

1 ») » (2 700 « 3 13 2020 . 1078-4 26 2015 . 162-29) *»*.) *»*. (www.gost.ru)

,

П

	ı
	,
	3
11	•

· ,— , — .

IV

2

High-performance computing systems. Terms and definitions

— 2021—06—01

1

· ·

, ()

57700.18 57700.26.

:

15971 33707 57700.18

57700.26

-

3 1 hhgh-performance computing (2 computing system high-performance 3 computing system (HPCS) (multiprocessor system); 5 high-performance computing system architecture), 6 homogeneous highperformance computing): system heterogeneous high-7): performance computing system general-purpose high-8 performance computing system 9 special-purpose highperformance computing system 10 functional node of the high-performance computing system 11 - subsystem 12 computing subsystem 13 management and administration subsystem 14 user access subsystem

- -

- service subsystem

2

16	()'.	interconnect subsystem
17	. :		storage subsystem
18	:		file subsystem
19	():		archive
20	:	•	-Flynn's taxonomy
_ (Michael J.Flynn).	_	•	
21 ;	: .	, - -	SISD (Single Instruction stream, Single Data stream) architecture
22 ;	: .	, - - ,	MISD (Multiple Instruction stream. Single Data stream) architecture
23 ;	: .	-	SIMD (Single Instruction stream. Multiple Data stream) architecture
24 ;	:		MIMD (Multiple Instructions stream, Multiple Data stream) architecture
25	:		engineering systems
26	,	:	power supply system
27	:	,	cooling system
	•		
28	:		hardware
29 ,	:	- 	computing node

30	:	, , ,			processor (CPU)
31		:		,	- general-purpose processor
32		:	,	(core -
33			:	,	- hybrid computing node
34	, ,).	:	SMP architecture
35 :		,		, ()	NUMA architecture
(36).	:	,		- accelerator
37		:	,	,	- arithmetic accelerator
38				:	graphics processing unit (GPU)
39	•	:	,		, interconnect
40	· ;		,		- switch
41	: .				- port
15971.	_		«	»	
42	:		,		link
43	:				, communication channel
44	,		,	:	interconnect subsystem - topology
45		, ():		•	- hop
46	:	()	•		- node

	47	:	- bisection
	48	· :	- route
(49)	- distance -
	50)	- average distance
	51	« ()— ()». :	, file system
	52	:	- parallel file system
	53	,	-disk array
),	,	<i>1</i>
	54 ,	· : ,	- just a bunch of disks - (JBOD)
	55		hot replacement
(56)	hot reserve
	57	; :	- system software -
	58	· : ,	- process
	59	· : ,	, process's context
,		, ,	-
	60	:	, thread · (Light Weight Process)
	61	:	, parallel computing
	62	;	- serial computing

63	:		,	batch job
		,	,	
64	•	,	*	resource manager
65	•	:		message passing parallelization model
	,	,	*	
66	,	:	-	shared memory parallelization model
67	,	:	*	hybrid parallelization model
		•	-	
68		:	- -	message passing interface (MPI)
69			:	OpenMP
	,	, ,	-	
70	:	,	-	decomposition
71	:	•		functional decomposition
72	÷		-	geometric decomposition
73	· · · ()	,	-	race condition
74			-	data parallelism
		15971.		
75	: ,		-	functional parallelism
76	:	. (),	data dependence

77	:	true dependence
), 78	() ().	- (),anti dependence
79	() : ()). (), output dependence
80	[]:	, synchronization), -
81	: ,	(). (), barrier synchronization , -
82	() . : (, critical section), -
83	:	- vectorizing -
84		33707. : - load balancing (,),
85	:	- mapping -
86	· : . :	, - benchmark , -
	,	, -
87	: : (FLOPS).	performance
, 88	: (FLOPS). — « »	15971. : theoretical peak
		- performance
89	:	, - real performance
	^	

```
90
                                  (
                                                  ):
                                                                                 latency
     2
         . MPI)
     91
                                                                                 bandwidth
                                  / , bps;
                                               / . Kbps;
                                                              / . Mbps;
                                                                            1.
Gbps).
     92
                                                                                 power usage effectiveness
                                                                                 (PUE)
     93
                                                                                 power efficiency
     94
                                                                                 power consumption of
                                                                                 the high-performance
                                                                                 computing system
                                                                                 occupied space
     95
     96
                                                                                 connectivity
     97
                                                                                 full bisection
     98
                                                                                 bisection bandwidth
     99
                                                                ):
                                                                                 bisection width
      100
                                                                                 diameter
                                              (
                                                           ) —
         )».
```

