Вероятностный подход для задачи предсказания биологической активности ядерных рецепторов

Володин С. Е., Попова М., Стрижов В. В. sergei.volodin@phystech.edu, maria_popova@phystech.edu, strijov@ccas.ru

Цель исследования

Предсказание взаимодействия двух типов молекул: лиганд и рецепторов. Задача является важной для разработки различных лекарств. Из-за нехватки данных биохимическое моделирование [1] неприменимо.

Проблема

События реакции лиганда с различными рецепторами не независимы. Классификатор, не учитывающий их, имеет неоптимальный результат. [2]

Задача

Необходимо построить

- 1. вероятностную модель, учитывающую зависимости
- 2. бинарный классификатор

Постановка задачи

Задана выборка $\mathfrak{D} = \{(\mathbf{x}_i, \mathbf{y}_i)\} = \mathfrak{L} \sqcup \mathfrak{T}.$ $\mathbf{x}_i \in \mathbb{R}^n. \ \mathbf{y}_i \in \{0, 1, \square\}^l \ ($ задача класса MLC)

 ${f X}, {f Y}$ — случайные величины

1. Восстановление плотности

 $f(\mathbf{x}, \mathbf{y}|\mathbf{w}) = P(\mathbf{Y} = \mathbf{y}|\mathbf{X} = \mathbf{x}; \mathbf{w})$ — модель классификации.

Максимизируется правдоподобие выборки:

$$\mathbf{w}^* = \arg\max_{\mathbf{w} \in \mathbf{W}} \ln Q(\mathbf{f}|\mathbf{w}, \mathfrak{L})$$

2. Бинарный классификатор

 $L(\mathbf{y}, \mathbf{y}')$ — функция потерь

$$h(x) = \underset{\mathbf{y} \in \mathbf{Y}}{\arg\min} \, \mathbb{E}_{\mathbf{Y}|\mathbf{X} = \mathbf{x}} L(\mathbf{Y}, \mathbf{y})$$

Восстановление плотности

Probabilistic Classifier Chains [3]

1. Выразим искомую величину $P(\mathbf{y}|\mathbf{x})$:

$$P(\mathbf{y}|\mathbf{x}) = P(y_1|\mathbf{x}) \prod_{i=2}^{l} P(y_i|y_1, ..., y_{i-1}, \mathbf{x})$$

2. Задача распадается на n задач поиска

$$P(y_1|\mathbf{x}), P(y_2|y_1,\mathbf{x})..., P(y_l|y_1,...,y_{l-1},\mathbf{x})$$

- 3. Каждую оцениваем при помощи логистической регрессии.
- 4. Признаки для i-й: \mathbf{x} , а также $y_1,...,y_{i-1}$

Бинарный классификатор

Байесовское решающее правило:

$$h(x) = \underset{\mathbf{y} \in \mathbf{Y}}{\arg\min} \, \mathbb{E}_{\mathbf{Y}|\mathbf{X} = \mathbf{x}} L(\mathbf{Y}, \mathbf{y})$$

Все зависит от $L(\mathbf{y}, \mathbf{y}')$. Какая лучше? [4]

- 1. Hamming Loss: $L(\mathbf{y},\mathbf{y}')=\sum\limits_{i=1}^{l}[y_i\neq y_i'].$ h(x) не учитывает зависимости!
- 2. Subset Loss: $L(\mathbf{y}, \mathbf{y}') = [\mathbf{y} \neq \mathbf{y}']$

3.
$$L(\mathbf{y}, \mathbf{y}') = q(\sum_{i=1}^{l} [y_i \neq y_i'])$$

Решения для разных существенно различны.

		_	-	•
y_1	y_2	y_3	y_4	$P(\mathbf{y})$
0	0	0	0	0.30
0	1	1	1	0.17
1	0	1	1	0.18
1	1	0	1	0.17
1	1	1	0	0.18

Лучший по Subset Loss: (0,0,0,0) Лучший по Hamming Loss: (1,1,1,1)

Модельные данные

1 признак, l=3 класса. Плотность:

Модели:

- 1. РСС + решающее правило
- 2. Binary Relevance 1 лог. регрессий

Результаты:

- 1. Есть улучшение по Subset Loss
- 2. Нет улучшений по Hamming Loss
- 3. Нет улучшений по метрикам отдельных классов

Реальные данные

Взаимодействие лиганд и рецепторов. Признаки сгенерированы программой биохимической симуляции, ответы — результаты экспериментов.

- 1. 165 признаков, 8000 объектов
- 2. 12 классов (рецепторов), используется 3.
- 3. Высокая мультиколлинеарность

В ответах имеется большое количество пропусков.

Результаты:

- 1. Небольшое улучшение по Subset Loss
- 2. Нет улучшений по Hamming Loss
- 3. Нет улучшений по метрикам отдельных классов

Результаты

- 1. Предложена модель для предсказания взаимодействия, учитывающая зависимости между классами
- 2. Проведено сравнение модели с базовой
- 3. PCC лучше BR по метрике Subset Loss
- 4. Нет улучшений по отдельным классам

Дальнейшее развитие

- 1. Улучшение показателей по классам
- 2. Замена логистической регрессии на луч-ший алгоритм
- 3. Вычисление для всей выборки

Список литературы

- [1] Tong Q Xie XQ Myint KZ, Wang L. Molecular fingerprint-based artificial neural networks qsar for ligand biological activity predictions. *Molecular Pharmaceutics*, 2012.
- [2] M. Popova. Feature selection and multi-task prediction of biological activity for nuclear receptors. 11(1):111–112, 2015.
- [3] Eyke H.0 Krzysztof Dembczynski, Weiwei Cheng. Bayes optimal multilabel classification via probabilistic classifier chains. 2010.
- 4] Krzysztof Dembczynski. Multi-label classification: Label dependence, loss minimization, and reduction algorithms, 2013.

Вычислительный эксперимент

Использованы модельные данные, BR, PCC с различными $L(\mathbf{y}, \mathbf{y}')$ PCC (H) PCC (M) Метрика BRPCC(S)Hamming 0.37 ± 0.009 0.36 ± 0.02 0.36 ± 0.02 0.38 ± 0.04 Hamming 1 0.31 ± 0.03 0.31 ± 0.03 0.31 ± 0.02 0.31 ± 0.05 Hamming 2 0.45 ± 0.04 0.45 ± 0.04 0.45 ± 0.03 0.49 ± 0.05 Hamming 3 0.34 ± 0.03 0.3 ± 0.03 0.31 ± 0.04 0.34 ± 0.03 Precision 1 0.7 ± 0.06 0.7 ± 0.06 0.73 ± 0.05 0.64 ± 0.05 0.51 ± 0.01 Precision 2 0.55 ± 0.04 0.47 ± 0.04 0.46 ± 0.07 Precision 3 0.7 ± 0.06 0.56 ± 0.05 0.5 ± 0.1 0.66 ± 0.05 Recall 1 0.68 ± 0.04 0.68 ± 0.04 0.68 ± 0.03 0.71 ± 0.05 Recall 2 0.52 ± 0.1 0.54 ± 0.09 0.53 ± 0.1 0.48 ± 0.05 Recall 3 0.53 ± 0.06 0.48 ± 0.1 0.52 ± 0.07 0.49 ± 0.09 Subset 0.62 ± 0.06 0.78 ± 0.03 0.77 ± 0.05 0.77 ± 0.05