Masked Autoencoders Are More Than Scalable Vision Learners

DSA5204 - Project Group 5

April 2024

Kho Tze Jit	A0215110E
Liaw Zheng Kai	A0222733M
Muhammad Haidi Bin Azaman	A0216941E
Liu Han	A0194490X
Foong Xin Yu	A0213920R
Chia Yi Min Matthew	A0217187Y

Introduction

Model Architecture: Masked Autoencoders (MAE) with Vision Transformer (ViT)

Paper: "Masked Autoencoders are Scalable Vision Learners"

Task: Image reconstruction of a noisy image

_

 Introduction
 Background
 Reproduction
 Extensions
 Conclusion

Background

Masked Autoencoders as Scalable Vision Learners

- MAEs introduced in 2010 by Pascal Vincent et al. (1)
- What benefits does MAE bring?
 - Self-supervised learning
 - Generalized models
- "Masked Autoencoders are Scalable Vision Learners" hypothesizes
 - o MAE demonstrates a rich hidden representation of learned data when masked

Note:

(1) Extracting and Composing Robust Features with Denoising Autoencoders

Background

Masked Autoencoders as Scalable Vision Learners

- MAEs introduced in 2010 by Pascal Vincent et al. (1)
- What benefits does MAE bring?
 - Self-supervised learning
 - Generalized models
- "Masked Autoencoders are Scalable Vision Learners" hypothesizes
 - MAE demonstrates a rich hidden representation of learned data when masked
 - Architecture:

Note:

Introduction

(1) Extracting and Composing Robust Features with Denoising Autoencoders

ŀ

Background Reproduction Extensions Conclusion

Background: Proposed Architecture

Masked Autoencoders as Scalable Vision Learners

Project Objectives

In light of the benefits of MAE, we seek to explore:

Reproduction:

Re-implementation of the paper's main experiment

Extensions:

- 1. Time series reconstruction and prediction
- 2. Semantic Segmentation
- 3. 3D segmentation of medical CT scans
- 4. Generating appropriate samples for data imputation

Main Experiment: Comparison of image classification performance between pre-training with MAE and no pre-training

- Methodology:
 - Pre-training MAE with ViT-B backbone for 600 epochs and fine-tuning for 100 epochs
 - o Training ViT-B from scratch for 200 epochs

Main Experiment: Comparison of image classification performance between pre-training with MAE and no pre-training

- Methodology:
 - Pre-training MAE with ViT-B backbone for 600 epochs and fine-tuning for 100 epochs
 - Training ViT-B from scratch for 200 epochs
- Dataset: Tiny ImageNet
 - 100,000 images of 200 classes (500 for each class) downsized to 64 x 64 coloured images
 - Smaller and fewer images as compared to ImageNet
- Metrics: Top-1 Accuracy

Main Experiment: Comparison of image classification performance between pre-training with MAE and no pre-training

- Methodology:
 - Pre-training MAE with ViT-B backbone for 600 epochs and fine-tuning for 100 epochs
 - Training ViT-B from scratch for 200 epochs
- Dataset: Tiny ImageNet
 - o 100,000 images of 200 classes (500 for each class) downsized to 64 x 64 coloured images
 - Smaller and fewer images as compared to ImageNet

Main Experiment: Comparison of image classification performance between pre-training with MAE and no pre-training

Training Details:

Image Patch Size: 4

Masking Ratio: 0.75

		ViT from scratch (our implementation)	Baseline MAE
Pre-Training	Number of Epochs	NA	600
	Loss		MSE Loss
Main Training/	Number of Epochs	200	100
Fine-Tuning	Loss	Categorical Cross Entropy	

Figure 1: Example results of image reconstruction using MAE architecture

12

Introduction Background Reproduction Extensions Conclusion

Main Experiment: Comparison of image classification performance between pre-training with MAE and no pre-training

Results:

ViT from scratch (our implementation)	Baseline MAE
37.7%	45.6%

Extensions

Time Series Forecasting

Can MAE improve forecast accuracy?

ETTh1 dataset

- Oil Temperature and Power Load data of 2 Electricity Transformers in China
- Target: Oil Temperature (OT) for univariate forecasting
- Features: Previous timesteps OT
- 17320 hourly timesteps

Introduction Background Reproduction **Extensions** Conclusion

Can MAE improve forecast accuracy?

