Метод на най-малките квадрати

Задача 1: Дадена е таблица $\{x_i, y_i\}_{i=1}^n$, където $x_1 < x_2 < \dots < x_n$. Докажете, че съществува единствена права P(x) = Ax + B, за която величината $S(A, B) = \sum_{i=1}^n (y_i - Ax_i - B)^2$ е минимална.

Доказателство: Необходимото и достатъчно условие за минимум на изпъкналата функция S(A,B) е частните производни от първи ред да са равни на нула, т. е. $S'_A = S'_B = 0$. Диференцираме и получаваме:

$$\frac{\partial S}{\partial A} = 2 \sum_{i=1}^{n} (y_i - Ax_i - B)(-x_i) = 0$$

$$\frac{\partial S}{\partial B} = 2 \sum_{i=1}^{n} (y_i - Ax_i - B)(-1) = 0$$

$$= > \begin{vmatrix} A \sum_{i=1}^{n} x_i^2 + B \sum_{i=1}^{n} x_i = \sum_{i=1}^{n} x_i y_i \\ A \sum_{i=1}^{n} x_i + n \cdot B = \sum_{i=1}^{n} y_i \end{vmatrix}$$

Тази система има единствено решение, когато детерминантата й е различна от нула. Но детерминантата $\Delta = n \sum_{i=1}^n x_i^2 - (\sum_{i=1}^n x_i)^2 > 0$, защото $x_1 < x_2 < \dots < x_n$. Следователно съществува единствена права P(x) = Ax + B, която минимизира S(A, B).

Задача 2: По метода на най-малките квадрати намерете права, която приближава таблицата:

x_i	0	1	2	3
γ_i	2	4	2	1

Решение: Търсим права P(x) = Ax + B, за която величината $S(A, B) = \sum_{i=1}^{n} (y_i - Ax_i - B)^2$ е минимална. НДУ за минимум са $S'_A = S'_B = 0$. След диференциране получаваме системата

$$A \sum_{i=1}^{4} x_i^2 + B \sum_{i=1}^{4} x_i = \sum_{i=1}^{4} x_i y_i$$
$$A \sum_{i=1}^{4} x_i + 4 \cdot B = \sum_{i=1}^{4} y_i$$

От таблицата намираме $\sum_{i=1}^4 x_i^2 = 14$; $\sum_{i=1}^4 x_i = 6$; $\sum_{i=1}^4 x_i y_i = 11$; $\sum_{i=1}^4 y_i = 9$. Заместваме в системата и получаваме $A = -\frac{1}{2}$; B = 3. Следователно $P(x) = -\frac{1}{2}x + 3$.

Задача 3: По метода на най-малките квадрати намерете права, която приближава таблицата:

x_i	-1	0	1	2
y_i	2	1	0	1
w_i	1	1	2	1

Решение: Търсим права P(x) = Ax + B, за която величината $S(A, B) = \sum_{i=1}^{n} w_i (y_i - Ax_i - B)^2$ е минимална. НДУ за минимум са $S'_A = S'_B = 0$. След диференциране получаваме системата

$$A \sum_{i=1}^{4} w_i x_i^2 + B \sum_{i=1}^{4} w_i x_i = \sum_{i=1}^{4} w_i x_i y_i$$
$$A \sum_{i=1}^{4} w_i x_i + B \sum_{i=1}^{4} w_i = \sum_{i=1}^{4} w_i y_i$$

От таблицата намираме $\sum_{i=1}^4 w_i x_i^2 = 7$; $\sum_{i=1}^4 w_i x_i = 3$; $\sum_{i=1}^4 w_i x_i y_i = 0$; $\sum_{i=1}^4 w_i y_i = 4$. Заместваме в системата и получаваме $A = -\frac{6}{13}$; $B = \frac{14}{13}$. Следователно $P(x) = \frac{-6x+14}{13}$.

