Centre Number			Candidate Number		
Surname					
Other Names					
Candidate Signature					

Level 2 Certificate in Further Mathematics June 2015

Further Mathematics

8360/2

Level 2

Paper 2 Calculator

Friday 19 June 2015 9.00 am to 11.00 am

For this paper you must have:

- a calculator
- mathematical instruments.

Time allowed

• 2 hours

Instructions

- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work that you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 105.
- You may ask for more answer paper, graph paper and tracing paper.
 These must be tagged securely to this answer book.
- The use of a calculator is expected but calculators with a facility for symbolic algebra must **not** be used.

Formulae Sheet

Volume of sphere
$$=\frac{4}{3}\pi r^3$$

Surface area of sphere
$$=4\pi r^2$$

Volume of cone
$$=\frac{1}{3}\pi r^2 h$$

Curved surface area of cone
$$=\pi rl$$

In any triangle ABC

Area of triangle =
$$\frac{1}{2}ab \sin C$$

Sine rule
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

The Quadratic Equation

The solutions of $ax^2 + bx + c = 0$, where $a \neq 0$, are given by

$$x = \frac{-b \pm \sqrt{(b^2 - 4ac)}}{2a}$$

Trigonometric Identities

$$\tan \theta \equiv \frac{\sin \theta}{\cos \theta}$$
 $\sin^2 \theta + \cos^2 \theta \equiv 1$

Δηςινιστ	all	questions	in	the o	enacae	nrovided
AIISWCI	an	questions	111	uic v	spaces	provided

A circle, centre (0, 0), has circumference 12π 1 Work out the equation of the circle.

[2 marks]

Answer 32+42=36

2 a:b:c=5:3:2

> 4a - |c| : 3bWork out Give your answer in its simplest form.

[2ˌmarks]

5a=36 3b=2c 25a=1.56=1c 25a=1.56=1c 29:9.5

Answer: :

The distance between the points (2, 5p) and (2, -10) is 30 units. 3

Work out the **two** possible values of p.

[3 marks]

$$5p - -10 = 30$$
 $5p = 20$
 $p = 4$

$$5p - -10 = 30$$
 $5p = 20$
 $p = 4$
 $-10 - 5p = 30$
 $-5p = 90$
 $p = -8$

 	 •

5

4 The first term of a sequence is 1-a

The term-to-term rule of a sequence is

add 2a then multiply by 3

3 + 3a

4 (a) Show that the second term is

3(1-a) + 2a)

[1 mark]

= 3(1+a)

= 3150

4 (b) The third term is 16

Work out the value of a.

= (3+)a+2a

[3 marks]

=3(3+5a)

= 9+15a

9+150=16

150=7

a=7/15

Answer

Turn over ▶

7

6	Write	$3x^2$		where a and n are integ	ers. [2 marks]
	= 32	(5x6-6)	(5)		[Z Indi Ks]
	-5n	2670 5			
7	$y = \frac{2}{3}x^6 -$		M	, 1	
				. /	
			e of y with respect to x	when $(x = -1)$	[3 marks]
	dy	the trate of change $4 \times 5 - 24$	2	when $(x = -1)$	[3]marks]
	dy	= 4x5-24s	2	when $(x = -1)$	[3]marks]
	dy	= 4x5-24s	2	when $(x = -1)$	[3] marks]
	dy	= 4x5-24s	2	(x = -1)	[3] marks]
	dy	= 4x5-24s	2	vhen(x = -1)	[3] marks]

9

8 (a) $f(x) = x^4$

The domain of f(x) is $x \ge 2$

Work out the range of f(x).

Answer

8 (b) $g(x) = x^2 - 1$

The domain of g(x) is $-2 \le x \le 3$

Work out the range of g(x).

.....

Answer 357(57

8 (c) h(x) = 5x - 3The range of h(x) is -2 < h(x) < 1

Work out the domain of h(x).

5x-3=-2 | 5x-3=(5x=1 | 5x=4

x=0.2 \ x=0.8

0.2<>c<08

9 (a) Solve 6(2y-3)-10=2y

[3 marks]

19 y = 28 10y y = 2 -

 $v = \sqrt{\frac{1}{2}}$

9 (b) Solve $\frac{\sqrt{w+4}}{2} = 6$

[3 marks]

WH9 = 199

W=180

9 (c) Solve $3m^{\frac{1}{5}} + 9 = 0$

[2 marks]

1/5 = -3

5m = -3 m = 5-3 -7 = (-3)

 $m = \sqrt{-3}$

Turn over ▶

13

The diagram shows a circle, centre *C*. *TP* is a tangent to the circle at *P*.

