Learning Objectives:

- 1. Define orthogonal set, orthogonal projection, orthonormal basis, and orthogonal matrix.
- 2. Represent vectors as a linear combination of orthogonal basis vectors.
- 3. Explain properties of matrices with orthonormal columns.

1 Orthogonal sets

Definition: A set $\{\mathbf{v}_1, \dots \mathbf{v}_p\}$ is said to be an **orthogonal set** if each pair of distinct vectors is orthogonal: $\mathbf{v}_i \cdot \mathbf{v}_j = 0$ for $i \neq j$.

Definition: We say that a set $\{u_1, \ldots u_p\}$ is an **orthonormal set** if it is an orthogonal set of unit vectors (all have norm 1).

Theorem: If $S = \{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ is an orthogonal set of nonzero vectors in \mathbb{R}^n , then S is linearly independent and thus is a basis for the subspace spanned by S.

Example 1. Why are orthogonal bases easier to work with? Consider the following bases of \mathbb{R}^2 :

$$\left\{ \left(\begin{array}{c} 1\\2 \end{array}\right), \left(\begin{array}{c} 2\\1 \end{array}\right) \right\},$$

and

$$\left\{ \left(\begin{array}{c} 2\\0 \end{array}\right), \left(\begin{array}{c} 0\\1 \end{array}\right) \right\}.$$

Write $\mathbf{y} = \begin{pmatrix} -5 \\ -1 \end{pmatrix}$ as a linear combination of the basis vectors in each case.

Take-away: In general, if a set is orthogonal, then it is much easier to represent other vectors as linear combinations!

Theorem: Let $\{\mathbf{u}_1,\ldots,\mathbf{u}_p\}$ be an orthogonal basis for W. For each $y\in W$, we have

$$y = c_1 \mathbf{u}_1 + \dots + c_p \mathbf{u}_p,$$

where

$$c_i =$$

Example 2. Take $\mathbf{u}_1 = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$ and $\mathbf{u}_2 = \begin{pmatrix} 6 \\ 4 \end{pmatrix}$. Write $\mathbf{x} = \begin{pmatrix} 9 \\ -7 \end{pmatrix}$ as a linear combination of the \mathbf{u}_i .

2 Orthogonal matrices

Example 3. Suppose $\{\mathbf{v}_1, \dots, \mathbf{v}_3\}$ is an orthonormal set of vectors from \mathbb{R}^3 . Let U have columns formed by these vectors. What is

 U^TU ?

Definition: An $m \times n$ matrix U has orthonormal columns if and only if ______. If U is square then we say U is **orthogonal**.

Theorem: Let U be an $m \times n$ matrix with orthonormal columns and $x, y \in \mathbb{R}^n$. Then

- $1. \ \|Ux\| =$
- $2. (Ux) \cdot (Uy) =$
- 3. $(Ux) \cdot (Uy) = 0$ if and only if

Example 4. T/F: An orthogonal matrix is necessarily invertible.

Example 5. Let $\theta = \pi/13$. Is

$$U = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

orthogonal?