# Estadística Descriptiva



José Antonio Perusquía Cortés

Inferencia Estadística Semestre 2025-II



### Datos y variables

Tipo de variable

Cualitativas o Categóricas

Cuantitativas

### Datos y variables



### Datos y variables

Tipo de variable Escala de medición





Analizar los datos









### Medidas numéricas

Tendencia Central

Localización

Dispersión

Forma

Correlación

• Indican el valor donde se centran los datos e.g.:

- Indican el valor donde se centran los datos e.g.:
  - Media (o promedio):

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

- Indican el valor donde se centran los datos e.g.:
  - Media (o promedio):

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

- Mediana: El valor de en medio

$$\operatorname{med}(\mathbf{x}) = \begin{cases} x_{\left(\frac{n+1}{2}\right)} & \text{si } n \text{ es par} \\ \frac{1}{2} \left( x_{\left(\frac{n}{2}\right)} + x_{\left(\frac{n}{2}+1\right)} \right) & \text{si } n \text{ es impar} \end{cases}$$

- Indican el valor donde se centran los datos e.g.:
  - Media (o promedio):

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

- Mediana: El valor de en medio

$$\operatorname{med}(\mathbf{x}) = \begin{cases} x_{\left(\frac{n+1}{2}\right)} & \text{si } n \text{ es par} \\ \frac{1}{2} \left( x_{\left(\frac{n}{2}\right)} + x_{\left(\frac{n}{2}+1\right)} \right) & \text{si } n \text{ es impar} \end{cases}$$

- Moda: El valor más repetido

#### Medidas de localización

• Indican los valores que dividen la muestra ordenada e.g.:

#### Medidas de localización

- Indican los valores que dividen la muestra ordenada e.g.:
  - **Cuartiles**: Son los tres valores que dividen las observaciones en cuatro partes iguales y usualmente denotados por  $q_{.25}$ ,  $q_{.50}$  (mediana) y  $q_{.75}$
  - **Deciles**: Son los nueve valores que dividen la muestra en 10 partes iguales
  - Percentiles: Son los 99 valores que dividen la muestra en 100 partes iguales

• Indican la variabilidad de los datos e.g.:

- Indican la variabilidad de los datos e.g.:
  - Desviación estándar

$$\sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$

- Indican la variabilidad de los datos e.g.:
  - Desviación estándar

$$\sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$

- Rango: Definido como  $r = x_{(n)} - x_{(1)}$ 

- Indican la variabilidad de los datos e.g.:
  - Desviación estándar

$$\sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$

- Rango: Definido como  $r = x_{(n)} x_{(1)}$
- Rango intercuartílico: Utilizado para identificar valores atípicos y definido como

$$IQR = q_{.75} - q_{.25}$$

- Indican la variabilidad de los datos e.g.:
  - Desviación estándar

$$\sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$

- Rango: Definido como  $r = x_{(n)} x_{(1)}$
- Rango intercuartílico : Utilizado para identificar valores atípicos y definido como  ${\sf IQR} = q_{.75} q_{.25}$
- Coeficiente de variación: Utilizado para comparar las distribuciones y definido como  $\sigma/\bar{x}$

### Medidas de forma

• Nos indican la forma de la distribución :

#### Medidas de forma

- Nos indican la forma de la distribución:
  - **Curtosis**: Mide que tan achatada es una distribución en relación a una distribución guassiana cuya curtosis es 3
    - Mesocúrtica: Si la curtosis es igual a 3
    - Platicúrtica: Si la curtosis es menor a 3
    - Leptocúrtica: Si la curtosis es mayor a 3







#### Medidas de forma

- Nos indican la forma de la distribución:
  - Coeficiente de asimetría (o sesgo)
    - > Simétrica: si el coeficiente es cero.
    - Asimétrica negativa (o a la izquierda): si el coeficiente es menor a cero.
    - Asimétrica positiva (o a la derecha): si el coeficiente es mayor a cero.







#### Medidas de correlación

• Miden el grado de efecto de una variable en otra:

#### Medidas de correlación

- Miden el grado de efecto de una variable en otra:
  - Coeficiente de Pearson. Medida paramétrica utilizada para cuantificar la relación lineal de dos variables.