Задача 4: По метода на най-малките квадрати намерете парабола, която приближава таблицата:

x_i	-2	-1	0	1	2	3
y_i	-4	15	-9	10	7	6

Решение: Търсим парабола $P(x) = Ax^2 + Bx + C$, за която величината $S(A, B, C) = \sum_{i=1}^{n} (y_i - Ax_i^2 - Bx_i - C)^2$ е минимална. НДУ за минимум са $S'_A = S'_B = S'_C = 0$. След диференциране получаваме системата

$$A \sum_{i=1}^{6} x_i^4 + B \sum_{i=1}^{6} x_i^3 + C \sum_{i=1}^{6} x_i^2 = \sum_{i=1}^{6} x_i^2 y_i$$

$$A \sum_{i=1}^{6} x_i^3 + B \sum_{i=1}^{6} x_i^2 + C \sum_{i=1}^{6} x_i = \sum_{i=1}^{6} x_i y_i$$

$$A \sum_{i=1}^{6} x_i^2 + B \sum_{i=1}^{6} x_i + 6C = \sum_{i=1}^{6} y_i$$

От таблицата намираме

$$\sum_{i=1}^{6} x_i^4 = 115; \sum_{i=1}^{6} x_i^3 = 27; \sum_{i=1}^{6} x_i^2 = 19; \sum_{i=1}^{6} x_i = 3; \sum_{i=1}^{6} x_i^2 y_i = 91; \sum_{i=1}^{6} x_i y_i = 35; \sum_{i=1}^{6} y_i = 25.$$

Използваме Wolfram Mathematica за да решим системата

Solve[
$$\{115A + 27B + 19C == 91,27A + 19B + 3C == 35,19A + 3B + 6C = 25\}, \{A, B, C\}$$
]

$$\{\{A \to -\frac{2}{7}, B \to \frac{11}{7}, C \to \frac{30}{7}\}\}$$

Получаваме парабола $P(x) = \frac{-2x^2 + 11x + 30}{7}$.

Задача 5: Намерете формула от вида $y(x) = A \cdot 2^{Bx}$ за приближаване на таблицата:

x_i	1	2	3	4	5
y_i	1	2	4	8	32

Решение: Правим полагане $z(x) = \log_2 y(x) = > z(x) = \log_2 (A.2^{Bx}) = \log_2 A + Bx = Bx + C$, където $C = \log_2 A$. Константите B и C определяме по метода на най-малките квадрати за таблицата:

x_i	1	2	3	4	5
z_i	0	1	2	3	5

Търсим права P(x) = Bx + C, за която величината $S(B,C) = \sum_{i=1}^{n} (z_i - Bx_i - C)^2$ е минимална. НДУ за минимум са $S_B' = S_C' = 0$. След диференциране получаваме системата

$$B \sum_{i=1}^{5} x_i^2 + C \sum_{i=1}^{5} x_i = \sum_{i=1}^{5} x_i z_i$$

$$B \sum_{i=1}^{5} x_i + 5C = \sum_{i=1}^{5} z_i$$

От таблицата намираме $\sum_{i=1}^5 x_i^2 = 55; \sum_{i=1}^5 x_i = 15; \sum_{i=1}^5 x_i z_i = 45; \sum_{i=1}^5 z_i = 11.$ Заместваме в системата и получаваме $B = \frac{6}{5}; C = -\frac{7}{5}.$

Следователно $z(x) = \frac{6x-7}{5} = y(x) = 2^{z(x)} = 2^{-7/5} \cdot 2^{6x/5}$.

Задача 6: По метода на най-малките квадрати да се реши преопределената система:

$$x - y = 1$$

$$x + y = 1$$

$$x + y = -1$$

$$x - y = -1$$

Решение: Решаваме матричната система A.X = B, където

$$A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \\ 1 & 1 \\ 1 & -1 \end{pmatrix}; X = \begin{pmatrix} x \\ y \end{pmatrix}; B = \begin{pmatrix} 1 \\ 1 \\ -1 \\ -1 \end{pmatrix}.$$

Умножаваме матричното уравнение с A^t отляво и получаваме определената система $A^t.A.X = A^t.B$

$$A^{t} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ -1 & 1 & 1 & -1 \end{pmatrix} => A^{t}A = \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix}; A^{t}B = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

$$\begin{bmatrix} 4x + 0. y = 0 \\ 0. x + 4y = 0 \end{bmatrix} => (x, y) = (0, 0).$$

Геометричният смисъл може да се види на следния чертеж:

