Expt-2:

Run a basic Word Count Map Reduce program to understand Map Reduce Paradigm.

AIM:

To run a basic Word Count MapReduce program using Hadoop.

PROCEDURE:

1. Create Data File:

```
nano word_count_data.txt
```

Example content for word_count_data.txt:

Hadoop is a framework that allows for distributed processing of large data sets.

2. Mapper Program (mapper.py):

```
import sys
for line in sys.stdin:
    line = line.strip()
    words = line.split()
    for word in words:
        print(f'{ word}\t1')
```

3. **Reducer Program (reducer.py)**:

```
import sys
current_word = None
current_count = 0
word = None

for line in sys.stdin:
    line = line.strip()
    word, count = line.split('\t', 1)

    try:
        count = int(count)
    except ValueError:
        continue
```

```
if current_word == word:
    current_count += count
else:
    if current_word:
        print(f'{current_word}\t{current_count}')
        current_count = count
        current_word = word

if current_word == word:
    print(f'{current_word}\t{current_count}')
```

4. **Set Hadoop Environment**:

```
hdfs dfs -mkdir /word_count_input
hdfs dfs -copyFromLocal word_count_data.txt /word_count_input
```

5. Run Word Count Program:

```
hadoop jar $HADOOP_HOME/share/hadoop/tools/lib/hadoop-streaming-*.jar \
-input /word_count_input/word_count_data.txt \
-output /word_count_output \
-mapper mapper.py \
-reducer reducer.py
```

6. Check Output:

 $hdfs\ dfs\ \text{-cat\//word_count_output/part-00000}$

OUTPUT:

RESULT:

Thus, the program for basic Word Count Map Reduce has been executed successfully.