ANALISI DI RETI SEQUENZIALI

Solitamente l'obiettivo di un progetto di una rete sequenziale è quello di arrivare allo schema elettrico che soddisfa la consegna, in questo caso invece si ribaltano le fasi di progetto:

Si parte dallo schema elettrico per arrivare a completare

- 1. tabella delle uscite
- 2. mappa delle transizioni
- 3. equazioni di funzionamento
- 4. mappa degli stati
- 5. diagramma degli stati

Il seguente circuito presenta due ingressi x1 e x2, due uscite z1 e z2, due latch di tipo S-R le cui uscite sono qui chiamate y1 e y2.

1. Le uscite z_1 e z_2 della rete sono una funzione **combinatoria** sia degli ingressi (x_1 , x_2) sia delle uscite dei latch (y_1 , y_2), e possono pertanto essere descritte con i metodi delle reti combinatorie.

$$z_1 = (y_1 y_2) + (!x_1 (y_1+y_2))$$

 $z_2 = (!x_2 (y_1+!y_2))+(y_1 !y_2)$

da cui (per sostituzione) si può ricavare la tabella/mappa delle uscite

×1 x2						
y ₁ y ₂	00	01	11	10		
00	01	00	00	01		
01	10	10	00	00		Z ₁ Z ₂
11	11	10	10	11		
10	11	11	01	01		

- 2. Considerando tutte le combinazioni degli <u>ingressi</u> x_1 , x_2 e delle <u>uscite attuali</u> $y_1(t)$, $y_2(t)$, utilizzando la Tavola di Verità del latch SR, si può costruire la **Mappa delle transizioni per l**e <u>uscite future</u> $Y_1(t+1)$, $Y_2(t+1)$. Si tratta di tabelle nelle quali:
- gli indici delle colonne sono tutte le combinazioni degli ingressi x1 x2
- gli indici delle righe sono tutte le combinazioni degli stati presenti y₁ y₂
- i valori riportati in ciascuna cella sono i valori delle variabili di stato prossimo $Y_1(t+1)$ $Y_2(t+1)$

Sdoppiando la mappa delle transizioni e condiderandole come mappeK di 4 variabili, si ricavano le equazioni di funzionamento dei due FlipFlop; da esse si deduce che le uscite future Y(t+1) sono anche funzione del valore presente y(t).

3. Se nella mappa delle transizioni si fa la seguente sostituzione:

4. Da cui si può ricavare il diagramma degli stati

Mappa degli stati

x1 x2				
y ₁ y ₂	00	01	11	10
Α	Α	Α	D	В
В	В	Α	C	В
С	В	D	С	С
D	Α	D	D	С

