

Data Science Project

Project: Healthcare - Persistency of a Drug

Week 10 Deliverables

Team Name: Team Healthy Bones

Member: Jeeyeon Shon

E-mail: shon.jeeyeon@gmail.com

College/Company: Data Glacier

Batch Code: LISUM 10

Country: United States of America

Specialization: Data Science

Submission Date: August 9, 2022

Submitted to: Data Glacier

Github Link: https://github.com/shonjeeyeon/DG Week 10

Table of Contents

Problem Description	
Data Understanding	
Link to the Repository	
Exploratory Data Analysis (EDA)	
Data Intake Report	
Summary of Columns and Data Types	
Problems and Suggested Actions	g

Problem Description

A model will be established and deployed to automate identifying persistency of a certain pharmaceutical product.

Data of patients who take the medication will be used for analysis, and correlation between medication persistency and other factors such as patient demographics, provider attributes, clinical factors, and disease/treatment factors will be investigated. Finally, an optimal model to predict persistency based on above features will be developed.

Data Understanding

The dataset includes 3,424 records of patients on a certain medication. 69 features pertaining the demographics of the patient, attributes of the prescriber, and clinical/disease/treatment factors of the disease progression are present.

The client requested to build a model to predict a patient's drug persistency, so the column 'Persistent' will be the target variable. The prediction will use a classification process since the values of the target column are binary ('Persistent' vs. 'Non-Persistent')

Link to the Repository

https://github.com/shonjeeyeon/DG_Week_10

Exploratory Data Analysis (EDA)

Summary of Actions

- Prior to EDA, 'risk', 'concom', and 'comorb' columns were added.
 - These columns refer to each patient's sum of risk factors, concomitant treatments, and comorbidities. ('Y's and 'N's were converted to 1 and 0 prior to the calculation)
 - There are a substantial number of risks, concomitances, and comorbidities listed in the dataset. Moreover, relatively small portion of patients has each of the conditions.
 - Therefore, incorporating the features in larger groups might help reduce computational efforts and improve predictability.
 - The original features used in the calculations will be maintained because some of the conditions may contribute more to the persistency compared to the rest of the condition.
- Count plots, violin plots and box plots were plotted with hue=persistency_flag to compare count, mean, and range of values between persistent and non-persistent populations.

Findings

- Persistent group has higher mean number of comorbidities and concomitances compared to the non-persistent counterpart.
- Patient groups who have had concomitant encounters for below reasons have higher persistency levels:
 - o General exam without complaints
 - Immunizations
- Patients who have cancer have higher persistency level.
- Persistent group has higher mean number of DEXA scans compared to the non-persistent group. Persistent group also has higher proportion of patient who has had at least one DEXA scan compared to non-persistent group.
- Prescribers with certain specializations (e.g. Oncology and Endocrinology) have higher proportion of persistent patients compared to the others.

Model Recommendations

- This is a classification project, so using classifiers such as Linear Regression Classifier, Naive Bayes, K-Neighbors, Random Forest Classifier, Support Vector Machines, or XGBoost is recommended.
- To save computational efforts, starting from simple Linear Regression then trying kernel or ensemble models is recommended.
- The dataset has a substantial number of features, so using PCA or RFE to choose most important features is recommended.

Data Intake Report

Name: Healthcare – Persistency of a Drug

Report date: August 9, 2022 Internship Batch: LISUM 10

Version:<1.0>

Data intake by: Jeeyeon Shon

Data intake reviewer: Data storage location:

 $https://github.com/shonjeeyeon/DG_Week_8/blob/main/Healthcare_dataset.csv$

(Original xslx file:

 $https://drive.google.com/file/d/1P_oMc6gOBlhw6dY5PxaqxV2swdHMUooK/vieultonessed with the state of the state$

w)

Tabular data details:

Healthcare_dataset.csv

Total number of observations	3,424
Total number of files	1
Total number of features	69
Base format of the file	.csv
Size of the data	892 KB

Proposed Approach:

- Ptid can be used to identify and remove duplicate observations
- The dataset has been deidentified already
- No missing values, however there are practical missing values such as 'unknown'. These values should be imputed appropriately
- Most of the features are categorical; will need encoding to enable ML

Summary of Columns and Data Types

Bucket	Variable	index #	Dtype	Notes
Target	Persistency	1	Object	Non-Persistent: 62.35% Persistent: 37.65%
Unique Row ID	Patient ID	0		(→ Imbalanced data)
Demographics	Gender	2		
	Race	3		NaN='Other/Unknown' (2.85%) Mode='Caucasian' (91.94%)
	Ethnicity	4		NaN='Unknown' (2.66%) Mode='Non-Hispanic' (94.48%)
	Region	5		NaN='Other/Unknown' (1.75%) Mode='Midwest' (40.39%)
	Age_Bucket	6		
Prescriber Attributes	Ntm_Speciality	7		NaN='Unknown' (9.05%) Mode='General Practitioner' (44.83%)
	Ntm_Specialist_Flag	8		

