IEOR 4703 - Monte Carlo Simulation Solutions for Assignment 3

Enrique Lelo de Larrea

Spring 2018

Problem 1. (a) Observe that $\theta = \mathbb{E}(\mathbb{1}(X_1 + X_2 > 8))$, where $X_1 \sim \operatorname{Exp}(2)$ and $X_2 \sim \operatorname{Exp}(1)$. Throughout this problem we adopt the convention that the parameter λ of the exponential distribution corresponds to the rate and not the mean. That is, if $X \sim \operatorname{Exp}(\lambda)$ then $\operatorname{E}(X) = \frac{1}{\lambda}$ and $\operatorname{Var}(X) = \frac{1}{\lambda^2}$. The standard simulation algorithm is the following:

Algorithm 1 Simple Monte Carlo

```
for i=1 to n do \operatorname{generate} U_1, U_2 \sim \operatorname{U}(0,1) \operatorname{set} X_1 = -\log(U_1)/2 \text{ and } X_2 = -\log(U_2) if X_1 + X_2 > 8 then \operatorname{set} \theta_i = 1 else \operatorname{set} \theta_i = 0 end if \operatorname{end} \operatorname{for} \operatorname{set} \hat{\theta}_n = \sum_{i=1}^n \theta_i/n \operatorname{set} \hat{\sigma}_n^2 = \sum_{i=1}^n (\theta_i - \hat{\theta}_n)^2/(n-1) \operatorname{set} CI_{1-\alpha} = \hat{\theta}_n \pm z_{1-\alpha/2} \times \hat{\sigma}_n/\sqrt{n} return \hat{\theta}_n and CI_{1-\alpha}
```

(b) To use conditional Monte Carlo, it is possible to condition on any of the two X_i . However, we will condition on X_1 since it has lower variance than X_2 . We then have

$$\theta = \mathrm{E}(\mathbb{1}(X_1 + X_2 > 8))$$

= $\mathrm{E}(\mathrm{E}(\mathbb{1}(X_2 > 8 - X_1) \mid X_1))$
= $\mathrm{E}(\mathbb{1}(X_1 > 8) + \mathbb{1}(X_1 \le 8)\mathrm{e}^{-(8 - X_1)}).$

The conditional Monte Carlo algorithm is:

Algorithm 2 Conditional Monte Carlo

```
for i=1 to n do \operatorname{generate} U \sim \operatorname{U}(0,1) \operatorname{set} X_1 = -\log(U)/2 if X_1 > 8 then \operatorname{set} \theta_i = 1 else \operatorname{set} \theta_i = \mathrm{e}^{-(8-X_1)} end if \operatorname{end} \text{ for } \operatorname{set} \hat{\theta}_n^{CM} = \sum_{i=1}^n \theta_i/n \operatorname{set} \hat{\sigma}_n^2 = \sum_{i=1}^n (\theta_i - \hat{\theta}_n^{CM})^2/(n-1) \operatorname{set} CI_{1-\alpha} = \hat{\theta}_n^{CM} \pm z_{1-\alpha/2} \times \hat{\sigma}_n/\sqrt{n} return \hat{\theta}_n^{CM} and CI_{1-\alpha}
```

- (c) Both θ_n and θ_n^{CM} should be close to the true value of $\theta = 2\mathrm{e}^{-8} \mathrm{e}^{-16} \approx 0.00067$ and the confidence interval with conditional Monte Carlo should be considerably smaller than the one with simple Monte Carlo.
- **Problem 2.** (a) Observe that for each path we need to simulate $S_{\frac{T}{2}}$ and then S_T . The algorithm to price the option using standard Monte Carlo is the following:

Algorithm 3 Option price with simple Monte Carlo

```
\begin{array}{l} \textbf{for } i=1 \textbf{ to } n \textbf{ do} \\ & \text{generate } Z_1, Z_2 \sim \mathrm{N}(0,1) \\ & \text{set } S_{\frac{T}{2}} = S_0 \mathrm{e}^{(r-q-\frac{\sigma^2}{2})\frac{T}{2}+\sigma\sqrt{\frac{T}{2}}Z_1} \\ & \text{set } S_T = S_{\frac{T}{2}} \mathrm{e}^{(r-q-\frac{\sigma^2}{2})\frac{T}{2}+\sigma\sqrt{\frac{T}{2}}Z_2} \\ & \textbf{ if } S_{\frac{T}{2}} < H \textbf{ then} \\ & \text{ set } \theta_i = \mathrm{e}^{-rT}(\lambda_1 S_{\frac{T}{2}} - S_T)^+ \\ & \textbf{ else} \\ & \text{ set } \theta_i = \mathrm{e}^{-rT}(S_T - \lambda_2 S_{\frac{T}{2}})^+ \\ & \textbf{ end if } \\ & \textbf{ end for } \\ & \text{ set } \hat{\theta}_n = \sum_{i=1}^n \theta_i/n \\ & \text{ set } \hat{\sigma}_n^2 = \sum_{i=1}^n (\theta_i - \hat{\theta}_n)^2/(n-1) \\ & \text{ set } CI_{1-\alpha} = \hat{\theta}_n \pm z_{1-\alpha/2} \times \hat{\sigma}_n/\sqrt{n} \\ & \textbf{ return } \hat{\theta}_n \text{ and } CI_{1-\alpha} \end{array}
```

A Python implementation with n = 20000 and the given parameters gave the following results:

$$\hat{\theta}_n = 4.1102$$

$$\text{CI}_{99\%} = [3.9383, 4.2822].$$

(b) In order to use conditional Monte Carlo we condition on $S_{\frac{T}{2}}$ to obtain

$$\begin{split} \theta &= \mathrm{e}^{-rT} \mathrm{E} \left(\mathbbm{1} (S_{\frac{T}{2}} < H) (\lambda_1 S_{\frac{T}{2}} - S_T)^+ + \mathbbm{1} (S_{\frac{T}{2}} \ge H) (S_T - \lambda_2 S_{\frac{T}{2}})^+ \right) \\ &= \mathrm{e}^{-rT} \mathrm{E} \left(\mathrm{E} \left(\mathbbm{1} (S_{\frac{T}{2}} < H) (\lambda_1 S_{\frac{T}{2}} - S_T)^+ + \mathbbm{1} (S_{\frac{T}{2}} \ge H) (S_T - \lambda_2 S_{\frac{T}{2}})^+ \mid S_{\frac{T}{2}} \right) \right) \\ &= \mathrm{e}^{-r\frac{T}{2}} \mathrm{E} \left(\mathbbm{1} (S_{\frac{T}{2}} < H) \mathrm{e}^{-r\frac{T}{2}} \mathrm{E} \left((\lambda_1 S_{\frac{T}{2}} - S_T)^+ \mid S_{\frac{T}{2}} \right) + \mathbbm{1} (S_{\frac{T}{2}} \ge H) \mathrm{e}^{-r\frac{T}{2}} \mathrm{E} \left((S_T - \lambda_2 S_{\frac{T}{2}})^+ \mid S_{\frac{T}{2}} \right) \right) \\ &= \mathrm{e}^{-r\frac{T}{2}} \mathrm{E} \left(\mathbbm{1} (S_{\frac{T}{2}} < H) \mathrm{Put}_{\mathrm{BS}} \left(S_{\frac{T}{2}}, \lambda_1 S_{\frac{T}{2}}, r, q, \sigma, \frac{T}{2} \right) + \mathbbm{1} (S_{\frac{T}{2}} \ge H) \mathrm{Call}_{\mathrm{BS}} \left(S_{\frac{T}{2}}, \lambda_2 S_{\frac{T}{2}}, r, q, \sigma, \frac{T}{2} \right) \right), \end{split}$$

where $\operatorname{Put}_{BS}(S_0, K, r, q, \sigma, T)$ and $\operatorname{Call}_{BS}(S_0, K, r, q, \sigma, T)$ are the Black-Scholes prices for a European put and call respectively. The algorithm is then:

Algorithm 4 Option price with conditional Monte Carlo

```
\begin{aligned} & \text{for } i = 1 \text{ to } n \text{ do} \\ & \text{generate } Z \sim \text{N}(0, 1) \\ & \text{set } S_{\frac{T}{2}} = S_0 \mathrm{e}^{(r - q - \frac{\sigma^2}{2}) \frac{T}{2} + \sigma \sqrt{\frac{T}{2}} Z} \\ & \text{if } S_{\frac{T}{2}} < H \text{ then} \\ & \text{set } \theta_i = \mathrm{e}^{-r \frac{T}{2}} \mathrm{Put_{BS}} \left( S_{\frac{T}{2}}, \lambda_1 S_{\frac{T}{2}}, r, q, \sigma, \frac{T}{2} \right) \\ & \text{else} \\ & \text{set } \theta_i = \mathrm{e}^{-r \frac{T}{2}} \mathrm{Call_{BS}} \left( S_{\frac{T}{2}}, \lambda_2 S_{\frac{T}{2}}, r, q, \sigma, \frac{T}{2} \right) \\ & \text{end if} \\ & \text{end for} \\ & \text{set } \hat{\theta}_n^{CM} = \sum_{i=1}^n \theta_i / n \\ & \text{set } \hat{\sigma}_n^2 = \sum_{i=1}^n (\theta_i - \hat{\theta}_n^{CM})^2 / (n-1) \\ & \text{set } CI_{1-\alpha} = \hat{\theta}_n^{CM} \pm z_{1-\alpha/2} \times \hat{\sigma}_n / \sqrt{n} \\ & \text{return } \hat{\theta}_n^{CM} \text{ and } CI_{1-\alpha} \end{aligned}
```

For n = 20000 we obtained:

$$\hat{\theta}_n^{CM} = 4.1454$$
 $\text{CI}_{99\%} = [4.1166, 4.1743].$

As expected, due to variance reduction, the length of the confidence interval obtained with conditional Monte Carlo is considerably smaller than the one obtained with simple Monte Carlo.

Problem 3. (a) It is simple to compute the exact price of the option using the Black-Scholes formula. We obtain

$$\theta \approx 1.4101$$
.

To estimate the price using standard simulation we use the following algorithm:

Algorithm 5 Put price with simple Monte Carlo

for
$$i=1$$
 to n do generate $Z \sim \mathrm{N}(0,1)$ set $S_T = S_0 \mathrm{e}^{(r-q-\frac{\sigma^2}{2})T+\sigma\sqrt{T}Z}$ set $\theta_i = \mathrm{e}^{-rT}(K-S_T)^+$ end for set $\hat{\theta}_n = \sum_{i=1}^n \theta_i/n$ set $\hat{\sigma}_n^2 = \sum_{i=1}^n (\theta_i - \hat{\theta}_n)^2/(n-1)$ set $CI_{1-\alpha} = \hat{\theta}_n \pm z_{1-\alpha/2} \times \hat{\sigma}_n/\sqrt{n}$ return $\hat{\theta}_n$ and $CI_{1-\alpha}$

For n = 20000, we obtained:

$$\hat{\theta}_n = 1.3385$$
 $\text{CI}_{99\%} = [1.2350, 1.4420].$

(b) For this problem, our payoff function is

$$h(z) = e^{-rT} (K - S_T)^+ = e^{-rT} \left(K - S_0 e^{(r - q - \frac{\sigma^2}{2})T + \sigma\sqrt{T}z} \right)^+,$$

and the likelihood is

$$f(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}}.$$

A natural importance sampling distribution would be $g \sim N(\mu_*, 1)$ where μ_* maximizes the product h(z)f(z) (you can use a different one). This can be done efficiently via numerical methods. The likelihood ratio in this case is

$$l(z) \triangleq \frac{f(z)}{g(z)} = e^{\frac{\mu_*^2}{2} - \mu_* z}.$$

The pseudocode is the following:

Algorithm 6 Put price with importance sampling

```
compute \mu_* for i=1 to n do generate Z \sim N(\mu_*,1) set S_T = S_0 \mathrm{e}^{(r-q-\frac{\sigma^2}{2})T+\sigma\sqrt{T}Z} set l(Z) = \mathrm{e}^{\frac{\mu_*^2}{2}-\mu_*Z} set \theta_i = l(Z) \times \mathrm{e}^{-rT}(K-S_T)^+ end for set \hat{\sigma}_n^{IS} = \sum_{i=1}^n \theta_i/n set \hat{\sigma}_n^2 = \sum_{i=1}^n (\theta_i - \hat{\theta}_n^{IS})^2/(n-1) set CI_{1-\alpha} = \hat{\theta}_n^{IS} \pm z_{1-\alpha/2} \times \hat{\sigma}_n/\sqrt{n} return \hat{\theta}_n^{IS} and CI_{1-\alpha}
```

For n = 20000, we obtained:

$$\hat{\theta}_{n}^{IS} = 1.4157$$

$$CI_{99\%} = [1.3928, 1.4385].$$

As expected, the confidence interval obtained via importance sampling is narrower than the one obtained via simple Monte Carlo.

