(4 points) Assume f(x) is a continuously differentiable function, d^k is a descent direction and $\{f(x^k + \alpha d^k), \alpha > 0\}$ is bounded below. Give an example which shows that if instead we have some $0 < c_2 < c_1 < 1$ in the Wolfe condition, there may not exist any step size α which satisfies this modified Wolfe condition. (You can choose some particular c_1, c_2 in your counter example)

Solution:

Let $f(x) = x^2$, and f'(x) = 2x. We can easily see that it is continuously differentiable on R. Then, we let $x^k = 1$, $c_1 = 0.9$, $c_2 = 0.1$, $d^k = -1$. Note that since

$$\nabla f(x^k)^T d^k = f'(1) * (-1) = -2 < 0$$

 $d^k = -1$ is legal by the definition of descent directions. Also, $f(x^k + \alpha d^k) = f(1-\alpha) = (1-\alpha)^2$ is bounded below by 0 for $\alpha > 0$ by the property of quadratic functions.

We see if there is any α value that satisfies the modified Wolfe condition. From the first condition,

$$f(x^{k} + \alpha d^{k}) \leq f(x^{k}) + c_{1}\alpha \nabla f(x^{k})^{T} d^{k}$$

$$f(1 - \alpha) \leq f(1) - 0.9\alpha f'(1)$$

$$(1 - \alpha)^{2} \leq 1 - 0.9\alpha * 2 = 1 - 1.8\alpha$$

$$1 - 2\alpha + \alpha^{2} \leq 1 - 1.8\alpha$$

$$\alpha^{2} - 0.2\alpha \leq 0$$

$$\alpha(\alpha - 0.2) \leq 0$$

$$0 < \alpha < 0.2$$

From the second condition,

$$\nabla f(x^{k} + \alpha d^{k})^{T} d^{k} \ge c_{2} \nabla f(x^{k})^{T} d^{k}$$

$$-f'(1 - \alpha) \ge -0.1 f'(1)$$

$$f'(1 - \alpha) \le 0.1 f'(1)$$

$$2 - 2\alpha \le 0.1 * 2 = 0.2$$

$$\alpha \ge 0.9$$

However, there is no α that satisfies both $0 \le \alpha \le 0.2$ and $\alpha \ge 0.9$.

(6 points) Let $f(x) = \frac{1}{2}x^TAx + b^Tx$, d^k is a descent direction, x^k is the current iteration point. Compute the exact line search step size

$$\alpha_k = \operatorname*{arg\,min}_{\alpha > 0} f(x^k + \alpha d^k)$$

Then using your formula to find the exact step size for steepest descent direction. (You can assume A to be positive definite)

Solution:

According to Lemma 6.4,

$$\frac{\partial x^T A x}{\partial x} = 2Ax$$

Then, we also have

$$\frac{\partial x^T b}{\partial x} = b$$

Hence,

$$\nabla f(x) = \frac{1}{2}2Ax + b = Ax + b$$

We let

$$\Phi(\alpha) = f(x^k + \alpha d^k)$$

We have

$$\Phi'(\alpha) = \nabla f(x^k + \alpha d^k)^T d^k = [A(x^k + \alpha d^k) + b]^T d^k = (Ax^k + \alpha A d^k + b)^T d^k$$
$$= d^{kT} A^T d^k \alpha + (Ax^k + b)^T d^k = d^{kT} A d^k \alpha + \Phi'(0)$$

Note that since A is PD and $d^k \neq \mathbf{0}$, so $d^{k^T}Ad^k > 0$, and $\Phi'(0)$ does not depend on α so it's a constant term. That said, $\Phi'(\alpha)$ is a linear function with positive slope, like:

We try to get the stationary point of α : α_0 :

$$\Phi'(\alpha_0) = d^{k^T} A d^k \alpha_0 + (A x^k + b)^T d^k = 0$$

$$d^{k^T} A d^k \alpha_0 = -(Ax^k + b)^T d^k$$
$$\alpha_0 = -\frac{(Ax^k + b)^T d^k}{d^{k^T} A d^k}$$

Since $\alpha_0 = -\frac{(Ax^k + b)^T d^k}{d^{kT} A d^k} = -\frac{\nabla f(x^k) d^k}{d^{kT} A d^k}$, and $\nabla f(x^k) d^k < 0$ since d^k is a descent direction, and $d^{kT} A d^k > 0$ since A is PD and $d^k \neq \mathbf{0}$, we know $\alpha_0 = -\frac{\nabla f(x^k) d^k}{d^{kT} A d^k} > 0$.

Then, we get the hessian matrix (second derivative) of $\Phi(\alpha_0)$:

$$\Phi^{\prime\prime}(\alpha) = d^{k^T} A d^k$$

$$\Phi''(\alpha_0) = d^{k^T} A d^k$$

For any $x \in R$ that $x \neq 0$, $x\Phi''(\alpha_0)x = d^{k^T}Ad^kx^2$. Since A is PD, $d^{k^T}Ad^k > 0$, and $x^2 > 0$, $x\Phi''(\alpha_0)x = d^{k^T}Ad^kx^2 > 0$, we know $\Phi''(\alpha_0)$ is PD. Also, since α_0 is a stationary point, α_0 is a strict local minimizer for $\Phi(\alpha) = f(x^k + \alpha d^k)$ by

Theorem 5.4. Also, since $\Phi''(\alpha) = d^{k^T} A d^k$ is PD for any α , $\Phi(\alpha)$ is strict convex by Proposition 4.9. And we can see the domain of $\Phi(\alpha)$ is convex, since for any $\alpha_1, \alpha_2 > 0, \alpha_1 + \alpha_2 > 0$ as well. Therefore, α_0 is a global minimizer for $\Phi(\alpha) = f(x^k + \alpha d^k)$ by Theorem 3.19. Hence, $\alpha_0 = a_k = \underset{\alpha>0}{\operatorname{argmax}} f(x^k + \alpha d^k) =$

$$-\frac{(Ax^k+b)^T d^k}{a^{k^T} A d^k}$$
 since we showed that $\alpha_0 > 0$.

Then, we calculate the exact step size for the steepest descent direction:

$$d^k = -\nabla f(x^k) = -Ax^k - b$$

$$a_k = \frac{(Ax^k + b)^T d^k}{d^{k}^T A d^k} = \frac{(Ax^k + b)^T (Ax^k + b)}{(Ax^k + b)^T A (Ax^k + b)} = \frac{\|Ax^k + b\|_2}{(Ax^k + b)^T A (Ax^k + b)}$$

(4 points)

- 1. Let f(x) be a differentiable function and Let $\{d^k\}$ be a sequence of descent directions for iteration points x^k . If x^* is any accumulation point of the sequence $\{x^k\}$, prove that $f(x^*)$ is a lower bound for the sequence $\{f(x^k)\}$.
- 2. Prove Corollary 8.16 in the notes. (You don't have to prove it from the beginning, you can use any results from the notes)

1. Proof:

Suppose there exists an accumulation point x^* of $\{x^k\}$, such that $f(x^*)$ is not a lower bound of $\{f(x^k)\}$ for contradiction. Then, by the definition of accumulation points, we know there is some subsequence $J \subseteq N$ such that

 $\lim_{j\to\infty} x^j = x^*, j \in J$. Note that since d^k is always a descent direction for x^k , we

can always find a small enough α_k such that $f(x^k)$ is a decreasing sequence by Lemma 8.3. Thus, we simply assume $f(x^k)$ is a decreasing sequence, which means any subsequence of $f(x^k)$ is always decreasing as well by the definition of subsequences. That said, $\forall j \in J, \epsilon > 0$ s. $t.j + \epsilon \in J, f(j + \epsilon) \leq f(j)$. Hence, for any $j \in J$,

$$f(x^j) \ge f\left(\lim_{j\to\infty} x^j\right) = f(x^*)$$

Note that by assumption, $f(x^*)$ is not a lower bound of $\{f(x^k)\}\$, so there exists

$$n \in \mathbb{N}$$
 s.t. $f(x^n) < f(x^*) \le f(x^j), \forall j \in J$. Since $\{x^k\}$ is decreasing, $n > j$

must hold. Also, since J is a subsequence of N, and J has infinitely many elements, we can always find $t \in J$ s. t. t > n, which gives $f(x^t) \le f(x^n) < f(x^*)$ since

f is decreasing, which contradicts the fact that for any $j \in I$, $f(x^j) \ge$

$$f\left(\lim_{j\to\infty}x^j\right)=f(x^*)$$
. Therefore, $f(x^*)$ is a lower bound of the sequence $\{f(x^k)\}$.

