Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

The Greedy Method

The Fractional Knapsack Problem

- Given: A set S of n items, with each item i having
 - b_i a positive benefit
 - w_i a positive weight
- Goal: Choose items with maximum total benefit but with weight at most W.
- If we are allowed to take fractional amounts, then this is the fractional knapsack problem.
 - In this case, we let x_i denote the amount we take of item i

• Objective: maximize
$$\sum_{i \in S} b_i(x_i/w_i)$$

• Constraint:
$$\sum_{i=0}^{\infty} x_i \leq W$$

Example

b_i - a positive benefit

w_i - a positive weight

Goal: Choose items with maximum total benefit but with

weight at most W.

4 ml

\$12

8 ml

\$32

2 ml

\$40

20

10 ml

"knapsack"

Solution:

- 1 ml of 5
- 2 ml of 3
- 6 ml of 4
- 1 ml of 2

Value:

Items:

Weight:

Benefit:

(\$ per ml) 2015 Goodrich and Tamassia

Greedy Method

1 ml

\$50

50

6 ml

\$30

5

3

The Fractional Knapsack Algorithm

- Greedy choice: Keep taking item with highest value (benefit to weight ratio)
 - Since $\sum_{i=0}^{\infty} b_i (x_i / w_i) = \sum_{i=0}^{\infty} (b_i / w_i) x_i$
 - Run time: O(n log n). Why?
- Correctness: Suppose there is a better solution
 - there is an item i with higher value than a chosen item j, but $x_i < w_i$, $x_i > 0$ and $v_i < v_i$
 - If we substitute some i with j, we get a better solution
 - How much of i: min{w_i-x_i, x_i}
 - Thus, there is no better solution than the greedy one

Algorithm fractionalKnapsack(S, W)

Input: set S of items w/ benefit b_i and weight w_i ; max. weight W **Output:** amount x_i of each item i

to maximize benefit w/ weight at most W

for each item i in S

$$x_i \leftarrow 0$$
 $v_i \leftarrow b_i / w_i$ {value}
 $w \leftarrow 0$ {total weight}
while $w < W$
 $remove\ item\ i\ w/\ highest\ v_i$

 $x_i \leftarrow \min\{w_i, W - w\}$

$$w \leftarrow w + \min\{w_i, W - w\}$$

return x

Analysis of Greedy Algorithm for Fractional Knapsack Problem

- We can sort the items by their benefit-to-weight values, and then process them in this order.
- This would require O(n log n) time to sort the items and then O(n) time to process them in the while-loop.
- To see that our algorithm is correct, suppose, for the sake of contradiction, that there is an optimal solution better than the one chosen by this greedy algorithm.
- Then there must be two items i and j such that

$$x_i < w_i, x_j > 0$$
, and $v_i > v_j$.

- $\bullet \text{ Let } y = \min\{w_i x_i, x_i\}.$
- But then we could replace an amount y of item j with an equal amount of item i, thus increasing the total benefit without changing the total weight, which contradicts the assumption that this non-greedy solution is optimal.

Task Scheduling

- Given: a set T of n tasks, each having:
 - A start time, s_i
 - A finish time, f_i (where s_i < f_i)
- Goal: Perform all the tasks using a minimum number of "machines."

Example

- Given: a set T of n tasks, each having:
 - A start time, s_i
 - A finish time, f_i (where s_i < f_i)
 - [1,4], [1,3], [2,5], [3,7], [4,7], [6,9], [7,8] (ordered by start)
- Goal: Perform all tasks on min. number of machines

Task Scheduling Algorithm

- Greedy choice: consider tasks by their start time and use as few machines as possible with this order.
 - Run time: O(n log n). Why?
- Correctness: Suppose there is a better schedule.
 - We can use k-1 machines
 - The algorithm uses k
 - Let i be first task scheduled on machine k
 - Machine i must conflict with k-1 other tasks
 - But that means there is no non-conflicting schedule using k-1 machines

Algorithm taskSchedule(T)

Input: set T of tasks w/ start time s_i and finish time f_i

Output: non-conflicting schedule with minimum number of machines

 $m \leftarrow 0$ {no. of machines}

while T is not empty

remove task i w/ smallest s_i

if there's a machine j for i then schedule i on machine j

else

 $m \leftarrow m + 1$

schedule i on machine m

return schedule