Hierarchical destination choice and spatial interaction modelling a simulation experiment

Peking University Shenzhen Graduate School

Chenglong Wang

Production-constrained gravity model

Derivation

1) Utility (ignore error terms):

$$U(i,j) = \alpha_1 ln S_j + \alpha_2 d_{ij}$$

2) Probability (Softmax):

$$p_{ij} = S_j^{\alpha_1} exp(\alpha_2 d_{ij}) [\sum_q S_q^{\alpha_1} exp(\alpha_2 d_{iq})]^{-1}$$

3) Independence from Irrelevant Alternatives property:

$$p_{is} / p_{it} = S_s^{\alpha_1} exp(\alpha_2 d_{is}) / S_t^{\alpha_1} exp(\alpha_2 d_{it})$$

Problems

- 1) Accessibility (Single scale)
- 2) Hierarchical destination choice (A spatial hierarchy)
 Shopping center Restaurant

Competing destinations model (Single Scale)

Derivation

1) Utility (ignore error terms):

$$U(i,j) = \alpha_1 ln S_j + \alpha_2 d_{ij} + \alpha_3 ln A_j$$

2) Probability (Softmax):

$$p_{ij} = S_j^{\alpha_1} exp(\alpha_2 d_{ij}) A_j^{\alpha_3} \left[\sum_q S_q^{\alpha_1} exp(\alpha_2 d_{iq}) A_q^{\alpha_3} \right]^{-1}$$

3) Accessibility:

$$A_j = \sum_{m(m \neq j)} \frac{S_m}{d_{jm}}$$

Property

- · A positive value of α_3 agglomeration forces;
- · A negative value of α_3 competition forces;
- · A zero value of α_3 IIA property.

i - origin j - destination d_{ij} - distance S_j - attribute (Population/Opportunities/...)

Hierarchical destination choice

- Destination choice as a one-stage process
 - 1) Probability:

$$p_{ik} = \sum_{j \in k} S_j^{\alpha_1} exp(\alpha_2 d_{ij}) [\sum_q S_q^{\alpha_1} exp(\alpha_2 d_{iq})]^{-1}$$

2) Simplification:

$$p_{ik} = \sum_{j \in k} S_j^{\alpha_1} \left[\sum_{q} S_q^{\alpha_1} \right]^{-1} = w_k / w_k + r_k$$

3) Relationship between p_{ik} and w_k .

i - origin
j - destination
k - cluster
d_{ij} - distance

 S_j - attribute (Population/Opportunities/...)

Hierarchical destination choice

- Destination choice as a two-stage process
 - 1) Probability:

$$p_{ik} = [(\sum_{j \in k} S_j)^{\alpha_1} exp(\alpha_2 d_{ik})] [\sum_{x} (\sum_{j \in x} S_j)^{\alpha_1} exp(\alpha_2 d_{ix})]^{-1}$$

2) Simplification:

$$p_{ik} = (\sum_{j \in k} S_j)^{\alpha_1} \left[\sum_{x} (\sum_{j \in x} S_j)^{\alpha_1} \right]^{-1} = w_k^{\alpha_1} (\sum_{x} w_x^{\alpha_1})^{-1}$$

3) Relationship between p_{ik} and w_k .

i - origin
j - destination
k - cluster
d_{ij} - distance

 S_{j}^{*} - attribute (Population/Opportunities/...)

Hierarchical destination choice

■ Gravity model – systematic errors

- 1) When $\alpha_1 > 1$, the gravity model would <u>overpredict</u> the probability of an individual selecting <u>a small cluster of</u> <u>destinations</u>, and would <u>underpredict</u> the probability of an individual selecting <u>a large cluster of destinations</u>.
- 2) Conversely, when $\alpha_1 < 1$, the gravity model would <u>underpredict</u> the probability of an individual selecting <u>a</u> <u>small cluster of destinations</u>, and would <u>overpredict</u> the probability of <u>selecting a large cluster</u>.

Difficulty & Similarity

$$p_{ik} = [(\sum_{j \in k} S_j)^{\alpha_1} exp(\alpha_2 d_{ik})] [\sum_{x} (\sum_{j \in x} S_j)^{\alpha_1} exp(\alpha_2 d_{ix})]^{-1}$$

$$cluster k$$

 $p_{ij} = S_{j}^{\alpha_{1}} exp(\alpha_{2}d_{ij}) A_{j}^{\alpha_{3}} \sum_{q} S_{q}^{\alpha_{1}} exp(\alpha_{2}d_{iq}) A_{q}^{\alpha_{3}}]^{-1}$ $p_{ik} = [(\sum_{i \in k} S_{j})^{\alpha_{1}} exp(\alpha_{2}d_{ik})] [\sum_{r} (\sum_{i \in r} S_{j})^{\alpha_{1}} exp(\alpha_{2}d_{ix})]^{-1}$

Simulation Steps

■ Step 1: simulating level-1 choice behaviour(109 area zones)

$$p_{ik} = \left[\left(\sum_{j \in k} S_j \right)^{\alpha_{1(1)}} exp(\alpha_{2(1)} d_{ik}) \right] \left[\sum_{x} \left(\sum_{j \in x} S_j \right)^{\alpha_{1(1)}} exp(\alpha_{2(1)} d_{ix}) \right]^{-1}$$

Step 2: simulating level-2 choice behaviour(727 city zones)

$$p_{ij} = p_{ik} [S_j^{\alpha_{1(2)}} exp(\alpha_{2(2)} d_{ij})] [\sum_{q \in k} S_q^{\alpha_{1(2)}} exp(\alpha_{2(2)} d_{iq})]^{-1}$$

Results

Questions:

- 1) Can the competing destinations model really account for <u>hierarchical destination</u> <u>choice</u> or is the significance of the competing destinations variable when applied to real interaction data <u>merely a reflection of migrants' preferences regarding the spatial agglomeration of distances?</u>
- 2) Can the competing destinations model be used to provide information on different types of hierarchical information processing? Is it robust enough to capture <u>both</u> <u>agglomeration effects and competition</u> <u>effects</u>?

Results

Questions:

3) How does agglomeration effects and competition effects manifest themselves in terms of the outputs from both the conventional spatial interaction model and the competing destinations model?

Results

Questions:

4) What happens if the competing destinations model is applied to a flow matrix where the destination choices are not made hierarchically? Does it yield the same parameter estimates as a conventional model?

Results

Questions:

5) What happens, for instance, when there is no hierarchical choice – does the model still produce superior estimates?

Critical Review

Opinions:

1) Experiment?

- More regions, more levels, more attributes?
- Simulation is all you need.

$$p_{ij} = \frac{V_{1j}^{\alpha_1} V_{2j}^{\alpha_2} \cdots V_{nj}^{\alpha_n} d_{ij}^{\beta}}{\sum_{j} V_{1j}^{\alpha_1} V_{2j}^{\alpha_2} \cdots V_{nj}^{\alpha_n} d_{ij}^{\beta}}$$

2) **Innovation**:

- Modeling ≠ Reality -> a spatial hierarchy;
- Geo for AI, spatially explicit artificial intelligence. (Next location prediction)

3) Future research:

- Search for evidence of hierarchical decisionmaking in destination choice;
- Application (crime/education/...).

Hierarchical destination choice and spatial interaction modelling a simulation experiment

Peking University Shenzhen Graduate School

Chenglong Wang