FAMA FRENCH 3 Factor Model

```
In [7]:
                                                                                                                 Ы
import pandas as pd
import statsmodels.api as sm
import datetime as dt
import matplotlib.pyplot as plt
import numpy as np
from statsmodels.tsa.stattools import adfuller
from scipy import stats
from math import sqrt
In [8]:
pip install getFamaFrenchFactors
Collecting getFamaFrenchFactors
 Downloading getFamaFrenchFactors-0.0.5-py3-none-any.whl (4.6 kB)
Collecting bs4
 Downloading bs4-0.0.1.tar.gz (1.1 kB)
Requirement already satisfied: pandas in c:\users\kanika\anaconda3\lib\site-packages (from getFamaFr
enchFactors) (1.4.2)
Requirement already satisfied: requests in c:\users\kanika\anaconda3\lib\site-packages (from getFama
FrenchFactors) (2.27.1)
Requirement already satisfied: beautifulsoup4 in c:\users\kanika\anaconda3\lib\site-packages (from b
s4->getFamaFrenchFactors) (4.11.1)
Requirement already satisfied: soupsieve>1.2 in c:\users\kanika\anaconda3\lib\site-packages (from be
autifulsoup4->bs4->getFamaFrenchFactors) (2.3.1)
Requirement already satisfied: pytz>=2020.1 in c:\users\kanika\anaconda3\lib\site-packages (from pan
das->getFamaFrenchFactors) (2022.7.1)
Requirement already satisfied: numpy>=1.18.5 in c:\users\kanika\anaconda3\lib\site-packages (from pa
ndas->getFamaFrenchFactors) (1.21.5)
Requirement already satisfied: python-dateutil>=2.8.1 in c:\users\kanika\anaconda3\lib\site-packages
(from pandas->getFamaFrenchFactors) (2.8.2)
Requirement already satisfied: six>=1.5 in c:\users\kanika\anaconda3\lib\site-packages (from python-
dateutil>=2.8.1->pandas->getFamaFrenchFactors) (1.16.0)
Requirement already satisfied: urllib3<1.27,>=1.21.1 in c:\users\kanika\anaconda3\lib\site-packages
(from requests->getFamaFrenchFactors) (1.26.9)
Requirement already satisfied: idna<4,>=2.5 in c:\users\kanika\anaconda3\lib\site-packages (from req
uests->getFamaFrenchFactors) (3.3)
Requirement already satisfied: certifi>=2017.4.17 in c:\users\kanika\anaconda3\lib\site-packages (fr
om requests->getFamaFrenchFactors) (2022.12.7)
Requirement already satisfied: charset-normalizer~=2.0.0 in c:\users\kanika\anaconda3\lib\site-packa
ges (from requests->getFamaFrenchFactors) (2.0.4)
Building wheels for collected packages: bs4
 Building wheel for bs4 (setup.py): started
 Building wheel for bs4 (setup.py): finished with status 'done'
 Created wheel for bs4: filename=bs4-0.0.1-py3-none-any.whl size=1272 sha256=033db04ad7019544e3b5f2
d53a70ddc2b5b41491f9dd789067a42265547791eb
 Stored in directory: c:\users\kanika\appdata\local\pip\cache\wheels\73\2b\cb\099980278a0c9a3e57ff1
a89875ec07bfa0b6fcbebb9a8cad3
Successfully built bs4
Installing collected packages: bs4, getFamaFrenchFactors
Successfully installed bs4-0.0.1 getFamaFrenchFactors-0.0.5
Note: you may need to restart the kernel to use updated packages.
In [9]:
                                                                                                                 H
import getFamaFrenchFactors as fff
```

```
In [20]:
                                                                                                                   H
data = pd.read_csv('FF.csv')
data.set_index('Date',inplace=True)
data.head()
```

Out[20]:

	AAPL	AMZN	GOOG	META	NFLX
Date					
02-01-2013	16.837122	12.8655	18.013729	28.000000	13.144286
03-01-2013	16.624598	12.9240	18.024191	27.770000	13.798571
04-01-2013	16.161522	12.9575	18.380356	28.760000	13.711429
07-01-2013	16.066454	13.4230	18.300158	29.420000	14.171429
08-01-2013	16.109695	13.3190	18.264042	29.059999	13.880000

In [104]: H

```
data.describe()
```

Out[104]:

	AAPL	AMZN	GOOG	META	NFLX
count	2518.000000	2518.000000	2518.000000	2518.000000	2518.000000
mean	60.544588	73.780049	59.315665	155.583022	239.053170
std	49.173579	53.289558	35.169357	83.901712	174.233526
min	12.046192	12.411500	17.506132	22.900000	13.144286
25%	24.639015	21.978375	29.984361	86.730000	89.404287
50%	39.451430	59.735750	51.419500	151.220002	190.705002
75%	89.985527	107.755125	73.789252	194.432502	361.797501
max	180.683868	186.570496	150.709000	382.179993	691.690002

```
H
In [21]:
```

```
# check if there are any null values
data.isnull().sum()
```

Out[21]:

0 AAPL AMZN 0 GOOG 0 META 0 NFLX 0 dtype: int64

In [22]: H

```
# we calculate daily returns from the data on adjusted closing prices
apple_returns = data['AAPL'].pct_change().dropna()
amazon_returns = data['AMZN'].pct_change().dropna()
google_returns = data['GOOG'].pct_change().dropna()
meta_returns = data['META'].pct_change().dropna()
netflix_returns = data['NFLX'].pct_change().dropna()
```

```
In [33]:
```

```
# plotting the daily returns of all the 5 stocks

plt.figure()
fig, ax = plt.subplots(figsize=(20, 10))
ax.plot(apple_returns,label='apple')
ax.plot(amazon_returns,label='amazon')
ax.plot(google_returns,label='google')
ax.plot(meta_returns,label='meta')
ax.plot(netflix_returns,label='netflix')
ax.legend()
fig.suptitle('Daily Historical Returns',fontsize=18)
```

Out[33]:

Text(0.5, 0.98, 'Daily Historical Returns')

<Figure size 432x288 with 0 Axes>

Daily Historical Returns


```
In [34]:
```

```
# since this is a time series data, we check for stationarity using the augmented dickey fuller test
adf = adfuller(apple_returns)
print('ADF Statistic: %f' % adf[0])
print('p-value: %f' % adf[1])
```

ADF Statistic: -16.320532 p-value: 0.000000

```
In [35]:
```

```
adf = adfuller(amazon_returns)
print('ADF Statistic: %f' % adf[0])
print('p-value: %f' % adf[1])
```

ADF Statistic: -50.811947 p-value: 0.000000

```
In [36]:
                                                                                                                    H
adf = adfuller(google_returns)
print('ADF Statistic: %f' % adf[0])
print('p-value: %f' % adf[1])
ADF Statistic: -11.371348
p-value: 0.000000
In [37]:
                                                                                                                    M
adf = adfuller(meta returns)
print('ADF Statistic: %f' % adf[0])
print('p-value: %f' % adf[1])
ADF Statistic: -17.336024
p-value: 0.000000
In [38]:
                                                                                                                    Ы
adf = adfuller(netflix_returns)
print('ADF Statistic: %f' % adf[0])
print('p-value: %f' % adf[1])
ADF Statistic: -34.033968
p-value: 0.000000
In [ ]:
# the p-value for all the 5 series is less than 0.05. Therefore, we reject the null hypothesis at 5% level of
# significance and conclude that the data is stationary across time
In [65]:
# we get the fama-french estimates for the 3 factors - Mkt-RF: Market return - risk free rate,
# SMB: excess return on small cap stocks over large cap stcoks
# HML: excess return on value stock over growth stocks
ff_monthly = fff.famaFrench3Factor(frequency='m')
ff_monthly.rename(columns={"date_ff_factors": 'Date'}, inplace=True)
ff_monthly.set_index('Date', inplace=True)
ff_monthly.index = ff_monthly.index.strftime('%d-%m-%Y')
ff_monthly.head()
Out[65]:
          Mkt-RF
                   SMB
                          HML
                                  RF
     Date
31-07-1926
           0.0296 -0.0256 -0.0243 0.0022
31-08-1926
          0.0264 -0.0117
                         0.0382 0.0025
30-09-1926
          0.0036 -0.0140
                         0.0013 0.0023
```

localhost:8888/notebooks/FF FAANG.ipynb

31-10-1926 -0.0324 -0.0009 0.0070 0.0032 **30-11-1926** 0.0253 -0.0010 -0.0051 0.0031

In [66]:

```
# we merge the two dataframes on fama french estimate and returns to get a new dataframe

ff = data.merge(ff_monthly, left_index=True, right_index=True)

ff.head()
```

Out[66]:

	AAPL	AMZN	GOOG	META	NFLX	Mkt-RF	SMB	HML	RF
Date									
31-01-2013	13.968526	13.2750	18.821701	30.980000	23.605715	0.0557	0.0033	0.0096	0.0
28-02-2013	13.615317	13.2135	19.955202	27.250000	26.868570	0.0129	-0.0028	0.0011	0.0
30-04-2013	13.657884	12.6905	20.537271	27.770000	30.867144	0.0155	-0.0236	0.0045	0.0
31-05-2013	13.964083	13.4600	21.699165	24.350000	32.321430	0.0280	0.0173	0.0263	0.0
31-07-2013	14.051023	15.0610	22.110872	36.799999	34.925713	0.0565	0.0186	0.0057	0.0

