CSE 311 Quiz 5

Rohan Mukherjee

February 2, 2023

- 5. a) If $\alpha=0$, we see that $0\mid b$, which forces b to be 0, as the only multiple of 0 is 0 itself. Clearly then $\alpha=b$. The exact same scenario plays out if b=0, so we may exclude the case where $\alpha=0$ or b=0. Therefore, given $\alpha,b\in\mathbb{Z}\setminus 0$, if $\alpha\mid b$, then there is some $k\in\mathbb{Z}$ so that $b=\alpha k$. Similarly, as $b\mid \alpha$, there is some $l\in\mathbb{Z}$ so that $\alpha=b l$. Plugging the second equation into the first one, we see that b=b l k, and as $b\neq 0$, we see can divide both sides by b to get that 1=lk. The only way this is possible is if $l,k\in\{\pm 1\}$ (either $-1\cdot -1$, or $1\cdot 1$). Plugging in the value for l, we see that $\alpha=b$ or $\alpha=-b$, so we are done.
- 6. a) Let $P(n) = \sum_{k=0}^{n} k = \frac{n(n+1)}{2}$. Clearly $\sum_{k=0}^{0} k = 0 = 0(0+1)/2$, so the base case is finished. Now suppose for some arbitrary $l \in \mathbb{N}$ that P(l) holds. Then

$$\sum_{k=0}^{l+1} k = \left(\sum_{k=0}^{l} k\right) + (l+1) = \frac{l(l+1)}{2} + (l+1)$$

Where for the last equality we have used the inductive hypothesis. Simplifying the RHS, we get that

$$\frac{l(l+1)}{2} + (l+1) = \frac{l(l+1)}{2} + \frac{2l+2}{2} = \frac{l^2 + l + 2l + 2}{2}$$
$$= \frac{l^2 + 3l + 2}{2}$$
$$= \frac{(l+1)(l+2)}{2}$$

Which shows that P(l+1) holds. By the principal of mathematical induction, P(n) must be true for all $n \in \mathbb{N}$, and we are done.