

Modulübersicht SPO103 Mechatronik / Systems Engineering

MRM Pflichtmodul

Modul-Nr.	LV-Nr	Modul , Veranstaltung	Semester	Prüfungsart	-dauer	ECTS- Punkte	SWS	Modulverantwortliche(r)
20016		Mechatronisches Projekt mit Kolloquium	1/2	PLP		10	10	Studiendekan MRM
	20109	Mechatronisches Projekt Teil 1	1			5	5	Studiendekan MRM
	20208	Mechatronisches Projekt Teil 2	2			5	5	Studiendekan MRM
9999		Masterthesis mit Kolloquium	3	PLM; PLS		29		Studiendekan MRM
	9999	Masterthesis mit Kolloquium	3					Studiendekan MRM
20999		Softskills, Studium Generale	3			1		Studiendekan MRM
	20999	Softskills, Studium Generale	3					Studiendekan MRM
20001		Modellbasierte Funktionsentwicklung	SoSe	PLK	90	5	4	Baur
	20101	Modellbasierte Systemsimulation und Softwareentwicklung	SoSe					Baur
20002		Mechatronische Systeme	SoSe	PLM		5	5	Kazi
	20102	Mechatronische Systeme inkl. Übungen	SoSe					Kazi
20003		Mechatronischer Entwicklungsprozess	SoSe	PLS		5	5	Glaser
	20103	Mechatronischer Entwicklungsprozess inkl. Übungen	SoSe			5	5	Glaser
20004		Netzwerktechnik und Bussysteme	SoSe	PLK	90	5	5	Müller
	20104	Netzwerktechnik und Bussysteme inkl. Übungen	SoSe					Müller
20009		Numerische Mathematik	WiSe	PLK	90	5	5	Hornberg
	20201	Numerische Mathematik inkl. Übungen	WiSe					Hornberg
20010		Modellbildung	WiSe	PLK	90	5	5	Wittler
	20202	Modellbildung und Identifikation inkl. Labor	WiSe					Wittler
20011		Regelungstechnik	WiSe	PLK	90	5	4	Rothfuß
	20203	Regelungstechnik inkl. Labor	WiSe					Rothfuß
22012		Zuverlässigkeit und Softwarequalität	WiSe	PLK	90	5	4	Zeiler
	20204	Softwarequalität	WiSe					Zeiler
	20205	Zuverlässigkeit mechatronischer Systeme	WiSe					N.N.
							Wa	ahlpflichtmodul
Modul-Nr.	LV-Nr	Modul , Veranstaltung	Semester	Prüfungsart	-dauer	ECTS- Punkte	SWS	Modulverantwortliche(r)
20006		Digitale Produktentwicklung	SoSe	PLE		5	4	Schmitt
	20105	Digitale Produktentwicklung mit Labor	SoSe			2	2	Glück
	20106	Simulation mechanischer Systeme mit Labor	SoSe			3	2	Schmitt
20007		Mobile Robotersysteme	SoSe	PLM; PLP	15	5	5	Hörmann
	20107	Mobile Robotersysteme inkl. Labor	SoSe					Hörmann
20008		Modul aus Hochschulangebot (Modul aus anderem Masterstudiengang der Hochschule Aalen nach Genehmigung)	SoSe			5	4	Studiendekan MRM
	20108	Modul aus Hochschulangebot	SoSe					N.N.
20017		Machine Learning	SoSe	PLM	45	5	4	Schmidt
	20110	Machine Learning inkl. Übungen	SoSe					Schmidt
20008		IT-Integration mechatronischer Systeme	WiSe			5	5	Denecke
	20111	Integration mechatronischer Systeme – Labor	WiSe					Denecke; Frank
	20111	Integration mechatronischer Systeme - Vorlesung mit Übungen	WiSe					Denecke
20014		Industrielle Bildverarbeitung	WiSe	PLK	90	5	5	Hornberg
	20206	Industrielle Bildverarbeitung inkl. Labor	WiSe					Hornberg
20015		CAE-basierter Entwurf nichtlinearer Regelungssysteme	WiSe	PLP		5	5	Rothfuß
	20207	CAE-basierter Entwurf nichtlinearer Regelungssysteme inkl.	WiSe			5	5	Rothfuß
		Labor						

20016 Mechatronisches Projekt mit Kolloquium

Modul-Deckblatt

Studiengang M. Eng. Mechatronik / Systems Engineering, SPO103

Modulverantwortliche(r) Studiendekan MRM

Semester 1/2 Pflichtmodul

Zuordnung zum Curriculum

20016 Mechatronik / Systems Engineering (MRM), M. Eng., SPO103 20016 Mechatronik / Systems Engineering Teilzeit (MTM), M. Eng., SPO103

	LV-Nummer	Lehrveranstaltung (LV)	SWS	ECTS
	20109	Mechatronisches Projekt Teil 1	5	5
	20208	Mechatronisches Projekt Teil 2	5	5
_			10	10

Modulziele / Allgemeines

Das Modul kann in der Regel dem mechatronischen Systemlevel zugeordnet werden.

Die Studierenden sind nach dem Besuch des Moduls in der Lage, ein mechatronisches Projekt ingenieurmäßig und teamorientiert zu bearbeiten und für die gestellte Aufgabe eine passende Lösung zu entwickeln und über diese zu diskutieren.

Fachliche Kompetenzen

Die Studierenden können relevante Fachliteratur recherchieren und auswählen. Sie sind in der Lage, anspruchsvolle mechatronische Problemstellungen zu erfassen, Lösungen zu finden und diese umzusetzen und zu realisieren.

Besondere Methodenkompetenzen

Die Studierenden sind in der Lage, die einzelnen Projektphasen selbständig zu planen und methodisch vorzugehen. Dies beinhaltet unter anderem das Anwenden systematischer Arbeitsprinzipien zur Lösungsfindung der Problemstellung.

Überfachliche Kompetenzen

Des Weiteren sind die Studierenden in der Lage, bei Gruppenarbeiten die Arbeit selbstständig zu organisieren und einzuteilen und teamorientiert zu arbeiten. Im Kolloquium sind die Studierenden in der Lage, ihr Projekt zu präsentieren und ihre Ergebnisse zu argumentativ zu verteidigen.

Prüfung					
Art / Dauer	PLP				
Zulassungsvoraussetzungen					
zugelassene Hilfsmittel	alle				
Zusammensetzung der Endnote					
letzte Änderung		13.01.2017			

Lehrveranstaltung		20109 Mechatronisches Projekt Teil 1	Sommersemester
aus Modul		20016 Mechatronisches Projekt mit Kolloquium	
Kreditpunk	te	5 CP	
Semesterwochenstunden		5 SWS in Semester 1	
Dozent		Studiendekan MRM	
Sprache		Deutsch	
Lehrform		Projekt	
Medieneinsatz		Präsentationsfolien	
Voraussetz	rungen		
Inhalt		Beispiele: Rechnergestützter Entwurf und Entwicklung eines Entwicklung und Aufbau eines Hardware-in-the-Lo Anwendungen Rechnergestützter Entwurf und Entwickung eines	pop Prüfstandes für Automotive
Literatur			
Workload	Kontaktstunden	5 SWS = 75 Stunden	
	Selbststudium	75 Stunden	
	Summe	150 Stunden	
letzte Ände	rung	15.09.2016	

Lehrveranstaltung		20208 Mechatronisches Projekt Teil 2	Wintersemester
aus Modul		20016 Mechatronisches Projekt mit Kolloquium	
Kreditpunkt	te	5 CP	
Semesterwochenstunden		5 SWS in Semester 2	
Dozent		Studiendekan MRM	
Sprache		Deutsch	
Lehrform		Projekt	
Medieneinsatz		Präsentationsfolien	
Voraussetz	rungen		
Inhalt		Beispiele: Rechnergestützter Entwurf und Entwicklung eines Entwicklung und Aufbau eines Hardware-in-the-Lo Anwendungen Rechnergestützter Entwurf und Entwickung eines	oop Prüfstandes für Automotive
Literatur			
Workload	Kontaktstunden	5 SWS = 75 Stunden	
	Selbststudium	75 Stunden	
	Summe	150 Stunden	
letzte Ände	rung	15.09.2016	

9999 Masterthesis mit Kolloquium

Modul-Deckblatt

Studiengang M. Eng. Mechatronik / Systems Engineering, SPO103

Modulverantwortliche(r) Studiendekan MRM

Semester 3 Pflichtmodul

Zuordnung zum Curriculum

9999 Mechatronik / Systems Engineering (MRM), M. Eng., SPO103 9999 Mechatronik / Systems Engineering Teilzeit (MTM), M. Eng., SPO103

LV-Nummer Lehrveranstaltung (LV) SWS ECTS

9999 Masterthesis mit Kolloquium

29

Modulziele / Allgemeines

Das Modul kann in der Regel dem mechatronischen Systemlevel zugeordnet werden.

Die Studierenden sind in der Lage, eine technische Aufgabenstellung oder ein abgegrenztes Thema, selbständig, unter Berücksichtigung ingenieurwissenschaftlicher Methoden zu lösen, analysieren, synthetisieren und zu beurteilen.

Die Studierenden sind in der Lage ihre Arbeit methodisch und fachwissenschaftlich korrekt zu erstellen, sowie die Ergebnisse zu präsentieren und diese zu erläutern.

Fachliche Kompetenzen

Die Studierenden können relevante Fachliteratur recherchieren und auswählen. Sie sind somit in der Lage, bezogen auf die Thematik der Abschlussarbeit, bedeutende Standpunkte darzustellen und in die Abschlussarbeit zu integrieren und weiterführende Gedanken hervorzubringen.

Sie sind in der Lage das bisher erlernte Fachwissen anzuwenden und eigene Bewertungen unter Bezugnahme auf wissenschaftliche und anwendungsorientierte Aspekte vorzunehmen.

