Unit 2-5 Exercises

1. Extracting Characters Based on Position

The data set orion.au_salesforce has employee data for the Sales branch in Australia.

Partial Listing of orion.au_salesforce (63 Total Observations, 9 Total Variables)

First_ Name	Last_Name	Job_Title
Tom	Zhou	Sales Manager
Wilson	Dawes	Sales Manager
Irenie	Elvish	Sales Rep. II
Christina	Ngan	Sales Rep. II
Kimiko	Hotstone	Sales Rep. I
Lucian	Daymond	Sales Rep. I
	Name Tom Wilson Irenie Christina Kimiko	Name Last_Name Tom Zhou Wilson Dawes Irenie Elvish Christina Ngan Kimiko Hotstone

- a. Orion Star wants to create user ID codes for logging onto the Australian Sales intranet site.
 - Each user ID will consist of the first letter of the first name, the final letter of the first name, and the first four letters of the last name.
 - All these letters should be lowercase.
 - As a first step to doing this, extract these letters and change their case.
 - Create a new data set named work.codes.
 - Create three new variables named **FCode1**, **FCode2**, and **LCode**. As described above, these variables should contain the following:

Variable Name	Value
FCode1	First letter of First_Name
FCode2	Final letter of First_Name
LCode	First four letters of Last_Name

Remember to make these new values lowercase too.

There are several ways to approach getting the final letter of **First_Name**. For one of those ways, you need to know that the length of **First_Name** is 12 characters.

- **b.** Print the resulting data set.
 - Include only the variables First_Name, FCode1, FCode2, Last_Name, and LCode.
 - Add an appropriate title.
 - Verify your output.

Partial PROC PRINT output (63 Total Observations)

	Extracted Letters for User IDs					
Obs	First_ Name	FCode1	FCode2	Last_Name	LCode	
1	Tom	t	m	Zhou	zhou	
2	Wilson	w	n	Dawes	dawe	
3	Irenie	i	е	Elvish	elvi	
4	Christina	С	а	Ngan	ngan	
5	Kimiko	k	0	Hotstone	hots	
6	Lucian	1	n	Daymond	daym	
7	Fong	f	g	Hofmeister	hofm	
8	Satyakam	s	m	Denny	denn	
9	Sharryn	s	n	Clarkson	clar	

Later you see techniques that can be used to combine these letters into a single character value.

2. Extracting Characters Based on Position

The data set orion.newcompetitors has data on competing retail stores that recently opened near existing Orion Star locations.

Listing of orion.newcompetitors

ID)	City	Postal_ Code
AU153	01W	PERTH	6002
AU122	17E	SYDNEY	2000
CA	150	Toronto	M5V 3C6
CA	238	Edmonton	T5T 2B2
US 35	6NC	charlotte	28203
US101	300	denver	80201
US 1	2CA	San diego	92139

- **a.** Orion Star would like a data set containing only the small retail stores from these observations.
 - Create a new variable, **Country**, that contains the first two characters of **ID**.
 - Create a new variable, **Store_Code**, that contains the other characters from the value in **ID**. Left justify the value so that there are no leading blanks.
 - The first character in the value of **Store_Code** indicates the size of the store, and **1** is the code for a small retail store.
 - Write a program to output only the small retail store observations.

 Hint: You might need to use a SUBSTR functions as part of a subsetting IF statement
 - Make sure that the **City** values appear in proper case (as displayed below).

b. Print your results with an appropriate title.Only show the columns Store_Code, Country, City, and Postal_Code.

PROC PRINT output (5 Total Observations)

New Small-Store Competitors			
Store_ Code	Country	City	Postal_ Code
15301W	AU	Perth	6002
12217E	AU	Sydney	2000
150	CA	Toronto	M5V 3C6
101300	US	Denver	80201
12CA	US	San Diego	92139

3. Converting U.S. Postal Codes to State Names

The data set orion.contacts contains a list of contacts for the U.S. charities that Orion Star donates to.

