$ au_1^{\#2}$	0	0	0	$\frac{12ik}{(3+4k^2)^2t_1}$	$\frac{12i\sqrt{2}k}{(3+4k^2)^2t_1}$	0	$\frac{24 k^2}{(3+4 k^2)^2 t_1}$
$\tau_{1^{-}\alpha}^{\#1}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{lpha}$	0	0	0	$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	$\frac{12}{(3+4k^2)^2t_1}$	0	$-\frac{12i\sqrt{2}k}{(3+4k^2)^2t_1}$
$\sigma_{1}^{\#1}{}_{\alpha}$	0	0	0	$\frac{6}{(3+4 k^2)^2 t_1}$	$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	0	$-\frac{12ik}{(3+4k^2)^2t_1}$
$\tau_{1}^{\#1}_{+}\alpha\beta$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{ik}{(1+k^2)^2 t_1}$	$\frac{k^2}{(1+k^2)^2t_1}$	0	0	0	0
$\sigma_{1}^{\#2}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{1}{(1+k^2)^2 t_1}$	$-\frac{ik}{(1+k^2)^2t_1}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
	$\sigma_1^{\#1} + \alpha^{\beta}$	$\sigma_1^{\#2} + \alpha \beta$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1^{\bar{-}}}^{\#1} \dagger^{\alpha}$	$\sigma_{1}^{\#2} +^{\alpha}$	$\tau_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$\tau_1^{\#2} +^{\alpha}$

Lagrangian density	$-rac{1}{3}t_1\;\omega_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$	$\frac{1}{3}r_2\partial_\theta\omega_{\alpha\beta}^{\beta}\partial_\kappa\omega^{\alpha\beta\theta} - \frac{2}{3}r_2\partial_\theta\omega_{\alpha\beta}^{\beta}\partial_\kappa\omega^{\theta\alpha\beta} - \frac{1}{2}t_1\partial^\alpha f_{\beta}\partial^\kappa f_{\beta}^{\theta} -$	$\frac{1}{2}t_1\partial^{\alpha}f_{\kappa\theta}\partial^{\kappa}f_{\alpha}^{\theta} - \frac{1}{2}t_1\partial^{\alpha}f^{\lambda}_{\kappa}\partial^{\kappa}f_{\alpha\lambda} + \frac{1}{3}t_1\omega_{\kappa\alpha}^{\alpha}\partial^{\kappa}f'_{} + \frac{1}{3}t_1\omega_{\kappa\lambda}^{\lambda}\partial^{\kappa}f'_{}$	$\frac{2}{3}t_{1}\partial^{\alpha}f_{\kappa\alpha}\partial^{\kappa}f'_{,-\frac{1}{3}}t_{1}\partial_{\kappa}f^{\lambda}_{\ \ \lambda}\partial^{\kappa}f'_{,}+2t_{1}\;\omega_{_{I}\kappa\theta}\;\partial^{\kappa}f'^{\theta}_{,-\frac{1}{3}}t_{1}\;\omega_{_{I}\alpha}^{\ \ \alpha}\;\partial^{\kappa}f'_{\kappa}-$
$t_2 < 0 & t_1 < 0$	Unitarity conditions	(No massless particle		

 $\frac{2}{3} r_2 \, \partial_\kappa \omega^{\theta\alpha\beta} \, \partial^\kappa \omega_{\alpha\beta\theta} - \frac{2}{3} r_2 \, \partial^\beta \omega_{\alpha}{}^{\alpha\lambda} \, \partial_\lambda \omega_{\alpha\beta}{}^{\prime} + \frac{2}{3} r_2 \, \partial^\beta \omega_{\lambda}{}^{\lambda\alpha} \, \partial_\lambda \omega_{\alpha\beta}{}^{\prime}$

Added source term: $f^{\alpha\beta} \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi}$

 $_{\alpha}^{}\partial^{\kappa}f_{\lambda\kappa} + \frac{1}{3}r_{2}\partial_{\kappa}\omega^{\alpha\beta\theta}\partial^{\kappa}\omega_{\alpha\beta\theta} +$

 $\frac{1}{2}t_1\partial_{\kappa}f^{\lambda}_{\theta}\partial^{\kappa}f_{\lambda}^{\theta}-\frac{1}{3}t_1\partial^{\alpha}f^{\lambda}_{c}$

 $rac{1}{3}t_1\;\omega_{/\lambda}^{}\,\partial^{\kappa}f^{\prime}_{}+rac{1}{2}t_1\,\partial^{\alpha}f^{\lambda}_{}$