Besondere Methodenkompetenzen

Die Studierenden sind in der Lage, systematisch bei der Erarbeitung einer Lösung vorzugehen und den zeitlichen Ablauf der Arbeit zu planen. Des Weiteren sind sie in der Lage, die maßgeblichen Konzepte und Techniken, bezogen auf die jeweilige Forschungsmethodik, anzuwenden.

Überfachliche Kompetenzen

Die Studierenden können ihre Ergebnisse vor einem Publikum präsentieren und verteidigen.

Prüfung

Art / Dauer PLM: PLS

Zulassungsvoraussetzungen

zugelassene Hilfsmittel

Zusammensetzung der Endnote PLS 80%; PLM 20%

letzte Änderung 22.01.2022

Lehrveranstaltung		9999 Masterthesis mit Kolloquium	Sommersemester
aus Modul		9999 Masterthesis mit Kolloquium	
Semesterw	ochenstunden	SWS in Semester 3	
Dozent		Studiendekan MRM	
Sprache		Deutsch	
Lehrform		Projekt	
Medieneins	satz	Präsentationsfolien	
Voraussetz	zungen		
Inhalt			
Literatur			
Workload	Kontaktstunden	SWS = Stunden	
	Selbststudium	870 Stunden	
	Summe	Stunden	
letzte Ände	rung	22.01.2022	

20999 Softskills, Studium Generale

Modul-Deckblatt

Studiengang M. Eng. Mechatronik / Systems Engineering, SPO103

Modulverantwortliche(r) Studiendekan MRM

Semester 3 Pflichtmodul

Zuordnung zum Curriculum

20999 Mechatronik / Systems Engineering (MRM), M. Eng., SPO103 20999 Mechatronik / Systems Engineering Teilzeit (MTM), M. Eng., SPO103

LV-Nummer Lehrveranstaltung (LV) SWS ECTS

20999 Softskills, Studium Generale

1

Modulziele / Allgemeines

Durch das Studium Generale wird die ganzheitliche Bildung der Studierenden erweitert, sowie ein stabiles theoretisches Fundament für eine erfolgreiche Berufslaufbahn geschaffen. Die Persönlichkeitsentwicklung wird gestärkt und gefördert.

Fachliche Kompetenzen

Besondere Methodenkompetenzen

Schwerpunkt "Wissenschaftliche Grundlagen":

Die Studierenden können Methoden und Modelle zur Problembewältigung anwenden und umsetzen, Statistiken richtig interpretieren und können eine wissenschaftliche Arbeit mit korrektem Aufbau sowie die dazugehörigen Methoden der Arbeitsplanung und des Schreibprozessen umsetzen.

Überfachliche Kompetenzen

Schwerpunkt "Philosophie, Ethik und Nachhaltigkeit:

Die Studierenden sind in der Lage die Möglichkeiten und Grenzen unternehmerischer ökosozialer Verantwortung zu erkennen. Ebenso werden die allgemeinen philosophischen Wissensgrundlagen und Erkenntnisse gefördert und vertieft.

Schwerpunkt "Kommunikation und Prozesse", "Soziale Kompetenz" und "Unternehmensführung": Die Studierenden können den Übergang von Studium in den Berufsalltag leichter bewältigen, bzw. besonders bei späteren Beschäftigungen im Ausland diesen Schritt einfacher umsetzen. Die Studierenden sind in der Kommunikation gefestigt und ihre Potenzialentfaltung ist durch die vermittelte Souveränität und Effektivität bei Individual- und Gruppenarbeit verstärkt. Die Möglichkeit der Erschließung neuer Potentiale wird eröffnet und das Selbstbewußsein der eigenen Persönlichkeit wird verstärkt.

Lehrveran	staltung	20999 Softskills, Studium Generale	Sommersemester
aus Modul		20999 Softskills, Studium Generale	
Semesterwochenstunden		SWS in Semester 3	
Dozent		Studiendekan MRM	
Sprache		Deutsch	
Lehrform			
Medieneins	satz		
Voraussetzungen		Bei einer Veranstaltung im Rahmen von Studium Genetheoretisches Fundament für eine erfolgreiche Berufslawird bei einer Veranstaltung im Rahmen von Studium Getudierenden gestärkt und gefördert.	aufbahn geschaffen. Zudem
Inhalt		Veranstaltungen zum Studium Generale haben die Schund Nachhaltigkeit", Kommunikation und Prozesse", "Soziale Kompetenz", '"Wissenschaftliche Grundlagen", "öffentliche Antrittsvorlesungen" sowie verschiedene Veranstaltungen aus den unterschiedlichen Studiengär jeweiligen Lehrinhalte sind flexibel und somit jedes Ser jeweils erstellten Programm des Studium Generale zu	'Unternehmensführung", ngen. Die nester dem
Literatur			
Workload	Kontaktstunden	SWS = Stunden	
	Selbststudium	15 Stunden	
	Summe	Stunden	
letzte Ände	erung	15.09.2016	

20001 Modellbasierte Funktionsentwicklung

Modul-Deckblatt

Studiengang M. Eng. Mechatronik / Systems Engineering, SPO103

Modulverantwortliche(r) Prof. Dr. Jürgen Baur

Semester SoSe Pflichtmodul

Zuordnung zum Curriculum

20001 Mechatronik / Systems Engineering (MRM), M. Eng., SPO103 20001 Mechatronik / Systems Engineering Teilzeit (MTM), M. Eng., SPO103

LV-Nummer	Lehrveranstaltung (LV)	SWS	ECTS
20101	Modellbasierte Systemsimulation und Softwareentwicklung	4	
		1	5

Modulziele / Allgemeines

Aufbauend auf Grundkenntnisse in Matlab-Simulink, sowie Aufbau und Verhalten mechatronischer Komponenten, wie auch in der Programmiersprache C/C++ sind die Studierenden in der Lage mechatronische Systeme zu modellieren.

Fachliche Kompetenzen

Die Studierenden sind nach Besuch der Lehrveranstaltung in der Lage, dynamische mechatronische (Teil-)Systeme zu modellieren und mittels Simulation modellbasiert gesteuerte und geregelte Systemfunktionen zu realisieren und zu optimieren. Zudem können die Studierenden den Prozess der Autocodegenerierung für das Steuer/Regelgerät unter Einsatz eines C-Compilers anwenden. Die Studierenden sind in der Lage, mithilfe von modellbasierten Ansätzen Software zu entwickeln und dies anhand ausgewählter Anwendungsbeispiele von der Funktionsspezifikation über die modellbasierte Softwareentwicklung bis zu den Modul- und Systemtests umzusetzen.

Besondere Methodenkompetenzen

Die Studierende sind in der Lage, methodische und systemtheoretische Grundlagen zum Entwurf mechatronischer Systeme anzuwenden.

Überfachliche Kompetenzen

Durch Projekt und Gruppenarbeiten sind die Studierenden in der Lage als Team zusammenzuarbeiten und sich in ein Entwicklungsteam zu integrieren.

Prutung			
Art / Dauer	PLK	90	
Zulassungsvoraussetzungen	keine		
zugelassene Hilfsmittel	Manuskripte u	nd persönliche Aufschriebe	
Zusammensetzung der Endnote			

letzte Änderung 06.08.2018

Lehrverans	taltung	20101 Modellbasierte Systemsimulation und Sommersemester Softwareentwicklung
aus Modul		20001 Modellbasierte Funktionsentwicklung
Semesterwochenstunden		4 SWS in Semester SoSe
Dozent		Prof. Dr. Jürgen Baur
Sprache		Deutsch
Lehrform		Labor; Vorlesung
Medieneinsa	atz	Beamer, Tafel, SW-Tools, Manuskript
Voraussetzu	ungen	Vertiefte Kenntnisse in Mathematik, Fouriertransformation, Differentialgleichungen komplexe Zahlen und Funktionen, Laplace-Transformation und Z-Transformation Gute Kenntnisse in Analog- und Digitalelektronik, sowie C-Programmierung, solide Grundkenntnisse in technischer Mechanik und technischer Informatik, sowie der Regelungstechnik. Grundkenntnisse Matlab und C-Programmierung.
Inhalt		 Modellbasierte Systementwicklung mechatronischer Systeme Entwurf und Simulation zeitdiskreter Steuer- und Regelalgorithmen mit MatlabSimulink Entwicklungsprozess von Requirementspezifikation über Systementwurf und Implementierung bis zum Systemtest & Verifizierung Festkomma-Arithmetik und Signalkonditionierung Anwendungsbeispiele aus dem Automotive- und Industriebereich u.a. Linearservoachse, Föderbandsteuerung, KGT-Hubelement Codegenerierung mit Embedded Coder Verifizierung am 8-bit Steuergerät mit CAN-Bus elektromechanischer Antriebsstrang Labor Scheibenwischmodulsteuerung mit Regensensor Lehrveranstaltung findet im PC-Pool statt, Simulationstool ist Matlab-Simulink-Stateflow sowie Matlab Embedded Coder.
Literatur		1. J. Baur, F. Tränkle "Modellbasierte Entwicklung und Simulation mechatronischer Systeme") ab 2019 verfügbar 2. J. Lunze, Oldenbourg-Verlag "Ereignisdiskrete Systeme" 3. O. Zirn, S. Weikert, Springer-Verlag "Modellbildung und Simulation hochdynamischer Fertigungssysteme" 4. R. Nollau, Springer-Verlag "Modellierung und Simulation technischer Systeme"
Workload	Kontaktstunden	4 SWS = 60 Stunden
	Selbststudium	90 Stunden
	Summe	150 Stunden

20002 Mechatronische Systeme

Modul-Deckblatt

Studiengang M. Eng. Mechatronik / Systems Engineering, SPO103

Modulverantwortliche(r) Prof. Dr. Arif Kazi

Semester SoSe Pflichtmodul

Zuordnung zum Curriculum

20002 Mechatronik / Systems Engineering (MRM), M. Eng., SPO103 20002 Mechatronik / Systems Engineering Teilzeit (MTM), M. Eng., SPO103

LV-Nummer	Lehrveranstaltung (LV)	SWS	ECTS
20102	Mechatronische Systeme inkl. Übungen	5	
			5

Modulziele / Allgemeines

Das Modul kann dem mechatronischen Systemlevel zugeordnet werden.

