Álgebra Lineal - Clase 15

Gabriela Jeronimo

FCEN-UBA

Segundo cuatrimestre 2020

Esquema de la clase

- Complementos invariantes.
- ► Transformaciones lineales nilpotentes.
- Forma de Jordan: caso nilpotente.

Bibliografía recomendada.

G. Jeronimo, J. Sabia, S. Tesauri. *Algebra Lineal*. Cursos de Grado. Fascículo 2. Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 2008.

Capítulo 6 (Sección 6.4) y Capítulo 7 (Sección 7.1).

Subespacios invariantes - Complementos

Definición.

Sean V un K-e.v, $f:V\to V$ una t.l y $S\subseteq V$ un subespacio f-invariante $(f(S)\subseteq S)$. Un complemento invariante para S es un subespacio T de V tal que T es f-invariante y $S\oplus T=V$.

Si
$$V$$
 es de dimensión finita, $s = \dim(S) > 0$ y $t = \dim(T) > 0$, $B_S = \{v_1, \dots, v_s\}$ y $B_T = \{w_1, \dots, w_t\}$ bases de S y T resp. $\Rightarrow B = B_S \cup B_T = \{v_1, \dots, v_s, w_1, \dots, w_t\}$ es una base de V .
$$|f|_B = \begin{pmatrix} A_1 & 0 \\ 0 & A_2 \end{pmatrix}, \text{ con } A_1 = |f_{|S}|_{B_S} \text{ y } A_2 = |f_{|T}|_{B_T},$$
 donde $f_{|S}: S \to S$ y $f_{|T}: T \to T$ son las restricciones.

Proposición.

i)
$$\mathcal{X}_f = \mathcal{X}_{f_{|_{\mathcal{S}}}} \cdot \mathcal{X}_{f_{|_{\mathcal{T}}}}$$

ii)
$$m_f = \operatorname{mcm}(m_{f_{|_{\mathcal{S}}}}, m_{f_{|_{\mathcal{T}}}})$$

Transformaciones lineales y matrices nilpotentes

Definición

Sea V un K-e.v. Una transformación lineal $f: V \to V$ se dice nilpotente si existe $k \in \mathbb{N}$ tal que $f^k = \underbrace{f \circ f \circ \cdots \circ f}_{k \text{ veces}} = 0$.

Si $f: V \to V$ es una t.l. nilpotente, se define el índice de nilpotencia de f como min $\{j \in \mathbb{N} \mid f^j = 0\}$.

Análogamente, se dice que una matriz $A \in K^{n \times n}$ es nilpotente si existe $k \in \mathbb{N}$ tal que $A^k = 0$ y se define su índice de nilpotencia como min $\{j \in \mathbb{N} \ / \ A^j = 0\}$.

 $f:V \to V$ t.I es nilpotente \iff para cualquier base B de V, $|f|_B$ es una matriz nilpotente.

Lema

Sea V un K-e.v. de dimensión finita y sea $f: V \to V$ una t.l. f es nilpotente de índice $k \iff m_f = X^k$.

En particular, si $n = \dim(V)$, f es nilpotente $\iff f^n = 0$.

Demostración.

 (\Rightarrow) f nilpotente de índice $k \Rightarrow f^k = 0$ y $f^{k-1} \neq 0$.

 X^k anula a $f \Rightarrow m_f \mid X^k \Rightarrow \exists j \leq k \text{ tal que } m_f = X^j$.

 X^{k-1} no anula a $f \Rightarrow j = k$ y $m_f = X^k$.

 (\Leftarrow) $m_f = X^k \Rightarrow f^k = 0$ y $f^{k-1} \neq 0 \Rightarrow f$ es nilpotente de índice k.

Lema (Ejercicio)

Si $f: V \to V$ es una t.l. nilpotente de índice k, entonces

$$\{0\} \subsetneq \operatorname{Nu}(f) \subsetneq \operatorname{Nu}(f^2) \subsetneq \cdots \subsetneq \operatorname{Nu}(f^k) = V$$

(todas las inclusiones son estrictas).

Forma de Jordan nilpotente - Existencia

Un caso particular.

Sean V un K-e.v. de dimensión n y $f:V\to V$ una t.l. nilpotente de índice n.

$$f^{n-1} \neq 0 \Rightarrow \exists v \in V \text{ tal que } f^{n-1}(v) \neq 0.$$
 $m_{V} \mid m_{f} = X^{n} \Rightarrow m_{V} = X^{k} \text{ con } 1 \leq k \leq n.$
 $f^{n-1}(v) \neq 0 \Rightarrow m_{V} = X^{n}$
 $\Rightarrow B = \{v, f(v), f^{2}(v), \dots, f^{n-1}(v)\} \text{ es una base de } V.$

$$|f|_{\mathcal{B}} = \left(\begin{array}{ccccc} 0 & 0 & \dots & 0 & 0 \\ 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 & 0 \end{array} \right).$$

A una matriz de este tipo la llamaremos un bloque de Jordan nilpotente de $n \times n$.

