Part of Speech Tagging and Hidden Markov Model

Instructor: Wei Xu

Some slides adapted from Brendan O'Connor, Chris Manning, Michael Collins, and Yejin Choi

Where are we going with this?

- Text classification: bags of words
- Language Modeling: n-grams
- Sequence tagging:
 - Parts of Speech
 - Named Entity Recognition
 - Other areas: bioinformatics (gene prediction), etc...

What's a part-of-speech (POS)?

- Syntax = how words compose to form larger meaning bearing units
- POS = syntactic categories for words (a.k.a word class)
 - You could substitute words within a class and have a syntactically valid sentence

```
I saw the dog
```

I saw the cat

I saw the ____

Gives information how words combine into larger phrases

Parts of Speech is an old idea

- Perhaps starting with Aristotle in the West (384-322 BCE),
 there was the idea of having parts of speech
- Also, Dionysius Thrax of Alexandria (c. 100 BCE)
- 8 main POS: noun, verb, adjective, adverb, preposition, conjunction, pronoun, interjection
- Many more fine grained possibilities

Thrax

an extractor for synchronous context-free grammars for machine translation

(Allegory of Grammar by Laurent de La Hyre)

What it is

As the banner indicates, Thrax is an extractor for synchronous context-free grammars (SCFGs) for use in machine translation (MT). This paper has a nice introduction to the SCFG formalism for translation.

Why it's called what it's called

Thrax is so named in honor of <u>Dionysius Thrax</u>. He's credited with creating the first grammar of Greek, *Art of Grammar*. Since this program is designed to create grammars, we thought it was a clever reference. Plus the name is short and catchy and has no obvious relation to the program's function, which is traditional for UNIX-style program names.

Open vs. Closed classes

- Open vs. Closed classes
 - Closed:
 - determiners: a, an, the
 - pronouns: she, he, I
 - prepositions: on, under, over, near, by, ...
 - Q: why called "closed"?
 - Open:
 - Nouns, Verbs, Adjectives, Adverbs.

Many Tagging Standards

- Penn Treebank (45 tags) ... this is the most common one
- Brown corpus (85 tags)
- Coarse tagsets
 - Universal POS tags (Petrov et. al. https://github.com/slavpetrov/universal-pos-tags)
 - Motivation: cross-linguistic regularities

Penn Treebank POS

- 45 possible tags
- 34 pages of tagging guidelines

1	Tag	Description	Example	Tag	Description	Example
	CC	Coordin. Conjunction	and, but, or	SYM	Symbol	+,%, &
	CD	Cardinal number	one, two, three	TO	"to"	to
	DT	Determiner	a, the	UH	Interjection	ah, oops
	EX	Existential 'there'	there	VB	Verb, base form	eat
	FW	Foreign word	mea culpa	VBD	Verb, past tense	ate
S	IN	Preposition/sub-conj	of, in, by	VBG	Verb, gerund	eating
	JJ	Adjective	yellow	VBN	Verb, past participle	eaten
	JJR	Adj., comparative	bigger	VBP	Verb, non-3sg pres	eat
	JJS	Adj., superlative	wildest	VBZ	Verb, 3sg pres	eats
	LS	List item marker	1, 2, One	WDT	Wh-determiner	which, that
	MD	Modal	can, should	WP	Wh-pronoun	what, who
	NN	Noun, sing. or mass	llama	WP\$	Possessive wh-	whose
	NNS	Noun, plural	llamas	WRB	Wh-adverb	how, where
	NNP	Proper noun, singular	IBM	\$	Dollar sign	\$
	NNPS	Proper noun, plural	Carolinas	#	Pound sign	#
	PDT	Predeterminer	all, both	**	Left quote	(' or ")
	POS	Possessive ending	's	,,	Right quote	(' or ")
	PRP	Personal pronoun	I, you, he	(Left parenthesis	([,(,{,<)
	PRP\$	Possessive pronoun	your, one's)	Right parenthesis	(],),},>)
	RB	Adverb	quickly, never	,	Comma	3
	RBR	Adverb, comparative	faster	8:	Sentence-final punc	(.!?)
	RBS	Adverb, superlative	fastest	:	Mid-sentence punc	(: ;)
5	RP	Particle	up, off		24	

https://catalog.ldc.upenn.edu/docs/LDC99T42/tagguid1.pdf

Ambiguity in POS Tagging

- Words often have more than one POS: back
 - The *back* door = JJ
 - On my <u>back</u> = NN
 - Win the voters back = RB
 - Promised to back the bill = VB
- The POS tagging problem is to determine the POS tag for a particular instance of a word.

