Московский государственный технический университет им. Н.Э. Баумана.

Факультет «Информатика и управление»

Кафедра ИУ5. Курс «Методы машинного обучения»

Отчет по лабораторной работе №1

«Создание "истории о данных"»

Выполнила: Проверил:

студентка группы ИУ5-25М преподаватель каф. ИУ5

Зозуля О.А. Гапанюк Юрий Евгеньевич

Подпись и дата: Подпись и дата:

ЗАДАНИЕ

• Выбрать набор данных (датасет). Вы можете найти список свободно распространяемых датасетов здесь.

Для лабораторных работ не рекомендуется выбирать датасеты очень большого размера.

- Создать "историю о данных" в виде юпитер-ноутбука, с учетом следующих требований:
- 1. История должна содержать не менее 5 шагов (где 5 рекомендуемое количество шагов). Каждый шаг содержит график и его текстовую интерпретацию.
- 2. На каждом шаге наряду с удачным итоговым графиком рекомендуется в юпитер-ноутбуке оставлять результаты предварительных "неудачных" графиков.
- 3. Не рекомендуется повторять виды графиков, желательно создать 5 графиков различных видов.
- 4. Выбор графиков должен быть обоснован использованием методологии data-to-viz. Рекомендуется учитывать типичные ошибки построения выбранного вида графика по методологии data-to-viz. Если методология Вами отвергается, то просьба обосновать Ваше решение по выбору графика.
- 5. История должна содержать итоговые выводы. В реальных "историях о данных" именно эти выводы представляют собой основную ценность для предприятия.
- Сформировать отчет и разместить его в своем репозитории на github.
- 1. Создать "историю о данных" в виде юпитер-ноутбука, с учетом следующих требований:

```
2. import matplotlib
   from mpl_toolkits import mplot3d
   import pandas as pd
   from matplotlib import pyplot as plt
   import numpy as np
   import seaborn as sns
   import os
```

```
import pandas as pd
from matplotlib import pyplot as plt
import numpy as np
import os
path=os.environ["userprofile"]+"\\"+".atom"+"\\"+FileName
print(path)
```

```
data = pd.read_csv(path)
print(data)
```

```
path=os. environ["userprofile"]+"\\"+".atom"+"\\"+"Transactions.csv"
print(path)
```

C:\Users\657432343536\.atom\Transactions.csv

```
data = pd.read_csv(path)
print(data)
```

```
In [1]: import pandas as pd
       import matplotlib as plt
       import numpy as np
       import os
       FileName="Transactions.csv"
In [2]: path=os.environ["userprofile"]+"\\"+".atom"+"\\"+FileName
       C:\Users\657432343536\.atom\Transactions.csv
In [3]: data = pd.read_csv(path)
       print(data)
            Date_and_time_of_unloading Product_code Amount Sale_amount \
                  2020-01-01 23:00:00 144 1.0 280.00
2020-01-01 23:00:00 209 2.0 545.73
       1
                                          213 2.0 1265.05
217 1.0 630.00
222 2.0 1104.75
                  2020-01-01 23:00:00
       3
                  2020-01-01 23:00:00
                 2020-01-01 23:00:00
       4
                . . .
       50079
       50080
                                          5318 2.0
                                                            572.50
       50081
                 2022-09-18 15:00:00
                                                            300.00
       50082
                  2022-09-18 15:00:00
                                           5321 1.0
       50083
                  2022-09-18 15:00:00
                                           5322 2.0
                                                             600.00
             Discount_amount Profit Percentage_markup Discount_percentage
                      NaN 155.00 124.00
       0
                     294.27 75.73
                                              16.11
                                                                 35.03
                     34.95 653.05
                                            106.71
       2
                                                                  2.69
                     70.00 220.50
195.25 393.75
                                             53.85
55.38
       3
                                                                 10.00
       4
                                                                 15.02
                                          140.51
131.65
                      ...
                    104.05 1095.95
       50079
                                                                  5.26
       50080
                    104.05 315.95
                                                                 15.77
                    87.50 312.50
NaN 180.00
       50081
                                            120.19
                                                                 13.26
       50082
                                              150.00
                                                                   NaN
                       NaN 340.00
                                             130.77
       50083
                                                                   NaN
       [50084 rows x 8 columns]
```

Linear regression

Рисунок 1. Зависимость кода продукта от суммы продажи

data.plot.area()

Area plot

Рисунок 2. Правильный график Area plot

Рисунок 3. Неправильный график Area plot от суммы скидки

FILL BETWEEN

plt.fill_between(data["Product_code"][:50], data["Profit"][:50])
plt.show()

Рисунок 4. Зависимость кода продукта от прибыли

Рисунок 5. Зависимость Discount_percentage от прибыли

SCATTER PLOT

Рисунок 5. Зависимость кода продукта от прибыли

Далее я буду пользоваться библиотекой seaborn

Рисунок 6. Загрузка новой библиотеки

HEATMAP

Рисунок 7. Тепловая карта датасета

Displot

sns.distplot(data["Profit"], hist=True, kde=False, rug=False

Рисунок 8. Тепловая карта датасета

Violin plot

zuh=[data["Profit"][:50],data["Sale_amount"][:50],data["Discount_amount"][:50]]
sns.violinplot(zuh)

Рисунок 9. Скрипичный график зависимости прибыли

BUBBLE PLOT

sns.scatterplot(data=data[:500], legend=False, sizes=(20, 2000))

Рисунок 10. Пузырьковая диаграмма