2. Proof:

Since d^k is a descent direction, we know $\{f(x^k)\}$ is decreasing. Then, if x^* is an accumulation point of the sequence $\{x^k\}$, we know $f(x^*)$ is a lower bound of $\{f(x^k)\}$. Then, since $\{f(x^k)\}$ is bounded below, $\|d^k\|_2 = 1$, f is differentiable and the gradient $\nabla f(x)$ is Lipschitz continuous with constant L, we know $\lim_{k \to \infty} \nabla f(x^k)^T d^k = 0$ by Theorem 8.13. That is, since $\nabla f(x^k)^T d^k < 0$, we have

$$\lim_{k \to \infty} \nabla f(x^k)^T d^k = -\lim_{k \to \infty} |\nabla f(x^k)^T d^k| = -\lim_{k \to \infty} ||\nabla f(x^k)||_2 ||d^k||_2 \cos(\theta_k) = 0$$

$$= -\lim_{k \to \infty} ||\nabla f(x^k)||_2 ||d^k||_2 \lim_{k \to \infty} \cos(\theta_k)$$

Since $\lim_{k\to\infty} \theta_k \le \frac{\pi}{2} - \epsilon, \epsilon > 0$, and $\cos(\theta)$ is decreasing on $[0,\pi]$, we have

$$\lim_{k \to \infty} \cos(\theta_k) \ge \cos\left(\frac{\pi}{2} - \epsilon\right)$$

Hence, we have

$$\begin{split} \lim_{k \to \infty} \nabla f(x^k)^T d^k &= 0 = -\lim_{k \to \infty} \|\nabla f(x^k)\|_2 \|d^k\|_2 \lim_{k \to \infty} \cos(\theta_k) \\ &\leq -\cos\left(\frac{\pi}{2} - \epsilon\right) \lim_{k \to \infty} \|\nabla f(x^k)\|_2 \|d^k\|_2 \\ &= -\cos\left(\frac{\pi}{2} - \epsilon\right) \lim_{k \to \infty} \|\nabla f(x^k)\|_2 \\ &\cos\left(\frac{\pi}{2} - \epsilon\right) \lim_{k \to \infty} \|\nabla f(x^k)\|_2 \leq 0 \end{split}$$

Since $\cos\left(\frac{\pi}{2} - \epsilon\right) > 0$,

$$\lim_{k \to \infty} \|\nabla f(x^k)\|_2 \le 0$$

By the property of norms, $\|\nabla f(x^k)\|_2 \ge 0$, so $\|\nabla f(x^*)\|_2 = \lim_{k \to \infty} \|\nabla f(x^k)\|_2 = 0$.

Therefore, $\nabla f(x^*) = 0$ by property of norms.

(6 points) Let function $f: \mathbb{R}^n \to \mathbb{R}$ be a C^2 -class function, which also has a Lipschitz gradient, that is,

$$||\nabla f(x) - \nabla f(y)||_2 \le L||x - y||_2$$

for any $x, y \in \mathbb{R}$ where L is a positive number. Let d^k be a descent direction at x^k . Show that the Armijo backtracking stopping condition holds for

$$0 < \alpha \le \frac{2(c_1 - 1)\nabla f(x^k)^T d^k}{L||d^k||_2^2}$$

Use this to give an upper bound on the number of backtracking iterations. (Hint: you may use any results from the previous assignment)

Proof:

By Taylor Theorem,

$$f(x^{k} + \alpha d^{k}) = f(x^{k}) + \alpha \nabla f(x^{k})^{T} d^{k} + \frac{1}{2} \alpha^{2} d^{k} \nabla^{2} f(x^{k} + \theta \alpha d^{k}) d^{k}, \exists 0 < \theta < 1$$
$$f(x^{k} + \alpha d^{k}) - f(x^{k}) = \alpha \nabla f(x^{k})^{T} d^{k} + \frac{1}{2} \alpha^{2} d^{k} \nabla^{2} f(x^{k} + \theta \alpha d^{k}) d^{k}$$