Listing of orion.contacts

ID	Title	Name	Address1	Address2
AQI	Ms.	Farr,Sue	15 Harvey Rd.	Macon, GA 31298
CCI	Dr.	Cox,Kay B.	163 McNeil Pl.	Kern, CA 93280
CNI	Mr.	Mason,Ron	442 Glen Ave.	Miami, FL 33054
CS	Ms.	Ruth,G. H.	2491 Brady St.	Munger, MI 48747
CU	Prof.	Florentino,Helen-Ashe H.	PO Box 2253	Washington, DC 20018
DAI	Ms.	Van Allsburg,Jan F.	25 Chesire Pl.	Short Hills, NJ 07078
ES	Mr.	Laff,Stanley X.	1725 Airport Rd.	Springfield, IL 62707
FFC	Mr.	Rizen,George Q.	11234 W Hoyt St.	Chicago, IL 60612
MI	Dr.	Mitchell, Marc J.	922 Mitchell Circle	Chicago, IL 60603
SBA	Ms.	Mills,Dorothy E.	34 Clear Sky Rd.	Butte, MT 59750
V2	Dr.	Webb,Jonathan W.	1012 Hwy 54	Morrisville, NC 27560
YYCR	Mr.	Keenan, Maynard J.	1315 Green Valley Ln.	Sedona, AZ 86351

a. Create a new data set named **states** that includes the variables **ID** and **Name** as well as a new variable named **Location** that shows the full name in proper case for the state that the contact is based in.

Hint: Address2 is 24 characters long and the last item in Address2 is always the ZIP code. Look in the online Help for character functions that use ZIP codes as arguments.

b. Print your results.

PROC PRINT output (12 Total Observations)

ID	Name	Location
AQI	Farr,Sue	Georgia
CCI	Cox,Kay B.	California
CNI	Mason,Ron	Florida
CS	Ruth,G. H.	Michigan
CU	Florentino,Helen-Ashe H.	District of Columbia
DAI	Van Allsburg,Jan F.	New Jersey
ES	Laff,Stanley X.	Illinois
FFC	Rizen,George Q.	Illinois
MI	Mitchell,Marc J.	Illinois
SBA	Mills,Dorothy E.	Montana
V2	Webb,Jonathan W.	North Carolina
YYCR	Keenan,Maynard J.	Arizona

4. Cleaning Text Data

Customer names are available in a data set named orion.customers ex5:

Customer_ID	Name	Country	Gender	Birth_Date
000-000-00-0004	KVARNIQ, James	US	M	27Jun1974
Silver000-000-00-0005	STEPHANO, Sandrina	US	F	9-Jul1979
000-000-00-0009	KRAHL, Cornelia	DE	F	27Feb1974
platinum000-000-00-0010	BALLINGER, Karen	US	F	18Oct1984
000-000-00-0011	WALLSTAB, Elke	DE	F	16Aug1974
Silver000-000-00-0012	BLACK, David	US	M	12Apr1969

Use this data set to create a new data set named **names** that contains each customer's name in this format:

Mr. John B. Smith

Ms. Jane Doe

- **a.** Write a program to create the **names** data set.
 - The names data set should contain only three variables: New_Name, Name, and Gender.
 - The **New_Name** variable should contain the customer's name in the new format.
 - Female names should be preceded by the honorific title Ms.
 - Male names by the title Mr.
- b. Print the names data set.
- **c.** Verify that your conversion efforts were successful.

Partial PROC PRINT Output (77 Total Observations)

0bs	New_Name	Name	Gender
1	Mr. James Kvarniq	KVARNIQ, James	M
2	Ms. Sandrina Stephano	STEPHANO, Sandrina	F
3	Ms. Cornelia Krahl	KRAHL, Cornelia	F
4	Ms. Karen Ballinger	BALLINGER, Karen	F
5	Ms. Elke Wallstab	WALLSTAB, Elke	F
6	Mr. David Black	BLACK, David	M
7	Mr. Markus Sepke	SEPKE, Markus	M

5. (Optional) Searching for and Replacing Character Values

- As in the previous exercise, the data set **orion.customers_ex5** contains information about Orion Star customers.
- Customers who are frequent purchasers are tagged as Silver, Gold, or Platinum, which appears at the beginning of their Customer_ID value.
- Due to updates in the way that Orion Star designates **Customer_ID** values, the existing values need to be modified. Any four-digit string, for example, -00-, in **Customer_ID** should be replaced by -15- in the output data sets.
 - a. Create three output data sets: work.silver, work.gold, and work.platinum.
 - Search Customer_ID for the values Silver, Gold, and Platinum and output them to the respective data set when they are found.
 - You should get 17 observations in work.silver, 2 in work.gold, and 5 in work.platinum.
 - Keep the variables **Customer_ID**, **Name**, and **Country** in all data sets.
 - **b.** Print the data sets with appropriate titles.
 - c. Confirm that any -00- was replaced by -15-.

