浙江理工大学 2018—2019 学年第 2 学期 《高等数学 B2》期中试券

本人郑重承诺:本人已阅读并且透彻地理解《浙江理工大学考场规则》, 愿 意在考试中自觉遵守这些规定,保证按规定的程序和要求参加考试,如有违反, 自愿按《浙江理工大学学生违纪处分规定》有关条款接受处理。

题号	 =	三				四		五.		总分
		1	2	3	4	1	2	1	2	心力
得分										
签名										

- 一、选择题(4分/题, 共24分)
- 1.下列微分方程中为齐次方程的是().

$$A. \ y' + \frac{y}{x} = \frac{\sin x}{x}.$$

B.
$$(xy^2 + x)dx + (y - x^2y)dy = 0$$
.

$$C. \ y' + \frac{y}{x} = y \sin x.$$

$$D. (2x\sin\frac{y}{x} + 3y\cos\frac{y}{x})dx - 3x\cos\frac{y}{x}dy = 0.$$

2. 若 $y_1 = x \sin x$, $y_2 = \sin x$ 为非齐次线性微分方程 y'' + p(x)y' + q(x)y = f(x) 的两个解,

则 $y = (x+1)\sin x$ 是下列方程 () 的解。

A.
$$y'' + p(x)y' + q(x)y = f(x)$$

A.
$$y'' + p(x)y' + q(x)y = f(x)$$

B. $y'' + p(x)y' + q(x)y = 2f(x)$

C.
$$y'' + p(x)y' + q(x)y = 0$$

D.
$$y'' + p(x)y' + q(x)y = xf(x)$$

3. 下列等式不是差分方程的是().

$$A. -3\Delta y_t = 3y_t + a^t$$

B.
$$2\Delta y_t = y_t + t$$

C.
$$v_{i+2} - 2v_{i+1} - v_i = 3^t$$

C.
$$y_{t+2} - 2y_{t+1} - y_t = 3^t$$
 D. $y_{t+3} + t^2 y_{t+1} - 3y_t = t - 1$

4. 设曲面 z = f(x, y) 与平面 $y = y_0$ 的交线在点 $(x_0, y_0, f(x_0, y_0))$ 处的切线与 x 轴正向所

成的角为 $\frac{\pi}{6}$,则().

A.
$$f_x(x_0, y_0) = \cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}$$

A.
$$f_x(x_0, y_0) = \cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}$$
 B. $f_y(x_0, y_0) = \cos(\frac{\pi}{2} - \frac{\pi}{6}) = \frac{1}{2}$

C.
$$f_x(x_0, y_0) = \tan \frac{\pi}{6} = \frac{\sqrt{3}}{3}$$

C.
$$f_x(x_0, y_0) = \tan \frac{\pi}{6} = \frac{\sqrt{3}}{3}$$
 D. $f_y(x_0, y_0) = \tan(\frac{\pi}{2} - \frac{\pi}{6}) = \sqrt{3}$

5. 考虑二元函数 f(x,y)的下面四条性质: (1) f(x,y)在点 (x_0,y_0) **选** ; (2) $f'_x(x,y)$, $f'_{y}(x,y)$ 在点 (x_{0},y_{0}) 连续; (3) f(x,y)在点 (x_{0},y_{0}) 可微分; (4) $f'_{x}(x_{0},y_{0})$, $f'_{y}(x_{0},y_{0})$ 存在。则下列四个选项中正确的是(

$$A. (3) \Rightarrow (2) \Rightarrow (1)$$

$$B. (3) \Rightarrow (1) \Rightarrow (4)$$

$$C. (3) \Rightarrow (4) \Rightarrow (1)$$

$$D(2) \Rightarrow (3) \Rightarrow (1)$$

6. 已知函数 f(x,y) 在点 (0,0) 的某个邻域内连续,且 $\lim_{(x,y)\to(0,0)} \frac{f(x,y)-xy}{(x^2+y^2)^2} = 1$,则下述 四个选项中正确的是(

- A. 点**不是**的极值点, y)
- B. 点**是**,**的**极为**传**点)
- C. 点**是的**极小值点)
- D. 根据所给条件无法判断**角**而为的极值点, v)
- 二、填空题(4分/题,共24分)
- 1. 方程 $y'' 4y' 5y = e^{-x} + \sin 4x$ 的特解形式可设为______
- 3. 设函数 y = y(x, z) 由方程 $yz = \sin(x + y)$ 所确定,则 $\frac{\partial y}{\partial x} = \underline{\qquad}$
- 4. 设 $z = xyf\left(\frac{y}{x}\right)$, f(u)可导,则 $dz = \underline{\hspace{1cm}}$
- 5. 差分方程 $y_{t+1} 2y_t = -8$ 的通解是______.
- 6. 微分方程 $\frac{dy}{dx} \frac{2y}{x+1} = (x+1)^{\frac{5}{2}}$ 的通解为______.

- 三、计算题 (6分/题,共24分)
- 1. 求微分方程 $y'' + y + \sin 2x = 0$, 满足初值条件 $y(\pi) = 1$, $y'(\pi) = 1$ 的特解。

2.求微分方程 $y'' = \frac{2x}{1+x^2} y'$ 满足初值条件: y(0) = 1, y'(0) = 3的特解。

3. 设 z = f(u, x, y), $u = xe^{y}$, 其中 f 具有连续的二阶偏导数,求 $\frac{\partial z}{\partial x}$, $\frac{\partial^{2} z}{\partial x \partial y}$.

4. 设函数 z = z(x, y) 是由方程 $e^z - xyz = 0$ 所确定的二元隐函数,求 dz, $\frac{\partial^2 z}{\partial x^2}$.

四. 综合题 (8分/题, 共16分)

1. 将周长为 $_{2p}$ 的矩形绕它的一边旋转而构成一个圆柱体。问矩形的边长各为多少时才能使圆柱体的体积最大?

2. 设 f(x) 可微且满足 $x = \int_0^x f(t)dt + \int_0^x t f(t-x)dt$, 求 f(x).

五. 证明题 (8+4, 共12分)

五. 证明题
$$(8+4, \pm 12 \, f)$$

1. 设 $f(x,y) = \begin{cases} \frac{x^2 y^2}{(x^2 + y^2)^{\frac{3}{2}}}, & x^2 + y^2 \neq 0 \\ 0, & x^2 + y^2 = 0 \end{cases}$, 证明: $f(x,y)$ 在点 $(0,0)$ 处连续且偏导数存

在,但不可微。

2. 设 $\Phi(u,v)$ 具有连续偏导数,证明:由方程 $\Phi(cx-az,cy-bz)=0$ 所确定的函数 z = f(x, y) $\ddot{\mathbb{A}}$: $a \frac{\partial z}{\partial x} + b \frac{\partial z}{\partial y} = c$.