UK Road Traffic Collision

Valeria Iapaolo, Oswaldo Morales, Riccardo Morandi, Abylaikhan Orynbassar,

12 December 2023

Dataset

Collision data

For each **collision** we know:

- Date and time;
- Geographical location (latitude and longitude);
- Local authority district;
- Road type and conditions;
- Weather conditions.

Vehicle data

For every **vehicle** involved in each accident we have:

- Vehicle type and propulsion;
- Vehicle manoeuvre:
- Vehicle age;
- Point of impact;
- **Position** in carriageway;
- Age and sex of the driver.

Casualty data

For every **casualty** of each vehicle we know:

- Casualty severity (slight, serious, fatal);
- Age band and sex;
- Casualty class (driver/rider, passenger, pedestrian, ...)
- Position on the road in pedestrian case.

We used **official** data from the UK's **Department of Transport**, we decided to focus on the years from **2005** to **2022**.

Nonparametric Tests and ANOVA

Significance of casualty class on casualty severity

Similarly, to test the whether the Pedestrians, Drivers and Passengers (casualty_class) have the same severity (Slight, Serious, Fatal), we performed permutational ANOVA:

casualty_severity ~ casualty_class

```
Df Sum Sq Mean Sq F value Pr(>F)
casualty_class 2 26 12.988 84.97 <2e-16 ***
Residuals 9997 1528 0.153
---
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

- As it can be seen from the summary of the test we can conclude that the casualty class has a **significant effect** on the casualty severity.
- Test is performed only on the subsample of the data.

GAM: number of casualties

For each accident we model the number of casualties a **GAM** assuming a **zero inflated Poisson** distribution to take into account the large number of accidents with only **one** casualty.

The zero-inflated Poisson (ziP) model mixes two generating processes.

- The first process generates zeros;
- The second process is governed by a Poisson distribution that generates counts, some of which may be zero.

```
ziP(number\ of\ casualties-1) \sim
weekend\ +
light\ conditions\ +
s(time,bs\ ='\ cc')
+s(number\ of\ vehicles,bs\ ='\ cr',k\ =\ 6)
+s(speed\ limit,bs\ ='\ cr',k\ =\ 5)
```

Results

Speed limit

Number of vehicles

Time

The time behaviour is non-trivial, with a clear increase of the number of casualties in the night.

Increase during night-time and early morning hours

Decrease in the day, probably due to the prevalence of solo commuters.

Functional data

We model the **number** of **crashes** as **functional** data, focusing on **4** different **time horizons**: year, month, week, day.

Yearly data

We found:

- A clear **outlier** in the year 2020, due to the covid pandemic;
- A clear decreasing trend as the years progress despite the increase in circulating vehicle.

Functional data

Monthly data

When considering monthly data, we decided to **align** the data using **shift warping function** to properly capture the weekly pattern in the data.

Functional clustering using k-means

We found **3 clusters**: one containing predominantly the months of **January** and **April**, one containing mostly **December** and the **remaining** months were clustered together.

Permutation tests on the identified clusters

We validated the results using permutation tests:

- Global permutational ANOVA;
- Local permutational ANOVA using an intervalwise testing procedure.

Functional data

Weekly data

There were two distinct clusters:

- Regular working weeks;
- Weeks belonging to a holiday period.

Daily data

There were two distinct clusters:

- Regular working days;
- · Weekends and holidays.

The significance of the clusters was validate using a **global permutation** 2 population test for the difference in distribution. From a **local** permutation test the distribution was different **on the whole time span.**

Nonparametric Tests and ANOVA

Significance of latitude and longitude on the number of crashes

In order to test the significance of the geolocation we used a **two-way Permutational ANOVA** with interactions:

- Both the longitude, latitude and their interaction have a significant impact on the number of crashes. This suggests that geographic location is an important factor in traffic accidents.
- The test is performed only on the **subsample** (30000) of data due to the memory and time constraints.
- Permutational ANOVA was used because the data do not follow the Gaussian distribution.

Number of daily collisions per district

GAM model with mixed effects

 $log(mean \ n^{\circ} \ of \ collisions_{i}) \sim day \ type_{i} + wind_{i} + rainfall_{i} + year_{i} + f_{1}(day \ of \ the \ year_{i}) + b_{i}$

Day of the year: 1, ..., 365 modelled using a **cubic spline**

Year: 2005, ..., 2019

Random intercept for the local authority district used to capture the difference in the population across the country.

Results

Day of the year

The nonparametric part of the model is able to correctly **capture** the **nonlinear behaviour** of the number of crashes in the **different periods** of the year.

Random effects

The random intercept correctly accounts for the **population differences** of the districts.

Rain fall

In Birmingham the 1st of Feb 2019 the predicted mean number of crashes are:

Rainfall	Mean n° of collisions
Fine	6,78
Rain	6,43
Snow	6,20

Challenges and Next Steps

- Improve the computational efficiency, possibly with a smart subsampling, when performing both
 permutation tests and GAM models. The challenge is that most of the information is crash specific and is
 lost when aggregating data.
- Improve the GAM models, both in terms of model performance and goodness of fit:
 - When modelling count data, the Poisson assumption is **not** satisfied;
 - The random effects do **not** follow a normal distribution:
 - Perform **permutation tests** to assess the significance of the coefficients.
- Perform conformal prediction for both:
 - The Generalize Additive Model approach;
 - The functional data approach.
- Further incorporating the spatial information in the model via:
 - Adding latitude and longitude as regressors in a GAM model;
 - Nonparametric spatial model to estimate the trend and the variogram (npsp);

The challenge is that most of the data is located around large cities and along the motorway network.