Project 5: Proposal

Moumita Paul UID 116860970

Vasista Ayyagari UID 116955379

Naman Gupta (UID: 116949330)

Contents

1	Introduction	1
2	Goal	2
3	Method	3
4	Time Table	4
5	References	5

1. Introduction

Already what is there status quo problems What problems our aprroach will solve definitions background Literature Review (50-100)

2. Goal

The paper "Anytime Motion Planning using the RRT" will be implemented in a simulation environment. Given an Environment with a static obstacle space, an Initial Configuration and a goal region, RRT and RRT* is implemented for initial planning and extensions of RRT* will be implemented during the control process for anytime applications. A simulation of a Turtlebot is operated in the environment of 2D space. The time complexity/runtime of all methods for anytime application will be analysed.

3. Method

Option 1 (paper implementation from the literature) in Simulation Path Planning Method: Anytime RRT* (an extension of RRT* based on literature review) Title of Paper: Anytime Motion Planning using the RRT Sertac Karaman et al.

• ROS and Gazebo

• Robot: Turtlebot

• Python

Hardware: None

4. Time Table

Subtasks and Proposed Deadlines:

- Environment Setup 12th April
 - Map creation. sample goal and start region, sensor and actuator control in proper format,(operate the robot with commands/code)
- Paper Rough Draft (Method section) 17th April
- RRT and RRT* implementation 19th April
- Paper Rough Draft (Results section) 24th April
- Extensions of RRT* Implementation (Committed Trajectory and Branch-and-Bound) 26th April
- Implementation of RRT* on Turtlebot 26th April
- Testing/Implementation of anytime RRT* on Turtlebot (Observing Time Characteristics for each procedure) 3rd May
- Report and Presentation Making 6th May
- Final Submission 7th May

5. References

• Anytime Motion Planning using the RRT