計算機実習 問題 12.1 離散的な時間の 1 次元ランダムウォーク

早稲田大学先進理工学部物理学科 B4 藤本將太郎

2014/05/28

1 シミュレーションの目的

本シミュレーションでは、ランダムウォークの最も簡単な場合として、並進対称な 1 次元の格子上を一定の時間間隔で遷移するモデルを考える。ランダムウォークの分散について知られていることとして、十分大きな N に対して $<\Delta x^2(N)>$ はべき乗則

$$<\Delta x^2(N)> \sim N^{2\nu} \tag{1}$$

を満たす。ここで記号 ~ は"漸近的に等しい"ことを意味し、式 (1) は漸近的なスケーリング則の 1 例となっている。今簡単な 1 次元ランダムウォークのモデル (右と左に進む確率が等しいとき) では、すべての N で式 (1) が成り立ち、 $\nu=1/2$ となる。

2 作成したプログラム

本シミュレーションで作成したプログラムを以下に示す。

2.1 1次元ランダムウォークのシミュレーション (12-1_random_walk_d1.py)

このプログラムでは、右に遷移する確率を prob として指定し、numpy モジュールの乱数生成メソッドを用いて、ランダムな [0,1) の数を配列 p に格納している。各ステップごとに prob の値と乱数の値とを比較して、右か左に 1 だけ変化させた値を次の時間での変位として記録する (今は l=1)。関数 $calc_ave$ では、< x(N)>、 $< x^2(N)>$ の値を計算する。関数 show を用いると、上の計算結果をもちいて、N に対する < x(N)>、 $< x^2(N)>$ 、 $< \Delta x^2(N)>$ のグラフを表示することができる。関数 $caluculate_error$ は問題 p で使用し、引数に与えた整数値までのランダムウォークの計算を行って、試行回数を増やしていったときに p の精度が p 1 %未満になっているかどうかを判定する。

- 1 #! /usr/bin/env python
- 2 # -*- coding:utf-8 -*-
- 3 #

5

- 4 # written by Shotaro Fujimoto, May 2014.
- 6 import numpy as np
- 7 import matplotlib.pyplot as plt

```
8
 9
     class RandomWalk1():
10
11
         def __init__(self, prob=0.7, l=1, nwalkers=1000, x0=0):
12
              """ Initial function in RandomWalk1.
13
14
                       : probability that a particle moves right
15
             prob
                       : step length
16
             nwalkers : number of trials
17
18
                       : initial position
              11 11 11
19
20
             self.prob = prob
             self.l = 1
21
22
              self.nwalkers = nwalkers
              self.x0 = x0
23
24
         def random_walk_d1(self, N):
25
26
              """ Caluculate the displacements of each walkers.
27
28
             N : A list of walk steps
              11 11 11
29
             x = np.zeros([self.nwalkers, max(N)])
30
31
             # generate random number in [0,1)
             p = np.random.random([self.nwalkers, max(N) - 1])
32
33
             prob = self.prob
34
             1 = self.1
             x0 = self.x0
35
36
             for n in range(self.nwalkers):
37
                  x[n][0] = x0
38
                  for i in range(1, max(N)):
39
                      d = +1 \text{ if } p[n][i - 1] < prob else -1
40
                      x[n][i] = x[n][i - 1] + d
41
42
              self.x = x
              self.N = N
43
44
         def calc_ave(self):
45
              """ Caluculate the average of displacements after \max(\mathbb{N}) steps.
46
47
```

```
48
             You can call the results by "self.N", "self.x_ave", and "self.x_2_ave"
             11 11 11
49
             x = self.x
50
             N = np.array(self.N) - 1
51
             x_ave = np.average(x, axis=0)[N]
52
             x_2= np.average(x*x, axis=0)[N]
53
             self.x_ave = x_ave
54
             self.x_2_ave = x_2_ave
55
56
         def show(self):
57
             """ Show the graph.
58
             11 11 11
59
             fig = plt.figure('random walk', figsize=(8, 8))
60
61
62
             ax1 = fig.add_subplot(311)
             ax1.plot([n for n in self.N], self.x_ave)
63
             ax1.set_ylabel(r'$<x(N)>$', fontsize=16)
64
65
             ax2 = fig.add_subplot(312)
66
67
             ax2.plot([n for n in self.N], self.x_2_ave)
             ax2.set_ylabel(r'$<x^{2}(N)>$', fontsize=16)
68
69
             ax3 = fig.add_subplot(313)
70
             ax3.set_ylabel(r'$<\Delta x^{2}(N)>$', fontsize=16)
71
             ax3.plot([n for n in self.N], self.x_2_ave - self.x_ave ** 2)
72
             ax3.set_xlabel(r'$N$')
73
74
75
             plt.show()
76
         def caluculate_error(self, N):
77
             """ Caluculate the error of \langle \mathbb{Z}(\mathbb{N}) \rangle and preview.
78
79
             N: (int)
80
81
             resN_0 = 4. * self.prob * (1. - self.prob) * (self.l ** 2) * N
82
             _{N} = range(1, N + 1)
83
84
             M = 2
85
86
             count = 0
87
             while count < 15:
```

```
resN = np.zeros(M, 'f')
88
                  for m in range(M):
89
                      self.random_walk_d1(_N)
90
                      self.calc_ave()
91
                      resN[m] = self.x_2_ave[N - 1] - self.x_ave[N - 1] ** 2
92
                  std_resN = np.std(resN)
93
94
                  if M > (std_resN * 100. / resN_0) ** 2:
95
                      print str(M) + " & $>$ & " + str((std_resN / (0.01 * resN_0)) ** 2) \
96
                          + " & " + str(count + 1) + " \\\\"
97
                      count += 1
98
99
                  else:
                      print str(M) + " & $<$ & " + str((std_resN / (0.01 * resN_0)) ** 2) + " & \\\"
100
101
102
              return None
103
104
     if __name__ == '__main__':
105
         rw1 = RandomWalk1()
106
           # --- 問題 a ---
107
          N = [4, 8, 16, 32] # caluculate when N = *
108
109
          rw1.random_walk_d1(N)
110
          rw1.calc_ave()
          rw1.show()
111
112
         # --- 問題 b ---
113
         rw1.caluculate_error(32) # 8 or 32
114
```

