УДК 621. 039.59:621.039.516.4

ИЗУЧЕНИЕ НАКОПЛЕНИЯ УРАНА-233 ПРИ ОБЛУЧЕНИИ ТОРИЯ В РЕАКТОРАХ С РАЗЛИЧНЫМИ НЕЙТРОННЫМИ СПЕКТРАМИ

Г.И. Гаджиев, В.Н. Сюзёв, В.М. Чистяков

ГНЦ РФ Научно-исследовательский институт атомных реакторов, г. Димитровград

В ГНЦ РФ НИИАР проведены комплексные исследования, включающие отработку технологии изготовления твэлов с различными композициями на основе тория и проверку накопления 233 U и других тяжелых нуклидов при облучении образцов с ThO_2 в реакторах с различным спектром нейтронов.

Проблемой вовлечения тория в топливный цикл ядерных реакторов занимаются многие развитые страны, начиная с 60-х годов прошлого столетия. Решение ее позволит расширить топливную базу и обеспечить устойчивое долговременное развитие ядерной энергетики, благодаря большим доступным природным запасам тория (в 3–4 раза больше, чем урана) и его уникальным ядерно-физическим свойствам [1].

Для России коммерческий топливный цикл с полномасштабным использованием тория является пока далекой перспективой, поскольку оцененные запасы урана еще достаточно велики и в топливный цикл вовлекается избыточный оружейный и энергетический плутоний. Однако в последнее время интерес к ториевой проблеме возрос и у российских специалистов ядерной энергетики благодаря некоторым результатам общей исследовательской деятельности, имеющим в настоящее время актуальное практическое значение:

- реакторное сжигание плутония с использованием тория гораздо более эффективно, чем в составе уран-плутониевого топлива;
- использование тория возможно в существующих типах реакторов: ЛВР, ТВР, ВТГР, РБН без серьезной модификации их конструкции и дополнительных средств обеспечения безопасности:
- топливные материалы на основе тория и ториевый топливный цикл имеют внутренне присущую устойчивость к распространению, благодаря присутствию изотопа 232 U вместе с делящимся 233 U.

В этой связи предлагаемый сценарий вовлечения тория в двухкомпонентную ядерно-энергетическую систему с применением быстрых реакторов типа БН-800 с ториевым экраном и тепловых реакторов типа ВВЭР-1000, использующих наработанный в быстрых реакторах 233 U, представляет интерес.

Вместе с тем нужно отметить дефицит экспериментальных данных по выходам нуклидов при облучении топлива на основе тория нейтронами различных энергий. С

целью проверки накопления ²³³U и других тяжелых нуклидов при облучении образцов тория в реакторах с различными спектрами нейтронов проведен ряд экспериментов. Были изготовлены несколько экспериментальных сборок для облучения ториевых образцов в различных реакторах ГНЦ РФ НИИАР. Характеристики образцов приведены в табл. 1.

Характеристика образцов

Таблица 1

№ п/п	Испытываемая композиция	Характеристика облучения
1	Таблетки ThO₂-Al	Активная зона реактора МИР
2	Таблетки ThO₂	9-й ряд бокового экрана реактора БОР-60
3	Таблетки ThO₂	8-й ряд бокового экрана реактора БОР-60

Для испытаний в реакторе МИР были изготовлены таблеточные твэлы с металло-керамической ThO₂—Al композицией. Этот тип топлива был использован в связи с тем, что при низкой температуре теплоносителя необходима высокая теплопроводность сердечника. В качестве ториевой составляющей использован товарный (в состоянии поставки) порошок оксида тория. Для комплектования твэлов из смеси порошков оксида тория и алюминия на гидравлическом прессе производили таблетки диаметром 9,0 мм.

Изготовление таблеток проводили по традиционной керамической технологии [2], включающей подготовку со связкой порошковой рабочей смеси, прессование таблеток на гидравлическом прессе, спекание таблеток при температуре 1700°С. Плотность готовых таблеток 85–90% от теоретической плотности.

Опытные твэлы испытывались в реакторах в течение одной кампании для накопления значимых количеств урана-233. Облученные твэлы после минимальной выдержки направляли на участок резки для приготовления образцов, которые затем направляли для химического растворения и подготовки навесок для анализа.

Анализируемые навески облученных образцов 232 Th подвергали растворению в два этапа. Сначала воздействовали смесью концентрированных соляной и азотной кислот. Затем раствор упаривали до влажных солей и продолжали растворение в азотной кислоте с добавлением плавиковой кислоты. Полученный раствор вновь упаривали до влажных солей для улетучивания плавиковой кислоты. Сухой остаток растворяли в азотной кислоте. От полученного раствора отбирали аликвоту и снимали α -спектр для расчета выхода 233 U; раствор пропускали через колонку, заполненную анионитом Дауэкс 1×8 (зернистостью 200 меш.), для разделения тория и урана.

