Chapitre 10

Probabilités

I. Loi de probabilité

1) Univers

Définition:

L'ensemble E de toutes les issues (résultats possibles) d'une **expérience aléatoire** est appelé l'**univers** de l'expérience.

Exemples:

Expérience aléatoire	Univers			
Lancer d'une pièce	$E = \{P ; F\}$	\overline{F} \overline{P}		
Lancer d'un dé cubique	E = {1;2;3;4;5;6}	4 1 E 3 2 6 5		

Remarque:

Dans le cas général, on note les issues e_1 , e_2 , e_3 , ..., e_n et $E = \{e_1 ; e_2 ; e_3 ; ...; e_n\}$

2) <u>Loi de probabilité</u>

Définition:

Définir une loi de probabilité (ou distribution de probabilité) sur un univers E, c'est associer à chaque issue e_i , les probabilités correspondantes p_i , qui sont des nombres positifs ou nul dont la somme est égale à 1.

Issue	e_1	e_2	e_3	•••	e_n
Probabilité	p_1	p_2	p_3		p_{n}

Exemple:

Si le dé cubique est équilibré (chaque face à autant de chances qu'une autre d'apparaître).

Donc $p_1 = p_2 = p_3 = p_4 = p_5 = p_6$ et puisque $p_1 + p_2 + p_3 + p_4 + p_5 + p_6 = 1$.

On a donc:

e_i	1	2	3	4	5	6
p_i	<u>1</u> 6					

Définition:

Dans le cas où l'on associe à chacune des n issues d'une expérience aléatoire la même probabilité p, on parle de **loi équirépartie**.

On a alors
$$p = \frac{1}{n}$$

Démonstration :

$$p+p+p+...+p=1$$
, donc $np=1$ et $p=\frac{1}{n}$.

3) Modélisation d'une expérience aléatoire

Définition:

Modéliser une expérience aléatoire dont les issues constituent l'univers E, c'est choisir une loi de probabilité sur E qui représente **au mieux** la probabilité qu'ils ont de se réaliser.

Exemple:

On considère l'expérience aléatoire : « Lancer de deux pièces simultanément ». Les issues possibles sont : Pile et Pile (PP), Pile et Face (PF), Face et Face (FF)

Il existe différentes manières de choisir un modèle.

	Modèle I On ne distingue pas les pièces			Modèle 2 On distingue les pièces					
Description	Loi équirépartie sur $E = \{PP; FP; FF\}$			Loi équirépartie sur $E = \{PP; FP; PF; FF\}$					
Loi de probabilité	Issue $\begin{array}{ c c c c c c c c c c c c c c c c c c c$				Issue Probabilité	1 4	P F 1 4	F P 1 4	1/4

Si l'on considère le modèle 1 on vérifie que la probabilité de tirer Pile et Pile est de $\frac{1}{3}$.

Si l'on considère le modèle 2 on vérifie que la probabilité de tirer Pile et Pile est de $\frac{1}{4}$.

Propriété : Loi des grands nombres

Si on **reproduit**, dans des conditions identiques, une **expérience aléatoire** un grand nombre de fois, on constate que la **distribution de fréquences** des issues se « **stabilise** » autour de la **loi de probabilité** sur l'univers *E*.

Pour un **grand nombre d'expériences**, l'intervalle de fluctuation des fréquences, donne un encadrement de la **probabilité** associée à l'issue.

Exemple:

On répète 10 000 fois l'expérience :

« Lancer de deux pièces simultanément ».

Voici la distribution de fréquences des issues :

Issue	PP	PF	FF
Fréquence	0,2519	0,4991	0,2490

On a donc:

$$p_{PP} \in \left[0.2519 - \frac{1}{\sqrt{10000}}; 0.2519 + \frac{1}{\sqrt{10000}}\right]$$
 (avec une marge d'erreur de 5 %)

Ainsi $p_{PP} \in [0.2419; 0.2619]$ et $p_{PF} \in [0.4891; 0.5091]$ et $p_{FF} \in [0.239; 0.259]$

Cette propriété nous permet donc de valider où d'invalider un modèle.