3 実習課題

a. 右に動く確率を p=0.7 とする。< x(N)> と $< x^2(N)>$ を N=4,8,16,32 について計算せよ。この場合の < x(N)> はどのように説明できるか。 $< \Delta x^2(N)>$ がどう N に依存するか定性的に答えよ。 $< x^2(N)>$ は単純な N 依存性を示すか。

< x(N) > と $< x^2(N) >$ 、 $< \Delta x^2(N) >$ について、nwalkers = 1000 としてそれぞれの N について計算を行い、この結果を横軸を N としてグラフにしたものを図 1 に示す。このグラフから読み取れることとして、まず、< x(N) > は N に対して線形に増加しており、これは以下のような簡単な計算の結果と一致している。また、傾きの大きさも 2p-1=0.4 となっていることが分かる。

$$\langle x(N) \rangle = \sum_{i=1}^{N} \{p \times 1 + (1-p) \times (-1)\}$$
 (2)

$$= \sum_{i=1}^{N} (2p-1) = (2p-1)N \tag{3}$$

次に、 $<\Delta x^2(N)>$ については、N の 1 乗に比例していることが見て取れる (すなわち $\nu=1/2$ である)。これも、一般の場合に $<\Delta x^2(N)>=4pql^2N$ と表せることと合致している。

図 1 N に対する < x(N) >と $< x^2(N) >$ 、 $< \Delta x^2(N) >$ のグラフ

b. 第 11.4 節で述べた誤差解析の方法を用いて、N=8 と N=32 の場合の $<\Delta x^2(N)>$ を精度 1 %で得るために必要な試行の回数を求めよ。

(a) で述べたように、解析的に $<\Delta x^2(N)>$ の値は求められるので、その値を真の値 $<\Delta x^2(8)>_0=4\times0.7\times0.3\times8=6.72$ 、 $<\Delta x^2(32)>_0=4\times0.7\times0.3\times32=26.88$ として、それとの相対誤差が 1 %となるような試行回数 M を求めればよい。すなわち標準誤差を σ_m として

$$\frac{\sigma_m}{\langle \Delta x^2(N) \rangle_0} \times 100 \le 1 \tag{4}$$

$$\sigma_m \le 0.01 < \Delta x^2(N) > \tag{5}$$

となる。ここで、付録に示すように、n回の試行を行う1回の測定で得られた分散を σ とすると

$$\sigma_m = \frac{\sigma}{\sqrt{n}} \tag{6}$$

が成り立つので、これを代入すると $(n \in M$ と読み替えて)

$$M \ge \left(\frac{\sigma \times 100}{\langle \Delta x^2(N) \rangle_0}\right)^2 \tag{7}$$