Work out the value of t.

Morz	$\frac{6-8}{3-2} = \frac{-2}{1} = -2$ M DT = 1	[4 marks]
	C 8= 1/2+C	
3	8= (+	

C=7 -> y= x2+7 t=-4/217

= -2+7 -T

.....

4-5 Answer

[3 marks]

11 (a)	Expand and simplify	(3w + 2y)(w - 4y)
ιι (α)	Expand and simplify	(3w + 2y)(w - 4y)

=) w 2 + 2 wy - 4 wy - 8 y

.....

Answer $3\omega^2 - 2\omega y - (y^2)$

11 (b) Expand and simplify $\frac{3}{x^2} \left(\frac{x}{3} + 3x^2 - 1 \right)$

Answer

Turn over ▶

The area of the triangle is equal to the area of the square. All dimensions are in centimetres.

 $A = \frac{1}{2} ab sin C$ = xy y y 30°

Not drawn accurately

A=x

Write y in terms of x.

Xis 3

[2 marks]

xy = 9,2 3 y= 9,2 3 Anomar

The diagram shows a circle, centre \underline{P} , and a straight line passing through points P and Q.

Q lies on the y-axis and on the circumference of the circle.

The equation of the circle is

$$(x-3)^2 + y^2 = 25$$

Work out the equation of the straight line through P and Q.

Give your answer in the form ax + by + c = 0 where a, b and c are integers.

[4 marks]

-3 +4	-25
	2 5 0

y= J25-9 = J16 = 4

/N <u>-</u>	ر '
yz	-95c 1C

9=0+6

4x +3y-12=0

|
 |
|------|------|------|------|------|------|------|------|------|------|------|
| | | | | | | | | | | |
| | | | | | | | | | | |
| | | | | | | | | | | |
| | | | | | | | | | | |
| | | | | | | | | | | |
|
 |
| | | | | | | | | | | |
| | | | | | | | | | | |

Answer
$$y = -\frac{9x}{3} + 9$$

Turn over ▶

PQR is a straight line. PQ: QR is 2:3 14

Not drawn accurately

14 (a)	Show that $a =$	10.5

[2 marks]

 $3x = 2x^{2}$ $2=^{2}/2=4.5$

 $R_x = Q_x + 2$ = 6+4.5 = 10.5

15

14	(h)	Work	Out	the	value	٥f	h
14	(D)	VVOIR	Out	uic	value	Οī	υ .

3<86	= 2(7-9/	
------	----------	--

[3 marks]

•	•	٠	•	•	•	•	٠	•	•	•	•	•
		ì						ĺ				
		١	6		-	;		`	/	'	7	
			•	,				′			5	

	(
	/ 7		
	/)		
Answer		 	

Use algebra to prove that the value of values of c.

$8c^2 + 16$	1
$3c^{2}+6$	+ 3

is an integer for all

= 8(2+2)	(_ 8 , 1	-9 =	3	[3 marks]
3(,2+2)	' 3	3 ,	3 /3		

Turn over ▶

16	The diagram shows a rectangle with area 9 cm ²					

x cm

Not drawn accurately

(2x - 1) cm

Set up and solve an equation to work out the value of x. Give your answer to 3 significant figures.

(x)(2x-1)=9

[5 marks]

2x2-x-9=0

 $2 = -6 \pm \sqrt{6^2 - 4ac} = 1 \pm \sqrt{1 - 4 \times 2 \times -9} = 1 \pm \sqrt{73}$ $2a = 2 \times 2$

=2,39

x =

17 ABCDEFGH is a cuboid.

17 (a) Work out the length of *AB*.

17 (b) Work out the angle between HB and ABCD.

Answer.....

Turn over ▶

10

The sketch shows the quadratic curve $y = 4(x-a)^2 + b$ The curve passes through (0, 10) and (2, 10) $y = 9(x^2-2x+1)+b$ $= 4x^2-8x+9+b$ Not drawn 18

accurately

18 (a)	Civo roscone	why tho	value	of a i	ດ 1
18 (a)	Give reasons	wriy trie	value (or a	S 1.

[2 marks]

Belowe	the mideout	(at the minum soint)	has on x of (.	
	,	,	0	
				••

18 (b) Work out the value of b.

