MA1521 CALCULUS FOR COMPUTING

Wang Fei

matwf@nus.edu.sg

Department of Mathematics Office: S17-06-16 Tel: 6516-2937

C	hapter 4: Partial Derivatives	2
	Functions of More than One Variable	. 3
	Graph of Two-Variable Function	. 6
	Partial Derivatives	11
	Directional Derivatives	14
	Tangent Plane	18
	Linear Approximation	20
	Chain Rule	21
	Higher Order Partial Derivatives	27
	More Variables	30

Functions of More than One Variable

- Some objects are determined by more than one **independent variables**:
 - \circ Area of a rectangle: A = xy,
 - x is the length, y is the width.
 - Volume of a circular cone: $V = \frac{1}{3}\pi r h^2$,
 - r is the radius and h is the height.
 - \circ Kinetic energy: $E_k = \frac{1}{2}mv^2$,
 - $\bullet \quad m \text{ is the mass, } v \text{ is the velocity.}$
 - Potential energy: $E_p = mgh$,
 - $\bullet \quad m \text{ is the mass, } h \text{ is the height.}$

3/34

Functions of Two Variables

- Let z = f(x, y) be a function with two variables x, y.
 - \circ Note that x and y are independent.
 - \circ $\,\,$ Unless otherwise specified, the ${\bf domain}\,\,D$ is the largest subset of \mathbb{R}^2 on which f is well-defined.
- Example. $f(x,y) = \frac{x+2y}{\sqrt{x-y^2}} + \ln(8-x-y)$.
 - $\begin{array}{ll} \circ & \dfrac{1}{\sqrt{x-y^2}} \hbox{:} & x-y^2>0 \Leftrightarrow x>y^2; \\ \circ & \ln(8-x-y) \hbox{:} & 8-x-y>0 \Leftrightarrow x+y<8. \end{array}$

- Find the domain of $f(x,y) = \ln(10 2x 3y)$.
 - $\circ \ln(10 2x 3y): 10 2x 3y > 0 \Leftrightarrow 2x + 3y < 10.$

- $\bullet \quad \text{Find the domain of } f(x,y,z) = \sqrt{9-(x^2+y^2+z^2)}.$
 - $\circ \quad 9 (x^2 + y^2 + z^2) \ge 0 \Leftrightarrow x^2 + y^2 + z^2 \le 9 = 3^2.$
 - \circ Solid ball of center O and radius 3.

5/34

Graph of Two-Variable Function

- The graph of function z = f(x, y) with domain D:
 - $\circ \quad \{(x,y,z) \in \mathbb{R}^3 \mid (x,y) \in D \text{ and } z = f(x,y)\}.$

It is a **surface** defined by the function.

- Question. How can we plot a surface?
 - For s=g(t), pick points t_1,\ldots,t_n , and connect points $(t_1,f(t_1)),\ldots,(t_n,f(t_n))$ with a smooth curve.
 - \circ For z = f(x, y), this method fails. Instead,
 - For each $z=z_0$, draw level curve $z_0=f(x,y)$.

This is the intersection of the surface z = f(x, y) and the horizontal plane $z = z_0$.

• $L_{z_0} := \{(x,y) \mid f(x,y) = z_0\}.$

• f(x,y) = 10 - 2x - y.

$$\begin{array}{r}
 10 - 2x - y = -5 \\
 10 - 2x - y = -4 \\
 10 - 2x - y = -3 \\
 10 - 2x - y = -2 \\
 10 - 2x - y = -1 \\
 10 - 2x - y = 1 \\
 10 - 2x - y = 1 \\
 10 - 2x - y = 2 \\
 10 - 2x - y = 3 \\
 10 - 2x - y = 4
 \end{array}$$

7 / 34

8/34

Examples

• $f(x,y) = x^2 + y^2$.

