

SEQUENCE LISTING

<110> Lehmann, Juergen Michael
Shiau, Andrew Kwan-Nan
Tularik Inc.

<120> CAR Modulators: Screening and Treatment of
Hypercholesterolemia

<130> 018781-004110US

<140> US 09/760,364

<141> 2001-01-12

<150> US 60/176,398

<151> 2000-01-13

<160> 14

<170> PatentIn Ver. 2.1

<210> 1

<211> 348

<212> PRT

<213> Homo sapiens

<220>

<223> human constitutive androstane receptor (CAR) alpha
(hCAR_a)

<400> 1

Met Ala Ser Arg Glu Asp Glu Leu Arg Asn Cys Val Val Cys Gly Asp
1 5 10 15

Gln Ala Thr Gly Tyr His Phe Asn Ala Leu Thr Cys Glu Gly Cys Lys
20 25 30

Gly Phe Phe Arg Arg Thr Val Ser Lys Ser Ile Gly Pro Thr Cys Pro
35 40 45

Phe Ala Gly Ser Cys Glu Val Ser Lys Thr Gln Arg Arg His Cys Pro
50 55 60

Ala Cys Arg Leu Gln Lys Cys Leu Asp Ala Gly Met Arg Lys Asp Met
65 70 75 80

Ile Leu Ser Ala Glu Ala Leu Ala Leu Arg Arg Ala Lys Gln Ala Gln
85 90 95

Arg Arg Ala Gln Gln Thr Pro Val Gln Leu Ser Lys Glu Gln Glu Glu
100 105 110

Leu Ile Arg Thr Leu Leu Gly Ala His Thr Arg His Met Gly Thr Met
115 120 125

Phe Glu Gln Phe Val Gln Phe Arg Pro Pro Ala His Leu Phe Ile His
130 135 140

His Gln Pro Leu Pro Thr Leu Ala Pro Val Leu Pro Leu Val Thr His
145 150 155 160

Phe Ala Asp Ile Asn Thr Phe Met Val Leu Gln Val Ile Lys Phe Thr
 165 170 175

 Lys Asp Leu Pro Val Phe Arg Ser Leu Pro Ile Glu Asp Gln Ile Ser
 180 185 190

 Leu Leu Lys Gly Ala Ala Val Glu Ile Cys His Ile Val Leu Asn Thr
 195 200 205

 Thr Phe Cys Leu Gln Thr Gln Asn Phe Leu Cys Gly Pro Leu Arg Tyr
 210 215 220

 Thr Ile Glu Asp Gly Ala Arg Val Gly Phe Gln Val Glu Phe Leu Glu
 225 230 240

 Leu Leu Phe His Phe His Gly Thr Leu Arg Lys Leu Gln Leu Gln Glu
 245 250 255

 Pro Glu Tyr Val Leu Leu Ala Ala Met Ala Leu Phe Ser Pro Asp Arg
 260 265 270

 Pro Gly Val Thr Gln Arg Asp Glu Ile Asp Gln Leu Gln Glu Glu Met
 275 280 285

 Ala Leu Thr Leu Gln Ser Tyr Ile Lys Gly Gln Gln Arg Arg Pro Arg
 290 295 300

 Asp Arg Phe Leu Tyr Ala Lys Leu Leu Gly Leu Leu Ala Glu Leu Arg
 305 310 320

 Ser Ile Asn Glu Ala Tyr Gly Tyr Gln Ile Gln His Ile Gln Gly Leu
 325 330 335

 Ser Ala Met Met Pro Leu Leu Gln Glu Ile Cys Ser
 340 345

<210> 2
 <211> 358
 <212> PRT
 <213> Mus musculus

<220>
 <223> mouse constitutive androstane receptor (CAR) beta 1
 (mCARbeta1, mCAR1)

<400> 2
 Met Thr Ala Met Leu Thr Leu Glu Thr Met Ala Ser Glu Glu Glu Tyr
 1 5 10 15

