3 задача: Количество различных путей

1 модуль, 2 семестр

ФИВТ МФТИ, 2019

Описание by Илья Белов

1. Текст задачи

Дан невзвешенный неориентированный граф. В графе может быть несколько кратчайших путей между какими-то вершинами. Найдите количество различных кратчайших путей между заданными вершинами. Требуемая сложность O(V+E).

Ввод: v:кол-во вершин(макс. 50000), n:кол-во ребер(макс. 200000), n пар реберных вершин, пара вершин v, w для запроса.

Вывод:количество кратчайших путей от v к w

in	out
4	2
5	
0 1	
0 2	
1 2	
1 3	
2 3	
0 3	

Иллюстрация примера:

2. Описание алгоритма

Запускаем BFS из начальной вершины. Для каждой посещённой вершины динамически вычисляем количество способов попадания в эту вершину. Как только мы доходим до конечной вершины, прерываем алгоритм

3. Доказательство корректности

Докажем, что правильное количество путей в некую вершину будет записано по завершению итерации ("слоя" расстояний), в которой эта вершина была обнаружена и положена в очередь. При обработке вершин с большим расстоянием до source это число изменяться не будет

Пусть от начальной вершины v до некоторой вершины u расстояние d. Выберем момент времени когда в очереди находятся все вершины, от которых расстояние до начальной вершины d-1 (далее такие вершины будем обозначать V_{-1}) и только они (такой момент времени всегда найдётся в связи с принципом работы BFS). Из

некоторых вершин V_{-1} есть рёбра в u. После обработки всех вершин из V_{-1} в paths[u] будет записано количество путей длины d через вершины V_{-1} . После этого начнётся обработка вершин V_{0} (с расстоянием d до v). Но если из этих вершин есть рёбра в u, то они уже будут частью пути длины d+1, то есть это будут уже не кратчайшие пути. Далее это расстояние будет только увеличиваться, значит после обработки всех V_{-1} количество кратчайших путей уже было найдено

Из доказанного индуктивно следует, что после обнаружения конечной вершины можно перестать помещать следующие вершины в очередь. Ответ уже будет найден после обработки вершин, лежащих в очереди до обнаружения конечной вершины

4. Время работы и дополнительная память

$$T = O(V + E)$$
$$M = O(V)$$

5. Доказательство времени работы и дополнительной памяти

а) Время работы:

Алгоритм состоит из одного запуска BFS, время работы которого составляет T = O(V + E)

б) Дополнительная память:

Размер контейнеров для: очереди, буфера для следующих вершин, расстояний, количества путей - не превышает V , значит M = O(V)