VarSelLCM

Variable Selection for Model-Based Clustering of Mixed-Type Data Set with Missing Values.

References:

- Marbac, M. and Sedki, M. (2017), Variable selection for model-based clustering using the integrated complete-data likelihood, Statistics and Computing, Volume 27, Issue 4, pp 1049–1063.
- Marbac, M., Patin, E. and Sedki, M. (2018), Variable selection for mixed data clustering: Application in human population genomics, Arxiv 1703.02293.

Introduction

VarSelLCM permits a full model selection (detection of the relevant features for clustering and selection of the number of clusters) in model-based clustering, according to classical information criteria (BIC, MICL or AIC).

Data to analyzed can be composed of continuous, integer and/or categorical features. Moreover, missing values are managed, without any pre-processing, by the model used to cluster with the assumption that values are missing completely at random. Thus, VarSelLCM can also be used for data imputation via mixture models.

An R-Shiny application is implemented to easily interpret the clustering results

Here, two data sets are analyzed:

- a genomic continuous data set where n=38 observations are described by d=3051 features.
- a mixed-type data set where n=270 observations are descried by d=12 features.

Continuous data set with more features than observations

This section performs the whole analysis of the *Golub* data set. Clustering is performed with variable selection. Model selection is done with MICL because n<<d. The number of components is two. Do not hesitate to use parallelisation (here only two cores are used).

```
library(VarSelLCM)
# Data loading
data("golub")
out <- VarSelCluster(x, 2, crit.varsel = "MICL", nbcores = 2)</pre>
```

To get a summary of the selected model.

Number of individuals: 38

```
# Summary of the best model
summary(out)
Data set:
```

```
Number of continuous variables: 3051
```

Model .

```
Number of components: 2 Model selection has been performed according to the MICL criterion
```

Variable selection has been performed, 553 (18.13~%) of the variables are relevant for clustering

```
Information Criteria:
    loglike: -77235.87
    AIC: -84444.87
    BIC: -90347.55
    ICL: -103858.8
    MICL: -103858.8
    Best values has been found 5 times
```

To evaluated the quality of the resuling partition, we compare the true partition and its estimator given by the model

```
# Summary of the best model
ARI(out@partitions@zMAP, partition)
```

[1] 0.7927409

Mixed-type data analysis

This section performs the whole analysis of the *Heart* data set. Warning continuous features must be stored in numeric, integer features must be stored in integer and categorical features must be stored in factor.

```
library(VarSelLCM)
# Data loading
data("heart")
head(heart)
```

```
Age Sex ChestPainType RestBloodPressure SerumCholestoral
   70
                                           130
1
2
   67
         0
                         3
                                           115
                                                               564
                         2
3
   57
                                           124
                                                               261
         1
4
   64
         1
                                           128
                                                               263
   74
                         2
                                           120
                                                               269
5
         0
                         4
6
   65
         1
                                           120
                                                               177
```

```
FastingBloodSugar ResElectrocardiographic MaxHeartRate ExerciseInduced
                    0
                                               2
                                                            109
                                                                                 0
1
                                               2
2
                    0
                                                            160
                                                                                 0
3
                    0
                                               0
                                                            141
                                                                                 0
4
                    0
                                               0
                                                            105
                                                                                 1
                    0
5
                                               2
                                                            121
                                                                                 1
6
                    0
                                               0
                                                            140
                                                                                 0
```

```
Slope MajorVessels Thal Class
       2
                       3
                             3
1
2
       2
                       0
                             7
                                     1
3
       1
                       0
                             7
                                     2
4
       2
                       1
                             7
                                     1
5
       1
                       1
                             3
                                     1
6
                       0
                             7
       1
                                     1
```

Clustering is performed with variable selection. Model selection is done with BIC because n>>d. The number of components is between 1 and 4. Do not hesitate to use parallelisation (here only two cores are used).

```
# Add a missing value artificially (just to show that it works!)
heart[1,1] <- NA
# Clustering with variable selection and a number of cluster betwee 1 and 4
# Model selection is BIC (to use MICL, the option must be specified)</pre>
```

```
out <- VarSelCluster(heart[,-13], 1:4, nbcores = 2)</pre>
```

Now, all the results can be analyzed by the Shiny application...

```
# Start the shiny application
VarSelShiny(out)
```

... but this analysis can also be done on R.

To get a summary of the selected model.

```
# Summary of the best model
summary(out)
```

Data set:

```
Number of individuals: 270

Number of continuous variables: 3

Number of count variables: 1
```

Percentile of missing values for the integer variables: 0.37

Number of categorical variables: 8

Model:

```
Number of components: 2
```

Model selection has been performed according to the BIC criterion

Variable selection has been performed, 8 (66.67 %) of the variables are relevant for clustering

Information Criteria:

loglike: -6403.136 AIC: -6441.136 BIC: -6509.506 ICL: -6638.116

Model interpretation should focus on the most discriminative variables. These variables can be found with the following plot.

Discriminative power of the variables (here, the most discriminative variable is MaxHeartRate) plot(out, type="bar")

Discriminative power

Interpretation of the most discriminative variable is based on its distribution per cluster.

```
# Boxplot for continuous (or interger) variable
plot(out, y="MaxHeartRate", type="boxplot")
```

Boxplots of MaxHeartRate

We can check that the distribution used to cluster is relevant.

Empirical and theoretical distributions (to check that clustering is pertinent)
plot(out, y="MaxHeartRate", type="cdf")

Interpretation of a categorical variable is based on its distribution per cluster.

```
# Summary of categorical variable
plot(out, y="Sex")
```


Interpretation of the cluster overlaps by using the probabilities of missclassification.

```
# Summary of the probabilities of missclassification
plot(out, type="probs-class")
```


class 1 2

Missing values can be imputed.

```
# Imputation by posterior mean for the first observation
not.imputed <- heart[1,-13]
imputed <- VarSelImputation(out)[1,]
rbind(not.imputed, imputed)</pre>
```

	Age	Sex	Chest	PainType	e RestBloodPressu	re SerumChole	estoral
1	NA	1		4	1	30	322
2	58.11354	1		4	1	30	322
FastingBloodSugar ResElectrocardiographic MaxHeartRate ExerciseInduced							
1			0		2	109	0
2			0		2	109	0
Slope MajorVessels Thal							
1	2		3	3			
2	2		3	3			