Key concepts:

Definitions: supervised/unsupervised learning, data and missing data, data prep techniques.

Classification: kNN, training/validation/testing data, error rates, empirical error rates, overfitting, Bayes classifier, Bayes rate, plug-in classifiers.

Regression: model $Y = f(\mathbf{X}) + \epsilon$, expected quadratic error $E[(Y - \hat{Y})^2]$, mean quadratic error, under/overfitting, bias/variance tradeoff (bias at \mathbf{x} : $(f(\mathbf{x}) - E[\hat{f}(\mathbf{x}, D)|\mathbf{x}])$; variance: $E[\hat{f}(\mathbf{x}, D)^2|\mathbf{x}] - E[\hat{f}(\mathbf{x}, D)|\mathbf{x}]^2$.

Evaluation: cross-validation, confusion matrix, precision/recall/rates, F1 = 2pr/(p+r), ROC curve and Area Under the Curve (AUC).

Frequentist statistics: maximum likelihood estimation, mechanics of hypothesis testing, confidence intervals (for error rate with confidence $1 - \alpha$: $[\hat{e}_r - z_{\alpha/2}\sqrt{\hat{e}_r(1-\hat{e}_r)/M}, \hat{e}_r + z_{\alpha/2}\sqrt{\hat{e}_r(1-\hat{e}_r)/M}]$).

Wald test: reject equality of error rates for two classifiers if $|W| > z_{\alpha/2}$ where

$$W = (\sum_{i=1}^{N} (a_i - b_i)/N) / \sqrt{(1/(N(N-1)) \sum_{i=1}^{N} (a_i - b_i - \sum_{j=1}^{N} (a_j - b_j)/N)^2}$$

 $W = (\sum_{i=1}^{N} (a_i - b_i)/N) / \sqrt{(1/(N(N-1)) \sum_{i=1}^{N} (a_i - b_i - \sum_{j=1}^{N} (a_j - b_j)/N)^2}.$ **Linear regression:** $\hat{Y} = \sum_{i=1}^{n} \beta_i X_i$, RSS = $\sum_{j=1}^{N} (y_j - \hat{y}_j)^2$, $\hat{B} = (A^T A)^{-1} A^T C$ for $A = \{x_{ij}\}_{i,j}$, $B = \{\beta_i\}_i$, $C = \{y_j\}_j$, $R^2 = 1 - \text{RSS} / \sum_{j=1}^{N} (y_j - \overline{y})^2$.

Simple linear regression:
$$\hat{Y} = \beta_0 + \beta_1 X$$
; $\hat{\beta}_1 = (\sum_j (x_j - \overline{x})(y_j - \overline{y}))/(\sum_j (x_j - \overline{x})^2)$, $\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x}$, $\hat{\sigma}^2 = (\sum_j (y_j - \hat{y}_j)^2)/(N - 2)$ (unbiased version), $R^2 = \left((\sum_j (x_j - \overline{x})(y_j - \overline{y}))/\sqrt{\sum_j (x_j - \overline{x})^2 \sum_j (y_j - \overline{y})^2}\right)^2$.

Testing whether
$$\beta_1 = 0$$
 in simple linear regression: reject when $\left| \hat{\beta_1} / \sqrt{\hat{\sigma^2} \sum_j (x_j - \overline{x})^2} \right| > z_{\alpha/2}$.

Covariate selection in regression: foward/backward stepwise search, scores AIC $(L_S - |S|)$ and BIC $(L_S - (|S|/2) \ln N)$, where L_S is the log-likelihood for selected covariates at the maximum likelihood estimates, score Mallow's $C_p = 2|S|\hat{\sigma}^2 + \sum_{j=1}^{N} (y_j - \hat{y_j})^2$ with estimates for selected covariates, and |S| the number of selected covariates.

Additionally on regression: nonlinear terms in regression, polynomial regression, regularization (bias/variance tradeoff), ridge regression (penalty $\lambda \sum_{i=1}^{n} \beta_i^2$), lasso (penalty $\lambda \sum_{i=1}^{n} |\beta_i|$), automatic covariate selection in

Logistic regression: $P(Y = 1|\mathbf{x}) = e^W/(1 + e^W)$ for $W = \sum_{i=1}^n \beta_i X_i$, logit function, linear classification boundary, IRLS algorithm

LDA and QDA: assumptions; structure of boundaries, comparison with other classifiers.

