2021 Spring MAS 365: Homework 6

posted on May 6; due by May 13

1. [10+10 points]

(a) Construct the second Lagrange interpolating polynomial for the function

$$f(x) = x^{-3}$$
, and the nodes $x_0 = 1, x_1 = 2, x_2 = 3$.

You don't have to write the polynomial in a compact form.

- (b) Find a bound for the corresponding absolute error on the interval $[x_0, x_2]$.
- 2. [10 points] Prove Taylor's Theorem 1.14 in the textbook by following the procedure in the proof of Theorem 3.3 in the textbook. [Hint: Let $g(t) = f(t) P(t) [f(x) P(x)] \frac{(t-x_0)^{n+1}}{(x-x_0)^{n+1}}$, where P is the nth Taylor polynomial, and use the Generalized Rolle's Theorem and $g(x_0) = g'(x_0) = g''(x_0) = \cdots = g^{(n)}(x_0) = 0$.]
- 3. [10 points] Neville's method is used to approximate f(0.4), giving the following table.

$$x_0 = 0$$
 $P_0 = 1$
 $x_1 = 0.25$ $P_1 = 2$ $P_{0,1} = 2.6$
 $x_2 = 0.5$ P_2 $P_{1,2}$ $P_{0,1,2}$
 $x_3 = 0.75$ $P_3 = 8$ $P_{2,3} = 2.4$ $P_{1,2,3} = 2.96$ $P_{0,1,2,3} = 3.016$

Determine $P_2 = f(0.5)$.

- 4. [10 points] Show that $H_{2n+1}(x)$ is the unique polynomial of least degree agreeing with f and f' at x_0, \ldots, x_n . Assume that P(x) is another such polynomial and consider $D(x) = H_{2n+1}(x) P(x)$ and D'(x) at $x = x_0, x_1, \ldots, x_n$.
- 5. [10+5 points] Let $(x_0, y_0) = (0,0)$ and $(x_1, y_1) = (5,2)$ be the endpoints of a curve, and let (1,1) and (6,3) be the given guidepoints, respectively.
 - (a) Construct a parametric cubic Hermite approximations (x(t), y(t)) to the curve.
 - (b) Draw a graph of the approximation (possibly by MATLAB).
- 6. [10+10+10 points]
 - (a) Implement the Newton divided difference formula via MATLAB grader.
 - (b) Implement the divided difference formula for Hermite Polynomials via MATLAB grader.
 - (c) Implement the cubic spline interpolations via MATLAB grader.