Réduction #2

Feuille d'exercices #07

⊗ Partie A – Sous-espaces stables

Exercice 1 — Soient E un \mathbb{K} -e.v. de dimension finie et $u \in \mathcal{L}(E)$ diagonalisable.

- 1. Rappeler pourquoi la restriction de u à tout sous-espace vectoriel stable est diagonalisable.
- 2. En déduire que tout sous-espace vectoriel stable est somme directe de droites propres.
- 3. Trouver les sous-espaces stables de $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ et $B = \begin{bmatrix} 3 & -2 & 8 \\ 1 & 0 & 4 \\ 0 & 0 & 1 \end{bmatrix}$.

Exercice 2 — Soient E un \mathbb{C} -e.v. de dimension 3 et $u \in \mathcal{L}(E)$ tel que $u^3 = \mathrm{id}_E$.

- 1. Décrire les sous-espaces stables de *u*.
- 2. Même question lorsque E est un \mathbb{R} -e.v.

⊗ Partie B – Polynômes annulateurs et équations matricielles

Exercice 3 — Soit $A \in \mathcal{M}_n(\mathbb{K})$.

- 1. On suppose *A* nilpotente. Montrer de deux manières que $A^n = 0$.
- 2. On suppose *A* inversible.
 - a) Montrer de deux manières que A^{-1} est un polynôme en A.
 - b) Comparer les polynômes minimaux de A et A^{-1} .

Exercice 4 — Déterminer les matrices $A \in \mathcal{M}_n(\mathbb{R})$ telles que $A^5 = A^3$ et Tr(A) = n.

Exercice 5 — Soit $A \in \mathcal{M}_n(\mathbb{R})$ vérifiant $A^3 + A^2 + A = 0$. Montrer que $\operatorname{rg}(A)$ est pair.

Exercice 6 — Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que $3A^3 = A^2 + A + I_n$. Montrer que la suite $(A^p)_{p \in \mathbb{N}}$ converge vers une matrice de projecteur. **Exercice 7** — Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que $A^3 = A + I_n$. Montrer que $\det(A) > 0$.

Exercice 8 — Soient $n \in \mathbb{N} \setminus \{0, 1\}$ et $A \in \mathcal{M}_n(\mathbb{R})$ vérifiant $A^2 = I_n$ et $A \neq \pm I_n$. Montrer que $\text{Tr}(A) \equiv n$ [2] puis que $|\text{Tr}(A)| \leq n - 2$.

Exercice 9 — Soit $A \in GL_6(\mathbb{R})$ telle que $A^3 - 3A^2 + 2A = 0$.

- 1. Montrer que *A* est diagonalisable.
- 2. On suppose de plus que Tr(A) = 8. Déterminer χ_A .

Exercice 10 — Soit $A \in \mathcal{M}_n(\mathbb{R})$ vérifiant $A^2 + A^{\top} = I_n$.

- 1. Établir la diagonalisabilité de A.
- 2. Si $A \in GL_n(\mathbb{R})$, montrer que $1 \not\in Sp(A)$ puis que A est symétrique.

Exercice 11 — Pour $A, B \in \mathcal{M}_n(\mathbb{C})$, établir l'équivalence des assertions suivantes :

 $\text{(i)} \quad \operatorname{Sp}(A) \cap \operatorname{Sp}(B) \neq \varnothing \quad \text{(ii)} \quad \chi_A(B) \not\in \operatorname{GL}_n(\mathbb{C}) \quad \text{(iii)} \ \, \exists C \in \mathcal{M}_n(\mathbb{C}), \ \, C \neq 0, \ \, AC = CB$

Y a-t-il unicité de la matrice *C*?

