COMPSCI 589 Lecture 24: Principal Components Analysis

Benjamin M. Marlin

College of Information and Computer Sciences University of Massachusetts Amherst

Slides by Benjamin M. Marlin (marlin@cs.umass.edu). Created with support from National Science Foundation Award# IIS-1350522.

Outline

- 1 Review
- 2 Linear Algebra
- 3 PCA
- 4 Connection to SVI

Machine Learning Tasks

Supervised

Learning to predict.

Regression

Unsupervised

Learning to organize and represent.

Clustering

Dimensionality Reduction

The Dimensionality Reduction Task

Definition: The Dimensionality Reduction Task

Given a collection of feature vectors $\mathbf{x}_i \in \mathbb{R}^p$, map the feature vectors into a lower dimensional space $\mathbf{z}_i \in \mathbb{R}^q$ where q < p while preserving certain properties of the data.

The Dimensionality Reduction Task

Definition: The Dimensionality Reduction Task

Given a collection of feature vectors $\mathbf{x}_i \in \mathbb{R}^p$, map the feature vectors into a lower dimensional space $\mathbf{z}_i \in \mathbb{R}^q$ where q < p while preserving certain properties of the data.

high-dim distribution

high-dim samples

estimated manifold

- The simplest dimensionality reduction methods assume that the observed high dimensional data vectors $\mathbf{x}_i \in \mathbb{R}^p$ lie on a q-dimensional linear manifold within \mathbb{R}^p .
- Mathematically, the linear sub-space assumption can be written as $\mathbf{X} = \mathbf{Z} \times \mathbf{B}$

Review

Review 00000

Minimize reconstruction error as

$$\min \|\mathbf{X} - \tilde{\mathbf{X}}\|_F^2$$

Using encoder $(t(\mathbf{X}))$ and decoder (S):

$$\min \sum_{i=1}^{N} \|X_i - S(t(X_i))\|_F^2$$

- Best encoder for fixed decoder $S(\lambda) = \mu + V_a \lambda$ is $\lambda = V_a^T(X - \mu)$
- Updated reconstruction error:

$$\min_{V_q} \sum_{i=1}^{N} \|X_i - V_q V_q^T(X_i)\|_F^2$$

Singular Value Decomposition

SVD representation of

$$\mathbf{X} = UDV^T$$

where D is a $p \times p$ diagonal matrix with positive elements, U is an $N \times p$ matrix such that $\mathbf{U}^T \mathbf{U} = I$, and V is a $p \times p$ matrix such that $\mathbf{V}^T\mathbf{V} = I$.

PCA using SVD

$$\|\mathbf{X} - UD_q^T V_q^T\|_F^2$$

where q < p

Outline

- 1 Review
- 2 Linear Algebra
- 3 PCA
- 4 Connection to SVI

■ Let $\mathbf{A} \in \mathbb{R}^{p \times p}$ be a matrix, $\mathbf{v} \in \mathbb{R}^p$ be a vector, and λ be scalar.

- Let $\mathbf{A} \in \mathbb{R}^{p \times p}$ be a matrix, $\mathbf{v} \in \mathbb{R}^p$ be a vector, and λ be scalar.
- If $A\mathbf{v} = \lambda \mathbf{v}$ then \mathbf{v} is a right eigenvector of A with eigenvalue λ .

- Let $\mathbf{A} \in \mathbb{R}^{p \times p}$ be a matrix, $\mathbf{v} \in \mathbb{R}^p$ be a vector, and λ be scalar.
- If $\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$ then \mathbf{v} is a right eigenvector of A with eigenvalue λ .
- If $\mathbf{A}^T \mathbf{v} = \lambda \mathbf{v}$ then \mathbf{v} is a left eigenvector of A with eigenvalue λ (equivalently $\mathbf{v}^T \mathbf{A} = \lambda \mathbf{v}^T$).

