# Shocks and income inequality<sup>†</sup>

Oleg Gurshev

Lucas van der Velde

FAME|GRAPE

FAME|GRAPE
Warsaw School of Economics

#### **Abstract**

We examine the contribution of supply and demand shocks to income inequality in a panel setting. Leveraging the newly created Global Repository of Income Dynamics, we study the relationship between unanticipated supply and demand shocks and income inequality, distinguishing between domestic and international (US) shocks. Our results show that shocks originating in the United States, on average, increase income dispersion in other developed countries in a procyclical manner: positive demand shocks tend to produce stronger reactions than supply shocks. Decomposing these effects reveals that shocks primarily alter the asymmetry of income changes rather than the overall level of income volatility. We explore different transmission channels: trade, financial and expectations. The trade channel appears particularly relevant for supply shocks. Comparing these external shocks with domestic counterparts, we find that domestic demand shocks exhibit similar dynamics, while domestic supply shocks are associated with declines in income inequality.

**Keywords:** Inequality; Macroeconomic shocks; Administrative data

JEL Classification: J30, J31, E24, E32

<sup>&</sup>lt;sup>†</sup>Corresponding author: Oleg Gurshev. Email: o.gurshev@grape.org.pl. Financial support from the Polish National Science Center (grant no. 2021/43/B/HS4/03241) is gratefully acknowledged.

## 1 Introduction

It is now well recognized that the rise in economic inequality across advanced economies over past decades has multiple drivers<sup>1</sup>. However, despite growing attention to the determinants of inequality, there is little systematic empirical evidence on how global shocks to supply and demand shape the entire income distribution, affecting not only overall inequality but also its underlying income dynamics.

At the same time, understanding the origins of international fluctuations continues to be a key area of research. Given the sheer scale and global influence of the United States, its domestic macroeconomic changes are likely to have substantial implications for the global economy and its close economic partners (Carrillo et al., 2020; Dées & Galesi, 2021; Di Giovanni et al., 2022; Fink & Schüler, 2015; Kalemli-Ozcan et al., 2013; Kose et al., 2003, 2012, 2017; Lakdawala et al., 2021; Lastauskas & Nguyen, 2023; Levchenko & Pandalai-Nayar, 2020; Miranda-Agrippino & Rey, 2022; Ramey, 2016; Rey, 2016). The impact of these changes is often found to be heterogeneous, with the magnitude of the spillovers on other economies depending critically on their degree of economic integration with the United States. This heterogeneity at the country level strongly suggests that the impact will also be uneven within countries. Yet, surprisingly little is known about the distributional consequences of these external shocks.

This paper studies how income distributions react to supply and demand shocks originating in the US and within national economies. To this end, we draw on a rich cross-country database: the Global Repository of Income Dynamics (GRID) by Guvenen et al. (2022). This database contains comparable moments of income distributions of unparalleled quality derived from administrative data. Our study analyzes data from countries that participated in the first phase of GRID and meet the minimum data requirements needed for the estimation of shocks: Canada, Denmark, France, Germany, Italy, Mexico, Norway, Spain, and Sweden.

Our analysis proceeds as follows. First, we estimate supply and demand shocks using long-run restrictions<sup>2</sup> as proposed by Blanchard and Quah (1989)<sup>3</sup>. We adopt this approach because its data requirements are minimal, making it particularly suitable for our broad international setting. Specifically, this method imposes restrictions based on economic theory, where supply shocks are assumed to have permanent effects on output, while demand shocks have only temporary effects. The second step involves recovering the re-

<sup>&</sup>lt;sup>1</sup>Including, *inter alia*, technological progress (Acemoglu, 2002; Bound & Johnson, 1995), demographics (Karahan & Ozkan, 2013), globalization (Feenstra & Hanson, 2003), labor market structure (Jaumotte & Osorio, 2015), and monetary policy (Amberg et al., 2022; Andersen et al., 2023; Coibion et al., 2017; Furceri et al., 2018).

<sup>&</sup>lt;sup>2</sup>See characterization of popular identification strategies in Ramey (2016).

<sup>&</sup>lt;sup>3</sup>This seminal paper has recently been revisited by Binet and Pentecôte (2015), Herwartz (2018), and Keating (2013).

action of income dispersion to US and country-specific (domestic) shocks using impulse response functions (IRFs) estimated directly from local projections (Jordà, 2005; Jordà & Taylor, 2024). In this step, we also study the reaction of the income distribution, measured by the standard deviation and the Kelley skewness of the residual first-year log income changes, to these shocks. Finally, we study the three potential transmission channels that are frequently identified in the literature: trade linkages (Corsetti & Müller, 2011), financial market integration (Faccini et al., 2016), and expectations (Klein & Linnemann, 2021) using state-dependent local projections in the style of Auerbach and Gorodnichenko (2013).

Our findings indicate that supply and demand shocks originating in the United States tend to raise income dispersion abroad. We also confirm that these changes are largely procyclical. Decomposing these dynamics reveals that shocks primarily alter the asymmetry of income changes rather than the overall level of income volatility. While all shocks make the income distribution more positively skewed, the effect on volatility reveals a critical distinction: US supply shocks increase volatility, whereas domestic supply shocks act as a stabilizing force by significantly decreasing it. When considering transmission channels, the distinction between demand and supply shocks is relevant. Demand shocks increase inequality regardless of the level of exposure. By contrast, supply shocks produce more heterogeneous responses.

This paper makes two main contributions. First, our findings complement the recent body of studies that investigate the dynamic causal link between macroeconomic shocks and the Gini such as Coibion et al. (2017), Davtyan (2017), and Furceri et al. (2018) by providing novel evidence using a wide variety of broadly defined shocks. Specifically, our analysis goes beyond documenting the impact of shocks on the Gini coefficient, as we also examine their possible effects on the distributional measures using one-year residual log income changes: standard deviation and Kelley skewness, revealing new patterns that have so far received little attention in prior research. Second, we report new evidence related to the transmission of US supply and demand shocks abroad via trade, financial, and expectations channels. Here, our findings complements the growing literature that studies spillover effects and transmission of various shocks originating within the US: Akıncı (2013), Azad and Serletis (2022), Bowman et al. (2015), Di Giovanni et al. (2022), Fernández et al. (2017), Lastauskas and Nguyen (2023, 2024), and Schmitt-Grohé and Uribe (2018). We document the critical importance of all three channels when it comes to US supply shocks. Countries with strong export links to the US tend to experience a significant and lasting rise in inequality. In contrast, countries with high financial exposure experience only a brief increase in inequality immediately following the shock, while those with weaker financial exposure see a gradual rise even after the three-year horizon. Finally, lower domestic business confidence corresponds to a stronger inequality response.

The paper is structured as follows. Section 2 describes data and methodology. Section

# 2 Methodology

#### 2.1 Inequality measures and shocks

The Global Repository of Income Dynamics (GRID) provides measures of inequality from administrative records across several countries. This source has several advantages. First and foremost, income is less subject to reporting errors, and there is an adequate representation of earners at the top of the income distribution, neither of which is not guaranteed in other databases. Second, estimates are based on larger samples, quite often the entire working population. Finally, GRID also provides better coverage than similar open source databases (OECD, Luxembourg Income Study), as time series are uninterrupted. However, the database has some limitations, namely: i) income refers to labor income at the individual level, ii) since it is based on tax records, envelope payments are not included. As our sample contains mostly developed countries, the bias introduced might not be significant.

All income inequality measures are computed only among individuals between ages 25-55, who are expected to be active in the labor market. To ensure that individuals are attached to the labor markets, the sample used in GRID is further restricted to those perceiving yearly earnings above a minimum threshold (one fourth of the minimum wage). All measures are based on gross earnings<sup>4</sup> deflated to 2018 price levels. Table 1 presents descriptive statistics (means) for the Gini coefficient together with distributional measures of residual one-year log income changes (standard deviation and Kelley skewness) as collected from GRID.

We recover supply and demand shocks using the long-run restrictions approach pioneered by Blanchard and Quah (1989). The identification of shocks begins with a reduced-form VAR of order p:

$$X_{t} = \sum_{i=1}^{p} A_{i} X_{t-i} + e_{t} \tag{1}$$

where  $X_t = [\Delta y_t, u_t]'$  is the vector of endogenous variables (growth rate of real output and the unemployment rate),  $A_i$  are coefficient matrices, and  $e_t$  is a vector of serially uncorrelated reduced-form residuals with covariance matrix  $\Omega$ .

These reduced-form residuals are linear combinations of the underlying structural shocks,  $\epsilon_t = [\epsilon_t^s, \epsilon_t^d]'$ , which represent supply and demand shocks, respectively. The re-

<sup>&</sup>lt;sup>4</sup>Each country has it's own specific approach to measuring gross earnings. However, the resulting measures are comparable as they include all forms of compensation subject to taxation and social security contributions (i.e., base salary, overtime compensation, performance and seasonal bonuses, paid vacations, paid sick leaves, and severance payments).

lationship is given by:

$$e_t = S\epsilon_t \tag{2}$$

where we assume the structural shocks are orthonormal, i.e.,  $E[\epsilon_t \epsilon_t'] = I$ . To identify the matrix S, we consider the moving-average representation of the VAR,  $X_t = C(L)e_t = C(L)S\epsilon_t$ . The long-run impact of the structural shocks on the variables is given by the matrix C(1)S.

The key identifying assumption is that demand shocks ( $\epsilon_t^d$ ) have no long-run effect on the level of output. This economic restriction implies that the cumulative effect of a demand shock on the output growth rate,  $\Delta y_t$ , must sum to zero. This forces the (1,2) element of the long-run multiplier matrix to be zero, making the matrix lower triangular. This constraint, combined with the condition from the covariance matrix ( $SS' = \Omega$ ), provides the necessary restrictions to uniquely identify the structural shocks.

Table 1: Availability of GRID data.

| Country | Scope     | Gini        | Std  | Kelley skewness |
|---------|-----------|-------------|------|-----------------|
| Canada  | 1990–2019 | 0.41 (0.01) | 0.53 | 0.02            |
| Denmark | 1990-2016 | 0.28 (0.01) | 0.42 | 0.03            |
| France  | 1991–2016 | 0.34 (0.00) | 0.47 | -0.03           |
| Germany | 2001–2016 | 0.40 (0.01) | 0.40 | 0.18            |
| Italy   | 1990-2016 | 0.36 (0.02) | 0.48 | 0.03            |
| Mexico  | 2005–2019 | 0.56 (0.00) | 0.65 | -0.01           |
| Norway  | 1993–2017 | 0.33 (0.01) | 0.59 | -0.01           |
| Spain   | 2005–2018 | 0.40 (0.01) | 0.50 | 0.02            |
| Sweden  | 1990–2016 | 0.30 (0.01) | 0.49 | 0.04            |

Note: own summary. Scope refers to the availability of Gini data. The panel is unbalanced, with a total of N=217 country-year observations for the Gini coefficient. Gini is reported as mean (standard deviation). Kelley skewness and standard deviation are from residual one-year log income changes. Their effective coverage is one year shorter at both the start and end of the sample compared to the Gini series. All data are annual.

