Modulendprüfung THFL+SY, FS15, 22.6.2015

Für eine hervorragende Bewertung müssen Sie nicht alle Aufgaben vollständig lösen.

Teil 1: Ohne Unterlagen und ohne Hilfsmittel [34 Punkte]

Bezeichnen Sie alle Blätter mit Ihrem	Name, Vorname:
Namen!	

Aufgabe 1: Vergleich zwischen Otto- und Diesel-Prozess

[Punkte: 6]

a. Zeichnen Sie das T, s-Diagramm eines idealen, reversiblen Otto-Kreisprozesses. Zeichnen Sie sämtliche Zustandsgrössen p_i , v_i , T_i und s_i sowie die spezifischen Arbeiten und spezifischen Wärmeenergien unmissverständlich ein.

b. Geben Sie eine Gleichung für den Wirkungsgrad an.

c. Vergleichen Sie den Wirkungsgrad mit dem eines Diesel-Kreisprozesses mit den gleichen Startbedingungen (p,T), dem gleichen Verdichtungsverhältnis ε und der gleichen Wärmeabfuhr.

d. Zeichnen Sie den Diesel-Prozess in das gleiche T,s-Diagramm.

Aufgabe 2: Joule-Kreisprozess

[Punkte: 5]

Gegeben ist ein idealer Joule-Kreisprozess mit und ohne Wärmeübertrager für die Rückgewinnung der Abgaswärme. Der Wärmeübertrager kann als ideal angenommen werden (Wirkungsgrad = 1).

a. Zeichnen Sie jeweils ein Schema für beide Systeme.

b. Zeichnen Sie jeweils ein T, s-Diagramm für beide Systeme. Stellen Sie die Verläufe qualitativ richtig dar.

c. Wie wird der thermische Wirkungsgrad bestimmt und in welchem Fall ist der Wirkungsgrad grösser? Kommentieren Sie das Resultat.

Aufgabe 3: Irreversibilität eines Wärmeübertragers

[Punkte: 5]

Ein Wärmeübertrager überträgt Wärme zwischen zwei Fluiden, wobei $T_2 > T_1$. In beiden Fluiden findet ein rein latenter Phasenübergang statt.

a. Geben Sie eine Gleichung für die Irreversibilität an (Entropiestrom im System).

- b. Welche Schaltung (Gleichstrom oder Gegenstrom) ist in oben beschriebener Situation besser?
- c. Wenn beide Fluide nicht im Zweiphasen-Gebiet sind, welche Schaltung minimiert die Irreversibilität?
- d. Nennen Sie eine Möglichkeit, um die Irreversibilität zu minimieren und begründen Sie diese.

Aufgabe 4: Auslegung Gegenstromwärmeübertrager

[Punkte: 6]

Geben Sie das Vorgehen für die Berechnung eines Wärmeübertragers an.

Gegeben sind: \dot{m}_1 , \dot{m}_2 , c_{p1} , c_{p2} , $T_{1\alpha}$, $T_{2\alpha}$, k_{tot} , A_{tot} , $\varepsilon = \varepsilon(NTU, P)$

Hinweis: Benutzen Sie die Erhaltungsgleichungen für den Wärmeübertrager.

a. Schreiben Sie die Schritte für die Auslegung eines Gegenstrom-Wärmeübertragers mit der LMTD-Methode (Logarithmisch mittlere Temperaturdifferenz) auf.

b. Schreiben Sie die Schritte für die Auslegung eines Gegenstrom-Wärmeübertragers mit der NTU-Methode auf.

c. Kommentieren Sie den Unterschied der beiden Methoden.

Aufgabe 5: Wärmepumpen und Kälteanlagen

[Punkte: 6]

a. Zeichnen Sie den Kreisprozess einer einstufigen Wärmepumpe bzw. Kälte
anlage qualitativ in das untenstehende $\log p, h$ -Diagramm ein und bezeichnen Sie die Zustandspunkte und den Verlauf der jeweiligen Isothermen eindeutig!

Annahmen zum Kreisprozess:

- Keine Druckverluste in Verdampfer und Kondensator
- Adiabate, dissipationsbehaftete Verdichtung
- Überhitzung und Unterkühlung des Kältemittels
- Isenthalpe Drosselung

b. Leiten Sie den Zusammenhang zwischen der inneren Leistungszahl einer Wärmepumpe (ε_{WP}) und einer Kälteanlage (ε_{KA}) her! Bitte verwenden Sie wiederum Ihre Bezeichnungen aus dem $\log p$, h-Diagramm.

c. Nennen Sie zwei Massnahmen zur Erhöhung der inneren Leistungszahl einer Wärmepumpe mit volumetrisch förderndem Kompressor! Es ist jeweils eine klare Begründung anzugeben (z.B. anhand des $\log p$, h-Diagramms).

