Balance de materia IMClick Project

Problema 15. La cloración de benceno produce una mezcla de productos mono, di, tri y tetraclorobenceno sustituidos mediante la cadena de reacciones:

$$\begin{split} & C_6H_6 + Cl_2 \longrightarrow C_6H_5Cl + HCl \\ & C_6H_5Cl + Cl_2 \longrightarrow C_6H_4Cl_2 + HCl \\ & C_6H_4Cl_2 + Cl_2 \longrightarrow C_6H_3Cl_3 + HCl \\ & C_6H_3Cl_3 + Cl_2 \longrightarrow C_6H_2Cl_4 + HCl \end{split}$$

El producto primario de la cloración es triclorobenceno, que se vende como producto para la limpieza de textiles, aunque es inevitable la producción conjunta de otros clorobencenos. Supóngase que una alimentación por separado, con una proporción de Cl_2 a C_6H_6 de 3.6 a 1 resulta en un producto con la siguiente composición (considérese que el Cl_2 y el HCl salen por separado): benceno (C_6H_6) 1%, clorobenceno ($\text{C}_6\text{H}_5\text{Cl}$) 7%, diclorobenceno ($\text{C}_6\text{H}_4\text{Cl}_2$) 12%, triclorobenceno ($\text{C}_6\text{H}_3\text{Cl}_3$) 75% y tetraclorobenceno ($\text{C}_6\text{H}_2\text{Cl}_4$) 5%. Si se cargan al reactor 1000 mol/h de benceno, calcular los moles/h de subproductos de HCl y de producto primario, $\text{C}_6\text{H}_3\text{Cl}_3$ producidos.

Como es un proceso continuo en estado estacionario reaccionante, entonces la ecuación general de balance en el sistema es:

• Reactivos:

$$\label{eq:entrada} \begin{split} & \operatorname{Entrada} + \operatorname{Generaci\'on} - \operatorname{Salida} - \operatorname{Consumo} = \underbrace{\operatorname{Acumulaci\'on}} \\ & \operatorname{Entrada} = \operatorname{Salida} + \operatorname{Consumo} \end{split}$$

• Productos:

$$\label{eq:entrada} \begin{split} \text{Entrada} + \text{Generación} &- \text{Salida} - \frac{\text{Consumo}}{\text{Consumo}} = \frac{\text{Acumulación}}{\text{Entrada}} \\ &= \text{Salida} - \text{Generación} \end{split}$$

Sean ξ_1 , ξ_2 ξ_3 y ξ_4 los grados de avance de la primera, segunda, tercera y cuarta reacción, respectivamente. Ecuaciones independientes (8):

• Balance de Cl₂:

$$Corriente \ 1 = Corriente \ 3 + Consumo \\ (A \ mol/h)(1 \ mol \ Cl_2/mol) = (B \ mol/h)(1 \ mol \ Cl_2/mol) + \xi_1 \ mol/h \ Cl_2 + \xi_2 \ mol/h \ Cl_2 + \xi_3 \ mol/h \ Cl_2 + \xi_4 \ mol/h \ Cl_2 \\)$$

Balance de materia IMClick Project

• Balance de C_6H_6 :

$$\label{eq:corriente} Corriente~2=Corriente~4+Consumo\\ (1000~mol/h)(1~mol~C_6H_6/mol)=(C~mol/h)(0.01~mol~C_6H_6/mol)+\xi_1~mol/h~C_6H_6$$

• Balance de C₆H₅Cl:

$$0 = Corriente \ 4 - Generación + Consumo \\ 0 \ mol/h \ C_6H_5Cl = (C \ mol/h)(0.07 \ mol \ C_6H_5Cl/mol) - \xi_1 \ mol/h \ C_6H_5Cl + \xi_2 \ mol/h \ C_6H_5Cl$$

• Balance de $C_6H_4Cl_2$:

$$0 = Corriente~4 - Generación + Consumo\\ 0~mol/h~C_6H_4Cl_2 = (C~mol/h)(0.12~mol~C_6H_4Cl_2/mol) - \xi_2~mol/h~C_6H_4Cl_2 + \xi_3~mol/h~C_6H_4Cl_2$$

