Современные асинхронные шины

Луцив Дмитрий Вадимович

Кафедра системного программирования СПбГУ

Содержание

1 Что делать с выравниванием длины дорожек?

Внутренняя шина PCI Express

Интерфейсные шины USB и Thunderbolt

Что делать с выравниванием длины дорожек?

А зачем нужны асинхронные последовательные шины

- Что нам мешает?
 - Противостояние тактовая частота скорость света
 - «Широкая» шина

А зачем нужны асинхронные последовательные шины

- Что нам мешает?
 - Противостояние тактовая частота скорость света
 - «Широкая» шина
- На «узкой» шине выровнять дорожки легче. До сих пор «держатся» параллельными дорожки к ОЗУ, и то с оговорками, но об этом позже

Внутренняя шина PCI Express

PCI Express: Root Complex

- Северный мост трансформироавлся в Root Complex ☐, в современные процессоры обычно встраивается на кристалл, реже — отдельным кристаллом в том же корпусе
- Южный мост «размазался»
- Некоторые традиционно «не периферийные» устройства, например ПЗУ (точнее ППЗУ) доступны через последовательную шину

Внутренняя шина PCI Express 6 / 13

PCI Express: Полосы, Совместимость разъёмов разной ширины

Разные разъёмы РСІ-Е (+ 1 РСІ) □

- Разные версии стандарта разные скорости
- Передача данных пакетами, в зависимости от длины разъёма от 1 до 16 пакетов одновременно
 - Устройства и разъёмы разной длины [обычно] совместимы друг с другом, если их можно соединить механически

• Короткое устройство будет работать в длинном разъёме

Внутренняя шина PCI Express

PCI Express: Скорости

Version	Intro- duced	Line code		Transfer rate per lane ^{[i][ii]}	$Throughput^{[i][iii]}$				
					х1	x2	х4	x 8	x16
1.0	2003	NRZ	8b/10b	2.5 GT/s	0.250 GB/s	0.500 GB/s	1.000 GB/s	2.000 GB/s	4.000 GB/s
2.0	2007			5.0 GT/s	0.500 GB/s	1.000 GB/s	2.000 GB/s	4.000 GB/s	8.000 GB/s
3.0	2010		128b/130b	8.0 GT/s	0.985 GB/s	1.969 GB/s	3.938 GB/s	7.877 GB/s	15.754 GB/s
4.0	2017			16.0 GT/s	1.969 GB/s	3.938 GB/s	7.877 GB/s	15.754 GB/s	31.508 GB/s
5.0	2019			32.0 GT/s	3.938 GB/s	7.877 GB/s	15.754 GB/s	31.508 GB/s	63.015 GB/s
6.0	2022	PAM-4 FEC	1b/1b FLIT	64.0 GT/s 32.0 GBd	7.563 GB/s	15.125 GB/s	30.250 GB/s	60.500 GB/s	121.000 GB/s
7.0	2025 (planned)			128.0 GT/s 64.0 GBd	15.125 GB/s	30.250 GB/s	60.500 GB/s	121.000 GB/s	242.000 GB/s

Скорости PCI Express по данным Википедии ♂ и Peripheral Component Interconnect Special Interest Group ♂

Внутренняя шина PCI Express 8 / 13

Mini PCI Express, mSATA и M.2

Mini PCI & Mini PCI-E 🗗

M.2 C использует одинаковый электический и сигнальный интерфейсы с mSATA 다, это типичная практика, и об этом ниже

Внутренняя шина PCI Express 9 / 13

Интерфейсные шины USB и Thunderbolt

История USB

- Используется с середины 1990-х
- Идеи:
 - Универсальность
 - Возможность под/отключения на ходу
 - Механически прочный разъём с мощным питанием
 - Изначально не очень высокая скорость: у хорошо настроенного параллельного порта IEEE 1284 (LPT) скорость выше, чем у USB 1.X

История USB

- Используется с середины 1990-х
- Идеи:
 - Универсальность
 - Возможность под/отключения на ходу
 - Механически прочный разъём с мощным питанием
 - Изначально не очень высокая скорость: у хорошо настроенного параллельного порта IEEE 1284 (LPT) скорость выше, чем у USB 1.X

Разъёмы за более, чем 25-летнюю историю 🗗

Упражнения и вопросы

Упражнения

• Попытайтесь идентифицировать все компьютерные разъёмы, которые вы можете встретить

Вопросы

- Что такое Root Complex?
- В чём смысл использования последовательных шин расширения?
- Приведите примеры протоколов, использующих одинаковые электрические и сигнальные интерфейсы

Вопросы

EDU.DLUCIV.NAME ☐