Numerical Methods – HW7

b04902053 鄭淵仁

June 22, 2018

Environment

• **OS:** Windows

• CPU: Intel Core i5-4200H

• Programming Language: Matlab R2018a

Problem 7-1: Write bisection and Newton methods.

Codes

Bisection

```
function [p, iter] = bisec(f, a, b, tol)
    if f(a) * f(b) >= 0
        disp('f(a) * f(b) >= 0');
    else
        iter = 0;
        p = (a + b) / 2;
        while abs(f(p)) > tol
            iter = iter + 1;
            if f(a) * f(p) < 0
                b = p;
            else
                a = p;
            end
            p = (a + b) / 2;
        end
    end
end
```

Newton's Method

```
function [p, iter] = newton(f, df, x0, tol, max_iter)
    p = x0;
    iter = 0;
    while (abs(f(p) > tol)) && (iter < max_iter)
        iter = iter + 1;
        p = p - f(p) / df(p);
    end
end</pre>
```

Check Linear Convergence Rates

```
conv_rates = [];
while % ...
% ... (Methods)
% Record Convergence Rates
if iter > 1
        conv_rates(end + 1) = abs((p - p_star) / last_err);
end
last_err = p - p_star;
```

Check Quadratic Convergence Rates

```
conv_rates = [];
while % ...
% ... (Methods)
% Record Convergence Rates
if iter > 1
        conv_rates(end + 1) = abs((p - p_star) / last_err ^ 2);
end
last_err = p - p_star;
```

Test with Functions and Results

Find Roots of Functions

- 1. $f_1(x) = x^3 2x + 1$
 - Graph:

- Analytical Solutions:
 - x=1
 - $x = -\frac{1}{2} + \frac{\sqrt{5}}{2} \approx 0.6180$
 - $x = -\frac{1}{2} \frac{\sqrt{5}}{2} \approx -1.6180$
- Find roots by Bisection / Newton's Method (set tolerance = 1e-14):

	Bisection	Newton's
Parameters	(beg,end)=(0.65,8)	$x_0 = 8$
Result	0.99999999999999	1
Iteration	47	11

- 2. $f_2(x) = sin(x) cos(x)$
 - Graph:

• Analytical Solutions:

$$lacksquare x=rac{1}{4}(4\pi n+\pi), n\in \mathbb{Z}$$

• Find roots by Bisection / Newton's Method (set tolerance = 1e-14):

	Bisection	Newton's
Parameters	(beg,end)=(-2,2)	$x_0=2$
Result	0.785398163397451	0.785398163397448
Iteration	46	6

3.
$$f_3(x) = e^x - e^{-x}$$

• Graph:

• Analytical Solutions:

$$x = 0$$

 \circ Find roots by Bisection / Newton's Method (set tolerance = 1e-14):

	Bisection	Newton's
Parameters	(beg,end)=(-3.7,4.7)	$x_0=4.7$
Result	$1.7552 imes 10^{-15}$	$-6.3967 imes 10^{-18}$
Iteration	49	8

Try Different Initial Solutions

I try with the last function: $f_3(x) = e^x - e^{-x}$.

• Bisection

Parameters (beg, end)	(-3.7, 4.7)	(-3.7, 8.7)	(-1.3, 5.5)
Iteration	49	48	47

• Newton

Parameters (x_0)	4.7	8.7	5.5
Iteration	8	12	9

Check Convergence Rates

I check with the last function: $f_3(x) = e^x - e^{-x}$.

- Bisection
 - Check with linear convergence:

$$\frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|}$$

• Rates: approximately repeat the following six values again and again:

$$1.1003, 0.0456, 9.4610, 0.4471, 0.3818, 0.1904$$

- Newton's Method
 - Check with quadratic convergence:

$$\frac{\left\|x_{k+1}-x^*\right\|}{\left\|x_k-x^*\right\|^2}$$

• Rates: except the last one, all the values are smaller than 1. The whole values are as following:

$$0.1973, 0.2343, 0.2644, 0.2081, 0.0412, 2.1365 \times 10^{-4}, 8.3020 \times 10^{+2}$$

Problem 7-2: Write Newton methods with Multiple Variables.

Codes

Newton's Method

```
function [p, iter] = newton(f, df, x0, tol, max_iter)
    iter = 0;
    p = x0;
    while (sum(f(p) .^ 2) > tol) && (iter < max_iter)
        iter = iter + 1;
        p = p - df(p) \ f(p);
    end
end</pre>
```

Test with Functions and Results

• Analytical Solutions:

$$x=\sqrt{rac{35}{4}+4\sqrt{5}}pprox 0.440762872754908$$
 $y=rac{\sqrt{3}}{2}pprox 0.866025403784439$ $z=-2+\sqrt{5}pprox 0.236067977499790$

• Test with Different Initial Solutions

Initial Solutions	Iterations	
[1 1 1]	4	
[1 10 100]	12	
[44 86 23]	9	