Human Activity Recognition: Machine Learning Prediction Model

John Hopkins University - Coursera - Practical Machine Learning: Course Final Project

Daniele De Faveri

Executive Summary

In this Analysis we analyze the **Human Activity Recognition**. The dataset has data from accelerometers on the belt, forearm, arm, and dumbell of 6 participants, that has been asked to perform barbell lifts correctly and incorrectly in 5 different ways. We want to create a model to predict the **manner in which they did the exercise** using the some **linear regression models**. We will use the development model to predict 20 different test cases available in the prediction case dataset.

1.1 Load data and basic exploratory data analysis and Data Cleaning

Download and read the csv Training and Prediction dataset; then we split the training dataset in a **training** and **test dataset** with the proportion of **70/30** for **cross validation**. We'll work on the training data set.

Loading Data and create training dataset

```
temp <- tempfile()
download.file(paste0("https://d396qusza40orc.cloudfront.net/predmachlearn/pml-training.csv"), destfile=
## READING DATASET
source_training_dataset <- read.csv2(temp, sep=",", stringsAsFactors = FALSE)
unlink(temp)

temp <- tempfile()
download.file(paste0("https://d396qusza40orc.cloudfront.net/predmachlearn/pml-testing.csv"), destfile=t
## READING DATASET
prediction_final_dataset <- read.csv2(temp, sep=",", stringsAsFactors = FALSE)
unlink(temp)

intrain <- createDataPartition(source_training_dataset$classe, p=0.7, list=FALSE)
training <- source_training_dataset[intrain,]
test <- source_training_dataset[-intrain,]</pre>
```

Explorative Analysis

```
# "classe" variable is the manner in which they did the exercise
print( paste0("The training dataset has ", ncol(training), " variables, and ", nrow(training), " rows")
[1] "The training dataset has 160 variables, and 13737 rows"
#hide results too wide
#summary(training)
```

```
#str(training)
```

Cleaning the dataset

The Basic Explorative Analisis shows there are many variables with a lot of NA, we procede **removing** columns with more than 50% of NAs.

```
## Remove columns with more than 50% NA
training <- training[, which(colMeans(!is.na(training)) > 0.5)]
```

Now We remove the **near 0 variance** column from the training data set.

```
training<-training[, -nearZeroVar(training)]</pre>
```

Now We also remove the predictors like timestamp, windows, name of the participant

```
training<-training %>% select(-X, -user_name, -contains('timestamp'), -contains('window') )
```

Conver all character variables to **numeric**

```
training<-training %>% mutate_at(vars(-classe) ,as.numeric)
```

Analyzing correlation in feautures

In the remaining feautures we look for correlated attributes, we'll remove highly correlated attributes.

```
# Remove further using feature selection
correlationMatrix <- cor(training %>% select(-classe))
corrplot(correlationMatrix, type="lower")
```



```
Correlated <- findCorrelation(correlationMatrix, cutoff = 0.95)
colnames(training[,Correlated])</pre>
```

```
[1] "accel_belt_z" "roll_belt" "accel_belt_x" [4] "gyros_dumbbell_z"
```

We have few correlated variables, we keep them in the dataset, as enanchement we can consider in the future to execute a PCA to reduce correlation.

1.2 Prediction Models

We create 3 fit model Decision Tree, Random Forest, Gradient Boostin and then we test the out of sample performance to select the best model for our prediction.

Decision Tree

```
fitDT <- train(classe ~ ., data = training, method= "rpart")
fancyRpartPlot(fitDT$finalModel)</pre>
```


Rattle 2020-set-24 17:57:59 DDE-FAVE

Random Forest

```
# 3 times cross validation.
my_control <- trainControl(method = "cv", number = 3 )
fitRF <- train(classe ~ ., data = training, method= "rf", prox=TRUE, ntree = 100, trControl=my_control)</pre>
```

Gradient Boosting

```
my_control <- trainControl(method = "cv", number = 3 )
fitGBM <- train(classe ~ ., data = training, method= "gbm", verbose=FALSE, trControl=my_control )</pre>
```

1.3 Accuracy Test and Alghoritm Selection

Now we test the accuracy out of sample of the 3 models on the test set we created from original test set.

```
test<-test %>% mutate_at(vars(-classe) ,as.numeric)

predDT <- predict(fitDT, test)
predRF <- predict(fitRF, test)
predGBM <- predict(fitGBM, test)

accuracyDT <- confusionMatrix(as.factor(test$classe), as.factor(predDT))
accuracyRF <- confusionMatrix(as.factor(test$classe), as.factor(predRF))
accuracyGBM <- confusionMatrix(as.factor(test$classe), as.factor(predGBM))</pre>
```

kable((rbind(c(ModelFit= "Decision Tree",accuracyDT\$overall[1]), c(ModelFit= "Random Forest",accuracyR

ModelFit	Accuracy
Decision Tree	0.493627867459643
Random Forest	0.992523364485981
Gradient boosting	0.965335598980459

bestFit <- fitRF

We select the Random Forest as best fit, because the **accuracy** is of 99.2523364% and the **out of sample error** is 0.7476636%.

1.4 Prediction

Now we use the best fit algorithm to predict the classe of the prediction set of the exercise.

prediction_final_dataset<-prediction_final_dataset %>% mutate_at(vars(-problem_id) ,as.numeric)
predict(bestFit, prediction_final_dataset)

[1]B A B A A E D B A A B C B A E E A B B B Levels: A B C D E

1.5 Conclusion

In this analysis we start from a wide dataset with 160 variables; initially we reduced the variables removing variables with high level on NA values and with near zero variance that can bring bias to out models.

We find that **Random Forest** is the best performing model with an accuracy out of sample of 99.2523364%

We use this model to predict the classes of a new dataset with 20 cases.