

Jose Guadalupe Hernandez

2023-08-30

# Contents

| 1 | Introduction                        |                                       |   |  |
|---|-------------------------------------|---------------------------------------|---|--|
|   | 1.1                                 | About our supplemental material       | 5 |  |
|   | 1.2                                 | Contributing authors                  | 5 |  |
|   | 1.3                                 | Computer Setup                        |   |  |
|   | 1.4                                 | Experimental setup                    | 3 |  |
| 2 | Exp                                 | ploitation rate results               | 9 |  |
|   | 2.1                                 | Data setup                            | 9 |  |
|   | 2.2                                 | Performance over time                 | 9 |  |
|   | 2.3                                 | Best performance throughout           | J |  |
|   | 2.4                                 | Largest valley reached throughout     | 3 |  |
| 3 | Ord                                 | lered exploitation results            | 7 |  |
|   | 3.1                                 | Data setup                            | 7 |  |
|   | 3.2                                 | Performance over time                 | 7 |  |
|   | 3.3                                 | Best performance throughout           | 3 |  |
|   | 3.4                                 | Largest valley reached throughout     | 1 |  |
| 4 | Contradictory objectives results 25 |                                       |   |  |
|   | 4.1                                 | Data setup                            | 5 |  |
|   | 4.2                                 | Activation gene coverage over time    | 5 |  |
|   | 4.3                                 | Final activation gene coverage        | 7 |  |
|   | 4.4                                 | Satisfactory trait coverage over time | 9 |  |
|   | 4.5                                 | Final satisfactory trait coverage     | 1 |  |
|   | 4.6                                 | Largest valley reached throughout     |   |  |
| 5 | Mu                                  | lti-path exploration results 3'       | 7 |  |
|   | 5.1                                 | Data setup                            | 7 |  |
|   | 5.2                                 | Activation gene coverage over time    |   |  |
|   | 5.3                                 | Final activation gene coverage        | 9 |  |
|   | 5.4                                 | Performance over time                 |   |  |
|   | 5.5                                 | Best performance throughout           |   |  |
|   |                                     | Largest valley reached throughout     |   |  |

4 CONTENTS

# Chapter 1

# Introduction

This is the supplemental material for experiments with diagnostics and integrated valleys.

### 1.1 About our supplemental material

This supplemental material is hosted on GitHub using GitHub pages. The source code and configuration files used to generate this supplemental material can be found in this GitHub repository. We compiled our data analyses and supplemental documentation into this nifty web-accessible book using bookdown.

Our supplemental material includes the following paper figures and statistics:

- Exploitation rate results (Section 2)
- Ordered exploitation results (Section 3)
- Contradictory objectives results (Section 4)
- Multi-path exploration results (Section 5)

## 1.2 Contributing authors

- Jose Guadalupe Hernandez
- Alexander Lalejini
- Charles Ofria

## 1.3 Computer Setup

These analyses were conducted in the following computing environment:

### print(version)

```
##
                   x86_64-pc-linux-gnu
## platform
                   x86_64
## arch
## os
                   linux-gnu
                   x86_64, linux-gnu
## system
## status
## major
## minor
                   3.1
                   2023
## year
## month
                   06
                   16
## day
```

```
## svn rev 84548
## language R
## version.string R version 4.3.1 (2023-06-16)
## nickname Beagle Scouts
```

## 1.4 Experimental setup

```
Setting up required variables variables.
# libraries we are using
library(ggplot2)
library(cowplot)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
                 filter, lag
## The following objects are masked from 'package:base':
##
                  intersect, setdiff, setequal, union
library(PupillometryR)
## Loading required package: rlang
# data diractory for qh-pages
DATA_DIR = '/opt/ECJ-2023-Suite-Of-Diagnostic-Metrics-For-Characterizing-Selection-Schemes/DATA/MVC_DIA
# data diractory for local testing
\# DATA_DIR = '-\('Desktop\)/Repositories\('ECJ-2023-Suite-Of-Diagnostic-Metrics-For-Characterizing-Selection-Of-Diagnostic-Metrics-For-Characterizing-Selection-Of-Diagnostic-Metrics-For-Characterizing-Selection-Of-Diagnostic-Metrics-For-Characterizing-Selection-Of-Diagnostic-Metrics-For-Characterizing-Selection-Of-Diagnostic-Metrics-For-Characterizing-Selection-Of-Diagnostic-Metrics-For-Characterizing-Selection-Of-Diagnostic-Metrics-For-Characterizing-Selection-Of-Diagnostic-Metrics-For-Characterizing-Selection-Of-Diagnostic-Metrics-For-Characterizing-Selection-Of-Diagnostic-Metrics-For-Characterizing-Selection-Of-Diagnostic-Metrics-For-Characterizing-Selection-Of-Diagnostic-Metrics-For-Characterizing-Selection-Of-Diagnostic-Metrics-For-Characterizing-Selection-Of-Diagnostic-Metrics-For-Characterizing-Selection-Of-Diagnostic-Metrics-For-Characterizing-Selection-Of-Diagnostic-Metrics-For-Of-Diagnostic-Metrics-For-Of-Diagnostic-Metrics-For-Of-Diagnostic-Metrics-For-Of-Diagnostic-Metrics-For-Of-Diagnostic-Metrics-For-Of-Diagnostic-Metrics-For-Of-Diagnostic-Metrics-For-Of-Diagnostic-Metrics-For-Of-Diagnostic-Metrics-For-Of-Diagnostic-Metrics-For-Of-Diagnostic-Metrics-For-Of-Diagnostic-Metrics-For-Of-Diagnostic-Metrics-For-Of-Diagnostic-Metrics-For-Of-Diagnostic-Metrics-For-Of-Diagnostic-Metrics-For-Of-Diagnostic-Metrics-For-Of-Diagnostic-Metrics-For-Of-Diagnostic-Metrics-For-Of-Diagnostic-Metrics-For-Of-Diagnostic-Metrics-For-Of-Diagnostic-Metrics-For-Of-Diagnostic-Metrics-For-Of-Diagnostic-Metrics-For-Of-Diagnostic-Metrics-For-Of-Diagnostic-Metrics-For-Of-Diagnostic-Metrics-For-Of-Diagnostic-Metrics-For-Of-Diagnostic-Metrics-For-Of-Diagnostic-Metrics-For-Of-Diagnostic-Metrics-For-Of-Diagnostic-Metrics-For-Of-Diagnostic-Metrics-For-Of-Diagnostic-Metrics-For-Of-Diagnostic-Metrics-For-Of-Diagnostic-Metrics-For-Of-Diagnostic-Metrics-For-Of-Diagnostic-Metrics-For-Of-Diagnostic-Metrics-For-Of-Diagnostic-Metrics-For-Of-Diagnostic-Metrics-For-Of-Diagnostic-Metrics-For-Of-Diagnostic-Metrics-For-Of-Diagnostic-Metrics-For
# graph variables
SHAPE = c(5,3,1,2,6,0,4,20,1)
cb_palette <- c('#332288','#88CCEE','#EE7733','#EE3377','#117733','#882255','#44AA99','#CCBB44', '#0000
TSIZE = 26
p_theme <- theme(</pre>
     plot.title = element_text( face = "bold", size = 20, hjust=0.5),
     panel.border = element_blank(),
     panel.grid.minor = element_blank(),
     legend.title=element_text(size=18, hjust = 0.5),
     legend.text=element_text(size=10),
     axis.title = element_text(size=18),
     axis.text = element_text(size=16),
     legend.position="bottom",
     panel.background = element_rect(fill = "#f1f2f5",
                                                                                       colour = "white",
                                                                                       linewidth = 0.5, linetype = "solid")
)
# default variables
DIMENSIONALITY = 100
GENERATIONS = 50000
```

```
# selection scheme related stuff
ACRO = c('tru','tor','lex','gfs','nds','nov','ran')
NAMES = c('Truncation (tru)','Tournament (tor)','Lexicase (lex)', 'Genotypic Fitness Sharing (gfs)','Ph
```

## Chapter 2

# Exploitation rate results

Here we present the results for **best performances** found by each selection scheme on the exploitation rate diagnostic with valley crossing integrated. 50 replicates are conducted for each scheme explored.

