# MA 374 – Financial Engineering Lab

# Lab-7

Name - Vishisht Priyadarshi Roll No - 180123053

# QUESTION - 1:

The price of European Call and Put Option given by BSM framework obtained after solving Black-Scholes-Merton PDE is:

$$C(x,t) = xN(d_1) - Ke^{-r(T-t)}N(d_2)$$
  

$$P(x,t) = Ke^{-r(T-t)}N(-d_2) - xN(-d_1)$$

where.

$$d_1 = \frac{\log\left(\frac{x}{K}\right) + (r + \frac{1}{2}\sigma^2)(T - t)}{\sigma\sqrt{T - t}}$$

$$d_2 = \frac{\log\left(\frac{x}{K}\right) + (r - \frac{1}{2}\sigma^2)(T - t)}{\sigma\sqrt{T - t}}$$

$$N(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{1}{2}y^2} dy$$

The program for computing the price of European call and put options at time t in the classical BSM framework is as follows:

```
8 import numpy as np
 9 import math
10 import matplotlib.pyplot as plt
11 from scipy.stats import norm
13
14 def BSM_model(x, t, T, K, r, sigma):
d1 = (math.log(x/K) + (r + 0.5 * sigma * sigma) * (T - t)) / (sigma * math.sqrt(T - t))
    d2 = (math.log(x/K) + (r - 0.5 * sigma * sigma) * (T - t)) / (sigma * math.sqrt(T - t))
17
18
    call_price = x * norm.cdf(d1) - K * math.exp( -r * (T - t) ) * norm.cdf(d2)
    put price = K * math.exp( -r * (T - t) ) * norm.cdf(-d2) - x * norm.cdf(-d1)
22 return call_price, put_price
23
25 def main():
26 C, P = BSM_model(10, 0.2, 1, 1, 0.05, 0.6)
    print("Call Price =", C)
    print("Put Price =", P)
31 if __name__=="__main__":
32 main()
```

# 2 QUESTION - 2:

# The plot of C(t, x) and P(t, x) as a function of x is as follows:



# The 3-dimensional plots for C(t, x) & P(t, x) are:

Dependence of C(t, x) on t and x



Dependence of P(t, x) on t and x



# 3 QUESTION -3:

The plots for C(t, x) and P(t, x) as smooth surfaces above the (t, x) plane are:

C(t, x) vs x and t



P(t, x) vs x and t



# 4 QUESTION – 4:

# **SENSITIVITY ANALYSIS**

• The parameters values are varied accordingly, and where some particular values of parameters are required, they are taken from the following:

$$x = 0.8$$
,  $t = 0$ ,  $T = 1$ ,  $K = 1$ ,  $r = 0.05$ ,  $\sigma = 0.6$ 

# i. Variation of C and P with stock price x:

The plots for this case was done in Q2 and Q3.

#### ii. <u>Variation of C and P with expiration time T:</u>



Some of the values are: (with parameters as x = 0.8, t = 0, K = 1, r = 0.05 and  $\sigma = 0.6$ )

| SI No. | Т        | C(t, x)   | P(t, x)  |
|--------|----------|-----------|----------|
| 1.     | 0.1      | 0.0104876 | 0.2055   |
| 2.     | 0.590982 | 0.0897777 | 0.260661 |
| 3.     | 1.08196  | 0.147911  | 0.29525  |
| 4.     | 1.57295  | 0.195092  | 0.319458 |
| 5.     | 2.06393  | 0.235421  | 0.33737  |
| 6.     | 2.55491  | 0.270874  | 0.350952 |
| 7.     | 3.04589  | 0.302594  | 0.361329 |
| 8.     | 3.53687  | 0.331314  | 0.369225 |
| 9.     | 4.02786  | 0.357547  | 0.375138 |
| 10.    | 4.51884  | 0.381665  | 0.379429 |

