

Nomenclatura

- A Cuadrado
- B Diámetro del mango
- C Diámetro del rebaje
- D Estría
- E Paso
- F Centro Externo (Macho)
- G Diámetro de rosca (Externo)
- H Largo de avance del chaflán
- I Longitud roscada
- J Longitud rebajada
- K Longitud del mango
- L Longitud del cuadrado
- M Longitud total
- N Ángulo de la hélice
- O Largo de entrada en hélice
- P Ángulo de punta espiral
- Q Ángulo del avance del chaflán

- 1 Ancho de superficie entre estrías
- 2. Ángulo de la inclinación de corte
- 3 Diámetro del alma
- 4 Rebaje de la rosca radial

INSTRUCCIONES GENERALES PARA EL ROSCADO

El éxito de toda operación de roscado depende de diversos factores, todos ellos afectan a la calidad del producto.

- Escoger el diseño correcto del macho de roscar según el tipo de agujero, es decir, pasante o ciego y el material de la pieza a trabajar de la tabla de Aplicaciones por Grupo de Material (AMG).
- 2. Asegurar que la pieza de trabajo esté bien sujeta, ya que el movimiento lateral podría causar la rotura del macho o formar roscas de mala calidad.
- 3. Seleccionar la broca de tamaño correcto en las tablas de taladros de brocas (mirar páginas 76 79). El tamaño correcto del taladro también se muestra en el catálogo, en las páginas de los machos. Recordar que los tamaños de los taladros para los machos de laminación son distintos. Tener siempre cuidado de reducir al mínimo el endurecimiento de la pieza de trabajo, mirar la parte de acero inoxidable en la sección de Información General.
- Seleccionar la velocidad de corte correcta según la tabla de Aplicación por Grupo de Material (AMG) que se muestra en el Índice Visual del Catálogo o en el "Product Selector".
- 5. Usar el fluido de corte adecuado para la aplicación correcta.
- 6. En aplicaciones NC, asegurar que el valor del paso escogido para el programa sea el correcto. Al usar un accesorio de roscar, se recomienda de 95% a 97% del paso para que el macho cree su propio paso.
- 7. Siempre que se pueda se sujetará el macho con un dispositivo de roscar con limitador de potencia, esto asegura el movimiento axial libre del macho y lo sitúa encuadrado en el agujero. Además protege el macho de una posible rotura si se "hace fondo" accidentalmente en un agujero ciego.
- 8. Asegurar la introducción suave del macho en el agujero, ya que un avance desigual podría producir la conicidad de la rosca.

GEOMETRÍAS DE LOS MACHOS Y PROCESO DE ROSCADO

Tipo	Variaciones	Proceso	Descripción	Viruta
		1,5xD	Machos con estrías rectas Los machos con estrías rectas son los de uso más común. Adecuados para la mayoría de los materiales, principalmente en aceros de viruta corta y en fundiciones, estos machos forman la base del programa.	
		2xD	Machos de rosca interrumpida La rosca interrumpida asegura menos fricción y por lo tanto menos resistencia, algo especialmente importante cuando se rosca material resistente y de difícil mecanización (por ejemplo acero inoxidable, bronce). Además el lubricante puede penetrar con más facilidad hasta los hilos, contribuyendo a minimizar la fuerza generada.	Charleton .
THE PERSON NAMED IN COLUMN TO THE PE		2,5xD	Machos con entrada en hélice El macho tiene una estría poco recta bastante profunda, y a menudo se le llama macho de boca de pistola o de entrada en hélice. La boca de pistola o la entrada en hélice sirve para evacuar las virutas. Las estrías relativamente poco profundas aseguran una resistencia máxima de la sección del macho. Además contribuyen a que el lubricante llegue a los bordes cortantes o filos. Este tipo de macho se recomienda para roscar agujeros pasantes.	THE PARTY OF THE P

Tipo	Variaciones	Proceso	Descripción	Viruta
		1,5xD	Machos de estrías con chaflán de conducción La parte cortante del macho está formada por una boca de pistola igual que el macho de entrada en hélice, siendo su función evacuar las virutas por delante de los filos. Este diseño es extremadamente rígido, lo que facilita unos buenos resultados de mecanizado. Sin embargo la corta longitud de la punta de pistola, limita la longitud roscada del agujero a 1,5 x diámetro aproximadamente.	Mary las
	15°	2xD 3xD	Machos de estrías helicoidales Los machos de estrías en espiral sirven sobre todo para roscar agujeros ciegos. La estría helicoidal transporta la viruta fuera del agujero, evitando la acumulación de viruta en las estrías o en el fondo del agujero. Así se minimiza el peligro de que se rompa el macho o se estropee la rosca.	
		2,5xD	Machos de laminación Los machos de laminación en frío se distinguen de los machos de roscar en que la rosca se produce por deformación plástica del material, en lugar de por la acción de corte tradicional. Esto significa que la acción no produce virutas. La gama de aplicación consiste en materiales con buena calidad de deformación. La resistencia a la tracción (Rm) no deberá exceder de 1200 N/mm² y factor de alargamiento (A₅) no deberá ser inferior 10%. Los machos de deformación en frío son idóneos para un mecanizado normal y convienen especialmente para roscar agujeros ciegos verticales. Estos machos también están disponibles para agujeros pasantes con refrigeración interior.	

