

PMB2022

PATHOGEN MULTIOMICS AND BIOINFORMATICS Lisbon 2022

Module 1: Mapping Sequence Data

Sequencing through time...

Genome Sequencing: Ideal situation...

Genome Sequencing: the hard reality...

NGS Platforms: An overview ...

	illumına	ion torrent	PACIFIC BIOSCIENCES®	Oxford NANOPORE Technologies
Read Length (bp)	50-300	200-400	10000-40000	1Mbp
Output (Gb)	6000	0,05-1	0,5-1	5-40
Cost / Million bp (USD)	0,05-0,15	1	0,13-0,60	variable
Accuracy	99.9%	99.6%	87%	92-97%
Time per run	1-11d	2h	30min-20h	1min-48h

Sanger Cost per MB: 2400USD

SMRT sequencing

Next Generation Sequencing

Nanopore sequencing

Long read sequencing

- Accuracy

- Library preparation

- Costs

de Bruijn et al 2021

Illumina: Sequencing-by-synthesis

Figure 1-2-1 Pipeline of paired-end sequencing (www.illumina.com)

Two main approaches for handling reads...

De novo Assembly

Short / Long reads
Contig assembly
Scaffold assembly
Finished genome

Workflow

Four main analytical stages:

- Quality-control filter out reads/bases associated with poor basecall quality;
- Mapping map reads to a reference genome, obtain sample coverage at each position and read coordinates;
- Variant Calling identify variants existing between sequenced and reference genome, either SNPs or INDELs;
- Functional Annotation determine the functional impact of each variant, e.g., which gene is affected? Is the mutation synonymous or non-synonymous? impact at the peptide primary structure?

What storage format for Sequencing Reads: FASTA vs FASTQ

FASTA

Label Title Line Comment

>fig|282458.1.peg.1 Chromosomal replication initiator protein dnaA

MSEKEIWEKVLEIAQEKLSAVSYSTFLKDTELYTIKDGEAIVLSSIPFNANWLNQQYAEI
IQAILFDVVGYEVKPHFITTEELANYSNNETATPKEATKPSTETTEDNHVLGREQFNAHN
TFDTFVIGPGNRFPHAASLAVAEAPAKAYNPLFIYGGVGLGKTHLMHAIGHHVLDNNPDA
KVIYTSSEKFTNEFIKSIRDNEGEAFRERYRNIDVLLIDDIQFIQNKVQTQEEFFYTFNE
LHQNNKQIVISSDRPPKEIAQLEDRLRSRFEWGLIVDITPPDYETRMAILQKKIEEEKLD
IPPEALNYIANQIQSNIRELEGALTRLLAYSQLLGKPITTELTAEALKDIIQAPKSKKIT
IQDIQKIVGQYYNVRIEDFSAKKRTKSIAYPRQIAMYLSRELTDFSLPKIGEEFGGRDHT
TVIHAHEKISKDLKEDPIFKQEVENLEKEIRNV

Data Lines

FASTQ

ASCII encoded Phred-33 quality score for each nucleotide of the sequence read above. Example: the 3rd nucleotide in the bottom read has a quality (Phred33 Q) of 28. Check the table below. What about the 5th nucleotide of the same read?

Q	P_error	ASCII									
0	1.00000	33 !	11	0.07943	44 ,	22	0.00631	55 7	33	0.00050	66 B
1	0.79433	34 "	12	0.06310	45 -	23	0.00501	56 8	34	0.00040	67 C
2	0.63096	35 #	13	0.05012	46 .	24	0.00398	57 9	35	0.00032	68 D
3	0.50119	36 \$	14	0.03981	47 /	25	0.00316	58 :	36	0.00025	69 E
4	0.39811	37 %	15	0.03162	48 0	26	0.00251	59;	37	0.00020	70 F
5	0.31623	38 &	16	0.02512	49 1	27	0.00200	60 <	38	0.00016	71 G
6	0.25119	39 '	17	0.01995	50 2	28	0.00158	61 =	39	0.00013	72 H
7	0.19953	40 (18	0.01585	51 3	29	0.00126	62 >	40	0.00010	73 I
8	0.15849	41)	19	0.01259	52 4	30	0.00100	63 ?	41	0.00008	74 J
9	0.12589	42 *	20	0.01000	53 5	31	0.00079	64 @	42	0.00006	75 K
.0	0.10000	43 +	21	0.00794	54 6	32	0.00063	65 A			