	Ntm Speciality Bucket	9			
Clinical	Gluco Record Prior Ntm	10			
Factors	Gluco Record During Rx	11			
	Dexa_Freq_During_Rx	12	int64	OutlierThe data (6.81)	issues a is skewed
				Count	3,424
				Mean	3.02
				Std	8.14
				Min	0.00
				25%	0.00
				50%	0.00
				75%	3.00
				Max	146.00
	Dexa_During_Rx	13	Object		
	Frag_Frac_Prior_Ntm	14			
	Frag_Frac_During_Rx	15			
	Risk_Segment_Prior_Ntm	16			
	Tscore_Bucket_Prior_Ntm	17			
	Risk Segment During Rx	18		NaN='Unkno	wn' (43.72%)
				The other tw have very fev in percentag	w differences

			HR_VHR 28.18% VLR_LR 28.10%
	Tscore_Bucket_During_Rx	19	NaN='Unknown' (43.72%)
			The other two categories
			have very few differences
			in percentages
			<=-2.5 29.70%
			>-2.5 26.56%
	Change_T_Score	20	NaN='Unknown' (43.72%)
			Mode='No Change'
			(48.48%)
	Change_Risk_Segment	21	NaN='Unknown' (65.01%)
			Mode='No Change'
			(30.72%)
Disease/	Adherent_Flag	22	
Treatment	Idn_Indicator	23	
Factors	Injectable_Experience_During_Rx	24	
	Comorbidities columns	25-38	
	(Column names start with		
	'Comorb_')		
	Concomitant drugs use columns	39-48	
	(Column names start with		
	'Concom_')		
	Risk factors columns	49-67	

Count_of_Risks	68	Dtype: int64	 Outlier issues The data is skewed (0.88) 	
			Count	3,424
			Mean	1.24
			Std	1.09
			Min	0.00
			25%	0.00
			50%	1.00
			75%	2.00
			Max	7.00

Problems and Suggested Actions

Problem	Column	Details	Actions Taken	Rationale
Missing	Race	NaN='Other/Unkno	Impute mode	The Modes are high in
Data		wn' (2.85%)		proportion while the
		Mode='Caucasian'		NaNs are relatively
		(91.94%)		small in proportion.
	Ethnicity	NaN='Unknown'		
		(2.66%)		
		Mode='Non-		
		Hispanic' (94.48%)		
	Region	NaN='Other/Unkno		
		wn' (1.75%)		
		Mode='Midwest'		
		(40.39%)		
	Ntm_Speciality	NaN='Unknown'	Keep	The value 'Unknown'
		(9.05%)	'Unknown' as	is relatively high in
		Mode='General	a separate	proportion (9.05%),
		Practitioner'	value	while the category has
		(44.83%)		many values with
				smaller proportions (as
				small as <1%).
				Therefore, it will be

				prudent to leave the unknown as it is.
>40%	Risk_Segment_Durin	NaN='Unknown'	Delete columns	
Missing	g_Rx	(43.72%)		very high proportion
Data	Tscore_Bucket_Durin	NaN='Unknown'		of 'Unknown'.
	g_Rx	(43.72%)		Imputation may cause
	Change_T_Score	NaN='Unknown' (43.72%)		serious distortion of the data.
	Change_Risk_Segmen	NaN='Unknown'		
	t	(65.01%)		
Outliers/	Dexa_Freq_During_R	 Outlier issues 	Remove	Outliers were removed
Skews	X	• The data is	outliers, and	using quantiles and it
		skewed (6.81)	try skewness	reduced the skewness.
	Count of Risks	Outlier issues	reduction	Then, square root was
		• The data is	strategies as	used to additionally
		skewed (0.88)	needed	reduce skew.
				Skews after above
				steps are:
				1.28 for
				Dexa_Freq_During_R
				x, and
				0.38 for
				Count_of_Risks

Basic	All columns	Will need to	Use	df.replace() used to
Cleaning		remove upper	df.replace() to	remove upper cases,
		cases, special	clean the	special characters, and
		characters, or	column names	spaces
		spaces		
Typo in	Ntm_Speciality	'OBSTETRICS &	Use	Replaced with
Value		OBSTETRICS &	df.replace() to	'OBSTETRICS AND
		GYNECOLOGY &	correct the	GYNECOLOGY'
		OBSTETRICS &	value	
		GYNECOLOGY'		
Imbalance	Persistency	Non-Persistent:	Use SMOTE	SMOTE will be
d Target		62.35%		implemented during
Data		Persistent: 37.65%		the process of model
				development
Encoding	Applies to every	Categorical values	Label or one	Values will be
	categorical column	are written in	hot encoding	encoded after EDA
		alphabet, which		
		ML cannot process		