PATENT SPECIFICATION

1213172

NO DRAWINGS

(21) Application No. 18954/68 (22)Filed 22 April 1968

(31) Convention Application No. 27625

(32) Filed 28 April 1967 in

(33) Japan (JA)

(45) Complete Specification published 18 Nov. 1970

(51) International Classification C 07 d 93/42 99/10

(52) Index at acceptance with

C2C 182—194—277 1G5B 1G6B3 213 246 247 256 25Y 29X 29Y 305 30Y 313 31Y 323 32Y 337 3A13A3A4 3A13A3B1 3A13A3B3 3A13A3C 3A13A3L 43X 456 45Y 620 650 790 79Y B4A1 B4A4 B4D B4E B4H B4M NM

10

15

20

25

30

(54) DIBENZOTHIAZEPINE DERIVATIVES AND PRODUCTION OF THE SAME

We, Fujisawa Pharmaceutical Co. Ltd., a Japanese Body Corporate, of 3, Doshomachi 4-chome, Osaka, Japan, do hereby declare the invention, for which we pray that a Patent may be granted to us, and the method by which it is to be performed, to be particularly described in and by the following statement:-

This invention relates to dibenzothiazepine derivatives and salts thereof, and to processes for the preparation thereof.

In accordance with the invention there is provided a dibenzothiazepine derivative of the formula (I):

wherein each of X1 and X2 is a hydrogen or halogen atom; R1 is an alkyl, cycloalkyl, haloalkyl or aralkyl group or an alkyl group substituted with R_3 in which R_3 is an amino, alkylamino, dialkylamino or saturated 5 to 7 membered N-heterocyclic group; and R2 is a hydrogen atom or an alkyl, cycloalkyl, haloalkyl or aralkyl group or an alkyl group substituted with an R₂ group as defined above, provided that at least one of R₁ and R₂ is an alkyl group substituted with R₈, and non-toxic 15 acid addition and quaternary ammonium salts thereof.

In the above and subsequent description and claims of this invention, the term "halogen" and the halogen atom in the term "haloalkyl" and "haloaryl" mean fluorine, chlorine, bromine and iodine; the term "alkyl" means a straight or branched chain alkyl group having 1 to 6 carbon atoms, such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, pentyl and hexyl; the term "cycloalkyl" means saturated monocyclic monovalent hydrocarbon group such as cyclohexyl; the alkyl radical in the term "haloalkyl," "alkylamino", "dialkylamino" "alkyl substituted with R₂", "alkylamino" and "hydroxyalkylimino" means a straight or branched chain alkyl group having 1 to 6 carbon atoms, such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, pentyl and hexyl; the term "aralkyl" and the aralkyl radical in the term "aralkylimino" mean an alkyl group substituted by a monocyclic aromatic monovalent hydrocarbon group such as benzyl, phenethyl, α -methylbenzyl, phenylpropyl, tolylmethyl and xylylmethyl; the term "aryl" and the aryl radical in the term "haloaryl" and "arylimino" mean a monocyclic aromatic monovalent hydrocarbon group such as phenyl, tolyl and xylyl; the term "a saturated 5 to 7 membered N-heterocyclic radical" means a nitrogeneous monocyclic one which may be substituted with hydroxy and either aryl or haloaryl, and whose carbon chain may be interrupted or not with oxo, imino, alkylimino, hydroxyalkylimino, aralkylimino or arylimino groups, such as 1-pyrroli-

[Price 5s. 0d. (25p)]