### 2.1 Data setup

```
DIR = paste(DATA_DIR, 'EXPLOITATION_RATE/', sep = "", collapse = NULL)

over_time_df <- read.csv(paste(DIR, 'over-time.csv', sep = "", collapse = NULL), header = TRUE, stringsA

over_time_df$scheme <- factor(over_time_df$scheme, levels = NAMES)

best_df <- read.csv(paste(DIR, 'best.csv', sep = "", collapse = NULL), header = TRUE, stringsAsFactors =
best_df$acro <- factor(best_df$acro, levels = ACRO)
```

### 2.2 Performance over time

Best performance in a population over time. Data points on the graph is the average performance across 50 replicates every 2000 generations. Shading comes from the best and worse performance across 50 replicates.

```
lines = over_time_df %>%
group_by(scheme, gen) %>%
dplyr::summarise(
   min = min(pop_fit_max) / DIMENSIONALITY,
   mean = mean(pop_fit_max) / DIMENSIONALITY,
   max = max(pop_fit_max) / DIMENSIONALITY
)
```

```
## `summarise()` has grouped output by 'scheme'. You can override using the
## `.groups` argument.
```

```
lines$scheme <- factor(lines$scheme, levels = c('Truncation (tru)','Tournament (tor)','Lexicase (lex)',
over_time_plot = ggplot(lines, aes(x=gen, y=mean, group = scheme, fill = scheme, color = scheme, shape
    geom_ribbon(aes(ymin = min, ymax = max), alpha = 0.1) +
    geom_line(size = 0.5) +
    geom_point(data = filter(lines, gen %% 2000 == 0 & gen != 0), size = 1.5, stroke = 2.0, alpha = 1.0)
    scale_y_continuous(
        name="Average trait score",
        limits=c(0, 45),</pre>
```

```
breaks=seq(0,45,15)
  ) +
  scale_x_continuous(
   name="Generations",
   limits=c(0, 50000),
   breaks=c(0, 10000, 20000, 30000, 40000, 50000),
   labels=c("0e+4", "1e+4", "2e+4", "3e+4", "4e+4", "5e+4")
  ) +
  scale_shape_manual(values=c(5,3,1,20,2,6,0,4))+
  scale_colour_manual(values = c('#332288','#88CCEE','#EE7733','#CCBB44','#EE3377','#117733','#882255',
  scale_fill_manual(values = c('#332288','#88CCEE','#EE7733','#CCBB44','#EE3377','#117733','#882255','#
  ggtitle('Performance over time')+
  p_theme +
  guides (
    shape=guide_legend(ncol=2, title.position = "left", title = 'Selection \nScheme'),
    color=guide_legend(ncol=2, title.position = "left", title = 'Selection \nScheme'),
   fill=guide_legend(ncol=2, title.position = "left", title = 'Selection \nScheme')
  )
over_time_plot
```

## Performance over time



## 2.3 Best performance throughout

Best performance reached throughout 50,000 generations in a population.

```
plot = filter(best_df, var == 'pop_fit_max') %>%
  ggplot(., aes(x = acro, y = val / DIMENSIONALITY, color = acro, fill = acro, shape = acro)) +
  geom_flat_violin(position = position_nudge(x = .1, y = 0), scale = 'width', alpha = 0.2, width = 1.5)
  geom_boxplot(color = 'black', width = .07, outlier.shape = NA, alpha = 0.0, size = 1.0, position = po
  geom_point(position = position_jitter(width = 0.03, height = 0.02), size = 2.0, alpha = 1.0) +
  scale_y_continuous(
    name="Average trait score",
    limits=c(0, 45),
    breaks=seq(0,45, 15)
  scale_x_discrete(
    name="Scheme"
  )+
  scale_shape_manual(values=SHAPE)+
  scale_colour_manual(values = cb_palette, ) +
  scale_fill_manual(values = cb_palette) +
  ggtitle('Best performance')+
  p_theme
plot_grid(
  plot +
    theme(legend.position="none"),
  legend,
  nrow=2,
  rel_heights = c(3,1)
)
```

# **Best performance**



#### 2.3.1 Stats

```
Summary statistics for the best performance.
```

```
performance = filter(best df, var == 'pop fit max')
performance$acro = factor(performance$acro, levels = c('gfs','pfs','nov','tru','tor','nds','ran','lex')
performance %>%
  group_by(acro) %>%
 dplyr::summarise(
   count = n(),
   na_cnt = sum(is.na(val)),
   min = min(val / DIMENSIONALITY, na.rm = TRUE),
   median = median(val / DIMENSIONALITY, na.rm = TRUE),
   mean = mean(val / DIMENSIONALITY, na.rm = TRUE),
   max = max(val / DIMENSIONALITY, na.rm = TRUE),
   IQR = IQR(val / DIMENSIONALITY, na.rm = TRUE)
 )
## # A tibble: 8 x 8
##
    acro count na_cnt
                          min median mean
                                             max
                                                     TOR.
##
     <fct> <int> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 gfs
              50
                      0 41.2 42.9 42.9 44.9 1.05
                      0 40.2 43.1 42.9 44.8 1.28
## 2 pfs
              50
## 3 nov
              50
                      0 16.0
                               18.6 18.6 20.9 1.07
## 4 tru
              50
                      0 17.8
                               18.1 18.1 18.3 0.123
## 5 tor
                      0 17.9
                                18.1 18.1 18.3 0.0974
              50
## 6 nds
              50
                      0 14.7
                                15.3 15.4 16.1 0.378
## 7 ran
              50
                      0 11.1
                                13.0 13.1 15.7 1.39
## 8 lex
              50
                      0 12.5
                                12.7 12.7 13.1 0.128
Kruskal–Wallis test illustrates evidence of statistical differences.
kruskal.test(val ~ acro, data = performance)
##
## Kruskal-Wallis rank sum test
##
## data: val by acro
## Kruskal-Wallis chi-squared = 366.61, df = 7, p-value < 2.2e-16
Results for post-hoc Wilcoxon rank-sum test with a Bonferroni correction.
pairwise.wilcox.test(x = performance$val, g = performance$acro, p.adjust.method = "bonferroni",
                     paired = FALSE, conf.int = FALSE, alternative = '1')
##
##
  Pairwise comparisons using Wilcoxon rank sum test with continuity correction
##
## data: performance$val and performance$acro
##
##
       gfs
               pfs
                       nov
                                       tor
                                               nds
                               tru
                                                        ran
## pfs 1.0000
## nov < 2e-16 < 2e-16 -
## tru < 2e-16 < 2e-16 0.0014
## tor < 2e-16 < 2e-16 0.0026 1.0000
## nds < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16 -
## ran < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16 -
## lex < 2e-16 1.0000
```

```
##
## P value adjustment method: bonferroni
```

### 2.4 Largest valley reached throughout

The largest valley reached in a single trait throughout an entire evolutionary run. To collect this value, we look through all the best-performing solutions each generation and find the largest valley reached.

```
plot = filter(best_df, var == 'ele_big_peak') %>%
  ggplot(., aes(x = acro, y = val, color = acro, fill = acro, shape = acro)) +
  geom_flat_violin(position = position_nudge(x = .1, y = 0), scale = 'width', alpha = 0.2, width = 1.5)
  geom_boxplot(color = 'black', width = .07, outlier.shape = NA, alpha = 0.0, size = 1.0, position = po
  geom_point(position = position_jitter(width = 0.03, height = 0.02), size = 2.0, alpha = 1.0) +
  scale_y_continuous(
    name="Valley reached",
    limits=c(4.9,14.1),
   breaks=c(5,10,14)
  scale_x_discrete(
    name="Scheme"
  scale_shape_manual(values=SHAPE)+
  scale_colour_manual(values = cb_palette, ) +
  scale_fill_manual(values = cb_palette) +
  ggtitle('Largest valley reached')+
  p_theme
plot_grid(
  plot +
    theme(legend.position="none"),
  legend,
  nrow=2,
  rel_heights = c(3,1)
```