4

Examples

Partial Derivatives

- Let z = f(x, y). How to determine the rate of change?
 - \circ If y is fixed, z = f(x, y) is a function in x.
 - The derivative of z with respect to x determines the rate of change of z along the x-direction.
 - It is the partial derivative of z with respect to x.

$$\circ \quad \frac{\partial z}{\partial x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x}.$$

- If x is fixed, z = f(x, y) is a function in y.
 - The derivative of z with respect to y determines the rate of change of z along the y-direction.
 - It is the partial derivative of z with respect to y.

$$\circ \quad \frac{\partial z}{\partial y} = \lim_{\Delta y \to 0} \frac{f(x, y + \Delta y) - f(x, y)}{\Delta y}.$$

11/34

Partial Derivatives

• Suppose z = f(x, y). We also use the following notations.

$$\circ \quad \frac{\partial z}{\partial x} = \frac{\partial f}{\partial x} = f_x(x, y) = D_x f(x, y) = \cdots,$$

$$\circ \quad \frac{\partial z}{\partial y} = \frac{\partial f}{\partial y} = f_y(x, y) = D_y f(x, y) = \cdots.$$

• The gradient of z = f(x, y) is a vector of functions:

•
$$\nabla f(a,b) = \nabla f(x,y)\Big|_{(a,b)}$$
.

Property:

•
$$\frac{\partial f}{\partial x} = \nabla f(x, y) \bullet (1, 0), \frac{\partial f}{\partial y} = \nabla f(x, y) \bullet (0, 1).$$

- $f(x,y) = \frac{yx}{x^2 + 1}$. Find f_x and f_y .
 - $\circ f_x(x,y) = \frac{y \cdot (x^2 + 1) yx \cdot 2x}{(x^2 + 1)^2} = \frac{y(1 x^2)}{(x^2 + 1)^2},$
 - $\circ \quad f_y(x,y) = \frac{x}{x^2 + 1}.$
- $f(x,y) = x^3 e^y + \ln y + e^x$. Find f_x and f_y .

 - $f_{x} = 3x^{2}e^{y} + e^{x},$ $f_{y} = x^{3}e^{y} + \frac{1}{y}.$ $\nabla f(x, y) = \left(3x^{2}e^{y} + e^{x}, x^{3}e^{y} + \frac{1}{y}\right).$

13/34

Directional Derivatives

- Let z = f(x, y). Then
 - \circ f_x is the rate of change along the x-direction;
 - \circ f_y is the rate of change along the y-direction.

Question. What is the rate of the change of z = f(x,y) along $\mathbf{u} = u_1 \mathbf{i} + u_2 \mathbf{j}$, where \mathbf{u} is a unit

- f_x is the rate of change along $\mathbf{i} = (1, 0)$;
- f_y is the rate of change along $\mathbf{j} = (0, 1)$.

Answer. It is $u_1f_x + u_2f_y = (f_x, f_y) \bullet (u_1, u_2) = \nabla f \bullet \mathbf{u}$.

- **Definition.** Suppose f_x and f_y exist. The **directional derivative** of z = f(x, y) along a unit vector u is given by
 - $\circ D_{\mathbf{u}}f(x,y) = \nabla f(x,y) \bullet \mathbf{u}.$

In particular, $D_{\mathbf{i}}f = f_x$ and $D_{\mathbf{i}}f = f_y$.

Directional Derivatives

Remark. In general, if $\mathbf{u} = u_1 \mathbf{i} + u_2 \mathbf{j}$ is a unit vector, then

$$\circ D_{\mathbf{u}}f(x,y) = \lim_{h \to 0} \frac{f(x + u_1h, y + u_2h) - f(x,y)}{h}.$$

This is the original definition. In application, f_x and f_y usually exist.

Geometric Meaning.

$$\circ \quad D_{\mathbf{u}}f = \nabla f \bullet \mathbf{u} = |\nabla f| |\mathbf{u}| \cos \theta = |\nabla f| \cos \theta,$$

• θ is the angle between ∇f and \mathbf{u} .

Therefore,

- f increases most rapidly in the direction of ∇f ;
- f decrease most rapidly in the direction of $-\nabla f$;
- Any direction ${\bf u}$ orthogonal to $\nabla f \ (\neq 0)$ is a direction of zero change.