Dans l'exemple ci-dessus le modèle 2 est le mieux adapté à l'expérience aléatoire.

II. Probabilité d'un événement

Soit *E* l'univers associé à une expérience aléatoire.

1) Notion d'événement

Définitions:

- Un **événement** A est une partie (ou un sous ensemble) de l'univers E.
- L'événement contraire de A, noté \overline{A} est la partie constituée de toutes les issues de E qui ne sont pas dans A.
- Un événement élémentaire est une partie de E qui ne contient qu'une seule issue.

Remarque:

On dit que chaque issue a qui est dans la partie A réalise l'évènement A ($a \in A$).

Vocabulaire:

- \mathcal{D} est appelé **événement impossible**, aucune issue ne le réalise.
- *E* est appelé **événement certain**, toutes les issues le réalisent.

Exemple:

On lance un dé à six faces numérotées de 1 à 6. Donc $E = \{1; 2; 3; 4; 5; 6\}$

• Soit *A* l'événement : « sortie d'un multiple de 3 ».

 $A = \{3:6\}$ (les issues 3 et 6 réalisent l'événement A) et $\overline{A} = \{1:2:4:5\}$

• Soit *B* l'événement : « sortie du 4 ».

 $B = \{4\}$ est un événement élémentaire.

• Soit C l'événement : « sortie du 7 »

 $C = \emptyset$ est l'événement impossible.

• Soit D l'événement : « sortie d'un résultat inférieur ou égal à 6 »

D = E est l'événement certain.

2) Probabilité d'un événement

Une loi de probabilité est définie sur un univers E.

Définition:

La probabilité d'un événement A est la somme des probabilités des issues qui le réalisent. On la note p(A).

Propriétés :

- Aucune issue ne réalise l'événement impossible donc $p(\emptyset)=0$
- L'événement certain est réalisé par chacune des issues donc p(E)=1
- Pour tout événement A, $0 \le p(A) \le 1$
- Pour tout événement A, $p(\overline{A}) = 1 p(A)$

Exemple:

On s'intéresse au lancer d'un dé cubique. Donc $E = \{1, 2, 3, 4, 5, 6\}$

La loi de probabilité sur *E* est la suivante :

Face	1	2	3	4	5	6
Probabilité	$\frac{1}{12}$	$\frac{1}{4}$	$\frac{1}{6}$	<u>1</u> 6	$\frac{1}{4}$	$\frac{1}{12}$

4

Remarque : le dé est pipé.

A est l'événement : « Obtenir un résultat pair ». $A=\{2;4;6\}$

Donc: $p(A) = \frac{1}{4} + \frac{1}{6} + \frac{1}{12} = \frac{1}{2}$

Cas particulier

Propriété:

Dans le cas d'une loi équirépartie, la probabilité d'un événement A est donné par :
$$p(A) = \frac{nombre\ d'issues\ dans\ A}{nombre\ d'issues\ dans\ E} = \frac{nombre\ de\ cas\ favorables}{nombre\ de\ cas\ possibles}$$

Démonstration:

Nous avons vu que, dans ce cas, pour chaque issue $p = \frac{1}{n}$ où n est le nombre d'issues de l'expérience.

Si A est constitué de m issues, alors
$$p(A) = \frac{1}{n} + ... + \frac{1}{n} = \frac{m}{n}$$

Exemple:

Lorsque le dé est supposé parfait, les événements élémentaires sont équiprobables.

Soit A l'événement : « Sortie d'un multiple de 3 ». Donc $A = \{3, 6\}$

Alors
$$p(A) = \frac{2}{6} = \frac{1}{3}$$
.

