

Pattern Recognition (CSE4213)

Faisal Muhammad Shah Associate Professor, Dept Of CSE, AUST

□ Principal Components Analysis (PCA)

The curse of dimensionality (1)

The curse of dimensionality

- A term coined by Bellman in 1961
- Refers to the problems associated with multivariate data analysis as the dimensionality increases
- We will illustrate these problems with a simple example

Consider a 3-class pattern recognition problem

- A simple approach would be to
 - Divide the feature space into uniform bins
 - Compute the ratio of examples for each class at each bin and,
 - For a new example, find its bin and choose the predominant class in that bin
- In our toy problem we decide to start with one single feature and divide the real line into 3 segments

 After doing this, we notice that there exists too much overlap among the classes, so we decide to incorporate a second feature to try and improve separability

The curse of dimensionality (2)

- We decide to preserve the granularity of each axis, which raises the number of bins from 3 (in 1D) to 3²=9 (in 2D)
 - At this point we need to make a decision: do we maintain the density of examples per bin or do we keep the number of examples had for the one-dimensional case?
 - Choosing to maintain the density increases the number of examples from 9 (in 1D) to 27 (in 2D)
 - Choosing to maintain the number of examples results in a 2D scatter plot that is very sparse

- Moving to three features makes the problem worse:
 - The number of bins grows to 3³=27
 - For the same density of examples the number of needed examples becomes 81
 - For the same number of examples, well, the 3D scatter plot is almost empty

The curse of dimensionality (3)

- Obviously, our approach to divide the sample space into equally spaced bins was quite inefficient
 - There are other approaches that are much less susceptible to the curse of dimensionality, but the problem still exists
- How do we beat the curse of dimensionality?
 - By incorporating prior knowledge
 - By providing increasing smoothness of the target function
 - By reducing the dimensionality
- In practice, the curse of dimensionality means that, for a given sample size, there is a maximum number of features above which the performance of our classifier will degrade rather than improve
 - In most cases, the additional information that is lost by discarding some features is (more than) compensated by a more accurate mapping in the lowerdimensional space

dimensionality

Data Compression

Reduce data from 2D to 1D

Data Compression

Reduce data from 2D to 1D

$$x^{(1)} \longrightarrow z^{(1)}$$

$$x^{(2)} \longrightarrow z^{(2)}$$

$$x^{(m)} \rightarrow z^{(m)}$$

Data Compression

Reduce data from 3D to 2D

Principal Component Analysis (PCA) is a method of dimensionality reduction/feature extraction that transforms the data from a d-dimensional space into a new coordinate system of dimension p, where $p \le d$ (the worst case would be to have p = d).

- The goal is to preserve as much of the variance in the original data as possible in the new coordinate systems.
- Give data on d variables, the hope is that the data points will lie mainly in a linear subspace of dimension lower than d.
- In practice, the data will usually not lie precisely in some lower dimensional subspace.
- The new variables that form a new coordinate system are called principal components (PCs).

- PCs are denoted by $\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_d$.
- The principal components form a basis for the data.
- Since PCs are orthogonal linear transformations of the original variables there is at most d PCs.
- Normally, not all of the d PCs are used but rather a subset of p PCs, $\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_p$
- In order to approximate the space spanned by the original data

points
$$\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_d \end{bmatrix}$$
 We can choose p based on what percentage

of the variance of the original data we would like to maintain.

The first PC, **u**₁ is called **first principal component** and has the maximum variance, thus it accounts for the most significant variance in the data.

The second PC, \mathbf{u}_2 is called **second principal component** and has the second highest variance and so on until PC \mathbf{u}_d which has the minimum variance.

- In order to capture as much of the variability as possible, let us choose the first principal component, denoted by u₁, to capture the maximum variance.
- Suppose that all centred observations are stacked into the columns of a d × n matrix X, where each column corresponds to a d-dimensional observation and there are n observations.
- The projection of n, d-dimensional observations on the first principal component u_1 is $u_1^T X$.

We want projection on this first dimension to have maximum variance.

$$var(\mathbf{u_1}^T X) = \mathbf{u_1}^T S \mathbf{u_1}$$

where S is the $d \times d$ sample covariance matrix of X.

- Clearly $var(u_1^T X)$ can be made arbitrarily large by increasing the magnitude of u_1 .
- $var(u_1^T X) = u_1^T S u_1$ where S is sample covariance matrix of sample data X.
- This means that the variance stated above has no upper limit and so we can not find the maximum.
- To solve this problem, we choose u_1 to maximize $u_1^T S u_1$ while constraining u_1 to have unit length.
- Therefore, we can rewrite the above optimization problem as:

$$\max \ \mathbf{u_1}^T S \mathbf{u_1}$$
 subject to $\mathbf{u_1}^T \mathbf{u_1} = 1$

To solve this optimization problem a Lagrange multiplier λ is introduced:

$$L(\mathbf{u_1}, \lambda) = \mathbf{u_1}^T S \mathbf{u_1} - \lambda (\mathbf{u_1}^T \mathbf{u} - \mathbf{1})$$

Lagrange multipliers are used to find the maximum or minimum of a function f(x, y) subject to constraint g(x, y) = c

Suppose we want to maximize the function f(x, y) = x - y subject to the constraint $x^2 + y^2 = 1$.

We can apply the Lagrange multiplier method to find the maximum value for the function f; the Lagrangian is:

$$L(x, y, \lambda) = x - y - \lambda(x^2 + y^2 - 1)$$

We want the partial derivatives equal to zero:

$$\frac{\partial L}{\partial x} = 1 + 2\lambda x = 0$$

$$\frac{\partial L}{\partial y} = -1 + 2\lambda y = 0$$

$$\frac{\partial L}{\partial \lambda} = x^2 + y^2 - 1$$

$$L(\mathbf{u_1}, \lambda) = \mathbf{u_1}^T S \mathbf{u_1} - \lambda (\mathbf{u_1}^T \mathbf{u_1} - 1)$$
 (1)

Differentiating with respect to u_1 gives d equations,

$$Su_1 = \lambda u_1$$

Premultiplying both sides by u_1^T we have:

$$\mathbf{u_1}^T S \mathbf{u_1} = \lambda \mathbf{u_1}^T \mathbf{u_1} = \lambda$$

 $u_1^T S u_1$ is maximized if λ is the largest eigenvalue of S.

Clearly λ and u_1 are an eigenvalue and an eigenvector of S. Differentiating (1) with respect to the Lagrange multiplier λ gives us back the constraint:

$$u_1^T u_1 = 1$$

This shows that the first principal component is given by the eigenvector with the largest associated eigenvalue of the sample covariance matrix S. A similar argument can show that the p dominant eigenvectors of covariance matrix S determine the first p principal components.

0- Fus - 8us -A Derive PCA ? = 2us = 2ux = x = [x1, x2, 2n] dxn - want to compute first pe, (u) - project the data on that direction that gives max m variance. -> u is an unknown rector. -> Project all of points on u. -> uz [data project in vector] Ixd dxn (IXn) S = Sample covamance -> var (uTz) = uTsu matrix of 2 IXY 9XY 9XI given formula. (7x1)Lagrange: Max P(x,y) St g(x,y) = C→ max (uTsu) L(x,y, x) = P(x,y) - 28(x,y) * max (uTsu) Subject to : uTu = 1 ______ So, from Max(uTSu)

→ L(u, x) = uTSu - 7 (uTu-1) [P Lagrange]

$$\frac{\partial L}{\partial u} = \frac{\partial}{\partial u} \left(u^2 S - 2 u^2 - 3 \right)$$

$$= 2u S - 2u 2 - 0$$

$$= 2u S - 2u 2 = 0$$

$$= 2u S - 2u 2 = 0$$

$$= u S - 2u$$

Here, s=matmx u = vector A = scalen

DI PERCENT

Su = Au // AV= AV

u is eigenvectors of s " eigenvalues of u.

while to the topping a -> u Su = u zu = Autu [utu = 1]

The first PC (Principal Component)

Pac is the eigen vector of S that has the maxim eigen value,

Principal Components Analysis (PCA)

- → PCA is a useful statistical technique for finding patterns in data of high dimension.
- → It is used to express the data in such a way as to highlight their similarities and differences.

Background Statistics

- → Mean
- → Standard Deviation
- → Variance

$$\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$

$$s = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{(n-1)}}$$

$$s^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}}{(n-1)}$$

Covariance

- → Standard deviation and variance can only operate one dimensional data.
- → Covariance is a measure of how much two dimensions vary from the mean with respect to each other.

$$var(X) = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(X_i - \bar{X})}{(n-1)}$$

$$cov(X, Y) = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{(n-1)}$$

Covariance: An Example

	Hours(H)	Mark(M)
Data	9	39
	15	56
	25	93
	14	61
	10	50
	18	75
	0	32
	16	85
	5	42
	19	70
	16	66
	20	80
Totals	167	749
Averages	13.92	62.42

H	M	$(H_i - \bar{H})$	$(M_i - \bar{M})$	$(H_i - \bar{H})(M_i - \bar{M})$
9	39	-4.92	-23.42	115.23
15	56	1.08	-6.42	-6.93
25	93	11.08	30.58	338.83
14	61	0.08	-1.42	-0.11
10	50	-3.92	-12.42	48.69
18	75	4.08	12.58	51.33
0	32	-13.92	-30.42	423.45
16	85	2.08	22.58	46.97
5	42	-8.92	-20.42	182.15
19	70	5.08	7.58	38.51
16	66	2.08	3.58	7.45
20	80	6.08	17.58	106.89
Total				1149.89
Average				104.54

- → Positive value indicates both dimensions increase together.
- → **Negative value** indicates as one increases, the other decreases.
- → Zero indicates dimensions are independent.

Covariance matrix

$$C = \begin{pmatrix} cov(x,x) & cov(x,y) & cov(x,z) \\ cov(y,x) & cov(y,y) & cov(y,z) \\ cov(z,x) & cov(z,y) & cov(z,z) \end{pmatrix}$$

Eigenvector and Eigenvalue

- → An eigenvector or characteristic vector of a square matrix is a vector that does not change its direction under the associated linear transformation.
- → If v is a vector that is not zero, then it is an eigenvector of a square matrix A if Av is a scalar multiple of v. This condition could be written as the equation:

 $A\mathbf{v} = \lambda \mathbf{v}$ where λ is the eigenvalue

Self Study

→ Find the eigenvector and eigenvalue of the following matrix.

$$\begin{pmatrix} 2 & 3 \\ 2 & 1 \end{pmatrix}$$

Steps of PCA

- → Step 1: Get some data
- → Step 2: Subtract the mean
- →Step 3: Calculate the covariance matrix
- →Step 4: Calculate eigenvectors and eigenvalues of covariance matrix
- →Step 5: Choosing components and forming a feature vector

Dataset and subtracting the mean

		1			ı
_	X	У		Х	У
	2.5	2.4		.69	.49
	0.5	0.7		-1.31	-1.2
	2.2	2.9		.39	.99
	1.9	2.2		.09	.29
Data =	3.1	3.0	DataAdjust =	1.29	1.09
	2.3	2.7		.49	.79
	2	1.6		.19	31
	1	1.1		81	81
	1.5	1.6		31	31
	1.1	0.9		71	-1.0

Calculating the Covariance matrix

$$cov = \begin{pmatrix} .616555556 & .615444444 \\ .615444444 & .716555556 \end{pmatrix}$$

$$cov(X, Y) = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{(n-1)}$$

Eigenvalues and Eigenvectors

$$eigenvalues = \begin{pmatrix} .0490833989 \\ 1.28402771 \end{pmatrix}$$

$$eigenvectors = \begin{pmatrix} -.735178656 & -.677873399 \\ .677873399 & -.735178656 \end{pmatrix}$$

Eigenvalues and Eigenvectors

$$eigenvalues = \begin{pmatrix} .0490833989 \\ 1.28402771 \end{pmatrix}$$

$$eigenvectors = \begin{pmatrix} -.735178656 & -.677873399 \\ .677873399 & -.735178656 \end{pmatrix}$$

Forming a feature vector

- →The eigenvector with the highest eigenvalue is the principle component of the data set.
- → Sort the eigenvalues in descending order.
- → From n eigenvalues, take top p eigenvalues.
- → Dimensions will be changed from n to p.

$$\begin{array}{l} eigenvalues = \left(\begin{array}{c} .0490833989 \\ 1.28402771 \end{array} \right) \\ eigenvectors = \left(\begin{array}{c} -.735178656 \\ .677873399 \end{array} \right) -.735178656 \end{array} \right) \\ \end{array}$$

$$FeatureVector = (eig_1 \ eig_2 \ eig_3 \ \ eig_n)$$

Deriving new dataset

→Take the transpose of the vector and multiply it on the left of the original data set, transposed.

 $FinalData = RowFeatureVector \times RowDataAdjust,$

	x	y
	827970186	175115307
	1.77758033	.142857227
	992197494	.384374989
	274210416	.130417207
Transformed Data=	-1.67580142	209498461
	912949103	.175282444
	.0991094375	349824698
	1.14457216	.0464172582
	.438046137	.0177646297
	1.22382056	162675287

Old and new dataset

Getting Original Data back

→Getting back exact original data is only possible if we take all eigenvectors during transformation. Otherwise, we lose some information.

 $FinalData = RowFeatureVector \times RowDataAdjust,$

 $RowDataAdjust = RowFeatureVector^{-1} \times FinalData$

 $RowDataAdjust = RowFeatureVector^{T} \times FinalData$

 $RowOriginalData = (RowFeatureVector^{T} \times FinalData) + OriginalMean$

Thank You