 Gly Pro Arg Asn Cys Val Val Cys Gly Asp Arg Ala Thr Gly Tyr His
 20 25 30

Phe His Ala Leu Thr Cys Glu Gly Cys Lys Gly Phe Phe Arg Arg Thr
 35 40 45

Val Ser Lys Thr Ile Gly Pro Ile Cys Pro Phe Ala Gly Arg Cys Glu
 50 55 60

Val Ser Lys Ala Gln Arg Arg His Cys Pro Ala Cys Arg Leu Gln Lys
 65 70 75 80

<210> 3
<211> 286
<212> PRT
<213> Mus musculus

<220>

<223> mouse constitutive androstane receptor (CAR) beta 2
(mCARbeta2, mCAR2)

<400> 3

Met Thr Ala Met Leu Thr Leu Glu Thr Met Ala Ser Glu Glu Glu Tyr
1 5 10 15

Gly Pro Arg Asn Cys Val Val Cys Gly Asp Arg Ala Thr Gly Tyr His
20 25 30

Phe His Ala Leu Thr Cys Glu Gly Cys Lys Gly Phe Phe Arg Arg Thr
35 40 45

Val Ser Lys Thr Ile Gly Pro Ile Cys Pro Phe Ala Gly Arg Cys Glu
50 55 60

Val Ser Lys Ala Gln Arg Arg His Cys Pro Ala Cys Arg Leu Gln Lys
65 70 75 80

Cys Leu Asn Val Gly Met Arg Lys Asp Met Ile Leu Ser Ala Glu Ala
85 90 95

Leu Ala Leu Arg Arg Ala Arg Gln Ala Gln Arg Arg Ala Glu Lys Ala
100 105 110

Ser Leu Gln Leu Asn Gln Gln Lys Glu Leu Val Gln Ile Leu Leu
115 120 125

Gly Ala His Thr Arg His Val Gly Pro Leu Phe Asp Gln Phe Val Gln
130 135 140

Phe Lys Pro Pro Ala Tyr Leu Phe Met His His Arg Pro Phe Gln Pro
145 150 155 160

Arg Gly Pro Val Leu Pro Leu Leu Thr His Phe Ala Asp Ile Asn Thr
165 170 175

Phe Met Val Gln Gln Ile Ile Lys Phe Thr Lys Asp Leu Pro Leu Phe
180 185 190

Arg Ser Leu Thr Met Glu Asp Gln Ile Ser Leu Leu Lys Gly Ala Ala
195 200 205

Val Glu Ile Leu His Ile Ser Leu Asn Thr Thr Phe Cys Leu Gln Thr
210 215 220

Glu Asn Phe Phe Cys Gly Pro Leu Cys Tyr Lys Met Glu Asp Ala Val
225 230 235 240

His Ala Gly Phe Gln Tyr Glu Phe Leu Glu Ser Ile Leu His Phe His
245 250 255

Lys Asn Leu Lys Gly Leu His Leu Gln Glu Pro Glu Tyr Val Leu Met
260 265 270

Ala Ala Thr Ala Leu Phe Ser Pro Gly Phe Cys Met Gln Ser
275 280 285

<210> 4
<211> 492
<212> DNA
<213> *Mus musculus*

<220>
<223> murine CARbeta genomic sequence - Section A,
portion of CARbeta intron sequence in left arm of
targeting construct

```
<220>
<221> modified_base
<222> (74)
<223> n = q, a, c or t
```

<400> 4
aaaatttacc caacatagat ttatctaatt taattccatat ctgcagaaca tccaaatact 60
ttggaaatta tttnttgtgg ttgttagctgt ttgaatgtaa acatataattc aaaaaaactc 120
ttcatggtga tgttagcattg ggcaagctat gaggataacct acttctggtt atttactaaa 180
agttgatagc caggcgagtgg tggcacacac cttaatccc agcacttggg aggcagaggc 240
aggttggaaatt atgagtttga ggccagcctg gtctacagag tgggttcaag gtcagccagg 300
gctacacacaga gaaaccctgt ctcaaaaaga aggaggagga ggagggaaaga ggaagaggag 360
gaagaagatc ttttgttttg agatagcata cagtgaaaat ttcggtttct ttagcaactc 420
agttgtgtca catgatgtct ttctggaagc tgcgttgtga gcagacatgt gatgtttatc 480
acaataaaaaa qc 492

```
<210> 5  
<211> 1779  
<212> DNA  
<213> Mus musculus
```

<220>
<223> murine CARbeta genomic sequence - Section B,
portion of CARbeta genomic sequence 5' to Section A

