Licence 3 Université de Paris VIII

Licence mathmatiques

Introduction à la cryptographie

Travaux dirigés n° 8: Diffie-Hellmann

S. Mesnager

Exercice 1.

- a) Trouver l'ordre de 2 modulo 3; l'ordre de 2 modulo 5; l'ordre de 7 modulo 10; l'ordre de 9 modulo 10.
- b) Montrer qu'il n'existe aucun entier k tel que $2^k \equiv 1 \pmod{10}$. Expliquer.

Exercice 2

- 1. Soit n dont l'écriture en base 10 est donnée par $n = \sum_{i=0}^k b_i 10^i$. Donner une expression de $n \mod 11$ et en déduire que la valeur de $n \mod 11$ est la somme alternée des chiffres de n, par exemple $1234 \mod 11 = 4 3 + 2 1 = 2$.
- 2. Vérifier que 101 est un nombre premier et trouver un procédé similaire pour calculer le reste d'un entier modulo 101. Calculer 1234 mod 101.
- 3. Calculer $2^{11} \mod 101$ et $18^{23} \mod 101$.

Exercice 3.

- 1. Vérifier que 2 est un générateur du groupe multiplicatif ($\mathbb{F}_{11}^*, \times$).
- 2. Trouver le logarithme discret de 6 en base 2 modulo 11.
- 3. Quel est le secret commun qu'établissent deux correspondants A et B qui utilisent le protocole de DIFFIE-HELLMANN avec p=11, g=2 et s'ils choisissent respectivement $X_A=7$ et $X_B=8$ comme paramètre privé.

Exercice 4.

- 1. Vérifier que 2 est un générateur du groupe multiplicatif $(\mathbb{F}_{101}^*, \times)$ (n'effectuer que deux exponentiations).
- 2. Deux correspondants A et B qui utilisent le chiffrement ElGamal avec p=101, g=2. La clé privée de A est $X_A=17$. Quelle est sa clé publique?

La clé privée de B est $X_B = 25$. Quelle est sa clé publique?

3. A tire au hasard la valeur k = 41. Quel est l'entête du message que A transmettra à B. Quelle est la valeur de la clé de session?

Exercice 5. (méthode de POHLIG-HELLMAN)

Dans cet exercice, les entiers sont considérés modulo p=31. L'ordre du groupe multiplicatif $(\mathbb{F}_{31}^*,\times)$ est $31-1=30=2\times3\times5$.

- 1. Vérifier que 3 est un élément générateur du groupe multiplicatif ($\mathbb{Z}/31\mathbb{Z}^*,\times).$
- 2. Montrer que $\alpha_1 = 3^{15}$ est d'ordre 2, que $\alpha_2 = 3^{10}$ est d'ordre 3 et que $\alpha_3 = 3^6$ est d'ordre 5
- 3. On veut déterminer x, le logarithme discret de y=17 en base 3. Calculer $y_1=17^{15}$, $y_2=17^{10}$ et $y_3=17^6$. Trouver x_1 tel que $y_1=\alpha_1^{x_1}$, x_2 tel que $y_2=\alpha_2^{x_2}$ et x_3 tel que $y_3=\alpha_3^{x_3}$.

Combien d'opérations au maximum sont-elles nécessaires pour trouver les x_i ?

vérifier que
$$\begin{cases} x \equiv x_1 \pmod{2} \\ x \equiv x_2 \pmod{3} \\ x \equiv x_3 \pmod{5} \end{cases}$$

En déduire la valeur de x.

4. Quelle condition doit satisfaire le nombre premier p pour que cette méthode ne soit pas applicable?