Chapter 2 Boolean Algebra and Logic Gates

Definitions

Theorems

Functions

Canonical and Standard Forms

Operations

Gates

Integrated Circuits

Algebraic Manipulation

- By reducing the number of terms, the number of literals (single variable) or both in a Boolean function, it is possible to obtain a simpler circuit, as each term requires a gate and each variable within the term designates an input to the gate.
 - $F_1 = x'y'z + x'yz + xy'$ contains 3 terms and 8 literals
 - $-F_2 = x'z + xy'$ contains 2 terms and 4 literals.

Example Manipulations

The following are some example manipulations:

1.
$$x(x' + y) = xx' + xy = 0 + xy = xy$$

2.
$$x + x'y = (x + x')(x + y) = 1(x + y) = x + y$$

3.
$$(x + y)(x + y') = x + xy + xy' + yy' = x(1 + y + y') = x$$

4.
$$xy + x'z + yz = xy + x'z + yz(x + x')$$

= $xy + x'z + xyz + x'yz$
= $xy(1 + z) + x'z(1 + y)$
= $xy + x'z$

5.
$$(x + y)(x' + z)(y + z) = (x + y)(x' + z) - HOME ASSIGNMENT!$$

Complement of a Function

- The complement of a function F is F'.
 - It is obtained by interchanging 0's for 1's and 1's for 0's in the value of F.
- The complement of a function may be derived algebraically through DeMorgan's theorem.
 - Theorem 5(a) (DeMorgan): $(x + y)' = (x' \cdot y')$
 - Theorem 5(b) (DeMorgan): $(x \cdot y)' = (x' + y')$
- Example:

$$- F_1 = x'yz' + x'y'z$$

$$F_1' = (x'yz' + x'y'z)'$$

$$= (x + y' + z)(x + y + z')$$

Complement of a Function (Example)

```
• If F_1 = A+B+C
 Then F₁'
         =(A+B+C)'
         = (A+X)'
                         let B+C=X
         = A'X'
                         by DeMorgan's
         = A'(B+C)'
         = A'(B'C')
                         by DeMorgan's
                         associative
         = A'B'C'
```

Complement of a Function (More Examples)

```
(x'yz' + x'y'z)'
  = (x'yz')' (x'y'z)'
  = (x+y'+z) (x+y+z')
• [x(y'z'+yz)]'
  = x' + (y'z'+yz)'
  = x' + (y'z')' (yz)'
  = x' + (y+z) (y'+z')
```

- A simpler procedure
 - take the dual of the function (interchanging AND and OR operators) and 1's and 0's) and complement each literal. {DeMorgan's Theorem}
 - x'yz' + x'y'zThe dual of function is (x'+y+z')(x'+y'+z)Complement of each literal: (x+y'+z)(x+y+z')

Representation Conversion

- Need to transition between boolean expression, truth table, and circuit (symbols).
- Converting between truth table and expression is easy.
- Converting between expression and circuit is easy.
- More difficult to convert to truth table.

Canonical Forms

- A canonical form is a standard method for representing Boolean functions.
- The two canonical forms that are used are:
 - Sum of Minterms
 - Product of Maxterms
- These forms are sometimes considered the "brute force" method of representing functions as they seldom represent a function in a minimized form.

Minterms

- Any given binary variable can be represented in two forms:
 - x, its normal form, and
 - x', its complement
- If we consider two binary variables and the AND operation, there are four combinations of the variables:
 - xy
 - xy'
 - x'y
 - x'y'
- Each of the above four AND terms is called a minterm or a standard product.
- n variables can be combined to form 2ⁿ minterms.

Minterms Expressed

			Mint	Minterms	
x	y	Z	Term	Designation	
0	0	0	x'y'z'	mo	
0	0	1	x'y'z	mı	
0	1	0	x'yz'	m ₂	
0	1	1	x'yz	m ₃	
1	0	0	xy'z'	m4	
1	0	1	x'yz'	m ₅	
1	1	0	xyz'	ms	
1	1	1	жуг	m7	

Maxterms

- Any given binary variable can be represented in two forms:
 - x, its normal form, and
 - x', its complement
- If we consider two binary variables and the OR operation, there are four combinations of the variables:
 - -x+y
 - -x+y
 - -x'+y
 - -x'+y'
- Each of the above four OR terms is called a maxterm or a standard sum.
- n variables can be combined to form 2ⁿ maxterms.
- Each maxterm is the complement of its corresponding minterm and vice-versa.

Maxterms Expressed

			Maxterms	
x	y	Z	Term	Designation
0	0	0	x + y + z	M_0
0	0	1	x + y + z'	M_1
0	1	0	x + y' + z	M_2
0	1	1	x + y' + z'	M_3
1	0	0	x' + y + z	M_4
1	0	1	x' + y + z'	M_5
1	1	0	x' + y' + z	M_6
1	1	1	x' + y' + z'	M_7

Truth Table to Expression (Sum of Minterms)

- Any Boolean function can be expressed as a sum of minterms or sum of products (i.e. the ORing of terms).
 - You can form the function algebraically by forming a minterm for each combination of the variables that produces a 1 in the function. (Each row with output of 1 becomes a product term)
 - Sum (OR) product terms together.

Sum of Minterms Example

x	y	Z	Function F ₁	Required Minterms
0	0	0	1	x'y'z'
0	0	1	0	
0	1	0	0	
0	1	1	1	x'yz
1	0	0	1	xy'z'
1	0	1	0	
1	1	0	0	
1	1	1	0	

$$F_1 = x'y'z' + x'yz + xy'z'$$

= $m_0+m_3+m_4$
= $\sum (0,3,4)$

Equivalent Representations of Circuits

- All three formats are equivalent
- Number of 1's in truth table output column equals AND terms for Sum-of-Products (SOP)

X	У	Z	_l G
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

$$G = xyz + xyz' + x'yz$$