,190.0 1,190.0 22.5 10.8 11.7 55 594.0 128.1 10.8	T.S.
9243 9179 9152 9304 9137 9460 9463 9223	3.0 3.0 3.0 3.0 3.0 3.0 3.0	80 80 80 80 80 80 80	0 0 0 0 0 0	21.5 23.0 24.0 24.0 25.0 26.0 27.5 30.0	21.5 23.0 24.0 24.0 25.0 26.0 27.5 30.0	115.7 116.2 0.1 0.3 33.1 0.1 0.1	21 25,100.0 15 32.4 17 36.1 11 7,152.0 10 21.6 14 29.3	T.S. T.S.
9369 9126 9401 9124 9270 9495 9408 9420 9356 9465 9366 9327 9417	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	22.5 25.0 25.0 26.0 26.3 27.5 27.5 27.5 28.8 30.0 30.0 30.0	22.5 25.0 25.0 26.0 26.3 27.5 27.5 27.5 28.8 30.0 30.0 30.0 32.5	45.0 50.0 50.0 52.0 52.5 55.0 55.0 57.5 60.0 60.0 65.0	115.1 1.3 158.9 1.2 1.7 136.0 1.5 2.2 40.7 0.1 0.2 0.1	288.0 27 34,330.0 29 279.0 372.0 20 29,380.0 25 486.0 21 8,793.0 27 31.0 29 43.2	T.S. T.S.

T.S. - Test Stopped

TABLE VI (Continued) $\begin{tabular}{ll} Fatigue Test Data for Aged Sheet \\ Test Temperature <math>800^{O}F \end{tabular}$

Spec. No.	Spec. K _t	Stress Ratio	S Applied S _m	Stress, S _a	KSI S _c	Time Hours	to Rupture Kilocycles	
9476 9147 9203 9333 9231 9173 9145	3.0 3.0 3.0 3.0 3.0 3.0	1.0 1.0 1.0 1.0 1.0 1.0	13.8 14.5 15.0 15.5 16.3 16.3	13.8 14.5 15.0 15.5 16.3 16.3	27.5 29.0 30.0 31.0 32.5 32.5 35.0	141.66 110.83 0.18 125.59 0.05 0.10	23,940.0 38.9 27,130.0 10.8 21.6	T.S.
9464 9262 9099 9255 9309 9331 9349 9424 9406	1.0 1.0 1.0 1.0 1.0 1.0	0 0 0 0 0 0	110.0 120.0 130.0 135.0 140.0 140.0 145.0 147.8 150.0	0 0 0 0 0 0	110.0 120.0 130.0 135.0 140.0 140.0 145.0 147.8 150.0	119.10 84.75 27.95 9.25 5.80 1.72 0.72 0.33		T.S.
9478 9461 9274 9168 9458 9210	3.0 3.0 3.0 3.0 3.0 3.0	0 0 0 0 0	120.0 130.0 130.0 140.0 150.0	0 0 0 0 0	120.0 130.0 130.0 140.0 150.0	115.38 36.63 23.73 5.23 2.50 0.80		T.S.

T.S. - Test Stopped

TABLE VII $\begin{tabular}{ll} Fatigue Test Data for Annealed Sheet \\ Test Temperature 75^{0}F \end{tabular}$

Spec. No.	Spec. K _t	Stress Ratio	$\underset{S_{m}}{\texttt{Applied}}$	Stress,	KSI S _c		o Rupture Kilocycles	
9241 9190 9438 9195 9194 9388 9423	1.0 1.0 1.0 1.0 1.0	8 8 8 8 8	0 0 0 0 0	35.00 36.00 37.50 40.00 42.50 50.00 60.00	35.00 36.00 37.50 40.00 42.50 50.00 60.00	117.51 5.04 2.49 0.32 0.38 0.18 0.10	25,380.0 1,089.0 538.0 69.1 82.1 39.5 21.6	T.S.
9453 9451 9448 9245 9446 9120 9280 9450 9452 9153	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0 0 0 0 0 0	15.00 16.00 17.50 19.00 20.00 20.00 21.50 22.50 25.00 27.00	15.00 16.00 17.50 19.00 20.00 20.00 21.50 22.50 25.00 27.00	118.22 139.19 143.00 63.09 0.57 5.16 0.30 0.73 0.24 0.14	25,620.0 30,060.0 30,900.0 13,630.0 123.0 1,114.0 64.8 157.7 51.8 30.7	T.S. T.S. T.S.
9235 9394 9233 9193 9106 9266 9219 9387 9187 9498 9502 9397 9506 9421 9201 9199 9284 9185	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	27.50 30.00 30.00 32.50 32.50 32.50 35.00 35.00 35.00 35.00 35.00 37.50 37.50 37.50 37.50	27.50 30.00 30.00 32.50 32.50 32.50 35.00 35.00 35.00 35.00 35.00 37.50 37.50 37.50 37.50	55.00 60.00 60.00 65.00 65.00 65.00 70.00 70.00 70.00 70.00 75.00 75.00 75.00	116.49 122.28 30.59 113.36 21.75 15.94 4.90 13.07 9.63 9.22 8.79 6.31 7.62 18.04 0.91 0.31 0.27 0.27	25,160.0 26,410.0 6,608.0 24,500.0 4,698.0 3,443.0 1,058.0 2,823.0 2,080.0 1,992.0 1,899.0 1,363.0 1,646.0 3,897.0 197.0 67.0 58.3 57.7	T.S. T.S.

