Solving SuDoKu Using SET Operations

By

Pradeep Kashyap R. 8th sem CS 'A' USN: 4JC10CS403

Introduction

Sudoku is a logical, number placement Puzzle.

The objective is to fill 9x9 grid such that each row, each coloumn, and each 3x3 sub-grid to get values from 1-9 without repetition.

It Looks like this !!

Lets see how to solve!

Lets see how to solve!

		4			- 3	7		
	2	3	7	5			4	
7_		6	8			-3		1
3 –				9	_	4	9	
	4		9		7		6	
	7	9	3	6				5
4		7-			_1	5		2
	9			- m	5		-7	
		5	4	7		6		

Lets see how to solve!

9	8	4	1	2	3	7	5	6
1	2	3	7	5	6	9	4	8
7	5	6	8	4	9	3	2	1
3	6	1	5	8	2	4	9	7
5	4	2	9	1	7	8	6	3
8	7	9	З	6	4	2	1	5
4	3	7	6	9	1	5	8	2
6	9	8	2	3	5	1	7	4
2	1	5	4	7	8	6	3	9

Solving Using SETs

Why sets?

Properties of sudoku such as no "Repetition" of values in same row, same column and in the same Box (3x3 grid) and

Each cell can have a "Set" of Possible Values which can occupy it; makes SET suitable Data Structure.

UNION and DIFFERENCE and the most frequently used operations to solve Sudoku.

This technique determines whether a given sudoku is solvable without guess or not.

Implementation of SET using BitVector

Union Using OR-operation

Intersection Using AND-operation

Difference Using AND and Complement

Solving Using SETs

		4			3	7		
	2		7	5			4	
7		6	8			3		1
3				8		4	9	
	4		9		7		6	
	7	9		6				5
4		7			1	5		2
	9			3	5		7	
		5	4			6		

Solving Using SETs

Possible Values are

{ 1, 5, 8, 9 }

Possible Values are

{ 1, 8, 9 }

PossibleValues is/are { 5 }

Po	ossible { 1, 5		are		oleValu , 3, 8			
		4			3	7		
-	2		7	5			4	
7	—	6	8			3		1
3				8		4	9	
	4		9		7		6	
	7	9		6				5
4		7			1	5		2
	9			3	5		7	
		5	4			6		

Defining Possible Values Mathematically

$$C = \{ 1, 2, \dots, 9 \}$$

$$\forall 0 \leq i, j \leq 8$$

Cell[i][j].PossibleValues=

$$C - (row[i] \cup column[j] \cup Box(boxVal(i,j))$$

Where,

boxVal(i,j) =
$$\left(\begin{bmatrix} i/3 \end{bmatrix} \right) * 3 + \left(\begin{bmatrix} j/3 \end{bmatrix} \right)$$

Methods of solving sudoku Using SET operations

Basic Filling.

•Filling by Elimination.

- Filling By
 - Row Analysis.
 - Column Analysis.

Basic Filling:

In this technique cells whose cardinality of PossibleValues is one are filled, i.e.

If |PossibleValues| = 1 then fill the cell with the only value in the Set PossibleValues.

PossibleValues =			4			3	7		
[122456790]		2		7	5			4	
{ 1,2,3,4,5,6,7,8,9} -	7		6	8			3		1
({ 1,3,6,7,8 }	3				8		4	9	
{ 2,4,7,9}		4		9		7		6	
		7	9		6				5
{ 2,4,6,7})	4		7			1	5		2
		9			З	5		7	
			5	4			6		

PossibleValues =			4			3	7		
		2		7	5			4	
{ 1,2,3,4,5,6,7,8,9} -	7		6	8			3		1
({ 1,3,6,7,8 }	3				8		4	9	
{ 2,4,7,9}		4		9		7		6	
		7	9		6				5
{ 2,4,6,7})	4		7			1	5		2
_		9			3	5		7	
			5	4			6		

PossibleValues =			4			3	7		
		2		7	5			4	
{ 1,2,3,4,5,6,7,8,9} -	7		6	8			3		1
	3				8		4	9	
{ 1,2,3,4,6,7,8,9 }		4		9		7		6	
\bigcup		7	9		6				5
{ 2,4,6,7})	4		7			1	5		2
-		9			3	5		7	
			5	4			6		

PossibleValues =			4			3	7		
(122456700)		2		7	5			4	
{ 1,2,3,4,5,6,7,8,9} -	7		6	8			3		1
({ 1,2,3,4,6,7,8,9 })	3				8		4	9	
		4		9		7		6	
		7	9		6				5
	4		7			1	5		2
		9			3	5		7	
			5	4			6		

Using this method, all Sudokus of 'very easy' and 'easy' level are solvable.

Very few Sudoks of 'medium' level can also be solved.

Methods of solving sudoku Using SET operations :Filling by Elimination

Filling By elimination:

In this technique, a cell 'c' in a box 'b' is filled with a value 'x' if 'x' is not a PossibleValue in other cells in the same box 'b'. i.e.

