German Cancer Research Center – DKFZ
Division of Medical Physics in Radiation Oncology
Im Neuenheimer Feld 280
69120 Heidelberg
n.wahl@dkfz.de
www.dkfz.de/radopt
+49 6221 42-2233

wahln niklaswahl

P J-3788-2019

3 58BBKbkAAAAJ

© 0000-0002-1451-223X

Education & Experience

since 9/2019 Research Group Leader "Radiotherapy Optimization", Division of Medical Physics in Radiation Oncology, German Cancer Research Center – DKFZ, Heidelberg, leading a research team focusing on the development and implementation of physical, biological and numerical

models in the context of radiotherapy treatment planning and maintaining the open source dose calculation and treatment planning toolkit "matRad"

8/2018 – 8/2019 **Postdoctoral Researcher & Project Coordinator**, Division of Medical Physics in Radiation Oncology, German Cancer Research Center – DKFZ, Heidelberg,

research in uncertainty quantification and probabilistic/robust treatment planning for particle therapy, maintenance of the open source toolkit "matRad", and coordination of the Chilean-German Consortium for Medical Physics in Radiation Oncology (CGCoMPRO)

5/2017 – 7/2017 **Research Stay**, in the Group Probabilistic Numerics, Max Planck Institute for Intelligent Systems, Tübingen,

working on the development of analytical probabilistic models for radiotehrapy treatment plan quality indicators

6/2015 – 7/2015 **Research Stay**, in the Group Probabilistic Numerics, Max Planck Institute for Intelligent Systems, Tübingen,

working on numerical methods for accelerated analytical probabilistic dose calculation

1/2015 – 7/2018 **Doctoral Studies**, Division of Medical Physics in Radiation Oncology, German Cancer Research Center – DKFZ & Heidelberg University, in Physics,

awarded the degree of Dr. rer. nat. graded *summa cum laude* for the thesis titled "Analytical models for Probabilistic Inverse Treatment Planning in Intensity-modulated Proton Therapy"

7/2014 - 9/2014 Research assistant, German Cancer Research Center - DKFZ, Heidelberg

2012 - 2017 Freelancer

Metadata Annotation, Web-Programming, Research consulting.

10/2011 – 3/2014 Master Studies, Heidelberg University, in Physics,

graduated M. Sc. with overall grading *very good*, master thesis: "Automated Voxel-based Penalty Adaption for ultra-fast Treatment Planning in Intensity-modulated Radiation Therapy"

2010 – 2014 **Student teaching assistant** for practical physics courses on a regular basis, *Department of Physics & Astronomy at the Heidelberg University*

4/2008 - 10/2011 IT Assistant, HierEDV, Heidelberg

10/2007 – 5/2011 **Bachelor Studies**, *Heidelberg University*, in Physics,

graduated B. Sc. with overall grading *good*, bachelor thesis: "Performance of the local on-line Tracking and of a Track-based Jet Trigger Algorithm for the ALICE TRD on the Basis of Monte-Carlo Simulations"

10/1999 – 6/2007 **Abitur**, *Dietrich-Bonhoeffer-Gymnasium*, Weinheim, higher education entrance qualification with overall grading of 1.4

Community, Outreach, Memberships

- since 2023 Corresponding member of the America Association of Physicists in Medicine (AAPM)
 - 2023 Course lead for the 5th Summer School in Medical Physics: Data Science and Machine Learning in Radiotherapy, Heidelberg/Online
 - 2023 Co-organization of a high school students day on particle physics within the MINT100 program, Heidelberg

German Cancer Research Center – DKFZ – Im Neuenheimer Feld 280 – 69120 Heidelberg

+49 6221 42-2233 • ☑ n.wahl@dkfz.de • ❸ www.dkfz.de/radopt • ⑤ wahln

in niklaswahl • Dr. Niklas Wahl

- since 2021 Associate Editor "Medical Physics"
 - 2021 Organization of the first HITRIplus Heavy Ion Therapy Masterclass School
- since 2019 Organization of a weekly Medical Physics Seminar with invited (international) speakers for the Research Program "Imaging and Radiooncology" at DKFZ
- since 2019 Establishing a "Particle Therapy Master Class" for school children (in cooperation with CERN, GSI & the Heidelberg Life Science Lab) with the first successful pilot in March 2019
- since 2019 Member of the Deutsche Gesellschaft für Radioonkologie (DEGRO)
- since 2019 Member of the Deutsche Gesellschaft für Medizinische Physik (DGMP)
- 2018 2020 Project coordinator within the Chilean-German Consortium for Medical Physics in Radiation Oncology (CGCoMPRO) sponsored by the German Federal Minstry of Education and Research, organizing multiple workshops in Santiago de Chile
 - since 2018 Occasional reviews for Medical Physics, International Journal of Radiation Oncology*Biology*Physics, Physics in Medicine and Biology, Radiation Oncology, Physica Medica: European Journal of Medical Physics, and Strahlentherapie & Onkologie
- since 2017 Member of the European Society for Radiotherapy & Oncology (ESTRO)
 - 2016 Referee for "Jugend forscht", Europe's biggest youth science & technology competition
- since 2015 Co-hosting a YouTube channel (Physiktutorium) with instructional physics videos for students
- since 2015 Continuous contribution to the open source radiation therapy treatment planning toolkit matRad (http://www.matrad.org)
 - 2015 Supporting the organization of the Machine Learning Summer School (MLSS), Tübingen
- 2009 2017 Helper in the International Summer School for German Language and Culture at the Heidelberg University
- 2008 2018 Assisting at "Explore Science", a yearly educational scientific event at the behest of the Klaus Tschira Foundation
 - since 2007 Member of the German Physical Society (DPG)
 - 2003 Participation in a one-month school exchange with Hunterdon Central Regional High School, NJ, USA, within the German American Partnership Program (GAPP)

