

MANUAL CHANGES

MODEL 3400A

RMS VOLTmeter

Manual Serial Prefixed: 401-
-hp- Part No. 3400A-902

To adapt this manual to instruments with other serial prefixes check for errata below, and make changes shown in tables.

► New or Revised Item.

Instrument Serial Prefix Make Manual Changes

ALL	ERRATA
401-02126 and above	Change 1
528-	Change 1, 2

Instrument Serial Prefix

Make Manual Changes

ERRATA:

► Table 1-1, Specifications:

1. Change Table 1-1 according to the information given below:
 CREST FACTOR: 10 to 1 at full scale, except where limited by maximum input, inversely. . .
 MAXIMUM INPUT: 1000 v peak.
 OVERLOAD: With 10 to 1 crest factor, 30 db or 1000 v peak, whichever is less on each range.

Operating Instructions, Section III:

- 1. Insert between Paragraphs 3-7 and 3-8 the following caution:

CAUTION

DO NOT MEASURE SIGNAL ABOVE 100 VOLTS WITH 10 TO 1 CREST FACTOR. OTHERWISE, THE MAXIMUM INPUT RATING (1000 VOLTS PEAK) WILL BE EXCEEDED. WHEN MEASURING SIGNALS UP TO 100 VOLTS RMS WITH A 10 TO 1 CREST FACTOR, USE THE BNC TO DUAL BANANA JACK, ACCESSORY 10110A, SUPPLIED WITH THE INSTRUMENT, OR OTHER INPUT TEST LEADS AND CONNECTIONS THAT WILL WITHSTAND THE MAXIMUM INPUT OF 1000 VOLTS PEAK.

2. Insert between steps b and c of Paragraph 3-8 the following caution:

CAUTION

WHEN MEASURING AN AC SIGNAL SUPERIMPOSED ON A DC LEVEL, ALWAYS SET THE RANGE SWITCH TO THE 300 VOLT POSITION BEFORE MAKING THE INITIAL CONNECTION TO A CIRCUIT SINCE A HIGH VOLTAGE TRANSIENT DUE TO THE APPLICATION OF A DC VOLTAGE WILL DAMAGE THE INPUT CIRCUITRY.

Paragraph 3-15:

1. Change title to read: RMS AC-TO-DC CONVERTER.

► Paragraph 4-31:

1. Change the third sentence to read: Diodes CR602 and CR603 are biasing diodes for Q602 and Q603 respectively.

Paragraph 5-10:

1. Change step d to read: Adjust oscillator output frequency for 400 cps; adjust oscillator output amplitude for full-scale deflection on the Model 3400A.

Instrument Serial Prefix	Make Manual Changes	Instrument Serial Prefix	Make Manual Changes
ALL	ERRATA		
401-02126 and above	Change 1		
528-	Change 1, 2		

ERRATA (Cont'd):

► Table 5-6. Troubleshooting Procedure:

1. Change the voltage in check (8), step a, second sentence, to read: -1.0 v (-0.15 v for 1/10 scale deflection).
2. Change check (9) to read: Measure ac signal to Second Attenuator to negative end of C205. Reading should be between 90 mv and 100 mv.
3. Change figures in Table 5-6 according to the following:
 Figure 5-6, Vert = 0.5 volts/cm.
 Figure 5-9, Vert = 2 volts/cm.
 Figures 5-10 and 5-11, invert the waveform.

NOTE

Waveforms shown in Section V are typical and may vary in amplitude and/or width from instrument to instrument.

Figure 6-2, Video Amplifier A4 Schematic:

1. Connect the base of Q403 to junction of R401 and R431 and remove the connection between the emitter of Q402 and the base of Q403.
- 2. Change voltage on base of Q401 to -0.79.

► Figure 6-3, Chopper Amplifier A6 Schematic:

1. Change the voltage at the base of Q604 and Q605:
 Q604, FS \approx -1.0
 1/10 S \approx -0.15
 Q605, FS \approx -1.6
 1/10 S \approx -0.75

2. Change R8 on the 1/10 SCALE ADJ divider to 430* ohms.

Figure 6-4, Power Supply A7 Schematic:

1. Change voltage on CR715 to 17.8 v breakdown.

Tables 7-1 and 7-2:

1. Transpose the description of CR701 and CR702 with the description of CR715.
2. Change description of Q604 to read: Transistor: Si, 2N3391, NPN.
- 3. Change description of Q605 to read: Transistor: Si, 2N3638, PNP.
- 4. Add asterisk to R8.
- 5. Change A5 Part No. to read: 1990-0017.
- 6. Add to description of A5:

NOTE

Matched neon subassembly (DS501 and DS502) available under -hp- Part No. 5082-5168.

- 7. Change C428 thru C602 to:
 C428 thru C600 and add: C601, -hp- Part No. 0180-0081, C: fxd, elect,
 Ta, 50 μ f +20% -15%, 10 vdcw.
 C602, -hp- Part No. 0180-0064, C: fxd, elect, 35 μ f +100% -10%, 6 vdcw.

► CHANGE 1:

Tables 7-1 and 7-2:

1. Change Part No. and description of Q405 to read: 1853-0009, Transistor: Si PNP.
2. Change Part No. and description of CR401 to read: 1901-0025, Diode: Si, 100 piv.
3. Change Part No. and description of CR715 to read: 1902-3223, Diode: Si, breakdown, 17.4 \pm 2% 400 mw.

Instrument Serial Prefix	Make Manual Changes	Instrument Serial Prefix	Make Manual Changes
ALL	ERRATA		
401-02126 and above	Change 1		
528-	Change 1, 2		

► CHANGE 2:

Table 1-1, Specifications:

1. Change Table 1-1 according to the information given below:
 POWER: 115 or 230 v $\pm 10\%$, 50 to 1000 cps,

Figure 6-4, Power Supply A7:

1. Replace Figure 6-4 with Figures B and C in this change sheet.

Tables 7-1 and 7-2:

1. Change R701 and R702 to read: 0687-5631, R: fxd comp 56 K.
 2. Add the following components:

Ref. Des.	-hp- Part No.	Description
R715	0687-2241	R: fxd comp 220 K $\pm 10\%$ 1/2 w
R713	0686-2225	R: fxd comp 2. 2 K $\pm 5\%$ 1/2 w
Q706	1854-0022	Transistor: Si NPN
CR718	1902-0046	Diode: breakdown 7. 15 v $\pm 10\%$ 400 mw
CR719	1901-0028	Diode: Si 400 piv
C711	0160-0167	C: fxd 0. 082 μ f $\pm 10\%$
C712	0180-0282	C: fxd Al elect 35 μ f +75% -10% 250 vdcw

Section V, Maintenance:

1. Figures 5-12 and 5-13 no longer apply.
 2. Figure A of this change sheet illustrates a proper neon voltage waveform observed across either pin 3 or 5 on the A6 assembly and chassis ground.

Figure A

Section IV, Theory of Operation:

1. Any reference in Section IV to the neon lamps being driven by line voltage and/or at line frequency should be changed to concur with the paragraph added below:

4-48. NEON LAMP DRIVE OSCILLATOR.

4-49. The neon lamp drive oscillator consists of transistor Q706, diode CR718, resistors R701, R702, R712, R713, and capacitor C711. Transistor Q706 is held on (conducting) by the base bias developed at the junction of R712 and CR718. The collector current of Q706 charges up capacitor C711 through R701 or R702 depending upon the illuminated neon lamp on the Chopper Amplifier Assembly A6. When the capacitor reaches a sufficient charge to fire the dark neon lamp, the illumination of the neon lamps alternate and the capacitor discharges through the previously dark neon lamp. With the previously dark neon lamp illuminated, the capacitor charges up in the opposite direction until firing the previously illuminated neon lamp. The cycle described above repeats at a frequency of 90 to 100 cps as determined by the RC time constant of R701, C711, and R702, and C711.

Figure B. Power Supply A7 Schematic

Instrument Serial Prefix	Make Manual Changes	Instrument Serial Prefix	Make Manual Changes
ALL	ERRATA		
401-02126 and above	Change 1		
528-	Change 1, 2		

Figure C. Power Supply A7 Parts Location

ERRATA:

Figure 6-3, Schematic:

1. Delete Part No. 5082-5001 for the modulator assembly A5.

— CERTIFICATION —

THE HEWLETT-PACKARD COMPANY CERTIFIES
THAT THIS INSTRUMENT WAS THOROUGHLY
TESTED AND INSPECTED AND FOUND TO
MEET ITS PUBLISHED SPECIFICATIONS WHEN
IT WAS SHIPPED FROM THE FACTORY.

(hp) FURTHER CERTIFIES THAT ITS CALIBRATION
MEASUREMENTS ARE TRACEABLE TO THE
NATIONAL BUREAU OF STANDARDS TO THE
EXTENT ALLOWED BY THE BUREAU'S CALI-
BRATION FACILITY.

WARRANTY

All our products are warranted against defects in materials and workmanship for one year from the date of shipment. Our obligation is limited to repairing or replacing products (except tubes) which prove to be defective during the warranty period. We are not liable for consequential damages.

For assistance of any kind, including help with instruments under warranty, contact your nearest Hewlett-Packard field office for instructions. Give full details of the difficulty and include the instrument model and serial numbers. Service data or shipping instructions will be promptly sent to you. There will be no charge for repair of instruments under warranty, except transportation charges. Estimates of charges for non-warranty or other service work will always be supplied, if requested, before work begins.

CLAIM FOR DAMAGE IN SHIPMENT

Your instrument should be inspected and tested as soon as it is received. The instrument is insured for safe delivery. If the instrument is damaged in any way or fails to operate properly, file a claim with the carrier or, if insured separately, with the insurance company.

SHIPPING

On receipt of shipping instructions, forward the instrument prepaid to the destination indicated. You may use the original shipping carton or any strong container. Wrap the instrument in heavy paper or a plastic bag and surround it with three or four inches of shock-absorbing material to cushion it firmly and prevent movement inside the container.

GENERAL

Your nearest Hewlett-Packard field office is ready to assist you in any situation, and you are always welcome to get directly in touch with Hewlett-Packard service departments:

CUSTOMER SERVICE

Hewlett-Packard Company
395 Page Mill Road
Palo Alto, California, 94306
U.S.A.
Telephone: (415) 326-3950
TWX No. (415) 492-9363
Cable: "HEWPACK"

OR (In Western Europe)

Hewlett-Packard S.A.
54 Route Des Acacias
Geneva, Switzerland
Telephone: (022) 42. 81. 50
Cable: "HEWPACKSA"

HEWLETT-PACKARD COMPANY / OPERATING AND SERVICE MANUAL

**3400A
RMS VOLTMETER**

OPERATING AND SERVICE MANUAL

(PART NO. 3400A-902)

MODEL 3400A RMS VOLTMETER

SERIALS PREFIXED: 401-

Appendix C, Manual Backdating Changes, adapts manual to serials below 401-01826 and serials prefixed 322-.

Copyright Hewlett-Packard Company 1965

01768-1

Approved For Release 2001/05/07 : CIA-RDP70B00584R000100250001-6

Printed: JAN 1965

TABLE OF CONTENTS

Section	Page	Section	Page
I GENERAL INFORMATION	1-1	V MAINTENANCE	5-1
1-1. Introduction	1-1	5-1. Introduction	5-1
1-3. Description	1-1	5-3. Test Equipment	5-1
1-8. Specifications	1-1	5-5. Performance Checks	5-1
1-10. Instrument Identification	1-1	5-7. Accuracy, Linearity, and DC Output Performance Checks	5-1
1-12. Equipment Supplied	1-1	5-9. Frequency Response Performance Check	5-2
1-14. Accessory Equipment Available	1-1	5-11. Input Impedance Performance Check	5-2
Section	Page	5-13. Crest Factor Performance Check	5-3
II INSTALLATION	2-1	5-15. Residual Noise Performance Check	5-3
2-1. Introduction	2-1	5-17. Repair Procedures	5-3
2-3. Initial Inspection	2-1	5-18. Cover Removal	5-3
2-5. Power Requirements	2-1	5-20. Servicing Etched Circuit Board	5-4
2-8. Installation	2-1	5-23. Thermocouple Replacement	5-4
2-10. Combining Case (^{hp} Models 1051A or 1052A)	2-1	5-25. Adjustment and Calibration Procedure	5-5
2-12. Adapter Frame (^{hp} Part No. 5060-0797)	2-1	5-27. Mechanical Meter Zero	5-5
2-14. Repackaging for Shipment	2-1	5-29. Power Supply Checks	5-6
Section	Page	5-31. Low Frequency Calibration	5-6
III OPERATING INSTRUCTIONS	3-1	5-36. High Frequency Calibration	5-6
3-1. Introduction	3-1	5-41. Troubleshooting Procedure	5-7
3-3. Controls and Indicators	3-1	Section	Page
3-5. Turn On Procedure	3-1	VI CIRCUIT DIAGRAM	6-1/6-2
3-7. Operating Instructions	3-1	6-1. Introduction	6-1/6-2
3-9. Applications	3-1	6-3. Schematic Diagrams	6-1/6-2
3-11. RMS Value of AC Signals with DC Component	3-1	6-6. Parts Location Diagrams	6-1/6-2
3-13. RMS Current	3-1	Section	Page
3-15. RMS to AC-to-DC Converter	3-1	VII REPLACEABLE PARTS	7-1
Section	Page		
IV THEORY OF OPERATION	4-1	7-1. Introduction	7-1
4-1. Introduction	4-1	7-4. Ordering Information	7-1
4-3. General Description	4-1	7-6. Non-Listed Parts	7-1
4-11. Detailed Description	4-1	Appendix	
4-12. Input Attenuator Assembly A1	4-1	A CODE LIST OF MANUFACTURERS	
4-15. Impedance Converter Assembly A2	4-1	Appendix	
4-19. Second Attenuator Assembly A3	4-2	B SALES AND SERVICE OFFICES	
4-22. Video Amplifier Assembly A4	4-2	Appendix	
4-27. Modulator/Demodulator Assembly A5, Chopper Amplifier Assembly, and Thermocouple Pair Assembly (part of A4)	4-2	C MANUAL BACKDATING CHANGES	
4-37. Power Supply Assembly A7	4-3		
4-40. Regulator Operation	4-3		

LIST OF TABLES

Number	Page
1-1. Model 3400A Specifications	1-0
1-2. Equipment Supplied	1-1
1-3. Accessory Equipment Available	1-1
5-1. Required Test Equipment	5-0
5-2. Accuracy, Linearity, and DC Output Performance Check, Supplemental Data	5-1

Number	Page
5-3. Frequency Response Performance Check, Supplemental Data	5-2
5-4. Power Supply Checks	5-5
5-5. Front Panel Symptoms	5-7
5-6. Troubleshooting Procedure	5-9
7-1. Reference Designation Index	7-9
7-2. Replaceable Parts	7-9

LIST OF ILLUSTRATIONS

Number	Page	Number	Page
1-1. Model 3400A RMS Voltmeter	1-0	5-12. Chopper Neon Voltage	5-13
3-1. Model 3400A Controls and Indicators	3-0	5-13. Chopper Neon Voltage	5-13
4-1. Simplified Block Diagram	4-0	5-14. Output of Modulator (Overdriven)	5-13
5-1. Accuracy, Linearity, and DC Output Test Setup	5-1	5-15. Collector of Q601	5-14
5-2. Frequency Response Test Setup	5-2	5-16. Collector of Q602	5-14
5-3. Crest Factor Test Setup	5-3	5-17. Collector of Q603	5-14
5-4. Model 3400A Modular Cabinet	5-4	6-1. Input Attenuator A1, Impedance Converter A2, and Second Attenuator A3 Schematic and Parts Location Diagram	6-3
5-5. Troubleshooting Tree	5-8	6-2. Video Amplifier A4, Schematic and Parts Location Diagram	6-4
5-6. Input to Demodulator	5-9	6-3. Modulator/Demodulator A5, Chopper Amplifier A6, and Thermocouple Pair (Part of A4) Schematic and Parts Location Diagram	6-5
5-7. Input to Demodulator	5-9	6-4. Power Supply A7 Schematic Diagram	6-6
5-8. Input to Demodulator	5-10		
5-9. Demodulator Input (Overdriven)	5-11		
5-10. Demodulator Output (Normal)	5-11		
5-11. Demodulator Output (Overdriven)	5-12		

Section I

Figure 1-1 and Table 1-1

Figure 1-1. ^{hp} Model 3400A RMS Voltmeter

Table 1-1. Model 3400A Specifications

<p>RANGE: 12 full scale ranges from 1 mv to 300 v in a 1, 3, 10 sequence. -72 to +52 dbm. (Usable indications to 100 μv.)</p> <p>METER SCALES: Voltage, 0.1 to 1 and 0.3 to 3. Decibel, -12 to +2 dbm (0 dbm = 1 mw, 600 ohms). Scales are individually calibrated to the meter movement.</p> <p>FREQUENCY RANGE: 10 cps to 10 Mc.</p> <p>ACCURACY: Within $\pm 1\%$ of full scale, 50 cps to 1 Mc. Within $\pm 2\%$ of full scale from 1 to 2 Mc. Within $\pm 3\%$ of full scale, 2 to 3 Mc. Within $\pm 5\%$ of full scale, from 10 to 50 cps and from 3 to 10 Mc. (Usable readings to 5 cps and 20 Mc.)</p> <p>RESPONSE: Responds to rms value (heating value) of the input signal for all waveforms.</p> <p>CREST FACTOR: (ratio of peak amplitude to rms amplitude): 10 to 1 at full scale, inversely proportional to pointer deflection, e. g. 20 to 1 at half-scale, 100 to 1 at tenth-scale.</p>	<p>MAXIMUM INPUT: 425 v rms.</p> <p>INPUT IMPEDANCE: From 0.001 v to 0.3 v Range: 10 megohms shunted by 40 pf. From 1.0 v to 300 v Range: 10 megohms shunted by 15 pf.</p> <p>RESPONSE TIME: Typically <2 sec. to within 1% of final value for a step change.</p> <p>OVERLOAD PROTECTION: 40 db or 425 v rms, whichever is less, on each range.</p> <p>OUTPUT: Negative 1 vdc at full scale deflection, proportional to pointer deflection (from 10 - 100% at full scale). 1 ma maximum. Nominal source impedance is 1000 ohms.</p> <p>POWER: 115 or 230 v $\pm 10\%$, 50 to 60 cps, approximately 7 watts.</p> <p>DIMENSIONS: 5-1/8 in. wide, 6-1/2 in. high, 11 in. deep (1/3 module). (130 x 165 x 279 mm).</p> <p>WEIGHT: Net, 7-1/4 lbs. (3, 3 kg) Shipping, 11 lbs. (5 kg).</p>
---	---

Model 3400A

Section I
 Paragraphs 1-1 to 1-15
 Tables 1-2 and 1-3

SCOPE

This manual contains the information necessary for operating and servicing the standard Model 3400A RMS Voltmeter and the Model 3400A/Option 01 RMS Voltmeter (DB scale uppermost).

SECTION I

GENERAL INFORMATION

1-1. INTRODUCTION.

1-2. This section contains general information about the Model 3400A RMS Voltmeter (Figure 1-1). Included are discussions of the description and purpose, instrument identification, equipment supplied, and accessory equipment available. Also included is a table of instrument specifications.

1-3. DESCRIPTION AND PURPOSE.

1-4. The Model 3400A RMS Voltmeter measures the actual root-means-square (RMS) value of ac voltages between 100 microvolts and 300 volts. Frequency range is from 10 cps to 10 Mc. Full scale measurements of nonsinusoidal waveforms with crest factors (ratio of peak voltage to rms voltage) of 10 can be made.

1-5. Ac voltages are measured with a specified full-scale accuracy of $\pm 1\%$ from 50 cps to 1 Mc, $\pm 2\%$ from 1 Mc to 2 Mc, $\pm 3\%$ from 2 Mc to 3 Mc, and $\pm 5\%$ from 10 cps to 50 cps and 3 Mc to 10 Mc. A single front panel control selects one of 12 voltage or decibel ranges.

1-6. The Model 3400A crest factor rating is 10:1 which enables full scale readings for pulses which have a 1% duty cycle. At 1/10th of full scale, pulse trains with 0.01% duty cycle (100:1 crest factor) can be accurately measured.

1-7. The Model 3400A provides a dc output which is proportional to the front panel meter reading. By using this voltage to drive auxiliary equipment, the Model 3400A functions as an rms ac-to-dc converter.

1-8. SPECIFICATION.

1-9. Table 1-1 contains the specifications for the Model 3400A.

1-10. INSTRUMENT IDENTIFICATION.

1-11. Hewlett-Packard uses a two-section eight-digit serial number (000-00000). If the first three digits of the serial number on your instrument do not agree with those on the title page of this manual, change sheets supplied with the manual will define differences between your instrument and the Model 3400A described in this manual.

1-12. EQUIPMENT SUPPLIED.

1-13. The equipment supplied with each Model 3400A is listed and described in Table 1-2.

Table 1-2. Equipment Supplied

IDENTIFICATION NUMBER	QUANTITY	DESCRIPTION
10110A	1	Adapter (BNC to dual banana jack)
8120-0078	1	Power Cord
3400A-902	1	Operating and Service Manual

1-14. ACCESSORY EQUIPMENT AVAILABLE.

1-15. The accessory equipment available is listed in Table 1-3. For further information contact your local Sales and Service Office. (See Appendix B for office locations.)

Table 1-3. Accessory Equipment Available

IDENTIFICATION NUMBER	DESCRIPTION
10503A	Cable (Male BNC to male BNC, 48 inches)
11001A	Cable (Male BNC to dual banana plug, 45 inches)
11002A	Test Lead (dual banana plug to alligator clips, 60 inches)
11003A	Test Lead (dual banana plug to probe and alligator clip, 60 inches)

SECTION II

INSTALLATION

2-1. INTRODUCTION.

2-2. This section contains information and instructions necessary for installation and shipping of the \oplus Model 3400A RMS Voltmeter. Included are initial inspection procedures, power requirements, installation information, and instructions for repackaging for shipment.

2-3. INITIAL INSPECTION.

2-4. The \oplus Model 3400A RMS Voltmeter received a careful mechanical and electrical inspection before shipment. As soon as the Model 3400A is received, verify that the contents are intact and as ordered. Although the instrument should be free of mars and scratches and in perfect electrical condition, it should be inspected for any physical damage which may have been incurred in transit. Also test the electrical performance of the instrument using the procedures given in paragraph 5-5. If any physical damage or electrical deficiency is found, refer to the warranty on the inside rear cover of this manual. Should shipping of the instrument become necessary, refer to paragraph 2-14 for repackaging and shipping instructions.

2-5. POWER REQUIREMENTS.

2-6. The Model 3400A can be operated from any ac source of 115- or 230-volts ($\pm 10\%$), at 50 to 60 cycles. With the instrument disconnected from the ac power source, move the slide switch (located on the rear panel) until the desired line voltage value appears. The ac line fuse is a 0.25 amp, fast blow type for 115- or 230-volt operation. Power dissipation is approximately 7 watts.

2-7. The Model 3400A is equipped with a three-prong power cord. To protect operating personnel, it is necessary to preserve the grounding feature of this plug when using a two contact ac outlet. Use a three-prong to two-prong adapter and connect the green pigtail lead on the adapter to ground.

2-8. INSTALLATION.

2-9. The Model 3400A is a submodular unit suitable for bench top use. However, when used in combination with other submodular units it can be bench and/or rack mounted. The \oplus combining case and adapter frame are designed for this purpose.

2-10. COMBINING CASE (\oplus Models 1051A or 1052A)

2-11. The combining case is a full-module unit which accepts various combinations of submodular units. Being a full-module unit, it can be bench or rack mounted and is analogous to any full-module instrument.

2-12. ADAPTER FRAME (\oplus Part No. 5060-0797).

2-13. The adapter frame is a rack frame that accepts any combination of submodular units. It can be rack mounted only. For additional information, address inquiries to your \oplus Sales and Service Office. (See Appendix B for office location.)

2-14. REPACKAGING FOR SHIPMENT.

2-15. The following paragraphs contain a general guide for repackaging for shipment. Refer to paragraph 2-16 if the original container is to be used; 2-17 if it is not. If you have any questions, contact your local \oplus Sales and Service Office.

NOTE

If the instrument is to be shipped to Hewlett-Packard for service or repair, attach a tag to the instrument identifying the owner and indicate the service or repair to be accomplished; include the model number and full serial number of the instrument. In any correspondence, identify the instrument by model number, serial number, and serial number prefix.

2-16. If original container is to be used, proceed as follows:

a. Place instrument in original container if available. If original container is not available, one can be purchased from your nearest \oplus Sales and Service Office.

b. Ensure that the container is well sealed with strong tape or metal bands.

2-17. If original container is not to be used, proceed as follows:

a. Wrap instrument in heavy paper or plastic before placing in an inner container.

b. Use packing material around all sides of instrument and protect panel face with cardboard strips.

c. Place instrument and inner container in a heavy carton or wooden box and seal with strong tape or metal bands.

d. Mark shipping container with "DELICATE INSTRUMENT," "FRAGILE," etc.

Figure 3-1. Model 3400A Controls and Indicators

SECTION III

OPERATING INSTRUCTIONS

3-1. INTRODUCTION.

3-2. This section consists of instructions and information necessary for the operation of the ^(P) Model 3400A RMS Voltmeter. This section contains identification of controls and indicators, turn-on procedures, and operating instructions. Also included is a discussion of the applications for the Model 3400A.

3-3. CONTROLS AND INDICATORS.

3-4. Each operating control, connector, and indicator located on the Model 3400A is identified and described in Figure 3-1. The description of each component is keyed to an illustration of that component which is included within the figure.

3-5. TURN ON PROCEDURE.

3-6. To turn on the Model 3400A, proceed as follows:

- a. Set 115/230 switch (7, Figure 3-1) to correct position for input line voltage.
- b. Apply ac voltage to Model 3400A by plugging power cord into input power jack (8) ac receptacle.
- c. Operate power switch (4) to ON; ensure that LINE indicator (3) lights.

NOTE

Allow five minutes for the Model 3400A to warm up and stabilize before making a reading.

3-7. OPERATING INSTRUCTIONS.

3-8. To operate the Model 3400A as an rms voltmeter proceed as follows:

- a. Attach test lead to INPUT connector (6, Figure 3-1). (See Table 1-3 for a list of test leads available.)
- b. Set RANGE switch (5) to 300 VOLTS position.
- c. Connect test lead to point to be measured.
- d. Rotate RANGE switch in a counterclockwise direction (decreased attenuation) until direct reading meter (1) indicates on upper two thirds of scale.

3-9. APPLICATIONS.

3-10. The Model 3400A can be used in conjunction with other test instruments to measure the rms value of ac signal with a dc component, measure rms current, and act as an rms ac-to-dc converter. For additional information of information on special applications, contact your ^(P) Sales and Service Office. (See Appendix B for office locations.)

3-11. RMS VALUE OF AC SIGNALS WITH DC COMPONENT.

3-12. Since the 3400A is an ac device it will measure only the rms value of the ac component of a wave. If it is necessary to include the rms value of the dc component when measuring a signal, use a ^(P) Model 412A Sub-DC Voltmeter to measure the dc component. Substitute the reading from the Model 412A and Model 3400A in the following formula:

$$e_{rms} = \sqrt{e_{ac}^2 + e_{dc}^2}$$

3-13. RMS CURRENT.

3-14. To measure rms current, use an ^(P) Model 456A AC Current Probe. This probe clips around the current conductor and provides an output voltage that is proportional to the current being measured. Using this method, rms currents of one milliamper to one ampere can be measured.

3-15. RMS TO AC-TO-DC CONVERTER.

3-16. Since the Model 3400A is provided with a dc output (10, Figure 3-1) which is proportional to the meter deflection, it can be used as a linear rms ac to dc converter. The dc output can be used to drive a ^(P) Model 3440A Digital Voltmeter for high resolution measurements and/or a Moseley Model 680 Strip Chart Recorder where an analog record is desired. External loading does not affect the meter accuracy so that both the meter and dc output can be used simultaneously.

3-17. The dc output can be used to close control loops where it is desirable to hold the rms value of a given signal constant.

Figure 4-1. Simplified Block Diagram

SECTION IV

THEORY OF OPERATION

4-1. INTRODUCTION.

4-2. This section contains the theory of operation of the Model 3400A RMS Voltmeter. Included is a general and detailed description of the theory of operation.

4-3. GENERAL DESCRIPTION.

4-4. The Model 3400A comprises two attenuators, an impedance converter, a video amplifier, a modulator/demodulator, a chopper amplifier, an emitter follower, a thermocouple pair, and a direct reading meter. (See Figure 4-1.)

4-5. A signal being measured with the Model 3400A is applied to input attenuator A1 through the INPUT jack, located on the Model 3400A front panel. The input attenuator has an input impedance of over 10 megohms and provides two ranges of attenuation. The output of the input attenuator is applied to impedance converter A2. The impedance converter is a non-inverting unity gain amplifier. It presents a high impedance to the input signal and provides a low impedance output to drive the second attenuator A3. The second attenuator provides 6 ranges in a 1, 3, 10 sequence. The two attenuators are switched to provide 12 ranges of attenuation.

4-6. The output of the second attenuator is amplified by video amplifier A4. The video amplifier is a wide-band, five stage amplifier. The overall gain of the video amplifier is controlled by an ac feedback loop. The ac output of the amplifier is applied to TC401; one of the thermocouples of the thermocouple pair.

4-7. The dc output of TC401 is modulated by modulator A5. The modulator comprises two photocells which are alternately illuminated by two neon lamps which in turn are controlled by the Model 3400A ac line voltage. Also applied to one of the photocells is the TC401 dc output. The resultant output of the modulator is a square wave whose amplitude is proportional to the dc input level.

4-8. The square wave output of the modulator is amplified by chopper amplifier A6. The chopper amplifier is a three-stage, high gain ac amplifier. Its output is applied to demodulator A5. The demodulator output is a dc level whose magnitude is proportional to the amplitude of the ac input. The demodulator output is applied to a two-stage, direct coupled emitter follower. The emitter follower is used to make the impedance transformation from the high impedance output of the demodulator to the low impedance of the direct reading meter M1 and TC402; the second thermocouple of the thermocouple pair.

4-9. The thermocouple pair acts as a summing point for the ac output of the video amplifier A4 and the dc output of the emitter follower. The difference in the heating effect of these voltages is felt as a dc input to modulator A5. This difference input is amplified and is fed to TC402 and to meter M1. This amplified dc voltage represents the rms value of the ac signal applied at the INPUT jack.

4-10. The dc voltage driving meter M1 is also available at the DC OUT jack, located at the rear of the Model 3400A.

4-11. DETAILED DESCRIPTION.

4-12. INPUT ATTENUATOR ASSEMBLY A1.

4-13. The input attenuator assembly is a capacitive-compensated attenuator which provides two ranges of attenuation for the 12 positions of the RANGE switch. See input attenuator schematic diagram illustrated on Figure 6-1.

4-14. When the RANGE switch is positioned to one of the six most sensitive ranges (.001 to .3 VOLTS), the attenuator output voltage is equal to the input voltage. When the RANGE switch is positioned to one of six highest ranges (1 to 300 VOLTS), the input signal is attenuated 60 db (1000:1 voltage division) by the resistive voltage divider consisting of R101, R103, and R104. Trimmer C102 is adjusted at 100 kc, and R104 is adjusted at 400 cps to provide constant attenuation over the input frequency range.

4-15. IMPEDANCE CONVERTER ASSEMBLY A2.

4-16. The impedance converter assembly utilizes a nuvistor tube cathode follower circuit to match the high output impedance of the input attenuator to the low input impedance of the second attenuator. The cathode follower circuit preserves the phase relationship of the input and output signals while maintaining a gain of unity. See impedance converter assembly schematic diagram illustrated on Figure 6-1.

4-17. The ac signal input to the impedance converter is RC coupled to the grid of cathode follower V201 through C201 and R203. The output signal is developed by Q201 which acts as a variable resistance in the cathode circuit of V201. The bootstrap feedback from the cathode of V201 to R203 increases the effective resistance of R203 to the input signal. This prevents R203 from loading the input signal and preserves the high input impedance of the Model 3400A. The gain compensating feedback from the plate of V201 to the base of Q201 compensates for a decrease in gain of V201 caused by tube aging.

Section IV

Paragraphs 4-18 to 4-32

4-18. Breakdown diode CR201 controls the grid bias voltage on V201 thereby establishing the operating point of this stage. CR202 across the base-emitter junction of Q201 protects Q201 in the event of a failure in the +75 volt power supply. Regulated dc is supplied to V201 filaments to avoid inducing ac hum in the signal path.

4-19. SECOND ATTENUATOR ASSEMBLY A3.

4-20. The second attenuator is a resistive divider which attenuates the ac input signal while maintaining a low impedance output for the following amplification stages. See second attenuator assembly schematic diagram illustrated in Figure 6-1.

4-21. The ac input signal is applied to a precision resistance voltage divider consisting of R302 through R312. These resistors are arranged to give six attenuation ranges from 0.001 to 0.3 volts. Trimmer capacitor C303 (.3V ADJ) provides an adjustment for frequency response at the higher frequencies.

4-22. VIDEO AMPLIFIER ASSEMBLY A4.

4-23. The video amplifier functions to provide constant gain to the ac signal being measured over the Model 3400A operating ranges. See video amplifier assembly schematic diagram illustrated on Figure 6-2.

4-24. The ac input signal from the second attenuator is coupled through C402 to the base of input amplifier Q401. Q401, a class A amplifier, amplifies and inverts the signal which is then direct coupled to the base of bootstrap amplifier Q402. The output, taken from Q402 emitter is applied to the base of Q403 and fed back to the top of R406 as a bootstrap feedback. This positive ac feedback increases the effective ac resistance of R406 allowing a greater portion of the signal to be felt at the base of Q402. In this manner, the effective ac gain of Q401 is increased for the mid-band frequencies without disturbing the static operating voltages of Q401.

4-25. Driver amplifier Q403 further amplifies the ac signal and the output at Q403 collector is fed to the base circuit of emitter follower Q404. The feedback path from the collector of Q403 to the base of Q402 through C405 (10 MC ADJ) prevents spurious oscillations at high input frequencies. A dc feedback loop exists from R433, in the emitter circuit of Q403, to the base of Q401. This feedback stabilizes the Q401 bias voltage. Emitter follower Q404 acts as a driver for the output amplifier consisting of Q405 and Q406; a complimentary pair operating as a push-pull amplifier. The video amplifier output is taken from the collectors of the output amplifiers and applied to thermocouples TC401. A gain stabilizing feedback is developed in the emitter circuits of the output amplifiers. This negative feedback is applied to the emitter of input amplifier Q401 and establishes the overall gain of the video amplifier.

4-26. Trimmer capacitor C405 is adjusted at 10 mc for frequency response of the video amplifier. Diodes CR402 and CR406 are protection diodes which prevent voltage surges from damaging transistors in the video amplifier. CR401, CR407, and CR408 are temperature compensating diodes to maintain the zero signal balance condition in the output amplifier over the operating temperature range. CR403, a breakdown diode, establishes the operating potentials for the output amplifier.

4-27. MODULATOR/DEMODULATOR ASSEMBLY A5, CHOPPER AMPLIFIER ASSEMBLY, AND THERMOCOUPLE PAIR ASSEMBLY (PART OF A4).

4-28. The modulator/demodulator, chopper amplifier, and thermocouple pair form a servo loop which functions to position the direct reading meter M1 to the rms value of the ac input signal. See modulator/demodulator, chopper amplifier, and thermocouple pair schematic diagram illustrated in Figure 6-3.

4-29. The video amplifier output signal is applied to the heater of thermocouple TC401. This ac voltage causes a dc voltage to be generated in the resistive portion of TC401 which is proportional to the heating effect (rms value) of the ac input. The dc voltage is applied to photocell V501.

4-30. Photocells V501 and V502 in conjunction with neon lamps DS501 and DS502 form a modulator circuit. The neon lamps are lighted alternately at the line voltage frequency. Each lamp illuminates one of the photocells. DS501 illuminates V501; DS502 illuminates V502. When a photocell is illuminated it has a low resistance (approximately 6K ohms) compared to its resistance when dark (approximately 500K ohms). Therefore, when V501 is illuminated, the output of thermocouple TC401 is applied to the input of the chopper amplifier through V501. When V502 is illuminated, the ground signal felt through R634 is applied to the chopper amplifier. The alternate illumination of V501 and V502 modulates the dc input at the Model 3400A line frequency. The modulator output is a square wave whose amplitude is proportional to the input dc level.

4-31. The chopper amplifier, consisting of Q601 through Q603, is a high gain amplifier which amplifies the square wave developed by the modulator. Noise and power supply voltage variations are reduced by breakdown diode CR601 and CR603. Diodes CR602 and CR603 compensate for temperature changes over the operating range. The amplified output is taken from the collector of Q603 and applied to the demodulator through C605.

4-32. The demodulator comprises two photocells, V503 and V504, which operate in conjunction with DS501 and DS502; the same neon lamps used to illuminate the photocells in the modulator. Photocells V503 and V504 are illuminated by DS501 and DS502, respectively.

Model 3400A

Section IV
Paragraphs 4-33 to 4-47

4-33. The demodulation process is the reverse of the modulation process discussed in paragraph 4-30. The output of the demodulator is a dc level which is proportional to the demodulator input. The magnitude and phase of the input square wave determines the magnitude and polarity of the dc output level. This dc output level is applied to the emitter follower consisting of Q604 and Q605.

4-34. The emitter follower is needed to match the high output impedance of the demodulator to the low impedance input of the meter and thermocouple circuits. The voltage drop across CR604 in the collector circuit of Q604 is the operating bias for Q604. This fixed bias prevents Q604 failure when the base voltage is zero with respect to ground.

4-35. The dc level output, taken from the emitter of Q605, is applied to meter M1 and to the heating element of thermocouple TC402. The voltage developed in the resistive portion of TC402 is effectively subtracted from the voltage in TC401. The input signal to the modulator then becomes the difference in the dc outputs of the two thermocouples.

4-36. A frequency stabilizing feedback path exists through C610 and C611 during one half cycle of the modulated square wave and through C607 and C608 during the other half cycle. Ac components in the modulated square wave which are not synchronized with the modulated square wave receive heavy attenuation due to this negative feedback. In this manner, the chopper amplifier is effectively tuned to the modulator frequency.

4-37. POWER SUPPLY ASSEMBLY A7.

4-38. The power supply assembly provides the operating voltages for the tube and transistors used in the Model 3400A. See power supply assembly schematic diagram illustrated on Figure 6-4.

4-39. Either 115 or 230 volts ac is connected to the primary of power transformer T1 through fuse F1 and the POWER switch S1. Switch S2 (slide switch on rear panel) connects T1 primary windings in series for 230-volt operation or in parallel for 115-volt operation. Neon lamp DS1 lights to indicate power ON when ac power is applied and S1 is closed.

4-40. REGULATOR OPERATION.

4-41. The series regulator acts as a dynamic variable resistor in series with the power supply output. A control amplifier senses changes in the output voltage by comparing the output with a fixed reference voltage. The control amplifier then supplies any output voltage changes to the driver transistor, which in turn changes the resistance of the series regulator to oppose the change in output voltage. Diodes across the base emitter junction of the series regulator provide over current protection.

4-42. +75 VOLT SUPPLY.

4-43. The +75-volt supply consists of a full-wave rectifier (CR701 and CR702) whose output is filtered by C1A and C1B and regulated by series regulator Q1. The +75-volt supply provides regulated +75 volts which is used as the plate supply voltage for V201. Voltage variation from the output is felt at Q702 base circuit through C704, R715, and R716. The C703 and R709 network provides phase correction for power supply stability. The regulation circuitry is in the negative leg of the +75-volt supply, and uses the -17.5-volt supply as a reference.

4-44. -17.5-VOLT SUPPLY.

4-45. The regulated -17.5-volt supply consists of a full-wave rectifier (CR711, and CR712) whose output is filtered by C706 and C707 and regulated by Q2. Breakdown diode CR715 provides reference voltage at the base of Q704. Regulation operation is the same described in paragraph 4-40.

4-46. -6 VOLT SUPPLY.

4-47. The regulated -6.3-volt supply consists of a full-wave rectifier (CR716 and CR717) whose output is filtered by C2 and regulated by Q3. Emitter follower Q705 is connected to the -17.5-volt supply which provides a reference for the -6.3-volt supply. Series regulator Q3 acts as a dynamic variable resistor in series with the output to oppose changes in output voltage.

Section V
Table 5-1.

Model 3400A

Table 5-1. Required Test Equipment

INSTRUMENT TYPE	REQUIRED CHARACTERISTICS	USE	RECOMMENDED MODEL
DC Voltmeter/ Ohmmeter	Voltmeter Accuracy: $\pm 1\%$ full scale Voltage Range: 10 mv to 100 v Ohmmeter Accuracy: $\pm 3\%$ Ohms Range: 2 Ω to 100 M Ω	Performance Checks Power Supply Checks Alignment and Adjustment Troubleshooting	\oplus Model 3440A/3444A Digital Voltmeter
Voltmeter Calibrator	Voltage Range: 1 mv to 300 v rms Frequency: 400 cps Accuracy: $\pm 0.2\%$	Performance Checks Alignment and Adjustment	\oplus Model 738B Voltmeter Calibrator
Oscillator	Frequency Stability: .001%/minute Frequency Range: 10 cps to 10 Mc	Performance Checks Alignment and Adjustment Troubleshooting	\oplus Model 651A Test Oscillator
Frequency Response	Frequency Range (with external oscillator): 15 cps to 10 Mc Frequency Response: $\pm 0.5\%$, 15 cps to 10 Mc	Performance Checks Alignment and Adjustment	\oplus Model 739AR Frequency Response Test Set
Oscilloscope	Sensitivity: 0.1 v/cm Bandwidth: 2 cps to 50 Mc	Performance Checks Power Supply Checks Troubleshooting	\oplus Model 175A/1750B 50 Mc Oscilloscope
Pulse Generator	Pulse Width: variable to 10 μ sec Pulse Amp: ± 2 volts peak, variable Pulse Rate: 250 to 1000 pps	Performance Checks	\oplus Model 212A Pulse Generator
Pulse Counter	Range: 250 to 1000 pps Accuracy: ± 1 count	Performance Checks	\oplus Model 5512A Electronic Counter
AC Voltmeter	Voltage Range: 1 to 150 v Accuracy: $\pm 3\%$	Power Supply Checks Troubleshooting	\oplus Model 403A/B AC Voltmeter
Power Supply 200 K Ω Resistor	Output: 0 - 1 vdc, variable Metal film, 1/4 w, 1%	Troubleshooting Performance Checks	\oplus Model 721A \oplus Part No. 0757-0782
50 Ω Feed-Thru Termination	Resistor: fixed, composition, 50 ohms $\pm 5\%$, 1/4 w	Performance Checks Alignment and Adjustment	\oplus Model 11048B 50 Ohm Feed-Thru Termination
BNC-T-Adapter	UG-274B/U	Performance Checks Alignment and Adjustment	\oplus Part No. 1250-0072
Adapter-Connector	UG-201A/U	Performance Checks Alignment and Adjustment	\oplus Part No. 1250-0067

SECTION V

MAINTENANCE

5-1. INTRODUCTION.

5-2. This section contains the information necessary for maintenance of the Model 3400A RMS Voltmeter. Included are performance checks, repair procedures, adjustment and calibration procedures, and troubleshooting techniques.

5-3. TEST EQUIPMENT.

5-4. The test equipment required for the maintenance of the Model 3400A is listed in Table 5-1. Equipment having similar characteristics may be substituted for the equipment listed.

5-5. PERFORMANCE CHECKS.

5-6. The performance checks presented in this section are front-panel procedures designed to compare the Model 3400A with its published specifications. These checks can be incorporated in periodic maintenance, post-repair, and incoming quality control inspection. These checks should be conducted before any attempt is made at instrument calibration. During all performance checks, periodically vary the Model 3400A line voltage $\pm 10\%$.

NOTE

Allow a 30-minute warm-up period before making performance checks.

5-7. ACCURACY, LINEARITY, AND DC OUTPUT PERFORMANCE CHECK.

5-8. The accuracy, linearity, and dc output test setup is illustrated in Figure 5-1. A Voltmeter Calibrator (\oplus Model 738B) and a DC Voltmeter (\oplus Model 3440A/3444A) are required for this test.

- a. Connect test setup illustrated in Figure 5-1.
- b. Set Model 3400A RANGE switch to .001 position.
- c. Adjust Voltmeter Calibrator for 0.001 volt, 400 cps output; set dc voltmeter to measure 1 volt.
- d. If Model 3400A does not indicate within values listed under METER READING in Table 5-2, perform low frequency calibration procedure, Paragraph 5-31.
- e. Dc output as indicated on dc voltmeter should be within values listed under DC OUTPUT in Table 5-2.
- f. Repeat steps c thru e for remaining voltage values listed under VOLTMETER CALIBRATOR OUTPUT in Table 5-2.

Table 5-2. Accuracy, Linearity, and DC Output Performance Check, Supplemental Data

VOLTMETER CALIBRATOR OUTPUT	METER READING	DC OUTPUT
0.001 v	0.00099 to 0.00101	0.990 to 1.01
0.003 v	0.00297 to 0.00303	0.940 to 0.960
0.1 v	0.099 to 0.101	0.990 to 1.01
0.3 v	0.297 to 0.303	0.940 to 0.960
1.0 v	0.99 to 1.01	0.990 to 1.01
3.0 v	2.97 to 3.03	0.940 to 0.960
30.0 v	29.7 to 30.3	0.940 to 0.960
100.0 v	99.0 to 101.0	0.990 to 1.01
300.0 v	297.0 to 303.0	0.940 to 0.960

Figure 5-1. Accuracy, Linearity, and DC Output Test Setup

Section V

Paragraphs 5-9 to 5-12 and Table 5-3 and Figure 5-2

5-9. FREQUENCY RESPONSE PERFORMANCE CHECK.

5-10. The frequency response test setup is illustrated in Figure 5-2. A Frequency Response Test Set (hp Model 739AR) and an Oscillator (hp Model 651A) are required for this test.

NOTE

The Frequency Response Test Set used to check the 3400A accuracy should be calibrated at the end of its output cable. At 10 Mc there is typically a 2% loss in the 739A output cable.

- a. Connect test setup illustrated in Figure 5-2.
- b. Set Model 3400A RANGE switch and frequency response test set output attenuator to 1 volt position.
- c. Set frequency response test set to use external input.
- d. Adjust oscillator output frequency for 400 cps; output voltage for 90% full scale as indicated on Model 3400A meter.
- e. Adjust frequency response test set meter to convenient reference.
- f. Adjust oscillator output frequency to values listed under FREQUENCY in Table 5-3; adjust oscillator output voltage to maintain reference set in step e. If Model 3400A does not indicate within values under METER READING in Table 5-3, perform high frequency calibration procedures, Paragraph 5-36.

5-11. INPUT IMPEDANCE PERFORMANCE CHECK.

5-12. An Oscillator (hp Model 651A) and a 200K Ω resistor (hp Part No. 0757-0782) are required for the input impedance performance check.

- a. Set Model 3400A RANGE switch to 1 volt position.
- b. Adjust oscillator output frequency to 50 cps; output voltage for full-scale deflection as indicated on Model 3400A.
- c. Insert 200 K Ω resistor in series with Model 3400A input; meter reading should change less than 0.02 volts. This corresponds to an input impedance of 10 megohms where:

$$\frac{E_{\text{change}}}{E_{\text{app}}} = \frac{R_{\text{series}}}{R_{\text{total}}}$$

- d. Adjust oscillator frequency to 50 Kc; Model 3400A reading should be greater than 0.7 volts. This corresponds to input shunt capacity of less than 15 pf.
- e. Set Model 3400A RANGE switch to .001 position.
- f. Repeat steps b and c.
- g. Adjust oscillator frequency to 18 Kc; Model 3400A reading should be greater than 0.7 volts. This corresponds to an input shunt capacity of less than 40 pf.

Table 5-3. Frequency Response Performance Check, Supplemental Data

FREQUENCY	METER READING
15 cps	0.95 to 1.05
45 cps	0.95 to 1.05
100 cps	0.99 to 1.01
900 Kc	0.99 to 1.01
1.2 Mc	0.98 to 1.02
1.8 Mc	0.98 to 1.02
2.2 Mc	0.97 to 1.03
2.8 Mc	0.97 to 1.03
3.2 Mc	0.95 to 1.05
9.8 Mc	0.95 to 1.05

Model 3400A

Section V

Paragraphs 5-13 to 5-19 and Figure 5-3

5-13. CREST FACTOR PERFORMANCE CHECK.

5-14. The crest factor performance check test setup is illustrated in Figure 5-3. A Pulse Generator (hp Model 212A), a High Frequency Oscilloscope (hp Model 175A/1750B), and an Electronic Counter (hp Model 5512A) are required for this test.

- Connect test setup illustrated in Figure 5-3.
- Set Model 3400A RANGE switch to 0.1 volt position.
- Adjust pulse generator for pulse output with following characteristics:

E peak 1.00 v as indicated on oscilloscope

Pulse Rate 990 pps as indicated on electronic counter

Pulse Width 10 μ sec

This corresponds to a crest factor of 10 where:

$$E_{rms} = E \sqrt{D(1-D)} \text{ where } D = T_o/T$$

$$CF = \frac{E_{peak}}{E_{rms}}$$

$$= \frac{E(1-D)}{E\sqrt{D(1-D)}}$$

$$= \sqrt{\frac{1-D}{D}}$$

d. Model 3400A should indicate 0.1 volt ($\pm 5\%$).

e. Adjust pulse generator pulse rate to 250 pps as indicated on electronic counter; this corresponds to a crest factor of 20.

f. Model 3400A should indicate 0.05 volts ($\pm 5\%$).

5-15. RESIDUAL NOISE PERFORMANCE CHECK.

5-16. A 100 K Ω shielded load is required for the residual noise performance check.

- Connect 100 K Ω shielded load to the Model 3400A INPUT.
- Rotate RANGE switch to 0.001. Zero offset should be less than 5% of full scale.

5-17. REPAIR PROCEDURES.**5-18. COVER REMOVAL.**

5-19. When it is necessary to repair or adjust the Model 3400A, one or more covers will have to be removed. Refer to Figure 5-4 and the following steps for cover removal procedure.

- TOP COVER.** Remove top cover screw; slide cover to rear and lift to remove.
- SIDE COVERS.** Remove four screws in side cover; lift to remove.
- BOTTOM COVER.** Remove bottom cover screw at rear of cover. Slide cover to rear and remove.

Figure 5-3. Crest Factor Test Setup

Figure 5-4. Model 3400A Modular Cabinet

5-20. SERVICING ETCHED CIRCUIT BOARDS.

5-21. The ~~(P)~~ Model 3400A has five etched circuit boards. Use caution when removing them to avoid damaging mounted components. The assembly and ~~(P)~~ Part No. are silk screened on the interior of the circuit board to identify it. Refer to Section VII for parts replacement and ~~(P)~~ Part Number information.

5-22. The etched circuit boards are a plated-through type. The electrical connection between sides of the board is made by a layer of metal plated through the component holes. When working on these boards, observe the following general rules.

- a. Use a low-heat (25 to 50 watts) small-tip soldering iron and a small diameter rosin core solder.
- b. Circuit components can be removed by placing the soldering iron on the component lead on either side of the board and pulling up on lead. If a component is obviously damaged, clip leads as close to component as possible and then remove. Excess heat can cause the circuit and board to separate or cause damage to the component.
- c. Component lead hole should be cleaned before inserting new lead.

- d. To replace components, shape new leads and insert them in holes. Reheat with iron and add solder as required to insure a good electrical connection.
- e. Clean excess flux from the connection and adjoining area.
- f. To avoid surface contamination of the printed circuit, clean with weak solution of warm water and mild detergent after repair. Rinse thoroughly with clean water. When completely dry, spray lightly with Krylon (#1302 or equivalent).

5-23. THERMOCOUPLE REPLACEMENT.**CAUTION**

Exercise extreme care when removing or replacing the amplifier printed circuit board assembly and when shaping the thermocouple leads.

5-24. Should a thermocouple be defective, it is necessary to replace both as a matched pair (see Section VII, Table of Replaceable Parts) to ensure for proper operation. To replace thermocouples, proceed as follows:

Model 3400A

Section V

Paragraphs 5-25 to 5-28 and Table 5-4

- a. Turn instrument power off and remove left side and top covers.
- b. Remove two screws in left side of amplifier board and one screw through ground lug connecting board to chassis.
- c. Lift board slightly to clear lanced guide on chassis. Gently pull bottom of board to outside until board will drop down and top will clear main frame. Adjust amplifier input and output cables to ensure free passage through grommets and carefully fold board down to expose the four nuts holding the thermocouple shield.
- d. Remove four shield nuts; lift shield off. Remove thermocouples, noting orientation.
- e. Leads must be shaped before inserting new thermocouples. Ensure that red dot on thermocouples face board. During the shaping process, hold leads between bending point and glass with long-nose pliers.
- f. Carefully install new thermocouples and solder. Refer to Paragraph 5-22.
- g. Clean the board as discussed in Paragraph 5-22. Carefully mask thermocouple shield during spraying.
- h. Apply silicon grease (Dow Corning 5 Compound or equivalent) to shield contact edges.
- j. Reverse steps d, c, b, and a for reassembly.
- k. Refer to Paragraph 5-25 and calibrate the amplifier.

5-25. ADJUSTMENT AND CALIBRATION PROCEDURES.

5-26. The following is a complete adjustment and calibration procedure for the Model 3400A. These operations should be conducted only if it has previously been established by Performance Checks, Paragraphs 5-5 to 5-16, that the Model 3400A is out of adjustment. Indiscriminate adjustment of the internal controls to refine settings may actually cause more difficulty. If the procedures outlined do not rectify any maladjustments that may exist, and you have carefully rechecked your connections and settings, refer to Paragraph 5-41, Troubleshooting, for possible cause and recommended corrective action.

5-27. MECHANICAL METER ZERO.

5-28. The mechanical meter zero screw is located on the instrument front panel. If the meter pointer does not indicate zero when the instrument power has been off for at least one minute, mechanically zero the meter following the procedure outlined below.

- a. Turn instrument power off; disconnect input signal; remove cable from J2 (DC OUT) at rear of instrument; and allow one minute for meter pointer to stabilize.
- b. Rotate zero adjust CW until pointer is to left of zero, moving up scale. Continue until pointer is at zero. If pointer overshoots zero, repeat operation.
- c. When the pointer is exactly at zero, rotate the adjusting screw slightly counterclockwise to free it. If the meter pointer moves to the left during this adjustment, repeat steps b through c.

Table 5-4. Power Supply Checks

POWER SUPPLY	TEST EQUIPMENT AND CHECK POINT	DC VOLTAGE SPECIFICATIONS	REGULATION (Vary line voltage between 103.5 and 126.5 vac)	RIPPLE SPECIFICATIONS
-17.5 vdc	Connect DC Voltmeter, AC Voltmeter, or Oscilloscope to pin 1 (violet lead) on chopper amplifier (A6) and chassis ground.	-17 to -18 vdc	±0.5 volt from nominal reading at 115 vac line.	400 µv rms or 1.1 mv p-p
+75 vdc	Connect DC Voltmeter, AC Voltmeter, or Oscilloscope to pin 15 (red/wht/blue) of chopper amplifier (A6) and chassis ground.	70.0 to 78.0 vdc	±1 volt from nominal reading at 115 vac line.	400 µv rms or 1.1 mv p-p
-6.3 vdc	Connect DC Voltmeter, AC Voltmeter, or Oscilloscope to Q3 emitter (grey lead) and chassis ground.	-5.9 to -6.5 vdc	±0.1 volt from nominal reading at 115 vac line.	2 mv rms or 5.7 mv p-p

Section V
Paragraphs 5-29 to 5-39

Model 3400A

5-29. POWER SUPPLY CHECKS.

5-30. Power supply voltage and ac ripple specifications are listed in Table 5-4. Test points are also indicated in this table. When making ripple voltage measurements, it may be desirable to isolate the ac testing instrument from power line ground to avoid any undesirable ground loop currents. Use a three-prong to two-prong adapter in the power line receptacle.

5-31. LOW FREQUENCY CALIBRATION.

5-32. The low frequency calibration comprises the amplifier gain adjustment, the 1/10 scale adjustment, and the 1 volt adjustment. A Voltmeter Calibrator (hp Model 738B) and a DC Voltmeter (hp Model 3440A/3444A) are required.

5-33. AMPLIFIER GAIN ADJUSTMENT

- a. Connect test setup illustrated in Figure 5-1.
- b. Set Model 3400A RANGE switch to .01 volt position.
- c. Adjust voltmeter calibrator for 0.01 volt, 400 cps output; set dc voltmeter to measure 1 volt.
- d. Remove Model 3400A top cover; adjust R4 (CAL) for 1.0 volt as indicated on dc voltmeter. If R4 (CAL) does not have enough range to calibrate the dc output, the value of R3 should be changed. Typical range of R3 is from 1.0 K to 2.6 K ohms.
- e. Adjust R6 (FULL SCALE ADJUST) for Model 3400A full-scale meter reading.

5-34. 1/10 SCALE ADJUSTMENT.

- a. Connect test setup illustrated in Figure 5-1; omit dc voltmeter.
- b. Set Model 3400A RANGE switch to .1 volt position.
- c. Adjust voltmeter calibrator for 0.01 volt, 400 cps output.

NOTE

The 1/10 SCALE ADJUST should be set slightly low (needle's width) to reduce meter (needle) offset with shorted input.

- d. Remove Model 3400A top cover; adjust R7 (1/10 SCALE ADJUST) for Model 3400A 1/10 scale meter reading.

5-35. 1 VOLT ADJUSTMENT.

- a. Connect test setup illustrated in Figure 5-1.
- b. Set Model 3400A RANGE switch to 1 volt position.
- c. Adjust voltmeter calibrator for 1.0 volt, 400 cps output.
- d. Adjust R104 (1 V ADJUST) for Model 3400A for full-scale reading.

5-36. HIGH FREQUENCY CALIBRATION.

5-37. The high frequency calibration comprises the amplifier gain adjustment, the input attenuator adjustment, and the second attenuator adjustment. A

Frequency Response Test Set (hp Model 739AR) and an Oscillator (hp Model 651A) are required.

5-38. AMPLIFIER GAIN ADJUSTMENT.**NOTE**

The frequency response test set used to calibrate the 3400A should be calibrated at the end of its output cable. At 10 Mc there is typically a 2% loss in the output cable.

- a. Connect test setup illustrated in Figure 5-2.
- b. Set Model 3400A RANGE switch and frequency response test set output attenuator to 1 mv position.
- c. Set frequency response test set to use external input.
- d. Adjust oscillator output frequency for 400 cps; output voltage for 90% full scale as indicated on Model 3400A meter.
- e. Adjust frequency response test set meter to convenient reference.
- f. Adjust oscillator output frequency for 10 Mc; output voltage to maintain reference set in step e.
- g. Remove Model 3400A left-side cover; adjust C405 (10 MC ADJUST) for 90% full scale as indicated on Model 3400A meter. Replace cover; readjust C405 if meter reading varies from 90% full scale.
- h. Vary oscillator between 3 and 10 Mc; maintain oscillator output voltage to reference set in step e. If Model 3400A meter reading varies below 85% or above 95% of full scale, repeat step g until optimum response is obtained between 3 and 10 Mc.

5-39. INPUT ATTENUATOR ADJUSTMENT.**NOTE**

The frequency response test set used to calibrate the 3400A should be calibrated at the end of its output cable. At 10 Mc there is typically a 2% loss in the output cable.

- a. Connect test setup illustrated in Figure 5-2.
- b. Set Model 3400A RANGE switch and frequency response test set output attenuator to 1 volt position.
- c. Set frequency response test set to use external input.
- d. Adjust oscillator output frequency for 400 cps; output voltage for 90% full scale as indicated on Model 3400A meter.
- e. Adjust frequency response test set meter to convenient reference.
- f. Adjust oscillator output frequency for 100 Kc; output voltage to maintain reference in step e.

- g. Remove Model 3400A bottom cover; adjust C102 (.1 V, 100 KC ADJUST) for 90% full scale as indicated on Model 3400A meter. Replace cover; readjust C405 if meter reading varies from 90% full scale.
- h. Vary oscillator between 100 Kc and 10 Mc; maintain oscillator output voltage to reference set in step e. If Model 3400A meter reading varies more than $\pm 1\%$ to 1 Mc, $\pm 2\%$ from 1 Mc to 2 Mc, $\pm 3\%$ from 2 Mc to 3 Mc, or $\pm 5\%$ from 3 Mc to 10 Mc, repeat step g until optimum response is obtained.

5-40. SECOND ATTENUATOR ADJUSTMENT.

NOTE

The frequency response test set used to calibrate the 3400A should be calibrated at the end of its output cable. At 10 Mc there is typically a 2% loss in the output cable.

