

UNIVERSIDADE FEDERAL DE OURO PRETO PROGRAMA DE PÓS GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

Revisitando o Revenimento Paralelo: Computação de Alto Desempenho e Aplicação em Pesquisa Operacional

André Luís Barroso Almeida

Orientador: Prof. Dr. Marco Antonio Moreira de Carvalho Coorientador: Prof. Dr. Joubert de Castro Lima

AGENDA

INTRODUÇÃO

Motivação

- Metaheurísticas são métodos generalistas com capacidade de explorar de forma eficiente e eficaz o espaço de busca;
- Metaheurísticas são, intrinsecamente, não escaláveis, tornando o uso do paralelismo um caminho natural;
- Apesar do crescente interesse em metaheurísticas paralelas, essa área de estudo é extremamente jovem e dinâmica;
- Metaheurísticas paralelas compõem uma linha de pesquisa extremamente desafiadora, interessante e contemporânea.

Objetivos

Objetivos específicos

- 1. Elaborar uma rigorosa revisão sistemática da literatura relacionada à metaheurísticas paralelas baseadas em trajetória e identificar suas lacunas.
- 2. Gerar embasamento teórico sobre arquiteturas paralelas e distribuídas.
- 3. Projetar e implementar uma metaheurística paralela em CPU.
- 4. Avaliar o desempenho do método proposto em casos de estudo.
- 5. Revisitar as funções de avaliação dos estudos de caso.
- 6. Criar e disponibilizar uma API contendo o método proposto.
- 7. Publicar os resultados deste trabalho de pesquisa em periódicos e eventos.

REVISÃO SISTEMÁTICA DE LITERATURA

Metaheurísticas paralelas baseadas em trajetória

REVISÃO SISTEMÁTICA DE LITERATURA

Introdução

Processo de Busca

A busca foi realizada em diversos bases de dados, sendo guiada por descritores.

Extração De dados

Dados relevantes foram extraídos e classificados

Quatro perguntas foram elaboradas relacionadas a metaheurísticas paralelas baseadas em trajetória

Critérios de inclusão e exclusão foram criados e de 1093 publicações, 127 foram selecionadas

Revisão sistemática de literatura baseada nas propostas em Brereton et al. (2007) e Kitchenham et al. (2010).

REVISÃO SISTEMÁTICA DE LITERATURA

Resultados

Achado durante a revisão de literatura

- Em outros contextos, como física e biologia, é utilizado com frequência a metaheurística Revenimento Paralelo (*Parallel Tempering*, PT);
- Segundo Junghans e Hansmann (2006), é sensato empregar o PT em conjunto com sistema *multi-core*;
- O PT apresenta notáveis resultados na área de simulação com uma convergência rápida se comparado com o SA;
- Geralmente é implementado de forma sequencial.

<u>Achado durante a revisã</u>o de literatura

- A origem do PT pode ser atribuída, segundo Earl e Deem (2005), ao trabalho de Swendsen e Wang (1986);
- Cinco anos depois, Geyer (1991) propôs um trabalho mais completo, sendo considerado a origem do PT;
- No mesmo ano, Kimura (1991) propôs o mesmo método aplicado a um problema de otimização;
- Utilização em otimização combinatória é rara, sendo abordado em 10 artigos.

REVENIMENTO PARALELO

REVENIMENTO PARALELO

Metaheurística conhecida como Parallel Tempering

Introdução

- O PT mimetiza o processo físico de revenimento;
- Vastamente utilizado em simulações nas áreas de físico-química e biologia;
- O PT, por definição, é um método baseado no Markov Chain Monte Carlo (MCMC);
- Explora distribuições de probabilidade com várias dimensões.

Introdução

- Monte Carlo representa uma classe de algoritmos com o propósito de resolver problemas através de amostragens aleatórias;
- O MCMC consiste na geração de uma sequência dependente aleatória de soluções.

$$S_0 \longrightarrow S_1 \longrightarrow S_2 \longrightarrow S_3 \longrightarrow S_4 \dots S_{n-1} \longrightarrow S_n$$

REVENIMENTO PARALELO

Características

- O PT consiste na coordenação da constante *T*, conhecida como temperatura na distribuição de *Boltzmann*;
- No algoritmo PT, réplicas ou cópias do sistema ($R = \{r_1, r_2, r_3, ..., r_n\}$) são simuladas em diferentes temperaturas, ou seja, diferentes valores de T;
- Cada réplica, a uma temperatura fixa, simula o sistema em uma quantidade predefinida de passos;
- Após o processo anterior, uma troca de réplicas entre temperaturas adjacentes é proposta.

