ملخص لقوانين وحدة تطور جملة ميكانيكية

الجزء الأول

	و إضافات	لاحظات و	۵		العبارة الحرفية	انين و الخواص	القو	
شعاع الموضع يجمع بين مبدأ الإحداثيات و موضع مركز عطالة الجسم.					$\overrightarrow{OG} = x\overrightarrow{i} + y\overrightarrow{j} + z\overrightarrow{k}$		عبارة شعاع الموضع	
وحدة السرعة $m.s^{-1}$	بالنسبة للزمن و	اع الموضع	اع السرعة هو مشتق شعا مماس للمسار في كل لحذ	شع d od	$\frac{d\vec{x}}{dt} = \frac{dx}{dt} \vec{i} + \frac{dy}{dt} \vec{j} + \frac{dz}{dt} \vec{k}$	عبارة شعاع السرعة		
وحدة التسارع سر	شعاع التسارع هو مشتق شعاع السرعة بالنسبة للزمن . و هو المشتق الثاني لشعاع الموضع بالنسبة للزمن .			$\vec{a} = \frac{d\vec{v}}{dt} =$ $\vec{a} = \frac{d^2\vec{v}}{dt^2}$ $\vec{a} = \frac{d^2\vec{v}}{dt^2}$	$\vec{a} = \frac{d\vec{v}}{dt} = \frac{dv_x}{dt}\vec{i} + \frac{dv_y}{dt}\vec{j} + \frac{dv_z}{dt}\vec{k}$ $\vec{a} = \frac{d^2\vec{OG}}{dt^2} = \frac{d^2x}{dt^2}\vec{i} + \frac{d^2y}{dt^2}\vec{j} + \frac{d^2z}{dt^2}\vec{k}$		عناصر الحركة	
$m.s^{-2}$	۵ سام	ول على المد	اع التسارع المماسي محمو	$a_t = \frac{dv}{dt}$	$a_t = rac{dv}{dt}$ طویلته $ec{a}_t = rac{dv}{dt} ec{u}$			
	کز فیسمی مرکزي .	<i>ه</i> نحو المرك	: نصف قطر المسار بالـ: عا التسارع الناظمي متجه	$a_n = \frac{v^2}{R}$	طویلته $\overrightarrow{a}_n = rac{d \overrightarrow{u}}{dt} v$	التسارع الناظمي (المركزي)		
$\vec{a} imes \vec{v} < 0$ الحركة متباطئة $\vec{a} imes \vec{v} = 0$ الحركة مستقيمة الحركة مستقيمة $\vec{a} imes \vec{v} = 0$			$egin{aligned} d = vt &, & v = Cst \ a_t = 0 &, & a_n = 0 \ dots & t &, & ext{things} : lbanks & t &, & ext{things} : egin{aligned} x_0 & & & & & & & & & & & & & & & & & & &$		المعادلة الزمنية $x=vt+x_0$	الحركة المستقيمة المنتظمة		
و دائرية منتظمة إذا كان \overrightarrow{v} عمودي على \overrightarrow{v} عمودي على a : الزاوية الإبتدائية c : السرعة الزاوية للحركة بالـ: c : دور الحركة وهو الزمن اللازم لدورة تامة c بالـ: c			$v_A = at$, $v_B^2 - at$ $u_A = at$, $u_B^2 - at$ $u_A = at$, $u_B^2 - at$	$a_n = 0$ ₀ t	المعادلة الزمنية $x = \frac{1}{2} at^2 + v_0 t + x_0$		طبيعة الحركة	
		η: ω	$\overrightarrow{v} \neq Cst$, $a = a_n$, $\alpha = \omega t$, $T = \frac{2}{\omega}$	$\omega = \frac{\nu}{R}$	المعادلة الزمنية $lpha=\omega t+lpha_0$	الحركة الدائرية المنتظمة		
: شعاع سرعة مركز عطالة جملة . \overrightarrow{v}_G : شعاع سرعة مركز عطالة جملة . $\sum \overrightarrow{F}_{ext}$) F . =	$0 \Leftrightarrow \vec{v}_G = Cst$	القانون الأول لنيوتن		
	. Kg : كتلة الجملة باك $m{m}$			_	$\sum \vec{F}_{ext} = m \vec{a}$		قوانین ا نیوتن ا	
			شعاع قوة تأثير ال: $\overrightarrow{F}_{A/B}$: شعاع قوة تأثير ال	$\mathbf{F}_{A/P} \equiv -\mathbf{F}_{P/A}$		القانون الثالث لنيوتن		
