

REPORT NO. FAA-RD-77-48, II

MOBILE LASER DOPPLER SYSTEM CHECKOUT AND CALIBRATION Volume II: Appendixes

M.R. Brashears T.R. Lawrence A.D. Zalay

Lockheed Missiles & Space Company, Inc. Huntsville Research & Engineering Center 4800 Bradford Drive Huntsville AL 35807

JUNE 1977 FINAL REPORT

DOCUMENT IS AVAILABLE TO THE U.S. PUBLIC THROUGH THE NATIONAL TECHNICAL INFORMATION SERVICE, SPRINGFIELD, VIRGINIA 22161

Prepared for

U.S. DEPARTMENT OF TRANSPORTATION
FEDERAL AVIATION ADMINISTRATION
Systems Research and Development Service
Washington DC 20591

COPY AVAILABLE TO DDG DOES NOT PERMIT FULLY LEGISLE PRODUCTION

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

NOTICE

The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the object of this report.

BEAR-RD, 7'S	FAA-2	17-9.2	7	
(19) 77-48.2) HH	T	chnical Report D	Documentation Pag
1. Report No. FAA-RD-77-48, II	2. Government Accession No.	3. 6	Recipient's Catalog	12)347
MOBILE LASER DOPPLER SYSTE AND CALIBRATION . Volume II: Appendixes .	M CHECKOUT	Ju Ju	Report Date ine 1977 Performing Organizati	on Code
7. Author's) M.R./Brashears, T.R./Lawre	ence, A.D. Zalay		SC-HREC TR D T-TSC-FAA-77	
9. Performing Organization Name and Addre Lockheed Missiles & Space Huntsville Research & Engi 4800 Bradford Drive Huntsville AL 35807	Company Inc.*	/5 PA	Work Unit No. (TRAI 705/R7126 Contract or Grant No T-TSC-1098-2 Type of Report and F	land
12. Sponsoring Agency Name and Address U.S. Department of Transpo Federal Aviation Administr Systems Research and Devel Washington DC 20591	ation	9 Fi	nal Report	ptember 1976
*Under Contract to: Transp	epartment of Transpo ortation Systems Cen			
	1 Square dge MA 02142			
Cambri	rried out to make more imeter (LDV) system; (K) Airport; to obtain its; and to assess the measurements. The boof a scanning LDV forces at terminal areas	to calibrat n a data bas e basic oper asic operati r the remote	e and operate of wind, wational capalonal capabiles sensing of water	e the system ind shear, bilities of ities, winds,
A program has been ca Mobile Laser Doppler Veloc at the John F. Kennedy (JF and wake vortex measuremen the system based on these resolution, and integrity wind shear, and wake vorti Volume I, 150 pages, conta	rried out to make modimeter (LDV) system; (K) Airport; to obtain the system assers the measurements. The body of a scanning LDV forces at terminal areasons text.	to calibrat n a data bas e basic oper asic operati r the remote s have been ribution Statement UMENT IS AVAILA OUGH THE NATIO	e and operate of wind, wational capabile sensing of established.	e the system ind shear, bilities of ities, winds,

Form DOT F 1700.7 (8-72

Reproduction of completed page authorized

			ą.	t.	4	2	. ^	2		8					-	£				₹,,	£.=	. 5	.2			2 6	, 3	5					57862		
temperature		M31	cubic yards	Subject free!	Querts	pints	9	The ounces	Labiespoons	teaspoons		1	(2000 ib)	short tons	pounds	ounces	1		acres	square miles	Son a series	square inches		1		7	1001	inches		1			When You Know		Approximate Co
subtracting 12)	5.9.4	TEMPERATURE (exact)	0.7	0.03	. 36	0.47	0.24		3 3		•	AUTOME		0.9	0.45	28	MASS (weight)		0.4	2.6	0 0	8 5		AREA		1.6	, E	2.5			LENGTH		Manugay by		Approximate Conversions to Metric Measures
temperature			cubic meters	Cubic meters	100	7	11.43	The state of the s	7	a dilitingers				r tomes	a logarit	e mero			hectares	Square billometers	source meters	Square centimeters				kilometers	Centimeters	contimeters		•					Measures
,	n'		₹.	3.				9.0	1 3	. 3						0			Z	5.	1,3					5	9	9					572		
1 inche			3					1	1				,	1				9					9				L	1				.			6
		1.1.1	.1. s	.1.	6		.), 				1.1.		10				1.	13	.1.	1.1		15	.,.	.1.)	.,.	,1.	1.1		1	1.1	.1.1		.1.]	1.1	
	1.1.1.		5	.1.	6		7				1.1.		10	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	15	1	1.1	13	.1.	14		15	- 9	16		7	1	8	1	1.1					1.1.1.
-	3		5		6	_ 11	7				,	1	10	tomes (1000 kg)			-		.1.	14	5,	15	· 1	16		7	5	8	1 9	9	200			22	23
94.6 120 120 120 120 120 120 120 120			5		6		7					NOUNE.				Same Same		MASS (weight)	.1.	14	square kilometers	15 m. square meters	square cantimaters	16		7	tr kilometers	3	- continueters	n ilimeters	200		21	22 System	23
	lamparature	College 9/5 (then	TEMPERATURE (exect)		6 Cubic meters 1.3		7	2 2		3.1					kilograms 2.2	g grams 0.036		NASS		14	Square kilometers 0.4	square meters 1.2	square continues 0.16	16	1	7	to kilometers 0.6	a melen	- continueters	milimeters 0.04	200		21	Symbol When You Know	

Appendix A DATA REPORT

This appendix summarizes the wake vortex and wind measurements made with the Lockheed-Huntsville LDV during the research program. The logs for the LDV measurements showing the run identification, time of day, estimated wind, and operator comments are presented on pages A-2 through A-11. The cataloged wake vortex measurements are presented on pages A-12 through A-253 in terms of the trajectory of the wake vortex with respect to the runway centerline. At the start of each new tape, the input parameters selected for the VAD and Vortex Track program are possible to the wake trajectory calculations.

DATA LOG OF WAKE VORTEX AND WIND VELOCITY MEASUREMENTS CONDUCTED BY LOCKHEED-HUNTSVILLE AT JFK

Tape ID	F	Run ID		ime	Est. Wind	Comments
JFK	No.	AC Type or VAD	Start	Stop	(from)	Comments
1	1	VAD	10:51	10:57	NW	120° total inc. angle
1	2	VAD	10:03	11:06	NW	60° total inc. angle
2	1	VAD	03:50	03:54	NW	Very clear day; VAD scan heights 50, 60, 70, 80, 100, 200, 250
2	2	747	03:56	03:57	NW	Changed at three
2	3	707	03:58	04:00	NW	,
2	4	727	04:01	04:02	NW	,
2	5	DC10	04:08	04:09	NW	20 dB input atten.
2	6	DC9	04:12	04:13	NW	
2	7	707	04:16	04:17	NW	
2	8	727	04:18	04:19	NW	
2	9	707	04:20	04:21	NW	
2	10	707	04:23	04:24	NW	
2	11	DC10	04:24	04:25	NW	
2	12	747	04:34	04:35	NW	Wind at or near run end; Teflon off
2	13	VAD			NW	
2	14	DC8	04:37	04:38	NW	
2	15	DC10	04:39	04:39	NW	
2	16	DC9	04:41	04:42	NW	
2	17	747	04:43	04:44	NW	
2	18	747	04:45	04:46	NW	
2	19	DC8	04:47	04:47	NW	
2	20	707	04:49	04:50	NW	
2	21	VAD	04:55	05:00	NW	See run 1
2	22	VAD	05:00	05:03	NW	Parity in 21st record

Tape ID	F	Run ID	Tim	e	Est. Wind	C
JFK	No.	AC Type of VAD	Start	Stop	Azimuth (from)	Comments
3	1	VAD	15:00:25	15:05:40	NW	40, 45, 60, 75, 100, 150, 200, 300 m at 1 rev. per altitude
3	2	747	15:09:35	15:10:35	NW	
3	3	707	15:11:50	15:12:15	NW	12 knots at 340°
3	4	747	15:13:40	15:14:45	NW	Looks good
3	5	747	15:24:00	15:24:55	NW	
3	6	747	15:28:00	15:24:55	NW	360° at knots
3	7	737	15:35:00	15:35:45	NW	
3	8	747	15:37:05	15:38:05	NW	
3	9	747	15:40:30	15:41:35	NW	
3	10	727	15:44:40	15:45:30	N-NE	
3	11	707	15:46:00	15:47:00	N-NE	< 5 knots ≈ N.
3	12	707	15:48:55	15:49:40	N-NE	Calm
3	13	707	15:51:00	15:51:40	N-NE	
3	14	747	15:52:15	15:53:10	N-NE	
3	15	747	15:55:15	15:56:30	N-NE	Good! Low! Calm winds
3	16	747	15:58:30	15:59:30	N-NE	
3	17	DC-9	16:01:00	16:14:00	N-NE	
3	18	VAD	16:04:45	16:09:00	N-NE	See Run 1 notes for steps observed wind at ≈ 3 mph horiz. comp. 707 passed ≈ 16:04:07 about record 57
3	19	DC-9	16:11:30	16:12:10	N-NE	About Run 19
3	20	707	16:14:30	16:16:15	N-NE	Good run!
3	21	707	16:17:45	16:18:40	N-NE	Freq. going about F.S.
3	22	DC-8	16:19:35	16:20:45	N-NE	
3	23	707	16:23:30	16:25:00	N-NE	360° at 8. Good one
3	24	727	16:26:00	16:27:15	N-NE	Good one
3	25	727	16:28:00	16:29:00	N-NE	Good one
3	26	707	16:30:00	16:31:10	Calm	
3	27	DC-10	16:33:00	16:34:20	Calm	Good one

