12

1

Verify that the order of the point P=(1,0) in the curve $E_8:y^2+xy=x^3+\alpha^2x^2+\alpha^6$ is 12 over the field $\mathbb{F}_8=\mathbb{Z}_2[X]/X^3+X+1$. The class of X is denoted as α .

✓ Answer ∨ Derivation of μ : $y + x\mu = x^2$ $\mu = x + \frac{y}{x}$ $\mu = egin{cases} rac{y_2 + y_1}{x_2 + x_1} & P eq Q \ x + rac{y}{x} & P = Q \end{cases}$ $x_3 = \mu^2 + \mu + \alpha^2 + x_1 + x_2$ $y_3 = y_1 + \mu(x_3 + x_1) + x_3$ P = (1,0)2P = P + P $\mu = 1$ $x_3 = 1 + 1 + \alpha^2 + 1 + 1 = \alpha^2$ $y_3 = 0 + 1(\alpha^2 + 1) + \alpha^2 = 1$ $2P = (\alpha^2, 1)$ 3P = 2P + P $\mu = rac{1}{lpha^2 + 1} = lpha$ $x_3 = \alpha^2 + \alpha + \alpha^2 + 1 + \alpha^2 = \alpha^2 + \alpha + 1$ $y_3 = 0 + \alpha(1 + \alpha^2 + \alpha + 1) + \alpha^2 + \alpha + 1 = 0$ $y_3 = 1 + \alpha(\alpha^2 + \alpha + 1 + \alpha^2) + \alpha^2 + \alpha + 1 = 0$ $3P = (\alpha^2 + \alpha + 1, 0)$ 4P = 2P + 2P $\mu = \alpha^2 + \frac{1}{\alpha^2} = \alpha + 1$ $x_3=lpha^2+1+lpha+1+lpha^2+lpha^2+lpha^2=lpha$ $y_3 = 1 + (\alpha + 1)(\alpha + \alpha^2) + \alpha = \alpha$ $4P = (\alpha, \alpha)$ 6P = 4P + 2P $\mu = \frac{\alpha}{\alpha^2 + \alpha} = \alpha^2 + \alpha$ $x_3 = \alpha + \alpha^2 + \alpha + \alpha^2 + \alpha^2 + \alpha = \alpha^2 + \alpha$ $y_3 = 1 + (\alpha^2 + \alpha)(\alpha^2 + \alpha + \alpha^2) + \alpha^2 + \alpha = 0$

$$6P = 3P + 3P$$

$$\mu = \alpha^{2} + \alpha + 1 + \frac{0}{\alpha^{2} + \alpha + 1} = \alpha^{2} + \alpha + 1$$

$$x_{3} = \alpha^{2} + 1 + \alpha^{2} + \alpha + 1 + \alpha^{2} + \alpha^{2} + \alpha + 1 + \alpha^{2} + \alpha + 1 = \alpha^{2} + \alpha$$

$$y_{3} = 0 + (\alpha^{2} + \alpha)(\alpha^{2} + \alpha + \alpha^{2} + \alpha + 1) + \alpha^{2} + \alpha = 0$$

$$6P = (\alpha^{2} + \alpha, 0)$$

$$12P = 6P + 6P$$

$$\mu = \alpha^{2} + \alpha + \frac{0}{\alpha^{2} + \alpha} = \alpha^{2} + \alpha$$

$$x_{3} = \alpha + \alpha^{2} + \alpha + \alpha^{2} = 0$$

$$y_{3} = 0 + (\alpha^{2} + \alpha)(0 + \alpha^{2} + \alpha) + 0 = \alpha$$

$$12P = \emptyset$$

Therefore the order is 12

2

Solve the equation Q=nP with P=(1,0) and $Q=(\alpha+1,\alpha^2+1)$.

3

For the curve $E: y^2 + xy = x^3 + 1$, determine the number of points over the field \mathbb{F}_2 , and then over the field $\mathbb{F}_{2^{13}}$.

```
\checkmark Answer For \mathbb{F}_2 With x=0 y^2=1\pmod{2}
```

$$y \in \{1\} | x = 0$$

With $x = 1$
 $y^2 + y = 0 \pmod{2}$
 $y \in \{0, 1\} | x = 1$
 $\{(0, 1), (1, 0), (1, 1), \mathscr{O}\} \in \mathbb{P}$

For $\mathbb{F}_{2^{13}}$
 $t_0 = 2$
 $N_1 = 4$
 $t_1 = 2 + 1 - 4 = -1$
 $X^2 - t_1 X + q = 0$
 $X^2 + X + 2 = 0$
 $X = -0.5 \pm \sqrt{1.75}i$
 $t_{13} = (0.5 + \sqrt{1.75}i)^{13} + (0.5 - \sqrt{1.75}i)^{13} = -181$

 $N_{13} = 2^{13} + 1 + 181 = 8374$