MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik

Algebra VT21

Dag 19

(1) **Introduktion.** Betrakta en parallellogram ABCD (hörnen ordnade moturs). Låt E vara mittpunkten på sidan BC och låt F vara mittpunkten på sidan CD. Om vektorn \vec{w} har koordinater (2,3) i basen $\vec{u}_1 = \overrightarrow{AB}, \vec{u}_2 = \overrightarrow{AD}$, vilka koordinater har $= \vec{w}$ i basen $\vec{v}_1 = \overrightarrow{AE}, \vec{v}_2 = \overrightarrow{AF}$?

Svar: $(\frac{2}{3}, \frac{8}{3})$.

(2) **Basbytesmatriser.** Beräkna basbytesmatrisen från basen $\vec{u}_1 = \overrightarrow{AB}, \vec{u}_2 = \overrightarrow{AD}$ till den nya basen $\vec{v}_1 = \overrightarrow{AE}, \vec{v}_2 = \overrightarrow{AF}$ i föregående uppgift.

Svar: $A = \frac{1}{3} \begin{pmatrix} 4 & -2 \\ -2 & 4 \end{pmatrix}$.

(3) **Basbytesmatriser, fortsättning.** Vi har två baser, $\mathbb{B}_u = (\vec{u}_1, \vec{u}_2)$ och $\mathbb{B}_v = (\vec{v}_1, \vec{v}_2)$ som definieras av att vektorerna $\vec{u}_1, \vec{u}_2, \vec{v}_1, \vec{v}_2$ i standardbasen ges av

$$\left\{ \begin{array}{ll} \vec{u}_1 = & 2\vec{e}_1 + \vec{e}_2, \\ \vec{u}_2 = & -\vec{e}_1 + 2\vec{e}_2, \end{array} \right. \quad \left\{ \begin{array}{ll} \vec{v}_1 = & 2\vec{e}_1 - \vec{e}_2, \\ \vec{v}_2 = & \vec{e}_1 + 2\vec{e}_2. \end{array} \right.$$

Bestäm bas
bytesmatrisen från basen \mathbb{B}_u till (den nya) basen
 $\mathbb{B}_v.$

Svar: $A = \frac{1}{5} \begin{pmatrix} 3 & -4 \\ 4 & 3 \end{pmatrix}$.

(4) **Exempel.** I parallellepipeden med hörn i A, B, C, D, E, F, G, H (se figur) utgör $\vec{u}_1 = \overrightarrow{AB}, \vec{u}_2 = \overrightarrow{AD}, \vec{u}_3 = \overrightarrow{AE}$ en bas och $\vec{v}_1 = \overrightarrow{AC}, \vec{v}_2 = \overrightarrow{AF}, \vec{v}_3 = \overrightarrow{AH}$ en annan. Om vektorn \vec{w} har koordinater (3, -1, 2) med avseende på basen $\vec{u}_1, \vec{u}_2, \vec{u}_3$, vilka koordinater har \vec{w} med avseende på basen $\vec{v}_1, \vec{v}_2, \vec{v}_3$?

Svar: Basbytesmatris: $A = \frac{1}{5}\begin{pmatrix} 1 & 1 & -1 \\ 1 & -1 & 1 \\ -1 & 1 & 1 \end{pmatrix}$, Nya koordinater: (0,3,-1).

/Boris Shapiro, 210318/