Solutions for High School Prog Contest - 2017

- 1. Mixing Dino Genes
- 2. Flipping Eggs
- 3. Chain Reaction
- 4. Primetime Investigation
- 5. In-Out Tour
- 6. Zipline to Savings
- 7. Everybody Run! (their code)
- 8. Clever Girl

1. Mixing Dino Genes

Record amount of Solution A in each dish

Amix = 1 (100% A) Bmix = 0 (0% A)

End of iteration 1

(Start of iteration 2)

Record amount of Solution A in each dish

Initialize

Record amount of Solution A in each dish

New amount of A = Bmix*B+Amix*C

New volume = B+C

New concentration = (Bmix*B+Amix*C)/(B+C)

Initialize

Record amount of Solution A in each dish

New amount of $A = Amix^*A + Bmix^*C$ New volume = A + CNew concentration = $(Amix^*A + Bmin^*C)/(A + C)$

2. Flipping Eggs

Step 1: make (circular) linked list

Step 4: print the first non-flipped egg ...and keep going

Step 2: remove a flipped egg

Step 3: remove a flipped egg

3. Mixing

Multiply by first numerator

$$15 = 3^{1}5^{1}$$

Divide by first denominator

$$363 = 3^1 11^2$$

multiply by second numerator

$$44 = 2^2 11^1$$

update prime factorization

keep going...

How to find primes? Described in the next problem

4. Primetime

But how do we find primes?

Sieve of Eratosthenes

Allocate list of booleans for all ints between 1 and (largest integer)/2

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21...

Remove all multiples of two

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21...

Remove all multiples of three

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21...

remove all multiples of 5... keep going...

5. In-Out Tour

Problem: Given a **start point** p_0 and a set of n **points** p_1 to p_n , compute the shortest tour that visits all the points, subject to the conditions that the tour starts and ends at p_0 , visits all points, and has two parts, left-to-right (**outbound**) and right-to-

5. In-Out Tour (Solution sketch)

- Let dist(j,i) be the direct distance from p_i to p_i.
- Let D(j,i) be the total length of the path from p_j , p_{j+1} , ..., p_i .
- Let M[i] = the minimum length of two paths from p_0 , one ending at p_i and the other at p_{i-1} (see figure below).
- Define M[i] recursively by "guessing" the last point p_j just prior to p_i . The other side of the path must visit p_{i+1} , ..., p_{i-1} . Thus:

6. Ziplines

...then, find largest STRONGLY CONNECTED COMPONENT (standard algorithm)

7. Everybody run

Divide 70 by 7

Write 70 = 7x, find the binary representation of x

Step 1: approximate x by largest power of 2

$$70 > 7*8 = 7*2^3$$

Step 2: calculate remainder

$$70 - 56 = 14$$

Step 3: divide remainder by largest power of 2

$$14 = 7*2$$

Step 4: combine quotients to get solution

$$8+2 = 10$$

Thanks! Questions?