Regression Project: Ames Housing Pricing Predictions

January 2020

Problem Statement & Key Objectives

Context:

Kaggle competition with the objective of developing a model to predict housing prices in Ames Iowa based on historical data. Over 100+ DSI students across the nation participated. This model achieved a ranking within the top 15 based on RMSE and is valid for price predictions

Key Objectives:

- Create model to predict housing prices based on historical data
- Evaluate model
- Disseminate techniques and methods to technical audience and colleagues

Executive Summary

- Key objectives: Create model to predict housing prices, evaluate model, disseminate techniques and methods to technical audience
- Normal Distribution is an important factor for machine learning algorithms. Addressing outliers and applying natural log can assist in normalizing and thereby improving prediction performance
- In addition, Understanding Variable Correlation and Feature Engineering can elevate model prediction performance
- Seasonality affected Ames sales volume but Average Sale Prices remained fairly consistent
- For the Ames Housing Dataset Ranking Neighborhoods reduced multicollinearity, improved SalePrice predictions and directly drove a 3000+ reduction in Kaggle RSME score
- Visualizing and identifying high mean variance within a variable can indicate degree of influence on Target (Sale Price)
- The model suggests that Gr Liv Area, Overall Quality, Age, Neighborhood Rank, Bathrooms, Total Sq Ft, Is_New Were Leading Features With Impactful Coefficients
- The value of the model is that it is accurate and can facilitate real estate agency decision making and housing price prediction
- Key recommendation: trial first, then place model into production in order to drive operational/strategic real estate agency decision making. Over time the model will continue to learn and increasingly become more accurate

Process Overview

- Clean, Impute, Process raw data to achieve a suitable format for modeling
- Remove Outliers
- EDA
- Numerical Data to Categorical
- Feature Engineering
- Natural Log
- Modeling
- Model Evaluation & Optimization
- Interpretation

Training Sales Data Is Not Originally Normally Distributed. Natural Log and Addressing Outliers Resolves This

Training Data Sales Price by Modeling Stage

Original Dataset (Right-skewed)

Outliers Resolved & Natural Log Applied (Closer to Normal Distribution)

Outliers And Missing Data Were Identified And Addressed

Outliers that contributed to score improvements included:

- Exorbitant Gr Liv Area Sq Ft and low SalePrice
- Data fields of Pool QC, Misc Feature, Alley, Fence, Fireplace Qu had a very high percentage of missing data and therefore were dropped from the model
- Imputing such a high volume of missing data would only mislead model

Seasonality Affected Sales Volume But Average SalesPrice Remained Fairly Consistent

Monthly Housing Sales Volumes

Sales Price by Month Sold

Understanding Variable Correlation And Feature Engineering Elevated Model Prediction Performance

Top 10 Feature Correlation to SalePrice

Feature Engineering

- total_sq_ft was engineered, however it is important to note that ANSI and Fannie Mae dot not allow basement square footage to be included in total sq ft calculations therefore I excluded it
- total_bathrooms variable was also engineered summing all full and half bathroom fields

```
# Let's create a few addl columns for features

train2['has_basement'] = train2['Total Bsmt SF'].apply(lambda x: 1 if x > 0 else 0)
train2['has_garage'] = train2['Garage Area'].apply(lambda x: 1 if x > 0 else 0)
train2['has_pool'] = train2['Pool Area'].apply(lambda x: 1 if x > 0 else 0)
train2['was_remodeled'] = (train2['Year Remod/Add'] != train2['Year Built']).astype(np.int64)
train2['is_new'] = (train2['Year Built']>=1996).astype(np.int64)
```

Source: Ames Housing Data

High Mean Variance Within Variable Indicate High Influence On Sales Price

Visual Examples of Low & High Influence Variables On SalePrice

<u>Low Mean Variance</u> suggests Low Influence On SalePrice <u>High Mean Variance</u> suggests High Influence On SalePrice

Neighborhood Feature Engineering Reduced Multicollinearity And Improved Prediction Performance

Ames Neighborhoods by Average Sale Price

Neighborhood Ranking Dictionary Was Mapped To A New Column Then Dummified

```
neigh dict = {'StoneBr':'3',
                             'NridgHt':'3',
                            'NoRidge':'3',
                            'Veenker': '3'.
                            'Timber': '3',
                            'ClearCr':'3',
                            'Somerst': '3'.
                           'Crawfor':'2'.
                            'CollgCr':'2',
                            'SawyerW':'2',
                            'Blmngtn':'2',
                            'Greens':'2',
                            'NWAmes':'2',
                            'Gilbert':'1',
                            'Mitchel':'1'.
                            'NAmes':'1'.
                            'Blueste':'1',
                            'NPkVill':'1'.
                            'Sawyer':'1',
                            'Edwards':'0',
                            'BrkSide':'0',
                            'SWISU':'0',
                            'OldTown':'0'.
                            'IDOTRR':'0'.
                            'MeadowV':'0',
                            'BrDale':'0'}
```

3000 pt Reduction In RMSE

Source: Ames Housing Data

Gr Liv Area, Overall Quality, Age, Neighborhood Rank, Bathrooms, Total Sq Ft, Is_New Were Leading Features With Impactful Coefficients

Leading Features by Coefficient Lasso Ranking

Source: Ames Housing Data

Model Will Enable Accurate Pricing Estimates, And Could Facilitate Decision Making For Real Estate Agencies

Key Recommendation: Trial First, Then Place Into Production In Order To Drive Operational/Strategic Real Estate Decision Making