Hint: Make sure that your searches are not case sensitive!

Partial PROC PRINT Output (17 Total Observations)

Silver-Level Customers				
Customer_ID	Name	Country		
Silver000-000-15-0005	STEPHANO, Sandrina	US		
Silver000-000-15-0012	BLACK, David	US		
Silver000-000-15-0024	KLEM, Robyn	US		

PROC PRINT Output (2 Total Observations)

Gold-Level Customers		
Customer_ID	Name	Country
Gold000-000-15-0027	MCCLUNEY, Cynthia	US
Gold000-000-07-0201	BORWICK, Angel	CA

Platinum-Level Customers				
	Customer_ID	Name	Country	
	platinum000-000-15-0010	BALLINGER, Karen	US	
	platinum000-000-15-0031	MARTINEZ, Cynthia	US	
	platinum000-000-15-0171	BOWERMAN, Robert	AU	
	platinum000-000-15-2806	VAN DEN BERG, Raedene	ZA	
	platinum000-000-07-0100	YEARGAN, Wilma	CA	

6. Searching Character Values and Explicit Output

- The data set orion.employee_donations contains information on charity contributions from Orion Star employees.
- Each employee is allowed to list either one or two charities, which are shown in the **Recipients** variable.

Partial Listing of orion.employee_donations (124 Total Observations, 7 Total Variables)

Employee_ID	Recipients
120265	Mitleid International 90%, Save the Baby Animals 10%
120267	Disaster Assist, Inc. 80%, Cancer Cures, Inc. 20%
120269	Cancer Cures, Inc. 10%, Cuidadores Ltd. 90%
120270	AquaMissions International 10%, Child Survivors 90%
120271	Cuidadores Ltd. 80%, Mitleid International 20%
120272	AquaMissions International 10%, Child Survivors 90%
120275	AquaMissions International 60%, Child Survivors 40%
120660	Disaster Assist, Inc.
120662	Cancer Cures, Inc.
120663	EarthSalvors 30%, Vox Victimas 70%

Some charity names have a comma in them.

- **a.** Use explicit output to create a data set named **work.split**.
 - The data set will have one observation for each combination of employee and charity to which he donated.
 - Some employees made two contributions; therefore, they will have two observations in the output data set. These employees contain a % character in the value of **Recipients**.
 - Store the position where the % character was found in a variable named **PctLoc**. This can make subsequent coding easier.
- Create a variable named **Charity** with the name and percent contribution of the appropriate charity.
- Read only the first 10 observations from **orion.employee_donations** to test your program.
- **b.** Modify the program to read the entire **orion.employee_donations** data set.
 - Print only the columns **Employee ID** and **Charity**.

• Add an appropriate title.

Partial PROC PRINT Output (212 Total Observations)

Charity Co	ntributions for each Employee
Employee_ID	Charity
120265	Mitleid International 90%
120265	Save the Baby Animals 10%
120267	Disaster Assist, Inc. 80%
120267	Cancer Cures, Inc. 20%
120269	Cancer Cures, Inc. 10%
120269	Cuidadores Ltd. 90%
120270	AquaMissions International 10%
120270	Child Survivors 90%
120271	Cuidadores Ltd. 80%
120271	Mitleid International 20%
120272	AquaMissions International 10%
120272	Child Survivors 90%
120275	AquaMissions International 60%
120275	Child Survivors 40%
120660	Disaster Assist, Inc. 100%
120662	Cancer Cures, Inc. 100%
120663	EarthSalvors 30%
120663	Vox Victimas 70%

7. Using Character Functions with the Input Buffer

• The raw data file **supply.dat** contains information on supplier IDs (up to five characters), supplier names (up to 30 characters), and the country from which that supplier ships (two characters).

Raw Data File **supply.dat** (52 rows total)

```
50 Scandinavian Clothing A/S NO

109 Petterson AB SE
316 Prime Sports Ltd GB
755 Top Sports DK
772 AllSeasons Outdoor Clothing US
798 Sportico ES
1280 British Sports Ltd GB
1303 Eclipse Inc US
1684 Magnifico Sports PT
1747 Pro Sportswear Inc US
2963 3Top Sports US
2995 Van Dammeren International NL
```

- The keyword _INFILE_, when SAS reads from a raw data file, enables you to treat the contents of the input buffer as one long character string. This can sometimes be helpful, given the wide variety of character functions in SAS.
- Blanks appear both as delimiters and inside supplier names.
- Remember that both the SCAN and FIND functions can process backward through strings. See SAS Help and Documentation for more details on how to do this.