#### 2.4.1 Stats

Summary statistics for the largest valley crossed.

```
valleys = filter(best_df, var == 'ele_big_peak')
valleys$acro = factor(valleys$acro, levels = c('gfs','pfs','nds','nov','ran','lex','tru','tor'))
valleys %>%
  group_by(acro) %>%
  dplyr::summarise(
    count = n(),
    na_cnt = sum(is.na(val)),
    min = min(val, na.rm = TRUE),
    median = median(val, na.rm = TRUE),
    mean = mean(val, na.rm = TRUE),
    max = max(val, na.rm = TRUE),
    IQR = IQR(val, na.rm = TRUE)
)
```

```
## # A tibble: 8 x 8
     acro count na_cnt
                           min median mean
                                                     IQR
                                               max
##
     <fct> <int> <int> <dbl>
                                <dbl> <dbl> <dbl> <dbl> <
## 1 gfs
              50
                       0
                            12
                                 13
                                      13.4
                                                14
## 2 pfs
              50
                       0
                            12
                                 13.5 13.5
                                                14 1
## 3 nds
              50
                       0
                            10
                                 11
                                      11.2
                                                13
                                                    0
                            10
## 4 nov
              50
                       0
                                 10
                                      10.5
                                                11 1
## 5 ran
              50
                                 10
                                      10.1
                                                12 0.75
                       0
                             6
                                                 8 0
## 6 lex
              50
                                  7
                                       6.8
```

```
## 7 tru
              50
                      0
                             5
                                  6
                                       5.92
                                                6 0
## 8 tor
              50
                      0
                             5
                                  6
                                       5.94
                                                6 0
```

Kruskal–Wallis test illustrates evidence of statistical differences.

```
kruskal.test(val ~ acro, data = valleys)
## Kruskal-Wallis rank sum test
##
## data: val by acro
## Kruskal-Wallis chi-squared = 377.23, df = 7, p-value < 2.2e-16
Results for post-hoc Wilcoxon rank-sum test with a Bonferroni correction.
pairwise.wilcox.test(x = valleys$val, g = valleys$acro, p.adjust.method = "bonferroni",
                     paired = FALSE, conf.int = FALSE, alternative = '1')
##
## Pairwise comparisons using Wilcoxon rank sum test with continuity correction
##
## data: valleys$val and valleys$acro
##
##
       gfs
               pfs
                       nds
                                                 lex
                                nov
                                        ran
                                                         tru
## pfs 1.000
## nds < 2e-16 < 2e-16 -
## nov < 2e-16 < 2e-16 3.9e-08 -
## ran < 2e-16 < 2e-16 2.1e-10 0.099
## lex < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16 -
## tru < 2e-16 4.6e-14 -
## tor < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16 4.3e-14 1.000
## P value adjustment method: bonferroni
```

# Chapter 3

# Ordered exploitation results

Here we present the results for **best performances** found by each selection scheme on the ordered exploitation diagnostic with valley crossing integrated. 50 replicates are conducted for each scheme explored.

### 3.1 Data setup

```
DIR = paste(DATA_DIR,'ORDERED_EXPLOITATION/', sep = "", collapse = NULL)

over_time_df <- read.csv(paste(DIR,'over-time.csv', sep = "", collapse = NULL), header = TRUE, stringsA

over_time_df$scheme <- factor(over_time_df$scheme, levels = NAMES)

best_df <- read.csv(paste(DIR,'best.csv', sep = "", collapse = NULL), header = TRUE, stringsAsFactors =
best_df$acro <- factor(best_df$acro, levels = ACRO)
```

### 3.2 Performance over time

Best performance in a population over time. Data points on the graph is the average performance across 50 replicates every 2000 generations. Shading comes from the best and worse performance across 50 replicates.

```
lines = over_time_df %>%
group_by(scheme, gen) %>%
dplyr::summarise(
   min = min(pop_fit_max) / DIMENSIONALITY,
   mean = mean(pop_fit_max) / DIMENSIONALITY,
   max = max(pop_fit_max) / DIMENSIONALITY
)
```

```
## `summarise()` has grouped output by 'scheme'. You can override using the
## `.groups` argument.
```

```
lines$scheme <- factor(lines$scheme, levels = c('Truncation (tru)','Tournament (tor)','Lexicase (lex)',
over_time_plot = ggplot(lines, aes(x=gen, y=mean, group = scheme, fill = scheme, color = scheme, shape
    geom_ribbon(aes(ymin = min, ymax = max), alpha = 0.1) +
    geom_line(size = 0.5) +
    geom_point(data = filter(lines, gen %% 2000 == 0 & gen != 0), size = 1.5, stroke = 2.0, alpha = 1.0)
    scale_y_continuous(
    name="Average trait score",
    limits=c(0, 15),</pre>
```

```
breaks=c(0,5,10,15)
  ) +
  scale_x_continuous(
   name="Generations",
   limits=c(0, 50000),
   breaks=c(0, 10000, 20000, 30000, 40000, 50000),
   labels=c("0e+4", "1e+4", "2e+4", "3e+4", "4e+4", "5e+4")
  ) +
  scale_shape_manual(values=c(5,3,1,20,2,6,0,4))+
  scale_colour_manual(values = c('#332288','#88CCEE','#EE7733','#CCBB44','#EE3377','#117733','#882255',
  scale_fill_manual(values = c('#332288','#88CCEE','#EE7733','#CCBB44','#EE3377','#117733','#882255','#
  ggtitle('Performance over time')+
  p_theme +
  guides (
    shape=guide_legend(ncol=2, title.position = "left", title = 'Selection \nScheme'),
    color=guide_legend(ncol=2, title.position = "left", title = 'Selection \nScheme'),
   fill=guide_legend(ncol=2, title.position = "left", title = 'Selection \nScheme')
  )
over_time_plot
```

## Performance over time



## 3.3 Best performance throughout

Best performance reached throughout 50,000 generations in a population.

```
plot = filter(best_df, var == 'pop_fit_max') %>%
  ggplot(., aes(x = acro, y = val / DIMENSIONALITY, color = acro, fill = acro, shape = acro)) +
  geom_flat_violin(position = position_nudge(x = .1, y = 0), scale = 'width', alpha = 0.2, width = 1.5)
  geom_boxplot(color = 'black', width = .07, outlier.shape = NA, alpha = 0.0, size = 1.0, position = po
  geom_point(position = position_jitter(width = 0.03, height = 0.02), size = 2.0, alpha = 1.0) +
  scale_y_continuous(
    name="Average trait score",
    limits=c(0, 15),
    breaks=c(0,5,10,15)
  scale_x_discrete(
    name="Scheme"
  )+
  scale_shape_manual(values=SHAPE)+
  scale_colour_manual(values = cb_palette, ) +
  scale_fill_manual(values = cb_palette) +
  ggtitle('Best performance')+
  p_theme
plot_grid(
  plot +
    theme(legend.position="none"),
  legend,
  nrow=2,
  rel_heights = c(3,1)
)
```

# **Best performance**



#### 3.3.1 Stats

```
Summary statistics for the best performance.
```

```
performance = filter(best df, var == 'pop fit max')
performance$acro = factor(performance$acro, levels = c('gfs','pfs','tru','tor','lex','nov','nds','ran')
performance %>%
    group_by(acro) %>%
   dplyr::summarise(
        count = n(),
        na_cnt = sum(is.na(val)),
        min = min(val / DIMENSIONALITY, na.rm = TRUE),
        median = median(val / DIMENSIONALITY, na.rm = TRUE),
        mean = mean(val / DIMENSIONALITY, na.rm = TRUE),
        max = max(val / DIMENSIONALITY, na.rm = TRUE),
        IQR = IQR(val / DIMENSIONALITY, na.rm = TRUE)
   )
## # A tibble: 8 x 8
##
          acro count na_cnt
                                                      min median
                                                                                 mean
                                                                                                 max
                                                                                                              TOR.
##
          <fct> <int> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
## 1 gfs
                             50
                                              0 9.79 11.9
                                                                           11.9
                                                                                            13.2 1.03
## 2 pfs
                             50
                                              0 9.69 11.2
                                                                             11.2
                                                                                             12.1 0.779
## 3 tru
                             50
                                              0 5.92
                                                                8.36
                                                                            8.13
                                                                                           8.63 0.203
## 4 tor
                             50
                                              0 4.89
                                                                8.26
                                                                            7.73
                                                                                           8.65 1.17
## 5 lex
                            50
                                              0 5.59
                                                                 6.70 6.76
                                                                                              8.02 0.792
## 6 nov
                             50
                                              0 2.82
                                                                 3.82
                                                                               3.79
                                                                                               4.74 0.515
## 7 nds
                             50
                                              0 1.57
                                                                 1.83
                                                                               1.84
                                                                                               2.18 0.116
## 8 ran
                             50
                                              0 0.279 0.568 0.587 1.04 0.280
Kruskal–Wallis test illustrates evidence of statistical differences.
kruskal.test(val ~ acro, data = performance)
##
## Kruskal-Wallis rank sum test
##
## data: val by acro
## Kruskal-Wallis chi-squared = 379.83, df = 7, p-value < 2.2e-16
Results for post-hoc Wilcoxon rank-sum test with a Bonferroni correction.
pairwise.wilcox.test(x = performance$val, g = performance$acro, p.adjust.method = "bonferroni",
                                            paired = FALSE, conf.int = FALSE, alternative = '1')
##
## Pairwise comparisons using Wilcoxon rank sum test with continuity correction
##
## data: performance$val and performance$acro
##
##
              gfs
                               pfs
                                                tru
                                                                 tor
                                                                                  lex
                                                                                                   nov
                                                                                                                    nds
## pfs 5.0e-06 -
## tru < 2e-16 < 2e-16 -
## tor < 2e-16 < 2e-16 0.33
## lex < 2e-16 < 2e-16 7.8e-13 2.8e-07 -
## nov < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16 -
## nds < 2e-16 < 2e-16
## ran < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16
```

```
##
## P value adjustment method: bonferroni
```

