MAE 143B Equation Sheet

P1.10 Galileo's Inclined Plane Problem

- h, fall height (ft)
- d, horizontal travel distance (in)*,
- l, length of inclined plane (ft),
- y, vertical distance*.

MATLAB commands:

$Fitting\ linear\ model$	f = fit(d, h, 'poly1').
Fitting quadratic model	f = fit(d, h, 'poly2'),
	for $h = lsin(\theta)$.
Estimating y :	
Conservation of energy	$\frac{1}{2}mv_x^2 = mgh,$
	$\Rightarrow v_x = \sqrt{2gh}$.
Vertical motion	$y = \frac{1}{2}gt^2,$
	$\Rightarrow t = \sqrt{2y/g}$.
Horizontal motion	$d = v_x t$,

^{*} units converted to feet.

P2.10 Elevator Problem

Wheels	$J_1\dot{\omega} + b_1\omega = \tau + (f_1 - f_2)r,$
	$J_2\dot{\omega} + b_2\omega = \tau + (f_4 - f_3)r.$
Forces from J_1	$f_1 + m_1 \dot{v_1} = m_1 g + f_3.$
Forces from J_2	$f_2 + m_2 \dot{v_2} = m_2 g + f_4.$
Angular velocity	$v_1 = r\omega, v_2 = -r\omega.$

$$(J_1 + J_2 + r^2(m_1 + m_2))\dot{\omega} + (b_1 + b_2)\omega = \tau + gr(m_1 - m_2)$$
(1)

ODE solution:

$$v_1(t) = \tilde{v_1}(1 - e^{\lambda t}) + v_1(0)e^{\lambda t},$$
 (2)

 $d = \sqrt{2gh}\sqrt{2y/g},$ $\Rightarrow d^2/4 = yh.$

Furthermore:

$$\bar{v_1} = v_1(t)_{t \to \infty}, TC = -\frac{1}{\lambda}.$$

Steady state error	$e_{SS} = \bar{v_1} - v_{SS} = \bar{v_1} - \tilde{v_1}.$
Open loop	$\lambda_{OL} = -\frac{b}{a}$
	$\bar{v_1} = \frac{r}{b} [\tau + gr(m_1 - m_2)],$
	$TC_{OL} = -\frac{1}{\lambda_{OL}}$.
Closed loop	$ au(t) = K(\bar{v_1} - v_1(t)) \ controller$
	$\lambda_{CL} = -\frac{(b+Kr)}{a}$
	$\tilde{v}_1 = \frac{r}{b + Kr} [\ddot{K} \bar{v}_1 + gr(m_1 - m_2)],$
	$TC_{OL} = -\frac{1}{\lambda_{OL}},$
	$K = \frac{a-5b}{5r}$.
	97'

- 3.1 Laplace Transform

$$L[f](s) = \int_0^\infty e^{-sx} f(x) dx$$

$$f(t) = t^n, n \ge 0 \qquad F(s) = \frac{n!}{s^{n+1}}, s > 0$$

$$f(t) = e^{at}, a \text{ constant} \qquad F(s) = \frac{1}{s-a}, s > a$$

$$f(t) = \sin bt, b \text{ constant} \qquad F(s) = \frac{b}{s^2+b^2}, s > 0$$

$$f(t) = \cos bt, b \text{ constant} \qquad F(s) = \frac{s}{s^2+b^2}, s > 0$$

$$f(t) = t^{-1/2} \qquad F(s) = \frac{s}{s^{1/2}}, s > 0$$

$$f(t) = \delta(t-a) \qquad F(s) = e^{-as}$$

$$f' \qquad L[f'] = sL[f] - f(0)$$

$$f'' \qquad L[f''] = s^2L[f] - sf(0) - f'(0)$$

$$L[e^{at}f(t)] \qquad L[f](s-a)$$

$$L[f](s-a)$$

$$L[f](s-a)$$

3.8 Frequency Response

Input	$u(t) = A\cos\omega t + \phi,$
Response	$y_{ss}(t) = A G(j\omega) cos(\omega t + \phi + \angle G(j\omega)).$
Phase angle	$\angle G(j\omega) = \arctan\left(\frac{\Im G(j\omega)}{\Re G(j\omega)}\right),$
	$\angle G(j\omega) = \angle N\{G(j\omega)\} - \angle D\{G(j\omega)\}.$

For a LTI system without poles on the imaginary axis, i.e., $G_0(s) = 0$.