Aufgabe 6: Kälte aus Abwärme: Kombination von rechts- und linkslaufenden Carnot-Prozessen [Punkte: 6]

In einem Industriebetrieb fällt eine Abwärme von 4 MW bei einer Temperatur von $T_A = 400$ K an. Dieser Abwärmestrom soll genutzt werden, um "Kälte" bei einer Temperatur von $T_K = 225$ K zu erzeugen. Die Umgebungstemperatur beträgt $T_U = 300$ K.

Die Kälteerzeugung soll durch ein Zusammenspiel von zwei reversiblen Carnot-Kreisprozessen erfolgen: einem Rechtslaufenden und einem Linkslaufenden.

- a. Zeichnen Sie eine Prinzipskizze der Anlage. Sie können z.B. die beiden Kreisprozesse als "Black Boxes" (ohne Einzelapparate) mit den entsprechenden Energieströmen zeichnen.
- b. Wie gross ist die reversible Kälteleistung \dot{Q}_K ?
- c. Wie gross ist der insgesamt an die Umgebung abgeführte Wärmestrom \dot{Q}_U ?
- d. Wir betrachten nun die realen Prozesse. Schätzen Sie die reale Heizleistung ab, indem Sie einen Gütegrad für den linkslaufenden und rechtslaufenden Kreisprozess von jeweils $\zeta=0.5$ annehmen.

[Punkte: 22]

Modulendprüfung THFL+SY, FS15, 22.6.2015

Für eine hervorragende Bewertung müssen Sie nicht alle Aufgaben vollständig lösen.

Teil 2: Mit handgeschriebener, je 12-seitiger Zusammenfassung aus THFL+GRU und THFL+SY sowie Taschenrechner [66 Punkte]

Bezeichnen Sie alle Blätter und ev.	Name, Vorname:
Zusatzblätter mit Ihrem Namen!	

Hinweis: Verwenden Sie ausschliesslich die angegebenen Stoffdaten!

Aufgabe 7: Wärmeabgabe durch Strahlung und Konvektion

Es ist eine klare Sommernacht. Sie stellen eine Kupferkugel im Freien auf einen dünnen langen Stab. Der Stab sei ein thermischer Isolator. Es herrscht Windstille. Die Kugel hat zum Zeitpunkt t_0 eine Anfangstemperatur von 100° C. Die Kugel wird sich durch Wärmeabgabe an die Umgebung abkühlen. Die Lufttemperatur der Umgebung beträgt 10° C. Der sternenklare Nachthimmel dient als Strahlungspartner mit einer gemittelten Temperatur von -18° C. Die Wärmeleitfähigkeit von Kupfer ist gross. Sie dürfen daher annehmen, dass die Temperatur innerhalb der Kugel homogen ist.

Das Volumen sowie die Oberfläche einer Kugel wird folgendermassen berechnet:

$$V = \frac{d^3\pi}{6} \qquad A = d^2\pi$$

Angaben Kupferkugel:

- Durchmesser $D_{cu} = 100 \text{ mm}$
- $\lambda_{cu} = 400 \text{ W/m K}$
- $cp_{cu} = 385 \text{ J/kg K}$
- $\rho_{cu} = 9'000 \text{ kg/m}^3$
- $\varepsilon_{cu} = 0.8$
- Stefan-Boltzmann Konstante: $\sigma = 5.67 \cdot 10^{-8} \text{ W/m}^2 \text{ K}^4$

Angaben für Luft: Siehe Stoffwerte von Luft (S. 14).

Hinweis: Für Aufgabenteil a., b. und c. berücksichtigen Sie zunächst noch nicht die Strahlung.

a. Berechnen Sie zunächst den Wärmeübergangskoeffizienten aussen α_a , der sich durch die freie Konvektion einstellt. Rechnen Sie für den gesamten Zeitraum der Abkühlung mit konstanten Stoffwerten bei einer mittleren Kugeltemperatur von 60°C. Verwenden Sie dazu folgende Nusseltkorrelation für die Kugel: $(\alpha_a = 6 \ W/m^2 K)$

$$Nu = 0.56 \left[\frac{Pr \ Ra}{0.846 + Pr} \right]^{1/4} + 2$$

b. Nach jeweils welcher Zeit hat die Kugel 60° C und 10.1° C erreicht. Verwenden Sie dazu folgenden Zusammenhang: $(t_1 = 1.5 h, t_2 = 18.16 h)$

