Implementation of LDPC Decoder - Using AHIR Tool Chain

Anurag Gupta Microelectronics (2015-17) Instructor: Prof Madhav P. Desai

IIT-Bombay Department of Electrical Engineering

June 30, 2017

Outline

- 1 Motivation
- 2 LDPC Decoding Algorithm
- 3 Decoder Implementation
- 4 Conclusions & Future Work

Motivation

Why LDPC?

- Channel capacity approaching codes¹
 - S.Y.Chung shannon limit approaching code: For a white Gaussian noise channel threshold within 0.0045 dB of the Shannon limit with block length of 10⁷.
- Decoding time varies linearly proportional to block length
 - Parity check matrix is sparse
- Decoder can be parallelized
 - Decoding algorithms are iterative

¹S.-Y. Chung, G. D. Forney, Jr., T. J. Richardson, and R. L. Urbanke, "On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit," IEEE Commun. Letters, vol. 5, no. 2, pp. 58–60, February 2001.

LDPC Decoding Algorithms

- Hard decoding algorithms
 - Bit flipping algorithm
- Soft decoding algorithms
 - Sum product decoding
 - Min sum decoding

Min Sum Decoding Algorithm

²R. M. Tanner, "A recursive approach to low complexity codes," IEEE Trans. Inform. Theory, vol. IT-27, no. 5, ~

Min Sum Decoding Algorithm

Tanner Graph:

■ LDPC code's parity check equations can be represented by bipartite graph, called the Tanner graph².

	-	<i>c</i> 1	<i>c</i> 2	<i>c</i> 3	<i>c</i> 4	<i>c</i> 5	<i>c</i> 6	<i>c</i> 7	28 0 0 0 0
l	$\overline{r1}$	1	1	1	0	0	0	0	0
I	<i>r</i> 2	0	0	0	1	1	1	0	0
İ	<i>r</i> 3	1	0	0	1	0	0	1	0
	_r4	0	1	0	0	1	0	0	1 _

Figure: Tanner Graph

²R. M. Tanner, "A recursive approach to low complexity codes," IEEE Trans. Inform. Theory, vol. IT-27, no. 5, 5

A priori initialization

- A priories are calculated by soft information of the code bits.
- aPriori[I] = $-4 * C[I] * R * \frac{Eb}{No}$
- where $C[I] = i^{th}$ code block
- R = code rate
- $\frac{Eb}{No}$ = signal to noise power ratio

Figure: A priori initialization

Message initialization

- Messages are the information propagating from bit nodes to check nodes.
- These are initialized to a priori of their respective bit node.
- message[I][J] =
 aPriori[I]

Figure: Message initialization

Extrinsic information calculation

Extrinsic information of a bit node is calculated as min sum of all the messages connected to that particular check node.

- $|E_{(j,i)}| = Min_{i' \in B_i \ i' \neq i} |M_{j,i'}|$
- \bullet $sign(E_{(j,i)}) = \prod_{i' \in B_i \ i' \neq i} sign(M_{j,i'})$

A posteriori calculation

- A posteriori probabilities are the output bit probabilities.
- These are used to modify the code block after every iteration.

• $aPosteriori[I] = \sum_{i \in A_i} E_{j,i} + aPriori[I]$

isDecoded block

- This block flips a bit if it is different form hard decision of the a posteriori probability of the bit. Thus, modifies the code block.
- If, no bit got flipped then decoding stops.
- is_decoded = 1;
 if ∀ i code_bit[I] = hard_decision(aPosteriori[I])

```
a posteriori[i] is_decoded

code_bit[i] modified_code_bit[i]
```

is decoded():

Updating messages

 Messages are updated and transmitted back to start the next iteration of decoding.

 \blacksquare $message_{(j,i)} = aPosteriori[i] - E_{(j,i)}$

LDPC Decoding: Min Sum Decode

Decoder Implementation

Three different implementation³ strategies are possible.

- Serial decoder
 - simple
 - cheap
 - slow
- Fully parallel decoder
 - complex
 - costly
 - Super fast
- 3 Partial parallel decoder.

"Can we effectively partition a bipartite graph corresponding to a LDPC parity check matrix?"

