CS 228 : Logic in Computer Science

Krishna. S

Summary

- Proof Rules
- ▶ Soundness : If $\varphi \vdash \psi$, then $\varphi \models \psi$.
- ▶ Completeness : If $\varphi \models \psi$, then $\varphi \vdash \psi$.
- Normal Forms

► A Horn Formula is a particularly nice kind of CNF formula, which can be quickly checked for satisfiability.

- ► A Horn Formula is a particularly nice kind of CNF formula, which can be quickly checked for satisfiability.
- ► A formula *F* is a Horn formula if it is in CNF and every disjunction contains atmost one positive literal.

- ► A Horn Formula is a particularly nice kind of CNF formula, which can be quickly checked for satisfiability.
- ► A formula *F* is a Horn formula if it is in CNF and every disjunction contains atmost one positive literal.
- ▶ $p \land (\neg p \lor \neg q \lor r) \land (\neg a \lor \neg b)$ is Horn, but $a \lor b$ is not Horn.

- ► A Horn Formula is a particularly nice kind of CNF formula, which can be quickly checked for satisfiability.
- ▶ A formula *F* is a Horn formula if it is in CNF and every disjunction contains atmost one positive literal.
- ▶ $p \land (\neg p \lor \neg q \lor r) \land (\neg a \lor \neg b)$ is Horn, but $a \lor b$ is not Horn.
- ▶ A basic Horn formula is one which has no ∧. Every Horn formula is a conjunction of basic Horn formulae.

► Three types of basic Horn : no positive literals, no negative literals, have both positive and negative literals.

- ► Three types of basic Horn : no positive literals, no negative literals, have both positive and negative literals.
- ▶ Basic Horn with both positive and negative literals are written as an implication $p \land q \land \cdots \land r \rightarrow s$ involving only positive literals.

- ► Three types of basic Horn : no positive literals, no negative literals, have both positive and negative literals.
- ▶ Basic Horn with both positive and negative literals are written as an implication $p \land q \land \cdots \land r \rightarrow s$ involving only positive literals.
- ▶ Basic Horn with no negative literals are of the form p and are written as $\top \rightarrow p$.

- ► Three types of basic Horn : no positive literals, no negative literals, have both positive and negative literals.
- ▶ Basic Horn with both positive and negative literals are written as an implication $p \land q \land \cdots \land r \rightarrow s$ involving only positive literals.
- ▶ Basic Horn with no negative literals are of the form p and are written as $\top \rightarrow p$.
- ▶ Basic Horn with no positive literals are written as $p \land q \land \cdots \land r \rightarrow \bot$.

- ► Three types of basic Horn : no positive literals, no negative literals, have both positive and negative literals.
- ▶ Basic Horn with both positive and negative literals are written as an implication $p \land q \land \cdots \land r \rightarrow s$ involving only positive literals.
- ▶ Basic Horn with no negative literals are of the form p and are written as $\top \rightarrow p$.
- ▶ Basic Horn with no positive literals are written as $p \land q \land \cdots \land r \rightarrow \bot$.
- ▶ Thus, a Horn formula is written as a conjunction of implications.

Given a Horn formula H,

▶ Mark all occurrences of p, whenever $\top \rightarrow p$ is a subformula.

5/1/

Given a Horn formula H,

- ▶ Mark all occurrences of p, whenever $\top \rightarrow p$ is a subformula.
- ▶ If there is a subformula of the form $(p_1 \land \cdots \land p_m) \rightarrow q$, where each p_i is marked, and q is not marked, mark q. Repeat this until there are no subformulae of this form and proceed to the next step.

