Classifying Galaxies with Machine Learning

Kaylie Rose Mendoza

Introduction

- How accurately could my model classify galaxy images in comparison to classification by hand
- Galaxy characteristics differ by galaxy shape
 - Elliptical (smooth) galaxies
 - Older
 - Dimmer
 - Redder
 - Little gas and dust
 - Spiral (disk) galaxies
 - Younger
 - Brighter
 - Bluer
 - More gas and dust- lots of star formation

Galaxy 10 Dataset

- ~ 18,000 galaxy images from the Sloan Digital Sky Survey (SDSS)- 2016
- Categorized by hand into 10 different categories
 - o Elliptical and spiral galaxies, but no irregular
- Data available in astroNN
 - Python package meant for building neural networks with astronomical data
- Classified by
 - Type (smooth, disk)
 - Shape (spiral/bulge type, round/cigar)
 - Orientation (disk galaxies: edge/face on)

Methods

- Split the data into 80% training and 20% testing (Scipy)
- Set up the neural network using Keras and Tensorflow
 - Sequential model
 - Layers
 - 4 convolutional (conv2D) layers (up to 256 3x3 filters)
 - 4 pooling (MaxPooling2D) layers
 - Flattening layer
 - 2 dense layers
- Compiling and training
 - Adams optimizer
 - Adaptive- the learning rate changes over time
 - EarlyStopping
 - Allows the model to run as many epochs as possible (until overfitting occurs)

Model: "sequential"

Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 69, 69, 32)	896
<pre>max_pooling2d (MaxPooling2D)</pre>	(None, 34, 34, 32)	0
conv2d_1 (Conv2D)	(None, 32, 32, 64)	18496
<pre>max_pooling2d_1 (MaxPooling 2D)</pre>	(None, 16, 16, 64)	0
conv2d_2 (Conv2D)	(None, 14, 14, 128)	73856
<pre>max_pooling2d_2 (MaxPooling 2D)</pre>	(None, 7, 7, 128)	0
conv2d_3 (Conv2D)	(None, 5, 5, 256)	295168
<pre>max_pooling2d_3 (MaxPooling 2D)</pre>	(None, 2, 2, 256)	0
flatten (Flatten)	(None, 1024)	0
dense (Dense)	(None, 256)	262400
dense_1 (Dense)	(None, 10)	2570
Total params: 653,386 Trainable params: 653,386 Non-trainable params: 0		

Results

- The model ran for 10
 epochs, with 78% accuracy
 overall when used on the
 testing images set
- Very mixed results in category accuracy
 - The second category contained the most images, and had an accuracy of 93%
 - The sixth category had the least amount of images, and had an accuracy of 0%

Disk, Face-on, No Spiral:	46% (322/696)
Smooth, Completely round:	93% (1252/1335)
Smooth, in-between round:	87% (1128/1284)
Smooth, Cigar shaped:	47% (36/76)
Disk, Edge-on, Rounded Bulge:	89% (300/337)
Disk, Edge-on, Boxy Bulge:	0% (0/ 3)
Disk, Edge-on, Boxy Bulge: Disk, Edge-on, No Bulge:	0% (0/ 3) 75% (90/119)
Disk, Edge-on, No Bulge:	75% (90/119)

Results

- Overall, categories with more images had more accuracy
 - Smooth, Completely round: 93%
 - Smooth, in-between round: 87%
- Categories with less images had lower accuracy
 - Disk, Edge-on, Boxy Bulge: 0%
 - There were only 17 images in this category in the dataset
 - Smooth, Cigar shaped: 47%

Conclusion

- A more complicated model could create better results
- Could be improved by using a better dataset
 - Fewer, broader categories with more unique parameters
 - Very uneven number of images per category
 - The smallest category contained 17 images, while the largest category had over 5,000
 - Much more images of elliptical than spiral galaxies
 - Overall, the model was less accurate when classifying spiral galaxies
 - Are spiral galaxies harder to classify or were there not enough images?
 - Clearer images

Smooth, in-between round Disk, Face-on, Medium Spiral Smooth, in-between round Smooth, Completely round

References

- Chen, B. "Early Stopping in Practice: an example with Keras and TensorFlow 2.0: A step to step tutorial to add and customize Early Stopping". Towards Data Science. 28 July 2020.
 - https://towardsdatascience.com/a-practical-introduction-to-early-stopping-in-machine-learning-550ac88bc8fd
- Howell, Elizabeth. "What Are Elliptical Galaxies?". Future US, Inc. 9 January 2019.
 https://www.space.com/22395-elliptical-galaxies.html
- Leung, Henry. Bovy, Jo. "Welcome to astroNN's documentation!". 2017-2022 Henry Leung. 22 April 2022. https://astronn.readthedocs.io/en/latest/
- Rosebrock, Adrian. "Keras Conv2D and Convolutional Layers". 2022 PylmageSearch.
 31 December 2018.
 - https://pyimagesearch.com/2018/12/31/keras-conv2d-and-convolutional-layers/#:":tex t=The%20final%20Conv2D%20layer%20learns%20128%20filters.