Классическая дифференциальная геометрия

Пшеничный Никита*

Весна 2025 г.

Аннотация

В основу этих записок легли лекции О.И. Мохова и семинары А.А. Гайфуллина на мехмате МГУ, а также (в меньшей степени) курс А.В. Пенского в НМУ.

При написании файла я во многом ориентировался на конспект И. А. Дынникова по дифференциальной геометрии и на начальные главы книги [Новиков — Тайманов] (в особенности на главу 3). Некоторые из разобранных задач взяты из классического «Сборника задач по дифференциальной геометрии» А. С. Мищенко, Ю. П. Соловьёва, А. Т. Фоменко (далее именуемого просто «задачником»).

В конце каждого раздела приведены пояснения к появляющимся в тексте эпиграфам. Конечно, эти эпиграфы носят в основном юмористический (или ностальгический...) характер, но у каждого из них есть содержательный математический контекст.

Список литературы

[Новиков — Тайманов] С. П. Новиков, И. А. Тайманов. Современные геометрические структуры и поля. МЦНМО, 2014.

[Шарп] Ричард У. Шарп. Дифференциальная геометрия. Обобщение Картана Эрлангенской программы Клейна. МЦНМО, 2019.

Содержание

1	Пре	едварительные сведения и напоминания
	1.1	Математический анализ
	1.2	Аналитическая геометрия и линейная алгебра
	1.3	Про функции в геометрии
2	Teo	рия кривых
	2.1	Базовые определения
	2.2	Способы задания кривой
	2.3	Касательная в точке регулярной кривой
	2.4	Натуральный параметр и кривизна
	2.5	Соприкасающаяся окружность
	2.6	Кривые на плоскости и в пространстве
	2.7	Эволюта и эвольвента плоской кривой
	2.8	Дополнительные задачи
	2.9	Про механические часы

 $^{^*}$ Последняя компилляция: 16 апреля 2025 г. Актуальную версию этого файла можно найти на моём ${
m Git Hub}.$

3	$f T$ еория поверхностей в $\Bbb R^3$			
	3.1	Криволинейные системы координат в \mathbb{R}^n	26	
	3.2	Риманова метрика в криволинейных координатах	30	
	3.3	Двумерные поверхности в трёхмерном пространстве	31	
	3.4	Поверхности как двумерные многообразия	34	
	3.5	Риманова метрика на поверхностях	36	
	3.6	Кривизна поверхности	41	
	3.7	Главные кривизны и нормальные сечения	41	

Обозначения

 \mathbb{R} — поле (топологическое пространство) вещественных чисел; $\boldsymbol{x} = (x^1, \dots, x^n)$ — вектор (точка) из \mathbb{R}^n ;

 (e_1,\ldots,e_n) — стандартный базис в \mathbb{R}^n ;

 $\operatorname{span}(\boldsymbol{v}_1,\ldots,\boldsymbol{v}_n)$ — линейная оболочка векторов $\boldsymbol{v}_1,\ldots,\boldsymbol{v}_n;$

 $S_{\mathrm{or}}(\boldsymbol{u},\boldsymbol{v})$ — ориентированная площадь параллелограмма, натянутого на векторы u и v, $\operatorname{Vol}_{\operatorname{or}}(v_1,\ldots,v_n)$ — ориентированный объём n-мерного параллелепипеда, натянутого на векторы v_1, \ldots, v_n ;

I — связное подмножество \mathbb{R} ;

Int U — внутренность подмножества $U \subset \mathbb{R}^n$:

 $\langle \boldsymbol{x}, \boldsymbol{y} \rangle$ — евклидово скалярное произведение векторов $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n$;

 $\langle \pmb{x}, \pmb{y} \rangle_{\mathcal{G}}$ — скалярное произведение векторов $\pmb{x}, \, \pmb{y} \in \mathbb{R}^n$, задаваемое положительно определённой симметричной матрицей \mathcal{G} (то есть $\langle x,y\rangle_{\mathcal{G}}=x^t\mathcal{G}y$);

 $x \times y$ — векторное произведение векторов $x, y \in \mathbb{R}^3$;

 $\rho(\boldsymbol{x}, \boldsymbol{y})$ — расстояние между точками \boldsymbol{x} и \boldsymbol{y} из \mathbb{R}^n ;

 $\boldsymbol{r}(t) = (x^1(t), \dots, x^n(t))$ — радиус-вектор точки $\boldsymbol{x} \in \mathbb{R}^n$;

 $\dot{\boldsymbol{r}}(t), \ddot{\boldsymbol{r}}(t), \ldots$ — векторы скорости, ускорения и т. д. точки $\boldsymbol{x} \in \mathbb{R}^n$.

Нотация Эйнштейна. По дважды повторяющимся индексам, один из которых верхний, а другой нижний, подразумевается суммирование в пределах, устанавливаемых из контекста, а сам такой индекс называется слепым. Верхний индекс переменной, появляющейся в знаменателе, считается для выражения нижним, и наоборот.

1. Предварительные сведения и напоминания

Сначала вы подумаете, что я сумасшедший, а потом вам понравится, и вы сами будете делать так же.

А.В. Пенской

Математический анализ

Отображение $f: \mathbb{R}^n \to \mathbb{R}^m$ называется дифференцируемым в точке x_0 , если существует линейное отображение \mathcal{L}_{x_0} , для которого выполнено

$$oldsymbol{f}(oldsymbol{x}) = oldsymbol{f}(oldsymbol{x}_0) + \mathcal{L}_{oldsymbol{x}_0}(oldsymbol{x} - oldsymbol{x}_0) + \overline{o}(\|oldsymbol{x} - oldsymbol{x}_0\|)$$
 при $oldsymbol{x} o oldsymbol{x}_0.$

При этом отображение f не обязано быть определено всюду. Нам будет достаточно, чтобы в область определения отображения f входило замыкание некоторой выпуклой открытой области, содержащее точку x_0 . Однозначно определённое линейное отображение $\mathcal{L}_{m{x}_0} =: dm{f}|_{m{x}_0}$ называют $\partial u \phi \phi$ еренциалом отображения $m{f}$ в точке $m{x}$.

Матрица $J_{\boldsymbol{f}}(\boldsymbol{x}_0)$ линейного отображения $d\boldsymbol{f}|_{\boldsymbol{x}_0}$ называется матрицей Якоби отображения f в точке x_0 и состоит из частных производных:

$$J_{\boldsymbol{f}}(\boldsymbol{x}_0) = \begin{pmatrix} \frac{\partial f^1}{\partial x^1} \Big|_{\boldsymbol{x}_0} & \cdots & \frac{\partial f^1}{\partial x^n} \Big|_{\boldsymbol{x}_0} \\ \vdots & \ddots & \vdots \\ \frac{\partial f^m}{\partial x^1} \Big|_{\boldsymbol{x}_0} & \cdots & \frac{\partial f^m}{\partial x^n} \Big|_{\boldsymbol{x}_0} \end{pmatrix} = \begin{pmatrix} \nabla f^1 \Big|_{\boldsymbol{x}_0} \\ \vdots \\ \nabla f^m \Big|_{\boldsymbol{x}_0} \end{pmatrix}.$$

В случае, когда эта матрица квадратная, её определитель называют якобиантом.

Дифференцируемое отображение f определяет новое отображение $\partial f/\partial x \colon \mathbb{R}^n \to \mathbb{R}^m$. Если последнее также дифференцируемо, то f называется $\partial f \partial x$ дифференцируемом, и далее индуктивно: если $\partial f/\partial x$ дифференцируемо k раз, то f дифференцируемо k+1 раз. Если отображение f дифференцируемо k раз и при k-кратном дифференцировании получается непрерывное отображение, то говорят, что f k раз непрерывно f дифференцируемо или является f f дифференцированием класса f f дальнейшем под гладким отображением мы будем подразумевать отображение класса f для достаточно большого f.

Теорема 1.1 (О производной сложной функции). Если отображения $f: \mathbb{R}^n \to \mathbb{R}^m$ и $g: \mathbb{R}^m \to \mathbb{R}^k$ дифференцируемы, то дифференцируема и композиция $g \circ f$, причём

$$|d(\boldsymbol{g} \circ \boldsymbol{f})|_{\boldsymbol{x}_0} = d\boldsymbol{g}|_{\boldsymbol{f}(\boldsymbol{x}_0)} \circ d\boldsymbol{f}|_{\boldsymbol{x}_0}.$$

Теорема 1.2 (Об обратном отображении). Гладкое отображение $f: \mathbb{R}^n \to \mathbb{R}^n$, матрица Якоби которого невырожденна в точке x_0 , локально обратимо в некоторой окрестности точки x_0 , причём обратное отображение также гладкое.

Теорема 1.3 (О неявном отображении). Пусть $f: \mathbb{R}^n \to \mathbb{R}^m$, $m \leqslant n$, — гладкое отображение, матрица Якоби которого в точке x_0 имеет ранг m. Тогда множество решений уравнения $f(x) = f(x_0)$ в окрестности точки x_0 выглядит как график гладкого отображения, выражающего некоторые m координат через оставшиеся n-m, причём эти m координат можно выбрать те, которым соответствуют линейно независимые столбцы в матрице Якоби.

Аналитическая геометрия и линейная алгебра

Пусть в \mathbb{R}^n есть некоторая поверхность, задаваемая уравнением $F(x^1,\dots,x^n)=0$, а по ней движется точка, радиус-вектор которой есть $\boldsymbol{x}=\boldsymbol{r}(t)$. Тогда можем продифференцировать тождество $F(r^1(t),\dots,r^n(t))=0$ в каждой точке, получив по теореме о сложной функции

$$\frac{\partial F}{\partial r^1} \cdot \frac{dr^1}{dt} + \ldots + \frac{\partial F}{\partial r^n} \cdot \frac{dr^n}{dt} = 0$$

или, что то же, $\langle \nabla F, \dot{r} \rangle = 0$.

