Machine Learning Final Project - conversations in TV shows

NTU b05902031 命理師協會旗艦店 b05902031 謝議霆 b05902008 王行健 b05901033 莊永松

Introduction & Motivation: 1%

本次主題為電視劇對話中的台詞,給出上文(可能1句~4句不等),在六個選項中找出正確的下文,其中上文可能是同一個人的台詞,也可能是對話。其實這個題目就是常見的"多輪對話"問題,不同於"QA問題"是單次問答,這種題目需要考慮到前後文的關係,所以更加困難。這種問題的model也是目前在generative language model 還表現不好的狀況之下,可以用大量語料庫搜索適合的response,來實現聊天機器人效果的好方法,是目前較為實際且能夠直接應用的方法。

Data Preprocessing/Feature Engineering: 2%

(1)分詞:

■ [jieba]

效果較差,很多詞都分錯,錯誤率高,約50%句子會跟中研院分的不一樣。

1. 分詞長度偏大,有時候會分成很怪的詞組,如"天就亮,了","誰,要,妳愛,上無藥,可救"。2. 會把人名亂切開,如"林,明德","鍾,世民"。(在presentation時,聽到某一組使用jieba,實驗發現跟不分詞直接一字一字斷開結果差不多,可能就是jieba分詞不夠好的緣故,畢竟是針對大陸簡體語料所做的套件)

■ [國教院中文分詞系統 NAER] https://github.com/naernlp/Segmentor

(採純統計式模型,執行速度快)

比jieba好很多,分詞較細,且人名不會被切開(可能有特別針對NER做處理),但還是有少部分分錯的時候,有時是一個詞包到前後錯字,有些是分得太細,如:"有,樣,學,樣"。

■ [中研院中文斷詞系統 CKIP] http://ckipsvr.iis.sinica.edu.tw/

(採經驗法則模型,執行速度較慢)

分詞結果九成都跟國教院一樣(都正確的),但少部分國教院分錯的,中研院也能分對,效果最好,見下面例子。

比較 example

中研院(左) v.s. 國教院(右)

1 9 11 2 (1)	
135 - 逭,兩,個,失敗,者,的,表情	135+逭,兩,個,失敗,者,的,表,情
136 - 他們,兩,人,真是,不自量力	136 + 他們 , 兩,人,真是,不自量,力
137 竟敢,跟,你,逭,個	137 竟敢,跟,你,這,個
138 - 信美,集團,的,駙馬爺,作對	138 + 信美,集團,的,駙馬,爺作,對
139 - 現在 , 又,有,鍾奎 <mark>,</mark> 幫,你	139 + 現在,又,有,鍾奎幫,你

可發現國教院把"不自量力"分成"不","自量力";"駙馬爺"分成"駙馬","爺";"鍾奎,幫,你"分成"鍾奎幫,你"。

(2) Word2vec:

- 使用Gensim, embedding size—開始使用1200(MLDS做seq2seq的經驗,維度盡量開大),針對直接算sent2vec的相似度的架構來說(Model 1), size比1200大和比1200小,效果都較差(數據見Experiment and Discussion),1200算是最好的size。
- 但後來才發現,在針對RNN的架構時(Model 3、Model 4),似乎不適合開那麼大,反而100~200就能train得不錯,越大的維度反而訓練不起來,最後我們表現最好的model是使用100維作為embedding size。
- Word2vec的方式,skip-gram跟CBOW都嘗試過,發現skip-gram效果較好,CBOW稍微差一些。
- 其餘參數:
 - window = 7
 - \blacksquare min count = 10
 - = iter = 100

Model Description (At least two different models): 4%

1. [Model 1] Sentence embedding -> cosine similarity --- 最簡單的model

- Sentence embedding: 將一句話斷詞之後,每個詞在訓練好的word2vec模型中會有一個向量,將這些詞向量做 $weight(w) = \frac{a}{a+p(w)}$ 的加權平均直接就當成我們的句子向量。(a是一個常數,p(w)是該詞在訓練資料中出現的機率) 見[參考paper][1]
- Cosine similarity: 判斷是否為該問題的答案是看兩個句子向量的相似程度,這裡是用兩個高維向量的cosine similarity當分數,選擇分數最高的選項當作答案。
- Model 參數細節: $a = 6 \times 10^{-4}$,embedding size=1200
- Issue :
 - 1. 因為我們是用加權平均來生成句子的向量,所以這個模型中缺少句子中詞與詞的前後關係。
 - 2. 其次,由於這個方法的問句跟答句所用的sent2vec方式是一樣的,所以沒有考慮到需要從問句轉換為答句的問題,導致只是選出跟問句比較像的句子。

