Introduction to Optical Modeling

Friedrich-Schiller-University Jena Institute of Applied Physics

Lecture 4
Prof. Uwe D. Zeitner

Achromatic Doublet

Example: desired focal length: f' = 200 mm

Lens 1: BK7
$$n_{\rm e} = 1.518$$

$$v_{\rm e} = 63.9$$

$$n_{\rm e} = 1.805$$

$$v_e = 25.4$$

$$\rightarrow$$
 $f'_1 = 120.5 \text{mm}$

$$R_1 = 124.8 \text{mm}$$

 $R_2 = -124.8 \text{mm}$

$$f'_2 = -303.1$$
mm

$$\rightarrow$$
 $R_1 = -124.8 \text{mm}$

$$R_2 = -255.5$$
mm

Course Overview

Part 1: Geometrical optics-based modeling and design (U.D. Zeitner)

- 1. Introduction
- 2. Paraxial approximation / Gaussian optics
- 3. ABCD-matrix formalism
- 4. Real lenses
- 5. Optical materials
 - glass types, dispersion
 - chromatic aberrations
- 6. Imaging systems
 - apertures/stops, entrance-/exit-pupil
 - wavefront aberrations

Part 2: Wave-optics based modeling (F. Wyrowski)

2.6 Imaging Systems

Examples

a) Microscope

→ generation of a magnified image

b) Camera

→ generation of a de-magnified image

Real imaging, extended field

Important:

ray cones are always limited by the finite extend of an aperture

- → often one of the lenses in the system
- → can also be a separate diaphragm / aperture

stop of the system

stop position has a substantial impact on the image characteristics

Special example: stop in the back focal plane

→ true for <u>each</u> object point

Property: object side telecentric imaging

special rays:

ray through center of stop: chief ray

ray at edge of stop: marginal ray

Telecentric Imaging

source: edmund optics

Definition of Stops, Entrance and Exit Pupil

Construction of EN

(one example, method)

entrance pupil (EN): stop as seen from the object space

Wave aberrations of an optical system

Wave aberrations for an optical system.

Fresnel Diffraction

Calculation of field propagation between two planes with distance Δz

 $\vec{E}(x_1, y_1, z_1)$... field at the input plane of the system $\vec{E}(x_2, y_2, z_2)$... field at the output plane of the system $\Delta z = z_2 - z_1$... plane-to-plane distance

Fresnel-diffraction formula:

$$\vec{E}(x_2, y_2, z_2) = \frac{e^{ik\Delta z}}{i\lambda\Delta z} e^{i\frac{k}{2\Delta z}(x_2^2 + y_2^2)} \frac{1}{4\pi^2} \iint \left[\vec{E}(x_1, y_1, z_1) \cdot e^{i\frac{k}{2\Delta z}(x_1^2 + y_1^2)} \right] \cdot e^{-i\frac{k}{\Delta z}(x_1x_2 + y_1y_2)} dx_1 dy_1$$

'spherical' phase with radius Δz

'spherical' phase with radius Δz

Fouriertransformation

Propagation into the focal plane

From the <u>reference sphere</u> onto the <u>plane</u>

 $\vec{E}(x_1,y_1,z_1)$... field on input plane $\vec{E}_r(x_1,y_1,z_1)$... field on reference sphere $\Delta z = f'$

$$\vec{E}(x_1,y_1,z_1) = \vec{E}_r(x_1,y_1,z_1) \cdot e^{-i\frac{k(x_1^2+y_1^2)}{2f'}}$$
 lens phase corresponding to f'

Propagation into the focal plane (insert \vec{E} into Fresnel-integral):

$$\vec{E}(x_2, y_2, z_2) = \frac{e^{ikf'}}{i\lambda f'} e^{i\frac{k}{2f'}(x_2^2 + y_2^2)} \frac{1}{4\pi^2} \iint \vec{E}_r(x_1, y_1, z_1) \cdot e^{-i\frac{k}{f'}(x_1 x_2 + y_1 y_2)} dx_1 dy_1$$

field in focal plane is the Fourier-transformed field on the reference sphere

Ideal spherical wave of finite extent

→ Aperture

field on reference sphere:

$$\vec{E}_r(x_1, y_1, z_1) = \operatorname{circ}\left(\frac{r'}{r_a}\right)$$

$$FT\left\{\operatorname{circ}\left(\frac{r'}{r_a}\right)\right\} = 2\pi r_a^2 \cdot \frac{J_1\left(\frac{kr}{f}r_a\right)}{\frac{kr}{f}r_a}$$
 $J_1 \dots$ Bessel-Fct. of first kind

Airy-pattern:

radius r_o of central spot

for
$$J_1(\pi x) = 0$$

at $x = 1.22$

Diffraction limited spot size

→ diffraction at finite aperture

$$r_o = 0.61 \cdot \frac{\lambda \cdot f'}{r_a}$$

some relations:

$$\sin \alpha = \frac{r_a}{f'} \qquad \qquad \lambda = \frac{\lambda_o}{n}$$

$$\lambda = \frac{\lambda_o}{n}$$

$$r_o = 0.61 \cdot \frac{\lambda_o}{n \cdot \sin \alpha} = 0.61 \cdot \frac{\lambda_o}{NA}$$

Abbe's formula

diffraction limited focal spot

memorial stone at Fürstengraben (near main building of University Jena)