Dataset Preprocessing

- shifted_df using <u>lookback = 100</u>
- train-val-test split: 70-20-10
- no random shuffling to maintain order

Original Dataframe

<u>Shifted Dataframe; lookback=3</u>

y_train shape: (N,1)

shape: (N,3,1)

1 since univariate time series

Introduction Background Reproduction Extensions Conclusion

N timesteps

Model Architecture and Evaluation Metrics

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}|$$

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y})^2$$

Where,

 \hat{y} - predicted value of y \bar{y} - mean value of y

References:

- (1) TI-MAE: Self-supervised Masked Time Series Autoencoders
- (2) MTSMAE: Masked Autoencoders for Multivariate Time-Series Forecasting
- (3) Time Series Forecasting with Masked Autoencoder

Results

Main Experiments

Models	Mean Sqr. Err.	Mean Abs. Err.
no MAE	0.01538	0.10043
MAE, msk=0.75	0.07757	0.26845
MAE, msk=0.50	0.07546	0.26391
MAE, msk=0.25	0.07778	0.26851

- MAE does not improve forecasting accuracy
- Models trained with different masking ratios exhibit similar performance
- Possible explanations
 - 1D time series signals are sparse
 - Neighbouring signal points are crucial for forecasting
 - \circ Dataset is too small \rightarrow transformers are data-hungry models

Results

19

Introduction

Background

Reproduction

Extensions

Results

20

Introduction

Background

Reproduction

Extensions

Results

<u>Additional Experiments</u>

Models	Mean Sqr. Err.	Mean Abs. Err.
no MAE	0.01538	0.10043
RNN	0.00072	0.01822
LSTM	0.00071	0.01799
GRU	0.00071	0.01791

significant improvement

- Interesting insights:
 - Shallower architectures → better forecasting accuracy
 - Suggests that the dataset used was small
- Future work:
 - Use a larger dataset with more timesteps
 - Multivariate forecasting → increased information density

Extensions

Semantic Segmentation

What is semantic segmentation

- Classifying every pixel of an input image to 1 of n semantic classes
- Supervised learning task with images with labelled pixels as target output

Person Bicycle Background

https://www.jeremyjordan.me/semantic-segmentation/

Dataset - ADE20K

• Object segmentation exhaustively labelled manually (20,210 training data images, 3,169 semantic labels)

https://groups.csail.mit.edu/vision/datasets/ADE20K/

Dataset - ADE20K

• Object segmentation exhaustively labelled manually (20,210 training data images, 3,169 semantic labels)

https://groups.csail.mit.edu/vision/datasets/ADE20K/

Metrics

- Pixel accuracy
- MIoU (Mean Intersection over Union)
 - o Area of overlap / area of union

https://medium.com/analytics-vidhya/iou-intersection-over-union-705a39e7acef

Model architecture - UperNet (Unified Perceptual Parsing Network)

https://arxiv.org/pdf/1807.10221.pdf

Model modification

https://arxiv.org/pdf/2111.11429.pdf

Introduction Background Reproduction **Extensions** Conclusion

Results

Results

Results

- Learns features of images using available unmasked patches
- Such features might be useful in recognizing objects and classifying them in semantic segmentation

Metric	MAE	No pretrain
Accuracy	59.86	58.08
MIoU	0.288	0.280

Extensions

3D Volumetric Medical Segmentation

What is 3D Volumetric Semantic Segmentation?

- Same as semantic segmentation, but in 3D.
- Since MAE pretraining gave better results for semantic segmentation, we can try extending this to the 3D images (volumes).
- We will look specifically at the task of medical image segmentation.

Note:

(1) Review - Swin Transformers for Semantic Segmentation of Brain Tumors in MRI Images, Sik-Ho Tsang.

Introduction Background Reproduction **Extensions** Conclusion

Dataset

- Multi Atlas Labeling, Beyond the Cranial Vault (BTCV) dataset (1).
- 50 CT Scan Volumes, 30 of which are labelled.
- Aim to segment 13 different organs.

Note:

(1) https://www.synapse.org/#!Synapse:syn3193805

Conclusion

Extensions

Evaluation Metric

- Dice Score
 - Measures the extent of overlap between target and predicted segmented results.

$$\frac{2 \times |X \cap Y|}{|X| + |Y|}$$

$$2 \times$$

$$+$$

Note:

https://www.kaggle.com/code/yerramvarun/understanding-dice-coefficient

35

Model

- UNEt TRansformers (UNETR) (1).
- Uses Vision Transformers to learn long-range dependencies and capture global context.

Note:

Introduction

(1) UNETR: Transformers for 3D Medical Image Segmentation

36

Background Reproduction **Extensions** Conclusion

Extensions of MAE: 3D Volumetric Medical Segmentation

Results

- Pretraining with MAE allows for slight better results, in fewer number of epochs.
- Results can potentially be better if pretrained on a larger dataset of volumes.

