CCP PSI Math 2

Partie I

I.A.1.1 S est symétrique réelle donc S est diagonalisable donc s est diagonalisable.

I.A.1.2 S est symétrique donc ${}^t\!SS=S^2=I_4$, donc S est une matrice orthogonale or ${\cal B}$ est une base orthonormale donc s est un automorphisme orthogonal.

s est diagonalisable donc $Sp(s) \neq \emptyset$.

Si $\operatorname{Sp}(s) = \{1\}$, alors $\exists P \in GL_4(\mathbb{R})$ telle que $S = PI_4P^{-1} = I_4$: absurde, donc $\operatorname{Sp}(s) \neq \{1\}$.

De même $Sp(s) \neq \{-1\}$, donc $Sp(s) = \{-1, 1\}$.

I.A.1.3 tr(s) = tr(S) = 0.

En notant $\overline{m_i}$ les ordres de multiplicité de E_i pour i=1 ou 2, et D une matrice diagonale semblable à S, on a $\operatorname{tr}(S) = \operatorname{tr}(D) = m_1 \times 1 + m_{-1} \times (-1)$, donc $m_1 - m_{-1} = 0$, or $m_1 + m_{-1} = \operatorname{ordre}(S) = 4$, donc finalement $m_1 = 2$ et $m_{-1} = 2$.

I.A.2.1 Par un calcul matriciel ou avec la linéarité de s, $s(u_1) = u_1$ et $s(u_2) = u_2$, donc $u_1 \in E_1$ et $u_2 \in E_1$.

De plus, u_1 et u_2 ne sont pas colinéaires donc (u_1, u_2) est libre, or dim $E_1 = 2$, donc (u_1, u_2) est une base de E_1 .

Orthonormalisation de Schmidt : on pose $\varepsilon_1 = \frac{u_1}{\|u_1\|} = \frac{1}{\sqrt{3}}(e_1 + e_3 + e_4),$

$$\varepsilon_2' = u_2 - (\varepsilon_1 | u_2) \varepsilon_1 = e_2 - e_3 + e_4$$

et $\varepsilon_2 = \frac{\varepsilon_2}{\|\varepsilon_2\|} = \frac{1}{\sqrt{3}} (e_2 - e_3 + e_4).$

 $(\varepsilon_1', \varepsilon_2')$ est une base orthonormale de E_1 .

I.A.2.2
$$\begin{cases} (u_4|u_1) = 0 \\ (u_4|u_2) = 0 \\ (u_4|u_3) = 0 \end{cases} \iff \begin{cases} a+c+d=0 \\ a+b+2d=0 \\ -a+b+c=0 \end{cases} \iff \begin{cases} a=-d \\ b=-d(d \in \mathbb{R}) \\ c=0(c \in \mathbb{R}) \end{cases}$$

On a donc $u_4 \in E_1^{\perp}$.

Or S est symétrique et \mathcal{B} est orthonormale dons s est symétrique, donc ses sous-espaces propres sont orthogonaux donc $E_1 \perp E_{-1}$, or $E = E_1 \oplus E_{-1} : E_{-1}$ est donc le supplémentaire orthogonal de E_1 , donc $E_{-1} = E_1^{\perp}$, donc $u_4 \in E_{-1}$.

On remarque que $(u_3|u_1) = (u_3|u_2) = 0$ donc de même, $u_3 \in E_{-1}$.

On sait que $u_3 \perp u_4$ or ces 2 vecteurs sont non nuls, donc (u_3, u_4) est libre, or dim $E_{-1}=2$, donc (u_3, u_4) forme une base orthogonale de E_{-1} .

I.A.3.1 $\forall k \in \mathbb{N}, s^k(x) = s^k(y) + s^k(z)$, or on sait que si $s(u) = \lambda u$, alors $\forall k \in \mathbb{N}, s^k(u) = \lambda^k u$, donc $\forall k \in \mathbb{N}, s^k(x) = y + (-1)^k z : \alpha_k = (-1)^k$.

On a donc
$$S_n(x) = \frac{1}{n} \sum_{k=0}^{n-1} (y + (-1)^k z) = \frac{1}{n} (ny + (\sum_{k=0}^{n-1} (-1)^k) z) = y + \frac{1}{n} \frac{1 - (-1)^n}{1 - (-1)} z$$

= $y + \frac{1}{2n} (1 + (-1)^{n+1}) : \underline{\beta_n = \frac{1}{2n} (1 + (-1)^{n+1})}.$

I.A.3.2
$$(1 + (-1)^{n+1})_n$$
 est bornée et $\lim_{n \to +\infty} \frac{1}{2n} = 0$, donc $\lim_{n \to +\infty} \beta_n = 0$, donc $\lim_{n \to +\infty} S_n(x) = y = \frac{1}{2}(x + s(x))$ car $\begin{cases} x = y + z \\ s(x) = y - z \end{cases}$

$$\lim_{n \to +\infty} S_n(x) = y = \frac{1}{2}(x + s(x)) \operatorname{car} \left\{ \begin{array}{l} x = y + z \\ s(x) = y - z \end{array} \right.$$

$$\textbf{I.B.1.1} \ \|u\|^2 - \|\ell(u)\|^2 = (a^2 + b^2 + c^2 + d^2) - ((\frac{3}{4}a + \frac{1}{4}c)^2 + (\frac{3}{4}b + \frac{1}{4}d)^2 + (\frac{1}{4}a + \frac{3}{4}c)^2 + (\frac{1}{4}b + \frac{3}{4}d)^2) :$$

 $||u||^2 - ||\ell(u)||^2 = \frac{3}{8}(a^2 + b^2 + c^2 + d^2) - \frac{3}{4}(ac + bd) = \frac{3}{8}[(a - c)^2 + (b - d)^2].$ $\overline{\operatorname{donc} \|u\|^2 - \|\ell(u)\|^2} \geqslant 0, \operatorname{donc} \|\ell(u)\|^2 \leqslant \|u\|^2, \operatorname{or} \sqrt{.} \text{ est croissante sur } \mathbb{R}_+, \operatorname{donc} \|\ell(u)\| \leqslant \|u\|.$

I.B.1.2

 $\|\ell(u)\| = \|u\| \iff \|\ell(u)\|^2 = \|u\|^2 \iff \frac{3}{8}[(a-c)^2 + (b-d)^2] = 0 \iff (a-c)^2 = 0 \text{ et } (b-d)^2 = 0,$ donc $\|\ell(u)\| = \|u\| \iff a = c \text{ et } b = d.$

Soit $u \in E$.

 $u \in E_1(\ell) \Longrightarrow \ell(u) = u \Longrightarrow ||\ell(u)|| = ||u|| \Longrightarrow a = c \text{ et } b = d \ (c \in \mathbb{R} \text{ et } d \in \mathbb{R})$ $\implies u = c(e_1 + e_3) + d(e_2 + e_4) \implies u \in F = Vect(e_1 + e_3, e_2 + e_4),$ donc $E_1(\ell) \subset F$.

Réciproquement, si on note $v_1 = e_1 + e_3$ et $v_2 = e_2 + e_4$, on vérifie que $\ell(v_1) = v_1$ et que $\ell(v_2) = v_2$, donc $(v_1, v_2) \in E_1(\ell)^2$, donc $F \subset E_1(\ell)$, donc finalement $E_1(\ell) = F$, or (v_1, v_2) est libre et par définition de F, ils forment une famille génératrice de F, donc (v_1, v_2) est une base de $F = E_1(\ell)$: $\dim E_1(\ell) = 2 \geqslant 0$, donc 1 est valeur propre de ℓ .

1.B.2.1 dim $E_1(l) = 2$ et ℓ est diagonalisable (car L est symétrique réelle), donc 1 est racine double de P_{ℓ} qui est scindé. De plus d' $P_{\ell} = 4$ et il est de la forme $P_{\ell}(x) = (-1)^4 x^4 + (-1)^3 \operatorname{tr}(\ell) x^3 + ... + \operatorname{d\acute{e}t}(\ell)$. On calcule : dét $(\ell) = \frac{1}{4}$ et tr $(\ell) = 3$.

