

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี การสอบปลายภาคเรียนที่ 1 ปีการศึกษา 2555

วิชา CTE 322 / CVT 207 Structural Analysis I สอบวันศุกร์ที่ 7 ธันวาคม พ.ศ. 2555 ภาควิชา ครุศาสตร์โยชา ปีที่ 2 เวลา 09.00 – 12.00 น.

คำเดือน

- 1. ข้อสอบวิชานี้มี 4 ข้อ 11 หน้า
- 2. ข้อสอบจะด้องทำในข้อสอบ
- 3. อนุญาตให้ใช้เครื่องคำนวณได้
- 4. ห้ามนำเอกสารใดๆ เข้าห้องสอบ

เมื่อนักศึกษาทำข้อสอบเสร็จ ต้องยกมือบอกกรรมการคุมสอบ เพื่อขออนุญาตออกนอกห้องสอบ ห้ามนักศึกษานำข้อสอบและกระดาษคำตอบออกนอกห้องสอบ

นักศึกษาซึ่งทุจริดในการสอบ อาจถูกพิจารณาโทษสูงสุดให้พ้นสภาพการเป็นนักศึกษา

ดร.มงคล นามลักษณ์ (หมวดที่ 1 ข้อ 1–2 50 คะแนน)
ดร.ธีระวุฒิ มูฮำหมัด (หมวดที่ 2 ข้อ 3–4 50 คะแนน)
ผู้ออกข้อสอบ

สานักท_{องเร}็ดน้ำที่ 2 ..ผ**มสหูที่นั่นสอบ.....กาน** เกิดยีพระส_{ครมเคล้า...บรา}รหัสนักศึกษา.....

ดร.มงคล นามลักษณ์ (หมวดที่ 1 ข้อ 1–2 50 คะแนน)

Problem 1 - จากคานช่วงเดียวถูกกระทำด้วยน้ำหนักบรรทุกในรูป จงใช้วิธี Double Integration เพื่อคำนวณหาสิ่งต่อไปนี้ (โดยสมมติให้ค่า El มีค่าคงที่ตลอดความยาวคาน)

- 1.1 สมการมุมลาด (Slope, $\theta(x)$) และสมการของระยะโก่งดัว (Deflection, y(x))(15 คะแนน)
- 1.2 ค่าของมุมลาดที่จุด A ($heta_A$)

(5 คะแนน)

1.3 ค่าระยะโก่งตัวที่จุด C (y_C)

(5 คะแนน)

ชื่อ – สกล	รหัสนักศึกษา	เลขที่นั่งสอบ	"Haris
	รหัสพักศึกษา ผมน (Truce) กายใต้แรงกระทำกาย	สหาวิทยาลัย	^{บเทค} โนโลกีพระ
Problem 2 - ลาภโตรงข้อง	หมน (Truce) ภายใต้แรงกระทำภาย	ยนอก 10 kN ที่จด F แล	ะได้ให้แรง

Problem 2 - จากโครงข้อหมุน (Truss) ภายใต้แรงกระทำภายนอก 10 kN ที่จุด E และได้ให้แรง ภายในชิ้นส่วนต่าง ๆ ของโครงสร้างจริงมาแล้วดังรูป จงคำนวณหาระยะการเคลื่อนที่ใน แนวดิ่งของจุด E ($\Delta E_{_{_{\! 2}}}$) โดยวิธี Virtual Work เมื่อกำหนดให้ทุกชิ้นส่วนมีค่า E = 200 GPa และค่า A = 1000 mm² (25 คะแนน)

Problem 3 - Virtual Work for Beam (12.5 points)

3.1 Draw the Bending Moment Diagram (BMD) for Real System.

3.2 To find the slope at Point A (θ_A) , apply a unit moment of 1 ton-m on the beam and draw the Bending Moment Diagram (BMD) for Virtual System 1

3.3 To find the **deflection at Point A** (δ_{A}), apply a unit load of **1 ton** on the beam and ປະສິທາປະຊານນາຄົນເມນະ

Bending Moment Diagram (BMD) for Virtual System 2

3.4 Determine the slope at Point A (θ_{A}) using Virtual Force Method.

ชื่อ – สกุล	รหัสนักศึกษา	เลขที่นั่งสอบ	สานักทับกัน หน้าที่ 6 เขาลัยเทค ใน โลยีพระกคมเกล้าราก
is.		אַרָן אַטּ	เขาลิยเทคโนโลส
2.5. Dotorming the de	official of Daint A (S.)	Chatanal Conna Bilathani	านางคายเพรายกาแกล้วระบาย

3.5 Determine the deflection at Point A (O_A) using Virtual Force Method.

3.6 Draw the elastic curve showing the slope and the deflection at Point A (θ_{A} and δ_{A}).

4.1 Draw the I.L. for the shear force and the bending moment at Point C (V_c and M_c) and determine the values of V_{c} and M_{c} on the I.L.

ชื่อ – สกุล	รหัสนักศึกษา	สานกห อกรู แลขที่นั่งสอบยาลัยเ หม่าวี่ปลี ยีพระจาก
From 4.2 – 4.4, use a uniform load (

4.2 Draw the load pattern that gives the maximum positive shear force at Point C $(V_{c\ max}^{\ \ })$ and determine the value of V_{c max}.

4.3 Draw the load pattern that gives the maximum negative shear force at Point C ($V_{c\,max}$) and determine the value of V_{c max}.

4.4 Draw the load pattern that gives the maximum positive bending moment at Point C $(M_{c\ max}^{\ +})$ and determine the value of $M_{c\ max}^{\ t}$.

แหาวิทยาลัยเทคโนโลยีพระจะมยกร่าง 34.5 Draw the load pattern that gives the maximum negative bending moment at Point C $(M_{c max})$ and determine the value of M_{c max}.

		มหาวิท ยาลัยเ ทคโนโลยีพระจะการแล้ว				
	parabola m'	l, mn ²	S mm (1	(1.402 + 1.404) 1.44	$\frac{1}{12} mn^2 \left(3 + \frac{3d}{L} - \frac{d^2}{L} \right) L$	1 2 тисе.
	m_1	. И.т. ; тип ;	P (111) - 110) 111 - 3	m'(2m; + m+ 	$\frac{1}{6}m_1^4m_1^4(L-h) + m_2^4(L+a)$	$\frac{1}{6}m(2m_1^++m_2^*)I$
	, iu	1,1410 ^E	1, sans {	$\frac{1}{6}m^*(m_{\chi}+2m_{\chi})L$	1 η μιπ'(L. † α) ο	1 mm.T
_ <i>dx</i> − <i>dx</i> − ∫	, W.	mus'T.	Pua'l.	i m'(m, t m.))	, ma C	, вин'Т,
Table for Evaluating	$\int_{c}^{t}mm'd\lambda$	""	m 7	7		1
Tabl	(A17 & 1000)		······································			