(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平9-261944

(43)公開日 平成9年(1997)10月3日

(51) Int.Cl.4

識別記号 ·庁内整理番号 FΙ

技術表示箇所

H02K 41/03

H 0 2 K 41/03

Α

審査請求 未請求 請求項の数1 OL (全 7 頁)

(21)出願番号	特顯平8-63118	(71)出顧人 593210293		
		新電子株式会	社	
(22)出顧日	平成8年(1996)3月19日	東京都三鷹市	野崎 3丁目22番20号	
		(72)発明者 寿 時 龍太	解	
		東京都三鷹市野崎 3 丁目22番20号 新電子		
		株式会社内		
		(74)代理人 弁理士 佐藤	一雄 (外3名)	
		į		

(54)【発明の名称】 3相平面リニアモータ

(57)【要約】

【課題】 X方向およびY方向に各々スムースに脈動を 生じさせることなく移動させることができる3相平面リ ニアモータを提供する。

【解決手段】 3相平面リニアモータはプラテンドット 11aを有するプラテン11と、プラテン上に移動自在 に配置されたケースとを備えている。ケース内にはX方 向可動ヨーク12とY方向可動ヨーク13とが組み込ま れている。各可動ヨーク12,13は、永久磁石15と この永久磁石15の両側に配置された一対のヨーク部1 6,17とからなり、各ヨーク部16,17は各々3本 の脚18,19,20および脚21,22,23を有し ている。脚18,19,20に巻着されたコイル24, 25,26および脚21,22,23に巻着されたコイ ル27、28、29に3相電流を流すことにより、ケー ス14をX方向およびY方向にスムースに移動させるこ とができる。

【特許請求の範囲】

【請求項1】プラテンドットを有するプラテンと、 プラテン上に移動自在に配置されたケースと、

ケース内に収納されたX方向可動ヨークおよびY方向可 動ヨークとを備え、

1

X方向可動ヨークおよびY方向可動ヨークは、いずれも 永久磁石と、この永久磁石の両側に配置された一対のヨ ーク部とからなり、

各ヨーク部は前記プラテン側に延びるとともに、各々コ イルが巻付けられた3本の脚を有し、この3本の脚のコ 10 イルに3相電流を流すことにより、前記ケースをXY方 向に移動可能としたことを特徴とする3相平面リニアモ 一夕。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明はトルクの脈動の少な い3相平面リニアモータに関する。

[0002]

【従来の技術】従来のリニアモータとして、図8および 図9に示すようなものが知られている。従来のリニアモ 20 ータは、図9に示すようにプラテンドット11aを有す るプラテン11と、プラテン11上に移動自在に配設さ れたケース (図示せず) とを備え、このケース内に X方 向可動ヨーク12およびY方向可動ヨーク13が各々収 納されている。

【0003】次にX方向可動ヨーク12およびY方向可 動ヨーク13について、図8により詳述する。X方向可 動ヨーク12およびY方向可動ヨーク13は、いずれも 永久磁石30とこの永久磁石30の両側に配置された一 対のヨーク部31,32とを有している。また一対のヨ 30 ーク部31,32は、各々プラテン11側へ延びる2本 の脚35,36および37,38を有している。

【0004】一対のヨーク部31,32には、各々コイ ル33,34が巻着され、このコイル33,34に対し て例えば図7(b)に示すように位相角が90度ずれた 電流が流されるようになっている。

【0005】図7(b)において、一方のコイル、例え ばコイル33に流れる電流Aが、他方のコイル34に流 れる電流Bより90度進んでいるか、または遅れている かによって、X方向可動ヨーク12およびY方向可動ヨ 40 ーク13の駆動方向が決定される。なお、図7 (b) に 示すように、電流Bの位相をC点において変化させるこ とにより、X方向可動ヨーク12およびY方向可動ヨー ク13の方向が変化するようになっている。

[0006]

【発明が解決しようとする課題】ところで、図7 (b) から明らかなように、コイル33,34に流れる電流波 形は、脈動タイプの波形となっており、このためX方向 可動ヨーク12およびY方向可動ヨーク13により発生 する駆動トルクは脈動をもったものとなる。このように 50 の脚18,19,20,21,22,23の幅は、プラ

脈動をもったトルクを発生させると、パルスモータ特有 の脱調(指令パルスの数と実際に動いた量との間で同期 がとれなくなること)が起こり易くなる。同時にコイル 33,34に電流を流すドライバ (図示せず) への入力 電力にも脈動が生じ、電力効率が低下する。

【0007】本発明はこのような点を考慮してなされた ものであり、駆動トルクの脈動が3相平面リニアモータ を提供することを目的とする。

[0008]

【課題を解決するための手段】本発明は、プラテンドッ トを有するプラテンと、プラテン上に移動自在に配置さ れたケースと、ケース内に収納されたX方向可動ヨーク およびY方向可動ヨークとを備え、X方向可動ヨークお よびY方向可動ヨークは、いずれも永久磁石と、この永 久磁石の両側に配置された一対のヨーク部とからなり、 各ヨーク部は前記プラテン側に延びるとともに、各々コ イルが巻付けられた3本の脚を有し、この3本の脚のコ イルに3相電流を流すことにより、前記ケースをXY方 向に移動可能としたことを特徴とする3相平面リニアモ ータである。

