Soluções da ficha 3B Funções vectoriais de variável real

- 1. Tem-se $\|\overrightarrow{r}(t)\|^2 = \overrightarrow{r}(t) \cdot \overrightarrow{r}(t)$, isto é, a norma de um vector ao quadrado é igual ao produto interno do vector pelo próprio. Deriva-se esta igualdade e obtém-se o pretendido. Geometricamente, significa que o vector $\overrightarrow{r}'(t)$ tangente à curva é perpendicular ao vector de coordenadas $\overrightarrow{r}(t)$.
- 2. $t_0=\pm\sqrt{2}$. Resolução análoga ao exercício 5 da ficha A. Um vector director do plano XOY é um vector cuja terceira coordenada é igual a zero.
- 3. a) $t=\pm\frac{\sqrt{3}}{3}$. Vector tangente à curva $\overrightarrow{r}(t)$ no ponto t é paralelo a $\overrightarrow{r}'(t)$. Este é horizontal se a segunda coordenada for nula.
- 3.b) t=0. Vector tangente à curva $\overrightarrow{r}(t)$ no ponto t é paralelo a $\overrightarrow{r}'(t)$. Este é vertical se a primeira coordenada for nula.

4. a)
$$\int_{-1}^{1} \| \overrightarrow{r}'(t) \| dt = \mathbf{1}$$

4.b)
$$\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \|\overrightarrow{r}'(t)\| dt = \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \sec t . dt = \ln \left| \frac{\sqrt{2}+1}{\sqrt{3}} \right| .$$

5. Uma recta tem como equação vectorial $\overrightarrow{r}(t) = (x_0, y_0, z_0) + t(u_1, u_2, u_3)$, $t \in [a, b]$. A curvatura calcula-se $k(t) = \frac{\|\overrightarrow{r}'(t) \times \overrightarrow{r}''(t)\|}{\|\overrightarrow{r}'(t)\|^3}$. Note-se que $\overrightarrow{r}''(t) = (u_1, u_2, u_3)$ e que $\overrightarrow{r}''(t) = (0, 0, 0)$.

Soluções da ficha 3B Funções vectoriais de variável real

- 1. Tem-se $\|\overrightarrow{r}(t)\|^2 = \overrightarrow{r}(t) \cdot \overrightarrow{r}(t)$, isto é, a norma de um vector ao quadrado é igual ao produto interno do vector pelo próprio. Deriva-se esta igualdade e obtém-se o pretendido. Geometricamente, significa que o vector $\overrightarrow{r}'(t)$ tangente à curva é perpendicular ao vector de coordenadas $\overrightarrow{r}(t)$.
- 2. $t_0=\pm\sqrt{2}$. Resolução análoga ao exercício 5 da ficha A. Um vector director do plano XOY é um vector cuja terceira coordenada é igual a zero.
- 3. a) $t=\pm\frac{\sqrt{3}}{3}$. Vector tangente à curva $\overrightarrow{r}(t)$ no ponto t é paralelo a $\overrightarrow{r}'(t)$. Este é horizontal se a segunda coordenada for nula.
- 3.b) t=0. Vector tangente à curva $\overrightarrow{r}(t)$ no ponto t é paralelo a $\overrightarrow{r}'(t)$. Este é vertical se a primeira coordenada for nula.

4. a)
$$\int_{-1}^{1} \| \overrightarrow{r}'(t) \| dt = 1$$

4.b)
$$\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \|\overrightarrow{r}'(t)\| dt = \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \sec t . dt = \ln \left| \frac{\sqrt{2}+1}{\sqrt{3}} \right| .$$

5. Uma recta tem como equação vectorial $\overrightarrow{r}(t) = (x_0, y_0, z_0) + t(u_1, u_2, u_3)$, $t \in [a, b]$. A curvatura calcula-se $k(t) = \frac{\|\overrightarrow{r}'(t) \times \overrightarrow{r}''(t)\|}{\|\overrightarrow{r}'(t)\|^3}$. Note-se que $\overrightarrow{r}''(t) = (u_1, u_2, u_3)$ e que $\overrightarrow{r}''(t) = (0, 0, 0)$.