Automating Myelin Defect Detection

Update: Sept 23rd, 2024

Background

Goal: Train an object detection model to detect myelin defects in BRM images

Progress:

Model performance: 0.533 mAP@50

To Do:

- Improve model performance
- Classification

Improving Model Performance

Classification

Motivation for new classification:

Classification – MNIST example

MNIST Dataset: 28 x 28 px

Classification - VAE

Classification

- Our defect sizes are on a similar scale as the MNIST dataset → easier to learn representative features
- VAE reconstruction loss directly emphasizes learning representations based on visual features similar to our previous classes (swelling & vesicles)
- We can improve object detection performance by introducing classification
 - Observe model performance by class
 - Remove outliers from dataset
 - Identify underrepresented class

Distribution of Defect Sizes (normalized 100px)