

Continuous Assessment Test - II - May 2023

: B.Tech (ECE/ECM)	Semester	: Winter 2022-23
: Circuit Theory	Code	: BECE203L
	Slot	: A1+TA1+TAA1
: Dr. Niraj Kumar	Class Nbr(s)	: C112022232300112
Dr. Anith Nelleri	CO	CH2022232300113
Dr M.Saranya Nair		CH2022232300114
Dr. Kalaivanan K	200	CH2022232300115
Prof. Hemavathy S	P	CH2022232300119
: 90 Minutes	Max. Marks	: 50

Answer ALL the questions

Question Description

Marks

Determine the branch voltages, currents and the loop equations using equilibrium I equations for the network shown in Fig.1 using a tie-set schedule. Consider the branches 1,2,3 and 6 as twigs for the design of the tree.

Fig. 1

Draw the oriented graph of the circuit shown in Fig.2. Determine the number of tree, links and incidence matrix. Also draw all the possible trees of the graph.

[8]

Calculate the Y-parameters of the two-port network shown in Fig.3.

Fig.3

Consider a two-port network as shown in Fig. 4, whose h-parameters are as follows: $h_{11} = 500$ ohm, $h_{12} = 1.5 \times 10^{-3}$, $h_{21} = 75$, and $h_{22} = 15$ mS. Determine the value of V_2 and I_2 .

Fig. 4

The two port networks of Fig. 5(a) and Fig. 5(b) are connected in series. Determine the admittance parameters for the series connection by first finding the z parameters of the individual networks.

Continuous Assessment Test - II -May 2023

eg-	Terral (ISCE)	Semester	: Winter 2022-23
Programme	B.Tech (ECE)	Code	: BECE203L
Course	Circuit Theory	Slot	: A2+TA2+TAA2
Faculty	: Dr. ASHISH KUMAR Dr. KRITHIKA ALIAS ANBU DEVI M Prof. SRINIVASAN R Dr. NIRAJ KUMAR Dr. USHA RANI S Dr. SARANYA NAIR M : 90 Minutes	Class Nbr(s) Max. Marks	CH2022232300116 CH2022232300117 CH2022232300118 CH2022232300120 CH2022232300121 CH2022232300122

Answer ALL the questions

Sub.

Question Description

Marks

[8]

Draw the directed graph. Determine and draw the number of all possible trees from the given incidence matrix.

$$\begin{bmatrix} -1 & 0 & 0 & 0 & +1 & 0 & +1 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 & -1 & +1 \\ 0 & 0 & -1 & -1 & 0 & -1 & 0 & -1 \\ 0 & 0 & 0 & 0 & -1 & +1 & 0 & 0 \\ +1 & +1 & +1 & +1 & 0 & 0 & 0 & 0 \end{bmatrix}$$

For the resistive network shown in Fig.1, write a cut-set schedule and equilibrium equations on voltage basis. Hence obtain values of branch voltages and branch currents.

Calculate the incoming currents from port 1 (1) and port 2 (1) in the circuit of Fig.2.

$$2 \underbrace{\frac{2 \Omega}{1}}_{0} \underbrace{\frac{1}{1}}_{0} \underbrace{\frac{2 \Omega}{1}}_{0} \underbrace{\frac{1}{1}}_{0} \underbrace{\frac{1}{1}}_{0$$

Fig.2

Consider the two-port network shown in Fig. 3, determine the following.

(i) h11, (ii) h12, (iii) g21, (iv) g22

Fig. 3

A two-port network with Z-parameters ($Z_{11} = 25 \Omega$, $Z_{12} = 20 \Omega$, $Z_{21} = 5 \Omega$, $Z_{22} = 10 \Omega$) is connected in parallel with another network with its Z parameters ($Z_{11} = 50 \Omega$, $Z_{12} = 25 \Omega$, $Z_{21} = 25 \Omega$, $Z_{22} = 30 \Omega$). Find the Admittance (Y) parameters of the overall network.

Total Marks

[50]

[10]

666