Московский физико-технический институт (госудраственный университет)

Лабораторная работа по общему курсу физики Термодинамика и молекулярная физика

2.5.1. Измерение поверхностного натяжения жидкости

Глаз Роман Сергеевич Группа Б01-007

Долгопрудный 2021

Содержание

Цель работы: 1) измерение температурной зависимости коэффициента поверхностного натяжения дистиллированной воды с использованием известного коэффициента поверхностного натяжения спирта; 2) определение полной поверхностной энергии и теплоты, необходимой для изотермического образования единицы поверхности жидкости при различной температуре.

Используемое оборудование: прибор Ребиндера с термостатом и микроманометром; исследуемые жидкости; стаканы.

1. Теоретические сведения

Поверхностное натяжение имеет двойной физический смысл – энергетический (термодинамический) и силовой (механический). Энергетическое (термодинамическое) определение: поверхностное натяжение – это удельная работа увеличения поверхности при её растяжении при условии постоянства температуры. Силовое (механическое) определение: поверхностное натяжение – это сила, действующая на единицу длины линии, которая ограничивает поверхность жидкости

Наличие поверхностного слоя приводит к различию давлений по разные стороны от искривленной границы раздела двух сред. Для сферического пузырька с воздухом внутри жидкости избыточное давление даётся формулой Лапласа:

$$\Delta P = P_{inside} - P_{outside} = \frac{2\sigma}{r},\tag{1}$$

где σ – коэффициент поверхностного натяжения, P_{inside} и $P_{outside}$ – давление внутри пузырька и снаружи, r – радиус кривизны поверхности раздела двух фаз. Эта формула лежит в основе предлагаемого метода определения коэффициента поверхностного натяжения жидкости. Измеряется давление ΔP , необходимое для выталкивания в жидкость пузырька воздуха.

2. Экспериментальная установка

Исследуемая жидкость (дистиллированная вода) наливается в сосуд (колбу) B. Тестовая жидкость (этиловый спирт) наливается в сосуд E. При измерениях колбы герметично закрываются пробками. Через одну из двух пробок проходит полая металлическая игла C. Этой пробкой закрывается сосуд, в котором проводятся измерения. Верхний конец иглы

открыт в атмосферу, а нижний погружен в жидкость. Другой сосуд герметично закрывается второй пробкой. При создании достаточного разряжения воздуха в колбе с иглой пузырьки воздуха начинают пробулькивать через жидкость. Поверхностное натяжение можно определить по величине разряжения ΔP (??), необходимого для прохождения пузырьков (при известном радиусе иглы).

Разряжение в системе создается с помощью аспиратора A. Кран K_2 разделяет две полости аспиратора. Верхняя полость при закрытом кране K_2 заполняется водой. Затем кран K_2 открывают и заполняют водой нижнюю полость аспиратора. Разряжение воздуха создается в нижней полости при открывании крана K_1 , когда вода вытекает из неё по каплям. В колбах B и C, соединённых трубками с нижней полостью аспиратора, создается такое же пониженное давление. Разность давлений в полостях с разряженным воздухом и атмосферой измеряется спиртовым микроманометром (устройство микроманометра описано в Приложении). Для стабилизации температуры исследуемой жидкости через рубашку D колбы B непрерывно прогоняется вода из термостата.

Рис. 1: Схема установки для измерения поверхностного натяжения

Обычно кончик иглы лишь касается поверхности жидкости, чтобы исключить влияние гидростатического давления столба жидкости. Од-

нако при измерении температурной зависимости коэффициента поверхностного натяжения возникает ряд сложностей. Во-первых, большая теплопроводность металлической трубки приводит к тому, что температура на конце трубки заметно ниже, чем в глубине жидкости. Во-вторых, тепловое расширение поднимает уровень жидкости при увеличении температуры.

Обе погрешности можно устранить, погрузив кончик трубки до самого дна. Полное давление, измеренное при этом микроманометром, $P = \Delta P + \rho g h$. Заметим, что $\rho g h$ от температуры практически не зависит, так как подъём уровня жидкости компенсируется уменьшением её плотности (произведение ρh определяется массой всей жидкости и поэтому постоянно). Величину $\rho g h$ следует измерить двумя способами.

Во-первых, замерить величину $P1=\Delta P'$, когда кончик трубки только касается поверхности жидкости. Затем при этой же температуре опустить иглу до дна и замерить $P_2=\rho gh+\Delta P$ " ($\Delta P'$, ΔP " – давление Лапласа). Из-за несжимаемости жидкости можно положить $\Delta P'=\Delta P$ " и тогда $\rho gh=P_2-P_1$. Во-вторых, при измерениях $_1$ и $_2$ замерить линейкой глубину погружения иглы h. Это можно сделать, замеряя расстояние между верхним концом иглы и любой неподвижной частью прибора при положении иглы на поверхности и в глубине колбы.

3. Измерения

Проведем измерения для спирта. Для этого установим частоту падения капель из аспиратора около 1 капли в 5 секунд. Измерим максимальное добавочное давление в системе. Полученный результат $\Delta p = 42 \pm 1 \Rightarrow \Delta P = 81 \pm 2$ Па (p – единица длины на микробарометре, а P уже искомое давление).

