PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-219787

(43)Date of publication of application: 10.08.1999

(51)Int.CI.

H05B 33/22 C09K 11/06 C09K 11/06

C09K 11/06 C09K 11/06 H05B 33/14

(21)Application number: 10-022285

(71)Applicant: MITSUI CHEM INC

(22)Date of filing:

03.02.1998

(72)Inventor: NAKATSUKA MASAKATSU

KITAMOTO NORIKO

(54) ORGANIC ELECTROLUMINESCENCE ELEMENT

(57)Abstract:

PROBLEM TO BE SOLVED: To provide an

electroluminescence element improved with stability and durability by inserting at least one layer containing at least one kind of a compound expressed by the specific formula between a pair of electrodes.

SOLUTION: In the formula, Ar1-Ar4 are the substituted or unsubstituted aryl group, and Ar1, Ar2 and Ar3, may form nitrogen-containing heterocyclic rings together with coupled nitrogen atoms. R1 and R2 indicate hydrogen atom, the straight chain, branched or ring-like alkyl group, the substituted or unsubstituted aryl group, or the similar aralkyl group, Z1 and Z2 indicate hydrogen atom, halogen atom, the straight chain, branched or ring-like alkyl group, the similar alkoxy group or the aryl group, and X1 and X2 indicate-(A1-X11)m-A2-. A1 and A2 indicate the substituted or unsubstituted phenylene group or the similar naphthylene group, X11 indicates single bond, oxygen atom or sulfur atom, and (m) indicates 0 or 1.

LEGAL STATUS

[Date of request for examination]

07.07.2003

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

THIS PAGE BLANK (USPTO)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-219787

(43)公開日 平成11年(1999)8月10日

(51) Int.Cl. ⁶	識別記号		FΙ						
H05B 33/22	2	•	H0	5 B	33/22		D		
C09K 11/0	620		CO	9 K	11/06		620		
	635						635		
	6 4 5						645		
	655						655		
		審查請求	未請求	农簡	項の数5	OL	(全 49 頁)	最終頁に続く	
(21)出願番号	特顧平10-22285		(71)	出願人	000005	005887			
					三并化	学株式	会社		
(22) 出顧日	平成10年(1998) 2月3日		東京都千代田区霞が関三丁目2番5号						
			(72)	発明者	計 中塚	正勝			
					神奈川	県横浜	市榮区笠間町	1190番地 三井	
					化学机	式会社	内		
			(72)	発明者	当 北本	典子			
					神奈川	県横浜	市榮区笠間町	1190番地 三井	
					化学机	式会社	内		

(54) 【発明の名称】 有機電界発光素子

(57)【要約】

【解決手段】 一対の電極間に、一般式(1)で表される化合物を少なくとも1種含有する層を少なくとも一層挟持してなる有機電界発光素子。

〔式中、 $Ar_1 \sim Ar_4$ は置換または未置換のアリール基を表し、さらに、 Ar_1 と Ar_2 および Ar_3 と Ar_4 は結合している窒素原子と共に含窒素複素環を形成していてもよいを表し、 R_1 および R_2 は水素原子、直鎖、分岐または環状のアルキル基、置換または未置換のアリール基、あるいはアラルキル基を表し、 Z_1 および Z_2 は水素原子、ハロゲン原子、直鎖、分岐または環状のアルキル基、アルコキシ基、あるいは置換または未置換のアリール基を表し、 X_1 および X_2 は $-(A_1 - X_2)$

 $(11)_m - A_2 - を表す(但し、<math>A_1$ および A_2 は置換または未置換のフェニレン基、あるいはナフチレン基を表し、 X_{11} は単結合、酸素原子または硫黄原子を表し、Mは0または1を表す)〕

【効果】 発光寿命が長く、耐久性に優れた有機電界発 光素子を提供する。

【特許請求の範囲】

【請求項1】 一対の電極間に、一般式(1)(化1) で表される化合物を少なくとも1種含有する層を少なく

「式中、Ar1~Ar4は置換または未置換のアリール基を表し、さらに、Ar1とAr2 およびAr3とAr4 は結合している窒素原子と共に含窒素複素環を形成していてもよいを表し、R1およびR2は水素原子、直鎖、分岐または環状のアルキル基、置換または未置換のアリール基、あるいは置換または未置換のアラルキル基を表し、Z1およびZ2は水素原子、ハロゲン原子、直鎖、分岐または環状のアルキル基、直鎖、分岐または環状のアルキル基、直鎖、分岐または環状のアルキル基、直鎖、分岐または環状のアルコキシ基、あるいは置換または未置換のアリール基を表し、X1およびX2は一(A1 − X11) □ − A2 − を表す(但し、A1およびA2は置換または未置換のナフチレン基を表し、X11は単結合、酸素原子または硫黄原子を表し、mは0または1を表す)〕

【請求項2】 一般式(1)で表される化合物を含有する層が、正孔注入輸送層である請求項1記載の有機電界発光素子。

【請求項3】 一般式(1)で表される化合物を含有する層が、発光層である請求項1記載の有機電界発光素子.

【請求項4】 一対の電極間に、さらに、発光層を有する請求項1または2記載の有機電界発光素子。

【請求項5】 一対の電極間に、さらに、電子注入輸送 層を有する請求項1~4のいずれかに記載の有機電界発 光素子。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、有機電界発光素子 に関する。

[0002]

【従来の技術】従来、無機電界発光素子は、例えば、バックライトなどのパネル型光源として使用されてきたが、該発光素子を駆動させるには、交流の高電圧が必要である。最近になり、発光材料に有機材料を用いた有機電界発光素子(有機エレクトロルミネッセンス素子:有機EL素子)が開発された〔Appl. Phys. Lett., 51、913(1987)〕。有機電界発光素子は、蛍光性有機化合物

とも一層挟持してなる有機電界発光素子。 【化1】

を含む薄膜を、陽極と陰極間に挟持された構造を有し、 該薄膜に電子および正孔(ホール)を注入して、再結合 させることにより励起子(エキシトン)を生成させ、こ の励起子が失活する際に放出される光を利用して発光す る素子である。有機電界発光素子は、数V~数十V程度 の直流の低電圧で、発光が可能であり、また蛍光性有機 化合物の種類を選択することにより、種々の色(例え ば、赤色、青色、緑色)の発光が可能である。このよう な特徴を有する有機電界発光素子は、種々の発光素子、 表示素子等への応用が期待されている。しかしながら、 一般に、有機電界発光素子は、安定性、耐久性に乏しい などの難点がある。

【0003】正孔注入輸送材料として、4,4'ービス (N-フェニルーN-(3"ーメチルフェニル)アミノ)ビフェニルを用いることが提案されている〔Jpn. J. Appl. Phys.,27、L269 (1988)〕。また、正孔注入輸送材料として、例えば、9,9ージアルキルー2,7ービス(N,Nージフェニルアミノ)フルオレン誘導体〔例えば、9,9ージメチルー2,7ービス(N,Nージフェニルアミノ)フルオレン〕を用いることが提案されている(特開平5-25473号公報)。しかしながら、これらの有機電界発光素子も、安定性、耐久性に乏しいなどの難点がある。現在では、一層改良された有機電界発光素子が望まれている。

[0004]

【発明が解決しようとする課題】本発明の課題は、安定性、耐久性の改良された有機電界発光素子を提供することである。

[0005]

【課題を解決するための手段】本発明者等は、有機電界 発光素子に関して鋭意検討した結果、本発明を完成する に至った。すなわち、本発明は、

●一対の電極間に、一般式(1)(化2)で表される化合物を少なくとも1種含有する層を少なくとも一層挟持してなる有機電界発光素子、

[0006]

【化2】

$$Ar_{2}$$

$$X_{1}$$

$$Ar_{4}$$

$$X_{2}$$

$$X_{1}$$

$$R_{1}$$

$$R_{2}$$

$$Z_{1}$$

$$Z_{2}$$

$$Z_{2}$$

$$(1)$$

〔式中、 $Ar_1 \sim Ar_4$ は置換または未置換のアリール基を表し、さらに、 Ar_1 と Ar_2 および Ar_3 と Ar_4 は結合している窒素原子と共に含窒素複素環を形成していてもよいを表し、 R_1 および R_2 は水素原子、直鎖、分岐または環状のアルキル基、置換または未置換のアリール基、あるいは置換または未置換のアラルキル基を表し、 Z_1 および Z_2 は水素原子、ハロゲン原子、直鎖、分岐または環状のアルキル基、直鎖、分岐または環状のアルキシ基、あるいは置換または未置換のアリール基を表し、 X_1 および X_2 は一(A_1 $-X_{11}$)。 $-A_2$ - を表す(但し、 A_1 および A_2 は置換または未置換のフェニレン基、あるいは置換または未置換のフェニレン基、あるいは置換または未置換のフェニレン基、あるいは置換または未置換のフェニレン基、あるいは置換または未置換のフェニレン表、あるいは置換または未置換のフェニレン表、あるいは置換または未置換のフェニレン表、あるいは置換または未置換のフェニレン表、あるいは置換または未置換のフェニレン表、あるいは1を表す)〕

②一般式(1)で表される化合物を含有する層が、正孔 注入輸送層である○記載の有機電界発光素子、 ③一般式(1)で表される化合物を含有する層が、発光 層である①記載の有機電界発光素子、

④一対の電極間に、さらに、発光層を有する前記のまたは②記載の有機電界発光素子、

⑤一対の電極間に、さらに、電子注入輸送層を有する前 記**○**~**②**のいずれかに記載の有機電界発光素子、に関す るものである。

[0007]

【発明の実施の形態】以下、本発明に関して詳細に説明する。本発明の有機電界発光素子は、一対の電極間に、一般式(1)(化3)で表される化合物を少なくとも1種含有する層を少なくとも一層挟持してなるものである。