15/34

Examples

- Consider the function $f(x,y) = xe^y + \cos xy$.
 - Find the derivative at (2,0) along $\mathbf{v} = 3\mathbf{i} 4\mathbf{j}$.
 - Gradient: $\nabla f(2,0) = (1,2)$

 - $f_x = e^y y \sin xy, \quad f_x(2,0) = 1;$ $f_y = xe^y y \sin xy, \quad f_y(2,0) = 2.$
 - Direction: $\mathbf{u} = \frac{\mathbf{v}}{|\mathbf{v}|} = \frac{3}{5}\mathbf{i} \frac{4}{5}\mathbf{j}$.
 - $D_{\mathbf{u}}f(2,0) = (1,2) \bullet (\frac{3}{5}, -\frac{4}{5}) = -1.$
 - \circ The direction that f increases most rapidly at (2,0):
 - $\frac{\nabla f(2,0)}{|\nabla f(2,0)|} = \frac{1}{\sqrt{5}}\mathbf{i} + \frac{2}{\sqrt{5}}\mathbf{j}.$
 - \circ The direction that f has zero change at (2,0).
 - $\frac{2}{\sqrt{5}}\mathbf{i} \frac{1}{\sqrt{5}}\mathbf{j}$ and $-\frac{2}{\sqrt{5}}\mathbf{i} + \frac{1}{\sqrt{5}}$.

- Let $f(x,y) = \tan^{-1}(y/x) + \sqrt{3} \sin^{-1}(xy/2)$. Find the derivative at (1,1) in the direction of $\mathbf{v} = 3\mathbf{i} 2\mathbf{j}$.
 - \circ Gradient: $\nabla f(1,1) = (f_x(1,1),f_y(1,1)) = (\frac{1}{2},\frac{3}{2})$
 - $f_x = -\frac{y}{x^2 + y^2} + \frac{\sqrt{3}y}{\sqrt{4 x^2y^2}};$
 - $f_y = \frac{x}{x^2 + y^2} + \frac{\sqrt{3}x}{\sqrt{4 x^2y^2}}$.
 - Direction vector:
 - $\mathbf{u} = \frac{\mathbf{v}}{|\mathbf{v}|} = \frac{3}{\sqrt{13}}\mathbf{i} \frac{2}{\sqrt{13}}\mathbf{j}.$
 - $D_{\mathbf{u}}f(1,1) = (\frac{1}{2}, \frac{3}{2}) \bullet (\frac{3}{\sqrt{13}}, -\frac{2}{\sqrt{13}}) = -\frac{3}{2\sqrt{13}}.$

17/34

Tangent Plane

- Let z = f(x, y) be a surface and (x_0, y_0, z_0) a point on the surface.
 - The tangent line to $z = f(x, y_0)$ at (x_0, y_0, z_0) is
 - $z z_0 = f_x(x_0, y_0)(x x_0)$, $y = y_0$.
 - $\mathbf{r}_1 = (x_0, y_0, z_0) + \lambda_1(1, 0, f_x(x_0, y_0)).$
 - The tangent line to $z = f(x_0, y)$ at (x_0, y_0, z_0) is
 - $z z_0 = f_y(x_0, y_0)(y y_0), \quad x = x_0.$
 - $\mathbf{r}_2 = (x_0, y_0, z_0) + \lambda_2(0, 1, f_y(x_0, y_0)).$
- There is a unique plane containing both r_1 and r_2 .
 - o Its normal vector is given by

•
$$\begin{pmatrix} 1 \\ 0 \\ f_x(x_0, y_0) \end{pmatrix} \times \begin{pmatrix} 0 \\ 1 \\ f_y(x_0, y_0) \end{pmatrix} = \begin{pmatrix} -f_x(x_0, y_0) \\ -f_y(x_0, y_0) \\ 1 \end{pmatrix}.$$

Tangent Plane

- **Definition.** Let z = f(x, y) be a surface and (x_0, y_0, z_0) a point on the surface. The **tangent** plane of the surface at (x_0, y_0, z_0) is
 - $z z_0 = f_x(x_0, y_0)(x x_0) + f_y(x_0, y_0)(y y_0).$
- **Example**. Tangent plane to $z = x \cos y ye^x$ at (0,0,0).
 - $\circ \quad \mathsf{Let} \ f(x,y) = x \cos y y e^x.$
 - $f_x = \cos y ye^x$, $f_x(0,0) = 1$;
 - $f_y = -x \sin y e^x$, $f_y(0,0) = -1$.

