DATA SHEET

数据手册

GM7150BN/ GM7150BC

低功耗 NTSC/PAL 视频解码器

2014.4

成都振芯科技股份有限公司

GM7150BN/GM7150BC

GM7150BN/ GM7150BC						
 版本记录: 1.1		当前版本时间: 2014 年 4 月				
新旧版本改动比	比较:					
旧版	当前版本	主题(和旧版本相比的主要变化)				
文档页数	文档页数	土燃(神山成本相比的土安文化)				
33	33	修改公司名称				

如果您有技术、交付或价格方面的任何问题,请联系成都振芯科技股份有限公司的相关办公室或当地的代理商,或访问官方网站: http://www.corpro.cn 谢谢!

编制时间: 2014年4月

由成都振芯科技股份有限公司发布

发布地点:成都

成都振芯科技股份有限公司版权所有

GM7150BN BC

1 概述

GM7150 是一款 9 位视频输入预处理芯片,该芯片采用 CMOS 工艺,通过 I2C 总线与 PC 或 DSP 相连构成应用系统。

它内部包含 1 个模拟处理通道,能实现 CVBS、S-Video 视频信号源选择、A/D 转换、自动钳位、自动增益控制(AGC)、时钟发生(CGC)、多制式解码、亮度/对比度/饱和度控制(BCS)。

2 特征

- a) 1个30MSPS 9位A/D转换器
- b) 支持 NTSC (M/J/4.43), 和 PAL (B/D/G/H/I/M/N/NC) 的 CVBS、S-Video 视频解码
- c) 2个模拟视频输入端口供使用选择
- d) 可对芯片编程进行白峰(White peak)控制、自动增益控制、抗混叠滤波
- e) 可编程视频输出格式:
 - -8bit 4:2:2 ITU-R BT.656 YCbCr, AV 码内嵌行、场同步信号
 - -8bit 4:2:2 ITU-R BT.601 YCbCr 和行、场同步信号输出
- f) 可编程 HSYNC/VSYNC 的输出位置、宽度及 FID 输出
- g) 可进行亮度、对比度、饱和度(BCS)控制
- h) 带有色度瞬态增强(CTI)、色度自动增益控制处理
- i) 自适应 2D-5 线梳状滤波器和色度陷波器
- j) 自动视频标准检测(NTSC/PAL)和切换
- k) 专利设计结构,能对弱信号、有噪声或不稳信号进行行、场锁定处理
- 1) 采用 14.31818MHz 单一时钟频率晶体
- m) 片内时钟产生,内含 DDS、PLL 进行行锁系统时钟频率产生
- n) 实时状态控制 (RTC) 输出
- o) 带有 I2C 总线, 400kbits/s 数据率
- p) 具有低功耗模式及上电复位操作
- q) LQFP32 或 QFN32 封装

3 订购须知

表 1 订购须知

型号	封装				
空亏	封装形式	外形简述	备注		
GM7150BN	LOFP32	薄型四侧引脚扁平封装,32			
GM1/150BIN	LQFF32	引线,外形 7mm*7mm*1.4mm			
CM7150DC	OEN22	四侧无引脚扁平封装,32			
GM7150BC	QFN32	引线,外形 5mm*5mm*0.75mm			

4 封装及引脚功能说明

GM7150 采用 LQFP32 或 QFN32 封装,如下图所示。

GM7150BN_BC

图 1 GM7150 引脚排布图

该芯片的各引脚功能描述见表 2:

表 2 芯片引脚功能说明

	表 2 心片引脚切能说明					
引脚 号	引脚名	方向	说明			
1	AIP1A	In	CVBS/Y 模拟视频输入			
2	AIP1B	In	CVBS/C 模拟视频输入			
3	PLL_AGND	G	模拟 PLL1.8V 接地			
4	PLL_AVDD	P	模拟 PLL1.8V 电源			
5	XTAL1/OSC	In	晶振输入			
6	XTAL2	Out	晶振输出			
7	AGND	G	模拟 1.8V 接地			
8	RESETB	In	复位信号:在 PDN=1 时才可用 0:复位状态 1:工作状态			
9	PCLK/SCLK	Out	像素时钟或行锁时钟输出			
10	IO_DVDD	P	3.3V 数字电源			
11	YOUT7/I2CSEL	Inout	多功能端口,端口内部带 pull-down 电阻 -YCbCr 数据, bit7, MSB -I2C 总线从机寻址: 0: 写地址为 0xB8、读地址为 0xB9 1: 写地址为 0xBA、读地址为 0xBB			
12	YOUT6	Out	YCbCr 数据,bit6			
13	YOUT5	Out	YCbCr 数据,bit5			
14	YOUT4	Out	YCbCr 数据,bit4			

GM7150BN_BC

15	YOUT3	Out	YCbCr 数据,bit3
16	YOUT2	Out	YCbCr 数据,bit2
17	YOUT1	Out	YCbCr 数据,bit1
18	YOUT0	Out	YCbCr 数据,bit0,LSB
19	DGND	G	数字接地
20	DVDD	P	数字 1.8V 电源
21	SCL	In	I2C 时钟
22	SDA	Inout	I2C 数据
23	FID/GLCO	Out	FID: 奇偶场信号或场锁定信号, 当输出奇偶场信号时逻辑 1 表示奇场信息 GLCO: 色度锁相环步长信息的序列输出, 外围设备可从 这端口获取色度频率步长控制字, 在 RTC 模式下, 序列时 序时钟是 SCLK/4
24	VSYNC/PALI	Out	VSYNC:场同步信号 PALI: PAL 行指示信号或行锁定指示信号
25	HSYNC	Out	行同步输出
26	AVID	Out	有效视频标志信号输出
27	INTREQ/GPCL/VBLK	Inout	INTREQ:中断请求输出 GPCL/VBLK:复用控制逻辑,这个端口有两个功能: GPCL: 固定电平输出,固定电平由 I2C 配置决定 VBLK: 场消隐信号输出,指示输出视频信号的场消隐期间,起始和结束位置由 I2C 配置决定
28	PDN	In	功耗模式控制,端口内部带 pull-up 电阻 0: 低功耗 1: 正常模式
29	REFP	P	ADC 参考电源
30	REFM	G	ADC 参考地
31	CH_AGND	G	1.8V 模拟电源接地
32	CH_AVDD	P	1.8V 模拟电源

