Análisis Matemático para Inteligencia Artificial

Martín Errázquin (merrazquin@fi.uba.ar)

Especialización en Inteligencia Artificial

Métodos de segundo orden

Método de Newton

Recordemos el polinomio de Taylor de grado 2 de una función f(x) alrededor de un punto x_t evaluada en un punto $\tilde{x} = x_t + \Delta$ con Δ pequeño:

$$f(\tilde{x}) \approx f(x_t) + f'(x_t)(\tilde{x} - x_t) + \frac{1}{2}f''(x_t)(\tilde{x} - x_t)^2$$
$$f(x_t + \Delta) \approx f(x_t) + f'(x_t)\Delta + \frac{1}{2}f''(x_t)\Delta^2$$

Si derivamos e igualamos a 0, obtenemos el mínimo en $\Delta^* = -\frac{f'(x_t)}{f''(x_t)}$. En versión multivariada, esto es $\Delta^* = H^{-1}\nabla_f(x_t)^T$.

El método de Newton es eso:

$$\theta_{t+1} = \theta_t - H^{-1} \nabla_J (\theta_t)^T$$

Pro: Tiene convergencia local cuadrática.

Con: Es *caro* estimar $H^{-1}\nabla_J(\theta_t)^T$ (Según Goodfellow 10^4 vs 10^2 para $\nabla_J(\theta_t)^T$.

BFGS

Como calcular $H^{-1}\nabla_J(\theta_t)^T$ en cada iteración es muy caro, se plantea aproximar H usando H_t iterable que sea simple. Se pide que H_t sea simétrica y definida positiva, y que además cumpla la *ecuación secante*:

$$H_t y_t = s_t$$

donde
$$y_t = \Delta \nabla_J(\theta) = \nabla_J(\theta_t) - \nabla_J(\theta_{t-1})$$
 y $s_t = \Delta \theta = \theta_t - \theta_{t-1}$.

La regla de update resulta:

$$H_{t+1} = V_t^T H_t V_t + rac{s_t s_t^T}{y_t^T s_t}$$

donde $V_t = I - \frac{s_t y_t^T}{y_t^T s_t}$. Observar que el método, si bien es más eficiente, es sub-cuadrático ("Quasi-Newton") en iteraciones.

Nota: ¿Cómo inicializar H_0 ? No hay fórmula, suele usarse $H_0 = I$. Por ejemplo, Sklearn/SciPy lo hacen.

L-BFGS

Un problema inherente a BFGS (y cualquier método similar) es que es $\mathcal{O}(n^2)$ en memoria. L-BFGS plantea usar sólo información de las últimas m iteraciones para aproximar H, específicamente los pares (s_k, y_k) con $k = t-1, \ldots, t-m$. Luego se preestablece un $H_t^0 = \frac{s_{t-1}^T y_{t-1}}{y_{t-1}^T y_{t-1}}I$ y se aplican los m pasos de BFGS hasta llegar a H_t . Si bien la cuenta es engorrosa, es eficiente de computar $H_t \nabla_J(\theta_t)$:

```
q = grad_t
for i in k-1, ..., k-m:
   alpha[i] = s[i].T @ q / (y[i].T @ s[i])
   q -= alpha[i] * y[i]
res = H_k0 @ q
for i in k-m, ..., k-1:
   res += s[i] * (alpha[i] - y[i].T @ r)
```

Luego de obtener el resultado, se elimina del buffer el par (s, y) más viejo y se reemplaza por el último, siendo entonces $\mathcal{O}(mn)$.

¿Cuándo conviene usar qué?

En términos generales, los métodos de $1^{\underline{o}}$ orden son mucho más rápidos. Además, si bien existen variantes que lo solventan, en general los métodos de $2^{\underline{o}}$ orden requieren entrenar *en batch*.

Sin embargo, hay casos donde esto está bien. Por ejemplo, las librerías de árboles boosteados (GBDT) como LightGBM o XGBoost usan métodos de 2° orden *entre árboles*.

- Para datasets "chicos" y/o modelos tradicionales de pocos parámetros es más que aceptable usar métodos de 2° orden.
- Para datasets o modelos muy grandes resulta prohibitivo entrenar en batch, y suelen premiarse updates rápidos.
- Como siempre, el método correcto depende de la situación.