

Inleiding kennisdeling productie 2022

Jink Gude

Wat is technologie

- Zuiveringstechnologie realiseert waterkwaliteitsverandering tussen bronwater en onze bedrijfsnormen (streefwaarden)
- Strategie en onderzoek rondom technologie is het up-to-date houden van de gereedschapskist voor het PWN productiesysteem om (snel) in te kunnen spelen op:
 - Verandering in bronkwaliteit
 - Chloride
 - Antropogene stoffen
 - Capaciteitsuitbreiding
 - Verduurzaming productiemiddelen

Vaste onderzoekspartners: PWNT, KWR, Wetsus

Technologie PWN tijdlijn

2014 - 2018

- Alle focus PWNT en groot deel capaciteit procestechnologen op Andijk 3
- Gevolg verwaarlozing algehele productiesysteemkennis PWN

2018

- Andijk 1 bedrijfsonzeker en akkoord op renovatie
- Andijk 3 functioneert niet: capaciteit, waterkwaliteit en reststroom
- → Besluit renovatie Andijk 1

2019

- Procestechnische analyse PWN productiesysteem
- → Onderzoek coagulatie voor Ceramac

Heden

- Succesvolle renovatie Andijk 1
- (Tijdelijk) productiesysteem op 'orde'

Uitdagingen productiesysteem PWN

- Leveringszekerheid
 - Toenemende drinkwatervraag
 - Van 5% naar 10% bruto productiecapaciteit
 - Levensduur productielocaties:
 - Voorzuivering PS Andijk einde levensduur in 2035
- Waterkwaliteit
 - Chloride
 - Antropogene stoffen waaronder PFAS
 - Nauwkeurigere analyses
 - Strengere normen
 - Biologische stabiliteit
- Gecommitteerd aan Parijsakkoord
 - 50% reductie van CO₂ uitstoot in 2030
 - Meer circulair

Technologie onderzoeksprojecten

(waarbij technologieverandering in de scope zit)

PWN lead

- Masterplan Andijk
- Uitbreiding WPJ
- Uitbreiding Heemskerk
- Coagulatie voor Ceramac
- PS Overveen
- Brakwater Haarlemmermeer
- WAAG

PWNT lead

- Biologische stabiliteit
- X
- NF

korte termijn

middellange termijn

middellange termijn

korte termijn

lange termijn

lange termijn

lange termijn

Technologie Organisatie PWN

Projecten

Alles op garanties en boetes op iuitloop

Kan dat wel in deze markt??

- Wij garanties en bonus op tijdig opleveren
 - Vertrouwen en bouwen op eigen expertise

Coagulatie voor Ceramac

Aanleiding project

Chloridetoevoeging in de SIX

- Toevoeging 45 en 55 mg/L chloride
- IJsselmeer +/-110 mg/L maar laatste jaren >125 mg/L
- Wettelijk 150 mg/L

Reststroom

- Regeneraatstroom uit de SIX zeer hoog chloride
- Organische en anorganische vervuiling
- Tijdelijk vergunde infiltratie
- Putverstopping dus voorbehandelen

Capaciteit PSA3

- Ontwerp 5000 m³ in 2014
- Constructieproblemen van C192 naar C90
- Huidige productie winter 1100 m³/h en in de zomer 1550 m³/h

Voorgestelde alternatieve oplossing

Het vervangen van het ionenwisselingproces door een **coagulatieproces** zoveel mogelijk ingepast in de bestaande PSA3 installatie.