If
$$d^{k^T} \nabla^2 f(x^k + \theta \alpha d^k) d^k \ge 0$$
, then

$$f(x^k + \alpha d^k) - f(x^k) = \alpha \nabla f(x^k)^T d^k + \frac{1}{2} \alpha^2 \left| d^{kT} \nabla^2 f(x^k + \theta \alpha d^k) d^k \right|$$

By Schwartz Inequality,

$$f(x^{k} + \alpha d^{k}) - f(x^{k}) \leq \alpha \nabla f(x^{k})^{T} d^{k} + \frac{1}{2} \alpha^{2} \left\| d^{kT} \right\|_{2} \left\| \nabla^{2} f(x^{k} + \theta \alpha d^{k}) d^{k} \right\|_{2}$$
$$= \alpha \nabla f(x^{k})^{T} d^{k} + \frac{1}{2} \alpha^{2} \left\| d^{kT} \right\|_{2} \frac{\left\| \nabla^{2} f(x^{k} + \theta \alpha d^{k}) d^{k} \right\|_{2}}{\left\| d^{kT} \right\|_{2}} \left\| d^{kT} \right\|_{2}$$

Since
$$\|\nabla^2 f(x^k + \theta \alpha d^k)\|_2 = \max_{y \neq \mathbf{0}} \frac{\|\nabla^2 f(x^k + \theta \alpha d^k)y\|_2}{\|y\|_2} \ge \frac{\|\nabla^2 f(x^k + \theta \alpha d^k)d^k\|_2}{\|d^{k^T}\|_2}$$
, we have

$$f(x^{k} + \alpha d^{k}) - f(x^{k})$$

$$\leq \alpha \nabla f(x^{k})^{T} d^{k} + \frac{1}{2} \alpha^{2} \left\| d^{k^{T}} \right\|_{2} \frac{\left\| \nabla^{2} f(x^{k} + \theta \alpha d^{k}) d^{k} \right\|_{2}}{\left\| d^{k^{T}} \right\|_{2}} \left\| d^{k^{T}} \right\|_{2}$$

$$\leq \alpha \nabla f(x^{k})^{T} d^{k} + \frac{1}{2} \alpha^{2} \left\| d^{k^{T}} \right\|_{2} \left\| \nabla^{2} f(x^{k} + \theta \alpha d^{k}) \right\|_{2} \left\| d^{k^{T}} \right\|_{2}$$

By A2q5, we have shown that $\|\nabla^2 f(y)\|_2 \le L$ if f has Lipschitz gradient with constant L, we have

$$\begin{split} f(x^k + \alpha d^k) - f(x^k) &\leq \alpha \nabla f(x^k)^T d^k + \frac{1}{2} \alpha^2 \left\| d^{k^T} \right\|_2 \| \nabla^2 f(x^k + \theta \alpha d^k) \|_2 \left\| d^{k^T} \right\|_2 \\ &\leq \alpha \nabla f(x^k)^T d^k + \frac{1}{2} \alpha^2 \left\| d^{k^T} \right\|_2^2 L \end{split}$$

Therefore,

$$f(x^{k} + \alpha d^{k}) - f(x^{k}) - c_{1}\alpha \nabla f(x^{k})^{T} d^{k}$$

$$\leq \alpha \nabla f(x^{k})^{T} d^{k} + \frac{1}{2}\alpha^{2} \left\| d^{kT} \right\|_{2}^{2} L - c_{1}\alpha \nabla f(x^{k})^{T} d^{k}$$

$$= (1 - c_{1})\alpha \nabla f(x^{k})^{T} d^{k} + \frac{1}{2}\alpha^{2} \left\| d^{kT} \right\|_{2}^{2} L$$

$$= \alpha \left[(1 - c_{1}) \nabla f(x^{k})^{T} d^{k} + \frac{1}{2}\alpha \left\| d^{kT} \right\|_{2}^{2} L \right]$$

Note that since $0 < \alpha \le \frac{c(c_1-1)\nabla f(x^k)^T d^k}{L\|d^k\|_2^2}$, we have

$$(1 - c_1)\nabla f(x^k)^T d^k + \frac{1}{2}\alpha \left\| d^{k^T} \right\|_2^2 L$$

$$\leq (1 - c_1)\nabla f(x^k)^T d^k + \frac{1}{2}\frac{2(c_1 - 1)\nabla f(x^k)^T d^k}{L\|d^k\|_2^2} \left\| d^{k^T} \right\|_2^2 L$$

$$= (1 - c_1)\nabla f(x^k)^T d^k + (c_1 - 1)\nabla f(x^k)^T d^k$$

$$= (1 - c_1)\nabla f(x^k)^T d^k - (1 - c_1)\nabla f(x^k)^T d^k = 0$$

Since $\alpha > 0$, $(1 - c_1)\nabla f(x^k)^T d^k + \frac{1}{2}\alpha \|d^{k^T}\|_2^2 L \le 0$, we have

$$f(x^{k} + \alpha d^{k}) - f(x^{k}) - c_{1}\alpha \nabla f(x^{k})^{T} d^{k} \le \alpha \left[(1 - c_{1}) \nabla f(x^{k})^{T} d^{k} + \frac{1}{2} \alpha \left\| d^{kT} \right\|_{2}^{2} L \right]$$

$$\le 0$$

$$f(x^k + \alpha d^k) - f(x^k) \le c_1 \alpha \nabla f(x^k)^T d^k$$

That said, the Armijo backtracking stopping condition is sufficient.

If
$$d^{k^T} \nabla^2 f(x^k + \theta \alpha d^k) d^k < 0$$
, then

$$\begin{split} f(x^k + \alpha d^k) - f(x^k) &= \alpha \nabla f(x^k)^T d^k - \frac{1}{2}\alpha^2 \left| d^{k^T} \nabla^2 f(x^k + \theta \alpha d^k) d^k \right| \\ f(x^k + \alpha d^k) - f(x^k) - c_1 \alpha \nabla f(x^k)^T d^k \\ &= \alpha \nabla f(x^k)^T d^k - \frac{1}{2}\alpha^2 \left| d^{k^T} \nabla^2 f(x^k + \theta \alpha d^k) d^k \right| - c_1 \alpha \nabla f(x^k)^T d^k \\ &= (1 - c_1)\alpha \nabla f(x^k)^T d^k - \frac{1}{2}\alpha^2 \left| d^{k^T} \nabla^2 f(x^k + \theta \alpha d^k) d^k \right| \\ \text{Since } 0 < c_1 < 1, 0 < 1 - c_1 < 0, \ \nabla f(x^k)^T d^k < 0, \ \alpha > 0, \text{ and} \\ -\frac{1}{2}\alpha^2 \left| d^{k^T} \nabla^2 f(x^k + \theta \alpha d^k) d^k \right| < 0, \text{ we know} \\ f(x^k + \alpha d^k) - f(x^k) - c_1 \alpha \nabla f(x^k)^T d^k \\ &= (1 - c_1)\alpha \nabla f(x^k)^T d^k - \frac{1}{2}\alpha^2 \left| d^{k^T} \nabla^2 f(x^k + \theta \alpha d^k) d^k \right| < 0 \end{split}$$

$$f(x^k + \alpha d^k) - f(x^k) < c_1 \alpha \nabla f(x^k)^T d^k$$

That said, the Armijo backtracking stopping condition is sufficient.

Let $\gamma \in (0,1)$ be the parameter in the Armijo backtracking step. Then, we let $\alpha_0 > 0$ be the initial guess of α , and let n be the number of steps we need in the Armijo backtracking step. Then, we have

$$\alpha_0 \gamma^n \leq \frac{2(c_1-1)\nabla f(x^k)^T d^k}{L\|d^k\|_2}$$

Since $\alpha_0 > 0$,

$$\gamma^n \le \frac{2(c_1 - 1)\nabla f(x^k)^T d^k}{L\|d^k\|_2 \alpha_0}$$

$$n \le \log_{\gamma} \frac{2(c_1 - 1)\nabla f(x^k)^T d^k}{L \|d^k\|_2 \alpha_0}$$

Therefore, the upper bound of the number of steps is $\log_{\gamma} \frac{2(c_1-1)\nabla f(x^k)^T d^k}{L\|d^k\|_2 \alpha_0}$.