LISTA DE EJERCICIOS 2: ANÁLISIS FUNCIONAL UNIVERSIDAD NACIONAL DE COLOMBIA, BOGOTÁ PRIMER SEMESTRE 2025

PROFESOR: OSCAR RIAÑO

Observación. Salvo que se diga lo contrario, los espacios vectoriales considerados tienen como campo escalar \mathbb{R} .

 E^* denota el espacio de todos los funcionales continuos de E en \mathbb{R} . Hacemos esta observación, pues en otros contextos también se usa la notación E^* para denotar este espacio dual.

1. Topología débil y débil *

Ejercicio 1. Sea $\{Y_i\}_{i\in I}$ $(I \neq \emptyset)$ una familia de espacios topológicos y $\{\phi_i\}_{i\in I}$ una familia de funciones $\phi_i: X \to Y_i$. Le asignamos a X la topología inicial \mathcal{F} asociada a la familia $\{\phi_i\}_{i\in I}$.

- (a) Muestre que $x_n \to x$ en \mathcal{F} si y solo si $\varphi_i(x_n) \to \varphi_i(x)$, para todo $i \in I$.
- (b) Sea Z un espacio topológico. Muestre que $\psi: Z \to X$ es continua si y solo si $\phi_i \circ \psi$ es continua de Z en Y_i , para todo $i \in I$.

Ejercicio 2. Sea E un espacio vectorial, $g, f_1, f_2, \ldots, f_k, (k+1)$ funcionales lineales sobre E tales que

$$\langle f_i, x \rangle = 0 \quad \forall i = 1, \dots, k \implies \langle g, x \rangle = 0.$$

Muestre que existen constante $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ tales que $g = \sum_{i=1}^k \lambda_i f_i$. Es decir, g es combinación lineal de los f_i .

Sugerencia: considere la función

$$H: E \to \mathbb{R}^{k+1}$$

dada por $H(x) = (g(x), f_1(x), f_2(x), \dots, f_k(x))$. Utilice el teorema de Hahn-Banach para separar $\{(1, 0, 0, \dots, 0)\}$ del rango de H (recuerde que los funcionales de \mathbb{R}^k se identifican por el producto interno usual por un vector). Concluya con esto el resultado deseado.

Ejercicio 3. Muestre que si E es de dimensión finita. La topología débil y la fuerte son las mismas.

Ejercicio 4. (a) Sea E un espacio de Banach, $A \subseteq E$ un subconjunto que es compacto en la topología débil $\sigma(E, E^*)$. Demuestre que A es acotado.

Sugerencia. Recordemos la función canónica $J: E \to E^{\star\star}$, dada por $Jx = J_x$, donde $J_x: E^{\star} \to \mathbb{R}$ se define por $\langle J_x, f \rangle = \langle f, x \rangle$. Aplique el principio de acotación uniforme a la familia $\{J_x\}_{x \in A}$.

(b) Sea E un espacio de Banach y $\{x_n\}$ una secuencia tal que $x_n \rightharpoonup x$ en la topología $\sigma(E^*, E)$. Defina

$$\sigma_n = \frac{1}{n}(x_1 + x_2 + \dots + x_n).$$

Demuestre que $\sigma_n \rightharpoonup x$ en la topología $\sigma(E^*, E)$.

Ejercicio 5. Sea E un espacio de Banach y $\{x_n\}$ una secuencia en E tal que $x_n \rightharpoonup x$ en la topología débil $\sigma(E, E^*)$.

- (a) Muestre que existe una secuencia $\{y_n\} \subseteq E$ tal que $y_n \in conv(\bigcup_{i=n}^{\infty} \{x_i\})$, para cada n y tal que $y_n \to x$ fuertemente. Recuerde que conv(X) denota la envolvente convexa (convex hull) de X.
- (b) Muestre que existe una secuencia $\{z_n\} \subseteq E$ tal que $z_n \in conv(\bigcup_{i=1}^n \{x_i\})$, para cada n y tal que $z_n \to x$ fuertemente.

Ejercicio 6. Sea E un espacio de Banach y $K \subseteq E$ compacto en la topología fuerte de E. Sea $\{x_n\} \subseteq K$ una sucesión tal que $x_n \rightharpoonup x$ en la topología débil $\sigma(E, E^*)$. Muestre que $x_n \rightarrow x$ fuertemente.

Sugerencia. Argumente por contradicción. Como K es compacto existe una subsucesión de $\{x_n\}$ que converge a un elemento $y \neq x$. Utilice que la topología débil es Hausdorff para llegar a un contradicción.

Ejercicio 7. Asuma que H es un hiperplano en E^* que es cerrado en $\sigma(E^*, E)$ (topología débil \star). Entonces H es de la forma

$$H = \{ f \in E^* : \langle f, x_0 \rangle = \alpha \}$$

para algún $x_0 \in E$, $x_0 \neq 0$ y algún $\alpha \in \mathbb{R}$.

