ÁLGEBRA LINEAL II Y CUADRÁTICA

 $Con\ ejemplos\ e\ ilustraciones$

Segunda Edición

Diego Huaraca Jaime Toaquiza EPN, Ecuador.

Índice general

1.	Aplicaciones Multilineales	5
	1.1. Aplicaciones Multilineales	5
	1.2. Formas Multilineales	5
	1.3. Aplicaciones Bilineales	6

4 ÍNDICE GENERAL

1

Aplicaciones Multilineales

1.1. Aplicaciones Multilineales

Sea \mathbb{K} un cuerpo y sean E_1, E_2, \dots, E_p, F espacios vectoriales sobre \mathbb{K} .

 $\overline{\det \colon \mathbb{R}^n \times \mathbb{R}^n \times \dots \times \mathbb{R}^n} \to \mathbb{R}$

Definición 1

Diremos que la aplicación φ de $E = E_1 \times E_2 \times \ldots \times E_n$ en F

$$\varphi \colon E_1 \times E_2 \times \ldots \times E_n \to \mathbb{F}$$

 $x = (x_1, x_2, \ldots, x_p) \to \varphi(x)$

es multilineal si φ es lineal respecto a cada variable, es decir, si cualesquiera que sean $\alpha \in \mathbb{K}$, y $x_i \in E_i$ con $1 \le i \le n$ se satisface

$$\varphi(x_1, \dots, x_{i-1}, (\alpha x_i + y_i), x_{i+1}, \dots, x_p) = \alpha \varphi(x_1, \dots, x_{i-1}, x_i, x_{i+1}, \dots, x_p) + \varphi(x_1, \dots, x_{i-1}, y_i, x_{i+1}, \dots, x_p)$$

EJEMPLO 1: DETERMINANTE DE UNA MATRIZ

$$(x_1, x_2, \dots, x_n) \rightarrow \det([x_1] [x_2] \dots [x_n])$$

$$\det([x_1] \dots [\alpha x_i + y_i] \dots [x_n]) = \det([x_1] \dots [\alpha x_i] \dots [x_n]) + \det([x_1] \dots [y_i] \dots [x_n])$$

$$= \alpha \det([x_1] \dots [x_i] \dots [x_n]) + \det([x_1] \dots [y_i] \dots [x_n])$$

Si $F = \mathbb{K}$ entonces la aplicación es una forma multilineal

1.2. Formas Multilineales

Definición 2

Llamaremos forma multilineal a la aplicación ϕ de $E_1 \times E_2 \times \ldots \times E_n$ en \mathbb{K} que es lineal respecto a cada una de sus variables. Es decir, para cualesquiera $\alpha \in \mathbb{K}$ y $x_i \in E_i$ con

 $1 \le i \le n$ se verifica que

$$\phi(x_1, \dots, x_{i-1}, (\alpha x_i + y_i), x_{i+1}, \dots, x_p) = \alpha \phi(x_1, \dots, x_{i-1}, x_i, x_{i+1}, \dots, x_p) + \phi(x_1, \dots, x_{i-1}, y_i, x_{i+1}, \dots, x_p)$$

Definición 3

Una forma multilineal ϕ es alternada, si para cualesquiera i, j se tiene

$$\phi(x_1,\ldots,x_i,\ldots x_j,\ldots,x_n)=-\phi(x_1,\ldots,x_j,\ldots x_i,\ldots,x_n)$$

Teorema 1

Dada una base ordenada $\{e_1, e_2, \dots, e_n\}$ de un espacio vectorial V, existe una única forma multilineal alternada D de orden n que verifica

$$D(e_1, e_2, \dots, e_n) = 1$$

A dicha n-forma se le llama determinante.

Así, si $x_1, x_2, \ldots x_n$ son vectores de V, expresadas sus coordenadas respecto a la base B del teorema anterior en la siguiente matriz cuadrada $M = (x_1 \ x_2 \ \ldots \ x_n)$ formada por las coordenadas de los vectores puestos en columna, se tiene

$$D(x_1, x_2, \dots, x_n) = \det[x_1 \quad x_2 \quad \dots \quad x_n]$$

De la definición y del teorema anterior se derivan todas las propiedades que conocemos sobre los determinantes.

Nos interesaremos en las aplicaciones de $E_1 \times E_2$ en F también conocidas como aplicaciones bilineales de $E_1 \times E_2$ en F.

1.3. Aplicaciones Bilineales

Definición 4

Dados tres espacios vectoriales U, V, W sobre el cuerpo \mathbb{K} , una aplicación $f: U \times V \to W$ se dice que es bilineal si es lineal en cada una de sus variables, es decir:

$$f(\alpha u_1 + u_2, v_1) = \alpha f(u_1, v_1) + f(u_2, v_1)$$

$$f(u_1, \alpha \ v_1 + v_2) = \alpha \ f(u_1, v_1) + f(u_1, v_2)$$

para cualesquiera $\alpha \in \mathbb{K}$, $u_1, u_2 \in U$ y $v_1, v_2 \in V$.