Из правила Лейбинца сразу следует формула дифференцирования скалярного произведения:

$$\frac{d}{dt}\langle \boldsymbol{a}(t), \boldsymbol{b}(t)\rangle = \langle \dot{\boldsymbol{a}}(t), \boldsymbol{b}(t)\rangle + \langle \boldsymbol{a}(t), \dot{\boldsymbol{b}}(t)\rangle.$$

Важный частный случай: если $\boldsymbol{a}(t) \perp \boldsymbol{b}(t)$ для всех значений параметра t, то $\langle \boldsymbol{a}(t), \dot{\boldsymbol{b}}(t) \rangle = -\langle \dot{\boldsymbol{a}}(t), \boldsymbol{b}(t) \rangle$. Аналогичная формула верна и для векторного произведения:

$$\frac{d}{dt}(\boldsymbol{a}(t) \times \boldsymbol{b}(t)) = (\dot{\boldsymbol{a}}(t) \times \boldsymbol{b}(t)) + (\boldsymbol{a}(t) \times \dot{\boldsymbol{b}}(t)).$$

Пусть $r \colon \mathbb{R} \to \mathbb{R}^n$. Тогда $|r| = \mathrm{const}$ тогда и только тогда, когда $\langle r, \dot{r} \rangle = 0$. Доказательство простое — надо продифференцировать тождество $\langle r(t), r(t) \rangle = \mathrm{const}$. Можно доказать и по-другому — вектор постоянной длины $|r| = \mathrm{const}$ лежит на сфере, уравнение которой $F(x_1, \ldots, x_n) = x_1^2 + \ldots + x_n^2 = \mathrm{const}$. При этом

$$0 = \langle \nabla F, \dot{\boldsymbol{r}} \rangle = \langle 2\boldsymbol{r}, \dot{\boldsymbol{r}} \rangle = 2\langle \boldsymbol{r}, \dot{\boldsymbol{r}} \rangle.$$

Проекция вектора u на вектор v вычисляется по формуле

$$\operatorname{proj}_{oldsymbol{v}} oldsymbol{u} = rac{\langle oldsymbol{u}, oldsymbol{v}
angle}{\langle oldsymbol{v}, oldsymbol{v}
angle} \cdot oldsymbol{v}.$$

Объём сведений из линейной алгебры, которые необходимы в курсе дифференциальной геометрии (и в других дисциплинах), начинает становиться слишком большим для маленького раздела напоминаний в этом файле, поэтому я решил вынести его в отдельный проект, с которым можно ознакомиться по ссылке.

Про функции в геометрии

Фразу, упомянутую в эпиграфе к данному разделу, А.В. Пенской произнёс на первой лекции своего курса по дифференциальной геометрии в 2025 г.

Рассмотрим евклидову плоскость \mathbb{E}^1 и фиксированную точку O на ней. Пусть на этой плоскости задана функция $f(x) = |\overrightarrow{Ox}|$ (измеряем евклидово расстояние до заданной точки). Мы можем ввести евклидовы координаты в этой плоскости, в них наша функция записывается как $f(x,y) = \sqrt{x^2 + y^2}$. А можем ввести полярные, и тогда функция записывается как $f(\rho,\varphi) = \rho$. Наблюдаем некоторое противоречие — одна и та же функция f от двух аргументов записывается двумя (очевидно, различными) способами, то есть формально нельзя написать $f(x,y) = f(\rho,\varphi)$. Но мы так пишем, и мы на самом деле хотим так писать. Так в чём же дело?

Корень этого мнимого противоречия заключается в том, как мы думаем о функциях в алгебре и анализе. Мы привыкли к тому, что функция — это «алгоритм вычисления». С этой точки зрения $f(\rho,\varphi)$ должно быть равно $\sqrt{\rho^2+\varphi^2}$, но ведь ясно, что мы имеем в виду не это. А на самом деле происходит следующее.

Имеет место такая коммутативная диаграмма, где отображения Φ и Ψ задают выбор системы координат. Запись $f(x,y)=\sqrt{x^2+y^2}$ формально некорректна, ведь на самом деле таким образом задаётся не функция f, а композиция $(f\circ\Phi)(x,y)=\sqrt{x^2+y^2}$. Так же можно написать и в полярных координатах: $(f\circ\Psi)(\rho,\varphi)=\rho$. И то, что мы имеем в виду под записью $f(x,y)=f(\rho,\varphi)$, формально записывается как

$$f \circ \Phi = f \circ \Psi$$
.

Сама функция f задана абстрактно, в её определении не фигурировали координаты, поэтому писать $f(x,y)=\dots$ (или $f(\rho,\varphi)=\dots$) формально нельзя. Но мы, конечно же, будем, потому что для нас первично абстрактное задание функции, а не система координат (или параметризация), в которой мы хотим её записать.

Теперь можем написать ещё более «удивительную» формулу:

$$f(\rho, \varphi) = f(x(\rho, \varphi), y(\rho, \varphi)).$$

Если уж мы согласились с равенством $f(\rho,\varphi)=f(x,y)$, то мы обязаны согласиться и с этим равенством, ведь от первого ко второму можно перейти, рассматривая x и y как функции $x(\rho,\varphi)=\rho\cos\varphi,\ y(\rho,\varphi)=\rho\sin\varphi.$ И мы действительно можем с ним согласиться, ведь формально это равенство можно записать как

$$f\circ\Psi=(f\circ\Phi)\circ(\Phi^{-1}\circ\Psi).$$

 $^{^{1}}$ Везде в тексте, кроме этого комментария, евклидово пространство размерности n отождествляется с \mathbb{R}^{n} . Здесь важно сохранить обозначения Алексея Викторовича.

2. Теория кривых

Рубины шлифуют алмазами.

А. А. Гайфуллин

Базовые определения

Определение 2.1. Простой дугой γ в \mathbb{R}^n называется любое подмножество \mathbb{R}^n , гомеоморфное отрезку [0;1]. Параметризацией простой дуги называется гомеоморфизм $r \colon [0;1] \to \gamma$.

Определение 2.2. Параметризация $r: [0;1] \to \mathbb{R}^n$ простой дуги называется *регулярной класса* C^k , если для всех $i=1,\ldots,n$ функция $r^i(t)$ является отображением класса C^k и

$$\frac{d\mathbf{r}}{dt} > 0$$

в каждой точке (для концов отрезка 0 и 1 в качестве производной берётся производная справа и слева соответственно). Простая дуга называется регулярной (или гладкой), если существует её регулярная параметризация.

Параметризация простой дуги естественным образом задаёт на ней ориентацию. Условие на знак производной в данной точке необходимо, чтобы сохранять эту ориентацию при замене параметра.

Определение 2.3. Параметризованной кривой в \mathbb{R}^n называется непрерывное отображение $r\colon I\to\mathbb{R}$ такое, что существует не более чем счётное покрытие промежутка I отрезками $[a_i;b_i]$ такое, что для каждого i ограничение $r|_{[a_i;b_i]}$ есть параметризация простой дуги.

Определение 2.4. *Кривой* в \mathbb{R}^n называется класс эквивалентности параметризованных кривых, где $r_1\colon I_1\to\mathbb{R}^n$ и $r_2\colon I_2\to\mathbb{R}^n$ эквивалентны, если существует такой гомеоморфизм $I_1\to I_2$, что следующая диаграмма коммутативна:

Любое вложение из данного класса будем называть параметризацией кривой.

В дальнейшем мы будем рассматривать только регулярные кривые. Условие регулярности необходимо добавить для соответствия интуитивному пониманию гладкости как отсутствия изломов. Например, мы не хотим рассматривать кривые вроде $r(t) = (t^2, t^3)$ (рис. 2.1), хотя обе координатные функции $x(t) = t^2$ и $y(t) = t^3$ гладкие класса C^{∞} .

Предложение 2.5. Если $r_1(t)$ и $r_2(s)$ — регулярные эквивалентные параметризации, то t(s) и s(t) являются гладкими функциями.

Доказательство. Рассмотрим параметр t. Так как обе параметризации регулярны, то $\dot{r}_1(t_0) \neq 0$ в каждой точке t_0 . Тогда найдётся номер i_0 такой, что $\dot{x}^{i_0}(t_0) \neq 0$. Тогда по теореме об обратной функции в некоторой окрестности точки t_0 можно выразить параметр t через x^{i_0} , то есть $t(x^{i_0})$ — гладкая функция в некоторой окрестности данной точки. А x^{i_0} , в свою очередь, является гладкой функцией от s (так как отображение r_2 гладкое). Таким образом, функция $t(s) = t(x^{i_0}(s))$ гладкая как композиция гладких функций (теорема о сложной функции). Аналогично доказывается, что функция s(t) тоже гладкая.

Рис. 2.1: Полукубическая парабола

Важно подчеркнуть, что при доказательстве использовалось рассуждение, которое можно сформулировать так: на регулярной кривой в некоторой окрестности любой точки можно в качестве параметра выбрать одну из координат евклидова пространства. Отсюда, например, можно сразу получить нерегулярность полукубической параболы — легко видеть, что в окрестности точки (0,0) её нельзя параметризовать ни одной переменной x или y.

Способы задания кривой

На практике часто приходится иметь дело с кривыми, заданными с помощью уравнений. С глобальной точки зрения данный подход не эквивалентнен параметрическому заданию. Однако, если наложить на систему уравнений некоторые ограничения, то мы получим объекты, локально устроенные так же, как кривые.

Определение 2.6. Пусть f — гладкая функция из некоторого подмножества $U \subset \mathbb{R}^n$ в \mathbb{R}^m , m < n. Мы говорим, что точка $x_0 \in U$ является для неё регулярной, если $x_0 \in \operatorname{Int} U$ и $\operatorname{rk} J_{\boldsymbol{f}}(x_0) = m$.

