An Empirical Study of Language CNN for Image Captioning

Jiuxiang Gu, Gang Wang, Jianfei Cai, Tsuhan Chen

Yuhuan Xiu

51164500032

Outline

- 1 Introduction
- 2 Motivation
- **3** Model Architecture
- 4 Experiments
- 5 Conclusion

Image Caption

"translating" an image to proper sentences.

Input an image

Output a sentence description

"A Tabby cat is leaning on a wooden table, with one paw on a laser mouse and the other on a black laptop"

Methods

Classical approach: Retrieval and ranking

Weakness: can not generate proper captions for a new

combination of objection

Neural networks: Encoder-decoder framework based on RNN /

LSTM. Given the ground truth words $S = \{S[0],S[1],...S[t]\}$ and the

corresponding image I, the loss can be written as:

$$L(S,I) = -\sum_{t=0}^{N-1} \log P(S^{[t]}|S^{[0]},S^{[1]},...,S^{[t-1]},I)$$

Motivation

- 1. The Vanishing gradient problem.
- 2. Hierarchical structure of word sequence.

Language CNN is feed with all previous predicted words and can model the hierarchical structure and long-range dependences in word sequence.

.+ recurrent networks (RNN, LSTM, RHN) to model the dynamic temporal behavior.

Model Architecture

$$V = CNN_{\mathcal{I}}(I)$$
 (VGGNet) (1)

$$\mathbf{y}^{[t]} = \text{CNN}_{\mathcal{L}}(\mathbf{S}^{[0]}, \mathbf{S}^{[1]}, \cdots, \mathbf{S}^{[t-1]})$$
 (2)

$$\mathbf{m}^{[t]} = f_{\text{multimodal}}(\mathbf{y}^{[t]}, \mathbf{V}) \tag{3}$$

$$\mathbf{r}^{[t]} = f_{\text{recurrent}}(\mathbf{r}^{[t-1]}, \mathbf{x}^{[t-1]}, \mathbf{m}^{[t]})$$
 (4)

$$S^{[t]} \sim \arg \max_{S} Softmax(\mathbf{W}_o \mathbf{r}^{[t]} + \mathbf{b}_o)$$
 (5)

Language CNN Layer

Language CNN Layer

Word Embedding:

$$\mathbf{x} = \left[\mathbf{x}^{[0]}, \mathbf{x}^{[1]}, \cdots, \mathbf{x}^{[t-1]}\right]^T, \mathbf{x} \in \mathbb{R}^{t \times K}$$
 (6)

Convolution:

$$\mathbf{y}_i^{(\ell)}(\mathbf{x}) = \sigma(\mathbf{w}_L^{(l)} \mathbf{y}_i^{(\ell-1)} + \mathbf{b}_L^{(\ell)}) \tag{7}$$

$$\mathbf{y}^{(0)} \stackrel{\text{def}}{=} \begin{cases} \left[\mathbf{x}^{[t-L_{\mathcal{L}}]}, \cdots, \mathbf{x}^{[t-1]} \right]^{T}, & \text{if } t \geq L_{\mathcal{L}} \\ \left[\mathbf{x}^{[0]}, \cdots, \mathbf{x}^{[t-1]}, \tilde{\mathbf{x}}^{[t]}, \cdots, \tilde{\mathbf{x}}^{[L_{\mathcal{L}}-1]} \right]^{T} & \text{otherwise} \end{cases}$$
(8)

Multimodal Fusion Layer

Fuse sentence representation y[t] and image features V.

$$\mathbf{m}^{[t]} = f_{\text{multimodal}}(\mathbf{y}^{[t]}, \mathbf{V})$$

$$= \sigma \left(f_{\mathbf{y}}(\mathbf{y}^{[t]}; \mathbf{W}_{\mathbf{Y}}, \mathbf{b}_{\mathbf{Y}}) + g_{\mathbf{v}}(\mathbf{V}; \mathbf{W}_{\mathbf{V}}, \mathbf{b}_{\mathbf{V}}) \right)$$
(10)

Recurrent Networks

Transition equations

$$\mathbf{r}^{[t]} = f_{\text{recurrent}}(\mathbf{r}^{[t-1]}, \mathbf{x}^{[t-1]}, \mathbf{m}^{[t]})$$

$$\mathbf{S}^{[t]} \sim \arg\max_{\mathbf{S}} \mathbf{Softmax}(\mathbf{W}_{o}\mathbf{r}^{[t]} + \mathbf{b}_{o})$$
(11)