Die Studierenden sind in der Lage, das Zusammenspiel und Wechselwirkung der relevanten Teilsysteme (Mechanik, Aktorik, Sensorik, Ansteuerung) in einem mechatronischen Gesamtsystem zu analysieren und zu bewerten.

Fachliche Kompetenzen

Nach dem Besuch des Moduls sind die Studierenden in der Lage, das dynamische Verhalten mechatronischer Regelstrecken mit und ohne rechnergestütztes Simulationstool im Frequenzbereich zu analysieren und die Analyseergebnisse auf den Zeitbereich zu übertragen.

Die Studierenden kennen und verstehen die Wirkungsweise klassischer (P-, PD-, PI-, PID-) Regler und können deren Verhalten bewerten. Sie können für eine gegebene mechatronische Regelstrecke eine geeignete Reglerstruktur auswählen und diese parametrieren.

Die Studierenden sind in der Lage, ausgehend von der Analyse die Performance des Regelkreises zu optimieren, indem sie die Regelstrecke zielgerichtet modifizieren und/oder Filtermaßnahmen im Regler umsetzen.

Besondere Methodenkompetenzen

Die Studierenden können struktiert und methodisch bei der Entwicklung von mechatronischen Teil- und Gesamtsystemen vorgehen.

Überfachliche Kompetenzen

Durch die Simulationsübungen und Laborversuche sind die Studierenden in der Lage, in Kleingruppen Aufgaben zu lösen und über diese zu diskutieren.

Prüfung					
Art / Dauer	PLM				
Zulassungsvoraussetzungen					
zugelassene Hilfsmittel	keine				
Zusammensetzung der Endnote					
letzte Änderung	09.03.2020				

Lehrverans	staltung	20102 Mechatronische Systeme inkl. Übungen	Sommersemester
aus Modul		20002 Mechatronische Systeme	
Semesterw	ochenstunden	5 SWS in Semester SoSe	
Dozent		Prof. Dr. Arif Kazi	
Sprache		Deutsch	
Lehrform		Übung; Vorlesung	
Medieneins	atz	Skript, Tafel, Präsentationsfolien	
Voraussetz	ungen	Grundlagen der Regelungstechnik, Analog- und Digitalel technischen Mechanik, vertiefte Kenntnisse der Mathem	
		Grundkenntnisse in Matlab-Simulink	
Inhalt		Eine der zentralen Aufgaben eines Systemingenieurs Meder Anforderungen zwischen den Teilsystemen bzw. den Als Grundlage hierfür benötigt er ein gutes Verständnis, Teilsysteme auf das Leistungsvermögen des Gesamtsys Dynamik mechatronischer Systeme • Mechatronischer Regelkreis • Analyse mechatronischer Regelkreise im Frequenzberg • Wirkungsweise und Entwurf von PID-Reglern • Nachgiebigkeiten im Antriebsstrang • Regelung bei Nachgiebigkeiten im Antriebsstrang • Einfluss von Aktorik, Sensorik und Ansteuerung • Optional: Nichtlineare mechanische Effekte (Reibung, Simulationsübungen und freiwillige Laborversuche, die die Vorlesung behandelten Einflussgrößen und Lösungsanst Experimentalaufbau ("Zweimassen-System" mit Regelung	n beteiligten Fachdisziplinen. wie sich die Eigenschaften de stems auswirken. eich Spiel) ie Auswirkung der in der ätze an einem praktischen
Literatur		Kazi, Skript Janschek, Klaus; Systementwurf mechatronischer Syste	me, Springer Verlag
		Schmidt, R.M.; Schitter, G.; van Eijk, J.: The Design of H Mechatronics: High-Tech Functionality by Multidisciplinal Press (2011).	
Workload	Kontaktstunden	5 SWS = 75 Stunden	
	Selbststudium	75 Stunden	
	Summe	150 Stunden	
letzte Ände	rung	22.01.2022	

20003 Mechatronischer Entwicklungsprozess

Modul-Deckblatt

Studiengang M. Eng. Mechatronik / Systems Engineering, SPO103

Modulverantwortliche(r) Prof. Dr. Markus Glaser

Semester SoSe Pflichtmodul

Zuordnung zum Curriculum

20003 Mechatronik / Systems Engineering (MRM), M. Eng., SPO103 20003 Mechatronik / Systems Engineering Teilzeit (MTM), M. Eng., SPO103

LV-Nu	mmer Lehrveranstaltung (LV)	SWS	ECTS
20103	Mechatronischer Entwicklungsprozess inkl. Übungen	5	5
		5	5

Modulziele / Allgemeines

Die Studierenden sind nach dem Besuch des Moduls in der Lage, einen geeigneten Entwicklungsprozess für komplexe mechatronische Systeme zu definieren und anzuwenden.

Zusätzlich sind die Studierenden in der Lage, die unterschiedlichen Normen und Regularien auf das vorliegende Entwicklungsvorhaben zu beziehen und deren Auswirkungen zu beurteilen.

Zusätzlich können die Studierenden die Methoden des Systems Engineerings im Rahmen des Entwicklungsprozesses anwenden und diskutieren.

Fachliche Kompetenzen

Sie verstehen den gesetzlichen/normativen Zusammenhang für den Entwicklungslebenzyklus und können den Entwicklungsprozess mit den wesentlichen Elementen für komplexe mechatronische Systeme definieren und anwenden.

Die Studierenden können Prozesse richtig modellieren und beschreiben.

Die Studierenden können die Aktivitäten des Systems Engineering geeignet auswählen, im Entwicklungsprozess beschreiben sowie anwenden.

Sie können die unterschiedlichen Eigenschaften der folgenden Entwicklungsmodelle gegeneinander abwägen:

- Wasserfallmodell (Sequential)
- Inkrementelles Vorgehen (Incremental life cycle)
- Entwicklung nach Risiko (Evolution by risk)
- Agile Entwicklung (Rapid application development)
- Prototypen Wettbewerb (Competitive piloting)
- Programmentwicklung (Framework architecture)
- Re-engineering von vorhandenen Systemen (existing systems)

Besondere Methodenkompetenzen

Sie kennen folgende Methoden zur Entwicklung von komplexen mechatronischen Systemen und können diese umsetzen:

- · Anforderungsmanagement
- Verifizierung
- Validierung
- Änderungsmanagement
- Konfigurationsmanagement
- Review / Release

Überfachliche Kompetenzen

Die Studierenden sind in der Lage, ihre Fähigkeiten sowohl selbständig als auch im Team auf konkrete Aufgabenstellungen anzuwenden.

Prüfung

Art / Dauer PLS

Zulassungsvoraussetzungen

zugelassene Hilfsmittel Skript des Dozenten, Taschenrechner, eigene handschriftliche Unterlagen

Zusammensetzung der Endnote

letzte Änderung 23.01.2017

Fakultät

Hocnschule A	Optik und Mechatronik	University of Applied Scienc
Lehrveranstaltung	20103 Mechatronischer Entwicklungsprozess inkl. Übungen	Sommersemester
aus Modul	20003 Mechatronischer Entwicklungsprozess	
Kreditpunkte	5 CP	
Semesterwochenstunden	5 SWS in Semester SoSe	
Dozent	Prof. Dr. Markus Glaser	
Sprache	Englisch	
Lehrform	Übung; Vorlesung	
Medieneinsatz	Skript	
Voraussetzungen	-	
Inhalt	Teil 1: Marktregulierung 1) Einleitung - Europäische Richtlinien - Nationale Gesetze - Normen 2) Normative Vorgaben (Auszug) - ISO 9001 - IEC 61508 - ISO 13485 Teil 2: Systems Engineering Processes 1) Einleitung 2) User Requirements 3) System Requirements 4) Architectural Design	
	5) Integration to Operations	
	6) Project Management and Systems Engineering	

- 14) Improving the systems engineering processes

7) Tailoring of simple life cycle

8) More realistic life cycles

10) Software and Systems

12) Information Modeling

13) Projects and the enterprise

9) Multi Level Projects

15) Summary

11) Prototyping

Übung: Durchführung eines Beispielprojekts bei dem die Methoden und Kompetenzen

Produktionsstand: Mittwoch, 15. März 2023

der Vorlesung angewendet werden.

Literatur Richard Stevens: Systems engineering, coping with complexity

ISO 9001 IEC 61508 ISO 13485

Workload Kontaktstunden 5 SWS = 75 Stunden

Selbststudium 75 Stunden

Summe 150 Stunden

letzte Änderung 19.08.2019

20004 Netzwerktechnik und Bussysteme

Modul-Deckblatt

Studiengang M. Eng. Mechatronik / Systems Engineering, SPO103

Modulverantwortliche(r) Prof. Dr. Günter Müller

Semester SoSe Pflichtmodul

Zuordnung zum Curriculum

20004 Mechatronik / Systems Engineering (MRM), M. Eng., SPO103 20004 Mechatronik / Systems Engineering Teilzeit (MTM), M. Eng., SPO103

_	LV-Nummer	Lehrveranstaltung (LV)	SWS	ECTS
	20104	Netzwerktechnik und Bussysteme inkl. Übungen	5	
-			5	5

Modulziele / Allgemeines

Das Modul kann dem mechatronischen Komponentenlevel zugeordnet werden.

Die Studierenden werden befähigt, Netze und Bussysteme zu konzipieren, konfigurieren und zu beurteilen.

