#### **PeaPod - Requirements**

Outlining the Requirements for a Design Submission to the NASA/CSA Deep Space Food Challenge

#### Jayden Lefebvre - Founder, Lead Engineer

Port Hope, ON, Canada

#### Nathan Chareunsouk - Design Lead

Toronto, ON, Canada

#### Navin Vanderwert - Design Engineer

BASc Engineering Science (Anticipated 2024), University of Toronto, Toronto, ON, Canada

#### Jonas Marshall - Electronics Engineer

BASc Computer Engineering (Anticipated 2024), Queen's University, Kingston, ON, Canada

Additional contributions made by:

**University of Toronto Agritech** 

Primary Contact Email: contact@peapodtech.com

Revision 0.7

PeaPod Technologies Inc.

May 21st, 2021

# Contents

| 1 | Intr | roduction                                            | 2  |
|---|------|------------------------------------------------------|----|
|   | 1.1  | Purpose                                              | 2  |
|   | 1.2  | Framing Structure                                    | 2  |
|   | 1.3  | Scope and Justification                              | 3  |
|   | 1.4  | Definitions                                          | 5  |
| 2 | Frai | ming                                                 | 6  |
|   | 2.1  | Opportunity                                          | 6  |
|   | 2.2  | Challenge Requirements                               | 6  |
|   | 2.3  | Stakeholders                                         | 7  |
|   | 2.4  | Objectives                                           | 7  |
|   |      | 2.4.1 High-Level                                     | 7  |
|   |      | 2.4.2 Low-Level                                      | 7  |
|   | 2.5  | Metrics                                              | 8  |
|   | 2.6  | Constraints                                          | 10 |
|   | 2.7  | Criteria                                             | 11 |
| 3 | Ref  | erence Designs                                       | 12 |
|   | 3.1  | Open Agriculture Initiative - Personal Food Computer | 12 |

## 1 Introduction

#### 1.1 Purpose

The purpose of this document is to outline both the category requirements (Section 2.2) for a design submission to the NASA/CSA Deep Space Food Challenge (DSFC) [1] and the scoped requirements (Section 1.3) for the design being proposed by PeaPod Technologies Inc.: **PeaPod**.

The goal of the DSFC is for participants to "Create novel food production technologies or systems that require minimal inputs and maximize safe, nutritious, and palatable food outputs for long-duration space missions, and which have potential to benefit people on Earth." [2]

#### 1.2 Framing Structure

This document achieves its purpose via "top-down" framing (Section 2), with each subsection's entries being derived from the entries of the previous<sup>1</sup>.

- 2.1 Opportunity: A succinct scoped design statement.
- 2.2 Challenge Requirements: Categorical/unscoped requirements for *any* submission.
- 2.3 Stakeholders: Persons and groups in consideration.
- 2.4.1 High-Level Objectives (HLOs): Conceptual aims/"DfX" derived from Requirements and Stakeholders.
- 2.4.2 Low-Level Objectives (LLOs): Tactical goals derived from HLOs.
- 2.5 Metrics: Granular quantitative measures of design success, fit, utility, etc. derived from LLOs.
- **2.6 Constraints**: *Mandatory* requirements, minimums, and maximums (i.e. true/false, pass/fail) for the proposed design.
- 2.7 Criteria: *Graded* (i.e. points-based, more/less is better) requirements for the proposed design.

<sup>&</sup>lt;sup>1</sup>Each objective and metric has a numbered reference to the entry it was derived from (Stakeholder  $\underline{\mathbf{1}}$ : S1, High-Level Objective 8: HL8, etc.)