が得られる。 σ が M の関数として決まっている場合は、M の値を解析的に求めることができるが、今の場合 σ を M の関数として求める方法はわからない。したがって、M の値を 2 から順に大きくしていき、M の値と式 (7) の右辺の計算値とを比較していくことにする。この結果をまとめたものを表 1,2 に示す。これらの試行から、 $<\Delta x^2(N)>$ を精度 1 %で得るために必要な試行の回数 M は、nwalkers =1000 であるときには、N=8 のとき $M\geq 19$ 、N=32 のとき $M\geq 26$ ほどであれば良いことが分かる。それより小さい M では、精度 1 %で求められることもあるが、下限値として適切ではない。

				M		$\left(\frac{\sigma \times 100}{\langle \Delta x^2(N) \rangle_0}\right)^2$	count
Μ		$\left(\frac{\sigma \times 100}{<\Delta x^2(N)>_0}\right)^2$	count	2	>	0.32149282727	1
		$(<\Delta x^2(N)>_0)$ 11.7080095291		3	>	1.02405794329	2
3	-	10.5683527683		4	<	30.0521604962	
3 4	<	5.6449783206		5	<	7.13793428824	
5	<			6	<	17.593509665	
	<	13.1767199401		7	<	17.952294418	
6	<	9.31017539915		8	>	5.56611217356	3
7	<	11.298006385		9	<	13.868141118	
8 9	<	11.6122000702		10	<	17.3761782997	
	<	11.8588271339		11	>	10.5719588472	4
10	<	13.2805462695	1	12	<	17.9530873904	
11	>	5.40663459242	1	13	<	17.977542833	
12	>	11.6587313198	2	14	<	21.0129775506	
13	>	5.20198341922	3	15	<	16.105658749	
14	<	14.0913796119	4	16	<	17.2696667207	
15	>	13.2349559502	4	17	<	29.1796778766	
16	>	9.20886425624	5	18	>	17.1884240052	5
17	>	10.1345045153	6	19	>	14.4165685045	6
18	<	18.5593052103	H	20	>	16.5500505218	7
19	>	11.0536600843	7	21	>	9.49101301793	8
20	>	11.5386838619	8	22	>	10.7188319627	9
21	>	13.1460283992	9	23	<	29.1758785194	
22	>	8.39227718357	10	24	>	13.1087274658	10
23	>	15.8071381158	11	25	<	26.9290290068	
24	>	8.9317879812	12	26	>	20.6962324661	11
25	>	17.2226656569	13	27	>	21.9648359983	12
26	>	12.3538617431	14	28	>	20.7435187729	13
	>	11.7846823015		29	>	18.3682158692	14
$N=8$ のとき、 M と式 (7) の右辺との比較 ${ m lkers}=1000)$				30	>	24.8443920402	15

表 1 (nwalkers = 1000)

表 2 N=32 のとき、M と式 (7) の右辺との比較 (nwalkers = 1000)

4 まとめ

このシミュレーションでは、離散時間の1次元ランダムウォークの簡単な例を実施することができた。ま た、測定の精度を上げるために試行回数を増やすことなど、定量的な誤差について学ぶ機会となった。

5 付録: 平均値の標準偏差

 σ を測定の標準偏差とすると、n 回の試行からなる単独の測定の誤差が σ/\sqrt{n} に等しくなることを、解析的 に導く。注目する測定量を x で表し、それぞれが n 回の試行からなる m 組の、合計して mn 回の試行からなる測定の組を考える。特定の測定を表すために添字 α を使い、ある測定の i 回目の試行を表すために添字 i を用いる。測定 α の i 回目の試行の結果を $x_{\alpha,i}$ で表すと、測定の値は

$$M_{\alpha} = \frac{1}{n} \sum_{\alpha=1}^{n} x_{\alpha,i} \tag{8}$$

で与えられる。さらに mn 回のすべての試行についての平均 \bar{M} は

$$\bar{M} = \frac{1}{m} \sum_{\alpha=1}^{m} M_{\alpha} = \frac{1}{mn} \sum_{\alpha=1}^{m} \sum_{i=1}^{n} x_{\alpha,i}$$

$$\tag{9}$$

となる。 α 番目の測定値とすべての測定の平均値との差は

$$e_{\alpha} = M_{\alpha} - \bar{M} \tag{10}$$

である。平均値の分散は

$$\sigma_m^2 = \frac{1}{m} \sum_{\alpha=1}^m e_\alpha^2 \tag{11}$$

と書くことができる。

 σ_m と各測定の試行の分散との関係を調べることにしよう。個々の試行結果 $x_{lpha,i}$ と平均値との差 $d_{lpha,i}$ は

$$d_{\alpha,i} = x_{\alpha,i} - \bar{M} \tag{12}$$

で与えられる。したがって、nm 回の試行についての分散 σ^2 は

$$\sigma^2 = \frac{1}{mn} \sum_{\alpha=1}^{m} \sum_{i=1}^{n} d_{\alpha,i}^2$$
 (13)