4.1 Tracking, Sensitivity and Integral Control

Lemma 4.1 Asymptotic tracking

Let S(s) be the asymptotically stable transfer function S(0) = 0. The system asymptotic tracks a constant reference input if the product GK has a pole at the origin.

Lemma 4.3 Internal stability

The closed-loop system is internally stable if and only if S(s) is asymptotically stable and any pole-zero cancellations of the product GK satisfy $\Re\{z\} < 0$.

ions of the product G.	K satisfy $\Re\{z\} < 0$.
$Asymptotic\ stability$	If $G(s)$ converges and is
	bounded for all $\Re(s) \geq 0$,
	i.e., $G(s)$ does not have po-
	les on the imaginary axis or
	on the right-hand side of the
	complex plane.
Asymptotic tracking	If $S(s)$ has a zero at $s=0$
	and the product GK has a
	pole at the origin.
Asymptotic	If $D(s)$ has a zero at $s = 0$,
disturbance rejection	or the controller $K(s)$ has a
	pole at the origin.
Asymptotic tracking	If $S(s)$ has a zero at $s = 0$.
_	

4.4 Feedback with Disturbances

4.4 reeuback with Dist	di bances
Sensitivity	i.e., from $\bar{v_1}$ to e
	$S = \frac{1}{1 + GK}$
Disturbance	i.e., from w to e
	$D = GS = \frac{G}{1 + GK}$
Complementary sensitivity	i.e., from $\bar{v_1}$ to v_1
	$H = GKS = \frac{GK}{1+GK}.$ $Q = KS = \frac{K}{1+GK}.$
Design	$Q = KS = \frac{K}{1 + GK}.$
	·
Closed-loop $system$	For inputs
y = G(u+w),	$y = H\bar{y} - Hv + Dw,$
$u = K\tilde{e},$	$u = Q\bar{y} - Qv - Hw.$
$\tilde{e} = \tilde{y} - (y + v).$	with measurement noise v .
Tracking error	$e = \bar{y} - y = S\bar{y} + Hv - Du$
-	

4.7 Pole-Zero Cancellations and Stability

Sensitivity	The poles of $S(s)$ are the zeros of the characteristic equation of $S(s)$. Furthermore, the zeros of $S(s)$ are the poles of the product GK .
\overline{GK}	$\tilde{G}\tilde{K} = \frac{N_{\tilde{G}}N_{\tilde{K}}}{D_{\tilde{G}}D_{\tilde{K}}}$ which have polynomial roots $N_{\tilde{G}}N_{\tilde{K}} + D_{\tilde{G}}D_{\tilde{K}} = 0$.
\overline{S}	If all the roots of $\tilde{G}\tilde{K}$ have negative real parts, then $S(s) = \frac{D_{\tilde{G}}D_{\tilde{K}}}{N_{\tilde{G}}N_{\tilde{K}}+D_{\tilde{G}}D_{\tilde{K}}}$ and $H=1-S$ are asymptotically stable.
SG and SK	$SG = \frac{(s-z)}{(s-p)} \frac{N_{\tilde{G}}N_{\tilde{K}}}{N_{\tilde{G}}N_{\tilde{K}} + D_{\tilde{G}}D_{\tilde{K}}},$ $SK = \frac{(s-p)}{(s-z)} \frac{N_{\tilde{G}}N_{\tilde{K}} + D_{\tilde{G}}D_{\tilde{K}}}{N_{\tilde{G}}N_{\tilde{K}} + D_{\tilde{G}}D_{\tilde{K}}}$ are stable only if p and z are both negative.

5.2 State-Space Models

$State\mbox{-}space\ form$	$\dot{x} = Ax + Bu, y = Cx + Du.$
A	The state matrix of size $n \times n$, where
	n is the number of state variables.
B	The input matrix of size $n \times m$,
	where m is the number of outputs.
\overline{C}	The output matrix of size $m \times n$.
D	The transition matrix of size $m \times m$.
Equilibrium points	Set partial derivatives of system
	equations to zero, i.e., $\frac{\partial y}{\partial x_1} = 0$.