10

20

25

30

45

50

5

10

15

20

25

30

35

50

dinyl, 1-pyrazolidinyl, 1-oxazolidinyl, piperidino, 1-piperazinyl, 4-methyl (or ethyl)-1-piperazinyl, 4-hydroxyethyl (or hydroxymethyl)-1-piperazinyl, 4-benzyl-1-piperazinyl, 4-phenyl-1-piperazinyl, 4-hydroxy-4-phenyl-piperidino, 4-hydroxy-4-(4-chlorophenyl)piperidino, morpholino and 1-azepinyl. The salts of the dibenzothiazepine derivatives (I), are non-toxic acid addition salts as well as quaternary ammonium salts thereof. Examples of the non-toxic acid 5 addition salts are the salts with an inorganic acid such as hydrochloric acid, hydrobromic acid and sulfuric acid, and with an organic acid such as maleic acid, tartaric acid, citric acid, succinic acid, picric acid and p-toluenesulfonic acid. Examples of the quaternary ammonium salts are the salts with alkyl halides such as methyl 10 chloride, methyl bromide, methyl iodide, ethyl chloride, ethyl bromide, ethyl iodide and propyl iodide, and with aralkyl halides such as benzyl chloride, benzyl bromide and phenethyl bromide. The compounds (I) of this invention are novel and of great worth medically. More particularly, they possess, for instance, a potent reserpine - antagonistic 15 activity and are useful as antidepressants. The compounds (I) of this invention may be administered orally and parenterally in the therapeutical use. The pharmaceutically useful compositions containing the compounds (I) together with a significant amount of a non-toxic solid or liquid carrier 20 are also included within the scope of this invention. In such compositions are included solid compositions such as tablets, pills, dispersible powders and granules, and liquid compositions such as injectable solutions, orally administrable solutions and suspensions. In solid compositions one or more of the active compounds is or are admixed 25 with an inert diluent such as potato starch, lactose, calcium phosphate and further additional substances, if needed, such as lubricants, e.g. magnesium stearate; binders, e.g. gelatine; and disintegrators, e.g. cellulose and calcium glycolate. In solid compositions, are included capsules of absorbable material such as gelatine containing one or more active compounds with or without the addition of diluents or excipients, 30 and also suppositories for rectal administration containing one or more active compounds for which bases are exemplified by cacao butter, glycerogelatin, polyvinylalcohol and hardened vegetable oil. The compounds (I) of this invention may be prepared basically by alkylation of an appropriate dibenzothiazepine compound in which there is a replaceable hydrogen atom at the 5 and/or 11 position of dibenzothiazepine ring, or by cyclisa-35 tion an appropriate amino benzylthiophenol derivative. More specifically, the compounds (I) may be prepared by treating a compound of the formula (II):

$$x_1 - x_2$$
 x_2
 x_3
 x_4
 x_5
 x_5
 x_5

wherein X₁ and X₂ are as defined in the formula (I), R₄ is hydrogen, alkyl, cycloalkyl, haloalkyl, aralkyl or alkyl substituted with R₃, and R₅ is hydrogen, alkyl, 40 cycloalkyl, haloalkyl, aralkyl or alkyl substituted with R₃ in which R₃ is the same meaning as defined in the formula (I), provided that at least one of R₄ and R₅ is hydrogen. with an organo lithium compound and an alkylating agent of the formula (III): 45

$$R_6 - X_3$$
 (III)

wherein R_a has the same meaning as R₁ above and X₃ is an acid residue, or with an alkylating agent of the formula (III) in the presence of an alkaline condensing agent, and, if necessary, treating the resultant compound (I) in which R₁ or R₂ is haloalkyl with an amine of the formula: R₃—H wherein R₃ has the meaning given above. Alternatively, the compounds (I) may be obtained by ring-closing with heating a compound of the formula (IV):

$$X_1 \longrightarrow X_2$$
 $X_2 \longrightarrow X_2$
 $X_3 \longrightarrow X_4$
 $X_4 \longrightarrow X_2$
 $X_2 \longrightarrow X_3$
 $X_4 \longrightarrow X_4$
 X_4

which R₁ or R₂ is R₃-alkyl, by treatment with an amine of the formula: R₃H where-

in R_0 is as defined in the formula (I).

10

15

20

25

30

35

40

45

50

55

The amine is ammonia or a monoalkylamine, dialkylamine or saturated 5 to 7 membered N-heterocyclic compound. The reaction may be carried out in a solvent such as benzene, toluene, xylene, chloroform or any other inert solvent. When the amine used is liquid, it may act as a

Ring-Closure

This ring-closing reaction may be conducted by heating the compound (IV) to

obtain the object compound (I).

The acid residue in the definition X, of the compound (IV) means a residue of an acid such as a hydrohalic acid (e.g. hydrochloric acid, hydrobromic acid or hydroiodic acid), sulfuric acid, an alkylsulfuric acid or p-toluenesulfonic acid. The ringclosing reaction may advantageously be achieved in the presence of an alkaline condensing agent. The alkaline condensing agent to be used herein may be the same agent as employed in the N-alkylation.

The reaction is ordinarily carried out in a solvent such as pyridine, picoline, dimethylaniline, trimethylamine, triethylamine or dimethylformamide. When the starting compound (TV) possesses halogen as an acid residue, the reaction may be accelerated by the addition of a dehydrohalogenation catalyst such as copper powder. It is generally effected at the neighborhood of the boiling point of the solvent used. If it is desired to carry out the reaction at higher-temperature, a solvent having high-

boiling point is used.

