van data naar info

Domein H: databases

INHOUD

1 1	datawereld	3
1.1	Inleiding	3
1.2	Data bewaren	4
1.3	Databasemodellen	7

"SMART DATA STRUCTURES AND DUMB CODE WORK A LOT BETTER THAN THE OTHER WAY AROUND."

— ERIC S. RAYMOND

H1 DATAWERELD

1.1 Inleiding

In 2019 meldde Google dat het 1,1 miljard euro wilde investeren in nieuwe datacenters in Nederland zoals in de Eemshaven (Groningen; zie figuur 1.1). Hiermee wordt de totale investering van alleen Google al twee-en-half miljard! Wat wordt er in deze datacenters bewaard? En hoe wordt het bewaard? En waarom heeft het zoveel waarde?

Dit zijn vraagstukken die we in deze module gaan behandelen. En dat begint met de basisvraag: wat is **data**? Data zijn *ruwe* gegevens, zoals die bijvoorbeeld rechtstreeks uit een temperatuursensor komen. Een verzameling van data of gegevens wordt ook wel een **dataset** genoemd.

Om de data betekenis te geven, is meer data nodig. In figuur 1.2B is betekenis aan de originele ruwe data gegeven door **metadata** toe te voegen: extra data om andere data te beschrijven. De gegevens zijn nu herkenbaar geworden: er is sprake van **informatie**. Het zijn kleurnamen met hun RGB-kleurcode (rood, groen en blauw).

FIGUUR 1.1

FIGUUR 1.2

Google levert informatie via de bekende zoekmachine op basis van heel veel data. Met informatie kun je nader onderzoek doen, in de vorm van analyses. Door verschillende informatieonderdelen met elkaar te verbinden of patronen te ontdekken, ontstaat een nieuw begrip en inzicht in een onderwerp: er ontstaat **kennis**. Kennis is het begrijpen van de informatie. Overigens bestaan er meerdere definities van kennis. Soms wordt aan de reeks data, informatie en kennis nog **wijsheid** toegevoegd. Informatie is beschrijvend (Engels: *what is?*), kennis is vooral gericht op de informatie die we al hebben (verklarend: Engels: *why is?*) en wijsheid is gericht op verwachtingen en nieuwe keuzes (op basis van ervaring en patronen: *why do?*).

Opdracht 1 DIKW-piramide

Met betrekking tot de theorie, spreekt men over de **DIKW-piramide**.

- 1. Waar staan de letters van de afkorting DIKW voor?
- 2. Op het internet kun je plaatjes vinden van de DIKW-piramide, vergelijkbaar met figuur 1.3. Leg uit waarom hiervoor een piramidevorm wordt gebruikt.
- 3. Wat is het verschil tussen data en informatie?
- 4. Noem drie bedrijven die data en van jou in hun bezit hebben.
- 5. Op basis van de vorige vraag: welke informatie kunnen die bedrijven hiermee afleiden?
- 6. Stel dat jij een ruim budget had om een grote dataset te kopen. Welke data zou je willen hebben? En met welk doel?

FIGUUR 1.3

Opdracht 2 Wat doen we met al die data?

Bekijk de video waarin, op licht-filosofische wijze, wordt gesproken over het gebruik van data, interpretatie en de wijsheid die daar uit zou kunnen volgen. De lezing bevat de nodige *oneliners*.

7. Noteer de drie uitspraken of zinnen die je het meest interessant of treffend vindt.

1.2 Data bewaren

Deze paragraaf gaat niet over het bewaren van data op een harde schijf of SD-kaart. Het gaat hier niet om de techniek van de fysieke opslag, maar om welke indeling of **datastructuur** je kunt gebruiken om vergelijkbare data altijd op dezelfde manier op te slaan. De centrale vraag daarbij is: *Wat wil je met de opgeslagen informatie doen?* Want bewaren is meestal geen doel op zich!

Er bestaat niet één datastructuur voor de opslag van data. Daarom kijken we in dit hoofdstuk naar meerdere aanpakken (of **paradigma**'s). De keuze voor een paradigma hangt in de praktijk af van vragen als:

- Hoeveel data is er of wordt er verwacht?
- Hoe vaak verandert de dataset?
- Voor wie moet de data beschikbaar zijn?
- Welk doel heeft de opslag? Wat wordt er straks mee gedaan?
 (Wordt er bijvoorbeeld straks statistiek mee bedreven?)

