Loss Sharing in Central Counterparties: Winners and Losers

Christian Kubitza, Loriana Pelizzon, Mila Getmansky Sherman

University of Bonn

Leibniz Institute SAFE, Goethe-University Frankfurt, Ca'Foscari University of Venice Isenberg School of Management, University of Massachusetts Amherst

September 3, 2020

Derivatives markets and default losses

- OTC (over-the-counter) derivatives markets
 - ▶ large: \$12 trillion gross market value (BIS 2019)
 - core (dealer) periphery (end-user) structure: 16 dealers dominate the EU CDS, IRS, FX market (Abad et al. (2016))
 - ▶ pre 2007: largely unregulated
- Default losses: Lehman fails on derivative obligations
- Regulators: reduce spillover from default losses via central clearing of derivatives, although market participants (end-users!) reluctant to voluntarily clear (< 40% of CDS, IRD, FX transactions cleared pre-regulation)

This paper: central clearing ⇒ default losses?

Main finding:

Central clearing no panacea: benefits for flat but not directional/peripheral entities.

 $\textit{Interaction} : \ \mathsf{CCP} \ \mathsf{rulebook} \ \leftrightarrow \ \mathsf{network} \ \mathsf{structure} \ \leftrightarrow \ \mathsf{core} \ \mathsf{vs.} \ \mathsf{peripheral} \ \mathsf{entities}$

Central clearing

Suppose Deutsche Bank buys credit protection (CDS) from Lehman sells it to JPM.

⇒ Default loss if Lehman fails on obligation to pay.

Clearing: CCP (Central CounterParty) steps in-between every trade

⇒ Deutsche Bank exposed to CCP instead of Lehman and JPM.

Figure: Uncleared market (left) and central clearing (right).

CCP waterfall

If a clearing member (CM) defaults on obligation to CCP, loss is covered by waterfall:

Figure: CCP waterfall and example from Nasdaq 09/2018.

 \Rightarrow Loss sharing contribution = exposure to CCP

Literature

Previous studies:

- <u>Netting</u>: offsetting gains & losses across contracts with originally different counterparties reduces overall default losses (Duffie and Zhu (2011), Cont and Kokholm (2014), Lewandowska (2015))
- Loss sharing: impact on a CCP's collateral and fee policy (Capponi et al. (2017), Capponi and Cheng (2018), Huang (2018)) and risk shifting (Biais et al. (2012, 2016), Capponi et al. (2019))

Our contribution:

- Default losses: central clearing vs uncleared market
- Main ingredients:
 - 1. network structure
 - 2. loss sharing rules
 - 3. correlation of derivatives prices (systematic risk)

Model

K derivative classes, γ market participants

Model

class-K centrally cleared:

Model

class-K centrally cleared:

Relative effect of loss sharing:
$$\Delta E = \frac{\mathbb{E}[LSC^{CCP} + DL^{uncleared, K-1}]}{\mathbb{E}[DL^{uncleared, K}]} - 1$$

 \Rightarrow If $\Delta E < 0$, loss sharing *reduces* expected default loss.

Networks of derivative positions

(1) Flat only & complete

$$\begin{pmatrix} & 1 & -1 & 1 & -1 & \text{(flat)} \\ -1 & & 1 & -1 & 1 & \text{(flat)} \\ 1 & -1 & & 1 & -1 & \text{(flat)} \\ -1 & 1 & -1 & & 1 & \text{(flat)} \\ 1 & -1 & 1 & -1 & & \text{(flat)} \end{pmatrix}$$

(2) Heterogeneous & complete

(3) Heterogeneous & core-periphery

Peripheral entities only trade with one core-entity:

Effect of loss sharing across entities w/o systematic risk

- Directionality in portfolios does not matter *Why? No correlation*.
- Peripheral entities' loss sharing contribution >> core entities' LSC
 Why? No netting opportunities ⇒ large relative share in loss sharing.

Importance of loss sharing rule w/o systematic risk

Proportional to gross notional \Rightarrow same benefit across entities.

Systematic risk

Central clearing matters most when there are correlated shocks (crises)!

Model: systematic risk factor that affects <u>all</u> derivatives prices (e.g., macroeconomic conditions, liquidity, etc.):

$$X_j^k = \beta M + \varepsilon_j^k \sim \text{ Normal with } \mathbb{E}[X_j^k] \equiv \mathbb{E}[M] = 0$$

Calibration:
$$cor(Index CDS, S\&P500) = cor(X_j^k, M) = 43\%$$

Effect of loss sharing across entities with systematic risk

Directionality matters:

More directional → loss sharing less beneficial
 Why? Directionality + systematic risk ⇒ small netting opportunities
 ⇒ large portfolio risk ⇒ large relative loss sharing contribution

Importance of loss sharing rules with systematic risk

Proportional to gross notional \Rightarrow same benefit across entities.

Overview

Central Clearing

Model

Results

Tail risk

Tail risk

Financial stability perspective: central clearing matters most in crises, when there are correlated shocks!

Similar effect as on average:

Figure: Relative change in tail risk($\hat{q} = 0.05$) due to central clearing.

Conclusion

- Loss sharing in practice is based on net risk
 - ► favors interconnected+flat entities (core) over end-users (periphery+directional)
- ⇒ Consistent with reluctance of end-users to voluntarily clear in practice.
 - Loss sharing rule crucial:
 - ightharpoonup \propto gross notional: homogeneous effect of loss sharing, but smaller benefit for interconnected entities compared to \propto net
- ⇒ Interaction with CCP profit maximization (favor those with large portfolio)?
- ⇒ Trade-off important for systemic risk. Need to regulate loss sharing rules?

Thank you for your attention.

References

- Abad, J., Aldasorol, I. n., Aymanns, C., D'Errico, M., Rousová, L. F., Hoffmann, P., Langfield, S., Neychev, M., and Roukny, T. (2016). Shedding light on dark markets: First insights from the new EU-wide OTC derivatives dataset. *European Systemic Risk Board Occasional Paper*, 11.
- Biais, B., Heider, F., and Hoerova, M. (2012). Clearing, counterparty risk, and aggregate risk. *IMF Economic Review*, 60(2):193–222.
- Biais, B., Heider, F., and Hoerova, M. (2016). Risk-sharing or risk-taking? Counterparty risk, incentives and margins. *Journal of Finance*, 71(4):1669–1698.
- Capponi, A. and Cheng, W. (2018). Clearinghouse margin requirements. Operations Research, forthcoming.
- Capponi, A., Cheng, W. A., and Sethuraman, J. (2017). Clearinghouse default waterfalls: Risk-sharing, incentives, and systemic risk. Working Paper.
- Capponi, A., Wang, J. J., and Zhang, H. (2019). Central counterparty and the design of collateral requirements. *Working Paper*.
- Cont, R. and Kokholm, T. (2014). Central clearing of OTC derivatives: Bilateral vs multilateral netting. Statistics & Risk Modeling, 31(1):3–22.
- Duffie, D. and Zhu, H. (2011). Does a central clearing counterparty reduce counterparty risk? *Review of Asset Pricing Studies*, 1:74–95.
- Huang, W. (2018). Central counterparty capitalization and misaligned incentives. Working Paper.
- Lewandowska, O. (2015). OTC clearing arrangements for bank systemic risk regulation: A simulation approach. Journal of Money, Credit and Banking, 47(6):1177–1203.

Backup

Baseline Calibration

Variable	Value	Description
Exposure		
σ_X	0.01	Total contract volatility
$\rho_{X,M}$	0.43	Correlation between contract value and systematic risk factor M
σ_{M}	0.03	Systematic risk factor volatility
β	0.1433	Implied beta-factor contracts
σ	0.009	Implied idiosyncratic contract volatility
V	1	Initial market value
$\operatorname{cor}\left(r_{ij}^{k}, r_{hl}^{m}\right)$	0.185	Implied pair-wise correlation of contracts
α_{BN}	0.99	Bilateral margin level
α_{MN}	0.99	Multilateral (CCP) margin level
Default model		
pd	0.05	Individual probability of default
$\rho_{A,A}$	0.05	Correlation of log assets conditional on M
$\bar{\sigma}_A$	1	Total log asset volatility
σ_{A}	0.2	Implied idiosyncratic log asset volatility

Table: Baseline calibration (estimated for North American CDS indices from CDX series 2006-2010). We assume the same calibration for each entity.

Loss sharing

In practice, if the CCP default loss exceeds defaulters resources, exploit

- (1) non-defaulters' default fund (DF) contributions
 - CM's pre-funded contribution proportional to CCP exposure to CM
 - losses allocated proportionally to contributions (not specified in regulation!)
 - replenished regularly (typically: each month)
- (2) cash calls to non-defaulters (unfunded contributions)
 - proportional to DF contributions

In our model:

default fund contributions ≈ unfunded contributions

⇒ sufficient to calculate CM's loss sharing contribution

Trade portfolio: uncleared market

Default loss with counterparty j: net loss across derivative classes k (e.g., CDS, IRS, FX,...)

Trade portfolio: with central clearing

Central clearing of class-K: default loss with CCP depends on multilateral pool across (original) counterparties j

Model (1)

- i trades with $\gamma-1$ counterparties in K different contract classes (CDS, IRS, ...)
- X_{ij}^k =profit for i in class k if j defaults, default loss for $i = \max(X_{ij}^k, 0)$ Independently distributed $X_{ii}^k \sim \text{Normal with } \mathbb{E}[X_{ii}^k] \equiv 0$
- $D_i = \{j \text{ defaults}\}\$ with $\mathbb{P}(D_i = 1) = \pi \in (0,1)$
- C_{ij}^{K} = Value-at-Risk bilateral collateral posted by j to i, C_{i}^{CCP} = Value-at-Risk CCP collateral
- Uncleared market across K classes:

total expected default loss =
$$\mathbb{E}[DL_i^{uncleared,K}] = \sum_{j=1}^{\gamma} \mathbb{E}\left[D_j \max\left(\sum_{k=1}^{K} \mathbf{X_j^k} - \mathbf{C_{ij}^K}, 0\right)\right]$$

Model (2)

- Due to symmetry: portfolio-VaR = CCP initial margin $C_i^{CCP} \propto$ CCP exposure to CM \Rightarrow CCP losses allocated prop. to C_i^{CCP}
- Central clearing of class-K implies expected loss sharing contribution

$$\mathbb{E}[LSC_i^{CCP}] = \mathbb{E}\left[\underbrace{\frac{(1-D_i)C_i^{CCP}}{\sum_{g=1}^{\gamma}(1-D_g)C_g^{CCP}}}_{\text{share allocated to }i} \times \underbrace{\sum_{j=1}^{\gamma}D_j\max\left(\sum_{g}X_{gj}^K - C_j^{CCP}, 0\right)}_{\text{CCP's loss}} \mid \sum_{g=1}^{\gamma}(1-D_g) > 0\right]$$

and total default loss =
$$\mathbb{E}[DL_i^{uncleared,K-1}] + \mathbb{E}[LSC_i^{CCP}]$$

- \Rightarrow loss sharing contribution depends on (1) relative loss sharing and (2) CCP's loss
- Relative effect of loss sharing measured by

$$\Delta E = \frac{\mathbb{E}[DL_i^{uncleared,K-1}] + \mathbb{E}[LSC_i^{CCP}] - \mathbb{E}[DL_i^{uncleared,K}]}{\mathbb{E}[DL_i^{uncleared,K}]}$$

- \Rightarrow If $\Delta E < 0$, central clearing *reduces* expected default losses.
- Calibration: 50 CMs (LCH interest rates: 64 general CMs, LCH OTC FX: 14, ICE US: 34,...), 90% VaR

CCP's loss and netting with systematic risk

With systematic risk, directionality matters:

Figure: Expected CCP's default loss across networks.

Directional positions ⇒ less netting opportunities ⇒ larger CCP default loss per trade volume