

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCIS15120092903

FCC REPORT (WIFI)

Applicant: HUNG WAI PRODUCTS LIMITED

Address of Applicant: Unit 11, 12/F., New Commerce Centre, 19 On Sum Street,

Shatin, Hong Kong

Equipment Under Test (EUT)

Product Name: 21.5"Quad Core Media Player Standard Housing

Model No.: DT215-AC4-1080, 502-2159ATATM

FCC ID: 2AB6Z-DT215-AC4

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 04 Dec., 2015

Date of Test: 04 Dec., to 10 Dec., 2015

Date of report issued: 10 Dec., 2015

Test Result: PASS*

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

Version

0 Dec., 2015	Android player Main board with wireless module (FCC ID: 2AB6Z-1859ATMB) and
	same antenna were used by the device, only conducted emission and Radiated emission were re-tested.

Viki zhu Test Engineer Tested by: Date: 10 Dec., 2015

Reviewed by: Date: 10 Dec., 2015

Project Engineer

3 Contents

			Page
1	COV	ER PAGE	1
2	VER	SION	2
3		TENTS	
4		T SUMMARY	
5	GEN	ERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST ENVIRONMENT AND MODE	7
	5.4	LABORATORY FACILITY	8
	5.5	LABORATORY LOCATION	
	5.6	TEST INSTRUMENTS LIST	9
6	TES	T RESULTS AND MEASUREMENT DATA	10
	6.1	ANTENNA REQUIREMENT:	10
	6.2	CONDUCTED EMISSION	11
	6.3	CONDUCTED OUTPUT POWER	14
	6.4	OCCUPY BANDWIDTH	
	6.5	POWER SPECTRAL DENSITY	
	6.6	BAND EDGE	
	6.6.1		
	6.6.2		
	6.7	SPURIOUS EMISSION	
	6.7.1		
	6.7.2		
7	TES	T SETUP PHOTO	30
8	EUT	CONSTRUCTIONAL DETAILS	31

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass*
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass*
Power Spectral Density	15.247 (e)	Pass*
Band Edge	15.247(d)	Pass*
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

Pass*: The test data refer to FCC ID: 2AB6Z-1859ATMB.

Remark: Test according to ANSI C63.4:2009

5 General Information

5.1 Client Information

Applicant:	HUNG WAI PRODUCTS LIMITED
Address of Applicant:	Unit 11, 12/F., New Commerce Centre, 19 On Sum Street, Shatin, Hong Kong
Manufacturer:	HUNG WAI ELECTRONICS (HUIZHOU) LTD.
Address of Manufacturer:	3 rd floor, NO. 3, Minfeng Road, Huinan High and New Technology Industry Park, Huiao Avenue, Huizhou City, Guangdong, China

5.2 General Description of E.U.T.

-	T
Product Name:	21.5"Quad Core Media Player Standard Housing
Model No.:	DT215-AC4-1080, 502-2159ATATM
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20)) 2422MHz~2452MHz (802.11n(H40))
Channel numbers:	11 for 802.11b/802.11g/802.11(H20) 7 for 802.11n(H40)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps,54Mbps
Data speed (IEEE 802.11n):	Up to 150Mbps
Antenna Type:	Omni-directional
Antenna gain:	2.5 dBi
AC Adapter:	MODEL: PS36IBCAY3000S Input: AC 100-240V 50/60Hz 1.0A Output: DC 12V, 3000mA
Remark:	Model No.: DT215-AC4-1080, 502-2159ATATM are electrically identical, only model number is different for customer and for HUNG WAI.

Operation Frequency each of channel For 802.11b/g/n(H20)							
Channel Frequency Channel Frequency Channel Frequency Channel Frequency							
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Operation Frequency each of channel For 802.11n(H40)									
Channel	Channel Frequency Channel Frequency Channel Frequency Channel Frequency								
		4	2427MHz	7	2442MHz				
		5	2432MHz	8	2447MHz				
3	2422MHz	6	2437MHz	9	2452MHz				

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n (H20)

Channel	Frequency	
The lowest channel	2412MHz	
The middle channel	2437MHz	
The Highest channel	2462MHz	

802.11n (H40)

Channel	Frequency		
The lowest channel	2422MHz		
The middle channel	2437MHz		
The Highest channel	2452MHz		

