Applying Mathematical Optimization to Trading

Arne Andersson

Retired from

Uppsala University / Coupa Software

Background

- Late 1990s: academic research on algorithms, optimization and electronic markets (AA-trees, World's fastest sorting algorithm, etc ...)
- June 2000: Trade Extensions was founded, based on research on markets for electric power
- April 2017: Coupa Software acquires Trade Extensions

Electricity Prices in Uppsala (SE3) 2025-02-18

Auctions ▼ UK Auctions ▼ Intraday ▼ Power system data ▼ Reports 🖰 Map

Day-ahead

Prices

System price & turnover

Volumes

Capacities

Flows

Scheduled physical flows

Flow-based constraints

Aggregated Bidding Curves

Prices

00:00

02:00

04:00

06:00

08:00

10:00

12:00

14:00

16:00

18:00

20:00

Complex Market

Combinatorial bidding

Optimization

What we do

- Large-scale and complex negotiations between companies
- Optimization-based resource allocation.
- Handling lots of data, millions of bids, and advanced constraints

- •"I give you a better price if I get A, B, and C together"
- "I want at most three suppliers in France"

Some facts

- A few billion USD sourced weekly.
- Several Fortune 10 clients. Majority of clients are large multi-national companies. Plus consultancy firms.
- Frequently projects at several 100 million USD.
- Largest sourcing project was around 8 billion USD.

 What we compute has large real-world consequences. Fantastic and scary.

The Optimization Problem

Minimize

Cost

Given

Items

Bids

Supplier constraints

Buyer constraints

Solution

A set of allocated bids.

Negotiations add complexity to optimization

Buyer

The mathematical world

Buyer-defined scenarios: Typical constraints

- At most 50 winners in total.
- At most 10 winners per factory.
- No more than 5% of suppliers turnover in award.
- No more than 25% to new suppliers
- Suppliers discounts:
 - If I get these five lanes in combination I can offer a different transit time.
 - Loffer 30% discount on backhauls.
 - If I get more than 3MUSD of business I offer a 5% discount.

Our task: Helping buyers to easily set-up such rules, solve the optimization problems, and provide means for quickly and in detail compare different scenarios of allocation. (What is the impact by factory if changing from 45 to 50 suppliers in total?)

Example 1: Understanding Reserve Cost

Constraint: At most one winner

Lane	Supreme Transport	Mediocre Transport
Berlin – Hamburg	1 000 000	1 200 000
Hamburg – Salzburg	1 500 000	1 700 000
Gothenburg – Uppsala	400 000	600 000
Rotterdam – Amsterdam	2 000 000	2 300 000
Bern – Innsbruck	300 000	400 000
Paris – London	3 000 000	3 400 00
Tranemo – Svenljunga		50 000

Example 2: Pick the right constraint

Example 3: Rounding

Supplier	Number of weekly containers awarded
Supreme Transport	134.5
Mediocre Transport	34.1
Splendid Transport	100.4
Transporting Hipsters	22

Example 4: "2nd best solution"

Example 5: infeasibility

Example 6: Automated User Guidance

Max 3 winners.

Example 6: Automated User Guidance

Max 3 winners.

Max 3 winners per Country.

Example 6: Automated User Guidance

Max 3 winners.

Max 3 winners per Country.

Max 3 winners per country except France.

Summary

• Bringing optimization to the real world

Large Data Sets

Many challenges

mattias@coupa.com joe.scott@coupa.com karl.blomdahl@coupa.com gustav.bjordal@coupa.com

arne@te.se

