

Programación de Sistemas Segundo Examen Parcial - Grupo 66 Parte 1 - Teoría (3 puntos) - 20 minutos

Cada respuesta correcta suma 0,3 puntos y cada respuesta incorrecta resta 0,1 puntos

```
Indica qué hace este método sobre una lista enlazada como las que
            hemos programado en clase, siendo first la referencia al primer
             nodo
             de la lista.
              public void method() {
               Node aux;
Q1
               if (first != null) {
                aux = first.getNext();
                while (aux != null) {
                 System.out.print(aux.getInfo() + " ");
                 aux = aux.getNext();
              }
             Imprime todos los nodos de la lista menos el primero.
            Imprime todos los nodos de la lista.
             Imprime los dos primeros nodos de la lista.
3)
            Es un bucle infinito.
```

Q2	Dada una lista simplemente enlazada con una referencia al
	primer nodo (first) y un nodo llamado nuevo que acabamos de crear y
	no pertenece la lista qué hace el siguiente código:
	nuevo.setNext(first);
	Enlaza el nodo nuevo con el primero de la lista, first quedaría
1)	ubicado después de nuevo.
	Enlaza el primer nodo de la lista con el nuevo, nuevo quedaría
2)	ubicado después de first.
	No hace nada porque para crear un enlace se usa getNext() no
3)	setNext().
4)	Lanzaría una excepción de tipo NullPointerException.

Q3	Las pilas son un tipo de estructura de datos
1)	Lineal.
2)	FIFO.
3)	LILO.
4)	Jerárquica.

	Dada una cola implementada con una lista simplemente enlazada
Q4	en qué
	método podríamos encontrar este código: last.setNext(nuevo).
1)	enqueue
2)	dequeue
3)	push
4)	рор
	Dado el árbol representado por el array {1,5,2,3,6,4,7} indica
Q5	cuál es la altura y profundidad del nodo 3. (NOTA: El punto
	representa una posición vacía))
1)	altura: 0, profundidad: 2
2)	altura: 2, profundidad: 0
3)	altura: 0, profundidad: 3
4)	altura: 3, profundidad: 0
	Dado el árbol representado por el array {3,1,4,.,2,.,5} indica
00	por este orden la profundidad del árbol y número de descendientes
Q6	del nodo 5.
	(NOTA: El punto representa una posición vacía).
1)	2, 1
2)	2, 0
3)	0, 0
4)	0, 1
	Si insertamos uno a uno los siguientes elementos: 1,5,3,2,4,6
Q7	en un árbol de búsqueda binario, indica cuál sería el resultado de
	recorrerlo en postorden.
1)	2,4,3,6,5,1
2)	1,2,3,4,5,6
3)	2,4,5,6,3,1
4)	2,4,6,5,3,1
	Dado el montículo mínimo representado por el array
	{2,3,5,4,6,7},
Q8	indica cual de estos arrays representa al montículo después de
	realizar las
	siguientes operaciones insert(1), extract().
1)	{2,3,5,4,6,7}
2)	{2,3,4,6,5,7}
3)	{2,1,3,4,6,5}
4)	{1,3,2,4,6,5}
00	¿Cuál de las siguientes afirmaciones es correcta sobre el
Q9	algoritmo SelectionSort visto en clase?
_	

	El bucle externo recorre todo el array. El bucle interno busca
	el elemento mínimo si la ordenación es ascendente o máximo si es
1)	descendente.
	El bucle interno recorre todo el array. El bucle externo busca
	el elemento mínimo si la ordenación es ascendente o máximo si es
2)	descendente.
	El bucle externo recorre todo el array. El bucle interno busca
	el elemento máximo si la ordenación es ascendente o mínimo si es
3)	descendente.
	El bucle interno recorre todo el array. El bucle externo busca
	el elemento mínimo si la ordenación es descendente o máximo si es
4)	ascendente.

```
Indica a qué algoritmo corresponde el siguiente código. Siendo swap
             un método para intercambiar dos posiciones en un array.
            public static void algorithm (int[] a) {
               for (int i=0; i<a.length; i++) {
                 int m = i;
Q10
                 for (int j=i; j<a.length; j++) {
                    if (a[j]<a[m]){
                      m = j;
                    }
                 swap(a, i, m);
               }
             selectionSort ascendente.
             insertionSort descendente.
3)
             insertionSort ascendente.
4)
             selectionSort descendente.
```

PREGUNTA	SOLUCIÓN
Q1	1
Q2	1
Q3	1
Q4	1
Q5	1
Q6	1
Q7	1
Q8	1
Q9	1
Q10	1