纳米光子学 12-近场光学与近场光学显微术

扫描探针显微镜SPM家族 P3 扫描探针显微镜SPM-STM结构 P5 扫描探针显微镜STM两种取像法 P6 原子力显微镜AFM P8 AFM针尖3种接触模式 P14 与电子显微镜比较 P19 扫描电子显微镜SEM P20 SEM加速电压增大的利弊 P24 透射电子显微镜 P26 扫描近场光学显微镜 P28 各大显微镜对比 P29 近场光学显微镜的应用 P31

本讲内容

- 近场光学显微镜的优势
 - 扫描探针显微镜 (SPM)
 - ▶ STM
 - AFM
 - 与电子显微镜比较
 - ▶ SEM
 - TEM
 - ▶ SNOM
- 近场光学显微镜-SNOM应用
- 表面拓扑结构(形貌)与光场 成像
 - 表面等离子体成像
 - 超分辨成像
 - 局域荧光成像、光电导成像
 - 光刻
 - 操纵

01

扫描探针显微镜(SPM)家族

	Scanning probe microscopy	Interaction	
STM	Scanning Tunnelling Microscopy	隧穿电流	
AFM	Atomic Force Microscopy	原子力	
SNOM	Scanning Near-field Optical Microscopy	近场光	
MFM	Magnetic Force Microscopy	磁力	
EFM	Electrostatic Force Microscopy	静电力	
SThM	Scanning Thermal Microscopy	热度	
LFM	Lateral Force Microscopy	侧向力	
SCM	Scanning Capacitance Microscopy	电容	

扫描探针显微镜的发明为具有巨大差距的宏观世界和操纵单原子 之间架起了一座直达的桥梁 ——费曼Feynman

扫描探针显微镜(SPM)—STM

- 1.在距离足够小(<1nm)时尖端 和样品之间存在的隧穿电流.
- 2.当尖端-样品间距离每改变0.1nm 隧穿电流将以数量级衰减.
- 3.隧穿电流可以用于控制尖端-样品之间的距离.

可以得到两个信号 z-坐标(高度)和隧穿电流

定电流取像法 定高度取像法

样品需要具备较好的导电性

Scanning tunneling microscope

05

扫描探针显微镜(SPM)—STM

Copper(111)

On Platinum(111)

钨探针: 针尖曲率半径非常小。 几纳米到十几纳米

STM image of carbon nanotube

横向分辨率: 0.1 nm 纵向分辨率: 0.01 nm (与探针针尖大小相关)

总结

- ▶ STM的发明推动了SNOM的发展
- ▶ SNOM优势在于探测表面亚波长光学效应
- ▶ SNOM主要应用:
 - 高分辨荧光成像
- 表面等离子体激元激发与成像
- 高分辨近场光电导
- SNOM表面微细加工

扫描探针显微镜(SPM)—STM

02

Heinrich Rohrer & Gerd Binning, 1986 Nobel Prize

隧穿效应使看到原子成为可能!

为物质结构的研究提供了新的领域

Scanning tunneling microscope

Si(111) image

04

扫描探针显微镜(SPM)—STM

定电流取像法

样品: 做x-y方向的面扫描

- 通过反馈机制, 调节探针距离样品 表面的距离h, 使隧穿电流保持不变
- 记录扫描过程中每一个点的 Δh ,便 得到高度变化的二维图像

定高度取像法

样品: 做x-y方向的面扫描

- 探针保持距离样品一定高度不动
- 记录扫描过程中每一个点的隧穿电 流, 便得到隧穿电流的二维图像
- 隧穿电流大小与高度相关

Scanning tunneling microscope

06

扫描探针显微镜(SPM)—AFM

Atomic Force Microscopy (AFM)

AFM是为非导电样品发明的!