In [71]: ▶

```
# visualize the moving average of the fama-french model for all the five stocks

stock = 'AAPL'
plt.figure()
fig3, axs = plt.subplots(1, 3,figsize=(20, 10))
axs[0].plot(ff['Mkt-RF'].rolling(3).mean(),linewidth=2.5)
axs[0].plot(ff[stock])
axs[0].set_title('Apple Stock vs Market Returns')
axs[1].plot(ff['SMB'].rolling(3).mean(),linewidth=2.5)
axs[1].plot(ff[stock])
axs[1].set_title('Apple Stock vs Small Cap Index')
axs[2].plot(ff['HML'].rolling(3).mean(),linewidth=2.5)
axs[2].plot(ff[stock])
axs[2].set_title('Apple Stock vs Value Stocks Index')
fig3.suptitle('Factors plot',fontsize=18)
```

Out[71]:

Text(0.5, 0.98, 'Factors plot')

<Figure size 432x288 with 0 Axes>

In [72]:

```
stock = 'AMZN'
plt.figure()
fig3, axs = plt.subplots(1, 3,figsize=(20, 10))
axs[0].plot(ff['Mkt-RF'].rolling(3).mean(),linewidth=2.5)
axs[0].plot(ff[stock])
axs[0].set_title('Amazon Stock vs Market Returns')
axs[1].plot(ff['SMB'].rolling(3).mean(),linewidth=2.5)
axs[1].plot(ff[stock])
axs[1].set_title('Amazon Stock vs Small Cap Index')
axs[2].plot(ff['HML'].rolling(3).mean(),linewidth=2.5)
axs[2].plot(ff[stock])
axs[2].set_title('Amazon Stock vs Value Stocks Index')
fig3.suptitle('Factors plot',fontsize=18)
```

Out[72]:

Text(0.5, 0.98, 'Factors plot')

<Figure size 432x288 with 0 Axes>

In [73]: ▶

```
stock = 'GOOG'
plt.figure()
fig3, axs = plt.subplots(1, 3,figsize=(20, 10))
axs[0].plot(ff['Mkt-RF'].rolling(3).mean(),linewidth=2.5)
axs[0].plot(ff[stock])
axs[0].set_title('Google Stock vs Market Returns')
axs[1].plot(ff['SMB'].rolling(3).mean(),linewidth=2.5)
axs[1].plot(ff[stock])
axs[1].set_title('Google Stock vs Small Cap Index')
axs[2].plot(ff['HML'].rolling(3).mean(),linewidth=2.5)
axs[2].plot(ff[stock])
axs[2].set_title('Google Stock vs Value Stocks Index')
fig3.suptitle('Factors plot',fontsize=18)
```

Out[73]:

Text(0.5, 0.98, 'Factors plot')

<Figure size 432x288 with 0 Axes>

In [74]:

```
stock = 'META'
plt.figure()
fig3, axs = plt.subplots(1, 3,figsize=(20, 10))
axs[0].plot(ff['Mkt-RF'].rolling(3).mean(),linewidth=2.5)
axs[0].plot(ff[stock])
axs[0].set_title('Meta Stock vs Market Returns')
axs[1].plot(ff['SMB'].rolling(3).mean(),linewidth=2.5)
axs[1].plot(ff[stock])
axs[1].set_title('Meta Stock vs Small Cap Index')
axs[2].plot(ff['HML'].rolling(3).mean(),linewidth=2.5)
axs[2].plot(ff[stock])
axs[2].set_title('Meta Stock vs Value Stocks Index')
fig3.suptitle('Factors plot',fontsize=18)
```

Out[74]:

Text(0.5, 0.98, 'Factors plot')

<Figure size 432x288 with 0 Axes>

In [75]: ▶

```
stock = 'NFLX'
plt.figure()
fig3, axs = plt.subplots(1, 3,figsize=(20, 10))
axs[0].plot(ff['Mkt-RF'].rolling(3).mean(),linewidth=2.5)
axs[0].plot(ff[stock])
axs[0].set_title('Netflix Stock vs Market Returns')
axs[1].plot(ff['SMB'].rolling(3).mean(),linewidth=2.5)
axs[1].plot(ff[stock])
axs[1].set_title('Netflix Stock vs Small Cap Index')
axs[2].plot(ff['HML'].rolling(3).mean(),linewidth=2.5)
axs[2].plot(ff[stock])
axs[2].set_title('Netflix Stock vs Value Stocks Index')
fig3.suptitle('Factors plot',fontsize=18)
```

