What Boolean Algebras Can Teach Us About Weighted Model Counting

Paulius Dilkas

13th April 2020

1 Introduction

Contributions.

- WMC defines a measure over a BA.
- WMC with weights on literals imposes an independence assumption. (Measures are 'slightly' more expressive than WMC with weights on models because they apply to non-atomic BAs.)
- A BA can be augmented with new literals in order to support any measure.
- (Maybe) a lower bound on the number of new literals needed in order to support any measure.
- Alternatively, one can use coproducts and pushouts to define a BA with precisely the right independence and conditional independence conditions. (This requires a relaxed version of WMC.)
- This results in a smaller problem for WMC algorithms (w.r.t. both the number of literals and the length of the theory) and is optimal for, e.g., Bayesian networks.
- (Maybe) this results in faster inference (?)

Notable previous/related work.

- Hailperin's approach to probability logic [9]
- Nilsson's (somewhat successful) probabilistic logic [14]
- Logical induction: a big paper with a good overview of previous attempts to assign probabilities to logical sentences in a sensible way [7]
- Measures on Boolean algebras
 - On possibility and probability measures in finite Boolean algebras [2]
 - Representation of conditional probability measures [12]

2 Preliminaries

Definition 1. A Boolean algebra (BA) is a tuple $(\mathbf{B}, \wedge, \vee, \neg, 0, 1)$ consisting of a set **B** with binary operations meet \wedge and join \vee , unary operation \neg and elements $0, 1 \in \mathbf{B}$ such that the following axioms hold for all $a, b, \in \mathbf{B}$:

• both \wedge and \vee are associative and commutative;

- $a \lor (a \land b) = a$, and $a \land (a \lor b) = a$;
- 0 is the identity of \vee , and 1 is the identity of \wedge ;
- ∨ distributes over ∧ and vice versa;
- $a \vee \neg a = 1$, and $a \wedge \neg a = 0$.

For clarity and succinctness, we will occasionally use three other operations that can be defined using the original three¹:

$$a \to b = \neg a \lor b,$$

$$a \leftrightarrow b = (a \land b) \lor (\neg a \land \neg b),$$

$$a + b = (a \land \neg b) \lor (\neg a \land b).$$

We can also define a partial order \leq on \mathbf{B} as $a \leq b$ if $a = b \wedge a$ (or, equivalently, $a \vee b = b$) for all $a, b \in \mathbf{B}$. Furthermore, let a < b denote $a \leq b$ and $a \neq b$. For the rest of this paper, let \mathbf{B} refer to the BA $(\mathbf{B}, \wedge, \vee, \neg, 0, 1)$. For any $S \subseteq \mathbf{B}$, we write $\bigvee S$ for $\bigvee_{x \in S} x$ and call it the *supremum* of S. Similarly, $\bigwedge S = \bigwedge_{x \in S} x$ is the *infimum*. By convention, $\bigwedge \emptyset = 1$ and $\bigvee \emptyset = 0$. For any $a, b \in \mathbf{B}$, we say that a and b are *disjoint* if $a \wedge b = 0$.

Definition 2 ([10, 13]). An element $a \neq 0$ of **B** is an atom if, for all $x \in \mathbf{B}$, either $x \wedge a = a$ or $x \wedge a = 0$. Equivalently, $a \neq 0$ is an atom if there is no $x \in \mathbf{B}$ such that 0 < x < a. We say that **B** is atomic if for every $a \in \mathbf{B} \setminus \{0\}$, there is an atom x such that $x \leq a$.

Lemma 3 ([6]). For any two distinct atoms $a, b \in \mathbf{B}$, $a \wedge b = 0$.

Lemma 4 ([8]). The following are equivalent:

- B is atomic.
- For any $x \in \mathbf{B}$, $x = \bigvee_{atoms\ a \le x} a$.
- 1 is the supremum of all atoms.

Lemma 5 ([8]). All finite BAs are atomic.

Definition 6 ([5, 10]). A measure on **B** is a function $m: \mathbf{B} \to \mathbb{R}_{\geq 0}$ such that:

- m(0) = 0;
- $m(a \lor b) = m(a) + m(b)$ for all $a, b \in \mathbf{B}$ whenever $a \land b = 0$.