Report No: CCIS15120092903

5.3 Test environment and mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Operation mode	Keep the EUT in continuous transmitting with modulation			

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate	
802.11b	1Mbps	
802.11g	6Mbps	
802.11n(H20)	6.5Mbps	
802.11n(H40)	13.5Mbps	

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11g, 6.5Mbps for 802.11n(H20) and 13.5 Mbps for 802.11n(H40). Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

Report No: CCIS15120092903

5.4 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.5 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

5.6 Test Instruments list

Radiated Emission:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
1	3m Semi- Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017		
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	03-28-2015	03-28-2016		
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	03-28-2015	03-28-2016		
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
5	Amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2015	03-31-2016		
6	Amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2015	03-31-2016		
7	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2015	03-31-2016		
8	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2015	03-31-2016		
9	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A		
10	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A		
11	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	03-28-2015	03-28-2016		
12	EMI Test Receiver	Rohde & Schwarz	ESPI	CCIS0022	03-28-2015	03-28-2016		
13	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2015	03-31-2016		
14	Universal radio communication tester	Rhode & Schwarz	CMU200	CCIS0069	03-28-2015	03-28-2016		
15	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	04-08-2015	04-08-2016		

Cond	Conducted Emission:											
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)						
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	11-10-2013	11-09-2016						
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-28-2015	03-28-2016						
3	LISN	CHASE	MN2050D	CCIS0074	03-28-2015	03-28-2016						
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2015	03-31-2016						
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A						

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: F

FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The antenna of EUT is a reverse-SMA connector, which cannot be replaced by end-user. And the antenna gain is 2.5 dBi.

6.2 Conducted Emission

Test Requirement: Test Method:		,								
	ANSI C63 4: 2009		FCC Part 15 C Section 15.207							
	ANSI C63.4: 2009									
Test Frequency Range:	150 kHz to 30 MHz									
Class / Severity:	Class B									
Receiver setup:	RBW=9 kHz, VBW=30 kHz									
	Limit (dRuV)									
	Frequency range (MHz)	Quasi-peak	Average							
Limit:	0.15-0.5	66 to 56*	56 to 46*							
	0.5-5	56	46							
	5-30	60	50							
	* Decreases with the logarithm1. The E.U.T and simulators									
Test procedure	 a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2009 on conducted measurement. 									
Test setup:	Reference LISN 40cm AUX Equipment E.U.T Test table/Insulation plane Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Nets Test table height=0.8m	80cm LISN Filter	— AC power							
Toot Instruments:	Refer to section 5.6 for details									
Test Instruments:										
Test mode:	Refer to section 5.3 for details									

Measurement Data

Neutral:

Trace: 13

Site

Model

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL : 21.5"Quad Core Media Player : Standard Housing : DT215-AC4-1080 Condition EUT

: Wifi mode

Test Mode Power Rating: AC 120V/60Hz Environment: Temp: 23 °C Huni:56% Atmos:101KPa Test Engineer: Viki

Kemark								
	Freq	Read	LISN Factor	Cable Loss	Level	Limit Line	Over	Remark
	rred	rever	ractor	LUSS	rever	Line	TIMIT	Remark
	MHz	dBu∀	₫B	₫B	dBu₹	dBu∀	₫B	
1	0.150	52.42	0.25	10.78	63.45	66.00	-2.55	QP
2	0.180	27.54	0.25	10.77	38.56	54.50	-15.94	Average
3	0.185	47.61	0.25	10.77	58.63	64.24	-5.61	QP
4	0.200	23.75	0.25	10.76	34.76	53.62	-18.86	Average
1 2 3 4 5 6 7 8 9	0.226	22.08	0.25	10.75	33.08	52.61	-19.53	Average
6	0.404	30.02	0.25	10.72	40.99	57.77	-16.78	QP
7	0.614	31.49	0.22	10.77	42.48	56.00	-13.52	QP
8	0.634	21.57	0.21	10.77	32.55	46.00	-13.45	Average
	14.594	27.01	0.25	10.90	38.16	60.00	-21.84	QP
10	14.828	17.92	0.25	10.90	29.07	50.00	-20.93	Average
11	20.270	17.22	0.22	10.93	28.37	50.00	-21.63	Average
12	20.377	25.76	0.22	10.93	36.91	60.00	-23.09	QP

