Lecture 17: RNN

CS 109B, STAT 121B, AC 209B, CSE 109B

Mark Glickman and Pavlos Protopapas

Sequence Modeling

Winter is here. To to the store and buy some snow shovels.

Winter is here. Go to the store and buy some snow shovels.

Recurrent Networks

- Image/grid data: convolution networks
- Sequence data: parameter sharing across time

Example: Machine Translation

Unfolding the network

Input sequence

Sequence length may vary for each input

Hidden-to-hidden Recurrence

E.g. language traslation

Recurrent connections between hidden units

Hidden-to-hidden Recurrence

$$h^{(t)} = \sigma(\mathbf{W}h^{(t-1)} + \mathbf{U}x^{(t-1)} + b)$$

$$\hat{y}^{(t)} = \operatorname{softmax}(\mathbf{V}h^{(t)} + c)$$

Output-to-output Recurrence

E.g. auto text completion

Recurrent connections between output and hidden units

Single Output RNN

Product review

Output summarizes input sequence

Outline

- RNN as a graphical model
- RNN training
- Long-term dependencies
- Gated RNN
- RNN variants

Loss Computation

Target outputs

Conditioned on Target Outputs

Log-likelihood (cross-entropy)

$$-\log P\left(o^{(t)} = y^{(t)} \middle| x^{(1)}, \dots, x^{(t)}, y^{(1)}, \dots, y^{(t-1)}\right)$$
Prediction at t Target at t

Conditioned on Target Outputs

Log-likelihood (cross-entropy)

$$-\log P\left(o^{(t)} = y^{(t)} \middle| x^{(1)}, \dots, x^{(t)}, y^{(1)}, \dots, y^{(t-1)}\right)$$
Prediction at t Target at t

 Conditioned on past inputs and outputs, output at time t is independent of future outputs

Conditioned on Predicted Outputs

Conditioned on Predicted Outputs

Log-likelihood

Past predictions instead of true outputs

$$-\log P\left(o^{(t)} = y^{(t)} \middle| x^{(1)}, \dots, x^{(t)}, \ \underline{o^{(1)}, \dots, o^{(t-1)}}\right)$$
Prediction at t Target at t

- Likelihood function can break into pieces

Conditioned on Predicted Outputs

Log-likelihood

Past predictions instead of true outputs

$$-\log P\left(o^{(t)} = y^{(t)} \middle| x^{(1)}, \dots, x^{(t)}, \ \underline{o^{(1)}, \dots, o^{(t-1)}}\right)$$
Prediction at t Target at t

 Conditioned on inputs, output at time t is independent of everything else

Fully-connected graphical model

Simple example: *Predict day's stock prices* based on previous prices

Inefficient parametrization

RNN graphical model

Simple example: *Predict day's stock prices*based on previous prices

Graphical model details what we cannot get out of writing equation directly

Efficient parametrization, but stationary distribution

Outline

- RNN as a graphical model
- RNN training
- Long-term dependencies
- Gated RNN
- RNN variants

Backprop Through Time

- For each input, unfold network for the sequence length T
- Back-propagation: apply forward and backward pass on unfolded network
- Memory cost: O(T)

- Same as batch propagation

Case of Output Recurrence

Case of Output Recurrence

Loss at time t:

Teacher Forcing

$$L^{(t)} = -\log P\left(o^{(t)} = y^{(t)} \middle| x^{(1)}, \dots, x^{(t)}, y^{(1)}, \dots, y^{(t-1)}\right)$$

Use ground truth from previous time steps

Loss at different time steps are decoupled

Outline

- RNN as a graphical model
- RNN training
- Long-term dependencies
- Gated RNN
- RNN variants

Deep Recurrent Nets

Multiple layers between recurrent state and output

Multiple layers between input and recurrent state

- Hard to train as more layers added

- Problem with BP over time: long seq. - idea of vanishing gradient persists

Multiple layers between current and previous hidden states

Long-term Dependencies

- Unfolded networks can be very deep
- Long-term interactions are given exponentially smaller weights than small-term interactions
- Gradients tend to either vanish or explode

Gradient Clipping

- Prevents exploding gradients
- Clip the norm of gradient before update:

if
$$||\boldsymbol{g}|| > v$$

$$\boldsymbol{g} \leftarrow \frac{\boldsymbol{g}v}{||\boldsymbol{g}||}$$

Gradient Clipping

Skip Connections

- Add additional connections between units d time steps apart
- Creating paths through time where gradients neither vanish or explode

-Prevent extreme gradients

Leaky Units

- Linear self-connections
- Maintain cell state: running average of past hidden activations

Standard RNN

$$C^{(t)} = \tanh(\mathbf{W}h^{(t-1)} + \mathbf{U}x^{(t-1)})$$

$$h^{(t)} = C^{(t)}$$

Leaky Unit

$$C^{(t)} = \tanh(\mathbf{W}h^{(t-1)} + \mathbf{U}x^{(t-1)})$$

$$h^{(t)} = \alpha h^{(t-1)} + (1-\alpha)C^{(t)}$$

colah.github.io

Outline

- RNN as a graphical model
- RNN training
- Long-term dependencies
- Gated RNN
- RNN variants

Long Short-Term Memory

- Handles long-term dependencies
- Leaky units where weight on self-loop α is context-dependent
- Allow network to decide whether to accumulate or forget past info
 - Type of RNN
 - Popular remember what we have learnt so far

Long Short-Term Memory

Cell State

Forget Gate

Intuition:

- Capture what we have learnt so far what to remember and how much
- Prior given more weight than new

$$f^{(t)} = \sigma(W^f h^{(t-1)} + U^f x^{(t)})$$

Input Gate

$$i^{(t)} = \sigma(W^i h^{(t-1)} + U^i x^{(t)})$$

$$\tilde{C}^{(t)} = \tanh(Wh^{(t-1)} + Ux^{(t)})$$

Cell State Update

$$C^{(t)} = f^{(t)}C^{(t-1)} + i^{(t)}\tilde{C}^{(t)}$$

Output Gate

$$q^{(t)} = \sigma(W^{o}h^{(t-1)} + U^{o}x^{(t)})$$

$$h^{(t)} = \tanh(C^{(t)})$$

Outline

- RNN as a graphical model
- RNN training
- Long-term dependencies
- Gated RNN
- RNN variants

Encoder-decoder Networks

- Compressing sequence into something smaller
- Echo State: One type of NN: only need to learn final weights, not all

RNN output sequence can be of different length than input sequence

Bidirectional Network

Output prediction may depend on whole input sequence

E.g. speech recognition: current sound may depend on future phonemes

Backprop?

Recursive Network

Tree structure vs. chain E.g. parse tree in NLP

Reduce network depth by using taller trees