- Let $\mathbf{A} \in \mathbb{R}^{p \times p}$ be a matrix, $\mathbf{v} \in \mathbb{R}^p$ be a vector, and λ be scalar.
- If $\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$ then \mathbf{v} is a right eigenvector of A with eigenvalue λ .
- If $\mathbf{A}^T \mathbf{v} = \lambda \mathbf{v}$ then \mathbf{v} is a left eigenvector of A with eigenvalue λ (equivalently $\mathbf{v}^T \mathbf{A} = \lambda \mathbf{v}^T$).
- If **A** is symmetric so that $\mathbf{A} = \mathbf{A}^T$, then the left and right eigenvectors of **A** are the same with the same eigenvalues.

- Let $\mathbf{A} \in \mathbb{R}^{p \times p}$ be a matrix, $\mathbf{v} \in \mathbb{R}^p$ be a vector, and λ be scalar.
- If $A\mathbf{v} = \lambda \mathbf{v}$ then \mathbf{v} is a right eigenvector of A with eigenvalue λ .
- If $\mathbf{A}^T \mathbf{v} = \lambda \mathbf{v}$ then \mathbf{v} is a left eigenvector of A with eigenvalue λ (equivalently $\mathbf{v}^T \mathbf{A} = \lambda \mathbf{v}^T$).
- If A is symmetric so that $A = A^T$, then the left and right eigenvectors of A are the same with the same eigenvalues.

$$\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

- Let $\mathbf{A} \in \mathbb{R}^{p \times p}$ be a matrix, $\mathbf{v} \in \mathbb{R}^p$ be a vector, and λ be scalar.
- If $A\mathbf{v} = \lambda \mathbf{v}$ then \mathbf{v} is a right eigenvector of A with eigenvalue λ .
- If $\mathbf{A}^T \mathbf{v} = \lambda \mathbf{v}$ then \mathbf{v} is a left eigenvector of A with eigenvalue λ (equivalently $\mathbf{v}^T \mathbf{A} = \lambda \mathbf{v}^T$).
- If **A** is symmetric so that $\mathbf{A} = \mathbf{A}^T$, then the left and right eigenvectors of A are the same with the same eigenvalues.

$$\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Let $\mathbf{A} \in \mathbb{R}^{p \times p}$ be a matrix, $\mathbf{v} \in \mathbb{R}^p$ be a vector, and λ be scalar.

- If $A\mathbf{v} = \lambda \mathbf{v}$ then \mathbf{v} is a right eigenvector of A with eigenvalue λ .
- If $\mathbf{A}^T \mathbf{v} = \lambda \mathbf{v}$ then \mathbf{v} is a left eigenvector of A with eigenvalue λ (equivalently $\mathbf{v}^T \mathbf{A} = \lambda \mathbf{v}^T$).
- If **A** is symmetric so that $\mathbf{A} = \mathbf{A}^T$, then the left and right eigenvectors of A are the same with the same eigenvalues.

$$\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} = 3 \begin{bmatrix} 1 & 1 \end{bmatrix}$$

- Let $\mathbf{A} \in \mathbb{R}^{p \times p}$ be a matrix, $\mathbf{v} \in \mathbb{R}^p$ be a vector, and λ be scalar.
- If $\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$ then \mathbf{v} is a right eigenvector of A with eigenvalue λ .
- If $\mathbf{A}^T \mathbf{v} = \lambda \mathbf{v}$ then \mathbf{v} is a left eigenvector of A with eigenvalue λ (equivalently $\mathbf{v}^T \mathbf{A} = \lambda \mathbf{v}^T$).
- If A is symmetric so that $A = A^T$, then the left and right eigenvectors of **A** are the same with the same eigenvalues.

$$\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} = 3 \begin{bmatrix} 1 & 1 \end{bmatrix}$$

■ A full-rank (invertible) matrix $\mathbf{A} \in \mathbb{R}^{p \times p}$ will have p linearly independent eigenvectors.

