

Grado en Ingeniería Informática ÁLGEBRA

TEMA 4. Espacios vectoriales y espacios vectoriales euclídeos

Grado en Ingeniería Informática TEMA 4. ESPACIOS VECTORIALES Y E.V. EUCLÍDEOS

Bibliografía básica:

Anton, H. (1990). Introducción al Álgebra Lineal. (2ª ed.) México: Limusa.

Burgos, J. (1995). Álgebra Lineal. Madrid, España: McGraw-Hill.

Grossman, S. (1992). Álgebra Lineal con aplicaciones. (4ª ed, 3ª ed. en español). México: McGraw-Hill.

Merino, L., Santos E. (2007). Álgebra Lineal con métodos elementales. (2ª ed.) Madrid, España: Thomson.

Grado en Ingeniería Informática TEMA 4. ESPACIOS VECTORIALES Y E.V. EUCLÍDEOS

ÍNDICE:

- 1. Espacios vectoriales. Bases.
- 2. Subespacios vectoriales.
- 3. Espacios vectoriales euclídeos.

Grado en Ingeniería Informática

1. Espacios vectoriales. Bases

Definición. Sea K un cuerpo (conmutativo), V un conjunto no vacío, diremos que V es un espacio vectorial sobre K, si:

- i. (V, +) es un grupo abelianoii. En V hay definida una op
 - En V hay definida una operación externa de K en V, a izquierda, (llamada producto por escalares); esto es, una aplicación de $K \times V \rightarrow V$, que además
 - verifica las siguientes propiedades: 1. $a(u+v) = au+av \quad \forall a \in K, \forall v \in V$
 - 2. $(a+b)v = av+bv \quad \forall a, b \in K, \forall v \in V$
 - 3. $a(bv) = (ab)v \quad \forall a, b \in K, \forall v \in V$
- 4. $1_K \mathbf{v} = \mathbf{v} \quad \forall \mathbf{v} \in \mathbf{V}$

A los elementos de V se le llaman vectores y se notarán u, v, w, ... y a los elementos de K, escalares y se notan a, b, c, ... o con letras griegas

Proposición. Sea V un espacio vectorial sobre K.

Entonces para cualesquiera $a,b \in K$, $u, v \in V$ se verifican:

- 1. 0v = 0
- 2. a0 = 0
 - $\frac{0}{\cdot}$
- 3. Si av = 0 entonces a = 0 o v = 0
- 4. -(av) = (-a)v = a(-v)
- 5. a(u v) = au av
- 6. (a-b)v = av bv
- 7. Si av = bv y $v \neq 0$ entonces a = b8. Si au = av y $a \neq 0$ entonces u = v

DEPENDENCIA E INDEPENDENCIA LINEAL

Definición. Sea V un espacio vectorial sobre K.

Se dice que $\{v_1, ..., v_n\}$ es linealmente dependiente sii existen $a_1, ..., a_n \in K$, no todos

nulos, tales que $\{v_1, ..., v_n\}$ es une almente dependient nulos, tales que $0=a_1 v_1 + ... + a_n v_n$

Se dice que $\{v_1, ..., v_n\}$ es linealmente independiente sii para cada

$$0 = a_1 v_1 + ... + a_n v_n \implies a_1 = 0, ..., a_n = 0$$

Proposición. Sea V un espacio vectorial sobre K, entonces:

- 1. Si $0 \in \{v_1, ..., v_n\}$, entonces $\{v_1, ..., v_n\}$ es linealmente dependiente.
- 2. $\{v_1\}$ es linealmente independiente sii $v_1 \neq 0$.
- 3. Si {v₁, ..., v_n} es linealmente dependiente entonces {v₁, ..., v_n, v_{n+1}, ..., v_{n+r}} es linealmente dependiente.
- 4. Si $\{v_1, ..., v_n, v_{n+1}, ..., v_{n+r}\}$ es linealmente independiente entonces $\{v_1, ..., v_n\}$ es linealmente independiente.

