Greedy Algorithm with Haoyu

Jiawei Li

June 2024

1 Introduction

Notations. A forest F of n vertex are given. Each vertex i takes t_i time to resolve, and the weight of that vertex is w_i . Assume $w_i, t_i \geq 0$ for any $i \in [n]$.

The goal is to an optimal order a_1, \ldots, a_n of visiting n vertices that minimize the sum of cost of all vertices (cost is defined below).

The greedy algorithm.

Definition 1 (available chunk). For any forest F, an available chunk C is a subset of vertices in F such that

- 1. the vertices in C are connected.
- 2. the root of C is also a root in F.

Definition 2 (Score Function). For any subset C, the score function s(C) is w(C)/t(C), where $w(C) := \sum_{x \in C} w_x, t(C) := \sum_{x \in C} t_x$.

The greedy algorithm A will proceeds as follow: In each step,

- 1. A calculates the score function of all available chunk.
- 2. Let C be the available chunk with highest score; if there are multiple choices, pick C to be the smallest one. If there are still choices, break-tie arbitrarily.
- 3. A then visits the root of C.

The sequence generated by the greedy algorithm A has the following property.

Lemma 3. Let C be the available chunk pick by A in any step, then A will visit all the vertices in C in the next |C| steps.

Proof. We prove by induction on n, i.e., the size of the remaining forest. When n = 1, this is trivially true. Now suppose this is true for any forest of size at most n - 1.

After querying the root r_C of C, C is divided into several connected sub-chunk C_1, \ldots, C_m . If m = 0, this is trivial true. Now suppose $m \geq 1$.

We will show that the next |C| - 1 steps of A can be described by m stages: At the start of each stage, one of the remaining C_i will be the chunk picked by A, and then A will completely visit every vertex in C_i in the next $|C_i|$ steps in this stage.

By the induction hypothesis, in any steps of A, if one of the C_i is the chunk picked by A, A will completely visit every vertex in C_i in the next $|C_i|$ steps. Thus, we only need to rule out the possibility that at the start of some stage, there exists a chunk C^* that is better than any remaining C_i .

To this end, we prove two useful claims here:

Claim 4. $s(C_i) > s(C)$ for any $i \in [m]$.

Proof. Prove this claim by contradiction: if this is not true for C_i , then consider the set $C' = C \setminus C_i$. Since $s(C_i) \leq s(C)$ and s(C) is the weighted average of s(C') and $s(C_i)$, we must have $s(C') \geq s(C)$. Moreover, we have |C'| < C. Thus, this is contradict to the behavior of A.

Claim 5. A will not query any nodes that are not in the sub-tree of r_C before finishing querying every node in C_1, \ldots, C_m .

Proof. Any chunk not in the sub-tree of r_C has strictly worse score function compared to C_1, \ldots, C_m by the previous claim.

By the previous claim, there are two remaining possibilities:

- 1. C^* shares its root with one of remaining C_i . This is impossible, because replacing C_i with C^* in the original chunk C would make C better.
- 2. C^* has no overlap with any one of the remaining C_i . This is also impossible because replacing C with $C \cup C^*$ would make C better.

Observation 6. If an order is optimal, then every suffix of it is also optimal w.r.t. the sub-problem of removing previously visited vertices.

Proof. Easy to prove by contradiction.

Theorem 7. The greedy algorithm A is optimal.

Proof. Prove by induction on n. When n=1, this is trivially true. Now suppose the greedy algorithm A is optimal for any forest of size at most n-1. Let $a=(a_1,\ldots,a_n)$ be the order generated by A.

Now take any other order $b = (b_1, \ldots, b_n)$. If $b_1 = a_1$, by the induction hypothesis, (a_2, \ldots, a_n) is the optimal order for the sub-problem without $a_1 = b_1$. So order b cannot be better than order a.

Now assume $b_1 \neq a_1$. Let C be the first chunk picked by A and assume $b_j = a_1$. We first generate a new order b' such that $b'[1, \ldots, j-1]$ is same as b, but we then run algorithm A on the sub-problem without b_1, \ldots, b_{j-1} , which generate the rest of sequence b'. By the induction hypothesis, b' is no worse than b.

Now assume $b'_k = a_1$ $(k \ge j > 1)$. Note that every vertex in C has yet been visited in the first k-1 steps of b'. We claim that C must be the chunk picked by A in the sub-problem where $b'[1, \ldots, k-1]$ are removed. If not, assume A pick C', then C' should also be the chunk picked by A at the start, contradict to the definition of C.

Therefore, by Lemma 3, we have that the sub-sequence $a[1, \ldots, |C|]$ is equal to the sub-sequence $b'[k, \ldots, k+|C|-1]$. Let's consider swap $b'[1, \ldots, k-1]$ with $b'[k, \ldots, k+|C|-1]$ in the order b'. Denote the new order by b''. Since the score function of C is no worse than that of $\{b'_1, \ldots, b_{k-1}\}$, (by some standard calculation), b'' is no worse than b'. Now b'' has the same initial vertex as a, so a is no worse than b''. Combining everything, we have that a is no worse than b.

2