min
$$f(x)$$
 $x \in \mathbb{R}^d$
 $f(x) \leq 0$
 $f(x) \leq 0$
 $f(x) \leq 0$
 $f(x) \leq 0$
 $f(x) = 1...m$
 $f(x) = 0$
 $f(x) = 0$

Лагранжиан

Функция Лагранжа/Лагранжиан для этой задачи строится следующим образом:

$$L(x,\lambda,\nu) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \nu^T (Ax - b),$$

где $\lambda_i \geq 0$ для $i=1,\ldots,m$, а $\nu \in \mathbb{R}^n$. λ_i можно записать в виде векторов λ соответствующей размерности.

$$g(\lambda, J) = \inf_{x \in \mathbb{R}^d} L(x, \lambda, J)$$

$$NB: g(\lambda, J) \leq f(x^*) \quad \forall \lambda \geq 0 \quad J \in \mathbb{R}^n$$

Условие Слейтера

Будем говорить, что для задачи с ограничениями выполняется условие Слейтера, если существует $x \in \mathbb{R}^d$, такой что

$$f_i(x) < 0, i = 1, ..., m$$
 u $Ax = b$.

Теорема Слейтера

Если в задаче с ограничениями все функции являются выпуклыми и выполняется условие Слейтера, то тогда при построении двойственной задачи выполняется свойство сильной двойственности, а именно

$$\sup_{\lambda\succeq 0,
u\in\mathbb{R}^n} g(\lambda,
u) = f(x^*).$$

Седловая точка

Точка $(x^*,\lambda^*,\nu^*)\in\mathbb{R}^d\times\mathbb{R}^m_+\times\mathbb{R}^n$ называется седловой для функции $L(x,\lambda,\nu)$, если для любых $(x,\lambda,\nu)\in\mathbb{R}^d\times\mathbb{R}^m_+\times\mathbb{R}^n$ выполнено

$$L(x, \lambda^*, \nu^*) \ge L(x^*, \lambda^*, \nu^*) \ge L(x^*, \lambda, \nu).$$

Теорема о седловой точке Куна-Таккера

Для задачи выпуклой оптимизации с выпуклыми ограничениями с выполненными условием Слейтера следующие утверждения эквиваленты:

- ullet для x^* существует $\lambda^* \succeq 0$ и $u^* \in \mathbb{R}^n$ такие, что $(x^*, \lambda^*,
 u^*)$ седловая точка функции Лагранжа,
- x^* глобальное решение задачи оптимизации с ограничениями.

1) => (x, x, J) - c.m, mign x - pememo uex. zugwen a) X*- ygols. oyumv. on moundroso: $\exists i : \exists i(x^*) > 0$ $\sup L(x^*, \lambda, J) = + \kappa^*$ > 20. JEIPh $S_0(x^*) + \lambda_i S_i(x^*) + \sum_{i \neq j} f_{ij} min. og.$ $L(x^*, \lambda^*, J^*) \ge L(x^*, \lambda, J)$ $\forall \lambda \ge 0$ $\forall J \in \mathbb{R}^n$ = (2); hyermberence Jum X - yell open. S. S.(X*) ? So(X) Hxygoli. ogen $-L(x^*, \lambda, J) = -f_0(x^*) + \sum_i \lambda_i f_i(x^*) + (Ax^*)$ $L(x^*, \lambda^*, J^*) \ge L(x^*, \lambda, J)$ cognoles more $S_0(x^*) = \sup_{x \in \mathcal{X}} L(x^*, \lambda, J) = L(x^*, \lambda^*, J^*)$

 $\mathcal{L}(x_{\mathbf{a}}) = \mathcal{L}(x_{\mathbf{a}}, y_{\mathbf{a}}, y_{\mathbf{a}})$

Bernand: JX gro nex X: X = supL & women Some numerze se la Spene Fere you: some (x, λ^*) : $L(x,\lambda^*) \geq L(x^*,\lambda^*) \geq L(x^*,\lambda)$ uporg I uporg II
to bornegro selonogro
weedness ong. X* Binen in major bodoja: 1) I larger X I unger genonbjen in f L(X, X) moza van paerymseen myor II upu doe beroge: $\sup_{\lambda} \inf_{x} L(x,\lambda) \leq \inf_{x} \sup_{\lambda} L(x,\lambda)$ $\inf_{x} L(x, \lambda) \leq L(x, \lambda) \Rightarrow \sup_{x} \inf_{x} L(x, \lambda) \leq \sup_{x} L(x, \lambda)$ supinf u int sup dogener a numer c.m.

