שעור 11 משפט הפירוק הפרימרי

W -ל T לב צמצום של 11.1 הגדרה

יהי V מרחב וקטורי מעל שדה $\mathbb F$ ויהי ויהי T:V o V אופרטור. יהי עות- מרחב $W\subseteq V$ תת- מור. האופרטור ויהי על ידי המוגדר על ידי

$$T|_{W}(w) = T(w)$$

W -ל T נקרא הצמצום של

משפט 11.1

יהי $T:V \to V$ ויהי ויהי אופרטורי מכפלה פנימית מעל שדה ויהי אופרטורי מכפלה פנימית שני פולינומים ארים. $p_1(x), p_2(x)$ יהיו

($p_1(x)q_1(x)+p_2(x)q_2(x)=1$ -כך ש- $q_1(x),q_2(x)$ כד פולינומים פולינומים פולינומים $q_1(x),q_2(x)$ כך פ

$$V_1 = \ker(p_1(T))$$
, $V_2 = \ker(p_2(T))$.

נסמן גם

$$p(x) = p_1(x)p_2(x) .$$

- . שמורים T הם תת-מרחבים V_1, V_2
 - $V_1 \cap V_2 = \{0\}$ (2)
- $V=V_1\oplus V_2$ אז p(x) אם T מאפסת את (3
- נניח ש- $p_1(x), p_2(x)$ נוצר סופית מעל \mathbb{F} . אם $p(x) = m_T(x)$ אם V נוצר טופית מעל V
 - ו- $Tig|_{V_1}$ הוא הפולינום המינמלי של $p_1(x)$ ו-
 - $Tig|_{V_2}$ הוא הפולינום המינמלי של $p_2(x)$

הוכחה:

 $.p_1(T)T(u)=Tp_1(T)(u)$ מתקיים ע $u\in V$ לכל (ד)

 $.p_1(T)T(u) = Tp_1(T)(u) = 0$ אז גם $p_1(T)(u) = 0$ אם \Leftarrow

. שמור T שמור תת-מרחב $V_1 \Leftarrow$

.ההוכחה עבור V_2 זהה

 $q_1(x)p_1(x)+q_2(x)p_2(x)=1$ בך ש- $q_1(x),q_2(x)\in\mathbb{F}[x]$ זרים אז קיימים $p_1(x),p_2(x)=1$ כך ש- לכפיכך

$$q_1(T)p_1(T) + q_2(T)p_2(T) = I_V$$
.

, $u \in V$ לכן לכל

$$q_1(T)p_1(T)(u) + q_2(T)p_2(T)(u) = u$$
 . (*)

נניח כי $p_2(T)(u)=0$ ו- $p_1(T)(u)=0$ -ש ממשוואה (*) ממשוואה $u\in V_1\cap V_2$ נקבל נניח כי

$$q_1(T)(0) + q_2(T)(0) = u$$
.

.ט"א u=0 ז"א

$$u_1 = q_2(T)p_2(T)$$
, $u_2 = q_1(T)p_1(T)$.

 $.u = u_1 + u_2$ -שמשוואה (*) ממשוואה

 $u_2\in\ker\left(p_1(T)
ight)$, $u_1\in\ker\left(p_1(T)
ight)$ נוכיח כי

$$p_1(T)(u_1) = q_2(T)p_2(T)p_1(T)(u) = q_2(T)p(T)(u) = q_2(0) = 0$$
.

.כנדרש בנדרש $u_1 \in \ker \left(p_1\left(T\right)\right)$ כנדרש

 $.u_{2}\in\ker\left(p_{2}\left(T
ight)
ight)$ בדומה מראים

 $.p_{1}\left(Tig|_{V_{1}}
ight)=p_{1}\left(T
ight)ig|_{V_{1}}$ איז, מטענה (4

לכן, מאחר ש $u\in V_1$ נובע שלכל $V_1=\ker\left(p_1(T)
ight)$ מתקיים

$$p_1(T|_{V_1})(u) = p_1(T)|_{V_1}(u) = p_1(T)(u) = 0.$$

כלומר, $Tig|_{V_1}$ מאפסת את $p_1(x)$ כדי להוכיח ש- $p_1(x)$ הוא הפולינום המינימלי של $p_1(x)$ נותר להראות בלומר, כלומר, לא מאפסת פולינום שמעלתו קטנה ממעלתו של- $p_1(x)$ פרט לפולינומם האפס.

 $p_1(x)$ של ממעלתו קטנה ממעלתו שונה פולינום שונה פולינום פולינום פולינום שונה מאפס פולינום שונה מ

. נסמן פולינום אינו k(x) ש- גבחין האפס. $k(x) = q(x)p_2(x)$

$$\deg(k) = \deg(q) + \deg(p_2) < \deg(p_1) + \deg(p_2) = \deg(p) = \deg(m_T) .$$

 $\left.T\right.$ נניח בשלילה כי $\left.k(x)\right.$ מתאפס על ידי $\left.T\right|_{V_{1}}$ נוכיח כי $\left.k(x)\right.$ על ידי

 $,\!u_2\in V_2$, $\!u_1\in V_1$ ניעזר שקיימים הינתן $p(x)=m_T(x)$ ש- בכך ש- ניעזר ניעזר $u\in V$ ונסיק שקיימים שך ש- שך ש- $u=u_1+u_2$ -ש

$$k(T)(u) = k(T)(u_1) + k(T)(u_2)$$

0 נראה ששני המחוברים באגף ימין של השוויון האחרון הם

$$k(T)(u_1) = p_2(T)q(T)(u_1) = p_2(T) = 0$$
.

כמו כן,

$$k(T)(u_2) = q(T)p_2(T)(u_2) = q(0) = 0$$
.

הראינו שלכל T - בסך הכל הראינו שלכל k(x). כלומר, כלומר, כלומר, k(T)(u)=0 הראינו שלכל שלכל שלכל הראינו של $m_T(x)$. כלומר, או סתירה לתכונת המינימליות של פולינום שונה מאפס שמעלתו קטנה ממעלתו של

משפט 11.2

. אופרטור $T:V \to V$ ויהי ויהי שדה דומית נוצר פנימית נוצר פנימית על מתחב מתחב מתחב מתחב מתחב מתחבים מתחבים אופרטור ולא אופרטור שני פולינומים מתחבים אופר מעל בועים ולא אופרטור מתחבים מ

$$m_T(x) = m_1(x)m_2(x) .$$

$$V_2 = \ker(m_2(T))$$
 נסמן ונסמן $V_1 = \ker(m_1(T))$ נסמן

- $V_1 \oplus V_2$ שני המרחבים ומתקיים תת-מרחבים שמורים לא טריוויאליים ומתקיים V_1, V_2 שני המרחבים (1
 - $Tig|_{V_2}$ ו- $m_2(x)$ הוא פולינום המינימלי של המינימלי של ו- $Tig|_{V_1}$ הוא פולינום המינימלי של
- V של $B=B_1\cup B_2$ של T בסיס בבסיס B_1 יהי ויהי B_1 בסיס ל- B_2 ויהי ויהי B_2 בסיס ל- B_3 יהי מטריצת הבלוקים האלכסונית

$$[T]_B = \begin{pmatrix} A_1 & 0\\ 0 & A_2 \end{pmatrix}$$

$$A_2=\left[Tig|_{V_2}
ight]_{B_2}$$
 -ו $A_1=\left[Tig|_{V_1}
ight]_{B_1}$ כאשר

הוכחה:

(1) הטענה ש- V_1 ו- V_2 תת-מרחבים שמורים, ושמתקיים $V_1 \oplus V_2$ נובעת ישירות מסעיפים (1) ו- (3) משפט 11.1. כדי להשלים את הוכחת סעיף (1), יש להראות ששני המרחבים V_1, V_2 אינם טריוויאלים. $V = \ker (m_2(T)) \, \, \text{ cliar } \, V = V_1 \oplus V_2 \, \, \text{ awawiihh} \, V_1 = \{0\} \, \, \text{ cliar } \, V_1 = \{0\} \, \, \text{ cliar } \, V_1 = \{0\} \, \, \text{ cliar } \, V_1 = \{0\} \, \, \text{ cliar } \, V_1 = \{0\} \, \, \text{ cliar } \, V_1 = \{0\} \, \, \text{ cliar } \, V_1 = \{0\} \, \, \text{ cliar } \, V_2 = 1 \, \, \text{ cliar } \, V_1 = \{0\} \, \, \text{ cliar } \, V_2 = 1 \, \, \text{ cliar } \, V_1 = \{0\} \, \, \text{ cliar } \, V_2 = 1 \, \, \text{ cliar } \, V_1 = \{0\} \, \, \text{ cliar } \, V_2 = 1 \, \, \text{ cliar } \, V_1 = \{0\} \, \, \text{ cliar } \, V_2 = 1 \, \, \text{ cliar } \, V_1 = 1 \, \, \text{ cliar } \, V_2 = 1 \, \, \text{ cliar } \, V_1 = 1 \, \, \text{ cliar } \, V_2 = 1 \, \, \text{ cliar } \, V_1 = 1 \, \, \text{ cliar } \, V_2 = 1 \, \, \text{ cliar } \, V_1 = 1 \, \, \text{ cliar } \, V_2 = 1 \, \, \text{ cliar } \, V_1 = 1 \, \, \text{ cliar } \, V_2 = 1 \, \, \text{ cliar } \, V_1 = 1 \, \, \text{ cliar } \, V_2 = 1 \, \, \text{ cliar } \, V_1 = 1 \, \, \text{ cliar } \, V_2 = 1 \, \, \text{ cliar } \, V_1 = 1 \, \, \text{ cliar } \, V_1 = 1 \, \, \text{ cliar } \, V_2 = 1 \, \, \text{ cliar } \, V_1 = 1 \, \, \text{ cliar } \, V_2 = 1 \, \, \text{ cliar } \, V_1 = 1 \, \, \text{ cliar } \, V_2 = 1 \, \, \text{ cliar } \, V_1 = 1 \, \, \text{ cliar } \, V_2 = 1 \, \, \text{ cliar } \, V_1 = 1 \, \, \text{ cliar } \, V_2 = 1 \, \, \text{ cliar } \, V_1 = 1 \, \, \text{ cliar } \, V_2 = 1 \, \, \text{ cliar } \, V_2 = 1 \, \, \text{ cliar } \, V_1 = 1 \, \, \text{ cliar } \, V_2 = 1 \, \, \text{ cliar } \, V_1 = 1 \, \, \text{ cliar } \, V_2 = 1 \, \, \text{ cliar } \, V_1 = 1 \, \, \text{ cliar } \, V_2 = 1 \, \, \text{ cliar } \, V_1 = 1 \, \, \text{ cliar } \, V_2 = 1 \, \, \text{ cliar } \, V_1 = 1 \, \, \text{ cliar } \, V_1 = 1 \, \, \text{ cliar } \, V_1 = 1 \, \, \text{ cliar } \, V_1 = 1 \, \, \text{ cliar } \, V_1 = 1 \, \, \text{ cliar } \, V_1 = 1 \, \, \text{ cliar } \, V_1 = 1 \, \, \text{ cliar } \, V_1 = 1 \, \, \text{ cliar } \, V_1 = 1 \, \, \text{ cliar } \, V_1 = 1 \, \, \text{ cliar } \, V_1 = 1 \, \, \text{ cliar } \, V_1 = 1 \, \, \text{ cliar } \, V_1 = 1 \, \, \text{ cliar } \, V_1 = 1 \, \, \text{ cliar } \, V_1 = 1 \, \, \text{ cliar } \, V_1 = 1 \, \, \text{ cliar } \, V_1 = 1 \, \, \text{ cliar } \, V_1 = 1 \, \, \text{ cliar } \, V_1 = 1 \, \, \text{$

.האפס ש- עינו מרחב האפס דומה בדומה ש- V_2

.11.1 סעיף (2) נובע ישירות מסעיף (4) של משפט (2).

(3

דוגמה 11.1

יהי T:V o V אופרטור. נניח ש- יהי T:V o V אופרטור. נניח ש-

$$m_T(x) = x^2 - x .$$

אז
$$m_2(x) = x$$
 -ו $m_1(x) = x - 1$ אז

$$m_T(x) = m_1(x)m_2(x)$$

הואפירוק למכפלת שני פולינומים מתוקנים, זרים ולא קבועים. הואפירוק למכפלת עני פולינומים $V_1=\ker\left(m_1(T)\right)$ נסמן נסמן עוד אויים וויסמן ענים אויים וויסמן ענים אויים וויסמ

$$V_1 = \ker (T - I_V)$$
 , $V_2 = \ker (T)$.

 $.\lambda=0$ של המרחב העצמי ו- V_2 ו- ו- $\lambda=1$ העצמי אמרחב העצמי של המרחב אופן שקול, V_1 הוא המרחב $.V=V_1\oplus V_2$ של נובע ש- 11.2 נובע איר $.V=V_1\oplus V_2$

דוגמה 11.2

$$A = egin{pmatrix} -3 & 1 & -1 \ -7 & 5 & -1 \ -6 & 6 & -2 \end{pmatrix}$$
 :הבאה: $A \in \mathbb{R}^{3 imes 3}$ מתונה המטריצה

$$p_A(x) = \begin{vmatrix} x+3 & -1 & 1 \\ 7 & x-5 & 1 \\ 6 & -6 & x+2 \end{vmatrix}$$

$$= (x+3) \begin{vmatrix} x-5 & 1 \\ -6 & x+2 \end{vmatrix} + \begin{vmatrix} 7 & 1 \\ 6 & x+2 \end{vmatrix} + \begin{vmatrix} 7 & x-5 \\ 6 & -6 \end{vmatrix}$$

$$= (x+3) (x^2 - 3x - 4) + 7x + 8 + (-42 - 6x + 30)$$

$$= (x+3) (x^2 - 3x - 4) + x - 4$$

$$= (x+3) (x-4)(x+1) + x - 4$$

$$= (x+3) ((x+1)(x+3) + 1)$$

$$= (x-4) (x^2 + 4x + 4)$$

$$= (x-4) (x+2)^2$$

 $m_A(x) = (x-4)\left(x+2
ight)^2$ הפולינום המינימלי הוא כעל המריצה המייצגת את $T_A:\mathbb{R}^3 o \mathbb{R}^3$ בבסיס הסטנדרטיץ נסמן

$$m_1(x) = (x-4)$$
, $m_2(x) = (x+2)^2$.

אלו שני פולינומים זרים. כמו כן,

$$m_{T_A}(x) = m_1(x)m_2(x)$$
.

נסמן

$$V_1 = \ker(m_1(T_A))$$
, $V_2 = \ker(m_2(T_A))$.

נוודא את קיום תכונות (1)-(3) של משפט 11.2:

 $\Delta (A-4I)u=0$ הוא המרחב הפתרונות של המערכת על המרחב המרחב וא רונות של

 T_A אישוב ישר מראה ש- U_1 נפרש על ידי הווקטור $U_1=\begin{pmatrix} 0\\1\\1\end{pmatrix}$ חישוב ישר מראה ש- V_1 נפרש על ידי הווקטור על ידי הווקטור U_1 אמור לא טריוויאלי. בפרט, U_1 הוא תת-מרחב U_1 שמור לא טריוויאלי.

 $\Delta (A+2I)^2 u=0$ בדומה, של המערכת הפתרונות המרחב המרחב המרחב

$$.V_2$$
 -טיס היא בסיס ל $\left\{u_2=egin{pmatrix}0\\0\\1\end{pmatrix},u_3=egin{pmatrix}1\\0\end{pmatrix}
ight\}$ היא בסיס ל- על ידי חישוב ישיר נגלה שהקבוצה וואס אוני היא בסיס ל- על ידי חישוב ישיר נגלה הישוב ישיר נגלה היא בסיס ל- על ידי חישוב ישיר נגלה הישיר וואס ל- על ידי חישוב ישיר נגלה היש הישיר וואס ל- על ידי חישוב ישיר נגלה הישיר וואס ל- על ידי חישוב ישיר נגלה הישיר וואס ל- על ידי חישוב ישיר נגלה הישיר וואס ל- על ידי חישוב ישיר וואס ל- על ידי חיש וו

על ידי חישובים ישירים נוספים נגלה ש-

$$T_A(u_2) = Au_2 = \begin{pmatrix} -1 \\ -1 \\ -2 \end{pmatrix} = -2u_2 - u_3 , \quad T_A(u_3) = Au_3 = -2u_3 ,$$

-ש בוט $\begin{vmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{vmatrix}
eq 0$ -ש מאחר שי לבסוף מאחר שי T_A שמור לא טריוויאלי. לבסוף מאחר שי T_A הוא תת-מרחב T_A בלתי ללויה ליניארית ולכן $\mathbb{R}^3 = V_1 \oplus V_2$

 $\Leftarrow T_A(u_1)=-4u_1$ נסמן ב- (ובע ההבאנו לעלי נובע ההחישובים מהחישובים (2 גרן אור) אולכן (ובע החישובים ההבאנו לעלי נובע וובע $B_2=\{u_2,u_3\}$ אולכן וולכן $T_A\big|_{V_1}(u_1)=4u_1$

$$\begin{bmatrix} T_A\big|_{V_1} \end{bmatrix}_{B_1} = (4) \; .$$

$$T_A\big|_{V_2}(u_3) = -2u_3 \text{ -1 } T_A\big|_{V_2}(u_2) = -2u_2 - u_3 \Leftarrow T_A(u_3) = -2u_3 \text{ -1 } T_A(u_2) = -2u_2 - u_3$$

$$\begin{bmatrix} T_A\big|_{V_2} \end{bmatrix}_{B_2} = \begin{pmatrix} -2 & 0 \\ -1 & -2 \end{pmatrix} \; .$$

$$.m_{T_A}\big|_{V_2}(x) = (x+2)^2 \text{ -1 } m_{T_A}\big|_{V_3}(x) = x-4 \text{ acan}$$

3) הוכחנו כי

$$[T_A]_{B_1 \cup B_2} = \begin{pmatrix} 4 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & -1 & -2 \end{pmatrix} .$$

משפט 11.3

 $\lambda \in \mathbb{F}$ יהי T: V o V אופרטור ויהי \mathbb{F} , ויהי מעל שדה קטורי מעל שדה ע מרחב וקטורי מעל שדה

טבעי k אינו ערך עצמי של T, אז לכל א טבעי λ

$$\ker (T - \lambda I_V)^k = \{0\} .$$

 $m_T(x)$ -ב ב- תיבוי של החיבוי של הריבוי ערך עצמי ארך ב- V נניח ש- V נניח ש- נוצר סופית מעל שדה λ המקיים הוא המספר הטבעי המינימלי λ המקיים

$$\ker \left(T - \lambda I_V\right)^b = \ker \left(T - \lambda I_V\right)^{b+1}$$

ולכל c>b מתקיים

$$\ker (T - \lambda I_V)^b = \ker (T - \lambda I_V)^c .$$

לשון אחר, ישנו מספר טבעי b כך שמתקיים

$$\{0\} \subset \ker (T - \lambda I_V) \subset \cdots \subset \ker (T - \lambda I_V)^b = \ker (T - \lambda I_V)^{b+1} = \cdots$$

. נדגיש שההכללות עד $\ker \left(T - \lambda I_V
ight)^b$ הכלות ממש

הוכחה:

נוכיח את הטענה באינדוקציה.

שלב הבסיס:

עבור $u \in V$ עבור k = 1 מתקיים:

u=0 אם ארך עצמי או $\lambda\Leftrightarrow T(u)=\lambda u$ אם אם ורק אם $u\in\ker(T-\lambda I_V)$.ker $(T-\lambda I_V)=\{0\}$ ולכן אם λ אינו ערך עצמי של λ אז בהכרח λ

שלב המעבר:

. $\ker (T-\lambda I_V)^m=\{0\}$ אינו ערך עצמי של λ אינו אינו λ כלומר אם k=m נניח שהטענה מתקיים עבור יובר $u\in\ker (T-\lambda I_V)^{m+1}$ -ו ווערך עצמי של λ אינו ערך עצמי של λ

$$\left(T - \lambda I_{V}\right)^{m+1}\left(u\right) = 0 \quad \Rightarrow \quad \left(T - \lambda I_{V}\right)^{m}\left(\left(T - \lambda I_{V}\right)\left(u\right)\right) = 0 \ .$$

$$\left(T - \lambda I_{V}\right)\left(u\right) \in \ker\left(T - \lambda I_{V}\right)^{m} \,$$
ייא

 $.(T-\lambda I_{V})\left(u\right)=0$ מההנחת האינדוקציה נובע

.ker $\left(T-\lambda I_{V}\right)^{m+1}=\left\{ 0
ight\}$ ולכן ולכן נסיק נסיק הוכחנו, נכבר הוכחנו, נסיק k=1

 $m_T(x)$ אם א ערך עצמי של אזי λ שורש אזי אזי אזי ערך עצמי אזי λ אם אם ערך ע

-לכן קיים פולינום q(x) כך ש

$$m_T(x) = (x - \lambda)^b q(x)$$
.

. שני הפולינומים q(x) ו- $m_T(x)$ מתקונים לכן מ $m_T(x)$ מתוקן

ערך עצמי העתקה העתקה אז (q(x)=1 איז היא האפשרות היחידה הא בעלת ערך עצמי פולינום קבוע (במקרה בעלת אם $m_T(x)=(x-\lambda)^b$ יחיד ו

ולכן
$$c>b$$
 ולכן $m_T(T)=(T-\lambda I)^b=0$

$$(T - \lambda I)^c = (T - \lambda I)^{c-b} (T - \lambda I)^b = (T - \lambda I)^{c-b} m_T(T) = 0$$
.

.
$$\ker(T-\lambda I)^b=\ker(T-\lambda I)^c=V$$
 לכך

. הוא הטבעי המינימלי עבורו b

,
$$\ker(T-\lambda I)^{b'}=\ker(T-\lambda I)^{b'+1}$$
 נניח בשלילה שקיים $b'< b$ עבורו

$$\ker(T-\lambda I)^{b-1}=\ker(T-\lambda I)^b=V$$
 בפרט

. בסתירה הפולינום הוא הפולינום $m_T(x)$ ש- לכך בסתירה הפולינום המינימלי.

. פניח ש- q(x) ו- $(x-\lambda)^b$ אז $q(\lambda)\neq 0$ שכיוון ש- q(x) לא פולינום קבוע. מכיוון ש- V_1,V_2 אס כאשר ער פרוניאיים אטרים אים ממשפט 11.2 נובע ש- V_1,V_2 כאשר ער איים לא טריוויאיים לא טריוויאיים

$$V_1 = \ker (T - \lambda I_V)^b$$
 , $V_2 = \ker q(T)$,

וכן

$$m_{T|_{V_1}}(x) = (x - \lambda)^b$$
, $m_{T|_{V_2}}(x) = q(x)$.

ולכן לכל לכל אכן ולכן וולכן $m_{T|_{V_1}}\left(T|_{V_1}\right) = \left(T|_{V_1} - \lambda I_{V_1}\right)^b = 0$ ולכן

$$(T|_{V_1} - \lambda I_{V_1})^c = (T|_{V_1} - \lambda I_{V_1})^{c-b} (T|_{V_1} - \lambda I_{V_1})^b = (T|_{V_1} - \lambda I_{V_1})^{c-b} m_{T|_{V_1}} (T|_{V_1}) = 0 .$$

.ker
$$(T|_{V_1} - \lambda I_{V_1})^b = \ker (T|_{V_1} - \lambda I_{V_1})^c = V|_{V_1}$$
 לכן

. הוא הטבעי המינימךי עבורו המתקיים b

,
$$\ker(T|_{V_1} - \lambda I)^{b'} = \ker(T|_{V_1} - \lambda I)^{b'+1}$$
 נניח בשלילה שקיים $b' < b$ עבורו

$$\ker(T|_{V_1}-\lambda I)^{b-1}=\ker(T|_{V_1}-\lambda I)^b=V$$
 בפרט

. בסתירה הפולינום הוא הפולינום $m_{T|_{V_1}}(x)$ -ש בסתירה לכך בסתירה הפולינום המינימלי. ולכן

לסיכום הוכחנו כי b הוא הטבעי המינימלי שעבורו

$$\ker (T|_{V_1} - \lambda I_{V_1})^b = \ker (T|_{V_1} - \lambda I_{V_1})^{b+1}$$

c > b ולכן

$$\ker (T|_{V_1} - \lambda I_{V_1})^b = \ker (T|_{V_1} - \lambda I_{V_1})^c.$$

בנוסף לכל m טבעי מתקיים:

$$\ker (T|_{V_1} - \lambda I_{V_1})^m = \ker (T - \lambda I)^m \big|_{V_1}$$

לכן מתקיים את לסיים את ההוכחה די להוכיח שלכל m טבעי מתקיים לכן.

$$\ker (T - \lambda I)^m \big|_{V_1} = \ker (T - \lambda I)^m .$$

 $u \in \ker (T - \lambda I)^m$ יהי

 $u_1=\in V_1, u_2\in V_2$ כאשר $u=u_1+u_2$ נרשום $V=V_1\oplus V_2$ -מכיוון ש

(אמנם: $u_2=0$ אמנם: עלינו להוכיח כי

$$0 = (T - \lambda I_V)^m (u) = (T - \lambda I_V)^m (u_1) + (T - \lambda I_V)^m (u_2) .$$

 $(T-\lambda I_V)^m(u_2)\in V_2$ ו- $(T-\lambda I_V)^m(u_1)\in V_1$ שמורים. כלומר $(T-\lambda I_V)^m(u_2)\in V_2$ ו- $(T-\lambda I_V)^m(u_1)+(T-\lambda I_V)^m(u_2)=0$ ממשוואה $V=V_1\oplus V_2$ נובע לכן מאחר ש- $(T-\lambda I_V)^m(u_1)+(T-\lambda I_V)^m(u_2)=0$

$$\left(T - \lambda I_V\right)^m (u_2) = 0 .$$

לכן

$$(T - \lambda I_V)^m \big|_{V_2} (u_2) = \left(T \big|_{V_2} - \lambda I_{V_2}\right)^m (u_2) = 0.$$

 $.u_2=0$ לכן $\ker\left(Tig|_{V_2}-\lambda I_{V_2}
ight)^m=\{0\}$ אזי של $Tig|_{V_2}$ אינו ערך עצמי של λ אינו ערך עצמי של

משפט 11.4

יהי עופרטור. נניח שמתקיים T:V o V יהי גניח של שדה קטורי מעל שדה עופרטור. נניח שמתקיים

$$m_T(x) = (x - \lambda_1)^{b_1} (x - \lambda_2)^{b_2} \cdots (x - \lambda_k)^{b_k}$$

 $b_i, 1 \leq i \leq k$ כאשר אז לכל אז לכל מספרים טבעיים. אז לכל ו- טבעים אז לכל הם סקלרים שונעם ו- $\lambda_1, \lambda_2, \dots, \lambda_k$ המאבעי המינימלי המקיים

המקיים

$$\ker (T - \lambda I_V)^{b_i} = \ker (T - \lambda I_V)^{b_i + 1}$$

ולכל $c>b_i$ מתקיים

$$\ker (T - \lambda I_V)^{b_i} = \ker (T - \lambda I_V)^c$$
.

תהי $A \in \mathbb{F}^{n imes n}$ נניח שמתקיים (2

$$m_A(x) = (x - \lambda_1)^{b_1} (x - \lambda_2)^{b_2} \cdots (x - \lambda_k)^{b_k}$$

 $b_i, 1 \leq i \leq k$ כאשר $\lambda_1, \lambda_2, \ldots, \lambda_k$ מספרים טבעיים. אז לכל הם סקלרים שונעם ו- $\lambda_1, \lambda_2, \ldots, \lambda_k$ מספר הטבעי המינימלי המקיים

$$\operatorname{rank} \left(A - \lambda I \right)^{b_i} = \operatorname{rank} \left(A - \lambda I \right)^{b_i + 1}$$

ולכל $c>b_i$ מתקיים

$$\operatorname{rank} (A - \lambda I)^{b_i} = \operatorname{rank} (A - \lambda I)^c.$$

הוכחה:

.11.3 הטענה זו נובעת מטענה (1

נסמן המספר הטבעי המינימל נסיק מסעיף (1) ש- $m_A(x)=m_{T_A}(x)$ -ע מכיוון ש- $V=\mathbb{F}^n$ נסמן $V=\mathbb{F}^n$

$$\ker (T_A - \lambda I_V)^{b_i} = \ker (T_A - \lambda I_V)^{b_i + 1}$$

ושלכל $c>b_i$ מתקיים

$$\ker (T_A - \lambda I)^{b_i} = \ker (T_A - \lambda I)^c$$
.

טבעי k טבעי (2

$$\ker (T_A - \lambda_i I_V)^k \subseteq \ker (T_A - \lambda_i I_V)^{k+1}$$
.

בנוסף מתקיים ש-

.dim $\left(\ker\left(T_A-\lambda_iI_V\right)^k\right)=\dim\left(\ker\left(T_A-\lambda_iI_V\right)^{k+1}\right)$ אם ורק אם $\ker\left(T_A-\lambda_iI_V\right)^k=\ker\left(T_A-\lambda_iI_V\right)^{k+1}$ לכן:

.rank $(A-\lambda_i I)^k=\operatorname{rank}(A-\lambda_i I)^{k+1}$ אם ורק אם $\operatorname{ker}(T_A-\lambda_i I_V)^k=\operatorname{ker}(T_A-\lambda_i I_V)^{k+1}$

אנחנו מסיקים ש- הוא המספר המספר המינימלי המקיים אנחנו מסיקים ש- הוא המספר המספר המינימלי המקיים

$$\operatorname{rank}\left(A-\lambda I\right)^{b_i}=\operatorname{rank}\left(A-\lambda I\right)^{b_i+1}$$

ושלכל $c>b_i$ מתקיים

$$\operatorname{rank}\left(A - \lambda I\right)^{b_i} = \operatorname{rank}\left(A - \lambda I\right)^c.$$

דוגמה 11.3

הבאה: $B \in \mathbb{R}^{4 imes 4}$ המטריצה של המטריצה הפולינום המינימלי את הפביל למצוא את בשביל למצוא הפולינום המינימלי

$$B = \begin{pmatrix} -2 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & -1 & 0 & -1 \\ 1 & 1 & 1 & 2 \end{pmatrix}$$

פתרון:

הפולינום האופייני הוא

$$p_B(x) = |xI - B| = \begin{vmatrix} x+2 & 0 & 0 & 0\\ 1 & x-1 & 0 & 0\\ 0 & 1 & x & 1\\ -1 & -1 & -1 & x-2 \end{vmatrix}$$

$$=(x+2)\begin{vmatrix} x-1 & 0 & 0 \\ 1 & x & 1 \\ -1 & -1 & x-2 \end{vmatrix}$$

$$=(x+2)(x-1)\begin{vmatrix} x & 1 \\ -1 & x-2 \end{vmatrix}$$

$$=(x+2)(x-1)(x^2-2x+1)$$

$$=(x+2)(x-1)^3$$
.

-נובע שקיים $m_B(x)=(x+2)(x-1)^b$ כך ש- $1\leq b\leq 3$ נובע שקיים

$$B-I = \begin{pmatrix} -3 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & -1 & -1 \\ 1 & 1 & 1 & 1 \end{pmatrix} \ , \quad (B-I)^2 = \begin{pmatrix} 9 & 0 & 0 & 0 \\ 3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -3 & 0 & 0 & 0 \end{pmatrix} \ , \quad (B-I)^3 = \begin{pmatrix} -27 & 0 & 0 & 0 \\ -9 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 9 & 0 & 0 & 0 \end{pmatrix} \ .$$

-ברור שמתקיים (2) של משפט 11.4 וכן $\operatorname{rank}(B-I)^2=\operatorname{rank}(B-I)^3=1$ וכן $\operatorname{rank}(B-I)>1$ מחלק b=2

משפט 11.5 משפט הפירוק הפרימרי

למכפלת $\mathbb F$ מתפרק מעל שדה $m_T(x)$ -ש מניח אופרטור. נניח אופרטור ויהי אופרט שדה $\mathbb F$ למכפלת מרחב וקטורי מעל שדה $T:V\to V$ ויהי אופרט מרחב מתוקנים זרים בזוגות ולא קבועים: $k\ge 2$

$$m_T(x) = m_1(x)m_2(x) \cdots m_k(x)$$
.

 V_i ל- U_i נסמן ונקבע ונקבע ונקבע אונ $V_i = \ker\left(m_i(T)\right)$ נסמן $1 \leq i \leq k$

לכל $i \leq k$ הוא תת-מרחב T- שמור לא טריוויאלי ומתקיים (1

$$V = V_1 \oplus V_2 \oplus \cdots \oplus V_k$$

 $i \le i \le k$ לכל (2

$$m_{T|_{V_i}}(x) = m_i(x) .$$

של V היא מטריצת הבלוקים $B=B_1\cup B_2\cup\cdots\cup B_k$ בבסיס דבסיס אמייצגת את המייצגת את מטריצת הבלוקים

$$[T]_B = \begin{pmatrix} A_1 & & & \\ & A_2 & & \\ & & \ddots & \\ & & & A_k \end{pmatrix}$$

 $A_i = [T|_{V_i}]_{B_i}$ כאשר

.k נוכיח את הטענה באינדוקציה על

שלב הבסיס

עבור k=2 הטענה הוכחה במשפט k

שלב המעבר

נניח שהטענה נכונה עבור k ונוכיח עבור k+1. נסמן:

$$r_k(x) = m_1(x)m_2(x) \cdots m_k(x)$$
.

נשים לב ש- $m_T(x)$ הוא פירוק של פירוק של מכפלת פולינומים מתוקנים לא קבועים. יתרה $m_T(x)=r_k(x)m_{k+1}(x)$ הם $m_{k+1}(x)$ ו- $m_k(x)$ ו- $m_k(x)$ הם זרים.

W של B' נסמן ונקבע בסיס $W = \ker(r_k(x))$ נסמן

ממסקנה 11.2, (כלומר מהמקרה k=2 נובע ש- $W\oplus V_{k+1}$ שני תת-מרחבים (גובע של לסכום שני של טני תת-מרחבים (גובע ש- $m_{T|_{V_{k+1}}}(x)$, $r_k(x)=m_{T|_W}(x)$ כמו כן, המטריצה המייצגת את T בבסיס $B=B'\cup B$ של V היא מטריצת הבלוקים האלכסונית

$$[T]_B = \begin{pmatrix} A & 0 \\ 0 & A_{k+1} \end{pmatrix}$$

 $.W_i=\ker\left(m_i\left(T|_W
ight)
ight)$ נסמן $1\leq i\leq k$ עבור $.A=[T|_W]_{B'}$ מכיווו ש-

$$m_{T|_W} = r_k(x) = m_1(x)m_2(x)\dots m_k(x)$$

נובע מהנחת האינדוקציה ש-

$$W = W_1 \oplus W_2 \oplus \cdots \oplus W_k$$

 $m_{T|_{W_i}}(x)=m_i(x)$ הוא פירוק של W לסכום ישר של תת -מרחבים $T|_W$ שמורים לא טריוויאליים המקיימים W

דוגמה 11.4

יהי T:V o V יהי של \mathbb{R}^4 אופרטור המוגדר $E=\{e_1,e_2,e_3,e_4\}$ יהי

$$T(e_1) = e_1 + 2e_3$$
, $T(e_2) = e_2 + e_4$, $T(e_3) = e_1$, $T(e_4) = -e_2 + 2e_4$.

- רשומים האחרון האחרון
 - נסמן (2

$$W_1=\ker{(T-2I)}$$
 , $W_2=\ker{(T+I)}$, $W_3=\ker{\left(T^2-3T+3\right)}$.
$$.W_i o B_i$$
 מצאו בסיס $i=1,2,3$ עבור $i=1,2,3$

.11.5 במשפט (3)-(1) עבור W_1,W_2,W_3 והבסיסים שמצאתם בסעיף ב, ודאו את קיום תכונות W_1,W_2,W_3

פתרון:

מתקיים $u\in \mathrm{span}\,\{e_2,e_4\}$ ושעבור $T(u)\in \mathrm{span}\,\{e_1,e_3\}$ מתקיים $u\in \mathrm{span}\,\{e_1,e_3\}$ מתקיים מהנתון נובע שעבור $T(u)\in \mathrm{span}\,\{e_2,e_4\}$

. שמורים T שמורים ערם-span $\{e_2,e_4\}$ וי $V_1=\operatorname{span}\left\{e_1,e_3\right\}$ כלומר

נקבל \mathbb{R}^4 של $E' = \{e_1, e_3, e_2, e_4\}$ נקבל

$$[T]_{E'} = \begin{pmatrix} A_1 & 0\\ 0 & A_2 \end{pmatrix}$$

כאשר

$$A_1 = [T|_{V_1}]_{\{e_1, e_3\}} = \begin{pmatrix} 1 & 1 \\ 2 & 0 \end{pmatrix}$$
, $A_2 = [T|_{V_2}]_{\{e_2, e_4\}} = \begin{pmatrix} 1 & -1 \\ 1 & 2 \end{pmatrix}$.

מחישוב ישיר נקבל

$$p_{A_1}(x) = (x-2)(x+1)$$
, $p_{A_2}(x) = x^2 - 3x + 3$.

אין שותף לשניים מהפולינומים ארים בזוגות. $p_{A_2}(x), (x-2), (x-1)$ מהפולינומים ארים בזוגות. שורש משותף לשניים מהפולינומים לכן $p_{A_2}(x)$ וווע זרים.

-ש נסיק אל, ולכן מסדר מסדר אן הן מטריצות המטריצות א A_2 ולכן ולכן המטריצות המטריצות הא A_2 ולכן היש

$$m_{A_1}(x) = p_{A_1}(x)$$
, $m_{A_2}(x) = p_{A_2}(x)$.

-טיק ש. $m_{A_2}(x)=m_{T|_{V_2}}(x)$ ו- $m_{A_1}(x)=m_{T|_{V_1}}(x)$ נסיק ש

$$m_T(x) = \text{lcm}\left((x-2)(x+1), x^2 - 3x + 3\right)$$

כבר הוכחנו ש-(x-2)(x+1) זר ל-(x-2)(x+1), אז

$$m_T(x) = (x-2)(x+1)(x^2-3x+3)$$
.

 $_{*}([T]_{E}-2I)\,u=0$ הוא מרחב הפתרונות של המערכת W_{1} (2

,($[T]_E+I)\,u=0$ הוא מרחב הפתרונות של המערכת W_2

 $.([T]_E^2-3[T]_E+3I)\,u=0$ הוא מרחב הפתרונות של המערכת W_3

מהנתון נקבל

$$[T]_E = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & -1 \\ 2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 2 \end{pmatrix} .$$

על ידי חישוב ישיר נקבל ש -

 $\{e_1+e_3\}$ נפרש על ידי W_1

 $\{e_1 - 2e_3\}$ נפרש על ידי W_2

 $\{e_2,e_4\}$ נפרש על ידי W_3

לכן

$$B_1 = \{e_1 + e_3\}$$
, $B_2 = \{e_1 - 2e_3\}$, $B_3 = \{e_2, e_4\}$

הם בסיסים של W_1, W_2, W_3 בהתאמה.

. שמור. שמות-מרחב עצמיים ובפרט כל אחד מהם הוא תת-מרחב עצמיים ובפרט אחד W_1 (3

. שמור. T בחרת תת-מרחב שיר (ו) ש- עיף בסעיף הוכחנו כבר הוכחנו $W_3=V_2$

מכיוון ש-
$$\{e_1+e_3,e_1-2e_3,e_2,e_4\}$$
 נובע שהקבוצה
$$\begin{vmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & -1 \\ 2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 2 \end{vmatrix} \neq 0$$
 מכיוון ש- $\{e_1+e_3,e_1-2e_3,e_2,e_4\}$

$$.\mathbb{R}^4 = W_1 \oplus W_2 \oplus W_3$$

 $.m_{T|_{W_1}}=x-2$ ולכן 2 ולכן המתאימה סקלרית העתקה העתקה היא העתקה $T|_{W_1}$ ההעתקה האימה לסלקר היא העתקה העתקה העתקה סקלרית המתאימה לסלקר $T|_{W_2}=x+1$ הרעתקה

$$M_{T|_{W_{3}}}(x)=p_{A_{2}}(x)=x^{2}-3x+3$$
 נובע ש- $W_{3}=V_{2}$ מכיוון ש-

לבסוף, בבסיס $B = \{e_1 + e_3, e_1 - 2e_3, e_2, e_4\}$ נקבל

$$[T]_B = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & 2 \end{pmatrix}$$

ונשים לב ש-

$$[T|_{W_1}]_{B_1} = (2)$$
, $[T|_{W_2}]_{B_2} = (-1)$, $[T|_{W_3}]_{B_3} = A_2$.

משפט 11.6

-ש אופרטור. נניח שT:V o V ויהי שדה \mathbb{F} , ויהי מעל שדה וקטורי מעל שדה

$$m_T(x) = (x - \lambda_1)^{b_1} (x - \lambda_2)^{b_2} \cdots (x - \lambda_k)^{b_k}$$

 $1\leq i\leq k$ כאשר b_1,b_2,\ldots,b_k הם שונים ו- $\lambda_1,\lambda_2,\ldots,\lambda_k\in\mathbb{F}$ הם מספרים טבעיים. עבור א $A_1,\lambda_2,\ldots,\lambda_k\in\mathbb{F}$ נסמן נסמן $A_i=\dim(V_i)$ ונסמן $A_i=\dim(V_i)$ ונסמן $A_i=\dim(V_i)$ ונסמן $A_i=\dim(V_i)$ מתקיים:

- $V=V_1\oplus V_2\oplus \cdots \oplus V_k$ הוא תת-מרחב T שמור לא טריוויאלי ומתקיים וא הוא V_i
 - $m_{T|_{V}}(x) = (x \lambda_i)^{b_i}$ (2
 - $p_{T|_{V_{\cdot}}}(x) = (x \lambda_i)^{a_i}$ (3
- אלכסונית המטריצה מטריצת את את $B=B_1\cup B_2\cup\ldots\cup B_k$ בבסיס דבסיס את המייצגת את המייצגת את לב

$$[T]_B = \begin{pmatrix} A_1 & & & \\ & A_2 & & \\ & & \ddots & \\ & & & A_k \end{pmatrix}$$

$$.A_i = \left[Tig|_{V_i}
ight]_{B_i}$$
 כאשר

$$p_T(x) = (x - \lambda_1)^{a_1} (x - \lambda_2)^{a_2} \cdots (x - \lambda_k)^{a_k}$$
 (5

כאשר $m_T(x)$ למכפלת שונים. השוויון האחרון הוא פירוק של למכפלת פולינומים מתוקנים לאשר הם סקלרים שונים. השוויון האחרון הוא פירוק של לפיכך:

- .11.5 נובע ממשפט (1
- .11.5 נובע ממשפט (2
 - (3
- .11.5 נובע ממשפט (4
 - (5