Tipo	Variaciones	Proceso	Descripción	Viruta
		2,5xD 3xD	Machos con refrigeración interior El rendimiento de los machos con refrigeración interior es superior al de los mismos machos con lubricación externa. Estas clases de machos facilitan una mejor evacuación de las virutas, que son transportadas fuera de la propia zona de roscado. El desgaste del filo cortante se reduce, pues el efecto enfriador en la zona de corte es superior al calor generado. La lubricación puede ser por aceite, emulsión o aire comprimido con niebla de aceite. Se precisa una presión de trabajo no inferior a 15 bares, pero pueden obtenerse buenos resultados con mínima lubricación.	
		D ₁₈₋₂₀ C ₂₋₃ 2xD	Machos para tuercas Estos machos son usados generalmente para roscar tuercas pero también pueden usarse para agujeros pasantes muy profundos. Estos machos tienen el diámetro del mango más pequeño de lo normal, y mas largo, porque su función es acumular tuercas. Estos machos se usan en máquinas especiales diseñadas para roscar grandes cantidades de tuercas. Estos pueden trabajar con acero y con acero inoxidable. El macho NO1 de esta serie de machos tiene un chaflán de entrada muy largo, adecuado para agujeros pasantes. El macho NO3 de esta serie tiene un chaflán de entrada de dos tres hilos de rosca, adecuado para agujeros ciegos.	

Punta / Chaflán de Entrada

El fabricante puede escoger el tipo de punta de los machos. A continuación se muestran los chaflanes de entrada más comunes utilizados en productos Dormer, según el diámetro del macho.

	Forma del Chaflán											
Macho ∅ mm	A 6-8	B 3,5 - 5	C 2 - 3	D 18 - 20	E 1,5 - 2							
≤ 5	1	1	1	1	1							
>5 ≤6	1	1	1, 2	1	1							
>6 ≤10	1, 2	1	1, 2, 4	1, 2	1, 4							
>10 ≤12	2, 3	2, 3	2, 3	2, 3	2, 3							
>12	3	3	3	3	3							
ANSI	Taper	Plug	Bottoming									

GEOMETRÍAS DE LOS MACHOS DE LAMINACIÓN Y PROCESO DE ROSCADO Ventajas comparando con los machos de corte normal

- La deformación en frío es más rápida que realizar el corte de la rosca.
- La deformación en frío habitualmente asegura una vida de la herramienta larga.
- Un tipo de herramienta puede ser usado con distintos materiales y para aqujeros ciegos y pasantes.
- Los machos de laminación tienen un diseño que ofrece menos riesgos a romperse.
- Se garantiza la correcta tolerancia de las roscas.
- No hay virutas.
- Mayor dureza de la rosca, comparado con la rosca obtenida por corte normal (hasta más 100%).
- Menor rugosidad superficial en la rosca obtenida por deformación en frío que en la rosca obtenida por corte normal.

Pre-condiciones para realizar un uso efectivo:

- Suficiente elongación del material A_c>10 %
- Taladro del agujero a roscar muy preciso
- Es imprescindible una buena lubricación.

FLUIDEZ DEL MATERIAL EN LA DEFORMACIÓN DE LA ROSCA

El tamaño del agujero roscado dependerá del material que se ha de taladrar, de las condiciones de corte elegidas y de la condición del equipo que se emplea. Si el macho empuja el material en la entrada de la rosca y/o la vida útil del macho es demasiado corta, o ambos, se seleccionará un diámetro de broca algo mayor. Por otro lado, si el perfil de la rosca formada es insuficiente, entonces se seleccionará un diámetro de broca algo menor.

Diámetro del agujero para un macho de corte

Diámetro del agujero para una macho de laminación

Sección de la rosca obtenida con un macho de laminación en un acero C45

La deformación en frío requiere más potencia en el husillo de la máquina, comparando con un macho de corte del mismo tamaño, de la misma forma el macho de laminación genera un par más alto.

Comparación del par obtenido entre machos de laminación y machos de corte en diferentes grupos de materiales.

Machos con Anillos de Colores Vangard / Shark Según La Aplicación

Color	Material	Tipos de herramientas disponibles
0	AMG 1.1 – AMG 1.4	40"
0	AMG 1.1 – 1.5	[48"
0	AMG 1.4 – 1.6	[40°
0	AMG 1.5 – 1.6 AMG 4.2 – 4.3	15"
0	AMG 2.1 – AMG 2.3	[40" [48"
	AMG 3.1 – AMG 3.4	
0	AMG 5.1 – 5.3	25"
0	AMG 7.1 – 7.4	15" 35"

PERFILES DE ROSCAS

Rosca ISO

Rosca métrica. M

Rosca unificada, UN

H = 0,86603 P Hm = 5/8H = 0,54127 P Hs = 17/24H = 0,613343 P

H/8 = 0,10825 P H/4 = 0,21651 P R = H/6 = 0,14434P

Whitworth W (BSW)

BSF, G, Rp, ADMF, Latón 1/4

BS Conducto, ME

H = 0,96049 P H = 2/3H = 0,64033 P H/6 = 0,16008 P R = 0.13733 P

Rosca de tubería Whitworth cónica Rc (BSPT), Conicidad 1:16

H = 0,96024 P H = 2/3H = 0,64033 P R = 0,13728 P

Rosca de tubería cónica Americana NPT, Conicidad 1:16

H = 0,8668 P H = 0,800 P

H/24 = 0.033 P (valor mín.)

