Sentiment Analysis on Drug Product Reviews

Data Science Capstone Project
Present by Yan Zhang
24Feb2024

Problem Statement

Objective: Develop a sentiment analysis model to gauge customer perception in drug reviews.

Challenge: distilling meaningful insights from the massive unstructured text data.

Reason:

- 1. Improve and potential modifications in drug
- Provide insights in product development and marketing strategies.

Data Wrangling

Quality of data:

- Missing values, duplication (drop over 85000k)
- Corrected input error in "drugName" and "condition"
- "revew" column text data cleaning: special characters, contraction, whitespace, stopwords

Data distribution

Data Wrangling

Add new features into dataset: 'word_count', 'mean_word_len', 'unique_word_count'

Data Wrangling

wordcloud with rating = 10

- wordcloud shows the top words in rating =10, reveal the high rating related to the mecial effective: such as side effect, help, better....
- Target feature sentiment_label was added.

Preprocess

- Tokenize the'review_clean'
- Encode the categorical features and target 'sentiment_label'
- Extract the 'date' to several new features 'year', 'month', 'day'.
- Scale the numerical features using MinMaxScaler.
- Train test split

Model

- Multinomial Naive Bayes (MNB):baseline model
- Long Short-Term Memory (LSTM):
- Random Forest (RF):

Evaluation metrics: F1_score

LSTM

The F1 score and other scores are high, the dracback is the longer training time, >~1 hours

Model Metrics

Table 1: Three Model Performance

Model	F1_score	Precision	Accuracy	Recall	Training Time
MNB	0.35	0.40	0.37	0.50	6 second
LSTM	0.93	0.92	0.93	0.95	~1 hour
RF	1.00	1.00	1.00	1.00	~ 2 min

Random forest classifier shows the optimal performance and can be selected as the final model.

Future Work

- Selecting additional data for final modeling, utilizing the remaining dataset for training and modeling purposes will be explored.
- Reconfiguring the training and modeling process to focus on extracting feature importances.