

Migratory Compression

Coarse-grained Data Reordering to Improve Compressibility

Xing Lin*, Guanlin Lu, Fred Douglis, Philip Shilane, Grant Wallace *University of Utah, EMC - Data Protection & Availability Division

MOTIVATION

Compress a single, large file: traditional compressors use small windows and can't find similarity across a large range

Migrate data for long-term retention: similar data may be in different regions.

Workflow

Compressor

Compressed

MIGRATORY COMPRESSION (MC)

Idea:

coarse-grained reorganization to group similar blocks to improve compressibility

Benefits:

- A generic pre-processing stage for any standard compressors
- Improve compressibility and sometimes throughput

Challenges:

- Similarity detection: similarity feature (based on [Broder 97])
 - A strong hash for duplication detection
 - Weak hashes provide hints about similarity among blocks
- Data Reorganization: re-arrange the input data, to group similar blocks

Evaluations

rz(mc)

* Deduplication factor for exchange2 is very low, thus the overhead in doing

USE CASE 2 MC FOR ARCHIVE STORAGE

Tradeoff: price over performance

DDFS system uncompresses LZ, then recompresses as GZ for archival: 25-44% better

With MC: identify and compress similar blocks together

- Identify and sort by cluster sizes of similar blocks
- Migrate in K passes: K is determinted by storage to buffer ratio; largest clusters in the first phases, then progressively smaller clusters

Datasets

WORKSTATIONS; Exchange[123]

- ✓ MC improves CF • [44% (EX3), 157%
- Top 2/3 compresses

✓ Migrate Runtime • EX1: 3X compared with gzip

- ✓ Read Performance • Entire EX1: 1.3 X
- Final backup of EX1: 7 X (1.24 X if only reorganize the top third

USE CASE 1 mzip: MC FOR COMPRESSING A SINGLE, LARGE FILE

migrate recipe File Block ID Reorganize Segmentation File Similarity Similarity detector detector Reorganizer Restore Reorganized

 Segmentation: partition into blocks, calculate similarity features

Example

 Similarity detector: identify duplicate and similar blocks; output migrate/restore recipe

restore recipe

• Reorganizer: rearrange the input file

(in-memory) Workstation1 •gz(mc) ■bz(mc)

Compression Factor (X)

Fig 3. Maximal Compression for WS1 with/without MC

MC becomes evident.

Fig 2. Throughput vs. CF for EX2*

Fig 4. Compression Factor Breakdown

SUMMARY

Migratory Compression preprocesses data to make it more compressible - Identify and cluster similar data

mzip

- Improves existing compressors, in both compressibility and frequently runtime
- Redraw the performance-compression curve!

Archival storage

- MC reduces \$/GB further

