SIN 393 – Introduction to Computer Vision (2023)

Lecture 01 – Classifying images

Prof. João Fernando Mari

<u>joaofmari.github.io</u>

joaof.mari@ufv.br

Agenda

- Digital images
 - Colored images RGB
- A classification problem
 - The nearest neighbor method
 - K-nearest neighbors K-NN
- Classification pipelines
- Learning models
- Cross-validation
- Classification evaluation

M rows N columns M × N pixels

M rows N columns M × N pixels

Intensity image (gray levels):

Colored image (RGB):

Intensity image (gray levels):

60	89	117	140
127	147	160	168
192	198	193	186
209	210	204	197

Colored image (RGB):

78	92	75	51
56 36			
118	149	80	
108	133	58	
91	124	33	
211	176	81	
202	161	57	
200	158	17	
231	174	83	
218	155	57	
214	150	21	11

Colored images – RGB

vermelho – R (red)

verde – G (green)

azul – B (blue)

Colored images – RGB

red – R (red)

Colored images – RGB

A CLASSIFICATION PROBLEM

- Learning to classify three types (classes) of leaves from images.
- Flavia leaf dataset:
 - http://flavia.sourceforge.net/
 - 1,907 images
 - 33 classes
- We selected 3 classes:
 - aesculus chinensis
 - acer palmatum
 - cercis chinensis

- Feature extraction:
 - Select features from the images that can be used to distinguish between the classes.
- Features can be:
 - Shapes
 - Colors
 - Textures
 - Histogram of gradients (HoG)
 - Bag of Visual Words
 - Fisher Vectors
 - **–** ..

acer palmatum

Some feature shapes:

aesculus chinensis

- **Area:** the number of pixels of the shape scaled by pixel-area.
- **Axis:** the length of the major and minor axis of the ellipse with the same normalized second central moments as the region.
- **Roundness:** a function of the perimeter and the area of the region

$$- roundness = \frac{4 \times \pi \times area}{perimeter^2}$$

Eccentricity: the ratio of the focal distance over the major axis length of the ellipse with the same second-moments.

- **Solidity:** the ratio of pixels in the region to pixels of the convex hull image.
 - **Convex hull:** the smallest convex polygon that encloses the region.

https://scikit-image.org/docs/stable/api/skimage.measure.html#skimage.measure.regionprops

The nearest neighbor method

K-nearest neighbors – K-NN

Learning to classify three types (classes) of leaves from images.

k = 1

K-nearest neighbors – K-NN

Learning to classify three types (classes) of leaves from images.

k = 3

K-nearest neighbors – K-NN

Learning to classify three types (classes) of leaves from images.

k = 3

Linear functions (Perceptrons)

Linear functions (Perceptrons)

Linear functions (Perceptrons)

CLASSIFICATION PIPELINES

Classification pipelines

Yann LeCun's Deep Learning Course at CDS - SPRING 2021

LEARNING MODELS

Learning models

- Supervised learning
- Unsupervized learning
- Reinforcement learning
- Semi-supervised learning
- Self-supervised learning

Input

MODEL

Label

Label

0: acer palmatum

1: aesculus chinensis

MODEL

0 Label

0: acer palmatum
1: aesculus chinensis

2: cercis chinensis

0 Label

0: acer palmatum1: aesculus chinen

1: aesculus chinensis

2: cercis chinensis

aesculus chinensis
 cercis chinensis

0: acer palmatum

1: aesculus chinensis

0

MODEL

Output

Error

Label

0: acer palmatum 1: aesculus chinensis

2

MODEL

Output

Error

Label

0: acer palmatum 1: aesculus chinensis

0: acer palmatum 1: aesculus chinensis

0: acer palmatum

1: aesculus chinensis

MODEL

Output

Error

0 Label

0: acer palmatum
1: aesculus chinensis

0 Label

0: acer palmatum1: aesculus chinensis

aesculus chinensis
 cercis chinensis

1: aesculus chinensis 2: cercis chinensis

0: acer palmatum

1: aesculus chinensis

Unsupervized learning

Unsupervized learning

Unsupervized learning

CROSS-VALIDATION

Overfiting

Overfiting

Overfiting

Hold-out cross-validation

Hold-out cross-validation

Hold-out cross-validation

Dataset

Image	excentricidade	área	classe
0	0,1	250	0
1	0,6	450	2
2	0,3	350	0
3	0,2	550	1
4	0,5	800	1
5	0,2	100	0
6	0,7	200	2
7	0,7	750	1
8	0,4	400	0
9	0,8	150	2
10	0,9	300	2
11	0,8	700	1
12	0,4	150	
13	0,4	300	
14	0,2	200	
15	0,7	250	

