Methoden des Algorithmen Entwurfes The Power of Recourse for Online MST and TSP

Felix Ortmann

Universität Hamburg

18. Juli 2017

Gliederung

- Einleitung
- Definitionen
- Online MST mit amortisiertem Budget
- Online MST mit striktem Budget
- **5** Anwendung auf TSP
- 6 Zusammenfassung
- Literatur

Einleitung

"The Power of Recourse for Online MST and TSP"

von Nicole Megow, Martin Skutella, José Verschae und Andreas Wiese

Siam Journal on Computing

[Megow et al., 2016]

Definitionen

- Definitionen
 - MST und TSP
 - Online Problemstellung
 - Einfacher Greedy Algorithmus online MST
 - Budget

MST und TSP

Graf G = (V, E); G ist vollständig

Minimal Spanning Tree (MST)

- Verbinde alle Knoten
- Azyklisch

Gesucht: kleinste (metrische) Verbindung aller Knoten

Traveling Salesman Problem (TSP)

- Besuche jeden Knoten exakt einmal
- Zyklisch

Gesucht: kürzeste (metrische) Route

Minimal Spanning Tree (MST)

Abbildung: Minimal Spanning Tree¹

¹https://commons.wikimedia.org/wiki/File:Minimum_spanning_tree.svg

MST und TSP

Traveling Salesman Problem (TSP)

Abbildung: TSP Tour²

²https://commons.wikimedia.org/wiki/File:Tsp_opt.png

Online Problemstellung

"Nach und nach Knoten und zugehörige Kanten aufdecken. Problemstellung (MST bzw. TSP) in jedem Zug auf Teilgraf möglichst gut bearbeiten."

- $\sigma = v_0, v_1, \dots$ wobei v_t : Vertex
- $\forall s \leq t-1 : v_t v_s$ Kanten werden zusammen mit Knoten t bekannt
- Kantengewichte erfüllen Dreiecksungleichung (→ metrisch)
- Iteration t:
 - Teilgraf $G_t = (V_t, E_t)$
 - $V_t = \{v_0, ..., v_t\}$
 - $E_t = V_t \times V_t \rightarrow \text{Graf ist ...complete}^*$

Online Ziele

Online MST

- Kanten Teilmenge T_t
- T_t ist MST zu G_t

Online TSP

- Tour durch G_t : Q_t
- Q_t ist TSP Tour auf G_t (\approx minimiert traveling Kosten)

Einfacher Greedy Algorithmus – online MST

Vorherige Iteration: T_{t-1}

Iteration t:

- Decke neuen Knoten auf: v_t
- Kürzeste Verbindungskante g_t zwischen v_t und T_{t-1}
- $T_t = T_{t-1} \cup g_t$
- Kostenreduktion von T_t "Swaps":
 - Füge günstige Kante hinzu (→ Kreis entsteht in Teilbaum)
 - Entferne teuerste Kante aus Kreis
 - Wiederhole ...

Swaps und Recourse

- Swaps → optimale Lösung
- Wie viele Swaps...?

Recourse

Recourse bzw. recourse Budget – Menge von Kanten, die pro Iteration maximal zur Lösung hinzugefügt werden.

Iteration t, Budget k

Striktes Budget

$$\forall t \geq 1: |T_t \setminus T_{t-1}| \leq k$$

Amortisiertes Budget

$$\sum_{s=1}^{t} |T_s \setminus T_{s-1}| \leq k \cdot t$$

Online MST mit amortisiertem Budget

- Online MST mit amortisiertem Budget
 - Zielsetzung
 - Freezing Rules
 - Algorithmus Sequence Freeze
 - Competitive Analysis
 - Rückblick

Zielsetzung

Ziel

Online Algorithmus für MST mit folgenden Eigenschaften ($\epsilon > 0$): (Theorem 2)

- $(1+\epsilon)$ -competitive
- Amortisiertes Budget $O(\frac{1}{\epsilon} \log \frac{1}{\epsilon})$

Abschluss

Präsentierter Algorithmus liefert best mögliches Ergebnis, logarithmisch gemessen (Theorem 1)

Online MST mit amortisiertem Budget

Theorem 1 (Lower Bound)

Jeder $(1+\epsilon)$ -competitive Algorithmus für das online MST Problem benötigt ein amortisiertes recourse Budget von $\Omega(\frac{1}{\epsilon})$

Beweis siehe [Megow et al., 2016]

Theorem 2 (Upper Bound)

Es existiert ein $(1+\epsilon)$ -competitiver Algorithmus für das online MST Problem mit einem amortisierten recourse Budget von $O(\frac{1}{2}\log\frac{1}{2})$

Freezing Rules

Iteration t:

- OPT_t^{max} : bestes (von unserem Algorithmus) erreichbares Ergebnis
- $\ell(t)$: Iteration mit den meisten Swaps (vor dieser Iteration)
- $\ell(t) \leq (t-1)$. $OPT_{\ell(t)}^{max} \leq \epsilon \cdot OPT_{t}^{max}$
- Greedy Kante g_s^0 : In Iteration s greedy hinzugefügt
- Swap: g_s^1 sei Kante, die g_s^0 ersetzt
- Wurde in später ggf. geswapped, momentane Ersetzung: $g_s^{i(s)}$

Freezing Rules

Rule 1

Freeze Sequenz $(g_s^0, ..., g_s^{i(s)})$ gwd. $s \leq \ell(t)$

Rule 2

Freeze Kante wenn der Kostengewinn kleiner als $\epsilon OPT_t^{max}/(t-\ell(t))$ ist.

Freezing Rules In Worten

Finde Balance zwischen Anzahl Swaps ($\leq k$) und Nutzen

Rule 1

Verhindert das Swappen von Kanten, die zu einem Subgrafen gehören, der an den Gesamtkosten des MST keinen großen Einfluss hat.

 \implies Wurde vor / während der größten Iteration $\ell(t)$ geswapped. "Den besten bisherigen Subgrafen (und alles was schon davor gefroren war) fassen wir nicht mehr an."

Rule 2

Verhindert das Entfernen von Kanten deren Kosten kleiner als das Mittel seit der größten Iteration sind.

⇒ "Kein Swap, wenn direkter Nutzen zu gering".

Algorithmus Sequence Freeze

Wie simple Greedy Algorithmus mit Einschränkungen

$$T_0 = \emptyset$$

Iteration t: $T_t = T_{t-1} \cup \{$ "günstigste neue Kante" $\}$

Betrachte Kanten $(f, h) \in (E_t \setminus T_t) \times T_t$ Swap wenn nur, wenn..:

- $(T_t \cup \{f\}) \setminus \{h\}$ bleibt ein Tree
- **1** $c(h) > (1 + \epsilon) \cdot c(f)$
- \bullet $h=g_s^{i(s)}$ für ein $s\geq \ell(t)+1$ (nicht gefroren durch *Rule 1*)
- $c(h) > \epsilon rac{OPT_t^{max}}{t \ell(t)}$ (nicht gefroren durch *Rule 2*)

Felix Ortmann (Universität Hamburg)

Competitive Analysis (Skizze)

Competitiveness des Algoithmus im Vergleich zu OPT

$(1+\epsilon)$ -competitive

- Cond. 1 & Cond. 3 Kosten steigen maximal um $(1+3\epsilon)$ prolateration $\to (1+O(\epsilon))$ -competitive
- Cond. 2 Durch Weglassen "kostengünstiger" Swaps wird die Gesamtlösung im Vergleich zu OPT_t maximal $O(\epsilon OPT_t)$ schlechter
- Partitioniere Graf $T = T_{new} \cup T_{old}$ vor / nach längster Iteration
- $T_{old} := \{g_1^{i(1)}, ..., g_{\ell(t)}^{i(\ell(t))}\}$
- $T_{new} := \{g_{\ell(t)+1}^{i(\ell(t)+1)}, ..., g_t^{i(t)}\}$

Beweise Bounds für Partitionen

Competitive Analysis (Skizze)

Amortisierter Upper Bound für Budget

- $k_q := |T_q \setminus T_{q-1}|$: benutztes Budget in Iteration q
- $D_{\epsilon} \in O(\frac{1}{\epsilon} \log \frac{1}{\epsilon})$

Zeige $\sum_{q=1}^{t} k_q \leq D_{\epsilon} \cdot t$

- Upper Bound auf Swap Sequenz Länge Cond. 1 – Nur Swap wenn Kostengewinn $> (1 + \epsilon)$: Maximale Swapanzahl $\implies \log_{1+\epsilon} c(g_s^0) - \log_{1+\epsilon} c(g_s^{i(s)-1}) + 1$
- 2 Lower Bound auf Swap Kosten Cond. 3 – Nur Swap wenn Kosten d. zu entfernenden Kante Threshold übersteigt

Online MST mit amortisiertem Budget

Ergebnis

Online Algorithmus für MST mit folgenden bewiesenen Eigenschaften:

- $(1 + \epsilon)$ -competitive
- Amortisiertes Budget $O(\frac{1}{\epsilon}\log\frac{1}{\epsilon})$

Da jeder online Algorithmus für MST mit obigen Eigenschaften mindestens ein Budget von $\Omega(\frac{1}{\epsilon})$ benötigt (vgl. Theorem 1), liefert *Sequence Freeze* das (logarithmisch) bestmögliche online Ergebnis.

