CUSTOMER APPROVAL SHEET

	Company Name	
	MODEL	A090VW01 V3
	CUSTOMER	Title :
	APPROVED	Name :
		TIONS ONLY (Spec. Ver) TIONS AND ES SAMPLE (Spec. Ver) TIONS AND CS SAMPLE (Spec. Ver)
AUO PM : C	orion Peng	
P/N : _	97.09A02.300	
Comme	ent :	

 Doc. version :
 0.1

 Total pages :
 33

 Date :
 2009/06/22

Product Specification

9.0" COLOR TFT-LCD MODULE

Model Name: A090VW01 V3

Planned Lifetime: From 2009/Mar To 2010/Dec
Phase-out Control: From 2010/Jul To 2010/Dec

EOL Schedule: 2010/Jul

< □ >Preliminary Specification

< >Final Specification

Note: The content of this specification is subject to change.

© 2009 AU Optronics All Rights Reserved, Do Not Copy.

Page: 1/33

Record of Revision

Version	Revise Date	Page	Content
0.0	2008/09/03	All	First Draft
0.1	2009/06/22	11	Update current consumption
		14.15	Add Timing diagram
		23	Update Reliability Test Items
		30	Update application circuit

Page: 2/33

Contents

Α.	General Information	3
В.	Outline Dimension	4
	1. TFT-LCD Module – Front View	4
	2. TFT-LCD Module – Rear View	5
C.	Electrical Specifications	6
	1. TFT LCD Panel Pin Assignment	6
	2. Backlight Pin Assignment	g
	3. Absolute Maximum Ratings	g
	3. Electrical DC Characteristics	10
	4. Electrical AC Characteristics	12
	5. Serial Interface Characteristics	16
	6. Power On/Off Characteristics	19
D.	Optical Specification	20
E.	Reliability Test Items	23
F.	Packing and Marking	26
	1. Packing Form	26
	2. Module/Panel Label Information	27
	3. Carton Label Information	27
G.	Application Note	28
	Content-based Automatic Backlight Control (CABC) reference circuit	28
	2. Recommended Gamma Voltage	29
	3. Application Circuit	30
н.	Precautions	33

Page: 3/33

A. General Information

This product is for portable DVD and digital photo frame application.

NO.	Item	Unit	Specification	Remark
1	Screen Size	inch	9.0(Diagonal)	
2	Display Resolution	dot	800×480RGB(V)	
3	Overall Dimension	mm	211.7(H) × 125(V) × 4.6(T)	Note 1
4	Active Area	mm	199.2(H)×110.16(V)	
5	Pixel Pitch	mm	0.249(H)×0.2295(V)	
6	Color Configuration		R. G. B. Stripe	Note 2
7	Color Depth		16.7M Colors	Note 3
8	NTSC Ratio	%	48%	
9	Display Mode		Normally White	
10	Panel surface Treatment		Anti-Glare, 3H	
11	Weight	g	220	
12	LCD Module Power Consumption	W	2.1W	
13	Viewing direction		6 o'clock (gray inversion)	

Note 1: Not include backlight cable and FPC. Refer next page to get further information.

Note 2: Below figure shows dot stripe arrangement.

Note 3: The full color display depends on 24-bit data signal (pin 44~67).

Page: 4/33

B. Outline Dimension

1. TFT-LCD Module - Front View

ALL RIGHTS STRICTLY RESERVED. ANY PORTION OF THIS PAPER SHALL NOT BE REPRODUCED, COPIED, OR TRANSFORMED TO ANY OTHER FORMS WITHOUT PERMISSION FROM AU OPTRONICS CORP.

Page: 5/33

2. TFT-LCD Module - Rear View

ALL RIGHTS STRICTLY RESERVED. ANY PORTION OF THIS PAPER SHALL NOT BE REPRODUCED, COPIED, OR TRANSFORMED TO ANY OTHER FORMS WITHOUT PERMISSION FROM AU OPTRONICS CORP.