If m(1) = 1, we call m a probability measure. Also, if m(x) > 0 for all $x \neq 0$, then m is strictly positive.

Definition 7 ([8]). Let **A** and **B** be BAs. A (Boolean) homomorphism from **A** to **B** is a map $f: \mathbf{A} \to \mathbf{B}$ such that:

- $f(x \wedge y) = f(x) \wedge f(y)$,
- $f(x \lor y) = f(x) \lor f(y)$,
- $f(\neg x) = \neg f(x)$

for all $x, y \in \mathbf{A}$.

Lemma 8 (Homomorphisms preserve order [8]). Let $f: \mathbf{A} \to \mathbf{B}$ be a homomorphism between two BAs \mathbf{A} and \mathbf{B} . Then, for any $x, y \in \mathbf{A}$, if $x \leq y$, then $f(x) \leq f(y)$.

Lemma 9 ([16]). For any $a, b \in \mathbf{B}$, $a \le b$ if and only if $a \land \neg b = 0$.

Lemma 10 ([8]). Let $m: \mathbf{B} \to \mathbb{R}_{>0}$ be a measure. Then for all $a, b \in \mathbf{B}$, if $a \leq b$, then $m(a) \leq m(b)$.

¹We use + to denote symmetric difference because it is the additive operation of a Boolean ring.

3 WMC as a Measure

Definition 11. Let \mathcal{L} be a propositional (or first-order) logic, and let Δ be a theory in \mathcal{L} . We can define an equivalence relation on formulas in \mathcal{L} as

$$\alpha \sim \beta$$
 if and only if $\Delta \vdash \alpha \leftrightarrow \beta$

for all $\alpha, \beta \in \mathcal{L}$. Let $[\alpha]$ denote the equivalence class of $\alpha \in \mathcal{L}$ with respect to \sim . We can then let $B(\Delta) = \{ [\alpha] \mid \alpha \in \mathcal{L} \}$ and define the structure of a BA on $B(\Delta)$ as

$$[\alpha] \vee [\beta] = [\alpha \vee \beta],$$

$$[\alpha] \wedge [\beta] = [\alpha \wedge \beta],$$

$$\neg [\alpha] = [\neg \alpha],$$

$$1 = [\alpha \to \alpha],$$

$$0 = [\alpha \wedge \neg \alpha]$$

for all $\alpha, \beta \in \mathcal{L}$. Then $B(\Delta)$ is the *Lindenbaum-Tarski algebra* of Δ [11, 17].

Example 12. Let \mathcal{L} be a propositional logic with p and q as its only atoms. Then $L = \{p, q, \neg p, \neg q\}$ is its set of literals. Let $w : L \to \mathbb{R}_{\geq 0}$ be the weight function defined by

$$w(p) = 0.3,$$

 $w(\neg p) = 0.7,$
 $w(q) = 0.2,$
 $w(\neg q) = 0.8.$

Let Δ be a theory in \mathcal{L} with a sole axiom p. Then Δ has two models, i.e., $\{p,q\}$ and $\{p,\neg q\}$. The weighted model count (WMC) [3] of Δ is then

$$\sum_{\omega \models \Delta} \prod_{\omega \models l} w(l) = w(p)w(q) + w(p)w(\neg q) = 0.3.$$

The corresponding BA $B(\Delta)$ can then be constructed using Definition 11. Alternatively, one can first construct the free BA generated by the set $\{p,q\}$ and then take a quotient with respect to either the filter generated by p or the ideal² generated by $\neg p$.

Each element of $B(\mathcal{L})$ can also be seen as a subset of the set of all models of \mathcal{L} , with 0 representing \emptyset , 1 representing the set of all (four) models, each atom representing a single model, and each edge going upward representing a subset relation. Thus, the Boolean-algebraic way of calculating the WMC of Δ consists of:

- 1. Identifying an element $a \in B(\mathcal{L})$ that corresponds to Δ .
- 2. Finding all atoms of $B(\mathcal{L})$ that are 'dominated' by a according to the partial order.
- 3. Using w to calculate the weight of each such atom.
- 4. Adding the weights of these atoms.

