8

```
1 import pandas as pd
2 import io
3 import matplotlib
4 import scipy
5 from scipy import stats as stats
6 import seaborn as sns
7 import matplotlib.pyplot as plt
8 import math
9 import numpy as np

1 data = pd.read_csv('all_predictions.csv')
2 data
3
```

|      | Unnamed:<br>0.2 | Unnamed:<br>0.1 | Unnamed: | HR    | 02Sat | SBP   | MAP    | Age   | HospAdmTime | IC |
|------|-----------------|-----------------|----------|-------|-------|-------|--------|-------|-------------|----|
| 0    | 0               | 365227          | 365227.0 | 78.0  | 98.0  | 94.0  | 68.00  | 24.11 | -0.02       |    |
| 1    | 1               | 206374          | 206374.0 | 70.0  | 97.5  | 126.5 | 87.50  | 61.08 | -6.42       |    |
| 2    | 2               | 308975          | 308975.0 | 95.0  | 100.0 | 135.0 | 81.00  | 67.96 | -65.21      |    |
| 3    | 3               | 374832          | 374832.0 | 119.0 | 98.0  | 97.0  | 61.67  | 71.60 | -179.78     |    |
| 4    | 4               | 347184          | 347184.0 | 66.0  | 97.0  | 116.0 | 78.00  | 25.94 | -0.03       |    |
|      |                 |                 |          |       |       |       |        |       |             |    |
| 9995 | 9995            | 82849           | 82849.0  | 77.0  | 100.0 | 153.0 | 109.00 | 50.00 | -0.02       |    |
| 9996 | 9996            | 363630          | 363630.0 | 66.0  | 98.0  | 115.0 | 79.00  | 59.00 | -14.19      |    |
| 9997 | 9997            | 10942           | 10942.0  | 70.0  | 95.0  | 121.0 | 98.00  | 58.00 | -2.88       |    |
| 9998 | 9998            | 100550          | 100550.0 | 99.0  | 95.0  | 94.0  | 65.00  | 78.00 | -1.89       |    |
| 9999 | 9999            | 109244          | 109244.0 | 107.5 | 95.0  | 108.5 | 86.50  | 87.20 | -102.37     |    |
| 4    |                 |                 |          |       |       |       |        |       |             | -  |

## **→** FIRST MODEL - RANDOM FOREST

Indented block

0.0616

1 len(data[data['RForest']==1])/len(data)

1 sns.catplot(x="RForest", kind="count", palette="ch:.50", data=data).set(title='Sepsis Label')

<seaborn.axisgrid.FacetGrid at 0x7f11795d67a0>



1 sns.histplot(data=data, x="MAP" ,kde=True, hue="RForest", palette="ch:.60").set\_title('HR Histogram')





```
1 from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
2
3 young = data[data['Age']<50]
4 older = data[data['Age']>=50]
5 cm = confusion_matrix(young['SepsisLabel'], young['RForest'], normalize='all')
6 cmd = ConfusionMatrixDisplay(cm)
7 cmd.plot()
```

<sklearn.metrics.\_plot.confusion\_matrix.ConfusionMatrixDisplay at
0x7f1169ba3520>



1 cm = confusion\_matrix(older['SepsisLabel'], older['RForest'], normalize='all')
2 cmd = ConfusionMatrixDisplay(cm)

3 cmd.plot()

<sklearn.metrics.\_plot.confusion\_matrix.ConfusionMatrixDisplay at 0x7f116968c130>



```
1 low_HR = data[data['HR']<np.mean(data['HR'])]
2 high_HR = data[data['HR']>=np.mean(data['HR'])]
3 cm = confusion_matrix(low_HR['SepsisLabel'], low_HR['RForest'], normalize='all')
4 cmd = ConfusionMatrixDisplay(cm)
5 cmd.plot()
```

<sklearn.metrics.\_plot.confusion\_matrix.ConfusionMatrixDisplay at 0x7f1169851a20>



1 cm = confusion\_matrix(high\_HR['SepsisLabel'], high\_HR['RForest'], normalize='all')

- 2 cmd = ConfusionMatrixDisplay(cm)
- 3 cmd.plot()

<sklearn.metrics.\_plot.confusion\_matrix.ConfusionMatrixDisplay at 0x7f116d78fe50>



1 from sklearn.metrics import classification\_report

2 print(classification\_report(data['SepsisLabel'], data['RForest'], target\_names=['0','1']))

|                         |   | precision    | recall       | f1-score     | support        |
|-------------------------|---|--------------|--------------|--------------|----------------|
|                         | 0 | 0.98         | 0.99         | 0.99         | 9259           |
|                         | 1 | 0.89         | 0.74         | 0.81         | 741            |
| accurac                 | y |              |              | 0.97         | 10000          |
| macro av<br>weighted av | _ | 0.93<br>0.97 | 0.87<br>0.97 | 0.90<br>0.97 | 10000<br>10000 |
| _                       | _ |              |              |              |                |

## **▼** SECOND MODEL - GB

Indented block

```
1
2 len(data[data['GBcf']==1])/len(data)
0.0631
```

1 sns.catplot(x="GBcf", kind="count", palette="ch:.50", data=data).set(title='Sepsis Label')

