TD 11 Suites numériques

Exercice 1: ★

Soit (u_n) une suite convergente. La suite $(|u_n|)$ est-elle convergente?

Exercice 2: ★★

On pose, pour tout $n \in \mathbb{N}$, $I_n = \int_0^1 \frac{x^n}{1+x} dx$.

- (1) Montrer que $\lim_{n \to +\infty} I_n = 0$.
- (2) Calculer, pour tout $n \in \mathbb{N}$, $I_n + I_{n+1}$.
- (3) Déterminer $\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{(-1)^{k+1}}{k}$.

Exercice 3: *

Déterminer les limites des suites suivantes, $n \in \mathbb{N} - \{0,1\}, x \in \mathbb{R}$:

a.
$$u_n = \sqrt{n+1} - \sqrt{n}$$

b.
$$u_n = \frac{n - (-1)^n}{n + (-1)^n}$$

c.
$$u_n = \sqrt[n]{2 + (-1)}$$

d.
$$u_n = \frac{\sin r}{n}$$

e.
$$u_n = \frac{1}{n^2} \sum_{k=1}^n \lfloor kx \rfloor$$

f.
$$u_n = \sum_{k=1}^n \frac{n}{n^2 + k}$$

g.
$$u_n = \sum_{k=1}^{2n+1} \frac{1}{\sqrt{n^2 + k}}$$

a.
$$u_n = \sqrt{n+1} - \sqrt{n}$$
 b. $u_n = \frac{n - (-1)^n}{n + (-1)^n}$ c. $u_n = \sqrt[n]{2 + (-1)^n}$ d. $u_n = \frac{\sin n}{n}$ e. $u_n = \frac{1}{n^2} \sum_{k=1}^n \lfloor kx \rfloor$ f. $u_n = \sum_{k=1}^n \frac{n}{n^2 + k}$ g. $u_n = \sum_{k=1}^{2n+1} \frac{1}{\sqrt{n^2 + k}}$ h. $u_n = \sum_{k=1}^{n^2} \frac{1}{\sqrt{n^2 + k}}$ i. $u_n = \frac{1}{n^4} \sum_{k=1}^n k^2$ j. $u_n = \left(1 + \frac{x}{n}\right)^n$ k. $u_n = \left(\frac{n-1}{n}\right)^{n^2}$ l. $u_n = \frac{n!}{n^n}$

i.
$$u_n = \frac{1}{n^4} \sum_{k=1}^n k^2$$

$$j. u_n = \left(1 + \frac{x}{n}\right)^n$$

k.
$$u_n = \left(\frac{n-1}{n}\right)^n$$

$$1. \ u_n = \frac{n!}{n^n}$$

Exercice 4: ★

Étudier la suite de terme général $u_n = \frac{n \sin n}{n^2 + 1}$.

Exercice 5: ★

Étudier la convergence des suites suivantes :

$$u_n = \frac{n^2 i^n}{n^3 + 1}$$

$$v_n = \frac{1}{n} + (-1)^n i$$

$$w_n = \frac{n}{n+3i} - \frac{ni}{n+1}$$

$$u_n = \frac{n^2 i^n}{n^3 + 1} \qquad v_n = \frac{1}{n} + (-1)^n i \qquad w_n = \frac{n}{n + 3i} - \frac{ni}{n + 1} \qquad x_n = \frac{n^2 i - in + 1 - 3i}{(2n + 4i - 3)(n - i)}$$

Exercice 6: *

Déterminer les limites des suites de terme général :

$$(1) u_n = \sqrt[n]{n}$$

$$(2) u_n = \left(\frac{n-1}{n+1}\right)^{n+2}$$

$$(3) \ u_n = n^2 \left(\cos \frac{1}{n} - \cos \frac{1}{n+1} \right)$$

$$(4) \ u_n = \left(\frac{\ln(n+1)}{\ln n}\right)^{n\ln n}$$

(5)
$$u_n = \left(\frac{\sqrt[n]{2} + \sqrt[n]{3} + \sqrt[n]{4}}{3}\right)^n$$

(6)
$$u_n = \left(\frac{\operatorname{Arctan}(n+1)}{\operatorname{Arctan}n}\right)^{n^2}$$
.

Exercice 7: ★★

Étudier la convergence de la suite $(|a^n|^{1/n})$ où a > 0.

Exercice 8: ***, Moyenne arithmético-géométrique

Soient $a \leq b$ deux réels strictement positifs. On définit deux suites réelles $(a_n)_{n \in \mathbb{N}}$ et $(b_n)_{n \in \mathbb{N}}$ par :

$$a_0 = a$$
, $b_0 = b$, et $\forall n \in \mathbb{N}, a_{n+1} = \sqrt{a_n b_n}$ et $b_{n+1} = \frac{a_n + b_n}{2}$

- (1) Montrer que ces deux suites sont bien définies et termes positifs.
- (2) Montrer que $\forall n \in \mathbb{N}, a_n \leq b_n$.
- (3) Montrer que $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ convergent vers la même limite.

