Phys221, Spring 2016, Spentzouris

Lecture is 11:25 to 12:40 am on Tuesday/Thursday SB 113

 $\mathbf{CP} = \mathbf{Check} \; \mathbf{Point} \; (\mathbf{all} \; \mathbf{due} \; 8:00 \; \mathbf{am}), \; \mathbf{PL} = \mathbf{Pre-lecture} \; (\mathbf{all} \; \mathbf{due} \; 8:00 \; \mathbf{am})$

 $\mathbf{H}\mathbf{W} = \text{Homework}$ (all due at noon, regardless of due date)

Homework is due on Wednesdays and Fridays, although those are not class days.

Date	Assignment due	Lecture topic
Week 1:		
1/12	(PL1, CP1)	Orientation and Coulomb's law
1/14	8:00 am, PL1, CP1, PL2, CP2	Coulomb's law, Electric Fields
1/15	noon (12:00 pm), HW1	Coulomb's law
Week 2:		
1/19	8:00 am, PL3 , CP3	Electric flux and field lines
1/20	noon, $\mathbf{HW2}$	Electric Fields
1/21	8:00 am, PL4 , CP4	Gauss' law
1/22	noon, $HW3$	Electric flux and field lines
Week 3:		
1/26	8:00 am, PL5 , CP5	Gauss' law
1/28	8:00 am, PL6 , CP6	Electric Potential Energy, Electric Potential
1/29	noon, $\mathbf{HW4}$	Gauss' law
Week 4:		
2/2	8:00 am, PL7 , CP7	Conductors and Capacitance
2/3	noon, $HW5$	Electric Potential Energy
2/4	8:00 am, PL8 , CP8	Capacitors, and electric current
2/5	noon, $HW6$	Electric Potential
Week 5:		
2/9	8:00 am, PL9 , CP9	Exam review and electric current
2/10	noon, $HW7$	Conductors and Capacitance
2/11	HOURLY EXAM 1, Units 1-7	Exam
Week 6:		
2/16	8:00 am, PL10 , CP10	Kirchhoff's rules
2/17	noon, HW8	Capacitors
2/18	8:00 am, PL11 , CP11	RC Circuits
2/19	noon, $HW9$	Electric currents
Week 7:		
2/23	8:00 am, PL12 , CP12	Magnetism
2/24	noon, $\mathbf{HW10}$	Kirchhoff's rules
2/25	8:00 am PL13 , CP13	Forces and torques on currents
2/26	noon, HW11	RC Circuits

Date	Assignment due	Lecture topic
Week 8:		
3/1	8:00 am, PL14 , CP14	Biot-Savart law
3/2	noon, $HW12$	Magnetism
3/3	8:00 am, PL15 , CP15	Ampere's law
3/4	noon, HW13	Forces and torques on currents
Week 9:		-
3/8	8:00 am, PL16 , CP16	Simple Harmonic Motion
3/9	noon, HW14	Biot-Savart law
3/10	8:00 am, PL17 , CP17	Motational EMF
3/11	noon, HW15	Ampere's law
		-
3/14-3/19	SPRING BREAK	
, ,		
Week 10:		
3/22	8:00 am, PL18, CP18	Review, Faraday's law
3/24	HOURLY EXAM 2, Units 8-15	Exam
Week 11:	,	
3/29	8:00 am, PL19 , CP19	Induction and RL circuits
3/30	noon, HW16	Simple Harmonic Motion
3/31	8:00 am, PL20, CP20	LC and RLC circuits
$\frac{1}{4}$	noon, HW17	Motational EMF
Week 12:	,	
4/5	8:00 am, PL21 , CP21	AC circuits
4/6	noon, HW18	Faraday's law
4/7	8:00 am, PL22, CP22	Resonance and power
4/8	noon, HW19	Induction and RL circuits
Week 13:	110011, 111111	Industrial and 102 circuits
4/12	8:00 am, PL23 , CP23	Displacement current and EM waves
4/13	noon, HW20	LC and RLC circuits
4/14	8:00 am, PL24, CP24	Properties of electromagnetic waves
$\frac{1}{4}/15$	noon, HW21	AC circuits
Week 14:	110011, 1111 11	TIO OHOUIUS
4/19	8:00 am PL25, CP25	EM waves and Polarization
$\frac{4}{19}$ 4/20	noon, HW22	Resonance and power
$\frac{4}{20}$	noon, HW23	Displacement current and EM waves
Week 15:	110011, 1111 20	Displacement current and Divi waves
4/26		Exam review
$\frac{4}{20}$	noon, HW24	Properties of electromagnetic waves
$\frac{4}{28}$	110011, 11 11 22	Exam review
7/20		DAMII ICVICW
Final exam week	TBD	
r mai exam week	חחו	

Phys221 Course Objectives:

- 1. Understand how electric charges, fields and forces are represented in various basic configurations.
- 2. Understand how to simplify calculations of various electric and magnetic characteristics by taking advantage of special symmetries in conjunction with laws like Gauss, Amperes and Biot-Savart.
- 3. Understand how we establish electrical & magnetic energy in various types of materials and how that energy is used to move charges or perform external work in devices like generators and motors.
- 4. Understand how circuit components like resistors, capacitors & inductors can be modified or combined to affect electrical and magnetic fields & energies and how these values change over time and location.
- 5. Understand how electromagnetic waves are generated and how they change over space and time.
- 6. Understand how to apply mathematics to better represent & evaluate what happens in real applications.
- 7. Translate concepts and formulas to real-world applications by developing laboratory methods, conducting experiments, taking and recording accurate measurements, analyzing and synthesizing data and communicating your results effectively to an external audience.