

UNIVERSIDADE FEDERAL DE SANTA CATARINA CAMPUS JOINVILLE ENGENHARIA AEROESPACIAL

Thomas Pereira do Carmo Vinícius Soares de Souza

Trabalho 01

SUMÁRIO

1	INTRODUÇÃO	. 2
1.1	INTRODUÇÃO	
1.2	MODELAGEM DO SISTEMA	. 2
2	MODELAGEM MATEMÁTICA	. 3
3	SOLUÇÃO	. 6
3.1	SOLUÇÃO ANALÍTICA	. 6
3.1.1	Método 1	. 6
3.1.2	Método 2	. 7
3.2	IMPLEMENTAÇÃO OCTAVE	. 8
3.3	IMPLEMENTAÇÃO ABAQUS	. 8
4	CONCLUSÃO	. 10
	ANEXO A – CÓDIGO OCTAVE	. 12

1 INTRODUÇÃO

1.1 INTRODUÇÃO

O presente relatório tem por objetivo descrever as metodologias utilizadas para resolução de um problema de rigidez de um sistema constituído por 10 molas e 6 nós. A presente análise será feita com base nos valores estabelecidos pelo professor e que são apresentados a seguir. Para a relação de nós que cada mola conecta:

Elemento1: (u_1, u_2)	Elemento6: (u_1, u_3)
Elemento2 : (u_2, u_3)	Elemento7: (u_2, u_4)
Elemento3: (u_3, u_4)	Elemento8 : (u ₃ , u ₅)
Elemento4 : (u_4, u_5)	Elemento9 : (u_1, u_5)
Elemento5 : (u_5, u_6)	Elemento10 : (u_4, u_6)

Para a rigidez de cada elemento:

k1 = 100 N/mm	k6 = 117N/mm
k2 = 105N/mm	k7 = 115N/mm
k3 = 137N/mm	k8 = 134N/mm
k4 = 97N/mm	k9 = 92N/mm
k5 = 106N/mm	k10 = 88N/mm

Para as forças exercidas sobre cada nó:

$$F2 = -64N$$
 $F3 = 0N$ $F4 = 0N$ $F5 = 62N$ $F6 = 96N$

Como condição de contorno sabe-se que o **primeiro nó** encontra-se **fixado**.

1.2 MODELAGEM DO SISTEMA

Abaixo é apresentado um esquemático do sistema, para melhor visualização e entendimento do problema, construído a partir das informações apresentadas acima.

Figura 1 – Modelagem do Sistema

2 MODELAGEM MATEMÁTICA

O primeiro passo no procedimento de resolução do problema é a modelagem matemática do mesmo. Este desenvolvimento inicia-se por meio da construção das matrizes de rigidez para cada elemento, de forma individual.

 $\begin{bmatrix} u_{1} & -u_{1} \\ u_{1} & -u_{1} \\ -u_{1} & u_{1} \end{bmatrix} \underbrace{u_{2}}_{1} = \begin{bmatrix} u_{2} & -u_{2} \\ u_{3} & -u_{3} \\ -u_{1} & u_{1} \end{bmatrix} \underbrace{u_{3}}_{1} = \begin{bmatrix} u_{3} & -u_{3} \\ -u_{3} & u_{3} \\ -u_{3} & u_{3} \end{bmatrix} \underbrace{u_{4}}_{1} = \begin{bmatrix} u_{4} & -u_{4} \\ -u_{4} & u_{4} \\ -u_{5} & u_{5} \end{bmatrix} \underbrace{u_{5}}_{1} = \underbrace{$

Figura 2 – Matrizes de rigidez individuais

Uma vez que cada elemento possui sua matriz de rigidez, deve-se construir a matriz de rigidez geral, que representa o sistema como um todo. Primeiro, cria-se uma matriz de ordem 6x6, devido à presença de 6 nós no sistema, constituída inteiramente por zeros, inicialmente.

Figura 3 – Matriz geral nula

Para cada posição desta, o valor 0 será substituído pelo respectivo valor presente nas matrizes individuais. Começando a análise no elemento 1, têm-se os seguintes valores:

$$(u_1,u_1)=k1$$
 $(u_1,u_2)=-k1$ $(u_2,u_1)=-k1$ $(u_2,u_2)=k1$

Substituindo-nos na matriz geral:

Figura 4 – Matrizes geral com matriz do elemento 1

Para o elemento 2, têm-se:

$$(u_2, u_2) = k2$$
 $(u_2, u_3) = -k2$ $(u_3, u_2) = -k2$ $(u_3, u_3) = k2$

Repetindo o mesmo procedimento de substituição adotado previamente, mas tendo em mente que as rigidezes em uma mesma posição se somam, obtemos:

Figura 5 – Matrizes geral com matriz dos elementos 1 e 2

Realizando a mesma operação para os demais elementos do sistema:

$$\begin{bmatrix} k_1 + k_6 + k_9 & -k_4 & -k_6 & 0 & -k_9 & 0 \\ -k_1 & k_1 + k_2 + k_3 & -k_2 & -k_3 & -k_9 & 0 \\ -k_6 & -k_1 & k_2 + k_3 + k_6 + k_8 & -k_3 & -k_9 & 0 \\ 0 & -k_4 & -k_3 & k_5 + k_4 + k_7 + k_{10} & -k_4 & -k_{10} \\ -k_9 & 0 & -k_9 & -k_4 & k_4 + k_5 + k_8 + k_9 & -k_5 \\ 0 & 0 & -k_6 & -k_5 & k_5 + k_0 \end{bmatrix}$$

Figura 6 – Matriz de rigidez global

Uma vez que a matriz de rigidez global é conhecida, a equação de equilíbrio pode ser escrita. Assim:

W+ 46 + 46	g -U	- UG	O	. U q	0	щ		Ŧ,
-4	4 t Nz t N7	~4~2	- K.g	0	0	мг		Fz
-46	-Uz	42+43+46+48	-u ₃	- u _g	0	Щз	7	Ĩ3
О	-47	⁻⁴ 3	43 + 44 + 47 +411	b -44	- 40	м		F4
- 49	o	- 48	- ич	N4+45+48+48	-u ₅	м		F5
0	0	O	~ 1 ₁₀	-45	45 + N10	μ_{b}		Fe

Figura 7 – Equação de equilíbrio algébrica

3 SOLUÇÃO

3.1 SOLUÇÃO ANALÍTICA

A solução analítica começa pela substituição dos valores apresentados no capítulo 1 ao sistema de equilíbrio construido no capítulo anterior. Obtendo o seguinte sistema:

309	- 700	-117	0	- 92	0		м		Ŧ,	
-100	320	-105	-113	0	О		мг		- 64	
-1(7	-(05	493	-137	-13{	0	4	мз	Č.	0	
o	-113	-137	437	-97	-88		м		0	
- 42	O	- 134	- 97	429	-106		м		62	
0	Ð	o	-88	~106	195		M		96	

Figura 8 – Equação de equilíbrio numérica

Este sistema pode ser resolvido por 2 metodologias diferentes, especificadas nas subseções abaixo.

3.1.1 Método 1

Neste método, como é conhecida a condição de fixação do nó 1, o deslocamento do mesmo é, necessariamente, igual a 0. Desta forma, substituindo $u_1 = 0$, a primeira linha e coluna do sistema matricial podem ser retirados do sistema.

Figura 9 – Método 1a

Capítulo 3. Solução 7

ı										
	320	-105	-113	0	0		мz		-64	
	-(05	493	-137	-134	0	٠	из	17	0	
	-113	~137	437	-97	-88		м		o	
	0	- 134	- 97	429	-106		м,		62	
	0	0	-88	-106	195		M6		96	

Figura 10 – Método 1b

O sistema acima foi resolvido pelo Octave e gerou os seguintes resultados:

$u_1 = 0mm$	$u_3 = 0,294228mm$	$u_5 = 0,587421 mm$
$u_2 = 0.055326 mm$	$u_4 = 0,441829mm$	$u_6 = 1,016225mm$

3.1.2 Método 2

Neste método, chamado de método da penalização, o elemento fixado será "penalizado" e forma a obter um resultado próximo à zero, resolvendo o sistema matricial original. Neste caso, o valor da penalização adotado foi P = 1e6.

1									I	ı
P. 309	- 700	-117	0	- 92	0		m,		0	
-100	320	-105	-115	0	0		мį		-64	
-1(7	~(05	493	-157	-134	0	•	из	13	0	
О	-113	~137	4ን ን	-97	-88		м		o	
- 42	O	- 134	- 97	429	-106		л,		62	
0	Ð	o	-88	-106	195		u		96	

Figura 11 – Método 2

Resolvendo o sistema acima, obteve-se os seguintes resultados:

$u_1 = 3,0421e - 7mm$	$u_3 = 0,29423mm$	$u_5 = 0.58742mm$
$u_2 = 0.055326 mm$	$u_4 = 0,44183mm$	$u_6 = 1,01623mm$

Capítulo 3. Solução 8

Observa-se grande concordância com os valores obtidos no método 1, com um deslocamento desprezível no nó 1, fruto de resíduo numérico.

