Aspectos Teóricos da Computação

Prof. Rodrigo Martins rodrigo.martins@francomontoro.com.br

Cronograma da Aula

Expressões Regulares e Linguagens

Linguagens Regulares

- Todos os formalismos reconhecedores foram vistos.
 - Autômatos Finitos Determinísticos
 - Autômatos Finitos Não Determinísticos
 - Autômatos Finitos com Movimentos ε
- Agora veremos um formalismo denotacional ou gerador
 - Expressões Regulares

Expressões Regulares - Definição

- As expressões regulares podem definir exatamente as mesmas linguagens que as diversas formas de autômatos descrevem: as linguagens regulares.
- As expressões regulares oferecem algo que os autômatos não oferecem: um modo declarativo de expressar os strings que queremos aceitar.
- As expressões regulares servem como a linguagem de entrada para muitos sistemas que processam strings.

Expressões Regulares - Definição

- Não há mais a preocupação em aceitar ou rejeitar uma palavra.
 - Localizar cadeias de um texto
 - Para criar analisadores léxicos, que são componentes fundamentais dos compiladores
 - Validação de campo

Expressões Regulares - Definição

Assim como uma expressão aritmética representa um número natural:

$$(10 + 5) X 7$$

Uma **expressão regular** representa uma linguagem:

$$(0 + 1).0*$$

Os Operadores de Expressões Regulares

As expressões regulares denotam linguagens.

Exemplo 1:

A expressão regular 01* + 10* denota a linguagem que consiste em todos os strings que são um único 0 seguidos por qualquer número de 1's ou um único 1 seguido por qualquer número de 0's.

Os Operadores de Expressões Regulares

Exemplo 2:

- Linguagem regular: o conjunto de cadeias de 0's e 1's tais que comece com qualquer quantidade de 1's (inclusive nenhum), seguidos necessariamente de um 0 e outra sequencia com qualquer quantidade de 1's
 - Essa linguagem aparentemente complexa pode ser escrita em forma de expressão regular facilmente:

1*01*

Expressões Regulares - Exemplo

Na expressão (0 + 1) . 0*:

- 0 representa o conjunto {0}
- 1 representa o conjunto {1}
- (0 + 1) representa o conjunto $\{0\} \cup \{1\} = \{0, 1\}$
- **0*** representa {0}*

Então (**0** + **1**). **0*** representa a linguagem: $\{uv: u \in \{0, 1\} \text{ e } v = 0^n, n>=0\}$

As Três operações sobre Linguagens

União

A união de duas linguagens L e M, denotadas por L U M, é o conjunto de strings que estão em L ou M, ou em ambas.

Operador + é a ideia de ou

Por exemplo, se L = {001, 10, 111} e
$$M = \{\varepsilon, 001\}, \text{ então}$$
 L U M = $\{\varepsilon, 10, 001, 111\}$

Concatenação

A concatenação de linguagens L e M é o conjunto de strings que podem ser formados tornando-se qualquer string em L e concatenando-se esse string com qualquer string em M.

Operador . é a ideia de e

Por exemplo, se L = $\{001, 110\}$ e M = $\{\varepsilon, 11, 110\}$, então L.M (com um ponto) ou LM (sem ponto), onde LM = $\{001, 00111, 001110, 110, 11011, 110110\}$

Por exemplo, se L = $\{001, 110\}$ e M = $\{\varepsilon, 11, 110\}$, então L.M (com um ponto) ou LM (sem ponto), onde LM = $\{001, 00111, 001110, 110, 11011, 110110\}$

Atenção: LM é diferente de ML

Exemplo:

Quais palavras a expressão (a+b)c representa?

Na expressão dada, temos uma união de **a** e **b**, que representa {a,b}. Em seguida, concatenada a **(a+b)** temos a expressão **c** que representa {c}.

O resultado da concatenação {a,b}.{c} dá a linguagem {ac, bc}, que é a resposta esperada.

Fechamento de Kleene ou Estrela

O fechamento (ou estrela, ou fechamento de Kleene) de uma linguagem L é denotado L* e representa o conjunto dos strings que podem ser formados tomando-se qualquer número de strings de L, possivelmente com repetições (isto é, o mesmo string pode ser selecionado mais de uma vez) e concatenando-se todos eles.

Por exemplo se L = $\{0, 1\}$ então L* representa todos os strings de 0's e 1's. Se L = $\{0, 11\}$, então L* consiste nos strings de 0's e 1's tais que os símbolos 1 formam pares, por exemplo, 011, 11110 e ε , mas não 01011 ou 101.

Exemplo

- Operadores (seja r uma expressão)
 - concatenação sucessiva: r*
 - Dá uma ideia de zero ou mais repetições de r
 - Denota $L = L_r^*$
 - = {palavras formadas pela concatenação de zero ou mais palavras de L_r}
 - Exemplo

```
a* denota L = \{\varepsilon, a, aa, aaa, aaaa, ....\}
```

 ab^* denota $L = \{a, ab, abb, abbb, ...\}$

Exemplo

Todas as palavras sobre T = {a, b}

$$(a + b)^*$$

Palavras que terminam com aa ou bb

$$(a+b)*(aa+bb)$$

Exemplo

O conjunto de todas as cadeias de 0's e 1's com exatamente três símbolos

(0+1) (0+1) (0+1)

O conjunto de cadeias de 0's e 1's contendo pelo menos um símbolo 0

 $0(0+1)^* + (0+1)^*0 + (0+1)^*0(0+1)^*$

Forneça uma descrição em português da expressão: (0+1)*101(0+1)*

 o conjunto de todas as cadeias de zeros e uns que contém 101 como subcadeia

Autômatos Finitos e Expressões Regulares

Provaremos a equivalência entre ER e AF da seguinte forma:

Como obter um AF a partir de uma ER

Autômatos Finitos e Expressões Regulares

Seja $A = \{aa\}, B = \{bb\}$

Aplicações

- Especificar endereços de e-mail válidos
- Procura (avançada) por arquivos
- Para especificar Linguagens de Programação
 - Especificar identificadores
 - Especificar números inteiros
 - Especificar números decimais.

Exercícios

- Qual a expressão regular dada o conjunto de cadeias de 0's e 1's tais que comece com qualquer quantidade de 1's (inclusive nenhum), seguidos necessariamente de um 1 e outra sequencia com qualquer quantidade de 0's
- 2) Quais palavras a expressão (a+c)b representa?
- Quais as três operações sobre linguagens, explique cada uma delas.
- 4) Represente todas as palavras sobre T = {c, d}
- 5) Represente todas as palavras sobre T = {c, d} que terminam com cc ou dd

Exercícios

- 6) Represente o conjunto de todas as cadeias de 0's e 1's com exatamente cinco símbolos
- 7) Represente o conjunto de todas as cadeias de 0's e 1's contendo o símbolo 0 no final
- 8) Forneça uma descrição em português da expressão: (0)*11(0+1)*

Referências desta aula

 HOPCROFT, John E.; MOTWANI, Rajeey; ULLMAN, Jeffrey D. Introdução a teoria de autômatos, linguagens e computação. Rio de Janeiro: Campus, 2002.

> FIM Obrigado

> > Rodrigo