SELEX Deep HMM

1 Introduction

Systematic Evolution of Ligands by Exponential Enrichment (SELEX) is a powerful method for discovering novel ligands with high affinity and specificity for target molecules. However, the experimental process is time-consuming, resource-intensive, and involves numerous parameters that can significantly impact the outcome. This internship project aims to develop an in-silico SELEX simulator using predictive / generative models.

2 Problem Statement

First, sample a random round r from $1, \ldots, R-1$ and N unique sequences (e.g. N=1000) of the pool in round r. Let s_i , $i=1,\ldots,N$ be the sequences, ρ_i , $i=1,\ldots,N$ the relative abundance of s_i in pool r, (i.e. $\mathbf{1}_N^T \boldsymbol{\rho}=1$) $\widetilde{\rho}_i, i=1,\ldots,N$ the relative abundance in pool r+1. The goal is to predict $\tilde{\rho}$ from ρ and s_i , $i=1,\ldots,N$. This serves as kind of data augmentation to avoid overfitting: Because we randomly choose subsets of size N and thus vary which sequences the model sees together, it discourages memorizing absolute frequencies from the training set. Additionally, we do not need to predict the whole $\tilde{\rho} \in \mathbb{R}^N$ but it might be an idea to sample m random indices $I := \{i_1, \ldots, i_m\}$ and to predict $\widetilde{
ho}_I \in \mathbb{R}^m$ given the N sequences. The plan is to use cross attention between the N pool sequences and the m for-prediction-considered sequences such that their relationship can be learned. m=1 could even be chosen and then iterated through the N sequences. Note that using cross-attention between the N and m sequences will scale $\mathcal{O}(NmL_{\text{max}})$ for graphical memory, while cross-attention between the whole N sequences scales $\mathcal{O}(N^2L_{\text{max}})$. So, if we use m=1 and N = 1000, we would only need 1/1000 of the memory compared to self-attention, which seems much more feasible, and for predicting the abundance of sequence i, relationships between other sequences s_i, s_k might be neglectable given the relationships between s_i and all other sequences.

Let $L_{\rm max}$ be the maximum sequence length in the whole dataset (train and validation). In practice, some pre-processing needs to be done here, I think most sequences are in the range of about 140-160 nt. Outliers should be filtered, such that hopefully we can catch > 95% of the sequences in a small bound (like e.g. 140-160).

3 Input Representation: Padding & Embedding

To feed each sequence s_i of variable length into a neural network, we adopt a common strategy from natural language processing:

1. Tokenize each sequence.

Let each nucleotide (e.g., 'A', 'C', 'G', 'U', and special tokens 'PAD' and 'CLASS') be assigned an integer ID:

$$CLASS \mapsto 0$$
, $A \mapsto 1$, $C \mapsto 2$, $G \mapsto 3$, $U \mapsto 4$, $PAD \mapsto 5$.

Thus, each sequence s_i of length L_i can be represented as a vector of integer IDs $[s_i^{(0)}, s_i^{(1)}, s_i^{(2)}, \dots, s_i^{(L_i)}]$.

2. Pad to a fixed length.

For each s_i whose length $L_i < L_{\text{max}}$, append the 'PAD' token until it becomes length L_{max} :

$$\underbrace{\left[s_i^{(1)}, \dots, s_i^{(L_i)}\right]}_{\text{original}} \to \underbrace{\left[s_i^{(1)}, \dots, s_i^{(L_i)}, \text{PAD}, \dots, \text{PAD}\right]}_{\text{length } L_{\text{max}}}.$$

This yields a batch **S** of shape (N, L_{max}) when we stack N sequences. Additionally, we append a CLASS token in the beginning CLASS = $s_i^{(0)} = 0$ which stores information about the whole sequence (and is not assigned to a specific position), i.e. the final sequences look:

$$\underbrace{\left[\text{CLASS}, \, s_i^{(1)}, \dots, s_i^{(L_i)}, \text{PAD}, \dots, \text{PAD}\right]}_{\text{length } L_{\text{max}} + 1}.$$

3. Lookup embedding layer.

We define a trainable embedding matrix

$$\mathbf{E} \in \mathbb{R}^{V \times d}$$
,

where V is the vocabulary size (in our case, V=6 for {A, C, G, U, PAD, CLASS}), and d is the desired embedding dimension. Each integer token $t \in \{0, ..., V\}$ is mapped to a vector $\mathbf{E}[t] \in \mathbb{R}^d$. Hence, the padded sequence $[s_i^{(0)}, s_i^{(1)}, ..., s_i^{(L_{\text{max}})}]$ is transformed into a matrix

$$\mathbf{H}_{i} = \left[\mathbf{E}[s_{i}^{(0)}]; \ \mathbf{E}[s_{i}^{(1)}]; \ \mathbf{E}[s_{i}^{(2)}]; \dots; \ \mathbf{E}[s_{i}^{(L_{\text{max}})}] \right] \in \mathbb{R}^{L_{\text{max}} + 1 \times d}.$$

Intuitively, each row of \mathbf{H}_i is a learnable d-dimensional embedding of the corresponding nucleotide (or the 'PAD' or 'CLASS' token).

4. Positional embedding (learned).

Since Transformers rely on attention mechanisms that are permutation-invariant, we must provide explicit positional information. A common strategy is to introduce a trainable embedding matrix

$$\mathbf{P} \in \mathbb{R}^{L_{\max}+1 \times d}$$
.

where each row $\mathbf{P}^{(\ell)}$ represents a d-dimensional embedding for position ℓ , with $\ell=1,\ldots,L_{\max}+1$. Initialize this matrix with e.g. like sinusoidal positional encoding (or maybe naive Glorot initialization is fine, but I think sinusoidal might work better), and is then updated during backpropagation just like other model parameters. After we compute each token's embedding $\mathbf{H}_i^{(\ell)} \in \mathbb{R}^d$ from the look-up layer, we add $\mathbf{P}^{(\ell)}$ to incorporate positional information:

$$\widetilde{\mathbf{H}}_i^{(\ell)} \; = \; \mathbf{H}_i^{(\ell)} \; + \; \mathbf{P}^{(\ell)}. \label{eq:hamiltonian_equation}$$

As training proceeds, the network learns how best to encode spatial context in $\mathbf{P}^{(\ell)}$, allowing the model to distinguish, for instance, nucleotides near the 5' end from those near the 3' end. This approach provides flexible, data-driven positional encoding compared to fixed (e.g. sinusoidal) schemes.

At this stage, each sequence s_i (now of fixed length $L_{\max} + 1$ by padding) is converted into an embedded representation $\widetilde{\mathbf{H}}_i \in \mathbb{R}^{L_{\max}+1 \times d}$ for each $i = 1, \dots, N$.

4 Simple Prediction via a Neural Network

Let $\boldsymbol{H} \in \mathbb{R}^{N \times L_{\max} + 1 \times d}$ be the tensor of all sequences $\boldsymbol{H}_i, i = 1, \dots, N$ after embedding (to simplify notation, we remove the tilde) and $H_I \in \mathbb{R}^{m \times L_{\text{max}} + 1 \times d}$ be the matrix of the m embedded sequences, for which the abundance should be predicted. The plan is to learn at first feasible transformations on H and H_I and then to apply cross attention on them. It should be possible to apply selfattention on each of the N embedding matrices $\boldsymbol{H}_i \in \mathbb{R}^{L_{\text{max}}+1\times d}, i=1,\ldots,N$ individually attending the positions to each other, resulting in an overall memory complexity of $\mathcal{O}(NL_{\max}^2d)$. Also, dense $d \times d$ layer should not be problematic. So we apply some in-sequence attention (on H_i parallel in N) and $d \times d$ dense layers together with Layer Normalization, residual connection and so on, and obtain a transformation $\widetilde{\boldsymbol{H}} \in \mathbb{R}^{N \times L_{\max} + 1 \times d}$ or equivalently $\widetilde{\boldsymbol{H}}_i \in \mathbb{R}^{L_{\max} + 1 \times d}$, $i \in \{1, \dots, N\}$. Similarly, on \boldsymbol{H}_i , $i \in I$ can be applied self-attention and dense layers separately to obtain $\widetilde{\boldsymbol{H}}_{i}^{*}$, $i \in I$. Now, to obtain a m-dimensional estimation of the abundance change of the sequences s_I , we first extract the CLASS token now, which is inteneded to store information about sequence enrichment, i.e. we only use $\widetilde{\boldsymbol{H}}_{\cdot,1,\cdot} \in \mathbb{R}^{N\times d}$ and $\widetilde{\boldsymbol{H}}_{\cdot,1,\cdot}^* \in \mathbb{R}^{m\times d}$. We compute

$$\operatorname{crossattention}\left(\widetilde{\boldsymbol{H}}_{\cdot,1,\cdot}^{*},\widetilde{\boldsymbol{H}}_{\cdot,1,\cdot}\right)\in\mathbb{R}^{m\times d}.$$

Now, use a dense $d \times 1$ layer to predict a transformed label e.g. I would propose $\ln(\frac{\tilde{\rho}_I}{\rho_I})$ which has full range $[-\infty, \infty]$. Also, somehow the ρ values need to be fused into the model, either after the cross attention or at the beginning, e.g. into the CLASS token (or maybe both). There is the set-transformer, which is

permutation-invariant which might be nice. Additionally, ρ_I should be fused seperately, or some positional encoding should be integrated into set-transformer such that it can distiguish between $\in I$ and $\notin I$.