Hoja 1: Ejercicios. Cálculo Estocástico en Finanzas

Ejercicio 4

Consideremos la siguiente estrategia: comprar una call y una put con el mismo precio K y la misma fecha de vencimiento T. El precio de la long call option es de 3 euros, y el precio de la long put option es de 5 euros, K=40 euros. Obtener la tabla de pagos.

	$S_T \le 32$	$32 < S_T < 40$	$S_T = 40$	$40 < S_T < 48$	$S_T \ge 48$
Long call option	-3	-3	-3	$S_T - 40$	$S_T - 40$
Long put option	$-(S_T - 40)$	$-(S_T - 40)$	-5	-5	-5
TOTAL	$-S_T + 37$	$-S_T + 37$	-8	$S_T - 45$	$S_T - 45$

Ejercicio 5

Consideremos la siguiente estrategia, que tiene distintos precios de ejercicio. Supongamos que compramos una call con un precio de ejercicio K_1 , compramos una call con precio K_3 , $K_1 < K_3$. Vendemos dos opciones call con un precio de ejercicio $K_2 = 0, 5(K_1 + K_3)$. Obtener la tabla de pagos.

	$S_T \leq K_1$	$K_1 < S_T \le K_2$	$K_2 < S_T < K_3$	$S_T \ge K_3$
Comprar call con K_1	0	$S_T - K_1$	$S_T - K_1$	$S_T - K_1$
Comprar call con K_3	0	0	0	$S_T - K_3$
Vender una opción call con K_2	0	0	$-(S_T-K_2)$	$-(S_T-K_2)$
Vender una opción call con K_2	0	0	$-(S_T-K_2)$	$-(S_T-K_2)$
TOTAL	0	$S_T - K_1$	$-S_T - K_1 + 2K_2$	$-K_1 - K_3 + 2K_2$

donde:

•
$$-S_T - K_1 + 2 \cdot \frac{K_1 + K_3}{2} = -S_T - K_1 + K_1 + K_3 = -S_T + K_3$$

•
$$-K_1 - K_3 + 2K_2 - K_1 - K_3 + 2 \cdot \frac{K_1 + K_3}{2} = -K_1 - K_3 + K_1 + K_3 = 0$$