FYZIKÁLNÍ PRAKTIKUM

Fyzikální praktikum 1

Vypracovala: Šárka Divácká Naměřeno: 5. 4. 2022

Skupina: Út 8:00

Úloha č. 8: Měření teploty

Laboratorní podmínky:

• Teplota 22,8 °C

• Tlak 977,4 hPa

Vlhkost 24,6%

1. Úvod

V této úloze budu měřit teplotu a to za pomoci odporových čidel, termoelektrického článku a infračerveného teploměru. Teplota je jednou ze základních veličin a patří k základním charakteristikám termodynamických systémů. Spousta vlastností a dějů probíhajících v termodynamických systémech na teplotě závisí. Základní jednotkou teploty je Kelvin, který také patří mezi základní jednotky soustavy SI. V praxi se používají také Celsiova a Fahrenheitova stupnice.

1.1. Odporová čidla

Jednou z veličin, která závisí na teplotě je elektrický odpor. Proto je v technické praxi nejvýhodnější použít odporová čidla.

Pro malý rozsah teplot (v intervalu cca 100 °C) můžeme pro odpor kovových vodičů, u kterých při růstu teploty roste i odpor, použít lineární vztah

$$R = R_0(1 + \alpha \Delta t)$$

kde R je měřený odpor, R_0 je odpor při dané normální teplotě, α je teplotní součinitel elektrického odporu a Δt je rozdíl naměřené teploty a normální teploty. Ze normální teplotu nejčastěji bereme teplotu 0 °C.

1.2. Zapojení odporového čidla do můstku

1.3. Termoelektrické články

Termočlánek vznikne spojením dvou různých vodivých materiálů s odlišnou teplotou (obr. 1).

Obrázek 1: Termoelektrický článek

Mezi spoji S1 a S2 vznikne tzv. termoelektrické napětí a uzavřeným obvodem začne protékat termoelektrický proud. Tento jev se nazývá Seebeckův jev a souvisí s difúzí volných nositelů náboje z teplejších míst do chladnějších. Teplotní charakteristika termoelektrického napětí je přibližně lineární pro libovolné rozsahy a lze ji popsat vztahem

$$U = \beta(t_1 - t_2)$$

kde β je Seebeckův termoelektrický koeficient. Jeho hodnota je závislá na materiálech, ze kterých je termoelektrický článek vyroben.

1.4. Infračervené teploměry

Všechna tělesa s teplotou vyšší než absolutní nula vyzařují elektromagnetické záření. Toto záření označujeme jako tepelné záření. Emise tepelného záření je ovlivněna teplotou, ale i vlastnostmi povrchu tělesa – např. barvou, materiálem.

Ukazuje se, že nejvíce září to těleso v termodynamické rovnováze, které v dané oblasti vlnových délek nejvíce absorbuje. Za ideální zářič se považuje dokonale černé těleso, které zcela pohlcuje dopadající záření. Veličina zvaná emisivita ε popisuje odchylku vyzařování konkrétního povrchu od vyzařování právě dokonale černého tělesa, jehož emisivita je rovna 1. Emisivita je definována takto

$$\varepsilon(\lambda, T) = \frac{I(\lambda, T)}{I_{\check{c}t}(\lambda, T)}$$

kde $I(\lambda,T)$ je intenzita vyzařování daného povrchu o absolutní teplotě T na vlnové délce λ a $I_{\check{c}t}(\lambda,T)$ je intenzita vyzařování dokonale černého tělesa o stejné teplotě na stejné vlnové délce. Emisivita je tedy vždy menší nebo rovna 1.

Pro emisivitu z předchozího plyne, že platí

$$\varepsilon = \left(\frac{T_p}{T}\right)^4$$

Pro měření teploty pomocí emisivity se používají infračervené teploměry. Z definice emisivity a ze Stefanova-Boltzmannova vztahu plyne vztah pro skutečnou teplotu

$$T = \frac{T_p}{\sqrt[4]{\varepsilon}}$$

kde T_p je teplota, kterou ukazuje infračervený teploměr předpokládající, že těleso je dokonale černé.

1.5. Propustnost

Infračervené teploměry mají i své nevýhody. Jednou z nevýhod je neznámá emisivita měřeného povrchu. Při měření nízkých teplot může být údaj IR čidla ovlivněn odrazem IR záření okolních předmětů, prostředím mezi měřeným objektem a vlastním snímačem. Někdy je nutné měřit teplotu přes okénko oddělující například vakuovaný prostor s měřeným tělesem. Okénko vždy snižuje tok záření a obvykle je nutné provést speciální kalibraci při daném experimentálním uspořádání.

