指数・対数関数の公式

指数(累乗根)・対数の関係をマスターしよう!

対数の定義

 $a^b = c \iff \log_a c = b$ ただし、底a>0, 真数条件c>0

(i)底a>1 底の変換公式 $\log_a b = \frac{\log_c b}{\log_c a}$ (頻出パターン) $\log_{a^m} b^n = \frac{n}{m} \log_a b$ $\log_a b = \frac{1}{\log_b a}$ (ii)底0 < a < 1

$a^{\log_a b} = b$

対数の指数

関数のグラフ

 $(y=a^x)$ $x = a^y \iff y = \log_a x$

	指数関数	対数関数
定義域	実数全体	<i>x</i> > 0
値域	y > 0	実数全体

指数・対数関数は、

直線y = xに関して対称 (x, yが逆)

指数・累乗根の計算

- ① 累乗根を指数に直す
- ② 底をそろえる
- ③ 指数法則で計算する
- *解答のマナー*
- ×負の指数 → ○逆数 (分数)
- ×分数指数 → ○累乗根

対数の利用

水素イオン濃度指数

$$pH = -\log_{10}[H^+]$$
 ([H⁺]: 水素イオン濃度mol/L)

デシベル (音量)・利得 (ゲイン)

$$dB = 10 \log_{10} \frac{A}{A_0}$$

マグニチュード (地震)

$$M = \frac{2}{3} (\log_{10} E - 4.8)$$

(E: 地震のエネルギー I)

底指数 = 真数

log底 真数 = 指数

:: 対数=指数

		$\Leftrightarrow x^n = a$	累乗根	複素数範囲				
	xがa の n 乗根			実数範囲		松 与	で表される累乗根 $\sqrt[n]{a}=a^{rac{1}{n}}$	
	偶数乗	$(\pm 2)^2 = +4 \ \downarrow 0$	+4の平方根は	±2	×	$\sqrt{+4} = +2$	正の累乗根の値	
	指数nが偶数の場合	(±2)° = +43 9	-4の平方根は	×	±2 <i>i</i>	√-4=なし	便宜的に平方根のみ $\sqrt{-1}=i$ とする	
	奇数乗	(+2)3 = +8より	+8の平方根は	+2	$-1 \pm \sqrt{3}$	$\sqrt[3]{+8} = +2$	実数範囲の累乗根の値	
儿	指数nが奇数の場合	$(-2)^3 = -8 \updownarrow \mathcal{V}$	-8の平方根は	-2	$1 \pm \sqrt{3}$	$\sqrt[3]{-8} = -2$	(実数範囲では必ず1つしかない)	

						l .	
指数・対数 の計算	対 数	M N	\leftarrow [導出] \leftarrow $= a^m, m = \log_a M$ $N = a^n, n = \log_a N$	指 数		備 (指数法則で	考 のaの数えフ
指数の和 =真数の積	$\log_a M + \log_a N = \log_a MN$	n	$MN = a^{m+n}$ $n + n = \log_a MN$	$a^m \cdot a^n = a^{m+n}$	$\underbrace{(a \times a \times a)}_{m}$	$\times \cdots \times a$) $\cdot (a$	a×a×a× n個
指数の差 =真数の商	$\log_a M - \log_a N = \log_a \frac{M}{N}$	7	$\frac{M}{N} = a^{m-n}$ $n - n = \log_a \frac{M}{N}$	$a^m \div a^n = \frac{a^m}{a^n} = a^{m-n}$ (別解) $a^m \div a^n = a^m \times (a^n \mathcal{O}$ 逆数) $= a^m \times a^{-n}$ $= a^{m+(-n)}$ 積と結局同じ	$ \begin{array}{c} a \times a \times a \times a \\ & a \times a \times a \\ & & $	a × ··· × a 個 個 a × ··· × a	-= -1
指数の積 =真数の累乗	$\log_a M^n = n \log_a M$	累	$M^{n} = a^{mn}$ $\log_{a} M^{n} = m \cdot n$ $\sqrt[m]{\sqrt[n]{a}} = \sqrt[mn]{a}$ $(\sqrt[n]{a})^{m} = \sqrt[n]{a^{m}}$	$(a^m)^n = a^{mn}$	$(a^m)^n =$	m個	$\cdots \times a \times$
積の累乗=累乗の積		乗根	$\sqrt[n]{ab} = \sqrt[n]{a}\sqrt[n]{b}$	$(ab)^n = a^n b^n$	$\left(\frac{a}{b}\right)^n =$	$(a \cdot b^{-1})^n =$	$=a^nb^{-n}$
商の累乗 =累乗の商			$\sqrt[n]{\frac{\overline{a}}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$	$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$, , , , , , , , , , , , , , , , , , ,		分数でも
0乗	$\log_a 1 = 0$		定義より	$a^{0} = 1$	(注)	常用対数	自然対数
負の指数 =逆数	$\log_a \frac{1}{M} = -\log_a M$	lo	$g_a M^n = n \log_a M$	$a^{-n} = \frac{1}{a^n}$	底の省略	$\log_{10} x$	$\log_e x$
累乗根の指数	$\log_a \sqrt[n]{M} = \frac{1}{n} \log_a M$		の利用	$a^{\frac{1}{n}} = \sqrt[n]{a}$	高校数学 科学分野	$\log_{10} x$ $\log x$	$\log x$ $\ln x$

$\left(\frac{a}{b}\right) =$	$(a \cdot b^{-1})^n =$	= a ⁿ b ⁻ⁿ = 分数でも	= $\frac{a}{b^n}$ 結局	月同じ
(注) 底の省略	常用対数 log ₁₀ x	<mark>自然対数</mark> $\log_e x$		利用
高校数学	$\log_{10} x$	$\log x$		し た 公 式
科学分野	log x	ln x		式
自然対数の底(オイラー数、ネイピア数) e				

(指数法則での の数え方)

指

則

利用した公式 &

結局同じ

> nセット

 $(a \times a \times a \times \cdots \times a) \cdot (a \times a \times a \times \cdots \times a)$

常用対数と桁数

実数M	n 桁の数	小数第n位にはじめて0でない数字が表れる				
(例) n = 3						
指数表示	$10^{n-1} \le M < 10^n$	$10^{-n} \le M < 10^{-(n-1)}$				
常用対数	$\log_{10} 10^{n-1} \le \log_{10} M < \log_{10} 10^n$	$\log_{10} 10^{-n} \le \log_{10} M < \log_{10} 10^{-(n-1)}$				

(Bernoulli)
$$e = \lim_{n \to +\infty} \left(1 + \frac{1}{n}\right)^n = \lim_{h \to 0} (1 + h)^{\frac{1}{h}}$$
 「1 足すチョットの+∞乗」

(Euler)
$$\lim_{h \to 0} \frac{e^{h} - 1}{h} = \lim_{x \to 0} \frac{\log(1 + x)}{x} = 1$$
$$e = a \quad s.t. \quad \frac{d}{dx} a^{x} = a^{x}$$

 $e = 2.71828182845904(5 \cdots)$ (語呂) 鮒一鉢二鉢一鉢二鉢至極美味しい