Eigendecomposition

Let $V \in \mathbb{R}^{p \times p}$ be a matrix whose columns \mathbf{v}_d are p linearly independent eigenvectors of \mathbf{A} with Λ the corresponding diagonal matrix of eigenvalues such that $\Lambda_{dd} = \lambda_d$. Then:

$$\mathbf{AV} = \mathbf{V}\Lambda$$

■ Let $\mathbf{V} \in \mathbb{R}^{p \times p}$ be a matrix whose columns \mathbf{v}_d are p linearly independent eigenvectors of \mathbf{A} with Λ the corresponding diagonal matrix of eigenvalues such that $\Lambda_{dd} = \lambda_d$. Then:

$$\mathbf{AV} = \mathbf{V}\Lambda$$

$$\mathbf{A} = \mathbf{V}\Lambda\mathbf{V}^{-1}$$

Eigendecomposition

Let $\mathbf{V} \in \mathbb{R}^{p \times p}$ be a matrix whose columns \mathbf{v}_d are p linearly independent eigenvectors of **A** with Λ the corresponding diagonal matrix of eigenvalues such that $\Lambda_{dd} = \lambda_d$. Then:

$$\mathbf{AV} = \mathbf{V}\Lambda$$

$$\mathbf{A} = \mathbf{V}\Lambda\mathbf{V}^{-1}$$

$$\mathbf{V}^{-1}\mathbf{A}\mathbf{V} = \Lambda$$

Eigendecomposition

Let $V \in \mathbb{R}^{p \times p}$ be a matrix whose columns \mathbf{v}_d are p linearly independent eigenvectors of \mathbf{A} with Λ the corresponding diagonal matrix of eigenvalues such that $\Lambda_{dd} = \lambda_d$. Then:

$$\mathbf{AV} = \mathbf{V}\Lambda$$

$$\mathbf{A} = \mathbf{V}\Lambda\mathbf{V}^{-1}$$

$$\mathbf{V}^{-1}\mathbf{A}\mathbf{V} = \Lambda$$

■ Without loss of generality, we can assume that

Eigendecomposition of a Symmetric Matrix

■ If A is symmetric, we can choose p orthonormal eigenvectors so that $||\mathbf{v}_d||_2 = 1$, $\mathbf{v}_d^T \mathbf{v}_{d'} = 0$ and p real eigenvalues $\lambda_d \in \mathbb{R}$. This representation of **A** is unique. As a result, we have:

$$\mathbf{A} = \mathbf{V}\Lambda\mathbf{V}^T = \sum_{d=1}^p \lambda_d \mathbf{v}_d \mathbf{v}_d^T$$

Representation of a Vector in the Eigen Basis

Similarly, if **a** is an arbitrary vector, then we can also represent **a** using the basis provided by the eigevectors V of a real symmetric matrix A. We obtain:

$$\mathbf{a} = \sum_{d=1}^{p} \alpha_d \mathbf{v}_d \tag{1}$$

$$\alpha_d = \mathbf{a}^T \mathbf{v}_d \tag{2}$$

Outline

- 1 Review
- 2 Linear Algebra
- 3 PCA
- 4 Connection to SVI

PCA •0000000000

Principal Component Analysis

■ Given a data matrix $\mathbf{X} \in \mathbb{R}^{N \times p}$, the goal of Principal Component Analysis (PCA) is to identify the directions of maximum variance contained in the data.

Principal Component Analysis

• Given a data matrix $\mathbf{X} \in \mathbb{R}^{N \times p}$, the goal of Principal Component Analysis (PCA) is to identify the directions of maximum variance contained in the data.

PCA •0000000000

Sample Variance in a Given Direction

■ Let $\mathbf{w} \in \mathbb{R}^p$ such that $||\mathbf{w}||_2 = \sqrt{\mathbf{w}^T \mathbf{w}} = 1$.