$$NTU = \frac{t}{\tau} \quad ; \quad P = 1 - e^{-NTU}$$

- c. Berechnen Sie für die Zeiten t_0 , t_1 und t_2 die jeweils einstellende Leistung \dot{Q}_{konv} . Benutzen Sie α aus Teilaufgabe a. Die zu den Zeiten gehörenden Kugeltemperaturen finden Sie in Teilaufgabe e. $(\dot{Q}_0=16.96~W,~\dot{Q}_1=9.42~W,~\dot{Q}_2=0.02~W)$
 - Falls Sie Aufgabe a. nicht rechnen konnten, nehmen Sie $\alpha=8~\mathrm{W/m^2\,K}$ an.
- d. Neben der Wärmeübertragung durch Konvektion berechnen Sie nun die parallel ablaufende Wärmeabgabe **allein** durch Strahlung. Berechnen Sie dazu die Wärmestrahlungsleistung \dot{Q}_{rad} zu den Zeitpunkten t_0 , t_1 und t_2 . Die zu den Zeiten gehörenden Kugeltemperaturen finden Sie in Teilaufgabe e. $(\dot{Q}_0 = 21.55 \text{ W}, \dot{Q}_1 = 11.49 \text{ W}, \dot{Q}_2 = 3.13 \text{ W})$
- e. Fassen Sie die Lösungen in der nachfolgenden Tabelle zusammen.

Aufgabenteil		b.	с.	d.
	ϑ [°C]	Zeit [s]	$\dot{Q}_{konv.}$ [W]	$\dot{Q}_{rad.}$ [W]
t_0	100	0	16.96	21.55
t_1	60	5649.8	9.42	11.49
t_2	10.1	65384.6	0.02	3.13

f. Tatsächlich wird sich eine Temperatur der Kugel einstellen, welche unterhalb der Lufttemperatur, aber oberhalb der Temperatur des Strahlungspartners liegt. Welche Beharrungstemperatur stellt sich ein und welche Leistung wird dabei kontinuierlich durch Konvektion über die Luft aufgenommen und durch Stahlung an die Umgebung abgegeben? Benutzen Sie α aus Teilaufgabe a.

Falls Sie Aufgabe a. nicht rechnen konnten, nehmen Sie $\alpha = 8 \text{ W/m}^2 \text{ K}$ an.

	ϑ [°C]	Zeit [s]	$\dot{Q}_{konv.}$ [W]	$\dot{Q}_{rad.}$ [W]
t_{∞}	-0.02	∞	1.89	1.89

Stoffwerte von Luft beim Druck p = 1 bar(a):