III. Calculs de probabilités

1) Intersection et réunion d'événements

Définitions:

- L'intersection de A et B est l'événement, noté $A \cap B$, formé des issues qui réalisent à la fois l'événement A et l'événement B.
- La **réunion** de A et B est l'événement, noté $A \cup B$, formé des issues qui réalisent à la fois l'événement A ou l'événement B (au moins l'un des deux).

5

Exemple:

On lance un dé cubique.

Soit A l'événement : « Sortie d'un multiple de 2 »

Soit B l'événement : « Sortie d'un nombre strictement inférieur à 3 »

Alors $A = \{2; 4; 6\}$ et $B = \{1; 2\}$

Donc $A \cap B = \{2\}$ et $A \cup B = \{1; 2; 4; 6\}$

2) Propriété fondamentale

Définition:

Deux événements sont incompatibles lorsque leur intersection est vide.

Exemple:

On lance un dé cubique.

Soit A l'événement : « Sortie d'un multiple de 3 »

Soit B l'événement : « Sortie d'un nombre strictement inférieur à 3 »

Alors $A = \{3; 6\}$ et $B = \{1; 2\}$

Donc $A \cap B = \emptyset$. On en conclut donc que A et B sont incompatibles.

Propriété:

Si deux événements sont incompatibles, alors $p(A \cup B) = p(A) + p(B)$.

Exemple:

Dans l'exemple précédent : $A \cup B = \{1; 2; 3; 6\}$

et donc (si le dé est équilibré) $p(A \cup B) = \frac{4}{6} = \frac{2}{3}$ et $p(A) = \frac{2}{6} = \frac{1}{3}$ et $p(B) = \frac{2}{6} = \frac{1}{3}$.

Théorème:

Pour tous les événements A et B: $p(A \cup B) + p(A \cap B) = p(A) + p(B)$.

Démonstration:

On note A_1 l'événement formé des issues de A qui n'appartiennent pas à B ($A = (A \cap B) \cup A_1$).

 A_1 et B sont incompatibles et $A_1 \cup B = A \cup B$ donc : $p(A \cup B) = p(A_1 \cup B) = p(A_1) + p(B)$

$$A_1$$
 et $A \cap B$ sont aussi incompatibles donc:
 $p(A) = p((A \cap B) \cup A_1) = p(A \cap B) + p(A_1)$
d'où $p(A \cap B) = p(A) - p(A_1)$

On a donc:

$$p(A \cup B) + p(A \cap B) = p(A_1) + p(B) + p(A) - p(A_1) = p(B) + p(A)$$

Exemple:

Dans un jeu classique de 32 cartes, il y a 4 couleurs :

Et 8 valeurs dans chaque couleur : as, roi, dame, valet, 10, 9, 8, 7 On tire une carte au hasard dans le jeu.

Quel est la probabilité que la carte tirée soit une dame ou un trèfle ?

Soit D l'événement : « la carte est une dame » et T l'événement : « la carte est un trèfle ». On a donc :

- $D \cap T$: « la carte est une dame de trèfle ».
- $D \cup T$: « la carte est une dame ou un trèfle ».

Donc
$$p(D) = \frac{4}{32} = \frac{1}{8}$$
 et $p(T) = \frac{8}{32} = \frac{1}{4}$ de plus $p(D \cap T) = \frac{1}{32}$.

Donc
$$p(D \cup T) = p(D) + p(T) - p(D \cap T) = \frac{1}{8} + \frac{1}{4} - \frac{1}{32} = \frac{4}{32} + \frac{8}{32} - \frac{1}{32} = \frac{11}{32}$$
.

Ainsi la probabilité de tirer un trèfle ou une dame est de $\frac{11}{32}$.

Marche aléatoire;

On peut importer des **modules** (ici le module turtle pour l'affichage et la fonction randint () du module random pour la génération de nombre aléatoire).

```
# Marche aleatoire
from turtle import *
from random import randint

for i in range(500):
    k = randint(0, 3)
    left(k * 90)
    forward(10)
```

