Интерференция лазерного излучения*

Иван Едигарьев Московский Физико-Технический Институт Факультет Общей и Прикладной Физики, 526т

Цель работы: исследовать зависимость видности интерференционной картины от угла β между плоскостями поляризации интерферирующих волн при нулевой разности хода, зависимость видности интерференционной картины от разности хода интерферирующих пучков для угла $\beta=0$. По результатам измерений следует оценить спектральные характеристики лазерного излучения: ширину спектра генерации и число генерируемых мод.

- 1. Исследуем зависимость видности интерференционной картины от угла β поворота первого поляроида при нулевой разности хода ($\nu_2 = 1$): включим блок питания фотодиода и измерим величины h_1, h_2, h_3, h_4 на экране осциллографа.
- 2. Исследуем зависимость видности от разности хода между пучками. Для этого установим первый поляроид в положение, в котором интерференционная картина видна наиболее чётко ($\beta=0^{\circ}, \nu_{3}=1$). Снимем зависимость величин $h_{1}, h_{2}, h_{3}, h_{4}$ от координаты x второго блока, начиная с минимального расстояния ($x=12\ cm$).
- 3. Рассчитаем коэффициент ν_3 . Построим графики $\nu_3(\cos(\beta))$ и $\nu_3(\cos(\beta)^2)$.

Легко видеть, что с точностью определяемой систематической ошибкой проведённых измерений теоретическая гипотеза о линейной зависимости показателя видности от $|cos(\beta)|$ выполняется.

4. Рассчитаем коэффициент ν_2 . Построим график зависимости видности $\nu_2(x)$ от координаты второго блока. Определим по графику расстояния

между максимумами, оценим расстояние L между зеркалами оптического резонатора лазера и межмодовое расстояние $\Delta \nu_m$.

* 4.5.2

$$L = (30 \pm 5) \text{ cm}$$

 $\Delta \nu_m = (5 \pm 1) \ 10^8 \text{ s}^{-1}$

5. Определим задержку $l_{1/2}$ (полуширину) на половине высоты главного максимума и рассчитаем диапазон частот $\Delta \nu_{\text{полн}}$, в котором происходит генерация продольных мод. Оценим число генерируемых лазером продольных мод.

$$l_{1/2} = (10 \pm 2) \text{ cm}$$
 $\Delta \nu_{\text{полн}} \approx \frac{0.6c}{l_1 1/2} = (1.8 \pm 0.4) \text{ s}^{-1}$ $n \approx (5 \pm 1)$

Стоит заметить, что все расчёты несут исключительно оценочный характер и верны только в границах обозначенных погрешностей.