Propustnost okénka τ lze orientačně stanovit z poměru intenzit záření prošlého přes okénko a záření dopadajícího na okénko

$$\tau = \frac{T_{IR,O}^4}{T_{IR,V}^4}$$

kde $T_{IR,O}$ je teplota vařiče měřená IR teploměrem přes okénko a $T_{IR,V}$ je teplota vařiče měřená IR teploměrem přímo.

V případě okének s velmi malou propustností dává tento vztah zjevně nesprávné výsledky, neboť značná část záření měřená IR teploměrem přes okénko ve skutečnosti přichází odrazem záření z okolí na okénku, případně je vlastním zářením okénka. V této situaci je vhodné toto záření odečíst:

$$\tau = \frac{T_{IR,O}^4 - T_{IR,P}^4}{T_{IR,V}^4}$$

kde $T_{IR,P}$ je teplota změřená IR teploměrem přes okénko při pohledu na málo vyzařující objekt (např. led).

1.6. Relaxační doba

Při měření teploty nejsou ve většině případů kladeny nároky na rychlost reakce teploměru. Přesto však v některých případech je nutné změřit rychlé změny teploty. Předpokládejme, že se měřená teplota skokově změní z hodnoty t₁ na hodnotu t₂. Reakce čidla na změnu teploty není okamžitá, ale probíhá s jistým zpožděním. Přechod signálu čidla z počáteční hodnoty na konečnou je dán vztahem

$$t(\tau) = t_2 - (t_2 - t_1)e^{-\frac{\tau}{\tau_m}}$$

 $t(\tau)=t_2-(t_2-t_1)e^{-\frac{\tau}{\tau_m}}$ kde τ_m je časová konstanta zvaná relaxační doba. Ta je důležitým parametrem, který charakterizuje rychlost reakce teplotního čidla.

2. Naměřené hodnoty a jejich zpracování

Identifikace neznámých odporových a termoelektrických čidel

Budu měřit teplotní závislost elektrického odporu a napětí neznámých odporových a termoelektrických čidel. Čidla dám do olejové lázně, kterou budu ohřívat v rozsahu 20-80 °C a budu zaznamenávat změnu odporu a napětí s krokem cca 5 °C (teplotu budu odečítat na rtuťovém teploměru – krajní nejistota odečtu ze stupnice je polovina nejmenšího dílku, tedy 0,1 °C). Získaná data vložím do grafu.

Grafy jsem proložila lineární křivku, jejíž rovnice má tvar Ax + B.

Pro odporová čidla zjistím ze vzorce $R=R_0(1+\alpha\Delta t)$, že $A=R_0\alpha$ a $B=R_0$. Tedy $\alpha=\frac{A}{B}$. Krajní nejistotu α a R_0 zjistím z krajních nejistot parametrů A a B.

Pro odporové čidlo 1 získám pomocí fitu hodnoty:

Linear Regression of dataset: Table 1_2, using function: A*x+B

Sort: No

Weighting Method: No weighting

 Parameter
 Value
 Error

 B (y-intercept)
 1,0023769755205e+03
 1,4486248168573e+00

 A (slope)
 3,9059294909839e+00
 2,7126312822744e-02

Errors were scaled with $sqrt(Chi^2/doF) = 1,8225838946989e+00$

$$\alpha_1 = 3,897 \cdot 10^{-3} K^{-1}$$

$$U(\alpha_1) = 2,764 \cdot 10^{-5} K^{-1}$$

$$\alpha_1 = (3,90 \pm 0,03) \cdot 10^{-3} K^{-1} (p = 99,73\%)$$

$$R_{01} = 1002,29 \Omega$$

$$U(R_{01}) = 9,949 \Omega$$

$$R_{01} = (1002 \pm 10) \Omega (p = 99,73\%)$$

Pro odporové čidlo 2 získám pomocí fitu hodnoty:

Linear Regression of dataset: Table 1_3, using function: A*x+B

Sort: No

Weighting Method: No weighting

From x = 2,060000000000000e+01 to x = 8,00000000000000e+01

Parameter Value Error

B (y-intercept) 9,8219891110714e+02 2,5850139294738e+00
A (slope) 6,1759757677639e+00 4,8405836822666e-02

Errors were scaled with $sqrt(Chi^2/doF) = 3,2523291749567e+00$

$$\alpha_2 = 6,288 \cdot 10^{-3} K^{-1}$$

$$U(\alpha_2) = 5,199 \cdot 10^{-5} K^{-1}$$

$$\alpha_2 = (6,29 \pm 0,05) \cdot 10^{-3} K^{-1} (p = 99,73\%)$$

$$R_{02} = 982,184 \Omega$$

$$U(R_{02}) = 11,190 \Omega$$

$$R_{02} = (980 \pm 10) \Omega (p = 99,73\%)$$

Pro termočlánek zjistím z rovnice $U=\beta(t_1-t_2)$, že $A=\beta$ a parametr B je nulový. Seebeckův termoelektrický koeficient je tedy přímo roven parametru A, který tudíž mohu i s krajní nejistotou přímo odečíst s fitu

