Data Engineering - HEXAWARE

Assignment 1

1. Introduction to Data Warehousing

A Data Warehouse (DW) is a centralized system used for reporting and data analysis. Unlike transactional systems, DWs are optimized for read-heavy operations and long-term data storage.

Key Features:

- Subject-Oriented: Focuses on specific subjects like sales, finance, etc.
- Integrated: Combines data from multiple sources (e.g., ERP, CRM).
- Time-Variant: Stores historical data to enable trend analysis.
- Non-Volatile: Once data enters the warehouse, it is not changed.

Example:

A retail company collects sales data from all branches and stores it in the warehouse to analyze performance monthly or quarterly.

2. Purpose of a Data Warehouse

The main goal is to empower organizations with strategic decision-making through integrated and clean data.

Objectives:

- Centralize Data: Aggregates data from multiple systems (HR, Finance, Sales).
- Enable BI Tools: Makes it easy for tools like Power BI/Tableau to generate reports.
- Historical Analysis: Tracks performance over time.
- Data Consistency: Ensures uniform formats and standards across departments.
- Support OLAP Operations: Facilitates multi-dimensional queries and aggregations.

3. Data Warehouse Architecture

A typical 3-tier architecture includes the following layers:

- a. Data Source Layer
 - Sources: ERP systems, CRM platforms, flat files, web logs.

- Sends raw data to staging.
- b. Data Staging Layer (ETL Layer)
 - ETL Process: Extract, Transform, Load.
 - Cleans, validates, and formats the data.
 - Tools: Informatica, Talend, SSIS.
- c. Data Storage Layer
 - Stores structured data.
 - Schema design: Star or Snowflake schema.
 - Contains Fact tables (measurable data) and Dimension tables (descriptive data).
- d. Presentation/Access Layer
 - Reporting via dashboards, OLAP cubes.
 - Tools: Power BI, Tableau, Excel, MicroStrategy.

Flow:

Source \rightarrow ETL \rightarrow DW \rightarrow BI Tools

4. Operational Data Store (ODS)

An ODS is an intermediate layer between the transactional system and DW. It holds real-time or near-real-time operational data.

Characteristics:

- Used for day-to-day reporting.
- Doesn't store historical data.

- Frequently updated (unlike DW which is periodically updated).
- Acts as a staging area before data moves to the DW.

Example: A bank logs all customer transactions in an ODS for intraday analysis before archiving them into the DW.

5. OLTP vs Data Warehouse (OLAP)

Feature	OLTP (Online Transaction Processing)	Data Warehouse (OLAP)
Purpose	Run day-to-day operations	Analyze data
Data	Current, real-time	Historical, consolidated
Operations	Insert, update, delete	Select, aggregate, drill-down
Speed	Optimized for write-speed	Optimized for read-speed
Schema	Highly normalized	Denormalized (star/snowflake)
Examples	Banking system, e-commerce orders	KPI dashboards, trend analysis

6. Data Marts

A Data Mart is a smaller, focused version of a data warehouse — usually specific to a department.

Characteristics:

- Stores data specific to a business line (e.g., Sales, HR, Finance).
- Easier to build and manage.
- Faster query response due to smaller data volume.
- Can be dependent (sourced from DW) or independent (from OLTP directly).

Analogy:

If a data warehouse is a full shopping mall, a data mart is a single store inside it.

7. Data Marts vs Data Warehouses

Feature	Data Mart	Data Warehouse
Scope	Department-level	Enterprise-wide
Size	Smaller	Larger
Data Sources	Few or one	Many diverse sources
Implementation	Faster, cost-effective	Time-consuming, expensive
Example	HR payroll analysis	Company-wide employee analytics

8. Data Warehouse Lifecycle

Lifecycle Phases:

1. Requirement Gathering

o Identify business objectives, key performance indicators (KPIs), and user expectations.

2. Design

- Logical design (schemas: star/snowflake).
- o Physical design (indexes, partitions).

3. ETL Development

- Extract data from various sources.
- o Transform it into consistent formats.
- Load it into DW.

4. Testing

- o Ensure data accuracy.
- Validate ETL process and schema mappings.

5. Deployment

Make DW accessible to business users via BI tools.

6. Maintenance

o Regular updates, bug fixes, and performance optimization.