STRIDE Threat Modellin g

Learning Outcomes

- Threat Landscape
- Identifying Threats with STRIDE
- Elements of STRIDE
- Properties of STRIDE

What is the current status?

THE THREAT LANDSCAPE

Overview

1. The Threat Landscape

- 2. Threat Actors
- 3. Attack Vectors
- 4. Stride and Threat

What is Threat Landscape?

- The threat landscape is a list of threats and the associated threat actors and attack vectors.
 - threats
 - attack methods (vectors)
 - threat actors
 - exploits
 - vulnerabilities

Factors leading to a change?

- Exploitable vulnerabilities
- Assets value
- Threat actors capabilities
 - skills
 - tools
 - resources
 - motivation
- Introduction of new technology

The Threat Landscape & Risk Landscape

- A threat landscape contains ...
 - vulnerabilities, assets, threats, countermeasures.
- A risk landscape
 - is more comprehensive
 - is based on a threat landscape
 - impact, likelihood
 - mitigation controls for the potential threats

Overview

- 1. The Threat Landscape
- 2. Threat Actors
- 3. Attack Vectors
- 4. Stride and Threat

Threat Actor

Definition

- threat actor indicates an individual or group that can manifest a threat [OWASP].
 - Internal
 - External
- Capabilities + Intentions + Past Activities.

* OWASP - Open Web Application Security Project is an online community which creates freely-available articles, methodologies, documentation, tools, and technologies in the field of web application security.

Threat Actors - Who are they?

- Cybercriminals
- Online Social Hackers
- Hacktivists
- Nation States
- Corporations
- Employees
- Cyber Fighters
- Cyber Terrorists

Overview

- 1. The Threat Landscape
- 2. Threat Actors
- 3. Attack Vectors
- 4. Stride and Threat

Attack vectors

Definition

- a path or a tool that a threat actor uses to gain access to a system in order to deliver a malicious outcome.
- "how" to achieve a successful attack?
- e.g. malicious emails, attachments, web pages, deception, code injection, etc.

How to describe a Cyber Attack?

- A generic description of the attack
 - an asset
 - its weakness/vulnerability
 - the techniques
 - the consequences
- Description format
 - a threat actor applies ... techniques to exploit the vulnerabilities of the... system/assets, thus gaining access to achieve their ... goals. This has resulted in the consequences of ...

Overview

- 1. The Threat Landscape
- 2. Threat Actors
- 3. Attack Vectors
- 4. Stride and Threat

Background

- Developed by Praerit Garg and Loren Kohnfelder @ Microsoft
- Defines security threats into 6 categories
- Process of threat modelling

Element	Description	Security Property
S		
Т		Integrity
R		
- 1		Confidentiality
D		Availability
Е		

Element	Description	Security Property
S		Authentication
Т		Integrity
R		Non-repudiability
- 1		Confidentiality
D		Availability
Е		Autorisation

Element	Description	Security Property
S	Spoofing – Attacker or program successfully identifies as another by falsifying data	Authentication
Т		Integrity
R		Non-repudiability
- 1		Confidentiality
D		Availability
Е		Autorisation

Element	Description	Security Property
S	Spoofing – Attacker or program successfully identifies as another by falsifying data	Authentication
Т	Tampering - Attacker attempts to modify data that's exchanged between system components or component & user	Integrity
R		Non-repudiability
- 1		Confidentiality
D		Availability
Е		Autorisation

Element	Description	Security Property
S	Spoofing – Attacker or program successfully identifies as another by falsifying data	Authentication
Т	Tampering - Attacker attempts to modify data that's exchanged between system components or component & user	Integrity
R	Repudiation - Attacker performs an action with the system or component that is not attributable	Non-repudiability
- 1		Confidentiality
D		Availability
Е		Autorisation

Non-repudiation

Definition:

A property achieved through a method to protect against an individual or entity falsely denying having performed a particular action related to data.

Extended Definition:

Provides the capability to determine whether a given individual took a particular action such as creating information, sending a message, approving information, and receiving a message.

Element	Description	Security Property
S	Spoofing – Attacker or program successfully identifies as another by falsifying data	Authentication
Т	Tampering - Attacker attempts to modify data that's exchanged between system components or component & user	Integrity
R	Repudiation - Attacker performs an action with the system or component that is not attributable	Non-repudiability
- 1	Information disclosure - Attacker is able to read the private data that the system is transmitting or storing	Confidentiality
D		Availability
Е		Autorisation

Element	Description	Security Property
S	Spoofing – Attacker or program successfully identifies as another by falsifying data	Authentication
Т	Tampering - Attacker attempts to modify data that's exchanged between system components or component & user	Integrity
R	Repudiation - Attacker performs an action with the system or component that is not attributable	Non-repudiability
- 1	Information disclosure - Attacker is able to read the private data that the system is transmitting or storing	Confidentiality
D	Denial of service - An attacker can prevent the passengers or system components from accessing each other	Availability
Е		Autorisation

Element	Description	Security Property
S	Spoofing – Attacker or program successfully identifies as another by falsifying data	Authentication
Т	Tampering - Attacker attempts to modify data that's exchanged between system components or component & user	Integrity
R	Repudiation - Attacker performs an action with the system or component that is not attributable	Non-repudiability
- 1	Information disclosure - Attacker is able to read the private data that the system is transmitting or storing	Confidentiality
D	Denial of service - An attacker can prevent the passengers or system components from accessing each other	Availability
Е	Elevation of privilege - Gain elevated access to resources that are normally protected from an application or user	Autorisation

Element	Description	Security Property
S	Spoofing	Authentication
Т	Tampering	Integrity
R	Repudiation	Non-repudiability
1	Information disclosure	Confidentiality
D	Denial of service	Availability
Е	Elevation of privilege	Autorisation

How to identify threats using stride

- At all levels: networks, devices... ask how each of the attack forms might occur
- Record your assumptions too, how might they be broken?
- Detailed designs create additional attack surface
- Assess them
- Build in defences
- Security controls
- Security is an "arms race": defences create their own attack surfaces

How do you know what could go wrong?

