Понятие алгоритма. Краткое введение в теорию вычислимости и теорию формальных грамматик.

Хайрулин Сергей Сергеевич s.khayrulin@gmail.com

Overview

- Понятие алгоритм, свойства
- Примеры
- Формализованное понятие алгоритма.
- Машина тьюринга.
- Тезис Черча
- Классы задач Р и NР
- Примеры NP полных проблем
- О нотация
- Асимптотическая сложность алгоритмов

Литература и др. источники

- Дональд Эрвин Кнут. Искусство программирования (Том 1, 2, 3) // Вильямс 2015.
- Альфред В. Ахо, Джон Э. Хопкрофт, Джеффри Д. Ульман. Структуры данных и алгоритмы // Вильямс 2000.
- Емеличев В. А., Мельников О. И., Сарванов В. И., Тышкевич Р. И. Лекции по теории графов // М.: Наука, 1990.
- Харари Ф. Теория графов // М.: Мир, 1973.
- Косточка А. В. Дискретная математика. Часть 2 //Новосибирск: НГУ, 2001.
- Котов В. Е., Сабельфельд В. К. Теория схем программ // Наука 1991.
- http://algolist.manual.ru
-

Алгоритм

Алгори́тм — набор инструкций, описывающих порядок действий исполнителя для достижения некоторого результата. Независимые инструкции могут выполняться в произвольном порядке, параллельно, если это позволяют используемые исполнители.

Алгоритм

```
algorithm ford-fulkerson is
  input: Graph G with flow capacity c, source node s, sink node t
  output: Flow f such that f is maximal from s to t
  (Note that f(u,v) is the flow from node u to node v, and c(u,v) is the
   flow capacity from node u to node v)
  for each edge (u, v) in GE do
     f(u, v) \leftarrow 0
     f(v, u) \leftarrow 0
  while there exists a path p from s to t in the residual network Gf do
     let cf be the flow capacity of the residual network Gf
     cf(p) \leftarrow min\{cf(u, v) \mid (u, v) in p\}
     for each edge (u, v) in p do
        f(u, v) \leftarrow f(u, v) + cf(p)
        f(v, u) \leftarrow -f(u, v)
  return f
```

- **Конечность описания** любой алгоритм задается как набор инструкций конечных размеров, т. е. программа имеет конечную длину.
- Дискретность алгоритм выполняется по шагам, происходящим в дискретном
- времени. Шаги четко отделены друг от друга. В алгоритмах нельзя использовать аналоговые устройства и непрерывные методы.
- **Направленность** у алгоритма есть входные и выходные данные. В алгоритме четко указывается, когда он останавливается, и что выдается на выходе после остановки.
- Массовость алгоритм применим к некоторому достаточно большому классу
- однотипных задач, т. е. входные данные выбираются из некоторого, как правило, бесконечного множества.
- Детерминированность (или конечная недетерминированность) вычисления продвигаются вперед детерминировано, т. е. вычислитель однозначно представляет, какие инструкции необходимо выполнить в текущий момент. Нельзя использовать случайные числа или методы. Конечная недетерминированность означает, что иногда в процессе работы алгоритма возникает несколько вариантов для дальнейшего хода вычислений, но таких вариантов лишь конечное.

Алгоритм вычисления чисел Фибоначчи

```
F_1 = 1, F_2 = 1, ..., F_n = F_{n-1} + F_{n-2}
```

```
function Fibo(n)
  if n = 1 or n = 2
    return 1
  end if
  return Fibo(n - 1) + Fibo(n - 2)
  end function
```

Вычисление корней квадратного уравнения

```
function sqrt roots(a, b, c):
     d = b * b - 4 * a * c
     if d < 0:
          print("There are no roots for equation")
     else:
          if d == 0:
               x 1 = b/(2*a)
                print("Equation has only one root x = 1 + str(x = 1))
          else:
               x 1 = (b + sqrt(d))/(2*a)
               x 2 = (b - sqrt(d))/(2*a)
                print("Equation has two roots x = 1 + str(x = 1) + (x = 2) + str(x = 2))
```

Формализация понятия алгоритма

- Машина Поста
- Нормальный алгоритм Маркова
- Рекурсивные функции
- Машина Тьюринга
- ...

Машина Тьюринга

Определение. *Машина Тьюринга* — это пятерка $T = \langle A, Q, P, q_1, q_0 \rangle$, где:

- a) $A=\{a_1,\dots,a_n\}$ конечный внешний алфавит (мы будем всегда предплогать, что $n\geq 1$ и $a_0=0,a_1=1$);
- b) $Q = \{q_0, ..., q_m\}$ конечный алфавит внутренних состояний;
- c) $P = \{T(i,j) | 1 \le i \le m, 1 \le j \le n\}$ программа, состоящая из команд T(i,j), каждая из которых есть слово вида: $q_i a_j \to q_k a_l$, или $q_i a_j \to q_k a_l R$, или $q_i a_j \to q_k a_l L$, где $1 \le k \le m$, $1 \le l \le n$;
- *d)* q_1 начальное состояние
- e) q_0 конечное состояние

Пример

$$T = (\{(,),0,1,*\}, \left\{q_{0},q_{1},q_{2},q_{3},q_{4}\right\}, P)$$

1.
$$q_0(\rightarrow q_0(R$$

2.
$$q_0 \to q_1 * L$$

$$3. \quad q_0 * \rightarrow q_0 * R$$

4.
$$q_0\# \rightarrow q_2\# L$$

5.
$$q_1(\rightarrow q_0 * R)$$

6.
$$q_1 * \to q_1 * L$$

7.
$$q_1 \# \to q_4 0R$$

8.
$$q_2(\rightarrow q_3 \# L)$$

$$9. \quad q_2* \rightarrow q_2 \# L$$

10.
$$q_2 \# \to q_1 1$$

11.
$$q_3(\rightarrow q_3 \# L$$

$$12. q_3 * \rightarrow q_3 # L$$

13.
$$q_3 \# \to q_1 0$$

14.
$$q_4(\to q_4 \# R)$$

$$15. q_4) \to q_4 \# R$$

16.
$$q_4* \to q_4 \# R$$

Тезис Черча

Тезис Чёрча. Класс интуитивно вычислимых функций совпадает с классом всех функций вычислимых по Тьюрингу.

В чем измерять эффективность алгоритма описанного с помощью какоголибо Тьюринг-полного языка программирования? От чего вообще может зависеть этот показатель?

В чем измерять эффективность алгоритма описанного с помощью какоголибо Тьюринг-полного языка программирования? От чего вообще может зависеть этот показатель?

• Данные

От чего вообще может зависеть этот показатель?

- Данные
- Память и какие-либо другие ресурсы

В чем измерять эффективность алгоритма описанного с помощью какого-либо Тьюринг-полного языка программирования (в зависимости от входных данных)?

 Количество действий сделанных алгоритмом во время работы от начала и до конца.

В чем измерять эффективность алгоритма описанного с помощью какого-либо Тьюринг-полного языка программирования (в зависимости от входных данных)?

- Количество действий сделанных алгоритмом во время работы от начала и до конца.
- Количество памяти необходимой алгоритму для работы.

P=NP?

Имеет место включение $P \subseteq NP$

Примеры NP полных проблем.

- Задача о клике: по данному графу узнать, есть ли в нём клики (полные подграфы) заданного размера.
- Оптимизационный вариант задачи о коммивояжере (существует ли маршрут не длиннее, чем заданное значение k) расширенный и более приближенный к реальности вариант предыдущей задачи.
- Сапер
- Быки и коровы
- Полный список в Интернете

О - нотация

- •Пусть f(x) и g(x) две функции, определенные в некоторой проколотой окрестности точки x_0 , причем в этой окрестности g не обращается в ноль. Говорят, что:
- f является «O» большим от g при $x \to x_0$, если существует такая константа C > 0, что для всех x из некоторой окрестности точки x_0 имеет место неравенство

$$|f(x)| \le C|g(x)|;$$

• f является «о» малым от g при $x \to x_0$, если для любого C > 0 найдется такая проколотая окрестность U_{x_0} точки x_0 , что для всех $x \in U_{x_0}$ имеет место неравенство

$$|f(x)| < C|g(x)|$$
.

Иначе говоря, в первом случае отношение |f|/|g| в окрестности точки x_0 ограничено сверху, а во втором оно стремится к нулю при $x \to x_0$.