What storage format for Sequencing Reads: FASTA vs FASTQ

Why do I get two FastQ files?

https://thesequencingcenter.com/knowledge-base/what-are-paired-end-reads/

Quality Control: Assessment

Objective:

- Assess overall sequencing quality and assess if sequencing metrics are within expected ranges;
- Remove base calls associated with low quality by removing or trimming sequencing reads;
- Taxonomical read QC did you sequence what you though you did?

Main/Most frequent problem: base quality deterioration along the read length

Quality Control: Assessment

How to assess sequencing metrics?

Software: FastQC, AfterQC, fastqp, HTSeq, etc.

FastQC – Java tool with both GUI and command-line as options.

Input: FastQ files
(or SAM/BAM files)

Output: sequencing metrics and plots

Basic Statistics

Per base sequence quality

Per sequence quality score

Quality Control: Assessment

How to assess sequencing metrics?

Software: FastQC, AfterQC, fastqp, HTSeq, etc.

FastQC – Java tool with both GUI and command-line as options.

Input: FastQ files (or SAM/BAM files)

Output: sequencing metrics and plots

Quality Control: Correction

How to correct, cut and filter out sequencing reads?

Software: Trimmomatic, FASTX, etc.

<u>Trimmomatic</u> – command-line Java tool capable of handling SE and PE reads.

Input: FastQ files.

Output: FastQ files with

trimmed/cut and surviving reads.

Trimmomatic can:

- Remove adapters;
- Remove leading and trailing low quality bases;
- Cut reads upon scanning at user defined sliding Windows when below a specified threshold;
- Remove reads when these don't meet a specified minimum length.

Quality Control: Taxonomical Read QC

Did I sequence what I thought I did? or Why doesn't it map? or Why does the assembly look strange?

Software: Kraken

Kraken – command-line tool that assigns reads to different taxonomical clades.

Input: FastQ files.

Output: Text Report.

0.89 28702 28702 U 0 unc	assified	3.65 137472 137472 U	0 unc	lassified
99.11 3210397 42095 - 1 ro	ot	96.35 3631172 7288 -	1 root	<u>.</u>
97.81 3168297 1864 - 131567	cellular organisms	96.16 3623815 2151 -	131567	cellular organisms
97.76 3166433 16142 D 2	Bacteria	96.10 3621664 10917 D	2	Bacteria
97.25 3150142 4158 P 1224	Proteobacteria	95.81 3610594 13835 P	1224	Proteobacteria
97.12 3145930 19183 C 1236	Gammaproteobacteria	95.43 3596429 40211 C	1236	Gammaproteobacteria
94.74 3068819 83719 O 91347	Enterobacterales	92.48 3485213 108814 O	91347	Enterobacterales
92.16 2985015 1245831 F 543	Enterobacteriaceae	89.53 3374249 342184 F	543	Enterobacteriaceae
53.46 1731479 124411 G 561	Escherichia	79.20 2984764 1375209 G	570	Klebsiella
49.60 1606565 1603919 S 562	Escherichia coli	38.86 1464425 1415727 S	573	Klebsiella pneumoniae

Mapping or Reference Assembly

Objective: Find the origin of a sequencing read providing a reference genome is known

Reference genome: Should be a high quality genome, ideally finished, the close as possible to the sequenced genome.

Software: Burrows-Wheeler Aligner (BWA), Bowtie2, HISAT2

Input: FastQ files.

Output: Mapped/Alignment File SAM/BAM file

Most mapping software implement the Burrows-Wheeler transformation algorithm which enables fast access to sequence data with an acceptable memory footprint.