Exercise

POS Tagging

• Input: Plays well with others

Ambiguity: NNS/VBZ UH/JJ/NN/RB IN NNS

Penn Treebank POS tags

Output: Plays/VBZ well/RB with/IN others/NNS

POS Tagging Performance

- How many tags are correct? (Tag Accuracy)
 - About 97% currently
 - But baseline is already 90%
 - Baseline is performance of stupidest possible method
 - Tag every word with its most frequent tag
 - Tag unknown words as nouns
 - Partly easy because
 - Many words are unambiguous
 - You get points for them (the, a, etc.) and for punctuation marks!

Deciding on the correct part of speech can be difficult even for people

• "Around" can be a particle, preposition, or adverb

Mrs/NNP Schaefer/NNP never/RB got/VBD around/RP to/TO joining/VBG

All/DT we/PRP gotta/VBN do/VB is/VBZ go/VB around/IN the/DT corner/NN

Chateau/NNP Petrus/NNP costs/VBZ around/RB 250/CD

It's hard for linguists too!

4 Confusing parts of speech

This section discusses parts of speech that are easily confused and gives guidelines on how to tag such cases.

CD or JJ

Number-number combinations should be tagged as adjectives (JJ) if they have the same distribution as adjectives.

EXAMPLES: a 50-3/JJ victory (cf. a handy/JJ victory)

Hyphenated fractions one-half, three-fourths, seven-eighths, one-and-a-half, seven-and-three-eighths should be tagged as adjectives (JJ) when they are prenominal modifiers, but as adverbs (RB) if they could be replaced by double or twice.

EXAMPLES: one-half/JJ cup; cf. a full/JJ cup one-half/RB the amount; cf. twice/RB the amount; double/RB the amount

How difficult is POS tagging?

- About 11% of the word types in the Brown corpus are ambiguous with regard to part of speech
- But they tend to be very common words. E.g., that
 - I know that he is honest = IN
 - Yes, that play was nice = DT
 - You can't go that far = RB
- 40% of the word tokens are ambiguous

Token vs. Type

Token is instance or individual occurrence of a type.

Why POS Tagging?

- Useful in and of itself (more than you'd think)
 - Text-to-speech: record, lead
 - Lemmatization: saw[v] → see, saw[a] → saw
 - Quick-and-dirty NP-chunk detection: grep {JJ|NN}* {NN|NNS}

Quick-and-Dirty Noun Phrase Identification

Grammatical structure: Candidate strings are those multi-word noun phrases that are specified by the regular expression $((A \mid N)^+ \mid ((A \mid N)^*(NP)^?)(A \mid N)^*)N$,

Tag Pattern	Example
AN	linear function
NN	regression coefficients
AAN	Gaussian random variable
ANN	cumulative distribution function
NAN	mean squared error
NNN	class probability function
NPN	degrees of freedom

Table 5.2 Part of speech tag patterns for collocation filtering. These patterns were used by Justeson and Katz to identify likely collocations among frequently occurring word sequences.

Why POS Tagging?

- Useful in and of itself (more than you'd think)
 - Text-to-speech: record, lead
 - Lemmatization: saw[v] → see, saw[a] → saw
 - Quick-and-dirty NP-chunk detection: grep {JJ|NN}* {NN|NNS}
- Useful for higher-level NLP tasks:
 - Chunking
 - Named Entity Recognition
 - Information Extraction
 - Parsing

Stanford CoreNLP Toolkit

Part-of-Speech:

Named Entity Recognition:

Twitter NLP toolkit (Ritter et al.)

Part-of-Spe	ec	h
-------------	----	---

		_
Cant	MD	
wait	VB	
for	IN	
the	DT	
ravens	NNP	ORG
game	NN	
tomorrow	NN	
	:	
go	VB	
ray	NNP	PER
rice	NNP	ΓLN
!!!!!!!		

Named Entity Recognition:

Twitter NLP toolkit (Ritter et al.)

Part-of-S	peec	h
-----------	------	---

	Cant	MD		Ο	
	wait	VB		Ο	
	for	IN		Ο	
	the	DT		Ο	
	ravens	NNP	ORG	B-ORG	
	game	NN		Ο	×
	tomorrow	NN		Ο	
		;		Ο	
	go	VB		Ο	
•	ray	NNP	PER	B-PER	⊭
	rice	NNP		I-PER	
	!!!!!!!			Ο	

Named Entity Recognition as a tagging problem

Tagging (Sequence Labeling)

- Given a sequence (in NLP, words), assign appropriate labels to each word.
- Many NLP problems can be viewed as sequence labeling:
 - POS Tagging
 - Chunking
 - Named Entity Tagging
- Labels of tokens are dependent on the labels of other tokens in the sequence, particularly their neighbors

Plays well with others.

VBZ RB IN NNS

Two Types of Constraints

Influential/JJ members/NNS of/IN the/DT House/NNP Ways/NNP and/CC Means/NNP Committee/NNP introduced/VBD legislation/NN that/WDT would/MD restrict/VB how/WRB the/DT new/JJ savings-and-loan/NN bailout/NN agency/NN can/MD raise/VB capital/NN ./.