Sample Variance in a Given Direction

- Let $\mathbf{w} \in \mathbb{R}^p$ such that $||\mathbf{w}||_2 = \sqrt{\mathbf{w}^T \mathbf{w}} = 1$.
- The sample estimate of the variance in the direction w given the data set **X** is given by the expression:

PCA 0000000000

$$\frac{1}{N} \sum_{i=1}^{N} (\mathbf{X}_{i} \mathbf{w} - \mu)^{2} \text{ where } \mu = \frac{1}{N} \sum_{i=1}^{N} \mathbf{X}_{i} \mathbf{w}$$

Pre-Centering

■ Under the assumption that the data are pre-centered so that $\frac{1}{N} \sum_{i=1}^{N} \mathbf{X}_{i} = 0$, this expression simplifies to:

$$\frac{1}{N} \sum_{i=1}^{N} (\mathbf{X}_i \mathbf{w})^2 = (\mathbf{X} \mathbf{w})^T (\mathbf{X} \mathbf{w}) = \mathbf{w}^T \mathbf{X}^T \mathbf{X} \mathbf{w}$$

PCA 0000000000

Suppose we want to identify the direction \mathbf{w}_1 of maximum variance given the data matrix \mathbf{X} . We can formulate this optimization problem as follows:

Suppose we want to identify the direction \mathbf{w}_1 of maximum variance given the data matrix **X**. We can formulate this optimization problem as follows:

$$\mathbf{w}_1 = \max_{\mathbf{w}} \mathbf{w}^T \mathbf{X}^T \mathbf{X} \mathbf{w} \dots \text{ st } ||\mathbf{w}||_2 = 1$$

PCA 0000000000

Suppose we want to identify the direction \mathbf{w}_1 of maximum variance given the data matrix **X**. We can formulate this optimization problem as follows:

$$\mathbf{w}_1 = \max_{\mathbf{w}} \mathbf{w}^T \mathbf{X}^T \mathbf{X} \mathbf{w} \dots \text{ st } ||\mathbf{w}||_2 = 1$$

PCA 0000000000

■ How can we solve this problem?

PCA 0000000000

The Direction of Maximum Variance

■ Let $\Sigma = \mathbf{X}^T \mathbf{X}$.

- Let $\Sigma = \mathbf{X}^T \mathbf{X}$.
- Σ is real and symmetric, so it admits an eigendecomposition of the form:

$$\Sigma = \sum_{d=1}^{p} \sigma_d \mathbf{V}_d \mathbf{V}_d^T$$

PCA 0000000000

- Let $\Sigma = \mathbf{X}^T \mathbf{X}$.
- Σ is real and symmetric, so it admits an eigendecomposition of the form:

$$\Sigma = \sum_{d=1}^{p} \sigma_d \mathbf{V}_d \mathbf{V}_d^T$$

PCA 0000000000

 $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_p \geq 0$ are the eigenvalues of Σ .

- I et $\Sigma = \mathbf{X}^T \mathbf{X}$
- Σ is real and symmetric, so it admits an eigendecomposition of the form:

$$\Sigma = \sum_{d=1}^{p} \sigma_d \mathbf{V}_d \mathbf{V}_d^T$$

PCA 00000000000

- $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_p \geq 0$ are the eigenvalues of Σ .
- $\mathbf{V}_d \in \mathbb{R}^D$ are the eigenvectors of Σ . They satisfy:

$$||\mathbf{V}_d||_2 = \sqrt{\mathbf{V}_d^T \mathbf{V}_d} = 1 \dots \text{ for all } d$$

$$\mathbf{V}_d^T \mathbf{V}_{d'} = 0 \dots$$
 for all $d \neq d'$

PCA 0000000000

The Direction of Maximum Variance

■ Using this result, we can write the optimization problem as:

$$\max_{\mathbf{w}} \mathbf{w}^T \mathbf{X}^T \mathbf{X} \mathbf{w} \dots \text{ st } ||\mathbf{w}||_2 = 1$$

Using this result, we can write the optimization problem as:

$$\max_{\mathbf{w}} \mathbf{w}^T \mathbf{X}^T \mathbf{X} \mathbf{w} \dots \text{ st } ||\mathbf{w}||_2 = 1$$

$$\max_{\mathbf{w}} \mathbf{w}^{T} \left(\sum_{d=1}^{p} \sigma_{d} \mathbf{V}_{d} \mathbf{V}_{d}^{T} \right) \mathbf{w} \dots \text{ st } ||\mathbf{w}||_{2} = 1$$

