- Byran, K. and T. Leise (2006). The 25,000,000,000 Eigenvector: The Linear Algebra behind Google. SIAM Review 48(3).
- Calvetti, D. and E. Somersalo (2007). Introduction to Bayesian Scientific Computing. Springer.
- Candes, E., J. Romberg, and T. Tao (2006). Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. *IEEE. Trans. Inform. Theory* 52(2), 489–509.
- Candes, E. and M. Wakin (2008, March). An introduction to compressive sampling. IEEE Signal Processing Magazine 21.
- Candes, E., M. Wakin, and S. Boyd (2008). Enhancing sparsity by reweighted ll minimization. J. of Fourier Analysis and Applications 1, 877–905.
- Cannings, C., E. A. Thompson, and M. H. Skolnick (1978). Probability functions in complex pedigrees. *Advances in Applied Probability 10*, 26–61.
- Canny, J. (2004). Gap: a factor model for discrete data. In *Proc. Annual Intl. ACM SIGIR Conference*, pp. 122–129.
- Cao, Z., T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li (2007). Learning to rank: From pairwise approach to listwise approach. In *Intl. Conf. on Machine Learning*, pp. 129âĂŞ136.
- Cappe, O. (2010). Online Expectation Maximisation. In K. Mengersen, M. Titterington, and C. Robert (Eds.), *Mixtures*.
- Cappe, O. and E. Mouline (2009, June). Online EM Algorithm for Latent Data Models. *J. of Royal Stat. Soc. Series B* 71(3), 593–613.
- Cappe, O., E. Moulines, and T. Ryden (2005). *Inference in Hidden Markov Models*. Springer.
- Carbonetto, P. (2003). Unsupervised statistical models for general object recognition. Master's thesis, University of British Columbia.
- Carlin, B. P. and T. A. Louis (1996). Bayes and Empirical Bayes Methods for Data Analysis. Chapman and Hall

Caron, F. and A. Doucet (2008). Sparse Bayesian nonparametric regression. In *Intl. Conf. on Machine Learning*.

- Carreira-Perpinan, M. and C. Williams (2003). An isotropic gaussian mixture can have more modes than components. Technical Report EDI-INF-RR-0185, School of Informatics, U. Edinburgh.
- Carter, C. and R. Kohn (1994). On Gibbs sampling for state space models. *Biometrika 81*(3), 541–553.
- Carterette, B., P. Bennett, D. Chickering, and S. Dumais (2008). Here or There: Preference Judgments for Relevance. In *Proc. ECIR*.
- Caruana, R. (1998). A dozen tricks with multitask learning. In G. Orr and K.-R. Mueller (Eds.), Neural Networks: Tricks of the Trade. Springer-Verlag.
- Caruana, R. and A. Niculescu-Mizil (2006). An empirical comparison of supervised learning algorithms. In Intl. Conf. on Machine Learning.
- Carvahlo, C., N. Polson, and J. Scott (2010). The horseshoe estimator for sparse signals. *Biometrika* 97(2), 465.
- Carvahlo, L. and C. Lawrence (2007).
 Centroid estimation in discrete
 high-dimensional spaces with applications in biology. Proc. of
 the National Academy of Science,
 USA 105(4).
- Carvalho, C. M. and M. West (2007). Dynamic matrix-variate graphical models. *Bayesian Analysis* 2(1), 69–98.
- Casella, G. and R. Berger (2002). *Statistical inference*. Duxbury. 2nd edition.
- Castro, M., M. Coates, and R. D. Nowak (2004). Likelihood based hierarchical clustering. *IEEE Trans. in Signal Processing* 52(8), 230.
- Celeux, G. and J. Diebolt (1985). The SEM algorithm: A probabilistic teacher derive from the EM algorithm for the mixture problem. Computational Statistics Quarterly 2, 73–82.
- Cemgil, A. T. (2001). A technique for painless derivation of kalman filtering recursions. Technical report, U. Nijmegen.

- Cesa-Bianchi, N. and G. Lugosi (2006). *Prediction, learning, and games.* Cambridge University Press.
- Cevher, V. (2009). Learning with compressible priors. In *NIPS*.
- Chai, K. M. A. (2010). *Multi-task learning with Gaussian processes*. Ph.D. thesis, U. Edinburgh.
- Chang, H., Y. Weiss, and W. Freeman (2009). Informative Sensing. Technical report, Hebrew U. Submitted to IEEE Transactions on Info. Theory.
- Chang, J. and D. Blei (2010). Hierarchical relational models for document networks. *The Annals of Ap*plied Statistics 4(1), 124–150.
- Chang, J., J. Boyd-Graber, S. Gerrish, C. Wang, and D. Blei (2009). Reading tea leaves: How humans interpret topic models. In NIPS.
- Chapelle, O. and L. Li (2011). An empirical evaluation of Thompson sampling. In *NIPS*.
- Chartrand, R. and W. Yin (2008). Iteratively reweighted algorithms for compressive sensing. In *Intl. Conf. on Acoustics, Speech and Signal Proc.*
- Chechik, G., A. G. N. Tishby, and Y. Weiss (2005). Information bottleneck for gaussian variables. J. of Machine Learning Research 6, 165âĂŞ188.
- Cheeseman, P., J. Kelly, M. Self, J. Stutz, W. Taylor, and D. Freeman (1988). Autoclass: A Bayesian classification system. In *Proc. of the Fifth Intl.* Workshop on Machine Learning.
- Cheeseman, P. and J. Stutz (1996).
 Bayesian classification (autoclass):
 Theory and results. In Fayyad,
 Pratetsky-Shapiro, Smyth, and
 Uthurasamy (Eds.), Advances in
 Knowledge Discovery and Data Mining. MIT Press.
- Chen, B., K. Swersky, B. Marlin, and N. de Freitas (2010). Sparsity priors and boosting for learning localized distributed feature representations. Technical report, UBC.
- Chen, B., J.-A. Ting, B. Marlin, and N. de Freitas (2010). Deep learning of invariant spatio-temporal features from video. In NIPS Workshop on Deep Learning.

- Chen, M., D. Carlson, A. Zaas, C. Woods, G. Ginsburg, A. Hero, J. Lucas, and L. Carin (2011, March). The Bayesian Elastic Net: Classifying Multi-Task Gene-Expression Data. *IEEE Trans. Biomed. Eng.* 58(3), 468–79.
- Chen, R. and S. Liu (2000). Mixture Kalman filters. J. Royal Stat. Soc. B.
- Chen, S. and J. Goodman (1996). An empirical study of smoothing techniques for language modeling. In *Proc. 34th ACL*, pp. 310–318.
- Chen, S. and J. Goodman (1998). An empirical study of smoothing techniques for language modeling. Technical Report TR-10-98, Dept. Comp. Sci., Harvard.
- Chen, S. and J. Wigger (1995, July). Fast orthogonal least squares algorithm for efficient subset model selection. *IEEE Trans. Signal Processing 3*(7), 1713–1715.
- Chen, S. S., D. L. Donoho, and M. A. Saunders (1998). Atomic decomposition by basis pursuit. SIAM Journal on Scientific Computing 20(1), 33–61.
- Chen, X., S. Kim, Q. Lin, J. G. Carbonell, and E. P. Xing (2010). Graph-Structured Multi-task Regression and an Efficient Optimization Method for General Fused Lasso. Technical report, CMU.
- Chib, S. (1995). Marginal likelihood from the Gibbs output. *J. of the Am. Stat. Assoc.* 90, 1313–1321.
- Chickering, D. (1996). Learning Bayesian networks is NP-Complete. In *Al/Stats V*.
- Chickering, D. and D. Heckerman (1997). Efficient approximations for the marginal likelihood of incomplete data given a Bayesian network. *Machine Learning* 29, 181–212.
- Chickering, D. M. (2002). Optimal structure identification with greedy search. *Journal of Machine Learn*ing Research 3, 507–554.
- Chipman, H., E. George, and R. Mc-Culloch (1998). Bayesian CART model search. *J. of the Am. Stat. Assoc.* 93, 935–960.
- Chipman, H., E. George, and R. Mc-Culloch (2001). The practical implementation of Bayesian Model Selection. *Model Selection*. IMS Lecture Notes.

Chipman, H., E. George, and R. Mc-Culloch (2006). Bayesian Ensemble Learning. In *NIPS*.

- Chipman, H., E. George, and R. Mc-Culloch (2010). BART: Bayesian additive regression trees. *Ann. Appl. Stat.* 4(1), 266–298.
- Choi, M., V. Tan, A. Anandkumar, and A. Willsky (2011). Learning latent tree graphical models. *J. of Machine Learning Research*.
- Choi, M. J. (2011). Trees and Beyond: Exploiting and Improving Tree-Structured Graphical Models. Ph.D. thesis, MIT.
- Choset, H. and K. Nagatani (2001). Topological simultaneous localization and mapping (SLAM): toward exact localization without explicit localization. *IEEE Trans. Robotics and Automation 17*(2).
- Chow, C. K. and C. N. Liu (1968). Approximating discrete probability distributions with dependence trees. *IEEE Trans. on Info. Theory 14*, 462–67.
- Christensen, O., G. Roberts, and M. SkĂtild (2006). Robust Markov chain Monte Carlo methods for spatial generalized linear mixed models. J. of Computational and Graphical Statistics 15, 1–17.
- Chung, F. (1997). Spectral Graph Theory. AMS.
- Cimiano, P., A. Schultz, S. Sizov, P. Sorg, and S. Staab (2009). Explicit versus latent concept models for cross-language information retrieval. In *Intl. Joint Conf. on AI*.
- Cipra, B. (2000). The Ising Model Is NP-Complete. *SIAM News* 33(6).
- Ciresan, D. C., U. Meier, L. M. Gambardella, and J. Schmidhuber (2010). Deep big simple neural nets for handwritten digit recognition. *Neural Computation* 22(12), 3207–3220.
- Clarke, B. (2003). Bayes model averaging and stacking when model approximation error cannot be ignored. J. of Machine Learning Research, 683–712.
- Clarke, B., E. Fokoue, and H. H. Zhang (2009). Principles and Theory for Data Mining and Machine Learning. Springer.

- Cleveland, W. and S. Devlin (1988). Locally-weighted regression: An approach to regression analysis by local fitting. *J. of the Am. Stat. Assoc.* 83(403), 596–610.
- Collins, M. (2002). Discriminative Training Methods for Hidden Markov Models: Theory and Experiments with Perceptron Algorithms. In *EMNLP*.
- Collins, M., S. Dasgupta, and R. E. Schapire (2002). A generalization of principal components analysis to the exponential family. In *NIPS-14*.
- Collins, M. and N. Duffy (2002). Convolution kernels for natural language. In NIPS.
- Collobert, R. and J. Weston (2008). A Unified Architecture for Natural Language Processing: Deep Neural Networks with Multitask Learning. In Intl. Conf. on Machine Learning.
- Combettes, P. and V. Wajs (2005). Signal recovery by proximal forwardbackward splitting. SIAM J. Multiscale Model. Simul. 4(4), 1168–1200.
- Cook, J. (2005). Exact Calculation of Beta Inequalities. Technical report, M. D. Anderson Cancer Center, Dept. Biostatistics.
- Cooper, G. and E. Herskovits (1992). A Bayesian method for the induction of probabilistic networks from data. *Machine Learning* 9, 309–347.
- Cooper, G. and C. Yoo (1999). Causal discovery from a mixture of experimental and observational data. In *UAL*
- Cover, T. and P. Hart (1967). Nearest neighbor pattern classification. *IEEE Trans. Inform. Theory 13*(1), 21–27.
- Cover, T. M. and J. A. Thomas (1991). *Elements of Information The-ory*. John Wiley.
- Cover, T. M. and J. A. Thomas (2006). *Elements of Information Theory.* John Wiley. 2nd edition.
- Cowles, M. and B. Carlin (1996). Markov chain monte carlo convergence diagnostics: A comparative review. J. of the Am. Stat. Assoc. 91, 883–904.

- Crisan, D., P. D. Moral, and T. Lyons (1999). Discrete filtering using branching and interacting particle systems. Markov Processes and Related Fields 5(3), 293–318.
- Cui, Y., X. Z. Fern, and J. G. Dy (2010). Learning multiple nonredundant clusterings. ACM Transactions on Knowledge Discovery from Data 4(3).
- Cukier, K. (2010, February). Data, data everywhere.
- Dagum, P. and M. Luby (1993). Approximating probabilistic inference in Bayesian belief networks is NPhard. Artificial Intelligence 60, 141– 153.
- Dahl, J., L. Vandenberghe, and V. Roychowdhury (2008, August). Covariance selection for non-chordal graphs via chordal embedding. Optimization Methods and Software 23(4), 501–502.
- Dahlhaus, R. and M. Eichler (2000). Causality and graphical models for time series. In P. Green, N. Hjort, and S. Richardson (Eds.), Highly structured stochastic systems. Oxford University Press.
- Dallal, S. and W. Hall (1983). Approximating priors by mixtures of natural conjugate priors. J. of Royal Stat. Soc. Series B 45, 278–286.
- Darwiche, A. (2009). *Modeling and Reasoning with Bayesian Networks*. Cambridge.
- Daume, H. (2007a). Fast search for Dirichlet process mixture models. In *Al/Statistics*.
- Daume, H. (2007b). Frustratingly easy domain adaptation. In *Proc. the Assoc. for Comp. Ling.*
- Dawid, A. P. (1992). Applications of a general propagation algorithm for probabilistic expert systems. Statistics and Computing 2, 25–36.
- Dawid, A. P. (2002). Influence diagrams for causal modelling and inference. *Intl. Stat. Review 70*, 161–189. Corrections p437.
- Dawid, A. P. (2010). Beware of the DAG! J. of Machine Learning Research 6, 59–86.

- Dawid, A. P. and S. L. Lauritzen (1993). Hyper-markov laws in the statistical analysis of decomposable graphical models. *The Annals of Statistics* 3, 1272–1317.
- de Freitas, N., R. Dearden, F. Hutter, R. Morales-Menendez, J. Mutch, and D. Poole (2004). Diagnosis by a waiter and a mars explorer. *Proc. IEEE 92*(3).
- de Freitas, N., M. Niranjan, and A. Gee (2000). Hierarchical Bayesian models for regularisation in sequential learning. *Neural Computation 12*(4), 955–993.
- Dechter, R. (1996). Bucket elimination: a unifying framework for probabilistic inference. In *UAI*.
- Dechter, R. (2003). Constraint Processing. Morgan Kaufmann.
- Decoste, D. and B. Schoelkopf (2002). Training invariant support vector machines. *Machine learning* 41, 161– 190.
- Deerwester, S., S. Dumais, G. Furnas, T. Landauer, and R. Harshman (1990). Indexing by latent semantic analysis. *J. of the American Society for Information Science 41*(6), 391–407.
- DeGroot, M. (1970). Optimal Statistical Decisions. McGraw-Hill.
- Deisenroth, M., C. Rasmussen, and J. Peters (2009). Gaussian Process Dynamic Programming. *Neurocomputing* 72(7), 1508–1524.
- Dellaportas, P., P. Giudici, and G. Roberts (2003). Bayesian inference for nondecomposable graphical gaussian models. *Sankhya, Ser.* A 65, 43–55.
- Dellaportas, P. and A. F. M. Smith (1993). Bayesian Inference for Generalized Linear and Proportional Hazards Models via Gibbs Sampling. J. of the Royal Statistical Society. Series C (Applied Statistics) 42(3), 443–459.
- Delyon, B., M. Lavielle, and E. Moulines (1999). Convergence of a stochastic approximation version of the EM algorithm. *Annals of Statistics* 27(1), 94–128.
- Dempster, A. (1972). Covariance selection. *Biometrics 28*(1).

- Dempster, A. P., N. M. Laird, and D. B. Rubin (1977). Maximum likelihood from incomplete data via the EM algorithm. J. of the Royal Statistical Society, Series B 34, 1–38.
- Denison, D., C. Holmes, B. Mallick, and A. Smith (2002). Bayesian methods for nonlinear classification and regression. Wiley.
- Denison, D., B. Mallick, and A. Smith (1998). A Bayesian CART algorithm. *Biometrika 85*, 363–377.
- Desjardins, G. and Y. Bengio (2008). Empirical evaluation of convolutional RBMs for vision. Technical Report 1327, U. Montreal.
- Dey, D., S. Ghosh, and B. Mallick (Eds.) (2000). Generalized Linear Models: A Bayesian Perspective. Chapman & Hall/CRC Biostatistics Series.
- Diaconis, P., S. Holmes, and R. Mont-gomery (2007). Dynamical Bias in the Coin Toss. SIAM Review 49(2), 211–235.
- Diaconis, P. and D. Ylvisaker (1985). Quantifying prior opinion. In Bayesian Statistics 2.
- Dietterich, T. G. and G. Bakiri (1995). Solving multiclass learning problems via ECOCs. *J. of AI Research 2*, 263–286.
- Diggle, P. and P. Ribeiro (2007). *Model-based Geostatistics*. Springer.
- Ding, Y. and R. Harrison (2010). A sparse multinomial probit model for classification. *Pattern Analysis* and Applications, 1–9.
- Dobra, A. (2009). Dependency networks for genome-wide data. Technical report, U. Washington.
- Dobra, A. and H. Massam (2010). The mode oriented stochastic search (MOSS) algorithm for log-linear models with conjugate priors. Statistical Methodology 7, 240–253.
- Domingos, P. and D. Lowd (2009). *Markov Logic: An Interface Layer for AI*. Morgan & Claypool.
- Domingos, P. and M. Pazzani (1997). On the optimality of the simple bayesian classifier under zero-one loss. *Machine Learning 29*, 103– 130.

- Domke, J., A. Karapurkar, and Y. Aloimonos (2008). Who killed the directed model? In CVPR.
- Doucet, A., N. de Freitas, and N. J. Gordon (2001). Sequential Monte Carlo Methods in Practice. Springer Verlag.
- Doucet, A., N. Gordon, and V. Krishnamurthy (2001). Particle Filters for State Estimation of Jump Markov Linear Systems. *IEEE Trans. on Sig*nal Processing 49(3), 613–624.
- Dow, J. and J. Endersby (2004). Multinomial probit and multinomial logit: a comparison of choice models for voting research. *Electoral Studies* 23(1), 107–122.
- Drineas, P., A. Frieze, R. Kannan, S. Vempala, and V. Vinay (2004). Clustering large graphs via the singular value decomposition. *Machine Learning* 56, 9–33.
- Drugowitsch, J. (2008). Bayesian linear regression. Technical report, U. Rochester.
- Druilhet, P. and J.-M. Marin (2007). Invariant HPD credible sets and MAP estimators. *Bayesian Analysis 2*(4), 681–692.
- Duane, S., A. Kennedy, B. Pendleton, and D. Roweth (1987). Hybrid Monte Carlo. *Physics Letters B* 195(2), 216–222.
- Duchi, J., S. Gould, and D. Koller (2008). Projected subgradient methods for learning sparse gaussians. In *UAI*.
- Duchi, J., E. Hazan, and Y. Singer (2010). Adaptive Subgradient Methods for Online Learning and Stochastic Optimization. In Proc. of the Workshop on Computational Learning Theory.
- Duchi, J., S. Shalev-Shwartz, Y. Singer, and T. Chandra (2008). Efficient projections onto the L1-ball for learning in high dimensions. In Intl. Conf. on Machine Learning.
- Duchi, J. and Y. Singer (2009). Boosting with structural sparsity. In *Intl. Conf. on Machine Learning*.
- Duchi, J., D. Tarlow, G. Elidan, and D. Koller (2007). Using combinatorial optimization within maxproduct belief propagation. In NIPS.

Duda, R. O., P. E. Hart, and D. G. Stork (2001). *Pattern Classification*. Wiley Interscience. 2nd edition.

- Dumais, S. and T. Landauer (1997). A solution to Plato's problem: The latent semantic analysis theory of acquisition, induction and representation of knowledge. *Psychological Review 104*, 211–240.
- Dunson, D., J. Palomo, and K. Bollen (2005). Bayesian Structural Equation Modeling. Technical Report 2005-5, SAMSI.
- Durbin, J. and S. J. Koopman (2001). Time Series Analysis by State Space Methods. Oxford University Press.
- Durbin, R., S. Eddy, A. Krogh, and G. Mitchison (1998). Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge: Cambridge University Press
- Earl, D. and M. Deem (2005). Parallel tempering: Theory, applications, and new perspectives. *Phys. Chem. Chem. Phys.* 7, 3910.
- Eaton, D. and K. Murphy (2007). Exact Bayesian structure learning from uncertain interventions. In Al/Statistics.
- Edakunni, N., S. Schaal, and S. Vijayakumar (2010). Probabilistic incremental locally weighted learning using randomly varying coefficient model. Technical report, USC.
- Edwards, D., G. de Abreu, and R. Labouriau (2010). Selecting highdimensional mixed graphical models using minimal AIC or BIC forests. *BMC Bioinformatics 11*(18).
- Efron, B. (1986). Why Isn't Everyone a Bayesian? *The American Statistician* 40(1).
- Efron, B. (2010). Large-Scale Inference: Empirical Bayes Methods for Estimation, Testing, and Prediction. Cambridge.
- Efron, B., I. Johnstone, T. Hastie, and R. Tibshirani (2004). Least angle regression. *Annals of Statistics* 32(2), 407–499.
- Efron, B. and C. Morris (1975). Data analysis using stein's estimator and its generalizations. *J. of the Am. Stat. Assoc.* 70(350), 311–319.

- Elad, M. and I. Yavnch (2009). A plurality of sparse representations is better than the sparsest one alone. *IEEE Trans. on Info. Theory* 55(10), 4701-4714.
- Elidan, G. and S. Gould (2008). Learning Bounded Treewidth Bayesian Networks. J. of Machine Learning Research, 2699–2731.
- Elidan, G., N. Lotner, N. Friedman, and D. Koller (2000). Discovering hidden variables: A structure-based approach. In NIPS.
- Elidan, G., I. McGraw, and D. Koller (2006). Residual belief propagation: Informed scheduling for asynchronous message passing. In *UAI*.
- Elkan, C. (2003). Using the triangle inequality to accelerate k-means. In *Intl. Conf. on Machine Learning*.
- Elkan, C. (2005). Deriving TF-IDF as a Fisher kernel. In *Proc. Intl. Symp.* on *String Processing and Informa*tion Retrieval (SPIRE), pp. 296–301.
- Elkan, C. (2006). Clustering documents with an exponential finally approximation of the Dirichlet compoind multinomial model. In *Intl. Conf. on Machine Learning*.
- Ellis, B. and W. H. Wong (2008). Learning causal bayesian network structures from experimental data. *J. of the Am. Stat. Assoc. 103*(482), 778–789.
- Engel, Y., S. Mannor, and R. Meir (2005). Reinforcement Learning with Gaussian Processes. In Intl. Conf. on Machine Learning.
- Erhan, D., Y. Bengio, A. Courville, P.-A. Manzagol, P. Vincent, and S. Bengio (2010). Why Does Unsupervised Pre-training Help Deep Learning? *J. of Machine Learning Research 11*, 625–660.
- Erosheva, E., S. Fienberg, and C. Joutard (2007). Describing disability through individual-level mixture models for multivariate binary data. *Annals of Applied Statistics*.
- Erosheva, E., S. Fienberg, and J. Lafferty (2004). Mixed-membership models of scientific publications. Proc. of the National Academy of Science, USA 101, 5220–2227.

- Escobar, M. D. and M. West (1995). Bayesian density estimation and inference using mixtures. J. of the Am. Stat. Assoc. 90(430), 577–588.
- Ewens, W. (1990). Population genetics theory the past and the future. In S.Lessard (Ed.), Mathemetical and Statistica Developments of Evolutionary Theory, pp. 177–227. Reidel.
- Fan, J. and R. Z. Li (2001). Variable selection via non-concave penalized likelihood and its oracle properties. J. of the Am. Stat. Assoc. 96(456), 1348–1360.
- Fearnhead, P. (2004). Exact bayesian curve fitting and signal segmentation. IEEE Trans. Signal Processing 53, 2160–2166.
- Felzenszwalb, P. and D. Huttenlocher (2006). Efficient belief propagation for early vision. *Intl. J. Computer* Vision 70(1), 41–54.
- Ferrucci, D., E. Brown, J. Chu-Carroll, J. Fan, D. Gondek, A. Kalyanpur, A. Lally, J. W. Murdock, E. N. amd J. Prager, N. Schlaefter, and C. Welty (2010). Building Watson: An Overview of the DeepQA Project. AI Magazine, 59–79.
- Fienberg, S. (1970). An iterative procedure for estimation in contingency tables. *Annals of Mathematical Statistics* 41(3), 907âÅŞ917.
- Figueiredo, M. (2003). Adaptive sparseness for supervised learning. *IEEE Trans. on Pattern Anal*ysis and Machine Intelligence 25(9), 1150–1159.
- Figueiredo, M., R. Nowak, and S. Wright (2007). Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. *IEEE. J. on Selected Topics in Signal Processing.*
- Figueiredo, M. A. T. and A. K. Jain (2002). Unsupervised learning of finite mixture models. *IEEE Trans. on Pattern Analysis and Machine Intelligence 24*(3), 381–396. Matlab code at http://www.lx.it.pt/ mtf/mixture-code.zip.
- Fine, S., Y. Singer, and N. Tishby (1998). The hierarchical Hidden Markov Model: Analysis and applications. *Machine Learning* 32, 41.

Finkel, J. and C. Manning (2009). Hierarchical bayesian domain adaptation. In *Proc. NAACL*, pp. 602–610.

- Fischer, B. and J. Schumann (2003). Autobayes: A system for generating data analysis programs from statistical models. J. Functional Programming 13(3), 483–508.
- Fishelson, M. and D. Geiger (2002). Exact genetic linkage computations for general pedigrees. BMC Bioinformatics 18.
- Fletcher, R. (2005). On the Barzilai-Borwein Method. Applied Optimization 96, 235–256.
- Fokoue, E. (2005). Mixtures of factor analyzers: an extension with covariates. J. Multivariate Analysis 95, 370–384.
- Forbes, J., T. Huang, K. Kanazawa, and S. Russell (1995). The BATmobile: Towards a Bayesian automated taxi. In *Intl. Joint Conf. on AI*.
- Forsyth, D. and J. Ponce (2002). *Computer vision: a modern approach*. Prentice Hall.
- Fraley, C. and A. Raftery (2002). Model-based clustering, discriminant analysis, and density estimation. *J. of the Am. Stat. Assoc.* (97), 611–631.
- Fraley, C. and A. Raftery (2007). Bayesian Regularization for Normal Mixture Estimation and Model-Based Clustering. *J. of Classification 24*, 155–181.
- Franc, V., A. Zien, and B. Schoelkopf (2011). Support vector machines as probabilistic models. In *Intl. Conf.* on *Machine Learning*.
- Frank, I. and J. Friedman (1993). A statistical view of some chemometrics regression tools. *Technomet*rics 35(2), 109–135.
- Fraser, A. (2008). *Hidden Markov Models and Dynamical Systems*. SIAM Press.
- Freund, Y. and R. R. Schapire (1996). Experiments with a new boosting algorithm. In *Intl. Conf. on Machine Learning*.
- Frey, B. (1998). Graphical Models for Machine Learning and Digital Communication. MIT Press.

- Frey, B. (2003). Extending factor graphs so as to unify directed and undirected graphical models. In *UAI*.
- Frey, B. and D. Dueck (2007, February). Clustering by Passing Messages Between Data Points. *Science* 315, 972âĂŞ976.
- Friedman, J. (1991). Multivariate adaptive regression splines. *Ann. Statist.* 19, 1–67.
- Friedman, J. (1997a). On bias, variance, 0-1 loss and the curse of dimensionality. J. Data Mining and Knowledge Discovery 1, 55–77.
- Friedman, J. (2001). Greedy function approximation: a gradient boosting machine. *Annals of Statistics* 29, 1189–1232.
- Friedman, J., T. Hastie, and R. Tibshirani (2000). Additive logistic regression: a statistical view of boosting. *Annals of statistics* 28(2), 337–374.
- Friedman, J., T. Hastie, and R. Tibshirani (2008). Sparse inverse covariance estimation the graphical lasso. *Biostatistics* 9(3), 432–441.
- Friedman, J., T. Hastie, and R. Tibshirani (2010, Februrary). Regularization Paths for Generalized Linear Models via Coordinate Descent. *J.* of Statistical Software 33(1).
- Friedman, N. (1997b). Learning Bayesian networks in the presence of missing values and hidden variables. In *UAI*.
- Friedman, N., D. Geiger, and M. Goldszmidt (1997). Bayesian network classifiers. *Machine Learning J.* 29, 131–163.
- Friedman, N., D. Geiger, and N. Lotner (2000). Likelihood computation with value abstraction. In *UAI*.
- Friedman, N. and D. Koller (2003). Being Bayesian about Network Structure: A Bayesian Approach to Structure Discovery in Bayesian Networks. *Machine Learning* 50, 95–126.
- Friedman, N., M. Ninion, I. Pe'er, and T. Pupko (2002). A Structural EM Algorithm for Phylogenetic Inference. J. Comp. Bio. 9, 331–353.
- Friedman, N. and Y. Singer (1999). Efficient Bayesian parameter estimation in large discrete domains. In NIPS-11.

