Math 449: Numerical Methods Homework 5

Wenzhen Zhu

Part I: Theory

Problem 1. Prove the following norm inequalities

a.
$$\forall V \in \mathbb{R}^n$$
, $\|V\|_2^2 \leq \|V\|_1 \|V\|_{\infty}$

Proof. by def. we have
$$\|\vec{v}\|_{2}^{2} = V_{1}^{2} + V_{2}^{2} + \dots + V_{n}^{2}$$

$$\|\vec{v}\|_{1} = \sum_{i=1}^{n} |V_{i}|$$

$$\|\vec{v}\|_{\infty} = \max_{i=1\dots n} |v_{i}|$$

$$|v_{i}|^{2} \leq |v_{i}| \cdot \max_{i=1} |v_{i}|$$

$$|v_{i}| < \max_{i=1} |v_{i}|$$

$$|v_{i}|^{2} \leq ||v|| \cdot ||v||_{\infty}$$

(b) For any norm $\|\cdot\|$ on \mathbb{R}^n , if λ is an eigenvalue of $A \in \mathbb{R}^{n \times n}$, then $\|A\| \ge |\lambda|$ in the induced norm.

Let \tilde{v} be an eigenvector with λ being the corresponding eigenvalue.

We have
$$A \tilde{v} = \lambda \tilde{v}$$

$$\frac{\|A\tilde{y}\|}{\|\lambda\tilde{y}\|} = 1$$

$$\Rightarrow |\lambda| = \frac{||A\tilde{V}||}{||\tilde{V}||} \leqslant \max_{V \neq 0} \frac{||A\tilde{V}||}{||\tilde{V}||} = ||A||$$

Problem 2.

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
 defined by

$$f(x_1, x_2) = \begin{pmatrix} x_1^3 - 3x_1 x_2^3 - 1 \\ 3x_1^3 x_2 - x_2^3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Show $f(x_1, x_2) = \vec{0}$ has 3 solutions: (1,0), $(-\frac{1}{2}, \frac{\sqrt{3}}{2})$, and $(-\frac{1}{2}, -\frac{\sqrt{3}}{2})$

$$\begin{cases} x_1^3 - 3x_1 x_2^3 - | = 0 & \textcircled{1} \\ 3x_1^3 x_2 - x_2^3 = 0 & \textcircled{2} \\ x_2 (3x_1^3 - x_2^3) = 0 & \Rightarrow x_2 = 0 & \text{or } 3x_1^2 = x_2^3 \end{cases}$$

(i) back substitute $x_{\lambda} = 0$ in O

$$x_1^3 - 1 = 0 \Rightarrow x_1 = 1.$$

Thus, one solution is (1.0)

(ii) back substitute $3x_1^2 = x_2^2$ in ①

$$x_1^3 - 3x_1 \cdot (3x_1^3) - 1 = 0$$

$$-8x_1^3 = 1$$
$$x_1^3 = -\frac{1}{6}$$

$$\therefore \ \, \varkappa_{1} = -\frac{1}{2}$$

by
$$3x_1^2 = x_2^2$$
, $x_2^2 = \frac{3}{4} \implies x_2 = \pm \frac{\sqrt{3}}{2}$

Thus, the other solutions are $\left(-\frac{1}{2}, \frac{\overline{\Omega}}{2}\right)$ and $\left(-\frac{1}{2}, -\frac{\overline{\Omega}}{2}\right)$