#### 1.3 Scope and Justification

The three underlined criteria in the challenge statement in Section 1.1 have also helped to define the scope of the design:

- SC1. The longer the duration of the space mission (up to and including interplanetary travel and permanent colonization) the lesser the feasibility of resupply<sup>2</sup>. The lesser the feasibility of resupply, and the more minimal the input (i.e. launch mass), the less food will be able to be packed at launch, thus the more the design will need to generate <a href="net-new food grown">net-new food grown</a> on-board during the mission.
- SC2. The minimization of inputs (launch mass), the minimization of other negative criteria such as growth time, design complexity, etc. and the maximization of safety (pathogenic and otherwise) means that food animal growth has been deemed not feasible, and is outside the scope of this document. Thus, the design should focus on <u>food-producing plant (or crop) growth<sup>3</sup></u>.
- SC3. Spacecraft are not good crop growth systems (lack of water access, proper lighting and nutrition, etc.), thus the design should encompass a crop growth environment that:
  - SC3a. provides of all necessary crop growth inputs (water, nutrients, lighting, etc.);
  - SC3b. contains or otherwise encompasses a viable <u>crop growth environment</u> (temperature, humidity, gas concentrations, airflow, etc.);
  - SC3c. has control over all <u>parameters</u> of both a) and b) (environment parameters); these together are the (crop growth) environment conditions.
- SC4. To maximize safety (of both the crops and the crew) and redundancy, and to minimize inputs (required human interaction), the environment should be <u>automated and isolated</u> from the spacecraft cabin with regards to all environment conditions (thermally, water-tight, etc.) unless beneficial and efficient (i.e no loss).

<sup>&</sup>lt;sup>2</sup>Minimal resupply is also listed as a constraint directly in the challenge details [2, 3].

<sup>&</sup>lt;sup>3</sup>This is primarily an issue in-transit; for colonization, non-plant food production systems should definitely be considered.

- SC5. A greater degree of nutrition and palatability of food outputs implies a greater variety of crops (incl. leafy greens, fruits, root vegetables, legumes, etc.); as such the food production system should be able to generate a continuous and wide variety of environmental conditions such that virtually any food crops could be grown within.
- SC6. The demand for high crop variety, automation, parameter control, efficiency/input minimization (water, nutrients, footprint per crop), etc. implies the use of an <u>aeroponic crop</u> growth method [4].
- SC7. Output nutrient and yield maximization in a controlled-environment implies <u>environment</u> <u>parameter optimization</u>. This is best accomplished via data collection of both plant-growth and environment metrics and cross-growth-environment networking (data versatility, sharing, and machine intelligence).
- SC8. A solution focussed on palatability (focus on enjoyable crops) and variety (adaptability to many distinct environment requirements) is not suited to high caloric output. Most crops are simply not able of producing the required daily caloric output in the space allotted (Section 2.6). As such, the scope of our solution places far greater importance on output palatability and variety (both culinary and nutritional) as well as production of critical micronutrients as opposed to pure caloric yield<sup>4</sup>.

DSFC Phase 1 development, testing, and assessment is scoped to terrestrial/Earth-like operational constraints [2, 3]:

- Gravity  $(9.81 \text{ m/s}^2)$ ;
- Ambient atmospheric pressure (101,325 Pa);
- Ambient atmospheric temperature (22 °C);
- Ambient atmospheric humidity (50 %RH);

 $<sup>^4</sup>$ The solution "need not meet the full nutritional requirements of future crews, but can contribute significantly to, and integrate with, a comprehensive food system." [2]

#### 1.4 Definitions

A number of useful definitions have emerged from the above scoping:

- 1. **(Plant Growth) Environment** The holistic environment with which the plant interacts over the course of its growth.
- 2. **(Plant Growth) Environment Parameters** The independent quantitative parameters defining the Environment. Inputs to the control system.
- 3. **(Plant) Growth System** Includes the physical enclosure isolating the plant and Environment from the surroundings, as well as any infrastructure required to implement the Environment Parameters and generate the Environment by controlling Environment conditions. Satisfies all requirements in this document.
- 4. **(Plant) Growth Metrics** The quantitative measures of plant growth, including yield mass, growth rate, compound concentrations (i.e. nutrients, flavour compounds), caloric density, etc.
- 5. **(Environment) Program** The to-date most optimized set of Environment Parameters for a given Crop Growth Metric (i.e. Program X maximizes yield mass for lettuce), implemented by the Crop Growth System.

