Introduction to Machine Learning

Supervised Regression: Polynomial Regression Models

Learning goals

- Learn about general form of linear model
- See how to add flexibility by using polynomials
- Understand that more flexibility is not necessarily better

INCREASING FLEXIBILITY

- Recall our definition of LM: model y as linear combo of features
- But: isn't that pretty inflexible?
- E.g., here, *y* does not seem to be a linear function of *x*...

... but relation to x^3 looks pretty linear!

- Many other trafos conceivable, e.g., $\sin(x_1)$, $\max(0, x_2)$, $\sqrt{x_3}$,...
- Turns out we can use LM much more flexibly (and: it's still linear)
 interpretation might get less straightforward, though

THE LINEAR MODEL

• Recall what we previously defined as LM:

$$f(x) = \theta_0 + \sum_{j=1}^{p} \theta_j x_j = \theta_0 + \theta_1 x_1 + \dots + \theta_p x_p$$
 (1)

- Actually, just special case of "true" LM
- The linear model with basis functions ϕ_i :

$$f(\mathbf{x}) = \theta_0 + \sum_{j=1}^{p} \theta_j \phi_j(x_j) = \theta_0 + \theta_1 \phi_1(x_1) + \cdots + \theta_p \phi_p(x_p)$$

• In Eq. 1, we implicitly use identity trafo: $\phi_j = \mathrm{id}_x : x \mapsto x \quad \forall j \rightsquigarrow$ we often say LM and imply $\phi_j = \mathrm{id}_x$

THE LINEAR MODEL

- Are models like $f(\mathbf{x}) = \theta_0 + \theta_1 x^2$ really linear?
 - Certainly not in covariates:

$$a \cdot f(x,\theta) + b \cdot f(x_*,\theta) = \theta_0(a+b) + \theta_1(ax^2 + bx_*^2)$$

$$\neq \theta_0 + \theta_1(ax + bx_*)^2$$

$$= f(ax + bx_*,\theta)$$

• Crucially, however, linear in params:

$$a \cdot f(x, \theta) + b \cdot f(x, \theta^*) = a\theta_0 + b\theta_0^* + (a\theta_1 + b\theta_1^*)x^2$$
$$= f(x, a\theta + b\theta^*)$$

• NB: we still call design matrix **X**, incorporating possible trafos:

$$\mathbf{X} = \begin{pmatrix} 1 & \phi_1(x_1^{(1)}) & \dots & \phi_p(x_p^{(1)}) \\ \vdots & \vdots & & \vdots \\ 1 & \phi_1(x_1^{(n)}) & \dots & \phi_p(x_p^{(n)}) \end{pmatrix}$$

→ solution via normal equations as usual

POLYNOMIAL REGRESSION

- Simple & flexible choice for basis funs: *d*-polynomials
- Idea: map x_i to (weighted) sum of its monomials up to order $d \in \mathbb{N}$

$$\phi^{(d)}: \mathbb{R} \to \mathbb{R}, \ x_j \mapsto \sum_{k=1}^d \beta_k x_j^k$$

— weighted sum

- How to estimate coefficients β_k ?
 - Both LM & polynomials linear in their params → merge

• E.g.,
$$f(\mathbf{x}) = \theta_0 + \theta_1 \phi^{(d)}(x) = \theta_0 + \sum_{k=1}^d \theta_{1,k} x^k$$

$$\rightsquigarrow \mathbf{X} = \begin{pmatrix} 1 & x^{(1)} & (x^{(1)})^2 & \dots & (x^{(1)})^d \\ \vdots & \vdots & & \vdots \\ 1 & x^{(n)} & (x^{(n)})^2 & \dots & (x^{(n)})^d \end{pmatrix}, \quad \boldsymbol{\theta} \in \mathbb{R}^{d+1}$$

POLYNOMIAL REGRESSION – EXAMPLES

Univariate regression, $d \in \{1, 5\}$

Bivariate regression, d = 7

Data-generating process:

$$y = 0.5\sin(x) + \epsilon,$$

$$\epsilon \sim \mathcal{N}(0, 0.3^2)$$

Model:

$$f(x) = \theta_0 + \sum_{k=1}^d \theta_{1,k} x^k$$

$$y = 1 + 2x_1 + x_2^3 + \epsilon,$$

$$\epsilon \sim \mathcal{N}(0, 0.5^2)$$

Model:

$$f(x) = \theta_0 + \theta_1 x_1 + \sum_{k=1}^{7} \theta_{2,k} x_2^k$$

COMPLEXITY OF POLYNOMIALS

◆ Higher d allows to learn more complex functions
 → richer hyp space / higher capacity

- Should we then simply let $d \to \infty$?
 - No: data contains random noise not part of true DGP
 - Model with overly high capacity learns all those spurious patterns → poor generalization to new data
 - Also, higher d can lead to oscillation esp. at bounds (Runge's phenomenon¹)

¹ Interpolation of m equidistant points with d-polynomial only well-conditioned for $d < 2\sqrt{m}$. Plot: 50 points, models with d > 14 instable (under equidistance assumption).

BIKE RENTAL EXAMPLE

- OpenML task dailybike: predict rentals from weather conditions
- \bullet Hunch: non-linear effect of temperature \leadsto include with polynomial:

$$f(\mathbf{x}) = \sum_{k=1}^d heta_{ ext{temperature},k} x_{ ext{temperature}}^k + heta_{ ext{season}} x_{ ext{season}} + heta_{ ext{humidity}} x_{ ext{humidity}}$$

• Test error² confirms suspicion \leadsto minimal for d=3

Conclusion: flexible effects can improve fit/performance

²Reliable insights about model performance only via separate test dataset not used during training (here computed via 10-fold *cross validation*). Much more on this in Evaluation chapter.