Interações em detectores Conversão fotônica

Detectores de fótons

- 1- Excitação ou ionização de átomos ou moléculas do meio, seguida de relaxação/recombinação e emissão de fótons, com comprimento de onda na região visível ou próxima UV/IR (cintilação).
- 2- Radiação *Cherenkov* (faixa UV) e radiação emitida na transição de dois meios dielétricos (radiação de *trαnsição*, faixa de raio-X). Luz emitida é detectada por um fotosensor.

 L_{ph} : Número de fótons gerados no cintilador por $1 \mathrm{MeV}$ de energia depositada

 L_{pe} : Número de fotoelétrons gerados no fotosensor por $1 \mathrm{MeV}$ de energia depositada no cintilador

 ϵ_C : Eficiência de coleta de luz

 ϵ_Q : Eficiência quântica do fososensor; número de fotoelétrons gerados em média por fóton incidente

$$L_{pe} = L_{ph} \times \epsilon_C \times \epsilon_Q$$

A (ou G): Ganho do fososensor; carga coletada por fotoelétron

Número de fótons emitidos proporcional à energia depositada, e carga elétrica gerada pelo fotossensor proporcional ao número de fótons incidentes (idealmente).

Cintiladores orgânicos

- Compostos orgânicos com estrutura molecular tipo benzeno.
- Como cristal, soluções líquidas, com solvente orgânico, e plásticos, com base de polímero.
- Agentes fluorescentes adicionados como dopantes absorvendo e reemitindo luz com comprimento de onda maior e diminuindo absorção.
- Cintiladores orgânicos são rápidos (poucos ns de tempo de decaimento) e apresentação saturação para alta densidade de ionização (fórmula de Birks).

Scintillator	base	density ϱ [g/cm ³]	$ au_{\mathrm{D}}$ [ns]	$L_{\rm ph}, N_{\rm ph}$ [per MeV]	$\lambda_{ m em} \ [m nm]$	$n(\lambda_{ m em})$
Anthracene BC-408 (BICRON) BC-418 (BICRON) UPS-89 (AMCRYS-H) UPS-91F (AMCRYS-H)	PVT PVT PS PS	1.25 1.032 1.032 1.06 1.06	30 2.1 1.5 2.4 0.6	$16000 \\ 10000 \\ 11000 \\ 10000 \\ 6500$	440 425 391 418 390	1.62 1.58 1.58 1.60 1.60

Cintiladores inorgânicos

- Estruturas cristalinas (e.g. Nal, Csl, BaF2, Bi4Ge3O12)
- Gap de energia entre bandas de valência e condução relativamente alto, poucos elétrons na banda de condução, para que seja transparente à luz emitida.
- Emissão de luz via recombinação direta ou via estado "exciton".
- Para aumentar eficiência de cintilação, impurezas dopantes são adicionadas à rede cristalina (e.g. Tl) que criam centros de ativação facilitando a emissão de luz.

Cintiladores inorgânicos

Scintillator	Density ϱ	X_0	$ au_{ m D}$	$L_{ m ph}, N_{ m ph}$	$\lambda_{ m em}$	$n(\lambda_{ m em})$
	$[g/cm^3]$	[cm]	[ns]	[per MeV]	[nm]	
NaI(Tl)	3.67	2.59	230	$3.8\cdot10^4$	415	1.85
LiI(Eu)	4.08	2.2	1400	$1 \cdot 10^{4}$	470	1.96
CsI	4.51	1.85	30	$2 \cdot 10^3$	315	1.95
CsI(Tl)	4.51	1.85	1000	$5.5 \cdot 10^4$	550	1.79
CsI(Na)	4.51	1.85	630	$4 \cdot 10^4$	420	1.84
$Bi_4Ge_3O_{12}$ (BGO)	7.13	1.12	300	$8 \cdot 10^3$	480	2.15
BaF_2	4.88	2.1	0.7	$2.5 \cdot 10^{3}$	220	1.54
			630	$6.5 \cdot 10^{3}$	310	1.50
$CdWO_4$	7.9	1.06	5000	$1.2 \cdot 10^4$	540	2.35
			20000		490	
$PbWO_4$ (PWO)	8.28	0.85	10/30	70–200	430	2.20
$\begin{array}{c} \text{Lu}_2\text{SiO}_5\text{(Ce)} \\ \text{(LSO)} \end{array}$	7.41	1.2	12/40	$2.6 \cdot 10^4$	420	1.82

Fotosensores-PMT (Fotomultiplicadora)

Fotosensores-MCP-PMT

Fotosensores-Semicondutores

p-i-n

Avalanche photodiode (APD)

Possível operar APD em modo *breakdown*

Multi-Pixel Photon Counter – SiPM

Operação em sobretensão à tensão de breakdown da APD

Multi-Pixel Photon Counter – SiPM

Detectores

