

Practical Machine Learning with Scikit-Learn

Lecture 11 – HCCDA-AI

Imran Nawar

Introduction to Scikit-Learn

What is Scikit-Learn?

- · A free, open-source Python library for machine learning.
- · Built on top of NumPy, SciPy, and Matplotlib.
- Developed initially by David Cournapeau during Google Summer of Code (2007).
- Licensed under BSD, widely adopted and actively maintained.

Installation and Setup:

pip install scikit-learn

import sklearn


```
(DIP_7th) PS C:\Users\PC> pip install scikit-learn
Collecting scikit-learn
 Downloading scikit learn-1.6.1-cp312-cp312-win amd64.whl.
metadata (15 kB)
Collecting numpy>=1.19.5 (from scikit-learn)
 Downloading numpy-2.2.2-cp312-cp312-win_amd64.whl.metadat
a (60 kB)
Collecting scipy>=1.6.0 (from scikit-learn)
 Downloading scipy-1.15.1-cp312-cp312-win_amd64.whl.metada
ta (60 kB)
Collecting joblib>=1.2.0 (from scikit-learn)
 Using cached joblib-1.4.2-py3-none-any.whl.metadata (5.4)
kB)
Collecting threadpoolctl>=3.1.0 (from scikit-learn)
  Using cached threadpoolctl-3.5.0-py3-none-any.whl.metadat
a (13 kB)
Downloading scikit_learn-1.6.1-cp312-cp312-win_amd64.whl (1
                                           - 11.1/11.1 MB 2
       eta 0:00:00
Jsing cached joblib-1.4.2-py3-none-any.whl (301 kB)
Downloading numpy-2.2.2-cp312-cp312-win_amd64.whl (12.6 MB)
                                          - 12.6/12.6 MB
      eta 0:00:00
Downloading scipy-1.15.1-cp312-cp312-win_amd64.whl (43.6 MB
                                          🗕 43.6/43.6 MB
       eta 0:00:00
Jsing cached threadpoolctl-3.5.0-py3-none-any.whl (18 kB)
Installing collected packages: threadpoolctl, numpy, joblib
 scipy, scikit-learn
Successfully installed joblib-1.4.2 numpy-2.2.2 scikit-lear
n-1.6.1 scipy-1.15.1 threadpoolctl-3.5.0
```

Introduction to Scikit-Learn

What can it do?

- Scikit-Learn supports a wide range of machine learning tasks:
 - Supervised learning
 - Regression, Classification
 - Unsupervised learning
 - Clustering, Dimensionality Reduction
 - · Data Preprocessing
 - · Cleaning, encoding, scaling, and feature selection.

Why use Scikit-Learn?

- Ease of Use: Consistent API design makes it beginner-friendly.
- Comprehensive Documentation: Extensive tutorials and examples.
- Strong community and ecosystem integration (NumPy, Pandas, Matplotlib)

Data Preprocessing with Scikit Learn

> Handling Missing Data:

• Use SimpleImputer to fill missing values.

imputer = SimpleImputer(strategy='mean')
X train = imputer.fit transform(X train)

from sklearn.impute import SimpleImputer

Input data		Features matrix				
1.0	January	1.5		1.0	0	1.5
1.4	February	0.3	→	1.4	1	0.3
5.0	March	1		5.0	2	1

> Encoding Categorical Variables:

• Use OneHotEncoder for nominal data and LabelEncoder for ordinal data.

> Feature Scaling:

- StandardScaler: Standardize features.
- MinMaxScaler: Normalize to a fixed range.
- > Feature Extraction / Dimensionality Reduction:
 - Use PCA for dimensionality reduction.

