Линейна алгебра и аналитична геометрия

за специалност "Информатика", І курс

лектор: гл. ас. д-р Ива Докузова

Матрици. Действия с матрици

1) Определение за матрица. Всяка таблица от реални числа

$$A = (a_{ij}) = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{pmatrix},$$

подредени в m реда и n стълба се нарича **реална матрица от тип** $(m \times n)$.

Числата a_{ij} , $(i=1,2,\ldots,m;\;j=1,2,\ldots,n)$ се наричат елементи на матрицата.

Множеството на всички реални матрици от тип $(m \times n)$ се означава $M_{m \times n}(R)$.

В частност, ако m=1, получаваме матрица-ред

$$A = (a_{11}, a_{12}, \dots, a_{1n}),$$

а при n=1, получаваме матрица-стълб

$$A = \begin{pmatrix} a_{11} \\ a_{12} \\ \vdots \\ a_{m1} \end{pmatrix}.$$

Матрица, с равен брой редове и стълбове, се нарича **квадратна матрица**.

Множеството на квадратните матрици от тип $(n \times n)$ се означава с $M_n(R)$.

Матрица, която се получава от A чрез смяна местата на редовете със съответните стълбове, се нарича **транспонирана** и се означава $A^t=(a_{ji})$ или $A'=(a_{ji})$.

Някои специални матрици

Главен диагонал на квадратната матрица

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{pmatrix},$$

се нарича съвкупността от елементи $a_{11},\ a_{22},\ \dots,\ a_{nn}.$ Квадратна матрица, на която всички елементи под и над главния диагонал са нули се нарича диагонална матрица.

$$\Lambda = \begin{pmatrix} a_{11} & 0 & \dots & 0 \\ 0 & a_{22} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{nn} \end{pmatrix}.$$

Квадратната матрица

$$E = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$

се нарича единична матрица.

Матрицата $O \in M_{m \times n}(R)$, на която всички елементи са нули се нарича **нулева матрица.** Тя има вида

$$O = \begin{pmatrix} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{pmatrix}.$$

Линейни действия с матрици

Две матрици $A=(a_{ij})\in M_{m\times n}(R)$ и $B=(b_{ij})\in M_{m\times n}(R)$ се наричат **равни**, ако съответните им елементи са равни. Означаваме A=B.

а) **Сума** на $A=(a_{ij})\in M_{m\times n}(R)$ и $B=(b_{ij})\in M_{m\times n}(R)$ е матрицата

$$A + B = (a_{ij} + b_{ij}) \in M_{m \times n}(R).$$

Действието се нарича събиране на матрици.

6) Произведение на матрицата $A=(a_{ij})\in M_{m imes n}(R)$ с реално число λ е матрицата

$$\lambda A = (\lambda a_{ij}) \in M_{m \times n}(R).$$

Действието се нарича умножение на матрица с число. Събирането на две матрици и умножението на матрица с число се наричат линейни действия с матрици.

Свойства на линейните действия

За произволни матрици $A,B,C\in M_{m imes n}(R)$ и произволни числа $\lambda,\mu\in R$ са в сила следните свойства:

- 1) A + B = B + A,
- 2) A + (B + C) = (A + B) + C;
- 3) Съществува матрица O, наречена нулева, такава че за всяка матрица A е изпълнено A+O=A;
- 4) За всяка матрица A съществува матрица $-A = (-a_{ij})$, наречена противоположна на A, за която A + (-A) = O;
- 5) $\lambda(A+B) = \lambda A + \lambda B$;
- 6) $(\lambda + \mu)A = \lambda A + \mu A$;
- 7) $(\lambda \mu)A = \lambda(\mu A)$;
- 8) 1A = A.

Произведение на матрици

Произведение на матриците

$$A=(a_{ij})\in M_{m imes n}(R)$$
 и $B=(b_{js})\in M_{n imes k}(R)$ е матрицата

$$AB = (c_{is}) \in M_{m \times k}(R),$$

където

$$c_{is} = a_{i1}b_{1s} + a_{i2}b_{2s} + a_{i3}b_{3s} + \dots + a_{in}b_{ns}.$$

Действието, което извършваме с A и B, за да получим C=AB се нарича **умножение на матрици**.

Броят на стълбовете на матрицата A е равен на броя на редовете на матрицата B. Такива матрици се наричат **съгласувани**.

За да е възможно умножението на две матрици, то те трябва да са съгласувани.

Умножението на квадратни матрици от един и същи ред е винаги възможно.

Свойства на произведението

В общият случай за две матрици A и B не е изпълнено AB = BA. За произволни съгласувани матрици A, B и C са в сила свойствата:

- 1) A(B+C) = AB + AC;
- 2) (A + B)C = AC + BC;
- 3) A(BC) = (AB)C;
- 4) AO = O, OB = O, където O е нулевата матрица;
- 5) $AE=A,\ EB=B$, където E е единичната матрица и двойките матрици $A,\ E$ и $E,\ B$ са съответно съгласувани.

Задачи. (5. Тема)

1. Дадени са матриците:

$$A = \begin{pmatrix} 2 & -2 & 0 \\ 1 & -4 & 3 \\ 5 & 1 & -6 \end{pmatrix}, \quad B = \begin{pmatrix} -6 & 3 & -3 \\ 0 & 15 & 3 \\ 9 & -12 & 15 \end{pmatrix}.$$

Намерете:

a)
$$A + B$$
; 6) $A - B$; B) $3A - 2B$; Γ) $-2A$; $\frac{1}{3}B$

2. Дадени са матриците:

$$A = \begin{pmatrix} 5 & 0 & -4 \\ 2 & -4 & 12 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 14 & -2 \\ 10 & -8 & 4 \end{pmatrix}.$$

Намерете:

а)
$$B+A$$
; б) $B-A$; в) $2A-3B$; г) $4A$; д) $-\frac{1}{2}B$.