Out[75]:

Text(0.5, 0.98, 'Factors plot')

<Figure size 432x288 with 0 Axes>

In [88]: ▶

```
# modeling the returns using a simple linear regression model for all the 5 stocks

X = ff[['Mkt-RF', 'SMB', 'HML']]
y = ff['AAPL'] - ff['RF']
X = sm.add_constant(X)
ff_model = sm.OLS(y, X).fit()
print(ff_model.summary())
intercept, b1, b2, b3 = ff_model.params
```

OLS Regression Results

Dep. Varia Model: Method:		y R-squared: OLS Adj. R-squared: Least Squares F-statistic:			0.031 -0.006 0.8480	
Date: Time:	Sa	t, 04 Mar 20: 19:27:		F-statisti kelihood:	c):	0.472 -447.13
No. Observ	ations.		27 LUG-LI 84 AIC:	.keiinoou.		902.3
Df Residua			80 BIC:			912.0
Df Model:			3			
Covariance	Type:	nonrobu	st			
=======						=======
	coef	std err	t	P> t	[0.025	0.975]
const	61.3847	5.768	10.643	0.000	49.906	72.863
Mkt-RF	-41.0241	133.236	-0.308	0.759	-306.173	224.124
SMB	-66.2558	229.650	-0.289	0.774	-523.273	390.762
HML	234.1823	154.507	1.516	0.134	-73.297	541.662
Omnibus:	========	12.7	======= 04 Durbir	-====== n-Watson:	========	0.088
Prob(Omnib	us):	0.0	02 Jarque	e-Bera (JB)	:	13.474
Skew:		0.9	32 Prob(J	IB):		0.00119
Kurtosis:		2.3	85 Cond.	No.		42.8
========		=========			=========	=======

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [89]:

X = ff[['Mkt-RF', 'SMB', 'HML']]
y = ff['AMZN'] - ff['RF']
X = sm.add_constant(X)
ff_model = sm.OLS(y, X).fit()
print(ff_model.summary())
intercept, b1, b2, b3 = ff_model.params
```

OLS Regression Results

```
______
Dep. Variable:
                        y R-squared:
                                                 0.006
                       OLS Adj. R-squared:
Model:
                                                 -0.032
               Least Squares F-statistic:
Method:
                                                0.1537
Date:
              Sat, 04 Mar 2023
                           Prob (F-statistic):
                                                  0.927
Time:
                   19:28:00
                           Log-Likelihood:
                                                 -452.42
No. Observations:
                       84
                           AIC:
                                                  912.8
Df Residuals:
                        80
                           BIC:
                                                  922.6
Df Model:
                        3
Covariance Type: nonrobust
                         t P>|t| [0.025 0.975]
           coef std err
```

	COCT	sca eri	C	17[0]	[0.023	0.575]
const	73.0711	6.143	11.895	0.000	60.846	85.296
Mkt-RF	91.2738	141.898	0.643	0.522	-191.113	373.661
SMB	-85.9288	244.580	-0.351	0.726	-572.659	400.801
HML	9.6336	164.553	0.059	0.953	-317.837	337.104
=======	========		:=======		========	
Omnibus:		16.	917 Durbi	n-Watson:		0.030
Prob(Omnib	ous):	0.000 Jarque-Bera (JB):		:	7.675	
Skew:		0.	529 Prob(Prob(JB):		0.0215
Kurtosis:		1.	964 Cond.	No.		42.8
=======	.========	.=======	.=======:			

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [90]:
```

```
X = ff[['Mkt-RF', 'SMB', 'HML']]
y = ff['GOOG'] - ff['RF']
X = sm.add_constant(X)
ff_model = sm.OLS(y, X).fit()
print(ff_model.summary())
intercept, b1, b2, b3 = ff_model.params
```

OLS Regression Results

Dep. Variable:	у	R-squared:	0.028
Model:	OLS	Adj. R-squared:	-0.009
Method:	Least Squares	F-statistic:	0.7569
Date:	Sat, 04 Mar 2023	<pre>Prob (F-statistic):</pre>	0.522
Time:	19:28:13	Log-Likelihood:	-416.61
No. Observations:	84	AIC:	841.2
Df Residuals:	80	BIC:	850.9
Df Model:	3		
Covariance Type:	nonrobust		
=======================================			======
coe-	f std err	t P> t [0.025	0.975]
const 59.471	3 4.011 1	14.828 0.000 51.490	67.453
Mkt-RF -28.849	1 92.648 -	-0.311 0.756 -213.224	155.526
SMB -84.2170	ð 159.691 -	-0.527 0.599 -402.011	233.577
HML 140.642	3 107.439	1.309 0.194 -73.168	354.453
=======================================			======
Omnibus:	12.017	Durbin-Watson:	0.098
Prob(Omnibus):	0.002	Jarque-Bera (JB):	13.559
Skew:	0.984	Prob(JB):	0.00114
Kurtosis:	3.029	Cond. No.	42.8
=======================================			======