	Execution time			1e	Memory usage			Accuracy				% Prop. paired reads				
Ins. (bp)	35	50	55	50	35	50	5.	50	35	50	55	50	35	50	55	50
RL (bp)	100	150	100	150	100	150	100	150	100	150	100	150	100	150	100	150
BWA	+	+	+	+	+	+	+	+	+++	+++	+++	+++	+++	+++	+++	+++
Bowtie2	++	++	++	++	+++	+++	++	++	+++	+++	+++	+++	++	++	+++	+++
HISAT2	+++	+++	+++	+++	+++	+++	+++	+++	++	++	++	++	+	+	+	+

"We conclude that there is not a single mapper that is ideal in all scenarios but rather the choice of alignment tool should be driven by the application and sequencing technology."

Keel et al 2018

The Burrows-Wheeler Transform

Reference compression:

(a) \$acaacg aacg\$ac acaacg\$ acaacg\$ acaacg\$→acg\$aca→gc\$aaac caacg\$a cg\$acaa g\$acaac

Searching for *aac* string:

Reconstructing original sequence:

The SAM Format...

The BAM files are a binary version of the SAM files (text format)

Both BAM and SAM files can be manipulated and viewed with SAMtools or Picard Tools

Variant Calling

Objective: Identify, list and store genomic variants, either SNPs or INDELs.

Software: SAMtools/BCFtools; Genome Analysis Toolkit (GATK), FreeBayes, LoFreq

Input: BAM/SAM files.

Output: VCF files

VCF Format

```
##fileformat=VCFv4.0
                                                                                Mandatory header lines
     ##fileDate=20100707
     ##source=VCFtools
                                                                                          Optional header lines (meta-data
     ##reference=NCBI36
     ##INFO=<ID=AA, Number=1, Type=String, Description="Ancestral Allel
                                                                                          about the annotations in the VCF body)
VCF header
     ##INFO=<ID=H2, Number=0, Type=Flag, Description="HapMap2 members ip">
     ##FORMAT=<ID=GT.Number=1.Type=String.Description="Genotype"
     ##FORMAT=<ID=GQ, Number=1, Type=Integer, Description="Genotype Quality (phred score)">
     ##FORMAT=<ID=GL, Number=3, Type=Float, Description="Likelixoods for RR, RA, AA genotypes (R=ref, A=alt)">
     ##FORMAT=<ID=DP, Number=1, Type=Integer, Description="Read Depth">
     ##ALT=<ID=DEL,Description="Deletion">
     ##INFO=<ID=SVTYPE, Number=1, Type=String, Description="Type of structural variant">
     ##INFO=<ID=END, Number=1, Type=Integer, Description="End position of the variant">
                                                                                                         Reference alleles (GT=0)
                                     QUAL FILTER INFO
     #CHROM POS ID
                        REF
                                                                         FORMAT
                                                                                     SAMPLE1
                                                                                              SAMPLE
                                                                                               0/0:29
                                          PASS
                                                                         GT:DP
                                                                                     1/2:13
Body
                                          PASS
                                                  H2; AA=T
                                                                                     0|1:100
                  rs1
                                                                         GT:G0
                                                                                              2/2:70
                                          PASS
                                                                         GT:GQ
                                                                                                         Alternate alleles (GT>0 is
            100
                                                   SVTYPE=DEL; END=300
                              <DEL>
                                          PASS
                                                                                      [/1:12:3 0/0:20
                                                                         GT:GO:DP
                                                                                                         an index to the ALT column)
                                                  Other event
    Deletion
                                                                            Phased data (G and C above
                 SNP
                                         Insertion
                                                                            are on the same chromosome)
                            Large SV
```

http://vcftools.sourceforge.net/VCF-poster.pdf

See full specs:

https://samtools.github.io/hts-specs/VCFv4.2.pdf

VCF Format

Format differences between variant callers - Examples

Finding allelic depth and filtering

<u>SAMTools</u>

NC000962_3 69871 . C T 225 . DP=23;VDB=0.641395;SGB=-0.69168;MQSB=0.537242;MQ0F=0;AC=2;AN=2;DP4=0,0,11,8;MQ=43 GT:PL 1/1:255,57,0

bcftools view --include 'QUAL>=20 && INFO/DP>=10 && (INFO/DP4[2]+INFO/DP4[3])/(sum(INFO/DP4))>=0.9'c

