Nov 27: Relating Good Pairs to Pairs

If (X,A) is a good pair, then the quotient map (X,A,A)= (X/A,A/A) induces 9*: Hn(X,A) => Hn(X/A,A/A) = Hn(X/A)

Pf: Let U≥A be open, Jes retr to A

 $H_n(X,A) \xrightarrow{\cong} H_n(X,V) \xrightarrow{\sim} H_n(X|A,V|A)$ $\downarrow_{q_*} \qquad \downarrow_{q_*} \qquad \downarrow_{q_*}$ $H_n(X/A,A/A) \xrightarrow{\cong} H_n(X/A,V/A) \xleftarrow{\sim} H_n(X/A,A/A,V/A,A/A)$

 \cong : Since V def rets to A, we have Max Flackethonkensone Hn(V,A)=0. Vn>0. Therefore, via LES for (X,V,A), \cong .

=: Some argument

~ is~z are by excision

9x right: Is an isomorphism, since 9 is a homeomorphism away from A.

Therefore the other gx are 1505.

Wedger sums: VXXX. Let Xo be the point in common. We can consider ia: $(X_{\alpha}, X_{o}) \longrightarrow (VX_{\alpha}, X_{o}) \forall \alpha$ Assume good pair

ia *: $H_{n}(X_{\alpha}, X_{\alpha}) \longrightarrow H_{n}(VX_{\alpha}, X_{o})$ Ho(X)

Ho(X)

Ho(X) Claim: Diax is an isomorphism: Hn(VXX) = DHn(XX) Consider Hor(IIXx, IIXx) = + Hor(Xx) $\widetilde{H}_{n}(X/A,X/A) = H_{n}(X X_{\alpha},X_{0}) \cong \widetilde{H}_{n}(VX_{\alpha})$ A Slight Generalization of Invariance of dimension: Thm: If U, V are open sets of IR" and IR" respectively, and $U \cong V$, then n=m. Pf: 100-12 Hn(U,U) 15 = Hn(MR,R) x) by excision. Ho(R,R)(x)=Z(=) i=n.(LE)

Therefore n=m.

Hn (X, X/ pet) is called the local homology of a glosepoint. Not for any open nond of x

 $H_n(X,X|X)\cong H_n(U,U|X)$

If $f: X \to Y$, y = f(x), then f is a homeomorphism near \times (local homeomorphism) (x, x) = (x, y) = (x, y) = (x, y)

Nov 29: Equivalence of Singular/Simplicial Homology

If X is a CW complex, lets consider the relation between $H_n^A(X)$ and $H_n(X)$

Thm: If (X, A) is a A-condepair, then

 $1: \triangle_{n}(X) \longrightarrow C_{n}(X)$ induces $T_{*}: H_{n}^{\Delta}(X,A) \longrightarrow H_{n}(X,A)$

Pf: I assume X is a finite dimensional space, and for now A is empty.

Hn+1 (XK, XK-1) -> Hn (XK) -> Hn (XK, XK-1) -> Hn-1 Note $H_n(X^K, X^{K-1}) \neq 0 \iff n=K, \text{ and is free}$ abelian at $K: \bigoplus \mathcal{D}_n$ gen by n-simplices. of X, say α Similarly. $\Phi: \coprod (\Delta^n, \partial \Delta^n) \xrightarrow{} (X^n, X^{n-1})$ is s.t. $1 \Delta^n A \Delta^n \cong X^n X^{n-1}$ \Rightarrow $H_n(X^K, X^{K^*}) = \mathbb{Z}^{\oplus M}$, so * are isoms for is an isom: we can proreed by induction:

K=0 Han(pts) = Ha(pts). Now the inductive by pothesis implies implies is an isomorphism.

Just for flavor, let's show & is injective show it's surjective as an exercise.

Suppose ge & is s.t. Y(g)=0. S is injective $\Rightarrow S(c(g)) = \emptyset K'(S(g)) = K'(O) = 0$ $\Rightarrow C(g) = 0$ ge Ker (c) = Im(b) $\Rightarrow J g' \in G_2$ w/ b(g') = g

Now B(g) is s.t. y(B(g))=0. $\Rightarrow B(g) \in \ker(g) = \operatorname{Im}(x)$. So $\exists h \in H_1$ st. x(h) = B(g'). But α is surjective, so $\exists g'' \in G_1$, st. $\alpha(g'') = \mathbb{R}h$. Now,

a(g'') = g', since B is injective and $a(g'') = B(a(g'')) \Rightarrow B(g') \Rightarrow B(g'') \Rightarrow B(g'$

$$\Rightarrow g = b(a(g'')) = 0$$

 $\mu_{n}^{\Delta}(X) \cong H_{n}(X)$

Ame notation: Betti #'s): Bisi is

If Ato, 5-lemma w) LES for pairs
January and the swift of the way is
Dec 1: Cleaning up and Applications
Deposes are a second
We have that A-Homeloon and singular agree
We have that A-Homology and singular agree. Thus if we have a finite A-complex X,
mus it we have a finite 12-complex x,
then
H: (X) is Finitely generated
Nice Algebra result: [Modules over a PID]
Every abelian finitely generated group 6
is s.t.
G=ZZ D DT. 10 = 10 P
OM 52735 D1=124 05 D1
Where T is a finite abelian group. One can Further show (by Chinese Remainder) T= D Z/P:
Further show (by Chinese Remainter)
$T\cong \bigoplus \mathbb{Z}/p_{!}^{n_{\mathfrak{k}}}$
0=i((1/2/10))=0
Language: Bi=ith betti number is the n above for Hi(X)
H-1X1 2
Epiniliz is called the torsion coefficient
(bigging) is called the misson conficient
\$ 74 \neg 73 \neg 75

Recall
$$H_{ini}(S^n) = \begin{cases} Z & i=n \\ 0 & o(herwise) \end{cases}$$

This allows us to study maps f:5">>> 5n in simpler terms.

$$deg(f)=n[f_*]:Z\rightarrow Z:1\rightarrow n$$

2) If f is not surjective,
$$deg(f)=0$$
:
 $f: S^n \stackrel{f}{\Longrightarrow} S^n | X_0 \longrightarrow S^n$
 $H_n(S^n(x_0) - H_n(IR^n) = 0$

3)
$$f \sim g \implies \deg(f) = \deg(g)$$
. Hopf showed the converse is also true.

$$\Delta_1^2$$
 Δ_r
 A_r
 $A_$

	targent, non-zero
blab: Zu	has a continuous vector field iff n is odd
11961	P.J: Suppose it does let
7	RELEY WEST STORY
	Pf: Suppose it does. Let V:S ⁿ → T(S ⁿ) × → V(×)
V	$X \mapsto V(X)$
-	
Wa	2 can replace it with /11/11 so all vectors
hav	e norm = 1. Therevale The can consider
: W	e norm = 1. Therevake the car consider
W.	ac from 191 en circ
	cos(t)x+sin(t)v(x) lie on the unit circle
ín	(x) Id = Antipodal map
Swall Bo	$\langle x, v(x) \rangle$, $Id \approx Antipodal map$ $\Rightarrow deg(Id)=1=(-1)^{n+1}\Rightarrow n \text{ is odd}$
11/_	$V(X_{1}, Y_{n+1}) = (X_{2}, X_{1},, Y_{n+1}, -X_{n})$
	- RUNN "I DINSOF INSTIRM IT I
Th	m: Z/2Z is the only nontrivial group actings on Sifn is even
Free 18	actings on Sifn is even
(Uo Jixe)	
Zn i	G→ Homeo (Sn) dea ≥ {±1}
	0 - 15 (3)
Λ	1 (A 1 (S 1) (N+)
flo	chon tree => g = Id w> g -> (-1)
	ction free \Rightarrow g \neq Id w $g \mapsto (-1)^{n+1}$ \Rightarrow $G \cong \mathbb{Z}/2\mathbb{Z}$, 0
	tardenda Alani na nationami