Organizacja i Architektura Komputerów. Egzamin, termin 1, 22.6.2020 Czas: 24h. Używanie kalkulatorów: zabronione. Do notatek służy druga strona kartki. Przejrzysty zapis obliczeń ułatwia mi rozstrzyganie przypadków niejednoznacznych. Życzę Wam powodzenia – Piotr Patronik Numer indeksu:				
wypełnienia: Niech h_i oznaczają cyfry szesnastkowe numeru indeksu.				
1. (4p) Jest dany procesor o 4-bitowym słowie rozkazowym i poniższym kodowaniu rozkazów, w którym czas wykonania każdej mikrooperacji wynosi 250ps. Zapisać program w postaci mnemoników. Zobrazować i podać czas wykonania 6 rozkazów (zapisanych szesnastkowo): h_1 , h_3 , 0xFE, h_0 , h_4 dwóch przypadkach: (i) procesor jest w pełni sekwencyjny, (ii) mikrooperacje (F, W), (F, E), (D, W) mogą być wykonane równocześnie w potoku.				
Kod	Zapis	Operacja	Mikrooperacje	
ii v 1	ld \$v, %ri	$ri \leftarrow v$	FDW	
ii j 0	add %ri, %rj	$rj \leftarrow ri+rj$	FDREW	
2. (5p) Jest dana liczba binarna $(1+bbbb\cdot 2^{-23}+3\cdot 2^{-23})\cdot 2^{-2d}$ gdzie $bbbb$ to 4 najmłodsze bity, zaś d to najmłodsza cyfra dziesiętna numeru indeksu. Zapisać tę liczbę w postaci zgodnej z normą IEEE 754, a następnie obliczyć (i zapisać jw.) sześcian tej liczby korzystając z przybliżenia $(1\pm x)^{1/2}\approx 1\pm 1/2x$ dla $x\approx 1$. Omówić (2 zd.) użyty schemat zaokrąglania.				
3. (3p) Omówić różnice pomiędzy sumatorem CLA a PPA.				
4. (5p) Jest dany fragment kodu pewnego procesu w systemie z segmentacją stronicowaną, z modelem programowym x86. Niech rozkaz rand (będący rozszerzeniem modelu) ładuje rejestr wartością zmiennej losowej wg rozkładu jednostajnego z przedziału od 0 do wartości z rejestru. Jaki powinien być minimalny rozmiar segmentu danych tego procesu?				
mov \$(h0*15+2), %eax mov \$0x10000, %ebx mul %ebx mov %eax, %ebx mov \$-1, %ecx				
begin:				
mov %ebx, %eax rand %eax				
mov %eax, (%eax) loop begin				
5. (4p) Wymienić z przykładami tryby adresowania architektury x86				
mov	, ,			ADDR =
	,			ADDR =
mov	,			ADDR =
	·			ADDR =
	·			ADDR =
mov				
6. (4p) Przedstawić: h_0 mod 2=0: zasady ochrony zasobów procesu, h_0 mod 2=1: metody wspomagania ochrony na				
poziomie architektury.				