Fachliche Kompetenzen

Die Studierenden sind in der Lage, die grundlegenden Inhalte über Technologien von Netzwerken und Bussystemen wiederzugeben. Die Studierenden sind zudem in der Lage, Netze und Bussysteme zu konzipieren, zu konfigurieren und zu beurteilen. Die Studierenden können die für die technische Realisierung wichtigsten technologischen Konzepte (Netzstrukturen, Komponenten, physikalische und logische Netztopologien) beschreiben. Die Studierenden sind in der Lage, die für die technische Realisierung wichtigsten technologischen Konzepte (Netzstrukturen, Komponenten) zu erklären. Zudem sind die Studierenden in der Lage, Protokolle und Verfahren zur sicheren Datenübertragung von Bussystemen anzuwenden.

Besondere Methodenkompetenzen

Die Studierenden sind in der Lage, beim Entwerfen der Netz- und Bussysteme methodisch und strukturiert vorzugehen und ihr Handeln zu planen.

Überfachliche Kompetenzen

Durch Übungen sind die Studierenden in der Lage, in Gruppen zusammenzuarbeiten und gemeinsam Lösungen zu finden. Sie sind in der Lage, als Team zu agieren.

Prüfung		
Art / Dauer	PLK	90
Zulassungsvoraussetzungen		
zugelassene Hilfsmittel	max. 6 Seiten handgeschriebene Zusammenfassungen des Vorlesungsskrip (Originale im DINA4 Format); Taschenrechner ohne Kommunikationsinterfac	
Zusammensetzung der Endnote		
letzte Änderung	13.01	.2017

Lehrveranstaltung	20104 Netzwerktechnik und Bussysteme inkl. Sommersemester Übungen
aus Modul	20004 Netzwerktechnik und Bussysteme
Semesterwochenstunden	5 SWS in Semester SoSe
Dozent	Prof. Dr. Günter Müller
Sprache	Deutsch
Lehrform	Übung; Vorlesung
Medieneinsatz	Skript, Tafel, Präsentationsfolien
Voraussetzungen	Elektrotechnik Grundlagen und Informatik Grundlagen
Inhalt	 ISO/OSI Referenzmodell Grundlagen der physikalischen Datenübertragung Übertragungsmedien Übertragungsverfahren Sichere Datenübertragung Einführung/Klassifikation von Rechnernetzen Aufbau und Funktionsweise LANs (physikalische und logische Netztopologien) Ethernet LAN-Technologien (inkl. Industrial Ethernet) Feldbus-Systeme (CAN-Bus, Profibus) TCP/IP-Protokollstack Netzsicherheit (VPN, Firewalls) Übungen zur Vorlesung Netzwerktechnik und Bussysteme. Konzeption und Konfiguration von Netzwerken. Protokolle und Verfahren zur sicheren Datenübertragung von Bussystemen anwende
Literatur	Tanenbaum/Wetherall (2012): Computernetzwerke. Pearson Studium Schnell/Wiedemann (2012): Bussysteme in der Automatisierungs- und Prozesstechnik. Springer-Vieweg
Workload Kontaktstunden	5 SWS = 75 Stunden
Selbststudium	75 Stunden
Summe	150 Stunden
letzte Änderung	16.01.2017

20006 Digitale Produktentwicklung

Modul-Deckblatt

Studiengang M. Eng. Mechatronik / Systems Engineering, SPO103

Modulverantwortliche(r) Prof. Dr. Ulrich Schmitt

Semester SoSe Wahlpflichtmodul

Zuordnung zum Curriculum

20006 Mechatronik / Systems Engineering (MRM), M. Eng., SPO103 20006 Mechatronik / Systems Engineering Teilzeit (MTM), M. Eng., SPO103

LV-Nummer	Lehrveranstaltung (LV)	SWS	ECTS
20105	Digitale Produktentwicklung mit Labor	2	2
20106	Simulation mechanischer Systeme mit Labor	2	3
		4	5

Modulziele / Allgemeines

Das Modul kann dem mechatronischen Komponentenlevel zugeordnet werden.

Die Studierenden sind in der Lage, webbasierte Projektarbeit und Rapid- Manufacturing-Verfahren anzuwenden. Zudem sind die Studierenden in der Lage, den Berechnungsprozess in der Finite-Elemente-Analyse mit dem Ziel der Optimierung nach verschiedenen Kriterien durchzuführen.

Fachliche Kompetenzen

Die Studierenden können, ausgehend von der 3D-Digitalisierung, CAD-Konstruktion und FEM-Simulation komplexe Teile im Rapid-Manufacturing-Verfahren entwickeln. Zudem sind die Studierenden in der Lage, in Projektarbeit im Rapid-Product-Development-Verfahren Bausteine und Baugruppen der Automatisierungstechnik, wie z.B. Aktoren, Sensoren und Getriebe zu entwickeln, herzustellen, zu optimieren sowie im Versuch zu testen.

Die Studierenden können zudem iterative sowie vorwiegend lineare numerische Berechnungen mit der Finite-Elemente-Analyse an konkreten Bauteilen durchführen. In der Finite Elemente Analyse können die Studierenden nichtlineare Berechnungen durchführen und interpretieren. Zudem sind die Studierenden in der Lage, ausgehend von der CAD-Konstruktion die Datenfiles in gängige kommerzielle FE-Programme einzulesen und zu verarbeiten.

Besondere Methodenkompetenzen

Des Weiteren sind die Studierenden in der Lage, Groupware für die Kommunikation und die Produktdatenarchivierung in webbasierter Projektarbeit einzusetzen sowie Entwicklungs- und Fertigungsprozess zur Herstellung von Werkstücken der Mechatronik zu optimieren. Zudem sind die Studierenden in der Lage, kommerzielle FE-Programme mit einer CAD-Schnittstelle für die Optimierung der Bauteile einzusetzen.

Überfachliche Kompetenzen

Die Studierenden sind in der Lage, bei der Projektarbeit die Aufgaben selbstständig zu organisieren und einzuteilen. Im Kolloquium können die Studierenden ihr Projekt präsentieren und ihre Ergebnisse argumentativ verteidigen.

Prüfung

Art / Dauer PLE

Zulassungsvoraussetzungen

zugelassene Hilfsmittel alle

Zusammensetzung der Endnote

letzte Änderung 19.09.2016

Lehrveran	staltung	20105 Digitale Produktentwicklung mit Labor	Sommersemester
aus Modul		20006 Digitale Produktentwicklung	
Kreditpunkt	te	2 CP	
Semesterw	ochenstunden	2 SWS in Semester SoSe	
Dozent		Prof. DrIng. Markus Glück	
Sprache		Deutsch	
Lehrform		Labor; Vorlesung	
Medieneins	satz	Skript, Tafel, Präsentationsfolien	
Voraussetzungen		Grundlagen der Informatik und Fertigungstechnik Erfahrung mit 3D-CAD-Konstruieren, NC-Programmie	erung nach DIN 66025
Inhalt		Allgemeines: Durchführung von EDV-Integrationen in Produktionstechnik zur schnellen Produktentwicklung Die Studierenden nutzen webbasierte Projektarbeit un Verfahren an.	(Rapid-Product-Development).
Literatur		Alfred Herbert Fritz (Hrsg.), Fertigungstechnik, Springe 2018 Petra Fastermann, 3D Drucken – Wie die generative F Springer Verlag, 1. Auflage, 2016 Hans-Joachim Adam, Mathias Adam, SPS-Programm IEC 61131-3: Eine systematische und handlungsorien strukturierte Programmierung, Springer-Vieweg Verlag	Fertigungstechnik funktioniert, nierung in Anweisungsliste nach tierte Einführung in die
Workload	Kontaktstunden	2 SWS = 30 Stunden	
	Selbststudium	30 Stunden	
	Summe	60 Stunden	
letzte Ände	rung	14.03.2021	

Lehrveran	staltung	20106 Simulation mechanischer Systeme mit Labor Sommersemester
aus Modul		20006 Digitale Produktentwicklung
Kreditpunkt	te	3 CP
Semesterw	rochenstunden	2 SWS in Semester SoSe
Dozent		Prof. Dr. Ulrich Schmitt
Sprache		Deutsch
Lehrform		Labor; Vorlesung
Medieneins	satz	Skript, Tafel, Präsentationsfolien
Voraussetz	rungen	Vorlesungen Technische Mechanik
Inhalt		CAD-FEM-Anwendungen zur Bauteiloptimierung Durchführung von iterativen, vorwiegend linearen numerischen Berechnungen mit der Finite Elemente Analyse an konkreten Bauteilen. Laborarbeit zur Durchführung von Finite-Elemente-Analysen. Unter verschiedenen Aspekten wie Bauteilfestigkeit oder Gewichtseinsparung werder iterativ verschiedene Optimierungsstufen durchlaufen. Berechnungsprozess in der Finite-Elemente-Analyse mit dem Ziel der Optimierung nach verschiedenen Kriterien.
Literatur		Klein: FEM 8. Aufl. Vieweg+Teubner, Wiesbaden, 2010 Rieg, Hackenschmidt, Alber-Laukant: Finite Elemente Analyse für Ingenieure: Grundlagen und praktische Anwendungen mit Z88Aurora, 2014, 5. Auflage, Hanser Verlag, München
Workload	Kontaktstunden	2 SWS = 30 Stunden
	Selbststudium	60 Stunden
	Summe	90 Stunden
letzte Ände	rung	17.01.2020

20007 Mobile Robotersysteme

Modul-Deckblatt

Studiengang M. Eng. Mechatronik / Systems Engineering, SPO103

Modulverantwortliche(r) Prof. Dr. Stefan Hörmann

Semester SoSe Wahlpflichtmodul

Zuordnung zum Curriculum

20007 Mechatronik / Systems Engineering (MRM), M. Eng., SPO103 20007 Mechatronik / Systems Engineering Teilzeit (MTM), M. Eng., SPO103

_	LV-Nummer	Lehrveranstaltung (LV)	SWS	ECTS
	20107	Mobile Robotersysteme inkl. Labor	5	
_			- 5	5

Modulziele / Allgemeines

Das Modul kann dem mechatronischen Systemlevel zugeordnet werden.