Tape ID	F	Run ID	Tim	e	Est. Wind	Comments
JFK	No.	AC Type of VAD	Start	Stop	(from)	Comments
3	28	727	16:35:00	16:36:00	Calm	Good one, came in high
3	29	DC-10	16:37:00	16:38:30	Calm	Good
3	30	707	16:40:00	16:41:10	Calm	Good
3	31	747	16:44:00	16:45:00	Calm	Good
3	32	DC-10	16:46:30	16:47:30	Calm	Good
3	33	DC-10	16:49:00	16:50:10	Calm	
3	34	747	16:51:30	16:53:30	Calm	Calm. Good! Real Good
3	35	747	16:54:00	16:55:00	Calm	
3	36	VAD	17:57:00	17:00:00	Calm	See run l notes for steps
3	37	L-10-11	17:02:00	17:03:30	Calm	
3	38	L-10-11	17:05:00	17:07:00	Calm	Calm
3	39	707	17:11:15	17:12:10	Calm	Calm
3	40	727	17:13:15	17:14:00	Calm	Abort run
3	41	747	17:15:00	17:16:30	Calm	Exceeded max. freq.
3	42	707	17:18:00	17:19:00		
3	43	DC-8	17:25:00	17:26:20		0080 at 5 knots
3	44	747	17:27:00	17:29:00		Real good; hanging high
3	45	727	Misse	TM		
3	46	707	17:32:00	17:33:30		
3	47	727	17:35:00	17:35:30		007 at 5
3	48	707	17:37:00	17:38:15		007 at 5
4	1	Wheel	10:04:00	10:09:00		222 m for 1st 30 or 31 records; 322 m for rest. Wheel range (ft) to side of van (542)
4	2	Wheel	10:33:00	10:38:00		Wheel at 328° to side of van. A/C turned on off at record 29 and on
4	3	Wheel	11:15:00	11:20:00		230° distance from wheel to van side
4	4	Abort	11:52:00	11:53:00		30 kHz BW to RE 35
4	5	Wheel	11:55:00	12:00:00		

Tape	F	Run ID			Est. Wind	Comments (1) Scanner running clockwise looking down on van (JFK
JFK	No.	AC Type of VAD		Stop	Azimuth (from)	ID 5); (2) Conditions clear; gusty winds toward van from W/SW (JFK ID 6)
4	6	Calib 1	12:02:00			
4	7	Calib 2				
4	8	Calib 3				
4	9	Calib 4		12:03:00		
5	1	VAD	14:10:00	14:15:00	SE	35, 45, 60, 75, 100 150, 200, 400 m at 1 rev/alt
5			14:15:00	14:25:00	230 at 10	2 rev/alt
5					Using 226	
5	4		14:25:00	14:40:00	230 at 6	4 rev/alt
5	5		14:41:00	14:46:00		4 rev/alt
5	6		14:46:00	14:56:00		2 rev/alt
5	7		14:56:00	15:11:00	200° at 5	l rev/alt
5	8		15:12:00	15:17:00	220° at 5	l rev/alt
5	8		15:17:00	15:27:00	220 at 3	2 rev/alt
5	9		15:27:00	15:42:00		4 rev/alt
5	10					4 rev/alt
5	11					2 rev/alt
5	12					l rev/alt
6	1	VAD	15:12:00	15:17:00	SW	Alt: 35, 45, 60, 75, 100, 150, 200, 400 m at 1 rev/alt
6	2	747	15:34:00	15:35:00	sw	(280° at 18) azimuth 200°; data bad, need 280°
6	3	707	15:40:00	15:41:00	290° at 16	S
6	4	707	15:43:00	15:44:00	290° at 16	6
6	5	727	15:46:00	15:47:00	290° at 1	4
6	6	707	15:48:00	15:49:00		
6	7	DC-9	15:50:00	15:51:00		
6	8	747	15:52:00	15:53:00	290 at 16	
6	9	747	15:54:00	15:55:00		Good run Vortices blowing
6	10	707	15:55:00	15:56:00	290 at 15	Good run in toward van

ID	R	un ID	Tim	e	Est. Wind Azimuth	Com	ments	
JFK	No.	AC Type	Start	Stop	(from)			
		of VAD						
6	11	707	15:57:00	15:57:00	280 at 16	Good run	Vortices blowing	
6	12	727	15:58:00	15:59:00	280 at 14	Good run	in toward van	
6	13	707	16:01:00	16:02:00		Good run		
6	14	707	16:03:00	16:04:00				
6	15	DC-9	16:06:00	16:07:00	280 at 16	Good!		
6	16	707	16:08:00	16:09:00	280 at 14	Low! most	t hits < 15°	
6	17	747	16:10:00	16:11:00		Good run!		
6	18	707	16:12:00	16:13:00		Good run!		
6	19	DC-10	16:15:00	16:16:00	280 at 14	Good run!		
6	20	DC-9	16:17:00	16:18:00				
6	21	707	16:20:00	16:21:00		Blew over	fast	
6	22	VAD	16:25:00	16:30:00			, 60, 75, 100, 150, at 1 rev/alt.	
6	23	707	15:42:00	15:43:00				
7	1	VAD	14:00:00	14:37:00	320 at 18 at 1400	35, 41 50, 300 m at 1	60, 70, 100, 200, rev/alt.	
7					340 at 18	at 1409		
7					320 at 20	at 1412		
7					330 at 12	at 1424		
7					330 at 20	at 1428		
7					330 at 17	at 1432		
8	1	VAD	10:01:00	10:07:00	180° at 4		, 50, 60, 70, 100. m at 1 rev/alt.	
8	2	VAD	10:15:00	10:20:00	180° at 7	Same alt. a	as above	
8	3	RS*	10:53:00	10:53:21				
8	4		10:55:00	10:55:21				
8	5		10:55:55	10:56:15				
8	6		10:57:40	10:58:00				
8	7		10:59:00	10:59:20				

^{*}Range Scan

Tape ID	R	un ID	Tim	e	Est. Wind	Comments
JFK	No.	AC Type of V AD	Start	Stop	(from)	Comments
8	8	RS*	11:01:00	11:01:20		
8	9		11:02:00	11:02:20		
8	10		11:03:00	11:03:20		
8	11		11:04:00	11:04:20		
8	12		11:05:00	11:05:20		
8	13		11:06:00	11:06:20		
8	14		11:07:00	11:07:20		
8	15		11:08:00	11:08:20		
8	16		11:09:00	11:09:20		
8	17		11:10:00	11:10:20		
8	18		11:11:00	11:11:20		
8	19		11:12:00	11:12:20		
8	20		11:14:00	11:14:20		
8	21		11:15:00	11:15:20		
8	22		11:16:00	11:16:20		
8	23		11:17:00	11:17:20		
8	24		11:18:00	11:18:20		
8	25		11:19:00	11:19:20		
8	26					
8	27		11:20:00	11:20:20		
8	28		11:21:00	11:21:20		
8	29		11:22:00	11:22:20		
8	30		11:23:00	11:23:20		
8	31		11:24:00	11:24:20		
8	32		11:25:00	11:25:20		
8	33		11:26:00	11:26:20		
8	34		11:27:00	11:27:20		
8	35		11:28:00	11:28:20		
8	36		11:29:00	11:29:20		

^{*}Range Scan

Tape ID	R	un ID	Tim	e	Est. Wind Azimuth	Comment	:S
JFK	No.	AC Type of VAD	Start	Stop	(from)		
8	37	RC*	11:30:00	11:30:20			
8	38		11:31:00	11:31:20			
8	39		11:42:00	11:45:00			
8	40		11:45:30	11:48:30			
8	41	VAD	11:51:00	11:52:30	200° at 7	Halt after $l^{\frac{1}{2}}$ min > full scale	, winds
8	42	VAD	11:55:00	12:00:00	200° at 7	Shear running abo m cycles; gw abo	
8	43	RC*	12:08:30	12:17:00		Azimuth, 310°; 16	eft of Tower 2
8	44		12:44:00	12:47:00		Azimuth, 240°; to Tower 1	right and top,
8	45	VAD	12:56:00	13:01:00	200° at 7		
9	1	VAD	16:29:30	16:31:30	230 at 11	Alt: 35, 41, 50, 60 200, 300 m at 1 m	
9	2	DC-9	16:41:00	16:42:00	230 at 11	Gone in a hurry	Azimuth =
9	3	DC-10	16:44:00	16:45:00		Gone in a hurry	
9	4	707	16:47:00	16:49:00		Azimuth = 100°	Notice azi- muth change
9	5	747	16:50:00	16:51:00		Good	Good displays
9	6	DC-10	16:52:00	16:53:00		Good	but very shor
9	7	707	16:54:00	16:55:00		Good	lived.
9	8	DC-10	16:55:00	16:56:00		Good	
11	1	VAD	11:43:00	11:55:00	220°	Alt: 41, 50, 60, 7 300 (SR 1)	0, 100, 200,
11	2	VAD	12:46:00	12:55:00	200	Ditto	
11	3		13:15:00			Ditto plane crash	at ≈ 1310
11	4		13:59:00	14:45:00		300 m - 1.4 MH2	
11	5		14:52:45			350 - 600 MH2	
11						70 - 600 MH2	
11						100, two peaks	
11						2010 up to 1.8 M	Hz at 200°

*Range Scan

Tape ID	F	Run ID	Tim	е	Est. Wind Azimuth	Comments
JFK	No.	AC type of VAD	Start	Stop	(from)	
13	1	VAD .	14:50:00	14:52:00	220°	Alt: 35, 41, 50, 60, 70, 100, 200, 300 m
13	2	VAD	14:55:00	15:60:00	220°	
13	3	VAD	15:20:00	15:25:00	220°	
13	4	VAD	15:48:00	15:54:00	220°	
13	5	VAD	16:19:00	16:24:00	220°	
13	6	VAD	16:49:00	16:55:00	220	
13	7	VAD	10:41:00	10:52:00	330°	Alt: 35, 41, 50, 60, 70, 100, 200, 300
13	8	707	11:27:00	11:28:00		
13	9	DC-9	11:34:00	11:36:00		
13	10	A 300	11:46:00	11:48:00		Airbus (France)
13	11	VAD	11:52:00	11:55:00		
13	12	DC-8	11:58:00	11:10:00		Alt: 35, 41, 50, 60, 70, 100, 200, 300
13	13	707	12:02:00	12:04:00		
13	14	727	12:08:00	12:09:00		
13	15	727	12:10:00	12:11:00		
13	16	DC-9	12:13:00	12:14:00		
13	17	707	12:16:00	12:17:00		No gas - change prg.
. 14	1	VAD	14:32:00	14:34:00	320	Alt: 35, 41, 50, 60, 70, 100, 200, 300 m at 1 rev/alt
14	2	747	14:39:00	14:40:00		
14	3	VAD	14:49:00	14:52:00	370 at 10	
14	4	707	14:54:00	14:55:00	330 at 13	
14	5	747	14:56:00	14:58:00		Good
14	6	747	14:59:00	15:00:00		
14	7	727	15:01:00	15:02:00	330 at 15	
14	8	DC-9	15:03:00	15:14:00		
14	9	L-10-11	15:06:00	15:08:00	310 at 11	Looks pretty good
14	10	747	15:10:00	15:12:00		Looks good

Tape ID	I	Run ID	Tim	ie	Est. Wind	Comments
JFK	No.	AC Type of VAD	Start	Stop	(from)	
14	11	707	15:14:00	15:15:00		O. K.
14	12	DC-8	15:16:00	15:17:00		
14	13	707	15:20:00	15:21:00		Abort, see nothing. (work-
						ing on processor)
14	14	707	15:22:00	15:22:00		Abort; nothing
14	15	707	15:25:00	15:26:00		Notice 30 kHz bandwidth
14	16	707	15:34:00	15:35:00		
14	17	707	15:35:00	15:36		Looks good
14	18	707	15:36:00	15:37:00	330 at 10	O. K.
14	19	737	15:38:00	15:39:00		Best yet
14	20	707	15:40:00	15:41:00	340 at 12	Good
14	21	707	15:42:00	15:43:00		
14	22	DC-9	15:44:00	15:44:00		Not good
14	23	DC-9	15:46:00	15:47:00		Not good
14	24	VAD	15:49:00	15:51:00		Alt: 35, 41, 50, 60, 70, 100, 200, 300 at 1 rev/alt.
14	25	747	15:52:00	15:54:00		Azimuth wrong, bad run
14	26	747	15:57:00	15:59:00	350 at 8	Good! Best today
14	27	727	16:02:00	16:03:00		Not very good
14	28	707	16:05:00	16:06:00	340 at 8	Looks better
14	29	DC-9	16:06:00	16:07:00		
14	30				340 at 8	Not a run
14	31	DC-8	16:20:00	16:23:00		
14	32	DC-9	16:23:00	16:24:00		
14	33	707	16:24:00	16:26:00	320 - 10	
14	34	DC-8	16:27:00	16:29:00		
14	35	727	16:29:00	16:30:00		
14	36	DC-10	16:34:00	16:35:00	330 - 06	
14	37	DC-8	16:35:00	16:37:00		
14	38	747	16:37:00	16:40:00	340 - 10	
14	39	DC-8	16:41:00	16:42:00	340 - 10	
. 1	,	200	20,11,00	10.15.00	210 10	

Tape ID	F	lun ID	Tim	е	Est. Wind Azimuth	Comments
JFK	No.	AC Type of VAD	Start	Stop	(from)	
14	40	707	16:46:00	16:47:00	330 - 10	
14	41	727	16:48:00	16:49:00	330 - 8	
14	42	VAD	16:50:00	16:55:00	330 at 7	Alt: 35, 41, 50, 60, 70, 100, 200, 300 at 1 rev/alt.
14	43	L-10-11	16:57:00	16:58:00		
14	44	747	17:00:00	17:02:00	330 at 8	Lots of hits, but all bumped
14	45	747	17:02:00	17:04:00	ſ	togather; do not understand display
14	46	707	17:05:00	17:06:00	320 at 8	display
14	47	707	17:06:00	17:08:00		
14	48	747	17:21:00	17:23:00		
14	49	707	17:24:00	17:26:00		
14	50	DC-9	17:29:00	17:30:00	320 at 12	
14	51	727	17:35:00	17:36:00	320 at 10	
14	52	707	17:40:00	17:41:00		Not
14	53	747	17:43:00	17:45:00		Good run
14	54	707	17:46:00	17:47:00		Good run
14	55	DC-8	17:48:00	17:49:00		Good run
14	56	VAD	17:51:00	17:49:00		Good run
14	57	707	17:51:00	17:53:00	310 at 10	Alt: 35, 41, 50, 60, 70, 100, 200, 300 m at 1 rev/alt
14	58	707	17:54:00	17:56:00		
15	1	VAD	10:50:00	10:55:00	130 at 5	Alt: 35, 41, 50, 60, 70, 100, 200, 300 m
15	2	VAD	11:15:00	11:20:00	140 at 5	20 dB S/N on wind, R04 in use
15	3	VAD	11:30:00	11:35:00		
15	4	VAD	11:45:00	11:55:00		Apparent shear or turbulence at 50 m
15	4	VAD	13:49:00	13:55:00	160 at 6	No wind above 70 m
15	5	VAD	14:49:00	14:55:00	200 at 4	R-13 in use
15	5	VAD	15:46:00	15:55:00	200 at 4	Shear at 100 m

```
JFK2
SDATA
IGROUP =
                     +0
ISFILE =
                     +1,
                                   +1.
                                               +1000.
                                                              +1000,
                   +1000,
                                 +1000,
                                                +1000,
                                                              +1000,
                   +1000.
                                 +1000,
                                                +1000.
                                                              +1000,
                   +1000,
                                 +1000.
                                                +1000,
                                                              +1000,
                   +1000,
                                 +1000,
                                               +1000,
                                                              +1000
NRUN =
                    +19
ZLASER =
            .70000000E+01
ZLASCN =
            .00000000E+00
INTVEL =
                   +2
MPSUF =
APERCT =
            .10000000E+00
BPERCT =
            .10000000E+00
CPERCT =
           .50000000E+00
RPERCT =
          .31415927E+00
EPERCT =
          .15000000E+01
NOISEF =
                +0
E ILON
            .0000000E+00
MIGSW =
          .00000000E+00
          .00000000E+00
MANGLE =
M14046 +
           .30000000E+03
            +3
LFLIP =
ISINE =
EDIT = .20000000E+00
MOVAVE =
               +5
YLIM =
           .000000000E+0C,
                          .00000000E+00
ZL IM =
           .00000000E+00,
                         .00000000E+00
ISCALE =
                   +1
YR
     =
           .40000000E+03
YL.
           -.40000000E+03
21
          .20000000E+03
TMAX =
          .12000000E+03
YMAX
           .80000000E+02
RSPLT
               +12
JPROF
                    +1
IMULT
                    +0
1001
      =
                    +2
IOP2
                    +2
1073
                    +2
1004
```

SEND


```
JFK3
SDATA
IGROUP =
                        +0
ISFILE =
                       +1,
                                       +1.
                                                      +18,
                                                                      +18,
                      +36,
                                      +36.
                                                                    +1000,
                                                    +1000,
                     +1000,
                                     +1000,
                                                     +1000,
                                                                    +1000,
                    +1000,
                                     +1000,
                                                     +1000,
                                                                    +1000,
                    +1000,
                                     +1000.
                                                     +1000.
                                                                    +1000
                      +48
NAUN =
ZLASER =
             .70000000E+01
ZLASCN =
             .00000000E+00
INTVEL =
                      +2
MPSUF =
                       +4
APERCT =
             .10000000E+00
SPERCT =
             .10000000E+00
CPERCT =
             .50000000E+00
RPERCT =
             .31415927E+00
EPERCT =
             .15000000E+01
MOISEF =
ADJ1 =
             .00000000E+00
MIGSH =
             .0000000000000
MANGLE =
             .0000000E+00
WINDHP =
             .80000000E+03
JEIP =
                     +3
ISINE =
EDIT =
             .20000000E+00
MOVAVE =
WLIM =
             .00000000E+00,
                            .00000000E+00
ZLIM
             .00000000E+00.
                            .00000000E+00
ISCALE =
                      +1
476
             -40000000E+03
12
            -. 40000000E+03
ZT
             .20000000E+03
THAX =
             .12000000E+03
YMAX
             .80000000E+0Z
MSPLT
                      +12
PROF
                       +1
IMULT
                       +0
1091
                       +2
1072
                       +2
                      +2
1093
1074
```

SENC.


```
JFK6
SDATA
IGROUP =
                     +0
ISFILE =
                                                 +22,
                                                               +22,
                    +1,
                                   +1,
                                               +1000,
                                                              +1000,
                   +1000,
                                 +1000.
                                               +1000,
                                                              +1000,
                  +1000,
                                 +1000,
                                                +1000.
                                                              +1000,
                   +1000,
                                 +1000.
                  +1000,
                                 +1000,
                                                +1000,
                                                              +1000
MRUN
                   +23
ZLASER =
           .70000000E+01
ZLASCN =
           .00000000E+00
INTVEL =
             +2
MPSUF =
APERCT =
           .10000000E+00
BPERCT =
           .10000000E+00
CPERCT =
           .50000000E+00
RPERCT =
           .31415927E+00
EPERCT =
           .15000000E+01
NO!SEF =
               +0
ADJ1 =
          .00000000E+00
          .00000000E+00
ANGSM =
MANGLE =
           .00000000E+00
WINDHP =
          .80000000E+03
15LIP = +3
ISINE =
                   +2
EDIT =
          .20000000E+00
MOVAVE =
             +5
YLIM = .00000000E+00, .00000000E+00
ZLIM = .00000000E+00, .00000000E+00
          .00000000E+00, .00000000E+00
ISCALE =
              +1
           .40000G0GE+03
YR =
72
          -.40000000E+03
ZT = .20000000E+03
TMAX = .12000000E+03
           -12000000E+03
VMAX =
           .80000000E+02
NSPLT =
            +12
                  +1
+0
+2
+2
+2
JPROF =
IMULT =
1021
1092 =
1CP3 =
1024
```

SEND


```
JFK9
*DATA
IGROUP =
                      +0
                                                                 +1000,
ISFILE =
                      +1,
                                    +1.
                                                 +1000,
                   +1000.
                                  +1000,
                                                 +1000,
                                                                 +1000,
                                                                 +1000,
                                                 +1000,
                   +1000,
                                  +1000,
                                                 +1000,
                                                                 +1000,
                   +1000,
                                  +1000,
                                                 +1000,
                                                                 +1000
                   +1000,
                                  +1000,
                    +6
MRUN =
ZLASER =
            .70000000E+01
7LASCN =
            .00000000E+00
INTVEL =
                  +2
MPSUF =
APFRCT =
            -10000000E+00
BPERCT =
            .10000000E+00
CPERCT =
            -50000000E+00
RPERCT =
            .31415927E+00
EPERCT =
            .15000000E+01
MOISEF =
            .00000000E+00
ADJ1 =
ANG SM =
            -00000000E+00
            .00000000E+00
MANGLE =
WINDHP =
            .80000000E+03
LFLIP =
                    +3
                     +2
ISINE =
            .20000000E+00
EDIT =
MOVAVE =
               +5
                           .40000000E+00
WIM =
            .00000000E+00,
                          .00000000E+00
ZL 1M =
            .00000000E+00
ISCALE =
            .40000000E+03
YR
72
            -.40000000E+03
ZT
            .20000000E+03
THAX
            .12000000E+03
            .80000000E+02
VMAX
NSPLT
                 +12
JPR0F
                     -1
IMULT =
                     +0
                     +2
1001
1092
                      +2
                     +2
10P3
1004
```

