

Evidencia final: Evaluación de prácticas de almacenamiento y procesamiento en la nube

Trabajo realizado por:

Rogelio Lizárraga Escobar

Cómputo en la nube

Profesor: Félix Ricardo Botello Urrutia

27 de noviembre de 2024

1. Evaluación de Prácticas de Almacenamiento y Procesamiento en la Nube

En el trabajo posterior, se presenta un análisis detallado de las prácticas de almacenamiento y procesamiento en la nube de los principales proveedores de servicios: Amazon Web Services (AWS), Google Cloud Platform (GCP) y Microsoft Azure. La evaluación se centra en características de seguridad esenciales, como el cifrado de datos en tránsito y en reposo, así como prácticas de confidencialidad relacionadas con control de accesos, auditorías y autenticación multifactor.

Amazon Web Services (AWS)

Características de seguridad:

- Cifrado de datos en tránsito: AWS utiliza el protocolo TLS 1.2 para garantizar la protección de los datos que se transfieren entre sus servicios y los usuarios [1].
- Cifrado de datos en reposo: Emplea cifrado avanzado AES-256 en servicios como Amazon S3, RDS y DynamoDB. Las claves de cifrado se gestionan de forma centralizada a través de AWS Key Management Service (KMS), garantizando una gestión segura y eficiente [2].

Prácticas de confidencialidad:

- Control de acceso: AWS implementa Amazon Identity and Access Management (IAM), un sistema robusto que permite asignar permisos precisos basados en roles y políticas, alineado con el principio de menor privilegio [3].
- Auditorías de acceso: AWS CloudTrail registra todas las acciones realizadas sobre los servicios, facilitando auditorías y la identificación de accesos no autorizados [4].
- Autenticación multifactor: La autenticación multifactor (MFA) puede activarse para todas las cuentas de usuario y accesos administrativos, proporcionando una capa adicional de seguridad frente a intentos de acceso no autorizados [1].

Google Cloud Platform (GCP)

Características de seguridad:

- Cifrado de datos en tránsito: GCP garantiza la seguridad en la transferencia de datos mediante el uso del protocolo TLS 1.3, el cual ofrece una mayor rapidez y robustez frente a ataques [5].
- Cifrado de datos en reposo: Todos los datos almacenados en GCP están cifrados automáticamente con AES-256. La gestión de claves se realiza a través de Google Cloud Key Management, que asegura un control eficiente y seguro [6].

Prácticas de confidencialidad:

- Control de acceso: GCP emplea Cloud Identity and Access Management (IAM), que aplica estrictamente el principio de menor privilegio, limitando los permisos a lo estrictamente necesario [7].
- Auditorías de acceso: Las actividades realizadas en los servicios de GCP son monitoreadas mediante Cloud Audit Logs, lo que permite un rastreo exhaustivo para identificar posibles irregularidades [8].
- Autenticación multifactor: GCP es compatible con sistemas de autenticación multifactor (MFA), añadiendo un nivel adicional de seguridad para los accesos sensibles [5].

Microsoft Azure

Características de seguridad:

- Cifrado de datos en tránsito: Azure emplea el protocolo TLS 1.2 para garantizar que todas las conexiones entre usuarios y servicios estén protegidas contra intercepciones [9].
- Cifrado de datos en reposo: Los datos almacenados en Azure se protegen mediante cifrado AES-256, con claves gestionadas a través de Azure Key Vault, lo que asegura una administración confiable [10].

Prácticas de confidencialidad:

- Control de acceso: Azure utiliza Role-Based Access Control (RBAC) para implementar permisos detallados según roles, promoviendo un control de acceso eficiente [11].
- Auditorías de acceso: Las actividades y accesos a los servicios son supervisados mediante Azure Monitor y Log Analytics, herramientas avanzadas que permiten detectar posibles anomalías [12].
- Autenticación multifactor: Azure integra su autenticación multifactor (MFA) con Azure Active Directory, fortaleciendo los accesos administrativos y reduciendo riesgos [9].

Matriz Comparativa de Prácticas en Relación con Principios Éticos y Normas

Proveedor	Confidencialidad	Integridad	Disponibilidad
AWS	- Control de ac-	- Cifrado avanzado	- Múltiples zonas
	ceso mediante AWS	(AES-256) para	de disponibilidad.
	IAM.	datos en reposo.	- Balanceo de carga
	- Uso de auten-	- TLS 1.2 para	y replicación.
	ticación multifactor	datos en tránsito.	- Recuperación
	(MFA).		ante desastres.
	- Auditorías con		
	AWS CloudTrail.		
Google Cloud	- Control de acceso	- Cifrado au-	- Balanceo de carga
	granular con Cloud	tomático AES-256	global.
	IAM.	en reposo.	- Replicación ge-
	- Auditorías con	- TLS 1.3 para	ográfica.
	Cloud Audit Logs.	datos en tránsito.	- Alta disponibil-
	- Autenticación		idad garantizada
	multifactor (MFA).		por SLA.
Microsoft Azure	- Gestión de per-	- Cifrado AES-256	- Réplica geográfica
	misos con RBAC.	en reposo con	de datos.
	- Integración con	Azure Key Vault.	- Balanceo de carga
	Azure Active Di-	- TLS 1.2 para	global.
	rectory para MFA.	datos en tránsito.	- Recuperación
	- Auditorías con		ante desastres con
	Azure Monitor.		Azure Backup.

Table 1: Prácticas de los principales proveedores clasificadas por principios éticos.

Cumplimiento de Normas Internacionales

Proveedor	Normas Cumplidas	Descripción del
		Cumplimiento
AWS	ISO/IEC 27001, NIST	AWS cumple con los
	800-53, GDPR	estándares interna-
		cionales de seguridad
		mediante auditorías
		periódicas y cumplim-
		iento de marcos
		regulatorios.
Google Cloud	ISO/IEC 27001,	GCP asegura con-
	ISO/IEC 27701,	formidad con norma-
	NIST 800-53, GDPR	tivas internacionales a
		través de herramien-
		tas integradas para
		auditorías y gestión
		de datos.
Microsoft Azure	ISO/IEC 27001, NIST	Azure se alinea con los
	800-53, GDPR	principales estándares
		de seguridad mediante
		la implementación de
		herramientas avan-
		zadas de control y
		cumplimiento.

Table 2: Cumplimiento de normas internacionales por proveedor.

2. Selección de Prácticas y Herramientas de Seguridad y Confidencialidad

Con base en la matriz comparativa, se seleccionaron las mejores prácticas y herramientas de seguridad de los principales proveedores de nube (AWS, Google Cloud, Azure) para garantizar la protección de los datos. Estas herramientas se enfocan en cifrado avanzado, control de acceso y auditorías, fundamentales para asegurar la confidencialidad, integridad y disponibilidad de la información.

Prácticas Seleccionadas

- 1. Cifrado avanzado de datos sensibles: Todas las plataformas seleccionadas utilizan cifrado AES-256 para datos en reposo y protocolos TLS para datos en tránsito, asegurando protección frente a accesos no autorizados.
- 2. Control de accesos basados en permisos y principios de menor privilegio: Herramientas como AWS IAM, Cloud IAM de Google, y RBAC de Azure permiten configurar permisos específicos basados en roles, limitando los accesos al mínimo necesario.

3. **Registros de auditoría:** Plataformas como AWS CloudTrail, Cloud Audit Logs y Azure Monitor facilitan el monitoreo y la revisión de actividades, garantizando trazabilidad y cumplimiento normativo.

Herramientas Seleccionadas y su Descripción

De esta manera, se seleccionarion cinco herramientas y componentes de los proveedores, con base en su funcionamiento y las ventajas que estos proporcionaron:

1. AWS Identity and Access Management (IAM):

• Función: Gestiona accesos a los servicios y recursos de AWS mediante permisos específicos asignados a usuarios, roles o grupos.

• Ventajas:

- Implementa el principio de menor privilegio.
- Soporta autenticación multifactor (MFA) para mayor seguridad.
- Escalable para grandes organizaciones con múltiples usuarios y servicios.

2. Google Cloud Key Management Service (KMS):

• Función: Permite generar, gestionar y rotar claves criptográficas para cifrar datos almacenados en los servicios de GCP.

• Ventajas:

- Integración nativa con servicios como Cloud Storage y BigQuery.
- Simplifica el cumplimiento de regulaciones como GDPR al ofrecer un control total de claves.

3. Azure Role-Based Access Control (RBAC):

• Función: Asigna permisos basados en roles a usuarios, grupos y aplicaciones para gestionar recursos de Azure.

• Ventajas:

- Alta granularidad en la configuración de permisos.
- Integración con Azure Active Directory para autenticación centralizada.
- Reducción de riesgos mediante el principio de menor privilegio.

4. AWS CloudTrail:

• Función: Proporciona registros detallados de las acciones realizadas sobre los servicios de AWS.

• Ventajas:

- Facilita auditorías y cumplimiento de normativas como ISO/IEC 27001.
- Detecta actividades sospechosas mediante análisis de registros.

5. Azure Key Vault:

• Función: Almacena y gestiona claves de cifrado, certificados y secretos utilizados en aplicaciones y servicios.

