March 27:

· Stepping book: we see that $H'(Z; O_Z^*)$

classifies line bundles. How does thus relate

to Chan class?

Consider the SES of sheaves of ab groups

Induces LES in sheaf cohomology

0 -> H'(Σ; 2πi2) -> H'(Σ; (Σ) -> H'(Σ; (ΟΣ))

 $H^2(\Sigma; 2\pi i\mathcal{H} \rightarrow ...$

The connecting map $S: H^1(\Sigma; \mathcal{O}_{\Sigma}^{\times}) \longrightarrow H^2(\Sigma; 2\pi; 2\ell)$ S // S //

 $\frac{Pic(\Sigma)}{C_i} \xrightarrow{H^2(\Sigma; 2l)}$

is the first Chun class.

The degree of L 15 defind when I is closed: deg L = J c, (L). Theorem: [Riemann-Roch] deg Kz = 2-2g. Prop: There is a unique spin str. on $S^2 = \mathbb{P}'$. Pf: We work out the chitching data for Kp1. Usual chart 2 = w. But then $\frac{1}{1} = \frac{1}{2} = \frac{1}$ 50, the transition for is -2, or changing coordinates slightly, z⁻². This has a square-root 2⁻¹, and we know this defines a lim bondle.

(It is called (1).)

· Why are spin structurs / O-drovetoristies interesting?	
Riemann/: q: 3 spin shs 3 21/2 Atiyah	
L I din H°(L) m	6
is a guadrater function and refines the cup	
product $H'(\Sigma; 2/2) \times H'(\Sigma; 2/2) \longrightarrow 2/2.$	
$H^2(\Sigma; 2\ell/2)$	
So: Spin structures oblow us to refire basic top? invortants!	

Twistor space.
Lt Σ be a 2-dim ℓ smooth manifold. Two Riemannian meters g, g' are conformally equivalent if $J : \Sigma \to lR$ so smooth c, f . $g' = J \cdot g$.
m) [g] = conformed eq vivalence class of metro
Conformal class = complex of mutitize t shrether on Z orientation
Concretely: A conformal class of nutre and an orientation defines
J: TI TI Rotation Hy 90°.

· Almost yok str.: Two special fearthes in 2-dim:
1) An about cplx str. on I is automatically
"integrable".
2) (orf. classes of metric + orientation determines a splx str.
Neither is true in general. Let H ²ⁿ be smooth.
· Given an almost uplx str. J: TMS, J=-1
defra +i -i
THO C = T''S T''S = T''S
T2 " "
T(H, 1971)> T(H, 1971)
T(H, NTTO C) - der T(H, N4+1 TH & C)

In bud wordinates:

 $\bar{\partial} = \bar{\partial}_{\bar{z}} : \bar{\partial}_{\bar$

Thn: [Newlander-Direnderg]. TFAE about (M,J):

1) M codnits a 91x str

To integrable: we can find atlas site.

The form

 $= \int_{\mathcal{I}} \left(\frac{\partial J_{i}}{\partial x_{i}} \otimes J_{i} - \frac{\partial x_{i}}{\partial x_{i}} \otimes J_{i} \right)$

3) (T", T") C T"

 $\xi_{\times}: S^{2n}$ admits an AC str. (=) n = 1,3.

So has an AC str. coming from octonions.

(This AC is not integrable.)

· Sps V = R ^{en} is an oriented v.s An a	lmsrt
eplx str J: V ~ V is compatable of the	
if J an oriented basis of the form	
Ze, Je, e, Je,, en, Jen (.	
Cottole	w/std or.
$\mathcal{E}_{x}: V = \mathbb{R}^{4}.$ $J = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$	Yesl
$\vec{J} = \begin{pmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \end{pmatrix}$	
(Any notice of the almost oply str. of 1R4	
is represented by one of these J's	
· Some Riem geometry in 4-dimensions.	
(H ⁴ , 9) oriented Riem. 4-manifold.	
$M \times M \times$	

So,
$$\Lambda^2 T_H^2 = \Lambda^2 T_H^3 \oplus \Lambda^2 T_H^3$$

$$\Lambda^2 + (H) = \Gamma (H, \Lambda^2 + T_H).$$

Let's use
$$g$$
 to pive $T_H = T_H$. Then, locally
$$J_+ = \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix} \longleftrightarrow d_{\nu} \wedge d_{y} + d_{2} \wedge d_{w}.$$

"twister space: Let (H, [9]) Fibers of To? We have seen that Sph (1+ In particular To is on 52 - fibration over 4.