T.S. - Test Stopped

TABLE VII(Continued)

Fatigue Test Data for Annealed Sheet

Test Temperature 75°F

Spec. No.	Spec. K _t	Stress Ratio	$\mathop{\rm Applied}_{\rm S_m}$	Stress, S _a	KSI S _c	Time Hours	to Rupture Kilocycles	
9267 9301 9505 9238 9503 9191	1.0 1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0 1.0	37.50 37.50 38.00 40.00 41.25 43.75	37.50 37.50 38.00 40.00 41.25 43.75	75.00 75.00 76.00 80.00 82.50 87.50	0.25 0.24 4.34 0.17 5.58 0.16	51.8 937.0 36.0 1,205.0	
9122 9291 9445 9444 9292 9121 9275 9204 9442 9440 9165 9294	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	11.25 11.25 12.00 12.50 13.00 13.75 13.75 13.75 15.00 15.00 17.00	11.25 11.25 12.00 12.50 13.00 13.75 13.75 13.75 15.00 15.00 17.00	22.50 22.50 24.00 25.00 26.00 27.50 27.50 30.00 30.00 34.00	30.05 115.47 0.77 177.20 8.21 0.24 5.82 80.75 0.45 0.45	24,940.0 166.0 38,270.0 1,773.0 51.8 2,1,257.0 17,440.0 97.2 97.2 97.2 30,000.0	
			Test	Temperat	ure 600°F	7		
9377 9469 9368 9364 9342 9358	1.0 1.0 1.0 1.0 1.0	& & & & & & & & & & & & & & & & & & &	0 0 0 0 0	37.50 42.50 45.00 50.00 55.00 60.00	37.50 42.50 45.00 50.00 55.00 60.00	231.53 47.43 23.20 6.32 1.33 0.00	10,250.0 5,024.0 1,365.0 2 285.0	T.S.
9222 9230 9146 9138 9169 9154 9225 9454 9220	3.0 3.0 3.0 3.0 3.0 3.0 3.0	80 80 80 80 80 80 80 80 80 80 80 80 80 8	0 0 0 0 0 0 0	19.00 20.00 20.00 21.50 23.00 23.00 24.00 26.00	19.00 20.00 20.00 21.50 23.00 23.00 24.00 26.00	114.09 0.58 207.68 105.30 0.10 0.12 21.24 0.29	126.0 44,860.0 22,750.0 21.6 25.3 459.0 62.6	T.S.

T. S. - Test Stopped

TABLE VII(Continued) Fatigue Test Data for Annealed Sheet Test Temperature $600^{\circ}\mathrm{F}$

Spec. No.	Spec. K _t	Stress Ratio	Applied S _m	Stress, S _a	KSI S _c	Time Hours	to Rupture Kilocycles	
9374 9348 9466 9407 9415 9175 9360 9376	1.0 1.0 1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0 1.0 1.0	23.75 25.00 27.50 30.00 32.50 32.50 35.00 40.00	23.75 25.00 27.50 30.00 32.50 32.50 35.00 40.00	47.50 50.00 55.00 60.00 65.00 65.00 70.00 80.00	121.49 63.69 82.80 18.06 0.83 4.56 0.55 0.11	26,240.0 13,760.0 17,880.0 3,901.0 180.0 985.0 119.0 23.3	T.S.
9297 9249 9462 9141 9481 9161	3.0 3.0 3.0 3.0 3.0	1.0 1.0 1.0 1.0 1.0	13.00 13.75 14.25 14.25 14.25 15.00	13.00 13.75 14.25 14.25 14.25 15.00	26.00 27.50 28.50 28.50 28.50 30.00	117.35 8.62 0.13 22.39 65.51 26.18	4,836.0 14,150.0 5,655.0	T.S.
9273 9214 9244 9480	3.0 3.0 3.0 3.0	1.0 1.0 1.0 1.0	15.00 15.33 16.00 17.00	15.00 15.33 16.00 17.00	30.00 30.67 32.00 34.00	139.13 0.17 22.03 0.26	30,050.0 36.1 4,759.0 56.2	T.S.
9240 9108 9253 9336 9186	1.0 1.0 1.0 1.0	0 0 0 0	105.00 112.13 113.00 113.30 115.00	0 0 0 0	105.00 112.13 113.00 113.30 115.00	159.93 120.18 195.28 0.42 0.08		T.S. T.S. T.S.
9441 9131 9283 9335	3.0 3.0 3.0 3.0	0 0 0	120.00 121.50 123.00 125.00	0 0 0	120.00 121.50 123.00 125.00	184.20 136.92 *		T.S. T.S.

T.S. - Test Stopped

^{* -} Fracture Prior to Full Load

TABLE VII(Continued)

Fatigue Test Data for Annealed Sheet

Test Temperature 800°F

Spec. No.	Spec. K _t	Stress Ratio	$\mathop{Applied}_{S_{\mathfrak{m}}}$	Stress, S _a	KSI S _c	Time Hours	to Rupture Kilocycles	
9501 9258 9400 9200 9216 9183 9264 9287 9184 9218 9250 9344 9384 9188	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		21.20 30.00 32.50 42.50 45.00 47.50 47.50 50.00 50.00 52.50 55.00 60.00 70.00	21.20 30.00 32.50 42.50 45.00 47.50 47.50 50.00 50.00 52.50 55.00 60.00 70.00	114.46 35.96 115.23 118.85 18.35 30.58 0.37 0.10 4.65 1.22 3.85 1.44 0.05 0.00	24,700.0 7,767.0 24,890.0 25,670.0 3,963.0 6,606.0 79.3 21.6 1,004.0 263.0 829.0 311.0 10.8 0.0	T.S. T.S.
9150 9477 9227 9459 9247 9117 9486 9288	3.0 3.0 3.0 3.0 3.0 3.0 3.0	8 8 8 8 8 8	0 0 0 0 0 0	19.00 19.50 20.00 21.50 23.00 23.00 24.00 26.00	19.00 19.50 20.00 21.50 23.00 23.00 24.00 26.00	44.23 113.19 0.18 88.66 117.57 17.75 0.18 0.05	9,554.0 24,450.0 39.5 19,150.0 25,390.0 3,834.0 38.8 10.8	T.S.
9396 9234 9182 9353 9100 9242 9260 9105 9198 9109 9399 9237 9202 9102 9252 9391 9352	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	19.00 21.25 21.25 23.75 25.00 25.00 27.50 30.00 30.00 30.00 32.50 32.50 33.75 34.00 37.50	19.00 21.25 21.25 23.75 25.00 25.00 27.50 27.50 30.00 30.00 30.00 32.50 32.50 33.75 34.00 37.50	38.00 42.50 42.50 47.50 50.00 50.00 55.00 60.00 60.00 65.00 65.00 67.50 68.00 75.00	162.88 62.02 49.32 59.53 57.04 20.80 4.58 38.51 19.64 27.45 0.17 0.15 45.13 10.45 0.19 2.05 0.05	35,180.0 13,400.0 10,650.0 12,860.0 12,320.0 4,493.0 989.0 8,318.0 4,238.0 5,929.0 36.7 32.4 9,748.0 2,257.0 41.0 443.0 10.8	T.S.

T.S. - Test Stopped

TABLE VII(Continued) Fatigue Test Data for Annealed Sheet Test Temperature $800^{\circ}\mathrm{F}$

Spec. No.	Spec. K _t	Stres: Ratio	s Applied $S_{\overline{m}}$	Stress, S _a	KSI S _c	Time to Rupture Hours Kilocycles	Elong %
9443 9172 9135 9370 9483 9281 9209	3.0 3.0 3.0 3.0 3.0 3.0	1.0 1.0 1.0 1.0 1.0	11.25 12.00 12.50 13.00 13.73 13.75 15.00	11.25 12.00 12.50 13.00 13.73 13.75 15.00	22.50 24.00 25.00 26.00 27.45 27.50 30.00	114.51 24,730.0 99.72 21,540.0 44.77 9,670.0 0.83 179.0 0.25 54.0 0.10 21.6 0.12 25.3	T.S.
9472 9239 9192 9500 9103 9197 9504 9189	1.0 1.0 1.0 1.0 1.0 1.0	0 0 0 0 0 0	80.00 100.00 107.50 107.50 110.00 112.00 115.00 120.00	0 0 0 0	80.00 100.00 107.50 107.50 110.00 112.00 115.00 120.00	114.25 115.90 68.10 4.10 109.93 88.30 9.70	T.S.(6.64) T.S.(7.53)
9180 9144 9278 9277	3.0 3.0 3.0 3.0	0 0 0	105.00 110.00 115.00 117.50	0	105.00 110.00 115.00 117.50	208.08 55.95 63.00 21.80	T.S.
9447 9305 9272 9119	3.0 3.0 3.0 3.0	0 0 0	121.00 123.00 124.00 126.00	0	121.00 123.00 124.00 126.00	19.55 9.95 27.40	power off

