日本国特許庁 JAPAN PATENT OFFICE

10.11.2004

REC'D 13 JAN 2005

WIPO PCT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application: 2004年 3月29日

出願番号 Application Number:

特願2004-094160

[ST. 10/C]:

[JP2004-094160]

出 願 人 Applicant(s):

株式会社ナード研究所

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2004年12月24日

1) 11

【書類名】

特許願

【整理番号】

33105

【提出日】

平成16年 3月29日

【あて先】

特許庁長官殿

【国際特許分類】

GO1N 21/21

【発明者】

【住所又は居所】

広島県広島市東区牛田東2丁目19-18

【氏名】

【氏名】

【氏名】

小池 透

【発明者】

【住所又は居所】

兵庫県尼崎市西長洲町2丁目6番1号 株式会社ナード研究所内

川崎 昭彦

【発明者】

【住所又は居所】

兵庫県尼崎市西長洲町2丁目6番1号 株式会社ナード研究所内

小橋 達弘

【発明者】

【住所又は居所】

兵庫県尼崎市西長洲町2丁目6番1号 株式会社ナード研究所内

▲高▼萩 誠

【氏名】 【特許出願人】

【識別番号】

000134637

【住所又は居所】

兵庫県尼崎市西長洲町2丁目6番1号

【氏名又は名称】

株式会社ナード研究所

【代理人】

【識別番号】

100067828

【弁理士】

【氏名又は名称】

小谷 悦司

【選任した代理人】

【識別番号】

100075409

【弁理士】

【氏名又は名称】 植木 久一

【国等の委託研究の成果に係る記載事項】 平成13年度,経済産業省,平成13年度即

効型地域新生コンソーシアム研究開発事業(フォスタグ技術と商品の開発)産業活力再生特別措置法第30条の適用を受ける特許

出願

【手数料の表示】

【予納台帳番号】 012472

【納付金額】

21,000円

【提出物件の目録】

【物件名】

特許請求の範囲 1

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】

9709342

【請求項1】

プリズム底面に貴金属膜を配し、当該プリズムへ光を照射してその反射光を検出する表面プラズモン共鳴の測定方法において、

当該費金属膜として、当該プリズムに接する側の反対側に下記式(I)で表される置換 基を有するものを使用し、

当該貴金属膜のうち、当該置換基(I)を有する側に被検試料を添加することを特徴と する表面プラズモン共鳴の測定方法。

【化1】

[式中、Xはリンカー基を示す。]

【請求項2】

表面に下記式(I)で表される置換基を有する貴金属膜。

【化2】

[式中、Xはリンカー基を示す。]

【請求項3】

表面に下記式(VII)で表される置換基を有する貴金属膜。

【化3】

[式中、Xはリンカー基を示す。]

【発明の名称】表面プラズモン共鳴の測定方法および該方法に使用される貴金属膜 【技術分野】

[0001]

本発明は、表面プラズモン共鳴の測定方法および当該方法に使用される貴金属膜に関するものである。

【背景技術】

[0002]

ある種の生体内酵素は、活性中心やアロステリック部位を代表とする特定部位にセリンやトレオニン、チロシン残基を有し、これらの水酸基が、キナーゼと呼ばれる酵素によりリン酸化されたり或いは脱リン酸化されることによって、酵素活性が調節されている。また、リシン、アルギニン、ヒスチジンのアミノ基或いはイミノ基や、アスパラギン酸、グルタミン酸のカルボキシル基がリン酸化(または脱リン酸化)されることによって、活性が調節されている酵素もある。

[0003]

この様なリン酸化-脱リン酸化により調節されている代謝系としては、グリコーゲン合成の抑制とその分解系がよく知られている。この代謝系は、主としてリン酸化-脱リン酸化によりカスケード制御され、調節されている。

[0004]

そして近年、このリン酸化ー脱リン酸化が、疾病に関係する代謝系において重要な役割 を有していることが明らかとなってきている。

[0005]

例えば、細胞のガン化は、リン酸化ー脱リン酸化の異常が一因であるといわれている。 つまり、細胞周期の進行や停止は様々な酵素 (タンパク質) のリン酸化 (または脱リン酸化) により制御されており、このリン酸化 (または脱リン酸化) にはサイクリンとサイクリン依存性キナーゼ (CDK) が関与しているが、斯かるメカニズムが損傷するとリン酸化 (または脱リン酸化) に乱れが生じ、その結果、細胞の異常増殖が引発されることになる。

[0006]

その他にも、プロテインキナーゼCが、アトピー性皮膚炎や花粉症などのアレルギー疾患の原因となるヒスタミンの脱顆粒に関与することや、アルツハイマー病患者の脳で発生する神経原繊維変化は、リン酸化されたタウタンパク質によることが明らかにされている

