Two-Hour Introduction to Operating Systems

Dr. Mads Haahr Department of Computer Science Trinity College, Dublin

Some slides used here were adapted from notes by William Stallings & Patty Roy – thanks!

11 February 2005

Mads Haahr (with material by William Stallings and Patty Roy)

1

What is an Operating System?

- OS = Operating System
- A program that controls the execution of application programs
 - An interface between applications and hardware
 - Makes the computer more convenient to use
- Manages the resources of a computer and controls the way they are used
 - Allows resources to be used in an efficient manner
- Examples of OS's?

11 February 2005

Mads Haahr (with material by William Stallings and Patty Roy)

Where are OS's Used?

- In more and more places!
- Desktop and Server Computers
 - DOS + Windows 95/98/ME
 - Windows NT/2000/XP
 - Free Unix variants: Linux, FreeBSD, NetBSD, etc.
 - Commercial Unix variants: Solaris, HP-UX, AIX, etc.
 - MacOS
- Some Game Consoles
 - Xbox: Cut-down Windows 2000

11 February 2005

Mads Haahr (with material by William Stallings and Patty Roy)

3

Where are OS's Used?

- Personal Digital Assistants (PDAs)
 - PalmOS
 - Windows CE → Windows Mobile
 - Embedded Linux
- Mobile Phones
 - Symbian OS
 - Windows Mobile
- Cars (fancy ones)

11 February 2005

Mads Haahr (with material by William Stallings and Patty Roy)

Where are OS's Used?

- In the future also:
 - Digital Cameras (fancy ones)
 - MP3 Players (iPods, etc.)
 - Refrigerators!
- Others?

11 February 2005

Mads Haahr (with material by William Stallings and Patty Roy)

5

Layers of a Computer System

Figure 2.1 Layers and Views of a Computer System

11 February 2005

Mads Haahr (with material by William Stallings and Patty Roy)

Services Provided by the OS

- Program execution
- Access to Input/Output (I/O) devices
 - Disks, screens, keyboards, mice
 - Printers, cameras, speakers, etc.
- Controlled access to files
- System access
- Sometimes: Program development
 - Compilers, editors and debuggers

11 February 2005

Mads Haahr (with material by William Stallings and Patty Roy)

7

Services Provided by the OS

- Error detection and response
 - Internal and external hardware errors
 - Memory errors
 - Device failures
 - Software errors
 - Arithmetic overflow
 - Division by zero
 - Access to forbidden memory locations (why?)
 - Operating system cannot grant request of application

11 February 2005

Mads Haahr (with material by William Stallings and Patty Roy)

Services Provided by the OS

- Accounting
 - Collect statistics
 - Monitor performance
 - Used to anticipate future enhancements
 - Used for billing users

11 February 2005

Mads Haahr (with material by William Stallings and Patty Roy)

9

Operating System as Software

- The OS functions the same way as ordinary computer software
 - It is a program that is executed ...
 - ... but it has special privileges
- The OS relinquishes control of the processor to execute other programs

11 February 2005

Mads Haahr (with material by William Stallings and Patty Roy)

Kernel

- Portion of operating system that is always in main memory
- Contains most-frequently used functions
- Also called the nucleus
- Good performance of the kernel is very important

11 February 2005

Mads Haahr (with material by William Stallings and Patty Roy)

Before Operating Systems...

- Serial Processing
 - No operating system
 - Machines run from a console with display lights and toggle switches, input device, and printer
 - Schedule time
 - Setup included loading the compiler, source program, saving compiled program, and loading and linking

11 February 2005

Mads Haahr (with material by William Stallings and Patty Roy)

13

Uniprogramming

 Processor must wait for I/O instruction to complete before preceding

But! Processors are <u>much</u> faster than
I/O devices... → inefficient use of CPU

11 February 2005

Mads Haahr (with material by William Stallings and Patty Roy)

Multiprogramming

 When one job needs to wait for I/O, the processor can switch to the other job

A More Advanced Example

	Job 1	Job 2	Job 3
Job type	heavy compute	heavy I/O	heavy I/O
Duration	5 minutes	15 minutes	10 minutes
CPU req'd	80%	10%	10%
Memory req'd	50 MB	100 MB	80 MB
Need disk?	no	no	yes
Need terminal?	no	yes	no
Need printer?	no	no	yes
·	<u> </u>		

e.g., image analysis e.g., visualisation e.g., printing from disk

11 February 2005

Mads Haahr (with material by William Stallings and Patty Roy)

Example Effects

	Uniprogramming	Multiprogramming
Processor use	22%	43%
Memory use	30%	67%
Disk use	33%	67%
Printer use	33%	67%
Elapsed time	30 min.	15 min.
Throughput rate	6 jobs/hr	12 jobs/hr
Mean response time	18 min.	10 min.