Теорема 2.7. Пусть f_1, \ldots, f_{n-1} — набор гладких функций из некоторого подмножества $U \subset \mathbb{R}^n$ в \mathbb{R} , а точка $x_0 \in U$ является регулярной точкой отображения $f = (f_1, \ldots, f_{n-1})$ и решением системы уравнений

$$\begin{cases} f_1(\mathbf{x}) = 0, \\ \dots \\ f_{n-1}(\mathbf{x}) = 0, \end{cases}$$

то есть $f(x_0) = \mathbf{0}$. Тогда существует окрестность точки x_0 , в которой пространство решений этой системы представляет собой гладкую регулярную кривую.

Верно и обратное: в окрестности любой точки регулярной кривой её можно задать системой уравнений, которая регулярна в этой точке.

Доказательство. Без ограничения общности, можем считать, что первые n-1 столбцов матрицы $J_{\boldsymbol{f}}(\boldsymbol{x}_0)$ линейно независимы (иначе перенумеруем координаты). Тогда по теореме о неявной функции решение этой системы в некоторой окрестности точки \boldsymbol{x}_0 задаётся гладкими функциями $x^1(x^n),\dots,x^{n-1}(x^n)$. Но это и означает, что локально решения представляют собой регулярную кривую, так как радиус-вектор параметризован последней координатой: $\boldsymbol{r}(x^n) = (x^1(x^n),\dots,x^{n-1}(x^n),x^n)$. Эта параметризация регулярна, поскольку последней компонентой вектора скорости $\dot{\boldsymbol{r}}$ будет 1.

Докажем обратное утверждение. Как упоминалось в предложении 2.5, в качестве параметра локально можно взять одну из координат. Не теряя общности, будем считать, что эта координата x^n : $\mathbf{r}(x^n) = (x^1(x^n), \dots, x^{n-1}(x^n), x^n)$. Теперь запишем систему уравнений

 $x-r(x^n)=0$, которая локально задаёт нашу кривую. Первые n-1 столбец матрицы Якоби $J_{x-r(x^n)}$ в рассматриваемой точке составляют единичную матрицу.

Касательная в точке регулярной кривой

Определение 2.8. Пусть регулярная кривая задана радиус-вектором r(t). *Касательная прямая* к этой кривой в точке t_0 задаётся рядом Тейлора функции r с отбрасыванием всех членов более высокого порядка, чем $t-t_0$:

$$\boldsymbol{\ell}(t) := \boldsymbol{r}(t_0) + \left. \frac{d\boldsymbol{r}}{dt} \right|_{t_0} (t - t_0).$$

Нужно проверить корректность данного определения, ведь оно сформулировано для конкретной параметризации кривой. Здесь корректность сразу следует из предложения 2.5 и теоремы о сложной функции:

$$\frac{d\mathbf{r}}{dt} = \frac{d\mathbf{r}}{ds}\frac{ds}{dt}.$$

Теорема 2.9.

(1) Пусть γ — регулярная кривая, $x_0 \in \gamma$ — некоторая её точка, ℓ — касательная прямая в точке x. Тогда для $x_1 \in \gamma$, $x_1 \neq x_0$ выполнено

$$ho(oldsymbol{x}_1,\ell)=\overline{o}(|oldsymbol{x}_1-oldsymbol{x}_0|)$$
 при $oldsymbol{x}_1 ooldsymbol{x}_0.$

(2) Для каждой точки $x_0 \in \gamma$ касательная прямая является единственной прямой с указанным свойством.

Доказательство. Пусть на γ выбрана регулярная параметризация $\boldsymbol{r}(t)$, в которой $\boldsymbol{x}_0 = \boldsymbol{r}(0)$. В качестве точки \boldsymbol{x}_1 будем брать $\boldsymbol{r}(t)$, где t пробегает окрестность нуля. Условие $\boldsymbol{r}(t) \to \boldsymbol{x}_0$ можно заменить на $t \to 0$ (по определению кривой). Обозначим $\boldsymbol{v}_0 := \dot{\boldsymbol{r}}(0)$. По условию, $\boldsymbol{v}_0 \neq 0$.

(1) По формуле Тейлора имеем

$$r(t) = x_0 + v_0 t + \overline{o}(t) = x_0 + (v_0 + \overline{o}(1))t$$
 при $t \to 0$.

Расстояние от r(t) до прямой ℓ равно $\rho(r(t),\ell) = |r(t) - x_0| \sin \alpha(t)$, где $\alpha(t)$ — угол между векторами v_0 и $r(t) - x_0$. Поскольку $r(t) - x_0 = (v_0 + \overline{o}(1))t$, этот угол равен $\overline{o}(1)$ при $t \to 0$. Получаем

$$\rho(\boldsymbol{r}(t), \ell) = |\boldsymbol{r}(t) - \boldsymbol{x}_0| \, \overline{o}(1) = \overline{o}(|\boldsymbol{r}(t) - \boldsymbol{x}_0|).$$

Рис. 2.2

(2) Пусть теперь ℓ' — другая прямая, проходящая через точку x_0 , и пусть u — её направляющий вектор. Тогда

$$\rho(\mathbf{r}(t), \ell') = |\mathbf{r}(t) - \mathbf{x}_0| \sin \beta(t),$$

где $\beta(t)$ — угол между векторами \boldsymbol{u} и $\boldsymbol{r}(t) - \boldsymbol{x}_0 = (\boldsymbol{v}_0 + \overline{o}(1))t$. При $t \to 0$ угол $\beta(t)$ стремится к углу между векторами \boldsymbol{u} и \boldsymbol{v}_0 , который по предположению отличен от 0 и π . Отсюда $\rho(\boldsymbol{r}(t), \ell') = |\boldsymbol{r}(t) - \boldsymbol{x}_0|$ (const $+ \overline{o}(1)$), где const $\neq 0$.

Предложение 2.10. Если кривая в \mathbb{R}^n задана системой уравнений f(x) = 0, то касательная к ней в регулярной точке x_0 задаётся системой уравнений $J_f(x_0) \cdot (x - x_0) = 0$.

Доказательство. Точка x_0 регулярна для отображения f, значит, rk $J_f(x_0) = n - 1$, поэтому пространство решений системы с этой матрицей одномерно, то есть задаёт прямую в пространстве \mathbb{R}^n (очевидно, проходящую через точку x_0). Остаётся проверить, что эта прямая параллельна вектору скорости касательной прямой в точке x_0 .

Пусть r(t) — регулярная параметризация данной кривой в окрестности точки $x_0 = r(t_0)$ (существует по теореме 2.7). Это означает, что f(r(t)) = 0 для всех t из прообраза данной окрестности. По теореме о производной сложной функции имеет место равенство

$$\frac{d}{dt}\mathbf{f}(\mathbf{r}(t)) = \frac{\partial \mathbf{f}}{\partial \mathbf{x}}\Big|_{\mathbf{r}(t)}\dot{\mathbf{r}}(t).$$

Подставляя $t = t_0$, получаем

$$\left. \frac{\partial \boldsymbol{f}}{\partial \boldsymbol{x}} \right|_{\boldsymbol{x}_0} \boldsymbol{v}_0 = 0,$$

где v_0 — вектор скорости при $t=t_0$.

Натуральный параметр и кривизна

Определение 2.11. Длиной кривой, заметаемой при изменении значения параметра от t_0 до t, называется число

$$l = \int_{t_0}^t |\dot{\boldsymbol{r}}(t)| \, dt.$$

Здесь опять нужно проверить корректность, то есть независимость от параметризации. Пусть мы перешли к другому регулярному параметру s (причём dt/ds > 0). Тогда имеем

$$\int_{s_0}^{s} \left| \frac{d\mathbf{r}}{ds} \right| ds = \int_{t_0}^{t} \left| \frac{d\mathbf{r}}{dt} \frac{dt}{ds} \right| \frac{ds}{dt} dt = \int_{t_0}^{t} \left| \frac{d\mathbf{r}}{dt} \right| \frac{dt}{ds} dt = \int_{t_0}^{t} \left| \frac{d\mathbf{r}}{dt} \right| dt = l.$$

Определение 2.12. Параметр s называется натуральным параметром регулярной кривой, если $|d\mathbf{r}/ds| = 1$.

Предложение 2.13.

- (1) Длина кривой l(t) является натуральным параметром.
- (2) Если s некоторый натуральный параметр, то s = l + const.

Доказательство.

(1) $dl/dt = |d\mathbf{r}/dt| > 0$. Значит, по теореме об обратной функции можем локально выразить t = t(l), и при этом

$$\left| \frac{d\mathbf{r}}{dl} \right| = \left| \frac{d\mathbf{r}}{dt} \frac{dt}{dl} \right| = \frac{dt}{dl} \left| \frac{d\mathbf{r}}{dt} \right| = \frac{|d\mathbf{r}/dt|}{|d\mathbf{r}/dt|} = 1.$$

(2) Если s — натуральный параметр, то $|\dot{r}(s)| = 1$ для каждого s. Отсюда,

$$l(s) = \int_{s_0}^{s} |\dot{r}(s)| ds = s - s_0,$$

то есть $s = l + s_0$, что и требовалось.

Далее, если не указано иное, через s мы будем всегда обозначать натуральный параметр, а через \dot{r} — производную по натуральному параметру.

Предложение 2.13 говорит нам о том, что натуральный параметр на любой кривой можно выписать явно по формуле длины кривой. Наличие такой формулы говорит нам о том, что у кривых тривиальная внутренняя геометрия. Всё, что можно делать на кривой — мерять длины, и мы (теоретически) можем это делать в любой параметризации.

Определение 2.14. *Кривизной* кривой в точке s называется величина $k(s) := |\ddot{r}(s)|$. (Легко видеть, что кривизна не зависит от выбора натурального параметра s.)

Предложение 2.15. Кривизна регулярной кривой на некотором участке равна нулю тогда и только тогда, когда этот участок является частью прямой.

