Задание 3. Изменение мощности.

Реостат электроплитки AB изготовлен из однородной проволоки длины l , полное сопротивление которой равно R_0 . Положение движка реостата C (средний вывод) описывается длиной участка проволоки |AC|=x . Обозначим отношение длины

участка AC к длине всей проволоки $z = \frac{x}{l}$.

Подключая выводы реостата различными способами можно изменять электрическое сопротивление между клеммами реостата A и B. Введем величину $r=\frac{R_{AB}}{R_0}$, равную отношению сопротивления между клеммами к полному сопротивлению реостата. Электроплитка подключается к источнику постоянного напряжения U_0 . Ведем величину $p=\frac{P_{AB}}{U_0^2}R_0$ - отношение мощности электроплитки при подключении ее к клеммам A и B к мощности плитки при подключении полной спирали реостата.

Часть 1. Один реостат.

1.1 — **1.3** На рисунке 1 показаны три различных схемы подключения выводов реостата. Для каждой схемы найдите зависимость величины p от параметра z, определяющего положение среднего вывода. На одном бланке в Листах ответов постройте графики полученных зависимостей.

Часть 2. Два реостата.

2.1 — **2.2** Приведенные на рисунках схемы включают по 2 одинаковых, описанных выше, реостата. Считайте, что движки реостатов в схеме 2.1 смещаются одинаково (т.е. $x_1 = x_2 = x$). Для каждой схемы найдите зависимость параметра $p = \frac{P_{AB}}{U_0^2} R_0$ от параметра $z = \frac{x}{l}$.

Часть 3. Нелинейный реостат.

В некоторых устройствах (например, для регулировки громкости звука) используют реостаты, сопротивление которых нелинейно зависит от длины участка |AC|=x и описывается некоторой функцией R(x) (или R(z)). Такой реостат включен в цепь по схеме 1.3. В Таблице 1 Листов ответов приведена зависимость сопротивления R_{AB} между клеммами A и B от параметра $z=\frac{x}{l}$. График этой зависимости приведен для иллюстрации.

3.1 Найдите полное сопротивление реостата R_0 .

- **3.2** Используя данные Таблицы 1, рассчитайте значения функции R(z) в заданных точках. Постройте график этой функции.
- **3.3** Предложите функцию, описывающую рассчитанную зависимость R(z).
- **3.4** Постройте график зависимости мощности реостата ($p(z) = \frac{P(z)}{U_0^2} R_0$) от положения движка

$$z = \frac{x}{l}$$