'x' can appear only in the cell 'c' of the box 'b'

Defining Mathematically: Filling by Elimination

If a cell 'j' is under consideration in the BOX 'i' then

Result = BOX[i] . cell[j]. Possible Values
$$0$$
 BOX[i]. cell [q]. Possible Values, Where, $q \neq j$

If |Result| = 1 then cell[j] = Result

Result= $\{4,5,6,9\}$ — $(\{1,4,7\} \cup \{4,6\} \cup \{4,6\} \cup \{2,4,7,9\} \cup \{1,2,4,7,9\} \cup \{2,4,9\})$

				9		8	2	5
		8						1
	3				5		6	
			3			4		
8	1		4		9		3	6
		7			2			
	2		5				9	
6						7		
5	7	1		3				

Result= {4,5,6,9} __ {1, 2, 4, 6, 7, 9}

				9		8	2	5
		8						1
	3				5		6	
			3			4		
8	1		4		9		M	6
		7			2			
	2		5				9	
6						7		
5	7	1		3				

Result= {5}

				9		8	2	5
	5	8						1
	3				5		6	
			3			4		
8	1		4		9		3	6
		7			2			
	2		5				9	
6						7		
5	7	1		3				

Methods of solving sudoku Using SET operations :Filling by Elimination

Using this method, all Sudokus of 'medium' are solvable.

Methods of solving sudoku Using SET operations: Filling by Row / Column Analysis

Filling By Row Analysis:

In this technique, a cell 'c' of a row 'r' is filled with a value 'x' if 'x' is not a Possible Value in any of the other cell in the same row. i.e.

A cell in a row is filled with a value if it cannot appear in any other cell in the same row

Methods of solving sudoku Using SET operations: Filling by Row / Column Analysis

Filling By Column Analysis:

In this technique, a cell 'c' of a column 'L' is filled with a value 'x' if 'x' is not a Possible Value in any of the other cell in the same column. i.e.

A cell in a column is filled with a value if it cannot appear in any other cell in the same column

		9		5	7	2	6	3
		5	2			4		
			9			5	8	1
		2	7			1		4.
	5						3	
3		4			1	6		
5	1				2			
		7			8	9		
		8	6	7		3	1	

Analyzing This Row for 1

Analyzing This Column for 1 Q

Is Filling by Row / Column Analysis necessary to solve and determine whether a sudoku is solvable without guess ??

YES

	1	5	8	2	6	4	9	7	3
Analyzing This Row for 2	6	4	7	0)	ო	1	2	8	5
	9	3	2	5	7	8			6
	2		3		5	9			7
		7	9			6	5	(n)	
	5		6	3		7		9	
	7	9)	4	6	1	2	3	5	8
	3	6	1	8	9	5	7	2	4
	8	2	5	7	4	3			9

Defining Mathematically: Row / column Analysis

If a cell 'j' is under consideration in the ROW 'r' then

Result = cell[r][j].PossibleValues —
$$\bigcup_{q=0}^{8}$$
 Cell[r][q]. PossibleValues, Where, $q \neq j$

If |Result| = 1 then cell[r][j] = Result

Defining Mathematically: Row / column Analysis

If a cell 'j' is under consideration in the Coloumn 'L' then

If |Result| = 1 then cell[j][L] = Result

		9		5	7	2	6	3
		5	2			4		
			9			5	8	1
		2	7			1		4
	5						В	
3		4			1	6		
5	1				2			
		7			8	9		
	•	8	6	7		3	*	A

Result= $\{1,2,4,5\}$ — $(\{2,4,9\} \cup \{2,4,9\} \cup \{4,5,9\} \cup \{2,5\})$

		9		5	7	2	6	3
		5	2			4		
			9			5	8	1
		2	7			1		4
	5						3	
3		4			1	6		
5	1				2			
		7			8	9		
		8	6	7		3	, 1	

Result= {1,2,4,5} — {2, 4, 5, 9}

{1}

Using this method, almost all Sudokus of 'Hard' level can be solved.

Not all Sudokus are solvable Without guess

2	6	8	7	9	1	5	3	4
5	7	1	4	ო	6	9	80	2
9	3	4	5	8	2	1	6	7
7	8		2	1	3 🖟	4		6
1		6	8	4	7	3	2	
3	4	2	6	5	9	7	1	8
6			3	2	4	8		1
4	1		9	6	8	2		
8	2		1	7	5	6	4	

Tools and languages Used.

Languages Used:

- C++ (Backend)
- Java (Frontend) swings

Tools:

- LaTex (Reporting).
- OpenOffice (presentation).

Lets execute the program!

Comparision and conclusion

- The technique discussed can solve and decide whether a sudoku is solvable without guess or not.
- Set Data structre and associated operation in O(1) helped to solve sudoku in O(n³)
- Set Data structre was efficient interms of both memory and time.
- we were able to give a mathematical solution to SuDoKu

Comparision and conclusion

- Lot of algorithms exist for generating Sudokus and not for solving them.

General Brute force techniques take

O (nⁿ) for backtracking technique

Without Set Data Structure.

$$O(n^2 x (4n^2 (3n)) = O(n^2 x 12n^3) = O(n^5)$$

Comparision and conclusion

Using Set Data strucature it reduces to

$$n^2 \times (4(1)(3n)) = O(n^3)$$

Thank you:)

Questions ??