[0007]

従って、タンパク質のリン酸化-脱リン酸化状況を把握することは、生体組織細胞の遺伝子発現の探索や酵素活性評価のみならず、疾病の診断や治療にも役立つ可能性がある。

[00008]

ところが、従来より用いられてきたリン酸化タンパク質(または脱リン酸化タンパク質) の特定方法には、様々な欠点がある。

[0009]

例えば、酵素免疫法は、対象となるタンパク質試料が微量であっても分析可能という利点があるが、必要な抗体を充分量得ることが困難であり、また、対象タンパク質が数 k D a 以下である場合には、タンパク質中のリン酸化部位に結合する抗体を調製することができない。

[0010]

また、放射性同位元素³ Pで標識されたリン酸を使用することによって、タンパク質への特異的結合を検出する方法も考えられるが、放射性同位元素の取扱いには当然に注意が必要であり、廃液の管理や処理まで要求される。

[0011]

更に、リン酸化タンパク質と脱リン酸化タンパク質とでは電荷が異なることから、二次 出証特2004-3117630

[0012]

その他、リン酸化(または脱リン酸化)タンパク質を特定するこれら技術以外に、特定化合物(リガンド等)へ特異的に結合する化合物(タンパク質等)を探索するための一般的手法として、表面プラズモン共鳴(Surface Plasmon Resonance、以下、「SPR」という)を利用した技術が開発されている(図1を参照)。この技術を詳述すると、以下の通りである。

[0013]

屈折率の異なる界面で光が全反射する際には、全反射表面でエバネッセント波といわれる光が発生する。また、金属表面には表面プラズモンという金属一誘電体界面に生じる電子の疎密波の一種が生じている。この表面プラズモンは、両者(エバネッセント波と表面プラズモン)の位相速度が一致する様に入射光の角度を調節することによって共鳴励起されることから、金属表面の電磁場を大幅に増大させることが可能になる。この際、入射光のエネルギーは表面プラズモンの励起のために奪われるので、反射光の強度が減少する。

[0014]

そして、この吸収が起こる入射角度と入射光の波長は、特に数百 n m以内における金属表面の状態に応じて非常に鋭敏に変化する。即ち、金属表面における化合物の有無などの状態変化によって反射光の強度が敏感に反応するため、金属表面にリガンド等を結合せしめた上で被検試料を作用させれば、当該リガンド等と相互作用する化合物の有無によって、反射光の強度が変化する。従って、図1に示す通り金属表面にリガンド等を担持させ、更に被検試料を添加した場合としない場合の反射光強度を比較することによって、当該リガンド等と相互作用する化合物の有無を判断することができる。更に、当該技術をバイオイメージングに応用することも考えられる。即ち、細胞や生体組織において、特定の化合物と相互作用する化合物の局在をイメージとして捕らえることも可能になり得る。

[0015]

斯かる技術の例としては、特許文献1に記載されているものを挙げることができる。当該文献によれば、図1に示す様な貴金属膜に対して、ランニングバッファー→被検試料→ランニングバッファーを連続的に作用させると、SPRが観測される入射角度は図2に示す様な経時的変化を示す。そして当該技術では、この経時的変化を測定し、反射率の最小値と最大値や屈折率と時間との関係を求めることによって、貴金属膜に担持した化合物と被検試料中の化合物との解離定数や結合定数、および試料中化合物の濃度を決定できるとされている。

[0016]

また、特許文献 2 には、貴金属膜へカルボキシメチル化デキストランを介してN-(5-アミノ-1-カルボキシペンチル)イミノジ酢酸を結合させ、更にニッケルを配位させたものを用いて S P R 測定を行なう技術が開示されている。このニッケル錯体は、 2 つの隣接ヒスチジン残基を有するペプチドに対して特異的な親和性を示すことから、ヒスタグ (His-tag) と呼ばれ、被検試料中からジヒスチジン残基を有するペプチドを検出することができる。しかし、従来、リン酸化されたペプチドに特異的相互作用を示す化合物(フォスタグ, Phos-tag)を用いて P S R を測定する技術は知られていなかった。

[0017]

ところで、非特許文献1には亜鉛錯体が記載されており、当該亜鉛錯体は、二つの亜鉛イオンがジヌクレオチド中のリン酸基(リン酸ジエステル基)に作用し、切断するという機能を有する。しかし、非特許文献1における当該錯体の機能はあくまで触媒としてのものであり、リン酸基との配位結合能に関しては、一切記載されていない。実際、本発明者らによる実験によれば、当該錯体と2つのヌクレオシド間のリン酸基(リン酸ジエステル基)との解離定数は非常に高い。即ち、リン酸ジエステル基に対する当該錯体の配位結合

出証特2004-3117630

[0018]

また、非特許文献 2 にも、上記亜鉛錯体と類似の構造を有する鉄錯体が記載されている。しかし、当該鉄錯体は、酸素分子の運搬タンパク質であるヘムエリトリン(hemerythrin)のモデルとして合成されたものであり、当該鉄錯体とリン酸モノエステル基との配位結合能に関して全く記載も示唆もされていないことは、上記非特許文献 1 と同様である。

【特許文献1】特表平11-512186号公報(請求項1等)

【特許文献2】特表平10-505910号公報(請求項9, 実施例等)

【非特許文献 1】 ヤシロ・モリオ、他 2名、「Preparation and Study of Dinuclear Zinc(II) Complex for the Efficient Hydrolysis of the Phosphodiester Linkage in a Diribonucleotide」, ジャーナル・オブ・ザ・ケミカル・ソサエティ・ケミカル・コミュニケーションズ(Journal of the Chemical society, Chemical communic ations), p. 1793-1794(1995年)

【非特許文献 2】ヒデカズ・アリイ、他 6 名、「A novel diiron complex as a func tional model for hemerythrin」、ジャーナル・オブ・インオーガニック・バイオケミストリー(Journal of Inorganic Biochemistry)、第82巻、p.153-162 (2000年)

【発明の開示】

【発明が解決しようとする課題】

[0019]

上述した状況の下、本発明が解決すべき課題は、被検試料中のリン酸化ペプチド (タンパク質)を容易に検出するための表面プラズモン共鳴測定方法、および当該方法に使用できるものであって、リン酸モノエステル基に特異的で且つ高い配位能を有する置換基 (フォスタグ)を表面に有する貴金属膜を提供することを目的としている。

[0020]

また、本発明では、置換基としてフォスタグを表面に有する貴金属膜を製造するための前駆体である貴金属を提供することも目的としている。

【課題を解決するための手段】

[0021]

本発明者らは、上記課題を解決すべく、タンパク質に結合したリン酸基(リン酸モノエステル基)に配位可能な金属錯体について鋭意研究を進めたところ、本発明に係る置換基は、リン酸イオン或いはリン酸モノエステル中の2つの水酸基に対する配位結合能が極めて高く、その結果、ペプチドへ結合したリン酸基(リン酸モノエステル基)へ強く配位して、多数のペプチドを含んだ混合試料でもリン酸化ペプチドへ特異的に結合して複合体を形成することができることを見出した。従って、この置換基を利用してSPRの測定を行なえば、被検試料中のリン酸化ペプチドを検出できることを見出して本発明を完成した。

[0022]

即ち、本発明に係る表面プラズモン共鳴の測定方法は、プリズム底面に貴金属膜を配し、当該プリズムへ光を照射してその反射光を検出する表面プラズモン共鳴の測定方法であって、当該貴金属膜として、当該プリズムに接する側の反対側に下記式(I)で表される置換基を有するものを使用し、当該貴金属膜のうち、当該置換基(I)を有する側に被検試料を添加することを特徴とする。

[0023]

【化1】

[式中、Xはリンカー基を示す。]。

[0024]

また、本発明の貴金属膜は、上記表面プラズモン共鳴の測定方法に使用するものであって、表面に式(I)で表される置換基を有するものである。

[0025]

更に、上記貴金属膜の製造前駆体となる貴金属膜は、亜鉛金属塩等を作用させることによって容易に上記貴金属膜へ変換することができるものであって、表面に式 (VII) で表される置換基を有するものである。

[0026]

【化2】

[式中、Xはリンカー基を示す。]。

【発明の効果】

[0027]

本発明に係る表面プラズモン共鳴(SPR)の測定方法によれば、生体試料など多種多様な化合物が含まれている被検試料であっても、リン酸化ペプチド(タンパク質)の有無を容易に判断することができる。その上、リン酸化ペプチドの量や濃度も決定し得る。従って、生体試料等に本発明方法を適用することによって、病気の診断等に応用でき得る点で非常に有用である。

[0028]

また、本発明の貴金属膜は、リン酸化ペプチドに対して従来にない配位結合性を示すことから、上記方法で使用できるものとして有用である。

【発明を実施するための最良の形態】

[0029]

以下に、先ず、本発明に係るSPRの測定方法を例示する。

[0030]

SPRの測定は、公知の装置を用いて測定すればよい。例えば、米国特許第5,313,264号明細書で開示されている装置を用いることができる。尚、斯かるSPR測定法は、(1) 蛍光発色基の導入などラベル化操作が不要である、(2) 比較的高分子量の分子に対して感度が高い、(2) チオール基やジスルフィド基を有する分子は金等の貴金属膜表面に容易に結合するので、貴金属膜表面へ置換基を高密度に導入できる、という利点があるため、リン酸化ペプチドの検出に極めて適するものである。

[0031]

その測定原理は、図1と2を用いて前述した通りであるが、上記SPR測定装置に関し 出証特2004-3117630 て具体的に説明すると、以下の通りである。図1において、プリズム側から貴金属膜へ光を全反射する様に照射すると、SPRが生じることによって反射光強度が低下する入射角度がある。この際の角度は、貴金属膜へ結合する化合物量、即ち質量変化により鋭敏に変化することから、上記SPR測定装置では、反射光強度からこの質量変化を測定データ(レゾナンスユニット、 $1RU=1\,\mathrm{pg/mm^2}$)として表示することができる。

[0032]

従って、リン酸化ペプチドに対して特異的な結合能を示す置換基を貴金属膜へ導入した上で、被検試料を作用させデータを取得し、定常状態におけるデータと比較することによって、被検試料中のリン酸化ペプチドの有無やその存在量を把握することが可能になる。本発明で用いる置換基は、リン酸化ペプチドに対する特異的結合能に極めて優れるものであって、以下の構造を有する。

[0033]

【化3】

[式中、Xはリンカー基を示す。]。

[0034]

上記式 (I) において、配位金属として Znを選択した理由は、リン酸化タンパク質のリン酸基 (リン酸モノエステル基) への配位能が極めて高いことによる。

[0035]

「リンカー基」とは、本発明の貴金属膜中、貴金属膜と上記主骨格(リン酸化タンパク質と相互作用する主要部分。以下、「フォスタグ」または「Phos-tag」ということがある)とを結合する基であり、本発明に係る貴金属膜の製造を容易にしたり、また、置換基(I)の自由度を増し、置換基(I)とペプチドに結合したリン酸基との配位を容易にする作用を有する。

[0036]

「リンカー基」としては、前述した作用を有するものであれば特に限定されないが、例えば糖鎖、C1-C6アルキレン基、アミノ基(-NH-)、エーテル基(-O-)、チオエーテル基(-S-)、カルボニル基(-C(=O)-)、チオニル基(-C(=S)-)、エステル基、アミド基、ウレア基(-NHC(=O)NH-)、チオウレア基(-NHC(=S)NH-)、アミノ基、エーテル基、チオエーテル基、カルボニル基、チオニル基、エステル基、アミド基、ウレア基、チオウレア基からなる群より選択される基を一端に有する糖鎖;および、アミノ基、エーテル基、チオエーテル基、カルボニル基、チオニル基、エステル基、アミド基、ウレア基、チオウレア基からなる群より選択される基を一端に有するC1-C6アルキレン基を挙げることができる。また、リンカー基の貴金属膜へ結合する側の端は、チオエーテル基であることが好ましい。斯かる貴金属膜は、チオール化合物若しくはジスルフィド化合物を用いて容易に製造できるからである。

[0037]

本発明において「糖鎖」とは、一般的な糖類が直鎖状または分枝鎖状に連なったものをいい、例えば、D-グルコースがグルコシド結合により重合しているデキストランを挙げることができる。この糖鎖は、上述したリンカー基の作用に加えて、親水性が高いことから生体試料との相性がよく、また、容易に分枝鎖状のものを合成できることから、置換基(I)の主骨格をより多く結合させることができるという利点もある。

[0038]

[0039]

以上に説明したリンカー基の長さは特に制限されないが、好適には200nm以内、より好ましくは100nm以内にする。リンカー基の長さが短い程、リン酸化ペプチドをより鋭敏に検出できるからである。

[0040]

尚、置換基(I)では、本発明と同一の作用効果を享有するものとして、ピリジン環にメチル基等を導入することも可能であるが、この様な均等物も本発明の範囲内に含まれるものとする。

[0041]

また、本発明に係る置換基(I)におけるリンカー基の位置も特に限定されず、下記置換基(I')に示す位置に存在する場合もある。

[0042]

【化4】

[0043]

この置換基 (I') と置換基 (I) は全く等価であり、合成で何れの置換基となるかは必ずしも明らかではないが、実際には両者の混合物であると考えられ、勿論、置換基 (I') も本発明の範囲内に含まれる。

[0044]

本発明において「貴金属」とは、金、銀、白金、ロジウム、ルテニウム、パラジウム、オスミウム、イリジウムをいい、本発明では、金、銀、白金またはロジウムの何れかを用いることが好ましく、特に金を好適に使用できる。金は、表面プラズモン共鳴効果を良好に発揮することが実証されているからである。置換基(I)を有する貴金属膜を調製するための貴金属膜は、これら貴金属を材料として適当な厚さの膜とし、使用する SPR 測定装置に適した形状に切り出せばよい。この貴金属膜の厚さは特に制限されないが、 $10\sim100~m$ mが好ましく、通常は約50 m mとする。

[0045]

本発明の貴金属膜は、スキーム1を含むことを特徴とする方法によって容易に製造する ことができるが、製造方法は、以下に示すものに制限されない。

[0046]

「スキーム1]

【化5】

[式中、Xは前述したリンカー基を示し、 R^1 と R^2 は、-X-フォスタグ基を貴金属膜表面に形成するための反応性基を示す。]。

[0047]

上記スキーム1においては、先ず、リンカー基Xを形成するための反応性基である R^1 を、貴金属膜上へ置換させる。ここで、反応性基 R^1 と貴金属膜との結合の種類は必ずしも明らかでなく、結合の種類は特に問わないものとする。例えば、チオール化合物やジスルフィド化合物は、貴金属膜上に自発的に吸着して自己組織化単分子膜といわれる単分子膜を形成することが知られている。従って、反応性基 R^1 と貴金属膜とが硫黄原子を介して結合している場合、上記式中における貴金属膜と硫黄原子との結合の種類は特に制限されず、何らかの相互作用によって結びついているものとする。

[0048]

上記スキーム 1 において、硫黄原子を介して反応性基 R^1 と貴金属膜とを結合せしめる場合、チオール化合物(例えば、 R^1 – S H)と貴金属膜との反応は極めて容易に進行することが分かっており、その反応条件等は従来法に従えばよい。例えば、貴金属膜の片面とチオール化合物の溶液を接触させるのみでも、両者を縮合させることができる。

[0049]

次いで、リンカー基Xを介してフォスタグ前駆体を結合させるために、置換基 R^2 を有するテトラキス(ピリジン-2-イルメチル)-1、3-ジアミノプロパン-2-オール誘導体(化合物 (VI))を反応させる。上記スキーム1中 R^1 と R^2 とを反応させる工程における R^1 と R^2 の種類や溶媒,反応温度,その他の試薬,精製方法等は、主としてXの種類により決定される。例えば、アミド結合により R^1 と R^2 とを結合してXとする場合には、 R^1 と R^2 の組合わせとしては末端にアミノ基(第一級アミノ基)を有する基と活性化されたカルボキシ基との組合わせを挙げることができる。この場合の一般的な反応条件は、有機合成化学分野において一般的なものを適用すればよい。こうして、置換基(VII)を表面に有する貴金属膜を得ることができる。

[0050]

また、置換基 (VII) を有する貴金属膜は、以下の方法によっても製造することができる。

[0051]

【化6】

[式中、X''は前述したリンカー基のうち貴金属膜側が硫黄原子であるものを示し、X'はX''のうち末端硫黄原子以外の部分を示す(但し、X''が硫黄原子のみである場合には、X'は単なる共有結合を示すことになる)。]。

[0052]

前述した様に、チオール化合物と貴金属膜との反応は極めて容易に進行することから、末端がチオール基である基により置換されたテトラキス(ピリジン-2-イルメチル)-1,3-ジアミノプロパン-2-オール誘導体によって、フォスタグを表面に有する貴金属膜の前駆体を合成することができる。

[0053]

最後に、置換基(VII)を有する貴金属膜に金属塩を添加することによって、表面にフォスタグを有する貴金属膜を得ることができる。例えば硝酸亜鉛(II)や酢酸亜鉛(II)を添加すればよいが、酢酸亜鉛(II)を添加する場合には、一旦酢酸が配位した以下の化合物が得られる。

【0054】 【化7】

[0055]

この化合物は、置換基(I)よりも安定であり保存に便利であるが、置換基(I)と等価なものであり、置換基(I)と同様に用いることができる。即ち、SPR測定時には、リン酸モノエステル基が酢酸と交換的に配位するため、リン酸化ペプチドを検出することができる。

[0056]

上記スキーム1において、フォスタグを貴金属膜へ結合させるための原料化合物 (化合物 (VI)) は、以下のスキーム2により製造することができる。

[0057]

[スキーム2]

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

[式中、 R^2 は前述したものと同義とする。また、"Hal"は、ハロゲン原子を示し、 好適には臭素原子を示す。]。

[0058]

原料化合物である化合物(II) (1,3-ジアミノ-2-プロパノール)は、市販のものを使用することができる。また、化合物(III)と化合物(V)は比較的簡単な構造を有しているので、市販のものを用いるか、或いは当業者公知の方法により合成することができる。

[0059]

スキーム 2 では、先ず、触媒の存在下に化合物(II)と(III)を縮合反応させて、化合物(IV)を得る。本反応は一段階ずつ化合物(III)を導入していってもよいが、3 当量以上の化合物(III)を使用することによって一段階反応で化合物(IV)を得ることもできる。