Then the tangent plane at $\left(0,0,0\right)$ is given by

• $z-0=1\cdot(x-0)+(-1)\cdot(y-0);$

That is, x - y - z = 0.

19/34

Linear Approximation

- Let z = f(x) be a function. It can be approximated by its tangent line:
 - $\circ \quad x \approx x_0 \Rightarrow f(x) \approx f(x_0) + f'(x_0)(x x_0).$
- Suppose z = f(x, y). It can be approximated by its tangent plane:
 - $(x,y) \approx (x_0, y_0) \Rightarrow$ $f(x,y) \approx f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0).$

This is called the **linearization** of f at (x_0, y_0) .

- **Example.** Estimate $f(x,y) = x \cos y ye^x$ near (0,0).
 - Its tangent plane at (0,0) is z=x-y. Then $f(x,y)\approx x-y$ near (0,0).
 - \circ For instance, $f(0.02, 0.01) \approx 0.01$ and $f(0.02, 0.01) = 0.00979698661 \cdots$

Chain Rule

- Suppose z = f(x, y), where x = x(t) and y = y(t).
 - Then z = f(x(t), y(t)) is a function in t. What is $\frac{dz}{dt}$?

21/34

Chain Rule

- Chain Rule. Let z = f(x, y) be a function. Suppose

 - $\begin{array}{ll} \circ & f_x \text{ and } f_y \text{ are continuous, and} \\ \circ & x = x(t) \text{ and } y = y(t) \text{ are differentiable.} \end{array}$

Then z is differentiable with respect to t.

$$\circ \quad \frac{df}{dt} = f_x \cdot x'(t) + f_y \cdot y'(t), \text{ or }$$

$$\circ \quad \frac{dz}{dt} = \frac{\partial z}{\partial x} \frac{dx}{dt} + \frac{\partial z}{\partial y} \frac{dy}{dt}.$$

Example. Let z = xy, where $x = \cos t$ and $y = \sin t$.

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \frac{dx}{dt} + \frac{\partial z}{\partial y} \frac{dy}{dt}$$
$$= y \cdot (-\sin t) + x \cdot \cos t$$
$$= -\sin^2 t + \cos^2 t = \cos 2t.$$

Implicit Differentiation Revisited

- Recall the implicit differentiation:
 - $\circ \quad \text{Suppose } f(x,y) = 0. \text{ Find } \frac{dy}{dx}.$
 - 1. Differentiate f(x,y) = 0 with respect to x to obtain a relation in x, y and $\frac{dy}{dx}$;
 - 2. Solve $\frac{dy}{dx}$ in terms of x and y.
- Suppose y = y(x) and let z = f(x, y(x)).

$$\circ \quad 0 = \frac{dz}{dx} = f_x(x,y) \frac{dx}{dx} + f_y(x,y) \frac{dy}{dx}.$$

Therefore,
$$\frac{dy}{dx} = -\frac{f_x(x,y)}{f_y(x,y)}$$
.

23 / 34

Examples

- Find $\frac{dy}{dx}$ if $x^3 + y^3 = 3xy$.
 - \circ Let $f(x,y) = x^3 + y^3 3xy$. Then
 - $f_x(x,y) = 3x^2 3y$; $f_y(x,y) = 3y^2 3x$.

$$\circ \quad \text{Then } \frac{dy}{dx} = -\frac{f_x(x,y)}{f_y(x,y)} = -\frac{x^2 - y}{y^2 - x}.$$

- Find $\frac{dy}{dx}$ if $y^2 = x^2 + \sin xy$.
 - \circ Let $f(x,y) = y^2 x^2 \sin xy$. Then
 - $f_x(x,y) = -2x y \cos xy$; $f_y(x,y) = 2y x \cos xy$.

$$\circ \quad \text{Then } \frac{dy}{dx} = -\frac{f_x(x,y)}{f_y(x,y)} = -\frac{2x + y\cos xy}{2y - x\cos xy}.$$

Geometric Meaning of Gradient

- Let z = f(x, y) be a function.
 - o Consider its level curve:
 - f(x,y) = c, where c is a constant.
 - o Suppose the level curve can be parameterized by
 - $\mathbf{r}(t) = (x(t), y(t)).$

Then f(x(t), y(t)) = c.