【0008】 【化3】

$$Ar_{2} \qquad Ar_{1}$$

$$X_{1} \qquad R_{1} \qquad R_{2}$$

$$Ar_{4} \qquad X_{2} \qquad N \qquad X_{2} \qquad (1)$$

「式中、 $Ar_1 \sim Ar_4$ は置換または未置換のアリール基を表し、さらに、 Ar_1 と Ar_2 および Ar_3 と Ar_4 は結合している窒素原子と共に含窒素複素環を形成していてもよいを表し、 R_1 および R_2 は水素原子、直鎖、分岐または環状のアルキル基、置換または未置換のアリール基、あるいは置換または未置換のアラルキル基を表し、 Z_1 および Z_2 は水素原子、ハロゲン原子、直鎖、分岐または環状のアルキル基、直鎖、分岐または環状のアルキル基、直鎖、分岐または環状のアルコキシ基、あるいは置換または未置換のアリール基を表し、 X_1 および X_2 は一($A_1 - X_{11}$)。 $-A_2 - \epsilon$ 表す(但し、 A_1 および A_2 は置換または未置換のフェニレン基、あるいは置換または未置換のフェニレン基、あるいは置換または未置換のフェニレン基、あるいは置換または未置換のフェニレン基、あるいは置換または未置換のフェニレン基、あるいは置換または未置換のフェニレン基、あるいは置換または未置換のフェニレン基、あるいは置換または未置換のフェニレン基、あるいは置換または未置換のナフチレン基を表し、 X_{11} は単結合、酸素原子または硫黄原子を表し、 X_{11} は単結合、酸素原子または硫黄原子を表し、 X_{11} は単結合、酸素原子または硫黄原子を表し、 X_{11} 00年に

【0009】一般式(1)において、Ar₁~Ar₄は 置換または未置換のアリール基を表す。尚、アリール基 とは、例えば、フェニル基、ナフチル基、アントリル基 などの炭素環式芳香族基、例えば、フリル基、チエニル 基、ピリジル基などの複素環式芳香族基を表す。

【0010】Ar₁ ~Ar₄ は、好ましくは、未置換、もしくは、置換基として、例えば、ハロゲン原子、アルキル基、アルコキシ基、あるいはアリール基で単置換または多置換されていてもよい総炭素数6~20の炭素環式芳香族基または総炭素数3~20の複素環式芳香族基であり、より好ましくは、未置換、もしくは、ハロゲン原子、炭素数1~14のアルコキシ基、あるいは炭素数6~10のアリール基で単置換または多置換されていてもよい総炭素数6~20の炭素環式芳香族基であり、さらに好ましくは、未置換、もしくは、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、あるいは炭素数6~10のアリール基で単置換あるいは多置換されていても

よい総炭素数6~16の炭素環式芳香族基である。 【0011】Ar₁ ~Ar₄ の具体例としては、例え ば、フェニル基、1-ナフチル基、2-ナフチル基、2 -アントリル基、9-アントリル基、2-フルオレニル 基、4-キノリル基、4-ピリジル基、3-ピリジル 基、2-ピリジル基、3-フリル基、2-フリル基、3 - チエニル基、2 - チエニル基、2 - オキサゾリル基、 2-チアゾリル基、2-ベンゾオキサゾリル基、2-ベ ンゾチアゾリル基、2-ベンゾイミダゾリル基、4-メ チルフェニル基、3-メチルフェニル基、2-メチルフ ェニル基、4-エチルフェニル基、3-エチルフェニル 基、2-エチルフェニル基、4-n-プロピルフェニル 基、4-イソプロピルフェニル基、2-イソプロピルフ ェニル基、4-n-ブチルフェニル基、4-イソブチル フェニル基、4-sec ーブチルフェニル基、2-sec -ブチルフェニル基、4-tert-ブチルフェニル基、3tertーブチルフェニル基、2-tert-ブチルフェニル 基、4-n-ペンチルフェニル基、4-イソペンチルフ ェニル基、2-ネオペンチルフェニル基、4-tert-ペ ンチルフェニル基、4-n-ヘキシルフェニル基、4-(2'-エチルブチル)フェニル基、4-n-ヘプチル フェニル基、4-n-オクチルフェニル基、4-(2) ーエチルヘキシル)フェニル基、4-tert-オクチルフ ェニル基、4-n-デシルフェニル基、4-n-ドデシ ルフェニル基、4-n-テトラデシルフェニル基、4-シクロペンチルフェニル基、4-シクロヘキシルフェニ ル基、4-(4'-メチルシクロヘキシル)フェニル 基、4-(4'-tert-ブチルシクロヘキシル) フェニ ル基、3-シクロヘキシルフェニル基、2-シクロヘキ シルフェニル基、4-エチル-1-ナフチル基、6-n ープチルー2-ナフチル基、2,4-ジメチルフェニル 基、2,5-ジメチルフェニル基、3,4-ジメチルフ ェニル基、3,5-ジメチルフェニル基、2,6-ジメ チルフェニル基、2,4-ジエチルフェニル基、2, 3,5-トリメチルフェニル基、2,3,6-トリメチ ルフェニル基、3,4,5-トリメチルフェニル基、 2,6-ジエチルフェニル基、2,5-ジイソプロピル フェニル基、2,6-ジイソブチルフェニル基、2,4 ージーtertーブチルフェニル基、2,5ージーtertーブ チルフェニル基、4,6-ジーtert-ブチルー2-メチ ルフェニル基、5 -tert-ブチル-2-メチルフェニル 基、4-tert-ブチル-2,6-ジメチルフェニル基、 9-メチル-2-フルオレニル基、9-エチル-2-フ ルオレニル基、9-n-ヘキシル-2-フルオレニル 基、9,9-ジメチル-2-フルオレニル基、9,9-ジエチルー2-フルオレニル基、9,9-ジーn-プロ ピルー2-フルオレニル基、

【0012】 4-メトキシフェニル基、3-メトキシフェニル基、2-メトキシフェニル基、4-エトキシフェニル基、3-エトキシフェニル基、2-エトキシフェニ

ル基、4-n-プロポキシフェニル基、3-n-プロポ キシフェニル基、4ーイソプロポキシフェニル基、2ー イソプロポキシフェニル基、4-n-ブトキシフェニル 基、4-イソブトキシフェニル基、2-sec -ブトキシ フェニル基、4-n-ペンチルオキシフェニル基、4-イソペンチルオキシフェニル基、2-イソペンチルオキ シフェニル基、4ーネオペンチルオキシフェニル基、2 -ネオペンチルオキシフェニル基、4-n-ヘキシルオ キシフェニル基、2-(2'-エチルブチル)オキシフ ェニル基、4-n-オクチルオキシフェニル基、4-n ーデシルオキシフェニル基、4-n-ドデシルオキシフ ェニル基、4-n-テトラデシルオキシフェニル基、4 -シクロヘキシルオキシフェニル基、2-シクロヘキシ ルオキシフェニル基、2-メトキシ-1-ナフチル基、 **4-メトキシ-1-ナフチル基、4-n-ブトキシ-1** ーナフチル基、5-エトキシ-1-ナフチル基、6-メ トキシー2ーナフチル基、6-エトキシー2ーナフチル 基、6-n-ブトキシ-2-ナフチル基、6-n-ヘキ シルオキシー2ーナフチル基、7ーメトキシー2ーナフ チル基、7-n-ブトキシ-2-ナフチル基、2-メチ ルー4ーメトキシフェニル基、2ーメチルー5ーメトキ シフェニル基、3-メチル-4-メトキシフェニル基、 3-メチル-5-メトキシフェニル基、3-エチル-5 -メトキシフェニル基、2-メトキシー4-メチルフェ ニル基、3-メトキシ-4-メチルフェニル基、2,4 -ジメトキシフェニル基、2,5-ジメトキシフェニル 基、2,6-ジメトキシフェニル基、3,4-ジメトキ シフェニル基、3,5-ジメトキシフェニル基、3,5 -ジエトキシフェニル基、3,5-ジ-n-ブトキシフ ェニル基、2-メトキシ-4-エトキシフェニル基、2 -メトキシー6-エトキシフェニル基、3,4,5-ト リメトキシフェニル基、4-フェニルフェニル基、3-フェニルフェニル基、2-フェニルフェニル基、4-(4'ーメチルフェニル)フェニル基、4-(3'-メ チルフェニル) フェニル基、4-(4'-メトキシフェ ニル) フェニル基、4-(4'-n-ブトキシフェニ ル) フェニル基、2-(2'-メトキシフェニル) フェ ニル基、4-(4'-クロロフェニル)フェニル基、3 ーメチルー4ーフェニルフェニル基、3ーメトキシー4 ーフェニルフェニル基、9-フェニル-2-フルオレニ ル基、

ェニル基、2,3-ジクロロフェニル基、2,4-ジク ロロフェニル基、2,5-ジクロロフェニル基、3,4 -ジクロロフェニル基、3,5-ジクロロフェニル基、 2,5-ジブロモフェニル基、2,4,6-トリクロロ フェニル基、2,4-ジクロロ-1-ナフチル基、1, . 6-ジクロロー2ーナフチル基、2-フルオロー4-メ チルフェニル基、2-フルオロー5-メチルフェニル 基、3-フルオロ-2-メチルフェニル基、3-フルオ ロー4ーメチルフェニル基、2ーメチルー4ーフルオロ フェニル基、2-メチル-5-フルオロフェニル基、3 -メチル-4-フルオロフェニル基、2-クロロ-4-メチルフェニル基、2-クロロー5-メチルフェニル 基、2-クロロー6-メチルフェニル基、2-メチルー 3-クロロフェニル基、2-メチル-4-クロロフェニ ル基、3-クロロ-4-メチルフェニル基、3-メチル -4-クロロフェニル基、2-クロロ-4,6-ジメチ ルフェニル基、2-メトキシ-4-フルオロフェニル 基、2-フルオロー4-メトキシフェニル基、2-フル オロー4-エトキシフェニル基、2-フルオロー6-メ トキシフェニル基、3-フルオロ-4-エトキシフェニ ル基、3-クロロー4-メトキシフェニル基、2-メト キシー5ークロロフェニル基、3ーメトキシー6ークロ ロフェニル基、5-クロロ-2, 4-ジメトキシフェニ ル基などを挙げることができるが、これらに限定される ものではない。

【0014】一般式(1)で表される化合物において、 さらに、Ar₁とAr₂およびAr₃とAr₄は結合し ている窒素原子と共に含窒素複素環を形成していてもよ く、好ましくは、-NAr₁ Ar₂ および-NAr₃ A r₄ は、置換または未置換の-N-カルバゾイル基、置 換または未置換の-N-フェノキサジイル基、あるいは 置換または未置換の-N-フェノチアジイル基を形成し ていてもよく、好ましくは、未置換、もしくは、置換基 として、例えば、ハロゲン原子、炭素数1~10のアル キル基、炭素数1~10のアルコキシ基、あるいは炭素 数6~10のアリール基で単置換または多置換されてい てもよい-N-カルバゾイル基、-N-フェノキサジイ ル基、あるいは-N-フェノチアジイル基であり、より 好ましくは、未置換、もしくは、ハロゲン原子、炭素数 1~4のアルキル基、炭素数1~4のアルコキシ基、あ るいは炭素数6~10のアリール基で単置換あるいは多 置換されていてもよい-N-カルバゾイル基、-N-フ ェノキサジイル基、あるいは-N-フェノチアジイル基 であり、さらに好ましくは、未置換の-N-カルバゾイ ル基、未置換の-N-フェノキサジイル基、あるいは未 置換の-N-フェノチアジイル基である。