5 功能描述

5.1 模拟处理和 A/D 转换

下图是模拟处理和 ADC 的功能框图。这模块提供到所有视频输入的模拟接口。它有 2 个输入端,源选择器,视频钳位,视频放大,A/D 转化和增益调整。

图 2 模拟处理的功能框图

5.1.1 视频输入开关控制

解码器有 1 个模拟通道,能够支持 2 个视频输入端口。用户可以由 I2C 配置来进行视频输入的切换。2 个模拟视频输入可以用于不同输入模式。输入源选择由 I2C 的地址 00H 寄存器来配置。

5.1.2 模拟输入钳位和增益处理

钳位控制电路部分控制模拟输入信号的钳位电平,模拟输入端的一对电容用于钳位电压的保持及滤波。内部数字钳位比较器产生上钳和下钳控制信号。通常,钳位时间位置设在视频信号的行消隐后肩的 HCL 期间。

增益控制电路通过 I²C 总线可将模拟通道设置为静态增益级别,或者自动增益级别。 亮度的增益控制用于放大/衰减 CVBS/YC 信号,以达到所需的电压幅度,满足 ADC 输入 电压范围。通常,自动增益控制有效时间位置设在视频信号的同步底期间。

白峰控制能够限制信号过冲的增益,使钳位和自动增益控制导致的电压改变被自动消除。

图 3 模拟行的钳位(HCL)和增益(HCL)范围

5.2 数字视频处理

ADC 量化后的视频数据经数字视频处理转化成 YCbCr 信号。

图 4 复合信号和 S-video 处理

图 4 是 GM7150 数字复合视频信号处理电路框图。该电路接收复合信号或 S-video 的数字化信号,进行 Y/C 分离和 BCS 调整。

5.2.1 色度处理

9 位数字色度信号(数字 CVBS 数据或者 Y/C 的色度数据)被送入正交解调器,正交解调器需要的两个副载波信号由色同步处理模块提供,解调器输出经低通滤波器后得到色差信号。

GM7150BN BC

色同步处理模块提供色度 PLL 的反馈环路,产生与色度副载波同频同相的本地载波信号,包含以下内容:

- 副载波有效区间累加器:
- 色彩识别和色彩屏蔽;
- 比较标准副载波幅度与实际副载波幅度(只适合 PAL 和 NTSC);
- 环路滤波器色度增益控制(只适合 PAL 和 NTSC):
- 环路滤波器色度 PLL (只在 PAL 和 NTSC 标准有效)。

色差信号经过下采样被送入 5-line 自适应梳状滤波器。色度梳状滤波器是实现亮色分离的关键,用于消除色差信号中的亮度串扰成分,得到实际的色度分量信号,经重调制之后与输入复合信号相减,得到完整的亮度信号,实现 Y/C 的准确分离,自适应梳状滤波可兼容 PAL 和 NTSC 两种复合视频信号制式。梳状滤波器可根据需要关断和开启,若关闭梳状滤波,Y/C 分离过程由色度陷波滤波器实现。

梳状滤波器输出的色差信号,经色度瞬态增强(CTI)模块提高色度信号对比度。

色度空间转换完成 YUV 至 YCbCr 的转换后,经亮度/对比度/饱和度(BCS)模块处理后输出最终的色差信号 Cb 和 Cr, BCS 包括以下功能:

- 色度信号的自动增益控制 (AGC):
- 色度信号幅度匹配;
- 色度 Hue 调整:
- 色度饱和度调整;
- 限制 YCbCr 在 1 到 254 范围内 (符合 ITU-R BT 601 标准);

另一方面,在解调过程中需要保存载波信号相位信息,梳状滤波输出的色度分量信号按照对应的载波相位信息进行重调制,产生色度信号 C,以便进一步完成 Y/C 分离。

最后,经过处理的信号送到可调 Y-延时补偿单元和输出接口。输出接口模块主要功能是输出格式转换器和输出控制逻辑。

5.2.2 亮度处理

9 位亮度信号(数字 CVBS 数据或者亮度数据(S-VHS、HI8))首先经过行延时补偿器,匹配色度梳状滤波器的行延时,然后从 CVBS 中减去解调后色差信号再调制的色度 C信号,就可以得到完整的亮度信息,完成 Y/C 分离;同时,亮度信息的也可以采用色度陷波器来完成,只是会造成高频(特别是载频附近)的亮度信息丢失。

分离后的亮度信号经过峰化滤波、格式转换以及亮度对比度调整后,送至输出接口。

5.3 时钟电路

内部线路锁定锁相环 (PLL) 生成系统和像素时钟。 14.31818 MHz 的时钟需要驱动 PLL。从 PIN5 (XTAL1) 输入到解码器上,或通过 PIN5 和 PIN6 14.31818MHz 晶振相连。如果一个平行谐振电路用于如下图, 那么外部电容器必须具有下列关系:

$$C_{L1} = c_{L2} = 2C_L - C_{STRAY}$$

GM7150BN_BC

图 5 参考时钟结构

5.4 **实时控制**(RTC)

虽然解码器是行锁系统,但色度 burst 信息可用来确定色度副载波频率和相位。这可以保证非标准视频信号的准确的色度副载波频率和相位关系。内部色度副载波频率控制字 PLL 和副载波相位复位位通过端口 23 (GLCO) 传送. 色度副载波频率控制字是一个 23 位二进制数。该频率可由以下公式计算:

$$F_{PLL} = \frac{F_{ctrl}}{2^{23}} \times F_{sclk}$$

 F_{PLL} 是色度副载波 PLL 的频率, F_{ctrl} 是 23 位 PLL 频率控制字, F_{sclk} 是系统工作时钟。

图 6 GLCO 和 RTC 输出序列时序图

5.5 输出格式

表 3 显示可用的输出模式

GM7150BN_BC

引脚名	引脚号	8 位 4:2:2 YCbCr(ITU-R BT601)	8 位 4:2:2 YCbCr(ITU-R BT656)
Y_7	11	Cb7, Y7, Cr7	Cb7, Y7, Cr7
Y_6	12	Cb6, Y6, Cr6	Cb6, Y6, Cr6
Y_5	13	Cb5, Y5, Cr5	Cb5, Y5, Cr5
Y_4	14	Cb4, Y4, Cr4	Cb4, Y4, Cr4
Y_3	15	Cb3, Y3, Cr3	Cb3, Y3, Cr3
Y_2	16	Cb2, Y2, Cr2	Cb2, Y2, Cr2
Y_1	17	Cb1, Y1, Cr1	Cb1, Y1, Cr1
Y_0	18	Cb0, Y0, Cr0	Cb0, Y0, Cr0

