# KING COUNTY HOUSING

Multiple Linear Regression Analysis



Yesim Cebeci June 23rd, 2022

# TABLE OF CONTENTS

01

02

03

04

BUSINESS UNDERSTANDING DATA
UNDERSTANDING
&
PREPARATION

MODELING

**CONCLUSION** 

# **BUSINESS UNDERSTANDING**

We have been approached by an investor wants to invest real estate business about how to accurately appraise homes in Kings County so that they can have idea about home prices it comes to buying and selling homes. We've been given a data set that contains various information about the different homes within King County.

In this study, we hope to highlight the features available to us in the data that were the most indicative of a property's sale and buy prices.

### DATA UNDERSTANDING

The data provide to us consist of information pertaining to over 20,000 house sales carried out between 2014 and 2015, located in the data/kc\_house\_data.csv file in this repository. Data dictionary summarizing the information contained in each of the 20 relevant features.

### DATA UNDERSTANDING

#### **Metrics for Evaluation**

There are 2 key metrics for evaluation to be used to assess if our model is considered successful.

#### Coefficients:

The coefficients of the features describe the mathematical relationship between each independent variable and the dependent variable, which in this case is the price of the house. The coefficient value demonstrates how much the mean of the target variable changes given a one-unit change in the featurevariable when the other features are unchanged.

#### Adjusted R2:

The Adjusted R2 is a key metric for evaluation of a multivariate linear regression model, as it accounts for the number of predictors in a model when calculating the model's goodness-of-fit.

### DATA UNDERSTANDING

Nearly all practical datasets will contain **null** values. However, only three columns had missing values to be converted.

view - Quality of view from housewaterfront - whether the house was located next to a body of wateryr\_renovated - the year a house was renovated (if it ever had been)

In each of these cases, we found it appropriate to fill these columns with their **modes**, which represented the overwhelming majority of values pertaining to each feature (most houses hadn't been viewed, most were not waterfront properties, etc.)

### **DATA PREPARATION**

- Removing unnecessary features
- Checking for the completeness of data(missing values)
- Convert to types to proper types

# **MODELING**



From heatmap and matrix plot, it seems to be there is a high correlation between

- sqft\_living,
- sqft\_above,
- grade

with price

Correlation with Price

# **MODELING**

| OLS Regression Re | sults     |          |          |                |                   |          |
|-------------------|-----------|----------|----------|----------------|-------------------|----------|
| Dep. Variable     | :         | price    | F        | R-squar        | ed:               | 0.493    |
| Model             | :         | OLS      | Adj. F   | R-squar        | ed:               | 0.493    |
| Method            | Least     | Squares  |          | F-statis       | ti <b>c:</b> 2.09 | 7e+04    |
| Date              | Tue, 07 J | un 2022  | Prob (F  | -statist       | ic):              | 0.00     |
| Time              | : 1       | 16:15:09 | Log-l    | Likeliho       | <b>od:</b> -3.000 | 6e+05    |
| No. Observations  | 1         | 21597    |          | A              | IC: 6.00          | 1e+05    |
| Df Residuals      | 1         | 21595    |          | В              | IC: 6.00          | 1e+05    |
| Df Model          | •         | 1        |          |                |                   |          |
| Covariance Type   | : no      | onrobust |          |                |                   |          |
|                   | coef s    | td err   | t        | P> t           | [0.025            | 0.97     |
| const -4.39       | 9e+04 441 | 0.023    | -9.975   | 0.000          | -5.26e+04         | -3.53e+0 |
| sqft_living 280   | .8630     | 1.939 1  | 44.819   | 0.000          | 277.062           | 284.66   |
| Omnibus:          | 14801.942 | Durbii   | n-Watso  | n:             | 1.982             |          |
| Prob(Omnibus):    | 0.000     | Jarque-  | Bera (JI | <b>B):</b> 542 | 662.604           |          |
| Skew:             | 2.820     |          | Prob(JI  | B):            | 0.00              |          |
| Kurtosis:         | 26.901    |          | Cond. N  | <b>lo.</b> 5   | .63e+03           |          |
|                   |           |          |          |                |                   |          |

We conducted our first model with highest correlated feature 'sqft\_living' with our target and we saw that 49% of the variance in the target variable can be explained by the features.