In figuur 1.4 zie je nogmaals de data uit figuur 1.2. De data wordt weergegeven in een **tabel**. Het betreft een tabel met drie kleuren, waarbij aangegeven is wat de kleurnaam (*kleur*) is en met hoeveel rood, groen en blauw (de primaire keuren uit hun RGB-code) de kleur is opgebouwd. Rijen in dit soort tabellen, worden **records** genoemd.

kleur	R	G	В
Peru	205	133	63
Sienna	160	82	45
Tan	210	180	140

FIGUUR 1.4

kleur	Peru	kleu	ır Sienna	kleur	Tan
R	205	R	160	R	210
G	133	G	82	G	180
В	63	В	45	В	140

FIGUUR 1.5

In figuur 1.5 staat dezelfde data niet in een tabel, maar in de vorm van objecten. De term **object** ken je misschien al van object-georiënteerd programmeren. Vaak wordt één unieke eigenschap van het object gebruikt om het object te identificeren. In dit geval is dit de eigenschap *kleur*.

Bij de programmeerlessen heb je vast ook al kennis gemaakt met de **variabele** en de **array** of lijst. Het uitvoeren van programmeercode met daarin een variabele, array (lijst) of object zorgt voor de opslag van data in het werkgeheugen van de computer. Als je iets langer wil bewaren in een extern geheugen zoals een harde schijf, dan gebruik je daarvoor een **bestand** of een **database**. Deze module gaat alleen over databases.

Databases zijn er in verschillende soorten, afhankelijk van de gekozen opslagstructuur ofwel het gekozen databasemodel (zie § 1.3). Databases die werken met tabellen zoals in figuur 1.4 heten relationele databases, omdat elk record bestaat uit datapunten die een relatie met elkaar hebben (bij elkaar horen).

Hoofdstuk 2 is volledig gewijd aan relationele databases. Daarnaast bestaan er databases waarin data op een andere manier wordt opgeslagen, zoals met de objecten in figuur 1.5. Deze niet-relationele databases heten in het algemeen **noSQL**-databases.

Opdracht 3 Data in een object

In figuur 1.6 zie je nogmaals de data uit figuur 1.5. Aan de data is de bijbehorende hexadecimale kleurcode toegevoegd, die je misschien kent van het maken van websites. Deze hex-code kun je zelf afleiden (als je weet hoe) uit de gegeven hoeveelheden rood, groen en blauw.

- 8. Noem een argument om de hex-code niet in een database op te slaan en een argument om dit wel te doen.
- 9. In figuur 1.6 is behalve de hex-code nog meer informatie toegevoegd. Welke informatie is dat?
- 10. Welke metadata zie je in figuur 1.6?
- 11. Welke metadata zie je wel in figuur 1.4 maar niet in figuur 1.6?
- 12. Gebruik het internet om informatie te vinden over de kleur *Gainsboro*. Maak hiermee zowel een object als een record.

Pe	eru	Sienna		Tan	
R	205	R	160	R	210
G	133	G	82	G	180
В	63	В	45	В	140
hex	CD853F	hex	A0522D	hex	D2B48C

FIGUUR 1.6

Opdracht 4 XML I: een dataset beschrijven

In figuur 1.6 is de data (en de metadata) gerepresenteerd als een plaatje (met tekst) van drie losse objecten. Een manier om data *echt* op te slaan, is door het als platte tekst te bewaren met een vaste structuur. Dit kan worden gedaan met behulp van **XML**.

In figuur 1.7 zie je een voorbeeld van een bestand in XML-formaat. Het zijn gegevens van twee dieren uit de praktijk van een dierenarts.