	Dice Score
Baseline (No pretraining)	0.7548
Pretrained with MAE	0.7712

Extensions

Data Imputation

The imputation of missing data

- Data imputation is similar to the image reconstruction task
- Except with a different data modality: numerical/text data

The hypothesis

- If MAE can capture a hidden representation of data within images, it should work on other data modalities as well
- Therefore, MAE can recreate samples similar to the original dataset

The Dataset

- California Housing Price, from the UCI Machine Learning repository
- The dataset contains information from the 1990 California census.
- There are 10 features, 1 of them is categorical variable while the rest are numerical variables.
- Data preprocessing includes encoding, scale normalization, manually simulating missing values, split of train and test datasets.

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_house_value	ocean_proximity
0	-122.23	37.88	41.0	880.0	129.0	322.0	126.0	8.3252	452600.0	NEAR BAY
1	-122.22	37.86	21.0	7099.0	1106.0	2401.0	1138.0	8.3014	358500.0	NEAR BAY
2	-122.24	37.85	52.0	1467.0	190.0	496.0	177.0	7.2574	352100.0	NEAR BAY
3	-122.25	37.85	52.0	1274.0	235.0	558.0	219.0	5.6431	341300.0	NEAR BAY
4	-122.25	37.85	52.0	1627.0	280.0	565.0	259.0	3.8462	342200.0	NEAR BAY

MAE Model Design

- Encoder:
 - takes in the concatenated input and mask
 - compresses the input into a dense representation
- Decoder:
 - expands the encoded representation
 - maps the output of the dropout layer back to the original input dimension
- Mask:
 - concatenate with the input along the feature dimension, forming a single input tensor that doubles the feature space
 - o allows the model to learn not just from the data but also from the structure of its availability

Extensions

Model Design

Introduction Background Reproduction **Extensions** Conclusion

Evaluation Metric

- MSE
 - o the average squared difference between the estimated values and the actual value

$$ext{MSE} = rac{1}{n} \sum_{i=1}^n \left(Y_i - \hat{Y_i}
ight)^2$$

- Wasserstein distance
 - known as the Earth Mover's distance (EMD), is a measure of the distance between two
 probability distributions over a given metric space

$$W_p(\mu,
u) = \inf_{\gamma \in \Gamma(\mu,
u)} \left(\mathbf{E}_{(x,y) \sim \gamma} d(x,y)^p
ight)^{1/p}$$

43

Introduction

Background

Reproduction

Extensions

Results

• The training loss of baseline model decreases after a few number of epochs then converge while there are significant fluctuations of loss throughout the training process for MAE model without systematic stabilization.

• Under same number of epochs, baseline imputer model turns out to give better result, with lower MSE loss and Wasserstein distance

Evaluation metric	Baseline	MAE
MSE loss	0.0093	0.5171
Wasserstein distance	0.2482	0.3098

Interesting insights

- Data preprocessing: MinMax Scaler outperforms Standard Scaler
 - Preservation of sparse structure
 - Dominance of outlier sensitivity
 - More suitable for neural networks and gradient descent
- Hypothesis for ineffective application of MAE on imputation of missing values
 - Data structure housing prices
 - Masking strategy
 - Overemphasis on masking

Masked Autoencoders

- In the paper "Masked Autoencoders are Scalable Vision Learners"
 - o Hypothesized to capture a rich hidden representation of data
 - o By masking out input datapoints

Masked Autoencoders

- In the paper "Masked Autoencoders are Scalable Vision Learners"
 - Hypothesized to capture a rich hidden representation of data
 - By masking out input datapoints
- Reproduction on the TinylmageNet
 - Able to recreate images from masked input

Masked Autoencoders

- In the paper "Masked Autoencoders are Scalable Vision Learners"
 - Hypothesized to capture a rich hidden representation of data
 - By masking out input datapoints
- Reproduction on the TinyImageNet
 - Able to recreate images from masked input
- Extension of MAE:
 - Semantic segmentation of images
 - 3D medical segmentation
 - Time series forecasting
 - Data imputation

Conclusion

Extensions

Masked Autoencoders

- In the paper "Masked Autoencoders are Scalable Vision Learners"
 - Hypothesized to capture a rich hidden representation of data
 - By masking out input datapoints
- Reproduction on the TinyImageNet
 - Able to recreate images from masked input
- Extension of MAE:
 - Semantic segmentation of images
 - 3D medical segmentation
 - Time series forecasting
 - Data imputation
- Differences could be due to:
 - Favours image data and adverse to other modalities of data (text/time-series)
 - o MAE may be able to capture more complex, spatial relationships between pixels
 - Other data modalities contains lesser spatial relationships which can be modelled using simpler models

End