Linear Regression of dataset: Table1_4, using function: A*x+B Sort: No

Weighting Method: No weighting

From x = 2,060000000000000e+01 to x = 8,00000000000000e+01

Parameter	Value	Error
B (y-intercept) A (slope)	-1,1382291130199e-04 4,1879185132072e-05	_,

Errors were scaled with sqrt(Chi^2/doF) = 2,9859786653943e-05

$$\beta = (419 \pm 4) \cdot 10^{-7} \, V \cdot {}^{\circ}C^{-1}$$

2.2. Relaxační doba

Nyní budu určovat relaxační dobu zapouzdřeného (Pt1000) a nezapouzdřeného čidla (termoelektrický článek typu K). Pod čidla dám horkovzdušnou pistoli nastavenou na 100 °C. Počkám na ustálení charakteristik čidel a poté pistoli rychle odsunu. Poté počkám až teplota čidel klesne až na laboratorní teplotu. Poté z exponenciálního fitu ($y_0 + A^{-\frac{x}{\ell}}$) získám relaxační dobu i s její nejistotou.

Zapouzdřené (odporové) čidlo:

Nezapouzdřené (termoelektrické) čidlo:

$$\tau_m = (113.0 \pm 0.8) s (p = 99.73\%)$$

2.3. Měření s můstkem

Při tomto měření budu vycházet ze vztahu

$$\Delta t = \frac{4U}{U_0 \alpha}$$

kde U je rozladění můstku, U_0 je napájecí napětí můstku, α je teplotní koeficient odporu a Δt je teplotní rozdíl mezi měřenou a srovnávací teplotou.

Napájecí napětí můstku je

$$U_0 = 2,1769 V$$

Teplotní koeficient je

$$\alpha = (3.90 \pm 0.03) \cdot 10^{-3} \, K^{-1} \, (p = 99.73\%)$$

Graf závislosti rozladění můstku na čase je:

Při zaizolování čidla se tedy mění jeho teplota

$$\Delta t_1 = 0.19 \,^{\circ}C$$

 $\Delta t_2 = -0.12 \,^{\circ}C$

2.4. Emisivita

Měděnou plotýnku pokrytou černým, bílým a aluminiovým žárovzdorným lakem jsem rozehřála, následně jsem vařič vypnula a měřila teplotu termočlánkovou sondou a IR teploměrem, na kterém jsem nastavila emisivitu $\varepsilon=1$ a měřila jsem 5× teplotu každého povrchu. Emisivitu spočtu jako $\varepsilon=\left(\frac{T_p}{T}\right)^4$. Naměřené hodnoty a emisivita jsou tedy:

	Černá destička		Bílá destička		Stříbrná destička				
	T [K]	T _p [K]	ε	T [K]	T _p [K]	ε	T [K]	T _p [K]	ε
1	483,05	484,65	1,013	490,85	450,85	0,712	502,85	376,35	0,314
2	474,75	452,25	0,823	478,65	444,85	0,746	478,45	368,65	0,352
3	471,85	466,75	0,957	462,45	430,55	0,751	477,45	373,05	0,373
4	460,95	458,65	0,980	459,75	421,05	0,703	475,95	377,85	0,397
5	443,95	459,85	1,151	456,05	455,75	0,997	458,45	368,45	0,417

Emisivita černé destičky je tedy:

$$\bar{\varepsilon} = 0,9848$$

$$u(\varepsilon) = 0.0526$$

 $U(\varepsilon) = 0.348$
 $\varepsilon = (1.0 \pm 0.3) (p = 99.73\%, v = 4)$

Emisivita bílé destičky je:

$$\bar{\varepsilon} = 0.7818$$
 $u(\varepsilon) = 0.0546$
 $U(\varepsilon) = 0.361$
 $\varepsilon = (0.8 \pm 0.4) (p = 99.73\%, v = 4)$

Emisivita stříbrné destičky je:

$$\bar{\varepsilon} = 0.3706$$
 $u(\varepsilon) = 0.0179$
 $U(\varepsilon) = 0.118$
 $\varepsilon = (0.4 \pm 0.1) (p = 99.73\%, v = 4)$

