Let $A \subseteq \mathbb{R}$ be countable and let $\mathbf{a}: A \longrightarrow \mathbb{R}$ be an injection. For each $d \in \mathbb{R}^+$ let $A_{(d)} = \{a \in A \mid a+d \in A\}$. Define functions $\mathbf{a}_{(d)}: A_{(d)} \longrightarrow \mathbb{R} \setminus \{0\}$ by

$$\mathbf{a}_{(d)}(a) = \mathbf{a}(a+d) - \mathbf{a}(a).$$

If each $\mathbf{a}_{(d)}$ is injective then call \mathbf{a} a countable partial directed T_{∞} -terrace on \mathbb{R} . We call each $\mathbf{a}_{(d)}$ the partial $T_{(d)}$ -sequencing corresponding to \mathbf{a} .

Let G be a group of order 2^{\aleph_0} that has no involutions and identity element e. For a bijection $\mathbf{a}: \mathbb{R} \longrightarrow G$ define a function $\mathbf{a}_{(d)}: \mathbb{R} \longrightarrow G \setminus \{e\}$ for each $d \in \mathbb{R}^+$ by

$$\mathbf{a}_{(d)}(i) = \mathbf{a}(i)^{-1}\mathbf{a}(i+d).$$

If each $\mathbf{a}_{(d)}$ is a bijection then \mathbf{a} is a directed T_{∞} -terrace for G.

Theorem 1. Assume CH.¹ The group $(\mathbb{R}, +)$ has a directed T_{∞} -terrace $\mathbf{g} : \mathbb{R} \longrightarrow \mathbb{R}$.

Proof. Consider the poset \mathbb{P} consisting of conditions which are countable partial directed T_{∞} -terraces on \mathbb{R} partially ordered so that $\mathbf{a} \leq \mathbf{c}$ (following convention in set theory, we say \mathbf{a} is stronger than \mathbf{c}) if and only if dom $\mathbf{c} \subseteq \text{dom } \mathbf{a}$ and $\mathbf{a} \upharpoonright \text{dom } \mathbf{c} = \mathbf{c}$.

Need to establish:

- 1. \mathbb{P} is countably closed: Suppose we have an decreasing chain of countable partial directed T_{∞} -terraces on \mathbb{R} . Then the union of all of them is a countable partial directed T_{∞} -terrace on \mathbb{R} .
- 2. It is dense to add a real number r to the domain of a condition in \mathbb{P} : i.e., for each $r \in \mathbb{R}$, the set $D_r = \{\mathbf{d} \in \mathbb{P} \mid r \in \text{dom } \mathbf{d}\}$ is dense. To see this, let $\mathbf{a} \in \mathbb{P}$ with domain A. Choose $r \in \mathbb{R} \setminus A$. We need to find $\mathbf{d} \in D_r$ satisfying $\mathbf{d} \leq \mathbf{a}$. But in order to find such a \mathbf{d} , first we must ensure that $\mathbf{d}(r) \neq \mathbf{a}(a)$ for each $a \in A$. Secondly, for each pair $a, a + d \in A$, we must ensure that

$$\mathbf{a}(a+d) - \mathbf{a}(a) \neq \mathbf{a}(r+d) - \mathbf{d}(r)$$

if $r + d \in A$, that

$$\mathbf{a}(a+d) - \mathbf{a}(a) \neq \mathbf{d}(r) - \mathbf{a}(r-d)$$

if $r - d \in A$, and if both r - d, $r + d \in A$ then

$$\mathbf{a}(r+d) - \mathbf{d}(r) \neq \mathbf{d}(r) - \mathbf{a}(r-d).$$

As A and the ranges of \mathbf{a} and $\mathbf{a}_{(d)}$ are countable, the set of values to rule out for $\mathbf{d}(r)$ is at most countable, and we just need to make sure it's not one of those values. As \mathbb{R} is uncountable, this can be done.

3. It is dense to add a real number r to the range of a condition in \mathbb{P} : i.e., for each $r \in \mathbb{R}$, the set $E_r = \{\mathbf{e} \in \mathbb{P} \mid r \in \text{range } \mathbf{e}\}$ is dense. Again the idea should be that we only have to avoid countably many scenarios, but we have room in \mathbb{R} for that. Choose $r \in \mathbb{R} \setminus \text{range } \mathbf{a}$. We need to find $\mathbf{e} \in E_r$ satisfying $\mathbf{e} \leq \mathbf{a}$. This amounts to finding $\overline{r} \notin A = \text{dom } \mathbf{a}$ so that we can let $\mathbf{d}(\overline{r}) = r$, subject to the further restriction that if some element of A happens to have the form $\overline{r} + d$ (or $\overline{r} - d$) for some $d \in \mathbb{R}^+$, then $\mathbf{e}(\overline{r} + d) - \mathbf{e}(\overline{r}) \neq \mathbf{a}(a + d) - \mathbf{a}(a)$ (or $\mathbf{e}(\overline{r} - d) - \mathbf{e}(\overline{r}) \neq \mathbf{a}(a + d) - \mathbf{a}(a)$) for all $a \in A$ with $a + d \in A$. All of our searches here involve checking against what is already in A or the range of \mathbf{a} , both of which are countable, and as \mathbb{R} is uncountable we are able to find such values.