- Beperken chloride toevoeging bij zuivering (FeCISO₄ ipv NaCI)
- Eenzelfde waterkwaliteit (DOC en UVT₂₅₄) maar geen sulfaat en nitraatverwijdering
- Mogelijk fluxverhoging en stabiele bedrijfsvoering keramische membraanfiltratie zoals gezien bij ILCA demo 2019
- Terug naar bekende reststroom met bekende chemicaliën

Resultaten waterkwaliteit CVC en SIX

	Unit	Ruw	Six-PSA	CM PSA	Six-pi	Coa- eff	C1-eff
		n=4			n=4	n=8	n=8
Chloride	mg/L	121	167	167	202	134	134
Sulfaat	mg/L	57	12	12	2	100	100
DOC	mg C/L	5,2	3,2	2,3	2,55	2,1	2,4
UV-t	%	77	92	93	92	93	90
Natrium	mg/L	84	88	89		83	102
HCO ₃	mg/L	129	114	112	74		
рН	-	7,8		8,0	7,6	6,4	7,9
Mangaan	ug/L	30	57	34	28	57	30
NO_3	mg/L	1,1			0,6		

Uitgelicht

- Chloride: 134 mg/L i.p.v. 167 mg/L
- Sulfaat: 100 mg/L ipv 12 mg/L
- DOC: 2,4 mg/L ipv 2,3 mg/L
- UVT:
 - Bij volledige sedementatie conform SIX-CM PSA
 - Bij gedeeltelijke sedimentatie 90%-92% ipv 93%
 - Oorzaak UVT variatie: desorptie
 - pH verhoging met vlokken resulteert in daling UV-t en stijging DOC

Waterkwaliteit (2)

Organische stof karakterisering influent CM

 Vergelijkbaar verwijderingsrendement DOC tussen SIX en Coagulatie met twee verschillen:

Biopolymeren worden:

- niet verwijderd in SIX
- wel ingevangen door coagulatie
- relatie biopolymeren en membraanfouling / TMP!
- Building blocks beter verwijderd door SIX. Relatie tot biologische stabiliteit?

Advies: studie naar effecten biologische stabiliteit meenemen

Resultaten operatie Andijk 3 en CVC Puur water & natuur

Trans Membrane Pressure (TMP)

 Testen in groen zeer stabiele en lage TMP op hogere flux in vergelijking tot PSA3, andere testen instabiele en lijken niet haalbaar

Voortgang

- Fase 1: proof of concept in proevenloods (succes)
- Fase 2: duurproef met C12 in proevenloods (succes)
- Fase 3: Demo gestart begin 2022 straat 6 en MF10 (voorlopig succes)
- Eind dit jaar beslissen over investering in o.a. CVC of reststromen project en daarmee de toekomst van PSA3

Pilot WPJ uitbreiding

Bestaand WPJ

- In bedrijf sinds 1981, ontwerpcapaciteit 14.400 m³/h, reele capaciteit max. 9000 m³/h
- Processtappen:
 - Trommelzeven, 200 μm
 - Coagulatie d.m.v. FeCl₃, c.a. 14 26 mg Fe/l
 - Flocculatie 15 min ontwerp
 - Lamellenseparators (1,6 m³/ m²/h ontwerp → 0,9 m³/ m²/h reeel)
 - Opwaartse zandfiltratie 20 m/h
 - Slibverwerking in bezinkvijvers en slibdroogbedden

		WPJ	WPJ	WPJ
productie		14000	9000	6000
aantal straten		6	6	6
totaal productie	[m3/h]	2333,333	1500	1000
Surface load	[m/h]	1,62	1,04	0,70
Verblijftijd flocculatie	[min]	14,91	23,20	34,80
Filtratiesnelheid	m/h	20	12	9

PWN system en WPJ gebruikers

- Voorgezuiverd water t.b.v. drinkwaterproductie:
 - PWN
 - UF/HF t.b.v. ontharding
 - UV/H2O2 t.b.v. duininfiltratie
 - UV/H2O2–AKF t.b.v. (back-up) PSA
 - Waternet
 - Infiltratiewater (direct?)
- 2. Industrie water:
 - Bestaande WRK contractanten (Tata, CvG)
 - Nieuwe klanten?

