	c4-3 · pd · ac T.P. : Description des signaux sonores.
Î Î	Nom :
	Classe / Groupe : Durée : min.

Ref	intitulé de la compétence(cycle4)	État			
	intitute de la competence(cycle4)		F	S	Т
A3	Mesurer des grandeurs physiques de manière directe ou indirecte.				
A4	Interpréter des résultats expérimentaux, en tirer des conclusions et les communiquer en argumentant.				
E1	Utiliser des outils d'acquisition et de traitement de données, de simulations et de modèles numériques.				

Objectifs

- 1. Établir le lien qualitatif entre hauteur et fréquence d'un son et son tracé sur oscillogramme.
- 2. Établir le lien qualitatif entre intensité d'un son et le tracé sur un oscillogramme.

Matériel et captures d'écran commentées.

Le matériel

Chaque groupe dispose:

- de deux tablettes ou smartphones mis à disposition.
- des logiciels signal generator et Tuner (visualisateur)

Signal Generator

Afin de vous familiariser avec le logiciel, voici une description visuelle de l'application « signal generator ».

Tuner

Afin de vous familiariser avec le logiciel, voici une description visuelle de l'application « Tuner ».

I Manipulations

Description. Placez le haut-parleur de la tablette A exécutant l'application signal generator contre le microphone de la tablette B exécutant l'application tuner. Réglez le volume (avec les boutons) de la tablette Suivez ensuite les consignes.

1^{re} manipulation. Réglez la tablette A de la façon suivante :

- son à moitié du maximum (boutons physiques)
- Fréquence F = 440,00 Hz
- forme du signal sur | o sin |
- intensité sonore réglée à -20 dB.

Changez ensuite la fréquence dans l'application signal generator et observez les changements dans l'application Tuner. Complétez le tableau qui suit avec vos mesures (au moins 5).

Table 1 – Mesures de la première manipulation.

Fréq. (Hz)	Hauteur (± aigu)	Description du tracé (oscillogramme)

2 ^e manipulation. Ré	eglez la tablette A de l	la façon suivante :		
— volume à la moit	ié du maximum (bout	tons physiques)		
— Fréquence $F = 4$	40,00 Hz			
— forme du signal s	sur osin			
— intensité sonore i	réglée à -20 dB.			
Changez l'intensité sono	ore à l'aide du curseur	. Notez ce qui se pas	sse dans l'oscillogr	amme dans les
pointillés qui suivent.				
Notes				
3 ^e manipulation. Ré	églez la tablette A de l	la façon suivante :		
— volume à la moit	ié du maximum (bout	tons physiques)		
— Fréquence $F=4$	40,00 Hz			
— forme du signal s	sur osin			
— intensité sonore i	réglée à -20 dB.			
Modifiez la distance ent	tre le micro de la tabl	lette B et le haut-pa	ırleur de la tablet	te A. Notez ce
qui se passe dans l'oscil	logramme dans les po	intillés qui suivent.		
Notes				

II Conclusion

En utilisant les résultats des trois manipulations, que pouvez-vous dire sur le lien entre hauteur d'un son, sa fréquence et son tracé sur un oscillogramme? Même chose avec l'intensité sonore du son et son tracé sur l'oscillogramme.