Sugerencia: complete con todo detalle la demostración del Corolario 3.15 del libro de Brezis, Functional Analysis, Sobolev spaces and PDEs.

- **Ejercicio 8.** (a) Sea E un espacio de Banach y W un subespacio cerrado de E. Muestre que la topología débil sobre W (es decir, $\sigma(W, W^*)$) es la topología inducida sobre W por la topología débil de E (es decir, $\sigma(E, E^*)$).
 - (b) Sea E un espacio de Banach tal que $x_n \rightharpoonup x$ em E. Si $||x_n|| \le ||x||$ para todo n, muestre que $||x_n|| \to ||x||$.

Ejercicio 9. Sea E un espacio de Banach de dimensión infinita. Muestre que cada vecindad débil \star del origen de E^{\star} no es acotada.

Sugerencia. Considere la vecindad de cero en la topología $\sigma(E^*, E)$ dada por $V = \{f \in E^* : |\langle f, x_j \rangle| < \epsilon_j, j = 1, \dots, n\}$, para algunos $x_j \in E$, $\epsilon_j > 0$. Utilizando el teorema de separación de Hahn Banach encuentre un funcional f tal que $\langle f, x_j \rangle = 0$ para todo $j = 1, \dots, n$ con $f \neq 0$. Utilice que cualquiera múltiplo escalar de f pertenece a V para deducir que el conjunto V no puede ser acotado.

Ejercicio 10. Sea E un espacio de Banach y W un subespacio de E. Muestre que W^{\perp} es débil \star cerrado.

2. Espacios reflexivos y separables

Ejercicio 11. Sea K un espacio métrico compacto que no es finito. Demuestre que C(K) (con la norma del supremo $\|\cdot\|_{L^{\infty}}$) no es reflexivo.

Sugerencia. Considere una secuencia $\{a_n\} \subseteq K$ de elementos distintos tal que $a_n \to a$, donde $a \neq a_n$ para todo $n \geq 1$ (explique por qué existe tal secuencia). Utilice el teorema de Tietze-Urysohn-Brouwer para construir una sucesión $\{g_n\} \subseteq C(K)$ tal que: $g_n(a_m) = 1$ para todo $1 \leq m \leq n$, $g_n(a_m) = 0$ para todo m > n, $\|g_n\|_{L^{\infty}} = 1$. Concluya que la sucesión $\{g_n\}$ no puede tener una subsecuencia débilmente convergente. Caso contrario, utilice los funcionales de evaluación $\pi_{a_n}(g) = g(a_n), g \in C(K)$ para obtener una contradicción.

- **Ejercicio 12.** (a) Sean E y F espacios de Banach reflexivos y $T: E \to F$ una isometría lineal sobreyectiva. Entonces E es reflexivo si y solo si F es reflexivo.
 - (b) Sea E un espacio vectorial normado reflexivo. Muestre que todo subespacio cerrado de E es reflexivo.

Ejercicio 13. Sea E un espacio de Banach.

- (a) Sea $\{f_n\}$ una secuencia en E^* tal que para todo $x \in E$, $\langle f_n, x \rangle$ converge a un límite. Muestre que existe $f \in E^*$ tal que $f_n \rightharpoonup f$ en $\sigma(E^*, E)$.
- (b) Asuma que E es reflexivo. Sea $\{x_n\}$ una secuencia en E tal que para todo $f \in E^*$, $\langle f, x_n \rangle$ converge a un límite. Demuestre que existe $x \in E$ tal que $x_n \rightharpoonup x$ en $\sigma(E, E^*)$.

Ejercicio 14. Denotamos el espacio vectorial de todas las secuencias $\{a_n\}_{n=1}^{\infty}$ de números reales que son acotadas como sigue:

$$l^{\infty} = \{\{a_n\}_{n=1}^{\infty} : a_n \in \mathbb{R}, \text{ para todo } n \ge 1, \sup_{n \ge 1} |a_n| < \infty\}.$$

Le asignamos la norma $\|\{a_n\}_{n=1}^{\infty}\|_{l^{\infty}}=\sup_{n\geq 1}|a_n|$. Por otro lado, para cada $n\geq 1$, definimos $e^n=\{e_k^n\}$ como la secuencia dada por $e_k^n=0$ si $n\neq k$ y $e_k^n=1$, si n=k, para cada $k\geq 1$.

- (a) Muestre que la secuencia $\{e^n\} \subseteq l^{\infty}$ no tiene subsecuencias convergentes en la topología débil (esto es en $\sigma(l^{\infty}, (l^{\infty})^{\star})$).
- (b) ¿Es el espacio l^{∞} reflexivo?

Ejercicio 15. Sea E un espacio de Banach reflexivo. Sea $a: E \times E \to \mathbb{R}$ una forma bilineal que es continua, es decir, existe M>0 tal que $|a(x,y)| \leq M\|x\|\|y\|$, para todo $x,y \in E$. Asuma que a es coerciva, esto es, existe $\alpha>0$ tal que para todo $x \in E$

$$a(x,x) \ge \alpha ||x||^2$$
.