Доказательство. \Rightarrow . Если k(s) = 0, то $\ddot{\boldsymbol{r}}(s) = 0$. Тогда $\boldsymbol{r}(s)$ должен быть линеен по s, то есть быть уравнением прямой.

 \Leftarrow . Рассмотрим прямую $r(t) = x_0 + vt$. Перейдём к натуральному параметру, воспользовавшись результатами предложения 2.13:

$$s(t) = \int_{0}^{t} |\dot{\boldsymbol{r}}(t)| dt = \int_{0}^{t} |\boldsymbol{v}| dt = |\boldsymbol{v}| t.$$

Подставляя найденное, легко убеждаемся, что r(s) линейно, значит, $\ddot{r}(s) = 0$.

Результат последнего предложения согласуется с нашим интуитивным представлением о кривизне — кривизна прямой должна быть равна нулю, а чего-то кроме прямой — не равна нулю.

Определение 2.16. Регулярная кривая называется *бирегулярной* на некотором интервале, если кривизна не равна нулю на этом интервале.

Полезно также посчитать кривизну окружности. В натуральном параметре уравнение окружности радиуса R имеет следующий вид:

$$r(s) = \left(R\cos\frac{s}{R}, R\sin\frac{s}{R}\right)$$

Кривизна равна $k(s) = |\ddot{r}(s)| = \frac{1}{R}$, что тоже соответствует нашему интуитивному представлению: кривизна окружности во всех точках одинакова и уменьшается с увеличением радиуса.

В натуральном параметре $|\dot{\boldsymbol{r}}(s)|=1$, значит, $\dot{\boldsymbol{r}}(s)\perp\ddot{\boldsymbol{r}}(s)=0$. Таким образом, в каждой точке $\boldsymbol{r}(s)$ кривой имеем свой ортонормированный базис из вектора скорости $\boldsymbol{v}(s)\coloneqq\dot{\boldsymbol{r}}(s)$ и вектора главной нормали $\boldsymbol{n}(s)\coloneqq\ddot{\boldsymbol{r}}(s)/|\ddot{\boldsymbol{r}}(s)|$. (Для корректности этого определения считаем кривую бирегулярной.) Плоскость span $(\boldsymbol{v}(s),\boldsymbol{n}(s))$ называется соприкасающейся плоскостью кривой в точке s.

Предложение 2.17. В любой параметризации линейная оболочка векторов скорости и ускорения лежит в соприкасающейся плоскости.

Доказательство. Перейдём от некоторого регулярного параметра t к натуральному параметру s:

$$\frac{d\boldsymbol{r}(t)}{dt} = \frac{d\boldsymbol{r}(s)}{ds}\frac{ds}{dt}, \quad \frac{d^2\boldsymbol{r}(s)}{ds^2} = \frac{d^2\boldsymbol{r}(s)}{ds^2}\left(\frac{ds}{dt}\right)^2 + \frac{d\boldsymbol{r}(s)}{ds}\frac{d^2s}{dt^2}.$$

Из первой формулы видно, что все вектора скорости коллинеарны, а из второй — что вектор ускорения в любой регулярной параметризации является линейной комбинацией векторов скорости и ускорения в натуральной параметризации и, как следствие, принадлежит соприкасающейся плоскости.

Выведем формулу кривизны в произвольной параметризации. Заметим, что

$$|S_{\mathrm{or}}(\dot{\boldsymbol{r}}(s), \ddot{\boldsymbol{r}}(s))| = k(s) \cdot \underbrace{|S_{\mathrm{or}}(\boldsymbol{v}(s), \boldsymbol{n}(s))|}_{1} = k(s).$$

Теперь выразим производные по s через произвольный параметр t (производные по t будем обозначать штрихом). Сразу из определения натурального параметра имеем $\frac{ds}{dt} = |\mathbf{r}'(t)|, \dot{\mathbf{r}}(s) = \mathbf{r}'(t)/|\mathbf{r}'(t)|$. Считаем вторую производную:

$$\ddot{\boldsymbol{r}}(s) = \frac{d}{ds} \left(\frac{\boldsymbol{r}'(t)}{|\boldsymbol{r}'(t)|} \right) = \left(\frac{\boldsymbol{r}'(t)}{|\boldsymbol{r}'(t)|} \right)' \frac{dt}{ds} = \frac{\boldsymbol{r}''(t) |\boldsymbol{r}'(t)| - \boldsymbol{r}'(t) \frac{d}{dt} |\boldsymbol{r}'(t)|}{|\boldsymbol{r}'(t)|^3} = \frac{\boldsymbol{r}''(t)}{|\boldsymbol{r}'(t)|^2} - \frac{\frac{d}{dt} |\boldsymbol{r}'(t)|}{|\boldsymbol{r}'(t)|^3} \boldsymbol{r}'(t).$$

Подставляем в формулу, выведенную для натуральной параметризации:

(2.1)
$$k(t) = |S_{\text{or}}(\dot{\boldsymbol{r}}(s), \ddot{\boldsymbol{r}}(s))| = \left|S_{\text{or}}\left(\frac{\boldsymbol{r}'(t)}{|\boldsymbol{r}'(t)|}, \frac{\boldsymbol{r}''(t)}{|\boldsymbol{r}'(t)|^2}\right)\right| = \frac{|S_{\text{or}}(\boldsymbol{r}'(t), \boldsymbol{r}''(t))|}{|\boldsymbol{r}'(t)|^3}.$$

Смогли отбросить второе слагаемое в выражении r''(s), так как вектор в этом слагаемом был коллинеарен r'(t), поэтому при подстановке в ориентированную площадь давал 0.

Соприкасающаяся окружность

Определение 2.18. Говорят, что две гладкие кривые *имеют в точке* x_0 *соприкосновение* nop nd ka k, где $k \geqslant 1$, если для некоторых их регулярных параметризаций и некоторого t_0 выполнено

(2.2)
$$r_1(t_0) = r_2(t_0) = x_0, \quad |r_1(t) - r_2(t)| = \overline{o}((t - t_0)^k)$$
 при $t \to t_0$.

Из формулы Тейлора следует, что условие (2.2) равносильно следующему:

$$\boldsymbol{r}_1 = \boldsymbol{r}_2(t_0), \quad \boldsymbol{r}_1'(t_0) = \boldsymbol{r}_2'(t_0), \quad \dots, \quad \left(\frac{d^k \boldsymbol{r}_1}{dt^k}\right)(t_0) = \left(\frac{d^k \boldsymbol{r}_2}{dt^k}\right)(t_0).$$

Касательная прямая к кривой имеет в точке касания первый порядок соприкосновения с этой кривой. Однако может иметь и больший порядок соприкосновения.

Определение 2.19. Точка x кривой γ называется *точкой спрямления*, если в ней кривая γ имеет со своей касательной прямой соприкосновение порядка два.

Предложение 2.20. Пусть дана кривая с регулярной парамеризацией r(t). Точка, соответствующая значению параметра $t=t_0$ является точкой спрямления тогда и только тогда, когда векторы скорости $r'(t_0)$ и $r''(t_0)$ коллинеарны.

Доказательство. \Rightarrow . Пусть $\ell(t)$ — параметризация касательной в точке спрямления. Тогда имеем $r'(t) = \ell'(t)$ и $r''(t) = \ell''(t)$, а вектора ℓ' и ℓ'' коллинеарны, так как они сонаправлены одной и той же касательной прямой.

 \Leftarrow . Параметризуем отрезок касательной прямой возле точки ${m r}(t_0)$ следующим образом:

$$\ell(t_0) = r(t_0) + r'(t_0)t + \frac{r''(t_0)}{2}t^2, \ t \in [t_0 - \varepsilon; t_0 + \varepsilon].$$

При достаточно малом ε эта параметризация регулярна, так как $r'(t_0) \neq 0$.

Отметим, что точки спрямления — ровно те точки кривой, в которых её кривизна равна нулю. Действительно, в натуральной параметризации $|\dot{\pmb{r}}|=1$, так что $\dot{\pmb{r}}\perp\ddot{\pmb{r}}$, но в точках спрямления $\dot{\pmb{r}}\parallel\ddot{\pmb{r}}$. Так что остаётся единственная возможность $\ddot{\pmb{r}}=\pmb{0}$.

Теорема 2.21. Пусть γ_1 и γ_2 — две гладкие простые дуги в \mathbb{R}^n , имеющие общую точку x_0 . Они имеют в этой точке соприкосновение порядка k тогда и только тогда, когда для $x \in \gamma_1$ выполнено

$$\rho(\boldsymbol{x}, \gamma_2) = \overline{\rho}(|\boldsymbol{x} - \boldsymbol{x}_0|^k) \text{ при } \boldsymbol{x} \to \boldsymbol{x}_0.$$

Доказательство. Пусть r_1 и r_2 — регулярные параметризации данных кривых такие, что $r_1(0) = r_2(0) = x_0$.

 \Rightarrow . Без ограничения общности можно считать, что $\dot{r}_1(0) \parallel e_1$. Тогда за параметр на γ_1 можно выбрать первую координату, то есть

$$\mathbf{r}_1(t) = \mathbf{x_0} + (t, \overline{o}(t), \dots, \overline{o}(t)), t \to 0.$$

Для такой параметризации имеем

$$|\mathbf{r}_1(t) - \mathbf{x}_0| = (1 + \overline{o}(1)) |t|, t \to 0,$$

то есть величины $|\boldsymbol{r}_1(t)-\boldsymbol{x}_0|$ и t одного порядка малости при $t\to 0$, и можно заменять $\overline{o}(|\boldsymbol{r}_1(t)-\boldsymbol{x}_0|^k)$ на $\overline{o}(t^k)$, и наоборот. Отсюда, условие (2.2) влечёт (2.3).

