总结

第十五讲. 最小二乘与投影

最小二乘(续): 拟合值与残差

模型:
$$\mathbf{Y}_{n\times 1} = X_{n\times p} \boldsymbol{\beta}_{p\times 1} + \boldsymbol{\varepsilon}_{n\times 1}$$
, $\boldsymbol{\varepsilon} \sim (0, \sigma^2 I_n), \boldsymbol{\varepsilon} \perp X$ 假设 X 列满秩,最小二乘法估 计: $\hat{\boldsymbol{\beta}} = \arg\min_{\boldsymbol{\beta}} \parallel \mathbf{Y} - X\boldsymbol{\beta} \parallel^2$ 正则方程 : $X'(\mathbf{Y} - X\boldsymbol{\beta}) = 0 \Rightarrow \hat{\boldsymbol{\beta}} = (X'X)^{-1} X'\mathbf{Y}$

- 拟合值: $\hat{\mathbf{Y}} = X\hat{\boldsymbol{\beta}} = X(X'X)^{-1}X'\mathbf{Y} = H\mathbf{Y}$ 其中 $H = X(X'X)^{-1}X' = P_v$, 也称为帽子矩阵(hat matrix)
- 残差: $\mathbf{e} = \mathbf{Y} \hat{\mathbf{Y}} = \mathbf{Y} X\hat{\boldsymbol{\beta}} = (I_n H)\mathbf{Y}$ (1) $X'\mathbf{e} = 0$, $\mathbf{e} \perp \hat{Y}$; (2) $\mathbf{E}(\mathbf{e} \mid X) = 0$, $\operatorname{var}(\mathbf{e} \mid X) = (I_n H)\sigma^2$
- 残差平方和: $RSS = ||\mathbf{e}||^2 = ||Y X\hat{\beta}||^2 = Y'(I_n H)Y$
- 取 $\hat{\sigma}^2 = \frac{1}{n-p} \sum_i e_i^2 = \frac{1}{n-p} \|\mathbf{e}\|^2 = \frac{\text{RSS}}{n-p}$ 称为 σ^2 的LS估计

最小二乘法: 从模型方程到拟合方程

模型方程	$Y = X\beta + \varepsilon$, $\varepsilon \sim (0, \sigma^2 I_n)$, $\varepsilon \perp \!\!\! \perp X$
最小二乘法	$\min_{\beta} \sum (y_i - x_i' \boldsymbol{\beta})^2 = \min_{\beta} \ \mathbf{Y} - X \boldsymbol{\beta} \ ^2$
正则方程	$X'(\mathbf{Y} - X\hat{\boldsymbol{\beta}}) = 0$
LS估计	$\hat{\boldsymbol{\beta}} = (X'X)^{-1}X'\mathbf{Y}$
拟合值 / 投影	$\hat{\mathbf{Y}} = X\hat{\boldsymbol{\beta}} = X(X'X)^{-1}X'\mathbf{Y} = \mathbf{P}_X\mathbf{Y}$
残差	$\mathbf{e} = \mathbf{Y} - \hat{\mathbf{Y}} = \mathbf{Y} - X\hat{\boldsymbol{\beta}} = (I_n - H)\mathbf{Y}$
残差平方和	$RSS = \parallel \mathbf{e} \parallel^2 = Y'(I_n - H)Y$
误差方差估计	$\hat{\sigma}^2 = \frac{RSS}{}$
	n-p
拟合方程	V VÔ (0 2/1 II) + V
/正交分解	$Y = X\hat{\boldsymbol{\beta}} + \mathbf{e}, \ \mathbf{e} \sim (0, \sigma^2(I_n - H)), \mathbf{e} \perp X$

利用最小二乘法求解LS估计

记设计阵 $X = (\mathbf{x}_0 \equiv \mathbf{1}, \mathbf{x}_1, ..., \mathbf{x}_{p-1})$, 即X各列记为 $\mathbf{x}_0, \mathbf{x}_1, ..., \mathbf{x}_{p-1}$

模型:
$$Y = X\beta + \varepsilon = \mathbf{x}_0\beta_0 + ... + \mathbf{x}_{p-1}\beta_{p-1} + \varepsilon$$
, $\varepsilon \sim (0, \sigma^2 I_n), \varepsilon \perp X$