## 2 Framing

#### 2.1 Opportunity

Design an automated and isolated aeroponic crop growth system for the Deep Space Food Challenge [1], able to generate any environment from a combination of independent environment parameters, with both environment and plant metric data collection.

## 2.2 Challenge Requirements

The following are the overall challenge requirements compiled from DSFC Applicant Guide details [2], the DSFC Phase 2 Instructions [3], and an excerpt from NASA-STD-3001: Section 7.1 Food and Nutrition [5]:

- R1. **Must** help fill food gaps for a *three-year* round-trip mission with *no resupply*:
  - (a) **Should** aim to produce food outputs that fulfill **all daily nutritional needs** for a crew of *four* (4) people;
  - (b) **Must** maintain food output *safety* and *nutrition* during *all phases* of the mission;
  - (c) **Must** output food that is *varied*, *palatable*, *and acceptable* to the crew for the *duration* of the mission;
  - (d) **Must** produce food outputs that require *no additional processing time*<sup>5</sup>;
- R2. **Should** improve the accessibility of food on Earth by enhancing local production; in particular, via production directly in urban centres and in remote and harsh environments;
- R3. **Must** aim to achieve the *greatest food output* with *minimal inputs* and *minimal waste*;
- R4. **Must** transmit *operational data and limited video* to a remote location, and be able to receive periodic *operational commands*;
- R5. Must operate under Earth-like conditions (See Section 1.3);

<sup>&</sup>lt;sup>5</sup>It is assumed that fresh (or packaged unprepared) edible plant products are already prepared on existing space missions, and that this preparation meets this requirement.

## 2.3 Stakeholders

- S1. Food Product Consumers Palatability, output
- S2. NASA/CSA Stakeholders Feasability, input, optimization

## 2.4 Objectives

#### 2.4.1 High-Level

|       | Food Output Suitability (S1, R1, R1a, RR1d, R2)                                                                   | R1c, | HL4.  | Time and Energy Efficiency (R2, R3) | (S1, S2, R1d, |
|-------|-------------------------------------------------------------------------------------------------------------------|------|-------|-------------------------------------|---------------|
|       | Environment Control, Automation, a Optimization (S2, R1b, R1d, R2, R3, R2, R3, R3, R3, R3, R3, R3, R3, R3, R3, R3 |      | HL5.  | Safety, Stability, Reliability (    | (S1, R1b, S2) |
| HL3.  | Cross-Contamination (S1, S2, R1b, I                                                                               | R2)  | HL6.  | Feasability                         | (S2, R2, R5)  |
| 2.4.2 | Low-Level                                                                                                         |      |       |                                     |               |
| LL1.  | Output Food Variety (H.                                                                                           | L1)  | LL14. | High Degree of Automation           | (HL4, HL3)    |
| LL2.  | Output Food Palatability (H                                                                                       | L1)  | LL15. | Energy Efficiency                   | (HL4)         |
| LL3.  | Nutrient Output (HL1, H                                                                                           | L4)  | LL16. | Water Usage                         | (HL4)         |
| LL4.  | Energy Output (HL1, H                                                                                             | L4)  | LL17. | Germination Time                    | (HL4)         |
| LL5.  | Leaf-Zone Temperature Control (H                                                                                  | IL2, | LL18. | Growth Time                         | (HL4)         |
|       | HL4)                                                                                                              |      | LL19. | Time-To-Harvest/-Reharvest          | (HL4)         |
| LL6.  | Leaf-Zone Humidity Control (H                                                                                     | L2)  | LL20. | Potential for Cross-Contamin        | ation (HL3)   |
| LL7.  | Gas Concentration Control (H                                                                                      | L2)  | LL21. | Environmental, Process Safet        | y (HL5)       |
| LL8.  | Lighting Control (HL2, H                                                                                          | L4)  | LL22. | Output Consumption Safety           | (HL1, HL5)    |
| LL9.  | Insulation, Isolation (HL2, HL4, HL                                                                               | L3)) | LL23. | Reliability                         | (HL5)         |
| LL10. | Air Circulation Control (HL2, H                                                                                   | L3)  | LL24. | Input Stability                     | (HL5)         |
| LL11. | Nutrient Solution Control (H                                                                                      | L2)  | LL25. | Output Shelf Life                   | (HL5)         |
| LL12. | Root-Zone Temperature Control (H                                                                                  | L2)  | LL26. | Cost                                | (HL6)         |
| LL13. | Germination Success (HL2, H                                                                                       | L4)  | LL27. | Size                                | (HL6)         |

