Optimization in the "Big Data" Regime

Sham M. Kakade

Machine Learning for Big Data CSE547/STAT548

University of Washington

Machine Learning and the Big Data Regime...

goal: find a d-dim parameter vector which minimizes the loss on n training examples.

- have *n* training examples $(x_1, y_1), \dots (x_n, y_n)$
- have parametric a classifier $h_{\theta}(x, w)$, where w is a d dimensional vector.

$$\min_{w} L(w)$$
 where $L(w) = \sum_{i} loss(h(x_i, w), y_i)$

• "Big Data Regime": How do you optimize this when n and d are large? memory? parallelization?

Can we obtain linear time algorithms to find an ϵ -accurate solution? i.e. find \hat{w} so that

$$L(\hat{w}) - \min_{w} L(w) \le \epsilon$$

Plan:

- Goal: algorithms to get fixed target accuracy ϵ .
- Review: classical optimization viewpoints
- A modern view: can be bridge classical optimization to modern problems?
 - Dual Coordinate Descent Methods
 - Stochastic Variance Reduced Gradient method (SVRG)

Abstraction: Least Squares

$$\min_{w} L(w) \text{ where } L(w) = \sum_{i=1}^{n} (w \cdot x_i - y_i)^2 + \lambda ||w||^2$$

How much computation time is required to to get ϵ accuracy?

- *n* points, *d* dimensions.
- "Big Data Regime": How do you optimize this when n and d are large?
- More general case: Optimize sums of convex (or non-convex functions?
 - some guarantees will still hold

Aside: think of x as a large feature representation.

Review: Direct Solution

$$\min_{w} L(w) \text{ where } L(w) = \sum_{i=1}^{n} (w \cdot x_i - y_i)^2 + \lambda ||w||^2$$

solution:

$$W = (X^{\top}X + \lambda I)^{-1}X^{\top}Y$$

where X be the $n \times d$ matrix whose rows are x_i , and Y is an n-dim vector.

- numerical solution: the "backslash" implementation.
- time complexity: $O(nd^2)$ and memory $O(d^2)$

Not feasible due to both time and memory.

Review: Gradient Descent (and Conjugate GD)

$$\min_{w} L(w) \text{ where } L(w) = \sum_{i=1}^{n} (w \cdot x_i - y_i)^2 + \lambda ||w||^2$$

- n points, d dimensions,
- $\lambda_{\text{max}}, \lambda_{\text{min}}$ are max and min eigs. of "design matrix" $\frac{1}{n} \sum_{i} x_{i} x_{i}^{\top}$
- # iterations and computation time to get ϵ accuracy:
 - Gradient Descent (GD):

$$rac{\lambda_{ ext{max}}}{\lambda_{ ext{min}}} \log 1/\epsilon, \quad rac{\lambda_{ ext{max}}}{\lambda_{ ext{min}}} nd \log 1/\epsilon$$

Conjugate Gradient Descent:

$$\sqrt{\frac{\lambda_{\max}}{\lambda_{\min}}} \log 1/\epsilon, \quad \sqrt{\frac{\lambda_{\max}}{\lambda_{\min}}} nd \log 1/\epsilon$$

memory: O(d)

Better runtime and memory, but still costly.

Review: Stochastic Gradient Descent (SGD)

SGD update rule: at each time t,

sample a point
$$(x_i, y_i)$$

 $w \leftarrow w - \eta(w \cdot x_i - y_i)x_i$

Review: Stochastic Gradient Descent (SGD)

• SGD update rule: at each time t,

sample a point
$$(x_i, y_i)$$

 $w \leftarrow w - \eta(w \cdot x_i - y_i)x_i$

Review: Stochastic Gradient Descent (SGD)

SGD update rule: at each time t,

sample a point
$$(x_i, y_i)$$

 $w \leftarrow w - \eta(w \cdot x_i - y_i)x_i$

• Problem: even if $w=w_*$, the update changes w. Rate: convergence rate is $O(1/\epsilon)$, with decaying η simple algorithm, light on memory, but poor convergence rate

Review: Stochastic Gradient Descent

- λ_{\min} is the min eig. of $\frac{1}{n} \sum_{i} x_{i} x_{i}^{\top}$
- Suppose gradients are bounded by B.
- To get ϵ accuracy:
 - # iterations to get ϵ -accuracy:

$$\frac{\mathit{B}^{2}}{\lambda_{\min}\epsilon}$$

• Computation time to get ϵ -accuracy:

$$\frac{dB^2}{\lambda_{\min}\epsilon}$$

Regression in the big data regime?

$$\min_{w} L(w)$$

How much computation time is required to to get ϵ accuracy?

- "Big Data Regime": How do you optimize this when n and d are large?
 - Can we 'fix' the instabilities of SGD?
- Let's look at (regularized) linear regression.
 - Convex optimization: All results can be generalized to smooth+strongly convex loss functions.
 - •
 - Non-convex optimization: some ideas generalize.

Duality (without Duality)

$$w = (X^{T}X + \lambda I)^{-1}X^{T}Y$$
$$= X^{T}(XX^{T} + \lambda I)^{-1}Y$$
$$:= \frac{1}{\lambda}X^{T}\alpha$$
where $\alpha = (I + XX^{T}/\lambda)^{-1}Y$.

