



FIG. 1



FIG. 2



FIG. 3

|       |                                                                 |
|-------|-----------------------------------------------------------------|
| Rat   | CCCTTTGCCTCCCTGCTCTGCCCTCGCAGCTACCGCACRCGATGCACCCCCAAGGCCCGC    |
| Human | TCCTCCGCCCTCCAGCTCCGCCGCTGCCGCCAGCCGGAGCCATGCGACCCAGGGCCCG      |
|       | 70 80 90 100 110 120                                            |
| Rat   | 140 150 160 170 180 190                                         |
| Human | CCGCCTCCCCACAGCTGCTCGGCCCTTCCTGTGCTACTGCTGCTCTGCAGCTGT          |
|       | CCGCCTCCCCCAGCGGCCCTCCGCCGCTCT-----GCTGCTCTGCTGCTGCAGCTGC       |
| Rat   | 130 140 150 160 170                                             |
| Human | CCGGCCGCCAGCGCTCTGAGATCCCCAAGGGTAAGGAAAGGAAAGGCCAGCTCCGGCAGA    |
|       | 180 190 200 210 220 230                                         |
| Rat   | 260 270 280 290 300 310                                         |
| Human | CCGCAGCGCTGAGCGCTCTGAGATCCCCAAGGGTAAGGAAAGGCCAGCTCCGGCAGA       |
|       | 200 210 220 230 240 250                                         |
| Rat   | GGGAAGTGGTAGACCTGATAATGGGATGCTCTACAAGGACAGCAGGAGTCCCTGGTC       |
| Human | GGGAGGTGGTAGGACCTGATAATGGAATGTGCTTACAAGGGCAGCAGGAGTGCCTGGTC     |
|       | 240 250 260 270 280 290                                         |
| Rat   | 320 330 340 350 360 370                                         |
| Human | GCGATGGGAGCCCTGGGCAATGGCATTCTGGCACACCGGAATCCAGGTCGGGATG         |
|       | 300 310 320 330 340 350                                         |
| Rat   | 380 390 400 410 420 430                                         |
| Human | GAGACGGGAGCCCTGGGCAATGGCATTCCGGTACACCTGGATCCAGGTCGGGATG         |
|       | 360 370 380 390 400 410                                         |
| Rat   | 440 450 460 470 480 490                                         |
| Human | GATTCAAAGGAGAGAAAAGGGGAGTCTTAAGGGAAAGCTTGAGGAATCTGGACCCCAA      |
|       | 420 430 440 450 460 470                                         |
| Rat   | AATGTACATTACAAAAGATGCGATCCAACAGCGCTCTCGACTTCTGTCAGTGGCTCGC      |
| Human | AGTGTACATTACAAAAGATGCGTTCAAATAGTGTCTAAAGAGTTTGTTCAGTGGCTCAC     |
|       | 480 490 500 510 520 530                                         |
| Rat   | 560 570 580 590 600 610                                         |
| Human | TTCGGCTCAAATGCGAGGATGCTGTCAGCCTGGTGTGTTACCTTAAATGGAGCTG         |
|       | 540 550 560 570 580 590                                         |
| Rat   | 620 630 640 650 660 670                                         |
| Human | TTCTGGTACAGGACCTCTCCCATGAAAGCTATCATCTATGGACCAAGGAAGCCCTGAGT     |
|       | 600 610 620 630 640 650                                         |
| Rat   | 680 690 700 710 720 730                                         |
| Human | AATGTTCAAGGACCTTCCCATGAAAGCTATCATCTATGGACCAAGGAAGCCCTGAGT       |
|       | 660 670 680 690 700 710                                         |
| Rat   | 740 750 760 770 780 790                                         |
| Human | GTCGCTGGACTGGTAGACGTGGCATCTGGTCGGCACCTGTTAGCATTACCCAAAGGAG      |
|       | 720 730 740 750 760 770                                         |
| Rat   | 800 810 820 830 840 850                                         |
| Human | GTCGCTGGATTAGTGGATGTTGCTATCTGGGTTGGCACTTGTTCAGATTACCCAAAGGAG    |
|       | 780 790 800 810 820 830                                         |
| Rat   | 860 870 880 890 900 910                                         |
| Human | ACCCCTCTACTGGTGGAACTCTGTCGGCATCATCATTGAAGAACTACCCAAATAAA        |
|       | 840 850 860 870 880 890                                         |
| Rat   | 920 930 940 950 960 970                                         |
| Human | ATGCTCTACTGGATGGAATTCTCGTCAGTTCTCGCATCATTATTGAAGAACTACCCAAATAAA |
|       | 890 900 910 920 930 940                                         |
| Rat   | 980 990 1000 1010 1020 1030                                     |
| Human | ACTTAAATGACATTTCAGAAGTCATTATGTGCTCAGCCAAATGAAAAAGCAAAGTTAA      |
|       | 950 960 970 980 990 1000                                        |
| Rat   | 1040 1050 1060 1070 1080                                        |
| Human | ATTAAATGACATTTCAGAAGTCATTATGTGCTCAGCCAAATGAAAAAGCAAAGTTAA       |
|       | 1010 1020 1030 1040 1050 1060                                   |
| Rat   | 1090 1100 1110 1120 1130                                        |
| Human | CTTCAACCAAAAGTGGTTCAATATTGGTAAATCTTAGTGGTAAATACTTCTCATGTCA      |
|       | 1070 1080 1090 1100 1110 1120                                   |
| Rat   | 1140 1150 1160 1170 1180                                        |
| Human | -----AGCTTATATAACCGGAATGCTGTTATAGCTTAAATATTCCTACT-GTTGA         |
|       | 1190 1200 1210                                                  |
| Rat   | -CATTGAAACA--TATAAAGTTATG--TCTTGTAAAGAGCTGTATA-----GAATT        |
| Human | GCATTTTAAAGGAAATATAAAAGCTACCAATCTTGTACAATTGTAAATGTTAAGAATT      |
|       | 1130 1140 1150 1160 1170 1180                                   |
| Rat   | ATTTT---ATATGTTAAATAAA---TGCTTCAAACAA                           |
| Human | TTTTTATATCTGTTAAATAAAATTATTCACAAACAA                            |
|       | 1190 1200 1210 1220                                             |

FIG. 4A

|            |                                                                                                                              |     |
|------------|------------------------------------------------------------------------------------------------------------------------------|-----|
| Rat: 1     | MHPQGRAASPQLLLGLFLVLLLLQLSAPSSASENPVKQKALIRQREVVVDLYNGMCLQG<br>M+PQG+AASPQ+L+GL+++LLLLQL+APSSASE+PK+KQKA++RQREVVVDLYNGMCLQG  | 60  |
| Human: 1   | MRPQGPAASPQRLRGL--LLLLLQLPAPSSASEIPKGKQKAQLRQREVVDLYNGMCLQG                                                                  | 58  |
| Rat: 61    | PAGVPGRDGSPGANGIPGTPGIPGRDGFKGEKGECLRESFEESWTPNYKQCSWSSLNYGI<br>PAGVPGRDGSPGANGIPGTPGIPGRDGFKGEKGECLRESFEESWTPNYKQCSWSSLNYGI | 120 |
| Human: 59  | PAGVPGRDGSPGANGIPGTPGIPGRDGFKGEKGECLRESFEESWTPNYKQCSWSSLNYGI                                                                 | 118 |
| Rat: 121   | DLGKIAECTFTKMRNSNSALRVLFGSLSRLKCRNACCRWYFTFNGAECGPLPIEAIYL<br>DLGKIAECTFTKMRNSNSALRVLFGSLSRLKCRNACCRWYFTFNGAECGPLPIEAIYL     | 180 |
| Human: 119 | DLGKIAECTFTKMRNSNSALRVLFGSLSRLKCRNACCRWYFTFNGAECGPLPIEAIYL                                                                   | 178 |
| Rat: 181   | DQGSPELNSTINIHRRTSSVEGLCEGIGAGLVDVAIWVGTCSDYPKGDASTGWNNSRIII<br>DQGSPE+NSTINIHRRTSSVEGLCEGIGAGLVDVAIWVGTCSDYPKGDASTGWNNSRIII | 240 |
| Human: 179 | DQGSPEMNSTINIHRRTSSVEGLCEGIGAGLVDVAIWVGTCSDYPKGDASTGWNNSRIII                                                                 | 238 |
| Rat: 241   | EELPK 245<br>EELPK                                                                                                           |     |
| Human: 239 | EELPK 243                                                                                                                    |     |

