The Eclipse Parallel Tools Platform Project

An Eclipse Foundation Technology Project http://eclipse.org/ptp

Parallel Development Tools State of the Art

- Command-line compilers for Fortran and C/C++
 - Sometimes wrapped in a GUI
- Editors are vi, emacs and FRED (vintage 1960's)
- Dominant debugger is TotalView (proprietary)
 - Some use DDT (but guess what? it's proprietary)
 - No widely used open-source parallel debugger
- Plethora of stand-alone tools
 - Platform/vendor specific, e.g. DCPI
 - Open source, e.g. TAU, HPCToolkit
 - Proprietary, e.g. Vampir, Assure

Parallel Development Tools Limitations

- Many tools are specific to only one platform or vendor
- They do not interoperate, and never will
 - No integrated UI
 - No ability to share data
 - Functionality limited to that provided by tool
- They do not scale
 - Fine for 1990's machines
 - New machines will have 10,000+ processors
- Few high quality open-source tools in wide use
 - Increases difficulty of adopting new architectures
 - Can lead to vendor lock-in

Parallel Development Tools Industry Best Practice (for everyone else)

- Integrated development environment (IDE)
 - Combines editor, compiler, debugger and other tools into a single consistent user interface
- Integrated management
 - Change control, build management, software quality policies
- Integrated testing
 - Automated unit testing, verification and validation activities
- Integrated documentation
 - On-the-fly documentation generation

Parallel Development Tools Why Change?

- Reinforce good software engineering practices
- Strengthen auditing
- Enhance work-flow
- Increase productivity
- Improve documentation
- Reduce time-to-delivery
 - = Reduced development costs

Parallel Development Tools Barriers To Change

- Must support a range of architectures/platforms
- Must honor existing practices/processes
- Must be scalable and reliable
- Must provide core functionality
- Must be easy to adopt and support
- Must be future-proof

Parallel Development Tools How will developer productivity be improved?

- Eliminates cost of switching between tools
- Uniform user interface for consistency and ease of use
- All the tools necessary to do the job on hand
- Team activities are integrated
- Tools can interoperate, sharing data and functionality
- Many manual activities (such as documentation) can be automated
 - = Improved work flow in development cycle

Parallel Development Tools How will end-user productivity be improved?

- Hides complexity of parallel systems
- Generic interface to job scheduler/runtime system
- Visual indication of system and job status
- Can utilize functionality that will benefit end-user
- Opportunity to simplify data management
- Can be used to facilitate activities such as v&v

= Simplified interaction with parallel machines

Eclipse Foundation History

- Originally developed by Object Technology International (OTI) and purchased by IBM for use by internal developers
- Released to open-source community in 2001, managed by consortium
 - Eclipse Public License (EPL)
 - Based on IBM Common Public License (CPL)
- Consortium reorganized into independent not-for-profit corporation, the Eclipse Foundation, in early 2004
 - Participants from over 85 companies

Eclipse Foundation Strategic Members

- Actuate Corporation
- BEA
- Borland
- Computer Associates
- Hewlett Packard
- IBM
- Intel

- MontaVista Software
- SAP AG
- Scapa Technologies
- Serena Software
- Sybase, Inc.
- Wind River

Eclipse Foundation Members

•	Accelerated Technology	•	Fujitsu	•	Micro Focus	•	Red Hat
•	Acucorp	•	Genuitec	•	MKS	•	SAS
•	Advanced Systems Concepts	•	Hitachi	•	mValent	•	SlickEdit
•	Agitar	•	ILOG	•	Novell	•	Soft Landing Systems
•	Aldon	•	INNOOPRACT	•	NTT	•	Teamstudio
•	Aonix	•	Inpriva	•	Comware	•	Telelogic
•	AvantSoft	•	Instantiations	•	OC Systems	•	Tensilica
•	Catalyst Systems Corporation	•	JBoss	•	Omondo	•	Texas Instruments
•	CollabNet	•	Kinzan	•	Optena Corporation	•	THALES
•	Compuware	•	Klocwork	•	Oracle	•	TimeSys
•	Discovery Machine	•	Logic Library	•	PalmSource	•	Unisys
•	Embarcadero Technologies	•	Lombardi Software	•	Panscopic		,
•	ENEA	•	M1 Global	•	Parasoft Corporation	•	VA Software
•	Ericsson	•	M7 Corporation	•	PureEdge	•	Wasabi Systems

QNX Software Systems
Real-Time Innovations

Mercury

META-1

ETRI

Exadel

webMethods

Eclipse Foundation Commercial Tools Based on Eclipse

- Exadel Struts Studio and JSF Studio
- Genuitec MyEclipse
- IBM WebSphere Studio
- Intel C++ Compiler 8.1 for Linux
- Kinzan Studio
- M7 NitroX
- Mentor Graphics Nucleus Edge
- Monta Vista Dev Rocket
- Novell/SuSE SDK

- PalmOS Dev Suite
- Parasoft Jtest
- PureEdge Designer
- QNX Momentics
- Red Hat Developer Suite
- SAP NetWeaver Studio
- Tensilica Xtensa Xplorer IDE
- TimeSys TimeStorm IDE
- Wind River Workbench

Eclipse Foundation Example Applications of Eclipse

- University of Washington
 - Integrated land use, transportation and environmental modeling
- Electronics and Telecommunications Research Institute
 - Embedded software development tool
- DaimlerChrysler
 - Business solution for processing geographic data (GDF)
- Hewlett Packard
 - Web services development
 - Software development kits
- Bank SinoPac
 - Model-driven business process integration and management

Eclipse Foundation Eclipse Robustness?