ე ℃	$ ho$ kg/m 3	h kJ/kg	s kJ/(kg K)	c _p kJ/(kg K)	c _v kJ/(kg K)	β 10 ⁻³ /K	w _s m/s	λ mW/(m K)	η 10 ⁻⁶ Pa s	ν 10 ⁻⁷ m ² /s	<i>a</i> 10 ⁻⁷ m ² /s	Pr -
-200	900,8	-435,6	-4,027	1,915	1,083	4,883	917,9	149,6	206,8	2,296	0,8674	2,647
-190	4,349	-218,1	-1,298	1,082	0,7466	13,50	179,0	7,824	5,921	13,61	16,63	0,8187
-180	3,838	-207,4	-1,177	1,052	0,7331	11,61	190,7	8,803	6,630	17,27	21,81	0,7921
-170	3,442	-197,0	-1,071	1,036	0,7265	10,26	201,6	9,774	7,323	21,28	27,41	0,7762
-160	3,123	-186,7	-0,9753	1,027	0,7228	9,224	211,7	10,73	8,001	25,62	33,48	0,7653
-150	2,860	-176,5	-0,8886	1,021	0,7205	8,395	221,3	11,68	8,664	30,29	40,01	0,7571
-140	2,639	-166,3	-0,8091	1,017	0,7191	7,712	230,4	12,61	9,313	35,29	47,01	0,7507
-130	2,450	-156,1	-0,7356	1,014	0,7181	7,138	239,2	13,53	9,948	40,60	54,47	0,7454
-120	2,287	-146,0	-0,6672	1,012	0,7175	6,647	247,6	14,43	10,57	46,22	62,38	0,7409
-110	2,145	-135,9	-0,6033	1,010	0,7171	6,222	255,7	15,33	11,18	52,13	70,74	0,7370
-100	2,019	-125,8	-0,5432	1,009	0,7167	5,849	263,5	16,20	11,78	58,34	79,54	0,7335
- 90	1,908	-115,7	-0,4866	1,008	0,7165	5,520	271,1	17,07	12,37	64,83	88,76	0,7303
-80	1,808	-105,6	-0,4330	1,007	0,7164	5,226	278,5	17,92	12,94	71,59	98,41	0,7275
- 70	1,718	-95,57	-0,3822	1,007	0,7163	4,963	285,7	18,77	13,51	78,63	108,5	0,7249
-60	1,637	-85,51	-0,3338	1,006	0,7163	4,725	292,7	19,60	14,07	85,93	118,9	0,7224
-50	1,563	-75,44	-0,2877	1,006	0,7163	4,509	299,5	20,42	14,61	93,49	129,8	0,7202
-40	1,496	-65,38	-0,2436	1,006	0,7164	4,313	306,2	21,22	15,15	101,3	141,1	0,7181
-30	1,434	-55,32	-0,2013	1,006	0,7165	4,133	312,7	22,02	15,68	109,4	152,7	0,7161
-20	1,377	-45,27	-0,1608	1,006	0,7166	3,967	319,1	22,81	16,20	117,7	164,7	0,7143
-10	1,325	-35,21	-0,1218	1,006	0,7168	3,815	325,4	23,59	16,71	126,2	177,1	0,7126
0	1,276	-25,15	-0,0843	1,006	0,7171	3,674	331,5	24,36	17,22	135,0	189,8	0,7110
10	1,231	-15,09	-0,0481	1,006	0,7174	3,543	337,5	25,12	17,72	144,0	202,9	0,7095
20	1,189	-5,029	-0,0132	1,006	0,7178	3,421	343,4	25,87	18,21	153,2	216,3	0,7081
30	1,149	5,036	0,0205	1,007	0,7183	3,307	349,2	26,62	18,69	162,6	230,1	0,7068
40	1,112	15,11	0,0532	1,007	0,7188	3,201	354,9	27,35	19,17	172,3	244,1	0,7056
50	1,078	25,18	0,0849	1,008	0,7194	3,101	360,4	28,08	19,64	182,2	258,5	0,7045
60	1,046	35,26	0,1156	1,008	0,7201	3,007	365,9	28,80	20,10	192,2	273,2	0,7035
70	1,015	45,34	0,1454	1,009	0,7208	2,919	371,3	29,52	20,56	202,5	288,2	0,7026
80	0,9862	55,44	0,1744	1,010	0,7217	2,836	376,7	30,22	21,01	213,0	303,5	0,7018
90	0,9590	65,54	0,2026	1,011	0,7226	2,758	381,9	30,93	21,46	223,7	319,1	0,7011
100	0,9333	75,65	0,2301	1,011	0,7235	2,683	387,0	31,62	21,90	234,6	335,0	0,7004

Modul	endpri	üfung	THFL+	-SY
1110000	CII GPI	~~~~		~ -

15

Lösung: Name:

Aufgabe 8: Analyse einer GuD-Anlage

[Punkte: 22]

Die Gasturbine einer GuD-Anlage wird mit Zwischenüberhitzung betrieben. Dies ist notwendig, um die Abgase nach der zweiten Expansion bei einer Temperatur von 600°C abgeben zu können. Die Abgase dienen dann als Wärmequelle für einen Dampfprozess ohne Zusatzfeuerung. Mit der verfügbaren Technologie für Verdichter und Turbine erreichen Sie einen isentropen Wirkungsgrad von 88% für beide Komponenten. Es kann angenommen werden, dass sich Abgas wie Luft als perfektes Gas verhält.

- Die Turbineneintrittstemperatur beträgt in jeweils beiden Turbinen 1300°C
- Luftdaten: $\kappa = 1.4, c_p = 1005.2 \text{ J/kg K}$
- Umgebungszustand: p = 1 bar(a), T = 300 K
- Angaben für Wasserdampf: Siehe Stoffwerte Wasserdampftafel (S. 20 und 21).

Gasturbinen-Prozess

Die Gasturbine (GT) hat ein Druckverhältnis $\pi = 23.55$ und ein Expansionsverhältnis für die Hochdruckturbine von 2.

- a. Skizzieren Sie den GT-Prozess qualitativ in das vorbereitete T, s-Diagramm.
- b. Bestimmen Sie die spezifische technische Arbeit der GT-Anlage. $(-w_k = 451555 \text{ J/kg})$
- c. Bestimmen Sie die insgesamt zugeführte spezifische Wärme in der GT-Anlage. $(q_{zu}=1027535\ J/kg)$
- d. Bestimmen Sie den Wirkungsgrad der GT-Anlage. ($\eta_{th} = 0.439$)

Dampfturbinenprozess

Die Abgase der Gasturbine können aus betrieblichen Gründen nur bis 100°C abgekühlt werden. Um einen höheren Wirkungsgrad im Dampfprozess zu erreichen, wird entschieden, eine Vorwärmung des Speisewassers durch Anzapfung durchzuführen. Dadurch soll das Speisewasser eine Temperatur von 90°C erreichen. Erst dann wird es mit den Abgasen im Dampferzeuger weiter erhitzt. Der überhitzte Dampf am Turbineneintritt hat 550°C und 100 bar(a). Der Kondensatordruck beträgt 0.1 bar(a).