Following this framework, we estimate a bivariate VAR for each country using quarterly rates of unemployment and real output growth<sup>5</sup>. We collect the necessary data from the Federal Bank of St. Louis (FRED) and the OECD databases.<sup>6</sup>. All series were demeaned prior to VAR input. Detailed description of the data used for the estimation of

<sup>&</sup>lt;sup>5</sup>Lag length is selected using AIC separately for each country: one lag (Canada, Italy, Mexico, Norway), two lags (Denmark, France, Germany, Spain Sweden, USA). Impulse response functions for each country (demand and supply shocks) are available in Figures B6 and B7 (Appendix). While demand shocks are temporary, they decay at a slow rate. In some countries, the responses are different from zero even 20 quarters after the initial shock (see Figure B6 in Appendix).

<sup>&</sup>lt;sup>6</sup>Even if data requirements are minimal, they are not satisfied by every country. Argentina and Brazil lack data on unemployment rates for the early years of the sample. Therefore, we excluded these countries from further analysis.

the bivariate models is available in Table A1 (Appendix). Tables 2 and 3 display the correlation of quarterly supply and demand shocks across countries. Shocks generally feature low degree of correlation across countries except the two pairs (DEU-ESP, DEU-FRA). Finally, given that GRID data are available at the yearly level, we annualize and standardize (mean-center and scale to unit variance) the obtained shocks before using them in panel estimation. This transformation ensures comparability across countries, prevents scale effects from biasing the estimates, and facilitates interpretation of the impulse responses in standard deviation units.

Table 2: Pairwise correlations: supply shock.

|     | CAN   | DKK   | DEU   | ESP   | FRA   | ITA  | MEX  | NOR  | SWE  | USA |
|-----|-------|-------|-------|-------|-------|------|------|------|------|-----|
| CAN | 1     |       |       |       |       |      |      |      |      |     |
| DKK | -0.08 | 1     |       |       |       |      |      |      |      |     |
| DEU | -0.24 | 0.14  | 1     |       |       |      |      |      |      |     |
| ESP | -0.16 | 0.05  | 0.38  | 1     |       |      |      |      |      |     |
| FRA | 0.07  | 0.08  | -0.25 | -0.22 | 1     |      |      |      |      |     |
| ITA | -0.14 | 0.01  | 0.1   | -0.06 | 0.17  | 1    |      |      |      |     |
| MEX | -0.19 | -0.13 | 0.4   | 0.2   | -0.08 | 0.15 | 1    |      |      |     |
| NOR | 0.14  | 0.12  | -0.04 | 0     | -0.02 | 0.05 | 0.02 | 1    |      |     |
| SWE | -0.04 | 0.14  | 0.31  | 0.25  | -0.01 | 0.1  | 0.02 | 0.13 | 1    |     |
| USA | 0.02  | 0.17  | 0.09  | 0.22  | -0.08 | 0.07 | 0.18 | 0.03 | 0.12 | 1   |

Note: own summary, shocks are obtained using long-run restrictions. The period under analysis is 1990:Q2-2019:Q3 for all countries except Germany (1991:Q2-2019:Q3).

Table 3: Pairwise correlations: demand shock.

|     | CAN  | DKK   | DEU   | ESP   | FRA  | ITA  | MEX  | NOR  | SWE  | USA |
|-----|------|-------|-------|-------|------|------|------|------|------|-----|
| CAN | 1    |       |       |       |      |      |      |      |      |     |
| DKK | 0.2  | 1     |       |       |      |      |      |      |      |     |
| DEU | 0.19 | 0.05  | 1     |       |      |      |      |      |      |     |
| ESP | 0.12 | -0.03 | 0.1   | 1     |      |      |      |      |      |     |
| FRA | 0.24 | 0.17  | 0.36  | -0.01 | 1    |      |      |      |      |     |
| ITA | 0.14 | 0.2   | 0.14  | -0.07 | 0.28 | 1    |      |      |      |     |
| MEX | 0.22 | 0.17  | 0.12  | 0.15  | 0.12 | 0.17 | 1    |      |      |     |
| NOR | 0.13 | 0.23  | -0.11 | -0.02 | 0.13 | 0.14 | 0.1  | 1    |      |     |
| SWE | 0.23 | 0.15  | 0.15  | -0.03 | 0.2  | 0.17 | 0.07 | 0.11 | 1    |     |
| USA | 0.16 | 0.23  | 0.16  | -0.07 | 0.12 | 0.25 | 0.16 | 0.16 | 0.05 | 1   |

Note: own summary, shocks are obtained using long-run restrictions. The period under analysis is 1990:Q2-2019:Q3 for all countries except Germany (1991:Q2-2019:Q3).

#### 2.2 Local projections

To study the impact of supply and demand shocks on (the level of) inequality, we compute cumulative IRFs directly from local projections. Specifically, we estimate the following regression at the country level:

$$y_{c,t+h} - y_{c,t-1} = \beta^h z_{c,t} + \gamma_c^h + \gamma_t^h + \pi^h X_{c,t} + e_{c,t+h}^h$$
(3)

where  $y_{c,t+h}$  is the log of Gini for country c measured at time t+h,  $z_{c,t}$  is the exogenous shock, and  $\beta^h$  are the estimated responses for h=0,...,3 periods after the shock. The remaining elements identify country fixed effects  $(\gamma_c^h)$ . The next term  $(\gamma_t^h)$  addresses potential period differences. When analyzing domestic shocks,  $\gamma_t^h$  represent time fixed effects. When shocks originate in the US (and are common to all countries),  $\gamma_t^h$  represents NBER-identified recessions in the US (level and two lag values).