表3输出格式

表 4 行频,数据率和像素/行计数点

标准	行像素点	行有效像	行数	像素频率	色度副载波	行頻(kHz)
		素点		(MHz)	频率(MHz)	
601 采样						
NTSC-J, M	858	720	525	13.5	3.579545	15.73426
NTSC-4.43	858	720	525	13.5	4.43361875	15.73426
PAL-M	858	720	525	13.5	3.57561149	15.73426
PAL-B, D, G,	864	720	625	13.5	4.43361875	15.625
Н, І						
PAL-N	864	720	625	13.5	4.43361875	15.625
PAL-Nc	864	720	625	13.5	3.58205625	15.625

5.5.1 分离同步信号

VS, HS 和 VBLK 基于像素计数的独立可从软件编程。525 行和 625 行视频输出的默认设置可由下图看出。FID 信号当场同步信号的上升沿来时切换。

图 7 525 行系统的场同步信号

GM7150BN_BC

图 8 625 行系统的场同步信号

图 9 8 位 4:2:2 输出模式的行同步信号

5.5.2 嵌入同步信号

在 AVID 信号的上升和下降沿插入 SAV 和 EAV 码。这种码有 F 和 V 位,表 5 给出 SAV 和 EAV 码的格式。

	D7(MSB)	D6	D5	D4	D3	D2	D1	D0
辅助码	1	1	1	1	1	1	1	1
辅助码	0	0	0	0	0	0	0	0
辅助码	0	0	0	0	0	0	0	0
状态位	1	F	V	Н	P3	P2	P1	P0

表 5 SAV/EAV 序列

5.6 I2C 总线接口

5.6.1 总线格式

表 6 写过程

C	CLAVE ADDDECC W	ACV =	CLIDADDDECC	ACV =	DATA (N. DVTEC)	ACV =	ъ
S	SLAVE ADDRESS W	ACK-s	SUBADDRESS	ACK-s	DATA(N BYTES)	ACK-s	P

GM7150BN_BC

表7 读流程

S	SLAVE ADDRESS W	ACK-s	SUBADDRESS	ACK-s	
Sr	SLAVE ADDRESS R	ACK-s	DATA(N BYTES)	ACK-m	P

表 8 符号描述表

符号	说明
S	起始条件
Sr	重复起始条件
SLAVE ADDRESS W	从机寻址,写操作,芯片默认地址为 B8(I2CSEL=1'b0)或为
	BA(I2CSEL =1'b1)
SLAVE ADDRESS R	从机寻址,读操作,芯片默认地址为 B9(I2CSEL =1'b0)
	或为 BB(I2CSEL =1'b1)
ACK-s	从机响应
ACK-m	主机响应
DATA n	第 n 个数据
DATA n+1	第 n+1 个数据
P	停止条件
SUB ADDRESS	内部寄存器地址

表 9 I2C 总线寄存器

功能	地址	读/写	芯片默认值
视频源输入选择	00	读/写	00
模拟通道控制	01	读/写	15
工作模式控制	02	读/写	00
端口信号输出控制	03	读/写	01
制式自动检测范围	04	读/写	DC
Reserved	05	_	_
色度 Killer	06	读/写	10
亮度处理控制 1	07	读/写	60
亮度处理控制 2	08	读/写	40
明度控制	09	读/写	80
色度饱和度控制	0A	读/写	80
色度色调控制	0B	读/写	00
亮度对比度控制	0C	读/写	80
视频输出格式选择	0D	读/写	47
亮度处理控制 3	0E	读/写	00
端口输出选择	0F	读/写	08
Reserved	10	_	_
AVID 起始位置 MSB	11	读/写	00
AVID 起始位置 LSB	12	读/写	00
AVID 结束位置 MSB	13	读/写	00

GM7150BN_BC

AVID 结束位置 LSB	14	读/写	00
RTC	15	读/写	01
HSYNC 初始位置	16	读/写	80
Reserved	17	_	_
VBLK 初始行	18	读/写	00
VBLK 结束行	19	读/写	00
色度处理控制 1	1A	读/写	0C
Chrom_ctl2	1B	读/写	14
中断源 B 清除寄存器	1C	读/写	00
中断源 B 使能	1D	读/写	00
中断源 B 配置 1	1E	读/写	00
Reserved	1F~27	_	_
视频标准控制	28	读/写	00
Reserved	29~2B	_	_
Cb 增益系数	2C	只读	00
Cr 增益系数	2D	只读	00
Reserved	2E∼2F	_	_
656 版本选择	30	读/写	00
Reserved	31~7F	_	_
MSB of device ID	80	只读	71
LSB of device ID	81	只读	50
ROM major version	82	只读	03
ROM minor version	83	只读	00
行计数 MSB	84	只读	_
行计数 LSB	85	只读	_
中断源 B 状态寄存器	86	只读	_
中断源 B 配置 2	87	只读	_
状态寄存器 1	88	只读	_
状态寄存器 2	89	只读	_
状态寄存器 3	8A	只读	_
状态寄存器 4	8B	只读	_
状态寄存器 5	8C	只读	
Reserved	8D∼BF	_	
中断源 A 状态寄存器	C0	读/写	00
中断源 A 使能	C1	读/写	00
中断源 A 配置	C2	读/写	04
Reserved	C3~CB	_	
行中断	CA	读/写	00
Reserved	CC∼FF	_	

