

WHAT IS CLAIMED IS:

1. A Raman amplification optical fiber for Raman-amplifying signal light including a plurality of wavelength components when Raman amplification pumping light is supplied thereto, said Raman amplification optical fiber, as characteristics at each wavelength of said signal light, having:

a chromatic dispersion with an absolute value of 6 ps/nm/km or more but 20 ps/nm/km or less;

10 an effective area A_{eff} of 20 μm^2 or less; and

a Raman gain coefficient G_R/A_{eff} of $0.005 (\text{W}\cdot\text{m})^{-1}$ or more.

2. An optical fiber coil including the Raman amplification optical fiber according to claim 1 wound in a stacked fashion.

15 3. A Raman amplifier for Raman-amplifying signal light including a plurality of wavelength components introduced from an input end thereof and outputting thus amplified signal light from an output end thereof, said Raman amplifier comprising:

20 the Raman amplification optical fiber according to claim 1, said Raman amplification optical fiber being disposed between said input end and said output end and constituting at least a part of a transmission line between said input end and said output end; and

25 a pumping light supplier optically connected to at least one end of said Raman amplification optical fiber, said

pumping light supplier supplying said Raman amplification pumping light to said Raman amplification optical fiber.

4. A Raman amplifier according to claim 3, wherein
cumulative chromatic dispersion from said input end to said
output end has an absolute value of 100 ps/nm or less at
each wavelength of said signal light.

5
5. An optical communication system comprising:
10 a transmission line through which signal light
including a plurality of wavelength components propagates;
and

the Raman amplifier according to claim 3.

6. An optical communication system according to claim
5, wherein at least one wavelength included in said signal
light exists within C band of 1530 nm to 1565 nm.

7. An optical communication system according to claim
5, wherein at least one wavelength included in said signal
light exists within L band of 1565 nm to 1625 nm.

8. An optical communication system according to claim
5, wherein at least one wavelength included in said signal
light exists within S band of 1460 nm to 1530 nm.

20
25 9. A Raman amplification optical fiber for
propagating signal light including a plurality of wavelength
components, and Raman-amplifying said signal light when Raman
amplification pumping light is supplied thereto; said Raman
amplification optical fiber, as characteristics at each
wavelength of said signal light, having:

a chromatic dispersion with an absolute value of 6 ps/nm/km or more but 20 ps/nm/km or less; and
an effective area A_{eff} of less than $15 \mu\text{m}^2$.

10. A Raman amplification optical fiber according to
5 claim 9, further having a Raman gain coefficient G_R/A_{eff} of
 $0.005 (\text{W}\cdot\text{m})^{-1}$ or more at each wavelength of said signal light.

11. An optical fiber coil including the Raman
amplification optical fiber according to claim 9 wound in
a stacked fashion.

10 12. A Raman amplifier for Raman-amplifying signal
light including a plurality of wavelength components
introduced from an input end thereof and outputting thus
amplified signal light from an output end thereof, said Raman
amplifier comprising:

15 the Raman amplification optical fiber according to
claim 9, said Raman amplification optical fiber being
disposed between said input end and said output end and
constituting at least a part of a transmission line between
said input end and said output end; and

20 a pumping light supplier optically connected to at least
one end of said Raman amplification optical fiber, said
pumping light supplier supplying said Raman amplification
pumping light to said Raman amplification optical fiber.

25 13. A Raman amplifier according to claim 12, wherein
cumulative chromatic dispersion from said input end to said
output end has an absolute value of 100 ps/nm or less at

each wavelength of said signal light.

14. An optical communication system comprising:
a transmission line through which signal light
including a plurality of wavelength components propagates;
and

5

the Raman amplifier according to claim 12.

15. An optical communication system according to
claim 14, wherein at least one wavelength included in said
signal light exists within C band of 1530 nm to 1565 nm.

10 16. An optical communication system according to
claim 14, wherein at least one wavelength included in said
signal light exists within L band of 1565 nm to 1625 nm.

15 17. An optical communication system according to
claim 14, wherein at least one wavelength included in said
signal light exists within S band of 1460 nm to 1530 nm.