This motivates the following definition of WMC generalised to BAs.

Definition 13. Let **B** be an atomic BA, and let $M \subset \mathbf{B}$ be its set of atoms. Let $L \subset \mathbf{B}$ be such that every atom $m \in M$ can be uniquely expressed as $m = \bigwedge L'$ for some $L' \subseteq L$, and let $w : L \to \mathbb{R}_{\geq 0}$ be arbitrary. The weighted model count $\mathrm{WMC}_w \colon \mathbf{B} \to \mathbb{R}_{\geq 0}$ is defined as

$$WMC_w(x) = \begin{cases} 0 & \text{if } x = 0\\ \prod_{l \in L'} w(l) & \text{if } M \ni x = \bigwedge L'\\ \sum_{\text{atoms } a \le x} WMC_w(a) & \text{otherwise} \end{cases}$$

²More details on these concepts can be found in many books on BAs [8, 11]

for any $x \in \mathbf{B}$. Furthermore, we define the normalised weighted model count $\mathrm{NWMC}_w \colon \mathbf{B} \to [0,1]$ as $\mathrm{NWMC}_w(x) = \frac{\mathrm{WMC}_w(x)}{\mathrm{WMC}_w(1)}$ for all $x \in \mathbf{B}$. For both WMC_w and NWMC_w , we will drop the subscript when doing so results in no potential confusion. Finally, we say that a measure $m \colon \mathbf{B} \to \mathbb{R}_{\geq 0}$ is a WMC measure (or is WMC-definable) if there exists a subset $L \subset \mathbf{B}$ and a weight function $w \colon L \to \mathbb{R}_{>0}$ such that $m = \mathrm{WMC}_w$.

Theorem 14. WMC is a measure, and NWMC is a probability measure.

Proof. First, note that WMC is non-negative and WMC(0) = 0 by definition. Next, let $x, y \in \mathbf{B}$ be such that $x \wedge y = 0$. We want to show that

$$WMC(x \lor y) = WMC(x) + WMC(y). \tag{1}$$

If, say, x = 0, then Eq. (1) becomes

$$WMC(y) = WMC(0) + WMC(y) = WMC(y)$$

(and likewise for y=0). Thus we can assume that $x \neq 0 \neq y$ and use Lemma 4 to write

$$x = \bigvee_{i \in I} x_i$$
 and $y = \bigvee_{j \in J} y_j$

for some sequences of atoms $(x_i)_{i\in I}$ and $(y_j)_{j\in J}$. If $x_{i'}=y_{j'}$ for some $i'\in I$ and $j'\in J$, then

$$x \wedge y = \bigvee_{i \in I} \bigvee_{j \in J} x_i \wedge y_j = x_{i'} \wedge y_{j'} \neq 0,$$

contradicting the assumption. This is enough to show that

$$WMC(x \vee y) = WMC\left(\left(\bigvee_{i \in I} x_i\right) \vee \left(\bigvee_{j \in J} y_j\right)\right) = \sum_{i \in I} WMC(x_i) + \sum_{j \in J} WMC(y_j)$$
$$= WMC(x) + WMC(y),$$

finishing the proof that WMC is a measure. This immediately shows that NWMC is a probability measure since, by definition, NWMC(1) = 1.

Given a theory Δ in a logic \mathcal{L} , the usual way of using WMC to compute the probability of a query q is [1, 15]

$$\Pr_{\Delta,w}(q) = \frac{\mathrm{WMC}_w(\Delta \wedge q)}{\mathrm{WMC}_w(\Delta)}.$$

In our algebraic formulation, this can be computed in two different ways:

- as $\frac{\mathrm{WMC}_w(\Delta \wedge q)}{\mathrm{WMC}_w(\Delta)}$ in $B(\mathcal{L})$,
- and as $\text{NWMC}_w([q])$ in $B(\Delta)$.

But how does the measure defined on $B(\mathcal{L})$ transfer to $B(\Delta)$?