- Fruhwirth-Schnatter, S. (2007). Finite Mixture and Markov Switching Models. Springer.
- Fruhwirth-Schnatter, S. and R. Fruhwirth (2010). Data Augmentation and MCMC for Binary and Multinomial Logit Models. In T. Kneib and G. Tutz (Eds.), Statistical Modelling and Regression Structures, pp. 111–132. Springer.
- Fu, W. (1998). Penalized regressions: the bridge verus the lasso. J. Computational and graphical statistics.
- Fukushima, K. (1975). Cognitron: a self-organizing multilayered neural network. *Biological Cybernet*ics 20(6), 121–136.
- Fung, R. and K. Chang (1989). Weighting and integrating evidence for stochastic simulation in Bayesian networks. In UAI.
- Gabow, H., Z. Galil, and T. Spencer (1984). Efficient implementation of graph algorithms using contraction. In IEEE Symposium on the Foundations of Computer Science.
- Gales, M. (2002). Maximum likelihood multiple subspace projections for hidden Markov models. IEEE. Trans. on Speech and Audio Processing 10(2), 37-47.
- Gales, M. J. F. (1999). Semi-tied covariance matrices for hidden Markov models. IEEE Trans. on Speech and Audio Processing 7(3), 272–281.
- Gamerman, D. (1997). Efficient sampling from the posterior distribution in generalized linear mixed models. *Statistics and Computing 7*, 57-68.
- Geiger, D. and D. Heckerman (1994). Learning Gaussian networks. In UAI, Volume 10, pp. 235–243.
- Geiger, D. and D. Heckerman (1997). A characterization of Dirchlet distributions through local and global independence. Annals of Statistics 25, 1344–1368.
- Gelfand, A. (1996). Model determination using sampling-based methods. In Gilks, Richardson, and Spiegelhalter (Eds.), Markov Chain Monte Carlo in Practice. Chapman & Hall.
- Gelfand, A. and A. Smith (1990). Sampling-based approaches to calculating marginal densities. J. of the Am. Stat. Assoc. 85, 385–409.

Gelman, A., J. Carlin, H. Stern, and D. Rubin (2004). Bayesian data analysis. Chapman and Hall. 2nd edition

- Gelman, A. and J. Hill (2007). Data analysis using regression and multilevel/ hierarchical models. Cambridge.
- Gelman, A. and X.-L. Meng (1998). Simulating normalizing constants: from importance sampling to bridge sampling to path sampling. *Statistical Science* 13, 163–185.
- Gelman, A. and T. Raghunathan (2001). Using conditional distributions for missing-data imputation. Statistical Science.
- Gelman, A. and D. Rubin (1992). Inference from iterative simulation using multiple sequences. Statistical Science 7, 457–511.
- Geman, S., E. Bienenstock, and R. Doursat (1992). Neural networks and the bias-variance dilemma. *Neural Computing* 4, 1–58.
- Geman, S. and D. Geman (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. on Pattern Analysis and Machine Intelligence 6(6).
- Geoffrion, A. (1974). Lagrangian relaxation for integer programming. Mathematical Programming Study 2, 82–114.
- George, E. and D. Foster (2000). Calibration and empirical bayes variable selection. *Biometrika* 87(4), 731–747.
- Getoor, L. and B. Taskar (Eds.) (2007). Introduction to Relational Statistical Learning. MIT Press.
- Geyer, C. (1992). Practical markov chain monte carlo. Statistical Science 7, 473–483.
- Ghahramani, Z. and M. Beal (2000). Variational inference for Bayesian mixtures of factor analysers. In NIPS-12.
- Ghahramani, Z. and M. Beal (2001). Propagation algorithms for variational Bayesian learning. In NIPS-13.
- Ghahramani, Z. and G. Hinton (1996a). The EM algorithm for mixtures of factor analyzers. Technical report, Dept. of Comp. Sci., Uni. Toronto.

- Ghahramani, Z. and G. Hinton (1996b). Parameter estimation for linear dynamical systems. Technical Report CRG-TR-96-2, Dept. Comp. Sci., Univ. Toronto.
- Ghahramani, Z. and M. Jordan (1997). Factorial hidden Markov models. *Machine Learning* 29, 245–273.
- Gilks, W. and C. Berzuini (2001). Following a moving target – Monte Carlo infernece for dynamic Bayesian models. *J. of Royal Stat. Soc. Series B 63*, 127–146.
- Gilks, W., N. Best, and K. Tan (1995). Adaptive rejection Metropolis sampling. Applied Statistics 44, 455–472.
- Gilks, W. and P. Wild (1992). Adaptive rejection sampling for Gibbs sampling. Applied Statistics 41, 337–348.
- Girolami, M., B. Calderhead, and S. Chin (2010). Riemannian Manifold Hamiltonian Monte Carlo. *J.* of Royal Stat. Soc. Series B. To appear.
- Girolami, M. and S. Rogers (2005). Hierarchic bayesian models for kernel learning. In *Intl. Conf. on Machine Learning*, pp. 241–248.
- Girolami, M. and S. Rogers (2006). Variational Bayesian multinomial probit regression with Gaussian process priors. *Neural Comptuation 18*(8), 1790 – 1817.
- Girshick, R., P. Felzenszwalb, and D. McAllester (2011). Object detection with grammar models. In NIPS.
- Gittins, J. (1989). Multi-armed Bandit Allocation Indices. Wiley.
- Giudici, P. and P. Green (1999).

 Decomposable graphical gaussian model determination.

 Biometrika 86(4), 785–801.
- Givoni, I. E. and B. J. Frey (2009, June). A binary variable model for affinity propagation. *Neural Computation* 21(6), 1589–1600.
- Globerson, A. and T. Jaakkola (2008). Fixing max-product: Convergent message passing algorithms for MAP LP-relaxations. In NIPS.
- Glorot, X. and Y. Bengio (2010, May). Understanding the difficulty of training deep feedforward neural networks. In *Al/Statistics*, Volume 9, pp. 249–256.

- Gogate, V., W. A. Webb, and P. Domingos (2010). Learning efficient Markov networks. In *NIPS*.
- Goldenberg, A., A. X. Zheng, S. E. Fienberg, and E. M. Airoldi (2009). A Survey of Statistical Network Models. Foundations and Trends in Machine Learning, 129–233.
- Golub, G. and C. F. van Loan (1996).
 Matrix computations. Johns Hopkins University Press.
- Gonen, M., W. Johnson, Y. Lu, and P. Westfall (2005, August). The Bayesian Two-Sample t Test. *The American Statistician* 59(3), 252– 257.
- Gonzales, T. (1985). Clustering to minimize the maximum intercluster distance. *Theor. Comp. Sci.* 38, 293–306.
- Gorder, P. F. (2006, Nov/Dec). Neural networks show new promise for machine vision. Computing in science & engineering 8(6), 4–8.
- Gordon, N. (1993). Novel approach to nonlinear/non-Gaussian Bayesian state estimation. *IEE Proceedings (F)* 140(2), 107–113.
- Graepel, T., J. Quinonero-Candela, T. Borchert, and R. Herbrich (2010). Web-Scale Bayesian Click-Through Rate Prediction for Sponsored Search Advertising in MicrosoftâĂŹs Bing Search Engine. In Intl. Conf. on Machine Learning.
- Grauman, K. and T. Darrell (2007, April). The Pyramid Match Kernel: Efficient Learning with Sets of Features. J. of Machine Learning Research 8, 725–760.
- Green, P. (1998). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. *Biometrika 82*, 711–732.
- Green, P. (2003). Tutorial on transdimensional MCMC. In P. Green, N. Hjort, and S. Richardson (Eds.), Highly Structured Stochastic Systems. OUP
- Green, P. and B. Silverman (1994). Nonparametric regression and generalized linear models. Chapman and

- Greenshtein, E. and J. Park (2009). Application of Non Parametric Empirical Bayes Estimation to High Dimensional Classification. J. of Machine Learning Research 10, 1687–1704.
- Greig, D., B. Porteous, and A. Seheult (1989). Exact maximum a posteriori estimation for binary images. J. of Royal Stat. Soc. Series B 51(2), 271– 279.
- Griffin, J. and P. Brown (2007). Bayesian adaptive lassos with nonconvex penalization. Technical report, U. Kent.
- Griffin, J. and P. Brown (2010). Inference with normal-gamma prior distributions in regression problems. Bayesian Analysis 5(1), 171–188.
- Griffiths, T. . and J. Tenenbaum (2009). Theory-Based Causal Induction. Psychological Review 116(4), 661–716.
- Griffiths, T. and M. Steyvers (2004).
 Finding scientific topics. Proc. of the National Academy of Science, USA 101, 5228–5235.
- Griffiths, T., M. Steyvers, D. Blei, and J. Tenenbaum (2004). Integrating topics and syntax. In NIPS.
- Griffiths, T. and J. Tenenbaum (2001). Using vocabulary knowledge in bayesian multinomial estimation. In *NIPS*, pp. 1385–1392.
- Griffiths, T. and J. Tenenbaum (2005). Structure and strength in causal induction. Cognitive Psychology 51, 334–384.
- Grimmett, G. and D. Stirzaker (1992).
 Probability and Random Processes.
 Oxford.
- Guan, Y., J. Dy, D. Niu, and Z. Ghahramani (2010). Variational Inference for Nonparametric Multiple Clustering. In 1st Intl. Workshop on Discovering, Summarizing and Using Multiple Clustering (MultiClust).
- Guedon, Y. (2003). Estimating hidden semi-markov chains from discrete sequences. J. of Computational and Graphical Statistics 12, 604–639.
- Guo, Y. (2009). Supervised exponential family principal component analysis via convex optimization. In NIPS.

- Gustafsson, M. (2001). A probabilistic derivation of the partial least-squares algorithm. *Journal of Chemical Information and Modeling* 41, 288–294.
- Guyon, I., S. Gunn, M. Nikravesh, and L. Zadeh (Eds.) (2006). Feature Extraction: Foundations and Applications. Springer.
- Hacker, J. and P. Pierson (2010). Winner-Take-All Politics: How Washington Made the Rich Richerand Turned Its Back on the Middle Class. Simon & Schuster.
- Halevy, A., P. Norvig, and F. Pereira (2009). The unreasonable effectiveness of data. *IEEE Intelligent Systems* 24(2), 8–12.
- Hall, P., J. T. Ormerod, and M. P. Wand (2011). Theory of Gaussian Variational Approximation for a Generalised Linear Mixed Model. Statistica Sinica 21, 269–389.
- Hamilton, J. (1990). Analysis of time series subject to changes in regime. *J. Econometrics* 45, 39–70.
- Hans, C. (2009). Bayesian Lasso regression. *Biometrika* 96(4), 835–845.
- Hansen, M. and B. Yu (2001). Model selection and the principle of minimum description length. J. of the Am. Stat. Assoc..
- Hara, H. and A. Takimura (2008). A Localization Approach to Improve Iterative Proportional Scaling in Gaussian Graphical Models. Communications in Statistics - Theory and Method. to appear.
- Hardin, J. and J. Hilbe (2003). *Generalized Estimating Equations*. Chapman and Hall/CRC.
- Harmeling, S. and C. K. I. Williams (2011). Greedy learning of binary latent trees. *IEEE Trans. on Pattern Analysis and Machine Intelligence* 33(6), 1087–1097.
- Harnard, S. (1990). The symbol grounding problem. *Physica D 42*, 335–346.
- Harvey, A. C. (1990). Forecasting, Structural Time Series Models, and the Kalman Filter. Cambridge Univerity Press.

- Hastie, T., S. Rosset, R. Tibshirani, and J. Zhu (2004). The entire regularization path for the support vector machine. J. of Machine Learning Research 5, 1391–1415.
- Hastie, T. and R. Tibshirani (1990). Generalized additive models. Chapman and Hall.
- Hastie, T., R. Tibshirani, and J. Friedman (2001). The Elements of Statistical Learning. Springer.
- Hastie, T., R. Tibshirani, and J. Friedman (2009). The Elements of Statistical Learning. Springer. 2nd edition.
- Hastings, W. (1970). Monte carlo sampling methods using markov chains and their applications. *Biometrika* 57(1), 97–109.
- Haykin, S. (1998). Neural Networks: A Comprehensive Foundation. Prentice Hall. 2nd Edition.
- Haykin, S. (Ed.) (2001). Kalman Filtering and Neural Networks. Wiley.
- Hazan, T. and A. Shashua (2008). Convergent message-passing algorithms for inference over general graphs with convex free energy. In UAI.
- Hazan, T. and A. Shashua (2010). Norm-product belief propagation: primal-dual message passing for approximate inference. *IEEE Trans.* on Info. Theory 56(12), 6294–6316.
- He, Y.-B. and Z. Geng (2009). Active learning of causal networks with intervention experiments and optimal designs. J. of Machine Learning Research 10, 2523–2547.
- Heaton, M. and J. Scott (2009). Bayesian computation and the linear model. Technical report, Duke.
- Heckerman, D., D. Chickering, C. Meek, R. Rounthwaite, and C. Kadie (2000). Dependency networks for density estimation, collaborative filtering, and data visualization. *J. of Machine Learning Research* 1, 49–75.
- Heckerman, D., D. Geiger, and M. Chickering (1995). Learning Bayesian networks: the combination of knowledge and statistical data. *Machine Learning* 20(3), 197–

Heckerman, D., C. Meek, and G. Cooper (1997, February). A Bayesian approach to causal discovery. Technical Report MSR-TR-97-05, Microsoft Research.

- Heckerman, D., C. Meek, and D. Koller (2004). Probabilistic models for relational data. Technical Report MSR-TR-2004-30, Microsoft Research.
- Heller, K. and Z. Ghahramani (2005). Bayesian Hierarchical Clustering. In Intl. Conf. on Machine Learning.
- Henrion, M. (1988). Propagation of uncertainty by logic sampling in Bayes' networks. In *UAI*, pp. 149– 164.
- Herbrich, R., T. Minka, and T. Graepel (2007). TrueSkill: A Bayesian skill rating system. In *NIPS*.
- Hertz, J., A. Krogh, and R. G. Palmer (1991). An Introduction to the Theory of Neural Comptuation. Addison-Wesley.
- Hillar, C., J. Sohl-Dickstein, and K. Koepsell (2012, April). Efficient and optimal binary hopfield associative memory storage using minimum probability flow. Technical report.
- Hinton, G. (1999). Products of experts. In *Proc. 9th Intl. Conf. on Artif. Neu*ral *Networks (ICANN)*, Volume 1, pp. 1–6.
- Hinton, G. (2002). Training products of experts by minimizing contrastive divergence. *Neural Computation* 14, 1771–1800.
- Hinton, G. (2010). A Practical Guide to Training Restricted Boltzmann Machines. Technical report, U. Toronto.
- Hinton, G. and D. V. Camp (1993). Keeping neural networks simple by minimizing the description length of the weights. In in Proc. of the 6th Ann. ACM Conf. on Computational Learning Theory, pp. 5–13. ACM Press.
- Hinton, G., S. Osindero, and Y. Teh (2006). A fast learning algorithm for deep belief nets. *Neural Computation 18*, 1527–1554.
- Hinton, G. and R. Salakhutdinov (2006, July). Reducing the dimensionality of data with neural networks. *Science* 313(5786), 504–507.

- Hinton, G. E., P. Dayan, and M. Revow (1997). Modeling the manifolds of images of handwritten digits. *IEEE Trans. on Neural Networks 8*, 65–74.
- Hinton, G. E. and Y. Teh (2001). Discovering multiple constraints that are frequently approximately satisiin Aed. In UAI.
- Hjort, N., C. Holmes, P. Muller, and S. Walker (Eds.) (2010). Bayesian Nonparametrics. Cambridge.
- Hoefling, H. (2010). A Path Algorithm for the Fused Lasso Signal Approximator. Technical report, Stanford.
- Hoefling, H. and R. Tibshirani (2009). Estimation of Sparse Binary Pairwise Markov Networks using Pseudo-likelihoods. J. of Machine Learning Research 10.
- Hoeting, J., D. Madigan, A. Raftery, and C. Volinsky (1999). Bayesian model averaging: A tutorial. Statistical Science 4(4).
- Hoff, P. D. (2009, July). A First Course in Bayesian Statistical Methods. Springer.
- Hoffman, M., D. Blei, and F. Bach (2010). Online learning for latent dirichlet allocation. In *NIPS*.
- Hoffman, M. and A. Gelman (2011). The no-U-turn sampler: Adaptively setting path lengths in Hamiltonian Monte Carlo. Technical report, Columbia U.
- Hofmann, T. (1999). Probabilistic latent semantic indexing. Research and Development in Information Retrieval, 50–57.
- Holmes, C. and L. Held (2006). Bayesian auxiliary variable models for binary and multinomial regression. *Bayesian Analysis I*(1), 145– 168.
- Honkela, A. and H. Valpola (2004). Variational Learning and Bits-Back Coding: An Information-Theoretic View to Bayesian Learning. IEEE. Trans. on Neural Networks 15(4).
- Honkela, A., H. Valpola, and J. Karhunen (2003). Accelerating Cyclic Update Algorithms for Parameter Estimation by Pattern Searches. Neural Processing Letters 17, 191–203.

- Hopfield, J. J. (1982, April). Neural networks and physical systems with emergent collective computational abilities. Proc. of the National Academy of Science, USA 79(8), 2554âÅŞ2558.
- Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks. Neural Networks 4(2), 251âÅS257.
- Horvitz, E., J. Apacible, R. Sarin, and L. Liao (2005). Prediction, Expectation, and Surprise: Methods, Designs, and Study of a Deployed Traffic Forecasting Service. In UAI.
- Howard, R. and J. Matheson (1981). Influence diagrams. In R. Howard and J. Matheson (Eds.), Readings on the Principles and Applications of Decision Analysis, volume II. Strategic Decisions Group.
- Hoyer, P. (2004). Non-negative matrix factorizaton with sparseness constraints. J. of Machine Learning Research 5, 1457–1469.
- Hsu, C.-W., C.-C. Chang, and C.-J. Lin (2009). A practical guide to support vector classification. Technical report, Dept. Comp. Sci., National Taiwan University.
- Hu, D., L. van der Maaten, Y. Cho, L. Saul, and S. Lerner (2010). Latent Variable Models for Predicting File Dependencies in Large-Scale Software Development. In NIPS.
- Hu, M., C. Ingram, M.Sirski, C. Pal, S. Swamy, and C. Patten (2000). A Hierarchical HMM Implementation for Vertebrate Gene Splice Site Prediction. Technical report, Dept. Computer Science, Univ. Waterloo.
- Huang, J., Q. Morris, and B. Frey (2007). Bayesian inference of MicroRNA targets from sequence and expression data. J. Comp. Bio..
- Hubel, D. and T. Wiesel (1962). Receptive fields, binocular itneraction, and functional architecture in the cat's visual cortex. J. Physiology 160, 106–154.
- Huber, P. (1964). Robust estimation of a location parameter. Annals of Statistics 53, 73âAS101.
- Hubert, L. and P. Arabie (1985). Comparing partitions. J. of Classification 2, 193–218.

Hunter, D. and R. Li (2005). Variable selection using MM algorithms. *Annals of Statistics* 33, 1617–1642.

- Hunter, D. R. and K. Lange (2004). A Tutorial on MM Algorithms. *The American Statistician* 58, 30–37.
- Hyafil, L. and R. Rivest (1976). Constructing Optimal Binary Decision Trees is NP-complete. *Information Processing Letters* 5(1), 15–17.
- Hyvarinen, A., J. Hurri, and P. Hoyer (2009). *Natural Image Statistics: a probabilistic approach to early computational vision*. Springer.
- Hyvarinen, A. and E. Oja (2000). Independent component analysis: algorithms and applications. *Neural Networks 13*, 411–430.
- Ilin, A. and T. Raiko (2010). Practical Approaches to Principal Component Analysis in the Presence of Missing Values. J. of Machine Learning Research 11, 1957–2000.
- Insua, D. R. and F. Ruggeri (Eds.) (2000). *Robust Bayesian Analysis*. Springer.
- Isard, M. (2003). PAMPAS: Real-Valued Graphical Models for Computer Vision. In *CVPR*, Volume 1, pp. 613.
- Isard, M. and A. Blake (1998). CON-DENSATION - conditional density propagation for visual tracking. Intl. J. of Computer Vision 29(1), 5– 18.
- Jaakkola, T. (2001). Tutorial on variational approximation methods. In M. Opper and D. Saad (Eds.), Advanced mean field methods. MIT Press.
- Jaakkola, T. and D. Haussler (1998). Exploiting generative models in discriminative classifiers. In NIPS, pp. 487-493.
- Jaakkola, T. and M. Jordan (1996a). Computing upper and lower bounds on likelihoods in intractable networks. In UAI.
- Jaakkola, T. and M. Jordan (1996b). A variational approach to Bayesian logistic regression problems and their extensions. In AI + Statistics.
- Jaakkola, T. S. and M. I. Jordan (2000). Bayesian parameter estimation via variational methods. Statistics and Computing 10, 25–37.

- Jacob, L., F. Bach, and J.-P. Vert (2008). Clustered Multi-Task Learning: a Convex Formulation. In NIPS.
- Jain, A. and R. Dubes (1988). Algorithms for Clustering Data. Prentice Hall.
- James, G. and T. Hastie (1998). The error coding method and PICTS. J. of Computational and Graphical Statistics 7(3), 377-387.
- Japkowicz, N., S. Hanson, and M. Gluck (2000). Nonlinear autoassociation is not equivalent to PCA. Neural Computation 12, 531–545.
- Jaynes, E. T. (2003). Probability theory: the logic of science. Cambridge university press.
- Jebara, T., R. Kondor, and A. Howard (2004). Probability product kernels. J. of Machine Learning Research 5, 819–844.
- Jeffreys, H. (1961). Theory of Probability. Oxford.
- Jelinek, F. (1997). Statistical methods for speech recognition. MIT Press.
- Jensen, C. S., A. Kong, and U. Kjaerulff (1995). Blocking-gibbs sampling in very large probabilistic expert systems. Intl. J. Human-Computer Studies, 647–666.
- Jermyn, I. (2005). Invariant bayesian estimation on manifolds. Annals of Statistics 33(2), 583-605.
- Jerrum, M. and A. Sinclair (1993). Polynomial-time approximation algorithms for the Ising model. SIAM J. on Computing 22, 1087–1116.
- Jerrum, M. and A. Sinclair (1996). The markov chain monte carlo method: an approach to approximate counting and integration. In D. S. Hochbaum (Ed.), Approximation Algorithms for NP-hard problems. PWS Publishing.
- Jerrum, M., A. Sinclair, and E. Vigoda (2004). A polynomial-time approximation algorithm for the permanent of a matrix with non-negative entries. *Journal of the ACM*, 671– 697.
- Ji, S., D. Dunson, and L. Carin (2009). Multi-task compressive sensing. *IEEE Trans. Signal Process*ing 57(1).

- Ji, S., L. Tang, S. Yu, and J. Ye (2010). A shared-subspace learning framework for multi-label classification. ACM Trans. on Knowledge Discovery from Data 4(2).
- Jirousek, R. and S. Preucil (1995). On the effective implementation of the iterative proportional fitting procedure. Computational Statistics & Data Analysis 19, 177–189.
- Joachims, T. (2006). Training Linear SVMs in Linear Time. In *Proc. of* the Int'l Conf. on Knowledge Discovery and Data Mining.
- Joachims, T., T. Finley, and C.-N. Yu (2009). Cutting-Plane Training of Structural SVMs. Machine Learning 77(1), 27–59.
- Johnson, J. K., D. M. Malioutov, and A. S. Willsky (2006). Walk-sum interpretation and analysis of gaussian belief propagation. In NIPS, pp. 579–586.
- Johnson, M. (2005). Capacity and complexity of HMM duration modeling techniques. Signal Processing Letters 12(5), 407-410.
- Johnson, N. (2009). A study of the NIPS feature selection challenge. Technical report, Stanford.
- Johnson, V. and J. Albert (1999). Ordinal data modeling. Springer.
- Jones, B., A. Dobra, C. Carvalho, C. Hans, C. Carter, and M. West (2005). Experiments in stochastic computation for high-dimensional graphical models. Statistical Science 20, 388–400.
- Jordan, M. I. (2007). An introduction to probabilistic graphical models. In preparation.
- Jordan, M. I. (2011). The era of big data. In *ISBA Bulletin*, Volume 18, pp. 1–3.
- Jordan, M. I., Z. Ghahramani, T. S. Jaakkola, and L. K. Saul (1998). An introduction to variational methods for graphical models. In M. Jordan (Ed.), Learning in Graphical Models. MIT Press.
- Jordan, M. I. and R. A. Jacobs (1994). Hierarchical mixtures of experts and the EM algorithm. *Neural Computation* 6, 181–214.

Journee, M., Y. Nesterov, P. Richtarik, and R. Sepulchre (2010). Generalized power method for sparse principal components analysis. J. of Machine Learning Research 11, 517– 553.

- Julier, S. and J. Uhlmann (1997). A new extension of the Kalman filter to nonlinear systems. In Proc. of AeroSense: The 11th Intl. Symp. on Aerospace/Defence Sensing, Simulation and Controls.
- Jurafsky, D. and J. H. Martin (2000). Speech and language processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition. Prentice-Hall.
- Jurafsky, D. and J. H. Martin (2008). Speech and language processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition. Prentice-Hall. 2nd edition.
- Kaariainen, M. and J. Langford (2005). A Comparison of Tight Generalization Bounds. In *Intl. Conf. on Machine Learning*.
- Kaelbling, L., M. Littman, and A. Moore (1996). Reinforcement learning: A survey. J. of AI Research 4, 237–285.
- Kaelbling, L. P., M. Littman, and A. Cassandra (1998). Planning and acting in partially observable stochastic domains. Artificial Intelligence 101.
- Kaiser, H. (1958). The varimax criterion for analytic rotation in factor analysis. *Psychometrika* 23(3).
- Kakade, S., Y. W. Teh, and S. Roweis (2002). An alternate objective function for markovian fields. In *Intl.* Conf. on Machine Learning.
- Kanazawa, K., D. Koller, and S. Russell (1995). Stochastic simulation algorithms for dynamic probabilistic networks. In *UAI*.
- Kandel, E., J. Schwarts, and T. Jessell (2000). Principles of Neural Science. McGraw-Hill.
- Kappen, H. and F. Rodriguez (1998). Boltzmann machine learning using mean field theory and linear response correction. In NIPS.

- Karhunen, J. and J. Joutsensalo (1995). Generalizations of principal component analysis, optimization problems, and neural networks. Neural Networks 8(4), 549– 562.
- Kass, R. and L. Wasserman (1995). A reference bayesian test for nested hypotheses and its relationship to the schwarz criterio. *J. of the Am. Stat. Assoc.* 90(431), 928–934.
- Katayama, T. (2005). Subspace Methods for Systems Identification. Springer Verlag.
- Kaufman, L. and P. Rousseeuw (1990). Finding Groups in Data: An Introduction to Cluster Analysis. Wiley.
- Kawakatsu, H. and A. Largey (2009). EM algorithms for ordered probit models with endogenous regressors. The Econometrics Journal 12(1), 164–186.
- Kearns, M. J. and U. V. Vazirani (1994). An Introduction to Computational Learning Theory. MIT Press.
- Kelley, J. E. (1960). The cutting-plane method for solving convex programs. J. of the Soc. for Industrial and Applied Math. 8, 703–712.
- Kemp, C., J. Tenenbaum, S. Niyogi, and T. Griffiths (2010). A probabilistic model of theory formation. *Cognition 114*. 165–196.
- Kemp, C., J. Tenenbaum, T. Y. T. Griffiths and, and N. Ueda (2006). Learning systems of concepts with an infinite relational model. In AAAI.
- Kersting, K., S. Natarajan, and D. Poole (2011). Statistical Relational AI: Logic, Probability and Computation. Technical report, UBC.
- Khan, M. E., B. Marlin, G. Bouchard, and K. P. Murphy (2010). Variational bounds for mixed-data factor analysis. In NIPS.
- Khan, Z., T. Balch, and F. Dellaert (2006). MCMC Data Association and Sparse Factorization Updating for Real Time Multitarget Tracking with Merged and Multiple Measurements. IEEE Trans. on Pattern Analysis and Machine Intelligence 28(12).
- Kirkpatrick, S., C. G. Jr., and M. Vecchi (1983). Optimization by simulated annealing. *Science 220*, 671–680.