Notes

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [91]:

X = ff[['Mkt-RF', 'SMB', 'HML']]
y = ff['META'] - ff['RF']
X = sm.add_constant(X)
ff_model = sm.OLS(y, X).fit()
print(ff_model.summary())
intercept, b1, b2, b3 = ff_model.params
```

OLS Regression Results

```
Dep. Variable:

Dep. Variable:

OLS Adj. R-squared:

- -+++istic:
______
                                                                                                  -0.028
                             Least Squares F-statistic:
Sat, 04 Mar 2023 Prob (F-statistic):
Time: 19:28:21 Log-Likelihood:
No. Observations: 84 AIC:
Df Residuals:
Method:
                                                                                               0.2526
                                                                                                   0.859
                                                                                                -490.60
                                                                                                   989.2
                                                                                                    998.9
Df Model:
                                               3
Covariance Type: nonrobust
              coef std err t P>|t| [0.025 0.975]

    const
    153.7429
    9.678
    15.886
    0.000
    134.484
    173.002

    Mkt-RF
    176.6623
    223.551
    0.790
    0.432
    -268.218
    621.543

    SMB
    -236.1256
    385.319
    -0.613
    0.542
    -1002.934
    530.683

    HML
    -19.6306
    259.241
    -0.076
    0.940
    -535.537
    496.275
```

 Omnibus:
 5.730
 Durbin-Watson:
 0.057

 Prob(Omnibus):
 0.057
 Jarque-Bera (JB):
 5.623

 Skew:
 0.633
 Prob(JB):
 0.0601

 Kurtosis:
 2.954
 Cond. No.
 42.8

Kurtosis: 2.954 Cond. No. 42.8

Notes:

Den Variable

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [92]:
```

```
X = ff[['Mkt-RF', 'SMB', 'HML']]
y = ff['NFLX'] - ff['RF']
X = sm.add_constant(X)
ff_model = sm.OLS(y, X).fit()
print(ff_model.summary())
intercept, b1, b2, b3 = ff_model.params
```

0.015

0.0432

42.8

OLS Regression Results

v R-squared:

pep. varia	auie.		у к-:	squareu.		0.013
Model:			OLS Ad	j. R-squared:		-0.022
Method:		Least Squ	ares F-	statistic:		0.4133
Date:		Sat, 04 Mar	2023 Pro	ob (F-statist	cic):	0.744
Time:		19:2	8:27 Lo	g-Likelihood:		-550.53
No. Observ	vations:		84 AI	C:		1109.
Df Residua	als:		80 BI	C:		1119.
Df Model:			3			
Covariance	e Type:	nonrol	bust			
=======		========				========
	coef	std err		t P> t	[0.025	0.975]
const	233.2206	19.752	11.80	7 0.000	193.912	272.529
Mkt-RF	480.1694	456.275	1.05	2 0.296	-427.847	1388.186
SMB	-453.3631	786.449	-0.57	0.566	-2018.446	1111.720
HML	-245.8241	529.120	-0.46	0.643	-1298.806	807.158
Omnibus:				rbin-Watson:		0.055
Prob(Omnil	ous):	0	.024 Ja	rque-Bera (JE	3):	6.286

0.576 Prob(JB):

2.316 Cond. No.

Notes

Skew:

Kurtosis:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [ ]:
                                                                                                                  H
# it is notable that the p-values for all the three factors across all the stocks is much higher than 0.05.
# this casts a strong doubt on the significance of the three factors in explaining the returns of the FAANG stocks
In [94]:
                                                                                                                  H
# calculate the average of all the factors
rf = fama_french['RF'].mean()
market_premium = ff_monthly['Mkt-RF'].mean()
size premium = ff monthly['SMB'].mean()
value_premium = ff_monthly['HML'].mean()
                                                                                                                  M
In [101]:
market_premium
Out[101]:
0.006729076790336501
                                                                                                                  M
In [102]:
size_premium
Out[102]:
0.0019342536669542728
In [103]:
                                                                                                                  H
value_premium
Out[103]:
```

0.003568852459016399