Домашнее задание №1, Марченко М.

Задача 1. Докажите, что:

- (a) $A \cup A = A$, $A \cup B = B \cup A$, $A \cup (B \cup C) = (A \cup B) \cup C$, $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ и что эти свойства остаются справедливыми при замене объединения на пересечение и наоборот;
- (b) операция \triangle коммутативна и ассоциативна, операция \cap дистрибутивна относительно \triangle , $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$, $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$, $A \setminus (A \setminus B) = A \cap B$ и $A \setminus B = A \ (A \cap B)$.
- Решение. (a) Пусть $x \in A \cup A$, тогда по определению объединения $x \in A$. Пусть теперь $x \in A$, тогда по определению объединения $x \in A \cup A$;
 - Пусть $x \in A \cup B$, тогда $x \in A$ или $x \in B$, а, следовательно $x \in B \cup A$. Аналогично в обратную сторону;
 - Пусть $x \in A \cup (B \cup C)$, тогда $x \in A$ или $x \in (B \cup C)$. Если $x \in (B \cup C)$, то $x \in B$ или $x \in C$. Если $x \in A$ или $x \in B$, то $x \in A \cup B$, а следовательно $x \in (A \cup B) \cup C$; если же $x \in C$, то $x \in (A \cup B) \cup C$. Аналогично в обратную сторону.
 - Пусть $x \in A \cap (B \cup C)$, тогда $x \in A$ и $x \in B \cup C$. То есть $x \in A$ и $x \in B$ или $x \in A$ и $x \in C$, откуда $x \in (A \cap B) \cup (A \cap C)$. Доказательство обратного включение получается прочтением этих рассуждений с конца.
 - Рассмотрим эти свойства для дополнений исходных множеств и «навесим» отрицание на обе стороны формул, которыми задаются множества. Пользуясь законами де Моргана, получим те же свойства с заменой ∪ на ∩ и наоборот.
 - (b) TODO
 - TODO
 - Пусть $x \in A \setminus (B \cup C)$, тогда $x \in A$, $x \notin B$ и $x \notin C$. Следовательно, $x \in A \setminus B$ и $x \in A \setminus C$, то есть $x \in (A \setminus B) \cap (A \setminus C)$. Доказательство обратного включения получается прочтением рассуждений в обратном порядке.
 - Пусть $x \in A \setminus (B \cap C)$, тогда $x \in A$ и $x \notin B$ или $x \in A$ и $x \notin C$, откуда $x \in (A \setminus B) \cup (A \setminus C)$. Доказательство обратного включения получается прочтением рассуждений наоборот.
 - Пусть $x \in A \setminus (A \setminus B)$, тогда $x \in A$ и $x \notin A \setminus B$, то есть $x \in A$ и $x \notin A$ или $x \in A$ и $x \in B$. Следовательно, $x \in A \cap B$. Доказательство обратного включения...
 - Очевидно, что требования $x \in A$ и $x \notin B$ и требования $x \in A$ и $x \notin A$ или $x \in A$ и $x \notin B$ определяют одно и то же множество.

Задача 2. Докажите, что:

- (а) множество $(x,y) = \{\{x\}, \{x,y\}\}$ обладает свойством упорядоченной пары, т. е. $(x,y) = (x_1,y_1)$ в точности тогда, когда $x = x_1$ и $y = y_1$.
- (b) операция композиции бинарных отношений на данном множестве ассоциативна, но не коммутативна. Задаёт ли эта операция группу на этом множестве? Ответ обоснуйте.

1

Решение. (а) Достаточность очевидна, докажем необходимость. Имеем

$$\{\{x\}, \{x,y\}\} = \{\{x_1\}, \{x_1,y_1\}\},\$$

пусть при этом $x \neq y$. Тогда множество $\{x,y\}$ двухэлементное и $\{x,y\} = \{x_1,y_1\}$, так как двухэлементное множество не может равняться одноэлементному. Следовательно, $\{x\} = \{x_1\}$. Отсюда $x = x_1$ и $y = y_1$. Аналогично если $x_1 = y_1$.

Пусть теперь x=y и $x_1=y_1$, тогда $\{\{x\},\{x,y\}\}=\{\{x\}\}\}$ и $\{\{x_1\},\{x_1,y_1\}\}=\{\{x_1\}\}$. Отсюда $x=y=x_1=y_1$.

(b) TODO

Задача 3. Перечислите все упорядоченные пары множеств из списка $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$, для которых существует инъекция первого множества во второе. Ответ обоснуйте.