# 2.5 Metrics

| #   | Metric                                          |        | Units                                                           |
|-----|-------------------------------------------------|--------|-----------------------------------------------------------------|
| M1  | Plant Species Variety                           | (LL1)  | Y/N (per plant species)                                         |
| M2  | Palatability of Output                          | (LL2)  | 1-9 Hedonic (per crop)                                          |
| M3  | Protein Output                                  | (LL3)  | g/kg body mass/crewmember/day                                   |
| M4  | Protein Output Energy                           | (LL3)  | kCal/day/crewmember (%TDEI)                                     |
| M5  | Carbohydrate Output Energy                      | (LL3)  | kCal/day/crewmember (%TDEI)                                     |
| M6  | Lipid Output Energy                             | (LL3)  | kCal/day/crewmember (%TDEI)                                     |
| M7  | Ω-6 Fatty Acid Output                           | (LL3)  | g/day/crewmember                                                |
| M8  | Ω-3 Fatty Acid Output                           | (LL3)  | g/day/crewmember                                                |
| M9  | Saturated Fat Output Energy                     | (LL3)  | kCal/day/crewmember (%TDEI)                                     |
| M10 | Trans Fatty Acids Output                        | (LL3)  | kCal/crewmember (%TDEI)                                         |
| M11 | Cholesterol Output                              | (LL3)  | mg/day/crewmember                                               |
| M12 | Fiber Output                                    | (LL3)  | g/day/crewmember                                                |
| M13 | Caloric Output                                  | (LL4)  | kCal/day/crewmember                                             |
| M14 | Air Temperature Control Range                   | (LL5)  | min, max °C                                                     |
| M15 | Air Temperature Control Rate                    | (LL5)  | Δ°C/sec at each °C                                              |
| M16 | Air Temperature Control Stability               | (LL5)  | ±°C at each °C                                                  |
| M17 | Air Humidity Control Range                      | (LL6)  | min, max %RH                                                    |
| M18 | Air Humidity Control Rate                       | (LL6)  | Δ%RH/sec at each %RH                                            |
| M19 | Air Humidity Control Stability                  | (LL6)  | ±%RH at each %RH                                                |
| M20 | CO <sub>2</sub> Supplementation Range           | (LL7)  | max ppm CO <sub>2</sub>                                         |
| M21 | CO <sub>2</sub> Concentration Control Rate      | (LL7)  | ppm CO <sub>2</sub> /sec at each ppm CO <sub>2</sub>            |
| M22 | CO <sub>2</sub> Concentration Control Stability | (LL7)  | ±ppm CO <sub>2</sub> at each ppm CO <sub>2</sub>                |
| M23 | Light Spectrum Wavelength Range                 | (LL8)  | min, max nm                                                     |
| M24 | Light Spectrum PAR Match                        | (LL8)  | % (each crop)                                                   |
| M25 | Light Intensity Control Range                   | (LL8)  | min, max $\mu$ mol m <sup>-2</sup> sec <sup>-1</sup> at each nm |
| M26 | Light Intensity Control Stability               | (LL8)  | ±μmol m <sup>-2</sup> sec <sup>-1</sup> at each nm              |
| M27 | Light Loss, Capture by Surfaces                 | (LL9)  | %                                                               |
| M28 | Outside Light Penetration                       | (LL9)  | %                                                               |
| M29 | Heat Loss                                       | (LL9)  | ±W at each °C                                                   |
| M30 | Water Loss due to Leaks, Evaporation            | (LL9)  | mL/hr                                                           |
| M31 | Internal Circulation Airflow Control Range      | (LL10) | min, max m³/min                                                 |
| M32 | Gas Exchange due to Leaks                       | (LL10) | m <sup>3</sup> /min                                             |
| M33 | Maximum Intentional Gas Exchange                | (LL10) | m <sup>3</sup> /min                                             |
| M34 | Nutrient Sol'n Delivery Control Range           | (LL11) | min, max mL/sec                                                 |
| M35 | Nutrient Sol'n Delivery Control Rate            | (LL11) | ΔmL/sec <sup>2</sup> at each mL/sec                             |
| M36 | Nutrient Sol'n Delivery Control Stability       | (LL11) | ±mL/sec at each mL/sec                                          |
| M37 | Nutrient Concentrations Control Range           | (LL11) | min, max ppm (each nutrient)                                    |
| M38 | Nutrient Concentrations Control Rate            | (LL11) | Δppm/sec at each ppm (each nutr.)                               |
| M39 | Nutrient Concentrations Control Stability       | (LL11) | ±ppm at each ppm (each nutrient)                                |

# 2.5 Metrics (Cont'd)

| #   | Metric                                    |        | Units                          |
|-----|-------------------------------------------|--------|--------------------------------|
| M40 | Nutrient Sol'n Temp. Control Range        | (LL12) | min, max °C                    |
| M41 | Nutrient Sol'n Temp. Control Rate         | (LL12) | °C/sec at each °C              |
| M42 | Nutrient Sol'n Temp Control Stability     | (LL12) | ±°C at each °C                 |
| M43 | Germination Success Rate                  | (LL13) | %                              |
| M44 | Time Requirement - Maintenance            | (LL14) | hrs/week                       |
| M45 | Time Requirement - Setup                  | (LL14) | hrs                            |
| M46 | Energy Efficiency - Power vs. kCal        | (LL15) | %                              |
| M47 | Necessary Water Waste per Day             | (LL16) | L/day                          |
| M48 | Initial Water Requirement                 | (LL16) | L                              |
| M49 | Reharvest Period - Fruiting Crops         | (LL19) | days (each crop)               |
| M50 | Germination Time                          | (LL17) | hours (each crop)              |
| M51 | Time to Harvest                           | (LL18) | days from planting (each crop) |
| M52 | Potential for Contamination - Germination | (LL20) | % (each event)                 |
| M53 | Potential for Contamination - Planting    | (LL20) | % (each event)                 |
| M54 | Potential for Contamination - Harvest     | (LL20) | % (each event)                 |
| M55 | Use of Hazardous Compounds                | (LL21) | Y/N                            |
| M56 | Cleaning Hazards                          | (LL21) | Y/N                            |
| M57 | Physical, Chemical, Bio Hazards           | (LL21) | Y/N                            |
| M58 | Consumption Safety                        | (LL22) | %                              |
| M59 | Loss of Functionality Over 3 Years        | (LL23) | %                              |
| M60 | Input Lifetime while Safe, Useful         | (LL24) | Days                           |
| M61 | Output Shelf Life while Safe, Quality     | (LL25) | Days                           |
| M62 | Cost                                      | (LL26) | CAD                            |
| M63 | Outer Dimensions                          | (LL27) | m (W, D, H)                    |
| M64 | Outer Volume                              | (LL27) | $m^3$                          |
| M65 | Power Consumption                         | (LL27) | W                              |
| M66 | Mass                                      | (LL27) | kg                             |