Implementation of Serial Decoder

Implementation of Serial Decoder

C Level Implementation & Testing

Serial Min Sum Decoder - Quasi-Cyclic Matrix

- Min sum algorithm is implemented for Gaussian channel.
- Quasi-cyclic matrix of block size(n=) 4K, 8K and 12K are formed using Sridhara-Fuja-Tanner algorithm.
- Five different code rates(R=) 0.75, 0.80, 0.85, 0.90 and 0.95 are taken.
- Raw input bit error rate(BER(IN)) is between 10^{-2} to 10^{-3} , converted in form of Eb/No(db) to express input SNR in db.
- BER(OUT) : Output block error rate.
- We have tabulated when the first code block get wrongly decoded till 1 million transmitted blocks.

First error till 1 million blocks

		ı	I
n≃	BER(In)≃	R=0.75	R=0.80
4K	1.0×10^{-2}	-	-
	0.5×10^{-3}	-	_
	1.0×10^{-3}	-	-
8K	1.0×10^{-2}	-	-
	0.5×10^{-3}	_	_
	1.0×10^{-3}	-	_
12K	1.0×10^{-2}	-	-
	0.5×10^{-3}	_	_
	$1.0x10^{-3}$	_	_

- : No error found till 1 million blocks.

First error till 1 million blocks

n≃	BER(In)≃	R=0.85	R=0.9	R=0.95
4K	1.0×10^{-2}	2.677×10^3	1.7819×10 ⁴	1
	0.5×10^{-3}	2.4944×10^4	1.65511×10^5	1.79×10^2
	1.0×10^{-3}	5.47550×10^5	4.89654 <i>x</i> 10 ⁵	3.328×10^3
8K	1.0×10^{-2}	2.3817×10^4	1.16847×10^5	1
	0.5×10^{-3}	6.9491×10^4	1.72263×10^5	1.001×10^3
	1.0×10^{-3}	9.16505×10^5	6.28939×10^5	9.338×10^3
12K	1.0×10^{-2}	9.705×10^3	5.37754 <i>x</i> 10 ⁵	1
	0.5×10^{-3}	5.6400×10^4	_	1.318×10^3
	$1.0x10^{-3}$	-	-	1.6920×10 ⁴

- : No error found till 1 million blocks.

Serial Min Sum Decoder - Random Matrix

- Min sum algorithm is implemented for Gaussian channel.
- Random matrix of block size(n=) 4K, 8K and 12K are formed using Mackey's algorithm.
- Five different code rates(R=) 0.75, 0.80, 0.85, 0.90 and 0.95 are taken.
- Raw input bit error rate(BER(IN)) is between 10^{-2} to 10^{-3} , converted in form of Eb/No(db) to express input SNR in db.
- BER(OUT) : Output bit error rate.
- We have tabulated when the first block get wrongly decoded till 1 million transmitted blocks.

First error in 1 million blocks

n≃	BER(In)≃	R=0.75	R=0.8
4K	1.0×10^{-2}	1.2799×10 ⁴	2.0754×10 ⁴
	0.5×10^{-3}	5.53727×10^5	1.72781×10^5
	1.0×10^{-3}	-	6.24436 <i>x</i> 10 ⁵
8K	1.0×10^{-2}	1.92476×10 ⁵	8.3898×10 ⁴
	0.5×10^{-3}	3.21027×10^5	4.6092×10 ⁴
	1.0×10^{-3}	-	-
12K	1.0×10^{-2}	2.20022×10^5	1.57371×10^5
	0.5×10^{-3}	2.17452×10^5	9.0158×10^4
	$1.0x10^{-3}$	_	-

- : No error found till 1 million blocks.

First error in 1 million blocks

n≃	BER(In)≃	R=0.85	R=0.9	R=0.95
4K	1.0×10^{-2}	3.39×10^2	1.259×10^3	NA
	0.5×10^{-3}	6.6700×10^4	1.65511×10^5	NA
	1.0×10^{-3}	3.45503×10^5	1.19008×10^5	NA
8K	1.0×10^{-2}	5.193×10^3	5.947×10^3	NA
	0.5×10^{-3}	3.7952×10^4	1.1389×10^4	NA
	1.0×10^{-3}	_	-	NA
12K	1.0×10^{-2}	1.2894×10^4	1.2626×10^4	1.1
	0.5×10^{-3}	1.56487×10^5	5.4866×10^4	1.034×10^4
	1.0×10^{-3}	_	-	1.4759×10 ⁴

- NA : Not Applicable. (Matrix was not formed)
- : No error found till 1 million blocks.

