MATH 2031 Introduction to Real Analysis

September 28, 2012

Tutorial Note 3

Functions

(I) Definition:

A function f from a set A to a set B(denoted by $f: A \to B$) is an assignment of every $a \in A$ to **exactly ONE** $b \in B$ which we denote by f(a), the value of f at a. A function f is well-defined if a = a', then f(a) = f(a'). The range or image of f is $f(A) = \{f(x) : x \in A\}$

(II) Identity function

The identity function on a set S is $I_S: S \to S$ given by I(x) = x for all $x \in S$.

(III) Composition

Let $\hat{f}: A \to B$, $g: B' \to C$ be functions and $f(A) \subseteq B'$. The composition $g \circ f: A \to C$ given by $g \circ f(x) = g(f(x))$.

(IV) Restriction

Let $f: A \to B$ be a function and $C \subseteq A$. The restriction of f to C is $f|_C: C \to B$ given by $f|_C(x) = f(x)$ for all $x \in C$

(V) Surjective (onto) function

A function $f: A \to B$ is surjective iff f(A) = B.

(VI) Injective (one-to-one or 1-1) function

A function $f: A \to B$ is injective iff $f(x) = f(y) \Rightarrow x = y$. We may also check its contrapositive $x \neq y \Rightarrow f(x) \neq f(y)$.

(VII) Inverse function

For an injective function $f: A \to B$, the inverse function of f is $f^{-1}: f(A) \to A$ given by $f^{-1}(y) = x \Leftrightarrow f(x) = y$.

(VIII) Bijective function

A function f is bijective iff f is injective and surjective.

Problem 1 Determine whether the following functions are injective, surjective or bijective.

- (i) $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) = e^x$
- (ii) $g: \mathbb{R} \to \mathbb{R}$ given by g(x) = x
- (iii) $\chi_{[0,1]} : \mathbb{R} \to \mathbb{R}$ given by $\chi_{[0,1]} = \begin{cases} 1 & \text{if } x \in [0,1] \\ 0 & \text{if } x \notin [0,1] \end{cases}$

Solution:

(i) Check injective:

From calculus, we know that $f(x) = e^x$ is strictly increasing, i.e. $x < y \Rightarrow f(x) < f(y)$, thus injective. Check Surjective:

Since $f(x) = e^x$ is always positive, i.e $f(\mathbb{R}) = (0, +\infty) \subset \mathbb{R}$, it's not surjective.

Check Bijective:

Since f is only injective but not surjective, it's not a bijection.

(ii) Check injective:

By definition, $g(x) = g(y) \Rightarrow x = y$, so injective.

Check Surjective:

For every y in the codomain \mathbb{R} , we see $y \in \mathbb{R}$ in the domain and g(y) = y, so g is surjective.

Check Bijective:

Since g is both injective and surjective, it's a bijection.

(iii) Check injective:

Since there exist 2 distinct elements, namely 0.3 and 0.4, with the same function value, $\chi_{[0,1]}(0.3) = 1 = \chi_{[0,1]}(0.4)$ as both belongs to [0,1], it's not injective. Check Surjective:

Since the range of $\chi_{[0,1]}$ has only 2 elements $\{0,1\} \subset \mathbb{R}$, it's not surjective.

Check Bijective:

Since $\chi_{[0,1]}$ is neither injective nor sujective, it could not be a bijection.

Problem 2 Let $f(x) = \tan(x)$

- (i) If f defined above is a function $f: \mathbb{R} \setminus \{\frac{(2n+1)\pi}{2} : n \in \mathbb{Z}\} \to \mathbb{R}$, then is f injective, surjective or bijective?
- (ii) What if we changed the domain of f to $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ is f injective, surjective or bijective?

Solution:

- (i) As we know that $\tan(x)$ is a periodic function with period π , i.e $\tan(x) = \tan(x+\pi)$, $f(x) = \tan(x)$ is not injective. For every $y \in \mathbb{R}$, there exist $x = \arctan(y)$ and $x \in (-\frac{\pi}{2}, \frac{\pi}{2})$ such that $f(x) = \tan(x) = y$, so it's surjective. Since f is only surjective but not injective, it's not a bijection.
- (ii) From calculus, $f'(x) = \frac{d}{dx} \tan(x) = \sec^2(x) > 0$, so $f(x) = \tan(x)$ is strictly increasing, thus injective. By the same argument in part (i), it's surjective. Now, $f(x) = \tan(x) = y$ is both injective and surjective, it's a bijection.

Remark:

From the above, we could see that the domain, also the codmain, could affect how the function behaves, like injectivity, surjectivity, bijectivity, positivity, etc.

Problem 3

- (i) Let $f:A\to B$ be a function. Show that there is a function $g:B\to A$ such that $g\circ f=I_A$ and $f\circ g=I_B$ iff f is bijective.
- (ii) Show that if $f: A \to B$ and $h: B \to C$ are bijections, then $h \circ f: A \to C$ is a bijection.

Solution:

(i) " \Leftarrow " f is surjective implies f(A) = B, i.e. for each $b \in B$ there exist an $a \in A$ such that f(a) = b. Since f is injective, such a is unique. then we define $g: B \to A$ by g(b) = a for which f(a) = b.

From the definition of g, we check to get $g \circ f = I_A$ and $f \circ g = I_B$.

"⇒" direction, we will prove it by contradiction.

Assume f is not injective, i.e there exist 2 distinct elements in A, say $x, y \in A$ such that $x \neq y$, and f(x) = f(y). Then, $x = I_A(x) = g \circ f(x) = g(f(x)) = g(f(y)) = g \circ f(y) = I_A(y) = y$, but $x \neq y$, contradiction.

Hence f is injective.

Assume f is not surjective, i.e there exist an element $z \in B \setminus f(A)$.

However, $z = I_B(z) = f(g(z))$, which means that $z \in f(A)$ contradiction.

Hence f is surjective.

Combining the above we get that f is a bijection.

(ii) Surjective: For all $z \in C$, there is a $y \in B$ such that h(y) = z as h is surjective. For such y, there is a $x \in A$ such that f(x) = y as f is surjective. Then For each $z \in C$, we have a $x \in A$, such that $h \circ f(x) = h(f(x)) = h(y) = z$. Thus $h \circ f$ is surjective.

Injective: For any $x, y \in A$ and $x \neq y$.

Assume $h \circ f(x) = h \circ f(y)$, then f(x) = f(y) since h is injective. Also by the injectivity of f, $f(x) = f(y) \Rightarrow x = y$, contradiction.

Hence $h \circ f$ is injective.

Problem 4 Constrict a bijection between \mathbb{N} and positive even number denoted as $A = \{a : a \text{ is a positive even number}\}$.

Solution:

Let $f: \mathbb{N} \to A$ be a function given by f(n) = 2n for all $n \in \mathbb{N}$. Then from problem 3(i), if we can find the inverse function of f, then f is bijective. Clearly then $f^{-1}: A \to \mathbb{N}$ given by $f^{-1}(a) = \frac{a}{c}$ is the required inverse function. Thus, f is bijective.

Remark:

From this problem, we can see that even the one set "looks" much smalled then another set, there may exist a bijective between them, which telling us that they have the same cardinality.

Problem 5 Construct a bijection between the following pair of set

- (i) (0,1) and \mathbb{R}
- (ii) [0,1) and (0,1]
- (iii) (0,1) and (0,1]
- (iv) [0,1] and [0,1)

Solution:

(i) According to Problem 3(ii), we can see the composition of bijections is again a bijection, so sometimes we could construct a bijection between 2 sets step by step if it's hard to work it out directly. For this part, I would construct it from the following steps

$$(0,1) \xrightarrow{f} (0,\pi) \xrightarrow{g} (-\frac{\pi}{2},\frac{\pi}{2}) \xrightarrow{h} \mathbb{R}$$

Define $f:(0,1)\to(0,\pi)$ is a function given by $f(x)=\pi x$.

We can see that f has an inverse $f^{-1}:(0,\pi)\to(0,1)$ given by $f^{-1}(a)=\frac{a}{\pi}$. So f is a bijection.

Define $g:(0,\pi)\to(-\frac{\pi}{2},\frac{\pi}{2})$ is a function given by $g(y)=y-\frac{\pi}{2}$. Clearly that $g^{-1}:(-\frac{\pi}{2},\frac{\pi}{2})\to(0,\pi)$ given by $g^{-1}(b)=b+\frac{\pi}{2}$ is the inverse of g, thus g is a bijection.

Then from problem 2(ii), define $h: (-\frac{\pi}{2}, \frac{\pi}{2}) \to \mathbb{R}$ to be the function given by $h(z) = \tan(z)$ is a bijection.

Thus, define $f_1:(0,1)\to\mathbb{R}$ given by $f_1(x)=h\circ g\circ f(x)$ is a bijection.

- (ii) Define $f_2:[0,1)\to(0,1]$ is a function given by $f_2(x)=1-x$ then by direct checking we can see that $f_2^{-1}=1-x$, so f_2 is bijection.
- (iii) Here we will construct a bijection, by splitting the domain and codomain into 2 parts and map them separately. First, split the domain (0,1) into $\{\frac{1}{2},\frac{1}{3},\frac{1}{4},\cdots\}=\{\frac{1}{n+1}:n\in\mathbb{N}\}$ and $(0,1)\setminus\{\frac{1}{n+1}:n\in\mathbb{N}\}$. For the codomain (0,1] we split it into $\{1,\frac{1}{2},\frac{1}{3},,\cdots\}=\{\frac{1}{n+1}:n\in\mathbb{N}\}$ and $(0,1]\setminus\{\frac{1}{n}:n\in\mathbb{N}\}$. Then we come up with the function $f_3:(0,1)\to(0,1]$ given as follow,

$$f_3(x) = \begin{cases} \frac{x}{1-x} & \text{if } x \in \{\frac{1}{n+1} : n \in \mathbb{N}\}; \\ x & \text{if } x \notin \{\frac{1}{n+1} : n \in \mathbb{N}\} \end{cases}$$

So
$$f_3\left(\frac{1}{n+1}\right) = \frac{\left(\frac{1}{n+1}\right)}{1 - \left(\frac{1}{n+1}\right)} = \left(\frac{1}{n+1}\right)\left(\frac{n+1}{n}\right) = \frac{1}{n}.$$

One can directly check it's a bijection.

(iv) Here we use the same trick as above then $[0,1] = \{0\} \cup (0,1]$ and $[0,1) = \{0\} \cup (0,1)$. Then we define $f_4: [0,1] \to [0,1)$ given by $f_4(x) = \begin{cases} 0 & \text{if } x = 0; \\ f_3^{-1}(x) & \text{if } x \in (0,1] \end{cases}$ Then as f_3 is bijective then so is f_3^{-1} , therefore f_4 is a bijection.

Remark

As mention above, composition of bijections is also a bijection, then by composing the suitable bijections, we can see the all 5 sets (0,1), (0,1], [0,1), [0,1] and \mathbb{R} are all of the same cardinality.

Problem 6 Let $A = \{a_i : i \in \mathbb{N}\}$, $B = \{a_i : j \in \mathbb{N}\}$ and $C = \{c_k : k \in \mathbb{N}\}$ with all a_i, b_j and c_k are distinct. Construct a bijection between A and $B \cup C$.

Solution:

We can define $f:A\to B\cup C$ as follow:

$$f(a_i) = \begin{cases} b_{\frac{i+1}{2}} & \text{if } i \text{ is odd number} \\ c_{\frac{i}{2}} & \text{if } i \text{ is even number} \end{cases}.$$

We can check $g:B\cup C\to A$ defined by

$$g(x) = \begin{cases} a_{2n-1} & \text{if } x = b_n \in B \\ a_{2n} & \text{if } x = c_n \in C \end{cases}$$

is f^{-1} by showing $g \circ f = I_A$ and $f \circ g = I_{B \cup C}$.

Remark:

With problem 6, we can see that even the set of all odd numbers and the set of all even numbers are proper subsets of \mathbb{Z} , but there exist a bijection between the set of all odd numbers and Z and a bijection between the set of all even numbers and Z.

Thus, they all are of the same cardinality.