Unit IV

Supplementary Notes

11.4 Mathematical Induction

• To prove by induction that P(n) is true for all positive integers n, we assume P(k) is true for some positive integer k and show that P(k+1) is true.

11.5 The Binomial Theorem

• factorial function:

$$0! = 1$$

 $n! = n(n-1)(n-2)\cdots 3\cdot 2\cdot 1$ for $n \ge 1$

• binomial coefficient:

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} \quad \text{for } 0 \le k \le n$$

• Pascal's triangle:

• binomial theorem:

$$(a+b)^{n} = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^{k} \qquad (n \ge 0)$$

$$= \binom{n}{0} a^{n} + \binom{n}{1} a^{n-1} b^{1} + \dots + \binom{n}{k} a^{n-k} b^{k} + \dots + \binom{n}{n-1} a b^{n-1} + \binom{n}{n} b^{n}$$

Exercises

- 1. To prove by induction that $n^2 7n 4$ is divisible by 2 is true for all positive integers n, we assume $k^2 7k 4$ is divisible by 2 is true for some positive integer k and we show that $k^2 7k 4 + A$ is divisible by 2, where A is
- 2. Find a_2 and a_3 such that $-4 + a_2 + a_3 + \cdots + a_n = \frac{n(n-9)}{2}$ for all n.
- 3. Evaluate the binomial coefficient $\binom{n}{2}$.
- 4. Find the sixth term of the expansion of $(\frac{3}{c} + \frac{c^2}{4})^7$ if the terms are arranged in decreasing powers of the first term.
- 5. Find the term that does not contain y in the expansion of $(xy-3y^{-3})^8$.