Given a Horn formula H,

- ▶ Mark all occurrences of p, whenever $\top \rightarrow p$ is a subformula.
- ▶ If there is a subformula of the form $(p_1 \land \cdots \land p_m) \rightarrow q$, where each p_i is marked, and q is not marked, mark q. Repeat this until there are no subformulae of this form and proceed to the next step.
- ▶ Consider subformulae of the form $(p_1 \land \cdots \land p_m) \rightarrow \bot$. If there is one such subformula with all p_i marked, then say Unsat, otherwise say Sat.

$$(\top \to A) \land (C \to D) \land ((A \land B) \to C) \land ((C \land D) \to \bot) \land (\top \to B).$$

$$(\top \to A) \land (C \to D) \land ((A \land B) \to C) \land ((C \land D) \to \bot) \land (\top \to B).$$

 $\blacktriangleright (\top \to A) \land (C \to D) \land ((A \land B) \to C) \land ((C \land D) \to \bot) \land (\top \to B).$

$$(\top \to A) \land (C \to D) \land ((A \land B) \to C) \land ((C \land D) \to \bot) \land (\top \to B).$$

- $\blacktriangleright (\top \to A) \land (C \to D) \land ((A \land B) \to C) \land ((C \land D) \to \bot) \land (\top \to B).$
- $\blacktriangleright (\top \to A) \land (C \to D) \land ((A \land B) \to C) \land ((C \land D) \to \bot) \land (\top \to B).$

$$(\top \to A) \land (C \to D) \land ((A \land B) \to C) \land ((C \land D) \to \bot) \land (\top \to B).$$

- $\blacktriangleright (\top \to A) \land (C \to D) \land ((A \land B) \to C) \land ((C \land D) \to \bot) \land (\top \to B).$
- $\blacktriangleright (\top \to A) \land (C \to D) \land ((A \land B) \to C) \land ((C \land D) \to \bot) \land (\top \to B).$
- $\blacktriangleright (\top \to A) \land (C \to D) \land ((A \land B) \to C) \land ((C \land D) \to \bot) \land (\top \to B).$

$$(\top \to A) \land (C \to D) \land ((A \land B) \to C) \land ((C \land D) \to \bot) \land (\top \to B).$$

- $\blacktriangleright (\top \to A) \land (C \to D) \land ((A \land B) \to C) \land ((C \land D) \to \bot) \land (\top \to B).$
- $\blacktriangleright (\top \to A) \land (C \to D) \land ((A \land B) \to C) \land ((C \land D) \to \bot) \land (\top \to B).$
- $\blacktriangleright (\top \to A) \land (C \to D) \land ((A \land B) \to C) \land ((C \land D) \to \bot) \land (\top \to B).$
- $\blacktriangleright (\top \to A) \land (C \to D) \land ((A \land B) \to C) \land ((C \land D) \to \bot) \land (\top \to B).$

The Horn algorithm concludes Sat iff *H* is satisfiable.

The Horn algorithm concludes Sat iff *H* is satisfiable.

▶ Let $S = \{p_1, ..., p_n\}$ be the set of propositions occurring in H. At the end of the algorithm, some of these are marked.

The Horn algorithm concludes Sat iff *H* is satisfiable.

- ▶ Let $S = \{p_1, ..., p_n\}$ be the set of propositions occurring in H. At the end of the algorithm, some of these are marked.
- Assume H is satisfiable. Then there is an assignment α of S such that $\alpha \models H$. For each basic Horn formula B of H, $\alpha(B) = 1$. Also, $\alpha(\bot) = 0$ and $\alpha(\top) = 1$.

The Horn algorithm concludes Sat iff *H* is satisfiable.

- ▶ Let $S = \{p_1, ..., p_n\}$ be the set of propositions occurring in H. At the end of the algorithm, some of these are marked.
- ▶ Assume H is satisfiable. Then there is an assignment α of S such that $\alpha \models H$. For each basic Horn formula B of H, $\alpha(B) = 1$. Also, $\alpha(\bot) = 0$ and $\alpha(\top) = 1$.
- ▶ If *B* has the form $\top \to p_i$, then $\alpha(p_i) = 1$. If *B* has the form $(p_1 \land \dots \land p_n) \to q$, where each $\alpha(p_i) = 1$, then $\alpha(q) = 1$. Hence, $\alpha(p_i)$ agrees with the marking of the algo.

▶ Will the algo say unsat?

- ▶ Will the algo say unsat?
- ▶ If it does, there is some $(p_1 \land \dots p_m) \to \bot$, where all p_i 's are marked.