Though the object compound (I) may be prepared by any reaction mentioned above, it is preferred, for the purpose of economical production of the compound (I), to select a suitable one from the above reactions or use a combination thereof, depending upon the kind of halogen atom on the benzene ring as well as the substituent(s) at the 11 position or the 5 and 11 positions of the desired compound (I). For instance, the compound (I) in which R₁ is R₃-alkyl can advantageously be obtained by the C-alkylation of the starting compound (II) wherein R, is hydrogen, with an R₃-alkyl halide or the C-alkylation of said compound (I) with a haloalkyl halide and then amination of the resultant product. When the compound (II) in which X_1 and/or X₂ is bromine or iodine is used in the C-alkylation, there is a possibility of said halogen being substituted with lithium during this reaction. Accordingly, it is proposed to employ the N-alkylation or ring-closing reaction as explained hereinabove as an advantageous method for preparing the object compound (I) in which X₁ and/or X₂ is bromine or iodine.

Thus obtained compound (I) may be converted into a corresponding acid addition or quaternary ammonium salt by treatment with an organic or inorganic acid or with an alkyl or aralkyl halide.

The following specific examples illustrate the production of representative com-

pounds of this invention.

Example 1-(1)

To a mixture of lithium metal (410 mg.) in ether, was added bromobenzene (4.7 g.) and the mixture heated under reflux till the floating lithium metal disappeared. The ether solution of phenyl lithium thus prepared, was dropwise added to a solution of 5-methyl-5,11-dihydro dibenzo[b,e][1,4] thiazepine (6.1 g.) in ether (60 c.c.) and then the mixture was stirred at room temperature for 3 hours. To this mixture was added 2-dimethylaminoethyl chloride (6.0 g.) and the mixture was heated under reflux for 5 hours. After cooling, the remaining lithium was filtered off. The ether layer was washed with water and further extracted with a 10% hydrochloric acid aqueous solution. The hydrochloric acid extract was neutralized with a 10% sodium hydroxide aqueous solution and the precipitating oil was extracted with chloroform. The chloroform extract was condensed and thus obtained oily substance was distilled under reduced pressure to obtain an oil (25 g.) as a distillate at 180-182°C/0.9 mmHg. This oil was treated according to the conventional method for

10

5

15

20

25

30

35

40

45

50

55

20

25.

30

35

40

RNSDOCID- AR 10131704 -

10

15

20

25

30

35

40

preparing an acid addition salt to obtain 5 - methyl - 11 - (2 - dimethylaminoethyl)-5,11 - dihydrodibenzo[b,e][1,4]thiazepine maleate having mp. 170-172°C. (de-

Analysis calculated for C₁₈H₂₂N₂S . C₃H₄O₄

C 63.75, H 6.32, N 6.72, C 63.28, H 6.28, N 6.59, Found:

Example 1-(2)

To an ether solution of phenyl lithium prepared by the reaction of lithium metal (0.41 g.) and bromobenzene (4.7 g.) in ether according to the conventional method, was dropwise added 5-methyl-5,11-dihydro dibenzo[b,e] [1,4] thiazepine (6.1 g.) in 10 ether (60 c.c.), after which the mixture was stirred at room temperature for 3 hours. To this mixture was added 3-dimethylaminopropyl chloride (6.0 g.) and the renction mixture was heated under reflux for 5 hours. 15

This reaction mixture was treated in the same manner as described in Example 1-(1) to obtain 5 - methyl - 11 - (3 - dimethylaminopropyl) - 5,11 - dihydro dibenzo-[b,e] [1,4] thiazepine (2.5 g.) as an oil.

Analysis calculated for C_{1,1}H₂₄N₂S

Found: N 8.87; S 10.20.

According to the procedure of Examples 1-(1) and -(2) described above, the following compounds were obtained.

5-Methyl-11-(2-diethylaminoethyl)-5,11-dihydro dibenzo[b,e][1,4] thiazepine, an oil,

Analysis calculated for C20H20SN2

H 8.03, N 8.58, C 73.29, H 7.95, N 8.60. Found:

5-Methyl-11-(1-methyl-2-morpholinoethyl)-5,11-dihydro dibenzo[b,e][1,4] thiazepine, an oil as a distillate at bp. 240°C/0.5 mmHg.

