Algorytmy tekstowe

laboratorium 3 - kompresja tekstu Algorytmy statycznego i dynamicznego kodowania Huffmana

Jakub Pinowski

1 Format plików wyjściowych

1.1 Statyczne kodowanie Huffmana

Plik rozpoczyna się danymi potrzebnymi do odkodowania i poprawnego przeczytania tekstu:

- \bullet 8 bitów na ilość kodów (N) jakie znajdziemy w tekście
- 8 bitów na ilość bitów na ilu zapisany jest najdłuższy kod (L_{MAX})
- 3 bity na ilość bitów, które musimy "uciąć" z końca tekstu, a zostały dopiane ze względu na bajtową reprezentację pliku na dysku
- N razy fragment w postaci 8 bitów na kod ASCII + $\lceil log_2(L_{MAX}) \rceil$ bitów na długość kodu L + L bitów na kod Huffmana

Kolejne bity zawierają zakodowaną treść

1.2 Dynamiczne kodowanie Huffmana

Plik składa się wyłącznie z kodów ASCII i kodów z drzewa Huffmana. Przeglądanie pliku polega na sprawdzaniu kolejnych znalezionych kodów i aktualizowaniu drzewa oraz dodawaniu liter do tekstu

- 3 bity na ilość bitów, które musimy "uciąć" z końca tekstu, a zostały dopiane ze względu na bajtową reprezentację pliku na dysku
- Na początku znajduje się 8 bitów na kod ASCII pierwszej litery tekstu
- Jeżeli znaleziony kod jest kodem znaku specjalnego, kolejne 8 bitów jest kodem ASCII litery, która wcześniej nie wystąpiła

2 Porównanie czasów działania

Nazwa	Rozmiar	Statyczny		Dynamiczny	
		Kompresja	Dekompresja	Kompresja	Dekompresja
test1.txt	1.03 kB	0.003s	0.001s	0.017s	0.007 s
test2.txt	$10.27~\mathrm{kB}$	0.002s	0.007 s	0.061s	0.051s
test3.txt	100.48 kB	0.018s	0.069s	0.584s	0.498s
testHp.txt	863.36 kB	0.149s	0.561s	5.268s	4.390s

Algorytm dynamicznego kodowania mocno traci w przypadku większych plików, jest to spowodowane potrzebą aktualizacji drzewa po każdej literze, co wymaga znalezienia węzła w drzewie z którym mógłby zamienić się węzeł aktualizowany. Dla dużego drzewa może to wymagać sporej ilości czasu.

Przy okazji mierzenia czasów, program sprawdza zgodność odkodowanego tekstu z zawartością oryginalnego pliku.

3 Stopień kompresji tekstu

Plik test1.txt $1.03~\mathrm{kB}$

- Static 39.2%
- Adaptive 43.1%

Plik test2.txt 10.27 kB

- Static 45.7%
- Adaptive 46.1%

Plik test3.txt 100.48 kB

- Static 46.4%
- Adaptive 46.4%

Plik testHp.txt 863.36 kB

- Static 42.7%
- Adaptive 42.7%

Widzimy że niezależnie od wariantu kodowania Huffmana i wielkości pliku, stopień kompresji jest dość podobny i oscyluje około wartości 40-45%. Czym większy plik, tym bliższe sobie są stopnie kompresji.