Using this result, we can write the optimization problem as:

$$\max_{\mathbf{w}} \mathbf{w}^T \mathbf{X}^T \mathbf{X} \mathbf{w} \dots \text{ st } ||\mathbf{w}||_2 = 1$$

$$\max_{\mathbf{w}} \mathbf{w}^{T} \left(\sum_{d=1}^{p} \sigma_{d} \mathbf{V}_{d} \mathbf{V}_{d}^{T} \right) \mathbf{w} \dots \text{ st } ||\mathbf{w}||_{2} = 1$$

$$\max_{\mathbf{w}} \sum_{d=1}^{p} \sigma_d(\mathbf{w}^T \mathbf{V}_d)^2 \dots \text{ st } ||\mathbf{w}||_2 = 1$$

■ w can also be expressed in the orthonormal basis $V_1, ..., V_p$ by letting $\mathbf{w} = \sum_{d=1}^p \omega_d V_d$.

• w can also be expressed in the orthonormal basis $V_1, ..., V_p$ by letting $\mathbf{w} = \sum_{d=1}^p \omega_d V_d$.

PCA 00000000000

■ The constraint that $||\mathbf{w}||_2 = 1$ becomes $\sqrt{\sum_{d=1}^p \omega_d^2} = 1$.

• w can also be expressed in the orthonormal basis $V_1, ..., V_p$ by letting $\mathbf{w} = \sum_{d=1}^p \omega_d V_d$.

- The constraint that $||\mathbf{w}||_2 = 1$ becomes $\sqrt{\sum_{d=1}^p \omega_d^2} = 1$.
- This means $\sum_{d=1}^{p} \omega_d^2 = 1$ and $\omega_d^2 > 0$, so the ω_d^2 values act like a discrete probability distribution.

■ Plugging this back into the objective function, we have:

$$\max_{\mathbf{w}} \sum_{d=1}^{p} \sigma_d(\mathbf{w}^T \mathbf{V}_d)^2 \dots \text{ st } ||\mathbf{w}||_2 = 1$$

■ Plugging this back into the objective function, we have:

$$\max_{\mathbf{w}} \sum_{d=1}^{p} \sigma_d(\mathbf{w}^T \mathbf{V}_d)^2 \dots \text{ st } ||\mathbf{w}||_2 = 1$$

$$\max_{\omega} \sum_{d=1}^{p} \sigma_d \left(\sum_{d'=1}^{p} \omega_{d'} \mathbf{V}_{d'}^T \mathbf{V}_d \right)^2 \dots \text{ st } \sum_{d=1}^{p} \omega_d^2 = 1$$

Plugging this back into the objective function, we have:

$$\max_{\mathbf{w}} \sum_{d=1}^{p} \sigma_d (\mathbf{w}^T \mathbf{V}_d)^2 \dots \text{st } ||\mathbf{w}||_2 = 1$$

$$\max_{\omega} \sum_{d=1}^{p} \sigma_d \left(\sum_{d'=1}^{p} \omega_{d'} \mathbf{V}_{d'}^T \mathbf{V}_d \right)^2 \dots \text{st } \sum_{d=1}^{p} \omega_d^2 = 1$$

$$\max_{\omega} \sum_{d=1}^{p} \sigma_d \omega_d^2 \dots \text{st } \sum_{d=1}^{p} \omega_d^2 = 1$$

■ At this point, the solution is clear.

- At this point, the solution is clear.
- To maximize the variance, we need to set $\omega_1 = 1$ and set $\omega_d = 0$ otherwise.

- At this point, the solution is clear.
- To maximize the variance, we need to set $\omega_1 = 1$ and set $\omega_d = 0$ otherwise. This put's all the weight on the maximum eigenvalue of Σ , which is σ_1 by assumption.

