CS 556 Homework 4 - Orthogonality and Projections

Solve the following questions. Type your solutions using Latex or any other program you prefer and submit your typed solutions as a PDF file.

Question 1 (20 points) Consider the vectors
$$b = \begin{bmatrix} 2 \\ 4 \\ 6 \end{bmatrix}$$
, $a_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, $a_2 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$

- a) Find the projection p of b onto the subspace spanned by a_1 and a_2 .
- b) Find the error vector $\mathbf{e} = \mathbf{b}$ \mathbf{p} and show that it is orthogonal to both a_1 and a_2 .

Question 2 (15 points) Find the line y = C + Dx that best fits the data (x,y) = {(0,1), (1,8), (2,8), (3,20)}.

Question 3 (20 points) [Understanding projections and projection matrix] Assume $P = A(A^TA)^{-1}A^T$ is a projection matrix

- a) Show that $P^2 = P$ by multiplying $P = A(A^TA)^{-1}A^T$ by itself and canceling.
- b) Prove (a) geometrically by showing that for any vector b, Pb is a vector in the column space of A closest to b and then use this fact to show $p^2 = P(Pb) = Pb$ for any vector b.
- c) The matrix P as above projects onto the column space of A. Is 1-P a projection matrix? To which subspace does it project onto?

Question 4 (20 points) Use Gram-Schmidt Process to find an orthogonal basis for the

subspace spanned by
$$a = \begin{bmatrix} 1 \\ 2 \\ 0 \\ 1 \end{bmatrix}$$
, $b = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$, $c = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}$.

Question 5 (20 points) Answer each part.

- a) If Q_1 and Q_2 are orthogonal matrices, show that Q_1Q_2 is an orthogonal matrix. [Hint: Use $Q^TQ = I$]
- b) Show that if for orthogonal vectors, q_1 , q_2 , q_3 , if

$$x_1q_1 + x_2q_2 + x_3q_3 = b$$

then for each i, $x_i = q_i = b$. [Hint: Take the dot product of the two sides with each q_i at a time and use orthonormality conditions, $q_i.q_i = 1$ and $q_i.q_j = 0$ if $i \neq j$, to prove the statement].

c) The vectors $q_1 = 1/\sqrt{2} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$, $q_2 = 1/\sqrt{6} \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix}$, $q_3 = 1/\sqrt{3} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ are orthogonal. Use Part (b), to solve

$$x_1q_1 + x_2q_2 + x_3q_3 = \begin{bmatrix} 1\\2\\1 \end{bmatrix}$$