Пусть выполнено (2.3). Обозначим через $\varphi(t)$ функцию, определённую в окрестности 0 условием

$$|\boldsymbol{r}_1(t) - \boldsymbol{r}_2(\varphi(t))| = \overline{o}(|\boldsymbol{r}_1(t) - \boldsymbol{x}_0|^k).$$

(Мы не требуем от φ гладкости и даже непрерывности. В качестве $\varphi(t)$ можно взять параметр, соответствующий точек кривой \mathbf{r}_2 , на которой достигается расстояние от точки $\mathbf{r}_1(t)$ до кривой \mathbf{r}_2 .) Из определения простой дуги следует, что $\varphi(t) \to 0$ при $t \to 0$. Кроме того, направление вектора $\mathbf{r}_2(\varphi(t)) - \mathbf{x}_0$ (рассматриваемое с точностью до знака) стремится к направлению вектора $\dot{\mathbf{r}}_1(0) = (1,0,\dots,0)$, а значит, первую координату можно взять за параметр и на второй дуге.

С этого места мы предполагаем, что параметризация второй дуги также имеет вид

$$\mathbf{r}_2(t) = \mathbf{x}_0 + (t, \overline{o}(t), \dots, \overline{o}(t)), t \to 0.$$

Рассмотрим треугольник с вершинами $\boldsymbol{x}=\boldsymbol{r}_1(t),\ \boldsymbol{x}_1=\boldsymbol{r}_2(t),\ \boldsymbol{x}_2=\boldsymbol{r}_2(\varphi(t))$ при $t\to 0$. Направление вектора $\boldsymbol{x}_2-\boldsymbol{x}_1$, если он ненулевой, сближается с направлением вектора скорости второй кривой в точке \boldsymbol{x}_0 , то есть $\boldsymbol{v}_0=(1,0,\ldots,0)$. При этом $(\boldsymbol{x}_1-\boldsymbol{x})\perp\boldsymbol{v}_0$. Таким образом, угол $\angle \boldsymbol{x}\boldsymbol{x}_1\boldsymbol{x}_2$ стремится к прямому. Мы знаем, что противолежащая ему сторона $\boldsymbol{x}\boldsymbol{x}_2$ имеет порядок малости $\overline{o}(|\boldsymbol{x}-\boldsymbol{x}_0|^k)=\overline{o}(t^k)$. Отсюда, все его стороны имеют по крайней мере такой же порядок малости, в частности, $|\boldsymbol{x}-\boldsymbol{x}_1|=|\boldsymbol{r}_1(t)-\boldsymbol{r}_2(t)|$, откуда следует (2.2).

Определение 2.22. Соприкасающейся окружностью с данной кривой r(t) в точке x_0 называется окружность, которая имеет соприкосновение второго порядка с этой кривой в точке x_0 .

Теорема 2.23. Если точка x_0 некоторой гладкой кривой γ не является точкой спрямления, то существует ровно одна окружность, имеющая в x_0 соприкосновение второго порядка с γ .

Доказательство. Пусть r(t) — некоторая регулярная параметризация кривой γ с условием $r(0) = x_0$. Соприкосновение второго порядка в точке x_0 с какой-либо другой кривой определяется векторами скорости $v = \dot{r}(0)$ и ускорения $a = \ddot{r}(0)$. Поэтому для доказательства теоремы достаточно взять любую другую кривую с теми же векторами скорости и

ускорения в точке x_0 . Таким образом, без ограничения общности мы можем считать, что наша кривая имеет следующую параметризацию:

$$\boldsymbol{r}(t) = \boldsymbol{x}_0 + \boldsymbol{v}t + \frac{\boldsymbol{a}}{2}t^2.$$

Так как x_0 — не точка спрямления, векторы v и a линейно независимы (см. предложение 2.20), и порождают соприкасающуюся плоскость (см. предложение 2.17).

Пусть C — окружность, проходящая через x_0 . При любой её параметризации векторы скорости и ускорения лежат в той же плоскости, что и она сама. Поэтому необходимым условием соприкосновения окружности C с кривой γ в точке x_0 является то, что эта окружность лежит в соприкасающейся плоскости $\operatorname{span}(v,a)$, что мы дальше и предполагаем.

Пусть O — центр окружности C. Тогда вектор $u = \overrightarrow{Ox_0}$ является линейной комбинацией векторов v и a: $u = \lambda v + \mu a$. Расстояние от произвольной точки $x \in \text{span}(v, a)$ до C равно

$$\rho(\boldsymbol{x}, C) = \left| \left| \overrightarrow{Ox} \right| - R \right|,$$

где R — радиус окружности C. Отсюда условие соприкосновения окружности C и кривой γ можно записать так:

$$|\overrightarrow{Or(t)}| - R = \overline{o}(t^2),$$

что равносильно (поскольку $R \neq 0$)

$$\left|\overrightarrow{Or(t)}\right|^2 = R^2 + \overline{o}(t^2).$$

Подставляя $\overrightarrow{Or(t)} = \boldsymbol{u} + \boldsymbol{v}t + \frac{\boldsymbol{a}}{2}t^2$, получаем

$$\left\langle \boldsymbol{u} + \boldsymbol{v}t + \frac{\boldsymbol{a}}{2}t^2, \boldsymbol{u} + \boldsymbol{v}t + \frac{\boldsymbol{a}}{2}t^2 \right\rangle = R^2 + \overline{o}(t^2).$$

Раскрывая скобки в левой части и отбрасывая члены порядка $\bar{o}(t^2)$, получаем

$$\langle \boldsymbol{u}, \boldsymbol{u} \rangle + 2\langle \boldsymbol{u}, \boldsymbol{v} \rangle t + (\langle \boldsymbol{u}, \boldsymbol{a} \rangle + \langle \boldsymbol{v}, \boldsymbol{v} \rangle) t^2 = R^2.$$

Учитывая равенство R = |u|, мы приходим к следующему условию соприкосновения второго порядка окружности C и кривой γ :

$$\langle \boldsymbol{u}, \boldsymbol{v} \rangle = 0, \quad \langle \boldsymbol{u}, \boldsymbol{a} \rangle + \langle \boldsymbol{v}, \boldsymbol{v} \rangle = 0.$$

Подставляя $\boldsymbol{u} = \lambda \boldsymbol{v} + \mu \boldsymbol{a}$, получаем систему линейных уравнений на λ и μ :

$$\left(egin{array}{c|c} \langle oldsymbol{v}, oldsymbol{v}
angle & \langle oldsymbol{v}, oldsymbol{a}
angle & 0 \ \langle oldsymbol{a}, oldsymbol{v}
angle & \langle oldsymbol{a}, oldsymbol{a}
angle & -\langle oldsymbol{v}, oldsymbol{v}
angle \end{array}
ight),$$

матрица которой есть матрица Грама векторов (v, a), которая невырождена из линейной независимости этих векторов, так что система имеет единственное решение.

Соприкосновение кривых второго (или более) порядка влечёт равенство кривизн кривых в точке соприкосновения. Значит, радиус соприкасающейся окружности равен R=1/k, где k — кривизна в точке соприкосновения. Таким образом, соприкасающаяся окружность даёт геометрический смысл понятия кривизны, так что её центр часто называют центром кривизны, а радиус — радиусом кривизны.

Кривые на плоскости и в пространстве

Далее считаем, что задана плоская кривая γ с натуральной параметризацией r(s).

Определение 2.24. Точку r(s) и приложенный к ней базис (v(s), n(s)) называют penepom $\Phi pene$ плоской кривой.

В каждой точке кривой введён свой локальный базис. Поэтому и векторы, связанные с точками на кривых, будут задаваться в этих локальных базисах. Чтобы дифференцировать такие векторы, нам нужно научиться дифференцировать векторы \boldsymbol{v} и \boldsymbol{n} .

Теорема 2.25 (Формулы Френе для плоской кривой). Для плоской кривой выполнено

(2.4)
$$\begin{pmatrix} \dot{\boldsymbol{v}}(s) \\ \dot{\boldsymbol{n}}(s) \end{pmatrix} = \begin{pmatrix} 0 & k(s) \\ -k(s) & 0 \end{pmatrix} \begin{pmatrix} \boldsymbol{v}(s) \\ \boldsymbol{n}(s) \end{pmatrix}.$$

Доказательство. Из определения кривизны, $\dot{\boldsymbol{v}} = k\boldsymbol{n}$, что даёт первое уравнение. Известно, что $|\boldsymbol{n}| = 1$, отсюда $\boldsymbol{n} \perp \dot{\boldsymbol{n}}$, так что $\dot{\boldsymbol{n}} = \lambda \boldsymbol{v}$. Тогда

$$0 = \frac{d}{ds} \underbrace{\langle \boldsymbol{v}(s), \boldsymbol{n}(s) \rangle}_{0} = \underbrace{\langle k\boldsymbol{n}, \boldsymbol{n} \rangle}_{k} + \underbrace{\langle \boldsymbol{v}, \lambda \boldsymbol{v} \rangle}_{k} \Rightarrow \lambda = -k,$$

что даёт и второе уравнение $\dot{\boldsymbol{n}} = -k\boldsymbol{v}$.

Вектор главной нормали кривой n задаёт векторное поле на кривой. Однако в точках спрямления этот вектор оказывается не определён, и поле выходит разрывным. В \mathbb{R}^n эту проблему никак не решить, но в плоскости это можно сделать.

Вместо репера Френе можно взять ортонормированный положительно ориентированный базис (v, v^{\perp}) , при этом вновь имеем $\dot{v} \parallel v^{\perp}$. Можем определить «кривизну со знаком» как коэффициент пропорциональности этих векторов.

Определение 2.26. *Ориентированной кривизной* плоской кривой в точке s будем называть величину $k_{\text{or}}(s) := \langle \dot{\boldsymbol{v}}(s), \boldsymbol{v}^{\perp}(s) \rangle$.

