Data Mining

SIMILARITY AND DISTANCE MEASURES

Prof. Dr. Hikmat Ullah Khan
Department of Information Technology

UNIVERSITY OF SARGODHA, SARGODHA

Lesson from Holy Quran

Topics

- Distance
- Similarity
- Jaccard Coefficient
- Dice coefficient
- Cosine Similarity
 - TF
 - DF
 - IDF
- Applications
- Algorithms
- Task

Distance Measures

- Common Distance Metrics:
 - Euclidean distance(continuos distribution)

$$d(p,q) = \sqrt{\sum (p_i - q_i)^2}$$

Manhatton Distance

$$d_1(\mathbf{p},\mathbf{q}) = \|\mathbf{p}-\mathbf{q}\|_1 = \sum_{i=1}^n |p_i-q_i|,$$

Hamming distance (overlap metric)

Discrete Metric(boolean metric)

if
$$x = y$$
 then $d(x,y) = 0$. Otherwise, $d(x,y) = 1$

Detailed Example for Distances

_		
J		

Name	Deptt	Age	CGPA
Umar	CS	23	3.1
Umair	CS	21	2.7

Detailed Example for Distances

6

Name	Deptt	Age	CGPA
Umar	CS	23	3.1
Umair	CS	21	2.7

- 1. Hamming Distance (Umar and Umair) = 1
- 2. Discrete Distance (CS and CS) = 0
- 3. Euclidean Distance (23 and 21) = $sqrt((23-21)_2) = 2$
- 4. Manhattan Distance (3.1 and 2.7) = 0.4

Similarity

- Numerical measure of how alike two data objects are.
 - A function that maps pairs of objects to real values
 - Higher when objects are more alike.
- Often falls in the range [0,1]
- Properties for similarity
 - 1. s(p, q) = 1 (or max similarity) only if p = q. (Identity)
 - 2. s(p, q) = s(q, p) for all p and q. (Symmetry)

Similarity between sets

Consider the following documents

apple releases new ipod

apple releases new ipad

new apple pie recipe

Which ones are more similar?

How would you quantify their similarity?

Jaccard Similarity

- □ The Jaccard similarity (Jaccard coefficient) of two sets S_1 , S_2 is the size of their intersection divided by the size of their union.
 - JSim $(C_1, C_2) = |C_1 \cap C_2| / |C_1 \cup C_2|$.

3 in intersection. 8 in union. Jaccard similarity = 3/8

- Extreme behavior:
 - JSim(X,Y) = 1, iff X = Y
 - JSim(X,Y) = 0 iff X,Y have no elements in common

Jaccard Coefficient –(another way too)

- Comparing the similarity and diversity of sample sets
- Jaccard Co-efficient is calculated as follows:

$$J(A, B) = \frac{|A \cap B|}{|A \cup B|} = \frac{|A \cap B|}{|A| + |B| - |A \cap B|}.$$

Dice Coefficient

- Also known as Sørensen-Dice index,
- Used for comparing the similarity and diversity of sample sets
- Dice Co-efficient is calculated as follows:

$$=rac{2|X\cap Y|}{|X|+|Y|}$$

Dice and Jaccard Coefficient

- □ Take any two Sets and then compute the
 - Jaccard Similarity
 - Dice Similarity

Vector Space Model(Cosine Similarity)

- Model for representing text documents
- It is used in [Applications]
 - information retrieval.
 - relevancy rankings.
 - Plagiarism detection
 - Topic based search
 - Expert/Advisor Search
- Model for searching query-based results
- Documents and queries are represented as vectors.

Advantage

- Simple model based on linear algebra
- Term weights not binary
 - Frequency based
- Provides similarity between queries and documents
- Allows partial matching

- do not take into account WHERE the terms occur in documents.
- use all terms, including very common terms and stop-words.
- 3. No need to reduce terms to root terms (stemming).

Example

D1: "Shipment of gold damaged in a fire"

D2: "Delivery of silver arrived in a silver truck"

D3: "Shipment of gold arrived in a truck"

query : "gold silver truck"

Terms

- Term Frequency (tf)
 - No of times a term occurred in a document
- Document Frequency (df)
 - No of documents in which a term occurred.
- Inverse Document Frequency
 - □ IDF = $log(D/d_i)$

TERM VECTOR MODEL BASED ON w_i = tf_i*IDF_i

Query, Q: "gold silver truck"

D₁: "Shipment of gold damaged in a fire"

D₂: "Delivery of silver arrived in a silver truck"

D₃: "Shipment of gold arrived in a truck"