<seaborn.axisgrid.FacetGrid at 0x7f116d0776a0>



1 sns.histplot(data=data, x="MAP" ,kde=True, hue="GBcf", palette="ch:.60").set\_title('HR Histogram')

Text(0.5, 1.0, 'HR Histogram')



```
1 from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
2
3 young = data[data['Age']<50]
4 older = data[data['Age']>=50]
5 cm = confusion_matrix(young['SepsisLabel'], young['GBcf'], normalize='all')
6 cmd = ConfusionMatrixDisplay(cm)
7 cmd.plot()
```

<sklearn.metrics.\_plot.confusion\_matrix.ConfusionMatrixDisplay at 0x7f1168a4bd00>



```
1 cm = confusion_matrix(older['SepsisLabel'], older['GBcf'], normalize='all')
2 cmd = ConfusionMatrixDisplay(cm)
3 cmd.plot()
```

<sklearn.metrics.\_plot.confusion\_matrix.ConfusionMatrixDisplay at 0x7f1168be3a30>



```
1 low_HR = data[data['HR']<np.mean(data['HR'])]
2 high_HR = data[data['HR']>=np.mean(data['HR'])]
3 cm = confusion_matrix(low_HR['SepsisLabel'], low_HR['GBcf'], normalize='all')
4 cmd = ConfusionMatrixDisplay(cm)
5 cmd.plot()
```

<sklearn.metrics.\_plot.confusion\_matrix.ConfusionMatrixDisplay at 0x7f116887fdf0>



```
1 cm = confusion_matrix(high_HR['SepsisLabel'], high_HR['GBcf'], normalize='all')
2 cmd = ConfusionMatrixDisplay(cm)
3 cmd.plot()
```

<sklearn.metrics.\_plot.confusion\_matrix.ConfusionMatrixDisplay at 0x7f1168837610>



- 1 from sklearn.metrics import classification\_report
- 2 print(classification\_report(data['SepsisLabel'], data['GBcf'], target\_names=['0','1']))

|             | precision | recall | f1-score | support |       |  |
|-------------|-----------|--------|----------|---------|-------|--|
| (           | 0.98      | 0.99   | 0.99     | 9259    |       |  |
| É           | L 0.89    | 0.76   | 0.82     | 741     |       |  |
| accuracy    | /         |        | 0.97     | 10000   |       |  |
| macro av    | g 0.93    | 0.87   | 0.90     | 10000   |       |  |
| weighted av | g 0.97    | 0.97   | 0.97     | 10000   |       |  |
|             |           |        |          |         |       |  |
| 1 0 do 1    |           |        |          |         | 0 d75 |  |
| 1           |           |        |          |         |       |  |
|             |           |        |          |         |       |  |

## **→** THIRD MODEL - LOGISTIC REGRESSION

Indented block

0 1

1 len(data[data['logReg']==1])/len(data)

0.0476

1 sns.catplot(x="logReg", kind="count", palette="ch:.50", data=data).set(title='Sepsis Label')



1 sns.histplot(data=data, x="MAP" ,kde=True, hue="logReg", palette="ch:.60").set\_title('HR Histogram')
2

Text(0.5, 1.0, 'HR Histogram')



```
1 from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
2
3 young = data[data['Age']<50]
4 older = data[data['Age']>=50]
5 cm = confusion_matrix(young['SepsisLabel'], young['logReg'], normalize='all')
6 cmd = ConfusionMatrixDisplay(cm)
7 cmd.plot()
```





```
1 cm = confusion_matrix(older['SepsisLabel'], older['logReg'], normalize='all')
2 cmd = ConfusionMatrixDisplay(cm)
```

3 cmd.plot()

<sklearn.metrics.\_plot.confusion\_matrix.ConfusionMatrixDisplay at 0x7f11682f29e0>



```
1 low_HR = data[data['HR']<np.mean(data['HR'])]
2 high_HR = data[data['HR']>=np.mean(data['HR'])]
3 cm = confusion_matrix(low_HR['SepsisLabel'], low_HR['logReg'], normalize='all')
4 cmd = ConfusionMatrixDisplay(cm)
5 cmd.plot()
```

<sklearn.metrics.\_plot.confusion\_matrix.ConfusionMatrixDisplay at 0x7f1168353a90>

1 cm = confusion\_matrix(high\_HR['SepsisLabel'], high\_HR['logReg'], normalize='all')

3 cmd.plot()

2 cmd = ConfusionMatrixDisplay(cm)

<sklearn.metrics.\_plot.confusion\_matrix.ConfusionMatrixDisplay at 0x7f1168186c80>



1 from sklearn.metrics import classification\_report

2 print(classification\_report(data['SepsisLabel'], data['logReg'], target\_names=['0','1']))

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.97      | 0.99   | 0.98     | 9259    |
| 1            | 0.89      | 0.57   | 0.70     | 741     |
| accuracy     |           |        | 0.96     | 10000   |
| macro avg    | 0.93      | 0.78   | 0.84     | 10000   |
| weighted avg | 0.96      | 0.96   | 0.96     | 10000   |

1