H.J. Sieburgh

Simplicial Coalgebras for Concurrent Regular Languages

Bachelor thesis

July 1st, 2025

Thesis supervisors: dr. H. Basold

dr. M. Hablicsek

dr. C. Ford

Leiden University
Mathematical Institute

Abstract

This thesis introduces a construction of automata for concurrent languages. This is done by defining ranked hypergraphs, hypergraphs with interfaces that can be composed associatively. A simplicial set over these graphs is defined and we define F-coalgebras which give a nondeterministic transition model over the cells. Using a coalgebra we can parse a ranked hypergraph, and find out if it is part of the coalgebra's language.

Contents

1	Introduction	1
2	Background	2
	2.1 Presheaves	2
	2.2 Simplicial sets	2
	2.3 Semilattices	3
	2.4 Subobject Classifiers	5
	2.5 Coalgebras	6
3	Ranked Hypergraphs	8
	3.1 Composition of ranked hypergraphs	9
	3.2 Generating hypergraphs	12
4	Simplicial set over ranked term graphs	15
5	Coalgebraic behaviour	17
6	Related Work	21
7	Conclusions and Further Research	21
\mathbf{R}	eferences	21

1 Introduction

Finite automata and regular languages form the foundation of classical formal language theory. Deterministic finite automata (DFA) provide a simple and elegant model for accepting regular languages, with Kleene's theorem stating their equivalence to regular expressions. In this setting, words are built sequentially from single letters in an alphabet, and state transitions are deterministic.

However, many systems in practice exhibit inherently concurrent behaviour, where actions could occur in parallel with complex dependencies. In a previous attempt to model this behaviour, higher-dimensional automata (HDA) have been proposed. In HDA, concurrent actions are modelled using paths through hypercubes. But this combination of structure and behaviour is constricting and leads to just a small set of modelled languages.

In this thesis, we develop an approach to model concurrent regular languages which separates structure from behaviour: simplicial coalgebras over ranked hypergraphs.

We introduce ranked hypergraphs with interfaces that allow associative composition. The interfaces give a way to connect dependencies. This composition allows for a generator which consists of graphs of depth 1.

The generator allows for piece-by-piece parsing of a graph. Mirroring how finite automata parse a word character by character. With the alphabet being the generator.

We will first introduce the necessary background on simplicial sets, subobject identifiers and coalgebras. We then formalize ranked hypergraphs and their compositions, describe the simplicial structure, and finally define the coalgebraic behaviour function which gives the parsing semantics.

2 Background

2.1 Presheaves

Definition 2.1. Let C,D be categories, and $F,G:C\to D$ be functors. Then a *natural transformation* $\mu:F\Rightarrow G$ from F to G is a family of morphisms such that:

- 1. for all $x \in C$ there exists a morphism $\mu_x : F(x) \to G(x)$ called the component at x
- 2. for all $x, y \in C$ and all morphisms $f: x \to y$ the following diagram commutes:

$$F(x) \xrightarrow{F(f)} F(y)$$

$$\downarrow^{\mu_x} \qquad \downarrow^{\mu_y}$$

$$G(x) \xrightarrow{G(f)} G(y)$$

$$(1)$$

Definition 2.2. Let C be a category, a *presheaf* is a functor

$$F: C^{op} \to \mathbf{Set}$$

The collection of all presheaves on a category forms a category with as morphisms the natural transformations between the presheaves.

2.2 Simplicial sets

Definition 2.3. The simplex category Δ has as objects

$$[n] = \{0 < 1 < \dots < n\}$$

and as morphisms the order-preserving functions between them.

For all $n \in \mathbb{N}$, $i \in [n]$ we define the coface map $\delta_i^n : [n-1] \to [n]$ as the injective order preserving map which has $(\delta_i^n)^{-1}(i) = \emptyset$. So the map 'misses' i and all other elements of [n] are 'hit'.

For all $n \in \mathbb{N}$, $i \in [n]$ we define the coface map $\sigma_i^n : [n-1] \to [n]$ as the surjective order preserving map which has $|(\sigma_i^n)^{-1}(i)| = 2$, $|(\sigma_i^n)^{-1}(j)| = 1 \ \forall j \neq i$. So the map 'hits' i twice, and all other j once.

All morphisms of Δ are generated from the coface and codegeneracy maps.

Notation: δ_i^n , σ_i^n and so on, are just referred to as δ_i , σ_i etc. As the exact n is not necessary for most applications.

Definition 2.4. A simplicial set is a presheaf on Δ , which means a simplicial set is a functor

$$X : \Delta^{\mathrm{op}} \to \mathbf{Set}$$

Thus, a simplicial set X assigns to each $[n] \in \Delta$ a set $X_n = X([n])$ of n-simplices, and to each morphism $\theta \colon [m] \to [n]$, a function $X(\theta) \colon X_n \to X_m$.

In particular, we have $X(\delta_i) = d_i$ where $d_i : X_n \to X_{n-1}$ omits the *i*-th element from an n-simplex. And $X(\sigma_i) = s_i$ where $s_i : X_n \to X_{n+1}$ repeats the *i*-th element in the simplex.