Line:

Trace: 7 : CCIS Shielding Room : FCC PART15 B QP LISN LINE : 21.5 Quad Core Media Player Site Condition

: Standard Housing : DT215-AC4-1080 Model Test Mode : Wifi mode Power Rating : AC 120V/60Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa Test Engineer: Viki

Remark

EUT

: Freq			Cable Loss	Level	Limit Line	Over Limit	Remark	
MHz	—dBu∀	<u>dB</u>	<u>dB</u>	dBu₹	—dBu∇	<u>d</u> B		
0.155	52.40	0.27	10.78	63.45	65.74	-2.29	QP	
0.175	48.65	0.27	10.77	59.69	64.72	-5.03	QP	
0.180	28.04	0.28	10.77	39.09	54.50	-15.41	Average	
0.226	21.46	0.27	10.75	32.48	52.61	-20.13	Average	
0.339	18.39	0.27	10.73	29.39	49.22	-19.83	Average	
0.624	27.19	0.24	10.77	38.20	56.00	-17.80	QP	
0.624	18.72	0.24	10.77	29.73	46.00	-16.27	Average	
0.686	18.34	0.22	10.77	29.33	46.00	-16.67	Average	
0.731	27.07	0.22	10.78	38.07	56.00	-17.93	QP	
0.994	23.33	0.25	10.87	34.45	56.00	-21.55	QP	
20.377	21.70	0.35	10.93	32.98	50.00	-17.02	Average	
20.594	29.72	0.37	10.92	41.01	60.00	-18.99	QP	
	MHz 0. 155 0. 175 0. 180 0. 226 0. 339 0. 624 0. 624 0. 686 0. 731 0. 994 20. 377	MHz dBuV 0.155 52.40 0.175 48.65 0.180 28.04 0.226 21.46 0.339 18.39 0.624 27.19 0.624 18.72 0.686 18.34 0.731 27.07 0.994 23.33 20.377 21.70	MHz dBuV dB 0.155 52.40 0.27 0.175 48.65 0.27 0.180 28.04 0.28 0.226 21.46 0.27 0.339 18.39 0.27 0.624 27.19 0.24 0.624 18.72 0.24 0.686 18.34 0.22 0.731 27.07 0.22 0.994 23.33 0.25 20.377 21.70 0.35	MHz dBuV dB dB 0.155 52.40 0.27 10.78 0.175 48.65 0.27 10.77 0.180 28.04 0.28 10.77 0.226 21.46 0.27 10.75 0.339 18.39 0.27 10.73 0.624 27.19 0.24 10.77 0.624 18.72 0.24 10.77 0.686 18.34 0.22 10.77 0.731 27.07 0.22 10.78 0.994 23.33 0.25 10.87 20.377 21.70 0.35 10.93	MHz dBuV dB dB dBuV 0.155 52.40 0.27 10.78 63.45 0.175 48.65 0.27 10.77 59.69 0.180 28.04 0.28 10.77 39.09 0.226 21.46 0.27 10.75 32.48 0.339 18.39 0.27 10.73 29.39 0.624 27.19 0.24 10.77 38.20 0.684 18.72 0.24 10.77 29.73 0.686 18.34 0.22 10.77 29.33 0.731 27.07 0.22 10.78 38.07 0.994 23.33 0.25 10.87 34.45 20.377 21.70 0.35 10.93 32.98	MHz dBuV dB dB dBuV dBuV 0.155 52.40 0.27 10.78 63.45 65.74 0.175 48.65 0.27 10.77 59.69 64.72 0.180 28.04 0.28 10.77 39.09 54.50 0.226 21.46 0.27 10.75 32.48 52.61 0.339 18.39 0.27 10.73 29.39 49.22 0.624 27.19 0.24 10.77 38.20 56.00 0.686 18.34 0.22 10.77 29.33 46.00 0.731 27.07 0.22 10.78 38.07 56.00 0.994 23.33 0.25 10.87 34.45 56.00 20.377 21.70 0.35 10.93 32.98 50.00	MHz dBuV dB dB dBuV dBuV dB 0.155 52.40 0.27 10.78 63.45 65.74 -2.29 0.175 48.65 0.27 10.77 59.69 64.72 -5.03 0.180 28.04 0.28 10.77 39.09 54.50 -15.41 0.226 21.46 0.27 10.75 32.48 52.61 -20.13 0.339 18.39 0.27 10.73 29.39 49.22 -19.83 0.624 27.19 0.24 10.77 38.20 56.00 -17.80 0.624 18.72 0.24 10.77 29.73 46.00 -16.27 0.686 18.34 0.22 10.77 29.33 46.00 -16.67 0.731 27.07 0.22 10.78 38.07 56.00 -17.93 0.994 23.33 0.25 10.87 34.45 56.00 -21.55 20.377 21.70 0.35	MHz