- a. Connect test setup illustrated in Figure 5-2.
- b. Set Model 3400A RANGE switch and frequency response test set output attenuator to .3 volt position.
- c. Set frequency response test set to use external input.
- d. Adjust oscillator output frequency for 400 cps; output voltage for 90% full scale as indicated on Model 3400A meter.
- e. Adjust frequency response test set meter to convenient reference.
- f. Adjust oscillator output frequency for 3 Mc; output voltage to maintain reference in step e.
- g. Remove Model 3400A bottom cover; adjust C303 (.3 V ADJ) for 90% full scale as indicated on Model 3400A meter.
- h. Vary oscillator between 3 Mc and 10 Mc; maintain oscillator output voltage to reference set

in step e. If Model 3400A meter reading varies below 85% or above 95% of full scale, repeat step g until optimum response is obtained between 3 and 10 Mc.

5-41. TROUBLESHOOTING PROCEDURE.

5-42. This section contains procedures designed to assist in the isolation of malfunctions. These operations should be undertaken only after it has been established that the difficulty cannot be eliminated by the Adjustment and Calibration Procedures, Paragraph 5-25. An investigation should also be made to ensure that the trouble is not a result of conditions external to the Model 3400A.

5-43. Conduct a visual check of the Model 3400A for possible burned or loose components, loose connections, or any other condition which might suggest a source of trouble.

5-44. Table 5-5 contains a summary of the front-panel symptoms that can be used in initial efforts to select a starting point for troubleshooting operations.

5-45. Table 5-6, in conjunction with Figure 5-5, contains procedures which may be used as a guide in isolating malfunctions. The steps in Table 5-6 describe the normal conditions which should be encountered during the checks (circled numbers (N)) in Figure 5-5.

5-46. The checks outlined in Table 5-6 are not designed to measure all circuit parameters, rather, only to localize the malfunction. Therefore, it is quite possible that additional measurements will be required to completely isolate the problem. Amplifier gain may also vary slightly between instruments; therefore, it should not be necessary to precisely duplicate waveforms or values described.

5-47. Voltage values indicated are based on 0.1 v rms input at 400 cps unless otherwise specified.

5-48. When required, check power supply voltages as outlined in Paragraph 5-29.

5-49. Figures 5-6 through 5-17 are typical waveforms in Model 3400A.

Table 5-5. Front Panel Symptoms

SYMPTOM	POSSIBLE CAUSE
1/2 scale readings on <u>all</u> RANGE switch settings and input voltages.	Chopper Amplifier (A6), C612.
3 to 5% meter offset on all ranges with shorted input.	R7 misadjusted. C405 misadjusted. Check Q605.
400 cps calibration low and frequency response falls off above 50 Kc.	Q401 or Q402 shorted.
Switching transients exceed 5% of full scale with shorted input.	Check collector voltage of Q201 (should not exceed 9.0 v).
Instrument has been overloaded.	Check Q201, Q401, and Q402.
Meter jitter or flutter exceeds 0.5% of full scale.	Check Q601, Chopper Assembly (neons).
Full-scale difference from range to range.	Check resistors in second attenuator.

Figure 5-5. Troubleshooting Tree

Table 5-6. Troubleshooting Procedure

CHECK	PROCEDURE	ACTION
①	Measure ac signal at junction of C413 and C415. Reading should be between 240 mv and 260 mv.	TRUE: Proceed to check ②. FALSE: Proceed to check ⑨.
②	Measure ac signal to Demodulator at positive end of C605. Refer to Figures 5-6 through 5-8.	TRUE: Proceed to check ③. FALSE: Proceed to check ⑥.

Figure 5-6. Input to Demodulator

(Junction of C605 and V503)
3400A on 1 volt range with 1 volt input.
Scope (175A)
Sweep = 5 ms/cm
Vert = 0.2 volts/cm
Dc coupled (Center graticule = 0)

(Junction of C605 and V503)
3400A on 1 volt range with 0.1 volt input.
Scope (175A)
Sweep = 5 ms/cm
Vert = 0.2 volts/cm
Dc coupled (Center graticule = 0)

Figure 5-7. Input to Demodulator

Table 5-6. Troubleshooting Procedure (Cont'd)

CHECK	PROCEDURE	ACTION
		<p>(Junction of C605 and V503) No input; 3400A on 1.0 v range. Scope (175A) Sweep - 5 ms/cm Vert - 0.1 v/cm Dc coupled (Noise - caused by faulty chopper or Q605)</p>

Figure 5-8. Input to Demodulator

③	Measure dc level at the base of Q604. Reading should be -0.6 v for full-scale deflection.	TRUE: Proceed to check ④. FALSE: Proceed to check ⑤.
④	Investigate Emitter Follower.	<ul style="list-style-type: none"> a. Check dc values and component values listed in Figure 6-3. b. Check Q604 and Q605. c. Check C612. If this capacitor were slightly open, amplifier gain would be reduced and Q604 base voltage approaches zero. Voltage across C612 should be less than 300 μv peak-to-peak. d. If Q604 bias voltage is abnormal, check CR604.
⑤	Investigate Demodulator.	<ul style="list-style-type: none"> a. Observe Demodulator input on oscilloscope using LINE SYNC. At full-scale deflection, waveform should be negative. As deflection decreases to zero, waveform inverts, passing through zero at approximately one-half scale. Noise in Figure 5-8 caused by either faulty neons in chopper or Q605. Figure 5-13 is indicative of faulty chopper neon. b. Demodulator output should be proportional to ac input.
⑥	Measure the ac voltage at the positive side of C605 during slight overdrive conditions (1.0 v input on 0.3 v range). See Figure 5-9.	<p>TRUE: Proceed to check ⑦. FALSE: Proceed to check ⑧.</p>

Table 5-6. Troubleshooting Procedure (Cont'd)

CHECK	PROCEDURE	ACTION
-------	-----------	--------

Figure 5-9. Demodulator Input (Overdriven)

⑦	Investigate Demodulator output during normal and overdrive conditions. See Figures 5-10 and 5-11.	TRUE: Perform check ④; investigate feedback loops. FALSE: Perform check ⑤.
---	---	---

Figure 5-10. Demodulator Output (Normal)

Table 5-6. Troubleshooting Procedure (Cont'd)

CHECK	PROCEDURE	ACTION
		(BASE Q604) 3400A on .3 v range with 1 v input. Scope (175A) Sweep = 5 ms/cm Vert 0.5 v/cm Dc coupled
⑧	Investigate Modulator, Chopper Amplifier, and Thermocouples. See Figures 5-12 through 5-17.	<ol style="list-style-type: none">Disconnect the base of Q604 from the chopper assembly (V503). Insert a dc signal, through a small resistor ($1\text{ K}\Omega$), between the base of Q604 and chassis ground, to provide -0.6 v ($\pm 0.4\text{ v}$ for 1/10 scale deflection). The meter should indicate full-scale deflection. Trace the signal from the base of Q604, through the thermocouples, back to the modulator and through the chopper amplifier.Should a defective modulator be suspected, break the line between pin 13 (A6) and V501. Apply a 10 mv dc signal through a 500 K resistor to V501. Check for a "chopped" waveform at the junction of V501 and V502. The modulated output should be proportional to input dc level at pin 13.Figure 5-12 describes a proper neon voltage waveform. Figure 5-13 describes an improperly firing neon. Note negative voltage dip during conduction. Current variation through neon, following voltage waveform, causes noise as shown in Figure 5-8. For proper chopper action, neon firing potential (most negative point on waveform) is typically between 110 v and 120 v (never greater than 130 v). Jitter occurring on front panel meter may be seen at firing point or extinguishing point.Check thermocouples and dc feedback from C608. Check thermocouples for open circuit or ground.

Table 5-6. Troubleshooting Procedure (Cont'd)

Figure 5-12. Chopper Neon Voltage

Figure 5-12
CHOPPER NEON VOLTAGE
(Pins 3 and 5, A6)
No input voltage to 3400A.
Scope (175A)
Sweep = 5 ms/cm
Vert = 20 v/cm
Dc coupled

Figure 5-13. Chopper Neon Voltage

Figure 5-13
CHOPPER NEON VOLTAGE
(Pins 3 and 5, A6)
No input voltage to 3400A.
Scope (175A)
Sweep = 5 ms/cm
Vert = 10 v/cm
Dc coupled

Figure 5-14. Output of Modulator (Overdriven)

Figure 5-14
OUTPUT OF MODULATOR (OVER-
DRIVEN)

Waveform taken at the junction of V501
and C601
3400A on 0.3 volt range with 1 v input.
Scope:
Sweep = 5 ms/cm
Vert = 5 mv/cm

Table 5-6. Troubleshooting Procedure (Cont'd)

Figure 5-15. Collector of Q601

Figure 5-15
COLLECTOR OF Q601
3400A on 0.3 volt range with 1 v input.
Scope:
Sweep = 5 ms/cm
Vert = 5 mv/cm

Figure 5-16. Collector of Q602

Figure 5-16
COLLECTOR OF Q602
3400A on 0.3 volt range with 1 v input.
Scope:
Sweep = 5 ms/cm
Vert = 0.2 v/cm

Figure 5-17. Collector of Q603

Figure 5-17
COLLECTOR OF Q603
3400A on 0.3 volt range with 1 v input.
Scope:
Sweep = 5 ms/cm
Vert = 2 v/cm

Table 5-6. Troubleshooting Procedure (Cont'd)

CHECK	PROCEDURE	ACTION
⑨	Measure ac signal to second Attenuator at negative end of C205. Reading should be between 0. 90 mv and 1. 0 mv.	TRUE: Proceed to check ⑩. FALSE: Proceed to check ⑬.
⑩	Measure ac signal to Amplifier (A4) at the positive side of C402. Reading should be 0. 95 mv.	TRUE: Proceed to check ⑪. FALSE: Proceed to check ⑫.
⑪	Investigate Amplifier (A4).	<ol style="list-style-type: none">Check ac voltage at the junction of C402 and Q401 (0. 95 mv).Check C405. Although it is a high frequency adjustment, it can affect 400 cps calibration. This could affect 1 v tracking or cause excessive noise or oscillation.Amplifier gain can be checked using circled ac values in Figure 6-2.Check Q401 and Q402. If Q401 gain is low, check feedback loop through C411.If bias at Q405 or Q406 is abnormal, check CR401, 407, 408, and R419. Dc voltage at collector of Q406 should be -2 v \pm0. 5 v. R419 can be adjusted (0 to 350 ohms) in an effort to accomplish this. If the dc voltage is exceedingly high, check for shorted transistors or diodes.
⑫	Investigate Second Attenuator.	<ol style="list-style-type: none">Check voltage at junction of C205 and R302.In six lower ranges, this voltage should equal the input signal (\pm5%).When replacing attenuator resistors, matched set must be utilized.
⑬	Investigate Input Attenuator and Impedance Converter.	<ol style="list-style-type: none">Check R101 (10 M \pm1/4%).On the higher six ranges, the input attenuator should appear as a 1000:1 divider.Check C102.Dc collector voltage at Q201 should not exceed 9. 0 v, or switching transients will be introduced.

SECTION VI

CIRCUIT DIAGRAM

6-1. INTRODUCTION.

6-2. This section contains the circuit diagrams necessary for the operation and maintenance of the Model 3400A RMS Voltmeter. Included are schematic and parts location diagrams.

6-3. SCHEMATIC DIAGRAMS.

6-4. The schematic diagrams depict the circuits contained within each assembly of the 3400A as well as assembly interconnection. Main signal paths and significant feedback paths are identified.

6-5. The schematic diagrams are arranged in ascending order of assembly reference designation.

6-6. PARTS LOCATION DIAGRAMS.

6-7. The parts location diagrams show the physical location of parts within an assembly. Parts are identified by reference designation. A parts location diagram is included for each assembly which does not have adequate silk screening of reference designations.

6-8. The parts location diagrams are located on the same figure as the schematic of the assembly.

Figure 6-1. Input Attenuator A1, Impedance Converter A2, and Second Attenuator A3 Schematic and Parts Location Diagram.

6

Section VI
Figure 6-2

Model 3400A

LD-M-670

Section VI
Figure 6-3

2. * OPTIMUM VALUE SELECTED AT FACTORY; AVERAGE VALUE
DC FEEDBACK PATH.
3. $\frac{1}{2}$ CABINET GROUND.
4. ▽ PRINTED CIRCUIT GROUND.
5. UNLESS OTHERWISE INDICATED, RESISTANCE IN OHMS.
CAPACITANCE IN MICROFARADS.
6. [] DENOTES REAR PANEL LOCATOR.

Figure 6-3. Modulator/Demodulator A5, Chopper Amplifier A6, and Thermocouple Pair (Part of A4) Schematic and Parts Location Diagram

Section VI
Figure 6-4

Model 3400A

NOTE:

6. DENOTES FRONT PANEL LOCATION.

1. COMPONENTS MOUNTED ON CHASSIS ARE SHADeD.

2. $\frac{1}{2}$ CABINET GROUND.

3. ∇ PRINTED CIRCUIT COMMON.

4. UNLESS OTHERWISE INDICATED, CAPACITANCE IS MICRO FARADS; RESISTANCE IS OHMS.

SECTION VII

REPLACEABLE PARTS

7-1. INTRODUCTION.

7-2. This section contains information for ordering replacement parts. Table 7-1 lists parts in alpha-numerical order of their reference designators and indicates the description and $\frac{1}{4}$ stock number of each part, together with any applicable notes. Table 7-2 lists parts in alpha-numerical order of their $\frac{1}{4}$ stock number and provides the following information on each part:

- a. Description of the part (see list of abbreviations below).
- b. Typical manufacturer of the part in a five-digit code (see list of manufacturers in Appendix).
- c. Manufacturer's part number.
- d. Total quantity used in the instrument (TQ column).

7-3. Miscellaneous parts are listed at the end of Table 7-1.

7-4. ORDERING INFORMATION.

7-5. To obtain replacement parts, address order or inquiry to your local Hewlett-Packard Field Office (see lists at rear of this manual for addresses). Identify parts by their Hewlett-Packard stock numbers.

7-6. NON-LISTED PARTS.

7-7. To obtain a part that is not listed, include:

- a. Instrument model number.
- b. Instrument serial number.
- c. Description of the part.
- d. Function and location of the part.

REFERENCE DESIGNATORS

A	= assembly	F	= fuse	P	= plug	V	= vacuum tube, neon bulb, photocell, etc.
B	= motor	FL	= filter	Q	= transistor	W	= cable
C	= capacitor	J	= jack	R	= resistor	X	= socket
CR	= diode	K	= relay	RT	= thermistor	XF	= fuseholder
DL	= delay line	L	= inductor	S	= switch	XDS	= lampholder
DS	= device signaling (lamp)	M	= meter	T	= transformer	Z	= network
E	= misc electronic part	MP	= mechanical part				

ABBREVIATIONS

a	= amperes	elect	= electrolytic	mtg	= mounting	rot	= rotary
bp	= bandpass	encap	= encapsulated	my	= mylar	rms	= root-mean-square
bwo	= backward wave oscillator	f	= farads	NC	= normally closed	rmo	= rack mount only
		fxd	= fixed	Ne	= neon	s-b	= slow-blow
c	= carbon	Ge	= germanium	NO	= normally open	Se	= selenium
cer	= ceramic	grd	= ground (ed)	NPO	= negative positive zero (zero temperature coefficient)	sect	= section(s)
cmo	= cabinet mount only	h	= henries	nsr	= not separately replaceable	Si	= silicon
coef	= coefficient	Hg	= mercury	obd	= order by description	sil	= silver
com	= common	imp	= impregnated	p	= peak	sl	= slide
comp	= composition	incd	= incandescent	pc	= printed circuit board	td	= time delay
conn	= connection	ins	= insulation (ed)	pf	= picofarads = 10^{-12} farads	TiO ₂	= titanium dioxide
crt	= cathode-ray tube			pp	= peak to peak	tog	= toggle
dep	= deposited			piv	= peak inverse voltage	tol	= tolerance
EIA	= Tubes or transistors meeting Electronic Industries' Association standards will normally result in instrument operating within specifications; tubes and transistors selected for best performance will be supplied if ordered by $\frac{1}{4}$ stock numbers.	K	= kilo = 1000	pos	= position (s)	trim	= trimmer
		lin	= linear taper	poly	= polystyrene	twt	= traveling wave tube
		log	= logarithmic taper	pot	= potentiometer	var	= variable
		m	= milli = 10^{-3}	rect	= rectifier	w/	= with
		M	= megohms			W	= watts
		ma	= milliamperes			ww	= wirewound
		μ	= micro = 10^{-6}			w/o	= without
		minat	= miniature			*	= optimum value selected at factory, average value shown (part may be omitted)
		mfgl	= metal film on glass				
		mfr	= manufacturer				

Section VII
Table 7-1

Table 7-1. Reference Designation Index

REFERENCE DESIGNATION	PART NO.	DESCRIPTION	NOTE
A1	03400-66501	Ass'y: Input Attenuator Board	
A2	03400-66502	Ass'y: Impedance Converter Board	
A3	03400-63401	Ass'v: econd Attenuator	
A4	03400-66503	Ass'y: Amplifier Board	
A5	5082-5001	Ass'y: Photoconductor Chopper Part of A6	
A6	03400-66504	Ass'y: Chopper Amplifier Board	
A7	03400-66505	Ass'v: Power Supply Board	
C1	0180-0152	C: fxd, elect, 2X40 μ f, 200 vdcw	
C2	0180-0148	C: fxd, alum, 890 μ f -10% +100%, 15 vdcw	
C3A, B	0150-0119	C: fxd, cer, 2X.01 μ f ±20%, 250 vdcw	
C4	0160-0379	C: fxd, mica, 4775 pf ±10%, 500 vdcw	
C5 thru C100		Not Assigned	
C101	0170-0022	C: fxd, my, 0.1 μ f ±20%, 600 vdcw	
C102	0132-0003	C: var, poly, 0.7 - 3.0 pf	
C103	0150-0058	C: fxd, cer, 2.2 pf, 600 vdcw	
C104 thru C200		Not Assigned	
C201	0170-0019	C: fxd, my, 0.1 μ f ±5%, 200 vdcw	
C202	0150-0031	C: fxd, TI, 2 pf ±5%, 500 vdcw	
C203	0180-0060	C: fxd, elect, 200 μ f -10% +100%, 3 vdcw	
C204	0180-0091	C: fxd, elect, 10 μ f, 100 vdcw	
C205	0180-0039	C: fxd, elect, 100 μ f, 12 vdcw	
C206	0140-0201	C: fxc, mica, 12 pf ±5%, 500 vdcw	
C207	0180-0061	C: fxc, elect, 100 μ f -10% +100%, 15 vdcw	
C208	0150-0093	C: fxc, cer, 0.01 μ f -20% +80%, 100 vdcw	
C209 thru C301		Not Assigned	
C302*	0160-0763	C: fxd, mica, 5 pf ±10%, 500 vdcw	
C303		Not Assigned	
C304	0140-0190	C: fxd, mica, 39 pf ±5%, 300 vdcw	
C305	0160-0763	C: fxd, mica, 5 pf ±10%, 500 vdcw	
C306 thru C401		Not Assigned	
C402	0180-0063	C: fxd, elect, 500 μ f -10% +100%, 3 vdcw	
C403	0150-0096	C: fxd, cer, 0.05 μ f, 100 vdcw	
C404	0140-0201	C: fxd, mica, 12 pf ±5%, 500 vdcw	
C405	0130-0018	C: var, cer, 1.5 - 7 pf, 500 vdcw	
C406	0180-0137	C: fxd, ta, elect, 100 μ f ±20%, 10 vdcw	
C407	0180-0060	C: fxd, elect, 200 μ f -10% +100%, 3 vdcw	
C408	0160-0127	C: fxd, cer, 1 μ f ±20%, 25 vdcw	
C409		Not Assigned	
C410	0140-0225	C: fxd, mica, 300 pf ±1%, 300 vdcw	
C411	0180-0224	C: fxd, elect, 10 μ f, 10 vdcw	
C412	0180-0039	C: fxd, elect, 100 μ f, 12 vdcw	
C413	0180-0142	C: fxd, elect, 20 μ f -10% +100%, 25 vdcw	
C414	0140-0196	C: fxd, mica, 150 pf ±5%, 300 vdcw	

See Appendix C

See introduction to this section

Table 7-1. Reference Designation Index (Cont'd)

