CMSC 631 — Program Analysis and Understanding

Data Flow Analysis

Compiler Structure

- Source code parsed to produce AST
- AST transformed to CFG
- Data flow analysis operates on control flow graph (and other intermediate representations)

CMSC 631

Abstract Syntax Tree (AST)

- Programs are written in text
 - I.e., sequences of characters
 - Awkward to work with
- First step: Convert to structured representation
 - Use lexer (like flex) to recognize tokens
 - Sequences of characters that make words in the language
 - Use parser (like bison) to group words structurally
 - And, often, to produce AST

Abstract Syntax Tree Example

ASTs

- ASTs are abstract
 - They don't contain all information in the program
 - E.g., spacing, comments, brackets, parentheses
 - Any ambiguity has been resolved
 - E.g., a + b + c produces the same AST as (a + b) + c
- For more info, see CMSC 430
 - In this class, we will generally begin at the AST level

CMSC 631 5

Disadvantages of ASTs

- AST has many similar forms
 - E.g., for, while, repeat...until
 - E.g., if, ?:, switch
- Expressions in AST may be complex, nested
 - (42 * y) + (z > 5 ? 12 * z : z + 20)
- Want simpler representation for analysis
 - ...at least, for dataflow analysis

CMSC 631

Control-Flow Graph (CFG)

- · A directed graph where
 - Each node represents a statement
 - Edges represent control flow
- Statements may be
 - Assignments x := y op z or x := op z
 - Copy statements x := y
 - Branches goto L or if x relop y goto L
 - etc.

Control-Flow Graph Example

```
x := a + b;

y := a * b;

while (y > a) {

a := a + 1;

x := a + b

}

x := a + b

y := a * b

y := a * b
```

CMSC 631

Variations on CFGs

- We usually don't include declarations (e.g., int x;)
 - But there's usually something in the implementation
- May want a unique entry and exit node
 - Won't matter for the examples we give
- May group statements into basic blocks
 - A sequence of instructions with no branches into or out of the block

CMSC 631

Control-Flow Graph w/Basic Blocks

```
x := a + b;

y := a * b;

while (y > a + b) {

a := a + 1;

x := a + b

}
```

- Can lead to more efficient implementations
- But more complicated to explain, so...
 - We'll use single-statement blocks in lecture today

CMSC 631

Graph Example with Entry and Exit

```
x := a + b:
                                           entry
y := a * b;
while (y > a) {
                                         x := a + b
  a := a + 1;
                                          y := a * b
  x := a + b
                                           y > a
• All nodes without a (normal)
                                                         exit
                                         a := a + I
predecessor should be pointed
to by entry
                                         x := a + b
•All nodes without a successor
should point to exit
```

CMSC 631

CFG vs. AST

- CFGs are much simpler than ASTs
 - Fewer forms, less redundancy, only simple expressions
- But...AST is a more faithful representation
 - CFGs introduce temporaries
 - Lose block structure of program
- So for AST,

П

- Easier to report error + other messages
- Easier to explain to programmer
- Easier to unparse to produce readable code

CMSC 631

12

Data Flow Analysis

- A framework for proving facts about programs
- Reasons about lots of little facts
- Little or no interaction between facts
 - Works best on properties about how program computes
- · Based on all paths through program
 - Including infeasible paths

CMSC 631

Available Expressions

- An expression e is available at program point p if
 - e is computed on every path to p, and
 - the value of e has not changed since the last time e
 was computed on the paths to p
- Optimization
 - If an expression is available, need not be recomputed
 - (At least, if it's still in a register somewhere)

CMSC 631

Data Flow Facts

- Is expression e available?
- Facts:
 - a + b is available
 - a * b is available
 - a + I is available

Gen and Kill

 What is the effect of each statement on the set of facts?