Analysis calculated for C21H26ON2S

C 71.14, H 7.39, N 7.90, C 71.04, H 7.19, N 8.01,

5-Methyl-11-(3-morpholinopropyl)-5,11-dihydro dibenzo[b,e][1,4]thiazepine, an oil.

Analysis calculated for C21H25ON2S

C 71.14, H 7.39, N 7.90, C 71.40, H 7.45, N 8.15, S 9.10.

2-Chloro-5-methyl-11-(2-dimethylaminoethyl)-5,11-dihydro dibenzo[b,e][1,4] thiazepine, a yellowish viscous oil,

Analysis calculated for C₁₈H₂₁N₂SCl

C 64.94, H 6.51, N 8.39, S 9.63, C 65.04, H 6.54, N 8.38, S 9.79, Cl 10.65,

2-Chloro-5-methyl-11-(3-dimethylaminopropyl)-5,11-dihydro dibenzo[b,e][1,4] thiazepine, a yellow oil.

Analysis calculated for C₁₀H₂₃N₂SCl

C 65.78, H 6.68, N 8.07, S 9.29, C 65.80, H 6.59, N 8.20, S 9.41, 45 45

10

15

20

25

30

35

40

45

5-Methyl-11-[3-(1-pyrrolidinyl)propyl]-5,11-dihydro dibenzo[b,e][1,4] thiazepine, a reddish yellow oil.

Analysis calculated for C21 H20 N2S H 7.74, N 8.28,

C 74.52, H 7.74, N 8.28, C 74.34, H 7.88, N 8.14, S 9.46, Found:

5

10

15

20

25

30

35

40

45

EXAMPLE 2-(1)

To an ether solution of phenyl lithium prepared from phenyl bromide (2.5 g.), lithium (220 mg.) and absolute ether (22 c.c.), was added dropwise 5-methyl-5,11-dihydro dibenzo[b,e][1,4] thiazepine (2.0 g.) in benzene (22 c.c.). The mixture was stringed at room temperature for 3 hours and then 1-bromo-3-chloropropane (7.5 g.) was added. The reaction mixture was stirred at 50°C. for 3.5 hours and cooled, after which the remaining lithium was filtered off.

The reaction mixture was washed with water and then a 10% hydrochloric acid aqueous solution, and dried over anhydrous magnesium sulfate. The solvent was distilled off to obtain an oil, which was subjected to chromatograph using a column packed with alumina, where petroleum ether and then n-hexane were used as developing solvents and chloroform was applied as an eluting solvent. The eluting chloroform was condensed to obtain a yellow oil (2.0 g.).

The thus obtained oil (2.0 g.) was allowed to react with methylpiperazine (20 c.c.) at 120°C. for 17 hours. Water was added to the reaction mixture, which was then extracted with a mixture of benzene and ether. The extract was washed with water several times and further a 10% hydrochloric acid aqueous solution, and neutralized with a conc. sodium hydroxide solution and then extracted with chloroform. The chloroform layer was subjected to chromatograph using a column packed with alumina in the same manner as above to obtain an oil. This oil was distilled in an oil bath under reduced pressure to obtain 5 - methyl - 11 - [3 - (4 - methylpiperazinyl)propyl] - 5,11 - dihydro dibenzo[b,e][1,4]thiazepine as a distillate under 0.1—0.2 mmHg at 240—260°C.

Analysis calculated for C₂₂H₂₉N₃S C 71.90, H 7.95, N 11.44, S 8.71, C 72.13, H 8.06, N 11.41, S 8.76.

Its maleate was recrystallized from 99% ethanol in the form of a pale yellow powder having mp. 185—186°C. (decomp.).

Analysis calculated for C22H20N3S.2C4H4O4 C 60.09, H 6.21, N 7.01, Found: C 60.50, H 6.23, N 7.05.

According to the procedure of Example 2-(1) described above, the following compound was obtained.

5 - Methyl - 11 - [2 - [4 - (2 - hydroxyethyl)piperazinyl]ethyl] - 5,11 - dihydro dibenzo[b,e] [1,4] thiazepine, a reddish yellow viscous oil.

Analysis calculated for C22H27N3SO

C 68.90, H 7.62, N 10.96, S 8.35, C 68.56, H 7.51, N 10.59, S 8.26.

