

Apply Logistic Regression to Analyze Singapore Workplace Injury Data

EBS5101 Foundation of Business Analytics – Assignment 1

Submitted by:

Ma Min(A0163305N), Muni Ranjan(A),
Pradeep Kumar (A0163453H), Zheng Weiyu (A0163412R)

CONTENTS	
Objective	3
Problem Dataset	3
Exploratory Analysis	4
Determination of Key Factors	5
Observations	5

Objective

The objective of this report is to explain the team work done to apply data exploration learning technique. We have selected the data "Workplace Injury by types" provided by Singapore government. We would like to identify the relationship between different factors provided in the data. We want to find out if there is an independent variable which could be predicted based on one or more dependent variable.

Below is the quick snapshot of data:

У	ear degree_of_injury	industry	sub_industry	incident_type	incident_agent	incident_agent_sub_type	noof_injuries
2	2011 Fatal	Community, Social & Personal Services	Repair & Maint	Caught in/betw C	Vehicles	Vehicles - Motor vehicles	
2	2011 Fatal	Community, Social & Personal Services	Repair & Maint	Falls - Slips, Trips	Vehicles	Vehicles - Motor vehicles	
2	2011 Fatal	Construction	Civil Engineeri	r Collapse/Failure	Others	Others - Furniture and Fitt	
2	2011 Fatal	Construction	Civil Engineeri	r Struck by Moving	Lifting Equipment In	Lifting Equipment Includin	
2	2011 Fatal	Construction	Civil Engineeri	r Struck by Moving	Pressurised Equipm	Pressurised Equipments -	
2	2011 Fatal	Construction	Construction o	Caught in/betw C	Lifting Equipment In	Lifting Equipment Includin	
2	2011 Fatal	Construction	Construction o	Caught in/betw C	Vehicles	Vehicles - Excavators	
2	2011 Fatal	Construction	Construction o	Cave-in of excava	Others	Others	
) 2	2011 Fatal	Construction	Construction o	Collapse of formy	Physical Workplace	Physical Workplace - Form	
. 2	2011 Fatal	Construction	Construction o	Crane-related	Lifting Equipment In	Lifting Equipment Includin	
2 2	2011 Fatal	Construction	Construction o	Electrocution	Others	Others - Electrical Installat	
3 2	2011 Fatal	Construction	Construction o	Falls - Falls from F	Means of Access	Means of Access - Ladders	
1 2	2011 Fatal	Construction	Construction o	Falls - Falls from F	Means of Access	Means of Access - Others	
5 2	2011 Fatal	Construction	Construction o	Falls - Falls from F	Physical Workplace	Physical Workplace - Struc	
5 2	2011 Fatal	Construction	Construction o	Falls - Slips, Trips	Physical Workplace	Physical Workplace - Form	
2	2011 Fatal	Construction	Construction o	Struck by falling o	Others	Others - Ceramic Items	
3 2	2011 Fatal	Construction	Specialised Co	r Collapse/Failure	Others	Others - Ceramic Items	
2	2011 Fatal	Construction	Specialised Co	r Falls - Falls from F	Physical Workplace	Physical Workplace - Roof	
) 2	2011 Fatal	Construction	Specialised Co	r Falls - Falls from H	Physical Workplace	Physical Workplace - Struc	
. 2	2011 Fatal	Construction	Specialised Co	r Struck by falling o	Lifting Equipment In	Lifting Equipment Includin	1
2 2	2011 Fatal	Information & Communications	Telecommunic	Falls - Falls from F	Means of Access	Means of Access - Ladders	
3 2	2011 Fatal	Manufacturing	Manufacture o	Falls - Falls from F	Means of Access	Means of Access - Ladders	
1 2	2011 Fatal	Manufacturing	Metalworking	Collapse/Failure	Vehicles	Vehicles - Forklifts	

Source: data.gov.sq

Problem Dataset

By simply loading the dataset, we get the found the following information about the data:

- There are total 8 variables provided in this dataset.
- Total number of observations are 16374
- Unique values under the **no._of_injuries** varies from **1 to 261**. This indicates that for a typical accident number of workers injured from **1** to 261
- There are 3 types of degree_of_injuries FATAL, MAJOR, MINOR

- 1. Is there any relation between single injury or group injury with other factors?
- 2. Can we predict based on DEGREE_OF_INJURY and other factors if two or more people were involved in the accident?

To conduct this analysis we converted the injury_count to a boolean variable

- o: Represents 1 or 2 people involved in accident
- 1: Represents more than 2 people involved in accident

For all the attributes, an initial exploratory analysis was done. Scatter plots were used to detect unusual patterns. Since there were no null values, no reduction of data was required.

Exploratory Analysis

We first identified the major attributes which could help us create the model for predicting the group injury. For this we compared the unique values in each variable and found out the following:

- Year has no effect on our model. Hence we dropped the variable
- There are too many unique attributes in the sub types which can lead to inaccuracies of the model. Those were dropped
- Degree_of_Injury(DI), Industry(IND), and Incident_agent(IA) were found suitable

As you can see in figure (1) we plotted the different accepted variables against the injury_count. It doesn't provide a very clear picture but definitely indicates that for some factors, injury_count was quite low whereas of others had a huge count.

Figure 1: Scatterplot of different variables with injury_count

Determination of Key Factors

We used random sampling to select 70% of the data for training and 30% for prediction. To determine the factors influencing the injury count we used logistic regression in language 'R'. The first model summary of our data was:

```
Deviance Residuals:

Min 1Q Median 3Q Max

-1.3431 -0.9338 -0.6356 1.1988 2.7327
coefficients:
incident_agentIndustrial Machines
incident_agentLifting Equipment Including Cranes
incident_agentMeans of Access
incident_agentOthers
                                                                                       -0.22191
-0.99334
                                                                                                         0.08708
0.10922
                                                                                                                      -2.548 0.010824
-9.095 < 2e-16
                                                                                                                      -2.548 U.U10624

-9.095 < 2e-16 ***

1.423 0.154619

1.810 0.070371 .

4 4 7 1 0 38e-06 ***
                                                                                        0.13496
0.13358
                                                                                                         0.09482
0.07382
incident_agentOthers
incident_agentPhysical Workplace
incident_agentPressurised Equipments
                                                                                                        0.09627 4.431 9.38e-06 ***
0.19473 -9.907 < 2e-16 ***
0.08716 -0.438 0.661271
                                                                                       0.42659
-1.92927
incident_agentvehicles
                                                                                      -0.03819
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 19800 on 16373 degrees of freedom
Residual deviance: 18185 on 16348 degrees of freedom
AIC: 18237
Number of Fisher Scoring iterations: 12
```

Figure 2: First Iteration of our model

Observations

- Fatal injury type has been filtered in `R' output as it has low significance in predicting the group injury (greater than 2)
- We identified few more factors like industry_construction, industry_marine etc. which have high P value, hence can be dropped from the model.

After filtering out the unimportant factors we ran the iteration 2 and following are the results: