

The Recursion Pattern

- Recursion: when a method calls itself
- Classic example--the factorial function:

Recursive definition:

$$f(n) = \begin{cases} 1 & \text{if } n = 0\\ n \cdot f(n-1) & else \end{cases}$$

□ As a C++ method:

// recursive factorial function recursiveFactorial(n)

```
if (n == 0) return 1; // basis case
else return n * recursiveFactorial(n-1); // recursive case
```

Linear Recursion

Test for base cases

- Begin by testing for a set of base cases (there should be at least one).
- Every possible chain of recursive calls must eventually reach a base case, and the handling of each base case should not use recursion.

Recur once

- Perform a single recursive call
- This step may have a test that decides which of several possible recursive calls to make, but it should ultimately make just one of these calls
- Define each possible recursive call so that it makes progress towards a base case.

Example of Linear Recursion

Algorithm LinearSum(*A, n*):

Input:

A integer array A and an integer n = 1, such that A has at least n elements

Output:

The sum of the first *n* integers in *A*

if n = 1 then return A[0]

else

return LinearSum(A, n - 1) + A[n - 1]

Example recursion trace:

Reversing an Array

Algorithm ReverseArray(*A, i, j*):

Input: An array A and nonnegative integer indices i and j

Output: The reversal of the elements in A starting at index i and ending at j

if i < j then

Swap A[i] and A[j]

ReverseArray(A, i + 1, j - 1)

return

Defining Arguments for Recursion

- In creating recursive methods, it is important to define the methods in ways that facilitate recursion.
- This sometimes requires we define additional paramaters that are passed to the method.
- For example, we defined the array reversal method as ReverseArray(A, i, j), not ReverseArray(A).

Computing Powers

The power function, p(x,n)=xⁿ, can be defined recursively:

$$p(x,n) = \begin{cases} 1 & \text{if } n = 0 \\ x \cdot p(x,n-1) & \text{else} \end{cases}$$

- This leads to an power function that runs in O(n) time (for we make n recursive calls).
- We can do better than this, however.

Recursive Squaring

 We can derive a more efficient linearly recursive algorithm by using repeated squaring:

$$p(x,n) = \begin{cases} 1 & \text{if } n = 0 \\ x \cdot p(x,(n-1)/2)^2 & \text{if } n > 0 \text{ is odd} \\ p(x,n/2)^2 & \text{if } n > 0 \text{ is even} \end{cases}$$

For example,

$$2^{4} = 2^{(4/2)^{2}} = (2^{4/2})^{2} = (2^{2})^{2} = 4^{2} = 16$$

$$2^{5} = 2^{1+(4/2)^{2}} = 2(2^{4/2})^{2} = 2(2^{2})^{2} = 2(4^{2}) = 32$$

$$2^{6} = 2^{(6/2)^{2}} = (2^{6/2})^{2} = (2^{3})^{2} = 8^{2} = 64$$

$$2^{7} = 2^{1+(6/2)^{2}} = 2(2^{6/2})^{2} = 2(2^{3})^{2} = 2(8^{2}) = 128.$$

Recursive Squaring Method

```
Algorithm Power(x, n):
   Input: A number x and integer n = 0
    Output: The value x^n
   if n = 0 then
      return 1
   if n is odd then
      y = Power(x, (n-1)/2)
      return x · y · y
   else
      y = Power(x, n/2)
      return y ' y
```

© 2010 Goodrich, Tamassia

Using Recursion

Analysis

```
Algorithm Power(x, n):
   Input: A number x and
  integer n = 0
    Output: The value x^n
   if n = 0 then
      return 1
   if n is odd then
      y = Power(x_{i})
      return x
   else
      y = Power(x, n/2)
      return y ' y
```

Each time we make a recursive call we halve the value of n; hence, we make log n recursive calls. That is, this method runs in O(log n) time.

It is important that we use a variable twice here rather than calling the method twice.

