Inequalities

João Paixão and Lucas Rufino

October 24, 2020

1 Definitions

1.1 Preorder

Definition 1.1 (Reflexivity). $A \leq A$

Definition 1.2 (Transitivity). $A \leq B$ and $B \leq C \implies A \leq C$

Definition 1.3 (Isomorphic). $A = B \iff A \leq B$ and $B \leq A$

Lemma 1.1. $A = B \iff (A \le B \iff TRUE \implies B \le A)$

1.2 Yoneda

Definition 1.4 (Yoneda \leq). $A \leq B \iff \forall X(X \leq A \implies X \leq B)$

Lemma 1.2 (Yoneda 1 =). $A = B \iff \forall X(X \le A \iff X \le B)$

Lemma 1.3 (Yoneda 2 =). $A = B \iff \forall X (A \leq X \iff B \leq X)$

1.3 Initial and Terminal Object (0 and ∞)

Definition 1.5 (Initial). $0 \le A$

Definition 1.6 (Terminal). $A \leq \infty$

1.4 Meets $(A \min B)$

Definition 1.7 (Meet). $A \leq B \min C \iff A \leq B \text{ and } A \leq C$

Lemma 1.4 (Zero Element). $A \min \infty = A$

Proof.

$$X \le A \min \infty$$

$$\iff \{ \text{ Meet } \}$$

$$X \le A \text{ and } X \le \infty$$

$$\iff \{ \text{ Terminal } \}$$

$$X \leq A \text{ and } TRUE \\ \iff \quad \{ \text{ A and } TRUE = A \ \} \\ X \leq A$$

Lemma 1.5 (Absolute Element). $A \min 0 = 0$

Proof.

$$0 \le A \min 0$$

$$\iff \{ \text{ Initial } \}$$

$$TRUE$$

$$\iff \{ \text{ Reflexivity } \}$$

$$A \min 0 \le A \min 0$$

$$\iff \{ \text{ Meet } \}$$

$$A \min 0 \le A \text{ and } A \min 0 \le 0$$

$$\iff \{ \text{ A and B} \implies \text{B } \}$$

$$A \min 0 \le 0$$

Lemma 1.6 (Associativity). $A \min(B \min C) = (A \min B) \min C$

Proof.

$$X \leq A \min(B \min C)$$

$$= \{ \text{Meet } \}$$

$$X \leq A \text{ and } X \leq B \min C$$

$$= \{ \text{Meet } \}$$

$$X \leq A \text{ and } (X \leq B \text{ and } X \leq C)$$

$$= \{ \text{Associativity of And } \}$$

$$(X \leq A \text{ and } X \leq B) \text{ and } X \leq C$$

$$= \{ \text{Meet } \}$$

$$X \leq A \min B \text{ and } X \leq C$$

$$= \{ \text{Meet } \}$$

$$X \leq (A \min B) \min C$$

Lemma 1.7 (Commutativity). $A \min B = B \min A$

Proof.

$$X \le A \min B$$

$$= \{ \text{Meet } \}$$

$$X \le A \text{ and } X \le B$$

$$= \{ \text{Commutativity of And } \}$$

$$X \le B \text{ and } X \le A$$

$$= \{ \text{Meet } \}$$

$$X \le B \min A$$

1.5 Joins $(A \max B)$

Definition 1.8 (Join). $A \max B \leq C \iff A \leq C \text{ and } B \leq C$ **Lemma 1.8** (Zero Element). $A \max 0 = A$ *Proof.*

$$A \max 0 \le X$$

$$\iff \{ \text{ Join } \}$$

$$A \le X \text{ and } 0 \le X$$

$$\iff \{ \text{ Initial } \}$$

$$A \le X \text{ and } TRUE$$

$$\iff \{ \text{ A and } TRUE = A \}$$

$$A \le X$$

Lemma 1.9 (Absolute Element). $\infty \max A = \infty$ *Proof.*

Lemma 1.10 (Associativity). $A \max(B \max C) = (A \max B) \max C$ Proof.

