May 23 Lec—Covariance, Correlation Coefficient, Multinomial

A quick recap of the dot product

Dot product properties

(Let V be a vector space over \mathbb{R} . Then the inner product, also called the $dot\ product,\ \cdot:V\times V\to\mathbb{R}$ is a function such that:)

- 1. $ec{u}\cdot(ec{v_1}+ec{v_2})=ec{u}\cdotec{v_1}+ec{u}\cdotec{v_2}$
- 2. $\vec{u} \cdot (\alpha \vec{v}) = \alpha \vec{u} \cdot \vec{v}$
- 3. $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$
- 4. If $V=\mathbb{R}^n$ for some $n\in\mathbb{N}$, then $\vec{u}\cdot\vec{v}=\|\vec{u}\|\|\vec{v}\|\cos\alpha$ where α is the angle between \vec{u} and \vec{v} .

Definition:

Let X,Y be two random variables. The covariance between X and Y is defined as

$$Cov(X,Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y)$$

Remark

If $\mu_X = \mathbb{E}(X)$, $\mu_Y = \mathbb{E}(Y)$, then

$$Cov(X, Y) = \mathbb{E}[(X - \mu_X)(Y - \mu_Y)]$$

Properties of covariance

- 1. Cov(X,X) = V(X)
- 2. Cov(X,Y) = Cov(Y,X)
- $3. \ Cov(X, Y_1 + Y_2) = Cov(X, Y_1) + Cov(X, Y_2)$
- 4. $Cov(X, \alpha Y) = \alpha Cov(X, Y)$

These properties establish Cov as a dot product on the vector space of random variables.

Example

y -value\ x -value	-1	0	1	$p_Y(y)$
0	$\frac{1}{4}$	$\frac{1}{6}$	1/12	$\frac{1}{2}$
1	$\frac{1}{4}$	0	$\frac{1}{4}$	$\frac{1}{2}$
$p_X(x)$	$\frac{1}{2}$	$\frac{1}{6}$	$\frac{1}{3}$	

We calculated last time that $\mathbb{E}(XY)=0$. Furthermore, $\mathbb{E}(X)=-\frac{1}{10}$ and $\mathbb{E}(Y)=\frac{1}{2}$. So $Cov(X,Y)=0-\left(-\frac{1}{6}\cdot\frac{1}{2}\right)=\frac{1}{12}$.

A continuous example

Again the function

$$f(x,y) = egin{cases} 6x & 0 < x < y < 1 \ 0 & ext{otherwise} \end{cases}$$

We have

$$egin{align} \mathbb{E}(XY) &= \iint_{\mathbb{R}^2} xy f(x,y) \; dA \ &= \int_0^1 \int_0^y xy \cdot 6x \, dx \, dy \ &\int_0^1 y \int_0^y 6x^2 \, dx \, dy \ &\int_0^1 y \cdot 2y^3 \, dy = rac{2}{5} \ \end{gathered}$$

We computed before that $X\sim Beta(2,2)$ and $Y\sim Beta(3,1)$, so $\mathbb{E}(X)=\frac{1}{2},\mathbb{E}(Y)=\frac{3}{4}$. Therefore $Cov(X,Y)=\frac{1}{40}$.

Recall the famous Cauchy-Schwartz inequality:

$$|ec{u}\cdotec{v}|=\|ec{u}\|\|ec{v}\|$$

with equality if and only if $ec{u}=\pmec{v}$.

Proposition

$$|Cov(X,Y)| \leq \sqrt{V(X)} \cdot \sqrt{V(Y)}$$

Proof

Follows from the Cauchy-Schwartz inequality.

From here we have

$$-1 \leq rac{Cov(X,Y)}{\sqrt{V(X)}\sqrt{V(Y)}} \leq 1$$

Definition: Correlation coefficient

ho(x,y) is the correlation coefficient between X and Y. It has the meaning of being a measure of the linear association between X and Y.

Properties of the correlation coefficient

$$1. \hspace{1.5cm} -1 \leq \rho(X,Y) \leq 1$$

2. if
$$ho(X,Y)=1$$
, then $Y=lpha X+b$ where $lpha>0$

3. if
$$ho(X,Y)=-1$$
, then $Y=lpha X+b$ where $lpha<0$.

Example

Suppose V(X)=2, V(Y)=3, $Cov(X,Y)=-\sqrt{6}$, $\mathbb{E}(X)=1$, $\mathbb{E}(Y)=3$. What is the relationship between X and Y?

We observe that $ho(X,Y)=rac{-\sqrt{6}}{\sqrt{6}}=-1$, so $Y=\alpha X+b$ where $\alpha<0$. Since $V(Y)=\alpha^2V(X)$, we deduce $\alpha^2=rac{3}{2}\implies \alpha=-\sqrt{rac{3}{2}}$, and since $\mathbb{E}(Y)=\alpha\mathbb{E}(X)+b$ we deduce $b=3+\sqrt{rac{3}{2}}$.

Remark

Note that if Cov(X,Y) had been $\sqrt{8}$ in the above example, then the scenario would have been impossible because $\sqrt{8}>\sqrt{2}\cdot\sqrt{3}$ which violates Cauchy-Schwartz.

Also, if $\rho(X,Y) \neq \pm 1$, we have insufficient information.

Definition

X and Y are said to be uncorrelated if $\rho(X,Y)=0$.

Remark

If X and Y are independent, then X and Y are uncorrelated. But the converse is not true, see the examples below.

