Question bank for first internal

Part-1

A. Evaluate the following integrals.

1.
$$\int_0^1 \int_0^y e^{\frac{x}{y}} dx dy$$
. 2. $\int_0^1 \int_x^{\sqrt{x}} (x^2 + y^2) dy dx$.

3.
$$\int_0^1 \int_0^{\sqrt{1+x^2}} \frac{dydx}{1+x^2+y^2} \ .$$

- 4. $\iint xy(x+y) dxdy$ over the area between $y=x^2$ and y=x.
- 5. Evaluate by changing the order of integration

i)
$$\int_0^\infty \int_x^\infty \frac{e^{-y}}{y} \, dy \, dx$$
. ii) $\int_0^3 \int_1^{\sqrt{4-y}} (x+y) \, dx dy$. iii) $\int_0^1 \int_x^{\sqrt{x}} xy \, dy \, dx$. iv) $\int_0^a \int_y^a \frac{x dx dy}{x^2 + y^2}$. v) $\int_0^1 \int_{x^2}^{2-x} xy \, dy \, dx$.

6. Evaluate by changing in to polar form.

i)
$$\int_0^\infty \int_0^\infty e^{-(x^2+y^2)} dx \, dy$$
 ii) $\int_0^1 \int_0^{\sqrt{1-y^2}} (x^2+y^2) dx \, dy$ iii) $\int_0^2 \int_0^{\sqrt{2x-x^2}} \frac{x dy dx}{x^2+y^2}$.

В

1. Evaluate the following triple integrals.

i.
$$\int_0^1 \int_{y^2}^1 \int_0^{1-x} x dz dx dy$$
 .
 ii. $\int_0^a \int_0^x \int_0^{x+y} e^{x+y+z} dx dy dz$.
 iii. $\int_0^c \int_{-b}^b \int_{-a}^a (x^2+y^2+z^2) dz dy dx$.
 iv. $\int_0^1 \int_0^{\sqrt{1-x^2}} \int_0^{\sqrt{1-x^2-y^2}} xyz dz dy dx$.
 v. $\int_{-1}^1 \int_0^z \int_{x-z}^{x+z} (x+y+z) dx dy dz$.

- 2. Find the area between the parabolas $y^2 = 4ax$ and $x^2 = 4ay$ by double integration.
- 3. Find the area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{h^2} = 1$ by double integration.
- 4. Find the area enclosed by the curve $r = a(1 + \cos \theta)$ above the initial line.
- 5. Find the volume of the tetrahedron bounded by the plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ and the coordinate planes, using double integration.
- 6. Calculate the volume of the solid bounded by the planes $x=0,\ y=0,\ x+y+z=1,\ and\ z=0.$

С

1. Prove that
$$\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$$
.

- 2. Define Beta, gamma functions, and prove that $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$.
- 3. Prove that $\int_0^{\frac{\pi}{2}} \sqrt{\sin \theta} d\theta \times \int_0^{\frac{\pi}{2}} \frac{1}{\sqrt{\sin \theta}} d\theta = \pi$.
- 4. Evaluate $\int_0^1 x^5 (1-x^3)^{10} dx$ using Beta gamma functions.
- 5. Evaluate $\int_0^\infty e^{-4x} x^{3/2} dx$ using gamma function

Part-2

Α

- 1. Prove that $curlgrad\emptyset = 0$.
- 2. Prove that divcurl F = 0.
- 3. Find the unit normal vector to the surface $x^3 + y^3 + 3xyz = 3$ at the point (1, 2, -1).
- 4. Find the directional derivative of $\emptyset = x^2yz + 4xz^2$ at the point (1, -2, -1) in the direction of 2i j 2k.
- 5. Prove that $div(\emptyset F) = grad\emptyset \circ F + \emptyset divF$.
- 6. Calculate the angle between the normals to the surface $xy = z^2$ at the points (4, 1, 2) and (3, 3, -3).
- 7. Prove that $curl(\emptyset F) = grad\emptyset \times F + \emptyset curl F$.
- 8. Find the angle between the two surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 3$ at (2, -1, 2).

B

- 1. If $F = grad [x^3 + y^3 + z^3 3xyz]$, find divF and curlF.
- 2. Find a, b, c, if F = (x + by z)i + (2x y + cz)j + (ax + y z)k is irrotational. And also find scalar potential \emptyset such that $F = \nabla \emptyset$.
- 3. Find the value of a if $F = (ax^2y + yz)i + (xy^2 xz^2)j + (2xyz 2x^2y^2)k$ is solenoidal, And if $F = xy^2i + 2x^2yzj 3yz^2k$, find div(F).
- 4. Show that $\frac{xi+yj}{x^2+y^2}$ is both solenoidal and irrotational.
- 5. If F = (x + y + 1)i + j (x + y)k, Show that $F \circ curl F = 0$.
- 6. Find the constants a and b if $F = (axy + z^3)i + (3x^2 z)j + (bxz^2 y)k$ is irrotational, and also find the scalar potential.

Question paper pattern

Part1:		
1.	Or	2.
a)		a)
b)		b)
c)		c)
Part2:		
3.	Or	4.
a)		a)
b)		b)