GM7150BN_BC

5.6.2 总线说明

5.6.2.1 视频源输入选择寄存器

子地址	00h
默认	00h

7	6	5	4	3	2	1	0
				黑屏输出使			
	保	留		能	保留	输入选择	信号 [1:0]

表 10 模拟通道和视频模式选择

河路性十	게 松格 -		音号 MODE[1:0]
视频模式	输入选择	1	0
CVBS	AIP1A(默认)	0	0
	AIP1B	1	0
S-video	AIP1A (Y), AIP1B(C)	X	1

黑屏输出:

0: 正常操作(默认)

1: 黑屏输出模式

5.6.2.2 模拟通道控制寄存器

子地址	01h
默认	15h

7	6	5	4	3	2	1	0
	保留		1	自动偏移控制		自动增	益控制

第4位:必须被赋值为1。

自动偏移控制AUTO_OFFSET:

00:不进行自动偏移控制

01:自动偏移模式(默认)

10: 保留

11:偏移保留前值。 自动增益控制AGCC:

00: 不进行自动控制(为固定值)

01: 自动增益模式(默认)

10: 保留

11:增益保留前值。

5.6.2.3 工作模式控制寄存器

	- 11 12
子地址	02h
默认	00h

7	6	5	4	3	2	1	0
	色度副载波参				色度副载波	亮度峰化	
保留	考使能	TV/V	CR模式	白峰使能	PLL使能	使能	省电模式

GM7150BN_BC

色度副载波参考使能CBRE:

0:AGC的色度副载波参考关闭(默认)

1:AGC的色度副载波参考使能

TV/VCR模式TV_VCR:

00:通过内部电路进行自动检测(默认)

01:保留

10:VCR(非标准信号)模式

11:TV (标准信号) 模式

在自动检测模式下,输入视频带有不稳定或非标准同步信息将进入VCR模式,在VCR模式下会关闭梳状滤波器同时 打开色度陷波器。

白峰使能WPKD:

0:白峰保护使能(默认)

1:白峰保护关闭

色度副载波PLL使能HOLDC:

0: 色度副载波PLL使能(默认)

1: 色度副载波PLL

亮度峰化使能LPKD:

0: 亮度峰化使能(默认)

1: 亮度峰化关闭

省电模式PWRDN:

0: 正常工作(默认)

1: 省电模式,ADC和内部时钟关闭

5.6.2.4 端口信号输出控制寄存器

子地址	03h
默认	01h

7	6	5	4	3	2	1	0
	GPCL	GPCL输	锁定	YCbCr输	HSYNC, VSYNC/PALI, AVID,	场消隐	时钟输出使
VBKO	端口	出使能	状态	出使能	FID/GLCO输出使能	美/开	能

VBKO(端口27)功能选择:

0: GPCL(默认)

1: VBLK

注: 当这端口不作为输出端口时,不能让它悬空,推荐外围加个10K欧的下拉电阻。

GPCL端口GPCLP(基于第6位的输出使能状态):

0: GPCL输出0(默认)

1: GPCL输出1

GPCL输出使能GPCLOE:

0: 不输出GPCL(默认)

1: 输出GPCL

注: 0F寄存器的第2位是1时, GPCL不能为0

锁定状态HVLK(和0F寄存器一起配置,见图10:

0: VSYNC/PALI输出PAL行标志信号,FID/GLCO输出FID信号(默认)

GM7150BN_BC

1: VSYNC/PALI输出行锁定标志(HLK)信号,FID/GLCO输出场锁定标志(VLK)信号

YCbCr输出使能OEYC:

- 0: YOUT[7:0]高阻(默认)
- 1: YOUT[7:0]输出

HSYNC, VSYNC/PALI, AVID, FID/GLCO输出使能OERT:

- 0: HSYNC, VSYNC/PALI, AVID, FID/GLCO高阻(默认)
- 1: HSYNC, VSYNC/PALI, AVID, FID/GLCO输出

场消隐关/开VBLK:

- 0: VBLK关闭(默认)
- 1: VBLK开启

时钟输出使能LLCE:

- 0: 时钟SCLK输出高阻
- 1: 时钟SCLK输出(默认)

图 10 端口复用的控制图

5.6.2.5 制式自动检测范围寄存器

子地址	04h
默认	DCh

7	6	5	4	3	2	1	0
保	留	保留	N443_OFF	PALN_OFF	PALM_OFF	保	留

NTSC 4.43(N443_OFF):

0:自动切换包括NTSC 4.43

GM7150BN_BC

1:自动切换不包括NTSC 4.43 (默认)

(Nc) PAL(PALN_OFF):

0:自动切换包括(Nc) PAL

1:自动切换不包括(Nc) PAL(默认)

(M) PAL(PALM_OFF):

0:自动切换包括(M) PAL

1:自动切换不包括(M) PAL(默认)

5.6.2.6 色度 Killer 寄存器

子地址	06h
默认	10h

7	6	5	4	3	2	1	0
保留	自动色	度Killer		色	度Killer阈值 [4	:0]	

自动色度Killer:

00: Automatic 模式 (默认)

01:保留

10:自动色度Killer开启,CbCr被置为零色状态

11:自动色度Killer关闭

色度Killer阈值:

11111 = -30dB (最小值)

10000 = -24 dB (默认)

00000 = -18 dB(最大值)

5.6.2.7 亮度处理控制寄存器 1

子地址	07h
默认	60h

7	6	5	4	3	2	1	0
保留	7.5IRE基底	1	保留		亮度信号	延时 [3:0]	

7.5IRE基底:

0:7.5 IRE基底加在模拟视频输入信号上

1: 7.5 IRE基底不加在模拟视频输入信号上(默认)

亮度信号延时[3:0]: 亮度信号相对于色度信号以每个像素时间增量为单位的延迟。

1111 = -8个像素延时

1011 = -4个像素延时

1000 = -1个像素延时

0000 = 无延时 (默认)

0011 = +3个像素延时

0111= +7个像素延时

5.6.2.8 亮度处理控制寄存器 2

子地址	08h
默认	40h

GM7150BN_BC

7	6	5	4	3	2	1	0
	Luma滤波						
保留	器选择			伢	発留		

Luma滤波器选择:

1:亮度自适应梳状滤波开启(默认应用于CVBS)

0: 亮度自适应梳状滤波关闭(选择陷波滤波器)

5.6.2.9 明度控制寄存器

子地址	09h
默认	80h

7	6	5	4	3	2	1	0
明度控制 [7:0]							

明度控制:

1111 1111 = 255 (明亮)

1000 0000 = 128 (默认)

0000 0000 = 0 (黑暗)

5.6.2.10 色度饱和度控制寄存器

子地址	0Ah
默认	80h

7	6	5	4	3	2	1	0
饱和度控制 [7:0]							

饱和度控制[7:0]:: 此寄存器用于控制CVBS信号和S-video信号的色度饱和度。

1111 1111 = 255 (最大值)

1000 0000 = 128 (默认)

0000 0000 = 0 (无颜色)

5.6.2.11 色度色调控制寄存器

子地址	0Bh
默认	00h

7	6	5	4	3	2	1	0
色调控制 [7:0]							

色调控制:

0111 1111 = +180 度

0000 0000 = 0 度(默认)

1000 0000 = -180 度

5.6.2.12 亮度对比度控制寄存器

子地址	0Ch
默认	80h

GM7150BN_BC

7	6	5	4	3	2	1	0	
	对比度控制 [7:0]							

对比度控制:

1111 1111 = 255 (最大对比度)

1000 0000 = 128 (默认)

0000 0000 = 0 (最小对比度)

5.6.2.13 视频输出格式寄存器

子地址	0Dh
默认	47h

7	6	5	4	3	2	1	0
保留	YCbCr输出码范围	CbCr码格式	YCbCr数排	居通道旁通	YCb(Cr输出格式	[2:0]

YCbCr输出码范围:

0: ITU-R BT.601译码范围 (Y译码范围从16到235, Cb和Cr译码范围从16到240)

1:扩展译码范围(Y、Cb和Cr译码范围从1到254)(默认)

CbCr码格式:

0:偏移二进制码 (2s补码+128)(默认)

1:标准二进制码 (2s补码)

YCbCr数据通道旁通:

00: 正常工作(默认)

01:输出采样滤波后的数据,这数据与ADC量化后的复合视频信号类似于,只是在行消隐期间加入ITU-R BT656 行消隐数据

10: 输出ADC量化后的数据

11: 保留

输出格式[2:0]:

000:8位4:2:2 YCbCr ITU-R BT.601

001:保留 010:保留 011:保留 100:保留 101:保留 110:保留

111:8位4:2:2 YCbCr ITU-R BT.656(默认)

5.6.2.14 亮度处理控制寄存器 3

子地址	0Eh
默认	00h

7	6	5	4	3	2	1	0
	保留						皮器选择

亮度陷波器选择:

00:没有陷波器(默认)

GM7150BN_BC

01: 陷波器1 10: 陷波器2 11: 陷波器3

5.6.2.15 端口输出选择寄存器

子地址	0Fh
默认	08h

7	6	5	4	3	2	1	0
保留	LOCK23	保留	LOCK24B	FID/GLCO	VSYNC/PALI	INTREQ/GPCL/VBLK	SCLK/PCLK

端口23功能选择LOCK23:

- 0: 输出FID/GLCO(默认)
- 1: 输出场锁定标志信号

端口24功能选择LOCK24B:

- 0:输出VSYNC/PAL标志信号(默认)
- 1:输出行锁定标志信号

FID/GLCO端口23功能选择FID/GLCO:

- 0: 输出FID信号
- 1: 输出GLCO信号(默认)

VSYNC/PAL端口24功能选择VSYNC/PAL:

- 0: VSYNC (默认)
- 1: PAL行标志信号

INTREQ/GPCL/VBLK端口27功能选择INTREQ/GPCL/VBLK:

- 0: 输出INTREQ (默认)
- 1: GPCL/VBLK

SCLK/PCLK端口9功能选择SCLK/PCLK:

- 0: 系统工作时钟SCLK (默认)
- 1: 像素时钟PCLK

5.6.2.16 AVID 起始位置寄存器

子地址	11h-12h
默认	0000h

子地址	7	6	5	4	3	2	1		0
11h		AVID起始值 [9:2]							
12h	保留				AVID	有效位	AV	/ID初始值[1:0]	

AVID有效位:

- 0: 在VBLK下, AVID有效(默认)
- 1: 在VBLK下,AVID无效

仅当AVID起始值的最低有效位(LSB)被写入数据时,GM7150解码器才会更新AVID起始值。这些AVID起始像 素寄存器也决定了SAV编码的位置。

01111111: 511 00000001: 1 00000000: 0(默认)

GM7150BN_BC

11111111: -1 10000000: -512

5.6.2.17 AVID 结束位置寄存器

子地址	13h-14h
默认	0000h

子地址	7	6	5	4	3	2	1	0
18h	AVID终值 [9:2]							
19h	保留						AVID结束	瓦值 [1:0]

AVID结束值 [9:0]: AVID结束位置值,它来自于从0像素开始的HSYNC的一个绝对像素位置。

仅当AVID结束值的最低有效位(LSB)被写入数据时,GM7150解码器才会更新AVID终值。这些AVID初始像素寄存器也决定了SAV编码的位置。

011111111: 511 00000001: 13 00000000: 0(默认) 11111111: -1 10000000: -512

5. 6. 2. 18 RTC 寄存器

子地址	15h
默认	01h

7	6	5	4	3	2	1	0
保留						GLCO/RTC	

GLCO/RTC位控制:

2	1	0	GLCO/RTC模式
0	X	0	GLCO
0	X	1	RTC输出模式0
1	X	0	GLCO
1	Х	1	RTC输出模式1

5. 6. 2. 19 HSYNC 初始位置寄存器

子地址	16h
默认	80h

子地址	7	6	5	4	3	2	1	0
16h	HSYNC起始值 [7:0]							

HSYNC起始值[7:0]:

11111111: -127X4像素时钟 11111110: -123X4像素时钟 10000001: -1X4像素时钟

GM7150BN_BC

10000000: 0(默认) 01111111: 1X4像素时钟 01111110: 2X4像素时钟

00000000: 128X4像素时钟

标准	Nhbhs	Nhb
NTSC	16	272
PAL	20	284

图 11 行同步信号图

5.6.2.20 VBLK 初始行寄存器

子地址	18h
默认	00h

子地址	7	6	5	4	3	2	1	0
18h		VBLK初始值 [7:0]						

VBLK初始值[7:0]:

01111111: 在场消隐期间起始位置后的127行位置00000001: 在场消隐期间起始位置后的1行位置00000000: 在图所示的场消隐期间起始位置(默认)11111111: 在场消隐期间起始位置前的1行位置10000000: 在场消隐期间起始位置前的128行位置

5.6.2.21 VBLK 停止行寄存器

子地址	19h
默认	00h

子地址	7	6	5	4	3	2	1	0
19h		VBLK停止位置值 [7:0]						

VBLK停止值[7:0]:

01111111: 在场消隐期间停止位置后的127行位置00000001: 在场消隐期间停止位置后的1行位置00000000: 在图所示的场消隐期间起停止置(默认)11111111: 在场消隐期间停止位置前的1行位置

GM7150BN_BC

10000000: 在场消隐期间停止位置前的128行位置

5.6.2.22 色度处理控制寄存器 1

子地址	1Ah
默认	0Ch

7	6	5	4	3	2	1	0
	保留		色彩锁相环复位	色度自适应梳状滤波器使能	色度梳状滤波器使能	自动色度增	益控制[1:0]

色彩锁相环复位:

0:色彩锁相环不复位(默认)

1:色彩锁相环复位

色度自适应梳状滤波器使能:

0:美闭

1:开启 (默认)

色度梳状滤波器使能:

0:美闭

1:开启 (默认)

自动色度增益控制(ACGC) [1:0]:

00:ACGC开启(默认)

01:保留

10:ACGC关闭,ACGC为固定值

11:ACGC值为关闭前的值

5.6.2.23 中断源 B 清除寄存器

子地址	1Ch
默认	00h

7	6 5		4	3	2	1	0
			场频切换复	隔行切换复	色度锁定切	行/场切换	TV/VCR切
	保留		位	位	换复位	复位	换复位

中断源B清除寄存器是用来复位中断B状态寄存器的信息。设置为1时复位中断状态寄存器相对应位更新为逻辑0,设置为0时,中断源可正常产生。

场频切换复位CLR_FIELDC:

0: 不复位

1:复位场频切换状态位

隔行切换复位CLR_LINEC:

0: 不复位

1:复位隔行切换状态位

色度锁定切换复位CLR_COLORC:

0: 不复位

1:复位色度锁定切换状态位

行/场切换复位CLR_HVC:

0: 不复位

GM7150BN_BC

1:复位行/场切换状态位

TV/VCR切换复位CLR_TVC:

0: 不复位

1:复位TV/VCR切换状态位

5.6.2.24 中断源 B 使能

子地址	1Dh
默认	00h

7	7 6 5		4	3	2	1	0
			场频切换使	隔行切换使	色度锁定切	行/场切换	TV/VCR切
	保留		能	能	换使能	使能	换使能

中断源B使能寄存器是用来使能INTREQ端口。逻辑为1时使能INTREQ端口,逻辑为0时不使能。它不改变中断状态寄存器,只会改变INTREQ端口。

场频切换使能FIELDC_M:

0: 不使能

1: 使能

隔行切换使能LINEC_M:

0: 不使能

1: 使能

色度锁定切换使能COLORC_M:

0: 不使能

1: 使能

行/场切换使能HVC_M:

0: 不使能

1: 使能

TV/VCR切换使能TVC_M:

0: 不使能

1: 使能

5.6.2.25 中断源B配置1

子地址	1Eh
默认	00h

7	6	5	4	3	2	1	0
			保留				中断B输出极性

中断源B输出极性:

0: 中断B低电平有效

1: 中断B高电平有效

当中断B低电平有效时,中断引脚输出低电平表示中断产生,而输出高阻态表示中断取消;

当中断B高电平有效时,中断引脚输出高电平表示中断产生,而输出低电平表示中断取消。

5.6.2.26 视频标准控制

子地址	28h
-----	-----

GM7150BN_BC

默认 00h

7	6	5	4	3	2	1	0
	保	留			视频标准		

视频标准[3:0]:

0000: 自动检测模式(默认)

0001: 保留

0010: (M, J) NTSC

0011: 保留

0100: (B, D, G, H, I, N) PAL

0101: 保留 0110: (M) PAL

0111: 保留

1000 : (Combination-N) PAL

1001: 保留

1010: NTSC 4.43

1011:保留1100:保留

5.6.2.27 Cb 增益系数寄存器

子地址 2Ch

只读

子地址	7	6	5	4	3	2	1	0
2Ch				Cb增益差	系数[7:0]			

5.6.2.28 Cr 增益系数寄存器

子地址 2Dh

只读

子地址	7	6	5	4	3	2	1	0
2Dh				Cr增益系	系数[7:0]			

5.6.2.29 656 版本选择寄存器

子地址	30h
默认	00h

只读

子地址	7	6	5	4	3	2	1	0
201-								656版本
30h								选择

656版本选择BT656_3:

0: 版本为ITU-R BT.656.4

1: 版本为ITU-R BT.656.3

5.6.2.30 MSB of device ID

子地址 80h

只读

GM7150BN_BC

7	6	5	4	3	2	1	0
			芯片Ⅱ	D[7:0]			

5.6.2.31 LSB of device ID

子地址 81h

只读

7	6	5	4	3	2	1	0
			芯片	D[7:0]			

5.6.2.32 ROM major version

子地址 82h

只读

7	6	5	4	3	2	1	0
			ROM版	[7:0]			

5.6.2.33 ROM minor version

子地址 83h

只读

7	6	5	4	3	2	1	0
			ROM版	[7:0]			

