

University of Dublin Trinity College

Introduction to Ontology

Owen.Conlan@scss.tcd.ie

"Interconnected web of data" the need for a knowledge driven approach

Increasingly boundary between data in enterprise systems, personal devices and on web becoming blurred

Metadata will solve all problems?

Classes of Metadata

- Content independent e.g. modification date of document
- Content dependent e.g. size of the document
- Direct content-based e.g. inverted tree index of a document
- Content Descriptive e.g. textual annotations descibing an image
- Domain independent e.g HTML document type definitions
- Domain specific e.g. based on some domain like "University"
- Relies on common understanding of syntax/terms

EXIF Sub IFD

Entry	Tag	Value	Meaning	Format	Components
Exposure Time	829a	1/350	0.00	unsigned rational	1
F Number	829d	40/10	4.00	unsigned rational	1
EXIF Version	9000	30 32 31 30		undefined	4
Date Time Original	9003	2001:06:09 15:17:32		ascii string	20
Date Time Digitised	9004	2001:06:09 15:17:32		ascii string	20
Component Configuration	9101	01 02 03 00		undefined	4
Compressed Bits/Pixel	9102	3/1	3.00	unsigned rational	1
Shutter Speed Value	9201	553859/65536	8.45	signed rational	1
Aperture Value	9202	262144/65536	4.00	unsigned rational	1
Exposure Bias Value	9204	0/3	0.00	signed rational	1
Max Aperture Value	9205	194698/65536	2.97	unsigned rational	1
Subject Distance	9206	3750/1000	3.75	unsigned rational	1
Metering Mode	9207	2	centre weighted average	unsigned short	1
Flash	9209	0	not used	unsigned short	1
Focal Length	920a	346/32	10.81	unsigned rational	1

XML will solve all problems?

- XML is Syntax too
 - DTDs talk about element nesting
 - XML Schema schemas give you data types
 - need anything else? => write comments!
- Domain Semantics is complex:
 - implicit assumptions, hidden semantics
 - ⇒ sources seem unrelated to the non-expert
- •Need Structure and Semantics beyond XML trees!
 - ⇒ employ richer OO models
 - ⇒ make domain semantics and "glue knowledge" explicit
 - ⇒ use **semantic models** to fix terminology and conceptualization
 - ⇒ avoid ambiguities by using formal semantics
- ■XML DTDs and XML Schemas are sufficient for exchanging data between parties who have agreed to meaning of terms beforehand
- ■Semantic Models are critical for exchanging data between applications from diverse parties in order to ensure terms used are semantically equivalent

Sharing Semantics

Metadata

- Data describing the content and meaning of resources and services.
- But everyone must speak the same language...

Terminologies

- Shared and common vocabularies
- For search engines, agents, curators, authors and users
- But everyone must mean the same thing...

Semantic Models

- Shared and common understanding of a domain
- Essential for search, exchange and discovery
- → Ontologies/Topic Maps aim at sharing meaning

Encoding Semantic Models

- ■XML based encoding methods becoming popular
 - Machine and human readable
 - Easily processed
- ■From the "Semantic Web" community
 - W3C standards (http://www.w3.org/2001/ sw/)
 - ◆ RDF
 - ◆ RDFS
 - OWL
 - DERI- Digital Enterprise Research Institute
 - WSML
 - WSMO
- ■From ISO
 - Topic Maps
 - Conceptual Graphs
- Rules
 - SWRL
 - Beyond RuleML

The Meaning Triangle

- Humans require words (or at least symbols) to communicate efficiently. The mapping of words to things is indirect. We do it by creating *concepts* that refer to things.
- The relation between symbols and things has been described in the form of the meaning triangle:

Human and machine communication

Introduction to Ontologies

9

Encoding Semantics (Example)

Ontology: A definition

An "ontology" describes the common words, concepts and relationships between concepts used to describe and represent an area of knowledge.

An ontology can range from a

- Taxonomy (knowledge with minimal hierarchy or a parent/child structure) to a ...
- Thesaurus (words and synonyms) to a
- Conceptual Model (with more complex knowledge) to a...
- Logical Theory (with very rich, complex, consistent and meaningful knowledge).

