Greibach Normal Form

A context-free grammar (CFG) is in Greibach Normal Form (GNF) if all production rules satisfy one of the following conditions:

- A non-terminal generating a terminal (e.g.; X→x)
- A non-terminal generates a terminal followed by any number of non-terminals (e.g.; X→xX1X2...X3)

Steps:

Step 1. If the given grammar is not in CNF, convert it to CNF.

Step 2. Change the names of non terminal symbols to A1 till AN in same sequence.

Step 3. Check for every production rule if RHS has first symbol as non terminal say Aj for the production of Ai, it is mandatory that i should be less than j. Not great and not even equal.

If i> j then replace the production rule of Aj at its place in Ai.

If i=j, it is the left recursion. Create a new state Z which has the symbols of the left recursive production, once followed by Z and once without Z, and change that production rule by removing that particular production and adding all other production once followed by Z.

Step 4. Replace very first non terminal symbol in any production rule with its production until production rule satisfies the above conditions.

Greibach Normal Form

For converting a CNF to GNF always move left to right for renaming the variables.

Greibach Normal Form 2

5 - CA 1 BB
B > 61 SB
(-36
$A \rightarrow a$
Change the names of the non-terminal
Change the names of the non-terminal symbols into some A; in ascending order of i
S with A1
C with Az
A with A3
B with Ay
AI -> Az Az I Au Ag
Ay -> b I A, Ay
$A_2 \rightarrow b$
$A_3 \rightarrow \alpha$
Alter the rules so that the non-terminals
are in ascending order, such that, if the
production is of the form A, -> A, x, then,
i'lj: and should never be ≥;
(is the subscript of the first non-terminal
on the right side e-9 in A, > A2A3)A4A4
1º 15 (A) As and (AyAy

	Λ / Λ · /
	A, < AzV A, < Auv
	Sug beognification,
10	Ay -> b1 A1 A4
Charles and	
	Paders A 210 come does mad forming
	Replace A, with some other non terminal.
	Ay -> 6/ AzAzAu / AuAuAu Stril Ay > Az
	Ay -> bl bAzAy I AyAyAy
	stru Ay > As but there is a no
	terminal followed by non-terminals so its
	als in GNF.
	Ay = Ay (1°==2j)
b	hen i' == j's remove left secursion.
ĵ×	Hooduce a new yourable.
	Ay > b 1 bA3 Ay 1 AyAyAy
	2 -> A4A4Z 1 A4A4
	Ay -> bZ 1 bAsAyZ 1 b 14A3A4 b A3A4
- W	odated gramar 1-
F	1, -> AZAZI ANAN
/ F	tr > b1 bA3A4 1 bZ 1 bA3A4Z V
1	2 -> AIAY I AYAUZ X
-	$A_1 \rightarrow b$
	$A_3 \rightarrow a$
1	right side must not start with a non termina
	1, 3 b A3 1 b A4 1 b A3 A4 A4 1 bZA41 bA3 A4ZA
3	Z -> b Au 6 Az Au Au b Z Au 6 Az Au Z Au
	6A4216A3A4A42162A4216A3AZA

Greibach Normal Form

Final Grammars

A, -> bA3 | bA4 | bA3A4A4 | bZ A4 |

bA3A4ZA4

A4 -> b1bA3A41 b2 | bA3A4Z

Z -> bA41 bA3A4A4 | bZA4 | bA3A4ZA4 |

bA4Z1 bA3A4A4Z | bZA4Z1 bA3A4ZA4Z

A2 -> b

A3 -> a.

▼ Past Paper Qs

Convert the following grammar to its equivalent Greibach Normal Form.

 $S \rightarrow aAb|a$

 $A \rightarrow SS|b$

Convert the following grammar to its equivalent Greibach Normal Form.

 $S \rightarrow ab|a$

 $A \rightarrow SS|b$

GNF:

Convert to GNF. You must convert to intermediary grammar to get full marks.

 $S \rightarrow AB \mid \Delta$

 $A \rightarrow AB \mid BB \mid a$

 $B \rightarrow AB \mid a$

Convert to GNF. You must convert to intermediary grammar to get full marks.

- $S \rightarrow AB$
- $A \rightarrow AB \mid a$
- $B \rightarrow AB \mid a$

Convert the following grammar to GNF.

- $S \rightarrow Xa \mid Yb \mid YYYb$
- $W \rightarrow ZZ \mid SZZ \mid W \mid \Delta$
- $X \rightarrow Sb \mid b \mid SZZ$
- $Y \rightarrow Sa \mid a \mid Z \mid \Delta$
- $Z \rightarrow ZZ \mid SZZ$