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)						
Test Method:	ANSI C63.4:2009 and KDB558074						
Limit:	30dBm						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.6 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Refer to FCC ID: 2AB6Z-1859ATMB						
Remark:	Test method refer to KDB558074 (DTS Measure Guidance) section 8.2, option 1.						

6.4 Occupy Bandwidth

1 3							
Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)						
Test Method:	ANSI C63.4:2009 and KDB558074						
Limit:	>500kHz						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.6 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Refer to FCC ID: 2AB6Z-1859ATMB						

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)
Test Method:	ANSI C63.4:2009 and KDB558074
Limit:	8dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.6 for details
Test mode:	Refer to section 5.3 for details
Test results:	Refer to FCC ID: 2AB6Z-1859ATMB

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Test Method:	ANSI C63.4:2009 and KDB558074					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:						
	Spectrum Analyzer E.U.T Non-Conducted Table					
Test Instruments:	Refer to section 5.6 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Refer to FCC ID: 2AB6Z-1859ATMB					

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205						
Test Method:	ANSI C63.4: 2009						
Test Frequency Range:	2.3GHz to 2.5GHz						
Test site:	Measurement Distance: 3m						
Receiver setup:	Frequency Detector RBW VBW Remark Above 1GHz Peak 1MHz 3MHz Peak Value						
11.14		Peak	1MHz	3MHz	Average Value		
Limit:	Freque Above 1	-	Limit (dBuV/ 54.0	0	Remark Average Value		
Test Procedure:	1. The EUT we the ground to determing to determing 2. The EUT we antenna, we tower. 3. The antennative ground Both horizon make the nate of the end of the end of the end of the end of the EUT have 10dB peak or average of the EUT to determine the limit specified the end of the EUT have 10dB peak or average and the end of the EUT have 10dB peak or average and the end of the EUT have 10dB peak or average and the end of the EUT have 10dB peak or average and the end of the EUT have 10dB peak or average and the end of the EUT have 10dB peak or average and the end of the	vas placed on to at a 3 meter cone the position vas set 3 meter thich was mour thich was mour to determine to the and vertice neasurement. Uspected emister the rota table maximum read ceiver system and width with sion level of the ecified, then te would be reported the position of the would be reported to the recipient would be reported to the recipient would to the recipient would to the reported to the recipient would be recipient would the recipient would be recipient would the recipient would be recipient would be recipient would the recipient would the recipient would the recipient would be recipient would would be recipient would would be recipient would be recipient would be recipient would be recipient w	amber. The of the highests away from the on the to ried from one he maximum al polarizations ion, the EU a was turned the was turned the was set to P Maximum He EUT in peasting could buted. Otherwas te re-tested	table was rest radiation. the interfer op of a variation are meter to for value of the ons of the are to heights from 0 degreak Detect old Mode. It was arranged to the extension of the emit one by one	rence-receiving able-height antenna our meters above he field strength. Intenna are set to higher to 4 hees to 360 degrees. Function and so 10dB lower than and the peak values ssions that did not be using peak, quasi-		
Test setup:	peak or average method as specified and then reported in a data sheet. Antenna Tower Horn Antenna Spectrum Analyzer Turn Table 0.8m Amplifier						
Test Instruments:	Refer to section	5.6 for details					
Test mode:	Refer to section	5.3 for details					
Test results:	Passed						

Measurement Data:

Test mode: 80)2.11b		Test channel: Lowest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
2390.00	23.63	27.58	6.63	0.00	57.84	74.00	-16.16	Vertical	
2390.00	22.84	27.58	6.63	0.00	57.05	74.00	-16.95	Horizontal	
Test mode: 80)2.11b		Test channel: Lowest			Remark: Average			
_	Dood	Α 1		J		ĺ		1	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
	Level	Factor	Loss	Factor			Limit	Polar.	

