AV499-AVD871-Pargnamming Assgn. 4.

Solution of finite honizon Markov decision processes.

In this assignment you have implement the necussive method discussed in class to solve finiti honizon Mankov Occision processes. Suppose you are given a Mankov decision process specified by the state space of, action set A, transition probability, matrices Pla), neward functions Rt. + b. (assume that the expected newards are given). The finite honizon Mankov decision process is solved by the following secusion equation, with $V_{-1}(8) = 0$.

$$V_{E}(s) = \max_{a} \left\{ E_{E}(s,a) + E^{a} V_{E-1}(S) \right\}$$

here ERt (s,a) (= 9t (s,a)) is the enpectation wat to the intrinsic aandomness of the sew and; and

 $E^{a}V_{t-1}(S) = \sum_{i=1}^{l} P_{SS'}^{(a)} V_{t-1}(s')$, and the necussion holds for $t \in \{0,1,2,...,T-1\}$. You have to implement the above secusion and find out $V_{\epsilon}(s)$ as well as the policy $TT_{\epsilon}(s)$.

Use your implementation to solve the MDP with the state space $S = \{1, 2, 3\}$, action space $A = \{1, 2\}$, $P^{(a)}$ gives as

$$P^{(1)} = \begin{pmatrix} 0.5 & 0.2 & 0.3 \\ 0.6 & 0.2 & 0.2 \\ 0.1 & 6.8 & 0.1 \end{pmatrix} \qquad P^{(2)} = \begin{pmatrix} 0.3 & 0.3 & 0.4 \\ 0.9 & 0.05 & 0.05 \\ 0.7 & 0.2 & 0.1 \end{pmatrix}$$

the neward function R_E is independent of time, with the expected neward $g_E(s_ia) = g(s_ia) = S + a^2$. Solve the MDP for the horizon T = 10.