• Balance de $C_6H_3Cl_3$:

$$0 = Corriente \ 4 - Generación + Consumo \\ 0 \ mol/h \ C_6H_3Cl_3 = (C \ mol/h)(0.75 \ mol \ C_6H_3Cl_3/mol) - \xi_3 \ mol/h \ C_6H_3Cl_3 + \xi_4 \ mol/h \ C_6H_3Cl_3$$

• Balance de C₆H₂Cl₄:

$$0 = Corriente \ 4 - Generación$$
0 mol/h C₆H₂Cl₄ = (C mol/h)(0.05 mol C₆H₂Cl₄/mol) - ξ_4 mol/h C₆H₂Cl₄

• Balance de HCl:

$$0=\text{Corriente 5-Generación}$$
0 mol/h HCl = (D mol/h)(1 mol HCl/mol) - ξ_1 mol/h HCl - ξ_2 mol/h HCl - ξ_3 mol/h HCl - ξ_4 mol/h HCl

• Relación molar de Cl₂ y C₆H₆:

$$\frac{3.6 \ \text{mol Cl}_2/\text{h entrada}}{1 \ \text{mol C}_6\text{H}_6/\text{h entrada}} = \frac{(A \ \text{mol/h})(1 \ \text{mol Cl}_2/\text{mol})}{(1000 \ \text{mol/h})(1 \ \text{mol C}_6\text{H}_6/\text{mol})}$$

En donde hay 8 incógnitas = $\{A, B, C, D, \xi_1, \xi_2, \xi_3, \xi_4\}$. Entonces, el grado de libertad es:

$$\mathrm{GL}=\#$$
 Incógnitas - $\#$ Ecuaciones independientes = 8 - 8 = 0

Por lo que el sistema tiene solución única.

Con la relación molar de de Cl₂ y C₆H₆:

$$\begin{split} \frac{3.6 \ \, \mathrm{mol} \ \, \mathrm{Cl_2/h} \ \, \mathrm{entrada}}{1 \ \, \mathrm{mol} \ \, \mathrm{C}_6\mathrm{H}_6/\mathrm{h} \ \, \mathrm{entrada}} &= \frac{(A \ \, \mathrm{mol/h})(1 \ \, \mathrm{mol} \ \, \mathrm{Cl_2/mol})}{(1000 \ \, \mathrm{mol/h})(1 \ \, \mathrm{mol} \ \, \mathrm{C}_6\mathrm{H}_6/\mathrm{mol})} \\ \mathrm{A} \ \, \mathrm{mol/h} &= \frac{(3.6 \ \, \mathrm{mol} \ \, \mathrm{Cl_2/h})(1000 \ \, \mathrm{mol/h})(1 \ \, \mathrm{mol} \ \, \mathrm{C}_6\mathrm{H}_6/\mathrm{mol})}{(1 \ \, \mathrm{mol} \ \, \mathrm{C}_6\mathrm{H}_6/\mathrm{h})(1 \ \, \mathrm{mol} \ \, \mathrm{Cl_2/mol})} \\ &= 3600 \ \, \mathrm{mol/h} \end{split}$$

Sumando el balance de C_6H_6 , C_6H_5Cl , $C_6H_4Cl_2$, $C_6H_3Cl_3$ y $C_6H_2Cl_4$ (sea $\beta = [C_6H_6 + C_6H_5Cl + C_6H_4Cl_2 + C_6H_3Cl_3 + C_6H_2Cl_4]$):

1000 mol/h
$$\beta$$
 = (C mol/h)(1 mol β /mol)
C mol/h = 1000 mol/h

En el balance de $C_6H_2Cl_4$:

0 mol/h
$$C_6H_2Cl_4 = (1000 \text{ mol/h})(0.05 \text{ mol } C_6H_2Cl_4/\text{mol})$$
 - ξ_4 mol/h $C_6H_2Cl_4$ ξ_4 mol/h $C_6H_2Cl_4 = (1000 \text{ mol/h})(0.05 \text{ mol } C_6H_2Cl_4/\text{mol}) = 50 \text{ mol/h } C_6H_2Cl_4$