- Kitagawa, G. (2004). The two-filter formula for smoothing and an implementation of the Gaussian-sum smoother. *Annals of the Institute of Statistical Mathematics* 46(4), 605–623.
- Kjaerulff, U. (1990). Triangulation of graphs – algorithms giving small total state space. Technical Report R-90-09, Dept. of Math. and Comp. Sci., Aalborg Univ., Denmark.
- Kjaerulff, U. and A. Madsen (2008). Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis. Springer.
- Klaassen, C. and J. A. Wellner (1997). Efficient estimation in the bivariate noramal copula model: Normal margins are least favorable. Bernoulli 3(1), 55–77.
- Klami, A. and S. Kaski (2008). Probabilistic approach to detecting dependencies between data sets. *Neurocomputing* 72, 39-46.
- Klami, A., S. Virtanen, and S. Kaski (2010). Bayesian exponential family projections for coupled data sources. In UAI.
- Kleiner, A., A. Talwalkar, P. Sarkar, and M. I. Jordan (2011). A scalable bootstrap for massive data. Technical report, UC Berkeley.
- Kneser, R. and H. Ney (1995). Improved backing-off for n-gram language modeling. In Intl. Conf. on Acoustics, Speech and Signal Proc., Volume 1, pp. 181–184.
- Ko, J. and D. Fox (2009). GP-BayesFilters: Bayesian Filtering Using Gaussian Process Prediction and Observation Models. Autonomous Robots Journal.
- Kohn, R., M. Smith, and D. Chan (2001). Nonparametric regression using linear combinations of basis functions. Statistical Computing 11, 313–322.
- Koivisto, M. (2006). Advances in exact Bayesian structure discovery in Bayesian networks. In *UAI*.
- Koivisto, M. and K. Sood (2004). Exact Bayesian structure discovery in Bayesian networks. J. of Machine Learning Research 5, 549–573.
- Koller, D. and N. Friedman (2009). Probabilistic Graphical Models: Principles and Techniques. MIT Press

- Koller, D. and U. Lerner (2001). Sampling in Factored Dynamic Systems. In A. Doucet, N. de Freitas, and N. Gordon (Eds.), Sequential Monte Carlo Methods in Practice. Springer.
- Kolmogorov, V. (2006, October). Convergent Tree-reweighted Message Passing for Energy Minimization. IEEE Trans. on Pattern Analysis and Machine Intelligence 28(10), 1568– 1583
- Kolmogorov, V. and M. Wainwright (2005). On optimality properties of tree-reweighted message passing. In *UAI*, pp. 316–322.
- Kolmogorov, V. and R. Zabin (2004). What energy functions can be minimized via graph cuts? *IEEE Trans.* on Pattern Analysis and Machine Intelligence 26(2), 147–159.
- Komodakis, N., N. Paragios, and G. Tziritas (2011). MRF Energy Minimization and Beyond via Dual Decomposition. IEEE Trans. on Pattern Analysis and Machine Intelligence 33(3), 531–552.
- Koo, T., A. M. Rush, M. Collins, T. Jaakkola, and D. Sontag (2010). Dual Decomposition for Parsing with Non-Projective Head Automata. In Proc. EMNLP, pp. 1288âĂŞ1298.
- Koren, Y. (2009a). The bellkor solution to the netflix grand prize. Technical report, Yahoo! Research.
- Koren, Y. (2009b). Collaborative filtering with temporal dynamics. In Proc. of the Int'l Conf. on Knowledge Discovery and Data Mining.
- Koren, Y., R. Bell, and C. Volinsky (2009). Matrix factorization techniques for recommender systems. *IEEE Computer 42*(8), 30–37.
- Krishnapuram, B., L. Carin, M. Figueiredo, and A. Hartemink (2005). Learning sparse bayesian classifiers: multi-class formulation, fast algorithms, and generalization bounds. IEEE Transaction on Pattern Analysis and Machine Intelligence.
- Krizhevsky, A. and G. Hinton (2010). Using Very Deep Autoencoders for Content-Based Image Retrieval. Submitted.

- Kschischang, F., B. Frey, and H.-A. Loeliger (2001, February). Factor graphs and the sum-product algorithm. *IEEE Trans Info. Theory*.
- Kuan, P., G. Pan, J. A. Thomson, R. Stewart, and S. Keles (2009). A hierarchical semi-Markov model for detecting enrichment with application to ChIP-Seq experiments. Technical report, U. Wisconsin.
- Kulesza, A. and B. Taskar (2011). Learning Determinantal Point Processes. In *UAI*.
- Kumar, N. and A. Andreo (1998). Heteroscedastic discriminant analysis and reduced rank HMMs for improved speech recognition. Speech Communication 26, 283-297.
- Kumar, S. and M. Hebert (2003). Discriminative random fields: A discriminative framework for contextual interaction in classification. In Intl. Conf. on Computer Vision.
- Kuo, L. and B. Mallick (1998). Variable selection for regression models. Sankhya Series B 60, 65–81.
- Kurihara, K., M. Welling, and N. Vlassis (2006). Accelerated variational DP mixture models. In *NIPS*.
- Kushner, H. and G. Yin (2003). Stochastic approximation and recursive algorithms and applications. Springer.
- Kuss and C. Rasmussen (2005). Assessing approximate inference for binary gaussian process classification. J. of Machine Learning Research 6, 1679–1704.
- Kwon, J. and K. Murphy (2000). Modeling freeway traffic with coupled HMMs. Technical report, Univ. California, Berkeley.
- Kyung, M., J. Gill, M. Ghosh, and G. Casella (2010). Penalized Regression, Standard Errors and Bayesian Lassos. *Bayesian Analysis* 5(2), 369– 412.
- Lacoste-Julien, S., F. Huszar, and Z. Ghahramani (2011). Approximate inference for the loss-calibrated Bayesian. In *Al/Statistics*.
- Lacoste-Julien, S., F. Sha, and M. I. Jordan (2009). DiscLDA: Discriminative learning for dimensionality reduction and classification. In NIPS.

- Lafferty, J., A. McCallum, and F. Pereira (2001). Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In Intl. Conf. on Machine Learning.
- Lange, K., R. Little, and J. Taylor (1989). Robust statistical modeling using the t disribution. J. of the Am. Stat. Assoc. 84(408), 881–896.
- Langville, A. and C. Meyer (2006). Updating Markov chains with an eye on Google's PageRank. SIAM J. on Matrix Analysis and Applications 27(4), 968–987.
- Larranaga, P., C. M. H. Kuijpers, M. Poza, and R. H. Murga (1997). Decomposing bayesian networks: triangulation of the moral graph with genetic algorithms. Statistics and Computing (UK) 7(1), 19–34.
- Lashkari, D. and P. Golland (2007). Convex clustering with examplarbased models. In NIPS.
- Lasserre, J., C. Bishop, and T. Minka (2006). Principled hybrids of generative and discriminative models. In CVPR.
- Lau, J. and P. Green (2006). Bayesian model-based clustering procedures. Journal of Computational and Graphical Statistics 12, 351–357.
- Lauritzen, S. (1996). *Graphical Models*. OUP.
- Lauritzen, S. (2000). Causal inference from graphical models. In D. R. C. O. E. Barndoff-Nielsen and C. Klueppelberg (Eds.), Complex stochastic systems. Chapman and Hall.
- Lauritzen, S. and D. Nilsson (2001). Representing and solving decision problems with limited information. *Management Science* 47, 1238–1251.
- Lauritzen, S. L. (1992, December). Propagation of probabilities, means and variances in mixed graphical association models. J. of the Am. Stat. Assoc. 87(420), 1098–1108.
- Lauritzen, S. L. (1995). The EM algorithm for graphical association models with missing data. Computational Statistics and Data Analysis 19, 191–201.

- Lauritzen, S. L. and D. J. Spiegelhalter (1988). Local computations with probabilities on graphical structures and their applications to expert systems. *J. R. Stat. Soc. B B*(50), 127–224.
- Law, E., B. Settles, and T. Mitchell (2010). Learning to tag from open vocabulary labels. In *Proc. European Conf. on Machine Learning*.
- Law, M., M. Figueiredo, and A. Jain (2004). Simultaneous Feature Selection and Clustering Using Mixture Models. IEEE Trans. on Pattern Analysis and Machine Intelligence 26(4).
- Lawrence, N. D. (2005). Probabilistic non-linear principal component analysis with gaussian process latent variable models. *J. of Machine Learning Research* 6, 1783–1816.
- Lawrence, N. D. (2012). A unifying probabilistic perspective for spectral dimensionality reduction: insights and new models. J. of Machine Learning Research 13, 1609– 1638.
- Learned-Miller, E. (2004). Hyperspacings and the estimation of information theoretic quantities. Technical Report 04-104, U. Mass. Amherst Comp. Sci. Dept.
- LeCun, Y., B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel (1989, Winter). Backpropagation applied to handwritten zip code recognition. Neural Computation 1(4), 541– 551.
- LeCun, Y., L. Bottou, Y. Bengio, and P. Haffner (1998, November). Gradient-based learning applied to document recognition. *Proceedings* of the IEEE 86(II), 2278–2324.
- LeCun, Y., S. Chopra, R. Hadsell, F.-J. Huang, and M.-A. Ranzato (2006). A tutorial on energy-based learning. In B. et al. (Ed.), Predicting Structured Outputs. MIT press.
- Ledoit, O. and M. Wolf (2004a). Honey, I Shrunk the Sample Covariance Matrix. J. of Portfolio Management 31(1).
- Ledoit, O. and M. Wolf (2004b). A wellconditioned estimator for largedimensional covariance matrices. *J.* of Multivariate Analysis 88(2), 365– 411.

- Lee, A., F. Caron, A. Doucet, and C. Holmes (2010). A hierarchical bayesian framework for constructing sparsity-inducing priors. Technical report, U. Oxford.
- Lee, A., F. Caron, A. Doucet, and C. Holmes (2011). Bayesian Sparsity-Path-Analysis of Genetic Association Signal using Generalized t Prior. Technical report, U. Oxford.
- Lee, D. and S. Seung (2001). Algorithms for non-negative matrix factorization. In NIPS.
- Lee, H., R. Grosse, R. Ranganath, and A. Ng (2009). Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In Intl. Conf. on Machine Learning.
- Lee, H., Y. Largman, P. Pham, and A. Ng (2009). Unsupervised feature learning for audio classification using convolutional deep belief networks. In NIPS.
- Lee, S.-I., V. Ganapathi, and D. Koller (2006). Efficient structure learning of Markov networks using L1regularization. In NIPS.
- Lee, T. S. and D. Mumford (2003). Hierarchical Bayesian inference in the visual cortex. *J. of Optical Society of America A* 20(7), 1434–1448.
- Lenk, P., W. S. DeSarbo, P. Green, and M. Young (1996). Hierarchical Bayes Conjoint Analysis: Recovery of Partworth Heterogeneity from Reduced Experimental Designs. Marketing Science 15(2), 173– 191.
- Lenkoski, A. and A. Dobra (2008). Bayesian structural learning and estimation in Gaussian graphical models. Technical Report 545, Department of Statistics, University of Washington.
- Lepar, V. and P. P. Shenoy (1998). A Comparison of Lauritzen-Spiegelhalter, Hugin and Shenoy-Shafer Architectures for Computing Marginals of Probability Distributions. In G. Cooper and S. Moral (Eds.), UAI, pp. 328–337. Morgan Kaufmann.
- Lerner, U. and R. Parr (2001). Inference in hybrid networks: Theoretical limits and practical algorithms. In *IIAI*

- Leslie, C., E. Eskin, A. Cohen, J. Weston, and W. Noble (2003). Mismatch string kernels for discriminative protein classification. *Bioinformatics 1*, 1–10.
- Levy, S. (2011). In The Plex: How Google Thinks, Works, and Shapes Our Lives. Simon & Schuster.
- Li, L., W. Chu, J. Langford, and X. Wang (2011). Unbiased offline evaluation of contextual-banditbased news article recommendation algorithms. In WSDM.
- Liang, F., S. Mukherjee, and M. West (2007). Understanding the use of unlabelled data in predictive modelling. Statistical Science 22, 189– 205.
- Liang, F., R. Paulo, G. Molina, M. Clyde, and J. Berger (2008). Mixtures of g-priors for Bayesian Variable Selection. J. of the Am. Stat. Assoc. 103(481), 410–423.
- Liang, P. and M. I. Jordan (2008). An asymptotic analysis of generative, discriminative, and pseudolikelihood estimators. In International Conference on Machine Learning (ICML).
- Liang, P. and D. Klein. Online EM for Unsupervised Models. In Proc. NAACL Conference.
- Liao, L., D. J. Patterson, D. Fox, and H. Kautz (2007). Learning and Inferring Transportation Routines. Artificial Intelligence 171(5), 311–331.
- Lindley, D. (1982). Scoring rules and the inevetability of probability. ISI Review 50, 1–26.
- Lindley, D. V. (1972). *Bayesian Statistics: A Review.* SIAM.
- Lindley, D. V. and L. D. Phillips (1976). Inference for a Bernoulli Process (A Bayesian View). *The American Statistician* 30(3), 112–119.
- Lindsay, B. (1988). Composite likelihood methods. *Contemporary Mathematics* 80(1), 221–239.
- Lipton, R. J. and R. E. Tarjan (1979). A separator theorem for planar graphs. SIAM Journal of Applied Math 36, 177–189.
- Little., R. J. and D. B. Rubin (1987). Statistical Analysis with Missing Data. New York: Wiley and Son.

Liu, C. and D. Rubin (1995). ML Estimation of the T distribution using EM and its extensions, ECM and ECME. Statistica Sinica 5, 19–39.

- Liu, H., J. Lafferty, and L. Wasserman (2009). The nonparanormal: Semiparametric estimation of high dimensional undirected graphs. J. of Machine Learning Research 10, 2295–2328.
- Liu, J. (2001). Monte Carlo Strategies in Scientific Computation. Springer.
- Liu, J. S., W. H. Wong, and A. Kong (1994). Covariance structure of the gibbs sampler with applications to the comparisons of estimators and augmentation schemes. *Biometrika* 81(1), 27–40.
- Liu, T.-Y. (2009). Learning to rank for information retrieval. Foundations and Trends in Information Retrieval 3(3), 225–331.
- Lizotte, D. (2008). Practical Bayesian optimization. Ph.D. thesis, U. Alberta.
- Ljung, L. (1987). System Identificiation: Theory for the User. Prentice Hall.
- Lo, C. H. (2009). Statistical methods for high throughput genomics. Ph.D. thesis, UBC.
- Lo, K., F. Hahne, R. Brinkman, R. Ryan, and R. Gottardo (2009, May). flowclust: a bioconductor package for automated gating of flow cytometry data. *BMC Bioinformatics* 10, 145+.
- Lopes, H. and M. West (2004). Bayesian model assessment in factor analysis. Statisica Sinica 14, 41–67.
- Lowe, D. G. (1999). Object recognition from local scale-invariant features. In Proc. of the International Conference on Computer Vision ICCV, Corfu, pp. 1150–1157.
- Luce, R. (1959). Individual choice behavior: A theoretical analysis. Wiley.
- Lunn, D., N. Best, and J. Whittaker (2009). Generic reversible jump MCMC using graphical models. Statistics and Computing 19(4), 395–408.

- Lunn, D., A. Thomas, N. Best, and D. Spiegelhalter (2000). WinBUGS – a Bayesian modelling framework: concepts, structure, and extensibility. Statistics and Computing 10, 325–337.
- Ma, H., H. Yang, M. Lyu, and I. King (2008). SoRec: Social recommendation using probabilistic matrix factorization. In Proc. of 17th Conf. on Information and Knowledge Management.
- Ma, S., C. Ji, and J. Farmer (1997). An efficient EM-based training algorithm for feedforward neural networks. Neural Networks 10(2), 243– 256.
- Maathuis, M., D. Colombo, M. Kalisch, and P. Băijhlmann (2010). Predicting causal effects in large-scale systems from observational data. *Nature Methods* 7, 247–248.
- Maathuis, M., M. Kalisch, and P. BĀijhlmann (2009). Estimating high-dimensional intervention effects from observational data. *An*nals of Statistics 37, 3133–3164.
- MacKay, D. (1992). Bayesian interpolation. Neural Computation 4, 415–447.
- MacKay, D. (1995a). Developments in probabilistic modeling with neural networks — ensemble learning. In Proc. 3rd Ann. Symp. Neural Networks.
- MacKay, D. (1995b). Probable networks and plausible predictions a review of practical Bayesian methods for supervised neural networks. Network.
- MacKay, D. (1997). Ensemble learning for Hidden Markov Models. Technical report, U. Cambridge.
- MacKay, D. (1999). Comparision of approximate methods for handling hyperparameters. *Neural Computation* 11(5), 1035–1068.
- MacKay, D. (2003). *Information Theory, Inference, and Learning Algorithms.* Cambridge University Press.
- Macnaughton-Smith, P., W. T. Williams, M. B. Dale, and G. Mockett (1964). Dissimilarity analysis: a new technique of hierarchical sub-division. *Nature 202*, 1034 1035.

- Madeira, S. C. and A. L. Oliveira (2004). Biclustering algorithms for biological data analysis: A survey. IEEE/ACM Transactions on Computational Biology and Bioinformatics I(1), 24–45.
- Madigan, D. and A. Raftery (1994). Model selection and accounting for model uncertainty in graphical models using Occam's window. J. of the Am. Stat. Assoc. 89, 1535–1546.
- Madsen, R., D. Kauchak, and C. Elkan (2005). Modeling word burstiness using the Dirichlet distribution. In *Intl. Conf. on Machine Learning*.
- Mairal, J., F. Bach, J. Ponce, and G. Sapiro (2010). Online learning for matrix factorization and sparse coding. J. of Machine Learning Research 11, 19–60.
- Mairal, J., M. Elad, and G. Sapiro (2008). Sparse representation for color image restoration. *IEEE Trans.* on *Image Processing* 17(1), 53–69.
- Malioutov, D., J. Johnson, and A. Willsky (2006). Walk-sums and belief propagation in gaussian graphical models. J. of Machine Learning Research 7, 2003–2030.
- Mallat, S., G. Davis, and Z. Zhang (1994, July). Adaptive timefrequency decompositions. SPIE Journal of Optical Engineering 33, 2183–2919.
- Mallat, S. and Z. Zhang (1993). Matching pursuits with time-frequency dictionaries. IEEE Transactions on Signal Processing 4I(12), 3397–3415.
- Malouf, R. (2002). A comparison of algorithms for maximum entropy parameter estimation. In *Proc.* Sixth Conference on Natural Language Learning (CoNLL-2002), pp. 49–55.
- Manning, C., P. Raghavan, and H. Schuetze (2008). Introduction to Information Retrieval. Cambridge University Press.
- Manning, C. and H. Schuetze (1999). Foundations of statistical natural language processing. MIT Press.
- Mansinghka, V., D. Roy, R. Rifkin, and J. Tenenbaum (2007). AClass: An online algorithm for generative classification. In Al/Statistics.

- Mansinghka, V., P. Shafto, E. Jonas, C. Petschulat, and J. Tenenbaum (2011). Cross-Categorization: A Nonparametric Bayesian Method for Modeling Heterogeneous, High Dimensional Data. Technical report, MIT.
- Margolin, A., I. Nemenman, K. Basso, C. Wiggins, G. Stolovitzky, and R. F. abd A. Califano (2006). ARACNE: An Algorithm for the Reconstruction of Gene Regulatory Networks in a Mammalian Cellular Context. BMC Bionformatics 7.
- Marin, J.-M. and C. Robert (2007). Bayesian Core: a practical approach to computational Bayesian statistics. Springer.
- Marks, T. K. and J. R. Movellan (2001). Diffusion networks, products of experts, and factor analysis. Technical report, University of California San Diego.
- Marlin, B. (2003). Modeling user rating profiles for collaborative filtering. In NIPS.
- Marlin, B. (2008). Missing Data Problems in Machine Learning. Ph.D. thesis, U. Toronto.
- Marlin, B., E. Khan, and K. Murphy (2011). Piecewise Bounds for Estimating Bernoulli-Logistic Latent Gaussian Models. In *Intl. Conf. on Machine Learning*.
- Marlin, B. and R. Zemel (2009). Collaborative prediction and ranking with non-random missing data. In Proc. of the 3rd ACM Conference on Recommender Systems.
- Marlin, B. M., K. Swersky, B. Chen, and N. de Freitas (2010). Inductive principles for restricted boltzmann machine learning. In *AllStatistics*.
- Marroquin, J., S. Mitter, and T. Poggio (1987). Probabilistic solution of ill-posed problems in computational vision. *J. of the Am. Stat. As*soc. 82(297), 76–89.
- Martens, J. (2010). Deep learning via hessian-free optimization. In *Intl. Conf. on Machine Learning*.
- Maruyama, Y. and E. George (2008). A g-prior extension for p>n. Technical report, U. Tokyo.
- Mason, L., J. Baxter, P. Bartlett, and M. Frean (2000). Boosting algorithms as gradient descent. In NIPS, Volume 12, pp. 512–518.

- Matthews, R. (1998). Bayesian Critique of Statistics in Health: The Great Health Hoax.
- Maybeck, P. (1979). Stochastic models, estimation, and control. Academic Press.
- Mazumder, R. and T. Hastie (2012). The Graphical Lasso: New Insights and Alternatives. Technical report.
- McAuliffe, J., D. Blei, and M. Jordan (2006). Nonparametric empirical bayes for the dirichlet process mixture model. Statistics and Computing 16(1), 5–14.
- McCallum, A. (2003). Efficiently inducing features of conditional random fields. In *UAI*.
- McCallum, A., D. Freitag, and F. Pereira (2000). Maximum Entropy Markov Models for Information Extraction and Segmentation. In Intl. Conf. on Machine Learning.
- McCallum, A. and K. Nigam (1998). A comparison of event models for naive Bayes text classification. In AAAIICML workshop on Learning for Text Categorization.
- McCray, A. (2003). An upper level ontology for the biomedical domain. Comparative and Functional Genomics 4, 80–84.
- McCullagh, P. and J. Nelder (1989). *Generalized linear models.* Chapman and Hall. 2nd edition.
- McCullich, W. and W. Pitts (1943). A logical calculus of the ideas immanent in nervous activity. *Bulletin of Mathematical Biophysics* 5, 115–137.
- McDonald, J. and W. Newey (1988). Partially Adaptive Estimation of Regression Models via the Generalized t Distribution. *Econometric Theory* 4(3), 428–445.
- McEliece, R. J., D. J. C. MacKay, and J. F. Cheng (1998). Turbo decoding as an instance of Pearl's 'belief propagation' algorithm. *IEEE J. on Selected Areas in Comm.* 16(2), 140–152.
- McFadden, D. (1974). Conditional logit analysis of qualitative choice behavior. In P. Zarembka (Ed.), Frontiers in econometrics, pp. 105–142. Academic Press.

- McGrayne, S. B. (2011). The theory that would not die: how Bayes' rule cracked the enigma code, hunted down Russian submarines, and emerged triumphant from two centuries of controversy. Yale University Press.
- McKay, B. D., F. E. Oggier, G. F. Royle, N. J. A. Sloane, I. M. Wanless, and H. S. Wilf (2004). Acyclic digraphs and eigenvalues of (0,1)-matrices. *J. Integer Sequences* 7(04.3.3).
- McKay, D. and L. C. B. Peto (1995). A hierarchical dirichlet language model. Natural Language Engineering 1(3), 289–307.
- McLachlan, G. J. and T. Krishnan (1997). *The EM Algorithm and Extensions*. Wiley.
- Meek, C. and D. Heckerman (1997). Structure and parameter learning for causal independence and causal interaction models. In *UAI*, pp. 366–375.
- Meek, C., B. Thiesson, and D. Heckerman (2002). Staged mixture modelling and boosting. In *UAI*, San Francisco, CA, pp. 335–343. Morgan Kaufmann.
- Meila, M. (2001). A random walks view of spectral segmentation. In *Al/Statistics*.
- Meila, M. (2005). Comparing clusterings: an axiomatic view. In *Intl.* Conf. on Machine Learning.
- Meila, M. and T. Jaakkola (2006). Tractable Bayesian learning of tree belief networks. Statistics and Computing 16, 77–92.
- Meila, M. and M. I. Jordan (2000). Learning with mixtures of trees. J. of Machine Learning Research 1, 1– 48
- Meinshausen, N. (2005). A note on the lasso for gaussian graphical model selection. Technical report, ETH Seminar fur Statistik.
- Meinshausen, N. and P. Buhlmann (2006). High dimensional graphs and variable selection with the lasso. *The Annals of Statistics* 34, 1436–1462.
- Meinshausen, N. and P. BÃijhlmann (2010). Stability selection. *J. of Royal Stat. Soc. Series B* 72, 417–473.

- Meltzer, T., C. Yanover, and Y. Weiss (2005). Globally optimal solutions for energy minimization in stereo vision using reweighted belief propagation. In *ICCV*, pp. 428–435.
- Meng, X. L. and D. van Dyk (1997). The EM algorithm an old folk song sung to a fast new tune (with Discussion). *J. Royal Stat. Soc. B* 59, 511–567.
- Mesot, B. and D. Barber (2009). A Simple Alternative Derivation of the Expectation Correction Algorithm. IEEE Signal Processing Letters 16(1), 121-124.
- Metropolis, N., A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller (1953). Equation of state calculations by fast computing machines. J. of Chemical Physics 21, 1087–1092.
- Metz, C. (2010). Google behavioral ad targeter is a Smart Ass. *The Register*.
- Miller, A. (2002). Subset selection in regression. Chapman and Hall. 2nd edition.
- Mimno, D. and A. McCallum (2008). Topic models conditioned on arbitrary features with dirichletmultinomial regression. In UAL.
- Minka, T. (1999). Pathologies of orthodox statisics. Technical report, MIT Media Lab.
- Minka, T. (2000a). Automatical choice of dimensionality for PCA. Technical report, MIT.
- Minka, T. (2000b). Bayesian linear regression. Technical report, MIT.
- Minka, T. (2000c). Bayesian model averaging is not model combination. Technical report, MIT Media Lab.
- Minka, T. (2000d). Empirical risk minimization is an incomplete inductive principle. Technical report, MIT.
- Minka, T. (2000e). Estimating a Dirichlet distribution. Technical report, MIT.
- Minka, T. (2000f). Inferring a Gaussian distribution. Technical report, MIT.
- Minka, T. (2001a). Bayesian inference of a uniform distribution. Technical report, MIT.

- Minka, T. (2001b). Empirical Risk Minimization is an incomplete inductive principle. Technical report, MIT.
- Minka, T. (2001c). Expectation propagation for approximate Bayesian inference. In *UAI*.
- Minka, T. (2001d). A family of algorithms for approximate Bayesian inference. Ph.D. thesis, MIT.
- Minka, T. (2001e). Statistical approaches to learning and discovery 10-602: Homework assignment 2, question 5. Technical report, CMU.
- Minka, T. (2003). A comparison of numerical optimizers for logistic regression. Technical report, MSR.
- Minka, T. (2005). Divergence measures and message passing. Technical report, MSR Cambridge.
- Minka, T. and Y. Qi (2003). Treestructured approximations by expectation propagation. In *NIPS*.
- Minka, T., J. Winn, J. Guiver, and D. Knowles (2010). Infer.NET 2.4. Microsoft Research Cambridge. http://research.microsoft.com/infernet.
- Minsky, M. and S. Papert (1969). Perceptrons. MIT Press.
- Mitchell, T. (1997). *Machine Learning*. McGraw Hill.
- Mitchell, T. and J. Beauchamp (1988). Bayesian Variable Selection in Linear Regression. *J. of the Am. Stat. Assoc. 83*, 1023–1036.
- Mobahi, H., R. Collobert, and J. Weston (2009). Deep learning from temporal coherence in video. In *Intl. Conf. on Machine Learning*.
- Mockus, J., W. Eddy, A. Mockus, L. Mockus, and G. Reklaitis (1996). Bayesian Heuristic Approach to Discrete and Global Optimization: Algorithms, Visualization, Software, and Applications. Kluwer.
- Moghaddam, B., A. Gruber, Y. Weiss, and S. Avidan (2008). Sparse regression as a sparse eigenvalue problem. In *Information Theory & Applications Workshop (ITA'08)*.
- Moghaddam, B., B. Marlin, E. Khan, and K. Murphy (2009). Accelerating bayesian structural inference for non-decomposable gaussian graphical models. In *NIPS*.