Characteristic	$s^2 + 2\zeta\omega_n s + \omega_n^2, \omega_n > 0.$
equation	(1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Canonical	$(1 - \omega^2/\omega_n^2 + j2\zeta\omega/\omega_n)^k, \zeta < 1.$
form	
Poles	$p = -\omega_n(\zeta \pm \sqrt{\zeta^2 - 1}), \Re\{p\} =$
	$-\omega_n$, $ p = \omega_n \left -\zeta \pm j\sqrt{1-\zeta^2} \right $
Inverse Laplace	$\mathcal{L}^{-1} = \left\{ \frac{k}{s + \zeta \omega_n - j\omega_d} + \frac{k^*}{s + \zeta \omega_n + j\omega_d} \right\}$
Transform	$=2 k e^{-\zeta\omega_n t}\cos(w_d t+\angle k)$
Parameters	$\omega_d = \omega_n \sqrt{1 - \zeta^2}, 0 < \zeta < 1.$
	$\phi_d = \arcsin \zeta = \arctan \left(\frac{\zeta \omega_n}{\omega_d} \right).$
Step response	$G(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}, \omega_n > 0.$
	$y(t) = L^{-1} \left\{ \frac{G(s)}{s} \right\},$
	$= 1 - \frac{1}{\sqrt{1-\zeta^2}} e^{-\zeta \omega_n t} \sin(\omega_d t +$
	$\pi/2-\phi_d$

where ζ is the damping ratio and ω_n is the natural frequency.

$\alpha L(s)$, $\alpha \ge 0$,
S = G(s)K(s)F(s). The pull to the order of the characteristic equation, i.e., the denomator of the loop gain transfer faction $L(s)$. $S = n - m$, asymptotes/closed-op poles for n poles and m ros in the loop-gain transfer faction. The asymptotes interest the real axis at the point
qual to the order of the characteristic equation, i.e., the deno- nator of the loop gain transfer action $L(s)$. = n - m, asymptotes/closed- op poles for n poles and m cos in the loop-gain transfer action. The asymptotes inter- ect the real axis at the point
ristic equation, i.e., the deno- nator of the loop gain transfer action $L(s)$. = n - m, asymptotes/closed- op poles for n poles and m ros in the loop-gain transfer action. The asymptotes inter- et the real axis at the point
nator of the loop gain transfer action $L(s)$. $= n - m$, asymptotes/closed-op poles for n poles and m ros in the loop-gain transfer action. The asymptotes interest the real axis at the point
action $L(s)$. = n - m, asymptotes/closed- p poles for n poles and m ros in the loop-gain transfer action. The asymptotes inter- et the real axis at the point
= n - m, asymptotes/closed- op poles for n poles and m ros in the loop-gain transfer action. The asymptotes inter- et the real axis at the point
op poles for n poles and m ros in the loop-gain transfer action. The asymptotes interest the real axis at the point
ros in the loop-gain transfer action. The asymptotes inter- et the real axis at the point
nction. The asymptotes interest the real axis at the point
et the real axis at the point
$=\frac{\sum_{k=1}^{n}p_{k}-\sum_{i=1}^{m}z_{i}}{\sum_{k=1}^{m}z_{i}}$ with angle
$b_k = \frac{\pi + 2\pi k}{n - m}$ for $k = 0,, n - m$
$n-m$ for $n = 0, \dots, n$ -1.
point s on the real axis will
ly be on the root-locus if it is
the left of an odd number of
les and zeros.
E + k = 0, k = -CE.
s a break-away point if $\frac{dk}{ds} = 0$
real and positive.
oot-locus leaves a complex
le p_j at $\theta_d = 180^\circ + \sum \angle (p_j -$
$-\sum \angle p_j - p_i$.
<u> </u>
ot-locus arrives a complex
oot-locus arrives a complex to z_j at $\theta_a = 180^{\circ} - \sum \angle(z_j -$