# 2.6 Constraints

| Metric | Constraint Ju                                                              | stification |
|--------|----------------------------------------------------------------------------|-------------|
| M2     | ≥ 6.0                                                                      | [2, 3]      |
| M3     | ≈ 0.27g                                                                    | [2, 3, 5]   |
| M4     | ≤11.67% TDEI                                                               | [2, 3, 5]   |
| M5     | 50-55% TDEI                                                                | [2, 3, 5]   |
| M6     | 25-35% TDEI                                                                | [2, 3, 5]   |
| M7     | ≈14g                                                                       | [2, 3, 5]   |
| M8     | 1.1-1.6g                                                                   | [2, 3, 5]   |
| M9     | <7% TDEI                                                                   | [2, 3, 5]   |
| M10    | <1% TDEI                                                                   | [2, 3, 5]   |
| M11    | <300mg                                                                     | [2, 3, 5]   |
| M12    | 21-38g                                                                     | [2, 3, 5]   |
| M14    | Min < 15°C, Max > 30°C                                                     | (SC5)       |
| M17    | Min < 20 %RH, Max > 90 %RH                                                 | (SC5)       |
| M20    | >1000ppm (≈600 above ambient)                                              | (SC5)       |
| M23    | Min < 300nm (Near-UV), Max > 800nm (Near-IR)                               | (SC5, SC7)  |
| M24    | ≥ 95% match                                                                | (SC5)       |
| M25    | Min = 0, Max ≥ typical horticulture                                        | (SC5, SC7)  |
| M31    | $Min = 0 \text{ m}^3/\text{min}, \text{ Max} \ge 2 \text{ m}^3/\text{min}$ | (SC5, SC7)  |
| M34    | Min = 0, Max ≥ max plant requirement                                       | (SC5, SC7)  |
| M40    | Min < 10°C, Max > 25°C                                                     | (SC5)       |
| M37    | Min = 0, Max ≥ max plant requirement                                       | (SC5, SC7)  |
| M44    | 4 hrs/week                                                                 | [2]         |
| M59    | ≤10%                                                                       | [2]         |
| M60    | ≥3 years (1095 days)                                                       | [2]         |
| M63    | Fits through 1.07m x 1.90m doorway; W<1.829m, D<2.438m, H<2.591m           | [2]         |
| M64    | $\leq 2 \text{ m}^3$                                                       | [2]         |
| M65    | Avg. <1500W; Peak < 3000W                                                  | [2]         |

# 2.7 Criteria

| Metric | Criteria               | Justification |
|--------|------------------------|---------------|
| M1     | Should Maximize        | (R1c, R3)     |
| M13    | Should Maximize        | (R1, R1a, R3) |
| M15    | Should Maximize        | (SC5, SC7)    |
| M16    | Should Minimize        | (SC5, SC7)    |
| M18    | Should Maximize        | (SC5, SC7)    |
| M19    | Should Minimize        | (SC5, SC7)    |
| M21    | Should Maximize        | (SC5, SC7)    |
| M22    | Should Minimize        | (SC5, SC7)    |
| M26    | Should Minimize        | (SC5, SC7)    |
| M27    | Should Minimize        | (R3)          |
| M28    | Should Minimize        | (SC5)         |
| M29    | Should Minimize        | (R3)          |
| M30    | Should Minimize        | (R1b)         |
| M32    | Should Minimize        | (R3)          |
| M33    | Should Maximize        | (SC5, SC7)    |
| M35    | Should Maximize        | (SC5, SC7)    |
| M36    | Should Minimize        | (SC5, SC7)    |
| M41    | Should Maximize        | (SC5, SC7)    |
| M42    | Should Minimize        | (SC5, SC7)    |
| M38    | Should Maximize        | (SC5, SC7)    |
| M39    | Should Minimize        | (SC5, SC7)    |
| M43    | Should Maximize        | (R1, R1b)     |
| M45    | Should Minimize        | (S1)          |
| M46    | Should Maximize        | (R3)          |
| M47    | Should Maximize        | (R3)          |
| M48    | Should Minimize        | (R3)          |
| M49    | Should Minimize        | (R1b, R3)     |
| M50    | Should Minimize        | (R1b)         |
| M51    | Should Minimize        | (R1b)         |
| M52    | Should Minimize        | (R1b)         |
| M53    | Should Minimize        | (R1b)         |
| M54    | Should Minimize        | (R1b)         |
| M55    | Should Avoid, Mitigate | (R1b)         |
| M56    | Should Avoid, Mitigate | (R1b)         |
| M57    | Should Avoid, Mitigate | (R1b)         |
| M58    | Should Avoid, Mitigate | (R1b)         |
| M61    | Should Maximize        | [2]           |
| M62    | Could Minimize         | (S2)          |
| M66    | Should Minimize        | (R3)          |

## 3 Reference Designs

#### 3.1 Open Agriculture Initiative - Personal Food Computer

The Open Agriculture Initiative (OpenAG) is a project launched by the MIT Media Lab with the goal to "Build open resources to enable a global community to accelerate digital agricultural innovation."