3. Пресметнете произведението на матриците, ако това е възможно:

a)
$$(5 -1 0) \begin{pmatrix} 0 \\ 10 \\ 6 \end{pmatrix}$$
; 6) $\begin{pmatrix} 3 \\ 2 \\ -4 \end{pmatrix}$ $(0 7 -2)$;
B) $(5 -1 0) \begin{pmatrix} -1 & 3 \\ 1 & 0 \\ 2 & -6 \end{pmatrix}$; r) $\begin{pmatrix} 0 & -3 \\ 1 & -2 \\ 10 & 2 \end{pmatrix} \begin{pmatrix} 1 & -3 \\ 0 & 2 \\ 4 & -2 \end{pmatrix}$;
A) $\begin{pmatrix} -1 & 2 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} -2 & 0 \\ 1 & 0 \end{pmatrix}$; e) $\begin{pmatrix} 3 & 5 \\ 0 & 2 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} -1 & 3 & -7 \\ 2 & -5 & 0 \end{pmatrix}$;
 \Rightarrow $\begin{pmatrix} 0 & -3 & 10 \\ 1 & -2 & 2 \end{pmatrix} \begin{pmatrix} 1 & -3 \\ 0 & 2 \\ -3 & 5 \end{pmatrix}$; 3) $\begin{pmatrix} 5 & 3 & 0 \\ -2 & 1 & 1 \\ 3 & -4 & 0 \end{pmatrix} \begin{pmatrix} 1 & 2 & 0 \\ -2 & 4 & 5 \\ 3 & 3 & -3 \end{pmatrix}$.

4. Да се намери матрица $M = A^2 - BA + 3B$, ако

a)
$$A = \begin{pmatrix} 3 & 4 & 1 \\ 0 & 2 & -1 \\ 1 & 1 & -1 \end{pmatrix}$$
, $B = \begin{pmatrix} 4 & 1 & 0 \\ 2 & -2 & 1 \\ 0 & 1 & 1 \end{pmatrix}$.

6)
$$A = \begin{pmatrix} 2 & 1 & 2 \\ -2 & 2 & 0 \\ 3 & -1 & -1 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & -1 & 0 \\ 2 & 1 & 2 \\ -1 & 0 & 3 \end{pmatrix}$.

5. Да се намери матрицата AB - BA, ако:

a)
$$A = \begin{pmatrix} 3 & 3 \\ 1 & -2 \end{pmatrix}$$
, $B = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$.

6)
$$A = \begin{pmatrix} 4 & -1 & 0 \\ -1 & 0 & 2 \\ 1 & -2 & 3 \end{pmatrix}$$
, $B = \begin{pmatrix} 0 & 1 & 1 \\ 2 & 0 & -2 \\ 1 & 1 & 2 \end{pmatrix}$.

Детерминанта от втори ред

На всяка реална квадратна матрица от втори ред A се съпоставя едно реално число $\det A$, наречено нейна **детерминанта**

$$\det A = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}.$$

Стойността й се пресмята по формулата

$$\det A = a_{11}a_{22} - a_{12}a_{21}.$$

Заб. Стойността на детерминанта от първи ред е равна на числото, което е неин елемент, т.е. $\det A = a_{11}$.

Детерминанти от трети ред

На всяка реална квадратна матрица от трети ред $A=(a_{ij})$ се съпоставя едно реално число $\det A$, наречено нейна детерминанта

$$\det A = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}.$$

Стойността й се пресмята (по правило на триъгълниците).

$$\det A = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{21}a_{32}a_{13} - a_{13}a_{22}a_{31} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33}.$$

Адюнгирани количества

Адюнгиран минор Δ_{ij} на елемента a_{ij} на $\det A$ от втори ред се нарича числото, което се получава след премахване на i-ти ред и j-ти стълб от $\det A$.

Адюнгирано количество на елемента a_{ij} наричаме числото

$$A_{ij} = (-1)^{i+j} \Delta_{ij}.$$

Например, адюнгиран минор на елемента a_{12} от детерминантата

$$\det A = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$$

е елементът $\Delta_{12} = a_{21}$.

А адюнгираното количество на елемента a_{12} е $A_{12}=(-1)^{1+2}a_{21}$, което е $A_{12}=(-1)a_{21}$.

Адюнгиран минор Δ_{ij} на елемента a_{ij} на $\det A$ от трети ред се нарича детерминантата от втори ред, която се получава след премахване на i-ти ред и j-ти стълб от $\det A$.

Адюнгирано количество на елемента a_{ij} наричаме числото

$$A_{ij} = (-1)^{i+j} \Delta_{ij}.$$

Например, адюнгиран минор на елемента a_{13} от детерминантата

$$\det A = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

е детерминантата $\Delta_{13} = \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$.

А адюнгираното количество на елемента a_{13} е $A_{13}=(-1)^{1+3}\Delta_{13}$.

Задачи. (4. Тема)

 $1.\ \Box$ а се пресметнат детерминантите от II ред:

a)
$$\begin{vmatrix} 2 & 0 \\ 1 & -4 \end{vmatrix}$$
; 6) $\begin{vmatrix} -2 & 7 \\ 2 & -3 \end{vmatrix}$; B) $\begin{vmatrix} 2 & 11 \\ 9 & -3 \end{vmatrix}$.

2. Да се решат уравненията:

a)
$$\begin{vmatrix} x & x-2 \\ 5 & 2 \end{vmatrix} = 4$$
; 6) $\begin{vmatrix} x & x-2 \\ 8 & 8-x \end{vmatrix} = 0$; B) $\begin{vmatrix} 1 & 2 \\ -3 & x^2-5x \end{vmatrix} = 0$.

3. Да се решат неравенствата:

a)
$$\begin{vmatrix} 1 & 2(x-3) \\ 2 & x \end{vmatrix} > 0$$
; 6) $\begin{vmatrix} 2x & 4x \\ 3 & x \end{vmatrix} < -10$; B) $\begin{vmatrix} x^2 & 3x - 10 \\ -x & x \end{vmatrix} > 0$.

4. Да се пресметнат детерминантите от *III* ред:

5. Да се решат уравненията:

$$\begin{vmatrix} x & -4 & 3 \\ -1 & 2 & -3 \\ 1 & -1 & x+3 \end{vmatrix} = 0; \begin{vmatrix} x & 0 & 1 \\ -1 & -x & 1 \\ -1 & 2-x & 0 \end{vmatrix} = 0; \begin{vmatrix} 1 & 1 & x \\ 3 & -2 & -x \\ x+2 & 1 & 4 \end{vmatrix} = 0.$$

6. Да се решат неравенствата:

a)
$$\begin{vmatrix} 1 & x & -2 \\ 3 & 2 & -x \\ -1 & 2 & 1 \end{vmatrix} > 6; 6) \begin{vmatrix} 3 & x - 1 & -1 \\ 2 & 1 & -1 \\ -3 & -1 & x \end{vmatrix} > 1.$$

7. Дадени са детерминантите:

$$\begin{vmatrix} 1 & -1 & -2 \\ 3 & 2 & -5 \\ -1 & 2 & 1 \end{vmatrix}, \begin{vmatrix} -2 & 0 & -2 \\ 3 & 10 & 0 \\ -12 & 20 & 1 \end{vmatrix}, \begin{vmatrix} 25 & 5 & -4 \\ 13 & 12 & -9 \\ 10 & 2 & 0 \end{vmatrix}.$$

Да се намерят поддетерминантите и адюнгираните количества на елементите: a_{13}, a_{21}, a_{32} и a_{12} .