Test mode: 802.11b			Test channel: Highest			Remark: Peak			
Frequency	Read	Antenna	Cable	Preamp	Level	Limit Line	Over		
(MHz)	Level	Factor	Loss	Factor	(dBuV/m)	(dBuV/m)	Limit	Polar.	
(1711 12)	(dBuV)	(dB/m)	(dB)	(dB)	(dDd V/III)	(abav/iii)	(dB)		
2483.50	23.55	27.52	6.85	0.00	57.92	74.00	-16.08	Vertical	
2483.50	22.45	27.52	6.85	0.00	56.82	74.00	-17.18	Horizontal	
Test mode: 80)2.11b		Test channel: Highest			Remark: Average			
Fraguenay	Read	Antenna	Cable	Preamp	Level	Limit Line	Over		
Frequency	Level	Factor	Loss	Factor			Limit	Polar.	
(MHz)	(dBuV)	(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)		
2483.50	12.63	27.52	6.85	0.00	47.00	54.00	-7.00	Vertical	
2483.50	11.58	27.52	6.85	0.00	45.95	54.00	-8.05	Horizontal	

Test mode: 802.11g			Test channel: Lowest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
2390.00	27.55	27.58	6.63	0.00	61.76	74.00	-12.24	Vertical	
2390.00	27.36	27.58	6.63	0.00	61.57	74.00	-12.43	Horizontal	
Test mode: 80)2.11g		Test channel: Lowest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
2390.00	11.54	27.58	6.63	0.00	45.75	54.00	-8.25	Vertical	
2390.00	11.32	27.58	6.63	0.00	45.53	54.00	-8.47	Horizontal	

Test mode: 80)2.11g		Test char	nel: Highest		Remark: Pea		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
2483.50	23.66	27.52	6.85	0.00	58.03	74.00	-15.97	Vertical
2483.50	22.54	27.52	6.85	0.00	56.91	74.00	-17.09	Horizontal
Test mode: 80)2.11g		Test char	nel: Highest		Remark: Ave	erage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
2483.50	12.45	27.52	6.85	0.00	46.82	54.00	-7.18	Vertical
2483.50	11.36	27.52	6.85	0.00	45.73	54.00	-8.27	Horizontal

Remark:

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

Test mode: 80	02.11n-HT20)	Test char	nel: Lowest		Remark: Pea	Remark: Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
2390.00	33.26	27.58	6.63	0.00	67.47	74.00	-6.53	Vertical
2390.00	33.12	27.58	6.63	0.00	67.33	74.00	-6.67	Horizontal
Test mode: 80	02.11n-HT20)	Test char	nel: Lowest		Remark: Ave	erage	
Test mode: 80 Frequency (MHz)	02.11n-HT20 Read Level (dBuV)	Antenna Factor (dB/m)	Test char Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Remark: Ave Limit Line (dBuV/m)	Over Limit (dB)	Polar.
Frequency	Read Level	Antenna Factor	Cable Loss	Preamp Factor		Limit Line	Over Limit	Polar.

Test mode: 80	02.11n-HT20)	Test char	nel: Highest		Remark: Peak		
Frequency	Read	Antenna	Cable	Preamp	Level	Limit Line	Over	
(MHz)	Level	Factor	Loss	Factor	(dBuV/m)	(dBuV/m)	Limit	Polar.
(1011 12)	(dBuV)	(dB/m)	(dB)	(dB)	(ubuv/iii)	(abav/iii)	(dB)	
2483.50	23.45	27.52	6.85	0.00	57.82	74.00	-16.18	Vertical
2483.50	22.84	27.52	6.85	0.00	57.21	74.00	-16.79	Horizontal
Test mode: 80	02.11n -HT2	0	Test char	nel: Highest		Remark: Ave	erage	
Fraguenay	Read	Antenna	Cable	Preamp	Level	Limit Line	Over	
Frequency (MHz)	Level	Factor	Loss	Factor	(dBuV/m)		Limit	Polar.
(IVITZ)	(dBuV)	(dB/m)	(dB)	(dB)	(ubuv/iii)	(dBuV/m)	(dB)	
2483.50	13.33	27.52	6.85	0.00	47.70	54.00	-6.30	Vertical
2483.50	12.68	27.52	6.85	0.00	47.05	54.00	-6.95	Horizontal

