CHAPTER 4. FLOW OF WATER INTO AND THROUGH SOILS

Water has energy.

Energy of Flowing Water.

1. Potential Energy, P. E. = $(P/\gamma) + y$

 (P/γ) = pressure head

γ = specific weight of water

y = elevation head

 $v^2/2g = velocity head$

CHAPTER 4. FLOW OF WATER INTO AND THROUGH SOILS

Energy of Flowing Water.

2. Kinetic Energy, K. E. = $(v^2/2g)$

 $v^2/2g = velocity head$

Combined Energy H = P.E. + K.E.

or
$$H = (P/\gamma) + y + v^2/2g$$

This is also known as Bernoulli's equation.

Hydraulic head, $h = (P/\gamma) + y$

$$h_1 = p_1/\gamma + y_1$$
 Hydraulic gradient, $i_1 = h_1/L$, $i_2 = h_2/L$ $i = \Delta h/L$
 $h_2 = p_2/\gamma + y_2$ Hydraulic head loss, $\Delta h = h_1 - h_2$

$$h_1 = p_1/\gamma + y_1$$
 Hydraulic gradient, $i_1 = h_1/L$, $i_2 = h_2/L$ $i = \Delta h/L$
 $h_2 = p_2/\gamma + y_2$ Hydraulic head loss, $h_1 = h_1 - h_2 = \Delta h$

At Piezometer 2:

$$h_2 = (p_2/\gamma) + y_2 = 40 \text{ m}$$
Flow distance, L = 100 m

$$i = (\Delta h/L) = (h_1 - h_2)/L = (50 - 40)/100 = 10/100$$

$$i = \text{slope or hydraulic gradient}$$

$$k = 350 \text{ m/year}$$

$$A = 1000 \text{ m wide, 20 m deep}$$

$$Q = \text{Aki} = (1000 \times 20)(350)(10/100) = 700,000$$

O - flow through the section 1000 m wide 20 m deen

Example:

At Piezometer 1:

m³/yr

 $h_1 = (p_1/\gamma) + y_1 = 50 \text{ m}$

$$h_1 = p_1/\gamma + y_1$$
 Hydraulic gradient, $i_1 = h_1/L$, $i_2 = h_2/L$ $i = \Delta h/L$
 $h_2 = p_2/\gamma + y_2$ Hydraulic head loss, $h_1 = h_1 - h_2 = \Delta h$

$$h_1 = p_1/\gamma + y_1 = 23 + y_1$$
 $i = \Delta h/L = 6/(16-2) = 0.43$
 $h_2 = p_2/\gamma + y_2 = 3 + y_2$ If $k = 2$ m/yr & $A = 1$ ha, then $y_2 = y_1 + 14$ $v = kh_L/L = 2(0.43) = 0.86$ m/yr $h_2 = 3 + (y_1 + 14) = 17 + y_1$ $Q = Av = 1$ ha x 0.86 m/yr $\Delta h = h_1 - h_2 = (23 + y_1) - (17 + y_1) = 6$ $= 0.86$ ha-m/yr

CONSTANT HEAD PERMEAMETER

Example: $h_L = 73$ cm, L = 30 cm, Vol of water in the graduated cylinder = 9.5 li., time to fill the 9.5 li. Volume = 0.4 hr, permeameter x-sectional area = 1070 cm². Find permeability, k.

$$k = QL/(Ah_L) = (9.5/0.4)x30/(1070x73)$$

= 9.1 cm/hr

FALLING HEAD PERMEAMETER

	/	
Time (m	ını
		· · · <i>,</i>

Intake Depth (mm)

Difference	Cumulative	Depth	Cumulative
1	1	11	11
2	3	7	18
4	7	8	26
8	15	11	37
18	33	14	51
14	47	8	59
27	74	14	73
31	105	10	83
29	134	11	94
28	162	9	103

Accumulated depth (mm) & intake rate (mm/hr) 125 100 **Accumulated depth 75** Average intake rate **50 25** Instantaneous intake rate **25** 75 100 125 150 175 200 225 **50**

Elapsed time (min)

Measurement of the permeability of a 15meter stratum of saturated clay soil overlying a water-bearing gravel shows that k = 0.5 mm/hr. If the pressure head in the gravel is 25 meters of water (as measured at the lower surface of the clay) and 0 meter near the soil surface, water is flowing vertically upward through the clay. Compute the flow in ft³/sec through a block of clay 15 meters thick and 250 hectares in area.

