TD 4: Logique, ensembles

Exercice 1. Montrez les équivalences suivantes (les deux premières sont utiles):

- -P et (Q et $R) \equiv (P$ et Q) et R
- -P ou (Q ou $R) \equiv (P$ ou Q) ou R
- $-[(R \Rightarrow Q) \Leftrightarrow Q] \equiv R$
- $-[P \text{ ou } (\neg P \text{ et } Q)] \equiv (P \text{ ou } Q)$

Exercice 2. (Injection, surjection). Soit $f: E \to F$ et $g: F \to G$ deux applications.

- 1. Montrer que si $g \circ f$ est injective, alors f est injective.
- 2. Montrer que si $g \circ f$ est surjective, alors g est surjective.

Exercice 3. (Ensembles). Soient E et F deux ensembles et $f: E \to F$ une application.

1. Pour A et B des parties de E montrer que

$$f(A \cup B) = f(A) \cup f(B)$$
 et $f(A \cap B) \subset f(A) \cap f(B)$

Donner un contre-exemple à l'égalité dans la deuxième inclusion ci-dessus.

2. Pour A et B des parties de F montrer que

$$f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B) \ \text{ et } \ f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$$

Exercice 4. (Ensembles/injectivité) Soit E, F deux ensembles, $f: E \to F$ une application. Montrer les équivalences suivantes :

- 1. f est injective.
- 2. $\forall X \in \mathcal{P}(E), f^{-1}(f(X)) = X.$
- 3. $\forall X, Y \in \mathcal{P}(E), f(X \cap Y) = f(X) \cap f(Y).$
- 4. $\forall X, Y \in \mathcal{P}(E), (X \cap Y = \emptyset) \Rightarrow (f(X) \cap f(Y) = \emptyset).$
- 5. $\forall X, Y \in \mathcal{P}(E), Y \subset X \Rightarrow f(X \setminus Y) = f(X) \setminus f(Y)$.

Exercice 5. Soit $f: X \to Y$ une application. On note P(f,X) l'ensemble des $x \in X$ qui ne sont pas les seuls antécédents de leur image par f (P comme perte). Que signifie $P(f,X) = \emptyset$? Peut-on avoir P(f,X) = X? Comparer P(f,X) et $P(g \circ f,X)$ et exprimer le cas d'égalité.

Exercice 6. Soit $f: \mathbb{N}^2 \longrightarrow \mathbb{N}: (p,q) \mapsto 2^p(2q+1)$. Montrer que f est bijective. Expliquer ensuite comment construire une bijection de \mathbb{N}^n sur \mathbb{N} .