Systémy obyčajných diferenciálnych rovníc Systém lineárnych diferenciálnych rovníc prvého rádu s konštantnými koeficientmi

Aleš Kozubík

Katedra Matematických metód Fakulta Riadenia a Informatiky Žilinská Univerzita v Žiline

29. novembra 2010

Systém lineárnych diferenciálnych rovníc prvého rádu s konštantnými koeficientmi

Budeme sa zaoberať systémom rovníc v tvare

alebo maticovo

$$\mathbf{y}'=A\mathbf{y}+\mathbf{f}(x).$$

Ak $\mathbf{f}(x) \equiv \mathbf{0}$, tak systém nazývame homogénny.

Fundamentálny systém riešení

Každý systém n lineárne nezávislých riešení systému $\mathbf{y}' = A\mathbf{y}$ azývame fundamentálny systém riešení.

Ak $\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_n$ je fundamentálny systém riešení systému $\mathbf{y}' = A\mathbf{y}$, tak každé riešenie tohto ystému je možné písať v tvare

$$\mathbf{y}=c_1\mathbf{y}_1+c_2\mathbf{y}_2+\cdots+c_n\mathbf{y}_n.$$

Reálne jednoduché vlastné hodnoty

Nech matica A má n rôznych reálnych vlastných hodnôt $\lambda_1, \lambda_2, \ldots, \lambda_n$. Potom existuje n lineárne nezávislých vlastných vektorov tejto matice $\mathbf{h}_1, \mathbf{h}_2, \ldots, \mathbf{h}_n$.

Fundamentálny systém riešení potom tvoria riešenia

$$\mathbf{y}_1 = \mathbf{h}_1 e^{\lambda_1 x}, \mathbf{y}_2 = \mathbf{h}_2 e^{\lambda_2 x}, \dots, \mathbf{y}_n = \mathbf{h}_n e^{\lambda_n x}.$$

a každé riešenie možno písať v tvare

$$\mathbf{y} = c_1 \mathbf{h}_1 e^{\lambda_1 x} + c_2 \mathbf{h}_2 e^{\lambda_2 x} + \cdots + c_n \mathbf{h}_n e^{\lambda_n x}$$
.

Príklady

1

$$y_1' = y_1 + 2y_2 y_2' = 4y_1 + 3y_2$$

2

$$y_1' = y_2 y_2' = 12y_1 - y_2$$

(3)

$$y_1' = y_1 + 2y_2 y_2' = 4y_1 + 3y_2$$

Komplexné jednoduché vlastné hodnoty

Ak je $\lambda = \sigma + i\omega$ vlastná hodnota, tak aj komplexne združené číslo $\overline{\lambda} = \sigma - i\omega$ je vlastnou hodnotou.

Označme vlastný vektor zodpovedajúci vlastnej hodnote λ ako ${\bf g}+{\bf i}\,{\bf h}.$

Dvojici vlastných hodnôt λ a $\overline{\lambda}$ potom zodpovedajú lineárne nezávislé riešenia

$$\mathbf{u} = (\mathbf{g}\cos\omega x - \mathbf{h}\sin\omega x) e^{\sigma x}$$

$$\mathbf{v} = (\mathbf{g}\sin\omega x + \mathbf{h}\cos\omega x) e^{\sigma x}$$

Príklady

•

$$y_1' = y_1 + 3y_2 y_2' = -3y_1 + y_2$$

2

$$y_1' = y_2$$

 $y_2' = -2y_1 + 2y_2$

(3)

$$y_1' = y_1 + y_2 y_2' = -2y_1 + 3y_2$$

Viacnásobné vlastné hodnoty

Nech matica A má k-násobnú vlastnú hodnotu λ . Ak existuje k lineárne nezávislých vlastných vektorov tejto matice zodpovedajúcich λ , postupujeme rovnako ako pri jednoduchých vl. hodnotách.

Ak je m vlastných vektorov lineárne závislých, definujeme reťazec zovšeobecnených vlastných vektorov $\mathbf{v}_1, \dots, \mathbf{v}_m$ rovnicami:

Viacnásobné vlastné hodnoty

Ak ξ_1, \ldots, ξ_m je reťazec zovšeobecnených vlastných vektorov, zodpovedajúcich vlastnej hodnote λ , tak zodpovedajúce lineárne nezávislé riešenia sú:

$$\mathbf{w}_{1} = \xi_{1} e^{\lambda x}
\mathbf{w}_{2} = (\xi_{2} + \xi_{1}x) e^{\lambda x}
\dots
\mathbf{w}_{m} = (\xi_{m} + \frac{1}{1!} \xi_{m-1}x + \dots + \frac{1}{(m-1)!} \xi_{1}x^{m-1}) e^{\lambda x}$$

Príklady

o

$$y'_1 = y_2 + y_3$$

 $y'_2 = y_1 + y_3$
 $y'_3 = y_1 + y_2$

2

$$y'_1 = -y_+ + y_2$$

 $y'_2 = -y_2 + 4y_2$
 $y'_3 = y_1 - 4y_2$