Our baseline set of controls  $(X_{c,t})$  includes two lags of: changes in inequality  $(\Delta y_{c,t-i})$ , for i=1,2, and exogenous shock used  $(z_{c,t-i})$ , for i=1,2, i.e. supply or demand. As a robustness check, we expand the set of control variables to include two lags of: i) share of exports to the US to total exports (trade exposure), ii) share of US bank claims to GDP (financial exposure), iii) changes in *de facto* economic openness (proxied by the *de facto* component of the KOF index), iv) expectations (proxied by the OECD's business confidence index), and v) changes in domestic labor market policies (proxied by the Economic Freedom of the World's indicator of labor market regulation), see Table A2 for details (Appendix).

To examine the three potential transmission channels of supply and demand shocks

originating in the US we apply the state-dependent local projection in the style of Auerbach and Gorodnichenko (2013). Namely, we estimate the following regression:

$$y_{c,t+h} - y_{c,t-1} = \beta^h z_t^{US} + \gamma^h (z_t^{US} \times s_{c,t-1}) + \pi^h X_{c,t} + \gamma_c^h + e_{c,t+h}^h$$
(4)

where  $s_{c,t-1}$  represents the state variable: i) percentage of exports to US in all exports of country c (trade channel), ii) bilateral US bank claims as a proportion of GDP in country c (financial channel), and iii) business confidence in country c (expectations channel).  $X_{c,t}$  includes two lags of: changes in inequality, exogenous shock being used, interaction term, and NBER-identified recessions. The state-dependent cumulative impulse response is the linear combination  $\beta^h + \gamma^h \times s_{c,t-1}$ .

Finally, all estimations use Driscoll-Kraay standard errors in reporting confidence bands. These standard errors accommodate different forms of autocorrelation and heteroskedasticity.

#### 3 Results

We report our results as follows. First, we estimate the baseline responses of the Gini coefficient computed for the entire working-age population to unanticipated, one-standard-deviation change in US and domestic shocks. Next, we extend our baseline analysis to two measures of the income distribution. Namely, we replace the Gini coefficient with: i) the standard deviation of these changes, which captures the overall income volatility, and ii) the Kelley skewness of residual one-year log income changes, which measures the asymmetry of income risk. Second, we present the results for the transmission channels of US shocks. Specifically, we capture the state-dependency by including a linear interaction term with the three measures representing trade, financial, and expectations channels.

## 3.1 Inequality

The upper row of Figure 1 displays the responses of the log of Gini to demand and supply shocks originating in the US. US demand shock leads to a significant and long-lasting increase (up to 40 basis points) in income inequality. US supply shocks produce much smaller increases in income inequality (up to 25 basis points). Domestic shocks, whether demand or supply, produce IRF in the vicinity of 5 basis points, as shown in the bottom row of Figure 1. The direction is less clear than in the case of US shocks. Domestic demand shocks produce an initial hike that quickly vanishes, whereas domestic supply shocks tend to decrease inequality at longer horizons. Overall, domestic demand shocks generate an increase in inequality, though responses remain lower than those to US shocks. Moreover,

estimates from the intermediate specification suggest that responses are driven (partly) by sample composition.

Figure 1: Cumulative impulse responses to demand and supply shocks: Gini, baseline.



Note: shaded areas represent 68% Driscoll-Kraay confidence bands. Detailed output of our baseline result is available in Table B1 (Appendix).

We conduct a number of robustness exercises. First, we evaluate the evolution of responses beyond the initial estimation horizon of three years, see Figure B2 (Appendix), given that the panels are short, estimates from these longer horizon are less reliable, which is reflected in the broader confidence bands. To the extent that conclusions are possible, the response to foreign demand shocks decreases over time, whereas foreign supply shocks produce more persistent responses. Further, we check whether the inclusion of additional drivers of the Gini coefficient affects the estimated responses. The new variables include labor market regulations, and the *de facto* component of the KOF globalization index. The resulting IRFs are portrayed in Figure B3 (Appendix). The patterns described for US demand shocks are robust to the inclusion of new variables. The trajectory of responses to supply shocks is also identical, but shifted downwards. Table B2 presents the estimated coefficients. Since the additional controls are not available each year, we also include an intermediate specification, which restricts the sample, but does not include any of the additional control variables.

Figure 2: Cumulative impulse responses to demand and supply shocks: standard deviation, baseline.



Note: shaded areas represent 68% Driscoll-Kraay confidence bands.

Figure 3: Cumulative impulse responses to demand and supply shocks: Kelley skewness, baseline.



Figure 4: Cumulative state-dependent impulse responses to positive and negative US demand and supply shocks: Gini.



Note: shaded areas represent 68% Driscoll-Kraay confidence bands.

#### 3.2 Channels

In Figure 5, we study the three potential transmission channels: trade linkages (Corsetti & Müller, 2011), financial markets integration (Faccini et al., 2016), and expectations (Klein & Linnemann, 2021). None of these channels explains variation in responses to demand shocks. By contrast, supply shocks produce heterogeneous responses based on exposure. When countries have strong export links a US supply shock leads to a large and persistent increase in inequality. Second, countries with strong financial links observe a short-lived increase in inequality during the first period after the shock, whereas countries with weaker links observe a gradual increase in inequality during the entire estimation horizon. Lastly, lower business confidence in home country is associated with a more pronounced inequality response. As an extension of our state-dependent results, we perform a data-driven subsample split using country-level median values of channel measure and estimate our baseline specification (see Figure 6). When splitting the countries, demand shocks appear more differentiated by trade level, countries above the median in the initial year have a stronger reaction.

Figure 5: Cumulative state-dependent impulse responses to US demand and supply shocks: Gini.