SEND


```
JFK13
SDATA
IGROUP =
                   +0
                               +7.
                                             +11,
                                                           +11.
ISFILE =
                   +1,
                 +1000.
                               +1000,
                                            +1000,
                                                          +1000,
                  +1000,
                               +1000,
                                            +1000,
                                                          +1000,
                                             +1000,
                                                          +1000,
                               +1000,
                 +1000,
                 +1000,
                               +1000,
                                             +1000,
                                                          +1000
                  +17
MRUN =
ZLASER =
           .70000000E+01
ZLASCN =
           .00000000E+00
INTVEL =
            +2
MPSUF =
                   +1
APERCT =
           -10000000E+00
BPERCT =
           .10000000E+00
          .50000000E+00
CPERCT =
MPERCT =
           .31415927E+00
           .15000000E+01
EPERCT =
MOISEF =
               +0
ADJ1 =
           .00000000E+00
ANGSM =
          .00000000E+00
MANGLE =
           .00000000E+00
WINDHP =
           .80000000E+03
LFL IP =
          +3
+2
ISINE =
EDIT =
          .20000000E+00
MOYAVE =
            +5
                       .00000000E+00
ATIM =
           .000000CCE+00,
21. IM =
          .00000000E+00, .00000000E+00
ISCALE =
              +1
YR = YL =
          .40000000E+03
          -.40000000E+03
27 =
          -20000000E+03
THAX =
          .12000000E+03
YMAX =
           .80000000E+02
MSPLT =
             +12
PROF =
                   +1
IMULT =
                  +0
10P1 =
                  +2
1092
                   +2
1093 =
                   +2
1004
```

SENO


```
JFK14
SDATA
IGROUP =
                      +0
ISFILE =
                     +1,
                                                                 +3,
                                   +1,
                                                  +3,
                                                  41,
                                                                +41,
                     +24,
                                   +24.
                     +55,
                                   +55,
                                                +1000.
                                                               +1000,
                                                               +1000,
                   +1000,
                                  +1000,
                                                 +1000,
                                  +1000.
                                                 +1000.
                                                               +1000
                   +1000,
MRUN =
                    +56
ZLASER =
            .70000000E+01
ZLASCN =
            .00000000E+00
INTVEL =
                    +2
MPSUF =
APERCT =
            .10000000E+00
BPERCT =
            .10000000E+00
CPERCT =
            .50000000E+00
RPERCT =
            .31415927E+00
EPERCT =
            .15000000E+01
NOISEF =
                +0
ADJ1 =
            .00000000E+00
ANGSH =
            .00000000E+00
WANGLE =
            .00000000E+00
            .80000000E+03
WINDHP =
LFLIP =
ISINE =
                   +2
EDIT =
            .20000000E+00
MOVAVE =
               +5
YLIM =
            .00000000E+00,
                          .00000000E+00
ZL IM
            .00000000E+00,
                          .00000000E+00
ISCALE =
                   +1
            .40000000E+03
YR
7
           -.40000000E+03
           .20000000E+03
ZT
TMAX
            .12000000E+03
VMAX
            .80000000E+02
MSPLT =
                 +12
JPROF
INULT
                     +0
IOP1
                     +2
10P2
                    +2
10P3
1004
```

SEND


```
JFK21
SDATA
IGROUP =
                       +0
ISFILE =
                      +1,
                                     +1,
                                                     +7,
                                                                     +8,
                     +21.
                                     +21.
                                                     499,
                                                                    449,
                    +1000.
                                   +1000,
                                                   +1000,
                                                                  +1000,
                    +1000,
                                   +1000,
                                                   +1000,
                                                                  +1000,
                    +1000,
                                   +1000,
                                                   +1000,
                                                                  +1000
MRUN =
                     +65
D.ASER =
             .70000000E+01
ZLASĆN =
             .00000000E+00
INTVEL =
                     +2
MPSUF =
MPERCT =
             .10000000E+00
BPERCT =
             .10000000E+00
CPERCT =
            .50000000E+00
RPERCT =
            .31415927E+00
             -15000000E+01
EPERCT =
MOISEF =
                     +0
ADJ1 =
             .00000000E+00
ANGSH =
            -00000000E+00
WANGLE =
             -00000000E+00
WINDHP =
             .80000000E+03
LFI, IP =
                      -3
ISINE =
                     +2
EDIT =
             -20000000E+00
MOVAVE =
                +5
YLIM =
            .00000000E+00.
                           .00000000E+00
ZLIM
            -00000000E+00,
                           .00G00000E+00
ISCALE =
                     +1
178
            .90000000E+03
      =
٧.
            -.4000000E+03
ZT
            .2000000E+03
THAX
            12000000E+03
VMAX
             -86000000E+02
MSPLT
                     +12
PROF
                      +1
IMULT
                      +0
10P1
                      +2
1002
                      +2
1073
                      +2
1074 . .
                      +1
```

1EVC

AD-AU44 318 UNCLASSIFIED		LOCKHEED MISSILES AND SPACE CO INC HUNTSVILLE ALA HUETC F/G 14/2 MOBILE LASER DOPPLER SYSTEM CHECKOUT AND CALIBRATION. VOLUME IIETC(U) JUN 77 M R BRASHEARS, T R LAWRENCE, A D ZALAY DOT-TSC-1098-2 LMSC-HREC-TR-D497036-2 FAA-RD-77-48.2 NL											
	20F4 A044318	88		BB		B	* *************************************			æ			
H			H		H	BB	BB		HE				
											BB		
THE PERSON NAMED IN COLUMN TO PERSON NAMED I													
				· Tananana									
		H											BB


```
JF K22
STATE
IGROUP =
                       +0
ISFILE =
                       +1,
                                      +1,
                                                     +15,
                                                                     +15.
                      411.
                                     +44.
                                                     +65.
                                                                    +65,
                      +83,
                                     +83,
                                                   +1000,
                                                                   +1000,
                                    +1000,
                    +1000,
                                                   +1000.
                                                                   +1000,
                    +1000,
                                    +1000.
                                                   +1000.
                                                                   +1000
MRUM =
                     +104
ELASER =
             .70000000E+01
ILASCH =
             .00000000E+00
INTVEL =
                      +2
MESUF =
MERCT =
            .10000000E+00
PPERCT =
            .10000000E+00
CPERCT =
            .50000000E+00
FERCT =
             .31415927E+00
FPERCT =
            .15000000E+01
MISEF E
                     +0
W011 =
            .00000000E+00
MGSW =
            .00000000E+00
MANGLE =
            .00000000E+00
            .80000000E+03
HINDHP =
IFLIP =
                    +3
151NE =
                     +2
#01T =.
            .20000000E+00
MIYAVE =
                     +5
W.IM =
            .00000000E+00,
                          .00000000E+00
A.IM
            .00000000E+00,
                            .00000000E+Q0
ISCALE =
            .40000000E+03
n
           -.40000000E+03
11
            .20000000E+03
THAX
            .12000000E+03
YMAX
            .80000000E+02
MIFLT
                     +12
FROF
      =
                      +1
IMULT
                      +0
Inel
                      +2
1002
                      +2
1003
1074
```

```
JF#27
SDATA
IGROUP =
                      +0
ISFILE =
                      +1.
                                     +2,
                                                   +12.
                                                                    +12.
                                                                    +30.
                     +23,
                                    +24,
                                                    +30,
                                   +1000,
                                                   +1000,
                                                                  +1000,
                    +1000,
                                                                  +1000,
                    +1000.
                                   +1000.
                                                   +1000,
                                                                  +1000
                                   +1000.
                                                   +1000.
                    +1000,
MRUN =
                    +40
            .70000000E+01
ZLASER =
ZLASCH =
            .00000000E+00
INTVEL =
                     +2
MPSUF =
                      +4
APERCT =
            .10000000E+00
            .10000000E+00
SPERCT =
CPERCT =
            .50000000E+00
RPERCT =
            .31415927E+00
EPERCT =
            .15600000E+01
MOISEF =
                     +0
ADJI
            .00000000E+00
ANGSH =
            .00000000E+00
MANGLE =
            .00000000E+00
MINOHP =
            -80000000E+03
LFLIP =
                   +3
ISINE =
                     +2
EDIT =
            .20000009E+00
MOVAVE =
                    +5
YLIA =
            .00000000E+00.
                            .00000000E+00
      . =
            .00000000E+00,
                            .00000000E+00
ZLIM
ISCALE =
                     +1
YR
            -40000000E+03
YL.
            -.4000000E+C3
       =
ZT
            .200000000E+03
THAT
            .12000000E+03
VMAX
             .80000000E+02
NSPLT
                     +12
PROF
                      +1
IMULT =
                      +0
1091
                      +2
1002
                      +2
10P3
                      +2
1004
                      +1
```

SEND


```
JFK28
SDATA
IGROUP =
                       +0
ISFILE =
                       +1,
                                      +1,
                                                     +16,
                                                                     +16,
                    +1000.
                                    +1000.
                                                    +1000,
                                                                   +1000,
                    +1000,
                                    +1000.
                                                    +1000,
                                                                   +1000,
                    +1000.
                                    +1000,
                                                    +1000,
                                                                   +1000,
                    +1000,
                                    +1000,
                                                    +1000,
                                                                   +1000
MRUN =
                     +72
ZLASER =
             .70000000E+01
ZLASCH =
             .00000000E+00
INTVEL =
                      +2
MPSUF . =
                       +4
APERCT =
             .10000000E+00
BPERCT =
             -10000000E+00
CPERCT =
             .5 3000000E+CO
RPERCT =
             .31415927E+00
EPERCT =
             -15000000E+01
MOISEF =
ADJ1 =
             .0000000E+00
ANG SH =
             -00000000E+00
MANGLE =
            -000C.000E+00
MINDHP =
            -82000000E+03
LFLIP =
                      +3
ISINE =
                      +2
EDIT =
            .20000000E+00
MOVAVE =
                     +5
AT IW =
            .000GGGGGE+00,
                            .00960000E+00
ZLIM
            .00000000E+00,
                            .00000000E+00
ISCALE =
VR.
            .40000000E+03
            -.40000000E+03
7
      =
IT
      =
            .20000000E+03
TMAX
            .12000000E+03
YMAX
            .80000000E+02
MSPLT =
                     +12
JPROF
                      +1
IMULT
                       +0
1001
                      +2
1002
                       +2
1073
                       +2
1004
```

:540


```
JFK30
*DATA
IGROUP =
                     +0
                     +1,
                                  +1,
                                                +1000,
                                                               +1000,
ISFILE =
                                                               +1000,
                   +1000,
                                 +1000,
                                                +1000,
                                                               +1000,
                  +1000,
                                                +1000,
                                 +1000,
                   +1000,
                                 +1000,
                                                +1000,
                                                               +1000,
                                                               +1000
                  +1000,
                                 +1000,
                                                +1000,
                   +57
MRUN =
ZLASER =
            .7000000E+01
ZLASCN =
            .0000000E+00
INTVEL =
             +2
MPSUF =
            .10000000E+00
APERCT =
SPERCT =
            .10000000E+00
CPERCT =
            .5000000E+00
            .31415927E+00
RPERCT =
EPERCT =
            .20000000E+01
MOISEF =
             +0
ADJ1 =
ANGSH =
            .00000000E+03
            .00000000E+00
HANGI F =
            .00000000F+00
WINDHP =
            .8000000002+03
            +2
LFLIP =
ISINE =
                    +2
EDIT =
            .20000000E+00
MOVAVE =
                +5
YLIM =
ZLIM =
            .00000000E+00, .00000000E+00
            .00000000E+00,
                          .0000000E+00
ISCALE =
              +1
YR =
            .40000000E+03
٧.
      2
           -.40000000E+03
ZT
            .20000000E+03
TMAX =
            .12000C00E+03
ZAMV
            .8000000CE+02
MSPLT =
                    +12
JPROF
                     +1
INULT =
                    +0
1091
                    +2
1002
                    +2
                    +2
1073
1074
```

PEND


```
JFK30
SDATA
IGROUP .
                    +0
ISFILE .
                    +1.
                                 +45.
                                               +1000.
                                                             +1000.
                  +1000.
                                 +1000.
                                               +1000.
                                                             +1000.
                                 +1000.
                                               +1000.
                                                             +1000.
                  +1000.
                  +1000.
                                +1000.
                                               +1000.
                                                             +1000.
                                               +1000.
                                                             +1000
                  +1000
                                +1000.
                  +12
NRUN =
           .70000000E+01
ZLASER =
           .00000000E+G0
ZLASCN =
            +5
INTVEL .
NPSUF .
APERCT .
           .100000000000000
           .100000000E+00
           .50000000E+00
RPERCT .
           .31415927E+00
EPERCT =
           .15000000E+01
NOISEF .
ADJ1 =
           .00000000E+00
ANGSH =
         .00000000E+00
WANGLE .
           .00000000000000
           .8000000000:03
HINDHO =
            +3
LFLIP .
ISINE .
EDIT -
           .200000000E+00
            +5
MOVAVE =
           .00000000E+00. .00000000E+00
YLIM .
           .00000000E+00. .C0000000E+00
ZLIH .
             +1
ISCALE .
YR
           .40000000E+03
YL
           -.40000000E+03
ZT
           .2000000000:+03
            .120000000E+03
VMAX .
            .80000000E+02
NSPLT "
                +12
JPROF
                    +1
IMULT .
                     +0
1001
                    +2
1005
                 +2
10P3
                    +2
1094
```

SEND

Appendix B COMPUTER PROGRAM DOCUMENTATION

This appendix describes the computer programs developed and utilized during the research program. The discussion of the off-line computer software package includes flow charts of the basic routines and subroutines.

MACRO FLOW CHART OF VAD AND VORTEX TRACK PROGRAM

Finds position and velocity of points in each normal scan,

ROUTINE BDOWN

Separates 16 bit words written by SEL computer

B-7

ROUTINE COEFF

Computes Fourier coefficients of VAD signal

Compute

$$A_{N} = \sum_{i=1}^{P} Y_{i} \cos \left[(N-1) \alpha_{i} \right]$$

$$B_{N} = \sum_{i=1}^{p} Y_{i} \sin \left[(N-1) \alpha_{i} \right]$$

Fourier coefficient for N harmonics where

(N-1) is harmonic number

P is number of points
Y is speed at point
α is a zimuth for point

B-17

B-18

B-22

ROUTINE INPUT

Read cards with parameters to direct program operation

Plots vortex tracks on SC4020 plotter

10-77

٠. .

B-32

ROUTINE PROFIL

Plots wind profile as a function of height on the SC4020 plotter

ROUTINE SHEAR

Computes and prints wind shear

Compute SHEAR as a function of altitude in Wind speed

Wind speed of vertical cross runway plane Wind speed of vertical down runway plane

These are computed based on average shear between adjacent pairs of wind vectors. The shear is also calculated from the derivative of the power law curve

ROUTINE SORT

ROUTINE STATS

B-41

ROUTINE TAREAD

B-44

ROUTINE WINDSW

B-52

ROUTINE WINDY

Finds wind velocity at a particular altitude

ROUTINE WPROFL

Computes wind profile as a function of height

Appendix B (Continued)

In addition to the flow charts presented on the previous pages, the following library routines are used in the VAD Vortex Track Program; FPLOT, SOLVIT and LSQPF. Rather than present detailed flow charts for these general library routines, they are described below in terms of the purpose, function and usage.

• Subroutine FPLOT

Purpose

FPLOT collects and stores data as they become available, and upon signal, produces a printer plot in practically any orientation and size.

FPLOT should be regarded as a general purpose output routine for displaying output data in graphical form.

Usage

CALL FPLOT(M1, IPNT, AR, LR, ISTOP, NCU, NCMAX, V1, V2)

Description of Parameters

M1	is the size of the main storage array, and it should never be larger than 800, which corresponds to 400 points to be plotted.
IPNT	is a counter initialized-usually IPNT = 0 - in the calling program. It is incremented by 2 each time a new data point is entered in AR.
AR	is the main storage array. It should be in a dimension statement in the calling program. For example, DIMENSION AR(800).
LR	is an array of bytes used to hold the curve number. It should be dimensioned for $M1/2$. The type declaration LOGICAL*1 LR(400) should be in the calling program.

ISTOP	is the flag used to signal that all data has been entered. ISTOP=0 causes data to be stored. If ISTOP=-1 and NCU=NCMAX the program immediately branches to the plotting section. If ISTOP=1 and NCU = NCMAX a data point is stored and then the plotting section is entered.
NCU	is the curve number for which data are being entered. It must be a positive integer less than 21.
NCMAX	is the number of curves to appear on the graph. This is the largest value NCU will have.
V1	is the horizontal coordinate of the data point to be plotted.
V2	is the vertical coordinate of the data point to be plotted.
IT(1)	causes the standard horizontal size of 120 positions to be used. A positive integer will cause the horizontal size to be modified. Maximum horizontal size is 120 positions.
IT(2)	A zero causes the standard vertical size of 58 positions to be used. A positive integer will cause the vertical size to be modified. Maximum vertical size is 238 positions.
IT(3)	A zero causes the standard horizontal positive direction — to the right — to be used. A 1 causes reversal.
IT(4)	A zero causes the standard vertical positive direction — up — to be used. A l causes reversal.
LC(1 to 20)	Any symbols placed here will be used as plotting characters.

Remarks

As many as 20 different curves may appear on a single graph.

A maximum of 400 points can be plotted on one graph.

The number of points in each curve is arbitrary, but the total number of points must not be exceeded.

The order in which the points of different curves is computed is arbitrary.

The graph size is adjustable up to 120 x 238 positions.

The standard size is 120 x 58 positions - one page.

The standard horizontal and vertical positive directions can be independently changed.

Scaling of data is automatic, the best even scale factor being selected to maximize graph resolution within the available space.

A border of XXXXXXX is automatically supplied.

The background grid is arranged so that one of the major divisions will pass through zero. The background grid is marked only at the intersections of the major divisions

If the coordinate of zero appears on a graph, a solid line appears so that this major division stands out.

Numerical values are supplied for all major divisions.

The program plots vertically or horizontally with equal ease.

When collecting data for several curves to appear on a single graph, no plots are made until the signal is given and the last data point for the last curve has been stored.

Should one inadvertently try to store more data than storage has been set aside, data storage is bypassed. Only the data stored are used in making the graph.

A curve with one point, or a curve of a constant can be plotted. Stored data are undisturbed and available for later use.

Subroutine SOLVIT

Purpose

Compute a highly accurate solution to the matrix equation AX = B where A is an N x N matrix, and X and B are vectors.

Usage

CALL SOLVIT (A, N, M, B, X, ACC, MAXIT, IT, IN, W)

Description of Parameters

A	N x N matrix of coefficients
N	number of rows of A
M	number of rows of array in which A is stored
В	right-hand side of equation $AX = B$
Y	solution vector

ACC accuracy desired MAXIT maximum number of iterations to be tried. (10 should be sufficient.) If MAXIT = 0, no iterations will be performed. IT internal indicator set by program to: = -1 if matrix is singular = 0 if convergence failed within MAXIT iterations = k the number of iterations it took to converge IN to be set = 1 for first entry to the subroutine = 2 for subsequent entries if A has not been changed. W $N \times (N + 5)$ array used as working storage.

Method

The Gaussian elimination method with partial pivoting is used to decompose the matrix to upper and lower triangular matrices. (These triangular matrices are saved.) From the residual vector B - AX, a correction vector is computed and added to X. The process is repeated until the residual vector is within the tolerance.

The initial scaling of each row, to bring the maximum element between 1/2 and 1, is done using factors equal to integral powers of 2 to eliminate round off errors which otherwise might have been introduced.

The method is due to Cleve Moler, JPL, presented at SHARE XXV, Chicago.

Storage Requirements

116 locations.

Restrictions

In most cases, eight digits accuracy can be attained.

W must not be used between calls to SOLVIT when solving for multiple right-hand sides. Matrix A is destroyed.

Note

SOLVIT is only a driver for the deck SIME (entry points SIMEQA and SIMEQB): thus two decks comprise this subroutine. In addition, this subroutine uses the library subroutine LOG2.

Subroutine LSQPF, LSQPF1

Purpose

This program will fit polynomials of order one through seven to n given points (X_1, Y) , (X_2, Y_2) , --- (X_n, Y_n) by the method of least squares. The order and spacing of the points is immaterial and the points need not all be distinct.

Usage

- a. CALL LSQPF (X, Y, K, N, M, C, IERR) or
- b. CALL LSQPF1 (X, Y, K, N, M, C, IERR)

Description of Parameters

X	for both entries X is the first location of the block of X_i values (real array)
Y	for both entries Y is the first location of the block of Y _i values (real array)
K	for both entries K is zero if residuals are not needed; is nonzero if residuals are wanted (integer)
N	for both entries N is the number of points to be fitted (integer)
М	for entry (a), M is the highest order polynomial desired. The routine will compute polynomial fits of degree one through M and return all coefficients. For entry (b), the routine computes a polynomial fit of degree M only. $2 \le M \le 7$ (integer)

C

for both entries, C is the first location of the block where the coefficients, standard deviation, and residuals will be stored.

for entry (a), the dimension of C must be M(M+5)/2 if K=0, and M(M+5)/2+N*M if $K\neq 0$. The coefficients, a_i , the standard deviation, σ , and the residuals,

 R_{j} , are stored in the following order beginning at location C:

The location of A_o of polynomial degree $P(1 \le P \le M)$ is C(I) where I = P(P+5)/2 - (P+1). The location of R_1 of polynomial degree $P(1 \le P \le M)$ is C(I) where I = M(M+5)/2 + N(P-1)+1.

For entry (b), the dimension of C must be (M+2) if K=0, and (M+2+N) if $K\neq 0$. The coefficients are stored in C(1) through C(M+1), the standard deviation in C(M+2), and the residuals in C(M+3) through C(M+2+N). (real array)

IERR

for both entries, IERR is the error flag; it will contain 0 if no error occurred, and some number if an error has occurred. There are two reasons for an error: one of the pivotal elements is zero, or an overflow has occurred. (integer)

Method

The method of solution is as follows:

Given a set of n points, (X_i, Y_i) , we require sets of coefficients, a_j , such that

$$\sum_{j=0}^{p} a_{j} (X_{i})^{j}$$

is the best least squares fit to Y_i over all i. This is done by first normalizing the X_i to the interval (-1,+1) by use of the formula

$$X_{i}' = \frac{X_{i}}{\max(|X_{0}|, \dots, |X_{n}|)}$$

We can then work in terms of Chebychef polynomials, \boldsymbol{T}_k , where

$$T_0 = 1$$
 $T_1 = X'_1$
 $T_k = 2 X' T_{k-1} - T_{k-2}$

for k = 2(1)p. We now seek t_i such that

$$\sum_{j=0}^{P} t_{j} T_{j} (X_{i}')$$

gives the best least squares fit. The residuals, R_i^k , are

$$R_i^{(k)} = \sum_{j=0}^k [a_j (X_i)^j] - Y_i, \quad k = 1(1)p$$

The unbiased estimate of the standard deviation of the k^{th} order polynomial fit is

$$\sigma^{(k)} = \frac{\sum_{i=1}^{n} |R_i^{(k)}|}{n} \sqrt{\pi/2}$$

Restrictions

The value of M must be in the range 2 through 7. Care should be exercised in using this routine since considerable loss in accuracy of the coefficients is sometimes involved.

Appendix C LDV EXTERNAL LOG SHEETS

1		λί.			Comments	3.747		B 747 Good RUN	8 727																	30,40,45,60,90,120,240,350							
	1	Runway	Estimated	Wind	(from)	280823	290025	280622	2806020	280623	300623	290015	2902015	2946/24	290629	280018	288030	270620	280620	2904/18	394618	28/18	280620	2806118	2406.23	2894 2 3	2906/20	2806/18	3006.20	3004/20	284/20	280618	2806021
	z +	* * *	Time		Start Stop	5 20 25 0	15 54 1536	95 07 15 36	12 40 1541		1546 1547		5031554	0 50 15 50	3371339	1001 1001	16 04 16 05	1600 400	1608 16091	11 11 017	614 1615	612 817	12 1/1 31	16 23 16 34	1.25 16.26	1628 1630	16 30 16.33	36 16 37	4 39 16 40	16 42 16 43	16.95	84 7	3
		Landing	Computer		Records					1			1	1					1														
			Com	-	No.	21		2	11	21	-	2	2	-	7	8	11	1	1	-	4	"	8	3		,	3	"	4	4	,	4	11
	310	2			Rate	_	-	,	\	\	1	1	7	1	\	1	1	1	,	1	7	1	1	0	2		2	7	4	2	13	63	N
	uth:	th I		Flevation	Min.	15	15	15.	15.	15	15	0	10	10	10	10	0/	10	10	10	18	15	0	15.	15		157	10	151	15	15	,5,	101
	Azim	Azim	ner	E	Max.	35	40	45,	45	\$	45	45	45	45	45	45	45	45	45	45	a A	50	50	5.0	50	00	20	8	B	20	30	5.0	5.0
	Runway Azimuth:	Mirror Azimuth for Switch	Scanner	e	Rate	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	8	30	8	30	30		30	30	30	30	30	30	30
				Range	Min.	40	40	40	3	3	40	40	3	35	35	35	35	35	55	35	32	35	35	35	35		3	35	35	35	35	35	38.
	Pt mee	I RW			Max.	140	140	140	140	140	140	140	140	140	140	140	140	190	140	140	14	140	140	140	140		140	140	à	140	140	140	140
	250 ft	Senter of RW			(msec)	/	\	1	7	1	1	1	1	-	1	1	1	1	,	1	1	1	1		-	`		,	\	\	\	1	
		101	rer	MHz)	Max.	34	34	3.4	34	34	34	34	38	34	3 8	34	34	30	3 4	2.4	2	34	a	3.6	34	0	20	34	34	34	34	34	34
	Van X Position: Ref. Pt.	Van Y Position; Ref. Pt.	Spectrum Analyzer	Span (MHz)	, o	00	8	9	9	10	2.0	0	50	20	0.0	20	000	000	20	20	0.0	00	20	00	3.0	with.	00	20	-		20	0.7	00
	Van X P. Ref. Pt.	Van Y F Ref. Pt.	ctrum	Freq.	Min.	14	4	14	4	*	14	1.4	4	4.1	4	14	4	+	4	4	7	4	14	*	14	0	4.	4	4	4.4	*	7 /	7
			Spe		in Circ	4110	411	610	7/7	Lie	777	411	717	717	711	110	215	215	410	717	707	417	4.10	410	410	110	410	7.0	11	7/4	111	7/7	717
	4 20	(3)			(kHz)	0.0	-		100	00/	100	00	00	00/	2	00	2	201	100	01	017	01		00		300				200	7	2	it.
	ion:	200	Run ID		or VAD	Ac	40	AC	AC	737	202	747	707	707	00.8	1	707	12.3	147		747	202			01.10				147		727	747	707
	Location: Date:	Sheet	Ru		No.	029	030	031	232	033	034	035	036	1		239	040	24	242	600	777	045	040	-	800	-		05/	250	-	-	000	050

								1	-	1					T	
Kunway Azimuth		3			Comments										30 40, 45, 60,90,120, 240,350	
		Runway		Wind	(from)	2804020	2806/20	2406/1828	29061800	29061828	24061835	2904/8:28	290018-28	24.418.28		
	× +	*	Time		Start Stop	1 1652	16 54	16 57	16 54	1702	1700	1709	1716	1721	1221	
		Landing AC +x	-	-	Records Sta	15.71	16.53	16 56	80 %	1201	17.04	17.08	1715	1720	1724	
	1	1	Computer	-	No. Rec	75	11	- 1	,,	"	11	"	,	11		
	01	5//	-	-	Rate	0	2	67	2	C	2	2	C)			
	Runway Azimuth: 3/0	1		Elevation	Min.	15,	.5	151	15,	15	15	15.	15	.5.	¥	
	Azimu	A zimul ch	er	1	Max.	1	50	-	-	5.0	50	50	50		-	
	unway	Mirror Azimuth for Switch	Scanner		Rate	30	30		30	30	30		-	30	-	
				Range	Min.	35	35	35	35	35	35	35	35	35.	1	
	Mila	RW			Max.	140	140	140	140	-	140	14	140	140	1	
	250 ft	Center of RW			(msec)	1	1	1	,	\	,	-	1		,	
			zer	(MHz)	Max.	3 4	34	3 4	3 4	34	4 8	34	34	34	07	
	Van X Position: Ref. Pt.	Van Y Position: Ref. Pt.	Analy	Freq. Span (MHz)	J.,	38	28	28	87	28	18	8/	8	0	300	
	Van X P. Ref. Pt.	Van Y Ref. P	Spectrum Analyzer	-	Min.	4	14	4	4	+	4	4	14	4	0	
			Sp	1	Lin	416	6.0	*	7 4	417	7.0	7.7	410	7	977	
	A	334.16		1	(kHz)	1			*		1	1	43	2	30	
	ion:	6	Run ID		AC Type B.W.	1		727				707			1,40	
	Loca	Sheet	N. S.		No.	057	850	650	090	100	200	6 90	+90	000	200	