⊘ Partie C – Polynôme minimal

Exercice 12 — Calculer le polynôme minimal des matrices suivantes :

$$A = \begin{bmatrix} 2 & 2 & 0 \\ 1 & 2 & 1 \\ 0 & 2 & 2 \end{bmatrix}; \ B = \begin{bmatrix} 3 & -1 & 1 \\ -1 & 3 & 1 \\ 2 & 2 & 2 \end{bmatrix}; \ C = \begin{bmatrix} 1 & 2 & 2 \\ -1 & 1 & -1 \\ 1 & 0 & 2 \end{bmatrix}; \ D = \begin{bmatrix} 1 & -2 & -2 \\ 0 & 2 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

Sont-elles diagonalisables?

Exercice 13 — Le polynôme $X^4 + X^3 + 2X^2 + X + 1$ peut-il être le polynôme minimal d'une matrice de $\mathcal{M}_5(\mathbb{R})$?

Exercice 14 — Soient E un \mathbb{K} -espace vectoriel de dimension n et $u \in \mathcal{L}(E)$.

- 1. On suppose que F et G sont des supplémentaires de E stables par u. On note $v=u_{|F}$ et $w=u_{|G}$ et μ le polynôme minimal d'un endomorphisme.
 - a) Justifier que χ_v et χ_w divisent χ_u . Faire de même avec μ_v , μ_w et μ_u .
 - b) Montrer que $\mu_u = \operatorname{ppcm}(\mu_v, \mu_w)$.
- 2. Soit $P \in \mathbb{K}[X]$. Montrer que $P(u) \in GL(E)$ ssi $P \wedge \mu_u = 1$.

→ Partie D – Polynômes d'endomorphismes et réduction

™ Exercice 15 — *Matrices circulantes*

Soit $n \ge 2$. On considère la matrice :

$$M = \left[egin{array}{cccc} m_0 & m_1 & \cdots & m_{n-1} \ m_{n-1} & \ddots & \ddots & dots \ dots & \ddots & \ddots & m_1 \ m_1 & \cdots & m_{n-1} & m_0 \end{array}
ight]$$

On note A la matrice obtenue pour $m_1 = 1$ et $m_0 = m_2 = \cdots = m_{n-1} = 0$.

- 1. Déterminer un polynôme annulateur de *A* et exprimer ses valeurs propres à l'aide des racines *n*–ièmes de l'unité.
- 2. Montrer que la matrice *M* est diagonalisable et préciser son déterminant.

Exercice 16 — Soient E un \mathbb{R} -e.v. de dimension finie et f un endomorphisme de E admettant un polynôme annulateur $P \in \mathbb{R}[X]$ vérifiant P(0) = 0 et $P'(0) \neq 0$.

- 1. Montrer que Im(f) est le noyau d'un polynôme en f.
- 2. Montrer que $E = \text{Ker}(f) \oplus \text{Im}(f)$.
- 3. Montrer qu'il existe une base \mathcal{B} de E où la matrice de f est de la forme :

$$\begin{bmatrix} A & 0 \\ 0 & 0 \end{bmatrix} \quad \text{avec } A \text{ inversible}$$

Exercice 17 — Soient E un \mathbb{K} -espace vectoriel de dimension n et $u \in \mathcal{L}(E)$. On suppose qu'il existe un vecteur $x_0 \in E$ telle que la famille $(x_0, u(x_0), \dots, u^{n-1}(x_0))$ soit libre. Montrer que seuls les polynômes en u commutent avec u.

Exercice 18 — Soient E un espace vectoriel sur \mathbb{C} de dimension finie et $f \in GL(E)$. On suppose que f^2 est diagonalisable. Montrer que f est diagonalisable.

Exercice 19 — Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice d'un projecteur. On note φ l'endomorphisme de $\mathcal{M}_n(\mathbb{R})$ défini par $\varphi(M) = AM + MA$.

- 1. Trouver un polynôme annulateur de φ .
- 2. Prouver que φ est diagonalisable.

