

SU 001627663 A
FEB 1991

(AH)

91-316074/43	H01	TART 29.07.88 *SU 1627-663-A	H(1-C10)
TARTAR OIL IND 29.07.88-SU-492457 (15.02.91) E21b-29/10 Borehole repair casing patch tool - has expanding cone with base dia. smaller than inner dia. of tubular expanded patch in working position C91-134922	The tool comprises the expanding cone (4) which is partially inserted into bottom end of a pipe (1) and connected to hydraulic displacing drive (3) by a rod (5). The cone apex angle alpha = 25-60 deg. and its base dia. (d) is smaller than that of the expanded pipe (1) in working position by amt. exceeding the valve determined from the formula $D_d/d = 0.057988 \sin^2 L \alpha$, where D_d = increase in inner dia. of expanded pipe (1) in working position above dia. of base (d) of cone (4). USE/ADVANTAGE - For reliable repairing of holed casings of gas, oil wells. Bul.6/15.2.81 (2pp Dwg.No.1/2) OPERATION The tool is lowered into the damaged casing and placed opposite hole (6), Lsq. is pumped under pressure into the hydraulic drive (3), its piston moves up and pulls up the cone (4). The cone (4) passes up the pipe (1), expands it against the casings damaged section and seals the latter. The tapering ring (3) serves as support for the hydraulic drive (3).		

C 1991 DERWENT PUBLICATIONS LTD.
128, Theobalds Road, London WC1X 8RP, England
US Office: Derwent Inc., 1313 Dolley Madison Boulevard,
Suite 401, McLean, VA22101, USA
Unauthorised copying of this abstract not permitted

Изобретение относится к нефтедобывающей промышленности, а именно к капитальному ремонту скважин.

Цель изобретения – повышение надежности ремонта обсадной колонны.

На фиг. 1 изображено устройство для ремонта обсадной колонны после спуска его в скважину; на фиг. 2 – то же, в процессе работы.

Устройство для ремонта обсадной колонны включает патрубок 1, на верхнем торце которого расположено переходное кольцо 2, упирающееся в гидропривод 3. В нижний конец патрубка вставлен расширяющий конус 4, связанный штоком 5 с гидроприводом 3, предназначенный для перемещения конуса. Конус выполнен с углом при вершине 25–60° и с диаметром основания, меньшим внутреннего диаметра патрубка в рабочем положении не более, 20

15
5
шине 6. При закачке жидкости по трубам в гидропривод 3 его поршни движутся вверх и через шток 5 тянут вверх конус 4, который, проходя через патрубок, расширяет его до прижатия к стенкам обсадной колонны (фиг. 2) и герметизирует трещину 6. Переходное кольцо 2 позволяет осуществить упор на гидропривод до конца расширения.

Формула изобретения

Устройство для ремонта обсадной колонны, включающее расширяющий конус с приводом его перемещения и расположенный на расширяющем конусе патрубок, отличаясь тем, что, с целью повышения надежности ремонта обсадной колонны, расширяющий конус выполнен с углом при вершине 25–60° и с диаметром основания, меньшим внутреннего диаметра патрубка в рабочем положении не более, чем на величину, определяемую в соответствии со следующей зависимостью:

$$\frac{\Delta d}{d} = 5,7368 \cdot 10^{-2} \cdot \sin^2 1.5 \alpha,$$

где Δd – прирост внутреннего диаметра патрубка в рабочем положении над диаметром основания конуса, м;

d – диаметр основания конуса, м;

α – угол при вершине конуса.

Устройство работает следующим образом.

Устройство спускают внутрь обсадной колонны к подлежащей герметизации тре-

25
20
15
10
5
шине 6, где Δd – прирост внутреннего диаметра патрубка в рабочем положении над диаметром основания расширяющего конуса, м;

d – диаметр основания расширяющего конуса, м;

α – угол при вершине расширяющего конуса, рад.

Фиг.2

Составитель И.Левкоева

Техред М.Моргентал

Корректор М.Демчик

Редактор М.Товтин

Заказ 322

Тираж 351

Подписьное

ВНИИПИ Государственного комитета по изобретениям и открытиям при ГКНТ СССР
113035, Москва, Ж-35, Раушская наб., 4/5

Производственно-издательский комбинат "Патент", г. Ужгород, ул.Гагарина, 101

SU 1627663 A

The invention is in the field of oil industry, i.e., in the field of well overhaul.

