Final Project

Predict credit score using multi-algorithm bagging

Statistical Learning | 張致語 | 108021186

Overview

- Inspiration
- Data and Algorithm
- Sub-model1: SVM classifier
- Sub-model2: Tree classifier
- Sub-model3: Logistic regression
- Sub-model4: QDA
- Aggregate Process and comparison
- Conclusion

Inspiration

 Paper 'Inproving Bagging Performance through Multi-Algorithm Ensembles' connects the diversity with correlation and further shows that with higher diversity will improve accuracy in classification problems.

Source of data

 Link: https://www.kaggle.com/datasets/deepaksaipendyala/credit -score-classification-processed

Source of data

Data update: 2022/12/18

Dimension of data: 25 variables with 79805 rows

Variables

X <int></int>	Month <int></int>	Age «dbl»	Occupation <int></int>	Annual_Income	Monthly_Inhand_Salary	Num_Bank_Accounts
1	2	23.00000	13	19114.12	4194.171	3
2	6	34.42982	13	19114.12	4194.171	3
3	0	23.00000	13	19114.12	4194.171	3
4	7	23.00000	13	19114.12	1824.843	3
5	5	23.00000	13	19114.12	4194.171	3
6	4	23.00000	13	19114.12	1824.843	3

Variables

Num_Credit_Card <dbl></dbl>	Interest_Rate	Num_of_Loan <dbl></dbl>	Type_of_Loan <int></int>	Delay_from_due_date
4	3	4	128	-1
4	3	4	128	3
4	3	4	128	5
4	3	4	128	6
4	3	4	128	8
4	3	4	128	3

Categorical variable

Variables

Num_of_Delayed_Payment	Changed_Credit_Limit	Num_Credit_Inquiries	Credit_Mix <int></int>	Outstanding_Debt
30.92334	1112	4	1	809.98
7.00000	4238	4	1	809.98
4.00000	3764	4	1	809.98
30.92334	1112	4	1	809.98
4.00000	4163	4	1	809.98
8.00000	1112	4	1	809.98

		•			4
 \ /	$\overline{}$	rı			\sim
\/	—	ľ	$\boldsymbol{\mathcal{A}}$	1)	les
v	u	ı	u		

Credit_Utilization_Ratio	Credit_History_Age	Payment_of_Min_Amount	Total_EMI_per_month ,
31.94496	0	1	49.57495
28.60935	267	1	49.57495
31.37786	268	1	49.57495
24.79735	269	1	49.57495
27.26226	270	1	49.57495
22.53759	271	1	49.57495

Total_EMI_per_month	Amount_invested_monthly	Payment_Behaviour	Monthly_Balance	Credit_Score
49.57495	118.28022	3	284.6292	2
49.57495	81.69952	4	331.2099	2
49.57495	199.45807	5	223.4513	2
49.57495	41.42015	1	341.4892	2
49.57495	62.43017	6	340.4792	2
49.57495	178.34407	5	244.5653	2

Pre-processing

```
age_out=which(data\$Age\%1 \neq 0)
card_out=which(data$Num_Credit_Card\%1\neq 0)
account_out=which(dataNum_Bank_Accounts%1 \neq 0)
                                                     Remove NA's and wrong collected data
inquire_out=which(data$Num_Credit_Inquiries%1≠0)
delay_out=which(data$Num_of_Delayed_Payment%1≠0
                                                     data$Num_of_Delayed_Payment<0)
date_out=which(data$Delay_from_due_date<0)</pre>
data_out=Reduce(union,list(age_out,card_out,account_out,inquire_out,delay_out,date_out))
data=data[-data_out,]
data$0ccupation=factor(data$0ccupation)
data$Type_of_Loan=factor(data$Type_of_Loan)
                                                     Change categorical variables into factor
data$Interest_Rate=factor(data$Interest_Rate)
data$Credit_Score=factor(data$Credit_Score)
data$Payment_of_Min_Amount=factor(data$Payment_of_Min_Amount)
data$Payment_Behaviour=factor(data$Payment_Behaviour)
```

EDA: summary of data and special findings

1. The response is very unbalanced

Credit_Score

0:17902

1:33964

2:11554

We need to balanced the training data to avoid the overfitting.