D = 3; $IDF = log(D/df_i)$

		Counts, tf _i						Weights, w _i = tf _i *IDF _i			Fi
Terms	Q	D_1	D ₂	D ₃	dfi	D/df _i	IDFi	Q	D ₁	D ₂	D ₃
a	0	1	1	1	3	3/3 = 1	0	0	0	0	0
arrived	0	0	1	1	2	3/2 = 1.5	0.1761	0	0	0.1761	0.1761
damaged	0	1	0	0	1	3/1 = 3	0.4771	0	0.4771	0	0
delivery	0	0	1	0	1	3/1 = 3	0.4771	0	0	0.4771	0
fire	0	1	0	0	1	3/1 = 3	0.4771	0	0.4771	0	0
gold	1	1	0	1	2	3/2 = 1.5	0.1761	0.1761	0.1761	0	0.1761
in	0	1	1	1	3	3/3 = 1	0	0	0	0	0
of	0	1	1	1	3	3/3 = 1	0	0	0	0	0
silver	1	0	2	0	1	3/1 = 3	0.4771	0.4771	0	0.9542	0
shipment	0	1	0	1	2	3/2 = 1.5	0.1761	0	0.1761	0	0.1761
truck	1	0	1	1	2	3/2 = 1.5	0.1761	0.1761	0	0.1761	0.1761

$$|\mathbf{D}_1| = \sqrt{0.4771^2 + 0.4771^2 + 0.1761^2 + 0.1761^2} = \sqrt{0.5173} = 0.7192$$

$$|\mathbf{D}_2| = \sqrt{0.1761^2 + 0.4771^2 + 0.9542^2 + 0.1761^2} = \sqrt{1.2001} = 1.0955$$

$$|D_3| = \sqrt{0.1761^2 + 0.1761^2 + 0.1761^2 + 0.1761^2} = \sqrt{0.1240} = 0.3522$$

$$|\mathbf{D}_i| = \sqrt{\sum_i w_{i,j}^2}$$

$$|Q| = \sqrt{0.1761^2 + 0.4771^2 + 0.1761^2} = \sqrt{0.2896} = 0.5382$$

$$\therefore |Q| = \sqrt{\sum_{i} w_{Q,j}^2}$$

$$Q \bullet D_1 = 0.1761 * 0.1761 = 0.0310$$

$$Q \bullet D_2 = 0.4771 * 0.9542 + 0.1761 * 0.1761 = 0.4862$$

$$Q \bullet D_3 = 0.1761 * 0.1761 + 0.1761 * 0.1761 = 0.0620$$

$$\therefore Q \bullet D_i = \sum_i w_{Q,j} w_{i,j}$$

Cosine
$$\theta_{D_1} = \frac{Q \bullet D_1}{|Q|^* |D_1|} = \frac{0.0310}{0.5382 * 0.7192} = 0.0801$$

Cosine
$$\theta_{D_2} = \frac{Q \bullet D_2}{|Q|^* |D_2|} = \frac{0.4862}{0.5382 *1.0955} = 0.8246$$

Cosine
$$\theta_{D_3} = \frac{Q \bullet D_3}{|Q|^* |D_3|} = \frac{0.0620}{0.5382 * 0.3522} = 0.3271$$

$$\therefore$$
 Cosine $\theta_{D_i} = Sim(Q, D_i)$

$$\therefore \mathbf{Sim}(\mathbf{Q}, \mathbf{D}_i) = \frac{\sum_{i}^{\mathbf{W}_{\mathbf{Q}, j}} \mathbf{w}_{i, j}}{\sqrt{\sum_{j}^{\mathbf{W}_{\mathbf{Q}, j}^2} \sqrt{\sum_{i}^{\mathbf{W}_{i, j}^2}}}}$$

Ranking

□ Rank 1: Doc 2 = 0.8246

Rank 2: Doc 3 = 0.3271

Rank 3: Doc 1 = 0.0801

Algo (Optional)

```
CosineScore(q)
    float Scores[N] = 0
    Initialize Length[N]
     for each query term t
     do calculate w_{t,q} and fetch postings list for t
        for each pair(d, tf_{t,d}) in postings list
        do Scores [d] += wf<sub>t,d</sub> × w<sub>t,q</sub>
     Read the array Length[d]
     for each d
     do Scores[d] = Scores[d] / Length[d]
     return Top K components of Scores
  Figure 6.14: The basic algorithm for computing
                vector space scores.
```

Task

- Think to create your own Document and Query
- □ Take one example and Solve it
 - solve taking an example
 - Use built in any language or Implement yourself
 - □ C#
 - Python
 - \square R
 - Or any other language

Task

Every successful person has a painful story.
Every painful story has a successful ending.

Accept the pain and get ready for success.

MUMBATIANGOUT.ONG