Note Tit	Propositional logic
	We deal with some fixed set of variables that describe a situation we're interested in. Regularith some Regularith some e.g. $x \in \{1,2,3\}$ motivation. See e.g. $y \in \{7,8\}$ last page of these $z \in \{3,5,7\}$ moter. Also neather the book's bumpus A model arrights a value to each variable world e.g. $x = 1$, $y = 7$, $z = 7$. is a model
	A sertence is a statement about the variables e.g. " $\times = 2$ " if $y = 2$ then $2 = 7$ " Sentence d entails sentence β , watter $d = \beta$ if β is true in all models where d is true.
	ln propositaval logic, all variables have valves in { True, False}
	We can think if the variables P, Q, P, representing statements (or propositions') like "I'm tall", "AT is fin"
	Formally, symbols P,Q,L, stand for atomic sentences. We can combine them to produce complex sentences using logical connectives:

We can draw touth tables for these (see book fig 7-8)
e-g.

A legitinate combination if symbols is called a sentence e.g. $P \vee (Q \wedge \neg P) \Rightarrow R$

Sentences are logically equivalent if they're thre in the same set of models.

clerated =

Impo Aant egnivalences include:

,
exercise: Convert to CNF: nP => (Q=(RnS))
A bundadge lave (UB) is a set of sentences that are known to be true. (OR can countive KB who a single sentence using 1).
known to be true. (OR can countie KR
λ λ λ λ λ
with a livele statence ching 1).
e-g- KB = { P, P=)Q, 2R, SAT}
Same as KB= { P ~ P=)Q ~ ~ R ~ SAT }
C and C
Can add to KB using inference meg:
e-y. "and elimbation": if Anß EKB, can odd & to KB. Notation: Anß
try, and elimbortain it hops EKIS, can odd a to KD.
Notadion: ans
$\overline{\alpha}$
exercise: apply to above KB
"modus ponens": if dekB and L=)BEKB,
10 100000 1000000 11 100 100 100 100 10
can add B to ICB
Notation: (d, d=)B
B
ere alle: sol Lalan Va
exercise: apply to above KB
·
"regolation": see next section

Resolution is an important inference pule.
Basic idea is that apposite literals in separate clauses
counced and they at which a combined classes
Basic idea is that opposite literals in separate clauses concer each other art, yielding a combinal clause. eg. PVQ, RVZQ yields PVR
eg. Pro, Rv-o yrelly PrR
combine
PIQUARUS, QURUTUAN PIQUARUS, QURUTUAN Combine
PVQVARVS, QVRVTVAM
$ \uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow $
combine
$(a,b) = (0,a) \cdot (0,a) \cdot (1,a) \cdot (1,a)$
yields PVQVSVTV7U
Exercise: Apply resolution to the KB {PV-Q, PVRV-S, SVT}
SPUND, APVRUNS, SVT?
The resolution cale is in an Apart because it can be used
100 1 Solver 1010 15 10 10 10 10 10 10 10 10 10 10 10 10 10
as part it ar algorithm that inters evilarment.
The resolution rule is inportant because it can be used as part of an algorithm that infers entailment. I'e. it devials whether ICB = a for any ICB, a.
We study this resot.
J

Our Simple resolution algorithm for entailness
We want to determine whether KB Fd.
Fourialently, is KB =) & valid ?
Equivalently, is KB=) & valid? Equivalently, is KB -> & unsatisfiable?
CAMMINISTRA
Algorithm: - Convex KB 1 7x to CNF
- Apply resolution repeatedly
- If un ever get an enothy clause,
- Apply resolution repeatedly - If you ever get an entity clause, conclude that ICB = x !
- If somet makes some makes chances
- It can't make any more clauses, conclude that ICB # x.
worker (Mil CB 17 1/2)
Why! Became you've derived the
lengty clause, equil to talke,
Why? Became you've derived the expty clark, equiv to False, meaning 140 nd is unsatisfiable you can now satisfiable
Detailed satisfy KB 170
Sht (ca) the book (last a
int fills int fill in
empty clause, equily to False, meaning ILB nod is unsatisfiable Netailed proof in book Cust require Shit basically jint fill in the value
Gxerise:
Gxerise: ILS = {PDQ, QVRVS, SDPVQ}

(i) Over KB entail QVR? (ii) Over KB entail 12~5? Why, why, why? One application his proving correctives of conjuster programs. Java program } wher KB from
precluding statements Not 1 = 4/2 let P be the proposition "Z \$0". Can we prove that the KB =P? i'e. pour that we will nover get a divide by-zero exception when munky this program?