

### A Hardware-aware Heuristic for the Qubit Mapping Problem in the NISQ Era

Siyuan Niu, Adrien Suau, Gabriel Staffelbach, Aida Todri-Sanial

#### ▶ To cite this version:

Siyuan Niu, Adrien Suau, Gabriel Staffelbach, Aida Todri-Sanial. A Hardware-aware Heuristic for the Qubit Mapping Problem in the NISQ Era. YQIS 2021 - 6th International Conference for Young Quantum Information Scientists, Apr 2021, Online, United States. lirmm-03197069

### HAL Id: lirmm-03197069 https://hal-lirmm.ccsd.cnrs.fr/lirmm-03197069v1

Submitted on 13 Apr 2021

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

# A Hardware-aware Heuristic for the Qubit Mapping Problem in the NISQ Era



LIRMM



Siyuan Niu<sup>1</sup>, Adrien Suau<sup>1,2</sup>, Gabriel Staffelbach<sup>2</sup>, and Aida Todri-Sanial<sup>1</sup>

<sup>1</sup>LIRMM, University of Montpellier, 34090, Montpellier, France <sup>2</sup>CERFACS, 42 Avenue G.Coriolis, 31057, Toulouse, France Contact e-mail: siyuan.niu@lirmm.fr



# Introduction 0 1 2 4



- •NISQ devices.
- •Connectivity constraint: Nearest-neighbor connections.
- •Different physical qubits: various calibration data.
- •Qubit mapping problem: Adapting a quantum program to given hardware connectivity.

### Motivation



- Initial mapping
- $\bullet \{q_0 \rightarrow Q_0, q_1 \rightarrow Q_1, q_2 \rightarrow$
- $Q_2, q_3 \to Q_3, q_4 \to Q_4$
- •SWAP candidates:
- • $\{q_1, q_2\}$  and  $\{q_1, q_3\}$

- •Choose  $\{q_1, q_2\}$  because of the lower error rate.
- Final mapping
- $ullet \{q_0 
  ightarrow Q_0, q_1 
  ightarrow Q_2, q_2 
  ightarrow Q_2 \}$
- $Q_1,q_3 \rightarrow Q_3,q_4 \rightarrow Q_4$

### Methods

- •Hardware-Aware (HA) mapping transition algorithm.
- Cost function

$$H = \frac{1}{|F|} \sum_{g \in F} D[\pi(g, q_1)][\pi(g, q_2)] + W \times \frac{1}{|E|} \sum_{g \in E} D[\pi(g, q_1)][\pi(g, q_2)]$$

Distance matrix

$$D = \alpha_1 \times S + \alpha_2 \times \varepsilon + \alpha_3 \times T$$

- S: SWAP matrix,  $\varepsilon$ : SWAP error matrix, T: SWAP execution time matrix
- •Selection between SWAP and Bridge gate.



- •Hardware-aware Simulated Annealing (HSA) initial mapping.
  - •Hardware-aware **get\_neighbor** method.

# Results

• Comparison of number of additional gates on IBM Q 20 Almaden (large benchmarks).









# Conclusion

- •Map the most used qubit of the mapped circuit to the most connected physical qubit.
- •Apply CNOT gates on qubits that are directly connected and with reliable interconnects.
- •If a CNOT cannot be applied on two neighbor qubits, apply on two qubits whose distance is two.



