Outline

- **Motivation**
- what and how
- **Experiments**
- o₄ similar work

motivation

Shape of the network

- Network engineering>
 - Depth: VGG, ResNet
 - Width: GoogLeNet
 - Cardinality: Xception ResNeXt

This paper investigate a different factor: **attention** to increase representation power by using attention mechanism: focusing on important features and suppressing unnecessary ones.

Example of attention

Example of attention

https://github.com/philipperemy/keras-attention-mechanism

Fig. 3: **CBAM integrated with a ResBlock in ResNet[5].** This figure shows the exact position of our module when integrated within a ResBlock. We apply CBAM on the convolution outputs in each block.

Similar to Squeeze-and-Excitation Neworks (SENet)

$$\mathbf{M_c}(\mathbf{F}) = \sigma(MLP(AvgPool(\mathbf{F})) + MLP(MaxPool(\mathbf{F})))$$
$$= \sigma(\mathbf{W_1}(\mathbf{W_0}(\mathbf{F_{avg}^c})) + \mathbf{W_1}(\mathbf{W_0}(\mathbf{F_{max}^c}))),$$

feature F'

$$\mathbf{M_s}(\mathbf{F}) = \sigma(f^{7\times7}([AvgPool(\mathbf{F}); MaxPool(\mathbf{F})]))$$
$$= \sigma(f^{7\times7}([\mathbf{F_{avg}^s}; \mathbf{F_{max}^s}])),$$

Fig. 3: **CBAM integrated with a ResBlock in ResNet[5].** This figure shows the exact position of our module when integrated within a ResBlock. We apply CBAM on the convolution outputs in each block.

Architecture	Param.	GFLOPs	Top-1 Error (%)	Top-5 Error (%)
ResNet18 [5]	11.69M	1.814	29.60	10.55
ResNet18 [5] + SE [28]	11.78M	1.814	29.41	10.22
ResNet18 [5] + CBAM	11.78M	1.815	29.27	10.09
ResNet34 [5]	21.80M	3.664	26.69	8.60
ResNet34 [5] + SE [28]	21.96M	3.664	26.13	8.35
ResNet34 [5] + CBAM	21.96M	3.665	25.99	8.24
ResNet50 [5]	25.56M	3.858	24.56	7.50
ResNet50 [5] + SE [28]	28.09M	3.860	23.14	6.70
ResNet50 [5] + CBAM	28.09M	3.864	22.66	6.31
ResNet101 [5]	44.55M	7.570	23.38	6.88
ResNet101 [5] + SE [28]	49.33M	7.575	22.35	6.19
ResNet101 [5] + CBAM	49.33M	7.581	21.51	5.69
WideResNet18 [6] (widen=1.5)	25.88M	3.866	26.85	8.88
WideResNet18 [6] (widen=1.5) + SE [28]	26.07M	3.867	26.21	8.47
WideResNet18 [6] $(widen=1.5) + CBAM$	26.08M	3.868	26.10	8.43
WideResNet18 [6] (widen=2.0)	45.62M	6.696	25.63	8.20
$WideResNet18 \ [6] \ (widen=2.0) + SE \ [28]$	45.97M	6.696	24.93	7.65
WideResNet18 [6] $(widen=2.0) + CBAM$	45.97M	6.697	24.84	7.63
ResNeXt50 [7] (32x4d)	25.03M	3.768	22.85	6.48
ResNeXt50 [7] $(32x4d) + SE$ [28]	27.56M	3.771	21.91	6.04
ResNeXt50 [7] $(32x4d) + CBAM$	27.56M	3.774	21.92	5.91
ResNeXt101 [7] (32x4d)	44.18M	7.508	21.54	5.75
ResNeXt101 [7] (32x4d) + SE [28]	48.96M	7.512	21.17	5.66
ResNeXt101 [7] (32x4d) + CBAM	48.96M	7.519	21.07	5.59

* all results are reproduced in the PyTorch framework.

Table 4: Classification results on ImageNet-1K. Single-crop validation errors are reported.

Personal opinion and Open question

Not using the cbam in every block, in order to avoid overfitting

Applications in other fields

- 《Neural machine translation by jointly learning to align and translate》
- 《Attend and Tell: Neural Image Caption Generation with Visual Attention》
- 《Attention-Based Models for Speech Recognition》
- 《AttentionNet: Aggregating Weak Directions for Accurate Object Detection》
- 《Multi-context attention for human pose estimation》
- 《Hierarchical Attentive Recurrent Tracking》

Image Captioning

Figure 2. The overview of our proposed SCA-CNN. For the l-th layer, initial feature map \mathbf{V}^l is the output of (l-1)-th conv-layer. We first use the channel-wise attention function Φ_c to obtain the channel-wise attention weights β^l , which are multiplied in channel-wise of the feature map. Then, we use the spatial attention function Φ_s to obtain the spatial attention weights α^l , which are multiplied in each spatial regions, resulting in an attentive feature map \mathbf{X}^l . Different orders of two attention mechanism are discussed in Section 3.3.

 Long Chen; Hanwang Zhang; Jun Xiao; Liqiang Nie; Jian Shao; Wei Liu; Tat-Seng Chua: SCA-CNN: Spatial and Channel-Wise Attention in Convolutional Networks for Image Captioning.

Dual attention

https://github.com/junfu1115/DANet

channel attention & spatial attention = dual attention

https://zhuanlan.zhihu.com/p/48o56789

