INFO 251: Applied Machine Learning

Logistic Regression

Follow

When you use a 10 layer Deep Neural Network where Logistic Regression would suffice

6:33 PM - 26 Sep 2018

911 Retweets **2,894** Likes

Announcements

Assignment 4 will be posted today/tomorrow

Key Concepts (last lecture)

- Overfitting
- Regularization: Intuition
- Regularization: Cost function adjustment
- Ridge
- Lasso
- Cross-validation of regularization hyperparameters
- Coefficient plots
- Logistic regression
- Sigmoid function
- Odds ratios

Course Outline

- Causal Inference and Research Design
 - Experimental methods
 - Non-experiment methods
- Machine Learning
 - Design of Machine Learning Experiments
 - Linear Models and Gradient Descent
 - Non-linear models
 - Fairness and Bias in ML
 - Neural models
 - Deep Learning
 - Practicalities
 - Unsupervised Learning
- Special topics

Outline

- Logistic regression (interpretation)
- Logistic regression (prediction and gradient descent)
- Support vector machines
- Kernels

Outline

- Logistic regression (inference)
- Logistic regression (prediction & gradient descent)
- Support vector machines
- Kernels

Cost functions and convexity

- How to know if cost function is convex?
- Intuition: Need that "bowl" shape

- (All eigenvalues are non-negative)
- In practice, computing Hessian can be difficult, and only works if $J(\theta)$ is twice differentiable

Non-convex 😊

Logistic Regression: Cost function

Cost Functions:

- Linear regression: $J(\alpha, \beta) = \frac{1}{2N} \sum_{i=1}^{N} (Y_i \alpha \beta X_i)^2$
- Why not $J(\alpha,\beta) = \frac{1}{2N} \sum_{i=1}^{N} \left(Y_i \frac{1}{1+e^{-(\alpha+\beta X_i)}} \right)^2$

■ Not convex ⊗

- Sigmoid function is complex
- When sigmoid is combined with Squared Error Loss, $J(\alpha, \beta)$ not convex...
- Susceptible to local minima
- Instead, we use something different
 - (derived from negative log-likelihood of Bernoulli probability model

Logistic Regression: Cost function

- Cost Function (think of $\widehat{Y}_i = \frac{1}{1 + e^{-(\alpha + \beta X_i)}}$)
 - $-\operatorname{Cost}(\widehat{Y}_i, Y_i) = \begin{cases} -\log(\widehat{Y}_i) & \text{if } Y_i = 1\\ -\log(1 \widehat{Y}_i) & \text{if } Y_i = 0 \end{cases}$
 - $\operatorname{Cost}(\widehat{Y}_i, Y_i) = -Y_i \cdot \log(\widehat{Y}_i) (1 Y_i) \cdot \log(1 \widehat{Y}_i)$

- This is convex:
 - If $Y_i = 1$, what is cost if $\hat{Y}_i = 1$? What if $\hat{Y}_i = 0$?
 - No cost if model predicts 1
 - Penalizes mistakes
 - If $Y_i = 0$, what is cost if $\hat{Y}_i = 1$? if $\hat{Y}_i = 0$?
 - No cost if model predicts o
 - Penalizes mistakes

Logistic Regression: Gradient Descent

- Given the cost function $J(\theta)$, we now want to minimize:
 - $J(\theta) = -\frac{1}{N} \sum_{i=1}^{N} Y_i \cdot \log \hat{Y}_i + (1 Y_i) \log (1 \hat{Y}_i)$
- Gradient Descent!
 - $\bullet \quad \theta \leftarrow \theta R \frac{\partial}{\partial \theta} J(\theta)$
- With revised cost function, $\frac{\partial}{\partial \theta} J(\theta) = -\frac{1}{N} \sum_{i=1}^{N} (Y_i \hat{Y}_i) X_i$
 - Note similarities to linear regression! But not identical:
 - Logistic regression: $\hat{Y}_i = \frac{1}{1 + e^{-(\alpha + \beta X_i)}}$
- Gradient Descent Algorithm (logistic regression)
 - Repeat until convergence:
 - $\beta \leftarrow \beta + R \frac{1}{N} \sum_{i=1}^{N} (Y_i \hat{Y}_i) X_i$
 - in other words: $\beta \leftarrow \beta + R \frac{1}{N} \sum_{i=1}^{N} \left(Y_i \frac{1}{1 + e^{-(\alpha + \beta X_i)}} \right) X_i$

Outline

- Logistic regression (inference)
- Logistic regression (prediction and gradient descent)
- Support vector machines
- Kernels

Logistic Regression: Linear decision boundary

- Logistic regression is one (very) common binary classifier
 - Prediction \widehat{Y}_i can be interpreted as probability that $Y_i=1$
 - To then make a binary prediction, a threshold is applied
 - (typically, at 0.50)
 - (AUC provides a "threshold-agnostic" measure of performance)
- This creates a linear decision boundary
 - i.e., the decision boundary can be expressed as a linear function (a "hyperplane")

Logistic Regression: Linear decision boundary

- Example: admission vs. GRE and GPA
 - Start with raw data
 - 2. Fit logistic regression
 - 3. Threshold converts predicted probabilities to classifications

Support Vector Classifiers: Intuition

 Often there are multiple possible decision boundaries that perform equivalently on the training data

Support Vector Classifiers: Intuition

- Idea: Select the hyperplane that maximizes the "margin"
 - "Margin": shortest distance between training observations and threshold
 - Example of "max margin classifier"
- Note: max margin is brittle!
 - For this reason, typically want to use a "soft margin classifier"
 - Allows misclassifications w/in margin
 - Use cross-val to determine margin width

Linear models: Recap

- Linear models rely on some notion of a linear boundary (i.e., a hyperplane)
- But real-world data are typically not linearly separable
- Some classifiers just make a decision as to which class an object is in; others estimate class probabilities

Outline

- Logistic regression (inference)
- Logistic regression (prediction and gradient descent)
- Support vector machines
- Kernels

Nonlinearly separable data

Extending linear models

- We are modeling y with feature x
 - Classes are not separable with this feature
- One solution: non-linear classifier
 - E.g., k-NN
- Another solution: use kernels!
 - Transforms data
 - E.g., X²

Kernel Visualization

Support Vector Machines (SVM)

- SVM: A general-purpose support vector classifier
 - Combines kernel functions (basis functions) w/ support vector classifiers
 - Common kernels: polynomial kernel, radial basis function (RBF)
- Main idea
 - Kernel is used to project data into higher-dimensional space
 - Support vector classifier finds best soft-margin classifier
 - Cross-validation can be used to tune kernel
 - Other bells and whistles for regularization, efficiency (see ESL 12.3)

Key Concepts (this lecture)

- Sigmoid cost function
- Gradient descent with logistic regression
- Odds ratios
- Support vector machines
- Hard vs. soft margins
- Kernel functions

Linear Models: Example Quiz Question

 True or False: If the cost function is continuous and differentiable, and the learning rate is sufficiently small, gradient descent will eventually converge to the global minimum.

For Next Class:

- Read:
 - Chapters 5 and 6 of Daume