

TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING PULCHOWK CAMPUS

"Object Recognition and Image Enhancement for Night Vision Surveillance"

By:

AASHISH BHANDARI (070BEX401)

AAYUSH KAFLE (070BEX403)

PRANJAL DHAKAL (070BEX427)

PRATEEK RAJ JOSHI (070BEX429)

A PROJECT WAS SUBMITTED TO THE DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING IN PARTIAL FULLFILLMENT OF THE REQUIREMENT FOR THE BACHELOR'S DEGREE IN ELECTRONICS & COMMUNICATION ENGINEERING

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING LALITPUR, NEPAL

APPROVAL PAGE

TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING PULCHOWK CAMPUS

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

The undersigned certify that they have read, and recommended to the Institute of Engineering for acceptance, a project report entitled "Object Recognition and Image Enhancement for Night Vision Surveillance" submitted by Aashish Bhandari, Aayush Kafle, Pranjal Dhakal and Prateek Raj Joshi in partial fulfilment of the requirements for the Bachelor's degree in Electronics & Communication / Computer Engineering.

Supervisor, Er. Dinesh Baniya Kshatri Lecturer				
Internal Examiner, name of Internal Examiner				
Title				
Name of the Organization, he belongs to				
External Examiner, name of External				
Title				
Name of the Organization, he belongs to				
Coordinator, Name of Coordinator				
Title				
Name of the coordinating committee				

DATE OF APPROVAL: Day.Month.Year

COPYRIGHT

The author has agreed that the Library, Department of Electronics and Computer Engineering, Pulchowk Campus, Institute of Engineering may make this report freely available for inspection. Moreover, the author has agreed that permission for extensive copying of this project report for scholarly purpose may be granted by the supervisors who supervised the project work recorded herein or, in their absence, by the Head of the Department wherein the project report was done. It is understood that the recognition will be given to the author of this report and to the Department of Electronics and Computer Engineering, Pulchowk Campus, Institute of Engineering in any use of the material of this project report. Copying or publication or the other use of this report for financial gain without approval of to the Department of Electronics and Computer Engineering, Pulchowk Campus, Institute of Engineering and author's written permission is prohibited.

Request for permission to copy or to make any other use of the material in this report in whole or in part should be addressed to:

Head

Department of Electronics and Computer Engineering
Pulchowk Campus, Institute of Engineering
Lalitpur, Kathmandu
Nepal

iv

ACKNOWLEDGEMENT

We would like to express our humble gratitude to everyone who has made contribution in

finalizing our major project. We are very grateful for having "Object Recognition and

Image Enhancement for Night Vision Surveillance" as our major project. This project

encompasses all the key disciplines, we are keenly interested in.

We would like to heartily thank our supervisor Mr. Dinesh Baniya Kshatri sir for his

wonderful insight and assistance for helping us to refine and finalize the topic of our major

project. We are very thankful of him for providing us with necessary resource materials for

the topic. Finally, we would like to sincerely thank the Department of Electronics and

Computer Engineering for elucidating us with the concepts and constraints in choosing our

major project.

Regards,

Project Members

ABSTRACT

Object recognition is critical part of any surveillance system. It is the matter of utmost concern to identify intruders and foreign objects in the area where surveillance is done. The performance of surveillance system using traditional camera in daylight is vastly superior as compared to night. The main problem for surveillance during night is the objects captured by traditional cameras have low contrast against the background. Therefore, the image taken in the low light condition is first enhanced to obtain the image with higher contrast using different enhancing algorithms. The enhanced image is then sent for classification using the neural network architecture and the object is recognized in the image.

KEYWORDS

Infra-red image processing, night vision image enhancement, low light image enhancement, night vision object recognition, night vision surveillance.

TABLE OF CONTENTS

APPROVA	L PAGE	ii
COPYRIGH	łT	iii
ACKNOWI	LEDGEMENT	iv
ABSTRAC	Γ	v
KEYWORD	OS	v
TABLE OF	CONTENTS	vi
LIST OF FI	GURES	viii
LIST OF TA	ABLES	viii
LIST OF E	QUATIONS	x
1. INTRO	DUCTION	1
1.1. Ob	ejectives	1
2. LITER	ATURE REVIEW	2
2.1. Im	age Enhancement	2
2.2. Ob	eject Recognition and Classifier	3
3. METHO	ODOLOGY	5
3.1. To	ols Used	5
3.1.1.	Infra-Red Cameras	5
3.1.2.	Digital Image Processing	5
3.1.3.	Machine Learning using Neural Networks	6
3.1.4.	Raspberry PI	7
3.1.5.	Computer Vision	8
3.1.6.	GPU Processing	8
3.2. Sys	stem Architecture	9
3.2.1.	Image Transmission to Server	11
3.2.2.	Camera Interfacing with Raspberry Pi	13
3.3. Im	age Processing and Enhancing	17
3.3.1.	Contrast Stretching	17
3.3.2.	Histogram Equalization	20
3.3.3.	Canny Edge Detection Algorithm	23
3.3.4.	Object Isolation	24

3	8.4. Cla	assifier Using Convolutional Neural Network	26
	3.4.1.	CNN for MNIST Dataset	26
	3.4.2.	CNN for CIFAR-10 Dataset	29
	3.4.3.	Comparison of the MNIST CNN model vs CIFAR-10 CNN model	31
	3.4.4.	Inception Module	31
	3.4.5.	GoogLeNet	32
	3.4.6.	Inception V3	33
	3.4.7.	Transfer Learning	33
4.	FUTUF	RE PLAN	34
5	REFER	FNCFS	35

LIST OF FIGURES

Figure 3. 1: IR Camera Module	5
Figure 3. 2: A Three-Layered Neural Network	6
Figure 3. 3: Internal Block Diagram of RP	8
Figure 3. 4: GPU Chip	9
Figure 3. 5: Client Side Data Flow Diagram	10
Figure 3. 6: Image Transmission in Local Network	11
Figure 3. 7: Infra-Red Camera	14
Figure 3. 8: Camera Serial Interface	14
Figure 3. 9: Original Grey-Scale Image	18
Figure 3. 10:Histogram of Original Image (No. of Pixels vs Intensity)	18
Figure 3. 11: Image After Contrast Stretching	19
Figure 3. 12: Histogram of Contrast Stretched Image (No. of Pixels vs Intensity)	19
Figure 3. 13: CDF Distribution of Original Image (No. of Pixels vs Intensity)	21
Figure 3. 14: Image After Histogram Equalization	21
Figure 3. 15: Equalized Histogram (No. of Pixels vs Intensity)	22
Figure 3. 16: CDF of Image After Histogram Equalization (No. of Pixels vs Intensity)	22
Figure 3. 17: Image After Canny Edge Detection	24
Figure 3. 18: Original Image Before Separation	25
Figure 3. 19: Image After Separation	25
Figure 3. 20: CNN Model for MNIST Database	26
Figure 3. 21: Training for MNIST Database	28
Figure 3. 22: CNN for CIFAR-10 Dataset	29
Figure 3. 23: Inception Model	32
Figure 3, 24: GoogleNet Architecture	32

L	TOT	'n	Tr'	ТΛ	RI	ÆS
1.	1171	` ()	יווי	\mathbf{I}	IDI.	רועיוו

LIST OF EQUATIONS

3.1	Histogram Stretching	17
3.2	Histogram Equalization	20
3.3	Application of Gaussian Filter	23
3.4	Gaussian Filter	23
3.5	Intensity Gradient	23