Suman K. Gunnala

email sumankgunnala@gmail.com mobile 817.372.5972

TECHNICAL SKILLS

Data: Relational/non-relational databases, Hadoop, Apache Spark, High Performance Computing Systems, Unix, Logstash

Programming: C, Python [pandas, numpy, scipy, scikit-learn, matplotlib], SQL, MATLAB, TensorFlow/Keras, Shell Scripting, Data Visualization [d3.js, Tableau]

Analytics: Machine/Deep Learning: Feature engineering, Time Series Forecasting, CNNs/RNNs, NLP, Electromagnetics and Wireless Communication Standards, Statistical Analysis, Experimental Set Up, Hands-on Radio Frequency Experiments, Scientific Presentations, Communicating Scientific Results

EDUCATION

Masters in Data Science and Engineering	University of California, San Diego - Sep 2016 – Jun 2018
Doctoral Candidate, Electrical Engineering	University of Texas, Arlington - Aug 2006 - Aug 2010
Masters in Electrical Engineering	University of Texas, Arlington - Aug 2004 - Aug 2006

PROJECTS

Lung Nodule Classification and Localization with 2D/3D CNNs - masters thesis

- Designed end-to-end CNN pipeline with AWS, HDF5 and Keras/TensorFlow using the LUNA16 dataset
- Built a classification ResNet model and currently working on a localization, segmentation tasks using U-NET
- Validation through ROC curves shows model performs better than commercial CAD systems

Predicting Amazon Review Helpfulness Ratio

- Feature engineering using transformation and NLP techniques
- Implemented ensemble algorithms: XGBoost and random forest models to predict Amazon product review helpfulness
- Achieved a MAE of 0.176 compared to a baseline model score of 0.261

Super Resolution Radar Imaging Based on Compressive Sampling - doctoral thesis

- Compressive sampling based radar imaging approach to model targets as energy content of scattering centers
- Super-resolution radar images to detect objects above rough surfaces emulating objects on a ocean surface

Mitigation of Window Effects in Radar Imagery Using Wavelets - masters thesis

· Proposed a physics based approach using wavelets for clutter suppression and mitigating window effects

Other academia and self motivated projects

 Image segmentation and classification using Tensorflow, Time series forecasting using LSTMs, Image and Video captioning using CNNs and RNNs, NLP of news data, Super-resolution imaging using Auto encoders

RECENT EXPERIENCE

Data Scientist/Software Applications Engineer

Qualcomm - March 2012 - Present

- Engineer Machine learning model for predicting HPC cluster environment utilization
- Pattern analysis for 5 years HPC computing environment data with Hadoop environment
- Time-series forecasting for resource need demand forecasting

- Commercialization of embedded software and systems development of wireless standards
- Proficient in end to end protocol of wireless standards such as WCDMA, and LTE
- Commercialization lead for China OEM to launch in North American carrier

RF Engineer

Ericsson - Sep 2010 - March 2012

- RF optimization engineer for live cellular networks based on fields measurements and RF planning tools
- Proposed optimization strategies through field trails and debugging call flows to improve network performance

Adjunct Faculty/Graduate Researcher

University of Texas, Arlington - Aug 2006 - Aug 2010

- Instructor for Electromagnetics II
- Researcher in wave scattering research center focused on Antenna design, radar imaging and signal processing,
 Compressive sampling based radar imaging, and RF measurements

FIRST AUTHOR PUBLICATIONS

- [1] S. K. Gunnala *et al.*, "Wideband Cavity-Backed Slot Antenna for Ground Penetrating Free of Direct Ground Bounce", Electromagnetics Journal, Vol. 31, Iss. 3, pp: 192 214, 2011.
- [2] S. K. Gunnala, et al., "An Ultra-Wideband Cavity Backed Slot Antenna Matched to Various Ground Media," IEEE APS and URSI Conference, 2011.
- [3] S. K. Gunnala, and S. Tjuatja "Target detection above rough surfaces in microwave imaging using compressive sampling," pp.3498 3501, IGARSS, July 2010.
- [4] S. K. Gunnala, and S. Tjuatja "Superresolution ISAR imaging using Compressive Sampling," Proc. SPIE, Vol. 7699-8, Orlando, April 2010.
- [5] S. K. Gunnala, *et al.*, "Localization of scattering centers in radar imaging based on sparsity constraints," Proc. SPIE, Vol. 7337, 73370J (2009); DOI:10.1117/12.818952
- [6] S. K. Gunnala, et al., "Radar Target Modeling Based on Energy Content of Scattering Centers," presented at PIERS 2009 Beijing proceedings, china.
- [7] S. K. Gunnala, et al., "Subsurface sensing of near surface object using cavity backed slot (CBS) antenna," Proceedings of IEEE Geoscience and Remote Sensing International Symposium, vol. 2, pp. II-189- II-192, July 2008.
- [8] S. K. Gunnala, *et al.*, "A novel wide band slot antenna for ground penetrating radar," presented at IEEE APS International Symposium, San Diego, July 2008.
- [9] S. K. Gunnala, et al., "A Broadband Proximity Antenna for Subsurface Sensing," presented at PIERS 2008 proceedings at Hangzhou, china.

RELEVANT COURSEWORK

Python for Data Analysis • Database Management Systems • Probability & Statistics using Python • Data Analysis using Spark • Machine Learning and Deep learning • Beyond Relational Data Models • Data Visualization • Data Integration and ETL • Computational Methods in Electromagnetics • Digital Signal Processing • Random Signals and Noise • Statistical Signal Processing • Wavelets and Filter Banks • Propagation Modeling • Neural Networks • Wireless Communications • Digital Communications • Antenna system theory