T.S. - Test Stopped

^{* -} Fracture Prior to Full Load

TABLE VIII Fatigue Test Data for Aged Bar Test Temperature $75^{\circ}F$

Specimen Number	Ratio A	$\mathop{\mathtt{App1ied}}_{\mathtt{S}_{\mathfrak{m}}}$	Stress, KS	I Time t Hours	o Rupture Kilocycles	
CB 6926 AK 6921 7051 7033 6959 7019 7042 6961 6971 7018 7017	80 80 80 80 80 80 80 80 80	0 0 0 0 0 0 0	52.0 52 55.0 55 58.0 58 60.0 60 60.0 60 63.0 63 65.0 65 70.0 70 70.0 70 70.0 70 75.0 75 90.0 90	.0 24.52 .0 60.37 .0 39.30 .0 3.36 .0 140.24 .0 8.17 .0 28.70 .0 19.76 .0 1.03 .0 0.90	23,050 5,296 13,040 8,489 726 30,290 1,765 6,199 4,268 222 194 25	
CB 7085 BU 7067 7061 7063 7059 7055 7182 7175 7155 7056 7054 7052	80 80 80 80 80 80 80 80	0 0 0 0 0 0 0	26.0 26 28.0 28 30.0 30 31.0 31 33.0 33 34.0 34 35.0 35 35.0 35 35.0 35 37.0 37 40.0 40	.0 90.54 .0 67.35 .0 98.75 .0 0.48 .0 93.28 .0 62.59 .0 14.75 .0 0.68 .0 0.37 .0 0.42	30,830 19,550 14,550 21,330 104 20,150 13,520 3,186 148 80 90 47	T.S.
CB 6898 AK 7040 6920 7070 6897 6901 6962 6956 7039 7034 7041 7038 7032	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	33.5 36.5 37.5 40.0 40.0 40.0 42.5 42.5 42.5 42.5 45.0 50.0 55.0	33.5 67 36.5 73 37.5 75 40.0 80 40.0 80 40.0 80 42.5 85 42.5 85 42.5 85 42.5 85 42.5 85 45.0 90 50.0 100 55.0 110	.0 181.79 .0 13.38 .0 23.45 .0 20.48 .0 15.51 .0 28.94 .0 18.72 .0 12.36 .0 9.01 .0 3.78 .0 4.45	26,470 39,270 2,890 5,065 4,424 3,350 6,271 4,043 2,670 1,946 817 961 343	T.S.

T.S. - Test Stopped
P.S. - Prior Stress History

TABLE VIII (Continued)

Fatigue Test Data for Aged Bar

Test Temperature $75^{\circ}F$

Specimen Number	Ratio A	Applied S _m	Stress, KSI S _a S _c	Time to Rupture Hours Kilocycles	
CB 7087 BU 7084 7089 7071 7082 7090 7066	1.0 1.0 1.0 1.0 1.0	17.5 18.5 20.0 20.0 21.5 22.5	17.5 35.0 18.5 37.0 20.0 40.0 20.0 40.0 21.5 43.0 22.5 45.0 25.0 50.0	159.52 34,450 50.10 10,820 34.09 7,364 7.78 1,680 7.80 1,685 2.93 633 0.55 119	T.S.
CB 6922 AK 6899 6919 6900 6918 6963 7005 7021 6923	0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	74.4 78.4 84.0 92.0 92.0 104.0 120.0 128.0	18.6 93.0 19.6 98.0 21.0 105.0 23.0 115.0 23.0 115.0 26.0 130.0 26.0 130.0 30.0 150.0 32.0 160.0	140.54 30,350 163.13 35,240 43.39 9,372 97.72 21,100 17.21 3,717 28.11 6,072 6.59 1,423 6.14 1,326 0.37 79	T.S. T.S.
CB 7081 BU 7075 7064 7065 7176 7077 7062 7060 7058	0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	44.0 48.0 48.0 56.0 56.0 61.6 72.0 84.0	11.0 55.0 12.0 60.0 12.0 60.0 14.0 70.0 14.0 70.0 14.0 70.0 15.4 77.0 18.0 90.0 21.0 105.0	138.26 29,870 37.31 8,059 31.39 6,780 5.96 1,287 1.33 287 0.30 65 0.23 50 0.12 26 0.05 11	T.S.