- e. Bestimmen Sie für die Expansion in der Dampfturbine den Dampfgehalt im Fall einer isentropen Zustandsänderung. (s = 0.814)
- f. Im realen Fall steht Ihnen eine Turbine mit einem isentropen Wirkungsgrad von 90% zur Verfügung. Welcher ist der tatsächliche Dampfgehalt? (x = 0.871)
- g. Bestimmen Sie die Enthalpie des Speisewassers nach der Pumpe, unter der Annahme, dass es sich um eine isentrope Zustandsänderung handelt. Hinweis: $dh = v dp (h_2 = 19.36 \ kJ/kg)$

h. Die Vorwärmung erfolgt über einen Wärmeübertrager, wobei die Zustandsänderung vereinfacht betrachtet wird. Es wird angenommen, dass der angezapfte Dampf nach der Abkühlung die Temperatur des kalten Speisewassers erreicht. Für die Bilanzierung der Vorwärmung soll die Energiezufuhr in der Pumpe vernachlässigt werden (d.h. die Daten des Speisewassers werden im siedenden Zustand bei 0.1 bar(a) genommen, $c_{pW} = 4.2$ kJ/kg K). Stellen Sie die Bilanz für die Vorwärmung auf.

Hinweis: Die angezapfte Menge fehlt für die Vorwärmung. Nutzen Sie für die Bilanz das Massenstromverhältnis $\mu=\dot{m}_{Anzapfung}/\dot{m}_{Gesamt}$

i. Das Speisewasser muss bis 90°C vorgewärmt werden bei einem $\mu=0.065$. Bei welcher Enthalpie soll der Dampf angezapft werden? $(h_A=2668.55~kJ/kg)$

GuD-Anlage

j. Wenn die Dampfturbine einen Gesamtmassenstrom von 100 kg/s hat, wie gross soll derjenige der Gasturbine sein, damit die Anlage (inkl. Vorwärmung) die Betriebsbedingungen erreicht? Für diese Aufgabe soll die korrekte Enthalpie des Speisewassers bei 90°C und 100 bar(a) genutzt werden. Diese beträgt 384.8 kJ/kg. ($\dot{m}_{Anzapfung}=32.53~kg/s$)

