非完整规划

Motion Planning IV – Non-Holonomic Motion Planning

Some material from Howie Choset, J. Kuffner, M. Pivtoraiko, Matt Mason

Last time...

We learned about RRTs....

- But the standard version of sampling-based planners assume the robot can move in any direction at any time
- What about robots that can't do this?

Outline

- Non-Holonomic definition and examples
- Discrete Non-Holonomic Planning
- Sampling-based Non-Holonomic Planning

Holonomic vs. Non-Holonomic Constraints

- Holonomic constraints depend only on configuration
 - F(q, t) = 0 (note that they can be time-varying!)
 - Technically, these have to be bilateral constraints (no inequalities)
 - In robotics literature we ignore this so we can consider collision constraints as holonomic

Non-holonomic constraints are constraints that cannot be written in this form

Holonomic vs. Non-Holonomic Constraints

- Example: The kinematics of a unicycle
 - Can move forward and back
 - Can rotate about the wheel center
 - Can't move sideways

$$\dot{q} = (\dot{x}, \dot{y}, \dot{\theta})^T$$
 $w = (\sin \theta, -\cos \theta, 0)$
 $w\dot{q} = 0$ Constraint

- But wait, why can't we just integrate them to get a holonomic constraint?
- Can still reach any (x,y,θ) (so no constraint on configuration)
 - But may not be able to move in a certain direction *instantaneously*

Holonomic vs. Non-Holonomic Constraints

- Non-holonomic constraints are non-integrable, i.e. can't re-write them as holonomic constraints
 - Thus non-holonomic constraints must contain derivatives of configuration
 - They are sometimes called non-integrable differential constraints

- Thus, we need to consider how to move between configurations (or states) when planning
 - Previously we assumed we can move between arbitrary nearby configurations using a straight line

Constraint Taxonomy

bilateral	two-sided constraint, which can be expressed by equations of the form
	$F(\ldots) = 0.$
unilateral	a one-sided constraint, requiring an inequality $F() \ge 0$.
holonomic	a constraint that can be expressed as an equation in just the configura-
	tion variables, and possibly time, but independent of the rate variables,
	$F(\mathbf{q},t) = 0.$
nonholonomic	a constraint that <u>cannot</u> be expressed in the form $F(\mathbf{q}, t) = 0$, requiring
	either inequalities or rate variables.
scleronomic	a stationary constraint, expressible independent of time $F(\mathbf{q}, \dot{\mathbf{q}}) = 0$.
rheonomic	a moving constraint, involving time $F(\mathbf{q}, \dot{\mathbf{q}}, t) = 0$.

Mechanics of Robotic Manipulation, Matthew T. Mason, MIT Press, August 2001.

Note: uses the standard definition of holonomic (no inequalities allowed)

State Space vs. Control Space

State Space

- Control space
 - Speed or Acceleration
 - Steering

Example: Simple Car

Non-holonomic Constraint:

$$-\dot{x}\sin\theta + \dot{y}\cos\theta = 0.$$

• Motion model:

$$\dot{x} = u_s \cos \theta$$
$$\dot{y} = u_s \sin \theta$$
$$\dot{\theta} = \frac{u_s}{L} \tan u_{\phi}.$$

$$u_s$$
 = speed
 u_{ϕ} = steering angle

Moving between states (with no obstacles)

 Two-Point Boundary Value Problem (BVP): Find a control sequence to take system from state x_I to state x_G while obeying kinematic constraints.

