Regression Models for Data Science in R

Charlene Garridos

2023-03-08

Contents

L	Ord	linary Least Squares	1
	1.1	General least squares for linear equations	1
	1.2	Revisisting Galton's Data	2
	1.3	Showing the OLS Result	2

1 Ordinary Least Squares

Ordinary least squares (OLS) is the *workhorse of statistics*. It gives a way of taking complicated outcomes and explaining behavior (such as trends) using linearity. The simplest application of OLS is fitting a line.

1.1 General least squares for linear equations

 $https://www.youtube.com/watch?v=LapyH7MG3Q4\&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC\&index=6$

Fitting the best line: Let Y_i be the i^{th} child's height and X_i be the i^{th} (average over the pair of) parents' heights. Consider finding the best line

Child's Height = β_0 + Parent's Height β_1 .

Use least squares

$$\sum_{i=1}^{n} \{Y_i - (\beta_0 + \beta_1 X_i)\}^2$$

Note: Minimizing this equation will minimize the sum of the squared distances between the fitted line at the parents' heights $\beta_i X_i$ and the observed child heights Y_i .

Result: The least squares of the line:

$$Y = \beta_0 + \beta_i X_i$$

through the data pairs X_i, Y_i with Y_i as the *outcome* obtains the line $Y = \hat{\beta}_0 + \hat{\beta}_1 X$ where:

$$\hat{\beta}_1 = Cor(Y, X) \frac{Sd(Y)}{Sd(X)}$$
 and $\hat{\beta}_0 = \bar{Y} = \hat{\beta}_1 \bar{X}$

Elaborate:

- $\hat{\beta}_1$ has the units of Y/X, $\hat{\beta}_0$ has the units of Y.
- The line passes through the point (\bar{X}, \bar{Y}) .
- The slope of the regression line with X as the outcome and Y as the predictor is Cor(Y,X)Sd(X)/Sd(Y). The slope is the same one you would get if you centered the data, $(X_i \bar{X}, Y_i \bar{Y})$, and did regression through the origin.

Regression through the origin, assuming that $\beta_0 = 0$, yields the following solution to the *least squares* criteria:

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n X_i Y_i}{\sum_{i=1}^n X_i^2}$$

Note: If you normalized the data, $\{\frac{X_i - \bar{X}}{Sd(X)}, \frac{Y_i - \bar{Y}}{Sd(Y)}\}$, the slope is Cor(Y, X).

1.2 Revisisting Galton's Data

 $https://www.youtube.com/watch?v=O7cDyrjWBBc\&index=7\&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC$

1.3 Showing the OLS Result

Proof of why the ordinary least squares result works out to be the way that it is:

 $https://www.youtube.com/watch?v=COVQX8WZVA8\&index=8\&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC$