

Network Controller Overview

24/06/2014, Madrid Luis M. Contreras Telefónica

Outline

- Objective and context for the Network Controller
- Component overview
- Status
- Next steps

Outline

- Objective and context for the Network Controller
- Component overview
- Status
- Next steps

Objective

- Infrastructure adaptation mechanisms to provide unified control and access to network components of the infrastructure
- Support of dynamic interconnection across distributed pilot sites to perform large-scale tests of FI applications
 - ensuring that network performance parameters are suitable to support access to services with a controlled quality level, extended seamlessly across infrastructures
 - end-to-end coverage to experimentation deployments

Context

- No possibility of directly configuring NRENs production nodes / networks
- No possibility of configuring Data Center's CE routers (natural Border Routers)
- Then a new element (or group of elements) is deployed in between allowing for network control and management capabilities
- Such a node will be a XIFI demarcation point for connectivity service

XIFI Connectivity Service XIFI

Stitching

XIFI Connectivity Service XIFI

Scenarios of Integration

Case B

Case C

Outline

- Objective and context for the Network Controller
- Component overview
- Status
- Next steps

XIFI Network Controller

ABNO Framework

- ABNO stands for Application-Based Network Operations
- Proposal being defined in the IETF
 - <draft-farrkingel-pce-abno-architecture-07>
- Framework based on existing protocols
- Facilitates on-demand and application-specific reservation of network connectivity, reliability, and resources

OpenNaaS

- OpenNaaS to provide the <u>service awareness</u> of the XIFI Network Controller
 - Internal DB structures for storing service information pointing to local deployments in each DC
- Keep the association between local resources in the DCs
 - Net_IDs, MAC addresses, ports, OVS_IDs, IP addresses
 - Region_ID to be considered in the final API
- Facilitate the modification and deletion of the service
- Future developments could integrate this information with monitoring capabilities to offer a view of service(/customer) affection

Implementation

Data Center Components

Outline

- Objective and context for the Network Controller
- Component overview
- Status
- Next steps

Where we are now

- Integration of the Network Controller with Havana
 - Adaptation of the Neutron ML2 plug-in
- Preliminary integration with RYU controller
 - RYU Manager 3.8
 - Adaptation of the Provisioning Manager component to work with RYU
 - Some problems found with message types and sizes
 - Some messages received by RYU controller from the OF nodes triggered exceptions producing malfunction
 - Infinite while loop entered when processing TLVs

Where we are now

- On-going integration with OpenNaaS and PaaS
 - Integration between ABNO part and PaaS was intended for the M12 demo
 - Misalignments were raised during this integration
 - PaaS requirements are not fully covered by the controller at this time (e.g., access to metadata)
 - New strategy: joint integration with OpenNaaS and PaaS to ensure alignment on requirements and parameters among the components
 - An stable mock-up will be setup at Telefónica labs premises for ensuring this integration

Where we are now

- On-going integration with OpenNaaS and PaaS
 - Review of the workflows to ensure consistency:
 Creation / Modification / Deletion

Additional work

- First experience with OpenDayLight playing the role of local SDN controller
 - Creation of a specific ODL dispatcher to retrieve the information about the topology, including nodes and links information.
 - First stages in the development of a parser to push flows to the switches using the ODL controller.
 - ODL seen as a potential evolution for the controller
 - XIFI outcomes could be contributed to ODL project in the future

Outline

- Objective and context for the Network Controller
- Component overview
- Status
- Next steps

Next steps

- Work on Neutron L3 agent for Havana
- Integration with the Geant MD-VPN overlay connecting the XIFI DCs
 - Functional definition, service requirements and PoC proposal
 - Pending to start from last meeting → URGENT
- Integration with the OFERTIE use case
 - Exposition to OFERTIE components of the QoS capabilities of the local SDN controllers
- Transition to Ice House

Next steps

- Resilience / reliability
 - Define resilience methods against network events
 - Nodes outage (either OVS or physical nodes)
 - Local SDN Controller outage
 - XIFI Network Controller outage
 - Disaster recovery
 - Workflow required for reliability?
 - To check potential failure cases
 - To decide how to implement / include the necessary logic to recover the network connectivity

Open points

- Deployment plan
 - Master node for the XIFI Network Controller
 - Integration on the Administration Network linking all the components
 - OpenStack instances, local SDN controllers, OF-switches, etc

Guidelines to be released XIFI

- Operational guidelines necessary to introduce XIFI network control
 - Introduction of the XIFI Network Controller in the federation nodes
 - How to make the Network Controller work
 - Master node(s) and normal nodes
 - Link to external connectivity
 - Roll-back
 - Introduction of new nodes into the federation
 - Declaration of new nodes to be controlled

Evolution of the controller XIFIS

- Distributed architecture
 - Deployment in each DC of ABNO and OpenNaaS components for local connectivity
 - Integration with central entity for e2e services
 - Reliable design for prevent controller outages
- Consideration of new functionalities offered by OpenStack (Networking API v2.0)
 - VPNaaS, experimental for Havana release
 - Heat component (orchestration capabilities)
- OpenDayLight

Thank you for your attention!

Acknowledgments:

The research conducted by XIFI receives funding from the European Commission FP7 under grant agreement N°: 604590

XIFI Network Controller

Demo Implementation

Physical set-up

