GATE 2018 Question

Name: Varshini G N ID: COMETFWC031 Date: August 31, 2025

GATE 2018 CS Q49

Consider the minterm list form of a Boolean function F given below.

$$F(P,Q,R,S) = \sum m(0,2,5,7,9,11) + d(3,8,10,12,14)$$

Here, m denotes a minterm and d denotes a don't care term. The number of essential prime implicants of the function F is _____.

Solution

Truth Table

Decimal	Р	Q	R	S	F
0	0	0	0	0	1
1	0	0	0	1	0
2	0	$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$	1	$\begin{vmatrix} 1 \\ 0 \end{vmatrix}$	1
3	0	0	1	1	1 X
4	0	1	0	$\begin{vmatrix} 0 \\ 1 \end{vmatrix}$	0
5	0 0 0	1	0		1
6	0	1	1	0	0
6 7	0	1	1	1	1
8	1	1 1 1 1 0	0	$\begin{vmatrix} 1 \\ 0 \end{vmatrix}$	X
9	1		0	1	1
10	1 1 1 1 1	0	1	1 0 1	X
11	1	0	1	1	1
12	1	1	0	0	X
13	1	$egin{array}{c} 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{array}$	0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 1		1 X 1 X 1 X 0 X
14	1	1	1	$\begin{vmatrix} 1 \\ 0 \end{vmatrix}$	X
15	1	1	1	1	0

K-Map Representation (4 Variables)

Below is one possible K-map arrangement (PQ as rows, RS as columns):

$PQ\backslash RS$	00	01	11	10
00	1	0	X	1
01	0	1	1	0
11	X	0	0	X
10	X	1	1	X

Legend: '1' = Minterm, 'X' = Don't care, '0' = Not included.

Essential Prime Implicant Calculation

Prime implicant groups:

- Group 1: Covers minterms 0, 2 (essential)
- Group 2: Covers minterms 5, 7 (essential)
- Group 3: Covers minterms 9, 11 (essential)

So, the number of essential prime implicants is:

3

Final Answer: There are 3 essential prime implicants.