 $_{\kappa}^{}\partial^{\kappa}f_{\lambda\alpha} + \frac{1}{2}t_{1}\partial_{\kappa}f_{\theta}^{\ \lambda}\partial^{\kappa}f_{\lambda}^{\ \theta} +$

$f_{1}^{\#2}$	0	0	0	<i>ikt</i> 1 3	$\frac{1}{3}\bar{l}\sqrt{2}kt_1$	0	$\frac{2k^2t_1}{3}$
$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0
$\omega_{1^{-}}^{\#2}{}_{\alpha}$	0	0	0	$\frac{t_1}{3\sqrt{2}}$	<u>Γ</u> ₂	0	$-\frac{1}{3}\bar{l}\sqrt{2}kt_1$
$\omega_{1^{\bar{-}}}^{\#1}{}_{\alpha}$	0	0	0	6 6	$\frac{t_1}{3\sqrt{2}}$	0	$-\frac{1}{3}$ \vec{i} k t_1
$f_{1}^{\#1}$	$-\frac{i k t_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#2}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#1}{}_{\!$	- <u>t1</u>	$-\frac{t_1}{\sqrt{2}}$	$\frac{ikt_1}{\sqrt{2}}$	0	0	0	0
	$\omega_1^{\#1} +^{lphaeta}$	$\omega_{1}^{\#2} + \alpha \beta$	$f_{1+}^{#1} \dagger^{\alpha\beta}$	$\omega_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$\omega_{1}^{\#2} +^{\alpha}$	$f_{1}^{\#1} \dagger^{lpha}$	$f_{1}^{\#2} \dagger^{\alpha}$

#

Source constraints SO(3) irreps

 \vdash

 $\tau_{0}^{\#2} == 0$

 \vdash

 $\tau_{0}^{\#1} == 0$

П

 $\sigma_{0}^{\#1} == 0$

 \sim

 $\tau_{1}^{\#2}\alpha + 2ik \sigma_{1}^{\#1}\alpha == 0$

	$\sigma_{2}^{\#1}{}_{lphaeta}$	$ au_{2}^{\#1}_{\alpha\beta}$	$\sigma_{2}^{\#1}_{\alpha\beta\beta}$
$\sigma_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$ au_2^{\#1} \dagger^{lphaeta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	$\frac{2}{t_1}$

-	$\omega_{0}^{\#1} + f_{0}^{\#1} + f_{$	$f_{0}^{#2}$	$\omega_{0}^{\#1} \dagger$	
	f_{1}^{\dagger} f_{2}^{\dagger} g g	0	0	$\frac{t_1}{2}$
	$f_2^{\#1}$	$-\frac{ikt_1}{\sqrt{2}}$	$k^2 t_1$	0
	$^{t1}_{\alpha}$	<u>t1</u> 2	$\frac{kt_1}{\sqrt{2}}$	0

 $\omega_2^{\#1} +^{\alpha\beta}$

 $f_2^{\#1} \dagger^{\alpha\beta}$

 $\omega_{2}^{#1} +^{\alpha \beta \chi}$

 $k^2 r_2 - t_1$

0

0

0

0

0

0

0

 $f_0^{\#2}$

 $f_{0}^{\#1}$

20

Total #:

2

 $\tau_2^{\#1}\alpha\beta - 2ik \sigma_2^{\#1}\alpha\beta == 0$

 \sim

 $\tau_{1}^{\#1}\alpha\beta + ik \sigma_{1}^{\#2}\alpha\beta == 0$

 \sim

 $\sigma_{1}^{\#1}{}^{\alpha} := \sigma_{1}^{\#2}{}^{\alpha}$

 $^{\circ}$

 $\tau_{1}^{\#1}{}^{\alpha} == 0$

0

0

0

0

0

0

0

0

Massive partic	le
Pole residue:	

 $J^{P} = 0^{-1}$

	Massive particl	le
	Pole residue:	$-\frac{1}{r_2} > 0$
2	Polarisations:	1
	Square mass:	$\frac{t_1}{r_2} > 0$
	Spin:	0
	Parity:	Odd

0
3
as
nassl
less
Š
ра
Ĭ
Ċ
les
(S

 $\&\&\,t_1<0$

_
0
_
ゴ
a
S
nassless
$\overline{\Box}$
ìń
ιχ
D
a
<u> </u>
Ξ.
$\overline{\Box}$
les
S

0
3
a
nassless
<u>e</u>
SS
b
par
⊈.
$\frac{C}{C}$
es
$\overline{}$