О - нотация

Пусть f(x) и g(x) - две функции определенные в некоторой проколотой окрестности точки x_0 , причем в этой окрестности g(x) не обращается в 0. Говорят что:

• f(x) является "O" от g(x) при $x \to x_0$, если существует такая константа $C > x_0$ 0, что для любой точки x из некоторой окрестности x_0 , верно неравенство:

 $|f(x)| \le C|g(x)|$

• f(x) является "о" от g(x) при $x \to x_0$, если для любой константы C > 0, существует проколотая окрестность $x_0()$, что для всех точек x из окрестности $\mathsf{U}_{\mathsf{x}\mathsf{n}}$ верно неравенство:

|f(x)| < C|g(x)|

Асимптотическая сложность алгоритмов

Обозначение	Граница	Рост		
(Тета) О	Нижняя и верхняя границы, точная оценка	Равно		
(О - большое) О	Верхняя граница, точная оценка неизвестна	Меньше или равно		
(о-малое) о	Верхняя граница, не точная оценка	Меньше		
(Омега - большое) Ω	Нижняя граница, точная оценка неизвестна	Больше или равно		
(Омега - малое) ω	Нижняя граница, не точная оценка	Больше		

Асимптотическая сложность алгоритмов

Алгоритм	Эффективность			
o(n)	< n			
O(n)	≤n			
Θ(n)	= n			
Ω(n)	≥n			
ω(n)	> n			

Транзитивность

$$egin{array}{lll} f(n) = \Theta(g(n)) \wedge g(n) = \Theta(h(n)) & \Rightarrow & f(n) = \Theta(h(n)) \ f(n) = O(g(n)) \wedge g(n) = O(h(n)) & \Rightarrow & f(n) = O(h(n)) \ f(n) = \Omega(g(n)) \wedge g(n) = \Omega(h(n)) & \Rightarrow & f(n) = \Omega(h(n)) \ f(n) = o(g(n)) \wedge g(n) = o(h(n)) & \Rightarrow & f(n) = o(h(n)) \ f(n) = \omega(g(n)) \wedge g(n) = \omega(h(n)) & \Rightarrow & f(n) = \omega(h(n)) \ \end{array}$$

Рефлективность

$$f(n) = \Theta(f(n))$$

$$f(n) = O(f(n))$$

$$f(n) = \Omega(f(n))$$

Симметричность

$$f(n) = \Theta(g(n)) \iff g(n) = \Theta(f(n))$$

$$C \cdot o(f(n)) = o(f(n))$$

$$C \cdot o(f(n)) = o(f(n))$$

$$o(C \cdot f(n)) = o(f(n))$$

$$o(C \cdot f(n)) = o(f(n))$$

$$o(-f(n)) = o(f(n))$$

$$o(-f(n)) = o(f(n))$$

$$o(f(n)) + o(f(n)) = o(f(n))$$

$$o(f(n)) + o(f(n)) = o(f(n))$$

$$o(f(n)) \cdot o(g(n)) = o(f(n) \cdot g(n))$$

$$o(f(n)) \cdot o(g(n)) = o(f(n)) \cdot o(g(n)) = o(f(n) \cdot g(n))$$

$$o(o(f(n))) = o(o(f(n))) = o(o(f(n)))$$

Асимптотическая сложность алгоритмов

O(1)

Порядок роста О(1) означает, что вычислительная сложность не зависит от размера входных данных.

O(n)

O(n) - линейный рост сложности алгоритма в зависимости от входных данных.

```
for i in range(N):
    # do some useful stuff
...
```

$O(n^2)$

O(n²) - квадратичная зависимость от входных данных

```
for i in range(N):
    for j in range(N)
      # do some useful stuff
```

O(log(n))

Порядок роста *O*(log *n*) означает, что время выполнения алгоритма растет логарифмически с увеличением размера входного массива.

$O(e^n)$

Временная сложность алгоритма экспоненциально зависит от данных.

O(n!)

Задачи связанные с полным перебором обычно обычно решаются за факториальное время. Например задача коммивояжёра решаемая метом полного перебора.

Поиск

Алгоритм	Структура данных	Временная	Сложность по памяти		
		В среднем	В худшем	В худшем	
Поиск в глубину (DFS)	Граф с V вершинами и E ребрами	*	O(E + V)	0(V)	
Поиск в ширину (BFS)	Граф с V вершинами и E ребрами	•	O(E + V)	0([V])	
Бинарный поиск	Отсортированный массив из n элементов	O(log(n))	O(log(n))	0(1)	
Линейный поиск	Массив	O(n)	O(n)	0(1)	
Кратчайшее расстояние по алгоритму Дейкстры используя двоичную кучу как очередь с приоритетом	Граф с V вершинами и E ребрами	O((V + E) log V)	O((V + E) log V)	O(V)	
Кратчайшее расстояние по алгоритму Дейкстры используя массив как очередь с приоритетом	Граф с V вершинами и E ребрами	O(V ^2)	O(V ^2)	0(V)	
Кратчайшее расстояние используя алгоритм Беллмана—Форда	Граф с V вершинами и E ребрами	O(V E)	O(V E)	0(V)	

https://habrahabr.ru/post/188010/

Сортировка

Алгоритм	Структура данных	Временная сложность			Вспомогательные данные	
		Лучшее	В среднем	В худшем	В худшем	
Быстрая сортировка	Массив	O(n log(n))	O(n log(n))	O(n^2)	O(n)	
Сортировка слиянием	Массив	O(n log(n))	O(n log(n))	O(n log(n))	O(n)	
Пирамидальная сортировка	Массив	O(n log(n))	O(n log(n))	O(n log(n))	O(1)	
Пузырьковая сортировка	Массив	O(n)	O(n^2)	O(n^2)	O(1)	
Сортировка вставками	Массив	O(n)	O(n^2)	O(n^2)	O(1)	
Сортировка выбором	Массив	O(n^2)	O(n^2)	O(n^2)	O(1)	
Блочная сортировка	Массив	O(n+k)	O(n+k)	O(n^2)	O(nk)	
Поразрядная сортировка	Массив	O(nk)	O(nk)	O(nk)	O(n+k)	

https://habrahabr.ru/post/188010/

Структуры данных

Структура данных	Временная сложность							Сложность по памяти	
	В среднем				В худшем				В худшем
	Индексация	Поиск	Вставка	Удаление	Индексация	Поиск	Вставка	Удаление	Ve.
Обычный массив	O(1)	O(n)			O(1)	O(n)	8	•	O(n)
Динамический массив	O(1)	O(n)	O(n)	O(n)	0(1)	O(n)	O(n)	O(n)	O(n)
Односвязный список	O(n)	O(n)	0(1)	0(1)	O(n)	O(n)	0(1)	0(1)	O(n)
Двусвя <mark>зный</mark> список	O(n)	O(n)	0(1)	0(1)	O(n)	O(n)	0(1)	0(1)	O(n)
Список с пропусками	O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(n)	O(n)	O(n)	O(n)	O(n log(n))
Хеш таблица	(¥)	0(1)	0(1)	0(1)	12	O(n)	O(n)	O(n)	O(n)
Бинарное дерево поиска	O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(n)	O(n)	O(n)	O(n)	O(n)
Декартово дерево	- 2	O(log(n))	O(log(n))	O(log(n))	-	O(n)	O(n)	O(n)	O(n)
Б-дере <mark>в</mark> о	O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(n)
Красно-черное дерево	O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(n)
Расширяющееся дерево	1941	O(log(n))	O(log(n))	O(log(n))	:4	O(log(n))	O(log(n))	O(log(n))	O(n)
АВЛ-дерево	O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(n)

https://habrahabr.ru/post/188010/

Для замера работы функции нужно использовать метод now() класса datetime модуля datetime

```
import datetime
array = [0] * N
array.insert(N,0)
                  def main():
                      t1 = datetime.datetime.now()
                      #You'r code here
                      print(datetime.datetime.now() - t1)
                  if name == ' main ':
                      main()
```

```
import numpy as np
# Generate numpy Array with N random numbers
array = np.random.rand(N)
#Sort Array by quick sort
sorted (array)
```


Задачи

- Реализовать алгоритм перемножения квадратных матриц. Матрицы могут задаваться как список списков. Считывать можно из файла потока ввода, или задавать случайным образом (используя функцию np.random.rand(N)). Оценить временную и ассимптотическую сложность алгоритма, построить график.
- Найти все пифагоровы тройки ($c^2 = a^2 + b^2$) для заданного интервала. Интервал задается парой чисел через пробел считанных из входного потока (например: 10 100) помните, что верхняя грань отрезка должна быть больше нижней. Если задано одно число, то считаем, что ограничение снизу равно по умолчанию 1. Оценить временную и ассимптотическую сложность алгоритма, построить график.
- Реализовать алгоритм факторизации числа (разложение числа как произведение двух других чисел). Оценить временную и ассимптотическую сложность алгоритма, построить график.
- Реализовать алгоритм рассчитывающий сочетания и размещения.
- Факториал довольно емкостная функция, при расчете которого для больших значений может случится переполнение (т.е. полученное число будет больше чем максимально возможное число в вашей системе). Подумайте как преодолеть эту проблему.

Спасибо за внимание!