Теорема о седловой точке

Множество седловых точек функции $L: \mathcal{X} \times \Lambda \to \mathbb{R}$ непустое тогда и только тогда, когда обе задачи $\sup_{\lambda} \inf_{x} L(x,\lambda)$ и $\inf_{x} \sup_{\lambda} L(x,\lambda)$ имеют решение и эти решения совпадают.

(x, h) - hence (=) inf sup L(x, h), sup inf L(x, h)

Теорема Сиона-Какутани

Пусть \mathcal{X} , Λ выпуклые компактные множества, пусть также $L: \mathcal{X} \times \Lambda \to \mathbb{R}$ непрерывна, выпукла по x (для любого фиксированного x) и вогнута по x (для любого фиксированного x). Тогда x имеет седловые точки на x x x x

Теорема Сиона-Какутани

Пусть \mathcal{X} , Λ выпуклые множества, и \mathcal{X} или Λ дополнительно компактно, пусть также $L: \mathcal{X} \times \Lambda \to \mathbb{R}$ непрерывна, выпукла по x (для любого фиксированного x) и вогнута по x (для любого фиксированного x). Тогда (гарантий существования тут нет)

$$\sup_{\lambda \in \Lambda} \inf_{x \in \mathcal{X}} L(x, \lambda) = \inf_{x \in \mathcal{X}} \sup_{\lambda \in \Lambda} L(x, \lambda)$$

inf sup un supinf L(x, \lambda, \lambda), moza rangem c.m. L(x, \lambda, \lambda)

x \lambda, \lambda \times penerul \times ueroza paguru

min max um max min

x \lambda, \lambda \times \times \times \lambda, \lambda \times \ti

min, max L(x, X) xell Xell

Thornes ngls: yay. cmyek => yay. cmyeka - wogoena $x^{lm} = x^{lc} - x \nabla_x \angle (x^k, \lambda^k) \leftarrow cmyek$ $x^{lm} = x^{lc} - x \nabla_x \angle (x^k, \lambda^k) \leftarrow cmyek$ $x^{lm} = x^{lc} - x \nabla_x \angle (x^k, \lambda^k) \leftarrow cmyek$ $x^{lm} = x^{lc} - x \nabla_x \angle (x^k, \lambda^k) \leftarrow cmyek$ $x^{lm} = x^{lc} - x \nabla_x \angle (x^k, \lambda^k) \leftarrow cmyek$ $x^{lm} = x^{lc} - x \nabla_x \angle (x^k, \lambda^k) \leftarrow cmyek$ $x^{lm} = x^{lc} - x \nabla_x \angle (x^k, \lambda^k) \leftarrow cmyek$ $x^{lm} = x^{lc} - x \nabla_x \angle (x^k, \lambda^k) \leftarrow cmyek$ $x^{lm} = x^{lc} - x \nabla_x \angle (x^k, \lambda^k) \leftarrow cmyek$ $x^{lm} = x^{lc} - x \nabla_x \angle (x^k, \lambda^k) \leftarrow cmyek$ $x^{lm} = x^{lc} - x \nabla_x \angle (x^k, \lambda^k) \leftarrow cmyek$ $x^{lm} = x^{lc} - x \nabla_x \angle (x^k, \lambda^k) \leftarrow cmyek$ $x^{lm} = x^{lc} - x \nabla_x \angle (x^k, \lambda^k) \leftarrow cmyek$ $x^{lm} = x^{lc} - x \nabla_x \angle (x^k, \lambda^k) \leftarrow cmyek$ $x^{lm} = x^{lc} - x \nabla_x \angle (x^k, \lambda^k) \leftarrow cmyek$ $x^{lm} = x^{lc} - x \nabla_x \angle (x^k, \lambda^k) \leftarrow cmyek$ $x^{lm} = x^{lc} - x \nabla_x \angle (x^k, \lambda^k) \leftarrow cmyek$ $x^{lm} = x^{lc} - x \nabla_x \angle (x^k, \lambda^k) \leftarrow cmyek$ $x^{lm} = x^{lc} - x \nabla_x \angle (x^k, \lambda^k) \leftarrow cmyek$ $x^{lm} = x^{lc} - x \nabla_x \angle (x^k, \lambda^k) \leftarrow cmyek$ $x^{lm} = x^{lc} - x \nabla_x \angle (x^k, \lambda^k) \leftarrow cmyek$ $x^{lm} = x^{lc} - x \nabla_x \angle (x^k, \lambda^k) \leftarrow cmyek$ $x^{lm} = x^{lc} - x \nabla_x \angle (x^k, \lambda^k) \leftarrow cmyek$ $x^{lm} = x^{lc} - x \nabla_x \angle (x^k, \lambda^k) \leftarrow cmyek$ $x^{lm} = x^{lc} - x \nabla_x \angle (x^k, \lambda^k) \leftarrow cmyek$ $x^{lm} = x^{lc} - x \nabla_x \angle (x^k, \lambda^k) \leftarrow cmyek$ $x^{lm} = x^{lc} - x \nabla_x \angle (x^k, \lambda^k) \leftarrow cmyek$ $x^{lm} = x^{lc} - x \nabla_x \angle (x^k, \lambda^k) \leftarrow cmyek$ $x^{lm} = x^{lc} - x \nabla_x \angle (x^k, \lambda^k) \leftarrow cmyek$ $x^{lm} = x^{lc} - x \nabla_x \angle (x^k, \lambda^k) \leftarrow cmyek$ $x^{lm} = x^{lc} - x \nabla_x \angle (x^k, \lambda^k) \leftarrow cmyek$ $x^{lm} = x^{lc} - x \nabla_x \angle (x^k, \lambda^k) \leftarrow cmyek$ $x^{lm} = x^{lm} = x^{lm} = x^{lm}$ $x^{lm} = x^{lm$

