Multilevel Modeling (Part 1)

Basic Random-Intercept and Random-Slope Modeling

Desmond D. Wallace

Department of Political Science The University of Iowa Iowa City, IA

March 23, 2018

Regression Highlights

- A way to summarize the relationship between variables.
- Assuming there is a relationship between Y and the independent variable(s).
- Relationship may be linear (OLS) or non-linear (CLDV).
- Regression helps our understanding of how our dependent variable of interest changes when one or more independent variables vary, while holding remaining variables fixed.
- PRF: $y_i = \beta_0 + \beta_1 x_1 + \cdots + \beta_k x_k + \varepsilon_i$
- SRF: $y_i = b_0 + b_1 x_1 + \cdots + b_k x_k + e_i$

Model Specification

- Linearity in the parameters
- The number of observations n must be greater than the number of parameters to be estimated
- The regression model is correctly specified

Independent Variable(s)

- X values are fixed in repeated sampling
- Variability in X values
- There is no perfect multicollinearity

Error Term

- **1** Zero mean value of error (e_i)
- **2** Homoscedasticity or equal variance of e_i
- No autocorrelation between the errors
- **4** Zero covariance between e_i and X_i

Wallace (University of Iowa)

Additional Assumptions

- Errors are normally distributed
- 2 Errors for any two observations are independent of one another

Multi-Stage Sampling

- OLS assumptions imply utilization of Simple Random Sampling (SRS)
- However, due to cost-efficiency, multi-stage sampling approaches may be utilized instead.
- Researcher may randomly sample grouping units instead of individuals (cluster sampling)
- Examples
 - Students nested in schools
 - Respondents nested in states (countries)
 - Patients nested in hospitals

Wallace (University of Iowa)

Applying OLS to Multilevel Data

- Biased standard errors
- Model Misspecification

New Approach

- Best approach to analyzing nested data is a statistical approach that accounts for both within-group and between-group variation simultaneously
- One approach is to conceive within-group and between-group variation as random variability
- One can achieve this by including random coefficient(s) in the statistical model

Wallace (University of Iowa)

Multilevel Model

- Multilevel Model (MLM) is a model where the parameters vary at more than one level
- Features more than one error term
- Variation can occur wit respect to the intercept (random intercept) and/or the slope (random slope)
- This approach leads to corrected standard errors and correct model specification

Wallace (University of Iowa)

Multilevel Model

- Model coefficients are now a combination of both fixed and random components
 - Fixed Coefficient An unknown constant of nature
 - Random Coefficient One which varies from sample of groups to sample of groups
- Random coefficients are not estimated, and are instead predicted
- Instead of BLUE (Best Linear Unbiased Estimator) coefficients, we know have BLUP (Best Linear Unbiased Prediction) coefficients

Null Model

- Predicting the outcome from only an intercept that varies between groups
- The null model takes the following form:
 - Level-1 Model: $y_{ii} = \beta_{0i} + \varepsilon_{ii}$
 - Level-2 Model: $\beta_{0i} = \gamma_{00} + U_{0i}$ where
 - β_{0i} Average (general) intercept holding across all groups (fixed effect)
 - U_{0i} Group-specific effect on the intercept (random effect)
 - Full Specification: $y_{ii} = \gamma_{00} + U_{0i} + \varepsilon_{ii}$
- Interested in general mean value for y_{ii} (γ_{00}) and deviation between overall mean and group-specific effects for the intercept (U_{0i})

Null Model Assumptions

- Groups are a random sample from the population of all possible groups
- $oldsymbol{0}$ U_{0j} is randomly drawn from a population distribution with mean 0 and variance au_0^2
- **1** au_0^2 (Variance of U_{0j}) and σ^2 (variance of ε_{ij}) are uncorrelated

Variance of yii

- Variance of y_{ii} is just the sum of the level-two and level-one variances
 - $Var(y_{ii}) = Var(U_{0i}) + Var(\varepsilon_{ii}) = \tau_0^2 + \sigma^2$
- Covariance between two observations from the same group (ij and i'j) is equal to the variance of the contribution U_{0i} that is shared by these observations
 - $Cov(y_{ii}, y_{i'i}) = Var(U_{0i}) = \tau_0^2$

Intraclass Correlation Coefficient

- A measure of the proportion of variation in the dependent variable that occurs between groups versus the total variation (between and within)
- Correlation between two randomly drawn observations from in one randomly drawn group
- Ranges between 0 (no variation between groups) and 1 (all between-group variation but no within-group variation)

4□ > 4□ > 4 = > 4 = > = 90

Coefficient Plots

- Sometimes, regression models feature many variables
- Also, showing many numbers and stars can be difficult for some readers
- An alternative to reporting a table is a plot of the regression results

coefplot

- coefplot is another user-written Stata program
- Plots regression results in "dot-whisker" format
 - "Dot" Coefficient Estimate
 - "Whisker" Confidence Interval
- Basic Syntax: coefplot
- coefplot command is executed AFTER regression model is estimated

```
reg realrinc age i.female
coefplot, title("Model Results") xline(0)
```


19 / 33

```
reg realrinc age i.female
coefplot, title("Model Results") xline(0) drop(_cons)
```

Interpreting Coefficients

- Can directly interpret coefficient estimates.
- A one unit change in X_k leads to a β_k change in Y (holding all other variables constant).
- Assumes X_k is not a constituent term for an interaction variable.

Predicted (Fitted) Values

- The result of substituting values of interest for the independent variable(s).
- $E[Y|X] = X\hat{\beta}$
- Can calculate standard errors to determine if E[Y|X=x] is statistically significantly different from zero.
- Multiple ways to calculate fitted values in Stata.

4□ > 4□ > 4 = > 4 = > = 90

Marginal and Discrete Change

- Measuring the change in the dependent variable for a change in one independent variable, holding remaining independent variables constant.
 - Marginal Change is the partial derivative, or instantaneous rate of change, in the dependent variable w.r.t. an independent variable, holding remaining variables constant.
 - Discrete Change or First Difference is the difference in the prediction from one specified value of an independent variable to another specified value, holding remaining variables constant.

Marginal and Discrete Change

- Marginal Change: $\frac{\partial E[Y|X]}{\partial x_k} = \frac{\partial X\beta}{\partial x_k} = \beta_k$
- ullet Discrete Change: $rac{\Delta E[Y|X]}{\Delta x_k} = E[Y|X,x_k+1] E[Y|X,x_k] = eta_k$

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

Marginal and Discrete Change

- $\frac{\partial E[Y|X]}{\partial x_k} = \frac{\Delta E[Y|X]}{\Delta x_k} = \beta_k$, assuming there is no interaction terms.
- The standard error of the marginal effect is the same as the standard error of the estimated beta coefficient.
- For a unit increase in x_k , the expected change in Y equals β_k , holding all other variables constant.
- Having characteristic x_k (as opposed to not having the characteristic) results in an expected change of β_k in Y, holding all other variables constant.
- When there is no interaction term present,
 Marginal Change = Discrete Change

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

Marginal Effects

margins

- Computes predicted values and marginal effects from last estimated regression model
- Reports computed statistic, standard error, test statistic, p-value and 95% CL
- at(atspec) option allows for the calculation of predicted values and marginal effects at specific values of independent variable(s).
- dydx() option allows for calculating marginal effects.
- Factor variables (i.varname) can go after the margins command or within the at(atspec) option.
- Continuous variables can only be specified within the at(atspec) option.
- atmeans option sets variables not specified to be held at their mean value.

4 D > 4 B > 4 E > 4 E > 9 Q P

Predicted (Fitted) Values - margins Syntax

- margins Overall predicted value with all independent variables held at their mean value.
- margins, at(varname=#) Predicted value when one or more independent variables are fixed to a specific value and remaining independent variables held at their mean value.
- margins, at(varname=numlist) Predicted value(s) when one or more independent variables are fixed to multiple values and remaining independent variables held at their mean value.
- margins varname Overall predicted value(s) for categories of varname with remaining independent variables held at their mean value.

29 / 33

Wallace (University of Iowa) MLM I March 23, 2018

Marginal Change - margins Syntax

 margins, dydx(varname) – Average marginal effect a one-unit increase in varname has on the dependent variable, holding all other variables constant.

Discrete Change - margins Syntax

- margins, at(varname=(start end)) post Calculates predicted values at specified values, and treats results as estimation results.
- lincom 2._at 1._at Calculates the difference between the prediction of the ending value and the prediction of the starting value.

marginsplot

- Graphs the results of last estimated margins command
- Needs to be executed immediately after margins
- Resulting graph includes an overall title, a title for the y-axis, x-axis features the name of the variable (variable label if one is included).
- The featured values on the x-axis are the values specified from the margins command.
- Can use the recast and recastci options to change how results are graphed.

Email: desmond-wallace@uiowa.edu Any Questions?