Teorema

Sea V un K-e.v. de dimensión n, y sea $f:V\to V$ una t.l. nilpotente de índice k. Existe una base B de V tal que

$$|f|_B = \left(\begin{array}{cccc} J_1 & 0 & \dots & 0 \\ 0 & J_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & J_r \end{array} \right)$$

donde, para cada $1 \le i \le r$, $J_i \in K^{n_i \times n_i}$ es un bloque de Jordan nilpotente y $k = n_1 \ge n_2 \ge \cdots \ge n_r$.

Una matriz de este tipo se llama una forma de Jordan nilpotente. A una base B para la cual $|f|_B$ es una forma de Jordan la llamaremos una base de Jordan para f.

Lema

Sea $f: V \to V$ una t.l. y sea $i \in \mathbb{N}_0$. Si $\{v_1, \ldots, v_r\} \subseteq V$ es un conjunto l.i. tal que $\operatorname{Nu}(f^i) \cap \langle v_1, \ldots, v_r \rangle = \{0\}$, entonces $\{f(v_1), \ldots, f(v_r)\}$ es l.i. y $\operatorname{Nu}(f^{i-1}) \cap \langle f(v_1), \ldots, f(v_r) \rangle = \{0\}$.

Demostración.

Sea $v \in \operatorname{Nu}(f^{i-1}) \cap \langle f(v_1), \dots, f(v_r) \rangle$.

$$v = \alpha_1 f(v_1) + \cdots + \alpha_r f(v_r) \in \operatorname{Nu}(f^{i-1}).$$

$$0 = f^{i-1}(v) = f^{i-1}(\alpha_1 f(v_1) + \dots + \alpha_r f(v_r)) = f^i(\alpha_1 v_1 + \dots + \alpha_r v_r)$$

$$\Rightarrow \alpha_1 v_1 + \dots + \alpha_r v_r \in \mathsf{Nu}(f^i).$$
$$\mathsf{Nu}(f^i) \cap \langle v_1, \dots, v_r \rangle = \{0\} \Rightarrow \alpha_1 v_1 + \dots + \alpha_r v_r = 0.$$

$$\{v_1, \dots, v_r\}$$
 l.i. $\Rightarrow \alpha_1 = \dots = \alpha_r = 0$.
Luego, $v = 0$.

En particular, $\alpha_1 f(v_1) + \cdots + \alpha_r f(v_r) = 0 \Rightarrow \alpha_1 = \cdots = \alpha_r = 0$.

$$\Rightarrow \{f(v_1), \dots, f(v_r)\} \text{ es l.i.}$$

Demostración del Teorema.

Para $1 \le j \le k$, sea B_i una base de Nu (f^j) .

$$\{0\} \subsetneq \operatorname{\mathsf{Nu}}(f) \subsetneq \cdots \subsetneq \operatorname{\mathsf{Nu}}(f^{k-2}) \subsetneq \operatorname{\mathsf{Nu}}(f^{k-1}) \subsetneq V = \operatorname{\mathsf{Nu}}(f^k)$$

$$\ldots \qquad f^2(D_k) \qquad f(D_k) \qquad D_k$$

$$\ldots \qquad f(D_{k-1}) \qquad D_{k-1}$$

$$\ldots \qquad D_{k-2}$$

▶ D_k conjunto l.i. tal que $B_{k-1} \cup D_k$ es base de $V = Nu(f^k)$.

Llamamos
$$C_k = D_k$$
.
 $A = \sum_{k=0}^{\infty} N_k (f^{k-1}) \oplus A = C_k - C_k - \sum_{k=0}^{\infty} N_k (f^{k-1}) \oplus A = C_k$

$$\Rightarrow \mathsf{Nu}(f^{k-1}) \oplus < C_k > = V$$

►
$$C_k \subset \operatorname{Nu}(f^k)$$
 es l.i. y $\operatorname{Nu}(f^{k-1}) \cap \langle C_k \rangle = \{0\}$
⇒ $f(C_k) \subset \operatorname{Nu}(f^{k-1})$ es l.i. y $\operatorname{Nu}(f^{k-2}) \cap f(C_k) = \{0\}$.
⇒ $B_{k-2} \cup f(C_k)$ l.i.

$$D_{k-1} \subset \operatorname{Nu}(f^{k-1})$$
 conjunto l.i. tal que $B_{k-2} \cup f(C_k) \cup D_{k-1}$ es base de $\operatorname{Nu}(f^{k-1})$.

$$\Rightarrow C_{k-1} = f(C_k) \cup D_{k-1} \subset \text{Nu}(f^{k-1}) \text{ conjunto I.i. tal que}$$

$$B_{k-2} \cup C_{k-1} \text{ es base de Nu}(f^{k-1}).$$

$$\Rightarrow \text{Nu}(f^{k-2}) \oplus \langle C_{k-1} \rangle = \text{Nu}(f^{k-1}).$$

De esta manera, se construyen recursivamente conjuntos l.i.