2. The range of month balance and income are very large

```
Annual_Income Monthly_Balance
Min. : 7006 Min. : 0.0886
1st Qu.: 19645 1st Qu.: 272.0805
Median : 38107 Median : 341.6435
Mean : 179116 Mean : 406.2164
3rd Qu.: 73850 3rd Qu.: 474.1676
Max. :24198062 Max. :1602.0405
```

- EDA: summary of data and special findings
- 3. There are some categorical variables that exist more than 32 categories We need to use modules other then tree when fitting classification tree.

0ccu	Type_	of.	Loan	
12	: 4456	6260		7397
7	: 4192	3463	:	919
4	: 4036	4878	:	859
13	: 4024	5591	:	851
1	: 4013	684	:	845
0	: 4000	1410	:	838
(Other	(Other):	51694	

4. There are a lot difference in income, credit card and loan of different credit score

- Algorithm
- 1. Train data: contains 2400 data with each label are equality counted
- 2. Test data: 61003 rows of data
- 3. Variables: 22 independent variables and one dependent variables
- 4. Algorithm bag:

SVM model, Classification tree, Logistic regression, LDA

Algorithm

Algorithm 1 (Framework for bagging with multi-algorithm ensembles)

- 1. Initialize $C^* = \emptyset$
- 2. For j = 1 to T
- 3. $S_j \leftarrow Bootstrap(D, p = 1)$
- 4. Select an algorithm A_i from the given bag of algorithms M
- 5. $C_i \leftarrow \mathbf{C}(S_i, A_i)$, where \mathbf{C} is a procedure, e.g. API, to create a classifier
- 6. $C^* \leftarrow C^* \cup C_i$
- 7. End for

Choose 400 data as validation set to choose best cost and gamma Fitting the model Perform 10 classifiers to see the divergence

```
library(e1071)
set.seed(108021186)
svm_result=1:61003
for (i in 1:20){
    boot=train[sample(1:2400,2400,replace=T),]
    svmfit←svm(Credit_Score~.,data=boot,kernel="linear",
    cost=0.1,scale = FALSE)
    svm_result=cbind(svm_result,predict(svmfit,test[,-23]))
    print(i)
}
svm_result_mod=svm_result[,-1]-1
```

Choose 400 data as validation set to choose best cost and gamma Fitting the model Perform 10 classifiers to see the divergence

Aggregate 20 classifiers using simple mean

Accruacy:48.27%

```
result=function(mat){
   resul=NULL
   for(i in 1:nrow(mat)){
      a0=sum(mat[i,]==0)
      a1=sum(mat[i,]==1)
      a2=sum(mat[i,]==2)
      res=which.max(c(a0,a1,a2))
      resul[i]=res-1
   }
   return(resul)
}
```

```
'``{r}
res=result(svm_result_mod)
table(res,test$Credit_Score)
'``
```

```
res 0 1 2
0 5578 5381 531
1 9837 19397 5744
2 1680 8382 4473
```


Correlation matrix with first 10 classifiers

```
0.460 -0.235 0.220 -0.096 -0.378
       0.506
               0.199
1.000
                                                                  0.288
0.506
       1.000
               0.278
                                                           0.158
                      0.614 - 0.560
                                     0.446 -0.337 -0.648
0.199
       0.278
               1.000
                      0.062 - 0.418 - 0.027
                                            0.236 - 0.488
                                                                 -0.091
0.460
       0.614
                      1.000 - 0.316
               0.062
                                     0.490 -0.421 -0.319 -0.154
      -0.560 -0.418
                     -0.316
                             1.000
                                   -0.297
                                            0.003
                            -0.297
                                           -0.452 - 0.215
                                     1.000
-0.096 - 0.337
              0.236 - 0.421
                             0.003 - 0.452
                                            1.000 - 0.290
                                                           0.501 - 0.430
                             0.703 -0.215 -0.290
      -0.648 -0.488 -0.319
                                                   1.000
0.193
       0.158
                     -0.154 -0.213 -0.193
                                            0.501 - 0.453
               0.539
       0.374 - 0.091
                      0.471 -0.162 0.372 -0.430 -0.019 -0.170
0.288
```

Sub-model2: Classification tree

Sub-model2: Classification tree

Choose 400 data as validation set to choose best cost and gamma Fitting the model Perform 10 classifiers to see the divergence

Choose max.depth=7

Aggregate 20 classifiers using simple mean

```
library(rpart)
set.seed(108021186)
tree_result=1:61003
for (i in 1:20){
    boot=train1[sample(1:2400,2400,replace=T),]
    treefit←rpart(Credit_Score~.,data = boot, maxdepth=10, cp=0)
    tree_result=cbind(tree_result,predict(treefit,test1[,-1],type='class'))
    print(i)
}
tree_result_mod=tree_result[,-1]-1
```

Accruacy:67.40%

agg_tree 0 1 2 0 12139 6429 508 1 2853 20348 1610 2 2103 6383 8630

Sub-model2: Classification tree

Choose 400 data as validation set to choose best cost and gamma

Fitting the model

Perform 10 classifiers to see the divergence

Correlation matrix with first 10 classifiers

```
1.000 0.356 0.342 0.330 0.310 0.321 0.330 0.329 0.334 0.357 0.356 1.000 0.404 0.377 0.388 0.324 0.404 0.409 0.407 0.409 0.342 0.404 1.000 0.369 0.387 0.353 0.394 0.375 0.396 0.395 0.330 0.377 0.369 1.000 0.339 0.339 0.388 0.368 0.361 0.347 0.310 0.388 0.387 0.339 1.000 0.359 0.379 0.382 0.364 0.366 0.321 0.324 0.353 0.339 0.359 1.000 0.362 0.319 0.365 0.328 0.330 0.404 0.394 0.388 0.379 0.362 1.000 0.373 0.395 0.399 0.329 0.409 0.375 0.368 0.382 0.319 0.373 1.000 0.381 0.393 0.334 0.407 0.396 0.361 0.364 0.365 0.395 0.381 1.000 0.388 0.357 0.409 0.395 0.347 0.366 0.328 0.399 0.393 0.388 1.000
```

Sub-model3: Logistic regression

Fitting the model

Perform 10 classifiers to see the divergence

```
library(nnet)
set.seed(108021186)
lr_result=1:61003
for (i in 1:20){
    boot=train[sample(1:2400,2400,replace=T),]
    lrfit←nnet::multinom(Credit_Score ~., data = train)
    lr_result=cbind(lr_result,predict(lrfit,test[,-20],type='class'))
    print(i)
}
lr_result_mod=lr_result[,-1]-1
```

res

0 9363 6213 310 Accruacy:60.16% 1 4840 18498 1597 2 2892 8449 8841

Sub-model3: Logistic regression


```
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 1.000 0.810 0.802 0.830 0.839 0.801 0.839 0.829 0.828 0.828
[2,] 0.810 1.000 0.793 0.824 0.825 0.800 0.814 0.791 0.833 0.827
[3,] 0.802 0.793 1.000 0.824 0.805 0.787 0.814 0.777 0.803 0.801
[4,] 0.830 0.824 0.824 1.000 0.833 0.840 0.834 0.840 0.868 0.833
 [5,] 0.839 0.825 0.805 0.833 1.000 0.820 0.839 0.814 0.841 0.867
[6,] 0.801 0.800 0.787 0.840 0.820 1.000 0.839 0.792 0.845 0.837
 [7,] 0.839 0.814 0.814 0.834 0.839 0.839 1.000 0.795 0.855 0.842
[8,] 0.829 0.791 0.777 0.840 0.814 0.792 0.795 1.000 0.832 0.802
[9,] 0.828 0.833 0.803 0.868 0.841 0.845 0.855 0.832 1.000 0.849
[10,] 0.828 0.827 0.801 0.833 0.867 0.837 0.842 0.802 0.849 1.000
```

Sub-model4: QDA classifier

Fitting the model

Perform 10 classifiers to see the divergence

```
library(MASS)
set.seed(108021186)
qda_result=1:61003
for (i in 1:20){
    boot=train[sample(1:2400.2400,replace=T),]
    qdafit (Credit_S net:multinom(...) ta = boot)
    qda_result=cbind(qda_result,predict(qdafit,test[,-20])$class)
    print(i)
}
qda_result_mod=qda_result[,-1]-1
```

Accruacy:51.56%

agg_qda 0 1 2 0 12749 14820 855 1 1454 10043 1228 2 2892 8297 8665

Sub-model4: QDA classifier


```
1.000 0.679 0.641 0.658 0.672 0.631 0.677 0.670 0.678 0.661
0.679 1.000 0.708 0.742 0.650 0.700 0.675 0.693 0.639 0.684
     0.708 1.000 0.709 0.717 0.691 0.717
                                          0.694
0.658 0.742 0.709 1.000 0.648 0.668 0.685 0.691 0.655 0.690
0.672 0.650 0.717 0.648 1.000 0.671 0.736 0.756 0.774 0.717
0.631 0.700 0.691 0.668 0.671 1.000 0.698 0.703 0.642 0.676
0.677 0.675 0.717 0.685 0.736 0.698 1.000 0.769 0.755 0.708
      0.693 0.694 0.691 0.756 0.703 0.769 1.000
     0.639 0.712 0.655 0.774 0.642 0.755 0.773 1.000
0.661 0.684 0.737 0.690 0.717 0.676 0.708 0.710 0.737 1.000
```

Aggregation process and comparison

Comparison of different sub-model

model	Single accuracy	Aggregated accuracy	System time
SVM model	54.00%	48.27%	123.09
Tree model	61.67%	67.40%	0.16
Logistic regression	60.16%	60.16%	0.41
QDA model	54.09%	51.56%	0.06

Aggregation process and comparison

Aggregation process

```
set.seed(108021186)
setting=sample(1:80.20)
mult_result=cbind(svm_result_mod,tree_result_mod,lr_result_mod,qda_result_mod)[,setting]
agg_mult=result(mult_result)
table(agg_mult,test$Credit_Score)
mean(agg_mult==test$Credit_Score)
round(cor_dist(mult_result[,1:10],test$Credit_Score),3)
'''
```

```
agg_mult 0 1 2
0 12267 8220 400
1 2039 17302 1502
2 2789 7638 8846
[1] 0.6297231
```

Aggregation process and comparison

Aggregation process

Correlation matrix

```
0.075
       0.055
              0.332 0.286
                            0.021
                                    0.041
                                                   0.053
                                                          0.316
1.000
                                                                 0.288
0.055
       1.000
              0.317 0.168
                            0.347 - 0.090
                                           0.365
                                                   0.339
                                                          0.319
                                                                 0.309
0.332
       0.317
              1.000 0.237
                            0.320 - 0.126
                                           0.360
                                                   0.314
                                                          0.756
                                                                 0.686
0.286
       0.168
              0.237 1.000
                            0.191
                                    0.003
                                           0.185
                                                   0.143
                                                          0.277
                                                                 0.216
              0.320 0.191
0.021
       0.347
                            1.000 -0.041
                                           0.398
                                                   0.345
                                                          0.310
                                                                 0.313
0.041
      -0.090
             -0.126 0.003
                           -0.041
                                    1.000
                                          -0.073
                                                 -0.047 - 0.117
                                                                -0.177
0.075
       0.365
              0.360 0.185
                            0.398 - 0.073
                                           1.000
                                                   0.361
                                                          0.353
                                                                 0.362
0.053
       0.339
              0.314 0.143
                            0.345 - 0.047
                                           0.361
                                                   1.000
                                                          0.309
                                                                 0.317
0.316
       0.319
              0.756 0.277
                            0.310 - 0.117
                                           0.353
                                                   0.309
                                                                 0.687
                                                          1.000
0.288
       0.309
              0.686 0.216
                            0.313 - 0.177
                                           0.362
                                                   0.317
                                                          0.687
                                                                 1.000
```

Conclusion

- Discussion
- Lower correlation between classifiers would be more reasonable to aggregate them using simple mean.
- 2. With multi-algorithm, it seems to lower the performance with just using tree model. But it become more legitimate.
- 3. We also need to pay attention to time cost while using multialgorithm bagging model.