<400> 5
 aaagagggtca tcaggcttgg cagcaagtgc ctttgccctac cgagtcctta caccagctcc 60
 accgtggtt ttgagacagt ctcccactgg actggatttc agcaagaaag cttaggcttc 120
 cttcttgtct ctgcctcctt ggcattggaa ttatgagttg ttccaccgtg ccattttaa 180
 aaatgttaggt tctaggaatt aaactcggtc ctcgggtc ttatagttg atatcccgt tactttacag 240
 agggagtcac cttgccagca cctagaattc acttttattc atatcccgt cttccccacgt 300
 aagaaagtgg gatcccttct agtgttacac ctaagttctt agttggatac cgaagtctt 360
 ttttaacag atctctgggg ctcagaaggc aagagctct tgcatggat ttaacctcaa 420
 ttccctagtagc tcaacttgcc agctcataaac tgcctataac tctagtccta gaagatcaga 480
 cattgtcctc tgatctctgt gggtactagg tatatacatt taaaaaaaaat caataaaaaa 540
 tttaaaaaaaaaaa gaaaagaaaaa agaaagaaaag aaaatccctt gggagcctgg tataattgtt 600
 atagctacct ttttttttt ttttttttt ttttttacca tttgcaact gcacgtgaaa 660
 aagcttgcca tctctcccat tgtttctgg ottattcagg atccatgca aaaaaaaaaa 720
 gtagatttag cctaaagctc acccacaggg aaatcctcca ggagtctagt aagcagcagc 780
 ttttaatgag tcatgaggtc ctggccctc cccatctgac accaaccac accttctcggg 840
 catgcttagga accccccaccc cacccacac ccacacccag gtcttgcac tgggtccaga 900
 gtctgggtcc tacctacata tggcacccgag gatacctaga ggccccatgc aagagaaggc 960
 ccttgtttc caggcactaa ggaccgcagt ccctaattcc tggcagttcc tgagatctca 1020
 aggaaagcag ggtcagcggag gaggcctggg gagaggaggc atccatcaccc cgatcttgc 1080
 gcctgctgcc taagggaaac aggttagttt tccgttggag gccagagaca aaaagcaaca 1140
 tttttgtttt taatgtcctc agtgcgtggg agcccggtt caggctggc agtcttggga 1200
 agagattctg tagaggagag agaagagagt cctatggcc agtgcgtatt ctcaactct 1260
 cccacattca ggagaccatg acagctatgc taacactaga aaccatggcc agtgaagaag 1320
 aatatggcc gaggaaactgt gtgggtgtg gagaccgggc cacaggctat catttccacg 1380
 ccctqacttg tgagggctgc aagggttct tcaggtgaat gcttccccc caacagaaac 1440

aaccccgaca tttctatcatcag tccaccccta aacactggta cacctccaag ttataatcct 1500
cttgtagctt agctgcactg cccagtgtct agcaactctca atcttgcgtga ccacaacgca 1560
gtgtgaaact ggtgacctaag tgacaaggca ggtaaccat ttgtcccaga gacagagcct 1620
aagagtcaag aacacttgtg tagcacacac tacctgcaaa gcaccgagat gattgccaca 1680
cgagggttcc tgagtaacct tgggttcata tgaaaacgct ccaactacct ctgaagacct 1740
ttgagcacag ctcagatgag tctgttgtt aatcgatcc 1779

<210> 6
<211> 485
<212> DNA
<213> Mus musculus

<220>
<223> murine CARbeta genomic sequence - Section C,
CARbeta intron sequence in right arm of targeting
construct

<400> 6
tgcatgttt tctactgaag tgtatcacag atgaatatga gatcgacaga aagtgtgcag 60
ggatccccct gccatctgga aacacttaat tcaatgaagt cccaaaggaaag cctcagaaac 120
tctttcttcc ttcccttcctt cttatctggg gaggtggagt ggccccaact gaagggatgg 180
ctgaaagggtg ctcgctgtg ttctcaacag ctttgtcatc tctcttgctt gacacagtga 240
tactgtcagc agaagccctg gcattgcggc gagccagaca ggcacagcgg cgggcagaga 300
aagcatctt gcaactgaat cagcagcaga aagaactggt ccagatcctc ctcggggccc 360
acactcgcca tgtggggcccc atgtttgacc agtttgcga gttcaagggtg agaacttaac 420
caggatgtga cctgggtacc tgaggaggtt acccacagaa gaaggctatg ccctgatgga 480
ggaca 485