Shuffled dataset

shuffle

Image	excentricidade	área	classe
13	0,5	300	0
11	0,8	700	1
8	0,4	400	0
9	0,8	150	2
2	0,3	350	0
15	0,7	250	2
4	0.5	800	1
7	0,7	750	1
10	0,9	300	2
12	0,4	150	0
3	0,6	550	1
6	0,6	200	2
0	0,4	700	1
1	0,8	400	2
5	0,3	100	0
14	0,2	200	0

Train

Image	excentricidade	área	classe
13	0,5	300	0
11	0,8	700	1
8	0,4	400	0
9	0,8	150	2
2	0,3	350	0
15	0,7	250	2
4	0.5	800	1
7	0,7	750	1
10	0,9	300	2
12	0,4	150	0
3	0,6	550	1
6	0,6	200	2

split

Test

Image	excentricidade	área	classe
0	0,4	700	1
1	0,8	400	2
5	0,3	100	0
14	0,2	200	0

K-fold cross-validation

Dataset					
	shuffle				
		Train			Test
					1
	Train Validation			k = 0	
	Train		Validation	Train	k = 1
Tra	Train Validation Train			k = 2	
Train	Validation	on Train		k = 3	
Validation	Train			k = 4	

NORMALIZATION

Normal Feature Transform (Standard Scaler)

Training (X_{train})

Imagem	excentricidade	área
13	0,50	300
11	0,80	700
8	0,40	400
9	0,80	150
2	0,30	350
15	0,70	250
4	0.50	800
7	0,70	750
10	0,90	300
12	0,40	150
3	0,60	550
6	0,60	200
Mean:	0.60	408.33
Std. Dev.:	0.1859	234.35

Normalized Training (X'_{train})

Imagem	excentricidade	área
13		
11		
8		
9		
2		
15		
4		
7		
10		
12		
3		
6		
Mean:		
Std. Dev.:		

Test (X_{test})

Imagem	excentricidade	área
0	0,4	700
1	0,8	400
5	0,3	100
14	0,2	200

Normalized test (X'_{test})

Imagem	excentricidade	área
0		
1		
5		
14		
Mean:		
Std. Dev.:		

Normal Feature Transform (Standard Scaler)

Training (X_{train})

Imagem	excentricidade	área
13	0,50	300
11	0,80	700
8	0,40	400
9	0,80	150
2	0,30	350
15	0,70	250
4	0.50	800
7	0,70	750
10	0,90	300
12	0,40	150
3	0,60	550
6	0,60	200
Mean:	0.60	408.33
Std. Dev.:	0.1859	234.35

Normalized Training (X'_{train})

Imagem	excentricidade	área
13		
11		
8		
9		
2		
15		
4		
7		
10		
12		
3		
6		
Mean:		
Std. Dev.:		

Test (X_{test})

Imagem	excentricidade	área
0	0,4	700
1	0,8	400
5	0,3	100
14	0,2	200

Normalized test (X'_{test})

Imagem	excentricidade	área
0		
1		
5		
14		
Mean:		
Std. Dev.:		

$$X'_{train} = \frac{X_{train} - mean(X_{train})}{std(X_{train})}$$
 $X'_{test} = \frac{X_{test} - mean(X_{train})}{std(X_{train})}$

Normal Feature Transform (Standard Scaler)

Training (X_{train})

Imagem	excentricidade	área
13	0,50	300
11	0,80	700
8	0,40	400
9	0,80	150
2	0,30	350
15	0,70	250
4	0.50	800
7	0,70	750
10	0,90	300
12	0,40	150
3	0,60	550
6	0,60	200
Mean:	0.60	408.33
Std. Dev.:	0.1859	234.35

Normalized Training (X'_{train})

Imagem	excentricidade	área
13	-0.5380	-0.4622
11	1.0760	1.2445
8	-1.0760	-0.0355
9	1.0760	-1.1022
2	-1.6140	-0.2489
15	0.5380	-0.6756
4	-0.5380	1.6712
7	0.5380	1.4578
10	1.6140 -0.462	
12	-1.0760	-1.1022
3	0.0000	0.6044
6	0.0000	-0.8889
Mean:	0.00	1.00
Std. Dev.:	0.00	1.00

Test (X_{test})