4 What Measures Are WMC-Definable?

4.1 WMC Requires Independent Literals

Lemma 15. For any measure $m: \mathbf{B} \to \mathbb{R}_{\geq 0}$ and elements $a, b \in \mathbf{B}$,

$$m(a \wedge b) = m(a)m(b) \tag{2}$$

if and only if

$$m(a \wedge b) \cdot m(\neg a \wedge \neg b) = m(a \wedge \neg b) \cdot m(\neg a \wedge b). \tag{3}$$

Proof. First, note that $a = (a \wedge b) \vee (a \wedge \neg b)$ and $(a \wedge b) \wedge (a \wedge \neg b) = 0$, so, by properties of a measure,

$$m(a) = m(a \wedge b) + m(a \wedge \neg b). \tag{4}$$

Applying Eq. (4) and the equivalent expression for m(b) allows us to rewrite Eq. (2) as

$$m(a \wedge b) = [m(a \wedge b) + m(a \wedge \neg b)][m(a \wedge b) + m(\neg a \wedge b)]$$

which is equivalent to

$$m(a \wedge b)[1 - m(a \wedge b) - m(a \wedge \neg b) - m(\neg a \wedge b)] = m(a \wedge \neg b)m(\neg a \wedge b). \tag{5}$$

Since $a \wedge b$, $a \wedge \neg b$, $\neg a \wedge b$, $\neg a \wedge \neg b$ are pairwise disjoint and their supremum is 1,

$$m(a \wedge b) + m(a \wedge \neg b) + m(\neg a \wedge b) + m(\neg a \wedge \neg b) = 1,$$

and this allows us to rewrite Eq. (5) into Eq. (3). As all transformations are invertible, the two expressions are equivalent.

Theorem 16. Let **B** be a free BA on n generators $\{l_i\}_{i=1}^n$ (for some $n \in \mathbb{N}$) with measure $m : \mathbf{B} \to \mathbb{R}_{\geq 0}$, and let $L = \{l_i\}_{i=1}^n \cup \{\neg l_i\}_{i=1}^n$. Then there exists a weight function $w : L \to \mathbb{R}_{\geq 0}$ such that $m = \text{WMC}_w$ if and only if

$$m(l \wedge l') = m(l)m(l') \tag{6}$$

for all distinct $l, l' \in L$ such that $l \neq \neg l'$.

Remark. Note that if n = 1, then Eq. (6) is vacuously satisfied and so any valid measure can be expressed as WMC.

Proof. (\Leftarrow) Let $w: L \to \mathbb{R}_{>0}$ be defined by

$$w(l) = m(l) \tag{7}$$

for all $l \in L$. We are going to show that $WMC_w = m$. First, note that $WMC_w(0) = 0 = m(0)$ by the definitions of both WMC_w and m. Second, let

$$a = \bigwedge_{i=1}^{n} a_i \tag{8}$$

be an atom in **B** such that $a_i \in \{l_i, \neg l_i\}$ for all $i \in [n]$. Then

WMC(a) =
$$\prod_{i=1}^{n} w(a_i) = \prod_{i=1}^{n} m(a_i) = m\left(\bigwedge_{i=1}^{n} a_i\right) = m(a)$$

by Definition 13 and Eqs. (6) to (8). Finally, note that if WMC and m agree on all atoms, then they must also agree on all other non-zero elements of the Boolean algebra.

(\Rightarrow) For the other direction, we are given a weight function $w: L \to \mathbb{R}_{\geq 0}$ that induces a measure $m = \text{WMC}_w: \mathbf{B} \to \mathbb{R}_{\geq 0}$, and we want to show that Eq. (6) is satisfied. Let $k_i, k_j \in L$ be such that $k_i \in \{l_i, \neg l_i\}, k_j \in \{l_j, \neg l_j\}$, and $i \neq j$ for some $i, j \in [n]$. We then want to show that

$$m(k_i \wedge k_j) = m(k_i)m(k_j) \tag{9}$$

which is equivalent to

$$m(k_i \wedge k_j) \cdot m(\neg k_i \wedge \neg k_j) = m(k_i \wedge \neg k_j) \cdot m(\neg k_i \wedge k_j) \tag{10}$$