11 February 2005 Mads Haahr (with material by William Stallings and Patty Roy)

19

Achievements in OS Research

- Processes
- Memory management
- Information protection and security
- Scheduling and resource management
- System structure

11 February 2005

Mads Haahr (with material by William Stallings and Patty Roy)

Processes

- A program in execution
- An instance of a program running on a computer
- The entity that can be assigned to and executed on a processor
- A unit of activity characterized by
 - a single sequential thread of execution
 - a current state
 - an associated set of system resources

11 February 2005

Mads Haahr (with material by William Stallings and Patty Roy)

21

Processes

- Consists of three components
 - An executable program, i.e., some code
 - Associated data needed by the program
 - Execution context of the program
 - All information the operating system needs to manage the process
 - e.g., who owns the process, which priority does it have, what resources does it currently 'own'

11 February 2005

Mads Haahr (with material by William Stallings and Patty Roy)

OS Support for Processes

- Creating, destroying, starting, stopping, setting priorities, ...
- Process synchronisation
 - Semaphores (wait/signal)
 - Monitors
- Deadlock detection
- Inter-process communication
 - Shared memory

11 February 2005

Mads Haahr (with material by William Stallings and Patty Roy)

Processes in Windows XP

- Hit CTRL-ALT-DEL to start Task Manager
- Shows info about the PC's performance
- Info gathered by OS; updated continuously
- The <u>Applications</u> tab shows running applications and allows them to be ended

11 February 2005

Mads Haahr (with material by William Stallings and Patty Roy)

25

Processes in Windows XP

- The <u>Processes</u> tab shows the running processes
- CPU and memory usage
- Applications often consist of a number of processes
- Also, many system processes
- Individual processes can be ended → dangerous

11 February 2005

Mads Haahr (with material by William Stallings and Patty Roy)

Processes in Linux

11 February 2005

Mads Haahr (with material by William Stallings and Patty Roy)

27

Memory Management

- Process isolation
 - Processes do not share memory
 - This prevents processes from affecting each other
- Protection and access control
- Automatic allocation and management

11 February 2005

Mads Haahr (with material by William Stallings and Patty Roy)

Virtual Memory and Paging

- Virtual Memory
 - Provides a logical rather than actual view of memory
 - Allows process to be comprised of a number of fixed-size blocks, called pages
- Virtual address
 - A page number and an offset within the page
 - Each page may be located anywhere in main memory
- Real address
 - The physical address in main memory

11 February 2005

Mads Haahr (with material by William Stallings and Patty Roy)

29

Memory in Linux

11 February 2005

Mads Haahr (with material by William Stallings and Patty Roy)

33

File System

- Implements long-term store
- Information stored in named objects called files
- OS typically offers the following file operations:
 - creating, deleting, renaming
 - reading, writing
 - locking, unlocking

11 February 2005

Mads Haahr (with material by William Stallings and Patty Roy)

Information Protection and Security

- Access control
 - regulate user access to the system
- Information flow control
 - regulate flow of data within the system and its delivery to users
- Certification
 - proving that access and flow control perform according to specifications

11 February 2005

Mads Haahr (with material by William Stallings and Patty Roy)

35

Scheduling and Resource Management

- Fairness
 - give equal and fair access to all processes
- Differential responsiveness
 - discriminate between different classes of jobs
 - e.g., long-running number crunching jobs vs highpriority interactive jobs
- Efficiency
 - maximize throughput, minimize response time, and accommodate as many uses as possible

11 February 2005

Mads Haahr (with material by William Stallings and Patty Roy)

System Structure

- View the system as a series of levels
- Each level performs a related subset of functions
- Each level relies on the next lower level to perform more primitive functions
- This decomposes a problem into a number of more manageable subproblems

11 February 2005

Mads Haahr (with material by William Stallings and Patty Roy)

Modern Operating Systems

- Multithreading
 - Each process is divided into threads that can run simultaneously
- Thread
 - Dispatchable unit of work
 - Executes sequentially and is interruptible
- A process is a collection of one or more threads

11 February 2005

Mads Haahr (with material by William Stallings and Patty Roy)

41

Modern Operating Systems

- Symmetric multiprocessing
 - There are multiple processors
 - These processors share same main memory and I/O facilities
 - All processors can perform the same functions

11 February 2005

Mads Haahr (with material by William Stallings and Patty Roy)

Modern Operating Systems

- Distributed operating systems
 - Provides the illusion of a single main memory and single secondary memory space
 - Distributed shared memory
 - Distributed file systems

11 February 2005

Mads Haahr (with material by William Stallings and Patty Roy)

43

Example OS: PalmOS

- Used for PalmPilot PDAs and successors
- Multitasking since PalmOS 5
- CPUs: Intel XScale, Texas Instruments OMAP, Motorola Dragonball MX
- Wireless: 802.11b, Bluetooth, GSM, CDMA
- 320×320+ displays
- Good battery utilisation

11 February 2005

Mads Haahr (with material by William Stallings and Patty Roy)

Example OS: Symbian OS

- Designed for mobile phones
- Gives access to graphics, multimedia, networking, telephony, crypto, PC connectivity, etc.

11 February 2005

Mads Haahr (with material by William Stallings and Patty Roy)

The OS Wars

- Why is the OS such a big deal?
 - Windows vs Linux vs Mac
 - Symbian vs PalmOS vs Windows Mobile
- Incompatibilities
 - OS's have different interfaces
 - → programs must be written differently
 - → applications for one OS don't run on another
- Tendency to bloatware
 - Applications tend to move into the OS
 - Internet Explorer, Media Player, Search?

11 February 2005

Mads Haahr (with material by William Stallings and Patty Roy)

Security: Windows vs Linux

- Windows Family
 - Developed from DOS
 - Originally single-user machines
 - No network → few threats
- Linux
 - Developed from Unix
 - Originally multi-user networked servers
 - Designed to withstand with security threats from the beginning

11 February 2005

Mads Haahr (with material by William Stallings and Patty Roy)

49

Further Reading

- William Stallings. Operating Systems: Internals and Design Principles, 4th edition. Prentice Hall, 2001.
- Andrew Tanenbaum. Modern Operating Systems, 2nd edition. Prentice Hall, 2001.

11 February 2005

Mads Haahr (with material by William Stallings and Patty Roy)