На стадии фильтрации раствора торий и уран сорбируются на колонке, а в фильтрат проходят части протактиния и продуктов деления. Промывкой колонки азотной кислотой проводили десорбцию урана, при этом торий остается на колонке, а очистка урана от тория достигается более чем в 10^7 раз. Полученную фракцию урана упаривали досуха, растворяли в азотной кислоте и осадок подвергали дополнительной

Таблица 2

Результаты анализа

		+						
Выхол	233 Pa , %	0,28	0,20	0,02	0,02	0,01		
	ү-спектр, Би/г	233Pa-2.2.10 ¹² 295 Z r-3.2.10 ⁹ 95Nb-3.2.10 ⁹ 140La-1.2.10 ¹⁰	³³ Pa-1.6.10 ¹² ⁹⁵ Zr-5.10 ⁹ ⁹⁵ Nb-2.4.10 ⁹ ⁵¹ Cr-1.7.10 ¹¹	²³³ Pa-1.5·10 ¹¹ ²⁹⁵ Zr-1.6·10 ⁸ ⁹⁵ Nb-1.·10 ⁸	²³³ Pa-1.7.10 ¹¹ ²⁹⁵ Zr-2.0.10 ⁸ ⁹⁵ Nb-1.10 ⁸	²³³ Pa-7.5·10 ¹⁰ ²⁹⁵ Zr-1.6·10 ⁸ ⁹⁵ Nb-1·10 ⁸		
133 <u>U</u> 233 <u>U</u>		80.10 ⁻⁶	57.10°	(0,45÷1,4)·10 ⁻⁶	(2,3÷5)·10°	(5,5÷8,2)·10 ⁻⁶	12 ·10 ⁻⁶	11·10 ₋₆
α-спектр, %		233 U – 85 232 U – 15	233 U $-$ 87,4 232 U $-$ 12,0	²³³ U − 99,8 ²³² U − (0,1÷0,3)	233∪ – 99,7 232∪ – (0,5÷1)	²³³ U − 98,5 ²³² U − (1,2÷1,8)	I	
Масс- спектр,%		233U – 99,02 224U – 0,98	233U – 99,24 234U – 0,76	23.0 – 99,3 234.0 – 0,70	233U – 98,25 234U – 1,75	233U – 99,48 234U – 0,52	-	
Выход ²³³ U,	% на 1г исх. Тh	0,88-0,92	0,80	0,14	0,46	0,12	0,18	0,16
Σα, Бκ		7,0.10 ⁵	4,9.10 ⁵	2,3.10 ⁶	8,0.10 ⁶	2,1.10 ⁶	1	
Навеска	(ThO ₂), r	0,17	0,17	8,4	4,8	4,8	2,0668	3,3468
Твэл	Образец	Центр а.з.	Bepx a.s.	Низ а.з.	Центр а.з.	Bepx a.s.	Центр а.з.	Bepx a.3.
	Реактор	CANA			БОР-60, твэл ТВС бок. экрана		EOP-60,	п. 3, табл. 1

очистке от следов тория, продуктов деления и инертных примесей экстракционно-хроматографическим методом на колонке, заполненной Д2ЭГФК, нанесенной на тефлон. Десорбцию урана с колонки осуществляли соляной кислотой. Полученную фракцию урана анализировали на содержание 232 U, 233 U, 234 U α -, γ -спектрометрическими методами для расчетов изотопного состава урана, выхода 233 U и отношения 232 U/ 233 U. Результаты расчетов приведены в табл. 2

Таким образом, было установлено, что технология изготовления твэлов с торий-содержащими композициями не отличается от изготовления урановых твэлов и процесс изготовления не вызывает затруднений.

Определенные трудности возникали при растворении таблеток в процессе приготовления образцов для спектрометрических исследований.

Качество конечного продукта свидетельствует, что примеси ²³²U могут затруднять работу и будут влиять на организацию технологического процесса. В то же время следует отметить, что продукт, полученный в боковом экране реактора на быстрых нейтронах, имеет более высокое качество – обладает значительным преимуществом по чистоте (выше на порядок).

Литература

- 1. Алексеев П.Н., Глушков Е.С., Морозов А.Г., Пономарев-Степной Н.Н., С.А. Субботин, Цуриков Д.Ф. Концепция возможного вовлечения тория в ядерно-энергетический сектор//Известия вузов. Ядерная энергетика. -1999. № 1.
- 2. Решетников Φ .Г. u dp. Разработка, производство и эксплуатация тепловыделяющих элементов энергетических реакторов (в 2 кн./ Π od ped. Φ .Г. Решетникова). М.: Энергоатомиздат, 1995.

Поступила в редакцию 21.08.2006