Algorithms and Data Structures

COMP261 Graph 1: data structures

Yi Mei

yi.mei@ecs.vuw.ac.nz

Outline

- Graph
- Adjacency matrix
- Complexity of adjacency matrix
- Adjacency list
- Complexity of adjacency list
- Improved adjacency matrix and list

Graph

- A collection of nodes
- A collection of edges
 - We only consider directed edges
 - Undirected edge can be seen as a pair of directed edges
 - (A, B) can be seen as (A -> B) and (B -> A)
- Relationship between nodes and edges
 - Nodes form edges
 - Edges connect nodes
- What data structure should be used to represent a graph?

Graph Data Structure

- A proper data structure should support common operators efficiently
- Consider the complexity of common operators, e.g.
 - Find all the nodes of the graph
 - Find all the edges of the graph
 - Find all outgoing edges of a node
 - Find all incoming edges of a node
 - Find all the outgoing node neighbours of a node
 - Find all the incoming node neighbours of a node
 - Find out whether two nodes are directly connected or not
 - Find the edge between two nodes

– ...

Graph Data Structure

- Two traditional data structures
 - Adjacency Matrix
 - Adjacency List

Adjacency Matrix

- Use a 2D matrix to represent the graph
 - Number of rows and columns = number of nodes
 - $-M_{ij} = 1$ if there is an edge from node *i* to node *j*
 - $-M_{ij}=0$ (blank) otherwise
- Cannot handle weighted graph (e.g. edges have lengths)

	Α	В	С	D	Е	F	G	Н	I	J
Α		1						1	1	
В	1		1				1		1	
С		1		1					1	1
D			1		1					1
Ε				1		1			1	
F					1		1			1
G		1				1		1	1	1
Н	1						1			1
I	1	1	1		1		1			1
J			1	1		1	1	1	1	

Adjacency Matrix

- Use a 2D matrix to represent the graph
 - Number of rows and columns = number of nodes
 - $-M_{ij} = w_{ij}$ is the weight (e.g. length) of the directed edge from i to j
 - $-M_{ij} = \infty$, or leave blank if there is no edge from *i* to *j*.
- Cannot deal with multi-graph.

	Α	В	С	D	Е	F	G	Н	ı	J
								_	_	
Α		5						5	2	
В	5		3				7		6	
С		3		1					7	9
D			1		3					9
E				3		4			9	
F					4		5			4
G		7				5		6	3	4
Н	5						6			7
	2	6	7		9		3			6
J			9	9		4	4	7	6	

Adjacency Matrix

- Use a 2D matrix to represent the graph
 - Number of rows and columns = number of nodes
 - $-M_{ij}$ is a list of edge objects
- An edge object is unique for each edge

```
Class Edge {
    Node fromNode;
    Node toNode;
}

Edge e1 = new Edge(A, B);
Edge e2 = new Edge(A, B);

System.out.println(e1.equals(e2));
```

Time Complexity of Adjacency Matrix

- Assume simple graph: at most one edge between each pair of nodes, with N nodes and M directed edges, assume N < M
- 2D array M[][], with each entry as an edge object (no multi-graph)
 - Fine all nodes
 - Find all edges
 - Find all outgoing edges of a node
 - Find all incoming edges of a node
 - Find all outgoing node neighbours
 - Find all incoming node neighbours

	Α	В	С	D	Е	F	G	Н		J
Α		5						5	2	
В	5		3				7		6	
С		3		1					7	9
D			1		3					9
E				3		4			9	
F					4		5			4
G		7				5		6	3	4
Н	5						6			7
Ι	2	6	7		9		3			6
J			9	9		4	4	7	6	

Check if there is an edge between two nodes

•

Adjacency List

- For each node, store a list of outgoing node neighbours
- Do not need to enumerate all the nodes to find the neighbours
- Need to store <u>a list of edge objects</u> to store edge information, e.g. edge length

Time Complexity of Adjacency List

- Assume simple graph: at most one edge between each pair of nodes, with N nodes and M directed edges, assume N < M
- node.adjList() is a list of outgoing node neighbours of node i
 - Fine all nodes
 - Find all edges
 - Find all outgoing edges of a node
 - Find all incoming edges of a node
 - Find all outgoing node neighbours
 - Find all incoming node neighbours
 - Check if there is an edge between two nodes

Time Complexity of Adjacency List

- Not efficient in finding outgoing edges of a node
 - Need to enumerate the edge list with the two nodes to find the matching edge object
 - Solution: store edge objects instead of nodes in the adjacency list
 - Finding all outgoing edges of a node can be done by enumerating the adjacency list
 - Find outgoing node neighbours:
 - node.adjList().get(i).getToNode()
- Not efficient in finding incoming edge and node neighbours
 - Need to enumerate the edge list with the two nodes to find the matching edge object
 - Solution: store two adjacency lists, outAdjList for outgoing, inAdjList for incoming
 - Find incoming node neighbours:
 - node.inAdjList().get(i).getFromNode()

Time Complexity of Adjacency List

- Worse-case complexity of finding edge/node neighbours is O(N), if the graph is fully connected.
- In practice, this complexity is much smaller
- Node degree "deg(node)": the number of outgoing (incoming) edges of a node
- Max degree of a graph (Δ = max{deg(node)}): the maximal number of neighbours of the nodes in the graph
 - E.g.: an intersection connects at most four streets, $\Delta = 4$
- Complexity of finding all outgoing/incoming neighbours
 - $O(\Delta) \ll O(N)$
 - Almost *0*(1)

Time Complexity Comparison

- Assume simple graph: at most one edge between each pair of nodes, with N nodes and M directed edges
- Max Degree of the graph: $\Delta_{in} = \Delta_{out} = \Delta$
 - Adjacency matrix: each entry stores an edge object
 - Adjacency list: each node has two lists, one for outgoing edge objects, and the other for incoming edge objects

	Adjacency Matrix	Adjacency List
Find all nodes	O(N)	O(N)
Find all edges	$O(N^2)$	O(M)
Find all outgoing edges of a node	O(N)	$O(\Delta)$
Find all incoming edges of a node	O(N)	$O(\Delta)$
Find all outgoing node neighbours of a node	O(N)	$O(\Delta)$
Find all incoming node neighbours of a node	O(N)	$O(\Delta)$
Check if there is an edge from u to v	0(1)	$O(\Delta)$

Adjacency list has better time complexity overall

Summary

- Adjacency matrix and adjacency list are two common data structures for graph
- Different time complexities in different scenarios
- Improvements on the data structure
 - Adjacency matrix: store edge objects rather than labels
 - Adjacency list:
 - Store edge objects rather than nodes
 - Store two lists, one for outgoing and the other for incoming