Balance de materia IMClick Project

En el balance de $C_6H_3Cl_3$:

 $0 \text{ mol/h } C_6H_3Cl_3 = (1000 \text{ mol/h})(0.75 \text{ mol } C_6H_3Cl_3/\text{mol}) - \xi_3 \text{ mol/h } C_6H_3Cl_3 + 50 \text{ mol/h } C_6H_3Cl_3 \\ \xi_3 \text{ mol/h } C_6H_3Cl_3 = (1000 \text{ mol/h})(0.75 \text{ mol } C_6H_3Cl_3/\text{mol}) + 50 \text{ mol/h } C_6H_3Cl_3 = 800 \text{ mol/h } C_6H_3Cl_3$

En el balance de C₆H₄Cl₂:

 $0 \; mol/h \; C_6H_4Cl_2 = (1000 \; mol/h)(0.12 \; mol \; C_6H_4Cl_2/mol) - \xi_2 \; mol/h \; C_6H_4Cl_2 + 800 \; mol/h \; C_6H_4Cl_2 \\ \xi_2 \; mol/h \; C_6H_4Cl_2 = (1000 \; mol/h)(0.12 \; mol \; C_6H_4Cl_2/mol) + 800 \; mol/h \; C_6H_4Cl_2 = 920 \; mol/h \; C_6H_4Cl_2$

En el balance de C_6H_5Cl :

$$0 \text{ mol/h } C_6H_5Cl = (1000 \text{ mol/h})(0.07 \text{ mol } C_6H_5Cl/\text{mol}) - \xi_1 \text{ mol/h } C_6H_5Cl + 920 \text{ mol/h } C_6H_5Cl + \xi_1 \text{ mol/h } C_6H_5Cl = (1000 \text{ mol/h})(0.07 \text{ mol } C_6H_5Cl/\text{mol}) + 920 \text{ mol/h } C_6H_5Cl = 990 \text{ mol/h } C_6H_5Cl + 920 \text{ mol/h } C_6H_5C$$

En el balance de HCl:

$$0 \ \text{mol/h HCl} = (D \ \text{mol/h})(1 \ \text{mol HCl/mol}) - 990 \ \text{mol/h HCl} - 920 \ \text{mol/h HCl} - 800 \ \text{mol/h HCl} - 50 \ \text{mol/h HCl} + 800 \ \text{mol/h HCl/mol} + 800 \ \text{mol/h} + 800 \ \text{mol/h}$$

En el balance de Cl₂:

$$(3600 \text{ mol/h})(1 \text{ mol } \text{Cl}_2/\text{mol}) = (B \text{ mol/h})(1 \text{ mol } \text{Cl}_2/\text{mol}) + 990 \text{ mol/h } \text{Cl}_2 + 920 \text{ mol/h } \text{Cl}_2 + 800 \text{ mol/h } \text{Cl}_2 + 50 \text{ mol/h } \text{Cl}_2 \\ B \text{ mol/h} = \frac{(3600 \text{ mol/h})(1 \text{ mol } \text{Cl}_2/\text{mol}) - 990 \text{ mol/h } \text{Cl}_2 - 920 \text{ mol/h } \text{Cl}_2 - 800 \text{ mol/h } \text{Cl}_2 - 50 \text{ mol/h } \text{Cl}_2}{1 \text{ mol } \text{Cl}_2/\text{mol}} \\ B \text{ mol/h} = 840 \text{ mol/h}$$

Flujo molar (mol/h)					
	1	2	3	4	5
Cl_2	3600	0	840	0	0
C_6H_6	0	1000	0	10	0
C_6H_5Cl	0	0	0	70	0
$C_6H_4Cl_2$	0	0	0	120	0
$C_6H_3Cl_3$	0	0	0	750	0
$C_6H_2Cl_4$	0	0	0	50	0
HCl	0	0	0	0	2760
Total	3600	1000	840	1000	2760

En la salida se obtienen 2760 mol/h de subproductos de HCl y 750 mol/h de producto primario C₆H₃Cl₃.