Exercice 20 — Soient $A \in \mathcal{M}_n(\mathbb{R})$ et les deux applications φ et ψ définies par :

$$\forall M \in \mathcal{M}_n(\mathbb{R}), \quad \varphi(M) = AM \quad \text{ et } \quad \psi(M) = MA$$

- 1. Montrer que $\pi_{\varphi} = \pi_{\psi} = \pi_A$. En déduire que φ et ψ sont diagonalisables si, et seulement si, A est diagonalisable.
- 2. Montrer que φ , ψ et A partagent les mêmes valeurs propres. Décrire les sous-espaces propres de φ et ψ en fonction des sous-espaces propres de A.

🔊 Exercice 21 — Diagonalisation simultanée

Soient E un espace vectoriel de dimension finie et u et v deux endomorphismes diagonalisables vérifiant $u \circ v = v \circ u$.

- 1. Montrer qu'il existe une base commune de diagonalisation à u et v.
- 2. En déduire que $u \circ v$ et u + v sont diagonalisables.

Exercice 22 — Trigonalisation simultanée

Soient $A, B \in \mathcal{M}_n(\mathbb{C})$ vérifiant AB = 0.

- 1. Montrer que A et B possèdent un vecteur propre en commun.
- 2. Montrer par récurrence que A et B sont simultanément trigonalisables.

Exercice 23 — Soit $A \in \mathcal{M}_n(\mathbb{C})$ une matrice diagonalisable et $P \in \mathbb{C}[X]$, $\deg(P) \ge 1$.

- 1. Montrer qu'il existe $M \in \mathcal{M}_n(\mathbb{C})$ telle que A = P(M).
- 2. On suppose que toutes les valeurs propres de A sont simples. Déterminer toutes les matrices $M \in \mathcal{M}_n(\mathbb{C})$ telles que A = P(M).
- 3. Soit $M \in \mathcal{M}_n(\mathbb{C})$, une matrice dont toutes les valeurs propres sont simples et telle que A et M sont co-diagonalisables. Montrer qu'il existe $Q \in \mathbb{C}[X]$ tel que A = Q(M).

Exercice 24 — Soit $A \in \mathcal{M}_n(\mathbb{C})$. Déterminer les polynômes $P \in \mathbb{C}[X]$ tels que P(A) soit nilpotente.

Exercice 25 — Soient
$$A \in \mathcal{M}_n(\mathbb{K})$$
 et $B = \begin{bmatrix} 0 & I_n \\ A & 0 \end{bmatrix}$.

- 1. Exprimer les polynômes annulateurs de *B* à l'aide de ceux de *A*.
- 2. Énoncer une condition nécessaire et suffisante de diagonalisabilité de ${\it B}$.

Exercice 26 — Soit
$$A \in \mathcal{M}_n(\mathbb{K})$$
 et $B = \begin{bmatrix} A & A \\ A & A \end{bmatrix}$.

Montrer que B est diagonalisable si et seulement si A l'est.

- **Exercice 27** Soit E un \mathbb{K} -e.v. de dimension finie et $(u, v) \in \mathcal{L}(E)^2$ vérifiant $u \circ v v \circ u = v$.
 - 1. Calculer $u \circ v^p v^p \circ u$.
 - 2. En déduire, grâce à l'endomorphisme $f \mapsto u \circ f f \circ u$, que v est nilpotent.
 - 3. Lorsque $\mathbb{K} = \mathbb{C}$, montrer que u et v ont un vecteur propre commun.

Exercice 28 — Soient E un espace vectoriel de dimension n et $f \in \mathcal{L}(E)$ de polynôme minimal $(X-1)^2$.

- 1. On pose $g = f id_E$. Comparer Ker(g) et Im(g).
- 2. En déduire l'existence d'une base de E dans laquelle la matrice de f est diagonale par blocs, avec des blocs de la forme $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$.

Exercice 29 — Soient $n \in \mathbb{N}^*$ et $A, B \in GL_n(\mathbb{K})$.

- 1. Montrer que *AB* et *BA* ont même spectre.
- 2. Soit $P \in \mathbb{K}[X]$. Montrer que P annule AB si et seulement si P annule BA.
- 3. En déduire que AB est diagonalisable si et seulement si BA est diagonalisable.