PHYS 3031 Course Notes

Mathematical Methods in Physics II

LIN, Xuanyu

MATH METHODS IN PHYSICS

PHYS 3031 Mathematical Methods in Physics II

September 27, 2023

1 Series

1.1 Convergence Condition for Positive Series $\sum_{n=1}^{\infty} a_n$

Necessary condition: $\lim_{N\to\infty} a_N = 0$

Hierarchy: $N! > a^N > N^b > \ln N$

Stirling's Formula $\ln N! \approx N \ln N - N \approx N \ln N$

Comparison Test 1 $\sum a_n < \sum b_n$, b converges $\rightarrow a$ converges

Comparison Test 2 (Integral Test) $\sum a_n \& \int a(n) dn$ share the same fate

Ratio Test $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \rho, \ \rho > 1 \to \text{Diverges}, \ \rho < 1 \to \text{Converges}$

Extended (Special) Comparison Test $\lim_{n\to\infty} \frac{a_n}{b_n} = 1$, then $\sum a_n \& \sum b_n$ share the same fate

1.2 Convergence Condition for Alternating Series $\sum_{n=1}^{\infty} (-1)^n a_n$

If $a_n > 0$, $\lim_{n \to \infty} a_n = 0$, this series may diverge.

- (1) Absolute Convergence: If $\sum a_n$ converges, then $\sum (-1)^n a_n$ converges
- (2) Convergence Condition: $\lim_{n\to\infty} \text{ and } a_n>a_{n+1}$
- (3) Diverge: If $a_n < a_{n+1}$, then the series diverges

1.3 Power Series $\sum_{n=0}^{\infty} a_n (x-x_0)^n \to f(x)$

Convergent condition for x: $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} (x - x_0) \right| < 1$

1.4 Asymptotic Series

For functions f(z) and $\phi(z) \neq 0$ defined in $\mathring{U}(z_0)$, we say that $f(z) = O(\phi(z))$ at $z \to z_0$ if $f(z)/\phi(z)$ is bounded, and that $f(z) = o(\phi(z))$ at $z \to z_0$ if $f(z)/\phi(z) \to 0$.

If for $\forall m$, when $z \to z_0$,

$$f(z) - \sum_{n=0}^m a_n \phi_n(z) = o(\phi_m(z))$$

we say that $\sum_{n=0}^{m} a_n \phi_n(z)$ is an asymptotic series for f(z), even though the series may not converge:

$$f(z) \sim \sum_{n=0}^m a_n \phi_n(z)$$

2 Taylor Expansion $\sum_{n=0}^{\infty} a_n (x-x_0)^n$

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} \qquad \cos x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n} \qquad \tan x = x + \frac{x^3}{3} + \frac{2x^5}{15} + \frac{17x^7}{315} + \dots \qquad e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} x^{2n} = \frac{x^n}{n!} x^{2n}$$

$$\arctan x = \int_0^x \sum_{n=0}^\infty (-t^2)^n dt = \sum_{n=0}^\infty \frac{(-1)^n x^{2n+1}}{2n+1}$$
, where $|x| < 1$

2.1 Leibniz Rule

$$\frac{\mathrm{d}^{(M)}}{\mathrm{d}x^M}(u\cdot v) = \left(\frac{\mathrm{d}u}{\mathrm{d}x}\frac{\partial}{\partial u} + \frac{\mathrm{d}v}{\mathrm{d}x}\frac{\partial}{\partial v}\right)^M(u\cdot v) = \sum_{n=0}^M C_M^n \left(\frac{\mathrm{d}^{(M-n)}u}{\mathrm{d}x^{(M-n)}}\right) \left(\frac{\mathrm{d}^{(n)}v}{\mathrm{d}x^n}\right)$$

2.2 Error Estimation when N Terms are Kept

$$f(x)\approx \sum_{n=0}^N (-1)^n a_n (x-x_0)^n \qquad b_n\equiv a_n (x-x_0)^n>0$$

2.2.1 Alternating Series $S = \sum_{n=0}^{\infty} (-1)^n b_n$

Maximum possible error for f(x) is

$$b_{N+1} = a_{N+1} \big| x - x_0 \big|^{N+1}$$

2.2.2 "Positive" Series $S = \sum_{n=0}^{\infty} a_n (x - x_0)^n, a_n (x - x_0)^n > 0$

If it converges when $|x - x_0| < 1$, and $|a_{n+1}| < |a_n|$, then

$$S - S_N < \frac{\left|a_{N+1}\right| \left|x - x_0\right|^{N+1}}{1 - \left|x - x_0\right|}$$

Note: In practice, Taylor Expansion is useful when $|x - x_0| << 1$, and an upper limit of error ϵ to be tolerated is given, even if the series converges for any value of $(x - x_0)$.

2.3 L'Ĥopital's Rule

$$\text{Theorem 1: } \lim\nolimits_{x\to x_0} \frac{f(x)}{g(x)} \mathop{\to}\limits_{g(x_0)=0}^{f(x_0)=0} \frac{0}{0} \implies \lim\nolimits_{x\to x_0} \frac{f(x)}{g(x)} \longrightarrow \frac{f'(x)}{g'(x)}$$

Theorem 2: $\lim_{x\to x_0} \frac{f(x)}{g(x)} \xrightarrow[q(x_0)=0]{\infty} \frac{\infty}{\infty} \implies \lim_{x\to x_0} \frac{f(x)}{g(x)} \longrightarrow \frac{f'(x)}{g'(x)}$ (proved by the inverse of the fraction)

3 Complex Analysis

Convergence of the Complex Series $\sum_{n=1}^{\infty} c_n = \sum_{n=1}^{\infty} a_n + i \sum_{n=1}^{\infty} b_n \implies a_n$ and b_n both converges.

Complex Power Series $\sum_{n=0}^{\infty} c_n z^n = f(z)$ with convergence region $\lim_{n\to\infty} \left|\frac{c_{n+1}}{c_n}z\right| < 1$.

Euler's Formula: $e^z = \cos z + i \sin z$ help solving the inverse trigonometric functions.

3.1 Complex Functions f(z) = f(x+iy) = u(x,y) + iv(x,y)

Analytic Function

Property: $f'(z) = \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\delta z}$ is **unique** regardless how $\Delta z \to 0$.

Necessary and Sufficient Conditions:

Cauchy-Riemann Conditions in Cartesian Coordinate: $\partial_x u = \partial_y v$, $\partial_y u = -\partial_x v$

Cauchy-Riemann Conditions in Polar Coordinate: $\partial_{\theta}u=-\rho\partial_{\rho}v,\quad \partial_{\theta}v=\rho\partial_{\rho}u$

Isolated Zeros

If f is analytic at z_0 , then f has a zeo of order $m \ge 1$ at z_0 if

$$f(z_0) = f'(z_0) = \dots = f^{(m-1)}(z_0) = 0$$

and $f^{(m)}(z_0) \neq 0$. Note that f becomes a **branch point** if m is not an integer, and that f is not analytic at that point.

Theorem: If z = a is a zero of f(z) which is not a constant at $\mathring{U}(a)$, then $\exists \rho > 0$, f(z) doesn't have any zeros in the region $0 < |z - a| < \rho$.

3.2 Line Integrals

With the substitution of line c: y = g(x), dy = g'(x)dx

$$\lim_{\delta z_n \to 0} \sum_{z_n \in c} f(z_n) \Delta z_n = \int_c f(z) \mathrm{d}z = \int_c f(x+iy) (\mathrm{d}x+i\mathrm{d}y) = \int_a^b f(x+ig(x)) (1+ig'(x)) \mathrm{d}x \implies \int_c f(z) \mathrm{d}z = -\int_{-c} f(z) \mathrm{d}z$$

Cauchy's Theorem for Analytic Functions:

$$\oint_C f(z) \mathrm{d}z = 0$$

Two Foundation Lemmas - Small & Big Arc Lemma

• Small Arc Lemma (小圆弧引理):

If f(z) is continuous in $\mathring{U}(a)$, and (z-a)f(z) approaches k consistently as $|z-a|\to 0$ within $\theta_1\leq \arg(z-a)\leq \theta_2$, then

$$\lim_{\delta \to 0} \int_{C_\delta} f(z) \mathrm{d}z = ik(\theta_2 - \theta_1)$$

● Big Arc Lemma (大圆弧引理):

If f(z) is continuous in $\mathring{U}(\infty)$, and zf(z) approaches K consistently as $z\to\infty$ within $\theta_1\leq \arg(z-a)\leq \theta_2$, then

$$\lim_{R\to\infty}\int_{C_R}f(z)\mathrm{d}z=iK(\theta_2-\theta_1)$$

Cauchy's Integral Formula: f(z) is analytic inside and on the contour, then for $\forall z_0$ inside the contour,

$$\implies f(z_0) = \frac{1}{2\pi i} \oint_C \frac{f(z) dz}{z - z_0} \implies f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + Re^{i\theta}) d\theta$$
 (Mean Value Theorem 均值定理)

i.e. Get full information inside by the information on the boundary only.

Note: If z_0 were outside the contour, then

- \bullet If f is analytic inside C, then $\frac{1}{2\pi i}\oint_C \frac{f(z)\mathrm{d}z}{z-z_0}=0$
- If f is analytic outside C and $\lim_{z\to\infty} f(z) = K$, then $\frac{1}{2\pi i} \oint_C \frac{f(z)dz}{z-z_0} = f(z_0) K$
- The above two lemmas are NOT contradictory. In fact, if a complex function is analytic and bounded within $U(\infty)$, then it must be a constant function.

Liouville Theorem (in Complex Analysis) 刘维尔定理

Every bounded entire function must be constant. That is, every holomorphic function f for which there exists a positive number M such that $|f(z)| \leq M$ for all $z \in \mathbb{C}$ is constant. Equivalently, non-constant holomorphic functions on \mathbb{C} have unbounded images.

Poisson's Formula

Idea: If f(z=x+iy)=u(x,y)+iv(x,y) is analytic on the upper-half plane and that we only know the value of u(x,0) or v(x,0), we can first get the value of $f(x \in \mathbb{R})$, then apply the Cauchy's Integral Formula to get all the complex value on the upper-half plane:

$$f(z) = \frac{1}{\pi i} \int_{-\infty}^{\infty} \frac{u(\xi, 0)}{\xi - (x + iy)} d\xi = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{v(\xi, 0)}{\xi - (x + iy)} d\xi$$

$$f(z) = \frac{y}{\pi} \int_{-\infty}^{\infty} \frac{f(\xi)}{(\xi - x)^2 + y^2} \mathrm{d}\xi = \frac{1}{\pi i} \int_{-\infty}^{\infty} \frac{(\xi - x)f(\xi)}{(\xi - x)^2 + y^2} \mathrm{d}\xi$$

3.3 Taylor Series

Derivative of f(z)

$$f^{(n)}(a) \equiv \frac{\mathrm{d}^{(n)} f}{\mathrm{d} a^n} = \frac{n!}{2\pi i} \oint_C \frac{f(z) \mathrm{d} z}{(z-a)^{n+1}}$$

Taylor Series $f(z) = \sum a_n (z - z_0)^n$

Suppose f(z) has a singular point at z_1 , we can expand f(z) at z_0 :

$$\begin{split} f(z) &= \frac{1}{2\pi i} \oint_C \frac{f(z') \mathrm{d}z'}{z'-z} = \frac{1}{2\pi i} \sum_{n=0}^{\infty} (z-z_0)^n \oint_C \frac{f(z') \mathrm{d}z'}{(z'-z_0)^{n+1}} = \sum_{n=0}^{\infty} a_n (z-z_0)^n \\ a_n &\equiv \frac{1}{2\pi i} \oint_C \frac{f(z') \mathrm{d}z'}{(z'-z_0)^{n+1}} = \frac{1}{n!} \frac{\mathrm{d}^n f(z_0)}{\mathrm{d}z^n} \end{split}$$

3.4 Lauren Series

Suppose f(z) has a pole at z_0 , define the hole as order $N \ge 1$ at z_0 if $\lim_{z \to z_0} (z - z_0)^N f(z)$ is finite and non-zero. ("Essential Pole" if such $N \to \infty$ like $e^{1/z}$ at z = 0)

f(z) can be expressed as

$$f(z) = \sum_{m=0}^{\infty} a_m (z-z_0)^m + \sum_{n=1}^{N} \frac{b_m}{(z-z_0)^n} \text{ as } \lim_{z \to z_0} (z-z_0)^N f(z) = b_N$$

$$f(z) = \frac{1}{2\pi i} \oint_{C_1} \frac{f(z^\prime) \mathrm{d}z^\prime}{z^\prime - z} + \oint_{C_2} \frac{f(z^\prime) \mathrm{d}z^\prime}{z^\prime - z} = I_1 + I_2$$

We have

$$a_n = \frac{1}{2\pi i} \oint_{C_1} \frac{f(z') \mathrm{d}z'}{(z'-z_0)^{n+1}} \quad b_1 = \frac{1}{2\pi i} \oint_{C_2} f(z') \mathrm{d}z' \quad b_{n+1} = \frac{1}{2\pi i} \oint_{C_2} f(z') (z'-z_0)^n \mathrm{d}z' \quad \text{(Not Useful)}$$

Note that when f(z) is analytic at z_0 , a_n becomes the same as the coefficient in Taylor Series, and $b_i \equiv 0$ for $\forall i$.

3.5 Residue Theorem 留数定理

We want to evaluate $\oint_C f(z)dz$ around the pole. By applying the Lauren Series, one can prove that

$$\oint_C f(z) \mathrm{d}z = 2\pi i b_1$$

To find b_1 , notice that $\lim_{z\to z_0}(z-z_0)^Nf(z)$ is finite and all the other terms in the Lauren Series would disappear by taking (N-1) times derivatives and taking $z=z_0$:

$$b_1 = \lim_{z \rightarrow z_0} \frac{g^{(M-1)}(z)}{(M-1)!}, \text{ where } g(z) \equiv (z-z_0)^M f(z), M \geq N$$

We then define the coefficient b_1 of the Lauren Series at the pole z_0 as $b_1(z_0) \equiv R(z_0)$, and refer as the **residue** of f(z) at z_0

If f(z) has singular points z_1,z_2,\cdots,z_n inside contour C, then

$$\oint_C f(z) \mathrm{d}z = 2\pi i \sum_{n=1}^N R(z_n)$$

Noun	Explanation
Analytic (Holomorphic) Point	A point which the function has a derivative at and in a neighborhood around that point
Branch Point 分支点	A point such that all of its neighborhoods contain a point that has more than n values
Pole	A point of a function f if it is a zero of the function $1/f$ which is analytic
Regular Point	A point in the function's domain where the function is differentiable
Singularity 奇点	Essential Singularity: $\lim_{z\to z_0}(z-z_0)^Nf(z)$ is always infinite Isolated Singularity: One that has no other singularities close to it Movable Singularity, Removable Singularity

Table 1: Explanation of Important Nouns

${\bf Homework}~{\bf 4}$

Problem 1

Evaluate the integral $\int_1^i z dz$ along the indicated paths.

Evaluate $\oint_C (\bar{z}-3) dz$ where C is the indicated closed curve along the first quadrant part of the circle |z|=2, and the indicated parts of the x and y axes. Hint: Don't try to use Cauchy's theorem!

Evaluate the following integrals:

- (a) $\oint_C \frac{\sin 2z \mathrm{d}z}{6z-\pi}$ where C is the circle |z|=3
- (b) $\oint \frac{e^{3z} \, \mathrm{d}z}{z \ln 2}$ if C is the square with vertices $\pm 1 \pm i$

For each of the following functions, say whether the indicated point is regular, an essential singularity, or a pole, and if a pole of what order it is.

- (a) $\frac{e^z 1 z}{z^2}$, z = 0
- (b) $\frac{\sin z}{z^3}$, z = 0
- (c) $\frac{z^2-1}{(z-1)^2}$, z=1
- (d) $\frac{\cos z}{(z-\pi/2)^4}$, $z = \pi/2$

Find the residues of the following functions at the indicated points. Try to select the easiest of the methods outlined above. Check your results by computer.

(a)
$$\frac{1}{(3z+2)(2-z)}$$
 at $z=-\frac{2}{3}$ and $z=2$

(b)
$$\frac{z+2}{4z^2-1}$$
 at $z=\frac{1}{2}$ and $z=-\frac{1}{2}$

(c)
$$\frac{\cosh z - 1}{z^7}$$
 at $z = 0$

(d)
$$\frac{e^{iz}}{(z^2+4)^2}$$
 at $z=0$ and $z=\frac{1}{2}$