Stmt	Gen	Kill
x := a + b	a + b	
y := a * b	a*b	
a := a + I		a + I, a + b, a * b

16

CMSC 631

CMSC 631

Computing Available Expressions

Terminology

- A joint point is a program point where two branches meet
- Available expressions is a forward must problem
 - Forward = Data flow from in to out
 - Must = At join point, property must hold on all paths that are joined

CMSC 631

Data Flow Equations

- Let s be a statement
 - succ(s) = { immediate successor statements of s }
 - pred(s) = { immediate predecessor statements of s}
 - ln(s) = program point just before executing s
 - Out(s) = program point just after executing s
- $ln(s) = \bigcap_{s' \in pred(s)} Out(s')$

CMSC 631

• Out(s) = Gen(s) \cup (ln(s) - Kill(s))

Liveness Analysis

- A variable v is live at program point p if
 - v will be used on some execution path originating from p...
 - before v is overwritten
- Optimization

19

- If a variable is not live, no need to keep it in a register
- If variable is dead at assignment, can eliminate assignment

Data Flow Equations

- Available expressions is a forward must analysis
 - Data flow propagate in same dir as CFG edges
 - Expr is available only if available on all paths
- Liveness is a backward may problem
 - To know if variable live, need to look at future uses
 - Variable is live if used on some path

• Out(s) =
$$\bigcup_{s' \in \text{succ(s)}} \ln(s')$$

• $ln(s) = Gen(s) \cup (Out(s) - Kill(s))$

CMSC 631

21

Gen and Kill

 What is the effect of each statement on the set of facts?

Stmt	Gen	Kill
x := a + b	a, b	х
y := a * b	a, b	у
y > a	a, y	
a := a + I	a	a

22

CMSC 631

Computing Live Variables

Very Busy Expressions

- An expression e is very busy at point p if
 - On every path from p, expression e is evaluated before the value of e is changed
- Optimization
 - Can hoist very busy expression computation
- What kind of problem?
 - Forward or backward? backward
 - May or must?

must

Reaching Definitions

- A definition of a variable v is an assignment to v
- A definition of variable v reaches point p if
 - There is no intervening assignment to v
- Also called def-use information
- What kind of problem?
 - Forward or backward? forward
 - May or must?

CMSC 631 25

Space of Data Flow Analyses

		May	Must
	Forward	Reaching definitions	Available expressions
	Backward	Live variables	Very busy expressions

- Most data flow analyses can be classified this way
 - A few don't fit: bidirectional analysis
- Lots of literature on data flow analysis

CMSC 631 26

Data Flow Facts and Lattices

- Typically, data flow facts form a lattice
 - Example: Available expressions

Partial Orders

- A partial order is a pair (P, \leq) such that
 - $\subseteq \subseteq P \times P$
 - $_{\bullet} \leq \text{ is reflexive: } x \leq x$
 - \bullet \leq is anti-symmetric: $x \leq y$ and $y \leq x \Rightarrow x = y$
 - \bullet \leq is transitive: $x \leq y$ and $y \leq z \Rightarrow x \leq z$

CMSC 631 27

CMSC 631

Lattices

- A partial order is a lattice if ¬and ¬are defined on any set:
 - ullet is the meet or greatest lower bound operation:

```
x \sqcap y \le x \text{ and } x \sqcap y \le y
if z \le x \text{ and } z \le y, then z \le x \sqcap y
```

■ is the join or least upper bound operation:

```
 x \le x \sqcup y \text{ and } y \le x \sqcup y  if x \le z and y \le z, then x \sqcup y \le z
```

CMSC 631 29

Lattices (cont'd)

- A finite partial order is a lattice if meet and join exist for every pair of elements

```
x \sqcap \bot = \bot x \sqcup \bot = x
```

$$x \sqcap \top = x$$
 $x \sqcup \top = \top$

- In a lattice, $x \le y$ iff $x \sqcap y = x$ $x \le y$ iff $x \sqcup y = y$
- A partial order is a complete lattice if meet and join are defined on any set S ⊆ P

CMSC 631

Forward Must Data Flow Algorithm

```
Out(s) = Top for all statements s

// Slight acceleration: Could set Out(s) = Gen(s) \cup (Top - Kill(s))

W := { all statements } (worklist)

repeat

Take s from W

In(s) := \cap_{s'} \in pred(s) Out(s')

temp := Gen(s) \cup (In(s) - Kill(s))

if (temp!= Out(s)) {

Out(s) := temp

W := W \cup succ(s)

}

until W = \emptyset
```

