# **ODEs**

Jinyuan Wu

January 31, 2023

## 1 First order ODEs

#### 1.1 Linear ODEs

An ODE in the form of

$$y'(x) + p(x)y(x) = q(x) \tag{1}$$

is considered linear. All linear ODEs can be solved by the following procedure. First we have

$$(y' + py)e^{\int pdx} = qe^{\int pdx},$$
(2)

and now the LHS is a derivative:

$$\frac{\mathrm{d}}{\mathrm{d}x} \left( y \mathrm{e}^{\int p \mathrm{d}x} \right) = q \mathrm{e}^{\int p \mathrm{d}x},\tag{3}$$

and now we can integrate over x and get

$$y e^{\int p dx} = \int q e^{\int p dx} dx,$$
 (4)

$$y = e^{-\int p dx} \int q e^{\int p dx} dx.$$
 (5)

# 1.2 "Energy-conservation lines" and exact equations

Another way to represent the solution of an ODE is the form  $\phi(x,y) = \text{const.}$  Note that the RHS contains no variables, and we have

$$0 = \frac{\mathrm{d}\phi}{\mathrm{d}x} = \frac{\partial\phi}{\partial x} + \frac{\partial\phi}{\partial y}\frac{\mathrm{d}y}{\mathrm{d}x},\tag{6}$$

and thus if

$$y' = f(x, y) \tag{7}$$

is algebraically equivalent to (6), the equation is already solved: We should find M, N such that

$$y' = -\frac{M}{N}, \quad M = \frac{\partial \phi}{\partial x}, \quad N = \frac{\partial \phi}{\partial y},$$
 (8)

and then  $\phi(x,y)$  solves the equation. In this case we say y'=-M/N is **exact**.

To test for exactness, we only have to test whether

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x},\tag{9}$$

and if so, the existence of  $\phi$  is guaranteed. (Since we work on a topological trivial space, things like cohomology group will not bother us.) We can now use "partial integral" to find  $\phi$ .

Example: suppose in a calculation we find

$$\frac{\partial \phi}{\partial x} = 2y^2 + ye^{xy}, \quad \frac{\partial \phi}{\partial y} = 4xy + xe^{xy} + 2y.$$
 (10)

After partial integration, we find

$$\phi(x,y) = \underbrace{2xy^2 + e^{xy} + h(y)}_{\int \frac{\partial \phi}{\partial x} dx} = \underbrace{2xy^2 + e^{xy} + y^2 + g(x)}_{\int \frac{\partial \phi}{\partial x} dy},$$
(11)

and we have to choose

$$h(y) = y^2, \quad g(x) = \text{const}, \tag{12}$$

and the solution is

$$\phi(x,y) = 2xy^2 + e^{xy} + y^2 + \text{const.}$$
(13)

Note that even when the decomposition f = -M/N doesn't give an exact equation for us, we can still use the method of exact equations: we can multiply a factor  $\mu$  to both M and N, and try to guess the form of  $\mu$  so that

$$\frac{\partial(\mu M)}{\partial y} = \frac{\partial(\mu N)}{\partial x}. (14)$$

An example can be found in solving

$$y' = -\frac{1}{3x - e^{-2y}}. (15)$$

We have

$$\frac{\partial 1}{\partial y} = 0, \quad \frac{\partial (3x - e^{-2y})}{\partial x} = 3,$$

so the equation is not exact if we choose M=1 and  $N=3x-\mathrm{e}^{-2y}$ . However, (14) can be fulfilled now: it's now

$$\frac{\partial \mu}{\partial y} = 3\mu + \left(3x - e^{-2y}\right) \frac{\partial \mu}{\partial x},$$

and the most convenient way to solve it (we don't need to find all solutions of this equation!) is to let  $\mu$  contain y only, so the tricky term on the RHS disappears, and thus we choose  $\mu = e^{3y}$ , and we get

$$\phi(x,y) = \int \mu M \, dx = \int e^{3y} \, dx = x e^{3y} + u(y),$$

$$\phi(x,y) = \int \mu N \, dy = \int (3x e^{3y} - e^y) \, dy = x e^{3y} - e^y + v(x),$$

so

$$\phi(x,y) = xe^{3y} - e^y + \text{const.}$$
(16)

## 1.3 Bernoulli equation

Consider the following **Bernoulli equation** 

$$y' + P(x)y = R(x)y^{\alpha}. (17)$$

When  $\alpha = 0, 1$ , the equation can be solved by the standard methods for linear first order ODEs. When this is not the case, we may do the substitution

$$v = y^{\beta},\tag{18}$$

and then the equation becomes

$$\frac{1}{\beta}v^{1/\beta - 1}v' + P(x)v^{1/\beta} = R(x)v^{\alpha/\beta},$$

$$v' + P(x)v = R(x)v^{1 + \frac{\alpha - 1}{\beta}}.$$
(19)

The next step is to choose a good beta so that the equation gets simplified. We may want to make to exponent to be zero, and this means we should choose

$$\beta = 1 - \alpha,\tag{20}$$

and the ODE is now

$$v' + Pu = R, (21)$$

which can then be solved by the method in Section 1.1.

# 2 Second order ODEs

#### 2.1 Linear 2nd order ODE with initial values

A linear second order ODE has the following form:

$$y'' + p(x)y' + q(x)y = f(x). (22)$$

It usually comes with initial value conditions

$$y(x_0) = A, \quad y'(x_0) = B.$$
 (23)

This course is about concrete calculations, but knowing what we are doing makes sense is important. Here is an existence and uniqueness theorem: if p(x), q(x), and f(x) are continuous over an interval I, and  $x_0 \in I$ , then a unique solution exists for (22) with the initial conditions given above.

Usually, we start by looking at the **homogeneous** second order ODE

$$y'' + p(x)y' + q(x)y = 0.$$
 (24)

The influence of f(x) can be included as the "response" of the LHS. The full solution of (24) takes the form

$$y = c_1 y_1 + c_2 y_2, (25)$$

where  $c_1, c_2$  are constants to be decided by initial conditions, and  $y_1$  and  $y_2$  are linearly independent solutions of (24). The **Wronskian** is defined as

$$W(x) = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix}. {26}$$

By checking if it is non-zero at most points, we can find whether  $y_1$  and  $y_2$  are truly linearly independent to each other.

There is a method to arrive at  $y_2$  from  $y_1$ : we can always take the ansatz

$$y_2 = y_1 u, \tag{27}$$

and therefore we get

$$(u''y_1 + 2u'y_1' + uy_1'') + p(u'y_1 + uy_1') + quy_1 = 0,$$

and the condition that  $y_1$  is a solution to (24) means

$$u'' + \underbrace{\frac{2y_1' + py_1}{y_1}}_{g(x)} u' = 0, \tag{28}$$

which is essentially a first order ODE, because we can replace u' by v, and then we find

$$\ln v = -\int g(x) \, \mathrm{d}x,$$

and

$$u(x) = \int e^{-\int g(x)dx} dx.$$
 (29)

#### 2.2 Constant coefficients

The equation

$$y'' + Ay + By = 0 \tag{30}$$

can be solved directly by the following construction:

$$y = c_1 e^{\lambda_1 x} + c_2 e^{\lambda_2 x}, \tag{31}$$

where  $\lambda_1, \lambda_2$  are solutions of

$$\lambda^2 + A\lambda + B = 0. ag{32}$$

For example, to solve the equation

$$y'' - 2y' + 10y = 0, (33)$$

we just solve

$$\lambda^2 - 2\lambda + 10 = 0,$$

which gives us

$$\lambda = 1 \pm 3i,\tag{34}$$

and therefore a general solution is

$$y = e^x (c_1 e^{3ix} + c_2 e^{-3ix}). (35)$$

It should be noted that  $c_1, c_2$  can be complex, even when we restrict y in  $\mathbb{R}$ : we can let the imaginary part of y vanish as long as we impose some constraints over  $c_1, c_2$ . If we are determined to work in the real space, two alternative linearly independent solutions can be used:

$$y_1(x) = e^x \cos(3x), \quad y_2(x) = e^x \sin(3x).$$
 (36)

Although we can immediately say they are linearly independent, we can use them as a demonstration of the Wronskian method: now we have

$$W(x) = y_1(x)y_2'(x) - y_2(x)y_1'(x) = 3e^{2x},$$
(37)

which of course isn't constantly zero.

(32) is faced with the problem of having only one solution when  $A^2 - 4B = 0$ . In this case we need to go back to the standard procedure to get  $y_2$  from  $y_1$ . An example is

$$y'' + 6y + 9 = 0, (38)$$

for which (32) only gives

$$y_1 = e^{-3x}$$
. (39)

Suppose  $y_2 = ue^{-3x}$ , we have TODO

#### 2.3 Euler equation

A **Euler equation** has the following form:

$$x^2y'' + Axy' + By = 0, (40)$$

where A, B are constants. One solution can be immediate found: it always looks like

$$y = x^a. (41)$$

We then find

$$a(a-1) + Aa + B = 0. (42)$$

If there are two solutions of the equation, (40) has already been solved. If not, we can use the trick (27).

An example: let's solve

$$x^2y'' + 3xy' + y = 0. (43)$$

The equation about a is now

$$a(a-1) + 3a + 1 = 0,$$

and it only has one solution a = -1. Therefore we have

$$y_1 = \frac{1}{r}.$$

Suppose

$$y_2 = uy_1,$$

we get

$$x^{2} \left( \frac{u''}{x^{2}} - \frac{2u'}{x} + \frac{2u}{x^{2}} \right) + 3x \left( \frac{u'}{x} - \frac{u}{x^{2}} \right) + \frac{u}{x} = 0,$$

which is equivalent to

$$v'x + v = 0, \quad v = u'$$

the solution of which is

$$\ln v + \ln x = \text{const.}$$

and therefore

$$v = \frac{C'}{x}, \quad u = C' \ln x + C,$$
$$y_2 = \frac{1}{x}(C' \ln x + C).$$

This essentially gives all solutions we need: for  $y_1$ , we just have u = 1, which corresponds to C = 1. So now the equation is completely solved.

# 2.4 Non-homogeneous cases or how to find the linear response

Now we discuss how to solve

$$y'' + p(x)y' + q(x)y = f(x). (44)$$

A general solution is

$$y(x) = y_{\rm p}(x) + y_{\rm h}(x),$$
 (45)

where the subscript p means a particular solution, and the subscript h means the general solution of the corresponding homogeneous equation.

We need some common sense to find a particular solution. To solve

$$y'' - y' - 2y = 2x^2 + 5, (46)$$

we don't expect y to be, say,  $\cos(2x)$ : instead, it's usually the case that y is a polynomial. An ansatz is

$$u = Ax^2 + Bx + C.$$

We don't want a  $x^3$  term because it doesn't appear on RHS. The equation then becomes

$$2A - (2Ax + Bx) - 2(Ax^2 + Bx + C) = 2x^2 + 5,$$

$$-2A = 2$$
,  $-2A - 2B = 0$ ,  $2A - B - 2C = 5$ ,

and therefore A = -1, B = 1, C = -4. Therefore we get a particular solution:

$$y_{\rm p} = -x^2 + x - 4. (47)$$

A particular solution may also be determined as a "linear combination" of homogeneous solutions, although now the coefficients have temporal variation. That's to say, we take the ansatz

$$y_{p}(x) = u(x)y_{1}(x) + v(x)y_{2}(x). \tag{48}$$

This is quite similar to the procedure introduced in Section 1.1. After substituting y with (48) in (44), we get

$$u'y_1' + v'y_2' = f. (49)$$

Introducing the constraint

$$u'y_1 + v'y_2 = 0, (50)$$

we have

$$\begin{pmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{pmatrix} \begin{pmatrix} u' \\ v' \end{pmatrix} = \begin{pmatrix} 0 \\ f \end{pmatrix}, \tag{51}$$

from which we find u', v' and hence u, v. The Wronskian – the determinant of the matrix on LHS – is non-zero, so the equation always has a solution.

Example: let's solve

$$y'' + y = \tan x. \tag{52}$$

We have

$$y_1 = \cos x, \quad y_2 = \sin x,$$

and therefore

$$W(x) = y_1 y_2' - y_2 y_1' = 1.$$

So

$$u' = -\int \frac{y_2 f}{W(x)} dx = -\int \frac{\sin^2 x}{\cos x} dx = -\int \frac{1 - \cos^2 x}{\cos x} dx$$
$$= -\frac{1}{2} \ln \left| \frac{1 + \sin x}{1 - \sin x} \right| + \sin x,$$

and similarly we have

$$v =$$

# 2.5 Analyticity

The stimulus can be non-analytic. f is analytic at  $x_0$ , if we can expand it into a power series around  $x_0$ :

$$f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$
 (53)

in a interval around  $x_0$ . The function  $f(x) = \ln x$ , then, is not analytic at x = 0 – but  $f(x) = \ln(x+1)$  is analytic at x = 0, though not at x = -1.

There is a theorem: if p, q, f are all analytic at  $x_0$ , then (44) together with conditions  $y(x_0) = A$  and  $y'(x_0) = B$  has a unique solution that is analytic at  $x_0$ .

An example:

$$x'' + y' - xy = 0, \quad y(0) = -2, y'(0) = 0.$$
 (54)

Suppose

$$y(x) = \sum_{n=0}^{\infty} a_n x^n$$
,  $y'(x) = \sum_{n=0}^{\infty} n a_n x^{n-1}$ ,  $y''(x) = \sum_{n=0}^{\infty} n(n+1) a_n x^{n-2}$ ,

we have

$$0 = \sum_{n=0}^{\infty} n(n-1)a_n x^{n-2} + \sum_{n=0}^{\infty} na_n x^{n-1} - \sum_{n=0}^{\infty} a_n x^{n+1}$$
$$= a_1 + 2a_2 + \sum_{n=1}^{\infty} x^n ((n+2)(n+1)a_{n+2} + (n+1)a_{n+1} - a_{n-1}),$$

and therefore

$$a_1 + 2a_2 = 0$$
,  $a_{n+2} = -\frac{a_{n+1}}{n+2} + \frac{a_{n-1}}{(n+1)(n+2)}$ .

The conditions y(0) = -2 and y'(0) = 0 means

$$a_0 = -2, \quad a_1 = 0,$$

and then we can in principle find all  $a_n$ 's – although it's often hard to see a pattern and write down a closed-form expression for  $a_n$ .

Now we consider the equation

$$P(x)y'' + Q(x)y' + R(x)y = F(x).$$
(55)

Of course we can divide the equation with P(x) and go back to (44), but if P(x) is zero at some points, p, q, f in (44) are no longer always analytic. Thus the solution isn't guaranteed to be

analytic everywhere. In other words, we no longer have a power series solution – or do we? We can still try a generalized power series, like

$$y(x) = \sum_{n=0}^{\infty} c_n (x - x_0)^{n+r},$$
(56)

where r can be a fraction. This is guaranteed with

$$(x - x_0)y'' + Q(x)y' + R(x)y = F(x). (57)$$

To demonstrate this, consider

$$y'' + \frac{1}{2x}y' - \frac{1}{4x}y = 0. (58)$$

We plug

$$y(x) = \sum_{n=0}^{\infty} c_n x^{n+r}$$

into

$$4xy'' + 2y' - y = 0,$$

and get

$$\sum_{n=0}^{\infty} \left( 4(n+r)(n+r-1)c_n x^{n+r-1} + 2(n+r)c_n x^{n+r-1} - c_n x^{n+r} \right) = 0.$$

The coefficient of the  $x^{r-1}$  term is

$$4r(r-1) + 2r = 0,$$

from which we find r = 0, 1/2. For the rest of the terms, we have

$$4(n+r)(n+r-1)c_n + 2(n+r)c_n - c_{n-1} = 0,$$

$$c_n = \frac{c_{n-1}}{2(n+r)(2n+2r-1)}.$$

When r = 0, this gives

$$c_n = \frac{c_{n-1}}{2n(2n-1)}, \quad c_n = \frac{c_0}{(2n)!},$$

and we get

$$y(x) = \sum_{n=0}^{\infty} \frac{x^n}{(2n)!}.$$
 (59)

When r = 1/2, this gives

$$c_n = \frac{c_{n-1}}{(2n+1)\cdot 2n}, \quad c_n = \frac{c_0}{(2n+1)!},$$

and we get

$$y(x) = \sum_{n=0}^{\infty} \frac{x^{n+1/2}}{(2n+1)!}.$$
(60)

So we have already obtained two independent solutions.

# 3 The Laplace transformation

The **Laplace transformation** is defined for a function f(t) as

$$\mathcal{L}[f(t)] = F(s) = \int_0^\infty f(t) e^{-st} dt, \qquad (61)$$

for every s where the integral converges. It's easy to see that  $\mathcal{L}$  is linear,

#### 3.1 Some examples

The simplest Laplace transform is

$$\mathcal{L}[1] = \int_0^\infty e^{-st} dt = \frac{1}{s}, \quad s > 0,$$
 (62)

and by integration by parts, we also have

$$\mathcal{L}[t] = \int_0^\infty t e^{-st} dt = \frac{1}{s^2}.$$
 (63)

By multiple rounds of integration by parts, we have

$$\mathcal{L}[t^2] = \frac{2}{s^3},\tag{64}$$

and by iteratively using integration by parts we get

$$\mathcal{L}[t^n] = \frac{n!}{s^{n+1}}. (65)$$

Aside from polynomials, we have

$$\mathcal{L}[e^{at}] = \int_0^\infty e^{-(s-a)t} dt = \frac{1}{s-a}, \quad s > a.$$
 (66)

Since we have

$$\cos x = \frac{e^{ix} + e^{-ix}}{2}, \quad \sin x = \frac{e^{ix} - e^{-ix}}{2i},$$

we have

$$\mathcal{L}[\cos(at)] = \frac{1}{2} \left( \frac{1}{s - ia} + \frac{1}{s + ia} \right) = \frac{s}{s^2 + a^2}.$$
 (67)

Similarly we have

$$\mathcal{L}[\sin(at)] = \frac{a}{s^2 + a^2}.$$
(68)

## 3.2 Laplace transform of differential equations

We have

$$\mathcal{L}[f'(t)] = \int_0^\infty \frac{\mathrm{d}f}{\mathrm{d}t} \mathrm{e}^{-st} \, \mathrm{d}t = f \mathrm{e}^{-st} \Big|_{s=0}^\infty - \int_0^\infty f \frac{\mathrm{d}}{\mathrm{d}t} \mathrm{e}^{-st} \, \mathrm{d}t$$
$$= -f(0) + s \int_0^\infty f(t) \mathrm{e}^{-st} \, \mathrm{d}t = s \mathcal{L}[f(t)] - f(0).$$
(69)

Applying this twice, we get

$$\mathcal{L}[f''(t)] = s\mathcal{L}[f'(t)] - f'(0) = s^2 \mathcal{L}[f(t)] - sf(0) - f'(0). \tag{70}$$

The general formula is therefore

$$\mathcal{L}[f^{(n)}(t)] = s^n \mathcal{L}[f(t)] - s^{n-1}f(0) - s^{n-2}f'(0) - \dots - f^{(n-1)}(0).$$
(71)

This can be used to solve ODEs. Consider, for example,

$$y'' + 4y' + 3y = e^t, \quad y(0) = 0, \quad y'(0) = 2.$$
 (72)

We have (below we follow the convention to use big letters to refer to functions in the Laplace space)

$$\mathcal{L}[LHS] = (s^2Y(s) - sy(0) - y'(0)) + 4(sY(s) - y(0)) + 3Y(s) = (s^2 + 4s + 3)Y(s) - 2,$$

where we have already applied the initial conditions, and

$$\mathcal{L}[RHS] = \frac{1}{s-1}.$$

So what need to be done is to solve

$$(s^2 + 4s + 3)Y(s) - 2 = \frac{1}{s-1},$$

and we get

$$Y(s) = \frac{2s-1}{(s-1)(s+1)(s+3)}. (73)$$

Thus, once we do the inverse Laplace transformation, we get y(t). It's possible to do an inverse integral transformation, but in this case, what's more convenient is to make the decomposition

$$Y(s) = \frac{A}{s-1} + \frac{B}{s+1} + \frac{C}{s+3},$$

and we can find

$$A = \frac{1}{8}, \quad B = \frac{3}{4}, \quad C = -\frac{7}{8}.$$

Then we can read the Laplace transformation table in the inverse direction: from (66), we find

$$y(t) = \frac{1}{8}e^{t} + \frac{3}{4}e^{-t} - \frac{7}{8}e^{-3t}.$$
 (74)

So the linear 2nd order ODE is completely solved.

TODO: whether we will encounter things like

$$\mathcal{L}[f] = \frac{1}{s}, \quad s > 100. \tag{75}$$

It seems in most real world problems, we don't really need to worry about the region of allowed s: we just extend the region of allowed s as large as we can, solve the algebraic equation in the Laplace space, and then go back.

#### 3.3 More rules

Laplace transform of an integral can also be found. Here we investigate into things like

$$\int_0^t f(t') \, \mathrm{d}t' \,,$$

and we need to pay attention to what variable is inside the integration and what variable is exposed to the Laplace operator. We have

$$\mathcal{L}\left[\int_{0}^{t} f(t') dt'\right] = -\frac{1}{s} \int_{t'=0}^{\infty} \int_{0}^{t} f(t') dt' de^{-st}$$

$$= -\frac{1}{s} \left(e^{-st} \int_{0}^{t} f(t') dt' \Big|_{0}^{\infty} - \int_{0}^{\infty} f(t) e^{-st} dt\right)$$

$$= \frac{1}{s} \mathcal{L}[f(t)].$$
(76)

This is the inverse of the rule of derivatives above, which is expected.

Another theorem is the s-shifting theorem: we have

$$\mathcal{L}[e^{at}f(t)] = F(s-a) = \mathcal{L}[f(t)]_{s \to s-a}.$$
(77)

This is exactly what leads to (66). Correspondingly we have the t-shifting theorem:

$$\mathcal{L}[f(t-a)H(t-a)] = e^{-sa}\mathcal{L}[f(t)], \tag{78}$$

where H(t-a) is 1 when  $t \ge 0$  and zero otherwise, and a > 0.

The theorems can be used to evaluate Laplace transforms of complex functions. We have

$$\mathcal{L}[t^2 e^{-t}] = \mathcal{L}[t^2]|_{s \to s+1} = \frac{2}{(s+1)^3}.$$
 (79)