T.S. - Test Stopped

TABLE VIII(Continued)

Fatigue Test Data for Aged Bar

Test Temperature $600^{\circ}F$

Specimen Number	Ratio A	${ \overset{Applied}{s_{\mathfrak{m}}} }$	Stress S _a	, KSI S _c		Rupture Kilocycles	
CB 7035 AK 6933 7163 6931 7020 6932 6912 7043 6934	60 60 60 60 60 60	0 0 0 0 0 0	60.0 62.5 65.0 70.0 70.0 75.0 80.0 90.0	60.0 62.5 65.0 65.0 70.0 70.0 75.0 80.0 90.0	101.17 25.09 21.80 11.03 45.82 16.90 0.88 3.06 0.07	21,860 5,420 4,709 2,383 9,897 3,650 191 661 15	T.S.
CB 7083 BU 7114 7076 7121 7094 7097 7111 7148 7130 7142 7154 7140	60 60 60 60 60 60 60 60 60	0 0 0 0 0 0 0	30.0 31.0 33.0 35.0 35.0 37.0 40.0 42.0 43.0 50.0	30.0 31.0 33.0 35.0 35.0 37.0 40.0 42.0 43.0 50.0	125.38 138.53 94.90 93.50 0.25 0.17 92.49 0.21 0.17 0.22 0.09 0.08	27,080 29,920 20,500 20,200 54 36 19,980 45 36 47 19	T.S.
CB 6907 AK 6952 6906 6953 6910 6925 6903 6924 6911	1.0 1.0 1.0 1.0 1.0 1.0 1.0	35.0 37.5 37.5 40.0 40.0 40.0 45.0 50.0	35.0 37.5 37.5 40.0 40.0 40.0 45.0 50.0 57.5	70.0 75.0 75.0 80.0 80.0 80.0 90.0 100.0	112.31 145.15 27.93 94.56 80.96 10.54 18.82 2.04 1.97	24,250 31,350 6,033 20,420 17,490 2,277 4,065 441 427	T.S.
CB 7120 BU 7137 7095 7119 7116 7078 7100 7115	1.0 1.0 1.0 1.0 1.0 1.0	18.5 20.0 20.0 20.0 22.5 25.0 25.0 27.5	18.5 20.0 20.0 20.0 22.5 25.0 27.5	37.0 40.0 40.0 40.0 45.0 50.0 55.0	186.52 144.52 48.75 13.56 10.54 5.09 0.13 0.12	40,290 31,210 10,530 2,929 2,277 1,099 27 25	T.S. P.S.

T.S. - Test Stopped P.S. - Prior Stress History

TABLE VIII(Continued)

Fatigue Test Data for Aged Bar

Test Temperature 600°F

Specimen Number	Ratio A	Applied S _m	Stress, S _a	, KSI S _c		Rupture Kilocycles	
CB 6954 AK 6929 6904 6909 6928 6927 6950 6908	0.25 0.25 0.25 0.25 0.25 0.25 0.25	96.0 100.0 104.0 112.0 112.0 120.0 124.0 128.0	24.0 25.0 26.0 128.0 128.0 30.0 31.0 32.0	120.0 125.0 130.0 140.0 150.0 150.0 160.0	141.50 32.10 140.14 119.56 18.88 5.80 7.00 0.11	30,560 6,934 30,490 25,820 4,078 1,253 1,512	T.S. T.S.
CB 7088 BU 7134 7074 7132 7122 7135 7118 7138 7133	0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	44.0 52.0 52.0 56.0 56.0 61.6 61.6 65.6 72.0	11.0 13.0 13.0 14.0 14.0 15.4 15.4 16.4	55.0 65.0 70.0 70.0 77.0 77.0 82.0 90.0	139.85 136.0 76.18 59.96 54.9 71.01 0.22 0.08 0.017	30,210 29,380 16,460 12,950 11,860 15,340 48 18 3.7	T.S. T.S.
CB 6902 AK 6905 7001 7000 6939 6951 6938 6998 7002	0 0 0 0 0 0 0	130.0 170.0 184.3 185.0 187.5 190.0 195.0 200.0 210.0	0 0 0 0 0 0	130.0 170.0 184.3 185.0 187.5 190.0 195.0 200.0 210.0	121.38 120.00 120.27 133.58 * *		T.S. T.S. T.S.
CB 7112 BU 7096 7124 7139 7099 7103 7104 7117 7106 7102 7101	0 0 0 0 0 0 0	225.0 230.0 260.0 238.0 240.0 242.0 246.0 248.0 250.0 235.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	225.0 230.0 260.0 238.0 240.0 242.0 246.0 248.0 250.0 235.0	136.00 15.48 * 135.75 136.72 162.18 * 188.85 33.00	Т.	T.S. T.S. T.S. T.S. T.S.

T.S. - Test Stopped
P.S. - Prior Stress History

* - Fracture Prior to Full Load

TABLE VIII(Continued)