2. [Model 2] DNN model --- 第二簡單的model

- Word Embedding: 將每個詞以訓練好的word2vec模型轉成向量
- Training data: 我們會從training data中挑選真的是有前後關係的兩句話、和隨機挑選的兩句話,分別標上1(True)和0(False)的label,網路在看到兩句話後會給定一個分數(0~1之間),在做testing的時候,選擇六個選項中分數最高的那一個當答案。
- DNN model:為了減少訓練時間,我們在開始使用RNN來訓練前,先嘗試直接用DNN的方法,也就是先用上面方法一(詞向量平均)做sent2vec後,把問句接DNN,希望透過DNN,能把句子transform成答句,然後直接跟答句的sent2vec比較cosine similarity。
- Model 參數細節:
 - embedding size = 256
 - DNN: 3層dense, output dim=256
 - activation function: relu
- Issue:此作法可以避免 Model 1 中沒有考慮到從問句轉換為答句的問題,但缺點是sent2vec的方法仍然缺少句子中詞與詞的前後關係。

3. [Model 3] RNN model --- 正式model

- Word Embedding: 將每個詞以訓練好的word2vec模型轉成向量
- Training data: 我們會從training data中挑選真的是有前後關係的兩句話、和隨機挑選的兩句話,分別標上1(True) 和0(False)的label,網路再看到兩句話後會給定一個分數(0~1之間),在做testing的時候,選擇六個選項中分數最高的那一個當答案。

■ RNN model: input的句子把每個字embedding完後,接上RNN(GRU),問句和答句所接的RNN是不同的RNN(沒有 share weight),問句RNN的output再接三層DNN讓他有某些transoform,輸出與答句的RNN的output作cosine similarity,得到答案(0~1之間的機率分布)。

■ model 參數細節:

- embedding size:100
- 第一層GRU:128 cells
- 第二層GRU:64 cells
- 第一層Dense(64->32)
- 第二層Dense(32->1)
- Issue:此model架構有考慮句子中詞與詞的前後關係,理論上已經避免了剛剛其他前兩個架構所擁有的問題。但 追根究柢,這種給兩句input算單一output的方法還是可能導致一些問題:

■ Training與Testing的差異:

首先,Training跟Testing的方式是稍微不一樣的,Training時是單純指定1 or 0的label,並且希望True case的 output是1,False case的output是0;而在Testing時,其實只需要選6句中機率最高的,並不需要每一句True case 的target都是1。=>只需要optimize相對分數,而非絕對分數。

■ 用絕對分數來Train髒data易混淆網絡:

如果訓練資料乾淨,針對絕對分數來訓練的問題不大。但是畢竟這次的訓練資料很髒,而且False case也是隨機產生,因此訓練資料中,可能還是有很多True case但實際上語意不相關(可能恰好截到對話結束的地方),或是False case的答句是還可接受的(可能問句是比較開放,可接受多種答句)諸多狀況。但我們這樣一視同仁地希望True case的output是1,False case的output是0,於是就容易對要訓練的網絡產生混淆,可能害他在training的時候就已經無法對這些data做很好的判斷。其實我們所需要的,應該只是讓True case的成績大於False case的成績就好了

- 解法:使用多output+softmax,當你每次訓練都是拿6句話的相對分數來比較,就能避免單一筆data品質不 佳的狀況
- 作法: End-to-end model。

4. [Model 4] End-to-end RNN model --- 最強model

■ **model架構**: input為一個問句+六個答句,embedding後經過兩個GRU,輸出7個100維的vector,直接concatenate成為700維的vector,最後接上兩層Dense,轉為6維後經過Softmax,得到預測結果。

