Nevenka Adžić

Zbirka zadataka iz Teorije redova

Novi Sad, 2011.

Naziv udžbenika: Zbirka zadataka iz Teorije redova

Autor:

dr Nevenka Adžić, redovni profesor Fakulteta tehničkih nauka u Novom Sadu

Izdavač:

Centar za matematiku i statistiku Fakulteta tehničkih nauka u Novom Sadu

Autor zadržava sva prava: Bez pismene saglasnosti autora nije dozvoljeno reprodukovanje (fotokopiranje, fotografisanje, magnetni upis ili umnožavanje na bilo koji način) ili ponovno objavljivanje sadržaja (u celini ili delovima) ove knjige.

Sadržaj

1		5 5
		э 8
	The state of February and the state of the s	.2
	1.3 Alternativni redovi	.4
2	70070.1 summer 1	4
	2.1 Obnovin pojmovi v v v v v v v v v v v v v v v v v v	4
	DIE Otopom rodoviti i i i i i i i i i i i i i i i i i i	.5
	2.0 2.005,01 2	.9
•	2.4 Sumiranje redova	21
3	1 10 toto znanja 1 400	4
	O.I I TO VOICE MILEMAN TO TOOL IN THE TOOL OF THE TOOL	24
	U.L I TOVOTA SHAMJA IL LOOMJO LOMOVAL	25
		26
	or 110 total mangara rooms	27
		28
	3.6 Provera znanja iz Teorije redova I deo – 6	29
4	i i o i o i o o o o o o o o o o o o o o	30
	TIL TIOTOIG MICHIGA IN LOUIS OF THE TOTAL TOTAL	30
	1.D 1 TO TOLO DITORIJO ID AUTO-Je Tomo to	31
		32
		33
		34
	4.6 Provera znanja iz Teorije redova II deo – 6	35
5	Zadaci sa kolokvijuma	36
	5.1 Kolokvijum iz Teorije redova 1	36
		37
		38
	5.4 Kolokvijum iz Teorije redova 4	39
	5.5 Kolokvijum iz Teorije redova 5	40
	5.6 Kolokvijum iz Teorije redova 6	41
	5.7 Kolokvijum iz Teorije redova 7	42
	5.8 Kolokvijum iz Teorije redova 8	43
6	Zadaci sa pismenih ispita	44
		44
	6.2 Pismeni iz Teorije redova 2	45

1 Brojni redovi

1.1 Osnovni pojmovi

(1.) Za red $\sum_{n=0}^{\infty} \sin \frac{n\pi}{2}$ napisati i izračunati peti član reda i treći član niza parcijalnih suma.

Rešenje: $a_4 = \sin 2\pi = 0$, $s_2 = a_0 + a_1 + a_2 = \sin 0 + \sin \frac{\pi}{2} + \sin \pi = 0 + 1 + 0 = 1$.

- (2.)Za red $\sum_{n=1}^{\infty} \frac{n-2}{n}$ napisati i izračunati deseti član reda i peti član niza parcijalnih suma.
- 3. Za red $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2}$ napisati i izračunati sedmi član reda i četvrti član niza parcijalnih suma.
- $\underbrace{ 2n}_{n=3} = 2n$ napisati i izračunati treći član reda i drugi član niza parcijalnih suma.
- $\overbrace{5.}$ Za red $\sum_{n=0}^{\infty} \frac{(-1)^n}{n^2+1}$ napisati i izračunati prva tri člana niza parcijalnih suma. Rešenje: $s_0=1$, $s_1=1-\frac{1}{2}=\frac{1}{2}$, $s_2=1-\frac{1}{2}+\frac{1}{5}=\frac{7}{10}$.
- $\overbrace{6}$. Za red $\sum_{n=0}^{\infty} \frac{n-1}{n+1}$ napisati i izračunati prvih pet članova niza parcijalnih suma.
- 7. Za red $\sum_{n=2}^{\infty} \frac{(-2)^n}{2^n 2}$ napisati i izračunati prva četiri člana niza parcijalnih suma.
- (8) Za red $\sum_{n=1}^{\infty} \frac{(-1)^n n}{2n-1}$ napisati i izračunati prva tri člana niza parcijalnih suma.
- 9. Pokazati da red $\sum_{n=0}^{\infty} \cos \frac{n\pi}{5}$ divergira.

Rešenje: Kako $\lim_{n\to\infty} a_n = \lim_{n\to\infty} \cos\frac{n\pi}{5}$ ne postoji, to dati red divergira.

- 10. Pokazati da red $\sum_{n=0}^{\infty} (-1)^n n^2$ divergira.
- 11. Pokazati da red $\sum_{n=1}^{\infty} \sin \frac{n\pi}{4}$ divergira.
- 12. Pokazati da red $\sum_{n=0}^{\infty} (-1)^n$ divergira.
- 13. Pokazati da red $\sum_{n=0}^{\infty} \frac{n^2}{5n^2 2n}$ divergira.

Rešenje

Kako
$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} \frac{n^2}{5n^2 - 2n} = \frac{1}{5} \neq 0$$
, to dati red divergira.

- 14. Pokazati da red $\sum_{n=3}^{\infty} \frac{n+2}{4-2n}$ divergira.
- 15. Pokazati da red $\sum_{n=1}^{\infty} \frac{n^3 3n}{n^2}$ divergira.
- 16. Pokazati da red $\sum_{n=1}^{\infty} \left(1 + \frac{2}{n}\right)^n$ divergira.
- 17. Odrediti opšti član reda i sumu reda ako je $s_n = \frac{n}{n+1}.$

Rešenje:

$$a_n = s_n - s_{n-1} = \frac{n}{n+1} - \frac{n-1}{n} = \frac{1}{n(n+1)}.$$

$$s = \lim_{n \to \infty} s_n = \lim_{n \to \infty} \frac{n}{n+1} = \lim_{n \to \infty} \frac{1}{1 + \frac{1}{n}} = 1.$$

- 18. Odrediti treći član niza parcijalnih suma, opšti član reda i sumu reda ako je $s_n = \frac{4^n 3^n}{4^{n-1}}$.
- 19. Odrediti peti član reda i sumu reda ako je $s_n = \frac{2n^2 + 1}{n^2 1}$
- 20. Odrediti opšti član reda i sumu reda ako je $s_n = \frac{1}{(n-1)n}$.
- 21. Izračunati sumu reda $\sum_{n=0}^{\infty} \frac{(-1)^n}{2^n}.$

Rešenje:

Osnovni pojmovi

Radi se o geometriskom redu sa $q = -\frac{1}{2}$ pa je

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2^n} = \sum_{n=0}^{\infty} \left(-\frac{1}{2} \right)^n = \frac{1}{1 - \left(-\frac{1}{2} \right)} = \frac{2}{3}.$$

- 22. Izračunati sumu reda $\sum_{n=0}^{\infty} \frac{2^n}{3^n}.$
- 23. Izračunati sumu reda $\sum_{n=0}^{\infty} \frac{(-1)^n}{5^{n-1}}.$
- 24. Izračunati sumu reda $\sum_{n=0}^{\infty} \frac{4^{n-1}}{5^{n+2}}$

1.2 Redovi sa pozitivnim članovima

1.2 Redovi sa pozitivnim članovima

1. Pomoću uporednog kriterijuma I vrste ispitati konvergenciju reda $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^3+2n}}.$

Rešenie

$$\frac{1}{\sqrt{n^3+2n}} < \frac{1}{\sqrt{n^3}}$$
, a red $\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n}}$ ($\alpha = \frac{3}{2} > 1$) konvergira pa i red

 $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^3 + 2n}} \text{ konvergira.}$

- 2. Pomoću uporednog kriterijuma I vrste ispitati konvergenciju reda $\sum_{n=0}^{\infty} \frac{2^n-1}{3^n+5}.$
- 3. Pomoću uporednog kriterijuma I vrste ispitati konvergenciju reda $\sum_{n=0}^{\infty} \frac{2n-5}{\sqrt[3]{n^7+n^4}}.$
- 4. Pomoću uporednog kriterijuma I vrste ispitati konvergenciju reda $\sum_{n=1}^{\infty} \frac{1}{n(2^n-1)}.$
- 5. Pomoću uporednog kriterijuma I vrste ispitati konvergenciju reda $\sum_{n=2}^{\infty}\frac{n}{\sqrt{n^3-2n}}.$

