NAME: Soumava Das ROLL NO: 2511CS08 DEPT: Mtech CSE

Football Player Rating Prediction using Linear Regression

1. Introduction

This project's goal is to predict the **overall rating** of football players using their physical, technical, and mental attributes. The dataset contains various player details, from age and nationality to specific performance metrics like passing and dribbling. We chose a **Linear Regression** model for its simplicity and effectiveness in modeling the linear relationship between these attributes and the player's overall rating.

2. Dataset Description

The dataset used is "Football Players Data" which is a dataset of 17,000 players from <u>sofifa.com</u> available on Kaggle, that is rich with player profiles, featuring a mix of personal, physical, and performance-based attributes.

- Personal Information: Includes name, full name, birth date, age, and nationality.
- Physical Attributes: Height (in cm) and weight (in kg).
- Career Information: Player positions and potential rating.
- **Technical and Mental Attributes (Features):** This section contains the core predictive features, such as passing, dribbling, shooting, crossing, finishing, vision, composure, positioning, aggression, interceptions, and tackling.
- Target Variable: The Overall Rating, a numerical score representing the player's overall ability.

The dataset's numerical focus makes it a great fit for a Linear Regression model.

3. Feature Engineering and Preprocessing

To prepare the data for the model, we followed these steps:

- **Data Cleaning:** We removed irrelevant fields, like player names and IDs, since they don't contribute to the prediction. We also handled any missing values.
- Encoding Categorical Features: We used One-Hot Encoding to convert categorical
 data, such as positions and nationality, into numerical formats that the regression model
 can understand.

• **Feature Scaling:** We applied **Standardization** to all continuous features (height, weight, skill attributes). This process scales the data to a similar range, preventing features with larger values from dominating the model.

4. Model Used: Linear Regression

Why we chose it: Linear Regression is easy to implement and interpret. It provides a solid baseline for understanding how well a player's attributes can explain their overall rating. It works best when the relationship between features and the target variable is roughly linear.

Mathematical Formulation: The model is represented by the following equation:

$$Y = \beta 0 + \beta 1x1 + \beta 2x2 + \cdots + \beta nxn + \epsilon$$

Where:

- y = The Overall Rating
- x1,x2,..., xn = The player's **features**
- β = The **weights** the model learns
- ϵ = The error term

The model works by minimizing the **Sum of Squared Errors (SSE)** to find the best-fitting line.

5. Evaluation Metrics

Since this is a regression problem, we used the following metrics to evaluate the model's performance:

- R² Score: This metric shows how much of the variance in the overall rating is captured by the features. A score of **0.8590** is excellent, meaning our features explain 85.9% of the variability in the ratings.
- Root Mean Squared Error (RMSE): This penalizes larger errors. An RMSE of 2.65 means the average prediction error is roughly 2.6 rating points.
- Mean Absolute Error (MAE): This shows the average prediction error. An MAE of 2.01 indicates that, on average, our predictions are within 2 points of the player's true rating.

6. Predicted vs Actual Graph

7. Results and Insights

The Linear Regression model performed very well, achieving a high R² score and low error values.

Our analysis showed that **Vision**, **Passing**, **Dribbling**, **Positioning**, and **Composure** are the key attributes that most strongly influence a player's overall rating. Physical attributes like height and weight had a much smaller effect compared to these technical and mental skills. This suggests that a player's quality is determined more by their skill and decision-making than by their physical build.

8. Conclusion

This project successfully demonstrated that Linear Regression can predict football players' overall ratings with high accuracy. The results confirm that skill-based attributes like passing and vision are the most crucial factors in determining a player's ability.

Future Improvements could include:

- Exploring **polynomial regression** to capture non-linear effects.
- Comparing performance with more advanced models, such as Random Forest or XGBoost.
- Adding more dynamic data, like match-level statistics (goals, assists, tackles), for richer predictions.

9. Code and Outputs

Making Imports

```
import pandas as pd
    import numpy as np
    from sklearn.model_selection import train_test_split
    {\color{red} \textbf{from}} \  \, \text{sklearn.preprocessing} \  \, {\color{red} \textbf{import}} \  \, \text{StandardScaler}
    from sklearn.decomposition import PCA
    from sklearn.linear_model import LinearRegression
    from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
    file_path = '/kaggle/input/football-players-data/fifa_players.csv'
  df = pd.read_csv(file_path)
  df.head()
  name full_name birth_date age height_cm weight_kgs
                                                                  positions nationality overall_rating potential ... long_shots aggression interceptions po
                  Lionel
                 Andrés
Messi
                                                                                                           94 ...
0 L. Messi
                        6/24/1987 31
                                                                  CF,RW,ST
                                                                                                                                                   22
               Cuccittini
               Christian
    C. Christian
C. Dannemann 2/14/1992 27
Eriksen
                                            154.94
                                                          76.2 CAM,RM,CM
                                                                                                           89 ...
                                                                                                                                                   56
                                                                             Denmark
                Eriksen
                                                                                                           91 ...
2 P. Pogba Paul Pogba 3/15/1993 25
                                             190.50
                                                          83.9
                                                                  CM,CAM
                                                                                France
                                                                                                 88
                                                                                                                                                   64
                                                                     LW,ST
                          6/4/1991 27
                                             162.56
                                                          59.0
                                                                                                 88
                                                                                                           88 ...
                                                                                  Italy
                                                                                                                                                   26
    Insigne
             Insigne
                Kalidou
4 Koulibaly
                        6/20/1991 27
                                             187.96
                                                          88.9
                                                                        СВ
                                                                               Senegal
                                                                                                 88
                                                                                                           91 ...
                                                                                                                                     87
                                                                                                                                                   88
               Koulibaly
5 rows × 51 columns
```

Data Cleaning

Defining Input and Target Features

```
[6]: X = df.drop(columns=['overall_rating'])
y = df['overall_rating']

[7]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
```

Applying Sklearns PCA and Linear Regression and Training the Model

```
pca = PCA(n_components=0.95, random_state=42)
X_train_pca = pca.fit_transform(X_train_scaled)
X_test_pca = pca.transform(X_test_scaled)

print(f"Original features: {X_train.shape[1]}")
print(f"Reduced features after PCA: {X_train_pca.shape[1]}")

Original features: 181
Reduced features after PCA: 133

[9]: model = LinearRegression()
model.fit(X_train_pca, y_train)

[9]: v_LinearRegression()
```

Model Evaluation

```
y_pred = model.predict(X_test_pca)

r2 = r2_score(y_test, y_pred)

rmse = np.sqrt(mean_squared_error(y_test, y_pred))

mae = mean_absolute_error(y_test, y_pred)

print(f"R2 Score: {r2:.4f}")

print(f"RMSE: {rmse:.4f}")

print(f"MAE: {mae:.4f}")

R2 Score: 0.8590

RMSE: 2.6548

MAE: 2.0101

[12]: import pickle

with open("linear_regression_model.pk1", "wb") as f:
    pickle.dump(model, f)
```