Desafío: Determinar La Distribución De Espiras En Un Slinky Suspendido

Objetivos

- Analizar cómo varía la separación entre espiras de un Slinky suspendido por uno de sus extremos.
- Verificar experimentalmente la relación teórica entre la posición de cada espira y su índice numérico.
- Aplicar técnicas de linealización para obtener parámetros físicos relevantes.

Conexiones

- Ciencia: Comprensión del equilibrio en resortes, distribución de tensiones y comportamiento de sistemas elásticos bajo gravedad.
- **Tecnología:** Uso de herramientas digitales como simulaciones, videos en cámara lenta o software de análisis (Tracker, GeoGebra, Excel).
- Ingeniería: Análisis y diseño de sistemas mecánicos que dependen de la elasticidad para funcionar, incluyendo amortiguadores y dispositivos de suspensión.
- Matemáticas: Análisis gráfico, linealización de funciones cuadráticas, uso de regresión lineal, interpretación de pendientes e interceptos.

Preparación previa

Investigar y resumir brevemente (máx. 1/2 página):

- Historia y propiedades físicas de un Slinky.
- El concepto de masa lineal variable y su relación con la gravedad y la tensión interna.
- El modelo teórico:

$$y = \frac{L_0}{N}n + \frac{(L - L_0)}{N^2}n^2$$

y su linealización en y/n = a + bn.

Materiales

- Un Slinky metálico o plástico.
- Regla milimetrada larga (≥ 100 cm).
- Soporte para colgar el Slinky con suficiente altura.
- Computador/celular con software para graficar (Excel, GeoGebra, etc.).

Procedimiento

- 1. Suspendan el Slinky por uno de sus extremos y esperen a que alcance el equilibrio.
- 2. Con la regla milimetrada, midan la distancia y desde la espira inferior (n = 0) hasta varias espiras (n = 1, 2, ...), registrando al menos 20 mediciones.
- 3. Anoten también: L_0 (longitud sin estirar) y N (número total de espiras).
- 4. Grafiquen y vs. n; luego transformen y grafiquen y/n vs. n para obtener una recta con pendiente b e intercepto a.
- 5. Calcular $L_{\text{teo}} = bN^2 + aN$ y compararlo con la L medida.

Reto adicional

Diseñar un método para **determinar la constante elástica del Slinky** (módulo) a partir de los datos obtenidos y justificar su validez.

Rúbrica de evaluación del informe escrito (2.5 puntos)

Criterio	Puntaje Máximo
Presentación clara y ordenada del documento, con tablas, gráficas y unidades bien especificadas	0.5
Recolección rigurosa de datos experimentales y descripción de- tallada del procedimiento	0.5
Construcción e interpretación adecuada de gráficas, incluyendo la linealización y regresión lineal	0.5
Cálculo correcto de parámetros físicos (a, b, L_{teo}) y su comparación con L medido	0.5
Discusión de errores, reflexiones críticas y propuesta de mejora del experimento	0.5
Total	2.5

Rúbrica de evaluación de la sustentación oral (2.5 puntos)

Criterio	Puntaje Máximo
Explicación clara del modelo físico y su linealización $(y=\cdots, y/n=a+bn)$	0.5
Justificación del diseño experimental y del número de mediciones utilizadas	0.5
Análisis e interpretación correcta de gráficas y parámetros físicos extraídos	0.5
Capacidad para responder preguntas relacionadas con el modelo y la constante elástica del Slinky	0.5
Participación activa y equilibrada de todos los miembros del grupo	0.5
Total	2.5

Nota final: Suma de informe (2.5) + sustentación (2.5) = 5.0 puntos