by Lemma 15. Then

$$\begin{aligned} \operatorname{WMC}(k_i \wedge k_j) &= \sum_{\text{atoms } a \leq k_i \wedge k_j} \operatorname{WMC}(a) = \sum_{\text{atoms } a \leq k_i \wedge k_j} \prod_{m \in [n]} w(a_m) \\ &= \sum_{\text{atoms } a \leq k_i \wedge k_j} w(a_i) w(a_j) \prod_{m \in [n] \setminus \{i,j\}} w(a_m) = \sum_{\text{atoms } a \leq k_i \wedge k_j} w(k_i) w(k_j) \prod_{m \in [n] \setminus \{i,j\}} w(a_m) \\ &= w(k_i) w(k_j) \sum_{\text{atoms } a \leq k_i \wedge k_j} \prod_{m \in [n] \setminus \{i,j\}} w(a_m) = w(k_i) w(k_j) C, \end{aligned}$$

where C denotes the part of WMC $(k_i \wedge k_j)$ that will be the same for WMC $(\neg k_i \wedge k_j)$, WMC $(k_i \wedge \neg k_j)$, and WMC $(\neg k_i \wedge \neg k_j)$ as well. But then Eq. (10) becomes

$$w(k_i)w(k_i)w(\neg k_i)w(\neg k_i)C^2 = w(k_i)w(\neg k_i)w(\neg k_i)w(k_i)C^2$$

which is trivially true.

4.2 Extending the Algebra

A well-known way to overcome this limitation of independence is by adding more literals [3], i.e., extending the set L covered by the WMC weight function $w: L \to \mathbb{R}_{\geq 0}$. Let us translate this idea to the language of Boolean algebras.

Theorem 17. Let **B** be a finite Boolean algebra freely generated by some set of 'literals' L, and let $m: \mathbf{B} \to \mathbb{R}_{\geq 0}$ be an arbitrary measure. We know that **B** has $n = 2^{|L|}$ atoms. Let $(a_i)_{i=1}^n$ denote those atoms in some arbitrary order. Let $L' = L \cup \{\phi_i \mid i \in [n]\} \cup \{\neg \phi_i \mid i \in [n]\}$ be the set L extended with 2n new literals. Let **B**' be the unique Boolean algebra with

$$\{\phi_i \land a_i \mid i \in [n]\} \cup \{\neg \phi_i \land a_i \mid i \in [n]\}$$

as its set of atoms. Let $\iota \colon \mathbf{B} \to \mathbf{B}'$ be the inclusion homomorphism (i.e., $\iota(a) = a$ for all $a \in \mathbf{B}$). Let $w \colon L' \to \mathbb{R}_{\geq 0}$ be defined by

$$w(l) = \begin{cases} \frac{m(a_i)}{2} & \text{if } l = \phi_i \text{ or } l = \neg \phi_i \text{ for some } i \in [n] \\ 1 & \text{otherwise} \end{cases}$$

for all $l \in L'$, and note that this defines a WMC measure $m' : \mathbf{B}' \to \mathbb{R}_{\geq 0}$. Then

$$m(a) = (m' \circ \iota)(a)$$

for all $a \in \mathbf{B}$.

In simpler terms, any measure can be computed using WMC by extending the BA with more literals. More precisely, we are given the red part in

and construct the black part in such a way that the triangle commutes.

Proof. Since **B** is freely generated by L, each atom $a_i \in \mathbf{B}$ is an infimum of elements in L, i.e.,

$$a_i = \bigwedge_{j \in J} a_{i,j}$$

for some $\{a_{i,j}\}_{j\in J}\subset L$. Moreover, each atom $b\in \mathbf{B}'$ can be represented as either $b=\phi_i\wedge a_i$ or $b=\neg\phi_i\wedge a_i$ for some atom $a_i\in \mathbf{B}$, also making it an infimum over a subset of L'. Then, for any $b\in \mathbf{B}$,