GATK

NC000962_3 69871 . C T 810

AC=1;AF=1.00;AN=1;BaseQRankSum=1.988;DP=24;Dels=0.00;FS=0.000;HaplotypeScore=0.9469;MLEAC=1;MLEAF=1.00;MQ=60.00;MQ0=0;MQRankSum=0.000;QD=33.75;ReadPosRankSum=1.592;SOR=0.353 GT:AD:DP:GQ:PL 1:1,23:24:99:840,0

bcftools view --include 'QUAL>=20 && FORMAT/DP>=10 && (FORMAT/AD[*:1])/(FORMAT/DP)>=0.9'

Freebayes

NC000962 3 69871 . C_T_656.091.

AB=0;ABP=0;AC=1;AF=1;AN=1<mark>AO=23;</mark>CIGAR=1X;DP=24 DPB=24;DPRA=0;EPP=3.10471;EPPR=5.18177;GTI=0;LEN=1;MEANALT=1;MQM=60;MQMR=60;NS=1;NU MAL

T=1;ODDS=151.07;PAIRED=0.956522;PAIREDR=0;PAO=0;PQA=0;PQR=0;PRO=0;QA=760;QR=14;RO=1;RPL=14;RPP=5.3706;RPPR=5.18177;RPR=9;RUN=1;SAF=12; SAP=3.10471;SAR=11;SRF=0;SRP=5.18177;SRR=1:TYPE=snp;technology.

illumina=1 GT:DP:AD:RO:QR:AO:QA:GL 1:24<mark>:</mark>1,23:<mark>1</mark>:14:23:760:-67.3027,0

bcftools view --include 'QUAL>=20 && FORMAT/DP>=10 && (FORMAT/AO)/(FORMAT/DP)>=0.9

LoFreq

NC000962_3 69871 . C T 732 PASS DP=24;AF=0.958333;SB=0 DP4=0,1,12,11

bcftools view --include 'QUAL>=20 && INFO/DP>=10 && (INFO/DP4[2]+INFO/DP4[3])/(sum(INFO/DP4))>=0.9'c

BAM and VCF Visualizatiom

Artemis intry - Militara - Anthenna Military - 💽 Anthenna Military - Militara - Anthenna Military - Militara - Milita m← 111 1 133200

Tablet

Functional Annotation

Objective: Annotate each variant with tis functional impact/consequence.

Software: SnpEff, GATK etc

Input: VCF files.

Output: Annotated VCF files

Genome	NC000962_3
Date	2021-06-17 01:39
SnpEff version	SnpEff 5.0e (build 2021-03-09 06:01), by Pablo Cingolani
Command line arguments	SnpEff -no-downstream -no-upstream NC000962_3 PT000033.filt.vcf
Warnings	124
Errors	0
Number of lines (input file)	1,597
Number of variants (before filter)	1,598
Number of not variants (i.e. reference equals alternative)	0
Number of variants processed (i.e. after filter and non-variants)	1,598
Number of known variants (i.e. non-empty ID)	0 (0%)
Number of multi-allelic VCF entries (i.e. more than two alleles)	1
Number of effects	16,074
Genome total length	4,411,532
Genome effective length	4,411,532
Variant rate	1 variant every 2,760 bases

Number of effects by functional class

Type (alphabetical order)	Count	Percent
MISSENSE	786	61.025%
NONSENSE	13	1.009%
SILENT	489	37.966%

Missense / Silent ratio: 1.6074

'Allele | Annotation | Annotation_Impact | Gene_Name | Gene_ID | Feature_Type | Feature_ID | Transcript_BioType | Rank | HGV S.c | HGVS.p | cDNA.pos / cDNA.length | CDS.pos / CDS.length | AA.pos / AA.length | Distance | ERRORS / WARNINGS / INFO' ">

ANN=G|missense_variant|MODERATE|katG|Rv1908c|transcript|Rv1908c|protein_coding|1/1|c.944G>C|p.Ser315Thr|944/2223|944/2223|315/740||