苏州大学《线性代数》课程试卷库(第二十卷)共4页

年级______ 学号_____ 姓名_____日期____

题号	 \equiv	\equiv	四	五.	六	七	八
得分							

- 一、填空题: (每题 3 分, 共 30 分)
- 1、设A,B 都是 3 阶矩阵,且 $A = \begin{pmatrix} \alpha \\ 2\gamma_1 \\ 3\gamma_2 \end{pmatrix}$, $B = \begin{pmatrix} \beta \\ \gamma_1 \\ \gamma_2 \end{pmatrix}$,其中 $\alpha,\beta,\gamma_1,\gamma_2$ 均为 3 维

行向量,|A|=15,|B|=3,则行列式|A-B|=_____。

2、已知方阵 A 满足 $aA^2+bA+cE=0$ (其中 a,b,c 为常数,且 $c\neq 0$),则

 $A^{-1} = \underline{\hspace{1cm}}_{\circ}$

3、设
$$\begin{vmatrix} 1 & 1 & 0 & 0 \\ 1 & k & 1 & 0 \\ 0 & 0 & k & 2 \\ 0 & 0 & 2 & k \end{vmatrix} \neq 0$$
,则 k 应满足_____。

- 4 、 设 β,α_1,α_2 线 性 相 关 , β,α_2,α_3 线 性 无 关 , 则 $\beta,\alpha_1,\alpha_2,\alpha_3$ 线 性 _____。
- 5、设 $\alpha_1 = (1, 1, 1)$, $\alpha_2 = (a, 0, b)$, $\alpha_3 = (1, 3, 2)$ 线性相关,则a,b应满足关系式_____。
- 6、设A满足 $A^2 + 2A + E = 0$,则A的特征值为_____。
- 7、设A为n阶方阵,r(A) = n 3, $\alpha_1, \alpha_2, \alpha_3$ 是齐次线性方程组Ax = 0的三个线性无关的解向量,则Ax = 0的一个基础解系为 ________。
- 8、设 A 是 3×4 阶矩阵,r(A) = 2, $B = \begin{pmatrix} 0 & 2 & -1 \\ 1 & 1 & 2 \\ -1 & -1 & -1 \end{pmatrix}$,则 $r(BA) = \underline{\qquad}$ 。
- 9、设方阵 $A = \begin{pmatrix} 1 & -2 & -4 \\ -2 & 4 & -2 \\ -4 & -2 & 1 \end{pmatrix}$ 相似于对角矩阵 $\begin{pmatrix} 5 & & \\ & t & \\ & & -4 \end{pmatrix}$,则 $t = \underline{\qquad \qquad }$ 。

10、设有一个四元非齐次线性方程组 Ax=b, r(A)=3, $\alpha_1,\alpha_2,\alpha_3$ 为其解向量,

且 $\alpha_1 = (1, 9, 9, 7)^T$, $\alpha_2 + \alpha_3 = (1, 9, 9, 8)^T$, 则 此 方 程 组 的 一 般 解 为

二、
$$(10 分)$$
 计算 n 阶行列式 $\begin{vmatrix} -n & 1 & \cdots & 1 & 1 \\ 1 & -n & \cdots & 1 & 1 \\ \vdots & \vdots & & \vdots & \vdots \\ 1 & 1 & \cdots & -n & 1 \\ 1 & 1 & \cdots & 1 & -n \end{vmatrix}$

三、(10 分)设矩阵
$$B = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$
, $C = \begin{pmatrix} 2 & 1 & 3 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$ 矩阵 X 满足

 $X(E-C^{-1}B)^TC^T=E$, 求: 矩阵 X

四、
$$(10 分)$$
 设矩阵 $A = \frac{1}{2} \begin{pmatrix} 1 & 2a & 1 \\ -1 & \sqrt{2} & 2b \\ \sqrt{2} & 2c & -\sqrt{2} \end{pmatrix}$,问当 a,b 为何值时, A 为正交矩阵;

此时利用正交矩阵性质,求解线性方程组 $Ax = (1, 1, 1)^T$.

五、(10 分) 给定线性方程组
$$\begin{cases} x_1 + x_2 + (2-\lambda)x_3 = 1 \\ (3-2\lambda)x_1 + (2-\lambda)x_2 + x_3 = \lambda \\ (2-\lambda)x_1 + (2-\lambda)x_2 + x_3 = 1 \end{cases}$$

讨论λ取何值时,方程组无解?有唯一解?有无穷多解?在有解时,求出其解。

六、 $(10\, \, \, \, \, \, \,)$ 设向量组: $\alpha_1 = \begin{pmatrix} 1, & 1, & 3, & 1 \end{pmatrix}^T$, $\alpha_2 = \begin{pmatrix} -1, & 1, & -1, & 3 \end{pmatrix}^T$ $\alpha_3 = \begin{pmatrix} 5, & -2, & 8, & -9 \end{pmatrix}^T$, $\alpha_4 = \begin{pmatrix} -1, & 3, & 1, & 7 \end{pmatrix}^T$, 求向量组的秩和一个极大线性无关组。

七、(10分) 设矩阵
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 5 \end{pmatrix}$$
, 求 A 的特征值和特征向量

八、证明题: $(10 \, \text{分})$ 设向量组 $\alpha_1, \alpha_2, \alpha_3$ 线性无关, $\beta_1 = \alpha_1 - \alpha_2$, $\beta_2 = 2\alpha_1 + 3\alpha_2 + 2\alpha_3, \quad \beta_3 = \alpha_1 + 3\alpha_2 + 2\alpha_3, \quad \text{证明:} \quad \beta_1, \beta_2, \beta_3$ 线性无关.