Tail Recursion

- Tail recursion occurs when a linearly recursive method makes its recursive call as its last step.
- The array reversal method is an example.
- Such methods can be easily converted to nonrecursive methods (which saves on some resources).
- Example:

Algorithm IterativeReverseArray(*A, i, j*):

Input: An array A and nonnegative integer indices i and j **Output:** The reversal of the elements in A starting at index i and ending at j

```
while i < j do

Swap A[i] and A[j]

i = i + 1

j = j - 1
```

return

Another Binary Recusive Method

Problem: add all the numbers in an integer array A:

Algorithm BinarySum(*A, i, n*):

Input: An array A and integers i and n

Output: The sum of the *n* integers in *A* starting at index *i*

if n = 1 then

return A[i]

return BinarySum(A, i, n/2) + BinarySum(A, i + n/2, n/2)

Example trace:

Computing Fibonacci Numbers

Fibonacci numbers are defined recursively:

$$F_0 = 0$$

 $F_1 = 1$
 $F_i = F_{i-1} + F_{i-2}$ for $i > 1$.

Recursive algorithm (first attempt):

Algorithm BinaryFib(*k*):

Input: Nonnegative integer k

Output: The kth Fibonacci number F_k

if
$$K = 0$$
 then return θ

if k = 1 then return 1

else

return BinaryFib(k-1) + BinaryFib(k-2)

Analysis

- □ Let n_k be the number of recursive calls by BinaryFib(k)
 - $n_0 = 1$
 - $n_1 = 1$
 - $n_2 = n_1 + n_0 + 1 = 1 + 1 + 1 = 3$
 - $n_3 = n_2 + n_1 + 1 = 3 + 1 + 1 = 5$
 - $n_4 = n_3 + n_2 + 1 = 5 + 3 + 1 = 9$
 - $n_5 = n_4 + n_3 + 1 = 9 + 5 + 1 = 15$
 - $n_6 = n_5 + n_4 + 1 = 15 + 9 + 1 = 25$
 - $n_7 = n_6 + n_5 + 1 = 25 + 15 + 1 = 41$
- Note that n_k at least doubles every other time
- \square That is, $n_k > 2^{k/2}$. It is exponential!

Analysis

```
T(N) = T(N-1) + T(N-2) + 1
= [T(N-2)+T(N-3)+1]+[T(N-3)+T(N-4)+1]+1
= T(N-2) + T(N-3) + T(N-3) + T(N-4) + 3
```

If we repeat the recurrence, we're going to get 8 T's on level 3. Then 16, 32, and so on...

- So we get 2^k T's at level k.
- To get down T(N-1) to the base case T(2), we'll need to go to level k = N-2.
- We'll have 2^N-2 T's there, so $T(N) = O(2^N)$.

GCD

Function definition:

$$gcd(x,y) = x,$$
 if $y = 0$
= $gcd(y, reminder(x,y))$ if $y > 0$

function gcd is:

input: integer x, integer y such that $x \ge y$ and $y \ge 0$

- 1. if y is 0, return x
- 2. otherwise, return [gcd(y, (remainder of x/y))]

end gcd

GCD Analysis

To see why notice that: $GCD(a,b) = GCD(b,a \mod b) = GCD(a \mod b, b \mod (a \mod b))$. Now since a mod b = r such that a = bq + r, it follows that r < b, so a > 2r. So every two iterations, the larger number is reduced by a factor of 2 (at least) so there are at most O(lgn) iterations.

- void myFunction(int counter)
- **♦** {
- cout<<"hello"<<counter<<endl;</p>
- if (counter ==0) {
- myFunction(--counter);
- cout<<counter<<endl;</p>
- ♦ }
- return;
- *****
- **(**

- What will it do if Counter is 8?
- What will it do if counter is set to -8?
 - What to do about it ?

- Write a recursive program to find prime number.
- The main is as follows:
- int main(int argc, char** argv) {
- int b;
- int n;
- n = 13;
- \bullet b = isPrime(n,2);
- cout << b << '\n';</pre>
- return 0;
- }

- bool isPrime(int p, int i) {
- \bullet if (I == p) return 1; //or better if (i*i>p) return 1;
- if (p % i == 0) return 0;
- return isPrime(p, i + 1);
- **\Pi**

Exercise - Recursion 3

- Write a recursive program to find if a string is palindrome or not?
- The main is as follows:
- int main() {
- cout << "Enter a string: ";</p>
- char str[20];
- cin.getline(str, 20, '\n');
- cout << "The entered string " << ((palindrome(str, strlen(str) + 1))
 ? "is" : "is not") << " a Palindrome string." << endl;</pre>
- return 0;