These satisfy the *simplicial identities*:

$$d_{i}d_{j} = d_{j-1}d_{i}$$
 if $i < j$,

$$s_{i}s_{j} = s_{j+1}s_{i}$$
 if $i \le j$,

$$d_{i}s_{j} = \begin{cases} s_{j-1}d_{i} & \text{if } i < j, \\ \text{id} & \text{if } i = j \text{ or } i = j+1, \\ s_{j}d_{i-1} & \text{if } i > j+1. \end{cases}$$

The presheaf category of simplicial sets is called sSet and its natural transformations the simplicial morphisms.

Given a collection of sets $S = S_0 \sqcup S_1 \sqcup \ldots$ and functions $d_i : S_n \to S_{n-1}$, $s_i : S_n \to S_{n+1}$ satisfying the simplicial identities there is a unique simplicial set which has the same face and degeneracy maps.

Lemma 2.5. Let $X, Y \in sSet$, a collection of morphisms $f_0: X_0 \to Y_0, f_1: X_1 \to Y_1, \ldots$ is a simplicial morphism if and only if the following diagrams commute.

$$X_{n} \xrightarrow{d_{i}^{X}} X_{n-1} \qquad X \xrightarrow{s_{j}^{X}} X_{n+1}$$

$$\downarrow f_{n} \qquad \downarrow f_{n-1} \qquad \downarrow f_{n} \qquad \downarrow f_{n+1}$$

$$Y_{n} \xrightarrow{d_{i}^{Y}} Y_{n-1} \qquad Y_{n} \xrightarrow{s_{j}^{Y}} Y_{n+1}$$

Proof. Given that δ_i , σ_i generate the morphisms in Δ , diagram 1 automatically commutes for all f if it does so for δ and σ .

2.3 Semilattices

Definition 2.6. Let P be a partially ordered set (poset), the join (or least upper bound) is a binary operator \vee such that for all $x, y, z \in P$:

- $x \le x \lor y$
- if $x \le a$ and $y \le a$ then $x \lor y \le a$

the meet (or greatest lower bound) is a binary operator \land such that for all $x, y, z \in P$:

- $x \land y \le x$
- if $z \le x$ and $z \le y$ then $z \le x \land y$

Definition 2.7. A join-semilattice is a triple (A, \vee, \perp) consisting of

- A partially ordered set A
- A binary join $\vee: A \times A \to A$ which is commutative, associative, and idempotent: $a \vee a = a$
- A unit \perp such that $a \vee \perp = a$

The collection of all join-semilattices forms a category JSL.

A *meet-semilattice* is the same as a join-semilattice, except we have as operator a meet instead of a join.

An object that is both a meet-, and a join-semilattice is called a *lattice*.

Definition 2.8. Let X be a set. Let $\mathcal{P}_{\omega}(X)$ be the set of finite subsets of X, then $(\mathcal{P}_{\omega}(X), \cup, \varnothing)$ is a JSL.

Definition 2.9. The free join-semilattice on a set X is the unique JSL F(X) together with a function $\eta: X \to F(X)$ such that for all $A \in JSL$, $f: X \to A$ there exists a unique JSL morphism $\hat{f}: F(X) \to A$ such that the following diagram commutes:

This definition is a special case of the more general notion of a free object [nLa25].

Lemma 2.10. Let $X \in \mathbf{Set}$, $\mathcal{P}_{\omega}(X)$ is the free JSL on X.

Proof. Take $\eta(x) = \{x\}$. Let A be a join-semilattice, $f: X \to A$ a function and let $\hat{f}(\{x_1, \ldots, x_n\}) = f(x_1) \vee \cdots \vee f(x_n)$.

Then $(\hat{f} \circ \eta)(x) = \hat{f}(\{x\}) = f(x)$. And thus the finite powerset is the unique free JSL. \Box

Definition 2.11. A Heyting algebra H is a lattice together with the operation of implication \Rightarrow : $H \times H \to H$ which for all $x, y, z \in H$ satisfies:

$$x \land y \le z \iff x \le y \Rightarrow z$$

Moreover, a Heyting algebra where the *principle of excluded middle* holds, which states every proposition is either true or false, is a Boolean algebra. When writing \vdash for \leq you get precisely the classical notion of propositional logic.

2.4 Subobject Classifiers

Definition 2.12. Let f, g be morphisms defined by

$$X \xrightarrow{f} Z$$

Then a pullback is an object P together with morphisms p_1, p_2 such that

$$P \xrightarrow{p_2} Y$$

$$\downarrow^{p_1} \qquad \downarrow^g$$

$$X \xrightarrow{f} Z$$

commutes and is universal. The universal property means that for any other object Q, with morphisms $q_1: Q \to X$, $q_2: Q \to Y$ such that they commute just like the above, there needs to be a morphism $\beta: Q \to P$ such that this whole diagram commutes.