Fatigue Test Data for Aged Bar

Test Temperature $800^{\circ}F$

Specimen Number	Ratio A	Applied S _m	Stress S _a	, KSI S _c		Rupture Kilocycles	
CB 7026 AK 6964 6970 7006 6965 7025 7028 6917 7026 7029	80 80 80 80 80 80 80 80	0 0 0 0 0 0 0	53.0 57.0 60.0 65.0 70.0 70.0 75.0 80.0 85.0	53.0 57.0 60.0 65.0 70.0 70.0 75.0 80.0 85.0	135.48 62.21 104.17 8.86 7.66 7.28 6.50 3.07 0.67 0.12	29,270 13,440 22,500 1,914 1,654 1,572 1,404 663 144 25	T.S.
CB 7150 BU 7152 7194 7158 7345 7126 7153	ω ω ω ω ω ω	0 0 0 0 0	30.0 33.0 33.0 35.0 37.0 40.0 43.0	30.0 33.0 33.0 35.0 37.0 40.0 43.0	182.53 28.23 15.80 0.18 13.52 2.25 0.09	39,750 6,120 3,413 40 2,920 486 19	
CB 6966 AK 6969 6914 7027 6975 6913 6941 7022	1.0 1.0 1.0 1.0 1.0 1.0	36.0 36.0 40.0 42.5 45.0 50.0 55.0 60.0	36.0 36.0 40.0 42.5 45.0 50.0 55.0	72.0 72.0 80.0 85.0 90.0 100.0 110.0	234.06 75.92 69.26 44.87 8.70 6.71 1.70 0.07	50,550 16,400 14,960 9,691 1,879 1,449 367 15	T.S.
CB 7170 BU 7157 7346 7184 7151	1.0 1.0 1.0 1.0	18.5 18.5 20.0 21.5 22.5	18.5 18.5 20.0 21.5 22.5	37.0 37.0 40.0 43.0 45.0	119.62 112.29 35.86 23.42 0.17	25,840 24,250 7,746 5,058 37	T.S.

T.S. - Test Stopped P.S. - Prior Stress History

TABLE VIII (Continued)

Fatigue Test Data for Aged Bar

Test Temperature $800^{\circ}F$

Specimen Number	Ratio A	$ ^{\texttt{Applied}}_{\mathtt{S}_{\mathtt{m}}} $	Stress S _a	, KSI S _c		Rupture Kilocycles	
CB 6916 AK 6974 7050 6936 6976 7037 6967 6955 6937	0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	84.0 96.0 100.0 100.0 112.0 116.0 116.0 120.0	21.0 24.0 25.0 25.0 28.0 28.0 29.0 30.0	105.0 120.0 125.0 125.0 140.0 140.0 145.0 150.0	123.55 115.49 28.64 22.45 29.16 10.09 15.51 3.27 0.05	26,690 25,950 6,186 4,859 6,299 2,179 3,350 706 11	T.S.
CB 7344 BU 7149 7171 7186 7131 7174	0.25 0.25 0.25 0.25 0.25 0.25	49.6 52.0 53.6 53.6 56.0 57.6	12.4 13.0 13.4 13.4 14.0 14.4	62.0 65.0 67.0 67.0 70.0 72.0	147.35 118.47 126.44 98.11 0.17 0.22	31,830 25,590 27,310 21,190 36 48	T.S.
CB 7049 AK 7003 6935 6996 6915 6973 6940	0 0 0 0 0	130.0 140.0 150.0 160.0 170.0 174.0 180.0	0 0 0 0 0	130.0 140.0 150.0 160.0 170.0 174.0 180.0	137.50 73.00 15.26 3.33 2.68		T.S.
CB 7092 BU 7128 7145 7107 7141 7129 7110	0 0 0 0 0	200.0 215.0 220.0 240.0 248.0 255.0	0 0 0 0 0	200.0 215.0 220.0 240.0 248.0 255.0	182.88 60.05 59.17 9.68 0.75 0.10		T.S.

T.S. - Test Stopped
* - Fracture Prior to Full Load

TABLE IX $\begin{tabular}{ll} Fatigue Strength (KSI) of B120-VCA Sheet \\ & at 10^7 Cycles \end{tabular}$

Co	nditions	Annea]	А				
		K _t = 1.0	$K_{t} = 3.0$	K _f	1.0	3.0	K _f
	A = 0						
75°	1.0	67	25	2.67	56	28	2.00
	∞	35	17	2.05	41	22	1.86
	0	120	130	0.92	152	160	0.95
600°	1.0	52	29	1.79	54	31.5	
	∞	42	22	1.92	46	24	1.92
	0	120	140	0.86	125	128	.98
800°	1.0	52	24	2.17	49	29	1.69
	∞	45	22	2.05	48	24	2.00

Figure 1 Diagram of Sheet Specimens.