Aa to VHDL -AHIR Tool Chain⁴

Aa to VHDL -AHIR Tool Chain⁴

Results

Implementation of Serial Decoder

Results

Results: Hardware generated after synthesising the design

	serial min sum de-	serial min sum de-
	coder	coder
		(single FP unit)
FF	18,076	19,034
LUT	19,502	20,621
Memory	6	3
LUT		
I/O	128	128
BRAM	56	56
BUFG	1	1

Partitioning: Objective

Figure: Partitioning the bipartite graph

Suggested Approach

Figure: Block diagram

Implementation of Serial Decoder

Partitioning Bit Node Set

Figure: After partitioning check node set

Figure: After partitioning bit node set

Gallager Parity Check Matrix

30/51

Mackay Parity Check Matrix

31/51

Quasi Cyclic Parity Check Matrix

32/51

Modified min sum algorithm

Modifying min sum algorithm using partitioning

Modifying min sum algorithm using partitioning

After partitioning the matrix we get four matrices as follows :

$$H = \begin{bmatrix} H11 & H12 \\ H21 & H22 \end{bmatrix}$$

example :

$$\begin{bmatrix} c1 & c2 & c3 & c4 & c5 & c6 & c7 & c8 \\ \hline r1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ r2 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ r3 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ r4 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} c4 & c6 & c7 & c1 & c2 & c3 & c8 & c5 \\ \hline r2 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline r3 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ \hline r1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ \hline r4 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

■ H12 and H21 are highly sparse.

A priori initialization

- A priories are calculated by soft information of the code bits.
- aPriori[I] = $-4 * C[I] * R * \frac{Eb}{No}$
- where $C[I] = i^{th}$ code block
- R = code rate
- $\frac{Eb}{No}$ = signal to noise power ratio

Figure: A priori initialization

A priori initialization

35/51

Message initialization

- Messages are the information propagating from bit nodes to check nodes.
- These are initialized to a priori of their respective bit node.
- message[I][J] = aPriori[I]

Figure: Message initialization

Message initialization

Extrinsic information calculation

Extrinsic information of a bit node is calculated as min sum of all the messages connected to that particular check node.

- $|E_{(j,i)}| = Min_{i' \in B_i \ i' \neq i} |M_{j,i'}|$
- lacksquare $sign(E_{(j,i)}) = \prod_{i' \in B_i \ i' \neq i} sign(M_{j,i'})$

└─ Modified min sum algorithm

Partial Extrinsic information calculation

39/51

Update extrinsic information

C Level Implementation

Decoder Implementation

└─ Modified min sum algorithm

modifiedMinSumDecode() :

```
initialize_aPriori(aPriori1)
initialize_aPriori(aPriori2)
initializeMessage(message11)
initializeMessage(message12)
initializeMessage(message21)
initializeMessage(message22)
while nitr > Max_nitr do
  initialize_aPosteriori(aPosteriori1) \Leftarrow aPriori1
  initialize_aPosteriori(aPosteriori2) \Leftarrow aPriori2
  initializeExtrinsicInfo(ext\_info11) \leftarrow 0
  initializeExtrinsicInfo(ext\_info12) \leftarrow 0
  initializeExtrinsicInfo(ext\_info21) \leftarrow 0
  initializeExtrinsicInfo(ext_info22) \Leftarrow 0
```

modifiedMinSumDecode() :

while ... do

. .

```
computeEngine(H11, message11, ext_info11, trans_info11_12)
computeEngine(H22, message22, ext_info22, trans_info22_12)
computeEngine(H12, message12, ext_info12, trans_info12_11)
computeEngine(H21, message21, ext_info21, trans_info21_22)
transverseCorrection(H11, transverse_info12_11, ext_info11)
transverseCorrection(H22, transverse_info21_22, ext_info22)
transverseCorrection(H21, transverse_info22_21, ext_info21)
transverseCorrection(H12, transverse_info11_12, ext_info12)
update_aPosteriori(H11, ext_info11, aPosteriori1)
update_aPosteriori(H22, ext_info22, aPosteriori2)
update_aPosteriori(H12, ext_info12, aPosteriori1)
update_aPosteriori(H21, ext_info21, aPosteriori2)
```

modifiedMinSumDecode() :

```
while ... do
  is\_decoded1 = checklsdecoded(code\_block1, aPosteriori1)
  is\_decoded2 = checklsdecoded(code\_block2, aPosteriori2)
  if (is\_decoded1\&\&is\_decoded2) == 1 then
    break
  else
     updateMessage(ext_info11, aPosteriori1, message11)
     updateMessage(ext_info22, aPosteriori2, message22)
     updateMessage(ext_info12, aPosteriori1, message12)
     updateMessage(ext_info21, aPosteriori2, message21)
  end if
  nitr + +
end while
```