Page: 6/33

C. Electrical Specifications

1. TFT LCD Panel Pin Assignment

Recommended connector: JST 34FLZX-RSM1-A-TB

Pin no	Symbol	I/O	Description	Remark
1	VCOM	I	Common electrode driving voltage	
2	VGL	Р	Negative power supply voltage for Gate driver	
3	VGH	Р	Positive power supply voltage for Gate driver	
4	VDPA	Р	Positive power supply voltage for Source driver	Note1
5	AGND	Р	ground for analog circuit	
6	VDNA	Р	Negative power supply voltage for Source driver	Note1
7	GND	Р	Ground for digital circuit	
8	VCC	Р	supply voltage for digital circuit	
9	DRV_BLU	0	LED driver dimming signal	
10	CABC_EN	ı	CABC function enable When CABC_EN="L", CABC enabled or not is controlled by S/W register setting (default is disable.) When CABC_EN="H", CABC function is enable.	
11	CHUD	I	Vertical shift direction setting When CHUD ="L", display from up to down. When CHUD ="H", display from down to up.	
12	CHLR	I	Horizontal shift direction setting When CHLR ="L", display from left to right. When CHLR ="H", display from right to left.	
13	EXT_GAMMA	ı	Enable external voltage correction voltage V1~V14 When EN_EXT_GAMMA="H", use external gamma voltage to fit gamma 2.2.	
14	GRB	ı	global reset pin (active low) When GRB = "L", The controller is reset. When GRB = "H", Normal operation. Default setting.	
15	NAVDD	С	Pins to connect capacitance for power circuitry Power supply for negative analog circuit.	
16	V14	I	gamma reference voltage	
17	V13	I	gamma reference voltage	
18	V12	I	gamma reference voltage	
19	V11	I	gamma reference voltage	
20	V10	I	gamma reference voltage	
21	V9	I	gamma reference voltage	
22	V8	I	gamma reference voltage	
23	V7	I	gamma reference voltage	
24	V6	I	gamma reference voltage	
25	V5	I	gamma reference voltage	
26	V4	I	gamma reference voltage	

Page: 7/33

27	V3	I	gamma reference voltage
28	V2	I	gamma reference voltage
29	V1	I	gamma reference voltage
30	PAVDD	С	Pins to connect capacitance for power circuitry Power supply for positive analog circuit.
31	NVDD	С	Pins to connect capacitance for power circuitry
32	VCC	Р	supply voltage for digital circuit
33	VDDD	С	Pins to connect capacitance for power circuitry IC internal logic power.
34	GND	Р	Ground for digital circuit
35	CS	I	Chip select (Low active) of SPI
36	SDA	I/O	Data input/output of SPI
37	SCL	I	Clock input of SPI
38	HSYNC		Horizontal sync input
39	VSYNC		Vertical sync input
40	GND	Р	Ground for digital circuit
41	DCLK	I	Data clock Input
42	GND	Р	Ground for digital circuit
43	DE	I	Data enable Input (Low active)
44	DB7	I	Blue data input
45	DB6	I	Blue data input
46	DB5	I	Blue data input
47	DB4	I	Blue data input
48	DB3	I	Blue data input
49	DB2	I	Blue data input
50	DB1	I	Blue data input
51	DB0	I	Blue data input
52	DG7	I	Green data input
53	DG6	I	Green data input
54	DG5	I	Green data input
55	DG4	I	Green data input
56	DG3	I	Green data input
57	DG2	I	Green data input
58	DG1	I	Green data input
59	DG0	I	Green data input
60	DR7	I	Red data input
61	DR6	I	Red data input

Page: 8/33

62	DR5	ı	Red data input	
63	DR4	I	Red data input	
64	DR3	I	Red data input	
65	DR2	I	Red data input	
66	DR1	I	Red data input	
67	DR0	I	Red data input	
68	VCOM	I	Common electrode driving voltage	

I: Input pin; P: Power pin; G: Ground pin; C: capacitor pin

Note 1. Pin 4 and Pin 6 are power pins. Please refer to page 10 for the minimum and maxium value.