### 3.4 Largest valley reached throughout

The largest valley reached in a single trait throughout an entire evolutionary run. To collect this value, we look through all the best-performing solutions each generation and find the largest valley reached.

```
plot = filter(best_df, var == 'ele_big_peak') %>%
  ggplot(., aes(x = acro, y = val, color = acro, fill = acro, shape = acro)) +
  geom_flat_violin(position = position_nudge(x = .1, y = 0), scale = 'width', alpha = 0.2, width = 1.5)
  geom_boxplot(color = 'black', width = .07, outlier.shape = NA, alpha = 0.0, size = 1.0, position = po
  geom_point(position = position_jitter(width = 0.03, height = 0.02), size = 2.0, alpha = 1.0) +
  scale_y_continuous(
    name="Valley reached",
    limits=c(3.9,14.1),
   breaks = c(4, 9, 14)
  scale_x_discrete(
    name="Scheme"
  scale_shape_manual(values=SHAPE)+
  scale_colour_manual(values = cb_palette, ) +
  scale_fill_manual(values = cb_palette) +
  ggtitle('Largest valley reached')+
  p_theme
plot_grid(
  plot +
    theme(legend.position="none"),
  legend,
  nrow=2,
  rel_heights = c(3,1)
```





#### 3.4.1 Stats

Summary statistics for the largest valley crossed.

```
valleys = filter(best_df, var == 'ele_big_peak')
valleys$acro = factor(valleys$acro, levels = c('pfs','gfs','nov','nds','ran','tru','tor','lex'))
valleys %>%
group_by(acro) %>%
dplyr::summarise(
   count = n(),
   na_cnt = sum(is.na(val)),
   min = min(val, na.rm = TRUE),
   median = median(val, na.rm = TRUE),
   mean = mean(val, na.rm = TRUE),
   max = max(val, na.rm = TRUE),
   IQR = IQR(val, na.rm = TRUE)
)
```

```
## # A tibble: 8 x 8
     acro count na_cnt
                          min median mean
                                                    IQR
                                             max
##
     <fct> <int> <int> <dbl>
                               <dbl> <dbl> <dbl> <dbl>
## 1 pfs
              50
                      0
                           13
                                  14 14.0
                                  13 12.9
## 2 gfs
              50
                      0
                           12
                                              14 0
## 3 nov
              50
                      0
                            9
                                  11 10.5
                                               12 1
## 4 nds
              50
                      0
                            5
                                   7 6.72
                                               8 1
## 5 ran
              50
                                   6 6.48
                                              10 1.75
                      0
                                   5 4.96
                                               6 0
## 6 tru
              50
                            4
```

```
## 7 tor
             50
                     0
                           4
                                  5 4.94
                           4
## 8 lex
             50
                     0
                                  5 4.78
                                             5 0
```

Kruskal–Wallis test illustrates evidence of statistical differences.

```
kruskal.test(val ~ acro, data = valleys)
## Kruskal-Wallis rank sum test
##
## data: val by acro
## Kruskal-Wallis chi-squared = 364.41, df = 7, p-value < 2.2e-16
Results for post-hoc Wilcoxon rank-sum test with a Bonferroni correction.
pairwise.wilcox.test(x = valleys$val, g = valleys$acro, p.adjust.method = "bonferroni",
                     paired = FALSE, conf.int = FALSE, alternative = '1')
##
## Pairwise comparisons using Wilcoxon rank sum test with continuity correction
##
## data: valleys$val and valleys$acro
##
       pfs
##
               gfs
                               nds
                       nov
                                       ran
                                               tru tor
## gfs 3.3e-15 -
## nov < 2e-16 < 2e-16 -
## nds < 2e-16 < 2e-16 < 2e-16 -
## ran < 2e-16 < 2e-16 < 2e-16 1.00
## tru < 2e-16 < 2e-16 < 2e-16 < 2e-16 1.6e-09 -
## tor < 2e-16 < 2e-16 < 2e-16 < 2e-16 2.8e-09 1.00 -
## lex < 2e-16 < 2e-16 < 2e-16 < 2e-16 2.9e-10 0.21 0.72
## P value adjustment method: bonferroni
```

# Chapter 4

# Contradictory objectives results

Here we present the results for activation gene coverage and satisfactory trait coverage found by each selection scheme on the contradictory objectives diagnostic with valley crossing integrated. 50 replicates are conducted for each scheme explored.

### 4.1 Data setup

```
DIR = paste(DATA_DIR, 'CONTRADICTORY_OBJECTIVES/', sep = "", collapse = NULL)

over_time_df <- read.csv(paste(DIR, 'over-time.csv', sep = "", collapse = NULL), header = TRUE, stringsA

over_time_df$uni_str_pos = over_time_df$uni_str_pos + over_time_df$arc_acti_gene - over_time_df$overlap

over_time_df$scheme <- factor(over_time_df$scheme, levels = NAMES)

over_time_df$acro <- factor(over_time_df$acro, levels = ACRO)

best_df <- read.csv(paste(DIR, 'best.csv', sep = "", collapse = NULL), header = TRUE, stringsAsFactors = best_df$acro <- factor(best_df$acro, levels = ACRO)
```

## 4.2 Activation gene coverage over time

geom\_ribbon(aes(ymin = min, ymax = max), alpha = 0.1) +

geom\_line(size = 0.5) +

Activation gene coverage in a population over time. Data points on the graph is the average activation gene coverage across 50 replicates every 2000 generations. Shading comes from the best and worse coverage across 50 replicates.

```
lines = over_time_df %>%
  group_by(scheme, gen) %>%
  dplyr::summarise(
    min = min(uni_str_pos),
    mean = mean(uni_str_pos),
    max = max(uni_str_pos)
)

## `summarise()` has grouped output by 'scheme'. You can override using the
## `.groups` argument.

lines$scheme <- factor(lines$scheme, levels = c('Truncation (tru)','Tournament (tor)','Lexicase (lex)',</pre>
```

over\_time\_plot = ggplot(lines, aes(x=gen, y=mean, group = scheme, fill = scheme, color = scheme, shape

```
geom_point(data = filter(lines, gen " 2000 == 0 & gen != 0), size = 1.5, stroke = 2.0, alpha = 1.0)
  scale_y_continuous(
   name="Coverage",
   limits=c(0, 100.1),
   breaks=seq(0,100, 20),
   labels=c("0", "20", "40", "60", "80", "100")
 ) +
  scale_x_continuous(
   name="Generations",
   limits=c(0, 50000),
   breaks=c(0, 10000, 20000, 30000, 40000, 50000),
   labels=c("0e+4", "1e+4", "2e+4", "3e+4", "4e+4", "5e+4")
 ) +
  scale_shape_manual(values=c(5,3,1,20,2,6,0,4))+
  scale_colour_manual(values = c('#332288','#88CCEE','#EE7733','#CCBB44','#EE3377','#117733','#882255',
  scale_fill_manual(values = c('#332288','#88CCEE','#EE7733','#CCBB44','#EE3377','#117733','#882255','#
  ggtitle('Activation gene coverage over time')+
 p_theme +
  guides(
   shape=guide_legend(ncol=2, title.position = "left", title = 'Selection \nScheme'),
   color=guide_legend(ncol=2, title.position = "left", title = 'Selection \nScheme'),
   fill=guide_legend(ncol=2, title.position = "left", title = 'Selection \nScheme')
  )
over_time_plot
```



