Modelo de *Machine Learning* para Predição de Correntes de Fuga em Isoladores de Distribuição Classe 25 kV

Apresentado ao Curso de Especialização em Ciência de Dados e Big Data na Pontifícia Universidade Católica de Minas Gerais (PUC MG), como requisito parcial à obtenção do título de especialista.

Ferramentas

matpletlib

Trabalho base

- Modelo Matemático de Predição de Correntes de Fuga em Isoladores de Distribuição Classe 25 kV.
- Dissertação de Mestrado de Milton Augusto Pinotti.
- Apresentado ao Programa de Pós-Graduação em Engenharia Elétrica da Universidade Regional de Blumenau - FURB.
- Utilizou a ferramenta Matlab para criar os modelos matemáticos de regressão linear e não linear.

Escopo do trabalho

1. Definição do problema 2.Coleta de dados 3. Processamento/tratamento dos dados 4. Análise/exploração dos dados 5. Criação de modelo de ML 6. Interpretação dos resultados 7. Comunicação dos resultados

Definição do problema

- Grande preocupação das concessionárias de energia elétrica em fornecer este insumo com alta qualidade.
- Dentre os principais equipamentos utilizados no sistema elétrico estão os isoladores elétricos.
- As falhas em isoladores são responsáveis por muitos dos desligamentos não programados na rede elétrica.
- A saúde destes isoladores é monitorada através da medição de correntes de fuga.
- O objeto deste estudo é o isolador tipo Pilar Polimérico HTV.
- Os dados foram gerados em uma estação de monitoramento de sistemas isolantes (EMSI) localizada na Praia Brava em Itajaí/SC.
- O período de coleta disponibilizado foi de 01 a 28/02 de 2010.

Coleta e processamento dos dados

Aquisição dos dados

```
# Importar dados de arquivo csv, onde o separador de campos é '.' e o separador de casas decimais é ','

df = pd.read_csv('dados/dados_isolador40.csv', sep=';', decimal=',')

executed in 66ms, finished 16:27:22 2020-05-15
```

```
addos isolador40.csv
      umidade; temperatura; pressao; vento ang; vent veloc; chuva; corrente fuga
     70;29,6;1016;278;1,4;0;0,024992
      69;29,7;1016;297;1,4;0;0,022767
     70;29,8;1016;273;1,6;0;0,022607
     68;29,8;1016;243;2,6;0;0,022426
    68;29,7;1016;257;2,8;0;0,031797
     69;29,9;1016;261;2,4;0;0,032152
      67;29,9;1016;254;4,5;0;0,032233
      68;29,9;1016;287;3,4;0;0,032337
     68;29,9;1016;291;2,8;0;0,032357
     68;30;1016;254;2,6;0;0,03189
     67;30,1;1016;258;2,6;0;0,032369
      68;30,2;1016;263;2,6;0;0,032091
     66;30,3;1016;305;1,6;0;0,031828
      66;30,5;1016;233;2,6;0;0,032115
      66;30,5;1016;334;2,2;0;0,03256
```


umidade \$	temperatura \$	pressao \$	vento_ang ♦	vent_veloc \$	chuva ♦	corrente_fuga ♦
70	29.6	1016	278	1.4	0	0.024992
69	29.7	1016	297	1.4	0	0.022767
70	29.8	1016	273	1.6	0	0.022607
68	29.8	1016	243	2.6	0	0.022426
68	29.7	1016	257	2.8	0	0.031797
	70 69 70 68	70 29.6 69 29.7 70 29.8 68 29.8	70 29.6 1016 69 29.7 1016 70 29.8 1016 68 29.8 1016	70 29.6 1016 278 69 29.7 1016 297 70 29.8 1016 273 68 29.8 1016 243	70 29.6 1016 278 1.4 69 29.7 1016 297 1.4 70 29.8 1016 273 1.6 68 29.8 1016 243 2.6	70 29.6 1016 278 1.4 0 69 29.7 1016 297 1.4 0 70 29.8 1016 273 1.6 0 68 29.8 1016 243 2.6 0