- a. Create a data set named work.supplier.
 - Use list input to obtain values for **Supplier_ID**.
 - Utilize character functions and the _INFILE_ statement to get values for **Supplier_Name** and **Country**.
- **b.** Print the data set with an appropriate title.

Partial PROC PRINT Output (52 Total Observations)

	Supplier Information	
Supplier_		
ID	Supplier_Name	Country
50	Scandinavian Clothing A/S	NO
109	Petterson AB	SE
316	Prime Sports Ltd	GB
755	Top Sports	DK
772	AllSeasons Outdoor Clothing	US
798	Sportico	ES
1280	British Sports Ltd	GB
1303	Eclipse Inc	US

8. Calculating Statistics and Rounding

The data set **orion.orders_midyear** contains an observation for each customer, with the total retail value of the customer's monthly orders for the first half of the year.

Partial Listing of orion.orders_midyear (24 Total Observations)

Customer_ID	month1	month2	month3	month4	month5	month6
5	213.1		478.0	525.80	394.35	191.79
10	188.1	414.09	2876.9	3164.59	2373.44	169.29
11	78.2					70.38
12	135.6		117.6	129.36	97.02	122.04
18			29.4	32.34	24.26	
24	93.0	265.80				83.70
27	310.7	782.90				279.63
31	1484.3	293.30				1335.87
34	642.5		86.3	94.93	71.20	578.25

- **a.** Create a data set named **work.sale_stats** with three new variables for all months in which the customer placed an order.
 - The variable **MonthAvq** should contain the average.
 - The variable **MonthMax** should contain the maximum.
 - The variable **MonthSum** should contain the sum of values.
 - Round **MonthAvg** to the nearest integer.
 - Most SAS descriptive statistics functions automatically ignore missing values.

b. Print the variables **Customer_ID**, **MonthAvg**, **MonthMax**, and **MonthSum**. Add an appropriate title.

Partial PROC PRINT Output (24 Total Observations)

Statistics on Months	in which	the Customer	Placed an Order
	Month	Month	Month
Customer_ID	Avg	Max	Sum
5	361	525.80	1803.04
10	1531	3164.59	9186.41
11	74	78.20	148.58
12	120	135.60	601.62
18	29	32.34	86.00
24	148	265.80	442.50
27	458	782.90	1373.23
31	1038	1484.30	3113.47
34	295	642.50	1473.18

9. Calculating Statistics for Missing, Median, and Highest Values

The data set **orion.orders_midyear** contains an observation for each customer, with the total retail value of the customer's monthly orders for the first half of the year.

Partial Listing of orion.orders_midyear (24 Total Observations)

Customer_ID	month1	month2	month3	month4	month5	month6	
5	213.1		478.0	525.80	394.35	191.79	
10	188.1	414.09	2876.9	3164.59	2373.44	169.29	
11	78.2					70.38	
12	135.6		117.6	129.36	97.02	122.04	
18			29.4	32.34	24.26		
24	93.0	265.80				83.70	
27	310.7	782.90				279.63	
31	1484.3	293.30				1335.87	
34	642.5		86.3	94.93	71.20	578.25	

- **a.** Orion Star wants to look at information on the median order and the top two months' orders, but only for frequent customers.
 - Create a data set named work.freqcustomers that contains the requested statistics.
 - Frequent customers are defined to be those who placed an order in at least five of the six months.

b. Print your results with an appropriate title.

Consult the SAS documentation, as needed, to learn more about functions that can generate the desired results. It might be particularly useful to look at "Functions and CALL Routines by Category" in the SAS Language Dictionary.