					_				_			_	_			_
9302	9301	9300	9299	9538	9297	9536	9295	9294	9293	9292	9291	9290	9289	928 8	9283	9286
9285	9284	9283	9282	9281	9280	9279	9278	9277	9276	9275	9274	9273	9272	9271	9270	9269
9268	9267	9566	9265	9264	9263	9262	9261	9260	9259	9258	9257	9226	9255	9254	9253	9252
9251	9250	9249	9248	9247	9546	9245	9244	9243	9242	9241	9240	9239	9238	9237	9236	9235
9234	9233	9232	9231	9230	9229	9228	9227	9226	9225	9224	9223	9222	9221	9220	9219	9218
9217	9216	9215	9214	9213	9212	9211	9210	9209	9208	9207	9706	9205	9204	9203	9202	9201
9200	9199	9198	9197	91196	9195	9194	9193	9192	9191	9190	9189	9188	9187	9186	9185	9184
9183	9182	9181	9180	9179	9178	9177	9116	9175	9174	9173	9172	9171	9170	9169	9168	9167
9166	9165	9164	9163	9162	9161	9160	9159	9158	9157	9156	9155	9154	9153	9152	9151	9150
9149	9148	9147	9146	9145	9144	9143	9142	9141	9140	9139	9138	9137	9136	9135	9134	9133
9132	9131	9130	9129	9128	9127	9126	9125	9124	9123	9122	9121	9120	9119	9118	9117	9116
9115	9114	9113	9112	9111	9110	9109	9108	9107	9106	9105	9104	9103	9102	9101	9100	6606

Location of Specimen Blanks, Sheet No. 2. Figure 2

_	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_
9206	9505	0507	9503	9502	0501	9500	6676	8676	2676	9070	2676	7676	9493	2676	94.91	1000
6886	9488	9/87	9876	9485	0/8/	5876	9482	9481	9480	6776	8476	9477	9476	5276	7476	
9472	9471	0276	6976	8976	07.67	9976	9465	7976	9463	6976	9461	9460	9459	8576	9457	12/0
9455	9454	8476	9452	9451	04.50	6776	8776	6447	9446	5776	7776	9443	9442	9441	0776	00/0
9438	9437	9876	9435	9434	8876	9432	9431	9430	9429	9428	9427	9426	9425	9424	9423	00/0
9421	9420	9419	9418	9417	9416	9415	9414	9413	9412	9411	9410	6076	8056	2056	9076	07.0
7076	9403	9402	9401	9400	9399	9398	9397	9386	9395	9394	9393	9392	9391	9390	9389	0000
9387	9386	9385	9384	9383	9382	9381	9380	9379	9378	9377	9376	9375	9374	9373	9372	0271
9370	6986	9368	9367	9366	9365	9364	9363	9362	9361	9360	9359	9358	9357	9326	9355	035/
9353	9352	9351	9350	9349	9348	9347	9346	9345	9344	9343	9342	9341	9340	9339	9338	9337
9336	9335	9334	9333	9332	9331	9330	9329	9328	9327	9326	9325	9324	9323	9322	9321	0330
9319	9318	9317	9316	9315	9314	9313	9312	9311	9310	9309	9308	9307	9306	9305	9304	9303

Figure 3 Location of Specimen Blanks, Sheet No. 3.

Specimen Type AKM (mod.)

Specimen Type AK (mod.)

Specimen Type BU $- K_{\uparrow} = 3.0$

Figure 4 Diagram of Bar Specimens.

S-N Fatigue Diagrams for Unnotched Specimens of Aged Sheet at $75^{\circ}\mathrm{F}_{\bullet}$. Figure 5

S-N Fatigue Diagrams for Notched Specimens of Aged Sheet at 750F. Figure 6

S-N Fatigue and Creep Rupture Diagrams for Unnotched Specimens of Aged Sheet at $600^{\rm o}{\rm F}_{\bullet}$ Figure 7

S-N Fatigue and Creep Rupture Diagrams for Notched Specimens of Aged Sheet at $600^{\rm O}{\rm F}_{\bullet}$ ∞ Figure

S-N Fatigue and Creep Rupture Diagrams for Unnotched Specimens of Aged Sheet at $800^{\rm o}{\rm F}_{\bullet}$ Figure 9

S-N Fatigue and Creep Rupture Diagrams for Notched Specimens of Aged Sheet at $800^{\rm O}{\rm F}$. Figure 10

Figure 11 Constant-Life Diagrams for Aged Sheet Specimens at 75°F.

Constant-Life Diagrams for Aged Sheet Specimens at $600^{\rm o}{\rm F}$. Figure 12

Mean Stress-Sm-ksi

Constant-Life Diagrams for Aged Sheet Specimens at $800^{\rm o}{\rm F}_{\mbox{\scriptsize .}}$ Figure 13

Static Creep Curves for Aged Sheet at $600^{\rm o}{\rm F}$. Figure 14

Static Creep Curves for Aged Sheet at $800^{\rm o}{\rm F}_{\mbox{\scriptsize .}}$ Figure 15

Creep Strength Design Curves for Aged Sheet at $600^{\rm o}{\rm F}_{\star}$ Figure 16

Creep Strength Design Curves for Aged Sheet at $800^{\rm o}{\rm F.}$ Figure 17

S-N Fatigue Diagrams for Unnotched Specimens of Annealed Sheet at $75^{\circ}\mathrm{F}_{\bullet}$ Figure 18

S-N Fatigue Diagrams for Notched Specimens of Annealed Sheet at 750F. Figure 19

Rupture Diagrams for Unnotched Sheet at 600°F. S-N Fatigue and Creep Specimens of Annealed 20 Figure

S-N Fatigue and Creep Rupture Diagrams for Notched Specimens of Annealed Sheet at $600^{\rm O}{\rm F}_{\bullet}$ Figure 21

Rupture Diagrams for Unnotched Sheet at 800^{OF} . S-N Fatigue and Creep Specimens of Annealed Figure 22

S-N Fatigue and Creep Rupture Diagrams for Notched Specimens of Annealed Sheet at 800°F. Figure 23

Constant-Life Diagrams for Annealed Sheet at $75^{\rm O}{\rm F}$. Figure 24

Figure 25 Constant-Life Diagrams for Annealed Sheet at 600°F.