- "Local": e.g., can is more likely to be a modal verb MD rather than a noun NN
- "Contextual": e.g., a noun is much more likely than a verb to follow a determiner
- Sometimes these preferences are in conflict:

The trash can is in the garage

Overview

- ► The Tagging Problem
- Generative models, and the noisy-channel model, for supervised learning
- Hidden Markov Model (HMM) taggers
 - Basic definitions
 - Parameter estimation
 - ► The Viterbi algorithm

Supervised Learning Problems

- We have training examples x⁽ⁱ⁾, y⁽ⁱ⁾ for i = 1...m. Each x⁽ⁱ⁾ is an input, each y⁽ⁱ⁾ is a label.
- ▶ Task is to learn a function f mapping inputs x to labels f(x)

Supervised Learning Problems

- We have training examples x⁽ⁱ⁾, y⁽ⁱ⁾ for i = 1...m. Each x⁽ⁱ⁾ is an input, each y⁽ⁱ⁾ is a label.
- ▶ Task is to learn a function f mapping inputs x to labels f(x)
- Conditional models:
 - ▶ Learn a distribution p(y|x) from training examples
 - For any test input x, define $f(x) = \arg \max_y p(y|x)$

Generative Models

We have training examples $x^{(i)}, y^{(i)}$ for $i = 1 \dots m$. Task is to learn a function f mapping inputs x to labels f(x).

Generative Models

- We have training examples $x^{(i)}, y^{(i)}$ for $i = 1 \dots m$. Task is to learn a function f mapping inputs x to labels f(x).
- Generative models:
 - ▶ Learn a distribution p(x, y) from training examples
 - Often we have p(x, y) = p(y)p(x|y)

Generative Models

- We have training examples $x^{(i)}, y^{(i)}$ for $i = 1 \dots m$. Task is to learn a function f mapping inputs x to labels f(x).
- Generative models:
 - Learn a distribution p(x, y) from training examples
 - Often we have p(x, y) = p(y)p(x|y)
- Note: we then have

$$p(y|x) = \frac{p(y)p(x|y)}{p(x)}$$

where
$$p(x) = \sum_{y} p(y)p(x|y)$$

Decoding with Generative Models

We have training examples $x^{(i)}, y^{(i)}$ for $i = 1 \dots m$. Task is to learn a function f mapping inputs x to labels f(x).

Decoding with Generative Models

- We have training examples $x^{(i)}, y^{(i)}$ for $i = 1 \dots m$. Task is to learn a function f mapping inputs x to labels f(x).
- Generative models:
 - ▶ Learn a distribution p(x, y) from training examples
 - ▶ Often we have p(x, y) = p(y)p(x|y)

Decoding with Generative Models

- We have training examples $x^{(i)}, y^{(i)}$ for $i = 1 \dots m$. Task is to learn a function f mapping inputs x to labels f(x).
- Generative models:
 - ▶ Learn a distribution p(x, y) from training examples
 - Often we have p(x, y) = p(y)p(x|y)
- Output from the model:

$$f(x) = \arg \max_{y} p(y|x)$$

$$= \arg \max_{y} \frac{p(y)p(x|y)}{p(x)}$$

$$= \arg \max_{y} p(y)p(x|y)$$

Recall the naive Baynes model

Overview

- ► The Tagging Problem
- Generative models, and the noisy-channel model, for supervised learning
- Hidden Markov Model (HMM) taggers
 - Basic definitions
 - Parameter estimation
 - ► The Viterbi algorithm

Hidden Markov Models

- We have an input sentence $x = x_1, x_2, \dots, x_n$ (x_i is the i'th word in the sentence)
- We have a tag sequence $y = y_1, y_2, \dots, y_n$ (y_i is the i'th tag in the sentence)
- We'll use an HMM to define

$$p(x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_n)$$

for any sentence $x_1 \dots x_n$ and tag sequence $y_1 \dots y_n$ of the same length.

Then the most likely tag sequence for x is

$$\underset{y_1...y_n}{\text{arg max}} p(x_1...x_n, y_1, y_2, ..., y_n)$$

Trigram Hidden Markov Models (Trigram HMMs)

For any sentence $x_1 \dots x_n$ where $x_i \in \mathcal{V}$ for $i = 1 \dots n$, and any tag sequence $y_1 \dots y_{n+1}$ where $y_i \in \mathcal{S}$ for $i = 1 \dots n$, and $y_{n+1} = STOP$, the joint probability of the sentence and tag sequence is

$$p(x_1 \dots x_n, y_1 \dots y_{n+1}) = \prod_{i=1}^{n+1} q(y_i | y_{i-2}, y_{i-1}) \prod_{i=1}^{n} e(x_i | y_i)$$

where we have assumed that $x_0 = x_{-1} = *$.

