Feed-forward Neural Networks (Part 2: learning)

Outline (part 2)

- Learning feed-forward neural networks
- SGD and back-propagation

Learning neural networks

Simple example

• A long chain like neural network

2 hidden units: training

2 hidden units: training

→ After ~10 passes through the data

10 hidden units

• Randomly initialized weights (zero offset) for the hidden units

10 hidden units

Decisions (and a harder task)

ightharpoonup After ~ 10 epochs the hidden units are arranged in a manner sufficient for the task (but not otherwise perfect)

→ 2 hidden units can no longer solve this task

Decisions (and a harder task)

Decisions (and a harder task)

→ 2 hidden units can no longer solve this task

Decision boundaries

Symmetries introduced in initialization can persist...

100 hidden units (zero offset initialization)

100 hidden units (random offset initialization)

CSALL

Size, optimization

- Many recent architectures use ReLU units (cheap to evaluate, sparsity)
- Easier to learn as large models...

10 hidden units

Size, optimization

- Many recent architectures use ReLU units (cheap to evaluate, sparsity)
- Easier to learn as large models...

Size, optimization

- Many recent architectures use ReLU units (cheap to evaluate, sparsity)
- Easier to learn as large models...

100 hidden units

500 hidden units

Summary (part 2)

- Neural networks can be learned with SGD similarly to linear classifiers
- The derivatives necessary for SGD can be evaluated effectively via back-propagation
- Multi-layer neural network models are complicated... we are no longer guaranteed to reach global (only local) optimum with SGD
- Larger models tend to be easier to learn ... units only need to be adjusted so that they are, collectively, sufficient to solve the task