5.6.2.34 行计数寄存器

子地址 84h-85h

只读

子地址	7	7 6 5 4 3 2						0		
85h		V_CNT[7:0]								
84h			保	留	保留					

V_CNT[9:0] 代表了从上一帧数据中检测出的行计数值。

5.6.2.35 中断源 B 状态寄存器

子地址 86h

只读

7	6	5	4	3	2	1	0
保留			场频切换	隔行切换	色度锁定切换	行/场切换	TV/VCR切换

场频切换FIFLDC_RAW:

- 0: 场频状态没有切换
- 1:场频状态切换

隔行切换复位LINEC_RAW:

- 0:隔行状态没有切换
- 1:隔行状态切换

色度锁定切换复位COLORC_RAW:

- 0:色度锁定状态没有切换
- 1:色度锁定状态切换

行/场切换复位HVC_RAW:

0: 行/场状态没有切换

GM7150BN_BC

1: 行/场状态切换

TV/VCR切换复位TVC_RAW:

0:TV/VCR状态没有切换

1:TV/VCR状态切换

5.6.2.36 中断源B配置2

子地址 87h

7	6	5	4	3	2	1	0
	保留						中断B输出使能

中断源B输出使能:

0:中断A禁止输出到中断引脚

1:中断B输出到中断引脚

5.6.2.37 状态寄存器 1

子地址 88h

只读

7	6	5	4	3	2	1	0
白电平峰值状	隔行状	场频状	失锁检测	色彩载波频率锁	场同步锁定	行同步锁定	TV/VCR状
态检测	态	态	状态	定状态	状态	状态	态

白电平峰值状态检测:

0:没有检测到白峰

1:检测到白峰

隔行状态:

0:逐行

1:隔行

场频状态:

0 : 60 Hz

1:50 Hz

失锁检测:

0:没有失锁

1: 失锁

色彩载波频率锁定状态:

0: 色彩载波频率没有锁定

1: 色彩载波频率锁定

场同步锁定状态:

0:场同步没有锁定

1:场同步锁定

行同步锁定状态:

0: 行同步没有锁定

1: 行同步锁定

TV/VCR状态:

0 : TV

1: VCR

GM7150BN_BC

5.6.2.38 状态寄存器 2

只读

7	6	5	4	3	2	1	0
保留	弱信号检测	PAL切换极性	场序列状态	AGC和偏移状态		保留	

弱信号检测:

- 0:没有检测到弱信号
- 1:检测到弱信号

PAL奇场第一行的切换极性:

- 0:PAL切换为0
- 1: PAL切换为1

场序列状态:

- 0: 偶场
- 1: 奇场

AGC和偏移状态:

- 0:AGC和偏移没有关闭
- 1:AGC和偏移关闭

5.6.2.39 状态寄存器 3

子地址	8Ah
-----	-----

只读

7	6	5	4	3	2	1	0
			前端AGC增	益系数[7:0]			

5.6.2.40 状态寄存器 4

子地址	8Bh

只读

7	6	5	4	3	2	1	0
副载波的行相位[7:0]							

每奇场的行同步的下降沿位置时的色度副载波PLL的相位(360度/256):

00000000: 0.00 00000001: 1.41 00000010: 2.81 11111110: 357.2 11111111: 358.6

5.6.2.41 状态寄存器 5

子地址	8Ch
-----	-----

只读

7	6	5	4	3	2	1	0
自动切换		保留			视频标准[2:0]		采样率

自动检测标志:

- 0:视频标准为强制配置的状态
- 1:视频标准为自动检测的状态

GM7150BN_BC

视频标准[2:0]:

000: (M、J) NTSC

001: (B、D、G、H、I、N) PAL

010: (M) PAL

011: (Combination-N) PAL

100: NTSC 4.43

采样率:

0: 保留

1: ITU-R BT.601

5.6.2.42 中断源 A 状态寄存器

子地址	C0h
默认	00h

7	6	5	4	3	2	1	0	
锁定状态	锁定变化	保留		保留			行中断产生	

中断源A状态寄存器可通过对相应位写入" 1"来对其进行清除。

锁定状态:

0:未锁定输入视频信号

1:锁定输入视频信号

锁定变化:

0: 锁定状态未发生变化

1:锁定状态发生变化

行中断产生:

0:由地址CAh配置的视频行未出现

1:由地址CAh配置的视频行出现

5.6.2.43 中断源 A 使能

子地址	C1h
默认	00h

7	6	5	4	3	2	1	0
保留	锁定中断使能	保留	保留	保留	保留	行中断使能	保留

中断源A使能用于开启相应的中断源,使之输出到相应的中断引脚。中断引脚输出特性由地址CAh进行配置。

锁定中断使能:

0: 不使能

1: 使能

行中断使能:

0: 不使能

1: 使能

5.6.2.44 中断源 A 配置

子地址	C2h
默认	04h

GM7150BN BC

7	6	5	4	3	2	1	0
	保留 YCbCr输出使能		YCbCr输出使能	中断A输出使能	中断源A输出极性		

YCbCr输出使能(VDPOE):

- 0:YCbCr引脚为高阻态
- 1:YCbCr引脚输出视频数据
- 中断A输出使能:
- 0:中断A禁止输出到中断引脚
- 1:中断A输出到中断引脚
- 中断A输出极性:
- 0: 中断A低电平有效
- 1: 中断A高电平有效

当中断A低电平有效时,中断引脚输出低电平表示中断产生,而输出高阻态表示中断取消;

当中断A高电平有效时,中断引脚输出高电平表示中断产生,而输出低电平表示中断取消。

5.6.2.45 行中断

子地址	CAh
默认	00h

7	6	5	4	3	2	1	0
第一场使能	第二场使能	行数					

中断使能寄存器是用来使能INTREQ端口。逻辑为1时使能INTREQ端口,逻辑为0时不使能。它不改变中断状态寄存器,只会改变INTREQ端口。

- 第一场使能:
- 0: 不使能
- 1: 使能
- 第二场使能:
- 0: 不使能
- 1: 使能
- 行数: 中断产生的行数

5.7 有效视频 (AVID) 截取

有效视频截取用于减少输出视频信号带宽,通过在原始有效视频区域内,水平和垂直方向上分别选取一段数据作为输出有效视频信号。水平方向截取的开始像素点位置的 MSB 和 LSB 分别通过寄存器 11h 和 12h 进行控制,结束像素点位置的 MSB 和 LSB 分别通过寄存器 13h 和 14h 控制,垂直方向截取通过 VBLK Stop 和 VBLK Start 进行截取区域控制,对应寄存器分别为 18h 和 19h。下图为 AVID 截取示意图。