Análise/exploração dos dados

```
# formato do dataframe (registros/colunas)
df.shape
executed in 9ms, finished 16:27:22 2020-05-15
```

dtype: int64

(40316, 7)

```
# Quantidade de registros com valor zero em cada atributo.

(df == 0).sum()

executed in 44ms, finished 16:27:22 2020-05-15

umidade 0
temperatura 0
pressao 0
vento_ang 92
vent_veloc 14511
chuva 38064
corrente fuga 0
```

```
# Valores missing
  df.isnull().any()
executed in 20ms, finished 16:27:22 2020-05-15
umidade
                   False
                   False
temperatura
                   False
pressao
vento ang
                   False
vent_veloc
                   False
chuva
                   False
corrente fuga
                   False
dtype: bool
# # Registros nulos
  df.isnull().sum()
executed in 19ms, finished 16:27:22 2020-05-15
umidade
temperatura
pressao
vento ang
vent veloc
```

chuva corrente fuga

dtype: int64

Análise/exploração dos dados

distplots_dataframe(scaled_data) executed in 5.57s, finished 16:27:34 2020-05-15

*	umidade 	temperatura ♦	pressao ¢	vento_ang ♦	vent_veloc \$	chuva ♦	corrente_fuga \$
umidade	1.0	-0.44157	-0.20368	0.32259	-0.50396	0.11214	0.69658
temperatura	-0.44157	1.0	-0.39874	-0.43925	0.45762	-0.11037	-0.34919
pressao	-0.20368	-0.39874	1.0	-0.011539	-0.045943	0.044076	-0.064254
vento_ang	0.32259	-0.43925	-0.011539	1.0	-0.34307	0.0424	0.22667
vent_veloc	-0.50396	0.45762	-0.045943	-0.34307	1.0	-0.0043842	-0.3078
chuva	0.11214	-0.11037	0.044076	0.0424	-0.0043842	1.0	0.29679
corrente_fuga	0.69658	-0.34919	-0.064254	0.22667	-0.3078	0.29679	1.0

- 01. Regressão Linear
- 02. Árvore de Decisão
 - 03. Random Forest

04. Random Forest com ajustes nos hiperparâmetros

Criação dos modelos de ML

Comparação entre os scores - Regressão Linear

Interpretação dos resultados

Comparação entre as diversas abordagens

\$	Atual ♦	Previsto ♦
943	0.180253	0.175453
083	0.201466	0.202456
353	0.177424	0.178007
959	0.183708	0.184582
264	0.181854	0.179802
244	0.164301	0.168584
002	0.197662	0.199776
360	0.160629	0.165030
265	0.174859	0.175861

0.129026

0.137641

Problem Statement
What problem are you trying to solve?
What larger issues do the problem address?

- Eliminar as quedas na distribuição de

Outcomes/Predictions
What prediction(s) are you trying to make?
Identify applicable predictor (X) and/or target (y) variables.

- Antecipar o momento em que os

Outcomes/Predictions
What prediction(s) are you trying to make?
Is there enough data? Can you work with it?

- Dados coletados em estação de

isoladores podem falhar, através da

Title: Modelo de Machine Learning para Predição de Correntes de Fuga em Isoladores de Distribuição Classe 25kV

isoladores elétricos.
- Problemas nestes equipamentos
causam rompimento na distribuição de
energia elétrica.
- Analisando os fatores ambientais
podemos predizer a corrente de fuga.
- Variável alvo: corrente de fuga.
- Variáveis preditoras: umidade,
temperatura, pressão, ângulo do vento,
velocidade do vento, quantidade de
chuva.

Modeling

Model Evaluation

energia elétrica causadas por falhas nos

Os dados disponibilizados são do período de 01 a 28/02 de 2010.
O dataset possui 7 atributos com 40.136 registros.
O dataset foi disponibilizado através de arquivo CSV.

monitoramento de sistemas isolantes

(EMSI), na Praia Brava em Itajaí/SC.

Modelina What models are appropriate to use given your outcomes? How can you evaluate your model's performance? - Os modelos de regressão são os ideais para - Para cada modelo é calculado um este tipo de problema. score, permitindo uma comparação - Três algoritmos serão testados: através da acurácia dos modelos. 1. Regressão Linear. - O score calculado é o coeficiente R^2 2. Árvore de Decisão. da predição. Random Forest. - Na Regressão Linear serão criados diversos modelos de acordo com critérios de correlação. - Para o algoritmo de Random Forest serão aplicados ajustes nos hiperparâmetros.

Data Preparation
 What do you need to do to your data in order to run your model and achieve your outcomes?

 A verificação e tratamento de campos nulos e vazios é necessária para que não hajam inconsistências.
 O tratamento dos outliers pode ser necessário para garantir a qualidade do modelo.