Rešenje: n

$$\frac{n}{\sqrt{n^3-2n}}>\frac{n}{\sqrt{n^3}}, \text{ a red } \sum_{n=2}^{\infty}\frac{1}{\sqrt{n}} \ (\alpha=\frac{1}{2}<1) \text{ divergira pa i zadati red}$$

$$\sum_{n=1}^{\infty}\frac{1}{\sqrt{n^3+2n}} \text{ divergira.}$$

- 6. Pomoću uporednog kriterijuma I vrste ispitati konvergenciju reda $\sum_{n=2}^{\infty} \frac{3^n+1}{2^n-2}.$
- 7. Pomoću uporednog kriterijuma I vrste ispitati konvergenciju reda $\sum_{n=0}^{\infty} \frac{2n+5}{\sqrt[3]{n^7-n^4}}.$
- 8. Pomoću uporednog kriterijuma I vrste ispitati konvergenciju reda $\sum_{n=1}^{\infty} \frac{n3^n}{2^n-1}.$

9. Pomoću uporednog kriterijuma II vrste ispitati konvergenciju reda $\sum_{n=1}^{\infty}\frac{2n+1}{\sqrt{n^4-3n}}.$

Rešenje

$$\frac{2n+1}{\sqrt{n^3-3n^2}}\sim \frac{2n}{\sqrt{n^3}}=2\frac{1}{\sqrt{n}}, \text{ a red } \sum_{n=1}^{\infty}\frac{1}{\sqrt{n}} \text{ divergira } (\alpha=\frac{1}{2}<1) \text{ pa i dati } \text{ red divergira.}$$

- 10. Pomoću uporednog kriterijuma II vrste ispitati konvergenciju reda $\sum_{n=1}^{\infty} \frac{2n-\sqrt{n}}{\sqrt{n^5+3n^2}}.$
- 11. Pomoću uporednog kriterijuma II vrste ispitati konvergenciju reda $\sum_{n=1}^{\infty} \frac{n^2-3n+1}{\sqrt[4]{n^9-3n^5+2}}.$
- 12. Pomoću uporednog kriterijuma II vrste ispitati konvergenciju reda $\sum_{n=1}^{\infty} \frac{2^n + n}{n^2 + 5^n}.$
- 13. Pomoću Dalamberovog kriterijuma pokazati da red $\sum_{n=1}^{\infty} \frac{n}{5^n}$ konvergira.

Rešenje:

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{\frac{n+1}{5^{n+1}}}{\frac{n}{5^n}} = \frac{1}{5} \lim_{n \to \infty} \left(1 + \frac{1}{n} \right) = \frac{1}{5} < 1.$$

- 14. Pomoću Dalamberovog kriterijuma pokazati da red $\sum_{n=1}^{\infty} \frac{n+2}{n!}$ konvergira.
- 15. Pomoću Dalamberovog kriterijuma pokazati da red $\sum_{n=0}^{\infty} \frac{n3^n}{2^n}$ divergira.
- 16. Pomoću Dalamberovog kriterijuma pokazati da red $\sum_{n=2}^{\infty} \frac{4^{n-1}}{(n-1)5^n}$ konvergira.
- 17. Pomoću Košijevog korenskog kriterijuma pokazati da red $\sum_{n=1}^{\infty} \frac{n^2 3^n}{2^n}$ divergira.

Rešenje: $\lim_{n \to \infty} \sqrt[n]{\frac{n^2 3^n}{2^n}} = \frac{3}{2} \lim_{n \to \infty} (\sqrt[n]{n})^2 = \frac{3}{2} \cdot 1^2 = \frac{3}{2} > 1.$

- 18. Pomoću Košijevog korenskog kriterijuma pokazati da red $\sum_{n=1}^{\infty} \frac{n2^n}{5^n}$ konvergira.
- 19. Pomoću Košijevog korenskog kriterijuma pokazati da red $\sum_{n=1}^{\infty} \frac{n^2 3^n}{2^n}$ divergira.
- 20. Pomoću Košijevog korenskog kriterijuma pokazati da red $\sum_{n=1}^{\infty} \left(1+\frac{3}{n}\right)^{n^2} \quad \text{divergira.}$
- 21. Pomoću integralnog kriterijuma dokazati da red $\sum_{n=1}^{\infty} \frac{1}{n^2}$ konvergira.

Rešenje:

 $\int_{1}^{+\infty} \frac{dx}{x^2} = \lim_{T \to +\infty} \int_{1}^{T} \frac{dx}{x^2} = \lim_{T \to +\infty} \left(-\frac{1}{x} \right) \Big|_{1}^{T} = \lim_{T \to +\infty} \left(-\frac{1}{T} + 1 \right) = 1.$

- 22. Pomoću integralnog kriterijuma dokazati da red $\sum_{n=1}^{\infty} \frac{n+1}{\sqrt{n^5}}$ konvergira.
- 23. Pomoću integralnog kriterijuma dokazati da red $\sum_{n=0}^{\infty} e^{-n}$ konvergira.
- 24. Pomoću integralnog kriterijuma dokazati da red $\sum_{n=2}^{\infty} \frac{1}{n \ln^2 n}$ konvergira.
- 25. Pomoću integralnog kriterijuma pokazati da red $\sum_{n=1}^{\infty} \frac{1}{n \ln n}$ divergira.

Rešenje: $I = \int\limits_{1}^{\infty} \frac{dx}{x \ln x} \;, \quad \ln x = t, \; \frac{dx}{x} = dt \; \text{pa je}$ $I = \int\limits_{0}^{\infty} \frac{dt}{t} = \ln t |_{0}^{\infty} = \ln(+\infty) - \ln 0 = +\infty - (-\infty) = +\infty.$

26. Pomoću integralnog kriterijuma dokazati da red $\sum_{n=1}^{\infty} \frac{n+1}{n^2}$ divergin

27. Pomoću integralnog kriterijuma dokazati da red $\sum_{n=0}^{\infty} 2^n$ divergira

28. Pomoću integralnog kriterijuma dokazati da red $\sum_{n=2}^{\infty} \frac{\ln n}{n \ln^2 n}$ divergira.

1.3 Alternativni redovi

1. Dokazati da red $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$ apsolutno konvergira.

Rešenje:

S obzirom da red $\sum_{n=1}^{\infty} \frac{1}{n^2}$ konvergira jer je $\alpha=2>1$, to dati red apsolutno konvergira.

- 2. Dokazati da red $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n^5 3n^2 + 2}}$ apsolutno konvergira.
- 3. Dokazati da red $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt[3]{n^2 + 2n}}$ apsolutno divergira.
- 4. Dokazati da red $\sum_{n=1}^{\infty} \frac{(-1)^n (n^2 + 5)}{n^3 \sqrt{n} + 4n^2}$ apsolutno konvergira.
- 5. Ispitati apsolutnu konvergenciju reda $\sum_{n=0}^{\infty} \frac{(-1)^n}{2^n}.$

Rešenie

 $\sum_{n=0}^{\infty} \left| \frac{(-1)^n}{2^n} \right| = \sum_{n=0}^{\infty} \frac{1}{2}^n \text{ predstavlja geometrijski red sa } q = \frac{1}{2}.$

Kako je 0 < q < 1, ovaj geometrijski red konvergira, pa dati red apsolutno konvergira.

- 6. Ispitati apsolutnu konvergenciju reda $\sum_{n=0}^{\infty} \frac{(-1)^n n}{2^n}.$
- 7. Ispitati apsolutnu konvergenciju reda $\sum_{n=0}^{\infty} \frac{(-3)^n}{2^n}.$
- 8. Ispitati apsolutnu konvergenciju reda $\sum_{n=0}^{\infty} \frac{(-2)^n}{n!}.$
- 9. Pokazati da red $\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1}$ uslovno konvergira.

