TRISTAN MONTOYA

tmontoya@uni-koeln.de

tjbmontoya.com

EDUCATION

Doctor of Philosophy, Aerospace Science and Engineering

September 2018 – June 2024 Toronto, Canada

University of Toronto

Thesis: Provably stable discontinuous spectral-element methods with the summation-by-parts prop-

erty: Unified matrix analysis and efficient tensor-product formulations on curved simplices

Advisor: David W. Zingg

Bachelor of Engineering, Mechanical Engineering

September 2014 – June 2018

Carleton University

Ottawa, Canada

CURRENT POSITION

Postdoctoral Researcher

January 2024 – Present *Cologne, Germany*

University of Cologne

Project: Efficient and robust discontinuous spectral-element methods for the ICON-DG atmospheric dynamical core (supported by the German Federal Ministry of Education and Research as part of the WarmWorld funding initiative for kilometre-scale prediction of weather events in a warming climate)

Advisor: Gregor Gassner

PUBLICATIONS IN PEER-REVIEWED JOURNALS

- **T. Montoya** and D. W. Zingg, Efficient entropy-stable discontinuous spectral-element methods using tensor-product summation-by-parts operators on triangles and tetrahedra. *Journal of Computational Physics* 516, 2024.
- T. Montoya and D. W. Zingg, Efficient tensor-product spectral-element operators with the summation-by-parts property on curved triangles and tetrahedra. SIAM Journal on Scientific Computing 46(4), 2024.
- **T. Montoya** and D. W. Zingg, A unifying algebraic framework for discontinuous Galerkin and flux reconstruction methods based on the summation-by-parts property. *Journal of Scientific Computing* 92(3), 2022.

PUBLICATIONS IN CONFERENCE PROCEEDINGS

T. Montoya and D. W. Zingg, Stable and conservative high-order methods on triangular elements using tensor-product summation-by-parts operators. 11th International Conference on Computational Fluid Dynamics, 2022. Awarded best student paper.

SELECTED TALKS (EXCLUDING ABOVE PROCEEDINGS)

- **T. Montoya** and D. W. Zingg, "Efficient entropy-stable discontinuous spectral-element methods in collapsed coordinates for hyperbolic systems on curved triangular and tetrahedral meshes." Contributed talk, Canadian Applied and Industrial Mathematics Society Annual Meeting, 2024.
- **T. Montoya** and D. W. Zingg, "Efficient entropy-stable tensor-product spectral-element methods on simplices." Contributed talk, 9th European Congress on Computational Methods in Applied Sciences and Engineering, 2024.
- **T. Montoya** and D. W. Zingg, "Efficient tensor-product spectral-element methods with the summation-by-parts property on triangles and tetrahedra." Contributed talk, SIAM Conference on Computational Science and Engineering, 2023.

- **T. Montoya** and D. W. Zingg, "Efficient and robust spectral-element methods on triangles using tensor-product summation-by-parts operators." Invited talk, NASA Advanced Modeling and Simulation (AMS) Seminar Series, 2022.
- **T. Montoya** and D. W. Zingg, "Unified analysis of discontinuous Galerkin and flux reconstruction methods based on the summation-by-parts property." Contributed talk, *International Conference on Spectral and High-Order Methods*, 2021.
- **T. Montoya** and D. W. Zingg, "Unified analysis of high-order methods based on the summation-by-parts property: Application to discontinuous Galerkin and flux reconstruction discretizations." Contributed talk, *SIAM Conference on Computational Science and Engineering*, 2021.

OTHER APPOINTMENTS

Visiting Researcher

August 2022

National University of Singapore

Singapore

Project: Koopman operator approaches to data-driven stability analysis of numerical methods

Advisor: Gianmarco Mengaldo

Undergraduate Student Researcher

May 2017 - August 2017

University of Toronto

McGill University

Carleton University

Toronto, Canada

Projects: Optimization of finite-difference operators with the summation-by-parts property on non-uniform nodal distributions; comparison of continuation methods for steady aerodynamic flows

Advisor: David W. Zingg

Undergraduate Student Researcher

May 2016 – August 2016

Montreal, Canada

Project: Robust deformation of unstructured grids using radial basis functions and linear elasticity