【0015】具体例としては、例えば、-N-カルバゾイル基、2-メチル-N-カルバゾイル基、3-メチル-N-カルバゾイル基、3-n-ブチル-N-カルバゾイル基、3-n-ヘ

キシルーN-カルバゾイル基、3-n-オクチルーN-カルバゾイル基、3-n-デシル-N-カルバゾイル 基、3,6-ジメチル-N-カルバゾイル基、2-メト キシーNーカルバゾイル基、3-メトキシーN-カルバ ゾイル基、3-エトキシ-N-カルバゾイル基、3-イ ソプロポキシーN-カルバゾイル基、3-n-ブトキシ -N-カルバゾイル基、3-n-オクチルオキシーN-カルバゾイル基、3-n-デシルオキシ-N-カルバゾ イル基、3-フェニルーN-カルバゾイル基、3-(4'-メチルフェニル)-N-カルバゾイル基、3-(4'-tertーブチルフェニル)-N-カルバゾイル 基、3-クロローN-カルバゾイル基、-N-フェノキ サジイル基、-N-フェノチアジイル基、2-メチル-N-フェノチアジイル基などを挙げることができる。 【0016】一般式(1)で表される化合物において、 R_1 および R_2 は水素原子、直鎖、分岐または環状のア ルキル基、置換または未置換のアリール基、あるいは置 換または未置換のアラルキル基を表し、好ましくは、水 素原子、炭素数1~16の直鎖、分岐または環状のアル キル基、炭素数4~16の置換または未置換のアリール 基、あるいは炭素数5~16の置換または未置換のアラ ルキル基であり、より好ましくは、水素原子、炭素数1 ~8の直鎖、分岐または環状のアルキル基、炭素数6~ 12の置換または未置換のアリール基、あるいは炭素数 7~12の置換または未置換のアラルキル基であり、さ らに好ましくは、 R_1 および R_2 は炭素数 $1\sim8$ の直 鎖、分岐または環状のアルキル基、炭素数6~10の炭 素環式芳香族基、あるいは炭素数7~10の炭素環式ア ラルキル基である。

 $【0017】尚、<math>R_1$ および R_2 の置換または未置換の アリール基の具体例としては、例えば、Ar₁~Ar₄ の具体例として挙げた置換または未置換のアリール基を 例示することができる。 R_1 および R_2 の直鎖、分岐ま たは環状のアルキル基の具体例としては、例えば、メチ ル基、エチル基、n-プロピル基、イソプロピル基、n ープチル基、イソブチル基、sec ープチル基、tertーブ チル基、n-ペンチル基、イソペンチル基、ネオペンチ ル基、tertーペンチル基、シクロペンチル基、n-ヘキ シル基、2-エチルブチル基、3,3-ジメチルブチル 基、シクロヘキシル基、nーヘプチル基、シクロヘキシ ルメチル基、n-オクチル基、tert-オクチル基、2-エチルヘキシル基、nーノニル基、nーデシル基、nー ドデシル基、n-テトラデシル基、n-ヘキサデシル基 などを挙げることができるが、これらに限定されるもの ではない。

【0018】また、 R_1 および R_2 の置換または未置換のアラルキル基の具体例としては、例えば、ベンジル基、フェネチル基、 α ーメチルベンジル基、 α , α ージメチルベンジル基、1 ーナフチルメチル基、2 ーナフチルメチル基、3 ルスチルベンジル基、3

ーメチルベンジル基、4ーメチルベンジル基、4ーエチルベンジル基、4ーイソプロピルベンジル基、4ーtertーブチルベンジル基、4ーnーヘキシルベンジル基、4ーノニルベンジル基、3・メトキシベンジル基、4ーメトキシベンジル基、4ーエトキシベンジル基、4ーnーブトキシベンジル基、4ーnーヘキシルオキシベンジル基、4ーノニルオキシベンジル基、4ーフルオロベンジル基、3ーフルオロベンジル基、2ークロロベンジル基などのアラルキル基などを挙げることができるが、これらに限定されるものではない。

【0019】 Z_1 および Z_2 は水素原子、ハロゲン原子、直鎖、分岐または環状のアルキル基、直鎖、分岐または環状のアルコキシ基、あるいは置換または未置換のアリール基を表し、好ましくは、水素原子、ハロゲン原子、炭素数 $1\sim16$ の直鎖、分岐または環状のアルキル基、炭素数 $1\sim16$ の直鎖、分岐または環状のアルコキシ基、あるいは炭素数 $4\sim20$ の置換または未置換のアリール基であり、より好ましくは、水素原子、ハロゲン原子、炭素数 $1\sim8$ の直鎖、分岐または環状のアルコキシ基、炭素数 $1\sim8$ の直鎖、分岐または環状のアルコキシ基、あるいは炭素数 $6\sim12$ の置換または未置換のアリール基であり、さらに好ましくは、水素原子である。

【0020】尚、 Z_1 および Z_2 の直鎖、分岐または環 状のアルキル基の具体例としては、例えば、R1 および R2の具体例として挙げた直鎖、分岐または環状のアル キル基を例示することができる。また、Z₁ およびZ₂ の置換または未置換のアリール基の具体例としては、例 えば、 $Ar_1 \sim Ar_4$ の具体例として挙げた置換または 未置換のアリール基を例示することができる。 Z_1 およ び乙₂のハロゲン原子、直鎖、分岐または環状のアルコ キシ基の具体例としては、例えば、フッ素原子、塩素原 子、臭素原子などのハロゲン原子、例えば、メトキシ 基、エトキシ基、nープロポキシ基、イソプロポキシ 基、nーブトキシ基、イソブトキシ基、sec ーブトキシ 基、nーペンチルオキシ基、イソペンチルオキシ基、ネ オペンチルオキシ基、シクロペンチルオキシ基、n-ヘ キシルオキシ基、2-エチルブトキシ基、3,3-ジメ チルブトキシ基、シクロヘキシルオキシ基、nーヘプチ ルオキシ基、シクロヘキシルメチルオキシ基、n-オク チルオキシ基、2-エチルヘキシルオキシ基、n-ノニ ルオキシ基、n-デシルオキシ基、n-ドデシルオキシ 基、n-テトラデシルオキシ基、n-ヘキサデシルオキ シ基などのアルコキシ基を挙げることができる。

【0021】一般式(1)で表される化合物において、 X_1 および X_2 は $-(A_1-X_{11})_m-A_2$ ーを表す。 (但し、 A_1 および A_2 は置換または未置換のフェニレン基、あるいは置換または未置換のナフチレン基を表し、 X_{11} は単結合、酸素原子または硫黄原子を表し、mは0または1を表す)

A₁ およびA₂ は置換または未置換のフェニレン基、あ るいは置換または未置換のナフチレン基を表し、好まし くは、置換または未置換の1,3-フェニレン基、置換 または未置換の1,4-フェニレン基、置換または未置 換の1,4-ナフチレン基、置換または未置換の1,5 ーナフチレン基、置換または未置換の2,6-ナフチレ ン基、あるいは置換または未置換の2,7-ナフチレン 基であり、より好ましくは、置換または未置換の1,4 -フェニレン基、置換または未置換の1,4-ナフチレ ン基、置換または未置換の1,5-ナフチレン基、ある いは置換または未置換の2,6ーナフチレン基である。 X.,は単結合、酸素原子または硫黄原子を表す。mは0 または1を表す。mが1を表す時、より好ましくは、A 、は置換または未置換の1、4-フェニレン基である。 【0022】一般式(1)で表される化合物において、 X_1 および X_2 としては、より好ましくは、一般式(2 -a)~-般式(2-g)(化4~化10)で表される アリーレン基である。

[0023]

【化4】

$$- \underbrace{\sum_{2_{12}}^{2_{11}}}_{2_{12}} \quad (2-a)$$

(式中、 Z_{11} および Z_{12} は水素原子、ハロゲン原子、直鎖、分岐または環状のアルキル基、直鎖、分岐または環状のアルコキシ基、あるいは置換または未置換のアリール基を表す)

[0024]

【化5】

(式中、Z₂₁およびZ₂₂は水素原子、ハロゲン原子、直鎖、分岐または環状のアルキル基、直鎖、分岐または環状のアルコキシ基、あるいは置換または未置換のアリール基を表す)

[0025]

【化6】

(式中、乙31および乙32は水素原子、ハロゲン原子、直

鎖、分岐または環状のアルキル基、直鎖、分岐または環状のアルコキシ基、あるいは置換または未置換のアリール基を表す)

[0026]

【化7】

$$-\underbrace{\sum_{242}^{241}}_{242} - (2-d)$$

(式中、Z41およびZ42は水素原子、ハロゲン原子、直鎖、分岐または環状のアルキル基、直鎖、分岐または環状のアルキル基、直鎖、分岐または環状のアルコキシ基、あるいは置換または未置換のアリール基を表す)

[0027]

【化8】

$$\begin{array}{ccc}
& & & \\
& & \\
Z_{51} & & \\
\end{array}$$

$$\begin{array}{cccc}
& & (2 - e)
\end{array}$$

(式中、 Z_{51} および Z_{52} は水素原子、ハロゲン原子、直鎖、分岐または環状のアルキル基、直鎖、分岐または環状のアルコキシ基、あるいは置換または未置換のアリール基を表す)

[0028]

【化9】

(式中、Z₆₁およびZ₆₂は水素原子、ハロゲン原子、直 鎖、分岐または環状のアルキル基、直鎖、分岐または環 状のアルコキシ基、あるいは置換または未置換のアリー ル基を表す)

[0029]

【化10】

$$- \sum_{\mathbf{Z}_{81}} \mathbf{S} - \sum_{\mathbf{Z}_{82}} \mathbf{C} (2 - \mathbf{g})$$