Example

y -value\ x -value	-1	0	1	$p_Y(y)$
-1	q	p	q	2q+p
0	p	0	p	2p
1	q	p	q	2q+p
$p_X(x)$	2q+p	2p	2q+p	

If $p+q=\frac{1}{4}$ we get a joint probability distribution. $\mathbb{E}(XY)=0$, and you can verify that $\mathbb{E}(X)=\mathbb{E}(Y)=0$. But since the support is not of

rectangular type, X and Y are not independent.

Proposition

V(X+Y) = Cov((X+Y),(X+Y)) = V(X) + V(Y) + 2Cov(X,Y) more generally,

$$V\left(\sum_{i=1}^{n}lpha_{i}X_{i}
ight)=\sum_{i=1}^{n}lpha_{i}^{2}V(X_{i})+2\sum_{i< j}lpha_{i}lpha_{j}Cov(X_{i},X_{j})$$

Example

Suppose X,Y,W are independent, $X\sim N(0,2)$, $Y\sim \chi^2(p=3)$, $W\sim Exponential(3)$.

Let us calculate V(2X+3Y-W):

$$=4V(X)+9V(Y)+V(W)+\underbrace{12Cov(X,Y)}_{}-4\underbrace{Cov(X,CW)}_{}-6\underbrace{Cov(Y,W)}_{}$$
$$=4\cdot 2+9\cdot 6+9$$

Big long formula for taking covariance

$$Cov\left(\sum_{i=1}^{n}lpha_{i}X_{i},\sum_{j=1}^{m}eta_{i}Y_{i}
ight)=\sum_{i=1}^{n}\sum_{j=1}^{m}lpha_{i}eta_{i}Cov(X_{i},Y_{i})$$

Multinomial distribution

In a binomial distribution, the number of repetitions (N) is fixed, each trial is independent, and there are two outcomes (failure and success) with constant probability.

Let X be the number of successes and Y the number of failures.

$$X\sim B(N,p)$$
 and $Y\sim B(N,1-p)$. Furthermore, $Y=N-p$, so $ho(X,Y)=-1$. Hence $Cov(X,Y)=-\sqrt{V(X)}\cdot\sqrt{V(Y)}=-Np(1-p)$

But what if we have more than 2 outcomes?

Example

A fair die is such that 3 faces are labeled a, 2 are labeled b, and 1 is labeled c. Roll the die 10 times. Let X_1 be the number of A, X_2 the number of B, X_3 the number of C.

Taken by themselves, $X_1 \sim B\left(10, \frac{1}{2}\right), X_2 \sim B\left(10, \frac{1}{3}\right), X_3 \sim B\left(10, \frac{1}{6}\right)$.

We also have $X_1+X_2+X_3=10$.

We know that events like $X_1=1, X_2=3, X_3=7$ is impossible because the sum is not 10.

Calculating $P(X_1 = 1, X_2 = 3, X_3 = 6)$:

$$= \begin{bmatrix} 10 \\ 1,3,6 \end{bmatrix} \left(\frac{1}{2}\right)^1 \left(\frac{1}{3}\right)^3 \left(\frac{1}{6}\right)^6$$

Definition: Multinomial distribution

Assume that a random experiment has outcomes w_1, w_2, \ldots, w_k with constant probability p_1, p_2, \ldots, p_k . Repeat the experiment N times, and let X_i be the number of times w_i occurred. Let the trials be independent. Then X_1, X_2, \ldots, X_k are said to have a (joint) multinomial distribution with parameters N, p_1, p_2, \ldots, p_k .

Properties of the multinomial distribution

1.
$$X_i \sim B(N,p_i)$$
 for $i=1,\ldots,k$

$$P(X_1=x_1,\ldots,X_k=x_k)=rac{N!}{x_1!x_2!\ldots x_k!}p_1^{x_1}\ldots p_k^{x_k}$$

Example

Continue the die example above $(N=10,p_1=\frac{1}{2},p_2=\frac{1}{3},p_3=\frac{1}{6})$. Given $X_3=5$, what is the (conditional) distribution of X_1 ?

$$P(X_1 = x_1 | X_3 = 5) = \frac{P(X_1 = x_1, X_3 = 5)}{P(X_3 = 5)}$$

$$= \frac{P(X_1 = x_2, X_2 = 5 - x_1, X_3 = 5)}{P(X_3 = 5)}$$

$$\frac{\cancel{x_1!(5 - x_1)!}\cancel{5!} \left(\frac{1}{2}\right)^{x_1} \left(\frac{1}{3}\right)^{5 - x_1} \left(\frac{1}{6}\right)^5}{\cancel{x_1!(5 - x_1)!}}$$

$$= \frac{5!}{x_1!(5 - x_1)!} \left(\frac{3}{5}\right)^{x_1} \left(\frac{2}{5}\right)^{5 - x_1}$$

so $X_1 \sim B\left(5, rac{3}{5}
ight)$.

More generally, if X_1,X_2,X_3 have a multinomial distribution with parameters N,p_1,p_2,p_3 , then given $X_3=n$ (where n< N) we have $X_1\sim B\left(N-n,\frac{p_1}{1-p_3}\right)$ and $X_2\sim B\left(N-n,\frac{p_2}{1-p_3}\right)$, or equivalently $X_1\sim B\left(N-n,\frac{p_1}{p_1+p_2}\right)$ and $X_2\sim B\left(N-n,\frac{p_2}{p_1+p_2}\right)$

Exercise

Prove the above.

Proposition

If X_1, X_2, \ldots, X_k have a (joint) multinomial distribution with parameter N, p_1, p_2, \ldots, p_k , then:

- 1. $V(x_i) = Np_i(1-p_i)$
- 2. $Cov(X_i,X_j) = -Np_ip_j$ if i
 eq j

Proof

Left till next time.