

Learning Stage 4: Rounding Out the Study

- ▶ Chapter 14
 - ▶ Effects of Inflation
- ▶ Chapter 15 *not covered in this course
 - ▶ Cost Estimation and Indirect Cost Allocation
- ▶ Chapter 16
 - Depreciation Methods
- ▶ Chapter 17
 - ▶ After-Tax Economic Analysis
- ▶ Chapter 18
 - Sensitivity Analysis and Staged Decisions
- ▶ Chapter 19
 - More on Variation and Decision Making under Risk

Engineering Economics

book 8th edition

LEARNING OUTCOMES

- Purpose:
 - ▶ Perform an after-tax economic evaluation considering the impact of pertinent tax regulations, income taxes, and depreciation.
- 1. Terminology and rates; marginal tax tables
- 2. Determining cash flows before taxes(CFBT) and after taxes (CFAT)
- 3. Effects of depreciation on taxes
- 4. Depreciation recapture and capital gains
- 5. Performing an after-tax analysis
- 6. Performing after-tax replacement studies
- 7. Economic value-added analysis

۲

Engineering Economics

Income Tax Terms and Relations (Corporations)

- Income taxes:
 - real cash flow payments to governments from income/profits.
 - ▶ The (noncash) allowance of asset depreciation is used in income tax computations.
- ▶ There are two fundamental relations: NOI and TI
 - ▶ Net operating income = gross revenue − operating expense

NOI = GI - OE (only actual cash involved)

- NOI is also called EBIT (earnings before interest and taxes)
- ▶ Taxable income = gross revenue − operating expenses − depreciation

TI = GI - OE - D (involves noncash item)

Note: All terms and relations are calculated for each year t, but the subscript is often omitted for simplicity

٤

Tax Terms and Relations – Corporations

- Gross Income (GI) or operating revenue (R)
 - ▶ Total income for the tax year realized from all revenue producing sources
- Operating expenses (OE)
 - ▶ All annual operating costs (AOC) and maintenance & operating (M&O) costs incurred in transacting business; these are tax deductible; depreciation not included here
- ▶ Income Taxes and tax rate (T)
 - ► Taxes due annually are based on taxable income (TI) and tax rates, which are commonly graduated (or progressive) by TI level.

```
Taxes = tax rate \times taxable income
= T \times (GI - OE - D)
Engineering Economics
```

Tax Terms and Relations – Corporations

- Net operating profit after taxes (NOPAT)
 - Money remaining as a result of capital invested during the year; amount left after taxes are paid.

```
NOPAT = taxable income - taxes = TI - T \times (TI)
= TI \times (1 - T)
```

•

US Corporate Federal Tax Rates - 2010

If Taxable Income (TI) is:

	` /	
But not over, \$	Tax is, \$ and %	Of the amount over, \$
50,000	15%	0
75,000	7,500 + 25%	50,000
100,000	13,750 + 34%	75,000
335,000	22,250 + 39%	100,000
10,000,000	113,900 + 34%	335,000
15,000,000	3,400,000 + 35%	10,000,000
18,333,333	5,150,000 + 38%	15,000,000
No limit	35%	0
	50,000 75,000 100,000 335,000 10,000,000 15,000,000 18,333,333	50,000 15% 75,000 7,500 + 25% 100,000 13,750 + 34% 335,000 22,250 + 39% 10,000,000 113,900 + 34% 15,000,000 3,400,000 + 35% 18,333,333 5,150,000 + 38%

- ▶ US rates provide a slight tax advantage for small businesses
- ▶ Income tax rates are graduated or progressive as TI increases
- Each rate bracket is the marginal tax rate for the TI range

Y Engineering Economics

Flat, Average and Effective Tax Rates

- ▶ Flat Tax rate
 - Tax rate which is the same for all amounts of TI.
- Marginal tax rates change as TI increases.
 - Tax rates which are applicable to one extra dollar of TI.
- ▶ Calculate an average tax rate using:
 - Average tax rate = $\frac{\text{total taxes paid}}{\text{taxable income}} = \frac{\text{taxes}}{\text{TI}}$
- To approximate a single-figure tax rate that combines local (e.g., state) and federal rates
 - calculate the effective tax rate (T_e)
 - $T_e = local rates + (1 local rates) \times federal rate$
 - Therefore, $Taxes = T_e \times TI$