である。また、

$$e_{\alpha} = M_{\alpha} - \bar{M} = \frac{1}{n} \sum_{i=1}^{n} (x_{\alpha,i} - \bar{M})$$
 (14)

$$=\frac{1}{n}\sum_{i=1}^{n}d_{\alpha,i}\tag{15}$$

である。したがって、式 (15) を (11) に代入すると、

$$\sigma_m^2 = \frac{1}{m} \sum_{\alpha=1}^m \left(\frac{1}{n} \sum_{i=1}^n d_{\alpha,i} \right) \left(\frac{1}{n} \sum_{j=1}^n d_{\alpha,j} \right)$$

$$\tag{16}$$

が得られる。式 (16) の組 α についての試行 i,j に関する和には 2 種類の項、つまり、i=j の項と $i\neq j$ の項 が含まれている。 $d_{\alpha,i}$ と $d_{\alpha,j}$ は互いに独立で、平均値としては正と負の値を同程度に取ることが予想されるので、測定回数の大きい極限では、式 (16) で i=j の項だけが和に寄与すると考えてよいだろう。したがって、

$$\sigma_m^2 = \frac{1}{mn^2} \sum_{\alpha=1}^m \sum_{i=1}^n d_{\alpha,i}$$
 (17)

と書く。式 (17) と (13) を組み合わせると、求めていた式

$$\sigma_m^2 = \frac{\sigma^2}{n} \tag{18}$$

が導かれる。

6 追記: $\langle x^2(N) \rangle$ の解析的な値 (2014/06/09)

問題 a では N に対する $< x^2(N) >$ について図 1 を用いて定性的に述べたが、これを解析的に求めるとするとどうなるか。 確率 p で右に移動し、確率 q で左に移動する場合を考えると、このとき $x^2(N)$ は 2 つの項の和で表すことができて、 $x_0=0$ ならば

$$x^{2}(N) = \sum_{i=1}^{N} s_{i}^{2} + \sum_{i \neq j=1}^{N} s_{i} s_{j}$$
(19)

である。ここで $s_i=\pm l$ とする。上の式を利用して $x^2(N)$ の期待値を計算すると、

$$\langle x^{2}(N) \rangle = \sum_{i=1}^{N} \left[p(+l)^{2} + q(-l)^{2} \right] + \sum_{i \neq j=1}^{N} \left[p(+l) + q(-l) \right]^{2}$$
 (20)

である。右辺第 2 項の和は、(i,j) の組み合わせ (区別できる) から i=j の場合の N 通りを除いた数だけ の場合があるので

$$\langle x^2(N) \rangle = N(p+q)l^2 + N(N-1)(p-q)^2l^2$$
 (21)

となる。したがって

$$\langle x^{2}(N) \rangle = Nl^{2} + N(N-1)(p-q)^{2}l^{2}$$

$$= Nl^{2} \left[(p+q)^{2} - (p-q)^{2} \right] + N^{2}(p-q)^{2}l^{2}$$

$$= 4pql^{2}N + N^{2}(p-q)^{2}l^{2}$$

である。また、これより $< \Delta x^2(N) >$ は

$$<\Delta x^2(N)> = < x^2(N)> -(< x(N)>)^2 = 4pql^2N + N^2(p-q)^2l^2 - N^2(p-q)^2l^2$$

= $4pql^2N$

と求められる。以上から $< x^2(N) >$ は N の 2 乗に比例しており、実際にシミュレーションで行った $\alpha=0.7$ 、N=30 のときの値を計算してみると、 $< x^2(30) >= 4 \times 0.7 \times 0.3 \times 30 + 30^2 (0.7-0.3)^2 = 169.2$ であり、図 1 で見た値と一致していることが確かめられる。

7 参考文献

- ハーベイ・ゴールド, ジャン・トボチニク, 石川正勝・宮島佐介訳『計算物理学入門』, ピアソン・エデュケーション、2000.
- 鈴木武・山田作太郎著『数理統計学―基礎から学ぶデータ解析―』, 内田老鶴圃, 2008.