2018 Fall Data Compression Homework #1

EE 248583 **106368002** 張昌祺 Justin, Chang-Qi Zhang

Advisor: 電子所 高立人 副教授 justin840727@gmail.com Due Date: November 12 2018

Problem 1 Entropy

Let X be a random variable with an alphabet $H = \{1, 2, 3, 4, 5\}$. Please determine H(X) for the following three cases of probability mass function p(i) = prob[X = i]. (15%)

(a)
$$P(1) = P(2) = 1/2$$
:

Ans

$$\begin{split} H(X) &= -(P(1)\log_2 P(1) + P(2)\log_2 P(2)) \\ &= -(0.5\log_2(0.5) + 0.5\log_2(0.5)) \\ &= -(-0.5 - 0.5) \\ &= 1 \ bits/symbol \end{split}$$

(b)
$$P(i) = 1/4$$
, for $i = 1, 2, 3$, and $p(4) = p(5) = 1/8$:

Ans

$$\begin{split} H(X) &= -(3\times P(1)\log_2 P(1) + P(4)\log_2 P(4) + P(5)\log_2 P(5)) \\ &= -(3\times 0.25\log_2(0.25) + 2\times 0.125\log_2(0.125)) \\ &= -(-1.5-0.75) \\ &= 2.25\ bits/symbol \end{split}$$

(c)
$$P(i) = 2^{-i}$$
, for $i = 1, 2, 3, 4$, and $p(5) = 1/16$:

Ans

$$\begin{split} H(X) &= -(\sum_{i=1}^4 2^{-i} \log_2 2^{-i} + \frac{1}{16} \log_2 \frac{1}{16}) \\ &= -(0.5 \times (-1) + 0.25 \times (-2) + 0.125 \times (-3) + 0.0625 \times (-4) + 0.0625 \times (-4)) \\ &= 1.875 \ bits/symbol \end{split}$$

Problem 2 Huffman Code

Design a Huffman code C for the source in Problem 1. (15%)

(a) Specify your codewords for individual pmf model in Problem 1.

Ans

1.(a)

Alphabet	P	Codeword
1	0.5	0
2	0.5	1

1.(b)

Alphabet	P	Codeword
1	0.25	00
2	0.25	01
3	0.25	10
4	0.125	110
5	0.125	111

1.(c)

Alphabet	P	Codeword
1	0.5	0
2	0.25	10
3	0.125	110
4	0.0625	1110
5	0.0625	1111

(b) Compute the expected codeword length and compare with the entropy for your codes in (a).

Ans

1.(b)

Expected codeword length =
$$0.5 \times 1 + 0.5 \times 1$$

= $1 \ bits/symbol$ (Equal Entropy)

1.(b)

Expected codeword length =
$$0.25 \times 2 + 0.25 \times 2 + 0.25 \times 2 + 0.125 \times 3 + 0.125 \times 3$$

= $2.25 \ bits/symbol$ (Equal Entropy)

1.(c)

$$Expected\ codeword\ length = 0.5 \times 1 + 0.25 \times 2 + 0.125 \times 3 + 0.0626 \times 4 + 0.0625 \times 4 \\ = 4.125\ bits/symbol\ \textbf{(NOT\ Equal\ Entropy)}$$

(c) Design a code with minimum codeword length variance for the pmf model in Problem 1.(b)

Ans

Alphabet	P	Codeword
1	0.25	00
2	0.25	01
3	0.25	10
4	0.125	110
5	0.125	111

Problem 3 Empirical Distribution C++

Empirical distribution. In the case a probability model is not known, it can be estimated from empirical data. Let's say the alphabet is $H = \{1, 2, 3, ..., m\}$. Given a set of observations of length N, the empirical distribution is given by $p = total\ number\ of\ symbol\ 1/N,\ for\ i = 1, 2, 3, ..., m$. Please determine the empirical distribution for **santaclaus.txt**, which is an ASCII file with only lower-cased English letters (i.e., $a \sim z$), space and CR (carriage return), totally 28 symbols. The file can be found on the class web site. Compute the entropy. (14%)