Third-party Funding & Projects

- 2023 2026 **German-Israeli Cooperation in Cancer Research Project Ca 216**, Development of Advanced PI Feasibility, Superiorization and Optimization Methods for Complex Inverse Treatment Problems in Radiation Therapy Treatment Planning, ca. 126 000 €, Principal Investigator
- 2022 2027 **NIH Award R01CA266467**, Ionization Detail Biologically based treatment planning for CI particle therapy beyond LET-RBE, \$308650 awarded to DKFZ, Principal Investigator: Prof. Jäkel, other Co-Investigator: Prof. Karger
 - 2022 **Mathworks Community Toolbox Development Support**, Development sparse linear algebra PI and DICOM plugins for matRad, \$20 500, Principal Investigator
- 2021 2024 **DFG project support grant No. 443188743**, Sustainable development of the open source PI radiotherapy dose calculation and optimization toolkit matRad, ca. 315 000 €, Principal Investigator
- 2021 2024 **DFG New Instrumentation for Research grant No. 457509854**, *HELIOS Developing a HELium Imaging Oncology Scanner for Range Guided Radiotherapy (RGRT) for Non-Small Cell Lung Carcinoma (NSCLC)*, ca. 187 000 € (of total project funds of ca. 950 000 €), Principal Investigator (Other Pls: Prof. Joao Seco, Prof. Oliver Jäkel)
- 2021 2024 **HIDSS4Health Project**, *Inverse Radiotherapy Treatment Planning using Machine Learning Outcome Prediction Models*, 1 fully-funded PhD position, Co-Investigator (Pls: Prof. Martin Frank, Prof. Oliver Jäkel)

Awards, Honors, Appointments, Positions

Position Associate Editor "Medical Physics", since 2021

Honor "Distinguished Reviewer" for the Medical Physics journal, 2021

Position Considered for an independent research group leader position at the University of Tübingen

(no exact ranking communicated), 2020

Dissertation Award DEGRO Dissertation Award, 2019

Poster Prize DKFZ PhD Poster Award, 2017

Presentation Award Science Slam, NCRO Meeting Dresden, 2016

School Award Jugend denkt Zukunft, national winning team, 2006

Invited & International Presentations

Workshop The 9th Annual Loma Linda workshop on Particle Imaging and Radiation Treatment Planning,

Loma Linda, 2023

Course 3rd HITRIplus School – Specialised Course on Clinical Aspects of Heavy Ion Therapy Research,

Online, 2023

Seminar MGH Radiation BioPhysics Seminar, Boston (Online), 2023

Seminar U3 Seminar LMU München (Klinikum), München (Online), 2023

Winter School Winterschule Pichl für Medizinische Physik (Spring Edition), Pichl, 2023

Summer School Summer School in Medical Physics 2023 in Chile: The role of imaging in the radiotherapy

process, Santiago de Chile, 2022

Workshop Scientific multi-disciplenary workshop at the Clínica Alemana (CAS), Santiago de Chile, 2022

Workshop Emerging Techniques in Radiotherapy & Hands-on matRad Tutorial (Pontifical Catholic

University of Chile), Santiago de Chile, 2022

Summer School 4th Virtual Summer School 2022: Radiobiology and Radiobiological Modelling for Radiotherapy,

Heidelberg/Online, 2022

Course ECMP Refresher Course: Radiotherapy – Open Source Software for Radiotherapy Physics

Research, Dublin, 2022

Course ESMPE European School for Medical Physics Experts: Adaptive Radiotherapy: Pros and Cons

of In-room versus Out-of-Room Imaging, Dublin, 2022

Course Specialised Hadron Therapy Training Course, Online, 2022

Winter School Winterschule Pichl für Medizinische Physik (Summer Edition), Pichl, 2022

Workshop The mathematics of modern radiation therapy, Medellin (Online), 2021

Workshop Course - Proton Therapy: the challenges and the opportunities, UT Austin Portugal Programm,

Online, 2021

Seminar Medical Physics Seminar, Brigham and Women's Hospital/Dana-Farber Cancer Institute/Havard

Medical School, Boston (Online), 2021

Summer School Virtual Summer School 2021: Image Guided Radiation Therapy (IGRT) and Advanced Treat-

ment Techniques, Heidelberg/Online, 2021

Summer School 3rd Virtual Summer School in Medical Physics: Applied Computational Methods for Radiother-

apy, Heidelberg/Online, 2021

Summer School HITRIplus Heavy Ion Therapy Masterclass School, Sarajevo/Online, 2021

Public Interactive introduction of Ion Therapy to the General Public within the program "Physik am

Samstag" at University of Mainz (Online), 2021

Workshop The 7th Annual Loma Linda workshop on Particle Imaging and Radiation Treatment Planning,

Loma Linda (Online), 2021

Workshop The 5th Annual Loma Linda workshop on Particle Imaging and Radiation Treatment Planning,

Loma Linda, 2019

Highlight Highlight presentation at the 19th ICCR, Montréal, 2019

German Cancer Research Center – DKFZ – Im Neuenheimer Feld 280 – 69120 Heidelberg

+49 6221 42-2233 • ☑ n.wahl@dkfz.de • ❸ www.dkfz.de/radopt • ⑤ wahln

in niklaswahl • Dr. Niklas Wahl

Workshop DGMP – Working Group Computer, Aachen, 2019
Symposium ESTRO 38, Milan, Italy, 2019 (as co-author)
Seminar Karlsruhe Institute of Technology, Germany, 2019
Workshop 1st ESTRO Physics Workshop, Glasgow, UK, 2017
Seminar UniversitätsSpital Zürich, Switzerland, 2017
Seminar Universitair Medisch Centrum Utrecht, Netherlands, 2014

Teaching Experience & Student Supervision

2020 & 2022 Weiterbildung Medizinische Physik für PhysikerInnen, lectures on dose calculation & optimization in an advanced training course for medical physics for physicists, Heidelberg University

Summer terms 2019 **Physics of charged particle therapy**, three lectures & three practical courses for physics – 2023 master students in the course of Prof. Joao Seco, Heidelberg University

since 2017 **Spezialkurs Partikeltherapie**, yearly hands-on particle treatment planning course for professionals, German Cancer Research Center – DKFZ

since 2020 **Treatment Planning Course**, yearly course for students within the Major in Cancer Biology 2015 – 2017 programme, German Cancer Research Center – DKFZ

Winter term Practical physics course for students of biotechnology, supervision & evaluation of experiments on radioactive decay of 14 student groups, Department of Physics & Astronomy, Heidelberg University

Summer terms 2016 Practical physics course for medical students, supervision & evaluation of experiments on optics, acoustics, hydrodynamics & electronics for 17 student groups (per course), Department

2012 of Physics & Astronomy, Heidelberg University

Winter term

Basic course on key competences, continued supervision of a students group in 20 tutorials teaching key competences for study managing, Department of Physics & Astronomy, Heidelberg University, included a three-days certified tutor qualification course

Winter terms Beginner's practical physics course, supervision & evaluation of experiments on fourier 2012/2013 optics & RLC circuits for 20 student groups (per course), Department of Physics & Astronomy, 2011/2012 Heidelberg University

Student supervision (Co-)s

(Co-)supervision of the following theses projects:,

- A. Bennan (PostDoc): Sustainable development of the open source treatment planning toolkit matRad (ongoing),
- T. Becher (PhD): Advanced Optimization and Superiorization methods for radiotherapy treatment planning (ongoing),
- S. Facchiano (PhD): Particle therapy treatment planning with nano-dosimetric ionization detail (ongoing),
- R. Cristoforetti (PhD): Biological and physical robustness in joint optimization of mixed-modality treatment plans (ongoing),
- J. Hardt (PhD): Dose simulations and treatment planning strategies using mixed Helium-Carbon Beams (ongoing),
- T. Ortkamp (PhD): Inverse Radiotherapy Treatment Planning using Machine Learning Outcome Prediction Models (ongoing),
- $N.\ Homolka\ (PhD):\ \textit{Intensity-modulated dose calculation}\ \&\ treatment\ planning\ for\ carbon\ ions\ (ongoing),$
- M. Palkowitsch (MSc): Robustness in jointly optimized mixed-modality treatment plans (ongoing),
- L. Bucher (BSc): LET optimization in mixed-modality treatment plans (2024),
- L. Seckler (BSc): LET optimization in mixed-modality treatment plans (2024),
- T. Becher (MSc): Pareto trade-offs in joint optimization of mixed-modality treatment plans (2023),
- P. Stammer (PhD): Uncertainty quantification in Monte Carlo dose calculation algorithms for proton therapy (2023),
- L. Voss (BSc): Bayesian LSTM networks for proton dose prediction (2023),
- J. Hardt (MSc): Efficient effect-based optimization strategies for (N)TCP based treatment planning (2022),
- A. Bennan (PhD): Joint optimization of combined photon & carbon ion therapy (2022, co-supervision),
- J. Kunz (BSc): Accelerating the open-source treatment planning toolkit matRad with GPGPU computations (2022),
- M. W. Kheshfeh (BSc): Development of an Unit-Testing-Framework for the open-source toolkit matRad (2021),
- R. Yulvina (BSc): A bi-directional Python binding for the open-source toolkit matRad (2021)
- C. Hormazábal (MSc): Dose and grading uncertainties in Xerostomia prediction using Machine Learning classification (2020),
- P. Meder (MSc & res. ass.): Heterogeneity corrections for analytical proton dose calculation algorithms (2020),
- A. Neishabouri (MSc & res. ass.): Performing proton dose calculation using Artificial Neural Networks, (2019, co-supervision),
- A. Sage (MSc): Efficient uncertainty propagation through MC dose calculations for radiation therapy, (2019, co-supervision)

German Cancer Research Center – DKFZ – Im Neuenheimer Feld 280 – 69120 Heidelberg

+49 6221 42-2233

■ In.wahl@dkfz.de

www.dkfz.de/radopt

in niklaswahl

Dr. Niklas Wahl

Peer-reviewed Publications

- Accepted Manuscript F. Xiao, D. Radonic, M. Kriechbaum, **N. Wahl**, A. Neishabouri, N. Delopoulos, K. Parodi, S. Corradini, C. Belka, C. Kurz, G. Landry, and G. Dedes, "Prompt gamma emission prediction using a long short-term memory network", Physics in Medicine & Biology, 10.1088/1361–6560/ad8e2a.
 - Research article D. Radonic, F. Xiao, **N. Wahl**, L. Voss, A. Neishabouri, N. Delopoulos, S. Marschner, S. Corradini, C. Belka, G. Dedes, C. Kurz, and G. Landry, "Proton dose calculation with LSTM networks in presence of a magnetic field", Physics in Medicine & Biology **69**, 215019.
- Accepted Manuscript M. Sitarz, M. G. Ronga, F. Gesualdi, A. Bonfrate, **N. Wahl**, and L. De Marzi, "Implementation and validation of a very-high-energy electron model in the matRad treatment planning system", Medical Physics **n/a**, 10.1002/mp.17392.
 - Research article N. Harrison, M. Kang, R. Liu, S. Charyyev, **N. Wahl**, W. Liu, J. Zhou, K. A. Higgins, C. B. Simone, J. D. Bradley, W. S. Dynan, and L. Lin, "A novel inverse algorithm to solve IPO-IMPT of proton FLASH therapy with sparse filters", International Journal of Radiation Oncology, Biology, Physics **119**, P957–967.
 - Research article J. J. Hardt, A. A. Pryanichnikov, N. Homolka, E. A. DeJongh, D. F. DeJongh, R. Cristoforetti, O. Jaekel, J. Seco, and **N. Wahl**, "The potential of mixed carbon-helium beams for online treatment verification: a simulation and treatment planning study", Physics in Medicine & Biology **69**, 125028.
 - Research article B. Faddegon, M. Descovich, K. Chen, J. Ramos-Méndez, M. Roach III, **N. Wahl**, P. Taylor, 2024 K. Griffin, and C. Lee, "A digital male pelvis phantom series showing anatomical variations over the course of fractionated radiotherapy treatment", Medical Physics **51**, 3034–3044.
 - Research article F. Gesualdi and **N. Wahl**, "Cumulative Histograms under Uncertainty: An Application to 2024 Dose–Volume Histograms in Radiotherapy Treatment Planning", Stats **7**, 284–300.
 - Research article Y. Han, C. Geng, S. Altieri, S. Bortolussi, Y. Liu, **N. Wahl**, and X. Tang, "Combined BNCT-CIRT treatment planning for glioblastoma using the effect-based optimization", Physics in Medicine & Biology **69**, 015024.
 - Research article F. Barkmann, Y. Censor, and **N. Wahl**, "Superiorization of projection algorithms for linearly constrained inverse radiotherapy treatment planning", Frontiers in Oncology **13**, 10.3389/fonc.2023.1238824.
 - Research article B. A. Faddegon, E. A. Blakely, L. N. Burigo, Y. Censor, I. Dokic, J. N. D-Kondo, R. Ortiz, J. Ramos-Mendez, A. Rucinski, K. E. Schubert, **N. Wahl**, and R. W. Schulte, "Ionization detail parameters and cluster dose: a mathematical model for selection of nanodosimetric quantities for use in treatment planning in charged particle radiotherapy", Physics in Medicine & Biology **68**, 175013.
 - Research article
 R. Liu, S. Charyyev, **N. Wahl**, W. Liu, M. Kang, J. Zhou, X. Yang, F. Baltazar, M. Palkowitsch,
 K. Higgins, W. Dynan, J. Bradley, and L. Lin, "An Integrated Physical Optimization framework
 for proton SBRT FLASH treatment planning allows dose, dose rate, and LET optimization using
 patient-specific ridge filters", International Journal of Radiation Oncology, Biology, Physics
 116, P949–959.
 - Research article P. Stammer, L. Burigo, O. Jäkel, M. Frank, and **N. Wahl**, "Multivariate error modeling and uncertainty quantification using importance (re-)weighting for Monte Carlo simulations in particle transport", Journal of Computational Physics **473**, 111725.
 - Research article E. Vargas-Bedoya, J. C. Rivera, M. E. Puerta, A. Angulo, **N. Wahl**, and G. Cabal, "Contour 2022 Propagation for Radiotherapy Treatment Planning Using Nonrigid Registration and Parameter Optimization: Case Studies in Liver and Breast Cancer", Applied Sciences **12**, 8523.
 - Research article P. Stammer, L. Burigo, O. Jäkel, M. Frank, and **N. Wahl**, "Efficient uncertainty quantification for Monte Carlo dose calculations using importance (re-)weighting", Physics in Medicine & Biology **66**, 205003.
 - Research article A. B. A. Bennan, J. Unkelbach, **N. Wahl**, P. Salome, and M. Bangert, "Joint optimization of photon carbon ion treatments for Glioblastoma", International Journal of Radiation Oncology*Biology*Physics **111**, 559–572.

- Research article A. Neishabouri, **N. Wahl**, A. Mairani, U. Köthe, and M. Bangert, "Long short-term memory networks for proton dose calculation in highly heterogeneous tissues", Medical Physics **48**, 1893–1908.
- Research article L. Marc, S. Fabiano, **N. Wahl**, C. Linsenmeier, A. J. Lomax, and J. Unkelbach, "Combined proton-photon treatment for breast cancer", Physics in Medicine & Biology **66**, 235002.
- Research article **N. Wahl**, P. Hennig, H.-P. Wieser, and M. Bangert, "Analytical probabilistic modeling of dose-volume histograms", Medical Physics **47**, 5260–5273.
- Research article H.-P. Wieser, C. P. Karger, **N. Wahl**, and M. Bangert, "Impact of Gaussian uncertainty assumptions on probabilistic optimization in particle therapy", Physics in Medicine & Biology **65**, 145007.
- Research article N. Wahl, P. Hennig, H.-P. Wieser, and M. Bangert, "Analytical incorporation of fractionation effects in probabilistic treatment planning for intensity-modulated proton therapy", Medical Physics 45, 1317–1328.
- Research article H.-P. Wieser, **N. Wahl**, H. S. Gabryś, L.-R. Müller, G. Pezzano, J. Winter, S. Ulrich, L. N. 2018 Burigo, O. Jäkel, and M. Bangert, "matRad an open-source treatment planning toolkit for educational purposes", Medical Physics International Journal **6**, 119–127.
- Research article H.-P. Wieser, P. Hennig, **N. Wahl**, and M. Bangert, "Analytical probabilistic modeling of RBE-weighted dose for ion therapy", Physics in Medicine and Biology **62**, 8959–8982.
- Research article **N. Wahl**, P. Hennig, H.-P. Wieser, and M. Bangert, "Efficiency of analytical and sampling-based uncertainty propagation in intensity-modulated proton therapy", Physics in Medicine and Biology **62**, 5790–5807.
- Research article H.-P. Wieser, E. Cisternas, **N. Wahl**, S. Ulrich, A. Stadler, H. Mescher, L.-R. Müller, T. Klinge, 2017 H. Gabrys, L. Burigo, A. Mairani, S. Ecker, B. Ackermann, M. Ellerbrock, K. Parodi, O. Jäkel, and M. Bangert, "Development of the open-source dose calculation and optimization toolkit matRad", Medical Physics **44**, 2556–2568.
- Research article N. Wahl, M. Bangert, C. P. Kamerling, P. Ziegenhein, G. H. Bol, B. W. Raaymakers, and U. Oelfke, "Physically constrained voxel-based penalty adaptation for ultra-fast IMRT planning", Journal of Applied Clinical Medical Physics 17, 172–189.

Peer-reviewed Conference Contributions

- Oral Presentation M. Arndt, G. Stanic, O. Jäkel, K. Giske, and **N. Wahl**, "SC14.05 Bayesian uncertainty estimation in CycleGAN-based CT style transfer", in Physica Medica, Vol. 125, Supplement 1, Abstracts of the 5th European Congress of Medical Physics (), p. 103485.
- Oral Presentation F. Xiao, M. Kriechbaum, D. Radonic, **N. Wahl**, A. Neishabouri, N. Delopoulos, K. Parodi, S. Corradini, C. Belka, C. Kurz, G. Landry, and G. Dedes, "SC29.07 Al-based prompt gamma prediction", in Physica Medica, Vol. 125, Abstracts of the 5th European Congress of Medical Physics (), p. 103532.
 - Poster Oral R. Cristoforetti and **N. Wahl**, "SO027 / #138 Avoiding Scenarios: An Efficient Strategy 2024 for Robust 4D Treatment Planning Using Total Variance and Expected Dose Objectives", in International Journal of Particle Therapy, Vol. 12, Proceedings to the 62nd Annual Conference of the Particle Therapy Cooperative Group (PTCOG) (PTCOG62, Singapore), p. 100339.
 - Poster Oral S. Facchiano, R. Ortiz, N. Kondo, R. Cristoforetti, B. Faddegon, O. Jäkel, and **N. Wahl**, 2024 "SO026 / #456 An Ion Therapy Treatment Planning Framework for Direct Optimization of Nanodosimetric Ionization Detail Through Cluster Dose", in International Journal of Particle Therapy, Vol. 12, Proceedings to the 62nd Annual Conference of the Particle Therapy Cooperative Group (PTCOG) (PTCOG 62, Singapore), p. 100338.
 - Poster J. Hardt, A. Pryanichnikov, N. Homolka, E. Dejongh, D. F. Dejongh, R. Cristoforetti, J. Seco, and **N. Wahl**, "P113 / #136 Development of a Treatment Planning and Simulation Framework for Adaptive Mixed Carbon-Helium Ion Therapy", in International Journal of Particle Therapy, Vol. 12, Proceedings to the 62nd Annual Conference of the Particle Therapy Cooperative Group (PTCOG) (PTCOG 62, Singapore), p. 100498.