Test mode: 80	02.11n -HT4	0	Test char	nel: Lowest		Remark: Peak			
Frequency	Read	Antenna	Cable	Preamp	Level	Limit Line	Over		
(MHz)	Level	Factor	Loss	Factor	(dBuV/m)	(dBuV/m)	Limit	Polar.	
(1711-12)	(dBuV)	(dB/m)	(dB)	(dB)	(ubu v/III)	(ubu v/III)	(dB)		
2390.00	22.69	27.58	6.63	0.00	56.90	74.00	-17.10	Vertical	
2390.00	21.36	27.58	6.63	0.00	55.57	74.00	-18.43	Horizontal	
Test mode: 80	02.11n -HT4	0	Test char	nel: Lowest		Remark: Ave	erage		
Fraguenay	Read	Antenna	Cable	Preamp	Level	Limit Line	Over		
Frequency (MHz)	Level	Factor	Loss	Factor	(dBuV/m)		Limit	Polar.	
(IVITZ)	(dBuV)	(dB/m)	(dB)	(dB)	(ubuv/III)	(dBuV/m)	(dB)		
2390.00	13.68	27.58	6.63	0.00	47.89	54.00	-6.11	Vertical	
2390.00	12.87	27.58	6.63	0.00	47.08	54.00	-6.92	Horizontal	

Test mode: 80	est mode: 802.11n -HT40		Test channel: Highest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
2483.50	22.88	27.52	6.85	0.00	57.25	74.00	-16.75	Vertical	
2483.50	21.94	27.52	6.85	0.00	56.31	74.00	-17.69	Horizontal	
Test mode: 80)2.11n -HT4	0	Test char	nel: Highest		Remark: Ave	erage		
				_			_		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
	Level	Factor	Loss	Factor			Limit	Polar.	

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)
Test Method:	ANSI C63.4:2009 and KDB558074
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	
	Spectrum Analyzer
	Non-Conducted Table
	Ground Reference Plane
Test Instruments:	Refer to section 5.6 for details
Test mode:	Refer to section 5.3 for details
Test results:	Refer to FCC ID: 2AB6Z-1859ATMB

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15.20	9 and 15.205		
Test Method:	ANSI C63.4:200)9			
Test Frequency Range:	9KHz to 25GHz				
Test site:	Measurement D	istance: 3m			
Receiver setup:					
	Frequency	Detector	RBW	VBW	Remark
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value
	Above 1GHz	Peak	1MHz	3MHz	Peak Value
	710000 10112	Peak	1MHz	3MHz	Average Value
Limit:		Т			
	Freque		Limit (dBuV		Remark
	30MHz-88		40.0		Quasi-peak Value
	88MHz-21		43.5 46.0		Quasi-peak Value
	216MHz-9 960MHz-		54.0 54.0		Quasi-peak Value Quasi-peak Value
	9001011 12-	IGHZ	54.0		Average Value
	Above 1	GHz	74.0		Peak Value
Test Procedure:	the ground to determin 2. The EUT wantenna, wantenna, watower. 3. The antennathe ground Both horizon make the make the make the maters and to find the materials and the materials	at a 3 meter at a 3 meter at a 3 meter at a 5 meter at a 5 meter at a 6 meter at a 7 meter at a 6 meter at a 6 meter at a 7 meter at a	camber. The to of the highesters away from unted on the to aried from one the maximum cal polarizations in the total polarizations as tuned to was turned to was turned to was set to Polarizations. In was set to Polarizations as the EUT in peasesting could be orted. Otherwall be re-tested	able was ro st radiation. the interfer op of a varia e meter to for a value of the ons of the an T was arran to heights of from 0 degre eak Detect old Mode. ak mode wa be stopped a vise the emi one by one	e 0.8 meters above tated 360 degrees rence-receiving able-height antenna our meters above the field strength. Intenna are set to a field strength are set to a field strength are set to a field strength. Intenna are set to a field strength are set to a field strength. Intenna are set to a field strength are set to a field strength. Intenna are set to a field strength are set to a field streng

