

CSCI 4380/6380 DATA MINING

Fei Dou

Assistant Professor School of Computing University of Georgia

September 6, 2023

Recap: Data Mining Process

Data Preprocessing

Data Preprocessing

Data cleaning:

 Fill in missing values, smooth noisy data, identify or remove outliers, and resolve inconsistencies

Data integration

- Integration of multiple databases, data cubes, or files

Data reduction

- Dimensionality reduction
- Numerosity reduction
- Data compression

Data transformation and data discretization

- Normalization
- Concept hierarchy generation

Data Cleaning

Data Cleaning

Data in the Real World Is Dirty

- incomplete: lacking attribute values, lacking certain attributes of interest, or containing only aggregate data, e.g., Occupation=""" (missing data)
- noisy: containing noise, errors, or outliers, e.g., Salary="-10" (an error)
- inconsistent: containing discrepancies in codes or names, e.g.,
 Age="42", Birthday="03/07/2010"
- **Intentional** (e.g., disguised missing data) e.g., Jan. 1 as everyone's birthday?

Incomplete (Missing) Data

Data is not always available

- Missing data may be due to
 - equipment malfunction
 - inconsistent with other recorded data and thus deleted data not entered due to misunderstanding
 - certain data may not be considered important at the time of entry
 - not register history or changes of the data

Missing data may need to be inferred

Missing Values - Methods

- Delete the object/instance
 - Pro: Easy to apply, does not tamper with the data.
 - Con: Can greatly reduce your sample size.

	Α	В	C	D	Е	F	G	
1	Ori	ginal Data	set		Data set after Listwise deletion			
2	Name	Age	Gender		Name	Age	Gender	
3	Robin	28	Male		Robin	28	Male	
4	Heather	29	Female		Heather	29	Female	
5	Jamie	22			Carl	32	Male	
6	Carl	32	Male		Sarah	26	Female	
7		35	Male					
8	Sarah	26	Female					

Missing Values - Methods

- Imputation
 - Pro: No loss in sample size, preservation of data distribution, reduced bias.
 - Con: Complexity, potential for error, cannot be applied on All types of data.
- Mean: sum of all values in the column divided by the number of values present in the column
- Median: sort all values in the column, odd: (n+1)/2 th value; even: average of n/2-th and (n+2)/2-th values.
- Mode: the value that occurs the most often in the range of values

Missing Values - Methods

- Imputation
- Model based approach: kNN
 Autoregressive/Moving
 Average based prediction,
 linear/Neural Networks
 based interpolation.
- Last Observation Carried Forward (LOCF)

	Α	В	C	D	E	F	G	Н	1
1	Original Data Set					Data After LOCF			
2	Name	Visit	Month	Weight		Name	Visit	Month	Weight
3	Robin	1	January	65		Robin		1 January	65
4	Robin	2	February	68		Robin		2 February	68
5	Robin	3	March			Robin		3 March	68
6	Robin	4	April			Robin		4 April	68
7	Robin	5	May	72		Robin		5 May	72
8	Robin	6	June	71		Robin		6 June	71
9	Heather	1	January	52		Heather		1 January	52
10	Heather	2	February	51		Heather		2 February	51
11	Heather	3	March	56		Heather		3 March	56
12	Heather	4	April	52		Heather		4 April	52
13	Heather	5	May			Heather		5 May	52
14	Heather	6	June			Heather		6 June	52
15	Jamie	1	January			Jamie		1 January	-
16	Jamie	2	February	78		Jamie		2 February	78
17	Jamie	3	March	81		Jamie		3 March	81
18	Jamie	4	April			Jamie		4 April	81
19	Jamie	5	May			Jamie		5 May	81
20	Jamie	6	June	75		Jamie		6 June	75

Noise Data

- **Noise**: random error or variance in a measured variable
- Incorrect attribute values may be due to
 - faulty data collection instruments
 - data entry problems
 - data transmission problems
 - technology limitation
 - inconsistency in naming convention
- Other data problems which require data cleaning
 - duplicate records
 - incomplete data
 - inconsistent data

How to Handle Noisy Data?

Binning

- first sort data and partition into (equal-frequency) bins
- then one can smooth by bin means, smooth by bin median, smooth by bin boundaries, etc.

Regression

- smooth by fitting the data into regression functions

Clustering

detect and remove outliers

Combined computer and human inspection

- detect suspicious values and check by human (e.g., deal with possible outliers)

Re-cap: Data Preprocessing

Data cleaning:

 Fill in missing values, smooth noisy data, identify or remove outliers, and resolve inconsistencies

Data integration

- Integration of multiple databases, data cubes, or files

Data reduction

- Dimensionality reduction
- Numerosity reduction
- Data compression

Data transformation and data discretization

- Normalization
- Concept hierarchy generation

Data Integration

Data Integration

- Data integration: Combines data from multiple sources into a coherent store
- Schema integration: e.g., A.cust-id and B.cust-number
- Entity identification problem: Identify real world entities from multiple data sources, e.g., Bill Clinton = William Clinton
- Detecting and resolving data value conflicts
 - For the same real-world entity, attribute values from different sources are different
 - Possible reasons: different representations, different scales, e.g., metric vs. British units.

Handling Redundancy in Data Integration

- Redundant data occur often when integration of multiple databases
 - Object identification
 - Derivable data

 Redundant attributes may be able to be detected by correlation analysis and covariance analysis

 Careful integration of the data from multiple sources may help reduce/avoid redundancies and inconsistencies and improve mining speed and quality

Expected Value

- The *expected value* or *expectation* of a function f(X) with respect to a probability distribution P(X) is the average (mean) when X is drawn from P(X)
- For a discrete random variable *X*, it is calculated as

$$\mathbb{E}_{X \sim P}[f(X)] = \sum_{X} P(X)f(X)$$

• For a continuous random variable *X*, it is calculated as

$$\mathbb{E}_{X \sim P}[f(X)] = \int P(X)f(X) \, dX$$

- When the identity of the distribution is clear from the context, we can write $\mathbb{E}_X[f(X)]$
- If it is clear which random variable is used, we can write just $\mathbb{E}[f(X)]$
- Mean is the most common measure of central tendency of a distribution
 - For a random variable: $f(X_i) = X_i \Rightarrow \mu = \mathbb{E}[X_i] = \sum_i P(X_i) \cdot X_i$
 - This is similar to the mean of a sample of observations: $\mu = \frac{1}{N} \sum_i X_i$
 - Other measures of central tendency: median, mode

Variance

• *Variance* gives the measure of how much the values of the function f(X) deviate from the expected value as we sample values of X from P(X)

$$Var(f(X)) = \mathbb{E}[(f(X) - \mathbb{E}[f(X)])^2]$$

- When the variance is low, the values of f(X) cluster near the expected value
- Variance is commonly denoted with σ^2
 - The above equation is similar to a function $X_i \mu$
 - We have $\sigma^2 = \sum_i P(X_i) \cdot (X_i \mu)^2$
 - This is similar to the formula for calculating the variance of a sample of observations: $\sigma^2 = \frac{1}{N-1} \sum_i (X_i \mu)^2$
- The square root of the variance is the *standard deviation*
 - Denoted $\sigma = \sqrt{\operatorname{Var}(X)}$

Covariance

• *Covariance* gives the measure of how much two random variables are linearly related to each other

$$Cov(f(X), g(Y)) = \mathbb{E}[(f(X) - \mathbb{E}[f(X)])(g(Y) - \mathbb{E}[g(Y)])]$$

- If $f(X_i) = X_i$ and $g(Y_i) = Y_i$
 - Then, the covariance is: $Cov(X,Y) = \sum_i P(X_i,Y_i) \cdot (X_i \mu_X) \cdot (Y_i \mu_Y)$
 - Compare to covariance of actual samples: $Cov(X,Y) = \frac{1}{N-1} \sum_i (Y_i \mu_X)(Y_i \mu_Y)$
- The covariance measures the tendency for *X* and *Y* to deviate from their means in same (or opposite) directions at same time

Covariance Matrix

• Covariance matrix of a multivariate random variable X with states $x \in \mathbb{R}^n$ is an $n \times n$ matrix, such that

$$Cov(\mathbf{X})_{i,j} = Cov(\mathbf{x}_i, \mathbf{x}_j)$$

• I.e.,

$$Cov(\mathbf{X}) = \begin{bmatrix} Cov(\mathbf{x}_1, \mathbf{x}_1) & Cov(\mathbf{x}_1, \mathbf{x}_2) & \cdots & Cov(\mathbf{x}_1, \mathbf{x}_n) \\ Cov(\mathbf{x}_2, \mathbf{x}_1) & & \ddots & & Cov(\mathbf{x}_2, \mathbf{x}_n) \\ \vdots & & & & \vdots \\ Cov(\mathbf{x}_n, \mathbf{x}_1) & Cov(\mathbf{x}_n, \mathbf{x}_2) & \cdots & Cov(\mathbf{x}_n, \mathbf{x}_n) \end{bmatrix}$$

 The diagonal elements of the covariance matrix are the variances of the elements of the vector

$$Cov(\mathbf{x}_i, \mathbf{x}_i) = Var(\mathbf{x}_i)$$

• Also note that the covariance matrix is symmetric, since $Cov(\mathbf{x}_i, \mathbf{x}_i) = Cov(\mathbf{x}_i, \mathbf{x}_i)$

Correlation

Correlation coefficient is the covariance normalized by the standard deviations of the two variables

$$corr(X,Y) = \frac{Cov(X,Y)}{\sigma_X \cdot \sigma_Y}$$

- It is also called Pearson's correlation coefficient and it is denoted $\rho(X,Y)$
- The values are in the interval [-1, 1]
- It only reflects linear dependence between variables, and it does not measure non-linear dependencies between the variables

Data Reduction

Data Reduction

 Data reduction: Obtain a reduced representation of the data set that is much smaller in volume but yet produces the same (or almost the same) analytical results

• Why data reduction? — A database/data warehouse may store terabytes of data. Complex data analysis may take a very long time to run on the complete data set.

Data Reduction Strategies

- **Dimensionality reduction**, e.g., remove unimportant attributes
 - Principal Components Analysis (PCA)
 - Wavelet transforms
 - Feature subset selection, feature creation
- Numerosity reduction (some simply call it: Data Reduction)
 - Regression and Log-Linear Models
 - Histograms, clustering, sampling
 - Data cube aggregation
- Data compression

Dimensionality Reduction

- Curse of dimensionality
 - When dimensionality increases, data becomes increasingly sparse
- Dimensionality reduction
 - Avoid the curse of dimensionality
 - Help eliminate irrelevant features and reduce noise
 - Reduce time and space required in data mining
 - Allow easier visualization

- Dimensionality reduction techniques
 - Principal Component Analysis
 - Fourier transforms and wavelet transform
 - Supervised and nonlinear techniques (e.g., feature selection)

• **Motivation** With *n* different data objects with *d* attributes, we aim to learn a low dimensional representation

$$\mathbf{X} \in \mathbb{R}^{n \times d} \longrightarrow f(\mathbf{X}) \in \mathbb{R}^{n \times k}$$

- Reduce curse of dimensionality problems
- Reduce redundancies in the data
- Increase storage and computational efficiency
- Visualize data in 2D or 3D

Re-cap: Eigen Decomposition

- *Eigen decomposition* is decomposing a matrix into a set of eigenvalues and eigenvectors
- **Eigenvalues** of a square matrix **A** are scalars λ and **eigenvectors** are non-zero vectors **v** that satisfy

$$\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$$

Eigenvalues are found by solving the following equation

$$\det(\mathbf{A} - \lambda \mathbf{I}) = 0$$

• If a matrix **A** has *n* linearly independent eigenvectors $\{\mathbf{v}^1, ..., \mathbf{v}^n\}$ with corresponding eigenvalues $\{\lambda_1, ..., \lambda_n\}$, the eigen decomposition of **A** is given by

$$\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{-1}$$

- Columns of the matrix \mathbf{V} are the eigenvectors, i.e., $\mathbf{V} = [\mathbf{v}^1, ..., \mathbf{v}^n]$
- Λ is a diagonal matrix of the eigenvalues, i.e., $\Lambda = [\lambda_1, ..., \lambda_n]$
- To find the inverse of the matrix A, we can use $A^{-1} = V\Lambda^{-1}V^{-1}$
 - This involves simply finding the inverse Λ^{-1} of a diagonal matrix

Singular Value Decomposition

- *Singular value decomposition* (SVD) provides another way to factorize a matrix, into singular vectors and singular values
 - SVD is more generally applicable than eigen decomposition
 - Every real matrix has an SVD, but the same is not true of the eigen decomposition
 - E.g., if a matrix is not square, the eigen decomposition is not defined, and we must use SVD
- SVD of an $m \times n$ matrix **A** is given by

$$A = U\Sigma V^T$$

- **U** is an $m \times m$ matrix, **\Sigma** is an $m \times n$ matrix, and **V** is an $n \times n$ matrix
- The elements along the diagonal of Σ are known as the singular values of A
- The columns of **U** are known as the left-singular vectors
- The columns of **V** are known as the right-singular vectors
- For a non-square matrix **A**, the squares of the singular values σ_i are the eigenvalues λ_i of $\mathbf{A}^T \mathbf{A}$, i.e., $\sigma_i^2 = \lambda_i$ for i = 1, 2, ..., n
- Applications of SVD include computing the pseudo-inverse of non-square matrices, matrix approximation, determining the matrix rank

Algorithm

- Normalize the data to be zero mean. (m data objects with n features)
- Calculate the sample covariance matrix
- Find the n eigenvector -eigenvalue pairs of the sample covariance matrix
 - PCA basis vectors = the eigenvector
 - Larger eigenvalue =⇒ more important eigenvectors
- Choose the top k eigenvectors corresponding to the highest eigenvalues
- Project the data to the lower dimensional space.

• Intuition

- Step 1: Find directions of maximum variance

• Intuition

- Step 2: Transform features onto directions of maximum variance

• Intuition

- Step 3: Usually consider a subset of vectors of most variance (DR)

