Mathematical Programs with Complementarity Constraints and Related Problems

TECHNISCHE UNIVERSITÄT DARMSTADT

Prof. Dr. Alexandra Schwartz schwartz@gsc.tu-darmstadt.de

Ressources

You can find

- my slides
- and some more extensive lecture notes

at

github.com/alexandrabschwartz/Winterschool2018

If you have any questions, please come to me during the week or contact me at schwartz@gsc.tu-darmstadt.de

Contents of the Course

What did we do yesterday?

Stationarity Conditions for MPCC

A feasible point x^* of MPCC is

► W-stationary, if

$$\nabla f(x^*) + \nabla g(x^*)\lambda + \nabla h(x^*)\mu - \nabla G(x^*)\gamma - \nabla H(x^*)\nu = 0,$$

$$\lambda \ge 0 \text{ and } \lambda_i = 0 \quad \forall i \notin I_g(x^*),$$

$$\gamma_i = 0 \quad \forall i \in I_{+0}(x^*) \quad \text{and} \quad \nu_i = 0 \quad \forall i \in I_{0+}(x^*);$$

- ▶ C-stationary, if additionally $\gamma_i \cdot \nu_i \ge 0 \quad \forall i \in I_{00}(x^*)$;
- ▶ M-stationary, if additionally $\gamma_i \cdot \nu_i = 0$ or $\gamma_i \geq 0$, $\nu_i \geq 0$ $\forall i \in I_{00}(x^*)$;
- ▶ S-stationary, if additionally $\gamma_i \ge 0$, $\nu_i \ge 0$ $\forall i \in I_{00}(x^*)$.

Constraint Qualifications for MPCC

Optimality Conditions for MPCC

What is the plan for today?

Algorithms for MPCCs

- Standard NLP algorithms may fail due to lack of CQ, but nonetheless work quite often.
- Specialized MPCC algorithms include:
 - penalty and barrier methods
 - SQP methods
 - smoothing methods
 - relaxation methods
 - augmented Lagrangian methods
 - lifting methods
 - **.**.

Relaxation Methods

Idea: Relax the complementarity conditions and solve a sequence of nonlinear problems $NLP(t_k)$ with $t_k \downarrow 0$.

Questions

- Are the relaxed problems easier to solve?
- What kind of points does the method converge to?

The Global Relaxation by Scholtes

Replace the complementarity constraints by

$$G_i(x) \geq 0$$
, $H_i(x) \geq 0$, $G_i(x) \cdot H_i(x) \leq t_k$.

Let $(x_k)_k$ be KKT points of the relaxed problems NLP (t_k) .

The Global Relaxation by Scholtes

Replace the complementarity constraints by

$$G_i(x) \geq 0, H_i(x) \geq 0, G_i(x) \cdot H_i(x) \leq t_k.$$

Let $(x_k)_k$ be KKT points of the relaxed problems $NLP(t_k)$.

▶ If MPCC-MFCQ holds at $x^* \in X$, then $NLP(t_k)$ locally satisfies MFCQ.

The Global Relaxation by Scholtes

Replace the complementarity constraints by

$$G_i(x) \geq 0, H_i(x) \geq 0, G_i(x) \cdot H_i(x) \leq t_k.$$

Let $(x_k)_k$ be KKT points of the relaxed problems $NLP(t_k)$.

- ▶ If MPCC-MFCQ holds at $x^* \in X$, then NLP(t_k) locally satisfies MFCQ.
- Every accumulation point x* of (xk), where MPCC-MCFQ holds, is C-stationary.

Consider the MPCC

$$\min_{x \in \mathbb{R}^2} \|x - (1, 1)^T\|_2^2 \quad \text{s.t.} \quad 0 \le x_1 \perp x_2 \ge 0.$$

Consider the MPCC

$$\min_{x \in \mathbb{R}^2} \|x - (1, 1)^T\|_2^2 \quad \text{s.t.} \quad 0 \le x_1 \perp x_2 \ge 0.$$

► Then (1,0)^T and (0,1)^T are global minima and S-stationary due to MPCC-LICQ.

Consider the MPCC

$$\min_{x \in \mathbb{R}^2} \|x - (1, 1)^T\|_2^2 \quad \text{s.t.} \quad 0 \le x_1 \perp x_2 \ge 0.$$

- Then (1, 0)^T and (0, 1)^T are global minima and S-stationary due to MPCC-LICQ.
- ► (1, 0)^T is a local maximum, but C-stationary.

