

- Estimar lotes:
 - Dado una imagen satelital, estimate tamanos de los lotes a pesar de occultamientos y baja resolucion

- Estimar lotes:
 - Dado una imagen satelital, estimar tamanos de los lotes a pesar de ocultamientos y baja resolucion
- Generador de lotes:
 - Generar lotes segun los parametros

- Estimar lotes:
 - Dado una imagen satelital, estimar tamanos de los lotes a pesar de ocultamientos y baja resolucion
- Generador de lotes:
 - Generar lotes segun los parametros
- Generador de edificios:
 - Usando datos del retiro tipico, poblacion, y altura, calcular un edificio verosimil

- Optimizador
 - Calibra resultados usando informacion del 5% de los edificios

(el error es una suma ponderada de area y numero de edificios)

Chicago: imagen aerea (para comparar)

De Satelite a Edificios

El equipo include ETH, UNC, ARA, Purdue y otros

De Satelite a Edificios

Imagen satelital (0.3m por pixel)

Modelo creado a mano

Modelo 3D (creado automaticamente)

Generacion de Fachadas

Imagen satelital (0.3m por pixel)

Generacion de Fachadas

[Zhang et al. 2020]

Resultados: Masa del edificio + fachadas

Edificios mostrados dentro de Google Earth

De Dibujos a Edificios

a) Sketch b) Suggested snippets

c) Generated building

d) Rendering of city corner

Metodologia

Gramatica Procedural

· Definimos la gramatica basado en edificios alrededor del mundo

Gramatica Procedural

Images para el aprendizaje

- Uso de OpenGL para crear imagenes
- Camara virtual en un lugar fijo

CNNs para Reconocimiento

- Basado en AlexNet [Krizhevsky et al. 2012]
- Resultado es la seleccion de la mejor gramatica para representar al dibujo hecho por el usuario

CNNs para Estimar Parametros

- Nuestra red tiene 3 capas para convoluciones y 2 completamente interconnectadas
- Resultado son parametros normalizados

Refinamiento usando MCMC

Usar MCMC para refinar el resultado

Expresividad

20 photos de edificios obtenidos de ImageNet

Source image

Result

Expresividad

20 photos de edificios obtenidos de Flickr

Source image

Result

 Dado <u>una</u> imagen de un edificio y su silueta, generar un modelo 3D similar al edificio en la photografia

 Dado <u>una</u> imagen de un edificio y su silueta, generar un modelo 3D similar al edificio en la photografia

 Dado <u>una</u> imagen de un edificio y su silueta, generar un modelo 3D similar al edificio en la photografia

Etapa: Edificio y Camara

parametros

Optimizacion

Gramaticas de la Masa del Edificio

Simplificacion de la Fachada

Gramaticas para la Fachada

Mismo color significa mismo typo de componente

Gramaticas para la ventana

 Aun funciona pero la estimacion de los parametros de la camara es frecuentemente inferior a XXX.

Photo2Building:

Una Herramienta en la Nube para la Reconstruccion de Edificios

Fig. 2. Client GUI Interface

photo2building.com

(beta-testing ...)

Aplicaciones en Planificacion Urbana

- Areas Verdes
- Nubes
- Temperatura
- Trafico
- Inundaciones

Aplicacion: Areas Verdes

Aplicacion: Areas Verdes

Aplicacion: Areas Verdes

Aplicacion: Nubes

Fig. 10. Inverse Cloud Design. Three examples of cloud design, a) The user interactively draws a land use distribution; b) the user selects three different high-level behaviors of the weather; c) the system finds such weather and the weather sequence is visualized.

Aplicacon: Temperatura

Fig. 12. Inverse Temperature Design, a-b) We show the behavior of the optimization for the solution e) of this figure: a) if our error optimization mode is used (i.e., optimize the temperature); b) if we use our cost minimization mode (i.e., temperature and cost optimization); c) the original model; d) altered model that achieves one degree reduction by introducing more parks; e) alternative model that achieves the same goal but uses white roofs to increase albedo; and f) a solution with both parks and white roofs (note the reduction in both).

Aplicacion: Trafico Urbano

Soluciones:

Tiempo: 50 min CO: 980gr

52 carriles

Tiempo: 40 min

CO: 622gr

16% trabajos

31% personas

34 carriles

Tiempo: 30 min

CO: 484gr

29% trabajos

44% personas

61 carriles

Aplicacion: Inundaciones

Applicacion: Inundaciones

x_j: Average street length

x2: Street orientation

 x_3 : Street curvature

x4: Major street width

 x_s : Minor street width

 x_6 : Mean parcel area

x7: Building rear setback

x_s: Building side setback

x₉: Building coverage

WUDAPT

Classify your City

Country & C.S. Vanishing Assess

Hims LCT mane

The World Urban Database and Access Portal Tools project is a community-based project to gather a census of cities around the world. Come join us!

VIEW THE VIDEO

Create LCZ Training Areas

Classify your City

Get WUDAPT data

WUDAPT

- www.wudapt.org
- Una comunidad global para ayudar a recolectar informacion sobre ciudades
- Esta informacion sirve para mejorar planificacion urbana

Conclusiones

- Modelamiento inverso parece muy útil
 - Aun hay mucho por hacer!
- Diseño, modelamiento, y planificación urbana solo va a crecer en importancia y en popularidad
- Muchas ciudades a nivel mundial están interesadas en tales herramientas de diseño y simulación
 - San Francisco, Seattle, Indianapolis, Zurich, Singapore,
 Doha, Uppsala, Tokyo, Quito, (Arequipa?)...

www.cs.purdue.edu/cgvlab/urban

Gracias por su tiempo! aliaga@cs.purdue.edu

¿Preguntas?

ь