演習問題 5.3

二項ヒープのmerge とdeleteMin がO(log n) 償却時間で実行されることを示す。

物理学者法のアプローチで書きます。

merge

マージする2つのヒープに含まれる木の数をそれぞれ t_1, t_2 とする。

また、2つのヒープの要素数の和をnとする。

merge の呼び出しには $t_1 + t_2 + k$ かかる。

ただしkは link の呼び出し回数で、 $\max(t_1,t_2) \geq k$ を満たす。

merge 後の木の個数は t_1+t_2-k となる。

このとき償却コストは $(t_1+t_2+k)+(t_1+t_2-k)-(t_1+t_2)=t_1+t_2$ となる。

merge 前の要素数の和と merge 後の要素数は等しくnであるため、

 $t_1 + t_2 - k$ は n の2進表記における 1 の数に等しい。

よって、 $t_1+t_2-k \leq \log_2 n$ であり、 $\max(t_1,t_2) \geq k$ から k は t_1+t_2 のオーダーに影響しないので、 t_1+t_2 は $O(\log n)$ となる。

deleteMin

ヒープに含まれる木の数をtとする。

deleteMin の呼び出しでは、 removeMinTree の呼び出しに伴う t 回の走査と、 reverse に伴う t_1 回の走査、木の数が $t_1, t-1$ であるような 2 つのヒープのマージ、そして t_2 回の link の呼び出しが発生する。

すなわち呼び出しコストは $t+t_1+(t_1+t-1)+k=2t+2t_1+k-1$

ただし、 $t_1 < t$ を満たす。

呼び出し後の木の数は、t-1-kとなる。

このとき償却コストは $(2t+2t_1+k-1)+(t-1-k)-t=2t+2t_1-2<4t-2$

t は n の2進表記における 1 の数に等しく、償却コストは t の定数倍に収まるので、

償却コストは $O(\log n)$ となる。