#### Medidas de correlación

- Miden el grado de efecto de una variable en otra:
  - Coeficiente de Pearson. Medida paramétrica utilizada para cuantificar la relación lineal de dos variables.
  - Coeficiente  $\rho$  de Spearman. Medida de dependencia no paramétrica, que utiliza los rangos entre los valores de las variables para estudiar la relación monotónica de dos variables.
  - Coeficiente  $\tau$  de Kendall. Medida de dependencia no paramétrica para estudiar la relación monotónica de dos variables. Preferible para cuando hay pocas observaciones o empates.

### Representaciones gráficas

Tabla de frecuencias

Gráfica de barras

Histograma

Box plot

Pie/Pastel/
Dona

Diagrama de dispersión

Diagrama de correlación

Diagrama de tallo y hojas

¡Muchas más!

#### Tabla de frecuencias

• Útiles para resumir la información de variables categóricas

#### Tabla de frecuencias

- Útiles para resumir la información de variables categóricas
- Para una muestra  $x_1, \ldots, x_n$ 
  - Se encuentran los valores únicos  $x_1^*, ..., x_k^*$
  - Se cuenta el número de veces que estos valores únicos ocurren (**frecuencias**) y se denotan por  $f_1, \ldots, f_k$  de tal forma que  $f_1 + \cdots + f_k = n$
  - También se pueden obtener las **frecuencias relativas**  $f_i^*=f_i/n$  de tal forma que  $f_1^*+\cdots+f_k^*=1$
  - Se obtienen las frecuencias acumuladas como  $F_i = f_1^* + \cdots + f_i^*$

#### Tabla de frecuencias

- Útiles para resumir la información de variables categóricas
- Para una muestra  $x_1, \ldots, x_n$ 
  - Se encuentran los valores únicos  $x_1^*, ..., x_k^*$
  - Se cuenta el número de veces que estos valores únicos ocurren (**frecuencias**) y se denotan por  $f_1, \ldots, f_k$  de tal forma que  $f_1 + \cdots + f_k = n$
  - También se pueden obtener las **frecuencias relativas**  $f_i^*=f_i/n$  de tal forma que  $f_1^*+\cdots+f_k^*=1$
  - Se obtienen las frecuencias acumuladas como  $F_i = f_1^* + \cdots + f_i^*$
- Las frecuencias (relativas) se utilizan para construir las gráficas de barras, de pie, de pastel y dona

### Gráficas de barras y pie/pastel/dona





### Histogramas

- Requiere una tabla de frecuencias utilizando intervalos en lugar de valores únicos
  - Obtener el rango de los datos
  - Seleccionar el número de clases M (e.g.  $M = \sqrt{n}$  o  $M = \log(n) + 1$ )
  - Crear los intervalos y contar el número de observaciones que caen en dichos intervalos y que jugarán el papel de las **frecuencias**  $f_1, \dots, f_M$
  - Calcular la marca de clase dado por el punto medio del intervalo
  - Crear una gráfica de barras con cada barra centrada en la marca de clase y altura dada por las frecuencias (absolutas o relativas)

### Histogramas

• Representación gráfica de la densidad empírica



### Histogramas

• Representación gráfica de la densidad empírica





### Boxplot

- Muestra información del mínimo, máximo, mediana, de la simetría de la densidad así como de valores atípicos
  - Obtener los cuártales y el rango intercuartílico
  - Dibujar una caja empezando por el primer cuartil y terminado en el tercer cuartil
  - Dibujar una recta horizontal (o vertical) dentro de la caja a la altura del segundo cuartil
  - Calcular el rango intercuartílico e identificar como valores atípicos aquellos valores que sean menores a  $Q_1=q_{.25}-1.5*$  IQR y mayores a  $Q_2=q_{.75}+1.5*$  IQR
  - Dibujar una recta del primer cuartil a  $\mathcal{Q}_1$
  - Dibujar una recta del tercer cuartil a  $Q_2$

### Boxplot

• Representación gráfica de los datos a partir de los cuartiles



### Boxplot

• Representación gráfica de los datos a partir de los cuartiles





### Software

Lenguajes







IDE





Notebooks





#### En este curso

#### Paqueterías:

- ggplot2
  dplyr
  plyr
  tidyverse

