Primero de Matemáticas (Plan Nuevo) Examen de Cálculo - Primer cuatrimestre 2 de febrero de 2001

Problema 1 Sea $f: [-1/2, +\infty[\to \mathbb{R} \text{ dada por } f(x) = (x + e^x)^{1/x} \text{ para } x \neq 0, \text{ y } f(0) = e^2.$ Calcular la derivada de f en cero.

Problema 2 Calcular la integral $\int_0^{+\infty} \frac{1}{1+x^3} dx$.

Problema 3 Calcular el área de la elipse de mínima área circunscrita a un rectángulo dado.

Recuerda que el área de una elipse de semiejes s, t es igual a $\pi s t$.

Problema 4 Se considera la hipérbola de ecuación $x^2 - y^2 = 1$ y un punto (x_0, y_0) de la misma $(x_0 > 1)$. Se pide calcular el área, Ω_0 , de la región sombreada en gris en la figura, y deducir que $x_0 = \cosh(\Omega_0)$, $y_0 = \sinh(\Omega_0)$.

Sugerencia: pueden ser útiles, según el método que uses para calcular la integral, las siguientes fórmulas:

$$\cosh x = \frac{e^x + e^{-x}}{2}, \quad \text{senh } x = \frac{e^x - e^{-x}}{2}$$

senh(2x) = 2 cosh x senh x

$$\sum_{n \geqslant 1} \left(\frac{a(a+1)(a+2)\dots(a+n)}{b(b+1)(b+2)\dots(b+n)} \right)^{1/2}.$$

 (x_0, y_0)

b) Calcular el límite de la sucesión $\left(\frac{\log(n+2)}{\log(n+1)}\right)^{n\log n}$.