Remarques sur TD2

Fixons un corps k.

1 Déterminer une base de Ker(T) et celle de Im(T)

Problème 1. Soient $m, n \in \mathbb{N}$ deux entiers naturels. Étant donné une application linéaire $T: k^n \to k^m$ et sa matrice $A \in M_{m \times n}(k)$, déterminer une base du sous-espace $\operatorname{Ker}(T) \subseteq k^n$ et une base du sous-espace $\operatorname{Im}(T) \subseteq k^m$.

Solution 1. Voir §1.2.1 de polycopié sur les réductions des colonnes.

2 Les corollaires

Problème 2. Soit $n \in \mathbb{N}$ un entier naturel. Étant donné une famille finie de vecteurs $v_1, \ldots, v_m \in k^n$, déterminer une base du sous-espace vectoriel $\text{Vect}(v_1, \ldots, v_m)$ engendré par v_1, \ldots, v_m .

Solution 2. Considérons l'application linéaire $T: k^m \to k^n, {}^t(a_1, \ldots, a_m) \mapsto \sum_{j=1}^m a_j v_j$. Alors $\text{Vect}(v_1, \ldots, v_m) = \text{Im}(T)$.

3 L'intersection et la somme

Problème 3. Soit $n \in \mathbb{N}$ un entier naturel. Étant donné deux familles libres $\mathcal{B}_E = (e_1, \dots, e_r)$ et $\mathcal{B}_F = (f_1, \dots, f_s)$ de k^n . Posons $E = \text{Vect}(\mathcal{B}_E)$ et $F = \text{Vect}(\mathcal{B}_F)$ les sous-espaces vectoriels respectivement engendré par \mathcal{B}_E et \mathcal{B}_F . Déterminer une base du sous-espace $E + F \subseteq k^n$ et une base du sous-espace $E \cap F \subseteq k^n$.

Solution 3. Nous profitons de les applications $\varphi : E \cap F \to E \times F$, $x \mapsto (x, -x)$ et $\psi : E \times F \to k^n$, $(e, f) \mapsto e + f$. Remarquons que l'application φ est injective, $\operatorname{Im}(\psi) = E + F$ et que $\operatorname{Im}(\varphi) = \operatorname{Ker}(\psi)$, donc l'application φ envoie bijectivement $E \cap F$ sur le sous-espace $\operatorname{Ker}(\psi) \subseteq E \times F$. On note A la matrice de l'application ψ et regardons le diagramme suivant:

où l'application $\pi_E: E \times F \to k^n$ est définie par $(e, f) \mapsto e \in E \subseteq k^n$, l'application $j: E \cap F \to k^n$ est l'inclusion canonique et l'isomorphisme $k^r \times k^s \to E \times F$, noté $\mathcal{B}_E \times \mathcal{B}_F$, est donné par $({}^t(a_1, \ldots, a_r), {}^t(b_1, \ldots, b_s)) \mapsto (\sum_{j=1}^r a_j e_j, \sum_{l=1}^s b_l f_l)$.

À l'aide de ce diagramme, on peut montrer que

- $\operatorname{Im}(A) = E + F$
- L'application composée $\Phi: k^r \times k^s \xrightarrow{\mathcal{B}_E \times \mathcal{B}_F} E \times F \xrightarrow{\pi_E} k^n$ envoie $\operatorname{Ker}(A) \subseteq k^r \times k^s$ injectivement sur le sous-espace $E \cap F \subseteq k^n$. En particulier, l'application Φ envoie une base de $\operatorname{Ker}(A)$ sur une base de $E \cap F$.

En résumé, la procédure pour déterminer une base de E+F et $E\cap F$:

- 1. Écrire la matrice $A = (e_1, \dots, e_r, f_1, \dots, f_s) \in M_{n \times (r+s)}(k)$.
- 2. Écrire en-dessous de A la matrice I_{r+s} comme

$$\begin{pmatrix} A \\ I_{r+s} \end{pmatrix}$$

- 3. Faire les réductions des colonne comme en Problème 1, déterminer une base \mathcal{B}_K de $\operatorname{Ker}(A)$ et une base $\operatorname{Im}(A) = E + F$.
- 4. L'image de la base \mathcal{B}_K sous l'application $\Phi: k^r \times k^s \to k^n, (t(a_1, \ldots, a_r), t(b_1, \ldots, b_s)) \mapsto \sum_{j=1}^r a_j e_j$ est une base de $E \cap F$.