E0 298 | Linear Algebra and Its Applications Assignment 2

Deadline: 11:30 AM, 12 September, 2023 Max mark: 20

1. Suppose a vector space V has the property that

(2)

$$\forall k \geqslant 1, \exists v_1, \dots, v_k \in \mathbb{V}$$
 which are linearly independent.

Argue why V cannot be finite-dimensional.

Consider the vector space $\mathfrak F$ of functions $f:\mathbb R\to\mathbb R$ (you don't have to show that $\mathfrak F$ is a vector space). Using the above argument, show that $\mathfrak F$ cannot be finite-dimensional.

2. Let \mathbb{V} be a vector space and $v_1, \ldots, v_n \in \mathbb{V}$ be linearly independent. Show that

(2)

$$\forall v \in \mathbb{V}, \quad \dim \left(\operatorname{span} \{ v_1 + v, \dots, v_n + v \} \right) \geqslant n - 1.$$

- 3. Let \mathbb{U}_1 and \mathbb{U}_2 be two subspaces of a vector space \mathbb{V} . If dim $\mathbb{U}_1 + \dim \mathbb{U}_2 > \dim \mathbb{V}$, then prove that there must exist a nonzero vector in $\mathbb{U}_1 \cap \mathbb{U}_2$.
- 4. Let $\mathcal{C}(\mathbb{R})$ be the vector space of real-valued continuous function on \mathbb{R} . (3)
 - (i) Show that $\cos x, \sin x \in \mathcal{C}(\mathbb{R})$ are linearly independent.
 - (ii) Are $\cos^2 x$ and $\sin^2 x$ linearly independent?
 - (iii) Are $1, \cos^2 x$, and $\sin^2 x$ linearly independent?
- 5. Let $\mathbb U$ and $\mathbb W$ be two subspaces of a vector space $\mathbb V$. Let u_1,\ldots,u_m be a basis of $\mathbb U$ and w_1,\ldots,w_n be a basis of $\mathbb W$. Prove that

$$\dim \operatorname{span}\left(\left\{u_i+w_j:\ i=1,\ldots,m,\ j=1,\ldots,n\right\}\right)\leqslant \dim \mathbb{U}+\dim \mathbb{W}.$$

6. Let $\mathbb{U}_1, \mathbb{U}_2, \mathbb{U}_3$ be subspaces of an n-dimensional vector space. Prove that

(5)

$$\dim (\mathbb{U}_1 \cap \mathbb{U}_2 \cap \mathbb{U}_3) \geqslant \dim \mathbb{U}_1 + \dim \mathbb{U}_2 + \dim \mathbb{U}_3 - 2n.$$

7. Let $(\mathbb{V}, +, \cdot)$ be a vector space over a field \mathbb{F} . Let \mathbb{U} be some fixed subspace of \mathbb{V} . Define

$$\forall v \in \mathbb{V}: \quad [v] = \{x \in \mathbb{V}: x - v \in \mathbb{U}\},\$$

and

$$\mathbb{W} = \Big\{ [v] : v \in \mathbb{V} \Big\}.$$

Define the operations $\circ: \mathbb{F} \times \mathbb{W} \to \mathbb{W}$ and $+: \mathbb{W} \times \mathbb{W} \to \mathbb{W}$ as follows:

$$\forall \lambda \in \mathbb{F}, \forall u, v \in \mathbb{W}: \quad \lambda \circ [u] := [\lambda \cdot x] \quad \text{and} \quad [u] + [v] := [x + y],$$

where $x \in [u]$ and $y \in [v]$.

(i) Argue why [v] is nonempty for all $v \in \mathbb{V}$.

- (ii) Show that the operations + and \circ are well-defined, i.e., they do not depend on the choice of x and y as long as $x \in [u]$ and $y \in [v]$.
- (iii) It can be shown that $\mathbb{W}=(\mathbb{W},+,\circ)$ is a vector space over \mathbb{F} . Verify just the following two properties:

$$\forall [u], [v] \in \mathbb{W} : [u] + [v] = [v] + [u],$$

and

$$\forall [u], [v] \in \mathbb{W}, \forall a \in \mathbb{F}: \quad a \circ \big([u] + [v]\big) = a \circ [u] + a \circ [v].$$

- (iv) Verify that the identity element of \mathbb{W} is [0], where 0 is the identity element of \mathbb{V} .
- (v) Prove that dim $\mathbb{W} = \dim \mathbb{V} \dim \mathbb{U}$.
