Problem Set 2

Due Feburary 1, 2018

PHY 215B

Problem 1. In the abstract Hilbert space \mathcal{H} , the energy eigenvectors of a particle in an infinite square well of width L are designated by $|E_1\rangle, |E_2\rangle, |E_3\rangle, \ldots$ for the ground state, the first excited state, the second excited state and so on. Suppose that at a given time a particle is in the state

$$|\Psi\rangle = \frac{1}{2} |E_1\rangle - \frac{\sqrt{3}}{2} |E_3\rangle.$$

- (a) Express this state in the x-representation.
- (b) In the Schrödinger picture, how does this state develop in time? What is the state in the Heisenberg picture?
- (c) If an electromagnetic wave is incident onto the square well, find the equation of motion of this state in the interaction picture. Assume that the particle has charge q.

Problem 2. Consider a wave–function, $\Phi_a(\mathbf{r}) = Nxy$, and a rotation of 120° about the z-axis.

- (a) Construct the operator R for the rotation.
- (b) Find a way to apply R on $\Phi_a(\mathbf{r})$ using the active point of view.
- (c) Express $\Phi_a(\mathbf{r})$ in terms of $Y_{\ell m}$'s.
- (d) Do you apply the operator in (b) to the wave function in (c)? If yes, why? If no, why?

Problem 3. Given \hat{x} and \hat{y} as unit vectors for a square,

- (a) Construct matrices for rotations of 90° , 180° and 270° about the z-axis (these matrices are representations of the operators).
- (b) Combine a unit two-dimensional matrix and show these operators form a group and work out the multiplication table for the group.
- (c) To see the origin of the symmetries of the system, work out the Coulomb potentials from four ions at the corners of the square to a small r(x, y, z) from the center of the square, Taylor expand each potential so that the resultant potential is non-vanishing. Show that the potential is invariant under the symmetries in (a). (Show at least two operators.)