V

Applications of Partial differentiations

Practice Examples

5.1 Maclaurin's and Taylor's series expansion in two variables

1 Expand $f(x,y) = y^x$ in powers of (x-1) and (y-1) up to second order terms.

Answer: $f(x,y) = 1 + (y-1) + (x-1)(y-1) + \cdots$

Obtain terms up to the second degree in the Taylor's series expansion of

 $f(x,y) = x^2 + xy + y^2$ at the point (1, 2).

Answer: $f(x,y) = 7 + 4(x-1) + 5(y-2) + (x-1)^2$

$$+(x-1)(y-2)+(y-1)^2$$
.

Find the Maclaurin's series expansion of $f(x, y) = \sin 2x + \cos y$ up to second order terms.

Answer: $f(x,y) = 1 + 2x - \frac{y^2}{2} + \cdots$

- 4 Show that $x^y = 1 + (x 1) + (x 1)(y 1) + \cdots$
- 5 Express $f(x,y) = x^2 + 3y^2 9x 9y + 26$ in powers of (x-2) and (y-2) using the Taylor's series expansion.

Answer: $f(x,y) = 6 - 5(x-2) + 3(y-2) + (x-2)^2 + 3(y-2)^2$.

6 Expand $f(x, y) = e^x \cdot \cos y$ in powers of x and y up to second order terms.

Answer: $f(x,y) = 1 + x + \frac{1}{2}x^2 - \frac{1}{2}y^2 + \cdots$

5.2 Tangent plane and normal line to a surface

Find the equation of tangent plane and normal line to the surface $\frac{x^2}{4} + \frac{y^2}{9} - \frac{z^2}{25} = 1$ at the point (2, 3, 5).

Answer: $15x + 10y - 6z = 30, \frac{x-2}{15} = \frac{y-3}{10} = \frac{z-5}{-6}.$

2	Find the equation of tangent plane and normal line to the surface $\cos \pi x - x^2 y +$
	$e^{xz} + yz = 4$ at the point (0, 1, 2).

Answer:
$$2x + 2y + z = 4, \frac{x}{2} = \frac{y-1}{2} = z - 2.$$

Find the equation of tangent plane and normal line to the surface
$$x^3 + y^3 + 3xyz = 3$$
 at the point $(1, 2, -1)$.

Answer:
$$x - 3y - 2z + 3 = 0$$
, $\frac{x-1}{-1} = \frac{y-2}{3} = \frac{z+1}{2}$.

Find the equation of tangent plane and normal line to the surface
$$z = \sqrt{3 - x^2 - y^2}$$
 at the point $(1, 1, 1)$.

Answer:
$$x + y + z = 26$$
, $x - 1$, $y - 1$, $z - 1$.

Find the equation of tangent plane and normal line to the surface
$$\frac{x^2}{4} + y^2 + \frac{z^2}{9} = 3$$
 at the point $(-2, 1, -3)$.

Answer:
$$-3x + 6y - 2z = 18$$
, $\frac{x+2}{-1} = \frac{y-1}{2} = \frac{3(z+3)}{-2}$.

Find the equation of tangent plane and normal line to the surface $2xz^2 - 3xy - 4x = 7$ at the point (1, -1, 2).

Answer:
$$7x - 3y + 8z = 26, \frac{x-1}{7} = \frac{y+1}{-3} = \frac{z-2}{8}.$$

5.3 Maxima and Minima of two variable function

Show that the minimum value of the function
$$f(x, y) = xy + a^3 \left(\frac{1}{x} + \frac{1}{y}\right)$$
 is $3a^2$.

Answer: f(x, y) is minimum at (a, a), $f(a, a) = 3a^2$.

2 Find the extreme values of the function
$$f(x, y) = x^4 + y^4 - 2x^2 + 4xy - 2y^2$$
.

Answer: f(x,y) is maximum at $(\sqrt{2}, -\sqrt{2}), f(\sqrt{2}, -\sqrt{2}) = -8$ and

$$f(x, y)$$
 is maximum at $\left(-\sqrt{2}, \sqrt{2}\right), f\left(-\sqrt{2}, \sqrt{2}\right) = -8$.

Find the values of x and y such that the function $x^2 + y^2 + 6x + 12$ has a minimum value and find this minimum value.

Answer: f(x, y) is minimum at (-3, 0), f(-3, 0) = 3.

4 Find the minimum value of $x^2 + y^2 + z^2$ subject to ax + by + cz = p.

	Answer: $\frac{p^2}{(a^2+b^2+c^2)^2}$.
5	Show that the maximum value of $x^2y^3z^4$ subject to $2x + 3y + 4z = a$ is $\left(\frac{a}{9}\right)^9$.
6	If $\frac{3}{x} + \frac{4}{y} + \frac{5}{z} = 6$, then find the values of x, y, z such that $x + y + z$ is minimum.
	Answer: $x = \left(\frac{\sqrt{3} + \sqrt{4} + \sqrt{5}}{6}\right) \sqrt{3}, y = \left(\frac{\sqrt{3} + \sqrt{4} + \sqrt{5}}{6}\right) \sqrt{4}, z = \left(\frac{\sqrt{3} + \sqrt{4} + \sqrt{5}}{6}\right) \sqrt{5}.$

5.4 Lagrange's method of undetermined multiplier

5.5 Jacobian

1	Find the Jacobian $\frac{\partial(u,v)}{\partial(x,y)}$ for $u = e^x \sin y$ and $v = x \log(\sin y)$.
	Answer: $e^x \cos y [x - \log(\sin y)].$

2	If $x = uv$ and $y = \frac{u+v}{u-v}$, then show that $\frac{\partial(x,y)}{\partial(u,v)} = \frac{4uv}{(u-v)^2}$.
3	Evaluate $\frac{\partial(u,v,w)}{\partial(x,y,z)}$ at $(1,-1,0)$ for $u = x + 3y^2 - z^3$, $v = 4x^2yz$ and $w = 2z^2 - xy$.
	Answer: 20.
4	Find the Jacobian of the transformation $u = ax + by$, $v = cx + dy$.
	Answer: $ad - bc$.
5	If $x = u^3 + v^2 - 2uv$ and $y = u + v$, then find $\frac{\partial(x,y)}{\partial(u,v)}$.
	Answer: $3u^2 + 2u - 4v$.
6	If $u = x^2 + yz$, $v = y^2 + xz$ and $w = z^2 + xy$, then find $\frac{\partial(u,v,w)}{\partial(x,y,z)}$.
	Answer: $-2x^3 - 2y^3 - 2z^3 + 10xyz$.

5.6 Errors and approximations

1	The focal length of a mirror is found from the formula $\frac{2}{f} = \frac{1}{v} - \frac{1}{u}$. Find the percentage
	error in f if u and v both have error by 2% each.
	Answer: 2%.
2	The two resistors x and y are connected in parallel so that the total resistance R is
	given by $\frac{xy}{x+y}$. If x and y are measured to be 200 Ω (ohms) and 300 Ω respectively,
	with the increase of 1.5 Ω in x and decrease of 4 Ω in y , then find the change in R .
	Answer: 0.1Ω .
3	In calculating the volume of a right circular cylinder, errors of 2% and 1% are found in
	measuring height and base radius respectively. Find the percentage error in the volume
	of the cylinder.
	Answer: 4%.
4	Find an approximate value of $(1.04)^{3.01}$ using the theory of approximations.
	Answer: 1.12.
5	If $f(x, y, z) = e^{xyz}$, then find an approximate value of f when $x = 0.01, y = 1.01$,
	z = 2.01.

	Answer: 1.02.
6	Find an approximate value of $(1.99)^2(3.01)^3(0.98)^{\frac{1}{10}}$ using the theory of approximations.
	Answer: 107.784.
7	The deflection at the centre of a rod having length l and diameter d supported at its
	ends and loaded at the centre with a weight w varies as wl^3d^{-4} . What is the percentage
	increase in the deflection corresponding to the percentage increase in w , l , and d of
	3, 2, and 1 respectively?
	Answer: 5%.
8	Find the percentage error in the area of ellipse, when an error of 0.05% percentage
	made in measuring semi-major and semi-minor axis.
	Answer: 0.1%.
9	The ideal gas law $PV = nRT$ is used to find pressure P when temperature T and
	volume V are given but there is an error of 0.3% in measuring T and an error of 0.8%
	in measuring V . Find the greatest percentage error in P . (R : ideal gas constant, n :
	amount of substance)
	Answer: 1.1%.
10	Find an approximate value of $\sqrt[3]{(4.1)^2 + 3(3.8)^2}$ using the theory of approximations.
	Answer: 3.9167.
11	Find an approximate value of $\log(3\sqrt{1.03} + 4\sqrt{0.98} - 1)$ using the theory of
	approximations.
	Answer: 0.7790.
12	Find an approximate value of $\sin 31^{\circ} \cdot \cos 58^{\circ}$ using the theory of approximations.
	Answer: $\frac{1}{4} + \frac{\pi}{180} \left(\frac{3\sqrt{3}}{4} \right)$.