Example: Income Tax Calculations

- Annual operating revenue is \$1.2 million with expenses of \$0.4 million and \$350,000 depreciation on assets.
 - ▶ The state imposes a flat rate of 5% of all TI. Determine
 - ▶ (a) actual taxes and (b) approximate taxes using T_e.
- **Solution:**
- (a) TI = GI OE D = 1.20 0.40 0.35 = \$0.45 million
 - Use TI bracket \$335,000 to \$10 million; $Tax\ rate = 0.34$
 - Federal taxes = 113,900 + 0.34(450,000 335,000) = \$153,000
 - \rightarrow State + federal taxes = 0.05(450,000) + 153,000 = \$175,500
- ▶ (b) Effective federal rate for TI bracket is 34%
 - $T_e = 0.05 + (1 0.05)(0.34) = 0.373$
 - \rightarrow Taxes = 0.373 (450,000) = \$167,850

Approximation Underestimates actual by 4.4%

. .

Engineering Economics

Cash Flow After Taxes (CFAT)

- ▶ Net Cash Flow ($\frac{NCF}{}$) = cash inflows cash outflows.
 - Now, consider taxes and deductions, such as depreciation
- Cash Flow Before Taxes (CFBT)
 - ► CFBT = gross income − expenses − initial investment + salvage value
 - \rightarrow = GI OE P + S
- ► Cash Flow After Taxes (CFAT)
 - ightharpoonup CFAT = CFBT taxes
 - \bullet = GI OE P + S (GI OE D)(T_a)
- Once CFAT series is determined,
 - economic evaluation using any method is performed the same as before taxes, now using estimated CFAT values

1

۵

Cash Flow After Taxes (CFAT)

Suggested Column Headings for Calculation of CFAT

- ▶ In column (3), use negative sign for P and positive sign for S.
- Economic evaluation of a project within a corporation
 - ▶ A negative TI value is considered a tax savings for the project
- ▶ Economic evaluation of a project alone
 - A negative TI value is considered as a zero tax

Engineering Economics

Example of CFAT

- ▶ A Co. plans to purchase an equipment for a 6-year contract.
 - ▶ This equipment is expected to cost \$550,000 now and have a resale value of \$150,000 after 6 years.
 - ▶ This equipment will increase contract revenue by \$200,000 per year and require an additional M&O expense of \$90,000 per year.
 - MACRS depreciation allows recovery in 5 years, and the effective corporate tax rate is 35% per year.
 - ▶ Tabulate and plot the CFBT and CFAT series.
- Solution
 - \blacktriangleright MACRS depreciates to a salvage value of S = 0 and
 - Since MACRS n = 5, for using VDB function d = 2.
 - Or we may use the following rates.

 $d_1 = 20\%, d_2 = 32\%, d_3 = 19.2\%, d_4 = 11.52\%, d_4 = 11.52\%, d_6 = 5.76\%.$

Effects on Taxes of Depreciation Method and Recovery Period

- Goal is to minimize PW of taxes, which is equivalent to maximizing PW of depreciation
- Depreciation Method
 - All methods have the same amount of total taxes due
 - ► Accelerated depreciation methods result in lower Pw_{taxes}
 - General observation for SL, DDB and MACRS methods:
 - $\qquad \qquad \mathsf{PW}_{\mathsf{taxes}} \text{ for MACRS} < \mathsf{PW}_{\mathsf{taxes}} \text{ for DDB} < \mathsf{PW}_{\mathsf{taxes}} \text{ for SL}$
 - Note: with same single tax rate, recovery period and salvage value
- Recovery Period
 - ▶ All lengths have the same amount of total taxes due
 - ▶ Shorter recovery periods result in lower Pw_{taxes}
 - General goal: use shortest (MACRS) recovery period allowed
 - Note: with same single tax rate, depreciation method and salvage value

