Midterm Exam

1. □ Bookmark this page
True or False
4 points possible (graded, results hidden)
Let A , B , and C be events associated with the same probabilistic model (i.e., subsets of a common sample space), and assume that $P\left(C\right)>0$.
For each one of the following statements, decide whether the statement is True (always true), or False (not always true).
1. Suppose that $A \subset C$. Then, $P(A \mid C) \geq P(A)$.
○ True
• False
2. Suppose that $A \subset B$. Then, $P(A \mid C) \leq P(B \mid C)$. True • False
3. Suppose that $P(A) \leq P(B)$. Then, $P(A \mid C) \leq P(B \mid C)$.
○ True
• False
4. Suppose that $A \subset C$, $B \subset C$, and $P(A) \leq P(B)$. Then, $P(A \mid C) \leq P(B \mid C)$.
○ True
False

□ Bookmark this page

A Drunk Person at the Theater

4 points possible (graded, results hidden)

There are n people in line, indexed by $i=1,\ldots,n$, to enter a theater with n seats one by one. However, the first person (i=1) in the line is drunk. This person has lost her ticket and decides to take a random seat instead of her assigned seat. That is, the drunk person decides to take any one of the seats 1 to n with equal probability. Every other person $i=2,\ldots,n$ that enters afterwards is sober and will take his assigned seat (seat i) unless his seat i is already taken, in which case he will take a random seat chosen uniformly from the remaining seats.

Suppose that n=3. What is the probability that person 2 takes seat 2?

(Enter a fraction or a decimal accurate to at least 3 decimal places.)

2/3

Suppose that n = 5. What is the probability that person 3 takes seat 3?

(Enter a fraction or a decimal accurate to at least 3 decimal places.)

0.4667

- 1. P(drunk person selecting correct) + P(2nd person selecting correct | drunk was incorrect) = 1/3 + 1/2 = 5/6 or is it 1/3! ?
- 2.1/5 +
- 3.
- 3.

□ Bookmark this page

Expectation 1

1 point possible (graded, results hidden)

Compute $\mathbf{E}(X)$ for the following random variable X:

X = Number of tosses until getting 4 (including the last toss) by tossing a fair 10-sided die.

 $\mathbf{E}\left(X\right) = \boxed{10}$

Expectation 2

2 points possible (graded, results hidden)

Compute $\mathbf{E}\left(X\right)$ for the following random variable X:

X =Number of tosses until all 10 numbers are seen (including the last toss) by tossing a fair 10-sided die.

To answer this, we will use induction and follow the steps below:

Let $\mathbf{E}\left(i\right)$ be the expected number of additional tosses until all 10 numbers are seen (including the last toss) **given** i **distinct numbers have already been seen**.

1. Find **E** (10).

$$\mathbf{E}(10) = \boxed{}_{1}$$

2. Write down a relation between $\mathbf{E}(i)$ and $\mathbf{E}(i+1)$. Answer by finding the function f(i) in the formula below.

For i = 0, 1, ..., 9:

$$\mathbf{E}(i) = \mathbf{E}(i+1) + f(i)$$

where
$$f(i) = \begin{bmatrix} 10/i & \\ \frac{10}{i} & \\ \end{bmatrix}$$

3. Finally, using the results above, find $\mathbf{E}\left[X\right]$.

(Enter an answer accurate to at least 1 decimal place.)

$$\mathbf{E}\left[X\right] = \begin{bmatrix} 29.29 \end{bmatrix}$$

4.

□ Bookmark this page

Conditional Independence 1

4 points possible (graded, results hidden)

Suppose that we have a box that contains two coins:

- 1. A fair coin: P(H) = P(T) = 0.5.
- 2. A two-headed coin: $\mathbf{P}(H) = 1$.

A coin is chosen at random from the box, i.e. either coin is chosen with probability 1/2, and tossed twice. Conditioned on the identity of the coin, the two tosses are independent.

