

Algebra of Matrices Ex 5.2 Q1

(i)
$$\begin{bmatrix} 3 & -2 \\ 1 & 4 \end{bmatrix} + \begin{bmatrix} -2 & 4 \\ 1 & 3 \end{bmatrix}$$

$$= \begin{bmatrix} 3 - 2 & -2 + 4 \\ 1 + 1 & 4 + 3 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 2 \\ 2 & 7 \end{bmatrix}$$

Hence,

$$\begin{bmatrix} 3 & -2 \\ 1 & 4 \end{bmatrix} + \begin{bmatrix} -2 & 4 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 7 \end{bmatrix}$$

(ii)
$$\begin{bmatrix} 2 & 1 & 3 \\ 0 & 3 & 5 \\ -1 & 2 & 5 \end{bmatrix} + \begin{bmatrix} 1 & -2 & 3 \\ 2 & 6 & 1 \\ 0 & -3 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 2+1 & 1-2 & 3+3 \\ 0+2 & 3+6 & 5+1 \\ -1+0 & 2-3 & 5+1 \end{bmatrix}$$
$$= \begin{bmatrix} 3 & -1 & 6 \\ 2 & 9 & 6 \\ -1 & -1 & 6 \end{bmatrix}$$

Hence,

$$\begin{bmatrix} 2 & 1 & 3 \\ 0 & 3 & 5 \\ -1 & 2 & 5 \end{bmatrix} + \begin{bmatrix} 1 & -2 & 3 \\ 2 & 6 & 1 \\ 0 & -3 & 1 \end{bmatrix} = \begin{bmatrix} 3 & -1 & 6 \\ 2 & 9 & 6 \\ -1 & -1 & 6 \end{bmatrix}$$

Algebra of Matrices Ex 5.2 Q2

Given,
$$A = \begin{bmatrix} 2 & 4 \\ 3 & 2 \end{bmatrix}, B = \begin{bmatrix} 1 & 3 \\ -2 & 5 \end{bmatrix}, C = \begin{bmatrix} -2 & 5 \\ 3 & 4 \end{bmatrix}$$

$$2A - 3B$$

$$= 2\begin{bmatrix} 2 & 4 \\ 3 & 2 \end{bmatrix} - 3\begin{bmatrix} 1 & 3 \\ -2 & 5 \end{bmatrix}$$

$$= \begin{bmatrix} 4 & 8 \\ 6 & 4 \end{bmatrix} - \begin{bmatrix} 3 & 9 \\ -6 & 15 \end{bmatrix}$$

$$= \begin{bmatrix} 4 - 3 & 8 - 9 \\ 6 + 6 & 4 - 15 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & -1 \\ 12 & -11 \end{bmatrix}$$

Hence,

$$2A - 3B = \begin{bmatrix} 1 & -1 \\ 12 & -11 \end{bmatrix}$$

Algebra of Matrices Ex 5.2 Q2(ii)

Given,
$$A = \begin{bmatrix} 2 & 4 \\ 3 & 2 \end{bmatrix}, B = \begin{bmatrix} 1 & 3 \\ -2 & 5 \end{bmatrix}, C = \begin{bmatrix} -2 & 5 \\ 3 & 4 \end{bmatrix}$$

$$B - 4c$$

$$= \begin{bmatrix} 1 & 3 \\ -2 & 5 \end{bmatrix} - 4 \begin{bmatrix} -2 & 5 \\ 3 & 4 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 3 \\ -2 & 5 \end{bmatrix} - \begin{bmatrix} -8 & 20 \\ 12 & 16 \end{bmatrix}$$

$$= \begin{bmatrix} 1+8 & 3-20 \\ -2-12 & 5-16 \end{bmatrix}$$

$$= \begin{bmatrix} 9 & -17 \\ -14 & -11 \end{bmatrix}$$

Hence,

$$B - 4C = \begin{bmatrix} 9 & -17 \\ -14 & -11 \end{bmatrix}$$

Algebra of Matrices Ex 5.2 Q2(iii)