$$(m' \circ \iota)(b) = \sum_{\substack{\text{atoms } a_i \in \mathbf{B}: \\ \phi_i \wedge a_i \le \iota(b)}} (w(\phi_i) + w(\neg \phi_i)) \prod_{j \in J} w(a_{i,j}),$$

recognising that, for any $\iota(b)$, any atom $a_i \in \mathbf{B}$ satisfies $\phi_i \wedge a_i \leq \iota(b)$ if and only if it satisfies $\neg \phi_i \wedge a_i \leq \iota(b)$. Then, according to the definition of w,

$$(m' \circ \iota)(b) = \sum_{\substack{\text{atoms } a_i \in \mathbf{B}:\\ \phi_i \land a_i \le \iota(b)}} (w(\phi_i) + w(\neg \phi_i)) = \sum_{\substack{\text{atoms } a_i \in \mathbf{B}:\\ \phi_i \land a_i \le \iota(b)}} m(a_i) = m(b),$$

provided that

$$\phi_i \wedge a_i \leq \iota(b)$$
 if and only if $a_i \leq b$,

but this is equivalent to

$$\phi_i \wedge a_i = \phi_i \wedge a_i \wedge b$$
 if and only if $a_i = a_i \wedge b$

which is true because $\phi_i \notin L$.

Now we can show that the construction in Theorem 17 is smallest possible.

Conjecture 18. Let **B** and **B**' be Boolean algebras, and $\iota \colon \mathbf{B} \hookrightarrow \mathbf{B}'$ be the inclusion map such that **B** is freely generated by L, all atoms of **B**' can be expressed as meets of elements of L', and the following subset relations are satisfied:

$$\mathbf{B} \stackrel{\iota}{\longleftrightarrow} \mathbf{B}'$$

$$\cup \qquad \qquad \cup$$

$$L \quad \subset \quad L'$$

If, for any measure $m: \mathbf{B} \to \mathbb{R}_{\geq 0}$, one can construct a weight function $w: L' \to \mathbb{R}_{\geq 0}$ such that the WMC measure WMC: $\mathbf{B}' \to \mathbb{R}_{> 0}$ with respect to w satisfies

$$m = \text{WMC} \circ \iota$$

then $|L' \setminus L| \geq 2^{|L|+1}$.

Let us note how our lower bound on the number of added literals compares to two methods of translating a discrete probability distribution into a WMC problem over a propositional knowledge base proposed by Darwiche [4] and Sang et al. [15]. Suppose we have a discrete probability distribution with n variables, and the ith variable has v_i values, for each $i \in [n]$. Interpreted as a logical system, it has $\prod_{i=1}^{n} v_i$ models. My expansion would then use

$$\sum_{i=1}^{n} v_i + 2 \prod_{i=1}^{n} v_i$$

variables, i.e., a variable for each possible variable-value assignment, and two additional variables for each model. Without making any independence assumptions, the encoding by Darwiche [4] would use

$$\sum_{i=1}^{n} v_i + \sum_{i=1}^{n} \prod_{j=1}^{i} v_j$$

variables, while for the encoding by Sang et al. [15],

$$\sum_{i=1}^{n} v_i + \sum_{i=1}^{n} (v_i - 1) \prod_{j=1}^{i-1} v_j$$

variables would suffice.

5 Representing Independence and Conditional Independence

5.1 Independence (all known results)

Definition 19. Given a BA \mathbf{A} , a *subalgebra* is a subset $\mathbf{B} \subseteq \mathbf{A}$ that, together with the operations, zero, and one of \mathbf{A} , is a BA.

Definition 20 ([8]). Let **A**, **B**, and **C** be BAs such that **B** is a subalgebra of **A**. Let $f: \mathbf{A} \to \mathbf{C}$ and $g: \mathbf{B} \to \mathbf{C}$ be homomorphisms. Then f is an extension of g if f(x) = g(x) for all $x \in \mathbf{B}$. If f is an extension of each member of a family $\{g_i\}_{i \in I}$ of homomorphisms, then f is called a *common extension* of $\{g_i\}_{i \in I}$.

