



# What is wrong with this picture?



#### Recap from Lecture 2

Pinhole camera model

Perspective projections

Focal length and field of view

Remember to use your textbook:

Chapter 2 of Szeliski

#### Recap - Projection matrix



$$x = K[R \ t]X$$

x: Image Coordinates: (u,v,1)

**K**: Intrinsic Matrix (3x3)

**R**: Rotation (3x3)

t: Translation (3x1)

X: World Coordinates: (X,Y,Z,1)

## Recap - Projection matrix



$$x = K[R \ t]X$$

x: Image Coordinates: (u,v,1)

**K**: Intrinsic Matrix (3x3)

R: Rotation (3x3)

t: Translation (3x1)

X: World Coordinates: (X,Y,Z,1)

#### Adding a lens



#### A lens focuses light onto the film

- There is a specific distance at which objects are "in focus"
  - other points project to a "circle of confusion" in the image
- Changing the shape of the lens changes this distance

#### Focal length, aperture, depth of field



# A lens focuses parallel rays onto a single focal point

- focal point at a distance f beyond the plane of the lens
- Aperture of diameter D restricts the range of rays

#### Depth of field



Changing the aperture size or focal length affects depth of field

#### Shrinking the aperture



#### Why not make the aperture as small as possible?

- Less light gets through
- Diffraction effects

#### Shrinking the aperture



#### Capturing Light... in man and machine



Many slides by Alexei A. Efros

CS 143: Computer Vision James Hays, Brown, Fall 2013

# **Image Formation**





**Digital Camera** 



The Eye

- Absorption
- Diffusion
- Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering
- Phosphorescence
- Interreflection



- Absorption
- Diffusion
- Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering
- Phosphorescence
- Interreflection



- Absorption
- Diffuse Reflection
- Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering
- Phosphorescence
- Interreflection



- Absorption
- Diffusion
- Specular Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering
- Phosphorescence
- Interreflection



- Absorption
- Diffusion
- Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering
- Phosphorescence
- Interreflection



- Absorption
- Diffusion
- Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering
- Phosphorescence
- Interreflection



- Absorption
- Diffusion
- Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering
- Phosphorescence
- Interreflection



- Absorption
- Diffusion
- Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering
- Phosphorescence
- Interreflection



- Absorption
- Diffusion
- Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering
- Phosphorescence
- Interreflection



- Absorption
- Diffusion
- Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering
- Phosphorescence
- Interreflection



(Specular Interreflection)

#### Lambertian Reflectance

 In computer vision, surfaces are often assumed to be ideal diffuse reflectors with know dependence on viewing direction.

#### Digital camera



#### A digital camera replaces film with a sensor array

- Each cell in the array is light-sensitive diode that converts photons to electrons
- Two common types
  - Charge Coupled Device (CCD)
  - CMOS
- http://electronics.howstuffworks.com/digital-camera.htm

## Sensor Array





**CMOS** sensor

a b

**FIGURE 2.17** (a) Continuos image projected onto a sensor array. (b) Result of image sampling and quantization.

#### Sampling and Quantization



FIGURE 2.16 Generating a digital image. (a) Continuous image. (b) A scan line from A to B in the continuous image, used to illustrate the concepts of sampling and quantization. (c) Sampling and quantization. (d) Digital scan line.

# Interlace vs. progressive scan



# Progressive scan



#### Interlace



# Rolling Shutter





#### The Eye



#### The human eye is a camera!

- Iris colored annulus with radial muscles
- Pupil the hole (aperture) whose size is controlled by the iris
- What's the "film"?
  - photoreceptor cells (rods and cones) in the retina

#### The Retina



## What humans don't have: tapetum lucidum







#### Two types of light-sensitive receptors

#### Cones

cone-shaped less sensitive operate in high light color vision

#### Rods

rod-shaped highly sensitive operate at night gray-scale vision



#### Rod / Cone sensitivity



### Distribution of Rods and Cones



Night Sky: why are there more stars off-center? Averted vision: http://en.wikipedia.org/wiki/Averted\_vision

# **Eye Movements**

#### Saccades

Can be consciously controlled. Related to perceptual attention. 200ms to initiation, 20 to 200ms to carry out. Large amplitude.

#### Microsaccades

Involuntary. Smaller amplitude. Especially evident during prolonged fixation. Function debated.

### Ocular microtremor (OMT)

involuntary. high frequency (up to 80Hz), small amplitude.

# Electromagnetic Spectrum



**Human Luminance Sensitivity Function** 

## Visible Light



### The Physics of Light

Any patch of light can be completely described physically by its spectrum: the number of photons (per time unit) at each wavelength 400 - 700 nm.



## The Physics of Light

### Some examples of the spectra of light sources



A. Ruby Laser

# Photons 500 700 400 600 Wavelength (nm.)

B. Gallium Phosphide Crystal









## The Physics of Light

### Some examples of the <u>reflectance</u> spectra of <u>surfaces</u>



© Stephen E. Palmer, 2002

There is no simple functional description for the perceived color of all lights under all viewing conditions, but .....

A helpful constraint:

Consider only physical spectra with normal distributions





# Photons



Wavelength

### **Variance Saturation**



Wavelength





Wavelength

### **Physiology of Color Vision**

### Three kinds of cones:





WAVELENGTH (nm.)

- Why are M and L cones so close?
- Why are there 3?

## Impossible Colors

Can you make the cones respond in ways that typical light spectra never would?

http://en.wikipedia.org/wiki/Impossible\_colors



### **Tetrachromatism**



Most birds, and many other animals, have cones for ultraviolet light.

Some humans, mostly female, seem to have slight tetrachromatism.

# More Spectra



### Practical Color Sensing: Bayer Grid





Estimate RGB at 'G' cells from neighboring values

# Color Image





## Images in Matlab

- Images represented as a matrix
- Suppose we have a NxM RGB image called "im"
  - im(1,1,1) = top-left pixel value in R-channel
  - im(y, x, b) = y pixels down, x pixels to right in the  $b^{th}$  channel
  - im(N, M, 3) = bottom-right pixel in B-channel
- imread(filename) returns a uint8 image (values 0 to 255)
  - Convert to double format (values 0 to 1) with im2double

|     | column |      |      |      |      |      |      |      |      |      |      |                |      |          |      |   |
|-----|--------|------|------|------|------|------|------|------|------|------|------|----------------|------|----------|------|---|
| row | 0.92   | 0.93 | 0.94 | 0.97 | 0.62 | 0.37 | 0.85 | 0.97 | 0.93 | 0.92 | 0.99 | <sub>I</sub> R |      |          |      |   |
|     | 0.95   | 0.89 | 0.82 | 0.89 | 0.56 | 0.31 | 0.75 | 0.92 | 0.81 | 0.95 | 0.91 |                |      |          |      |   |
|     | 0.89   | 0.72 | 0.51 | 0.55 | 0.51 | 0.42 | 0.57 | 0.41 | 0.49 | 0.91 | 0.92 | 0.92           | 0.99 | 1 G      |      |   |
|     | 0.96   | 0.95 | 0.88 | 0.94 | 0.56 | 0.46 | 0.91 | 0.87 | 0.90 | 0.97 | 0.95 | 0.95           | 0.91 | 1        |      |   |
|     | 0.71   | 0.81 | 0.81 | 0.87 | 0.57 | 0.37 | 0.80 | 0.88 | 0.89 | 0.79 | 0.85 | 0.91           | 0.92 | <u> </u> |      | B |
|     | 0.49   | 0.62 | 0.60 | 0.58 | 0.50 | 0.60 | 0.58 | 0.50 | 0.61 | 0.45 | 0.33 | 0.97           | 0.95 | 0.92     | 0.99 |   |
|     | 0.86   | 0.84 | 0.74 | 0.58 | 0.51 | 0.39 | 0.73 | 0.92 | 0.91 | 0.49 | 0.74 | 0.79           | 0.85 | 0.95     | 0.91 |   |
|     | 0.96   | 0.67 | 0.54 | 0.85 | 0.48 | 0.37 | 0.88 | 0.90 | 0.94 | 0.82 | 0.93 | 0.45           | 0.33 | 0.91     | 0.92 |   |
|     | 0.69   | 0.49 | 0.56 | 0.66 | 0.43 | 0.42 | 0.77 | 0.73 | 0.71 | 0.90 | 0.99 | 0.49           | 0.74 | 0.97     | 0.95 |   |
|     | 0.79   | 0.73 | 0.90 | 0.67 | 0.33 | 0.61 | 0.69 | 0.79 | 0.73 | 0.93 | 0.97 | 0.82           | 0.93 | 0.79     | 0.85 |   |
| •   | 0.91   | 0.94 | 0.89 | 0.49 | 0.41 | 0.78 | 0.78 | 0.77 | 0.89 | 0.99 | 0.93 | 0.90           | 0.99 | 0.45     | 0.33 |   |
|     |        |      | 0.79 | 0.73 | 0.90 | 0.67 | 0.33 | 0.61 | 0.69 | 0.79 | 0.73 | 0.93           | 0.97 | 0.49     | 0.74 |   |
|     |        |      | 0.91 | 0.94 | 0.89 | 0.49 | 0.41 | 0.78 | 0.78 | 0.77 | 0.89 | 0.99           | 0.93 | 0.82     | 0.93 |   |
|     |        |      |      |      | 0.03 | 0.43 | 0.50 | 0.00 | 0.43 | 0.72 | 0.77 | 0.75           | 0.71 | 0.90     | 0.99 |   |
|     |        |      |      |      | 0.79 | 0.73 | 0.90 | 0.67 | 0.33 | 0.61 | 0.69 | 0.79           | 0.73 | 0.93     | 0.97 |   |
|     |        |      |      |      | 0.91 | 0.94 | 0.89 | 0.49 | 0.41 | 0.78 | 0.78 | 0.77           | 0.89 | 0.99     | 0.93 |   |

# Color spaces

## How can we represent color?



# Color spaces: RGB

### Default color space



#### Some drawbacks

- Strongly correlated channels
- Non-perceptual



# Color spaces: HSV



### Intuitive color space





**H** (S=1,V=1)



**S** (H=1,V=1)



**V** (H=1,S=0)

# Color spaces: YCbCr

Fast to compute, good for compression, used by TV









**Cb** (Y=0.5,Cr=0.5)



**Cr** (Y=0.5,Cb=05)

# Color spaces: L\*a\*b\*

### "Perceptually uniform"\* color space







a

(L=65,b=0)





If you had to choose, would you rather go without luminance or chrominance?

If you had to choose, would you rather go without luminance or chrominance?

# Most information in intensity



Only color shown – constant intensity

# Most information in intensity



Only intensity shown – constant color

# Most information in intensity



Original image

## Back to grayscale intensity



### Next Lecture

Image Filtering - the core idea for project 1, and all of image processing.

Project 1 is much simpler than the remaining projects.