1

¹Even without assuming CH in the ground model, the forcing poset $\mathbb P$ in the construction will force CH and the existence of such a terrace in the forcing extension.

- 4. For each $d \in \mathbb{R}^+$ it is dense to add a real number r to the domain of a condition's partial $T_{(d)}$ -sequencing: This is captured by 2., since we may add both r and d+r to the domain of a condition.
- 5. For each $d \in \mathbb{R}^+$ it is dense to add a real number r to the range of a condition's partial $T_{(d)}$ -sequencing: In other words, we would like to show that for each $r \in \mathbb{R}$ and each $d \in \mathbb{R}^+$, the set $F_r^d = \left\{ \mathbf{f} \in \mathbb{P} \mid r \in \mathrm{range}\,\mathbf{f}_{(d)} \right\}$ is dense in \mathbb{P} . To see this, fix $d \in \mathbb{R}^+$ and let $r \in \mathbb{R}$. Let $\mathbf{a} \in \mathbb{P}$, and suppose that $r \notin \mathrm{range}\,\mathbf{a}_{(d)}$. We want to see that it is possible to extend \mathbf{a} to a condition $\mathbf{f} \in F_r^d$ such that $r = \mathbf{f}(\overline{r} + d) \mathbf{f}(\overline{r})$ for some $\overline{r} \in \mathbb{R}$. This amounts to finding a suitable \overline{r} . First we need \overline{r} to be so that neither \overline{r} nor $\overline{r} + d$ are in $A = \mathrm{dom}\,\mathbf{a}$. Then we need to ensure that $\mathbf{f}(\overline{r}), \mathbf{f}(\overline{r} + d) \notin \mathrm{range}\,\mathbf{a}$, and also that $r = \mathbf{f}(\overline{r} + d) \mathbf{f}(\overline{r})$. It must also be the case that for any $a \in A$, we have that

$$\mathbf{f}(\overline{r}) - \mathbf{a}(a) \notin \text{range } \mathbf{a}_{(\overline{r}-a)}, \ \mathbf{a}(a) - \mathbf{f}(r) \notin \text{range } \mathbf{a}_{(a-\overline{r})},$$

$$\mathbf{f}(\overline{r}+d) - \mathbf{a}(a) \notin \text{range } \mathbf{a}_{(\overline{r}+d-a)}, \ \mathbf{a}(a) - \mathbf{f}(\overline{r}+d) \notin \text{range } \mathbf{a}_{(a-\overline{r}-d)}.$$

Moreover, we can't inadvertently mess up another sequencing. In particular, whenever we have that $\overline{r} + l, \overline{r} + d + l \in \text{dom } A$, we must have that

$$\mathbf{a}(\overline{r}+l) - \mathbf{f}(\overline{r}) \neq \mathbf{a}(\overline{r}+d+l) - \mathbf{f}(\overline{r}+d),$$

meaning that

$$g = \mathbf{f}(\overline{r} + d) - \mathbf{f}(\overline{r}) \neq \mathbf{a}(\overline{r} + d + l) - \mathbf{a}(\overline{r} + l).$$

This contradicts $g \notin \text{range } \mathbf{a}_{(d)}$. Dually, we need that whenever $\overline{r} - l, \overline{r} - d - l \in \text{dom } A$, we must have that

$$\mathbf{f}(\overline{r}) - \mathbf{a}(\overline{r} - l) \neq \mathbf{f}(\overline{r} + d) - \mathbf{a}(\overline{r} + d - l),$$

which again contradicts $g \notin \text{range } \mathbf{a}_{(d)}$. Since we have only eliminated countably many options, as we are restricted by A and its image under \mathbf{a} , we have plenty of room to choose such an \overline{r} as desired.