Definition 21 ([8]). Let $\{\mathbf{A}_i\}_{i\in I}$ be a family of subalgebras of a BA **A**. If for any BA **B** with a family of homomorphisms $\{f_i \colon \mathbf{A}_i \to \mathbf{B}\}_{i\in I}$ there exists a unique common extension of $\{f_i \colon \mathbf{A}_i \to \mathbf{B}\}_{i\in I}$ ($f \colon \mathbf{A} \to \mathbf{B}$ in the diagram),

then **A** is the *internal sum*³ of $\{\mathbf{A}_i\}_{i\in I}$. We will denote it as $\bigoplus_{i\in I} \mathbf{A}_i$.

Proposition 22 ([16]). Let **A** be the internal sum of a family of BAs $\{\mathbf{A}_i\}_{i\in I}$, and let $\{m_i : \mathbf{A}_i \to \mathbb{R}_{\geq 0}\}_{i\in I}$ be a family of measures. Then there exists a unique measure $m : \mathbf{A} \to \mathbb{R}_{\geq 0}$ such that, for any finite subset $J \subseteq I$ and family of elements $\{x_j \in \mathbf{A}_j\}_{j\in J}$,

$$m\left(\bigwedge_{j\in J} x_j\right) = \prod_{j\in J} m_j(x_j).$$

5.2 Conditional Independence

Definition 23 ([11]). Let **A** be a BA. Let **B** be a subalgebra of **A**, and let $\{\mathbf{A}_i\}_{i\in I}$ be a family of subalgebras of **A** such that $\mathbf{A}_i \cap \mathbf{A}_j = \mathbf{B}$ for all $i \neq j$ in I. Let $\{\iota_i \colon \mathbf{B} \to \mathbf{A}_i\}$ be a family of inclusion homomorphisms. Then **A** is the *amalgamated free product*⁴ of $\{\mathbf{A}_i\}_{i\in I}$ over **B** if, for any Boolean algebra **C** with a family of homomorphisms $\{f_i \colon \mathbf{A}_i \to \mathbf{C}\}_{i\in I}$ such that $f_i \circ \iota_i = f_j \circ \iota_j$ for all $i, j \in I$, there is a unique homomorphism $f \colon \mathbf{A} \to \mathbf{C}$ such that the triangle in

$$\mathbf{B} \xrightarrow{\iota_i} \mathbf{A}_i \longleftrightarrow \mathbf{A}$$

$$f_i \downarrow \qquad f$$

$$\mathbf{C}$$

commutes for all $i \in I$. We will denote this product as

$$\mathbf{A} = \bigoplus_{\substack{\mathbf{B} \\ i \in I}} \mathbf{A}_i.$$

³A slightly more general version of this definition is also known as the free product, the Boolean product, and the coproduct in the category of BAs [8, 11, 16].

⁴Also known as a (wide) pushout in the category of BAs.

5.2.1 New Results

Theorem 24. Let $\{\mathbf{A}_i\}_{i\in I}$ be a family of BAs with measures $\{m_i\colon \mathbf{A}_i\to\mathbb{R}_{\geq 0}\}_{i\in I}$, let \mathbf{B} be a BA, and let \mathbf{A} be the amalgamated free product of $\{\mathbf{A}_i\}_{i\in I}$ over \mathbf{B} . Then there is a unique measure $m\colon \mathbf{A}\to\mathbb{R}_{\geq 0}$ such that, for any element $b\in \mathbf{B}$, finite subset $J\subseteq I$, and elements $\{a_i\in \mathbf{A}_j\}_{j\in J}$,

$$m\left(b \wedge \bigwedge_{j \in J} a_j\right) = \prod_{j \in J} m_j (b \wedge a_j).$$

Theorem 25. The number of weights needed to encode a Bayesian network using coproducts and pushouts is equal to the number of entries in the tables of the network (and the resulting theory is shorter).

Theorem 26 (Pushouts of free BAs are free). Let

$$\mathbf{A} = igoplus_{i \in I}^{\mathbf{B}} \mathbf{A}_i$$

be an amalgamated free product such that $\{A_i\}_{i\in I}$ are free BAs with $\{S_i\}_{i\in I}$ as their respective sets of generators. Let $S = \bigcup_{i\in I} S_i$. Then **A** is a free BA with generating set S.