Proposición. Sea V un espacio vectorial sobre K, entonces un conjunto $\{v_1, ..., v_n\}$ es linealmente dependiente si y sólo si, uno de los vectores es combinación lineal de los restantes.

SISTEMA DE GENERADORES EN UN ESPACIO VECTORIAL

Definición. Sea V un espacio vectorial sobre K. Un conjunto de vectores S se dice que es *sistema de generadores* de V si todo vector V es combinación lineal finita de S.

Proposición. Si $\{u_1, ..., u_n\}$ es sistema de generadores del espacio vectorial, V, y u_i es

combinación de los restantes vectores, entonces el conjunto $\{u_1, ..., u_{i-1}, u_{i+1}, ..., u_n\}$ es también sistema de generadores de V. **Lema.** Si $\{v_1, ..., v_m\}$ es linealmente independiente y $\{u_1, ..., u_s\}$ es sistema de

generadores de V, entonces $m \le s$.

BASES DE UN ESPACIO VECTORIAL

Definición. Sea V un espacio vectorial sobre K. Llamaremos *base* de V a todo subconjunto B⊆V, verificando:

- 1. B es sistema de generadores de V
- 2. B es linealmente independiente.

Teorema (Teorema de la base). Si un espacio vectorial, V, tiene una base formada por un número finito de vectores, entonces todas las bases de V son finitas y tienen igual número de vectores.

Definición. Sea V un espacio vectorial sobre K.

Llamaremos dimensión de V, dim (V), al número de vectores de cualquier base.

Si V= $\{0\}$, diremos que dim $(\{0\}) = 0$

OBTENCIÓN DE BASES

Teorema. En un espacio vectorial, no nulo, de cada sistema de generadores finito se puede extraer una base.

Teorema (Teorema de ampliación de la base). Sea V un espacio vectorial sobre K, de dimensión n y sea $\{v_1, ..., v_r\}$ conjunto linealmente independiente. Entonces existen vectores $v_{r+1}, ..., v_n$ tales que $\{v_1, ..., v_r, v_{r+1}, ..., v_n\}$ es base de V.

Corolario. Sea V un espacio vectorial de dimensión n, entonces dado un conjunto de exactamente n vectores, $S = \{v_1, ..., v_n\}$, son equivalentes:

- 1. S es linealmente independiente.
- 2. S es sistema de generadores de V.
- 3. S es base de V

UJa.es

COORDENADAS DE UN VECTOR RESPECTO DE UNA BASE

Teorema. Sea V un espacio vectorial sobre K. Si $B=\{v_1, ..., v_n\}$ es una base de V, entonces todo vector, x de V, se escribe de forma única como combinación lineal de los vectores de B.

Si $x = x_1v_1 + ... + x_nv_n$ es la única como combinación lineal en función de los vectores de B, notamos $x = (x_1, ..., x_n)_B$ y se llaman las *coordenadas* de x respecto de la base B.

Proposición (Coordenadas y operaciones algebraicas). Sea V un espacio vectorial sobre K de dimensión n, B una base de V y, x e y vectores en V que tienen coordenadas $x \equiv (x_1, ..., x_n)_R$ e $y \equiv (y_1, ..., y_n)_R$, entonces:

- 1. $x+y \equiv (x_1 + y_1, ..., x_n + y_n)_B$
- 2. $\alpha x = (\alpha x_1, ..., \alpha x_n)_B$ para cada $\alpha \in K$.

Proposición (Coordenadas y dependencia lineal). Sea V un espacio vectorial sobre K, B una base de V.

Un conjunto de r vectores, $\{u_1, ..., u_n\}$, en V es linealmente independiente si, y sólo si, la matriz cuyas columnas son las coordenadas de estos vectores respecto de la base B, tiene rango r.