Given,
$$A = \begin{bmatrix} 2 & 4 \\ 3 & 2 \end{bmatrix}, B = \begin{bmatrix} 1 & 3 \\ -2 & 5 \end{bmatrix}, C = \begin{bmatrix} -2 & 5 \\ 3 & 4 \end{bmatrix}$$

$$3A - C$$

$$= 3\begin{bmatrix} 2 & 4 \\ 3 & 2 \end{bmatrix} - \begin{bmatrix} -2 & 5 \\ 3 & 4 \end{bmatrix}$$

$$= \begin{bmatrix} 6 & 12 \\ 9 & 6 \end{bmatrix} - \begin{bmatrix} -2 & 5 \\ 3 & 4 \end{bmatrix}$$

$$= \begin{bmatrix} 6+2 & 12-5 \\ 9-3 & 6-4 \end{bmatrix}$$

$$= \begin{bmatrix} 8 & 7 \\ 6 & 2 \end{bmatrix}$$

Hence,

$$3A - C = \begin{bmatrix} 8 & 7 \\ 6 & 2 \end{bmatrix}$$

Algebra of Matrices Ex 5.2 Q2(iv)

Given,
$$A = \begin{bmatrix} 2 & 4 \\ 3 & 2 \end{bmatrix}, B = \begin{bmatrix} 1 & 3 \\ -2 & 5 \end{bmatrix}, C = \begin{bmatrix} -2 & 5 \\ 3 & 4 \end{bmatrix}$$

$$3A - 2B + 3C$$

$$= 3\begin{bmatrix} 2 & 4 \\ 3 & 2 \end{bmatrix} - 2\begin{bmatrix} 1 & 3 \\ -2 & 5 \end{bmatrix} + 3\begin{bmatrix} -2 & 5 \\ 3 & 4 \end{bmatrix}$$

$$= \begin{bmatrix} 6 & 12 \\ 9 & 6 \end{bmatrix} - \begin{bmatrix} 2 & 6 \\ -4 & 10 \end{bmatrix} + \begin{bmatrix} -6 & 15 \\ 9 & 12 \end{bmatrix}$$

$$= \begin{bmatrix} 6 - 2 - 6 & 12 - 6 + 15 \\ 9 + 4 + 9 & 6 - 10 + 12 \end{bmatrix}$$

$$= \begin{bmatrix} -2 & 21 \\ 22 & 8 \end{bmatrix}$$

Hence,

$$3A - 2B + 3C = \begin{bmatrix} -2 & 21 \\ 22 & 8 \end{bmatrix}$$

Algebra of Matrices Ex 5.2 Q3

Given,
$$A = \begin{bmatrix} 2 & 3 \\ 5 & 7 \end{bmatrix}$$
, $B = \begin{bmatrix} -1 & 0 & 2 \\ 3 & 4 & 1 \end{bmatrix}$, $C = \begin{bmatrix} -1 & 2 & 3 \\ 2 & 1 & 0 \end{bmatrix} \supseteq$

(i)
$$A + B$$

A+B is not possible as order of A is 2×2 and order of B is 2×3 . And we know that sum of matrix is possible only when their order is same.

Hence,

A + B is not possible

$$B+C$$
=\begin{bmatrix} -1 & 0 & 2 \\ 3 & 4 & 1 \end{bmatrix} + \begin{bmatrix} -1 & 2 & 3 \\ 2 & 1 & 0 \end{bmatrix}
=\begin{bmatrix} -1-1 & 0+2 & 2+3 \\ 3+2 & 4+1 & 1+0 \end{bmatrix}
=\begin{bmatrix} -2 & 2 & 5 \\ 5 & 5 & 1 \end{bmatrix}

So,

$$B+C=\begin{bmatrix} -2 & 2 & 5\\ 5 & 5 & 1 \end{bmatrix}$$

We need to find 2B+3A and 3C-4B

Thuss, 2B+3A does not exist as the order of A and B are different.

Let us find
$$3C - 4B = 3\begin{bmatrix} -1 & 2 & 3 \\ 2 & 1 & 0 \end{bmatrix} - 4\begin{bmatrix} -1 & 0 & 2 \\ 3 & 4 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} -3 & 6 & 9 \\ 6 & 3 & 0 \end{bmatrix} - \begin{bmatrix} -4 & 0 & 8 \\ 12 & 16 & 4 \end{bmatrix}$$

$$= \begin{bmatrix} -3 & 6 & 9 \\ 6 & 3 & 0 \end{bmatrix} + \begin{bmatrix} 4 & 0 & -8 \\ -12 & -16 & -4 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 6 & 1 \\ -6 & -13 & -4 \end{bmatrix}$$

********** END ********