 D_j y $C_j \subset Nu(f^j)$ para j = k, k - 1, ..., 1 tales que:

$$\triangleright C_j = f(C_{j+1}) \cup D_j,$$

(donde $C_{k+1} = \emptyset$).

$$\Rightarrow \bigoplus_{j=1}^k \langle C_j \rangle = \operatorname{Nu}(f^k) = V \text{ y } \bigcup_{j=1}^k C_j \text{ es una base de } V.$$

Si
$$D_j = \{v_1^{(j)}, \dots, v_{r_i}^{(j)}\} \subset \text{Nu}(f^j)$$
, entonces

$$B = \{v_1^{(k)}, f(v_1^{(k)}), \dots, f^{k-1}(v_1^{(k)}), \dots, v_{r_k}^{(k)}, f(v_{r_k}^{(k)}), \dots, f^{k-1}(v_{r_k}^{(k)}), \dots, f^{k-1}(v_{r_k}^{(k)}), \dots, v_{r_j}^{(j)}, f(v_{r_j}^{(j)}), \dots, f^{j-1}(v_{r_j}^{(j)}), \dots, v_{r_j}^{(j)}, f(v_{r_j}^{(j)}), \dots, f^{j-1}(v_{r_j}^{(j)}), \dots \dots, v_{r_j}^{(k)}, \dots, v_{r_j}^{(k)}\}$$

es una base de Jordan para f.

 $|f|_B$ tiene la forma del enunciado del Teorema.

Más aún, para j = k, k - 1, ..., 1, $|f|_B$ tiene $r_j = \#D_j$ bloques de Jordan nilpotentes de tamaño $j \times j$ en la diagonal.

La base de Jordan *B* se arma recorriendo las filas de esta tabla de arriba hacia abajo y de derecha a izquierda.

Teorema.

Sea $A \in K^{n \times n}$ una matriz nilpotente. Entonces A es semejante a una forma de Jordan nilpotente.

A una base B de K^n tal que $|f_A|_B = J_A$ es una forma de Jordan nilpotente la llamaremos una base de Jordan para A, y a la matriz J_A una forma de Jordan para A.

Ejemplo.

Hallar una forma de Jordan y una base de Jordan para

$$A = \left(\begin{array}{cccccc} 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ -1 & -1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ -1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & -1 & 0 \end{array}\right) \in \mathbb{R}^{6 \times 6}.$$

$$\mathcal{X}_A = X^6 \Rightarrow A \text{ es nilpotente.} \qquad A^2 \neq 0, \ A^3 = 0 \Rightarrow m_A = X^3.$$

$$\{0\} \subsetneq \mathsf{Nu}(A) \subsetneq \mathsf{Nu}(A^2) \subsetneq \mathsf{Nu}(A^3) = \mathbb{R}^6$$

$$B_1 = \{e_3, e_4, e_6\}$$
 bases de Nu(A),
 $B_2 = \{e_3, e_4, e_6, e_2, e_5\}$ base de Nu(A²).

1. Extendemos B_2 a una base de $Nu(A^3) = \mathbb{R}^6$ con $D_3 = \{e_1\}$.

$$\{0\} \quad \varsubsetneq \quad \mathsf{Nu}(A) \quad \varsubsetneq \quad \mathsf{Nu}(A^2) \quad \varsubsetneq \quad \mathsf{Nu}(A^3) \quad = \mathbb{R}^6$$

$$\quad A^2.e_1 \qquad \qquad A.e_1 \qquad \qquad e_1$$

2. Extendemos $B_1 \cup \{A.e_1\} = \{e_3, e_4, e_6, e_2 - e_3 - e_5 + e_6\} \subset \text{Nu}(A^2)$ a una base de $\text{Nu}(A^2)$ con $D_2 = \{e_5\}$.

3. Extendemos $\{A^2.e_1, A.e_5\} = \{-e_3 + e_6, e_4 - e_6\} \subset \text{Nu}(A)$ a una base de Nu(A) con $D_1 = \{e_3\}$.

$$\{0\} \subseteq \operatorname{Nu}(A) \subseteq \operatorname{Nu}(A^2) \subseteq \operatorname{Nu}(A^3) = \mathbb{R}^6$$

$$A^2.e_1 \qquad A.e_1 \qquad e_1$$

$$A.e_5 \qquad e_5$$

$$e_3$$

Una base de Jordan para A es

$$B = \{e_1, A.e_1, A^2.e_1, e_5, A.e_5, e_3\}$$

= \{(1,0,0,0,0,0), (0,1,-1,0,-1,1), (0,0,-1,0,0,1),
\((0,0,0,0,1,0), (0,0,0,1,0,-1), (0,0,1,0,0,0)\)

y una forma de Jordan de A es

Forma de Jordan nilpotente - Unicidad

Observación.

