## ARENA: Enhancing Abstract Refinement for Neural Network Verification

**Yuyi Zhong** 

Quang-Trung Ta

Siau-Cheng Khoo

National University of Singapore



#### Contributions

- Eliminate multiple adversarial labels for efficiency
- Multi-ReLU convex abstraction for precision
- Adversarial example detection for falsification
- A Tool ARENA
  - A CPU-based prototypical analyzer named ARENA (<u>A</u>bstract <u>Refinement Enhancer for Neural network verific Ation)
    </u>

#### Evaluation

• Improved precision vs. the state-of-the-art approximation based analyzers

## Robustness Analysis

#### • Robustness analysis with perturbation $\epsilon$

- The input space region  $\mathbb{R}$ :  $X_{i=1}^n[p_i-\epsilon,p_i+\epsilon]$
- All inputs  $\in \mathbb{R}$  , all classified as ground truth label

#### Input

Network to be verified, input space

#### Output

Verified / Falsified / Inconclusive



Image A



Image B

## Illustrative Example



Initial abstract interpretation (abstract domain designed by DeepPoly)

## Verify Robustness

- To prove that label 1 is the dominant label
  - Goal:  $y_1 y_2 > 0 \land y_1 y_3 > 0$
- From previous abstract values, we only obtain
  - $y_1 y_2 \ge -0.2$  and  $y_1 y_3 \ge -0.2$
  - Fail to ascertain robustness, need to eliminate adversarial label 2 and 3
- Refine the abstraction using linear programming (LP)
  - Constraint set = symbolic constraints of all neurons (network encoding  $\Pi$ ) +  $(y_1 y_2 \le 0 \ \lor y_1 y_3 \le 0)$
  - $\Pi \wedge ((y_1 y_2 \le 0) \vee (y_1 y_3 \le 0))$  encodes the existence of adversarial examples
  - Objective function = maximize/minimize neurons
  - LP solver returns tighter bounds, leading to a better abstraction
  - The tighter abstraction shows the existence of adversarial examples to be spurious

## Handle Disjunction in LP

- Constraint set  $\Pi \land ((y_1 y_2 \le 0) \lor (y_1 y_3 \le 0))$
- Linear programming does not naturally support the disjunction of linear inequalities
- To address the challenge, we compute the over-approximate convex hull P of  $(y_1-y_2\leq 0) \ \lor (y_1-y_3\leq 0)$  under  $\Pi$
- A convex hull is represented as a set of linear inequalities, LP is amenable to handle  $\Pi \wedge P$
- Leverage double description method to compute the convex hull P

## Convex Hull Computation



(a) The initial cubic polytope under  $\Pi$ 



(c) The  $(y_1 - y_3 \le 0)$  polytope under  $\Pi$ 



(b) The  $(y_1 - y_2 \le 0)$  polytope under  $\Pi$ 



(d) The convex hull of union of (b),(c)

- The convex hull  $(y_1 y_2 \le 0) \lor (y_1 y_3 \le 0)$  under  $\Pi$
- The convex hull *P* is defined as:

• 
$$-y_1 + y_2 + y_3 \ge 0$$

• 
$$y_2 \ge 0$$

• 
$$y_3 \ge 0$$

• 
$$-1 + 1.25y_1 \ge 0$$

• 
$$2 - y_1 \ge 0$$

• 
$$2 - y_2 \ge 0$$

• 
$$2 - y_3 \ge 0$$

• The constraint set  $\Pi \wedge P$  is now fully conjunct

## Refined Abstraction via LP Solving

Resolve input or unstable ReLU input intervals via LP solver



- Based on the new interval, the abstract values of other neurons are updated
- The abstraction of ReLU neuron is refined



## Multiple Adversarial Labels Elimination

Given the refined abstraction

• 
$$y_1 - y_2 \ge 0.2$$
 and  $y_1 - y_3 \ge 0.2$ 

- Making adversarial label 2 and 3 infeasible
- Label 1 is the dominant label, and robustness verified

#### System ARENA

#### Multiple adversarial labels elimination

- Encode multiple adversarial labels in LP solver and resolve tighter abstraction
- Tighter abstraction leads to infeasibility of adversarial labels

#### More precise ReLU encoding

 Adopt multi-ReLU convex abstraction in PRIMA, capturing the dependencies among ReLU neurons

#### Adversarial example detection

- A feasible constraint set indicates the possibility of a property violation.
- Check if the optimal solution from the LP solver constitutes an adversarial example