Rešenje

Kako je $a_{n+1} < a_n \Leftrightarrow \frac{1}{2n+3} < \frac{1}{2n+1}$ i

 $\lim_{n\to\infty}a_n=\lim_{n\to\infty}\frac{1}{2n+1}=0, \text{ to po Lajbnicovom kriterijumu dati red konvergira.}$

10. Pokazati da red $\sum_{n=0}^{\infty} \frac{(-1)^n}{\sqrt{n}}$ uslovno konvergira.

· 1.3 Alternativni redovi

- 11. Pokazati da red $\sum_{n=0}^{\infty} \frac{(-2)^n}{(n-1)2^{n-1}}$ uslovno konvergira.
- 12. Pokazati da red $\sum_{n=0}^{\infty} \frac{(-1)^n}{\ln n}$ uslovno konvergira.

2.2 Stepeni redovi

2 Redovi funkcija

2.1 Osnovni pojmovi

1. Dokazati da red funkcija $\sum_{n=1}^{\infty} \frac{\sin nx}{n^2}$ uniformno konvergira za svako $x \in \mathbb{R}$.

Rešenie:

 $\left|\frac{\sin nx}{n^2}\right| \leq \frac{1}{n^2} \ \land \ \sum_{n=1}^{\infty} \frac{1}{n^2} \text{ konvergira pa po Vajerš trasovom kriterijumu}$ dati red uniformno konvergira.

- 2. Dokazati da red funkcija $\sum_{n=1}^{\infty} \frac{\cos nx}{n^3 + 2n}$ uniformno konvergira za svako $x \in \mathbb{R}.$
- 3. Dokazati da red funkcija $\sum_{n=0}^{\infty} \frac{\sin^3 n\pi x}{\sqrt{n^3} + 5}$ uniformno konvergira za svako $x \in \mathbb{R}$.
- 4. Dokazati da red funkcija $\sum_{n=1}^{\infty} \frac{\cos(n+2)x+1}{n^5}$ uniformno konvergira za svako $x \in \mathbb{R}$.
- 5. Pokazati da red $\sum_{n=3}^{\infty} \frac{\cos^3 nx}{n\sqrt{n-2}}$ uniformno konvergira za svako $x \in \mathbb{R}.$

$$\begin{split} &\left|\frac{\cos^3 nx}{n\sqrt{n-2}}\right| \leq \frac{1}{n\sqrt{n-2}} \\ &\frac{1}{n\sqrt{n-2}} \sim \frac{1}{n\sqrt{n}} \ \land \ \sum_{n=3}^{\infty} \frac{1}{n\sqrt{n}} \ \text{konvergira} \ (\alpha = \frac{3}{2} > 1) \ \text{pa dati red} \\ &\text{uniformno konvergira} \ (\text{Vajerštrasov kriterijum}). \end{split}$$

- 6. Pokazati da red $\sum_{n=2}^{\infty} \frac{\sin^2 nx}{n^2-1}$ uniformno konvergira za svako $x \in \mathbb{R}$.
- 7. Pokazati da red $\sum_{n=3}^{\infty} \frac{\sqrt{|\cos(n-1)x|}}{(n^2-4)\sqrt{n}}$ uniformno konvergira za svako $x \in \mathbb{R}$.
- 8. Pokazati da red $\sum_{n=3}^{\infty} \frac{(-1)^n \cos^2 n^2 x}{(n-1)(n-2)}$ uniformno konvergira za svako $x \in \mathbb{R}$.

2.2 Stepeni redovi

1. Ako je $\lim_{n\to\infty} \sqrt[n]{|a_n|}=2$, odrediti interval konvergencije reda $\sum_{n=0}^\infty a_n (2x-1)^n \ .$

Rešenie

S obzirom da je poluprečnik konvergencije datog reda $R = \frac{1}{2}$, to je $-\frac{1}{2} < 2x - 1 < \frac{1}{2} \iff \frac{1}{2} < 2x < \frac{3}{2}$ pa je $I = (\frac{1}{4}, \frac{3}{4})$.

- 2. Ako je $\lim_{n\to\infty} \sqrt[n]{|a_n|} = \frac{1}{2}$, odrediti interval konvergencije reda $\sum_{n=0}^{\infty} a_n (x+5)^n .$
- 3. Ako je $\lim_{n\to\infty} \sqrt[n]{|a_n|}=4$, odrediti interval konvergencije reda $\sum_{n=0}^\infty a_n (x-\tfrac34)^n\ .$
- 4. Ako je $\lim_{n\to\infty} \sqrt[n]{|a_n|}=1$, odrediti interval konvergencije reda $\sum_{n=0}^\infty a_n (3x+1)^n\;.$
- 5. Ako je $\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=\frac{1}{2}$, šta je interval konvergencije reda $\sum_{n=0}^{\infty}a_n(x+1)^n$?

Rešenje

S obzirom da je poluprečnik konvergencije datog reda R=2, to je I=(-1-2,-1+2)=(-3,1).

- 6. Ako je $\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=\frac{3}{2} \text{ , šta je interval konvergencije reda}$ $\sum_{n=0}^\infty a_n(3x+1)^n ?$
- 7. Ako je $\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=2$, šta je interval konvergencije reda $\sum_{n=0}^{\infty}a_n(x-\frac{1}{2})^n$?
- 8. Ako je $\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=\frac{1}{2\sqrt{2}}$, šta je interval konvergencije reda $\sum_{n=0}^{\infty}a_n(2x-\sqrt{2})^n$?

9. Izvršiti naznačene operacije sa redovima

$$x^{2} \sum_{n=0}^{\infty} (n-1)x^{n} - 5 \sum_{n=0}^{\infty} (2n+1)x^{n}.$$

Rešenje:

$$x^{2} \sum_{n=0}^{\infty} (n-1)x^{n} - 5 \sum_{n=0}^{\infty} (2n+1)x^{n} = \sum_{n=0}^{\infty} (n-1)x^{n+2} - \sum_{n=0}^{\infty} (10n+5)x^{n} =$$

$$= \sum_{k=2}^{\infty} (k-3)x^{k} - \sum_{n=2}^{\infty} (10n+5)x^{n} - 5 - 15x = \sum_{n=2}^{\infty} (n-3-10n-5)x^{n} - 5 - 15x =$$

$$= -\sum_{n=2}^{\infty} (9n+8)x^{n} - 5 - 15x.$$

10. Izvršiti naznačene operacije sa redovima

$$2\sum_{n=1}^{\infty}(3n-1)x^{n}+3x\sum_{n=2}^{\infty}nx^{n}.$$

11. Izvršiti naznačene operacije sa redovima

$$(x-1)\sum_{n=0}^{\infty}(n+2)x^n+x^3\sum_{n=0}^{\infty}(n+1)x^{n-1}.$$

12. Izvršiti naznačene operacije sa redovima

$$\sum_{n=3}^{\infty} \frac{x^n}{n-2} - x \sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1}.$$

13. Ako je $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \frac{1}{2}$, naći izvod reda $\sum_{n=0}^{\infty} a_n (x-1)^n$ i pomoću

D'Alambertovog kriterijuma pokazati da je poluprečnik konvergencije dobijenog reda $R_1 = 2$.

Rešenje:

$$\left(\sum_{n=0}^{\infty} a_n (x-1)^n\right)' = \sum_{n=0}^{\infty} n a_n (x-1)^{n-1}$$

n=0 n=0 Poluprečnik konvergencije datog reda je n=2, a poluprečnik konvergencije dobijenog reda je

$$R_1 = \lim_{n \to \infty} \left| \frac{na_n}{(n+1)a_{n+1}} \right| = \lim_{n \to \infty} \frac{n}{n+1} \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = 1 \cdot R = 2.$$

14. Ako je $\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=3$, naći izvod reda $\sum_{n=0}^{\infty}a_n(2x+5)^n$ i pomoću D'Alambertovog kriterijuma pokazati da je poluprečnik konvergencije dobijenog reda $R_1=\frac{1}{2}$.