$$(x^{\circ}, \lambda^{\circ}) = (1, 1)$$

$$(x^{\circ}, \lambda^{\circ}) =$$

Алгоритм 2 Экстраградиентный метод

Вход: размер шага $\gamma>0$, стартовая точка $x^0\in\mathbb{R}^d$, количество итераций K

1: **for**
$$k = 0, 1, ..., K - 1$$
 do

2:
$$x^{k+1/2} = x^k - \gamma \nabla_x L(x^k, \lambda^k)$$

3:
$$\lambda^{k+1/2} = \lambda^k + \gamma \nabla_{\lambda} L(x^k, \lambda^k)$$

3:
$$\lambda^{k+1/2} = \lambda^k + \gamma \nabla_{\lambda} L(x^k, \lambda^k)$$
4:
$$x^{k+1} = x^k - \gamma \nabla_{x} L(x^{k+1/2}, \lambda^{k+1/2})$$

5:
$$\lambda^{k+1} = \lambda^k + \gamma \nabla_{\lambda} L(x^{k+1/2}, \lambda^{k+1/2})$$

6: end for

Выход: $\frac{1}{K} \sum_{k=0}^{K-1} x^{k+1/2}, \frac{1}{K} \sum_{k=0}^{K-1} \lambda^{k+1/2}$

1) nowell the necessary
$$x = x^{k+1} = x^k - y \cdot \xi(x^{k+1})$$

where we have the show the series $x = y \cdot x \cdot \xi(x) + \frac{1}{2} \|x - x^k\|_2^2$

Herbino the series $x = y \cdot x \cdot \xi(x) + \frac{1}{2} \|x - x^k\|_2^2$

Hore. Herbino the series $x = y \cdot x \cdot \xi(x) + \frac{1}{2} \|x - x^k\|_2^2$

Hore. Herbino the series $x = y \cdot x \cdot \xi(x) + \frac{1}{2} \|x - x^k\|_2^2$

Hore. Herbino the series $x = y \cdot x \cdot \xi(x) + \frac{1}{2} \|x - x^k\|_2^2$