注意到 $X\beta = \mathbf{x}_0\beta_0 + ... + \mathbf{x}_{p-1}\beta_{p-1}$ 为X各列向量的线性组合,

最小二乘
$$\min_{\beta} \|Y - X\beta\|^2 \Leftrightarrow \min_{u \in L(X)} \|Y - u\|^2$$

定理8(第七讲): 记
$$\hat{\mathbf{Y}} = \mathbf{P}_{\mathbf{X}} \mathbf{Y} \in \mathbf{L}(\mathbf{X})$$
 为 \mathbf{Y} 在 $\mathbf{L}(\mathbf{X})$ 上的投影,则 $\|\mathbf{Y} - \hat{\mathbf{Y}}\|^2 = \min_{\mathbf{u} \in \mathbf{L}(\mathbf{X})} \|\mathbf{Y} - \mathbf{u}\|^2$

1

2

 \hat{Y} 作为最优的X各列的线性组合, $\hat{Y} = X \hat{\beta}$,其组合系数 $\hat{\beta}$ 即为LS解,事实上:

由
$$\hat{Y} = P_X Y = X(X'X)^{-1}X'Y = X\underbrace{\{(X'X)^{-1}X'Y\}}_{},$$
所以 β 的最小二乘估计 $\hat{\beta} = (X'X)^{-1}X'Y$

注: 从解方程的观点来看:

$$Y = X\beta$$
一般无解 (因为 $n \ge p$,一般 $Y \notin L(X)$),

但

$$\hat{Y} = X\beta$$
有解 (因为 $\hat{Y} \in L(X)$),

而且当X列满秩时解唯一

(若
$$\hat{\mathbf{Y}} = \mathbf{X}\boldsymbol{\beta} = \mathbf{X}\boldsymbol{\gamma}$$
,则 $\mathbf{X}(\boldsymbol{\beta} - \boldsymbol{\gamma}) = 0$,因为 \mathbf{X} 列满秩,则 $\boldsymbol{\beta} = \boldsymbol{\gamma}$)

5

拟合值向量 $\hat{Y} = X\hat{\beta} = P_x Y$ 即投影

残差向量 $e = Y - \hat{Y} = (I - P_X)Y \rightarrow Y \in L(X)^{\perp}$ 上的投影,

正交分解: $\mathbf{Y} = \hat{\mathbf{Y}} \oplus \mathbf{e}, \quad \mathbf{e} \perp \hat{\mathbf{Y}}$

拟合优度: 复相关系数平方R²

 $Y = \hat{Y} \oplus e$ (正交分解, $e \perp \hat{Y}$)

因为X的第一列为1

$$\Rightarrow$$
 Y $-1\overline{Y} = (\hat{Y} - 1\overline{Y}) \oplus e \quad (e \perp \hat{Y} - 1\overline{Y})$

$$\Rightarrow \parallel \mathbf{Y} - \mathbf{1}\overline{Y} \parallel^2 = \parallel \hat{\mathbf{Y}} - \mathbf{1}\overline{Y} \parallel^2 + \parallel \mathbf{e} \parallel^2$$

记为
$$SS_y = SS_{\hat{v}} + RSS$$

或
$$SS_{\stackrel{.}{\boxtimes}} = SS_{\square} + RSS$$

定义: 复相关系数平方
$$R^2 = \frac{SS_{\hat{Y}}}{SS_Y} = \frac{\|\hat{Y} - \mathbf{1}\overline{Y}\|^2}{\|Y - \mathbf{1}\overline{Y}\|^2}$$

Adjusted R - squared:
$$\overline{R}^2 = 1 - (1 - R^2) \frac{n-1}{n-p}$$

命题. 复相关平方为响应向量Y与拟合值向量 \hat{Y} 的相关系数的平方,即 $R^2 = [r_{v\hat{v}}]^2$

$$\Rightarrow [r_{Y\hat{Y}}]^2 = \frac{\parallel \hat{Y} - \overline{Y}\mathbf{1} \parallel^2}{\parallel Y - \overline{Y}\mathbf{1} \parallel^2} = R^2$$