3.2 IMPLEMENTAÇÃO OCTAVE

Em anexo, encontra-se a adaptação realizada ao código fornecido pelo Prof.Dr.Victor Takashi. As modificações realizadas foram com relação ao tamanho das matrizes de rigidez e força, mantendo a forma de resolução original.

A solução pela implementação numérica obteve os mesmos resultados apresentados na subseção analítica, para ambos os métodos, e por isso não serão reescritas aqui.

3.3 IMPLEMENTAÇÃO ABAQUS

A modelagem do sistema foi baseado no esquemático elaborado na figura 1. De inicio, foi adicionado os 6 nós, espaçados em 125mm, onde serão referenciadas as molas a partir do esquema elaborado para os acoplamentos no Capitulo 1

Figura 12 – Pontos de Referencia com elementos de mola

Tendo essa primeira configuração, torna-se necessário realizar a indicação das condições de contorno (*Bondary Conditions* - BC). Como somente o nó 1 apresenta restrição de fixação e o problema é puramente unidimensional, é posto que não há deslocamento no eixo X para o ponto de referência 1. Já as forças, são configuradas de acordo com os dados apresentados também no capítulo 1 com seus respectivos nós de atuação, direção e módulo (referenciado positivo para a direita).

Capítulo 3. Solução 9

Figura 13 – Condições de contorno e Forças

Após toda a configuração, o resultado da simulação é apresentado abaixo:

Figura 14 – Resultados

$$u_1 = 0.00mm$$
 $u_2 = 5.53e - 02mm$ $u_3 = 2.94e - 01mm$ $u_4 = 4.42e - 01mm$ $u_5 = 5.87e - 01mm$ $u_6 = 1.02mm$

4 CONCLUSÃO

O sistema apresentado no capítulo 1 foi resolvido por 3 métodos diferentes, resultando em soluções extremamente concordantes entre si. Dessa forma, conclui-se a validade dos resultados e dos métodos.

Analisando a implementação e forma de operação de cada método, podem ser feitas algumas observações:

- A solução analítica demanda mais tempo de construção e resolução, mas permite o entendimento do sistema e da forma que os demais métodos "enxergarão" o problema.
- A implementação numérica, pelo método de penalização, permite uma maior generalidade do problema, sendo possível alterar as condições de contorno sem necessidade de fazer grandes alterações ao código.
- A implementação pelo software Abaqus permite uma análise gráfica dos resultados, permitindo uma melhor visualização dos pontos mais suscetíveis à deformação.

Assim sendo, concluímos que cada metodologia oferece determinadas vantagens ao processo de solução, podendo ser mais vantajosa, ou não, dependendo de cada caso e necessidade.

ANEXO A - CÓDIGO OCTAVE

```
1 % vetor contendo a rigidez de cada mola
2 k_n = [100;
                            % rigidez da mola 1 (N/mm)
         105;
                            % rigidez da mola 2 (N/mm)
         137;
                            % rigidez da mola 3 (N/mm)
                  % rigidez da mola 4 (N/mm)
5
         97;
         106;
                  % rigidez da mola 5 (N/mm)
6
7
                  % rigidez da mola 6 (N/mm)
         117;
                  % rigidez da mola 7 (N/mm)
8
         115;
         134;
                  % rigidez da mola 8 (N/mm)
9
                  % rigidez da mola 9 (N/mm)
         92;
10
         88];
                  % rigidez da mola 10 (N/mm)
11
13 % c lculo do n mero de linhas do vetor k_n
16 % matriz de conectividade (graus de liberdade u_n)
17 dof_e = [1 \ 2; % elemento 1 conecta dof1 \ (u_1) e dof2 \ (u_2)
           2 3;
19
           3 4;
           4 5;
20
           5 6;
21
22
           1 3;
           2 4;
23
           3 5;
24
           1 5;
25
26
           4 6];
28 % criar matriz quadrada nula
29 K = zeros(6,6);
                   % total de dof do problema: 5
                          % loop para cada elemento
31 for e = 1:e_total
   k = k_n(e);
                           % rigidez do elemento (escalar)
   K_e = k*[1 -1;-1 1]; % matriz de rigidez do elemento
33
    % contribui o do elemento na matriz de rigidez global
34
    K(dof_e(e,:), dof_e(e,:)) = K(dof_e(e,:), dof_e(e,:)) + K_e;
36 end
37
38 display("matriz de rigidez global:"); K
40 % Aplica o de condi es de contorno
41 P = 1e8;
                           % fator de penaliza o
42 K(1,1) = K(1,1) *P;
                          % penaliza o aplicada no termo 1,1 de K
44
45 % Aplica o dos carregamentos
```

Listing A.1 – Código genérico para deslocamento nodais de múltiplas molas acopladas