- (a) Dado $x \in E$, defina $A_x(y) = a(x,y)$, para todo $y \in E$. Muestre que $A_x \in E^*$, para cada $x \in E$. Además, concluya que la función $x \mapsto A(x) = A_x$ satisface $A \in \mathcal{L}(E, E^*)$.
- (b) Muestre que A como en (a) es una función sobreyectiva.
- (c) Deduzca que para cada $f \in E^*$, existe un único $x \in E$ tal que $a(x,y) = \langle f, y \rangle$, $\forall y \in E$. Esto es, la forma bilineal coerciva a representa todo funcional lineal continuo.

Ejercicio 16. Sea E un espacio de Banach tal que E^* es separable. Muestre que $B_E = \{x \in E : ||x||_E \le 1\}$ es metrizable en la topología débil $\sigma(E, E^*)$.

Ejercicio 17. Sea E un espacio de Banach de dimensión infinita. Nuestro objetivo es mostrar que E con la topología débil no es metrizable. Argumentando por contradicción, suponga que existe una métrica $d: E \times E \to [0, \infty)$ que genera la topología $\sigma(E, E^*)$.

(i) Para cada $k \geq 1$, sea V_k una vecindad de cero de la topología $\sigma(E, E^*)$ tal que

$$V_k \subset \left\{ x \in E : d(x,0) < \frac{1}{k} \right\}.$$

Asuma (por qué esto es válido?) que

$$V_k = \{x \in E : \langle f_k, x \rangle < \epsilon_k, \quad para \ cada \ f_k \in \Phi_k \},$$

donde $\Phi_k \subseteq E^*$ es un subconjunto finito. Considere el conjunto $V = \{x \in E : |\langle g, x \rangle| \le 1\}$. Muestre que existe un $m \ge 1$ tal que $V_m \subseteq V$. Utilizando el Ejercicio 2, concluya que g es combinación lineal de los Φ_k .

- (ii) Muestre que E^* es de dimensión finita. Para esto, utilizando lo deducido en el paso (i), aplique el teorema de categoría de Baire con los conjuntos $F_k = generado(\Phi_k)$.
- (iii) Concluya que E es de dimensión finita.

Ejercicio 18. Sea E un espacio de Banach

(a) Demuestre que existe un espacio topológico compacto K y una isometría de E en $(C(K), \|\cdot\|_{\infty})$.

Sugerencia. Considere $K = B_{E^*} = \{f \in E^* : ||f||_{E^*} \leq 1\}$. Defina la función, $T : E \to C(K)$ dada por $x \mapsto Tx$, donde $(Tx)(f) = \langle f, x \rangle$, para $f \in K$.

(b) Asuma que E es separable. Entonces muestre que existe una isometría de E en l^{∞} (vea el Ejercicio 14 para la definición del espacio).

Sugerencia. Como K es metrizable y compacto en $\sigma(E^*, E)$, existe un subconjunto denso contable $\{f_n\} \subseteq K$. Utilice este conjunto para definir la isometría buscada.

Ejercicio 19. Sea E un espacio de Banach separable y $\{f_n\}$ una secuencia acotada de E^* . Usando un argumento diagonal, demuestre directamente, sin usar que E^* es metrizable, que existe una subsecuencia de $\{f_{n_k}\}$ que converge em $\sigma(E^*, E)$.

Ejercicio 20. Recordemos el espacio

$$c_0 = \{u = \{u_n\}_{n \ge 1} : tales \ que \ u_n \in \mathbb{R}, \ n \ge 1, \ \lim_{n \to \infty} u_n = 0\},\$$

 $con \ la \ norma \ ||u||_{l^{\infty}} = \sup_{n \in \mathbb{Z}^+} |u_n|.$

(a) Muestre que c_0 es separable.

Sugerencia: considere el conjunto de secuencias racionales $\{q_n\}$ para las cuales $q_n \in \mathbb{Q}$ para todo n y existe $N \geq 1$, tal que $q_n = 0$ para cada $N \geq 1$.

(b) Muestre que l^{∞} (definido en el Ejercicio 14) no es separable.

Sugerencia: Considere el conjunto \mathcal{A} formado por las secuencias de ceros y unos; es decir, \mathcal{A} está compuesto por todas las secuencias $\{x_n\}$ tales que $x_n \in \{0,1\}$ para todo $n \geq 1$. Muestre que la familia de bolas $\{B(x,\frac{1}{2})\}_{x \in \mathcal{A}}$ es no enumerable y que no contiene dos elementos de \mathcal{A} simultáneamente, con el fin de mostrar que l^{∞} no puede ser separable.

Universidad Nacional de Colombia, Bogotá *Email address*: ogrianoc@unal.edu.co