实验十九 分光计测量棱镜折射率 实验报告

钱思天 1600011388 No.8

2017年12月20日

1 实验数据与处理

1.1 实测数据

1.1.1 顶角 A 测量

根据实测结果, 并根据公式

$$\phi = \frac{\theta_1 - \theta_1' + \theta_2 - \theta_2'}{2}$$

表 1: 顶角 A 测量结果

角度	θ_1	θ_2	$ heta_1'$	$ heta_2'$	ϕ
1	167°18′	107°22′	$347^{\circ}16'$	$287^{\circ}16'$	59°58′
2	191°23′	131°23′	371°20′	311°21′	60°00′
3	136°02′	76°06′	$316^{\circ}04'$	$256^{\circ}02'$	59°59′
Average	-	-	-	-	59°58.8′

得

顶角:
$$A = \bar{\phi} = 59^{\circ}58.8'$$

1.1.2 略入射法

表 2: 掠入射法测量结果

角度	α_1	α_2	α'_1	α_2'	β	n_i
1	150°31′	109°07′	330°28′	289°04′	41°24′	1.6728
2	135°59′	94°37′	315°57′	274°32′	41°24′	1.6728
3	86°55′	45°30′	266°51′	225°28′	41°24′	1.6728
Average	-	-	-	-	41°23.8′	1.6728

得

掠入射角:
$$\gamma = \bar{\beta} = 41^{\circ}23.8'$$

1.1.3 最小偏转角法

根据实测结果, 并根据公式

$$\eta = \frac{\zeta_1 - \zeta_1' + \zeta_2 - \zeta_2'}{2}$$

表 3: 最小偏向角法测量结果

角度	ζ_1	ζ_2	ζ'_1	ζ_2'	η
1	87°51′	33°42′	267°51′	213°45′	54°08′
2	102°24′	48°18′	282°20′	228°17′	54°05′
3	97°53′	43°45′	277°50′	223°43′	54°08′
Average	-	-	-	-	54°06.5′

得

最小偏转角:
$$\delta_m = \bar{\eta} = 54^{\circ}06.5'$$

1.2 计算

1.2.1 顶角 A 的测量

根据顶角的计算公式,其不确定度分为两项:

B 类不确定度: 分光计的允差

$$e_0 = 1'$$

得

$$\sigma_1 = \frac{\frac{(4e_0)}{2}}{\sqrt{3}} = \frac{2'}{\sqrt{3}} = 1.2'$$

A 类不确定度: 根据标准差公式

$$\sigma_2 = \sqrt{\frac{\sum_{i=1}^{3} (A_i - \bar{A})^2}{3 \times 2}} = 0.4'$$

故

$$\sigma_A = \sqrt{\sigma_2^2 + \sigma_1^2} = 1.3'$$
 $A \pm \sigma_A = 59^{\circ}59.8' \pm 1.3'$

同理,还可以求得掠入射法中的掠入射角 γ 和最小偏转角法中的最小偏转

$$\sigma_{\gamma} = 1.2'; \sigma_{\delta} = 1.6'$$

$$\gamma \pm \sigma_{\gamma} = 41^{\circ}23.8' \pm 1.2'$$

$$\delta_{m} \pm \sigma_{\delta} = 54^{\circ}06.5' \pm 1.6'$$

1.2.2 掠入射法测折射率

由公式

角 δ_m 的不确定度

$$n = \bar{n}_i = 1.6728$$

$$\sigma_n = \sqrt{(\frac{\partial n}{\partial A})^2 \sigma_A^2 + (\frac{\partial n}{\partial \gamma})^2 \sigma_\gamma^2}$$

而

$$(\frac{\partial n}{\partial A})^2 \sigma_A^2 = \sigma_A^2 \left(-\frac{\csc^3(A)(\cos(A) + \sin(\gamma))(\cos(A)\sin(\gamma) + 1)}{\sqrt{\csc^2(A)(\cos(A) + \sin(\gamma))^2 + 1}} \right)^2$$

$$(\frac{\partial n}{\partial \gamma})^2 \sigma_\gamma^2 = \sigma_\gamma^2 \left(\frac{\csc^2(A)\cos(\gamma)(\cos(A) + \sin(\gamma))}{\sqrt{\csc^2(A)(\cos(A) + \sin(\gamma))^2 + 1}} \right)^2$$

为计算不确定度,将角度制转化为弧度制计算,得

$$\sigma_n = \sqrt{\left(\frac{\partial n}{\partial A}\right)^2 \sigma_A^2 + \left(\frac{\partial n}{\partial \gamma}\right)^2 \sigma_\gamma^2} = 0.0006$$
$$n \pm \sigma_n = 1.6728 \pm 0.0006$$

2 分析与讨论 4

1.2.3 最小偏转角法测折射率

由公式

$$n = \csc\left(\frac{A}{2}\right) \sin\left(\frac{1}{2}(A + \delta_m)\right) = 1.6787$$
$$\sigma_n = \sqrt{\left(\frac{\partial n}{\partial A}\right)^2 \sigma_A^2 + \left(\frac{\partial n}{\partial \delta_m}\right)^2 \sigma_{\delta_m}^2}$$

而

$$(\frac{\partial n}{\partial A})^2 \sigma_A^2 = \sigma_A^2 (-\frac{1}{2}\csc^2\left(\frac{A}{2}\right) \sin\left(\frac{\delta_m}{2}\right))^2$$

$$(\frac{\partial n}{\partial \delta_m})^2 \sigma_{\delta_m}^2 = \sigma_{\delta_m}^2 (\frac{1}{2}\csc\left(\frac{A}{2}\right)\cos\left(\frac{1}{2}\left(A + \delta_m\right)\right))^2$$

为计算不确定度,将角度制转化为弧度制计算,得

$$\sigma_n = \sqrt{\left(\frac{\partial n}{\partial A}\right)^2 \sigma_A^2 + \left(\frac{\partial n}{\partial \delta_m}\right)^2 \sigma_{\delta_m}^2} = 0.0004$$
$$n \pm \sigma_n = 1.6784 \pm 0.0004$$

1.3 选做部分 -测量汞灯的其余谱线

根据实测结果, 并根据公式

$$\psi = \frac{\xi_1 - \xi_1' + \xi_2 - \xi_2'}{2}$$
$$n = \csc\left(\frac{A}{2}\right) \sin\left(\frac{1}{2}(A + \psi)\right)$$

表 4: 汞灯各谱线测量结果

角度	ξ_1	ξ_2	ξ_1'	ξ_2'	ψ	n
黄	97°25′	44°07′	277°26′	224°07′	53°19′	1.6709
暗绿	98°05′	42°46′	278°01′	222°42′	55°19′	1.6898
紫	98°15′	41°44′	278°17′	221°45′	56°31′	1.7009
暗紫	98°14′	41°42′	278°16′	221°41′	56°32′	1.7107

2 分析与讨论

答 在我看来,本次实验的误差来源有以下几点

3 收获与感想 5

1 狭缝的宽度,过窄的宽度亮度较小,过宽的又存在像的尺度问题,都会对实验产生影响。

- 2 环境光过高影响衬比度。
- 3 不可避免的仪器允差等。

3 收获与感想

分光计,在高中时我就对它又爱又恨。爱的是分光计的使用很有趣而原理又很巧妙,精度也很高;恨的,就是他那有些繁琐的调节了。

这次做实验也不例外,一大半的时间都消耗在了分光计的调节上。

当然,除了调节之外,这次实验的收获还是很大的。

其一就是分光计的使用了,每一次使用分光计,都不由得为它的精巧 所折服。而且从分光计的原理中,我还感受到了对于几何关系的运用。

此外,调节分光计时,我也对了逐步逼近,控制自由度等思想有了更深的理解。