Сам знак кривизны геометрического смысла не имеет, имеют геометрический смысл точки, в которых происходит перемена знака $k_{\rm or}$. Это точки спрямления, где поле главных нормалей терпит разрыв. Формулу (2.1) легко модифицировать для нахождения ориентированной кривизны:

(2.5)
$$k_{\text{or}}(t) = \frac{S_{\text{or}}(\dot{\boldsymbol{r}}(t), \ddot{\boldsymbol{r}}(t))}{|\dot{\boldsymbol{r}}(t)|^3}.$$

Из формул Френе (2.4) видно, что по кривизне можно восстановить кривую. Поэтому соотношение на натуральный параметр и кривизну задаёт кривую однозначно с точностью до движений плоскости. Такие соотношения называются *натуральными уравнениями* и их замечательное свойство состоит в том, что такое задание не зависит от системы координат.

Чтобы восстановить кривую, можно решить линейную систему дифференциальных уравнений (2.4) из четырёх переменных (две координаты вектора \boldsymbol{v} и две координаты вектора \boldsymbol{n}) и проинтегрировать затем вектор $\boldsymbol{v}(s)$. Однако это неоптимальный метод — мы задаём ортонормированный базис $(\boldsymbol{v},\boldsymbol{n})$ на плоскости четырьмя параметрами. Если рассматривать ортонормированный положительно ориентированный базис $(\boldsymbol{v},\boldsymbol{v}^{\perp})$, то достаточно всего одного параметра — угла $\alpha(s)$ между базисным вектором \boldsymbol{e}_1 и вектором скорости \boldsymbol{v} . Тогда $\boldsymbol{v}=(\cos\alpha(s),\sin\alpha(s)),$ $\boldsymbol{v}^{\perp}=(-\sin\alpha(s),\cos\alpha(s)).$ Подставляя в определение ориентированной кривизны, получим:

$$k_{\rm or} = \langle (-\dot{\alpha}\sin\alpha, \dot{\alpha}\cos\alpha), (-\sin\alpha, \cos\alpha) \rangle = \dot{\alpha}(\sin^2\alpha + \cos^2\alpha) = \dot{\alpha}.$$

Таким образом, угол поворота вектора скорости естественно выражается через ориентированную кривизну следующим образом:

(2.6)
$$\alpha(s) = \int_{s_0}^{s} k_{\rm or}(s) ds.$$

Потом пишем вектор скорости $v(s) = (\cos \alpha(s), \sin \alpha(s))$ и интегрируем (при этом можем выбрать любую первообразную).

Задача 2.27. Восстановить кривую по натуральному уравнению $R^2 = 2as$ (здесь имеется в виду R = 1/k — радиус кривизны).

Решение. Выражаем кривизну через натуральный параметр:

$$k_{\rm or} = \frac{1}{\sqrt{2as}}.$$

Мы извлекли корень, не заботясь о знаке, потому что выбора знака соответствует просто отражению кривой относительно некоторой прямой. Теперь находим угол поворота ортонормированного базиса в каждой точке:

$$\alpha(s) = \int_{0}^{s} \frac{ds}{\sqrt{2as}} = \frac{2}{\sqrt{2a}} \int_{0}^{s} \frac{ds}{2\sqrt{s}} = \sqrt{\frac{2s}{a}}.$$

Здесь (неявно) мы выбрали конкретную первообразную, потому что разные первообразные отвечают одной и той же кривой с точностью до поворота. Выражаем вектор скорости $v(s) = \left(\cos\sqrt{\frac{2s}{a}}, \sin\sqrt{\frac{2s}{a}}\right)$ и интегрируем его:

$$\int_{0}^{s} \cos \sqrt{\frac{2s}{a}} ds = \begin{cases} \sqrt{\frac{2s}{a}} =: t & s = \frac{at^{2}}{2} \\ dt = \frac{ds}{\sqrt{2as}} & ds = a \cdot t dt \end{cases} = a \int_{0}^{t} t \cos t dt = a \int_{0}^{s} t d(\sin t) = at \sin t - a \int_{0}^{t} \sin t dt = a(t \sin t + \cos t).$$

При этом нам не нужно делать обратную замену, потому что сделанная замена соответствует просто смене параметра. Однако надо следить за тем, что при подсчёте второго интеграла мы сделаем ту же самую замену (здесь это, конечно, так). Аналогично,

$$\int_{0}^{s} \cos \sqrt{\frac{2s}{a}} ds = \dots = a(\sin t - t \cos t).$$

Итак, получаем $r(t) = a(\cos t + t \sin t, \sin t - t \cos t)$.

Полученная кривая является эвольвентой окружности радиуса a (см. раздел 2.7), что легко видеть из формулы (2.11).

Помимо практических приложений, формула (2.6) даёт важное приложение в топологии. Из неё легко видеть, что для замкнутой кривой γ имеет место формула

(2.7)
$$\oint_{\gamma} k_{\rm or}(s)ds = 2\pi m, \quad m \in \mathbb{Z},$$

Число m называется *числом вращения* кривой γ . Число вращения интересно тем, что оно не меняется при деформациях кривой в классе гладких замкнутых кривых (регулярных гомотопиях). Иными словами, число вращения является топологическим инвариантом гладкой замкнутой кривой.

Решим обратную задачу к задаче 2.27.

Задача 2.28. Найти натуральное уравнение для кривой $r(t) = (a\cos^3 t, a\sin^3 t)$.

Решение. Сначала поймём, как выглядит эта кривая. Найдём направление вектора скорости, например, в точке r(0) = (a, 0):

$$\mathbf{v}(t) = a(-3\cos^2 t \sin t, 3\sin^2 t \cos t),$$

В интересующей точке имеем v(0) = (0,0), и понять ничего нельзя. Можем попробовать найти предел нормированного вектора скорости:

$$\lim_{t \to 0+} \frac{\boldsymbol{v}(t)}{|\boldsymbol{v}(t)|} = \lim_{t \to 0+} \frac{a(-3\cos^2t\sin t, 3\sin^2t\cos t)}{3a\cos t\sin t} = \lim_{t \to 0+} (-\cos t, \sin t) = (-1, 0).$$

Аналогичные выкладки можно повторить для оставшихся трёх точек нерегулярности и затем нарисовать график (рис. 2.3). Эта кривая называется *астроидой*.

Рис. 2.3: Астроида

Приступим к решению задачи. Сначала посчитаем ориентированную кривизну по формуле (2.5). Для этого найдём производные $\dot{\boldsymbol{r}}(t)$ (а она уже найдена) и $\ddot{\boldsymbol{r}}(t)$:

$$\ddot{r}(t) = 3a(2\cos t \sin^2 t - \cos^3 t, 2\cos^2 t \sin t - \sin^3 t).$$

Теперь находим ориентированую площадь:

$$S_{\text{or}}(\dot{r}, \ddot{r}) = a^2 \cdot \det \begin{pmatrix} -3\cos^2 t \sin t & 3\sin^2 t \cos t \\ 2\cos t \sin^2 t - \cos^3 t & 2\cos^2 t \sin t - \sin^3 t \end{pmatrix} =$$

$$= a^2 \cdot (-6\cos^4 t \sin^2 t + 3\cos^2 t \sin^4 t - 6\cos^2 t \sin^4 t + 3\cos^4 t \sin^2 t) = -3a^2\sin^2 t \cos^2 t.$$

И, наконец, находим ориентированную кривизну:

$$k_{\rm or}(t) = \frac{-3a^2 \sin^2 t \cos^2 t}{27a^3 \cos^3 t \sin^3 t} = -\frac{1}{9a \cos t \sin t}.$$

Мы хотим выразить $k_{\rm or}$ через натуральный параметр, так что сначала надо найти натуральный параметр:

$$s(t) = \int_{0}^{t} |\dot{r}(t)| dt = 3a \int_{0}^{t} \sin t \cos t dt = \frac{3a}{4} \int_{0}^{t} \sin(2t) d(2t) = -\frac{3a}{4} \cos(2t).$$

Итого получаем (здесь уже записываем через радиус кривизны R=1/k)

$$R^{2} = -9a^{2}\cos^{2}t\sin^{2}t = -\frac{9a^{2}}{4}\sin^{2}(2t) = \frac{9}{4}\cos^{2}t - \frac{9a^{2}}{4} = 4s^{2} - \frac{9a^{2}}{4}.$$

Отметим, что натуральное уравнение не единственное в том смысле, что можно брать натуральный параметр со сдвигом. Здесь, например, немного удобнее взять

$$s(t) = -\frac{3a}{4}\cos(2t) + \frac{3a}{4}.$$

(Это обусловлено тем, что теперь s(0) = 0.) Новое уравнение будет выглядеть так:

$$R^2 - 6as - 4s^2 = 0.$$

(Именно в такой форме ответ приведён в задачнике. Алгебраически мы могли его получить просто выделив полный квадрат в старом выражении.)

В пространстве помимо векторов скорости $v := \dot{r}$ и главной нормали $n := \ddot{r}/|\ddot{r}|$ определяется вектор бинормали $b := v \times n$.

Определение 2.29. Точку r(s) и приложенный к ней базис (v(s), n(s), b(s)) называют репером Френе пространственной кривой.

Для этого репера есть аналоги формул (2.4).

Теорема 2.30 (Формулы Френе для пространственных кривых). Для пространственных кривых выполнено

(2.8)
$$\begin{pmatrix} \dot{\boldsymbol{v}}(s) \\ \dot{\boldsymbol{n}}(s) \\ \dot{\boldsymbol{b}}(s) \end{pmatrix} = \begin{pmatrix} 0 & k(s) & 0 \\ -k(s) & 0 & \varkappa(s) \\ 0 & -\varkappa(s) & 0 \end{pmatrix} \begin{pmatrix} \boldsymbol{v}(s) \\ \boldsymbol{n}(s) \\ \boldsymbol{b}(s) \end{pmatrix},$$

где $\varkappa(s)$ — некоторая гладкая функция.

