Yakeen NEET 2.0 2026

Physics by Saleem Sir

Units and Measurements

DPP: 4

- Q1 In a given system of units, 1 unit of mass $=2~\mathrm{kg},1$ unit of length $=5~\mathrm{m}$ and 1 unit of time $= 5 \mathrm{sec}$. Then in this system, $1 \mathrm{\ N}$ represents (A) 5/2 units of force
 - (B) 2/5 units of force
 - (C) 2 units of force
 - (D) 1/2 units of force
- Q2 Imagine a system of units in which the unit of mass is 10 kg, length is 1 km and time is 1 minute. Then 1 J in this system is equal to units of work:
 - (A) 360
 - (B) 3.6
 - (C) $3.6 imes 10^5$
 - (D) 36×10^{-5}
- Q3 In a new unit system, 1 unit of time is equal to 10second, 1 unit of mass is 5 kg and 1unit of length is 20 m. In the new system of units, 1unit of energy is equal to:
 - (A) 20 Joule
 - (B) $\frac{1}{20}$ Joule
 - (C) 4Joule
 - (D) 16Joule
- **Q4** Match the following: Dhysical

Physical		Dimension		Unit	
	quantity				
(1)	Gravitational	(P)	$M^1L^1T^{-1}$	(a)	N.m
	constant 'G'				
(2)	Torque	(Q)	$M^{-1}L^3T^{-2}$	(b)	N.s
(3)	Momentum	(R)	$M^{1}L^{-1}T^{-2}$	(c)	Nm^2/kg^2
(4)	Pressure	(S)	$M^1L^2T^{-2}$	(d)	Pascal

- (A) 1 Q c, 2 S a, 3 P b, 4 R(B) 1 - Q - a, 2 - S - c, 3 - P - b, 4 - R(C) 1 - Q - c, 2 - S - a, 3 - P - d, 4 - R(D) 1 - S - c, 2 - Q - a, 3 - P - b, 4 - R
- The position x of a particle at time t' is given by $x = \frac{v_0}{a}(1 - e^{-at})$ where v_0 is a constant and a>0. The dimensions of v_0 and a are: (A) $[M^0 L T^{-1}]$ and $[T^{-1}]$
 - (B) $[\mathrm{M}^0 \ \mathrm{L} \ \mathrm{T}^0]$ and $[\mathrm{T}^{-1}]$ (C) $[\mathrm{M}^0\ \mathrm{L}\ \mathrm{T}^{-1}]$ and $[\mathrm{LT}^{-2}]$ (D) $[M^0 L T^{-1}]$ and [T]
- **Q6** $lpha = rac{Fv^2}{eta^2} {
 m log}_e \Big(rac{2\pi eta}{v^2}\Big)$ (where v= velocity, F= force). Find the dimensions of lpha and eta(A) $M^0 L^2 T^{-2}, M^1 L^{-1} T^0$ (B) $M^1 L^1 T^{-2}$, $M^1 L^{-1} T^0$ (C) $M^1 L^{-1} T^0$, $M^0 L^2 T^{-2}$ (D) $M^1 L^{-1} T^0$, $M^0 L^0 T^{-1}$
- **Q7** In $S = a + bt + ct^2$, S is measured in metres and t in seconds. The unit of c is (A) None (B) m
 - (C) ${\rm ms}^{-1}$ (D) ms^{-2}
- **Q8** The linear momentum p of a particle is given as a function of time t as $p=At^2+Bt+C$. The

Unit

dimensions of constant ${\cal B}$ are

- (A) $\left[\mathrm{ML^{-1}\ T^{-1}}\right]$ (B) $\left[\mathrm{ML^{-1}\ T^{-2}}\right]$ (C) $\left[\mathrm{MLT^{-2}}\right]$
- (D) $\left[\mathrm{MLT}^{-1}\right]$
- Q9 If the dimensions of length are expressed as $G^xc^y\ h^z$, which G,c and ${f h}$ are the universal gravitational constant, speed of light and Planks constant respectively then

 - (A) $x=\frac{1}{2}, y=\frac{1}{2}$ (B) $x=\frac{1}{2}, z=\frac{1}{2}$ (C) $y=\frac{1}{2}, z=\frac{3}{2}$ (D) $y=\frac{3}{2}, z=\frac{1}{2}$

Answer Key

Q1	(A)	Q6	(C)
Q2	(D)	Q6 Q7 Q8	(D)
Q3	(A)	Q8	(C)
Q4	(A)	Q9	(B)
Q5	(A)		

Android App | iOS App | PW Website

