Seabottom Acoustics Parameters from Reverberation Vertical Coherence in Shallow Water

Ji-Xun Zhou and Xue-Zhen Zhang

Georgia Institute of Technology, Atlanta, GA 30332, USA and Institute of Acoustics, Chinese Academy of Science, China

(Work supported by ONR, USA and IOA, CAS)

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to completing and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar DMB control number.	ion of information. Send comments arters Services, Directorate for Information	regarding this burden estimate or mation Operations and Reports	or any other aspect of th , 1215 Jefferson Davis I	is collection of information, Highway, Suite 1204, Arlington
1. REPORT DATE 01 DEC 2002		2. REPORT TYPE N/A		3. DATES COVERED	
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER	
Seabottom Acoustics parameters from Reverberation Vertical Coherence				5b. GRANT NUMBER	
in Shallow Water				5c. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S)				5d. PROJECT NUMBER	
				5e. TASK NUMBER	
				5f. WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Georgia Institute of Technology, Atlanta, GA 30332, and Institute of Acoustics, Chinese Academy of Science, China				8. PERFORMING ORGANIZATION REPORT NUMBER	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)	
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)	
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release, distribution unlimited					
13. SUPPLEMENTARY NO Also See: M001452	otes 2, The original docu i	ment contains color	images.		
14. ABSTRACT					
15. SUBJECT TERMS					
16. SECURITY CLASSIFIC	17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF		
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	UU	25	RESPONSIBLE PERSON

Report Documentation Page

Form Approved OMB No. 0704-0188

ABSTRACT

Acoustic reverberation in shallow water involves a two-way sound propagation and boundary scattering process. It must, therefore, contain rich information on seabottom acoustic parameters. Reverberation from one shot offers a continuous spatial sampling of surrounding sound field. Thus, inversion of seabottom acoustic parameters from shallow-water reverberation is very attractive for saving time and cost. Wide band reverberation data have been collected from the first China-US joint ocean acoustics experiment in the Yellow Sea (Yellow Sea '96) and from the Asian Sea International Acoustic Experiment (ASIAEX01) in the East China Sea. Using the R-mode method and introducing a concept of average angular spectrum for sound propagation, Zhou developed a theoretical model for reverberation spatial coherence and average reverberation intensity in shallow water [Zhou, Acta Oceanologia Sinica, 1, No. 2, 212-218 (1979) and Acta Acustica, 5, No. 2,86-99 (1980)]. In the current paper, this model is converted back to a more familiar summation of normal-modes. With this model, the sound velocity/attenuation in sediments and bottom scattering strength are derived for low- and mid-frequencies from at-sea experimental data (YS78, YS96 and ASIAEX01), including reverberation vertical coherence and average reverberation intensity.

I. MOTIVATIONS:

1.Engineering application
Optimal array processing requires...

2. Physics

Forward: how Ocean environments effect on RVC Backward: inversion of seabottom Acoust. Parameters (Rev. derived $S_b(\theta)$ is often mixed with uncertainty of C_2 and α_2)

Urick: $(1970) \rightarrow HC/VC$ measurements Zhou *et al* $(1979,1993,1997) \rightarrow Model/data$ Popov*et al*<math>(1994)]

Reverberation challenges many basic research topics in shallow water

II. THORY

The sound field intensity in shallow water can be expressed as a sum of normal modes:

$$|\mathbf{y}(r,z;z_0)|^2 = \frac{2\mathbf{p}}{r} \sum \left\{ \frac{|\Phi_n(z_0)|^2 |\Phi_n(z)|^2}{k_n N_n^2} e^{-2\mathbf{b}_n r} \right\}$$

$$+\frac{2\mathbf{p}}{r}\sum_{n\neq m}\frac{\Phi_{n}(z_{0})\Phi_{m}^{*}\Phi_{n}(z_{0})\Phi_{n}(z)\Phi_{m}^{*}(z)}{k_{n}^{1/2}k_{m}^{1/2*}N_{n}N_{m}^{*}}e^{i(k_{n}-k_{m}^{*})r}\right\}$$
(1)

$$|\Phi_n(z)|^2 = \frac{c_1}{k_n \tan \mathbf{q}(z)}$$

$$k_n = k(z)\cos q(z)$$

$$2\int_{x_n}^{h_n} \sqrt{k^2(z) - k_n^2} dz + e_{x_n} + e_{hn} = 2n p$$

$$\frac{d}{dn} \int_{\mathbf{x}_n}^{\mathbf{h}_n} f(z, n) dz = \int_{\mathbf{x}_n}^{\mathbf{h}_n} f_{l}(z, n) dz + f(\mathbf{h}_n, n) \frac{d\mathbf{h}_n}{dn} - f(\mathbf{x}_n, n) \frac{d\mathbf{x}_n}{dn}$$
(2)

Angular spectrum expression on average intensity of Shallow-water sound propagation (Brekhovskikh,Zhou)

$$I(r,z;z_0) = \frac{4}{r}e^{-ar}\int \frac{e^{2\ln|v(q)|r/s(q)}}{S \times \tan q(z)}dq(z_0) = \frac{2e^{-ar}}{r}\int I_{aps}(q,r,z;z_0)dq(z_0)$$
(3)

$$I_{aps}\left(\boldsymbol{q},r,z;z_{0}\right) = \frac{2 e^{-2 \boldsymbol{b}_{n} r}}{S \times \tan \boldsymbol{q}\left(z\right)} = \frac{2 e^{2 \ln |v(\boldsymbol{q})| r / s(\boldsymbol{q})}}{S \times \tan \boldsymbol{q}\left(z\right)} \tag{4}$$

weighting process in an angular domain for average characteristics in shallow water: Sound propagation, Noise, Reverberation Spatial coherence, etc.

Simple Intuitive

Angular spectrum expression on average reverberation intensity in shallow water

$$R(r,z;z_{0}) = \iint \frac{e^{-\mathbf{a}r}}{r} I_{aps}(\boldsymbol{q},r,z_{h};z_{0}) \times AM_{b}(\boldsymbol{q},\boldsymbol{f}) \times \frac{e^{-\mathbf{a}r}}{r} I_{aps}(\boldsymbol{f},r,z;z_{h}) d\boldsymbol{q} d\boldsymbol{f}$$

$$= \iint \frac{e^{-\mathbf{a}r}}{r} \frac{2e^{2\ln|v(\boldsymbol{q})|r/s(\boldsymbol{q})}}{S \times \tan \boldsymbol{q}(z_{h})} \times AM_{b}(\boldsymbol{q},\boldsymbol{f}) \times \frac{2e^{2\ln|v(\boldsymbol{f})|r/s(\boldsymbol{f})}}{S \times \tan \boldsymbol{f}(z)} \frac{e^{-\mathbf{a}r}}{r} d\boldsymbol{q}(z_{0}) d\boldsymbol{f}(z_{h})$$
(5)

$$d\mathbf{q}(z_0) = \frac{2\mathbf{p}}{S_n k(z_0) \sin \mathbf{q}_n(z_0)} dn \qquad (6)$$

→a summation of normal-modes by

Zhang and Jin (1984,1987)

D.D. Ellis (1994).

VERTICAL COHERENCE

For sound propagation by Smith (1976) and Zhou(1979):

$$\mathbf{r}_{v}(\Delta z, r, z; z_{0}) = \frac{\iint I_{aps}(\mathbf{q}, r, z; z_{0}) |S(w)|^{2} e^{-jk\Delta z \sin(\mathbf{q})} d\mathbf{q} dw}{\iint I_{aps}(\mathbf{q}, r, z; z_{0}) |S(w)|^{2} d\mathbf{q} dw}$$
(7)

For reverberation (Zhou, 1979):

$$\boldsymbol{r}_{Rv}(\Delta z, r, z; z_0) = \frac{\int \frac{e^{-2\boldsymbol{b}_n r}}{S \times \tan \boldsymbol{q}(z)} M[\boldsymbol{q}(z_h)][\cos[k(z)\Delta z \sin(\boldsymbol{q}(z))] d\boldsymbol{q}(z_h)}{\int \frac{e^{-2\boldsymbol{b}_n r}}{S \times \tan \boldsymbol{q}(z)} M[\boldsymbol{q}(z_h)] d\boldsymbol{q}(z_h)}$$

$$\mathbf{r}_{R_{V}}(\Delta z, r, z; z_{0}) =$$

$$\left\{ \sum_{n} \frac{e^{-2\boldsymbol{b}_{n}r} \cos[k(z)\Delta z \sin \boldsymbol{q}_{n}(z)] M[\boldsymbol{q}_{n}(z_{h})]}{S_{n}^{2} \times \tan \boldsymbol{q}_{n}(z) k(z_{h}) \sin \boldsymbol{q}_{n}(z_{h})} \right\}$$

$$\times \left\{ \sum_{n} \frac{e^{-2\boldsymbol{b}_{n}r} M[\boldsymbol{q}_{n}(z_{h})]}{S_{n}^{2} \times \tan \boldsymbol{q}_{n}(z) k(z_{h}) \sin \boldsymbol{q}_{n}(z_{h})} \right\}^{-1}$$

$$S_n \approx -2\mathbf{p}/(dk_n/dn) \tag{10}$$

III. MEASUREMENTS

The experiments were conducted at 3 sites in China Seas by using explosive source with 1 kg gram TNT charges.

Seabed is very flat at YS78/YS96 sites; rather flat at AIAEX01. The mean grain diameter of sediments: 0.070mm (YS78), 0.0643mm (YS96) and 0.105mm (? ASIAEX01). Seabed are mainly find sand-silty sand.

The YS78 data from hydrophones/4-channel analog recorder The YS96:16 hydrophones/16-channel digital recorder The ASIAEX01: 32/32

All hydrophone arrays were designed by IOA, and suspended from ship

Sound velocity profiles for YS78, YS 96 and ECS ASIAEX01

IV. (a) MODEL/DATA COMPARISONS

RV coefficients at 800 Hz as a function time and hydrophone separation and Δz in the Yellow Sea, 1978. Data are average values over 12 explosive signals. Δz =0.55m - 3.85m

Measurement and Prediction, Yellow Sea, 08/26/96

RVC as a function of time and frequency in the Yellow Sea, 1996. Hydrophone separation = 2m. The data are average values of 5 shots and 8 pairs of hydrophones, located at depths from 42m to 66m.

Measurement and Prediction, East China Sea, 06/03/01

RVC as a function of time and frequency in the East China Sea (ASIAEX01), 2001. Hydroplane separation = 4m.

The data are average values of 3 shots and 8 pairs of hydrophones, located at depths from 56.5m to 90.5m.

IV. (b) INVERSION OF SOUND SPEED AND ATTENUATION FROM YS96 RVC

Inverted C₂ from Rev.Coherence, Yellow Sea,08/26/96

(c) INVERSION OF SOUND SPEED AND ATTENUATION FROM ASIAEX01 RVC

Inverted C₂ from Rev.Coherence, East China Sea,06/03/01

V. SUMMARY AND DISCUSSION

- 1. The RVC, expressed by the angular spectrum, has been converted back to a more familiar summation of normal-modes.
- 2. Measured RVC at 3 sites in the China Seas are good agreement with the theoretical model.
- 3. The sound velocity and attenuation, inverted from RVC, are close to others, inverted from propagation data. Model/data comparisons show that the RVC can be a powerful characteristic for use in fast inversion of seabottom acoustic parameters (and in derivation of bottom scattering strength).
- 4. Be careful! Different seabottom scattering models would cause some uncertainty on inversion results of bottom acoustic parameters. Thus, a scattering model with more physical base is desirable for numerical modeling. (under working)
- 5. For at-sea experiment design and lab data analyses on RVC, one needs carefully to consider the R/N noise ratio and $\Delta z/\lambda$ ratio etc.

Thanks to

IOA colleagues

YS96 & ASIAEX team members

for sharing data and helpful discussions