The series $x = y \cdot x \cdot \xi(x) + \frac{1}{2} \|x - x^k\|_2^2$

The series $x = y \cdot x \cdot \xi(x) + \frac{1}{2} \|x - x^k\|_2^2$

The series $x = y \cdot x \cdot \xi(x) + \frac{1}{2} \|x - x^k\|_2^2$

The series $x = y \cdot x \cdot \xi(x) + \frac{1}{2} \|x - x^k\|_2^2$

The series $x = y \cdot \xi(x) + \frac{1}{2} \|x - x^k\|_2^2$

The series $x = y \cdot \xi(x) + \frac{1}{2} \|x - x^k\|_2^2$

The series $x = y \cdot \xi(x) + \frac{1}{2} \|x - x^k\|_2^2$

The series $x = y \cdot \xi(x) + \frac{1}{2} \|x - x^k\|_2^2$

The series $x = y \cdot \xi(x) + \frac{1}{2} \|x - x^k\|_2^2$

The series $x = y \cdot \xi(x) + \frac{1}{2} \|x - x^k\|_2^2$

The series $x = y \cdot \xi(x) + \frac{1}{2} \|x - x^k\|_2^2$

The series $x = y \cdot \xi(x) + \frac{1}{2} \|x - x^k\|_2^2$

The series $x = y \cdot \xi(x) + \frac{1}{2} \|x - x^k\|_2^2$

The series $x = y \cdot \xi(x) + \frac{1}{2} \|x - x^k\|_2^2$

The series $x = y \cdot \xi(x) + \frac{1}{2} \|x - x^k\|_2^2$

The series $x = y \cdot \xi(x) + \frac{1}{2} \|x - x^k\|_2^2$

The series $x = y \cdot \xi(x) + \frac{1}{2} \|x - x^k\|_2^2$

The series $x = y \cdot \xi(x) + \frac{1}{2} \|x - x^k\|_2^2$

The series $x = y \cdot \xi(x) + \frac{1}{2} \|x - x^k\|_2^2$

The series $x = y \cdot \xi(x) + \frac{1}{2} \|x - x^k\|_2^2$

The series $x = y \cdot \xi(x) + \frac{1}{2} \|x - x^k\|_2^2$

The series $x = y \cdot \xi(x) + \frac{1}{2} \|x - x^k\|_2^2$

The series $x = y \cdot \xi(x) + \frac{1}{2} \|x - x^k\|_2^2$

The series $x = y \cdot \xi(x) + \frac{1}{2} \|x - x^k\|_2^2$

The series $x = y \cdot \xi(x) + \frac{1}{2} \|x - x^k\|_2^2$

The series $x = y \cdot \xi(x) + \frac{1}{2} \|x - x^k\|_2^2$

The series $x = y \cdot \xi(x) + \frac{1}{2} \|x - x^k\|_2^2$

Теорема о сходимости экстраградиентного метода

Пусть дана непрерывно дифференцируемая по обеим группам переменным выпуклая-вогнутая L-гладкая функция $L: \mathbb{R}^d \times \mathbb{R}^n \to \mathbb{R}$, тогда для экстраградиентного метода справедлива следующая оценка сходимости для любого $u \in \mathbb{R}^d \times \mathbb{R}^n$ и для любого $\gamma \leq \frac{1}{I}$:

$$\left(L\left(\frac{1}{K}\sum_{k=0}^{K-1} x^{k+1/2}, u_{\lambda}\right) - L\left(u_{x}, \frac{1}{K}\sum_{k=0}^{K-1} \lambda^{k+1/2}\right)\right) \leq \frac{\|z^{0} - u\|_{2}^{2}}{2\gamma K}$$

• Thorenze the
$$u_{\lambda} = \chi^*$$
 $u_{x} = \chi^*$

min max $L(x,\lambda) = \chi \lambda$ $\chi^* = 0$
 $\chi \lambda \lambda \lambda \lambda = 0$
 $L(\chi^*,\lambda) = 0$
 $L(\chi^*,\lambda) = 0$
 $L(\chi^*,\lambda) = 0$

• Une wygen

$$\max_{\lambda} L(x,\lambda) - \min_{\lambda} L(x,\lambda^k)$$