## 4.3 Final activation gene coverage

Activation gene coverage found in the final population at 50,000 generations.

```
plot = filter(over_time_df, gen == 50000) %>%
  ggplot(., aes(x = acro, y = uni_str_pos, color = acro, fill = acro, shape = acro)) +
  geom_flat_violin(position = position_nudge(x = .1, y = 0), scale = 'width', alpha = 0.2, width = 1.5)
  geom_boxplot(color = 'black', width = .07, outlier.shape = NA, alpha = 0.0, size = 1.0, position = po
  geom_point(position = position_jitter(width = 0.03, height = 0.02), size = 2.0, alpha = 1.0) +
  scale_y_continuous(
   name="Coverage",
   limits=c(0, 100.1),
   breaks=seq(0,100, 20),
   labels=c("0", "20", "40", "60", "80", "100")
  ) +
  scale_x_discrete(
   name="Scheme"
  scale_shape_manual(values=SHAPE)+
  scale_colour_manual(values = cb_palette, ) +
  scale_fill_manual(values = cb_palette) +
  ggtitle('Final activation gene coverage')+
  p_theme
plot_grid(
```

```
plot +
    theme(legend.position="none"),
legend,
nrow=2,
rel_heights = c(3,1)
)
```

# Final activation gene coverage



#### 4.3.1 Stats

Summary statistics for the coverage found in the final population.

```
act_coverage = filter(over_time_df, gen == 50000)
act_coverage$acro = factor(act_coverage$acro, levels = c('nds','nov','lex','gfs','tru','tor','pfs','ran
act_coverage %>%
group_by(acro) %>%
dplyr::summarise(
    count = n(),
    na_cnt = sum(is.na(uni_str_pos)),
    min = min(uni_str_pos, na.rm = TRUE),
    median = median(uni_str_pos, na.rm = TRUE),
    mean = mean(uni_str_pos, na.rm = TRUE),
    max = max(uni_str_pos, na.rm = TRUE),
    IQR = IQR(uni_str_pos, na.rm = TRUE)
)
```

```
## # A tibble: 8 x 8
## acro count na_cnt min median mean max IQR
```

```
<fct> <int> <int> <dbl> <dbl> <int> <dbl>
                                100 100.
                                             100 0
## 1 nds
             50
                     0
                          99
                                100 99.9
## 2 nov
             50
                     0
                          99
                                             100 0
## 3 lex
             50
                     0
                          85
                                 90 89.8
                                             94 2.75
## 4 gfs
             50
                     0
                          13
                                 32 30.1
                                              42 11.8
                     0
## 5 tru
             50
                           1
                                      5.5
                                             10 3
                                  6
                     0
## 6 tor
             50
                           1
                                  5
                                      4.86
                                              9 2
## 7 pfs
             50
                     0
                           3
                                  4
                                      4.18
                                               6 0.75
## 8 ran
             50
                                  2
                                      1.96
                                               5 1.75
```

Kruskal-Wallis test illustrates evidence of statistical differences.

```
kruskal.test(uni_str_pos ~ acro, data = act_coverage)
##
##
   Kruskal-Wallis rank sum test
##
## data: uni_str_pos by acro
## Kruskal-Wallis chi-squared = 369.27, df = 7, p-value < 2.2e-16
Results for post-hoc Wilcoxon rank-sum test with a Bonferroni correction.
pairwise.wilcox.test(x = act_coverage$uni_str_pos, g = act_coverage$acro, p.adjust.method = "bonferroni
                     paired = FALSE, conf.int = FALSE, alternative = '1')
##
##
   Pairwise comparisons using Wilcoxon rank sum test with continuity correction
##
## data: act_coverage$uni_str_pos and act_coverage$acro
##
##
       nds
                               gfs
               nov
                       lex
                                        tru
                                                tor
                                                        pfs
## nov 1.0000 -
## lex < 2e-16 < 2e-16 -
## gfs < 2e-16 < 2e-16 < 2e-16 -
## tru < 2e-16 < 2e-16 < 2e-16 < 2e-16 -
## tor < 2e-16 < 2e-16 < 2e-16 < 2e-16 1.0000
## pfs < 2e-16 < 2e-16 < 2e-16 < 2e-16 0.0095 0.1827
## ran < 2e-16 < 2e-16 < 2e-16 < 2e-16 1.7e-12 1.3e-11 5.0e-13
## P value adjustment method: bonferroni
```

## 4.4 Satisfactory trait coverage over time

Satisfactory trait coverage in a population over time. Data points on the graph is the average activation gene coverage across 50 replicates every 2000 generations. Shading comes from the best and worse coverage across 50 replicates.

```
lines = over_time_df %>%
  group_by(scheme, gen) %>%
  dplyr::summarise(
    min = min(pop_uni_obj),
    mean = mean(pop_uni_obj),
    max = max(pop_uni_obj)
)
```

```
## `summarise()` has grouped output by 'scheme'. You can override using the
## `.groups` argument.
```

```
lines$scheme <- factor(lines$scheme, levels = c('Truncation (tru)', 'Tournament (tor)', 'Lexicase (lex)',
over_time_plot = ggplot(lines, aes(x=gen, y=mean, group = scheme, fill = scheme, color = scheme, shape
  geom_ribbon(aes(ymin = min, ymax = max), alpha = 0.1) +
  geom_line(size = 0.5) +
  geom_point(data = filter(lines, gen " 2000 == 0 & gen != 0), size = 1.5, stroke = 2.0, alpha = 1.0)
  scale_y_continuous(
   name="Coverage"
  ) +
  scale_x_continuous(
   name="Generations",
   limits=c(0, 50000),
   breaks=c(0, 10000, 20000, 30000, 40000, 50000),
   labels=c("0e+4", "1e+4", "2e+4", "3e+4", "4e+4", "5e+4")
  ) +
  scale\_shape\_manual(values=c(5,3,1,20,2,6,0,4))+
  scale_colour_manual(values = c('#332288','#88CCEE','#EE7733','#CCBB44','#EE3377','#117733','#882255',
  scale_fill_manual(values = c('#332288','#88CCEE','#EE7733','#CCBB44','#EE3377','#117733','#882255','#
  ggtitle('Satisfactory trait coverage over time')+
 p_theme +
  guides(
   shape=guide_legend(ncol=2, title.position = "left", title = 'Selection \nScheme'),
   color=guide_legend(ncol=2, title.position = "left", title = 'Selection \nScheme'),
   fill=guide_legend(ncol=2, title.position = "left", title = 'Selection \nScheme')
  )
over_time_plot
```





## 4.5 Final satisfactory trait coverage

Satisfactory trait coverage found in the final population at 50,000 generations.

```
plot = filter(over_time_df, gen == 50000) %>%
  ggplot(., aes(x = acro, y = pop_uni_obj, color = acro, fill = acro, shape = acro)) +
  geom_flat_violin(position = position_nudge(x = .1, y = 0), scale = 'width', alpha = 0.2, width = 1.5)
  geom_boxplot(color = 'black', width = .07, outlier.shape = NA, alpha = 0.0, size = 1.0, position = po
  geom_point(position = position_jitter(width = 0.03, height = 0.02), size = 2.0, alpha = 1.0) +
  scale_y_continuous(
   name="Coverage",
   limits=c(-0.1, 5)
  scale_x_discrete(
   name="Scheme"
  )+
  scale_shape_manual(values=SHAPE)+
  scale_colour_manual(values = cb_palette, ) +
  scale_fill_manual(values = cb_palette) +
  ggtitle('Final satisfactory trait coverage')+
  p_theme
plot_grid(
  plot +
    theme(legend.position="none"),
```

```
legend,
nrow=2,
rel_heights = c(3,1)
)
```