Proof. Suppose we have a map from S to an arbitrary BA \mathbb{C} , as in

We want to show that there exists a unique homomorphism $\mathbf{A} \to \mathbf{C}$. For all $i \in I$, from $S_i \hookrightarrow S$ and $S \to \mathbf{C}$ we get a map $S_i \to \mathbf{C}$, so—by the definition of a free BA—there is a unique homomorphism $\mathbf{A}_i \to \mathbf{C}$. Furthermore, a family of homomorphisms $\{\mathbf{A}_i \to \mathbf{C}\}_{i \in I}$ uniquely determine a homomorphism $\mathbf{A} \to \mathbf{C}$ by the universal mapping property of a (wide) pushout. Thus \mathbf{A} is a free BA with generating set S.

Corollary 27. Similarly, coproducts of free BAs are free.

References

- [1] Vaishak Belle. Weighted model counting with function symbols. In Gal Elidan, Kristian Kersting, and Alexander T. Ihler, editors, *Proceedings of the Thirty-Third Conference on Uncertainty in Artificial Intelligence, UAI 2017, Sydney, Australia, August 11-15, 2017.* AUAI Press, 2017.
- [2] Elena Castiñeira, Susana Cubillo, and Enric Trillas. On possibility and probability measures in finite Boolean algebras. Soft Comput., 7(2):89–96, 2002.
- [3] Mark Chavira and Adnan Darwiche. On probabilistic inference by weighted model counting. *Artif. Intell.*, 172(6-7):772–799, 2008.
- [4] Adnan Darwiche. A logical approach to factoring belief networks. In Dieter Fensel, Fausto Giunchiglia, Deborah L. McGuinness, and Mary-Anne Williams, editors, *Proceedings of the Eights International Conference on Principles and Knowledge Representation and Reasoning (KR-02), Toulouse, France, April 22-25, 2002*, pages 409–420. Morgan Kaufmann, 2002.

- [5] Haim Gaifman. Concerning measures on Boolean algebras. *Pacific Journal of Mathematics*, 14(1):61–73, 1964.
- [6] M. Ganesh. Introduction to fuzzy sets and fuzzy logic. PHI Learning Pvt. Ltd., 2006.
- [7] Scott Garrabrant, Tsvi Benson-Tilsen, Andrew Critch, Nate Soares, and Jessica Taylor. Logical induction. *Electronic Colloquium on Computational Complexity (ECCC)*, 23:154, 2016.
- [8] Steven Givant and Paul R. Halmos. *Introduction to Boolean algebras*. Springer Science & Business Media, 2008.
- [9] Theodore Hailperin. Probability logic. Notre Dame Journal of Formal Logic, 25(3):198-212, 1984.
- [10] Thomas Jech. Set theory, Second Edition. Perspectives in Mathematical Logic. Springer, 1997.
- [11] Sabine Koppelberg, Robert Bonnet, and James Donald Monk. *Handbook of Boolean algebras*, volume 384. North-Holland Amsterdam, 1989.
- [12] Peter H. Krauss. Representation of conditional probability measures on Boolean algebras. *Acta Mathematica Hungarica*, 19(3-4):229–241, 1968.
- [13] Ken Levasseur and Al Doerr. Applied Discrete Structures. Lulu.com, 2012.
- [14] Nils J. Nilsson. Probabilistic logic. Artif. Intell., 28(1):71–87, 1986.
- [15] Tian Sang, Paul Beame, and Henry A. Kautz. Performing Bayesian inference by weighted model counting. In Manuela M. Veloso and Subbarao Kambhampati, editors, Proceedings, The Twentieth National Conference on Artificial Intelligence and the Seventeenth Innovative Applications of Artificial Intelligence Conference, July 9-13, 2005, Pittsburgh, Pennsylvania, USA, pages 475–482. AAAI Press / The MIT Press, 2005.
- [16] Roman Sikorski. Boolean algebras. Springer, third edition, 1969.
- [17] Alfred Tarski. Logic, semantics, metamathematics: papers from 1923 to 1938. Hackett Publishing, 1983.