Problem 4. (a) See Problem 3 (a).

(b) We define m=10 strata Δ_j for $Z \sim N(0,1)$ as follows (there are many options): $(-\infty, -4]$, (-4, -3], (-3, -2], (-2, -1], (-1, 0], (0, 1], (1, 2], (2, 3], (3, 4] and $(4, \infty)$. Observe that if $\Delta_j = (a, b]$ then $p_j \triangleq P(Z \in \Delta_j) = \Phi(b) - \Phi(a)$. Also it is easy to simulate Z given $Z \in \Delta_j$ by simulating $U \sim U(\Phi(a), \Phi(b))$ and then setting $Z = \Phi^{-1}(U)$. The algorithm is:

Algorithm 7 Put price with sub-optimal stratified sampling

```
for j=1 to m do compute p_j set n_j=p_j\times n for i=1 to n_j do generate Z\sim \mathrm{N}(0,1) given Z\in \Delta_j set S_T=S_0\mathrm{e}^{(r-q-\frac{\sigma^2}{2})T+\sigma\sqrt{T}Z} set \theta_i^{(j)}=\mathrm{e}^{-rT}(K-S_T)^+ end for set \theta_j=\sum_{i=1}^{n_j}\theta_i^{(j)}/n_j set \hat{\sigma}_j^2=\sum_{i=1}^{n_j}(\theta_i^{(j)}-\theta_j)^2/(n_j-1) end for set \hat{\theta}_n^{SS}=\sum_{j=1}^m p_j\theta_j set \hat{\sigma}_n^2=\sum_{j=1}^m p_j^2\hat{\sigma}_j^2/n_j set CI_{1-\alpha}=\hat{\theta}_n^{SS}\pm z_{1-\alpha/2}\times\hat{\sigma}_n return \hat{\theta}_n^{SS} and CI_{1-\alpha}
```

For n = 20000, we obtained:

$$\hat{\theta}_{n,sub}^{SS} = 1.4533$$
 $\text{CI}_{99\%} = [1.4036, 1.5030].$

Observe that not much variance reduction is achieved using stratified sampling with sub-optimal allocation.

(c) It is necessary to run a pilot simulation in order to estimate σ_j for each stratum. The pseudo-code would be:

Algorithm 8 Put price with optimal stratified sampling

```
for j = 1 to m do estimate \hat{\sigma}_{j}^{(pilot)} {pilot simulation}
               end for
or j=1 to m do

compute p_j

set n_j = \left(\frac{p_j \hat{\sigma}_j^{(pilot)}}{\sum_{k=1}^m p_k \hat{\sigma}_k^{(pilot)}}\right) \times n

for i=1 to n_j do

generate Z \sim N(0,1) given Z \in \Delta_j

set S_T = S_0 e^{(r-q-\frac{\sigma^2}{2})T+\sigma\sqrt{T}Z}

set \theta_i^{(j)} = e^{-rT}(K-S_T)^+

end for

set \theta_j = \sum_{i=1}^{n_j} \theta_i^{(j)}/n_j

set \hat{\sigma}_j^2 = \sum_{i=1}^{n_j} (\theta_i^{(j)} - \theta_j)^2/(n_j - 1)

end for

set \hat{\theta}_n^{SS} = \sum_{j=1}^m p_j \theta_j

set \hat{\sigma}_n^2 = \sum_{j=1}^m p_j^2 \hat{\sigma}_j^2/n_j

set CI_{1-\alpha} = \hat{\theta}_n^{SS} \pm z_{1-\alpha/2} \times \hat{\sigma}_n

return \hat{\theta}_n^{SS} and CI_{1-\alpha}
             for j = 1 to m do
```

For n = 20000, we obtained:

$$\hat{\theta}_{n,opt}^{SS} = 1.4122$$

$$\text{CI}_{99\%} = [1.3929, 1.4315].$$

Observe that, with optimal allocation, the stratified sampling method reduces variance considerably.