Algoritmos Genéticos (Computação Evolutiva)

Danilo Sipoli Sanches

Departamento Acadêmico de Computação Universidade Tecnológica Federal do Paraná Cornélio Procópio

Algoritmos Genéticos

- Engloba métodos e técnicas computacionais inspirados
 - na teoria da evolução das espécies, de seleção natural (Darwin)
 - na Genética iniciada por Mendel
- Bases da evolução:
 - seres mais adaptados aos seus ambientes sobrevivem
 - características genéticas de tais seres são herdadas pelas próximas gerações
 - diversidade é gerada por cruzamento e mutações

Algoritmos Genéticos

1859 - Charles Darwin publica o livro "A Origem das Espécies"

As espécies evoluem pelo princípio da seleção natural e sobrevivência do mais apto

• 1865 - Gregor Mendel, pai da genética, apresenta experimentos do cruzamento genético de ervilhas

John Henry Holland: Father of Genetic Algorithms

- Nos anos 1960, John Holland e seus alunos propuseram a construção de um algoritmo de busca e otimização: os algoritmos genéticos;
- Professor of Electrical Engineering and Computer Science at the University of Michigan;
- Ann Arbor –Book 'Adaptation in Natural and Artificial Systems' (1975)

Algoritmo Genético Canônico

Fonte: https://icaroagostino.github.io/post/sbo/

Figura: Passos de um GA.

Algoritmos Genéticos

- Possuem as seguintes características:
- Trabalham com uma codificação baseado em um conjunto de parâmetros;
- A codifição pode ter diferentes representações (Estrutura de Dados);
- Trabalham com uma população de soluções;
- Utilizam informações de custo ou recompensa.
- Utilizam regras de transição não determinísticas;
- São baseados na técnica gerar-e-testar

Algoritmos Genéticos

Terminologia:

- Indivíduo: Simples membro da população.
- Cromossomo e Genoma: Coleção de genes;
- Estrutura de dados que codifica a solução de uma problema

Algoritmos Genéticos - População

 A população de um algoritmo genético é o conjunto de indivíduos que estão sendo cogitados como solução

Cada indivíduo é uma possível solução do problema

Algoritmos Genéticos - Indivíduo

- Um indivíduo no AG é um cromossomo
- Ou seja, um indivíduo é um conjunto de <u>atributos</u> da solução
- Geralmente é uma <u>cadeia de bits</u> que representa uma solução possível para o problema

Exemplo

População de tamanho n=4

Geração de indivíduos, com seus cromossomos

Cada elemento do vetor é um gene, um atributo da solução

```
Indivíduo 1 = [1 \ 1 \ 1 \ 0 \ 1]
```

Indivíduo
$$2 = [0 \ 1 \ 1 \ 0 \ 1]$$

Indivíduo
$$3 = [0 \ 0 \ 1 \ 1 \ 0]$$

Indivíduo
$$4 = [1 \ 0 \ 0 \ 1 \ 1]$$

Algoritmos Genéticos - Indivíduo

- Outras representações são possíveis
- Boa representação depende do problema

Exemplo - Problema da Mochila

- Dada uma lista de coisas com preços e tamanhos
- É fornecido o valor da capacidade da mochila
- Escolha as coisas de forma a maximizar o valor daquilo que cabe dentro da mochila, sem ultrapassar sua capacidade

Cada bit é usado para dizer se a coisa correspondente está ou não na mochila

- \bullet Crom: A = 1 0 1 1 0 0 1 0 1 1
- Crom: B = 1 1 1 1 1 1 1 0 0 0 0

Codificação Binária

Cada cromossomo é uma string de bits - 0 ou 1

Algoritmos Genéticos - Indivíduo

- Outras representações são possíveis
- Boa representação depende do problema

Exemplo - Problema do caixeiro viajante

- São dadas cidades e as distâncias entre elas
- O caixeiro viajante tem que visitar todas as cidades
- Encontrar a sequência de cidades em que as viagens devem ser feitas de forma que a distância percorrida seja a mínima possível

Cromossomos descrevem ordem de visita das cidades

- Crom: A = 1 5 3 2 6 4 7 9 8
- Crom: B = 8 5 6 7 2 3 1 4 9

Codificação por Permutação

Cada cromossomo é uma string de números que representa uma posição em uma sequência

Algoritmos Genéticos - Função de Aptidão

- Função de fitness, função de custo → determina uma nota a cada indivíduo
- Nota avalia quão boa é a solução que este indivíduo representa

Se indivíduo l_1 representa uma solução melhor do que $l_2 o$ avaliação de l_1 deve ser maior do que de l_2

O objetivo de um AG pode ser maximizar o número de 1s

Indivíduos	Função de aptidão (fitness)
[11101]	4
[01101]	3
[00110]	2
[10011]	3
Aptidão média	3

Algoritmos Genéticos - Função de Aptidão

- Função de Aptidão Padrão
 - utiliza apenas informação sobre "qualidade do cromossomo"

$$f_i = rac{q_i}{\sum_j q_j}$$
 $q = \operatorname{aptid ilde{ao}}$ do cromossomo

Algoritmos Genéticos - Função de Aptidão

• Função de Aptidão Padrão

Cromossomo	Grau	Aptidão Padrão
1 4	4	0.4
3 1	3	0.3
1 2	2	0.2
1 1	1	0.1

Algoritmos Genéticos - Seleção

- De acordo com a teoria de Darwin, o melhor sobrevivente para criar a descendência é selecionado
- Privilegiar indivíduos com função de avaliação alta
 - não desprezar completamente indivíduos com função de avaliação extremamente baixa
 - indivíduos com péssima avaliação podem ter características genéticas favoráveis à criação de um indivíduo ótimo
 - características podem não estar presentes em nenhum outro cromossomo

Algoritmos Genéticos - Seleção

- Há muitos métodos para selecionar o melhor cromossomo
 - seleção por roleta
 - seleção por torneio
 - seleção por amostragem universal estocástica
 - ...

A seleção dirige o AG para as melhores regiões do espaço de busca

Algoritmos Genéticos - Seleção por Roleta

- Para visualizar este método considere um círculo dividido em N regiões (tamanho da população)
 - onde a área de cada região é proporcional à aptidão do indivíduo

Algoritmos Genéticos - Seleção por Roleta

- Coloca-se sobre este círculo uma "roleta"
- A roleta é girada um determinado número de vezes, dependendo do tamanho da população
- São escolhidos como indivíduos que participarão da próxima geração, aqueles sorteados na roleta

Algoritmos Genéticos - Seleção por Roleta

Exemplo

Indivíduo	Avaliação
0001	1
0011	9
0100	16
0110	36
Total	62

Aptidão Relativa (parte da roleta)			
1.61			
14.51			
25.81			
58.07			
100.0			

Roleta Viciada para População Exemplo

□ "0001" □ "0011" □ "0100" □ "1100"

Algoritmos Genéticos - Seleção por Torneio

- Escolhe n indivíduos (e.g., n=3) aleatoriamente, com mesma probabilidade
- Cromossomo com maior aptidão é selecionado para a população intermediária
- Processo se repete até que a população intermediária seja preenchida
- Parâmetro n, tamanho do torneio, define pressão seletiva
 - ullet número de indivíduos que participam do torneio $o\uparrow$ pressão seletiva
 - indivíduo tem que ser melhor do que uma quantidade maior de competidores

Aptidão	$Candidatos \to Vencedor$
2.23	$S_1,S_2,S_5 o S_2$
7.27	$S_2, S_4, S_5 ightarrow S_2$
1.05	$S_5, S_1, S_3 ightarrow S_1$
3.35	$S_4, S_5, S_3 ightarrow S_4$
1.69	$S_3, S_1, S_5 \rightarrow S_1$
	2.23 7.27 1.05 3.35

Algoritmos Genéticos - Operadores Genéticos

- Um conjunto de operações é necessário para que, dada uma população, seja possível gerar populações sucessivas que (espera-se) melhorem sua aptidão com o tempo
- Estas operações são os operadores genéticos
 - cruzamento
 - mutação
 - elitismo

Os operadores genéticos permitem explorar áreas desconhecidas do espaço de busca

Algoritmos Genéticos - Cruzamento

- O operador cruzamento (crossover ou recombinação) cria novos indivíduos, misturando características de dois indivíduos pais
- O resultado desta operação é um indivíduo que potencialmente combine as melhores características dos indivíduos usados como base
- Alguns tipos de cruzamento são:
 - cruzamento em um ponto
 - cruzamento em dois pontos
 - cruzamento multi-pontos
 - uniforme

Algoritmos Genéticos - Cruzamento

- Um ponto de corte deve ser selecionado
- Constitui uma posição entre dois genes de um cromossomo
- Cada indivíduo de n genes contém n-1 pontos de corte possíveis