Advisor: Siva Nadarajah

Undergraduate Student Researcher

May 2015 - August 2015

Ottawa, Canada

Projects: Optimal estimation of uncertain parameters in computer models of welding processes; novel

interpolation techniques for stress and strain tensor fields using quaternions

Advisor: John A. Goldak

AWARDS AND SCHOLARSHIPS

Best Student Paper, International Conference on Computational Fluid Dynamics	
Ontario Graduate Scholarship	2019 – 2020, 2022 – 2023
Kenneth Molson Fellowship	2021 – 2022, 2022 – 2023
Queen Elizabeth II Graduate Scholarship in Science and Technology	2020 - 2021, 2021 - 2022
Douglas Patton Hogg Memorial Award	2021
NSERC Canada Graduate Scholarship - Master's	2018 – 2019
University Medal (highest academic standing of any Bachelor of Engineering graduate) 2018	
Canadian Society for Mechanical Engineering Gold Medal	2018
Rajesh Ahluwalia Memorial Scholarship	2017 - 2018
NSERC Undergraduate Student Research Award	2015, 2017
McGill University Summer Undergraduate Research in Engineering Award	2016
Allan Buchanan Undergraduate Scholarship	2015 – 2016
Deans' Honour List	2014 - 2018
Faculty Scholarship	2014 - 2018

SUPERVISION OF GRADUATE AND UNDERGRADUATE RESEARCH

Paula Weiß, Master of Science thesis student

August 2024 – Present

University of Cologne (Co-supervised with Gregor Gassner and Benedict Geihe)

Cologne, Germany

Project: High-order vertical discretizations for nonhydrostatic atmospheric models

Fabian Höck, Master of Science thesis student

April 2024 – Present

University of Cologne (Co-supervised with Gregor Gassner and Benedict Geihe)

Cologne, Germany

Project: Discontinous Galerkin methods for moist atmospheric flows with rain

Ruilin (Jerry) Bai, Bachelor of Applied Science summer student

May 2021 – August 2021

University of Toronto (Co-supervised with David W. Zingg)

Toronto, Canada

Project: Optimization of summation-by-parts operators for minimal solution error

Yewon Lee, Bachelor of Applied Science summer student

May 2019 – August 2019

University of Toronto (Co-supervised with David W. Zingg and Masayuki Yano)

Toronto, Canada

Project: Comparative evaluation of energy- and entropy-stable discontinuous Galerkin and summation-by-parts methods

OPEN-SOURCE SOFTWARE CONTRIBUTIONS AS PRINCIPAL DEVELOPER

TrixiAtmo.jl

https://github.com/trixi-framework/TrixiAtmo.jl

Julia package extending the Trixi.jl numerical framework for conservation laws to enable the solution of atmospheric flow problems using a high-order discontinuous spectral-element dynamical core

StableSpectralElements.jl https://github.com/tristanmontoya/StableSpectralElements.jl

Julia framework for energy-stable and entropy-stable discontinuous spectral-element methods on general element types based on multidimensional and tensor-product formulations; emphasis on dispatched strategies for matrix-based and matrix-free operator evaluation

GHOST: Generalized High-Order Solver Toolbox https://github.com/tristanmontoya/GHOST

Python implementation of discontinuous Galerkin and flux reconstruction schemes in one or two spatial dimensions with various design choices

OTHER OPEN-SOURCE SOFTWARE CONTRIBUTIONS

Trixi.jl

https://github.com/trixi-framework/Trixi.jl

Modified mesh data type to enable the solution of partial differential equations on surfaces

NodesAndModes.jl

https://github.com/jlchan/NodesAndModes.jl

Added high-order symmetric quadrature rules on triangular and tetrahedral elements

TEACHING

Scientific Computing: Introduction to the Simulation of Atmospheric Flows April 2024 – July 2024 University of Cologne Cologne

Assisted in the development and delivery of a new graduate-level course on numerical methods for atmospheric flows, focusing on theoretical and computational aspects of modern high-order discretizations applied to atmospheric simulations; created final project in which students implement a discontinuous Galerkin solver for the shallow water equations on the cubed sphere in Julia and assess its effectiveness for a series of standard atmospheric test problems

SERVICE

Lab Representative, Computational Aerodynamics

Centre for Computational Science and Engineering

December 2021 – June 2024 Toronto, Canada

Member of the student organizing committee for an interdepartmental group of researchers at the University of Toronto across various disciplines of computational science and engineering

Editor, Physics and Mathematics Section

June 2022 – March 2024

Canadian Science Fair Journal

Volunteer editor and mentor for an open-access journal showcasing science projects by students at primary and secondary schools across Canada

Reviewer for Academic Journals

August 2022 – Present

TECHNICAL SKILLS

Programming 1	languages
Development t	tools

Julia, Python (NumPy/SciPy), C, C++, Matlab, Fortran, LATEX Unix shell, Git, GNU Make, Anaconda, Jupyter Notebook, VS Code, Vim, Emacs, Slurm

OTHER ACTIVITIES

Music (performing guitarist/bassist), cycling, alpine skiing (former ski instructor), non-fiction reading

CITIZENSHIP

Canada, France

REFERENCES

Available upon request