We may find a filter $\mathcal{G} \subseteq \mathbb{P}$ which meets the family of dense sets

$$\mathcal{D} = \{ D_r \mid r \in \mathbb{R} \} \cup \{ E_r \mid r \in \mathbb{R} \} \cup \{ F_r^d \mid d \in \mathbb{R}^+, r \in \mathbb{R} \}$$

because $|\mathcal{D}| = \aleph_1$ as CH holds, and since the forcing axiom for countably closed forcing is true. To see this, we may construct a sequence of \mathbf{g}_{α} 's enabling the filter to be defined by

$$\mathcal{G} = \{ \mathbf{f} \in \mathbb{P} \mid \mathbf{f} \geq \mathbf{g}_{\alpha} \text{ for some } \alpha < \omega_1 \}$$

by transfinite induction. The idea is to start meeting each of the dense sets in \mathcal{D} one-by-one, ensuring that the filter is closed downward. Enumerate the dense sets as $\mathcal{D} = \langle \mathcal{D}_{\alpha} \mid \alpha < \omega_1 \rangle$. Let $\mathbf{g}_0 \in \mathcal{D}_0$. Then at stage $n \leq \omega$, let $\mathbf{g}_n \leq \mathbf{g}_{n-1}$ satisfy $\mathbf{g}_n \in \mathcal{D}_n$. Density allows us to continue the construction through all successor stages. At limit stages, say $\lambda < \omega_1$, we use the fact that \mathbb{P} is countably closed to find a condition strengthening the chain of our constructed \mathbf{g}_{α} s for $\alpha < \gamma$, and then strengthen this condition to obtain $\mathbf{g}_{\lambda} \in \mathcal{D}_{\lambda}$.

By construction, $\cup G$ defines a function $\mathbf{g}: \mathbb{R} \longrightarrow \mathbb{R}$ with the desired properties.

- 1. **g** is a bijection: This is ensured by meeting, for each $r \in \mathbb{R}$, the dense sets D_r for injectivity and for meeting E_r for each $r \in \mathbb{R}$ for surjectivity.
- 2. For each $d \in \mathbb{R}^+$, $\mathbf{g}_{(d)}$ is a bijection: This is ensured by item 4. above and the dense sets F_r^d for each $r \in \mathbb{R}$.

Question 2. Is it possible to have a directed T_{∞} -terrace on \mathbb{R} and $\neg \mathsf{CH}$?

From the footnote, just using the above forcing won't answer this question. After forcing with $\mathbb P$, it is possible to add a bunch of reals and make CH fail, but then we have reals not accounted for in the terrace, so it's not a full terrace on $\mathbb R$ anymore. So then the question is, if you force, say, $2^{\aleph_0}=\aleph_2$, is there a way to build up the terrace we had on ω_1 (when this had the same size as $\mathbb R$) to ω_2 ? Without forcing CH to hold again? In this case the indexing set for the old terrace, which is now a partial terrace, would be a subset of $\mathbb R$, presumably. And looks like $\langle \mathbb R, + \rangle$ I guess?

Question 3. Let G be an abelian group of size continuum with infinitely many non-involutions. Does G have a directed T_{∞} -terrace?

The better way to phrase this might be to go ahead and ask about groups of size \aleph_1 . Just to make the statement as general as possible. In that case we need a generalized notion of index sets so we can define terraces. I am going to assume it makes some sense to have an index set be an ordered field (or maybe group but field seems easier).

By an index set I for G we mean an ordered field that has the same size as G, and I^+ is all of the elements of the ordered field that are greater than 0.

Let G be a group of order κ with identity element e. For a bijection $\mathbf{a}: I \longrightarrow G$ define a function $\mathbf{a}_{(d)}: I \longrightarrow G \setminus \{e\}$ for each $d \in I^+$ by

$$\mathbf{a}_{(d)}(i) = \mathbf{a}(i)^{-1}\mathbf{a}(i+d).$$

If each $\mathbf{a}_{(d)}$ is a bijection then \mathbf{a} is a directed T_{∞} -terrace for G.

Let G be a group of size \aleph_1 and let I be an index set for G. Let $A \subseteq I$ be countable, with $\mathbf{a}: A \longrightarrow G$ an injection. For each $d \in I^+$ let $A_{(d)} = \{a \in A \mid a+d \in A\}$. Define functions $\mathbf{a}_{(d)}: A_{(d)} \longrightarrow G \setminus \{e\}$ by

$$\mathbf{a}_{(d)}(a) = \mathbf{a}(a)^{-1}\mathbf{a}(a+d).$$

If each $\mathbf{a}_{(d)}$ is injective then call \mathbf{a} a countable partial directed T_{∞} -terrace on \mathbb{R} . We call each $\mathbf{a}_{(d)}$ the partial $T_{(d)}$ -sequencing corresponding to \mathbf{a} .