Data Preprocessing

Building Machine Learning Models

Scikit learn models follow a simple, shared pattern:

Step	Description		
1. Import Model	Choose a model from sklearn.linear_model, sklearn.tree, etc.		
2. Initialize Model	Set hyperparameters when creating the model object		
3. Split Data	Use train_test_split() to split your dataset		
4. Train (fit)	Learn model parameters using training data		
5. Predict (predict)	Generate predictions on unseen (test) data		

Building Machine Learning Models

Example: Linear Regression

```
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

model = LinearRegression()
model.fit(X_train, y_train)
predictions = model.predict(X_test)
```

Model Evaluation Metrics

- Evaluation metrics are used to assess the performance of machine learning models.
- Different tasks require different metrics, depending on the type of prediction problem.
- For Classification Tasks:
 - · Accuracy:
 - The proportion of correct predictions out of all predictions made.

from sklearn.metrics import accuracy_score
accuracy = accuracy_score(y_true, y_pred)

• Precision, Recall, F1-Score: For imbalanced datasets.

from sklearn.metrics import precision_score, recall_score, f1_score
precision = precision_score(y_true, y_pred)
recall = recall_score(y_true, y_pred)
f1 = f1_score(y_true, y_pred)

- Confusion Matrix:
 - Visual representation of model performance.
 - Showing true positives, false positives, true negatives, and false negatives.

from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_true, y_pred)

Confusion Matrix

Accuracy = (TP+TN) / (TP+FP+TN+FN)

Precision = TP/(TP+FP)

Scikit-learn Algorithm Cheat Sheet

Practical Applications of Scikit-Learn

1. Predictive Maintenance (Preventing Equipment Failure)

- Manufacturing industries often face costly delays due to unexpected machine breakdowns.
- By installing sensors that collect data like temperature and vibration, companies can monitor equipment health in real-time.
- Using Scikit-Learn's **Random Forest** algorithm, one manufacturing plant trained a model to predict failures in advance. This allowed them to schedule maintenance proactively, reducing downtime by **30**% with a prediction accuracy of **95**%.

2. Customer Segmentation (Smarter Marketing Strategies)

- To better target their marketing efforts, an e-commerce business analyzed customer purchasing behavior. With the help of **K-Means** clustering from Scikit-Learn, they grouped customers into meaningful segments such as frequent buyers, seasonal shoppers, and discount seekers.
- This segmentation helped tailor promotions and messages, ultimately increasing marketing campaign effectiveness by **20**%.

Predictive Maintenance and Customer Segmentation

Predictive Maintenance

Identifying equipment failure risks using data.

Customer Segmentation

Grouping customers for targeted marketing strategies.

Practical Applications of Scikit-Learn

3. Fraud Detection (Catching Suspicious Transactions)

- Financial institutions are constantly under threat from fraudulent transactions. One bank used Scikit-Learn's **Isolation Forest** algorithm to detect outliers in customer spending patterns.
- By flagging suspicious activity in real time, the bank was able to act faster and reduce fraud-related losses by **40**%.

Recent Advancements and Future Directions

Integration with Deep Learning Frameworks:

- Scikit-Learn can be used alongside TensorFlow and PyTorch.
- Example: Use Scikit-Learn for preprocessing data before feeding it into a TensorFlow neural network.

```
from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

X_train = scaler.fit_transform(X_train)

X_test = scaler.transform(X_test)
```

Automated Machine Learning (AutoML):

- Tools like **Auto-Sklearn** automate model selection, hyperparameter tuning, and feature engineering.
- **Example:** Auto-Sklearn can automatically select the best model for a dataset, saving hours of manual effort.

```
from autosklearn.classification import AutoSklearnClassifier

automl = AutoSklearnClassifier(time_left_for_this_task=120)
automl.fit(X_train, y_train)
```

Additional Resources

Books:

- "Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow" by Aurélien Géron.
- "Python Machine Learning" by Sebastian Raschka.
- "The Hundred Page Machine Learning" by Andriy Burkov

Documentation and Tutorials:

· Official Scikit-Learn Documentation.

Hands-On Machine Learning with Scikit-Learn, Keras & TensorFlow Concepts, Tools, and Techniques to Build Intelligent Systems

Thank You