- Will the algo say unsat?
- ▶ If it does, there is some $(p_1 \land \dots p_m) \to \bot$, where all p_i 's are marked.
- ▶ Then $\alpha(p_i) = 1$ for all i and $\alpha((p_1 \land \dots p_m) \to \bot) = 0$, a contradiction to the assumption about α .

- Will the algo say unsat?
- ▶ If it does, there is some $(p_1 \land \dots p_m) \to \bot$, where all p_i 's are marked.
- ▶ Then $\alpha(p_i) = 1$ for all i and $\alpha((p_1 \land \dots p_m) \to \bot) = 0$, a contradiction to the assumption about α .
- ▶ Conversely, assume that the algo says Sat. Show that there exists a satisfying assignment α , using the markings made by the algo.

- Will the algo say unsat?
- ▶ If it does, there is some $(p_1 \land \dots p_m) \to \bot$, where all p_i 's are marked.
- ▶ Then $\alpha(p_i) = 1$ for all i and $\alpha((p_1 \land \dots p_m) \to \bot) = 0$, a contradiction to the assumption about α .
- ► Conversely, assume that the algo says *Sat*. Show that there exists a satisfying assignment α , using the markings made by the algo. Let α be the assignment of \mathcal{S} defined by $\alpha(p_i) = 1$ iff p_i is marked. We claim that $\alpha \models H$.

- Will the algo say unsat?
- ▶ If it does, there is some $(p_1 \land \dots p_m) \to \bot$, where all p_i 's are marked.
- ▶ Then $\alpha(p_i) = 1$ for all i and $\alpha((p_1 \land \dots p_m) \to \bot) = 0$, a contradiction to the assumption about α .
- ► Conversely, assume that the algo says *Sat*. Show that there exists a satisfying assignment α , using the markings made by the algo. Let α be the assignment of \mathcal{S} defined by $\alpha(p_i) = 1$ iff p_i is marked. We claim that $\alpha \models H$.
- ▶ Show that $\alpha \models B$ for each basic Horn formula B of H.

▶ If *B* has the form $\top \rightarrow p$, then *p* is marked in step 1 of the algo, and so $\alpha(B) = 1$.

9/1/

- ▶ If *B* has the form $\top \rightarrow p$, then *p* is marked in step 1 of the algo, and so $\alpha(B) = 1$.
- ▶ If *B* has the form $p_1 \wedge ... p_m \rightarrow q$, then *q* is either \bot or an atomic formula.

- ▶ If *B* has the form $\top \to p$, then *p* is marked in step 1 of the algo, and so $\alpha(B) = 1$.
- ▶ If *B* has the form $p_1 \wedge ... p_m \rightarrow q$, then *q* is either \bot or an atomic formula.
- ▶ If some p_i was not marked, then $\alpha(p_i) = 0$, and hence $\alpha(B) = 1$.

- ▶ If *B* has the form $\top \rightarrow p$, then *p* is marked in step 1 of the algo, and so $\alpha(B) = 1$.
- ▶ If *B* has the form $p_1 \wedge \dots p_m \to q$, then *q* is either \bot or an atomic formula.
- ▶ If some p_i was not marked, then $\alpha(p_i) = 0$, and hence $\alpha(B) = 1$.
- Assume all the p_i 's were marked. Then $\alpha(p_i) = 1$ for all i. Since the algo said Sat, $q \neq \bot$. Then q is also marked (step 2 of algo). Hence, $\alpha(q) = 1$, and we have $\alpha(B) = 1$.

- ▶ If *B* has the form $\top \rightarrow p$, then *p* is marked in step 1 of the algo, and so $\alpha(B) = 1$.
- ▶ If *B* has the form $p_1 \wedge \dots p_m \to q$, then *q* is either \bot or an atomic formula.
- ▶ If some p_i was not marked, then $\alpha(p_i) = 0$, and hence $\alpha(B) = 1$.
- Assume all the p_i 's were marked. Then $\alpha(p_i) = 1$ for all i. Since the algo said Sat, $q \neq \bot$. Then q is also marked (step 2 of algo). Hence, $\alpha(q) = 1$, and we have $\alpha(B) = 1$.
- ▶ Thus, the markings of the algorithm gives rise to a satisfying assignment α if the algorithm said Sat.