Monotonicity

31

• A function f on a partial order is monotonic if

$$x \le y \Rightarrow f(x) \le f(y)$$

 Easy to check that operations to compute In and Out are monotonic

```
■ ln(s) := \bigcap_{s' \in pred(s)} Out(s') a function f_s(ln(s))
```

• temp := $Gen(s) \cup (In(s) - Kill(s))$

Putting these two together,

• temp := $f_s(\sqcap_{s' \in \operatorname{pred}(s)} Out(s'))$

Useful Lattices

- $(2^S, \subseteq)$ forms a lattice for any set S
 - 2^S is the powerset of S (set of all subsets)
- If (S, \leq) is a lattice, so is (S, \geq)
 - I.e., lattices can be flipped
- The lattice for constant propagation

CMSC 631

CMSC 631

33

35

Termination

- We know the algorithm terminates because
 - The lattice has finite height
 - The operations to compute In and Out are monotonic
 - On every iteration, we remove a statement from the worklist and/or move down the lattice

CMSC 631 34

Forward Data Flow, Again

```
\begin{aligned} & \text{Out(s)} = \text{Top} & \text{for all statements s} \\ & \text{W} := \left\{ \text{ all statements} \right\} & \text{(worklist)} \end{aligned} \begin{aligned} & \text{repeat} \\ & \text{Take s from W} \\ & \text{temp} := f_s(\sqcap_{s'} \in \text{pred(s)} \text{Out(s')}) & \text{(} f_s \text{ monotonic } \textit{transfer fn}) \end{aligned} & \text{if (temp != Out(s)) } \left\{ \\ & \text{Out(s) := temp} \\ & \text{W} := \text{W} \cup \text{succ(s)} \right\} & \text{until W} = \varnothing \end{aligned}
```

Lattices (P, ≤)

- Available expressions
 - P = sets of expressions
 - SI ¬ S2 = SI ∩ S2
 - Top = set of all expressions
- Reaching Definitions
 - P = set of definitions (assignment statements)
 - SI ¬ S2 = SI U S2
 - Top = empty set

Fixpoints

- We always start with Top
 - Every expression is available, no defns reach this point
 - Most optimistic assumption
 - Strongest possible hypothesis
 - = true of fewest number of states
- Revise as we encounter contradictions
 - Always move down in the lattice (with meet)
- Result: A greatest fixpoint

CMSC 631 37

Lattices (P, ≤), cont'd

- Live variables
 - P = sets of variables
 - $SI \sqcap S2 = SI \cup S2$
 - Top = empty set
- Very busy expressions
 - P = set of expressions
 - SI ¬ S2 = SI ∩ S2
 - Top = set of all expressions

CMSC 631

Forward vs. Backward

CMSC 631

```
Out(s) = Top for all s
                                                       ln(s) = Top for all s
W := { all statements }
                                                      W := { all statements }
repeat
                                                       repeat
                                                         Take s from W
  Take s from W
 \mathsf{temp} := \mathsf{f}_{\mathsf{S}}(\sqcap_{\mathsf{S}'} \in \mathsf{pred}(\mathsf{s}) \ \mathsf{Out}(\mathsf{s}')) \ \mathsf{temp} := \mathsf{f}_{\mathsf{S}}(\sqcap_{\mathsf{S}'} \in \mathsf{succ}(\mathsf{s}) \ \mathsf{ln}(\mathsf{s}'))
  if (temp != Out(s)) {
                                                         if (temp != ln(s)) {
     Out(s) := temp
                                                            ln(s) := temp
     W := W \cup succ(s)
                                                            W := W \cup pred(s)
until W = \emptyset
                                                       until W = \emptyset
```

39

Termination Revisited

How many times can we apply this step:

```
temp := f_s(\sqcap_{s'} \in pred(s)) \cap (s')
if (temp != Out(s)) { ... }
```

