

RÉSOLUTION NUMÉRIQUE DES ÉQUATIONS NON-LINÉAIRES

Comparaison des méthodes

3^{ème} année

Ordre de convergence

Soit x^* la solution de f(x) = 0 et soit $(x_n)_n$ la suite récurrente qui approche x^* .

① On dit qu'une méthode itérative est d'ordre $p\ (p\geq 1)$ s'il existe une constante C>0, indépendante de k, telle que

$$|x^* - x_{k+1}| \le C|x^* - x_k|^p.$$

② Si p = 1, on parle d'une convergence linéaire

$$|x^* - x_k| \le C|x^* - x_{k-1}| \le \dots \le C^k|x^* - x_0|.$$

Alors on a la convergence de l'alogorithme si C < 1.

3 Si p = 2, on a une convergence quadratique

$$|x^* - x_k| \le C|x^* - x_{k-1}|^2 \le \dots \le C^{2^k - 1}|x^* - x_0|^{2^k}.$$

4 Plus l'ordre de convergence p est élevé, plus la méthode est rapide et précise.

Avantages et inconvénients des méthodes

	Dichotomie	Point fixe	Newton
Convergence	Assurée	Sous des conditions	Selon le choix de x_0
Rapidité de la convergence	Convergence linéaire	Selon la valeur de ${\cal M}$	Convergence quadratique
	donc lente	$(g'(x) \le M)$	donc rapide
Complexité	Moins de calcul	Moins de calcul	Plus de calcul