- At this point, the solution is clear.
- To maximize the variance, we need to set $\omega_1 = 1$ and set $\omega_d = 0$ otherwise. This put's all the weight on the maximum eigenvalue of Σ , which is σ_1 by assumption.
- Working our way back to \mathbf{w}_1 , we put all our weight on the maximum eigenvalue, so $\mathbf{w} = \sum_{d=1}^{p} \omega_d \mathbf{V}_d = \mathbf{V}_1$.

- At this point, the solution is clear.
- To maximize the variance, we need to set $\omega_1 = 1$ and set $\omega_d = 0$ otherwise. This put's all the weight on the maximum eigenvalue of Σ , which is σ_1 by assumption.
- Working our way back to \mathbf{w}_1 , we put all our weight on the maximum eigenvalue, so $\mathbf{w} = \sum_{d=1}^{p} \omega_d \mathbf{V}_d = \mathbf{V}_1$.
- This shows that the maximum variance direction given a data matrix X is the eigenvector of X^TX with the largest eigenvalue.

PCA 0000000000

q-Largest Directions of Variance

Suppose instead of just the direction of maximum variance, we want the q largest directions of variance that are all mutually orthogonal.

q-Largest Directions of Variance

■ Suppose instead of just the direction of maximum variance, we want the q largest directions of variance that are all mutually orthogonal.

PCA 0000000000

Finding the second-largest direction of variance corresponds to solving the problem:

$$\mathbf{w}_2 = \max_{\mathbf{w}} \sum_{d=1}^p \sigma_d(\mathbf{w}^T \mathbf{V}_d)^2 \dots \text{ st } ||\mathbf{w}||_2 = 1 \text{ and } \mathbf{w}^T \mathbf{w}_1 = 0$$

q-Largest Directions of Variance

■ Suppose instead of just the direction of maximum variance, we want the q largest directions of variance that are all mutually orthogonal.

PCA 0000000000

Finding the second-largest direction of variance corresponds to solving the problem:

$$\mathbf{w}_2 = \max_{\mathbf{w}} \sum_{d=1}^p \sigma_d(\mathbf{w}^T \mathbf{V}_d)^2 \dots \text{ st } ||\mathbf{w}||_2 = 1 \text{ and } \mathbf{w}^T \mathbf{w}_1 = 0$$

■ It's easy to see that this is going to be the eigenvector corresponding to the second largest eigenvalue.

q-Largest Directions of Variance

■ Suppose instead of just the direction of maximum variance, we want the q largest directions of variance that are all mutually orthogonal.

PCA 0000000000

■ Finding the second-largest direction of variance corresponds to solving the problem:

$$\mathbf{w}_2 = \max_{\mathbf{w}} \sum_{d=1}^p \sigma_d(\mathbf{w}^T \mathbf{V}_d)^2 \dots \text{ st } ||\mathbf{w}||_2 = 1 \text{ and } \mathbf{w}^T \mathbf{w}_1 = 0$$

- It's easy to see that this is going to be the eigenvector corresponding to the second largest eigenvalue.
- In general, the top q directions of variance $w_1, ..., w_q$ are given by the q eigenvectors corresponding to the q largest eigenvalues of $\mathbf{X}^T\mathbf{X}$.

Given centered data matrix $\mathbf{X} \in \mathbb{R}^{N \times p}$, compute unscaled sample covariance matrix $\Sigma = \mathbf{X}^T \mathbf{X}$.

- Given centered data matrix $\mathbf{X} \in \mathbb{R}^{N \times p}$, compute unscaled sample covariance matrix $\Sigma = \mathbf{X}^T \mathbf{X}$.
- **2** Compute the q leading eigenvectors $w_1, ..., w_q$ of Σ where $\mathbf{w}_k \in \mathbb{R}^p$.

Given centered data matrix $\mathbf{X} \in \mathbb{R}^{N \times p}$, compute unscaled sample covariance matrix $\Sigma = \mathbf{X}^T \mathbf{X}$.