D'après son degré, il admet 2 autres racines, notées λ_1 et λ_2 , et comme il est unitaire, on a :

 $P_{\ell}(x) = (x-1)^2(x-\lambda_1)(x-\lambda_2), \text{ on développe et on identifie :}$ $\begin{cases} \lambda_1 + \lambda_2 + 2 = 3 \\ \lambda_1 \lambda_2 = \frac{1}{4} \end{cases} \iff \begin{cases} \lambda_1 + \lambda_2 = 1 \\ \lambda_1 \lambda_2 = \frac{1}{4} \end{cases} \iff \lambda_1 \text{ et } \lambda_2 \text{ sont les racines de } x^2 - x + \frac{1}{4} = (x - \frac{1}{2})^2,$ donc $\lambda_1 = \lambda_2 = \frac{1}{2} : \underline{P_\ell(x) = (x-1)^2(x-\frac{1}{2})^2}.$

Autre méthode : on calcule $P_{\ell}(x) = \text{dét}(L - xI_4)$ en commençant par la transformation $C_1 \longleftarrow \sum_{i=1}^{n} C_i$ puis pour i variant de 2 à 4, $L_i \leftarrow L_i - L_1$, on peut ensuite développer suivant la 1ère colonne, 2 fois de suite et on factorise au maximum.

I.B.2.2 Les valeurs propres de ℓ sont les racines de P_{ℓ} , donc $\frac{1}{2}$ est aussi valeur propre de ℓ .

On a vu au 1. que ℓ est diagonalisable, et comme $\mathrm{Sp}(\ell)=\{1,\frac{1}{2}\},$ G_1 et $G_{\frac{1}{2}}$ sont supplémentaires dans E.

I.B.3.1
$$\forall k \in \mathbb{N}, \ell^k(x) = \ell^k(y) + \ell^k(z) = y + (\frac{1}{2})^k z$$

I.B.3.2
$$L_n(x) = \frac{1}{n} \sum_{k=0}^{n-1} (y + (\frac{1}{2})^k z) = y + \frac{1}{n} \frac{1 - (\frac{1}{2})^n}{1 - \frac{1}{2}} = y + \frac{1}{n} (2 - (\frac{1}{2})^{n-1}) z.$$

$$\left|\frac{1}{2}\right| < 1$$
, donc $\lim_{n \to +\infty} L_n(x) = y = 2s(x) - x$ car $\begin{cases} x = y + z \\ s(x) = y + \frac{1}{2}z \end{cases}$

I.C.1 ${}^tTT = I_4$ donc T est orthogonale.

I.C.2.1 $t(e_1) = \frac{1}{\sqrt{3}}(e_1 - e_3 - e_4)$ (voir 1ère colonne de T), et $\underline{t(\varepsilon_1)} = \frac{1}{\sqrt{2}}(t(e_3) + t(e_4)) = \frac{1}{\sqrt{6}}(2e_1 + e_3 + e_4)$. On remarque que : $t(e_1) = \frac{1}{\sqrt{3}}(e_1 - \sqrt{2}\varepsilon_1) \in F_1$ et $t(\varepsilon_1) = \frac{1}{\sqrt{6}}(2e_1 + \sqrt{2}\varepsilon_1) \in F_1$, donc F_1 est stable par f_2 . (e_1,ε_1) est libre, donc c'est une base de F_1 : dim $F_1=2$

I.C.2.2 On sait que F_1 est stable par t, donc F_1^{\perp} est stable par $t^* = t^{-1}$: F_2 est stable par t^{-1} , soit $t^{-1}(F_2) \subset F_2$. Or t étant un isomorphisme, dim $t(F_2)$ =dim F_2 , donc $t^{-1}(F_2) = F_2$, donc $t(F_2) = F_2$: F_2 est stable par t.

 $(e_2|e_1)=(e_2|\varepsilon_1)=0$, donc $e_2 \in F_1^{\perp}=F_2$.

 $(\varepsilon_2|e_1)=(\varepsilon_2|\varepsilon_1)=0 \text{ donc } e_2 \in F_2.$

Il est clair que (e_2, ε_2) est libre et comme E est de dimension finie, dim F_1^{\perp} =dim E-dim F_1 , donc dim $F_2 = 2$.

En conclusion, (e_2, ε_2) est une base de F_2 .

I.C.3.1 Les vecteurs de \mathcal{B}' sont orthogonaux 2 à 2 et de norme 1, donc \mathcal{B}' est une base orthonormée de E, or t est orthogonale donc T' est orthogonale.