Imagem	excentricidade	área
0	0,4	700
1	0,8	400
5	0,3	100
14	0,2	200

Normalized test (X'_{test})

Imagem	excentricidade	área	
0	-1.0760	1.244528	
1	1.0760	-0.035558	
5	-1.6140	-1.315644	
14	-2.1521	-0.888949	
Mean:	-0.9415	-0.2489	
Std. Dev.:	1.4150	1.1289	

$$X'_{train} = \frac{X_{train} - mean(X_{train})}{std(X_{train})}$$
 $X'_{test} = \frac{X_{test} - mean(X_{train})}{std(X_{train})}$

CLASSIFICATION EVALUATION

- True positive(TP):
 - Objects of class C1 classified as C1.
- True negative (TN):
 - Objects of other classes (C2 and C3) classified as not being C1.
- False positive (FP) (type I error):
 - Objects classified as C1 but belonging to other classes (C2 or C3).
- False negative (FN) (type II error):
 - Objects of class C1 classified as other classes (C2 or C3).

		Classification					
		Class C1 Class C2 Class C3 Sum					
	Class C1	5	3	0	8		
Real class	Class C2	2	3	1	6		
Real	Class C3	0	2	11	13		
	Soma	7	8	12	_		

- True positive(TP):
 - Objects of class C1 classified as C1.
- True negative (TN):
 - Objects of other classes (C2 and C3) classified as not being C1.
- False positive (FP) (type I error):
 - Objects classified as C1 but belonging to other classes (C2 or C3).
- False negative (FN) (type II error):
 - Objects of class C1 classified as other classes (C2 or C3).

		Classification					
		Class C1 Class C2 Class C3 Sum					
	Class C1	5	3	0	8		
Real class	Class C2	2	3	1	6		
Real	Class C3	0	2	11	13		
	Soma	7	8	12	_		

Class C1		Classification			
Class C1		Class C1		Others	
Real class	Class C1	5	TP	3	FN
Real	Others	2	FP	17	TN

- True positive(TP):
 - Objects of class C1 classified as C1.
- True negative (TN):
 - Objects of other classes (C2 and C3) classified as not being C1.
- False positive (FP) (type I error):
 - Objects classified as C1 but belonging to other classes (C2 or C3).
- False negative (FN) (type II error):
 - Objects of class C1 classified as other classes (C2 or C3).

		Classification					
		Class C1 Class C2 Class C3 Sum					
	Class C1	5	3	0	8		
Real class	Class C2	2	3	1	6		
Real	Class C3	0	2	11	13		
	Soma	7	8	12			

Class C1		Classification			
Class C1		Class C1		Others	
Real class	Class C1	(5)	TP	(7)	FN
Re cla	Others	2	FP	17	TN

- True positive(TP):
 - Objects of class C1 classified as C1.
- True negative (TN):
 - Objects of other classes (C2 and C3) classified as not being C1.
- False positive (FP) (type I error):
 - Objects classified as C1 but belonging to other classes (C2 or C3).
- False negative (FN) (type II error):
 - Objects of class C1 classified as other classes (C2 or C3).

		Classification						
		Class C1 Class C2 Class C3 Sum						
Class C1		5	3	0	8			
Class C2 Class C3	2	3	1	6				
Real	Class C3	0	2	11	13			
	Soma	7	8	12				

Class C1		Classification			
Class C1		Class C1		Others	
Real class	Class C1	5	TP	3	FN
Re	Others	2	FP	17	TN

Class	C	Classification				
Class	C2	Class	C2	Others		
eal ass	Class C2	<u>ത</u>	TP	(M)	FN	
Re	Others	5	FP	16	TN	

- True positive(TP):
 - Objects of class C1 classified as C1.
- True negative (TN):
 - Objects of other classes (C2 and C3) classified as not being C1.
- False positive (FP) (type I error):
 - Objects classified as C1 but belonging to other classes (C2 or C3).
- False negative (FN) (type II error):
 - Objects of class C1 classified as other classes (C2 or C3).