#### Evaluation

• MNIST/CIFAR10 test set; Compare with PRIMA, DeepSRGR, DeepPoly

| Neural Net    | $\epsilon$ | ARENA  |         |        | DeepSRGR |        | PRIMA  |       | DeepPoly |      |
|---------------|------------|--------|---------|--------|----------|--------|--------|-------|----------|------|
|               |            | Verify | Falsify | Time   | Verify   | Time   | Verify | Time  | Verify   | Time |
| MNIST_3_100   | 0.028      | 63     | 5       | 88.6   | 54       | 87.2   | 66     | 99.8  | 24       | 0.1  |
| MNIST_5_100   | 0.08       | 76     | 7       | 227.7  | 67       | 203.2  | 53     | 13.0  | 25       | 0.9  |
| MNIST_6_100   | 0.025      | 45     | 6       | 814.0  | 38       | 454.5  | 37     | 172.1 | 23       | 0.2  |
| MNIST_9_100   | 0.023      | 46     | 10      | 2725.6 | 34       | 1248.7 | 34     | 158.1 | 30       | 0.8  |
| MNIST_6_200   | 0.016      | 51     | 3       | 2430.0 | 35       | 1685.6 | 34     | 238.5 | 25       | 0.9  |
| MNIST_9_200   | 0.015      | 43     | 6       | 6284.5 | 36       | 4383.8 | 29     | 271.6 | 29       | 2.1  |
| CIFAR10_9_200 | 0.0011     | 9      | 4       | 6893.9 | 8        | 8192.6 | 7      | 478.9 | 6        | 10.6 |
| CIFAR10_6_500 | 0.0032     | 33     | 10      | 4190.7 | 27       | 6531.3 | 20     | 410.2 | 16       | 26.5 |

• On average, ARENA returns 18.7% more conclusive images than DeepSRGR; 22.1% more than PRIMA.

#### Verification Time

| Neural Net    | $\epsilon$ | ARENA  |         |        | DeepSRGR |        | PRIMA  |       | DeepPoly |      |
|---------------|------------|--------|---------|--------|----------|--------|--------|-------|----------|------|
|               |            | Verify | Falsify | Time   | Verify   | Time   | Verify | Time  | Verify   | Time |
| MNIST_3_100   | 0.028      | 63     | 5       | 88.6   | 54       | 87.2   | 66     | 99.8  | 24       | 0.1  |
| MNIST_5_100   | 0.08       | 76     | 7       | 227.7  | 67       | 203.2  | 53     | 13.0  | 25       | 0.9  |
| MNIST_6_100   | 0.025      | 45     | 6       | 814.0  | 38       | 454.5  | 37     | 172.1 | 23       | 0.2  |
| MNIST_9_100   | 0.023      | 46     | 10      | 2725.6 | 34       | 1248.7 | 34     | 158.1 | 30       | 0.8  |
| MNIST_6_200   | 0.016      | 51     | 3       | 2430.0 | 35       | 1685.6 | 34     | 238.5 | 25       | 0.9  |
| MNIST_9_200   | 0.015      | 43     | 6       | 6284.5 | 36       | 4383.8 | 29     | 271.6 | 29       | 2.1  |
| CIFAR10_9_200 | 0.0011     | 9      | 4       | 6893.9 | 8        | 8192.6 | 7      | 478.9 | 6        | 10.6 |
| CIFAR10_6_500 | 0.0032     | 33     | 10      | 4190.7 | 27       | 6531.3 | 20     | 410.2 | 16       | 26.5 |

- Not competitive in time
- We use the costly LP solver on CPU
- Future work: the solving process can be implemented on GPU

## Key Takeaways

#### ARENA: enhanced abstract refinement

- Eliminate multiple adversarial labels
- Conduct counterexample detection
- Achieve improved precision

#### Online resources

• GitHub repo:

https://github.com/arena-verifier/ARENA

 Full paper/report : https://jacksonzyy.github.io/homepage/files/VMCAI tech report.pdf

# Thank you! Q&A

## Backup1, Single-ReLU Encode

• Independent ReLU encode without considering the relationship of neurons in the same layer





## Backup1, Multi-ReLU Encode



- Multi-ReLU relaxation captures the dependency, and computes the convex abstraction of k-ReLU neurons via novel convex hull approximation algorithms.
- k=2, ReLU neurons  $y_1,y_2$  with inputs  $x_1,x_2$ , get a convex hull in  $(y_1,y_2,x_1,x_2)$  space
- $\{x_1 + x_2 2y_1 2y_2 \ge -2, y_1 \ge 0, y_2 \ge 0, -x_1 + y_1 \ge 0, -x_2 + y_2 \ge 0, 0.375x_2 y_2 \ge -0.75\}$
- $x_1 + x_2 2y_1 2y_2 \ge -2$  correlates  $(y_1, y_2, x_1, x_2)$  all together, which is beyond the single ReLU encoding.