Consider the MPCC

$$\min_{x \in \mathbb{R}^2} \|x - (1, 1)^T\|_2^2 \quad \text{s.t.} \quad 0 \le x_1 \perp x_2 \ge 0.$$

- Then (1, 0)^T and (0, 1)^T are global minima and S-stationary due to MPCC-LICQ.
- ► (1,0)^T is a local maximum, but C-stationary.
- For $t_k > 0$ small the points $(t_k, t_k)^T$ are KKT points of NLP (t_k) .

The Local Relaxation by Steffensen and Ulbrich

Replace the complementarity constraints by

$$G_i(x) \geq 0, H_i(x) \geq 0, \varphi(G_i(x), H_i(x); t_k) \leq 0,$$

where $\theta:[-1,1] \to \mathbb{R}$ is a regularization function and

$$\varphi(G_{i}(x), H_{i}(x); t_{k}) = \begin{cases} \min\{G_{i}(x), H_{i}(x)\} & \text{if } |G_{i}(x) - H_{i}(x)| \geq t_{k}, \\ G_{i}(x) + H_{i}(x) - t_{k}\theta(\frac{G_{i}(x) - H_{i}(x)}{t_{k}}) & \text{if } |G_{i}(x) - H_{i}(x)| < t_{k}. \end{cases}$$

Let $(x_k)_k$ be KKT points of the relaxed problems $NLP(t_k)$.

The Local Relaxation by Steffensen and Ulbrich

Replace the complementarity constraints by

$$G_i(x) \geq 0, H_i(x) \geq 0, \varphi(G_i(x), H_i(x); t_k) \leq 0,$$

where $\theta:[-1,1] \to \mathbb{R}$ is a regularization function and

$$\varphi(G_{i}(x), H_{i}(x); t_{k}) = \begin{cases} \min\{G_{i}(x), H_{i}(x)\} & \text{if } |G_{i}(x) - H_{i}(x)| \geq t_{k}, \\ G_{i}(x) + H_{i}(x) - t_{k}\theta(\frac{G_{i}(x) - H_{i}(x)}{t_{k}}) & \text{if } |G_{i}(x) - H_{i}(x)| < t_{k}. \end{cases}$$

Let $(x_k)_k$ be KKT points of the relaxed problems $NLP(t_k)$.

If MPCC-LICQ holds at x* ∈ X, then NLP(t_k) locally satisfies Abadie CQ (LICQ in many points).

The Local Relaxation by Steffensen and Ulbrich

Replace the complementarity constraints by

$$G_i(x) \geq 0, H_i(x) \geq 0, \varphi(G_i(x), H_i(x); t_k) \leq 0,$$

where $\theta:[-1,1] \to \mathbb{R}$ is a regularization function and

$$\varphi(G_{i}(x), H_{i}(x); t_{k}) = \begin{cases} \min\{G_{i}(x), H_{i}(x)\} & \text{if } |G_{i}(x) - H_{i}(x)| \geq t_{k}, \\ G_{i}(x) + H_{i}(x) - t_{k}\theta(\frac{G_{i}(x) - H_{i}(x)}{t_{k}}) & \text{if } |G_{i}(x) - H_{i}(x)| < t_{k}. \end{cases}$$

Let $(x_k)_k$ be KKT points of the relaxed problems $NLP(t_k)$.

- If MPCC-LICQ holds at x* ∈ X, then NLP(t_k) locally satisfies Abadie CQ (LICQ in many points).
- Every accumulation point x* of (xk), where MPCC-CPLD holds, is C-stationary.

The Nonsmooth Relaxation by Kardani et al.

Replace the complementarity constraints by

$$G_i(x) \ge 0, H_i(x) \ge 0, (G_i(x)-t_k)(\cdot)H_i(x)-t_k) \le 0.$$

Let $(x_k)_k$ be KKT points of the relaxed problems NLP (t_k) .

The Nonsmooth Relaxation by Kardani et al.

Replace the complementarity constraints by

$$G_i(x) \ge 0, H_i(x) \ge 0, (G_i(x) - t_k)(\cdot)H_i(x) - t_k) \le 0.$$

Let $(x_k)_k$ be KKT points of the relaxed problems $NLP(t_k)$.

If MPCC-LICQ (-CPLD) holds at x* ∈ X, then NLP(t_k) locally satisfies Guignard CQ (CPLD almost everywhere).

The Nonsmooth Relaxation by Kardani et al.

Replace the complementarity constraints by

$$G_i(x) \geq 0, H_i(x) \geq 0, (G_i(x)-t_k)(\cdot)H_i(x)-t_k) \leq 0.$$

Let $(x_k)_k$ be KKT points of the relaxed problems $NLP(t_k)$.

- If MPCC-LICQ (-CPLD) holds at x* ∈ X, then NLP(t_k) locally satisfies Guignard CQ (CPLD almost everywhere).
- Every accumulation point x* of (x^k)_k, where MPCC-CPLD holds, is M-stationary.

The Kinked Relaxation by Kanzow and S.

Replace the complementarity constraints by

$$G_i(x) \geq 0, H_i(x) \geq 0, \varphi(G_i(x), H_i(x); t_k) \leq 0,$$

where

$$\varphi(G_i(x), H_i(x); t_k) = \begin{cases} (G_i(x) - t_k)(H_i(x) - t_k) & \text{if } G_i(x) + H_i(x) \ge 2t_k, \\ \frac{1}{2}[(G_i(x^k) - t_K)^2 + (H_i(x^k) - t_K)^2] & \text{if } G_i(x) + H_i(x) < 2t_k. \end{cases}$$

Let $(x_k)_k$ be KKT points of the relaxed problems NLP (t_k) .

The Kinked Relaxation by Kanzow and S.

Replace the complementarity constraints by

$$G_i(x) \geq 0, H_i(x) \geq 0, \varphi(G_i(x), H_i(x); t_k) \leq 0,$$

where

$$\varphi(G_i(x), H_i(x); t_k) = \begin{cases} (G_i(x) - t_k)(H_i(x) - t_k) & \text{if } G_i(x) + H_i(x) \ge 2t_k, \\ \frac{1}{2}[(G_i(x^k) - t_k)^2 + (H_i(x^k) - t_k)^2] & \text{if } G_i(x) + H_i(x) < 2t_k. \end{cases}$$

Let $(x_k)_k$ be KKT points of the relaxed problems NLP (t_k) .

If MPCC-LICQ (-CPLD) holds at x* ∈ X, then NLP(t_k) locally satisfies Guignard CQ (CPLD almost everywhere).

The Kinked Relaxation by Kanzow and S.

Replace the complementarity constraints by

$$G_i(x) \geq 0, H_i(x) \geq 0, \varphi(G_i(x), H_i(x); t_k) \leq 0,$$

where

$$\varphi(G_i(x), H_i(x); t_k) = \begin{cases} (G_i(x) - t_k)(H_i(x) - t_k) & \text{if } G_i(x) + H_i(x) \ge 2t_k, \\ \frac{1}{2}[(G_i(x^k) - t_k)^2 + (H_i(x^k) - t_k)^2] & \text{if } G_i(x) + H_i(x) < 2t_k. \end{cases}$$

Let $(x_k)_k$ be KKT points of the relaxed problems $NLP(t_k)$.

- ▶ If MPCC-LICQ (-CPLD) holds at $x^* \in X$, then NLP(t_k) locally satisfies Guignard CQ (CPLD almost everywhere).
- ► Every accumulation point x* of (x^k)_k, where MPCC-CPLD holds, is M-stationary.

Comparison of the Relaxation Methods

relaxation	global	local	nonsmooth	kinked
authors	Scholtes	Steff./Ulbr.	Kadrani et al.	Kanzow, S.
geometry	t t	$t \longrightarrow t$	<i>t t</i>	t t
stationarity	C-stat.	C-stat.	M-stat.	M-stat.
under CQ	MPEC-MFCQ	MPEC-CPLD	MPEC-CPLD	MPEC-CPLD

Numerical Comparison

Implementation

- ▶ We implemented all methods in MATLAB using snopt to solve the relaxed problems $NLP(t_k)$.
- ▶ The relaxation algorithm was terminated if either $t_k < 10^{-15}$ or

$$\max \left\{ |\min\{G(x^k), H(x^k)\}| \right\} \le 10^{-6}.$$

A termination was considered successful if

$$\max \Big\{ \max\{g(x^k), 0\}, |h(x^k)|, |\min\{G(x^k), H(x^k)\}| \Big\} \le 10^{-6}.$$

We used the parameters

relaxation	global	local	nonsmooth	kinked
t_0	0.25	$\frac{\pi}{\pi-2}$	1	2
σ	0.01	0.01	0.01	0.01

- We applied these methods to 126 test problems from the MacMPEC library.
- For comparison, we also applied snopt directly to the test problems.

Optimal Function Value

We considered the relative difference to the best solution found by any of the five methods.

Computation Time

The number of objective function evaluations and gradient evaluations lead to the same results.

Comparison of the Methods

- ► The relaxation methods lead to better results than the standard NLP solver snopt alone.
- ► The local relaxation is often very successful but somewhat instable.
- The global relaxation is fast, stable and leads to good objective function values.
- The kinked relaxation behaves similar to the global relaxation but is not quite as good.
- ► The nonsmooth relaxation is slower than the others and leads to less feasible solutions which, however, have the smallest objective function values.

Comparison of the Methods

- ► The relaxation methods lead to better results than the standard NLP solver snopt alone.
- The local relaxation is often very successful but somewhat instable.
- The global relaxation is fast, stable and leads to good objective function values.
- ► The kinked relaxation behaves similar to the global relaxation but is not quite as good.
- ► The nonsmooth relaxation is slower than the others and leads to less feasible solutions which, however, have the smallest objective function values.

Inexact KKT Points

ε -KKT Points

Consider a nonlinear program (NLP)

$$\min f(x)$$
 s.t. $g(x) \le 0, h(x) = 0.$

Definition: A feasible point x^* is said to be a KKT point if there are multipliers $\lambda \geq 0$ and μ such that $\lambda_i = 0$ for all $i \notin I_q$ and

$$\nabla f(x^*) + \nabla g(x^*)\lambda + \nabla h(x^*)\mu = 0.$$

ε -KKT Points

Consider a nonlinear program (NLP)

$$\min f(x)$$
 s.t. $g(x) \le 0, h(x) = 0.$

Definition: A feasible point x^* is said to be a KKT point if there are multipliers $\lambda \geq 0$ and μ such that $\lambda_i = 0$ for all $i \notin I_q$ and

$$\nabla f(x^*) + \nabla g(x^*)\lambda + \nabla h(x^*)\mu = 0.$$

Definition: Let $\varepsilon > 0$. A point x^* is said to be an ε -KKT point if there are multipliers λ and μ such that

$$\begin{aligned} \left\| \nabla f(x^*) + \nabla g(x^*) \lambda + \nabla h(x^*) \mu \right\|_{\infty} &\leq \varepsilon, \\ g_i(x^*) &\leq \varepsilon, \ \lambda_i \geq -\varepsilon, \ |\lambda_i g_i(x^*)| \leq \varepsilon, \quad \forall i = 1, \dots, m \\ |h_i(x^*)| &\leq \varepsilon \quad \forall i = 1, \dots, p. \end{aligned}$$

Inexact Relaxation Methods

Let $t_k \downarrow 0$ and $\varepsilon_k = o(t_k)$. Let x^k be ε_k -KKT points of NLP(t_k) and assume $x^k \to x^*$. Then the limit x^* satisfies:

relaxation	global	local	nonsmooth	kinked
authors	Scholtes	Steff./Ulbr.	Kadrani et al.	Kanzow, S.
geometry		$\stackrel{t}{\longleftarrow}$		$t \xrightarrow{t} t$
stationarity		W-stat.	W-stat.	W-stat.
under CQ		MPEC-MFCQ	MPEC-MFCQ	MPEC-MFCQ

Inexact Relaxation Methods

Let $t_k \downarrow 0$ and $\varepsilon_k = o(t_k)$. Let x^k be ε_k -KKT points of NLP(t_k) and assume $x^k \to x^*$. Then the limit x^* satisfies:

relaxation	global	local	nonsmooth	kinked
authors	Scholtes	Steff./Ulbr.	Kadrani et al.	Kanzow, S.
geometry	t	t t		t t
stationarity	C-stat.	W-stat.	W-stat.	W-stat.
under CQ	MPEC-MFCQ	MPEC-MFCQ	MPEC-MFCQ	MPEC-MFCQ

An Exemplary Proof for the Scholtes Relaxation

Theorem

Let $(t_k)_k \downarrow 0$ and x^k be KKT points of the relaxed problems LNP (t_k) according to Scholtes. Then every accumulation point x^* , where MPCC-MFCQ holds, is C-stationary.

Recalt that we replace the complementarity constraints by

$$G_i(x) \ge 0, H_i(x) \ge 0, G_i(x) \cdot H_i(x) \le t_k.$$

Define the index sets

$$\begin{split} I_G(x^k) &:= & \{i \mid G_i(x^k) = 0\}, \\ I_H(x^k) &:= & \{i \mid H_i(x^k) = 0\}, \\ I_{GH}(x^k) &:= & \{i \mid G_i(x^k)H_i(x^k) = t_k\} \end{split}$$

What should you remember?

- There is a vast amount of algorithms tailored to MPCCs.
- Relaxation methods improve the results of standard NLP solvers.
- Different relaxations converge to different kinds of stationary point sunder different assumptions.
- Inexactness changes the properties of some methods drastically.

What is the plan for tomorrow?