# Final satisfactory trait coverage



#### 4.5.1 Stats

Summary statistics for the coverage found in the final population.

```
act_coverage = filter(over_time_df, gen == 50000)
act_coverage$acro = factor(act_coverage$acro, levels = c('pfs','nds','lex','gfs','tor','tru','nov','ran act_coverage %>%
    group_by(acro) %>%
    dplyr::summarise(
        count = n(),
        na_cnt = sum(is.na(pop_uni_obj)),
        min = min(pop_uni_obj, na.rm = TRUE),
        median = median(pop_uni_obj, na.rm = TRUE),
        mean = mean(pop_uni_obj, na.rm = TRUE),
        max = max(pop_uni_obj, na.rm = TRUE),
        IQR = IQR(pop_uni_obj, na.rm = TRUE)
)
```

```
## # A tibble: 8 x 8
## acro count na_cnt min median mean max IQR
## <fct> <int> <int> <int> <dbl> <dbl> <int> <dbl>
## 1 pfs 50 0 1 3 3.34 5 1
```

```
## 2 nds
               50
## 3 lex
               50
                               0
                                                           0
                        0
                                       0
                                          0
                                                    0
## 4 gfs
               50
                                                           0
## 5 tor
               50
                        0
                               0
                                       0
                                         Ω
                                                    0
                                                           0
## 6 tru
               50
                        0
                               0
                                                    0
                                                           0
## 7 nov
                        0
                               0
                                                    0
                                                           0
               50
                                       0 0
## 8 ran
               50
```

Kruskal–Wallis test illustrates evidence of statistical differences.

```
kruskal.test(pop_uni_obj ~ acro, data = act_coverage)
##
   Kruskal-Wallis rank sum test
##
## data: pop_uni_obj by acro
## Kruskal-Wallis chi-squared = 396.94, df = 7, p-value < 2.2e-16
Results for post-hoc Wilcoxon rank-sum test with a Bonferroni correction.
pairwise.wilcox.test(x = act_coverage$pop_uni_obj, g = act_coverage$acro, p.adjust.method = "bonferroni
                     paired = FALSE, conf.int = FALSE, alternative = '1')
##
   Pairwise comparisons using Wilcoxon rank sum test with continuity correction
##
##
## data: act_coverage$pop_uni_obj and act_coverage$acro
##
##
              nds lex gfs tor tru nov
       pfs
## nds <2e-16 -
## lex <2e-16 1
## gfs <2e-16 1
                  1
## tor <2e-16 1
                  1
                      1
## tru <2e-16 1
                  1
## nov <2e-16 1
                  1
                      1
                           1
                               1
## ran <2e-16 1
                  1
## P value adjustment method: bonferroni
```

## 4.6 Largest valley reached throughout

The largest valley reached in a single trait throughout an entire evolutionary run. To collect this value, we look through all the best-performing solutions each generation and find the largest valley reached.

```
plot = filter(best_df, var == 'ele_big_peak') %>%
    ggplot(., aes(x = acro, y = val, color = acro, fill = acro, shape = acro)) +
    geom_flat_violin(position = position_nudge(x = .1, y = 0), scale = 'width', alpha = 0.2, width = 1.5)
    geom_boxplot(color = 'black', width = .07, outlier.shape = NA, alpha = 0.0, size = 1.0, position = po
    geom_point(position = position_jitter(width = 0.03, height = 0.02), size = 2.0, alpha = 1.0) +
    scale_y_continuous(
        name="Valley reached",
        limits=c(4.9,14.1),
        breaks=c(5,8,11,14)
    ) +
    scale_x_discrete(
        name="Scheme"
```

```
)+
    scale_shape_manual(values=SHAPE)+
    scale_colour_manual(values = cb_palette, ) +
    scale_fill_manual(values = cb_palette) +
    ggtitle('Largest valley reached')+
    p_theme

plot_grid(
    plot +
        theme(legend.position="none"),
    legend,
        nrow=2,
    rel_heights = c(3,1)
)
```

# Largest valley reached



#### 4.6.1 Stats

Summary statistics for the largest valley crossed.

```
valleys = filter(best_df, var == 'ele_big_peak')
valleys$acro = factor(valleys$acro, levels = c('pfs','ran','gfs','nov','nds','lex','tru','tor'))
valleys %>%
  group_by(acro) %>%
  dplyr::summarise(
   count = n(),
   na_cnt = sum(is.na(val)),
```

```
min = min(val, na.rm = TRUE),
   median = median(val, na.rm = TRUE),
   mean = mean(val, na.rm = TRUE),
   max = max(val, na.rm = TRUE),
   IQR = IQR(val, na.rm = TRUE)
## # A tibble: 8 x 8
## acro count na_cnt min median mean max
                                                 IQR
   <fct> <int> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
## 1 pfs
            50
                  0
                        14
                               14 14
                                            14 0
           50
                   0
                               10 10.3
## 2 ran
                          9
                                            13 0.75
## 3 gfs
           50
                   0
                         5
                                6 6.34
                                            7 1
                                             7 0
## 4 nov
           50
                   0
                         6
                                6 6.04
          50
                   0
## 5 nds
                          5
                                 6 5.88
                                             7 0
           50
                   0
                          5
                                             6 0
## 6 lex
                                 6 5.84
## 7 tru
             50
                     0
                           5
                                 5 5.1
                                             6 0
                                             6 0
## 8 tor
             50
                     0
                           5
                                 5 5.04
Kruskal–Wallis test illustrates evidence of statistical differences.
kruskal.test(val ~ acro, data = valleys)
## Kruskal-Wallis rank sum test
##
## data: val by acro
## Kruskal-Wallis chi-squared = 352.03, df = 7, p-value < 2.2e-16
Results for post-hoc Wilcoxon rank-sum test with a Bonferroni correction.
pairwise.wilcox.test(x = valleys$val, g = valleys$acro, p.adjust.method = "bonferroni",
                    paired = FALSE, conf.int = FALSE, alternative = '1')
##
## Pairwise comparisons using Wilcoxon rank sum test with continuity correction
##
## data: valleys$val and valleys$acro
##
      pfs
                      gfs
##
              ran
                             nov
                                     nds
                                             lex
                                                     tru
## ran < 2e-16 -
## gfs < 2e-16 < 2e-16 -
## nov < 2e-16 < 2e-16 0.00347 -
## nds < 2e-16 < 2e-16 0.00018 0.26915 -
## lex < 2e-16 < 2e-16 1.3e-05 0.01917 1.00000 -
## tru < 2e-16 < 2e-16 < 2e-16 < 2e-16 2.8e-12 2.3e-12 -
## tor < 2e-16 < 2e-16 < 2e-16 < 2e-16 2.2e-14 1.6e-14 1.00000
## P value adjustment method: bonferroni
```

# Chapter 5

# Multi-path exploration results

Here we present the results for **best performances** found by each selection scheme on the multi-path exploration diagnostic with valley crossing integrated. 50 replicates are conducted for each scheme explored.