- 13. Waar staat XML voor?
- 14. Hoe kun je zien dat het om twee dieren gaat?
- 15. Op welke manier is ervoor gezorgd dat duidelijk is welke data bij welk dier hoort?
- 16. XML wordt zelfbeschrijvend (Engels: selfdescriptive) genoemd. Wat wordt daarmee bedoeld?

```
ktijk>
    <dier>
        <naam>Buck</naam>
        <eigenaar>Al Bundy</eigenaar>
        <soort>hond</soort>
        <geslacht>m</geslacht>
        <geboren>1983</geboren>
    </dier>
    <dier>
        <naam>Illbatting</naam>
        <eigenaar>Pippi</eigenaar>
        <soort>paard</soort>
        <geslacht>m</geslacht>
        <geboren>1961</geboren>
    </dier>
</praktijk>
```

FIGUUR 1.7

Opdracht 5 XML II: de structuur van XML

In deze opgave gaan we een XML-bestand bestuderen en aanpassen.

17. Open het XML-bestand *H1005_dierenarts_1.0.xml* in je browser. Jouw browser geeft de data weer met behulp van de symbolen ▶ en ▼. Klik op deze symbolen: wat zie je?

Data wordt in XML beschreven met **elementen** zoals <naam>**Buck**</naam> die zijn gemaakt met een *start-tag* (<naam>), een *eind-tag* (</naam>) en de data (**Buck**).

Boven de data staat in de meeste browsers (zie figuur 1.8):

This XML file does not appear to have any style information associated with it. The document tree is shown below.

- 18. Wat wordt bedoeld met deze boomstructuur (Engels: tree)?
- 19. Met betrekking tot de structuur van data, kom je vaak de Engelse termen *parent* en *child* tegen. Wat wordt daarmee bedoeld? Gebruik eventueel het internet.
- 20. Noem een element dat zowel een parent als een child is.

This XML file does not appear to have any style information associated with it. The document tree is shown below.

```
▼<praktijk>
  ▼<dier>
     <naam>Buck</naam>
     <eigenaar>Al Bundy</eigenaar>
     <soort>hond</soort>
     <geslacht>m</geslacht>
     <geboren>1983</geboren>
   </dien>
 ▼<dier>
     <naam>Illbatting</naam>
     <eigenaar>Pippi</eigenaar>
     <soort>paard</soort>
     <geslacht>m</geslacht>
     <geboren>1961</geboren>
   </dier>
```

FIGUUR 1.8

☆ Opdracht 6 XML III: opmaak

In XML wordt alleen data opgeslagen. Je kunt die data leesbaarder te maken door er vormgeving aan toe te voegen, zoals in figuur 1.9 voor één van de dieren uit de praktijk in figuur 1.7 is gedaan.

- 21. Open het XML-bestand *H1006_dierenarts_1.1.xml* in je browser en bekijk het resultaat.
- 22. Open het bestand in een *editor*: op welke manier is er voor gezorgd dat de browser het bestand met opmaak laat zien?
- 23. Maak zelf een XML-bestand met de naam H1006_kleuren_1.xml en verwerk hierin de data van figuur 1 4
- 24. Voeg nu een bestand toe, zodanig dat jouw eigen xml-bestand met een nette vormgeving wordt weergegeven.

FIGUUR 1.9

Opdracht 7 data in een tabel

In de vorige opdrachten is een kleine dataset beschreven van dieren uit de praktijk van een dierenarts.

- 25. Maak een tabel van deze dataset, inclusief de gegeven metadata.
- 26. Wat is een record? Hoeveel records zitten er in deze dataset?
- 27. Waarom heet een relationele database relationeel? Wat is hier de betekenis van dat woord?
- 28. Leg uit waarom het beter is om het geboortejaar van een dier te registreren dan de leeftijd.
- 29. Je vindt de dieren in deze database terug op basis van hun naam. Leg uit dat dit in een grote dierenpraktijk al gauw een probleem wordt.
- 30. Bedenk een oplossing voor het probleem uit de vorige vraag.

Opdracht 8 meerdere tabellen

In deze opgave bekijken we een uitgebreidere dataset van de administratie van een dierenarts in Excel. De dataset bestaat uit drie tabellen: *dieren, klanten* en *afspraken* (zie figuur 1.10).

Uit de vraagstelling van de vorige opdracht kun je concluderen dat er aan de dataset van figuur 1.7 nog wel zaken te verbeteren zijn.

- 31. Open het Excel-bestand *H1008_dierenarts_2.0.xlsx*. Bekijk de inhoud van de drie tabbladen *dieren*, *klanten* en *afspraken*.
- 32. Hoe is het probleem waar vraag 29 naar verwijst hier opgelost?
- 33. In de tabel *afspraken* zie je in het eerste record in de kolom dier het nummer 2 staan. Hoe heet dat dier?
- 34. Wat is de woonplaats van dit dier?
- 35. In vraag 27 werd gevraagd waarom een relationele database zo heet. Leg met vraag 33 en 34 uit dat er nog een manier is waarop er een relatie in een relationele database kan zijn.

De manier van opslaan zorgt ervoor dat je vragen kunt beantwoorden op basis van data die in verschillende tabellen staan. Zo'n vraag is eigenlijk een zoekopdracht. Beantwoord de volgende vragen:

- 36. Welk dier is het jongst?
- 37. Welk levend dier is het oudst?
- 38. Hoeveel katten staan er in de database?
- 39. Hoeveel katten hebben een eigenaar uit Groningen?
- 40. Zijn er klanten die nog nooit een afspraak hebben gemaakt? Zo ja, wat is of zijn hun namen?

datum	tijd	dier	notitie
3-01-22	10:00	2	eet slecht
3-01-22	11:00	9	
4-01-22	13:30	4	controle
4-01-22	10:30	6	castratie
4-01-22	13:30	1	sterilisatie
4-01-22	14:30	2	diabetes
7-01-22	10:00	4	

FIGUUR 1.10

FIGUUR 1.11 ANGEL DE ENGELVIS

Opdracht 9 kattendata

De kunstenaar Owen Mundy heeft de website *I know where your cat lives* gemaakt, om te laten zien hoe eenvoudig het is om gegevens te verzamelen die mensen al dan niet bewust op internet achterlaten.

- 41. Klik op het icoontje hiernaast om naar de website te gaan.
- 42. Kun je een kat vinden in jouw buurt of van iemand die je kent?
- 43. Welke data is nodig om deze website te maken?

Mensen plaatsen vaak foto's van hun huisdieren op het internet met daarbij de naam van het dier.

- 44. Leg uit hoe je met behulp van een foto de locatie (soms) kunt achterhalen.
- 45. Leg uit dat de gevonden locatie niet altijd klopt.

FIGUUR 1.12 BRIECK DE KAT

1.3 Databasemodellen

In de vorige paragraaf hebben we twee databasemodellen of -paradigma's gezien om data gestructureerd op te slaan. Als je een nieuwe database maakt, is de keuze voor een databasemodel zoals een **tabel** de eerste stap. Maar binnen dat databasemodel of -paradigma moet je nog steeds zelf structuur aanbrengen.

In figuur 1.13 is de database van de dierenartsenpraktijk uit opdracht 8 schematisch weergegeven in een **strokendiagram**. Merk op dat er geen data te zien is, maar alleen metadata. Het diagram toont de structuur waarbinnen de data wordt opgeslagen. Alle tabellen worden beschreven met daarbij de attributen van de datapunten van de records in die tabel. De zwarte pijlen in figuur 1.13 tonen de relaties tussen de tabellen van de database. Deze heten **referenties**.

Als we dezelfde data van de dierenartsenpraktijk niet met tabellen maar met het **objectmodel** willen beschrijven, ontstaat een diagram zoals in figuur 1.14. De drie objecten worden beschreven op basis van een klasses met onderlinge relaties. Op de gebruikte symbolen bij die relaties komen we terug.

De gegevens van een dier uit de objectdatabase vind je terug door gebruik te maken van het attribuut *nummer*. Het *nummer* geeft je de toegang tot de bijbehorende data van het dier en wordt daarom de **sleutel** genoemd. Een dier terugvinden lukt alleen als dit nummer **uniek** is. We zeggen dan dat voor het attribuut *nummer* **uniciteit** geldt.

In figuur 1.13 zien we een strokendiagram met drie tabellen. In het objectdiagram van figuur 1.14 zien we een diagram met drie objecten. Als we het dier centraal stellen, kunnen we zeggen dat een dier in de administratie van de dierenarts eigenschappen heeft, waaronder mogelijke afspraken en een eigenaar. De eigenaar heeft (net als b.v. een afspraak) zelf ook weer eigenschappen.

afspraak datum dier tijd nummer notitie naam klant soort ls eigendom van klantnummer ' klantnaam geslacht woonplaats geboren overleden

nummer naam afspraken soort ras klant woon naam afspraken tijd notitie

FIGUUR 1.15

FIGUUR 1.14

In figuur 1.15 is dit getekend als een **boomstructuur** met meerdere vertakkingen die de hiërarchie tussen de elementen laat zien. Het beschrijven van data met een boomstructuur is een specifiek voorbeeld van het databasemodel **graaf** dat we in de opgaven verder zullen bekijken. In een boomstructuur of **boom** heten de elementen **datapunten** of **knopen**. Knopen zijn met elkaar verbonden door **takken**. Het bovenste datapunt heet de **wortel** van de boom: in figuur 1.15 is dat *dier*.

Bij het beschrijven van een graaf worden ook in Nederland vaak Engelse termen gebruikt. Een boom is een *tree* met *branches* (vertakkingen) die begint bij de *root*. Een element is een *node*. Een *node* die zich lager in de *tree* bevindt, heet een *child*: *eigenaar* is een *child* van *dier*. Andersom is *dier* de *parent* van *eigenaar*. Een link tussen twee *nodes* wordt ook een *edge* genoemd.

Opdracht 10 modellen voor een kleurendatabase

In deze opdracht kijken we naar een dataset met kleurennamen. Daarbij kijken we in eerste instantie naar een database op basis van een tabel.

- 46. Open het Excel-bestand H1O10_kleuren_1.xlsx en bekijk de data op het tabblad kleuren.
- 47. Zijn er attributen in de tabel waarvoor uniciteit geldt? Zo ja: welke?
- 48. Bekijk nu de data op het tabblad kleuren uitgebreid. Zijn hier attributen met uniciteit?

Het attribuut *hex* op het tabblad *kleuren_uitgebreid* heeft een grijze achtergrond, omdat deze berekend is met de data in de kolommen B, C en D. De data in kolom E heet daarom **afgeleide data**.

49. Noem een voordeel en een nadeel van het toevoegen van afgeleide data aan een database.

De data die je nu in het tabel-formaat ziet, kan ook met het objectmodel worden beschreven.

- 50. Wat is in die dataset dan de key of de sleutel?
- 51. Beschrijf de data van *kleuren_uitgebreid_* met het objectmodel, door een ontwerp voor een object te tekenen voor een kleur, vergelijkbaar met de aanpak in figuur 1.14.
- 52. Beschrijf de data ook met een graaf. Teken een boomstructuur (tree), op de manier van figuur 1.15.

Opdracht 11 formats en het ontbreken van data: null

Als je een database wilt maken, kies je eerst voor het databasemodel. Vervolgens beschrijf je de data en hun onderlinge relaties en denk je na over mogelijke beperkingen, zoals het format van de data:

FIGUUR 1.16

Het is voor een datapunt (node) of een eigenschap van een record niet altijd nodig dat er een waarde is. Soms blijft een data-veld leeg.

- 56. Bekijk de video over het ontbreken van data.
- 57. Verklaar met behulp van de video wat *null island* is en waar op aarde het zich bevindt.
- 58. Leg in eigen woorden uit wat *null* betekent.

In de theorie hebben we drie modellen gezien voor de database van een dierenarts.

- 59. Open (nogmaals!) het Excel-bestand *H1008_dierenarts_2.0.xlsx* met de relationele database op basis van tabellen.
- 60. Zijn er velden met de waarde null? Hoe zie je dat?
- 61. Bekijk de tabel *afspraken*. Zijn er kolommen waarvan de bijbehorende waarde van het record *null* zou mogen blijven? Licht je antwoord toe.

In figuur 1.17 zie je een *screenshot* met twee objecten – de dieren Marsalis en Snowy – uit het administratieprogramma van de dierenarts op basis van het objectmodel.

- 63. Bij Marsalis is er op twee manieren sprake van meer data dan bij Snowy. Welke twee manieren zijn dat?
- 64. Is voor beide van deze manieren sprake van een waarde *null*?

SNO	WY			
Jeroen Adorp				
kat	Lykoi	M	2015	XXXX

FIGUUR 1.17