

②

AD-A227 029

OFFICE OF NAVAL RESEARCH

Grant N00014-90-J-1193

TECHNICAL REPORT No. 24

Monte-Carlo Simulation of Polarization-Selective Spectral Hole Burning
in Fractal Clusters

by

Tapio T. Rantala, Mark I. Stockman and Thomas F. George

Prepared for Publication

in

Scaling in Disordered Materials

Edited by J. P. Stokes

Materials Research Society, Pittsburgh

Departments of Chemistry and Physics
State University of New York at Buffalo
Buffalo, New York 14260

September 1990

Reproduction in whole or in part is permitted for any purpose of the
United States Government.

This document has been approved for public release and sale;
its distribution is unlimited.

DTIC
ELECTED
SEP 20 1990
S E D
G

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

1a. REPORT SECURITY CLASSIFICATION Unclassified		1b. RESTRICTIVE MARKINGS	
2a. SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION/AVAILABILITY OF REPORT Approved for public release; distribution unlimited	
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE			
4. PERFORMING ORGANIZATION REPORT NUMBER(S) UBUFFALO/DC/90/TR-24		5. MONITORING ORGANIZATION REPORT NUMBER(S)	
6a. NAME OF PERFORMING ORGANIZATION Depts. Chemistry & Physics State University of New York	6b. OFFICE SYMBOL (if applicable)	7a. NAME OF MONITORING ORGANIZATION	
6c. ADDRESS (City, State, and ZIP Code) Fronczak Hall, Amherst Campus Buffalo, New York 14260		7b. ADDRESS (City, State, and ZIP Code) Chemistry Program 800 N. Quincy Street Arlington, Virginia 22217	
8a. NAME OF FUNDING/SPONSORING ORGANIZATION Office of Naval Research	8b. OFFICE SYMBOL (if applicable)	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER Grant N00014-90-J-1193	
8c. ADDRESS (City, State, and ZIP Code) Chemistry Program 800 N. Quincy Street Arlington, Virginia 22217		10. SOURCE OF FUNDING NUMBERS PROGRAM ELEMENT NO. PROJECT NO. TASK NO. WORK UNIT ACCESSION NO.	
11. TITLE (Include Security Classification) Monte-Carlo Simulation of Polarization-Selective Spectral Hole Burning in Fractal Clusters			
12. PERSONAL AUTHOR(S) Tapio T. Rantala, Mark I. Stockman and Thomas F. George			
13a. TYPE OF REPORT	13b. TIME COVERED FROM _____ TO _____	14. DATE OF REPORT (Year, Month, Day) September 1990	15. PAGE COUNT 5
16. SUPPLEMENTARY NOTATION Prepared for publication in <u>Scaling in Disordered Materials</u> , Edited by J. P. Stokes, Materials Research Society, Pittsburgh			
17. COSATI CODES		18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) FRACTAL CLUSTERS POLARIZATION SELECTIVE MONTE CARLO SIMULATION PHOTOMODIFICATION SPECTRAL HOLE BURNING COLLOIDAL SOLUTIONS	
19. ABSTRACT (Continue on reverse if necessary and identify by block number) Theoretical and numerical simulations of spectral hole burning in fractal clusters are carried out. Selective photofragmentation of fractals induced by powerful laser radiation is considered, as observed in silver clusters in colloidal solutions and gels.			
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT <input checked="" type="checkbox"/> UNCLASSIFIED/UNLIMITED <input checked="" type="checkbox"/> SAME AS RPT. <input type="checkbox"/> DTIC USERS		21. ABSTRACT SECURITY CLASSIFICATION Unclassified	
22a. NAME OF RESPONSIBLE INDIVIDUAL Dr. David L. Nelson		22b. TELEPHONE (Include Area Code) (202) 696-4410	22c. OFFICE SYMBOL

MONTE-CARLO SIMULATION OF POLARIZATION-SELECTIVE SPECTRAL HOLE BURNING IN FRACTAL CLUSTERS

TAPIO T. RANTALA^{*}, MARK I. STOCKMAN[†] and THOMAS F. GEORGE[‡]

^{*} Department of Physics, University of Oulu, SF-90570, Oulu, Finland

[†] Departments of Physics & Astronomy and Chemistry, Center for Electronic & Electro-optic Materials, 239 Fronczak Hall, State University of New York at Buffalo, Buffalo, NY 14260

[‡] Institute of Automation & Electrometry, Siberian Branch of the USSR Academy of Sciences

INTRODUCTION

Fractals, objects of noninteger dimensionality embedded into usual (three dimensional) space, possess many nontrivial mathematical properties [1-2]. There exists a series of physical systems whose geometry can be adequately described as fractal [3-5]. We shall restrict ourselves to the study of one of such physical realizations of fractals, namely fractal clusters [6] (simply called below as fractals). More specifically, we shall consider theoretically the selective photomodification of fractals induced by powerful laser radiation. Experimentally, this phenomenon has recently been observed [6] in silver clusters in colloidal solutions and gels.

The effect of selective photomodification observed in Ref. [6] consists in burning out the spectral hole in the absorption contour of a fractal at the frequency close to that of the exciting laser radiation. The spectral hole exists at times on the order of months or longer and, thus, can be considered as persistent. The primary hole is highly dichroic: it is observed only in the polarization of the probe light coinciding with that of the exciting radiation and is practically absent for the normal polarizations. In solutions this dichroism relaxes with the rotational diffusion times of the clusters, and in gels it does not significantly change for months. The experimental data [6] indicate that the photomodification has a threshold in the intensity of the laser radiation. Below we shall exploit the last feature to develop the theory of the photomodification which should explain its selectivity and give further predictions to stimulate experimental study.

THEORY AND NUMERICAL SIMULATION OF SPECTRAL HOLE BURNING IN FRACTALS

The fractal is modelled as the set of N polarizable particles, called monomers, located at the points \mathbf{r}_i , $i = 1, \dots, N$. The total size of the fractal R_c is assumed to be much less than the incident light wavelength λ . Therefore the electric field $\mathbf{E}^{(0)}$ of the light wave can be considered to be the same at the sites of all the monomers. The external plus local electric field (i.e., the integral field of all the other monomers) induce on the i^{th} monomer a transition dipole moment \mathbf{d}_i oscillating with the light frequency, which obeys the well-known system of equations

$$d_{i\alpha} = \chi_0 E_\alpha^{(0)} - \chi_0 \sum_{j=1}^N [\delta_{\alpha\beta} - 3n_\alpha^{(ij)} n_\beta^{(ij)}] r_{ij}^{-3} d_{j\beta} . \quad (1)$$

where the Greek subscripts stand for tensor components (summation over repeated indices is implied), and the Latin indices stand for ordinal numbers of monomers; χ_0 is the dipolar polarizability of an individual (isolated) monomer; $\mathbf{r}_{ij} = \mathbf{r}_i - \mathbf{r}_j$; and $n^{(ij)} = \mathbf{r}_{ij}/R_c$.

The properties of the monomer enter the system (1) only via the polarizability χ_0 . Taking this into account, we shall consider as the spectral variable not the light