On connait déja $t(e_1)$ et $t(\varepsilon_1)$. De plus, $t(e_2) = \frac{1}{\sqrt{3}}(e_2 + e_3 - e_4) = \frac{1}{\sqrt{3}}(e_2 + \sqrt{2}\varepsilon_2)$, et $t(\varepsilon_2) = \frac{1}{\sqrt{3}}(e_1 + e_3 - e_4)$

$$\frac{1}{\sqrt{6}}(-2e_2 + e_3 - e_4) = \frac{1}{\sqrt{6}}(-2e_2 + \sqrt{2}\varepsilon_2), \text{ donc } T' = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & \sqrt{2} & 0 & 0 \\ -\sqrt{2} & 1 & 0 & 0 \\ 0 & 0 & 1 & -\sqrt{2} \\ 0 & 0 & \sqrt{2} & 1 \end{pmatrix}$$

I.C.3.2 $\sin \theta = \sqrt{\frac{2}{3}}$. De plus, $\cos^2 \theta + \sin^2 \theta = 1$, or $\theta \in [-\frac{\pi}{2}, \frac{\pi}{2}]$, donc $\cos \theta \ge 0$ donc $\cos \theta = \frac{1}{\sqrt{3}}$,

donc
$$T' = \begin{pmatrix} \cos \theta & \sin \theta & 0 & 0 \\ -\sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & \cos \theta & -\sin \theta \\ 0 & 0 & \sin \theta & \cos \theta \end{pmatrix}$$

Pour i=1 ou 2, on note
$$b_i = (e_i, \varepsilon_i)$$
 et t_i l'endomorphisme de F_i induit par t , alors
$$\operatorname{Mat}_{b_1}(t_1) = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} = \begin{pmatrix} \cos(-\theta) & -\sin(-\theta) \\ \sin(-\theta) & \cos(-\theta) \end{pmatrix} \operatorname{donc} \underbrace{t_1 \text{ est la rotation d'angle } -\theta}.$$
 De même, $\underline{t_2}$ est la rotation d'angle $\underline{\theta}$.

I.C.3.3 $\operatorname{Mat}_{\mathcal{B}'}(t^k) = (\operatorname{Mat}_{\mathcal{B}'}(t))^k = T'^k = \begin{pmatrix} A_1^k & (0) \\ (0) & A_1^k \end{pmatrix}$, où $A_i = \operatorname{Mat}_{b_i}(t_i)$, et $(0) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$

sance d'une matrice triangulaire par blocs), or t_1^k est la rotation d'angle $k(-\theta)$, de même pour t_2^k ,

donc
$$\operatorname{Mat}_{\mathcal{B}'}(t^k) = \begin{pmatrix} \cos k\theta & \sin k\theta & 0 & 0 \\ -\sin k\theta & \cos k\theta & 0 & 0 \\ 0 & 0 & \cos k\theta & -\sin k\theta \\ 0 & 0 & \sin \theta & \cos k\theta \end{pmatrix}$$

I.C.4
$$\zeta_n(\omega) = \sum_{k=0}^{n-1} (e^{i\omega})^k$$
.

Si $e^{i\omega} = 1$, soit $\omega = 2p\pi, p \in \mathbb{Z}$, alors $\zeta_n(\omega) = \sum_{k=0}^{n-1} 1 = n$, donc $(\zeta_n(\omega))_n$ n'est pas bornée.

Si
$$\omega \neq 2p\pi, p \in \mathbb{Z}$$
, alors $\zeta_n(\omega) = \frac{1 - (e^{i\omega})^n}{1 - e^{i\omega}} = \frac{1 - e^{in\omega}}{1 - e^{i\omega}}$, donc $|\zeta_n(\omega)| \leqslant \frac{|1| + |e^{in\omega}|}{1 - e^{i\omega}} = \frac{2}{1 - e^{i\omega}}$: $(\zeta_n(\omega))_n$ est bornée.

Finalement, $(\zeta_n(\omega))_n$ est bornée $\iff \forall p \in \mathbb{Z}, \omega \neq 2p\pi$.

I.C.5.1 F_1 est stable par t donc par t^k pour $k \in [0, n-1]$, donc par T_n .

