MAJOR TEST

EPL 338: Nonlinear Phenomena in Physics & Engg.

Attempt 5 problems.

B. 5. 2008 Time: 2 hrs M. Marks: 50

- 1. Obtain the values of period-2 fixed points $2c_1^{\frac{1}{2}}$, $2c_2^{\frac{1}{2}}$ for the maps i) $2c_{n+1} = A 2c_n (2-2c_n)$, ii) $2c_{n+1} = 2 \times n$ [mod 1].
- 2. It an accelerator electron Loventz factor of Vances as $doldz = A \cos \eta$, where $\eta' = \omega t kz$, $\chi^2 = 1 + dA^2 + \frac{k^2}{m^2c^2}$, $k_2 = \chi m z k_2$, $k_3 = \chi m \lambda k_4$ the electron rest mass. Deduce the equation for the separator and estimate the maximum energy gain by a trapped electron.
- 3. A collisophiless cold blanne has a uniggler mognetic field $\vec{B}_{eN} = \vec{B}_{e}(\vec{n}) i \vec{y}$ et \vec{k}_{eN} . An em were propagator through it with $\vec{E} = A(\vec{n} + i \vec{y})$.

 Figure 0.9 w 710). Obtain the value of \vec{k}_{eN} required.

for resonant scend havement's general-line. Obtains
the amplitude of the second havement of a
function of 2.

4. The motion of a planet in governed by rife (,

Small perturbation.

5. Obtain the growth sate of parametric oscillations forened by $3c + 2 \Gamma 3c + \omega_0^2 (.1 + \mu \cos \Omega_0 t) \times ...$ + $\beta 3c^3 = 0$, when $\beta = 0$, $\Omega_0 = 2\omega_0 + \Delta$, $\Omega_1 \Gamma << \omega_0$,

Discuss the consequences of famile Γ and Δ . If $\beta \pm 0$, what effect would you foresee physically?

OR

5. Using the A laser beam $\vec{E} = \sum_{i}^{2} A_{i} \vec{e}^{-i} (int - 122)$ Ap $_{12=0} = \vec{e}^{-i} (int/2) r^{2}/2R$ $\vec{e}^{-r^{2}/2} r^{2}$ is propagating in free Space. Estimate the Spot size at . The focus. Plot it as a function of R.