

Overview

- What is Ganeti
- What is it good for
- How does it work
- NDGF usage

What is Ganeti

- A software stack for managing virtual machines
 - Like VMware or OpenStack or libvirt or ...
 - Supporting Xen or KVM hypervisors
 - Handles
 - Storage: volume creation and assignment
 - OS installation and customization
 - Networking
 - Startup, shutdown, live migration, failover of instances
 - Written in Python and Haskell
 - Aimed for ease of use and fast and simple error recovery after physical failures on commodity hardware

What is Ganeti

- Mainly developed by Google for their own use
 - Handles VMs for corporate network (office servers, remote desktops etc), not production services (what non-employees see)
- Outside Google
 - Debian
 - NDGF-T1
 - Lufthansa
 - Etc
- Maintained by Google with significant external contributions

What is Ganeti good at

- Running highly available services on a small set of hardware
 - DRBD or external reliable block devices (CEPH, Enterprise storage)
 - Live migrations in case of impending hardware failure
 - Or reboot into new kernel security upgrade on the hardnode
 - Failover handled automatically in case of sudden hardware failure
 - No external dependencies beyond networking
 - Well, if you use external storage...
 - But no extra servers or services needed
 - Typical reasonable cluster size, 3 50 hardnodes
 - Multiple clusters integrate well though in admin tools

- gnt-cluster init ...
 - Creates a cluster of ganeti nodes
 - We'll assume DRBD for storage, as at NDGF
 - One member is a master node
 - Others can take over with master-failover if they can get quorum

- gnt-instance add
 - Creates VMs, with OS install scripts (image, debootstrap, pxe)
 - Each VM has a secondary location (DRBD mirror, sync)

- gnt-instance migrate
 - No noticable service impact from live migration, <1s network pause
 - Unless something is broken...

- Full evacuation of a node
 - Removing a node for longer
 - Or wanting full redundancy all the time

- gnt-node evacuate to move secondary instances
 - Removing a node for longer
 - Or wanting full redundancy all the time

- gnt-node evacuate to move secondary instances
 - Removing a node for longer
 - Or wanting full redundancy all the time

- hbal -L -X
 - Rebalance to minimize a cost function based on uneven distribution

Instance Creation

- Ganeti sets up the VM with specified hardware.
- An OS Definition describes how to install the VM:
 - Image based:
 - ganeti-instance-debootstrap
 - ganeti-instance-image (← our option, next slides)
 - ganeti-os-defs
 - snf-image
 - Automated installation (PXE booting, i.e. FAI, kickstart).
 - Manual using CD medium/image and VNC or serial console, e.g. for initial image creation.

Instance Creation

Instance Creation

High availability

- Ganeti is geared towards accepting loss of any hardware compontent
 - If you have common points of failure (racks, switches, etc), tagging node groups so that primary and secondary are put separately
 - A watcher component will automatically reconnect storage (after a reboot), failover VMs if primary node goes down, etc
 - gnt-cluster verify checks that everything is OK, including N+1 for resources
- Separate internal fast network for replication and migration strongly encouraged

- Networking
 - Bridging, easy default and gives VMs proper IPs
 - Host routing
 - Arbitrarily advanced SDN plugins
- Other storage
 - Native CEPH RBD support
 - Enterprise storage via plugins
 - Volume creation, exporting to the right nodes, release, etc.
- Very featureful APIs
 - For self-service portals, provisioning frameworks, etc

NDGF Ganeti use

Production

- Two servers with direct 10Gbit/s connection
- Running Ganeti for dCache head nodes, nagios, accoutning, DNS hidden master, monitoring
- Also running postgresql on hardware in parallel
 - Main concern was adding latency to sync writes
- Two servers = less automatic failover, but still taking advantage of live migrations to minimze downtime length
- One big headnode plus two doors
- Everything can run on one node in case of catastrophy

NDGF Ganeti use

- "Level2 services"
 - Non-critical but useful services
 - No facility guarantees outside office hours, etc
 - As I mentioned in site report, repurposed condensed pool nodes
 - Running even elasticsearch in redundant VMs
 - In part to keep Ganeti knowledge sharp
 - Very seldom a need to add or remove nodes from the production cluster, or rebalance VMs
 - 10GBase-T internal network, 1GBase-T external

NDGF Ganeti issue

- One strangeness with KVM live migrations
 - Only affects one VM, but it is the central dCache node...
 - Anyone else seen this with KVM live migrations?

Questions?

