Scritto_24_02_2021_modulo_1_prova

Ciao, paolo. Quando invii questo modulo, il proprietario vedrà il tuo nome e indirizzo email.

1 A quale delle seguenti classi appartiene la complessità (nel caso peggiore) dell'algoritmo QuickSort in cui il perno nella procedura di Partition è scelto sempre come l'elemento finale dell'array? ☐ (1 punto) $O(n \log n)$ Θ ($n \log n$) $\Theta(n^2)$ O(n)2 In un albero AVL di n elementi, l'inserimento di un elemento nel caso peggiore ha costo: 🛄 (1 punto) $O(\log n)$ O(1) $\Theta(n)$ Ω (log n)

Un heap binario di altezza 4 contiene un numero di elementi: 🛄 (1 punto)
> 16
< 16
4
In un Heap binomiale di n elementi, il più alto albero binomiale ha altezza:
$ \bigcirc \Theta (n) $
$\bigcap O(\log n)$
\bigcirc $O(n)$
\bigcirc $O(1)$
5
Qual è la complessità dell'Integer Sort applicato ad un array di n interi compresi fra 1 e log n? 🕠 (1 punto)
$\bigcap O(\log n)$
\bigcirc $O(n)$
$ oxedown \Theta\left(n^2 ight) $

6	
L'albero di decisione di un generico algoritmo basato su confronti per il problema di ordinare n elementi ha un'altezza pari a: [], (1 punto)	
$ \ge n \log n $	
$\bigcap \ O\left(n^2 ight)$	
\bigcirc $O(\log n)$	
$\bigcap \Omega (n \log n)$	
7	
Quale delle seguenti relazioni asintotiche è vera? 💢 (1 punto)	
8	
Si consideri il più efficiente algoritmo per calcolare l'n-esimo numero di Fibonacci, cioè l'algoritmo Fibonacci6. E sia T l'albero della ricorsione dell'algoritmo con input n. Quali delle seguenti affermazioni sono vere? (1 punto)	<u>□</u> •0)
T ha Θ(n) nodi.	

I nodi non foglie di T hanno sempre due figli.
T ha altezza O(log n).
T ha O(log n) nodi interni (non foglie).
Description of the second sec
3
10
Si consideri un max-heap binario di 100 elementi mantenuto tramite un vettore posizionale di dimensione 100. Quali delle seguenti affermazioni sono vere? (1 punto)
il massimo è il primo elemento del vettore.
il massimo si trova in posizione 50.
il figlio destro del figlio sinistro della radice è il quinto elemento del vettore.

il minimo è l'ultimo elemento del vettore.	
11 Sia h l'altezza di un albero AVL di n ele affermazioni sono vere? □ (1 punto	
La visita in profondità del grafo in figura a partire dal nodo s restituisce un albero di visita di altezza: (1 punto)	S
7 dipende da come sono arrangiati i record ne	lle liste di adiacenza dei nodi
2	
<u>6</u>	

Quale delle seguenti relazioni asintotiche è vera? 🔲 (1 punto)

14

Si consideri l'algoritmo Merge di fusione di due sequenze ordinate A e B lunghe rispettivamente n1 e n2. Si assuma che tutti gli elementi di A sono più piccoli del più piccolo elemento di B. Allora il numero di confronti eseguiti dall'algoritmo è: [], (1 punto)

- $O\left(\min\left\{n1,n2\right\}\right)$
- Ω (n1)

15

Sia T l'albero dei cammini minimi del grafo in figura con radice A. Quali delle seguenti affermazioni sono vere? (1) (1 punto)

A ha due figli
E ha due figli
il peso totale di T è 8
la lunghezza del cammino in T da A a D è 5
16
La soluzione della seguente relazione di ricorrenza è: 🛄 (1 punto)
$T(n) = 3T\left(\frac{n}{9}\right) + O(1); T(1) = O(1).$
$ oxedown \Theta\left(n^2 ight) $
\bigcirc $O\left(n^2\right)$
\bigcirc $O(\log n)$
$\bigcirc O(n)$
17
La soluzione della seguente equazione di ricorrenza è: 🛄 (1 punto)
T(n) = 2T(n-2) + 1; T(1) = 1.
$\bigcirc O(2^n)$
\bigcirc Θ (2^n)
\bigcirc $O(n^3)$
\bigcirc $O\left(n^{30}\right)$

L'albero di decisione associato all'algoritmo IntegerSort con input di dimensione n, quando il massimo valore in input è O(n), ha altezza: \square_0 (1 punto)

	Ω	(n^2))
-		1	,

Non è definita perché l'IntegerSort non è un algoritmo basato su confronti.

 Ω ($n \log n$)

 $\bigcap O(n \log n)$

19

Dire quali fra le seguenti sequenze di nodi rappresentano un ordine topologico del grafo in figura. (1 punto)

1254736

1254376

2543176

1234567

20

Dato un grafo pesato con n vertici ed $m=\Theta(n \log n)$ archi, il tempo di esecuzione dell'algoritmo di Dijkstra realizzato con heap binario è: \square

 Θ ($n \log n$)

(1 punto)

Questo contenuto è creato dal proprietario del modulo. I dati inoltrati verranno inviati al proprietario del modulo. Microsoft non è responsabile per la privacy o le procedure di sicurezza dei propri clienti, incluse quelle del proprietario di questo modulo. Non fornire mai la password.

Microsoft Forms | Indagini, quiz e sondaggi alimentati dall'intelligenza artificiale <u>Crea un modulo personalizzato</u> Privacy e cookie | Condizioni per l'utilizzo | <u>Accessibilità</u>