REFERENCE DESIGNATION	PART NO.	DESCRIPTION	NOTE
C415 C416 thru C419	0180-0142	C: fxd, elect, 20 μ f -10% +100%, 25 vdcw Not Assigned	
C420	0150-0096	C: fxd, cer, 0.05 μ f, 100 vdcw	
C421	0140-0225	C: fxd, mica, 300 pf \pm 1%, 300 vdcw	
C422	0160-0127	C: fxd, cer, 1 μ f \pm 20%, 25 vdcw	
C423		Not Assigned	
C424	0160-0128	C: fxd, cer, 2.2 μ f \pm 20%, 25 vdcw	
C425 and C426	0140-0176	C: fxd, mica, 100 pf \pm 2%, 300 vdcw	
C427	0180-0104	C: fxd, elect, 200 μ f, 15 vdcw Not Assigned	
C428 thru C602			
C603 and C604	0150-0084	C: fxd, cer, 0.1 μ f -20% +80%, 50 vdcw	
C605	0180-0111	C: fxd, elect, 2 μ f, 25 vdcw	
C606	0180-0224	C: fxd, elect, 10 μ f, 10 vdcw	
C607	0150-0093	C: fxd, cer, 0.01 μ f -20% +80%, 100 vdcw	
C608	0180-0022	C: fxd, elect, ta, 3.9 μ fd, 35 vdcw	
C609	0180-0039	C: fxd, elect, 100 μ f, 12 vdcw	
C610	0180-0119	C: fxd, elect, 1 μ f -10 +100%, 25 vdcw	
C611	0150-0093	C: fxd, cer, 0.01 μ f -20% +80%, 100 vdcw	
C612	0180-0156	C: fxd, alum, 880 μ f -10% +100%, 1 vdcw	
C613	0180-0039	C: fxd, elect, 100 μ f, 12 vdcw	
C614 thru C700		Not Assigned	
C701	0170-0024	C: fxd, my, 0.022 μ f \pm 20%, 200 vdcw	
C702	0180-0089	C: fxd, elect, 10 μ f -10% +100%, 150 vdcw	
C703	0170-0024	C: fxd, my, 0.022 μ f \pm 20%, 200 vdcw	
C704	0180-0089	C: fxd, elect, 10 μ f -10% +100%, 150 vdcw	
C705	0150-0012	C: fxd, cer, 0.01 μ f \pm 20%, 1000 vdcw	
C706 and C707	0180-0050	C: fxd, elect, 40 μ f -15% +100%, 50 vdcw	
C708 thru C710	0180-0105	C: fxd, elect, 50 μ f, 25 vdcw	
CR201	1902-0045	Diode: avalanche, 7.32 v \pm 2%, 400 mw	
CR202	1901-0025	Diode: silicon, 100 piv	
CR203 thru CR400		Not Assigned	
CR401	1910-0016	Diode: germanium, 100 ma. 0.85 v	
CR402	1901-0040	Diode: silicon	
CR403	1902-0040	Diode: avalanche, 14 v \pm 5%, 400 mw	
CR404 and CR405		Not Assigned	
CR406	1901-0025	Diode: silicon, 100 piv	
CR407 and CR408	1910-0016	Diode: germanium, 100 ma, 0.85 v	

See introduction to this section

Table 7-1. Reference Designation Index (Cont'd)

REFERENCE DESIGNATION	PART NO.	DESCRIPTION	NOTE
CR409 thru CR600		Not Assigned	
CR601	1902-0046	Diode: breakdown, 7.15 v $\pm 10\%$	
CR602	1910-0015	Diode: germanium, 50 ma, 30 piv	
CR603 and CR604	1901-0025	Diode: silicon, 100 piv	
CR605 thru CR700		Not Assigned	
CR701 and CR702	1901-0028	Diode: silicon, breakdown, 17.8 v $\pm 2\%$, 400 mw	
CR703 thru CR706	1901-0025	Diode: silicon, 100 piv	
CR707 thru CR710		Not Assigned	
CR711 and CR712	1901-0026	Diode: silicon, 200 piv	
CR713 and CR714	1901-0025	Diode: silicon, 100 piv	
CR715	1902-0047	Diode: silicon, 0.5 amp, 400 piv	
CR716 and CR717	1901-0045	Diode: silicon, 100 piv	
DS1	1450-0048	Lamp: pilot, NE2H	
F1	2110-0004	Fuse: cartridge, 1/4 amp, 250 v	
J1	1250-0118	Connector: BNC	
J2	1251-0205	Jack: telephone, open circuit	
J3	1251-0148	Connector: power	
J4	1251-0208	Connector: PC, 22 contact	
J5	1251-0194	Connector: PC, 15 contact	
M1	1120-0320	Meter: full scale, 3 ma	
M1	1120-0308	Meter: DB only	
Q1	1850-0098	Transistor: germanium, PNP, selected	
Q2 and Q3	1850-0038	Transistor: germanium, PNP	
Q4 thru Q200		Not Assigned	
Q201	1854-0011	Transistor: Si, 2N835, NPN	
Q202 thru Q400		Not Assigned	
Q401 and Q402	1853-0007	Transistor: Si, 2N3251, PNP	
Q403	1850-0075	Transistor: germanium, 2N779A, PNP	
Q404	1854-0005	Transistor: Si, 2N708, PNP	
Q405	1850-0099	Transistor: germanium, 2N964	
Q406	1854-0005	Transistor: Si, 2N708, PNP	
Q407 thru Q600		Not Assigned	
Q601	1850-0060	Transistor: germanium, 2N383, PNP	
Q602	1850-0062	Transistor: germanium, PNP, selected	

Option 01
See introduction to this section

Table 7-1. Reference Designation Index (Cont'd)

REFERENCE DESIGNATION	PART NO.	DESCRIPTION	NOTE
Q603	1850-0062	Transistor: germanium, PNP, selected	
Q604	1854-0033	Transistor: Si, 2N3391, PNP	
Q605	1853-0016	Transistor: germanium, 2N3638, PNP	
Q606 thru Q700		Not Assigned	
Q701 and Q702	1850-0062	Transistor: germanium, PNP, selected	
Q703 and Q704	1850-0040	Transistor: germanium, PNP, selected	
Q705	1851-0017	Transistor: germanium, NPN, 2N1304	
R1	0687-3331	R: fxd, comp, 33K ohms $\pm 10\%$, 1/2 w	
R2		Not Assigned	
R3	0758-0017	R: fxd, met flm, 1500 ohms $\pm 5\%$, 1/2 w	
R4	2100-0805	R: var, ww, lin, 50 ohms $\pm 20\%$, 2 w	
R5	0812-0048	R: fxd, ww, 80 ohms $\pm 3\%$, 1/2 w	
R6	2100-0721	R: var, ww, 30 ohms $\pm 20\%$	
R7	2100-0412	R: var, ww, lin, 200 ohms $\pm 20\%$, 2 w	
R8	0686-4315	R: fxd, comp, 430 ohms $\pm 5\%$, 1/2 w	
R9	0684-4741	R: fxd, comp, 470K ohms $\pm 10\%$, 1/4 w	
R10	0683-3635	R: fxd, comp, 36K ohms $\pm 5\%$, 1/4 w	
R11 thru R100		Not Assigned	
R101	0760-0025	R: fxd, met flm 10 megohms $\pm 1/4\%$, 1 w	
R102		Not Assigned	
R103	0721-0024	R: fxd, depc, 9.9K ohms $\pm 5\%$, 1/8 w	
R104	2100-0128	R: var, comp, lin, 250 ohms $\pm 20\%$, 1/3 w	
R105 thru R200		Not Assigned	
R201	0683-3935	R: fxd, comp, 39K ohms $\pm 5\%$, 1/4 w	
R202	0683-4715	R: fxd, comp, 470 ohms $\pm 5\%$, 1/4 w	
R203	0683-3355	R: fxd, comp, 3.3 megohms $\pm 5\%$, 1/4 w	
R204	0683-1035	R: fxd, comp, 10K ohms $\pm 5\%$, 1/4 w	
R205	0683-8225	R: fxd, comp, 8200 ohms $\pm 5\%$, 1/4 w	
R206	0683-8215	R: fxd, comp, 820 ohms $\pm 5\%$, 1/4 w	
R207	0727-0439	R: fxd, depc, 30.1K ohms $\pm 1\%$	
R208	0683-2715	R: fxd, comp, 270 ohms $\pm 5\%$, 1/4 w	
R209	0683-1015	R: fxd, comp, 100 ohms $\pm 5\%$, 1/4 w	
R210		Not Assigned	
R211	0683-2725	R: fxd, comp, 2700 ohms $\pm 5\%$, 1/4 w	
R212	0727-0136	R: fxd, depc, 5.03K ohms $\pm 1\%$, 1/2 w	
R213	0727-0126	R: fxd, depc, 3.266K ohms $\pm 1\%$, 1/2 w	
R214 thru R300		Not Assigned	
R301*	0757-0167	R: fxd, flm, 143 ohms $\pm 1\%$, 0.125 w	
R302 thru R311	03400-62602	Resistors: fxd, ww, matched set	
R312	0683-5115	R: fxd, comp, 510 ohms $\pm 5\%$, 1/4 w	

See introduction to this section

Table 7-1. Reference Designation Index (Cont'd)

REFERENCE DESIGNATION	PART NO.	DESCRIPTION	NOTE
R313 thru R400		Not Assigned	
R401	0683-3025	R: fxd, comp, 3000 ohms $\pm 5\%$, 1/4 w	
R402	0683-1035	R: fxd, comp, 10K ohms $\pm 5\%$, 1/4 w	
R403	0683-2405	R: fxd, comp, 24 ohms $\pm 5\%$, 1/4 w	
R404	0757-0346	R: fxd, met ox, 10 ohms $\pm 1\%$, 1/8 w	
R405	0683-1515	R: fxd, comp, 150 ohms $\pm 5\%$, 1/4 w	
R406	0683-3925	R: fxd, comp, 3900 ohms $\pm 5\%$, 1/4 w	
R407	0727-0065	R: fxd, depc, 90.5K ohms $\pm 1\%$, 1 w	
R408	0683-1025	R: fxd, comp, 1000 ohms $\pm 5\%$, 1/4 w	
R409	0683-1005	R: fxd, comp, 10 ohms $\pm 5\%$, 1/4 w	
R410	0683-1025	R: fxd, comp, 1000 ohms $\pm 5\%$, 1/4 w	
R411 thru R415		Not Assigned	
R416	0683-5115	R: fxd, comp, 510 ohms $\pm 5\%$, 1/4 w	
R417	0683-6825	R: fxd, comp, 6800 ohms $\pm 5\%$, 1/4 w	
R418	0683-1825	R: fxd, comp, 1800 ohms $\pm 5\%$, 1/4 w	
R419	0683-2415	R: fxd, comp, 240 ohms $\pm 5\%$, 1/4 w Factory selected comp: typical value given	
R420	0683-6825	R: fxd, comp, 6800 ohms $\pm 5\%$, 1/4 w	
R421 and R422		Not Assigned	
R423	0683-3325	R: fxd, comp, 3300 ohms $\pm 5\%$, 1/4 w	
R424	0683-5135	R: fxd, comp, 51K ohms $\pm 5\%$, 1/4 w	
R425	0683-1035	R: fxd, comp, 10K ohms $\pm 5\%$, 1/4 w	
R426 and R427	0757-0162	R: fxd, met ox, 20 ohms $\pm 1\%$, 1/8 w	
R428	0683-4305	R: fxd, comp, 43 ohms $\pm 5\%$, 1/4 w	
R429	0757-0345	R: fxd, met ox, 302 ohms $\pm 1\%$, 1/8 w	
R430		Not Assigned	
R431	0683-3335	R: fxd, comp, 33K ohms $\pm 5\%$, 1/4 w	
R432	0683-4305	R: fxd, comp, 43 ohms $\pm 5\%$, 1/4 w	
R433	0758-0073	R: fxd, met flm, 24K ohms $\pm 5\%$, 1/2 w	
R434 and R435	0758-0033	R: fxd, met flm, 2000 ohms $\pm 5\%$, 1/2 w	
R436 thru R600		Not Assigned	
R601	0683-3335	R: fxd, comp, 33K ohms $\pm 5\%$, 1/4 w	
R602 thru R605	0683-6825	R: fxd, comp, 6800 ohms $\pm 5\%$, 1/4 w	
R606	0683-4725	R: fxd, comp, 4700 ohms $\pm 5\%$, 1/4 w	
R607	0683-8225	R: fxd, comp, 8200 ohms $\pm 5\%$, 1/4 w	
R608	0683-1035	R: fxd, comp, 10K ohms $\pm 5\%$, 1/4 w	
R609	0683-5605	R: fxd, comp, 56 ohms $\pm 5\%$, 1/4 w	
R610	0683-3915	R: fxd, comp, 390 ohms $\pm 5\%$, 1/4 w	
R611 thru R614		Not Assigned	
R615	0683-3335	R: fxd, comp, 33K ohms $\pm 5\%$, 1/4 w	
R616	0683-2235	R: fxd, comp, 22K ohms $\pm 5\%$, 1/4 w	
R617	0758-0043	R: fxd, met flm, 1400 ohms $\pm 5\%$, 1/2 w	
R618	0727-0100	R: fxd, depc, 1000 ohms $\pm 1\%$, 1/2 w	
R619	0727-0063	R: fxd, depc, 292.4 ohms $\pm 1\%$, 1/2 w	

^a See introduction to this section

Table 7-1. Reference Designation Index (Cont'd)

REFERENCE DESIGNATION	PART NO.	DESCRIPTION	NOTE
R620	0683-1245	R: fxd, comp, 120K ohms ±5%, 1/4 w	
T621	0727-0013	R: fxd, depc, 24.3 ohms ±1%, 1/2 w	
R622	0683-3925	R: fxd, comp, 3900 ohms ±5%, 1/4 w	
R623	0683-3945	R: fxd, comp, 390K ohms ±5%, 1/4 w	
R624	0683-6835	R: fxd, comp, 68K ohms ±5%, 1/4 w	
R625	0758-0076	R: fxd, met flm, 68K ohms ±5%, 1/2 w	
R626 thru R629		Not Assigned	
R630	0683-1045	R: fxd, comp, 100K ohms ±5%, 1/4 w	
R631 and R632	0683-3335	R: fxd, comp, 33K ohms ±5%, 1/4 w	
R633	0683-1835	R: fxd, comp, 18K ohms ±5%, 1/4 w	
R634	0683-5605	R: fxd, comp, 56 ohms ±5%, 1/4 w	
R635	0683-2745	R: fxd, comp, 270K ohms ±5%, 1/4 w	
R636 thru R700		Not Assigned	
R701 and R702	0693-4731	R: fxd, comp, 47K ohms ±10%, 2 w	
R703	0687-2211	R: fxd, comp, 220 ohms ±10%, 1/2 w	
R704	0758-0064	R: fxd, met flm, 36K ohms ±5%, 1/2 w	
R705	0683-2035	R: fxd, comp, 20K ohms ±5%, 1/4 w	
R706	0683-4735	R: fxd, comp, 47K ohms ±5%, 1/4 w	
R707		Not Assigned	
R708	0683-1005	R: fxd, 10 ohms ±5%, 1/4 w	
R709	0683-3315	R: fxd, comp, 330 ohms ±5%, 1/4 w	
R710	0683-4725	R: fxd, comp, 4700 ohms ±5%, 1/4 w	
R711	0687-1831	R: fxd, comp, 18K ohms ±10%, 1/2 w	
R712 thru R714		Not Assigned	
R715	0683-4705	R: fxd, comp, 47 ohms ±5%, 1/4 w	
R716	0727-0188	R: fxd, depc, 38.9K ohms ±1/2%, 1/2 w	
R717	0727-0153	R: fxd, depc, 9.1K ohms ±1%, 1/2 w	
R718	0683-7535	R: fxd, comp, 75K ohms ±5%, 1/4 w	
R719		Not Assigned	
R720	0683-5615	R: fxd, comp, 560 ohms ±5%, 1/4 w	
R721	0683-6825	R: fxd, comp, 6800 ohms ±5%, 1/4 w	
R722	0683-2725	R: fxd, comp, 2700 ohms ±5%, 1/4 w	
R723	0684-1001	R: fxd, comp, 10 ohms ±10%, 1/4 w	
R724	0683-4725	R: fxd, comp, 4700 ohms ±5%, 1/4 w	
R725 thru R729		Not Assigned	
R730	0683-1135	R: fxd, comp, 11K ohms ±5%, 1/4 w	
R731	0683-6225	R: fxd, comp, 6200 ohms ±5%, 1/4 w	
R732	0683-2725	R: fxd, comp, 2700 ohms ±5%, 1/4 w	
S1	3101-0036	Switch: toggle, SPST, 3 amp, 250 v	
S2	3101-0033	Switch: slide	
S3 thru S300		Not Assigned	
S301	3100-0358	Switch: rotary, 3 sect, 12 pos	
T1	9100-0171	Transformer: power	
TC401 and TC402	03400-82801	Thermocouples -- matched pair	

See introduction to this section

Table 7-1. Reference Designation Index (Cont'd)

REFERENCE DESIGNATION	<i>tp</i> PART NO.	DESCRIPTION	NOTE
V201	1921-0017	Electron Tube: 7586 nuvistor triode	
W1	8120-0078	Power Cord, 7-1/2 ft.	
XF1	1400-0084	Fuseholder: extractor, post-type, 2-5/64 inches long	
XV201	1200-0086	Socket: nuvistor, 5-pin	
		<u>MISCELLANEOUS</u>	
	0370-0077	Knob: bar (with one arrow)	
	1200-0043	Insulator: transistor anodized aluminum	
	1200-0081	Insulator: transistor, nylon, .235 in. od.	
	1490-0031	Stand: tilt	
	1520-0002	Plate: capacitor mounting	
	1520-0003	Plate: capacitor mounting	
	5000-0703	Cover: side	
	5000-0711	Cover: bottom	
	5060-0706	Cover Ass'y: top	
	5060-0727	Foot Ass'y	
	03400-01202	Clamp: capacitor mounting	
	03400-01204	Bracket: ground	
	03400-61601	Cable Ass'y: Amplifier Input	
	03400-61602	Cable Ass'y: Chopper Input	
	03400-61603	Cable Ass'y: Input Attenuator	
	03400-69501	Shock mount impedance converter	
	3400A-902	Manual: Operating and Service	