- 15. Ako je $\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=\frac{5}{3}$, naći izvod reda $\sum_{n=0}^{\infty}a_n(x-\frac{2}{5})^n$ i pomoću D'Alambertovog kriterijuma odrediti poluprečnik i interval konvergencije dobijenog reda.
- 16. Ako je $\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=\frac{\sqrt{3}}{2}$, naći izvod reda $\sum_{n=1}^{\infty}a_n(x+\sqrt{3})^n$ i pomoću D'Alambertovog kriterijuma odrediti poluprečnik konvergencije dobijenog reda.
- 17. Ako je $\lim_{n\to\infty} \sqrt[n]{|a_n|} = 2$, naći integral reda $\sum_{n=0}^{\infty} a_n(x+2)^n$ i pomoću Košijevog kriterijuma pokazatida je poluprečnik konvergencije dobijenog reda $R_1 = \frac{1}{2}$ i odrediti interval konvergencije.

Rešenje

Poluprečnik konvergencije datog reda je $R = \frac{1}{2}$

$$\int \sum_{n=0}^{\infty} a_n (x+2)^n dx = \sum_{n=0}^{\infty} \int a_n (x+2)^n dx = \sum_{n=0}^{\infty} a_n \frac{(x+2)^{n+1}}{n+1} = \sum_{n=0}^{\infty} \frac{a_n}{n+1} (x+2)^{n+1}.$$

$$\frac{1}{R_1} = \lim_{n \to \infty} \sqrt[n]{\left|\frac{a_n}{n+1}\right|} = \lim_{n \to \infty} \sqrt[n]{|a_n|} \cdot \lim_{n \to \infty} \frac{1}{\sqrt[n]{n+1}} = \frac{1}{R} \cdot \frac{1}{1} = \frac{1}{R} \text{ pa je } R_1 = R = \frac{1}{2}.$$
Interval konvergencije je $I = \left(-2 - \frac{1}{2}, -2 + \frac{1}{2}\right) = \left(-\frac{5}{2}, -\frac{3}{2}\right).$

- 18. Ako je $\lim_{n\to\infty} \sqrt[n]{|a_n|} = \frac{1}{5}$, naći integral reda $\sum_{n=0}^{\infty} a_n (x-5)^n$ i pomoću Košijevog kriterijuma odrediti poluprečnik konvergencije dobijenog reda.
- 19. Ako je $\lim_{n\to\infty} \sqrt[n]{|a_n|} = \sqrt{5}$, naći integral reda $\sum_{n=1}^{\infty} a_n (x+2\sqrt{5})^n$ i pomoću Košijevog kriterijuma odrediti poluprečnik konvergencije dobijenog reda.
- 20. Ako je $\lim_{n\to\infty} \sqrt[n]{|a_n|} = 1$, naći integral reda $\sum_{n=0}^{\infty} na_n(x+1)^n$ i pomoću Košijevog kriterijuma odrediti interval konvergencije dobijenog reda.
- 21. Izvršiti naznačene operacije sa redovima

$$\left(\sum_{n=0}^{\infty} x^n\right)' - x \int \left(\sum_{n=0}^{\infty} (n+1)x^n\right) dx.$$

Rešenje:

$$\left(\sum_{n=0}^{\infty} x^n\right)' - x \int \left(\sum_{n=0}^{\infty} (n+1)x^n\right) dx = \sum_{n=1}^{\infty} nx^{n-1} - x \sum_{n=0}^{\infty} x^{n+1} =$$

$$= \sum_{n=1}^{\infty} nx^{n-1} - \sum_{n=0}^{\infty} x^{n+2} = \sum_{k=0}^{\infty} (k+1)x^k - \sum_{k=2}^{\infty} x^k =$$

$$= \sum_{k=2}^{\infty} kx^k + 1 + 2x.$$

22. Izvršiti naznačene operacije sa redovima

$$\left(\sum_{n=0}^{\infty} \frac{x^n}{n}\right)' + (x^2 + 2) \sum_{n=0}^{\infty} (n-1)x^n.$$

23. Izvršiti naznačene operacije sa redovima

$$2x\left(\sum_{n=0}^{\infty}nx^n\right)'+\int\left(\sum_{n=0}^{\infty}(n^2-1)x^n\right)dx.$$

24. Izvršiti naznačene operacije sa redovima

$$(x-1)\sum_{n=0}^{\infty}x^n-\int\left(\sum_{n=1}^{\infty}nx^n\right)dx.$$

2.3 Razvoj funkcije u red

1. Razviti u stepeni red funkciju $g(x) = e^{2x}$ i odrediti za koje vrednosti x dobijeni razvoj važi.

Rešenie:

$$e^{2x} = \sum_{n=0}^{\infty} \frac{(2x)^n}{n!} = \sum_{n=0}^{\infty} \frac{2^n}{n!} x^n \quad x \in \mathbb{R}.$$

- 2. Razviti u stepeni red funkciju $g(x) = \sin \frac{x}{5}$ i odrediti za koje vrednosti x dobijeni razvoj važi.
- 3. Razviti u stepeni red funkciju $g(x) = \ln(1+4x)$ i odrediti za koje vrednosti x dobijeni razvoj važi.
- 4. Razviti u stepeni red funkciju $g(x) = \frac{1}{1-5x}$ i odrediti za koje vrednosti x dobijeni razvoj važi.
- 5. Napisati Maclaurinov red za funkciju $g(x) = \cos x^2$.

Rešenje:

$$g(x) = \cos x^2 = \sum_{n=0}^{\infty} \frac{(-1)^n (x^2)^{2n}}{(2n)!} = \sum_{n=0}^{\infty} \frac{(-1)^n x^{4n}}{(2n)!} , \ x \in \mathbb{R}.$$

- 6. Napisati Maclaurinov red za funkciju $g(x) = \ln \frac{1-x^2}{1+x^2}$.
- 7. Napisati Maclaurinov red za funkciju $g(x) = \frac{1}{1-x^3}$
- 8. Napisati Maclaurinov red za funkciju $g(x) = e^{x^2} + e^{-x^2}$.
- 9. Napisati Taylorov red za funkciju $g(x) = e^x$ u tački a = 1.

Rešenje:

Kako je
$$g^{(n)}(x) = e^x$$
, to je
$$g(x) = \sum_{n=0}^{\infty} \frac{g^{(n)}(1)}{n!} (x-1)^n = \sum_{n=0}^{\infty} \frac{e}{n!} (x-1)^n = e \sum_{n=0}^{\infty} \frac{1}{n!} (x-1)^n.$$

- 10. Napisati Taylorov red za funkciju $g(x) = \sin x$ u tački $a = \frac{\pi}{2}$.
- 11. Napisati Taylorov red za funkciju $g(x)=e^{2x}$ u tački $a=\frac{1}{4}$.
- 12. Napisati Taylorov red za funkciju $g(x) = \cos x$ u tački $a = \pi$.
- 13. Razviti u stepeni red funkciju $g(x) = x^2 \ln(1-2x)$ i odediti za koje x dobijeni razvoj važi.

$$g(x) = x^{2} \ln(1 - 2x) = x^{2} \sum_{n=1}^{\infty} \frac{(-1)^{n-1}(-2x)^{n}}{n} = x^{2} \sum_{n=1}^{\infty} \frac{(-1)^{2n-1}(2x)^{n}}{n} =$$

$$= -x^{2} \sum_{n=1}^{\infty} \frac{2^{n}x^{n}}{n} = \sum_{n=1}^{\infty} \frac{2^{n}x^{n+2}}{n}.$$

Razvoj važi za |2x| < 1, tj. $|x| < \frac{1}{2}$

- 14. Razviti u stepeni red funkciju $g(x) = \frac{x}{1-3x}$ i odediti za koje x dobijeni
- 15. Razviti u stepeni red funkciju $g(x) = x^3 e^{-x}$ i odediti za koje x dobijeni razvoj važi.
- 16. Razviti u stepeni red funkciju $g(x) = x \ln(1+x) \frac{x^2}{1+x}$ i odediti za koje x dobijeni razvoj važi.