$$A \max(B \max C) \leq X$$

$$\iff \{ \text{ Join } \}$$

$$A \leq X \text{ and } B \max C \leq X$$

$$\iff \{ \text{ Join } \}$$

$$A \leq X \text{ and } (B \leq X \text{ and } C \leq X)$$

$$\iff \{ \text{ Associativity of And } \}$$

$$(A \leq X \text{ and } B \leq X) \text{ and } C \leq X$$

$$\iff \{ \text{ Join } \}$$

$$A \max B \leq X \text{ and } C \leq X$$

$$\iff \{ \text{ Join } \}$$

$$(A \max B) \max C \leq X$$

Lemma 1.11 (Commutativity). $A \max B = B \max A$

Proof.

$$A \max B \le X$$

$$= \left\{ \begin{array}{l} \text{Join } \right\} \\ A \le X \text{ and } B \le X \end{array}$$

$$= \left\{ \begin{array}{l} \text{Commutativity of And } \right\} \\ B \le X \text{ and } A \le X \end{array}$$

$$= \left\{ \begin{array}{l} \text{Join } \right\} \\ B \max A \le X \end{array}$$

Lemma 1.12 (Golden Rule). $A \le A \min B \iff B \max A \le B$ Proof.

$$A \le A \min B$$

$$\iff \{ \text{ Meet } \}$$

$$A \le A \text{ and } A \le B$$

$$\iff \{ \text{ Reflexivity } \}$$

$$TRUE \text{ and } A \le B$$

$$\iff \{ \text{ Reflexivity } \}$$

$$B \le B \text{ and } A \le B$$

$$\iff \{ \text{ Join } \}$$

$$B\max A\leq B$$

1.6 Adjoints (+ and -)

Definition 1.9 (Adjoint). $A + B \le C \iff A \le C - B$

Definition 1.10 (Associativity of +). A + (B + C) = (A + B) + C

Definition 1.11 (Commutativity of +). A + B = B + A

Lemma 1.13 (+ distributes over Joins). $(A \max B) + C = (A+C) \max(B+C)$ *Proof.*

$$(A \max B) + C \le X$$

$$\iff \{ \text{ Adjoint } \}$$

$$A \max B \le X - C$$

$$\iff \{ \text{ Join } \}$$

$$A \le X - C \text{ and } B \le X - C$$

$$\iff \{ \text{ Adjoint } \}$$

$$A + C \le X \text{ and } B + C \le X$$

$$\iff \{ \text{ Join } \}$$

$$(A + C) \max(B + C) \le X$$

Lemma 1.14 (– distributes over Meets). $(A \min B) - C = (A - C) \min(B - C)$ Proof.

$$X \le (A \min B) - C$$

$$\iff \{ \text{ Adjoint } \}$$

$$X + C \le A \min B$$

$$\iff \{ \text{ Meet } \}$$

$$X + C \le A \text{ and } X + C \le B$$

$$\iff \{ \text{ Adjoint } \}$$

$$X \le A - C \text{ and } X \le B - C$$

$$\iff \{ \text{ Meet } \}$$

$$X \le (A - C) \min(B - C)$$

Lemma 1.15 (Preservation of infima). 0 + A = 0

Proof.

$$0 + A \le X$$

$$\iff \left\{ \begin{array}{l} \text{Adjoint } \right\} \\ 0 \le X - A \\ \iff \left\{ \begin{array}{l} \text{Initial } \right\} \\ TRUE \\ \iff \left\{ \begin{array}{l} \text{Initial } \right\} \\ 0 \le X \end{array} \right.$$

Lemma 1.16 (Preservation of suprema). $\infty - A = \infty$ *Proof.*

$$\begin{array}{ccc} X \leq \infty - A \\ \iff & \{ \text{ Adjoint } \} \\ X + A \leq \infty \\ \iff & \{ \text{ Terminal } \} \\ TRUE \\ \iff & \{ \text{ Terminal } \} \\ X \leq \infty \end{array}$$

Lemma 1.17 (Left cancellation law). $(A - B) + B \le A$ Proof.

$$(A-B)+B \le A$$

$$\iff \{ \text{ Adjoint } \}$$

$$A-B \le A-B$$

$$\iff \{ \text{ Reflexivity } \}$$

$$TRUE$$

Lemma 1.18 (Right Cancelation law). $A \leq (A+B) - B$ *Proof.*

$$A \le (A+B) - B \\ \iff \quad \{ \text{ Adjoint } \} \\ A+B \le A+B \\ \iff \quad \{ \text{ Reflexivity } \}$$

TRUE

Lemma 1.19 (Monotonicity of +). $A \leq B \implies A + C \leq B + C$ Proof.

 $A \leq B$ $\iff \{ \text{ A and TRUE} = \text{A } \}$ $A \leq B \text{ and } TRUE$ $\iff \{ \text{ Right Cancellation Law } \}$ $A \leq B \text{ and } B \leq (B+C) - C$ $\iff \{ \text{ Transitivity of } \leq \}$ $A \leq (B+C) - C$ $\iff \{ \text{ Adjoint } \}$ $A+C \leq B+C$

Lemma 1.20 (Monotonicity of -). $A \leq B \implies A - C \leq B - C$ *Proof.*

$$A \leq B$$

$$\iff \{ \text{ TRUE and A} = A \}$$

$$TRUE \text{ and } A \leq B$$

$$\iff \{ \text{ Left Cancellation Law } \}$$

$$(A - C) + C \leq A \text{ and } A \leq B$$

$$\iff \{ \text{ Transitivity of } \leq \}$$

$$(A - C) + C \leq B$$

$$\iff \{ \text{ Adjoint } \}$$

$$A - C < B - C$$

Lemma 1.21 (Weak-inverse +). A + B = ((A + B) - B) + BProof.

$$((A+B)-B)+B \le A+B$$

$$\iff \{ \text{ Left Cancellation Law } \}$$

$$TRUE$$

$$\iff \{ \text{ Right Cancellation Law } \}$$

$$A \le (A+B) - B$$

$$\implies \{ \text{ Monotonicity of } + \}$$

$$A+B \le ((A+B)-B) + B$$

Lemma 1.22 (Weak-inverse –). A - B = ((A - B) + B) - B

Proof.

$$A - B \le ((A - B) + B) - B$$

$$\iff \{ \text{ Right Cancellation Law } \}$$

$$TRUE$$

$$\iff \{ \text{ Left Cancellation Law } \}$$

$$(A - B) + B \le A$$

$$\iff \{ \text{ Monotonicity of } - \}$$

$$((A - B) + B) - B \le A - B$$

Lemma 1.23 (- distributes over +). A - (B + C) = (A - B) - C

Proof.

$$X \le (A - B) - C$$

$$\iff \{ \text{ Adjoint } \}$$

$$X + C \le A - B$$

$$\iff \{ \text{ Adjoint } \}$$

$$(X + C) + B \le A$$

$$\iff \{ \text{ Associativity of } + \}$$

$$X + (C + B) \le A$$

$$\iff \{ \text{ Adjoint } \}$$

$$X \le A - (C + B)$$

Lemma 1.24 (Duality). $A \min B \le (A+B) - (B \max A)$

Proof.

$$X \le A \min B$$

$$\iff \{ \text{ Meet } \}$$

$$X \le A \text{ and } X \le B$$

$$\iff \{ \text{ Monotonicity of } + \}$$

$$X + B \le A + B \text{ and } X + A \le B + A$$

$$\iff \{ \text{ Commutativity of } + \}$$

$$B + X \le A + B \text{ and } A + X \le A + B$$

$$\iff \{ \text{ Adjoint } \}$$

$$B \le (A + B) - X \text{ and } A \le (A + B) - X$$

$$\iff \{ \text{ Join } \}$$

$$B \max A \le (A + B) - X$$

$$\iff \{ \text{ Adjoint } \}$$

$$(B \max A) + X \le A + B$$

$$\iff \{ \text{ Commutativity of } + \}$$

$$X + (B \max A) \le A + B$$

$$\iff \{ \text{ Adjoint } \}$$

$$X \le (A + B) - (B \max A)$$

2 Exercises

- 1. (Weakening) $A \leq A \max B$
- 2. (Projection) $A \min B \leq A$
- 3. (Idempotency) $A \max A = A$
- 4. (Meet \leq Join) $A \min B \leq A \max B$
- 5. (Monotonicity of max) $A \leq B$ and $C \leq D \implies A \max C \leq B \max D$
- 6. A + A A = A
- 7. (Self-Distributivity) $A \min(B \min C) = (A \min B) \min(A \min C)$
- 8. (Absorption) $A \min(A \max B) = A$