Aa to VHDL -AHIR Tool Chain⁵

Aa to VHDL -AHIR Tool Chain⁵

└ Modified min sum algorithm

Results

min sum decoder -single FP operator

min sum decoder

└ Modified min sum algorithm

Results

Results

	serial	serial min	partitioned	partitioned
	min sum	sum de-	min sum	min
	decoder	coder	decoder	sum de-
		(single FP		coder(single
		unit)		FP unit)
FF	18,076	19,034	49,854	55,988
LUT	19,502	20,621	51,929	60,296
Memory	6	3	23	2
LUT				
I/O	128	128	128	128
BRAM	56	56	80	80
BUFG	1	1	1	1

Conclusion & Future Work

Type of Matrix	Gallager	Mackay Neal	Quasi-Cyclic
Performance Index	78%	86%	88%

- ► The results show that a LDPC decoder can be parallelized with good efficiency.
- ► The implemented 4-way partitioned decoder reduces the time required for decoding to half but uses 2.5× the harder required for single decoder.
- ▶ In future we can figure out a way to fold two engines on the top of other two engines to reduce hardware, instead of using four computational engines.
- The extension of the work can have different quantization levels of the floating point values and check for the trade off between accuracy of operation and error correcting threshold.

Thank You

Questions?

Basic definitions

- random codes vs systematic codes: parity check matrix is generated randomly in random codes whereas parity check matrix has a specific method of filling 1's in matrix in a systematic code.
- **regular codes vs irregular codes:** In regular codes parity check matrix has constant number of 1's in row and columns. if w_c is number of 1's in a column and w_r is number of 1's in a row then in a mxn parity check matrix.

$$m.w_r = n.w_c$$

irregular codes we designate the fraction of columns of weight i by v_i and the fraction of rows of weight i by h_i . Collectively the set v and h is called the degree distribution of the code.

$$m. \sum_{i} h_{i}.i = n \sum_{i} v_{i}.i$$

Gallager parity check matrix

- regular codes,random codes
- (n, w_c, w_r) codes. w_c = no of 1's in a column w_r = number of 1's in a row n=block length

 Method of construction:
- divide rows in w_c sets with m/w_c rows in each set.
- All rows of first set of rows contain w_r consecutive once ordered from left to right.
- Every other set of row is random column permutation of first set of rows.

Gallager parity check matrix

Gallager parity check matrix:example

$$(n, w_c, w_r) = (12,3,4)$$
 take m=9

■ thus we have 3 set of rows having 9/3=3 rows in a set.

MacKay Neal parity-check matrix

- regular (n, w_c, w_r) codes, random codes Method of construction:
- start from the first column. Place w_c 1's in the column randomly.
- Keep a track a 1's in a row.
- Keep Repeating the process for other columns. Break only if at any point number of 1's in the row becomes greater than w_r .
- If break occurs then go back to some columns and repeat again till all columns get filled.

MacKay Neal parity-check matrix

$$n=12 m=9$$

Repeat Accumulate Code

- systematic codes,irregular codes
- each parity-bit can be computed one at a time using only the message bits and the one previously calculated parity-bit.
 Method of construction:
- The first (n-m) columns of H correspond to the message bits.
- then rest columns have 1's of weight two, that are placed in a step pattern for the last m columns of H.

Repeat Accumulate Code:example

$$n=12 m=9$$

• $c_4 = c_1$; $c_5 = c_1 \oplus c_4$; $c_6 = c_5 \oplus c_2$; ...