_						1									1						1	T									
Kunway Azumuth			Comments				the state of the s			and the state of t				and a second control of the second control o						30, 40, 45, 60, 90, 120, 240, 350											
Runway		Estimated Wind	Azimuth (from)	320000	300015	300616	3006.14	330012	3206/10	320610	3206/10	3206.10	324/10	330615	3376.15	330611	330615	19015	310610	3100.10 304	3206/10	3406.12	3306,2	320615	320010	326 6 16	310 60 10	3/00/2	3/00/8	Srs 10	N
	t, ty		Stop	1400	404	1407	404	4/4	1417	1.3	12.41	14.23	W 25	1432	4 33	¥35	1937	442	457	1453	1503	1505	1507	01 61	15/4	17.75	15 72	5 0		05:50	1
+ Landing AC	× F		Start	1354	202	1406	108	1913	14/6	816	12 4	422	420	12.61	430	1934	436	44	456	14 50	15.01	1503	1506	15.09	2/0	15 16	15:00	15,05	15. 55	37.21	24. 24
Lanc	* Committee	- and	No. Records													-						-									
	100		Tape No.	22	22	2	**	11	1	"	4	3	1	4	0		-		,		-	11		4	,	1,1	"			-	
310		T	Rate	,	,	,	,	`	,	1	,	_	_	,	,	,	,	4	2	,	N	2	7	0	N	.)	0	2	1	ų,	1
Runway Azimuth: 3/0 Mirror Azimuth for Switch		Elevation	Min.	7	2	61	63	2	N	67	11	N	0	17	2	0	01	01	N	1	U	2	V	2	N	1)	-	2		2	
y Azim - Azim itch	1		Max.	35	35	35	35	35	35	35	35	35	35	35	35	35	35	35	35	00	35	35	35	35	35	13	3	ě		40	40
Runway Azimutt Mirror Azimuth for Switch	Seame		Rate	3,0	30	30	30	30	30	30	3	330	30	30	3.	3.0	30	30	30	1	30	30	30	30	30	30	*	-	4	30	4
		Range	Min.	65	65	45	95.	45	45	45	4	45	36	45	45	45	45	45	35	1	35	35	35	35	4	100	"		1	3	
N BW	L		Мах.	210	210	160	160	160	160	160	160	160	09	160	160	160	160	160	160	1	160	160	160	160	160	160	41	1	11 .	•	8
J. E. Center of RW		-	(msec)	,	1	1	1	,	`	-	,	1	1	-	,	1	-	-	1	,	1	,	1	\	,	1	**				
		MHz)	Max.	26	26	20	2.0	20	N	N	N	2	24	7	24	24	24	24	24	20	24	24	24	54	27	3.7		4			
Positio Positio	Amala	Freq. Span (MHz)	J °	1	,	-	6	9	9	3	9	e	9	do	8	٠.	00	00	*		e	9	1		1	7	- 1		4		-
Van X Position: Ref. Pt. Van Y Position: Ref. Pt.	A Maria	Freq.	Min.	2	7	0	0	0	0	0	0	0	4	•	*	Þ	4	+	7	0	7	4	4	4	7	7	11		7	-	
	3	,	Log	410	4:10	418	110	411	710	717	N/7	717	418	717	7/7	7.7	416	410	110	410	717	111	717	717	111	110	×.	2		1	19
K1R 1-1526			B.W. (kHz)	01	001	001	2				001	001	00		0.1	001			0.	30	- 1	001	- 4	01		100	4	=			0
Location: KIR Date: 1-15.5	9		AC Type B.W. or VAD (kHz)	747	Dc .8		1	2009	72502 100	707	6.30	707		727	707	707	727	-+		149	70/28 100	00/h 0/191	VC - 10		747	707	707	707	707	the.	000
Location: Date: Sheet 2 of	a		No.	620	030	180			034	035	030	037	820	039	040	140	240	-	340	- 1			048	640	050	051	250	653	654	0.50	750

				AcTyells																											
Kunway Azumuth			Comments	40 45 70 90,120, 190240, 550 PM																4.45,70 p. 130 690,240,950								10 Run			
Runway	Estimated	Wind	Azimuth (from)	3.00.20	-		320615	320615	320015	324610	3,060 15	310015	3,06.15	310015	3,06/15	3106/15	318615	3,04,00	3,40,0		310615	3106 15	3106-15	3,06,13	320,012	3266.12	326013		-	2944 10	330010
±	Time		Start Stop	35 16 42	10 31			45 8 85 39	1730 1701	703 1705	7.6 17.08	108 1910	110 1711	12 17.13	1917/6	8121 61	17 30 17 21	7251729	30 17.31	733 1736	17.39	2461 /	1744	05 17 84	2 1732	1754 1755	56 1757	10 81 00	1803	80 G/	11 81 01
Landing AC	iter		Records Sta	71	1/1	1/2	63	100	173	170	17.	170	17.	17	12,	17.17	17	17:	17.	17.8	738	124/	1743	17 49	12:2	17	17.56	00 81	CO 81	. 3/	ď
	Computer		Tape No. Re	28		4		10	à.		4			4	//		11		2		"	-			"	*	11		-	11	17
310				1		N	67	6.5	2	27	N	7	61	6)	t)	7	1	2	67	i	0	C1	N	N	2	7	. 2	2	0.0	7	2
nuth:		Elevation	Max. Min. Rate	1	03	101	0/	10	10	10	10	10	2/	31	77	9/	10	10	15		05	.52	05	02,	05	0.5	005	05,	250	05	20
Runway Azimuth: Mirror Azimuth for Switch	Scanner	121		00	30	4	3	4	40	40	40	40	7	40	7	*	40	¥	25	09	6	301	32	35	35	35	33,	35	Ġ.	35	
Runwa Mirro for Sw	Sca	ge	Rate	1	3 /	3	3	8	3,	8	31	3	3 /	œ.	31	3/	8	3,	33	,	m	3	5	3,	18	(v)	-	3.1	**	3,	n
23		Range	c. Min.	1	30	20		30	8	36	36	30	30	30	30	30	3	ď	35	1	30	3	30	30	3	3	30	30	9	30	2
2524 Wilde MARKER Yea H			c) Max.	1	150	150	150	150	150	150	150	150	150	150	15.	150	150	150	150	1	150	155	150	150	150	150	150	100	35	15.3	14.0
253 Voicenter		-	(msec)	-	-	`	,	/	`	`		1	/	1	-	,	`	1		\	`	`	`	_	-	-	-	,	-		
tion:	lyzer	Freq. Span (MHz)	Max.	r _i	tr.	m	3	n	a	8	o	M	5	n	85	n	r	3	8	17	8	Çe.	3	m	tt.	~	~	3	K.	e.	50
Van X Position; Ref. Pt. Van Y Position; Ref. Pt.	m Ana	q. Spar	J.	m	_	/	\		1	^	,			-		\	`	\		u	1	\	\	~	*	-	-	-		`	,
Van X P Ref. Pt. Van Y P Ref. Pt.	Spectrum Analyzer	-	Min.	0		1			/	1	-		,	/		1	`	_	-	0	1	`	-	`		-	-	-		`	
121 1	S		z) Lin	410	7	40	414	210	417		7	410	717	717	416	717	4.12	412	4.10	4.6	711	717	7117	410	4/12	412	2 7	717	4.0	41 M	417
28:			(kHz)	30	1000	00/	000	100		-		100	100	201		a	100	4.	2/	30	100	201	100	100	9	100	6	01		20/	
, o	Run ID		AC Type	040		727	747	-	20.4	1101.7	747	707	707	147	71017	100.8	707	729	727	11.60	727	747	747	747	4500/2025	00 8	707		757	727	DC-4
Locati Date: Sheet	14		No.	100	200	200	400	200	300	100	800	600	010	110	210	613	410	212	9/10	210	8/0	110	020	127	023	023	024	025	200	627	028

			Comments																				2.40	ACMUTA 40 - sour worte.	42. Muth 40 SAL MRTCS	4 Squaretter	ACMUTA 40 SAUVERIUS	AZMITA 120. SAW VORTER EXMENSE ZU	130 THE WITTER CHUATION SC	AZMATAISU SAA URTEX SECRET	ASIMUTALIST SAN LOPERA ELENATION C.
Runway	Estimated	Wind	(from)	3.26.12	344.47	390612	324016	306.18	3106.15		106.3	2406.2	240615	240615		2706.15	270618	3706.8	270(4)18	280£ 18		270618	SHORS ASIMULA 40	270615 AZIMUTA		270 CIB ASMUTH 4	2 Tuese Acimuli	240ES AZINITI	270616 AZIMUTA 30		2448 19 Azimes
i × ×	Time		Start Stop	5 18 18 13	818/013	5 81 6 30	3281 1.61	1826 1828	18 24 18 30	83, 1832	12 24 2	18 8 18 47	75 51 15 51	18.3 1954	853 B36	1857 1857	8 07 19:0	01 61 60 61	1912 1913	9 4 19 15	19 20 19 20	431 1936	1923 1954	125 19 26	17.4 93	4 5319 34	1955 1736	3 121942	19.45	244 95 4	448 77-7
Landing AC +x	Computer		Pecords S		- 53	_5,	-32	y	7								8	/								*		-5		13	1
	Con	,	No.	3	*	11	2	Ξ.	*	7		11	+		11	11	,	11	4	"	=]	11		11	4	-		11	*	,	
115		g	Rate	2	N	0	2	rù .	~	"	2	2	-1	71	0	~	2	- 1	2	N	2	3	N	01	Ci	11	~	. 7	0.1	2	7
for Switch		Elevation	Max. Min.	50	52	52	50	057	051	00	0.	2	17/	57	30	20	20	25	50	20	20	30	,0)	5	121	5 3	50	03	03	03	03
ıtcı	Scanner	Э	Max.	8	3.8	38	32	龙	35,	ŕ	4	40	3	40	20	50	25	50	5.0	20	30	50	50	Se	3	30	30	30	30	30	30
for Switch	Scal	9	Rate	31	2	n	1	3,	~	۲,	7	10	3,		3,	3	K.	3.	3	3.	3	2	30	11	3	3 /	3	3.	3	2	'n
		Range	Min.	30	30	30	30		30	30	30	35	30	30	3.5	36	30	30	30	£.	30	30	36	30	25	25,	23	25.	53	2	3
RW			Max.	150	150	150	150	150	720	150	150	79.5	0,0/	150	150	10.0	150	150	150	150	150	150	150	150	20/	100	100	8	0.0	100	00,
Center I RW			(msec)	1		1	,	,				,	-	1	,	,	-	,		,	-	1	-	1	,	,	1	-	1	,	7
	z ez	MHz)	Max.	m	"	100	a	3	ec.	*	50	3	3	2 5	13 10	3.2	2)	3	w w	50	21	2	3 5	3	3 2	3 2	3	53	3 5	3 2	20
Ref. Pt.	Analys	Span (MHz)		-	-	-	-		-	-	1			14	+	4	0/	0	0	1	1	4	1	21	14	3	7.7	9/	9	91	,
Ref. Pt.	Spectrum Analyzer	Freq.	Min.	-		-		-	-	7		-	1.3	13	64	cs /	2	2	20	12/	2/	2	12	()	12	0	7/	27	12	2/	12
	Spec		Ting.	216	5.5	410	2.2	11.7	117	1017	217	2	11.7	10.7	2	N.7	717	7.7	017	LIN.	7.4	Lin	777	21	717	1.10	414	17/7	417	717	417
2 6			(kHz)	9.1	201	9	7	6	2	9	0	Υ.	9	8	3.7	9.4	24/	0	6		-1	0.		•	1.0	20	,			31.0	
70	Run ID		AC Type	727	707	707	727	05.10	7.7	7:2	707	767	11011				727	28.4	00.00	727	11017	727	707 3	737 3	707	767	707	707	707	DC 16 3	747
Sheet 2	E		No.	620	030	03.	250	533	C3+	035	250	237	11	920	773	240	2+3						000	240	150	1,00	700	653	450	655	250

