HyperDrive: Autonomous Self-Driving Car in an Urban Setting using Deep Reinforcement Learning

Sana Haider p180011@nu.edu.pk Syed Asad Zaman p180034@nu.edu.pk

Supervisor Mr. Waqas Ali November 10, 2021

Literarture Review

Literarture Review

Year	Title	Achievements	Limitations
2015	Human-level con-	Developed a deep	DQN is limited to 2D
	trol through deep	Q-network,that can	Games only with lim-
	reinforcement	learn successful poli-	ited action & Search
	learning ¹ [1]	cies directly from	Space
		high-dimensional	
		sensory inputs using	
		end-to-end reinforce-	
		ment learning	
2016	Mastering the	Developed a GO Gam-	The agent was tak-
	game of go	ing agent using Deep	ing too much time to
	without human	Q-Network (DQN)	make decisions
	knowledge ² [2]	and Monte-Carlo tree	
		search	

_

¹Mnih, Volodymyr and Kavukcuoglu, Koray and Silver, David and Rusu, Andrei A and Veness, Joel and Bellemare, and others, Human-level control through deep reinforcement learning, Nature Publishing Group, 2015

²Silver, David and Schrittwieser, Julian and Simonyan, Karen and Antonoglou, Ioannis and Huang, Aja and Guez, Arthur and Hubert, , Mastering the game of go without human knowledge, Nature Publishing Group, 2017

Literature Review

Year	Title	Achievements	Limitations
2017	CARLA: An	An Open Source Ur-	_
	open urban driv-	ban Driving Simula-	
	ing simulator ³ [3]	tor using Unreal En-	
		gine 4	
2018	Self-driving cars	An autonomous	Environment was
	using CNN and	Self-Driving Car	static & limited only
	Q-learning ⁴ [4]	from Scratch which	to traffic sign and
		was able to self-	self made path
		drive in constraint	
		environment	

³Dosovitskiy, Alexey and Ros, German and Codevilla, Felipe and Lopez, Antonio and Koltun, Vladlen ,CARLA: An open urban driving simulator, Conference on robot learning, 2017

⁴Chishti, Syed OwaisAli and Riaz, Sana and BilalZaib, Muhammad and Nauman, Mohammad, **Self-driving cars** using CNN and Q-learning, 2018 IEEE 21st International Multi-Topic Conference (INMIC), 2018

Literature Review

Year	Title	Achievements	Limitations
2020	Path Planning for Autonomous Vehicle	This paper proposed	High number of
	Based on a Two-Layered Planning Model in	a two- layered path	sampling doesn't
	Complex Environment ⁵ [5]	planning model,	give the best
		method includes	solution
		a high-level model	
		that produces a	
		rough path and a	
		low-level model that	
		provides precise	
		navigation	
2021	An Adaptive Ant Colony Algorithm for Au-	This paper proposed	Dynamic Path Plan-
	tonomous Vehicles Global Path Planning	path planning in a	ning is not discussed
	⁶ [6]	obstacle oriented	in this paper
		environment using	
		the optimized ver-	
		sion of Ant Colony	
		Algorithm	

⁵Chen, Jiajia and Zhang, Rui and Han, Wei and Jiang, Wuhua and Hu, Jinfang and Lu, Xiaoshan and Liu, Xingtao and Zhao, Pan, Path Planning for Autonomous Vehicle Based on a Two-Layered Planning Model in Complex Environment, Journal of Advanced Transportation, 2020

⁶ Li, Yanqiang and Ming, Yu and Zhang, Zihui and Yan, Weiqi and Wang, Kang, An Adaptive Ant Colony Algorithm for Autonomous Vehicles Global Path Planning, 2021 IEEE 24th International Conference on Computer Supported Cooperative Work in Design (CSCWD), 2021

Literature Review

Year	Title	Achievements	Limitations
2021	Path planning for autonomous ground vehi-	This paper proposed	Role of Dynamic Ac-
	cles based on quintic trigonometric Bézier	the method of Pre-	tors are not dis-
	curve ⁷ [7]	defined Path plan-	cussed in this paper
		ning using Bézier	
		curve	
2018	Path planning algorithm using D* heuristic	This paper pro-	The method is only
	method based on PSO in dynamic environ-	posed method	applicable to Lim-
	ment ⁸ [8]	Shortest safe path	ited static Enviro-
		planning using D*	ment
		algorithm based	
		on Particle Swarm	
		Optimization (PSO)	

⁷Bulut, Vahide, **Path planning for autonomous ground vehicles based on quintic trigonometric Bézier curve**, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021

⁸Raheem, Firas A and Hameed, Umniah I and others, Path planning algorithm using D* heuristic method based on PSO in dynamic environment, American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS), 2018

Problem Statement

Problem Statement

Autonomous Self-Driving Car's Routing in a Dynamic Urban Environment of CARLA.

Urban Environment of CARLA

UML Diagrams

Use Case Diagram

Figure 1: Use Case Diagram

Activity Diagram

Figure 2: Activity Diagram

D* Search¹

¹Raheem, Firas A and Hameed, Umniah I and others, Path planning algorithm using D* heuristic method based on PSO in dynamic environment, American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS), 2018

²Mnih, Volodymyr and Kavukcuoglu, Koray and Silver, David and Rusu, Andrei A and Veness, Joel and Bellemare, and others, **Human-level control through deep reinforcement learning**, Nature Publishing Group, 2015

D* Search¹

Deep Q-Network(DQN)²

¹Raheem, Firas A and Hameed, Umniah I and others, Path planning algorithm using D* heuristic method based on PSO in dynamic environment, American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS), 2018

²Mnih, Volodymyr and Kavukcuoglu, Koray and Silver, David and Rusu, Andrei A and Veness, Joel and Bellemare, and others, **Human-level control through deep reinforcement learning**, Nature Publishing Group, 2015

D* Search¹

Deep Q-Network(DQN)²

Dual-Deep Q-Network

¹Raheem, Firas A and Hameed, Umniah I and others, Path planning algorithm using D* heuristic method based on PSO in dynamic environment, American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS), 2018

²Mnih, Volodymyr and Kavukcuoglu, Koray and Silver, David and Rusu, Andrei A and Veness, Joel and Bellemare, and others, **Human-level control through deep reinforcement learning**, Nature Publishing Group, 2015

Mathematical Equation

Bellman Equation

Maximum predicted reward, given new state and all possible actions

$$\underbrace{Q(s,a)}_{\substack{\text{New} \\ \text{Q-Value}}} = \underbrace{Q(s,a)}_{\substack{\text{Current} \\ \text{Q-Value}}} + \alpha \underbrace{\left[\underbrace{R(s,a)}_{\substack{\text{Reward}}} + \gamma \underbrace{\max Q'(s',a')}_{\substack{\text{Current} \\ \text{Q-Value}}} - Q(s,a) \right]}_{\substack{\text{Learning} \\ \text{rate}}} = \underbrace{\min Q(s,a)}_{\substack{\text{Reward}}} + \alpha \underbrace{\left[\underbrace{R(s,a)}_{\substack{\text{Reward}}} + \gamma \underbrace{\max Q'(s',a')}_{\substack{\text{Current} \\ \text{Reward}}} - Q(s,a) \right]}_{\substack{\text{Reward}}}$$

Working

Working (cont)

Working (cont)


```
+ Again, Start from State 1:
     initial State: 1
      Action : Right - leads to State 2
            Putting values
        = -0.96 + 0.8[-1 + 0.6(0) + (-0.96)]
Q(S1, Ry)= -0.992
   + T (S2, UP, S6)
          Putting values
       = -0-96+0.8[-1+0.6(2.88) - (-0.96)]
Q(S2,UP) = 0.3904
    - T (S6, Right, S+)
     = 2.88 + 0.8[-1+0.6(9.6) - (2.88)]
Q(S6, Right) = 4.5344
      T (ST, Right, SE)
     = 9.6 + 0.8 [+10+0.6(0) - (9.6)]
 Q(S6, R:9Ht) = 9.92
            Episode ends.
```

Working (cont)


```
Start Again :
     initial state 4:
      Action : Right
    T (S1 , Right , S2) :
         Putting values in equation:
      = -0.992 +0.8[-1+0.6(0.3904)-(-0.992)]
 Q(s, Right) = -0.811008
     T (S2, Right, S3):
      Putting values in equation:
       = 0 + 0.8 [-10+0.6(0) - 0]
Q(Sz, Rigu)= - 8
                    Episode ends ...
```


Demo

References

References i

- V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski et al., "Human-level control through deep reinforcement learning," nature, vol. 518, no. 7540, pp. 529–533, 2015.
- [2] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton et al., "Mastering the game of go without human knowledge," nature, vol. 550, no. 7676, pp. 354–359, 2017.
- [3] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, "Carla: An open urban driving simulator," in Conference on robot learning. PMLR, 2017, pp. 1–16.
- [4] S. O. Chishti, S. Riaz, M. BilalZaib, and M. Nauman, "Self-driving cars using cnn and q-learning," in 2018 IEEE 21st International Multi-Topic Conference (INMIC). IEEE, 2018, pp. 1–7.
- [5] J. Chen, R. Zhang, W. Han, W. Jiang, J. Hu, X. Lu, X. Liu, and P. Zhao, "Path planning for autonomous vehicle based on a two-layered planning model in complex environment," *Journal of Advanced Transportation*, vol. 2020, 2020.
- [6] Y. Li, Y. Ming, Z. Zhang, W. Yan, and K. Wang, "An adaptive ant colony algorithm for autonomous vehicles global path planning," in 2021 IEEE 24th International Conference on Computer Supported Cooperative Work in Design (CSCWD). IEEE, 2021, pp. 1117–1122.
- [7] V. Bulut, "Path planning for autonomous ground vehicles based on quintic trigonometric bézier curve," Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 43, no. 2, pp. 1–14, 2021.

References ii

[8] F. A. Raheem, U. I. Hameed et al., "Path planning algorithm using d* heuristic method based on pso in dynamic environment," American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS), vol. 49, no. 1, pp. 257–271, 2018. Thank you!
Any Questions?