Sumiranje redova

1. Odrediti interval konvergencije i naći sumu reda $\sum_{n=0}^{\infty} \frac{2n^2 - 3n + 5}{n} x^n.$

Rešenie:

$$R = \lim_{n \to \infty} \frac{a_n}{a_{n+1}} = \lim_{n \to \infty} \frac{(n+1)(2n^2 - 3n + 5)}{n(2(n+1)^2 - 3(n+1) + 5)} = 1.$$
 Kako za $x = \pm 1$ dobijamo brojne redove kod kojih opšti član ne teži nuli,

to zadati red konvergira za |x| < 1.

$$\sum_{n=1}^{\infty} \frac{2n^2 - 3n + 5}{n} x^n = 2 \sum_{n=1}^{\infty} nx^n - 3 \sum_{n=1}^{\infty} x^n + 5 \sum_{n=1}^{\infty} \frac{x^n}{n} =$$

$$= 2x \sum_{n=1}^{\infty} nx^{n-1} - 3 \sum_{n=1}^{\infty} x^n + 5 \sum_{n=1}^{\infty} \int x^{n-1} dx =$$

$$= 2x \left(\sum_{n=0}^{\infty} x^n\right)' - 3 \left(\sum_{n=0}^{\infty} x^n - 1\right) + 5 \int \left(\sum_{k=0}^{\infty} x^k\right) dx =$$

$$= 2x \left(\frac{1}{1-x}\right)' - 3 \left(\frac{1}{1-x} - 1\right) + 5 \int \frac{dx}{1-x} =$$

$$= \frac{-2x}{(1-x)^2} - \frac{3}{1-x} + 3 - 5 \ln(1-x).$$

2. Odrediti interval konvergencije i naći sumu reda $\sum_{n=0}^{\infty} \frac{n^2 - n + 1}{n - 1} x^n.$

3. Odrediti interval konvergencije i naći sumu reda $\sum_{n=0}^{\infty} \frac{3n^2 + 4}{n} x^{n-1}.$

4. Odrediti interval konvergencije i naći sumu reda $\sum_{n=1}^{\infty} \frac{n^2 + 2n}{n+1} x^n.$

5. Odrediti interval konvergencije i naći sumu reda $\sum_{n=2}^{\infty} \frac{x^n}{n^2 - n - 2}$

$$R = \lim_{n \to \infty} \frac{a_n}{a_{n+1}} = \lim_{n \to \infty} \frac{(n+1)^2 - n - 3}{n^2 - n - 2} = 1.$$

Za $x = \pm 1$ dobijamo brojne redove koji apsolutno konvergiraju ($\alpha = 2$)

pa zadati red konvergira za
$$|x| \le 1$$
.
Kako je $\frac{1}{n^2 - n - 2} = \frac{1}{(n+1)(n-2)} = \frac{1}{3} \cdot \frac{1}{n-2} - \frac{1}{3} \cdot \frac{1}{n+1}$, to je
$$\sum_{n=2}^{\infty} \frac{x^n}{n^2 - n - 2} = \frac{1}{3} \sum_{n=3}^{\infty} \frac{x^n}{n+1} - \frac{1}{3} \sum_{n=3}^{\infty} \frac{x^n}{n-2} =$$

$$\begin{split} &=\frac{1}{3x}\sum_{n=3}^{\infty}\frac{x^{n+1}}{n+1}-\frac{x^2}{3}\sum_{n=3}^{\infty}\frac{x^{n-2}}{n-2}=\frac{1}{3x}\sum_{n=3}^{\infty}\int x^ndx-\frac{x^2}{3}\sum_{n=3}^{\infty}\int x^{n-3}dx=\\ &=\frac{1}{3x}\int\left(\sum_{n=0}^{\infty}x^n-1-x-x^2\right)dx-\frac{x^2}{3}\int\sum_{k=0}^{\infty}x^kdx=\\ &=\frac{1}{3x}\int\left(\frac{1}{1-x}-1-x-x^2\right)dx-\frac{x^2}{3}\int\frac{dx}{1-x}=\\ &=\frac{1}{3x}\left(-\ln(1-x)-x-\frac{x^2}{2}-\frac{x^3}{3}\right)-\frac{x^2}{3}\ln(1-x)=\\ &=\frac{1-x^3}{3x}\ln(1-x)-\frac{1}{3}-\frac{x}{6}-\frac{x^2}{9}. \end{split}$$

6. Odrediti interval konvergencije i naći sumu reda $\sum_{n=0}^{\infty} \frac{x^n}{n^2 - 4}$

$$a \sum_{n=3} \frac{x^n}{n^2 - 4}$$

7. Odrediti interval konvergencije i naći sumu reda $\sum_{n=1}^{\infty} \frac{x^n}{n^2 + 5n + 6}$

$$\sum_{n=0}^{\infty} \frac{x^n}{n^2 + 5n + 6}.$$

8. Odrediti interval konvergencije i naći sumu reda $\sum_{n=0}^{\infty} \frac{nx^n}{n^2 - 1}.$

$$\sum_{n=2}^{\infty} \frac{nx^n}{n^2 - 1}.$$

9. Odrediti interval konvergencije i naći sumu reda $\sum_{n=0}^{\infty} \frac{(n+(-1)^n)x^n}{n!}.$

$$\sum_{n=0}^{\infty} \frac{(n+(-1)^n)x^n}{n!}.$$

Reserred:
$$R = \lim_{n \to \infty} \frac{a_n}{a_{n+1}} = \lim_{n \to \infty} \frac{(n + (-1)^n)(n+1)!}{(n+1+(-1)^{n+1})n!}$$

$$= \lim_{n \to \infty} \frac{(n + (-1)^n)(n+1)}{n+1+(-1)^{n+1}} = +\infty$$

Dakle, dati red konvergira za svako
$$x \in \mathbb{R}$$
.
$$\sum_{n=0}^{\infty} \frac{(n+(-1)^n)x^n}{n!} = \sum_{n=1}^{\infty} \frac{x^n}{(n-1)!} + \sum_{n=0}^{\infty} \frac{(-1)^n x^n}{n!} = x \sum_{n=1}^{\infty} \frac{x^{n-1}}{(n-1)!} + \sum_{n=0}^{\infty} \frac{(-x)^n}{n!} = x \sum_{k=0}^{\infty} \frac{x^k}{k!} + \sum_{n=0}^{\infty} \frac{(-x)^n}{n!} = xe^x + e^{-x}.$$

10. Odrediti interval konvergencije i naći sumu reda $\sum_{n=0}^{\infty} \frac{(n+2)x^n}{(n-1)!}$.

$$-\sum_{n=1}^{\infty}\frac{(n+2)x^n}{(n-1)!}$$

11. Odrediti interval konvergencije i naći sumu reda $\sum_{n=0}^{\infty} \frac{(-1)^n x^{n-2}}{n!}.$

$$\sum_{n=2}^{\infty} \frac{(-1)^n x^{n-2}}{n!}$$

12. Odrediti interval konvergencije i naći sumu reda $\sum_{n=0}^{\infty} \frac{(3n+(-2)^n)x^n}{n!}.$

$$\sum_{n=0}^{\infty} \frac{(3n + (-2)^n)x^n}{n!}$$

13. Koristeći sumu reda sumu stepenog reda $\sum_{n=0}^{\infty} \frac{n^2-3}{n} x^n$ izračunati sumu

$$reda \qquad \sum_{n=1}^{\infty} \frac{2n^2 - 3}{2^n}.$$

$$R = \lim_{n \to \infty} \frac{a_n}{a_{n+1}} = \lim_{n \to \infty} \frac{(n+1)(n^2-3)}{n((n+1)^2-3(n+1))} = 1.$$

Kako za $x = \pm 1$ dobijamo brojne redove kod kojih opšti član ne teži nuli,

to zadati red konvergira za |x| < 1.