Детерминанти от ред, по-висок от три

Ако $A=(a_{ij})$ е квадратна матрица от четвърти ред, то нейната детерминанта се записва

$$\det A = \begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix}.$$

и се нарича детерминанта от IV ред.

Аналогично се записват детерминанти от пети и по-висок ред.

Правило на Лаплас. Всяка детерминанта е равна на сумата от произведенията на елементите от произволен ред със съответните им адюнгирани количества.

За детерминанта от IV ред по правилото на Лаплас имаме

$$\det A = a_{11}A_{11} + a_{12}A_{12} + a_{13}A_{13} + a_{14}A_{14},$$

което е развитие на детерминантата по елементите й от първи ред.

Други развития например са:

 $\det A = a_{12}A_{12} + a_{22}A_{22} + a_{32}A_{32} + a_{42}A_{42}$ — по елементите от втори стълб и

 $\det A = a_{41}A_{41} + a_{42}A_{42} + a_{43}A_{43} + a_{44}A_{44}$ – по елементите от четвърти ред.

Друг метод за пресмятане на детерминанти от по-висок ред е чрез опростяване на вида им — привеждане на детерминантата в триъгълен вид (детерминанта, в която всички елементи под или над главния диагонал са нули):

$$|\Lambda_1| = \begin{vmatrix} a_{11} & 0 & 0 & \dots & 0 \\ a_{21} & a_{22} & 0 & \dots & 0 \\ a_{31} & a_{32} & a_{33} & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{vmatrix}, \quad |\Lambda_2| = \begin{vmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ 0 & a_{22} & a_{23} & \dots & a_{2n} \\ 0 & 0 & a_{33} & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & a_{nn} \end{vmatrix}.$$

Стойностите на двете детерминанти са $|\Lambda_1| = |\Lambda_2| = a_{11}a_{22}a_{33}\dots a_{nn}$.

Свойства на детерминантите

Тъй като $\det A = \det A^t$, то следните свойства са в сила както за редовете така и за стълбовете на детерминантата.

- 1. Ако разменим местата на два реда в една детерминанта, получаваме детерминанта с противоположна стойност.
- 2. Детерминанта с два равни реда е равна на нула.
- 3. Ако умножим всички елементи от даден ред на една детерминанта с някакво число, то цялата детерминанта се умножава с това число.
- 4. Детерминанта с ред, съставен само от нули, е равна на нула.
- 5. Стойността на детерминантата не се променя, ако към един неин ред прибавим друг неин ред, умножен с някакво число.
- 6. Детерминанта с два пропорционални реда е равна на нула.
- 7. Ако редовете на една детерминанта са линейно зависими, то тя е равна на нула.
- 8. Сумата от произведенията на елементите от даден ред на една детерминанта със съответните адюнгирани количества на елементите от друг неин ред е равна на нула.

Например за детерминанта от IV ред имаме

$$a_{11}A_{21} + a_{12}A_{22} + a_{13}A_{23} + a_{14}A_{24} = 0.$$

Задачи. (4. Тема)

8. Да се пресметнат детерминантите от трети ред, като се приложат свойствата:

a)
$$\begin{vmatrix} 2 & -3 & -7 \\ 4 & -6 & -15 \\ -2 & 3 & 8 \end{vmatrix}$$
; 6) $\begin{vmatrix} -2 & 0 & -2 \\ 4 & 10 & 4 \\ -12 & 0 & -12 \end{vmatrix}$; B) $\begin{vmatrix} 2 & 2 & 2 \\ 0 & 1 & 0 \\ -6 & 3 & 0 \end{vmatrix}$;

9. Да се пресметнат детерминантите от четвърти ред:

r)
$$\begin{vmatrix} 1 & 0 & 0 & 0 \\ 2 & -3 & 1 & 5 \\ -3 & 1 & 0 & 6 \\ 2 & -3 & -4 & 0 \end{vmatrix}$$

Обратни матрици

Нека A е квадратна матрица.

Матрицата A се нарича **особена (изродена)**, ако $\det A=0$. Матрицата A се нарича неособена, ако $\det A\neq 0$.

Матрицата A^{-1} се нарича **обратна на** A, а A се нарича **обратима**, ако е изпълнено $AA^{-1}=A^{-1}A=E$.

Особените матрици не притежават обратна матрица.

Всяка неособена матрица притежава точно една обратна матрица.

1) Произволна неособена квадратна матрица от II ред

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

има обратна матрица

$$A^{-1} = \frac{1}{\det A} \begin{pmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{pmatrix}.$$

2) Произволна неособена квадратна матрица от III ред

$$A=egin{pmatrix} a_{11}&a_{12}&a_{13}\ a_{21}&a_{22}&a_{23}\ a_{31}&a_{32}&a_{33} \end{pmatrix}$$
 има обратна матрица

$$A^{-1} = \frac{1}{\det A} \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{pmatrix}$$

Тук A_{ij} е адюнгираното количество на елемента a_{ij} , където $i=1,2,3;\; j=1,2,3.$

3) Обратната матрица на неособена квадратна матрица от n-ти ред $A=(a_{ij})$ се получава от

$$A^{-1} = \frac{1}{\det A} (A_{ij})^t.$$

Означили сме с $(A_{ij})^t$ транспонираната матрица (съответните редове и стълбове са разменили местата си) на матрицата (A_{ij}) .

Метод на Гаус-Жордан за намиране на обратна матрица

Елементарни преобразувания върху редовете на матрицата се наричат:

- 1) смяната местата на два реда;
- 2) прибавяне на даден ред от матрицата, умножен с число към друг неин ред;
- 3) умножение на ред с число, различно от нула.
- Заб. В сила е аналогично определение за елементарни преобразувания върху стълбове на матрица.

Ако матрицата B е получена от матрицата A чрез елементарни преобразувания върху редовете и стълбовете й, то A се нарича **еквивалентна на** B и означаваме $A \sim B$.

