Escape Velocity

We start with Newton's law of gravitation and derive the escape velocity of a planet.

A simplified version of Newton's Law is as follows. The force of gravity on an object of mass m that is distance r from the center of the earth is given by

$$F(r) = \frac{km}{r^2}$$

where k is a constant that is a characteristic of the earth. In the metric system, the units of k are $\frac{m^3}{s^2}$.

Question 1 Use the following two facts to find the value of k in $\frac{m^3}{s^2}$ to three significant digits.

- A 100-kg object weighs 980 N at the surface of the Earth.
- The Earth's radius is 6400 km.

Solution

(a)
$$k = 4.01 \cdot 10^8 \frac{m^3}{s^2}$$

(b)
$$k = 4.01 \cdot 10^{14} \frac{m^3}{s^2} \checkmark$$

(c)
$$k = 418 \frac{m^3}{s^2}$$

(d)
$$k = 4.18 \cdot 10^8 \frac{m^3}{s^2}$$

Hint: The two facts from this question can be plugged into the law of gravity.

Hint: There is a problem with the units of the Earth's radius. Make sure you convert it to meters!

Plugging in the values gives $980N = \frac{k(100kg)}{(6400000m)^2}$, and so $k = 4.01 \cdot 10^{14} \frac{m^3}{s^2}$.

Learning outcomes: Use an improper integral in an application problem. Integrate a force function to compute work. Correctly handle units during calculus operations.