frequency ω , but the quantity $X \equiv \text{Re}\chi_0^{-1}$. As the characteristic of the dissipation in the monomer, we shall use the parameter $\delta \equiv \text{Im}\chi_0^{-1}$. To make the connection to experiment, let us specify the relation between X and ω in a model which is realistic, in particular, for clusters obtained by aggregation in colloidal solutions. This model considers the monomer as a macroscopic sphere with radius R_m , consisting of the material with a complex dielectric permittivity $\epsilon \equiv \epsilon' + i\epsilon''$. The polarizability of such a sphere is given by the well-known expression $\chi_0 = R_m^3(\epsilon - 1)(\epsilon + 2)^{-1}$. For the metallic sphere, the permittivity is well described by the Drude formula $\epsilon = \epsilon_0 - \omega_p^2/[\omega(\omega + i\gamma)]^{-1}$, where $\epsilon_0 = \text{const}$ is the contribution of the interband transitions (e.g., for silver $\epsilon_0 \approx 5$), ω_p is the electron plasma frequency, and γ is the electron collision frequency. For most metals, in particular, for the noble metals, $\gamma \ll \omega_p$ and, consequently, $\epsilon'' \ll \epsilon'$. In this case, from (7) and (25), one can see that $X(\omega)$ turns to zero at the point of the surface plasmon resonance, $\omega = \omega_s$, where $\epsilon' = -2$. From (26) it follows that $\omega_s \approx \omega_p(\epsilon_0 + 2)^{-1/2}$. In the vicinity of the surface plasmon resonance, X and δ are simply expressed in terms of the detuning from the resonance $\Omega = \omega - \omega_s$, and the transition dipole moment of the resonance $|d_{12}|^2 = 3R_m^3\hbar\omega_p/[2(\epsilon_0 + 2)^{3/2}]$, namely $X = \hbar\Omega/|d_{12}|^2$, $\delta = \hbar\gamma/2|d_{12}|^2$.

The theory is based on the above mentioned assumption of the threshold character of the photomodification. In addition it is assumed that the photomodification is local, i.e. only those monomers are modified for which the amplitude of the local field E_i exceeds the threshold magnitude E_{th} . The latter depends on the composition of the monomer and the embedding medium, and also on the specific mechanism of the photomodification. Note that the local field is simply expressed through the solution of Eq. (1), $E_i = d_i/\chi_0$. For the sake of definiteness, we also suppose that the modified monomers do not contribute to the optical absorption. This assumption is suggested by the estimates [6] that the modification mechanism, apparently, consists of melting and evaporation of the monomer material.

The numerical study has been carried out in the following way. Three types of fractals are generated and used in the simulation: random walks (the fractal dimension $D = 2$), self-avoiding random walks ($D \approx 1.7$) and Witten-Sander clusters ($D \approx 2.5$), where the number of clusters of each type is 1000, with mean number of the monomers in the cluster as $\bar{N} = 50$. The results obtained for all the three fractal types are quite similar, so that we shall give all the numerical illustrations only for the random-walk fractals.

For each individual fractal, the basic system of equations (1) is solved numerically and the factor G_i of enhancement of the local field for the i^{th} monomer is found, $G_i = |E_i|^2 / (E^{(0)})^2$. The above-discussed condition of modification is taken in the form

$$G_i \geq G_{th}, \quad G_{th} \equiv (E_{th}/E^{(0)})^2. \quad (2)$$

Those monomers for which this condition is met are excluded from the fractal. After that, the system (1) is solved once again for the modified fractals (with the excluded monomers). The optical absorption A per one monomer is determined from the formula $A = \text{Im}\chi_{zz}$, where $\chi_{zz} = \langle d_z \rangle / E^{(0)}$, and the polarization of the exciting wave is, for the sake of definiteness, directed along the z -axis. Note that the absorption cross-section σ_a per one monomer is related to A by $\sigma_a = 4\pi A/3$. It can be shown that the number ΔN of the modified (excluded) monomers is expressed as $\Delta N = \int_{-\infty}^{\infty} \Delta A(X) dX$, where ΔA is the change of absorption upon the photomodification.