I.C.5.2 On reprend les notations du C.3.2, et on note
$$Y = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$
, alors $t^k(y)$ a pour matrice colonne de coordonnées dans $b_1 : \begin{pmatrix} \gamma_k \\ \delta_k \end{pmatrix} = A_1^k \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$, donc $V_k = \begin{pmatrix} \cos k\theta & \sin k\theta \\ -\sin k\theta & \cos k\theta \end{pmatrix}$

 $T_n(y) = \frac{1}{n} \sum_{k=1}^{n-1} t^k(y)$ a donc pour matrice colonne de coordonnées dans b_1 :

$$\frac{1}{n}\sum_{k=0}^{n-1} \left(\begin{array}{c} \gamma_k \\ \delta_k \end{array}\right) = \frac{1}{n}\sum_{k=0}^{n-1} V_k \left(\begin{array}{c} \alpha \\ \beta \end{array}\right) = \left(\frac{1}{n}\sum_{k=0}^{n-1} V_k\right) \left(\begin{array}{c} \alpha \\ \beta \end{array}\right), \text{ donc } U_n = \frac{1}{n}\sum_{k=0}^{n-1} V_k \text{ et si on note } V_k = 0$$

$$u_{n} = \sum_{k=0}^{n-1} \cos k\theta \text{ et } v_{n} = \sum_{k=0}^{n-1} \sin k\theta, \text{ alors on a } U_{n} = \begin{pmatrix} u_{n} & v_{n} \\ -v_{n} & u_{n} \end{pmatrix}$$

$$\theta = \operatorname{Arcsin} \left(\sqrt{\frac{2}{3}}\right) \neq 2p\pi \text{ donc } e^{\frac{in\theta}{2}} \zeta_{n}(\theta) = \frac{e^{i0} - e^{in\theta}}{e^{i0} - e^{i\theta}} = \frac{e^{\frac{in\theta}{2}} \left(e^{-\frac{in\theta}{2}} - e^{\frac{in\theta}{2}}\right)}{e^{\frac{i\theta}{2}} \left(e^{-\frac{i\theta}{2}} - e^{\frac{i\theta}{2}}\right)} = \left(e^{\frac{i(n-1)\theta}{2}}\right) \frac{-2i\sin\frac{n\theta}{2}}{-2i\sin\frac{\theta}{2}}, \text{ donc }$$

$$u_{n} = \frac{\sin\frac{n\theta}{2}}{\sin\frac{\theta}{2}} \cos\frac{(n-1)\theta}{2} \text{ et } v_{n} = \frac{\sin\frac{n\theta}{2}}{\sin\frac{\theta}{2}} \sin\frac{(n-1)\theta}{2}.$$

Mais il suffit peut-être de répondre $u_n = \text{Re}(\zeta_n(\theta))$ et $v_n = \text{Im}(\zeta_n(\theta))$

I.C.5.2 $(\zeta_n(\omega))_n$ étant bornée, $(u_n)_n$ et $(v_n)_n$ aussi donc $\lim_{n\to+\infty} U_n = 0$, donc $\lim_{n\to+\infty} T_n(y) = 0$.

I.C.5.3 On a le même résultat pour $\lim_{n\to+\infty} T_n(z)$ (le signe devant v_n ne change pas la limite, donc , comme $T_n(x)=T_n(y)+T_n(z), \lim_{n\to+\infty} T_n(x)=0.$

Partie II

II.A.1. Soient $x \in \ker (\ell - id)$ et $y \in \operatorname{Im} (\ell - id)$, alors $\ell(x) = x$, et $\exists \alpha \in E$ tel que $y = (\ell - id)(\alpha)$, donc $(x|y) = (x|\ell(\alpha) - \alpha) = (x|l(\alpha)) - (x|\alpha) = (\ell(x)|\ell(\alpha)) - (x|\alpha) = 0$ car $\ell \in O(E)$ donc ℓ conserve le produit scalaire. On a donc toujours $x \perp y$: ker $(\ell - id)$ et Im $(\ell - id)$ sont donc orthogonaux. On en déduit que ker $(\ell - id) \subset \text{Im } (\ell - id)^{\perp}$.

De plus, E étant un espace euclidien, il est de dimension finie, donc en notant $F = \text{Im } (\ell - id)$, on a $E = F \oplus F^{\perp}$, donc dim $E = \dim F + \dim F^{\perp}$.

D'autre part, d'après le théorème du rang, dim $E = \dim F + \dim \ker (\ell - id)$.

On obtient donc dim ker $(\ell - id) = \dim F^{\perp}$, et d'après l'inclusion précédente, ker $(\ell - id) = F^{\perp}$, or F^{\perp} et F sont supplémentaires dans E, donc ker $(\ell - id)$ et Im $(\ell - id)$ sont supplémentaires dans E.