- LOTS of methods for this
 - Shooting method: Pick initial guess, iteratively get closer to goal
 - Many "Steering" methods can be used (see LaValle Chapter 15.5)
- For motion planning, we only use this locally
 - Because it doesn't account for obstacles

Methods for Planning for Non-holonomic Systems

- Discrete search
 - Sequencing primitives
 - State lattice
- Sampling-based
 - PRM-style
 - RRT-style

Discrete Planning for Non-Holonomic Systems

- Two Well-known Alternatives:
 - 1. Search for sequence of primitives to get to a goal state
 - 2. Compute *State Lattice*, search for sequence of states in lattice
 - By construction of state lattice, can always get between these states

Discrete Planning Option 1: Sequencing Primitives

- Discretize control space
 - Barraquand & Latombe, 1993:
 - Motion primitives: 3 arcs (+ reverse) at κ_{max}
 - Cost = number of reversals
 - Search using Dijkstra's Algorithm
 - Disadvantage: Discontinuous curvature

Discrete Planning Option 1: Sequencing Primitives

- Choice of set of primitives affects
 - Completeness
 - Optimality
 - Speed
- Some algorithms build good (small) sets of primitives

Discrete Planning Option 2: State Lattice

- Pre-compute state lattice
- Two methods to get lattice:
 - Forward: For certain systems, can sequence primitives to make lattice
 - Inverse: Discretize space, use BVP solvers to find trajectories between states
- Impose continuity constraints at graph vertices
- Search state lattice like any graph (i.e. A*)

Traditional lattice yields discontinuous motion

Pivtoraiko et al. 2009

Discrete Planning Option 2: State Lattice

 Pre-compute swept volume of robot for each transition for faster collision check

Pivtoraiko et al. 2009

Sampling-Based Planning for Non-Holonomic Systems

- Forming a full state lattice is impractical for high dimensions, so sample instead.
- IMPORTANT: We are now sampling state space (position and velocity), not C-space (position only)
- Why is this hard?
 - Dimension of the space is doubled
 - Moving between points is harder (can't go in a straight line)
 - Distance metric is unclear
 - We usually use Euclidian, even though it's not the right metric

PRM-style Non-Holonomic Planning

- Sampling, graph building, and query strategies are all the same as regular PRM
- Problem: Local planner needs to reach an EXACT state (i.e. a given node) while obeying non-holonomic constraints
- In general: BVP problem, use general solver (slow)

- In practice local planner specialized to system type
- Example: For Reeds-Shepp car, can compute optimal path between nodes quickly

Break

RRT-style Non-Holonomic Planning

 RRT became famous partly because of its success as a method for non-holonomic planning

Sampling and tree building is the same as regular RRT

- Problem: Not all straight lines are valid, can't extend toward nodes
 - One solution: use motion primitives to get as close to target node as possible

RRTs for Non-Holonomic Systems

• Apply motion primitives (i.e. simple actions) at q_{near}

$$x' = f(x, u)$$
 - - - use action u from x to arrive at x'

chose
$$u_* = \underset{u_i}{\operatorname{arg\,min}} d(f(x, u_i), x_{rand})$$

- You probably won't reach x_{rand} by doing this
 - Key point: No problem, you're still exploring!

¹often called *Kinodynamic RRT*

RRTs and Distance Metrics

Hard to define d, the distance metric (needed to determine x_{near})

Euclidean is

the middle

somewhere in

Mixing velocity, position, rotation, etc.

How do you pick a good x_{near}?

Random Node Choice (bad distance metric)

Configurations are close according to Euclidian metric, but actual distance is large

RRT Node Choice (good distance metric)

BiDirectional Non-Holonomic RRT

How do we bridge these two points?

Non-holonomic Smoothing

Similar to holonomic case, paths produced can be highly suboptimal

Hovercraft with 2 Thrusters in 2D

Non-Holonomic Smoothing

- Smoothing methods:
 - General trajectory optimization
 - Convert path to cubic B-spline
 - Be careful about collisions
- Can we use shortcut smoothing?

RRTs can Handle High DOF

12DOF Non-Holonomic Motion Planning

Summary

- Non-holonomic constraints are constraints that must involve derivatives of position variables
- Discrete Non-Holonomic Planning
 - Option 1: Search for sequence of primitives to get to a goal state
 - Option 2: Compute State Lattice, search for sequence of states in lattice
- Sampling-based Non-Holonomic Planning
 - Adapt PRM to use BVP solver
 - Adapt RRT to use motion primitives (+ BVP solver for BiDirectional case)

Homework

- Read <u>IK Survey</u>
- HW 3 is posted