Roscas de tubería de acero PG (Pr)

H = 0,59588 P H = 0,4767 P R = 0,107 P

TOI FRANCIAS

TOLERANCIA DE ROSCA CON MACHOS PARA PERFIL DE ROSCA MÉTRICA ISO 60° (M+UN)

TOLERANCIAS HABITUALES PARA MACHOS Y ROSCAS INTERNAS

TABLA DE TOLERANCIAS SOBRE EL MACHO COMPARADA CON TOLERANCIA SOBRE ROSCA INTERNA (TUERCA)

Clase de	Clase de tolerancia, Macho							
ISO	DIN	ANSI BS	Toler	ancia, ro	Aplicación			
ISO 1	4 H	3 B	4 H	5 H				Ajustes sin aumentos
ISO 2	6 H	2 B	4 G	5 G	6 H			Ajustes normales
ISO 3	6 G	1 B			6 G	7 H	8 H	Ajustes con aumentos
-	7 G	-				7 G	8 G	Pérdida de los ajustes por realizar recubrimientos

Tolerancia de las roscas para los machos que están estandarizados con la referencia DIN13.

La tolerancia normal en los machos es ISO 2 (6H), estos tienen unos ajustes de calidad medios entre el tornillo y la tuerca. La tolerancia ISO 1 es más baja, estos tienen ajustes finos sin un espacio en los flancos entre el tornillo y la tuerca. La tolerancia ISO 3 es alta, genera ajustes rugosos, con un espacio grande entre el tornillo y la tuerca. Estos se utilizan en caso que la tuerca tenga que ser recubierta posteriormente y es necesario que pierda el ajuste.

Entre las tolerancias 6H (ISO2) y 6G (ISO3), del mismo modo que entre 6G y 7G, se pueden fabricar machos con tolerancias 6HX y 6GX. Dónde "X" significa que la tolerancia esta fuera de la norma y estos machos se usan para trabajar materiales de alta dureza o materiales abrasivos como el hierro fundido. Estos materiales no causan problemas de sobredimensionado, por eso una tolerancia alta puede ser usada para incrementar la vida de la herramienta. El ancho de la tolerancia es igual entre, por ejemplo 6H y 6HX.

Los machos de laminación normalmente se fabrican con tolerancias 6HX o 6GX.

El icono de la tolerancia para los machos BSW y BSF es "medio". Esto se refiere según la norma BS84 es ajuste medio.

El icono para las roscas de tubo es "Normal", esto se refiere a las siguientes normas: Rosca G para ISO 228-1. Una clase para rosca interna (macho), y clase A y B para rosca externa (terraja).

Roscas R y Rc para ISO 7-1.

Roscas NPT y NPSM para ANSI B1.20.1.

Roscas NPTF y NPSF para ANSI B1.20.3.

Roscas PG para DIN 40 430.

LONGITUD DEL CHAFLÁN DE ENTRADA Y SERIES DE MACHOS

El primer grupo (No. 1, No. 2, No. 3) incluye machos con un perfil de rosca completo y la diferencia esta en la longitud del chaflán de entrada. El segundo grupo (No. 4, No. 5) incluye machos con un perfil de rosca incompleto. Estos tienen un paso y un diámetro exterior inferior, comparado con el macho completo estándar con chaflán largo. Por lo tanto después de usarse los machos (No. 4, No. 5) debe usarse el macho con el perfil de rosca completo (No. 3).

ISO	Número de código del juego	Número de los machos que se incluyen
	No. 6	No. 1 + No. 2 + No. 3
	No. 7	No. 2 + No. 3
	No. 8	No. 4 + No. 5 + No. 3
	No. 9	No. 5 + No. 3
DIN	Número de código del juego	Número de los machos que se incluyen
	No. 8	No.3 (forma C) + No.4 (forma A) + No.5 (forma B)
	No. 9	No.3 (forma C) + No.5 (forma B)
ANSI	Número de código del juego	Número de los machos que se incluyen

Taper (No.1) + Plug (No.2) + Bottoming (No.3)

Hand Tap (No. 6)

TABLAS DE RECOMENDACIÓN DE DIÁMETROS DE BROCAS PARA MACHOS

Para calcular el diámetro de la broca:

D = Diámetro de la broca (mm)

D_{nom} = Diámetro nominal del macho (mm)

P = Paso del macho (mm)

 $D = D_{nom} - P$

RO	SCA GF	RUESA MÉ	ÉTRICA I	so			ROSC	A MÉTRI	CA FINA IS	80	
MACHO		Diám. Interior.	Diám.	Diám.	MACHO	Diám Interior.	Diám.	Diám.	MACHO	Diám. Interior.	
	Paso	Máx.	Broca	Broca.		Máx.	Broca	Broca		Máx.	Е
M	mm	mm	mm	pulgadas	MF	mm	mm	pulgadas	MF	mm	n
1.6	0.35	1.321	1.25	3/64	3x0.35	2.721	2.65	37	25X1	24.153	2
1.8	0.35	1.521	1.45	54	3.5x0.35	3.221	3.2	1/8	25X1.5	23.676	2
2	0.4	1.679	1.6	1/16	4x0.5	3.599	3.5	29	25x2	23.210	2
2.2	0.45	1.833	1.75	50	5x0.5	4.599	4.5	16	26x1.5	24.676	2
2.5	0.45	2.138	2.05	46	5.5x0.50	5.099	5	9	27x1.5	25.676	2
3	0.5	2.599	2.5	40	6x0.75	5.378	5.3	5	27x2	25.210	2
3.5	0.6	3.010	2.9	33	7x0.75	6.378	6.3	D	28x1.5	26.676	2
4	0.7	3.422	3.3	30	8x0.75	7.378	7.3	9/32	28x2	26.210	2
4.5	0.75	3.878	3.8	27	8x1	7.153	7	J	30x1.5	28.676	2
5	0.8	4.334	4.2	19	9x1	8.153	8	0	30x2	28.210	2
6	1	5.153	5	9	10x0.75	9.378	9.3	U	32x1.5	30.676	3
7	1	6.153	6	15/64	10x1	9.153	9	T	32x2	30.210	3
8	1.25	6.912	6.8	Н	10x1.25	8.912	8.8	11/32	33x2	31.210	3
9	1.25	7.912	7.8	5/16	11x1	10.153	10	X	35x1.5	33.676	3
10	1.5	8.676	8.5	Q	12x1	11.153	11	7/16	36x1.5	34.676	3
11	1.5	9.676	9.5	3/8	12x1.25	10.912	10.8	27/64	36x2	34.210	3
12	1.75	10.441	10.3	Y	12x1.5	10.676	10.5	Z	36x3	33.252	3
14	2	12.210	12	15/32	14x1	13.153	13	17/32	38x1.5	36.676	3
16	2	14.210	14	35/64	14x1.25	12.912	12.8	1/2	39x3	36.252	3
18	2.5	15.744	15.5	39/64	14x1.5	12.676	12.5	31/64	40x1.5	38.676	3
20	2.5	17.744	17.5	11/16	15x1	14.153	14	35/64	40x2	38.210	3
22	2.5	19.744	19.5	49/64	15x1.5	13.676	13.5	17/32	40x3	37.252	3
24	3	21.252	21	53/64	16x1	15.153	15	19/32	42x1.5	40.676	4
27	3	24.252	24	61/64	16x1.5	14.676	14.5	9/16	42x2	40.210	4
30	3.5	26.771	26.5	1.3/64	18X1	17.153	17	43/64	42x3	39.252	3
33	3.5	29.771	29.5	1.5/32	18X1.5	16.676	16.5	41/64	45x1.5	43.676	4
36	4	32.270	32	1.1/4	18X2	16.210	16	5/8	45X2	43.210	4
39	4	35.270	35	1.3/8	20X1	19.153	19	3/4	45X3	45.252	4
42	4.2	37.799	37.5		20X1.5	18.676	18.5	47/64	48X1.5	46.676	4
45	4.5	40.799	40.5		20X2	18.210	18	45/64	48X2	46.210	4
48	5	43.297	43		22X1	21.153	21	53/64	48X3	45.252	4
52	5	47.297	47		22X1.5	20.676	20.5	13/16	50X1.5	48.686	4
_	•				22X2	20.210	20	25/32	50X2	48.210	4
					24X1	23.153	23	29/32	50X3	47.252	4
					24X1.5	22.676	22.5	7/8			
					24X2	22.210	22	55/64			
DIAME	TROS R	ECOMENI	DADOS CI	IANDO SE							

DIÁMETROS RECOMENDADOS CUANDO SE USAN LAS BROCAS DORMER ADX Y CDX

Las tablas precedentes para diámetros de broca se refieren a las brocas estándar ordinarias. Las brocas modernas como las Dormer ADX y CDX producen un agujero más pequeño y preciso que hace necesario aumentar el diámetro de la broca para evitar que el macho se rompa. Mirar la pequeña tabla de la derecha.

ROSCA GRUESA MÉTRICA ISO PARA ADX / CDX

MACHO		Diám.	MACHO		Diám.
	Paso	Broca		Paso	Broca
M	mm	mm	М	mm	mm
4	0.70	3.40	10	1.50	8.70
5	0.80	4.30	12	1.75	10.40
6	1.00	5.10	14	2.00	12.25
8	1.25	6.90	16	2.00	14.25

TABLAS DE RECOMENDACIÓN DE DIÁMETROS DE BROCAS PARA MACHOS

ROSCA	GRUESA	UNIFIC	ADA ISO	ROSC	CA FINA L	JNIFICA	DAISO	ROSC	CA GRUE	SA WHITV	VOR
MACHO	Diám Interior.	Diám.	Diám.	MACHO	Diam. Interior.	Diám.	Diám.	MACHO	Número	Diám. Interior.	Diá
	Máx.	Broca	Broca		Máx.	Broca	Broca		de	Máx.	Bro
UNC	mm	mm	pulgadas	UNF	mm	mm	pulgadas	BSW	t.p.i.	mm	mm
nr 2-56	1.872	1.85	50	nr 2-64	1.913	1.9	50	3/32	48	1.910	1.85
nr 3-48	2.146	2.1	47	nr 3-56	2.197	2.15	45	1/8	40	2.590	2.55
nr 4-40	2.385	2.35	43	nr 4-48	2.459	2.4	42	5/32	32	3.211	3.2
nr 5-40	2.697	2.65	38	nr 5-44	2.741	2.7	37	3/16	24	3.744	3.7
nr 6-32	2.896	2.85	36	nr 6-40	3.023	2.95	33	7/32	24	4.538	4.5
nr 8-32	3.513	3.5	29	nr 8-36	3.607	3.5	29	1/4	20	5.224	5.1
nr 10-24	3.962	3.9	25	nr 10-32	4.166	4.1	21	5/16	18	6.661	6.5
nr 12-24	4.597	4.5	16	nr 12-28	4.724	4.7	14	3/8	16	8.052	7.9
1/4-20	5.268	5.1	7	1/4-28	5.580	5.5	3	7/16	14	9.379	9.2
5/16-18	6.734	6.6	F	5/16-24	7.038	6.9	1	1/2	12	10.610	10.5
3/8-16	8.164	8	5/16	3/8-24	8.626	8.5	Q	9/16	12	12.176	12
7/16-14	9.550	9.4	U	7/16-20	10.030	9.9	25/64	5/8	11	13.598	13.5
1/2-13	11.013	10.8	27/64	1/2-20	11.618	11.5	29/64	3/4	10	16.538	16.5
9/16-12	12.456	12.2	31/64	9/16-18	13.084	12.9	33/64	7/8	9	19.411	19.2
5/8-11	13.868	13.5	17/32	5/8-18	14.671	14.5	37/64	1	8	22.185	22
3/4-10	16.833	16.5	21/32	3/4-16	17.689	17.5	11/16	1.1/8	7	24.879	24.7
7/8-9	19.748	19.5	49/64	7/8-14	20.663	20.4	13/16	1.1/4	7	28.054	28
1-8	22.598	22.25	7/8	1-12	23.569	23.25	59/64	1.3/8	6	30.555	30.5
1.1/8-7	25.349	25	63/64	1.1/8-12	26.744	26.5	1.3/64	1.1/2	6	33.730	33.5
1.1/4-7	28.524	28	1.7/64	1.1/4-12	29.919	29.5	1.11/64	1.5/8	5	35.921	35.5
1.3/8-6	31.120	30.75	1.7/32	1.3/8-12	33.094	32.75	1.19/64	1.3/4	5	39.098	39
1.1/2-6	34.295	34	1.11/32	1.1/2-12	36.269	36	1.27/64	1.7/8	4.1/2	41.648	41.5
1.3/4-5	39.814	39.5	1.9/16					2	4.1/2	44.823	44.5
2-41/2	45.595	45	1.25/32								

ROS	SCA DE TU CILII	IBO WHIT' NDRICA	WORTH		NSERTO GRUESO ÉTRICA ISO	ROSCA INSERTO GRUESO UNIFICADA ISO		
MACHO	Número	Diám Interior.	Diám.	MACHO	Diám.	MACHO	Diám.	
	de	Máx.	Broca		Broca		Broca	
G	t.p.i.	mm	mm	EG M	mm	EG UNC	mm	
1/8	28	8.848	8.8	2.5	2.6	nr 2-56	2.3	
1/4	19	11.890	11.8	3	3.2	nr 3-48	2.7	
3/8	19	15.395	15.25	3.5	3.7	nr 4-40	3	
1/2	14	19.172	19	4	4.2	nr 5-40	3.4	
5/8	14	21.128	21	5	5.2	nr 6-32	3.7	
3/4	14	24.658	24.5	6	6.3	nr 8-32	4.4	
7/8	14	28.418	28.25	8	8.4	nr 10-24	5.1	
1	11	30.931	30.75	10	10.5	nr 12-24	5.8	
1.1/4	11	39.592	39.5	12	12.5	1/4-20	6.7	
1.1/2	11	45.485	45	14	14.5	5/16-18	8.4	
1.3/4	11	51.428	51	16	16.5	3/8-16	10	
2	11	57.296	57	18	18.75	7/16-14	11.7	
2.1/4	11	63.342	63	20	20.75	1/2-13	13.3	
2.1/2	11	72.866	72.5	22	22.75			
2.3/4	11	79.216	79	24	24.75			
3	11	85.566	85.5					

TABLAS DE RECOMENDACIÓN DE DIÁMETROS DE BROCAS PARA MACHOS

ROSCA DE TUBO CILÍNDRICA AMERICANA					ROSCA DE TUBO CÓNICA AMERICANA "DRYSEAL"			ROSCA DE TUBO CÓNICA WHITWORTH		
MACHO	Diám.	Diám.	Diám.	Diám.	MACHO	Diám.	Diám.	MACHO		Diám.
	Interior.	Interior.	Broca	Broca		Interior.	Broca		Numéro	
	Mín.	Máx.	Rec.	Rec.		Mín.	Rec.		de	Broca
NPSM	mm	mm	mm	pulgadas	NPSF	mm	mm	Rc	t.p.i.	mm
1/8"-27	9.039	9.246	9.10	23/64	1/8"-27	8.651	8.70	1/8	28	8.4
1/4"-18	11.887	12.217	12.00	15/32	1/4"-18	11.232	11.30	1/4	19	11.2
3/8"-18	15.316	15.545	15.50	39/64	3/8"-18	14.671	14.75	3/8	19	14.75
1/2"-14	18.974	19.279	19.00	3/4	1/2"-14	18.118	18.25	1/2	14	18.25
3/4"-14	24.333	24.638	24.50	31/32	3/4"-14	23.465	23.50	5/8	14	20.25
1"-11.1/2	30.506	303.759	30.50	1.13/64	1"-11.1/2"	29.464	29.50	3/4	14	23.75
1.1/4"11.1/2	39.268	39.497	39.50	1. 9/16				7/8	14	27.5
1.1/2"11.1/2	45.339	45.568	45.50	1.51/64				1	11	30
2"-11.1/2	57.379	57.607	57.50	2. 1/4				1.1/8	11	34.5
2.1/2"-8	68.783	69.266	69.00	2.23/32				1.1/4	11	38.5
3"-8	84.684	85.166	85.00	3.3/8				1.3/8	11	41
								1.1/2	11	44.5
								1.3/4	11	50
								2	11	56
								2.1/4	11	62
								2.1/2	11	71.5
								2.3/4	11	78
								3	11	84

