DSP: Part II

Lecture.1.2

Sampling and Reconstruction (cont'd)

Methodology/Logic for Sampling and Reconstruction

- A. Overview sampling a conversion process
- B. Sampling theorem & aliasing
- C. A mathematical model of sampling in frequency domain
- D. Reconstruction
- E. Discrete time processing of continuous time signals
- F. Up and down sampling
- G. Quantization

E. Discrete-time Processing of Continuous-time Signals

A general block diagram

E. Input-output Relationship for Discrete-time processing of continuous-time signals

 What is the relationship between input and output signals if the system is linear and time invariant?

$$Y(e^{j\omega}) = H(e^{j\omega})X(e^{j\omega})$$

 $y[n] = h[n] * x[n]$
 $\omega = \frac{\Omega}{F_c}$ (radian/sample)

E. Input-output Relationship for Discrete-time processing of continuous-time signals

 Recap: Meaning and relationship between different types of frequencies?

Description	Notation	Unit
Analog frequency	F	Hz
Analog frequency	$\Omega = 2\pi F$	rad/sec
Digital Frequency	$\omega = \frac{2\pi F}{F_s}$	rad/sample

E.g, given $H(e^{j\omega})$ is a low pass filter with $\omega_c = 0.1\pi$,

What is its cut-off frequency in analog frequency $H(j\Omega)$?

Answer: Depending on F_s !

Using the relationship $\omega = \Omega T_s$, therefore $\Omega_c = \omega_c F_s$

Methodology/Logic for Sampling and Reconstruction

- A. Overview sampling a conversion process
- B. Sampling theorem & aliasing
- C. A mathematical model of sampling in frequency domain
- D. Reconstruction
- E. Discrete time processing of continuous time signals
- F. Up and down sampling
- G. Quantization

F. Sampling Rate Conversion: A Frequency Domain View

Changing the Sampling rate using discrete-time processing

•
$$x[n] = x_c(nT_s)$$
 then $x_d[n] = x[nM] = x_c(nMT_s)$

<u>Application</u>: Transferring signals from one medium to another, e.g. from Audio tape ($F_s = 48 \text{ kHz}$) to CD ($F_s = 44.1 \text{ kHz}$); Movies (24 frames per second) to TV (60 fields/sec)

Manipulations in signal domain:

Downsampler

2 -1

0

3.....

x[n]

....-1

0

¥ 1.....

 $x_d[n]$

F. Down Sampling

An example (before presenting the general case):

Evaluate a signal of 1 Hz, sampled at 6 Hz and 3 Hz.

F. Down Sampling in Frequency domain

(to be further illustrated next with graphs)

Ref: Oppenheim (3rd edition) p. 209

• Discrete-time Fourier transform (DTFT) of $x[n] = x_c(nT_s)$

$$X(e^{j\omega}) = \frac{1}{T_s} \sum_{k=-\infty}^{\infty} X_c \left(j \left(\frac{\omega}{T_s} - \frac{2\pi k}{T_s} \right) \right) \#$$

• Similarly, DTFT of $x_d[n] = x[nM] = x_c(nT_s')$, $T_s' = MT_s$

$$X_d(e^{j\omega}) = \frac{1}{T'_s} \sum_{r=-\infty}^{\infty} X_c \left(j \left(\frac{\omega}{T'_s} - \frac{2\pi r}{T'_s} \right) \right)$$

$$= \frac{1}{MT_s} \sum_{r=-\infty}^{\infty} X_c \left(j \left(\frac{\omega}{MT_s} - \frac{2\pi r}{MT_s} \right) \right)^{\#}$$

equivalent to $X(j\Omega) = \frac{1}{T_s} \sum_{k=-\infty}^{\infty} X_c(j(\Omega - k\Omega_s))$, $\Omega = \omega/T_s$, $\Omega_s = 2\pi/T_s$, as presented in Subpart C earlier.

equivalent to $X_d(j\Omega) = \frac{1}{T_s} \sum_{r=-\infty}^{\infty} X_c(j(\Omega - r\Omega_s/M)), \ \Omega = \omega/MT_s$.

F. Down Sampling in Frequency domaina general case (graphic illustration)

Down sampling: further reduces the actual sampling frequency→ aliasing

 $x_d[n] = x[nM] = x_c(nMT_s)$

Ω

Fourier Transform $x_c(t)$

Fourier Transform $x_s(t)$

Before down sampling:

Fourier Transform x[n]

$$X(e^{j\omega}) = \frac{1}{T_s} \sum_{k=-\infty}^{\infty} X_c \left(j \left(\frac{\omega}{T_s} - \frac{2\pi k}{T_s} \right) \right)$$

After down sampling by 2:

Fourier Transform $x_d[n]$ with M=2

F. Downsampling with prefiltering to avoid aliasing

To evoid eliesing we need a σ / M (why?) where ω is

• To avoid aliasing, we need $\omega_N < \pi/M$ (why?), where ω_N is the highest frequency of the discrete-time signal x[n].

 Hence, downsampling is usually accompanied with a pre-low-pass filtering, and a low-pass filter followed by down-sampling is usually called a decimator, and termed the process as decimation.

