

<u>Home</u> <u>Gameboard</u> Biology Physiology Hormones The Endocrine System

The Endocrine System

	ds are found all over the body.
 Head/brain: the Neck: the thyroid gla 	, the pituitary gland, and the pineal gland
Chest: the thymusAbdomen: the females).	, the adrenal glands, and the gonads (in males, in
tems:	
bloodstream ovaries	[pancreas] [gastrointestinal tract] [enzymes] [testes] [hormones] [hypothalamus]

Part B Hormones

Which of the following statements at	oout hormones are true? Select all tha	at apply.
hormones are proteins that catalyse	e biological reactions	
hormones are substances that are	released by one part of the organism and act o	on another part of the organism
hormones are substances that are	released by one neuron into the space betwee	n it and another neuron
all hormones are proteins		
all hormones are steroids		
some hormones are steroids and s	ome hormones are proteins	
contexts, the two systems work toge	nervous system help an organism resether and are sometimes collectively references between the two systems. I	referred to as the neuroendocrine
		N
	Endocrine system	Nervous system
signal type(s)		
signal carried by		
speed of response		
duration of response		
Items:		
electrical impulses and neurotransmitters long duration very fast (milliseconds)	short duration neurons blood h	normones slower (seconds to days)

Created for isaacphysics.org by Lewis Thomson

<u>Home</u> <u>Gameboard</u> Biology Physiology Hormones

Hormones

Part A Types of hormones

In animals, the two most common types of hormones are steroid hormones and peptide/protein hormones. The table below gives some examples of animal hormones.

Identify which type each hormone is.

Hormone	Туре
insulin	
glucagon	
testosterone	
oestrogen	
follicle-stimulating hormone (FSH)	
luteinizing hormone (LH)	
cortisol	
antidiuretic hormone (ADH)	

Items:

steroid peptide/protein

Part B	Steroid	precursor
--------	---------	-----------

What is the precursor molecule that most steroid hormones are synthesised from?					
Part C	Hormone action				
Which o	of the following statements are correct? Select all that apply.				
	steroid hormones pass through the membrane of target cells and bind to receptor molecules inside the cell				
	steroid hormones cannot pass through the membrane of target cells and so they bind to receptor molecules on the outside of the cell membrane				
	peptide/protein hormones pass through the membrane of target cells and bind to receptor molecules inside the cell				
	peptide/protein hormones cannot pass through the membrane of target cells and so they bind to receptor molecules on the outside of the cell membrane				
	the binding of a hormone to a receptor inside the target cell forms a complex that can act as a transcription factor, causing specific genes to be expressed				
	the binding of a hormone to a receptor on the outside of the target cell membrane can trigger a series of chemical reactions inside the cell				

Created for isaacphysics.org by Lewis Thomson

Gameboard:

STEM SMART Biology Week 36 - The Endocrine System

<u>Home</u> <u>Gameboard</u> Biology Physiology Hormones Homeostasis

Homeostasis

_					_
Part A	Defin	ing l	home	Posta	sis

Which o	f the following is the definition of homeostasis?
	when a response produced by the control system leads to an increase in the stimulus detected by the receptor
	the maintenance of an internal environment within restricted limits
	the maintenance of body temperature within restricted limits
	when the response produced by the control system leads to a decrease in the stimulus detected by the receptor and turns the system off
	the maintenance of blood water potential within restricted limits

Part B Negative feedback

Negative feedback is an important mechanism in homeostasis.

Drag the steps below into the correct order on the right to show how negative feedback helps ensure homeostasis.