[0060]

スキーム2では、縮合反応として還元的アミノ化反応を行なっている。その場合に使用される溶媒は、化合物(II)と(III)とを実質的に溶解でき、反応を阻害しないものであれば特に制限なく使用することができるが、例えば、メタノール、エタノール、イソプロパノール等のアルコール類;ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル類;水;又はこれらの混合溶媒を使用することができる。

[0061]

還元的アミノ化反応では、先ず化合物(II)と(III)を触媒としての濃塩酸存在下に縮合した後、一般的な還元試薬により還元することができる。

[0062]

反応温度と反応温度は、原料化合物の種類等によって好適な条件を採用すればよいが、 例えば20~80℃で12~100時間反応させる。

[0063]

反応終了後は、溶媒等を減圧留去した後に水を加え、非水溶性溶媒で抽出し、油相を無水硫酸マグネシウム等で乾燥した後、溶媒を減圧留去する。次いで、残渣をシリカゲルカラムクロマトグラフィー等の公知方法により精製して、化合物(IV)を得ることができる。

[0064]

尚、化合物(IV)を得る方法はスキーム2で示した方法に限られず、例えば化合物(I I)とハロゲン化合物から化合物(IV)を合成してもよい。

[0065]

次に、化合物 (V) を反応させることにより、化合物 (VI) を得ることができる。この反応は、一般的な三級アミンの合成反応を採用することができる。例えば、溶媒中塩基

出証特2004-3117630

の存在下で縮合させる。また、当該ステップにおいては、 R^2 の種類に応じて、適宜保護基の導入と脱保護を行なってもよい。或いは、化合物(V)中 R^2 の代わりに不活性置換基を有する化合物を用いて当該ステップを行なった後、官能基変換により当該不活性置換基を R^2 へ変換することによって、化合物(VI)を合成してもよい。例えば、不活性置換基としてニトロ基と有する化合物を使用し、当該ステップ後、ニトロ基を反応性基であるアミノ基に変換してもよい。

[0.066]

本発明に係る方法に使用できる置換基としては、置換基(I)の代わりに、下の錯体化合物 (VIII) を用いることもできる。

[0067]

【化9】

[式中、Xは前述したものと同義を示す。また、 $R^3 \sim R^5$ は、ピリジン環上の4または6位における電子供与性置換基を示す。]。

[0068]

本発明方法に使用される置換基(VIII)は、適切な置換位置に導入された電子供与性 置換基によってピリジン窒素が電気的にリッチとなっているため、亜鉛に対する配位性に 優れており、結果的に製造が容易であり、また、安定性を有する。置換基(I)に準ずる ものを使用することができる。

[0069]

以下に、製造例および試験例を示し、本発明を更に詳細に説明するが、本発明の範囲はこれらに限定されるものではない。

【実施例】

[0070]

製造例1 SPR分析用のフォスタグーセンサーチップの製造

カルボキシメチルデキストランがコーティングされているセンサーチップ(BIOCRE社製, Sensor Chip CM5)を、SPR測定装置(BIOCRE社製, BIOCORE J)にセットした。

[0071]

ランニングバッファーとして、 5×10^{-3} %(v/v) Tween 20, 0.20M 硝酸ナトリウムおよび $10\,\mu$ M 硝酸亜鉛を含む $10\,m$ M HEPES(2-[4-(2-e)] ロキシエチル) $-1-e^{-2}$ ペラジニル]エタンスルホン酸) - 水酸化ナトリウム水溶液(pH 7.4)を使用した。センサーチップの温度を $25\,^{\circ}$ C、ランニングバッファーの流速を $30\,\mu$ L/minとした。表面プラズモン共鳴の値が安定したことを確認した後、カルボキシル基活性化剤である EDC(1-x チル-3, $4-\overline{y}$ メチルアミノプロピルカルボジイミド, $200\,m$ M)とN HS(N-e ドロキシスクシンイミド, $50\,m$ M)の混合水溶液を 6 分間添加することによって、センサーチップのカルボキシル基を活性化した。

[0072]

次いで、センサーチップにフォスタグを担持するために、N,N,N'-トリ(2-ピリジルメチル)-N'-[5-N''-(2-アミノエチル)カルバモイル-2-ピリジルメチル]-1,3-ジアミノプロパン-2-オールの50%(v/v)アセトニトリル溶液(10mM)を、6分間添加した。その後、残存する活性化カルボキシル基をブロッキングするために、モノエタノールアミン水溶液(<math>1.0M)を6分間添加した。

[0073]

以上の操作によって、フォスタグを結合したセンサー部を有するサンプル流路(フローセルA)を作製した。

[0074]