- Claim: Out(s) only shrinks
 - Proof: Out(s) starts out as top
 - So temp must be ≤ than Top after first step
 - Assume Out(s') shrinks for all predecessors s' of s
 - Then $\sqcap_{s' \in pred(s)} Out(s')$ shrinks
 - _ Since f_s monotonic, $f_s(\sqcap_{s'} \in pred(s))$ Out(s')) shrinks

Termination Revisited (cont'd)

- A descending chain in a lattice is a sequence
 - x0 □ x1 □ x2 □ ...
- The *height* of a lattice is the length of the longest descending chain in the lattice
- Then, dataflow must terminate in O(nk) time
 - n = # of statements in program
 - k = height of lattice
 - assumes meet operation takes O(1) time

CMSC 631 41

Least vs. Greatest Fixpoints

- Dataflow tradition: Start with Top, use meet
 - To do this, we need a meet semilattice with top
 - complete meet semilattice = meets defined for any set
 - finite height ensures termination
 - Computes greatest fixpoint
- Denotational semantics tradition: Start with Bottom, use join
 - Computes least fixpoint

CMSC 631 42

Distributive Data Flow Problems

• By monotonicity, we also have

$$f(x \sqcap y) \le f(x) \sqcap f(y)$$

• A function f is distributive if

$$f(x \sqcap y) = f(x) \sqcap f(y)$$

43

Benefit of Distributivity

• Joins lose no information

$$k(h(f(\top) \sqcap g(\top))) = k(h(f(\top)) \sqcap h(g(\top))) = k(h(f(\top))) \sqcap k(h(g(\top)))$$

CMSC 631

Accuracy of Data Flow Analysis

- Ideally, we would like to compute the meet over all paths (MOP) solution:
 - Let f be the transfer function for statement s
 - If p is a path $\{s_1, ..., s_n\}$, let $f_p = f_n; ...; f_1$
 - Let path(s) be the set of paths from the entry to s

$$MOP(s) = \sqcap_{p \in path(s)} f_p(\top)$$

 If a data flow problem is distributive, then solving the data flow equations in the standard way yields the MOP solution

CMSC 631 45

What Problems are Distributive?

- Analyses of how the program computes
 - Live variables
 - Available expressions
 - Reaching definitions
 - Very busy expressions
- All Gen/Kill problems are distributive

CMSC 631

A Non-Distributive Example

• Constant propagation

• In general, analysis of what the program computes in not distributive

Practical Implementation

- Data flow facts = assertions that are true or false at a program point
- Represent set of facts as bit vector
 - Fact, represented by bit i
 - Intersection = bitwise and, union = bitwise or, etc
- "Only" a constant factor speedup
 - But very useful in practice

CMSC 631 48

CMSC 631

47

Basic Blocks

- A basic block is a sequence of statements s.t.
 - No statement except the last in a branch
 - There are no branches to any statement in the block except the first
- In practical data flow implementations,
 - Compute Gen/Kill for each basic block
 - Compose transfer functions
 - Store only In/Out for each basic block
 - Typical basic block ~5 statements

CMSC 631

Order Matters

- Assume forward data flow problem
 - Let G = (V, E) be the CFG
 - Let k be the height of the lattice
- If G acyclic, visit in topological order
 - Visit head before tail of edge
- Running time ○(|E|)
 - No matter what size the lattice

CMSC 631 50

Order Matters — Cycles

- If G has cycles, visit in reverse postorder
 - Order from depth-first search
- Let Q = max # back edges on cycle-free path
 - Nesting depth
 - Back edge is from node to ancestor on DFS tree
- Then if $\forall x. f(x) \leq x$ (sufficient, but not necessary)
 - Running time is O((Q+1)|E|)
 - Note direction of req't depends on top vs. bottom

Flow-Sensitivity

- Data flow analysis is flow-sensitive
 - The order of statements is taken into account
 - I.e., we keep track of facts per program point
- Alternative: Flow-insensitive analysis
 - Analysis the same regardless of statement order
 - Standard example: types
 - /* x : int */ x := ... /* x : int */

CMSC 631 51 CMSC 631 52

Terminology Review

- Must vs. May
 - (Not always followed in literature)
- Forwards vs. Backwards
- Flow-sensitive vs. Flow-insensitive
- Distributive vs. Non-distributive

