Introduction to von Neumann Algebra

Yihan Zhang

January 27, 2016

History of von Neumann algebra: von Neumann, Murray, On rings of operators. I,II,III,IV; von Neumann, On rings of operators. Reduction theory. It comes from ergodic theory and group algebra.

$$I_{n} \quad M_{n}(\mathbb{C}) \qquad \{1, \cdots, n\}$$

$$I_{\infty} \quad \mathcal{B}(H), \dim H < \infty \quad \{1, \cdots\}$$

$$II_{1} \qquad [0, 1]$$

$$II_{\infty} \quad II_{\infty} = II_{1} \otimes I_{\infty} \qquad \mathbb{R}$$

$$III \qquad \{\infty\}$$

G is a countable discrete group with identity e. Consider Hilbert space $\ell^2(G) = \{\sum_{g \in G} \alpha_g g : \alpha_g \in \mathbb{C}, \sum_{g \in G} |\alpha_g|^2 < \infty\}$ with inner product defined as $\left(\sum_{g \in G} \alpha_g g, \sum_{g' \in G} \beta_{g'} g'\right) = \sum_{g \in G} \alpha_g \overline{\beta_g}$. Observe that $\{\delta_g = g : g \in G\}$ is a family of orthonormal basis of $\ell^2(G)$. Consider left regular representation of G on $\ell^2(G)$. $\forall g \in G, L_g \delta_h = \delta_{gh}$. Thus L_g can be extended linearly to be a unitary operator on $\ell^2(G)$, s.t.

1.
$$q = 4, L_e = I$$
;

2.
$$L_{g_1g_2}\delta_h = \delta_{g_1g_2h} = L_{g_1}\delta_{g_2h} = L_{g_1}L_{g_2}\delta_h \Rightarrow L_{g_1g_2} = L_{g_1}L_{g_2};$$

3.
$$(L_g)^* = L_{g^{-1}}$$
.

$$(\delta_h, (L_g)^* \delta_k) = (L_g \delta_h, \delta_k) = \begin{cases} 1, & gh = k \\ 0, & gh \neq k \end{cases};$$
$$(\delta_h, L_{g^{-1}} \delta_k) = (\delta_h, \delta_{g^{-1}k}) = \begin{cases} 1, & h = g^{-1}k \\ 0, & h \neq g^{-1}k \end{cases}.$$

Thus $g \mapsto L_g$ is a unitary representation of G on $\ell^2(G)$, called a left regular representation of G.

Definition 1. Group von Neumann algebra $\mathcal{L}(G)$ is the minimal von Neumann algebra containing $\{L_g : g \in G\}$ in $\mathcal{B}(\ell^2(G))$, i.e. $\mathcal{L}(G) = \overline{\operatorname{span}\{L_g : g \in G\}^{SOT}}$. The superscirpt SOT means strong operator topology.

Remark: $C_r^*(G) = \overline{\operatorname{span}\{L_g : g \in G\}^{\|\cdot\|}}$.

We also have right regular representation, $\forall g \in G, R_g \delta_h = \delta_{hq^{-1}}$.

- 1. $R_e = I$;
- 2. $R_{g_1g_2} = R_{g_1}R_{g_2}$;
- 3. $(R_q)^* = R_{q^{-1}}$.

 $\mathcal{R}(G) = \overline{\operatorname{span}\{R_g : g \in G\}^{SOT}}.$

Observe $\forall g_1, g_2 \in G, L_{g_1}R_{g_2}\delta_h = L_{g_1}\delta_{hg_2^{-1}} = \delta_{g_1hg_2^{-1}} = R_{g_2}\delta_{g_1h} = R_{g_2}L_{g_1}\delta_h \Rightarrow L_{g_1}R_{g_2} = R_{g_2}L_{g_1}$. Thus $\mathcal{L}(G) \subset \mathcal{R}(G)', \mathcal{R}(G) \subset \mathcal{L}(G)'.(M \subset \mathcal{B}(H), M' = \{S \in \mathcal{B}(H) : ST = TS, \forall T \in M\}$. M' is called the commutator algebra of M).

