Lock-chart solving

Dissertation defense

Radomír Černoch

27/6/2018

1. Introduction

Tumbler lock

Tumbler lock

In this picture:

- ▶ There are 4 *positions* (vertical bars).
- ► There are 4 *cutting depths* (horizontal lines).

$$p = 4, d = 4$$

Lock-chart problem

Lock-chart problem

Reviewer's comment

Based on the presented research, has there been a progamme written that could be practically used to design master keyed systems?

Otázka oponenta

Byl na základě představeného výzkumu napsán program, který se v praxi použil na návrh zámků a klíčů, případně na nějaké dílčí úlohy?

CyberCalc: Depth-first-search with constraint-satisfaction pruning and many heuristics.

CyberCalc: Depth-first-search with constraint-satisfaction pruning and many heuristics.

Issues

- Lack of insight into heuristics' effects.
- ▶ Does not scale for **modern** platforms with $\geq 10^6$ key cuttings.
- Can some subproblems be polynomial? Under which assumptions?
- ► The **extensibility** problem.

2. Complexity classes

Frameworks

4 constraint *frameworks* of increasing expressivity:

- 1. Vanilla: Number of positions p and cutting depths d.
- 2. (**Asymmetric**: Number of cutting depths varies between positions.)
- 3. **General**: Plus a set of *general constraints* (gecons).
- 4. (**Explicit**: List of valid key cuttings is algorithm's input.)

Why gecons?

- Most constraints "overlap", counting key cuttings that satisfy all constraints is difficult.
- Gecon = a formally defined group of forbidden key cuttings.
- ► 15 rules can be each "compiled" to a set of gecons.

Counting key cuttings

- Derive number of key cuttings invalidated by 1 gecon.
- Define an intersection of 2 gecons (which is also a gecon).
- Design a inclusion-exclusion counting procedure.
- lt can count $\approx 840 \cdot 10^6$ keys within 60 s.

\mathcal{NP} -completeness

- ▶ **Gecon** corresponds to 1 clause in the SAT problem.
- ▶ SAT is equivalent to solving a "1 key \times 0 locks" lock-chart.
- ▶ Lock-chart solving in the general framework is \mathcal{NP} -complete.

\mathcal{NP} -completeness

- ▶ **Gecon** corresponds to 1 clause in the SAT problem.
- ▶ SAT is equivalent to solving a "1 key \times 0 locks" lock-chart.
- ightharpoonup Lock-chart solving in the general framework is \mathcal{NP} -complete.

Counting key cuttings

- Both reductions preserve the number of solutions.
- ▶ #SAT counts the number of valid key cuttings.
- ▶ Counting key cuttings is in $\#\mathcal{P}$.

\mathcal{NP} -complete classes

 $\bullet = \mathsf{lock}\text{-}\mathsf{chart}$ problem instance grows in this parameter

		mowork lock chart 10 % % % %						
	framework	lock-chart	\ \dolday \dolday	86	1 0 0°			
1.	general	all	•	•				

\mathcal{NP} -complete classes

ullet = lock-chart problem instance grows in this parameter

		lock-chart 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					
	framework	lock-chart	9 8 8	1 mg 0			
1.	general	all	• •				
2.	vanilla	extension	•	• Lawer (2004)			

\mathcal{NP} -complete classes

ullet = lock-chart problem instance grows in this parameter

		lock-chart $\sqrt{2}$						
	framework	lock-chart	Q	8	86	Per	0	
1.	general	all	•		•			
2.	vanilla	extension	•				•	Lawer (2004)
3.	vanilla	melted-profiles		•		•	•	

- ▶ Results 1. and 2. proved by a reduction from SAT.
- ightharpoonup Result 3. by a reduction from k-coloring.

Complexity classes of lock-chart problem variants:

Diagonal lock-chart:

Contains exactly 1 general key which opens all locks and several *individual* keys which open exactly 1 lock.

Diagonal lock-chart:

Contains exactly 1 general key which opens all locks and several *individual* keys which open exactly 1 lock.

Properties

- Finding cuttings for individual keys translates to the maximum independent set (MIS) problem.
- This is true for all frameworks.

Structure of the MIS graph

- ▶ The MIS graph can be partitioned into $S_0, ..., S_p$ classes, based on the distance to the cutting of the general key.
- ▶ Size of the *q*-th class was derived to be

$$|S_q| = {p \choose p-q} \cdot (d-1)^{p-q}$$
,

maximized if $q = \hat{q}$, where

$$\hat{q} = \left\lfloor \frac{p+1}{d} \right\rfloor$$
.

Structure of the MIS graph

- ▶ The MIS graph can be partitioned into $S_0, ..., S_p$ classes, based on the distance to the cutting of the general key.
- ▶ Size of the *q*-th class was derived to be

$$|S_q| = {p \choose p-q} \cdot (d-1)^{p-q}$$
,

maximized if $q = \hat{q}$, where

$$\hat{q} = \left\lfloor \frac{p+1}{d} \right\rfloor$$
.

