ELETTRONICA DIGITALE

Corso di Laurea in Ingegneria Informatica

Prova scritta del 16 febbraio 2016

Esercizio A

$R_1 = 50 \Omega$	$R_{11} = 2.5 \text{ k}\Omega$	V _{cc} ▲
$R_3 = 100 \text{ k}\Omega$	$R_{12}=20\;k\Omega$	$\left\{\begin{array}{c} \left\{\begin{array}{c} \left\{\begin{array}{c} \left\{\right\} \\ \left\{\end{array}\right\} \end{array}\right\} \right\} \right\}$
$R_4 = 54.5 \text{ k}\Omega$	$C_1 = 220 \text{ pF}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$R_5 = 100 \Omega$	$C_2 = 18 \text{ nF}$	
$R_6 = 1400 \Omega$	$C_3 = 15 \text{ nF}$	
$R_7 = 500 \Omega$	$C_4 = 6.8 \text{ nF}$	
$R_8 = 40 \text{ k}\Omega$	$V_{CC} = 18 \text{ V}$	
$R_9 = 186 \text{ k}\Omega$		ntn ntn

 Q_1 è un transistore MOS a canale n resistivo, con la corrente di drain in saturazione data da $I_D=k(V_{GS}-V_T)^2$ con k=0.5 mA/V² e $V_T=1$ V; Q_2 è un transistore BJT BC109B resistivo con $h_{re}=h_{oe}=0$. Con riferimento al circuito in figura:

- 1) Calcolare il valore delle resistenze R_2 e R_{10} in modo che, in condizioni di riposo, la tensione sul drain di Q_1 sia 7.1 V e la tensione sull'emettitore di Q_2 sia 8 V. Determinare, inoltre, il punto di riposo dei due transistori e verificare la saturazione di Q_1 . (R: $R_2 = 200 \text{ k}\Omega$, $R_{10} = 201.84 \text{ k}\Omega$)
- 2) Determinare l'espressione e il valore di V_U/V_i alle frequenze per le quali C_1 , C_2 , C_3 e C_4 possono essere considerati dei corto circuiti. (R: $V_U/V_i = -3.65$)
- 3) (<u>Solo per 12 CFU</u>) Determinare la funzione di trasferimento V_U/V_i e tracciarne il diagramma di Bode quotato asintotico del modulo. (f_{z1} =0 Hz; f_{p1} =10843 Hz; f_{z2} =6316 Hz; f_{p2} =21052 Hz; f_{z3} =109.6 Hz; f_{p3} =111 Hz; f_{z4} =0 Hz; f_{p4} =1040 Hz;)

Esercizio B

Progettare una porta logica in tecnologia CMOS, utilizzando la tecnica della pull-up network e della pull-down network, che implementi la funzione logica:

$$Y = \left(\overline{A + \overline{B}}\right)\left(\overline{C} + \overline{DE}\right) + \overline{A} \ \overline{B}\left(\overline{C} + \overline{E}\right) + \overline{D}\left(AB + E\right)$$

Determinare il numero dei transistori necessari e disegnarne lo schema completo. Dimensionare inoltre il rapporto (W/L) di tutti i transistori, assumendo, per l'inverter di base, W/L pari a 2 per il MOS a canale n e pari a 5 per quello a canale p. Si specifichino i dettagli della procedura di dimensionamento dei transistori.

Esercizio C

$R_1 = 1 \text{ k}\Omega$	$R_5 = 400 \Omega$
$R_2 = 2 k\Omega$	$R_6 = 200 \Omega$
$R_3 = 10 \text{ k}\Omega$	C = 22 nF
$R_4 = 4.5 \; k\Omega$	$V_{CC} = 6 V$

Il circuito IC₁ è un NE555 alimentato a $V_{CC} = 6V$, Q_1 ha una $R_{on} = 0$ e $V_T = -1V$. Determinare la frequenza del segnale di uscita del multivibratore in figura. (R: f = 154339 Hz)