総合研究大学院大学先端学術院統計科学コース 5年一貫制博士課程入学試験問題

科目 数理

2025年8月5日(火)10:00~12:00

注意事項

- 1. 試験開始の合図まで、この問題冊子を開かないこと.
- 2. 問題は第1問から第4問まである.
- 3. 本冊子に落丁, 乱丁, 印刷不鮮明な箇所などがあった場合には申し出ること.
- 4. 答案用紙4枚が渡されるので、すべての答案用紙について所定の場所に受験番号と 名前を忘れずに記入すること.
- 5. 解答にあたっては、問題ごとに指定された答案用紙を使用すること.書ききれない場合には答案用紙の裏面を使用してもよい.
- 6. 計算用紙3枚が渡されるので, 所定の場所に受験番号と名前を忘れずに記入すること.
- 7. 答案用紙、計算用紙および問題冊子は持ち帰らないこと.

受験番号

A

第1問

次の確率密度関数を考える.

$$f(x) = \frac{1}{\pi} \frac{1}{1 + x^2}, \quad -\infty < x < \infty$$

[問 1] 1 次元標準正規分布に独立に従う 2 つの確率変数 U と V を考える . U/V の従う確率分布の確率密度関数は f(x) であることを示せ.ただし,1 次元標準正規分布の確率密度関数は

$$\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}, \quad -\infty < x < \infty$$

である.

[問 2] ℂで複素数全体の集合を表し,多項式

$$p(z) = z^2 - 2az + 1, \quad z \in \mathbb{C}$$

を考える. a が確率密度関数 f(x) をもつ確率分布に従う実数値確率変数であるとき,方程式 p(z)=0 が実数解をもつ確率を求めよ.

[問 3] 方程式 p(z)=0 が実数解をもたないとき,2 つの複素数解はともに複素数平面の単位円 $\{z\in\mathbb{C}:|z|=1\}$ 上で,実軸について互いに対称な位置にあることを示せ.

[問 4] 方程式 p(z)=0 について,虚部が $\sqrt{2/3}$ 以上の解をもつ確率を求めよ.

第2問

n を正の整数とする. n 次実対称行列 A が正定値であるとは, 任意の 0 でない n 次元実ベクトル x に対して $x^\top Ax>0$ が成り立つことをいう. ここで x^\top は x の転置を表す. いま, n 次実対称行列 A が正定値であるものとする .

[問 1] A のすべての固有値が実数かつ正であることと,A の逆行列 A^{-1} が存在することを示せ.

以下では , A の固有値のうち最大のものと最小のものをそれぞれ M と m で表す . また, $B=A+MmA^{-1}$ とする.

[問 2] 任意の ${\bf 0}$ でない n 次元実ベクトル ${\bf x}$ について次の不等式が成り立つことを示せ .

$$m \leq \frac{\boldsymbol{x}^{\top} A \boldsymbol{x}}{\boldsymbol{x}^{\top} \boldsymbol{x}} \leq M$$

[問3] B のすべての固有値は $2\sqrt{Mm}$ 以上 M+m 以下であることを示せ.

[問 4] 任意の n 次元実ベクトル x について次の不等式が成り立つことを示せ.

$$(\boldsymbol{x}^{\top} A \boldsymbol{x}) (M m \boldsymbol{x}^{\top} A^{-1} \boldsymbol{x}) \leq \frac{1}{4} (M + m)^2 (\boldsymbol{x}^{\top} \boldsymbol{x})^2$$

[問 5] 任意の 0 でない n 次元実ベクトル x について次の不等式が成り立つことを示せ.

$$1 \le \frac{(\boldsymbol{x}^{\top} A \boldsymbol{x})(\boldsymbol{x}^{\top} A^{-1} \boldsymbol{x})}{(\boldsymbol{x}^{\top} \boldsymbol{x})^2} \le \frac{(M+m)^2}{4Mm}$$

第3問

関数 $f: \mathbb{R} \to \mathbb{R}$ が与えられたとき、実数 x^* が f の最小解であるとは、任意の実数 x に対して $f(x^*) \leq f(x)$ となることをいう。いま、関数 f の 1 階の導関数 f' と 2 階の導関数 f'' が存在し、これらが連続であるものとする。さらに、ある定数 $\mu>0$ が存在して、任意の実数 x に対して、 $f''(x) \geq \mu$ が成り立つことも仮定する。

[問 1] x^* が f の最小解であることの必要十分条件が $f'(x^*)=0$ であることを示せ.

