Dispersive Equations

Jonathan Ben-Artzi (Imperial College London) Arick Shao (Imperial College London)

Taught Course Centre, Autumn 2015*

Preface

These notes were written to accompany a course on dispersive equations taught jointly by J. Ben-Artzi and A. Shao during the Autumn term of 2015 at the Taught Course Centre, to PhD students at the universities of Bath, Bristol, Oxford and Warwick as well as Imperial College London.

The general topic of *Dispersive Equations* is meant to represent our two research interests, *Kinetic Theory* (J. Ben-Artzi) and *Nonlinear Wave Equations* (A. Shao). While the latter is a classic "dispersive" topic, we include the former here as well due to the dispersive nature of the Vlasov equation, which is a transport equation in phase space.

This course is 16 hours in total which leaves merely 8 hours for each topic, including introduction. The introduction includes a crash course on basic methods in ordinary and partial differential equations, including the Cauchy problem, existence and uniqueness of solutions, the method of characteristics, Picard iteration, the Fourier transform and Sobolev spaces.

These notes are by no means meant to be complete and should only be treated as an assertional reference. Please let us know if you find any typos or mistakes. The main books we used when preparing the course were:

- Introductory materials
 - L. C. Evans, Partial Differential Equations (second edition), AMS, 2010
 - T. Tao, Nonlinear Dispersive Equations: Local and Global Analysis, CBMS-AMS, 2006
 - H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, 2011
- Kinetic Theory
 - F. Golse, Lecture Notes (École polytechnique), www.math.polytechnique.fr/~golse/M2/PolyKinetic.pdf
 - R. T. Glassey, The Cauchy Problem in Kinetic Theory, SIAM, 1996
 - C. Mouhot, Lecture Notes for Kinetic Theory Course (Cambridge), https://cmouhot.wordpress.com/

^{*}Version of December 17, 2015

 G. Rein, Collisionless Kinetic Equations from Astrophysics – The Vlasov-Poisson System, in Handbook of Differential Equations: Evolutionary Equations Volume 3, 2011

• Nonlinear Wave Equations

- S. Selberg, Lecture Notes for Nonlinear Wave Equations (Johns Hopkins), http://www.math.ntnu.no/~sselberg/
- C. Sogge, Lectures on Nonlinear Wave Equations, International Press, 2006
- L. Hörmander, Lectures on Nonlinear Hyperbolic Differential Equations, Springer-Verlag, 1997

Contents

1	OD	Es and Connections to Evolution Equations	4
	1.1	Existence of Solutions	4
	1.2	Uniqueness of Solutions	8
	1.3	Duhamel's Principle	10
	1.4	Continuity Arguments	12
2	PD	Es and Kinetic Theory	15
	2.1	Introduction to Kinetic Theory	15
	2.2	Linear Transport Equations: The Method of Characteristics	17
	2.3	The Fourier Transform	20
	2.4	Sobolev Spaces	21
3	The	Vlasov-Poisson System: Local Existence and Uniqueness	23
	3.1	Classical Solutions to Vlasov-Poisson: A Rigorous Definition	23
	3.2	A Priori Estimates	24
	3.3	Sketch of Proof of Local Existence and Uniqueness	26
	3.4	Detailed Proof of Local Existence and Uniqueness	27
4	The	Vlasov-Poisson System: Global Existence and Uniqueness	32
	4.1	A Priori Estimates	32
	4.2	Remarks on Global Existence	35
	4.3	Proof of Global Existence and Uniqueness	35
5		1	42
	5.1	Physical Space Formulas	43
	5.2	Fourier Space Formulas	47
	5.3	Duhamel's Principle	49
	5.4	The Energy Identity	50
	5.5	Dispersion of Free Waves	53
6	The	·	54
	6.1	The Glassey-Strauss Theorem	54
	6.2	Sketch of Proof of Conditional Existence and Uniqueness	54
7	Nor	1	59
	7.1	The ODE Perspective	59
	7.2	Local Existence and Uniqueness	61
	7.3	Additional Comments	65
8	Nonlinear Wave Equations: Vector Field Methods, Global and Long-time		
	Exi	stence	69
	8.1	Preliminary Ideas	70
	8.2	The Invariant Vector Fields	71
	8.3	The Modified Energy	73
	8.4	Completion of the Proof	75
	8.5	Additional Remarks	76