STQ	QSSD Lond &	Çer, Mount Christans	Nome L BA: 416	//
Nome RA:	: Lucas Moura de 11201811415			
1) AI	roves de exponsão	em sêne d	. Taylor doo	b por:
	f(x)= f(xe)+d=			
E consid	brando es deis par	neiros Jatores	, lemos !	
	= Sen(x); Ke = 0		이번 뭐 뭐요하네요 프린스 기급등이다. 그래요?	(100명), 이터 (25명) (2011년 - 11명 : 15명 :
=>	$(x) \approx sen(0) + co$	00) (x-0)) ≈ 0+	1(x)
	:.[f(x) =	X	1-19-11	
2) A analusad	estabilidade do regulo atrovés do primo (XI(+); X2(+)	unte sistemo uno método) = (0,0)	dinâmico de Zyopun	sera' ov , no por
	$X_1(t) = X_2(t)$ $X_2(t) = -X_1(t)$	$1 - X_2(+) + 3$	3x12(t) X2(t)	+ 2 x 3 (+)
f(x) =	$(x_2(t) - x_2(t) + 3$)×12(t) X2(t)	+ 2 x23 (+)	
3t~) :	= 0 -1+6x1(+)X(+) -	1 1+3x2(+)+6	X2 (+)	

Nome: Lucas Moura de Almeida //_ RA: 11201811415
L'reonzondo em Xo = (x1(+); Xo (+)) = (0;0), tomos que : 100 / 18
$A = \frac{\partial f(x)}{\partial x} = \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix}$
Portanto es autovalores de A são dobs por:
$det(\lambda I - A) = 0$
$\frac{\det\left(\lambda \begin{bmatrix} 1 & 0 \end{bmatrix} - \begin{bmatrix} 0 & 1 \end{bmatrix} = 0}{\begin{bmatrix} 0 & 1 \end{bmatrix} - \begin{bmatrix} 1 & -1 \end{bmatrix}}$
$\frac{de+\left(\begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} - \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix}\right) = 0}{}$
$\frac{\det \left(\left[\frac{\lambda}{\lambda} - 1 \right] \right) = 0}{\left(\left[\frac{\lambda}{\lambda} + 1 \right] \right)}$
$- + \lambda^2 + \lambda + 1 = 0$
$\frac{1}{2} = \frac{1 + \sqrt{1 - 4.1.1}}{2.1}$
$\lambda = -1 \pm i\sqrt{3} = -1 \pm i\sqrt{3}$ 2
Portanto, pelo 1º método de ayapunov, dendo aos autoralors de mataz A estorem no semiplano esquerdo do plano complexo, temos que é assintaticamente estavel
spirali D

RAI	Lucas Moura (11201811415			The Residence	
3)	K & w(t)		Dado que:		
	lm l	1	= 1 mw2	t) e	
	b (4)		~ V ≤ .	1 Kw2(t)	4
deduzy ,	ndo que o lagrar a equação linear de Euler-Lagra	de reger	dodo por L	= T-V, e	possivel
	d (dL dt (divit		al - Hi	(t)	
	HI(+) é a soma		cas não cons	prvotivas, e a	om bare
i je	HItl-ul		i (t)		
Primodron	rente é preciso en ci	entror o	lagrongiano	<u>.</u>	
_ =	$\frac{1}{2}m\dot{w}^2(t) - \frac{1}{a}$	L Kw2(t)		
3 L	$=-K\omega(t)$		d (dl.	+) = miú	(+)
	= mult)				

Nome Lucas Moura de Almeida
/_ /_ RA: 11201811415 STQQSSD
Portant, lemon: d (2L) - 2L = H(t) dt (2w(t)) 2w(t)
$\frac{dt (\theta \omega(t)) \theta \omega(t)}{c}$
mült) + Kwlt) = ult) - bült)
mw(+) = u(+) - bw(+) - Kw(+)
4) O sistema dirámico, de um pêndulo simples, é dodo pela equação:
-mglseno(t)-blo(t) = ml20(t)
$= \Rightarrow \frac{\partial(+)}{\partial(+)} = -\frac{g}{g} \cdot \frac{son}{g(+)} - \frac{g}{h} \cdot \frac{\dot{g}(+)}{\dot{g}(+)}$
Erergia total do sistema é dado por:
$E_{T}(t) = \frac{1}{2} me^{2} \dot{\theta}^{2}(t) + mgl - mgl \cos \theta(t)$
sondo definido positiva pora quaiquer valores do O(+1 e O(+)
Usardo ET(+1 como condudata à funço de Lyapunar, podemos amalisar a estabilidade deste sistema dinâmica na panto de equilibria (O(+); O(+)) - (O; O)
spiral*

1 1 0 0 5 5 0 RA: 11201811415
$E_{T}(t) = 1 \text{ me}^{2} 2 \dot{\theta}(t) \dot{\theta}(t) + \text{mgl} \dot{\theta}(t) \text{ sen } \theta(t)$
: ET(t) = me o(t) o(t) + mglo(t) seno(t)
abondo o valor de 0(+), aproventado anteriormente, temos:
ET(t) = ml'élt) (-g sene(t) - b élt) + mgl ésinelt)
= mglésene(+) - bléa(+) + mglésone(+)
Entropy Company
como ℓ , m , g e b são esta lamente positivos
ET(+1 = - blight) < 0
de de la convergen para quairquer valores de 0(+) e 0(+). Assim traditioner convergen para o parto de equilibrio (0(+); 0(+)): (0;0)
The state of the s
and the second s
마일 시간 전시간 보안 전 경영한 중요한 중요한 경영한 12 시간 전 12 시간 전
(S) spiral'