Нека е дадена неособена квадратна матрица $A=(a_{ij})$, $i,j=1,2,\ldots n$. Образуваме матрицата (A/E), където E е единичната матрица от същия тип.

Чрез елементарни преобразувания само върху редовете я привеждаме във вида (E/A^{-1}) .

Тогава обратната матрица на A е

$$A^{-1} = \frac{1}{\det A} \begin{pmatrix} A_{11} & A_{21} & A_{31} & \dots & A_{n1} \\ A_{12} & A_{22} & A_{32} & \dots & A_{n2} \\ A_{13} & A_{23} & A_{33} & \dots & A_{n3} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & A_{3n} & \dots & A_{nn} \end{pmatrix}.$$

Методът, който използваме за да я намерим се нарича **метод на** Гаус-Жордан за намиране на обратна матрица.

Матрични уравнения

Матричното уравнение

$$AX = B, \quad \det A \neq 0, \tag{1}$$

има единствено решение $X = A^{-1}B$.

То се получава, като умножим отляво двете страни на (1) с обратната матрица \boldsymbol{A}^{-1} на \boldsymbol{A} .

Матричното уравнение XA=B, където A е неособена квадратна матрица, има единствено решение $X=BA^{-1}$.

За уравнението

$$AX = B, \quad \det A = 0, \tag{2}$$

имаме следните случаи:

- 1) Ако B не е квадратна или B е особена, то (2) има безброй решения или няма решение.
- За да се реши докрай уравнението (2), трябва да се умножат матриците A и X и да се разпише системата уравнения.
- 2) Ако B е неособена, то (2) няма решение. Аналогично, за уравнението

$$XA = B, \quad \det A = 0, \tag{3}$$

имаме следните случаи:

- 1) Ако B не е квадратна или B е особена, то (3) има безброй решения или няма решение.
- 2) Ако B е неособена, то (3) няма решение.

Задачи. (5. Тема)

6. Да се намери обратната матрица A^{-1} .

a)
$$A = \begin{pmatrix} 2 & -3 \\ 4 & -1 \end{pmatrix}$$
; 6) $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$; B) $A = \begin{pmatrix} 1 & 1 & -1 \\ 4 & 0 & 2 \\ -1 & 2 & 11 \end{pmatrix}$;

r)
$$A = \begin{pmatrix} 2 & 1 & -1 \\ 1 & -1 & 1 \\ 3 & 2 & -3 \end{pmatrix}$$
.

7. Да се намери обратната матрица A^{-1} чрез метода на Гаус-Жордан, ако:

a)
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -3 & 2 & 1 \end{pmatrix}$$
; 6) $A = \begin{pmatrix} 1 & 2 & -3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$; B) $A = \begin{pmatrix} 2 & 1 & 0 \\ 3 & 2 & 0 \\ 1 & 1 & 3 \end{pmatrix}$.

8. Да се докаже, че следните матрици нямат обратни:

a)
$$A = \begin{pmatrix} 2 & -3 \\ 4 & -6 \end{pmatrix}$$
; 6) $B = \begin{pmatrix} 1 & 1 & -1 \\ 4 & 0 & 2 \\ 5 & 1 & 1 \end{pmatrix}$;

B)
$$C = \begin{pmatrix} 2 & 1 & -1 & 10 \\ 1 & -1 & 0 & 3 \\ 1 & 2 & -1 & 7 \\ 0 & 2 & 1 & 10 \end{pmatrix}$$
.

9. Да се решат матричните уравнения:

a)
$$\begin{pmatrix} 2 & 1 \\ 4 & 1 \end{pmatrix} X = \begin{pmatrix} 1 & 0 \\ -3 & 2 \end{pmatrix}$$
; 6) $\begin{pmatrix} 2 & -3 \\ 4 & -6 \end{pmatrix} X = \begin{pmatrix} 0 & 5 \\ 0 & 10 \end{pmatrix}$;

B)
$$\begin{pmatrix} 2 & -3 \\ 4 & -6 \end{pmatrix} X = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
; r) $\begin{pmatrix} 1 & 2 & -3 \\ 3 & 2 & -4 \\ 2 & -1 & 0 \end{pmatrix} X = \begin{pmatrix} 1 & -3 & 0 \\ 10 & 2 & 7 \\ 10 & 7 & 8 \end{pmatrix}$;

д)
$$\begin{pmatrix} -2 & -1 & -2 \\ 3 & 2 & 1 \\ 2 & 1 & 0 \end{pmatrix} X = \begin{pmatrix} 1 & -4 \\ -2 & 1 \\ -3 & 2 \end{pmatrix}$$
.

Линейно преобразуване на векторни пространства

Нека V и W са две реални векторни пространства.

Изображението $f:V\to W$ се нарича **линейно преобразуване** на V в W, ако f удовлетворява свойствата:

- 1) f(x+y) = f(x) + f(y);
- 2) $f(\lambda x) = \lambda f(x)$,

за всеки два вектора x и y от V и всяко реално число λ .

Множеството на всички линейни преобразувания на V в W се означава с $\mathfrak{L}(V,W)$.

За произволно линейно преобразуване $f \in \mathfrak{L}(V,W)$ са в сила:

$$f(o_v) = o_w, \qquad f(-x) = -f(x).$$

Тук o_v и o_w са съответно нулевите вектори на V и W, а x е произволен вектор от V.

Ако V=W, то $f:V\to V$ се нарича линейно преобразуване на V и множеството им се означава с $\mathfrak{L}(V)$.

Ако линейното преобразуване f е взаимно еднозначно, то се нарича **изоморфизъм**.

Множеството от векторите на W, които са образи на вектори от V чрез f се нарича **област от стойности на** f и се означава $\mathrm{im} f$.

$$\operatorname{im} f = \{ y \in W \mid \exists \ x \in V, f(x) = y \}.$$

Множеството от векторите на V, които са първообрази на нулевия вектор чрез f се нарича **ядро на** f и се означава $\ker f$.

$$\ker f = \{ x \in V \mid f(x) = o \}.$$

Множеството $\ker f$ е векторно подпространство на V, а множеството $\operatorname{im} f$ е векторно подпространство на W.

Числата $\operatorname{rg}(f)=\dim(\operatorname{im} f)$ и $\operatorname{def}(f)=\dim(\ker f)$ се наричат съответно ранг и дефект на линейното преобразуване f . Ако $f\in \mathfrak{L}(V)$, то

$$def(f) + rg(f) = \dim V.$$

Матрица на линейно преобразуване. Образ на вектор при линейно преобразуване

Нека е дадено линейно преобразуване на n-мерно в m-мерно векторно пространство $f:V^n\to W^m$. Нека $\{v_i\}$ и $\{w_j\}$ са бази съответно на векторните пространства V^n и W^m . Тогава $f(v_i)$ са вектори на W и се изразяват линейно чрез базата $\{w_j\}$ на W, както следва:

Тук коефициентите a_{ij} са реални числа и образуват матрицата:

$$M_{v,w}(f) = (a_{ij}) = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{pmatrix} . \tag{4}$$

Тя е от тип $(m \times n)$. Матрицата $M_{v,w}(f) = (a_{ij})$ нарича **матрица на** линейното преобразуване f относно базите $\{v_i\}$ и $\{w_j\}$. Ако вектор $x(x_1,\ x_2,\ \dots,\ x_n)$ и образът му $f(x) = y(y_1,\ y_2,\ \dots,\ y_m)$ са зададени съответно относно базите $\{v_i\}$ и $\{w_j\}$, то връзката между техните координати се дава с матричното равенство:

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_m \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{pmatrix}.$$

При фиксирани бази v и w, на всяко $f\in\mathfrak{L}(V,W)$ съответства еднозначно определена матрица $M_{v,w}(f)=(a_{ij})$, т.е. с (4) се определя изображение

$$M_{v,w}: \mathfrak{L}(V,W) \to M_{m \times n}(R).$$

Това изображение е взаимно еднозначно.

Примери на линейни преобразувания.

1) Нулево преобразуване на $\mathfrak{L}(V,W)$ се нарича изображението $o:V\to W$, при което o(x)=o за всеки вектор $x\in V$.

На него съответства нулевата матрица $M_{v,w}(o) = O$ от тип m imes n.

2) Тъждественото преобразуване (идентитет) на $\mathfrak{L}(V)$ се нарича изображението $\mathrm{id}:V\to V$, при което $\mathrm{id}(x)=x$ за всеки вектор $x\in V$.

На него съответства единичната матрица $M_v(\mathrm{id}) = E$ от n-ти ред.

3) Транспонирането на матриците в $M_{m \times n}(R)$ е линейно преобразуване.

Задачи (5. Тема)

- 10. Нека е дадено изображението $f: R^3 \to R^2$. Да се провери дали f е линейно, ако образът на произволен вектор $x(x_1, x_2, x_3) \in R^3$ е:
- a) $f(x) = (x_1 + x_2 x_3, 3x_3)$,
- 6) $f(x) = (x_1 + x_3, 1 x_2)$.

Да се намери матрицата на линейното преобразуване относно каноничните бази на ${\cal R}^3$ и ${\cal R}^2$.

- 11. Нека f е линейно преобразуване на V. Ако $\{e_1,e_2,e_3\}$ е база на V и $f(e_1)=e_1+e_2-e_3$, $f(e_2)=e_1+2e_2+e_3$, $f(e_3)=e_2-2e_3$, то да се намери
- a) матрицата на линейното преобразуване $M_e(f)$;
- б) аналитичното представяне на f;
- в) образът на вектор $x_0(1,0,-3)$ чрез f.

Смяна на база

Нека V е n-мерно векторно пространство и $e=\{e_1,e_2,\ldots,e_n\}$, $e'=\{e'_1,e'_2,\ldots,e'_n\}$ са две негови бази. Тогава векторите от e' са линейни комбинации на векторите от e и обратно.

Нека връзката между двете бази е следната

$$e'_{1} = t_{11}e_{1} + t_{21}e_{2} + t_{31}e_{3} + \dots + t_{n1}e_{n}$$

$$e'_{2} = t_{12}e_{1} + t_{22}e_{2} + t_{32}e_{3} + \dots + t_{n2}e_{n}$$

$$e'_{3} = t_{13}e_{1} + t_{23}e_{2} + t_{33}e_{3} + \dots + t_{n3}e_{n}$$

$$\vdots$$

$$e'_{n} = t_{1n}e_{1} + t_{2n}e_{2} + t_{3n}e_{3} + \dots + t_{nn}e_{n}.$$
(5)

Матрицата

$$T = \begin{pmatrix} t_{11} & t_{12} & t_{13} & \dots & t_{1n} \\ t_{21} & t_{22} & t_{23} & \dots & t_{2n} \\ t_{31} & t_{32} & t_{33} & \dots & t_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ t_{n1} & t_{n2} & t_{n3} & \dots & t_{nn} \end{pmatrix}$$

се нарича матрица на прехода от базата e към базата e'. В матричен вид (5) се записва:

$$e' = eT. (6)$$

Всяка матрица на прехода T е неособена. Следователно съществува T^{-1} . Нещо повече, T^{-1} е матрица на прехода от базата e^\prime към базата e.

Нека вектор $a \in V$ има следните представяния съответно относно e и e':

$$a = x_1 e_1 + x_2 e_2 + x_3 e_3 + \dots + x_n e_n, a = x'_1 e'_1 + x'_2 e'_2 + x'_3 e'_3 + \dots + x'_n e'_n.$$
(7)

Ще означим с x и x' матриците-стълбове от координатите на вектор a относно $e=(e_1,e_2,\ldots,e_n)$ и $e'=(e'_1,e'_2,\ldots,e'_n)$. Тогава равенствата (7) матрично се записват

$$a = ex$$
, $a = e'x'$.

От горните равенства, като използваме (6), намираме

$$ex = e'x' = (eT)x' = e(Tx'),$$

откъдето следва

$$x = Tx'. (8)$$

Равенство (8) ни дава **връзка между координатите на произволен вектор спрямо две различни бази**.

 ${\sf T}$ ъй като T е обратима, то получаваме обратната връзка с формулата

$$x' = T^{-1}x.$$

Задачи (5. Тема)

12. Нека $e = \{e_1, e_2, e_3\}$ е база на тримерно векторно пространство V .

Ако $e_1'=e_3$, $e_2'=e_2+e_3$, $e_3'=e_1+e_2+e_3$ са вектори от V, то

- а) Докажете, че образуват база на V;
- б) Намерете матрицата на прехода от e^\prime към e;
- в) Намерете координатите на вектор $a=e_1-e_2+2e_3$ относно e^\prime .

Изменение на матрицата на линейно преобразуване на векторно пространство при смяна на базата

Нека f е линейно преобразуване на n-мерно векторно пространство V , а A е матрицата му в дадена база e . Матричен запис на това условие е

$$f(e) = eA$$
.

Ако e^\prime е друга база на V и B матрицата на f в базата e^\prime , то имаме

$$f(e') = e'B.$$

Матрицата на прехода от e към e^\prime е T, т.е. $e^\prime=eT$.

И така, получаваме f(e')=(eT)B=e(TB), както и f(e')=f(eT)=f(e)T=(eA)T=e(AT).

Следователно TB=AT, откъдето намираме връзка между матриците на едно линейно преобразуване спрямо различни бази:

$$B = T^{-1}AT.$$

Матрицата B се нарича подобна на A чрез неособената матрица T .

Смяна на координатна система

Нека $K=Oe_1e_2e_3=Ox_1x_2x_3$ и $K'=O'e_1'e_2'e_3'=O'x_1'x_2'x_3'$ са две координатни системи в пространството. Нека T е матрицата на прехода от базата e към базата e'. Ако $\det T>0$, то двете координатни системи K и K' са еднакво ориентирани. Ако $\det T<0$, то K и K' са противоположно ориентирани.

Нека координатите на O' са $O'(a_1,a_2,a_3)$ относно K.

Ако M е произволна точка с координати $M(x_1,x_2,x_3)$ относно K и $M(x_1',x_2',x_3')$ относно K', то

$$\overrightarrow{OM} = x_1e_1 + x_2e_2 + x_3e_3, \quad \overrightarrow{O'M} = x_1'e_1' + x_2'e_2' + x_3'e_3'.$$

Ако означим матриците-стълбове от координатите на M , M^\prime и O с

$$x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \quad x' = \begin{pmatrix} x'_1 \\ x'_2 \\ x'_3 \end{pmatrix}, \quad a = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix},$$

то имаме матричните равенства

$$\overrightarrow{OM} = ex$$
, $\overrightarrow{O'M} = e'x'$, $\overrightarrow{OO'} = ea$.

Тогава от равенствата $\overrightarrow{OM} = \overrightarrow{OO'} + \overrightarrow{O'M}$ и (6) намираме

$$x = Tx' + a.$$

Последното равенство ни дава връзка между координатите на произволна точка относно две различни координатни системи. Транслация на координатната система K до K' имаме, точно когато T=E. т.е. e=e'. Тогава

$$x = x' + a. (9)$$

Заб. Транслацията не е линейно преобразуване.

Ортогонална трансформация на координатната система K до K' имаме, точно когато координатните системи K и K' са ортонормирани и за координатните начала е изпълнено O'=O. Тогава

$$x = Tx'. (10)$$

По-нанатък, получаваме координатен запис на (9) и (10). В пространството **транслацията на координатната система** K до K' се задава с равенствата

$$x_1 = x'_1 + a_1,$$

 $x_2 = x'_2 + a_2,$
 $x_3 = x'_3 + a_3.$

Ортогонална смяна на ортонормирана координатна система K до ортонормирана координатна система K^\prime се задава с

$$\begin{aligned} x_1 &= t_{11}x_1' + t_{12}x_2' + t_{13}x_3', \\ x_2 &= t_{21}x_1' + t_{22}x_2' + t_{23}x_3', \\ x_2 &= t_{31}x_1' + t_{32}x_2' + t_{33}x_3', \end{aligned}$$

където $T=(t_{ij})$ е **ортогонална матрица**, т.е. транспонираната и обратната на T са равни: $T^{'}=T^{-1}$.

Транслация и ротация в равнината

В равнината **транс**ла**цията на координатната система** K до K' се задава с равенствата

$$x_1 = x_1' + a_1,$$

 $x_2 = x_2' + a_2.$

Ортогонална смяна на ортонормирана координатна система K до ортонормирана координатна система K' се задава с

$$\begin{aligned}
 x_1 &= t_{11} x_1' + t_{12} x_2', \\
 x_2 &= t_{21} x_1' + t_{22} x_2',
 \end{aligned} \tag{11}$$

където $T = (t_{ij})$ е ортогонална матрица $(T^{'} = T^{-1})$.

В случай, че K и K' са еднакво ориентирани, то смяната (11) е **ротация на координатната система** K до K'.

Ъгълът на ротация $\alpha = \measuredangle(Ox_1, O'x_1')$ е определен с функциите $\cos \alpha = t_{11}, \, \sin \alpha = t_{21}.$

Ранг на матрица

Линейна обвивка на система от вектори $\alpha=\{a_1,a_2,a_3,\ldots,a_k\}$ се нарича множеството от всички техни линейни комбинации и се означава $L(a_1,a_2,a_3,\ldots,a_k)$.

Очевидно $L(a_1,a_2,a_3,\ldots,a_k)$ е векторно пространство, породено от системата вектори α . Размерността му се нарича **ранг на системата** вектори α и се означава $\operatorname{rg}(a_1,a_2,a_3,\ldots,a_k)=\dim L(a_1,a_2,a_3,\ldots,a_k)$. И така, рангът на система вектори е броят на векторите във всяка максимална линейно независима нейна подсистема.

Рангът на системата вектори, която се състои само от нулевия вектор е числото нула.

Намирането на ранга на система вектори се свежда до намирането на ранга на матрицата образувана от техните координати.

Нека е дадена матрицата $A \in M_{m \times n}(R)$, както следва

$$A = (a_{ij}) = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{pmatrix}.$$

Редовете на A като наредени n-ки числа са m на брой вектори

$$u_i = (a_{i1}, a_{i2}, a_{i3}, \dots, a_{in}).$$

Стълбовете на A като наредени m-ки числа са n на брой вектори

$$v_j = (a_{1j}, a_{2j}, a_{3j}, \dots, a_{mj}).$$

Разместването на редовете на A не променя ранга на системата вектори $\{u_i\}$, както и раместването на стълбовете й не променя ранга на системата вектори $\{v_j\}$.

Нещо повече:

Разместването на редовете на A не променя ранга на системата от стълбовете й, както и раместването на стълбовете на A не променя ранга системата от редовете й.

Рангът на системата от редовете на една матрица е равен на ранга на системата от стълбовете й. Той се нарича **ранг на матрицата**. Означаваме $\operatorname{rg} A$.

Елементарни преобразувания върху редовете (стълбовете) на матрицата не променят нейния ранг.

Елементарни преобразувания върху редове:

- 1) смяната местата на два реда;
- 2) прибавяне на даден ред от матрицата, умножен с число, към друг неин ред;
- 3) умножение на ред с число, различно от нула.

Матрици с един и същи ранг се наричат еквивалентни, т.е. ако ${
m rg} A = {
m rg} B$, то $A \sim B$.

Всяка матрица от вида

$$C = \begin{pmatrix} c_{11} & c_{12} & c_{13} & \dots & c_{1r} & \dots & c_{1n} \\ 0 & c_{22} & c_{23} & \dots & c_{2r} & \dots & c_{2n} \\ 0 & 0 & c_{33} & \dots & c_{3r} & \dots & c_{3n} \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & c_{rr} & \dots & c_{rn} \\ 0 & 0 & 0 & \dots & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 0 & \dots & 0 \end{pmatrix},$$
(12)

се нарича **трапецовидна**, ако $c_{ii} \neq 0$, $i = 1, 2, \ldots, r$. Рангът на трапецовидната матрица е равен на r.

За да намерим ранга на произволна матрица A я привеждаме в трапецовиден вид (12). Прилагаме елементарни преобразувания върху редовете и върху стълбовете й. В този случай двете матрици A и C са еквивалентни.

Задачи (б. Тема)

1. Намерете ранга на матриците:

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 7 & 2 \\ 1 & 3 & 1 \end{pmatrix}; \quad B = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 7 & 2 \\ 1 & 3 & 3 \end{pmatrix};$$

$$C = \begin{pmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & 2 & 3 \\ -1 & 4 & 9 & 0 \end{pmatrix}; \quad D = \begin{pmatrix} 1 & 0 & -1 & 12 \\ 0 & 1 & 2 & 3 \\ -1 & 4 & 9 & 0 \end{pmatrix}.$$

- 2. Намерете ранга на системата вектори:
- a) $a_1 = (1, -1, 0), a_2 = (1, -3, 0), a_3 = (2, -4, 0);$
- 6) $a_1 = (3, -1, 3, 2, 5), \ a_2 = (5, -3, 2, 3, 4), \ a_3 = (1, -3, -5, 0, -7).$

Системи линейни уравнения

Общият вид на система линейни уравнения от II ред е

$$\begin{vmatrix} a_{11}x_1 + a_{12}x_2 = b_1 \\ a_{21}x_1 + a_{22}x_2 = b_2, \end{vmatrix}$$
 (13)

където a_{ij} са коефициенти на системата, а x_1, x_2 са неизвестни.

Решение на системата (13) е всяка двойка числа (x_1, x_2) , която удовлетворява и двете уравнения тъждествено.

Системата (13) е еквивалентна на уравнението AX=B , където

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

е матрицата от коефициентите, $X=\begin{pmatrix} x_1\\x_2 \end{pmatrix}$ е матрицата-стълб от неизвестните, $B=\begin{pmatrix} b_1\\b_2 \end{pmatrix}$ е матрицата от свободните коефициенти.

Ако $\det A \neq 0$, то матричното уравнение AX = B има единствено решение $X = A^{-1}B$, т.е.

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \frac{1}{\det A} \begin{pmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}.$$

Така получаваме, че единственото решение на системата (13) се задава с

$$x_1 = \frac{\Delta_1}{\Delta}, \quad x_2 = \frac{\Delta_2}{\Delta}, \tag{14}$$

където

$$\Delta = \det A, \quad \Delta_1 = \begin{vmatrix} b_1 & a_{12} \\ b_2 & a_{22} \end{vmatrix}, \quad \Delta_2 = \begin{vmatrix} a_{11} & b_1 \\ a_{12} & b_2 \end{vmatrix}.$$

Формулите (14) се наричат формули на Крамер.

Общ вид на система линейни уравнения от III ред.

$$\begin{vmatrix} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2 \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3, \end{vmatrix}$$
(15)

където a_{ij} са коефициенти на системата, а x_1,x_2,x_3 са неизвестни.

Решение на системата (15) е всяка тройка числа (x_1, x_2, x_3) , която удовлетворява и трите уравнения тъждествено.

Системата (15) е еквивалентна на уравнението AX=B , където

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

е матрицата от коефициентите, $X=\begin{pmatrix} x_1\\x_2\\x_3 \end{pmatrix}$ е матрицата от неизвест-

ните, $B = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$ е матрицата от свободните коефициенти.

Ако $\det A \neq 0$, то системата (15) има единствено решение, което се получава по формулите на Крамер:

$$x_1=\frac{\Delta_1}{\Delta},\quad x_2=\frac{\Delta_2}{\Delta},\quad x_3=\frac{\Delta_3}{\Delta},$$

където $\Delta = \det A$ и

$$\Delta_1 = \begin{vmatrix} b_1 & a_{12} & a_{13} \\ b_2 & a_{22} & a_{23} \\ b_3 & a_{32} & a_{33} \end{vmatrix}, \; \Delta_2 = \begin{vmatrix} a_{11} & b_1 & a_{13} \\ a_{12} & b_2 & a_{23} \\ a_{13} & b_3 & a_{33} \end{vmatrix}, \; \Delta_3 = \begin{vmatrix} a_{11} & a_{12} & b_1 \\ a_{12} & a_{22} & b_2 \\ a_{13} & a_{32} & b_3 \end{vmatrix}.$$

Аналогично се записват и решават системи линейни уравнения от n-ти ред.

$$\begin{vmatrix} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n = b_2 \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + \dots + a_{3n}x_n = b_3 \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + a_{n3}x_3 + \dots + a_{nn}x_n = b_n. \end{vmatrix}$$
(16)

Системата (16) е еквивалентна на уравнението AX=B , където

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{pmatrix}$$

е матрицата от коефициентите на системата.