In Ref. [7] we have found the estimate G of the mean of G_i over the ensemble of fractals in the scaling region ($\delta \ll |X| \ll R_0^{-3}$) as

$$G \equiv \langle G_i \rangle \sim Q(R_0^3 |X|)^{d_0+1}. \quad (3)$$

where R_0 is the characteristic separation between the nearest monomers in the fractal. $d_0 \approx 0.4$ is the optical spectral dimension, and $Q = (R_0^3 \delta)^{-1}$ is the quality factor of the resonance in the monomer. For many monomer materials, including the noble metals, the Q-factor is large: e.g., for silver, $Q = 3 - 30$ depending on the defect concentration in the metal determined by the preparation method. Thus, the factor G is large, which means that fluctuations of the local field are much greater than the exciting field $E^{(0)}$. This fact, in the light of Eq. (2), allows us to predict that the photomodification takes place at high values of $G_{th} \sim G$. In other words, the characteristic light intensity of photomodification of fractals is much smaller (by the factor $\sim G^{-1} \ll 1$) than the threshold intensity of the isolated monomer modification. This is a consequence of large fluctuations of local fields in the nontrivial fractals and, also, of the high Q-factor of the monomer resonance (cf. Eqs. (2) and (3)).

In Fig. 1 we present an example of the dependence of the relative number of modified (removed) monomers $\Delta N/N$ on the threshold parameter G_{th} , with the value X^* of the X-parameter for the modifying radiation as $X^* = 3.0$. One can see that, in accord with the above arguments, the photomodification starts at large values of G_{th} , which correspond to small exciting field intensity $E^{(0)}$ ².

Fig. 1. The relative amount of the modified monomers as the function of the threshold parameter G_{th} (2) calculated for $Q = 3$.

An example of the calculated fractal absorption contour is shown in Fig. 2. One can see that this contour is a broad peak centered at the zero X , corresponding to the frequencies near the surface-plasmon resonance. The differential spectrum of the photoburning, i.e., the difference between the fractal absorption before and after the modification, is shown in Fig. 3 for the two polarizations of the probing field and $X^* = -1$. It follows from this figure that for the parallel polarization the spectral hole is burned out, centered at the frequency of the exciting radiation ($X \approx X^*$). For the perpendicular polarization, the spectral hole at $X \approx X^*$ practically disappears, while it emerged at the "mirror" frequency at $X \approx -X^*/2$. This can be understood in the framework of the binary approximation developed in Ref. 8. Thus, in fact, the spectral hole is highly dichroic. As the numerical results show, in accord with the theoretical estimates and Figs. 1 and 2, the width of the hole burned (in the X -variable) is on order of Q^{-1} , while the total width of the fractal contour is on order of unity independently of the Q-parameter. Thus, the total number of holes, which can be burned out in each of the two polarizations, can be estimated as approximately $2Q$.

Fig. 2. Absorption spectrum of the clusters calculated for $Q = 3$

Fig. 3. Difference in the absorption spectrum caused by the photomodification calculated for $Q = 3$, $X^* = -1$, with the polarization parallel (curve 1) and perpendicular (curve 2) to that of the modifying radiation

CONCLUDING DISCUSSION

The theory presented above describes a qualitative picture of the polarization-selective persistent spectral-holes photoburning in fractals, which has been experimentally observed [6]. The estimate obtained on the basis of the numerical results shows that it is possible to burn out in a given spatial region of a fractal media the number of $\approx 2Q$ frequency- and polarization-resolvable spectral holes. This number may be on order of 10 for the realistic value of $Q = 1 - 10$. Thus, the fractal cluster media are promising materials for high-density optical recording of information.

ACKNOWLEDGMENTS

This research was supported by the office of Naval Research and the National Science Foundation under Grant CHE-8922288.

