### Project 1: Crowd Counting

11761 - Image and Video Analysis Master's Degree in Intelligent Systems

> Antonio Nadal Martínez Phornphawit Manasut

#### Table of contents

O1. Preprocessing methods

O2. Detection methods

O3. Evaluation methods

04. Obtained results

## O1. Preprocessing methods

Defining preprocessing pipelines

#### Common preprocessing steps

Static background removal







#### Common preprocessing steps

Background substraction











#### Main proposed pipelines

**Proposal1** 

**Proposal 2** 

Proposal 3

**Static Background Removal** 

Background Substraction (unique image/image averaging)

Upper and lower thresholding

**Otsu thresholding** 

Water removal (HSV thresholding)

Sand removal (simple thresholding)

**Otsu thresholding** 

CLAHE

**Background Substraction** 

Upper and lower thresholding

Otsu thresholding

**AND Pixel Operator** 

## 02. Detection methods

#### **Detection methods used**

Simple Blob Detector

Contour Detector

**DBScan** 

#### Simple Blob Detector

#### A Blob

A group of connected pixels in an image that share some common property
Found through connected component Labelling



#### Parameters Us ed

Min area = 2 Max area = 100 Min Circularity = 0.75 Min Convexity = 0.75 Min Inertia Ratio = 0.15

Connected Component Labelling Example



#### **Contour Detector**

#### **Contour**

Curves joining all the continuous points along the boundary of an object, having the same color or intensity

Use Border Following
Algorithm. TopBottom, Left-Right
scanning for pixel of
right intensity to trace
contour.

#### **Parameters Used**

Contour Area < 50
cv2.CHAIN\_APPROX\_SIMPLE = compress
vert/horizontal/diagonals segments into
points
cv2.RETR\_EXTERNAL = external contours

only Contour Detection Example



#### **DBScan**

#### **Clusters**

Near (Euclidean-based) points are identified as clusters.

(x,y) of high intesity pixels as points!

In this case, human pixels should be clustered.

Lower min\_samples = more false detections!

#### **Parameters Used**

Epsilon = 4 Min\_Samples = 40

#### DBScan Example



## 03. Evaluation methods

#### **Evaluation methods used**

#### Image-level

Mean Squared Error is used as an image-level indicator of performance.

#### **Person-level**

Based on the predictions obtained, we carry out a one near neighbor algorithm without replacement, with thresholded distance, to decide to which category the detection belongs (TP, FP, FN).

Distance between neighbor use Euclidean Distance of 100.

Precision, recall and F1-Score are computed.

# 04. Obtained results

| MSE            | 16179.3 |
|----------------|---------|
| Mean Precision | 0.431   |
| Mean Recall    | 0.896   |
| Mean F1-Score  | 0.582   |





| MSE            | 16179.3 |
|----------------|---------|
| Mean Precision | 0.431   |
| Mean Recall    | 0.896   |
| Mean F1-Score  | 0.582   |





| MSE            | 113420.6 |
|----------------|----------|
| Mean Precision | 0.205    |
| Mean Recall    | 0.972    |
| Mean F1-Score  | 0.339    |





| MSE            | 113420.6 |
|----------------|----------|
| Mean Precision | 0.205    |
| Mean Recall    | 0.972    |
| Mean F1-Score  | 0.339    |





| MSE            | 88323.5 |
|----------------|---------|
| Mean Precision | 0.26    |
| Mean Recall    | 0.958   |
| Mean F1-Score  | 0.41    |





| MSE            | 88323.5 |
|----------------|---------|
| Mean Precision | 0.26    |
| Mean Recall    | 0.958   |
| Mean F1-Score  | 0.41    |





#### **Combined Pipeline**

| MSE            | 719.6 |
|----------------|-------|
| Mean Precision | 0.696 |
| Mean Recall    | 0.843 |
| Mean F1-Score  | 0.762 |





#### **Combined Pipeline**

| MSE            | 427.8 |
|----------------|-------|
| Mean Precision | 0.827 |
| Mean Recall    | 0.675 |
| Mean F1-Score  | 0.743 |





#### **Combined Pipeline**

| MSE            | 279.9 |
|----------------|-------|
| Mean Precision | 0.734 |
| Mean Recall    | 0.672 |
| Mean F1-Score  | 0.702 |





#### Conclusion

- Detections are only as good as mask!
- Combined Pipelines show good results in terms of curbing false positives.
- HOG-SVM Tried but not very good
- Potential
  - Better HSV thresholding!
  - Smart Pipeline Section!
  - Different Parameters for detection depending on areas in image.





#### References

#### Images

- o DBScan: 'https://scikit-learn.org/stable/auto\_examples/cluster/plot\_dbscan.html'
- $\\ \circ \quad \text{Contour: 'https://www.semanticscholar.org/paper/Fast-human-detection-in-crowded-scenes-by-contour-Beleznai-Bischof/bb3b6bb0c13d66be0a80f66172e943435efe68ab/figure/0'} \\$
- O Blob Parameters: 'https://learnopencv.com/blob-detection-using-opencv-python-c/'
- Connected Labeling: 'https://en.wikipedia.org/wiki/Connected-component\_labeling'
- HOG-SVM: 'https://medium.com/analytics-vidhya/a-gentle-introduction-into-the-histogram-of-oriented-gradients-fdee9ed8f2aa"

## Thank you for your attention