Found:

Its hydrochloride melted at 238—240°C. (decomp.). Analysis calculated for C22H29N3SO . 2HCl

C 57.89, H 6.85, N 9.21, C 58.23, H 6.74, N 9.36,

NSDOCID: <GB 12131724 :

15

20

25

30

35

40

EXAMPLE 2-(2)

A similar procedure to Example 2-(1) was followed using a xylene solution of 4-hydroxy-4-phenylpiperidine. 5 - Methyl - 11 - [3 - (4 - hydroxy - 4 - phenylpiperidinyl)propyl] - 5,11 - dihydro dibenzo[b,e][1,4] thiazepine was obtained as an oil.

5

Infra-Red Spectrum:

3400 cm⁻¹ (—OH) 2800 cm⁻¹ (—N<)

10 670 cm⁻¹ (mono substituted benzene)

10

Nuclear Magnetic Resonance Spectrum:

2.5—1.5 PPM the hydrogen atom of methylene
3.20 PPM singlet N—CH₃
4.95 PPM triplet the hydrogen atom at the 11th position
7.2 PPM singlet

15

20

25

30

35

40

7.3—6.5 PPM

the hydrogen atom of benzene of dibenzothiazepine ring

Example 3

A solution of 11 - methyl - 5,11 - dihydro dibenzo[b,e][1,4]thiazepine (2.1 g.) in absolute dimethylformamide (20 c.c.), was dropwise added, under ice-cooling, to a solution of sodium hydride (960 mg.) in absolute dimethylformamide (20 c.c.). The reaction was exothermic and the color of the reaction mixture changed to reddish brown. This reaction mixture was stirred at room temperature for an hour and then at 50°C for an hour. To this mixture was added a solution of N,N-dimethylaminopropyl chloride (1.2 g.) in dimethylformamide (10 c.c.) and the mixture was stirred at room temperature for an hour and then at 50°C for an hour. After cooling, the reaction mixture was poured into water and extracted with ether. The ether extract was washed with water and extracted with a 10% hydrochloric acid aqueous solution. The hydrochloric acid extract was cooled and neutralized with a 10% sodium hydroxide aqueous solution. The precipitating oil was extracted with ether and the ether extract was dried, after which the solvent was distilled off to obtain 5 - (3 - dimethylaminopropyl) - 11 - methyl - 5,11 - dihydro dibenzo[b,e][1,4] thiazepine (0.5 g.) as an oil.

This oily substance was treated according to the conventional method for preparing an acid addition salt to obtain crystals of 5 - (3 - dimethylaminopropyl)-11 - methyl - 5,11 - dihydro dibenzo[b,e][1,4]thiazepine oxalate having mp. 139—143°C. (decomp.).

Analysis calculated for C₁₀H₂₄N₃S . C₂H₂O₄ C 62.66, H 6.51, N 6.96, S 7.97, Found: C 62.77, H 6.72, N 6.93, S 8.12.

WHAT WE CLAIM IS:-

1. A dibenzothiazepine derivative of the formula:

10

20

25

10

15

25

30

35

40

wherein each of X_1 and X_2 is a hydrogen or halogen atom; R_1 is an alkyl, cycloalkyl, haloalkyl or aralkyl group or an alkyl group substituted with R_3 in which R_3 is an amino, alkylamino, dialkylamino or saturated 5 to 7 membered N-heterocyclic group; and R_2 is a hydrogen atom or an alkyl, cycloalkyl, haloalkyl or aralkyl group or an alkyl group substituted with an R_3 group as defined above, provided that at least one of R_1 and R_2 is an alkyl group substituted with R_3 , and non-toxic acid-addition and quaternary ammonium salts thereof.

2. 5 - Methyl - 11 - (2 - dimethylaminoethyl) - 5,11 - dihydro dibenzo[b,e][1,4]

thiazepine and the maleate thereof.

3. 2 - Chloro - 5 - methyl - 11 - (2 - dimethylaminoethyl) - 5,11 - dihydro dibenzo[b,e][1,4]thiazepine.

4. 5 - Methyl - 11 - (3 - dimethylaminopropyl) - 5,11 - dihydro dibenzo[b,e]-

[1,4] thiazepine.

5. 2 - Chloro - 5 - methyl - 11 - (3 - dimethylaminopropyl) - 5,11 - dihydro dibenzo[b,e][1,4] thiazepine.

6. 5 - Methyl - 11 - [3 - (4 - methylpiperazinyl)propyl] - 5,11 - dihydro dibenzo[b,e][1,4]thiazepine and the maleate thereof.

7. 5 - Methyl - 11 - [2 - [4 - (2 - hydroxyethyl)piperazinyl]ethyl] - 5,11 - di-

hydro dibenzo[b,e][1,4]thiazepine and the hydrochloride thereof.