Note: levels are data-driven, i) exports (weak: up to 50th percentile; strong: 90th percentile), ii) bank claims (weak: 25th percentile, strong: 75th percentile), iii) business confidence (low: 25th percentile, high: 75th percentile). Shaded areas represent 68% Driscoll-Kraay confidence bands.

Figure 6: Cumulative impulse responses to demand and supply shocks: transmission channels of US shocks across subsamples.



Note: red response represents "high" subsample, blue response represents "low" subsample. Sample splitting is done using pooled country-level medians of each measure. Sample composition: i) exports (high exposure: Canada, Germany, Italy, Mexico, Sweden; low exposure: Denmark, France, Norway, Spain), ii) bank claims (high exposure: Canada, Denmark, France, Germany, Mexico; low exposure: Italy, Norway, Spain, Sweden), iii) business confidence (high confidence: France, Italy, Mexico, Norway, Spain; low confidence: Canada, Denmark, Germany, Sweden). Shaded areas represent 68% Driscoll-Kraay confidence bands.

# 4 Concluding remarks

In summary, we show that US supply and demand shocks increase income dispersion abroad. While demand shocks have widespread impacts, supply shocks appear more selective, with larger effects concentrated in trade-linked economies. The financial channel

does not appear particularly relevant on our estimations. Domestic demand shocks tend to be weaker and more transient. Unlike US supply shocks, domestic shocks reduce inequality.

A more countries join the GRID project, it would become feasible to study the external validity of these findings. Another extension is to consider alternative measures of unanticipated shocks, which can be derived for all countries.

## References

- Acemoglu, D. (2002). Technical change, inequality, and the labor market. *Journal of Economic Literature*, 40(1), 7–72. https://doi.org/10.1257/jel.40.1.7
- Akıncı, Ö. (2013). Global financial conditions, country spreads and macroeconomic fluctuations in emerging countries. *Journal of International Economics*, 91(2), 358–371. https://doi.org/10.1016/j.jinteco.2013.07.005
- Amberg, N., Jansson, T., Klein, M., & Picco, A. R. (2022). Five Facts about the Distributional Income Effects of Monetary Policy Shocks. *American Economic Review: Insights*, 4(3), 289–304. https://doi.org/10.1257/aeri.20210262
- Andersen, A. L., Johannesen, N., Jørgensen, M., & Peydró, J.-L. (2023). Monetary Policy and Inequality. *The Journal of Finance*, 78(5), 2945–2989. https://doi.org/10.1111/jofi.13262
- Auerbach, A. J., & Gorodnichenko, Y. (2013). Output spillovers from fiscal policy. *American Economic Review*, 103(3), 141–146. https://doi.org/10.1257/aer.103.3.141
- Azad, N. F., & Serletis, A. (2022). Spillovers of US monetary policy uncertainty on inflation targeting emerging economies. *Emerging Markets Review*, *51*, 100875. https://doi.org/10.1016/j.ememar.2021.100875
- Binet, M.-E., & Pentecôte, J.-S. (2015). Macroeconomic idiosyncrasies and European monetary unification: A sceptical long run view. *Economic Modelling*, *51*, 412–423. https://doi.org/10.1016/j.econmod.2015.08.030
- Blanchard, O. J., & Quah, D. (1989). The dynamic effects of aggregate demand and supply disturbances. *The American Economic Review*, 79(4), 655–673.
- Bound, J., & Johnson, G. (1995). What are the causes of rising wage inequality in the United States? *Economic Policy*, 1(1), 1.
- Bowman, D., Londono, J. M., & Sapriza, H. (2015). US unconventional monetary policy and transmission to emerging market economies. *Journal of International Money and Finance*, 55, 27–59. https://doi.org/10.1016/j.jimonfin.2015.02.016
- Carrillo, J. A., Elizondo, R., & Hernández-Román, L. G. (2020). Inquiry on the transmission of US aggregate shocks to Mexico: A SVAR approach. *Journal of International Money and Finance*, 104, 102148. https://doi.org/10.1016/j.jimonfin.2020.102148
- Coibion, O., Gorodnichenko, Y., Kueng, L., & Silvia, J. (2017). Innocent bystanders? monetary policy and inequality. *Journal of Monetary Economics*, 88, 70–89. https://doi.org/10.1016/j.jmoneco.2017.05.005
- Corsetti, G., & Müller, G. J. (2011). Multilateral economic cooperation and the international transmission of fiscal policy (tech. rep.). National Bureau of Economic Research.
- Davtyan, K. (2017). The distributive effect of monetary policy: The top one percent makes the difference. *Economic Modelling*, 65, 106–118. https://doi.org/10.1016/j.econmod. 2017.05.011