(式中、 Z_{71} および Z_{72} は水素原子、ハロゲン原子、直鎖、分岐または環状のアルキル基、直鎖、分岐または環状のアルコキシ基、あるいは置換または未置換のアリール基を表す)

【0030】一般式 (2-a) ~一般式 (2-g) において、 Z_{11} 、 Z_{12} 、 Z_{21} 、 Z_{22} 、 Z_{31} 、 Z_{32} 、 Z_{41} 、 Z_{42} 、 Z_{51} 、 Z_{52} 、 Z_{61} 、 Z_{62} 、 Z_{71} および Z_{72} (以下、 Z_{11} ~ Z_{72} と略記する)は水素原子、ハロゲン原子、直鎖、分岐または環状のアルキル基、直鎖、分岐または環状のアルコキシ基、あるいは置換または未置換のアリール基を表し、好ましくは、水素原子、ハロゲン原子、炭素数 1 ~ 1 6の直鎖、分岐または環状のアルコキシ基、あるいは炭素数 1 ~ 1 6の直鎖、分岐または環状のアルコキシ基、あるいは炭素数 1 ~ 1 8の直鎖、分岐または環状のアルキル基、炭素数 1 ~ 1 8の直鎖、分岐または環状のアルキル基、炭素数 1 ~ 1 8の直鎖、分岐または環状のアルキル基、炭素数 1 ~ 1 8の直鎖、分岐または環状のアルコキシ基、あるいは炭素数 1 ~ 1 8の直鎖、分岐または環状のアルコキシ基、あるいは炭素数 1 ~ 1 8の直鎖、分岐または環状のアルコキシ基、あるいは炭素数 1 ~ 1 8 0 1 0 1 2 0 1 2 0 1 2 0 1 3 1 3 1 3 1 3 1 3 1 3 1 4 1 3 1 3 1 4 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 6 1 7 1 7 1 7 1 8 1 7 1 8 1 9 1

【0031】 $Z_{11}\sim Z_{72}$ の直鎖、分岐または環状のアルキル基の具体例としては、例えば、 R_1 および R_2 の具体例として挙げた直鎖、分岐または環状のアルキル基を例示することができる。また、 $Z_{11}\sim Z_{72}$ の置換または未置換のアリール基の具体例としては、例えば、 $Ar_1\sim Ar_4$ の具体例として挙げた置換または未置換のアリール基を例示することができる。

【0032】 $Z_{11}\sim Z_{72}$ のハロゲン原子、直鎖、分岐または環状のアルコキシ基の具体例としては、例えば、フッ素原子、塩素原子、臭素原子などのハロゲン原子、例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-プトキシ基、イソプトキシ基、se c-ブトキシ基、n-ペンチルオキシ基、イソペンチルオキシ基、n-ペンチルオキシ基、シクロペンチルオキシ基、n-ペンチルオキシ基、シクロペキシルオキシ基、n-ペアチルオキシ基、シクロペキシルオキシ基、n-ペアチルオキシ基、n-ペアチルオキシ基、n-ペアチルオキシ基、n-パテシルオキシ基、n-アトラデシルオキシ基、n-ペキサデシルオキシ基などのアルコキシ基を挙げることができる。

【0033】本発明に係る一般式(1)で表される化合物の具体例としては、例えば、以下の化合物(化11~化41)を挙げることができるが、本発明はこれらに限定されるものではない。尚、式中、Phはフェニル基を、Bzはベンジル基を表す。

【0034】

【化11】

例示化合物番号

[0035]

[0036]

【化13】

[0037]

[0038] [化15]

[0039]

【化16】

[0040]

[0041]

例示化合物番号

[0042]

[0043]

例示化合物番号

[0044]

【化21】

[0045] [化22]

例示化合物番号

[0046] [化23]

[0047] [化24]

例示化合物番号

[0048]

【化25】

[0049]

[0050]

【化27】

【0051】 【化28】

[0052]

[0053] [化30]

[0054]

【0055】 【化32】

[0056]

【0057】 【化34】

[0058]

【化35】

[0059] [化36]

例示化合物番号

[0060] [化37]

[0061]

[0062]

【化39】

例示化合物番号

[0063]

[0064] [化41]

【0065】本発明に係る一般式(1)で表される化合物は、其自体公知の方法により製造することができる。すなわち、例えば、一般式(3)(化42)で表される化合物と一般式(4)(化42)で表される化合物とより製造することができる一般式(5)(化42)で表される化合物を、一般式(6)(化42)で表される化合物を、銅化合物の存在下で反応(ウルマン反応)させることにより製造することができる。

[0066]

【化42】

$$H_2N-X_1-N$$
 A_{P_2}
(3)

$$\begin{array}{c}
Ar_3 \\
N-x_2-y_1 \\
Ar_4
\end{array}$$
(4)

$$\begin{array}{c}
Ar_3 \\
N-X_2-NH-X_1-N \\
Ar_2
\end{array}$$
(5)

$$Y_2 \xrightarrow{R_1 R_2} Z_2$$
 (6)

〔式中、 $Y1 \sim Y2$ はハロゲン原子を表し、 $Ar_1 \sim Ar_4$ 、 R_1 、 R_2 、 Z_1 、 Z_2 、 X_1 および X_2 は一般式(1)と同じ意味を表す〕

【0067】また、例えば、一般式(7)で表される化合物と、一般式(8)で表される化合物と一般式(9)で表される化合物を、銅化合物の存在下で反応(ウルマン反応)させることにより製造することもできる。 【0068】

【化43】

(7)

$$\begin{array}{c}
Ar_3 \\
N-\chi_2-\gamma_4
\end{array} (9)$$

〔式中、 $Y3 \sim Y4$ はハロゲン原子を表し、 $Ar_1 \sim A$ r_4 、 R_1 、 R_2 、 Z_1 、 Z_2 、 X_1 および X_2 は一般式(1)と同じ意味を表す〕

【0069】有機電界発光素子は、通常、一対の電極間に、少なくとも1種の発光成分を含有する発光層を少なくとも一層挟持してなるものである。発光層に使用する化合物の正孔注入および正孔輸送、電子注入および電子輸送の各機能レベルを考慮し、所望に応じて、正孔注入輸送成分を含有する正孔注入輸送層および/または電子注入輸送成分を含有する電子注入輸送層を設けることもできる。例えば、発光層に使用する化合物の正孔注入機能、正孔輸送機能および/または電子注入機能、電子輸

送機能が良好な場合には、発光層が正孔注入輸送層および/または電子注入輸送層を兼ねた型の素子の構成とすることができる。勿論、場合によっては、正孔注入輸送層および電子注入輸送層の両方の層を設けない型の素子(一層型の素子)の構成とすることもできる。また、正孔注入輸送層、電子注入輸送層および発光層のそれぞれの層は、一層構造であっても多層構造であってもよく、正孔注入輸送層および電子注入輸送層は、それぞれの層において、注入機能を有する層と輸送機能を有する層を別々に設けて構成することもできる。

【0070】本発明の有機電界発光素子において、一般式(1)で表される化合物は、正孔注入輸送成分および/または発光成分に用いることが好ましく、正孔注入輸送成分に用いることがより好ましい。本発明の有機電界発光素子においては、一般式(1)で表される化合物は、単独で使用してもよく、あるいは複数併用してもよい。

【0071】本発明の有機電界発光素子の構成として は、特に限定するものではなく、例えば、(A)陽極/ 正孔注入輸送層/発光層/電子注入輸送層/陰極型素子 (図1)、(B)陽極/正孔注入輸送層/発光層/陰極 型素子(図2)、(C)陽極/発光層/電子注入輸送層 /陰極型素子(図3)、(D)陽極/発光層/陰極型素 子(図4)などを挙げることができる。さらには、発光 層を電子注入輸送層で挟み込んだ型の素子である(E) 陽極/正孔注入輸送層/電子注入輸送層/発光層/電子 注入輸送層/陰極型素子(図5)とすることもできる。 (D)型の素子構成としては、発光成分を一層形態で一 対の電極間に挟持させた型の素子は勿論であるが、さら には、例えば、(F)正孔注入輸送成分、発光成分およ び電子注入輸送成分を混合させた一層形態で一対の電極 間に挟持させた型の素子(図6)、(G)正孔注入輸送 成分および発光成分を混合させた一層形態で一対の電極 間に挟持させた型の素子(図7)、(H)発光成分およ び電子注入輸送成分を混合させた一層形態で一対の電極 間に挟持させた型の素子(図8)がある。

【0072】本発明の有機電界発光素子は、これらの素子構成に限るものではなく、それぞれの型の素子において、正孔注入輸送層、発光層、電子注入輸送層を複数層設けたりすることができる。また、それぞれの型の素子において、正孔注入輸送層と発光層との間に、正孔注入輸送成分と発光成分の混合層および/または発光層と電子注入輸送層との間に、発光成分と電子注入輸送成分の混合層を設けることもできる。より好ましい有機電界発光素子の構成は、(A)型素子、(B)型素子であり、さらに好ましくは、(A)型素子、(B)型素子または(G)型素子である。

【0073】本発明の有機電界発光素子としては、例えば、(図1)に示す(A)陽極/正孔注入輸送層/発光

層/電子注入輸送層/陰極型素子について説明する。 (図1)において、1は基板、2は陽極、3は正孔注入 輸送層、4は発光層、5は電子注入輸送層、6は陰極、 7は電源を示す。

【0074】本発明の有機電界発光素子は、基板1に支持されていることが好ましく、基板としては、特に限定するものではないが、透明ないし半透明であることが好ましく、例えば、ガラス板、透明プラスチックシート(例えば、ポリエステル、ポリカーボネート、ポリスルフォン、ポリメチルメタクリレート、ポリプロピレン、ポリエチレンなどのシート)、半透明プラスチックシート、石英、透明セラミックスあるいはこれらを組み合わせた複合シートからなるものを挙げることができる。さらに、基板に、例えば、カラーフィルター膜、色変換膜、誘電体反射膜を組み合わせて、発光色をコントロールすることもできる。

【0075】陽極2としては、比較的仕事関数の大きい 金属、合金または電気電導性化合物を電極物質として使 用することが好ましい。陽極に使用する電極物質として は、例えば、金、白金、銀、銅、コバルト、ニッケル、 パラジウム、バナジウム、タングステン、酸化錫、酸化 亜鉛、IT〇(インジウム・ティン・オキサイド)、ポ リチオフェン、ポリピロールなどを挙げることができ る。これらの電極物質は、単独で使用してもよく、ある いは複数併用してもよい。陽極は、これらの電極物質 を、例えば、蒸着法、スパッタリング法等の方法によ り、基板の上に形成することができる。また、陽極は一 層構造であってもよく、あるいは多層構造であってもよ い。陽極のシート電気抵抗は、好ましくは、数百Ω/□ 以下、より好ましくは、5~50Ω/□程度に設定す る。陽極の厚みは、使用する電極物質の材料にもよる が、一般に、5~1000nm程度、より好ましくは、 10~500nm程度に設定する。

【0076】正孔注入輸送層3は、陽極からの正孔(ホ ール)の注入を容易にする機能、および注入された正孔 を輸送する機能を有する化合物を含有する層である。正 孔注入輸送層は、一般式(1)で表される化合物および /または他の正孔注入輸送機能を有する化合物 (例え ば、フタロシアニン誘導体、トリアリールメタン誘導 体、トリアリールアミン誘導体、オキサゾール誘導体、 ヒドラゾン誘導体、スチルベン誘導体、ピラゾリン誘導 体、ポリシラン誘導体、ポリフェニレンビニレンおよび その誘導体、ポリチオフェンおよびその誘導体、ポリー N-ビニルカルバゾール誘導体など)を少なくとも1種 用いて形成することができる。尚、正孔注入輸送機能を 有する化合物は、単独で使用してもよく、あるいは複数 併用してもよい。本発明の有機電界発光素子において は、正孔注入輸送層に一般式(1)で表される化合物を 含有していることが好ましい。

【0077】本発明において用いる他の正孔注入輸送機

能を有する化合物としては、トリアリールアミン誘導体 (例えば、4,4'-ビス[N-フェニル-N-(4" ーメチルフェニル) アミノ] ビフェニル、4,4'ービ ス (N-フェニル-N- (3" -メチルフェニル) アミ ノ] ビフェニル、4,4'-ビス [N-フェニルーN-(3" -メトキシフェニル) アミノ] ビフェニル、4, 4'-ビス (N-フェニル-N-(1"-ナフチル)ア ミノ] ビフェニル、3,3'ージメチルー4,4'ービ ス [N-フェニルーN- (3" ーメチルフェニル) アミ ノ) ビフェニル、1, 1ービス (4'ー(N, Nージ (4" -メチルフェニル) アミノ] フェニル] シクロヘ キサン、9,10-ピス (N-(4'-メチルフェニ ル) -N-(4"-n-ブチルフェニル)アミノ〕フェ ナントレン、3,8-ビス(N,N-ジフェニルアミ ノ) -6-フェニルフェナントリジン、4-メチルー N, N- \forall X (4" , 4"'- \forall X (N' , N' - \forall (4 ーメチルフェニル) アミノ] ビフェニルー4ーイル] ア ニリン、N, N'ービス (4-(ジフェニルアミノ)フ ェニル]-N, N'-ジフェニル-1, 3-ジアミノベ ンゼン、N, N'ービス (4-(ジフェニルアミノ)フ ェニル) - N, N' -ジフェニル-1, 4 - ジアミノベ ンゼン、5,5"ービス〔4ー(ビス[4ーメチルフェ ニル] アミノ) フェニル] -2, 2':5', 2"-タ ーチオフェン、1,3,5ートリス (ジフェニルアミ ノ) ベンゼン、4,4',4"ートリス (Nーカルバゾ イル) トリフェニルアミン、4,4',4"ートリス [N-(3"-メチルフェニル)-N-フェニルアミ ノ] トリフェニルアミン、1,3,5-トリス〔N-(4' -ジフェニルアミノフェニル) フェニルアミノ〕 ベンゼンなど)、ポリチオフェンおよびその誘導体、ポ リーNービニルカルバゾール誘導体がより好ましい。一 般式(1)で表される化合物と他の正孔注入輸送機能を 有する化合物を併用する場合、正孔注入輸送層中に占め る一般式(1)で表される化合物の割合は、好ましく は、0.1重量%以上、より好ましくは、0.1~9 9.9重量%程度、さらに好ましくは、1~99重量% 程度、特に好ましくは、5~95重量%程度に調製す る。

【0078】発光層4は、正孔および電子の注入機能、それらの輸送機能、正孔と電子の再結合により励起子を生成させる機能を有する化合物を含有する層である。発光層は、一般式(1)で表される化合物および/または他の発光機能を有する化合物(例えば、アクリドン誘導体、キナクリドン誘導体、多環芳香族化合物〔例えば、ルブレン、アントラセン、テトラセン、ピレン、ペリレン、クリセン、デカシクレン、コロネン、テトラフェニルシクロペンタジエン、ペンタフェニルシクロペンタジエン、ペンタフェニルシクロペンタジエン、9,10-ジフェニルアントラセン、9,10-ビス(フェニルエチニル)アントラセン、1,4-ビス(9'-エチニルアントラセニル)ベンゼン、4,4'

ービス(9"-エチニルアントラセニル)ビフェニ ル〕、トリアリールアミン誘導体〔例えば、正孔注入輸 送機能を有する化合物として前述した化合物を挙げるこ とができる〕、有機金属錯体〔例えば、トリス(8-キ ノリノラート) アルミニウム、ビス(10-ベンゾ[h] キノリノラート) ベリリウム、2-(2'-ヒドロキシ フェニル) ベンゾオキサゾールの亜鉛塩、2-(2'-ヒドロキシフェニル) ベンゾチアゾールの亜鉛塩、4-ヒドロキシアクリジンの亜鉛塩、3-ヒドロキシフラボ ンの亜鉛塩、5-ヒドロキシフラボンのベリリウム塩、 5-ヒドロキシフラボンのアルミニウム塩〕、スチルベ ン誘導体〔例えば、1,1,4,4-テトラフェニルー 1, 3-ブタジエン、4, 4'-ビス(2, 2-ジフェ ニルビニル) ビフェニル)、クマリン誘導体〔例えば、 クマリン1、クマリン6、クマリン7、クマリン30、 クマリン106、クマリン138、クマリン151、ク マリン152、クマリン153、クマリン307、クマ リン311、クマリン314、クマリン334、クマリ ン338、クマリン343、クマリン500〕、ピラン 誘導体〔例えば、DCM1、DCM2〕、オキサゾン誘 導体〔例えば、ナイルレッド〕、ベンゾチアゾール誘導 体、ベンゾオキサゾール誘導体、ベンゾイミダゾール誘 導体、ピラジン誘導体、ケイ皮酸エステル誘導体、ポリ -N-ビニルカルバゾールおよびその誘導体、ポリチオ フェンおよびその誘導体、ポリフェニレンおよびその誘 導体、ポリフルオレンおよびその誘導体、ポリフェニレ ンビニレンおよびその誘導体、ポリビフェニレンビニレ ンおよびその誘導体、ポリターフェニレンビニレンおよ びその誘導体、ポリナフチレンビニレンおよびその誘導 体、ポリチエニレンビニレンおよびその誘導体など)を 少なくとも1種用いて形成することができる。

【0079】本発明の有機電界発光素子においては、発 光層に一般式(1)で表される化合物を含有しているこ とが好ましい。一般式(1)で表される化合物と他の発 光機能を有する化合物を併用する場合、発光層中に占め る一般式(1)で表される化合物の割合は、好ましく は、0.001~99.999重量%程度に調製する。 【0080】本発明において用いる他の発光機能を有す る化合物としては、多環芳香族化合物、発光性有機金属 錯体がより好ましい。例えば、J. Appl. Phys., 65、36 10(1989)、特開平5-214332号公報に記載のよ うに、発光層をホスト化合物とゲスト化合物(ドーパン ト)とより構成することもできる。一般式(1)で表さ れる化合物を、ホスト化合物として発光層を形成するこ とができ、さらにはゲスト化合物として発光層を形成す ることもできる。一般式(1)で表される化合物を、ホ スト化合物として発光層を形成する場合、ゲスト化合物 としては、例えば、前記の他の発光機能を有する化合物 を挙げることができ、中でも多環芳香族化合物は好まし い。この場合、一般式(1)で表される化合物に対し

て、他の発光機能を有する化合物を、0.001~40 重量%程度、好ましくは、0.1~20重量%程度使用 する。

【0081】一般式(1)で表される化合物と併用する多環芳香族化合物としては、特に限定するものではないが、例えば、ルブレン、アントラセン、テトラセン、ピレン、ペリレン、クリセン、デカシクレン、コロネン、テトラフェニルシクロペンタジエン、9,10ージフェニルアントラセン、9,10ービス(フェニルエチニル)アントラセン、1,4ービス(9'ーエチニルアントラセニル)ベンゼン、4,4'ービス(9"ーエチニルアントラセニル)ビフェニルなどを挙げることができる。勿論、多環芳香族化合物は単独で使用してもよく、あるいは複数併用してもよい。

【0082】一般式(1)で表される化合物を、ゲスト化合物として用いて発光層を形成する場合、ホスト化合物としては、発光性有機金属錯体が好ましい。この場合、発光性有機金属錯体に対して、一般式(1)で表される化合物を、好ましくは、0.001~40重量%程度、より好ましくは、0.1~20重量%程度使用する。一般式(1)で表される化合物と併用する発光性有機金属錯体としては、特に限定するものではないが、発光性有機アルミニウム錯体が好ましく、置換または未置換の8ーキノリノラート配位子を有する発光性有機アルミニウム錯体がより好ましい。好ましい発光性有機金属錯体としては、例えば、一般式(a)~一般式(c)で表される発光性有機アルミニウム錯体を挙げることができる。

$$(Q)_3 - A1 \qquad (a)$$

(式中、Qは置換または未置換の8-キノリノラート配位子を表す)

$$(Q)_2 - Al - O - L$$
 (b)

(式中、Qは置換8-キノリノラート配位子を表し、O-Lはフェノラート配位子であり、Lはフェニル部分を含む炭素数6~24の炭化水素基を表す)

$$(Q)_2 - A1 - O - A1 - (Q)_2$$
 (c)

