

Chapter 5 Advanced Data Modeling

 88822264 Database Systems and Design ระบบฐานข้อมูลและการออกแบบระบบฐานข้อมูล

The Extended Entity Relationship Model

Entity Clustering

O3 Selecting Primary Keys

The Extended Entity Relationship Model

- เพิ่มผลลัพธ์ในโครงสร้างเพิ่มเติมกับแบบจำลองความสัมพันธ์ของ เอนุทิตีดั้งเดิม (Original ERD)
- แผนภาพที่ใช้แบบจำลองนี้เรียกว่าแผนภาพ EER (EERD)

Entity Supertypes and Subtypes

- Entity supertype
 - ประเภทเอนทิตีทั่วไปที่เกี่ยวข้องกับประเภทย่อยของเอน ทิตีตั้งแต่หนึ่งรายการขึ้นไป
 - มีลักษณะร่วม (common characteristics)

- Entity subtype
 - มีลักษณะเฉพาะของแต่ละประเภทย่อยของเอนทิตี

A specialization hierarchy

Disjoint and Overlapping Constraints

- Disjoint subtypes
 - เรียกอีกอย่างว่า non-overlapping subtypes
 - o ชนิดย่อย (Subtypes) ที่มีชุดย่อยเฉพาะ (unique subset) ของชุด เอนทิตี Supertype
- Overlapping subtypes
 - o ประเภทย่อยที่มีชุดย่อยที่ไม่ซ้ำ (non-unique subsets) ของชุด เอนทิตี Supertype

Specialization hierarchy with overlapping subtypes

Entity Clustering

- "Virtual" ประเภทเอนทิตีที่ใช้เพื่อแสดงหลายเอนทิตีและความ สัมพันธ์ใน ERD
- ถือว่า "virtual" หรือ "abstract" เนื่องจากไม่ใช่เอนทิตีใน final ERD
- เอนทิตีชั่วคราวใช้เพื่อแสดงถึงหลายเอนทิตีและความสัมพันธ์

The implementation-ready UML class diagram for Tiny College

Entity Integrity: Selecting Primary Keys

- Primary key เป็นลักษณะที่สำคัญที่สุดของ entity
 - Single attribute or some combination of attributes
- Primary key's มีหน้าที่คือการรับประกันความสมบูรณ์ของเอนทิตี
- Primary keys และ foreign keys ทำงานร่วมกันเพื่อดำเนินความ สัมพันธ์
- การเลือกคีย์หลักอย่างเหมาะสมมีผลโดยตรงต่อประสิทธิภาพ
 (Efficiency) และประสิทธิผล (Effectiveness)

Natural Keys and Primary Keys

- Natural key is a real-world identifier used to uniquely identify real-world objects
 - คุ้นเคยกับผู้ใช้และเป็นส่วนหนึ่งของคำศัพท์ทางธุรกิจประจำวันของ
 พวกเขา
- โดยทั่วไปแล้ว ตั้วสร้างแบบจำลองข้อมูลจะใช้ตัวระบุตามธรรมชาติ
 (Natural identifier) เป็นคีย์หลัก (Primary key) ของเอนทิตีที่กำลังสร้าง แบบจำลอง
- อาจใช้คีย์หลักแบบผสม (Composite key) หรือคีย์เสริม/ตัวแทน (Surrogate key)

หลักเกณฑ์คีย์หลัก

- แอตทริบิวต์ที่ระบุอินสแตนซ์ของเอนทิตีโดยไม่ซ้ำกัน (uniquely identifies) ในชุดเอนทิตี
 - อาจเป็นการรวมกันของแอตทริบิวต์
- หน้าที่หลักคือการระบุอินสแตนซ์หรือแถวของเอนทิตีภายในตาราง โดยไม่ซ้ำกัน
- รับประกันความสมบูรณ์ของเอนทิตีไม่ใช่เพื่อ "อธิบาย" เอนทิตี
- Primary keys และ foreign keys
 - Behind the scenes, hidden from user