REVENIMENTO PARALELO

Princípio de funcionamento

Objetivos

Objetivos específicos

- 1. Elaborar uma rigorosa revisão sistemática da literatura relacionada à metaheurísticas paralelas baseadas em trajetória e identificar suas lacunas.
- 2. Gerar embasamento teórico sobre arquiteturas paralelas e distribuídas.
- 3. Projetar e implementar uma metaheurística paralela em CPU.
- 4. Avaliar o desempenho do método proposto em casos de estudo.
- 5. Revisitar as funções de avaliação dos estudos de caso.
- 6. Criar e disponibilizar uma API contendo o método proposto.
- 7. Publicar os resultados deste trabalho de pesquisa em periódicos e eventos.

IMPLEMENTAÇÃO PARALELA DO PT EM CPU

Paralelização do PT utilizando o modelo dataflow

Introdução

- Implementação paralela coarse-grained;
- Implementação que utiliza o modelo de programação paralela dataflow;
- Cada nó, cujas dependências tenham sido atendidas, é adicionado a uma fila que controla o fluxo de execução (*ThreadPool*);
- Paralelização segundo a taxonomia de Crainic e Hail (2005) do tipo p-control (pC);
- Percurso em grafos e um dos e 13 "dwarfs" listados no trabalho de Asanovíc et al. (2006).

Cálculo da cadeia de Markov homogênea

Uma solução vizinha é gerada de acordo com um movimento previamente definido e relacionado ao problema abordado.

Neste componente é calculado o valor referente e função de avaliação do problema abordado.

Neste componente um critério de aceitação baseado na distribuição de *Boltzmann* é aplicado

A nova solução gerada pode ou não se tornar a solução atual.

Executa a troca de réplicas entre temperaturas adjacentes

Na aquisição, a temperatura e as soluções vinculadas ao nó MC conectados ao nó SW são recuperadas e transferidas para o próximo passo.

Neste componente, as soluções e temperaturas são submetidas a um critério de aceitação probabilístico de troca baseado na equação $P(r_i \rightarrow r_i) = min[1, exp(\Delta\beta\Delta E)]$

Troca de réplicas entre temperaturas adjacentes

4

Atualiza os valores da temperatura de forma dinâmica

Na aquisição, a temperatura, as taxas de aceitação e o fluxo relacionado ao *round-trip* são recuperadas e transferidas para o próximo passo.

Neste componente, ao receber os dados estatísticos as temperaturas são atualizadas de acordo com o método previamente escolhido.

Objetivos

Objetivos específicos

- 1. Elaborar uma rigorosa revisão sistemática da literatura relacionada à metaheurísticas paralelas baseadas em trajetória e identificar suas lacunas.
- 2. Gerar embasamento teórico sobre arquiteturas paralelas e distribuídas.
- 3. Projetar e implementar uma metaheurística paralela em CPU.
- 4. Avaliar o desempenho do método proposto em diferentes casos de estudo.
- 5. Revisitar as funções de avaliação dos estudos de caso.
- 6. Criar e disponibilizar uma API contendo o método proposto.
- 7. Publicar os resultados deste trabalho de pesquisa em periódicos e eventos.

METODOLOGIA EXPERIMENTAL

METODOLOGIA EXPERIMENTAL

Recomendações do projeto experimental

METODOLOGIA EXPERIMENTAL

Metodologia

OTIMIZAÇÃO

SSP

- O Problema de minimização de trocas de ferramentas (SSP) vem recentemente recebendo atenção da comunidade científica;
- Diferentes variações do SSP podem ser encontradas na literatura, sendo caracterizadas de acordo com:
 - As características das ferramentas
 - As características das máquinas
 - As características das tarefas

Objetivos

Objetivos específicos

- 1. Elaborar uma rigorosa revisão sistemática da literatura relacionada à metaheurísticas paralelas baseadas em trajetória e identificar suas lacunas.
- 2. Gerar embasamento teórico sobre arquiteturas paralelas e distribuídas.
- 3. Projetar e implementar uma metaheurística paralela em CPU.
- 4. Avaliar o desempenho do método proposto em casos de estudo.
- 5. Revisitar as funções de avaliação dos estudos de caso.
- 6. Criar e disponibilizar uma API contendo o método proposto.
- 7. Publicar os resultados deste trabalho de pesquisa em periódicos e eventos.