Definition 2.13. Let C be a category with a terminal object * and finite limits. A *subobject classifier* Ω is an object in C such that there exists a morphism $\top : * \to \Omega$ which has the property that for all objects A, X and monomorphisms $f : A \to X$ there exists a unique morphism $\chi_A : X \to \Omega$ that makes the diagram commute and be a pullback

$$\begin{array}{ccc}
A & \longrightarrow * \\
\downarrow^f & \downarrow^\top \\
X & \xrightarrow{\chi_A} \Omega
\end{array}$$

Example 2.14. In the category Set where objects are sets and morphisms are functions, the subobject classifier is $\Omega = \mathbb{B} := \{0, 1\}$ and if f = id then χ_A is the characteristic map of the subset $A \subseteq X$.

Lemma 2.15 ([Joh02, Lemma. 1.6.6]). For any small category C, the functor category [C, Set] has a subobject classifier.

Corollary 2.16. sSet has a subobject classifier Ω .

Proof. Given a category C, the presheaf category is the same as the functor category $[C^{op}, Set]$. Δ is a small category (in this thesis we won't go into detail what exactly constitutes a small category), and therefore so is its dual. From 2.15 we find that $sSet = [\Delta^{op}, Set]$ has a subobject classifier Ω .

Lemma 2.17 ([Joh02, Lemma. 1.6.3.ii]). If C is coherent, then Ω is an internal Heyting algebra.

Corollary 2.18. The subobject classifier Ω of sSet is an internal Heyting algebra.

2.5 Coalgebras

In this thesis we primarily work with F-coalgebras, which we will introduce next, these are a special type of coalgebra which fits our use-case very well. A general definition therefore is not necessary as the definition of F-coalgebras is self-contained.

Definition 2.19. Given a category C and an endofunctor $F: C \to C$. An F-coalgebra (A, α) consists of an object $A \in C$ called the carrier and a morphism $\alpha: A \to FA$.

Example 2.20 (Labelled transition systems). Take as carrier a state space X, and a set of actions (or characters in the context of DFA) A.

Take as endofunctor

$$FX = \mathcal{P}(A \times X)$$

Then given a state $x \in X$, $\alpha(x) = \{(a_1, x_1), (a_2, x_2), \dots\}$ denotes possible transitions to states x_1, x_2, \dots with corresponding outputs of a_1, a_2, \dots

Figure 1: A labelled transition system

In figure 2.20 a labelled transition system is given where $\alpha(1) = \{(a,3), (b,2)\}, \alpha(2) = \{(a,3)\}, \alpha(3) = \emptyset$.

Definition 2.21. A pointed F-coalgebra over a functor F is a triple $(X, \alpha : X \to FX, x_0)$ where X is the carrier as usual and x_0 is the base or in our case an *initial state*.

3 Ranked Hypergraphs

Definition 3.1. A directed hypergraph (V, H) is a finite set of vertices V and a set of hyperarcs $H \subseteq V \times \mathcal{P}(V)$.

Notation: A directed hypergraph containing no cycles is a Directed Acyclic Hypergraph (DAH).

Definition 3.2. A ranked hypergraph $(g, r, o, \mathcal{L}, A)$ consists of:

- A DAH g,
- Finite sequences $r = (r_i)_{i \leq |r|}$, $o = (o_i)_{i \leq |o|}$ $r_i, o_i \in \mathcal{P}(V)$ denoting the root and variable interfaces. o_i contains only maximal vertices. We refer to (|r|, |o|) as the rank of this graph.
- An action set A and a hyperarc labelling function $\mathcal{L}: H \to A$

Notation: In this thesis we refer to ranked hypergraphs as just hypergraphs as we will only be working with this kind. HG(n, m) is the set of ranked term hypergraphs of rank (n, m)

Example 3.3. In figure 2 a ranked hypergraph is drawn. Left is the root interface, of rank 3, on the right is the output interface of rank 2.

The full definition of this graph is as follows

- $V = \{1, 2, 3, 4, 5, 6\}$
- $H = \{(1, \{4\}), (2, \{5, 6\})\}$
- $\bullet \ r=(\{1\},\{2\},\{3\}),\, o=(\{4\},\{3,6\})$
- $A = \{a, b\}, \mathcal{L}((1, \{4\})) = b, \mathcal{L}((2, \{5, 6\})) = a$

Figure 2: A Directed Acyclic Hypergraph

Definition 3.4. Let G and H be ranked hypergraphs of equal rank (n, m),

An isomorphism between G and F is a bijection

$$f: V^G \to V^F$$

such that

$$(u, U') \in H^G \iff (f(u), f[U']) \in H^F$$
$$v \in r_i^G \iff f(v) \in r_i^F \quad \forall i \le n$$
$$v \in o_i^G \iff f(v) \in o_i^F \quad \forall i \le m$$

Remark 3.5. When proving a property which involves multiple hypergraphs, we can assume disjointness of vertex sets. But then the property will only hold up to isomorphism. This is because renaming of vertices is an isomorphism in the sense of definition 3.4.