Die Studierenden können nach dem Besuch des Moduls sowohl den Aufbau als auch die Funktion wichtiger Systemkomponenten mobiler Robotersysteme benennen und anwenden. Sie sind in der Lage, diese Komponenten für neue Aufgabenstellungen auszulegen und sie zu neuen mobilen Robotersystemen zusammenzufügen.

Fachliche Kompetenzen

Die Studierenden können Systemkomponenten für mobile Roboterbetriebssysteme mit Fokus auf Sensorsignalverarbeitung und Verhaltenssteuerung entsprechend neuer Anwendungen anpassen und weiterentwickeln. Sie können Systemkomponenten in einem Roboterbetriebssystem miteinander verknüpfen und das Gesamtsystem sowohl in einer Simulation als auch an physischen Systemen in Betrieb nehmen und testen.

Besondere Methodenkompetenzen

Die Studierenden können zugehörige Verfahren für die Entwicklung neuer mobiler Robotersysteme anwenden können hierbei strukturiert vorgehen.

Überfachliche Kompetenzen

Die Studierenden sind in der Lage, bei der Projektarbeit die Aufgaebn selbstständig zu organisieren und einzuteilen. Im Kolloquium können die Studierenden ihr Projekt präsentieren und ihre Ergebnisse argumentativ verteidigen.

Ľ۲			\sim
ГΙ		u	nq
	•	•	

Art / Dauer PLM: PLP 15

Zulassungsvoraussetzungen Erfolgreiche Teilnahme am Labor des Moduls

zugelassene Hilfsmittel alle

Zusammensetzung der Endnote 50 % PLP 15, 50 % PLM 15

letzte Änderung 11.03.2020

Lehrverans	staltung	20107 Mobile Robotersysteme inkl. Labor	Sommersemester
aus Modul		20007 Mobile Robotersysteme	_
Semesterwo	ochenstunden	5 SWS in Semester SoSe	
Dozent		Prof. Dr. Stefan Hörmann	
Sprache		Deutsch	
Lehrform		Labor; Vorlesung	
Medieneinsa	atz	Präsentationsfolien, Tafel, Übungsblätter, PC	
Voraussetzu	ungen	Programmierkenntnisse in Matlab. Linux-Kenntnisse v	von Vorteil.
Inhalt		 Sensorik: Bewegungsmessung, Ausrichtungsmessung Positionsbestimmungssysteme, Entfernungsmessung Sensordatenverarbeitung: Entfernungsdaten, Bildme Objektverfolgung Fortbewegung: Bewegungsschätzung, Bayes- und K Odometriedaten Lokalisierung in Karten und Kartierung: Lokalisierung Navigation: Reaktive Navigation, Pfadplanung, Plank Roboterkontrollarchitekturen: Architekturschemata, F Im Rahmen der Durchführung eines Beispielprojektes mobiler Roboterbetriebssysteme mit Fokus auf Sensor Verhaltenssteuerung entsprechend der geplanten Anw Systemkomponenten werden unter Verwendung des F miteinander zu einem Gesamtsystem verknüpft, das je Simulation und/oder an einem physischen System in E wird. 	I, Kameras und Kameramodelle erkmale, Objekterkennung, Kalman-Filter, Fusion von gsalgorithmen, SLAM pasierte Robotersteuerung Robot Operating System (ROS) werden Systemkomponenten rsignalverarbeitung und vendung angepasst. Die Roboterbetriebssystem ROS e nach Aufgabenstellung in einei
Literatur		 Joachim Hertzberg: Mobile Roboter: Eine Einführung eXamen.press Enrique Fernandez, et al: Learning ROS for Robotics Packt Publishing Jürgen Wolf: Grundkurs C++: C++-Programmierung Computing Michael Kofler: Linux-Kommandoreferenz: Shell-Beforenguting 	s Programming - Second Editior verständlich erklärt, Galileo
Workload	Kontaktstunden	5 SWS = 75 Stunden	
	Selbststudium	75 Stunden	
	Summe	150 Stunden	
letzte Änder	ung	22.01.2022	

20008 Modul aus Hochschulangebot (Modul aus anderem Masterstudiengang der Hochschule Aalen nach Genehmigung)

Modul-Deckblatt

Studiengang M. Eng. Mechatronik / Systems Engineering, SPO103

Modulverantwortliche(r) Studiendekan MRM

Semester SoSe Wahlpflichtmodul

Zuordnung zum Curriculum

20008 Mechatronik / Systems Engineering (MRM), M. Eng., SPO103 20008 Mechatronik / Systems Engineering Teilzeit (MTM), M. Eng., SPO103

LV-Nummer	LV-Nummer Lehrveranstaltung (LV)				
20108	Modul aus Hochschulangebot	4			
		4	5		

Modulziele / Allgemeines

Zuordnung zu System- bzw. Komponentenlevel ergibt sich aus dem Modulhandbuch des zugehörigen Masterstudiengangs.

Die zugehörigen Kompetenzen richten sich nach der Modulauswahl und sind im Modulhandbuch des zugehörigen Master Studienganges zu finden.

Fachliche Kompetenzen

Besondere Methodenkompetenzen

Überfachliche Kompetenzen

Lehrveran	staltung	20108 Modul aus Hochschulangebot	Sommersemester
aus Modul		20008 Modul aus Hochschulangebot (Modul au Hochschule Aalen nach Genehmigung)	us anderem Masterstudiengang der
Semesterw	ochenstunden	4 SWS in Semester SoSe	
Dozent		N.N.	
Sprache			
Lehrform			
Medieneins	atz		
Voraussetz	ungen		
Inhalt			
Literatur			
Workload	Kontaktstunden	4 SWS = 60 Stunden	
	Selbststudium	90 Stunden	
	Summe	150 Stunden	

20017 Machine Learning

Modul-Deckblatt

Studiengang M. Eng. Mechatronik / Systems Engineering, SPO103

Modulverantwortliche(r) Prof. Dr. Holger Schmidt

Semester SoSe Wahlpflichtmodul

Zuordnung zum Curriculum

20017 Mechatronik / Systems Engineering (MRM), M. Eng., SPO103 20017 Mechatronik / Systems Engineering Teilzeit (MTM), M. Eng., SPO103

LV-Nummer	Lehrveranstaltung (LV)	SWS	ECTS	
20110	Machine Learning inkl. Übungen			
		1	5	

Modulziele / Allgemeines

After taking this course, students will be able to explain the basic ideas of machine learning and will be equipped with a state-of-the-art toolbox to apply and perform them in advanced topics.

Fachliche Kompetenzen

Students can analyze and evaluate mathematical methods and programming techniques. German students can improve their skills in technical English.

Besondere Methodenkompetenzen

Students can work together as a team and coordinate tasks. They can present and defend their solutions.

Überfachliche Kompetenzen

Students will be able to describe, apply and evaluate various methods of modern machine learning. They can justify how these methods are used in (technical) applications.

Prüfung		
Art / Dauer	PLM	45
Zulassungsvoraussetzungen		
zugelassene Hilfsmittel		
Zusammensetzung der Endnote		
letzte Änderung		22.01.2022

Lehrveran	staltung	20110 Machine Learning inkl. Übungen	Sommersemester
aus Modul		20017 Machine Learning	
Semesterwochenstunden		4 SWS in Semester SoSe	
Dozent		Prof. Dr. Holger Schmidt	
Sprache		Deutsch; Englisch	
Lehrform		Lecture; Tutorial	
Medieneins	satz	Blackboard, Beamer, Jupyter Notebooks	
Voraussetz	zungen	In-depth knowledge of higher mathematics	
Inhalt		Repeat: linear algebra, statistics, multidimensional a Introduction and motivation - supervised vs. unsuper Basic Machine Learning concepts: linear regression, Dimensionality Reduction and PCA Artificial Neural Networks Introduction to Tensorflow Convolutional Neural Networks (Computer Vision/Vis Recurrent Neural Networks (Natural Language Procession)	rvised learning , logistic and softmax classification sional Recognition)
Literatur		Skript and Jupyter Notebooks	
		Aurelian Geron, "Hands-On Machine Learning with SO'Reilly	Scikit-Learn and TensorFlow",
		Ian Goodfellow, Yoshua Bengio and Aaron Courville	, "Deep Learning", MIT Press
Workload	Kontaktstunden	4 SWS = 60 Stunden	
	Selbststudium	90 Stunden	
	Summe	150 Stunden	
letzte Ände	rung	19.02.2018	

20008 IT-Integration mechatronischer Systeme

Modul-Deckblatt

Studiengang M. Eng. Mechatronik / Systems Engineering, SPO103

Modulverantwortliche(r) Prof. Dr.-Ing. Julia Denecke

Semester WiSe Wahlpflichtmodul

Zuordnung zum Curriculum

20008 Mechatronik / Systems Engineering (MRM), M. Eng., SPO103 20008 Mechatronik / Systems Engineering Teilzeit (MTM), M. Eng., SPO103

	LV-Nummer	Lehrveranstaltung (LV)	SWS	ECTS
	20111	Integration mechatronischer Systeme – Labor	1	
	20111	Integration mechatronischer Systeme - Vorlesung mit Übungen	4	
-				5

Modulziele / Allgemeines

Mechatronische Systeme bestehen heutzutage neben mechanischen, elektrischen/elektronischen Komponenten auch aus Software zur Steuerung und Regelung. Insbesondere mechatronische Systeme zur Steuerung und Regelung von Prozessen müssen zunehmend an IT-Systeme zur Auswertung oder Integration in die IT-Landschaft von Unternehmen eingebunden werden. Daher kann das Modul den mechatronischen Systemen zugeordnet werden.

Die Studierenden sind in der Lage die Herausforderung bei der Anbindung von mechatronischen Systemen (insbesondere gesteuerter Systeme am Beispiel von Maschinen) an IT-Systeme zu erkennen. Darauf aufbauend sind Lösungskonzepte aktueller Technologien bekannt und können beispielhaft sowohl auf informationstechnischer Seite als auch auf den Steuerungen implementiert werden.