▶ \\\ Engineering Economics

Example 17.3 of the book

- An after-tax analysis for a new \$50,000 machine proposed for a fiber optics manufacturing line is in process.
 - ▶ The CFBT for the machine is estimated at \$20,000.
 - ▶ If a recovery period of 5 years applies, use the present worth of taxes criterion, an effective tax rate of 35%, and a return of 8% per year to compare the following:
 - > straight line, DDB, and MACRS depreciation.
 - Use a 6-year period for the comparison to accommodate the half-year convention imposed by MACRS.
- Solution
 - For DDB method, d = 2/n = 2/5 = 0.4

10

Engineering Economics

Example 17.3 of the book

In the text book, the switching DDB with SL has no been done.

1.

٨

٩

Depreciation Recapture (DR) and Capital Gain (CG) and Capital Loss (CL)

DR, also called ordinary gain, in year t occurs when an asset is sold for more than its BV_t

$$DR = selling price - book valuet = SP - BV_t$$

▶ CG occurs when an asset is sold for more than its unadjusted basis *B* (or first cost *P*)

$$CG = selling price - basis = SP - B$$

► CL occurs when an asset is sold for less than its current BV_t

$$CL = book \ value - selling \ price = BV_t - SP$$

Example: Depreciation Recapture

- A laser-based system installed for B = \$150,000 three years ago can be sold for SP = \$180,000 now.
 - ▶ Based on 5-year MACRS recovery, $BV_3 = $43,200$. GI for year is \$800,000 and annual operating expenses average \$50,000.
 - Determine TI and taxes if $T_e = 34\%$ and the system is sold now.
- ▶ Solution: we have depreciation recapture (DR) & capital gain (CG)
 - DR = 180,000 43,200 = \$136,800
 - CG = 180,000 150,000 = \$30,000
 - \rightarrow MACRS D₃ = 0.192(150,000) = \$28,800
 - TI = GI OE D + DR + CG
 - = 800,000 50,000 28,800 + 136,800 + 30,000 = \$888,000
 - Taxes = $TI \times T_e = 888,000 \times 0.34 = $301,920$
 - Note: If not sold now,
 - \rightarrow taxes = $(800,000 50,000 28,800) \times (0.34) = $245,208$

19

Engineering Economics

After-Tax Evaluation

- ▶ Use CFAT values to calculate PW, AW, FW, ROR, B/C or other measure of worth using after-tax MARR
- ▶ Same guidelines as before-tax; e.g., using PW at after-tax MARR:
 - One project: if $PW \ge 0$, project is viable
 - ► Two or more alternatives: select one ME alternative with the best (numerically largest) PW value
- For costs-only CFAT values,
 - use + sign for OE, D, and other savings and use same guidelines
- ▶ Remember: equal-service requirement for PW-based analysis
- ▶ ROR analysis is same as before taxes, except use CFAT values:
 - ▶ One project: if $i^* \ge$ after-tax MARR, project is viable
 - Two alternatives: select ME alternative with Δi* ≥ after-tax MARR for incremental CFAT series

۲

Engineering Economics

· A. Esfahanipour

Approximating After-Tax ROR Value

- ▶ To adjust a before-tax ROR without details of after-tax analysis, an approximating relation is:
 - ► After-tax ROR \approx before tax ROR \times (1 T_e)
- ▶ Example: Estimate after-tax ROR from before-tax ROR analysis
 - P = \$-50,000GI - OE = \$20,000/yearn = 5 years D = 10,000/year $T_e = 0.40$
- ▶ Solution: Set up before-tax PW relation and solve for i*

$$0 = -50,000 + 20,000(P/A, i*\%, 5)$$
 $i* = 28.65\%$
After-tax ROR $\approx 28.65\% \times (1 - 0.40) = 17.19\%$

- Note: Actual after-tax analysis results in $i^* = 18.03\%$.
- See next slide for an example as well as Example 17.7 in the book.