- Used for key commercial applications
 - Reliability is essential
- Designed for very large projects
 - Regularly used to compile Linux kernel (~6M lines of code)
 - Legacy COBOL programs contain 10's of thousands of variables
- Large support base
 - Currently in excess of 50 FTEs working on core, 100's on other components
 - Over 85 companies contributing resources
 - Global open-source community

Parallel Tools Platform

Parallel Tools Platform Project Objectives

- 1. Extend Eclipse to support parallel development tools
- Equip Eclipse with key tools needed to start developing parallel codes
- 3. Encourage existing parallel tool projects to support Eclipse
- Exploit enhanced capabilities to develop a new generation of parallel tools

Parallel Tools Platform Benefits

- Not just "another parallel tool"
 - A commercial quality framework for integrating existing and new tools
 - Designed for scalability and reliability
- Provides a strategy for tool development
 - Combats the existing proliferation of tools
 - A focal point for future tool development
- In the long run, saves money
 - Reduces work required to build tools
 - Reinforces software engineering practices
 - Simplifies adoption of new architectures
 - Enhances work flow, and hence productivity

Parallel Tools Plaform Project Supporters

- Altera Corporation
- AWE, PLC
- Etnus, LLC
- IBM Research
- Intel Corporation
- ITACA
- Louisiana State University
- Monash University

- Open HPC Inc.
- Open MPI
- Rice University
- Scalable Systems Pte Ltd
- Technische Universitaet Muenchen
- Terra Soft Solutions
- University of Oregon
- University of Tennessee

Parallel Tools Platform Components

Parallel Tools Platform Components

- Parallel Execution Environment
 - Extends existing execution environment to support parallel programs
- Parallel Debugger
 - Adds parallel debugging support to Eclipse
- Tools Integration
 - Support the integration of a variety of parallel tools, e.g. performance, verification, visualization, components
- Fortran
 - Adds Fortran support to a similar level as C/C++

Parallel Tools Platform Architecture

Parallel Tools Platform Architecture

Parallel Tools Platform Plug-in

- Extends existing components where necessary (e.g. debug model)
- Adds new parallel functionality (e.g. parallel launch wizard, user interface components)
- Utilizes existing language support (e.g. CDT)
- Provides infrastructure to support other parallel tools
- Interfaces to external parallel runtime systems

External Parallel Runtime

- Initially target OpenRTE (independent component of OpenMPI)
- Will support other runtime systems (requires additional work)

Parallel Tools Platform Plugin Detail

Parallel Tools Platform Parallel Model

- Runtime Model
 - Defines notion of *universe*, parallel machines, jobs, processes, etc.

Parallel Tools Platform Parallel Model

Debug Model

- Extends platform/CDT debug model to support parallel processes
- Support for group operations
- Scalable event management

Debug data model

- Efficient data handling and internal data manipulation
- Data representation is not UI centric
- Language independent (support for arbitrary data types)
- Efficient conversion to/from Java native types
- Efficient manipulation in intermediate form
- Value caching and lazy evaluation

Parallel Tools Platform Parallel Controller

- Controls interaction between PTP components and external runtime
- Manages debugger specific operations and event handling

Parallel Tools Platform Parallel User Interface

- Specifically designed to provide compact and scalable interface to parallel components
- Extends existing debug interface to support parallel processes, array viewing, and new visualization tools
- Launch Configuration
 - Specify resource requirements (e.g. number of processes, execution time, etc.) and interface to launch services

Parallel Tools Platform Parallel API

- High level interface for interacting with parallel machines, managing jobs, etc.
- High level API for managing debug operations
- Allows PTP to support different parallel runtime systems and parallel debug managers

Parallel Tools Platform Scalable Debug Manager

- External framework
- Manages scalable and efficient debugging of enormous parallel programs
 - Launching processes under debug control
 - Communication with large numbers of processes
 - Efficient data transfers
 - Event management

Parallel Tools Platform Tool Integration

- Runtime Services
 - A range of services for launching, running and controlling parallel programs
- Debug Services
 - Services for managing parallel programs under debugger control
- User Interface Components
 - Reusable user interface components designed to be compact and scalable
- Tool Specific Services
 - Still being defined

Parallel Tools Platform End-User Support

- Many components of PTP support running and managing, rather than developing parallel programs
- Utilize RCP to provide an environment that targets the end-user, rather than the developer
- Deal with issues that are usually ignored:
 - How to manage program input and output data
 - Pre- and post-processing of data
 - Simplify interaction with runtime/job scheduler
- Allow user to concentrate on doing science, rather than how to run parallel applications

Parallel Tools Platform Fortran Development Tools

- Still the predominant language for parallel scientific computing
- Support is essential for adoption of Eclipse in the parallel computing community
- Moving target:
 - Many standards: 66, 77, 90, 95, 2003
 - Substantial differences between versions
 - Then there's the extensions: HPF, Cray, VAX, IBM, KAP, LS, etc.
- Advanced features such as code refactoring will be available

Parallel Tools Platform Future Work

New parallel tools

– What new possibilities become available when tools are tightly integrated?

Advanced debugging

– Can the close integration of tools and debuggers lead to new debugging techniques?

Lightweight tools

 Can the developer or end-user benefit from an array of simple, useful tools?

Conclusion

- Unique opportunity to move parallel development to best practice
- Designed to address scalability and performance issues from the beginning
- Potential to push the development of parallel tools into new areas
- Growing interest from the parallel scientific computing community
- Seeking your support and involvement!