SVM: linearly separable problems, margin, linear boundary, formula of distance, nonseparable ("soft") problem with relaxation, nonlinear terms and boundaries, concept of kernel.

Distribuição Normal P(0≤Z <z0)< th=""></z0)<>										
z0	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,0000	0,0040	0,0080	0,0120	0,0160	0,0199	0,0239	0,0279	0,0319	0,0359
0,1	0,0398	0,0438	0,0478	0,0517	0,0557	0,0596	0,0636	0,0675	0,0714	0,0753
0,2	0,0793	0,0832	0,0871	0,0910	0,0948	0,0987	0,1026	0,1064	0,1103	0,1141
0,3	0,1179	0,1217	0,1255	0,1293	0,1331	0,1368	0,1406	0,1443	0,1480	0,1517
0,4	0,1554	0,1591	0,1628	0,1664	0,1700	0,1736	0,1772	0,1808	0,1844	0,1879
0,5	0,1915	0,1950	0,1985	0,2019	0,2054	0,2088	0,2123	0,2157	0,2190	0,2224
0,6	0,2257	0,2291	0,2324	0,2357	0,2389	0,2422	0,2454	0,2486	0,2517	0,2549
0,7	0,2580	0,2611	0,2642	0,2673	0,2704	0,2734	0,2764	0,2794	0,2823	0,2852
0,8	0,2881	0,2910	0,2939	0,2967	0,2995	0,3023	0,3051	0,3078	0,3106	0,3133
0,9	0,3159	0,3186	0,3212	0,3238	0,3264	0,3289	0,3315	0,3340	0,3365	0,3389
1,0	0,3413	0,3438	0,3461	0,3485	0,3508	0,3531	0,3554	0,3577	0,3599	0,3621
1,1	0,3643	0,3665	0,3686	0,3708	0,3729	0,3749	0,3770	0,3790	0,3810	0,3830
1,2	0,3849	0,3869	0,3888	0,3907	0,3925	0,3944	0,3962	0,3980	0,3997	0,4015
1,3	0,4032	0,4049	0,4066	0,4082	0,4099	0,4115	0,4131	0,4147	0,4162	0,4177
1,4	0,4192	0,4207	0,4222	0,4236	0,4251	0,4265	0,4279	0,4292	0,4306	0,4319
1,5	0,4332	0,4345	0,4357	0,4370	0,4382	0,4394	0,4406	0,4418	0,4429	0,4441
1,6	0,4452	0,4463	0,4474	0,4484	0,4495	0,4505	0,4515	0,4525	0,4535	0,4545
1,7	0,4554	0,4564	0,4573	0,4582	0,4591	0,4599	0,4608	0,4616	0,4625	0,4633
1,8	0,4641	0,4649	0,4656	0,4664	0,4671	0,4678	0,4686	0,4693	0,4699	0,4706
1,9	0,4713	0,4719	0,4726	0,4732	0,4738	0,4744	0,4750	0,4756	0,4761	0,4767
2,0	0,4772	0,4778	0,4783	0,4788	0,4793	0,4798	0,4803	0,4808	0,4812	0,4817
2,1	0,4821	0,4826	0,4830	0,4834	0,4838	0,4842	0,4846	0,4850	0,4854	0,4857
2,2	0,4861	0,4864	0,4868	0,4871	0,4875	0,4878	0,4881	0,4884	0,4887	0,4890
2,3	0,4893	0,4896	0,4898	0,4901	0,4904	0,4906	0,4909	0,4911	0,4913	0,4916
2,4	0,4918	0,4920	0,4922	0,4925	0,4927	0,4929	0,4931	0,4932	0,4934	0,4936
2,5	0,4938	0,4940	0,4941	0,4943	0,4945	0,4946	0,4948	0,4949	0,4951	0,4952
2,6	0,4953	0,4955	0,4956	0,4957	0,4959	0,4960	0,4961	0,4962	0,4963	0,4964
2,7	0,4965	0,4966	0,4967	0,4968	0,4969	0,4970	0,4971	0,4972	0,4973	0,4974
2,8	0,4974	0,4975	0,4976	0,4977	0,4977	0,4978	0,4979	0,4979	0,4980	0,4981
2,9	0,4981	0,4982	0,4982	0,4983	0,4984	0,4984	0,4985	0,4985	0,4986	0,4986
3,0	0,4987	0,4987	0,4987	0,4988	0,4988	0,4989	0,4989	0,4989	0,4990	0,4990