Regression for Exponential Growth - Applied to the Corona Virus

See https://towardsdatascience.com/modeling-exponential-growth-49a2b6f22e1f (https://towardsdatascience.com/modeling-exponential-growth-49a2b6f22e1f)

```
In [2]:
          import statsmodels.api as sm
          import pandas as pd
          import numpy as np
          import matplotlib.pyplot as plt
In [3]:
          confirmed df = pd.read csv('https://raw.githubusercontent.com/CSSEGIS
          andData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/
          time series covid19 confirmed global.csv')
In [4]:
          confirmed df
Out[4]:
                Province/State
                              Country/Region
                                                               1/22/20
                                                                       1/23/20
                                                                              1/24/20
                                                                                      1/25/20
                                                                                              1/26
                                                 Lat
                                                        Long
             0
                                                                    0
                                                                            0
                                                                                   0
                                                                                           0
                         NaN
                                  Afghanistan
                                              33.0000
                                                      65.0000
             1
                         NaN
                                     Albania
                                              41.1533
                                                      20.1683
                                                                    0
                                                                            0
                                                                                   0
                                                                                           0
             2
                                                                    0
                                                                            0
                                                                                   0
                                      Algeria
                                              28.0339
                                                       1.6596
                                                                                           0
                         NaN
             3
                         NaN
                                     Andorra
                                              42.5063
                                                       1.5218
                                                                                   0
                                                                                           0
             4
                                             -11.2027
                                                      17.8739
                                                                    0
                                                                            0
                                                                                   0
                                                                                           0
                         NaN
                                      Angola
             ...
           249
                      Anguilla
                              United Kingdom
                                              18.2206
                                                      -63.0686
                                                                    0
                                                                            0
                                                                                   0
                                                                                           0
                  British Virgin
           250
                                                                                   0
                               United Kingdom
                                              18.4207
                                                     -64.6400
                                                                    n
                                                                            0
                                                                                           0
                      Islands
                    Turks and
                                                                            0
                                                                                   0
           251
                               United Kingdom
                                              21.6940 -71.7979
                                                                                           0
                 Caicos Islands
                                                                                   0
           252
                         NaN
                                MS Zaandam
                                               0.0000
                                                       0.0000
                                                                    0
                                                                            0
                                                                                           0
                                                                                   0
           253
                                                                    0
                                                                            0
                                                                                           0
                         NaN
                                    Botswana -22.3285
                                                      24.6849
          254 rows × 73 columns
In [5]:
          # US data only
          us data = confirmed df.loc[confirmed df['Country/Region'] == 'US']
          us data
Out[5]:
                Province/State Country/Region
                                                        Long 1/22/20 1/23/20
                                                                              1/24/20
                                                                                     1/25/20
                                                                                             1/26/2
                                                 Lat
           225
                         NaN
                                         US 37.0902 -95.7129
                                                                           1
                                                                                           2
          1 rows × 73 columns
```

```
In [7]: us_time_series_only = us_data.drop(["Province/State", "Country/Regio
    n", "Lat", "Long"], axis=1)
    us_time_series_only
```

Out[7]:

	1/22/20	1/23/20	1/24/20	1/25/20	1/26/20	1/27/20	1/28/20	1/29/20	1/30/20	1/31/20	 _;
225	1	1	2	2	5	5	5	5	5	7	

1 rows × 69 columns

In [9]: us_time_series_only.transpose().plot(legend=False)

Out[9]: <matplotlib.axes._subplots.AxesSubplot at 0x7fd8dda0c898>

In [11]: transposed = us_time_series_only.transpose()
 transposed

Out[11]:

	225
1/22/20	1
1/23/20	1
1/24/20	2
1/25/20	2
1/26/20	5
3/26/20	83836
3/27/20	101657
3/28/20	121478
3/29/20	140886
3/30/20	161807

