

Module IN3031 / INM378 Digital Signal Processing and Audio Programming

Tillman Weyde t.e.weyde@city.ac.uk

Digital Filtering (moving from theory to applications)

RECAP: Convolution

- Convolution combines two signals, similarly to cross-correlation
 - it's the correlation with a reversed signal

$$conv(s1,s2)[t1] = \sum_{t=0}^{N2-1} s1[t1-t]s2[t]$$

N2 is the length of s2, s1[i] = 0 assumed where i<0 or i>=N

Often written as s1 * s2

RECAP: Convolution Theorem

- The most important property of the convolution is given by the convolution theorem:
 - A convolution in the time domain is equivalent to
- · a multiplication in the frequency domain:

$$x * y \rightarrow X \cdot Y$$

meaning: $FT(conv(x, y)) = FT(x) \cdot FT(y)$

Digital Filters

- Sound spectra are changed by filters
- SFFT manipulation and resynthesis a form of filtering in the frequency domain
- Most filtering happens in the time domain by convolution

Linear Filters

- Linear filters sum scaled and delayed copies of the signal to itself (convolution with the scaling factors)
- 2 types, depending on where they take the signal from
 - Finite Impulse Response (FIR) filters (use input signal)
 - Infinite Impulse Response (IIR) filters (use input & output signal)

The Order of Filters

- An **FIR** filter f of **order** k has this **structure** $f(x[n]) = b_0x[n] + b_1x[n-1] + b_2x[n-2] + ... + b_kx[n-k]$
- An IIR filter g of order k has this recursive structure $g(x[n]) = + b_0 x[n] + b_1 x[n-1] + b_2 x[n-2] + ... + b_k x[n-k] a_1 g(x[n-1]) a_2 g(x[n-2]) ... a_k g(x[n-k])$
- or as a difference equation

$$y[n] = -\sum_{i=1}^{k} a_i y[n-i] + \sum_{i=0}^{k} b_i x[n-i]$$

a and b are called filter coefficients

An FIR Filter

- Am FIR filter f of order k has this structure
 f(x[n]) = b₀x[n] + b₁x[n-1] + b₂x[n-2] + ... + b_kx[n-k]
 with coefficients b = [b₀,b₁,b₂,...,b_k]
- Graphically:

: multiplication with a scalar

z-1: delay by 1 sample

Uses of Digital Filters

- Digital filters are used for
 - anti-aliasing (before downsampling)
 - equalisation (removing frequency imbalances of microphones, room acoustics etc)
 - user sound modification (adjust to personal taste)
 - sound analysis (select the frequency range to analyse)
 - sound synthesis (shape the timbre of a synthetic sound)

Types of Digital Filters

- There are four common types of filters:
 - low pass (anti-aliasing, synthesis, HF noise removal)
 - high pass (remove rumbling, protect speakers)
 - band pass (sound analysis)
 - band stop (removing unwanted signal, e.g. from power supply)
- Other types of filters:
 - _ comb filters (usually the result of short delays)
 - all pass filters (modify only the phase)

Properties of Digital Filters

- Filter architecture (FIR or IIR)
- Filter order (#sample delays = #coefficients-1)
- Filter coefficients (the values defining the filter operation)

resulting from these

- Frequency response (mainly magnitude)
- Impulse response (sometimes step response)
- Time behaviour (phase response, group delay)

Filter Parameters

- The pass band is a range of frequencies, that should pass the filter unattenuated.
- The **stop band** is a range of frequencies, that should not pass the filter.
- The pass band ends at the corner frequency (usually at -3dB).
- The slope of the freq. resp. is measured in dB/octave (somtimes decade)

More Filter Parameters

- Ripple is the unevenness of the frequency response
- Resonance is a peak in frequency response near cut-off frequency
- Stability: The filter should (usually) not oscillate by itself

FIR Filter Design

FIR:

- Approach: coefficients as iFFT of frequency response
- Pro:
 - FIR filters are always stable
 - Good phase behaviour

· Cons:

for steep slope in the transition band, we need high number of coefficients (and thus computation time)

FIR Filter
Design
in
Matlab

Frequency Response

Phase Response

IIR Filter Design

IIR:

- Approach: Define numerical methods for finding appropriate filter coefficients (mathematically demanding).
- Pro:
 - IIR filters can be very efficient.
- Cons:
 - Uncontrolled phase behaviour
 - May be unstable
 - Quantisation noise may multiply through recursion

IIR Filter Diagram

z⁻¹ represents a delay by one sample This structure is called *Direct Form 1*

The Impulse Response of an IIR Filter

- An IIR filter g $g(x[n]) = -a_1g(x[n-1]) - a_2g(x[n-2]) - ... - a_kg(x[n-k])$ $+ b_0x[n] + b_1x[n-1] + b_2x[n-2] + ... + b_kx[n-k]$
- The impulse response of g has to be computed recursively and may be infinitely long
- IIR filters
 - allow very effective filtering with few coefficients
 - _ may oscillate by themselves
 - _ frequency response is hard to compute

IIR Filter
Design
in
Matlab

Frequency Response

Phase Response

Impulse Response

IRR Filters in Practice

- IRR filters are used in *Direct Form 2*
- Equivalent to Direct Form 1, but more efficient

IRR Filters in Practice (2)

- Many architectures exist
 - equivalent possibilities (linear systems ...)
 - numerical and computational trade-offs
- Standard DF2 uses SOS (internal) and G (scaling) coefficients
- Can be transformed to A and B coefficients in [B,A]=sos2tf(SOS,G)
- Apply A and B coefficients with filter (A,B,sig)

Exporting an IRR filter to the Matlab workspace

Impulse Responses and Audio Effects

Echo

- Impulse response: Few filter coefficients span over seconds
- Frequency response is flat

Impulse Response

Frequency Domain

Low-Pass

- Impulse response: Many filter coefficients in the first few milliseconds
- Approximates a rectangular window in frequency domain

Impulse Response

Frequency Domain

Flanger as Filter

- Impulse response: 2 filter coefficients in the first few milliseconds (identity + delay)
- Comb filter shape in frequency domain
- IR changes over time

Impulse Response

Frequency Domain

Using Filters for Subtractive Synthesis

Subtractive Sound Synthesis

- Most common form of analogue synthesis
- Generates a sound, filters and amplifies (attenuates) it
- Exemplary set-up:

"Virtual" Synthesizer

Take-Home Messages

- FIR and IIR filters are often used to remove frequency bands (Hi-Pass, Lo-Pass, ...)
- Filters need delay-lines, i.e. memory buffers
- Filters can be time-variant (flanger)
- Can be used in subtractive synthesis
- Games need real-time programming
- Complexity often hidden by building blocks (FMOD)

Reading: FMOD Studio API Docs Smith, DSP Guide, chpt 15