[問 2] *f* がただ 1 つの最小解をもつことを示せ.

以下では, f の最小解 x^* を求める解法として, 適当な実数 x_0 を初期点とし, 漸化式

$$x_{k+1} = x_k - \frac{f'(x_k)}{f''(x_k)}$$
 $(k = 0, 1, ...)$

に従って点列 $\{x_k\}$ を生成するものを考える.

[問3] 初期点 x_0 の選び方によらず、任意の非負整数 k について次が成り立つことを示せ.

$$x_{k+1} - x^* = \frac{1}{f''(x_k)} \int_0^1 \{f''(x_k + t(x^* - x_k)) - f''(x_k)\}(x^* - x_k)dt$$

以下では、ある定数 L>0 が存在して、任意の実数 x,y に対して、

$$|f''(x) - f''(y)| \le L|x - y|$$

が成り立つことも仮定する.

[問 4] 初期点 x_0 の選び方によらず、任意の非負整数 k について次が成り立つことを示せ.

$$|x_{k+1} - x^*| \le \frac{L}{2\mu} |x_k - x^*|^2$$

[問 5] 初期点 x_0 を

$$|x_0 - x^*| \le \frac{\mu}{L}$$

A

が成り立つように選ぶ、このとき、任意の非負整数 k について次が成り立つことを示せ.

$$|x_k - x^*| \le \frac{2\mu}{L} \left(\frac{1}{2}\right)^{2^k}$$

第4問

p,n,K を正の整数とし, $1\leq p\leq n$ とする.単位行列を I と書く.(n,p) 型実行列 X,p 次元実ベクトル β および n 次元確率ベクトル ϵ に対して n 次元確率ベクトル Y を

$$\mathbf{Y} = X\beta + \epsilon$$

とする.ただし, ϵ の平均ベクトルを ${\bf 0}$,分散共分散行列を I とする.また, $\lambda>0$ とし,p 次元実ベクトル ${\bf b}$ に対し,関数 $S({\bf b})$ を

$$S(\mathbf{b}) = \|\mathbf{Y} - X\mathbf{b}\|^2 + \lambda \|\mathbf{b}\|^2$$

と定める.ただし,K次元実ベクトル \mathbf{x} の第k成分を x_k とするとき,Jルム $\|\mathbf{x}\|$ は

$$\|\mathbf{x}\| = \sqrt{\sum_{k=1}^K x_k^2}$$

で定義されるものとする. いま, X を与えられた定数行列とし, p 次元のユークリッド空間全体をパラメータ空間としてパラメータ β の推定問題を考える.

[問 1] $S(\mathbf{b})$ を最小にする \mathbf{b} を β_{λ} と書く.確率ベクトル β_{λ} を \mathbf{Y}, X, λ およびI で表し,確率ベクトル β_{λ} の分散共分散行列を求めよ.

[問 2] 確率ベクトル β_{λ} は β の不偏推定量となるか . なるなら λ に対する条件を示し , ならないならそのことを証明せよ .

[問 3] $X^{\top}X=aI$ となる正の実数 a が存在するとする.ここで, X^{\top} は X の転置を表す.このとき,任意の β に対し, β_{λ} の平均二乗誤差 $\mathbb{E}[\|\beta_{\lambda}-\beta\|^2]$ が最小二乗推定量 $\beta_0=(X^{\top}X)^{-1}X^{\top}\mathbf{Y}$ の平均二乗誤差 $\mathbb{E}[\|\beta_0-\beta\|^2]$ より小さくなるような正の実数 λ が存在することを示せ.ただし, $\mathbb E$ は期待値を表す.