Wasserdampftafel: Sättigungszustand

-	, t	v'	v"	h'	h''	z+	s'	s"
bar	°C	m³/kg	m ³ /kg	kJ/kg	kJ/kg	<i>r</i> kJ/kg	kJ/kg K	kJ/kg K
0,0061	0	0,0010002	206,3	-0.04	2501,6	2501,6	-0.0002	9,1577
0,01 0,02	6,98 17,51	0,0010001	129,20 67,01	29,34 73,46	2514,4 2533,6	2485,0 2460,3	0,1060 0,2607	8,9767 8,7246
0,02	24,10	0,0010012	45,67	101,00	2545,6	2444,6	0,3544	8,5785
0,03	28,98	0,0010027	34,80	121,41	2554,5	2433,1	0,4225	8,4755
0,05	32,90	0,0010052	28,19	137,77	2561,6	2423,8	0,4763	8,3960
0,06	36,18	0,0010064	23,74	151,50	2567,5	2416,0	0,5209	8,3312
0,07	39,03	0,0010074	20,53	163,38	2572,6	2409,2	0,5591	8,2767
0,08	41,53 43,79	0,0010084	18,10 16,20	173,86 183,28	2577,1 2581,1	2403,2 2397,9	0,5925 0,6224	8,2296 8,1881
0,09	45,83	0,0010094	14,67	191,83	2584,8	2392,9	0,6493	8,1511
0,1 0,2	60,09	0,0010101	7,650	251,45	2609,9	2358,4	0,8321	7,9094
0,3	69,12	0,0010223	5,229	289,30	2625,4	2336,1	0,9441	7,7695
0,4	75,89	0,0010265	3,993	317,65	2636,9	2319,2	1,0261	7,6709
0,5	81,35	0,0010301	3,240	340,56	2646,0	2305,4	1,0912	7,5947
0,6	85,95	0,0010333	2,732	359,93	2653,6	2293,6	1,1454	7,5327
0,7	89,96	0,0010361	2,365	376,77	2660,1	2283,3	1,1921 1,2330	7,4804 7,4352
0,8 0,9	93,51 96,71	0,0010387 0,0010412	2,087 1,869	391,72 405,21	2665,8 2670,9	2274,0 2265,6	1,2696	7,4332
1,0	99,63	0,0010412	1,694	417,51	2675,4	2257,9	1,3027	7,3598
1,1	102,32	0,0010455	1,549	428,84	2679,6	2250,8	1,3330	7,3277
1,2	104,81	0,0010476	1,428	439,36	2683,4	2244,1	1,3609	7,2984
1,3	107,13	0,0010495	1,325	449,19	2687,0	2237,8	1,3868	7,2715
1,4	109,32	0,0010513	1,236 1,159	458,42	2690,3 2693,4	2231,9 2226,2	1,4109 1,4336	7,2465 7,2234
1,5		0,0010530	0,8854	467,13 504,70	2706,3	2201,6	1,5301	7,1268
2,0 3,0	120,23 133,54	0,0010608	0,6056	561,43	2706,3	2163,2	1,6716	6,9909
4,0	143,62	0,0010839	0,4622	604,67	2737,6	2133,0	1,7764	6,8943
6,0	158,84	0,0011009	0,3155	670,42	2755,5	2085,0	1,9308	6,7575
8,0	170,41	0,0011150	0,2403	720,94	2767,5	2046,5	2,0457	6,6594
10	179,88	0,0011274	0,1943	762,6	2776,2	2013,6	2,1382	6,5828
15	198,29	0,0011539	0,1317	844,7	2789,9	1945,2	2,3145	6,4406
20 30	212,37 233,84	0,0011766 0,0012163	0,0995 0,0666	908,6 1007,4	2797,2 2802,3	1888,6 1793,9	2,4469 2,6455	6,3367 6,1837
40	250,33	0,0012103	0,0498	1087,4	2800,3	1712,9	2,7965	6,0685
50	263,91	0,0012858	0,0394	1154,5	2794,2	1639,7	2,9206	5,9735
60	275,55	0,0013187	0,0324	1213,7	2785,0	1517,3	3,0273	5,8908
70	285,79	0,0013513	0,0274	1267,4	2773,5	1506,0	3,1219	5,8162
80	294,97	0,0013842	0,0235	1317,1	2759,9	1442,8	3,2076	5,7471
90	303,31	0,001418	0,0205		2744,6	1380,9	3,2867	5,6820
100 110	310,96 318,05	0,001453 0,001489	0,0180 0,0160	1408,0 1450,6	2727,7 2709,3	1319,7 1258,7	3,3605 3,4304	5,6198 5,5595
120	324,65	0,001489	0,0143	1491,8	2689,2	1197,4	3,4972	5,5002
130	330,83	0,001527	0,0143	1532,0	2667,0	1135,0	3,5616	5,4408
140	336,64	0,001611	0,0115	1571,6	2642,4	1070,7	3,6242	5,3803
150	342,13	0,001658	0,0103	1611,0	2615,0	1004,0	3,6859	5,3178
160	347,34	0,001710	0,0093	1650,5	2584,9	934,3	3,7471	5,2531
180 200	356,96 365,70	0,001840 0,002037	0,0075	1734,8 1826,5	2513,9 2418,4	779,1 591,9	3,8765 4,0149	5,1128 4,9412
210	369,78	0,002037	0,0059	1886,3	2347,6	461,3	4,1048	4,8223
220	373,69	0,002671	0,0037	2011,1	2195,6	184,5	4,2947	4,5799
221,2	374,15		0317		07,4	0	4,4	29

Wasserdampftafel: Überhitzter Dampf

Name:

p	t	v	h	s	t	v	h	S
bar	°C	m³/kg	kJ/kg	kJ/kg K	°C	m³/kg	kJ/kg	kJ/kg K
10	200	0,2059	2826,8	6,6922	450	0,3303	3370,8	7,6190
	250 300	0,2327 0,2580	2943,0 3052,1	6,9259 7,1251	500 550	0,3540 0,3775	3478,3 3587,1	7,7627 7,8991
	350	0,2824	3158,5	7,3031	600	0,3773	3697,4	8,0292
	400	0,3065	3264,4	7,4665	650	0,4244	3809,3	8,1537
15	200	0,1324	2794,7	6,4508	450	0,2191	3364,3	7,4253
	250	0,1520	2923,5	6,7099	500	0,2350	3472,8	7,5703
	300 350	0,1697 0,1865	3038,9 3148,7	6,9207 7,1044	550 600	0,2509 0,2667	3582,4 3693,3	7,7077 7,8385
	400	0,2029	3256,6	7,2709	650	0,2824	3805,7	7,9636
20	250	0,1114	2902,4	6,5454	500	0,1756	3467,1	7,4323
	300	0,1255	3025,0	6,7696	550	0,1876	3577,6	7,5706
	350 400	0,1386	3138,6 3248,7	6,9596	600 650	0,1995	3689,2	7,7022
	450	0,1511 0,1634	3357,8	7,1296 7,2859	700	0,2114 0,2232	3802,1 3916,5	7,8279 7,9485
30	250	0,07055	2854,8	6,2857	500	0,11608	3456,2	7,2345
	300	0,08116	2995,1	6,5422	550	0,12426	3567,2	7,3748
	350 400	0,09053	3117,5	6,7471	600	0,13234	3681,0	7,5079
	450	0,09931	3232,5 3344,6	6,9246 7,0854	650 700	0,14036 0,14832	3795,0 3910,3	7,6349 7,7564
40	300	0,05883	2962,0	6,3642	550	0,09260	3558,6	7,2333
	350	0,06645	3095,1	6,5870	600	0,09876	3672,8	7,3680
	400	0,07338	3215,7	6,7733	650	0,10486	3787,9	7,4961
	450 500	0,07996 0,08634	3331,2 3445,0	6,9388 7,0909	700 750	0,11090 0,11689	3904,1 4021,4	7,6187 7,7363
60	300	0,03614	2885,0	6,0692	550	0,06094	3539,3	7,0285
	350	0,04222	3045,8	6,3386	600	0,06518	3656,2	7,1664
	400	0,04738	3180,1	6,5462	650	0,06936	3773,5	7,2971
	450 500	0,05210 0,05659	3303,5 3422,2	6,7230 6,8818	700 750	0,07348 0,07755	3891,7 4010,7	7,4217 7,5409
80	300	0,02426	2786,8	5,7942	550	0,04510	3519,7	6,8778
	350	0,02995	2989,9	6,1349	600	0,04839	3639,5	7,0191
	400	0,03431	3141,6	6,3694	650	0,05161	3759,2	7,1523
	450 500	0,03814 0,04170	3274,3 3398,8	6,5597 6,7262	700 750	0,05477 0,05788	3879,2 3999,9	7,2790 7,3999
100	350	0,02242	2925,8	5,9489	600	0,03832	3622,7	6,9013
	400	0,02641	3099,9	6,2182	650	0,04096	3744,7	7,0373
	450	0,02974	3243,6	6,4243	700	0,04355	3866,8	7,1660
	500 550	0,03276 0,03560	3374,6 3499,8	6,5994 6,7564	750 800	0,04608 0,04858	3989,1 4112,0	7,2886 7,4058
150	350	0,01146	2694,8	5,4467	600	0,02488	3579,8	6,6764
150	400	0,01566	2979,1	5,8876	650	0,02677	3708,3	6,8195
	450	0,01845	3159,7	6,1468	700	0,02859	3835,4	6,9536
	500 550	0,02080 0,02291	3310,4 3448,3	6,3487 6,5213	750 800	0,03036 0,03209	3962,1 4088,6	7,0806 7,2013
200	400	0,00995	2820,5	5,5485	650	0,01967	3671,1	6,6554
	450	0,01271	3064,3	5,9089	700	0,02111	3803,8	6,7953
	500	0,01477	3241,1	6,1456	750	0,02250	3935,0	6,9267
	550	0,01655	3394,1	6,3374	800	0,02385	4065,3	7,0511
	600	0,01816	3535,5	6,5043				

Aufgabe 9: Eiswasser-Kälteanlage

osotzt Fino solcho

[Punkte: 22]

Kälteanlagen mit Eisspeicher werden oft in der Lebensmittelindustrie eingesetzt. Eine solche Anlage steht z.B. bei der Emmi Frischprodukte AG in Emmen, um die Milchprodukte zu kühlen.

Der Verdampfer der Kälteanlage befindet sich in einem Schwimmbad-grossen Becken. Durch die Verdampfung des Kältemittels bildet sich an den Rohren eine Eisschicht und es wird so genanntes Eiswasser erzeugt. Wir nehmen an, dass die Temperatur des Eiswassers 0°C beträgt (in Realität leicht höher). Der Kondensatorwärmestrom wird an das Rückkühlwasser abgegeben; die Temperaturen sind im Schema eingetragen.