Engineering Economics

Example: After-Tax Analysis

- Asset: B = \$90,000
- S = 0
- n = 5 years

- Per year: R = \$65,000
- OE = \$18,500D = \$18,000
- Effective tax rate: $T_e = 0.184$
 - Find ROR (a) before-taxes, (b) after-taxes actual and (c) approximation

	A	8	C	D	E	F	G	H	
1		Revenue,	Operating	Basis, B and		Depreciation,	Taxable	Taxes	
2	Year	R	Expenses, OE	Salvage, S	CFBT	D	Income, TI	at T _e = 0.184	CFAT
3	0			90,000	-90,000				-90,000
4	1	65,000	18,500		46,500	18,000	28,500	5,244	41,256
5	2	65,000	18,500		46,500	18,000	28,500	5,244	41,256
6	3	65,000	18,500		46,500	18,000	28,500	5,244	41,256
7	4	65,000	18,500		46,500	18,000	28,500	5,244	41,256
8	5	65,000	18,500	0	46,500	18,000	28,500	5,244	41,256
9									
10			(a) Befor	e-tax ROR:	43%		(b) Afte	er-tax ROR:	36%

Solution: (a) Using IRR function, $i^* = 43\%$

(b) Using IRR function, $i^* = 36\%$

after-tax ROR = $43\% \times (1 - 0.1840) = 35\%$ (c) By approximation:

Engineering Economics

11 A. Esfahanipour

After-Tax Replacement Analysis

- Consider depreciation recapture (DR) or capital gain (CG),
 - if challenger is selected over defender
- ▶ Can include capital loss (CL),
 - if trade occurs at very low trade-in/exchange for defender
- An after-tax analysis can reverse the selection compared to before-tax analysis,
 - but more likely it will provide information about differences in PW, AW or ROR value when taxes are included
- ▶ Apply same procedure as before-tax replacement evaluation once CFAT series is estimated

7 7 7

Engineering Economics

Example 17.10: Before- and After-Tax Replacement Study

- A company purchased an equipment 3 years ago for \$600,000.
 - New equipment has been identified. If a market value of \$400,000 is offered as the trade-in for the current equipment, perform a replacement study
 - ▶ a) Using Before-tax MARR = 10% per year b) After-tax MARR = 7% per year. Te = 34% and use SL depreciation with S = 0 for both alternatives.

	Defender	Challenger
Market value, \$	400,000	
First cost, \$		-1,000,000
Annual cost, \$/year	-100,000	-15,000
Recovery period, years	8 (originally)	5

- Solution
 - a) before-tax analysis

 $AW_D = -400,000(A/P,10\%,5) - 100,000 = \$-205,520$ $AW_C = -1,000,000(A/P,10\%,5) - 15,000 = \$-278,800$

b) after-tax analysis

Defender book value, year 3: Depreciation recapture: Taxes on trade-in, year 0: $BV_3 = 600,000 - 3(75,000) = \$375,000$ $DR_3 = TI = 400,000 - 375,000 = \$25,000$ Taxes = 0.34(25,000) = \$8500

Engineering Economics

A. Esfahanipour

		Before Taxes			After Taxes			
Defender Age	Year	Expenses OE, \$	P and S, \$	CFBT, \$	Depre- ciation D, \$	Taxable Income TI, \$	Taxes* at 0.34TI, \$	CFAT, \$
				Defender				
3	0		-400,000	-400,000				-400.000
4	1	-100,000		-100,000	75,000	-175,000	-59,500	-40,500
5	2	-100,000		-100,000	75,000	-175,000	-59,500	-40,500
6	3	-100,000		-100,000	75,000	-175,000	-59,500	-40,500
7	4	-100,000		-100,000	75,000	-175,000	-59,500	-40,500
8	5	-100,000	0	-100,000	75,000	-175,000	-59,500	-40,50
AW at 10%				-205,520	AW at 7%			-138,056
				Challenger				
	0		-1,000,000	-1,000,000		+25,000 [†]	8,500	-1,008,500
	1	-15,000		-15,000	200,000	-215,000	-73,100	+58,100
	2	-15,000		-15,000	200,000	-215,000	-73,100	+58,100
	3	-15,000		-15,000	200,000	-215,000	-73,100	+58,100
	4	-15,000		-15,000	200,000	-215,000	-73,100	+58,100
	5	-15,000	0	-15,000	200,000	$-215,000^{\ddagger}$	-73,100	+58,100
AW at 10%				-278,800	AW at 7%		1000	-187,863