A well-formed ontology is one that is expressed in a well-defined syntax that has a well-defined machine interpretation consistent with the above ontology definition

Ontology Spectrum

Ontology Modeling An explicit description of a domain

Concepts (class, set, type, predicate)

 event, gene, gammaBurst, atrium, molecule, cat

Properties of concepts and
 relationships between them (slot)

- Taxonomy: generalisation ordering among concepts isA, partOf, subProcess
- Relationship, Role or Attribute: functionOf, hasActivity location, eats, size

An explicit description of a domain

Constraints or axioms on properties and concepts:

value: integer

domain: cat

cardinality: at most 1

range: 0 <= X <= 100

- oligonucleiotides < 20 base pairs
- cows are larger than dogs
- cats cannot eat only vegetation
- cats and dogs are disjoint

Values or concrete domains

- integer, strings
- 20, trypotoplan-synthetase

An explicit description of a domain

Individuals or Instances

sulphur, trpA Gene, felix

Ontology versus Knowledge Base

- An *ontology* = concepts+properties+axioms
 +values
- A knowledge base = ontology+instances

Difference between Relational Schema and Ontology

Relational Schema primary purpose is to organise data within a database

- As we have seen previously relationships between entities are implicit and interpretation is necessary by program/human who accesses
- If the program/human lacks knowledge of semantics of the data or database then becomes unusable

Ontology

Relationships defined formally and interpretable by both human and program

Problem Solved!... Right?

Metadata + XML + Ontology

... not quite...

- Ontologies are defined from a perspective
- "Whether it is a personal ontology, designed to support individual's needs and preferences, or an ontology created by a particular company to reflect that company's views on their industry, such ontologies will have biases and necessarily subjective features. ...
- ■.. If that individual or company needs to exchange information and knowledge with other individuals or organisations, there will be a need to map between multiple ontologies either at inter-personal, intraorganisational or inter-organisational levels" [Hameed et al. 2004]

Solution?

Metadata + XML + Ontology + Ontology Mapping

University of Dublin Trinity College

Ontology Design

Methodology based on http://protege.stanford.edu/publications/ontology_development/ontology101.pdf

University ontology based on COBRA ontology for "intelligent spaces" from University of Maryland

Ontology terminology that we will use

Class: Description of a concept in domain of discourse

• E.g. "Room" in the intelligent space domain

Slot/Property: Describes attribute of a concept or relationship of a concept

- E.g. longtitude and latitude of a room provides its coordinates
- E.g. isSpatiallySubsumedBy points to instance of class "Building"

Facet/Restriction: Describes a **constraint** on a slot

- Slot cardinality e.g. one or many values allowed in slot
- Slot value type, e.g. String, Number, Boolean, Enummerated, Instance

Fundamental Rules in Ontology Design

- 1) There is no one correct way to model a domain— there are always viable alternatives.
 - The best solution almost always depend on the application that you have in mind and the extensions that you anticipate.
- 2) Ontology development is necessarily an iterative process.
- 3) Concepts in the ontology should be close to objects (physical or logical) and relationships in your domain of interest.
 - These are most likely to be nouns (objects) or verbs (relationships) in sentences that describe your domain

Step 1: Determine Scope and Domain of Ontology

What is the domain that the ontology will cover?

E.g representing an intelligent University space

For what we are going to use the ontology?

• E.g. applications that support roaming students, lecturers and visitors are going to use the ontology

For what types of questions the information in the ontology should provide answers?

- E.g. to help roaming student print to the nearest printer etc.
- E.g. to help the university intelligent space applications to implement energy conservation policies etc.

Who will use and maintain the ontology?

• E.g. if it is maintained by someone in TCD for TCD users but needs also to be used by visiting users from UCD etc., then mappings need to be included

Step 1: Competency Questions

One way to determine scope is to list out the questions the knowledge base based on the ontology should be able to answer For example

- Which rooms have data projectors?
- Is ORI G.14 a conference room?
- Is there a conference room near restrooms?
- What is the best choice of room for a student tutorial?