PROC PRINT Output

		Мо	nth Stat	istics on	Frequent	Customer	S		
Customer_ID	month1	month2	month3	month4	month5	month6	Month_ Median	Month_ Highest	Month_ 2nd Highest
5	213.10		478.0	525.80	394.35	191.790	394.35	525.80	478.00
10	188.10	414.09	2876.9	3164.59	2373.44	169.290	1393.77	3164.59	2876.90
12	135.60		117.6	129.36	97.02	122.040	122.04	135.60	129.36
34	642.50		86.3	94.93	71.20	578.250	94.93	642.50	578.25
41	134.00	119.20	313.0	344.30	258.23	120.600	196.11	344.30	313.00
45	443.88	216.20	40.2	44.22	33.17	399.492	130.21	443.88	399.49
90	33.60	110.20	396.9	436.59	327.44	30.240	218.82	436.59	396.90
92	16.90		160.5	176.55	132.41	15.210	132.41	176.55	160.50
171	73.99	534.60	1241.4	1365.54	1024.16	66.591	779.38	1365.54	1241.40

10. Using the PUT and INPUT Functions

The data set **orion**. **shipped** contains details about each product shipped to one of Orion Star's retail outlets in 2007.

Partial Listing of orion.shipped

Product_I	D Ship_Date	Quantity	Price
2408002000	21 05JAN2007	2	\$42.45
2408002000	35 04JAN2007	6	\$12.15
2402001002	25 04JAN2007	2	\$77.85
2102005000	02 09JAN2007	3	\$5.70

Partial PROC CONTENTS Output for orion. shipped

	Variables	in Creat	ion Ord	er
#	Variable	Туре	Len	Format
1	Product_ID	Num	8	
2	Ship_Date	Num	8	DATE9.
3	Quantity	Num	8	
4	Price	Char	7	

An analyst at Orion Star has written a SAS program to calculate the total price of the items shipped and create a comment that includes the ship date. Unfortunately, the SAS program is giving unexpected results.

- a. Open and submit the program, p205e10.sas.
- **b.** View the unexpected results.

Partial PROC PRINT of Unexpected Results

Product_ID	Ship_Date	Quantity	Price	Comment	Total	
0.40000000004	05 14110007	•	0.40 .45	Object 17474		
240800200021	05JAN2007	2	\$42.45	Shipped on 17171		
240800200035	04JAN2007	6	\$12.15	Shipped on 17170		
240200100225	04JAN2007	2	\$77.85	Shipped on 17170		
210200500002	09JAN2007	3	\$5.70	Shipped on 17175		

c. Modify the program to generate the expected results.

Partial PROC PRINT of Desired Results

Product_ID	Ship_Date	Quantity	Price	Comment	Total
240800200021	05JAN2007	2	\$42.45	Shipped on 01/05/2007	\$84.90
240800200035	04JAN2007	6	\$12.15	Shipped on 01/04/2007	\$72.90
240200100225	04JAN2007	2	\$77.85	Shipped on 01/04/2007	\$155.70
210200500002	09JAN2007	3	\$5.70	Shipped on 01/09/2007	\$17.10

- Look above at the PROC CONTENTS output for orion.shipped.
- Notice that **Ship_Date** is numeric with a permanently assigned DATE9. format. It needs to be converted into a character value using the MMDDYY10. format.
- Notice that **Price** is character. It needs to be converted into a numeric value using the COMMA7.2 or DOLLAR7.2 informat.
- Use functions to convert the values of **Ship_Date** and **Price** to get the desired results.

11. Changing a Variable's Data Type

The data set orion. US_newhire contains information about newly hired employees.

Partial Listing of orion. US_newhire

ID	Telephone	Birthday
120-012-40-4928	5467887	05DEC1968
120-012-83-3816	6888321	03MAY1965
120-341-44-0781	9418123	23N0V1972
120-423-01-7721	7839191	28JUN1967

Partial PROC CONTENTS Output of orion.US_newhire

V	Variables in Creation Order				
#	Variable	Туре	Len		
1	ID	Char	15		
2	Telephone	Num	8		
3	Birthday	Char	9		

- a. Create a new data set from orion.US_newhire.
 - Name the new data set **US_converted**.
 - Remove the embedded dashes in **ID**.
 - Convert **ID** to a numeric value.
 - Convert **Telephone** to character and place a (hyphen/dash) between the third and forth digits.
 - Convert Birthday to a SAS date value.
- **b.** Print **US_converted** with an appropriate title and use PROC CONTENTS to check the variables types.

Partial PROC PRINT of **US_converted** (10 Total Observations)

US	New Hires	
ID	Telephone	Birthday
120012404928	546-7887	3261
120012833816	688-8321	1949
120341440781	941-8123	4710
120423017721	783-9191	2735

Partial PROC CONTENTS of US_converted

Variables in Creation Order				
#	Variable	Туре	Len	
1	ID	Num	8	
2	Telephone	Char	8	
3	Birthday	Num	8	