

Elektronika (120)

Auditorne vježbe 1

O kolegiju

Elektronički elementi	Elektronički sklopovi
PoluvodičiDiodaTranzistor	Pojačala s bipolarnim tranzistoromPojačala s unipolarnim tranzistoromOperacijsko pojačalo
04.03. – 19.04.	06.05. – 14.06.

• Ocjena: teorija 50%, zadaci 50% (+ dodatni bodovi)

• Ispiti: 03.07.2019. i 17.07.2019.; 04.09.2019.

Što je elektronika?

- Elektronika je grana znanosti i tehnologije koja proučava/koristi usmjereno gibanje elektrona kroz neki medij ili vakuum.
- Usmjereno gibanje elektrona

 električna struja

Od čega se izrađuju elektronički uređaji?

- Silicij Si (2. najrasprostranjeniji element u Zemljinoj kori – 27,7%)
- Germanij Ge

Složeni poluvodiči

- III-V poluvodiči:
 - GaAs, GaN, GaP, GaSb
 - AlAs, AlN, AlP
 - InSb, InAs, InN, InP
 - AlGaAs, InGaAs
 - InGaP, AlGaP
- II-VI poluvodiči:
 - CdS, CdSe, CdTe
 - ZnO, ZnSe, ZnS, ZnTe

itd...

Definicija poluvodiča

 Materijali čija je električna vodljivost veća od vodljivosti izolatora, a manja od vodiča.

$$10^{-8} S/cm < \sigma < 10^{3} S/cm$$

- Ključni parametar je električna vodljivost!
- Vodljivost poluvodiča može se mijenjati u širokom rasponu vrijednosti.
- Kako?
- Pogledati u strukturu silicija!

Struktura silicija

- Čvrsto tijelo
- Kristalna struktura
- Kovalentna veza
- Gustoća atoma: 5·10²² cm⁻³

Kovalentna veza

- Atom:
 - Jezgra
 - Elektroni (smješteni u tzv. ljuskama)
- Ključni su tzv. valentni elektroni.

Slobodni elektroni

- Električna vodljivost ovisi o broju slobodnih elektrona
- Ali elektroni su u kovalentnim vezama!
- Kako osloboditi elektron iz kovalentne veze???
- Razbiti kovalentnu vezu!

KAKO???

Gustoća slobodnih elektrona

- Gustoća slobodnih elektrona: n [cm⁻³]
- Broj slobodnih elektrona u jedinici volumena

Ovisi o temperaturi!

- Elektron se može osloboditi iz kovalentne veze ako mu se dovede energija (zagrijavanjem, djelovanjem svjetla itd.).
- Oslobađanjem elektrona nastaje šupljina!!!

Karakteristične energije

- Vrh valentnog pojasa najveća energija koju elektron može imati, a da je još uvijek vezan uz atom. E_{ν}
- Dno vodljivog pojasa najmanja energija koju elektron može imati kad je slobodan. E_c
- Širina zabranjenog pojasa najmanja energija koju treba dovesti da bi se oslobodio elektron iz kovalentne veze. E_G
- Prikaz karakterističnih energija energijski dijagram.

Energijski dijagram poluvodiča

Za silicij na 300 K: E_G=1,12 eV

Za GaAs na 300 K: E_G =1,42 eV

 $1 \text{ eV} = 1,602 \cdot 10^{-19} \text{ J}$

Oslobađanje elektrona iz kovalentne veze prikazano u energijskom dijagramu

Širina zabranjenog pojasa

 Model za proračun širine zabranjenog pojasa Si u ovisnosti o temperaturi:

$$E_G(T) = 1.17 - 4.73 \cdot 10^{-4} \cdot \frac{T^2}{T + 636}$$
 [eV]

Drugi model:

$$E_G(T) = 1,17 - 1,059 \cdot 10^{-5} \cdot T - 6,05 \cdot 10^{-7} \cdot T^2$$
 [eV] $T \le 170 \text{ K}$

$$E_G(T) = 1,1785 - 9,025 \cdot 10^{-5} \cdot T - 3,05 \cdot 10^{-7} \cdot T^2 \quad [eV] \quad T > 170 \text{ K}$$

Zadatak 1.

Izračunati širinu zabranjenog pojasa silicija na sljedećim temperaturama:

a)
$$T= 200 \text{ K}$$

b)
$$T = 350 \text{ K}$$

c)
$$T = 400 \text{ K}$$

☑ Rješenje:

a)
$$E_G = 1,147 \text{ eV}$$

b)
$$E_G = 1,111 \text{ eV}$$

c)
$$E_G = 1,097 \text{ eV}$$

Domaći rad: Odrediti širine zabranjenog pojasa pri zadanim temperaturama s drugim modelom i usporediti ih s rezultatima iz zadatka 1.

Čisti (intrinsični) silicij

- Bez primjesa (nečistoća).
- Broj slobodnih elektrona = broj razbijenih kovalentnih veza.
- Razbijena kovalentna veza = slobodno mjesto za drugi elektron → šupljina.
- Gustoća šupljina p [cm⁻³].
- U intrinsičnom poluvodiču:

$$n = p = n_i$$

Gustoće nosilaca naboja u poluvodiču

Gustoća elektrona u poluvodiču dana je izrazom:

$$n_0 = N_C \cdot \exp\left(\frac{E_F - E_C}{E_T}\right)$$
 $N_C = 2 \cdot \left(\frac{m_n kT}{2\pi\hbar^2}\right)^{3/2}$

Analogno, gustoća šupljina je:

$$p_0 = N_V \cdot \exp\left(\frac{E_V - E_F}{E_T}\right)$$
 $N_V = 2 \cdot \left(\frac{m_p kT}{2\pi\hbar^2}\right)^{3/2}$

Efektivne mase elektrona/šupljina:

Normirane efektivne mase	Si	Ge	GaAs
m_n/m_0	1,18	0,56	0,067
m_p/m_0	0,81	0,29	0,47

Određivanje intrinsične gustoće

 Model za određivanje intrinsične gustoće u ovisnosti o temperaturi za silicij:

$$n_i = (N_c \cdot N_v)^{1/2} \cdot \exp\left(-\frac{E_G}{2E_T}\right) \quad [cm^{-3}]$$

 Ako se uvrste vrijednosti efektivnih masa nosilaca za silicijski poluvodič:

$$N_c = 6.2 \cdot 10^{15} \cdot T^{3/2}$$
 [cm⁻³]
 $N_v = 3.5 \cdot 10^{15} \cdot T^{3/2}$ [cm⁻³]
 $E_T = k \cdot T = \frac{T}{11605}$ [eV]

Zadatak 2.

Izračunati intrinsičnu gustoću u silicijskom poluvodiču na temperaturama:

a) T = 100 K

b)
$$T = 200 \text{ K}$$

c)
$$T = 350 \text{ K}$$

d)
$$T = 400 \text{ K}$$

☑ Rješenje:

- a) $n_i = 2,23 \cdot 10^{-11} \text{ cm}^{-3}$
- b) $n_i = 4,61 \cdot 10^4 \text{ cm}^{-3}$
- c) $n_i = 3.05 \cdot 10^{11} \text{ cm}^{-3}$
- d) $n_i = 4,58 \cdot 10^{12} \text{ cm}^{-3}$

Domaći rad: Izračunati intrinsičnu gustoću u silicijskom poluvodiču na zadanim temperaturama koristeći širine zabranjenog pojasa izračunate u prethodnom zadatku domaćeg rada. Dobivene rezultate usporediti s rezultatima iz zadatka 2.

Onečišćeni (ekstrinsični) poluvodič

- Poluvodič s primjesama (namjerno unesene)
- Gustoća primjesa određuje električna svojstva (vodljivost)
- primjesa = nečistoća = dopant
- unošenje nečistoća = dopiranje

Tipovi ekstrinsičnih poluvodiča

- Prevladavaju elektroni n-tip
- Prevladavaju šupljine p-tip

Primjese se unose posebnim tehnološkim

postupcima

Uređaj za ionsku implantaciju i nanošenje poluvodičkih filmova

- Primjese: 5-valentni atomi:
 - FOSFOR (P)
 - ARSEN (As)
 - ANTIMON (Sb)
- Imaju 5 valentnih elektrona:
 - 4 u kovalentnoj vezi (čvrsto vezani)
 - 1 vezan uz jezgru (puno slabije vezan)

						2
						He Helium
				0	_	4.003
	5	6	7	8	9	10
	В	C	N	O	F	Ne
	Boron 10.811	Carbon 12.0107	Nitrogen 14.00674	Oxygen 15.9994	Fluorine 18.9984032	Neon 20.1797
	13	14	15	16	17	18
	Al	Si Silicon	P Phosphorus	S Sulfur	Cl	Ar Argon
	26.981538	28.0855	30.973761	32.066	35.4527	39.948
	31	32	33	34	35	36
	Ga	Ge	As	Se	Br	Kr
	Gallium 69.723	Germanium 72.61	Arsenic 74.92160	Selenium 78.96	Bromine 79.904	Krypton 83.80
	49	50	51	52	53	54
	In	Sn	Sb	Te	I	Xe
	Indium 114.818	Tin 118.710	Antimony 121.760	Tellurium 127.60	Iodine 126.90447	Xenon 131.29
	81	82	83	84	85	86
	01	02	0.5	01	0.5	00
	Tl	Pb	Bi	Po	At	Rn
	Tl Thallium	Pb Lead	Bi Bismuth	Po Polonium	At Astatine	Rn Radon
	Tl Thallium 204.3833	Pb Lead 207.2	Bi	Po	At	Rn
_	Tl Thallium	Pb Lead	Bi Bismuth	Po Polonium	At Astatine	Rn Radon

Intrinsični poluvodič

Atomi Si su električki neutralni!

5. valentni elektron

- Naboji u poluvodiču n-tipa:
 - Slobodni elektroni
 - Slobodne šupljine
 - Lokalizirani donori
- Ravnotežno stanje:
 - Gustoća elektrona n_o
 - Gustoća šupljina p_0

$$n_0 > p_0$$

- Gustoća donora N_D
- Elektroni su većinski nosioci naboja
- Šupljine su manjinski nosioci naboja

- Primjese: 3-valentni atomi:
 - BOR (B)
 - ALUMINIJ (AI)
 - GALIJ (Ga)
- Imaju 3 valentna elektrona:
 - 3 u kovalentnoj vezi (čvrsto vezani)
 - 1 nedostaje uz jezgru (slobodno mjesto za elektron - šupljina)

						He Helium
						4.003
	5	6	7	8	9	10
	В	C	N	O	F	Ne
	Boron	Carbon	Nitrogen	Oxygen	Fluorine	Neon
	10.811	12.0107	14.00674	15.9994	18.9984032	20.1797
	13	14	15	16	17	18
	Al	Si	P	S	Cl	Ar
	Aluminum	Silicon	Phosphorus	Sulfur	Chlorine	Argon
\perp	26.981538	28.0855	30.973761	32.066	35.4527	39.948
	31	32	33	34	35	36
	Ga	Ge	As	Se	Br	Kr
	Gallium	Germanium	Arsenic	Selenium	Bromine	Krypton
					Bromine 79.904	
	Gallium	Germanium	Arsenic	Selenium	Bromine	Krypton
	Gallium 69.723	Germanium 72.61	Arsenic 74.92160	Selenium 78.96	Bromine 79.904	Krypton 83.80
	Gallium 69.723 49 In Indium	Germanium 72.61 50 Sn Tin	Arsenic 74.92160 51 Sb Antimony	Selenium 78.96 52 Te Tellurium	53 I lodine	Krypton 83.80 54 Xe Xenon
	Gallium 69.723 49 In	Germanium 72.61 50 Sn	Arsenic 74.92160 51 Sb	Selenium 78.96 52 Te	53 I	Krypton 83.80 54 Xe
	Gallium 69.723 49 In Indium	Germanium 72.61 50 Sn Tin	Arsenic 74.92160 51 Sb Antimony	Selenium 78.96 52 Te Tellurium	53 I lodine	Krypton 83.80 54 Xe Xenon
	Gallium 69.723 49 In Indium 114.818	Germanium 72.61 50 Sn Tin 118.710	Arsenic 74.92160 51 Sb Antimony 121.760	Selenium 78.96 52 Te Tellurium 127.60	Bromine 79.904 53 I lodine 126.90447	Krypton 83.80 54 Xe Xenon 131.29
	Gallium 69.723 49 In Indium 114.818 81 Tl Thallium	Germanium 72.61 50 Sn Tin 118.710 82	Arsenic 74.92160 51 Sb Antimony 121.760 83	Selenium 78.96 52 Te Tellurium 127.60 84	Bromine 79.904 53 I Iodine 126.90447 85	Krypton 83.80 54 Xe Xenon 131.29 86
	Gallium 69.723 49 In Indium 114.818 81 Tl	Germanium 72.61 50 Sn Tin 118.710 82 Pb	Arsenic 74.92160 51 Sb Antimony 121.760 83 Bi	Selenium 78.96 52 Te Tellurium 127.60 84 Po	Bromine 79.904 53 I lodine 126.90447 85 At	Krypton 83.80 54 Xe Xenon 131.29 86 Rn
	Gallium 69.723 49 In Indium 114.818 81 Tl Thallium	Germanium 72.61 50 Sn Tin 118.710 82 Pb Lead	Arsenic 74.92160 51 Sb Antimony 121.760 83 Bi Bismuth	Selenium 78.96 52 Te Tellurium 127.60 84 Po Polonium	Bromine 79.904 53 I lodine 126.90447 85 At Astatine	Krypton 83.80 54 Xe Xenon 131.29 86 Rn Radon

- Naboji u poluvodiču p-tipa:
 - Slobodni elektroni
 - Slobodne šupljine
 - Lokalizirani akceptori
- Ravnotežno stanje:
 - Gustoća elektrona n₀
 - Gustoća šupljina p_0

$$p_0 > n_0$$

- Gustoća akceptora N_A
- Šupljine su većinski nosioci naboja
- Elektroni su manjinski nosioci naboja

Osnovni zakoni u poluvodičima

1) Zakon električne neutralnosti:

$$n_0 + N_A = p_0 + N_D$$

2) Zakon termodinamičke ravnoteže:

$$n_0 \cdot p_0 = n_i^2$$

Zadatak 3.

 Izračunati relativnu promjenu intrinsične gustoće u silicijskom poluvodiču ako se temperatura s 300 K povisi za 10%.

☑ Rješenje:

Proračun:

$$T_1$$
=300 K $\rightarrow n_{i1}$ = 8,68·10⁹ cm⁻³
 T_2 =330 K $\rightarrow n_{i2}$ = 8,3·10¹⁰ cm⁻³

$$\frac{\Delta n_i}{n_{i1}} = \frac{n_{i2} - n_{i1}}{n_{i1}} = 856\%$$