[2 marks]

18 (c) Write the equation of the curve in the fo

rm	$y = px^2 + qx$
_	

4= 4x2-8x++6

Answer
$$y = 4sc^2 + 8sc + 10$$

Use the factor theorem to show that (x-3) is **not** a factor of $x^3-10x \neq 3$ [2 marks] 19

(x-3), 3 is a foctor, when x=3 y=0 (-1x) = 9x2-8x46

$$f(3) = 36 - 247 = 22 \neq 0$$

20 (a) The transformation matrix P represents a 90° anti-clockwise rotation about the origin.

Describe fully the **single** transformation represented by the matrix \mathbf{P}^3

a 90° clocking turn around the origin.

[2 marks]

20 (b) The transformation matrix **Q** is $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

The transformation matrix **R** is $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$

Describe fully the single transformation represented by the matrix QR.

[2 marks]

$$= \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

K garr	around the origin.	\times	Sf=1	enlargement
	 0			

21 A cubic curve has

a maximum point at A (-4, 10)

a minimum point at B(2, -26)

The tangent to the curve at A and the normal to the curve at B intersect at point C.

Work out the area of triangle *ABC*.

2 1

Turn over ▶

7

.....square units

[3 marks]

22	A quadratic sequence starts	
	302	

22 (a) Work out an expression for the nth term.

22 (b) A term in the sequence has value 0

Find the position of this term.

[2 marks]

$$(-n)(2-309) = 0$$

On 152 Ont valle

The continuous curve y = f(x) has exactly **two** stationary points.

P is a maximum point when x = a

Q is a stationary point of inflection when x = b

a < b

Which of these is correct?

Tick one box only.

When
$$a < x < b$$
, $\frac{\mathrm{d}y}{\mathrm{d}x}$ is positive \swarrow

and

when x > b, $\frac{dy}{dx}$ is positive $\sqrt{}$

When
$$a < x < b$$
, $\frac{dy}{dx}$ is positive $\boldsymbol{\times}$

and

when
$$x > b$$
, $\frac{dy}{dx}$ is negative \checkmark

When
$$a < x < b$$
, $\frac{dy}{dx}$ is negative \checkmark

and

when
$$x > b$$
, $\frac{dy}{dx}$ is positive $\sqrt{}$

When
$$a < x < b$$
, $\frac{dy}{dx}$ is negative \checkmark

and

when
$$x > b$$
, $\frac{dy}{dx}$ is negative \times

Turn over ▶

24	$a^2 < 4$	and	a + 2b = 8			
			of possible value as an inequality.	es of b .		[4 marks
	-2 <ac< th=""><th><u>- ک</u></th><th></th><th></th><th> </th><th></th></ac<>	<u>- ک</u>			 	
	سسسس اح+کا		7,26			
	2	6=10	2(o =6		
	l.	,= <u>5</u>	<u> </u>	·=3		

3 < 6 < 5

25 Work out the values of x between 0° and 360° for which

$$25\cos^2 x = 9$$

Give your answers to 1 decimal place.

$$|\cos x| = \frac{3}{5} \qquad |\cos x| = -\frac{3}{5}$$

$$|\cos x| = 53.$$

$$|\cos x| = 12.$$

 $z_2 = 307$ $z_9 = 233$

Answer 53 1 127 367 233

8

26 A cone has base radius r cm and slant height l cm

A hemisphere has radius r cm

26 (a) The curved surface area of the cone equals the curved surface area of the hemisphere.

Show that l = 2r

٠	• •	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	٠	•	•	•	٠	٠	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	٠	•	• •	• •	
																														1		L		_							
																														1	1	τ	7	١		7	-)	(
-			•			•								•	•	•	•	•		•	•	•		•	•																

26 (b) The cone has vertical height h cm

The cone and hemisphere are joined to make the shape shown below.

Show that the volume of the shape can be written as

$\frac{1}{3}\pi r^3(a+\sqrt{b})\mathrm{cm}^3$ where a and b are integers.
$V = \frac{2}{3} \pi r^{3} + \frac{1}{3} \pi r^{3} \sqrt{3}$ [4 marks]
3
$= \frac{1}{2} \pi r^3 (2 + \sqrt{3})$
}

Turn over ▶

5

27 Work out the values of a when

$$2^{a^2} = 8^a \times 16$$

Do **not** use trial and improvement.

You must show your working.
$$\frac{a^{3}}{2} = 2^{3} \times 2^{9}$$

[4 marks]

$$a^2 = 3a + 9$$

$$a^2 = 3a + 4$$
 $a^2 - 3a - 9 = 0$

END OF QUESTIONS

Copyright © 2015 AQA and its licensors. All rights reserved.