- Moghaddam, B. and A. Pentland (1995). Probabilistic visual learning for object detection. In *Intl. Conf.* on Computer Vision.
- Mohamed, S., K. Heller, and Z. Ghahramani (2008). Bayesian Exponential Family PCA. In *NIPS*.
- Moler, C. (2004). *Numerical Computing with MATLAB*. SIAM.
- Morris, R. D., X. Descombes, and J. Zerubia (1996). The Ising/Potts model is not well suited to segmentation tasks. In *IEEE DSP Work-shop*.
- Mosterman, P. J. and G. Biswas (1999). Diagnosis of continuous valued systems in transient operating regions. IEEE Trans. on Systems, Man, and Cybernetics, Part A 29(6), 554– 565.
- Moulines, E., J.-F. Cardoso, and E. Gassiat (1997). Maximum likelihood for blind separation and deconvolution of noisy signals using mixture models. In *Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP'97)*, Munich, Germany, pp. 3617–3620.
- Muller, P., G. Parmigiani, C. Robert, and J. Rousseau (2004). Optimal sample size for multiple testing: the case of gene expression microarrays. J. of the Am. Stat. Assoc. 99, 990–1001.
- Mumford, D. (1994). Neuronal architectures for pattern-theoretic problems. In C. Koch and J. Davis (Eds.), Large Scale Neuronal Theories of the Brain. MIT Press.
- Murphy, K. (2000). Bayesian map learning in dynamic environments. In NIPS, Volume 12.
- Murphy, K. and M. Paskin (2001). Linear time inference in hierarchical HMMs. In *NIPS*.
- Murphy, K., Y. Weiss, and M. Jordan (1999). Loopy belief propagation for approximate inference: an empirical study. In UAI.
- Murphy, K. P. (1998). Filtering and smoothing in linear dynamical systems using the junction tree algorithm. Technical report, U.C. Berkeley, Dept. Comp. Sci.
- Murray, I. and Z. Ghahramani (2005). A note on the evidence and bayesian occam's razor. Technical report, Gatsby.

Musso, C., N. Oudjane, and F. LeGland (2001). Improving regularized particle filters. In A. Doucet, J. F. G. de Freitas, and N. Gordon (Eds.), Sequential Monte Carlo Methods in Practice. Springer.

- Nabney, I. (2001). *NETLAB: algorithms* for pattern recognition. Springer.
- Neal, R. (1992). Connectionist learning of belief networks. *Artificial Intelligence* 56, 71–113.
- Neal, R. (1993). Probabilistic Inference Using Markov Chain Monte Carlo Methods. Technical report, Univ. Toronto.
- Neal, R. (1996). Bayesian learning for neural networks. Springer.
- Neal, R. (1997). Monte Carlo Implementation of Gaussian Process Models for Bayesian Regression and Classification. Technical Report 9702, U. Toronto.
- Neal, R. (1998). Erroneous Results in 'Marginal Likelihood from the Gibbs Output'. Technical report, U. Toronto.
- Neal, R. (2000). Markov Chain Sampling Methods for Dirichlet Process Mixture Models. J. of Computational and Graphical Statistics 9(2), 249–265.
- Neal, R. (2003a). Slice sampling. *Annals of Statistics 31*(3), 7–5–767.
- Neal, R. (2010). MCMC using Hamiltonian Dynamics. In S. Brooks, A. Gelman, G. Jones, and X.-L. Meng (Eds.), Handbook of Markov Chain Monte Carlo. Chapman & Hall.
- Neal, R. and D. MacKay (1998). Likelihood-based boosting. Technical report, U. Toronto.
- Neal, R. and J. Zhang (2006). High dimensional classification Bayesian neural networks and Dirichlet diffusion trees. In I. Guyon, S. Gunn, M. Nikravesh, and L. Zadeh (Eds.), Feature Extraction. Springer.
- Neal, R. M. (2001). Annealed importance sampling. Statistics and Computing 11, 125–139.
- Neal, R. M. (2003b). Density Modeling and Clustering using Dirichlet Diffusion Trees. In J. M. Bernardo et al. (Eds.), *Bayesian Statistics 7*, pp. 619–629. Oxford University Press.

- Neal, R. M. and G. E. Hinton (1998). A new view of the EM algorithm that justifies incremental and other variants. In M. Jordan (Ed.), *Learning in Graphical Models*. MIT Press.
- Neapolitan, R. (2003). *Learning Bayesian Networks*. Prentice Hall.
- Nefian, A., L. Liang, X. Pi, X. Liu, and K. Murphy (2002). Dynamic Bayesian Networks for Audio-Visual Speech Recognition. J. Applied Signal Processing.
- Nemirovski, A. and D. Yudin (1978). On Cezari's convergence of the steepest descent method for approximating saddle points of convexconcave functions. Soviet Math. Dokl. 19.
- Nesterov, Y. (2004). Introductory Lectures on Convex Optimization. A basic course. Kluwer.
- Newton, M., D. Noueiry, D. Sarkar, and P. Ahlquist (2004). Detecting differential gene expression with a semiparametric hierarchical mixture method. *Biostatistics* 5, 155– 176
- Newton, M. and A. Raftery (1994). Approximate Bayesian Inference with the Weighted Likelihood Bootstrap. *J. of Royal Stat. Soc. Series B* 56(1), 3–48.
- Ng, A., M. Jordan, and Y. Weiss (2001). On Spectral Clustering: Analysis and an algorithm. In *NIPS*.
- Ng, A. Y. and M. I. Jordan (2002). On discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes. In NIPS-14.
- Nickisch, H. and C. Rasmussen (2008). Approximations for binary gaussian process classification. J. of Machine Learning Research 9, 2035–2078.
- Nilsson, D. (1998). An efficient algorithm for finding the M most probable configurations in a probabilistic expert system. Statistics and Computing 8, 159–173.
- Nilsson, D. and J. Goldberger (2001). Sequentially finding the N-Best List in Hidden Markov Models. In *Intl. Joint Conf. on AI*, pp. 1280–1285.
- Nocedal, J. and S. Wright (2006). *Numerical Optimization*. Springer.

- Nowicki, K. and T. A. B. Snijders (2001). Estimation and prediction for stochastic blockstructures. *Journal of the American Statistical Association* 96(455), 1077–??
- Nowlan, S. and G. Hinton (1992). Simplifying neural networks by soft weight sharing. *Neural Computation* 4(4), 473–493.
- Nummiaro, K., E. Koller-Meier, and L. V. Gool (2003). An adaptive color-based particle filter. *Image* and Vision Computing 21(1), 99–110.
- Obozinski, G., B. Taskar, and M. I. Jordan (2007). Joint covariate selection for grouped classification. Technical report, UC Berkeley.
- Oh, M.-S. and J. Berger (1992). Adaptive importance sampling in Monte Carlo integration. J. of Statistical Computation and Simulation 41(3), 143 168.
- Oh, S., S. Russell, and S. Sastry (2009). Markov Chain Monte Carlo Data Association for Multi-Target Tracking. IEEE Trans. on Automatic Control 54(3), 481–497.
- O'Hagan, A. (1978). Curve fitting and optimal design for prediction. *J. of Royal Stat. Soc. Series B* 40, 1–42.
- O'Hara, R. and M. Sillanpaa (2009). A Review of Bayesian Variable Selection Methods: What, How and Which. *Bayesian Analysis* 4(1), 85– 118
- Olshausen, B. A. and D. J. Field (1996). Emergence of simple cell receptive field properties by learning a sparse code for natural images. *Nature 381*, 607–609.
- Opper, M. (1998). A Bayesian approach to online learning. In D. Saad (Ed.), On-line learning in neural networks. Cambridge.
- Opper, M. and C. Archambeau (2009). The variational Gaussian approximation revisited. *Neural Computation 2I*(3), 786–792.
- Opper, M. and D. Saad (Eds.) (2001). Advanced mean field methods: theory and practice. MIT Press.
- Osborne, M. R., B. Presnell, and B. A. Turlach (2000a). A new approach to variable selection in least squares problems. *IMA Journal of Numerical Analysis* 20(3), 389–403.

Osborne, M. R., B. Presnell, and B. A. Turlach (2000b). On the lasso and its dual. *J. Computational and graphical statistics* 9, 319–337.

- Ostendorf, M., V. Digalakis, and O. Kimball (1996). From HMMs to segment models: a unified view of stochastic modeling for speech recognition. *IEEE Trans. on Speech* and Audio Processing 4(5), 360– 378.
- Overschee, P. V. and B. D. Moor (1996). Subspace Identification for Linear Systems: Theory, Implementation, Applications. Kluwer Academic Publishers.
- Paatero, P. and U. Tapper (1994). Positive matrix factorization: A nonnegative factor model with optimal utilization of error estimates of data values. *Environmetrics* 5, 111-126.
- Padadimitriou, C. and K. Steiglitz (1982). Combinatorial optimization: Algorithms and Complexity. Prentice Hall.
- Paisley, J. and L. Carin (2009). Nonparametric factor analysis with beta process priors. In *Intl. Conf.* on Machine Learning.
- Palmer, S. (1999). Vision Science: Photons to Phenomenology. MIT Press.
- Parise, S. and M. Welling (2005). Learning in Markov Random Fields: An Empirical Study. In *Joint* Statistical Meeting.
- Park, T. and G. Casella (2008). The Bayesian Lasso. *J. of the Am. Stat. Assoc.* 103(482), 681–686.
- Parviainen, P. and M. Koivisto (2011). Ancestor relations in the presence of unobserved variables. In *Proc. European Conf. on Machine Learning.*
- Paskin, M. (2003). Thin junction tree filters for simultaneous localization and mapping. In *Intl. Joint Conf. on AI*.
- Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann.
- Pearl, J. (2000). Causality: Models, Reasoning and Inference. Cambridge Univ. Press.

- Pearl, J. and T. Verma (1991). A theory of inferred causation. In *Knowledge Representation*, pp. 441–452.
- Pe'er, D. (2005, April). Bayesian network analysis of signaling networks: a primer. Science STKE 281, 14.
- Peng, F., R. Jacobs, and M. Tanner (1996). Bayesian Inference in Mixtures-of-Experts and Hierarchical Mixtures-of-Experts Models With an Application to Speech Recognition. J. of the Am. Stat. Assoc. 91(435), 953–960.
- Petris, G., S. Petrone, and P. Campagnoli (2009). *Dynamic linear models* with R. Springer.
- Pham, D.-T. and P. Garrat (1997). Blind separation of mixture of independent sources through a quasimaximum likelihood approach. IEEE Trans. on Signal Processing 45(7), 1712–1725.
- Pietra, S. D., V. D. Pietra, and J. Lafferty (1997). Inducing features of random fields. *IEEE Trans. on Pat*tern Analysis and Machine Intelligence 19(4).
- Plackett, R. (1975). The analysis of permutations. Applied Stat. 24, 193–202.
- Platt, J. (1998). Using analytic QP and sparseness to speed training of support vector machines. In NIPS.
- Platt, J. (2000). Probabilities for sv machines. In A. Smola, P. Bartlett, B. Schoelkopf, and D. Schuurmans (Eds.), Advances in Large Margin Classifiers. MIT Press.
- Platt, J., N. Cristianini, and J. Shawe-Taylor (2000). Large margin DAGs for multiclass classification. In NIPS, Volume 12, pp. 547–553.
- Plummer, M. (2003). JAGS: A Program for Analysis of Bayesian Graphical Models Using Gibbs Sampling. In Proc. 3rd Intl. Workshop on Distributed Statistical Computing.
- Polson, N. and S. Scott (2011). Data augmentation for support vector machines. *Bayesian Analysis* 6(1), 1–124.
- Pontil, M., S. Mukherjee, and F. Girosi (1998). On the Noise Model of Support Vector Machine Regression. Technical report, MIT AI Lab.
- Poon, H. and P. Domingos (2011). Sumproduct networks: A new deep architecture. In *UAI*.

- Pourahmadi, M. (2004). Simultaneous Modelling of Covariance Matrices: GLM, Bayesian and Nonparametric Perspectives. Technical report, Northern Illinois University.
- Prado, R. and M. West (2010). *Time Series: Modelling, Computation and Inference.* CRC Press.
- Press, S. J. (2005). Applied multivariate analysis, using Bayesian and frequentist methods of inference. Dover. Second edition.
- Press, W., W. Vetterling, S. Teukolosky, and B. Flannery (1988). Numerical Recipes in C: The Art of Scientific Computing (Second ed.). Cambridge University Press.
- Prince, S. (2012). Computer Vision: Models, Learning and Inference. Cambridge.
- Pritchard, J., M. M. Stephens, and P. Donnelly (2000). Inference of population structure using multilocus genotype data. *Genetics* 155, 945–959.
- Qi, Y. and T. Jaakkola (2008). Parameter Expanded Variational Bayesian Methods. In NIPS.
- Qi, Y., M. Szummer, and T. Minka (2005). Bayesian Conditional Random Fields. In 10th Intl. Workshop on Al/Statistics.
- Quinlan, J. (1990). Learning logical definitions from relations. *Machine Learning* 5, 239–266.
- Quinlan, J. R. (1986). Induction of decision trees. *Machine Learning 1*, 81–106.
- Quinlan, J. R. (1993). C4.5 Programs for Machine Learning. Morgan Kauffman.
- Quinonero-Candela, J., C. Rasmussen, and C. Williams (2007). Approximation methods for gaussian process regression. In L. Bottou, O. Chapelle, D. DeCoste, and J. Weston (Eds.), Large Scale Kernel Machines, pp. 203–223. MIT Press.
- Rabiner, L. R. (1989). A tutorial on Hidden Markov Models and selected applications in speech recognition. Proc. of the IEEE 77(2), 257–286.
- Rai, P. and H. Daume (2009). Multilabel prediction via sparse infinite CCA. In NIPS.

Raiffa, H. (1968). *Decision Analysis*. Addison Wesley.

- Raina, R., A. Madhavan, and A. Ng (2009). Large-scale deep unsupervised learning using graphics processors. In Intl. Conf. on Machine Learning.
- Raina, R., A. Ng, and D. Koller (2005). Transfer learning by constructing informative priors. In *NIPS*.
- Rajaraman, A. and J. Ullman (2010). Mining of massive datasets. Selfpublished.
- Rajaraman, A. and J. Ullman (2011). Mining of massive datasets. Cambridge.
- Rakotomamonjy, A., F. Bach, S. Canu, and Y. Grandvalet (2008). SimpleMKL. J. of Machine Learning Research 9, 2491–2521.
- Ramage, D., D. Hall, R. Nallapati, and C. Manning (2009). Labeled LDA: A supervised topic model for credit attribution in multi-labeled corpora. In EMNLP.
- Ramage, D., C. Manning, and S. Dumais (2011). Partially Labeled Topic Models for Interpretable Text Mining. In Proc. of the Int'l Conf. on Knowledge Discovery and Data Mining.
- Ramaswamy, S., P. Tamayo, R. Rifkin, S. Mukherjee, C. Yeang, M. Angelo, C. Ladd, M. Reich, E. Latulippe, J. Mesirov, T. Poggio, W. Gerald, M. Loda, E. Lander, and T. Golub (2001). Multiclass cancer diagnosis using tumor gene expression signature. Proc. of the National Academy of Science, USA 98, 15149–15154.
- Ranzato, M. and G. Hinton (2010). Modeling pixel means and covariances using factored third-order Boltzmann machines. In *CVPR*.
- Ranzato, M., F.-J. Huang, Y.-L. Boureau, and Y. LeCun (2007). Unsupervised Learning of Invariant Feature Hierarchies with Applications to Object Recognition. In CVPR.
- Ranzato, M., C. Poultney, S. Chopra, and Y.LeCun (2006). Efficient learning of sparse representations with an energy-based model. In NIPS.

- Rao, A. and K. Rose (2001, February). Deterministically Annealed Design of Hidden Markov Model Speech Recognizers. *IEEE Trans. on Speech and Audio Proc.* 9(2), 111–126.
- Rasmussen, C. (2000). The infinite gaussian mixture model. In NIPS.
- Rasmussen, C. E. and J. Quiñonero-Candela (2005). Healing the relevance vector machine by augmentation. In *Intl. Conf. on Machine Learning*, pp. 689–696.
- Rasmussen, C. E. and C. K. I. Williams (2006). *Gaussian Processes for Machine Learning*. MIT Press.
- Ratsch, G., T. Onoda, and K. Muller (2001). Soft margins for adaboost. *Machine Learning* 42, 287–320.
- Rattray, M., O. Stegle, K. Sharp, and J. Winn (2009). Inference algorithms and learning theory for Bayesian sparse factor analysis. In Proc. Intl. Workshop on Statistical-Mechanical Informatics.
- Rauch, H. E., F. Tung, and C. T. Striebel (1965). Maximum likelihood estimates of linear dynamic systems. AIAA Journal 3(8), 1445–1450.
- Ravikumar, P., J. Lafferty, H. Liu, and L. Wasserman (2009). Sparse Additive Models. J. of Royal Stat. Soc. Series B 71(5), 1009–1030.
- Raydan, M. (1997). The barzilai and borwein gradient method for the large scale unconstrained minimization problem. SIAM J. on Optimization 7(1), 26–33.
- Rennie, J. (2004). Why sums are bad. Technical report, MIT.
- Rennie, J., L. Shih, J. Teevan, and D. Karger (2003). Tackling the poor assumptions of naive Bayes text classifiers. In *Intl. Conf. on Machine Learning*.
- Reshed, D., Y. Reshef, H. Finucane, S. Grossman, G. McVean, P. Turnbaugh, E. Lander, M. Mitzenmacher, and P. Sabeti (2011, December). Detecting novel associations in large data sets. *Science 334*, 1518–1524.
- Resnick, S. I. (1992). *Adventures in Stochastic Processes*. Birkhauser.
- Rice, J. (1995). Mathematical statistics and data analysis. Duxbury. 2nd edition.

- Richardson, S. and P. Green (1997). On Bayesian Analysis of Mixtures With an Unknown Number of Components. *J. of Royal Stat. Soc. Series B* 59, 731–758.
- Riesenhuber, M. and T. Poggio (1999). Hierarchical models of object recognition in cortex. Nature Neuroscience 2, 1019–1025.
- Rish, I., G. Grabarnik, G. Cecchi, F. Pereira, and G. Gordon (2008). Closed-form supervised dimensionality reduction with generalized linear models. In *Intl. Conf.* on Machine Learning.
- Ristic, B., S. Arulampalam, and N. Gordon (2004). Beyond the Kalman Filter: Particle Filters for Tracking Applications. Artech House Radar Library.
- Robert, C. (1995). Simulation of truncated normal distributions. *Statistics and computing* 5, 121–125.
- Robert, C. and G. Casella (2004). *Monte Carlo Statisical Methods*. Springer. 2nd edition.
- Roberts, G. and J. Rosenthal (2001). Optimal scaling for various Metropolis-Hastings algorithms. Statistical Science 16, 351–367.
- Roberts, G. O. and S. K. Sahu (1997). Updating schemes, correlation structure, blocking and parameterization for the gibbs sampler. *J. of Royal Stat. Soc. Series B* 59(2), 291–317.
- Robinson, R. W. (1973). Counting labeled acyclic digraphs. In F. Harary (Ed.), New Directions in the Theory of Graphs, pp. 239–273. Academic Press.
- Roch, S. (2006). A short proof that phylogenetic tree reconstrution by maximum likelihood is hard. *IEEE/ACM Trans. Comp. Bio. Bioinformatics 31*(1).
- Rodriguez, A. and K. Ghosh (2011). Modeling relational data through nested partition models. *Biometrika*. To appear.
- Rose, K. (1998, November). Deterministic annealing for clustering, compression, classification, regression, and related optimization problems. Proc. IEEE 80, 2210–2239.

- Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. *Psychological Review 65*(6), 386ãÅS408.
- Ross, S. (1989). *Introduction to Probability Models*. Academic Press.
- Rosset, S., J. Zhu, and T. Hastie (2004). Boosting as a regularized path to a maximum margin classifier. *J. of Machine Learning Research* 5, 941– 973.
- Rossi, P., G. Allenby, and R. McCulloch (2006). Bayesian Statistics and Marketing. Wiley.
- Roth, D. (1996, Apr). On the hardness of approximate reasoning. *Artificial Intelligence 82*(1-2), 273–302.
- Rother, C., P. Kohli, W. Feng, and J. Jia (2009). Minimizing sparse higher order energy functions of discrete variables. In CVPR, pp. 1382–1389.
- Rouder, J., P. Speckman, D. Sun, and R. Morey (2009). Bayesian t tests for accepting and rejecting the null hypothesis. *Pyschonomic Bulletin & Review 16*(2), 225–237.
- Roverato, A. (2002). Hyper inverse Wishart distribution for nondecomposable graphs and its application to Bayesian inference for Gaussian graphical models. *Scand. J. Statistics* 29, 391–411.
- Roweis, S. (1997). EM algorithms for PCA and SPCA. In *NIPS*.
- Rubin, D. (1998). Using the SIR algorithm to simulate posterior distributions. In *Bayesian Statistics 3*.
- Rue, H. and L. Held (2005). Gaussian Markov Random Fields: Theory and Applications, Volume 104 of Monographs on Statistics and Applied Probability. London: Chapman & Hall.
- Rue, H., S. Martino, and N. Chopin (2009). Approximate Bayesian Inference for Latent Gaussian Models Using Integrated Nested Laplace Approximations. J. of Royal Stat. Soc. Series B 71, 319–392.
- Rumelhart, D., G. Hinton, and R. Williams (1986). Learning internal representations by error propagation. In D. Rumelhart, J. McClelland, and the PDD Research Group (Eds.), Parallel Distributed Processing: Explorations in the Microstructure of Cognition. MIT Press.

- Ruppert, D., M. Wand, and R. Carroll (2003). *Semiparametric Regression*. Cambridge University Press.
- Rush, A. M. and M. Collins (2012). A tutorial on Lagrangian relaxation and dual decomposition for NLP. Technical report, Columbia U.
- Russell, S., J. Binder, D. Koller, and K. Kanazawa (1995). Local learning in probabilistic networks with hidden variables. In *Intl. Joint Conf. on* AI
- Russell, S. and P. Norvig (1995). Artificial Intelligence: A Modern Approach. Englewood Cliffs, NJ: Prentice Hall.
- Russell, S. and P. Norvig (2002). Artificial Intelligence: A Modern Approach. Prentice Hall. 2nd edition.
- Russell, S. and P. Norvig (2010). Artificial Intelligence: A Modern Approach. Prentice Hall. 3rd edition.
- S. and M. Black (2009, April). Fields of experts. *Intl. J. Computer Vision 82*(2), 205–229.
- Sachs, K., O. Perez, D. Pe'er, D. Lauffenburger, and G. Nolan (2005). Causal protein-signaling networks derived from multiparameter single-cell data. *Science* 308.
- Sahami, M. and T. Heilman (2006). A Web-based Kernel Function for Measuring the Similarity of Short Text Snippets. In WWW conference.
- Salakhutdinov, R. (2009). Deep Generative Models. Ph.D. thesis, U. Toronto.
- Salakhutdinov, R. and G. Hinton (2009). Deep Boltzmann machines. In AllStatistics, Volume 5, pp. 448– 455.
- Salakhutdinov, R. and G. Hinton (2010). Replicated Softmax: an Undirected Topic Model. In NIPS.
- Salakhutdinov, R. and H. Larochelle (2010). Efficient Learning of Deep Boltzmann Machines. In All Statistics.
- Salakhutdinov, R. and A. Mnih (2008). Probabilistic matrix factorization. In *NIPS*, Volume 20.

- Salakhutdinov, R. and S. Roweis (2003). Adaptive overrelaxed bound optimization methods. In Proceedings of the International Conference on Machine Learning, Volume 20, pp. 664–671.
- Salakhutdinov, R., J. Tenenbaum, and A. Torralba (2011). Learning To Learn with Compound HD Models. In NIPS.
- Salakhutdinov, R. R., A. Mnih, and G. E. Hinton (2007). Restricted boltzmann machines for collaborative filtering. In *Intl. Conf. on Machine Learning*, Volume 24, pp. 791–798.
- Salojarvi, J., K. Puolamaki, and S. Klaski (2005). On discriminative joint density modeling. In Proc. European Conf. on Machine Learning.
- Sampson, F. (1968). A Novitiate in a Period of Change: An Experimental and Case Study of Social Relationships. Ph.D. thesis, Cornell.
- Santner, T., B. Williams, and W. Notz (2003). *The Design and Analysis of Computer Experiments*. Springer.
- Sarkar, J. (1991). One-armed bandit problems with covariates. The Annals of Statistics 19(4), 1978–2002.
- Sato, M. and S. Ishii (2000). On-line EM algorithm for the normalized Gaussian network. *Neural Computation* 12, 407–432.
- Saul, L., T. Jaakkola, and M. Jordan (1996). Mean Field Theory for Sigmoid Belief Networks. J. of AI Research 4, 61–76.
- Saul, L. and M. Jordan (1995). Exploiting tractable substructures in intractable networks. In NIPS, Volume 8.
- Saul, L. and M. Jordan (2000). Attractor dynamics in feedforward neural networks. Neural Computation 12, 1313–1335.
- Saunders, C., J. Shawe-Taylor, and A. Vinokourov (2003). String Kernels, Fisher Kernels and Finite State Automata. In NIPS.
- Savage, R., K. Heller, Y. Xi, Z. Ghahramani, W. Truman, M. Grant, K. Denby, and D. Wild (2009). R/BHC: fast Bayesian hierarchical clustering for microarray data. BMC Bioinformatics 10(242).

- Schaefer, J. and K. Strimmer (2005). A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Statist. Appl. Genet. Mol. Biol 4(32).
- Schapire, R. (1990). The strength of weak learnability. *Machine Learn*ing 5, 197–227.
- Schapire, R. and Y. Freund (2012). Boosting: Foundations and Algorithms. MIT Press.
- Schapire, R., Y. Freund, P. Bartlett, and W. Lee (1998). Boosting the margin: a new explanation for the effectiveness of voting methods. *Annals of Statistics* 5, 1651–1686.
- Scharstein, D. and R. Szeliski (2002). A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Intl. J. Computer Vision 47(1), 7–42.
- Schaul, T., S. Zhang, and Y. LeCun (2012). No more pesky learning rates. Technical report, Courant Instite of Mathematical Sciences.
- Schmee, J. and G. Hahn (1979). A simple method for regresssion analysis with censored data. *Technometrics* 21, 417–432.
- Schmidt, M. (2010). Graphical model structure learning with L1 regularization. Ph.D. thesis, UBC.
- Schmidt, M., G. Fung, and R. Rosales (2009). Optimization methods for $\ell-1$ regularization. Technical report, U. British Columbia.
- Schmidt, M. and K. Murphy (2009). Modeling Discrete Interventional Data using Directed Cyclic Graphical Models. In *UAI*.
- Schmidt, M., K. Murphy, G. Fung, and R. Rosales (2008). Structure Learning in Random Fields for Heart Motion Abnormality Detection. In CVPR.
- Schmidt, M., A. Niculescu-Mizil, and K. Murphy (2007). Learning Graphical Model Structure using L1-Regularization Paths. In AAAI.
- Schmidt, M., E. van den Berg, M. Friedlander, and K. Murphy (2009). Optimizing Costly Functions with Simple Constraints: A Limited-Memory Projected Quasi-Newton Algorithm. In AI & Statistics.

- Schniter, P., L. C. Potter, and J. Ziniel (2008). Fast Bayesian Matching Pursuit: Model Uncertainty and Parameter Estimation for Sparse Linear Models. Technical report, U. Ohio. Submitted to IEEE Trans. on Signal Processing.
- Schnitzspan, P., S. Roth, and B. Schiele (2010). Automatic discovery of meaningful object parts with latent CRFs. In CVPR.
- Schoelkopf, B. and A. Smola (2002).

 Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press.
- Schoelkopf, B., A. Smola, and K.-R. Mueller (1998). Nonlinear component analysis as a kernel eigenvalue problem. *Neural Computation* 10, 1299 – 1319.
- Schraudolph, N. N., J. Yu, and S. Günter (2007). A Stochastic Quasi-Newton Method for Online Convex Optimization. In *All Statistics*, pp. 436–443.
- Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics 6(2), 461âÅŞ464.
- Schwarz, R. and Y. Chow (1990). The n-best algorithm: an efficient and exact procedure for finding the n most likely hypotheses. In *Intl. Conf. on Acoustics, Speech and Sig*nal *Proc.*
- Schweikerta, G., A. Zien, G. Zeller, J. Behr, C. Dieterich, C. Ong, P. Philips, F. D. Bona, L. Hartmann, A. Bohlen, N. KrÄijger, S. Sonnenburg, and G. RÅd'tsch (2009). mGene: Accurate SVM-based Gene Finding with an Application to Nematode Genomes. *Genome Research*, 19, 2133–2143.
- Scott, D. (1979). On optimal and data-based histograms. *Biometrika* 66(3), 605–610.
- Scott, J. G. and C. M. Carvalho (2008). Feature-inclusion stochastic search for gaussian graphical models. *J.* of Computational and Graphical Statistics 17(4), 790–808.
- Scott, S. (2009). Data augmentation, frequentist estimation, and the bayesian analysis of multinomial logit models. *Statistical Papers*.
- Scott, S. (2010). A modern Bayesian look at the multi-armed bandit. Applied Stochastic Models in Business and Industry 26, 639–658.

- Sedgewick, R. and K. Wayne (2011). *Algorithms*. Addison Wesley.
- Seeger, M. (2008). Bayesian Inference and Optimal Design in the Sparse Linear Model. J. of Machine Learning Research 9, 759–813.
- Seeger, M. and H. Nickish (2008). Compressed sensing and bayesian experimental design. In *Intl. Conf.* on Machine Learning.
- Segal, D. (2011, 12 February). The dirty little secrets of search. New York Times.
- Seide, F., G. Li, and D. Yu (2011). Conversational Speech Transcription Using Context-Dependent Deep Neural Networks. In *Interspeech*.
- Sejnowski, T. and C. Rosenberg (1987). Parallel networks that learn to pronounce english text. Complex Systems 1, 145–168.
- Sellke, T., M. J. Bayarri, and J. Berger (2001). Calibration of p Values for Testing Precise Null Hypotheses. *The American Statistician* 55(1), 62–71.
- Serre, T., L. Wolf, and T. Poggio (2005). Object recognition with features inspired by visual cortex. In CVPR, pp. 994–1000.
- Shachter, R. (1998). Bayes-ball: The rational pastime (for determining irrelevance and requisite information in belief networks and influence diagrams). In UAI.
- Shachter, R. and C. R. Kenley (1989). Gaussian influence diagrams. *Managment Science* 35(5), 527–550.
- Shachter, R. D. and M. A. Peot (1989). Simulation approaches to general probabilistic inference on belief networks. In *UAI*, Volume 5.
- Shafer, G. R. and P. P. Shenoy (1990).Probability propagation. Annals of Mathematics and AI 2, 327–352.
- Shafto, P., C. Kemp, V. Mansinghka, M. Gordon, and J. B. Tenenbaum (2006). Learning cross-cutting systems of categories. In Cognitive Science Conference.
- Shahaf, D., A. Chechetka, and C. Guestrin (2009). Learning Thin Junction Trees via Graph Cuts. In *AISTATS*.

- Shalev-Shwartz, S., Y. Singer, and N. Srebro (2007). Pegasos: primal estimated sub-gradient solver for sym. In Intl. Conf. on Machine Learning.
- Shalizi, C. (2009). Cs 36-350 lecture 10: Principal components: mathematics, example, interpretation.
- Shan, H. and A. Banerjee (2010). Residual Bayesian co-clustering for matrix approximation. In *SIAM Intl. Conf. on Data Mining*.
- Shawe-Taylor, J. and N. Cristianini (2004). *Kernel Methods for Pattern Analysis*. Cambridge.
- Sheng, Q., Y. Moreau, and B. D. Moor (2003). Biclustering Microarray data by Gibbs sampling. *Bioinformatics* 19, ii196-ii205.
- Shi, J. and J. Malik (2000). Normalized cuts and image segmentation. IEEE Trans. on Pattern Analysis and Machine Intelligence.
- Shoham, Y. and K. Leyton-Brown (2009). Multiagent Systems: Algorithmic, Game- Theoretic, and Logical Foundations. Cambridge University Press.
- Shotton, J., A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. Kipman, and A. Blake (2011). Real-time human pose recognition in parts from a single depth image. In CVPR.
- Shwe, M., B. Middleton, D. Heckerman, M. Henrion, E. Horvitz, H. Lehmann, and G. Cooper (1991). Probabilistic diagnosis using a reformulation of the internist-1/qmr knowledge base. *Methods. Inf. Med* 30(4), 241–255.
- Siddiqi, S., B. Boots, and G. Gordon (2007). A constraint generation approach to learning stable linear dynamical systems. In *NIPS*.
- Siepel, A. and D. Haussler (2003). Combining phylogenetic and hidden markov models in biosequence analysis. In Proc. 7th Intl. Conf. on Computational Molecular Biology (RECOMB).
- Silander, T., P. Kontkanen, and P. MyllymĀd'ki (2007). On Sensitivity of the MAP Bayesian Network Structure to the Equivalent Sample Size Parameter. In *UAI*, pp. 360–367.

- Silander, T. and P. Myllmaki (2006). A simple approach for finding the globally optimal Bayesian network structure. In *UAI*.
- Sill, J., G. Takacs, L. Mackey, and D. Lin (2009). Feature-weighted linear stacking. Technical report, .
- Silverman, B. W. (1984). Spline smoothing: the equivalent variable kernel method. *Annals of Statistics* 12(3), 898–916.
- Simard, P., D. Steinkraus, and J. Platt (2003). Best practices for convolutional neural networks applied to visual document analysis. In Intl. Conf. on Document Analysis and Recognition (ICDAR).
- Simon, D. (2006). Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches. Wiley.
- Singliar, T. and M. Hauskrecht (2006). Noisy-OR Component Analysis and its Application to Link Analysis. J. of Machine Learning Research 7.
- Smidl, V. and A. Quinn (2005). *The Variational Bayes Method in Signal Processing.* Springer.
- Smith, A. F. M. and A. E. Gelfand (1992). Bayesian statistics without tears: A sampling-resampling perspective. The American Statistician 46(2), 84–88.
- Smith, R. and P. Cheeseman (1986). On the representation and estimation of spatial uncertainty. *Intl. J. Robotics Research* 5(4), 56–68.
- Smith, V., J. Yu, T. Smulders, A. Hartemink, and E. Jarvis (2006). Computational Inference of Neural Information Flow Networks. PLOS Computational Biology 2, 1436– 1439.
- Smolensky, P. (1986). Information processing in dynamical systems: foundations of harmony theory. In D. Rumehart and J. McClelland (Eds.), Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Volume 1. McGraw-Hill.
- Smyth, P., D. Heckerman, and M. I. Jordan (1997). Probabilistic independence networks for hidden Markov probability models. *Neural Computation* 9(2), 227–269.
- Sohl-Dickstein, J., P. Battaglino, and M. DeWeese (2011). In *Intl. Conf.* on Machine Learning.

- Sollich, P. (2002). Bayesian methods for support vector machines: evidence and predictive class probabilities. Machine Learning 46, 21– 52.
- Sontag, D., A. Globerson, and T. Jaakkola (2011). Introduction to dual decomposition for inference. In S. Sra, S. Nowozin, and S. J. Wright (Eds.), Optimization for Machine Learning. MIT Press.
- Sorenson, H. and D. Alspach (1971). Recursive Bayesian estimation using Gaussian sums. Automatica 7, 465âĂS 479.
- Soussen, C., J. Iier, D. Brie, and J. Duan (2010). From Bernoulli-Gaussian deconvolution to sparse signal restoration. Technical report, Centre de Recherche en Automatique de Nancy.
- Spaan, M. and N. Vlassis (2005). Perseus: Randomized Point-based Value Iteration for POMDPs. *J. of AI* Research 24, 195–220.
- Spall, J. (2003). Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control. Wiley.
- Speed, T. (2011, December). A correlation for the 21st century. *Science* 334, 152–1503.
- Speed, T. and H. Kiiveri (1986). Gaussian Markov distributions over finite graphs. Annals of Statistics 14(1), 138–150.
- Spiegelhalter, D. J. and S. L. Lauritzen (1990). Sequential updating of conditional probabilities on directed graphical structures. Networks 20.
- Spirtes, P., C. Glymour, and R. Scheines (2000). Causation, Prediction, and Search. MIT Press. 2nd edition.
- Srebro, N. (2001). Maximum Likelihood Bounded Tree-Width Markov Networks. In UAI.
- Srebro, N. and T. Jaakkola (2003). Weighted low-rank approximations. In *Intl. Conf. on Machine Learning*.
- Steinbach, M., G. Karypis, and V. Kumar (2000). A comparison of document clustering techniques. In KDD Workshop on Text Mining.

Stephens, M. (2000). Dealing with label-switching in mixture models. *J. Royal Statistical Society, Series B* 62, 795–809.

- Stern, D., R. Herbrich, and T. Graepel (2009). Matchbox: Large Scale Bayesian Recommendations. In Proc. 18th. Intl. World Wide Web Conference.
- Steyvers, M. and T. Griffiths (2007). Probabilistic topic models. In T. Landauer, D. McNamara, S. Dennis, and W. Kintsch (Eds.), Latent Semantic Analysis: A Road to Meaning. Laurence Erlbaum.
- Stigler, S. (1986). *The history of statis-tics*. Harvard University press.
- Stolcke, A. and S. M. Omohundro (1992). Hidden Markov Model Induction by Bayesian Model Merging. In *NIPS*-5.
- Stoyanov, V., A. Ropson, and J. Eisner (2011). Empirical risk minimization of graphical model parameters given approximate inference, decoding, and model structure. In *AllStatistics*.
- Sudderth, E. (2006). *Graphical Models* for Visual Object Recognition and Tracking. Ph.D. thesis, MIT.
- Sudderth, E. and W. Freeman (2008, March). Signal and Image Processing with Belief Propagation. *IEEE Signal Processing Magazine*.
- Sudderth, E., A. Ihler, W. Freeman, and A. Willsky (2003). Nonparametric Belief Propagation. In *CVPR*.
- Sudderth, E., A. Ihler, M. Isard, W. Freeman, and A. Willsky (2010). Nonparametric Belief Propagation. Comm. of the ACM 53(10).
- Sudderth, E. and M. Jordan (2008). Shared Segmentation of Natural Scenes Using Dependent Pitman-Yor Processes. In NIPS.
- Sudderth, E., M. Wainwright, and A. Willsky (2008). Loop series and bethe variational bounds for attractive graphical models. In NIPS.
- Sun, J., N. Zheng, and H. Shum (2003). Stereo matching using belief propagation. *IEEE Trans. on Pat*tern Analysis and Machine Intelligence 25(7), 787–800.

- Sun, L., S. Ji, S. Yu, and J. Ye (2009). On the equivalence between canonical correlation analysis and orthonormalized partial least squares. In *Intl. Joint Conf. on AI.*
- Sunehag, P., J. Trumpf, S. V. N. Vishwanathan, and N. N. Schraudolph (2009). Variable Metric Stochastic Approximation Theory. In AllStatistics, pp. 560–566.
- Sutton, C. and A. McCallum (2007). Improved Dynamic Schedules for Belief Propagation. In *UAI*.
- Sutton, R. and A. Barto (1998). Reinforcment Learning: An Introduction. MIT Press.
- Swendsen, R. and J.-S. Wang (1987). Nonuniversal critical dynamics in Monte Carlo simulations. *Physical Review Letters* 58, 86–88.
- Swersky, K., B. Chen, B. Marlin, and N. de Freitas (2010). A Tutorial on Stochastic Approximation Algorithms for Training Restricted Boltzmann Machines and Deep Belief Nets. In *Information Theory and Applications (ITA) Workshop.*
- Szeliski, R. (2010). Computer Vision: Algorithms and Applications. Springer.
- Szeliski, R., R. Zabih, D. Scharstein, O. Veksler, V. Kolmogorov, A. Agarwala, M. Tappen, and C. Rother (2008). A Comparative Study of Energy Minimization Methods for Markov Random Fields with Smoothness-Based Priors. *IEEE Trans. on Pattern Analysis and Machine Intelligence* 30(6), 1068–1080.
- Szepesvari, C. (2010). Algorithms for Reinforcement Learning. Morgan Claypool.
- Taleb, N. (2007). The Black Swan: The Impact of the Highly Improbable. Random House.
- Talhouk, A., K. Murphy, and A. Doucet (2011). Efficient Bayesian Inference for Multivariate Probit Models with Sparse Inverse Correlation Matrices. J. Comp. Graph. Statist..
- Tanner, M. (1996). *Tools for statistical inference*. Springer.
- Tanner, M. and W. Wong (1987). The calculation of posterior distributions by data augmentation. J. of the Am. Stat. Assoc. 82(398), 528– 540.

- Tarlow, D., I. Givoni, and R. Zemel (2010). Hop-map: efficient message passing with high order potentials. In Al/Statistics.
- Taskar, B., C. Guestrin, and D. Koller (2003). Max-margin markov networks. In NIPS.
- Taskar, B., D. Klein, M. Collins, D. Koller, and C. Manning (2004). Max-margin parsing. In Proc. Empirical Methods in Natural Language Processing.
- Teh, Y. W. (2006). A hierarchical Bayesian language model based on Pitman-Yor processes. In Proc. of the Assoc. for Computational Linguistics, pp. 985=992.
- Teh, Y.-W., M. Jordan, M. Beal, and D. Blei (2006). Hierarchical Dirichlet processes. J. of the Am. Stat. Assoc. 101(476), 1566–1581.
- Tenenbaum, J. (1999). A Bayesian framework for concept learning. Ph.D. thesis, MIT.
- Tenenbaum, J. B. and F. Xu (2000). Word learning as bayesian inference. In *Proc. 22nd Annual Conf.of* the Cognitive Science Society.
- Theocharous, G., K. Murphy, and L. Kaelbling (2004). Representing hierarchical POMDPs as DBNs for multi-scale robot localization. In IEEE Intl. Conf. on Robotics and Automation.
- Thiesson, B., C. Meek, D. Chickering, and D. Heckerman (1998). Learning mixtures of DAG models. In UAI.
- Thomas, A. and P. Green (2009). Enumerating the decomposable neighbours of a decomposable graph under a simple perturbation scheme. *Comp. Statistics and Data Analysis* 53, 1232–1238.
- Thrun, S., W. Burgard, and D. Fox (2006). *Probabilistic Robotics*. MIT Press.
- Thrun, S., M. Montemerlo, D. Koller, B. Wegbreit, J. Nieto, and E. Nebot (2004). Fastslam: An efficient solution to the simultaneous localization and mapping problem with unknown data association. *J. of Machine Learning Research 2004.*
- Thrun, S. and L. Pratt (Eds.) (1997). Learning to learn. Kluwer.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. *J. Royal. Statist. Soc B* 58(1), 267–288.

- Tibshirani, R., G. Walther, and T. Hastie (2001). Estimating the number of clusters in a dataset via the gap statistic. *J. of Royal Stat. Soc. Series B* 32(2), 411–423.
- Tieleman, T. (2008). Training restricted Boltzmann machines using approximations to the likelihood gradient. In *Proceedings of the 25th international conference on Machine learning*, pp. 1064–1071. ACM New York, NY, USA.
- Ting, J., A. D'Souza, S. Vijayakumar, and S. Schaal (2010). Efficient learning and feature selection in high-dimensional regression. *Neu*ral Computation 22(4), 831–886.
- Tipping, M. (1998). Probabilistic visualization of high-dimensional binary data. In *NIPS*.
- Tipping, M. (2001). Sparse bayesian learning and the relevance vector machine. *J. of Machine Learning Research* 1, 211–244.
- Tipping, M. and C. Bishop (1999). Probabilistic principal component analysis. J. of Royal Stat. Soc. Series B 21(3), 611–622.
- Tipping, M. and A. Faul (2003). Fast marginal likelihood maximisation for sparse bayesian models. In *Al/S-tats*
- Tishby, N., F. Pereira, and W. Biale (1999). The information bottleneck method. In *The 37th annual Allerton Conf. on Communication, Control, and Computing*, pp. 368âÁŞ377.
- Tomas, M., D. Anoop, K. Stefan, B. Lukas, and C. Jan (2011). Empirical evaluation and combination of advanced language modeling techniques. In Proc. 12th Annual Conf. of the Intl. Speech Communication Association (INTERSPEECH).
- Torralba, A., R. Fergus, and Y. Weiss (2008). Small codes and large image databases for recognition. In *CVPR*.
- Train, K. (2009). Discrete choice methods with simulation. Cambridge University Press. Second edition.

- Tseng, P. (2008). On Accelerated Proximal Gradient Methods for Convex-Concave Optimization. Technical report, U. Washington.
- Tsochantaridis, I., T. Joachims, T. Hofmann, and Y. Altun (2005, September). Large margin methods for structured and interdependent output variables. *J. of Machine Learning Research* 6, 1453–1484.
- Tu, Z. and S. Zhu (2002). Image Segmentation by Data-Driven Markov Chain Monte Carlo. IEEE Trans. on Pattern Analysis and Machine Intelligence 24(5), 657–673.
- Turian, J., L. Ratinov, and Y. Bengio (2010). Word representations: a simple and general method for semi-supervised learning. In *Proc.* ACL.
- Turlach, B., W. Venables, and S. Wright (2005). Simultaneous variable selection. *Technometrics* 47(3), 349–363.
- Turner, R., P. Berkes, M. Sahani, and D. Mackay (2008). Counterexamples to variational free energy compactness folk theorems. Technical report, U. Cambridge.
- Ueda, N. and R. Nakano (1998). Deterministic annealing EM algorithm. Neural Networks 11, 271–282.
- Usunier, N., D. Buffoni, and P. Gallinari (2009). Ranking with ordered weighted pairwise classification.
- Vaithyanathan, S. and B. Dom (1999). Model selection in unsupervised learning with applications to document clustering. In *Intl. Conf. on Machine Learning*.
- van der Merwe, R., A. Doucet, N. de Freitas, and E. Wan (2000). The unscented particle filter. In NIPS-13.
- van Dyk, D. and X.-L. Meng (2001). The Art of Data Augmentation. J. Computational and Graphical Statistics 10(1), 1–50.
- Vandenberghe, L. (2006). Applied numerical computing: Lecture notes.
- Vandenberghe, L. (2011). Ee236c optimization methods for large-scale systems.
- Vanhatalo, J. (2010). Speeding up the inference in Gaussian process models. Ph.D. thesis, Helsinki Univ. Technology.

- Vanhatalo, J., V. PietilÄdinen, and A. Vehtari (2010). Approximate inference for disease mapping with sparse gaussian processes. Statistics in Medicine 29(15), 1580–1607.
- Vapnik, V. (1998). Statistical Learning Theory. Wiley.
- Vapnik, V., S. Golowich, and A. Smola (1997). Support vector method for function approximation, regression estimation, and signal processing. In NIPS.
- Varian, H. (2011). Structural time series in R: a Tutorial. Technical report, Google.
- Verma, T. and J. Pearl (1990). Equivalence and synthesis of causal models. In *UAI*.
- Viinikanoja, J., A. Klami, and S. Kaski (2010). Variational Bayesian Mixture of Robust CCA Models. In Proc. European Conf. on Machine Learning.
- Vincent, P. (2011). A Connection between Score Matching and Denoising Autoencoders. Neural Computation 23(7), 1661–1674.
- Vincent, P., H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol (2010). Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion. J. of Machine Learning Research 11, 3371– 3408.
- Vinh, N., J. Epps, and J. Bailey (2009). Information theoretic measures for clusterings comparison: Is a correction for chance necessary? In Intl. Conf. on Machine Learning.
- Vinyals, M., J. Cerquides, J. Rodriguez-Aguilar, and A. Farinelli (2010). Worst-case bounds on the quality of max-product fixed-points. In NIPS.
- Viola, P. and M. Jones (2001). Rapid object detection using a boosted cascade of simple classifiers. In CVPR.
- Virtanen, S. (2010). Bayesian exponential family projections. Master's thesis, Aalto University.
- Vishwanathan, S. V. N. and A. Smola (2003). Fast kernels for string and tree matching. In *NIPS*.

Viterbi, A. (1967). Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Trans. on Information Theory 13(2), 260âĂ\$269.

- von Luxburg, U. (2007). A tutorial on spectral clustering. *Statistics and Computing* 17(4), 395–416.
- Wagenmakers, E.-J., R. Wetzels, D. Borsboom, and H. van der Maas (2011). Why Psychologists Must Change the Way They Analyze Their Data: The Case of Psi. Journal of Personality and Social Psychology.
- Wagner, D. and F. Wagner (1993). Between min cut and graph bisection. In Proc. 18th Intl. Symp. on Math. Found. of Comp. Sci., pp. 744– 750.
- Wainwright, M., T. Jaakkola, and A. Willsky (2001). Tree-based reparameterization for approximate estimation on loopy graphs. In NIPS-14.
- Wainwright, M., T. Jaakkola, and A. Willsky (2005). A new class of upper bounds on the log partition function. *IEEE Trans. Info. The*ory 51(7), 2313–2335.
- Wainwright, M., P. Ravikumar, and J. Lafferty (2006). Inferring graphical model structure using $\ell-1$ -regularized pseudo-likelihood. In NIPS.
- Wainwright, M. J., T. S. Jaakkola, and A. S. Willsky (2003). Tree-based reparameterization framework for analysis of sum-product and related algorithms. *IEEE Trans. on In*formation Theory 49(5), 1120–1146.
- Wainwright, M. J. and M. I. Jordan (2008a). Graphical models, exponential families, and variational inference. Foundations and Trends in Machine Learning 1–2, 1–305.
- Wainwright, M. J. and M. I. Jordan (2008b). Graphical models, exponential families, and variational inference. Foundations and Trends in Machine Learning 1–2, 1–305.
- Wallach, H., I. Murray, R. Salakhutdinov, and D. Mimno (2009). Evaluation methods for topic models. In Intl. Conf. on Machine Learning.
- Wan, E. A. and R. V. der Merwe (2001). The Unscented Kalman Filter. In S. Haykin (Ed.), Kalman Filtering and Neural Networks. Wiley.

- Wand, M. (2009). Semiparametric regression and graphical models. *Aust. N. Z. J. Stat. 51*(1), 9–41.
- Wand, M. P., J. T. Ormerod, S. A. Padoan, and R. Fruhrwirth (2011). Mean Field Variational Bayes for Elaborate Distributions. *Bayesian Analysis* 6(4), 847 – 900.
- Wang, C. (2007). Variational Bayesian Approach to Canonical Correlation Analysis. *IEEE Trans. on Neural Net-works* 18(3), 905–910.
- Wasserman, L. (2004). All of statistics. A concise course in statistical inference. Springer.
- Wei, G. and M. Tanner (1990). A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithms. J. of the Am. Stat. Assoc. 85(411), 699–704.
- Weinberger, K., A. Dasgupta, J. Attenberg, J. Langford, and A. Smola (2009). Feature hashing for large scale multitask learning. In Intl. Conf. on Machine Learning.
- Weiss, D., B. Sapp, and B. Taskar (2010). Sidestepping intractable inference with structured ensemble cascades. In NIPS.
- Weiss, Y. (2000). Correctness of local probability propagation in graphical models with loops. *Neural Computation 12*, 1-41.
- Weiss, Y. (2001). Comparing the mean field method and belief propagation for approximate inference in MRFs. In Saad and Opper (Eds.), Advanced Mean Field Methods. MIT Press.
- Weiss, Y. and W. T. Freeman (1999). Correctness of belief propagation in Gaussian graphical models of arbitrary topology. In NIPS-12.
- Weiss, Y. and W. T. Freeman (2001a). Correctness of belief propagation in Gaussian graphical models of arbitrary topology. Neural Computation 13(10), 2173–2200.
- Weiss, Y. and W. T. Freeman (2001b). On the optimality of solutions of the max-product belief propagation algorithm in arbitrary graphs. *IEEE Trans. Information Theory, Special Issue on Codes on Graphs and Iterative Algorithms* 47(2), 723–735.
- Weiss, Y., A. Torralba, and R. Fergus (2008). Spectral hashing. In *NIPS*.

- Welling, M., C. Chemudugunta, and N. Sutter (2008). Deterministic latent variable models and their pitfalls. In Intl. Conf. on Data Mining.
- Welling, M., T. Minka, and Y. W. Teh (2005). Structured region graphs: Morphing EP into GBP. In *UAI*.
- Welling, M., M. Rosen-Zvi, and G. Hinton (2004). Exponential family harmoniums with an application to information retrieval. In NIPS-14.
- Welling, M. and C. Sutton (2005). Learning in Markov random fields with contrastive free energies. In Tenth International Workshop on Artificial Intelligence and Statistics (AISTATS).
- Welling, M. and Y.-W. Teh (2001). Belief optimization for binary networks: a stable alternative to loopy belief propagation. In *UAI*.
- Werbos, P. (1974). Beyond regression: New Tools for Prediction and Analysis in the Behavioral Sciences. Ph.D. thesis, Harvard.
- West, M. (1987). On scale mixtures of normal distributions. *Biometrika* 74, 646–648.
- West, M. (2003). Bayesian Factor Regression Models in the "Large p, Small n" Paradigm. *Bayesian Statistics* 7.
- West, M. and J. Harrison (1997). Bayesian forecasting and dynamic models. Springer.
- Weston, J., S. Bengio, and N. Usunier (2010). Large Scale Image Annotation: Learning to Rank with Joint Word-Image Embeddings. In Proc. European Conf. on Machine Learning.
- Weston, J., F. Ratle, and R. Collobert (2008). Deep Learning via Semi-Supervised Embedding. In *Intl. Conf. on Machine Learning*.
- Weston, J. and C. Watkins (1999). Multi-lcass support vector machines. In *ESANN*.
- Wiering, M. and M. van Otterlo (Eds.) (2012). Reinforcement learning: State-of-the-art. Springer.
- Wilkinson, D. and S. Yeung (2002). Conditional simulation from highly structured gaussian systems with application to blocking-mcmc for the bayesian analysis of very large linear models. Statistics and Computing 12, 287–300.

Williams, C. (1998). Computation with infinite networks. *Neural Computation 10*(5), 1203–1216.

- Williams, C. (2000). A MCMC approach to Hierarchical Mixture Modelling . In S. A. Solla, T. K. Leen, and K.-R. Müller (Eds.), NIPS. MIT Press.
- Williams, C. (2002). On a Connection between Kernel PCA and Metric Multidimensional Scaling. Machine Learning J. 46(1).
- Williams, O. and A. Fitzgibbon (2006). Gaussian process implicit surfaces. In Gaussian processes in practice.
- Williamson, S. and Z. Ghahramani (2008). Probabilistic models for data combination in recommender systems. In NIPS Workshop on Learning from Multiple Sources.
- Winn, J. and C. Bishop (2005). Variational message passing. J. of Machine Learning Research 6, 661–694.
- Wipf, D. and S. Nagarajan (2007). A new view of automatic relevancy determination. In NIPS.
- Wipf, D. and S. Nagarajan (2010, April). Iterative Reweighted ℓ − 1 and ℓ − 2 Methods for Finding Sparse Solutions. J. of Selected Topics in Signal Processing (Special Issue on Compressive Sensing) 4(2).
- Wipf, D., B. Rao, and S. Nagarajan (2010). Latent variable bayesian models for promoting sparsity. IEEE Transactions on Information Theory.
- Witten, D., R. Tibshirani, and T. Hastie (2009). A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. *Bio*statistics 10(3), 515–534.
- Wolpert, D. (1992). Stacked generalization. *Neural Networks* 5(2), 241–259.
- Wolpert, D. (1996). The lack of a priori distinctions between learning algorithms. *Neural Computation 8*(7), 1341–1390.
- Wong, F., C. Carter, and R. Kohn (2003). Efficient estimation of covariance selection models. *Biometrika* 90(4), 809–830.

- Wood, F., C. Archambeau, J. Gasthaus, L. James, and Y. W. Teh (2009). A stochastic memoizer for sequence data. In Intl. Conf. on Machine Learning.
- Wright, S., R. Nowak, and M. Figueiredo (2009). Sparse reconstruction by separable approximation. *IEEE Trans. on Signal Processing* 57(7), 2479–2493.
- Wu, T. T. and K. Lange (2008). Coordinate descent algorithms for lasso penalized regression. Ann. Appl. Stat 2(1), 224–244.
- Wu, Y., H. Tjelmeland, and M. West (2007). Bayesian CART: Prior structure and MCMC computations. J. of Computational and Graphical Statistics 16(1), 44-66.
- Xu, F. and J. Tenenbaum (2007). Word learning as Bayesian inference. Psychological Review 114(2).
- Xu, Z., V. Tresp, A. Rettinger, and K. Kersting (2008). Social network mining with nonparametric relational models. In ACM Workshop on Social Network Mining and Analysis (SNA-KDD 2008).
- Xu, Z., V. Tresp, K. Yu, and H.-P. Kriegel (2006). Infinite hidden relational models. In *UAI*.
- Xu, Z., V. Tresp, S. Yu, K. Yu, and H.-P. Kriegel (2007). Fast inference in infinite hidden relational models. In Workshop on Mining and Learning with Graphs.
- Xue, Y., X. Liao, L. Carin, and B. Krishnapuram (2007). Multi-task learning for classification with dirichlet process priors. J. of Machine Learning Research 8, 2007.
- Yadollahpour, P., D. Batra, and G. Shakhnarovich (2011). Diverse Mbest Solutions in MRFs. In NIPS workshop on Disrete Optimization in Machine Learning.
- Yan, D., L. Huang, and M. I. Jordan (2009). Fast approximate spectral clustering. In 15th ACM Conf. on Knowledge Discovery and Data Mining.
- Yang, A., A. Ganesh, S. Sastry, and Y. Ma (2010, Feb). Fast llminimization algorithms and an application in robust face recognition: A review. Technical Report UCB/EECS-2010-13, EECS Department, University of California, Berkeley.

- Yang, C., R. Duraiswami, and L. David (2005). Efficient kernel machines using the improved fast Gauss transform. In NIPS.
- Yang, S., B. Long, A. Smola, H. Zha, and Z. Zheng (2011). Collaborative competitive filtering: learning recommender using context of user choice. In Proc. Annual Intl. ACM SIGIR Conference.
- Yanover, C., O. Schueler-Furman, and Y. Weiss (2007). Minimizing and Learning Energy Functions for Side-Chain Prediction. In Recomb.
- Yaun, G.-X., K.-W. Chang, C.-J. Hsieh, and C.-J. Lin (2010). A Comparison of Optimization Methods and Software for Large-scale L1-regularized Linear Classification. J. of Machine Learning Research 11, 3183–3234.
- Yedidia, J., W. T. Freeman, and Y. Weiss (2001). Understanding belief propagation and its generalizations. In *Intl. Joint Conf. on AI*.
- Yoshida, R. and M. West (2010). Bayesian learning in sparse graphical factor models via annealed entropy. J. of Machine Learning Research 11, 1771–1798.
- Younes, L. (1989). Parameter estimation for imperfectly observed Gibbsian fields. Probab. Theory and Related Fields 82, 625–645.
- Yu, C. and T. Joachims (2009). Learning structural SVMs with latent variables. In *Intl. Conf. on Machine Learning*.
- Yu, S., K. Yu, V. Tresp, K. H-P., and M. Wu (2006). Supervised probabilistic principal component analysis. In Proc. of the Int'l Conf. on Knowledge Discovery and Data Mining.
- Yu, S.-Z. and H. Kobayashi (2006). Practical implementation of an efficient forward-backward algorithm for an explicit-duration hidden Markov model. IEEE Trans. on Signal Processing 54(5), 1947–1951.
- Yuan, M. and Y. Lin (2006). Model selection and estimation in regression with grouped variables. J. Royal Statistical Society, Series B 68(1), 49–67.
- Yuan, M. and Y. Lin (2007). Model selection and estimation in the gaussian graphical model. *Biometrika* 94(1), 19–35.

Yuille, A. (2001). CCCP algorithms to minimze the Bethe and Kikuchi free energies: convergent alternatives to belief propagation. Neural Computation 14, 1691–1722.

- Yuille, A. and A. Rangarajan (2003). The concave-convex procedure. *Neural Computation 15*, 915.
- Yuille, A. and S. Zheng (2009). Compositional noisy-logical learning. In Intl. Conf. on Machine Learning.
- Yuille, A. L. and X. He (2011). Probabilistic models of vision and maxmargin methods. Frontiers of Electrical and Electronic Engineering 7(1).
- Zellner, A. (1986). On assessing prior distributions and bayesian regression analysis with g-prior distributions. In Bayesian inference and decision techniques, Studies of Bayesian and Econometrics and Statistics volume 6. North Holland.
- Zhai, C. and J. Lafferty (2004). A study of smoothing methods for language models applied to information retrieval. ACM Trans. on Information Systems 22(2), 179–214.
- Zhang, N. (2004). Hierarchical latnet class models for cluster analysis. J. of Machine Learning Research, 301– 308.
- Zhang, N. and D. Poole (1996). Exploiting causal independence in Bayesian network inference. *J. of AI Research*, 301–328.
- Zhang, T. (2008). Adaptive Forward-Backward Greedy Algorithm for Sparse Learning with Linear Models. In NIPS.
- Zhang, X., T. Graepel, and R. Herbrich (2010). Bayesian Online Learning for Multi-label and Multi-variate Performance Measures. In AllStatistics.
- Zhao, J.-H. and P. L. H. Yu (2008, November). Fast ML Estimation for the Mixture of Factor Analyzers via an ECM Algorithm. *IEEE. Trans. on Neural Networks* 19(11).
- Zhao, P., G. Rocha, and B. Yu (2005). Grouped and Hierarchical Model Selection through Composite Absolute Penalties. Technical report, UC Berkeley.

- Zhao, P. and B. Yu (2007). Stagewise Lasso. *J. of Machine Learning Re*search 8, 2701–2726.
- Zhou, H., D. Karakos, S. Khudanpur, A. Andreou, and C. Priebe (2009). On Projections of Gaussian Distributions using Maximum Likelihood Criteria. In *Proc. of the Work*shop on Information Theory and its Applications.
- Zhou, M., H. Chen, J. Paisley, L. Ren, G. Sapiro, and L. Carin (2009). Non-parametric Bayesian Dictionary Learning for Sparse Image Representations. In NIPS.
- Zhou, X. and X. Liu (2008). The EM algorithm for the extended finite mixture of the factor analyzers model. Computational Statistics and Data Analysis 52, 3939–3953.
- Zhu, C. S., N. Y. Wu, and D. Mumford (1997, November). Minimax entropy principle and its application to texture modeling. *Neural Computation* 9(8).
- Zhu, J. and E. Xing (2010). Conditional topic random fields. In *Intl. Conf. on Machine Learning*.
- Zhu, L., Y. Chen, A.Yuille, and W. Freeman (2010). Latent hierarchical structure learning for object detection. In *CVPR*.
- Zhu, M. and A. Ghodsi (2006). Automatic dimensionality selection from the scree plot via the use of profile likelihood. Computational Statistics & Data Analysis 51, 918–930.
- Zhu, M. and A. Lu (2004). The counterintuitive non-informative prior for the bernoulli family. J. Statistics Education.
- Zinkevich, M. (2003). Online convex programming and generalized infinitesimal gradient ascent. In Intl. Conf. on Machine Learning, pp. 928å Ş936.
- Zobay, O. (2009). Mean field inference for the Dirichlet process mixture model. *Electronic J. of Statistics 3*, 507–545.
- Zoeter, O. (2007). Bayesian generalized linear models in a terabyte world. In Proc. 5th International Symposium on image and Signal Processing and Analysis.

- Zou, H. (2006). The adaptive Lasso and its oracle properties. *J. of the Am. Stat. Assoc.*, 1418–1429.
- Zou, H. and T. Hastie (2005). Regularization and variable selection via the elastic net. *J. of Royal Stat. Soc. Series B* 67(2), 301–320.
- Zou, H., T. Hastie, and R. Tibshirani (2006). Sparse principal compo-
- nent analysis. J. of Computational and Graphical Statistics 15(2), 262-
- Zou, H., T. Hastie, and R. Tibshirani (2007). On the "Degrees of Freedom" of the Lasso. *Annals of Statistics* 35(5), 2173–2192.
- Zou, H. and R. Li (2008). Onestep sparse estimates in noncon-
- cave penalized likelihood models. *Annals of Statistics 36*(4), 1509–1533.
- Zweig, G. and M. Padmanabhan (2000). Exact alpha-beta computation in logarithmic space with application to map word graph construction. In *Proc. Intl. Conf. Spoken Lang.*

Index to code

agglomDemo, 894 amazonSellerDemo, 155 arsDemo, 819 arsEnvelope, 819

bayesChangeOfVar, 151 bayesLinRegDemo2d, 233 bayesTtestDemo, 138 beliefPropagation, 768 bernoulliEntropyFig, 57 besselk, 477 betaBinomPostPredDemo, 79 betaCredibleInt, 153 betaHPD, 153, 154 betaPlotDemo, 43 biasVarModelComplexity3, 204 bimodalDemo, 150 binaryFaDemoTipping, 403 binomDistPlot, 35 binomialBetaPosteriorDemo, 75 bleiLDAperplexityPlot, 955 bolassoDemo, 440 boostingDemo, 555, 558 bootstrapDemoBer, 192

cancerHighDimClassifDemo, 110 cancerRatesEb, 172 casinoDemo, 606, 607 centralLimitDemo, 52 changeOfVarsDemold, 53 chowliuTreeDemo, 913 coinsModelSelDemo, 164 contoursSSEdemo, 219 convexFnHand, 222 curseDimensionality, 18

demard, 580
depnetFit, 909
dirichlet3dPlot, 48
dirichletHistogramDemo, 48
discreteProbDistFig, 28
discrimAnalysisDboundariesDemo, 103, 105
discrimAnalysisFit, 106
discrimAnalysisHeightWeightDemo, 145
discrimAnalysisPredict, 106
dpmGauss2dDemo, 888
dpmSampleDemo, 881
dtfit, 545
dtreeDemoIris, 549, 550

elasticDistortionsDemo, 567 emLogLikelihoodMax, 365

faBiplotDemo, 383 fisherDiscrimVowelDemo, 274 fisheririsDemo, 6 fisherLDAdemo, 272 fmGibbs, 843

gammaPlotDemo, 41, 150 gammaRainfallDemo, 41 gampdf, 41 gaussCondition2Ddemo2, 112 gaussHeightWeight, 102 gaussImputationDemo, 115, 375

gaussInferParamsMeanld, 121 gaussInferParamsMean2d, 123 gaussInterpDemo, 113 gaussInterpNoisyDemo, 125 gaussMissingFitEm, 374 gaussMissingFitGibbs, 840 gaussPlot2d, 142 gaussPlot2Ddemo, 47 gaussPlotDemo, 19 gaussSeqUpdateSigmalD, 131 generativeVsDiscrim, 269 geomRidge, 229 ggmFitDemo, 939 ggmFitHtf, 939 ggmFitMinfunc, 939 ggmLassoDemo, 13, 940 ggmLassoHtf, 940 gibbsDemoIsing, 670, 873 gibbsGaussDemo, 848 giniDemo, 548 gpcDemo2d, 529 gpnnDemo, 536 gprDemoArd, 520 gprDemoChangeHparams, 519 gprDemoMarglik, 522 gprDemoNoiseFree, 517 gpSpatialDemoLaplace, 532 groupLassoDemo, 451

hclustYeastDemo, 894, 896 hingeLossPlot, 211, 556 hmmFilter, 609 hmmFwdBack, 611 hmmLillypadDemo, 604 hmmSelfLoopDist, 623 hopfieldDemo, 670 huberLossDemo, 223, 497

icaBasisDemo, 471 icaDemo, 408 icaDemoUniform, 409 IPFdemo2x2, 683 isingImageDenoiseDemo, 739, 839

kalmanFilter, 641 kalmanTrackingDemo, 632 kernelBinaryClassifDemo, 489 kernelRegrDemo, 490, 491 kernelRegressionDemo, 510 KLfwdReverseMixGauss, 734 KLpqGauss, 734 kmeansHeightWeight, 10 kmeansModelSelld, 371 kmeansYeastDemo, 341 knnClassifyDemo, 17, 23–25 knnVoronoi, 16 kpcaDemo2, 495 kpcaScholkopf, 493

lassoPathProstate, 437, 438 LassoShooting, 441 leastSquaresProjection, 221 linregAllsubsetsGraycodeDemo, 423 linregBayesCaterpillar, 237, 238 linregCensoredSchmeeHahnDemo, 379 1048 INDEXES

linregDemol, 241 linregEbModelSelVsN, 158, 159, 749 linregFitLlTest, 447 linregOnlineDemoKalman, 636 linregPolyLassoDemo, 436 linregPolyVsDegree, 9, 20, 436 linregPolyVsN, 231 linregPolyVsRegDemo, 208, 225, 226, 239 linregPostPredDemo, 235 linregRbfDemo, 487 linregRobustDemoCombined, 223 linregWedgeDemo2, 19 LMSdemo, 265 logregFit, 254 logregLaplaceGirolamiDemo, 257, 258 logregMultinomKernelDemo, 269 logregSATdemo, 21 logregSATdemoBayes, 259 logregSatMhDemo, 852 logregXorDemo, 486 logsumexp, 86 lossFunctionFig, 179 lsiCode, 419

marsDemo, 554 mcAccuracyDemo, 55 mcEstimatePi, 54 mcmcGmmDemo, 851, 860, 861 mcQuantileDemo, 153 mcStatDist, 598 miMixedDemo, 59 mixBerMnistEM, 341 mixBetaDemo, 170 mixexpDemo, 343 mixexpDemoOneToMany, 344 mixGaussDemoFaithful, 353 mixGaussLikSurfaceDemo, 346 mixGaussMLvsMAP, 356 mixGaussOverRelaxedEmDemo, 369 mixGaussPlotDemo, 339 mixGaussSingularity, 356 mixGaussVbDemoFaithful, 753, 755 mixPpcaDemoNetlab, 386 mixStudentBankruptcyDemo, 361 mlpPriorsDemo, 574 mlpRegEvidenceDemo, 579 mlpRegHmcDemo, 579 mnistlNNdemo, 25, 1002 multilevelLinregDemo, 844 mutualInfoAllPairsMixed, 59

naiveBayesBowDemo, 84, 88 naiveBayesFit, 83, 277 naiveBayesPredict, 86, 277 netflixResultsPlot, 981 newsgroupsVisualize, 5 newtonsMethodMinQuad, 250 newtonsMethodNonConvex, 250 ngramPlot, 592 NiXdemo2, 135 normalGammaPenaltyPlotDemo, 460 normalGammaThresholdPlotDemo, 461 numbersGame, 69-71

pagerankDemo, 600, 603 pagerankDemoPmtk, 602 paretoPlot, 44 parzenWindowDemo2, 509 pcaDemo2d, 388 pcaDemo3d, 11 pcaDemoHeightWeight, 389 pcaEmStepByStep, 397 pcaImageDemo, 12, 389 pcaOverfitDemo, 400–402 pcaPmtk, 393 pfColorTrackerDemo, 830 poissonPlotDemo, 37 postDensityIntervals, 154 ppcaDemo2d, 388 PRhand, 182 probitPlot, 259 probitRegDemo, 259, 294, 363 prostateComparison, 436 prostateSubsets, 427

quantileDemo, 33

randomWalk0to20Demo, 856 rbpfManeuverDemo, 834, 835 rbpfSlamDemo, 835 rdaFit, 108 regtreeSurfaceDemo, 545 rejectionSamplingDemo, 818 relevanceNetworkNewsgroupDemo, 908 residualsDemo, 219 ridgePathProstate, 437 riskFnGauss, 198 robustDemo, 40 robustPriorDemo, 168

saDemoPeaks, 869, 870 sampleCdf, 816 samplingDistGaussShrinkage, 203 sensorFusion2d, 123 sensorFusionUnknownPrec, 141 seqlogoDemo, 36 shrinkageDemoBaseball, 175 shrinkcov, 130 shrinkcovDemo, 129 shrunkenCentroidsFit, 109 shrunkenCentroidsSRBCTdemo, 109, 110 shuffledDigitsDemo, 7, 25 sigmoidLowerBounds, 761 sigmoidPlot, 21 sigmoidplot2D, 246 simpsonsParadoxGraph, 933 sliceSamplingDemold, 865 sliceSamplingDemo2d, 865 smoothingKernelPlot, 507 softmaxDemo2, 103 SpaRSA, 445 sparseDictDemo, 471 sparseNnetDemo, 575 sparsePostPlot, 459 sparseSensingDemo, 438 spectralClusteringDemo, 893 splineBasisDemo, 125 ssmTimeSeriesSimple, 638, 639 steepestDescentDemo, 247, 248 stickBreakingDemo, 883 studentLaplacePdfPlot, 40 subgradientPlot, 432 subSuperGaussPlot, 412 surfaceFitDemo, 218 svdImageDemo, 394 svmCgammaDemo, 504

tanhPlot, 570 trueskillDemo, 798 INDEX TO CODE 1049

trueskillPlot, 797

unigaussVbDemo, 745

varEMbound, 368 variableElimination, 717 visDirichletGui, 48 visualizeAlarmNetwork, 314 vqDemo, 354

wiPlotDemo, 127

Index to keywords

#P-hard, 727 ARMA, 639, 674 0-1 loss, 177 array CGH, 454 3-SAT, 727 association rules, 15 associative, 931 associative Markov network, 668 A star search, 887 associative memory, 568, 669, 997 absorbing state, 598 associative MRF, 802 accept, 848 assumed density filter, 267 action, 176 assumed density filtering, **653**, 787 asymptotically normal, **194** action nodes, 328 action space, 176 asymptotically optimal, 201 actions, 176 asynchronous updates, 774 activation, 563 atom, 469 active learning, 230, 234, 938 atomic bomb, 52 Active set, 441 attractive MRF. 802 active set, 442 attributes, 2, 3 Activity recognition, 605 AUC, 181 Adaboost.Ml, 559 audio-visual speech recognition, 628 adagrad, 263 augmented DAG, 932 adaline, 569 auto-encoder, 1000 adaptive basis-function model, 543 auto-encoders, 990 adaptive importance sampling, 821 auto-regressive HMM, 626 adaptive lasso, 460 autoclass, 11 adaptive MCMC, 853 autocorrelation function, 862 adaptive rejection Metropolis sampling, 820 automatic relevance determination, 463 adaptive rejection sampling, 820 automatic relevancy determination, 238, 398, 580, 747 add-one smoothing, 77, 593 Automatic speech recognition, 605 ADF, 653, 983 automatic speech recognition, 624 adjacency matrix, 309, 970 auxiliary function, **350** auxiliary variables, **863**, 868 adjust for, 934 adjusted Rand index, 878 average link clustering, 897 admissible, 197 average precision, 303 admixture mixture, 950 average precision at K, 183 axis aligned, 47 AdSense, 928 AdWords, 928 axis parallel splits, 544 affinity propagation, 887 agglomerative clustering, 893 agglomerative hierarchical clustering, 927 back-propagation, 999 aha, 68 backdoor path, 934 backfitting, **552**, 563, **998** background knowledge, 68 AI, 1007 AIC, **162**, 557 backoff smoothing, **594** backpropagation, **570**, 970 Akaike information criterion, 162 alarm network, 313 backpropagation algorithm, 569 backslash operator, **228** alignment, 701 all pairs, **503** alleles, **317** Backwards selection, 428 alpha divergence, 735 bag of words, 5, 81, 945 alpha expansion, 803 bag-of-characters, 483 bag-of-words, 483 alpha-beta swap, 804 alternative hypothesis, 163 bagging, **551** bandwidth, **480**, **507** analysis view, 390 analysis-synthesis, 470 barren node removal, 334, 714 ancestors, 309 BART, **551**, 586 Barzilai-Borwein, **445** ancestral graph, 664 ancestral sampling, 822 base distribution, 338 and-or graphs, 1007 base learner, 554 annealed importance sampling, 871, 923 base measure, 882 annealing, 853 base rate fallacy, 30 annealing importance sampling, 992 basic feasible solution, 468 ANOVA, 553 basis function expansion, 20, 217 anti-ferromagnets, 668 basis functions, 421 aperiodic, 598 basis pursuit denoising, 430 approximate inference, 727 batch, 261 approximation error, 230 Baum-Welch, 618 Bayes ball algorithm, 324 ARD, 238, **463**, 520, 580 ARD kernel, 480 Bayes decision rule, 177, 195 area under the curve, 181 Bayes estimator, 177, 195

INDEX TO KEYWORDS 1051

Bayes factor, 137, 163, 921	Blackwell-MacQueen, 884
Bayes model averaging, 71, 581	blank slate, 165
Bayes point, 257	blind signal separation, 407
Bayes risk, 195	blind source separation, 407
Bayes rule, 29, 340	blocked Gibbs sampling, 848
Bayes Theorem, 29	blocking Gibbs sampling, 848
Bayesian, xxvii, 27	bloodtype, 317
Bayesian adaptive regression trees, 551	BN2O, 315
Bayesian factor regression, 405	bolasso, 439
Bayesian hierarchical clustering, 899	Boltzmann distribution, 104, 869
Bayesian information criterion, 161	Boltzmann machine, 568, 669 , 983
Bayesian IPF, 683	bond variables, 866
Bayesian lasso, 448	Boosting, 554
Bayesian model selection, 156	boosting, 553, 742
Bayesian network structure learning, 914	bootstrap, 192
Bayesian networks, 310	bootstrap lassa 439
Bayesian Occam's razor, 156 Bayesian statistics, 149 , 191	bootstrap lasso, 439 bootstrap resampling, 439
BDe, 917	borrow statistical strength, 171, 231, 296, 845
BDeu, 918	bottleneck, 205, 337 , 1000
beam search, 428, 887	bottleneck layer, 970
belief networks, 310	bound optimization, 369
belief propagation, 611, 707, 767	box constraints, 444
belief state, 71, 332, 607, 609	Box-Muller, 817
belief state MDP, 332	boxcar kernel, 508, 508
belief updating, 709	Boyen-Koller, 654
bell curve, 20 , 38	BP, 707
Berkson's paradox, 326	BPDN, 430
Bernoulli, 21, 34	Bradley Terry, 795
Bernoulli product model, 88	branch and bound, 811
Bernoulli-Gaussian, 426 Bessel function, 483	branching factor, 954 bridge regression, 458
beta distribution, 42, 74	Brownian motion, 483
beta function, 42	bucket elimination, 715
beta process, 470	BUGS, 756, 847
beta-binomial, 78	Buried Markov models, 627
Bethe, 781	burn-in phase, 856
Bethe energy functional, 781	burned in, 838
Bethe free energy, 781	burstiness, 88
BFGS, 251	bursty, 480
Bhattacharya distance, 828	
bi-directed graph, 674	C4.5, 545
bias, 20 , 200 , 457 bias term, 669	calculus of variations, 289
bias-variance tradeoff, 202	calibration, 724
BIC, 161 , 256, 557, 920	Candidate method, 872
biclustering, 903	Canonical correlation analysis, 407 canonical form, 282
big data, 1	canonical link function, 291
bigram model, 591	canonical parameters, 115, 282
binary classification, 3, 65	Cardinality constraints, 810
binary entropy function, 57	
	CAR1, 344 , 343
binary independence model, 88	CART, 544 , 545 Cartesian, 51
binary mask, 426 , 470	
binary mask, 426 , 470 binary tree, 895	Cartesian, 51 cascade, 776 case analysis, 260
binary mask, 426 , 470 binary tree, 895 Bing, 302, 799, 983	Cartesian, 51 cascade, 776 case analysis, 260 categorical, 2, 35
binary mask, 426 , 470 binary tree, 895 Bing, 302, 799, 983 binomial, 34	Cartesian, 51 cascade, 776 case analysis, 260 categorical, 2, 35 categorical PCA, 402, 947, 961
binary mask, 426 , 470 binary tree, 895 Bing, 302, 799, 983 binomial, 34 binomial coefficient, 34	Cartesian, 51 cascade, 776 case analysis, 260 categorical, 2, 35 categorical PCA, 402, 947, 961 categorical variables, 876
binary mask, 426 , 470 binary tree, 895 Bing, 302, 799, 983 binomial, 34 binomial coefficient, 34 binomial distribution, 74	Cartesian, 51 cascade, 776 case analysis, 260 categorical, 2, 35 categorical PCA, 402, 947, 961 categorical variables, 876 Cauchy, 40
binary mask, 426 , 470 binary tree, 895 Bing, 302, 799, 983 binomial, 34 binomial coefficient, 34 binomial distribution, 74 binomial regression, 292	Cartesian, 51 cascade, 776 case analysis, 260 categorical, 2, 35 categorical PCA, 402, 947, 961 categorical variables, 876 Cauchy, 40 causal Markov assumption, 931
binary mask, 426 , 470 binary tree, 895 Bing, 302, 799, 983 binomial, 34 binomial coefficient, 34 binomial distribution, 74	Cartesian, 51 cascade, 776 case analysis, 260 categorical, 2, 35 categorical PCA, 402, 947, 961 categorical variables, 876 Cauchy, 40 causal Markov assumption, 931 Causal models, 931
binary mask, 426, 470 binary tree, 895 Bing, 302, 799, 983 binomial, 34 binomial coefficient, 34 binomial distribution, 74 binomial regression, 292 BinomialBoost, 561 BIO, 687 biosequence analysis, 36, 170	Cartesian, 51 cascade, 776 case analysis, 260 categorical, 2, 35 categorical PCA, 402, 947, 961 categorical variables, 876 Cauchy, 40 causal Markov assumption, 931 Causal models, 931 causal MRF, 661
binary mask, 426, 470 binary tree, 895 Bing, 302, 799, 983 binomial, 34 binomial coefficient, 34 binomial distribution, 74 binomial regression, 292 BinomialBoost, 561 BIO, 687 biosequence analysis, 36, 170 bipartite graph, 313	Cartesian, 51 cascade, 776 case analysis, 260 categorical, 2, 35 categorical PCA, 402, 947, 961 categorical variables, 876 Cauchy, 40 causal Markov assumption, 931 Causal models, 931 causal MRF, 661 causal networks, 310
binary mask, 426, 470 binary tree, 895 Bing, 302, 799, 983 binomial, 34 binomial coefficient, 34 binomial distribution, 74 binomial regression, 292 BinomialBoost, 561 BIO, 687 biosequence analysis, 36, 170 bipartite graph, 313 biplot, 383	Cartesian, 51 cascade, 776 case analysis, 260 categorical, 2, 35 categorical PCA, 402, 947, 961 categorical variables, 876 Cauchy, 40 causal Markov assumption, 931 Causal models, 931 causal MRF, 661
binary mask, 426, 470 binary tree, 895 Bing, 302, 799, 983 binomial, 34 binomial coefficient, 34 binomial distribution, 74 binomial regression, 292 BinomialBoost, 561 BIO, 687 biosequence analysis, 36, 170 bipartite graph, 313 biplot, 383 birth moves, 370	Cartesian, 51 cascade, 776 case analysis, 260 categorical, 2, 35 categorical PCA, 402, 947, 961 categorical variables, 876 Cauchy, 40 causal Markov assumption, 931 Causal models, 931 causal MRF, 661 causal networks, 310 causal sufficiency, 931 causalsity, 919, 929 CCA, 407
binary mask, 426, 470 binary tree, 895 Bing, 302, 799, 983 binomial, 34 binomial coefficient, 34 binomial distribution, 74 binomial regression, 292 BinomialBoost, 561 BIO, 687 biosequence analysis, 36, 170 bipartite graph, 313 biplot, 383 birth moves, 370 bisecting K-means, 898	Cartesian, 51 cascade, 776 case analysis, 260 categorical, 2, 35 categorical PCA, 402, 947, 961 categorical variables, 876 Cauchy, 40 causal Markov assumption, 931 Causal models, 931 causal metworks, 310 causal sufficiency, 931 causality, 919, 929 CCA, 407 CCCP, 702
binary mask, 426, 470 binary tree, 895 Bing, 302, 799, 983 binomial, 34 binomial coefficient, 34 binomial distribution, 74 binomial regression, 292 BinomialBoost, 561 BIO, 687 biosequence analysis, 36, 170 bipartite graph, 313 biplot, 383 birth moves, 370 bisecting K-means, 898 bits, 56	Cartesian, 51 cascade, 776 case analysis, 260 categorical, 2, 35 categorical PCA, 402, 947, 961 categorical variables, 876 Cauchy, 40 causal Markov assumption, 931 Causal models, 931 causal MRF, 661 causal networks, 310 causal sufficiency, 931 causality, 919, 929 CCA, 407 CCCP, 702 CD, 989
binary mask, 426, 470 binary tree, 895 Bing, 302, 799, 983 binomial, 34 binomial coefficient, 34 binomial distribution, 74 binomial regression, 292 BinomialBoost, 561 BIO, 687 biosequence analysis, 36, 170 bipartite graph, 313 biplot, 383 birth moves, 370 bisecting K-means, 898 bits, 56 bits-back, 733	Cartesian, 51 cascade, 776 case analysis, 260 categorical, 2, 35 categorical PCA, 402, 947, 961 categorical variables, 876 Cauchy, 40 causal Markov assumption, 931 Causal models, 931 causal MRF, 661 causal networks, 310 causal sufficiency, 931 causality, 919, 929 CCA, 407 CCCP, 702 CD, 989 cdf, 32, 38
binary mask, 426, 470 binary tree, 895 Bing, 302, 799, 983 binomial, 34 binomial coefficient, 34 binomial distribution, 74 binomial regression, 292 BinomialBoost, 561 BIO, 687 biosequence analysis, 36, 170 bipartite graph, 313 biplot, 383 birth moves, 370 bisecting K-means, 898 bits, 56	Cartesian, 51 cascade, 776 case analysis, 260 categorical, 2, 35 categorical PCA, 402, 947, 961 categorical variables, 876 Cauchy, 40 causal Markov assumption, 931 Causal models, 931 causal MRF, 661 causal networks, 310 causal sufficiency, 931 causality, 919, 929 CCA, 407 CCCP, 702 CD, 989