The purpose of the invention is to increase the reliability of repair of the casing string.

Figure 1 shows the device for casing string repair after its suspension into the well; Figure 2 shows the same during operation.

The casing string repair device includes a connecting pipe, 1, at the upper face of which is located a junction ring, 2, leaning against a hydraulic drive, 3. An expanding cone, 4, connected by means of a stock, 5, to the hydraulic drive, 3, the purpose of which is to move the cone, is installed at the lower end of the connecting pipe. The cone is executed with a top angle of 25 – 60 degrees and a base diameter smaller than the inner diameter of the connecting pipe in operating position for no more than the rate determined in accordance with the following formula:

[see original for formula]

where Δd is the increase in the inner diameter of the connecting pipe during operation above the base diameter of the cone, m;

d is the base diameter of the cone, m; and

α is the angle at the top of the cone.

The device operates in the following manner.

The device is suspended inside the casing string to the crack, 6, that is subject to air tightness restoration. When fluid is injected through the tubes into the hydraulic drive, 3, its pistons 5, move up and pull the cone, 4, up through the stock, where the cone, while going through the connecting pipe, expands it until the latter is pressed against the walls of the casing string (Figure 2) and restores the air tightness of the crack, 6. The junction ring, 2, provides the support for the hydraulic drive until the completion of the expansion.

Claims:

Device for casing string repair including an expanding cone with a drive for its movement and a connecting pipe installed on the cone, which is characterized by the fact that, for the purpose of increasing the reliability of the repair of the casing string, the expanding cone is executed with a top angle of 25 – 60 degrees and a base diameter smaller than the inner diameter of the connecting pipe in operating position for no more than the rate determined in accordance with the following formula:

[see original for formula]

where Δd is the increase in the inner diameter of the connecting pipe during operation above the base diameter of the cone, m;

d is the base diameter of the cone, m; and

α is the angle at the top of the cone, radian.

[see original for figure]

Figure 2

Prepared by: I. Levkoeva

Editor: M. Tovtin Copy Editor: M. Morgental Proofreader: M. Demchik
Order: 322 Copies: 351 By subscription

VNIPI of the USSR State Committee on Inventions and Discoveries
113035, Moscow, ZH-35, Raushskaya izb., d. 4/5
Patent Production and Publishing Works, City of Uzhgorod, 101 Gagarin Street

TRANSPERFECT TRANSLATIONS

AFFIDAVIT OF ACCURACY

I, Kim Stewart, hereby certify that the following is, to the best of my knowledge and belief, true and accurate translations performed by professional translators of the following patents from Russian to English:

RU2016345 C1
RU2039214 C1
RU2056201 C1
RU2064357 C1
RU2068940 C1
ATLANTA RU2068943 C1
BOSTON RU2079633 C1
BRÜSSELS RU2083798 C1
CHICAGO RU2091655 C1
DALLAS RU2095179 C1
DETROIT RU2105128 C1
FRANKFURT RU2108445 C1
HOUSTON RU21444128 C1
LONDON SU1041671 A
LOS ANGELES SU1051222 A
MIAMI SU1086118 A
MINNEAPOLIS SU1158400 A
NEW YORK SU1212575 A
PARIS SU1250637 A1
PHILADELPHIA SU1295799 A1
SAN DIEGO SU1411434 A1
SAN FRANCISCO SU1430498 A1
SEATTLE SU1432190 A1
WASHINGTON, DC SU 1601330 A1
SU 001627663 A
SU 1659621 A1
SU 1663179 A2
SU 1663180 A1
SU 1677225 A1
SU 1677248 A1
SU 1686123 A1
SU 001710694 A
SU 001745873 A1
SU 001810482 A1
SU 001818459 A1
350833
SU 607950
SU 612004
620582
641070
853089
832049
WO 95/03476

Page 2
TransPerfect Translations
Affidavit Of Accuracy
Russian to English Patent Translations

Kim Stewart
Kim Stewart
TransPerfect Translations, Inc.
3600 One Houston Center
1221 McKinney
Houston, TX 77010

Sworn to before me this
23rd day of January 2002.

Maria A. Serna
Signature, Notary Public

Stamp, Notary Public

Harris County

Houston, TX