Theorem 4. Let G be an abelian group of size \aleph_1 with \aleph_1 -many non-involutions. Then G has a directed T_{∞} -terrace.

Proof. Let I be an index set for G. Consider the poset \mathbb{P} consisting of conditions which are partial directed T_{∞} -terraces on G partially ordered so that $\mathbf{a} \leq \mathbf{c}$ if and only if $\operatorname{dom} \mathbf{c} \subseteq \operatorname{dom} \mathbf{a}$ and $\mathbf{a} \upharpoonright \operatorname{dom} \mathbf{c} = \mathbf{c}$.

Need to establish:

- 1. \mathbb{P} is countably closed: Suppose we have an decreasing chain of countable partial directed T_{∞} -terraces on G. Then the union of all of them is a countable partial directed T_{∞} -terrace on G.
- 2. It is dense to add a value to the domain of a condition in \mathbb{P} : i.e., for each $i \in I$, the set $D_i = \{\mathbf{d} \in \mathbb{P} \mid i \in \text{dom } \mathbf{d}\}$ is dense. To see this, let $\mathbf{a} \in \mathbb{P}$ with domain A. Choose $i \in I \setminus A$. We need to find $\mathbf{d} \in D_i$ satisfying $\mathbf{d} \leq \mathbf{a}$. But in order to find such a \mathbf{d} , first we must ensure that $\mathbf{d}(i) \neq \mathbf{a}(a)$ for each $a \in A$. Secondly, for each pair $a, a + d \in A$, where $d \in I^+$, we must ensure that each of the following are not equal to each other:

$$\mathbf{a}(a)^{-1}\mathbf{a}(a+d) \neq \mathbf{d}(i)^{-1}\mathbf{a}(i+d)$$

 $\neq \mathbf{a}(i-d)^{-1}\mathbf{d}(i)$

if i + d and/or $i - d \in A$.

(Insert more of a justification here about G being such-and-such.) As A and the ranges of \mathbf{a} and $\mathbf{a}_{(d)}$ are countable, the set of values to rule out for $\mathbf{d}(i)$ is at most countable, and we just need to make sure it's not one of those values. As I is uncountable, this can be done.

- 3. It is dense to add a group member the range of a condition in \mathbb{P} : i.e., for each $g \in G$, the set $E_g = \{\mathbf{e} \in \mathbb{P} \mid g \in \text{range } \mathbf{e}\}$ is dense. Again the idea should be that we only have to avoid countably many scenarios, but we have room in G for that. Choose $g \in G \setminus \text{range } \mathbf{a}$. We need to find $\mathbf{e} \in E_g$ satisfying $\mathbf{e} \leq \mathbf{a}$. This amounts to finding $i \notin A = \text{dom } \mathbf{a}$ so that we can let $\mathbf{d}(i) = g$, subject to the further restriction that if some element of A happens to have the form i + d (or i d) for some $d \in I^+$, then $\mathbf{e}(i)^{-1}\mathbf{a}(i+d) \neq \mathbf{a}(a)^{-1}\mathbf{a}(a+d)$ (or $\mathbf{a}(i-d)^{-1}\mathbf{e}(i) \neq \mathbf{a}(a)^{-1}\mathbf{a}(a+d)$) for all $a \in A$ with $a+d \in A$. If both i+d and i+d are in A for $d \in I^+$, we also must have that $\mathbf{a}(i-d)^{-1}\mathbf{e}(i) \neq \mathbf{e}(i)^{-1}\mathbf{a}(i+d)$. All of our searches here involve checking against what is already in A or the range of \mathbf{a} , both of which are countable, and as G is uncountable we are able to find such values.
- 4. For each $d \in I^+$ it is dense to add an element $i \in I$ to the domain of a condition's partial $T_{(d)}$ -sequencing: This is captured by 2., since we may add both i and d+i to the domain of a condition.
- 5. For each $d \in I^+$ it is dense to add a group member to the range of a condition's partial $T_{(d)}$ -sequencing: In other words, we would like to show that for each $g \in G$ and each $d \in I^+$, the set $F_q^d = \{ \mathbf{f} \in \mathbb{P} \mid g \in \text{range } \mathbf{f}_{(d)} \}$ is dense in \mathbb{P} .

