KVADRATNA FUNKCIJA

Kvadratna funkcija je oblika:

$$y = ax^2 + bx + c$$

Gde je $x \in R$, $a \ne 0$ i a, b i c su realni brojevi.

Kriva u ravni koja predstavlja grafik funkcije $y = ax^2 + bx + c$ je **parabola**.

Najpre ćemo naučiti kako izgleda grafik funkcije $y = x^2$. Napravićemo tablicu za neke vrednosti promenljive x.

	X	-3	-2	-1	0	1	2	3
Γ	V	9	4	1	0	1	4	9

za
$$x = -3$$
 je $y = (-3)^2 = 9$

za
$$x = -2$$
 je $y = (-2)^2 = 4$

za
$$x = -1$$
 je $y = (-1)^2 = 1$

za
$$x = 0$$
 je $y = 0^2 = 0$

za
$$x = 1$$
 je $y = 1^2 = 1$

za
$$x = 2$$
 je $y = 2^2 = 4$

$$za x = 3$$
 je $y = 3^2 = 9$

Ovaj grafik će nam uvek služiti kao "početni". Šta se dešava ako ispred x^2 ima neki broj?

Naučimo sad grafik $y = ax^2$

Razlikovaćemo 2 situacije: a > 0 i a < 0

za a > 0

Ovde je parabola okrenuta "otvorom nagore". Šta se dešava ako je a > 1 i 0 < a < 1?

a > 1

U odnosu na početni grafik $y = x^2$, ovaj grafik $y = ax^2$ se "sužava"

 $\frac{\text{Primer}}{v = 2 r^2}$

X	-3	-2	-1	0	1	2	3
у	18	8	2	0	2	8	18

Što je broj a veći to je grafik uži!

U odnosu na početni grafik $y = x^2$, ovaj grafik $y = ax^2$ se "širi"

$$\frac{\text{Primer}}{y = \frac{1}{2}x^2}$$

X	-3	-2	-1	0	1	2	3
Y	9	2	1	0	1	2	9
	$\frac{\overline{2}}{2}$		$\frac{\overline{2}}{2}$		$\frac{\overline{2}}{2}$		$\frac{\overline{2}}{2}$

Što je broj a bliži nuli, grafik je širi!

Za a < 0 parabola je okrenuta "otvorom nadole".

Početni grafik je $y = -x^2$.

X	-3	-2	-1	0	1	2	3
y	-9	-4	-1	0	-1	-4	-9

Evo grafika funkcije $y = -x^2$

Opet ćemo razmotriti 2 situacije:

U odnosu na početni $y = -x^2$ grafik se "sužava" ako je a < -1

$$\frac{\text{Primer}}{y = -2x^2}$$

X	-3	-2	-1	0	1	2	3
y	-18	-8	-2	0	-2	-8	-18

Ako je
$$-1 < a < 0$$

U odnosu na početni grafik $y = -x^2$ grafik, na primer $y = -\frac{1}{2}x^2$ se "širi"

X	-3	-2	-1	0	1	2	3
y	9	-2	1	0	1	-2	9
	$-\frac{1}{2}$		$-\frac{1}{2}$		$-\frac{1}{2}$		$-\frac{1}{2}$

Dobro, ovo za sad nije bilo "mnogo opasno". Naučimo sada da pomeramo finkciju duž yose. Posmatrajmo grafik:

$$y = ax^2 + \beta$$

- \rightarrow Prvo nacrtamo grafik funkcije $y = ax^2$
- → taj grafik pomeramo duž y-ose i to:
 - 1) Ako je β pozitivan "podižemo" grafik, odnosno pomeramo ga u pozitivnom smeru y-ose.
 - 2) Ako je β negativan, "spuštamo" grafik, odnosno pomeramo ga u negativnom smeru y-ose

Evo par primera:

Primer 1:
$$y = \frac{1}{2}x^2 + 1$$

Prvo nacrtamo grafik $y = \frac{1}{2}x^2$, Zatim taj grafik "podignemo" za +1, paralelnim pomeranjem (translacija)

Primer 2:

$$y = x^2 - 2$$

Znači, najpre nacrtamo grafik $y = x^2$. Potom taj grafik "spustimo" za -2 duž y-ose (transplatorno pomeranje)

Nadam se da smo i ovo razumeli, jel tek sad ide "prava stvar". Naučimo da pomeramo funkciju i duž x-ose.