II.A.2 $y \in \ker (\ell - id)$, donc $\ell(y) = y$, donc $\forall k \in \mathbb{N}, \ell^k(y) = y$, donc $\ell^k(x) = y + \ell^k(\ell(z) - z) = y + \ell^{k+1}(z) - \ell^k(z).$

On a donc
$$L_n(x) = \frac{1}{n} \sum_{k=0}^{n-1} (y + \ell^{k+1}(z) - \ell^k(z)) = y + \frac{1}{n} (\ell^n(z) - \ell^0(z)), \text{ donc } \underline{L_n(x) = y + \frac{1}{n} (\ell^n(z) - z)}$$

 $\mathbf{II.A.3} \text{ On a donc}: \|L_n(x)-y\|=\|\frac{1}{n}(\ell^n(z)-z)\|\leqslant \frac{1}{n}(\|\ell^n(z)\|+\|z\|) \text{ d'après l'inégalité triangulaire}.$

De plus, l conserve la norme donc $\|\ell^n(z)\| = \|z\|$, donc $0 \le \|L_n(x) - y\| \le \frac{1}{n} 2\|z\|$ et d'après le théorème des gendarmes, $\lim_{n\to+\infty} ||L_n(x)-y|| = 0$, donc $\lim_{n\to+\infty} L_n(x) = y$.

II.B.1 Soit $f \in B(E)$, et soit $x \in E$, alors

 $||f^*(x)||^2 = (f^*(x)|f^*(x)) = (x, f(f^*(x))) \le ||x|| ||f(f^*(x))||$ d'après l'inégalité de Cauchy-Schwarz.

- Or $f \in B(E)$ donc $\forall y \in E$, $||f(y)|| \le ||y||$ donc $||f^*(x)||^2 \le ||x|| ||f^*(x)||$ (avec $y = f^*(x)$). * Si $||f^*(x)|| \ne 0$, alors $||f^*(x)|| > 0$, donc en multipliant par $\frac{1}{||f^*(x)||}$, on obtient $||f^*(x)|| \le ||x||$.
- * Si $||f^*(x)|| = 0$, alors, comme $||x|| \ge 0$, on a aussi $||f^*(x)|| \le ||x||$.

Dans tous les cas : $||f^*(x)|| \le ||x|| : f^* \in B(E)$.

II.B.2 Soit $x \in E$ tel que f(x) = x.

$$||f^*(x) - x||^2 = ||f^*(x)||^2 - 2(f^*(x)|x) + ||x||^2 \le ||x||^2 - 2(f^*(x)|x) + ||x||^2 \text{ car } f^* \in B(E).$$
Or $(f^*(x)|x) = (x|f(x)) = (x|x) = ||x||^2$, donc l'inégalité précédente devient : $||f^*(x) - x||^2 \le 0$.
Or $||f^*(x) - x||^2 \ge 0$ donc $||f^*(x) - x||^2 = 0$ donc $f^*(x) = x$: on vient donc de montrer que $||f^*(x) - x||^2 \le 0$.

De plus, dim $\ker(f^*-id)$ =dim $\ker(f^*-id^*)$ = $\ker(f-id)^*$ =dimE-rg $(f-id)^*$ d'après le théorème du rang, donc dim $\ker(f^*-id)$ =dimE-rg(f-id)=dim $\ker(f-id)$, donc avec l'inclusion précédente, $\ker(f-id)$ = $\ker(f^*-id)$.

II.B.3 Pour $\varphi = (f - id)$, on obtient : $\ker(f^* - id) = (\operatorname{Im} (f - id))^{\perp}$, or en notant $F = \operatorname{Im} (f - id)$, F^{\perp} et F sont supplémentaires dans E (:de dimension finie), donc $\ker(f^* - id)$ et $\operatorname{Im} (f - id)$ sont supplémentaires dans E et d'après II.B.2, $\ker(f - id)$ et $\operatorname{Im} (f - id)$ sont supplémentaires dans E.

