Порівняльний аналіз біполярні та уніполярні МДН напівпровідникових ІМС

Особливості МДН структур:

- Кількість основних операцій при формуванні МДН ІС (приблизно на 30%) менше в порівнянні з кількістю операцій для біполярної структури. Менша кількість високотемпературних процесів, які в значній мірі впливають на відсоток виходу придатних ІМС.
- Процес виготовлення МДН IC зводиться до формування МДН транзистора і з'єднань між ними.
 Так як МДН транзистори і виконують функцію резисторів та конденсаторів.
- У МДН технології немає необхідності застосовувати додаткові області для ізоляції елементів.
 Проте, і в МДН ІС використовується бічна ізоляція елементів діелектриком для зменшення паразитних

зв'язків. У ряді випадків застосовується повна діелектрична ізоляція, наприклад, **МДН ІС на сапфірі** або на підкладці SiO₂-Si.

- Внутрішньосхемні з'єднання виконуються за допомогою металевих шарів, а також високолегованих дифузійних шарів, що дозволяє вирішувати завдання багатошарової розводки.
- У МДН технології легко реалізувати елементи або транзистори з різним каналом провідності, що дозволяє формувати ІС на комплементарних структурах.
- Для їх реалізації МДН-елемента необхідна менша площа підкладки. (Наприклад, якщо для біполярного транзистора потрібно на підкладці площа 0,015 мм², то для реалізації польового МДН-транзистора лише 0,0006 мм²)
- Ступінь інтеграції МДП-ІМС вище, ніж ступінь інтеграції ІМС на біполярних транзисторах, що вимагає прецизійних операцій фотолітографії і т.д.

Порівняльний аналіз біполярні та уніполярні МДН напівпровідникових ІМС

Особливості біполярних структур

- Основним елементом напівпровідникових біполярних структур є транзистор типу n⁺-p-n, на основі якого формуються активні і пасивні елементи.
- Перерозподіл домішок в раніше сформованих областях при наступних високотемпературних операціях, що необхідно враховувати при проектуванні
- наявність паразитних <u>ємностей</u> і струмів витоку ізолюючих p-n-переходів, що особливо позначається в швидкодіючих високочастотних IMC.
- Технологія порівняно проста, добре освоєна

Застосовується при виготовленні різних типів біполярних ІМС

ОЗУ

(ТТЛ, ТТЛШ, ЕЗЛ та ін.).

РОЗДІЛ 2

тема

ІНТЕГРАЛЬНІ МІКРОСХЕМИ НА БІПОЛЯРНИХ ТРАНЗИСТОРАХ

БІПОЛЯРНІ ТРАНЗИСТОРИ ІМС

Вимоги

конструктивно-технологічна сумісність елементів ІМС.

Конструкція і технологія виготовлення транзисторів повинна забезпечувати можливість одночасного створення і інших елементів (діодів, резисторів, конденсаторів і т. д.)

- мінімальна площа, яка займається елементами на напівпровідниковій пластині для підвищення
 - щільності упаковки елементів,
 - ступені інтеграції.

ОСОБЛИВОСТІ СТРУКТУР БІПОЛЯРНИХ ТРАНЗИСТОРІВ ІМС

1. планарна структура –

всі виводи від областей транзистора розташовуються в одній площині на поверхні підкладки. Вона дозволяє з'єднувати між собою елементи ІМС плівковими металевими провідниками.

- 2. Наявність додаткових ізолюючих областей.
- 3. Основним елементом є транзистор типу n+-p-n, на основі якого формуються активні та пасивні елементи.

Рис. 3. Реализация на подложке n+-p-n-транзистора, резистора R и конденсатора C.

Конфігурації (топологія) та робочі параметри.

Чому? п+-р-п,

(рис. а) асиметрична: в ній колекторний струм протікає до емітера тільки в одному напрямку

(рис. б) симетрична: в ній колекторний струм протікає до емітера з трьох сторін.

- Відповідно опір колекторного шару виявляється приблизно в 3 рази менше, ніж у асиметричної конфігурації.
- Контактна вікно і металізація колектора розбиті на дві частини. При такій конструкції полегшується металева розводка: алюмінієва смужка (наприклад, емітерна на рис., Б) може проходити над колектором по захисному оксиду, що покриває поверхню ІС.

Для прикладу на рис. а приведені відносні розміри шарів інтегрального n-p-n-транзистора для мінімального літографічного розширення, рівного 10 мкм.

ОСОБЛИВОСТІ СТРУКТУР БІПОЛЯРНИХ ТРАНЗИСТОРІВ ІМС

4. У ІМС в якості напівпровідникового матеріалу використовують кремній.