Формулите на Крамер са

$$x_1 = \frac{\Delta_1}{\Delta}, \quad x_2 = \frac{\Delta_2}{\Delta}, \quad x_3 = \frac{\Delta_3}{\Delta}, \dots, x_n = \frac{\Delta_n}{\Delta},$$

където $\Delta = \det A$,

$$\Delta_1 = \begin{vmatrix} b_1 & a_{12} & a_{13} & \dots & a_{1n} \\ b_2 & a_{22} & a_{23} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ b_n & a_{n2} & a_{n3} & \dots & a_{nn} \end{vmatrix}, \ \Delta_2 = \begin{vmatrix} a_{11} & b_1 & a_{13} & \dots & a_{1n} \\ a_{21} & b_2 & a_{23} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & b_n & a_{n3} & \dots & a_{nn} \end{vmatrix},$$

$$\Delta_3 = \begin{vmatrix} a_{11} & a_{12} & b_1 & \dots & a_{1n} \\ a_{21} & a_{22} & b_2 & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & b_n & \dots & a_{nn} \end{vmatrix}, \dots, \Delta_n = \begin{vmatrix} a_{11} & a_{12} & a_{13} & \dots & b_1 \\ a_{21} & a_{22} & a_{23} & \dots & b_2 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \dots & b_n \end{vmatrix}.$$

Решаване на системи линейни уравнения чрез метода на Гаус

Общ вид на система от m линейни уравнения с n неизвестни е

$$\begin{vmatrix} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n = b_2 \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + \dots + a_{3n}x_n = b_3 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + a_{m3}x_3 + \dots + a_{mn}x_n = b_m, \end{vmatrix}$$
(17)

където a_{ij} са коефициенти на системата, а $x_1, x_2, x_3, \dots x_n$ са неизвестни.

Решение на системата (17) е всяка n-торка числа $(x_1, x_2, x_3, \dots, x_n)$, която удовлетворява всички уравнения тъждествено.

Системата (17) се нарича **хомогенна** само, когато коефициентите b_i са равни на нула.

Системата (17) се нарича несъвместима, ако няма решение, и съвместима, ако има поне едно решение.

Съвместимите системи биват **определени**, когато имат точно едно решение и **неопределени**, когато имат повече от едно решение.

Всяка хомогенна система е съвместима. Нулевото решение $(0,0,\dots,0)$ винаги я удовлетворява.

Матрицата от коефициентите на системата (17) е $A=(a_{ij})$ и се нарича **основна**. Матрицата

$$\bar{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} & b_2 \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} & b_3 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} & b_m \end{pmatrix},$$

се нарича разширена матрица на системата.

Системата (17) е съвместима, точно когато ${
m rg}A={
m rg}ar{A}.$

Рангът на матрицата A се нарича ранг на системата (17).

Системата (17) е определена, точно когато $\operatorname{rg} A = n$.

Системата (17) е неопределена, точно когато ${
m rg}A < n$.

За да решим (17), т.е. да определим вида й и да намерим нейни решения, ако такива съществуват, универсален и най-удобен е методът на Гаус.

Метод на Гаус. Чрез елементарни преобразувания върху редовете на \bar{A} я привеждаме в следния вид:

$$\overline{C} = \begin{pmatrix} c_{11} & c_{12} & c_{13} & \dots & c_{1r} & \dots & c_{1n} & d_1 \\ 0 & c_{22} & c_{23} & \dots & c_{2r} & \dots & c_{2n} & d_2 \\ 0 & 0 & c_{33} & \dots & c_{3r} & \dots & c_{3n} & d_3 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & c_{rr} & \dots & c_{rn} & d_r \\ 0 & 0 & 0 & \dots & 0 & \dots & 0 & d_{r+1} \\ \dots & \dots \\ 0 & 0 & 0 & \dots & 0 & \dots & 0 & d_m \end{pmatrix},$$

Системата (17) е несъвместима, ако има поне един коефициент $d_s,\ (s>r+1)$ различен от нула.

Ако $d_{r+1} = d_{r+2} = \cdots = d_m = 0$, то системата (17) е съвместима.

В този случай, ако n>r, то тя е неопределена. Ако n=r, то (17) е определена.

Забележка. При решаването на системи с метода на Гаус ще имаме предвид:

- 1. Ред, състоящ се само от нули се пропуска; единият от два пропорционални (или равни) реда се пропуска.
- 2. Самото намиране на решението (x_1, x_2, \dots, x_n) ще бъде изяснено чрез примери.

Обикновено задачите от линейни системи, идващи от практиката са такива, че броят на уравненията им е по-малък от броя на неизвестните и системите са съвместими. Такива системи имат безброй много решения, зависещи от n-r параметри, и точно те са интересни за линейното оптимиране.

Задачи (б. Тема)

3. Да се решат следните системи линейни уравнения, като се използват формулите на Крамер:

а)
$$\begin{vmatrix} 3x_1+x_2=-1\\ 2x_1+x_2=-2 \end{vmatrix}) \begin{vmatrix} x_1+3x_2=4\\ 2x_1+x_2=-2 \end{vmatrix}$$
 в)
$$\begin{vmatrix} 3x_1+x_2-x_3=1\\ x_1-x_2+2x_3=9\\ 2x_1+x_2+x_3=2 \end{vmatrix}$$
 г)
$$\begin{vmatrix} x_1+3x_2+x_3=0\\ x_1+2x_2-x_3=0\\ x_1+2x_2+4x_3=0 \end{vmatrix}$$
 $\begin{vmatrix} x_1+x_2-x_3=0\\ 2x_1-x_2+x_3=3\\ x_1+x_2+x_3=6. \end{vmatrix}$

4. Като се приложи методът на Гаус, да се решат системите:

a)
$$\begin{vmatrix} 3x_1+x_2+2x_3=1\\ x_1+x_3=2\\ 6x_1+x_2+5x_3=3 \end{vmatrix}$$
 6)
$$\begin{vmatrix} x_1-4x_2+2x_3=-3\\ 3x_1+x_2-2x_3-5x_4=3\\ 3x_1+x_2-x_3+x_4=-6\\ 7x_1-15x_2+11x_3-4x_4=4 \end{vmatrix}$$
 8)
$$\begin{vmatrix} x_1+2x_2+3x_3-4x_4=4\\ -x_2-x_3+x_4=-3\\ x_1-3x_2-3x_4=1\\ 7x_2+3x_3+x_4=-3 \end{vmatrix}$$
 7)
$$\begin{vmatrix} x_1+2x_2-x_3=0\\ 3x_1+x_2-2x_3+x_4=0\\ x_1+x_2-x_3+x_4=0\\ x_1-x_2+3x_3-x_4=0. \end{vmatrix}$$

Литература.

- [1] Д. Мекеров, Н. Начев, Ст. Миховски, Е. Павлов, "Линейна алгебра и аналитична геометрия", Пловдивско университетско издателство, Пловдив, 2008.
- [2] Д. Мекеров, М. Манев. "Учебно помагало за дисциплината Линейна алгебра и аналитична геометрия", IV изд., Макрос, Пловдив, 2010.
- [3] Д. Мекеров, П. Рангелова, Б. Царева, Е. Павлов. "Ръководство за решаване на задачи по аналитична геометрия", IV изд., УИ "Паисий Хилендарски", Пловдив, 2008.