■ **Improvement**:針對前述RNN架構的缺點,我們修改為End-to-end的RNN model,分成6個答句選項的output做Softmax,而非原本需要讓True case的output越大越好

single-output Sigmoid v.s. multi-output Softmax 原先RNN model 用單一 output+Sigmoid ,而 Sigmoid 是將 $[-\infty, +\infty]$ 都映射到[0,1]之間,而且是output接近無限大的時候,Sigmoid出來才是1,結果會讓他變成output越大越好。 反之Softmax是看各個output之間的比例,如果其中一個output明顯大於其他,則他Softmax出來的value 就會很接近1,不需要train到讓他output趨近無限大。

■ Training data量與Testing data量的平衡: 在這種架構中,我們產生訓練資料的方式,也是挑選連續句子作為True case並label 1,然後隨機亂數挑選5句其他句子作為False case並label 0。這樣除了能夠改以相對分數訓練外。另外也能讓Training data中False case的data數量是True case的五倍,也就是與Testing data完全一致。在前面的單純RNN架構中,我們並沒有把True:False case的比例弄成1:5,也因此可能他所訓練到的False case不夠多,導致在testing時效果不如預期。

■ training data處理:

- 最長句子長度 = 30
- 將句子補齊的padding加在最前面
- model參數細節:

embedding size: 100
GRU output dim: 100
Dense 1: 700 => 100
Dense 2: 100 => 6

activation function: Swish

Experiment and Discussion: 6%

1. [Model 1] Sentence embedding -> cosine similarity

■ 不同的embedding維度:可以看出維度大的在使用cosine similarity後表現比較好,比較能判斷句子的相近程度。

embedding維度	private score	public score
100	0.33122	0.30039
500	0.36758	0.36916
1200	0.40869	0.40513

■ 不同的a值(embedding維度:1200): 常數在這裡可以看成一個詞的機率的調整,越小的話,詞出現的機率就越能影響結果。而在實驗的過程後,發現6e-4能達到最好的performane。

a	private score	public score
6e-2	0.35098	0.34624
6e-3	0.36719	0.36640
6e-4	0.40869	0.40513

■ 不同的training data

■ 將training data改成以下的形式,除了增加training data的數量外,在Question和answer的task中,這樣的training data還可以加強前一句和後一句的關係。

今天 過 得 好 嗎 -> 今天 過 得 好 嗎 我 很 好

我 很 好 -> 刮

-> 我 很 好 真的 嗎

真的 嗎 -> 真的 嗎

	private score	public score
before	0.39367	0.38814
after	0.40869	0.40513

■ 結果討論:此model雖然準確度不比其他的高,但就其model大小及付出的運算量來說,已經是個CP值很高的做法。

2. [Model 2] DNN model

訓練參數:

optimizer: Adamlearning rate=1e-4

epoch = 10batch size: 256

loss function: cross entropycheckpoint: on val_acc

■ 訓練過程:

Training loss	Training accuracy	Validation loss	Validation accuracy
loss	acc	val_loss	acc
0.660	0.720	0.630	0.720
0.620	0.680	0.625	0.680
0.580	0.640	0.615	0.640
0.540	0.600	0.610 0.605	0.600
0.500	2000 2000 4000 2000 2000	0.000 2.000 4.000 6.000 8.0	

kaggle score

public score	private score
0.40513	0.40869

■ 結果討論: train了半天,沒有比Model 1好多少,效果頗差,可見sent2vec直接接DNN並不是個好方法,畢竟沒有考慮字序的關係。

3. [Model 3] RNN model

訓練參數:

• optimizer: Adam

• learning rate:1e-4 (Adam)

■ batch size:32

loss function: MSE

■ epoch:30

• checkpoint: on val_acc

■ 訓練過程:

MSE loss

Validation accuracy

■ 二層GRU與一層GRU的比較:

- 由下圖可以發現,在計算loss的時候,兩種model的MSE loss差不多低,可是在validation的準確率上,只有一層GRU layer的表現是比較好的。
- 從Kaggle上的成績來看,平均起來一層GRU的準確率稍微高一點。

MSE loss

Validation accuracy

	private score	public score
1 GRU layer	0.48142	0.47470
2 GRU layer	0.46996	0.47588

■ 不同embedding size之間的比較:

- 由下圖可以發現embedding維度較大的在訓練過程中loss比較低,但是在準確率上是差不多的,為了訓練時間的考量,會選擇維度較低的方法來訓練。而在embedding維度1000以上的時候,訓練到一半準確率就會卡在一個很低的值,就再也升不上去了。
- 從Kaggle上的成績來看,兩個model其實是差不多的。