Atomic force microscope

Gerd Binning

Calvin Quate

Christoph Gerber

08

扫描探针显微镜(SPM)—AFM

1.在一定的范围内尖端和样品 表面的原子之间存在吸引力或 排斥力。

2.<mark>力敏感探针尖端在扫描过程</mark> 中由于力作用将发生扭曲形变。

3.扭转变形量通过光杠杆的方 法测量并用于控制尖端-样品 的距离。

工作模式:接触式、非接触式、轻敲式

Atomic force microscope 09

扫描探针显微镜(SPM)—AFM

▶ 悬臂针尖(Cantilever Tip) *Nanosensor*

Atomic force microscope

13

扫描探针显微镜(SPM)—AFM

- ▶ 轻敲模式(Tapping Mode)
- 探针以一定的频率做振荡(外界驱动)
- 振荡幅度与探针与样品的间距相关,靠得越近,由于作用力的原因,振幅越小,通过振幅-高度关系获得样品表面高度信息

优势:适用于表面容易受损、表面松弛的样品,特别是生物样品

<mark>劣势</mark>:扫描速度慢, 难以在溶液中扫描

1/15

₽7

Atomic force microscope

原子力显微镜(AFM)

• 轻敲模式下的AFM图像

相位图: 探针做排

探针做振动的相位与驱动源的 相位差为相位图,探针与样品 表面相互作用导致振荡的相位 与驱动源不一致。

聚合物表面的振幅与相位二维AFM扫描图

分辨率极限(依赖于探针针尖大小): 横向0.15 nm 纵向0.05 nm

石墨烯表面AFM扫描图

扫描探针显微镜(SPM)—AFM

▶ 悬臂针尖(Cantilever Tip) Olympus

针尖仅几纳米大小的曲率半径

Atomic force microscope

扫描探针显微镜(SPM)—AFM

- ▶接触模式(Contact Mode)
- 探针慢慢靠近样品时,探针由不受力到出现吸引力,接着出现排斥力(红色曲线)
- 探针离开时的力-距离曲线与靠近时不重合,出现黏附的伪像
- 接触工作模式,探针工作在排斥力区间

优势:快速扫描、适 用与较粗糙坚硬样品、 摩擦力分析,可在液 体中扫描

#2

164

¥6

49

<mark>劣势</mark>:同时摩擦力损 害/改变表面形貌,特 别是柔软的表面

Atomic force microscope

扫描探针显微镜(SPM)—AFM

▶ 非接触模式

探针尖端-样品间距为1-100 nm

尖端-样品相互作用力为范德华力,工作于<mark>吸引力区间</mark>

优点: 不损坏样品和尖端

缺点:分辨率低,受环境影响大

AFM三种操作模式的比较 (a) 接触模式; (b) 非接触模式; (c) 轻敲模式。

与电子显微镜比较

·电子显微镜:

- -Scanning electron microscope (SEM): 接收散射的次级电子;表面特征描述
- -Transmission electron microscope (TEM): 接收透射电子;内部结构特征描述

·样品&环境要求:

- -电子显微镜**: <u>导电样品</u>、**真空
- -AFM: 非导电和生物样品、大气、液体

扫描电子显微镜—SEM

· 电子束聚焦在样品表面上,并在样品表面上做扫描

-电子束斑点越小,分辨率越高 电子束斑点的大小受到衍射极限的限制 (艾里斑-电子德布罗意波长越小,斑点 越小) 电压越大 波长越小 斑点越小

· **用探测器记录每一个扫描点的数据** - 可以收集多种数据,常用的有二次电 子和背散射电子

· 按照数据-位置作图,构成二维图像 - 如果显示的图片比扫描区域的图片大, 就实现了放大!

二次电子图像和背散射电子图像的衬度 是相反的!

Scanning electron microscope

好处:加速电压增加, 电子波长变短, 电子束 光斑变小, 图像分辨率

缺点:加速电压增加,

电子获得的能量增加, 穿透能力增加,细节信

24

27

提升

息消失

不同加速电压下的SEM图像

扫描电子显微镜(SEM)

电子源是场致发射的一般称为场发射扫描电镜(FESEM)——比较贵

Scanning electron microscope

透射电子显微镜(TEM)

工作原理类似透射模式下的光学显微镜

26

23

透射电子显微镜(TEM)

晶体结构表征,例如: CVD生长的MoS, Nature Materials12,554-561(2013)

扫描近场光学显微镜(SNOM)

- 可以通过添加光激发和散射收集路径 在AFM和STM直接实现SNOM功能。
- ·与AFM和STM相同的分辨率。
- · 具有大入射功率的较强散射信号。

28

扫描近场光学显微镜(SNOM)

○ 保热上少热

暗场像 (伪彩色)

产证势与为势							
	ОМ	SNOM	AFM	STM	SEM	TEM	
相互作用	光与物质	光与物质	原子与原 子	原子与原 子	电子与物质	电子与物质	
极限分辨 率(nm)	200	5	0. 05	0. 01	1	0. 01	
检测效率	很快	慢	慢	慢	较快	慢	
样品要求	无要求	较为平 坦,光学 效应	较为平坦	较为平 坦,导电	导电,任 意形状	特殊制样品	
环境要求	大气	大气	大气	高真空	高真空	高真空	

SNOM应用—高分辨荧光成像

采用孔径探针实现单分子荧光成像

SNOM应用—高分辨荧光成像

Figures. (a) The image of butterfly shaped MoS2 taken by SEM. and The PL images taken by (b) NSOM and (c) Confocal.

近场光学显微镜可以用于二维材料晶界和线缺陷的探测

100 nm 空间分辨率

32

拉曼光谱探测简介

34

SNOM应用—尖端增强拉曼

TERS measurement of adenine molecule shows that more peaks are obtained than far-field Raman.

36

SNOM应用—光刻

Recent developments in nanofabrication using scanning near-field optical microscope lithography Ampere A. Tseng.

原理: 局域场增强, 超过光刻胶曝光阈值

SNOM应用—高分辨相位成像

SNOM应用—尖端增强拉曼

尖端增强拉曼光谱仪

Tip-Enhancement Raman Spectroscopy (TERS)

原理与金属纳米颗粒实现拉曼信号增强一样: 局域场增强

尖端增强效应: 高分辨率&增强弱信号

SNOM应用—尖端增强拉曼

玻璃衬底上的单臂碳纳米管的近场拉曼图像(可 分辨处单臂碳管) (Hartschuh, PRL 2003).

Tip enhanced Raman imaging

37

SNOM应用—光刻

纳米光刻

- 近场光光刻是一种比电子束刻蚀(EBL)廉价的软技术。
- EBL: 利用电子束使光刻胶曝光, 电子束做扫描形成一定 的曝光图案——制作光刻掩模版的方法(速度很慢)
- 近场光光刻: 利用近场探针扫描实现图案化曝光

Smallest line is 60 nm

33

35

SNOM应用—光刻

纳米光刻

- 尖端局域场增强的拓展
- 制备阵列形或者图案化的有 孔探针
- 一次曝光,就可以把探针图 案转移到衬底上

An array of 15,000 tips prepared from a transparent polymer

15,000 replicas of the Chicago Skyline, each consisting of 182 dots.

F. Huo, et al. Nature Nanotechnology, 5: 627(2010)

40

42

SNOM应用—高分辨光电导

Mueller et al. PHYSICAL REVIEW B 79, 245430 2009

- 石墨烯晶体管光电流成像
 探针在器件表面扫描,局域的实现近场光照射石墨烯
 记录电流-位置数据
 绘制电流-位置图得到二维图像
 如果某点能够产生光电流,对于的电流就大,否则就没有

Graphene Transistor

High resolution photoconducting mapping

4. SNOM应用—等离激元成像

栅场调控的石墨烯尖锥形条带表面等离激元SNOM成像 Nature 487, 77-81 (2012)

Graphene plasmon imaging

SNOM应用—操纵

操作过程

光能够对它照亮的物体施加 力的作用,这种能力如今被 用于光学镊子和其他光学操 作技术

41

Trapping PS sphere with SNOM tweezer Z. Hu. PhD thesis,(2006)

SNOW tweezers, Manipulate 43