Seminar 10

- 1. Let $f: \mathbb{R}^2 \to R$, f(x,y) = xy. Using the definition prove that $Df(x_0,y_0)(x,y) = y_0x + x_0y$.
- 2. For $f: \mathbb{R}^2 \to R$, $f(x,y) = x^2 + xy$ find:
 - (a) the gradient of f and the direction of steepest descent at the point (1,0).
 - (b) the directional derivative at the point (1,0) in the direction of $\vec{i} + \vec{j}$.
 - (c) the equation of the tangent plane to the surface z = f(x, y) at the point (1, 0, 1).
- 3. Find the equation of:
 - (a) the tangent line to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ at an arbitrary point (x_0, y_0) .
 - (b) \bigstar the tangent plane to the unit sphere $x^2 + y^2 + z^2 = 1$ at an arbitrary point (x_0, y_0, z_0) .
- 4. Let $f: \mathbb{R}^n \to \mathbb{R}$, $f(x) = ||x||^2$. Compute the directional derivative $D_v f(x)$ in two ways: directly and using the gradient.
- 5. For each of the following functions, compute $\frac{\mathrm{d}f}{\mathrm{d}t}$ directly and using the chain rule:

(a)
$$f(x,y) = \ln(x^2 + y^2)$$
,
 $x = t, y = t^2$.

(b)
$$\star f(x, y, z) = \sqrt{x^2 + y^2 + z^2},$$

 $x = \cos t, y = \sin t, z = t > 0.$

6. Consider $f: \mathbb{R}^2 \to R$ and $x = g_1(u, v), y = g_2(u, v)$, i.e. $f(x, y) = (f \circ g)(u, v)$. Prove that

$$\frac{\partial f}{\partial u} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial u}$$
 and $\frac{\partial f}{\partial v} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial v}$.

7. \bigstar A function $f: \mathbb{R}^2 \to R$ is called homogeneous of degree p if $f(tx, ty) = t^p f(x, y)$. Using the chain rule show that any such differentiable function satisfies

$$x \frac{\partial f}{\partial x}(x,y) + y \frac{\partial f}{\partial y}(x,y) = pf(x,y).$$

This is known as Euler's homogeneous function theorem.

Homework questions are marked with \bigstar .

Solutions should be handed in at the beginning of next week's lecture.