TABLE Desirable Primary Key Characteristics 5.3

PK CHARACTERISTIC	RATIONALE		
Unique values	The PK must uniquely identify each entity instance. A primary key must be able to guarantee unique values. It cannot contain nulls.		
Nonintelligent	The PK should not have embedded semantic meaning other than to uniquely identify each entity instance. An attribute with embedded semantic meaning is probably better used as a descriptive characteristic of the entity than as an identifier. For example, a student ID of 650973 would be preferred over <i>Smith</i> , <i>Martha L</i> . as a primary key identifier.		
No change over time	If an attribute has semantic meaning, it might be subject to updates, which is why names do not make good primary keys. If <i>Vickie Smith</i> is the primary key, what happens if she changes her name when she gets married? If a primary key is subject to change, the foreign key values must be updated, thus adding to the database work load. Furthermore, changing a primary key value means that you are basically changing the identity of an entity. In short, the PK should be permanent and unchangeable.		
Preferably single-attribute	A primary key should have the minimum number of attributes possible (irreducible). Single-attribute primary keys are desirable but not required. Single-attribute primary keys simplify the implementation of foreign keys. Having multiple-attribute primary keys can cause primary keys of related entities to grow through the possible addition of many attributes, thus adding to the database work load and making (application) coding more cumbersome.		
Preferably numeric	Unique values can be better managed when they are numeric, because the database can use internal routines to implement a counter-style attribute that automatically increments values with the addition of each new row. In fact, most database systems include the ability to use special constructs, such as Autonumber in Microsoft Access, to support self-incrementing primary key attributes.		
Security-compliant	The selected primary key must not be composed of any attribute(s) that might be considered a security risk or violation. For example, using a Social Security number as a PK in an EMPLOYEE table is not a good idea.		

<u>ควรใช้คีย์</u>หลักแบบผสมเมื่อใด

- คีย์หลักแบบผสมมีประโยชน์ในสองกรณี:
 - เป็นตัวระบุของ composite entities
 - คีย์หลักแต่ละคีย์ผสมกันได้ครั้งเดียวในความสัมพันธ์แบบ
 M:N
 - o เป็นตัวระบุของ weak entities
 - ใน weak entities มีความสัมพันธ์ที่ระบุตัวตนที่แข็งแกร่ง (strong identifying relationship) กับเอนทิตีหลัก
- ให้ประโยชน์โดยอัตโนมัติเพื่อให้แน่ใจว่าไม่มีค่าที่ซ้ำกัน

FIGURE 5.6

The M:N relationship between STUDENT and CLASS

Table name: STUDENT (first four fields)

STU_NUM	STU_LNAME	STU_FNAME	STU_INIT
321452	Bowser	William	С
324257	7 Smithson Anne		K
324258	Brewer	Juliette	
324269	Oblonski	Walter	Н
324273	Smith	John	D
324274	Katinga	Raphael	P
324291	Robertson	Gerald	T
324299	Smith	John	В

Table name: ENROLL

CLASS_CODE	STU_NUM	ENROLL_GRADE	
10014	321452	С	
10014	324257	В	
10018	321452	A	
10018	324257	В	
10021	321452	С	
10021	324257	С	

Table name: CLASS (first three fields)

CLASS_CODE	CRS_CODE	CLASS_SECTION	
10012	ACCT-211	1	
10013	ACCT-211	2	
10014	ACCT-211	3	
10015	ACCT-212	1	
10016	ACCT-212	2	
10017	CIS-220	1	
10018	CIS-220	2	
10019	CIS-220	3	
10020	CIS-420	1	
10021	QM-261	1	
10022	QM-261	2	
10023	QM-362	1	
10024	QM-362	2	
10025	MATH-243	1	

SOURCE: Course Technology/Cengage Learning

ควรใช้คีย์หลักแบบผสมเมื่อใด

- When used as identifiers of weak entities normally used to represent:
 - Real-world object that is existent-dependent on another real-world object
 - Real-world object that is represented in data model as two separate entities in strong identifying relationship
- Dependent entity exists only when it is related to parent entity

ควรใช้คีย์หลักแบบเสริม/ตัวแทนเมื่อใด

- มีประโยชน์อย่างยิ่งเมื่อมี
 - o ไม่มี natural key
 - คีย์ตัวเลือกที่เลือกมีเนื้อหาความหมายฝั่งอยู่
 - คีย์ตัวเลือกที่เลือกยาวเกินไปหรือยุ่งยาก
- หากใช้คีย์หลักแบบเสริม/ตัวแทน
 - o ให้ใช้ "unique index" และ "not null" แทน

TABLE 5.4

Data Used to Keep Track of Events

DATE	TIME_START	TIME_END	ROOM	EVENT_NAME	PARTY_OF
6/17/2012	11:00AM	2:00PM	Allure	Burton Wedding	60
6/17/2012	11:00AM	2:00PM	Bonanza	Adams Office	12
6/17/2012	3:00PM	5:30PM	Allure	Smith Family	15
6/17/2012	3:30PM	5:30PM	Bonanza	Adams Office	12
6/18/2012	1:00PM	3:00PM	Bonanza	Boy Scouts	33
6/18/2012	11:00AM	2:00PM	Allure	March of Dimes	25
6/18/2012	11:00AM	12:30PM	Bonanza	Smith Family	12

Reference

Morris, S., et al. (2012). <u>Database Principles: Fundamentals of Design, Implementation, and Management</u>, Course Technology/Cengage Learning.