CAMBIO DE BASE

Proposición. Sea V un espacio vectorial sobre K, B y B' bases de V. La ecuación matricial del cambio de base de B' a B es la expresión:

$$X = PX'$$

que permite calcular las coordenadas de un vector de V respecto a B, conociendo las coordenadas del mismo respecto de B'. P es la matriz de cambio de B' a B, esto es: la matriz regular cuyas columnas son las coordenadas de los vectores de B' respecto de B. El cambio de base en sentido contrario, de B a B', viene dado por:

$$X' = P^{-1} X$$

Proposición. Toda matriz regular es una matriz de cambio de base.

Grado en Ingeniería Informática

2. Subespacios vectoriales

Definición. Sea V un espacio vectorial sobre K, U un subconjunto no vacío de V. Decimos que U es subespacio vectorial de V, y lo notaremos por $U \le V$ si se verifican las siguientes condiciones:

- 1. U es cerrado para la suma: $\forall u, w \in U \Rightarrow u+w \in U$
- 2. U es cerrado para el producto por escalares: $\forall \alpha \in K, \forall u \in U \Rightarrow \alpha u \in U$

Proposición (Caracterización de subespacio).

Sea V un espacio vectorial sobre K, y U \subseteq V, U \neq Ø. Entonces: U es subespacio vectorial de V \Leftrightarrow ($\forall \alpha, \beta \in K, \forall u, w \in U \Rightarrow \alpha u + \beta w \in U$)

Carmen Ordóñez Cañada

UJa.es

Grado en Ingeniería Informática 2. Subespacios vectoriales

FORMAS DE DETERMINAR UN SUBESPACIO:

- 1. Sistema de generadores
- 2. Bases
- 3. Ecuaciones paramétricas
- 4. Ecuaciones implícitas

UJa.es

Definición. Sea V un espacio vectorial sobre R. Un producto escalar en V es una aplicación:

aprication.
$$<,>: V \times V \rightarrow \mathbb{R}$$

- verificando: $< u, v > = < v, u > \forall u, v \in V$
 - $< u+w, v > = < u, v > + < w, v > \forall u, v, w \in V$
- 3. $\langle au, v \rangle = a \langle u, v \rangle \ \forall a \in \mathbb{R}, \forall u, v \in V$
 - $\langle u, u \rangle \ge 0$ $\forall u, u \rangle = 0 \Leftrightarrow u = 0$
- Un espacio vectorial euclídeo es un par (V, <,>)

- *Observación*. Sea V un espacio vectorial euclídeo. Entonces:
- 1. $<0, v>=< v, 0>=0 \forall v \in V$ $2. < \sum_{i=1}^{r} a_i u_i$, $\sum_{i=1}^{s} b_i v_i > = \sum_{i,j} a_i b_j < u_i$, $v_i > \sum_{i=1}^{s} a_i u_i$

MATRIZ DE GRAM. EXPRESIÓN MATRICIAL.

Proposición (Expresión matricial del producto escalar)

Definición. Sea (V,<,>) un espacio vectorial euclídeo. Llamaremos matriz de Gram (o métrica) respecto de una base $B=\{v_1, \dots, v_n\}$ de V, a

$$G=(g_{ij})$$
 siendo $g_{ij}=< v_i, v_j> \ \forall i,j$

$\langle x,y\rangle = X^t G Y$

MATRIZ DE GRAM Y CAMBIO DE BASE

Proposición. Las matrices de Gram (G₁ y G₂) de un espacio vectorial euclídeo, respecto de distintas bases, son congruentes; esto es, existe una matriz P regular, tal que $G_2 = P^t G_1 P$

P es la matriz de cambio de base

Carmen Ordóñez Cañada

NORMA DE UN VECTOR

Definición. Sea (V,<,>) un espacio vectorial euclídeo. Se define la *norma* (o módulo) de un vector $v \in V$,

$$||\mathbf{v}|| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}$$

Observar que $||v|| = \sqrt{\langle v, v \rangle} = \sqrt{X^t G X}$

Proposición. Sea (V,<,>) un espacio vectorial euclídeo, $v \in V$, $\alpha \in R$. Entonces:

- 1. $\|\mathbf{v}\| \ge 0$ 2. $\|\mathbf{v}\| = 0 \iff \mathbf{v} = 0$
- 2. $||\mathbf{v}|| = 0 \Leftrightarrow \mathbf{v} = 0$
- 3. $\|\alpha v\| = |\alpha| \|v\|$

Teorema (**Desigualdad de Schwartz**). Sea (V,<,>) un espacio vectorial euclídeo. Para cada $x, y \in V$ se verifica: $|\langle x,y \rangle| \le ||x|| \, ||y||$

Teorema (Desigualdad triangular o de Minkowski). Sea (V,<,>) un espacio vectorial euclídeo. Para cada $x, y \in V$ se verifica: $||x + y|| \le ||x|| \, ||y||$

Definición. Para cada x, y vectores de un espacio vectorial euclídeo, llamaremos ángulo entre dos vectores x e y, al único número real
$$\alpha$$
, $0 \le \alpha \le \pi$, que verifica
$$\cos \alpha = \frac{\langle x,y \rangle}{||x||||y||}$$

BASES ORTOGONALES Y ORTONORMALES

Definición. Sea V un espacio vectorial euclídeo de dimensión finita. Una base $B=\{v_1,\ldots,v_n\}$ de V, se dice *ortogonal* si los vectores que la forman son ortogonales dos a dos; es decir, si $\langle v_i, v_i \rangle = 0 \quad \forall i \neq j$.

Se dice que B es *ortonormal* si y sólo si es ortogonal y todos los vectores de la base son unitarios ($||v_i||=1 \forall v_i \in B$).

- **Proposición.** Sea (V,<,>) un espacio vectorial euclídeo y $B=\{v_1,\ldots,v_n\}$ base de V. Sea G la matriz de Gram respecto de la base B. Entonces:
 - B es ortogonal \Leftrightarrow G es diagonal.
 - B es ortonormal \Leftrightarrow G es la identidad.

Proposición. La matriz de cambio de base entre dos bases ortonormales es una matriz ortogonal; esto es, $P^{t} = P^{-1}$.

Carmen Ordóñez Cañada

Grado en Ingeniería Informática
2. Espacios vectoriales euclídeos

CONSTRUCCIÓN DE BASES ORTONORMALES. MÉTODO DE GRAM-

SCHMIDTLema. En un espacio vectorial euclídeo, un conjunto de vectores ortogonales dos a dos

son linealmente independientes. **Proposición.** Sea V un espacio vectorial euclídeo. Si $B=\{v_1,...,v_n\}$ es una base

ortogonal de V, entonces
$$B' = \{\frac{v_1}{||v_1||}, \dots, \frac{v_n}{||v_n||}\}$$

es una base ortonormal de V.

Carmen Ordóñez Cañada

Teorema de Gram-Schmidt. Sea (V,<,>) un espacio vectorial euclídeo y $B=\{v_1,\ldots,v_n\}$ una base de V. Entonces existe una base ortogonal $\{u_1,\ldots,u_n\}$ de V, de forma que el subespacio generado por $\{v_1,\ldots,v_k\}$ es el mismo que el generado por $\{u_1,\ldots,u_k\}$ para cada k.

U

Demostración. (Método de Gram-Schmidt)

$$u_1 = v_1$$

$$u_2 = v_2 - \frac{\langle v_2, u_1 \rangle}{||u_1||^2} u_1$$

$$u_n = v_n - \frac{\langle v_n, u_1 \rangle}{||u_1||^2} u_1 - \frac{\langle v_n, u_2 \rangle}{||u_2||^2} u_2 \dots - \frac{\langle v_n, u_{n-1} \rangle}{||u_{n-1}||^2} u_{n-1}$$

- 1. Construimos una base ortogonal por el Método de Gram-Schmidt.
- 2. Construimos una base ortonormal multiplicando cada uno de los vectores del paso 1, por el inverso de su norma.

Cañada UJ**a.**es

Grado en Ingeniería Informática ÁLGEBRA

TEMA 4. Espacios vectoriales y espacios vectoriales euclídeos