比較製造例1

上記製造例1において、カルボキシル基の活性化とそのプロッキングを含め、フォスタグを担持させる以外は同一の手法を用いて、フォスタグが結合していないレファレンス部を有するサンプル流路(フローセルB)を、フローセルAと平行に作製した。

[0075]

試験例1

分析サンプルとして、(i) β - カゼイン(ペンタリン酸化タンパク質,SIGMA社),(ii)脱リン酸化 β - カゼイン,および(iii)牛血清アルブミン(BSA,New England Bi oLabs社)を使用した。脱リン酸化 β - カゼインは、 β - カゼイン 10mg/mL(50 μ L)とジャガイモ由来酸性フォスファターゼ(SIGMA社)と0.20M MES-NaOH(pH 6.8,50 μ L)との混合溶液を、12時間38℃でインキュベートすることにより調製した。それぞれのサンプルは、上記製造例1で用いたランニングバッファーに溶解し、サンプル濃度1.5 μ Mのサンプル溶液を得た。

[0076]

上記サンプル溶液について、SPR測定を行なった。具体的には、上記製造例 1 と比較製造例 1 のそれぞれで作成し、ランニングバッファーで安定化させたフローセルA,Bについて、各サンプル溶液を温度:25 ℃,流速:30 μ L/minで流して 15 分間結合させ、次いでランニングバッファーのみを 15 分間流して解離させた。各サンプル溶液の測定後には、25 mM リン酸一カリウムー25 mM リン酸二ナトリウム水溶液(pH 6.86)を 6 分間、0.20 M エチレンジアミン四酢酸二ナトリウム水溶液(pH 7.4)を 6 分間、上記ランニングバッファーを 5 分間流して、センサーチップの再活性化(残存結合物の除去)を行なった。

[0077]

各サンプル(i)~(iii)のSPR測定結果をそれぞれ図3~5に、各サンプルの測定結果において、フローセルAのRU値からフローセルBのRU値の差を示したものを図6に示す。図4~6の結果によれば、フローセルAとBの変化はほぼ同じであり、脱リン酸化 β -カゼインとBSAは、特異的な結合をしないことが分かる。一方、図3と6の結果より、リン酸化されている β -カゼインは、フォスタグが結合しているセンサー部へ特異的に結合することが明らかにされた(最大結合量:3150RU)。従って、本発明方法によれば、リン酸化されたペプチドのみを検出できることが実証された。

[0078]

試験例2

分析サンプルとして、(i v)リン酸化SRCペプチド(モノリン酸化ペプチド,ANA SPEC社)および(v)SRCペプチド(非リン酸化ペプチド,ANA SPEC社)を使用した。それぞれのサンプルは、上記製造例 1 で用いたランニングバッファーに溶解し、サンプル濃度1~ $15\,\mu$ Mのサンプル溶液を得た。

[0079]

上記サンプル溶液について、上記製造例 1 と比較製造例 1 で作製したフローセルA, B を用いて S P R 測定を行なった。具体的には、上記試験例 1 において、サンプルの結合時間と解離時間を 5 分、センサーチップの再活性化(残存結合物の除去)を 0.40M リン酸バッファー(pH 7.0)を 5 分間,0.20M エチレンジアミン四酢酸二ナトリウム水溶液(pH 7.4)を 5 分間,上記製造例 1 のランニングバッファーを 5 分間流して行なった以外は、上記試験例 1 と同様の条件で S P R 測定を行なった。結果を図 7 に示す。

[0080]

当該結果より、非リン酸化ペプチドは濃度 15μ Mであっても殆ど変化は認められないのに対して、リン酸化ペプチドでは、その濃度が 15μ Mの場合のみならず $1と5\mu$ Mの場合であっても、明確にその存在を把握することができた。従って、本発明によれば、同一のアミ

出証特2004-3117630

[0081]

製造例2 SPR分析用のフォスタグーセンサーチップの製造

表面にストレプトアビジンが結合しているストレプトアビジンーセンサーチップ (BIOC RE社製, Sensor Chip SA) を、SPR測定装置 (BIOCRE社製, BIOCORE J) にセットした

[0082]

ランニングバッファーとして、 5×10^{-3} %(v/v) T ween 2 0, 0.20M 硝酸ナトリウムおよび 10μ M 硝酸亜鉛を含む10mM HEPES(2-[4-(2-ヒドロキシエチル)-1-ピペラジニル]エタンスルホン酸) -水酸化ナトリウム水溶液(pH 7.4)を使用した。センサーチップの温度を 2 5 ∇ とし、表面プラズモン共鳴の値が安定するまで、流速 3 0 μ L/minでランニングバッファーを流した。

[0083]