Решение. Так как множества \mathbb{N} , \mathbb{Z} , \mathbb{Q} счётные, между ними существует биекция, откуда получаем шесть пар:

$$(\mathbb{N}, \mathbb{Z}), (\mathbb{N}, \mathbb{Q}), (\mathbb{Z}, \mathbb{Q}), (\mathbb{Q}, \mathbb{Z}), (\mathbb{Q}, \mathbb{N}), (\mathbb{Z}, \mathbb{N}).$$

Также существует инъекция \mathbb{N} в \mathbb{R} , \mathbb{C} — вложение. Аналогично существует вложение \mathbb{Z} в \mathbb{R} , \mathbb{C} , вложение \mathbb{Q} в \mathbb{R} , \mathbb{C} и вложение \mathbb{R} в \mathbb{C} . Таким способом можно получить ещё семь пар:

$$(\mathbb{N},\mathbb{R}),(\mathbb{N},\mathbb{C}),(\mathbb{Z},\mathbb{R}),(\mathbb{Z},\mathbb{C}),(\mathbb{Q},\mathbb{R}),(\mathbb{Q},\mathbb{C}),(\mathbb{R},\mathbb{C}).$$

Последняя пара (\mathbb{C}, \mathbb{R}) получается из соображения, что \mathbb{R} равномощно \mathbb{R}^2 , которое равномощно \mathbb{C} . Других пар не получится в силу континуальности \mathbb{R}, \mathbb{C} и счётности $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$.

Задача 4. Существует ли биекция между следующими множествами: $X \times Y$ и $Y \times X$, $(X \times Y) \times Z$ и $X \times (Y \times Z)$, $X^Y = \{f \mid f \colon Y \to X\}$ и Y^X , $(X^Y)^Z$ и $X^{Y \times Z}$, $(X^Y)^Z$ и X^{Y^Z} , $(X \times Y)^Z$ и $X^Z \times Y^Z$, $\mathcal{P}(X)$ и $\{0,1\}^X$? Ответ обоснуйте.

Pewenue. • Да, $(x, y) \mapsto (y, x)$ для любых $x \in X$ и $y \in Y$;

- Да, $((x,y),z) \mapsto (x,(y,z))$ для любых $x \in X, y \in Y$ и $z \in Z$;
- Пусть |X| = n, |Y| = m, тогда $|X^Y| = n^m$, $|Y^X| = m^n$. Так как в общем случае $n^m \neq m^n$, биекции не существует. Пусть теперь X и Y счётные множества. Тогда X^Y и Y^X континуальны, а соответственно, между ними существует биекция. Аналогично с другими кардинальными числами.
- TODO

Задача 5. (а) Пусть $x' = x \cup \{x\}$ и $\mathcal{P}(x) = \{y \mid y \subseteq x\}$. Найдите \varnothing'''' и $\mathcal{P}^4(\varnothing)$. Сколько элементов в множестве $\mathcal{P}^{12}(\varnothing)$?

(b) Множество X называется индуктивным, если $\emptyset \in X$ и $x \in X \to x' \in X$. Может ли индуктивное множество быть конечным? Докажите, что существует наименьшее по включению индуктивное множество.

Решение. (а) Пошагово:

$$\varnothing' = \varnothing \cup \{\varnothing\} = \{\varnothing\}$$

$$\varnothing'' = \{\varnothing\} \cup \{\{\varnothing\}\} = \{\varnothing, \{\varnothing\}\}\}$$

$$\varnothing''' = \{\varnothing, \{\varnothing\}\} \cup \{\{\varnothing, \{\varnothing\}\}\} = \{\varnothing, \{\varnothing\}, \{\varnothing, \{\varnothing\}\}\}\}$$

$$\varnothing'''' = \{\varnothing, \{\varnothing\}, \{\varnothing\}, \{\varnothing, \{\varnothing\}\}\}\} = \{\varnothing, \{\varnothing\}, \{\varnothing\}, \{\varnothing, \{\varnothing\}\}\}\}$$

Также пошагово:

$$\begin{split} \mathcal{P}(\varnothing) &= \{\varnothing\} \\ \mathcal{P}^2(\varnothing) &= \{\varnothing, \{\varnothing\}\} \\ \mathcal{P}^3(\varnothing) &= \{\varnothing, \{\varnothing\}, \{\{\varnothing\}\}, \{\varnothing, \{\varnothing\}\}\} \} \\ \mathcal{P}^4(\varnothing) &= TODO \end{split}$$

(b) Пусть индуктивное множество X состоит из n элементов. Пусть $x \in X$, тогда по определению $x' \in X$, а следовательно $x'' \in X$, $x''' \in X$, $x''' \in X$, $x''' \in X$. Так как $x^{(n)} \in X$, а в множестве X всего n элементов, то $x^{(n)} = x^{(l)}$ для некоторого l. Противоречие. Значит, индуктивное множество бесконечно.

Пусть $\mathfrak{X} = \{\varnothing, \varnothing', \varnothing'', \ldots\}$. Рассмотрим произвольное индуктивное множество X и покажем, что $\mathfrak{X} \subseteq X$. Действительно, $\varnothing \in X$ по определению, а поэтому $\varnothing^{(n)}$ для любого n.