2. Waterkwaliteitseisen

Parameter	Units	Target new extension	WPJ actual (average) 2000 – 2020
Total suspended solids	mg/l	< 0.1	0.01
Turbidity	FTE	< 0.15	0.03
DOC	mg/l C	<3	3.2
UV-Transmissie 254	%	> 89%	85%
Iron	μg/l Fe	<30	15
Manganese	μg/l Mn	< 1	0.2
Ammonium	mg/l N	< 0.1	0.015
Bicarbonate	mg/l HCO3	> 90	140
Chloride	mg/l Cl	Minimum addition	160
Sodium	mg/l Na	Minimum addition	90
Sulphate	mg/l SO4	Minimum addition	62
SI	рН	0.1 - 0.4	0.15
Hydrobiologie		Zo goed als PSA1	

Identified Process Improvements WPJ

- Enhanced coagulation possibly with additional pH correction (CO₂)
 - Improvement in water quality (UV-T, removal of organic material)
 - Lower iron dosage and chemical use (NaOH)
 - Minimize floc-agent
- CO₂ removal after sedimentation
 - Lower chemical usage (NaOH)
- Rapid sand filtration flow direction (change from upwards to downwards)
 - Flowrate estimates from 7 to 20 m/h
 - Improvement in water quality (TSS?, hydrobiology?)
 - Lower losses during backwashing? Relevant?
- Use of a smaller screen size (35 μm instead of 200 μm
 - Possible positive influence on all downstream processes (including mussels?)
- Finding optimal design

Chemicaliënverbruik optimalisatie

		FeCl ₃ (40%)	CO ₂	NaOH (50%)
Prijs	Eur/ton	95	72	265
Co2-eq	kg/kg/CO2-eq	0,18	0,78	1,36

Chemicaliënverbruik optimalisatie

HCO3 mg/L

156

128

156

38

38

29

20

10

10

0,3

0,3

0,3

80

85,8

86,1

WPJ bestaand

+cascade en CO₂

+cascade

Scenario)	Eenheid	FeCl ₃ (40%)	CO ₂ (100%)	NaOH (50%)	TOTAAL
WPJ bestaand		ton/j	5596	0	2744	
+cascade		ton/j	5596	0	1326	
+cascade (en CO ₂	ton/j	4197	848	1326	
	_					
WPJ besta	WPJ bestaand		1.007	0	2744	3.752
+cascade	+cascade		1.007	0	1326	2.333
+cascade en CO ₂		ton CO ₂ -eq	755	661	1326	2.743
	_					
WPJ bestaand		Euro / jaar	€ 532.000	€0	€ 727.000	€ 1.259.000
+cascade		Euro / jaar	€ 532.000	€0	€ 351.000	€ 883.000
+cascade en CO ₂		Euro / jaar	€ 399.000	€ 61.000	€ 351.000	€ 811.000
	_					
				Totaal	WPJ bestaand	€ 1.634.028
CL	No	CL	LIVIT	kosten incl.	+cascade	€ 1.116.305
Cl	Na /!	SI	UVT	CO,	+cascade en CO ₂	€ 1.085.414
mg/L	mg/L		-			

Puur water & natuur

Wanneer in actie?

Wanneer ga je naar je productiesysteem kijken?

- Capaciteitsuitbreiding (+10 marge) welke documenten
 - WPJ 4400 m3/h 2027
 - Heemskerk 16Mm3/jaar 2030
- Kwaliteitsuitdagingen Bron en streefwaarden
 - Chloride overscheidingen Andijk Bron + zuivering
 - Biologische stabiliteit (aeromonas)
 - OMV/PFAS
 - Hardheid Bergen en Mensink
- Levensduur/beschikbaarheid/juridisch basis productiemiddelen
 - Actuele staat van onze assets? Is er iets afgeschreven. VB PSA1
 - Membranen uit productie, verbod kwiklampen
- Secundair
 - Reststromen

Thanks

PFAS

- Found everywhere globally
- Upcomming strict EFSA target at 4,4 ng/L PFOA-eq 4 PFAS

Drinking water PS Andijk

Activated carbon filtration

Reverse osmosis

