

Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение

высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ <u>«Информатика и системы управления»</u>
КАФЕДРА <u>«Программное обеспечение ЭВМ и информационные технологии»</u>
Лабораторная работа № <u>3</u>
Тема Цепи Маркова
Студент Сушина А.Д.
Группа ИУ7-71б
Оценка (баллы)
Преподаватель <u>Рудаков И.В.</u>

Задание на лабораторную работу

Необходимо для сложной системы S, имеющей не более 10 состояний, определить среднее время нахождения системы в предельных состояниях, т. е. при установившимся режиме работы.

Теоретическая часть

Случайный процесс называется марковским, если он обладает слудующим свойством: для каждого момента t0 вероятность любого состояния системы в будущем (при t>t0) зависит только от ее состояния в настоящем (при t=t0) и не зависит от того, когда и каким образом система пришла в это состояние. Вероятностью i-го состояния называется вероятность pi(t) того, что в момент t система будет находится в состоянии Si. Для любого момента времени t сумма вероятностей всех состоянии равна единице.

$$\sum_{i=0}^{N} p_i(t) = 1 \quad (1) ,$$

где N - количество состояний.

Стационарное распределение цепи Маркова — это такое распределение вероятности, которое не меняется с течением времени. Если цепь является положительной возвратной (то есть в ней существует стационарное распределение) и апериодической, тогда, какими бы ни были исходные вероятности, распределение вероятностей цепи сходится при стремлении интервалов времени к бесконечности: говорят, что цепь имеет **предельное распределение**, что является ничем иным, как стационарным распределением.

Предельная вероятность состояния показывает **среднее время пребывания системы** в этом состоянии. Например, если предельная вероятность состояния e0 равна 0,5,то это означает, что в среднем половину времени система находится в состоянии e0.

Для нахождения таких вероятностей используются уравнения Колмагорова. Они строятся по следующим принципам: в левой части каждого из уравнений стоит производная вероятности i-ого состояния; в правой части содержится столько членов, сколько стрелок связано с данным состоянием; если стрелка направлена из состояния, соответствующий член имеет знак «минус», если в состояние — знак «плюс»; каждый член равен произведению интенсивности, соответствующей данной стрелке, и вероятности того состояния, из которого выходит стрелка.

Так как предельные вероятности постоянны, их производные равны нулю. Если в уравнениях Колмагорова приравнять производные к нулю, то получим систему уравнений, описывающих стационарный режим. Также для поиска решений необходимо добавить уравнение нормировки.

Получаем СЛАУ:

$$\begin{pmatrix}
-(\lambda_{11}+...+\lambda_{1n}) p 1 + \lambda_{21} p_2 + ... + \lambda_{n1} p_n = 0 \\
\lambda_{12} p_1 - (\lambda_{21}+...+\lambda_{2n}) p 2 + ... + \lambda_{n2} p_n = 0 \\
... \\
\lambda_{1n} p_1 + \lambda_{2n} p_2 + ... - (\lambda_{n1}+...+\lambda_{nn}) p_n = 0 \\
p_1 + p_2 + ... + p_n = 1
\end{pmatrix} (2)$$

Код программы

Код функции для решения системы уравнений представлен на листинге 1.

```
Листинг 1.

from numpy import linalg

def get_Kolmogorov_coeffs(matrix):
    n = len(matrix)

return [
    [matrix[j][i] if j != i else -sum(matrix[i]) for j in range(n)]
    if i != (n - 1) else [1 for i in range(n)]
    for i in range(n)
    ]

def get_limit_probabilities(matrix):
    coeffs = get_Kolmogorov_coeffs(matrix)
    return linalg.solve(coeffs, [0 if i != (len(matrix) - 1) else 1 for i in range(len(matrix))]).tolist()

def calculate(matrix):
    limit_p = [round(x, 4) for x in get_limit_probabilities(matrix)]
    return limit_p
```

Результаты работы

Результаты работы представлены на рисунках 1, 2 и 3.

Рис 1. Результат работы для системы с тремя состояниями.

Введите к	оличество	состояний	системы:	5			
Матрица:	4						
s1	s2	s3	s4	s5			
0.0 0.0606 0.0685 0.68 0.04	+	0.6303	0.6809 0.0406 0.1458 0.0 0.8752	0.7857 0.7021 0.8564 0.2201 0.0			
Состояния Предельные вероятности							
s1 s2 s3 s4 s5		0.062 0.3016 0.2248 0.1669 0.2447					

Рис 2. Результат работы для системы с пятью состояниями.

Введите ко	оличество	состояний	й системы:	: 7	,	17		
Матрица:						+		
s1	s2	s3	s4	s5	s6	s7		
0.0 0.0287 0.4252 0.5773 0.2009 0.6856	0.834 0.0 0.5881 0.7326 0.9477 0.4953 0.1487	0.7548 0.8203 0.0 0.0871 0.2429 0.1367 0.0698	0.7049 0.6737 0.894 0.0 0.6926 0.5977 0.206	0.8664 0.901 0.7854 0.1861 0.0 0.0738 0.1161	0.7237 0.2455 0.9498 0.5587 0.9164 0.0	0.4598 0.8017 0.3844 0.2572 0.5169 0.8217 0.0		
Результат:								
Состояния Предельные вероятности								
s1 s2 s3 s4 s5 s6		0.065 0.1183 0.056 0.1638 0.0823 0.1382	3 7 2					

Рис 3. Результат работы для системы с 7-ю состояниями.