Stackbasierte Sprachen VU - MODALCHECKER

Gerald Berger Benjamin Kiesl Matthias Reisinger

January 10, 2014

Einführung

- ➤ Wir betrachten modallogische Formeln, aufgebaut durch
 - Atome $\mathcal{P} = \{p_1, p_2, p_3, \ldots\},\$
 - unäre Junktoren ¬, □, ◊,
 - binäre Junktoren \rightarrow , \land , \lor .

Beispiele:

- ullet $\Box p_1
 ightarrow p_1$,
- $\neg p_2 \lor \Box \Diamond p_1$,
- $\Box p_1 \to \Box \Box p_1$.

Eine Kripke-Interpretation (Interpretation) ist ein Tripel $\mathcal{M}=\langle W,R,v\rangle$, wobei

Eine Kripke-Interpretation (Interpretation) ist ein Tripel $\mathcal{M} = \langle W, R, v \rangle$, wobei

➤ W eine nicht-leere Menge ist (die Menge der *möglichen Welten*),

Eine *Kripke-Interpretation* (Interpretation) ist ein Tripel $\mathcal{M} = \langle W, R, v \rangle$, wobei

- ➤ W eine nicht-leere Menge ist (die Menge der *möglichen Welten*),
- $ightharpoonup R \subseteq W \times W$,

Eine *Kripke-Interpretation* (Interpretation) ist ein Tripel $\mathcal{M} = \langle W, R, v \rangle$, wobei

- ➤ W eine nicht-leere Menge ist (die Menge der *möglichen Welten*),
- $ightharpoonup R \subseteq W \times W$,
- $\triangleright v: W \times \mathcal{P} \rightarrow \{0, 1\}.$

Eine *Kripke-Interpretation* (Interpretation) ist ein Tripel $\mathcal{M} = \langle W, R, v \rangle$, wobei

- ➤ W eine nicht-leere Menge ist (die Menge der möglichen Welten),
- $ightharpoonup R \subseteq W \times W$,
- $\triangleright v: W \times \mathcal{P} \rightarrow \{0,1\}.$

Interpretationen definieren Graphen!

Sei $\mathcal{M} = \langle W, R, v \rangle$ eine Interpretation und $w \in W$. Wir definieren $\mathcal{M}, w \models \varphi$ für alle Formeln φ wie folgt:

- $ightharpoonup \mathcal{M}, w \models p \iff v(w,p) = 1 \text{ für ein Atom } p.$
- $\blacktriangleright \mathcal{M}, w \models \varphi_1 \land \varphi_2 \iff \mathcal{M}, w \models \varphi_1 \text{ und } \mathcal{M}, w \models \varphi_2.$
- $\blacktriangleright \mathcal{M}, w \models \varphi_1 \lor \varphi_2 \iff \mathcal{M}, w \models \varphi_1 \text{ oder } \mathcal{M}, w \models \varphi_2.$
- \blacktriangleright $\mathcal{M}, w \models \varphi_1 \rightarrow \varphi_2 \iff \mathcal{M}, w \not\models \varphi_1 \text{ oder } \mathcal{M}, w \models \varphi_2.$
- $\blacktriangleright \mathcal{M}, w \models \neg \varphi \iff \mathcal{M}, w \not\models \varphi.$

Sei $\mathcal{M}=\langle W,R,v\rangle$ eine Interpretation und $w\in W$. Wir definieren $\mathcal{M},w\models\varphi$ für alle Formeln φ wie folgt:

- $ightharpoonup \mathcal{M}, w \models p \iff v(w,p) = 1 \text{ für ein Atom } p.$
- $\blacktriangleright \mathcal{M}, w \models \varphi_1 \land \varphi_2 \iff \mathcal{M}, w \models \varphi_1 \text{ und } \mathcal{M}, w \models \varphi_2.$
- $\blacktriangleright \mathcal{M}, w \models \varphi_1 \lor \varphi_2 \iff \mathcal{M}, w \models \varphi_1 \text{ oder } \mathcal{M}, w \models \varphi_2.$
- \blacktriangleright $\mathcal{M}, w \models \varphi_1 \rightarrow \varphi_2 \iff \mathcal{M}, w \not\models \varphi_1 \text{ oder } \mathcal{M}, w \models \varphi_2.$
- $\blacktriangleright \mathcal{M}, w \models \neg \varphi \iff \mathcal{M}, w \not\models \varphi.$
- $ightharpoonup \mathcal{M}, w \models \Box \varphi \iff \mathcal{M}, w' \models \varphi \text{ für alle Welten } w' \text{ mit } wRw'.$
- $ightharpoonup \mathcal{M}, w \models \Diamond \varphi \iff \mathcal{M}, w' \models \varphi \text{ für mindestens eine Welt } w' \text{ mit } wRw'.$

3

▶ Aufgabenstellung: Gegeben eine modallogische Formel φ , eine (endliche) Interpretation $\mathcal{M} = \langle W, R, v \rangle$, sowie eine Welt $w \in W$, überprüfe ob $\mathcal{M}, w \models \varphi$.

4

1	p,q	2	p
3	q	4	\overline{p}

Gilt $\square(p \wedge \lozenge q)$ in Welt 1?

1	p,q	2	p
3	q	4	\overline{p}

Gilt $\square(p \wedge \lozenge q)$ in Welt 1?

5

1	p,q	2	p
3	q	4	\overline{p}

1	p,q	2	p
3	q	4	\overline{p}

1	p,q	2	p
3	q	4	\overline{p}

1	p,q	2	p
3	q	4	\overline{p}

1	p,q	2	p
3	\overline{q}	4	\overline{p}

1	p, q	2	p
3	\overline{q}	4	\overline{p}

Entwicklung

- Implementierung in Factor
- ➤ Colon Definitions in Vocabulary File
- > Zusätzlich Unit-Tests in separatem File
- Ausführung im Factor-Interpreter
- Besondere Aspekte des Factor-Paradigmas:
 - Built-In Datenstrukturen
 - Quotations

Repräsentation von Formeln

- ➤ Mittels Sequences
- ➤ Beispiele:

Formel	Darstellung als Sequence
$p \wedge q$	{ land { "p" } { "q" } }
$p \lor q$	{ land { "p" } { "q" } } { lor { "p" } { "q" } }
$\Box(p \land \Diamond q)$	{ box { band { "p" } { dia { "q" } { "" } } } }

Repräsentation des Kripke Modells

- Mittels Hash Map
- ➤ Enthält für jede Welt:
 - Adjazenzliste
 - Liste der wahren Atome
- Beispiel:

```
H{
    { 1 { 2      "@" "p" "q" } }
    { 2 { 2 3 4 "@" "p" } }
    { 3 { 4      "@" "q" } }
    { 4 { 4      "@" "p" } }
}
```

Demo & Code