- Differentiate with respect to *t*:
 - $0 = \frac{dc}{dt} = \frac{d}{dt}f(x(t), y(t)) = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}$.
 - $0 = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right) \bullet \left(\frac{dx}{dt}, \frac{dy}{dt}\right) = \nabla f(x, y) \bullet \mathbf{r}'(t).$
- At every point, the gradient is perpendicular (normal) to the level curve passing through the point.

25 / 34

Two Independent Variables

- Suppose z = f(x, y), x = x(s, t) and y = y(s, t).
 - $\circ \quad \frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s};$
 - $\circ \quad \frac{\partial z}{\partial t} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial t}.$
- Example. $z = x^2 + y^2$, x = s t and y = s + t.

$$\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s}$$
$$= 2x \cdot 1 + 2y \cdot 1 = 2(s-t) + 2(s+t) = 4s.$$

$$\frac{\partial z}{\partial t} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial t}$$
$$= 2x \cdot (-1) + 2y \cdot 1 = -2(s-t) + 2(s+t) = 4t.$$

Indeed, $z = (s-t)^2 + (s+t)^2 = 2(s^2 + t^2)$.

Higher Order Partial Derivatives

• Let z = f(x, y). Then f_x and f_y are functions in two variables. We can define the **second partial** derivatives:

$$\circ \quad f_{xy} = (f_x)_y = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial y \partial x};$$

$$\circ \quad f_{yx} = (f_y)_x = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial x \partial y};$$

$$\circ \quad f_{yy} = (f_y)_y = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial y^2}.$$

- Similarly, we can define higher order partial derivatives:
 - $\circ f_{xxx}, f_{xxy}, f_{xyx}, f_{xyy}, f_{yxx}, f_{yxy}, f_{yyx}, f_{yyy}.$
 - $\circ \quad f_{xxxx}, f_{xxxy}, f_{xxyx}, \dots$

27 / 34

Second Partial Derivatives

• Example. Let $f(x,y) = x \cos y + ye^x$.

$$\circ \quad f_x = \cos y + ye^x, \quad f_y = -x\sin y + e^x.$$

$$f_{xx} = (f_x)_x = (\cos y + ye^x)_x = ye^x;$$

$$f_{xy} = (f_x)_y = (\cos y + ye^x)_y = -\sin y + e^x;$$

$$f_{yx} = (f_y)_x = (-x\sin y + e^x)_x = -\sin y + e^x;$$

$$f_{yy} = (f_y)_y = (-x\sin y + e^x)_y = -x\cos y.$$

 \circ In this example, $f_{xy} = f_{yx}$.

Does this relation hold in general?

- Theorem. Let z = f(x, y) be a function.
 - Suppose f_x , f_y , f_{xy} , f_{yx} are defined in an open region containing (x_0, y_0) and they are continuous at (x_0, y_0) .
 - \circ Then $f_{xy}(x_0, y_0) = f_{yx}(x_0, y_0)$.

- Find f_{xy} if $f(x,y) = xy + \frac{e^x}{x^2 + 1}$.
 - o Method 1:

•
$$f_x = y + \frac{e^x \cdot 2x - e^x(x^2 + 1)}{(x^2 + 1)^2} = y - \frac{e^x(x - 1)^2}{(x^2 + 1)^2}$$
.

•
$$f_{xy} = (f_x)_y = \left(y - \frac{e^x(x-1)^2}{(x^2+1)^2}\right)_y = 1.$$

- o Method 2:

 - $f_y = x$; $f_{xy} = f_{yx} = (f_y)_x = x_x = 1$.
- Exercise. Find all the first and second derivatives of

$$\circ W(P, V, \delta, v, g) = PV + \frac{V\delta v^2}{2g}.$$

29/34

More Variables

- Let w = f(x, y, z) be a function with three variables.
 - o Level surface:
 - f(x, y, z) = c, where c is a constant.
 - o Partial derivatives:

•
$$f_x = \frac{\partial w}{\partial x}$$
, $f_y = \frac{\partial w}{\partial y}$, $f_z = \frac{\partial w}{\partial z}$.
• Gradient: $\nabla f = f_x \mathbf{i} + f_y \mathbf{j} + f_z \mathbf{k}$.

