Algebraic Geometry

January 20, 2020

0 Introduction

What is algebraic geometry? Broadly speaking, it is the study of the geometry of solutions to systems of polynomial equations. For example, in \mathbb{R}^2 , if we have the set X of solutions to $\{(x,y)\in\mathbb{R}^2:x^2+y^2=1\}$, then we know that this set forms a circle, and we know lots of geometric facts about circles. If we take a more complicated function, such as $y^2=x^3-x$, we get something that looks like:

If we instead think about complex solutions, we get something of the form of a torus minus a single point, with another rich geometric structure.

In \mathbb{C}^3 , if $X = \{(x, y, z) \in \mathbb{C}^3 : x^3 + y^3 + z^3 = 1\}$, then X contains 27 lines: $x = -\xi^m y, z = \xi^n$ for $i, j \in \{0, 1, 2\}$ gives 9 of them, and the other 18 come by rotating x, y, z in this linear system.

In \mathbb{R}^3 , consider the equation $1 + x^3 + y^3 + z^3 = (1 + x + y + z)^3$.

1 Basic Setup

Fix a field K. We define an **affine** n-space over K to be $\mathbb{A}^n := K^n$. Let $A := K[x_1, x_2, \dots, x_n]$ be the polynomial ring in n variables over K, and let $S \subseteq A$ be a subset of A. We then define Z(S), the **zero** set of S to be the set of all n-tuples $(a_1, \dots, a_n) \in \mathbb{A}^n$ where $f(a_1, \dots, a_n) = 0$ for all $f \in S$.

Proposition 1.1.

- 1. $Z(\{0\}) = \mathbb{A}^n$
- $2. Z(A) = \emptyset$
- 3. $Z(S_1 \cdot S_2) = Z(S_1) \cup Z(S_2)$, where $S_1 \cdot S_2 = \{f_1 \cdot f_2 : f_1 \in S_1, f_2 \in S_2\}$.
- 4. Let I be an index set, $S_i \subseteq A$ for each $i \in I$. Then $\bigcap_{i \in I} Z(S_i) = Z(\bigcup_{i \in I} S_i)$

Proof. 1., 2. are obvious

1. If $p \in Z(S_1) \cup Z(S_2)$, then either $p \in Z(S_1)$ or $p \in Z(S_2)$. If $p \in Z(S_1)$, then $f_1(p) = 0$ for all $f_1 \in S_1$, and so $f_1(p) \cdot f_2(p) = 0$ for all $f_1 \in S_1$, $f_2 \in S_2$, so $f_1(p) \cdot f_2(p) = 0$ for all $f_2 \in S_1$, so $f_2 \in Z(S_2)$, and similarly for if $f_2 \in Z(S_2)$.

Conversely, suppose that $p \in Z(S_1 \cdot S_2)$, and $p \notin Z(S_1)$. Then there is some $f_1 \in S_1$ with $f_1(p) \neq 0$. But $f_1(p) \cdot f_2(p) = 0$ for all $f_2 \in S_2$, and so $f_2(p) = 0$ for all $f_2 \in S_2$, so $p \in Z(S_2)$.

2. If $p \in Z(S_i)$ for all $i \in I$, then $f_i(p) = 0$ for all $f_i \in S_i$, and so for all $f \in \bigcup_i S_i$, so $p \in Z(\bigcup_{i \in I} S_i)$.

Conversely, if $p \in Z(\bigcup_i S_i)$, then f(p) = 0 for all the polynomials in $\bigcup_i S_i$, and so $p \in \bigcap_i S_i$.

These four properties should remind you of the four axioms for a topology.

A subset of \mathbb{A}^n is **algebraic** if it of the form Z(S) for some $S \subseteq A$. A **Zariski open set** in \mathbb{A}^n is a set of the form $\mathbb{A}^n \setminus Z(S)$ for some $S \subseteq \mathbb{A}^n$. This proposition tells us that the Zariski open sets define a topology on \mathbb{A}^n , called the **Zariski topology**.

Examples:

- 1. $K = \mathbb{C}$. The Zariski open (or closed) subsets of $\mathbb{C}^n = \mathbb{A}^n$ are in particular open (or closed) in the usual Euclidean sense, but not vice versa.
- 2. For any K, consider \mathbb{A}^1 , A = K[x], $S \subseteq K[x]$. If S has a non-zero element, then Z(S) is finite. Thus the closed sets are the finite subsets of \mathbb{A}^1 , and all of \mathbb{A}^1 . The open sets are \emptyset and all the co-finite sets (i.e. sets with finite complement).

Recall that, if A is any commutative ring with $S \subseteq A$ a subset, then the **ideal generated by** S is the ideal $A \supseteq \langle S \rangle = \{ \sum_{i=1}^q f_i g_i : q \ge 0, f_i \in S, g_i \in A \}$, or the smallest ideal of A containing S.

Lemma 1.2. Let $S \subseteq A = K[x_1, \ldots, x_n]$. Then $Z(S) = Z(\langle S \rangle)$.

Proof. If $p \in Z(S)$, then for $f_1, \ldots, f_q \in S; g_1, \ldots, g_q \in A$ we have:

$$\left(\sum_{i=1}^{q} f_i g_i\right)(p) = \sum_{i=1}^{q} f_i(p) g_i(p) = \sum_{i=1}^{p} 0 \cdot g_i(p) = 0$$

So $p \in Z(\langle S \rangle)$, and so $Z(S) \subseteq Z(\langle S \rangle)$.

The other inclusion follows from the fact that $S \subseteq \langle S \rangle$, we must have $Z(\langle S \rangle) \subseteq Z(S)$.

Let $X \subseteq \mathbb{A}^n$ be a subset. Define $I(X) := \{ f \in A : f(p) = 0 \ \forall p \in X \}$, the **ideal of X**. Note that I(X) is indeed an ideal, since if $f, g \in I(X)$ then $f + g \in I(X)$, and if $f \in I(X), g \in A$, then $f \cdot g \in I(X)$.

Note that if $S_1 \subseteq S_2 \subseteq A_1$, then $Z(S_2) \subseteq Z(S_1)$, and if $X_1 \subseteq X_2$, then $I(X_2) \subseteq I(X_1)$.