- **2** Compute the q leading eigenvectors $w_1, ..., w_q$ of Σ where $\mathbf{w}_k \in \mathbb{R}^p$.
- 3 Stack the eigenvectors together into a $p \times q$ matrix **W** where each column k of **W** corresponds to \mathbf{w}_k .

- Given centered data matrix $\mathbf{X} \in \mathbb{R}^{N \times p}$, compute unscaled sample covariance matrix $\Sigma = \mathbf{X}^T \mathbf{X}$.
- **2** Compute the q leading eigenvectors $w_1, ..., w_q$ of Σ where $\mathbf{w}_k \in \mathbb{R}^p$.
- 3 Stack the eigenvectors together into a $p \times q$ matrix **W** where each column k of **W** corresponds to \mathbf{w}_k .
- 4 Project the matrix \mathbf{X} into the rank-q sub-space of maximum variance by computing the matrix product $\mathbf{Z} = \mathbf{X}\mathbf{W}$.

- Given centered data matrix $\mathbf{X} \in \mathbb{R}^{N \times p}$, compute unscaled sample covariance matrix $\Sigma = \mathbf{X}^T \mathbf{X}$.
- **2** Compute the q leading eigenvectors $w_1, ..., w_q$ of Σ where $\mathbf{w}_k \in \mathbb{R}^p$.
- 3 Stack the eigenvectors together into a $p \times q$ matrix **W** where each column k of **W** corresponds to \mathbf{w}_k .
- 4 Project the matrix \mathbf{X} into the rank-q sub-space of maximum variance by computing the matrix product $\mathbf{Z} = \mathbf{X}\mathbf{W}$.
- 5 To reconstruct **X** given **Z** and **W**, we use $\hat{\mathbf{X}} = \mathbf{Z}\mathbf{W}^T$.

Outline

- 1 Review
- 2 Linear Algebra
- 3 PCA
- 4 Connection to SVD

Last class we saw that the minimum Frobenius norm linear dimensionality reduction problem could be solved using the rank-q SVD of **X**:

$$\|\mathbf{X} - \mathbf{U}\mathbf{D}_{\mathbf{q}}\mathbf{V}_{\mathbf{q}}^T\|_F^2$$

where the matrix product $\mathbf{Z} = \mathbf{U}\mathbf{D}_{\mathbf{q}}$ gives the optimal rank-q representation of X with respect to Frobenius norm minimization.

■ If we let q = p then $\mathbf{X} = \mathbf{U}\mathbf{D}\mathbf{V}^T$ and $\mathbf{X}^T\mathbf{X} = \mathbf{V}\mathbf{D}\mathbf{U}^T\mathbf{U}\mathbf{D}\mathbf{V}^T$.

- If we let q = p then $\mathbf{X} = \mathbf{U}\mathbf{D}\mathbf{V}^T$ and $\mathbf{X}^T\mathbf{X} = \mathbf{V}\mathbf{D}\mathbf{U}^T\mathbf{U}\mathbf{D}\mathbf{V}^T$.
- Due to orthogonality of *U* this gives: $\mathbf{X}^T\mathbf{X} = \mathbf{V}\mathbf{D}^2\mathbf{V}^T$.

- If we let q = p then $\mathbf{X} = \mathbf{U}\mathbf{D}\mathbf{V}^T$ and $\mathbf{X}^T\mathbf{X} = \mathbf{V}\mathbf{D}\mathbf{U}^T\mathbf{U}\mathbf{D}\mathbf{V}^T$.
- Due to orthogonality of *U* this gives: $\mathbf{X}^T\mathbf{X} = \mathbf{V}\mathbf{D}^2\mathbf{V}^T$.
- This means that the right singular vectors of \mathbf{X} are exactly the eigenvectors of $\mathbf{X}^T\mathbf{X}$, so SVD's \mathbf{V} and PCA's \mathbf{W} are identical (assuming \mathbf{X} is centered).