2.5. Propustnost

Dále jsem určovala propustnost okének z různých materiálů pomocí termokamery. Budu měřit teplotu bez okénka a následně s ním. Propustnost dále určím ze vztahu $\tau=\frac{T_{IR,O}^4}{T_{IR,V}^4}$ pro 4, 5, 6, 7, 8 a $\tau=\frac{T_{IR,O}^4-T_{IR,P}^4}{T_{IR,V}^4}$ pro 1, 2, 3, 9. (T_{IR.P} =295,95 K) Naměřené hodnoty a propustnost jsou:

		T _{IR,O} [K]	T _{IR,V} [K]	τ
1	Polykarbonát (1,5 mm)	293,15	339,15	-0,022
2	Sklo (1 mm)	295,15	339,15	-0,006
3	SiO ₂ (3 mm)	293,15	340,15	-0,021
4	NaCl (7,4 mm)	340,15	340,15	1
5	CaF₂ (2 mm)	339,15	340,15	0,988
6	KBr (3 mm)	340,15	340,15	1
7	Si (0,5 mm)	340,15	340,15	1
8	GaAs (0,5 mm)	340,15	340,15	1
9	Cu (0,3 mm)	298,15	340,15	0,017

2.6. Teplota měděné plotny

V této části úlohy budu měřit teplotu měděné plotny, která byla předem vychlazena v mrazničce. Teplotu budu měřit kontaktním čidlem a IR teploměrem nejprve pro povrch s námrazou a poté bez námrazy. Naměřené hodnoty a emisivita jsou:

	T [K]	T _p [K]	ε
S námrazy	262,75	264,15	1,021
Bez námrazou	257,95	291,15	1,623

3. Závěr

Z naměřené závislosti odporu na teplotě jsem identifikovala dvě odporová čidla. U prvního čidla mi vyšel koeficient $\alpha_1=(3.90\pm0.03)\cdot10^{-3}~K^{-1}~(p=99.73\%)$ a odpor $R_{01}=(1002\pm10)~\Omega~(p=99.73\%)$. Dle tabulek se tedy jedná o čidlo Pt1000. Pro druhé čidlo mi vyšel koeficient $\alpha_2=(6.29\pm0.05)\cdot10^{-3}~K^{-1}~(p=99.73\%)$ a odpor $R_{02}=(980\pm10)~\Omega~(p=99.73\%)$. V tomto případě se dle tabulek jedná o čidlo Ni1000. I v tomto měření by však měl odpor čidla vyjít 1000 Ω . Toto měření je tedy zatíženo chybou, protože tato hodnota neleží v intervalu, který mi vyšel.

Dále jsem také měřila závislost napětí na termočlánku na teplotě. Z tohoto měření jsem zjistila parametr $\beta = (419 \pm 4) \cdot 10^{-7} \ V \cdot {}^{\circ}C^{-1}$. Identifikovala jsem tedy termočlánek typu K.

Poté jsem měřila také relaxační dobu zapouzdřeného a nezapouzdřeného čidlo. Pro nezapouzdřené čidlo mi vyšlo $\tau_m=(113.0\pm0.8)~s~(p=99.73\%)$ a pro zapouzdřené čidlo $\tau_m=(142.7\pm0.2)~s~(p=99.73\%)$. Z tohoto výsledku vidím, že relaxační doba nezapouzdřeného čidla je kratší než zapouzdřeného čidlo, z čehož plyne, že nezapouzdřené čidlo reaguje na změny teploty rychleji než zapouzdřené.

Při měření s můstkem jsem zjistila, že při zaizolování čidla se mění jeho teplota o $\Delta t_1=0.19~^{\circ}C$, $\Delta t_2=-0.12~^{\circ}C$. Tyto teplotní rozdíly poté mohou způsobit chybu měření, je tedy potřeba dávat si na to pozor.

Určovala jsem také emisivitu černé, bílé a stříbrné destičky. Tyto emisivity mi vyšly: pro černou $\varepsilon=(1,0\pm0,3)~(p=99,73\%,\nu=4)$, pro bílou $\varepsilon=(0,8\pm0,4)~(p=99,73\%,\nu=4)$ a pro stříbrnou $\varepsilon=(0,4\pm0,1)~(p=99,73\%,\nu=4)$.

Při měření propustnosti okének jsem dále zjistila, že NaCl, CaF₂, KBr, Si, GaAs propouští a polykarbonát, sklo, SiO₂, Cu nepropouští záření. Z těchto výsledků tedy mohu říct, že iontová vazba se snadno rozpadá a proto materiály s touto vazbou snadno propouští záření.

Naposledy jsem zjisťovala emisivitu měděné destičky bez námrazy a s námrazou. S námrazou mi emisivita vyšla 1,021 a bez námrazy 1,623.