### 5.1 Data setup

geom line(size = 0.5) +

```
DIR = paste(DATA_DIR, 'MULTIPATH_EXPLORATION/', sep = "", collapse = NULL)

over_time_df <- read.csv(paste(DIR, 'over-time.csv', sep = "", collapse = NULL), header = TRUE, stringsA

over_time_df$uni_str_pos = over_time_df$uni_str_pos + over_time_df$arc_acti_gene - over_time_df$overlap

over_time_df$scheme <- factor(over_time_df$scheme, levels = NAMES)

over_time_df$acro <- factor(over_time_df$acro, levels = ACRO)

best_df <- read.csv(paste(DIR, 'best.csv', sep = "", collapse = NULL), header = TRUE, stringsAsFactors = best_df$acro <- factor(best_df$acro, levels = ACRO)
```

## 5.2 Activation gene coverage over time

Activation gene coverage in a population over time. Data points on the graph is the average activation gene coverage across 50 replicates every 2000 generations. Shading comes from the best and worse coverage across 50 replicates.

```
lines = over_time_df %>%
group_by(scheme, gen) %>%
dplyr::summarise(
   min = min(uni_str_pos),
   mean = mean(uni_str_pos),
   max = max(uni_str_pos)
)
```

```
## `summarise()` has grouped output by 'scheme'. You can override using the
## `.groups` argument.
lines$scheme <- factor(lines$scheme, levels = c('Truncation (tru)','Tournament (tor)','Lexicase (lex)',
over_time_plot = ggplot(lines, aes(x=gen, y=mean, group = scheme, fill = scheme, color = scheme, shape geom_ribbon(aes(ymin = min, ymax = max), alpha = 0.1) +</pre>
```

geom\_point(data = filter(lines, gen %% 2000 == 0 & gen != 0), size = 1.5, stroke = 2.0, alpha = 1.0)

```
scale_y_continuous(
   name="Coverage",
   limits=c(0, 100),
   breaks=seq(0,100, 20),
   labels=c("0", "20", "40", "60", "80", "100")
  ) +
  scale_x_continuous(
   name="Generations",
   limits=c(0, 50000),
   breaks=c(0, 10000, 20000, 30000, 40000, 50000),
   labels=c("0e+4", "1e+4", "2e+4", "3e+4", "4e+4", "5e+4")
  ) +
  scale_shape_manual(values=c(5,3,1,20,2,6,0,4))+
  scale_colour_manual(values = c('#332288','#88CCEE','#EE7733','#CCBB44','#EE3377','#117733','#882255',
  scale_fill_manual(values = c('#332288','#88CCEE','#EE7733','#CCBB44','#EE3377','#117733','#882255','#
  ggtitle('Activation gene coverage over time')+
  p_theme +
  guides (
    shape=guide_legend(ncol=2, title.position = "left", title = 'Selection \nScheme'),
    color=guide_legend(ncol=2, title.position = "left", title = 'Selection \nScheme'),
    fill=guide_legend(ncol=2, title.position = "left", title = 'Selection \nScheme')
  )
over_time_plot
```

# Activation gene coverage over time



### 5.3 Final activation gene coverage

Activation gene coverage found in the final population at 50,000 generations.

```
plot = filter(over_time_df, gen == 50000) %>%
  ggplot(., aes(x = acro, y = uni_str_pos, color = acro, fill = acro, shape = acro)) +
  geom_flat_violin(position = position_nudge(x = .1, y = 0), scale = 'width', alpha = 0.2, width = 1.5)
  geom_boxplot(color = 'black', width = .07, outlier.shape = NA, alpha = 0.0, size = 1.0, position = po
  geom_point(position = position_jitter(width = 0.03, height = 0.02), size = 2.0, alpha = 1.0) +
  scale_y_continuous(
    name="Coverage",
    limits=c(0, 100),
    breaks=seq(0,100, 20),
    labels=c("0", "20", "40", "60", "80", "100")
  ) +
  scale_x_discrete(
    name="Scheme"
  scale_shape_manual(values=SHAPE)+
  scale_colour_manual(values = cb_palette, ) +
  scale_fill_manual(values = cb_palette) +
  ggtitle('Final activation gene coverage')+
  p_theme
plot_grid(
  plot +
    theme(legend.position="none"),
 legend,
 nrow=2,
  rel_heights = c(3,1)
```





#### 5.3.1 Stats

Summary statistics for the coverage found in the final population.

```
act_coverage = filter(over_time_df, gen == 50000)
act_coverage$acro = factor(act_coverage$acro, levels = c('nov','lex','nds','tor','tru','pfs','gfs','ran
act_coverage %>%
group_by(acro) %>%
dplyr::summarise(
    count = n(),
    na_cnt = sum(is.na(uni_str_pos)),
    min = min(uni_str_pos, na.rm = TRUE),
    median = median(uni_str_pos, na.rm = TRUE),
    mean = mean(uni_str_pos, na.rm = TRUE),
    max = max(uni_str_pos, na.rm = TRUE),
    IQR = IQR(uni_str_pos, na.rm = TRUE)
)
```

```
## # A tibble: 8 x 8
     acro count na_cnt
                          min median mean
                                                    IQR
                                              max
     <fct> <int> <int> <int>
                                <dbl> <dbl> <int> <dbl>
##
## 1 nov
              50
                      0
                           68
                                79.5 79.9
                                               92 6.75
## 2 lex
              50
                      0
                           56
                                65
                                      66.1
                                               75 9
## 3 nds
              50
                      0
                            7
                                 43
                                      42.5
                                               80 36.5
## 4 tor
              50
                      0
                            1
                                 4
                                       4.84
                                               13 3.75
## 5 tru
              50
                            1
                                       4.9
                                               15 4.75
                      0
                            2
## 6 pfs
              50
                                       4.4
                                                7 1
```

```
## 7 gfs
              50
                       0
                                                 5 1.75
                             1
                                  3
## 8 ran
              50
                       0
                             1
                                  2
                                       2.02
                                                 6 2
Kruskal-Wallis test illustrates evidence of statistical differences.
kruskal.test(uni_str_pos ~ acro, data = act_coverage)
##
##
   Kruskal-Wallis rank sum test
##
## data: uni_str_pos by acro
## Kruskal-Wallis chi-squared = 324.89, df = 7, p-value < 2.2e-16
Results for post-hoc Wilcoxon rank-sum test with a Bonferroni correction.
pairwise.wilcox.test(x = act_coverage$uni_str_pos, g = act_coverage$acro, p.adjust.method = "bonferroni
                      paired = FALSE, conf.int = FALSE, alternative = '1')
##
   Pairwise comparisons using Wilcoxon rank sum test with continuity correction
##
## data: act_coverage$uni_str_pos and act_coverage$acro
##
##
       nov
               lex
                        nds
                                                 pfs
                                                         gfs
                                         tru
## lex 1.4e-14 -
## nds 8.1e-15 1.5e-06 -
## tor < 2e-16 < 2e-16 < 2e-16 -
## tru < 2e-16 < 2e-16 2.7e-16 1.000
## pfs < 2e-16 < 2e-16 < 2e-16 1.000
                                        1.000
## gfs < 2e-16 < 2e-16 < 2e-16 0.011
                                        0.157
## ran < 2e-16 < 2e-16 < 2e-16 3.7e-08 2.7e-06 1.3e-13 4.0e-05
```

### 5.4 Performance over time

scale\_y\_continuous(

## P value adjustment method: bonferroni

Best performance in a population over time. Data points on the graph is the average performance across 50 replicates every 2000 generations. Shading comes from the best and worse performance across 50 replicates.

```
lines = over_time_df %>%
  group_by(scheme, gen) %>%
  dplyr::summarise(
    min = min(pop_fit_max) / DIMENSIONALITY,
    mean = mean(pop_fit_max) / DIMENSIONALITY,
    max = max(pop_fit_max) / DIMENSIONALITY
)

## `summarise()` has grouped output by 'scheme'. You can override using the
## `.groups` argument.

lines$scheme <- factor(lines$scheme, levels = c('Truncation (tru)','Tournament (tor)','Lexicase (lex)',

over_time_plot = ggplot(lines, aes(x=gen, y=mean, group = scheme, fill = scheme, color = scheme, shape = geom_ribbon(aes(ymin = min, ymax = max), alpha = 0.1) + geom_line(size = 0.5) +</pre>
```

geom\_point(data = filter(lines, gen %% 2000 == 0 & gen != 0), size = 1.5, stroke = 2.0, alpha = 1.0)

```
name="Average trait score",
   limits=c(0, 15),
   breaks=c(0,5,10,15)
  ) +
  scale_x_continuous(
   name="Generations",
   limits=c(0, 50000),
   breaks=c(0, 10000, 20000, 30000, 40000, 50000),
   labels=c("0e+4", "1e+4", "2e+4", "3e+4", "4e+4", "5e+4")
  ) +
  scale\_shape\_manual(values=c(5,3,1,20,2,6,0,4))+
  scale_colour_manual(values = c('#332288','#88CCEE','#EE7733','#CCBB44','#EE3377','#117733','#882255',
  scale_fill_manual(values = c('#332288','#88CCEE','#EE7733','#CCBB44','#EE3377','#117733','#882255','#
  ggtitle('Performance over time')+
  p_theme +
  guides (
    shape=guide_legend(ncol=2, title.position = "left", title = 'Selection \nScheme'),
    color=guide_legend(ncol=2, title.position = "left", title = 'Selection \nScheme'),
   fill=guide_legend(ncol=2, title.position = "left", title = 'Selection \nScheme')
  )
over_time_plot
```