6

部分回归系数估计的表达

为了求解LS估计,可先投影得到投影 $\hat{\mathbf{Y}}$,其 \mathbf{X} 后面的系数(唯一确定)即是 $\hat{\boldsymbol{\beta}}$ 。由于 $\hat{\mathbf{Y}} = \mathbf{X}$ $\hat{\boldsymbol{\beta}} = \sum_{j=0}^{p-1} \mathbf{x}_j \hat{\boldsymbol{\beta}}_j$, $\mathbf{x}_j (X$ 的第j列)的系数即为 $\hat{\boldsymbol{\beta}}_j$

命题1: 划分
$$X = (X_1, X_2), \beta = \begin{pmatrix} \beta_{(1)} \\ \beta_{(2)} \end{pmatrix} \begin{pmatrix} (p-q) \times 1 \\ q \times 1 \end{pmatrix}$$
,设**1**在 X_1 中。
$$Y = X\beta + \varepsilon = X_1\beta_{(1)} + X_2\beta_{(2)} + \varepsilon,$$
 令 $X_2^{\perp} = X_2 - P_{X_1}X_2, 则\beta_{(2)}$ 的LS估计为 $\hat{\beta}_{(2)} = (X_2^{\perp} X_2^{\perp})^{-1} X_2^{\perp} Y$ 且 $var(\hat{\beta}_{(2)} | X) = \sigma^2 (X_2^{\perp} X_2^{\perp})^{-1}$

证明1: 利用分块矩阵求逆公式(上节课)。

9

证明2:

令 $X_2^{\perp}=X_2-P_{X_1}X_2$ 是 X_2 的正交化,则 $\hat{Y}=P_XY=P_{X_1}Y+P_{X_2^{\perp}}Y$,其中 X_2 的系数,即为 $\hat{eta}_{(2)}$.

曲
$$\hat{\mathbf{Y}} = \mathbf{P}_{\mathbf{X}_{1}} \mathbf{Y} + \mathbf{P}_{\mathbf{X}_{2}^{\perp}} \mathbf{Y} = \mathbf{X}_{1} (\mathbf{X}_{1}^{\; '}\mathbf{X}_{1}^{\; })^{-1} \mathbf{X}_{1} \mathbf{Y} + \mathbf{X}_{2}^{\perp} (\mathbf{X}_{2}^{\perp '}\mathbf{X}_{2}^{\perp})^{-1} \mathbf{X}_{2}^{\perp '}\mathbf{Y}$$

$$= \mathbf{X}_{1} (\mathbf{X}_{1}^{\; '}\mathbf{X}_{1}^{\; })^{-1} \mathbf{X}_{1} \mathbf{Y} + \left\{ \mathbf{X}_{2} - \mathbf{X}_{1} (\mathbf{X}_{1}^{\; '}\mathbf{X}_{1}^{\; })^{-1} \mathbf{X}_{1} \mathbf{X}_{2} \right\} (\mathbf{X}_{2}^{\perp '}\mathbf{X}_{2}^{\perp})^{-1} \mathbf{X}_{2}^{\perp '}\mathbf{Y}$$

$$= \mathbf{X}_{1} \underbrace{\left\{ (\mathbf{X}_{1}^{\; '}\mathbf{X}_{1}^{\; })^{-1} \mathbf{X}_{1} \mathbf{Y} - (\mathbf{X}_{1}^{\; '}\mathbf{X}_{1}^{\; })^{-1} \mathbf{X}_{1} \mathbf{X}_{2} (\mathbf{X}_{2}^{\perp '}\mathbf{X}_{2}^{\perp})^{-1} \mathbf{X}_{2}^{\perp '}\mathbf{Y} \right\}} + \mathbf{X}_{2} \underbrace{(\mathbf{X}_{2}^{\perp '}\mathbf{X}_{2}^{\perp})^{-1} \mathbf{X}_{2}^{\perp '}\mathbf{Y}}$$

$$= \mathbf{X}_{1} \underbrace{\hat{\boldsymbol{\beta}}_{(1)} + \mathbf{X}_{2} \hat{\boldsymbol{\beta}}_{(2)}}_{(2)} \quad , \quad \text{Ff } \mathbf{U} \hat{\boldsymbol{\beta}}_{(2)} = (\mathbf{X}_{2}^{\perp '}\mathbf{X}_{2}^{\perp})^{-1} \mathbf{X}_{2}^{\perp '}\mathbf{Y}}$$