See introduction to this section

Table 7-2. Replaceable Parts

PART NO.	DESCRIPTION	MFR	MFR PART NO.	TQ
0130-0018	C: var, cer, 1.5 - 7 pf, 500 vdcw	72982	557-019-C0P0-10R	1
0132-0003	C: var, poly, 0.7 - 3.0 pf	72982	535-016-4R	1
0140-0176	C: fxd, mica, 100 pf $\pm 2\%$, 300 vdcw	04062	DM15F101G 300V	2
0140-0190	C: fxd, mica, 39 pf $\pm 5\%$, 300 vdcw	04062	DM15E390J 300V	1
0140-0196	C: fxd, mica, 150 pf $\pm 5\%$, 300 vdcw	04062	DM15F151J 300V	1
0140-0201	C: fxd, mica, 12 pf $\pm 5\%$, 500 vdcw	04062	DM15C120J	2
0140-0225	C: fxd, mica, 300 pf $\pm 1\%$, 300 vdcw	04062	DM15F301F 300V	2
0150-0012	C: fxd, cer, 0.01 μ f $\pm 20\%$, 1000 vdcw	56289	H 1038	1
0150-0031	C: fxd, TiO ₂ , 2 pf $\pm 5\%$, 500 vdcw	78488	Type GA 2PF 5%	1
0150-0058	C: fxd, cer, 2.2 pf, 600 vdcw	72982	301 000 C0J0 229C	1
0150-0084	C: fxd, cer, 0.1 μ f $+80\% -20\%$, 50 vdcw	56289	33C41	2
0150-0093	C: fxd, cer, 0.01 μ f $+80\% -20\%$, 100 vdcw	91418	TA	3
0150-0096	C: fxd, cer, 0.05 μ f, 100 vdcw	91418	TA	2
0150-0119	C: fxd, cer, 2X .01 μ f $\pm 20\%$, 250 vdcw	71590	DA17004CD	1
0160-0127	C: fxd, cer, 1 μ f $\pm 20\%$, 25 vdcw	56289	5C13	2
0160-0128	C: fxd, cer, 2.2 μ f $\pm 20\%$, 25 vdcw	56289	5C13	1
0160-0379	C: fxd, mica, 4775 pf $\pm 10\%$, 500 vdcw	72982	633-010	1
0160-0763	C: fxd, mica, 5 pf $\pm 10\%$, 500 vdcw	00853	obd#	2
0170-0019	C: fxd, my, 0.1 μ f $\pm 5\%$, 200 vdcw	28480	0170-0019	1
0170-0022	C: fxd, my, 0.1 μ f $\pm 20\%$, 600 vdcw	09134	Type 27	1
0170-0024	C: fxd, my, 0.022 μ f $\pm 20\%$, 200 vdcw	56289	192P22302	2
0180-0022	C: fxd, elect, ta, 3.9 μ f, 35 vdcw	05397	K3R9J35KS	1
0180-0039	C: fxd, elect, 100 μ f, 12 vdcw	56289	30D154A1	4
0180-0050	C: fxd, elect, 40 μ f $+100\% -15\%$, 50 vdcw	56289	D32538	2
0180-0060	C: fxd, elect, 200 μ f $+100\% -10\%$, 3 vdcw	56289	30D116A1	2
0180-0061	C: fxd, elect, 100 μ f $+100\% -10\%$, 15 vdcw	56289	30D172A1	1
0180-0063	C: fxd, elect, 500 μ f $+100\% -10\%$, 3 vdcw	56289	30D120A1	1
0180-0064	C: fxd, elect, 35 μ f $+100\% -10\%$, 6 vdcw	56289	30D132A1	1
0180-0081	C: fxd, elect, ta, 50 μ f $+20\% -15\%$, 10 vdcw	10411	MTA-50-10	1
0180-0089	C: fxd, elect, 10 μ f $+100\% -10\%$, 150 vdcw	56289	30D218A1	2
0180-0091	C: fxd, elect, 10 μ f, 100 vdcw	56289	30D208A1	1
0180-0104	C: fxd, elect, 200 μ f, 15 vdcw	56289	30D174A1	1
0180-0105	C: fxd, elect, 50 μ f, 25 vdcw	56289	S97441	3
0180-0111	C: fxd, clect, 2 μ f, 25 vdcw	56289	40D173A2	1
0180-0119	C: fxd, elect, 1 μ f $+100\% -10\%$, 25 vdcw	56289	30D175A1	1
0180-0137	C: fxd, elect, ta, 100 μ f $\pm 20\%$, 10 vdcw	56289	150D107X0010R2	1
0180-0142	C: fxd, elect, 20 μ f $+100\% -10\%$, 25 vdcw	56289	Typec 40D	2
0180-0148	C: fxd, alum, 890 μ f $+100\% -10\%$, 15 vdcw	00853	Type PL1	1
0180-0152	C: fxd, elect, 2X40 μ f, 200 vdcw	28480	0180-0152	1
0180-0156	C: fxd, alum, 880 μ f, $+100\% -10\%$, 1 vdcw	56289	Type 34D	1
0180-0224	C: fxd, elect, 10 μ f $+75\% -10\%$, 15 vdcw	56289	30D106G015BA4	2
0370-0077	Knob: bar (with one arrow)	28480	0370-0077	1
0683-1005	R: fxd, comp, 10 ohms $\pm 5\%$, 1/4 w	01121	CB1005	2
0683-1015	R: fxd, comp, 100 ohms $\pm 5\%$, 1/4 w	01121	CB1015	1
0683-1025	R: fxd, comp, 1000 ohms $\pm 5\%$, 1/4 w	01121	CB1025	2
0683-1035	R: fxd, comp, 10K ohms $\pm 5\%$, 1/4 w	01121	CB1035	4
0683-1045	R: fxd, comp, 100K ohms $\pm 5\%$, 1/4 w	01121	CB1045	1

See introduction to this section

Table 7-2. Replaceable Parts (Cont'd)

PART NO.	DESCRIPTION	MFR	MFR PART NO.	TQ
0683-1135	R: fxd, comp, 11K ohms ±5%, 1/4 w	01121	CB1135	1
0683-1245	R: fxd, comp, 120K ohms ±5%, 1/4 w	01121	CB1245	1
0683-1515	R: fxd, comp, 150 ohms ±5%, 1/4 w	01121	CB1515	1
0683-1825	R: fxd, comp, 1800 ohms ±5%, 1/4 w	01121	CB1825	1
0683-1835	R: fxd, comp, 18K ohms ±5%, 1/4 w	01121	CB1835	1
0683-2035	R: fxd, comp, 20K ohms ±5%, 1/4 w	01121	CB2035	1
0683-2235	R: fxd, comp, 22K ohms ±5%, 1/4 w	01121	CB2235	1
0683-2405	R: fxd, comp, 24 ohms ±5%, 1/4 w	01121	CB2405	1
0683-2415	R: fxd, comp, 240 ohms ±5%, 1/4 w	01121	CB2415	1
0683-2715	R: fxd, comp, 270 ohms ±5%, 1/4 w	01121	CB2715	1
0683-2725	R: fxd, comp, 2700 ohms ±5%, 1/4 w	01121	CB2725	3
0683-2745	R: fxd, comp, 270K ohms ±5%, 1/4 w	01121	CB2745	1
0683-3025	R: fxd, comp, 3000 ohms ±5%, 1/4 w	01121	CB3025	1
0683-3315	R: fxd, comp, 330 ohms ±5%, 1/4 w	01121	CB3315	1
0683-3325	R: fxd, comp, 3300 ohms ±5%, 1/4 w	01121	CB3325	1
0683-3335	R: fxd, comp, 33K ohms ±5%, 1/4 w	01121	CB3335	5
0683-3355	R: fxd, comp, 3.3 megohms ±5%, 1/4 w	01121	CB3355	1
0683-3635	R: fxd, comp, 36K ohms ±5%, 1/4 w	01121	CB3635	1
0683-3915	R: fxd, comp, 390 ohms ±5%, 1/4 w	01121	CB3915	1
0683-3925	R: fxd, comp, 3900 ohms ±5%, 1/4 w	01121	CB3925	2
0683-3935	R: fxd, comp, 39K ohms ±5%, 1/4 w	01121	CB3935	1
0683-3945	R: fxd, comp, 390K ohms ±5%, 1/4 w	01121	CB3945	1
0683-4305	R: fxd, comp, 43 ohms ±5%, 1/4 w	01121	CB4305	2
0683-4705	R: fxd, comp, 4.7 ohms ±5%, 1/4 w	01121	CB4705	2
0683-4715	R: fxd, comp, 470 ohms ±5%, 1/4 w	01121	CB4715	1
0683-4725	R: fxd, comp, 4700 ohms ±5%, 1/4 w	01121	CB4725	3
0683-4735	R: fxd, comp, 47K ohms ±5%, 1/4 w	01121	CB4735	1
0683-5115	R: fxd, comp, 510 ohms ±5%, 1/4 w	01121	CB5115	2
0683-5135	R: fxd, comp, 51K ohms ±5%, 1/4 w	01121	CB5135	1
0683-5605	R: fxd, comp, 56 ohms ±5%, 1/4 w	01121	CB5605	2
0683-5615	R: fxd, comp, 560 ohms ±5%, 1/4 w	01121	CB5615	1
0683-6225	R: fxd, comp, 6200 ohms ±5%, 1/4 w	01121	CB6225	1
0683-6825	R: fxd, comp, 6800 ohms ±5%, 1/4 w	01121	CB6825	7
0683-6835	R: fxd, comp, 68K ohms ±5%, 1/4 w	01121	CB6835	1
0683-7535	R: fxd, comp, 75K ohms ±5%, 1/4 w	01121	CB7535	1
0683-8215	R: fxd, comp, 820 ohms ±5%, 1/4 w	01121	CB8215	1
0683-8225	R: fxd, comp, 8200 ohms ±5%, 1/4 w	01121	CB8225	1
0684-1001	R: fxd, comp, 10 ohms ±10%, 1/4 w	01121	CB1001	2
0684-4741	R: fxd, comp, 470 K ohms ±10%, 1/4 w	01121	CB4741	1
0686-4315	R: fxd, comp, 430 ohms ±5%, 1/2 w	01121	EB4315	1
0687-1831	R: fxd, comp, 18K ohms ±10%, 1/2 w	01121	EB1831	1
0687-2211	R: fxd, comp, 220 ohms ±10%, 1/2 w	01121	EB2211	1
0687-3331	R: fxd, comp, 33K ohms ±10%, 1/2 w	01121	EB3331	1
0693-4731	R: fxd, comp, 47K ohms ±10%, 2 w	01121	HB4731	2
0721-0024	R: fxd, depc, 9.9K ohms ±5%, 1/8 w	19701	DCM 1/8	1
0727-0013	R: fxd, depc, 24.3 ohms ±1%, 1/2 w	19701	DC1/2CR5	1
0727-0063	R: fxd, depc, 292.4 ohms ±1%, 1/2 w	19701	DC1/2C	1
0727-0065	R: fxd, depc, 90.5K ohms ±1%, 1 w	19701	DC1 R5	1

See introduction to this section

Table 7-2. Replaceable Parts (Cont'd)

PART NO.	DESCRIPTION	MFR	MFR PART NO.	TQ	
0727-0100	R: fxd, depc, 1000 ohms ±1%, 1/2 w	19701	DC1/2CR5	1	
0727-0126	R: fxd, depc, 3.266K ohms ±1%, 1/2 w	19701	DC1/2AR5	1	
0727-0136	R: fxd, depc, 5.03K ohms ±1%, 1/2 w	19701	DC1/2CR5	1	
0727-0153	R: fxd, depc, 9.1K ohms ±1%, 1/2 w	19701	DC1/2CR5	1	
0727-0188	R: fxd, depc, 38.95K ohms ±1/2%, 1/2 w	19701	DC1/2AR5	1	
0757-0345	R: fxd, met flm, 302 ohms ±1%, 1/8 w	19701	N60	1	
0757-0346	R: fxd, met flm, 10.0 ohms ±1%, 1/8 w	19701	MF5CT-0	1	
0757-0162	R: fxd, met ox, 20 ohms ±1%, 1/8 w	07115	N60	3	
0757-0167	R: fxd, flm, 143 ohms ±1%, 0.125 w	19701	MF1/8 T0	1	
0758-0017	R: fxd, met flm, 1500 ohms ±5%, 1/4 w	07115	C20	1	
0758-0023	R: fxd, met flm, 240 ohms ±5%, 1/2 w	07115	C20	1	
0758-0033	R: fxd, met flm, 2000 ohms ±5%, 1/2 w	07115	C20	2	
0758-0043	R: fxd, met flm, 1400 ohms ±5%, 1/2 w	07115	C20	1	
0758-0064	R: fxd, met flm, 36K ohms ±5%, 1/2 w	07115	C20	1	
0758-0073	R: fxd, met flm, 24K ohms ±5%, 1/2 w	07115	C20	1	
0758-0076	R: fxd, met flm, 68K ohms ±5%, 1/2 w	07115	C20	1	
0760-0025	R: fxd, met flm, 10 megohms ±1/4%, 1 w	03888	Type PT 1000	1	
0812-0048	R: fxd, ww, 80 ohms ±3%, 1/2 w	14193	SA10	1	
> 1120-0308	Meter: DB only	28480	1120-0308	1	
1120-0320	Meter: full scale, 3 ma	28480	1120-0320	1	
1200-0043	Insulator: transistor, anodized aluminum	76530	294457	1	
1200-0081	Insulator: transistor, nylon, .235 in. od.	26365	974	1	
1200-0086	Socket: nuvistor, 5-pin	71785	1336510009	1	
1250-0118	Connector: BNC	91737	8427	1	
1251-0148	Connector: power	0000U	H-10611G-3L	1	
1251-0194	Connector: P. C., 15-contact	95354	SD-615TS	1	
1251-0205	Jack: telephone, open circuit	82389	2J-1432	1	
1251-0208	Connector: P. C., 22-contact	95354	SD-622UR	1	
1400-0084	Fuseholder: extractor, post-type, 2-5/64 inches long	75915	342014	1	
1450-0048	Lamp: pilot, NE2H	08717	858R	1	
1490-0031	Stand: tilt	91260	obd#	1	
1850-0038	Transistor: germanium, PNP	86684	1850-0038	2	
1850-0040	Transistor: germanium, 2N383	86684	1850-0040	1	
1850-0060	Transistor: germanium, PNP, 2N383	86684	3748	1	
1850-0062	Transistor: germanium, PNP, selected	28480	1850-0062	5	
1850-0075	Transistor: germanium, PNP, 2N779A	87216	2N779A	1	
1850-0098	Transistor: germanium, PNP, selected	28480	1850-0098	1	
1850-0099	Transistor: germanium, PNP, 2N964	04713	2N964	1	
1851-0017	Transistor: germanium, NPN, 2N1304	01295	2N1304	1	
1853-0007	Transistor: SI, PNP, 2N3251	04713	2N3251	2	
1853-0016	Transistor: germanium, 2N3638, PNP	07263	obd#	1	
1854-0005	Transistor: SI, 2N708, PNP	07263	2N708	2	
1854-0011	Transistor: SI, NPN, 2N835	04713	2N835	1	
1854-0033	Transistor: SI, 2N3391, PNP	24446	2N3391	1	

> Option 01

See introduction to this section

Table 7-2. Replaceable Parts (Cont'd)

PART NO.	DESCRIPTION	MFR	MFR PART NO.	TQ
1901-0025	Diode: silicon, 100 piv	93332	D3072	10
1901-0026	Diode: silicon, 200 piv	01841	obd#	2
1901-0028	Diode: silicon, breakdown, 17.8 v ±2%, 400 mw	01841	obd#	2
1901-0040	Diode: silicon	03877	SG5050	1
1901-0045	Diode: silicon, 100 piv	86684	34935	2
1902-0040	Diode: avalanche, 14 v ±5%, 400 mw	04713	SZ10939-224	1
1902-0045	Diode: avalanche, 7.32 v ±2%, 400 mw	04713	SZ10939-144	1
1902-0046	Diode: breakdown, 7.15 v ±10%	04713	SZ10939-139	1
1902-0047	Diode: silicon, 0.5 amp, 400 piv	04713	SZ10939-225	1
1910-0015	Diode: germanium, 50 ma, 30 piv	98925	CGD1094	1
1910-0016	Diode: germanium, 100 ma, 0.85 v	11711	GD150	3
1921-0017	Electron Tube: 7586 nuvistor triode	86684	7586	1
2100-0128	R: var, comp, lin, 250 ohms ±20%, 1/3 w	28480	2100-0128	1
2100-0412	R: var, ww, lin, 200 ohms ±20%, 2 w	28480	2100-0412	1
2100-0721	R: var, ww, 30 ohms ±20%	28480	2100-0721	1
2100-0805	R: var, ww, lin, 50 ohms ±20%, 2 w	11236	Series 117 Spl.	1
2110-0004	Fuse: cartridge, 1,4 amp, 250 v	75915	3AG/CAT. 312.250	1
3100-0358	Switch: rotary, 3 sect, 12 pos.	28480	3100-0358	1
3101-0033	Switch: slide	42190	4633	1
3101-0036	Switch: toggle, spst, 3 amp, 250 v	88140	8280K16	1
5000-0703	Cover: side	28480	5000-0703	1
5000-0711	Cover: bottom	28480	5000-0711	1
5060-0706	Cover Ass'y: top	28480	5060-0706	1
5060-0727	Foot Ass'y	28480	5060-0727	1
5080-5001	Chopper Ass'y: Photoconductor	28480	5080-6001	1
8120-0078	Power Cord, 7-1/2 ft.	70903	KH4147	1
9100-0171	Transformer: power	28480	9100-0171	1
03400-62602	Resistors, matched set	28480	03400-62602	1
03400-82801	Thermocouples -- matched pair	28480	03400-82801	1

^a See introduction to this section

SALES AND SERVICE OFFICES IN THE U.S. AND CANADA

ALABAMA

Huntsville, 35801
 Hewlett-Packard
 Southern Sales Division
 Holiday Office Ctr., Suite 18
 (205) 881-4591
 TWX: 510-579-2204

ARIZONA

Scottsdale, 85251
 Hewlett-Packard
 Neely Sales Division
 3009 No. Scottsdale Rd.
 (602) 945-7601
 TWX: 602-949-0111

Tucson, 85716
 Hewlett-Packard
 Neely Sales Division
 232 So. Tucson Blvd.
 (602) 623-2564
 TWX: 602-792-2759

CALIFORNIA

Los Angeles Area
 Hewlett-Packard
 Neely Sales Division
 3939 Lankershim Blvd.
 North Hollywood 91604
 (213) 877-1282 and 766-3811
 TWX: 910-499-2170

Sacramento, 95821
 Hewlett-Packard
 Neely Sales Division
 2591 Carlsbad Ave.
 (916) 482-1463
 TWX: 916-444-8683

San Diego, 92106
 Hewlett-Packard
 Neely Sales Division
 1055 Shafter Street
 (714) 223-8103
 TWX: 714-276-4263

San Francisco Area
 Hewlett-Packard
 Neely Sales Division
 501 Laurel Street
 San Carlos 94071
 (415) 591-7661
 TWX: 910-376-4390

COLORADO

Englewood, 80110
 Hewlett-Packard
 Lahana Sales Division
 7965 East Prentice
 (303) 771-3455
 TWX: 303-771-3056

CONNECTICUT

Middletown, 06458
 Hewlett-Packard
 Yewell Sales Division
 589 Saybrook Rd.
 (203) 346-6611
 TWX: 203-346-7433

FLORIDA

Miami, 33125
 Hewlett-Packard
 Florida Sales Division
 2907 Northwest 7th St.
 (305) 635-6461

Orlando, 32803
 Hewlett-Packard
 Florida Sales Division
 621 Commonwealth Ave.
 (305) 425-5541
 TWX: 305-275-1234

St. Petersburg, 33708
 Hewlett-Packard
 Florida Sales Division
 410 150th Ave., Madeira Beach
 (813) 391-0211
 TWX: 813-391-0666

GEORGIA

Atlanta, 30305
 Hewlett-Packard
 Southern Sales Division
 3110 Maple Drive, N. E.
 (404) 233-1141
 TWX: 810-751-3283

ILLINOIS

Chicago, 60645
 Hewlett-Packard
 Crossley Sales Division
 2501 West Peterson Ave.
 (312) 275-1600
 TWX: 910-221-0277

INDIANA

Indianapolis, 46205
 Hewlett-Packard
 Crossley Sales Division
 3919 Meadows Dr.
 (317) 546-4891
 TWX: 317-635-4300

KENTUCKY

Louisville, 40218
 Hewlett-Packard
 Southern Sales Division
 Suite 4, 3411 Bardstown Rd.
 (502) 459-4140
 TWX: 810-535-3128

MARYLAND

Baltimore, 21207
 Hewlett-Packard
 Horman Sales Division
 6660 Security Blvd.
 (301) 944-5400

Washington, D. C. Area
 Hewlett-Packard
 Horman Sales Division
 941 Rollins Avenue
 Rockville 20852
 (301) 427-7560
 TWX: 710-828-9684

MASSACHUSETTS

Boston Area
 Hewlett-Packard
 Yewell Sales Division
 Middlesex Turnpike
 Burlington 01804
 (617) 272-9000
 TWX: 710-332-0382

MICHIGAN

Detroit, 48235
 Hewlett-Packard
 Crossley Sales Division
 14425 West Eight Mile Road
 (313) 342-5700
 TWX: 313-342-0702

MINNESOTA

St. Paul, 55114
 Hewlett-Packard
 Crossley Sales Division
 842 Raymond Avenue
 (612) 646-7881
 TWX: 612-551-0055

MISSOURI

Kansas City, 64131
 Harris-Hanson Company
 7916 Paseo Street
 (816) 444-9494
 TWX: 816-556-2423

St. Louis, 63144
 Harris-Hanson Company
 2814 South Brentwood Blvd.
 (314) 647-4350
 TWX: 314-962-3933

NEW JERSEY

Asbury Park Area
 Hewlett-Packard
 Robinson Sales Division
 Shrewsbury
 (201) 747-1060

ENGLEWOOD, 07631

Hewlett-Packard
 RMC Sales Division
 391 Grand Avenue
 (201) 567-3933

NEW MEXICO

Albuquerque, 87108
 Hewlett-Packard
 Neely Sales Division
 6501 Lomas Blvd., N. E.
 (505) 255-5586
 TWX: 505-243-8314

Las Cruces, 88001
 Hewlett-Packard
 Neely Sales Division
 114 S. Water Street
 (505) 526-2486
 TWX: 505-524-2671

NEW YORK

New York, 10021
 Hewlett-Packard
 RMC Sales Division
 236 East 75th Street
 (212) 879-2023
 TWX: 710-581-4376

Rochester, 14625
 Hewlett-Packard
 Syracuse Sales Division
 800 Linden Avenue
 (716) 381-4120
 TWX: 716-221-1514

Poughkeepsie, 12801
 Hewlett-Packard
 Syracuse Sales Division
 82 Washington St.
 (914) 454-7330
 TWX: 914-452-7425

Syracuse, 13211
 Hewlett-Packard
 Syracuse Sales Division
 Pickard Bldg., E. Molloy Rd.
 (315) 454-2486
 TWX: 315-477-1375

NORTH CAROLINA

High Point, 27262
 Hewlett-Packard
 Southern Sales Division
 1923 N. Main Street
 (919) 882-6873
 TWX: 510-926-1516