- Separação do pai em duas partes: esquerda e direita do ponto de corte
 - partes não necessariamente têm o mesmo tamanho
- Primeiro filho: concatenação da parte esquerda do primeiro pai + parte direita do segundo pai
- Segundo filho: concatenação da parte esquerda do segundo pai + parte direita do primeiro pai

Algoritmos Genéticos - Cruzamento de um Ponto

 No cruzamento de um ponto, divide-se cada progenitor em duas partes, em uma localidade k (escolhida aleatoriamente)

Algoritmos Genéticos - Cruzamento de um Ponto

- O descendente 1 consiste em genes 1 a k do progenitor 1, e genes k+1 a n-1 do progenitor 2
- O descendente 2 é "reverso"

Algoritmos Genéticos - Cruzamento de Dois Pontos

Algoritmos Genéticos - Cruzamento de n Pontos

Algoritmos Genéticos - Cruzamento Uniforme

- Para cada gene é sorteado um número zero ou um
- Se o sorteado for 1, um filho recebe o gene do primeiro pai e o segundo filho o gene do segundo pai
- Se o sorteado for 0, o primeiro filho recebe o gene do segundo pai e o segundo filho recebe o gene do primeiro pai

Algoritmos Genéticos - Mutação

 A mutação modifica aleatoriamente alguma característica do indivíduo, sobre o qual é aplicada

- O operador de mutação é necessário para a introdução e manutenção da diversidade genética da população
- Desta forma, a mutação assegura que a probabilidade de se chegar a qualquer ponto do espaço de busca, possivelmente, não será zero
 - reduz chance de ficar preso em mínimos locais
 - ullet taxa de mutação pequena ightarrow 0.5% ou 1%

Algoritmos Genéticos - Elitismo

- Conjunto de indivíduos mais adaptados é automaticamente selecionado para a próxima geração
- Evita modificações deste(s) indivíduo(s) pelos operadores genéticos
 - utilizado para que os melhores indivíduos não desapareçam da população

Algoritmos Genéticos - Gerações

- Algoritmo é iterado até algum critério de parada
 - tempo de execução, número de gerações, valores de aptidão mínimo ou médio
- A cada passo, um novo conjunto de indivíduos é gerado a partir da população anterior
- A este novo conjunto dá-se o nome de geração
- Com a criação de uma grande quantidade de gerações que é possível obter resultados dos AGs

Algoritmos Genéticos - Algoritmo

Algoritmo_Genetico

- p = tamanho da população
- r = taxa de cruzamento
- m = taxa de mutação
- **1** P \leftarrow gerar aleatoriamente p indivíduos
- Para cada i em P, computar Aptidão(i)
- 3 Enquanto critério_parada não é atingido
 - selecionar p membros de P para reprodução
 - aplicar cruzamento a pares de indivíduos selecionados segundo taxa r, adicionando filhos em PS
 - 3 realizar mutação em membros PS, segundo taxa m
 - P ← PS
 - Para cada i em P, computar Aptidão(i)
- Retornar o indivíduo de P com maior aptidão

Codificação e avaliação de aptidão são pontos chave

Algoritmos Genéticos - Parâmetros

- O desempenho dos algoritmos genéticos é fortemente influenciado pela definição dos seus parâmetros
- Tamanho da população
 - populações pequenas: cobrem pouco o espaço de busca
 - populações grandes: apesar de evitar mínimos locais, requer mais recursos computacionais e tempo
- Intervalo de geração:
 - porcentagem da população que será substituída
 - grande (comum): filhos substituem pais
 - pequena: "pais e filhos convivem"

Algoritmos Genéticos - Parâmetros

- O desempenho dos algoritmos genéticos é fortemente influenciado pela definição dos seus parâmetros
- Taxa de cruzamento
 - se for muito baixa: busca pode estagnar
 - se for muito alta: boas estruturas podem ser perdidas
- Taxa de mutação:
 - possibilita que qualquer ponto de espaço de busca seja atingido
 - se for muito alta: busca aleatória

Algoritmos Genéticos

Questões Importantes

- Como criar cromossomos?
- Qual tipo de codificação usar?
 - primeiras perguntas que devem ser feitas ao resolver um problema com AG
 - codificação dependerá fortemente do problema
- Como escolher os pais para a realização do crossover?
- A geração de uma população a partir de duas soluções pode causar a perda da melhor solução. O que fazer?

Livros de apoio

Kenneth De Jong

Ricardo Linden

Figura: Opções de livros sobre AGs