Ans

The source code for this problem are available at https://github.com/justin-changqi/2018_fall_data_compression.git. Please check README.md to know how to execute the code. After I executed the program the entropy is 4.12 bits/symbol. Empirical distribution shows in Figure 2

Figure 1: Statistics result for santaclaus.txt

Figure 2: Empirical distribution for $\mathbf{santaclaus.txt}$

Problem 4 Huffman Code Encode C++

Write a program that designs a Huffman code for the given distribution in Problem 3. (14 \mathbf{Ans}

The program for this problem was wrote together with Problem 3. The execute print the Huffman encode result as Figure 3

========	====== Codeword	Table	========
SP: l: CR: n: y: w: g: d:	111 110011 11000 1010 10010 10000 01101 011000	t: b: e: c: h: a: m:	1101 110010 1011 10011 10001 0111 011001 01011111
v: k: s: i:	01011110 010110 0100 0001	p: r: o: u:	0101110 01010 001 0000

Figure 3: Huffman encode result for santaclaus.txt

Problem 5 Adaptive Huffman Tree

Let X be a random variable with an alphabet H, i.e., the 26 lower-case letters. Use adaptive Huffman tree to find the binary code for the sequence ${\bf a}$ ${\bf a}$ ${\bf b}$ ${\bf b}$ ${\bf a}$. (24%)

You are asked to use the following 5 bits fixed-length binary code as the initial codewords for the 26 letters. That is

a: 00000 b: 00001 :

z: 11001

Note: Show the Huffman tree during your coding process.

Ans

1. Initial step:

$$Total\ nodes = 2m-1 = 26 \times 2 - 1 = 51$$

NYT 51

2. a encoded:

3. a a encoded:

4. **a a b** encoded:

 $\begin{array}{ccccc} 00000 & 1 & 0 & 00001 \\ a & a & NYT & b \end{array}$

5. **a a b b** encoded:

6. **a a b b a** encoded:

Problem 6 Golomb Encoding and Decoding.

(a) Find the Golomb code of n=21 when m=4.

Ans

$$2^{\lceil \log_2^m \rceil} - m = 2^2 - 4 = 0$$

encoded $21 = 21/4 = 5 \dots 1 = 111110 \ 01$

(b) Find the Golomb code of n=14 when m=4.

Ans

$$2^{\lceil \log_2^m \rceil} - m = 2^2 - 4 = 0$$

encoded $14 = 14/4 = 3 \dots 2 = 1110 \ 10$

(c) Find the Golomb code of n=21 when m=5.

Ans

$$2^{\lceil \log_2^m \rceil} - m = 2^3 - 5 = 3$$

encoded $21 = 21/5 = 2 \dots 1 = 110\ 01$

(d) Find the Golomb code of n=14 when m=5.

Ans

$$2^{\lceil \log_2^m \rceil} - m = 2^3 - 5 = 3$$

encoded $14 = 14/5 = 2 \dots 4 = 110 \ 111$

(e) A two-integer sequence is encoded by Golomb code with m=4 to get the bitstream 11101111000. What's the decoded two-integer sequence?

Ans

$$2^{\lceil \log_2^m \rceil} - m = 2^2 - 4 = 0$$

$$\frac{1110}{3} \quad \frac{11}{3} \quad \frac{110}{2} \quad \frac{00}{0}$$

$$15 \qquad 8$$

(f) A two-integer sequence is encoded by Golomb code with m=5 to get the bitstream 11101111000 (the same bitstream as that in (e)). What's the decoded two-integer sequence?

Hint: The unary code for a positive integer q is simply q 1s followed by a 0.

Ans

$$2^{\lceil \log_2^m \rceil} - m = 2^3 - 4 = 4$$

$$\frac{1110}{3} \quad \frac{11}{3} \quad \frac{110}{2} \quad \frac{00}{0}$$

$$18 \qquad 10$$