Aula 06

- Usinabilidade dos Materiais e

Vida de Ferramentas -

Conceito de usinabilidade

Usinabilidade

"Na usinagem com remoção de cavacos verifica-se que os diversos materiais se comportam de modo distinto, sendo que alguns podem ser trabalhados com grande facilidade, enquanto que outros oferecem uma série de problemas ao operador"

Usinabilidade

- Descreve todas as dificuldades que um material apresenta na sua usinagem.
- Compreende todas as propriedades de um material que têm influência sobre o processo de usinagem.

Definição: Usinabilidade pode ser definida como sendo a capacidade dos materais de peça em se deixarem usinar

Conceito de usinabilidade

Os critérios de usinabilidade dependem:

- do matrial da peça
- grau de deformação
- presença e tipos de elementos de liga
- presença de impurezas
- outros

Fatores de influência na usinabilidade

Material da peça: composição química, microestrutura, dureza, propriedades mecânicas, rigidez, etc..

Ferro Fundido Nodular – GGG70 Aço 1020 Recozido - Estrutura Ferrítica-Perlítica Recuperação

Fatores de influência na usinabilidade

Processo e condições de usinagem: material e geometria da ferramenta, condições de trabalho, fluido de corte, rigidez do sistema, tipo de operação, etc.

Critérios de Usinabilidade

• Formação de cavaco

• Forças de usinagem

Critérios de Usinabilidade

• Abrasividade – grau de desgaste da ferramenta

• Tipo de cavaco

Critérios de Usinabilidade

Qualidade superficial

→ Grau de tensão residual induzido na superfície

→ Grau de dano térmico induzido na superticie

→ Critérios de

→ Outros

Ações para minimizar os efeitos da má usinabilidade

- na ferramenta
 - → material
 - → geometria da ferramenta
 - → uso de revestimento
- no processo
 - → velocidade
 - → avanço
 - → profundidade de corte
 - → uso de meios lubri-refrigerantes
- no material da peça
 - → elementos de liga
 - → controle no processo de obtenção/fabricação anteriror usinagem
 - → alívio de tensões e tratamentos térmicos

- a Desgaste de Cratera
- b Desgaste de Flanco no Gume Principal
- Desgaste de Flanco
 no Gume Secundário

- VB Largura média de desgaste de flanco.
- VB_{máx} Largura máxima de desgaste de flanco.
- SVα Deslocamento lateral do gume na direção do flanco.
- KB Largura de cratera.
- KF Largura do lábio no desgaste de cratera.
- KM Distância da borda
 da ferramenta ao
 centro da cratera.
- KT Profundidade de cratera.
- SVγ Deslocamento lateral do gume na direção da face.

Desgaste de cratera e de flanco (VB)

- VB Largura média de desgaste de flanco.
- VB_{máx} Largura máxima de desgaste de flanco.
- **SV**α Deslocamento lateral do gume na direção do flanco.
- KB Largura de cratera.
- KF Largura do lábio no desgaste de cratera.
- KM Distância da borda da ferramenta ao centro da cratera.
- KT Profundidade de cratera.
- SVγ Deslocamento lateral do gume na direção da face.

Desgaste de flanco (VB)

- VB Largura média de desgaste de flanco.
- VB_{máx} Largura máxima de desgaste de flanco.
- SVα Deslocamento lateral do gume na direção do flanco.
- KB Largura de cratera.
- KF Largura do lábio no desgaste de cratera.
- KM Distância da borda da ferramenta ao centro da cratera.
- KT Profundidade de cratera.
- **SV**γ Deslocamento lateral do gume na direção da face.

Exemplo de desgaste de flanco

Desgaste na face – desgaste de cratera

- VB Largura média de desgaste de flanco.
- VB_{máx} Largura máxima de desgaste de flanco.
- **SV**α Deslocamento lateral do gume na direção do flanco.
- KB Largura de cratera.
- KF Largura do lábio no desgaste de cratera.
- KM Distância da borda da ferramenta ao centro da cratera.
- KT Profundidade de cratera.
- **SV**γ Deslocamento lateral do gume na direção da face.

Exemplo de desgaste de cratera

Lascamento de gume

- Forças de corte excessivas;
- Corte interrompido;
- Material da peça com inclusões duras.

Exemplo de desgaste por adesão

Causas e mecanismos de desgaste

- Danos no gume devido a solicitações
- Adesão
- Abrasão mecânica
- Oxidação
- Difusão
- outros

(Velocidade de Corte; Avanço e outros fatores)

Mecanismos de desgaste

Formas de avaliação do desgaste

Medição direta

- inspeção visual com comparação de padrões (lupas)
- mecânica (paquimetros, micrômetros, outros)
- óptica (microscópios de ferramentaria)
- óptica/eletrônica (cameras CCD)

Medição indireta

- aumento das vibrações
- aumento do ruído
- piora da qualidade
- rejeição dimensional
- aumentos das forças outros

Vida da ferramenta

Tipos de solicitações na ferramentas de corte

Conceito de vida da ferramenta

Período no qual uma ferramenta pode ser mantida usinando de forma econômica

O critério econômico pode ser relacionado principalmente com a elevação dos custos de produção associados a necessidade de retrabalhos, perda de produção (sucateamento de peças), tempo de máquinas parada, aumento do consumo de energia, aumento no consumo de ferramentas, etc.

