Proyecto Ecuaciones Diferenciales

Juan Camilo Llanos

13 de noviembre del 2018

1. Primera parte

La idea es mediante el método de Euler y el de Runge-Kutta aproximar la función de la ecuación dada. En las siguientes tablas se mostrarán los errores de ambas funciones con respecto a el paso (h) y la solución análitica de la función.

h	Euler	Runge-Kutta
0.1	0.2491	4.1686e-06
0.05	0.1300	2.7161e-07
0.02	0.0534	7.1290e-09
0.01	0.0269	4.4929e-10
0.005	0.0135	2.8194e-11
0.001	0.0027	4.1744e-14

En este caso la ecuación diferencial es

$$y' = x + y, y(0) = 1.$$

h	Euler	Runge-Kutta
0.1	0.0432	6.0669e-06
0.05	0.0213	4.1038e-07
0.02	0.0084	1.0754e-08
0.01	0.0042	6.7516e-10
0.005	0.0021	4.2268e-11
0.001	4.1569e-04	6.5281e-14

En este otro caso la ecuación es

$$y' + 3x^2y = 6x^2y, y(0) = 3.$$

Como se puede observar en ambas tablas, comparando el método de Euler con el de Runge-Kutta, de los dos quien tiene menor error en todos los valores de h siempre es Runge-Kutta. Entonces podemos concluir que para aproximar funciones el método que nos dará el valor más aproximado a la función es el de Runge-Kutta.

2. Segunda parte

2.1. Para a = 1 y b = 1

Este es el plano de fase.

Esta es la gráfica de $\mathbf{x}(\mathbf{t})$ y $\mathbf{y}(\mathbf{t})$ con respecto a \mathbf{t} .

2.2. Para a = 3 y a = 1/3 con b = 1

Estas son las gráficas en el caso en que a = 3 y b = 1. Este es el plano de fase.

Esta es la gráfica de $\mathbf{x}(\mathbf{t})$ y $\mathbf{y}(\mathbf{t})$ con respecto a $\mathbf{t}.$

Estas son las gráficas en el caso en que a = 1/3 y b = 1. Este es el plano de fase.

Esta es la gráfica de $\mathbf{x}(\mathbf{t})$ y $\mathbf{y}(\mathbf{t})$ con respecto a \mathbf{t} .

2.3. Para b = 3 y b = 1/3 con a = 1

Estas son las gráficas en el caso en que b=3 y a=1. Este es el plano de fase.

Esta es la gráfica de x(t) y y(t) con respecto a t.

Estas son las gráficas en el caso en que b=1/3 y a=1. Este es el plano de fase.

Esta es la gráfica de $\mathbf{x}(\mathbf{t})$ y $\mathbf{y}(\mathbf{t})$ con respecto a \mathbf{t} .