Language CNN +

Simple RNN / LSTM / GRU / Recurrent Highway network (RHN)

Recurrent Highway Network

Recurrent Highway Network

Transition equations

$$M: R^{2K+d} \rightarrow R^{3d}$$

$$\begin{pmatrix} \mathbf{t}^{[t]} \\ \mathbf{c}^{[t]} \\ \mathbf{h}^{[t]} \end{pmatrix} = \begin{pmatrix} \sigma \\ \sigma \\ \tanh \end{pmatrix} \left(\mathbf{M} \begin{pmatrix} \mathbf{r}^{[t-1]} \\ \mathbf{z}^{[t]} \end{pmatrix} \right) \tag{14}$$
$$\mathbf{r}^{[t]} = \mathbf{h}^{[t]} \odot \mathbf{t}^{[t]} + \mathbf{c}^{[t]} \odot \mathbf{r}^{[t-1]} \tag{15}$$

$$\mathbf{z}^{[t]} = [f_{\text{multimodal}}(\text{CNN}_{\mathcal{L}}(\mathbf{x}^{[0,\dots,t-1]}), \mathbf{V}); \mathbf{x}^{[t-1]}]$$
 (16)

Implementation Details

Training:

All models are trained with Adam

Dropout and early stopping are used to avoid overfitting

Testing:

Beam Search technology (beam search size = 2)

Experiments - Datasets & Evaluation

Datasets: MS COCO and Flickr30k.

Metrics:

BLEU-n

METEOR

CIDEr: Cosine similarity with TFIDF weighting.

SPICE: SPICE is Calculated as an F-score over tuples, and measures how well caption models recover objects, attributes and relations.

Experiments - Models

Recurrent Network-based Models : Simple RNN, RHN, LSTM, and GRU.

Language CNN-based Models: CNNL + Simple RNN,

CNNL + RHN, CNNL + LSTM, and CNNL + GRU.

Experimental Results – Analysis of CNNL on MSCOCO

Approach	Params	B@4	C	Approach			
Simple RNN	5.4M	27.0	87.0	LSTM	7.0M		
$\text{CNN}_{\mathcal{L}}$	6.3M	18.4	56.8	$LSTM_2$	9.1M	29.7	93.2
$CNN_{\mathcal{L}}+RNN$	11.7M	29.5	95.2	$LSTM_3$	11.2M	29.3	92.9

CNNL: "a person on a wave"

CNNL+RNN: "a young man surfing a wave".

Experimental Results – Analysis of CNNL on MSCOCO

Approach	B@4	C	Approach	B@4	C
Avg _{history} +RHN	30.1	95.8	$CNN_{\mathcal{L}_{2 \text{ words}}} + RHN$	29.2	93.8
$CNN_{\mathcal{L}_{16\text{words}}^*}$ +RHN	28.9	91.9	$CNN_{\mathcal{L}_{4 \text{ words}}} + RHN$	29.5	95.8
$CNN_{\mathcal{L}}+RHN$	30.6	98.9	$CNN_{\mathcal{L}_{8 \text{ words}}} + RHN$	30.0	95.9

Experimental Results - on MS COCO

Approach	B@1	B@2	B@3	B@4	M	С	S
Simple RNN	70.1	52.1	37.6	27.0	23.2	87.0	16.0
$CNN_{\mathcal{L}}+RNN$	72.2	55.0	40.7	29.5	24.5	95.2	17.6
RHN	70.5	52.7	37.8	27.0	24.0	90.6	17.2
$CNN_{\mathcal{L}}+RHN$	72.3	55.3	41.3	30.6	25.2	98.9	18.3
LSTM	70.8	53.6	39.5	29.2	24.5	92.6	17.1
$CNN_{\mathcal{L}}+LSTM$	72.1	54.6	40.9	30.4	25.1	99.1	18.0
GRU	71.6	54.1	39.7	28.9	24.3	93.3	17.2
$CNN_{\mathcal{L}}+GRU$	72.6	55.4	41.1	30.3	24.6	96.1	17.6