(式中、Qは置換8ーキノリノラート配位子を表す) 【0083】発光性有機金属錯体の具体例としては、例 えば、トリス(8ーキノリノラート)アルミニウム、ト リス(4ーメチルー8ーキノリノラート)アルミニウム、トリス(5ーメチルー8ーキノリノラート)アルミニウム、トリス(3,4ージメチルー8ーキノリノラート)アルミニウム、トリス(4,6ージメチルー8ーキノリノラート)アルミニウム、ビス(2ーメチルー8ーキノリノラート)(2ーメチルフェノラート)アルミニウム、ビス(2ーメチルフェノラート)アルミニウム、ビス(2ーメチルフェノラート)アルミニウム、ビス(2ーメチルフェノラート)アルミニウム、ビス(2ーメチルフェノラート)アルミニウム、ビス(2ーメチルフェノラート)アルミニウム、ビス(2ーメチルフェノラート)アルミニウム、ビス(2ーメチルフェノラート)ア ルミニウム、ビス(2-メチル-8-キノリノラート) (4-メチルフェノラート) アルミニウム、ビス(2-メチル-8-キノリノラート)(2-フェニルフェノラ ート) アルミニウム、ビス (2-メチル-8-キノリノ ラート) (3-フェニルフェノラート) アルミニウム、 ビス(2-メチル-8-キノリノラート)(4-フェニ ルフェノラート) アルミニウム、ビス(2-メチル-8 -キノリノラート)(2,3-ジメチルフェノラート) アルミニウム、ビス (2-メチル-8-キノリノラー ト)(2,6-ジメチルフェノラート)アルミニウム、 ビス(2-メチル-8-キノリノラート)(3,4-ジ メチルフェノラート) アルミニウム、ビス (2-メチル -8-キノリノラート)(3,5-ジメチルフェノラー ト) アルミニウム、ビス (2-メチル-8-キノリノラ ート) (3, 5-ジ-tert-ブチルフェノラート) アル ミニウム、ビス (2-メチル-8-キノリノラート) (2,6-ジフェニルフェノラート)アルミニウム、ビ ス(2-メチル-8-キノリノラート)(2,4,6-トリフェニルフェノラート) アルミニウム、ビス(2-メチル-8-キノリノラート)(2,4,6-トリメチ ルフェノラート) アルミニウム、ビス(2-メチル-8 -キノリノラート)(2,4,5,6-テトラメチルフ ェノラート) アルミニウム、ビス (2-メチル-8-キ ノリノラート) (1-ナフトラート) アルミニウム、ビ ス(2-メチル-8-キノリノラート)(2-ナフトラ ート) アルミニウム、ビス(2,4-ジメチル-8-キ ノリノラート)(2-フェニルフェノラート) アルミニ ウム、ビス(2,4-ジメチル-8-キノリノラート) (3-フェニルフェノラート) アルミニウム、ビス (2, 4-ジメチル-8-キノリノラート)(4-フェ ニルフェノラート) アルミニウム、ビス(2,4-ジメ チルー8-キノリノラート)(3,5-ジメチルフェノ ラート) アルミニウム、ビス(2,4-ジメチル-8-キノリノラート) (3,5-ジーtert-ブチルフェノラ ート)アルミニウム、

 $\{0084\}$ ビス $(2-x+\mu-8-+1)$ $(2-x+\mu-4-x+2)$ $(2-x+\mu-4-x+2)$ $(2-x+\mu-4-x+2)$ $(2-x+\mu-4-x+2)$ $(2-x+\mu-4-x+2)$ $(2-x+\mu-4-x+2)$ $(2-x+\mu-5-2)$ $(2-x+\mu-5-2)$

ウム-μ-オキソービス(2-メチルー5ートリフルオ ロメチルー8-キノリノラート)アルミニウムなどを挙 げることができる。勿論、発光性有機金属錯体は、単独 で使用してもよく、あるいは複数併用してもよい。

【0085】電子注入輸送層5は、陰極からの電子の注入を容易にする機能、そして注入された電子を輸送する機能を有する化合物を含有する層である。電子注入輸送層に使用される電子注入輸送機能を有する化合物としては、例えば、有機金属錯体〔例えば、トリス(8-キノリノラート)アルミニウム、ビス(10-ベンゾ[h] キノリノラート)ベリリウム、5-ヒドロキシフラボンのアルミニウム、ビス(10-ベング[h] キノリノラート)ベリリウム、5-ヒドロキシフラボンのアルミニウム、カーヒドロキシフラボンのアルミニウム、オキサジアゾール誘導体、トリアゾール誘導体、キノリン誘導体、ペリレン誘導体、キノリン誘導体、コープリアジン誘導体、ジフェニルキノン誘導体、ニープリアジン誘導体、オオピランジオキサイド誘導体などを挙げることができる。尚、電子注入輸送機能を有する化合物は、単独で使用してもよく、あるいは複数併用してもよい。

【0086】陰極6としては、比較的仕事関数の小さい 金属、合金または電気電導性化合物を電極物質として使 用することが好ましい。陰極に使用する電極物質として は、例えば、リチウム、リチウムーインジウム合金、ナ トリウム、ナトリウムーカリウム合金、カルシウム、マ グネシウム、マグネシウムー銀合金、マグネシウムーイ ンジウム合金、インジウム、ルテニウム、チタニウム、 マンガン、イットリウム、アルミニウム、アルミニウム - リチウム合金、アルミニウム-カルシウム合金、アル ミニウムーマグネシウム合金、グラファイト薄膜等を挙 げることができる。これらの電極物質は、単独で使用し てもよく、あるいは複数併用してもよい。陰極は、これ らの電極物質を、例えば、蒸着法、スパッタリング法、 イオン化蒸着法、イオンプレーティング法、クラスター イオンビーム法等の方法により、電子注入輸送層の上に 形成することができる。また、陰極は一層構造であって もよく、あるいは多層構造であってもよい。尚、陰極の シート電気抵抗は、数百Ω/□以下に設定するのが好ま しい。陰極の厚みは、使用する電極物質の材料にもよる が、一般に、5~1000mm程度、より好ましくは、 10~500 n m程度に設定する。尚、有機電界発光素 子の発光を効率よく取り出すために、陽極または陰極の 少なくとも一方の電極が、透明ないし半透明であること が好ましく、一般に、発光光の透過率が70%以上とな るように陽極の材料、厚みを設定することがより好まし

【0087】また、本発明の有機電界発光素子においては、その少なくとも一層中に、一重項酸素クエンチャーが含有されていてもよい。一重項酸素クエンチャーとしては、特に限定するものではなく、例えば、ルブレン、ニッケル錯体、ジフェニルイソベンゾフランなどが挙げ

られ、特に好ましくは、ルブレンである。一重項酸素クエンチャーが含有されている層としては、特に限定するものではないが、好ましくは、発光層または正孔注入輸送層であり、より好ましくは、正孔注入輸送層である。尚、例えば、正孔注入輸送層に一重項酸素クエンチャーを含有させる場合、正孔注入輸送層中に均一に含有させてもよく、正孔注入輸送層と隣接する層(例えば、発光層、発光機能を有する電子注入輸送層)の近傍に含有させてもよい。一重項酸素クエンチャーの含有量としては、含有される層(例えば、正孔注入輸送層)を構成する全体量の0.01~50重量%、好ましくは、0.05~30重量%、より好ましくは、0.1~20重量%である。

【0088】正孔注入輸送層、発光層、電子注入輸送層 の形成方法に関しては、特に限定するものではなく、例 えば、真空蒸着法、イオン化蒸着法、溶液塗布法(例え ば、スピンコート法、キャスト法、ディップコート法、 バーコート法、ロールコート法、ラングミュア・ブロゼ ット法など) により薄膜を形成することにより作製する ことができる。真空蒸着法により、各層を形成する場 合、真空蒸着の条件は、特に限定するものではないが、 10-5 Torr程度以下の真空下で、50~400℃程度の ボート温度(蒸着源温度)、-50~300℃程度の基 板温度で、0.005~50nm/sec 程度の蒸着速度 で実施することが好ましい。この場合、正孔注入輸送 層、発光層、電子注入輸送層等の各層は、真空下で、連 続して形成することにより、諸特性に一層優れた有機電 界発光素子を製造することができる。真空蒸着法によ り、正孔注入輸送層、発光層、電子注入輸送層等の各層 を、複数の化合物を用いて形成する場合、化合物を入れ た各ボートを個別に温度制御して、共蒸着することが好 ましい。

【0089】溶液塗布法により、各層を形成する場合、 各層を形成する成分あるいはその成分とバインダー樹脂 等を、溶媒に溶解、または分散させて塗布液とする。正 孔注入輸送層、発光層、電子注入輸送層の各層に使用し うるバインダー樹脂としては、例えば、ポリーN-ビニ ルカルバゾール、ポリアリレート、ポリスチレン、ポリ エステル、ポリシロキサン、ポリメチルアクリレート、 ポリメチルメタクリレート、ポリエーテル、ポリカーボ ネート、ポリアミド、ポリイミド、ポリアミドイミド、 ポリパラキシレン、ポリエチレン、ポリフェニレンオキ サイド、ポリエーテルスルフォン、ポリアニリンおよび その誘導体、ポリチオフェンおよびその誘導体、ポリフ ェニレンビニレンおよびその誘導体、ポリフルオレンお よびその誘導体、ポリチエニレンビニレンおよびその誘 導体等の高分子化合物が挙げられる。バインダー樹脂 は、単独で使用してもよく、あるいは複数併用してもよ

【0090】溶液塗布法により、各層を形成する場合、

各層を形成する成分あるいはその成分とバインダー樹脂 等を、適当な有機溶媒(例えば、ヘキサン、オクタン、 デカン、トルエン、キシレン、エチルベンゼン、1-メ チルナフタレン等の炭化水素系溶媒、例えば、アセト ン、メチルエチルケトン、メチルイソブチルケトン、シ クロヘキサノン等のケトン系溶媒、例えば、ジクロロメ タン、クロロホルム、テトラクロロメタン、ジクロロエ タン、トリクロロエタン、テトラクロロエタン、クロロ ベンゼン、ジクロロベンゼン、クロロトルエン等のハロ ゲン化炭化水素系溶媒、例えば、酢酸エチル、酢酸ブチ ル、酢酸アミル等のエステル系溶媒、例えば、メタノー ル、プロパノール、ブタノール、ペンタノール、ヘキサ ノール、シクロヘキサノール、メチルセロソルブ、エチ ルセロソルブ、エチレングリコール等のアルコール系溶 媒、例えば、ジブチルエーテル、テトラヒドロフラン、 ジオキサン、アニソール等のエーテル系溶媒、例えば、 N, N-ジメチルホルムアミド、N, N-ジメチルアセ トアミド、1ーメチルー2ーピロリドン、1,3ージメ チルー2-イミダゾリジノン、ジメチルスルフォキサイ ド等の極性溶媒) および/または水に溶解、または分散 させて塗布液とし、各種の塗布法により、薄膜を形成す ることができる。