- **Each** S_q class is an independent set (true in every fw.).
- \triangleright $S_{\hat{a}}$ is the maximum independent set (in vanilla fw.).

Structure of the MIS graph

- ▶ The MIS graph can be partitioned into $S_0, ..., S_p$ classes, based on the distance to the cutting of the general key.
- ▶ Size of the *q*-th class was derived to be

$$|S_q| = {p \choose p-q} \cdot (d-1)^{p-q}$$
,

maximized if $q = \hat{q}$, where

$$\hat{q} = \left\lfloor \frac{p+1}{d} \right\rfloor$$
.

- **Each** S_q class is an independent set (true in every fw.).
- \triangleright $S_{\hat{q}}$ is the maximum independent set (in vanilla fw.).
- The rotating constant method (RCM) was analysed.

- ▶ Solution exists iff the number of keys is at most $|S_{\hat{q}}|$.
- Diagonal lock-charts in the vanilla framework are polynomial.

 \blacktriangleright MIS is $\mathcal{NP}\text{-complete},$ but it can be approximated.

- MIS is NP-complete, but it can be approximated.
- Since each S_q is an independent set, RCM gives at least a **lower bound** on the MIS size.
- ► How tight is this bound?

- Real-world constraints were randomly sampled.
- The MIS graph was constructed in memory.
- RCM was compared againts an exact algorithm (backtracking, exponential runtime).

RCM gives a lower bound on the size of diagonal lock-charts:

- 1. Vanilla: Given by a closed formula.
- 2. **Asymmetric**: Calculated using dynamic programming (not discussed here, still in \mathcal{P}).
- 3. **General**: A modified inclusion-exclusion algorithm.

3. Practical algorithms

Use of cutting-counting

```
A typical real-world lc.:
**..*....*....
*.*..*.... <- Group 1
*...**.*...*....
***....
****...*....*...
**..*.....*...
*.*..*... <- Group 1
*...***.*.....*.
******
 MASTER INDIVIDUAL
```

Use of cutting-counting

A typical real-world lc.:

```
**..*....*.....
*.*..*.... <- Group 1
*...**.*...*....
***....
****...*....*...
**..*......*...
*...***.*.....*.
******
\____/
```

MASTER INDIVIDUAL

- Each group defined by a combination of master keys.
- RCM was generalized to count individual keys in each group.

All-different pruning

- ► All-different algorithm is inspired by constraint satisfaction problems.
- ▶ If there are less cuttings for individual keys than the size of the group, no solution can exist.

All-different pruning

- ► The algorithm by Lawer (2004) (which optimizes a criterial function) was taken as a base-line.
- ▶ The all-different pruning reduces runtime
 - ightharpoonup by 9% on a real-world dataset,
 - ightharpoonup by 80% on a synthetic dataset (larger lock-charts).
- Keeps completeness and optimality.

SAT approach

- Lock-chart problem was translated to SAT.
- ► The criterial function was approximated (no optimality guaranteed).
- ► The SAT instances were solved by MiniSAT Eén and Sörensson (2003).

SAT approach

- Lock-chart problem was translated to SAT.
- The criterial function was approximated (no optimality guaranteed).
- ► The SAT instances were solved by MiniSAT Eén and Sörensson (2003).
- Only algorithm that solves all lock-charts in all datasets.
- Runtime is 2 orders of magnitude faster.
- Optimal result achieved in all but one lock-chart.
- \blacktriangleright Suitable for small lock-charts (up to $\sim 100 \times 100)$ due to many auxiliary variables.

4. Extensibility

General approach

- **Extensibility:** dealing with unknown constraints, added after a solution is found.
- **Example:** Adding 1 floor to the building.

General approach

- Extensibility: dealing with unknown constraints, added after a solution is found.
- **Example:** Adding 1 floor to the building.
- Extensibility was vaguely defined and hard to quantify.
- Main idea: Given some assumptions, extrapolate the from-scratch lock-chart to the largest solvable lock-chart.
- Such lock-chart is called extremal.

Individual keys

▶ Assumptions:

- 1. The lock-chart is diagonal.
- 2. Only individual keys will be added in future.

Consequences:

- 1. Pick cuttings from $S_{\hat{q}}$.
- 2. The extremal lock-chart can have at most $|S_{\hat{q}}|$ individual keys / locks.

Independent master keys

- ▶ **Assumption:** Lock-chart has at most $p \cdot (d-1) + 1$ keys.
- **▶** Consequences:
 - 1. Any lock can be added in future.
 - 2. There are $2^{p \cdot (d-1)+1}$ such locks.

Conclusions

- ▶ The computational complexity proof show that the $\mathcal{P} \times \mathcal{NP}$ boundary disects the lock-chart problem.
- Practical cutting-counting algorithm allowed by the "compilation to gecons".
- ► All-different pruning improves a state-of-the-art algorithm.
- ► SAT-based algorithm is the new baseline.
- Extensibility has been formalized.

Thank you for your attention.

How many cylinders are there?

- ▶ Cutting is a p-dimensional vector with discrete values $\{1, \ldots, d\}$. There may be d^p of them.
- ▶ On every position, a cylinder may or may not have a cutting depth d. There are $p \cdot d$ such binary choices. Together $2^{p \cdot d}$ cylinders.

Citation

15 "real" constraint can be polynomially translated to gecons.

Reviewer's comment

For how many constraints is this true? Is there a common pattern among the remaining ones?

Otázka oponenta

Pro kolik podmínek to je pravda a co měly společné podmínky, pro které to neplatilo?

All constraints that are translated to gecons, are translated to a polynomial number of gecons.

Example

"The first n positions may not be equal."

Generates $\mathcal{O}(d \cdot n^2)$ gecons:

Some constraints are not translatable to gecons.

Example

"Some two cutting depths differ by at least n."

Solution in the solver

We use *existential constraints* (excons) Hořeňovský (2018). Used for constraints speaking about "existence" of a cutting depth.

Reviewer's criticism

Theoretical results are straightforward, except for Theorem 52, whose proof is incomplete.

Výhrada oponenta

K teoretickým výsledkům mám výhrady: jsou povětšinou přímočaré s výjímkou věty 52, která má neúplný důkaz.

- ▶ Proofs in the theoretical results are straightforward indeed.
- ▶ Most of them fit within a single A5 page (see page 37).
- ▶ The results are still novel.

- ▶ Let $0 \le q < r \le p$, $S'_q \subseteq S_q$, $S'_r \subseteq S_r$ and $S'_q \cup S'_r$ be an independent set.
- Proved that

$$|S'_q| + |S'_r| \le \max\{|S_q|, |S_r|\}$$
.

▶ Can $|S'_q| + |S'_r| + |S'_s| + \dots \le \max\{|S_q|, |S_r|, |S_s|, \dots\}$?

- ▶ Let $0 \le q < r \le p$, $S'_q \subseteq S_q$, $S'_r \subseteq S_r$ and $S'_q \cup S'_r$ be an independent set.
- Proved that

$$|S'_q| + |S'_r| \le \max\{|S_q|, |S_r|\}$$
.

- ► Can $|S'_q| + |S'_r| + |S'_s| + \dots \le \max\{|S_q|, |S_r|, |S_s|, \dots\}$?
- Proof is incomplete.
- ▶ There is no known counter-example.
- ▶ I am convinced that the theorem still holds.

Reviewer's comment

The algorithms were tested in the "vanilla framework", but the gecons alone cause NP-completeness. Are there resons to believe that the results would not change [if gecons were included]?

Otázka oponenta

Testování algoritmů proběhlo ve "vanilla framework". Samotná omezení ve formě geconů zapřičiňují NP-úplnost. Existují důvody pro to, že by se výsledky podstatně nezměnily při porovnávání vstupních dat z praxe?

- ► Let's assume that the Lawers' algorithm can (somehow) accomodate gecons.
- Will SAT be still better?

- Let's assume that the Lawers' algorithm can (somehow) accomodate gecons.
- ▶ Will SAT be still better?

1. Runtime:

- Finding a valid key cutting given real-world constraints is easy $(\leq 1 \text{ ms})$.
- Gecons are applied to each key separately (exploited by DPLL).
- Finding valid key cuttings for ~ 100 keys is ≤ 1 s.

- Let's assume that the Lawers' algorithm can (somehow) accomodate gecons.
- ▶ Will SAT be still better?

1. Runtime:

- Finding a valid key cutting given real-world constraints is easy $(\leq 1 \text{ ms})$.
- Gecons are applied to each key separately (exploited by DPLL).
- Finding valid key cuttings for ~ 100 keys is ≤ 1 s.

2. Criterial function:

- ▶ Some modifications to the strategy are needed.
- It is tricky to pick a cutting depths to forbid.
- ► This is done in the commercial product.
- lacksquare Lock-charts of size ~ 25 keys can still be optimized within $3\,\mathrm{s.}$
- 3. Also, the 2 orders-of-magnitude margin is very big.

Reviewer's comment

Based on the presented research, has there been a progamme written that could be practically used to design master keyed systems?

Otázka oponenta

Byl na základě představeného výzkumu napsán program, který se v praxi použil na návrh zámků a klíčů, případně na nějaké dílčí úlohy?

- Yes.
- ▶ The translation to SAT is already in production.
- ► A fully fledged all-different pruning is in development.

- Eén, N. and Sörensson, N. 2003. An extensible sat-solver. In *Theory and applications of satisfiability testing*, pages 502–518. Springer.
- Hořeňovský, M. 2018. Performance analysis of a master-key system solver. Master's thesis, Czech Technical University in Prague.
- Lawer, A. 2004. Calculation of lock systems. Master's thesis, Royal Institute of Technology.