- If we let q = p then $\mathbf{X} = \mathbf{U}\mathbf{D}\mathbf{V}^T$ and $\mathbf{X}^T\mathbf{X} = \mathbf{V}\mathbf{D}\mathbf{U}^T\mathbf{U}\mathbf{D}\mathbf{V}^T$.
- Due to orthogonality of *U* this gives: $\mathbf{X}^T\mathbf{X} = \mathbf{V}\mathbf{D}^2\mathbf{V}^T$.
- This means that the right singular vectors of \mathbf{X} are exactly the eigenvectors of $\mathbf{X}^T\mathbf{X}$, so SVD's \mathbf{V} and PCA's \mathbf{W} are identical (assuming \mathbf{X} is centered).
- We can also see that the eigenvalues of $\mathbf{X}^T \mathbf{X}$ are the squares of the diagonal elements of \mathbf{D} .

- If we let q = p then $\mathbf{X} = \mathbf{U}\mathbf{D}\mathbf{V}^T$ and $\mathbf{X}^T\mathbf{X} = \mathbf{V}\mathbf{D}\mathbf{U}^T\mathbf{U}\mathbf{D}\mathbf{V}^T$.
- Due to orthogonality of *U* this gives: $\mathbf{X}^T\mathbf{X} = \mathbf{V}\mathbf{D}^2\mathbf{V}^T$.
- This means that the right singular vectors of \mathbf{X} are exactly the eigenvectors of $\mathbf{X}^T\mathbf{X}$, so SVD's \mathbf{V} and PCA's \mathbf{W} are identical (assuming \mathbf{X} is centered).
- We can also see that the eigenvalues of $\mathbf{X}^T \mathbf{X}$ are the squares of the diagonal elements of \mathbf{D} .
- This means that the q largest singular values and q largest eigenvalues correspond to the same q basis vectors.

 \blacksquare According to PCA, the projection operation is $\mathbf{Z} = \mathbf{X}\mathbf{W}$.

- \blacksquare According to PCA, the projection operation is $\mathbf{Z} = \mathbf{X}\mathbf{W}$.
- Using $\mathbf{X} = \mathbf{U}\mathbf{D}\mathbf{V}^T$ and $\mathbf{V} = \mathbf{W}$ we have:

$$\mathbf{Z} = \mathbf{X}\mathbf{W} = (\mathbf{U}\mathbf{D}\mathbf{V}^T)(\mathbf{V}) = \mathbf{U}\mathbf{D}$$

- \blacksquare According to PCA, the projection operation is $\mathbf{Z} = \mathbf{X}\mathbf{W}$.
- Using $X = UDV^T$ and V = W we have:

$$\mathbf{Z} = \mathbf{X}\mathbf{W} = (\mathbf{U}\mathbf{D}\mathbf{V}^T)(\mathbf{V}) = \mathbf{U}\mathbf{D}$$

Finally, note that if the decompositions are based only on the q leading basis vectors, which are identical under both PCA and SVD, the projections $\mathbf{Z} = \mathbf{X}\mathbf{W}$ and $\mathbf{Z} = \mathbf{U}\mathbf{D}$ will still be identical.

■ These manipulations show that PCA on $\mathbf{X}^T\mathbf{X}$ and SVD on \mathbf{X} identify exactly the same sub-space and result in exactly the same projection of the data into that sub-space.

- These manipulations show that PCA on $\mathbf{X}^T\mathbf{X}$ and SVD on \mathbf{X} identify exactly the same sub-space and result in exactly the same projection of the data into that sub-space.
- As a result, generic linear dimensionality reduction simultaneously minimizes the Frobenius norm of the reconstruction error of **X** and maximizes the retained variance in the learned sub-space.

- These manipulations show that PCA on $\mathbf{X}^T\mathbf{X}$ and SVD on \mathbf{X} identify exactly the same sub-space and result in exactly the same projection of the data into that sub-space.
- As a result, generic linear dimensionality reduction simultaneously minimizes the Frobenius norm of the reconstruction error of X and maximizes the retained variance in the learned sub-space.
- Both SVD and PCA provide the same refinement of generic linear dimensionality reduction: an orthogonal basis for exactly the same optimal linear subspace.

Demo

Demo