69 rows × 1 columns

```
In [17]: transposed.index
Out[17]: Index(['1/22/20', '1/23/20', '1/24/20', '1/25/20', '1/26/20', '1/27/2
         0',
                 '1/28/20', '1/29/20', '1/30/20', '1/31/20', '2/1/20', '2/2/2
         Θ',
                 '2/3/20', '2/4/20', '2/5/20', '2/6/20', '2/7/20', '2/8/20',
         '2/9/20'
                 '2/10/20', '2/11/20', '2/12/20', '2/13/20', '2/14/20', '2/15/2
         0',
                 '2/16/20', '2/17/20', '2/18/20', '2/19/20', '2/20/20', '2/21/2
         0',
                 '2/22/20', '2/23/20', '2/24/20', '2/25/20', '2/26/20', '2/27/2
         0',
                 '2/28/20', '2/29/20', '3/1/20', '3/2/20', '3/3/20', '3/4/20',
         '3/5/20'
                 3/6/20', '3/7/20', '3/8/20', '3/9/20', '3/10/20', '3/11/20',
         '3/12/20'
                 '3/13/20', '3/14/20', '3/15/20', '3/16/20', '3/17/20', '3/18/2
         0',
                 '3/19/20', '3/20/20', '3/21/20', '3/22/20', '3/23/20', '3/24/2
         Θ',
                 '3/25/20', '3/26/20', '3/27/20', '3/28/20', '3/29/20', '3/30/2
         0'],
               dtype='object')
```

In [32]: transposed = transposed.rename(columns={225:"Confirmed"}) transposed

Out[32]:

	Confirmed
1/22/20	1
1/23/20	1
1/24/20	2
1/25/20	2
1/26/20	5
3/26/20	83836
3/27/20	101657
3/28/20	121478
3/29/20	140886
3/30/20	161807

69 rows × 1 columns

```
In [33]: transposed.columns
```

Out[33]: Index(['Confirmed'], dtype='object')

```
In [46]: for index in transposed.index:
    print(index, ": ", transposed.Confirmed.get(index))
```

1/22/20 : 1 1/23/20 1 2 1/24/20 2 1/25/20 5 1/26/20 1/27/20 5 1/28/20 5 5 1/29/20 1/30/20 5 1/31/20 2/1/20: 8 2/2/20 8 2/3/20 11 2/4/20 11 2/5/20 11 2/6/20 11 2/7/20 11 2/8/20 11 2/9/20: 11 2/10/20 : 11 2/11/20 12 2/12/20 12 2/13/20 13 2/14/20 13 2/15/20 13 2/16/20 13 2/17/20 13 2/18/20 13 13 2/19/20 2/20/20 13 2/21/20 15 2/22/20 15 2/23/20 15 2/24/20 51 2/25/20 51 2/26/20 57 2/27/20 58 2/28/20 60 2/29/20: 68 3/1/20: 74 98 3/2/20: 3/3/20 118 3/4/20 149 217 3/5/20 3/6/20 262 3/7/20 402 3/8/20 518 3/9/20: 583 3/10/20 : 959 3/11/20 1281 3/12/20 1663 3/13/20 2179 3/14/20 : 2727 3/15/20 3499 3/16/20 4632 3/17/20 6421 3/18/20: 7783

13677 3/19/20 : 19100 3/20/20: 3/21/20: 25489 3/22/20: 33276 3/23/20: 43847 3/24/20: 53740 3/25/20: 65778 3/26/20 : 83836 3/27/20: 101657 3/28/20: 121478 3/29/20: 140886 3/30/20: 161807

In [48]: transposed['logInfections'] = np.log(transposed.Confirmed)
 transposed

Out[48]:

	Confirmed	logInfections
1/22/20	1	0.000000
1/23/20	1	0.000000
1/24/20	2	0.693147
1/25/20	2	0.693147
1/26/20	5	1.609438
3/26/20	83836	11.336618
3/27/20	101657	11.529360
3/28/20	121478	11.707488
3/29/20	140886	11.855706
3/30/20	161807	11.994160

69 rows × 2 columns

```
In [52]: transposed['Day'] = range(len(transposed))
    transposed
```

Out[52]:

	Confirmed	logInfections	Day
1/22/20	1	0.000000	0
1/23/20	1	0.000000	1
1/24/20	2	0.693147	2
1/25/20	2	0.693147	3
1/26/20	5	1.609438	4
3/26/20	83836	11.336618	64
3/27/20	101657	11.529360	65
3/28/20	121478	11.707488	66
3/29/20	140886	11.855706	67
3/30/20	161807	11.994160	68

69 rows × 3 columns

```
In [53]: X = transposed.Day
X = sm.add_constant(X)
```

```
In [54]: y = transposed.logInfections
```

```
In [55]: mod = sm.OLS(y, X)
  res = mod.fit()
  print(res.summary())
```

=========		0LS Reg 	gressi =====	ion Re =====	esults ========	
====== Dep. Variable: 0.908	:	logInfectio	ons	R-squ	uared:	
Model: 0.907		(DLS	Adj.	R-squared:	
Method: 664.1		Least Squar	res	F-sta	atistic:	
Date:	Mo	on, 30 Mar 20	920	Prob	(F-statistic)	:
1.73e-36 Time: -100.90		20:57:	:08	Log-l	_ikelihood:	
-100.90 No. Observatio 205.8	ons:		69	AIC:		
Df Residuals:			67	BIC:		
210.3 Df Model: Covariance Typ ========						=======
======	coef	std err		t	P> t	[0.025
0.975] 						
 const					0.014	
 const -0.134 Day 0.178	-0.6383 0.1651	0.252 0.006	-2. 25.	. 529 . 770	0.014 0.000	-1.142 0.152
const -0.134 Day 0.178 ======= Omnibus:	-0.6383 0.1651	0.252 0.006	-2. 25.	. 529 . 770 	0.014	-1.142 0.152
const -0.134 Day 0.178 ======== Omnibus: 0.044 Prob(Omnibus):	-0.6383 0.1651	0.252 0.006 42.3	-2. 25.	.529 .770 ===== Durb:	0.014 0.000	-1.142 0.152
 const -0.134 Day 0.178	-0.6383 0.1651	0.252 0.006 	-2. 25. =====	.529 .770 Durb: Jarqi	0.014 0.000 ======= in-Watson: ue-Bera (JB):	-1.142 0.152

Reading the table to make predictions

```
In [57]: # log initial = 0.4480
# initial =
np.exp(-0.6383)
```

Out[57]: 0.5281895835334227

```
In [58]: \# log 1 + r = 0.1128
\# real 1 + r =
np.exp(0.1651)
```

Out[58]: 1.1795110639204238

```
In [59]: def linear_predictions(t):
    return np.exp(-0.6383) * np.exp(0.1651) ** t
```

In [61]: transposed['Predictions'] = transposed.Day.apply(linear_predictions)
transposed.head(10)

Out[61]:

	Confirmed	logInfections	Day	Predictions
1/22/20	1	0.000000	0	0.528190
1/23/20	1	0.000000	1	0.623005
1/24/20	2	0.693147	2	0.734842
1/25/20	2	0.693147	3	0.866754
1/26/20	5	1.609438	4	1.022346
1/27/20	5	1.609438	5	1.205868
1/28/20	5	1.609438	6	1.422335
1/29/20	5	1.609438	7	1.677660
1/30/20	5	1.609438	8	1.978819
1/31/20	7	1.945910	9	2.334038

```
In [64]: plt.plot(transposed.Day, transposed.Confirmed, 'red')
    plt.plot(transposed.Day, transposed.Predictions, 'blue')
    plt.title('Predicted number of cases vs real number of cases')
    plt.xlabel('Time')
    plt.ylabel('Infections')
    plt.legend()
```

No handles with labels found to put in legend.

Out[64]: <matplotlib.legend.Legend at 0x7fd8dc492198>