【0009】本発明によれば、X方向可動ヨークの一対 のヨーク部の各々に設けられた3本の脚のコイルに対し て3相電流を流すことにより、ケースをX方向に脈動な くスムースに移動させることができ、Y方向可動ヨーク の一対のヨーク部の各々に設けられた3本の脚のコイル に対して3相電流を流すことによりケースをY方向に脈 動なくスムースに移動させることができる。

[0010]

【発明の実施の形態】以下、図面を参照して本発明の実 施の形態について説明する。図1乃至図7は本発明によ る3相平面リニアモータの実施の形態を示す図である。 【0011】図1および図3に示すように、3相平面リ ニアモータ10はプラテンドット11aを有するプラテ ン11と、プラテン11上に移動自在に配設されたケー ス14 (図3参照) とを備え、ケース14内にX方向へ 駆動させる2個のX方向可動ヨーク12とY方向へ駆動 させる2個のY方向可動ヨーク13とが組込まれてい る。ここで図2は、3相平面リニアモータ10からケー ス14を便宜的に取外すとともに、1つづつのX方向可 動ヨーク12およびY方向可動ヨーク13とが示されて いる。

【0012】X方向可動ヨーク12およびY方向可動ヨ ーク13について、図1により詳述する。図1に示すよ うに、X方向可動ヨーク12およびY方向可動ヨーク1 3は略同一の構造となっており、いずれも永久磁石15 と、この永久磁石15の両側に配置された一対のヨーク 部16,17とを有している。また各ヨーク部16,1 7は、各々プラテン11側に延びる3本の脚18,1 9,20および21,22,23を有している。これら

テンドット11aの幅と略同一となっている。

【0013】脚18,19,20にはU相コイル24、 V相コイル25およびW相コイル26が各々巻着され、 これらU相コイル24、V相コイル25,W相コイル2 6には3相電流(図7(a)参照)が流されるようにな っている。また脚21,22,23にはU′相コイル2 7、V′相コイル28、W′相コイル29が各々巻着さ れ、これらU′相コイル27、V′相コイル28、W′ 相コイル29には3相電流(図7(a)参照)が流され るようになっている。

【0014】ところでヨーク部16の脚18,19,2 0の配置ピッチは、プラテンドット11aの配置ピッチ に対して120度ずつ位相がずれている。同様にヨーク 部17の脚21、22、23の配置ピッチもプラテンド ット11aのピッチに対して120度ずつ位相がずれて おり、脚21,22,23のプラテンドット11aに対 する位置関係は、脚18、19、20のプラテンドット に対する位置関係に対して180° ずれた関係となって

【0015】次にこのような構成からなる本実施の形態 20 の作用について説明する。

【0016】本実施例では、移動量に比例したパルス列 を駆動制御装置40に入力して、平面リニアモータを駆 動する。

(1) すなわち、まず駆動制御装置40(図1) におい て、図6に示すように、絶対位置を知るためにアップダ ウンカウンターにパルス列と移動方向を入力する。ここ で、図6は平面リニアモータを駆動する駆動制御装置4 0の作用を図示したものである。

- (2)次に、このカウンターの量で移動すべき位置情報 30 を作成する。
- (3) また、このカウンターの変化するスピードに応じ て速度情報を得る。
- (4)次に、この2つの量に応じた3相の移動波形を作 る。
- (5)この波形の電流を3相のコイル24-29に流し ても良いのであるが駆動制御装置40側の電力損失が多 すぎるので、それぞれの相の流すべき電流に比例したパ ルス幅変調(PWM)をする。
- (6) パルス幅変調をされたオンオフ信号でスイッチ回 40 路を制御し、3相の電力を得る。
- (7) 事故で過電流になった場合にシャットダウンする ため、およびパルス幅変調が出力電流に比例するため に、電流を検出する。

【0017】コマンドによる制御の場合は、リニアモー タを運転するための約束 (コマンド)を決めておき、そ れによって制御する。(1)のコマンド解析回路でコマ ンドからパルス列を作り、後は上記と同様となる。

【0018】次に駆動制御装置40から図7(a)に示 すような電流波形をもった3相電流がX方向可動ヨーク 50 力に脈動の少ないものとなる。このためパルスモータ特

12のU相コイル24、V相コイル25、およびW相コ イル26に流され、同時にU′相コイル27、V′相コ イル28およびW′相コイル29に同様の電流波形をも った3相電流が流される。この場合、U相コイル24、 V相コイル25およびW相コイル26の3相電流は、 U′相コイル27、V′相コイル28およびW′相コイ ル29の3相電流に対して電流の向きが逆転しており、 このため一組の3相電流出力装置により、U相コイル2

