

Tutorial Introduction to models and data: HIV in Harare

Reshma Kassanjee
University of Cape Town
SACEMA

MMED 2023

Harare, Zimbabwe

HIV prevalence during 1980-2012

Pregnant women attending antenatal clinics

Hargrove et al. Epidemics 2011

South Africa

https://www.nicd.ac.za/wp-content/uploads/2021/11/Antenatal-survey-2019-report_FINAL_27April21.pdf

You are going to model this data!

Outline

- Recap of two relevant methodological principles
- More background on the data and setting
- The goals of the exercise
- Discuss the first model that you will be fitting

... leave you to play

Model world: a (often simpler) representation of the real world

Model world: a (often simpler) representation of the real world

Does not need to exactly capture every mechanism of the real world

complex ← simple

Difficult to:
 implement model,
 interpret results,
 obtain inputs, ...

 May not be able to accurately answer

 Aim: find the simplest model that can adequately answer your question

Outputs from your model should be consistent with available data

 E.g. HIV prevalence survey estimates should be 'close' to the modelled prevalence in the population at those times

Not aligned
 — model world is not adequately describing your real world

 If there is misfit, this could be caused by an incorrect structure of model or incorrect inputs

- Various methods for trying to ensure or check whether your model fits the data
- Today, we will be checking 'by eye'

Prevalence (y) over time (x)

You are going to model this data!

Contents lists available at ScienceDirect

Epidemics

journal homepage: www.elsevier.com/locate/epidemics

Declining HIV prevalence and incidence in perinatal women in Harare, Zimbabwe

^a Zvitambo Project, Harare, Zimbabwe

John Hargrove and Brian Williams

^b Ministry of Health and Child Welfare, AIDS & TB Unit, Harare Zimbabwe

^c SACEMA, Stellenbosch University, South Africa

^d Department of Paediatrics, University of Zimbabwe

^e Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA

^f WHO, Geneva, Switzerland

The data: Prevalence

Surveys of pregnant women attending nine antenatal clinics in different years

n = 22684

The data: disease-related mortality

Total mortality from records provided by the City of Harare

From 1980 to before the HIV epidemic: declining mortality

Extracted trends for disease-related mortality

The data: incidence

 Two estimates from two cohort studies of pregnant women (conducted in 1991 and 1993)

The data – can we find a model?

What you will be doing...

- You will start with the simplest possible model, with the smallest number of parameters
- You will not be surprised to find that you do not get a good fit the data
- You should try to reflect on why
- Then try a slightly more complex model (adding one feature)
- Reassess

What you will be doing...

- Use prevalence data, checking the fit 'by eye'
- Shiny app (by Carl Pearson and Juliet Pulliam) you do not need to the do the model implementation!

The first model

$$N = S + I$$

b = per capita birth rate

 $\lambda =$ effective contact rate

 δ = disease induced mortality hazard

 $\mu = per$ capita background mortality rate

The basic model

The first model

- Understand the model
- Try out different values for the inputs
- Compare model outputs to data points

$$N = S + I$$

b = per capita birth rate

 $\lambda =$ effective contact rate

 δ = disease induced mortality hazard

 $\mu = per$ capita background mortality rate

The basic model

Instructions

- Groups of <4 people
- Think about what it all means, answer the questions, and discuss
- When done with Harare, try the other two datasets (South Africa, Uganda)
- Can also look at the model code

ICI3D::hivTutorial()

You should have already done this:

remotes::install_github('ICI3D/ici3d-pkg')

This presentation is made available through a Creative Commons Attribution-Noncommercial license. Details of the license and permitted uses are available at http://creativecommons.org/licenses/by-nc/3.0/

© 2014-2023 International Clinics on Infectious Disease Dynamics and Data Introduction to modelling changes in HIV prevalence and incidence in Harare, Zimbabwe

Attribution: J. Hargrove, B. Williams, R. Kassanjee Clinic on the Meaningful Modeling of Epidemiological Data

For further information please contact figshare@ici3d.org.