次いで、センサーチップにフォスタグを担持するために、末端にビオチン構造を有する N, N, N' - トリ (2-ピリジルメチル) - N' - [5-N'! - 2-(6-D-ビオチンアミドヘキサカルボキシアミドエチル) カルバモイル-2-ピリジルメチル] - 1, 3-ジアミノプロパン-2-オール(下記構造を有する化合物)の1.0mM 上記ランニングバッファー溶液を流した。温度は25℃、流速は30 μ L/min、結合時間は6分とした。

[0084]

【化10】

[0085]

上記化合物は、ランニングバッファー中の亜鉛イオンに配位されてフォスタグとなり、 且つ末端のビオチンはストレプトアビジンに対して極めて高い親和性を示すので、フォス タグがセンサーチップ上に担持されることになる。

[0086]

比較製造例 2

上記製造例2において、フォスタグを担持させる以外は同一の手法を用いて、フォスタグが結合していないセンサーチップを作製した。

[0087]

試験例3

分析サンプルとして、ランニングバッファー $(5\times10^{-3}\,\%\,(\text{v/v})\,\text{Tween}\,2\,0\,,\,0.2\,$ OM 硝酸ナトリウムおよび $10\,\mu\,\text{M}$ 硝酸亜鉛を含む $10\,\text{mM}\,\text{HEPES}$ - 水酸化ナトリウム水溶液 $(\text{pH}\,7.4)$)に溶解した β - カゼイン(ペンタリン酸化タンパク質,SIGMA社)を使用した。サンプル濃度は、 $1.5\,\mu\,\text{M}$ とした。

[0088]

上記分析サンプルについて、温度 2.5 $\mathbb C$ 、流速 3.0 μ L/min、結合時間 1.5 分間、解離時間 1.0 分間で S P R 測定を行なった。測定後には、0.40M リン酸水溶液を 6 分間、0.20M エチレンジアミン四酢酸二ナトリウム水溶液(pH 8.0)水溶液を 6 分間、上記ランニングバッファーを 5 分間流して、センサーチップを再活性化(残存結合物の除去)した。

[0089]

[0090]

また、比較製造例2で製造したセンサーチップについても同様の条件で実験を行なったが、RUは全く変化しなかった。

【図面の簡単な説明】

[0091]

【図1】SPRを測定するための一手法を示す模式図である。SPRが測定される(反射光強度が減少する)様に入射光の波長と入射角度を調整した上で、リガンドを結合した貴金属膜に被検試料を添加し、入射光強度の変化を観測するものである。

【図2】図1に示すSPR測定において、ランニングバッファー→被検試料→ランニングバッファーを連続的に作用させた場合におけるSPR角度の経時的変化を模式的に示す図である。被検試料中の化合物が貴金属膜に結合した際には、SPRが測定される入射角度に変化が生じることを示している。

【図3】リン酸化されている β - カゼインが含まれる試料についてSPR測定を行なった結果である。

【図4】脱リン酸化された β -カゼインが含まれる試料についてSPR測定を行なった結果である。

【図5】リン酸化されない一般的なタンパク質である牛血清アルブミン(BSA)が含まれる試料についてSPR測定を行なった結果である。

【図6】図3~5に示す測定結果において、フローセルAのRU値からフローセルBのRU値の差を示す図である。

【図7】リン酸化ペプチド(P-p60csrc)と非リン酸化ペプチド(p60csrc)が含まれる試料についてSPR測定を行なった結果である。

【図 8】 リン酸化されている β – カゼインが含まれる試料について S P R 測定を行なった結果である。

【符号の説明】

[0092]

1 : プリズム 2 : 貴金属膜 3 : リガンド

4 : 被検試料に含まれているタンパク質であって、リガンドと相互作用を示すもの

【図4】

【魯類名】要約書

【要約】

【課題】 生体試料等からリン酸化ペプチド(タンパク質)の存在を容易に検出できる表面プラズモン共鳴の測定方法と、リン酸化ペプチドに高い配位結合能を有することから当該方法で好適に使用できる貴金属膜を提供する。

【解決手段】 本発明方法は、プリズム底面に貴金属膜を配し、当該プリズムへ光を照射してその反射光を検出する表面プラズモン共鳴の測定方法であって、当該貴金属膜として、当該プリズムに接する側の反対側に下記式(I)で表される置換基を有するものを使用し、当該貴金属膜のうち、当該置換基(I)を有する側に被検試料を添加することに要旨を有する。

【化1】

特願2004-094160

出願人履歷情報

識別番号

[000134637]

1. 変更年月日

1991年 4月15日

[変更理由]

住所変更

住 所

兵庫県尼崎市西長洲町2丁目6番1号

氏 名 株式会社ナード研究所