\cap H	T	I Int	roduction générale sur la récupération d'énergie	1
		I.1	Introduction	2
		I.2	Pourquoi faire de la récupération d'énergie	2
			I.2.1 Appareils électroniques nomades	2
			I.2.2 Longévité des batteries	2
		I.3	Les types de gisements énergétiques existants	2
		I.4	Verrous technologiques pour l'exploitation des sources d'énergies	2
		I.5	Les grandes familles de récupérateurs d'énergie	2

Transition I-II

\bigcirc T T	TT	II Cas	particulier de la récupération d'énergie sur le corps humain
('H		II.1	La récupération d'énergie sur le corps entier
			II.1.1 Énergie thermique
			II.1.2 Énergie chimique A VOIR
			II.1.3 Énergie mécanique - cinétique
		II.2	La récupération d'énergie autour de l'environnement de la tête
			II.2.1 Énergie thermique
			II.2.2 Énergie mécanique - cinétique
		II.3	La récupération d'énergie dans le conduit auditif
		II.4	Présentation des travaux

Transition II - III

CH	III	III Modélisation et simulation du système de récupération d'énergie intra-auriculaire III.1 Exploiter au mieux l'énergie de déformation locale du canal auditif III.1.1 État de l'art sur la nature de la source d'énergie	
		III.1.2 Maximiser l'énergie extractible	(
		III.1.3 Solution proposée pour maximiser l'énergie récupérée	1
		III.2 Cyclage du mouvement de la masse dynamique du bistable : valves hydrauliques	2
		III.2.1 Solutions existantes pour la gestion directionnelle de fluide en mouvement	2
		III.2.2 Solution proposée pour la gestion directionnelle de fluide en mouvement	2
		III.3 Modélisation du convertisseur électromécanique	2
		III.3.1 Modèle OB + GPA	2
		III.3.2 Impact du circuit hydraulique sur le modèle OB + GPA	2
		III.4 Modélisation du circuit hydraulique	2
		III.4.1 Perte de charges dans une VH	2
		III.4.2 Mise en équation du circuit hydraulique	3
		III.5 Simulation et dimensionnement préliminaire du système de récupération	3
		III.5.1 Critères de dimensionnement préliminaire	3

Transition III - IV

CH	TT/ IV	Conception et fabrication du convertisseur électromécanique : OB + GPA V.1 Architecture générale
	TA	IV.1.1 Stratégie de conception de l'OB
		IV.1.2 Architecture de l'OB monobloc
		IV.2 Dimensionnement et conception des lames verticales de
		IV.2.1 Dimensionnement analytique des lames verticales
		IV.2.2 Conception des lames verticales
		IV.3 Dimensionnement des lames horizontales de l'OB
		IV.3.1 Approche numérique
		IV.3.2 Modèle analytique statique approché
		IV.4 Limite structurelle pour la hauteur de flambement
		IV.4.1 Approche analytique
		IV.4.2 Validation numérique par étude en EF
		IV.5 Caractérisations expérimentales du convertisseur électromécanique
		IV.5.1 Présentation du banc de caractérisation
		IV.5.2 Corrélation modèle - essais et recalage
		IV.5.3 Conclusion

Transition IV - V

\bigcirc T T	T 7	V Valv	ves hydrauliques à base de tubes flexibles flambés	6
CH	\/	V.1	Dimensionnement	6
	V		V.1.1 Rappel du cahier des charges	6
			V.1.2 Approximation de la géométrie du tube flambé	6
			V.1.3 Critères de conception	6
		V.2	Étude EF des tubes flexibles	
			V.2.1 Présentation du modèle EF	6
			V.2.2 Impact des paramètres géométriques du tube	6
			V.2.3 Conclusions de l'étude EF	7
		V.3	Implémentation du comportement théorique des tubes flexibles au modèle système	7
			V.3.1 Impact de la rigidité du tube sur le modèle système	7
			V.3.2 Présentation du tube dimensionné	7
			V.3.3 Simulation du modèle système comprenant les valves	7
		V.4	Caractérisations expérimentales	8
			V.4.1 Caractérisations statiques	
			V.4.2 Caractérisations hydrauliques	

Dimensionnement de l'OBVH avec les données expérimentales

Transition V-VI

CU	TIT
CП	V I

Caractérisation expérimentale du prototype de récupération d'énergie intra-auriculaire
complet 95
VI.1 Présentation du banc de test
VI.2 Évolution de la cinématique d'actionnement
VI.2.1 Avant saut
VI.2.2 Après saut
VI.2.3 Impact de la GR sur l'évolution de θ
VI.3 Résultats des essais de lâcher expérimentaux avec VH
VI.3.1 Présentation des résultats
VI.3.2 Analyse et discussion
VI.3.3 Pistes d'améliorations