دارات إهليجية حول حرقيها و في المرجع الأرضي				ك الكواكب في مداراً ذا الأخير أحد محرق	في المرجع الشمسي المركزي تتحرك الكواكب في ما الكوكب الجاذب بحيث يكون هذا الأخير أحد مع المركزي تدور الأقمار الصناعية في مدارات إهليج			
P F A			قانون المساحات : يمسح المستقيم الواصل بين مركز الكوكب السيار و مركز الكوكب الجاذب مساحات متساوية في أزمنة متساوية .			القانون الثاني لكبلر	قوانين	
D A B			في المرجع الشمسي المركزي تكون النسبة بين مربعات أدوار الكواكب و $rac{T^2}{a^3}=m{k}$ مكعبات أنصاف المحاور الكبيرة لمداراتها دائما ثابتة $rac{T^2}{(R+m{h})^3}=m{k}$ إذا إعتبرنا المسار دائريا يكون			القانون الثالث لكبلر	<u>کبا ر</u>	
$G = 6,67.10^{-11} \text{N.m}^2. \text{Kg}^{-2}$ ثابت الجذب العام أو الثابت الكوني : $G = 6,67.10^{-11} \text{N.m}^2$ و $M_1 \in \mathcal{M}$ كتلتا الجسمان المتجاذبان بالـ : $M_2 \in \mathcal{M}_1$					$F_{A/B} = F_{B/A} = \frac{G M_1 M_2}{d^2}$			
<i>m</i> : الـ			ا و M_2 : كثلثا الجس d : البعد بين الجسمين d : كتلة الكوكب الجا M	$v = \sqrt{\frac{G M}{r}}$		سرعة كوكب أو قمر صناعي	حركة الكواكب و الأقمار	
m: و السيار بال m : الجاذب و السيار بال m : الجاذب بال m : كوكب الجاذب و القمر الصناعي بال m : كوكب الجاذب و القمر الصناعي بال			r: البعد بين مركزي الك R: نصف قطر الكوكب h: الإرتفاع بين سطح ا	$T=2\pi\sqrt{\frac{r^3}{GM}}$	وا $T=2\pi\sqrt{rac{(R+h)^3}{GM}}$	دور كوكب أو قمر صناع <i>ي</i>	الصناعية	

ملخص لقوانين وحدة تطور جملة ميكانيكية

الجزء الثاني

وانين و الخواص العبارة الحرفية $m.s^{-1}$ القوى التي قوة ألا العبارة الحرفية الأرضية $m.s^{-1}$ العبرة العبرة المائع بالنا $m.s^{-1}$ العبرة المائع بالنا $m.s^{-1}$ العبرة المائع بالنا $m.s^{-1}$ العبرة المائع بالنا $m.s^{-1}$ المائع بالمائع بالمائع بالنا $m.s^{-1}$ المائع بالمائع				
$kg.m^3$: الكتلة الحجمية للمائع بال: g $g=10\ N.kg^{-1}$: الكتلة الحجمية للجسم بال: $g=10\ N.kg^{-1}$: الكتلة الحجمية للجسم بالكتلة الحجمية بالكتلة الحجمية بالكتلة الحجمية بالكتلة الحجمية بالكتلة الحجمية بالكتلة بالكتلة الحجمية بالكتلة بالكتلة الحجمية بالكتلة بالكتلة الحجمية بالكتلة بالكتلة بالكتلة بالكتلة الحجمية بالكتلة				
$kg.m^3$:الجسم الد: ρ_s الكتلة الحجمية للجسم بالد: m^3 :الإرتفاع عن سطح الأرض بالد: m^3 الجسم المتحرك بالد: $kg.m^3$ الجسم المتحرك بالد: $kg.m^3$ الجسم المتحرك بالد: $kg.m^3$ السرعة الحدية على الجسم المتحرك بالد: $kg.m^3$ السرعة الحدية $v_l = \frac{mg}{k} \left(1 - \frac{\rho_f}{\rho_s}\right)$ $v = \frac{mg}{k} \left(1 - \frac{\rho_f}{\rho_s}\right) \left(1 - e^{-\frac{k}{m}t}\right)$ $v = \frac{mg}{k} \left(1 - \frac{\rho_f}{\rho_s}\right) \left(1 - e^{-\frac{k}{m}t}\right)$ $v = \frac{mg}{k} \left(1 - \frac{\rho_f}{\rho_s}\right)$ $v = \frac{mg}{k} \left(1 - \frac{\rho_f}{\rho_s}\right) \left(1 - e^{-\frac{k}{m}t}\right)$ $v = \frac{mg}{k} \left(1 - \frac{\rho_f}{\rho_s}\right) \left(1 - e^{-\frac{k}{m}t}\right)$ $v = \frac{mg}{k} \left(1 - \frac{\rho_f}{\rho_s}\right)$ $v = \frac{mg}{k} \left(1 - \frac{\rho_f}{\rho_s}\right) \left(1 - e^{-\frac{k}{m}t}\right)$ $v = \frac{mg}{k} \left(1 - \frac{\rho_f}{\rho_s}\right) \left(1 - e^{-\frac{k}{m}t}\right)$ $v = \frac{mg}{k} \left(1 - \frac{\rho_f}{\rho_s}\right) \left(1 - e^{-\frac{k}{m}t}\right)$ $v = \frac{mg}{k} \left(1 - \frac{\rho_f}{\rho_s}\right) \left(1 - e^{-\frac{k}{m}t}\right)$ $v = \frac{mg}{k} \left(1 - \frac{\rho_f}{\rho_s}\right) \left(1 - e^{-\frac{k}{m}t}\right)$ $v = \frac{mg}{k} \left(1 - \frac{\rho_f}{\rho_s}\right) \left(1 - e^{-\frac{k}{m}t}\right)$ $v = \frac{mg}{k} \left(1 - \frac{\rho_f}{\rho_s}\right) \left(1 - e^{-\frac{k}{m}t}\right)$ $v = \frac{mg}{k} \left(1 - \frac{\rho_f}{\rho_s}\right)$ $v = \frac{mg}{k} \left(1 - \frac{\rho_f}{\rho_s}\right) \left(1 - e^{-\frac{k}{m}t}\right)$ $v = \frac{mg}{k} \left(1 - \frac{\rho_f}{\rho_s}\right)$ $v = \frac{mg}{k} \left(1 - \frac{\rho_f}{\rho_s$				
m^3 : ثابت الإحتكاك : V_s عديم الجسم المتحرك باك: v_s السرعة الحدية على السرعة الحدية $v_l = \frac{mg}{k} \left(1 - \frac{\rho_f}{\rho_s}\right)$ $v = \frac{mg}{k} \left(1 - \frac{\rho_f}{\rho_s}\right) \left(1 - e^{-\frac{k}{m}t}\right)$ عدل المعادلة هو بطريقة أولر السرعة الحدية dv dv dv dv dv dv dv dv				
السرعة الحدية المعادلة هو السرعة الحدية $v_l=rac{mg}{k}\Big(1-rac{ ho_f}{ ho_s}\Big)$ $v=rac{mg}{k}\Big(1-rac{ ho_f}{ ho_s}\Big)\Big(1-e^{-rac{k}{m}t}\Big)$ $dv+rac{dv}{dt}+rac{k}{m}v=g\Big(1-rac{ ho_f}{ ho_s}\Big)$ $f=kv$ السرعة الحدية وط السرعة أولر dv k' k' k' k' k' k' k' k'				
وط اللتان تخضع وط وطريقة أولر السرعة الحدية ولى المراكب والمراكب والمر				
وط اللتان تخضع dv اللتان تخضع dv وط اللتان تخضع dv وط اللتان تخضع وط اللتان واللتان والتان واللتان والتان والتان والتان واللتان والتان والتان والتان والتان والتان والتان والتان والتان وال				
وط اللتان تخضع dv اللتان تخضع dv وط اللتان تخضع dv وط اللتان تخضع وط اللتان واللتان والتان واللتان والتان والتان والتان واللتان والتان والتان والتان والتان والتان والتان والتان والتان وال				
$ av R$, $ p_f\rangle$, $ f_{-1}\rangle$				
$v_l = \left \frac{mg}{k'} \left(1 - \frac{\rho_f}{\rho_s} \right) \right v_{n+1} = v_n + (A - Bv_n^2) \Delta t \left \frac{dt}{dt} + \frac{m}{m} v^2 \right = g \left(1 - \frac{\rho_f}{\rho_s} \right) f = k \cdot v \cdot \Delta \Delta$				
$ \kappa \setminus \rho_s $				
32 m				
$\sigma: U$ الثابت المميز للحركة (ثابت الزمن) باك $\sigma: \sigma: \sigma$				
$kg.s^{-1}$ الشعوط $kg.s^{-1}$ الجميع الحميع الجميع الحميع الحميع الجميع الحميع الحم				
$kg.s$ النَّابِ الزَّمن $kg.m^{-1}$ النَّابِ الزَّمن $kg.m^{-1}$ النَّابِ الزَّمن $kg.m^{-1}$ النَّابِ الزَّمن $kg.m^{-1}$ عالم النَّابِ الزَّمن $kg.m^{-1}$ النَّابِ الزَّمن $kg.m^{-1}$ النَّابِ الزَّمن $kg.m^{-1}$ النَّابِ النَّابِ الزَّمن $kg.m^{-1}$ النَّابِ النَّابِ النَّابِ الزَّمن $kg.m^{-1}$ النَّابِ الْمَابِلَ الْمَابِ الْمَابِلَّ الْمَابِ الْمَابِلْمَابِ الْمَابِ الْمَابِ الْمَابِلَّ الْمَابِي الْمَابِي الْمَابِلَّ الْمَابِ الْمَابِ الْمَابِ الْمَابِ الْمَابِ الْمَابِ الْمَ				
ثابت الإحتكاك $k=6\pi\eta r$ يتعلق بلزوجة المائع و شكل الجسم فبالنسبة لكرة نصف قطرها r يكون η . معامل اللزوجة				
$k' = 0,22\pi ho_fr^2$ ثابت الإحتكاك k' لا يتعلق بلزوجة المائع بل يتعلق فقط بشكل الجسم فبالنسبة لكرة نصف قطرها r يكون k'				
$egin{array}{c cccc} 0 & m & \dfrac{dv}{dt} = g & \dfrac{dv}{dt} = g & a = g & c & ec{a} = ec{g} & c & c & ec{g} & c & ec{$				
20 - 24 20				
if the model $n_n = n_n = at$				
1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				
\vec{P} العلاقة بين المسافة المقطوعة $h=rac{1}{2}gt^2+v_0t$ حيث t هي المدة المستغرقة لقطع المسافة المقطوعة $h=rac{1}{2}gt^2+v_0t$				
Γ				
العلاقة بين السرعة و المسافة $v_B^2-v_A^2=2gh$ حيث h هي المسافة المقطوعة				
عدم المواجعة جنوب من القرار القرار المواجعة المو				
التسارع $a=g$ و $a=g$ التسارع $a=g$ التسارع $a=g$ التسارع $a=g$ التسارع $a=g$ التسارع الأفقي الذي قذفت منه زاوية				
$x=v_0\coslpha$ السرعة على المحور الأفقي الحركة منتظمة على المحور الأفقي المحور المحرر				
$z=-rac{1}{2}at^2+v_0\sin\alpha t$ خاى الحركة متغير بانتظام على المحور الشاقول $v_0=v_0\sin\alpha$ السرعة الإبتدائية على الحركة متغير بانتظام على المحور الشاقول				
المحور الساقوني				
$v_z = -gt + v_0 \sin lpha$ السرعة على المحور الشاقولي				
$z=-rac{g}{2v_0^2\cos^2lpha}x^2+x anlpha$ عادلة المسار				
. في فاصلة المدى $d=rac{v_0^2\sin2lpha}{a}$ المدى هي أكبر مسافة تقطعها القذيفة على المحور الأفقي المحور الأفقي				
بية $h=rac{v_0^2-3}{2g}$ الذروة هي أعلى نقطة تصلها القذيفة , شعاع السرعة عند الذروة يكون $h=rac{v_0^2\sin^2\alpha}{2g}$ تريب الذروة $h=rac{v_0^2\sin^2\alpha}{2g}$				
برعة القذيفة في لحظة معتبرة $v_B^2=v_A^2+2g(h_A-h_B)$ الطاقة الميكانيكية E هي مجموع الطاقتين الكامنة الثقالية و الحركية .				
1				
$E_{pp} = -rac{1}{2} mg^2 t^2 + mg v_0 sin lpha t \qquad \Leftrightarrow \qquad E_{pp} = mgz$ الطاقة الكامنة				
$E_c=rac{1}{2}mg^2t^2-mgv_0sinlphat+rac{1}{2}mv_0^2$ \Leftrightarrow $E_c=rac{1}{2}mv^2$ الطاقة الحركية				
$h=6,63.10^{-34}~J.s:$ ثابت بلانك $h=6,63.10^{-34}~J.s:$ فرضية بلانك فرضية الله فرضية الله فرضية الله الله الله الله الله الله الله الل				
Hz : تواتر الإشعاع باك: $ u$				
Total				
و تواتره λ_{vid} : طول موجة الإشعاع في الفراغ				