Mean Stress — S_m — Ksi

Constant-Life Diagrams for Annealed Sheet at 800°F. Figure 26

Mean Stress — S_m - ksi

Static Creep Curves for Annealed Sheet at $800^{\rm O}{\rm F}$. Figure 27

Creep Strength Design Curves for Annealed Sheet at $800^{\circ}\mathrm{F}.$ Figure 28

S-N Fatigue Diagrams for Unnotched Specimens of Aged Bar at $75^{\rm O}{\rm F}_{\bullet}$ Figure 29

Fatigue Diagrams for Notched Specimens of Aged at $75^{\circ}\mathrm{F}_{\bullet}$. S-N Bar 30 Figure

S-N Fatigue and Creep Rupture Diagrams for Unnotched Specimens of Aged Bar at $600^{\rm o}{\rm F}_{\bullet}$ Figure 31

S-N Fatigue and Creep Rupture Diagrams for Notched Specimens of Aged Bar at $600\,\mathrm{oF}\text{.}$ Figure 32

S-N Fatigue and Creep Rupture Diagrams for Unnotched Specimens of Aged Bar at $800^{\rm OF}$.

Figure 33

S-N Fatigue and Creep Rupture Diagrams for Notched Specimens of Aged Bar at $800^{\rm OF}.$ Figure 34

for all 8 11 A at S-N Fatigue Diagrams for Aged Bar Temperatures. Figure 35

Constant-Life Diagrams for Aged Bar at 75°F. Figure 36

Mean Stress — S_m—ksi

Constant-Life Diagrams for Aged Bar at 600° F and 800° F. Figure 37

Security Classification

	NTROL DATA - R&	
(Security classification of title, body of abstract and indexing of the components o		28. REPORT SECURITY C LASSIFICATION
Fatigue, Creep, and Stress-Ruptu Titanium Alloy (B120-VCA)	ıre Propertie	es of Ti-13V-11Cr-3A1
Summary Report, Sept. 1 1965-Just Author(s) (Leet name, tirst name, initial) data incl		
Blatherwick, Allan A. and Cers,		ork done in 1938.
6. REPORT DATE	74. TOTAL NO. OF P	AGES 76. NO. OF REFS
December 1966	77	7
AF 33(615)-1122 b. project no. 7381	AFML-TR-6	
Task No. 738106		NO(S) (Any other numbers that may be assigned
controls and each transmittal t nationals may be made only with Materials Laboratory, Materials	o foreign go prior appro	overnments or foreign oval of Air Force
11 SUPPLEMENTARY NOTES Wright-Patterson	12 SPONSOBING MILB	CARPACTOMINO
	Air Force M Research Te	Materials Laboratory echnology Division
13. ABSTRACT	Wright-Patt	Systems Command terson Air Force Base, Ol

A fatigue and creep-rupture testing program was conducted on solution-treated and aged sheet specimens of titanium alloy B-120VCA at room and elevated temperatures. Data on aged bar stock, previously tested, are also included for comparison. All tests were conducted in axial-stress machines with various combinations of alternating and mean stresses. Notched as well as smooth specimens were used.

The data are presented in the form of S-N and creep rupture diagrams, and the effect of various combinations of alternating and mean stresses is shown by means of constant-life diagrams. Creep data are given in the form of creep-time curves, and for design purposes, creep strength curves are presented.

4.	LIN	KA	LIN	КВ	LINK C	
KEY WORDS	ROLE	wT	ROLE	WT	ROLE	WT
Fatigue						
Creep						
Titanium Alloy						
Elevated-temperature						
Design data						
Stress rupture						

INSTRUCTIONS

- 1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.
- 2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.
- 2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.
- 3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.
- 4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.
- 5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.
- 6. REPORT DATE: Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication.
- 7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.
- 7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.
- 8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.
- 8b, 8c, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.
- 9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.
- 9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).
- AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those

imposed by security classification, using standard statements such as:

- "Qualified requesters may obtain copies of this report from DDC."
- (2) "Foreign announcement and dissemination of this report by DDC is not authorized."
- (3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through
- (4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through
- (5) "All distribution of this report is controlled. Qualified DDC users shall request through

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

- 11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.
- 12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.
- 13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.