Think like an attacker?

May be hard. Can you think like a professional chef?

Implies making assumptions which may prove incorrect

Implies knowing motivation

Or can we do it systematically, not requiring a single brilliant guru?

Trust Boundaries

- Everywhere where trust assumptions change
- Between principals
- Do all subsystems trust each other?
- Is there a network involved?
- Semi-permeable: firewalls, air gaps, policies, access control (hard!)

Security shouldn't be an afterthought

(but it is... most of the time!)

Finding out problems afterwards, harder to fix

- Static check of code line by line
- Pen testing takes time
- Await bug reports what about the current system state?

Rather:

- Describe system to be built (in complete detail)
- What could possibly go wrong/ be attacked? (map all attack surfaces)
- What defences to include (SPoF? Defence in Depth, think outside the box)
- Iterate and evaluate

Threat Modellin g and Attack Trees

Threat Modelling

- Security doesn't have meaning unless you know specifics
 - Secure from who?
 - Secure for how long?
- We need a way to model threats against our secure systems to help:-
 - Understand the many ways in which a system can be attacked
 - Understand who the attackers are as well as their abilities, motivations, and goals
 - To install proper countermeasures to deal with these threats

Threat Modeling Overview

- Vulnerabilities are unmitigated threats Here's our opportunity!
- Threat modeling consists of Assets, Threats and Attacks Assets are what you want to protect
- Threats live forever; they are the attacker's goal
- Attacks are how an attacker can realize a threat
- Vulnerabilities are design or implementation errors that allow an attack to succeed
- Very hard to write secure solutions unless you understand your Assets, Threats and Attacks If done right, provides more ROI than any other security activity

What is Threat Modeling?

- •A powerful way to identify potential threats, visualize risk and understand the security of the software system
- •Multi-disciplinary effort in which all team members think about and address threats •A way for architects to realize and mitigate design problems
- •A road map for developer to write secure code
- •A starting point to create robust security minded test plans
- •The most reliable way to:
- •Understand the security implications of system architecture •Find business-process and system-level security issues •Ensure you get the most impact for your security investment

Why Threat Model?

- •Creates a common understanding amongst technical and management stakeholders
- •Ensures design and code is written to protect critical assets •Allows organizations to:
- •Make better decisions throughout development
- •Prioritize security efforts according to true risk
- •Understand your organization's weaknesses
- •Weigh security designs against functional design goals •Step into the mind of an attacker and identify attack vectors

A World Without Threat Modeling

- •Important assets are left unprotected •Many assets aren't even identified
- •Team doesn't understand key threats to the system •Developers code defensively but leave gaps
- •Mitigations are in place but they block the wrong attacks •Low risk areas are well protected, high risk areas left open •Testing is conducted with a one-size-fits-all solution
- •Reliance on scanning tools and vendors with canned test plans

What a Threat Model Isn't

- •A representation of how an attacker approaches a system
- •Represents system security, not an attacker model
- A test plan
- •Test plans should be based on a TM, but a TM offers more than just test planning ●A formal proof of system security
- •This is not achievable on complex systems
- A design review
- •Design review is the next level of action after the Threat Model is completed

Attack Trees

- Provide a formal, methodical way of describing system security based on varying attacks
- We do this by representing an attack against a system in a tree like structure
- We start with the goal as the root node
- We list the different ways of achieving that goal as leaf nodes

Attack Tree Nodes

- Green nodes represent alternative ways in which the node can be realised (OR nodes)
- Blue nodes depict processes or procedures for accomplishing the node (AND)
- Grey rectangles are leaf nodes
 - Leaf nodes are the points of interaction between the adversary and the target

Interaction

Attack Tree Node Possibilities

- Assign possibility to leaf nodes
- Impossible action cannot be accomplished under any circumstance
- Possible action is possible depending upon other factors
- Assigning values depend on
 - Specific knowledge of target
 - General knowledge of target
- An OR node is possible if <u>ANY</u> of its leaf nodes are possible
- An OR node is impossible if <u>ALL</u> of its leaf node are impossible
- An AND node is possible only if <u>ALL</u> leaf node are possible
- An AND node is impossible only if <u>AT LEAST ONE</u> leaf node is impossible

Attack Tree Node Specialist Equipment

- Depending on the target and specific node determines if any special equipment is required
- Specialist equipment could include
 - Electronic Hardware
 - Software
 - Services
 - Specialist tools
- Specialist equipment will influence likelihood of attack as well as attack cost
- A stage requiring specialist equipment may make that stage impossible depending upon attackers resources

No Special Equipment Required

Special Equipment Required

Attack Tree Node Costs and Countermeasures

- Nodes will often vary in importance
- All attacks will have associated cost
- Assigning costs to nodes can determine the expense in that particular attack
- High costs may reduce the likelihood of an attack
- A low cost attack will thus increase the likelihood
- Countermeasures can be put in place to mitigate a potential attack
- Cost of attack can influence costs of countermeasures

Attack Tree Example with Countermeasures

