

On the Reducibility of Submodular Functions

Hao Zhang

Bao-Liang Lu

Carnegie Mellon University Shanghai Jiao Tong University

Problem Statement

- 1. Submodular function
- Given a finite set $N = \{1, 2, \dots, n\}$
- Given a set function $f: 2^N \mapsto \mathbb{R}$

$$f(i|A) \ge f(i|B), \ \forall A \subseteq B \subseteq N, \ \forall i \in N \setminus B$$

"diminishing return property"

 $f(i|A) \triangleq f(A \cup \{i\}) - f(A)$ is called "marginal gain"

2. Unconstrained optimization

polynomial and inefficient: $\mathcal{O}(n^6)$ Problem 1: $\min_{X \subseteq N} f(X)$

Problem 2: $\max_{X \subseteq N} f(X)$ NP-hard

Investigate some properties that...

- 1. can scale up the optimization
- 2. do not incur performance loss

Reducibility

1. (Set interval) lattice

Given $A \subseteq B \subseteq N$, $[A, B] \triangleq \{S \mid A \subseteq S \subseteq B\}$

2. Trivial (largest) lattice $[\emptyset, N]$

Suppose $f(X_*) = \min_{X \subset N} f(X), f(X^*) = \max_{X \subset N} f(X)$

$$X_* \in [\emptyset, N], X^* \in [\emptyset, N]$$

3. Reducibility

Find a smaller lattice $[X,Y] \subset [\emptyset,N]$

 $X_* \in [X, Y], X^* \in [X, Y]$

Reduction Algorithms

Algorithm 1 Reduction for Problem 1 **Input:** $f, [X_0, Y_0] \leftarrow [\emptyset, N], t \leftarrow 0.$ Output: $[X_t, Y_t]$.

1: $U_t = \{i \in Y_t \setminus X_t \mid f(i|X_t) < 0\}.$

2: $X_{t+1} \leftarrow X_t \cup U_t$. 3: $D_t = \{j \in Y_t \setminus X_t \mid f(j|Y_t - j) > 0\}.$

5: If $[X_{t+1}, Y_{t+1}] = [X_t, Y_t]$, terminate.

4: $Y_{t+1} \leftarrow Y_t \setminus D_t$.

Proposition:

Algorithm 2 Reduction for Problem 2 **Input:** f, $[X_0, Y_0] \leftarrow [\emptyset, N]$, $t \leftarrow 0$. Output: $[X_t, Y_t]$.

1: $U_t = \{i \in Y_t \setminus X_t \mid f(i|X_t) < 0\}.$ 2: $Y_{t+1} \leftarrow Y_t \setminus U_t$.

3: $D_t = \{j \in Y_t \setminus X_t \mid f(j|Y_t - j) > 0\}.$

4: $X_{t+1} \leftarrow X_t \cup D_t$.

5: If $[X_{t+1}, Y_{t+1}] = [X_t, Y_t]$, terminate. 6: $t \leftarrow t + 1$. Go to Step 1. 6: $t \leftarrow t + 1$. Go to Step 1.

• For Algorithm 1, $X_* \in [X_t, Y_t] \subseteq [\emptyset, N], \ \forall t$

• For Algorithm 2, $X^* \in [X_t, Y_t] \subseteq [\emptyset, N], \ \forall t$

Bad news:

For many functions, Algorithm 1 & 2 output $[X_0, Y_0] = [\emptyset, N]$

Irreducible Function

A submodular function that makes Algorithm 1 & 2 vacuous

Proposition:

Given f is submodular, f is irreducible if and only if

$$f(i|\emptyset) > 0, \ f(i|N-i) < 0, \ \forall i \in N$$

Perturbation Reduction Optimization

Main idea: Adding noise to perturb the marginal gains

Problem 3: $\min_{X \subset N} g(X) \triangleq \min_{X \subset N} f(X) + r(X)$

Problem 4: $\max_{X \subset N} g(X) \triangleq \max_{X \subset N} f(X) + r(X)$

r is modular function, $r(X) \triangleq \sum_{i \in X} r(i)$, so g is submodular

Algorithm:

- 1. $[X_0, Y_0] \leftarrow [\emptyset, N]$. Run Algorithm 1/2 for f, $[S, T] \leftarrow [X_t, Y_t]$
- 2. (Perturbation) Given t, generate r. Let g = f + r
- 3. (Reduction) $[X_0, Y_0] \leftarrow [S, T]$, Run Algorithm 1/2 for g, $[S,T] \leftarrow [X_t,Y_t]$
- 4. (Optimization) Solve $X_*^p \in \arg\min_{X \in [S,T]} f(X)$, or $X_p^* \in \arg\max_{X \in [S,T]} f(X)$

Theoretical Analysis

Reduction rate: $1 - \frac{|Y_t \setminus X_t|}{n} \in [0, 1]$

Theorem 1: Suppose r(i) is uniformly generated from [-t,t] with t>0, $\forall i\in N$. Then the reduction rate $R_t\geq 1-\frac{C_f}{2tn}$

Performance loss: $f(X_*^p) - f(X_*) > 0$, $f(X^*) - f(X_p^*) > 0$

Theorem 2:

$$f(X_*^p) - f(X_*) < -r(X_t \setminus X_*) + r(X_* \setminus Y_t) < ntR_t$$

$$f(X^*) - f(X_p^*) < r(X_t \setminus X^*) - r(X^* \setminus Y_t) < ntR_t$$

Experimental Results

For irreducible functions, we use exact solvers in Step 4 Criteria: Denote the outputs of the proposed method and existing method X^p and X^e . Running time are T_p and T_e

(c) Log-determinant

• Relative error: $E_r \triangleq \frac{|f(X^e) - f(X^p)|}{|f(X^e)|}$

Average Relative Error

—Average Reduction Rate

—Average Time Ratio

(b) Mutual information

• Time ratio: T_p/T_e

Average Relative Error

—Average Reduction Rate

-Average Time Ratio

0.2 0.4 0.6 Perturbation Scale Ratio

(a) Subset selection

• Reduction rate: $1 - \frac{|Y_t \setminus X_t|}{|X_t|}$

(d) Negative half-products