## Performance over time



### 5.5 Best performance throughout

Best performance reached throughout 50,000 generations in a population.

```
plot = filter(best_df, var == 'pop_fit_max') %>%
  ggplot(., aes(x = acro, y = val / DIMENSIONALITY, color = acro, fill = acro, shape = acro)) +
  geom_flat_violin(position = position_nudge(x = .1, y = 0), scale = 'width', alpha = 0.2, width = 1.5)
  geom_boxplot(color = 'black', width = .07, outlier.shape = NA, alpha = 0.0, size = 1.0, position = po
  geom_point(position = position_jitter(width = 0.03, height = 0.02), size = 2.0, alpha = 1.0) +
  scale_y_continuous(
    name="Average trait score",
    limits=c(0, 15),
   breaks=c(0,5,10,15)
  scale_x_discrete(
    name="Scheme"
  scale_shape_manual(values=SHAPE)+
  scale_colour_manual(values = cb_palette, ) +
  scale_fill_manual(values = cb_palette) +
  ggtitle('Best performance')+
  p_theme
plot_grid(
  plot +
    theme(legend.position="none"),
 legend,
 nrow=2,
  rel_heights = c(3,1)
```





#### 5.5.1 Stats

Summary statistics for the best performance.

```
performance = filter(best_df, var == 'pop_fit_max')
performance$acro = factor(performance$acro, levels = c('gfs','pfs','tru','tor','nov','lex','nds','ran')
performance %>%
  group_by(acro) %>%
  dplyr::summarise(
    count = n(),
    na_cnt = sum(is.na(val)),
    min = min(val / DIMENSIONALITY, na.rm = TRUE),
    median = median(val / DIMENSIONALITY, na.rm = TRUE),
    mean = mean(val / DIMENSIONALITY, na.rm = TRUE),
    max = max(val / DIMENSIONALITY, na.rm = TRUE),
    IQR = IQR(val / DIMENSIONALITY, na.rm = TRUE)
)
```

```
## # A tibble: 8 x 8
     acro count na_cnt
                         min median mean
                                            max
##
     <fct> <int> <int> <dbl>
                              <dbl> <dbl> <dbl> <dbl> <
## 1 gfs
             50
                     0 3.15 11.4
                                    11.1 13.4 1.25
                                    10.8
## 2 pfs
             50
                     0 7.23 11.0
                                          12.8 0.949
## 3 tru
             50
                     0 0.880 4.41
                                     4.71 8.85 3.56
## 4 tor
             50
                     0 1.60
                              4.37
                                     4.84 8.70 3.68
## 5 nov
             50
                     0 2.70
                              3.84
                                     3.89 5.22 0.639
                     0 2.60
                              3.44
                                     3.45 4.21 0.523
## 6 lex
             50
```

0 1.52

1.93

50

## 7 nds

```
## 8 ran
              50
                      0 0.780 0.998 1.06 1.60 0.261
Kruskal–Wallis test illustrates evidence of statistical differences.
kruskal.test(val ~ acro, data = performance)
##
##
   Kruskal-Wallis rank sum test
##
## data: val by acro
## Kruskal-Wallis chi-squared = 327.4, df = 7, p-value < 2.2e-16
Results for post-hoc Wilcoxon rank-sum test with a Bonferroni correction.
pairwise.wilcox.test(x = performance$val, g = performance$acro, p.adjust.method = "bonferroni",
                      paired = FALSE, conf.int = FALSE, alternative = '1')
##
##
   Pairwise comparisons using Wilcoxon rank sum test with continuity correction
##
## data: performance$val and performance$acro
##
##
       gfs
               pfs
                        tru
                                tor
                                        nov
                                                 lex
                                                         nds
## pfs 0.03925 -
## tru 2.2e-14 < 2e-16 -
## tor 2.4e-14 < 2e-16 1.00000 -
## nov 2.1e-14 < 2e-16 1.00000 1.00000 -
## lex 5.3e-15 < 2e-16 0.23671 0.04294 0.00042 -
## nds < 2e-16 < 2e-16 5.5e-10 8.2e-13 < 2e-16 < 2e-16 -
## ran < 2e-16 < 2e-16 1.4e-15 < 2e-16 < 2e-16 < 2e-16 < 2e-16
##
## P value adjustment method: bonferroni
```

1.97 2.45 0.322

## 5.6 Largest valley reached throughout

The largest valley reached in a single trait throughout an entire evolutionary run. To collect this value, we look through all the best-performing solutions each generation and find the largest valley reached.

```
plot = filter(best_df, var == 'ele_big_peak') %>%
  ggplot(., aes(x = acro, y = val, color = acro, fill = acro, shape = acro)) +
  geom_flat_violin(position = position_nudge(x = .1, y = 0), scale = 'width', alpha = 0.2, width = 1.5)
  geom_boxplot(color = 'black', width = .07, outlier.shape = NA, alpha = 0.0, size = 1.0, position = po
  geom_point(position = position_jitter(width = 0.03, height = 0.02), size = 2.0, alpha = 1.0) +
  scale_y_continuous(
   name="Valley reached",
   limits=c(3.9,14.1),
   breaks=c(4,9,14)
  scale_x_discrete(
   name="Scheme"
  )+
  scale_shape_manual(values=SHAPE)+
  scale_colour_manual(values = cb_palette, ) +
  scale fill manual(values = cb palette) +
  ggtitle('Largest valley reached')+
```

```
p_theme

plot_grid(
   plot +
       theme(legend.position="none"),
   legend,
   nrow=2,
   rel_heights = c(3,1)
)
```

# Largest valley reached



### 5.6.1 Stats

Summary statistics for the largest valley crossed.

```
valleys = filter(best_df, var == 'ele_big_peak')
valleys$acro = factor(valleys$acro, levels = c('pfs','gfs','ran','nov','nds','lex','tru','tor'))
valleys %>%
  group_by(acro) %>%
  dplyr::summarise(
    count = n(),
    na_cnt = sum(is.na(val)),
    min = min(val, na.rm = TRUE),
    median = median(val, na.rm = TRUE),
    mean = mean(val, na.rm = TRUE),
    max = max(val, na.rm = TRUE),
    IQR = IQR(val, na.rm = TRUE)
```

## P value adjustment method: bonferroni

```
## # A tibble: 8 x 8
                                                   IQR
    acro count na_cnt
                          min median mean
                                             max
    <fct> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
## 1 pfs
             50
                      0
                           14
                                  14 14
                                              14 0
## 2 gfs
              50
                      0
                           11
                                  13 12.9
                                              14 0
## 3 ran
             50
                      0
                           9
                                  10 10.2
                                              13 0.75
## 4 nov
            50
                    0
                           9
                                 10 9.98
                                              11 0
## 5 nds
            50
                     0
                          7
                                  8 7.88
                                              9 0
                      0
                                               6 1
## 6 lex
             50
                           5
                                  5 5.44
                                               6 0
## 7 tru
             50
                      0
                            4
                                   5 5
## 8 tor
              50
                      0
                                   5 5
Kruskal–Wallis test illustrates evidence of statistical differences.
kruskal.test(val ~ acro, data = valleys)
##
## Kruskal-Wallis rank sum test
##
## data: val by acro
## Kruskal-Wallis chi-squared = 385.68, df = 7, p-value < 2.2e-16
Results for post-hoc Wilcoxon rank-sum test with a Bonferroni correction.
pairwise.wilcox.test(x = valleys$val, g = valleys$acro, p.adjust.method = "bonferroni",
                     paired = FALSE, conf.int = FALSE, alternative = '1')
##
## Pairwise comparisons using Wilcoxon rank sum test with continuity correction
##
## data: valleys$val and valleys$acro
##
##
      pfs
              gfs
                      ran
                               nov
                                       nds
                                               lex
                                                       tru
## gfs < 2e-16 -
## ran < 2e-16 < 2e-16 -
## nov < 2e-16 < 2e-16 1
## nds < 2e-16 < 2e-16 < 2e-16 < 2e-16 -
## lex < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16 -
## tru < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16 7.6e-06 -
## tor < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16 7.6e-06 1
##
```