

Next: pendulum:

periodic with main period
$$T=2\pi$$

periodic with main period $T=2\pi$

bounded between $-|\gamma|$ and $|\gamma|$

oscillatory around the value 0 , amplitude $|\gamma|$.

 $\eta = \frac{\pi}{18}, \ \ell(t) = \frac{\pi}{18}$ sint $\frac{\pi}{18}$
 $t=0, \ \ell(0)=0, \ \ell'(0)=\frac{\pi}{18}$

pendulum oscillates around the vertical with constant amplitude $\overline{18}$.

 $\frac{\pi}{18}$
 $\frac{\pi}{18}$
 $\frac{\pi}{18}$
 $\frac{\pi}{18}$

. .

 $f(t) = e^{-2t} \cos t \quad \text{is a solution of:} \begin{cases} x'' + 4x' - 5x = 0. \\ x(0) = 1. \end{cases}$ x'(0) = 2-> check- Hw $\ell(t) = 0$ (=) e^{-2t} cost = 0 (=) $t_R = \frac{\pi}{2}(2k+1)$, > oscilatory with expr decreasing amplitude.

(a) 0+ > gives the no of zeros (here: \$\infty\$ zeros) amplitude is osc. decr. for t->+00 eglar = unbondeel on $(-\infty,0)$ le \exists lime $\forall(t)$ (\forall - unbonded) $t \rightarrow -\infty$ $t \rightarrow \infty$ $t \rightarrow \infty$

Notice: the pendulum oscillate around the vertical with exponentially decreasing simplified.

[1.1.11.] $r \in \mathbb{R}$? such that $x = e^{nt}$ is a solution of x'' - 5x' + 6x = 0. $x = e^{nt}$ is a solution of x'' - 5x' + 6x = 0. $x' = ne^{nt}$, $x'' = n^2 e^{nt}$ $x'' = ne^{nt}$, $x'' = n^2 e^{nt}$ $x'' = ne^{nt}$, $x'' = ne^{nt}$ $x'' = ne^{nt}$, $x'' = ne^{nt}$ $x'' = ne^{nt}$

d) $x=e^{nt}$ solution of: $x^{11}+9x=0$ $h^{2}e^{ht}+ge^{ht}=0, +t\in R \quad |:e^{ht}\neq 0$ $h^{2}+g=0 \quad =) R_{12}=\pm 3i \in C \setminus R$ Remark: $e^{nt}=const+i$ shift

1.1.12. $\Sigma \in \mathbb{R}$ $\Delta = ?$ s.t $\alpha(t) = t^2$ sol of: a) $t^2x'' - 4tx' + 6x = 0$. $\chi(t) = t^2 = \chi'(t) - \chi t^{2-1} = \chi'' = \chi(2-1)t^{2-2}$ eg 2.2.(2-1). + 2-2 - 4+.2.+2-1+6+2=0, ++(-1) $t^{2} \left[r^{2} - 2 - 4r + 6 \right] = 0$ $t \in (0, \infty)$ $t^{2} + 0$ $\frac{1}{2}$ $t^{2} - 5t^{2} + 6 = 0$. $\Rightarrow \lambda_1 = 2, \lambda_2 = 3$ Thus: te and to are solutions of 2 the general solution is: $\chi = C_1 \cdot t^2 + C_2 \cdot t^3 \quad \text{of } c_2 \in \mathbb{R}.$

```
11.1.9
(ii) Find x_1 y_1 y \in \mathbb{R} such that x(t) = x t^2 + y t + y
solution of:
   (a) x'-5x=2t^2+3
    Here: \chi(t) = \chi(t) = \chi(t) + \beta

Replace in eq:
      2 \pm 4 p - 5 \pm 4^2 - 5 pt - 5 = 2t^2 + 3, t + \epsilon R
       (-5\chi-2)t^2+(2\chi-5p)+(p-58-3)=0., \pm t \in \mathbb{R}
         {1, t, t<sup>2</sup>} are linearly independent}

at<sup>2</sup>+ let + c = 0 + t \in R
              here is a likear combination of ? 1, t, t24
Thus: x = -\frac{2}{5}t^2 - \frac{4}{27}t - \frac{79}{125} solution
```

(i)* Let
$$x_1, x_2, x_3 : \mathbb{R} - \mathbb{R}$$
, $x_1(t) = 1$
 $x_2(t) = t$
 $x_3(t) = t^2$