- Dées, S., & Galesi, A. (2021). The Global Financial Cycle and US monetary policy in an interconnected world. *Journal of International Money and Finance*, 115, 102395. https://doi.org/10.1016/j.jimonfin.2021.102395
- Di Giovanni, J., Kalemli-Özcan, Ş., Ulu, M. F., & Baskaya, Y. S. (2022). International spillovers and local credit cycles. *The Review of Economic Studies*, 89(2), 733–773. https://doi.org/10.1093/restud/rdab044
- Faccini, R., Mumtaz, H., & Surico, P. (2016). International fiscal spillovers. *Journal of International Economics*, 99, 31–45. https://doi.org/10.1016/j.jinteco.2015.11.009
- Feenstra, R. C., & Hanson, G. H. (2003). Global production sharing and rising inequality: A survey of trade and wages. *Handbook of International Trade*, 146–185.
- Fernández, A., Schmitt-Grohé, S., & Uribe, M. (2017). World shocks, world prices, and business cycles: An empirical investigation. *Journal of International Economics*, 108, S2–S14. https://doi.org/10.1016/j.jinteco.2017.01.001
- Fink, F., & Schüler, Y. S. (2015). The transmission of US systemic financial stress: Evidence for emerging market economies. *Journal of International Money and Finance*, 55, 6–26. https://doi.org/10.1016/j.jimonfin.2015.02.019
- Furceri, D., Loungani, P., & Zdzienicka, A. (2018). The effects of monetary policy shocks on inequality. *Journal of International Money and Finance*, 85, 168–186. https://doi.org/10.1016/j.jimonfin.2017.11.004
- Guvenen, F., Pistaferri, L., & Violante, G. L. (2022). Global trends in income inequality and income dynamics: New insights from grid. *Quantitative Economics*, 13(4), 1321–1360.
- Gygli, S., Haelg, F., Potrafke, N., & Sturm, J.-E. (2019). The KOF Globalisation Index revisited. *The Review of International Organizations*, 14(3), 543–574. https://doi.org/10.1007/s11558-019-09344-2
- Herwartz, H. (2018). Long-run neutrality of demand shocks: Revisiting Blanchard and Quah (1989) with independent structural shocks. *Journal of Applied Econometrics*, 34(5), 811–819. https://doi.org/10.1002/jae.2675
- Jaumotte, M. F., & Osorio, M. C. (2015). *Inequality and labor market institutions*. International Monetary Fund.
- Jordà, Ö. (2005). Estimation and inference of impulse responses by local projections. *American Economic Review*, 95(1), 161–182. https://doi.org/10.1257/0002828053828518
- Jordà, Ò., & Taylor, A. (2024, August). *Local projections*. National Bureau of Economic Research. https://doi.org/10.3386/w32822
- Kalemli-Ozcan, S., Papaioannou, E., & Perri, F. (2013). Global banks and crisis transmission. *Journal of International Economics*, 89(2), 495–510. https://doi.org/10.1016/j.jinteco.2012.07.001

- Karahan, F., & Ozkan, S. (2013). On the persistence of income shocks over the life cycle: Evidence, theory, and implications. *Review of Economic Dynamics*, 16(3), 452–476. https://doi.org/10.1016/j.red.2012.08.001
- Keating, J. W. (2013). What do we learn from Blanchard and Quah decompositions of output if aggregate demand may not be long-run neutral? *Journal of Macroeconomics*, 38, 203–217. https://doi.org/10.1016/j.jmacro.2013.07.007
- Klein, M., & Linnemann, L. (2021). Real exchange rate and international spillover effects of us technology shocks. *Journal of International Economics*, 129, 103414. https://doi.org/10.1016/j.jinteco.2020.103414
- Kose, M. A., Lakatos, C., Ohnsorge, F., & Stocker, M. (2017). The global role of the US economy: Linkages, policies and spillovers. *World Bank Policy Research Working paper* 7962.
- Kose, M. A., Otrok, C., & Prasad, E. (2012). Global business cycles: convergence or decoupling? *International Economic Review*, *53*(2), 511–538. https://doi.org/10.1111/j.1468-2354.2012.00690.x
- Kose, M. A., Otrok, C., & Whiteman, C. H. (2003). International Business Cycles: World, Region, and Country-Specific Factors. *American Economic Review*, 93(4), 1216–1239. https://doi.org/10.1257/000282803769206278
- Lakdawala, A., Moreland, T., & Schaffer, M. (2021). The international spillover effects of US monetary policy uncertainty. *Journal of International Economics*, 133, 103525. https://doi.org/10.1016/j.jinteco.2021.103525
- Lastauskas, P., & Nguyen, A. D. M. (2023). Global impacts of US monetary policy uncertainty shocks. *Journal of International Economics*, 145, 103830. https://doi.org/10.1016/j.jinteco.2023.103830
- Lastauskas, P., & Nguyen, A. D. M. (2024). Spillover effects of US monetary policy on emerging markets amidst uncertainty. *Journal of International Financial Markets, Institutions and Money*, 92, 101956. https://doi.org/10.1016/j.intfin.2024.101956
- Levchenko, A. A., & Pandalai-Nayar, N. (2020). TFP, news, and "sentiments": The international transmission of business cycles. *Journal of the European Economic Association*, 18(1), 302–341. https://doi.org/10.1093/jeea/jvy044
- Miranda-Agrippino, S., & Rey, H. (2022). The global financial cycle. In *Handbook of International Economics* (pp. 1–43, Vol. 6). Elsevier. https://doi.org/10.1016/bs.hesint.2022.02.008
- Ramey, V. A. (2016). Macroeconomic shocks and their propagation. *Handbook of Macroeconomics*, 2, 71–162.
- Rey, H. (2016). International Channels of Transmission of Monetary Policy and the Mundellian Trilemma. *IMF Economic Review*, 64, 6–35. https://doi.org/10.1057/imfer.2016.4

Schmitt-Grohé, S., & Uribe, M. (2018). How important are terms-of-trade shocks? *International Economic Review*, 59(1), 85–111. https://doi.org/10.1111/iere.12263

# **Appendix**

#### Part A: Data

Table A1: Real output and unemployment series used for estimation of domestic supply and demand shocks using long-run restrictions.

| Country             | Scope           | Source |
|---------------------|-----------------|--------|
| Canada (CAN)        | 1990:Q2-2019:Q3 | OECD   |
| Denmark (DKK)       | 1990:Q2-2019:Q3 | OECD   |
| France (FRA)        | 1990:Q2-2019:Q3 | OECD   |
| Germany (DEU)       | 1991:Q1-2019:Q3 | OECD   |
| Italy (ITA)         | 1990:Q2-2019:Q3 | OECD   |
| Mexico (MEX)        | 1990:Q2-2019:Q3 | OECD   |
| Norway (NOR)        | 1990:Q2-2019:Q3 | OECD   |
| Spain (ESP)         | 1990:Q2-2019:Q3 | OECD   |
| Sweden (SWE)        | 1990:Q2-2019:Q3 | OECD   |
| United States (USA) | 1990:Q2-2019:Q3 | FRED   |

Note: own summary, all data are quarterly. For the USA, we used GDPC1 and UNRATE series. For OECD countries, we used quarterly real GDP (expenditure approach, in USD) and the quarterly unemployment rate (seasonally adjusted, working-age population).