	101			:	,			-	speedup
()			()		_	
`		,			`	,		-	
						•			
	1						,	-	
		•							
	2							-	
	102				().	strong scaling method
	.02				,			/-	onong county memou
								-	
•									
	1						,		
							,		
	2							-	
	_								
	3							-	
	103				1			١.	weak scaling method
	103				, ,).	weak scaling method
						()	-	
								-	
		•							
	1						,	-	
	2	•							
	2					,		•	
				,					
	3			•				-	
						,			
	,				,				
	104				:			-	efficiency
			,				()	•
					,			-	
						,			
100 %	6.								
		_						-	
		•	•						
	105					:		-	scalability
		,	()					
			`						
	106		:			,			granularity

	19
	5
	24
	22
,	24
,	22
	23
	21
	23
	21
	35
	34
	107
	84
	47
	97
	3
	7
	83
	2
	1
	61
	62
	70
	72
	71
	6
	100
	108
	49
	50
	79
	78
	76
	77
	63
	90
	55
	106
	69
	68
	43
	40
	59
	101
	90

48
53
105
4
102
102
103
103
67
66
65
4
85
57
74
75
64
95
19
11
12
14
16
16
15
13
18
17
54
41
60
86
87
89
88
58
30
31
56
96
82
39
81
80
80
3
7
6
^

)&<3<5 1 & ' > < 4 0)> -* >4

accelerator	36
anti dependence	78
archive	19
arithmetic accelerator	37
average distance	50
bandwidth	91
barrier synchronization	81
batch job	63
benchmark	86
bisection	47
bisection bandwidth	98
bisection width	99
communication channel	43
computing node	29
computing subsystem	12
computing system	2
connectivity	96
cooling system	27
core	32
critical section	82
data dependence	76
data parallelism	74
decomposition	70
diameter	100
disk array	53
distance	49
efficiency	104
engineering systems	25
file subsystem	18
file system	51
Flynn's taxonomy	20
full bisection	97
functional decomposition	71
functional node	10
functional parallelism	75
general-purpose high-performance computing system	8
general-purpose processor	31
geometric decomposition	72
granularity	106
graphics processing unit (GPU)	38
hardware	28
heterogeneous high-performance computing system	7
high-performance computing (HPC)	1
high-performance computing system (HPCS)	3
	5
homogeneous high-performance computing system	6
hon	45

not replacement	55
not reserve	56
nybrid computing node	33
nybrid parallelization model	67
nterconnect	39
nterconnections subsystem	16
nterconnections subsystem topology	44
ust a bunch of disks (JBOD)	54
atency	90
ink	42
oad balance	107
oad balancing	84
oad disbalance	108
nanagement and administration subsystem	13
napping	85
nessage passing interface (MPI)	68
nessage passing parallelization model	65
MIMD (Multiple Instruction stream. Multiple Data stream) architecture	24
MISD (Multiple Instruction stream. Single Data stream) architecture	22
multiprocessor computer	4
node	46
NUMA architecture	35
occupied space	95
DpenMP	69
output dependence	79
parallel computing	61
parallel tile system	52
performance	87
port	41
power consumption	94
oower efficiency	93
power supply system	26
power usage effectiveness (PUE)	92
process	58
process's context	59
processor (CPU)	30
race condition	73
real performance	89
resource manager	64
route	48
scalability	105
serial computing	62
service subsystem	15
Shared memory parallelization model	66
SIMD (Single Instruction stream. Multiple Datastream) architecture	23 21
SISD (Single Instruction stream. Single Data stream) architecture SMP architecture	
	34
special-purpose high-performance computing system	9 101
	10

storage subsystem	17
strong scaling method	102
subsystem	11
switch	40
synchronization	80
system software	57
theoretical peak performance	88
thread {Light Weight Process)	60
true dependence	77
user access subsystem	14
vectorizing	83
weak scaling method	103

001.4:004:006.354 35.240.50

12—2020

· ·
· ·
· ·

« 16.112020. 26.11.2020. 60>64 2.32. 2.00.

www.gostinfo.ru nfo@goslmto.ru