- Oral Presentation R. Lui, S. Charyyev, **N. Wahl**, W. Liu, M. Kang, J. Zhou, X. Yang, S. Zhou, and L. Lin, "O140 / #342 A Novel Optimization Framework for Proton FLASH Treatment Planning Allows Dose, Dose Rate, and LET Optimization Using Parient-Specific Ridge Filters", in International Journal of Particle Therapy, Vol. 12, Proceedings to the 62nd Annual Conference of the Particle Therapy Cooperative Group (PTCOG) (PTCOG 62, Singapore), p. 100253.
- Oral Presentation T. Ortkamp, H. Sallem, S. Harrabi, M. Frank, O. Jäkel, J. Bauer, and **N. Wahl**, "O143 / #428 Let's Play POLO: Direct Optimization of the Probability of Lesion Origin in Proton Treatment Planning for Low-Grade Glioma Patients", in International Journal of Particle Therapy, Vol. 12, Proceedings to the 62nd Annual Conference of the Particle Therapy Cooperative Group (PTCOG) (PTCOG 62, Singapore), p. 100256.
 - Poster Oral L. Seckler, A. B. A. Bennan, and **N. Wahl**, "SO004 / #809 An Open Framework for Comparing LET-Modifying Objectives in Proton Treatment Planning", in International Journal of Particle Therapy, Vol. 12, Proceedings to the 62nd Annual Conference of the Particle Therapy Cooperative Group (PTCOG) (PTCOG 62, Singapore), p. 100316.
 - Poster M. K. Sitarz, M. G. Ronga, F. Gesualdi, A. Bonfrate, N. Wahl, and L. D. Marzi, "2764: Development and validation of Very High Energy Electrons dose calculation in matRad TPS", in Radiotherapy and Oncology, Vol. 194, Supplement 1 (ESTRO 2024, Glasgow, UK), S3707–S3710
 - Poster N. Wahl and R. Cristoforetti, "2800: Boosting 4D robust treatment planning for IMRT", in 2024 Radiotherapy and Oncology, Vol. 194, Supplement 1 (ESTRO 2024, Glasgow, UK), S3711– S3715.
 - Poster J. Lourenço, J. Leitão, **N. Wahl**, F. Baltazar, J. Marques, and J. Seco, "A novel method for FLASH radiotherapy: Combining FLASH with IMRT", in Proceedings to the 61st Annual Conference of the Particle Therapy Cooperative Group, Vol. 10, International Journal of Particle Therapy (PTCOG 61, Madrid), pp. 337–338.
- Oral Presentation
 T. Ortkamp, O. Jäkel, M. Frank, and **N. Wahl**, "On the feasibility of high-dimensional multivariate machine learning model-based outcome optimization for intensity-modulated treatment planning in proton therapy", in Proceedings to the 61st Annual Conference of the Particle Therapy Cooperative Group, Vol. 10, International Journal of Particle Therapy (PTCOG 61, Madrid), p. 195.
 - Poster C. Sepúlveda, B. Gebauer, A. Hoffmann, A. Lühr, **N. Wahl**, and L. Burigo, "Experimental dosimetric validation of an open-source treatment planning system for IMPT dose delivery at a horizontal PBS research beamline", in Proceedings to the 61st Annual Conference of the Particle Therapy Cooperative Group, Vol. 10, International Journal of Particle Therapy (PTCOG 61, Madrid), pp. 334–335.
 - Poster P. Stammer, **N. Wahl**, D. Lathouwers, and J. Kusch, "Time and memory efficient deterministic proton dose calculations using the dynamical low-rank approximation", in Proceedings to the 61st Annual Conference of the Particle Therapy Cooperative Group, Vol. 10, International Journal of Particle Therapy (PTCOG 61, Madrid), pp. 357–358.
- Oral Presentation L. Voss, A. Neishabouri, T. Ortkamp, and **N. Wahl**, "OC-0775: Comprehensive proton dose prediction with Bayesian LSTMs", in Radiotherapy and Oncology, Vol. 182, Supplement 1 (ESTRO 2023, Vienna, Austria), S642–S644.
- Oral Presentation

 N. Wahl, N. Charitonidis, M. Dosanjh, N. Homolka, C. Graeff, A. Mamaras, J. Seco, D. Skrijelj,
 R. L. Taylor, A. Topi, H.-P. Wieser, and P. Foka, "MO-0563: Youth education and outreach with the international Particle Therapy Masterclass", in Radiotherapy and Oncology, Vol. 182, Supplement 1 (ESTRO 2023, Vienna, Austria), S443–S445.
- Oral Presentation N. Wahl, "The Particle Therapy Masterclass for targeted education and outreach on real-world application of fundamental physics", Oral Presentation, DPG SMuK Frühjahrstagung (Dresden).
 - Poster A. B. A. Bennan, J. Unkelbach, and **N. Wahl**, "Determining the number of photon and particle fractions for jointly optimized combined treatments", in Proceedings to the 60th Annual Conference of the Particle Therapy Cooperative Group, Vol. 9, International Journal of Particle Therapy (PTCOG 60, Miami), p. 424.

- Poster J. Hardt, T. Ortkamp, and **N. Wahl**, "Towards a generalized (N)TCP optimization framework across modalities using classical and machine learning models", in Proceedings to the 60th Annual Conference of the Particle Therapy Cooperative Group, Vol. 9, International Journal of Particle Therapy (PTCOG 60, Miami), pp. 428–429.
- Oral Presentation R. Liu, S. Charyyev, **N. Wahl**, W. Liu, J. Zhou, Y. Xiaofeng, K. Higgins, J. Bradley, and L. Lin, "Feasibility of proton SBRT FLASH treatment with dose, dose rate, and LET optimization using patient specific 3D ridge", in Proceedings to the 60th Annual Conference of the Particle Therapy Cooperative Group, Vol. 9, International Journal of Particle Therapy (PTCOG 60, Miami), p. 368.
- Oral Presentation

 N. Wahl and H.-P. Wieser, "Scenario-free probabilistic proton dose optimization using expected dose influence and total variance", in Proceedings to the 60th Annual Conference of the Particle Therapy Cooperative Group, Vol. 9, International Journal of Particle Therapy (PTCOG 60, Miami), p. 383.
 - Poster P. Stammer, L. Burigo, O. Jäkel, M. Frank, and **N. Wahl**, "PO-1728: Efficient modeling and quantification of time-dependent errors in IMPT", in Radiotherapy and Oncology, Vol. 170 (ESTRO, Kopenhagen), S1529–S1531.
- Oral Presentation P. Foka, A. Mamaras, D. Skrjiel, J. Seco, C. Graeff, M. Pulia, H.-P. Wieser, and **N. Wahl**, 2022 "Particle therapy masterclass", in EPJ Web of Conferences, Vol. 258 (vConf21, Online), p. 01002.
- Oral Presentation N. Homolka, P. A. Meder, L. Burigo, H.-P. Wieser, M. Bangert, O. Jäkel, M. Ellerbrock, and N. Wahl, "Degradation of particle depth dose in lung tissue: An efficient and consistent model for Monte Carlo and analytical dose calculation", in Proceedings to the 59th Annual Conference of the Particle Therapy Cooperative Group (PTCOG59 2021 Online), International Journal of Particle Therapy (PTCOG 59, Online), pp. 23–24.
- Oral Presentation
 2022 Presentation
 2022 P. Stammer, L. Burigo, O. Jäkel, M. Frank, and **N. Wahl**, "Efficient uncertainty estimates in
 2022 Monte Carlo dose calculation using importance reweighting", in Proceedings to the 59th Annual
 Conference of the Particle Therapy Cooperative Group (PTCOG59 2021 Online), International
 Journal of Particle Therapy (PTCOG 59, Online), p. 24.
 - Poster L. Marc, S. Fabiano, N. Wahl, C. Linsenmeier, A. J. Lomax, and J. Unkelbach, "PO-1905:
 Combined proton-photon treatment for breast cancer using a fixed proton beamline", in Radiotherapy and Oncology, Vol. 161 (ESTRO, Online), S1625–S1627.
- Oral Presentation M. Palkowitsch, A. B. A. Bennan, and **N. Wahl**, "The role of uncertainties in jointly optimised 2021 mixed carbon/photon treatments", Oral Presentation, DGMP 2021 (Online).
 - Poster N. Homolka, H.-P. Wieser, M. Bangert, M. Ellerbrock, and **N. Wahl**, "PO-1490: Lung degradation effects on RBE-weighted dose in proton, carbon and helium treatment plans", in Radiotherapy and Oncology, Vol. 152 (ESTRO, Online), S801–S802.
- Oral Presentation A. Neishabouri, **N. Wahl**, L. N. Burigo, U. Köthe, and M. Bangert, "OC-0215: LSTM networks 2020 for proton dose calculation in highly heterogeneous tissues", in Radiotherapy and Oncology, Vol. 152 (ESTRO, Online), S108–S109.
 - Poster N. Wahl, H.-P. Wieser, L. Burigo, and M. Bangert, "PO-1377: Monte Carlo vs. pencil-beam dose calculation for uncertainty estimation in proton therapy", in Radiotherapy and Oncology, Vol. 152 (ESTRO, Online), S731.
 - Symposium M. Bangert, **N. Wahl**, and H.-P. Wieser, "SP-0469: Mitigation of range uncertainties with Presentation probabilistic IMPT optimization", in Radiotherapy and Oncology, Vol. 133 (ESTRO, Milan), 2019 S241.
- Oral Presentation N. Wahl, E. Doerner, L. N. Burigo, D. Ramirez, A. Neishabouri, A. B. A. Bennan, H.-P. Wieser, and M. Bangert, "Development report for the open source dose calculation and optimization toolkit matRad", Oral Presentation, 19th ICCR (Montréal).
- Oral Presentation **N. Wahl**, P. Hennig, H.-P. Wieser, and M. Bangert, "Confidence constraints for probabilistic radiotherapy treatment planning", Oral Presentation, 19th ICCR (Montréal).
- Oral Presentation H.-P. Wieser, P. Hennig, **N. Wahl**, and M. Bangert, "Closed-form modeling of biological uncertainties in carbon ion therapy", Oral Presentation, 19th ICCR (Montréal).

