最佳化 HW3

tags: 課程

Q1

1.1 Linear equation

1.2 Quadratic equaton

Using coef = $([X]^T[X])^{-1}[X]^Ty$

$$y = a_0 + a_1 x + a_2 x^2 \ a_0 = 27.73437299 \ a_1 = 1.49454072 \ a_2 = -0.08602588$$

Q2

2.1 Fletcher-Reeves

2.1.1 Linear equation y = mx + b.

To find m and b, we can minimize $f(m,b) = \sum_{i=1}^n (mx_i + b - y_i)^2$.

tol = 5e-1

stop iter: 255

start (m, b) = (0, 0).

 ${\rm Final} \; (m,b) = (0.500331265506910, 29.4925275561142).$

2.1.2 Quadratc

To find a, b and c, we can minimize $f(a,b,c) = \sum_{i=1}^n ax^2 + bx + c$

```
tol = 5e-1 stop iter: 2000 start (a,b,c)=(1,1,1). Final (a,b,c)=(-0.6093577083989218.763492054778767.78329124612855).
```

因為使用 scipy 幫助微分,在 Armijo algorithm 時每次都要微分計算時間過長因此沒有跑到收 斂為止。

2.2 Quasi Newton (DFPS)

2.2.1 Linear equation y = mx + b.

To find m and b, we can minimize $f(m,b) = \sum_{i=1}^n (mx_i + b - y_i)^2$.

```
tol = 5e-1 stop iter: 3 start (m,b)=(1,1). Final (m,b)=(0.494010205260325,29.5368238704832).
```

2.2.2 Quadratc

To find a, b and c, we can minimize $f(a,b,c) = \sum_{i=1}^n ax^2 + bx + c$

```
tol = 5e-1 stop iter: 5 start (a,b,c)=(1,1,1). Final (a,b,c)=(-0.0866186855594477,1.50233242086847,27.7210757293663).
```

Q3

order	1	2	3	4	5	6	7	8	9
error	3.072	2.927	2.926	2.868	2.187	2.187	0.604	0.568	0.461

The proper order = 9.

The error = 0.4607, when order = 9.

Q4

My equation: $y = a_0 + a_1 x + a_2 \sin(x)$ Using coef = $([X]^T [X])^{-1} [X]^T \underline{y}$

$$X = \left(egin{array}{ccc} 1 & x_1 & \sin(x_1) \ 1 & x_2 & \sin(x_2) \ \dots & & & \ 1 & x_n & \sin(x_n) \end{array}
ight)$$

$$\begin{cases} a_0 = 31.38151299 \\ a_1 = 0.26735614 \\ a_2 = -2.98182099 \end{cases}$$