

Machine Learning Algorithms for Chatbots

By

Krupal Modi

Machine Learning Scientist, Haptik

What are chat bots?

- Interface that enables users to interact with a machine through a conversational UI.
- Machine's need to understand the user's message and the context of the conversation to get things done.
- The interface of how people interact with the machine is as important as the algorithm.
 Design + Machine Learning.

- Ease of doing everything on one screen
- Chat is the most commonly used interface on a smart phone
- Technology that feels like a friend

Application of Chat bots

- Personal Assistant
- Health and nutrition
- Dating and love
- Education
- Customer care

Too many decisions?

Wit.ai, Api.ai, SciPy Scikit learn?

TensorFlow, Theano, Keras, RNNLM, CNTK?

Facebook, slack,
Telegram, custom
App?

IBM Watson, AWS ML, Microsoft Azure?

Getting Basics Right while building Chatbot

Collecting Training Data

- Volume and Accuracy of Training Data
- Domain of Data Open Domain vs. Closed Domain
- Example Text :
- 1) User "Go ahead with the booking" Movies, Flights, Trains?
- 2) User "Only Non stop flights", Bot "XYZ flight", User "Go ahead with the booking" Flights

Preprocessing

- Abstraction
- Latency
- Consistency

Feature Engineering

Heuristics, Tf-idf, N-grams
Word Embedding
Word2Vec, Doc2vec,
Document-term Matrix?

Training Algorithms

Algorithm	Graph/ Finite State Machine	Retrieval Approach	Generative Approach
Fundamentals	 Graph Traversal (BFS/DFS) Selects from predefined responses 	 Classification (Random Forest, SVM, RNN, Ensemble) Selects from predefined responses 	 Machine Translation (Sequence to Sequence) Generates its own Natural Language Response
Pros	 Precision is very high Grammar and personality Works well for narrow domain seen data 	 Precision can be controlled Grammar and personality Works well for Narrow domain Can take complex features 	 High Recall 'SMARTER' – captures context Caters to unseen Data
Cons	 Fails for unseen data Capturing context is difficult Cannot take complex features Not scalable for open domains 	 Capturing context is difficult Needs lot of iterations during feature extraction Not Scalable for open domains 	 Difficult to define hard precision boundary Incorrect grammar Inaccurate for open domains Needs huge amount of Data

Sequence Learning Example

Overview of Sequence Learning

Clustering of Messages

Message Clustering

Challenges

- Remembering Context Overwrite/ Replace?
- Dynamic Information Date, Time, Prices, Festivals
- Coherent Personality
- Evaluation Metrics
- Diversity of responses

Thank You