FIG. 4B

MRPAAELGQTLSRAGLCRPLCLLLCASQLPHTMHPQGRAASPQLLLGLFLVLLLLQL  
SAPSSASENPVKVKQKALIRQREVVDLYNGMCLQGPAGVPGRDGSPGANGIPGTPGIPG  
RDGFKGEGECLRESFEESWTPNYKQCSWSSLNYGIDLGKIAECTFTKMRNSNSALRVL  
FSGSLRLKCRNACCQRWYFTFNGAECSGPLPIEAIYLDQGSPELNSTINIHRTSSVE  
GLCEGIGAGLVDVAIWVGTCSDYPKGDASTGWNVSRSIIIEELPK

**FIG. 4C**



FIG. 5



FIG. 6

**ATG** GCCCCAAGG CCGCGCCGCC TCCCCACAGC TGCTGCTCGG CCTCTTCGTT GTGCTACTGC  
TGCTTCTGCA GCTGTCCGCG CCGTCCAGCG CCTCTGAGAA TCCCAAGGTG AAGCAAAAAG  
CGCTGATCCG GCAGAGGGAA GTGGTAGACC TGTATAATGG GATGTGCCTA CAAGGACCAG  
CAGGAGTTCC TGGTCGCGAT GGGAGCCCTG GGGCCAATGG CATTCTGGC ACACCGGGAA  
TCCCAGGTGCG GGATGGATTCAAAAGGAGAGA AAGGGGAGTG CTTAAGGGAA AGCTTGAGG  
AATCCTGGAC CCCAAACTAC AAGCAGTGT CATGGAGTTTC ACTTAATTAT GGCATAGATC  
TTGGGAAAAT TCGGAAATGT ACATTACAA AGATGCGATC CAACAGCGCT CTTCGAGTTC  
TGTTCACTGG CTCGCTTCGG CTCAAATGCA GGAATGCTTG CTGTCAACGC TGGTATTTTA  
CCTTTAATGG AGCTGAATGT TCAGGACCTC TTCCCATTGA AGCTATCATC TATCTGGACC  
AAGGAAGCCC TGAGTTAAAT TCAAACATTA ATATTCACTCG TACTTCCTCC GTGGAAGGAC  
TCTGTGAAGG GATTGGTGCT GGACTGGTAG ACGTGGCCAT CTGGGTGGC ACCTGTTCAAG  
ATTACCCCAA AGGAGACGCT TCTACTGGGT GGAATTCTGT GTCCCCATC ATCATTGAAG  
AACTACCAAA A

**FIG. 7**



FIG. 8



FIG. 9



FIG. 10



FIG. 11

CCACCCAGUAGAAGCGUCUCCUUUGGGUAUCUGAACAGGUGCCGACCCAGAUGGCC  
ACGUCUACCAAGGUCCAGCACCAUCCUUCACAGAGUCCUCCACGGAGGAAGUACGAU  
GAAUAUAAAAGUUGAAUAAAACUCAGGGCUUCCUUGGUCCAGAUAGAUGAUAGCUUC  
AAUGGGAAGAGGUCCUGAACAUUCAGCUCCAUAAGGUAAAACCAGCGUUGACAG  
CAAGCAUCCUGCAUUGAGCCGAAGCGAGCCACUGAACAGAACUGAAGAGCGCUGU  
UGGAUCGCAUCUUUGUGAAUGUACAUUCCGCAAUUUUCCCAAGAUCUAUGCCAUAAU  
AAGUGAACUCCAUGAACACUGCUUGUAGUUUGGGGUCCAGGAUUCUCAAAGCUU

**FIG. 12**