First (Simple) Model

| OLO Hegression II          | Fallia       |                             |                 |           |           |           |
|----------------------------|--------------|-----------------------------|-----------------|-----------|-----------|-----------|
| _                          |              |                             | _               |           |           |           |
| Dep. Variabl               |              | price                       |                 | uared:    |           | 339       |
| Mode                       |              | OLS                         | Adj. R-squared: |           |           | 339       |
| Metho                      |              | Squares                     | F-statistic:    |           |           | 26.       |
| Dat                        | e: Tue, 07 J | un 2022                     | Prob (F-sta     | atistic): |           | .00       |
| Tim                        |              | 6:17:09                     | Log-Like        |           | -2.9640e- |           |
| No. Observation            | s:           | 21597                       |                 | AIC:      | 5.928e-   | -05       |
| Df Residuals:              |              | 21582                       | BIC:            |           | 5.929e+   | -05       |
| Df Mode                    | el:          | 14                          |                 |           |           |           |
| Covariance Type: nonrobust |              |                             |                 |           |           |           |
|                            | coef         | std en                      | · t             | P> t      | [0.025    | 0.975]    |
| const                      | -9.727e+05   | 1.68e+04                    | -57.775         | 0.000     | -1.01e+06 | 9.4e+05   |
| bedrooms                   | -4.215e+04   | 2079.000                    | -20.273         | 0.000     | -4.62e+04 | -3.81e+04 |
| bathrooms                  | 4.579e+04    | 3578.962                    | 12.794          | 0.000     | 3.88e+04  | 5.28e+04  |
| sqft_living                | 108.6067     | 19.829                      | 5.477           | 0.000     | 69.741    | 147.473   |
| sqft_lot                   | -0.0316      | 0.052                       | -0.602          | 0.547     | -0.134    | 0.071     |
| floors                     | 2.729e+04    | 3873.336                    | 7.045           | 0.000     | 1.97e+04  | 3.49e+04  |
| view                       | 6.902e+04    | 2151.125                    | 32.085          | 0.000     | 6.48e+04  | 7.32e+04  |
| condition                  | 2.096e+04    | 2546.010                    | 8.232           | 0.000     | 1.6e+04   | 2.6e+04   |
| grade                      | 1.195e+05    | 2307.257                    | 51.776          | 0.000     | 1.15e+05  | 1.24e+05  |
| sqft_above                 | 57.6153      | 19.798                      | 2.910           | 0.004     | 18.810    | 96.420    |
| sqft_basement              | 60.3652      | 19.650                      | 3.072           | 0.002     | 21.850    | 98.881    |
| sqft_living15              | 20.6684      | 3.681                       | 5.615           | 0.000     | 13.454    | 27.883    |
| sqft_lot15                 | -0.5303      | 0.080                       | -6.615          | 0.000     | -0.687    | -0.373    |
| renovated                  | 3.872e+04    | 8684.702                    | 4.459           | 0.000     | 2.17e+04  | 5.57e+04  |
| age_at_sale                | 3570.8733    | 71.860                      | 49.692          | 0.000     | 3430.022  | 3711.725  |
| Omnibus:                   | 17273.621    | Durbin-Watson:              |                 |           | 1.982     |           |
| Prob(Omnibus):             | 0.000        |                             |                 | 135183    |           |           |
| Skew:                      | 3.303        | Jarque-Bera (JB): Prob(JB): |                 | 100100    | 0.00      |           |
| Kurtosis:                  | 41.192       | Cond. No.                   |                 | 5.71e+05  |           |           |
| Aurtosis:                  | 41.192       |                             | onu. No.        | 5.7       | 6+05      |           |

Second(Multiple) Model

# **MODELING**

If we consider all features for the model. R-squared seems to be higher than simple model. So we can say that we captured better model and still not enough for the best fit model