Judging from this list of questions, the ontology will include information on

- Various room types and characteristics
- Various event types and characteristics
- Classifications of rooms with respect to appropriateness for events
- Classifications of rooms with respect to location
- Classifications of rooms with respect to furniture/equipment

Step 2: Consider reusing other ontologies

Examples

- UNSPSC ontology which provides terminology for products and services (<u>www.unspsc.org</u>)
- DAML ontologies

Example Ontology: CS Academic Dept

SWOOGLE

http://swoogle.umbc.edu/

About Swoogle o Swoogle Tour o Swoogle Statistics o Forum o Submit URL o Surveys

Swoogle v2.0, 337,182 documents, @ 2004, UMBC ebiquity group

Step 3: Enumerate important terms in the ontology

List of all terms we would like either to make statements about or to explain to a user.

- What are the terms we would like to talk about?
- What properties do those terms have?
- What would we like to say about those terms?

For example, important a university intelligent space related terms will include

- Building, campus, restroom, room, hallway, stairs, chairs, projectors;
- different types of event, such as lecture, tutorial, seminar, meeting;
- · and so on.

Get a comprehensive list of terms without worrying about:

- overlap between concepts they represent,
- relations among the terms,
- or any properties that the concepts may have,
- or whether the concepts are classes or slots.

Step 4: Define the classes and class hierarchy

From the list created in Step 3, we select the terms that describe objects having independent existence rather than terms that describe these objects.

These terms will be classes in the ontology and will become anchors in the class hierarchy

Multiple Inheritance allowed

More on Classes When to introduce a new class or not?

- The ontology should not contain all the possible information about the domain: you do not need to specialize (or generalize) more than you need for your application (at most one extra level each way).
- Subclasses of a class usually (1) have additional properties that the superclass does not have, or (2) restrictions different from those of the superclass, or (3) participate in different relationships than the superclasses
 - E.g. a conference room may have a property "booked by" that room does not
- Classes in terminological hierarchies do not have to introduce new properties
 - For example, some ontologies include large reference hierarchies of common terms used in the domain
- We should not create subclasses of a class for each additional restriction.
 - For example, we could introduce Conference Room, Office Room etc. because this distinction is a natural one in the real world. We may not want to introduce classes for store room, secretary room, and so on. When defining a class hierarchy, our goal is to strike a balance between creating new classes useful for class organization and creating too many classes

In Protege

Step 5: Define the properties of classes - slots

In general, there are several types of object properties that can become slots in an ontology:

- "intrinsic" properties such as the capacity of the room;
- "extrinsic" properties such as a room's name;
- parts, if the object is structured; these can be both physical and abstract "parts" (e.g., the courses of a meal)
- relationships to other individuals; these are the relationships between individual members of the class and other items (e.g., spatiallySubsumedBy, representing a relationship between a room and a CompoundPlace (subclasses are Building and Campus))

Step 6: Define the Facets of each Slot

Facet: Describes a restriction on a slot

- Slot cardinality e.g. one or many values allowed in slot
- Slot value type, e.g. String, Integer, Boolean, Enummerated, Instance

In Protege

Blue rectangle means property defined on this class Round brackets around rectangle means property inherited

Step 7: (Optionally) Create Instances

Chief Honcho is an instance of the class Editor
This instance has the following slot values defined

Introduction to Ontolo

Seven steps to...

- 1. Determine scope and domain of ontology
- 2. Consider reusing existing ontologies
- 3. Ennumerate important terms in the ontology
- 4. Define the classes and class hierarchy
- 5. Define the properties of classes slots
 - Properties, relationships
- 6. Define the facets of slots
 - Value type (String, Number, Boolean, Enummerated, Instance)
 - Value cardinality
- 7. Define the instances

University of Dublin Trinity College

Questions?

Owen.Conlan@scss.tcd.ie

Many of these slides originally produced by Dr. Declan O'Sullivan