【0091】尚、分散する方法としては、特に限定するものではないが、例えば、ボールミル、サンドミル、ペイントシェーカー、アトライター、ホモジナイザー等を用いて微粒子状に分散することができる。塗布液の濃度に関しては、特に限定するものではなく、実施する塗布法により、所望の厚みを作製するに適した濃度範囲に設定することができ、一般には、0.1~50重量%程度、好ましくは、1~30重量%程度の溶液濃度である。尚、バインダー樹脂を使用する場合、その使用量に関しては、特に限定するものではないが、一般には、各層を形成する成分に対して(一層型の素子を形成する場合には、各成分の総量に対して)、5~99.9重量%程度、好ましくは、15~90重量%程度に設定する。

【0092】正孔注入輸送層、発光層、電子注入輸送層の膜厚に関しては、特に限定するものではないが、一般に、5nm~5μm程度に設定することが好ましい。尚、作製した素子に対し、酸素や水分等との接触を防止する目的で、保護層(封止層)を設けたり、また素子を、例えば、パラフィン、流動パラフィン、シリコンオイル、フルオロカーボン油、ゼオライト含有フルオロカーボン油などの不活性物質中に封入して保護することができる。保護層に使用する材料としては、例えば、有機高分子材料(例えば、フッ素化樹脂、エボキシ樹脂、シリコーン樹脂、エボキシリコーン樹脂、エボキシレコーン樹脂、ボリスチレン、ポリエステル、ポリカーボネート、ポリアミド、ポリイミド、ポリアミドイミド、ボリバラキシレン、ポリスチレン、ポリフェニレンオキサイド)、無機材料(例

えば、ダイヤモンド薄膜、アモルファスシリカ、電気絶 縁性ガラス、金属酸化物、金属窒化物、金属炭素化物、 金属硫化物)、さらには光硬化性樹脂などを挙げること ができ、保護層に使用する材料は、単独で使用してもよ く、あるいは複数併用してもよい。保護層は、一層構造 であってもよく、また多層構造であってもよい。

【0093】また、電極に保護膜として、例えば、金属 酸化膜(例えば、酸化アルミニウム膜)、金属フッ化膜 を設けることもできる。また、例えば、陽極の表面に、 例えば、有機リン化合物、ポリシラン、芳香族アミン誘 導体、フタロシアニン誘導体から成る界面層(中間層) を設けることもできる。さらに、電極、例えば、陽極は その表面を、例えば、酸、アンモニア/過酸化水素、あ るいはプラズマで処理して使用することもできる。

【0094】本発明の有機電界発光素子は、一般に、直 流駆動型の素子として使用されるが、パルス駆動型また は交流駆動型の素子としても使用することができる。 尚、印加電圧は、一般に、2~30V程度である。本発 明の有機電界発光素子は、例えば、パネル型光源、各種 の発光素子、各種の表示素子、各種の標識、各種のセン

[0095]

サーなどに使用することができる。

【実施例】以下、実施例により本発明をさらに詳細に説 明するが、勿論、本発明はこれらに限定されるものでは ない。

実施例1

厚さ200nmのITO透明電極(陽極)を有するガラ ス基板を、中性洗剤、アセトン、エタノールを用いて超 音波洗浄した。その基板を窒素ガスを用いて乾燥し、さ らにUV/オゾン洗浄した後、蒸着装置の基板ホルダー に固定した後、蒸着槽を3×10-6Torrに減圧した。ま ず、ITO透明電極上に、例示化合物番号A-1の化合 物を、蒸着速度0.2nm/sec で75nmの厚さに蒸 着し、正孔注入輸送層とした。次いで、その上に、トリ ス(8-キノリノラート)アルミニウムを、蒸着速度 0. 2 n m/sec で 5 0 n m の 厚さ に 蒸着 し、 電子注入 輸送層を兼ねた発光層とした。さらにその上に、陰極と して、マグネシウムと銀を蒸着速度O.2nm/sec で 200 nmの厚さに共蒸着 (重量比10:1) して陰極 とし、有機電界発光素子を作製した。尚、蒸着は、蒸着 槽の減圧状態を保ったまま実施した。作製した有機電界 発光素子に直流電圧を印加し、50℃、乾燥雰囲気下、 10mA/cm²の定電流密度で連続駆動させた。初期に は、6.5V、輝度480cd/m²の緑色の発光が確 認された。輝度の半減期は540時間であった。

【0096】実施例2~31

実施例1において、正孔注入輸送層の形成に際して、例 示化合物番号A-1の化合物を使用する代わりに、例示 化合物番号A-2の化合物(実施例2)、例示化合物番 号A-4の化合物(実施例3)、例示化合物番号A-6 の化合物(実施例4)、例示化合物番号A-8の化合物 (実施例5)、例示化合物番号A-10の化合物(実施 例6)、例示化合物番号A-14の化合物(実施例 7)、例示化合物番号A-17の化合物(実施例8)、 例示化合物番号B-3の化合物(実施例9)、例示化合 物番号B-4の化合物(実施例10)、例示化合物番号 C-3の化合物 (実施例11)、例示化合物番号D-3 の化合物 (実施例12)、例示化合物番号E-2の化合 物 (実施例13)、例示化合物番号E-3の化合物 (実 施例14)、例示化合物番号E-5の化合物(実施例1

- 5)、例示化合物番号E-10の化合物(実施例1
- 6)、例示化合物番号E-12の化合物(実施例1
- 7)、例示化合物番号E-13の化合物(実施例1
- 8)、例示化合物番号E-17の化合物(実施例1
- 9)、例示化合物番号E-21の化合物(実施例2
- 0)、例示化合物番号E-27の化合物(実施例2
- 1)、例示化合物番号E-28の化合物(実施例2
- 2)、例示化合物番号E-30の化合物(実施例2
- 3)、例示化合物番号E-33の化合物(実施例2
- 4)、例示化合物番号E-35の化合物(実施例2
- 5)、例示化合物番号F-3の化合物(実施例26)、 例示化合物番号F-5の化合物(実施例27)、例示化 合物番号F-6の化合物(実施例28)、例示化合物番 号F-9の化合物 (実施例29)、例示化合物番号G-1の化合物(実施例30)、例示化合物番号G-7の化 合物 (実施例31)を使用した以外は、実施例1に記載 の方法により有機電界発光素子を作製した。各案子から は緑色の発光が確認された。さらにその特性を調べ、結 果を第1表(表1、2)に示した。

【0097】比較例1~2

実施例1において、正孔注入輸送層の形成に際して、例 示化合物番号A-1の化合物を使用する代わりに、4, 4'-ビス(N-フェニル-N-(3"-メチルフェニ ル) アミノ) ビフェニル (比較例1)、9,9ージメチ ル-2、7-ビス(N, N-ジフェニルアミノ)フルオ レン (比較例2)を使用した以外は、実施例1に記載の 方法により有機電界発光素子を作製した。各素子からは 緑色の発光が確認された。さらにその特性を調べ、結果 を第1表(表2)に示した。

[0098]

【表1】

第1表

有機電界	初期特性 (50℃)		半減期
発光素子	輝度	電圧	(50℃)
	(cd/m²)	(V)	(h r)
実施例2	470	6. 7	520
実施例3	460	6.8	510
実施例4	460	6.6	520
実施例 5	500	6.8	500
実施例6	490	6.7	520
実施例7	480	6.8	500
実施例8	460	6.4	540
実施例9	470	6. 5	530
実施例10	450	6. 5	520
実施例11	490	6.4	530
実施例12	500	6.6	520
実施例13	470	6. 5	510
実施例14	460	6.4	520
実施例15	460	6. 5	500
実施例16	480	6.4	530
実施例17	450	6.4	520
実施例18	460	6. 5	500
実施例19	470	6.4	530

[0099]

【表2】 第1表 (続き)

有機電界	初期特性 (50℃)		半減期
発光素子	輝度	電圧	(50℃)
	$(c d/m^2)$	(V)	(h r)
実施例20	460	6. 7	5 2 0
実施例21	450	6.8	510
実施例22	480	6.6	520
実施例23	460	6.8	500
実施例24	510	6.7	520
実施例25	490	6.8	500
実施例26	460	6.4	540
実施例27	470	6. 5	530
実施例28	470	6. 5	510
実施例29	460	6.4	520
実施例30	460	6. 5	500
実施例31	480	6. 4	530
比較例1	300	6. 6	5
比較例2	450	6. 5	100

【0100】実施例32 厚さ200nmのITO透明電極(陽極)を有するガラ ス基板を、中性洗剤、アセトン、エタノールを用いて超 音波洗浄した。その基板を窒素ガスを用いて乾燥し、さ らにUV/オゾン洗浄した後、蒸着装置の基板ホルダー に固定した後、蒸着槽を3×10-6Torrに減圧した。ま ず、ITO透明電極上に、ポリ(チオフェンー2,5-ジイル) を蒸着速度 0.1 n m/sec で、20 n m の厚 さに蒸着し、第一正孔注入輸送層とした。次いで、例示 化合物番号A-18の化合物を、蒸着速度0.2nm/ sec で55nmの厚さに蒸着し、第二正孔注入輸送層と した。次いで、その上に、トリス(8-キノリノラノー ト) アルミニウムを、蒸着速度0.2nm/sec で50 nmの厚さに蒸着し、電子注入輸送層を兼ねた発光層と した。さらにその上に、マグネシウムと銀を、蒸着速度 0.2nm/sec で200nmの厚さに共蒸着(重量比 10:1)して陰極とし、有機電界発光素子を作製し た。尚、蒸着は、蒸着槽の減圧状態を保ったまま実施し た。作製した有機電界発光素子に直流電圧を印加し、乾 燥雰囲気下、10mA/cm²の定電流密度で連続駆動さ せた。初期には、6.4V、輝度480cd/m²の緑 色の発光が確認された。輝度の半減期は1200時間で あった。

