Singular point and multiple points:

A point on the curve at which the curve behaves in an extraordinary manner is called a singular point.

Formally singular point is defined as, if at a point (x_1, y_1) on the curve f(x, y) = 0, if $\frac{\partial f}{\partial x} = 0$ and $\frac{\partial f}{\partial y} = 0$ then such a point (x_1, y_1) is called a singular point.

There are two types of singular points:

- 1. Points of inflexion
- 2. Multiple points

A point on the curve at which the curve change from concavity to convexity or vice-versa is called point of inflexion. Since the changes from concavity to convexity or vice versa is possible only if the curve crosses the tangent at a point. Therefore, the point of inflexion may also be defined as a point on the curve at which the curve crosses the tangent.

Note: Criteria for concavity, convexity and point of inflexion.

A curve y = f(x) is concave upwards if $\frac{d^2y}{dx^2}$ is + ve

A curve y = f(x) is concave upwards if $\frac{d^2y}{dx^2}$ is – ve and

At the point of inflexion if $\frac{d^2y}{dx^2} = 0$ and $\frac{d^3y}{dx^3} \neq 0$

- 1. Multiple point: A point on the curve through which more than one branches of curve pass is called a Multiple point.
- 2. <u>Double point</u>: A point on the curve through which two branches of curve pass is called a
- 3. Triple point: A point on the curve through which three branches of curve pass is called a triple point.

Classification of double points:

- 1. Node: A node is a double point at which the two tangents are real and distinct.
- 2. <u>Cusp</u>: A cusp is a double point at which the two tangents are real and coincident.
- 3. <u>Isolated point or conjugate point</u>: An isolated point or conjugate point is a double point at which the two tangents are imaginary.
- 1. Define node and cusp (-2-nov-18)

Working rule to determine double points on the curve f(x, y) = 0

- 1. Obtain the partial derivatives f_x , f_y , f_{xx} , f_{xy} , f_{yy}
- 2. Solve $f_x = 0$ $f_y = 0$ we get the singular point (x_1, y_1)
- 3. At (x_1, y_1) if $f(x_1, y_1) = 0$ then such a singular point (x_1, y_1) is a double point.
- 4. At (x_1, y_1) if $(f_{xy})^2 f_{xx}f_{yy} > 0$ then such a double point (x_1, y_1) is a node.
- 5. At (x_1, y_1) if $(f_{xy})^2 f_{xx}f_{yy} = 0$ then such a double point (x_1, y_1) is a cusp
- 6. At (x_1, y_1) if $(f_{xy})^2 f_{xx}f_{yy} < 0$ then such a double point (x_1, y_1) is an isolated point or conjugated point.

Problems:

1. Find the position and the nature of double points of the curve $x^2(x-y) + y^2 = 0$

Solution:

$$f(x,y) = x^{2}(x - y) + y^{2}$$
$$f(x,y) = x^{3} - x^{2}y + y^{2}$$

Now
$$f_x = 3x^2 - 2xy$$
, $f_y = -x^2 + 2y$, $f_{xx} = 6x - 2y$, $f_{xy} = -2x$, $f_{yy} = 2$

Singular points are given by $f_x = 0$ and $f_y = 0$

$$3x^2 - 2xy = 0 \text{ and } -x^2 + 2y = 0$$
$$\Rightarrow x = 0 \text{ and } x = 3$$

When $x = 0 \Rightarrow y = 0$ and

when
$$x = 3 \Rightarrow y = \frac{9}{2}$$

Thus (0, 0) and $(3, \frac{9}{2})$ are the singular points

At (0, 0) if f(0, 0) = 0 hence (0, 0) is a double point.

At $\left(3, \frac{9}{2}\right)$ if $f\left(3, \frac{9}{2}\right) \neq 0$ hence $\left(3, \frac{9}{2}\right)$ is not a double point.

Consider
$$(f_{xy})^2 - f_{xx}f_{yy} = (-2x)^2 - (6x - 2y)(2)$$

At (0, 0)
$$(f_{xy})^2 - f_{xx}f_{yy} = 0$$

Hence (0, 0) is a cusp

2. Find the position and the nature of double points of the curve $x^3 + x^2 + y^2 - x - 4y + 3 = 0$ (-5-may-2019 **new**, nov-19 **BSM2**)

Solution:

$$f(x,y) = x^3 + x^2 + y^2 - x - 4y + 3$$

Now
$$f_x = 3x^2 + 2x - 1$$
, $f_y = 2y - 4$, $f_{xx} = 6x - 2$, $f_{xy} = 0$, $f_{yy} = 2$

Singular points are given by $f_x = 0$ and $f_y = 0$

$$3x^{2} + 2x - 1 = 0$$
 and $2y - 4 = 0$
 $\Rightarrow x = \frac{1}{3}$, $x = -1$ and $y = 2$

Thus $\left(\frac{1}{3}, 2\right)$ and (-1,2) are the singular points

$$At(\frac{1}{3},2)$$
 if $f(\frac{1}{3},2) \neq 0$ hence($\frac{1}{3},2$) is not a double point.