图12 AVID 截取示意图

5.8 复位

管脚 8(RESETB)和 28(PDN)用于设置 GM7150 解码器复位和下电,配置方式如下表所示。上电之后,解码器处于未知状态,直到接收到至少持续 500ms 的低电平 RESETB 信号。在 RESETB 变为高电平之前,电源必须有效且稳定至少持续 20ms。

 PDN
 RESETB
 CONFIGURATION

 0
 0
 Reserved(unknown state)

 0
 1
 Powers down decoder

 1
 0
 Resets the decoder

 1
 1
 Normal operation

表 11 复位和下电模式

6 参数指标

6.1 极限工作条件

lacktriangle	数字 IO 电源电压	(IOV_{DD})		$0.5V\sim4.5V$
--------------	------------	--------------	--	----------------

● 数字内核电源电压 (*DV_{DD}*) -0.2V~2.3V

● 1.8V 模拟输入电压(A18VDD)--0.2V~2V

GM7150BN_BC

6.2 推荐工作条件

表 12 推荐工作条件

符号	参数	最 小	最 大	单 位
IOV_{DD}	数字 IO 电源电压	3.0	3.6	V
$\mathrm{DV}_{\mathrm{DD}}$	数字内核电源电压	1.65	1.95	V
$A18V_{DD}$	1.8V 模拟电源	1.65	1.95	V
$A_{ m IN}$	模拟输入电压 (交流耦合)	0	0.75	V
$V_{ m IH}$	数字输入高电平	2.0	_	V
$V_{ m IL}$	数字输入低电平	_	0.8	V
$I_{ m OH}$	高电平输出电流,Vout=2.4V	-2		mA
$I_{ m OL}$	低电平输出电流,Vout=0.4V	2	_	mA
$T_{ m A}$	工作温度	-40	85	$^{\circ}\!\mathbb{C}$

6.3 电特性参数

表 13 电特性参数

参数符号	最小值	典型值	最大值	单位	测试条件
I _{IN}	_	_	28	μА	
V _{он}	2. 4	_	_	V	
V _{OL}	_	_	0. 4	V	
V _{i (PP)}	0	_	0.75	V	耦合电容 0.1uF
I _{DDIO(D)}	_	8. 5	10	mA	
I _{DD(D)}	_	17.5	33	mA	
/ _{DD18(A)}	_	24.3	41	mA	
P _{TOT}	_	_	166	mW	
P _{DOWN}	_	_	5	mW	

GM7150BN_BC

δ dataclk	40%	50. 7%	60%	-	
t_1	16	-	22	ns	
t_2	16	_	22	ns	
t_3	_	_	10	ns	80%~20%
<i>t</i> ₄	_	_	10	ns	20%~80%
t_5	_	_	10	ns	

图 13 时钟,视频数据和同步时序图

7 机械尺寸

7.1 LQFP32

			T E 73 E 71
尺寸符号		数值	
八寸何亏	最 小	公 称	最 大

GM7150BN_BC

A	_	_	1.60
A1	0.05	_	0.15
A2	1.35	_	1.45
b	0.17	_	0.27
e	_	0.5	_
L	0.45	_	0.75
L1	_	1.00	_
D	6.80	_	7.20
D1	4.90	_	5.10
Е	6.80	_	7.20
E1	4.90	_	5.10

图 14 LQFP32 机械尺寸

7.2 QFN32

单位为毫米

尺寸符号	数值				
八寸付亏	最 小	公 称	最 大		
A	0.70	_	0.80		
A1	0.00	0.02	0.05		
A3	0.18	_	0.25		
D	4.90	5.00	5.10		
Е	4.90	5.00	5.10		
b	0.18	0.25	0.30		
e	_	0.50	_		
K	0.20	_	_		
L	0.324	0.40	0.476		

图 15 QFN32 机械尺寸

7.3 推荐的 PCB

GM7150BN_BC

图 16 推荐的 PCB 两种封装形式均可适用。

图 16 PCB 推荐尺寸

8 产品应用信息

8.1 典型应用图

图 17 典型应用

GM7150BN BC

8.2 应用说明

8.2.1 推荐使用1

应用条件:

器件: GM7150

输入源:复合信号(AIP1A)

视频源制式: NTSC-M, PAL(B, G, H, I)

输出格式: 8位 ITU-R BT 656 YCbCr

推荐配置:

I2C 寄存器地址 03H: 端口控制寄存器

I2C 数据 09H: 选择时钟, YCbCr 和 PSCLK 输出

8.2.2 推荐使用 2

应用条件:

器件: GM7150

输入源: S-video 信号(AIP1A(亮度), AIP1B(色度))

视频源制式: NTSC-M, NTSC4.43, PAL(B, G, H, I, M, N)

输出格式: 8位 ITU-R BT 601 YCbCr

推荐配置:

I2C 寄存器地址 00H: 视频源选择寄存器

I2C 数据 01H: 选择 S-video 输入, AIP1A(亮度)和 AIP1B(色度)

I2C 寄存器地址 03H: 端口控制寄存器

I2C 数据 0DH: 选择时钟, YCbCr, HSYNC, VSYNC/PALI, AVID 和 FID/GLCO 输出

I2C 寄存器地址 04H: 制式检测使能

I2C 数据 C0H: 不检测 NTSC-443, PAL-N, 以及 PAL-M 制式

I2C 寄存器地址 0DH: 视频输出格式选择寄存器

I2C 数据 40H: 选择 8 位 ITU-R BT 601 YCbCr 输出

9 产品包装信息与丝印信息

9.1 产品包装信息

- 1) 内包装采用定制托盘包装,每盘360颗芯片,最小包装3600片;
- 2) 外包装采用定制产品盒,并放置防震泡沫。

9.2 产品丝印信息

芯片打标采用激光打标技术,内容包括产品型号: GM7150; 以及产品批号:

