1. Solve the following linear system

$$x_1 - x_2 + x_3 + 2x_4 = -2$$

 $3x_1 - 2x_2 + 4x_4 = 1$
 $x_1 + x_2 - 2x_3 + x_4 = 3$
 $6x_1 - 4x_2 + 2x_3 + 2x_4 = 2$

Solution.

We row reduce the augmented matrix:

$$\begin{bmatrix} 1 & -1 & 1 & 2 & | & -2 \\ 3 & -2 & 0 & 4 & 1 \\ 1 & 1 & -2 & 1 & | & 3 \\ 6 & -4 & 2 & 2 & | & 2 \end{bmatrix} \begin{array}{c} \sim \\ R_2 - 3R_1 \\ R_3 - R_1 \\ R_4 - 6R_1 \end{array} \begin{bmatrix} 1 & -1 & 1 & 2 & | & -2 \\ 0 & 1 & -3 & -2 & | & 7 \\ 0 & 2 & -3 & -1 & | & 5 \\ 0 & 2 & -4 & -10 & | & 14 \end{bmatrix} \begin{array}{c} \sim \\ R_1 + R_2 \\ R_3 - 2R_2 \\ R_4 - 2R_2 \end{array} \begin{bmatrix} 1 & 0 & -2 & 0 & | & 5 \\ 0 & 1 & -3 & -2 & | & 7 \\ 0 & 0 & 3 & 3 & | & -9 \\ 0 & 0 & 2 & -6 & | & 0 \end{bmatrix}$$

$$\begin{array}{c|ccccc} \sim & \begin{bmatrix} 1 & 0 & 0 & 0 & 1/2 \\ R_1 - 2R_4 & 0 & 1 & 0 & 0 & -5/4 \\ R_2 - R_4 & 0 & 0 & 1 & 0 & -9/4 \\ R_3 - R_4 & 0 & 0 & 0 & 1 & -3/4 \end{bmatrix}$$

Therefore, the solution is $x_1 = 1/2$, $x_2 = -5/4$, $x_3 = -9/4$ and $x_4 = -3/4$.

2. Let

$$\begin{bmatrix} 1 & 0 & -1 & 0 & 0 & | & -2 \\ 0 & 1 & 2 & 0 & 0 & | & 3 \\ 0 & 0 & 0 & 0 & 1 & | & 0 \\ 0 & 0 & 0 & 0 & 0 & | & 0 \end{bmatrix}$$

be the reduced echelon form of the augmented matrix of a linear system $A\vec{x} = \vec{b}$.

- a) (4 points) Circle the pivots in the matrix above, identify the basic variables, free variables (if any) and write the solution of the linear system in vector parametric
- b) (1 point) What is the solution to the homogeneous system $A\vec{x} = \vec{0}$? Give your answer in vector parametric form.

Solution.

a) The pivots are circled below:

Basic variables: x_1, x_2, x_5 .

Free variables: x_3 , x_4 .

The vector parametric form of the solution is

$$\vec{x} = \begin{bmatrix} -2\\3\\0\\0\\0 \end{bmatrix} + x_3 \begin{bmatrix} 1\\-2\\1\\0\\0 \end{bmatrix} + x_4 \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix}$$

b) The vector parametric form of the solution is

$$\vec{x} = x_3 \begin{bmatrix} 1 \\ -2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

3. Let
$$\vec{v}_1 = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$$
, $\vec{v}_2 = \begin{bmatrix} 2 \\ 1 \\ -3 \end{bmatrix}$, $\vec{v}_3 = \begin{bmatrix} -1 \\ 7 \\ h \end{bmatrix}$.

- a) (4 points) Find the value of h so that $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ is linearly dependent.
- b) (3 points) For the value of h that you found in part a), find a linear dependence relation.

Solution.

a)

$$\begin{bmatrix} 1 & 2 & -1 \\ 2 & 1 & 7 \\ -1 & -3 & h \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & -1 \\ R_2 - 2R_1 \\ R_3 + R_1 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & -1 \\ 0 & -3 & 9 \\ 0 & -1 & h - 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & -3 \\ 0 & -1 & h - 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & -3 \\ 0 & -1 & h - 1 \end{bmatrix} \approx \begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & -3 \\ 0 & 0 & h - 4 \end{bmatrix}$$

This is an echelon form. For the set to be linearly dependent, we require at least one free variable. Therefore, we need $h-4=0 \Rightarrow h=4$.

b) To obtain a linear dependence relation, we finish solving the system with h=4. Note that we do not have to start from the beginning; we just have to continue with the row operations with h=4:

$$\begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & -3 \\ 0 & 0 & 0 \end{bmatrix} \quad \begin{matrix} R_1 - 2R_2 \\ \sim \\ \end{matrix} \quad \begin{bmatrix} 1 & 0 & 5 \\ 0 & 1 & -3 \\ 0 & 0 & 0 \end{bmatrix}$$

From here we see that

$$x_1 = -5x_3$$

$$x_2 = 3x_3$$

$$x_3 \text{ is free.}$$

Pick $x_3 = 1 \Rightarrow x_1 = -5$, $x_2 = 3$. A linear dependence relation is:

$$-5\vec{v}_1 + 3\vec{v}_2 + \vec{v}_3 = \vec{0}.$$

4. Let
$$A = \begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 2 \\ 2 & 0 & -2 \end{bmatrix}$$
, and define $T : \mathbb{R}^3 \to \mathbb{R}^3$ as $T(\vec{x}) = A\vec{x}$, for all $\vec{x} \in \mathbb{R}^3$. Find

an \vec{x} in \mathbb{R}^3 whose image under T is $\vec{b} = \begin{bmatrix} 3 \\ -1 \\ 6 \end{bmatrix}$. Is there more than one \vec{x} in \mathbb{R}^3 whose

image under T is \vec{b} ? Explain.

Solution.

We must find \vec{x} in \mathbb{R}^3 such that $T(\vec{x}) = A\vec{x} = \vec{b}$:

$$\begin{bmatrix} 1 & 0 & -1 & 3 \\ -1 & 1 & 2 & -1 \\ 2 & 0 & -2 & 6 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -1 & 3 \\ R_2 + R_1 & 0 & 1 & 1 & 2 \\ R_3 - 2R_1 & 0 & 0 & 0 & 0 \end{bmatrix}$$

This is the REF. From here we see that

$$x_1 = 3 + x_3$$

 $x_2 = 2 - x_3$
 x_3 is free.

Pick $x_3 = 0 \Rightarrow x_1 = 3$, $x_2 = 2$. Therefore, an \vec{x} in \mathbb{R}^3 whose image under T is \vec{b} is $\vec{x} = \begin{bmatrix} 3 \\ 2 \\ 0 \end{bmatrix}$. Since there is a free variable, there are infinitely many vectors in \mathbb{R}^3 whose image under T is \vec{b} .

- 5. For each of the following, determine if the statement is true or false. Provide a short reasoning (one or two sentences).
 - a) The columns of any 4×5 matrix are linearly dependent.
 - b) Let T be a linear transformation. If $T(\vec{x}) = T(\vec{y})$, then $\vec{x} = \vec{y}$.
 - c) If $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ is linearly independent, then $\{\vec{v}_1, \vec{v}_2\}$ is also linearly independent.

Solution.

- a) TRUE. At best, there are four pivots (one in every row), in which case there is one column without a pivot which leads to a free variable.
- b) FALSE. Take $T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} 3x_1 \\ 2x_1 \end{bmatrix}$. We see that T is a linear transformation. Take $\vec{x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\vec{y} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. Then $T(\vec{x}) = T(\vec{y}) = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$, but $\vec{x} \neq \vec{y}$.
- c) TRUE. If $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ is linearly independent, then none of the vectors can be written as a linear combination of the other ones. This implies that \vec{v}_1 and \vec{v}_2 are not a scalar multiple of each other. Therefore, $\{\vec{v}_1, \vec{v}_2\}$ is also linearly independent.
- 6. (BONUS) Let $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ be a linearly independent set of vectors in \mathbb{R}^n . Show that $\{\vec{v}_1, \vec{v}_2, \vec{v}_1 + \vec{v}_3\}$ is linearly independent. Solution.

Let c_1, c_2, c_3 be scalars and consider

$$c_1\vec{v}_1 + c_2\vec{v}_2 + c_3(\vec{v}_1 + \vec{v}_3) = \vec{0}.$$

This is equivalent to

$$(c_1 + c_3)\vec{v}_1 + c_2\vec{v}_2 + c_3\vec{v}_3 = \vec{0}.$$

Since $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ is linearly independent, the only possible solution to this equation is the trivial solution, i.e.,

$$c_1 + c_3 = 0$$
, $c_2 = 0$, $c_3 = 0$.

Since $c_3 = 0$, we then have $c_1 = -c_3 = 0$. Therefore, $\{\vec{v}_1, \vec{v}_2, \vec{v}_1 + \vec{v}_3\}$ is linearly independent.