CLAIMS

What is claimed is:

1	1.	A field effect transistor comprising:
2		a substrate having source and drain regions;
3		a gate insulator above said substrate;
4		a notch-shaped gate conductor above said gate insulator, said notch-shaped
5	gate co	onductor comprising at least two layered sections, including an upper layer
6	and a l	lower layer,
7		wherein said layered sections comprise at least two different materials, one
8	of whi	ch comprises silicon-germanium, and
9		wherein said lower layer has a higher etch rate than said upper layer.
		,
1	2.	The field effect transistor according to claim 1, wherein said upper layer
2	compr	ises polysilicon-germanium and said lower layer is selected from a group
3	consis	ting of amorphous silicon and polysilicon.
1	3.	The field effect transistor in claim 2, wherein said amorphous silicon and
2	polysi	licon are devoid of germanium.

7

8

9

1

1	4. The field effect transistor according to claim 1, wherein said lower layer
2	and said upper layer comprise polysilicon-germanium (poly-SiGe) having
3	concentrations of germanium that increase along a depth of said upper layer
4	section and said lower layer section.

- 5. The field effect transistor according to claim 4, wherein an increase in said concentrations of germanium is directly proportional to a depth between a bottom of said lower layer and a top of said upper layer.
- 6. The field effect transistor in claim 1, wherein said upper layer and said lower layer comprise materials capable of being simultaneously etched.
- 7. A field effect transistor comprising:
 - a substrate having source and drain regions;
 - a gate insulator above said substrate;
- a notch-shaped gate conductor above said gate insulator, said notch-shaped gate conductor comprising at least two layered sections, including an upper layer and a lower layer,
- wherein said upper layer comprises polysilicon and said lower layer comprises amorphous silicon, and
- wherein said lower layer has a higher etch rate than said upper layer.

2	section comprises polysticon-germanium.					
1	9. The field effect transistor in claim 8, wherein said amorphous silicon is					
2	devoid of germanium.					
1	10. The field effect transistor in claim 7, wherein said upper layer and said					
1 2 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	lower layer comprise materials capable of being simultaneously etched.					
	11. A method for making a field effect transistor having a notch-shaped gate					
لل <u>ا</u> 2 اط	conductor, said method comprising:					
<u> </u>	forming a gate insulator above a substrate;					
3 4 4 5	depositing a gate conductor material over said gate insulator, wherein said					
<u>-</u> 5	gate conductor material comprises at least two layered sections, including an					
6	upper layer and a lower layer, said layered sections comprising at least two					
7	different materials, one of which comprises silicon-germanium, and said lower					
8	layer having a higher etch rate than said upper layer;					
9	etching said gate conductor material through a mask to define a notch-					

The field effect transistor according to claim 7, wherein said upper layer

shaped gate conductor;

8.

1

10

doping said notch-shaped gate conductor and said substrate, to make said notch-shaped gate conductor conductive, and to form source and drain regions in said substrate.

- 12. The method in claim 11, wherein said upper layer comprises polysilicongermanium and said lower layer is selected from a group consisting of amorphous silicon and polysilicon.
- 13. The method in claim 12, wherein said amorphous silicon and polysilicon are devoid of germanium.
- 14. The method in claim 11, wherein said lower layer and said upper layer comprise polysilicon-germanium (poly-SiGe) having concentrations of germanium that increase along a depth of said upper layer section and said lower layer section.
- 15. The method in claim 14, wherein an increase in said concentrations of germanium is directly proportional to a depth between a bottom of said lower layer and a top of said upper layer.

2	material comprises a single					
1	17. A method for making					
2	conductor, said method com					
3	forming a gate insula					
4	depositing a gate cor					
5	gate conductor material com					
C 6	upper layer and a lower laye					
5 7 8 U 1 9	layer comprising amorphous					
5 8	than said upper layer;					
-	etching said gate con					
Cho,	shaped gate conductor; and					
	doping said notch-sh					
<u></u>	notch-shaped gate conductor					
13	said substrate.					
1	18. The method in claim					

16.	The method in claim 1	l, wherein s	aid etching	of said gat	e conductor
materia	al comprises a single etc	hing proces	s.		

- 17. A method for making a field effect transistor having a notch-shaped gate conductor, said method comprising:
 - forming a gate insulator above a substrate;

depositing a gate conductor material over said gate insulator, wherein said gate conductor material comprises at least two layered sections, including an upper layer and a lower layer, said upper layer comprising polysilicon, said lower layer comprising amorphous silicon, and said lower layer having a higher etch rate than said upper layer;

etching said gate conductor material through a mask to define a notchshaped gate conductor; and

doping said notch-shaped gate conductor and said substrate, to make said notch-shaped gate conductor conductive, and to form source and drain regions in said substrate.

18. The method in claim 17, wherein said upper layer section comprises polysilicon-germanium.

2

- 19. The method in claim 18, wherein said amorphous silicon is devoid of
 germanium.
- 1 20. The method in claim 17, wherein said etching of said gate conductor
- 2 material comprises a single etching process.