TD 06 – Classes de complexité et non déterminisme

Exercice 1.

- **1.** Soit $f: \mathbb{N} \to \mathbb{N}$ et $L \in \mathsf{DTIME}(f(n))$. Montrer que $\bar{L} = \Sigma^{\star} L$ est aussi dans $\mathsf{DTIME}(f(n))$.
- **2.** Y a-t-il de fonctions $f: \mathbb{N} \to \mathbb{N}$ qui sont, à la fois, $\mathcal{O}(n^2)$ et $\Omega(n^3)$? Justifier la réponse.
- **3.** Soit $f: \mathbb{N} \to \mathbb{N}$. Est-ce que $\mathsf{DTIME}(f(n)) \subseteq \mathsf{NTIME}(f(n))$? Justifier la réponse.

Exercice 2.

- 1. Donner la définition de P avec des mots.
- 2. Donner la définition formelle de EXP.
- 3. Montrer que le problème suivant est dans P :

Quatre ennemis

entrée : un graphe orienté G = (V, E)

 $\it question$: le graphe G contient-il un ensemble V' de quatre sommets tels que aucune paire de sommets dans V' n'est relié par un arc?

Exercice 3.

- 1. Donner la définition de NP avec des mots.
- 2. Donner la définition formelle de coNEXP.
- 3. Montrer que le problème suivant est dans NP :

Plus long chemin

entrée : un graphe orienté G = (V, E) et un entier k

question: G contient-il un chemin simple (c'est-à-dire, sans jamais passer deux fois par le même arc) de longueur au moins k qui part de n'importe quel sommet?

Exercice 4.

Pour chacune des affirmations suivantes, cocher une case pertinente.

1.	$NP \neq coNP.$	\square vrai	□ faux	\Box si je savais le démontrer je gagnerais 1 000 000 $\$$
2.	$P \neq EXP.$	\square vrai	□ faux	\square si je savais le démontrer je gagnerais 1 000 000 \$
3.	$P \subsetneq NP.$	\square vrai	\square faux	\Box si je savais le démontrer je gagnerais 1 000 000 $\$$
4.	NP = NEXP.	□ vrai	□ faux	□ si je savais le démontrer je gagnerais 1 000 000 \$

Exercice 5.

Faire deviner une MT non-déterministe

En langage de haut-niveau on utilise l'instruction *deviner* pour écrire les algorithmes nondéterministes. Dans cet exercice nous allons voir comment convertir ces instructions en machines de turing non-déterministes.

Conventions : dans les schémas les cases vides contiennent des symboles blanc $B \in \Gamma$, et les entiers en binaires sont écrits avec le bit de poids fort à gauche.

1. En imaginant que l'on a un entier $n \in \mathbb{N}$ en entrée dont on veut savoir s'il est premier, convertir en machine de Turing l'instruction $deviner(un\ entier\ x \in \{1, \dots, \sqrt{n}\})$. On pourra supposer que le code de machine de Turing pour calculer la racine carrée est déjà écrit, c'est-à-dire que l'on partira de la configuration suivante :

et que l'on veut arriver dans la configuration suivante :

2. En imaginant que l'on a en entrée un graphe non-orienté G=(V,E) à n sommets dont on veut savoir s'il contient une clique de taille k, convertir en machine de Turing l'instruction deviner(un sous-ensemble de k sommets de V).

On pourra supposer que l'on part de la configuration suivante :

et que l'on veut arriver dans la configuration suivante :

3. En imaginant que l'on a une formule ϕ à n variables (l'ensemble des variables est X avec |X|=n) en entrée dont on veut savoir si elle est satisfaisable, convertir en machine de Turing l'instruction $deviner(une\ valuation\ X \to \{\bot, \top\})$.

On pourra supposer que l'on part de la configuration suivante :

et que l'on veut arriver dans la configuration suivante :