Topic 51. Equilibrium Calculations

- 51.1 The Extent of Reaction
- 51.2 The Direction of Reaction
- 51.3 Calculations with Equilibrium Constants

The Extent of Reaction

■ The extent of reaction vs. *K*

$$K = \frac{(a_{\rm C})^c (a_{\rm D})^d}{(a_{\rm A})^a (a_{\rm B})^b}$$

- Large K (larger than about 10³): equilibrium favors the products.
- Intermediate K (approximately in the range 10^{-3} to 10^{3}): neither reactants nor products are strongly favored at equilibrium.
- Small K (smaller than about 10^{-3}): equilibrium favors the reactants.

The Direction of Reaction

Q vs. K

$$Q = \frac{(a_{\rm C})^c (a_{\rm D})^d}{(a_{\rm A})^a (a_{\rm B})^b}$$

- If Q < K, the concentrations or partial pressures of the products are too low relative to those of the reactants for equilibrium. Hence, the reaction has a tendency to proceed toward products.
- If Q = K, the mixture has its equilibrium composition and has no tendency to change in either direction.
- If Q > K, the reverse reaction is spontaneous and the products tend to decompose into the reactants.

The Direction of Reaction

• ΔG° vs. K

- $H_2(g) + I_2(g) \leftrightarrow 2HI(g)$ at 600 K
 - Initial concentrations: $P_{H2} = 1.98$ atm, $P_{12} = 1.71$ atm
 - Equilibrium constant: $K_P = P_{HI}^2 / (P_{H2} \times P_{I2}) = 92.6$

What are the equilibrium pressures of the products and reactants?

	H_2	l ₂	HI
Initial	1.98	1.71	0
Change	- x	- x	2 x
Equilibrium	1.98 - x	1.71-x	2

$$K_p = \frac{(2x)^2}{(1.98 - x)(1.71 - x)} = 92.6$$

$$K_p = \frac{(2x)^2}{(1.98 - x)(1.71 - x)} = 92.6$$

$$\downarrow$$

$$88.6x^2 - 341.694x + 313.525 = 0$$

$$x = 1.5044 \quad \text{or} \quad 2.3522 \text{ atm}$$

Equilibrium Pressures

- $P_{H2} = 1.980 1.5044 = 0.4756$ atm
- $P_{12} = 1.710 1.5044 = 0.2056$ atm

- PCl_5 (g) \leftrightarrow PCl_3 (g) + Cl_2 (g)
 - Initial concentrations: IL flask, 0.298 mol PCl₃ (g), 8.70 x 10^{-3} mol PCl₅ (g)
 - Final: I L flask, 2.00×10^{-3} mol Cl₂(g)

What are the $[PCl_5]$, $[PCl_3]$, and K?

	[PCI ₅]	[PCI ₃]	[Cl ₂]
Initial	$8.70 \times 10^{-3} \mathrm{M}$	0.298 M	0 M
Change	- x	- x	$2.0 \times 10^{-3} \mathrm{M}$
Equilibrium	$8.70 \times 10^{-3} M - x$	0.298 M + x	$2.0 \times 10^{-3} \mathrm{M}$

	[PCI ₅]	[PCI ₃]	[Cl ₂]
Initial	$8.70 \times 10^{-3} \mathrm{M}$	0.298 M	0 M
Change	- x	- x	$2.0 \times 10^{-3} \mathrm{M}$
Equilibrium	$8.70 \times 10^{-3} M - x$	0.298 M + x	$2.0 \times 10^{-3} \mathrm{M}$

Equilibrium concentrations

•
$$[PCl_5] = 8.70 \times 10^{-3} M - 2.0 \times 10^{-3} M = 6.70 \times 10^{-3} M$$

•
$$[PCl_3] = 0.298 \text{ M} + 2.0 \times 10^{-3} \text{ M} = 3.00 \text{ M}$$

$$K = \frac{[\text{Cl}_2][\text{PCl}_3]}{[\text{PCl}_5]} = \frac{(2.00 \times 10^{-3})(0.300)}{6.7 \times 10^{-3}} = 8.96 \times 10^{-2}$$

Topic 5J. The Response of Equilibria to Changes in Conditions

- 5J. I Adding and Removing Reagents
- 5J.2 Compressing a Reaction Mixture
- 5J.3 Temperature and Equilibrium

Haber-Bosch Process

Ammonia synthesis: N₂ (g) + 3 H₂ (g) ↔ 2 NH₃ (g)
 By changing reaction conditions, product yield could be increased.

Le Chatelier's Principle

Le Chatelier's principle

When a stress is applied to a system in dynamic equilibrium, the equilibrium tends to adjust to minimize the effect of the stress.

Note: this is not a new principle or discovery.
 Le Chatelier's principle is already contained in the equilibrium expression. Le Chatelier's principle laid a foundation for chemical equilibrium theory, actually.

