FRL Definitions

- **State-Space**: The set of all possible states.
- **Optimal Solution**: A solution that meets certain criteria, such as minimizing cost, maximizing utility, or achieving the best possible outcome, given a specific problem and its constraints. It is the most desirable solution among all possible solutions available for a given problem.
- **Polynomial problems**: These are problems for which the time complexity of the best-known algorithm is polynomial in the size of the input. In other words, the time taken to solve these problems grows at most polynomially with the size of the input.
- **Non-polynomial problems**: These are problems for which the time complexity of the best-known algorithm is non-polynomial in the size of the input. In other words, the time taken to solve these problems grows exponentially or faster with the size of the input.
- **Heuristic**: The term **Heuristic** originates from the Greek word "heuriskein," which means "to discover" or "to find." It is a strategy that helps to efficiently navigate complex situations or tasks, often by simplifying the problem or focusing attention on relevant information.

Basics

- With Artificial Intelligence, our goal is to build machines and softare with intelligence similar to humans. These machines will be able to perform thinking, reasoning, decision-making, problem solving, natural language processing, just like humans.
- The main goals of an artificially intelligent system are:
 - Reasoning
 - Learning
 - Problem Solving
 - Perception ... like a human.
- When it comes to solving a problem, you need to represent the problem in such a way that the machine can understand it. Represent:
 - Precisely
 - o In such a way that it can be analyzed
- The major branches of AI are:
 - Perceptive
 - Vision
 - Robotics
 - o Expert Systems: stores knowledge, makes inferences from it
 - Learning systems
- Views of AI:

Thinking humanly	Thinking Rationally
Acting humanly	Acting Rationally

- Things Al Can Do:
 - **Natural Language Processing (NLP)**: Al can understand, interpret, and generate human language, enabling applications like chatbots and language translation.
 - **Image and Video Recognition**: Al can analyze and identify objects, faces, and scenes in images and videos, useful in security and medical imaging.
 - **Predictive Analytics**: Al can analyze historical data to make predictions about future events, aiding decision-making in finance and healthcare.
 - **Robotics and Automation**: Al can control robots and automate tasks, advancing manufacturing and logistics.
 - **Recommendation Systems**: Al can personalize content and product recommendations based on user behavior, enhancing experiences on e-commerce sites and streaming services.
- Categories of Artificially Intelligent Systems:
 - Narrow AI (Weak AI): These are AI systems designed to handle a specific task or a narrow range
 of tasks. Examples include virtual assistants like Siri and Alexa, recommendation algorithms on
 Netflix, and image recognition systems.
 - General AI (Strong AI): This is a theoretical concept where AI possesses the ability to
 understand, learn, and apply knowledge across a wide range of tasks, much like a human being.
 General AI can reason, solve problems, and make decisions autonomously in any situation.
 - Superintelligence: This refers to AI that surpasses human intelligence and capabilities. It can
 perform tasks and solve problems beyond human comprehension, potentially leading to
 breakthroughs in various fields. Superintelligence is still a hypothetical concept and has not been
 achieved yet.

Searching Techniques

- Uninformed & Informed Search
- Difference: +: Informed, -: Uninformed
 - + Utilizes specific information about the problem domain to guide the search process.
 - Lacks specific domain knowledge and relies solely on general search strategies. It is only aware of the start & goal state.
 - + Generally more efficient in terms of time and space complexity.
 - May be less efficient compared to informed search algorithms, especially for complex problems.
 - + Designed to provide an optimal solution.
 - May or may not provide an optimal solution.
 - + Examples include A* search, heuristic search, and informed hill climbing.
 - Examples include depth-first search, breadth-first search, and uniform-cost search.

State-Space Search

- State-Space: The set of all possible states.
- Set: {S,A,Action(s), Result(s,a), Cost(s,a)}

- o S: Start, Goal
- A: The set of all possible actions.
- Action(s): The action we chose to execute.
- Result(s,a): State formed as a Result of the action.
- o Cost(s,a): Cost of execute the action. The goal is to minimize the cost.

Breadth-First Search

- Type: Uninformed Search.
- Based on: FIFO (Queue).
- Time complexity: \$O(b^d)\$
 - o b: Branch factor, maximum number of children of a node.
 - o d: Depth: Maximum Level of the tree, root node is at Level 0.
- Optimal, provides the best solution, if costs of all nodes is the same.
- Complete, always provides a solution.
- Example 0 (Start: A, Goal: G):
 - 1. A
 - 2. ABCD
 - 3. BCDEF
 - 4. €DEFGH
 - 5. DEFGHI
 - 6. EFGHIJK
 - 7. FGHIJK
 - 8. GHIJKL
 - o G was found. Result: ACG.

• Note the implementation of FIFO: Elements are removed from LHS, and inserted from RHS.

Depth-First Search

- Type: Uninformed Search.
- Based on: LIFO (Stack).
- Time complexity: \$O(b^d)\$
 - o b: Branch factor, maximum number of children of a node.
 - o d: Depth: Maximum Level of the tree, root node is at Level 0.
- Not Optimal, may not provide the best solution.
- Not Complete, may not provide a solution.
- Example 0 (Start: A, Goal: D):
 - 1. A
 - 2. ABC
 - 3. BCFG
 - 4. BFG
 - 5. BF
 - 6. BDE
 - 7. DE

- 8. D
- o D was found. Result: ACG
- Sequence: ACGFBED
- Note the implementation of LIFO: Elements are removed from RHS, and inserted from RHS.