<210> 7
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:sensor peptide,
rhodamine-labeled peptide derived from the
receptor binding domain of coactivator SRC-1

<400> 7
Ile Leu Arg Lys Leu Leu Gln Glu
1 5

<210> 8
<211> 1390
<212> DNA
<213> Mesocricetus auratus

<220>
<223> hamster constitutive androstane receptor (CAR)

<220>
<221> modified_base
<222> (1)..(1390)
<223> n = g, a, c or t

<400> 8
cttgggttctt agggaccaag gacaatccct aattcctgca gttcctgaga ccacaaggaa 60
agcagggtca tcgtggaggc ttggagacag gcatctcata ccagatttg tgacctgcgt 120

gtgtcatact	gcctaagaga	aacaggagac	catgacagct	acgctaacad	tcgaaaccac	180
ggccagtgga	gaggaatatg	gaccgaggaa	ctgtgtggg	tgtgagacc	gagccacggg	240
ctaccatttc	catgccctga	cttggaggg	ctgcaaagc	ttcttcagac	gaactgtcg	300
caaaaccatt	agtcccattct	gtccattttc	tgaaagctgt	gagatcagca	gagccccagag	360
acgcccactgc	ccagcctgca	ggttgcagaa	gtgcctaaac	gctggcatga	ggaaagacat	420
gatactgtca	gcagaagccc	tgtcggtgcg	gcgagccagg	caggcacagc	ggcgggcaca	480
aaaagcttcc	gtcagatga	ctcaggagcg	gaaggagctg	gtccagaccc	tcataggggc	540
ccacaccgc	cacatgggccc	ccatgttga	ccagtttgc	aagctcaggc	ctccagctta	600
cctgttccacc	catcaccggc	cctccccc	gtgggtcccc	cccgcgttac	cactgctcac	660
acactttgca	gatgtcaaca	ctttcatgg	gcagcagatt	atcaagttca	ccaaggaact	720
gccccctttt	cgtccctac	ccgtggagga	ccagatctcc	cttctcaagg	gagcagctgt	780
ggaaatattt	catatctcac	tcaacactac	tttctgtctt	caaaccacaga	atttcttctg	840
tggccactt	tgtcacaaaa	tggaaagacgc	agccccacgca	gggttcccggt	acgaatatgt	900
ggagttgatc	tttcgcttcc	atgggacact	gaagcgaactg	cagtc当地	agcctgagta	960
tgtgctcatg	actgccccatgg	ccctcttctc	tcctgacagg	ccttggaaatca	cccagagaga	1020
agagattgac	cagctgcaag	aggagatggc	actgattttg	aacaactaca	ttatggaaaca	1080
gcagccaaagg	ccccagagtc	ggtttctgt	cgccaaagctg	atgggcctgc	tggctgagct	1140
ccggagcata	aacaatgcat	actcatatga	aatacggcgc	atccaggggac	tgtccgctat	1200
gatgccacta	cttggggaaa	tctgcagctg	aggctcaggc	ttgcctcctt	ccccagggcc	1260
cctgggattc	attggactgg	aaagggggaaa	ttgctgagct	aaaaggagct	cagtgcacgc	1320
aaaaaaacact	ggacagtnng	aaaaaaaaannn	nnnnnnnnnn	aaaagcggacc	tgccccggcgc	1380
qccqttcagc						1390

<210> 9
<211> 359
<212> PRT
<213> *Mesocricetus auratus*

<220>
<223> predicted amino acid sequence of hamster
constitutive androstane receptor (CAR)