		Classification							
		Class C1 Class C2 Class C3		Sum					
	Class C1	5	3	0	8				
Real class	Class C2	2	3	1	6				
Real	Class C3	9	2	11	13				
	Soma	7	8	12					

Class	C1	Classification					
Class	C1	Class	6 C1	Others			
Real class	Class C1	5	TP	3	FN		
Re	Others	2	FP	17	TN		

Class	C2		Classification					
Class C2		Class	s C2	Others				
eal ass	Class C2	3	TP	3	FN			
Re	Others	5	FP	16	TN			

Class	C2	Classification					
Class	L3	Class	e C3	Others			
eal lass	Class C3	11	TP	2	FN		
Re	Others	1	FP	13	TN		

Accuracy:

$$Accuracy = \frac{TP+TN}{TP+TN+FP+FN}$$

- Precision:
 - $Precision = \frac{TP}{TP+FP}$
- Recall:

$$- Recall = \frac{TP}{TP+FN}$$

• F1-score:

$$- F1 - score = \frac{2 \times TP}{2 \times TP + FP + FN}$$

- Support:
 - Support = TP + FN

Accuracy:

$$Accuracy = \frac{TP+TN}{TP+TN+FP+FN}$$

- Precision:
 - $Precision = \frac{TP}{TP+FP}$
- Recall:

$$- Recall = \frac{TP}{TP+FN}$$

• F1-score:

$$- F1 - score = \frac{2 \times TP}{2 \times TP + FP + FN}$$

- Support:
 - Support = TP + FN

How close the classification is to the true value.

- The ability of the classifier not to label a negative sample as positive.
- The ability of the classifier to find all the positive samples.
- The weighted harmonic mean of the precision and recall.
- The number of occurrences of each real (true) class.

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_fscore_support.html

Accuracy:

$$Accuracy = \frac{TP+TN}{TP+TN+FP+FN}$$

• Precision:

$$- Precision = \frac{TP}{TP+FP}$$

Recall:

$$Recall = \frac{TP}{TP+FN}$$

• F1-score:

$$- F1 - score = \frac{2 \times TP}{2 \times TP + FP + FN}$$

• Support:

$$-$$
 Support = $TP + FN$

Classes	TP	TN	FP	FN	Accuracy	Precision	Recall	F1-Score	Support
C1	5	17	2	3					
C2	3	16	5	3					
С3	11	13	1	2					
MEAN									
STD. DEV.									

Accuracy:

$$Accuracy = \frac{TP+TN}{TP+TN+FP+FN}$$

Precision:

-
$$Precision = \frac{TP}{TP+FP}$$

Recall:

$$Recall = \frac{TP}{TP+FN}$$

• F1-score:

$$- F1 - score = \frac{2 \times TP}{2 \times TP + FP + FN}$$

• Support:

$$-$$
 Support = $TP + FN$

Classes	TP	TN	FP	FN	Accuracy	Precision	Recall	F1-Score	Support
C1	5	17	2	3	0.8148	0.7143	0.6250	0.6667	8
C2	3	16	5	3	0.7037	0.3750	0.5000	0.4286	6
С3	11	13	1	2	0.8889	0.9167	0.8462	0.8800	13
MEAN									
STD. DEV.									

Accuracy:

$$Accuracy = \frac{TP+TN}{TP+TN+FP+FN}$$

• Precision:

-
$$Precision = \frac{TP}{TP+FP}$$

Recall:

$$Recall = \frac{TP}{TP+FN}$$

• F1-score:

$$- F1 - score = \frac{2 \times TP}{2 \times TP + FP + FN}$$

• Support:

$$-$$
 Support = $TP + FN$

Classes	TP	TN	FP	FN	Accuracy	Precision	Recall	F1-Score	Support
C1	5	17	2	3	0.8148	0.7143	0.6250	0.6667	8
C2	3	16	5	3	0.7037	0.3750	0.5000	0.4286	6
С3	11	13	1	2	0.8889	0.9167	0.8462	0.8800	13
MEAN					0.8025	0.6687	0.6571	0.6584	
STD. DEV.					0.0761	0.2235	0.1431	0.1844	

Accuracy Vs. Precision

- Accuracy:
 - $Accuracy = \frac{TP+TN}{TP+TN+FP+FN}$
 - How close the classification is to the true value.
- Precision:
 - $Precision = \frac{TP}{TP+FP}$
 - The variation between different predictions.

Bibliography

- GONZALEZ, R.C.; WOODS, R.E.; **Processamento Digital de Imagens.** 3ª edição. Editora Pearson, 2009.
- COSTA, L. DA F.; CESAR-JR., R. M. **Shape analysis and classification: theory and practice**. CRC Press, 2000. Chapter 8.
- Yann LeCun', Alfredo Canziani. Yann LeCun's Deep Learning Course at CDS SPRING 2021
 - https://cds.nyu.edu/deep-learning/
- scikit-learn User Guide.
 - https://scikit-learn.org/stable/user_guide.html

THE END