Complexity of Horn

- ▶ Given a Horn formula ψ with n propositions, how many times do you have to read ψ ?
- ▶ Step 1: Read once
- Step 2: Read atmost n times
- ► Step 3: Read once

Resolution

▶ Resolution is a technique used to check if a formula in CNF is satisfiable. Call each conjunct in the CNF a clause.

- Resolution is a technique used to check if a formula in CNF is satisfiable. Call each conjunct in the CNF a clause.
- ▶ If $\psi = (a \lor b \lor \neg d) \land (d \lor \neg a \lor b)$, then $C_1 = \{a, b, \neg d\}$ and $C_2 = \{d, \neg a, b\}$ are the two clauses.

- Resolution is a technique used to check if a formula in CNF is satisfiable. Call each conjunct in the CNF a clause.
- ▶ If $\psi = (a \lor b \lor \neg d) \land (d \lor \neg a \lor b)$, then $C_1 = \{a, b, \neg d\}$ and $C_2 = \{d, \neg a, b\}$ are the two clauses.
- We also write ψ as $\{\{a, b, \neg d\}, \{d, \neg a, b\}\}$.

- Resolution is a technique used to check if a formula in CNF is satisfiable. Call each conjunct in the CNF a clause.
- ▶ If $\psi = (a \lor b \lor \neg d) \land (d \lor \neg a \lor b)$, then $C_1 = \{a, b, \neg d\}$ and $C_2 = \{d, \neg a, b\}$ are the two clauses.
- We also write ψ as $\{\{a, b, \neg d\}, \{d, \neg a, b\}\}$.
- ▶ Let C_1 , C_2 be two clauses. Assume $a \in C_1$ and $\neg a \in C_2$ for some atomic formula a. Then the clause $R = (C_1 \{a\}) \cup (C_2 \{\neg a\})$ is a resolvent of C_1 and C_2 .

- Resolution is a technique used to check if a formula in CNF is satisfiable. Call each conjunct in the CNF a clause.
- ▶ If $\psi = (a \lor b \lor \neg d) \land (d \lor \neg a \lor b)$, then $C_1 = \{a, b, \neg d\}$ and $C_2 = \{d, \neg a, b\}$ are the two clauses.
- We also write ψ as $\{\{a, b, \neg d\}, \{d, \neg a, b\}\}$.
- ▶ Let C_1 , C_2 be two clauses. Assume $a \in C_1$ and $\neg a \in C_2$ for some atomic formula a. Then the clause $R = (C_1 \{a\}) \cup (C_2 \{\neg a\})$ is a resolvent of C_1 and C_2 .
- ▶ Let $C_1 = \{a_1, \neg a_2, a_3\}$ and $C_2 = \{a_2, \neg a_3, a_4\}$. As $a_3 \in C_1$ and $\neg a_3 \in C_2$, we can find the resolvent. A resolvent is $\{a_1, a_2, \neg a_2, a_4\}$.

- Resolution is a technique used to check if a formula in CNF is satisfiable. Call each conjunct in the CNF a clause.
- ▶ If $\psi = (a \lor b \lor \neg d) \land (d \lor \neg a \lor b)$, then $C_1 = \{a, b, \neg d\}$ and $C_2 = \{d, \neg a, b\}$ are the two clauses.
- ▶ We also write ψ as $\{\{a, b, \neg d\}, \{d, \neg a, b\}\}$.
- ▶ Let C_1 , C_2 be two clauses. Assume $a \in C_1$ and $\neg a \in C_2$ for some atomic formula a. Then the clause $R = (C_1 \{a\}) \cup (C_2 \{\neg a\})$ is a resolvent of C_1 and C_2 .
- ▶ Let $C_1 = \{a_1, \neg a_2, a_3\}$ and $C_2 = \{a_2, \neg a_3, a_4\}$. As $a_3 \in C_1$ and $\neg a_3 \in C_2$, we can find the resolvent. A resolvent is $\{a_1, a_2, \neg a_2, a_4\}$.
- ▶ Resolvent not unique : $\{a_1, a_3, \neg a_3, a_4\}$ is also a resolvent.

Let F be a formula in CNF, and let C be a clause in F. Then F ⊢ C (Prove!)

- Let F be a formula in CNF, and let C be a clause in F. Then F ⊢ C (Prove!)
- Let F be a formula in CNF. Let R be a resolvent of two clauses of F. Then F ⊢ R (Prove!)

Show that resolution can be used to determine whether any given formula is satisfiable.

▶ Given F in CNF, let $Res^0(F) = \{C \mid C \text{ is a clause in } F\}$.

- ▶ Given F in CNF, let $Res^0(F) = \{C \mid C \text{ is a clause in } F\}$.
- ► $Res(F) = Res^0(F) \cup \{R \mid R \text{ is a resolvent of two clauses in } Res^0(F)\}$

- ▶ Given F in CNF, let $Res^0(F) = \{C \mid C \text{ is a clause in } F\}$.
- ► $Res(F) = Res^0(F) \cup \{R \mid R \text{ is a resolvent of two clauses in } Res^0(F)\}$
- ▶ $Res^n(F) = Res^{n-1}(F) \cup \{R \mid R \text{ is a resolvent of two clauses in } Res^{n-1}(F)\}$

- ▶ Given F in CNF, let $Res^0(F) = \{C \mid C \text{ is a clause in } F\}$.
- ► $Res(F) = Res^0(F) \cup \{R \mid R \text{ is a resolvent of two clauses in } Res^0(F)\}$
- ► $Res^n(F) = Res^{n-1}(F) \cup \{R \mid R \text{ is a resolvent of two clauses in } Res^{n-1}(F)\}$
- ► Res⁰(F) is finite: there are finitely many clauses that can be derived from F.

- ▶ Given F in CNF, let $Res^0(F) = \{C \mid C \text{ is a clause in } F\}$.
- ► $Res(F) = Res^0(F) \cup \{R \mid R \text{ is a resolvent of two clauses in } Res^0(F)\}$
- ► $Res^n(F) = Res^{n-1}(F) \cup \{R \mid R \text{ is a resolvent of two clauses in } Res^{n-1}(F)\}$
- Res⁰(F) is finite: there are finitely many clauses that can be derived from F.
- Res¹(F) is finite: finitely many resolvents can be obtained from clauses of F

- ▶ Given F in CNF, let $Res^0(F) = \{C \mid C \text{ is a clause in } F\}$.
- ► $Res(F) = Res^0(F) \cup \{R \mid R \text{ is a resolvent of two clauses in } Res^0(F)\}$
- ► $Res^n(F) = Res^{n-1}(F) \cup \{R \mid R \text{ is a resolvent of two clauses in } Res^{n-1}(F)\}$
- Res⁰(F) is finite: there are finitely many clauses that can be derived from F.
- Res¹(F) is finite: finitely many resolvents can be obtained from clauses of F
- ▶ There is some m such that $Res^m(F) = Res^{m+1}(F)$. Denote it by $Res^*(F)$.

Example

Let
$$F = \{\{a_1, a_2, \neg a_3\}, \{\neg a_2, a_3\}\}.$$

► *Res*⁰(*F*) = *F*

Example

Let
$$F = \{\{a_1, a_2, \neg a_3\}, \{\neg a_2, a_3\}\}.$$

- ► *Res*⁰(*F*) = *F*
- $Res^{1}(F) = F \cup \{a_{1}, a_{2}, \neg a_{2}\} \cup \{a_{1}, \neg a_{3}, a_{3}\}.$

Example

Let
$$F = \{\{a_1, a_2, \neg a_3\}, \{\neg a_2, a_3\}\}.$$

- ► *Res*⁰(*F*) = *F*
- $Res^1(F) = F \cup \{a_1, a_2, \neg a_2\} \cup \{a_1, \neg a_3, a_3\}.$
- ▶ $Res^2(F) = Res^1(F) \cup \{a_1, a_2, \neg a_3\} \cup \{a_1, a_3, \neg a_2\}$