

IV Valeurs booléennes :0,1. Opérateurs booléens.

En informatique, un booléen est une variable à deux états (souvent appelés vrai ou faux).

On rencontre des valeurs booléennes quotidiennement : Par exemple lors d'une tentative de communication téléphonique. Pour qu'elle ait lieu, il faut que Emetteur et Récepteur soient à « vrai ».

Cet état est souvent symbolisé informatiquement par 1 (Vrai) ou 0 (Faux)

Les valeurs booléennes sont souvent utilisées dans le cas de test conditionnel en programmation.

1) Opérateurs booléens

Les variables booléennes peuvent être reliées entre elles à l'aide d'opérateurs : AND(et), NOT(non) , OR(ou), XOR (ou exclusif, c'est-à-dire , l'un ou l'autre mais pas les deux simultanément)

Différenciation des deux « ou » : Le premier ou (OR) correspond à celui utilisé dans la phrase « Je viendrai s'il ya un bus ou un taxi ». Le second,(XOR), correspond à : « J'irai à la plage ou à la montagne ».

Avec OR, la fonction booléenne OR(a,b) vaut 1 si **au moins** une des deux valeurs de a ou de b vaut 1.

Avec XOR, la fonction booléenne XOR(a,b) vaut 1 si **uniquement** une des deux valeurs de a ou de b vaut 1.

A l'aide de ces opérateurs, on peut dresser des tables d'expression booléenne.

а	b	NON a	NON b	a AND b	a OR b	a XOR b
0	0	1	1	0	0	0
0	1	1	0	0	1	1
1	0	0	1	0	1	1
1	1	0	0	1	1	0

2) Opérateurs booléens et addition binaire

On a vu comment additionner deux nombres en binaire. Il existe un lien avec les opérateurs booléens.

Α	В	RETENUE R	SOMME S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Quel opérateur permet d'obtenir R?S?

Les opérateurs AND et OR sont séquentiels : si l'évaluation de la première opérande suffit à donner le résultat, la deuxième n'est pas évaluée. Ainsi, si A=0, A AND B=0, sans que B n'ait été évalué.

3) Expressions booléennes

Voici un exemple de fonction booléenne : La fonction multiplexeur, notée mux.

mux(x,y,z)=(not(x) and y)or (x and z)

Х	У	Z	not(x)	not(x) and y	x and z	mux(x,y,z)
0	0	0				
0	0	1				
0	1	0				
0	1	1				
1	0	0				
1	0	1				
1	1	0				
1	1	1				

Remarque : On peut exprimer toutes les fonctions booléennes à l'aide de and, or et not 4) Exercices

- 1) Montrer que (x and y) = not(not(x) or not(y))
- 2) Montrer que (x or y) = not(not(x) and not(y))

3) Trouver l'expression de la fonction ssi (x,y) à l'aide des opérateurs booléens.

Х	У	ssi(x,y)
0	0	1
0	1	0
1	0	0
1	1	1

4) Ecrire des fonctions en langage python correspondant aux opérateurs and, or.

and et or, ainsi que not, sont des instructions en langages python qui fonctionnent comme les opérateurs booléens.

```
def booleen(a,b):
    return( a and b)

>>> booleen(0,1)
0
>>> booleen(0,0)
0
>>> booleen(1,0)
0
>>> booleen(1,1)
1
```