$$\sum_{n=1}^{\infty} \frac{n^2 - 3}{n} x^n = \sum_{n=1}^{\infty} nx^n - 3 \sum_{n=1}^{\infty} \frac{x^n}{n} =$$

$$= x \sum_{n=1}^{\infty} nx^{n-1} - 3 \sum_{n=1}^{\infty} \int x^{n-1} dx =$$

$$= x \left(\sum_{n=0}^{\infty} x^n\right)' - 3 \int \left(\sum_{k=0}^{\infty} x^k\right) dx =$$

$$= x \left(\frac{1}{1 - x}\right)' - \int \frac{dx}{1 - x} = \frac{-x}{(1 - x)^2} - 3\ln(1 - x).$$

Posmatrani brojni red dobijamo kada u zadati stepeni red uvrstimo $x=\frac{1}{2}$ $\sum_{n=0}^{\infty} \frac{2n^2 - 3}{2^n} = \frac{-\frac{1}{2}}{(1 - \frac{1}{2})^2} - 3\ln(1 - \frac{1}{2}) = -2 + 3\ln 2.$

14. Koristeći sumu reda sumu stepenog reda $\sum_{n=1}^{\infty} \frac{x^n}{n^2 - 1}$ izračunati sumu $reda \qquad \sum_{n=0}^{\infty} \frac{(-2)^n}{3^n(n^2-1)}.$

15. Koristeći sumu reda sumu stepenog reda $\sum_{n=1}^{\infty} \frac{n+1}{n} x^n$ izračunati sumu reda $\sum_{n=0}^{\infty} \frac{(n+1)3^{n+2}}{n \cdot 5^n}.$

16. Koristeći sumu reda sumu stepenog reda $\sum_{n=1}^{\infty} \frac{n-3}{n!} x^n$ izračunati sumu reda $\sum_{n=0}^{\infty} \frac{(n-3)2^n}{n!}.$

3.2 Provera znanja iz Teorije redova I deo – 2

3 Provere znanja I deo

- 3.1 Provera znanja iz Teorije redova I deo 1
 - 1. Za red $\sum_{n=2}^{\infty} \frac{2n+1}{n-1}$ napisati četvrti član reda i pokazati da dati red divergira.
 - 2. Za red $\sum_{n=0}^{\infty} \frac{(-1)^n}{4^n}$ izračunati treći član niza parcijalnih suma i sumu datog reda.
 - 3. Koristeći uporedni kriterijum ispitati konvergenciju reda $\sum_{n=2}^{\infty} \frac{\sqrt{n}-3}{n^3-1}$
 - 4. Pomoću Caychyevog kriterijuma pokazati da red $\sum_{n=1}^{\infty} \frac{7^n n}{5^n}$ divergira
 - 5. Pomoću Dalamberovog kriterijuma pokazati da red $\sum_{n=0}^{\infty} \frac{2^n}{(n+1)!}$ konvergira.
 - 6. Pokazati da red $\sum_{n=2}^{\infty} \frac{(-1)^n}{\sqrt{n-1}}$ uslovno konvergira.

- 3.2 Provera znanja iz Teorije redova I deo 2
 - 1. Ako je $\sum_{n=0}^{\infty} b_n = -1$, dokazati da ostatak posmatranog brojnog reda teži nuli.
 - 2. Za red $\sum_{n=3}^{\infty} \frac{5n-1}{2-n}$ napisati drugi član niza parcijalnih suma i pokazati da dati red divergira.
 - 3. Za red $\sum_{n=0}^{\infty} \frac{(-1)^n}{5^n}$ izračunati treći član reda i sumu datog reda.
 - 4. Koristeći uporedni kriterijum ispitati konvergenciju reda $\sum_{n=2}^{\infty} \frac{\sqrt{n^5-5n^2+1}}{n^4}$
 - 5. Pomoću Košijevog kriterijuma ispitati da li red $\sum_{n=1}^{\infty} \frac{5^n \cdot n^3}{2^n}$ konvergira.
 - 6. Pomoću Dalamberovog kriterijuma ispitati da li red $\sum_{n=1}^{\infty} \frac{6^{n-1}}{(n+1)!}$ konvergira.
 - 7. Ispitati apsolutnu i uslovnu konvergenciju reda $\sum_{n=0}^{\infty} \frac{(-1)^n}{3n+5}.$

3.3 Provera znanja iz Teorije redova I deo - 3

- 1. Ako je $\sum_{n=0}^{\infty}b_n=-4, \ \text{dokazati da opšti član posmatranog brojnog reda}$ teži nuli.
- 2. Za red $\sum_{n=0}^{\infty} \frac{(-1)^n}{3^n}$ izračunati drugi član reda i sumu datog reda.
- 3. Za red $\sum_{n=2}^{\infty} \frac{2n-1}{1-n}$ napisati treći član niza parcijalnih suma i pokazati da dati red divergira.
- 4. Koristeći uporedni kriterijum ispitati konvergenciju reda $\sum_{n=2}^{\infty} \frac{\sqrt{n^3-5n^2+1}}{n^2}$
- 5. Pomoću Dalamberovog kriterijuma ispitati da li red $\sum_{n=2}^{\infty} \frac{7^{n+1}}{(n-1)!}$ konvergira.
- 6. Pomoću Košijevog kriterijuma ispitati da li red $\sum_{n=1}^{\infty} \frac{2^n \cdot n^5}{5^n}$ konvergira.
- 7. Ispitati apsolutnu i uslovnu konvergenciju reda $\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+3}.$

3.4 Provera znanja iz Teorije redova I deo - 4

- 1. Ako je $\sum_{n=0}^{\infty} b_n = -4$, dokazati da ostatak posmatranog brojnog reda teži nuli.
- 2. Za red $\sum_{n=3}^{\infty} \frac{5n-2}{2-4n}$ napisati treći član niza parcijalnih suma i pokazati da dati red divergira.
- 3. Za red $\sum_{n=0}^{\infty} \frac{(-1)^n}{3^n}$ izračunati četvrti član reda i sumu datog reda.
- 4. Koristeći uporedni kriterijum ispitati konvergenciju reda $\sum_{n=2}^{\infty} \frac{\sqrt{n^7-5n^3+1}}{n^4}$
- 5. Pomoću Košijevog kriterijuma ispitati da li red $\sum_{n=1}^{\infty} \frac{3^n \cdot n^3}{5^n}$ konvergira.
- 6. Pomoću Dalamberovog kriterijuma ispitati da li red $\sum_{n=1}^{\infty} \frac{3^{n-2}}{(n+1)!}$ konvergira.
- 7. Ispitati apsolutnu i uslovnu konvergenciju reda $\sum_{n=0}^{\infty} \frac{(-1)^n}{5n+4}.$

3.6 Provera znanja iz Teorije redova I deo - 6

3.5 Provera znanja iz Teorije redova I deo - 5

- 1. Ako je $\sum_{n=0}^{\infty} b_n = -1$, dokazati da opšti član posmatranog brojnog reda teži nuli.
- 2. Za red $\sum_{n=0}^{\infty} \frac{(-1)^n}{4^n}$ izračunati treći član reda i sumu datog reda.
- 3. Za red $\sum_{n=2}^{\infty} \frac{2n-1}{1-3n}$ napisati četvrti član niza parcijalnih suma i pokazati da dati red divergira.
- 4. Koristeći uporedni kriterijum ispitati konvergenciju reda $\sum_{n=2}^{\infty} \frac{\sqrt{n^5-5n^2+1}}{n^3}$
- 5. Pomoću Dalamberovog kriterijuma ispitati da li red $\sum_{n=2}^{\infty} \frac{3^{n+1}}{(n-2)!}$ konvergira.
- 6. Pomoću Košijevog kriterijuma ispitati da li red $\sum_{n=1}^{\infty} \frac{3^n \cdot n^5}{7^n}$ konvergira.
- 7. Ispitati apsolutnu i uslovnu konvergenciju reda $\sum_{n=0}^{\infty} \frac{(-1)^n}{2n-3}.$