Exercice 9: ★★★

Soient pour tout $n \in \mathbb{N}^*$, $S_n = \sum_{k=1}^n \frac{1}{k}$, $u_n = S_n - \ln n$ et $v_n = S_n - \ln(n+1)$.

- (1) Montrer que pour tout $n \in \mathbb{N}^*$, $\frac{1}{n+1} \le \ln\left(\frac{n+1}{n}\right) \le \frac{1}{n}$.
- (2) Montrer que les suites $(u_n)_{n\in\mathbb{N}^*}$ et $(v_n)_{n\in\mathbb{N}^*}$ sont adjacentes.
- (3) En déduire l'existence de $\gamma \in \mathbb{R}$ tel que $\sum_{k=1}^{n} \frac{1}{k} = \ln n + \gamma + o(1)$ (γ est appelée la constante d'Euler).
- (4) Donner un équivalent de S_n et sa limite en $+\infty$.
- (5) Déterminer la limite de $\left(\sum_{k=n}^{2n} \frac{1}{k}\right)_{n \in \mathbb{N}^*}$.
- (6) Écrire un programme dans le langage de votre choix permettant de calculer $\sum_{k=n}^{2n} \frac{1}{k}$. Donner les 5 premières décimales de γ .

Exercice 10: ★★★

Soit $(u_n)_{n\in\mathbb{N}}\in(\mathbb{R}_+^*)^{\mathbb{N}}$. On suppose que $\left(\frac{u_{n+1}}{u_n}\right)_{n\in\mathbb{N}}$ converge vers une limite l.

- (1) Si l < 1, montrer que $(u_n)_{n \in \mathbb{N}}$ converge vers 0.
- (2) Si l > 1, monter que $(u_n)_{n \in \mathbb{N}}$ diverge vers $+\infty$.
- (3) Que dire quand l = 1?

Exercice 11: **, convergence au sens de Cesàro

Soit $(u_n)_{n\geq 1}$ une suite de réels convergente, de limite ℓ . On pose

$$\forall n \in \mathbb{N}^*, \ v_n = \frac{1}{n} \sum_{i=1}^n u_i.$$

Le but de l'exercice est de prouver le théorème de Cesàro qui énonce que la suite (v_n) converge vers ℓ .

- (1) On suppose que $\ell = 0$. Montrer en utilisant la définition (avec ε) que la suite (v_n) converge vers 0.
- (2) On suppose à présent que $\ell \neq 0$. Comment peut-on ramener l'étude au cas précédent?
- (3) La réciproque du théorème de Cesàro est-elle vraie?

Exercice 12: ★★★

Soit (u_n) une suite de réels vérifiant

$$\forall n \in \mathbb{N}^*, \ \forall k \in \mathbb{N}^*, \ u_n \le \frac{1}{k} + \frac{k}{n}.$$

Montrer que (u_n) converge vers 0.

Exercice 13: ★★

Soit (u_n) une suite telle que les trois suites extraites (u_{2n}) , (u_{2n+1}) et (u_{3n}) convergent. Montrer que la suite (u_n) converge.

Exercice 14: **

On donne deux réels a et b et la suite u définie pour tout n supérieur à la plus garnde racine du polynôme $X^2 + aX + b$ par

$$u_n = \sqrt{n^2 + 3n + 7} - \sqrt{n^2 + an + b}.$$

Montrer que la suite u converge et déterminer sa limite.

Exercice 15: ★★

Soient $(x_n)_{n\in\mathbb{N}}$ et $(y_n)_{n\in\mathbb{N}}$ deux suites réelles telles que :

$$\begin{cases} x_{n+1} = \frac{1}{2}(x_n - y_n) \\ y_{n+1} = \frac{1}{2}(x_n + y_n) \end{cases}$$

En étudiant la suite de terme général $z_n = x_n + iy_n$, donner une expression des termes généraux des suites (x_n) et (y_n) , ainsi que leur limite.

Exercice 16: ★★

Soient a et b deux réels, u et v deux suites vérifiant pour tout n, $u_n \le a$, $v_n \le b$ et telles que $\lim u_n + v_n = a + b$. Montrer que u converge vers a et v converge vers b.

Exercice 17: ★★★

Soit u une suite de réels strictement positifs telle que $\sqrt[n]{u_n} \longrightarrow \ell$.

- (1) Montrer que si $\ell < 1$, alors $u_n \longrightarrow 0$.
- (2) Montrer que si $\ell > 1$, alors $u_n \longrightarrow +\infty$.

Exercice 18: ★★★

Soit $k \in]0,1[$.

- (1) Montrer que l'équation $x k \sin x + 1 = 0$ admet une unique racine a dans l'intervalle $[-\pi, 0]$.
- (2) On considère la suite réelle (x_n) définie par

$$\left\{ \begin{array}{l} x_0 \in \mathbb{R} \setminus \{a\} \\ \forall n \in \mathbb{N}, \ x_{n+1} = k \sin x_n - 1. \end{array} \right.$$

Montrer que pour tout n, $|x_{n+1} - a| \le k|x_n - a|$. En déduire que (x_n) converge et déterminer sa limite.

Exercice 19: ★★★ suites de Cauchy

On dit d'une suite (u_n) qu'elle est de Cauchy si

$$\forall \varepsilon > 0, \ \exists N \in \mathbb{N}, \ \forall p > N, \ \forall q > N, \ |u_p - u_q| \le \varepsilon.$$

- (1) Montrer que toute suite convergente est de Cauchy.
- (2) Montrer que toute suite de Cauchy est bornée.
- (3) On veut prouver la réciproque : toute suite de Cauchy converge. Soit donc (a_n) une suite de Cauchy. Pour tout n, on pose

$$b_n = \sup\{a_p \mid p \ge n\}.$$

- (a) Montrer que la suite (b_n) converge. On note a sa limite.
- (b) Soit $\varepsilon > 0$. Justifer l'existence d'un entier N tel que

$$b_N \le a + \varepsilon \text{ et } \forall p, n \ge N, \ a_p \le a_n + \frac{\varepsilon}{2}.$$

(c) Montrer que

$$\forall n \ge N, \ a - \varepsilon \le b_N - \frac{\varepsilon}{2} \le a_n \le b_N \le a + \varepsilon.$$

Conclure.

Exercice 20: ★★★

Soit u une suite réelle.

- (1) On suppose que u est croissante et qu'elle admet une sous-suite majorée. Montrer que u converge.
- (2) On suppose que u n'est pas majorée. Montrer qu'elle admet une sous-suite qui tend vers $+\infty$.

Exercice 21: ★★★

Soit u une suite. On dit que ℓ est une valeur d'adhérence de u s'il existe une sous-suite de u qui converge vers ℓ .

- (1) Quelles sont les valeurs d'adhérence d'une suite convergente?
- (2) Donner un exemple de suite qui diverge et qui possède une unique valeur d'adhérence.
- (3) Prouver que si u est bornée et divergente, alors u a au moins 2 valeurs d'adhérence.

Exercice 22: ★★

On considère la suite (u_n) définie par

$$\left\{ \begin{array}{l} u_0=0\\ u_1=1\\ \forall n\in\mathbb{N},\ u_{n+2}=\frac{u_{n+1}+u_n}{2}. \end{array} \right.$$

Exprimer u_n en fonction de n puis donner un équivalent simple de u_n .

Exercice 23: ★★★

Étudier le comportement asymptotique des suites suivantes.

- (1) $u_0 \in]0,1|$ et $\forall n \in \mathbb{N}, u_{n+1} = \sin(u_n).$
- (2) $u_0 \in]0,1|$ et $\forall n \in \mathbb{N}, u_{n+1} = \cos(u_n).$
- (3) $u_0 \in \mathbb{R}$ et $\forall n \in \mathbb{N}, u_{n+1} = u_n^2$.
- (4) $u_0 \in \mathbb{R} \text{ et } \forall n \in \mathbb{N}, \ u_{n+1} = u_n^2 + 1.$
- (5) $u_0 \in \mathbb{R}et \forall n \in \mathbb{N}, \ u_{n+1} = \frac{1}{2+u_n}$.
- (6) $u_0 \in \mathbb{R}^+$ et $\forall n \in \mathbb{N}, \ u_{n+1} = 1 + \frac{1}{4}u_n^2$.
- (7) $u_0 \in]0,1[$ et $\forall n \in \mathbb{N}, \ u_{n+1} = \frac{u_n}{2-u_n}.$
- (8) $u_0 \in [-2, 2]$ et $\forall n \in \mathbb{N}, \ u_{n+1} = \sqrt{2 u_n}$

Exercice 24: ★

Donner l'expression du terme général des suites suivantes.

- (1) $u_0 = 0, u_1 = 1 + 4i, \forall n \in \mathbb{N}, u_{n+2} = (3 2i)u_{n+1} (5 5i)u_n.$
- (2) $u_0 = 1, u_1 = 0$ et $\forall n \in \mathbb{N}, u_{n+2} = 4u_{n+1} 4u_n$
- (3) $u_0 = 1, u_1 = -1 \text{ et } \forall n \in \mathbb{N}, 2u_{n+2} = 3u_{n+1} u_n$
- (4) $u_0 = 1, u_1 = 2$ et $\forall n \in \mathbb{N}, u_{n+2} = u_{n+1} u_n$.