Below 1GHz

Horizontal:

Site : 3m chamber

Condition : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL

21.5 Quad Core Media Player Standard Housing EUT

Model : DT215-AC4-1080 Test mode : Wifi mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55% 101KPa

Test Engineer: Viki REMARK :

		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq		Factor						Remark
-	MHz	dBu∜	<u>dB</u> /m	₫B	dB	$\overline{dBuV/m}$	dBu√/m	<u>dB</u>	
1	95.427	42.32	12.87	0.93	29.55	26.57	43.50	-16.93	QP
2	140.835	50.84	8.20	1.26	29.27	31.03	43.50	-12.47	QP
1 2 3	211.527	52.67	10.93	1.44	28.76	36.28	43.50	-7.22	QP
4	281.995	55.67	12.70	1.72	28.48	41.61	46.00	-4.39	QP
4 5	423.540	47.86	15.49	2.18	28.82	36.71	46.00	-9.29	QP
	629.477	39.77	18.57	2.72	28.84	32.22	46.00	-13.78	QP

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL : 21.5"Quad Core Media Player : Standard Houseng Condition

EUT

: DT215-AC4-1080 Model Test mode : Wifi mode Power Rating : AC120V/60Hz

Environment : Temp:25.5°C Huni:55% 101KPa Test Engineer: Viki REMARK :

EMAKK		200	11. 188				SUR 1031	~	
	Freq		Antenna Factor				Limit Line	Over Limit	Remark
	MHz	dBu₹			<u>d</u> B	dBuV/m	dBuV/m	dB	
1	121.549	42.39	10.19	1.13	29.38	24.33	43.50	-19.17	QP
2	211.527	43.83	10.93	1.44	28.76	27.44	43.50	-16.06	QP
3	281.995	52.11	12.70	1.72	28.48	38.05	46.00	-7.95	QP
4	423.540	40.76	15.49	2.18	28.82	29.61	46.00	-16.39	QP
5	480.528	38.35	16.07	2.35	28.92	27.85	46.00	-18.15	QP
6	636.134	46.36	18.59	2.75	28.82	38.88	46.00	-7.12	QP

Above 1GHz

Test mode: 80	02.11b		Test char	nnel: Lowest		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	45.33	31.54	10.58	40.22	47.23	74.00	-26.77	Vertical
4824.00	44.23	31.54	10.58	40.22	46.13	74.00	-27.87	Horizontal
Test mode: 80	02.11b		Test char	nnel: Lowest		Remark: Ave	erage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
	Level	Factor	Loss	Factor			Limit	Polar.

Test mode: 80	02.11b		Test char	nnel: Middle		Remark: Pea	ık	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	45.67	31.57	10.64	40.15	47.73	74.00	-26.27	Vertical
4874.00	44.87	31.57	10.64	40.15	46.93	74.00	-27.07	Horizontal
Test mode: 80	02.11b		Test char	nnel: Middle		Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	36.59	31.57	10.64	40.15	38.65	54.00	-15.35	Vertical
4874.00	36.23	31.57	10.64	40.15	38.29	54.00	-15.71	Horizontal

Test mode: 80	02.11b		Test char	nnel: Highest		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	45.81	31.61	10.70	40.08	48.04	74.00	-25.96	Vertical
4924.00	45.26	31.61	10.70	40.08	47.49	74.00	-26.51	Horizontal
Test mode: 80	02.11b		Test char	nnel: Highest		Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4004.00	37.66	31.61	10.70	40.08	39.89	54.00	-14.11	Vertical
4924.00	37.00	31.01	10.70	₹0.00	00.00	0 1.00		v 01 (10 (1)

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 80	02.11g		Test channel: Lowest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	44.26	31.54	10.58	40.22	46.16	74.00	-27.84	Vertical
4824.00	44.12	31.54	10.58	40.22	46.02	74.00	-27.98	Horizontal
Test mode: 80	02.11g		Test char	nel: Lowest		Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	37.85	31.54	10.58	40.22	39.75	54.00	-14.25	Vertical
4824.00	36.98	31.54	10.58	40.22	38.88	54.00	-15.12	Horizontal

