

Introduction to Robotics Program Overview

Outline

- Topic Overview
 - Mechanical design
 - Electrical components
 - Software design
- Project Overview
 - Mobile robot platform
 - Robotic arm control with ROS
- Software Installation
 - Mechanical design software options
 - Programming related software
- Additional Topics
 - Graduate school application
 - Personal research overview

Highlights

- Gain multidisciplinary insights into the field of robotics
- Obtain hands on experience for PCB design
- Work on the Robot Operating System to control your robots
- Learn LabVIEW: a program SpaceX uses to send rockets into space

Mechatronic Systems Overview

- Mechanical Design and Manufacturing
- Electrical Hardware
- Control System
- Computer Program

Topic Overview

- Computer Aided Design and Manufacturing
 - Mechanical product design procedure
 - Various manufacturing processes
 - Mechanism and transmission design
 - Control theory and application
- Electrical Components
 - Electronics and system identification
 - Arduino sensor overview and PCB layout
 - Embedded system programing
- Software Design
 - Python, C/C++, LabVIEW, Webpage programing
 - Robot operating system and Raspberry PI
 - Computer vision and machine learning

Additional Topics

- Graduate School Application
 - Overview and timeline
 - GRE, TOEFL & GPA
 - Statement of purpose and CV
 - Letters of recommendation
 - Special notes
- Research Example for Instrumentation
 - Atomic force microscope overview
 - Jumping mode AFM imaging
 - Application of robotics knowledge
 - Discussion on research in graduate school

Time Table and Exercise

Day 1

- Session 1: introduction, project overview, manufacturing
- Session 2: electronics overview and basic circuit design
- Session 3: Arduino sensor and robot platform assembly
- Exercise 1: MIT green building modeling in Solidworks/Onshape
- Exercise 2: Prosthetic hand design analysis
- Exercise 3: mobile platform assembly
- Exercise 4: PCB layout for bandpass filter

Day 2

- Session 4: embedded system programing
- Session 5: control theory and application
- Session 6: inverted pendulum demo and vehicle control
- Exercise 5: Python exercise
- Exercise 6: control theory simulation exercise
- Exercise 7: complete vehicle control code

Time Table and Exercise

	Session 7: introduction to mechanism design and robotic arm
Day 3	Session 8: research presentation from Peter
	Session 9: robot arm assembly and project practice
	Exercise 8: design of mechanism for 1 DOF index finger
	Exercise 9: finish robot arm assembly
	Session_10: introduction to ROS and Raspberry_PJ
	Session 11: ROS robot arm control and personal research
Day 4	Session 12: LabVIEW overview and graduate school application workshop
	Exercise 10: walk through ROS publisher and subscriber tutorial
	Exercise 11:complete robotic arm ROS code
	Exercise 12: LabVIEW exercise
	Session 13: Basic computer vision in robotics and webpage design
Day 5	Session 14: Introduction to machine learning
	Session 15: Final project competition
Department of	Exercise 13: Python neural network evaluation of MNIST dataset

Project Overview

- Mobile Robot Platform
 - Line following, ultrasonic distance, obstacle avoidance, optical encoder, grey scale sensors
 - Go to stop with same color as start to catch the Pokemon

Project Demo

Project Overview

- Robot Arm Control
 - Joystick control with Arduino
 - Robot operating system on Raspberry PI for visualization and control
 - Fill in the code and move your robot arm

THE PEAVED

Assembled Robots

Software Installation

- Mechanical Design
 - Solidworks (if you have it) or <u>Onshape</u>
- Embedded System
 - Arduino
 - Raspberry PI with ROS <u>image</u> or install on your own with <u>instructions</u>
 - Win32 Disk Imager SD card image burning tool
 - NI <u>Multisim</u> and <u>Ultiboard</u>
- Programming
 - Python 3.5 (or later) install via <u>Anaconda</u>
 - Editor Jupyter (in Anaconda), <u>PyCharm</u> (my favorite), <u>Sublime Text</u>
 - LabVIEW with NI license activator

Teaching Assistant

- Fangzhou Xia
 - B.S. in ECE from Shanghai
 Jiao Tong University
 - B.S. in ME from University of Michigan, Ann Arbor
 - M.S. in ME at MIT
 - Ph.D. research assistant in mechatronics research lab
 - Teaching assistant of 2.12 introduction to robotics
 - Specialization: control, robotics and instrumentation

Thank You!