034강 Realize Instance

인스턴스를 실체화하여 모델링에 활용하기

지오메트리 노드의 다른 사용법

여러 개의 인스턴스가 자동으로 생기는 특징을 이용하여, 모델링에 활용해보겠습니다.

Distribute Points in Volume

자동 다듬기

자동 텍스쳐링

지오메트리 노드에서 생성된 Mesh의 Material

Mesh Boolean Node

Mesh Boolean은 모델링과 모디파이어의 Boolean기능과 동일하게 작동합니다.

※이 노드는 지금까지 알아본 노드들보다 연산이 매우 무겁습니다. 사용에 주의를 요합니다.

∨ Mesh Boolean

Mesh •

Intersecting Edges •

입출력 활용

입력: 소켓을 Group Input에 연결하면, 지오메트리 노드를 여러 개의 오브젝트에 사용할 때 값을 개별적으로 바꿀 수 있습니다.

출력: 소켓을 Group Output에 연결하면, 모디파이어 외부 (셰이더 등)에서 사용할 수 있습니다.

※ 그러나 Group Output으로 뺀 경우, 사용할 때마다 매번 변수에 이름을 지정해주어야 합니다. 통일된 이름을 사용하려 한다면 노드 내부에서 Store Named Attribute를 사용하는 것이 편리합니다.

라디안 (Radians)에 익숙하지 않은 분들을 위해

기본적으로 각도는 육십분법으로 표기되지만, 노드를 연결하기 시작하면 달라집니다. 아래와 같이 각도 표시가 사라지고 일반적인 숫자로 바뀝니다. 이것이 호도법 (라디안각) 입니다. 라디안은 180도를 π 로 나타냅니다. 그에 따라 90도는 π /2 = 1.5708... 이 됩니다.

라디안 (Radians)에 익숙하지 않은 분들을 위해

사용에 어려움이 있으시면 Math노드의 To radians를 이용하시거나, 파이썬 함수 radians()를 사용하셔도 좋습니다.

Mesh boolean의 Self Intersection / Hole Tolerant

Self Intersection : 지오메트리가 자체적으로 겹쳐 있을 때 제대로 작동하지 않으면 체크합니다. Hole Tolerant : 표면이 닫혀 있지 않고 구멍이 뚫려 있어 제대로 작동하지 않을 때 체크합니다.

체크하면 더 정확한 연산이 나올 수 있지만, 대신 느려집니다.

Edge Angle의 Unsigned / Signed

Unsigned는 두 면이 이루는 각도를 계산합니다.

Signed 각은 두 면이 이루는 각을 어떤 한쪽 방향 기준으로 계산합니다. 즉 안쪽으로 굽은 것과 바깥으로 굽은 것이 구분됩니다.

Edge Angle은 두 면이 완전히 펴져 있을 때가 0도이고, 완전히 접혔을 때가 180도입니다. 조금 비직관적이므로 유의해주세요.

Blur Attribute : 말 그대로 Atribute를 '흐립니다'.

연결된 점,선,면을 따라 흐려지므로, 점들이 연결되어 있는 메쉬와 커브에만 사용할 수 있고 점들이 연결되지 않은 경우에는 사용할 수 없습니다.