	ROSCA DI ÓNICA AM				ROSCA DE AMERICA	TUBO NA "DRYSEAL"	ROS	CA TUBO	BLINDAD	00
MACHO	Numéro	Diám.	Diám.	MACHO	Numéro	Diám.	МАСНО	Numéro	Diám. Interior.	Diám.
	de	Broca	Broca		de	Broca		de	Máx.	Broca
NPT	t.p.i.	mm	pulgadas	NPTF	t.p.i.	mm	PG	t.p.i.	mm	mm
1/16	27	6.3	D	1/8	27	8.4	7	20	11.45	11.4
1/8	27	8.5	R	1/4	18	10.9	9	18	14.01	13.9
1/4	18	11	7/16	3/8	18	14.25	11	18	17.41	17.25
3/8	18	14.5	37/64	1/2	14	17.75	13.5	18	19.21	19
1/2	14	18	23/32	3/4	14	23	16	18	21.31	21.25
3/4	14	23	59/64	1	11.1/2	29	21	16	27.03	27
1	14	29	1.5/32	1.1/4	11.1/2	37.75	29	16	35.73	35.5
1.1/4	11.1/2	38	1.1/2	1.1/2	11.1/2	43.75	36	16	45.73	45.5
1.1/2	11.1/2	44	1.47/64	2	11.1/2	55.75	42	16	52.73	52.5
2	11.1/2	56	2.7/32	2.1/2	8	66.5	48	16	58.03	58
2.1/2	8	67	2.5/8	3	8	82.5				
3	8	83	3.1/4							

TABLAS DE RECOMENDACIÓN DE DIÁMETROS DE BROCAS PARA MACHOS DE LAMINACIÓN

Para calcular el diámetro de la broca:

 $D = D_{nom} - 0,0068 * P * 65$

D = Diámetro de la broca (mm)

 D_{nom} = Diámetro nominal del macho (mm)

P = Paso del macho (mm)

El diámetro de la broca se calcula en un 65% de la altura de la rosca

ROSCA GRUESA MÉTRICA ISO					
MACHO	Diám. Interior.	Diám.	Diám.		
	Máx.	Broca	Broca		
M	mm	mm	pulgadas		
2	1.679	1.8			
2.5	2.138	2.3			
3	2.599	2.8	35		
3.5	3.010	3.2	30		
4	3.422	3.7			
5	4.334	4.6	14		
6	5.153	5.5	7/32		
8	6.912	7.4			
10	8.676	9.3			
12	10.441	11.2	7/16		
14	12.210	13.0			
16	14.210	15.0			

ROSC	ROSCA FINA MÉTRICA ISO						
MACHO	Diám. Interior.	Diám.					
	Máx.	Broca					
MF	mm	mm					
4x0.50	3.599	3.8					
5x0.50	4.599	4.8					
6x0.75	5.378	5.7					
8x0.75	7.378	7.7					
8x1.00	7.158	7.5					
10x1.00	9.153	9.5					
10x1.25	8.912	9.4					
12x1.00	11.153	11.5					
12x1.25	10.9912	11.4					
12x1.50	10.676	11.3					
14x1.00	13.153	13.5					
14x1.25	12.912	13.4					
14x1.50	12.676	13.3					
16x1.00	15.153	15.5					
16x1.50	14.676	15.25					

ROSC	A GRUES	A UNIFIC	ADA ISO
MACHO	Diám. Interior.	Diám.	Diám.
	Máx.	Broca	Broca
UNC	mm	mm	pulgadas
nr 1-64	1.582	1.7	51
nr 2-56	1.872	2	47
nr 3-48	2.148	2.3	
nr 4-40	2.385	2.6	39
nr 5-40	2.697	2.9	33
nr 6-32	2.896	3.2	1/8
nr 8-32	3.513	3.8	25
nr 10-24	3.962	4.4	11/64
nr 12-24	4.597	5	9
1/4-20	5.268	5.8	
5/16-18	6.734	7.3	
3/8-16	8.164	8.8	11/32
7/16-14	9.550	10.3	Υ
1/2-13	11.013	11.9	.463

ROS	ROSCA FINA UNIFICADA ISO					
MACHO	Diám. Interior.	Diám.	Diám.			
	Máx.	Broca	Broca			
UNF	mm	mm	pulgadas			
nr 1-72	1.613	1.7	51			
nr 2-64	1.913	2.0				
nr 3-56	2.197	2.3				
nr 4-48	2.459	2.6	37			
nr 5-44	2.741	2.9	33			
nr 6-10	3.023	3.2	1/8			
nr 8-36	3.607	3.9	24			
nr 10-32	4.166	4.5	16			
nr 12-28	4.724	5.1	7			
1/4-28	5.588	6	Α			
5/16-24	7.038	7.5	.293			
3/8-24	8.626	9.1				
7/16-20	10.030	10.6	Z			
1/2-20	11.618	12.1	.476			

DESCRIPCIÓN DEL MANGO

DIMENSIONES ISO DEL MANGO Y DEL CUADRADO

Diámetro del mango mm	Cuadrado	ISO 529 Métrica	ISO 529 UNC/UNF BSW/BSF	ISO2283 Métrica	ISO2284 G	ISO2284 Rc
2,50	2,00	M1				
		M1,2				
		M1,4				
		M1,6	No. 0			
		M1,8				
		M2	No. 1			
2,80	2,24	M2,2	No. 2			
		M2,5	No. 3			
3,15	2,50	M3	No. 4	M3		
			No. 5			
3,55	2,80	M3,5	No. 6	M3,5		
4,00	3,15	M4		M4 M5		
4,50	3,55	M4,5	No. 8	M6		
5,00	4,00	M5	No. 10 3/16	IVIO		
5,60	4,50	M5,5	No. 12 7/32	M7		
6,30		M6	1/4	M8		
	5,0	_		IVI8		
7,10	5,60	M7	9/32	1440	0.1/0	5 4/0
8,00 9,00	6,30 7,10	M8 M9	5/16	M10 M12	G 1/8	Rc 1/8
10,00	8,00	M10	3/8	IVITZ	G 1/4	Rc 1/4
8,00	6,30	M11	7/16		G /4	RC /4
9,00	7,10	M12	1/2			
11,20	9,00	M14	9/16	M14	0.0/0	5 0/0
12,50 14,00	10,00 11,20	M16 M18	5/8 11/16	M16 M18	G 3/8	Rc 3/8
14,00	11,20	M20	3/4	M20		
16,00	12,50	M22	7/8	M22		
18,00	14,00	M24	1"	M24	G 5/8	Rc 5/8
20,00	16,00	M27	1 1/8	M27	G 3/4	Rc ¾
00.10	40.00	M30	444	M30	0 = 10	D =::
22,40	18,00	M33	1 1/4		G 7/8	Rc 7/8
25,00	20,00	M36	1 3/8		G 1"	Rc 1"
28,00	22,40	M39 M42	1 ½			

DIMENSIONES DIN DEL MANGO Y DEL CUADRADO

Diámetro del mango	Cuadrado	DIN 352	DIN 371	DIN 376	DIN 374	DIN 2182	DIN 2183	DIN 353 DIN 374
	mm							211 017
<u>mm</u> 2,5	2,1	M1	M1					
		M1,1	M1,1					
		M1,2	M1,2	M3,5	M3,5	1/16		
		M1,4	M1,4					
		M1,6	M1,6					
		M1,8	M1,8					
2,8	2,1	M2	M2					
		M2,2	M2,2	M4	M4	3/32	5/32	
		M2,5	M2,5					
3,20	2,4						3/16	
3,50	2,70	М3	М3	M5	M5			
4,00	3,00	M3,5	M3,5			1/8		
4,50	3,40	M4	M4	M6	M5,5 M6	5/32	1/4	
6,00	4,90	M5 M6 M8	M5 M6	M8	M8	3/16	5/16	
7,00	5,50	M10		M10	M9 M10	1/4	3/8	G 1/8
8,00	6,20		M8			5/16	7/16	
9,00	7,00	M12		M12	M12	3/8	1/2	
10,00	8,00		M10					
11,00	9,00	M14		M14	M14		9/16	G 1/4
12,00	9,00	M16		M16	M16		5/8	G 3/8
14,00	11,00	M18		M18	M18		3/4	
16,00	12,00	M20		M20	M20			G ½
18,00	14,50	M22 M24		M22 M24			7/8	G 5/8
20,00	16,00	M27		M27	M27 M28		1"	G ¾
22,00	18,00	M30		M30	M30		1 1/8	G 7/8
25,00	20,00	M33		M33	M33		1 1/4	G 1"
28,00	22,00	M36		M36	M36		1 3/8	G 1 1/8
32,00	24,00	M39		M39	M39		1 ½	G 1 ¼
20.00	20.00	M42		M42	M42		1 5/8	0.4.1/
36,00	29,00	M45 M48		M45 M48	M45 M48		1 ¾ 1 7/8	G 1 ½
40,00	32,00	M52		M52	IVI40		2	G 1 ¾
45,00	35,00	-		-				G 2"
50,00	39,00							G 2 1/4
,	, . ,							G 2 ½
								G 2 3/4
								G 3"

DIMENSIONES ANSI DEL MANGO Y DEL CUADRADO

Diámetro	Cuadrado		ASME B94.9	ASME B94.9	ASME B94.9
del mango		Tamaño de la serie		Tamaños en fracciones	Tamaños métrica
pulgadas	pulgadas		extra corta		
0,141	0,11	No	0		M 1.6
		No	1		M 1.8
		No	2		M 2
		No	3		M 2.5
		No	4		
		No	5		M 3
		No	6		M 3.5
0,168	0,131	No	8		M 4
0,194	0,152	No	10		M 5
0,22	0,165	No	12		
0,255	0,191			1/4	M 6
0,318	0,238			5/16	M 7
					M 8
0,381	0,286			3/8	M 10
0,323	0,242			7/16	
0,367	0,275			1/2	M 12
0,429	0,322			9/16	M14
0,48	0,36			5/8	M16
0,542	0,406			11/16	M18
0,59	0,442			3/4	
0,652	0,489			13/16	M20
0,697	0,523			7/8	M22
0,76	0,57			15/16	M24
0,8	0,6			1	M 25
0,896	0,672			1 1/16	M27
				1 1/8	
1,021	0,766			1 3/16	M30
				1 1/4	
1,108	0,831			1 5/16	M33
				1 3/8	
1,233	0,925			1 7/16	M36
				1 ½	
1,305	0,979			1 5/8	M39
1,43	1,072			1 3/4	M42
1,519	1,139			1 7/8	
1,644	1,233			2	M48