Prove $x_1, x_2, x_3 = \text{linearly independent in his sp } C(R)$. $C_1 \cdot x_1 + C_2 \cdot x_2 + C_3 \cdot x_3 = 0$) $\forall t$ $C_1 \cdot \lambda + C_2 \cdot t + C_3 \cdot t^2 = 0$.

$$a + c + c + c = 0$$

$$\begin{vmatrix} 2 & c_2 + 4 & c_3 = 0 \\ c_2 + c_3 = 0 & 1 \cdot 2 \end{vmatrix}$$

1.1.7 decide whether: $\forall:\mathbb{R} \rightarrow \mathbb{R}$, $\forall(t) = \cot t$ is a solution of following diff ep: $x'' + x = 0 \rightarrow \forall ES$ $x'' - x = 0 \rightarrow No$ $x''' + x'' = 0 \rightarrow VES$

1.1.8. Find all constant solutions of the differential equations. (=) Find all x=c)

(a) $x'=x-x^3$ (=) $0=c-c^3=$) $c_{1/2}=\pm 1$ x=c $c_3=0$

(8) $x' = \sin x$ $f' = 0 = \sin c = 0$ c = kT, $k \in \mathbb{Z}$

(r) $\chi' = \frac{\chi + 1}{2\chi^3 + 5}$ = 0

 $(p()) x^{1} = x^{2} + x + 1 =) c^{2} + (-1 = 0) - No$ $\Delta < 0$

(e) $x' = x + (4x^3 =) 0 = c + 4(c^3 =) c = 0$.

(x) $x' = -1 + x + 4x^{3} = 0 = 0$ c = 0

9 9 9

1.1.10* (i) Let $x_1, x_2, x_3: R \rightarrow R$, $x_1(t) = cost$ 22(t) = Mint $\chi_3(t) = e^t , +ter$ Prove that x1, x2, x3 - linearly indep in CIR. Salvation: a. wit + cz. whit + cz. et =0 $0 + 0 : C_1 + 0 + C_3 = 0$ $0 + 0 + C_3 + C_3$ Q+0+03=0 -) $C_3 = 0$ =) (r=0 $0 + = 4 : -4 < 3e^{4 - 0}$ lie - rivolep.

1.1.15* Trind an integrating factor, integrate the ep: (m) x + x = 0 | · e $x' \cdot e^t + x \cdot e^t = 0$. $= 2 \times = c.e^{-t} \quad c \in \mathbb{R}$ $(x.e^{t})^{1} = 0.$ = $)x.e^{t} = C$ (b) se'+x=1+x 1.et $(x.e^t)' = (1+t).e^t$ g'=et=)g=et f=t=)f=1 $x \cdot e^{\pm} = \int e^{\pm}(1+t)dt$ $x \cdot e^{t} = e^{t} + \int t e^{t} dx$ $x \cdot e^{t} = e^{t} + te^{t} - \int e^{t} dt$ $x \cdot e^{t} = e^{t} + te^{t} - e^{t} + c \quad | : e^{t}|$ $x \cdot e^{t} = e^{t} + te^{t} - e^{t} + c \quad | : e^{t}|$ $x = t + c \cdot e^{-t}$, $c \in \mathbb{R}$ (x)* x1+2x= sint | .e $x^{1}-e^{2t}+2xe^{2t}=m+e^{2t}$ (x-e^{2t})' = sint-e^{2t} | Jat 2-6 = / mint-est alt j=\sinte^2t dt = \frac{1}{2} \sint. (e^2t)' dt = = \frac{1}{2} \text{mint. e^2t} - \frac{1}{2} \text{cost. e^2t} dt =

$$= \frac{1}{2} \text{ mint-} e^{2t} - \frac{1}{4} \text{ cost } e^{2t} + \frac{1}{4} \int \text{ mint-} e^{2t} dt$$

$$= 0 \quad \frac{1}{4} \cdot \frac{1}{4} = \frac{1}{2} \text{ sunt } e^{2t} - \frac{1}{4} \text{ cost } e^{2t} + C$$

$$= 0 \quad 2 = \frac{1}{4} \text{ mint } - \frac{1}{4} \text{ cost } e^{2t} + C - e^{-2t}$$

$$= 0 \quad 2 = \frac{1}{4} \text{ mint } - \frac{1}{4} \text{ cost } e^{2t} + C - e^{-2t}$$