At(-1,2) if
$$f(-1,2) = 0$$
 hence(-1,2) is a double point.

Consider
$$(f_{xy})^2 - f_{xx}f_{yy} = (0)^2 - (6x - 2)(2) = 4 - 12x$$

At
$$(-1, 2) (f_{xy})^2 - f_{xx}f_{yy} > 0$$

Hence (-1, 2) is a node.

3. Find the position and the nature of double points of the curve $x^3 + y^3 = 3axy$ (-5-may-2019)

Solution:

The given curve is $x^3 + y^3 - 3axy = 0$ -----(1)

Equating the lowest degree terms to zero,

the tangents at the origin are $-3axy = 0 \Rightarrow x = 0, y = 0$

Since the tangents are real and distinct, the origin is a node or a conjugate point.

From (1) neglecting
$$y^3$$
 we have $x^3 - 3axy = 0 \Rightarrow y = \frac{1}{3a}x^2$

Thus y is a real for values of x near the origin

(the curve has real branches through the origin)

Hence origin is a node.

4. Find the nature of origin for the curve $y^3 = x^3 + ax^2$

Solution:

The given curve is $y^3 = x^3 + ax^2$ ----(1)

Equating the lowest degree terms to zero, the tangents at the origin $arex^2 = 0 \Rightarrow x = 0$, x = 0. Since the two tangents at the origin are real and coincident, the origin is either a cusp or a conjugate point.

From (1) neglecting
$$x^3$$
 we have $ax^2 = y^3 \Rightarrow x = \pm \sqrt{\frac{y^3}{a}}$

Suppose if a>0, x is a real for small +ve values of y (near the origin) (the curve has real branches through the origin)

Hence origin is a cusp

5. Find the nature of the origin for the curves $y^2 = 2x^2y + x^4y - 2x^4$ Solution:

The given curve is
$$y^2 = 2x^2y + x^4y - 2x^4$$
-----(1)

Equating the lowest degree terms to zero,

the tangents at the origin are
$$y^2 = 0 \Rightarrow y = 0$$
, $y = 0$

Since the two tangents at the origin are real and coincident,

Hence the origin is either a cusp or a conjugate point.

From (1)
$$y^2 - x^2(2 + x^2)y + 2x^4 = 0$$

Solving for
$$y$$
 we get $y = \frac{x^2(2+x^2)\pm\sqrt{[x^2(2+x^2)]^2-4(1)2x^4}}{2(1)}$

$$\Rightarrow y = \frac{x^2(2+x^2) \pm x^2 \sqrt{x^4 + 4x^2 - 4}}{2}$$

When x is small $\neq 0$, $x^4 + 4x^2 - 4$ is -ve

So that y is imaginary in the neighborhood of origin

Hence origin is a conjugate point.

6. Find the nature of the origin for the curves $x^4 + y^4 - 4axy = 0$

The given curve is $x^4 + y^4 - 4axy = 0$ -----(1)

Equating the lowest degree terms to zero,

Solution:

the tangents at the origin are $-4axy = 0 \Rightarrow x = 0$, y = 0

Since the tangents are real and distinct, the origin is a node or a conjugate point.

From (1) neglecting y^4 we have $x^4 - 4axy = 0 \Rightarrow y = \frac{1}{4a}x^3$

Thus y is a real for values of x near the origin (the curve has real branches through the origin) Hence origin is a node.

- 1. Find the position and the nature of double points of the curve $x^3 + x^2 + y^2 x 4y + 3 = 0$ (-5-may-2019 **new**, nov-19 **BSM2**)
- 2. Find the singular points of the curve $x^3 + x^2 + y^2 x 4y + 3 = 0$ (-2-may-2016)
- 3. Find the position and the nature of double points of the curve $x^3 + y^3 = 3axy$ (-5-may-2019)
- 4. Find the position and the nature of double points of the curve $x^3 + 2x^2 + 2xy y^2 + 5x 2y = 0$ (-5-nov-2018)
- 5. Find the position and the nature of double points of the curve $y^2 = 2ax^2 x^3$ (-5-nov-2019)
- 6. Show that the curve $y^2 = (x-a)^2(x-b)$ at x=a has an isolated point if a < b, a node if a > b and cusp if a = b
- 7. Find the position and the nature of the singular point on the curve $y^2 = (x-1)(x-2)^2$