See previous graphs

F. Up-Sampling

Increase sampling rate by an integer factor, L

Equivalently
$$x_e[n] = \sum_{k=-\infty}^{\infty} x[k] \delta[n-kL]$$

• $x[n]=x_c[nT_s]$ then $x_e[n]=x[n/L]=x_c[nT_s/L]$

Manipulations in signal domain:

F. Up-sampling in Frequency domain

• Discrete-time Fourier transform (DTFT) of x[n]

$$X(e^{j\omega}) = \sum_{k=-\infty}^{\infty} x[k]e^{-j\omega k}$$

• Similarly, DTFT of $x_e[n]$:

$$X_{e}(e^{j\omega}) = \sum_{n=-\infty}^{\infty} \left(\sum_{k=-\infty}^{\infty} x[k] \delta[n-kL] \right) e^{-j\omega n}$$

Actually, compresses (because L>1) \

$$n = -\infty \setminus k = -\infty$$

$$= \sum_{k = -\infty} x[k]e^{-j\omega kL} = X(e^{j\omega L})$$
where the frequency exists by a factor of L since

• This scales the frequency axis by a factor of L since $\omega' = \omega L$

F. Up-sampling in Frequency domain

Illustration

Fourier Transform $x_c(t)$

Before up sampling:

Fourier Transform x[n]

After up sampling by 2:

Fourier Transform $x_e[n]$ with L=2

up sampling: compress L times within any interval of 2π .

F. Up-sampling with post lowpass filtering

• Similar to the case of D/C converter, upsampling is usually accompanied with a post low-pass filter with cutoff frequency π/L and gain L, to reconstruct the sequence.

With important parameters indicated:

• A low-pass filter followed by up-sampling is called an interpolator, and the whole process is called interpolation.

See previous graphs

F. Up-sampling with post lowpass filtering

$$x[n] = x_c(nT) \Rightarrow x_i[n] = x_c(nT_i), T_i = T/L$$

Example

$$\Rightarrow x_i[n] = x_c(nT/L) = x[n/L]$$

Fourier Transform $x_e[n]$ with L=2

Fourier Transform h[n]

The desired magnitude

Fourier Transform $x_i[n]$

F. Interpolation

- Similar to the ideal D/C converter,
 - If we choose an ideal lowpass filter with cutoff frequency π/L and gain L, its impulse response is

$$h_i[n] = \frac{\sin(\pi n/L)}{\pi n/L}$$

 $h_i[n] = \frac{\sin(\pi n/L)}{\pi n/L}$ (Sinc filter: already learnt in Subpart D for the continuous case)

- Then

$$x_i[n] = x_e[n] * h_i[n] = \left(\sum_{k=-\infty}^{\infty} x[k]\delta[n-kL]\right) * h_i[n]$$
$$= \sum_{k=-\infty}^{\infty} x[k] \frac{\sin[\pi(n-kL)/L]}{\pi(n-kL)/L}$$

up-sampling actually "approaches" to the continuous case.

F. Sample Rate Conversion (non-integer)

- By combining the decimation and interpolation, we can change the sampling rate of a sequence.
 - Changing the sampling rate by a non-integer factor $T' = T_s M/L$.
 - Eg., L=100 and M=101, then T' = 1.01T.

F. Sample Rate Conversion

 Since the interpolation and decimation filters are in cascade, they can be combined as:

F. Example

In this example, L=2, M=3, Therefore, the overall Up-down sampling is to sample at 2/3 of the original sampling frequency.

F. Sample Rate Conversion

- E.g., to go from 44.1kHz to 48kHz
- Upsample by 1.0884
- This is 480/441
- We can upsample by 480 and downsample by 441!

Methodology/Logic for Sampling and Reconstruction

- A. Overview sampling a conversion process
- B. Sampling theorem & aliasing
- C. A mathematical model of sampling in frequency domain
- D. Reconstruction
- E. Discrete time processing of continuous time signals
- F. Up and down sampling
- G. Quantization

G. Quantization

 After C/D block, the amplitude of each sample is still continuous, the quantization process will convert this continuous amplitude into a discrete number to store as a code for digital processing.

A quantizer is a nonlinear system: Q(ax+by) ≠ aQ(x)+bQ(y)

G. Quantization

We usually use two's complement code for representation

X_m is called the full- scale level of A/D. Example: 1Volt Then, step size is:

$$\Delta = \frac{2X_m}{2^{B+1}} = \frac{X_m}{2^B}$$

Binary symbol	Numeric value, \hat{x}_B	
0,11	3/4	
0.10	1/2	
0.01	1/4	
$0_{\diamond}00$	0	
1,11	-1/4	
1.10	-1/2	
$1_{\diamond}0$ 1	-3/4	
1,00	-1	

$$X_m=1$$
, B=2, $\Delta=1/4$.

G. Quantization

Figure Sampling, quantization, coding, and D/A conversion with a 3-bit quantizer.

G. Quantization error

Quantization error is the actual difference between original amplitude with the quantized one

$$e[n] = \hat{x}[n] - x[n]$$

 In general, for a (B+1)-bit quantizer with step size Δ, the quantization error satisfies that

$$-\Delta/2 < e[n] \le \Delta/2$$
 when $\left(-X_m - \frac{\Delta}{2}\right) < x[n] < \left(X_m - \frac{\Delta}{2}\right)$

• If x[n] is outside this range, then the quantization error is larger in magnitude than $\Delta/2$, and such samples are said to be clipped.