Fachliche Kompetenzen

Die Studierenden lernen die Grundlagen der genutzten IT-Systeme in produzierenden Unternehmen kennen. Hierbei wird deutlich, dass moderne produzierende Unternehmen eine Kommunikation zwischen Maschinensteuerungen und übergeordneten IT-Systemen benötigen (bspw. Analyse von Produktionsdaten zur Optimierung, Anwendung von KI in der Produktion,...). Diese Daten können Steuerungen bereitstellen. Die Studierenden sind in der Lage die Unterschiede der Systeme und deren aktuell genutzten Technologien (bspw. Web-, Internet of Things (IoT-) Technologien, Industrial Internet of Things,...) zu erkennen. Zudem sind die Studierenden in der Lage die Technologien sowohl im Rahmen der Hochsprachenprogrammierung (.Net) als auch auf den speicherprogrammierbaren Steuerungen (SPS) so anzuwenden, dass die benötigte Kommunikation zwischen beiden Feldern umgesetzt werden kann. Die Herausforderungen und deren Lösungskonzepte sind ebenfalls bekannt und können von den Studierenden beispielhaft implementiert werden.

Besondere Methodenkompetenzen

Die Studierenden sind in der Lage die Anforderungen aus den Basisanwendungen abzuleiten. Ausgehend davon können die Studierenden Basiskonzepte der Kommunikation entwerfen und diese implementieren.

Überfachliche Kompetenzen

Die Studierenden sind in der Lage, bei der Laborarbeit die Aufgaben selbstständig zu organisieren und einzuteilen. Am Ende können die Studierenden ihr Projekt präsentieren und ihre Ergebnisse argumentativ verteidigen

Lehrveran	staltung	20111 Integration mechatronischer Systeme - Wintersemester Vorlesung mit Übungen				
aus Modul		20008 IT-Integration mechatronischer Systeme				
Semesterw	ochenstunden	4 SWS in Semester WiSe				
Dozent		Prof. DrIng. Julia Denecke				
Sprache		Deutsch				
Lehrform		Übung; Vorlesung				
Medieneins	satz	Tafel, Präsentationsfolien, Programmierumgebungen, Hardware (SPS, Raspberry Pi)				
Voraussetzungen		Grundlagen der Informatik und Steuerungstechnik				
Inhalt		Allgemeines: Überblick der Systeme in produzierenden Unternehmen, Vorstellung und Anwendung aktueller IT-Technologien (Web-, IoT-, IIoT-, REST,). Steuerungsprogrammierung (SPS) zur Anbindung von Steuerungen an IT-Systeme.				
Literatur						
Workload	Kontaktstunden	4 SWS = 60 Stunden				
	Selbststudium	60 Stunden				
Summe		120 Stunden				
letzte Ände	erung	18.12.2021				

Lehrveran	staltung	20111 Integration mechatronischer Systeme – Labor Wintersemester			
aus Modul		20008 IT-Integration mechatronischer Systeme			
Semesterw	ochenstunden	1 SWS in Semester WiSe			
Dozent		Prof. DrIng. Julia Denecke; Prof. DrIng. Gernot Frank			
Sprache		Deutsch			
Lehrform		Labor; Vorlesung			
Medieneins	satz	Tafel, Präsentationsfolien, Programmierumgebungen, Hardware (SPS, Raspberry Pi) Grundlagen der Informatik und Steuerungstechnik			
Voraussetz	zungen				
Inhalt		Projekt zur Anbindung von Steuerungen an IT-Systeme. Daten der Maschine sollen ir einem Webinterface angezeigt werden. Umsetzung der entsprechenden Kommunikationsstrecke in Eigenverantwortung mit entsprechender fachlicher Unterstützung			
Literatur					
Workload	Kontaktstunden	1 SWS = 15 Stunden			
	Selbststudium	15 Stunden			
	Summe	30 Stunden			
letzte Ände	erung	18.12.2021			

20009 Numerische Mathematik

Modul-Deckblatt

Studiengang M. Eng. Mechatronik / Systems Engineering, SPO103

Modulverantwortliche(r) Prof. Dr. Alexander Hornberg

Semester WiSe Pflichtmodul

Zuordnung zum Curriculum

20009 Mechatronik / Systems Engineering (MRM), M. Eng., SPO103 20009 Mechatronik / Systems Engineering Teilzeit (MTM), M. Eng., SPO103

	LV-Nummer	Lehrveranstaltung (LV)	SWS	ECT	S
	20201	Numerische Mathematik inkl. Übungen	5		
_			5		=

Modulziele / Allgemeines

Das Modul kann den mechatronischen Grundlagen zugeordnet werden.

Die Studierenden sind nach dem Besuch des Moduls in der Lage, numerische Methoden zu nennen, einzusetzen und zu beurteilen.

Fachliche Kompetenzen

Die Studierenden sind in der Lage, typische Anwendungen für numerische Methoden wiederzugeben und mathematische Probleme mit numerischen Methoden zu lösen. Sie können somit Algorithmen für kontinuierliche mathematische Probleme analysieren und konstruieren, um bspw. Differenzialgleichungen zu lösen oder Anwendungen der Bildverarbeitung oder Messdatenverarbeitung zu realisieren. Die Studierenden sind zudem in der Lage, Konzepte numerischer Methoden zu verstehen und Vorteile/Nachteile verschiedener Ansätze gegeneinander abzuwägen sowie Probleme/Grenzen numerischer Algorithmen einzuschätzen und zu beurteilen.

Durch begleitende Programmierübungen vertiefen die Studierenden die Inhalte und können diese anwenden.

Besondere Methodenkompetenzen

Die Studierenden sind in der Lage, strukturiert und methodisch bei der Erstellung von Lösungen vorzugehen.

Überfachliche Kompetenzen

letzte Anderung

Die begleitenden Programmierübungen sind die Studierenden zudem in der Lage, über die Inhalte in Gruppen zu diskutieren und gemeinsam Lösungen zu finden.

Prüfung		
Art / Dauer	PLK	90
Zulassungsvoraussetzungen		
zugelassene Hilfsmittel	alle	
Zusammensetzung der Endnote		

24.02.2017

Lehrverans	staltung	20201 Numerische Mathematik inkl. Übungen Wintersemester
aus Modul		20009 Numerische Mathematik
Semesterw	ochenstunden	5 SWS in Semester WiSe
Dozent		Prof. Dr. Alexander Hornberg
Sprache		Deutsch
Lehrform		Übung; Vorlesung
Medieneins	atz	Skript, Tafel, Präsentationsfolien
Voraussetz	ungen	Mathematik 1-3
Inhalt		I. Matlab II. Lineare Gleichungssysteme 1. Gauß-Algorithmus, LR-Zerlegung 2. QR-Zerlegung, 3. Iterative Methoden III. Nichtlineare Gleichungssysteme und Ausgleichsprobleme 1. Newton-Verfahren 2. Gauß-Newton-Verfahren IV. Gewöhnliche Differenzialgleichungen 1. Einschrittverfahren 2. Mehrschrittverfahren V. Optionale Themen 1. Interpolation, Trigonometrische Interpolation und Splines 2. Numerische Integration, Newton-Cotes und Gaußquadratur und Romberg-Verfahren
Literatur		 W. Burger, M. J. Burge, Digitale Bildverarbeitung 3.Aufl., Springer 2015 J. Beyerle et al., Automatische Sichtprüfung, Springer 2012 C. Demant et al, Industrielle Bildverarbeitung, Springer 2011 A. Hornberg (Ed.), Handbook of Machine and Computer Vision 2E, Wiley-VCH 2017
Workload	Kontaktstunden	5 SWS = 75 Stunden
	Selbststudium	75 Stunden
	Summe	150 Stunden
letzte Ände	rung	24.02.2017

20010 Modellbildung Modul-Deckblatt

Studiengang M. Eng. Mechatronik / Systems Engineering, SPO103

Modulverantwortliche(r) Prof. Dr.-Ing. Gerd Wittler

Semester WiSe Pflichtmodul

Zuordnung zum Curriculum

20010 Mechatronik / Systems Engineering (MRM), M. Eng., SPO103 20010 Mechatronik / Systems Engineering Teilzeit (MTM), M. Eng., SPO103

	LV-Nummer	Lehrveranstaltung (LV)	SWS	ECTS
20202		Modellbildung und Identifikation inkl. Labor		
-			5	5

Modulziele / Allgemeines

Das Modul kann dem mechatronischen Systemlevel zugeordnet werden.

Die Studierenden können vertiefende Kenntnisse zur physikalischen Modellbildung anwenden sowie dynamische mechatronische Systeme entwerfen.

Fachliche Kompetenzen

Die Studierenden sind in der Lage, die signalflussorientierte Erstellung physikalischer Streckenmodelle und die Transformation der unterschiedlichen Repräsentationen anzuwenden. Die Studierenden sind zudem in der Lage, grundlegende Begriffe der Mehrkörperdynamik und der Identifikationsmethoden wiederzugeben sowie Methoden zur simulationsgestützten Systemauslegung anzuwenden.

Durch laborpraktische Übungen sind die Studierenden in der Lage, eine elektrischen Antriebsachse mit Simulink zu modellieren, zu identifizieren und zu optimieren. Die Studierenden sind zudem in der Lage, ein hochdynamisches Handlingsystem mit ADAMS und Simulink auszulegen.

Besondere Methodenkompetenzen

Die Studierenden können die signalflussorientierte Modellierung bei der Entwicklung methodischer Systeme einsetzen.

Überfachliche Kompetenzen

Durch die Laborübungen sind die Studierenden in der Lage, als Team zusammenzuarbeiten und sich als Gruppe zu organisieren.