- 3.6 Provera znanja iz Teorije redova I deo 6
 - 1. Ako je $\sum_{n=0}^{\infty}b_n=-3, \, \text{dokazati da ostatak posmatranog brojnog reda teži nuli.}$
 - 2. Za red $\sum_{n=1}^{\infty} \frac{4n-1}{1-3n}$ napisati drugi član niza parcijalnih suma i pokazati da dati red divergira.
 - 3. Za red $\sum_{n=0}^{\infty} \frac{(-1)^n}{2^n}$ izračunati peti član reda i sumu datog reda.
 - 4. Koristeći uporedni kriterijum ispitati konvergenciju reda $\sum_{n=1}^{\infty} \frac{\sqrt{n^5-5n^2+1}}{n^6}$
 - 5. Pomoću Košijevog kriterijuma ispitati da li red $\sum_{n=1}^{\infty} \frac{7^n \cdot n^3}{3^n}$ konvergira.
 - 6. Pomoću Dalamberovog kriterijuma ispitati da li red $\sum_{n=1}^{\infty} \frac{4^{n-1}}{(n+2)!}$ konvergira.
 - 7. Ispitati apsolutnu i uslovnu konvergenciju reda $\sum_{n=0}^{\infty} \frac{(-1)^n}{4n+5}.$

31

4 Provere znanja II deo

- 4.1 Provera znanja iz Teorije redova II deo 1
 - 1. Fokazati da red $\sum_{n=1}^{\infty} \frac{\sin(2nx)}{n^2 + 1}$ uniformno konvergira za svako $x \in R$.
 - 2. Odrediti oblast konvergencije reda $\sum_{n=0}^{\infty} \frac{n(x+3)^n}{5^n}.$
 - 3. Izvršiti naznačene operacije s redovima $2\sum_{n=3}^{\infty}(n-1)x^{n-2}-5\sum_{n=0}^{\infty}(2-n)x^n$
 - 4. Razviti u red funkciju $x^2 \ln(1+4x)$ i odrediti za koje x dobijeni razvoj važi.
 - 5. Naći sumu reda $\sum_{n=1}^{\infty} \frac{2n^2 1}{n} x^n, \quad |x| < 1.$

- 4.2 Provera znanja iz Teorije redova II deo -2
- 1. Ako je $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = 3$ dokazati da je poluprečnik konvergencije izvoda stepenog reda $\sum_{n=0}^{\infty} a_n x^n$ jednak $\frac{1}{3}$.
- 2. Pokazati da red $\sum_{n=1}^{\infty} \frac{n \sin(2nx)}{n^3 + 3x^2}$ uniformno konvergira za svako $x \in R$.
- 3. Razviti u red funkciju $f(x) = \frac{2x^4}{1+\frac{x}{4}}$ i odrediti za koje x dobijeni razvoj važi.
- 4. Naći sumu reda $\sum_{n=1}^{\infty} \frac{2n^2 3}{n} x^n, \quad |x| < 1.$

4.4 Provera znanja iz Teorije redova II deo - 4

- 4.3 Provera znanja iz Teorije redova II deo 3
 - 1. Ako je $\lim_{n\to\infty} \left| \frac{a_n}{a_{n+1}} \right| = 3$ dokazati da je poluprečnik konvergencije integrala stepenog reda $\sum_{n=0}^{\infty} a_n x^n$ jednak 3.
- 2. Pokazati da red $\sum_{n=1}^{\infty} \frac{n^2 \cos(3nx)}{n^6 + 2x^2}$ uniformno konvergira za svako $x \in \mathbb{R}$.
- 3. Razviti u red funkciju $f(x) = \frac{3x^4}{1 + \frac{x}{2}}$ i odrediti za koje x dobijeni razvoj važi.
- 4. Naći sumu reda $\sum_{n=1}^{\infty} \frac{3-4n^2}{n} x^n, \quad |x| < 1.$

- 4.4 Provera znanja iz Teorije redova II deo 4
 - 1. Ako je $\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=4$ dokazati da je poluprečnik konvergencije izvoda stepenog reda $\sum_{n=0}^{\infty}a_nx^n$ jednak $\frac{1}{4}$.
 - 2. Pokazati da red $\sum_{n=1}^{\infty} \frac{n \sin(4nx)}{n^4 + 4x^4} \quad \text{uniformno konvergira za svako } x \in R.$
 - 3. Razviti u red funkciju $f(x) = \frac{3x^3}{1+\frac{x}{3}}$ i odrediti za koje x dobijeni razvoj važi.
 - 4. Naći sumu reda $\sum_{n=1}^{\infty} \frac{3n^2+2}{n} x^n, \quad |x|<1.$

4.6 Provera znanja iz Teorije redova II deo - 6

- 4.5 Provera znanja iz Teorije redova II deo 5
 - 1. Ako je $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = 2$ dokazati da je poluprečnik konvergencije integrala stepenog reda $\sum_{n=0}^{\infty} a_n x^n$ jednak $\frac{1}{2}$.
 - 2. Pokazati da red $\sum_{n=1}^{\infty} \frac{n^3 \sin(2nx)}{n^5 + 5x^2}$ uniformno konvergira za svako $x \in R$.
 - 3. Razviti u red funkciju $f(x) = \frac{2x^2}{1+\frac{x}{2}}$ i odrediti za koje x dobijeni razvoj važi.
 - 4. Naći sumu reda $\sum_{n=1}^{\infty} \frac{5-4n^2}{n} x^n, \quad |x| < 1.$

- 4.6 Provera znanja iz Teorije redova II deo 6
 - 1. Ako je $\lim_{n\to\infty} \left| \frac{a_n}{a_{n+1}} \right| = 2$ dokazati da je poluprečnik konvergencije integrala stepenog reda $\sum_{n=0}^{\infty} a_n x^n$ jednak 2.
 - 2. Pokazati da red $\sum_{n=1}^{\infty} \frac{n\cos(3nx)}{n^5+5x^4}$ uniformno konvergira za svako $x \in R$.
 - 3. Razviti u red funkciju $f(x) = \frac{5x^2}{1 + \frac{x}{5}}$ i odrediti za koje x dobijeni razvoj važi.
 - 4. Naći sumu reda $\sum_{n=1}^{\infty} \frac{4n^2 + 5}{n} x^n, \quad |x| < 1.$

5.2 Kolokvijum iz Teorije redova 2

5 Zadaci sa kolokvijuma

5.1 Kolokvijum iz Teorije redova 1

- 1. Za red $\sum_{n=1}^{\infty} \frac{2n}{3n-2}$ napisati peti član reda, treći član niza parcijalnih suma i pokazati da dati red divergira.
- 2. Pomoću Dalamberovog kriterijuma ispitati da li red $\sum_{n=2}^{\infty}\frac{4^n}{n-1}$ konvergira.
- 3. Ispitati apsolutnu i uslovnu konvergenciju reda $\sum_{n=0}^{\infty} \frac{(-1)^n}{\sqrt[3]{n}} .$
- 4. Izvršiti naznačene operacije s redovima $2\sum_{n=1}^{\infty}(n-1)x^n-5\sum_{n=0}^{\infty}(2-n)x^n$
- 5. Razviti u red funkciju $f(x) = \frac{x}{1+5x}$ i odrediti za koje x dobijeni razvoj važi.
- 6. Naći sumu reda $\sum_{n=1}^{\infty} \frac{2n^2 + 5}{n} x^n, \quad |x| < 1.$

5.2 Kolokvijum iz Teorije redova 2

- 1. Za red $\sum_{n=1}^{\infty} \frac{1-2n}{3n}$ napisati šesti član reda, treći član niza parcijalnih suma i pokazati da dati red divergira.
- 2. Pomoću Caychyevog kriterijuma pokazati da red $\sum_{n=1}^{\infty} \frac{n}{3^n}$ konvergira.
- 3. Ispitati apsolutnu i uslovnu konvergenciju reda $\sum_{n=0}^{\infty} \frac{(-1)^n}{\sqrt{n^3}}$
- 4. Izvršiti naznačene operacije s redovima $3\sum_{n=1}^{\infty}(n+1)x^n-2\sum_{n=0}^{\infty}(1-n)x^n$
- 5. Razviti u red funkciju $f(x) = \frac{x^2}{1-3x}$ i odrediti za koje x dobijeni razvoj važi.
- 6. Naći sumu reda $\sum_{n=1}^{\infty} \frac{3n^2-2}{n} x^n, \quad |x|<1.$