KTNS E GPCA

Implementações paralelas das funções de avaliação

Problema de alocação de ferramentas

- Frequentemente, ao abordar o SSP, é necessário calcular a quantidade de trocas de ferramentas;
- Felizmente existem dois algoritmos capazes de determinar esse valor em tempo polinomial, o *Keep Tool needed soonest* (KTNS) e o *Greedy Pipe Construction algorithm* (GPCA);
- É de conhecimento que o tempo para a função de avaliação pode representar até 90% do tempo total de uma metaheurística (Janiak, Janiak e Lichtenstein, 2008);

PARALELIZAÇÃO DA FUNÇÃO DE AVALIAÇÃO

Função de avaliação

KTNS paralelo

Sequência de processamento e ferramentas necessárias

			5	5
3	3	9	6	6
2	7	7	1	7
1		4		

PARALELIZAÇÃO DA FUNÇÃO DE AVALIAÇÃO

Função de avaliação

KTNS paralelo

Preencher as lacunas

Determinar as trocas

PARALELIZAÇÃO DA FUNÇÃO DE AVALIAÇÃO

Função de avaliação

GPCA paralelo

GPCA paralelo

Etapa de união dos subproblemas

Ao final da etapa de união dos subproblemas, a quantidade total de trocas e dada por:

$$\sum_{i=1}^n |T_i| - C - |\pi|$$

Experimentos

- Experimentos foram realizados com o objetivo de avaliar o tempo computacional exigido pelas implementações paralelas;
- Foram consideradas as instâncias propostas por Catanzaro, Gouveia e Labbé
 (2015) e Mecler, Subramanian e Vidal (2021);
- Ambas as implementações paralelas demonstraram uma redução significativa no tempo computacional, chegando a 93,80% e 96,57%;
- GPCA + *ToFullMag* chega a uma redução de até 85,42%.

Experimentos

- O GPCA + ToFullMag paralelo obteve uma aceleração de 1,87 vezes próxima da linear para duas threads com uma eficiência de 94% para n = {30, 40, 50, 60, 70};
- O GPCA paralelo obteve uma aceleração de 1,38 vezes, sendo considerado sublinear para duas threads, culminando em uma eficiência de 69% para n = {30, 40, 50, 60, 70};
- O KTNS paralelo obteve uma aceleração de 7,12 vezes, sendo considerado superlinear para duas *threads*. Ademais, a eficiência foi de 356%;
- O KTNS tem uma acurácia média entre 76,96% e 99,84%.

PRIMEIRO ESTUDO DE CASO

PRIMEIRO ESTUDO DE CASO

SSP uniforme

PRIMEIRO ESTUDO DE CASO

Visão Geral

- O SSP uniforme pertence à classe *NP-difícil* e possui instâncias recentes consideradas grandes
 - Somente uma máquina;
 - Tempo de troca idêntico;
 - Minimizar o número de trocas de ferramentas.
- Foram utilizadas 60 instâncias desenvolvidas por Mecler, Subramanian e Vidal (2021);
- O PT foi comparado com o *Hybrid Genetic Search* (HGS), o estado da arte para resolver o SSP uniforme proposto por Mecler, Subramanian e Vidal (2021).

Resultados

- Em 7 dos 12 conjuntos de instâncias, o PT obteve resultados melhores ou similares que o HGS;
- Nenhuma distância percentual chegou a ultrapassar 0,16%;
- Em relação a média das 10 execuções, o PT supera o HGS em 9 dos 12 conjuntos de instâncias;
- Nos 3 conjuntos de instâncias restantes, a distância percentual não ultrapassou 0,09%.

Resultados

- O PT demonstrou ser similar ao HGS em relação às melhores soluções geradas nos testes estatísticos;
- Na médias das soluções, o PT foi superior ao HGS nas instâncias com 50 e 60 tarefas e foi similar nas instâncias com 70 tarefas;
- Em relação ao tempo de execução, o PT foi claramente superior ao HGS, com uma redução de até 92,98%;
- Para uma das instâncias, o HGS demandou 7h e 30min enquanto o PT demandou 30min.

SEGUNDO ESTUDO DE CASO

SEGUNDO ESTUDO DE CASO

SSP com máquinas paralelas idênticas com restrição de ferramentas (IPMTC)

Visão Geral

- O IPMTC pertence à classe *NP-difícil* e possui instâncias recentes consideradas grandes
 - Máquinas paralelas idênticas;
 - Minimizar o tempo de produção (makespan).
- Foram utilizadas 2880 instâncias desenvolvidas por Beezão et al. (2017);
- O PT foi comparado com uma hibridização do BRKGA com o VND, o algoritmo considerado o estado da arte para resolver o IPMTC proposto por Soares e Carvalho (2020).

SEGUNDO ESTUDO DE CASO

Introdução

SEGUNDO ESTUDO DE CASO

Codificação

SEGUNDO ESTUDO DE CASO

Decodificação

SEGUNDO ESTUDO DE CASO

Decodificação

Máquina 1: 3 5 2	Máquina 1: 3 5 2
Máquina 2: 1 7	Máquina 2: 1 7 6
Máquina 3: 6 4	Máquina 3: 4
Máquina 1: 3 5 2 1	
Máquina 2: 7 6	
Máquina 3: 4	

SEGUNDO ESTUDO DE CASO

Experimentos

Resultados

- O PT obteve resultados equivalentes ou melhores que o BRKGA para o conjunto de instâncias IPMTC-I, com 64 novas melhores soluções;
- Para o conjunto IPMTC-II o PT foi superior ao BRKGA em todos os 24 conjuntos de instâncias, variando gap entre -4,31% e -21,67%;
- Ao avaliar a média das 10 execuções, o PT foi superior ao BRKGA variando o gap entre -3,85% e -21,54%;
- Testes estatísticos comprovaram a superioridade do PT em relação ao BRKGA.

SEGUNDO ESTUDO DE CASO

Experimentos

Resultados

- O PT obteve 1274 novas melhores soluções para o IPMTC-II, o que representa 88% com conjunto;
- Em geral, o BRKGA apresenta valores de tempo de execução menores que PT;
- Este estudo de caso corrobora os indícios de qualidade do PT encontrados no primeiro estudo de caso.

TERCEIRO ESTUDO DE CASO

TERCEIRO ESTUDO DE CASO

SSP com máquinas paralelas com limitações de recursos (RCPMS)

Visão Geral

- O RCPMS pertence à classe *NP-difícil* e possui instâncias recentes consideradas grandes
 - Máquinas paralelas idênticas;
 - Minimizar o tempo de produção (makespan);
 - Compartilhamento de ferramentas.
- Foram utilizadas 270 instâncias desenvolvidas por Soares e Carvalho (2022);
- O PT foi comparado com o BRKGA hibridizado com procedimentos de busca local, o algoritmo considerado o estado da arte para resolver o RCPMS proposto por Soares e Carvalho (2022).

TERCEIRO ESTUDO DE CASO

Introdução

TERCEIRO ESTUDO DE CASO

Função de avaliação

Resultados

- O PT igualou ou superou o BRKGA em relação às instâncias contidas no grupo RCPMS-I, com 4 novas melhores soluções;
- Para o conjunto de instâncias RCPMS-II, o PT obteve resultados iguais ou superiores ao BRKGA variando o *gap* entre -0,05% e -43,13%;
- Ao avaliar a média das 10 execuções, o PT foi melhor que o BRKGA em todos os 36 conjuntos de instâncias do RCPMS-II;
- Em relação ao tempo computacional, o BRKGA obteve menores valores em 27 dos 36 conjuntos de instâncias.

Resultados

- Testes estatísticos confirmaram a superioridade do PT;
- Em nenhuma das 180 instâncias o PT obteve valores piores que o BRKGA para o conjunto RCPMS-II;
- O PT determinou 144 novas melhores soluções;
- O PT apresenta um desempenho notável nos três cenários abordados.

Objetivos

Objetivos específicos

- 1. Elaborar uma rigorosa revisão sistemática da literatura relacionada à metaheurísticas paralelas baseadas em trajetória e identificar suas lacunas.
- 2. Gerar embasamento teórico sobre arquiteturas paralelas e distribuídas.
- 3. Projetar e implementar uma metaheurística paralela em CPU.
- 4. Avaliar o desempenho do método proposto em casos de estudo.
- 5. Revisitar as funções de avaliação dos estudos de caso.
- 6. Criar e disponibilizar uma API contendo o método proposto.
- 7. Publicar os resultados deste trabalho de pesquisa em periódicos e eventos.

Definições e funcionamento

API

Análise

- Necessidade de se popularizar as implementações paralelas;
- Difundir a utilização do PT na resolução de problemas de otimização;
- A API proposta apresenta uma interface de conexão simples e eficiente;
- Após a definição dos dados do problema, são necessárias somente três linhas para se executar o PT;
- Disponível para download* sob a licença Creative Commons BY-NC (CC BY-NC).

^{*}https://github.com/ALBA-CODES/PTAPI/

API

01

codificação e decodificação da solução

02

Codificação dos componentes dependentes ao problema (avaliação e movimento)

03

conexão com o PT

Estratégias de definição das temperaturas

- Distribuição inicial das temperaturas
 - Linear;
 - Linear-inverso;
 - Progressão geométrica;
 - Exponencial.
- Estratégia dinâmicas de atualização das temperaturas
 - Igualar as taxas de troca das temperaturas adjacentes;
 - Igualar a taxa de troca a 23%;
 - Feedback-optimized.

Estratégias Implementadas

- Movimentos
 - 2-opt;
 - o 2-swap;
 - o Inserção aleatória.
- Solução inicial
 - Aleatória.

Objetivos

Objetivos específicos

- 1. Elaborar uma rigorosa revisão sistemática da literatura relacionada à metaheurísticas paralelas baseadas em trajetória e identificar suas lacunas.
- 2. Gerar embasamento teórico sobre arquiteturas paralelas e distribuídas.
- 3. Projetar e implementar uma metaheurística paralela em CPU.
- 4. Avaliar o desempenho do método proposto em casos de estudo.
- 5. Revisitar as funções de avaliação dos estudos de caso.
- 6. Criar e disponibilizar uma API contendo o método proposto.
- 7. Publicar os resultados deste trabalho de pesquisa em periódicos e eventos.

PUBLICAÇÕES

Publicações

Publicações aceitas e submetidas

PUBLICAÇÕES

Publicações

ALMEIDA, A. L. B.; LIMA, J. d. C.; CARVALHO, M. A. M. Systematic literature review on parallel trajectory-based metaheuristics. ACM Comput. Surv., Association for Computing Machinery, New York, NY, USA, jul 2022.

ALMEIDA, A. L. B.; LIMA, J. d. C.; CARVALHO, M. A. M. Revisitando o algoritmo Keep Tools Needed Soonest: implementações seriais e paralelas. In: ANAIS DO SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONAL, 2023, São José dos Campos.

ALMEIDA, A. L. B.; LIMA, J. d. C.; CARVALHO, M. A. M. Revenimento paralelo aplicado ao sequenciamento da produção em sistemas de manufatura flexível. In: ANAIS DO SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONAL, 2024, Fortaleza.

ALMEIDA, A. L. B.; LIMA, J. d. C.; CARVALHO, M. A. M. Revenimento paralelo aplicado ao sequenciamento de tarefas em máquinas flexíveis paralelas idênticas. In: ANAIS DO SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONAL, 2024, Fortaleza.

PUBLICAÇÕES

Publicações

ALMEIDA, A. L. B.; LIMA, J. d. C.; CARVALHO, M. A. M. Revenimento paralelo aplicado ao sequenciamento em máquinas flexíveis paralelas com recursos compartilhados. In: ANAIS DO SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONAL, 2024, Fortaleza.

ALMEIDA, A. L. B.; LIMA, J. d. C.; CARVALHO, M. A. M. Revisiting the Parallel Tempering Algorithm: High-Performance Computing and Applications in Operations Research. Available at SSRN: https://ssrn.com/abstract=4756904 or http://dx.doi.org/10.2139/ssrn.4756904

ALMEIDA, A. L. B.; LIMA, J. d. C.; CARVALHO, M. A. M. On Serial and Parallel Evaluation Functions for the Job Sequencing and Tool Switching Problems. Available at SSRN: https://ssrn.com/abstract=4821662 or http://dx.doi.org/10.2139/ssrn.4821662

CONCLUSÃO

Contribuições e achados

Realizações

- O presente trabalho de pesquisa apresentou uma revisão sistemática da literatura, explorando lacunas e tendências;
- Esse estudo forneceu um embasamento teórico sobre otimização e arquiteturas paralelas;
- Foi implementada uma metaheurística paralela baseada no método revenimento paralelo (PT);
- Uma API foi desenvolvida com o objetivo de popularizar o PT.

Realizações

- O PT foi avaliado em três estudos de caso distintos e baseados em problemas da classe NP-difícil;
- No primeiro estudo de caso, o PT obteve resultados similares ao estado da arte, porém em um tempo significativamente menor;
- No segundo estudo de caso, o PT superou o estado da arte, com uma redução de até 22%;
- No terceiro estudo de caso, o PT obteve um número significativo de novas melhores soluções, apresentando uma redução de até 43,13%.

TRABALHOS FUTUROS

Tópicos relevantes

Tópicos

- Um desdobramento do PT em contextos permutacionais diversos se apresenta como uma extensão natural deste projeto de pesquisa;
- Examinar variações do SSP em vários cenários não abordados durante a realização desta tese;
- Implementação paralela do PT em novas plataformas.

Obrigado!