Data Structures and Algorithms

Prof. Ganesh Ramakrishnan, Prof. Ajit Diwan, Prof. D.B. Phatak

Department of Computer Science and Engineering IIT Bombay

Session: Quick-Sort

QuickSort: Sorting by Randomized Divide and Conquer

- Pick a random (pivot) element \underline{x} and **Divide** the n-element sequence to be sorted into two sub-sequences \underline{L} and \underline{G}
 - ightharpoonup L has elements less than x
 - lacktriangledown G has elements greater than x
 - E has elements equal to x
- Sort the two subsequences L and G recursively using merge conquersort.
- Merge the sorted subsequences L, E and G to produce the sorted answer.

$$9,7,\underline{2},\underline{6},8,\underline{1},\underline{4}\rightarrow$$

$$2,1,\underline{4}\rightarrow$$

Quick Sort Algorithm

```
Algorithm QuickSort(S)
                                                    Input: Sequence S
                                                    Output: Sequence S sorted in increasing order
1. Let p be the random position of pivot in S
2 (S_1, S_2) = \operatorname{partition}(S, p) \ //S_1 \text{ contains (positions of)}
elements with value less than S[p] and S_2 contains
                                                                  value greater than p: consider simpler case when p= 5.1ength()
                                                                  3. QuickSort(S_1) 7 (angues
                                                                  4. QuickSort(S_2)
                                                                  5. S' = \text{Merge}(S_1, p) //\text{Merge same as before}
                                                                  6. S = \text{Merge}(S', S_2)

The second of t
                                                   end if
```

parhthen $(5, p) = S_1, S_2$ VES[P]] = Heratur over for j= l to P.13 of S...[e, P-1] 15 S[j] SV } (414) X KSi S[K] SV S[i] => S[i] k>i 5[K]>1 S[it] -> S[P] H/w: What old p that is a random index?

- When S[p] is consistently the unique minimum or maximum element of S
- Case for unique minimum is illustrated below Lots of Swops one of S_1 or S_2 has size length(S)-1 and other has 0

- When S[p] is consistently the unique minimum or maximum element of S
 - Case for unique minimum is illustrated below
- One of S_1 or S_2 has size length(S) 1 and other has 0

- When S[p] is consistently the unique minimum or maximum element of S
 - Case for unique minimum is illustrated below
- One of S_1 or S_2 has size length(S) 1 and other has 0

- When S[p] is consistently the unique minimum or maximum element of S
 - ► Case for unique minimum is illustrated below
- lacksquare One of S_1 or S_2 has size length(S)-1 and other has 0

- When S[p] is consistently the unique minimum or maximum element of S
 - Case for unique minimum is illustrated below
- One of S_1 or S_2 has size length(S) 1 and other has 0

- When S[p] is consistently the unique minimum or maximum element of S
 - Case for unique minimum is illustrated below
- lacksquare One of S_1 or S_2 has size length(S)-1 and other has 0

- When S[p] is consistently the unique minimum or maximum element of S
 - ▶ Case for unique minimum is illustrated below
- One of S_1 or S_2 has size length(S) 1 and other has 0
- $\sum_{n=1}^{\infty} (n-q)$

Prof. Ganesh Ramakrishnan, Prof. Ajit Diwan, Prof. D.B. Phatak

- When S[p] is consistently the unique minimum or maximum element of S
 - ▶ Case for unique minimum is illustrated below
- One of S_1 or S_2 has size S.length 1 and other has 0
- \blacksquare \Longrightarrow Runtime is proportional to $n+n-1+n-2\dots 2+1$
- $\blacksquare \implies \mathsf{Runtime} = \Theta(n^2)$

Fixed Proportion splitting Analysis of Quick-Sort

n

merge cos

n

- If sequence is split based on 'fixed' proportion p at each step:
 - Recursion will terminate at d such that, $p^{d-1}n=1$ (if p<0.5)
 - or $(1-p)^d n = 1$ (if 1-p < 0.5)
- Since p < 1 (and also 1 p < 1), $d = \Theta(\log n)$ (min $\{p, 1, p, 3\}$) n = 1Amount of work done at each level $i = \Theta(n)$ (d-1)log (p) + log(n)
- $\blacksquare \implies \mathsf{total} \; \mathsf{runtime} = \Theta(n \log n)$
- Is solution to recurrence $T(n) \leq T(pn) + T((1-p)n) + cn$
- Also holds if the split prop. is upper bounded by p (or 1-p)

Average Case Analysis of Quick-Sort

- Proof Sketch: show that the average number of comparisons of pairs (i,j) made across all calls to the "partition" subroutine $= O(n \log n)$
 - Also prove that this is the most frequently invoked of all steps
 - Ref: Section 7.4.2 of the Second Edition of CLR

merge cost

n

$$X_{ij} = 1$$
 if $S[i]$ got compared with $S[j]$
 $S_{ij} = [i \ j]$
 $P_{r}(x_{ij} = 1) = P_{r}(i \text{ is chosen as pivol})$
 $P_{s}(j \text{ is chosen as pivol})$
 $P_{s}(j \text{ is chosen as pivol})$

$$P_{r}(x_{ij}=1) = P_{r}(i \text{ is chosen as prob})$$

$$+ P_{s}(j \text{ is chosen as prob})$$

$$+ P_{s}(j \text{ is chosen as prob})$$

$$= \frac{1}{J-i+1} + \frac{1}{J-i+1}$$

$$E[x] = Z Z E[x_{ij}] = Z Z \frac{2}{J-i+1} = \sum_{i=1}^{n-1} \sum_{k=1}^{n} \frac{2}{k+1}$$

$$\leq Z Z \frac{2}{K} = Z O(lg n) = O(nlg n)$$

Thank you