Sparse MRI:

The Application of Compresses Sensing for Rapid MR Imaging

1. Figures

- 1.1. Figure 21.2. Figure 4
- 1.3. Figure 3 1.4. Figure 6

2. CS SENSE

1. Figures

1.1. Figure 2

1.2. Figure 4

PSF(Point Spread Function)

1.2. Figure 4

The wavelet TPSF(Transform Point Spread Function)

Transform-domain sparsity of images

- + TV 자체는 wavelet에 비해 sparsity ↓ But, l1 min으로 objective function을 세우면 smoothing property 를 살릴 수 있음 => 이게 아닌가
- + l1 norm으로 인해 variance 가 적은 부분들이 날라가니까 edge 가 아니라 'edge position'의 info만 남아짐

1.4. Figure 6

Iteration: 20 Alpha = 0.05 Beta = 0.6 Smoothing factor: 1e-6 Wavelet weight = 1e-3 TV weight = 1e-3

[Acquired data ratio, Density reduction factor]

1.4. Figure 6

Iteration: 50 Alpha = 0.05 Beta = 0.6

Smoothing factor: 1e-6

Noise = 0.05

 $\mathsf{mask} \propto R^3$, 0.3

B

1.4. Figure 6

Iteration: 20 Alpha = 0.05 Beta = 0.6

Smoothing factor: 1e-6

 $\mathsf{mask} \propto \mathit{R}^3$, 0.3

1.4. Figure 6

Iteration: 20
Alpha = 0.05
Beta = 0.6
Smoothing factor: 1e-6

Wavelet weight = 1e-3 TV weight = 1e-2

1.4. Figure 6

Smoothing factor: 1e-6 $\mathsf{mask} \propto R^1$, 0.5

1.4. Figure 6

Smoothing factor : 1e-6 mask $\propto R^2$, 0. 4

1.4. Figure 6

Iteration: 80 Alpha = 0.05 Beta = 0.6

Smoothing factor: 1e-6

 $\mathsf{mask} \propto R^2, 0.3$

1.4. Figure 6

Iteration: 80
Alpha = 0.05
Beta = 0.6
Smoothing factor: 1e-6
mask $\propto R^3$, 0.25

1.4. Figure 6

Smoothing factor: 1e-6

 $\mathsf{mask} \propto R^3, 0.2$

1.4. Figure 6

Iteration: 80 Alpha = 0.05 Beta = 0.6

Smoothing factor: 1e-6

 $\mathsf{mask} \propto R^5, 0.1$

2. CS SENSE

 $minimize \quad \|\Psi m\|_1$

Sparse MRI : $s.t. \quad \|\mathcal{F}_u m - y\|_2 < \epsilon$

cs sense: $\min_{\mathbf{f}}(\|\mathbf{\Psi}\mathbf{f}\|_1 + \alpha\|\mathbf{f}\|_{TV}) \text{ s.t.} \|\mathbf{E}\mathbf{f} - \mathbf{d}\|_2 \le \epsilon$

Ground Truth

Sparse SENSE

CS SENSE

Smoothing factor: 1e-6

 $\mathsf{mask} \propto R^1, 0.5$

Ground Truth

Sparse SENSE

CS SENSE

Smoothing factor: 1e-6

 $\mathsf{mask} \propto R^2$, 0.4

Ground Truth

Sparse SENSE

CS SENSE

Smoothing factor: 1e-6

 $\mathsf{mask} \propto R^2, 0.3$

Ground Truth

Sparse SENSE

CS SENSE

Smoothing factor: 1e-6

 $\mathsf{mask} \propto R^3$, 0.25

1.4. Figure 6

Ground Truth

Iteration: 80 Alpha = 0.05 Beta = 0.6

Smoothing factor: 1e-6

 $\mathsf{mask} \propto R^3, 0.2$

Sparse SENSE

CS SENSE

1.4. Figure 6

Iteration: 80 Alpha = 0.05 Beta = 0.6

Smoothing factor: 1e-6

 $\operatorname{mask} \propto R^5, 0.1$

SparseSENSE

CS SENSE