Online MST mit striktem Budget

Online MST mit striktem Budget

Online MST mit striktem Budget

Kann ein striktes Budget besser sein? Insbesondere besser als 2-competitive?

Gegenbeispiel

- Vollst. Graph, Knoten $v_0, ..., v_n$
- $\bullet \ \forall t < n : c(v_t, v_n) = 1$
- $\forall s, t < n : c(v_s, v_t) = 2$
- \implies MST ist ein Stern um den letzten Knoten n

Alle Iterationen t < n: T_t enthält nur Kanten mit Kosten 2

Bei fixem Budget k: T_n enthält exakt n - k Kanten der Kosten 2

 \implies Competitive Ratio 2 - k/n (> $2 - \epsilon$) bei großen n

Anwendung auf TSP

- Anwendung auf TSP
 - Shortcutting (Beispiel)
 - Motivation: Unvorhersehbare Touren
 - Robuste TSP Touren
 - Algorithmus: Robust Tour Shortcut
 - Algorithmus: Robust Walk Update
 - Competitive Analysis

Shortcutting (Beispiel)

Eulerian Walk

- Besuche jede *Kante* genau einmal
- Sei (2 · T) Multigraf zu T − jede Kante verdoppelt
 ⇒ Jeder Knoten hat geraden Grad
 ⇒ Eulerian Walk möglich

- Bilde Eulerian Walk
- Notiere Knotenreihenfolge
- Streiche alle mehrfach Vorkommnisse (Shortcut)
 ⇒ Traveling Salesman Tour

Shortcutting (Beispiel)

Abbildung: Tree (schwarz), Shortcut Tour (gestrichelt) [Megow et al., 2016]

$$W = u, v_1, w_1, \bar{v_1}, v_2, w_2, \bar{v_2}, v_3, w_3, \bar{v_3}, v_4, w_4, \bar{v_4}, \bar{v_3}, \bar{v_2}, \bar{v_1}, \bar{u}$$

Tour $= u, v_1, w_1, v_2, w_2, v_3, w_3, v_4, w_4, (\bar{u})$

Motivation: Unvorhersehbare Touren

- Spanning Trees R, R'
- $R' = (R \cup \{f\}) \setminus \{g\}, f \notin R \land g \in R$ \implies "ein Swap Unterschied"
- Sehr ähnliche Bäume führen zu ggf. sehr unterschiedlichen TSP Touren
- Tour zu R' (rechts): hat nie Knotenfolgen der Form (w_i, v_{i+1}) \Longrightarrow Bei steigender Knotenanzahl zunehmend großer Unterschied in Tour

Robuste TSP Touren

Theorem 3 (MST zu TSP)

Gegeben eine Reihe von metrischen Grafen $G_0, ..., G_t, ...$ mit $G_t = (V_t, E_t) \land V_t = \{v_0, ..., v_t\}$. T_t is Spanning Tree zu G_t in Iteration t.

Es existiert ein online Algorithmus, der zu jedem Teilgraf eine TSP Tour ausgibt $(Q_0, ..., Q_t, ...)$, sodass

- \bullet $c(Q_t) \leq 2 \cdot c(T_t)$
- $\bullet |Q_t \setminus Q_{t-1}| < 4 \cdot |T_t \setminus T_{t-1}|$

Beweis benötigt verbessertes Shortcutting

Robuste TSP Touren

Idee: "Unterschiede zwischen Iterationen (t-1) und t messbar machen"

Momentan ist bereits messbar, wie zwei Spanning Trees (R, R') sich nach einem Swap unterscheiden (→ eine Kante) (mehrere Swaps deterministisch)

Vorraussetzungen für Beweis von Theorem 3

- Deterministische Prozedur um eine TSP Tour Q von einem Eulerian Walk W und einem Spanning Tree R zu erzeugen \rightarrow Robustes Shortcutting
- Deterministische Prozedur um aus zwei Spanning Trees (R, R'), die sich in einer Kante unterscheiden, sowie einem Eulerian Walk W auf $(2 \cdot R)$ einen Eulerian Walk W' auf $(2 \cdot R')$ zu erzeugen

Algorithmus: Robust Tour Shortcut

Input:

Baum R, Eurlerian Walk $W=x_1,...,x_r$ auf $2\cdot R$, Funktion $I:\{x_1,...,x_r\}\to\{0,1\}$ (Selektionsfunktion um Nodes nur einmal zu besuchen (vgl. $2\cdot R$))

- Erzeuge Walk der Form: $x_{\ell_1}, x_{\ell_2}, ..., x_{\ell_{|V|}}$, sodass $\forall i < j : \ell_i < \ell_j \land \forall i : \textit{I}(x_{\ell_i}) = 1$
- ullet Rückgabe: $Q:=\{x_{\ell_1},...,x_{\ell_{|V|}},x_{\ell_1}\}$