Available items

the state returns to the normal state
the change from the normal state is detected by sensory cells
a change from the normal state occurs
the response of the endocrine system/nervous system stops
the endocrine system/nervous system produces a signal in response
the sensory cells stop responding

Part C Examples of negative feedback

Which of the following things are regulated by negative feedback in mammals? Select all that apply.

blood clotting
blood water potential
blood glucose levels
blood pressure
internal body temperature
uterine contractions during childbirth

blood pH

Created for isaacphysics.org by Lewis Thomson

Gameboard:

STEM SMART Biology Week 36 - The Endocrine System

Home Gameboard

Biology

Physiology Hormones

The Hypothalamus and the Pituitary Gland

The Hypothalamus and the Pituitary Gland

The hypothalamus is sometimes called the "control centre" of the brain. It receives signals from other parts of the nervous system and sends signals to other endocrine glands via the pituitary gland. The pituitary gland is sometimes called the "master gland" because it secretes hormones that regulate almost all of the other endocrine glands.

There are various subsystems within the endocrine system called "axes" that all involve the hypothalamus and the pituitary gland. These include:

- HPA axis (hypothalamic-pituitary-adrenal axis)
- HPG axis (hypothalamic-pituitary-gonadal axis)
- HPT axis (hypothalamic-pituitary-thyroid axis)

The hypothalamus connects to the pituitary gland in two different ways. It connects to the anterior pituitary gland via blood vessels, and it connects to the posterior pituitary gland via neurons.

Part A HPA axis

The HPA axis (hypothalamic-pituitary-adrenal axis) is responsible for releasing cortisol, one of the main "stress hormones" which is involved in increasing blood glucose levels and increasing blood pressure.

When a stressful stimulus is detected, corticotropin-releasing hormone (CRH) is released, which stimulates the release of adrenocorticotropic hormone (ACTH), which stimulates the release of cortisol.

Match the hormone to the endocrine gland in the table below.

Hormone	Endocrine gland
adrenocorticotropic hormone (ACTH)	
corticotropin-releasing hormone (CRH)	
cortisol	

	lt۵	m	0
- 1	ILC		3

adrenal glands	hypothalamus	ovaries	pancreas	pituitary gland	testes	thymus	thyroid gland	

Part B HPG axis

The HPG axis (hypothalamic-pituitary-gonadal axis) is responsible for releasing oestrogen and testosterone, two major "sex hormones" which are involved in the development of the reproductive systems during puberty, among other things.

In males, the release of gonadotropin-releasing hormone (GnRH) stimulates the release of luteinizing hormone (LH) and follicle-stimulating hormone (FSH), which stimulate the release of testosterone and the production of sperm cells.

Match the hormone to the endocrine gland in the table below for males.

Hormone	Endocrine gland
follicle-stimulating hormone (FSH)	
gonadotropin-releasing hormone (GnRH)	
luteinizing hormone (LH)	
testosterone	

-	1+0	m	_
	ιc	ш	5

adrenal glands	hypothalamus	ovaries p	oancreas	pituitary gland	testes	thymus	thyroid gland	

Part C HPT axis

The HPT axis (hypothalamic-pituitary-thyroid axis) is responsible for releasing thyroid hormones (T3 and T4) which are involved in regulating the body's metabolism.

The release of thyrotropin-releasing hormone (TRH) stimulates the release of thyroid-stimulating hormone (TSH), which stimulates the release of thyroid hormones (T3 and T4).

Match the hormone to the endocrine gland in the table below.

Hormone	Endocrine gland
thyroid hormones (T3 and T4)	
thyroid-stimulating hormone (TSH)	
thyrotropin-releasing hormone (TRH)	

Items:

adrenal glands	hypothalamus	ovaries	pancreas	pituitary gland	testes	thymus	thyroid gland

Part D Regulation

In the examples given above, the hormones released by the adrenal glands/gonads/thyroid gland inhibit the release of the hormones released by the hypothalamus.

What is the name given to this mechanism which ensures that hormone levels will not keep increasing?

Part E Pituitary parts

In the examples given above, the hormones released by the hypothalamus travel to the pituitary gland via the bloodstream.

Which part of the pituitary gland will release hormones in response to this?

Created for isaacphysics.org by Lewis Thomson

Gameboard:

STEM SMART Biology Week 36 - The Endocrine System

All materials on this site are licensed under the ${\color{red} \underline{\textbf{Creative Commons license}}}$, unless stated otherwise.

