Name:

7.2 Do Now: Linear graphs, isosceles triangles, dilations

1. (a) Graph and label the two equations. Mark their intersection as an ordered pair.

$$y = \frac{2}{3}x - 4$$
 $4x + 3y = 6$ (4 pts)

 $m_2 =$

(b) Find the slopes of the two lines.

(2 points)

$$m_1 =$$

(c) Why is it incorrect to write $m_1 = \frac{2}{3}x$?

(1 point)

(d) Are the lines parallel, perpendicular, or neither? Justify your answer with an equation or inequality using the slopes. (2 points)

2. Given isosceles $\triangle ABC$ with $\overline{AB} \cong \overline{BC}$.

(the diagram is not to scale)

- (a) Mark the congruent sides & angles of $\triangle ABC$. Circle True or False:
- (b) True False $\angle A \cong \angle B$
- (c) True False $\angle A \cong \angle C$
- (d) True False $\angle B \cong \angle C$
- (e) T F $m \angle A + m \angle B + m \angle C = 180$

3. Given isosceles $\triangle RSU$ with $\overline{RS} \cong \overline{RU}$.

(the diagram is not to scale)

(a) Mark the congruent sides & angles of $\triangle RSU$.

Circle True or False:

- (b) True False $\angle R \cong \angle RSU$
- (c) True False $\angle R \cong \angle U$
- (d) True False $\angle RSU \cong \angle U$
- (e) True False $\angle R \cong \angle TSU$

- (f) True False $\angle RSU \cong \angle TSU$
- (g) True False $m\angle RSU + m\angle TSU = 180$
- (h) True False $m\angle R + m\angle RSU + m\angle U = 180$

- 4. Given $\triangle ABC$ is isosceles but not equilateral with $\angle B \cong \angle C$. (not draw to scale)
 - (a) Mark the congruent sides & angles of $\triangle ABC$. Circle True or False:
 - (b) True False $\overline{AB} \cong \overline{BC}$

- 5. A(-1,1) is one endpoint of \overline{AB} . The segment's midpoint is M(3,2), as shown below.
 - (a) What translation maps $A(-1,1) \to M(3,2)$?

- (b) Find the other endpoint, B.
- 6. In the diagram below, \overline{AD} has endpoints with coordinates A(-2,5) and D(4,-4). What points B and C trisect \overline{AD} into three congruent segments? Mark and label them on the graph. State their coordinates.

7. A dilation centered at A maps $\triangle ABC \rightarrow \triangle ADE$. Given the sides of the preimage, $AC=6,\ BC=4,\ AB=8,$ and of DE=12 find the scale factor k and the lengths AD and AE. Then find CE and BD.

(c)
$$AE =$$

(d)
$$CE =$$

(e)
$$BD =$$

8. Given $\triangle ABP \sim \triangle JKP$ as shown below. $AB=9.6,\ AP=12.0,\ BP=6.3,$ and KP=12.6. Find JK.