Define the following events:

- ullet Event A: first coin toss is H.
- Event B: second coin toss is H.
- $\bullet \ \ {\hbox{\bf Event}} \ {\hbox{\bf C}\hbox{:}} \hbox{ two coin tosses result in } HH.$
- ullet Event D: the fair coin is chosen.

For the following statements, decide whether they are true or false.

1. $\emph{\textbf{A}}$ and $\emph{\textbf{\textbf{B}}}$ are independent.

2. $oldsymbol{A}$ and $oldsymbol{C}$ are in	ndependent.
True	
○ False	
3. $m{A}$ and $m{B}$ are in	ndependent given $oldsymbol{D}.$
True	
○ False	
4. \emph{A} and \emph{C} are in	ndependent given $oldsymbol{D}$.
True	
○ False	
Conditional Inde	ependence 2
2 points possible (grade	d, results hidden)
1. Suppose three	e random variables X,Y,Z have a joint distribution
	$\mathbf{P}_{X,Y,Z}(x, y, z) = \mathbf{P}_{X}(x) \mathbf{P}_{Z\mid X}(z\mid x) \mathbf{P}_{Y\mid Z}(y\mid z).$
Then, X and Y	$m{Z}$ are independent given $m{Z}$.
○ True	
• False	
2. Suppose rand	om variables X and Y are independent given Z , then the joint distribution must be of the form
	$\mathbf{P}_{X,Y,Z}(x,y,z) = h(x,z)g(y,z),$
where h,g are	e some functions.
True	
○ False	
5.	
☐ Bookmark this page	
Variance of Diff	erence of Indicators
2 points possible (grade	d, results hidden)
Let \boldsymbol{A} be an event, ar the indicator of anoth	and let I_A be the associated indicator random variable (I_A is 1 if A occurs, and zero if A does not occur). Similarly, let I_B be ner event, B . Suppose that $P(A) = p$, $P(B) = q$, and $P(A \cap B) = r$.
Find the variance of	I_A-I_B , in terms of p,q,r .
$Var(I_A - I_B) =$	(-p)^2 - (q^2) + (2*p*q) + p - q
	$(-p)^2 - (q^2) + (2 \cdot p \cdot q) + p - q$ $(-p)^2 - (q^2) + (2 \cdot p \cdot q) + p - q$

☐ Bookmark this page

For all problems on this page, use the following setup:

Let ${\it N}$ be a positive integer random variable with PMF of the form

$$p_N(n) = \frac{1}{2} \cdot n \cdot 2^{-n}, \qquad n = 1, 2, \dots.$$

Once we see the numerical value of N, we then draw a random variable K whose (conditional) PMF is uniform on the set $\{1, 2, \dots, 2n\}$.

Joint PMF

1 point possible (graded, results hidden)

Write down an expression for the joint PMF $p_{N,K}$ (n,k).

For n = 1, 2, ... and k = 1, 2, ..., 2n:

$$p_{N,K}(n,k) = \frac{(1/4)*2^{-n}}{\left(\frac{1}{4}\right) \cdot 2^{-n}}$$

Since K has uniform PMF of 2n therefore probability of each one is 1/2n

Marginal Distribution

1.5 points possible (graded, results hidden)

Find the marginal PMF $p_K(k)$ as a function of k. For simplicity, provide the answer **only for the case when** k **is an even number**. (The formula for when k is odd would be slightly different, and you do not need to provide it).

 $\textit{Hint:} \ \text{You may find the following helpful:} \ \sum_{i=0}^{\infty} r^i = \frac{1}{1-r} \ \text{for} \ 0 < r < 1.$

For k = 2, 4, 6, ...:

$$p_K(k) = \frac{1}{1/2^{\wedge}((k/2)+1)}$$

$$\frac{1}{2^{(\frac{k}{2})+1}}$$

Discrete PMFs

2 points possible (graded, results hidden)

Let A be the event that K is even. Find P(A|N=n) and P(A).

$$P(A \mid N = n) =$$

$$P(A) = \frac{1}{2^{(\frac{k}{2})+1}}$$

Independence 2

0.5 points possible (graded, results hidden)

Is the event A independent of N?

) yes
o no
onot enough information to determine