Data Science Indy Meetup 10 August 2016

Workshop Preference Optimization

Solutions in Python/PuLP and XPRESS Optimization Suite

Alexandra Sullivan Wyndham Destination Network

Problem Introduction https://pixabay.com/en/traffic-sign-directory-skills-can-809006/

Gathering Data

Gathering Data

ID	Name	R Stats	Sim	APIs	Python	Viz	NLP
01	Alice	1	4	NI	2	NI	3
02	Bob	4	6	3	2	1	5

Decision Variables

X student, workshop

Binary variable that indicates whether the student is enrolled in the given workshop (1 = yes, 0 = no)

y workshop

Binary variable that indicates whether the given workshop is open or closed (1 = open, 0 = closed)

Objective

IDEAL WORLD

Everybody gets their first choice!

NEXT BEST THING

Assign everyone to their highest choice... given some constraints.

$$\underset{x,y}{\text{minimize}} \sum_{workshops} \sum_{students} preference \cdot x_{student,workshop}$$

Constraints – Total Workshops

We have six available workshops, but having all of these would be excessive given our 30-person department. Three workshops seemed like a good number to provide a smaller group feel without making too many people prepare material.

Translated into math:

Total workshops:
$$\sum_{workshops} y_{workshop} = 3$$

Only valid workshops: $x_{student,workshop} \le y_{workshop} \ \forall \ students, workshops$

Constraints – Min Students Per Workshop and Min Workshops Per Student

It would be silly to prepare a workshop for a group of two people, so we want a constraint to keep this from happening:

Min students per workshop:
$$\sum_{students} x_{student,workshop} \ge 7y_{workshop} \ \forall \ workshops$$

And we want to make sure we assign everybody to at least one workshop, so we assign a constraint for this:

Workshops per student:
$$\sum_{workshops} x_{student,workshop} = 1 \ \forall \ students$$

Full Formulation

Objective:

$$\underset{x,y}{\text{minimize}} \sum_{workshops} \sum_{students} preference \cdot x_{student,workshop}$$

Subject to:

(1) Binary variables:
$$x_{student,workshop}$$
, $y_{workshop}$ $\in \{0,1\} \ \forall \ students, workshops$
(2) Total workshops: $\sum_{workshops} y_{workshop} = 3$

(3) Workshops per student:
$$\sum_{workshops} x_{student,workshop} = 1 \ \forall \ students$$

(4) Min students per workshop:
$$\sum_{students} x_{student,workshop} \ge 7y_{workshop} \ \forall \ workshops$$

(5) Only valid workshops: $x_{student,workshop} \le y_{workshop} \ \forall \ students, workshops$

Data Cleaning

ID	Name	R Stats	Sim	APIs	Python	Viz	NLP
01	Alice	1	4	NI	2	Z	3
02	Bob	4	6	3	2	1	5

Original

ID	Name	R Stats	Sim	APIs	Python	Viz	NLP
01	Alice	1	4	100	2	100	3
02	Bob	4	6	3	2	1	5

Replace "Not Interested"

ID	Name	R Stats	Sim	APIs	Python	Viz	NLP
01	Alice	1	4	0	2	100	3
02	Bob	4	6	3	2	1	5

Instructor Interest

Solving With Python/PuLP – Demo

PuLP is an open-source Python package that can be used with several open-source and commercial optimization software options

Solving With XPRESS – Demo

XPRESS Optimization Suite is a powerful commercial optimization software from FICO

Optimization Software Comparison

Analysis of commercial and free and open source solvers for linear optimization problems (B. Meindl and M. Templ, 2012)

Open source:

- GLPK
- LP SOLVE
- CLP/CBC (Coin-OR, default for PuLP(?))

Free for non-commercial use:

- SoPlex
- SCIP
 - -C = CPLEX solver
 - -L = CLP solver
 - -S = SoPlex solver

Commercial:

- CPLEX
- XPRESS Optimization Suite
- Gurobi

Real-World Use Case: Price Optimization for Hotels

Formulation:

- Data inputs: supply, demand, and price response (estimates/forecasts)
- Business constraints: for example, size ordering or minimum prices
- Decision variable: price for each SKU
- Objective: maximize revenue!

Millions of combinations, daily changes to inputs – how do we solve this efficiently and easily?

Optimization software!

Resources

- <u>Python Hosted's PuLP Sudoku Example</u> (how to use PuLP)
- <u>Julian Hall's Mosel (XPRESS) Documentation Summary</u> (how to use XPRESS)
- Wikipedia List of Optimization Software (other software options)
- <u>Pricing and Revenue Optimization by Robert Phillips</u> (how to use optimization in pricing)
- Analysis of commercial and free and open source solvers for linear optimization problems (B. Meindl and M. Templ, 2012)
- <u>PuzzlOR</u> (source for OR puzzles for your next PuLP project ⁽²⁾)