Posmatrajmo funkciju: $y = (x - \alpha)^2$

Pazi:

- \rightarrow Ako je $-\alpha$ to znači da funkciju pomeramo za α po x-osi <u>udesno</u>.
- \rightarrow Ako je + α to znači da finkciju pomeramo za α po x-osi <u>ulevo</u>

Ništa bez primera:

Primer 1.
$$y = (x-3)^2$$

 \rightarrow Znači pomeramo funkciju $y = x^2$ udesno za 3

Primer 2.
$$y = (x+2)^2$$

 \rightarrow Znači pomerimo funkciju $y = x^2$ ulevo za 2

Sada imamo znanje da nacrtamo ceo grafik funkcije $y = ax^2 + bx + c$.

Najpre moramo funkciju $y = ax^2 + bx + c$ svesti na takozvani <u>kanonski oblik.</u> Tu nam pomaže formula:

$$y = a\left(x + \frac{b}{2a}\right)^2 + \frac{4ac - b^2}{4a}$$

ili ako uvedemo da je:

$$\alpha = -\frac{b}{2a}$$
 i $\beta = \frac{4ac - b^2}{4a}$ tj. $\beta = -\frac{D}{4a}$ dobijamo: $y = \frac{b}{(x-\alpha)^2 + \beta}$ kanonski oblik

Tačka $T(\alpha, \beta)$ je teme parabole.

Dakle: (važno, ovo je postupak)

- \rightarrow Datu funkciju $y = ax^2 + bx + c$ najpre svedemo na kanonski oblik $y = a(x \alpha)^2 + \beta$
- \rightarrow Nacrtamo grafik funkcije $y = ax^2$
- \rightarrow Izvršimo pomeranje (transliranje) duž x–ose za α
- ightarrow Izvršimo pomeranje (transliranje) duž y-ose za β

Primer 1. Nacrtaj grafik funkcije:

$$y = x^2 - 6x + 5$$

→ Svedemo je na kanonski oblik:

$$a = 1$$

$$b = -6$$

$$\alpha = -\frac{b}{2a} = -\frac{-6}{2 \cdot 1} = 3$$

$$c = 5$$

$$\beta = \frac{4ac - b^2}{4a} = \frac{4 \cdot 1 \cdot 5 - (-6)^2}{4 \cdot 1} = \frac{20 - 36}{4} = \frac{-16}{4} = -4$$

$$y = a(x - \alpha)^2 + \beta$$

$$y = 1(x - 3)^2 + (-4)$$

$$y = (x - 3)^2 - 4$$

 \rightarrow Najpre nacrtamo $y = ax^2$, odnosno $y = x^2$

 \rightarrow Sada ucrtamo grafik $y = (x-3)^2$, odnosno vršimo pomeranje za 3 ulevo

 \rightarrow I najzad ucrtamo $y = (x-3)^2 - 4$ tako što grafik $y = (x-3)^2$ spustimo za 4 "nadole"

Ceo ovaj postupak je dosta "zamršen" a nije baš ni mnogo precizan. Evo kako ćete mnogo brže i preciznije nacrtati grafik $y = ax^2 + bx + c$ bez svodjenja na kanonski oblik i "pomeranja":

Naš grafik će u zavisnosti od a (broja uz x^2) i diskriminante $D = b^2 - 4ac$ biti jedan od sledećih 6 grafika:

1) a > 0, D > 0

- \rightarrow F-ja seče x-osu u x_1 i x_2
- $\rightarrow y < 0$ za $x \in (x_1, x_2)$ i y > 0 za $x \in (-\infty, x_1) \cup (x_2, \infty)$
- ightarrow F-ja ima minimum u temenu $T(\alpha, \beta)$
- \rightarrow F-ja raste za $x \in (\alpha, \infty)$
- \rightarrow F-ja opada za $x \in (-\infty, \alpha)$