But what does an element in $\mathcal{L}(G)$ look like? $\forall x = \sum_{g \in G} \alpha_g g \in \ell^2(G), L_x \delta_h = \sum_{g \in G} \alpha_g \delta_{gh} \in \ell^2(G).$ L_x is a densely defined unbounded operator. $\mathcal{D}(L_x) \supset \mathbb{C}(G) = \{\sum_{g \in G} \alpha_g \delta_g : \alpha_g \delta_g : \alpha_g \delta_g : \alpha_g \delta_g : \alpha_g \delta_g \in \ell^2(G).$

Theorem 1. $\mathcal{L}(G) = \{L_x : x \in \ell^2(G), L_x \text{ can be continued to be a bounded operator on } \ell^2(G)\}$

Proof. 1. $\forall T \in \mathcal{L}(G)$, let $x = T\delta_e \in \ell^2(G)$. $\forall h, k \in G$,

$$(T\delta_h, \delta_k)$$

$$= (TR_{h^{-1}}\delta_e, \delta_k)$$

$$= (R_{h^{-1}}T\delta_e, \delta_k)$$

$$= (R_{h^{-1}}x, \delta_k)$$

$$= \left(\sum_{g \in G} \alpha_g gh, \delta_k\right)$$

$$= (L_x\delta_h, \delta_k).$$

Thus $T\delta_h = L_x\delta_h$, $\forall h \in G$, that is to say, L_x can be continued to be a bounded operator and $T = L_x$.

2. $\forall S \in \mathcal{L}(G)'$,

$$(L_x S \delta_h, \delta_k)$$

$$= (S \delta_h, L_{x^*} \delta_k)$$

$$= \left(S \delta_h, \sum_{g \in G} \overline{\alpha_g} \delta_{g^{-1}k}\right)$$

$$= \left(\delta_h, S^* \left(\sum_{g \in G} \overline{\alpha_g} \delta_{g^{-1}k}\right)\right)$$

$$= \sum_{g \in G} (\delta_h, \overline{\alpha_g} S^* \delta_{g^{-1}k})$$

$$\begin{split} &= \sum_{g \in G} (\delta_h, \overline{\alpha_g} S^* L_{g^{-1}} \delta_k) \\ &= \sum_{g \in G} (\delta_h, \overline{\alpha_g} L_{g^{-1}} S^* \delta_k) \\ &= \sum_{g \in G} (\alpha_g L_g \delta_h, S^* \delta_k) \\ &= \sum_{g \in G} (S \alpha_g L_g \delta_h, \delta_k) \\ &= \left(S \left(\sum_{g \in G} \alpha_g L_g \right) \delta_h, \delta_k \right) \\ &= (S L_x \delta_h, \delta_k). \end{split}$$

Thus $L_xS = SL_x$. According to von Neumann bicommutant theorem, $L_x \in \mathcal{L}(G)$.

Theorem 2 (von Neumann bicommutant). If $M \subset \mathcal{B}(H)$ is a *-sublgebra with an identity, then $M'' = \overline{M}^{\text{SOT}}$.

Theorem 3. $(\mathcal{L}(G))' = \mathcal{R}(G), (\mathcal{R}(G))' = \mathcal{L}(G).$

Proof. We only need to prove $(\mathcal{R}(G))' \subset \mathcal{L}(G)$. $\forall T \in (\mathcal{R}(G))'$, let $x = T\delta_e = \sum_{g \in G} \alpha_g g \in \ell^2(G)$. $T\delta_h = TR_{h^{-1}}\delta_e = R_{h^{-1}}T\delta_e = R_{h^{-1}}x = \sum_{g \in G} \alpha_g g h = L_x \delta_h$. Thus $T = L_x \in \mathcal{L}(G)$.

Example 1. $G = \mathbb{Z} = \{g^n : n \in \mathbb{Z}\}.$ $e_n = \delta_{g^n}.$ $L_g e_n = L_g \delta_{g^n} = \delta_{g^{n+1}} = e_{n+1}, \forall n \in \mathbb{Z}.$ $\mathcal{L}(\mathbb{Z})$ is the von Neumann algebra generated by $L_g.$ $\ell^2(\mathbb{Z}) \to \ell^2(S^1, m)$, where m is Haar measure and s.t. $e_n \stackrel{U}{\mapsto} z^n.$ $UL_g U^* z^n = UL_g e_n = Ue_{n+1} = z^{n+1}.$ $UL_g U^* = M_z.$ $U\mathcal{L}(\mathbb{Z})U^* = \{M_{f(z)} : f(z) \in L^{\infty}(S^1, m)\}.$ We can define a linear functional on $\mathcal{L}(G)$ s.t. $\forall T \in \mathcal{L}(G), \tau(T) = (T\delta_e, \delta_e).$

Theorem 4. τ on $\mathcal{L}(G)$ is subject to the following,

- 1. $\tau(I) = 1$;
- 2. $\tau(ST) = \tau(TS), \forall S, T \in \mathcal{L}(G);$
- 3. $\tau(T^*T) \ge 0 \text{ and } \tau(T^*T) = 0 \Rightarrow T = 0.$

Proof. Let $x = T\delta_e = \sum_{g \in G} \alpha_g g \in \ell^2(G), y = S\delta_e = \sum_{g \in G} \beta_g g \in \ell^2(G).$ $\tau(ST) = (ST\delta_e, \delta_e) = (T\delta_e, S^*\delta_e) = \left(\sum_{g \in G} \alpha_g g, \sum_{g \in G} \overline{\beta_g} g^{-1}\right) = \sum_{g \in G} \alpha_g \beta_{g^{-1}}.$ $\tau(TS) = \sum_{g \in G} \alpha_{g^{-1}}\beta_g.$ $\tau(T^*T) = 0 \Rightarrow (T\delta_e, T\delta_e) = 0.$ Let $x = T\delta_e, (x, x) = 0 \Rightarrow x = 0.$ $T = L_x = 0.$

Definition 2. Let M to be a von Neumann algebra, then the center of M, $Z(M) = \{S \in M : ST = TS, \forall T \in M\}$.

Obviously, $Z(M) \supset \{\lambda I : \lambda \in \mathbb{C}\}.$

Definition 3. M is called a factor if $Z(M) = \mathbb{C}I$.

Definition 4. M is called a II_1 factor if M is a infinite dimensional factor and there is a bounded linear functional τ on M s.t.

- 1. $\tau(T^*T) \ge 0, \forall T \in M, \ \tau(T^*T) = 0 \Rightarrow T = 0;$
- 2. $\tau(ST) = \tau(TS), \forall S, T \in M;$
- 3. τ is continuous under strong operator topology.

Definition 5. A discrete group G is called an i.c.c. (infinite conjugacy class) group if $\forall g \neq e, \{hgh^{-1} : h \in G\}$ is an infinite set.

Theorem 5. $\mathcal{L}(G)$ is called a II_1 factor if G is an i.c.c. group.

Proof. $\forall T \in Z(\mathcal{L}(G))$, let $x = T\delta_e = \sum_{g \in G} \alpha_g g \in \ell^2(G)$. Notice that $\forall h \in G, L_h T = TL_h$. $L_h T L_{h^{-1}} = T \Rightarrow L_h T L_{h^{-1}} \delta_e = T\delta_e = \sum_{g \in G} \alpha_g g$. $L_h T \delta_{h^{-1}} = L_h \sum_{g \in G} \alpha_g g h^{-1} = \sum_{g \in G} \alpha_g h g h^{-1} = \frac{hgh^{-1}=g'}{2} \sum_{g' \in G} \alpha_{h^{-1}g'h} g' \sum_{g \in G} \alpha_{h^{-1}gh} g$. $\alpha_{h^{-1}gh} = \alpha_g, \forall g, h \in G$. If $g \neq e$ and $\{h^{-1}gh: h \in G\}$ is infinite, then $\sum_{h \in G} |\alpha_{h^{-1}gh}|^2 \leq \sum_{k \in G} |\alpha_k|^2 < \infty$. Thus $\alpha_g = 0, \forall g \neq e$. $T\delta_e = \alpha_e e \Rightarrow T = L_{\alpha_e} e = \alpha_e I$.

Example 2. $F_2 = \langle a, b \rangle$ is i.c.c.

Example 3. $\pi(\mathbb{Z}) = \{permutations \ of \ \mathbb{Z} \ that \ change \ at \ most \ finitely \ many \ positions \}.$

Theorem 6 (Murray-von Neumann). $\mathcal{L}(F_2) \ncong \mathcal{L}(\pi(\mathcal{Z}))$.

Definition 6. Let (M, τ) to be a II_1 factor. M is said to have property Γ if $\forall \varepsilon > 0, \forall x_1, \dots, x_n \in M, \exists U \in M, \tau(U) = 0, \text{ and } \|x_i U - U x_i\|_2 < \varepsilon, i = 1, 2, \dots, n, \text{ where } \|x\|_2 = \tau(x^*x)^{\frac{1}{2}}$. (Notice that for any unitary operator v, $\|vx\|_2 = \|xv\|_2 = \|x\|_2$.)

Theorem 7. $\mathcal{L}(\pi(\mathcal{Z}))$ has property Γ .

Theorem 8. $\mathcal{L}(F_2)$ doesn't have property Γ .

 $F_2 = \langle a,b \rangle. \text{ For } L_a, L_b, \text{ take } \varepsilon > 0 \text{ small enough}(\frac{1}{24}), \exists U, \tau(U) = 0 \text{ and } \textcircled{1} \parallel L_a U - U L_a \parallel_2 < \varepsilon, \textcircled{2} \parallel L_b U - U L_b \parallel_2 < \varepsilon. \text{ Let } x = U \delta_e = \sum_{g \in F_2 \setminus \{e\}} \alpha_g g \in \ell^2(G)(\alpha_e = 0). \text{ As } U \text{ is a unitary operator, } \sum_{g \in F_2 \setminus \{e\}} |\alpha_g|^2 = 1(\|U\|_2 = 1). \textcircled{1} \Rightarrow \|L_a U L_{a^{-1}} - U\|_2^2 < \varepsilon^2 \Rightarrow \sum_{g \in F_2 \setminus \{e\}} |\alpha_{a^{-1}ga} - \alpha_g|^2 < \varepsilon^2 \Rightarrow \sum_{g \in S} |\alpha_g|^2 - \sum_{g \in S} |\alpha_{a^{-1}ga}|^2 < 2\varepsilon, \text{ and } \|L_{a^{-1}} U L_a - U\|_2^2 < \varepsilon^2 \Rightarrow \sum_{g \in F_2 \setminus \{e\}} |\alpha_{aga^{-1}} - \alpha_g|^2 < \varepsilon^2 \Rightarrow \sum_{g \in S} |\alpha_g|^2 - \sum_{g \in S} |\alpha_{aga^{-1}}|^2 < 2\varepsilon. \textcircled{2} \Rightarrow \|L_b U L_{b^{-1}} - U\|_2^2 < \varepsilon^2 \Rightarrow \sum_{g \in F_2 \setminus \{e\}} |\alpha_{b^{-1}gb} - \alpha_g|^2 < \varepsilon^2. \text{ Consider } S = \{reduced words starting with } b^{\pm 1} \} \subset F_2. \text{ Observe } aSa^{-1} \cup a^{-1}Sa \cap S \subset F_2 \setminus \{e\}, b^{-1}Sb \cup S \supset F_2 \setminus \{e\}, \text{ which is disjoint pairwise.}$ $\sum_{g \in S} |\alpha_g|^2 + \sum_{g \in S} |\alpha_{aga^{-1}}|^2 + \sum_{g \in S} |\alpha_{a^{-1}ga}|^2 \leq 1 \approx 3\sum_{g \in S} |\alpha_g|^2 + 4\varepsilon \leq 1, \sum_{g \in S} |\alpha_g|^2 + \sum_{g \in S} |\alpha_g|^2 - 2\varepsilon \geq 1. \text{ Thus } \frac{1}{2} \leq \sum_{g \in S} |\alpha_g|^2 \leq \frac{1}{3}, \text{ which is contradicted.}$

Question 1. Is it true that $\mathcal{L}(F_2) \ncong \mathcal{L}(F_3)$?

Recent result is shown below.

Theorem 9. It is alternative that $\mathcal{L}(F_n) \cong \mathcal{L}(F_m), \forall n, m \text{ or } \mathcal{L}(F_n) \ncong \mathcal{L}(F_m), \forall n, m.$