<400> 9
 Met Thr Ala Thr Leu Thr Leu Glu Thr Lys Ala Ser Gly Glu Glu Tyr
 1 5 10 15
 Gly Pro Arg Asn Cys Val Val Cys Gly Asp Arg Ala Thr Gly Tyr His
 20 25 30
 Phe His Ala Leu Thr Cys Glu Gly Cys Lys Gly Phe Phe Arg Arg Thr
 35 40 45
 Val Ser Lys Thr Ile Ser Pro Ile Cys Pro Phe Ser Gly Ser Cys Glu
 50 55 60
 Ile Ser Arg Ala Gln Arg Arg His Cys Pro Ala Cys Arg Leu Gln Lys
 65 70 75 80
 Cys Leu Asn Ala Gly Met Arg Lys Asp Met Ile Leu Ser Ala Glu Ala
 85 90 95
 Leu Ser Leu Arg Arg Ala Arg Gln Ala Gln Arg Arg Ala Gln Lys Ala
 100 105 110
 Ser Val Gln Met Thr Gln Glu Arg Lys Glu Leu Val Gln Thr Leu Ile
 115 120 125
 Gly Ala His Thr Arg His Met Gly Pro Met Phe Asp Gln Phe Val Lys
 130 135 140

Leu Arg Pro Pro Ala Tyr Leu Phe Thr His His Arg Pro Ser Ser Pro
 145 150 155 160
 Leu Val Pro Pro Ala Leu Pro Leu Leu Thr His Phe Ala Asp Val Asn
 165 170 175
 Thr Phe Met Val Gln Gln Ile Ile Lys Phe Thr Lys Glu Leu Pro Leu
 180 185 190
 Phe Arg Ser Leu Pro Val Glu Asp Gln Ile Ser Leu Leu Lys Gly Ala
 195 200 205
 Ala Val Glu Ile Leu His Ile Ser Leu Asn Thr Thr Phe Cys Leu Gln
 210 215 220
 Thr Gln Asn Phe Phe Cys Gly Pro Leu Cys Tyr Lys Met Glu Asp Ala
 225 230 235 240
 Ala His Ala Gly Phe Arg Tyr Glu Tyr Val Glu Leu Ile Phe Arg Phe
 245 250 255
 His Gly Thr Leu Lys Arg Leu Gln Leu Gln Glu Pro Glu Tyr Val Leu
 260 265 270
 Met Thr Ala Met Ala Leu Phe Ser Pro Asp Arg Pro Gly Ile Thr Gln
 275 280 285
 Arg Glu Glu Ile Asp Gln Leu Gln Glu Met Ala Leu Ile Leu Asn
 290 295 300
 Asn Tyr Ile Met Glu Gln Gln Pro Arg Pro Gln Ser Arg Phe Leu Tyr
 305 310 315 320
 Ala Lys Leu Met Gly Leu Leu Ala Glu Leu Arg Ser Ile Asn Asn Ala
 325 330 335
 Tyr Ser Tyr Glu Ile Arg Arg Ile Gln Gly Leu Ser Ala Met Met Pro
 340 345 350
 Leu Leu Gly Glu Ile Cys Ser
 355

<210> 10
 <211> 58
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence:overlapping
 Oligo 2930

<400> 10
 ccataaacgt gttgatatatct gcaaagtgtg cgagcagagg caacacgggg ccccgagg 58

<210> 11
 <211> 58
 <212> DNA
 <213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:overlapping
Oligo 2931

<400> 11
ctctacagcc tccagcctat ctgttcatgc atcacccggcc tttccagcct cggggcccc 58

<210> 12
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:boundary of the
deleted region of the mouse CARbeta gene in CAR
knock-out construct

<400> 12
cactagaaac catggccagt g 21

<210> 13
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:boundary of the
deleted region of the mouse CARbeta gene in CAR
knock-out construct

<400> 13
tgtgtggtgt gggagaccgg gc 22

<210> 14
<211> 201
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:flexible linker

<220>
<221> MOD_RES
<222> (1)..(97)
<223> Gly residues from positions 1-97 may be present or
absent

<220>
<221> MOD_RES
<222> (105)..(201)
<223> Gly residues from, positions 105-201 may be
present or absent

<400> 14
Gly
1 5 10 15

Gly
20 25 30

Gly
35 40 45

Gly
50 55 60

Gly
65 70 75 80

Gly
85 90 95

Gly Gly Gly Pro Gly Gly Gly Gly Gly Gly Gly Gly Gly
100 105 110

Gly
115 120 125

Gly
130 135 140

Gly
145 150 155 160

Gly
165 170 175

Gly
180 185 190

Gly Gly Gly Gly Gly Gly Gly
195 200