Visualisation and Analysis of Geographic Information Algorithms and Data Structures

João Valença valenca@student.dei.uc.pt

Department of Informatics Engineering University of Coimbra

February 2, 2015

Motivation

- ► Geometric Information System Project
- ► Collaboration with Smartgeo
- Web application

Motivation

- Reduce visual information when displaying large numbers of geographic points
- Find a representative subset of a collection of geographic points

▶ The set of points is dynamic

Coverage

► Minimising Coverage

Coverage

Minimising Coverage

 $\min_{\substack{P\subseteq N \\ |P|=k}} \max_{n\in N} \min_{p\in P} \|p-n\|$

Work Plan

▶ 1st Semester

- Literature Review: Geographic Information Systems, OGC Standards WMS, WFS, Map Projections, algorithms and heuristics for clustering and facility-location problems.
- Development of a Branch-and-Bound approach.

2nd Semester

- Development of heuristic approaches.
- Experimental analysis of the algorithms.
- Integration of the algorithms in the visualisation framework through web-mapping standards (WMS/WFS).
- Comparison between different approaches using Open Street Map data.

Integer Linear Programming

minimise
$$D$$
 subject to $\sum_{j=1}^{N} y_j = k$
$$\sum_{j=1}^{N} x_{ij} = 1 \qquad \qquad i = 1, \dots, N$$

$$\sum_{j=1}^{N} d_{ij} x_{ij} \leq D \qquad \qquad i = 1, \dots, N$$

$$x_{ij} \leq y_j \qquad \qquad i = 1, \dots, N; j = 1, \dots, N$$

$$x_{ij}, y_j \in \{0, 1\} \qquad i = 1, \dots, N; j = 1, \dots, N$$

- Branching
 - Divide search space in a binary tree
 - ▶ At each step, decide if a point is a centroid or non-centroid
 - Update objective function accordingly

- Branching
 - Divide search space in a binary tree
 - ▶ At each step, decide if a point is a centroid or non-centroid
 - Update objective function accordingly
- Bound
 - Assume best possible case
 - Prune tree

- ▶ Inserting a Centroid
 - ► Search all non-centroids for assignment update
 - ► Smaller coverage value

- ▶ Inserting a Non-centroid
 - Search for closest centroid
 - ► Higher coverage value

- Removing a Centroid
 - ► Update all non-centroids
 - ► Higher coverage value

- Removing a Non-centroid
 - ▶ Update objective function
 - ► Smaller coverage value

- Unnecessary number of calculations
 - ▶ Use geometric structures to speed objective function update

- Unnecessary number of calculations
 - ▶ Use geometric structures to speed objective function update
 - ► Delaunay triangulations

► Greedy Routing

- Greedy Routing
- Use Hilbert curves to minimise distance between consecutive routing calls

- ▶ Pre-process:
 - ▶ Initialize Delaunay Triangulation
 - ► Sort points by Hilbert curve

- ► Inserting a Centroid
 - ▶ Insert centroid in triangulation
 - ▶ Search all non-centroids for assignment update
 - ► Smaller coverage value

- ▶ Inserting a Non-centroid
 - Search for closest centroid using greedy routing
 - ► Higher coverage value

- Removing a Centroid
 - ► Revert assignment
 - ▶ Remove centroid from triangulation
 - ► Higher coverage value

- Removing a Non-centroid
 - ▶ Update objective function
 - ► Revert assignment
 - ► Smaller coverage value

Algorithm	Insert		Remove	
	Centroid	Non-Centroid	Centroid	Non-Centroid
Naïve BB	$\Theta(N)$	Θ(K)	$\Theta(N)$	$\mathcal{O}(1)$
Geometric BB	$\mathcal{O}(\log K + N/K)$	$\mathcal{O}(\sqrt{K})$	$\mathcal{O}(N/K)$	$\mathcal{O}(1)$
Average Case				
Geometric BB	$\mathcal{O}(K+N)$	O(K)	$\mathcal{O}(N)$	O(1)
Worst Case	O(N+N)	O(K)	0(11)	0(1)

- Tests Performed
 - ► Effect of N
 - Change N
 - Keep proportional K
 - Effect of K
 - Fixed N
 - Change K

Effect of N

- Integer Linear Programming ▲ - Delaunay Assisted B&B ■ - Naive

B&B

Effect of K

– Integer Linear Programming

▲ – Delaunay Assisted B&B ■ – Naive B&B

Future Work

- Heuristic Approach
- Approximation Algorithms
- Adapt to dynamic set
- ▶ Integration with WFS standard
- Benchmark with real data