Beobachtung:

Die zurückgegebene Tour Q hat höchstens Kosten von $2 \cdot c(R)$ (unabhängig von I)

Algorithmus: Robust Walk Update (Beispiel)

Ziel:

Update W o W' bei Update von Baum R o R'

- $R' = (R \cup \{f\}) \setminus \{g\}$ wobei $f = st \land g = vw$
- $R \setminus \{g\}$ \implies 2 verbundene Komponenten (C_1, C_2)
- o.B.d.A: $x_1, v, s \in C_1 \land t, w \in C_2$
- $W = W_1, v, w, W_2, \bar{w}, \bar{v}, W_1'$

Start in C_1 (Teil W_1), via vw zu C_2 (dort vollständig ablaufen, Teil W_2), via $\bar{w}\bar{v}$ zurück zu C_1 , dort restliche Knoten ablaufen (Teil W_1'). o.B.d.A $s \in C_1 \land t \in C_2$.

Algorithmus: Robust Walk Update (Beispiel)

Abbildung: Dekomposition eines Eulerian Walks W [Megow et al., 2016]

$$W = W_1, v, w, W_2, \bar{w}, \bar{v}, W'_1$$

$$W = W(x_1, v), v, W(w, t), W(t, w), \bar{w}, W(v, s), W(s, x_1)$$

$$W' = W(x_1, v), W(v, s), \bar{s}, W(t, w), W(w, t), \bar{t}, W(s, x_1)$$

Algorithmus: Robust Walk Update

Input:

Baum R (auf Graf G=(V,E)), Eurlerian Walk $W=x_1,...,x_r$ auf $2\cdot R$, Funktion $I:\{x_1,...,x_r\} \to \{0,1\}$ (Selektionsfunktion um Nodes nur einmal zu besuchen), ein Baum $R'=(R\cup\{f\})\setminus\{g\}$ wobei $f=st\notin R \land g=vw\in R$

- Zerlege W in Teil-Walks: $W = W(x_1, v), v, W(w, t), W(t, w), \bar{w}, W(v, s), W(s, x_1)$ (Falls nicht möglich, drehe Walk um)
- ullet Rückgabe: $W'=W(x_1,v),W(v,s),ar{s},W(t,w),W(w,t),ar{t},W(s,x_1)$
- "Patch" Selektionsfunktion $I: I(\bar{t}) = I(\bar{s}) = 0$. Falls I(v) = 1 setze I(x) = 1 (x ist erster Knoten in W(v, s)). Gleiches für I(w) bzw. W(w, t).

Competitive Analysis (Skizze)

Zusammenreihung der Algorithmen

- Erzeuge Spanning Tree R zu Graf G mit Algorithmus Sequence Freeze
- Erzeuge Eulerian Walk W auf Multigraf 2 · R
- Erzeuge Tour Q durch G mit Algorithmus Robus Tour Shortcut
- Modifiziere (M)ST → R'
- Update Eulerian Walk $W \to W'$ mit Algorithmus Robust Walk Update
- Nutze erneut Robust Tour Shortcut: W' neueTSPTour O'

Beobachtung: Die Eulerian Walks sind sehr ähnlich, bis auf wenige Kanten \rightarrow die TSP Touren Q und Q' sind sehr ähnlich.

Competitive Analysis (Skizze)

 $Zeige: |Q' \setminus Q| \le 4$

Fallunterscheidungen

Argumentation über die Dekomposition des Walks W und das Update der Selektionsfunktion I. Betrachte 4 Fälle in Walk W':

- $W(x_1, v) \rightarrow W(v, s)$
- $W(v,s) \rightarrow W(t,w)$
- $W(t, w) \rightarrow W(w, t)$
- $W(w,t) \rightarrow W(s,x_1)$

Zusammenfassung

Zusammenfassung

Zusammenfassung

- ullet Standard online MST: Beste bekannte competitive Ratio $\Theta log n$
- Neue Erkenntnis mit [Megow et al., 2016]: Recourse verbessert die competitive Ratio zu $\underline{(1+\epsilon)}$ (amortisiert)
- Verändertes Shortcutting Verfahren
- Online MST det. Verfahren online TSP Bewiesene Upper Bounds:
 - Erhöht competitive Ratio um 2
 - Erhöht Budget um 4
- ullet Online TSP $(2+\epsilon)$ -competitive mit amortisiertem Budget $O(rac{1}{\epsilon}\lograc{1}{\epsilon})$

Literatur

Literatur

Megow, N., Skutella, M., Verschae, J., and Wiese, A. (2016).

The Power of Recourse for Online MST and TSP.

SIAM Journal on Computing, 45(3):859-880.