- **7.** Draw and label energy diagrams that depict the following reactions, and determine all remaining values. Place the reactants at energy level zero.
 - a. $\Delta E_{forward} = -10 \text{ kJ/mol } E_a' = 40 \text{ kJ/mol}$
 - b. $\Delta E_{forward} = -95 \text{ kJ/mol } E_a = 20 \text{ kJ/mol}$
 - c. $\Delta E_{reverse} = -40 \text{ kJ/mol } E_a' = 30 \text{ kJ/mol}$

Reaction Rate

SECTION 2 REVIEW

- **8.** Define the rate-determining step for a chemical reaction.
- **9.** Write the general equation for the rate law, and label the various factors.

PRACTICE PROBLEMS

10. a. Determine the overall balanced equation for a reaction that has the following proposed mechanism, and write an acceptable rate law. (Hint: See Sample Problem C.)

Step 1:
$$B_2 + B_2 \longrightarrow E_3 + D$$
 slow **Step 2:** $E_3 + A \longrightarrow B_2 + C_2$ fast

- b. Give the order of the reaction with respect to each reactant.
- c. What is the overall order of the reaction?
- 11. A reaction that involves reactants A and B is found to occur in the one-step mechanism:
 2A + B → A₂B. Write the rate law for this reaction, and predict the effect of doubling the concentration of either reactant on the overall reaction rate. (Hint: See Sample Problem C.)
- **12.** A chemical reaction is expressed by the balanced chemical equation A + 2B → C. Three reaction-rate experiments yield the following data.

Experiment number	Initial [A]	Initial [B]	Initial rate of formation of C
1	0.20 M	0.20 M	2.0 × 10 ⁻⁴ M/min
2	0.20 M	0.40 M	8.0 × 10 ⁻⁴ M/min
3	0.40 M	0.40 M	1.6 × 10 ⁻³ M/min

- a. Determine the rate law for the reaction.
- b. Calculate the value of the specific rate constant.

- c. If the initial concentrations of both A and B are 0.30 M, at what initial rate is C formed?
- d. What is the order of the reaction with respect to A?
- e. What is the order of the reaction with respect to B?

MIXED REVIEW

13. Draw and label energy diagrams that depict the following reactions, and determine all remaining values. Place the reactants at energy level zero.

a.
$$\Delta E = +30 \text{ kJ/mol}$$

$$E_a' = 20 \text{ kJ/mol}$$

b.
$$\Delta E = -30 \text{ kJ/mol}$$

$$E_a = 20 \text{ kJ/mol}$$

14. A particular reaction is found to have the following rate law.

$$R = k[A][B]^2$$

How is the rate affected by each of the following changes?

- a. The initial concentration of A is cut in half.
- b. The initial concentration of B is tripled.
- c. The concentration of A is doubled, but the concentration of B is cut in half.
- d. A catalyst is added.
- **15.** For each of the following pairs, choose the substance or process that you would expect to react more rapidly.
 - a. granulated sugar or powdered sugar
 - b. zinc in HCl at 298.15 K or zinc in HCl at 320 K
 - c. 5 g of thick platinum wire or 5 g of thin platinum wire
- **16.** The following data relate to the reaction A + B → C. Find the order with respect to each reactant.

[A] (M)	[B] (M)	Rate (M/s)
0.08	0.06	0.012
0.08	0.03	0.006
0.04	0.06	0.003