O Solved example of PCA:-

S.NO.	×	<u> </u>	
1	2.6	2.4	E-
2	0.5	0.7	
3	2.2	2.9	
4	1.9	2.2	
5	3.1	3.0	
6	2.3	2.7	
7	2	1.6	
8	T	1.1	waa.
9	1.5	1.6	1+1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
10	1.1	0.9	12:10

· Covariance Matrix:

$$C = \begin{bmatrix} cov(x,x) & cov(x,y) \\ cov(y,x) & cov(y,y) \end{bmatrix}$$

where, cov(x,y) == cov(y,x)

· Covariance Formula:

$$cov(x,y) = \sum_{i=1}^{N} \frac{(x_i - \overline{x})(y_i - \overline{y})}{N-1}$$

$$\frac{\text{cov}(x,x)}{\text{cov}(y,y)} = \sum_{i=1}^{N} \frac{(x_i - \overline{x})(x_i - \overline{x})}{N-1}$$

$$\frac{\text{cov}(y,y)}{\text{cov}(x,y)} = \sum_{i=1}^{N} \frac{(y_i - \overline{y})(y_i - \overline{y})}{N-1}$$

$$\frac{\text{cov}(x,y)}{\text{cov}(x,y)} = \sum_{i=1}^{N} \frac{(x_i - \overline{x})(y_i - \overline{y})}{N-1}$$

20	2-2	(又-元)(又-元)
2.5	0.69	0.476
0.5	-1.31	1.7161
2.2	0.39	0.1521
1.9	0.09	0.0081
3.1	1.29	1.6641
2.3	0.49	0.2401
2	0.19	0.0361
1	-0.81	0.6561
1.5	-0.31	0.0961
1.1	-0.71	0.5041

y	y- J	(4-2)(4-2)
2.4	0.49	0.2401
0.7	-1.31	1.4641
2.9	0.99	0.9801
2.2	0,29	0.0841
3.0	1.09	1.1881
2.7	0.79	0.6241
1.6	-0.31	0.0961
1.1	- 0.21	0.6561
1.6	-0.31	0.0961
0.9	-1.01	1.0201

20	y	2-2	4-9	(スーマ)(ソーダ)
2.5	2.4	0.69	0.49	0.3381
0.5	0.7	-1.31	-1-31	1.5851
2.2	2.9	0.39	0.99	0.3861
1.9	2.2	0.09	0.29	0.0261
3.1	3.0	1.29	1.09	1.4061
2.3	2.7	0.49	0.79	0.3871
2	1.6	0.19	-0.31	-0.0589
1	1.1	-0.81	-0.81	0.6561
1.5	1.6	-0.31	-0.31	0.0961
1.1	0.9	-0.71	-1.01	0.7171

$$cov(x, x) = \frac{5.5490}{9} = \frac{0.6165}{9}$$
 $cov(y, y) = \frac{6.449}{9} = \frac{0.7165}{9}$
 $cov(x, y) = \frac{5.5390}{9} = \frac{0.6154}{9}$

• Covariance Matrix:

$$C = \begin{bmatrix} cov(x,x) & cov(x,y) \\ cov(y,y) \end{bmatrix}$$

$$C = \begin{bmatrix} 0.6165 & 0.6154 \\ 0.6154 & 0.7165 \end{bmatrix}$$

· Find Eigen Values:

$$C - \lambda J = 0$$

C = covariance Matrix C-2]=0]= Identity Matrix

2 = Eigenvalues Maxix.

$$\begin{bmatrix} 0.6165 & 0.6154 \\ 0.6154 & 0.7165 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = 0$$

$$\begin{bmatrix} 0.6165 - \lambda & 0.6154 \\ 0.6154 & 0.7165 - \lambda \end{bmatrix} = 0$$

$$\chi^2 - 13332 + 0.0630 = 0$$

Figen values = num. of features.

· Find eigen vectors: For each Figen values.

$$\begin{bmatrix} 0.6165 & 0.6154 \\ 0.6154 & 0.7165 \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = 0.0490 \begin{bmatrix} x_1 \\ y_1 \end{bmatrix}$$

$$0.6165 \times, + 0.6154 \, Y_1 = 0.0490 \, X_1$$

 $0.6154 \, X_1 + 0.7165 \, Y_1 = 0.0490 \, Y_1$

$$\rightarrow 0.5674 \times 1 = -0.6154 \text{ y},$$
 used to find some some beth x & y.

$$X_1 = \frac{-0.6154}{0.5674} y_1$$

$$\begin{bmatrix} x, \\ y, \end{bmatrix} = \begin{bmatrix} -1.0854 \\ 1 \end{bmatrix}$$

$$x_1 = \frac{-0.6674}{0.6154} y_1$$

$$\begin{bmatrix} X_1 \\ Y_1 \end{bmatrix} = \begin{bmatrix} 1.0812 \\ 1 \end{bmatrix}$$

Le These are first 2 eigenvectors, we have found till now.

$$\begin{bmatrix} 0.6165 & 0.6154 \\ 0.6154 & 0.7165 \end{bmatrix} \begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = 1.2840 \begin{bmatrix} x_2 \\ y_2 \end{bmatrix}$$

$$\rightarrow$$
 0.6165 \times_2 + 0.6154 Y_2 = 1.2840 X_2

$$\rightarrow$$
 0.6154 \times_2 + 0.7165 Y_2 = 1.2840 Y_2

$$\rightarrow$$
 -0.6675X= -0.6154 Y₂

$$\rightarrow$$
 0.6154 \times_2 = 0.5675 Y_2

$$X_2 = \frac{-0.6154}{-0.6675} y_2$$

$$\begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = \begin{bmatrix} 0.9219 \\ 1 \end{bmatrix}$$

$$X_2 = \frac{-0.6154}{-0.6675} y_2$$
 $X_2 = \frac{0.5675}{0.6154} y_2$

$$:. X_2 = 0.9119 y_2$$
 $:. X_2 = 0.9221 y_2$

$$\begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = \begin{bmatrix} 0.9219 \\ 1 \end{bmatrix} \begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = \begin{bmatrix} 0.9221 \\ 1 \end{bmatrix}$$

These are 2 eigenvector for 2 eigenvalue.