- Oral Presentation H.-P. Wieser, C. P. Karger, **N. Wahl**, and M. Bangert, "Impact of Gaussian uncertainty assumptions for probabilistic optimization considering range errors", Oral Presentation, 19th ICCR (Montréal).
 - Poster **N. Wahl**, P. Hennig, H.-P. Wieser, and M. Bangert, "PO-0909: Analytical probabilistic models for dose quality metrics and optimization objectives", in Radiotherapy and Oncology, Vol. 127 (ESTRO, Barcelona), S486–S487.
- Oral Presentation H.-P. Wieser, **N. Wahl**, P. Hennig, and M. Bangert, "OC-0088: Simultaneous consideration of biologyical and physical uncertainties in robust ion therapy planning", in Radiotherapy and Oncology, Vol. 127 (ESTRO, Barcelona), S46–S47.
 - Poster **N. Wahl**, P. Hennig, H.-P. Wieser, and M. Bangert, "EP-1898: Smooth animations of the probabilistic analog to worst-case dose distributions", in Radiotherapy and Oncology, Vol. 127 (ESTRO, Barcelona), S1028–S1029.
- Oral Presentation N. Wahl, P. Hennig, and M. Bangert, "Probabilistic proton treatment planning using accelerated analytical probabilistic modelling", Oral Presentation, 18th ICCR (London).
- Oral Presentation H.-P. Wieser, **N. Wahl**, P. Hennig, and M. Bangert, "Analytical probabilistic modeling of range and setup uncertainties in carbon ion therapy planning", Oral Presentation, 18th ICCR (London).
 - Poster N. Wahl, C. P. Kamerling, H. Heinrich, P. Hennig, and M. Bangert, "Robust Planning for Intensity-modulated Proton Therapy using Analytical Probabilistic Modeling", in International Journal of Particle Therapy, Vol. 2, 1 (PTCOG & PTCOG-NA, San Diego), 314f.

Monographs

- Textbook C. Kommer, T. Tugendhat, and **N. Wahl**, *Tutorium Physik fürs Nebenfach*, 2nd ed. (Springer 2019 Spektrum, Berlin, Heidelberg).
- PhD thesis **N. Wahl**, "Analytical Models for Probabilistic Inverse Treatment Planning in Intensity-2018 modulated Proton Therapy", PhD thesis (Ruprecht-Karls Universität Heidelberg, Heidelberg).
- Textbook C. Kommer, T. Tugendhat, and **N. Wahl**, *Tutorium Physik fürs Nebenfach*, 1st ed. (Springer 2015 Spektrum, Berlin, Heidelberg).

Preprints and other Publications

- Preprint (arXiv) L. Voss, A. Neishabouri, T. Ortkamp, A. Mairani, and **N. Wahl**, *BayesDose: Comprehensive proton dose prediction with model uncertainty using Bayesian LSTMs*, http://arxiv.org/abs/2307.01151, pre-published.
 - Online Article P. Stammer, L. Burigo, O. Jäkel, M. Frank, and **N. Wahl**, Efficient uncertainty quantification for Monte Carlo dose calculations using importance (re-)weighting, ESTRO Physics Newsletter, https://www.estro.org/About/Newsroom/Newsletter/Physics/Efficient-uncertainty-quantification-for-Monte-Car.
 - Online Article M. Bangert, O. Jäkel, **N. Wahl**, and H.-P. Wieser, *Developing matRad, an Open-Source Dose Calculation and Optimization Toolkit for Radiation Therapy Planning*, MathWorks Techincal Articles and Newsletters, https://www.mathworks.com/company/newsletters/articles/developing-matrad-an-open-source-dose-calculation-and-optimization-toolkit-for-radiation-therapy-planning.html.