1052 INDEXES

centering matrix, 494	compelled edges, 915
central composite design, 523	complementary prior, 997
central interval, 152	complete, 322
central limit theorem, 38, 51 , 255	complete data, 270, 349
central moment, 413	complete data assumption, 914
central-limit theorem, 55	complete data log likelihood, 348, 350
centroid, 341	complete link clustering, 897
centroids, 486	completing the square, 143
certainty factors, 675	composite likelihood, 678
chain graph, 671	compressed sensing, 472
chain rule, 29, 307	compressive sensing, 472
chance nodes, 328	computation tree, 772
change of variables, 50	computational learning theory, 210
channel coding, 56	computationalism, 569
Chapman-Kolmogorov, 590	concave, 222, 286
characteristic length scale, 480	concave-convex procedure, 702
Cheeseman-Stutz approximation, 923 Chi-squared distribution, 42	concentration matrix, 46
chi-squared statistic, 163 , 213	concentration parameter, 882 concept, 65
children, 309 , 310	concept learning, 65
Chinese restaurant process, 884	condensation, 827
chip-Seq, 622	conditional entropy, 59
Cholesky decomposition, 227 , 817	conditional Gamma Poisson, 949
Chomsky normal form, 689	conditional Gaussian, 920
chordal, 665	conditional independence, 308
chordal graph, 720	conditional likelihood, 620
Chow-Liu algorithm, 312, 912	conditional logit model, 252
CI, 308	conditional probability, 29
circuit complexity, 944	conditional probability distribution, 308
city block distance, 876	conditional probability tables, 308
clamped phase, 987	conditional random field, 684
clamped term, 677	conditional random fields, 606, 661
clamping, 319	conditional topic random field, 969
class imbalance, 503	conditionally conjugate, 132
class-conditional density, 30, 65	conditionally independent, 31, 82
classical, 149	conditioning, 319
classical statistics, 191	conditioning case, 322
classification, 2, 3	conductance, 858
Classification and regression trees, 544	confidence interval, 212
clausal form, 675	confidence intervals, 153
clause, 727	confounder, 674
click-through rate, 4	confounders, 931
clique, 310	confounding variable, 934
cliques, 719, 722	confusion matrix, 181
closing the loop, 635	conjoint analysis, 297
closure, 662	conjugate gradients, 249 , 524
cluster variational method, 783	conjugate prior, 74
Clustering, 875	conjugate priors, 281, 287
clustering, 10, 340 clusters, 487	conjunctive normal form, 675 connectionism, 569
clutter problem, 788	consensus sequence, 36 , 606
co-clustering, 979	conservation of probability mass, 157
co-occurrence matrix, 5	consistent, 200
co-parents, 327	consistent estimator, 233
coarse-to-fine grid, 775	consistent estimators, 70
cocktail party problem, 407	constant symbols, 676
coclustering, 903	constraint satisfaction problems, 717, 726
codebook, 354	constraint-based approach, 924
collaborative filtering, 14, 300, 387, 903, 979	content addressable memory, 669
collapsed Gibbs sampler, 841	context free grammar, 689
collapsed Gibbs sampling, 956	context specific independence, 321
collapsed particles, 831	context-specific independence, 944
collect evidence, 707	contextual bandit, 184, 254
collect-to-root, 723	contingency table, 682
collider, 324	continuation method, 442, 869
COLT, 210	contrastive divergence, 569, 989
committee method, 580	contrastive term, 677
commutative semi-ring, 717	control signal, 625, 631
commutative semiring, 726	converge, 857
compactness, 897	convex, 58, 221 , 247, 285, 677

INDEX TO KEYWORDS 1053

convex belief propagation, 785, 943	decision boundary, 22
convex combination, 76, 130, 338	decision diagram, 328
convex hull, 777	decision nodes, 328
convolutional DBNs, 1004	decision problem, 176
convolutional neural nets, 1004	decision procedure, 177
convolutional neural network, 565	decision rule, 22
cooling schedule, 870	decision trees, 544
corpus, 953	decoding, 693
correlated topic model, 757, 961	decomposable, 665 , 722 , 941
correlation coefficient, 45 , 876	decomposable graphs, 682
correlation matrix, 45	decomposes, 322, 917
correspondence, 658 cosine similarity, 480	DeeBN, 628 DeeBNs, 997
cost-benefit analysis, 186	deep, 929
coupled HMM, 628	deep auto-encoders, 1000
covariance, 44	deep belief network, 997
covariance graph, 674, 908	deep Boltzmann machine, 996
covariance matrix, 45 , 46	deep directed networks, 996
covariance selection, 938	deep learning, 479, 995
covariates, 2	deep networks, 569
CPD, 308	defender's fallacy, 61
CPTs, 308	deflated matrix, 418
Cramer-Rao inequality, 201	degeneracy problem, 825
Cramer-Rao lower bound, 201	degenerate, 532 , 535
credible interval, 137 , 152 , 212	degree, 310
CRF, 661, 684	degrees of freedom, 39 , 161 , 206, 229 , 534
critical temperature, 868	deleted interpolation, 593
critical value, 671	delta rule, 265 dendrogram, 895
cross entropy, 57 , 571 cross over rate, 181	denoising auto-encoder, 1001
cross validation, 24, 206	dense stereo reconstruction, 690
cross-entropy, 246 , 953	density estimation, 9
cross-language information retrieval, 963	dependency network, 909
crosscat, 904	dependency networks, 679
crowd sourcing, 10, 995	derivative free filter, 651
CRP, 884	descendants, 309
CTR, 4	descriptive, 2
cubic spline, 537	design matrix, 3, 875
cumulant function, 282, 284	detailed balance, 854
cumulants, 284	detailed balance equations, 599
cumulative distribution function, 32 , 38	determinism, 944
curse of dimensionality, 18, 487	deterministic annealing, 367 , 620
curved exponential tamily, 282	deviance, 547
cutting plane, 698 CV, 24	DGM, 310
cycle, 310	diagonal, 46 diagonal covariance LDA, 107
cyclic permutation property, 99	diagonal LDA, 108
eyene permatation property, o	diameter, 710, 897
d prime 106	dictionary, 469
d-prime, 106 d-separated, 324	digamma, 361, 752, 958
DACE, 518	digital cameras, 8
DAG, 310	dimensionality reduction, 11, 1000
damped updates, 739	Dirac delta function, 39
damping, 773	Dirac measure, 37, 68
Dasher, 591	Dirchlet process, 903
data association, 658, 810	direct posterior probability approach, 184
data augmentation, 362, 847	directed, 309
data compression, 56	directed acyclic graph, 310 directed graphical model, 310
data fragmentation, 546	directed graphical model, 310
data fusion, 404	directed local Markov property, 327
data overwhelms the prior, 69	directed mixed graph, 929 directed mixed graphical model, 674
data-driven MCMC, 853	Dirichlet, 79
data-driven proposals, 828	Dirichlet Compound Multinomial, 89
DBM, 996	Dirichlet distribution, 47
DBN, 628 , 997 DCM, 89	Dirichlet multinomial regression LDA, 969
DCT, 469	Dirichlet process, 596, 879 , 882 , 973, 976
death moves, 370	Dirichlet process mixture models, 508, 755
debiasing, 439	discontinuity preserving, 691
decision, 176	discounted cumulative gain, 303

1054 INDEXES

1, , , , , ,	
discrete, 35	eigenfaces, 12
discrete AdaBoost, 559	eigengap, 857
discrete choice modeling, 296	eigenvalue spectrum, 130
discrete random variable, 28	EKF, 648
discrete with probability one, 884	elastic net, 438, 456 , 936
discretize, 59 , 691	elimination order, 718
discriminability, 106	EM, 271, 349 , 618, 749
discriminant analysis, 101	email spam filtering, 5
discriminant function, 500	embedding, 575
discriminative, 245	empirical Bayes, 157 , 162, 173 , 300, 746
discriminative classifier, 30	empirical distribution, 37, 205
discriminative LDA, 968	empirical measure, 37
discriminative random field, 684	empirical risk, 205 , 697
disease mapping, 531	empirical risk minimization, 205 , 261
disease transmission, 970	end effector, 344
disparity, 691	energy based models, 666
dispersion parameter, 290	energy function, 255
dissimilarity analysis, 898	energy functional, 732, 778
dissimilarity matrix, 875	ensemble, 980
distance matrix, 875	Ensemble learning, 580
distance transform, 775	ensemble learning, 742
distorted, 566	entanglement, 629
distortion, 354	entanglement problem, 635, 653
distribute evidence, 707	Entropy, 547
distribute-from-root, 724	entropy, 56
distributed encoding, 984	EP, 983
distributed representation, 569, 627	Epanechnikov kernel, 508
distributional particles, 831	ePCA, 947
distributional particles, 651	epigraph, 222
divisive clustering, 893	epistemological uncertainty, 973
DNA sequences, 36	epoch, 264 , 566
· · · · · · · · · · · · · · · · · · ·	
do calculus, 932	epsilon insensitive loss function, 497 EPSR, 859
Document classification, 87	
document classification, 5	equal error rate, 181
Domain adaptation, 297	equilibrium distribution, 597
domain adaptation, 297	equivalent learnel 513 523
dominates, 197	equivalent kernel, 512, 533
double loop algorithms, 773	equivalent sample size, 76, 917
double Pareto distribution, 461	erf, 38
double sided exponential, 41	ergodic, 599
dRUM, 294	Erlang distribution, 42
dual decomposition, 808	ERM, 205 , 261
dual variables, 492 , 499	error bar, 76
dummy encoding, 35	error correcting codes, 768
dyadic, 976	error correction, 56
DyBN, 628	error function, 38
DyBNs, 997	error signal, 265
dynamic Bayes net, 653	error-correcting output codes, 503, 581
dynamic Bayesian network, 628	ESS, 862
dynamic linear model, 636	essential graph, 915
dynamic programming, 331, 920	estimated potential scale reduction, 859
dynamic topic model, 962	estimator, 191
	Euclidean distance, 18
E step, 350	evidence, 156 , 173
e-commerce, 11	evidence procedure, 173 , 238 , 746
early stopping, 263 , 557 , 572	evolutionary MCMC, 429
EB, 173	exchangeable, 321, 963
ECM, 369 , 387	exclusive or, 486
ECME, 369	expectation correction, 658
ECOC, 581	expectation maximization, 349
econometric forecasting, 660	expectation proagation, 735
economy sized SVD, 392	Expectation propagation, 787
edge appearance probability, 786	expectation propagation, 525
edges, 309	expected complete data log likelihood, 350 , 351
edit distance, 479	expected profit, 330
EER, 181	- 1 ° CC ·
	expected sufficient statistics, 350 , 359, 619
effective sample size 75 825 862	expected sufficient statistics, 350 , 359, 619 expected value, 33
effective sample size, 75, 825, 862	
efficient IPF, 683	expected value, 33
	expected value, 33 explaining away, 326

Fisher's linear discriminant analysis, 271 exploratory data analysis, 7 exponential cooling schedule, **870**Exponential distribution, **42**exponential family, 115, 253, **281, 282**, 290, 347
exponential family harmonium, **985** FISTA, 446 fit-predict cycle, 206 fixed effect, 298 Fixed lag smoothing, 608 exponential family PCA, 947 fixed point, 139 exponential loss, 556 exponential power distribution, 458 flat clustering, 875 FLDA, 271 extended Kalman filter, 648 flow cytometry, 936 folds, 24 extension, 67 external field, 668 forest, 310, 912 forward stagewise additive modeling, 557 forward stagewise linear regression, 562 F score, 183 forwards KL, 733 Fl score, 183, 699 forwards model, 345 FA, 381 forwards selection, 428 face detection, 8 forwards-backwards, 644, 688, 707, 720 face detector, 555 forwards-backwards algorithm, 428, 611 face recognition, 8 Facebook, 974 founder model, 317 founder variables, 385 factor, 665 Fourier basis, 472 factor analysis, 381, 402, 931, 947 factor analysis distance, **520** factor graph, 769, **769**, 771, 888 fraction of variance explained, 400 free energy, 988 free-form optimization, 737 factor loading matrix, 381 frequent itemset mining, 15 factorial HMM, 628 frequentist, 27, 149 factorial prior, 463 frequentist statistics, 191 factors, 382 Frobenius norm, 388 faithful, 936 frustrated, 868 false alarm, 30, 180 frustrated system, 668 false alarm rate, 181 full, 46 false discovery rate, 184 full conditional, 328, 838 false negative, 180 function approximation, 3 false positive, 30, 180 functional data analysis, 124 false positive rate, 181 functional gradient descent, 561 family, 309 furthest neighbor clustering, 897 family marginal, 359 fused lasso, 454 fan-in, 313 fuzzy clustering, 973 fantasy data, 990 fuzzy set theory, 65 farthest point clustering, 355 fast Fourier transform, 717, 775 fast Gauss transform, 524 g-prior, 236, 425 fast ICA, 411 game against nature, 176 fast iterative shrinkage the sholding algorithm, 446 game theory, 176 FastSLAM, 635, 835 Gamma, 623 gamma distribution, 41 fat hand, 933 gamma function, 42 GaP, **949** fault diagnosis, 659 feature construction, 564 gap statistic, 372 feature extraction, 6, 564 feature function, 667 gating function, 342 Gauss-Seidel, 710 feature induction, 680 feature maps, 565 Gaussian, 20, 38 feature matrix, 875 Gaussian approximation, 255, 731 feature selection, 86 Gaussian Bayes net, 318 feature-based clustering, 875 Gaussian copulas, 942 features, 2, 3, 412 Gaussian graphical models, 725 feedback loops, 929 Gaussian kernel, 480, 507, 517 feedforward neural network, 563 Gaussian mixture model, 339 ferro-magnets, **668** FFT, 775 Gaussian MRF. 672 Gaussian process, 483, 505, 509, 512, 882 fields of experts, 473 Gaussian processes, 515 Fillering, 607 filtering, 87 finite difference matrix, 113 Gaussian random fields, 938 Gaussian RBM, 986 Gaussian scale mixture, 359, 447, 505 Gaussian sum filter, 656 GDA, 101 GEE, **300** GEM, **369** finite mixture model, 879 first-order logic, 674 Fisher information, 166 Gene finding, 606 Fisher information matrix, 152, 193, 293 Fisher kernel, 485 gene finding, 622 gene knockout experiment, 931 Fisher scoring method, 293

gene microarrays, 421	Gumbel, 295
generalization, 3	
generalization error, 23, 180	Hadamard product, 609
generalization gradient, 66	Haldane prior, 166
generalize, 3	ham, 5
generalized additive model, 552	Hamiltonian MCMC, 868
generalized belief propagation, 785	Hammersley-Clifford, 666
generalized cross validation, 207	hamming distance, 876
generalized eigenvalue, 274	handwriting recognition, 7
generalized EM, 361, 369	haplotype, 317
generalized estimating equations, 300	hard clustering, 340
generalized linear mixed effects model, 298	hard EM, 352
generalized linear model, 281, 290	hard thresholding, 434, 435
generalized linear models, 281	harmonic mean, 183
generalized pseudo Bayes filter, 657	harmonium, 983
generalized t distribution, 461	Hastings correction, 849
generate and test, 853	hat matrix, 221
generative approach, 245	HDI, 154
generative classifier, 30	heat bath, 838
generative pre-training, 999	heavy ball method, 249
generative weights, 410, 986	heavy tails, 43, 223
genetic algorithms, 348, 720, 921	Hellinger distance, 735
genetic linkage analysis, 315 , 318	Helmholtz free energy, 733
genome, 318	Hessian, 193, 852
genotype, 317	heteroscedastic LDA, 275
geometric distribution, 622	heuristics, 727
Gibbs distribution, 290 , 666 Gibbs sampler, 672	hidden, 10 , 349
Gibbs sampling, 328, 669, 736, 838	hidden layer, 563
Gini index, 548	hidden Markov model, 312 , 603 , 963
gist, 963	hidden nodes, 313
Gittins Indices, 184	hidden semi-Markov model, 622
Glasso, 940	hidden units, 564
Glauber dynamics, 838	hidden variables 312, 924
GLM, 290 , 654	hidden variables, 319, 914
GLMM, 298	hierarchical adaptive lasso, 458
glmnet, 442	hierarchical Bayesian model, 171
global balance equations, 597	hierarchical Bayesian models, 347 hierarchical clustering, 875 , 893
global convergence, 248	hierarchical Dirichlet process, 621
global localization, 828	hierarchical HMM, 624
global Markov property, 661	hierarchical latent class model, 926
global minimum, 222	hierarchical mixture of experts, 344 , 551
global prior parameter independence, 916	high throughput, 184, 421
globally normalized, 686	high variance estimators, 550
GM, 308	highest density interval, 154
GMM, 339	highest posterior density, 153
GP-LVM, 540	hill climbing, 920
GPs, 515	hindsight, 607
GPUs, 1006	hinge loss, 211, 477, 499
gradient boosting, 560	Hinton diagram, 592
gradient descent, 247 , 445	Hinton diagrams, 399
Gram matrix, 481	histogram, 508
grammars, 689, 1007	hit rate, 181
grandmother cells, 984 , 1005	HMM, 312 , 603
graph, 309	HMM filter, 640
graph Lanksian 901	HMMs, 685
graph Laplacian, 891	Hoeffding's inequality, 209
graph surgery, 932 graph-guided fused lasso, 454	homogeneous, 589
graphcuts, 801	homotopy, 442
graphical lasso, 940	Hopfield network, 568, 669
graphical model, 308 , 311	horizon, 608
graphical models, xxviii, 13, 31, 32, 308, 337, 909	Horn clauses, 676
Gray code, 422	HPD, 153
greatest common divisor, 598	HSMM, 622
greedy equivalence search, 936	Huber loss, 224 , 561
ground network, 676	Hugin, 722
ground states, 668	Hungarian algorithm, 659 , 810
group lasso, 450 , 579, 942	hybrīd MCM C , 868 hybrid Monte Carlo, 584
grouping effect, 456	hybrid systems, 655
0 1 0,	nybrid systems, 000

interest point detector, 484 hyper-parameters, 74 hypothesis space, 66 interpolate, 112 interpolated Kneser-Ney, 595 interpolator, 517 I-map, 324 interval censored, 379 I-projection, 733 interventional data, 936 ICA, 385, 409 interventions, 931 ID3, 545 intrinsic Gaussian random field, 113 IDA, 936 invariant, 8, 854 identifiable, 346 invariant distribution, 597 identifiable in the limit, 70 invariant features, 1004 iff, 68 inverse chi-squared distribution, 131 iid, 51, 218, 320 inverse Gamma, 130 ill-conditioned, 106, 129 inverse gamma, 42 image classification, 7 inverse Gaussian, 448 image compression, 355 inverse probability transform, 815 image denoising, 473 inverse problem, 317 image inpainting, 14, 473 inverse problems, 344 image segmentation, 671 inverse reinforcement learning, 186 image tagging, 968 inverse Wishart, 126, 128 IMM, 658 inverted index, 600 implicit feedback, 983 inverted indices, 1004 importance sampling, 820 IP, 847 importance weights, 821 IPF, 682 impression log, 983 iris, 6, 548 IRLS, **251** improper prior, 166, 168 imputation, 14 IRM, 976 Imputation Posterior, 847 irreducible, 598 in-degree, 310 Ising model, 668 inclusion probabilities, 423 isotropic, 46 incremental EM, 365, 366 iterated EKF, 650 independence sampler, 848 iterative conditional modes, 669, 804, 929 independent and identically distributed, 51 iterative proportional fitting, 682, 939 independent component analysis, 409 iterative scaling, 683 indicator function, 17, 28, 976 iterative shrinkage and thresholding algorithm, 445 induced width, 719 iterative soft thresholding, 445 induction, 66, 77 iteratively reweighted least squares, 251 inductive bias, 19, 582 infer.net, 799 inference, 320 Jacobi, 710, 773 infinite hidden relational model, 977 Jacobian, 151, 648, 649 infinite HMM, 621 Jacobian matrix, 50 infinite mixture models, 841, **879** infinite relational model, 903, 973, **976** JAGS, **847** JamBayes, 13 influence diagram, **328**, 932 influence model, **628** James Stein estimator, 174 James-Stein estimator, 173, 199 infomax, 416 IC Penney, 603 information, 27 Jeffreys prior, 166 information arc, 329, 331 Jeffreys-Lindley paradox, 165 Jensen's inequality, 58, 363 information bottleneck, 405 information extraction, 688 Jensen-Shannon divergence, 57 information filter, 642 Jeopardy, 4 jittered, 486 information form, 115, 305, 672, 711, 725 information gain, **547** Information inequality, **58** JJ bound, 761 joint distribution, 29, 307 information projection, 733 joint probability distribution, 44 information retrieval, 183, 300, 953 ĴΤΑ, **720** information theory, 56 jump Markov linear system, 655 inheritance model, 317 junction tree, 722 inner approximation, 779 junction tree algorithm, 720, 731 innovation, 641 iunction trees, 635 inside outside, 624 inside-outside algorithm, **689** instance-based learning, **17** K-centers, 887 K-means algorithm, 352 integrate out, 156 k-means++, **355** integrated likelihood, 156 K-medoids algorothm, 490 integrated risk, 195 k-spectrum kernel, 484 intensive care unit, 313 K2 algorithm, 920 inter-causal reasoning, 326 Kalman filter, 122, 267, 632, 633, 640, 643 interaction effects, 421 Kalman gain matrix, 637, 641 interactive multiple models, 658 Kalman smoother, 633, 707

W-1 CAA 712 0C2	1-44 -1 1-1 000
Kalman smoothing, 644 , 712, 963	latent class model, 926
Karhunen Loeve, 387	latent CRF, 701
Karl Popper, 77	latent Dirichlet allocation, 949 , 950
KDE, 508 , 510	latent factors, 11
Kendall's $ au$, 304	latent semantic analysis, 12, 947
kernel, 565, 600 , 848	latent semantic indexing, 418, 947
kernel density estimation, 127, 510	latent SVMs, 702
kernel density estimator, 508	latent variable models, 337
kernel function, 479, 515	lattice, 668
kernel machine, 486	Lauritzen-Spiegelhalter, 722
kernel PCA, 494 , 540, 892	LBP, 767
kernel regression, 511	LDA, 104 , 927, 949, 950
kernel smoothing, 511	LDA-HMM, 963
kernel trick, 488	LDPC, 768
kernelised feature vector, 486	LDS, 631
Kikuchi free energy, 784	leaf, 309
kinect, 551	leak node, 315
kinematic tracking, 344	leaptrog steps, 868
kink, 372	learning, 320
KL divergence, 57 , 732	learning curve, 230
Kleene star, 483	learning rate, 247
knee, 372	learning to learn, 296
KNN, 16	learning to rank, 300
knots, 537	least favorable prior, 197
knowledge base, 676	least mean squares, 265, 637
knowledge discovery, 2, 9	least squares, 219
knowledge engineering, 313	least squares boosting, 428, 442, 558
Kolmogorov Smirnov, 864	leave one out cross validation, 207
	leave-one out cross validation, 24
kriging, 516	
kronecker product, 253 , 760	leaves, 895
Kruskal's algorithm, 912	left censored, 379
Kullback-Leibler divergence, 57	left-to-right, 612
kurtosis, 413 , 415	lett-to-right transition matrix, 590
	LeNet5, 566
L-BFGS, 252	leptokurtic, 413
ℓ_0 pseudo-norm, 424	LETOR, 300
ℓ_0 regularization, 426	level sets, 47
ℓ_1 loss, 179	Levenberg Marquardt, 250
ℓ_1 regularization, 430	Levinson-Durbin, 627
Ll-Adaboost, 563	LG-SSM, 631
	likelihood, 319
LIVM, 488 , 505	likelihood equivalence, 917
ℓ_2 loss, 179	likelihood equivalent, 200
ℓ_2 norm, 218	likelihood principle, 214
ℓ_2 regularization, 226	likelihood ratio, 67, 163
L2boosting, 558	
L2VM, 488	likelihood weighting, 822
label, 176	limited memory BFGS, 252
label bias, 685	limiting distribution, 598
label switching, 341, 841	line minimization, 248
label taxonomy, 689	line search, 248
labeled LDA, 953, 969	linear discriminant analysis, 104
lag, 608	linear dynamical system, 631
Lagrange multiplier, 80	linear Gaussian, 318
Lagrange multipliers, 289	linear Gaussian system, 119
Lagrangian, 80, 289	linear kernel, 482
Lagrangian relaxation, 808	linear program, 224
Lanczos algorithm, 398	linear programming relaxtion, 800
	linear regression, 19
language model, 300, 953	linear smoother, 533
language modeling, 81, 568	linear threshold unit, 252
language models, 591	linear trend, 660
Laplace, 223, 413, 429	linear-Gaussian CPD, 673
Laplace approximation, 255, 468	linear-Gaussian SSM, 631
Laplace distribution, 41	
Laplace's rule of succession, 77	linearity of expectation, 49 linearly separable, 22 , 252, 266
LAR, 442 , 562	innearly senaranie ZZ 757 766
large margin classifier, 501	
	link farms, 601
large margin principle, 259	link farms, 601 link function, 291
large margin principle, 259 LARS, 437 , 442 , 558, 562	link farms, 601 link function, 291 LISREL, 930
	link farms, 601 link function, 291 LISREL, 930 ListNet, 302
LARS, 437 , 442 , 558, 562	link farms, 601 link function, 291 LISREL, 930

local consistency, 780	Markov decision process, 331
local evidence, 317, 671	Markov decision process, 331 Markov equivalence, 936
local level model, 637	Markov equivalent, 915, 917
local prior parameter independence, 917	Markov logic network, 675
local variational approximation, 756	Markov mesh, 661
localist encoding, 984	Markov model, 589
locally decodable, 811	Markov models, 32
locally normalized, 686, 715	Markov network, 661
locally weighted regression, 512	Markov random field, 661
LOESS, 512	Markov switching models, 604
log partition function, 282	MARS, 538, 553 , 562
log-linear, 667	MART, 562
log-loss, 210	master, 810
log-odds ratio, 283	matching pursuit, 562
log-sum-exp, 86 , 757	matching pursuits, 428
logic sampling, 822	Matern kernel, 482
logical reasoning problems, 726	MATLAB, xxviii
logistic, 21 , 295	matrix completion, 14, 939
logistic distribution, 413, 863	matrix determinant lemma, 118
logistic normal, 402, 961	matrix factorization, 948
logistic regression, 21, 106	matrix inversion lemma, 118, 144, 641
logit, 21	matrix permanent, 669
logitBoost, 560	matrix tree theorem, 914
long tail, 2 , 296	max flow/min cut, 801
long tails, 43	max margin Markov networks, 693
LOOCV, 24, 207	max pooling, 1005
look-ahead RBPF, 832	max product linear programming, 810
loop, 310	max-product, 614, 713
loopy belief propagation, 691, 767 , 889	max-product belief propagation, 800
Lorentz, 40	maxent, 289
loss, 176	maximal branching, 913
loss function, 261	maximal clique, 310
loss matrix, 185 loss-augmented decoding, 699	maximal information coefficient, 60
loss-calibrated inference, 694	maximal weight bipartite matching, 659
lossy compression, 354	maximizer of the posterior marginals, 612 maximum a posteriori, 4
low density parity check, 768	maximum a posteriori, 4 maximum entropy, 39, 104 , 289 , 667
Low-level vision, 690	maximum entropy, 33, 104, 203, 007
LOWESS, 512	maximum entropy Markov model, 685
LSA, 947 , 1003	maximum expected utility principle, 177
lse, 757	maximum likelihood estimate, 69
LSI, 947	maximum risk, 196
LVM, 337	maximum weight spanning tree, 912
,	MCAR, 270
M step, 350	MCEM, 368
M-projection, 733	MCMC, 52, 596, 600, 815, 837
M3nets, 693	MDL, 162
machine learning, 1	MDP, 331
macro-averaged Fl, 183	MDS, 496
Mahalanobis distance, 98	mean, 33
mammogram, 29	mean absolute deviation, 511
maneuvering target tracking, 832	mean average precision, 303
manifest, 930	mean field, 735 , 756, 767, 989
MAP estimate, 4, 178	mean field energy functional, 779
MAR, 270	mean function, 291
margin, 563	mean precision, 182
margin re-rescaling), 696	mean reciprocal rank, 303
marginal distribution, 29	mean squared error, 205, 218
marginal likelihood, 156 , 169	Mechanical Turk, 10, 995
marginal polytope, 777	median, 33 median model, 423
marginalizing out, 320	MEMM, 685
marginally independent, 30	memory-based learning, 17
marker, 317	Mendelian inheritance, 317
market basket analysis, 15	Mercer kernel, 481
Markov, 324	Mercer's theorem, 481 , 539
Markov assumption, 308	message passing, 644, 800
Markov blanket, 327 , 662 , 736, 838	metric, 691, 691 , 803
Markov chain, 308 , 589 Markov Chain Monte Carlo, 815	metric CRF, 691
Markov Chain Monte Carlo, 815 Markov chain Monte Carlo, 52, 600, 837	metric MRF, 803
Markov Chain Mone Cano, 52, 600, 657	>,