【0101】実施例33

厚さ200 nmのITO透明電極(陽極)を有するガラ ス基板を、中性洗剤、アセトン、エタノールを用いて超 音波洗浄した。その基板を窒素ガスを用いて乾燥し、さ らにUV/オゾン洗浄した後、蒸着装置の基板ホルダー に固定した後、蒸着槽を3×10-6Torrに減圧した。ま ず、ITO透明電極上に、4,4',4"-トリス (N — (3"'-メチルフェニル)-N-フェニルアミノ〕ト リフェニルアミンを蒸着速度 0.1 nm/secで、50 nmの厚さに蒸着し、第一正孔注入輸送層とした。次い で、例示化合物番号E-4の化合物とルブレンを、異な る蒸発源から、蒸着速度0.2nm/sec で20nmの 厚さに共蒸着(重量比10:1)し、第二正孔注入輸送 層を兼ねた発光層とした。次いで、その上に、トリス (8-キノリノラート)アルミニウムを蒸着速度0.2 nm/sec で50nmの厚さに蒸着し、電子注入輸送層 とした。さらにその上に、マグネシウムと銀を、蒸着速 度0.2nm/sec で200nmの厚さに共蒸着(重量 比10:1)して陰極とし、有機電界発光素子を作製し た。尚、蒸着は、蒸着槽の減圧状態を保ったまま実施し た。作製した有機電界発光素子に直流電圧を印加し、乾 燥雰囲気下、10mA/cm²の定電流密度で連続駆動さ せた。初期には、6.2V、輝度470cd/m²の黄 色の発光が確認された。輝度の半減期は1300時間で あった。

【0102】実施例34

厚さ200nmのITO透明電極(陽極)を有するガラス基板を、中性洗剤、アセトン、エタノールを用いて超音波洗浄した。その基板を窒素ガスを用いて乾燥し、さらにUV/オゾン洗浄した後、蒸着装置の基板ホルダーに固定した後、蒸着槽を3×10⁻⁶Torrに減圧した。ま

ず、ITO透明電極上に、ポリ(チオフェンー2,5-ジイル) を蒸着速度 0.1 n m/sec で、20 n m の厚 さに蒸着し、第一正孔注入輸送層とした。蒸着槽を大気 圧下に戻した後、再び蒸着槽を3×10-6Torrに減圧し た。次いで、例示化合物番号E-22の化合物とルブレ ンを、異なる蒸発源から、蒸着速度0.2nm/sec で 55 n mの厚さに共蒸着(重量比10:1)し、第二正 孔注入輸送層を兼ねた発光層とした。減圧状態を保った まま、次いで、その上に、トリス(8-キノリノラー ト) アルミニウムを蒸着速度0.2nm/sec で50n mの厚さに蒸着し、電子注入輸送層とした。減圧状態を 保ったまま、さらにその上に、マグネシウムと銀を、蒸 着速度0.2nm/sec で200nmの厚さに共蒸着 (重量比10:1)して陰極とし、有機電界発光素子を 作製した。作製した有機電界発光素子に直流電圧を印加 し、乾燥雰囲気下、10mA/cm²の定電流密度で連続 駆動させた。初期には、6.2V、輝度480cd/m 2 の黄色の発光が確認された。輝度の半減期は1500 時間であった。

【0103】実施例35

厚さ200mmのITO透明電極(陽極)を有するガラ ス基板を、中性洗剤、アセトン、エタノールを用いて超 音波洗浄した。その基板を窒素ガスを用いて乾燥し、さ らにUV/オゾン洗浄した後、蒸着装置の基板ホルダー に固定した後、蒸着槽を3×10-6Torrに減圧した。ま ず、ITO透明電極上に、例示化合物番号E-29の化 合物を蒸着速度0.1nm/sec で、20nmの厚さに 蒸着し、第一正孔注入輸送層とした。次いで、例示化合 物番号A-13の化合物とルブレンを、異なる蒸発源か ら、蒸着速度0.2nm/sec で55nmの厚さに共蒸 着(重量比10:1)し、第二正孔注入輸送層を兼ねた 発光層とした。さらに、その上に、トリス(8-キノリ ノラート) アルミニウムを蒸着速度0.2nm/sec で 50 n mの厚さに蒸着し、電子注入輸送層とした。さら にその上に、マグネシウムと銀を、蒸着速度0.2nm /sec で200nmの厚さに共蒸着(重量比10:1) して陰極とし、有機電界発光素子を作製した。尚、蒸着 は、蒸着槽の減圧状態を保ったまま実施した。作製した 有機電界発光素子に直流電圧を印加し、乾燥雰囲気下、 10mA/cm²の定電流密度で連続駆動させた。初期に は、6.1V、輝度520cd/m²の黄色の発光が確 認された。輝度の半減期は1600時間であった。

【0104】実施例36

厚さ200nmのITO透明電極(陽極)を有するガラス基板を、中性洗剤、アセトン、エタノールを用いて超音波洗浄した。その基板を窒素ガスを用いて乾燥し、さらにUV/オゾン洗浄した後、蒸着装置の基板ホルダーに固定した後、蒸着槽を 3×10^{-6} Torrに減圧した。まず、ITO透明電極上に、例示化合物番号E-32の化合物を、蒸着速度0.2nm/sec で55nmの厚さに

素着し、正孔注入輸送層とした。次いで、その上に、トリス(8-キノリノラート)アルミニウムと例示化合物番号E-11の化合物を、蒸着速度0.2nm/sec で40nmの厚さに共蒸着(重量比10:1)し、発光層とした。さらに、トリス(8-キノリノラート)アルミニウムを、蒸着速度0.2nm/sec で30nmの厚さに蒸着し、電子注入輸送層とした。さらにその上に、マグネシウムと銀を、蒸着速度0.2nm/sec で200nmの厚さに共蒸着(重量比10:1)して陰極とし、有機電界発光素子を作製した。尚、蒸着は、蒸着槽の減圧状態を保ったまま実施した。作製した有機電界発光素子に直流電圧を印加し、乾燥雰囲気下、10mA/cm²の定電流密度で連続駆動させた。初期には、6.2V、輝度560cd/m²の緑色の発光が確認された。輝度の半減期は1500時間であった。

【0105】実施例37

厚さ200nmのITO透明電極(陽極)を有するガラ ス基板を、中性洗剤、アセトン、エタノールを用いて超 音波洗浄した。その基板を窒素ガスを用いて乾燥し、さ らにUV/オゾン洗浄した。次に、ITO透明電極上 に、ポリカーボネート(重量平均分子量50000)、 と例示化合物番号E-20の化合物を、重量比100: 50の割合で含有する3重量%ジクロロエタン溶液を用 いて、ディップコート法により、40nmの正孔注入輸 送層とした。次に、この正孔注入輸送層を有するガラス 基板を、蒸着装置の基板ホルダーに固定した後、蒸着槽 を3×10-6Torrに減圧した。次いで、その上に、トリ ス(8-キノリノラート)アルミニウムを、蒸着速度 0.2 nm/sec で 50 nmの厚さに蒸着し、電子注入 輸送層を兼ねた発光層とした。さらに、発光層の上に、 マグネシウムと銀を、蒸着速度0.2nm/sec で20 Onmの厚さに共蒸着(重量比10:1)して陰極と し、有機電界発光素子を作製した。作製した有機電界発 光素子に、乾燥雰囲気下、10 Vの直流電圧を印加した ところ、95mA/cm² の電流が流れた。輝度980c d/m²の緑色の発光が確認された。輝度の半減期は2 50時間であった。

【0106】実施例38

厚さ200nmのITO透明電極(陽極)を有するガラス基板を、中性洗剤、アセトン、エタノールを用いて超音波洗浄した。その基板を窒素ガスを用いて乾燥し、さ

らにUV/オゾン洗浄した。次に、ITO透明電極上 に、ポリメチルメタクリレート(重量平均分子量250 00)、例示化合物番号E-34の化合物、トリス(8) ーキノリノラート)アルミニウムを、それぞれ重量比1 00:50:0.5の割合で含有する3重量%ジクロロ エタン溶液を用いて、ディップコート法により、100 nmの発光層を形成した。次に、この発光層を有するガ ラス基板を、蒸着装置の基板ホルダーに固定した後、蒸 着槽を3×10-6Torrに減圧した。さらに、発光層の上 に、マグネシウムと銀を、蒸着速度O.2nm/secで 200 nmの厚さに共蒸着(重量比10:1)して陰極 とし、有機電界発光素子を作製した。作製した有機電界 発光素子に、乾燥雰囲気下、15Vの直流電圧を印加し たところ、80mA/cm² の電流が流れた。輝度530 cd/m²の緑色の発光が確認された。輝度の半減期は 300時間であった。

[0107]

【発明の効果】本発明により、発光寿命が長く、耐久性 に優れた有機電界発光素子を提供することが可能になっ た。

【図面の簡単な説明】

- 【図1】有機電界発光素子の一例の概略構造図である。
- 【図2】有機電界発光素子の一例の概略構造図である。
- 【図3】有機電界発光素子の一例の概略構造図である。
- 【図4】有機電界発光素子の一例の概略構造図である。
- 【図5】有機電界発光索子の一例の概略構造図である。
- 【図6】有機電界発光素子の一例の概略構造図である。
- 【図7】有機電界発光素子の一例の概略構造図である。
- 【図8】有機電界発光素子の一例の概略構造図である。 【符号の説明】
- 1 基板
- 2 陽極
- 3 正孔注入輸送層
- 3 a 正孔注入輸送成分
- 4 発光層
- 4 a 発光成分
- 5 電子注入輸送層
- 5" 電子注入輸送層
- 5 a 電子注入輸送成分
- 6 陰極
- 7 電源

【手続補正書】

【提出日】平成10年2月5日

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】0028

【補正方法】変更

【補正内容】

[0028]

【化9】

(式中、Z₆₁およびZ₆₂は水素原子、ハロゲン原子、直 鎖、分岐または環状のアルキル基、直鎖、分岐または環 状のアルコキシ基、あるいは置換または未置換のアリー ル基を表す) 【手続補正2】 【補正対象書類名】明細書 【補正対象項目名】0029 【補正方法】変更 【補正内容】 【0029】 【化10】

$$- \bigcirc S - \bigcirc S - \bigcirc (2 - g)$$

(式中、 Z_{71} および Z_{72} は水素原子、ハロゲン原子、直鎖、分岐または環状のアルキル基、直鎖、分岐または環状のアルコキシ基、あるいは置換または未置換のアリール基を表す)

フロントページの続き

(51) Int. Cl. 6

識別記号

H 0 5 B 33/14

FΙ

H 0 5 B 33/14

В

THIS PAGE BLANK (USPTO)