

Big Data Learning

Ideas on dealing with a lot of data

Data Instance Size

- One million instances
 - Can be crowdsourced
 - Can be processed by a quadratic algorithm (once parallelized)
 - Preprocessing/data probing is crucial
- One billion instances
 - Web-scale
 - Data likely in different formats (ASCII, pictures, JSON, PDF)
 - Likely to have (near) duplicates
 - Likely has badly preprocessing
 - Storage is an issue
- One trillion instances
 - Beyond reach of modern technology
 - Data privacy/inconsistence an issue since can't store all in one place

Crowdsourcing labeled data

- Crowdsourcing is a tough business
 - People are not machines
- Any worker who can game the system WILL game it
- Validation framework + qualification tests are a must
- Labeling a lot of data can be fairly expensive

How to label 1M Instances

- Budge a month of work + ~ \$50,000
 - Offer someone you trust \$10,000 for one month of work
 - Construct a qualification test for your job
 - Hire 100 workers who pass it (and keep their worker IDs)
 - Explain to them the task to make sure they get it
 - Offer them 4 cents per data instance that they do correctly
 - The person you trust will label 500 data instances each day and use this to validate worker results
 - Each worker gets a daily task of 1000 data instances
 - Some of these (500) are already labeled by the contractor
 - Check every worker's result on that validation set
 - Fire the worst 50 workers (and disregard their results)
 - Hire 50 new ones
 - Repeat for a month (20 working days)
 - 50 workers x 20 days x 1000 data points/day x 4 cents

Now What?

- Train your model!
- Rule of thumb: more training data produces better results
- Parallelization is likely unavoidable

MapReduce

- MapReduce is a programming model and an associated implementation (library) for processing and generating large data sets (on large clusters)
- A new abstraction allows to express the simple computations that hides the messy details of parallelization, fault-tolerance, data distribution, and load balancing in a library

Motivation

- Large-Scale Data Processing
 - Want to use 1000s of CPUs
 - But don't want hassle of managing things
- MapReduce provides
 - Automatic parallelization & distribution
 - Fault tolerance
 - I/O scheduling
 - Monitoring & status updates

Map/Reduce in Lisp/Scheme

- (map f list [list2 list3 ...])
 - Applies function f to each element in the lists
- Example:
 - (map square '(1 2 3 4))
 - '(1 4 9 16)
- (reduce f list)
 - Recursively applies the result of applying f to each member of list
- Example:
 - (reduce + '(1 4 9 16))
 - 30

Map/Reduce

- We want to think about
 - What parts of the algorithms are independent and thus can be parallelized (Map)
 - At what parts of the algorithm must we combine results (Reduce) before moving forward

Locally Weighted Linear Regression (LWLR)

- Solve $\theta = A^{-1}b$ where
 - $A = \sum_{i=1}^{m} w_i(x^{(i)}x^{(i)^T})$
 - $b = \sum_{i=1}^{m} w_i(x^{(i)}y^{(i)})$
 - When w_i=1, this is global linear regression
- Mappers:
 - One set parallelizes the computation of A
 - Another set computes b
- Two reducers:
 - Combine results from parallelizing A and b (sums results)
- Finally compute the solution

Naïve Bayes (NB)

- Goal: estimate $P(y = 1 | x^{(i)})$ and $P(y = 0 | x^{(i)})$
- Computation necessary:
 - Count the occurrences of y=1 and y=0
 - For all features j
 - Count the occurrence of $(x_j = x_j^{(i)}|y=1)$, $(x_j = x_j^{(i)}|y=0)$ and $x_j^{(i)}$
 - Compute divisions to get $P\left(x_j^{(i)} \middle| Y = y\right)$
- Mappers:
 - Count a subgroup of training samples
- Reducers:
 - Aggregate the intermediate counts and calculate the final results

Neural Network (NN)

- Back-propagation, 3-layer network
 - Input, middle, 2 output nodes
- Goal: compute the weights in the NN by back propagation
- What can be done independently?
 - Forward propagation for a given node
 - Computing loss for output nodes and updating links to them
 - Loss at hidden node needs sum of weighted lost at next stage
- Map/Reduce:
 - Compute output loss and update weights
 - For each hidden layer node
 - Map product of weight and output loss
 - Reduce (sum)
 - Compute hidden layer loss