Page: 9/33

2. Backlight Pin Assignment

Recommended connector: JST-BHSR-02VS-1

Pin no	Symbol	I/O	Description	Remark
1	VLED	Р	LED power supply	
2	GNDLED	Р	LED ground	

3. Absolute Maximum Ratings

Item	Symbol	Condition	Min.	Max.	Unit	Remark
	VCC	GND=0	-0.5	5	V	Digital power
Power voltage	VDPA	GND=0	-0.5	5.8		Postive Analog power
r ower voltage	VDNA	GND=0	-5.8	+0.5	>	Analog Negative power
	VGH - VGL	GND=0	-0.3	40	V	Gate driver supply voltage
Input signal voltage	Data	GND=0	-0.3	VCC+0.3	٧	Digital Signals

Note 1: Functional operation should be restricted under ambient temperature (25°C).

Note 2: Maximum ratings are those values beyond which damages to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics chapter.

Page: 10/33

3. Electrical DC Characteristics

a. Typical Operation Condition (AGND =GND = 0V)

Item		Symbol	Min.	Тур.	Max.	Unit	Remark
		VCC	3.0	3.3	3.6	٧	Digital power
		VDPA	5.3	5.5	5.7	٧	Positive analog Power
		VDNA	-5.7	-5.5	-5.3	٧	Negative analog Power
Power Voltage		VGH	9	10	11	٧	Positive power supply for gate driver
		VGL	-11.5	-13	-14.5	٧	Negative power supply for gate driver
Output	H Level	VOH	VCCx0.8		VCC	٧	IOH=400uA, IOL=400uA
Signal Voltage	L Level	VOL	GND		GNDx0.2	٧	1011-400uA, 10L-400uA
Input	H Level	VIH	0.7xVCC		VCC	٧	
Signal Voltage	L Level	VIL	GND	1	0.3x VCC	٧	
		VCOM1	-1.75	-1.55	-1.35	٧	
		VCOM2	-2.7	-2.5	-2.3	٧	
		V1		4.86			
		V2		4.7			
		V3		2.95			
		V4	-	2.43	-		
		V5		2.08			
Gamma reference	so voltago	V6		1.57	-		Detail Gamma voltage please
Gamma reference	Se voltage	V7		1.27		V	refer to page 29.
		V8		-0.9		, v	
		V9		-1.19			
		V10		-1.94			
		V11		-2.43			
		V12		-3.07			
		V13		-4.9			
		V14		-5.0			

Note 1: VCOM1 when CHUD ="L", display from up to down. VCOM2 when CHUD ="H", display from down to up.

Page: 11/33

b. Current Consumption (AGND=GND=0V)

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit	Remark
Input current for VCC	I_{VDD}	VCC=3.3V	-	3.7		mA	
Input current for VDPA	I _{VDPA}	VDPA=5.5V	-	29		mA	
Input current for VDNA	I_{VDNA}	VDNA=-5.5	-	9.2		mA	
Input current for VGH	I _{VGH}	VGH=10V	-	0.5	5	mA	
Input current for VGL	I _{VGL}	VGL= -13V		0.5	5	mA	
Input current for VCOM	I _{VCOM}	VCOM= -1.85V		0.55		mA	

c. Backlight Driving Conditions

The backlight (LED module, Note 1) is suggested to drive by constant current with typical value.

Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark
LED light bar Current	Ι _L		200		mA	
BL Power Consumption	P_BL		1.92		W	Note 1
LED Life Time	LL	10,000			Hr	Note 2, 3

Note 1: The LED driving condition is defined for LED module (24 LED). The voltage range will be 8.5 to 10.4V based on suggested driving current set as 200mA.

Note 2: Define "LED Lifetime": brightness is decreased to 50% of the initial value. LED Lifetime is restricted under normal condition, ambient temperature = 25° C and LED lightbar current = 200mA.

Note 3: If it uses larger LED lightbar voltage more than 200mA, it maybe decreases the LED lifetime.