Si $J \in K^{m \times m}$ es un bloque de Jordan nilpotente, entonces $\operatorname{rg}(J^i) = m-i$ para cada $1 \le i \le m$.

$$J = \begin{pmatrix} 0 & 0 & \dots & 0 & 0 \\ 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 & 0 \end{pmatrix} = \begin{pmatrix} e_2^t & e_3^t & \dots & e_{m-1}^t & e_m^t & 0 \end{pmatrix}$$

$$\Rightarrow \operatorname{rg}(J) = m - 1.$$

 $J^{m} = 0$

$$J^{2} = \left(\begin{array}{cccc} e_{3}^{t} & e_{4}^{t} & \dots & e_{m}^{t} & 0 & 0\end{array}\right) \Rightarrow \operatorname{rg}(J^{2}) = m - 2$$

$$J^{i} = \left(\begin{array}{cccc} e_{i+1}^{t} & e_{i+2}^{t} & \dots & e_{m}^{t} & 0 & \dots & 0\end{array}\right) \forall 1 \leq i \leq m - 1$$

$$\Rightarrow \operatorname{rg}(J^{i}) = m - i$$

Proposición

Sea $A \in K^{n \times n}$ una forma de Jordan nilpotente de índice k.

- ▶ El bloque de Jordan más grande que aparece en A es de $k \times k$.
- La cantidad total de bloques de Jordan que forman A es n rg(A) = dim(Nu(A)).
- ► La cantidad de bloques de tamaño $j \times j$ con j > i en A es $b_i = \operatorname{rg}(A^i) \operatorname{rg}(A^{i+1}) \ \forall 0 < i < k-1$.
- ► La cantidad de bloques de tamaño $j \times j$ en A es $c_j = \operatorname{rg}(A^{j-1}) 2\operatorname{rg}(A^j) + \operatorname{rg}(A^{j+1}) \ \forall 1 \leq j \leq k$.

Demostración.

$$A = \begin{pmatrix} J_1 & 0 & \dots & 0 \\ 0 & J_2 & \dots & \dots \\ \vdots & \ddots & 0 \\ 0 & \dots & 0 & J_r \end{pmatrix} \text{ con } J_\ell \in K^{n_\ell \times n_\ell} \text{ bloque de Jordan nilpotente y}$$

$$n_1 \geq n_2 \geq \dots \geq n_r.$$

A nilpotente de índice $k \Rightarrow m_A = X^k$ $m_A = \text{mcm}\{m_{J_1}, \dots, m_{J_r}\} = \text{mcm}\{X^{n_1}, \dots, X^{n_r}\} = X^{n_1}$ $\Rightarrow n_1 = k$.

$$A = \begin{pmatrix} J_1 & 0 & \dots & 0 \\ 0 & J_2 & \dots & \dots \\ \vdots & \ddots & 0 \\ 0 & \dots & 0 & J_r \end{pmatrix} \text{ con } J_\ell \in K^{n_\ell \times n_\ell} \text{ bloque de Jordan nilpotente.}$$

$$\Rightarrow \operatorname{rg}(A) = \sum_{1 \le \ell \le r} \operatorname{rg}(J_\ell) = \sum_{1 \le \ell \le r} (n_\ell - 1) = n - r$$

$$\Rightarrow r = n - \operatorname{rg}(A) = \dim(\operatorname{Nu}(A)).$$

$$I \in K^{j \times j} \text{ bloque de Jordan nilpotente} \Rightarrow I^j = 0 \text{ si } i \le i \text{ o}$$

 $J \in K^{j \times j}$ bloque de Jordan nilpotente $\Rightarrow J^i = 0$ si $j \le i$ o rg $(J^i) = j - i$ si j > i.

Si c_i es la cantidad de bloques de $j \times j$ en A,

$$rg(A^{i}) = \sum_{\ell=1}^{r} rg(J_{\ell}^{i}) = \sum_{j=i+1}^{k} c_{j}. (j-i).$$

$$egin{array}{lll} {\sf rg}({\sf A}^i) - {\sf rg}({\sf A}^{i+1}) & = & \sum\limits_{j=i+1}^k c_j.\,(j-i) - \sum\limits_{j=i+2}^k c_j.\,(j-(i+1)) \ & = & \sum\limits_{j=i+1}^k c_j \ = \ b_i. \end{array}$$

$$c_j = b_{j-1} - b_j = \operatorname{rg}(A^{j-1}) - 2\operatorname{rg}(A^j) + \operatorname{rg}(A^{j+1}).$$