

Your First RecSys

Даниил Потапов

Руководитель группы персонализации и рекомендательных систем MTC BigData

Валидация, метрики и бейзлайны

MTC

План

- Валидация
- Метрики
- Бейзлайны

Основная цель валидации - оценить качество модели перед её использованием

Поэтому процесс валидации должен максимально точно воспроизводить условия, в которых модель будет использоваться.

Что хотим от модели?

- Предсказанное значение для пары пользователь-объект
- Ранжирование объектов для пользователя

Как будет использоваться модель?

- Рекомендации будут считаться раз в какой-то период
- Онлайн-рекомендации

Какие технические ограничения?

- Время на обучение и время на построение рекомендаций
- Доступность данных в онлайн-режиме

Какие есть особенности у задачи?

- Рекомендуем ли для пользователя объекты, с которым он уже взаимодействовал
 - В контентных системах (книги, фильмы и тд) скорее всего нет
 - В продуктовом ритейле, наоборот, вероятнее всего да
- Cold start как много появится пользователей или объектов, для которых не известна история по взаимодействиям
- Как много взаимодействий по пользователям есть в данных

Подходы для разбиения данных на train/test:

- Случайное
- В хронологическом порядке
- По временным периодам

Original Data

Training Set

Х	Х		MASK	
		Х		MASK
MASK		Х		
	MASK			Х
		Х	MASK	

Test Set

Случайное разбиение

- Leave one out
 - Для test оставляем одно случайное взаимодействие
- Leave P out
 - Для test оставляем Р случайных взаимодействий

Методы

- from sklearn.model_selection import train_test_split, LeaveOneOut,
 LeavePOut
- pandas.DataFrame.sample
- pandas.core.groupby.DataFrameGroupBy.sample

Хронологическое разбиение - оставляем в test только последние взаимодействия по пользователям или объектам

- Last one out
- Last P out

Подход

- 1. pandas.DataFrame.sort_values(by='date_column')
- 2. pandas.core.groupby.DataFrameGroupBy
 - o last/tail
 - first/head
 - \circ nth

Разбиение по времени - оставляем в test только конкретный временной промежуток, например 1 день или 1 неделя.

Пример

- 1. Выбрать две даты
 - o train_max_date ограничение для train
 - o test_max_date ограничение для test
- 2. На основе дат выделить train/test
 - train = df[df['date_column'] < train_max_date]
 test = df[(df['date_column'] >= train_max_date))

При генерации надо учитывать также cold start и warm start сценарии:

- Cold start это пользователи и объекты из test, для которых не известны взаимодействия
- Warm start это пользователи и объекты из test, которых не было в train, но для которых на момент построения рекомендаций известны взаимодействия

Метрики в рекомендательных системах можно разделить на следующие группы

- Регрессионные
- Классификационные
- Ранжирующие

Правильные метки мы можем представить в виде pandas. Dataframe со следующими столбцами:

- user_id ID пользователя
- item_id ID объекта
- value оценка взаимодействия
 - опционально, может и не быть, если мы, например, за взаимодействие берем просто клик или факт покупки

Соответственно, рекомендации/предсказания в следующем:

- user_id ID пользователя
- item id ID объекта
- value предсказанная оценка взаимодействия
 - о Численная оценка, например, рейтинг
 - о Позиция, если мы ранжируем контент

Чтобы соотнести правильные ответы с предсказаниями, мы можем их объединить через left join

Регрессионные метрики применяются для оценки качества предсказанных моделью значений

• Mean Absolute Error
$$MAE = \frac{1}{N} \sum_{i=1}^{N} |y_{true} - y_{pred}|$$

• Mean Squared Error
$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y_{true} - y_{pred})^2$$

• Rooted Mean Squared Error
$$_{RMSE} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (y_{true} - y_{pred})^2}$$

	user_id	item_id	value
0	Аня	Мастер и Маргарита	4
1	Боря	451° по Фаренгейту	5
2	Вася	Зеленая миля	3
3	Вася	Рита Хейуорт и спасение из Шоушенка	5

	user_id	item_id	value
0	Аня	Мастер и Маргарита	3.28
1	Боря	451° по Фаренгейту	3.50
2	Вася	Зеленая миля	4.06
3	Вася	Рита Хейуорт и спасение из Шоушенка	4.73

		value_true	value_recs	MAE	MSE
user_id	item_id				
Аня	Мастер и Маргарита	4	3.28	0.72	0.5184
Боря	451° по Фаренгейту	5	3.50	1.50	2.2500
Вася	Зеленая миля	3	4.06	1.06	1.1236
	Рита Хейуорт и спасение из Шоушенка	5	4.73	0.27	0.0729

Классификационные метрики оценивают качество топ-N рекомендаций с точки зрения бинарной классификации. Все считается на основе 4 базовых случаев:

- True positive (TP) модель рекомендовала объект, с которым пользователь провзаимодействовал
- False positive (FP) модель рекомендовала объект, с которым пользователь не провзаимодействовал
- True negative (TN) модель не рекомендовала объект, с которым пользователь не провзаимодействовал
- False negative (FN) модель не рекомендовала объект, с которым пользователь провзаимодействовал

		True condit				
	Total population	Condition positive	Condition negative	Prevalence = Σ Total population Σ True positi		ACC) = Σ True negative pulation
condition	Predicted condition positive	True positive	False positive, Type I error	Positive predictive value (PPV), Precision = Σ True positive Σ Predicted condition positive	$\frac{False\ discovery\ rate}{\Sigma\ False\ positive} (FDR) = \\ \Sigma\ Predicted\ condition\ positive$	
Predicted	Predicted condition negative	False negative, Type II error	True negative	False omission rate (FOR) = Σ False negative Σ Predicted condition negative	Negative predictive value (NPV) = Σ True negative Σ Predicted condition negative	
		True positive rate (TPR), Recall, Sensitivity, probability of detection, $ Power = \frac{\Sigma \ True \ positive}{\Sigma \ Condition \ positive} $	False positive rate (FPR), Fall-out, probability of false alarm $= \frac{\Sigma \text{ False positive}}{\Sigma \text{ Condition negative}}$	Positive likelihood ratio (LR+) = TPR FPR	Diagnostic odds ratio	F ₁ score =
		False negative rate (FNR), Miss rate = $\frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}}$	Specificity (SPC), Selectivity, True negative rate (TNR) $= \frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}}$	Negative likelihood ratio (LR-) = FNR TNR	$(DOR) = \frac{LR+}{LR-}$	2 · Precision · Recall Precision + Recall

Наиболее популярным метриками являются

- Precision@K
 - Формула: TP / (TP + FP)
 - Можно заметить, что под positives мы понимаем рекомендованные объекты, то есть наш топ-К, значит TP + FP = K
 - Итоговая формула: ТР / К
 - Интерпретируется как доля релевантных рекомендаций.
- Recall@K
 - Формула: TP / (TP + FN)
 - TP + FN это количество известных релевантных объектов для пользователя
 - Интерпретируется как доля релевантных объектов, попавших в рекомендации

	user_id	item_id
0	Аня	Мастер и Маргарита
1	Боря	451° по Фаренгейту
2	Вася	Зеленая миля
3	Вася	Рита Хейуорт и спасение из Шоушенка

	user_id	item_id	rank
0	Аня	Отверженные	1
1	Аня	Двенадцать стульев	2
2	Аня	Герои нашего времени	3
3	Боря	451° по Фаренгейту	1
4	Боря	1984	2
5	Боря	О дивный новый мир	3
6	Вася	Десять негритят	1
7	Вася	Искра жизни	2
8	Вася	Зеленая миля	3

		rank
user_id	item_id	
Аня	Мастер и Маргарита	NaN
Боря	451° по Фаренгейту	1.0
Вася	Зеленая миля	3.0
	Рита Хейуорт и спасение из Шоушенка	NaN

		rank			rank	hit@2	hit@2/2
user_id	item_id		user_id	item_id			
Аня	Мастер и Маргарита	NaN	Аня	Мастер и Маргарита	NaN	False	0.0
Боря	451° по Фаренгейту	1.0	Боря	451° по Фаренгейту	1.0	True	0.5
Вася	Зеленая миля	3.0	Вася	Зеленая миля	3.0	False	0.0
	Рита Хейуорт и спасение из Шоушенка	NaN		Рита Хейуорт и спасение из Шоушенка	NaN	False	0.0

```
Получение True positives для k=2 df_merged['hit@2'] = df_merged['rank'] <= 2 df_merged['hit@2/2'] = df_merged['hit@2'] / 2
Получение Precision@2 df_merged.groupby(level=0)['hit@2/2'].sum().mean() == 0.1666
Ho groupby по user_id делать не обязательно users_count = df_merged.index.get_level_values('user_id').nunique() df_merged['hit@2/2'].sum() / users_count == 0.1666
```


Классификационные метрики уже неплохо показывают качество наших топ-К рекомендаций, но они учитывают только попадания. А мы также хотим, чтобы наши релевантные рекомендации находились как можно выше.

Здесь нам и помогут ранжирующие метрики, которые будут оценивать наши попадания, но с весами:

- Mean Reciprocal Rank
- Mean Average Precision
- Normalized Discounted Cumulative Gain

Mean Reciprocal Rank - средний обратный ранг

$$MRR = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{rank_i}$$

N - кол-во пользователей, $rank_i$ - позиция первой релевантной рекомендации для пользователя і

Причем если для пользователя мы не рекомендовали ничего релевантного, то дробь $\frac{1}{rank}$ зануляется

Mean Average Precision - средняя точность по пользователям

$$MAP@K = \frac{1}{N} \sum_{i=1}^{N} AP@K(user_i)$$

$$AP@K(user) = \frac{1}{c_{user}} \sum_{i=1}^{K} Precision@i * rel_i$$

N - кол-во пользователей c_{user} - кол-во релевантных объектов у пользователя rel_i - релевантность і-ой рекомендации

Normalized Discounted Cumulative Gain - взвешенная точность по пользователям

$$CG@K = \sum_{i=1}^{K} rel_i$$
 rel_i - вес і-ой позиции, 0 если не релевантна

$$NDCG@K = \frac{DCG@K}{IDCG@K}$$

Бейзлайны

Самые популярный бейзлайн - построить популярное :)

Обычно, гиперпараметром у такой модели является глубина истории, за которую считается популярность объектов

Также можно добавлять дополнительные фичи, по которым учитывать популярное:

- Популярное по возрастным или гендерным группам
- Популярное по жанрам или категориям
- Если данные последовательны, то можно считать популярность относительно предыдущего объекта, с которым пользователь провзаимодействовал

Бейзлайны

```
import pandas as pd
from itertools import islice, cycle
class PopularRecommender():
   def __init__(self, max_K=100, days=30, item_column='item_id', dt_column='date'):
        self.max_K = max_K
        self.days = days
        self.item_column = item_column
        self.dt_column = dt_column
        self.recommendations = []
   def fit(self, df):
       min_date = df[self.dt_column].max().normalize() - pd.DateOffset(days=self.days)
        dt_mask = df[self.dt_column] > min_date
        self.recommendations = df.loc[dt_mask, self.item_column].value_counts().head(self.max_K).index.values
   def recommend(self, users=None, N=10):
        recs = self.recommendations[:N]
        if users is None:
            return recs
        else:
            return list(islice(cycle([recs]), len(users)))
```


Попрактиковаться самим можно здесь:

https://www.kaggle.com/sharthz23/metrics-validation-strategies-and-baselines

Вопросы можно задавать как на самом kaggle, так и в

▼ Telegram чате курса

sharthZ23