PROBLEMAS EN LA REALIZACIÓN DE ROSCAS

Problema	Causa	Remedio	
Tamaño demasiado	Tolerancia incorrecta	Cambiar a un macho con una tolerancia inferior en la rosca	
grande	Valor de avance axial incorrecto	Reducir el valor de avance un 5 –10% o incrementar la compresión del portamachos	
	Tipo de macho equivocado para la aplicación	Usar un macho con entrada en hélice para roscar agujeros pasantes y un macho con estrías helicoidales para roscar agujeros ciegos. Usar un macho recubierto para prevenir la acumulación de viruta en la estría. Asegurarse de una buena alternativa con el catálogo Dormer o con el "Product Selector"	
	Centrado del macho respecto el agujero incorrecto	Asegurar la sujeción del macho y centrar el macho respecto al agujero	
	Falta de lubricación	Usar un buen lubricante para prevenir la acumul-ación de viruta. Mirar la sección de lubricantes.	
	Velocidad del macho demasiado baja	Seguir las recomendaciones del catálogo Dormer o "Product Selector".	
Tamaño demasiado pequeño	Tipo de macho equivocado para la aplicación	Usar un macho con entrada en hélice para roscar agujeros pasantes y un macho con estrías helicoidales para roscar agujeros ciegos. Usar un macho recubierto para prevenir la acumulación de viruta en la estría. Usar un macho con un ángulo superior. Asegurarse de una buena alternativa con el catálogo Dormer o con el "Product Selector"	
	Tolerancia incorrecta	Cambiar a un macho con una tolerancia superior, especialmente en materiales con una tendencia a contra-erse, así como el hierro fundido y el acero inoxidable.	
	Lubricación incorrecta o falta de lubricación	Usar un buen lubricante para prevenir la acumulación de la viruta. Mirar la sección de lubricantes.	
	Diámetro del agujero a roscar demasiado pequeño	Aumentar el diámetro de la broca hasta el máximo valor posible. Mirar en las tablas de taladros para roscar	
	El material se contrae después del roscado	Mirar la alternativa recomendada en el catálogo Dormer o en el "Product Selector"	

Problema	Causa	Remedio
Viruta	Tipo de macho equivocado para la	Cambiar a un macho con un ángulo menor.
	aplicación	Cambiar a un macho con un chaflán más
	'	largo. Usar un macho con entrada en
		hélice para roscar agujeros pasantes y un
		macho con estrías helicoidales para roscar
		agujeros ciegos. Usar un macho recubierto
		para prevenir la acumulación de viruta
		en la estría. Asegurarse de una buena
		alternativa con el Catálogo Dormer o con
		el "Product Selector"
	Lubricación incorrecta o falta de	Usar un buen lubricante para prevenir la
	lubricación	acumulación de la viruta. Mirar la sección
		de lubricantes
	Golpe del macho con el fondo del	Incrementar la profundidad del taladro o
	agujero	disminuir la profundidad de roscado
	Superficie de trabajo demasiado	Reducir la velocidad, usar una herramienta
	dura	recubierta, usar un buen lubricante. Mirar
		en la sección de mecanizado de acero
		inoxidable
	Viruta generada en el roscado	Evitar un brusco cambio de sentido del
	excesivamente enredada	macho
	El chaflán de entrada daña el	Revisar la posición axial del macho y
	agujero	reducir el error del centrado del macho en
		el agujero
	Diámetro del agujero a roscar	Aumentar el diámetro de la broca hasta el
	demasiado pequeño.	máximo valor posible. Mirar en las tablas
<u> </u>		de taladros para roscar
Rotura	Macho gastado	Rectificar el macho o usar un macho
	Falta de lubricación	lusar un buen lubricante para prevenir la
	Faita de lubricación	acumulación de la viruta. Mirar la sección
		de lubricantes
	Golpe del macho con el fondo del	Incrementar la profundidad del taladro o
	aquiero	disminuir la profundidad de rescado
	Velocidad del macho demasiado	Reducir la velocidad de corte. Seguir las
	alta	recomendaciones del Catálogo Dormer o
		"Product Selector"
	Superficie de trabajo demasiado	Reducir la velocidad, usar una herramienta
	dura	recubierta, usar un buen lubricante. Mirar
		en la sección de mecanizado de acero
		inoxidable
	Diámetro del agujero a roscar	Aumentar el diámetro de la broca hasta el
	demasiado pequeño	máximo valor posible. Mirar en las tablas
		de taladros para roscar
	Potencia demasiado alta	Usar un portamachos de potencia
		regulable
	El material se contrae después del	Mirar la alternativa recomendada en
	roscado	el Catálogo Dormer o en el "Product
		Selector"

Problema	Causa	Remedio
Desgaste	Macho equivocado para la	Usar un macho con un ángulo inferior a
rápido	aplicación realizada	con un rebaje superior, y/o con un chaflán
		largo. Usar herramientas recubiertas.
		Asegurarse de la alternativa correcta en el
		catálogo Dormer o en el "Product Selector"
	Falta de lubricación	Usar un buen lubricante para prevenir la
		acumulación de la viruta y la generación
		de temperatura. Mirar la sección de
		lubricantes
	Velocidad del macho demasiado	Reducir la velocidad de corte. Seguir las
	alta	recomendaciones del Catálogo Dormer o
		del "Product Selector"
Acumulación	Macho equivocado para la	Usar un macho con un ángulo inferior a
de Viruta	aplicación realizada	con un rebaje superior. Asegurarse de la
		alternativa correcta en el Catálogo Dormer
		o en el "Product Selector"
	Falta de lubricación	Usar un buen lubricante para prevenir la
		acumul-ación de la viruta. Mirar la sección
		de lubricantes
	Tratamiento superficial no	Mirar la sección de tratamientos
	adecuado	superficiales recomendados
	Velocidad del macho demasiado	Seguir las recomendaciones del Catálogo
	lenta	Dormer o del "Product Selector"