

planetmath.org

Math for the people, by the people.

$\varepsilon\text{-net}$

Canonical name varepsilonnet

Date of creation 2013-03-22 13:37:54 Last modified on 2013-03-22 13:37:54

Owner Koro (127) Last modified by Koro (127)

Numerical id 4

Author Koro (127)
Entry type Definition
Classification msc 54E35
Related topic Cover

Definition Suppose X is a metric space with a metric d, and suppose S is a subset of X. Let ε be a positive real number. A subset $N \subset S$ is an ε -net for S if, for all $x \in S$, there is an $y \in N$, such that $d(x, y) < \varepsilon$.

For any $\varepsilon > 0$ and $S \subset X$, the set S is trivially an ε -net for itself.

Theorem Suppose X is a metric space with a metric d, and suppose S is a subset of X. Let ε be a positive real number. Then N is an ε -net for S, if and only if

$$\{B_{\varepsilon}(y) \mid y \in N\}$$

is a cover for S. (Here $B_{\varepsilon}(x)$ is the open ball with center x and radius ε .)

Proof. Suppose N is an ε -net for S. If $x \in S$, there is an $y \in N$ such that $x \in B_{\varepsilon}(y)$. Thus, x is covered by some set in $\{B_{\varepsilon}(x) \mid x \in N\}$. Conversely, suppose $\{B_{\varepsilon}(y) \mid y \in N\}$ is a cover for S, and suppose $x \in S$. By assumption, there is an $y \in N$, such that $x \in B_{\varepsilon}(y)$. Hence $d(x, y) < \varepsilon$ with $y \in N$. \square

Example In $X = \mathbb{R}^2$ with the usual Cartesian metric, the set

$$N = \{(a, b) \mid a, b \in \mathbb{Z}\}\$$

is an ε -net for X assuming that $\varepsilon > \sqrt{2}/2$. \square

The above definition and example can be found in [?], page 64-65.

References

[1] G. Bachman, L. Narici, Functional analysis, Academic Press, 1966.