Schrödinger ekvationen (partikel i låda)

Elias Almqvist

elalmqvist@gmail.com — https://wych.dev

Uppgiftbeskrivning (taget från dokumentet)

En partikel i en låda är en utav de första tillämpningarna man stöter på när man lär sig om kvantfysik. Man betraktar då en partikel (t.ex. en elektron) som befinner sig i en låda med oändligt höga väggar. För detta undersöker man partikelns vågfunktion $\psi_n(x)$. Vågfunktionen är i allmänhet en komplex funktion, dvs den har både en realdel och en imaginärdel. Vågfunktionens absolutbelopp i kvadrat, $|\psi_n(x)|^2$, representerar täthetsfunktionen för att partikeln skall befinna sig vid läge x i lådan. Om partikeln befinner sig i ett så kallat energiegentillstånd så uppfyller den den tidsoberoende Schrödinger ekvationen:

$$E_n \psi_n(x) = -\frac{\hbar}{2m} \frac{d^2 \psi_n}{dx^2} \tag{1}$$

där E_n är partikelns energi, $\hbar = \frac{h}{2\pi}$ och m är partikelns massa. Att lådans väggar är oändligt höga innebär att vågfunktionen också behöver uppfylla randvillkoren:

$$\psi_n(0) = \psi_n(L) = 0$$
 & $\psi'_n(0) = \psi'_n(L) = 0$

Slutligen, eftersom $|\psi_n(x)|^2$ motsvarar sannolikhetstätheten för att partikeln skall befinna sig vid position x, så måste det gälla att:

$$\int_{0}^{L} |\psi_{n}(x)|^{2} dx = 1.0$$

Uppgifter

- 1. Hitta de olika möjliga värden på E_n , och hitta motsvarande vågfunktioner $\psi_n(x)$. Visa grafer över motsvarande sannolikhetsfördelningar för att partikeln skall befinna sig vid olika positioner x.
- 2. Partikelns fullständiga vågfunktion är egentligen även en funktion utav tiden. För en partikel som befinner sig i ett så kallat energiegentillstånd är den fullständiga vågfunktionen $\Psi_n(x,t) = \psi_n(x)e^{-i\frac{E_n}{\hbar}t}$ Dock innebär den extra faktorn $e^{-i\frac{E_n}{\hbar}t}$ inte någon intressant tidsutveckling av sannolikhetsfördelningen eftersom $|\Psi(x,t)|^2 = |\psi_n(x)e^{-i\frac{E_n}{\hbar}t}|^2 = |\psi_n(x)|^2$. Intressantare blir det om en partikel befinner sig i en superposition av energiegentillstånd, tex:

$$\Psi(x,t) = A(\psi_1(x)e^{-i\frac{E_1}{\hbar}t} + \psi_2(x)e^{-i\frac{E_2}{\hbar}t})$$

För denna vågfunktion, bestäm konstanten A sådan att:

$$\int_0^L |\Psi(x,t)|^2 dx = 1.0$$

Undersök sedan hur sannolikheten att befinna sig i den vänstra delen $0 < x < \frac{L}{2}$, respektive högra $\frac{L}{2} < x < L$ delen av lådan. Hitta alltså ett uttryck för:

$$P(V,t) = \int_0^{\frac{L}{2}} |\Psi_n(x,t)|^2 dx$$

$$P(H,t) = \int_{\frac{L}{2}}^{L} |\Psi_n(x,t)|^2 dx$$

3. Gör sedan samma sak för superpositionen av energiegentillstånden 1 och 3:

$$\Psi(x,t) = A(\psi_1(x)e^{-i\frac{E_1}{\hbar}t} + \psi_3(x)e^{-i\frac{E_3}{\hbar}t})$$

På vilket sätt skiljer de sig? Kan du förklara varför?

Uppgiftlösningar