Image acquisition and representation. Color spaces.

Dr. Terence Sim

Electromagnetic Spectrum

Image Formation

- Depends on type of EM radiation
- Depends on sensors
- Visible light: reflection
- X-ray: absorption, not reflection
- Synthetic aperture radar (SAR): reflection at spaced intervals

Sensors

- Charge coupled device (CCD)
- Complementary Metal Oxide Semiconductor (CMOS)
- Photodiode array
- etc.

Image Formation: visible light

Image Formation (detail)

FPN: Fixed Pattern Noise SN: Shot Noise D/A: Digital to Analog Transform A/D Analog to Digital Transform

From: Statistical Calibration of CCD Imaging Process Yanghai Tsin, Visvanathan Ramesh, Takeo Kanade ICCV 2001

Image Formation: X-ray

http://www.sprawls.org/visuals/XRAYCON/objcon.jpg

Image Formation: SAR

http://www.skylondaworks.com/sc_sar0.gif

How important?

- Many of the processing techniques we will study work equally well
 - Regardless of types of images
 - Regardless of sensors used
- But sometimes, knowledge of the image formation helps in the solution of the problem.
 - e.g. In x-ray images, brighter pixels →
 more opaque objects → metals?

Summary

- Image acquisition is the first step in image processing.
- Knowledge of the acquisition process and the type of EM radiation is sometimes useful.
- Digital sensors are increasingly more prevalent.

Image Representation

Sampling refers to spatial resolution. Quantization refers to pixel-value resolution.

Sampling, Quantization

Sampling, Quantization

http://en.wikipedia.org/wiki/Image_resolution

http://en.wikipedia.org/wiki/Color_quantization

RGB (16 colors)

Grayscale Images

- We will begin with grayscale (intensity) images.
 - Deal with color later
- Typically represented as 2D array of pixel values between 0 (black) and 255 (white).
- Coordinate system varies with software used.

Grayscale Images

Surface over x-y plane

Color Images

- Typically represented as 3x 2D arrays of Red, Green, Blue (RGB) pixel values.
- Each color channel between 0 to 255
 - (or 0 to 1)
- Total = 16 million colors

Color Spaces

- Primary colors:
 - Red, Green, Blue
 - Additive

- Secondary colors:
 - Cyan, Magenta, Yellow
 - Subtractive

$$\begin{bmatrix} C \\ M \\ Y \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

More Color Spaces

X,Y,Z represent R,G,B

$$x = \frac{X}{X + Y + Z}$$

$$y = \frac{Y}{X + Y + Z}$$

$$z = \frac{Z}{X + Y + Z}$$

Yet Another Color Space

- HSI (Hue, Saturation, Intensity)
 - HSV slightly different
- Good for color manipulation
- Hue: angle from red
- Saturation: radius
- Intensity: height

Still More Color Spaces

- CIE *L*a*b**
- Perceptually linear
 - Similar to human perception
- L*: lightness (black-white)
- a*: green-magenta
- b*: yellow-blue

Much More Color Spaces

- YUV, YIQ, YCbCr
- Used in TV broadcast (NTSC, PAL)
 - Y: luminance
 - UV, CbCr: chrominance
- Human eye more sensitive to luminance than to chrominance
 - YUV 4:2:2 format

$$\begin{bmatrix} Y \\ U \\ V \end{bmatrix} = \begin{bmatrix} 0.299 & 0.587 & 0.114 \\ -0.147 & -0.289 & 0.436 \\ 0.615 & -0.515 & -0.100 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

So Which to Use?

- Depends on the problem.
- RGB: for viewing on monitor
- CMY(K): for printers
- HSI or HSV: good for separating intensity/color
- CIE L*a*b*: to mimic human perception
- YUV, YCbCr: for TV signals

Image File Formats

- Many in existence
 - Common ones: JPEG, BMP, TIFF, PNG, GIF, TGA, RAW, PGM, PPM, PCX
- There are tools to read/write them, so don't

sweat it.

- Matlab: imread, imwrite
- Digital cameras also tag on EXIF data

Item Name	Value
File Name	IMG_3799.JPG
Camera Model Name	Canon PowerShot S2 IS
Shooting Date/Time	8/11/2005 9:52:27 AM
Shooting Mode	Program AE
Photo Effect	Custom Effect
Tv (Shutter Speed)	1/60
Av (Aperture Value)	2.7
Light Metering	Evaluative
Exposure Compens	-2/3
ISO Speed	50
Lens	6.0 - 72.0 mm
Focal Length	6.0 mm
Digital Zoom	None
IS Mode	Shoot Only
Image Size	2592x1944
Image Quality	Superfine
Flash	On
Flash Type	Built-In Flash
Flash Exposure Co	-1 1/3

Summary

- Grayscale images are typically represented as 2D array.
- Color images: 3x 2D arrays
- There is a choice of color space
 - Which to use depends on the problem
- There are many image file formats.
 - Details not important as there are many tools to manipulate these formats.