1 Group Actions

1.1 Group Actions and Permutation Representations

Definition. Let G be a group acting on a set A

- 1. The *kernel* of the action is the set of elements of G that act trivially on every element of A: $\{g \in G \mid g \cdot a = a \text{ for all } a \in A\}$.
- 2. For each $a \in A$ the *stabilizer* of a in G is the set of elements of G that fix the element $a: \{g \in G \mid g \cdot a = a\}$ and is denoted by G_a .
- 3. An action is *faithful* if its kernel is the identity.

Note. The kernel pf an action is precisely the same as the kernel of the associated permutation representation as defined in the note in section 1.7 and is rephrased below.

Proposition 1. For any group G and any nonempty set A there is a bijection between the actions of G on A and the homomorphisms of G into S_A .

Definition. If G is a group a permutation representation of G into the symmetric group S_A for some nonempty set A. We shall say a given action of G on A affords or induces the associated representation of G.

Proposition 2. Let G be a group acting on the nonempty set A. the relation on A defined by

$$a \sim b$$
 if and only if $a = g \cdot b$ for some $g \in G$

is an equivalence relation. For each $a \in A$, the number of elements in the equivalence class containing a is $|G:G_a|$, the index of the stabilizer of a.

Definition. Let G be a group acting on the set A.

- 1. The equivalence class $\{g \mid g \in G\}$ is called the *orbit* of G containing a.
- 2. The action of G on A is called *transitive* if there is only one orbit, i.e., given any two elements $a, b \in A$ there is some $g \in G$ such that $a = g \cdot b$.

Note.

- 1. Every element of S_n has a unique cycle decomposition
- 2. Subgroups of symmetric groups are called *permutation groups*.
- 3. The orbits of a permutation group will refer to its orbits on $\{1, 2, \ldots, n\}$
- 4. The orbits of an element $\sigma \in S_n$ will refer to the orbits of the group $\langle \sigma \rangle$.

1.2 Group Acting on Themselves by Left Multiplication - Cayley's Theorem

Note. In this section G is any group and we first consider G acting on itself (i.e., A = G) by left multiplication:

$$g \cdot a = ga$$
 for all $g \in G, a \in G$

When G is a finite group of order n it is convenient to label the elements of G with the integers 1, 2, ..., n in order to describe the permutation representation afforded by this action. In this way the elements of G are listed as $g_1, g_2, ..., g_n$ and for each $g \in G$ the permutation σ_q may be described as a permutation of the indices 1, 2, ..., n as follows:

$$\sigma_q(i) = j$$
 if and only if $gg_i = g_j$.

Theorem 3. Let G be a group, let H be a subgroup and let G act by left multiplication on the set A of left cosets of H in G. Let π_H be the associated permutation representation afforded by this action. Then

- 1. G acts transitively on A
- 2. the stabilizer of G of the point $1H \in A$ us the subgroup H
- 3. the kernel of the action (i.e., the kernel of π_H) is $\cap_{x \in G} x H x^{-1}$, and $\ker \pi_H$ is the largest normal subgroup of g contained in H.

Corollary 4. (Cayley's Theorem) Every group is isomorphic to a subgroup of symmetric group. If G is a group of order n, then G is isomorphic to a subgroup of S_n .

Corollary 5. If G is a finite group of order n and p is the smallest prime dividing |G|, then any subgroup of index p is normal (Note that a group of order n need not have a subgroup of order p).

1.3 Groups Acting on Themselves by Conjugation - The Class Equation

Note. In this section we consider a group G acting on itself by conjugation

$$g \cdot a = gag^{-1}$$
 for all $g \in G, a \in G$

Definition. Two elements a and a of G are said to be *conjugate* if G if there is some $g \in G$ such that $b = gag^{-1}$ (i.e., if and only if they are in some orbit of G acting on itself by conjugation). The orbits of G acting on itself by conjugation are called *conjugacy classes* of G.

Definition. Two subsets S and T of G are said to be *conjugate in* G if there is some $g \in G$ such that $T = gSg^{-1}$ (i.e., if and only if they are in the same orbit of G acting on its subsets by conjugation).

Proposition 6. The number of conjugates of a subset S in a group G is the index of the normalizer of S, $|G:N_G(S)|$. In particular, the number of conjugates of an element s of G is the index of the centralizer of s, $|G:C_q(s)|$.

Theorem 7. (The Class Equation) Let G be a finite group and let g_1, g_2, \ldots, g_r be representatives of the distinct conjugacy classes of G not contained in the center Z(G) of G. Then

$$|G| = |Z(G)| + \sum_{i=1}^{r} |G : C_G(g_i)|.$$

Theorem 8. If p is a prime and P is a group of prime order p^{α} for some $\alpha \geq 1$, then P has a nontrivial center: $Z(P) \neq 1$.

Proposition 9. Let σ, τ be elements of the symmetric group S_n and suppose σ has cycle decomposition

$$(a_1a_2\ldots a_{k_1})(b_1b_2\ldots b_{k_2})\ldots$$

Then $\tau \sigma \tau^{-1}$ has cycle decomposition

$$(\tau(a_1)\tau(a_2)\ldots\tau(a_{k_1}))(\tau(b_1)\tau(b_2)\ldots\tau(b_{k_2}))\ldots$$

that is $\tau \sigma \tau^{-1}$ is obtained from σ by replacing each i in the cycle decomposition for σ by the entry $\tau(i)$.

Definition.

- 1. If $\sigma \in S_n$ is the product of disjoint cycles of length n_1, n_2, \ldots, n_r with $n_1 \leq n_2 \leq \ldots \leq n_r$ (including its 1-cycles) then the integers n_1, n_2, \ldots, n_r are called the *cycle* type of σ .
- 2. If $n \in \mathbb{Z}^+$, a partition of n is any nondecreasing sequence of positive integers whose sum is n.

Proposition 10. Two elements of S_n are conjugate in S_n if and only if they have the same cycle type. The number of conjugacy classes of S_n equals the number of partitions of n.

Theorem 11. A_5 is a simple group.

1.4 Automorphisms