4、V相コイル25、W相コイル26と、U′相コイル 10 27、V′相コイル28、W′相コイル29へ同時に電 流を流すことができる。

【0019】図7(a)に示すように、U相コイル2

4、V相コイル25およびW相コイル26に120度ず つ位相がずれた電流を流すとともに、U′相コイル2 7、V′相コイル28およびW′相コイル29に120 度ずつ位相がずれた電流を流した場合、例えばヨーク部 16側の各脚18,19,20において、各脚18,1 9,20とプラテン11のプラテンドット11aとの間 を通る磁界が変化し、この磁界の変化に伴って各脚1 8, 19, 20とプラテン11のプラテンドット11a との間に吸引力の変化が発生するとともに、各脚18、 19、20に対してプラテン11側から水平駆動力が作 用する。同様にヨーク部17側において、各脚21,2 2,23に対してプラテン11側から、脚18,19, 20に作用する水平駆動力と同一方向の駆動力が作用す

【0020】このようにしてX方向可動ヨーク12は、 プラテン11側からX方向の水平駆動力を受ける。この 間、ケース14に設けられたエア吹出口(図示せず)に よりプラテン11側へエアが吹付けられ、これによって ケース14はプラテン11に対してわずかに浮上し、ケ ース14は全体としてX方向へ駆動される。

【0021】ケース14のX方向の移動を反転させたい 場合は、U相コイル24、V相コイル25、W相コイル 26のうちいずれか2個のコイルの電流のずれ角度を逆 転させるとともに、U´相コイル27、V´相コイル2 8、W′相コイル29の電流のずれ角度をU相コイル2 4、V相コイル25、W相コイル26に対応させて逆転 させる。

【0022】上記のようにしてケース14をX方向に沿 って往復運動させることができる。

【0023】またY方向可動ヨーク13に対してX方向 可動ヨーク12の場合と同様に電流を流すことにより、 ケース14をY方向に沿って往復運動させることができ る。

【0024】以上のように、本実施例によれば、各コイ ル24,25,26,27,28,29に対して図7

(a) に示すような脈動のない電流を流すので、X方向 可動ヨーク12およびY方向可動ヨーク13による駆動

有の脱調がなく、スムースにケース14をX方向および Y方向に駆動させることができる。

【0025】次に図4および図5により、本発明の変形 例について述べる。図4および図5に示す3相リニアモ ータの変形例は、X方向可動ヨーク12およびY方向可 動ヨーク13に設けられた各脚18,19,20,2 1,22,23の下端を3分割し、分割した部分を各脚 18、19、20、21、22、23の突起部18a、 19a, 20a, 21a, 22a, 23a としたもので あり、他は図1乃至図3に示す3相リニアモータと同様 10 である。

【0026】図4および図5において、図1乃至図3に 示す実施の形態と同一部分には同一符号を付して詳細な 説明は省略する。すなわち、図4および図5において、 例えば脚18の下端は3分割され、脚18は下端に3つ の突起部18aを有している。また、プラテン11のプ ラテンドット11aは、分割されて幅の狭くなった突起 部18 a の幅と同様の幅を有するよう形成されている。 【0027】図4および図5において、脚18、19、 20, 21, 22, 23の下端を分割し、各々突起部1 20 11a プラテンドット 8a, 19a, 20a, 21a, 22a, 23aを有す るように構成したので、X方向可動ヨーク12およびY 方向可動ヨーク13の駆動力を高めることができる。

[0028]

【発明の効果】以上説明したように、本発明によれば、 ケースをX方向およびY方向の各々の方向に沿ってスム ースに脈動なく移動させることができる。このためパル スモータ特有の脱調を生じさせることはない。また消費 電流の脈動が少ないため、コイルに電流を流す電源側の 電力効率を向上させることができる。

【図面の簡単な説明】

【図1】本発明による3相平面リニアモータのX方向可 動ヨークおよびY方向可動ヨークを示す側面図。

【図2】プラテン上に配置されたX方向可動ヨークおよ びY方向可動ヨークを示す図。

【図3】3相平面リニアモータのケースを底面側からみ た斜視図。

【図4】3相平面リニアモータの変形例を示す図1と同 様の図。

【図5】3相平面リニアモータのケースを示す底面図。

【図6】3相平面リニアモータを駆動する駆動制御装置 の作用を示す図。

【図7】コイルに流れる電流波形を示す図。

【図8】従来のリニアモータのX方向可動ヨークおよび Y方向可動ヨークを示す側面図。

【図9】プラテン上に配置されたX方向可動ヨークおよ びY方向可動ヨークを示す図。

【符号の説明】

10 3相平面リニアモータ

11 プラテン

12 X方向可動ヨーク

13 Y方向可動ヨーク

14 ケース

15 永久磁石

16,17 ヨーク部

18, 19, 20, 21, 22, 23 脚

18a, 19a, 20a, 21a, 22a, 23a 突

24, 25, 26, 27, 28, 29 コイル

30 40 駆動制御装置

【図1】

【図3】

【図4】

[図9]

【図5】

【図6】

【図7】

【図8】