Quasi-Cyclic (QC) parity Check Matrix:

QC matrix can be construction by Sridhara Fuja Tanner (SFT) Method is discussed. Method of Construction of (j,k)-regular QC-LDPC code:

- Construct two sequences $\{s_1, s_2, ..., s_{j-1}\}$ and $\{t_1, t_2, ..., t_{k-1}\}$, whose elements are randomly selected from GF(p), where p is prime and p>2 , $s_i \neq s_x$ & $t_i \neq t_x$ if i \neq x.
- Now, form a preliminary matrix E with the elements of GF(p) as follows:

$$E = \begin{bmatrix} e_{0,0} & e_{0,1} & \cdots & e_{0,k-1} \\ e_{1,0} & e_{0,1} & \cdots & e_{0,k-1} \\ \vdots & \vdots & \ddots & \vdots \\ e_{j-1,0} & e_{j-1,1} & \cdots & e_{j-1,k-1} \end{bmatrix}$$
(1)

where (i,j)th element of E is calculated by following quadratic congruential equation for a fix parameter $\kappa \in \{1, 2, ..., p-1\}$ and $\nu_i, \nu_j \in \{1, 2, ..., p-1\}$:

$$e_{i,j} = [\kappa(s_i + t_j)^2 + \nu_i + \nu_j]$$
 (2)

So the parity check matrix H is represented by jxk array of circulant permutation of identity matrix.

$$H = \begin{bmatrix} I(e_{0,0}) & I(e_{0,1}) & \cdots & I(e_{0,k-1}) \\ I(e_{1,0}) & I(e_{0,1}) & \cdots & I(e_{0,k-1}) \\ \vdots & \vdots & \ddots & \vdots \\ I(e_{j-1,0}) & I(e_{j-1,1}) & \cdots & I(e_{j-1,k-1}) \end{bmatrix}$$
(3)

Where I(x) is pxp identity matrix with row cyclically shifted right by x position.

Sum product decoding

- it is a **soft decision** algorithm.
- bit-flipping decoding accepts an initial hard decision on the received bits as input, whereas the sum-product algorithm accepts the probability of each received bit as input.
- The input bit probabilities are called the a **priori** probabilities
- The bit probabilities returned by the decoder are called the a posteriori probabilities
- sum-product decoding these probabilities are expressed as log-likelihood ratios.

LLR

- $L(x) = log \frac{p(x=0)}{p(x=1)} = log \frac{1 p(x=1)}{p(x=1)}$
- If p(x = 0) > p(x = 1) then L(x) is positive. and the greater the difference between p(x = 0) and p(x = 1), i.e. the more sure we are that p(x) = 0, the larger the positive value for L(x), and vic. versa.
- Thus,Log likelihood ratios are used to represent the metrics for a binary variable x by a single value rather than individual probability of being zero and one.
- Thus the sign of L(x) provides the **hard decision** on x and the magnitude |L(x)| is the **reliability** of this decision

Probabilities in term of LLR

probability that transmitted bit was one is :

$$P(x=1) = \frac{p(x=1)/p(x=0)}{1+p(x=1)/p(x=0)} = \frac{e^{-L(x)}}{1+e^{-L(x)}}$$

probability that transmitted bit was zero is :

$$P(x=1) = \frac{p(x=0)/p(x=1)}{1+p(x=0)/p(x=1)} = \frac{e^{L(x)}}{1+e^{L(x)}}$$

 benefit of the logarithmic representation of probabilities is that when probabilities need to be multiplied log-likelihood ratios(LLR) need only be added, reducing implementation complexity

Sum product decoding:contd...

- aim: compute the maximum a posteriori probability (MAP) for each codeword bit on the event N that all parity-check constraints are satisfied
- The extra information about bit i received from the parity-check j is called **extrinsic information** for bit i denoted by E_j , i.

•
$$E_{(j,i)} = log \frac{\frac{1}{2} + \frac{1}{2} \prod_{i' \in B_j \ i' \neq i} tanh(M_{j,i'}/2)}{\frac{1}{2} - \frac{1}{2} \prod_{i' \in B_j \ i' \neq i} tanh(M_{j,i'}/2)}$$

- Mj, i is message passed from ith bit node to jth check node.
- for first iteration Mj, i is priori of bit i.

Sum product decoding:contd...

