Markov Decision Processes

CS 3600 Intro to Artificial Intelligence

Stochastic actions

In search, we usually assumed that the problem was **deterministic**. Taking an action in a particular state always resulted in the **same** successor state.

In the real world, this usually isn't true, but we can often assign a **probability** that an action will have some result

In Expectiminimax and related techniques, we developed a contingency plan (complex!)

Now we'll look at an alternative: policy

Example environment

Robot can be in any of the non-wall cells (x,y)

Actions

Up, Down, Left, Right. (moving into wall or out of bounds \rightarrow stays put)

Goal

Low battery, get to the charger (4,3)! Avoid falling down the stairs (4,2)!

Non-deterministic wrinkle

Actions have a chance of moving the wrong way

Transition Model

Let's be precise about "chance of moving the wrong way"

There is an 80% chance of moving in the intended direction. The remaining 20% is split evenly between the two orthogonal directions

Notation

Probability of transitioning from **s** to **s**' with action **a**

$$T(s, a, s') = p(s' \mid s, a)$$

Transition Model - Example (1)

Transition Model - Example (2)

T((2,1), Up, (1,1)) = 0.1T((2,1), Up, (3,1)) = 0.1

2

3

4

Transition Model - Example (3)

"Up" in $(1,3) \rightarrow$

(1,3) w/ p=0.9 (2,3) w/ p=0.1

 $T((1,3), \mathrm{Up}, (1,3)) = 0.9$

 $T((1,3), \mathrm{Up}, (2,3)) = 0.1$

•

3

4

Planning solution

What's the planning solution for getting to the goal?

Deterministic version:

[U,U,R,R,R] or [R,R,U,U,R]

Probability of success? (0.8)*(0.8)*(0.8)*(0.8)*(0.8) = 32%

Probability of success (by accident)? (0.1)*(0.1)*(0.1)*(0.1)*(0.8) = 0.008%

Size of the **contingency plan**?
5 Layers, **with cycles for almost every action!**

Policy

What's an effective **policy** for getting to the charger?

A policy is a **mapping** from **states** to **actions**

$$\pi: S \to A$$

Example:

$$\pi((1,1)) = \text{"Up"}$$

The "best" policy is going to depend on our **performance measure** which we can encode as a **reward function**

3	π =Right	π =Right	π =Right	Charger
2	<i>π</i> =Up	Wall	<i>π</i> =Up	Stairs
1	π=Up	π =Right	<i>π</i> =Up	π=Left
	1	2	3	4

Reward

The **reward function** is a mapping from **states** to **real numbers** that gives a "score" for being in that state

$$R:S\to\mathbb{R}$$

Example:

$$R((4,3)) = +1$$

(Notation aside: sometimes reward is given as a function of taking a specific *action* in a state. These are mathematically equivalent)

3	R=0	R=0	R=0	R=+1
2	R=0	Wall	R=0	R=-1
1		R=0	R=0	R=0
	1	2	3	4

Best policy, conservative version

Best policy, speedy version

Finding the best policy

How can we **compute** the best policy given **R** and **T**?

High level

Use the **probabilities** in the transition model and the **values** of the reward to figure out the **utility** of each state. The optimal policy just greedily moves to the state with highest utility!

What is utility?

Expected long-term discounted reward

How should we define utility? Let's try a few different approaches

Additive reward finite horizon

Sequence of visited states

$$S_0, S_1, \dots$$

$$U(s) = \sum_{t=0}^T R(S_t)$$

Initial state $S_0 = s$

Problem

How do we pick T?

Additive reward infinite horizon

$$U(s) = \sum_{t=0}^{\infty} R(S_t)$$

Problem

Unbounded sum!

Additive reward infinite horizon, discount factor

$$U(s) = \sum_{t=0}^{\infty} \gamma^t R(S_t), \ 0 < \gamma < 1$$

Problem

s, are random variables!

Expected discounted long-term reward

$$U^{\pi}(s) = \mathbb{E}_{S_t \sim \pi} \left[\sum_{t=0}^{\infty} \gamma^t R(S_t) \right]$$

(Note, equation 17.2 in the text)

What's so Markov about Markov Decision Processes

In order to decompose the utility in a useful way, we need to assert that our state space has the **Markov** property:

$$p(s_{t+1} \mid a, s_t, s_{t-1}, \ldots) = p(s_{t+1} \mid a, s_t)$$

This says is that the **sequence** of states that brought the agent to s_t doesn't matter for determining what the next state s_{t+1} will be. All that matters is the **immediate previous state** s_t . This in hand, we can write the optimal policy as

$$\pi^*(s) = \arg\max_{a} \sum_{s'} p(s' \mid s, a) U^{\pi^*}(s')$$

The Bellman equation

How do we compute $U^{\pi^*}(s)$ in the first place? There's an equation!

$$U^{\pi^*}(s) = R(s) + \gamma \max_{a} \sum_{s'} p(s' \mid s, a) U^{\pi^*}(s')$$

Notice that although this is looks like a circular definition, it's actually just recursive. We can solve this with a kind of dynamic programming, or maybe even with linear algebra.

Where did this equation come from? **Next time**

Summary and preview

Wrapping up

- MDPs are a framework for thinking about making decisions when actions have uncertain outcomes
- A **policy** is a mapping from any state to the "best" action for that state
- Utility is the long-term expected discounted reward of being in a particular state

Next time

Bellman equation proof, Value Iteration, Policy Iteration