CMSC 631 53

Another Approach: Elimination

- Recall in practice, one transfer function per basic block
- Why not generalize this idea beyond a basic block?
 - "Collapse" larger constructs into smaller ones, combining data flow equations
 - Eventually program collapsed into a single node!
 - "Expand out" back to original constructs, rebuilding information

CMSC 631 54

Lattices of Functions

- Let (P, \leq) be a lattice
- Let M be the set of monotonic functions on P

55

- Define $f \leq_f g$ if for all $x, f(x) \leq g(x)$
- Define the function f □ g as
 - $(f \sqcap g)(x) = f(x) \sqcap g(x)$
- Claim: (M, \leq_f) forms a lattice

Elimination Methods: Conditionals

$$f_{\text{ite}} = (f_{\text{then}} \circ f_{\text{if}}) \sqcap (f_{\text{else}} \circ f_{\text{if}})$$

$$\begin{aligned} & \text{Out(if)} = f_{\text{if}}(\text{In(ite)})) \\ & \text{Out(then)} = (f_{\text{then}} \circ f_{\text{if}})(\text{In(ite)})) \\ & \text{Out(else)} = (f_{\text{else}} \circ f_{\text{if}})(\text{In(ite)})) \end{aligned}$$

Elimination Methods: Loops

CMSC 631 57

Elimination Methods: Loops (cont'd)

- Let f i = f o f o ... o f (i times)
 - $f^0 = id$
- Let

$$g(j) = \sqcap_{i \in [0..j]} (f_{\text{head}} \circ f_{\text{body}})^i \circ f_{\text{head}}$$

- Need to compute limit as j goes to infinity
 - Does such a thing exist?
- Observe: $g(j+1) \le g(j)$

CMSC 631 58

Height of Function Lattice

• Assume underlying lattice (P, \leq) has finite height

59

- What is height of lattice of monotonic functions?
- Claim: finite (see homework)
- Therefore, g(j) converges

Non-Reducible Flow Graphs

- Elimination methods usually only applied to reducible flow graphs
 - Ones that can be collapsed
 - Standard constructs yield only reducible flow graphs
- Unrestricted goto can yield non-reducible graphs

Comments

- · Can also do backwards elimination
 - Not quite as nice (regions are usually single entry but often not single exit)
- For bit-vector problems, elimination efficient
 - Easy to compose functions, compute meet, etc.
- Elimination originally seemed like it might be faster than iteration
 - Not really the case

CMSC 631 61

Data Flow Analysis and Functions

- What happens at a function call?
 - Lots of proposed solutions in data flow analysis literature
- In practice, only analyze one procedure at a time
- Consequences
 - Call to function kills all data flow facts
 - May be able to improve depending on language, e.g., function call may not affect locals

CMSC 631 62

More Terminology

- An analysis that models only a single function at a time is *intraprocedural*
- An analysis that takes multiple functions into account is interprocedural
- An analysis that takes the whole program into account is...guess?
- Note: *global* analysis means "more than one basic block," but still within a function

Data Flow Analysis and The Heap

- Data Flow is good at analyzing local variables
 - But what about values stored in the heap?
 - Not modeled in traditional data flow
- In practice: *x := e
 - Assume all data flow facts killed (!)
 - Or, assume write through x may affect any variable whose address has been taken
- In general, hard to analyze pointers

CMSC 631

64

CMSC 631

63

Data Flow Analysis and Optimization

- Moore's Law: Hardware advances double computing power every 18 months.
- Proebsting's Law: Compiler advances double computing power every 18 years.
 - Not so much bang for the buck!

DF Analysis and Defect Detection

- •LCLint Evans et al. (UVa)
- •METAL Engler et al. (Stanford, now Coverity)
- •ESP Das et al. (MSR)
- FindBugs Hovemeyer, Pugh (Maryland)
 - For Java. The first three are for C.
- Many other one-shot projects
 - Memory leak detection
 - Security vulnerability checking (tainting, info. leaks)

CMSC 631 65 CMSC 631 66