Parameters of the model:

- p = q(s|u,v) for any $s \in \mathcal{S} \cup \{STOP\}, u,v \in \mathcal{S} \cup \{*\} \longrightarrow Trigram parameters$
- e(x|s) for any $s \in \mathcal{S}$, $x \in \mathcal{V}$ Emission parameters

An Example

If we have $n=3, x_1 \dots x_3$ equal to the sentence the dog laughs, and $y_1 \dots y_4$ equal to the tag sequence D N V STOP, then

$$p(x_1 \dots x_n, y_1 \dots y_{n+1})$$

$$= q(D|*,*) \times q(N|*,D) \times q(V|D,N) \times q(STOP|N,V)$$

$$\times e(the|D) \times e(dog|N) \times e(laughs|V)$$

- STOP is a special tag that terminates the sequence
- ▶ We take $y_0 = y_{-1} = *$, where * is a special "padding" symbol

Why the Name?

$$p(x_1 \dots x_n, y_1 \dots y_n) = q(STOP|y_{n-1}, y_n) \prod_{j=1}^n q(y_j \mid y_{j-2}, y_{j-1})$$

Markov Chain

$$\times \underbrace{\prod_{j=1}^{n} e(x_j \mid y_j)}_{x_j' \text{s are observed}}$$

Overview

- ► The Tagging Problem
- Generative models, and the noisy-channel model, for supervised learning
- Hidden Markov Model (HMM) taggers
 - Basic definitions
 - Parameter estimation
 - ► The Viterbi algorithm

Smoothed Estimation

$$q(\mathsf{Vt}\mid\mathsf{DT},\mathsf{JJ}) \ = \ \lambda_1 \times \frac{\mathsf{Count}(\mathsf{Dt},\mathsf{JJ},\mathsf{Vt})}{\mathsf{Count}(\mathsf{Dt},\mathsf{JJ})} \\ + \lambda_2 \times \frac{\mathsf{Count}(\mathsf{JJ},\mathsf{Vt})}{\mathsf{Count}(\mathsf{JJ})} \\ + \lambda_3 \times \frac{\mathsf{Count}(\mathsf{Vt})}{\mathsf{Count}()}$$

$$\lambda_1 + \lambda_2 + \lambda_3 = 1$$
, and for all i , $\lambda_i \ge 0$

$$e(\mathsf{base} \mid \mathsf{Vt}) = \frac{\mathsf{Count}(\mathsf{Vt}, \, \mathsf{base})}{\mathsf{Count}(\mathsf{Vt})}$$

Dealing with Low-Frequency Words: An Example

Profits soared at Boeing Co. , easily topping forecasts on Wall Street , as their CEO Alan Mulally announced first quarter results .

Dealing with Low-Frequency Words

A common method is as follows:

▶ **Step 1**: Split vocabulary into two sets

```
Frequent words = words occurring \geq 5 times in training = Low frequency words = all other words
```

▶ **Step 2**: Map low frequency words into a small, finite set, depending on prefixes, suffixes etc.

Dealing with Low-Frequency Words: An Example

[Bikel et. al 1999] (named-entity recognition)

Word class	Example	Intuition
twoDigitNum	90	Two digit year
fourDigitNum	1990	Four digit year
containsDigitAndAlpha	A8956-67	Product code
containsDigitAndDash	09-96	Date
containsDigitAndSlash	11/9/89	Date
containsDigitAndComma	23,000.00	Monetary amount
containsDigitAndPeriod	1.00	Monetary amount, percentage
othernum	456789	Other number
allCaps	BBN	Organization
capPeriod	M.	Person name initial
firstWord	first word of sentence	no useful capitalization information
initCap	Sally	Capitalized word
lowercase	can	Uncapitalized word
other	,	Punctuation marks, all other words

Dealing with Low-Frequency Words: An Example

Profits/NA soared/NA at/NA Boeing/SC Co./CC ,/NA easily/NA topping/NA forecasts/NA on/NA Wall/SL Street/CL ,/NA as/NA their/NA CEO/NA Alan/SP Mulally/CP announced/NA first/NA quarter/NA results/NA ./NA

firstword/NA soared/NA at/NA initCap/SC Co./CC ,/NA easily/NA lowercase/NA forecasts/NA on/NA initCap/SL Street/CL ,/NA as/NA their/NA CEO/NA Alan/SP initCap/CP announced/NA first/NA quarter/NA results/NA ./NA

```
NA = No entity
```

SC = Start Company

CC = Continue Company

SL = Start Location

CL = Continue Location

Overview

- ► The Tagging Problem
- Generative models, and the noisy-channel model, for supervised learning
- Hidden Markov Model (HMM) taggers
 - Basic definitions
 - Parameter estimation
 - ► The Viterbi algorithm