Im Kühlkreislauf ist kein Wärmezähler installiert. Sie erhalten deshalb von Ihrer Chefin die Aufgabe, die Kälteleistung der Eiswasser-Kälteanlage auf Basis der vorhandenen Daten zu bestimmen und die Anlage energetisch zu bewerten.

Für Ihre Analyse stehen Ihnen folgende Angaben und Annahmen zur Verfügung:

- Kältemittel: Ammoniak NH₃, R717, log p, h-Diagramm siehe S. 39
- Schrauben-Kompressor der Kälteanlage:
 - Elektrische Leistungsaufnahme Kompressor $P_{el}=240~\mathrm{kW}$
 - Isentropen-Wirkungsgrad $\eta_s = 0.80$
 - Kompressor-Wirkungsgrad (mechanisch und elektrisch zusammen) $\eta_{Kp} = 0.92$
- Sauggasüberhitzung: 5 K,
- Kondensatunterkühlung: 2 K
- Die Druckverluste im Verdampfer und Kondensator können vernachlässigt werden.

- Die Drosselung erfolgt isenthalp.
- Temperaturdifferenzen in Verdampfer und Kondensator:
 - Verdampfer: Speichertemperatur (Eiswasser) zu Verdampfungstemperatur: 10 K
 - Kondensator: Kondensationstemperatur zu Austrittstemp. Rückkühlwasser $\vartheta_{R\omega}$: 3 K
- Erstarrungsenthalpie von Wasser zu Eis: $\Delta h_E = 333 \text{ kJ/kg}$
- Dichte und Wärmekapazität Rückkühlwasser: $\rho_W=992.3~{\rm kg/m^3},~c_{pW}=4.2~{\rm kJ/kg\,K}$

Die folgende Aufgabe besteht aus zwei Teilen. Teil 2 kann unabhängig von Teil 1 gelöst werden.

Teil 1

a. Zeichnen Sie den Kreisprozess der Kälteanlage in das $\log p$, h-Diagramm auf S. 39 ein und füllen Sie die untenstehende Tabelle mit den Zustandspunkten gemäss Schema aus!

	p [bar(a)]	ϑ [°C]	h [kJ/kg]
1	2.91	-5	1461.85
2s	13.50	106.9	1690.11
2	13.50	129.3	1747.18
3	13.50	33	353.22
4	-2.91	-10	353.22

- b. Wie gross ist die Kälteleistung der Kälte
anlage? (\dot{Q}_K = 1078.72 kW)
- c. Berechnen Sie den Volumenstrom des Rückkühlwassers! ($\dot{V}_R=155.30~m^3/h$)
- d. Zur Beurteilung der Effizienz sind folgende Kennwerte zu berechnen: die innere Leistungszahl ε_{KA} , der Coefficient of Performance COP_{KA} und der Gütegrad ζ . ($\varepsilon_{KA}=3.89,\ COP_{KA}=3.57,\ \zeta=0.611$)

Teil 2 (Kann unabhängig von Teil 1 gelöst werden! Falls Sie in Teil 1 die Kälteleistung nicht bestimmen konnten, rechnen Sie mit einem Wärmestrom von 770 kW.)

- e. Berechnen Sie die Eismasse, welche innerhalb einer Stunde gebildet wird? Sie können annehmen, dass die Kälteanlage in diesem Zeitraum stationär betrieben und dass über den Kühlkreislauf keine Wärme zugeführt wird. ($\dot{m}_{Eis} = 9.27 \ t/h$)
- f. Im Winter ist die Temperatur der Wärmesenke (Umgebungsluft) tiefer. Die Kondensationstemperatur ist um 15 K tiefer als im Sommer. Schätzen Sie den COP der Kälteanlage ab! Sie können annehmen, dass der Gütegrad unabhängig vom Temperaturhub ist.

Hinweis: Machen Sie eine ingenieurmässige Annahme für den Gütegrad ζ , falls Sie diesen in Teil 1 nicht berechnen konnten. $(COP_{KA} = 5.36)$

g. In Ihrer Analyse stellen Sie fest, dass die Sauggasüberhitzung nicht über den gesamten Betriebsbereich aufrecht erhalten werden kann. Eine Optimierungsmöglichkeit ist der Einbau eines internen Wärmeübertragers. Dabei wird mit Hilfe des Kältemittelkondensats das Sauggas überhitzt. Zeichnen Sie das dazugehörige Schema und zeigen Sie die Veränderungen qualitativ in einem $\log p, h$ -Diagramm.

 $\log p, h\text{-}\mathbf{Diagramm}$ für Ammoniak

THFL+SY, FS15, B. Wellig, J. Worlitschek, E. Casartelli, L. Fischer, L. Mangani