Table A2: Control variables used in the estimation of local projections.

| Variable                                                   | Source                         | Availability         |
|------------------------------------------------------------|--------------------------------|----------------------|
| NBER identified economic recessions in the US              | NBER                           | 1990-2019            |
| De facto component of the KOF Economic Globalization index | Gygli et al. (2019)            | 1990-2017            |
| Labor market regulations score (Area 5)                    | Fraser Institute               | 1990,1995,2000-2019  |
| Share of exports to the US                                 | Own estimation based on UNCTAD | 1990-2019, with gaps |
| Bilateral US bank claims to GDP                            | Own estimation based on BIS    | 1990-2019, with gaps |
| Business confidence index                                  | OECD                           | 1990-2019, with gaps |

Note: own summary.

### Part B: Local projections and additional results

Figure B1: Cumulative impulse responses to demand and supply shocks: 90-10 percentile difference.



Note: shaded areas represent 68% Driscoll-Kraay confidence bands.

Figure B2: Cumulative responses over longer time horizons.



Figure B3: Cumulative impulse responses to demand and supply shocks: Gini, robustness.



Note: shaded areas represent 68% Driscoll-Kraay confidence bands.

Figure B4: Cumulative impulse responses to demand and supply shocks: standard deviation, robustness.



Figure B5: Cumulative impulse responses to demand and supply shocks: Kelley skewness, robustness.



Table B1: Baseline estimation results from local projections, 1990-2019.

|                                    | Dependent variable: log (Gini) |                     |                     |                     |                     |                      |                   |                    |  |  |  |
|------------------------------------|--------------------------------|---------------------|---------------------|---------------------|---------------------|----------------------|-------------------|--------------------|--|--|--|
|                                    |                                | Dem                 | nand                | -                   | Supply              |                      |                   |                    |  |  |  |
|                                    | (0)                            | (1)                 | (2)                 | (3)                 | (0)                 | (1)                  | (2)               | (3)                |  |  |  |
| Model 1: US shocks                 |                                |                     |                     |                     |                     |                      |                   |                    |  |  |  |
| Shock                              | -0.001 (0.001)                 | 0.0001<br>(0.001)   | 0.001<br>(0.001)    | 0.003***<br>(0.001) | 0.001**<br>(0.0003) | 0.002***<br>(0.0005) | 0.001*<br>(0.001) | 0.002*<br>(0.001)  |  |  |  |
| $Shock_{t-1}$                      | 0.001***<br>(0.0004)           | 0.002***<br>(0.001) | 0.003***<br>(0.001) | 0.002<br>(0.001)    | 0.001***<br>(0.001) | 0.001<br>(0.001)     | 0.002<br>(0.001)  | 0.002**<br>(0.001) |  |  |  |
| $Shock_{t-2}$                      | 0.001*<br>(0.001)              | 0.001<br>(0.001)    | 0.001<br>(0.001)    | 0.001**<br>(0.001)  | 0.0005<br>(0.001)   | 0.001<br>(0.001)     | 0.001<br>(0.001)  | 0.0005<br>(0.001)  |  |  |  |
| $\Delta \operatorname{Gini}_{t-1}$ | -0.001 (0.001)                 | -0.0001 (0.002)     | -0.001 (0.002)      | -0.001 (0.002)      | -0.001 (0.001)      | 0.00000<br>(0.002)   | -0.002 (0.002)    | -0.001 (0.002)     |  |  |  |
| $\Delta \operatorname{Gini}_{t-2}$ | 0.001<br>(0.001)               | 0.0004<br>(0.001)   | 0.001<br>(0.002)    | -0.001 (0.002)      | 0.001<br>(0.001)    | 0.0004<br>(0.001)    | 0.001<br>(0.002)  | -0.0002 (0.002)    |  |  |  |
| Model 2: [                         | Domestic sh                    | ocks                |                     |                     |                     |                      |                   |                    |  |  |  |
| Shock                              | -0.0001 (0.001)                | 0.001*<br>(0.001)   | 0.002*<br>(0.001)   | 0.001<br>(0.001)    | 0.0002<br>(0.0004)  | -0.0002 (0.001)      | -0.0002 (0.001)   | -0.0002 $(0.001)$  |  |  |  |
| $Shock_{t-1}$                      | 0.002**<br>(0.001)             | 0.002**<br>(0.001)  | 0.001*<br>(0.001)   | 0.002**<br>(0.001)  | -0.0003 (0.0004)    | -0.001 (0.0004)      | -0.001 (0.001)    | -0.0001 (0.001)    |  |  |  |
| $Shock_{t-2}$                      | 0.0005<br>(0.0004)             | 0.0003<br>(0.0004)  | 0.0004<br>(0.0005)  | 0.001<br>(0.001)    | -0.0001 (0.0003)    | -0.0001 (0.001)      | 0.0003<br>(0.001) | 0.001<br>(0.001)   |  |  |  |
| $\Delta \operatorname{Gini}_{t-1}$ | -0.001 (0.001)                 | 0.00000<br>(0.002)  | -0.001 (0.002)      | -0.001 (0.002)      | -0.001 (0.001)      | 0.0001<br>(0.002)    | -0.0003 (0.002)   | -0.0002 (0.002)    |  |  |  |
| $\Delta \operatorname{Gini}_{t-2}$ | 0.001<br>(0.001)               | 0.0001<br>(0.001)   | 0.001<br>(0.002)    | 0.0004<br>(0.002)   | 0.001<br>(0.001)    | 0.0004<br>(0.001)    | 0.001<br>(0.002)  | 0.001<br>(0.002)   |  |  |  |
| N                                  | 177                            | 168                 | 159                 | 150                 | 177                 | 168                  | 159               | 150                |  |  |  |