II.C.1 (Remarque : on n'a plus les résultats du B car il manque l'inégalité de Cauchy-Schwarz.) Soit $x \in \ker(\ell - id) \cap \operatorname{Im} (\ell - id) (\subset \operatorname{Im} (f - id))$, et soit $y \in E$ tel que $x = \ell(y) - y$, alors

$$\forall k \in [0, n-1], \ell^k(x) = \ell^{k+1}(y) - \ell^k(y) : \text{on somme d'où } \sum_{k=0}^{n-1} \ell^k(x) = \sum_{k=0}^{n-1} \ell^{k+1}(y) - \ell^k(y) = \ell^n(y) - \ell^0(y) = \ell^n(y) - y.$$

Or on sait aussi que $x \in \ker(\ell - id)$, donc $\ell(x) = x$, donc $\forall k \in [0, n - 1], \ell^k(x) = x$ et l'égalité précédente devient : $\sum_{k=0}^{n-1} x = \ell^n(y) - y$, donc $\underline{\ell^n(y) = nx + y}$.

On a donc : $\|nx\| = \|\ell^n(y) - y\| \le \|\ell^n(y)\| + \|y\|$, or $\|\ell^n(y)\| = \|y\|$, et en divisant par n > 0, on obtient : $0 \le \|x\| \le \frac{1}{n} 2\|y\|$ donc d'après le théorème des gendarmes $\lim_{n \to +\infty} \|x\| = 0$, or $\lim_{n \to +\infty} \|x\| = \|x\|$ donc $\|x\| = 0$ donc x = 0: on vient de montrer que $\ker(\ell - id) \cap \operatorname{Im}(\ell - id) = \{0\}$, et à l'aide du théorème du rang appliqué à $\ell - id$, on obtient : $\ker(\ell - id)$ et $\operatorname{Im}(\ell - id)$ sont supplémentaires dans E.

II.C.2 On a donc, comme au II.A, $\lim_{n\to+\infty} L_n(x) = y$.

Partie III

III.1
$$\sigma_e(e) = e - 2 \frac{\|e\|^2}{\|e\|^2} e : \underline{\sigma_e(e) = -e}.$$

Soit x orthogonal à e, alors $\sigma_e(x) = x - 0$: $\underline{\sigma_e(x) = x}$.

On note $u_1 = \frac{e}{\|e\|}$, et $(u_2, u_3, ..., u_n)$ une base ortonormée de $\text{Vect}(e)^{\perp}$, alors $(u_1, u_2, u_3, ..., u_n)$ est une base ortonormée de E et dans cette base, la matrice de σ_e est une matrice diagonale dont les coefficients diagonaux sont -1, et 1 répétés n-1 fois : cette matrice étant clairement ortogonale, σ_e est un automorphisme orthogonal de E.

- **III.2.1** Par définition, $e = (\ell id)(u)$, donc $e \in \text{Im}(\ell id)$, or d'après II.A.1), W et $\text{Im}(\ell id)$ sont orthogonaux, donc $e \in W^{\perp}$: e est orthogonal à W.
- $$\begin{split} \mathbf{III.2.2} \ \sigma_e(\ell(u)-u) &= \sigma_e(e) = -e \text{ d'après III.1), donc } \underline{\sigma_e(\ell(u)-u) = u \ell(u)}. \\ \text{On remarque que } (\ell(u)-u,\ell(u)+u) &= \|\ell(u)\|^2 \|u\|^{\frac{1}{2}} = \|u\|^2 \|u\|^2 = 0, \text{ car } \ell \in O(E), \text{ donc } \ell(u) + u \perp e, \text{ donc d'après III.2.1), } \underline{\sigma_e(\ell(u)+u) = \ell(u) + u}. \end{split}$$

$$\begin{array}{l} \ell(u) + u \perp e \text{, donc d'après III.2.1), } \underline{\sigma_e(\ell(u) + u) = \ell(u) + u}. \\ \\ \sigma_e \text{ étant linéaire, on obtient : } \left\{ \begin{array}{l} \sigma_e(\ell(u)) - \sigma_e(u) = u - \ell(u) \\ \sigma_e(\ell(u)) + \sigma_e(u)) = \ell(u) + u \end{array} \right., \text{ donc } \left\{ \begin{array}{l} \sigma_e(\ell(u)) = u \\ \sigma_e(\ell(u)) = \ell(u) \end{array} \right., \\ \end{array}$$

III.2.3 Soit $x \in \text{Vect}(u, W)$, alors $\exists (\alpha, w) \in \mathbb{R} \times W/x = \alpha u + w$, or $(\sigma_e \circ \ell - id)(u) = \sigma_e(\ell(u)) - u = 0$ d'après III.2.2), et comme $w \in W$, on a : $\ell(w) = w$, donc $(\sigma_e \circ \ell - id)(w) = \sigma_e(w) - w$, or $w \in W$ et $e \in \text{Im}(\ell - id)$, donc d'après II.A.1), $w \perp e$, et d'après III.1), $\sigma_e(w) = w$, donc finalement $(\sigma_e \circ \ell - id)(w) = 0$, donc par linéarité de σ_e , $(\sigma_e \circ \ell - id)(x) = 0$, donc $x \in \text{ker } (\sigma_e \circ \ell - id)$. On a montré que $\text{Vect}(u, W) \subset \text{ker } (\sigma_e \circ \ell - id)$.