Доказательство. Аналогично формулам для плоских кривых, $\dot{\boldsymbol{v}}=k\boldsymbol{n}$. Из определения, $|\boldsymbol{n}|=1$, значит, $\boldsymbol{n}\perp\dot{\boldsymbol{n}}$, так что $\dot{\boldsymbol{n}}=\alpha\boldsymbol{v}+\beta\boldsymbol{b}$. Здесь $\alpha=\langle\boldsymbol{v},\dot{\boldsymbol{n}}\rangle=-\langle\dot{\boldsymbol{v}},\boldsymbol{n}\rangle=-k$, $\beta=\langle\dot{\boldsymbol{n}},\boldsymbol{b}\rangle$. $|\boldsymbol{b}|=|\boldsymbol{v}\times\boldsymbol{n}|=1$, значит, $\dot{\boldsymbol{b}}\perp\boldsymbol{b}$, отсюда $\dot{\boldsymbol{b}}=\alpha\boldsymbol{v}+\beta\boldsymbol{n}$. Находим коэффициенты: $\alpha=\langle\dot{\boldsymbol{b}},\boldsymbol{v}\rangle=-\langle\dot{\boldsymbol{b}},\dot{\boldsymbol{v}}\rangle=0$, $\beta=\langle\dot{\boldsymbol{b}},\boldsymbol{n}\rangle=-\langle\boldsymbol{b},\dot{\boldsymbol{n}}\rangle$. Обозначив $\boldsymbol{\varkappa}:=\langle\dot{\boldsymbol{n}},\boldsymbol{b}\rangle$, получим формулы (2.8).

Геометрический смысл кручения виден из третьего уравнения в (2.8): это скорость вращения соприкасающейся плоскости кривой в данной точке. Выведем удобную формулу для кручения в натуральной параметризации:

$$\dot{\boldsymbol{r}} = \boldsymbol{v}, \quad \ddot{\boldsymbol{r}} = \dot{\boldsymbol{v}} = k\boldsymbol{n}, \quad \dddot{\boldsymbol{r}} = \frac{d}{ds}(k\boldsymbol{n}) = \dot{k}\boldsymbol{n} + k\dot{\boldsymbol{n}} = \dot{k}\boldsymbol{n} - k^2\boldsymbol{v} + \varkappa k\boldsymbol{b}.$$

Заметим, что

$$\operatorname{Vol}_{\operatorname{or}}(\dot{\boldsymbol{r}}, \ddot{\boldsymbol{r}}, \ddot{\boldsymbol{r}}) = \operatorname{Vol}_{\operatorname{or}}(\boldsymbol{v}, k\boldsymbol{n}, \varkappa k\boldsymbol{b}) = k^2 \varkappa \underbrace{\operatorname{Vol}_{\operatorname{or}}(\boldsymbol{v}, \boldsymbol{n}, \boldsymbol{b})}_{::} = k^2 \varkappa.$$

Отсюда, $\varkappa(s) = \mathrm{Vol}_{\mathrm{or}}(\dot{\boldsymbol{r}}(s), \ddot{\boldsymbol{r}}(s), \ddot{\boldsymbol{r}}(s))/k(s)^2$. Теперь перейдём в произвольную параметризацию. Для этого нужно будет выразить производные по s через производные по t, как мы это делали при выводе формулы (2.1):

$$\dot{\boldsymbol{r}}(s) = \frac{\boldsymbol{r}'(t)}{|\boldsymbol{r}'(t)|}, \quad \ddot{\boldsymbol{r}}(s) = \frac{\boldsymbol{r}''(t)}{|\boldsymbol{r}'(t)|^2} + \dots, \quad \ddot{\boldsymbol{r}}'(s) = \frac{\boldsymbol{r}'''(t)}{|\boldsymbol{r}'(t)|^3} + \dots$$

Подставляем в формулу для натуральной параметризации:

$$(2.9) \quad \varkappa(t) = \frac{1}{k^2} \operatorname{Vol}_{\operatorname{or}}(\dot{\boldsymbol{r}}, \ddot{\boldsymbol{r}}, \ddot{\boldsymbol{r}}') = \frac{|\boldsymbol{r}'(t)|^6}{|S_{\operatorname{or}}(\boldsymbol{r}'(t), \boldsymbol{r}''(t))|} \cdot \frac{1}{|\boldsymbol{r}'(t)|^6} \operatorname{Vol}_{\operatorname{or}}(\boldsymbol{r}'(t), \boldsymbol{r}''(t), \boldsymbol{r}''(t), \boldsymbol{r}'''(t)) = \frac{\operatorname{Vol}_{\operatorname{or}}(\boldsymbol{r}'(t), \boldsymbol{r}''(t), \boldsymbol{r}'''(t), \boldsymbol{r}'''(t))}{|S_{\operatorname{or}}(\boldsymbol{r}'(t), \boldsymbol{r}''(t), \boldsymbol{r}''(t))|}.$$

Отметим, что из доказательства последней формулы видно, что базис Френе получается из базиса $(\mathbf{r}'(t), \mathbf{r}''(t), \mathbf{r}'''(t))$, который пишется в произвольной параметризации, ортогонализацией Грама — Шмидта (что, впрочем, верно и в плоском случае).

Предложение 2.31. Бирегулярная кривая является плоской тогда и только тогда, когда $\varkappa = 0$ (в каждой точке).

Доказательство. Легко видеть, что кривая плоская тогда и только тогда, когда $\boldsymbol{b}(s) = \boldsymbol{v}(s) \times \boldsymbol{n}(s) = \text{const.}$ Действительно, вектор \boldsymbol{b} является просто единичной нормалью плоскости, в которой лежит кривая. А третья формула из (2.8) влечёт, что $\boldsymbol{b} = \text{const.}$ если и только если $\boldsymbol{\varkappa} = 0$.

Задача 2.32. Дана кривая $r(t) = (\operatorname{ch} t, \operatorname{sh} t, t)$.

- (1) Привести её к натуральному параметру.
- (2) Найти репер Френе в каждой точке.
- (3) Найти кривизну и кручение в каждой точке.

Решение. У этой кривой легко пишутся производные всех порядков:

$$\dot{\boldsymbol{r}}(t) = (\operatorname{sh} t, \operatorname{ch} t, 1),$$
$$\ddot{\boldsymbol{r}}(t) = (\operatorname{ch} t, \operatorname{sh} t, 0),$$
$$\ddot{\boldsymbol{r}}(t) = (\operatorname{sh} t, \operatorname{ch} t, 0).$$

(1) Ищем натуральный параметр по формуле длины кривой:

$$s(t) = \int_{0}^{t} |\dot{r}(t)| dt = \int_{0}^{t} \sqrt{\sinh^{2} t + \cosh^{2} t + 1} dt = \sqrt{2} \int_{0}^{t} \cot t \, dt = \sinh t \sqrt{2}.$$

Теперь надо каждую координату вектора r(t) выразить через натуральный параметр. Для первых двух координат это делается совсем тривиально, а для третьей надо решить квадратное уравнение относительно e^t :

$$s = \sqrt{2} \cdot \frac{e^t - e^{-t}}{2},$$

$$e^{2t} - s\sqrt{2} \cdot e^t - 1 = 0,$$

$$e^t = \frac{s\sqrt{2} + \sqrt{2s^2 + 4}}{2} = \frac{s}{\sqrt{2}} + \sqrt{s^2 + 2},$$

$$t = \ln\left(\frac{s}{\sqrt{2}} + \sqrt{s^2 + 2}\right).$$

Здесь выбрали положительный корень квадратного уравнения, так как $e^t>0$ для всех t. Итого, получаем

$$r(s) = \left(\frac{s}{\sqrt{2}}, \sqrt{s^2 + 2}, \ln\left(\frac{s}{\sqrt{2}} + \sqrt{s^2 + 2}\right)\right).$$

(2) Воспользуемся ортогонализацией Грама — Шмидта:

$$\boldsymbol{v}(t) = \frac{\dot{\boldsymbol{r}}(t)}{|\dot{\boldsymbol{r}}(t)|} = \frac{1}{\operatorname{ch} t\sqrt{2}} (\operatorname{sh} t, \operatorname{ch} t, 1) = \frac{1}{\sqrt{2}} \left(\operatorname{th} t, 1, \frac{1}{\operatorname{ch} t} \right),$$

теперь найдём вектор, совпадающий по направлению с $\boldsymbol{n}(t)$:

$$\ddot{\boldsymbol{r}}(t) - \frac{\langle \boldsymbol{v}(t), \ddot{\boldsymbol{r}}(t) \rangle}{\langle \boldsymbol{v}(t), \boldsymbol{v}(t) \rangle} \boldsymbol{v}(t) = (\operatorname{ch} t, \operatorname{sh} t, 0) - \operatorname{sh} t \sqrt{2} \cdot \frac{1}{\sqrt{2}} \left(\operatorname{th} t, 1, \frac{1}{\operatorname{ch} t} \right) = \left(\frac{1}{\operatorname{ch} t}, 0, -\operatorname{th} t \right).$$

Осталось его нормировать, для этого вычислим квадрат его длины:

$$\frac{1}{\cosh^2 t} + \sinh^2 t = \frac{1 + \sinh^2 t}{\cosh^2 t} = 1.$$

Таким образом, нормировать ничего не надо, и $n(t) = (1/\cosh t, 0, - \th t)$. Осталось только найти вектор бинормали, это проще делать уже не по Граму — Шмидту, а просто по определению:

$$oldsymbol{b} = oldsymbol{v} imes oldsymbol{n} = rac{1}{\sqrt{2}} \det egin{pmatrix} oldsymbol{e}_1 & oldsymbol{e}_2 & oldsymbol{e}_3 \ hota & 1 & rac{1}{\cosh t} \ rac{1}{\cosh t} & 0 & - hota & 1 \end{pmatrix} = rac{1}{\sqrt{2}} \left(- hota & 1, -rac{1}{\cosh t}
ight).$$

(3) Так как мы уже нашли репер Френе, нам проще не пользоваться формулами (2.1) и (2.9) (и тем более не расписывать через натуральный параметр), а исходить из формул Френе. Мы знаем, что $\dot{\boldsymbol{v}} = k\boldsymbol{n}$, тогда можно просто «подобрать» коэффициент пропорциональности между нужными векторами.

$$\dot{\boldsymbol{v}}(t) = \frac{1}{\sqrt{2}} \left(\frac{1}{\operatorname{ch}^2 t}, 0, -\frac{\operatorname{sh} t}{\operatorname{ch}^2 t} \right) = k(t) \cdot \left(\frac{1}{\operatorname{ch} t}, 0, -\operatorname{th} t \right).$$

Отсюда сразу видно, что $k(t)=1/(\operatorname{ch} t\sqrt{2}).$ Можно так же поступить и для кручения, ведь мы знаем, что $\dot{\boldsymbol{b}}=-\varkappa\boldsymbol{n}$:

$$\dot{\boldsymbol{b}}(t) = \frac{1}{\sqrt{2}} \left(-\frac{1}{\operatorname{ch}^2 t}, 0, \frac{\operatorname{sh} t}{\operatorname{ch}^2 t} \right) = -\varkappa(t) \cdot \left(\frac{1}{\operatorname{ch} t}, 0, -\operatorname{th} t \right).$$

Получаем $\varkappa(t) = 1/(\operatorname{ch} t\sqrt{2}).$

Решим задачу нахождения кривизны и кручения кривой, которая задана не параметрически, а системой уравнений.