Metropolis Hastings, 848, 922	MPE, 614
Metropolis-Hastings algorithm, 869	MPM, 612
MFCC, 1005	MRF, 661
MH, 848	MSE, 218
MI, 59	multi label classification, 970
micro-averaged Fl, 183	multi net, 627
Microsoft, 983	multi-armed bandit, 184
mini-batch, 264 , 571	multi-class logistic regression, 104
minimal, 282	multi-clust, 904
minimal I-map, 324	multi-grid techniques, 775
minimax rule, 196	multi-information, 415
minimum description length, 162	multi-label classification, 3, 405
minimum entropy prior, 621	multi-layer perceptron, 563 , 999
minimum mean squared error, 179	multi-level model, 171
minimum spanning tree, 897	multi-level modeling, 844
minorize-maximize, 369 misclassification loss, 176	multi-stage, 186 multi-target tracking, 659
Misclassification rate, 547	multi-task feature selection, 297
misclassification rate, 22, 205	multi-task learning, 172 , 231, 296 , 449, 757
missed detection, 180	multiclass classification, 3
missing, 15	multidimensional scaling, 496
missing at random, 270 , 372, 982	multinomial, 35
missing completely at random, 270	multinomial coefficient, 35
missing data, 14, 914, 974	multinomial logistic regression, 104, 252
missing data problem, 269	multinomial PCA, 948 , 951
mixed directed graphs, 931	multinomial probit, 295
mixed membership model, 950	multinomial regression LDA, 968
mixed membership stochastic block model, 973	multinomial resampling, 826
mixed model, 298	multinoulli distribution, 35
mixing matrix, 408	multiple hypothesis testing, 184
mixing time, 857	multiple hypothesis tracking, 656
mixing weights, 169, 338	multiple imputation, 115
mixture, 72	multiple kernel learning, 524 , 543
mixture density network, 344	multiple LDA, 276
mixture model, 164, 338	multiple output model, 3
mixture of conjugate priors, 169	multiple random restarts, 348 , 921 multiple restarts, 620
mixture of experts, 342 , 563, 973, 984 mixture of factor analysers, 386	multivariate adaptive regression splines, 553
mixture of Gaussians, 339	multivariate Bernoulli naive Bayes, 82
mixture of Galassans, 333 mixture of Kalman filters, 831	multivariate delta method, 763
mixture of trees, 914	multivariate Gamma function, 133
mixture proposal, 853	multivariate gamma function, 126
MLE, 69	multivariate Gaussian, 46, 97, 339
MLP, 563	multivariate normal, 46, 97
MM, 369	multivariate probit, 295
MMSE, 179	multivariate Student t, 46
MNIST, 7, 341	mutual information, 46, 59 , 87, 547, 912
Mobious numbers, 784	mutual inhibition, 564
mode, 4	mutually independent, 62
model based clustering, 11	MVN, 46 , 97
model selection, 10, 24, 156	
model selection consistent, 439	N-best list, 616
model-based approach, xxvii	n-gram, 568
model-based clustering, 879	n-gram models, 591
moderated output, 260 modularity, xxviii	Nadaraya-Watson, 511
MoE, 342	naive Bayes classifier, 82, 88, 311
moment matching, 176, 287 , 653 , 658, 677	naive Bayes classifiers, 32
moment parameters, 115	named entity extraction, 688
moment projection, 733	NaN, 14 nats, 56
momentum, 248	natural exponential family, 282
monks, 974	natural gradient, 411
Monte Carlo, 52 , 151, 192, 258, 815	natural parameters, 115, 282
Monte Carlo EM, 368	NDCG, 304
Monte Carlo integration, 53	nearest centroids classifier, 102
Monte Carlo localization, 828	nearest medoid classification, 491
moralization, 663, 715	nearest neighbor, 16
motes, 218	nearest neighbor clustering, 897
motif, 36	nearest neighbor data association, 658
mPCA, 948	nearest shrunken centroids, 109

negative binomial, 624	observed information matrix, 193
negative binomial distribution, 214	Occam factor, 255
negative examples, 65	Occam's razor, 67 , 156 , 399, 400
negative log likelihood, 218, 349	occasionally dishonest casino, 606
negative transfer, 297	occupancy grid, 828
negentropy, 415	Octave, xxviii
neighbors, 309	offline, 261
neocognitron, 566	oil wild-catter, 328
nested plate, 321	OLS, 220
Nesterov's method, 446	OMP, 428
Netflix, 15, 580, 979, 981, 987, 993	one-armed bandit, 184
NETtalk, 569	one-hot encoding, 35
neural network, 302, 969	one-of-C encoding, 252
neural networks, 344, 535	one-shot decision problem, 186
neutral process, 882	one-standard error rule, 208
Newton's algorithm, 249, 251	one-step-ahead predictive density, 609
NHST, 213	one-versus-one, 503
NIW, 133	one-versus-the-rest, 503
NIX, 136	one-vs-all, 503
NLL, 218, 349	online EM, 365
NMAR, 270	online gradient descent, 262
NMF, 470, 949	online learning, 75 , 241, 261
no forgetting, 331	ontological uncertainty, 973
no tree lunch theorem, 24 , 582	ontology, 977
nodes, 309	open class, 596, 688
nodes that fire together should wire together, 929	Open Directory Project, 600, 689
noise floor, 230	open universe, 676
noisy-OR, 313 , 928	optimal action, 177
nominal, 2	optimism of the training error, 206
non-descendants, 327	optimization, 218
non-tactorial, 466	ordered Markov property, 310, 327
non-informative, 165	ordinal, 295
non-negative matrix factorization, 470, 949	ordinal regression, 2 , 295 , 301
non-negative sparse coding, 470	ordinal variables, 876
non-null recurrent, 599	Ornstein Uhlenback process 483
non-parametric Bayes, 879	Ornstein-Uhlenbeck process, 483
non-parametric bootstrap, 192	orthodox statistics, 191
non-parametric BP, 712	orthogonal least squares, 427
non-parametric model, 16	orthogonal matching pursuits, 428
non-parametric prior, 879 non-serial dynamic programming, 717	orthogonal projection, 221 out-degree, 310
non-smooth, 432	out-of-clique query, 722
non-terminals, 689	outer approximation, 780
nonparanormal, 942	outliers, 179, 223
norm of a function, 539	over-complete, 282 , 1001
normal, 20 , 38	overcomplete, 469
normal equation, 220	overcounting number, 784
normal Gamma, 476	overdispersed, 859
normal inverse chi-squared, 136	overfit, 22
Normal-inverse-wishart, 133	overfitting, 72
normalized cut, 891	overrelaxed EM algorithm, 369
normalized discounted cumulative gain, 304	· ·
normalized mutual information, 879	p-value, 138, 163, 163 , 213
not missing at random, 270	PAC, 210
noun phrase chunking, 687	PageRank, 301, 596, 600, 601
NP-complete, 920	paired t-test, 137
NP-hard, 726	pairwise independent, 62
ν -SVM classifier, 502	pairwise Markov property, 662
nuisance variables, 320	pairwise MRF, 666
null hypothesis, 163, 213	parallel tempering, 858, 871, 922
null hypothesis significance testing, 213	parameter, 176
number game, 65	parameter expansion, 736
numerical underflow, 86	parameter modularity, 918
	parameter sharing, 107
object detection, 8	parameter tying, 107, 171, 589
object localization, 8	parametric bootstrap, 192
observation, 603	parametric model, 16, 19
observation model, 312, 631	parents, 309 , 310
observed data log likelihood, 348	Pareto distribution, 43
observed information, 167	part of speech, 605 , 966

Part of speech tagging, 605	point estimate, 149, 150
partial dependence plot, 586	pointwise approach, 301
partial least squares, 406, 975	pointwise marginal credibility intervals, 114
partially directed acyclic graph, 915	pointwise mutual information, 59
partially labeled LDA, 969	Poisson, 37
partially observed Markov decision process, 331	poisson regression, 292
partially observed MRF, 672 Particle filtering, 823	polar, 51 policy, 177
particle filtering, 267, 648, 823, 887	Polya urn, 89 , 884
partition function, 282 , 666	Polyak-Ruppert averaging, 263
partitional clustering, 875	polynomial kernel, 481
partitioned inverse formula, 116	polynomial regression, 20
partitioning, 841	polynomial time approximation schemes, 728
partitions of the integers, 885	polysemy, 951
Parzen window density estimator, 508	polytree, 310
passing a flow, 724	POMDP, 331
path, 310	pooled, 171 pooled empirical variance, 108
path diagrams, 929 pathologies, 211	population minimizer, 556
pattologies, 211 pattern, 915	positive definite, 125, 222
pattern completion, 669	positive definite kernel, 481
pattern recognition, 2	positive examples, 65
pattern search, 736, 783	posterior expected loss, 177
PCA, 12 , 387 , 493, 947	posterior mean, 179
PCFG, 689	posterior median, 179
PDAG, 936	posterior mode, 178
pdf, 32	posterior predictive density, 608
pedigree graph, 315 peeling algorithm, 715	posterior predictive distribution, 66 , 71, 234 potential function, 665
Pegasos, 701	Potts model, 671 , 856
penalized least squares, 226	power law, 43
penalized log likelihood, 161	power method, 603
penalized splines, 537	PPCA, 381 , 387
penetrance model, 317	precision, 38, 182
perception-action, 331	precision at k, 303 , 702
perceptron, 569	precision matrix, 46, 100
perceptron algorithm, 266	precision recall curve, 182
perceptual aliasing, 828 perfect intervention, 931	predict-update cycle, 609 predict-update-project, 653
perfect map, 664	predictive, 2
period, 598	preferences, 185
permanent, 942	preposterior risk, 195
perplexity, 953, 953 , 992	prevalence, 183
persistent CD, 991	Prim's algorithm, 912
persistent contrastive divergence, 680	primal variables, 492 , 499
personalized recommendation, 77	principal component, 388
personalized spam filtering, 296	principal components, 1000
perturbation theory, 892 phase, 317	principal components analysis, 12, 387 principal components regression, 230
phase transition, 671 , 857	principle of insufficient reason, 58
phenotypes, 317	probabilistic decision tree, 551
phone, 624	probabilistic expert system, 313
phonemes, 1005	probabilistic inference, 319
phylogenetic HMM, 317	probabilistic latent semantic indexing, 949
phylogenetic tree, 925	probabilistic matrix factorization, 337, 980
piecewise polynomial, 537 pilot runs, 851	probabilistic PCA, 387 probabilistic principal components analysis, 381
pipeline, 687	probabilistic relational modeling, 675, 976
Pitman-Koopman-Darmois theorem, 286	probability density function, 32
Pitman-Yor process, 885	probability mass function, 28
Plackett-Luce, 302	probability of the evidence, 319, 609, 717
plates, 321	probability product kernel, 485
platykurtic, 413	probability simplex, 47, 79
PLS, 406	probability theory, xxvii, 1
PLSI, 949	probably approximately correct, 210
plug-in, 147 plug-in approximation, 72	probe, 583 probit, 260 , 655
plutocracies, 43	probit, 200, 633 probit regression, 293, 362, 380, 795, 864
pmf, 28	product of experts, 983
PMTK, xxviii	product rule, 29
	-

production rules, 689	recall, 181, 182
profile HMM, 606	receiver operating characteristic, 181
profile log likelihood, 401	receptive fields, 565
projected gradient descent, 444, 445	recognition weights, 410, 986
projection, 262	recombination model, 317
projection pursuit, 415	reconstruction error, 354, 387
Prolog, 676	recurrent, 599
proposal distribution, 817, 848, 869	recurrent neural network, 568, 669
propose, 848	recurrent neural networks, 591
prosecutor's fallacy, 61	recursive, 929
Protein sequence alignment, 606	recursive least squares, 265, 636
protein-protein interaction networks, 970	reflecting pair, 553
	regime switching, 660
prototype, 341	
proximal operator, 443	regime switching Markov model, 626
pruning, 549	regression, 2
pseudo counts, 75	regression spline, 537
pseudo likelihood, 678	regret, 262
pseudo marginals, 780	regular, 598
pseudo random number generator, 816	regularization, 227
pseudo-likelihood, 943	regularization path, 436, 442, 562
pure, 546 , 548	regularized discriminant analysis, 107
purity, 877	regularized estimation, 130
pushing sums inside products, 715	regularized particle filter, 827
pyramid match kernel, 484	regularized risk minimization, 206
	reinforcement learning, 2, 186
QALY, 186	reject action, 178
QMR, 313	rejection sampling, 817
OP, 431	rejuvenation, 825
	relation, 975
qq-plot, 260	relational probabilistic models, 676
QR decomposition, 228	relational topic model, 974
quadratic discriminant analysis, 102	relative entropy, 57
quadratic loss, 179	relative importance of predictor variables, 586
quadratic program, 431 , 498, 499	relative risk, 531
quantile, 33	
quantize, 59	relevance network, 908
quartiles, 33	relevance vector machine, 463, 488
Quasi-Newton, 251	Rephil, 928
query logs, 301	replicated softmax model, 992
query variables, 320	representer theorem, 539
quick medical reference, 313	reproducing kernel Hilbert space, 539
	reproducing property, 539
radar, 658	rerank, 616
radial basis function, 480	resample-move, 827
	residual, 641
Rand index, 878	residual analysis, 260
random accelerations model, 633	residual belief propagation, 774
random effects, 298	residual error, 19
random effects mixture of experts, 969	residual resampling, 826
random forests, 551 , 554	residual sum of squares, 218
random probability measure, 880	response variable, 2
random utility model, 294	responsibility, 340, 351
random walk Metropolis algorithm, 848	restricted Boltzmann machine, 983
random walk on the integers, 599	reverse KL, 733
random walk proposal, 869	reversible jump MCMC, 370, 399, 855
Rank correlation, 304	reward, 2
rank one update, 118	Ricatti equations, 642
ranking, 87 , 601 , 702	rich get richer, 755 , 885
RankNet, 302	ridge regression, 203, 226
Rao-Blackwell, 841	right censored, 379
Rao-Blackwellisation, 841	risk, 195 , 261
Rao-Blackwellised particle filtering, 831	risk averse, 4, 178
Rao-Blackwellized particle filtering, 659	RJMCMC, 855
rare event, 182, 820	
rate, 355	RKHS, 539
rational behavior, 177	RLS, 636 Rabbina Manua 262 , 266, 701
RBF, 480	Robbins-Monro, 263 , 366, 701
RBF kernel, 517	robust, 179
	robust priors, 168
RBF network, 486	robustness, 223
RBF network, 486 RBM, 983 , 996	robustness, 223 ROC, 181
RBF network, 486	robustness, 223

root, 309, 895 shrinkage, 122, 174, 230, 557 root mean square error, 979 shrinkage estimation, 130 Rosenblatt, 266 shrinkage factor, 437 rotamers, 690 side chains, 690 RTS smoother, 644 side information, 982 rule of iterated expectation, 141 SIFT, 484 sifting property, 39 rule of total probability, 29 sigma points, **650**, 651 sigmoid, **21**, 105 rules, **550** RUM, 294 sigmoid belief net, 313, 996 running intersection property, 722 RVM, 488, 505 sigmoid belief nets, 763 sigmoid kernel, 482 signal detection theory, 106 saddle point approximation, 255 signal processing, 421 sample impoverishment, 826 signal-to-noise ratio, 122 sample standard deviation, 136 signal-to-symbol, 1007 samples, 52 similar, 66, 875 sampling distribution, 191, 191 similarity-based clustering, 875 sampling importance resampling, 823 simple cells, 413 sampling period, 633 Simple linear regression, 241 satisfying assignment, 727 saturated model, **428** simplex factor model, 949 Simpon's paradox, 933 Simulated annealing, 869 simulated annealing, 262, 348, 853, 921 SBL, 463 scalar product, 19 scale invariant prior, 168 simulation based, 823 scale of evidence, 163 simultaneous localization and mapping, 635 scatter plot, 6 single best replacement, 427 SCFGs, 624 single link clustering, 897 schedule, 263 single site updating, 847 Schur complement, 116 singular value decomposition, 392 scientific method, 71 singular values, 392 scope, 328 SIR, 823 score function, 167, 193 size principle, 67 score matching, 1001 skewness, 413 score vector, 485 skip arcs, 568 scores, 382 skip-chain CRF, 688 scree plot, 400 slack re-scaling, 696 screening, 87 slack variables, 498 search engine optimization, 603 second order, 249 SLAM, 635, 834 slaves, 810 second order Markov chain, 312 slice sampling, 865 second-order Markov model, 591 sliding window detector, 8 self loops, 309 semantic hashing, 1003 slippage, 635 slot machine, 184 small N, large D, **421** semantic network, 977 semantic role labeling, 576 SmartASS, 4 semi-conjugate, 132 SML, **680** semi-continuous HMM, 630 SMO, 499 semi-Markov model, 622 Smoothing, 607 semi-metric, 691 smoothing kernel, 507, 507 semi-parametric model, 298, 524 Smoothing splines, 536 semi-supervised, 405 social networks, 970 semi-supervised embedding, 576 soft clustering, 340, 973 semi-supervised learning, **268**, 270 sensible PCA, **387** soft margin constraints, 501 soft thresholding, 434, 435 sensitivity, 29, 181 soft weight sharing, 575 sensitivity analysis, 166 softmax, 104, 283 sensor fusion, 122 source coding, 56 sentiment analysis, 967 SpAM, **553** separating set, 723 spam, 5 separation oracle, 699 spanning tree polytope, 786 sequence logo, 36 SpaRSA, 445 sequential, 186 sparse, 15, 421, 621, 945, 979 sequential minimal optimization, 499 sparse Bayesian learning, 463 sequential TRBP, 801 sparse boosting, 562 SGD, **262** sparse coding, 469 Shafer-Shenoy, 722 sparse data problem, 77 shallow parsing, 687 sparse kernel machine, 421 shared, 103 sparse matrix factorization, 469, 470 Sherman-Morrison-Woodbury formula, 118 sparse PCA, 469 shooting, 441, 940

sparse representation, 421	stochastic volatility, 831
sparse vector machine, 488	stop words, 81 , 480 , 952
sparsity, 41	stopping rule, 214
sparsity-promoting prior, 297	stratified CV, 206
spectral, 445	stratified sampling, 826
spectral clustering, 891	streaming data, 261
spectral graph theory, 891	StreetView, 8
speech recognition, 590, 1005	strict, 197
sphereing, 142	strictly convex, 222
spherical, 46	string kernel, 483
spike and slab, 424	strong local optimum, 804
spin, 668	strong sampling assumption, 67
spline, 298	structural EM, 925
split merge, 621	structural equation model, 929
split variable, 224	structural equation models, 674
square root filter, 642	structural error, 230
squared error, 179	structural risk minimization, 206
squared exponential kernel, 480 , 517	structural signatures, 926
squared loss, 176	structural support vector machines, 693
squashing function, 21	structural time series, 637
SSM, 631	structural zeros, 672
SSVMs, 693	structure learning, 621 , 681
stability selection, 439	structured mean field, 740
stable, 936	structured output, 684
stacked denoising auto-encoder, 1001	structured perceptron algorithm, 700
stacking, 580	structured-output classification problems, 266
standard deviation, 34	Student t, 359
standard error, 56	Student t distribution, 39
standard error of the mean, 137, 208 standard errors, 194	sub-Gaussian, 413 subderivative, 432
standard model, 995	subdifferential, 432
standard model, 333 standard normal, 38	subgradient, 432, 432
standard normal, 36 standard overcomplete representation, 776	subgraph, 310
standard overcomplete representation, 776	subjective, 67
Standardizing, 142	subjective probability, 310
state, 176	submodular, 802
state estimation, 313	subsampling, 566
state space, 28	subspace method, 647
state space model, 631	sufficiency principle, 214
state transition diagram, 590 , 606	sufficient statistics, 74 , 79, 281, 282 , 348
state transition matrix, 308	suffix trees, 483
stationary, 589 , 631	sum of squared errors, 218
stationary distribution, 596, 597	sum of squares, 220
statistical learning theory, 209	sum rule, 29
statistical relational AI, 675	sum-product, 614 , 709
statistical relational learning, 976	sum-product algorithm, 707
statistically significant, 213	super efficient, 820
steepest descent, 247, 264	super-Gaussian, 413
Stein's paradox, 199	supermodular, 802
stemming, 81	supervised LDA, 967
step size, 247	supervised learning, 2
stepping out, 866	supervised PCA, 405
stepwise EM, 365	support, 426
stick-breaking construction, 883	support vector machine, 488, 496, 569
sticky, 850	support vector machines, 211
stochastic algorithm, 869	support vectors, 496 , 498 , 499
stochastic approximation, 368	surrogate loss, 304
stochastic approximation EM, 368	surrogate loss function, 211
stochastic automaton, 590	surrogate splits, 550
stochastic block model, 972	survival of the fittest, 825
stochastic context free grammars, 624	suspicious coincidence, 164
stochastic EM, 368	suspicious coincidences, 67
stochastic gradient boosting, 584	SVD, 107, 228, 392 , 980
stochastic gradient descent, 262 , 570, 868, 981, 987	SVM, 211, 488 , 496
stochastic matrix, 307, 589	SVMstruct, 698, 700
stochastic maximum likelihood, 680 , 990	Swendsen Wang, 866
stochastic optimization, 262	switching linear dynamical system, 655 , 831 switching state space model, 655
stochastic process, 953	
stochastic processes, 589	symbol grounding, 1007
stochastic search, 429	symmetric, 849

synchronous updates, 773 treewidth, 320, 719, 800 syntactic sugar, 321 trellis, 614 trellis diagram, 612 tri-cube kernel, 508 synthesis view, 387 systematic resampling, 826 triangle inequality, 352, 875 systems biology, 13 systems identification, 646 triangulated, 722 tridiagonal, 114 systolic array, 710 trigram model, 591 true positive rate, 181 t statistic, 137 TrueSkill, 654, **793** t-test, 137 truncated Gaussian, 362 tabula rasa, 165 truncated Gaussian potential, **691** truncated Newton, **250** tail area probabilities, 33 tail area probability, 213 TAN, 312, 914 TASA, 951 truncated SVD, 393 TRW, **787** TRW-S, **801** Taylor series, 255 tube, 497 Taylor series expansion, 648 tuples, 975 Taylor's theorem, 248 turbo codes, 768 temperature, 104 two-filter smoothing, 646 template, 676 two-slice marginal, 611 template matching, 543 type I, 213 tensor product, 553 tensor product basis, 538 type I error rate, 181 type II maximum likelihood, 157 terminals, 689 type-II maximum likelihood, 173 test statistic, 163, 213 TF-IDF, 480 thin junction tree filter, 635 U-shaped curve, 23 thin junction trees, 944 UCB, **185** UGM, 661 thin plate spline, 538 thin SVD, 392 UKF, 650 unbiased, 200 thinning, 862 Thompson sampling, 185 uncertainty, 27 tied, **103**, **565**, 997 unclamped phase, 988 tied-mixture HMM, 630 unclamped term, 677 unconditionally independent, 30 Tikhonov regularization, 124 underfits, 23 time reversible, 599 undirected, 309 time-invariant, 589 undirected graphical model, 661 undirected local Markov property, 662 time-series forecasting, 637, 673 Tobit model, 379 Toeplitz, 627 unfaithful, 663 tokens, **945** unidentifiable, 200, 278, 841 Unified Medical Language System, 977 topic, 946, 951 topic model, 757 uniform distribution, 32 topological ordering, 310, 310 unigram statistics, 591 total ordering, 310 unigrams, 953 uninformative, 165 trace, 99 trace plot, 859 union bound, 209 unit information prior, 236 trace trick, 99 traceback, 614, 717 universal approximator, 564 tracking, 823 tracking by detection, **830** tractable substructure, **739** unk, 81, 596 unknown, 15, 81 unrolled, 321 trail, **310** unscented Kalman filter, 523, 650 training set, 2 trans-dimensional MCMC, **855** unscented particle filter, 828 unscented transform, 650 transfer function, 563, 570 unstable, 550 transfer learning, 296 unsupervised learning, 2, 9, 337 transient, 599 up-down, 998 transition matrix, 589, 590 user rating profile, 949 transition model, 312, 631 utilities, 294 translation invariance, 565, 1004 utility function, 177 translation invariant, 472 utility nodes, 328 translation invariant prior, 167 TRBP, 787 v-structure, 324, 326 TRBP-S, 801 validation set, 23 tree, 310 value nodes, 328 tree EP. 793 value of perfect information, 331 tree reparameterization, 774 vanishing gradient, **999** Vapnik-Chervonenkis, **210** tree reweighted belief propagation, 786 tree-augmented naive Bayes classifier, 312 VAR, **673**

Zipf's law, 43

variable duration HMM, 622 variable elimination, 318, 331, 715 variance, 33 variance stabilizing transform, 175 variation of information, 879 variational Bayes, 742 variational Bayes EM, 620, **750**, 923 variational EM, **368** variational free energy, 733 variational inference, 281, 318, 731 variational message passing, 756 varimax, 385, 410 VB, **742** VBEM, **750** VC, **210** VC dimension, 206 vector auto-regressive, 673 vector quantization, 354 version space, 67 vertices, 309 VIBES, **756** views, 904 visible, 349 visible nodes, 313 visible variables, 319 visual words, 1007 visualizing, **12** Viterbi, **612**, 701 Viterbi decoding, **608** Viterbi training, 620 VMP, 756 Voronoi tessellation, 18 VQ, **354** Wald, 448

Wald interval, 212 warm starting, 442 WARP, 304 Watson, 4 wavelet, 469 wavelet transforms, 413 weak conditionality, 215 weak learner, 554 weak marginalization, 658 web crawling, 600 web spam, 603 weight decay, 226, 572, 987 weight function, 533 weight vector, 19 weighted approximate-rank pairwise, **304** weighted average, 71 weighted least squares, 358 weighted least squares problem, 251 Whitening, 142 whitening, 410 Widrow-Hoff rule, 265 Wishart, 125 working response, **250** World Health Organization, 60 wrapper method, 427

Xbox, 654, 795 xor, **486**

Zellner's g-prior, 405 zero avoiding, zero count problem, zero forcing, zero temperature limit, zig-zag, **248**