| OLS Regression | n Resu    | ılts  |              |        |                     |       |           |           |  |
|----------------|-----------|-------|--------------|--------|---------------------|-------|-----------|-----------|--|
| Dep. Varia     | able:     |       | price        |        | R-squared:          |       |           | 0.628     |  |
| Mo             | del:      |       | OLS          |        | Adj. R-squared:     |       |           | 0.628     |  |
| Met            | hod:      | L     | east Squares |        | F-statistic:        |       | atistic:  | 3208.     |  |
|                | ate: Tue, |       | 14 Jun 2022  |        | Prob (F-statistic): |       |           | 0.00      |  |
| Т              | ime:      |       | 16:4         | 10:07  | Log-Likelihood:     |       |           | -5144.0   |  |
| No. Observati  | rvations: |       | 2            | 0928   | AIC:                |       | AIC:      | 1.031e+04 |  |
| Df Residuals:  |           | 20916 |              | BIC:   |                     |       | 1.041e+04 |           |  |
| Df Model:      |           |       |              | 11     |                     |       |           |           |  |
| Covariance T   | уре:      |       | nonro        | bust   |                     |       |           |           |  |
|                | c         | oef   | std err      |        | t                   | P> t  | [0.025    | 0.975]    |  |
| const          | 10.9      | 178   | 0.031        | 347.0  | 632                 | 0.000 | 10.856    | 10.979    |  |
| bedrooms       | -0.03     | 342   | 0.003        | -10.6  | 603                 | 0.000 | -0.041    | -0.028    |  |
| bathrooms      | 0.08      | 887   | 0.005        | 17.2   | 280                 | 0.000 | 0.079     | 0.099     |  |
| sqft_living    | 0.14      | 450   | 0.005        | 27.    | 194                 | 0.000 | 0.135     | 0.155     |  |
| floors         | 0.08      | 836   | 0.005        | 16.4   | 460                 | 0.000 | 0.074     | 0.094     |  |
| view           | 0.0       | 636   | 0.003        | 20.3   | 399                 | 0.000 | 0.058     | 0.070     |  |
| condition      | 0.04      | 469   | 0.004        | 12.9   | 949                 | 0.000 | 0.040     | 0.054     |  |
| grade          | 0.20      | 027   | 0.003        | 61.2   | 280                 | 0.000 | 0.196     | 0.209     |  |
| sqft_living15  | 0.0       | 681   | 0.004        | 18.3   | 313                 | 0.000 | 0.061     | 0.075     |  |
| sqft_lot15     | -0.0      | 733   | 0.007        | -11.2  | 213                 | 0.000 | -0.086    | -0.060    |  |
| renovated      | 0.03      | 373   | 0.012        | 3.0    | 001                 | 0.003 | 0.013     | 0.062     |  |
| age_at_sale    | 0.00      | 057   | 0.000        | 55.6   | 606                 | 0.000 | 0.005     | 0.006     |  |
| Omnibu         | ıs: 61    | 0.476 | Dur          | bin-W  | atso                | n:    | 1.968     |           |  |
| Prob(Omnibus   |           | 0.000 |              | ie-Ber |                     |       | 2.266     |           |  |
| Ske            | •         | 0.117 |              |        | ob(JE               | •     | 1e-14     |           |  |
| Kurtosi        |           | 3.129 |              |        | nd. N               | -     | 789.      |           |  |
|                |           |       |              |        |                     |       |           |           |  |

#### Final Model

# **MODELING**

After dropped the not statistically significant features, considered multicollinearty issues and removed the outliers our final model became 63% of the variance in the target variable can be explained by the features.



Final model met linearty assumptions

Final Model



- sqft\_living is corraleted with Target
- Residuals are somewhat homoskedastic (meaning the variance doesnt decrease or increase as the independent variable gets bigger)

sqft\_living



- Grade is corraleted with Target
- Residuals are somewhat homoskedastic

Grade



- Floors is not corraleted with Target
- · Residuals are not homoskedastic

Floors



- Floors is not corraleted with Target
- · Residuals are not homoskedastic

Floors



- sqft\_living15 is corraleted with Target
- Residuals are not homoskedastic

sqft\_living15

### CONCLUSION

#### **Interpreting Regression Coefficients**



Coefficients

When we increase the features with one unit the price will increase in the following way:

• grade : +20.27%

• sqft\_living : +14.50%

• bathrooms : **+8.87%** 

• floors: +8.87%

And also when we increase the features with one unit the price will decrease in the following way:

• bedrooms : -3.42%

• sqft\_lot15: -7.33%

#### CONCLUSION

#### Recommendations

- Grade is referring to the classification based on a structures construction quality. This mainly has to do
  with the types of materials used and the quality of the work done. Trying to get at least grade 8 which
  is an average in construction and design according to the King County Department of Assessment. It
  can be achieved by using better materials in both the exterior and interior finishes. As grade increases,
  the house price tends to be grow.
- Most preferable house floor(levels) can be reached **up to 2.5** in order to stay increased in price. Houses with floors(levels) between 3-3.5 are not desirable since prices getting sharply decreasing.
- Increasing the square footage of the living area along with the square footage of interior housing living space for the nearest 15 neighbors will also tend positively effects the price increase.
- Renovating house impacts positively its value.

### CONCLUSION



#### **Next Step**

- Based on the adjusted R-squared we got more than 35% of the variance in housing prices cannot be explained by the selected principal components. In Future analysis I would like to add more features such house locations, demographics, security of a neighborhood etc to our regression model.
- Also I would like to apply machine learning tools on future home sales to find a better fit model.

R square

# THANK YOU





www.linkedin.com/in/yesim-cebeci



https://github.com/yesimcebeci