OHIO

Cleveland, 44129
 Hewlett-Packard
 Crossley Sales Division
 5579 Pearl Road
 (216) 884-9209
 TWX: 216-888-0715

Dayton, 45409
 Hewlett-Packard
 Crossley Sales Division
 1250 W. Dorothy Lane
 (513) 299-3594
 TWX: 513-944-0090

PENNSYLVANIA

Camp Hill
 Hewlett-Packard
 Robinson Sales Division
 (717) 737-6791

PHILADELPHIA AREA

Hewlett-Packard
 Robinson Sales Division
 144 Elizabeth Street
 West Conshohocken 19428
 (215) 248-1600 and 828-6200
 TWX: 215-828-3847

PITTSBURGH AREA

Hewlett-Packard
 Crossley Sales Division
 2545 Moss Side Blvd.
 Monroeville 15146
 (412) 271-5227
 TWX: 710-797-3650

TEXAS

Dallas, 75209
 Hewlett-Packard
 Southwest Sales Division
 P.O. Box 7166, 3605 Inwood Rd.
 (214) 357-1881 and 332-6667
 TWX: 910-861-4081

Houston, 77027

Hewlett-Packard
 Southwest Sales Division
 P.O. Box 22813, 4242 Richmond Ave.
 (713) 667-2407
 TWX: 713-571-1353

UTAH

Salt Lake City, 84115
 Hewlett-Packard
 Lahana Sales Division
 1482 Major St.
 (801) 486-8166
 TWX: 801-521-2604

VIRGINIA

Richmond, 23230
 Hewlett-Packard
 Southern Sales Division
 2112 Spencer Road
 (703) 282-5451
 TWX: 703-282-9986

WASHINGTON

Seattle Area
 Hewlett-Packard
 Neely Sales Division
 11656 N. E. 8th St.
 Bellevue 98004
 (206) GL4-3971
 TWX: 910-443-2303

CANADA

Montreal, Quebec
 Hewlett-Packard (Canada) Ltd.
 8270 Mayrand Street
 (514) 735-2273
 TWX: 610-421-3484

Ottawa, Ontario
 Hewlett-Packard (Canada) Ltd.
 1762 Carling Avenue
 (613) 722-4223
 TWX: 610-562-1952

Toronto, Ontario
 Hewlett-Packard (Canada) Ltd.
 1415 Lawrence Avenue, West
 (416) 249-9196
 TWX: 610-492-2382

HEWLETT **PACKARD**

INTERNATIONAL SALES AND SERVICE OFFICES

ARGENTINA

Mauricio A. Saurez
Telecommunicaciones
Carlos Calvo 224, Buenos Aires
Tel: 30-6312

AUSTRALIA

Sample Electronics (Vic.) Pty. Ltd.
9-11 Cremorne Street
Richmond E. 1, Victoria
Tel: 42-4757 (3 lines)
Sample Electronics (N.S.W.) Pty. Ltd.
4 Grose Street, Glebe, Sydney
New South Wales
Tel: 69-6338 (6 lines)

AUSTRIA

Unilabor G.m.b.H.
Rummelhardtgasse 6/3
Vienna
Tel: 426.181

BELGIUM

Hewlett-Packard Benelux S.A.
20-24 Rue de l'Hopital, Brussels
Tel: 11.22.20

BRAZIL

Ciental Importacao E Comercio Ltda.
Rua Cons. Crispiniano, 69, 8.º And.,
Conj. 81, Sao Paulo
Tel: 32-4332

CANADA

Hewlett-Packard (Canada) Ltd.
8270 Mayrand Street
Montreal, Quebec
(514) 735-2273
Hewlett-Packard (Canada) Ltd.
1762 Carling Avenue
Ottawa, Ontario
(613) 722-8162
Hewlett-Packard (Canada) Ltd.
1415 Lawrence Avenue W.
Toronto, Ontario
(416) 249-9196

CHILE

Hector Calcagni
Casilla 13942
Santiago
Tel: 6.42.26

DENMARK

Tage Olsen A/S
Ronnegade 1
Copenhagen Ø
Tel: 29.48.00

FINLAND

INTO O/Y
P. O. Box 153
Meritullinkatu 11, Helsinki
Tel: 66.39.09 and 35.125

FRANCE

Hewlett-Packard France
150 Boulevard Massena
Paris 13e
Tel: 707.97.19

GERMANY

Hewlett-Packard V.m.b.H.
Steindamm 35, Hamburg
Tel: 24.05.51
Hewlett-Packard V.m.b.H.
Kurhessenstrasse 95
Frankfurt am Main
Tel: 52.00.36

Hewlett-Packard V.m.b.H.

Regnifriedstrasse 13
Munich 9
Tel: 49.51.21.22
Hewlett-Packard Vm.b.H.
Technisches Büro
Herrenbergerstrasse 110
703 Böblingen, Württemberg
Tel: 6971

GREECE

K. Karayannis
Klaftmonos Square, Athens 124
Tel: 230.301 (5 lines)

INDIA

The Scientific Instrument Company, Ltd.
6, Tej Bahadur Sapru Road, Allahabad 1
Tel: 2451
The Scientific Instrument Company, Ltd.
240, Or. Dadabhai Naoroji Road,
Bombay 1
Tel: 26-2642
The Scientific Instrument Company, Ltd.
11, Esplanade East, Calcutta 1
Tel: 23-4129
The Scientific Instrument Company, Ltd.
30, Mount Road, Madras 2
Tel: 86339
The Scientific Instrument Company, Ltd.
B-7, Ajmeri Gate Extn., New Delhi 1
Tel: 271053

IRAN

Telecom Ltd.
P. O. Box 1812, Tehran
Tel: 43850, 48111

ISRAEL

Electronics & Engineering Ltd.
16 Kremenetski St., Tel Aviv
Tel: 35021 (3 lines)

ITALY

Hewlett-Packard Italiana S.p.A.
Viale Lunigiana 46, Milan
Tel: 69.15.84/5/6
Hewlett-Packard Italiana S.p.A.
Piazza Marconi, 25
Roma-Eur
Tel: 59.25.44/5

JAPAN

Yokogawa-Hewlett-Packard Ltd.
2270 Ishikawa-cho
Hachioji, Tokyo
Tel: Hachioji 0426-3-1231 (19 lines)
Yokogawa-Hewlett-Packard Ltd.
No. 3, 6-chome, Aoyama-Kitamachi
Akasaka, Minato-ku, Tokyo
Tel: 403-0073, 403-0074, 403-0075
Yokogawa-Hewlett-Packard Ltd.
No. 8, Umeda, Kita-ku, Osaka City
Tel: 361-3084, 341-2095
Yokogawa-Hewlett-Packard Ltd.
No. 4, 3-chome, Himekedori,
Chigusa-ku, Nagoya City
Tel: 75-8545

KOREA

American Trading Company, Korea, Ltd.
112-35 Sokong-Dong
Seoul P. O. Box 1103
Seoul
Tel: 3-7049, 3-7613

NETHERLANDS

Hewlett-Packard Benelux N.V.
23 Burg Roellstraat, Amsterdam W.
Tel: (020) 13.28.98 and 13.54.99

NEW ZEALAND

Sample Electronics (N. Z.) Ltd.
8 Matipo Street
Onehunga S. E. 5, Auckland
Tel: 565-361

NORWAY

Morgenstjerne & Co. A/S
Ingenjørfirma
6 Wessels Gate, Oslo
Tel: 20 16 35

PORTUGAL

Telectra
Rua Rodrigo da Fonseca 103
P. O. Box 2531
Lisbon 1
Tel: 68 60 72 and 68 60 73 and 68 60 74

PUERTO RICO & VIRGIN ISLANDS

San Juan Electronics, Inc.
150 Ponce de Leon, Stop 3
P. O. Box 5167
Pta. de Tierra Sta., San Juan 00906
Tel: 722-3342, 724-4406

SPAIN

ATAIO, Ingenieros
A. Aguilera, No. 8, Madrid 15
Tel: 223.27.42, 223.41.71, and 224.84.97

SOUTH AFRICA

F. H. Flanter & Co. (Pty.), Ltd.
Rosella House
Buitengingle Street, Cape Town
Tel: 3-3817

SWEDEN

H-P Instrument AB
Centralvagen 28, Solna Centrum
Tel: 08-83.08.30 and 10-83.08.30

SWITZERLAND

Max Paul Frey
Wankdorffeldstrasse 66, Bern
Tel: (031) 42.00.78

TAIWAN (FORMOSA)

Hwa Sheng Electronic Co., Ltd.
21 Nanking West Road, Taipei
Tel: 4-6076, 4-5936

TURKEY

TELEKOM Engineering Bureau
P.O. Box 376—Galata, Istanbul
Tel: 49.40.40

UNITED KINGDOM

Hewlett-Packard Ltd.
Dallas Road
Bedford, England
Tel: Bedford 68052

VENEZUELA

Citec, C. A.
Edif. Arisan-Of #4
Avda. Francisco de Miranda-Chacaito
Apartado del Este 10.837, Caracas
Tel: 71.88.05

YUGOSLAVIA

Belram S.A.
83 Av. des Mimosas
Brussels 15, Belgium
Tel: 35.29.58

For Sales and Service Assistance in Areas Not Listed Contact:

IN EUROPE

Hewlett-Packard, S. A.
54 Route des Acacias
Geneva, Switzerland
Telephone: (022) 42.81.50
Telex: 2.24.86
Cable: HEWPACKSA

IN LATIN AMERICA

Hewlett-Packard Inter-Americanas
1501 Page Mill Road
Palo Alto, California 94304, U.S.A.
Telephone: (415) 326-7000
TWX: 910-373-1267
Telex: 033811 Cable: HEWPACK

ELSEWHERE

Hewlett-Packard
International Marketing Department
1501 Page Mill Road
Palo Alto, California 94304, U.S.A.
Telephone: (415) 326-7000
TWX: 910-373-1267
Telex: 033811 Cable: HEWPACK

APPENDIX
CODE LIST OF MANUFACTURERS (Sheet 1 of 2)

The following code numbers are from the Federal Supply Code for Manufacturers Cataloging Handbooks H4-1 (Name to Code) and H4-2 (Code to Name) and their latest supplements. The date of revision and the date of the supplements used appear at the bottom of each page. Alphabetical codes have been arbitrarily assigned to suppliers not appearing in the H4 handbooks.

Code No.	Manufacturer	Address	Code No.	Manufacturer	Address	Code No.	Manufacturer	Address	Code No.	Manufacturer	Address
00000 U.S.A. Common	Any supplier of U.S.		07149 Filmohm Corp.	New York, N. Y.	49956 Raytheon Company	Lexington, Mass.	74970 E. F. Johnson Co.	Waseca, Minn.			
00136 McCoy Electronics	Mount Holly Springs, Pa.		07233 Cach-Graphik Co.	City of Industry, Calif.	52090 Rowan Controller Co.	Baltimore, Md.	75042 International Resistance Co.	Philadelphia, Pa.			
00213 Sage Electronics Corp.	Rochester, N. Y.		07261 Avnet Corp.	Los Angeles, Calif.	56743 Waid Landon Electric	Mt. Vernon, N.Y.	75173 Jonas, Howard S., Division	of Cach Mfg. Corp.	Chicago, Ill.		
00334 Humdial Co.	Colton, Calif.		07263 Fairchild Semiconductor Corp.	Mountain View, Calif.	54294 Shalicros Mfg. Co.	Syracuse, N. C.	75378 James Knights	Sandwich, Ill.			
00335 Westrex Corp.	New York, N. Y.		07322 Minnesota Rubber Co.	Minneapolis, Minn.	55026 Simpson Electric Co.	Chicago, Ill.	75382 Kulka Electric Corporation	Mt. Vernon, N.Y.			
00373 Garlock Packing Co., Electronic Products Div.	Camden, N.J.		07327 The Butcher Corp.	Los Angeles, Calif.	55932 Sevelone Corp.	Erlanger, N.Y.	75518 Lenz Electric Mfg. Co.	Chicago, Ill.			
00566 Aerovox Corp.	New Bedford, Mass.		07700 Technical Ware Products	Springfield, N.J.	55936 Swenson & Co., Inc.	Tonawanda, N.Y.	75915 Littlefuse Inc.	Des Plaines, Ill.			
00779 Amp, Inc.	Harrisburg, Pa.		07910 Continental Device Corp.	Hawthorne, Calif.	56137 Spaulding Fibre Co., Inc.	Neit Adams, Mass.	76000 Lord Mfg. Co.	Erie, Pa.			
00781 Aircraft Radio Corp.	Boonton, N.J.		07933 Rheem Semiconductor Corp.	Mountain View, Calif.	59446 Telex, Inc.	St. Paul, Minn.	76210 C. W. Marwedel	San Francisco, Calif.			
00815 Northern Engineering Laboratories, Inc.	Burlington, Wis.	Laboratories	07966 Stockley Sem-Conductor	Palo Alto, Calif.	59730 Thomas & Betts Co.	Elizabeth 1, N.J.	76433 Micamond Electronic Mfg. Corp.	Brooklyn, N.Y.			
00853 Sangamo Electric Company, Didill Division/Capacitors	Marion, Ill.		07980 Becton-Dick Corp.	Boonton, N.J.	60741 Tripplett Electrical Inc.	Bluffton, Ohio	76487 James Miller Mfg. Co., Inc.	Malden, Mass.			
00866 Gee Engineering Co.	Los Angeles, Calif.		08145 U.S. Engineering Co.	Los Angeles, Calif.	61775 Union Switch and Signal, Div. of	Westinghouse Air Brake Co.	76493 J. W. Miller Co.	Los Angeles, Calif.			
00891 Carl E. Holmes Corp.	Los Angeles, Calif.		08356 Burgess Battery Co.	Niagara Falls, Ontario, Canada	62119 Universal Electric Co.	Swissvale, Pa.	76530 Mc�adock Mills	San Leandro, Calif.			
01121 Allen Bradley Co.	Milwaukee, Wis.		08371 Sloan Company	Burbank, Calif.	63743 Ward-Laneard Electric Co.	Owosso, Mich.	76545 Mueller Electric Co.	Cleveland, Ohio.			
01255 Litton Industries, Inc.	Beverly Hills, Calif.		08378 Cannon Electric Co., Phoenix Div.	Phoenix, Ariz.	64595 Western Electr. Co., Inc.	Mt. Vernon, N.Y.	76854 Oak Manufacturing Co.	Crystal Lake, Ill.			
01281 TRW Semiconductors Inc.	Lawndale, Calif.		08752 CBS Electronics Semiconductor	Operations, Div. of C.B.S., Inc.	65092 Weston Inst. Div. of Daystrom, Inc.	New York, N.Y.	77038 Bendix Pacific Division of	Bendix Corp.	No. Hollywood, Calif.		
01295 Texas Instruments, Inc., Transistor Products Div.	Dallas, Texas		08894 Met-Rain	Lowell, Mass.	66295 Wittek Manufacturing Co.	Chicago 23, Ill.	77075 Pacific Metalas Co.	San Francisco, Calif.			
01349 The Allis-Chalmers Mfg. Co.	Alliance, Ohio		09026 Babcock Relays, Inc.	Costa Mesa, Calif.	66345 Wollens Optical Co.	Rochester, N.Y.	77221 Phasmar Instrument and	Electron. Co.	South Pasadena, Calif.		
01561 Chas-Trak Corp.	Indianapolis, Ind.		09134 Texas Capacitor Co.	Houston, Texas	70276 Allied Mfg. Co.	Hauppauge, Conn.	77250 Phoelli Mfg. Co.	Chicago, Ill.			
01589 Pacific Relays, Inc.	Van Nuys, Calif.		09145 Atchison Electronics	Sun Valley, Calif.	70309 Allied Control Co., Inc.	New York, N.Y.	77252 Phadephi Steel and Wire Corp.	Philadelphia, Pa.			
01930 American Corp.	Rockford, Ill.		09250 Electro Assemblies, Inc.	Chicago, Ill.	70319 Alimetaal Screw Prod. Co., Inc.	Garden City, N.Y.	77342 Potter and Brumfield, Div. of American	Machine and Foundry	Princeton, Ind.		
01951 Pulse Engineering Co.	Santa Clara, Calif.		09262 Babcock Relays, Inc.	Costa Mesa, Calif.	70485 Atlantic India Rubber Works, Inc.	Chicago, Ill.	77630 Radio Condenser Co.	Canden, N.J.			
02114 Ferroxcube Corp. of America	Saugerties, N.Y.		09314 Texas Capacitor Co.	Toronto, Ontario, Canada	70563 Amperite Co., Inc.	New York, N.Y.	77633 Radio Receiver Co., Inc.	Brooklyn, N.Y.			
02286 Cole Mfg. Co.	Palo Alto, Calif.		09664 The Bristol Co.	Waterbury, Conn.	70598 Bell Electronic Corp.	Cleveland, Ohio	77664 Resistance Products Co.	Harrisburg, Pa.			
02735 Radio Corp. of America, Semiconductor and Materials Div.	Los Angeles, Calif.		10214 General Transistor Western Corp.	Los Angeles, Calif.	71002 Blinbach Radio Co.	New York, N.Y.	77969 Rubberaft Corp. of Calif.	Toleance, Calif.			
02771 Vocation Co., America, Inc.	Somerville, N.J.		10411 Ti-TaI, Inc.	Berkeley, Calif.	71041 Boston Gear Works Div. of	Quincy, Mass.	78189 Shakeproof Division of Illinois	Tool Works	Elgin, Ill.		
02777 Hopkins Engineering Co.	Old Saybrook, Conn.		10546 Carbomed Co.	Niagara Falls, N.Y.	71218 Bud Radio Inc.	Cleveland, Ohio	78283 Signal Indicator Corp.	New York, N.Y.			
02508 G.E. Semiconductor Products Dept.	Syracuse, N.Y.		11236 CTS of Beine, Inc.	Beine, Ind.	71265 Camloc Fastener Corp.	Paterson, N.J.	78291 Struthers-Dunn Inc.	Pitman, N.J.			
03705 Apex Machine & Tool Co.	Dayton, Ohio		11237 Chicago Telephone of California, Inc.	So. Pasadena, Calif.	71313 Allen D. Cardwell Electronic	Plainville, Conn.	78452 Thompson-Brenner & Co.	Chicago, Ill.			
03797 Eldec Corp.	El Monte, Calif.		11312 Microwave Electronics Corp.	Palo Alto, Calif.	71400 Bussmann Fuses Div. of McGraw	St. Louis, Mo.	78471 Tilley Mfg. Co.	San Francisco, Calif.			
03877 Transition Electronic Corp.	Wakefield, Mass.		11534 Duncan Electronic, Inc.	Santa Ana, Calif.	71435 Chicago Condenser Corp.	Chicago, Ill.	78488 Stackpole Carbon Co.	St. Mays, Pa.			
03888 Pyrofilm Resistor Co.	Morristown, N.J.		11711 General Instrument Corporation	Newark, N.J.	71450 CTS Corp.	Elkhart, Ind.	78493 Standard Thorsen Corp.	Walham, Mass.			
03954 Air Marine Motors, Inc.	Los Angeles, Calif.		11717 Imperial Electronic, Inc.	Burna Park, Calif.	71468 Cannon Electric Co.	Los Angeles, Calif.	78553 Timentron Products, Inc.	Cleveland, Ohio.			
04005 Arrow, Hall and Hegeman Elec. Co.	Hartford, Conn.		11870 Melabs, Inc.	Palo Alto, Calif.	71471 Cinema Engineering Co.	Burbank, Calif.	78790 Timelomes Engineers	Pasadena, Calif.			
04062 Elmence Products Co.	New York, N.Y.		12597 Clarostat Mfg. Co.	Ovem, N.H.	71482 C.P. Clare & Co.	Chicago, Ill.	78947 Ucnite Co.	Newtownville, Mass.			
04222 Hi-Q Division of Aerovox	Myrtle Beach, S.C.		12859 Nippon Electric Co., Ltd.	Tokyo, Japan	71500 Centalab Div. of Globe Union Inc.	Wauwatosa, Wis.	79142 Veede Root, Inc.	Hartford, Conn.			
04294 Eigin National Watch Co., Electronics Division	Burbank, Calif.		13103 Thermally	Dallas, Texas	71700 The Corning Glass Works	Milwaukee, Wis.	79251 Wenco Mfg. Co.	Chicago, Ill.			
04404 Dynec Division of Hewlett-Packard Co.	Palo Alto, Calif.		13396 Telefunken (G.M.B.H.)	Hannover, Germany	71744 Chicago Minalu Lamp Works	New York, N.Y.	79272 Continental Wat Electronics Corp.	Philadelphia, Pa.			
04651 Sylvania Electric Prods., Inc., Electronic Tube Div.	Mountain View, Calif.		13835 Midland Mfg. Co.	Kansas City, Kansas	71753 A.O. Smith Corp., Crowley Div.	West Orange, N.J.	79363 Zierick Mfg. Corp.	New Rochelle, N.Y.			
04713 Motorola, Inc., Semiconductor Prod. Div.	Phoenix, Arizona		14059 San-Tech	Newbury Park, Calif.	71785 Cinch Mfg. Corp.	Chicago, Ill.	80031 Meccpo Division of Sessions	Clock Co.	Morristown, N.J.		
04732 Filtron Co., Inc., Western Div.	Culver City, Calif.		14193 Cadet Resistor Corp.	Santa Monica, Calif.	71784 Dow Corning Corp.	Midland, Mich.	80120 Schnitzel Alloy Products	Elizabeth, N.J.			
04773 Automatic Electric Co.	Northlake, Ill.		14298 American Components, Inc.	Conshohocken, Pa.	72092 Eltel McCullough, Inc.	San Bruno, Calif.	80130 Times Capsule Corp.	New York, N.Y.			
04777 Automatic Electric Sales Corp.	Northlake, Ill.		14655 Correll Doubler Elec. Corp.	So. Plainfield, N.J.	72136 Electro-Motive Mfg. Co., Inc.	Willimantic, Conn.	80131 Electron. Industries Association	Amb. band tube meeting EIA standards	Washington, D.C.		
04798 Sequora Mfg & Cable Co.	Redwood City, Calif.		14960 Williams Mfg. Co.	San Jose, Calif.	72170 Colgate-Palmolive Co., Inc.	Providence, R.I.	80207 Unimax Switch, Div. of	W.L. Marmon Corp.	Wallingford, Conn.		
04811 Precision Coil Spring Co.	El Monte, Calif.		15037 Spice Pine Mica Co.	Livingston, N.J.	72354 John E. Felt & Co.	Chicago, Ill.	80223 United Transformer Corp.	New York, N.Y.			
04870 P. M. Motor Company	Chicago 44, Ill.		16352 Computer Diode Corp.	Lodi, N. J.	72619 Dialight Corp.	Brooklyn, N.Y.	80248 Oxford Electric Corp.	Chicago, Ill.			
05005 Twentieth Century Plastics, Inc.	Los Angeles, Calif.		16688 De Jun Anse Corporation	Long Island City I, N.Y.	72656 Cencel Ceramics Corp.	Keasbey, N.J.	80294 Bonne Laboratories, Inc.	Riverside, Calif.			
05277 Westinghouse Electric Corp., Semi-Conductor Dept.	Youngwood, Pa.		16758 Deice Radio Div. of G.M.C. Corp.	Kokomo, Ind.	72699 Cennital Instrument Corp.,	Willimantic, Conn.	80411 Astro Div. of Robertshaw	Fulton Controls Co.	Columbus 16, Ohio		
05347 Utilicor, Inc.	San Mateo, Calif.		18373 E.I. DuPont Co., Inc.	Wilmington, Del.	72707 Colgate-Palmolive Co., Inc.	W.L. Maxson Corp.	80486 All Star Products Inc.	Defiance, Ohio			
05593 Illumintron Engineering Co.	Sunnyvale, Calif.		19500 Thomas A. Edison Industries, Div. of McGraw-Edison Co.	West Orange, N.J.	72725 Drake Mfg. Co.	Philadelphia, Pa.	80509 Avery Adhesive Label Corp.	Monrovia, Calif.			
05674 Barber Colman Co.	Rockford, Ill.		19701 Electra Manufacturing Co.	Kansas City, Mo.	72935 Hugh H. Eby Inc.	Chicago, Ill.	80583 Hammerline Co., Inc.	New York, N.Y.			
05728 Tiffen Optical Co.	Roslyn Heights, Long Island, N.Y.		20183 Electronic Tube Corp.	Philadelphia, Pa.	72938 Godeman Co.	Chicago, Ill.	80640 Stevens, Arnold, Co., Inc.	Boston, Mass.			
05729 Metropolitan Telecommunications Corp., Melic Cap, Division	Santa Cruz, Calif.		21226 Executive, Inc.	New York, N.Y.	72952 Elta Resistors Corp.	Erie, Pa.	81030 International Instruments, Inc.		New Haven, Conn.		
05783 Stewart Engineering Co.	Brooklyn, N.Y.		21520 Fansteel Metalfurgical Corp.	No. Chicago, Ill.	73061 Hansen Mfg. Co., Inc.	Princeton, Ind.	81073 Grayhill Co.	LaGrange, Ill.			
05820 Wakefield Engineering Inc.	Wakefield, Mass.		21564 The Fauni Boring Co.	New Britain, Conn.	73076 H. M. Harpe Co.	Chicago, Ill.	81095 Tlaid Transformer Corp.	Venice, Calif.			
06004 The Bassick Co.	Bridgeport, Conn.		21646 General Telephone and Radio Corp.	Clifton, N.J.	73138 Helpol Div. of Backman	Fullerton, Calif.	81312 Winchester Electronics Co., Inc.	Norwalk, Conn.			
06175 Bausch and Lomb Optical Co.	Rochester, N.Y.		24446 General Electric Co.	Schenectady, N.Y.	73293 Hughes Divisions of	Hughes Aircraft Co.	81349 Military Specification			
06402 E.T.A. Products Co. of America	Chicago, Ill.		24655 G.E. Lamp Division	Nela Park, Cleveland, Ohio	73445 Amplex Electronic Co., Div. of North American Phillips Co., Inc.	Newport Beach, Calif.	81415 Wilko Products, Inc.	Cleveland, Ohio			
06540 Amalon Electronic Hardware Co. Inc.	New Rochelle, N.Y.		24655 General Radio Co.	West Concord, Mass.	73490 Beckman Helpol Corp.	Hicksville, N.Y.	81453 Raytheon Mfg. Co., Industrial Components	Div. of, Industr. Tube Operations	Defiance, Ohio		
06555 Bocde Electrical Instruments Co., Inc.	Penazook, N.H.		26365 Giken Reproduce Corp.	New Rochelle, N.Y.	73540 Bradley Semiconductor Corp.	Hamden, Conn.	81483 International Rectifiers Corp.	El Segundo, Calif.			
06751 U. S. Sencor Division of Nuclear Corp. of America	Phoenix, Arizona		26462 Gobel File Co. of America, Inc.	Carlsbad, N.J.	73559 Carling Electric, Inc.	Hoffnfeld, Conn.	81541 The Airgap Products Co.	Cambridge, Mass.			
06912 Torington Mfg. Co., West Div.	Van Nuys, Calif.		26592 Hamilton Watch Co.	Lancaster, Pa.	73682 George K. Garrett Co., Inc.	Philadelphia, Pa.	81660 Bailev Controls, Inc.	Watertown, Mass.			
07115 Corning Glass Works	Pasadena, Calif.		26840 Hewlett-Packard Co.	Palo Alto, Calif.	73734 Fedco Scien Prod. Co.	Chicago, Ill.	82042 Carter Pals Co.	Skokie, Ill.			
07126 Electronic Components Dept.	Bradford, Pa.		31737 G.E. Receiving Tube Dept.	Owensboro, Ky.	73743 Fischer Special Mfg. Co.	Cincinnati, Ohio	82142 Jeffers Electronics Division of	Speer Carbon Co.	Du Bois, Pa.		
07128 Digital Co.	Pasadena, Calif.		35434 Lectroline Inc.	Chicago, Ill.	73753 The General Industries Co.	Elyria, Ohio	82170 Alter B. DuMont Labs, Inc.	Clifton, N.J.			
07137 Transistor Electronics Corp.	Minneapolis, Minn.		36196 Stanwyck Corp.	Hawkesbury, Ontario, Canada	73848 Geshen Stamping & Tool Co.	Goshen, Ind.	82209 Maguire Industries, Inc.	Greenwich, Conn.			
07138 Westinghouse Electric Corp., Electronic Tube Div.	Elmira, N.Y.		37922 P.R. Mallory & Co., Inc.	Indianapolis, Ind.	73899 JFD Electronics Corp.	Brooklyn, N.Y.	82219 Sylvania Electric Prod. Inc.	Electronic Tube Div.	Emporia, Pa.		
			38543 Mechanical Industries Prod. Co.	Akron, Ohio	74005 Jennings Radio Mfg. Co.	San Jose, Calif.					
			40920 Miniature Precision Bearings, Inc.	Kenne, N.H.	74276 Signals Inc.	Neptune, N.J.					
			42190 Mueller Co.	Chicago, Ill.	74455 J.H. Wins, and Sons	Winchester, Mass.					
			43990 C.A. Noyce Co.	Englewood, Colo.	74861 Industrial Condenser Corp.	Chicago, Ill.					
			44655 Ohmite Mfg. Co.	Stokely, Ill.	74866 R.F. Products Division of Amphenol-Borg Electronics Corp.	Danbury, Conn.					
			47904 Polaroid Corp.	Cambridge, Mass.							
			48620 Precision Thermometer and Inst. Co.	Philadelphia, Pa.							

