

Winning Space Race with Data Science

<Anastasia Gracheva> <10.04.2025>

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

- Summary of methodologies
- 1. Data collection
- 2. Data wrangling
- 3. Data Analysis
- 4. Data Visualization
- 5. An interactive map with Folium
- 6. Predictive analysis
- Summary of all results

Introduction

Project background and context

SpaceX advertises Falcon 9 rocket launches on its website, with a cost of 62 million dollars; other providers cost upward of 165 million dollars each, much of the savings is because SpaceX can reuse the first stage.

- Problems to find answers to:
- 1. Determine the cost of a launch
- 2. Collect data on the Falcon 9 first-stage landings
- 3. Analyze the launch site proximity
- 4. Calculate distances on an interactive map
- 5. Determine if the first stage of Falcon 9 will land successfully

Methodology

Executive Summary

- Data collection methodology:
- 1. API to extract information from a web service
- 2. Web scrapping
- Perform data wrangling
- 1. Convert landing outcomes into labels "1" (successfully landed) and "0" (unsuccessful landing)
- Perform exploratory data analysis (EDA) using visualization
- Perform interactive visual analytics using Folium
- Perform predictive analysis using classification models

Data Collection

- API requests from SpaceX REST API such as FlightNumber, Date, BoosterVersion, PayloadMass, Orbit, LaunchSite, Outcome, Flights, GridFins, Reused, Legs, LandingPad, Block, ReusedCount, Serial, Longitude, Latitude
- Web Scraping data are Flight No., Launch site, Payload, PayloadMass, Orbit, Customer, Launch outcome, Version Booster, Booster landing, Date, Time

Data Collection – SpaceX API

Request data from SpaceX API → Clean the requested data → Request and parse the SpaceX launch data using the GET request → Filter the dataframe to only include Falcon 9 launches → Calculate the mean for the PayloadMass → Replace missing values in the data with the mean

Data Collection - Scraping

Request the Falcon9 Launch Wiki page from its URL using an HTTP GET method → Extract all column/variable names from the HTML table header → Apply the "extract_column_from_header" to extract column name one by one → Create a data frame by parsing the launch HTML tables

Data Wrangling

Load Space X dataset \rightarrow Identify and calculate the percentage of the missing values in each attribute \rightarrow Calculate the number of launches on each site using the method value_counts() \rightarrow Calculate the number and occurrence of each orbit using the method .value_counts() \rightarrow Calculate the number and occurrence of mission outcome per orbit type using the method .value_counts() on the column Outcome \rightarrow Create a landing outcome label from Outcome column

EDA with Data Visualization

Read the SpaceX dataset into a Pandas dataframe and print its summary \rightarrow Visualize the relationship between Flight Number and Launch Site using the function catplot \rightarrow Visualize the relationship between Payload Mass and Launch Site \rightarrow Visualize the relationship between success rate of each orbit type with a bar chart \rightarrow Visualize the relationship between FlightNumber and Orbit type \rightarrow Visualize the relationship between Payload Mass and Orbit type \rightarrow Visualize the launch success yearly trend with a line chart with x axis to be Year and y axis to be average success rate \rightarrow Create dummy variables to categorical columns using the function get_dummies and features dataframe \rightarrow Cast all numeric columns to float64

Build an Interactive Map with Folium

- Marked all launch sites on a map using their latitude and longitude coordinates
- Added markers of success (Green) and failed (Red) launches using Marker Cluster
- Added coloured Lines to show distances between Launch Sites and their proximities to Railway, Highway, Coastline and Cities near them

Predictive Analysis (Classification)

Create a NumPy array from the column Class in data, by applying the method to_numpy() then assign it to the variable Y → Standardize the data in X then reassign it to the variable X → Use the function train_test_split to split the data X and Y into training and test data → Create a logistic regression object then create a GridSearchCV object logreg_cv → Calculate the accuracy on the test data using the method score → Create a support vector machine object then create a GridSearchCV object svm_cv → Calculate the accuracy on the test data using the method score → Create a decision tree classifier object then create a GridSearchCV object tree_cv → Calculate the accuracy of tree_cv on the test data using the method score → Create a k nearest neighbors object then create a GridSearchCV object knn_cv → Calculate the accuracy of knn_cv on the test data using the method score → Find the method performs best

Results

- Exploratory data analysis results
- Interactive analytics demo in screenshots
- Predictive analysis results

Flight Number vs. Launch Site

- The CCAFS SLC 40 launch site has almost a half of all launches.
- VAFB SLC 4E and KSC LC 39A have higher success rates.

Payload vs. Launch Site

- The higher the payload mass, the higher the success rate.
- However, KSC LC 39A has a 100% success for smaller payload mass.

Success Rate vs. Orbit Type

- Orbits with 100% success: ES-L1, GEO, HEO, SSO.
- Orbits with 0% success: SO.
- Orbits with success between 50% and 85%: GTO, ISS, LEO, MEO, PO, VLEO.

Flight Number vs. Orbit Type

- Success is related to the number of flights in the LEO orbit.
- Success is not related to the number of flights in GTO orbit.

Payload vs. Orbit Type

- With heavy payloads the successful landing or positive landing rate are more for Polar, LEO and ISS.
- However, for GTO, it's difficult to distinguish between successful and unsuccessful landings as both outcomes are present.

Launch Success Yearly Trend

• The sucess rate since 2013 kept increasing till 2020.

All marked launch sites

- Most of launch sites are near the Equator to make rockets move faster.
- All launch sites are near the coast to minimise the danger to people.

Color-labeled markers

- Green Marker means successful launch
- Red Marker means failed launch

Classification Accuracy

	LogReg	SVM	Tree	KNN
Jaccard_Score	0.833333	0.845070	0.666667	0.819444
F1_Score	0.909091	0.916031	0.800000	0.900763
Accuracy	0.866667	0.877778	0.666667	0.855556

• The best model is SVM model.

Confusion Matrix

• SVM accuracy is 0.833333333333334.

Conclusions

- SVM model performs best
- Launch sites are near the highways to transport personal and light cargo.
- Launch sites are near the railways to transport heavy cargo.
- Most of the launch sites are not near cities to minimizes safety risks for people.
- The success rate of launches increases over the years.
- KSC LC 39A has the highest success rate.
- Orbits ES-L1, GEO, HEO and SSO have 100% success rate.

