MAT257 RSG 2

Rishibh Prakash

3 October, 2021

- 1. We say that a collection of subsets $\{A_{\alpha}\}$ has the *finite intersection* property if any finite intersection of element in the collection is non-empty.
 - (a) Give an example of a collection of closed subsets in X = (0, 1) with the finite intersection property such that their intersection is empty (*Note:* A set F is closed in a subset X if $F = X \cap E$ where E is closed in \mathbb{R}^n).
 - (b) Show that a space X is compact if and only if for any collection $\{F_{\alpha}\}$ of closed subsets of X with the finite intersection property, we have that

$$\bigcap_{\alpha} U_{\alpha} \neq \phi$$

2. The following is one my favourite statements from linear algebra. We partially answered it in the past two 257 homeworks but we can certainly generalise things.

Let V be a (possibly infinite dimensional) inner product space and let $T:V\to V$ be a linear operator. Show that the following are all equivalent:

- (a) T is bounded (i.e there exists some M>0 such that $|T(h)|\leq M|h|)$
- (b) T is continuous at 0
- (c) T is continuous at a point
- (d) T is continuous everywhere
- 3. Daddy Dror mentioned that in order to find find derivatives of limit points in a non-necessarily-open set you find an extension of the function where you *can* take the derivative and take this to be the differen-

tial. This of course requires that all eligible extensions agree on what the derivative should be. Let us formalise this and prove it.

Let A be a not-necessarily-open subset of \mathbb{R}^n and let $a \in A$ be a limit point. Suppose we are give a map $f: A \to \mathbb{R}^m$. Let U, V be open sets containing a and $g: U \to \mathbb{R}^m$ and $h: V \to \mathbb{R}^m$ such that f(x) = g(x) = h(x) for all $x \in U \cap V \cap A$. Suppose additionally that g and h are differentiable at a. Show that g'(a) = h'(a). Show that it may not be true that g(x) = h(x) for all $x \in U \cap V$.

- 4. Show that if $f: \mathbb{R}^n \to \mathbb{R}^n$ is continuous, then its graph Γ_f is closed in \mathbb{R}^{2n} . Does the converse hold?
- 5. Now that we have continuity, we should show that some of our basic functions are continuous. Show that the projection maps $\pi_i : \mathbb{R}^n \to \mathbb{R}$, given by $\pi_i(x_1, \dots, x_n) = x_i$ are continuous.

We also have natural maps going the other way, namely the inclusion maps. Define $\iota : \mathbb{R} \to \mathbb{R}^n$, given by $\iota(x) = (x, 0, \dots, 0)$. Is ι continuous?

- 6. (Pederson, Analysis Now, E 1.4.6) Given $f: \mathbb{R}^2 \to \mathbb{R}$, we say that f is separately continuous in each variable if for every $x', y' \in \mathbb{R}$, the maps $f_{x'}(y) = f(x', y)$ and $f_{y'}(x) = f(x, y')$ are continuous.
 - (a) Show if $f: \mathbb{R}^2 \to \mathbb{R}$ is continuous, then f is separately continuous in each variable
 - (b) Show that $f: \mathbb{R}^2 \to \mathbb{R}$ being separately continuous on each variable does *not* imply that f is continuous. (*Hint:* Consider www.math3d.org/OR9Feg3Y)
- 7. (Our lord and saviour Saied) Suppose we have a map $f: \mathbb{R} \to \mathbb{R}^n$.
 - (a) Show that there exist $f_1 \dots, f_n : \mathbb{R} \to \mathbb{R}^n$ such that

$$f(x) = (f_1(x), \dots, f_n(x))$$

- (b) Show that f is continuous if and only if all the f_1, \ldots, f_n are continuous.
- 8. Show that there is no continuous map from \mathbb{R} onto S^1 (i.e. surjective map), where $S^1 = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$ (*Hint:* There's a one line answer!).
- 9. Show that there is a continuous, bijective function from \mathbb{R} to $S^1 \setminus \{(1,0)\}$.