Описание и получение данных World Fire Atlas

Обсудить в форуме Комментариев — 6

Эта страница опубликована в основном списке статей сайта по адресу http://gis-lab.info/qa/fires-wfa.html

Описание и данные из еще одного источника данных о возгораниях

Содержание

- 10 данных
 - о <u>1.1 Формат исходных</u> данных
 - о 1.2 Алгоритм
 - о 1.3 Цитирование
- 2 Получение данных
- <u>3 Повторное получение и</u> предобработка

О данных

Мировой Атлас Пожаров (<u>World Fire Atlas</u>) - еще один источник глобальных данных о температурных аномалиях с большой долей вероятности указывающих на идущие пожары.

Данные для WFA получаются с камер дистанционного зондирования <u>ATSR-2</u> (<u>ERS-2</u>, 1995 - 2011) и <u>AATSR</u> (<u>Envisat</u>, 2003-настоящее время).

Данные доступны с июня 1995 года, с начала работы миссии ERS-2 и по сегодняшний день.

Формат исходных данных

Исходные данные распространяются в текстовом формате, со строками фиксированной ширины (длина строки 66 символов).

Каждая запись соответствует детектированному возгоранию, для каждой записи доступны следующие атрибуты:

Поле	Формат	Описание
Date	YYYYMMDD	Год месяц день
Orbit	9999	Номер орбиты
Time	SS.MMM	Секунды, милисекунды
Latitude	s999.999	(s : знак)
Longitude	s999.999	(s:знак)

Данные находятся в системе координат широта/долгота, WGS84.

Алгоритм

Для детектирования пожаров используются ночные данные, второй канал ATSR 3700 нм, разрешение 1 км.

Определение пожаров производится по простому порогу:

- Алгоритм 1: Возгорание, если: значение в 3.7мкм канале > 312 Кельвин (сатурация)
- Алгоритм 2: Возгорание, если: значение в 3.7мкм канале > 308 Кельвин

Уверенность детектирования является функцией температуры горения и может быть определена следующим образом: от 0.1 га при температуре 600К до 0.01 га при температуре 800К (при фоновой температуре 300К).

Пользователь данных должен учитывать ограничения алгоритма, связанные с облачностью, влиянием атмосферы и двунаправленности излучения. Температура пожара и его распространение при обработке не учитываются.

Преимущества ATSR:

- Так как используются ночные данные, на данные не влияют солнечные блики.
- Нет ложных срабатываний (ошибка производителя = 0) при использование алгоритма 1: высокая надежности (и консервативность) данных.
- Анализируются только квази-надирные пиксели: меньше проблем с размером пикселя и двунаправленностью отражения.
- Отсутствие дрейфа орбиты ERS можно производить межгодовые сравнения.
- Высокая радиометрическая чувствительность позволяет детектировать даже небольшие пожары.

Известные недостатки:

- Ложное детектирование теплых поверхностей (алгоритм #2).
- Глобальная недооценка количества возгораний (детектируются только ночные пожары).

Цитирование

При использовании данных необходимо ссылаться на них следующим образом:

Data from ATSR-WFA, from the Data User Element of the European Space Agency.

Если вы используете данные для публикации, необходимо сослаться на следующую статью:

Arino O., S. Casadio and D. Serpe, Global night-time fire season timing and fire count trends using the ATSR instrument series. Remote Sensing of Environment. (CKAYATE)

Получение данных

Оригинальные данные можно получить на <u>официальном сайте проекта</u>. Они разбиты по годам, месяцам и версии алгоритма (1,2). Данные в первоисточнике появляются со значительным запаздыванием, до нескольких месяцев. Данные в этой таблице будут автоматически обновляться один раз в месяц.

Мы обработали данные, объединили их по годам и перевели в формат ESRI Shape и CSV+CSVT. Все данные можно скачать по ссылкам в этой таблице:

Год CSV SHP CSV	SHP
1995 алгоритм1 алгоритм1 алгоритм2	алгоритм2
1996 алгоритм1 алгоритм1 алгоритм2	алгоритм2
1997 алгоритм1 алгоритм1 алгоритм2	алгоритм2
1998 алгоритм1 алгоритм1 алгоритм2	алгоритм2
1999 алгоритм1 алгоритм1 алгоритм2	алгоритм2
2000 алгоритм1 алгоритм1 алгоритм2	алгоритм2
2001 алгоритм1 алгоритм1 алгоритм2	алгоритм2
2002 алгоритм1 алгоритм1 алгоритм2	алгоритм2
2003 алгоритм1 алгоритм1 алгоритм2	алгоритм2
2004 алгоритм1 алгоритм1 алгоритм2	алгоритм2
2005 алгоритм1 алгоритм1 алгоритм2	алгоритм2
2006 алгоритм1 алгоритм1 алгоритм2	алгоритм2

```
2007 алгоритм1
алгоритм1 алгоритм2
алгоритм2
алгоритм2

2008 алгоритм1
алгоритм1 алгоритм2
алгоритм2
алгоритм2

2009 алгоритм1
алгоритм1 алгоритм2
алгоритм2
алгоритм2

2010 алгоритм1
алгоритм1 алгоритм2
алгоритм2
алгоритм2

2011 алгоритм1
алгоритм1 алгоритм2
алгоритм2
алгоритм2
```

Повторное получение и предобработка

Повторить процедуру получения и обработки данных до состояния представленного на этой странице можно с помощью программы на Python (<u>скачать</u>).

Запуск программы:

```
python get wfa.py yearstart yearend
```

где, yearstart - год начала диапазона, yearend - год окончания. Если год начала равен году окончания, то будет скачан и обработан только один указанный год.

Например:

Скачать и обработать все данные за 2000 год:

```
python get_wfa.py 2000 2000
```

Скачать и обработать все данные за период с 1998 по 2012 год:

```
python get wfa.py 1998 2012
```

Обсудить в форуме Комментариев — 6

Последнее обновление: 2014-05-15 01:44

Дата создания: 21.09.2012 Автор(ы): <u>Максим Дубинин</u>