10

证明3: 为了求解 $\beta_{(2)}$ 的LS估计,分解 $X_2 = X_2^{\perp} + P_{X_1} X_2$,改写模型:

$$\begin{split} \mathbf{Y} &= \mathbf{X}_{1}\boldsymbol{\beta}_{(1)} + \mathbf{X}_{2}\boldsymbol{\beta}_{(2)} + \boldsymbol{\varepsilon} = \mathbf{X}_{1}\boldsymbol{\beta}_{(1)} + (\mathbf{X}_{2}^{\perp} + \mathbf{P}_{\mathbf{X}_{1}}\mathbf{X}_{2})\boldsymbol{\beta}_{(2)} + \boldsymbol{\varepsilon} \\ &= \mathbf{X}_{1}\Big[\boldsymbol{\beta}_{(1)} + (\mathbf{X}_{1}^{'}\mathbf{X}_{1})^{-1}\mathbf{X}_{1}^{'}\mathbf{X}_{2}\boldsymbol{\beta}_{(2)}\Big] + \mathbf{X}_{2}^{\perp}\boldsymbol{\beta}_{(2)} + \boldsymbol{\varepsilon} \\ & \diamondsuit \boldsymbol{\beta}_{(1)}^{*} = \boldsymbol{\beta}_{(1)} + (\mathbf{X}_{1}^{'}\mathbf{X}_{1})^{-1}\mathbf{X}_{1}^{'}\mathbf{X}_{2}\boldsymbol{\beta}_{(2)}, \quad \ \,$$
模型等价地表示为:
$$\mathbf{Y} = \mathbf{X}_{1}\boldsymbol{\beta}_{(1)}^{*} + \mathbf{X}_{2}^{\perp}\boldsymbol{\beta}_{(2)} + \boldsymbol{\varepsilon} = \mathbf{X}^{*}\boldsymbol{\beta}^{*} + \boldsymbol{\varepsilon} \end{split}$$

- (1) 由 $\hat{\mathbf{Y}} = \mathbf{P}_{\mathbf{X}}\mathbf{Y} = \mathbf{P}_{\mathbf{X}_{1}}\mathbf{Y} + \mathbf{P}_{\mathbf{X}_{2}^{\perp}}\mathbf{Y} = \mathbf{X}_{1}(\mathbf{X}_{1}'\mathbf{X}_{1})^{-1}\mathbf{X}_{1}'\mathbf{Y} + \mathbf{X}_{2}^{\perp}(\mathbf{X}_{2}^{\perp}'\mathbf{X}_{2}^{\perp})^{-1}\mathbf{X}_{2}^{\perp}'\mathbf{Y}$ 以为 $\hat{\boldsymbol{\beta}}_{(2)}$,或更简单地
- (2) 由于X*'X*是对角分块矩阵

$$\begin{pmatrix} \hat{\beta}_{(1)}^* \\ \hat{\beta}_{(2)} \end{pmatrix} = (X^* ' X^*)^{-1} X^* ' Y = \begin{pmatrix} X_1 ' X_1 & 0 \\ 0 & X_2^{\perp} ' X_2^{\perp} \end{pmatrix}^{-1} \begin{pmatrix} X_1 ' Y \\ X_2^{\perp} ' Y \end{pmatrix} = \begin{pmatrix} (X_1 ' X_1)^{-1} X_1 ' Y \\ (X_2^{\perp} ' X_2^{\perp})^{-1} X_2^{\perp} ' Y \end{pmatrix}$$

注**1:** $P_{X_2^{\perp}}Y = X_2^{\perp}\hat{\boldsymbol{\beta}}_{(2)}$ 可看作是 X_2 对Ŷ的单独的贡献。 比如检验 $H0: \boldsymbol{\beta}_{(2)} = 0$,将主要依据 $\|X_2^{\perp}\hat{\boldsymbol{\beta}}_{(2)}\|^2$ 的大小,F检验 $\infty \|X_2^{\perp}\hat{\boldsymbol{\beta}}_{(2)}\|^2$ /RSS

注2: 设1在 X_1 中, $Y - 1\overline{Y} = (\hat{Y} - 1\overline{Y}) \oplus e = (X_1 \hat{\beta}_{(1)}^* - 1\overline{Y}) \oplus X_2^{\perp} \hat{\beta}_{(2)} \oplus e$ $\| Y - 1\overline{Y} \|^2 = \| \hat{Y} - 1\overline{Y} \|^2 + RSS = \| X_1 \hat{\beta}_{(1)}^* - 1\overline{Y} \|^2 + \| X_2^{\perp} \hat{\beta}_{(2)} \|^2 + RSS$

