Polynomial Interpolation

CS3010

Numerical Methods

Dr. Amar Raheja

Section 4.1

What is Interpolation?

• Given (x_0, y_0) , (x_1, y_1) , (x_n, y_n) , find the value of 'y' at a value of 'x' that is not given.

Interpolants

- Polynomials are the most common choice of interpolants because they are easy to:
 - Evaluate
 - Differentiate, and
 - Integrate

Direct Method

• Given 'n+1' data points $(x_0, y_0), (x_1, y_1), \dots (x_n, y_n)$, pass a polynomial of order 'n' through the data as given below:

$$y = a_0 + a_1 x + \dots + a_n x^n$$

where a_0 , a_1 , , a_n are real constants.

- Set up 'n+1' equations to find 'n+1' constants.
- To find the value 'y' at a given value of 'x', simply substitute the value of 'x' in the above polynomial.

Polynomial Interpolation Theorem

- Existence of polynomial interpolation theorem:
- If points $x_0, x_1, ..., x_n$ are distinct, then for arbitrary real values $y_0, y_1 ..., y_n$, there is a unique polynomial p of degree at most n such that $p(xi) = y_i$ for $0 \ 2i \le n$.

- The points x_i are generally called the nodes
- Although there is one and only one n^{th} -order polynomial that fits n+1 points, there are a variety of mathematical formats in which this polynomial can be expressed:
 - The Newton polynomial (Newton form)
 - The Lagrange polynomial (Lagrange form)

Orders of Interpolation

- (a) Linear: first order interpolation connecting two points
- (b) Second order, Quadratic or parabolic, connecting three points
- (c) Third order, cubic interpolation, connecting four points

Direct Method for Interpolating Polynomial

Construct interpolating polynomial

\boldsymbol{x}	0	1	-1	2	-2
f(x)	-5	-3	-15	39	-9

5 successive polynomials in construction of final polynomial

$$p_0(x) = -5$$

$$p_1(x) = p_0(x) + c(x - x_0) = -5 + c(x - 0)$$

Condition for $p_1(x)$ is that $p_1(1)=-3 \Rightarrow -5+c(1-0)=-3 \Rightarrow c=2 \Rightarrow p_1(x)=-5+2x$

Similarly,
$$p_2(x) = p_1(x) + c(x - x_0)(x - x_1) = -5 + 2x + cx(x - 1)$$

Given p(-1) = -15, we get c = -4

Doing these steps, one gets

$$p_4(x) = -5 + 2x - 4x(x-1) + 8x(x-1)(x+1) + 3x(x-1)(x+1)(x-2)$$

Polynomial in Newton's Nested Form

• Writing the polynomial $p_4(x)$ in the nested form (remember Horner's algorithm)

$$p_4(x) = -5 + x(2 + (x-1)(-4 + (x+1)(8 + (x-2))3))$$

Or $p_4(x) = -5 + x(4 + x(4 + x(-7 + x(2 + 3x)))$

General polynomial in Newton's Form can be written as

$$p(x) = a_0 + a_1[(x-x_0)] + a_2[(x-x_0)(x-x_1)] + \dots + a_n[(x-x_0)(x-x_1)\dots(x-x_{n-1})]$$

$$p(x) = a_0 + \sum_{i=1}^n a_i \left[\prod_{j=0}^{j=i-1} (x-x_j) \right]$$

Nested Form of p(x) is

$$p(x) = a_0 + (x-x_0)(a_1 + (x-x_1)(a_2 + \dots + (x-x_{n-1})a_n))\dots)$$