REFERENCES

1. B. M. Mandelbrot, *Fractals, Form, Chance, and Dimension* (Freeman, San Francisco, 1977).
2. B. B. Mandelbrot, *The Fractal Geometry of Nature* (Freeman, San Francisco, 1982).
3. Ya. B. Zel'dovich and D. D. Sokolov, *Uspekhi fiz. nauk* **146**, 493 (1985) [Translation: Sov. Phys. Usp. **28**, 608 (1985)].
4. L. Pietronero and E. Tosatti, Eds., *Fractals in Physics* (North-Holland, Amsterdam, 1986).
5. B. M. Smirnov, *Uspekhi fiz. nauk* **149**, 177 (1986) [Translation: Sov. Phys. Usp. **29**, 481 (1986)].
6. A. V. Karpov, A. K. Popov, S. G. Rautian, V. P. Safonov, V. V. Slabko, V. M. Shalaev and M. I. Stockman, *Pis'ma ZhETF* **48**, 528 (1988) [Translation: JETP Lett. **48**, 571 (1988)].
7. V. A. Markel, L. S. Muratov, M. I. Stockman and T. F. George, in the present Proceedings.
8. V. M. Shalaev and M. I. Stockman, *ZhETF* **92**, 509 (1987) [Translation: Sov. Phys. JETP **65**, 287 (1987)]; *Z. Phys. D* **10**, 71 (1988).

TECHNICAL REPORT DISTRIBUTION LIST - GENERAL

Office of Naval Research (2)
Chemistry Division, Code 1113
800 North Quincy Street
Arlington, Virginia 22217-5000

Commanding Officer (1)
Naval Weapons Support Center
Dr. Bernard E. Douda
Crane, Indiana 47522-5050

Dr. Richard W. Drisko (1)
Naval Civil Engineering
Laboratory
Code L52
Port Hueneme, CA 93043

David Taylor Research Center (1)
Dr. Eugene C. Fischer
Annapolis, MD 21402-5067

Dr. James S. Murday (1)
Chemistry Division, Code 6100
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. David L. Nelson (1)
Chemistry Division
Office of Naval Research
800 North Quincy Street
Arlington, Virginia 22217

Dr. Robert Green, Director (1)
Chemistry Division, Code 385
Naval Weapons Center
China Lake, CA 93555-6001

Chief of Naval Research (1)
Special Assistant for Marine
Corps Matters
Code 00MC
800 North Quincy Street
Arlington, VA 22217-5000

Dr. Bernadette Eichinger (1)
Naval Ship Systems Engineering
Station
Code 053
Philadelphia Naval Base
Philadelphia, PA 19112

Dr. Sachio Yamamoto (1)
Naval Ocean Systems Center
Code 52
San Diego, CA 92152-5000

Dr. Harold H. Singerman (1)
David Taylor Research Center
Code 283
Annapolis, MD 21402-5067

Defense Technical Information Center (2)
Building 5, Cameron Station
Alexandria, VA 22314

Acceptance Date	
X	
Justification	
By _____	
Distribution/ _____	
Availability Codes	
Dist	Avail and/or Special
A-1	

FY90 Abstracts Distribution List for Solid State & Surface Chemistry

Professor John Baldeschwieler
Department of Chemistry
California Inst. of Technology
Pasadena, CA 91125

Professor Paul Barbara
Department of Chemistry
University of Minnesota
Minneapolis, MN 55455-0431

Dr. Duncan Brown
Advanced Technology Materials
520-B Danury Rd.
New Milford, CT 06776

Professor Stanley Bruckenstein
Department of Chemistry
State University of New York
Buffalo, NY 14214

Professor Carolyn Cassady
Department of Chemistry
Miami University
Oxford, OH 45056

Professor R.P.H. Chang
Dept. Matls. Sci. & Engineering
Northwestern University
Evanston, IL 60208

Professor Frank DiSalvo
Department of Chemistry
Cornell University
Ithaca, NY 14853

Dr. James Duncan
Federal Systems Division
Eastman Kodak Company
Rochester, NY 14650-2156

Professor Arthur Ellis
Department of Chemistry
University of Wisconsin
Madison, WI 53706

Professor Mustafa El-Sayed
Department of Chemistry
University of California
Los Angeles, CA 90024

Professor John Eyler
Department of Chemistry
University of Florida
Gainesville, FL 32611