Задача 2.33. Найти кривизну и кручение кривой, заданной уравнениями

$$\begin{cases} x^2 + z^2 - y^2 = 1, \\ y^2 - 2x + z = 0 \end{cases}$$

в точке (1,1,1).

Решение. Сначала проверим, что в окрестности этой точки пересечение данных поверхностей действительно представляет собой гладкую кривую. Для этого, согласно теореме 2.7, достаточно проверить, что точка (1,1,1) является регулярной для отображения $\mathbf{f} = (f_1, f_2)$, где $f_1(x,y,z) = x^2 - y^2 + z^2 - 1$, $f_2(x,y,z) = -2x + y^2 + z$.

$$\nabla f_1|_{(1,1,1)} = (2x, -2y, 2z)|_{(1,1,1)} = (2, -2, 2),$$

$$\nabla f_2|_{(1,1,1)} = (-2, 2y, 1)|_{(1,1,1)} = (-2, 2, 1).$$

Видим, что градиенты в интересующих нас точках в самом деле линейно независимы, то есть гк $J_f(1,1,1)=2$. Далее мы хотим явно параметризовать данную кривую в окрестности нашей точки. И мы уже знаем, что в качестве параметра нам точно подойдёт какая-то из координат (замечание после доказательства предложения 2.5), но важно точно понять, какая именно. Нужно посмотреть на матрицу Якоби (которая на самом деле уже выписана сверху) и увидеть два линейно независимых столбца. Подойдут, например, последние два, так что будем выражать переменные y и z через x. Целиком выразить y и z из данной нам системы можно, но проблематично. Тем более, позднее мы собираемся пользоваться формулами (2.1) и (2.9), так что нам нужно будет знать их производные вплоть до третьего порядка. Однако можно смотреть на это по-другому — кроме первых трёх производных нам больше ничего не нужно, так что их и будем искать. Напишем ряды Тейлора с неопределёнными коэффициентами вблизи точки x=1, но чтобы избавиться от обилия возникающих скобок, сделаем замену $\widetilde{x}=x-1$:

$$y(\widetilde{x}) = 1 + a_1 \widetilde{x} + a_2 \widetilde{x}^2 + a_3 \widetilde{x}^3 + \overline{o}(\widetilde{x}^3),$$

$$z(\widetilde{x}) = 1 + b_1 \widetilde{x} + b_2 \widetilde{x}^2 + b_3 \widetilde{x}^3 + \overline{o}(\widetilde{x}^3).$$

Найдём коэффициенты подстановкой в данную нам систему. Для упрощения вычислений можно сложить два уравнения, получив новое уравнение

$$x^{2} + z^{2} - 2x + z = 1,$$
$$(x - 1)^{2} + \left(z + \frac{1}{2}\right)^{2} - \frac{9}{4} = 0,$$

которое связывает z и x. В нём надо сделать нашу замену и подставить разложение $z(\widetilde{x})$:

$$\left(z + \frac{1}{2}\right)^2 = \frac{9}{4} - \widetilde{x}^2,$$

$$\left(\frac{3}{2} + b_1\widetilde{x} + b_2\widetilde{x}^2 + b_3\widetilde{x}^3 + \overline{o}(\widetilde{x}^3)\right)^2 = \frac{9}{4} - \widetilde{x}^2.$$

Раскрываем скобки, отбрасывая члены порядка малости $\overline{o}(\widetilde{x}^3)$, и пишем систему на равенство коэффициентов получившихся многочленов в левой и правой части:

$$\begin{cases} 3b_3 + 2b_1b_2 = 0, \\ b_1^2 + 3b_2 = -1, \\ 3b_1 = 0. \end{cases}$$

Отсюда получаем $b_1 = 0$, $b_2 = -\frac{1}{3}$, $b_3 = 0$. Подставляя, получаем $z(\widetilde{x}) = 1 - \frac{1}{3}\widetilde{x}^2 + \overline{o}(\widetilde{x}^3)$. Теперь можем подставить найденное во второе уравнение системы и выразить $y(\widetilde{x})$.

$$(1 + a_1 \widetilde{x} + a_2 \widetilde{x}^2 + a_3 \widetilde{x}^3 + \overline{o}(\widetilde{x}^3))^2 - 2(\widetilde{x} + 1) + 1 - \frac{1}{3} \widetilde{x}^2 = 0,$$

$$(1 + a_1 \widetilde{x} + a_2 \widetilde{x}^2 + a_3 \widetilde{x}^3 + \overline{o}(\widetilde{x}^3))^2 = 1 + 2\widetilde{x} + \frac{1}{3} \widetilde{x}^2.$$

Получаем систему:

$$\begin{cases} 2a_3 + 2a_1a_2 = 0, \\ a_1^2 + 2a_2 = \frac{1}{3}, \\ 2a_1 = 2. \end{cases}$$

Отсюда $a_1=1,\,a_2=-\frac{1}{3},\,a_3=\frac{1}{3}.$ Таким образом, $y(\widetilde{x})=1+\widetilde{x}-\frac{1}{3}\widetilde{x}^2+\frac{1}{3}\widetilde{x}^3+\overline{o}(\widetilde{x}^3).$ Теперь совершим обратную замену:

$$y(x) = 1 + (x - 1) - \frac{1}{3}(x - 1)^2 + \frac{1}{3}(x - 1)^3 + \overline{o}((x - 1)^3),$$
$$z(x) = 1 - \frac{1}{3}(x - 1)^2 + \overline{o}((x - 1)^3).$$

Из найденного разложения находим: $y'(1)=1,\ y''(1)=-\frac{1}{3}\cdot 2!=-\frac{2}{3},\ y'''(1)=\frac{1}{3}\cdot 3!=2$ и $z'(1)=0,\ z''(1)=-\frac{1}{3}\cdot 2!=-\frac{2}{3},\ z'''(1)=0.$ По формуле кривизны (2.1) имеем

$$k(1) = \frac{\left| (1, 1, 0) \times (0, -\frac{2}{3}, -\frac{2}{3}) \right|}{\left| (1, 1, 0) \right|^3} = \frac{1}{\sqrt{6}}.$$

А по формуле кручения (2.9)

$$\varkappa(1) = \frac{\operatorname{Vol_{or}}\left((1,1,0), (0, -\frac{2}{3}, -\frac{2}{3}), (0,2,0)\right)}{\left|(1,1,0) \times (0, -\frac{2}{3}, -\frac{2}{3})\right|^2} = 1.$$

Эволюта и эвольвента плоской кривой

Определение 2.34. Эволютой плоской бирегулярной кривой γ называется кривая, которую описывает центр кривизны кривой γ .

Пусть r(s) — натуральная параметризация кривой γ , тогда имеем параметризацию (уже не обязательно натуральную) эволюты:

(2.10)
$$\widetilde{\boldsymbol{r}}(s) = \boldsymbol{r}(s) + \frac{1}{k(s)}\boldsymbol{n}(s).$$

Предложение 2.35. Кривая $\widetilde{\gamma}$ является эволютой плоской бирегулярной кривой γ тогда и только тогда, когда $\widetilde{\gamma}$ является огибающей семейства нормалей к γ .

Доказательство. Пусть r(s) — натуральная параметризация кривой γ .

 \Rightarrow . Параметризация эволюты $\widetilde{\gamma}$ имеет вид (2.10). В каждой точке можем вычислить вектор скорости:

$$\widetilde{m{r}}'=\dot{m{r}}+rac{1}{k}\dot{m{n}}-rac{k'}{k^2}m{n}=-rac{k'}{k^2}m{n},$$

что и требовалось. (Во втором равенстве воспользовались формулой Френе для плоской кривой γ .)

 \Leftarrow . Можем записать параметризацию $\widetilde{\gamma}$ в виде

$$\widetilde{\boldsymbol{r}}(s) = \boldsymbol{r}(s) + \lambda(s)\boldsymbol{n}(s).$$

Кривая $\widetilde{\gamma}$ является огибающей поля нормалей к γ . Это значит, что в каждой точке s вектор скорости $\widetilde{r}'(s)$ кривой $\widetilde{\gamma}$ должен быть коллинеарен вектору главной нормали n(s) кривой γ , это задаёт условие на коэффициент λ :

$$\widetilde{\mathbf{r}}' = (1 - k\lambda)\mathbf{v} + \lambda'\mathbf{n}$$
.

Отсюда сразу получаем $\lambda = 1/k$, что и требовалось.

Определение 2.36. