Лекция №1

Технологии и методы проектирования вычислительных модулей

Особенности развития аппаратно-программных платформ вычислительной техники

Бычков Игнат Николаевич

МФТИ / МИРЭА

Москва, февраль 2024 г.

Требования к аппаратно-программной платформе

Аппаратно-программная платформа — совокупность технических и программных решений на основе сложнофункциональных микросхем процессоров и контроллеров с оригинальной микроархитектурой (*Определение в отчетах Всемирного банка, где производители платформ — только компании развитых стран*).

Варианты для применения в РФ до 2030

(АРМ, Эльбрус, RISC V)

Необходимым является наличие процессов разработки и изготовления унифицированных модулей, процессов разработки, изготовления и поддержки жизненного цикла версий средств защиты информации, общего и общесистемного специального программного обеспечения, включая системы программирования (компиляторы, трансляторы, отладчики, и т.д).

- 1. ОТТ к единому типоряду отечественных АПП
- 2. ОТТ к ОПО и ОСПО общего назначения

Развитие ЦП для СВТ на пример процессоров Эльбрус

микропроцессоры эльбрус

Операционные системы (ОПО и ОСПО)

MPOCЛ ДП-модель — мандатная сущностно-ролевая ДП-модель в Astra Linux SE

Дискреционно-мандатная с периодическим контролем целостности (на основе SELINUX)

Транзакционная модель (на основе SELINUX)

Вычислительные модули (Серверы и АРМ / БЦВМ)

Современные интерфейсы для СВТ (к 2030 году)

Наименование	Новейший стандарт (дата)	Область применения	
Контроллер памяти DDR (double data rate)	JEDEC DDR5 (2016)	Микропроцессоры, сопроцессоры	
Контроллер памяти HMC (hybrid memory cube)/HBM	HMC 2.1 (2014) HBM 3 (2016)	Микропроцессоры и GPU (в т.ч. для суперкомпьютеров)	
Контроллеры интерфейса PCI Express	PCIe 6.0 (2021)	Микропроцессоры, контроллеры и мосты для периферийных интерфейсов	
Контроллер интерфейса CEI (Common Electrical Interface)	CEI 3.1 (2016)	Микропроцессоры, сопроцессоры, оптические приемопередатчики	
Контроллер интерфейса USB	USB4 (2019)	Контроллеры периферийных интерфейсов	
Контроллер передачи изображения и звука HDMI	HDMI 2.1 (2017)	Гетерогенные процессоры с ядрами обработки графической информации	
Контроллер передачи изображения DisplayPort	DisplayPort 2.0 8K (2018)	Гетерогенные процессоры с ядрами обработки графической информации	
Контроллер системы позиционирования ГЛОНАСС	ГЛОНАСС ИКД 5.1 (2008)	Контроллеры периферийных интерфейсов, системы позиционирования	
Контроллер интерфейса беспроводной связи ближнего диапазона («Wi-Fi»)	802.11g (2012)	Маршрутизаторы, контроллеры периферийных интерфейсов, автономные системы	
Контроллер интерфейса беспроводной связи GSM	5G/IMT-2020 (2020)	Контроллеры периферийных интерфейсов, автономные системы	
Контроллер интерфейса Ethernet	IEEE 802.3ba (2008)	Сетевые карты, маршрутизаторы, контроллеры периферийных интерфейсов	

МУЕНИ 🔁

Средства вычислительно техники (Серверы и АРМ / БЦВМ)

Средства защиты информации

Запуск бинарным транслятором уровня приложения (сигнатуры уникальные в кодах «Эльбрус» v3,4,5)

Сборка компилятором С/С++ (сигнатуры уникальные в кодах «Эльбрус» v3,4,5)

Объединение сигнатур

ЗМНИ, САВЗ, АПМДЗ,

СКЗИ, СОА

Средства виртуализации

Программный продукт	vSphere 6.7	RHEV 4.3
Производитель	VMware	Red Hat
Аппаратный гипервизор	ESXi	KVM
Количество ВМ на гипервизоре	1024	250
Количество [виртуальных] ядер/потоков	768	768
Количество [виртуальных] ядер/потоков в 1-й ВМ	256	384
Оперативная память гипервизора, Тб	16	12
Оперативная память на 1 ВМ, Тб	6	4
Средство управления гипервизором	vCenter	Red Hat Virtual Manager
Число управляемых ВМ	35000	4000
Число управляемых гипервизоров	7000	400
Таблица 1		

Программный продукт	vSphere 6.7	ПК «Брест»
Производитель	VMware	РусБИТех
Аппаратный гипервизор	ESXi	KVM
Средство управления гипервизором	vCenter	Virtual Manager
Стоимость		
для 6 процессоров	\$576,96 ¹	
OC CH + 25 BM	_	380 000² руб.
дополнительные 25 ВМ	_	150 000 руб.
тех. поддержка на 1 год		~ 100 000 руб.
СЗИ НСД vGate Standard	389 075 руб.	0
СЗИ НСД vGate Enterprise	533 075 руб.	0
СЗИ НСД vGate Enterprise Plus	857075 руб.	0
¹ Включает техническую поддержку на 1 год, сред- ство управления vCenter и работу 3-х серверов до 2-х процессоров на каждом	² В стоимость входит ОС СН Astra Linux 1.6 ФСТЭК. Отдельно она стоит 24900 руб. + техническая под- держка для сервера на год 62100 руб.	

Таблица 2

Продукты виртуализации разработчики ОС (ОПО) не развивают сами, а пользуются результатами консорциума, включающий в себя IBM, RedHat, Intel, HP и другие компании. И в то время как последние вкладывают средства для увеличения производительности и оптимизации в работе виртуальной инфраструктуры, российским разработчикам на это ресурсов не хватает. И если они могут обеспечить работу новой версии в защищённом исполнении ОС, то нет необходимости вкладывать деньги в пересертификацию новых средств виртуализации на основе KVM.

Для сведений, содержащих ГТ, альтернативы KVM нет!.

Стр. 9 / 15 2024 🗾 ИНЭУІ

Пример оценки технических решений (эффективность инноваций)

Организация работ:

- Полное финансирование (ГОЗ);
- Спрос -> Ассоциации и консорциумы (предприятия) -> ПП 1346, 2136 и т.д.(субсидии) -> вычисл. техника и телеком. оборудование

Стандарты по созданию СВТ для платформ

International Organization for Standardization (MCO / ISO)

Международная электротехническая комиссия (МЭК / IEC)

Electronic Industries Alliance (EIA) — Альянс отраслей электронной промышленности. Расположенная в США профессиональная организация, разрабатывающая электрические и функциональные стандарты. До октября 1997 г. называлась Electronic Industries Association.

Проект Open Compute Project (OCP), предполагает создание открытых стандартов и архитектур оборудования для построения энергоэффективных и экономичных ЦОД (инициатор Facebook, 2011).

Исследование решений по организации стоек, системе питания и охлаждения в стойке, размещении серверов, систем хранения данных и маршрутизаторов/коммутаторов.

Перспективные решения в виде серверов на кристалле и интеграции блоков питания с ИБП.

Конструкторско-технологические решения (МикроЦОД)

Решения в рамках Open Compute Project (OCP) для построения энергоэффективных и экономичных ЦОД (инициатор Facebook,2011) До 2025 года микроЦОДы с 19" стойками остаются популярными!

МикроЦОД решает задачу размещения и обеспечения необходимых условий для ИТ-оборудования в любом неподготовленном помещении — в цехе, на складе, коридоре, офисном помещении. Оснащается системой мониторинга и удалённым контролем состояния инженерных систем и окружающей среды, а также управлением питанием нагрузки.

Резервирование питания Охлаждение Пожаротушение Диагностика

Процессы разработки для развития платформы

- проверки соответствия моделей
- А- тесты проверки архитектуры (AVS)
- Б автономные и направленные тесты устройств
- C тесты через JTAG с использованием встроенных анализаторов
- Д анализ/расчеты временных характеристик, мощности, напряжений и т.д.
- Е тесты и анализ данных от встроенного диагностического оборудования (датчиков температур, напряжений в кристалле и токов потребления стенда и т.д.)

Примеры средств разработки и двоичной трансляции

Компилятор C/C++/Fortran

Собственная разработка – 2млн строк – 20+ лет

Максимальное приближение к дсс по диалекту => сборка

всего дистрибутива linux

Особая функция – обеспечение распараллеливания на

уровне инструкций => производительности кода

Виртуальная машина Java

JIT-компилятор собственной разработки

Соответствие стандарту Java 8

Виртуальная машина .NET Core, язык С#; машина Mono

Интерпретируемые языки JavaScript (SpiderMonkey, V8), Python, perl, ...

Освоена технология двоичной совместимости с использованием динамической компиляции горячих регионов кода. Два транслятора с большим перекрытием по исходным кодам (1млн строк) собственной разработки:

Уровня системы – lintel

Уровня приложений – rtc

Три уровня оптимизации:

- 1 уровень, интерпретатор: 80clk/ инструкцию x86
- 2 уровень, шаблонный транслятор: 6clk + [1500clk]
- 3 уровень, быстрый оптимизатор: 2clk + [12000clk]
- 4 уровень, оптимизатор: 1clk + [800000clk]

Имеется аппаратная поддержка для обеспечения приемлемой производительности.

Спасибо за внимание!