Experimental Results - on Flickr30k

Approach	B@1	B@2	B@3	B@4	M	С	S
Simple RNN	60.5	41.3	28.0	19.1	17.1	32.5	10.5
$CNN_{\mathcal{L}}+RNN$	71.3	53.8	39.6	28.7	22.6	65.4	15.6
RHN	62.1	43.1	29.4	20.0	17.7	38.4	11.4
$CNN_{\mathcal{L}}+RHN$	73.8	56.3	41.9	30.7	21.6	61.8	15.0
LSTM	60.9	41.8	28.3	19.3	17.6	35.0	11.1
$CNN_{\mathcal{L}}+LSTM$	64.5	45.8	32.2	22.4	19.0	45.0	12.5
GRU	61.4	42.5	29.1	20.0	18.1	39.5	11.4
$CNN_{\mathcal{L}}+GRU$	71.4	54.0	39.5	28.2	21.1	57.9	14.5

Experimental Results

	Flickr30k				MS COCO						
Approach	BLEU-1	BLEU-2	BLEU-3	BLEU-4	METEOR	BLEU-1	BLEU-2	BLEU-3	BLEU-4	METEOR	CIDEr
BRNN [19]	57.3	36.9	24.0	15.7	_	62.5	45.0	32.1	23.0	19.5	66.0
Google NIC [46]	_		_		_	_			27.7	23.7	85.5
LRCN [6]	58.8	39.1	25.1	16.5	_	66.9	48.9	34.9	24.9		
MSR [[7]]			_	_	_	_		-	25.7	23.6	-
m-RNN [35]	60.0	41.0	28.0	19.0		67.0	49.0	35.0	25.0		
Hard-Attention [51]	66.9	43.9	29.6	19.9	18.5	70.7	49.2	34.4	24.3	23.9	
Soft-Attention [51]	66.7	43.4	28.8	19.1	18.5	71.8	50.4	35.7	25.0	23.0	
ATT-FCN [53]	64.7	46.0	32.4	23.0	18.9	70.9	53.7	40.2	30.4	24.3	
ERD+GoogLeNet [52]		-						1	29.8	24.0	88.6
emb-gLSTM [15]	64.6	44.6	30.5	20.6	17.9	67.0	49.1	35.8	26.4	22.7	81.3
VAE [40]	72.0	53.0	38.0	25.0	_	72.0	52.0	37.0	28.0	24.0	90.0
		State-of-the-art results using model assembling or extra information									
Google NICv2 [47]	_		_	_	_	_	_		32.1	25.7	99.8
Attributes-CNN+RNN [50]	73.0	55.0	40.0	28.0	_	74.0	56.0	42.0	31.0	26.0	94.0
		Our results									
$CNN_{\mathcal{L}}+RNN$	71.3	53.8	39.6	28.7	22.6	72.2	55.0	40.7	29.5	24.5	95.2
$CNN_{\mathcal{L}}+RHN$	73.8	56.3	41.9	30.7	21.6	72.3	55.3	41.3	30.6	25.2	98.9
$CNN_{\mathcal{L}}+LSTM$	64.5	45.8	32.2	22.4	19.0	72.1	54.6	40.9	30.4	25.1	99.1
$CNN_{\mathcal{L}}+GRU$	71.4	54.0	39.5	28.2	21.1	72.6	55.4	41.1	30.3	24.6	96.1

Experimental Results

- there is a black taxedo cat looking in the mirror
- two cats sitting on top of a wooden floor
- a cat looking at itself in the mirror next to a tripod
- a cat and a tripod sitting in front of a mirror
- a close up of a cat in a mirror

CNNL+RHN: a man standing next to a child on a snow covered slope CNNL+RNN: a man and a woman standing on a snow covered slope

GRU: a man and a child standing on a snow covered slope

LSTM: a man and a child are standing in the snow

RNN: a man and a woman are skiing on the snow

- a woman and child in ski gear next to a lodge
- a man and a child are smiling while standing on skiis
- a young man poses with a little kid in the snow
- an adult and a small child dressed for skiing
- a man and a little girl in skis stand in front of a mountain lodge

Experimental Results

CNNL+RHN: a large bird perched on top of a tree | CNNL+RNN: a black and white dog standing on a sidewalk

- a bear that is hanging in a tree
- a young bear holding onto a pine tree
- a bear cub in the branches of a pine tree
- a black bear cub climbing a pine tree
- the bear cub UNK high up into the tree

- a tan dog standing on a sidewalk next to a UNK and grass
- the dog is standing outside all alone in the backyard
- a dog standing on a brick walk way
- a brown dog is standing on the side of a walk way
- a brown dog standing on a brick path

Conclusion

- In this work, we present an image captioning model with language CNN to explore both hierarchical and temporal information in sequence for image caption generation.
- Future research directions will go towards integrating extra attributes learning into image captioning, and how to apply a single language CNN for image caption generation is worth trying.

Thank You!