Test mode: 80)2.11g		Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	45.77	31.57	10.64	40.15	47.83	74.00	-26.17	Vertical
4874.00	45.36	31.57	10.64	40.15	47.42	74.00	-26.58	Horizontal
Test mode: 80)2.11g		Test chan	nel: Middle		Remark: Ave	rage	
Frequency	Read	Antenna	Cable	Preamp			Over	
(MHz)	Level (dBuV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Limit (dB)	Polar.
				Factor			Limit	Polar. Vertical

Test mode: 8	02.11g		Test char	nnel: Highest		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	44.45	31.61	10.70	40.08	46.68	74.00	-27.32	Vertical
4924.00	44.27	31.61	10.70	40.08	46.50	74.00	-27.50	Horizontal
Test mode: 8	02.11g		Test char	nnel: Highest		Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	36.58	31.61	10.70	40.08	38.81	54.00	-15.19	Vertical
4924.00	36.25	31.61	10.70	40.08	38.48	54.00	-15.52	Horizontal

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 80	02.11n(H20)		Test char	nnel: Lowest		Remark: Pea	ık	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	44.25	31.54	10.58	40.22	46.15	74.00	-27.85	Vertical
4824.00	44.12	31.54	10.58	40.22	46.02	74.00	-27.98	Horizontal
Test mode: 80	02.11n(H20)		Test char	nnel: Lowest		Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	38.95	31.54	10.58	40.22	40.85	54.00	-13.15	Vertical
4824.00	38.46	31.54	10.58	40.22	40.36	54.00	-13.64	Horizontal

Test mode: 80	02.11n(H20)		Test char	nnel: Middle		Remark: Pea		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	45.77	31.57	10.64	40.15	47.83	74.00	-26.17	Vertical
4874.00	45.36	31.57	10.64	40.15	47.42	74.00	-26.58	Horizontal
Test mode: 80	02.11n(H20)		Test char	nnel: Middle		Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	35.69	31.57	10.64	40.15	37.75	54.00	-16.25	Vertical
4874.00	35.23	31.57	10.64	40.15	37.29	54.00	-16.71	Horizontal

Test mode: 80	02.11n(H20)	1	Test char	nnel: Highest		Remark: Pea	ık	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	47.82	31.61	10.70	40.08	50.05	74.00	-23.95	Vertical
4924.00	46.52	31.61	10.70	40.08	48.75	74.00	-25.25	Horizontal
Test mode: 80	02.11n(H20)		Test char	nnel: Highest		Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	36.55	31.61	10.70	40.08	38.78	54.00	-15.22	Vertical
4924.00	36.12	31.61	10.70	40.08	38.35	54.00	-15.65	Horizontal

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 80	02.11n(H40)		Test char	nnel: Lowest		Remark: Pea	ık	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4844.00	44.56	31.55	10.61	40.19	46.53	74.00	-27.47	Vertical
4844.00	44.25	31.55	10.61	40.19	46.22	74.00	-27.78	Horizontal
Test mode: 80	02.11n(H40)		Test char	nnel: Lowest		Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4844.00	37.25	31.55	10.61	40.19	39.22	54.00	-14.78	Vertical
4844.00	37.66	31.55	10.61	40.19	39.63	54.00	-14.37	Horizontal

Test mode: 80	02.11n(H40)		Test char	nnel: Middle		Remark: Pea		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	45.88	31.57	10.64	40.15	47.94	74.00	-26.06	Vertical
4874.00	45.23	31.57	10.64	40.15	47.29	74.00	-26.71	Horizontal
Test mode: 80	02.11n(H40)		Test char	nnel: Middle		Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	35.69	31.57	10.64	40.15	37.75	54.00	-16.25	Vertical
4874.00	35.26	31.57	10.64	40.15	37.32	54.00	-16.68	Horizontal

Test mode: 80	02.11n(H40)		Test char	nnel: Highest		Remark: Pea	ık	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4904.00	45.99	31.59	10.67	40.10	48.15	74.00	-25.85	Vertical
4904.00	45.56	31.59	10.67	40.10	47.72	74.00	-26.28	Horizontal
Test mode: 80	02.11n(H40)		Test char	nnel: Highest		Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4904.00	37.88	31.59	10.67	40.10	40.04	54.00	-13.96	Vertical
4904.00	37.25	31.59	10.67	40.10	39.41	54.00	-14.59	Horizontal

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.