ZESTAW 1. ZBIORY & LOGIKA

Kategoria 1

- 1. Dane są zbiory: $A = \{1, 2, 4, 5, 8, 16\}$, $B = \{4, 5, 8, 11\}$, $C = \{1, 7, 8, 15, 16\}$. Korzystając z symboli sumy i iloczynu zbiorów, uzupełnij prawe strony równości:
 - (a) $\{4, 5, 8\} = \dots$
 - (b) $\{1, 2, 4, 5, 8, 11, 16\} = \dots$
 - (c) $\{1, 2, 4, 5, 7, 8, 15, 16\} = \dots$
 - (d) $\{8\} = \dots$
 - (e) $\{1, 8, 16\} = \dots$
 - (f) $\{1, 2, 4, 5, 7, 8, 11, 15, 16\} = \dots$
 - (g) $\{1, 4, 5, 7, 8, 11, 15, 16\} = \dots$
- 2. Dane są zbiory: $A = \{1, 3, 5, 7\}$, $B = \{5, 7, 8, 9\}$. Wyznacz zbiór X taki, że $(A \setminus X) \cup (X \setminus B) = \{1, 3\}$, $\{3, 9\} \subset X$ oraz |X| = 4.
- 3. Niech a, b, c, d będą różnymi liczbami naturalnymi. Wiadomo, że zbiory $\{a, b, 6\}$, $\{6, 7, c\}$, $\{a, b, 8\}$, $\{b, d, 9\}$ są podzbiorami zbioru $\{a, b, c, d\}$. Wyznacz a, b, c, d.
- 4. Elementami zbiorów A, B, C są liczby $1, 2, \ldots, 9$. Wiadomo, że $A \cap B = \{1, 2\}$, $B \cap C = \{3, 7\}$, $A \cup B = \{1, 2, 3, 6, 7, 8\}$, $A \cup C = \{1, 2, 3, 4, 5, 7, 9\}$. Wyznacz elementy każdego ze zbiorów A, B, C.
- 5. O trzech zbiorach A, B i C wiadomo, że $A \subset B$ i $B \not\subset C$. Rozstrzygnij, czy zbiór A może być podzbiorem zbioru C?
- 6. O trzech zbiorach A, B i C wiadomo, że $A \subset B$ i $A \not\subset C$. Rozstrzygnij, czy zbiór B może być podzbiorem zbioru C?
- 7. Uzasadnij w języku logiki, że dla dowolnych zbiorów *A*, *B* i *C* prawdziwa jest równość

$$(A \setminus B) \cup (C \setminus B) = (A \cup C) \setminus B.$$

- 8. Co można powiedzieć o zbiorach A i B, jeśli $A \cup B = A \cap B$?
- 9. Rozstrzygnij, czy poprawne jest rozumowanie (podane przez Orygenesa w III w.): *Jeśli wiesz, że umarłeś, to umarłeś i jeżeli wiesz, że umarłeś, to nie umarłeś, więc nie wiesz, że umarłeś.*
- 10. Spośród 40 uczniów pewnej klasy 17 gra w szachy, 21 w brydża, a 6 gra w szachy i w brydża. Ilu uczniów:
 - (a) gra w brydża, a nie gra w szachy;
 - (b) nie gra ani w szachy, ani w brydża?
- 11. Niech |X| = 1000 i $X = A \cup B \cup C$. Czy jest możliwe, aby |A| = 510, |B| = 490, |C| = 427, $|A \cap B| = 189$, $|A \cap C| = 140$, $|B \cap C| = 85$?