# LSM2241 From sequence and structure to networks and pathways

Greg Tucker-Kellogg dbsgtk@nus.edu.sg

28 October 2015

#### **Outline**

Molecular profiling

Organising genes into functional groups

Detecting interactions between genes and proteins

Representing genome wide data in networks

Pathway and interaction databases

Roundup and next week

# **Topic**

#### Molecular profiling

Organising genes into functional groups

Detecting interactions between genes and proteins

Representing genome wide data in networks

Pathway and interaction databases

Roundup and next week

# We are swimming in data

- We can measure gene expression on a genome-wide scale
- We can sequence the genome of an organism in days (or hours, or minutes)
- We can use structural genomics to predict the structures of millions of proteins from thousands of known structures

# A simple study



An old (now outdated) Affymetrix "GeneChip" to measure transcription of every gene

# We need to *annotate* molecular profiling data, or it is impossible to interpret!

- 1. Start with some human cells in culture
- 2. Treat cells with a drug or protein
- 3. Measure gene expression of >20,000 genes transcripts using a "gene chip".
- 4. Compare gene expression in treated versus untreated cells using fancy statistics
- 5. Identify a large number (>1000) genes showing significant expression differences7
- 6. What does this list of genes tell us about the experiment we just did? Or "What's so special about this list of genes?"

# **Topic**

Molecular profiling

Organising genes into functional groups

Detecting interactions between genes and proteins

Representing genome wide data in networks

Pathway and interaction databases

Roundup and next week

#### **Taxonomies of function**

#### Why taxonomies help

- Taxonomies of species help us interpret evolutionary events
- Taxonomies of structure help us compare and classify domains
- Taxonomies of literature help us search the library
- Taxonomies of function should help us understand functional genomics

#### The problem

- Scientists, not nature, assign categories of function
- Categories conflict
  - Is it a kinase, or a protein involved in cell motility?
  - It's a floor wax and a dessert topping!
- · Hierarchies of function are what scientists decide make sense

# What is an Ontology?

An *Ontology* can be seen as a type of taxonomy or controlled vocabulary.

- They are a formal specification of concepts, usually within a domain, and the relationships between those concepts
- Meant to be readable and interpretable by humans
- Meant to be readable and interpretable by computers
- Computers can use the structure of ontologies to infer implicit knowledge by reasoning

# The Gene Ontology

# The Gene Ontology is the most widely used ontology in basic biomedical research

- Three top level domains
  - ► Molecular Function (MF)
  - ► Biological Process (BP)
  - Cellular Compartment (CC)
- Everything else is below these levels, with a relationship of children to parent terms
  - ▶ is a
  - part of
  - develops from
  - regulates
  - negatively regulates
  - positively regulates

# graphical example of the Gene Ontology



From the PhD thesis of Sara Mostafavi (U. Toronto, 2011)

Greg Tucker-Kellogg LSM2241 (496623e) 11 / 41

# Gene ontology annotations are coded by categories of evidence

|     | Experimental Evidence Codes                     |
|-----|-------------------------------------------------|
| EXP | Inferred from Experiment                        |
| IDA | Inferred from Direct Assay                      |
| IPI | Inferred from Physical Interaction              |
| IMP | Inferred from Mutant Phenotype                  |
| IGI | Inferred from Genetic Interaction               |
| IEP | Inferred from Expression Pattern                |
|     | Reviewed Computational Analysis Evidence Codes  |
| ISS | Inferred from Sequence or Structural Similarity |
| ISO | Inferred from Sequence Orthology                |
| ISA | Inferred from Sequence Alignment                |
| ISM | Inferred from Sequence Model                    |
| IGC | Inferred from Genomic Context                   |
| RCA | Inferred from Reviewed Computational Analysis   |
|     | Author Statement Evidence Code                  |
| TAS | Traceable Author Statement                      |
| NAS | Non-traceable Author Statement                  |
|     | Curator Statement Evidence Codes                |
| IC  | Inferred by Curator                             |
| ND  | No biological Data available                    |
|     | Automatically Assigned Evidence Codes           |
| IΕΔ | Inferred from Electronic Annotation             |

Greg Tucker-Kellogg LSM2241 (496623e) 12 / 41

# With genes in sets, you can identify functions using *guilt by association*

# What do the genes I found in my experiment have in common?

- What terms do they have in common?
- Are there some terms that occur more often than expected by chance?
- There are many such methods

#### The wrong way to assess functional association

- Suppose we see that a lot of genes in our list belong to a particular category of function?
- Does this mean the function is meaningful?
  - NO
  - Maybe there are a lot of genes in that category overall

# **Topic**

Molecular profiling

Organising genes into functional groups

Detecting interactions between genes and proteins

Representing genome wide data in networks

Pathway and interaction databases

Roundup and next week

# The goals of protein interaction studies

**Given** Any protein or gene

Find What proteins (or genes) interact with it

Where "interact" has a meaning that we understand and

agree

# Using bait to find interacting proteins

- Most methods rely on the use of one protein or gene, called a bait, to identify other proteins or genes that interact with it
- Each bait requires a genetic manipulation to do the experiment
- Creating a bait construct can be tedious, but methods are being improved to allow automation