Professor James Garvey
Department of Chemistry
State University of New York
Buffalo, NY 14214

Professor Steven George
Department of Chemistry
Stanford University
Stanford, CA 94305

Professor Tom George
Dept. of Chemistry & Physics
State University of New York
Buffalo, NY 14260

Dr. Robert Hamers
IBM T.J. Watson Research Center
P.O. Box 218
Yorktown Heights, NY 10598

Professor Paul Hansma
Department of Physics
University of California
Santa Barbara, CA 93106

Professor Charles Harris
Department of Chemistry
University of California
Berkeley, CA 94720

Professor John Hemminger
Department of Chemistry
University of California
Irvine, CA 92717

Professor Roald Hoffmann
Department of Chemistry
Cornell University
Ithaca, NY 14853

Professor Leonard Interrante
Department of Chemistry
Rensselaer Polytechnic Institute
Troy, NY 12181

Professor Eugene Irene
Department of Chemistry
University of North Carolina
Chapel Hill, NC 27514

Dr. Sylvia Johnson
SRI International
333 Ravenswood Avenue
Menlo Park, CA 94025

Dr. Zakya Kafafi
Code 6551
Naval Research Laboratory
Washington, DC 20375-5000

Professor Larry Kesmodel
Department of Physics
Indiana University
Bloomington, IN 47403

Professor Max Lagally
Dept. Metal. & Min. Engineering
University of Wisconsin
Madison, WI 53706

Dr. Stephen Lieberman
Code 522
Naval Ocean Systems Center
San Diego, CA 92152

Professor M.C. Lin
Department of Chemistry
Emory University
Atlanta, GA 30322

Professor Fred McLafferty
Department of Chemistry
Cornell University
Ithaca, NY 14853-1301

Professor Horia Metiu
Department of Chemistry
University of California
Santa Barbara, CA 93106

Professor Larry Miller
Department of Chemistry
University of Minnesota
Minneapolis, MN 55455-0431

Professor George Morrison
Department of Chemistry
Cornell University
Ithaca, NY 14853

Professor Daniel Neumark
Department of Chemistry
University of California
Berkeley, CA 94720

Professor David Ramaker
Department of Chemistry
George Washington University
Washington, DC 20052

Dr. Gary Rubloff
IBM T.J. Watson Research Center
P.O. Box 218
Yorktown Heights, NY 10598

Professor Richard Smalley
Department of Chemistry
Rice University
P.O. Box 1892
Houston, TX 77251

Professor Gerald Stringfellow
Dept. of Matls. Sci. & Engineering
University of Utah
Salt Lake City, UT 84112

Professor Galen Stucky
Department of Chemistry
University of California
Santa Barbara, CA 93106

Professor H. Tachikawa
Department of Chemistry
Jackson State University
Jackson, MI 39217-0510

Professor William Unertl
Lab. for Surface Sci. & Technology
University of Maine
Orono, ME 04469

Dr. Terrell Vanderah
Code 3854
Naval Weapons Center
China Lake, CA 93555

Professor John Weaver
Dept. of Chem. & Mat. Sciences
University of Minnesota
Minneapolis, MN 55455

Professor Brad Weiner
Department of Chemistry
University of Puerto Rico
Rio Piedras, Puerto Rico 00931

Professor Robert Whetten
Department of Chemistry
University of California
Los Angeles, CA 90024

Professor R. Stanley Williams
Department of Chemistry
University of California
Los Angeles, CA 90024

Professor Nicholas Winograd
Department of Chemistry
Pennsylvania State University
University Park, PA 16802

Professor Aaron Wold
Department of Chemistry
Brown University
Providence, RI 02912

Professor Vicki Wysocki
Department of Chemistry
Virginia Commonwealth University
Richmond, VA 23284-2006

Professor John Yates
Department of Chemistry
University of Pittsburgh
Pittsburgh, PA 15260