Prüfung				
Art / Dauer	PLK	90		
Zulassungsvoraussetzungen				
zugelassene Hilfsmittel	alle			
Zusammensetzung der Endnote				
letzte Änderung		15.09.2016		

Lehrveran	staltung	20202 Modellbildung und Identifikation inkl. Labor Wintersemester
aus Modul		20010 Modellbildung
Semesterw	rochenstunden	5 SWS in Semester WiSe
Dozent		Prof. DrIng. Gerd Wittler
Sprache		Deutsch
Lehrform		Labor; Vorlesung
Medieneins	satz	Skript, Tafel, Präsentationsfolien
Voraussetzungen		Mathematik, Regelungstechnik, Elektrotechnik, Technische Mechanik, Schwingungslehre
		Grundkenntnisse in Matlab-Simulink
Inhalt		* Signalflussorientierte Modellierung physikalischer Systeme * Grundlagen der Mehrkörperdynamik * Modellierung elektrischer/pneumatischer/hydraulischer Systeme * Identifikationsverfahren im Zeit- und Frequenzbereich * Parameterstudien, DOE, Parameteroptimierung * Simulationsgestütze Systemauslegung und -dimensionierung Signalflussorientierte Modellbildung mit Simulink Einführung in die Mehrkörpersimulation (z.B. mit ADAMS/View) Modellierung, Identifikation und Optimierung einer elektrischen Antriebsachse Modellgestützte Auslegung eines hochdynamischen Handlingssystems
Literatur		* Skript zur Vorlesung * Zirn, O.: Modellbildung und Simulation mechatronischer Systeme, Mit Beispielsimulationen und Modellen in Matlab/Simulink, Springer Verlag, 2006. * Matlab und Simulink, Beispielorientierte Einführung in die Simulation dynamischer Systeme, Addison Wesley Verlag, 1998
Workload	Kontaktstunden	5 SWS = 75 Stunden
	Selbststudium	75 Stunden
	Summe	150 Stunden
letzte Ände	rung	16.01.2017

20011 Regelungstechnik

Modul-Deckblatt

Studiengang M. Eng. Mechatronik / Systems Engineering, SPO103

Modulverantwortliche(r) Prof. Dr.-Ing. Ralf Rothfuß

Semester WiSe Pflichtmodul

Zuordnung zum Curriculum

20011 Mechatronik / Systems Engineering (MRM), M. Eng., SPO103 20011 Mechatronik / Systems Engineering Teilzeit (MTM), M. Eng., SPO103

_	LV-Nummer	Lehrveranstaltung (LV)	SWS	ECTS
	20203	Regelungstechnik inkl. Labor	4	
_				5

Modulziele / Allgemeines

Die Studierenden sind nach dem Besuch des Moduls in der Lage, lineare zeitvariante und -invariante Systeme in Zustandsraumdarstellung auf ihre regelungstechnischen Eigenschaften (Zeitkonstanten) zu untersuchen, Zustands- und Ausgangsrückführungen sowie Zustandsschätzer zu entwerfen. Sie sind zudem in der Lage, die erlernten Methoden auf praktische Problemstellungen anzuwenden.

Fachliche Kompetenzen

Nach der Teilnahme an dem Modul sind die Studierenden in der Lage, geeignete mathematische Methoden für den linearen Entwurf von Zustandsregelungen und Zustandsschätzern auszuwählen und auf konkrete Beispiele anzuwenden.

Besondere Methodenkompetenzen

Nach der Teilnahme an dem Modul sind die Studierenden in der Lage, aus einem breiten Methodenbaukasten (Frequenz- und Zeitbereich) eine auf die Aufgabenstellung angepasste Vorgehensweise für die modellbasierte Funktionsentwicklung mit Hilfe linearer Systemdarstellungen auf konkrete Beispiele anzuwenden.

Überfachliche Kompetenzen

Die Studierenden werden befähigt, regelungstechnische Fragestellungen im Team interdisziplinär zu lösen.

Prüfung		
Art / Dauer	PLK	90
Zulassungsvoraussetzungen		
zugelassene Hilfsmittel	Formelsam	ımlung
Zusammensetzung der Endnote		
letzte Änderung	16	6.01.2017

Lenrverans	staltung	20203 Regelungstechnik inkl. Labor	Wintersemester		
aus Modul		20011 Regelungstechnik			
Semesterw	ochenstunden	4 SWS in Semester WiSe			
Dozent		Prof. DrIng. Ralf Rothfuß			
Sprache		Deutsch			
Lehrform		Labor; Vorlesung			
Medieneins	satz	Skript, Tafel, Präsentationsfolien			
Voraussetz	ungen	Grundlagen der Regelungstechnik			
Inhalt		Entwurf und Auslegung von Regelungen und Zustar zeitinvariante Mehrgrößensysteme: - Stabilitätseigenschaften in Zustandsdarstellung - Berechnung von Übertragungsfunktionen bzwma - Entwurf von linearen Zustandsrückführungen durc in die lineare Regelungsnormalform - Reglereinstellung durch Polvorgabe - Entwurf eines erweiterten Luenberger-Beobachter Transformation in die lineare Beobachtungsnorma	atrizen h Transformation s durch		
Literatur		 Lunze: Regelungstechnik 1: Systemtheoretische G Analyse und Entwurf einschleifiger Regelungen, S Lunze, Jan: Regelungstechnik 2: Mehrgrößensyste Regelung, Springer, 2014 Lutz, Wendt: Taschenbuch der Regelungstechnik, Simulink, Harri Deutsch Verlag 	pringer, 2014 eme, Digitale		
	Kontaktstunden	4 SWS = 60 Stunden			
Workload					
Workload	Selbststudium	90 Stunden			

20014 Industrielle Bildverarbeitung

Modul-Deckblatt

Studiengang M. Eng. Mechatronik / Systems Engineering, SPO103

Modulverantwortliche(r) Prof. Dr. Alexander Hornberg

Semester WiSe Wahlpflichtmodul

Zuordnung zum Curriculum

20014 Mechatronik / Systems Engineering (MRM), M. Eng., SPO103 20014 Mechatronik / Systems Engineering Teilzeit (MTM), M. Eng., SPO103

LV-Numi	mer Lehrveranstaltung (LV)	SWS	ECTS
20206	Industrielle Bildverarbeitung inkl. Labor	5	
			5

Modulziele / Allgemeines

Das Modul kann dem mechatronischen Komponentenlevel zugeordnet werden.

Die Studierenden sind nach dem Besuch des Moduls in der Lage, die Grundlagen bildgebender Verfahren zu kennen und anzuwenden.

Fachliche Kompetenzen

Die Studierenden sind in der Lage, ein Inspektionssystem zu konzipieren und auszulegen sowie Anwendungen der industriellen Bildverarbeitung zu konfigurieren und zu programmieren. Die Studierenden sind zudem in der Lage, grundlegende Algorithmen der Bildverarbeitung zu verstehen und zu beschreiben.

Die Studierenden können durch Laborübungen, die Inhalte "Industrielle Bildverarbeitung" in der Praxis anwenden, wie beispielsweise das Messen an digitalen Bildern oder das Auslesen eines Mouse-Sensors sowie die Inbetriebnahme einer Inspektion.

Besondere Methodenkompetenzen

Die Studierenden sind in der Lage, bei der Konzeption und Auslegung von Bildverarbeitungssystemen methodisch und systematisch vorzugehen.

Überfachliche Kompetenzen

Durch die Übungen sind die Studierenden in der Lage sich in Gruppen zu organisieren und gemeinsam Lösungen zu finden.

Prüfung				
Art / Dauer	PLK	90		
Zulassungsvoraussetzungen				
zugelassene Hilfsmittel	alle			
Zusammensetzung der Endnote				
letzte Änderung		15.09.2016		

Lehrveranstaltung	20206 Industrielle Bildverarbeitung inkl. Labor	Wintersemester
aus Modul	20014 Industrielle Bildverarbeitung	
Semesterwochenstunden	5 SWS in Semester WiSe	
Dozent	Prof. Dr. Alexander Hornberg	
Sprache	Deutsch	
Lehrform	Labor; Vorlesung	
Medieneinsatz	Skript, Tafel, Präsentationsfolien	
Voraussetzungen	Technische Optik, Signalverarbeitung, Numerische Ma	athematik

Inhalt

I LabVIEW und das Vision Development Module (VDM)

II Bildaufnahme

- 1) Farbe und Farbmodelle
- 2) Beleuchtung und Radiometrie
- 3) Objektive und Telezentrische Objektive
- 4) Bildsensoren und Kameras
- 5) Abtasten, Quantisieren,
- 6) Raumfrequenzen und 2d DFT
- 7) Kamera-Computer-Schnittstellen, Bildaufnahme
- III Bildvorverarbeitung
- 1) Pixel Operationen
- 2) Geometrische Transformationen und Interpolation
- 3) Nachbarschaftsoperationen
- 4) Glättungsfilter
- 5) Kanten und Ecken, Hough-Transformation
- 6) Segmentierungsverfahren
- 7) Morphologische Operationen
- IV Bildanalyse
- 1) Blobanalysis
- 2) Schrifterkennung (OCR)
- 3) Korrelationstechniken, Template-Matching
- 4) Klassifikation
- V 3D Bildverarbeitung
- 1) Kameramodell
- 2) Kamerakalibrierung;
- 3) Stereobildverarbeitung;
- 4) Rektifizierung
- 5) Stereomatching;
- 6) Triangulationsverfahren;
- 7) Streifenprojektionsverfahren

Programmierübungen im PC-Pool begleitend zur Vorlesung zur Vertiefung und Anwendung des gelernten Stoffs.

- V1: Messen an digitalen Bildern
- V2: Inbetriebnahme einer Inspektion
- V3: Lichtschnittverfahren
- V4: Auslesen eines Mouse-Sensor

Literatur

- W. Burger, M. J. Burge, Digitale Bildverarbeitung Springer 2005
- Hornberg (Ed.), Handbook of Machine Vision, Wiley-VCH 2006
- C. Demant, et. al., Industrielle Bildverarbeitung,
- C. Steger, et al., Machine Vision Algorithm and Applications, Wiley-VCH 2008
- R.C. Gonzalez, R. E. Woods, Digital Image Processing, Prentice Hall 2004

Workload Kontaktstunden 5 SWS = 75 Stunden
Selbststudium 75 Stunden

Summe 150 Stunden

letzte Änderung

16.01.2017

20015 CAE-basierter Entwurf nichtlinearer Regelungssysteme

Modul-Deckblatt

Studiengang M. Eng. Mechatronik / Systems Engineering, SPO103

Modulverantwortliche(r) Prof. Dr.-Ing. Ralf Rothfuß

Semester WiSe Wahlpflichtmodul

Zuordnung zum Curriculum

20015 Mechatronik / Systems Engineering (MRM), M. Eng., SPO103 20015 Mechatronik / Systems Engineering Teilzeit (MTM), M. Eng., SPO103

LV-Nummer	Lehrveranstaltung (LV)	SWS	ECTS
20207	CAE-basierter Entwurf nichtlinearer Regelungssysteme inkl. Labor	5	5

Modulziele / Allgemeines

Die Studierenden sind nach dem Besuch des Moduls in der Lage, nichtlineare zeitinvariante Systeme in Zustandsraumdarstellung auf ihre regelungstechnischen Eigenschaften (Stabilität, Zeitkonstanten) zu untersuchen, Zustands- und Ausgangsrückführungen sowie Zustandsschätzer zu entwerfen.

Sie sind zudem in der Lage, die erlernten Methoden auf praktische Problemstellungen anzuwenden und diese anhand von Embedded-Control-Umgebungen am Prüfstand zu realisieren.

Fachliche Kompetenzen

Nach der Teilnahme an dem Modul sind die Studierenden in der Lage, geeignete mathematische Methoden für den nichtlinearen Entwurf von Zustandsregelungen und Zustandsschätzern auszuwählen und auf konkrete Beispiele anzuwenden sowie diese in Echtzeitumgebungen zu realisieren.

Besondere Methodenkompetenzen

Nach der Teilnahme an dem Modul sind die Studierenden in der Lage, aus einem breiten Methodenbaukasten (Frequenz- und Zeitbereich) eine auf die Aufgabenstellung angepasste Vorgehensweise für die modellbasierte Funktionsentwicklung mit Hilfe nichtlinearer Systemdarstellungen auf konkrete Beispiele anzuwenden.

Überfachliche Kompetenzen

letzte Änderung

Die Studierenden werden befähigt, regelungstechnische Fragestellungen im Team interdisziplinär zu lösen.

Prüfung	
Art / Dauer	PLP
Zulassungsvoraussetzungen	
zugelassene Hilfsmittel	Formelsammlung
Zusammensetzung der Endnote	

22.03.2022

Lehrveranstaltu	ng	20207 CAE-basierter Entwurf nichtlinearer Regelungssysteme inkl. Labor	Wintersemester	
aus Modul		20015 CAE-basierter Entwurf nichtlinearer Regelur	ngssysteme	
Kreditpunkte		5 CP		
Semesterwocher	nstunden	5 SWS in Semester WiSe		
Dozent		Prof. DrIng. Ralf Rothfuß		
Sprache		Deutsch		
Lehrform		Labor; Vorlesung		
Medieneinsatz		Skript, Folien, Tafelaufschrieb		
Voraussetzungen		Lineare Regelungstechnik		
Inhalt		Entwurf und Auslegung von Regelungen und Zusta nichtlineare Ein- und Mehrgrößensysteme: - Modellbasierte Funktionsentwicklung an Praxisbe (Pneumatikzylinder, verschiedene elektrische Antriebe, Scheibenwischer, Roboter) für nichtline - Entwurf von Zustandsreglern und -schätzern für n Trajektorienfolgeprobleme - Umsetzung und Realisierung an verschiedenen R Prototyping-Prüfständen (dSpace, Texas Instrume Pi, etc.) - Auslegung der Funktionen am Prüfstand	ispielen are Systeme ichtlineare apid-	
Literatur		- Skriptum zur Vorlesung - Nichtlineare Systeme und Regelungen, J. Adamy	, 2014	
Workload Kont	aktstunden	5 SWS = 75 Stunden		
	ststudium	75 Stunden		
Selb	ototaararri			

22012 Zuverlässigkeit und Softwarequalität

Modul-Deckblatt

Studiengang M. Eng. Mechatronik / Systems Engineering, SPO103

Modulverantwortliche(r) Prof. Dr.-Ing. Peter Zeiler

Semester WiSe Pflichtmodul

Zuordnung zum Curriculum

22012 Mechatronik / Systems Engineering (MRM), M. Eng., SPO103 20012 Mechatronik / Systems Engineering Teilzeit (MTM), M. Eng., SPO103

_	LV-Nummer	Lehrveranstaltung (LV)	SWS	ECTS
	20204	Softwarequalität	2	
	20205	Zuverlässigkeit mechatronischer Systeme	2	
_			4	5

Modulziele / Allgemeines

Das Modul kann dem mechatronischen Systemlevel zugeordnet werden.

Die Studierenden sind in der Lage, die Anforderungen komplexer mechatronischer Systeme systematisch zu ermitteln und die Qualität der Anforderungsbeschreibung sicherzustellen. Sie können die Zuverlässigkeit von Systemen gemäß den Anforderungen planen und analysieren und verifizieren diese. Die Studierenden sind in der Lage, die Qualität von Software zu bewerten und durch qualitätssichernde Maßnahmen sicherzustellen.

Fachliche Kompetenzen

Basierend auf der systematischen Anforderungsbeschreibung können die Studierenden die Zuverlässigkeit von mechatronischen Systemen methodisch planen und sind in der Lage, deren Zuverlässigkeit zu bewerten. Die Studierenden können klassische und agile Vorgehensmodelle unterscheiden, um zuverlässige und den Anforderungen des Auftraggebers entsprechende Software zu entwickeln. Sie können die Software-Qualität durch methodische Testverfahren und Usability Engineering analysieren, beurteilen und verbessern.

Besondere Methodenkompetenzen

Die Studierenden sind in der Lage, die Qualität von Anforderungsbeschreibungen zu bewerten. Die Studierenden besitzen ein solides Wissen über agile Methoden insbesondere in der Softwareentwicklung und sind in der Lage, in Projekten Teilaufgaben mit klarer Abgrenzung und definierten Schnittstellen zu weiteren Teilaufgaben zu definieren und auch umzusetzen. Darüber hinaus verfügen sie über umfassende Kenntnisse hinsichtlich qualitätssichernder Maßnahmen, um die Qualität der entwickelten Software sicherzustellen.

Überfachliche Kompetenzen

Zusammensetzung der Endnote

Die Studierenden sind in der Lage, Kundenanforderungen für die Entwicklung mechatronischer Systeme und insbesondere komplexer Software im Team zu analysieren und zu diskutieren. Sie sind in der Lage, Fragestellungen und Lösungsansätze aus dem Bereich der Zuverlässigkeit mechatronischer Systeme gegenüber Fachleuten darzustellen und mit ihnen zu diskutieren.

Prüfung		
Art / Dauer	PLK	90
Zulassungsvoraussetzungen	keine	
zugelassene Hilfsmittel		

letzte Änderung

22.01.2022

Lehrveran	staltung	20204 Softwarequalität	Wintersemester
aus Modul		22012 Zuverlässigkeit und Softwarequalität	
Semesterw	vochenstunden	2 SWS in Semester WiSe	
Dozent		Prof. DrIng. Peter Zeiler	
Sprache		Deutsch	
Lehrform		Vorlesung	
Medieneins	satz	Skript, Tafel, Präsentationsfolien	
Voraussetz	zungen	Grundlagen des Entwicklungsprozesses	
Inhalt		 Entwicklungsprozess für Software Softwarearchitektur Coding Standard (z.Bsp: MISRA-C) Softwaredokumentation Statische Codeanalyse Integrationstest Dynamische und statische Testverfahren Betriebssysteme Beurteilung der Softwarequalität 	
Literatur		IEC 61508-3 Funktionale Sicherheit: Anforderun Chris Rupp: Requirements-Engineering und -Ma klassisch bis agil, 2014 Andreas Spillner, Tilo Lenz: Basiswissen Softwa Certified Tester - Foundation Level nach ISTQB Kurt Schneider: Abenteuer Softwarequalität: Gru Qualitätssicherung und Qualitätsmanagement, 2	anagement: Aus der Praxis von uretest: Aus- und Weiterbildung zum -Standard (ISQL-Reihe), 2012 undlagen und Verfahren für
Workload	Kontaktstunden	2 SWS = 30 Stunden	
	Selbststudium	30 Stunden	
	Summe	60 Stunden	
letzte Ände	erung	19.10.2020	

Lehrveran	staltung	20205 Zuverlässigkeit mechatronischer Systeme	Wintersemester
aus Modul		22012 Zuverlässigkeit und Softwarequalität	
Semesterw	ochenstunden	2 SWS in Semester WiSe	
Dozent		N.N.	
Sprache		Deutsch	
Lehrform		Vorlesung	
Medieneins	satz	Skript, Tafel, Präsentationsfolien	
Voraussetz	rungen	Modellbasierte Konstruktion, Physik, Mathematik	
Inhalt		VDI 2206 Mechatronische Systeme. Entwicklung mechatronischer Systeme, Methoden zur Pfertigungs-, design-, und umweltgerechte Entwicklung mAbschätzung der Zuverlässigkeit von mechatronischen	nechatronischer Produkte.
Literatur		B. Bertsche, G. Lechner: Zuverlässigkeit im Fahrzeug- uvon Bauteil- und Systemzuverlässigkeiten; Springer-Ver Bertsche, Göhner, Jensen, Schinköthe: Zuverlässigkeit Springer-Verlag 2008	lag, 2004
Workload	Kontaktstunden	2 SWS = 30 Stunden	
	Selbststudium	60 Stunden	
	Summe	90 Stunden	
letzte Ände	rung	19.10.2020	