Page: 12/33

4. Electrical AC Characteristics

a. Signal AC Characteristics

 t_{H} : HSYNC period / t_{DCLK} : DCLK period / t_{cw} : the width of DCLK high

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
INPUT Signals					1	
Clock High time	Tch		8	-	_	ns
Clock Low time	Tcl		8	-	_	ns
Hsync setup time	Ths		5			ns
Hsync hold time	Thh		10			ns
Data setup time	Tds		5			ns
Data hold time	Tdh		10			ns
Data enable set-up time	Tes		4			ns
SERIAL Communication	<u> </u>					
Serial clock	Tsck		320			ns
SCL pulse duty	Tscw		40%	50%	60%	Tsck
Serial data setup time	Tist		120			ns
Serial data hold time	Tihd		120			ns
Serial clock high/low	Tssw		120			ns
CS setup time	Tcst		120			ns
CS hold time	Tchd		120			ns
Chip select distinguish	Tcd		1			us
Delay from CS to Vsync	Tcv		1			us
Serial data output delay	Tid	CL=20pF	-	-	60	ns

Figure: Input timing details

Page: 13/33

Figure: Input timing details

Figure: AC serial interface write mode timings

Figure: AC serial interface read mode timings

Page: 14/33

c. Input Timing Setting

DE Mode:

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
DCLK frequency	F _{DCLK}		30.3	33.26	37.8	MHz
Horizontal blanking (= Thf+ The)	Thbl		186	256	383	T_{DCLK}
Vertical blanking (=Tvf + Tve)	Tvbl		37	45	52	Th

HV Mode:

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
DCLK frequency	F _{DCLK}		30.3	33.26	37.8	MHz
DCLK period	T _{DCLK}		26.5	30.06	33.0	ns
Hsync Period (= Thd + Thbl)	Th		986	1056	1183	T _{DCLK}
Active Area	Thd		-	800	-	T _{DCLK}
Horizontal blanking (=Thf + The)	Thbl		186	256	383	T _{DCLK}
Hsync front porch	Thf			40	-	T _{DCLK}
Delay from Hsync to 1 st data input (= Thw + Thb)	The	Function of HDL[7:0] settings	146	216	343	T _{DCLK}
Hsync pulse width	Thw		1	128	136	T _{DCLK}
Hsync back porch	Thb		10	88	342	T _{DCLK}
Vsync period (= Tvd + Tvbl)	Tv		517	525	532	Th
Active lines	Tvd		-	480	-	Th
Vertical blanking (=Tvf + Tve)	Tvbl		37	45	52	Th
Vsync front porch	Tvf		-	13	-	Th
GD start pulse delay	Tve	Function of VDL[3:0] settings	24	32	39	Th
Vsync pulse width	Tvw		1	3	-	Th

Figure: Vertical input timing. (HV mode)

Page: 15/33

Figure: RGB parallel horizontal input timing. (HV mode)

Figure: Vertical input timing. (DE mode)

Figure: RGB parallel horizontal input timing. (DE mode)

Page: 16/33

5. Serial Interface Characteristics

a. Serial Control Interface AC Characteristic

A totally 16-bit register including 7-bit address D[15:9], 1-bit R/W bit D[8] and 8-bit data D[7:0] can be set via 3-wire serial peripheral interface. Below figure is for a detail description of the parameters.

Figure: Serial interface write/read sequence

- Each serial command consists of 16 bits of data which is loaded one bit a time at the rising edge of serial clock SCL.
- ◆ Command loading operation starts from the falling edge of CS and is completed at the next rising edge of CS.
- ◆ The serial control block is operational after power on reset, but commands are established by the following Vsync(HV mode) or the following rising edge of the End Frame(DE mode). If command is transferred multiple times for the same register, the last command before the following Vsync(HV mode) or the following rising edge of the End Frame(DE mode) is valid, except for some special registers (ex. GRB, etc.).
- ♦ If less than 16 bits of SCL are input while CS is low, the transferred data is ignored.
 - The write operation is cancelled.
 - The read operation is interrupt.
- ◆ If 16 bits or more of SCL are input while CS is low, the first 16 bits of transferred data in the duration of CS="L" are valid data.
- Serial block operates with the SCL clock.
- ♦ Serial data can be accepted in the standby (power save) mode.
- ◆ Register R/W setting: D8 = "L" → write mode; D8 = "H" → read mode.
- ◆ It is suggested that Vsync, Hsync, DCLK(for HV mode) or DE,DCLK(for DE mode) always exists in the same time. But if Hsync, DE, DCLK stops, only Vsync operating, the register setting is still valid.

Page: 17/33

b Serial Interface Setting Table.

R0 settings

Address	Bit	Description		Default
	4	NA	Not used in this model	0
	3	NA	Not used in this model	0
0000000	2	NA	Not used in this model	0
	1	STB	Standby mode setting	0
	0	GRB	S/W global reset	1

Bit 1	STB
0	Normal operation. (default)
1	Standby mode. Register data are kept. DAC and DC/DC are off.

S/W STB	H/W STB	Operation mode
0	0	Normal operation
0	1	Standby mode
1	0	Standby mode
1	1	Standby mode

Bit 0	GRB
0	S/W global reset. Reset all registers to default value.
1	Normal operation. (default)

S/W GRB	H/W GRB	Operation mode
0	0	H/W reset
0	1	Execute S/W reset procedure
1	0	H/W reset
1	1	Normal operation

R4 settings

Address	Bit	Description		Default
0000100	7-6	DEM	DE/HV mode setting	00
0000100	3-0	VDL	Vertical start pulse adjustment function	1000

Bit 7-6	DEM
0x	Auto detection. (default)
10	HV mode.
11	DE mode. If DE mode is set, it should be executed immediately.

Figure: DE auto detection flow chart

Version: 0.1

Page: 18/33

R13 settings

Address	Bit	Description		Default
0001101	1	NA	NA	0
0001101	0	EN EXT GAMMA	Enable gamma external voltage input (V1~V14)	0

Bit 0	EN_EXT_GAMMA
0	Disable gamma external voltage input (V1~V14). (default)
1	Enable gamma external voltage input (V1~V14).

S/W EN_EXT_GAMMA	H/W EN_EXT_GAMMA External gamma correction voltage V1~V1	
0	0	Disable external V1~V14
0	1	Enable external V1~V14
1	0 Enable external V1~V14	
1	1	Enable external V1~V14

Page: 19/33

6. Power On/Off Characteristics

This IC may be damaged by a large current flow when an incorrect power sequence is applied. The recommended power-on sequence is to first connect the logical power (VCC&GND), then the digital signal (DCLK,HSYNC,VSYNC,DE), and then the global reset (GRB). After GRB rise up, five frames time is necessary and then the VGL is produced. Finally, VDPA,VDPA and VGH are produced. Under the power on sequence, panel can normally start up.

a. Recommended Power On Register Setting

T1 > 0us; T2 \geq 10us; T3 \geq 0us; T4 > 0us; T5 > 0us

b. Recommended Power Off Sequence

Page: 20/33

D. Optical Specification

All optical specification is measured under typical condition (Note 1, 2)

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Remark
Response T	Response Time							
Rise		Tr	θ=0°		4	TBD	ms	Note 3
Fall		Tf	0	-	12	TBD	ms	
Contrast ra	atio	CR	CR At optimized viewing angle		500	-		Note 4
	Тор		40	55				
Viousing Angle	Bottom		OD=40	55	70		400	Note 5
Viewing Angle	Viewing Angle CR□10	CRUID	55	70		deg.	Note 5	
	Right			55	70			
Brightness Y _L θ=0°		θ=0°	200	250		cd/m ²	Note 6	
Chromoticity	White	Х	θ=0°	0.25	0.30	0.35		
Chromaticity	vville	Y	θ=0°	0.27	0.32	0.37		
Uniformity ΔY_L		%	70	75		%	Note 7	

Note 1: Ambient temperature =25 $^{\circ}$ C, and LED lightbar current I_L = 200 mA. To be measured in the dark room.

Note 2: To be measured on the center area of panel with a viewing cone of 1° by Topcon luminance meter BM-5A, after 15 minutes operation.

Note 3: Definition of response time:

The output signals of photo detector are measured when the input signals are changed from "black" to "white" (falling time) and from "white" to "black" (rising time), respectively.

The response time is defined as the time interval between the 10% and 90% of amplitudes. Refer to figure as below.

Page: 21/33

Note 4. Definition of contrast ratio:

Contrast ratio is calculated with the following formula.

Contrast ratio (CR) = $\frac{\text{Photo detector output when LCD is at "White" status}}{\text{Photo detector output when LCD is at "Black" status}}$

Note 5. Definition of viewing angle, θ , Refer to figure as below.

Note 6. Measured at the center area of the panel when all the input terminals of LCD panel are electrically opened.

Note 7: Luminance Uniformity of these 9 points is defined as below:

0.1 Version:

22/33 Page:

maximum luminance in 9 points (1-9)

Page: 23/33

E. Reliability Test Items

No.	Test items	Condition	Remark	
1	High Temperature Storage	Ta= 70 □	240Hrs	
2	Low Temperature Storage	e Storage Ta= -20□ 240Hrs		
3	High Ttemperature Operation	Tp= 60 □	240Hrs	
4	Low Temperature Operation	Ta= -10□	240Hrs	
5	High Temperature & High Humidity	Tp= 50□. 80% RH	240Hrs	Operation
6	Heat Shock	-30°C/0.5hr~70°C/0.5hr, 50 cycle		Non-operation
7	Electrostatic Discharge	Contact = ± 4 kV, class B Air = ± 8 kV, class B		Note 4
8	Image Sticking 25□, 6hrs		rs	Note 5
9	Vibration	Stoke : 1.	0~55Hz 5mm 0Hz ~55Hz-10Hz ction of X,Y,Z	Non-operation JIS C7021, A-10 condition A : 15 minutes
10	Mechanical Shock 100G . 6ms, ±X,±Y,±Z 3 times for each direction		Non-operation JIS C7021, A-7 condition C	
11	Vibration (With Carton)	Random vibration: 0.015G ² /Hz from 5~200Hz –6dB/Octave from 200~500Hz		IEC 68-34
12	Drop (With Carton)	Height: 60cm 1 corner, 3 edges, 6 surfaces		
13	Pressure	5kg, 5se	ec	Note 6

Note 1: Ta: Ambient Temperature. Tp: Panel Surface Temperature

Note 2: In the standard conditions, there is not display function NG issue occurred. All the cosmetic specification is judged before the reliability stress.

Note 3: All the cosmetic specification is judged before the reliability stress.

Note 4: All test techniques follow IEC6100-4-2 standard.

Page: 24/33

Test Condition		Note
Pattern		
Procedure And Set-up	Contact Discharge: 330Ω, 150pF, 1sec, 8 point, 25times/point Air Discharge: 330Ω, 150pF, 1sec, 8 point, 25times/point	
Criteria	B – Some performance degradation allowed. No data lost. Self-recoverable hardware failure.	
Others	Gun to Panel Distance No SPI command, keep default register settings.	

Note 5: Operate with 5 x 5 chess board pattern as figure and light on 6 hrs. Then modify to 32 degree gray pattern. After 20 minutes, the mura is less than JND 2.5

Note 6: The panel is tested as figure. The jig is ϕ 10 mm made by Cu with rubber and the loading speed is 3mm/min on position A~E. After the condition, no glass crack will be found and panel function check is OK.(no guarantee LC mura \cdot LC bubble)

Page: 25/33

0.1 Version:

26/33 Page:

F. Packing and Marking

1. Packing Form

Mex. Capacity: 30 Pes Modules
Max. Weight: 9 0 Kg
Carton outline.: 520mm*340mm*250mm

27/33 Page:

2. Module/Panel Label Information

The module/panel (collectively called as the "Product") will be attached with a label of Shipping Number which represents the identification of the Product at a specific location. Refer to the Product outline drawing for detailed location and size of the label. The label is composed of a 22-digit serial number and printed with code 128 with the following definition:

ABCDEFGHIJKLMNOPQRSTUV

−For internal system usage and production serial numbers.

AUO Module or Panel factory code, represents the final production factory to complete the Product Product version code, ranging from 0~9 or A~Z (for Version after 9)

·Week Code, the production week when the product is finished at its production process

Example:

501M06ZL06123456781Z05:

Product Manufacturing Week Code: WK50

Product Version: Version 1

Product Manufactuing Factory: M06

3. Carton Label Information

The packing carton will be attached with a carton label where packing Q'ty, AUO Model Name, AUO Part Number, Customer Part Number (Optional) and a series of Carton Number in 13 or 14 digits are printed. The Carton Number is apparing in the following format:

ABC-DEFG-HIJK-LMN

DEFG appear after first "-" represents the packing date of the carton Date from 01 to 31 ☐Date from 01 to 31☐Month, ranging from 1~9, A~C. A for Oct, B for Nov and C for Dec.

A.D. year, ranging from 1~9 and 0. The single digit code reprents the last number of the year

Refer to the drawing of packing format for the location and size of the carton label.

Page: 28/33

G. Application Note

1. Content-based Automatic Backlight Control (CABC) reference circuit

It is used in a step-up DCDC converter that drives an external NMOS power transistor using a constant frequency PWM architecture. With 2 current modes (Dimmi Mode / Normal Mode) selectable.

Page: 29/33

2. Recommended Gamma Voltage

Symbol	Value (V)
V1	4.86
V2	4.7
V3	2.95
V4	2.43
V5	2.08
V6	1.57
V7	1.27
V8	-0.9
V9	-1.19
V10	-1.94
V11	-2.43
V12	-3.07
V13	-4.9
V14	-5.0
PAVDD	5.18
NAVDD	-5.22
VCOM	-1.55

Recommend resister value:

Symbol	Value (Ohm)
R0	1100
R1	549
R2	6190
R3	1800
R4	1210
R5	1780
R6	1050
R7	7500
R8	1000
R9	2610
R10	1690
R11	2210
R12	6490
R13	348
R14	768

Page: 30/33

3. Application Circuit

Page: 31/33

VCOM Circuit for U/D reverse

- R1 =6.34K ohm ; R2= 6.65K ohm ; R3= 6.8K ohm ; R4 = R5 = 100K ohm (All 1% tolerance)
- C = 100nF
- PMOS: CHM2301 PT (Vendor: Chenmko 立勤) /
- OP: G1520F11U (Vendor : GMT 致新) /

Page: 32/33

7 GND1

2 VGL VCOM

5 AGND
VDPA
VDPA
VGH

VDNA

VGH

Default Setting:

CABC_EN <= "H"
CHUD <= "L"
CHLR <= "L"
EXT_GAMMA <= "H"
GRB <= "H"

Note.
FCABC_EN is "H", DRV_BLU should be connected to LED Driver dim m ing control pin.

Page: 33/33

H. Precautions

1. Do not twist or bend the module and prevent the unsuitable external force for display module during assembly.

- 2. Adopt measures for good heat radiation. Be sure to use the module with in the specified temperature.
- 3. Avoid dust or oil mist during assembly.
- 4. Follow the correct power sequence while operating. Do not apply the invalid signal, otherwise, it will cause improper shut down and damage the module.
- 5. Less EMI: it will be more safety and less noise.
- 6. Please operate module in suitable temperature. The response time & brightness will drift by different temperature.
- 7. Avoid to display the fixed pattern (exclude the white pattern) in a long period, otherwise, it will cause image sticking.
- 8. Be sure to turn off the power when connecting or disconnecting the circuit.
- 9. Polarizer scratches easily, please handle it carefully.
- 10. Display surface never likes dirt or stains.
- 11. A dewdrop may lead to destruction. Please wipe off any moisture before using module.
- 12. Sudden temperature changes cause condensation, and it will cause polarizer damaged.
- 13. High temperature and humidity may degrade performance. Please do not expose the module to the direct sunlight and so on.
- 14. Acetic acid or chlorine compounds are not friends with TFT display module.
- 15. Static electricity will damage the module, please do not touch the module without any grounded device.
- 16. Do not disassemble and reassemble the module by self.
- 17. Be careful do not touch the rear side directly.
- 18. No strong vibration or shock. It will cause module broken.
- 19. Storage the modules in suitable environment with regular packing.
- 20. Be careful of injury from a broken display module.
- 21. Please avoid the pressure adding to the surface (front or rear side) of modules, because it will cause the display non-uniformity or other function issue.