Exercice 25: ★★★

Pour tout entier $n \ge 1$, on considère le polynôme $P_n = X^n + X^{n-1} + \dots + X - 1$.

- (1) Montrer que pour tout $n \geq 1$, P_n possède une unique racine positive, que l'on note u_n .
- (2) Montrer que (u_n) est décroissante puis qu'elle converge.
- (3) Démontrer que pour tout $n \ge 1$, $u_n \ge \frac{1}{2}$.
- (4) Soit $\rho \in]1/2, 1[$. Montrer que $\lim_{n \to +\infty} P_n(\rho) > 0$.
- (5) Démontrer que (u_n) converge vers $\frac{1}{2}$

Exercice 26: ★★★

On dit qu'une suite (u_n) converge au sens de Cesàro si la suite $\left(\frac{1}{n}\sum_{k=1}^n u_k\right)$ converge. Ce problème étudie le lien entre convergence au sens usuel et convergence au sens de Ceesàro.

On admet que si une suite converge vers ℓ , alors elle converge aussi au sens de Cesàro vers ℓ .

Partie 1

On considère la suite (x_n) définie par

$$x_1 = 1 \text{ et } \forall n \in \mathbb{N}^*, \ x_{n+1} = \frac{x_n(1+x_n)}{1+2x_n}.$$

- (1) Montrer que pour tout $n \in \mathbb{N}^*$, x_n existe et $0 < x_n < 1$.
- (2) Montrer que (x_n) est décroissante.

- (3) La suite (x_n) est-elle convergente? Si oui, déterminer sa limite.
- (4) Vérifier que pour tout $n \in \mathbb{N}^*$, $\frac{1}{x_{n+1}} \frac{1}{x_n} = \frac{1}{1+x_n}$.
- (5) On pose pour tout $n \in \mathbb{N}^*$, $u_n = \frac{1}{x_{n+1}} \frac{1}{x_n}$ et $v_n = \frac{1}{n} \sum_{k=1}^n u_k$. Montrer que (u_n) converge vers 1.
- (6) Exprimer, pour tout $n \in \mathbb{N}^*$, v_n en fonction de x_{n+1} et de x_1 . En déduire un équivalent simple de (x_n) .

Partie 2

Soit (y_n) une suite réelle.

- (1) On suppose que (y_n) converge. Montrer que la suite $(y_{n+1} y_n)$ converge.
- (2) On suppose que la suite $(y_{n+1}-y_n)$ converge vers un nombre réel ℓ .
 - (a) Montrer que la suite $\left(\frac{y_n}{n}\right)$ converge et préciser sa limite.
 - (b) Étudier la convergence de la suite (y_n) dans le cas où $\ell \neq 0$.
 - (c) Dans le cas où $\ell = 0$, la suite (y_n) est-elle nécessairement convergente?

Partie 3

Soit a un nombre réel. On pose, pour tout $n \ge 1$, $u_n = \sin(na)$ et $v_n = \frac{1}{n} \sum_{k=1}^n u_k$.

- (1) Étudier la nature des suites (u_n) et (v_n) lorsque $a = 0[\pi]$.
- (2) Pour $n \ge 1$, on pose $c_n = \cos(na)$. Exprimer $u_{n+2} u_n$ en fonction de c_{n+1} et $u_{n+2} + u_n$ en fonction de u_{n+1} .
- (3) On suppose dans cette question que $a \neq 0[\pi]$.
 - (a) On fait l'hypothèse que la suite (u_n) converge. En utilisant les deux relations établies à la question 2, démontrer que la suite (c_n) converge également et préciser les limites des suites (u_n) et (c_n) .
 - (b) Conclure quant à la convergence de la suite (u_n) .
 - (c) En remarquant que $\sin(na) = \text{Im}(e^{ika})$, montrer que la suite (v_n) converge et donner la valeur de sa limite.

Partie 4

Dans cette partie, on suppose que la suite (u_n) est croissante et que la suite $(v_n) = \left(\frac{1}{n}\sum_{k=1}^n u_k\right)$ converge.

(1) Démontrer, pour tout $n \ge 1$, l'inégalité

$$nu_{n+1} \le \sum_{k=n+1}^{2n} u_k.$$

- (2) En déduire que pour tout $n \ge 1$, $u_{n+1} \le 2v_{2n} v_n$.
- (3) Établir la convergence de la suite (u_n) et préciser sa limite.
- (4) Énoncer la propriété ainsi démontrée sous la forme d'un condition néessaire et suffisante.