Далее вынем иглу, просушим ее и измерим микроскопом ее диаметр (внутренний):

$$d = 1.2 \pm 0.05 \text{ MM},$$
 (2)

из табличного значения коэффициента поверхностного натяжения спирта $\sigma = 22.3 \text{ мH/м}$, теперь по формуле (??) получим:

$$r = \frac{2\sigma}{\Delta P} = 0,643 \text{ MM} \tag{3}$$

$$\Delta r = 0.015 \text{ MM} \tag{4}$$

Как можно увидить экспериментальный результат совпал с прямым измерение с учётом погрешностей, что говорит о применимости нашей модели.

Затем установим иглу в воду так, чтобы она едва касалась воды. Измерим значение давления. Далее опустим иглу до дна, предварительно измерив высоту. Получим значение разности высот, измеренных линей-кой:

$$h_1 = 20 \pm 1 \text{ mm}; h_2 = 6 \pm 1 \text{ mm} \Rightarrow \Delta h = 14 \pm 2 \text{ mm}.$$
 (5)

Теперь посчитаем разность высот из измеренных давлений: $\Delta P=122\pm1,5$ Па, откуда $h=12,4\pm0,2$ мм. Видно, что значение получилось немного меньше, чем измеренное линейкой, но в пределеах погрешности значения совпадают.

$N_{\overline{0}}$	$\langle h_1 \rangle$, MM	$\langle h_2 \rangle$, MM		
1	112	187		
2	112	187		
3	111	186		
4	111	186		
5	111	186		
$\langle h \rangle$, MM	111	187		
$\langle P \rangle$, Πa	177	299		

Проведем серию измерений разности давлений ΔP для различных температур воды в интервале [20–60] °C (шаг $\simeq 5$ °C), регулируемых термостатом, занесем результаты в таблице ниже

$t, {}^{\circ}C$	20, 5	25	30	35	40	45	50, 6	55
h, MM	132	131	130	129	128	127	125	124
h, MM	132	131	130	129	127	126	125	124
h, MM	132	131	130	128	127	126	125	124
h, MM	132	130	129	128	127	126	125	124
h, MM	131	130	129	128	127	126	125	123
$\langle h \rangle$, MM	131,8	130,6	129,6	128,4	127,2	126,2	125	123,8
Δh , mm	1,2	1,28	1,34	1,4	1,2	1,2	1	1,2
$\langle P \rangle$, Πa	210,7	208,8	207,23	205,31	203,40	201,80	199,88	196,96
ΔP , Πa	1,93	2,06	2,16	2,26	1,93	1,93	2,06	1,93

По полученным данным можно вычислить значение $\sigma = \frac{p \cdot R}{2}$

$t, ^{\circ}C$	20, 5	25	30	35	40	45	50, 6	55
< P >	210,7	208,8	207,23	205,31	203,40	201,80	199,88	196,96
ΔP , Πa	1,93	2,06	2,16	2,26	1,93	1,93	2,06	1,93
$\sigma \cdot 10^2$, H/M	6,77	6,71	6,66	6,60	6,54	6,48	6,42	6,36
$\Delta\sigma \cdot 10^2$, H/M	0,154	0,164	0,171	0,181	0,154	0,154	0,164	0,154

При подсчёте погрешностей поверхностного наяжения были учетны погрешности определения радиуса иглы.

4. Обработка данных

Построим график зависимости $\sigma(T)$

Из графика методом хи-квадрат найдем коэффициент наклона:

$$\frac{d\sigma}{dT} = -0.137 \text{ MH} \cdot \text{M/K} \tag{6}$$

$$\Delta \frac{d\sigma}{dT} = 0,0067 \text{ MH} \cdot \text{M/K} \tag{7}$$

Сравним с табличным:

$$\frac{d\sigma_t}{dT} = -0.154 \text{ MH} \cdot \text{M/K} \tag{8}$$

В целом значения сходятся, однако теоретическое значение вышло больше, чем полученное экспериментальное.

Теперь, зная все нужные значения, построим графики зависимостей $q(t)=-T\frac{d\sigma}{dT}$ и $\frac{U}{F}(T)=\sigma-T\frac{d\sigma}{dT}$. Видно, что в последнем графике значение поверхностной энергии на единицу площади почти не меняется.

5. Заключение

В работе эксперементально был измерен коэффициент поверхностного натяжения воды, с учетом известного коэффициента поверхностого натяжения спирта. Полученное значение совпадает с табличным по порядку величины, но не совпадает в пределах погрешности. Сильное влияние могло оказать низкая точность поправочного давления на глубине сосуда, неидеальность иглы.

Во чторой части была экспериментально установлена линейная зависимость коэффициента поверхностного натяжения от температуры.

Рис. 2: Зависимость коэффициента поверхностного натяжения от температуры

6. Список используемой литературы

- Гладун А. Д. Лабораторный практикум по общей физике. Термодинамика и молекулярная физика
 - Описание лабораторных работ на кафедре общей физики МФТИ