Réciproquement soit $x \in \ker (\sigma_e \circ \ell - id)$, alors $\sigma_e(\ell(x)) = x$.

- * Analyse : on suppose que $\exists (\alpha, w) \in \mathbb{R} \times W/x = \alpha u + w$, alors $\ell(x) = \alpha \ell(u) + w$, donc $\ell(x) x = \alpha e$. Une fois que α sera déterminé, on pourra poser $w = x - \alpha u$.
- * Synthèse: on pose $y = \ell(x) x$, alors $\sigma_e(y) = x \sigma_e(x)$.

Or σ_e étant une réflexion (donc une symétrie), et comme $\sigma_e(\ell(x)) = x$, on obtient en appliquant σ_e : $\sigma_e(x) = \ell(x)$, donc finalement $\sigma_e(y) = x - \ell(x) = -y$: $y \in E_{-1}(\sigma_e)$, or σ_e étant une réflexion, son sousespace propre associé à -1 est de dimension 1 : c'est $\mathrm{Vect}(e)$, donc $y \in \mathrm{Vect}(e)$, donc $\exists \alpha \mathbb{R}/y = \alpha e$, donc $\ell(x) - x = \alpha e$.

On pose $w = x - \alpha u$, alors $\ell(w) = \ell(x) - \alpha \ell(u) = (x + \alpha e) - \alpha \ell(u) = x + \alpha(\ell(u) - u) - \alpha \ell(u)$, donc $\ell(w) = w : w \in W$.

Or $w = x - \alpha u$, donc $x = w + \alpha u \in Vect(u, W)$.

On a montré que ker $(\sigma_e \circ \ell - id) \subset \text{Vect}(u, W)$.

Finalement : Vect $(u, W) = \ker (\sigma_e \circ \ell - id)$.

III.2.4 On remarque que dim Vect(u, W) = 1 + dimW (: en fait $Vect(u, W) = Vectu \oplus W$)

Si ker $(\sigma_e \circ \ell - id) \neq E$ (c'est à dire si $1 + \dim W < n$), on recommence le 3) avec $\sigma_e \circ \ell$, qui est bien un automorphisme orthogonal car σ_e et ℓ le sont.

Si dim W = k, on pourra faire cette étape n - k fois, et en notant $u_1 = u$, le vecteur trouvé à la question III.2.3) et $e_1 = \ell(u_1) - u_1$, on obtient par récurrence :

 $\text{Vect}(u_{n-k}, \dots u_2, u_1, W) = \text{ker}(\sigma_{e_{n-k}} \circ \dots \circ \sigma_{e_1} \circ \ell - id) \text{ avec dim Vect}(u_{n-k}, \dots u_2, u_1, W) = n, \text{ donc Vect}(u_{n-k}, \dots u_2, u_1, W) = E, \text{ donc, en notant } g = \sigma_{e_{n-k}} \circ \dots \circ \sigma_{e_1} \circ \ell, \text{ on a : ker}(g - id) = E, \text{ donc } g - id = 0, \text{ donc } g = id, \text{ et en composant à gauche par les symétries dans l'ordre rencontré, on obtient } g = \sigma_{e_1} \circ \sigma_{e_2} \circ \dots \circ \sigma_{e_{n-k}} :$

 ℓ peut se décomposer en produit de n-k réflexions.

Pour les courageux, l'hypothèse de récurrence est, pour $p \in [1, n-k]$,

 $H_p: "\exists (u_1, u_2, ..., u_p) \in E^p/\text{Vect}(u_p, ...u_2, u_1, W) = \text{ker}(\sigma_{e_p} \circ ... \circ \sigma_{e_1} \circ \ell - id), \text{ où } e_i = \ell(u_i) - u_i$ "