Entropia

Gabriel Braun

Colégio e Curso Pensi, Coordenação de Química

Reversibilidade e Espontaneidade

- 1. Trabalho de expansão reversível.
- 2. Teorema do Trabalho Máximo.
- 3. Reversibilidade e entropia.
- 4. Definição macroscópica de entropia:

$$\Delta S = \frac{Q_{rev}}{T}$$

5. Segunda Lei da Termodinâmica.

1.0.1 Habilidades

a. **Calcular** a variação de entropia para uma transformação reversível.

Entropia

- 1. Entropia e desordem.
- 2. Entropia e temperatura:

$$\Delta S = nC_P \ln \left(\frac{T_2}{T_1}\right)$$

3. Entropia e volume de gás ideal:

$$\Delta S = nR \ln \left(\frac{V_2}{V_1} \right)$$

- Entropia e estado físico: sólido, líquido, gasoso e em solução.
- 5. Entropia de mudança de fase:

$$\Delta S = \frac{\Delta H}{T}$$

2.0.2 Habilidades

- a. Determinar qualitativamente o sinal da variação de entropia para uma transformação.
- b. Calcular a variação de entropia para aquecimento ou resfriamento de uma substância.
- c. **Calcular** a variação de entropia para um gás ideal em uma transformação isotérmica.
- d. Calcular a entropia padrão para transição de fase.

Entropia Absoluta

- 1. Interpretação microscópica da entropia.
- 2. Fórmula de Boltzmann:

$$S=k_B\,ln\,\Omega$$

- 3. Entropia Residual.
- 4. Terceira Lei da Termodinâmica.

3.0.3 Habilidades

 a. Calcular a entropia residual a partir da Fórmula de Boltzmann.

Entropia de Reação

- 1. Entropia padrão.
- 2. Entropia de reação.

4.0.4 Habilidades

- a. Calcular a variação de entropia para uma reação química.
- Determinar qualitativamente o sinal da variação de entropia para uma reação química.

Mudanças Globais de Entropia

1. Variação de entropia da vizinhança:

$$\Delta S_{viz} = -\frac{\Delta H}{T}$$

- 2. Variação de entropia do Universo.
- 3. Equilíbrio.

5.0.5 Habilidades

- a. Calcular a variação de entropia da vizinhança devido à uma transferência de calor em pressão e temperatura constantes.
- b. Calcular a variação de entropia do Universo para um processo.

Nível I

PROBLEMA 5.1

2B01

Um sistema **A** transfere, naturalmente, uma determinada quantidade de energia, na forma de calor, para um sistema **B**, que envolve totalmente **A**.

Assinale a alternativa correta.

- A A entropia do Universo decrescerá.
- **B** A entropia do sistema **A** crescerá.
- O aumento da entropia do sistema **B** será maior que o decréscimo da entropia do sistema **A**.
- **D** O aumento da entropia do sistema **B** será menor que o decréscimo da entropia do sistema **A**.
- O aumento da entropia do sistema B será necessariamente igual ao decréscimo da entropia do sistema A.

O termo seta do tempo é usado para distinguir uma direção no tempo nos fenômenos naturais, ou seja, que o estado 2 de um sistema macroscópico ocorre após o estado 1.

Assinale a alternativa correta a respeito de um processo que ocorre em sistema fechado.

- A S_2 é igual a S_1 .
- **B** S_2 é maior que S_1 .
- **C** S_2 é menor que S_1 .
- \mathbf{D} S_2 independe de S_1 .
- **E** A relação entre S_2 e S_1 depende do caminho percorrido entre os estados.

PROBLEMA 5.3

2B03

2B02

Assinale a alternativa que mais se aproxima da variação de entropia da água quando 100 J são transferidos de forma reversível à água a 25 °C.

- $-0.34\,\mathrm{J\,K^{-1}}$
- **B** $-0.17 \,\mathrm{J}\,\mathrm{K}^{-1}$
- **c** $0.08 \,\mathrm{J}\,\mathrm{K}^{-1}$
- **D** $0.17 \, \mathrm{J \, K^{-1}}$
- $\mathbf{E} = 0.34 \, \mathrm{J \, K^{-1}}$

PROBLEMA 5.4

2B04

Assinale a alternativa que mais se aproxima da entropia de congelamento do mercúrio.

- $-4,4 \, \text{J K}^{-1} \, \text{mol}^{-1}$
- $-2.2 \,\mathrm{J}\,\mathrm{K}^{-1}\,\mathrm{mol}^{-1}$
- $-1,1 \, \text{J K}^{-1} \, \text{mol}^{-1}$
- \mathbf{D} 2.2 $I K^{-1} \text{ mol}^{-1}$
- \mathbf{E} 4,4 J K⁻¹ mol⁻¹

Dados

- $\Delta H_{\text{fus}}^{\circ}(\text{Hg}) = 2,29 \,\text{kJ mol}^{-1}$
- $T_{fus}(Hg) = -38.8 \,^{\circ}C$

PROBLEMA 5.5

2B05

Assinale a alternativa que mais se aproxima da variação de entropia do gás quando 1 mol de um gás ideal monoatômico é aquecido reversivelmente de 300 K a 400 K sob pressão constante.

- $-6 \, \mathrm{J} \, \mathrm{K}^{-1}$
- $-4\,\mathrm{J}\,\mathrm{K}^{-1}$
- $-2 \, \mathrm{J} \, \mathrm{K}^{-1}$
- $D 4JK^{-1}$
- $E 6JK^{-1}$

Assinale a alternativa que mais se aproxima da variação de entropia do gás quando um cilindro de 20 L de gás nitrogênio sob 5,00 kPa é aquecido reversivelmente de 20 °C a 400 °C.

- $-0.7 \,\mathrm{J}\,\mathrm{K}^{-1}$
- $-0.5 \,\mathrm{J}\,\mathrm{K}^{-1}$
- **c** $0.5 \,\mathrm{J}\,\mathrm{K}^{-1}$
- $0.7 \, \mathrm{J} \, \mathrm{K}^{-1}$
- $\mathbf{E} \quad 0.91 \, \mathrm{K}^{-1}$

Dados

•
$$C_P(N_2, g) = 29.1 \, \text{J K}^{-1} \, \text{mol}^{-1}$$

PROBLEMA 5.7

2B07

Assinale a alternativa que mais se aproxima da variação de entropia do gás quando 1 mol de nitrogênio se expande reversível e isotermicamente de 22 L a 44 L.

- $-6.7 \,\mathrm{J}\,\mathrm{K}^{-1}$
- **B** $-4.7 \, \mathrm{J \, K^{-1}}$
- $-2,7 \, \mathrm{J} \, \mathrm{K}^{-1}$
- **D** $4.7 \, \mathrm{J \, K^{-1}}$
- **E** $5.7 \, \mathrm{I} \, \mathrm{K}^{-1}$

PROBLEMA 5.8

2B08

Assinale a alternativa que mais se aproxima da variação de entropia do gás quando um mol de oxigênio é rapidamente comprimido de 5 L a 1 L por um pistão e, no processo, sua temperatura aumentou de 20 °C para 25 °C.

- $A -13,4 \,\mathrm{J}\,\mathrm{K}^{-1}$
- $-13 \, \mathrm{J} \, \mathrm{K}^{-1}$
- $0.4 \,\mathrm{J}\,\mathrm{K}^{-1}$
- **D** $13\,\mathrm{J}\,\mathrm{K}^{-1}$
- $E 13,4 J K^{-1}$

Dados

•
$$C_P(O_2, g) = 29.4 \, \text{J K}^{-1} \, \text{mol}^{-1}$$

PROBLEMA 5.9

2B09

Assinale a alternativa que mais se aproxima da variação de entropia do gás quando a pressão de 1,5 mol de neônio diminui isotermicamente de 15 atm até 0,5 atm.

- **A** $12\,\mathrm{J}\,\mathrm{K}^{-1}$
- **B** $22 \, \mathrm{J} \, \mathrm{K}^{-1}$
- **c** $32 \, \mathrm{J} \, \mathrm{K}^{-1}$
- $\mathbf{D} 42 \, \mathrm{J} \, \mathrm{K}^{-1}$
- E 52 J K⁻¹

Assinale a alternativa que mais se aproxima da variação de entropia do gás quando a pressão de 70,9 g de gás metano aumenta isotermicamente de 7 kPa até 350 kPa.

- $-288\,\mathrm{J\,K^{-1}}$
- $-144\,\mathrm{J\,K^{-1}}$
- $-72 \, \mathrm{J} \, \mathrm{K}^{-1}$
- $D 144 \, \mathrm{J} \, \mathrm{K}^{-1}$
- \mathbf{E} 288 J K⁻¹

PROBLEMA 5.11

2B11

2B10

A entalpia de fusão de uma determinada substância é $200 \, \text{kJ kg}^{-1}$, e seu ponto de fusão normal é $27 \, ^{\circ}\text{C}$.

Assinale a alternativa que mais se aproxima da variação de entropia do sistema na fusão de 3 kg dessa substância.

- $-600\,\mathrm{J\,K^{-1}}$
- **B** $-2 \, \text{kJ} \, \text{K}^{-1}$

c 0

- \mathbf{D} 2 kJ K $^{-1}$
- **E** 600 J K^{−1}

PROBLEMA 5.12

2B12

A entalpia de fusão de uma determinada substância é 6 kJ mol $^{-1}$, e seu ponto de fusão normal é -183 °C.

Assinale a alternativa que mais se aproxima da variação de entropia do sistema na fusão de 1 mol dessa substância.

- $-20 \, \mathrm{J} \, \mathrm{K}^{-1} \, \mathrm{mol}^{-1}$
- $-33 \, \text{J K}^{-1} \, \text{mol}^{-1}$
- c 50 J K⁻¹ mol⁻¹
- \mathbf{D} 67 J K⁻¹ mol⁻¹
- $100 \, \mathrm{J} \, \mathrm{K}^{-1} \, \mathrm{mol}^{-1}$

PROBLEMA 5.13

2B13

Assinale a alternativa que mais se aproxima do ponto de ebulição do mercúrio.

- **A** $-272 \, \text{K}$
- **B** 100 K
- **c** 395 K
- **D** 670 K
- **E** 1500 K

Dados

- $\Delta H_{\text{van}}^{\circ}(\text{Hg}) = 59.3 \,\text{kJ mol}^{-1}$
- $\Delta S_{\text{vap}}^{\circ}(\text{Hg}) = 94,2 \, \text{J K}^{-1} \, \text{mol}^{-1}$

A $Regra\ de\ Trouton$ estabelece que a entropia molar de vaporização de líquidos em sua temperatura de ebulição é

$$\Delta S_{vap} \approx 10.5 \text{ R} = 87.2 \text{ J K}^{-1} \text{ mol}^{-1}$$

Assinale a alternativa que mais se aproxima do ponto de ebulição do éter metílico.

- **A** 200 K
- **B** 225 K
- **c** 250 K
- **D** 275 K
- **E** 300 K

Dados

• Hvap(CH3OCH3)=21,5

PROBLEMA 5.15

2B17

Assinale a alternativa que mais se aproxima da variação de entropia para a formação da amônia.

- $-400\,\mathrm{J\,K^{-1}}$
- $-200\,\mathrm{J\,K^{-1}}$
- **C** 100 J K⁻¹
- $D 200 \, \mathrm{J} \, \mathrm{K}^{-1}$
- \mathbf{E} 400 J K⁻¹

Dados

- $\Delta S^{\circ}(NH_3, g) = 192 J K^{-1} mol^{-1}$
- $\Delta S^{\circ}(H_2, g) = 131 \, J \, K^{-1} \, mol^{-1}$
- $\Delta S^{\circ}(N_2, g) = 192 J K^{-1} mol^{-1}$

PROBLEMA 5.16

2B18

Assinale a alternativa que mais se aproxima da variação de entropia para a decomposição do clorato de potássio formando perclorato e cloreto de potássio.

- $-36,4\,\mathrm{J\,K^{-1}}$
- $|\mathbf{B}| -18,2 \,\mathrm{J}\,\mathrm{K}^{-1}$
- $-9,1\,\mathrm{J\,K^{-1}}$
- **D** $9,1 \, \mathrm{J} \, \mathrm{K}^{-1}$
- \mathbf{E} 36,4 J K⁻¹

Dados

- $\Delta S^{\circ}(KClO_3, s) = 143 J K^{-1} mol^{-1}$
- $\Delta S^{\circ}(KCl, s) = 82,6 \, J \, K^{-1} \, mol^{-1}$
- $\Delta S^{\circ}(KClO_4, s) = 151 J K^{-1} mol^{-1}$

Considere os processos:

- 1. Cristalização de um sal.
- 2. Sublimação da naftalina.
- 3. Mistura de água e álcool.
- 4. Fusão do ferro.

Assinale a alternativa que relaciona os processos que ocorrem com aumento de entropia do sistema.

A 2 e 3

B 2 e 4

C 3 e 4

- **D** 2, 3 e 4
- **E** 1, 2, 3 e 4

PROBLEMA 5.18

2B20

Considere as reações:

- 1. $Cl_2(g) + H_2O(l) \longrightarrow HCl(aq) + HClO(aq)$
- **2.** $Cu_3(PO_4)_2(s) \longrightarrow 3 Cu^{2+}(aq) + 2 PO_4^{3-}(aq)$
- 3. $SO_2(g) + Br_2(g) + 2H_2O(l) \longrightarrow H_2SO_4(aq) + 2HBr(aq)$
- **4.** $4 \text{ NH}_3(g) + 5 \text{ O}_2(g) \longrightarrow 4 \text{ NO}(g) + 6 \text{ H}_2 \text{O}(g)$

Assinale a alternativa que relaciona as reações com variação positiva de entropia.

A 2

B 4

C 2 e 4

- **D** 1, 2 e 4
- **E** 2, 3 e 4

Nível II

PROBLEMA 5.19

2B21

Assinale a alternativa *incorreta*.

- A variação de energia interna é nula na expansão de um gás ideal a temperatura constante.
- **B** A variação de energia interna positiva em um processo endotérmico a volume constante.
- C A variação de entalpia é nula em um processo cíclico.
- A variação de entropia é positiva em um processo endotérmico a pressão constante.
- A variação de entropia é nula quando um gás ideal sofre expansão livre.

Considere as proposições:

- 1. A entropia do HBr é maior que a do HF a 298 K.
- 2. A entropia da amônia é maior que a do neônio a 298 K.
- **3.** A entropia do ciclopentano é maior que a do pent-1-eno a 298 K.
- **4.** A entropia do ciclobutano é maior que a do cicloexano a 298 K.

Assinale a alternativa que relaciona as proposições corretas.

A 1 e 2

- B 1 e 4
- **C** 2 e 4

- **D** 1, 2 e 4
- **E** 1, 2, 3 e 4

PROBLEMA 5.21

2B24

Considere os processos:

- 1. Conversão de grafite e diamante
- 2. Supersaturação de uma solução saturada.
- **3.** Cristalização de um sólido amorfo.
- 4. Adsorção do nitrogênio em sílica.

Assinale a alternativa que relaciona os processos que ocorrem com diminuição de entropia do sistema.

- A 1 e 3
- **B** 1 e 4
- **C** 3 e 4

- **D** 1, 3 e 4
- **E** 1, 2, 3 e 4

2B22

Um recipiente de paredes adiabáticas contém duas amostras de água pura separadas por uma parede também adiabática e de volume desprezível. Uma das amostras consiste em 54 g de água a 25 $^{\circ}$ C e, a outra, em 126 g a 75 $^{\circ}$ C. A parede que separa as amostras é retirada e que as amostras de água se misturam até atingir o equilíbrio.

Considere as proposições:

- 1. A temperatura da mistura no equilíbrio é de 323 K.
- 2. A variação de entalpia no processo é nula.
- 3. A variação de energia interna no processo é nula.
- 4. A variação de entropia no processo é nula.

Assinale a alternativa que relaciona as proposições corretas.

A 2

В :

c 2 e 3

- **D** 1, 2 e 3
- **E** 2, 3 e 4

PROBLEMA 5.23

2B25

Considere as proposições:

- **1.** A variação da entropia independe da quantidade de gás presente no sistema.
- 2. Se a transformação é isotérmica, a variação da entropia é dada por: $\Delta S = nR \ln \left(\frac{P_2}{P_1} \right)$
- 3. Se a transformação é isobárica, a variação de entropia é dada por: $\Delta S = nC_P \ln \left(\frac{T_2}{T_1}\right)$
- **4.** Se o sistema realiza um processo cíclico, a variação de entropia é positiva.

Assinale a alternativa que relaciona as proposições corretas.

A 2

B 3

C 1 e 3

D 2 e 3

- E 3 e 4
- _____

Um bloco de gelo a 0 °C é colocado em contato com um recipiente fechado que contém vapor de água a 100 °C e 1 atm. Após algum tempo, separa-se o bloco de gelo do recipiente fechado. Nesse instante 25 g de gelo foram convertidos em água líquida a 0 °C e que no recipiente fechado existe água líquida e vapor em equilíbrio.

Determine a variação de entropia do bloco de gelo.

Dados

 $\bullet \ \Delta \text{H}^{\circ}_{\text{fus}}(\text{H}_2\text{O}) = \text{6,01 kJ mol}^{-1}$

PROBLEMA 5.25

2B29

Moléculas diatômicas idênticas, na forma de um sólido cristalino, podem ser modeladas como um conjunto de osciladores.

- 1. À temperatura de 0 K a maioria dos osciladores estará no estado vibracional fundamental, cujo número quântico vibracional é zero.
- À temperatura de 0 K todos os osciladores estarão no estado vibracional fundamental, cujo número quântico vibracional é zero.
- 3. O movimento vibracional cessa a 0 K.
- **4.** O princípio da incerteza de Heisenberg será violado se o movimento vibracional cessar.

Assinale a alternativa que relaciona as proposições corretas.

A

B 4

c 2 e 4

- **D** 1, 2 e 4
- E 2,3e4

Um motor de $3\,L$ contendo $1\,$ mol de gás nitrogênio a $18,5\,$ °C foi comprimido rapidamente até $500\,$ mL por um pistão. A temperatura do gás aumentou para $28,1\,$ °C.

Assinale a alternativa que mais se aproxima da variação de entropia do gás.

- $A -14,3 \, \mathrm{J} \, \mathrm{K}^{-1}$
- $-7,1\,\mathrm{J\,K^{-1}}$

c 0

- $7,1 \, \mathrm{J} \, \mathrm{K}^{-1}$
- \mathbf{E} 14,3 J K⁻¹

PROBLEMA 5.27

2B28

Um dispositivo utiliza radiação solar para quantificar variações em propriedades termodinâmicas. Este dispositivo é composto por uma lente convergente e por um porta-amostras. A lente possui área útil de $80\,\mathrm{cm}^2$, absortividade, $\alpha=20\%$ e transmissividade, $\tau=80\%$. O porta-amostras possui absortividade de 100% e volume variável, operando à pressão constante de 1 atm.

Em um procedimento experimental, injetou-se 0,1 mol de uma substância pura líquida no porta-amostras do dispositivo. Em seguida, mediu-se um tempo de 15,0 min. para a vaporização total da amostra, durante o qual a irradiação solar permaneceu constante e igual a $750 \, \text{W m}^2$. Nesse processo, a temperatura do porta-amostras estabilizou-se em $351 \, \text{K}$.

Assinale a alternativa que mais se aproxima da variação de entropia molar de vaporização do líquido.

- **A** 2,3 J mol $^{-1}$ K $^{-1}$
- **B** $15,4 \,\mathrm{J}\,\mathrm{mol}^{-1}\mathrm{K}^{-1}$
- $123 \,\mathrm{J}\,\mathrm{mol}^{-1}\mathrm{K}^{-1}$
- **D** $154 \,\mathrm{J}\,\mathrm{mol}^{-1}\mathrm{K}^{-1}$
- $E 90.0 \,\mathrm{J}\,\mathrm{mol}^{-1}\mathrm{K}^{-1}$

PROBLEMA 5.28

2B15

Assinale a alternativa que mais se aproxima da entropia residual do monóxido de carbono.

- **A** $5,76 \, \text{J K}^{-1} \, \text{mol}^{-1}$
- **B** $11.5 \, \text{J K}^{-1} \, \text{mol}^{-1}$
- $17,2 \text{ J K}^{-1} \text{ mol}^{-1}$
- **D** 23,1 J K^{-1} mol⁻¹
- \mathbf{E} 28,8 J K⁻¹ mol⁻¹

PROBLEMA 5.29

2B16

Considere as moléculas:

- **1.** CO₂
- **2.** NO
- 3. N₂O
- **4.** Cl₂

Assinale a alternativa que relaciona as moléculas com entropia residual não nula.

A

R

C 2 e 3

- **D** 1, 2 e 3
- **E** 2, 3 e 4

Nível III

PROBLEMA 5.30

2B30

Considere a vaporização de 1 mol de água a 85 °C e 1 bar.

- a. **Determine** a variação de entropia do sistema.
- b. **Determine** a variação de entropia da vizinhança.
- c. **Determine** a variação entropia do universo.

Dados

- $C_P(H_2O, 1) = 75.3 \, J \, K^{-1} \, mol^{-1}$
- $C_P(H_2O, g) = 33.6 \, \text{J K}^{-1} \, \text{mol}^{-1}$
- $\Delta H_{vap}^{\circ}(H_2O) = 40,7 \, \text{kJ mol}^{-1}$

PROBLEMA 5.31

2B31

Considere a vaporização de 1 mol de acetona a 296 K e 1 bar.

- a. **Determine** a variação de entropia do sistema.
- b. **Determine** a variação de entropia da vizinhança.
- c. **Determine** a variação entropia do universo.

Dados

- $\bullet \ C_{\,P}\,(CH_{3}COCH_{3},\,l) = 125\,J\,K^{-1}\,mol^{-1}$
- $\Delta H_{\text{van}}^{\circ}(\text{CH}_3\text{OCH}_3) = 29.1 \,\text{kJ mol}^{-1}$
- $T_{eb}(CH_3COCH_3) = 56,2 \,^{\circ}C$

PROBLEMA 5.32

2B32

Uma amostra de 71 g de cloro, inicialmente a 300 K e 100 atm se expande contra uma pressão constante de 1 atm até o estado de equilíbrio. Como resultado da expansão, 10% da massa de gás é condensada.

- a. Determine a variação de energia interna do sistema.
- b. **Determine** a variação de entropia do sistema.

Dados

- $\rho(Cl_2, 1) = 1,56 \,\mathrm{g \, cm^{-3}}$
- Hvap(Cl2)=20,42
- Teb(Cl2)=-34
- $C_P(Cl_2, g) = 33.9 \, \text{J K}^{-1} \, \text{mol}^{-1}$

Entropia | Gabriel Braun, 2022

PROBLEMA 5.33

2B33

Em um calorímetro isolado são misturadas duas amostras de massa m de um líquido de calor específico c em temperaturas

- a. Determine a variação de entropia de mistura
- b. Prove que a variação de entropia é sempre positiva.

PROBLEMA 5.34

2B34

Considere um sistema com k cilindros, cada um contendo certa quantidade de um gás ideal diferente. Os cilindros são conectados e os gases se misturam isotermicamente.

Determina a variação de entropia de mistura. Determine a variação de entropia máxima.

PROBLEMA 5.35

A capacidade calorífica de certas substâncias pode ser calculada como:

$$C_P = a + bT + \frac{c}{T^2}$$

Determine a variação de entropia quando o grafite é aquecido de 298 K a 400 K.

Dados

- $\alpha(\text{grafita, s}) = 16,68 \, \text{J K}^{-1} \, \text{mol}^{-1}$
- $b(grafita, s) = 4,77 \, mJ \, K^{-2} \, mol^{-1}$
- $c(\text{grafita}, s) = -854 \,\text{kJ K mol}^{-1}$

PROBLEMA 5.36

Em baixas temperaturas, a capacidade calorífica um dado material é proporcional a T^2 .

Prove que, para temperaturas muito baixas, a entropia absoluta desse material é igual a metade de sua capacidade calorífica na mesma temperatura.

Gabarito

Nível I

- 11. D 16. C
- 12. D 17. D
- **13**. 18. C
- 15. B

Nível II

- 1. E
- 2. D
- 4. C
- 6. $30 \, \mathrm{J} \, \mathrm{K}^{-1}$
- 7. C
- 9. C
- 10. A
- 11. C

Nível III

- **1.** a. $111 \, \mathrm{J} \, \mathrm{K}^{-1}$
 - b. $-115 \,\mathrm{J}\,\mathrm{K}^{-1}$
 - c. $-4 J K^{-1}$
- **2.** a. $98,3 \, \text{J K}^{-1} \, \text{mol}^{-1}$
 - b. $-108 \, \text{J K}^{-1} \, \text{mol}^{-1}$
 - c. $-10,4 \, \text{J K}^{-1} \, \text{mol}^{-1}$
- **3.** a. $-3590 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$
 - b. $21,35 \, \text{J K}^{-1} \, \text{mol}^{-1}$
- **4.** a. $2 \text{mc ln} \left(\frac{T_1 + T_2}{2 \sqrt{T_1 T_2}} \right)$
 - b. Demonstração.
- 5. a. $-nR\sum_{i=1}^{k} x_i \ln x_i$
 - b. nRln(k)
- **6.** $3,31 \, \text{J K}^{-1} \, \text{mol}^{-1}$
- 7. Demonstração