Critérios de fim de vida

São critérios que são utilizados para determinar quando uma ferramenta deve ser substituída no processo.

Definição: Vida de ferramenta é o tempo que esta resiste do início do corte até a sua utilização total

 A vida é relacionada a um certo critério de fim de vida sob certas condições de usinagem

Desgaste em ferramentas de corte

Forma	Efeito	Causas	Soluções
Flanco	Acabamento ruim	Veloc. Corte altas	Diminuir α
	Tolerância fora	Ferram. sem resist.	Ferram. mais resist.
Cratera	Acabamento ruim	Abrasão	Aumentar y
	Tolerância fora	Difusão	Diminuir f e Vc
Lascamentos	Acabamento ruim	Corte interrompido	Ferram. mais tenaz
	Tolerância fora	Ferram. frágil, vibr.	Fluido (muito ou nada)
Deformações	Acabamento ruim	Altas temperaturas	Ferram. mais dura
	Tolerância fora	Altos avanços,	Diminuir f e Vc

Critérios de fim de vida

- Falha completa da ferramenta
- Falha preliminar da ferramenta
- Desgaste de flanco (VB) ou de cratera (KT)
- Vibrações (monitoramento)
- Acabamento superficial ruim
- Rebarbas
- Alterações nos cavacos
- Alterações nas dimensões de corte
- Alterações nas forças de usinagem (monitoramento)
- Aumentos nas temperaturas

Critérios de fim de vida

Os critérios são relacionado ao nível de desgaste na ferramenta, e suas conseqüências diretas :

- desvios nas tolerâncias dimensionais
- desvios nas tolerâncias geométricas
- perda de qualidade superficial da peça
- aumento no nível de vibrações no processo
- aumento no nível de esforços no processo
- aumento do custo de reafiação da ferramenta

Principais critérios de fim de vida

- → Falha completa da ferramenta
- → Falha preliminar da ferramenta
- → Desgaste de flanco (VB) ou de cratera (KT)
- → Vibrações (monitoramento)
- → Acabamento superficial ruim
- → Rebarbas
- → Alterações nos cavacos
- → Alterações nas dimensões de corte
- → Alterações nas forças de usinagem (monitoramento)
- → Aumento nas temperaturas

Critério Vida da Ferramenta

Formas de determinação da vida

- Testes de longa duração
 - Resultados precisos
 - Tempo, quantidade de material e custo elevados
- Testes rápidos
 - Só trazem valores de comparação
 - Econômicos

Influência da Velocidade de Corte na Vida da Ferramenta

Influência do Avanço na Vida da Ferramenta

Influência da Profundidade de Corte na Vida da Ferramenta

Teste de vida de ferramentas

Testes de torneamento – temperatura

- Teste de longa duração utilizado quando o fator dominante na vida da ferramenta é a temperatura
- v_c e f constantes até a destruição total da ferramenta (desgaste hiperproporcional)
- Constar no relatório os instantes em que aparecem ruídos, modificações nos cavacos, marcas na peça e tempo total para destruição da ferramenta
- No torneamento longitudinal, escolher quatro velocidades de corte que proporcionam vidas entre 5 e 60 minutos
- Usualmente empregado aço rápido HS 10-4-3-10;

Testes de torneamento – curva de vida

- Em papel log-log são traçadas as curvas de T
 = f(v_c)
- A equação da melhor reta que representa o comportamento da curva da vida é a equação de Taylor:

$$T = v_c^k . C_v$$

T Vida v Velocidade de corte η Inclinação da curva v_c Material da peça Ck 45 Material da ferramenta S 10-4-3-10

Modificações da equação de Taylor

-
$$\mathbf{v}_c = \mathbf{T}^{1/k} \cdot \mathbf{C}_T$$
 ou $\mathbf{v}_c \cdot \mathbf{T}^{-1/k} = \mathbf{C}_T$ onde $\mathbf{C}_T = \mathbf{C}_v^{-1/k}$

- Eixos de coordenadas
 - C_v (vida T para $v_c = 1$ m/min)
 - C_T (v_c para vida T = 1min)
- O fator k é a inclinação da reta (k = tan η_v)

Curvas de vida de ferramentas

Dispõe-se de um torno para a pré-usinagem de 5 eixos do aço ABNT 4340, com um diâmetro bruto de 102 mm e um comprimento de 300 mm. A diferença de diâmetros não deverá ser maior que 0,09 mm ao final do 5° eixo (neste torno não é possível corrigir a posição da ferramenta).

