The AstroUtil package

in the astronomy & astrophysics toolbox for MATLAB

Description:

The AstroUtil package contains several sub packages that deals with astrophysical phenomena (e.g., cosmological distances, binary stars).

To view all the functions type: "AstroUtil." followed by <tab>.

To avoid using the "AstroUtil.cosmo.ad dist" syntax, you can use:

```
import AstroUtil.*
help cosmo.ad_dist
```

This file is accessible through "AstroUtil.manual".

Credit

If you are using this code or products in your scientific publication please give a reference to Ofek (2014; ascl.soft 07005).

License

Unless specified otherwise this code and products are released under the GNU general public license version 3.

Instellation

This pacakage is available as part of the *Astronomy and Astrophysics toolbox for matlab*. Furthermore, some of the functions in this package use functions in other packages in the toolbox, so full instellation is recomended.

See http://weizmann.ac.il/home/eofek/matlab for instellation instruction and additional documentation.

List of sub packages

The binary star package

Contains some functions realted to binary stars, including generation of eclipsing binary light curves, radial velocity, and astrometric binaries.

Eclipsing binaries:

The function AstroUtil.binary.eb_demo will open a GUI interface to generate eclipsing binary light curves.

The following example will generate a light curve of eclisping binary:

while the following example will plot the phase folded light curve:

AstroUtil.binary.plot_eb_lc_ph([100 20],[1 0.6],[0.01 0.01],[0 0.3 0.2 0 0 pi./2],'AstroUtil.b

Additional functions relevant for eclipsing binaries are:

AstroUtil.binary_reflection_effect - Calculate reflection effects.

AstroUtil.binary.limb_darkening - Calculate limb darkening.

AstroUtil.binary..obstruction - Calculate the obstruction for eclipsing binary

AstroUtil.binary.plot_eb_lc - Plot the light curve of eclipsing binary

AstroUtil.binary.total_light - Calculate the total light given the limb darkening

Spectroscopic binaries

Use AstroUtil.binary.binary_rv to calculate the radial velocity of a binary.

```
t=[0:1:365].';
e=0.3;
a=1;
RAD = 180./pi;
RV=AstroUtil.binary.binary_rv(t,365,0,a./(1-e),e,85./RAD,100);
plot(t,RV)
```


Fitting spectroscopic binaries

The function AstroUtil.binary.fit_rv_ellipse can be used to fit radial velocity measurments, and specifically to calculate the periodogram for RV.

```
Time = (1:1:700)';
% define the orbital elements
     = 365;
Τ
     = 0;
     = 1;
q
     = 0.6;
е
i
     = 1;
omega = 3.9;
Nt = numel(Time);
% generate RV curve
[RV,K2] = AstroUtil.binary.binary_rv(Time,P,T,q,e,i,omega);
RV = RV./1e5;
RV = RV + randn(Nt,1);
% calculate the periogogram
VecP = (100:1:500)';
[Res,FreqVec]=AstroUtil.binary.fit rv ellipse(Time,RV,VecP);
% plot the rms vs. the period
plot(VecP,[Res.RMS]','k-');
```


This function uses additional useful functions like: AstroUtil.binary.rv2ellipse and $fit_ellipse$.

Equipotentials

The following example plot the equipotential surface for a binary system:

```
[x,y,q]=AstroUtil.binary.equipot(1,0.7,0.7.*1e9,3,50);
mesh(x,y,q);
```


The cosmology package

The cosmo package contains function for evaluating cosmological distances and related properties.

Examples related to cosmological distance calculators:

```
import AstroUtil.cosmo.*
z=(0:0.1:5)';
% calculate angular diameter distance
D=ad_dist(z);
plot(z,D)
```



```
% calculate lookback time
T = lookback_time(z);
```

Warning: Minimum step size reached; singularity possible.

```
\% plot angular diameter distance as a function of lookback time <code>[s]</code> <code>plot(T,D)</code>
```

```
ans = 6.3872e+08
ans = 7.2687e+07
```


Functions like ad_dist and lookback_time support calculations of distances/times between two redshifts:

```
% calculate angular diameter distance [pc] between z1 and z2 z1=1; z2=2; ad_dist([z1 z2]) % note this is not the same as: ad_dist(z2)-ad_dist(z1) % The last calculation is incorrect and should not be used!
```

Most functions allow to control the cosmological parameters used in the calculations. The function AstroUtil.cosmo.cosmo_pars store various cosmological parameters:

```
[Par,ErrPar]=AstroUtil.cosmo.cosmo_pars('planck')
```

```
ErrPar =
           H0: [0.46 0.46]
       OmegaM: [0.0062 0.0062]
       OmegaL: [0.0062 0.0062]
    OmegaB h2: [0.00014 0.00014]
       sigma8: [0.0086 0.0086]
         z re: [1.1 1.2]
          Age: [0.021 0.021]
z=(0:0.1:1)':
D=AstroUtil.cosmo.ad dist(z,'wmap9');
D =
   3.8444e+08
   6.8841e+08
    9.301e+08
   1.1228e+09
   1.2766e+09
   1.3992e+09
   1.4965e+09
   1.5734e+09
   1.6335e+09
     1.68e + 09
% or you can provide the parameters directly:
H0=100;
OmegaM = 0.3;
0 \text{megaL} = 0.7;
D=AstroUtil.cosmo.ad dist(z,[H0,OmegaM,OmegaL]);
```

Additional related functions:

- AstroUtil.cosmo.lum dist Calculate the luminosity distance
- AstroUtil.cosmo.inv_lum_dist Convert luminosity distance to redshift
- AstroUtil.cosmo.dist_mod2dist Convert distance modulus to luminosity distance
- AstroUtil.cosmo.comoving dist Calculate the comoving distance
- AstroUtil.cosmo.hubble_z Calculate H0 as a function of redshift
- AstroUtil.cosmo.comoving_volume Calculate comoving volume as a function of redshift.
- AstroUtil.cosmo.inv_comoving_volume Convert comoving volume to redshift
- AstroUtil.cosmo.crit_surface_density Calculate the critical density to lensing
- AstroUtil.cosmo.delta_vir_z Calculate the virial overdensity
- AstroUtil.cosmo.growth_linear_perturbation Calculate the growth function of linear perurbations
- AstroUtil.cosmo.matter_density Calculate the mean matter density in the Universe
- AstroUtil.cosmo.tran_comoving_dist Calculate the transverse comoving distance
- AstroUtil.cosmo.e_z Calculate E(z) cosmological function, which is proportional to the time derivative of the logarithm of the scale factor
- AstroUtil.cosmo.inv e z Invert e z to redshift
- AstroUtil.cosmo.cdt_dz Calculate cdt/dz as a function of redshift
- AstroUtil.cosmo.omega_z Calculate Omega_m as a function of redshift
- AstroUtil.cosmo.omega_m_lambda_lines can be used to plot selected (spacial) lines in the Omega_m vs. Omega_lambda diagram (e.g., no singularity):

```
OmegaM=[0:0.01:3]'; % define a vector of Omega matter
[OmL_EF,OmL_NS]=AstroUtil.cosmo.omega_m_lambda_lines(OmegaM);
plot(OmegaM,OmL_EF); hold on; plot(OmegaM,OmL_NS,'r');
xlabel('\Omega_{m}'); ylabel('\Omega_{\Lambda}');
axis([0 3 -1 4.5]);
text(1.5,-0.2,'Expand forever'); text(0.5,3.5,'No singularity');
```


The GRB package

The GRB sub package contains Gamma-Ray Bursts related functions.

AstroUtil.GRB.lorentz_from_flux - Calculate lower limit on GRB lorentz factor

The lensing package

The lensing sub package contains strong gravitational lensing related function including model fitting functions. This package is under development and require additional work.

The microlensing package

The microlensing sub package contains microlensing related functions.

The AstroUtil.microlensing.pointsource_lens can be used to calculate the magnification and images positions:

```
RAD = 180./pi;
[ER,T1,T2,Mu1,Mu2,TD1,TD2,Tcm]=AstroUtil.microlensing.pointsource_lens(1,5000,10000,5000,1./()
```

```
% microlensing parameters
Pars.T0 = 0; % time of min. impact parameter
Pars.Beta = 0.01; % impact parameters in units of the Einstein radsius
Pars.V = 0.1; % velocity [Einstein rdaius per day]
Pars.Alpha = 1; % blensing parameter
Pars.BaseMag = 19; % Source base magnitude
Time = (-30:0.1:30).';
[Mag,Res]=AstroUtil.microlensing.microlens_ps(Pars,Time);
plot(Res.T,Mag); invy;
```



```
% or similarly with finate source effect
Pars.FS = 0.1; % source size in units of the Einstein radius
[Mag,Res]=AstroUtil.microlensing.microlens_psfs(Pars,Time);
plot(Res.T,Mag); invy;
```


Similarly the function AstroUtil.microlensing.microlens_psb gets a list of source-lens distances (in units of the Einstein radius) instead of list of times, while the AstroUtil.microlensing.microlens_pspar function take into account the annual parallax.

The Occultations package

The Occultation sub package provide some functions to calculate diffractive occultations:

The following example generate the intensity as a function of source-occulter distance (in Units of the Fresnel radii), for occulter which radius is 0.9 the Fresnel scale, assuming a point source and monochromatic light:

```
Dist = (0:0.01:20)';
[I_rho,A_rho]=AstroUtil.Occultation.fresnel_occultation_ps(0.9,Dist);
plot(Dist,I_rho)
```


The function AstroUtil.Occultation.fresnel_occultation_fs take into account the finite source size, while the AstroUtil.Occultation.fresnel_occultation_filt function deal with finite source and polychromatic light.

The stars package

The stars sub package contains astrophysical stars related functions.

The AstroUtil.stars.star_ang_rad function estimate the star angular radius from magnitude and colors.

The function AstroUtil.stars.star_sptype_color calculate the star color index given its spectral type and luminosity class. The following example calculate the SDSS AB *g-r* color index for and A3IV star:

```
[C,E]=AstroUtil.stars.star_sptype_color('A3','IV','SDSS','g','AB','SDSS','r','AB')

C =
    -0.16608

E =
    0.25165
```

The following example calculate and plot the stellar evolutionary tracks (based on the Geneva stellar tracks):

```
[Ev,UBV]=AstroUtil.stars.stellar_tracks(1,0.04,'c');
```

The supernova package

The supernova package is a collection of tools for supernovae research.

Several examples:

Calculate the nickel 56 -> Cobalt -> Iron energy production:

```
Time = (1:1:100)';
[E,E_Ni,E_Co]=AstroUtil.supernova.nickel56_decay(Time);
loglog(Time,E)
```


Additional functions contains the Rabinak & Waxman (2011) shock cooling model and more.