• Ventajas:

- Protección avanzada de claves mediante módulos de seguridad de hardware (HSM).
- Integración con otros servicios de Azure para automatizar el cifrado.
- Mejora la seguridad al centralizar la gestión de secretos y credenciales.

3. Establecimiento de un Proceso o Estándar de Validación

Para garantizar el manejo ético y seguro de los datos en la nube, se propone un proceso de validación basado en evaluaciones periódicas, monitoreo continuo y revisiones de políticas. Este proceso asegura el cumplimiento de normativas como ISO/IEC 27001, NIST y GDPR, alineándose con los principios de confidencialidad, integridad y disponibilidad.

Este proceso de validación tiene como objetivo asegurarse que los datos almacenados y procesados en la nube sean gestionados de forma ética y segura, limitando los accesos a personal autorizado y garantizando la conformidad con la normativa vigente.

Además, este proceso es aplicable a todas las áreas de la organización que gestionen datos sensibles almacenados en servicios en la nube, incluyendo la evaluación de accesos, la implementación de auditorías y la actualización constante de políticas de seguridad.

Pasos del Proceso de Validación

1. Evaluación periódica de permisos y accesos:

- Realizar revisiones trimestrales de las listas de usuarios con acceso a los servicios en la nube.
- Validar que los permisos asignados correspondan a las responsabilidades actuales de los usuarios.
- Revocar accesos innecesarios o inactivos para minimizar riesgos.

2. Monitoreo continuo de la seguridad:

- Implementar herramientas como AWS CloudTrail, Google Cloud Audit Logs o Azure Monitor para registrar y supervisar las actividades en tiempo real.
- Generar reportes semanales sobre accesos y actividades inusuales.
- Configurar alertas automáticas para identificar actividades sospechosas o no autorizadas.

3. Revisión y actualización de políticas de acceso y uso de datos:

• Revisar semestralmente las políticas de acceso, asegurando que estén alineadas con las mejores prácticas y normativas vigentes.

- Actualizar las políticas para incluir nuevas tecnologías, herramientas o cambios en la estructura organizacional.
- Implementar controles adicionales como autenticación multifactor (MFA) para accesos administrativos.

Diagrama del Proceso

seguridad.

Conclusiones

- Relevancia del cumplimiento normativo: La alineación con estándares internacionales como ISO/IEC 27001 y GDPR no solo protege los datos, sino que fortalece la credibilidad de las organizaciones frente a clientes y reguladores.
- Importancia del enfoque integral en seguridad: La combinación de herramientas avanzadas, como AWS IAM, Azure RBAC y Google Cloud KMS, demuestra que la seguridad efectiva requiere implementar controles específicos para confidencialidad, integridad y disponibilidad.
- Eficiencia del proceso propuesto: La validación periódica de accesos, junto con el monitoreo continuo, asegura que los sistemas se mantengan seguros y actualizados frente a amenazas emergentes.
- Mejora en la resiliencia organizacional: El diseño e implementación de un proceso estructurado para la gestión de datos en la nube permite a las empresas responder proactivamente ante riesgos, garantizando una operación confiable y ética.

Referencias

- [1] Amazon Web Services. (n.d.). AWS Security Overview. Recuperado de https://aws.amazon.com/security/.
- [2] Amazon Web Services. (n.d.). AWS Key Management Service. Recuperado de https://aws.amazon.com/kms/.
- [3] Amazon Web Services. (n.d.). AWS Identity and Access Management. Recuperado de https://aws.amazon.com/iam/.
- [4] Amazon Web Services. (n.d.). AWS CloudTrail. Recuperado de https://aws.amazon.com/cloudtrail/.
- [5] Google Cloud. (n.d.). Google Cloud Security. Recuperado de https://cloud.google.com/security.
- [6] Google Cloud. (n.d.). Google Cloud Key Management. Recuperado de https://cloud.google.com/kms/.
- [7] Google Cloud. (n.d.). Cloud IAM Overview. Recuperado de https://cloud.google.com/iam.
- [8] Google Cloud. (n.d.). Cloud Audit Logs. Recuperado de https://cloud.google.com/logging/audit.
- [9] Microsoft Azure. (n.d.). Azure Security Overview. Recuperado de https://azure.microsoft.com/en-us/overview/security/.
- [10] Microsoft Azure. (n.d.). Azure Key Vault. Recuperado de https://azure.microsoft.com/en-us/services/key-vault/.
- [11] Microsoft Azure. (n.d.). Role-Based Access Control. Recuperado de https://learn.microsoft.com/en-us/azure/role-based-access-control/.
- [12] Microsoft Azure. (n.d.). Azure Monitor. Recuperado de https://azure.microsoft.com/en-us/services/monitor/.