2)
$$a > 0, D = 0$$

- \rightarrow F-ja je definisana za $\forall x \in R$
- \rightarrow F-ja seče x-osu u $x_1 = x_2$
- $\rightarrow y \ge 0, \forall x \in R$
- \rightarrow F-ja ima minimum u $T(\alpha,0)$
- \rightarrow F-ja raste za $x \in (\alpha, \infty)$
- \rightarrow F-ja opada za $x \in (-\infty, \alpha)$

- → F-ja je definisana za $\forall x \in R$
- \rightarrow F-ja ne seče x- osu ($x_{1,2}$ su konjugovano
- -kompleksni brojevi).
- $\to y>0, \ za \ \forall x\in R$
- \rightarrow F-ja ima minimum u $T(\alpha, \beta)$
- \rightarrow F-ja raste za $x \in (\alpha, \infty)$
- \rightarrow F-ja opada za $x \in (-\infty, \alpha)$

4)
$$a < 0, D > 0$$

- → F-ja je definisana $\forall x \in R$
- \rightarrow F-ja seče x- osu u x_1, x_2
- $\rightarrow y < 0 \text{ za } x \in (-\infty, x_1) \cup (x_2, \infty)$ $y > 0 \text{ za } x \in (x_1, x_2)$
- \rightarrow F-ja ima maksimum u $T(\alpha, \beta)$
- \rightarrow F-ja raste za $x \in (-\infty, \alpha)$
- \rightarrow F-ja opada za $x \in (\alpha, \infty)$

5)
$$a < 0, D = 0$$

- → F-ja je definisana $\forall x \in R$
- \rightarrow F-ja seče x- osu u $x_1 = x_2$
- $\rightarrow y \le 0, \forall x \in R$
- \rightarrow F-ja ima maximum u $T(\alpha,0)$
- \rightarrow F-ja raste za $x \in (-\infty, \alpha)$
- \rightarrow F-ja opada za $x \in (\alpha, \infty)$

6) a < 0, D < 0

- \rightarrow F-ja je definisana $\forall x \in R$
- \rightarrow F-ja ne seče x- osu ($x_{1,2}$ su konjugovano
- -kompleksni brojevi)
- $\rightarrow y < 0$, $za \ \forall x \in R$
- \rightarrow F-ja ima maximum u $T(\alpha, \beta)$
- \rightarrow F-ja raste za $x \in (-\infty, \alpha)$
- \rightarrow F-ja opada za $x \in (\alpha, \infty)$

Postupak

- 1) Najpre odredimo a,b,c i nadjemo diskriminantu $D = b^2 4ac$
- 2) Tražimo $x_{1,2} = \frac{-b \pm \sqrt{D}}{2a}$ (ako ima)

$$D > 0, x_1 \neq x_2$$

$$D = 0, x_1 = x_2$$

$$D < 0$$
, nema x_1, x_2

3) U zavisnost od znaka broja a zaključujemo da li je parabola okrenuta otvorom nagore ili na dole, tj:

4) Parabola uvek seče y-osu u tački (0, c)

5) Nadjemo teme
$$T(\alpha, \beta)$$
 $\alpha = -\frac{b}{2a}, \beta = -\frac{D}{4a}$
 $T(\alpha, \beta)$ je max ako je $a < 0$
 $T(\alpha, \beta)$ je min ako je $a > 0$

6) Konstruišemo grafik

Primer 1. Nacrtaj grafik funkcije

$$y = x^2 - 6x + 5$$

(ovo je ista funkcija koju smo crtali svodjenjem na kanonski oblik i pomerili duž x i y ose, pa da vidimo koji će nam postupak biti jasniji)

1)
$$a = 1 D = b^2 - 4ac = (-6)^2 - 4 \cdot 1 \cdot 5 = 36 - 20 = 16$$
$$b = -6$$
$$c = 5$$

2)
$$x_{1,2} = \frac{-b \pm \sqrt{D}}{2a} = \frac{6 \pm 4}{2}$$

$$x_1 = 5$$

$$x_2 = 1$$

3)
$$a = 1 > 0 \Rightarrow$$
 okrenuta otvorom na gore (smeje se)

5)
$$T(\alpha, \beta)$$

$$\alpha = -\frac{b}{2a} = -\frac{-6}{2 \cdot 1} = 3$$

$$\beta = -\frac{D}{4a} = -\frac{16}{4 \cdot 1} = -4$$

$$T(3, -4) \rightarrow \min$$

6) Grafik:

sami odlučite koji način konstrukcije grafika vam je "lakši"

<u>Primer 2.</u> Nacrtati grafik funkcije $y = -\frac{1}{2}x^2 + \frac{1}{2}x + 6$

1)
$$a = -\frac{1}{2}$$

$$b = \frac{1}{2}$$

$$c = 6$$

$$D = \left(\frac{1}{2}\right)^2 - 4\left(-\frac{1}{2}\right) \cdot 6 = \frac{1}{4} + 12 = 12\frac{1}{4} = \frac{49}{4}$$
2)

$$x_{1,2} = \frac{-b \pm \sqrt{D}}{2a} = \frac{-\frac{1}{2} \pm \frac{7}{2}}{2\left(-\frac{1}{2}\right)} = \frac{-\frac{1}{2} \pm \frac{7}{2}}{-1} \rightarrow x_1 = \frac{-\frac{1}{2} + \frac{7}{2}}{-1} = \frac{3}{-1} = -3 \rightarrow x_2 = \frac{-\frac{1}{2} - \frac{7}{2}}{-1} = \frac{-4}{-1} = 4$$

$$x_1 = -3$$

$$x_1 = -3$$
$$x_2 = 4$$

3)
$$a = -\frac{1}{2} < 0 \Rightarrow \text{ okrenuta otvorom na dole (mršti se)}$$

- 4) presek sa y-osom je u tački (0,6)
- 5) $T(\alpha, \beta)$ $\alpha = -\frac{b}{2a} = -\frac{\frac{1}{2}}{2\left(-\frac{1}{2}\right)} = \frac{1}{2}$ $\beta = -\frac{D}{4a} = -\frac{\frac{49}{4}}{4\left(-\frac{1}{2}\right)} = +\frac{49}{8} = 6\frac{1}{8}$ $T\left(\frac{1}{2}, 6\frac{1}{8}\right)$

Primer 3. Skicirati grafik funkcije:

$$y = x^2 - 4|x| + 3$$

Rešenje:

Pošto $|x| = \begin{cases} x, x \ge 0 \\ -x, x < 0 \end{cases}$, odavde ćemo imati 2 grafika, jedna za $x \ge 0$ i jedan za x < 0.

$$y = x^2 - 4|x| + 3$$

za
$$x \ge 0$$
 je $y = x^2 - 4x + 3$

1)

$$a=1, b=-4, c=3$$

 $D=b^2-4ac=16-12=4$

2)
$$x_{1,2} = \frac{4 \pm 2}{2}$$

$$x_1 = 3$$

$$x_2 = 1$$

3)
$$a = 1 > 0 \implies$$
 smeje se

4) presek sa y-osom je u (0,3)

5)
$$T(\alpha, \beta)$$

$$\alpha = -\frac{b}{2a} = \frac{-4}{2 \cdot 1} = 2$$

$$\beta = -\frac{D}{4a} = -\frac{4}{4 \cdot 1} = -1$$

$$T(2,-1)$$

za x < 0 **grafik** $y = x^2 - 4|x| + 3$ **je**

$$y = x^2 + 4x + 3$$

- 1) a = 1, b = 4, c = 3 $D = b^{2} 4ac = 16 12 = 4$
- 2) $x_{1,2} = \frac{-4 \pm 2}{2}$ $x_1 = -1$ $x_2 = -3$
- 3) $a = 1 \implies$ smeje se
- 4) presek sa –osom je u 3
- 5) $T(\alpha, \beta)$ $\alpha = -\frac{b}{2a} = \frac{-4}{2 \cdot 1} = -2$ $\beta = -\frac{D}{4a} = -\frac{4}{4 \cdot 1} = -1$ T(-2, -1)

Pogledajmo sad kako izgledaju ova dva grafika posebno a kako zajedno daju grafik koji nam treba: $y = x^2 - 4|x| + 3$