注3: 若 X_1 ' $X_2 = \mathbf{0}$ 则 $\hat{\beta}_{(1)} = (X_1$ ' X_1) $^{-1}X_1$ 'Y, $\hat{\beta}_{(2)} = (X_2$ ' X_2) $^{-1}X_2$ 'Y 若 $X = (x_0, x_1,, x_{p-1})$ 的各列正交,则 $\hat{\beta}_k = (x_k$ ' x_k) $^{-1}x_k$ 'Y

总结: $X_2^{\perp} = X_2 - P_{X_1} X_2$

模型: $Y = X_1 \beta_{(1)} + X_2 \beta_{(2)} + \varepsilon = X_1 \beta_{(1)}^* + X_2^{\perp} \beta_{(2)} + \varepsilon, X_1' X_2^{\perp} = 0$

$$Y = \begin{pmatrix} X_1 \beta_{(1)}^* & X_2^{\perp} \beta_{(2)} \end{pmatrix} \mathcal{E}$$

拟合方程: $Y = \hat{Y} \oplus e = X_1 \hat{\beta}_{(1)}^* \oplus X_2^{\perp} \hat{\beta}_{(2)} \oplus e$

$$Y = \begin{pmatrix} X_1 \hat{\beta}_{(1)}^* & X_2^{\perp} \hat{\beta}_{(2)} \end{pmatrix} e$$

特例1. 单个回归系数的LS估计

命题2.令 $X_{(-k)}$ 为X除了第k列 \mathbf{x}_k 之外的其它列组成的矩阵, $X = (X_{(-k)}, \mathbf{x}_k), \quad \diamondsuit \mathbf{x}_k^{\perp} = \mathbf{x}_k - \hat{\mathbf{x}}_k, \hat{\mathbf{x}}_k = \mathbf{P}_{X_{(-k)}} \mathbf{x}_k, \quad \text{则}$ $\hat{\boldsymbol{\beta}}_k = (\mathbf{x}_k^{\perp} \mathbf{x}_k^{\perp})^{-1} \mathbf{x}_k^{\perp} Y = s_{x_k^{\perp} y} / s_{x_k^{\perp} x_k^{\perp}}, \quad \text{且var}(\hat{\boldsymbol{\beta}}_k \mid X) = \sigma^2 (\mathbf{x}_k^{\perp} \mathbf{x}_k^{\perp})^{-1}$

注1:
$$\hat{\beta}_k = (\mathbf{x}_k^{\perp} \mathbf{x}_k^{\perp})^{-1} \mathbf{x}_k^{\perp} \mathbf{Y} \propto \mathbf{r}_{\mathbf{y}\mathbf{x}_k \mathbf{z} \in \mathbf{x}}$$
 (偏相关系数),

注2:
$$\operatorname{var}(\hat{\beta}_{k} \mid X) = \frac{\sigma^{2}}{\|\mathbf{x}_{k}^{\perp}\|^{2}} = \frac{1}{1 - R_{k}^{2}} \times \frac{\sigma^{2}}{\|\mathbf{x}_{k} - \mathbf{1}\overline{\mathbf{x}}_{k}\|^{2}} \ge \frac{\sigma^{2}}{\|\mathbf{x}_{k} - \mathbf{1}\overline{\mathbf{x}}_{k}\|^{2}}$$

其中
$$\frac{1}{1-R_k^2} = \frac{\|\mathbf{x}_k - \mathbf{1}\overline{\mathbf{x}}_k\|^2}{\|\mathbf{x}_k^\perp\|^2}$$
称为方差扩大因子(*VIF*, variance inflation factor),

$$R_k^2 = 1 - \frac{\|\mathbf{x}_k^{\perp}\|^2}{\|\mathbf{x}_k - \mathbf{1}\overline{\mathbf{x}}_k\|^2} = \frac{\|\hat{\mathbf{x}}_k - \mathbf{1}\overline{\mathbf{x}}_k\|^2}{\|\mathbf{x}_k - \mathbf{1}\overline{\mathbf{x}}_k\|^2},$$
为 \mathbf{x}_k 与其它自变量的复相关系数平方.