Adding and Removing Reagents

■ Ammonia synthesis: N_2 (g) + 3 H_2 (g) \leftrightarrow 2 NH_3 (g)

Adding and Removing Reagents

- When reactants are added to the equilibrium mixture
 - Q temporarily falls below K, Q < K.
 - Forming products and consuming reactants until Q = K again.
 - When reactants are added to a system at equilibrium, it responds by converting reactants to products.
- When products are added to the equilibrium mixture
 - Q temporarily rises above K, Q > K.
 - Forming reactants and consuming products until Q = K again.
 - When reactants are added to a system at equilibrium, it responds by converting reactants to products.

Compressing a Reaction Mixture

- For $I_2(g) \leftrightarrow 2I(g)$,
 - The forward reaction increases the number of particles in the container and hence the total pressure of the system.
 - The reverse reaction decreases it.
- When the mixture is compressed
 - The equilibrium composition will tend to shift in favor of the reactant, I₂, because that response minimizes the increase in pressure.
- For N_2 (g) + 3 H_2 (g) \leftrightarrow 2 NH_3 (g)
 - Increasing pressure favors the forward reaction.
 - Hence, ammonia synthesis is carried out under 250 atm.

Compressing a Reaction Mixture

Compressing a Reaction Mixture

■ Quantitative expression: for 2 NO_2 (g) $\leftrightarrow \text{N}_2\text{O}_4$ (g) Equilibrium constant

$$K = \frac{P_{\text{N}_2\text{O}_4}/P^{\circ}}{(P_{\text{NO}_2}/P^{\circ})^2}$$

If P is replaced with nRT/V

$$K = \frac{n_{\text{N}_2\text{O}_4}RT/VP^{\circ}}{(n_{\text{NO}_2}RT/VP^{\circ})^2} = \frac{n_{\text{N}_2\text{O}_4}}{(n_{\text{NO}_2})^2} \times \frac{P^{\circ}}{RT} \times V$$

Since K is constant at a given temperature, when V is reduced, the ratio $n_{N2O4}/(n_{NO2})^2$ must increase.

Temperature and Equilibrium

- If the temperature is raised
 - For exothermic reaction, the reactants are favored. (K decreases)
 - For endothermic reaction, the products are favored. (K increases)
- Change in temperature changes the equilibrium constant.
 (Changes in pressure and volume change the equilibrium. However, these won't change the equilibrium constant.)
- Equilibrium constant is a function of temperature.

Temperature and Equilibrium

van't Hoff Equation

$$\Delta G_{r,1}^{\circ} = -RT_1 \ln K_1$$

$$\Delta G_{r,2}^{\circ} = -RT_2 \ln K_2$$

$$\ln K_1 = -\frac{\Delta G_{r,1}^{\circ}}{RT_1} \quad \ln K_2 = -\frac{\Delta G_{r,2}^{\circ}}{RT_2}$$

$$\ln K_1 - \ln K_2 = -\frac{1}{R} \left\{ \frac{\Delta G_{r,1}^{\circ}}{T_1} - \frac{\Delta G_{r,2}^{\circ}}{T_2} \right\}$$

$$\Delta G_{r,1}^{\circ} = \Delta H_{r,1}^{\circ} - T_1 \Delta S_{r,1}^{\circ}$$

$$\Delta G_{r,2}^{\circ} = \Delta H_{r,2}^{\circ} - T_2 \Delta S_{r,2}^{\circ}$$

$$\Delta G_{\rm r,1}{}^{\circ} = -RT_1 \ln K_1 \\ \Delta G_{\rm r,2}{}^{\circ} = -RT_2 \ln K_2$$

$$\ln K_1 = -\frac{\Delta G_{\rm r,1}{}^{\circ}}{RT_1} \quad \ln K_2 = -\frac{\Delta G_{\rm r,2}{}^{\circ}}{RT_2}$$

$$\ln K_1 - \ln K_2 = -\frac{1}{R} \left\{ \frac{\Delta G_{\rm r,1}{}^{\circ}}{T_1} - \frac{\Delta G_{\rm r,2}{}^{\circ}}{T_2} \right\}$$

$$= -\frac{1}{R} \left\{ \frac{\Delta H_{\rm r,1}{}^{\circ} - T_1 \Delta S_{\rm r,1}{}^{\circ}}{T_1} - \frac{\Delta H_{\rm r,2}{}^{\circ} - T_2 \Delta S_{\rm r,2}{}^{\circ}}{T_2} \right\}$$

$$\Delta H^{\circ} \left(1 - 1 \right)$$

$$\ln K_1 - \ln K_2 = -\frac{\Delta H_r^{\circ}}{R} \left\{ \frac{1}{T_1} - \frac{1}{T_2} \right\}$$

$$\ln \frac{K_2}{K_1} = \frac{\Delta H_r^{\circ}}{R} \left\{ \frac{1}{T_1} - \frac{1}{T_2} \right\}$$

Temperature and Equilibrium

van't Hoff Equation

$$\ln \frac{K_2}{K_1} = \frac{\Delta H_{\rm r}^{\, o}}{R} \left\{ \frac{1}{T_1} - \frac{1}{T_2} \right\}$$