3.1 Composition of ranked hypergraphs

Definition 3.6. Let G, F be hypergraphs such that $|o^G| = |r^F|$, their composition is defined as follows:

$$G; F = (g', r', i_F[o^F]) := (i_F[o_i^F])_{i < |o^F|}, \mathcal{L}^G \sqcup \mathcal{L}^F, A^G \cup A^F)$$
 (2)

We obtain g' = (V, H) by the following procedure:

Define

$$V = (V^G + V^F) \setminus i_G[\bigcup_{i < |o^G|} o_i^G]$$

To get the hyperarcs we keep all elements but replace a vertex if it exists in an output, to do this neatly we define a pair of functions:

$$\psi_{G,F}(v) := \begin{cases} i_F[\bigcup_{\substack{i \le |o^G| \\ v \in o_i^G}} r_i^F] & \text{if } \exists i \le |o^G| \text{ such that } v \in o_i^G \\ \{i_G(v)\} & \text{else} \end{cases}$$

$$\Psi_{G,F}(U') := \bigcup_{v \in U'} \psi_{G,F}(v)$$

$$H := \{(i_G(u), \Psi_{G,F}(U')) : (u, U') \in H^G\} \cup i_F[H^F]$$

So for all i, in each arc v that ends in a vertex in o_i^G , we replace that vertex in the arc with r_i^F .

And we obtain r' by taking over the original r^G and 'connecting through' for vertices which are both minimal and maximal:

$$r_i' = \Psi_{G,F}(r_i^G)$$

Remark 3.7. When vertex sets are disjoint, we can simply take set union as coproduct. Which makes the inclusions identity maps.

This composition allows for a left identity id_n namely $id_n = ((\{1, 2, \dots, n\}, \varnothing), (\{i\})_{i \in n}, (\{i\})_{i \in n}).$

Lemma 3.8. Let G, K, F be DAH and $U \subseteq V^G$ a set of vertices, it holds that:

$$\Psi_{G;K,F} \circ \Psi_{G,K}(U) \cong \Psi_{G,F;K}(U)$$

Proof. Let G, K, F be DAH and $U \subseteq V^G$ a set of vertices. Assume disjoint vertex sets.

We prove the lemma for a singleton, this then extends trivially to all subsets $U \subseteq V^G$. Let $v \in V^G$, we proceed by using the definitions:

$$\Psi_{G;K,F} \circ \psi_{G,K}(v) = \begin{cases} \{v\} & v \notin \bigcup_{i} o_i^G \\ \Psi_{G;K,F} \left(\bigcup_{\substack{j \le |r^K| \\ v \in o_i^G}} r_j^K \right) & \text{else} \end{cases}$$

Because both unions are finite we can exchange them:

$$= \begin{cases} \{v\} & v \notin \cup_i o_i^G \\ \bigcup_{\substack{j \le |r^K| \\ v \in o_i^G}} \Psi_{G;K,F}(r_j^K) & \text{else} \end{cases}$$

By definition $r_i^{K;F} := \Psi_{K,F}(r_i^K)$ and hence

$$= \begin{cases} \{v\} & v \notin \bigcup_{i} o_i^G \\ \bigcup_{\substack{j \le |r^{K;F}| \\ v \in o_j^G}} r_j^{K;F} & \text{else} \end{cases}$$
$$= \psi_{G,K;F}(v)$$

Taking unions of singletons then yields:

$$\Psi_{K,F} \circ \Psi_{G,K}(U) = \Psi_{G,K;F}(U)$$

By remark 3.5 the equality holds up to isomorphism for all G, K, F, regardless of vertex sets.

Theorem 3.9. Let G,K,F be ranked hypergraphs. The following properties hold:

- 1. $G; (K; F) \cong (G; K); F$
- 2. $id_{|r^G|}$; $G \cong G$

Proof. G; $(K; F) \cong (G; K)$; F

Let G, K, F be ranked hypergraphs with disjoint vertex sets. Use remark 3.7. It is clear from the definition that (G; K); F = G; (K; F) if and only if their graphs and root interfaces are equal.

Let r, r' be the root interfaces for (G; K); F, G; (K; F) respectively. We expand the definition and use lemma 3.8 to show that r = r'. Let $i \leq |r^G|$, we get:

$$r_i = \Psi_{r^F,o^k}(r_i^{G;K}) = \Psi_{r^F,o^k}(\Psi_{r^K,o^G}(r_i^G)) = \Psi_{r^K;F,o^G}(r_i) = r_i'$$

Let g = (V, H), g' = (V', H') be the graphs for (G; K); F, G; (K; F) respectively.

We expand the definition:

$$\begin{split} V &= (V^{G;K} + V^F) \setminus \bigcup_{i \leq |o^K|} o_i^K \\ &= (((V^G + V^K) \setminus \bigcup_{i \leq |o^G|} o_i^G) + V^F) \setminus \bigcup_{i \leq |o^K|} o_i^K \end{split}$$

From disjointness the inclusion of V^G , V^K , and V^F into their coproduct we get

$$= (V^G + ((V^K + V^F) \setminus \bigcup_{i \le |o^K|} o_i^K)) \setminus \bigcup_{i \le |o^G|} o_i^G = V'$$

Lastly for the arcs:

$$H = \{(u, \Psi_{rF,o^K}(U')) : (u, U') \in H^{G;K}\} \cup H^F$$

= \{(u, \Psi_{rF,o^K}(\Psi_{rK,o^G}(U'))) : (u, U') \in H^G\} \cup \{(u, \Psi_{rF,o^K}(U')) : (u, U') \in H^K\} \cup H^F

By lemma 3.8 we have

$$= \left\{ \left(u, \Psi_{r^{F;K},o^{G}}(U') \right) : (u,U') \in H^{G} \right\} \cup \left\{ \left(u, \Psi_{r^{F},o^{K}}(U') \right) : (u,U') \in H^{K} \right\} \cup H^{F}$$

$$= \left\{ \left(u, \Psi_{r^{K;F},o^{G}}(U') \right) : (u,U') \in H^{G} \right\} \cup H^{K;F}$$

$$= H'$$

Which proves equality for disjoint graphs. Which in turn gives $G; (K; F) \cong (G; K); F$ for any G, K, F by using remark 3.5.

Proof. $id_n; G \cong G$

Let G be a ranked hypergraph with $|r^G| = n$ and

$$id_n = ((\{1, 2, \dots, n\}, \varnothing), (\{i\})_{i \in n}, (\{i\})_{i \in n})$$

Assume disjoint vertex sets. Using remark 3.7 we get:

$$V = (\{1, 2, \dots, n\} \cup V^G) \setminus \bigcup_{i \in n} \{i\} = V^G$$

$$H = \{(u, \Psi_{id_n;G}(U')) : (u, U') \in H^{id_n}\} \cup H^G = H^G$$

$$\psi_{id_n;G}(i) = r_i^G \quad \forall i \in \{1, 2, \dots, n\}$$

Therefore

$$r'_{i} = \Psi_{id_{n};G}(r_{i}^{id_{n}}) = \psi_{id_{n};G}(i) = r_{i}^{G}$$

From 3.5 we conclude id_n ; $G \cong G$ for any ranked hypergraph G.

3.2 Generating hypergraphs

Definition 3.10. First define the notion of predecessors of a vertex as:

$$\operatorname{pred}(v) = \{ w \in V : \exists (w, U') \text{ s.t. } v \in U' \}$$

Then we can define the depth of a vertex recursively

$$d: V \to \mathbb{N}, \quad d(v) = \begin{cases} \max\{d(w) + 1 : w \in \operatorname{pred}(v)\} & \operatorname{pred}(v) \neq \emptyset \\ 0 & else \end{cases}$$

which extends to a notion of depth for an entire ranked hypergraph:

$$D(G) = \max\{d(v) : v \in V^G\}$$

Theorem 3.11. The set of ranked hypergraphs is generated by the subset

$$HG_1 := \{G \in HG : D(G) \le 1\}$$

That is, for all $G \in HG$ there exists an $n \in \mathbb{N}_{\geq 1}$ and a sequence $(G_1, G_2, \dots, G_n) \in HG_1^n$, such that $G_1; G_2; \dots; G_n \cong G$

Proof. To prove this by induction we first need the following result:

Claim: for any hypergraph G of depth $n \geq 2$ there exist hypergraphs $G_1 \in HG$ with $D(G_1) = n - 1, G_2 \in HG_1$ such that $G \cong K; F$.

First take
$$r^1=r,\,o^2=o,\,\mathcal{L}^1=\mathcal{L}^2=\mathcal{L},\,A^1=A^2=A.$$

Then let

$$V^{1} = \{v \in V : d(v) \le n - 1 \text{ or } \exists w \in \text{pred}(v) \text{ s.t. } d(w) < n - 1\}$$

$$V^{2} = \{v \in V : n - 1 \le d(v) \le n\} \cup \bigcup_{i \le |o^{G}|} o_{i}^{G}$$

$$H^{1} = \{(u, U') \in H : d(u) < n - 1\}$$

$$H^{2} = \{(u, U') \in H : d(u) = n - 1\}$$

Note that for all $(u, U') \in H_1$ we have $u \in V^1 \setminus V^2$ because its degree is < n - 1 and it isn't maximal and therefore not part of o. Furthermore, (H^1, H^2) partitions H.

Finally let $o^1 = r^2$ be any enumeration of $V^1 \cap V^2$.

Let $i_1: V^1 \to V^1 + V^2$, $i_2: V^2 \to V^1 + V^2$ be the coproduct inclusions. We prove by construction of $G_1; G_2$ that the following function is an isomorphism

$$f: V \to (V^1 + V^2) \setminus i_1[\bigcup_{i \le |o^1|} o_i^1], \quad f(v) = \begin{cases} i_1(v) & v \in V^1 \setminus V^2 \\ i_2(v) & \text{else} \end{cases}$$

First work out

$$\psi_{r^2,o^1}(v) := \begin{cases} i_2[\bigcup_{\substack{i \leq |o^1| \\ v \in o^1_i}} r_i^2] & \text{if } \exists i \leq |o^1| \text{ such that } v \in o^1_i \\ \{i_1(v)\} & \text{otherwise} \end{cases}$$

by $o^1 = r^2$ we get

$$= \begin{cases} \{i_2(v)\} & \text{if } v \in V^1 \cap V^2 \\ \{i_1(v)\} & \text{otherwise} \end{cases}$$
$$= \{f(v)\} \quad \forall v \in V^1$$

Therefore

$$H^{G_1;G_2} := \left\{ (i_1(u), f[U']) : (u, U') \in H^1 \right\} \cup i_2[H^2]$$

$$= \left\{ (f(u), f[U']) : (u, U') \in H^1 \right\} \cup \left\{ (f(u), f[U'] : (u, U') \in H^2) \right\}$$

$$= \left\{ (f(u), f[U'] : (u, U') \in H) \right\}$$

and
$$r^{G_1;G_2} = (f[r_i^1])_{i \le |r|} = (f[r_i])_{i \le |r|}, o^{G_1;G_2} = (i_2[o_i^2])_{i \le |o^F|} = (f[o_i])_{i \le |o|}$$

Which proves f to be an isomorphism. Hence we get $G_1; G_2 \cong G$ as claimed, furthermore from the chosen H^1 we obtain $D(G_1) = n - 1$, $D(G_2) = 1 \implies G_2 \in HG_1$.

Now, let $G \in HG$ and assume $D(G) \leq 1$. This is trivially generated by HG_1 as $G \in HG_1$.

Proceed by induction, assume all $G \in HG$ with D(G) = n are generated by HG_1 . Take $G \in HG$ with D(G) = n+1. From the just proven result there exist $G_1 \in HG$, $G_2 \in HG_1$ such that $D(G_1) = n$. Therefore there exists a sequence $(G_{11}, \ldots, G_{1n}) \in \text{such that } G_{11}; \ldots; G_{1n} \cong G_1$.

Take as sequence $(G_{11}, \ldots, G_{1n}, G_2)$, then $G_11; \ldots; G_{1n}; G_2 \cong G_1; G_2 \cong G$. Thus all ranked hypergraphs of depth n+1 are generated by HG.

By induction the statement holds for all n. Therefore HG is generated by HG_1 .

Definition 3.12. Let G, F be hypergraphs such that $|o^G| \leq |r^F|$ we extend the notion of the sequential composition given by 3.6 to asymmetric graph compositions. Write

$$G^{+}_{;}F = (g', r', o^F, \mathcal{L}^G \sqcup \mathcal{L}^F, A^G \cup A^F)$$

for the extended composition.

We obtain g' = (V, H) by the following procedure:

$$V := (V^G + V^F) \setminus \bigcup_{i \le |o^G|} o_i^G$$

$$H := \{(U, \Psi_{r^F,o^G}(U')) : (U, U') \in H^G\} \cup H^F$$

And do the same as; for the interfaces except for the excess ones which we just copy:

$$r_i' = \begin{cases} \Psi_{r^F,o^G}(r_i^G) & i \le |o^G| \\ r_i^F & else \end{cases}$$

By separation of cases we trivially extend theorem 3.9 to the following result:

Corollary 3.13.; + is associative

4 Simplicial set over ranked term graphs

Definition 4.1. Let V be the vertex set of a ranked hypergraph. We define the monoid $\mathcal{M} = (\mathcal{P}(V)^2, (\varnothing, \varnothing), \cup \times \cup)$.

From this monoid we define a simplicial set using the nerve construction.

Definition 4.2. The nerve $N(\mathcal{M})$ of the monoid \mathcal{M} is the simplicial set where:

$$N(\mathcal{M})_{n} = \mathcal{M}^{n}$$

$$d_{i}^{\mathcal{M}}(m_{1}, \dots, m_{n}) = \begin{cases} (m_{1}, \dots, m_{i} \cup \times \cup m_{i+1}, \dots, m_{n}) & 0 < i < n \\ (m_{2}, \dots, m_{n}) & i = 0 \\ (m_{1}, \dots, m_{n-1}) & i = n \end{cases}$$

$$s_{i}^{\mathcal{M}}(m_{1}, \dots, m_{n}) = (m_{1}, \dots, m_{i}, (\varnothing, \varnothing), m_{i+1}, \dots, m_{n})$$

Definition 4.3. Define the simplicial set \mathcal{H} by $\mathcal{H}_n = HG(n, n)$. With face and degeneracy maps:

$$d_{i}^{\mathcal{H}}((g, (U_{1}, \dots, U_{n}), (W_{1}, W_{2}, \dots, W_{n}), \mathcal{L}, A)))$$

$$= \begin{cases} (g, (U_{1}, \dots, U_{i} \cup U_{i+1}, \dots U_{n}), (W_{1}, \dots, W_{i} \cup W_{i+1}, \dots W_{n}), \mathcal{L}, A) & 0 < i < n \\ (g, (U_{2}, \dots, U_{n}), (W_{1}, W_{2}, \dots, W_{n}), \mathcal{L}, A) & i = 0 \\ (g, (U_{1}, \dots, U_{n-1}), (W_{1}, \dots, W_{n-1}), \mathcal{L}, A) & i = n \end{cases}$$

$$s_{i}^{\mathcal{H}}((g, (U_{1}, \dots, U_{n}), (W_{1}, W_{2}, \dots, W_{n}), \mathcal{L}, A))$$

$$= (g, (U_{1}, \dots, U_{i}, \emptyset, U_{i+1}, \dots, U_{n}), (W_{1}, \dots, W_{i}, \emptyset, W_{i+1}, \dots, W_{n}), \mathcal{L}, A)$$

Lemma 4.4. \mathcal{H} is indeed a simplicial set.

Proof. Let $\pi_n : \mathcal{H}_n \to N(\mathcal{M})_n$ be the projection onto the interfaces given by $\pi_n((g, r, o, \mathcal{L}, A)) = ((r_i, o_i))_{i \in [n]}$.

Claim: the following diagrams commute.

$$\mathcal{H}_{n} \xrightarrow{d_{i}^{\mathcal{H}}} \mathcal{H}_{n-1} \qquad \mathcal{H}_{n} \xrightarrow{s_{j}^{\mathcal{H}}} \mathcal{H}_{n+1}
\downarrow_{\pi_{n}} \qquad \downarrow_{\pi_{n-1}} \qquad \downarrow_{\pi_{n}} \qquad \downarrow_{\pi_{n+1}}
N(\mathcal{M})_{n} \xrightarrow{d_{i}^{\mathcal{M}}} N(\mathcal{M})_{n-1} \qquad N(\mathcal{M})_{n} \xrightarrow{s_{j}^{\mathcal{M}}} N(\mathcal{M})_{n+1}$$

Face maps

i = 0:

$$\pi_{n-1}(d_0^{\mathcal{H}}((g, (U_1, \dots, U_n), (W_1, \dots, W_n), \mathcal{L}, A)))$$

$$= \pi_{n-1}((g, (U_2, \dots, U_n), (W_2, \dots, W_n), \mathcal{L}, A))$$

$$= ((U_2, W_2), \dots, (U_n, W_n))$$

$$= d_0^{\mathcal{M}}((U_1, W_1), \dots, (U_n, W_n))$$

$$= d_0^{\mathcal{M}}(\pi_n((g, (U_1, \dots, U_n), (W_1, \dots, W_n), \mathcal{L}, A)))$$

0 < i < n:

$$\pi_{n-1}(d_i^{\mathcal{H}}((g, (U_1, \dots, U_n), (W_1, \dots, W_n), \mathcal{L}, A))))$$

$$= \pi_{n-1}((g, (U_1, \dots, U_i \cup U_{i+1}, \dots, U_n), (W_1, \dots, W_i \cup W_{i+1}, \dots, W_n), \mathcal{L}, A)))$$

$$= ((U_1, W_1), \dots, (U_i \cup U_{i+1}, W_i \cup W_{i+1}), \dots, (U_n, W_n))$$

$$= d_i^{\mathcal{M}}((U_1, W_1), \dots, (U_n, W_n))$$

$$= d_i^{\mathcal{M}}(\pi_n((g, (U_1, \dots, U_n), (W_1, \dots, W_n), \mathcal{L}, A))))$$

i = n:

$$\pi_{n-1}(d_n^{\mathcal{H}}((g, (U_1, \dots, U_n), (W_1, \dots, W_n), \mathcal{L}, A)))$$

$$= \pi_{n-1}((g, (U_1, \dots, U_{n-1}), (W_1, \dots, W_{n-1}), \mathcal{L}, A)))$$

$$= ((U_1, W_1), \dots, (U_{n-1}, W_{n-1}))$$

$$= d_n^{\mathcal{M}}((U_1, W_1), \dots, (U_n, W_n))$$

$$= d_n^{\mathcal{M}}(\pi_n((g, (U_1, \dots, U_n), (W_1, \dots, W_n), \mathcal{L}, A))))$$

Degeneracy maps

$$\pi_{n+1}(s_i^{\mathcal{H}}((g, (U_1, \dots, U_n), (W_1, \dots, W_n), \mathcal{L}, A))))$$

$$= \pi_{n+1}((g, (U_1, \dots, U_i, \varnothing, U_{i+1}, \dots, U_n), (W_1, \dots, W_i, \varnothing, W_{i+1}, \dots, W_n), \mathcal{L}, A)))$$

$$= ((U_1, W_1), \dots, (U_i, W_i), (\varnothing, \varnothing), (U_{i+1}, W_{i+1}), \dots, (U_n, W_n))$$

$$= s_i^{\mathcal{M}}((U_1, W_1), \dots, (U_n, W_n))$$

$$= s_i^{\mathcal{M}}(\pi_n((g, (U_1, \dots, U_n), (W_1, \dots, W_n), \mathcal{L}, A))))$$

Thus π_n is a simplicial morphism. Therefore since $N(\mathcal{M})$ is a simplicial set by definition the simplicial identities also hold for $d^{\mathcal{H}}$ and $s^{\mathcal{H}}$. Therefore \mathcal{H} is a simplicial set.

5 Coalgebraic behaviour

To add behaviour to the hypergraph simplicial set we define pointed F-coalgebras by the endofunctor

Definition 5.1.

$$F: sSet \to sSet, \quad FX = \Omega \times \mathcal{P}_{\omega}(X \sqcup \uparrow X)^{HG_1}$$

Through this definition we find out what a coalgebra does on our set. If we follow the repeated iteration of this coalgebra

$$X \xrightarrow{\alpha} FX \xrightarrow{F\alpha} FFX \xrightarrow{FF\alpha} \dots$$

We get by definition of F(f) that α gets recursively applied to the transitioned-to elements. This will look like

$$\alpha(x_0) = (0, \{g_{01} \mapsto x_{01}, g_{02} \mapsto x_{02}, \dots \})$$

$$\implies \alpha \circ \alpha(x_0) = (0, \{(g_{01} \mapsto (0, \{g_{011} \mapsto x_{011}, g_{012} \mapsto x_{012}\})), (g_{02} \mapsto (0, \{g_{021} \mapsto x_{021}, g_{022} \mapsto x_{022}\})), \dots \})$$

Which is a tree structure with x_0 as root, x_{01}, x_{02}, \ldots as children etcetera. The transitions are through the hypergraphs. In figure 3 a tree is visualized for some coalgebra. Non-accepting states are red, and accepting states are indicated by a green node. Here x_{012} is an accepting state.

Figure 3: Tree from iteration of some F-coalgebra

Definition 5.2. Let (A, \vee, \perp) be a join-semilattice. We define the JSL morphism $\bigvee : \mathcal{P}_{\omega}(A) \to A$ as the map making the following commute:

$$A \xrightarrow{\operatorname{id}_A} A$$

$$\downarrow^{\eta} \bigvee$$

$$\mathcal{P}_{\omega}(A)$$

by lemma 2.10 $\mathcal{P}_{\omega}(A)$ is the free JSL, hence \bigvee exists and is unique.

Definition 5.3. Let $ev: A \times [A, B] \to B$, $(a, f) \mapsto f(a)$ be the evaluation morphism. We extend this to evaluate finite powersets by taking

$$\mathcal{P}_{\omega}ev:\mathcal{P}_{\omega}(A)\times[A,B]\to\mathcal{P}_{\omega}(B)$$

$$\mathcal{P}_{\omega}ev(\{a_1,\ldots,a_n\},f)=\{f(a_1),\ldots,f(a_n)\}$$

To find out if a ranked hypergraph is part of a coalgebras language we split it up into parts of depth 1 using theorem 3.11. Which are then used left to right to transition between states. If any of the final states is accepting, the graph is part of the language.

To formalise this we define a behaviour function.

Definition 5.4. Let (X, c, x_0) be a pointed F-coalgebra of 5.1. Define the so called behaviour

function as

$$\overline{c}: \mathcal{H} \to [X, \Omega]$$

$$\overline{c} = \overline{(\overline{c}_0, \overline{c}_1)}$$

Where \bar{c} is the inductive closure of \bar{c}_0, \bar{c}_1 :

$$\overline{c}_0: \mathbb{1} \to [X, \Omega]$$
 $\overline{c}_0 = \lambda(\pi_1 \circ c)$
 $\overline{c}_1: HG_1 \times [X, \Omega] \to [X, \Omega]$ $\overline{c}_1 = \lambda_2 K$

Where K is a morphism defined by the following commuting diagram

$$HG_{1} \times X \times [X,\Omega] \xrightarrow{K} \Omega$$

$$\underset{\pi_{2} \circ c \times id}{\widetilde{\pi_{2} \circ c} \times id} \downarrow \qquad \qquad \uparrow \lor$$

$$\mathcal{P}_{\omega}(X \sqcup \uparrow X) \times [X,\Omega] \xrightarrow{\mathcal{P}_{\omega} ev} \mathcal{P}_{\omega}(\Omega)$$

Definition 5.5. Let (X, c, x_0) be a pointed F-coalgebra of 5.1. Define the so called *behaviour function* as

$$\overline{c}: \mathcal{H} \to \Omega^X$$

$$\overline{c} = \overline{(\overline{c}_0, \overline{c}_1)}$$

Where \bar{c} is the inductive closure of \bar{c}_0, \bar{c}_1 :

Where K is a morphism defined by the following commuting diagram

$$HG_{1} \times X \times [X,\Omega] \xrightarrow{K} \Omega$$

$$\underset{\pi_{2} \circ c \times id}{\widetilde{\pi_{2} \circ c} \times id} \downarrow \qquad \qquad \uparrow \lor$$

$$\mathcal{P}_{\omega}(X \sqcup \uparrow X) \times [X,\Omega] \xrightarrow{\mathcal{P}_{\omega} ev} \mathcal{P}_{\omega}(\Omega)$$

6 Related Work

7 Conclusions and Further Research

References

- [Joh02] Peter T. Johnstone. Sketches of an elephant a topos theory compedium., volume 1. Clarendon Press, 2002.
- [nLa25] nLab authors. free object. https://ncatlab.org/nlab/show/free+object, July 2025. Revision 12.