Geometria da ferramenta:

- $\alpha = +5^{\circ}$
- $\alpha' = +5^{\circ}$
- $\gamma = +6^{\circ}$
- $\lambda = 0^{\circ}$
- $\kappa = 90^{\circ}$
- $\varepsilon = 60^{\circ}$
- R_{ϵ} = 1,2 mm

Desta forma pergunta-se:

- a) Qual a marca de desgaste de flanco VB admissível, para que a diferença de diâmetro permaneça na faixa tolerável de 0,09 mm (observar geometria da ferramenta)
- b) Determine o avanço, para que com a ferramenta nova tenhamos uma rugosidade cinemática de R₁=0,001 mm

Desta forma pergunta-se:

- c) O comportamento de desgaste da pastilha empregada na usinagem do aço ABNT 4340 foi determinada experimentalmente. Na faixa de velocidades de 100 e 160 m/min o comportamento de desgaste é exponencial, e num gráfico bilogarítmico representado por retas (figura). Quais são as constantes da equação de Taylor? Qual a vida da ferramenta para uma velocidade de corte de 100m/min?
- d) Qual a vida da ferramenta (T) para uma velocidade de 100m/min, tendo como critério de fim de vida VB=0,3mm?

Fórmulas

$$T = V_c^{k} \cdot C_V$$

$$R_{t} = \frac{f^{2}}{8 \cdot r_{\varepsilon}}$$

Material: ABNT 4340

Quantidae: 05 peças

a) Qual a marca de desgaste de flanco VB admissível, para que a diferença de diâmetro permaneça na faixa tolerável de 0,09 mm (observar geometria da ferramenta)

•
$$\alpha$$
 = +5°

•
$$\alpha' = +5^{\circ}$$

•
$$\gamma = +6^{\circ}$$

•
$$\lambda = 0^{\circ}$$

•
$$R_{\epsilon}$$
 = 1,2 mm

b) Determine o avanço, para que com a ferramenta nova tenhamos uma rugosidade cinemática de R₁=0,001 mm

$$R_{t} = \frac{f^{2}}{8 \cdot r_{\varepsilon}} \qquad f = \sqrt{(8R_{t}r_{\varepsilon})}$$

Dados

- $R_{t} = 0.001 \text{ mm}$
- R_{ϵ} = 1,2 mm

c) Quais são as constantes da equação de Taylor?

Qual a vida da ferramenta para uma velocidade de corte de 100m/min?

$$T = V_c^k C_v$$

Testes de torneamento – desgaste

- Executados quando o desgaste, e não a temperatura, é determinante no fim da vida da ferramenta
- Ferramentas de metal duro e aço rápido em altas velocidades de corte apresentam desgastes de flanco e cratera
- Mantendo-se v_c constante acompanha-se a evolução do desgaste no flanco e na face
- Medidas de desgaste
 - Marca de desgaste de flanco VB
 - Profundidade de cratera KT
 - Afastamento médio da cratera KM

Testes de torneamento – desgaste

 Os valores são plotados em gráficos log-log onde são traçadas as curvas de VB ou a relação de desgaste K = f(t_c)

$$T_{VB} = f(v_c)$$
 ou $T_K = f(v_c)$

- Destas curvas pode-se obter:
 - → A velocidade de corte para determinada vida
 - → As duas equações para as formas de desgaste, marca de desgaste ou profundidade de cratera
 - → Normalmente as curvas são mais inclinadas para desgastes de cratera do que para desgastes de flanco

Testes de torneamento – desgaste

$$T_{VB} = f(v_c)$$
 ou $T_K = f(v_c)$

Ensaios v_{cF} com variação contínua da velocidade de corte

Adequado para:

- Supervisão de fornecimento de materiais
- Determinação da usinabilidade de materiais tratados termicamente de maneira diferente

Testes de torneamento – critério de força

Medição de força de usinagem

Testes de torneamento – critério de força

Força específica de corte e propriedades mecânicas de aços carbono.

Critério de força – Equação de Kienzle

- Função das características do material;
- Função da seção de corte

$$F_c = b \cdot h^{(1-m_c)} \cdot k_{c1.1}$$

Onde:

 F_c = força de corte [N];

b = largura de usinagem [mm];

h = espessura de corte [mm];

 $k_{c1.1}$ = pressão específica de corte para um cavaco de 1x1 mm² [N/mm²];

(1-mc) = coeficiente angular da reta

Critério de força – Equação de Kienzle

$$F_c = b \cdot h^{(1-m_c)} \cdot k_{c1.1}$$

Critério de força – Qualidade superficial

Rugosidade cnemática teórica

- A rugosidade cinemática, é decorrente do raio de quina da ferramenta e do movimento relativo entre peça e ferramenta
- No torneamento, é influenciada principalmente pela forma do gume e pelo avanço

Influência da velocidade de corte sobre a rugosidade da peça:

Dependência entre a rugosidade média R_a e o tempo de corte