- idea: let's compute the n-dim vector α .
- let's do this with coordinate ascent

SDCA: stochastic dual coordinate ascent

$$G(\alpha_1, \alpha_2, \dots \alpha_n) = \frac{1}{2} \alpha^{\top} (I + XX^{\top}/\lambda) \alpha - Y^{\top} \alpha$$

• the minimizer of $G(\alpha)$ is

$$\alpha = (I + XX^{\top}/\lambda)^{-1}Y$$

- SDCA:
 - start with $\alpha = 0$.
 - choose coordinate *i* randomly, and update:

$$\alpha_i = \operatorname{argmin}_{z} G(\alpha_1, \dots \alpha_{i-1}, z, \dots, \alpha_n)$$

- easy to do as we touch just one datapoint.
- return $\mathbf{w} = \frac{1}{\lambda} \mathbf{X}^{\top} \alpha$.

SDCA: the algorithm

$$G(\alpha_1, \alpha_2, \dots \alpha_n) = \frac{1}{2} \alpha^{\top} (I + XX^{\top}/\lambda) \alpha - Y^{\top} \alpha$$

- start with $\alpha = 0$, $\mathbf{w} = \frac{1}{\lambda} \mathbf{X}^{\top} \alpha$.
 - choose coordinate *i* randomly, and compute difference:

$$\Delta \alpha_i = \frac{(y_i - w \cdot x_i) - \alpha_i}{1 + ||x_i||^2 / \lambda}$$

update:

$$\alpha_i \leftarrow \alpha_i + \Delta \alpha_i, \quad \mathbf{w} \leftarrow \mathbf{w} + \frac{1}{\lambda} \mathbf{x}_i \cdot \Delta \alpha_i$$

• return $\mathbf{w} = \frac{1}{\lambda} \mathbf{X}^{\top} \alpha$.

Guarantees: speedups for the big data regime

- *n* points, *d* dimensions, λ_{av} average eigenvalue
- Computation time to get ϵ accuracy gradient descent: (Shalev-Shwartz & Zhang '12)
 - GD vs SDCA:

$$\frac{\lambda_{\max}}{\lambda_{\min}} n \, d \log 1/\epsilon \to \left(n + d \frac{\lambda_{\text{av}}}{\lambda_{\min}} \right) d \log 1/\epsilon$$

conjugate GD vs acceleration+SDCA.
 One can accelerate SDCA as well. (Frosting, Ge, K., Sidford, 2015))

Comparisons to GD

- both algorithms touch one data point at a time, with same computational cost per iteration.
- SDCA has "learning rate" which adaptive to the data point.
- GD has convergence rate of $1/\epsilon$ and SDCA has log $1/\epsilon$ convergence rate.
- memory: SDCA: O(n+d), SGD: O(d)
- SDCA: can touch points in any order.

SDCA advantages/disadvantages

What about more general convex problems? e.g.

$$\min_{w} L(w)$$
 where $L(w) = \sum_{i} loss(h(x_i, w), y_i)$

- the basic idea (formalized with duality) is pretty general for convex loss(·).
- works very well in practice.
- memory: SDCA needs O(n+d) memory, while SGD is only O(d).
- What about an algorithm for non-convex problems?
 - SDCA seems heavily tied to the convex case.
 - would an algo that is highly accurate in the convex case and sensible in the non-convex case.

(another idea) Stochastic Variance Reduced Gradient (SVRG)

• exact gradient computation: at stage s, using \widetilde{w}_s , compute:

$$\nabla L(\widetilde{w}_s) = \frac{1}{n} \sum_{i=1}^n \nabla \operatorname{loss}(\widetilde{w}_s, (x_i, y_i))$$

2 corrected SGD: initialize $w \leftarrow \widetilde{w}_s$. for m steps,

sample a point (x, y)

$$w \leftarrow w - \eta \left(\nabla \operatorname{loss}(w, (x, y)) - \nabla \operatorname{loss}(\widetilde{w}_s, (x, y)) + \nabla L(\widetilde{w}_s) \right)$$

3 update and repeat: $\widetilde{w}_{s+1} \leftarrow w$.

(another idea) Stochastic Variance Reduced Gradient (SVRG)

• exact gradient computation: at stage s, using \widetilde{w}_s , compute:

$$\nabla L(\widetilde{w}_s) = \frac{1}{n} \sum_{i=1}^n \nabla \operatorname{loss}(\widetilde{w}_s, (x_i, y_i))$$

2 corrected SGD: initialize $w \leftarrow \widetilde{w}_s$. for m steps,

sample a point (x, y)

$$\mathbf{w} \leftarrow \mathbf{w} - \eta \left(\nabla \mathrm{loss}(\mathbf{w}, (\mathbf{x}, \mathbf{y})) - \nabla \mathrm{loss}(\widetilde{\mathbf{w}}_s, (\mathbf{x}, \mathbf{y})) + \nabla L(\widetilde{\mathbf{w}}_s) \right)$$

1 update and repeat: $\widetilde{w}_{s+1} \leftarrow w$.

Two ideas:

- If $\widetilde{w} = w_*$, then no update.
- unbiased updates: blue term is mean 0.

Guarantees of SVRG

- *n* points, *d* dimensions, λ_{av} average eigenvalue
- Computation time to get ϵ accuracy gradient descent: (Johnson & Zhang '13)
 - GD vs SDCA:

$$\frac{\lambda_{\max}}{\lambda_{\min}} n \, d \log 1/\epsilon \to \left(n + d \frac{\lambda_{\text{av}}}{\lambda_{\min}}\right) d \log 1/\epsilon$$

conjugate GD vs ??

$$\sqrt{\frac{\lambda_{\text{max}}}{\lambda_{\text{min}}}} n d \log 1/\epsilon \rightarrow ??$$

memory: O(d)