Magnitude	$\frac{1}{20\log_{10} G(j\omega) }, \text{ in units of } dB$
Gain offset	$20 \log_{10} G(0) $ for constant gain, $-20 dE$ for pole at origin, $+20 dB$ for zero at origin.
	gin.
Gain margin	$GM = 0 - A_m dB$, The corresponding point on the magnitude curve at the phase crossover frequency, i.e., the vertical axis intersection point where $\angle G(j\omega) = -180^{\circ} $.
Poles	$(1 + \frac{s}{\tau})^k \to -20 \times k \frac{dB}{dec} \text{ at } \omega = \tau \text{ if sta}$ ble, else $+20 \times k \frac{dB}{dec}$. If second-order $\left(\frac{1}{(1+2\zeta/\omega_n)}j\omega + \frac{1}{\omega_n^2}(j\omega)^2\right) \to -40 \frac{dB}{dec} \text{ at } \omega = \omega_n.$
Zeros	$\frac{\omega - \omega_n}{(1 + \frac{s}{\tau})^k} \to +20 \times k \frac{dB}{dec} \text{ at } \omega = \tau \text{ if sta}$ ble, else $-20 \times k \frac{dB}{dec}$. If second-order, i.e. $\left(\frac{1}{(1 + 2\zeta/\omega_n)} j\omega + \frac{1}{\omega_n^2} (j\omega)^2\right) \to +40 \frac{dB}{dec} \text{ a}$ $\omega = \omega_n.$
Slope	Ends with $-20 \times (n-m) \frac{dB}{dec}$.
$Unit\ gain$	β , such that $\beta G(0) = 1$, i.e., substitut $s = j\omega = 0$ for poles/zeros of $G(s)$ not a the origin, and $\beta G(j1) = 1$, i.e., $s = j$ for poles/zeros at the origin, then solv for the value of β that makes the expression of magnitude $ G(j\omega) $ true.
Phase	$\angle G(j\omega)$, in units of degrees
Gain offset	+180° if negative, +90° for each pol -90° zero at origin.
Phase margin	$PM = \phi_m - (-180^\circ)$, the corresponding point on the phase curve at the gain crossover frequency, i.e., the vertical axis is tersection point where $ G(j\omega) = 0dB$.
Poles	$(1 + \frac{s}{\tau})^k \to -45^\circ \times k \text{ at } \omega = 0.$ if stable, else $+45^\circ \times k$. If secon order, i.e., $\left(\frac{1}{(1+2\zeta/\omega_n)}j\omega + \frac{1}{\omega_n^2}(j\omega)^2\right)$
Zeros	$-\tan^{-1}\left(\frac{\frac{2\zeta\omega}{\omega_n}}{1-\left(\frac{\omega}{\omega_n}\right)^2}\right)\frac{dB}{dec} \text{ at } \omega = 0.1\omega_n$ $(1+\frac{s}{\tau})^k = +45^\circ \times k \text{ at } \omega = 0.$ if stable, else $-45^\circ \times k$. If secon order, i.e., $\left(\frac{1}{(1+2\zeta/\omega_n)}j\omega + \frac{1}{\omega_n^2}(j\omega)^2\right) + \tan^{-1}\left(\frac{2\zeta\omega}{\omega_n} - \left(\frac{\omega}{\omega_n}\right)^2\right)\frac{dB}{dec} \text{ at } \omega = 0.1\omega_n$ ends flat at $\angle 90^\circ \times (m + m_0 + n_+)$
Slope	$\frac{1 - \left(\frac{\omega}{\omega_n}\right) \int^{u_{\text{eff}}}$
LANDE	\sim

where m_+/n_+ are number of unstable poles/zeros, m_-/n_- stable poles/zeros, m_0/n_0 poles/zeros on imaginary axis.

 $90^{\circ} \times (m_{+} + n_{-} + n_{0}),$

- 7.6 Nyquist Stability Criterion

The curve of $G(j\omega)$ parameterized by the value $\omega \in \Re$ describes the polar plot of the system, i.e., the phase and magnitude on the real and complex plane. The polar plot has a contour Γ covering the entire right-hand side of the complex plane from the limit $\rho \to \infty$.

Theorem 7.1 If a function f is analytical inside and on the the positively oriented simple closed contour C except at a finite number of poles inside C and f has no zeros on C then $\frac{1}{2\pi}\Delta_C^0 \arg f(s) = \frac{1}{2\pi j}\int_C \frac{f'(s)}{f(s)}ds = Z_C - P_c$, where Z_C is the number of zeros, P_C poles inside contour C counting their multiplicities.

Theorem 7.2 Assume that a transfer function L(s) has no poles on the imaginary axis. For any given $\alpha>0$ the loop transfer function in negative feedback with static gain controller α is asymptotically stable if and only if the number of counterclockwise encirclements of the image contour Γ around the point $-1/\alpha$ is equal to the number of poles of L(s) on the right-hand side of the complex plane.

 $\begin{array}{c|c} \hline Closed\text{-}loop & \text{The closed-loop system } L(s) \text{ is} \\ stability & \text{asymptotically stable if and only if} \\ \hline Z_{\Gamma} = P_{\Gamma} - \frac{1}{2\pi} \Delta_{\Gamma}^{-\frac{1}{\alpha}} \arg L(s) = 0. \\ \hline \text{where } Z_{\Gamma} \text{ is the number of closed-loop poles and } P_{\Gamma} \text{ the} \\ \hline \end{array}$

where Z_{Γ} is the number of closed-loop poles and P_{Γ} the number of open-loop poles of L(s) inside the contour Γ , i.e., on the RHP.

Complex Numbers