To see this, fix $d \in I^+$ and let $g \in G$. Let $\mathbf{a} \in \mathbb{P}$, and suppose that $g \notin \text{range } \mathbf{a}_{(d)}$. We want to see that it is possible to extend \mathbf{a} to a condition $\mathbf{f} \in F_g^d$ such that $g = \mathbf{f}(i)^{-1}\mathbf{f}(i+d)$ for some $i \in I$. This amounts to finding a suitable i, so first of all we choose i so that neither i, i+d, nor i-d are in $A = \text{dom } \mathbf{a}$. Of course then we need to ensure that $\mathbf{f}(i), \mathbf{f}(i+d) \notin \text{range } \mathbf{a}$, and $g = \mathbf{f}(i)^{-1}\mathbf{f}(i+d)$.

We need to have that for each pair $a, a + l \in A$, then:

$$\mathbf{f}(i)^{-1}\mathbf{a}(i+l) \neq \mathbf{a}(a)^{-1}\mathbf{a}(a+l) \neq \mathbf{a}(l-i)^{-1}\mathbf{f}(i)$$

whenever i + l or l - i happen to be in A, and

$$\mathbf{f}(i+d)^{-1}\mathbf{a}(i+d+l) \neq \mathbf{a}(a)^{-1}\mathbf{a}(a+l) \neq \mathbf{a}(l-i-d)^{-1}\mathbf{f}(i+d)$$

if l + i + d and/or l - i - d happen to be in A.

Moreover, we can't inadvertently mess up another sequencing. In particular, whenever we have that $i+l, i+d+l \in \text{dom } A$, we must have that

$$\mathbf{f}(\overline{r})^{-1}\mathbf{a}(i+l) \neq \mathbf{f}(i+d)^{-1}\mathbf{a}(i+d+l),$$

meaning that

$$g = \mathbf{f}(i+d)^{-1}\mathbf{f}(i) \neq \mathbf{a}(i+l)^{-1}\mathbf{a}(i+d+l).$$

Since G is abelian, this contradicts $g \notin \text{range } \mathbf{a}_{(d)}$. Dually, we need that whenever $i - l, i - d - l \in \text{dom } A$, we must have that

$$\mathbf{a}(i-l)^{-1}\mathbf{f}(i) \neq \mathbf{a}(i+d-l)^{-1}\mathbf{f}(i+d),$$

which again contradicts $g \notin \text{range } \mathbf{a}_{(d)}$.

Since we have only eliminated countably many options, as we are restricted by A and its image under \mathbf{a} , we have plenty of room in I to choose such an i as desired.

We may find a filter $\mathcal{G} \subseteq \mathbb{P}$ which meets the family of dense sets

$$\mathcal{D} = \{ D_i \mid i \in I \} \cup \{ E_g \mid g \in G \} \cup \{ F_q^d \mid d \in I^+, g \in G \}$$

because $|\mathcal{D}| = \aleph_1$ as CH holds, and since the forcing axiom for countably closed forcing is true. To see this, we may construct a sequence of \mathbf{g}_{α} 's enabling the filter to be defined by

$$G = \{ \mathbf{f} \in \mathbb{P} \mid \mathbf{f} \geq \mathbf{g}_{\alpha} \text{ for some } \alpha < \omega_1 \}$$

by transfinite induction. The idea is to start meeting each of the dense sets in \mathcal{D} one-by-one, ensuring that the filter is closed downward. Enumerate the dense sets as $\mathcal{D} = \langle \mathcal{D}_{\alpha} \mid \alpha < \omega_1 \rangle$. Let $\mathbf{g}_0 \in \mathcal{D}_0$. Then at stage $n \leq \omega$, let $\mathbf{g}_n \leq \mathbf{g}_{n-1}$ satisfy $\mathbf{g}_n \in \mathcal{D}_n$. Density allows us to continue the construction through all successor stages. At limit stages, say $\lambda < \omega_1$, we use the fact that \mathbb{P} is countably closed to find a condition strengthening the chain of our constructed \mathbf{g}_{α} s for $\alpha < \gamma$, and then strengthen this condition to obtain $\mathbf{g}_{\lambda} \in \mathcal{D}_{\lambda}$.

By construction, $\cup G$ defines a function $\mathbf{g}: I \longrightarrow G$ with the desired properties.

- 1. **g** is a bijection: This is ensured by meeting, for each $i \in I$, the dense sets D_i for injectivity and E_g for each $g \in G$ for surjectivity.
- 2. For each $d \in I^+$, $\mathbf{g}_{(d)}$ is a bijection: This is ensured by item 4. above and the dense sets F_g^d for each $g \in G$.

Question 5. Can we extend the definition of T_{∞} -terraces and so on to groups that have size bigger than 2^{\aleph_0} ?

We would need to write down exactly what we should mean by an index set. Graphs with distinguished nodes (so that distances are unique)? Clearly I should look at the Hilton-Wojciechowski paper.