9. 5 - Methyl - 11 - (1 - methyl - 2 - morpholinoethyl) - 5,11 - dihydro dibenzo [b,e][1,4]thiazepine.

10. 5 - (3 - Dimethylaminopropyl) - 11 - methyl - 5,11 - dihydro dibenzo[b,e]-[1,4]thiazepine.

11. A process for the preparation of a dibenzothiazepine derivative of formula
(I):

$$x_1 \longrightarrow x_2$$
 (1)

wherein each of X_1 and X_2 is a hydrogen or halogen atom; R_1 is an alkyl, cycloalkyl, haloalkyl or aralkyl group or an alkyl group substituted with R_3 in which R_3 is an amino, alkylamino, dialkylamino or saturated 5 to 7 membered N-heterocyclic group; and R_2 is a hydrogen atom or an alkyl, cycloalkyl, haloalkyl, aralkyl group or an alkyl group substituted with an R_3 group as defined above, provided that at least one of R_1 and R_2 is an alkyl group substituted with R_3 , which comprises:
i) treating a compound of the formula (II):

$$x_1 - \sum_{k_2}^{\kappa_4} - x_2$$
 (x)

wherein X_1 and X_2 are as defined above, R_4 is a hydrogen atom or an alkyl, cycloalkyl, haloalkyl or aralkyl group or an alkyl group substituted with R_3 , and R_6 is a hydrogen atom or an alkyl, cycloalkyl, haloalkyl or aralkyl group or an alkyl group substituted with R_3 , in which R_3 is as defined above, provided that at least one of R_4 and R_6 is a hydrogen atom, with an organo-lithium compound and an alkylating agent of the formula (III):

40

SDOCID: «GR 12131724 >

30

10

15

20

30

5

10

15

20

25

30

wherein R_0 has the same meaning as R_1 described above and X_0 is an acid residue or with an alkylating agent of formula (III) in the presence of an alkaline condensing agent, to obtain the compound (I), or ii) heating a compound of the formula (IV):

$$X_1 - X_2 = X_2 - X_2 = (X)$$

wherein X_1 , X_2 , R_1 and R_2 are as defined above, and X_4 is an acid residue, to obtain the compound (I) and, if desired, converting the resultant compound (I) into the corresponding acid addition or quaternary ammonium salt.

12. A process according to claim 11, in which a compound of formula (II) wherein R_4 is a hydrogen atom is reacted with an organo-lithium compound and an alkylating agent of formula R_6 — X_3 , wherein R_6 and X_3 are as defined in claim 11.

13. A process according to claim 11, in which a compound of formula (II) wherein R_4 is a hydrogen atom is reacted with an organo-lithium compound and a

wherein R_1 is a hydrogen atom is reacted with an organo-lithium compound and a haloalkyl halide and the resultant compound of formula (I) wherein R_1 is a haloalkyl group is further reacted with an amine of the formula: R_3 —H wherein R_3 is as defined in claim 11, to obtain a compound of the formula (I) wherein R_1 is an alkyl group substituted with R_3 .

14. A process according to claim 11, in which a compound of formula (II) wherein R_0 is a hydrogen atom is reacted with an alkylating agent of formula $R_0 - X_0$, wherein R_0 and X_0 are as defined in claim 11, in the presence of an alkaline condensing agent

densing agent.

15. A process according to claim 11, in which the alkylating agent is an alkyl, cycloalkyl, haloalkyl, aralkyl or R₃-alkyl halide, wherein R₃ is as defined in claim 11.

16. A process according to claim 11, in which the organo-lithium compound is an alkyl, aryl or aralkyl lithium.

25
17. A process for the preparation of a dibenzothiazepine derivative of formula

17. A process for the preparation of a dibenzothiazepine derivative of formula (I) herein substantially as hereinbefore described with reference to the Examples.

18. Dibenzothiazepine derivatives of formula (I) herein whenever prepared by a process according to any one of claims 11 to 17.

19. A pharmaceutical composition comprising, as the active ingredient, a dibenzothiazepine derivative of formula (I) herein in admixture with a non-toxic solid or liquid carrier.

STEVENS, HEWLETT & PERKINS, Chartered Patent Agents & Agents for the Applicants.

Printed for Her Majesty's Stationery Office, by the Courier Press, Leamington Spa. 1970. Published by The Patent Office, 25 Southampton Buildings, London, WC2A 1AY, from which copies may be obtained.