

Istrobotics

Robotour 2017, 17.9.2017 Pavol Boško, Peter Boško, Radoslav Kováč, Tomáš Kováč 2016 2017

ROBOT CHASSIS

- RC model: Traxxas E-Maxx 4x4 monster truck
- Top Speed: 48 km/h
- Waterproof electronics, servos

HARDWARE DESIGN

HARDWARE

- Odroid-XU4: 2GHz 8-core, 2GB RAM
- Arduino Mega: 16MHz, 8KB RAM
- 2x Arduino Nano: 16MHz, 2KB RAM
- Arduino Pro Mini: 16MHz, 2KB RAM
- 2D Lidar: RoboPeak RPLIDAR 360 (\$400)
- Camera: Odroid USB Cam (640x480, 60 FOV)
- Mouse type GPS/Glonass: Holux M-215+
- Compass: Bosch BNO055
- **5x Sonar:** HC SR04
- LCD & OLED displays, 8x LED

Odroid-XU4 vs Raspberry Pi3

	Raspberry Pi3	Odroid-XU4	
CPU	ARM Cortex-A53	Samsung Exynos5422 Cortex	
Clock	1.2 GHz	2 GHz	
Cores	4x	8x	
RAM	1GB LPDDR2	2GB LPDDR3	
Flash	microSD	eMMC5.0 HS400	
Ethernet	10/100 Mbit	1 Gigabit	
USB	4× USB 2.0	2x USB 3.0 1x USB 2.0	

	R-Pi2	R-Pi3	O-XU4
Image processing	164,4 ms	167,3 ms	26,5 ms
JPG/PNG writing	-	-	3x faster
Processing lag	12 sec	2 sec	100 ms

SOFTWARE

- Operating system: Ubuntu 16.04 Mate
- Source codes: C++, 340kB (2016: 180kB)
- Vision library: OpenCV
- Geo library: GeographicLib
- Logging framework: Apache log4cxx
- Main application + 8x pthreads
 - 4x sensors (Camera, Lidar, GPS, Compass)
 - image capturing + vision processing
 - output: image saving (1GB of data/ round)
 - control board (Compass)

SOFTWARE DESIGN - PROCESSING

UPDATE_GRID – VISION output UPDATE_GRID – LIDAR data

READ SENSOR DATA – gps, compass

every 20ms

Calculate NAVIGATION ANGLE

CHECK GRID for obstacles

OBSTACLE AVOIDANCE – min/max

COMPASS CALIBRATION

WRONG_WAY behavior

NAVIGATION

LIDAR data capture – 7x /sec

CAMERA capture – 30 fps

VISION processing – 35 ms

GPS data capture

CONTROL BOARD comm.

SAVE images to disk – 3x /sec

LIDAR - obstacle detection

- Obstacle detection condition (red):
 - If distance is < 100 cm
 - Filtering: distance < 1cm (grey)
- Stop condition (pink):
 - Check angle: -45 to +45 degrees
 - If distance is < 50 cm at 3 diff. degs
 - Sonars were also used (rain issue)
- Obstacle avoidance (green/white)
 - Find OK intervals of > 20 degrees
 - Choose the closest to going straight

VISION - approach

• Our approach: **lidar-like local map**

- For any seen angle is obstacle closer than 1 meter?
- 1 meter or to the image border
- Algorithm:
 - Pixel color classification
 - Evaluate grid points
 - Calculate distance to obstacle
 - Find OK intervals same like LIDAR

VISION - Pixel color classification

Approach:

- Choose sample pixel blocks (32x32) from training images
- Calculate 4 clusters centers in color space (OpenCV kmeans)
- Calculate cluster radius (histogram based)
- Repeat for 2 classifiers: road and off-road (grass)
- HSV color space + Euclidian distance
- Tool was developed to define pixel blocks and evaluate images

VISION - Algorithm

- Pixel color classification 4 results:
 - Road (red)
 - Off-road (blue)
 - Both (green)
 - None (grey)
- Evaluate grid points
 - Cca 1000 points in 37 lines (5 deg)
 - Evaluating nearby pixels (80x80)
 - Majority of "Road" pixels is checked
- Calculate distance to obstacle
- Find OK intervals + merge with LIDAR

WAYPOINT NAVIGATION

- Navigation points: 26 manually defined points
- GPS positions taken from OpenStreetMap
- Pickup and dropoff points in arrays (navig.cpp)
- Navigation path defined by a string
 "N2N1 *1 M4M5N7M3M8 *2 M7M2M3N7M5N3"
- Compass calibration:
 - interval of 7 seconds robot is moving straight
 - gps and compass azimuths to be fixed
 - performed every 30 seconds 3 minutes

WORLD MAP - BUILDING LOCAL GRID

- Local grid map
 - to store polar information from lidar and vision
 - 1 cell: 10 x 10 cm, 1 byte pre cell, array[2000][2000]
 - always overwriting with new data no heatmap
- Local position taken from GPS + odometry
 - wheel encoders provide speed information
- Colors used for visualization
 - Blue grass (not-a-road) detected
 - Red lidar obstacle
 - Green no obstacle (light green = both sensors)