### Two example methods

The yeast two-hybrid system identify interactions by activating a reporter through protein-protein binding events

**Tandem Affinity Purification** identify protein interactions by purifying protein-protein binding events

**Synthetic lethal studies** identify interacting *genes* by screening deletion libraries using a knockout

# Yeast two hybrid system

#### **Premise**

- Binding domains and activating domains of transcription factors are modular, but do not have to bind directly to activate transcription
- Proteins of interest can be positioned between binding and activating domains

#### System

Genetically engineered yeast with fusion proteins and a metabolic requirement that can be used for screening

### Yeast two-hybrid assay (1)





B. One fusion protein only (Gal4-BD + Bait) - no transcription

From WikiPedia: Two hybrid screening

Greg Tucker-Kellogg LSM2241 (496623e) 19 / 41

# Yeast two-hybrid assay (2)



C. One fusion protein only (Gal4-AD + Prey) - no transcription



D. Two fusion proteins with interacting Bait and Prey

From WikiPedia: Two hybrid screening

# **Tandem Affinity Purification**

#### Premise

Proteins that interact with each other should purify together under native binding conditions

#### System

- 1. Engineer fusion proteins with tandem affinity tag
- 2. (over) express fusion proteins in cells, release proteins under native conditions
- Purify the protein and its binding partners with successive use of immobilized beads
- 4. Use mass spectrometry to identify binding partners

### **Tandem Affinity Purification**





Express tagged protein in cells with binding targets

# **Tandem Affinity Purification (cont'd)**



# **Tandem Affinity Purification (cont'd)**



# **Tandem Affinity Purification (fin.)**



#### The results of these methods

#### These methods are powerful

**Given** A bait protein (or query gene) of interest

**Determine** A list of binding partners (or genetic interactors)

under experimental conditions

#### They are also limited

- No guarantee to get all the binding partners
- No guarantee that all the binding is correct
- For any individual interaction, a good test is to invert the system (use the finding as a new bait, and see if you can capture the original bait)

# **Topic**

Molecular profiling

Organising genes into functional groups

Detecting interactions between genes and proteins

Representing genome wide data in networks

Pathway and interaction databases

Roundup and next week

# **Graphs and networks**

#### Properties of a graph

#### Must have

- Nodes
- Edges

#### May have

- Weights
  - Labels
- Directions



# Why represent genome wide data as networks?

- The same representation can be used for very different types of data!
  - Protein interactions
  - protein-compound interaction data
  - Facebook friends
  - ► Twitter trends
- Guilt by association recognizes that genes are similar. The edges of gene networks can recognize when gene pairs are similar
- Many tools are available to operate on networks

Greg Tucker-Kellogg LSM2241 (496623e) 29 / 41

#### What do we look for in networks?

**Hubs** genes that are connected to a *lot* of others

Clusters or cliques groups of genes that are connected to each other

**Functional overlap** How to regions of a network, or subnetworks, relate to functional annotation?

**Pathway overlap** How do regions or subnetworks relate to pathways?

# **Cytoscape: Network visualization and analysis**

- Load any interaction data
- Add annotations from disparate data sources
- Look at connectivity in the network

# **Topic**

Molecular profiling

Organising genes into functional groups

Detecting interactions between genes and proteins

Representing genome wide data in networks

Pathway and interaction databases

Roundup and next week

# STRING - both known and *predicted* protein-protein interactions

- Unlike IntAct, STRING, includes predictions of interactions
- A companion database, STITCH, includes interactions between proteins and chemicals
- Another companion datababase, eggNOG, uses functional associations to classify genes into groups of orthologs

# Pathway databases: KEGG



# **KEGG's Pathway Database**

- The most well-known part of KEGG is the pathway database
- A graphical diagrams representing molecular interaction data with cellular processes
- Contrast this with the Gene Ontology
- Explore at http://www.genome.jp/kegg/pathway.html

### Pathway database: Reactome

- Reactome is a US funded pathway database resource
- All open source, accessible data
- Peer reviewed, curated
- Nice visual representations
- Excellent tutorial published in proteomics (Haw et al. 2011)

### Reactome example



Cell cycle checkpoint in reactome

# **Topic**

Molecular profiling

Organising genes into functional groups

Detecting interactions between genes and proteins

Representing genome wide data in networks

Pathway and interaction databases

Roundup and next week

#### What we have learned I

- Whole genome studies create a surfeit of data
- The tools of bioinformatics provide bridges between different forms of large scale experimental data
- Using categories of gene function can help to interpret large scale studies
- "Guilt by association" can be used to infer functional involvement in large scale genomic studies
- High throughput interaction data are generated from a variety of strategies
- Interaction data is often represented as a graph or network
- Network analysis tools allow us to explore the structure of networks, and overlay additional information on top of them
- Pathway databases provide more specialized, but biologically comprehensible, representations of interaction data

#### **Next week**

- Next week we will look at where bioinformatics is going
- We will discuss personal genomics
- We will look at my genomic data from 23 And Me

### Bibliography I



Haw, Robin et al. (2011). "Reactome pathway analysis to enrich biological discovery in proteomics data sets." In: *Proteomics* 11.18, pp. 3598–613. DOI: 10.1002/pmic.201100066 (cit. on p. 36).