Note: Driscoll-Kraay errors in parenthesis, column headers represent estimation horizons. Model 1 includes country fixed effects and NBER recession dummy. Model 2 includes country and year fixed effects. Significance levels: \*p<0.1, \*\*p<0.05, \*\*\*p<0.01.

Table B2: The effect of supply and demand shocks on income inequality, 1990-2019.

|                       |           | Dependent variable: log (Gini) |               |               |          |               |               |               |  |  |  |
|-----------------------|-----------|--------------------------------|---------------|---------------|----------|---------------|---------------|---------------|--|--|--|
|                       |           | Der                            | nand          |               | Supply   |               |               |               |  |  |  |
|                       | $\beta_t$ | $\beta_{t+1}$                  | $\beta_{t+2}$ | $\beta_{t+3}$ | $eta_t$  | $\beta_{t+1}$ | $\beta_{t+2}$ | $\beta_{t+3}$ |  |  |  |
| Panel 1: US shocks    |           |                                |               |               |          |               |               |               |  |  |  |
| (a) Baseline          | -0.001    | 0.0001                         | 0.001         | 0.003***      | 0.001**  | 0.002***      | 0.001*        | 0.002*        |  |  |  |
| NI                    | (0.001)   | (0.001)                        | (0.001)       | (0.001)       | (0.0003) | (0.0005)      | (0.001)       | (0.001)       |  |  |  |
| N                     | 177       | 168                            | 159           | 150           | 177      | 168           | 159           | 150           |  |  |  |
| (b) Restricted sample | 0.001     | 0.001                          | 0.002         | 0.006***      | 0.001    | 0.002         | -0.0001       | -0.001        |  |  |  |
|                       | (0.001)   | (0.002)                        | (0.001)       | (0.002)       | (0.001)  | (0.001)       | (0.001)       | (0.001)       |  |  |  |
| N                     | 118       | 109                            | 100           | 91            | 118      | 109           | 100           | 91            |  |  |  |
| (c) All controls      | 0.0002    | 0.001                          | 0.003         | 0.007**       | -0.001   | -0.001        | -0.003        | -0.002        |  |  |  |
| · /                   | (0.002)   | (0.002)                        | (0.003)       | (0.003)       | (0.001)  | (0.002)       | (0.002)       | (0.003)       |  |  |  |
| N                     | 118       | 109                            | 100           | 91            | 118      | 109           | 100           | 91            |  |  |  |
| Panel 2: Domestic sho | cks       |                                |               |               |          |               |               |               |  |  |  |
| (a) Baseline          | -0.0001   | 0.001*                         | 0.002*        | 0.0002        | 0.0002   | -0.0002       | -0.0002       | -0.0002       |  |  |  |
|                       | (0.001)   | (0.001)                        | (0.001)       | (0.001)       | (0.0004) | (0.001)       | (0.001)       | (0.001)       |  |  |  |
| N                     | 177       | 168                            | 159           | 150           | 177      | 168           | 159           | 150           |  |  |  |
| (b) Restricted sample | 0.001     | 0.003**                        | 0.005***      | 0.004**       | 0.001    | -0.0004       | -0.001        | -0.001        |  |  |  |
| 1                     | (0.001)   | (0.002)                        | (0.002)       | (0.002)       | (0.001)  | (0.001)       | (0.002)       | (0.002)       |  |  |  |
| N                     | 118       | 109                            | 100           | 91            | 118      | 109           | 100           | 91            |  |  |  |
| (c) All controls      | 0.001     | 0.003                          | 0.003**       | 0.003*        | 0.0001   | -0.001        | -0.002        | -0.001        |  |  |  |
| (-)                   | (0.001)   | (0.002)                        | (0.002)       | (0.001)       | (0.001)  | (0.001)       | (0.002)       | (0.002)       |  |  |  |
| N                     | 118       | 109                            | 100           | 91            | 118      | 109           | 100           | 91            |  |  |  |

Note: Driscoll-Kraay errors in parenthesis, columns headers represent estimation horizons. Baseline regressions include additional controls for: growth of Gini (2 lags), shock (2 lags). Restricted sample is computed using baseline regressions, but only including entries, for which we have complete observations for all controls used in the estimation. For all controls, we introduce (2 lags): changes in the KOF index, changes in the labor market regulations, the share of exports to the US, bilateral US bank claims to GDP, and business confidence index. Significance levels: \*p<0.1, \*\*p<0.05, \*\*\*p<0.01.

Figure B6: Estimated impulse response functions to demand shock.



Note: 20 quarters, shaded areas represent 68% confidence bands. r\_GDP and un\_rate stand for real output growth and unemployment rate.

Figure B7: Estimated impulse response functions to supply shock.



Note: 20 quarters, shaded areas represent 68% confidence bands. r\_GDP and un\_rate stand for real output growth and unemployment rate.