Polymer Science

Lecturer: Prof. Myong-Hoon Lee (이명훈)

Graduate School of Flexible & Printable Electronics

(유연인쇄전자 전문대학원)

Email: mhlee2@jbnu.ac.kr

Language: English

Lecture Time: Mon. 16:00-17:50, Wed. 16:00-16:50

Lecture Room: Human Art Bldg. #2 Rm. 504

(Office) Eng. Bldg. #9 Rm. 701

Textbook: see slide #2-4

Syllabus: see slide #5

Studying This Lecture & Grading: see slide #6-7

TEXTBOOK

Mustafa Akay

Introduction to Polymer Science and Technology

DOWNLOAD at

https://www.academia.edu/14375505/Introduction_to_ Polymer_Science_and_Technology - in_English

bookboon.com

Introduction to Polymer Science and Technology

Mustafa Akay

Download free books at

Contents

Preface	8
Acknowledgements	9
1 Introduction 1.1 History of the development of polymers	10 10
1.2 Why a clear understanding of material is important?	12
1.3 What can be achieved by appropriate selection of polymer-based materials?	17
1.4 What makes polymers versatile?	20
2 Polymerisation	31
2.1 Polymerisation mechanisms	31
2.2 Polymerisation processes	36
2.3 Polymerisation reactors	39
2.4 Catalysts	42
2.5 Molecular weight and molecular weight distributions	47
2.6 Self-assessment questions	50
3 Polymer processing	54
3.1 Concept of rheology	54
3.2 Processing and forming thermoplastics	56
3.3 Processing and forming thermosetting polymers	98
3.4 Self-assessment questions	109
4 Microstructure	111
4.1 Stereoregularity	112
4.2 Morphology in semi-crystalline thermoplastics	113
4.3 Degree of crystallinity	116
4.4 Crosslinking	124
4.5 Copolymer arrangements	126
4.6 Domain structures	127 128
4.7 Degree of molecular orientation4.8 Self-assessment questions	130
4.0 Ocii-assessinent questions	130

Contents (cont.)

5 Behavior of polymers 5.1 Degradation of Polymers 5.2 Viscoelasticity 5.3 Relaxation transitions 5.4 Self-assessment questions	133 133 134 150 261
6 Mechanical properties 6.1 Introduction 6.2 Tensile properties 6.3 Flexural properties 6.4 Compressive properties 6.5 Shear properties 6.6 Hardness 6.7 Impact properties and fracture toughness 6.8 Bearing strength 6.9 Environmental stress cracking 6.10 Fatigue and wear 6.11 Self-assessment questions	163 163 166 179 184 186 187 189 196 199 202 206
7 Thermal properties 7.1 Differential scanning calorimetry 7.2 Thermogravimetric analysis 7.3 Thermomechanical analysis 7.4 Dynamic mechanical thermal analysis 7.5 Determination of softening temperature 7.6 Self-assessment questions References	209 210 218 221 225 248 257

Syllabus

Week	Date (tentative)	Content	Pages
Week 1	March 7	Orientation	
Week 2	March 14	1. Introduction – Part 1	10 ~ 19
Week 3	March 21	1. Introduction – Part 2	20 ~ 30
Week 4	March 28	2. Polymerization - Part 1	31 ~ 38
Week 5	April 4	2. Polymerization - Part 2	39 ~ 53
Week 6	April 11	3. Polymer Processing - Part 1,2	54 ~ 97
Week 7	April 18	3. Polymer Processing - Part 3	98 ~ 110
Week 8	April 25	※ Mid-term Examination	
Week 9	May 2	4. Microstructure	111 ~ 132
Week 10	May 9	5. Behaviour of Polymers	133 ~ 162
Week 11	May 16	6. Mechanical Properties	163 ~ 208
Week 12	May 23	7. Thermal properties - Part 1	209 ~ 224
Week 13	May 30	7. Thermal properties - Part 2	225 ~ 260
Week 14	June 6	Q&A	
Week 15	June 13	※ Final Examination	

Studying This Lecture

- 1. Download the textbook as shown in the previous slide (page 2).
- 2. Lecture moving picture (MP4) and lecture notes (PDF) will be uploaded on the LMS by 9:00 AM every Monday.
- 3. Lecture should be watched more than 80% in the due time (from Monday 9:00 AM until the midnight of next Sunday) to credit your presents in the lecture.
- 4. There is a password for lecture notes: "spleo"
- 5. There will be a few home assignment, which will be announced via LMS. This should be prepared by hand writing, converted to PDF format, and submitted in the due time through the LMS only. Late submission will be considered as a minus to the grading.

Gradings

- 1. Presence Call (20%)
- 2. Homework (20%)
- 3. Mid-Term Exam (30%)
- 4. Final Exam (30%)