- особливості електрофізичних параметрів,
- з технологічних причин

?

(повторити ел. фіз. Характеристики кремнію)

(повторення)

Основні напівпровідникові матеріали ІС

В якості основного напівпровідника використовується кремній (Si). Поширений на землі елемент (25,7% земної кори (по масі)).

- Атомний номер 14.
- Атомна вага 28,06
- Температура плавлення 1420° С
- Ширина забороненої зони E_g = 1,12 <u>eB</u> (при 300 К)
- Рухливість вільних електронів μn = 1350 см2/(В · с) (при 300 К)
- Рухливість дірок µр = 480 см2/(В · с) (при 300 К)
- Діелектрична проникність ε = 12
- Акцептори: B, Al. Донори: P, As, Sb
- Πитомий опір ρ = 2,5 . 105 Ом . см (300 К)
- Концентрація <u>ті</u> = 1,5. 1010 см-3 (300 К) (до речі, для <u>германія ті</u> = 2,5. 1013 см-3) Постійна решітки: 5,43 Å (300 К)
 Число атомів в 1 куб. см речовини: 5 · 10²² см⁻³.

Досить велика ширина забороненої зони кремнію обумовлює малі зворотні струми P - N переходів, що дозволяє створювати IC, що працюють при підвищених *температурах (до 125 °C)* і при малих струмах транзисторів (менше1 мкА), тобто низькій споживаній потужності.

Важлива конструктивно-технологічна перевага кремнію пов'язана з властивостями шарів діоксиду кремнію SiO₂. Ці шари використовуються:

- в якості масок при локальному легуванні кремнію,
- для ізоляції елементів,
- в якості підзатворного діелектрика МДН-транзистора,
- для захисту поверхні кристала від впливу навколишнього середовища та ін.

ПРИКЛАД (для випадку рис. а)

Типичные параметры слоев интегрального n-p-n-транзистора

Наименование слоя	N , cm $^{-3}$	d, mkm	р, Омсм	R_s , Om/ \square
Подложка р-типа	1,51015	300	10	_
Скрытый n ⁺ -слой	_	5-10	_	8-20
Коллекторный п-слой	10 ¹⁶	10-15	0,5	50Q-
Базовый р-слой	5-1018	2,5	_	200
Эмиттерный n ⁺ -слой	10 ²¹	2	_	5-15

Примечание: N — концентрация примеси (для диффузных базового и эмиттерного слоев — поверхностная концентрация); d — глубина слоя; ρ — удельное сопротивление материала; R_s — удельное сопротивление слоя.

Типові параметри інтегральних п-р-п-транзисторів

Параметр	Номинал	Допуск 8, %	
Коэффициент усиления, в	100-200	±30	
Предельная частота f_{7} ,	200-500	±20	
МГи	0,3-0,5	±10	
Коллекторная емкость C_{κ_0}	40-50	±30	
Фп	7-8	±5	
Пробивное напряжение			
Ux6, B			
Пробивное напряжение			
U _{sés} B			

В основі технологічних процесів формування біполярних ІМС покладені два принципи:

- 1. спосіб формування структури активних і пасивних елементів
 - планарно-дифузійні,
 - планарно-епітаксіальні ,?
 - ізопланарні.

Ι

- 2. метод ізоляції елементів
 - ізоляція р-п-переходом,
 - діелектричним шаром,
 - їх комбінацією.

Рис. 7.3. Основные методы изоляции элементов ИС: a — с помощью p-n-переходов; δ — с помощью диэлектрика

Спосіб проведення технологічних операцій та їх режим визначають

- електрофізичні параметри структури,
- в тому числі профіль домішкового розподілу

Приклади структур БП транзисторів, використовуваних в ІМС

Відмінність реальних транзисторів від тих, що показані на ескізах, полягає в співвідношеннях площі (довжини і ширини) і глибини.

Реальний транзистор

- більш "плоский", довжина і ширина близько 50 мкм, а глибина близько 5 мкм
 - 1. Планарно-дифузійні транзистори з ізоляцією р-п-переходом

Особливості

- нерівномірний розподіл концентрації домішки в колекторній області, а отже, нерівномірний опір колектора,
- ≻Це проявляється в низькій пробивній напрузі переходу колектор-підкладка
- ▶сильний вплив підкладки на електричні параметри транзисторів, що обмежує їх застосування.

2. Планарно-епітаксіальні транзистори

транзистори мають рівномірний розподіл домішки в колекторі