USER INTERFACE

```
✓ vision
                          ✓lidar
                                      ✓wmgrid
camera
2017-09-16 16:29:09,176 INFO [process] istro::process thread(): process angle("MIN MAX"):
navp azimuth=999999.00, process yaw=67.89, process angle min=0, process angle max=125,
process angle=62, process dir=90, yaw src=1
2017-09-16 16:29:09,338 DEBUG [gps] istro::gps writeData(): fix=1, latitude=49.213762,
longitude=18.743955, speed=0.262, course=47.85, gps x=-13.11, gps y=9.82, ref=1, navp dist=-
1.000, navp azimuth=999999.00, navp maxdist=-1.000, navp mindist=-1.000, navp loadarea=-1,
lastp dist=0.306, lastp azimuth=52.64
2017-09-16 16:29:09,175 DEBUG [process] istro::process readData(): process change=52,
qps speed=0.401, qps course=63.54, lastp dist=-1.000, lastp azimuth=90.00, ctrlb ircv500=0.00,
ctrlb angle=455, ctrlb velocity=335, ctrlb loadd=0, euler x=90.62, ahrs yaw=999999.00,
navp dist=-1.000, navp azimuth=999999.00, navp maxdist=-1.000, navp loadarea=-1, qps ref=1,
qps x=-13.36, qps y=9.64
2017-09-16 16:29:08,554 INFO [process] istro::calib process(): msg="calibration interrupted
(obstacle)!", calib.ok=0, process angle min=0, process angle max=125
2017-09-16 16:23:34,293 INFO [qps] istro::qps thread(): msg="navigation point passed!", pos=6,
name="M3", navp dist=10.382, navp mindist=12.067
2017-09-16 16:23:34,293 INFO [gps] navig::navigation next point(): not found!, pos=6
2017-09-16 16:29:09,339 INFO [main] ControlBoard::write(): data="Dbye..."
out/rt2017 6539263 0015193 camera.jpg
out/rt2017 6539263 0015193 vision.jpg
```

- Visualisation in web browser works on notebook/tablet/phone
- Log parser is exporting interesting data do .json file
- Web page performs Ajax JSON requests every 1 second
- Images are only downloaded on demand (checkbox)

PROBLEMS

- Poor GPS performance (near service zone)
 - Incorrectly detecting pickup/dropoff points
 - impacted also compass calibration
 - => wrong calculation of navigation azimuth
- Local "traps" on roads (places for benches)
 - solution: tilt camera to look higher
- SW bug: sharp turns handled with "do nothing"
- Compass display did not work
- Robot Wifi AP failure (round2)
 - we were not able to enter GPS coordinates

PROBLEMS - VISION FAILS DETECT ROAD

PROBLEMS - POOR GPS PERFORMANCE

PROBLEMS - SEGMENTATION FAULT

```
a a a
 odroid@odroid: ~/projects/istro_rt2017
File Edit View Search Terminal Help
[New Thread 0xac2ff1a0 (LWP 6227)]
[New Thread Oxabaff1a0 (LWP 6228)]
[New Thread 0xa6f151a0 (LWP 6229)]
Thread 11 "istro rt2017" received signal SIGSEGV, Segmentation fault.
[Switching to Thread Oxabaff1a0 (LWP 6228)]
0x0003df02 in Lidar::drawOutput (this=0x61fc0 <lidar>,
    data=0x74f18 <dataset+76992>, data cnt=@0x74f14: 311, img=..., stop=0,
    angle_min=0, angle_max=180, process angle=96, process angle_min=0,
---Type <return> to continue, or q <return> to quit---q
process aOuit
(gdb) backtrace
#0 0x0003df02 in Lidar::drawOutput (this=0x61fc0 <lidar>,
    data=0x74f18 <dataset+76992>, data cnt=@0x74f14: 311, img=..., stop=0,
    angle min=0, angle max=180, process angle=96, process angle min=0,
    process angle max=162, image number=11304)
    at /home/odroid/projects/istro rt2017/lidar.cpp:668
#1 0x0002ac52 in save thread (parg=0x0)
    at /home/odroid/projects/istro rt2017/istro rt2017.cpp:1960
#2 0xb6df95b4 in start thread (arg=0x0) at pthread create.c:335
#3 Oxb6659bec in ?? () at ../sysdeps/unix/sysv/linux/arm/clone.S:89
   from /lib/arm-linux-gnueabihf/libc.so.6
Backtrace stopped: previous frame identical to this frame (corrupt stack?)
(gdb)
```

```
odroid@odroid: ~/projects/istro_rt2017
File Edit View Search Terminal Help
   0xb6df95b4 in start thread (arg=0x0) at pthread create.c:335
#3 0xb6659bec in ?? () at ../sysdeps/unix/sysv/linux/arm/clone.S:89
   from /lib/arm-linux-gnueabihf/libc.so.6
Backtrace stopped: previous frame identical to this frame (corrupt stack?)
(qdb) frame #0
Invalid character '#' in expression.
(qdb) frame 0
   0x0003df02 in Lidar::drawOutput (this=0x61fc0 <lidar>,
    data=0x74f18 <dataset+76992>, data cnt=@0x74f14: 311, img=..., stop=0,
    angle min=0, angle max=180, process angle=96, process angle min=0,
    process angle max=162, image number=11304)
    at /home/odroid/projects/istro rt2017/lidar.cpp:668
                img.at<Vec3b>(yn,xn)[0] = color2.val[0];
668
(qdb) print xn
$1 = 44
(qdb) print yn
$2 = 483
(adb) print ima
$3 = (cv::Mat &) @0xabafeb04: {flags = 1124024336, dims = 2, rows = 480,
  cols = 640, data = 0xab21e010 '\024' <repeats 200 times>...,
  refcount = 0xab2ff010, datastart = 0xab21e010 '\024' <repeats 200 times>...,
 dataend = 0xab2ff010 "\001", datalimit = 0xab2ff010 "\001", allocator = 0x0,
  size = \{p = 0xabafeb0c\}, step = \{p = 0xabafeb34, buf = \{1920, 3\}\}
(gdb)
```

PRACTICAL EXAMPLES

•••

FREE SOURCE CODES

 Sources codes are available at GitHub as public project Istro RT:

https://github.com/lnx-git/istro-rt

THANK YOU