Appendix B

APPENDIX
CODE LIST OF MANUFACTURERS (Sheet 2 of 2)

Code No.	Manufacturer	Address	Code No.	Manufacturer	Address	Code No.	Manufacturer	Address	Code No.	Manufacturer	Address
43401	Reinhardt Products Corp.	Madison, Wis.	28516	Luther Cards Inc., a subsidiary of Balfour Beatty Co.	Chicago, Ill.	59253	Leerhoff Mfg. Co., Inc.	New York, N.Y.	59714	Long Electronics, Inc.	Burbank, Calif.
43402	Stearns Standard Corp.	Windsor, N.J.	49305	United Trans. & Co.	Chicago, Ill.	59715	National Coil Co.	Sheridan, Wyo.	59725	Ventron Inc.	Bridgewater, Conn.
43403	Varo Electronics Co.	Glenview, Calif.	50101	J. S. Kuderna & Mechanic Co.	Passaic, N.J.	59728	Turbo Corp.	Bloomfield, N.J.	59735	Wardrobe Mfg. Co.	Chicago, Ill.
43404	Western Electric Mfg. Co.	Los Angeles, Calif.	50106	Boeing Eng. Service Co.	San Francisco, Calif.	59736	Method Mfg. Co.	Chicago, Ill.	59743	Hi-Q Division of Aerovox	Chicago, Ill.
43405	Van Dusen Steel Co.	Cambridge, Mass.	51125	Meter Data & Computer Co.	El Monte, Calif.	59747	Wolkeson Co.	Sunnyvale, Calif.	59750	Huggins Laboratories	Olean, N.Y.
43406	Westinghouse Bell Hearing Tech.	Wilmington, N.H.	51126	Kudu & Melton Co.	Chicago, Ill.	59751	Thorderson-Versenier Div. of Magne Industries, Inc.	Mt. Carmel, Ill.	59754	Malco Tool and Die	Santa Monica, Calif.
43407	Wiggett Products Co.	Dalton, S.C.	51128	Angell Machine Co.	Attleboro, Mass.	59755	Sola Manufacturing Co.	Los Angeles, Calif.	59756	Western Carb Div. of Aromatic Ind., Inc.	Los Angeles, Calif.
43408	Wiggett Units Co.	Los Angeles, Calif.	51130	Dale Lachter Co., Inc.	Columbus, Neb.	59756	Carlton Screw Co.	Chicago, Ill.	59757	Nahe-Bios, Spring Co.	Redwood City, Calif.
43409	Victory Engineering Corp.	Brentwood, N.J.	51132	Fho Corp.	Philadelphia, Pa.	59757	Microwave Associates, Inc.	San Leandro, Calif.	59758	Ty-Car Mfg. Co., Inc.	Holbrook, Mass.
43410	Wendt Corp., Red Bank Div.	Red Bank, N.J.	51134	General Mfg. Co., Inc.	Watervliet, Mass.	59758	Extral Transformer Co.	New York, N.Y.	59759	Webster Electronics Co., Inc.	Newark, N.J.
43411	Pubbish Corp.	Midland, Mich.	51135	K-F Development Co.	Redwood City, Calif.	59761	Industrial Relining R.R. Co.	Ivington, N.J.	59760	Willow Leather Products Corp.	Newark, N.J.
43412	Smith, Kline & French	Blue Bell, Pa.	51137	Standardized Fastener Co.	Chicago, Ill.	59764	Automatic Mfg. Precision Mfg. Co.	Yonkers, N.Y.	59761	British Radio Electronics Ltd.	Washington, D.C.
43413	Control Screw Co.	Chicago, Ill.	51138	McGraw-Hill Div.	Princeton, N.J.	59766	CBS Electron. & Div. of C.E.S., Inc.	Danvers, Mass.	59762	E.T.A.	England
43414	Coastal Wire Corp.	Quincy, Mass.	51139	Universal Metal Prod. Inc.	Bassett Pueblo, Calif.	59767	Resist Resist Corp.	Yonkers, N.Y.	59763	Indiana General Corp., Elect. Div.	Indiana
43415	Convergent Data Sys.	Manhattan, N.Y.	51140	Engel Optics Inc.	Rochester, N.Y.	59768	Axle Brothers Inc.	Jamaica, N.Y.	59764	HOAD Cuits Instrument Inc.	Mt. Kisco, N.Y.
43416	Convergent Data Sys.	Manhattan, N.Y.	51141	Imperial Insulated Wire Co.	Tarrytown, N.Y.	59769	Rubber Tool Inc.	Gardena, Calif.	59765	Precision Instrument Components Co.	Van Nuys, Calif.
43417	Alco Electronics, Inc.	New York, N.Y.	51142	Sylvania Elec. & Prod. Inc.	Seneca Falls, N.Y.	59770	Francis L. Mosley	Pasadena, Calif.	59766	ODMM Rubber Eng. & Development	Hayward, Calif.
43418	A. J. Glynn Co., Inc.	San Francisco, Calif.	51143	Robbins and Myers, Inc.	Woburn, Mass.	59771	So. Pasadena, Calif.	So. Pasadena, Calif.	59767	ODMM A-1M Manufacturing Co.	San Jose 27, Calif.
43419	Gold Allis Control Mfg. Co.	Omaha, Neb.	51144	Stevens Mfg. Co., Inc.	Manfield, Ohio	59772	Merlewood, Inc.	Mamaroneck, N.Y.	59768	ODQQQ Coeltron	Oakland, Calif.
43420	Sakes Avionics Inc.	Bloomington, Ind.	51145	Imperial J. S. Inc.	Paterson, N.J.	59773	Seacab Corp.	Redwood City, Calif.	59769	ODRRR Radar Industries	Des Plaines, Ill.
43421	Boston Molding Company	Boston, N.J.	51146	Insulite Van Veenend Ind. Inc.	Lodi, N.J.	59774	Canal Corp.	Minneapolis, Minn.	59770	ODSS Control of Elgin Watch Co.	Burbank, Calif.
43422	A. B. Bova Co.	San Francisco, Calif.	51147	Electro-division	Manchester, N.H.	59775	General Mills	Mineola, N.Y.	59771	ODWW California Eastern Lab.	Burlingame, Calif.
43423	R. M. Brammer & Co.	San Francisco, Calif.	51148	Carman Ind. Corp.	Bayonne, N.J.	59776	North Hills Electric Co.	Walham, Mass.	59772	ODXX Methode Electronics, Inc.	Chicago 31, Ill.
43424	Kaled Knit, Inc.	New Haven, Conn.	51149	Raytheon Mfg. Div., Industrial Components	Dr. Keding, Ind. Jobbing Quincy, Mass.	59777	Central Transformer Prod. of J. C. G. Co., Inc.	Burbank, Calif.	59773	ODYY S. K. Smith Co.	Los Angeles 45, Calif.
43425	Sewells Rubber Co.	Chicago, Ill.	51150	Raytheon Mfg. Div., Semiconductor Div.,	Newton, Mass.	59778	International Electrical	Burbank, Calif.			
43426	Midwest Plastic Products Corp.	Wheat Ridge, Colo.	51151	Carman Ind. Corp.	Carman, Ind. Jobbing	59779	Research Lab.	Palo Alto, Calif.			
43427	Radio Corp. of America, RCA	Harrison, N.J.	51152	Semiconductor Products Inc.	Lowell, Mass.	59780	Coltage Technical Corp.	New York, N.Y.			
43428	Harrison Telephone Div.	Harrison, N.J.	51154	Fung-Sun Elec. Inc.	Newark, N.J.	59781	Varian Associates	Palo Alto, Calif.			
43429	Perma-Kool Appliance Handles	Frankfort, Ky.	51157	Controls-Mini. Corp.	Costa, Fla.	59782	Markwell Industries, Elkhorn	Pasadena, Calif.			
43430	Western Fibrous Glass Products Co.	Frankfort, Ky.	51158	Electronics Div.	East Paterson, N.J.	59783	Provo S. Division	Pasadena, Calif.			
43431	Van Winkle & Rogers Inc.	Seattle, Wash.	51159	Controls-Mini. Corp.	Costa, Fla.	59787	Control Switch Division, Controls Co.	El Segundo, Calif.			
43432	Tele-Mag Inc.	Providence, R.I.	51160	Southgate Ind. Chem. Corp.	Costa, Fla.	59788	U.S. America	El Segundo, Calif.			
43433	Lodestar-Hammars Inc.	Lincoln, Ill.	51161	Ind. One Prod. Div. of Model	Costa, Fla.	59800	Delevar Electronics Corp.	East Aurora, N.Y.			
43434	Boundary and Battures Inc.	St. Paul, Minn.	51162	Luminous-Ag & Mfg. Co.	Chicago, Ill.	59846	Wilo Corporation	Indianapolis, Ind.			
43435	Genes Mfg. Inc.	Buffalo, N.Y.	51163	Worcester Pressed Aluminum Corp.	Worcester, Mass.	59893	Rebarcon, Inc.	Boston, Mass.			
43436	Oppen Felt Co.	Woburn, Mass.	51164	Plymouth R. Brothers, Inc.	Boston, Mass.	59892	Hoffman Semiconductor Div. of Hoffman Electronics Corp.	Evanson, Ill.			
43437	General Electric Distributing Corp.	Suburbury, N.Y.	51165	Allies Products Corp.	Miami, Fla.	59895	Technology Instrument Corp.	Newbury Park, Calif.			
			51166	Continental Connector Corp.	Woodside, N.Y.						

MANUAL BACKDATING CHANGES**MODEL 3400A****RMS VOLTMETER**

Manual Serial Prefixed: 401-
 ☎ Part No. 3400A-902

To adapt this manual to instruments with other serial prefixes check for errata below, and make changes shown in tables.

Instrument Serial Prefix	Make Manual Changes	Instrument Serial Prefix	Make Manual Changes
322-	1, 2, 3, 4	401-01620 and below	3, 4
401-00617, -00635, -00641, -00652, -00656, -00658, -00659, -00664, 00673 -00683, -00691, and -00693, -00701 below	2, 3, 4	401-01826 and below	4

CHANGE #1

Table 7-1:

*Change Q601 to ☎ Part No. 1850-0040, Transistor, GE 2N383 PNP.

Table 7-2:

*Change ☎ Part No. 1850-0060 to 1850-0040.

CHANGE #2

Table 7-1:

Delete C305.

*Change Q401 and Q402 to ☎ Part No. 1850-0075, Transistor, GE2N779A PNP.

Table 7-2:

Delete Part No. 0160-0763.

*Change ☎ Part No. 1853-0007 to 1850-0075.

Figure 6-1:

Delete C305 in parallel with R304; add dashed capacitor in parallel with R301 thru R304 and R306. Add the following information: this capacitance obtained by connecting a wire from R301 and C302 junction to a blank switch lug near R306 and R308 junction.

CHANGE #3

Table 7-1:

*Change T1 to ☎ Part No. 9100-0171

Table 7-2:

*Change ☎ Part No. 9100-0344 to 9100-0171.

CHANGE #4

Table 7-1:

*Change Q604 to ☎ Part No. 1854-0003, Transistor, si, PNP, selected.

*Change Q605 to ☎ Part No. 1850-0062, Transistor, germanium, PNP, selected.

*Change R8 to ☎ Part No. 0758-0028, 270 ohms.

Table 7-2:

*Change ☎ Part No. 1854-0033 to 1854-0003.

*Change ☎ Part No. 1854-0016 to 1850-0062.

*Change ☎ Part No. 0686-4315 to 0758-0028.

* Part described in Tables 7-1 and 7-2 is recommended for replacement. Backdating information given for reference only.