			-		1	1	1	1	1	1		1								11.40	
Rusway Azimuth			Comments				CleUATION 886 I RECORD	ELEVATION 89 6 SAW JORTEN	1	Erengton 846 500 2027										2144 72 60 13, 24, 25	
Runway	Estimated	Wind	(from)	270618	2706/20	5. 3ch.	8 34.5	310362	2806/18	2406 8	290618	81 18.46	27.47.5	22618	27.6316	2/26/18	274/18	270,0015	2000	27615	
N T T	Time		Start Stop	852 1953	1655 1950	300	3002 -	2006 2005	20 00 000	201120	209 2010	2111 2012	2 3 14	2017 2017	219 2:1	20.37 20.22	20.4 22 24	1.34 W. 3.	23.24.22		
Andring Act	Computer		Records																		
10	Cor		No.	82	4		4	17	17				"		11	2		4	"		
310		u.	Rate	1		2	-	1	1		^)	O.	14	2	N	N	61	2	17		
auth:		Elevation	Min.	101	10	10	1	1	1		0	15/	15.	13	15	10/	183	'n	167	1	
Runway Azimuth: Mirror Azimuth for Switch	Scanner	Э	Max.	50	120	00	1	1	1	,	3	26	30	20	3.0	50	55	00	5.5	200	
Runwa Mirro for Sw	Sca	e	Rate	10			31	-	-		"			8	-	-	-		m		
		Range	. Min.	25-			25	5			3		1		25	-	-	-	-	1	
RW			Max.	100	1.30		09	00	2	09	130	130	3	3	130	130		1.35	13	1	
252 Franker			Rate (msec)	-	-	-	'	1	1	,	,			-	-	7	,	,	,	-	
	zer	MHz)	Max.	2 2	6-1	2	3 2		10	3.2	0	0)		3. 3.	2		100000	7 8			
Position	Analy	Span (j,	61	1.	6/	11	17	17	1	17	1.7	12	5	61	1 2	1	1	1.2		
Van X Position: Ref. Pt. Van Y Position: Ref. Pt.	Spectrum Analyzer	Freq. Span (MHz)	Min.	1	63	2	13	1	12	2	12	~		13	2	6.1	17	01	13		
	Spe		Log Lin	0	412	-	717	1.2	410	7.7	4.1	11/11/	Z. 7	V T	2.7	317	7/17	7,10	217	5	
1 2 2			(kHz)	9	9	9.	201	6	201	P	2	2	1	6	211	0	201		4	3	
Location: K.A. Date:Sheet 2 of 9	Run ID		AC Type	1	7.27	747	624	124	727	94-70m	27.70	2.10	707	727	620	707		767	747	VAD !	
Locati Date: Sheet	CK.		No.	450	053	:53	090	140	200	630	2000	1060	340	200	370	693	070	1621	2/0	233	

Runway	9		Comments	226813 234645 10 9012924 350 around			32 40 45 10, 121, 240, 350	Se- 10 4 12. 20	35 go 15, 16, 90, 130, 240, 330	3,	AZIMUIR 270	HEIMLIK SCHELLY RANGE SCHOOL	HZIMUTE SCALLERY	
Rur	Estimated	Wind	(from)	226813	2206/10					200016	2468			
	Time		Start Stop	13.08 13.15	1317	13: 12 1341	36.13.41	13 46 13 48	13 57 19 -	534538	532154	549 1552	60 11 00 11	
Landing AC AC +x	uter	,	Records St	13.	13.8	13:	15.	113	13	5	15	S	7/	
	Computer		No. R	29	5.4	2	0.1	62	62	29				
5 7		ion	Max. Min. Rate	-	,	,	ï			,	1	١	1	
Runway Azimuth: Mirror Azimuth for Switch		Elevation	x. Min		5.3	63	1	3	1	- 6	- 1 6	-	1	
Runway Azimuth Mirror Azimuth for Switch	Scanner	_	Rate Ma	00	-	31 30	577 _	000	77	69	2 60		2 6	
Run Mir for	S	Range	Min. R.	,	18 02	36 3	,	30 1.0	1		30	7 00/	-	
A BW			Max.		220	*	1	350	1	1	350	-	1	
DE 24 Wood HAKE			(msec)	,	,	,			-			-	-	
ion:	Ter		Max.	2	٤	30	ť	25	2.5	20	20	22	20	
Van X Position: Ref. Pt. Van Y Position: Ref. Pt.	n Analy	Freq. Span (MHz)	" "	"	12	2			3	B	~	0	2.	
Van) Ref. Van Ref. I	Spectrum Analyzer		Min.	0	-	4		Ü	0	0	ì			
121	S		z) Lin	1.4	1	\rightarrow	LAN				-			
K.A. 1.29-76	-		AC Type B. W. or VAD (kHz)	1	8	-		3.	3.	-	30		+	
Location: K.A. Date: 1-29.	Run ID			URD	_		VAD	CC 4 VAD	VAD	205 VAD	140	(A)		
Location Date: Sheet $ ot L $			No.	100	200	000	OC 3	C. 4	500	105	200	502	800	

		_		П	1	1	1	1		1	1							7		1	1	1				1	1		1	1	T
Runway Azimuth			Comments	3.40,45 76 8 12 24, 4.5	clear																									2 STREATE WETCH	
Runway	Estimated	Wind	(from)	30000	240610	3006/10	3006.12	29060,10	320012	3206/12	300@12	3006012	300012	3246/10	310610	3,06,10	3,06,10	3000,10	3,04,10	3/06/10	240610	3006,8	3006.8	3.06010	3006/10	3,060,0	330612	3206/12	3004,0	3.ca.12	30.6 10
: **	Time		Start Stop	35 61 65 H	1457 1458	209/102	503 1505	15:06 1507	1511 1512	1513 154	15 15 16	15.17	15 M 15 20	15 21 15 22	15 27 15 29	15 40 15 41	15 41 15 42	15 43 15 43	154 154	84 B47	5 48 15 49	550 1551	1552 1553	54 1555	75 37 58 6	67 11.03	K 07 16 CY		11.12 11.13	0121 20 3	3190 913
Landing	Computer		Records		`		,	- 3	,	-	,	,	1	×	7			`	~		`	,	/		,	-3	_5	"	,	-3	1
	Cor		No.	30	"	2	"	"	"	"	"	"			*	11		27.6				-	7			4	-	-			
316		uo	Rate	1	1)	•1	~	2	N	2	N	3	i,	5	2	e.	53	63	2		.,	0	6.1	01	ns.	0	2	63	N	*1	1)
nuth:		Elevation	Min.	1	65	100	00	050	100	05	05	05	05	050	05	8	50	00	,50	60	,90	00	05	60	00	50	05	10	0.	0/	8
Runway Azimuth: Mirror Azimuth for Switch	Scanner	-	Max.	29	7	4	35	35	8	40	40	4	_	90	40	74	940	75	40	40	40	4.5	77	7	90	7	3	45	45	40	Ç.
Runwa Mirro for Sw	Sca	3e	. Rate		6	6	30	30	30	30	30	30	3.2	3.2	31	6	3	3.	3.	31	3,	3,	3.	3.	"	3,	3,	3	3	·r.	-
Çoc		Range	Min.	1	140	40	3	4	8	4	+0	40	40	40	40	40	40	90	40	40	40	40	40	90	40	4	40		40		40
252 the marker of Center of KW			Max.		.60	180	180	180	200	200	200	200	2.00	200	200	3	360	1:00	200	400	700	200	200	200	200	320	180	180	180	120	180
250 H			(msec)	,	,	,		1	1	1	,	,	-	'	-	1	,	/	,		-	-		-	-	,	-	-	,	-	-
	zer	(MHz)	Max.	2	32	28	28	28	00	28	28	28	2.8	2.8	2.8	28	S	.,	8 2	28	28	87	3 8	8.7	30	2.6	26	97	26	92	26
Van X Position: Ref. Pt. Van Y Position: Ref. Pt.	Analy	Freq. Span (MHz)	4 °	2	8	æ	00	8	6	6	6	6	6.	6	6.	8	oc	a	œ	æ	æ	90	00	w	æ	3	7	7	1	7	1
Van X Position: Ref. Pt. Van Y Position: Ref. Pt.	pectrum Analyzer	Freq.	Min.	0	8	æ	ox)	æ	8	90	æ	8	œ	æ	æ	æ	8	x	w	a	00	a	æ	æ	8	i	i	,	0	9	3
	Spe		E E	1717	4.7	414	410	410	717		111	1111	410	4.1	717	7/7	MIL	410	217	4/2	N/7	417	N.7	11/1	111	111	NIT	7.7	111	717	1/4
7 22			(kHz)	30	337		100	301	001	100	100	100	201		001	001	8	00	001	001	100	100	001	100	100	P	100	00	100	100	100
Location: K/L Date: 130.74 Sheet of3	Run ID		or VAD	UAD		707	0.58			707	707	02.8	-	747	-	_	484	-		6.00		-+	DC-9	727	707	727	01-10	707	6.70	-	124
Locati Date: Sheet	R		No.	100	002		004	000	000	200	800	600	000	110	212	613	614	015	515	113	3.0	010	020	123	273	123	024	625	020	627	320

$\begin{array}{c} \text{Appendix D} \\ \text{REPORT OF INVENTIONS} \end{array}$

Under this contract the Lockheed LDV system was modified, calibrated and tested in an airport environment. A base of wind and wake vortex measurements were obtained. The contract objectives were met and no innovation, discovery nor invention was made.