One of their primary developments was an open-source controlled-environment agriculture microgreenhouse, the Personal Food Computer. The PFC controls all environmental growing parameters and collects data during the growth cycle. Data can be collected by users and shared between members of the open-source community. This allows for the creation of reproducible "climate recipes" where other devices with similar abilities can reliably generate the same environment and attain the same plant growth results.



(a) Assembled PFC v1.



(b) Component diagram.

Figure 1: From [6].

One of the design's major flaws is in its implementation. Despite the claim that the PFC focusses on SC3 and SC5, in practice, it failed to meet R3 [7]. In addition, the PFC utilizes Deep Water Culture (DWC) hydroponics [6], as opposed to aeroponics, resulting in a lowered water efficiency.

The PFC is also much more focussed on SC3 and SC5 than R1 and R1a, meaning that they valued optimization and data collection over bulk yield of food outputs. This shows in that their design did not account for scalability of output [8].

However, the array of sensors included in the design (both plant-growth and environmental) as well as the principle of plant phenomenology optimization is informative in meeting R3 and their attempts can serve as a basis for understanding SC3 and SC5 [9].

**Attempted**: LL1, LL2 (via SC5), LL5. LL6, LL8, LL10, LL11, LL14

Did Not Consider: LL4, LL9, LL13, LL15, LL16, LL17, LL18, LL19, LL20

## References

- [1] "Deep Space Food Challenge," Impact Canada, launched by NASA/CSA. [Online]. Available: https://impact.canada.ca/en/challenges/deep-space-food-challenge
- [2] "DSFC Applicant Guide," Impact Canada, launched by NASA/CSA. [Online]. Available: https://impact.canada.ca/en/challenges/deep-space-food-challenge/application-guide
- [3] "Deep Space Food Challenge Phase 2 Instructions," Canadian Space Agency, 12 2021. [Online]. Available: https://impact.canada.ca/system/files/2021-12/CSA\_DSFC%20Phase% 202%20Instructions\_FINAL.pdf
- [4] "NASA Spinoff 2006," NASA, pp. 64–67, 2006. [Online]. Available: https://www.nasa.gov/pdf/164449main\_spinoff\_06.pdf
- [5] "Excerpt of NASA-STD-3001: Section 7.1 Food and Nutrition," 02 2015. [Online]. Available: https://impact.canada.ca/challenges/deep-space-food-challenge/excerpt
- [6] E. Castelló Ferrer, J. Rye, G. Brander, T. Savas, D. Chambers, H. England, and C. Harper, "Personal food computer: A new device for controlled-environment agriculture," in <u>Proceedings of the Future Technologies Conference (FTC) 2018</u>, K. Arai, R. Bhatia, and S. Kapoor, Eds. Springer International Publishing, 2019, pp. 1077–1096.
- [7] "Openag wiki archive basil recipe for test grow #1," Open Agriculture Foundation, 04 2020. [Online]. Available: https://openagriculturefoundation.github.io/archived\_wiki/contributors/recipes/basil.html
- [8] Harry Goldstein, "MIT Media Lab Scientist Used Syrian Refugees to Tout Food Computers That Didn't Work," 10 2019. [Online]. Available: https://spectrum.ieee.org/tech-talk/at-work/start-ups/mit-media-lab-scientist-used-syrian-refugees-to-tout-food-computers
- [9] C. Harper and M. Siller, "Openag: A globally distributed network of food computing," <u>IEEE</u> Pervasive Computing, vol. 14, no. 4, pp. 24–27, 2015.