# iii. Variation of C and P with strike price K:





Some of the values are: (with parameters as x = 0.8, t = 0, T = 1, r = 0.05 and  $\sigma = 0.6$ )

| SI No. | K        | C(t, x)   | P(t, x)     |
|--------|----------|-----------|-------------|
| 1.     | 0.1      | 0.704885  | 7.64124e-06 |
| 2.     | 0.290381 | 0.527951  | 0.00417013  |
| 3.     | 0.480762 | 0.376097  | 0.0334112   |
| 4.     | 0.671142 | 0.261841  | 0.100251    |
| 5.     | 0.861523 | 0.181355  | 0.200861    |
| 6.     | 1.0519   | 0.126098  | 0.3267      |
| 7.     | 1.24228  | 0.0883989 | 0.470096    |
| 8.     | 1.43267  | 0.0625982 | 0.625392    |
| 9.     | 1.62305  | 0.0448062 | 0.788695    |
| 10.    | 1.81343  | 0.0324182 | 0.957403    |

### iv. Variation of C and P with rate of interest r:





Some of the values are: (with parameters as x = 0.8, t = 0, T = 1, K = 1 and  $\sigma = 0.6$ )

| SI No. | r   | C(t, x)  | P(t, x)   |
|--------|-----|----------|-----------|
| 1.     | 0   | 0.126249 | 0.326249  |
| 2.     | 0.1 | 0.152689 | 0.257526  |
| 3.     | 0.2 | 0.181639 | 0.20037   |
| 4.     | 0.3 | 0.212714 | 0.153533  |
| 5.     | 0.4 | 0.24544  | 0.11576   |
| 6.     | 0.5 | 0.279282 | 0.0858129 |
| 7.     | 0.6 | 0.313685 | 0.0624963 |
| 8.     | 0.7 | 0.348098 | 0.0446838 |
| 9.     | 0.8 | 0.382015 | 0.0313436 |
| 10.    | 0.9 | 0.414987 | 0.0215565 |

# v. Variation of C and P with Volatility σ:





Some of the values are: (with parameters as x = 0.8, t = 0, T = 1, K = 1 and r = 0.05)

| SI No. | σ      | C(t, x)    | P(t, x)  |
|--------|--------|------------|----------|
| 1.     | 0.001  | 0          | 0.151229 |
| 2.     | 0.1009 | 0.00154652 | 0.152776 |
| 3.     | 0.2008 | 0.0187849  | 0.170014 |
| 4.     | 0.3007 | 0.0457362  | 0.196966 |
| 5.     | 0.4006 | 0.0759687  | 0.227198 |
| 6.     | 0.5005 | 0.10742    | 0.258649 |
| 7.     | 0.6004 | 0.139262   | 0.290492 |
| 8.     | 0.7003 | 0.171081   | 0.32231  |
| 9.     | 0.8002 | 0.202627   | 0.353856 |
| 10.    | 0.9001 | 0.233733   | 0.384963 |

# vi. Variation of C and P with K & r:

C(t, x) vs K and r P(t, x) vs K and r



#### vii. Variation of C and P with K & σ:

C(t, x) vs K and sigma

P(t, x) vs K and sigma



### viii. Variation of C and P with K & T:

C(t, x) vs K and T



# ix. Variation of C and P with r & σ:



P(t, x) vs sigma and r



### x. Variation of C and P with T & r:

C(t, x) vs T and r

P(t, x) vs T and r



### xi. Variation of C and P with T & $\sigma$ :



P(t, x) vs T and sigma



#### Variation of C and P with K & x: xii.





0.7

0.6

0.5 P(t, x)

0.4

0.3

0.2

0.1

#### Variation of C and P with T & x: xiii.

C(t, x) vs T and x





#### Variation of C and P with x & r: xiv.

C(t, x) vs x and r





2.00<sub>1.75</sub><sub>1.50</sub><sub>1.25</sub><sub>1.00</sup><sub>0.75</sub><sub>0.50</sub><sub>0.25</sub></sub>

P(t, x) vs T and x



0.3

0.2

0.1

# xv. <u>Variation of C and P with x & σ:</u>