			Before Taxes		After Taxes			
Defender Age	Year	Expenses OE, \$	P and S, \$	CFBT, \$	Depre- ciation D, \$	Taxable Income TI, \$	Taxes* at 0.34TI, \$	CFAT, \$
				Defender				
3	0		-400,000	-400,000				-400,00
4	1	-100,000		GI -100,000	75,000	GI-175,000 _{.3}	4GI-59,500	.66GI _40,50
5	2	-100,000		GI -100,000	75,000	GI-175,000.3		
6	3	-100,000		GI -100,000	75,000	GI-175,000.3	4GI-59,500	.66GI -40,50
7	4	-100,000		GI -100,000	75,000	GI-175,000.3		
8	5	-100,000	0	GI -100,000	75,000	GI-175,000.3	4GI_59,500	.66GI -40,50
AW at 10%				GI -205,520	AW at 7%			.66GI-138,05
				Challenger				
	0		-1,000,000	-1,000,000		+25,000 [†]	8,500	-1,008,500
	1	-15,000		GI -15,000	200,000	GI-215,0003	4GI-73,100	.66GI +58,10
	2	-15,000		GI -15,000	200,000			
	3	-15,000		GI -15,000	200,000	GI-215,000.3	4GI_73,100	.66GI +58,10
	4	-15,000		GI -15,000	200,000	GI-215,000.3	4GL_73,100	.66GI +58,10
	5	-15,000	0	GI -15,000	200,000	GI-215,000 ³	4GI_73,100	.66GI +58,10
AW at 10%				GI-278,800	AW at 7%			.66GI-187,86

۱۳ A. Esfahanipour

Economic Value Added (EVA) Analysis

- Definition:
 - The economic worth added by a product or service from the perspective of the consumer, owner or investor
- In other words,
 - it is the contribution of a capital investment to the net worth of a corporation after taxes
- **Example:**
 - ▶ The average consumer is willing to pay significantly more for potatoes processed and served at a fast-food restaurant as fries (chips) than as raw potatoes in the skin from a supermarket.

17

Engineering Economics

Economic Value Added (EVA) Analysis

- Value-added analysis is performed in a different way than CFAT analysis, however
 - ▶ Selection of the better economic alternative is the same for EVA and CFAT analysis, because
 - ▶ It is always correct that
 - □ AW of EVA estimates = AW and CFAT estimates

۲۸

EVA Analysis: Procedure

- Difference between CFAT and EVA approaches
 - ▶ CFAT estimates (describes) how actual cash will flow
 - ▶ EVA estimates extra worth that an alternative adds
 - ► EVA is a measure of worth that mingles/mixes actual cash flows and noncash flows
- Procedure for EVA analysis
 - Each year t determine the following for each alternative:

```
EVA<sub>t</sub> = NOPAT<sub>t</sub> - cost of invested capital

= NOPAT<sub>t</sub> - (after-tax MARR)(BV<sub>t_1</sub>)

= TI<sub>t</sub> × (1 - T<sub>e</sub>) - i × (BV<sub>t_1</sub>)
```

Selection: Choose alternative with better AW of EVA series

Remember: Since AW of EVA series will always = AW of CFAT series, the same alternative is selected by either method

19

Engineering Economics

Summary of Important Points

- ▶ For a corporation's taxable income (TI), operating expenses and asset depreciation are deductible items
- ▶ Income tax rates for corporations and individuals are graduated by increasing TI levels
- ► CFAT indirectly includes (noncash) depreciation through the TI computation
- Depreciation recapture (DR) occurs when an asset is sold for more than the book value; DR is taxed as regular income in all after-tax evaluations
- After-tax analysis uses CFAT values and the same guidelines for alternative selection as before-tax analysis
- ► EVA estimates extra worth that an alternative adds to net worth after taxes; it mingles actual cash flows and noncash flows

۳۰