MSE loss

Validation accuracy

	private score	public score
embedding維度:500	0.45968	0.47312
embedding維度:100	0.46996	0.47588

■ 結果討論: RNN model的成績,明顯比前兩model提升了將近8%左右,可見有將字序考慮進去是非常重要的環節。

4. [Model 4] End-to-end RNN model

■ 訓練參數:

optimizer: Adam
learning rate=1e-4
batch size: 100
epoch = 20

loss function: cross entropycheckpoint: on val acc

■ 訓練過程:

CrossEntropy loss

Validation accuracy

訓練結果:

train acc	validation acc
0.62394	0.58169

kaggle score

public score	private score
0.54426	0.55415

■ 結果討論:此model架構最為龐大,但效果也最佳,又比單純RNN model進步了7%~8%的正確率,推測他是藉由 針對相對分數訓練的優勢,才能有如此顯著的進步,能有效避免單一RNN model訓練絕對分數的弊病。

Ensemble

這次final因為時間緣故,Model 4是在kaggle deadline後,聽完別組分享後才做出來的。因此在kaggle上最高分的成績是由Model 1 + Model 2 + Model 3 ensemble而來。最高分成績如下:

public score	private score
0.53913	0.54664

ensemble之比例為:(2個Model 1預測平均 + 4個Model 2預測平均 + 3個Model 3預測平均)/3

在ensemble時我們也發現,一直拿同一model ensemble的效果並不好,頂多提升個1%~2%,而使用不同做法的多個 model做ensemble效果就比較好,即便其中有些model的表現並不好,像是我們原本最佳的Model 3也只有0.48附近的 準確率,但在ensemble不同參數的model以及加入許多Model 1、Model 2的預測機率,一起投票後,就有效提升了近5%的正確率。

Conclusion: 1%

在這次final中,我們前後嘗試了4種model:從一開始不考慮詞序及問句答句差異的Model 1,進入考慮問句答句差異的Model 2,後來到考慮詞序的Model 3,最後是修正Model 3而採用相對分數訓練的Model 4。由40%左右的正確率,最後提升到約55%,我們了解到1.考慮詞序及2.問句答句差異以及3.以相對分數訓練,避免部分data品質不佳是後面model能贏過前面model的原因,也是這次題目的關鍵。

另外,還有一些因素也許是我們未來可以努力的目標,在ACL 2017 的 paper --- Sequential Matching Network: A New Architecture for Multi-turn Response Selection in Retrieval-based Chatbots 中,還引入了多句問句分別與答句匹配以及利用conv層及pooling層做feature extraction,有特別著眼在"多輪"對話的特質,因為多輪對話中,有很多句上文(這次final也是,以\t分隔多句上文),但答句可能只取決於其中一句上文,因此需要好的feature extraction方法來挑出決定性的上文(詳見reference之paper大意)。這也是目前多輪對話題目較好的解法之一,這次final原本想使用該架構,但後來因model過大,一直會crush掉,最後只好半途而廢,但這個課題非常值得日後研究。

Reference: 1%

■ [参考paper][1] A Simple but Tough-to-Beat Baseline for Sentence Embeddings [ICLR --- 2017 conference paper] (https://openreview.net/forum?id=SyK00v5xx)

paper大意:一個sentence to vector的簡單方法,跟word averaging有點像,但是針對每個字的出現機率做加權,其中 $weight(w) = \frac{a}{a+p(w)}$,a在 $[10^{-3},10^{-4}]$ 之間,最後再把所有sent vec做PCA,並且減去first conponent (類似把所有句子中相同的部分減去,也就是重複出現的詞,以凸顯句子之間的差異)。

■ [参考paper][2] Sequential Matching Network: A New Architecture for Multi-turn Response Selection in Retrieval-based Chatbots [ACL --- 2017 paper] (https://arxiv.org/abs/1612.01627)

Figure 1: Architecture of SMN

paper 大意:將每一上文 (u_1,\ldots,u_n) 分別在**1.剛未進入GRU**前以及**2.已通過GRU**後,做 sequence 之間的 matching,分別得到兩個matching的矩陣,將此二矩陣透過convolution以及pooling做有效的feature extraction,轉為向量後,再通過GRU做冗餘資訊的去除或有用資訊的保留,最後得到prediction。