- o Directional derivatives:
 - $D_{\mathbf{u}}f = \nabla f \bullet \mathbf{u}$, where \mathbf{u} is a unit vector.
- o Chain rule:

• If
$$x=x(t)$$
, $y=y(t)$, $z=z(t)$, then
$$\frac{dw}{dt} = \frac{\partial w}{\partial x} \frac{dx}{dt} + \frac{\partial w}{\partial y} \frac{dy}{dt} + \frac{\partial w}{\partial z} \frac{dz}{dt}.$$

Tangent Plane

- Recall that if z = f(x, y), then the gradient $\nabla f = (f_x, f_y)$ is normal to the level curve f(x, y) = c.
- If w = f(x, y, z), we expect that $\nabla f = (f_x, f_y, f_z)$ is normal to the level surface f(x, y, z) = c.
 - Then the tangent plane of f(x, y, z) = c at $P(x_0, y_0, z_0)$ shall be given by
 - $\nabla f(x_0, y_0, z_0) \bullet (x, y, z) = \nabla f(x_0, y_0, z_0) \bullet (x_0, y_0, z_0).$ $f_x(P)(x - x_0) + f_y(P)(y - y_0) + f_z(P)(z - z_0) = 0.$
- **Definition.** Let f(x, y, z) = c be a surface.
 - o It is nonsingular (smooth) at $P(x_0, y_0, z_0)$ if f_x , f_y , f_z exist at P, and at least one of them is nonzero.
 - \circ If is singular at P if it is not nonsingular at P.

31 / 34

Tangent Plane

- Consider the surface f(x, y, z) = c, where c is a constant.
 - Suppose it is nonsingular at $P(x_0, y_0, z_0)$.
 - \circ Write z = z(x, y) as a function. Then
 - f(x, y, z(x, y)) = c for all x and y.
 - o The partial derivatives are zero:

$$0 = \frac{\partial c}{\partial x} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial x} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial x} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial x}$$
$$= f_x(P) + f_z(P) \cdot \frac{\partial z}{\partial x}(P),$$
$$0 = \frac{\partial c}{\partial y} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial y} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial y} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial y}$$
$$= f_y(P) + f_z(P) \cdot \frac{\partial z}{\partial y}(P).$$

Tangent Plane

• Recall: the tangent plane of z=z(x,y) is given by

$$\circ \frac{\partial z}{\partial x}(P)(x-x_0) + \frac{\partial z}{\partial y}(P)(y-y_0) = z - z_0.$$

•
$$\frac{\partial z}{\partial x}(P) = -\frac{f_x(P)}{f_z(P)}, \quad \frac{\partial z}{\partial y}(P) = -\frac{f_y(P)}{f_z(P)}.$$

- **Theorem.** Suppose the surface f(x, y, z) = c is nonsingular at point $P(x_0, y_0, z_0)$.
 - \circ Then its tangent plane at P is given by

•
$$f_x(P)(x-x_0) + f_y(P)(y-y_0) + f_z(P)(z-z_0) = 0.$$

- Corollary. Suppose the curve f(x,y)=c is nonsingular at point $P(x_0,y_0)$.
 - \circ Then its tangent line at P is given by
 - $f_x(P)(x-x_0) + f_y(P)(y-y_0) = 0.$

33 / 34

Example

- Find all the nonsingular points on $x^2 + y^2 = z^2$, and determine the tangent planes.
 - $\circ \quad \text{Let } f(x,y,z) = x^2 + y^2 z^2. \text{ Then}$
 - $f_x = 2x$, $f_y = 2y$, $f_z = -2z$.
 - $\circ \quad \text{Let } f=0 \text{ and } f_x=f_y=f_z=0.$
 - $\bullet \quad \text{The only singular point is } (0,0,0).$
 - Suppose $(x_0, y_0, z_0) \neq (0, 0, 0)$.

The tangent plane at (x_0,y_0,z_0) is given by

• $2x_0(x-x_0) + 2y_0(y-y_0) - 2z_0(z-z_0) = 0.$

That is,

• $x_0x + y_0y - z_0z = x_0^2 + y_0^2 - z_0^2 = 0.$