After first iteration:

Each bit has access to the input a priori LLR, ri, and the LLRs from every connected check node. The total LLR of the i-th bit is the sum of these LLRs:

$$LLR = \sum_{j \in A_i} E_{j,i} + r_i$$

- Now, take hard decision on the LLR post priori and check whether code satisfies $Hc^T = 0$.
- if yes, then decoding stop. else find $M_{j,i}$ and repeat the process of calculating $\rightarrow M_{j,i} \rightarrow$ extrinsic LLR \rightarrow LLR \rightarrow hard decision \rightarrow satisfy Hc^T ...
- But, note that $M_{j,i}$ is not exactly the LLR, it exclude the message generated by the same check node.

$$M_{j,i} = \sum_{j' \in A_i, j' \neq j} E_{j,i} + r_i$$

Generation of parity check matrix

Gallager⁶ parity check matrix-

- ► Regular matrix
- Randomly generated
- Short cycles
- Simple construction

⁶R. G. Gallager, Low-Density Parity-Check Codes. Cambridge, MA: MIT Press, 1963.

⁷D. J. C. MacKay, "Good error-correcting codes based on very sparse matrices," IEEE Trans. Inform. Theory, vol. 45, no. 2, pp. 399–431, March 1999.

⁸C. M. Huang, J. F. Huang and C. C. Yang, "Construction of quasi-cyclic LDPC codes from quadratic congruences," in IEEE Communications Letters, vol. 12, no. 4, pp. 313-315, April 2008.

Generation of parity check matrix

Gallager⁶ parity check matrix-

- Regular matrix
- Randomly generated
- Short cycles
- Simple construction

Mackay Neal⁷ parity check matrix-

- Irregular matrix
- Randomly generated
- Avoid cycle of four
- Performance is better for large block length

⁶R. G. Gallager, Low-Density Parity-Check Codes. Cambridge, MA: MIT Press, 1963.

 $^{^7}$ D. J. C. MacKay, "Good error-correcting codes based on very sparse matrices," IEEE Trans. Inform. Theory, vol. 45, no. 2, pp. 399–431, March 1999.

⁸C. M. Huang, J. F. Huang and C. C. Yang, "Construction of quasi-cyclic LDPC codes from quadratic congruences." in IEEE Communications Letters, vol. 12, no. 4, pp. 313-315. April 2008. ■ ▶ 4 ■ ▶

Generation of parity check matrix

Gallager⁶ parity check matrix-

- Regular matrix
- Randomly generated
- Short cycles
- Simple construction

Mackay Neal⁷ parity check matrix-

- Irregular matrix
- Randomly generated
- Avoid cycle of four
- Performance is better for large block length

Quasi-cyclic⁸ parity check matrix-

- Regular matrix
- Systematic matrix
- Performance is better for moderate block length

⁶R. G. Gallager, Low-Density Parity-Check Codes, Cambridge, MA; MIT Press, 1963.

 $^{^7}$ D. J. C. MacKay, "Good error-correcting codes based on very sparse matrices," IEEE Trans. Inform. Theory, vol. 45, no. 2, pp. 399–431, March 1999.

⁸C. M. Huang, J. F. Huang and C. C. Yang, "Construction of quasi-cyclic LDPC codes from quadratic congruences," in IEEE Communications Letters, vol. 12, no. 4, pp. 313-315, April 2008.

Constructing weighted check node incidence matrix:

$$\begin{bmatrix}
1 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 1
\end{bmatrix}$$

$$M(1,3)=M(3,1)=1$$

Constructing weighted check node incidence matrix:

$$\begin{bmatrix}
1 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix} \fbox{\Large 1} \ \fbox{\Large 1} \ 0 \ 1 \ 0 \ 0 \\ 0 \ \fbox{\Large 1} \ 1 \ 0 \ 1 \ 0 \\ \fbox{\Large 1} \ 0 \ 0 \ 0 \ 1 \ 1 \\ 0 \ 0 \ 1 \ 1 \ 0 \ 1 \end{bmatrix}$$

$$M(1,3)=M(3,1)=1$$

$$M(1,2)=M(2,1)=1$$

Constructing weighted check node incidence matrix:

$$\begin{bmatrix} \fbox{\Large 1} & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ \fbox{\Large 1} & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 \\ \end{bmatrix}$$

$$M(1,3)=M(3,1)=1$$

$$M(1,2)=M(2,1)=1$$

$$M(2,4)=M(4,2)=1$$

Partitioning check node matrix

Partitioning check node matrix

Partitioning check node matrix

Partitioning check node matrix

Partitioning Incident Matrix using METIS^a

- ► Minimum weight cut
- Equal partitions

 $^{^{\}it a}{\rm glaros.dtc.umn.edu/gkhome/metis/metis/}$