<u>Home</u> <u>Gameboard</u> Biology Physiology Hormones Adrenaline

Adrenaline

Adrenaline is one of the hormones involved in an animal's "fight or flight" response. When an animal detects a threat, the hypothalamus sends a signal through the sympathetic nervous system to trigger the release of adrenaline into the bloodstream.

Part A Source
Name the endocrine gland in humans that releases adrenaline into the bloodstream.
Part B Responses
Which of the following physiological responses are triggered by the binding of adrenaline to target cells? Select all that apply.
increased heart rate
decreased heart rate
glycogenolysis in the liver
glycogenesis in the liver
smooth muscle relaxation in the lungs
smooth muscle contraction in the lungs

Part C Functions

that ap	o the physiological responses triggered by adrenaline help the organism respond to a threat? Select all ply.
	oxygen uptake is increased
	aerobic respiration rates can increase
	the digestive system works faster
	more water is reabsorbed into the blood
	blood glucose levels are increased
	skeletal muscles can contract more frequently, allowing the organism to move quickly for a longer period of time

Created for isaacphysics.org by Lewis Thomson

Gameboard:

STEM SMART Biology Week 36 - The Endocrine System

All materials on this site are licensed under the ${\color{red} \underline{\textbf{Creative Commons license}}}$, unless stated otherwise.

<u>Home</u> <u>Gameboard</u>

Biology

Physiology Hormones

The Second Messenger Model: Adrenaline

The Second Messenger Model: Adrenaline

Hormones that cannot pass directly through the cell membrane rely on second messengers (small intracellular signalling molecules/ions) to induce a response in target cells. The model that describes this process is called the second messenger model.

In the second messenger model, the hormone (the first messenger) binds to a receptor on the outside of the cell membrane. This causes the activation of the primary effector inside the cell, which causes the production/activation of the second messenger. The second messenger then activates the secondary effector, which causes the target cell to carry out the correct response.

Adrenaline is an example of a hormone that relies on a second messenger.

Part A Adrenaline structure

Figure 1: Skeletal formula of adrenaline.

Based on **Figure 1**, which of the following statements explain why adrenaline relies on a second messenger? Select all that apply.

adrenaline is an ion
adrenaline is a polar molecule
adrenaline is a non-polar molecule
adrenaline is too large to pass through the cell membrane
only polar molecules and ions can pass through the cell membrane
only non-polar molecules can pass through the cell membrane

Part B Adrenaline action

Drag the items below into the correct order on the right to show how adrenaline causes liver cells to break down glycogen.

Some of the items are not part of this process, and so you should not use all of them.

Adrenaline passes through the liver cell membrane and binds to a receptor inside the cell.

Available items

Adrenaline binds to a receptor (a transmembrane protein) on the outside of the liver cell membrane.

Cyclic AMP (cAMP) activates the enzyme protein kinase, which activates the enzymes required for glycogenolysis.

Adenyl cyclase catalyses the formation of cyclic AMP (cAMP) from ATP.

The transmembrane protein undergoes a conformational change, causing the activation of the enzyme adenyl cyclase, which is attached to the transmembrane protein inside the cell.

Glucose molecules are converted into glycogen.

Glycogen is broken down into glucose molecules.

Part C Molecules & functions

Using the information above, and your answer to the previous section, match the molecule to the function in the table below.

Function	Molecule
First messenger	
Primary effector	
Second messenger	
Secondary effector	
glucose adrenaline cyclic AMP (cAMP) protein ki	inase glycogen adenyl cyclase
Part D True or false Which of the following statements about second measurements are hormones that travel through Second messengers are enzymes that carry out the respective second messengers are signalling molecules found in Second messengers pass through the target cell memoral second messengers relay signals from the target cell cell occurs.	esponse of the target cell. side the target cell.

Created for isaacphysics.org by Lewis Thomson