5.3 Kolokvijum iz Teorije redova 3

- 1. Za red $\sum_{n=0}^{\infty} \frac{(-1)^n}{5^n}$ izračunati treći član reda i sumu datog reda.
- 2. Za red $\sum_{n=3}^{\infty} \frac{n-1}{n-2}$ napisati treći član niza parcijalnih suma i pokazati da dati red divergira.
- 3. Pomoću Košijevog kriterijuma ispitati da li red $\sum_{n=2}^{\infty} \frac{n^2}{2^n}$ konvergira.
- 4. Ispitati apsolutnu i uslovnu konvergenciju reda $\sum_{n=0}^{\infty} \frac{(-1)^n}{n+5}$
- 5. Razviti u red funkciju $f(x) = x^2 \ln(1-2x) + \frac{3}{1-3x}$ i odrediti za koje x dobijeni razvoj važi.
- 6. Odrediti oblast konvergencije i naći sumu reda $\sum_{n=1}^{\infty} \frac{(n-1)^2}{n} x^n.$

5.4 Kolokvijum iz Teorije redova 4

- 1. Za red $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ napisati peti član reda, treći član niza parcijalnih suma i odrediti sumu datog reda.
- 2. Pomoću Košijevog kriterijuma ispitati da li red $\sum_{n=2}^{\infty} \frac{4^n}{n-1}$ konvergira.
- 3. Pomoću Dalamberovog kriterijuma ispitati da li red $\sum_{n=1}^{\infty} \frac{n!}{3^n}$ konvergira.
- 4. Ispitati apsolutnu i uslovnu konvergenciju reda $\sum_{n=0}^{\infty} \frac{(-1)^n}{n^3} .$
- 5. Izvršiti naznačene operacije s redovima $2\sum_{n=1}^{\infty}(n-1)x^n-5\sum_{n=0}^{\infty}(2-n)x^n$
- 6. Razviti u red funkciju x^2e^{2x} i odrediti za koje x dobijeni razvoj važi.
- 7. Naći sumu reda $\sum_{n=1}^{\infty} \frac{n^2 + 2}{n} x^{n-1}, |x| < 1.$

5.6 Kolokvijum iz Teorije redova 6

5.5 Kolokvijum iz Teorije redova 5

- 1. Za red $\sum_{n=0}^{\infty} \frac{(-1)^n 2^n}{3^n}$ napisati treći član niza parcijalnih suma i izračunati sumu reda.
- 2. Ispitati da li red $\sum_{n=0}^{\infty} \frac{2^n}{n+1}$ konvergira pomoću
 - a) Košijevog kriterijuma
 - b) Dalamberovog kriterijuma
- 3. Pokazati da red $\sum_{n=1}^{\infty} \frac{\sqrt{n} \sin(nx)}{x^4 + n^3}$ uniformno konvergira za svako $x \in R$.
- 4. Razviti u red funkciju $f(x) = \frac{3x^2}{1+3x}$ i odrediti za koje x dobijeni razvoj važi
- 5. Odrediti oblast konvergencije i naći sumu reda $\sum_{n=1}^{\infty} n(2x+1)^n.$

5.6 Kolokvijum iz Teorije redova 6

- 1. Za red $\sum_{n=0}^{\infty} \frac{(-1)^n 3^n}{5^n}$ napisati drugi član niza parcijalnih suma i izračunati sumu reda.
- 2. Ispitati da li red $\sum_{n=0}^{\infty} \frac{n+1}{2^n}$ konvergira pomoću
 - a) Dalamberovog kriterijuma
 - b) Košijevog kriterijuma
- 3. Pokazati da red $\sum_{n=1}^{\infty} \frac{\sqrt{n^3}\cos(nx)}{x^2+n^5}$ uniformno konvergira za svako $x \in R$.
- 4. Razviti u red funkciju $f(x) = \frac{2x^3}{1+2x}$ i odrediti za koje x dobijeni razvoj važi.
- 5. Odrediti oblast konvergencije i naći sumu reda $\sum_{n=0}^{\infty} n(2x-1)^n.$

5.8 Kolokvijum iz Teorije redova 8

5.7 Kolokvijum iz Teorije redova 7

- 1. (2 boda) Za red $\sum_{n=0}^{\infty} \frac{(-2)^n}{5^n}$ napisati treći član reda i izračunati sumu reda.
- 2. (3 boda) Ispitati da li red $\sum_{n=1}^{\infty} \frac{\sqrt[3]{n^5 2n + 3}}{n^2}$ konvergira
- 3. (3 boda) Ispitati da li red $\sum_{n=1}^{\infty} \frac{n}{2^{n+2}}$ konvergira
- 4. (4 boda) Razviti u red funkciju $f(x) = \frac{x^3}{1-2x}$ i odrediti za koje x dobijeni razvoj važi.
- 5. (8 boda) Odrediti oblast konvergencije i naći sumu reda $\sum_{n=0}^{\infty} n(2x+1)^n.$

- 5.8 Kolokvijum iz Teorije redova 8
 - 1. Za red $\sum_{n=0}^{\infty} \frac{(-3)^n}{4^n}$ napisati drugi član reda i izračunati sumu reda.
 - 2. Ispitati da li red $\sum_{n=1}^{\infty} \frac{\sqrt[3]{n^2 2n + 3}}{n^2}$ konvergira
 - 3. Ispitati da li red $\sum_{n=1}^{\infty} \frac{3^{n+1}}{n}$ konvergira
 - 4. Razviti u red funkciju $f(x) = \frac{x^2}{1-4x}$ i odrediti za koje x dobijeni razvoj važi.
 - 5. Odrediti oblast konvergencije i naći sumu reda $\sum_{n=0}^{\infty} n(3x-1)^n.$

6.2 Pismeni iz Teorije redova 2

6 Zadaci sa pismenih ispita

6.1 Pismeni iz Teorije redova 1

- 1. Ako je *n*-ta parcijalna suma red $\sum_{n=0}^{\infty} a_n \quad \text{data izrazom } s_n = \left(\frac{n-3}{n+1}\right)^n,$ odrediti treći član reda, izračunati sumu datog reda i odrediti $\lim_{n\to\infty} a_n$.
- 2. Ispitati da li red $\sum_{n=2}^{\infty} \frac{\sin n\pi \sqrt[3]{n^3 + 3n^2}}{\sqrt{n^5 2}} \quad \text{konvergira}$
- 3. Razviti u red funkciju $f(x)=(x+1)\ln(1-\frac{x}{2})$, odrediti za koje x dobijeni razvoj važi i pomoú dobijenog rezultata izračunati $\sum_{n=2}^{\infty}\frac{2n-1}{n(n-1)\cdot 4^n}.$
- 4. Odrediti oblast konvergencije i naći sumu reda $\sum_{n=1}^{\infty} \frac{n+2}{n^2+2n+3} (3x-2)^n.$

6.2 Pismeni iz Teorije redova 2

- 1. Za red $\sum_{n=0}^{\infty} \frac{(-2)^{n-1}}{5^{n+2}}$ napisati treći član niza parcijalnih suma, pokazati na osnovu Košijevog i Dalamberovog kriterijuma da dati red konvergira i izračunati njegovu sumu.
- 2. Ispitati da li red $\sum_{n=1}^{\infty} \frac{\sqrt[3]{n^5 2n + 3} 3n^2}{\sqrt[4]{n^9 5n^6 + 5}}$ konvergira
- 3. Razviti u red funkciju $f(x)=x^3\ln(1-5x)$, odrediti za koje x dobijeni razvoj važi i pomoú dobijenog rezultata izračunati $\sum_{n=1}^{\infty}\frac{1}{n\cdot 2^n}.$
- 4. Odrediti oblast konvergencije i naći sumu reda $\sum_{n=2}^{\infty} \frac{n}{n^2 1} (2x + 1)^n.$