Bi-directional Search

- Type: Depends on algorithm used.
- 2 simultaneous search, one from initial node to goal node, another from goal node to initial node.
- Time complexity: \$O(b^d+b^d)=O(2b^{d/2})\$
 - o b: Branch factor, maximum number of children of a node.
 - o d: Depth: Maximum Level of the tree, root node is at Level 0.
- Complete only in case of Breadth-First Search.

- Type: Blind / Uninformed Search.
- Based on: Breadth-First Search
- Time complexity: \$O(b^d)\$
 - o b: Branch factor, maximum number of children of a node.
 - o d: Depth: Maximum Level of the tree.
- Example 0:
 - Actions (A): UP (★), DOWN (♣), LEFT (♠), RIGHT (➡)
 - o Start | End:

	S			G	
1	2	3	 1	2	3
	4	6	4	5	6
7	5	8	7	8	

1. Step 1:

	0		->		t			→			1	
1	2	3	->		2	3	 1	2	3	 1	2	3
	4	6	->	1	4	6	4		6	7	4	6
7	5	8	->	7	5	8	7	5	8		5	8

2. Step 2 (from puzzle ⇒):

	0		->		t			1			-			→	
1	2	3	->	1		3	 1	2	3	 1	2	3	 1	2	3
4		6	->	4	2	6	4	5	6		4	6	4	6	
7	5	8	->	7	5	8	7		8	7	5	8	7	5	8

3. Step 3 (from puzzle ♣):

	0		->		-			t			→	
1	2	3	->	1	2	3	 1	2	3	 1	2	3
4	5	6	->	4	5	6	4		6	4	5	6
7		8	->		7	8	7	5	8	7	8	

^{4.} Step 4: Puzzle 3 is the Goal State.

Heuristic in Artificial Intelligence

- The term "heuristic" originates from the Greek word "heuriskein," which means "to discover" or "to find." It is a strategy that helps to efficiently navigate complex situations or tasks, often by simplifying the problem or focusing attention on relevant information.
- We use heuristic functions when we want to convert non-polynomial problems to polynomial problems (NP→P).

[•] At every step, all valid moves are executed for all states, and all resultant states are determined.

• **Polynomial problems**: These are problems for which the time complexity of the best-known algorithm is polynomial in the size of the input. In other words, the time taken to solve these problems grows at most polynomially with the size of the input.

- Non-polynomial problems: These are problems for which the time complexity of the best-known algorithm is non-polynomial in the size of the input. In other words, the time taken to solve these problems grows exponentially or faster with the size of the input.
- It provides a good solution but **not an optimal solution**. This is because there may be other obstacles (like an infinite loop) in the path the algorithm has chosen. But in most cases, it provides a more efficient approach to brute-forcing our way to the solution.
- Examples of some functions:
 - **Eucledian Distance**: $\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$, using this we can find the shortest path from point a to point b.
 - Manhattan Distance:

		S		->		G	
	1	3	2	->	1	2	3
•	6	5	4	->	4	5	6
•		8	7	->	7	8	

- Manhattan Distance: \$0+1+1+2+0+2+2+0=8\$
- The distance is calculated by the number of steps each number needs to be moved, to reach the Goal state (G) from the Current state.

Searching Techniques

8-Puzzle Problem with Heuristic

- Type: Informed Search.
- Based on: Number of misplaced tiles
- Example 0:
 - Actions (A): UP (1), DOWN (1), LEFT (→), RIGHT (→)
 - Start | End:

		S			G	
-	1	2	3	 1	2	3
-		4	6	4	5	6
•	7	5	8	7	8	

■ Number of misplaced tiles, \$h=3\$

1. Step 1:

_		0		->		t			→			1	
	1	2	3	->		2	3	 1	2	3	 1	2	3
-		4	6	->	1	4	6	4		6	7	4	6
-	7	5	8	->	7	5	8	7	5	8		5	8

■ Number of misplaced tiles, \$h=4,2,4\$

We will move forward with the lowest heuristic value.

2. Step 2 (from puzzle ⇒):

	0		->		t			1			-			→	
1	2	3	->	1		3	 1	2	3	 1	2	3	 1	2	3
4		6	->	4	2	6	4	5	6		4	6	4	6	
7	5	8	->	7	5	8	7		8	7	5	8	7	5	8

■ Number of misplaced tiles, \$h=3,1,3,3\$

3. Step 3 (from puzzle **↓**):

	0		->		-			t			→	
1	2	3	->	1	2	3	 1	2	3	 1	2	3
4	5	6	->	4	5	6	4		6	4	5	6
7		8	->		7	8	7	5	8	7	8	

- Number of misplaced tiles, \$h=2,2,0\$
- 4. Step 4: For Puzzle ➡, \$h=0\$, and it is the Goal State.
- 5. We had to traverse through a lot less states to reach the Goal state (G), compared to a typical Uninformed Search Technique.

Generate and Test

- 1. Generate a possible solution.
- 2. Test to see if this is an actual solution.
- 3. If a solution is found, otherwise repeat.
- Properties of Good Generators:
 - Complete
 - Non-redundant: They must not provide solutions which have already been generated in the past.
 - **Informed**: The Generator must have atleast some basic idea which it can use to generate an efficient solution.

Machine Learning

- Artificial Intelligence: Aimed at enabling computers to perform human-like tasks and simulate human behaviour.
- Machine Learning: Tries to solve a specific problem, and makes predictions using data.
- Data Science: Attempts to find patterns and find insights from data.

Types of Machine Learning

- Supervised: Learning where the model is trained on labeled data (all tuples have a class label associated with them) and learns to make predictions based on examples.
- Unsupervised: Learning from data without labeled responses, finding patterns and relationships on its own.

• Reinforcemend: Learning through trial and error, where an agent learns to make decisions by interacting with an environment and receiving feedback (either positive/reward or negative/penalty).