Module : Techniques de prévision

Responsable du Cours: Soufiene lajmi

Enseignants TP: Amal Rekik et Amal Abbes

Auditoire: T-LSI-ADBD

A-U: 2024-2025

Exercice supplémentaire

I. Objectif du TP

L'objectif de ce TP est de :

- Manipuler les matrices de données avec le langage python.
- Appliquer la méthode des moindres carrés.

Exercice: Prévision par la méthode des moindres carrés

On donne le tableau suivant présentant les informations concernant les ventes d'une entreprise par trimestre pour les six dernières années :

Année	Trimestre 1	Trimestre 2	Trimestre 3	Trimestre 4
2018	520	650	1500	710
2019	550	690	1660	790
2020	610	720	1820	830
2021	680	780	1900	880
2022	750	860	1980	950
2023	880	940	2100	1100

1) En utilisant le tableau ci-dessus, écrire un programme python qui permet de créer une matrice de 6 colonnes dont les éléments sont les suivants :

- ❖ Index de l'année
- Moyenne annuelle des ventes des produits
- ❖ Multiplication des champs « Index » * « Somme »
- Somme carrée des ventes par année
- Moyenne totale des ventes durant les six années.
- 2) Calculer et tracer la somme des ventes des produits par trimestre, en utilisant : plt.bar(trimestres, somme_ventes, color=['blue', 'orange', 'green', 'red'])
- 3) Tracer la courbe représentative de l'évolution annuelle des ventes dont les abscisses sont les années et les ordonnées sont les moyennes annuelles de ventes.
- 4) Déterminer les ventes prévisionnelles pour les années 2025 jusqu'à 2030 selon la méthode des moindres carrés.

Utiliser: *model* = *LinearRegression()*

5) Comparer les prévisions obtenues avec les données réelles pour les années passées et calculer l'erreur quadratique moyenne (RMSE) pour évaluer la précision de la méthode de prévision utilisée. Utiliser :

np.sqrt(mean_squared_error(moyennes_annuelles_reelles, ventes_previsionnelles))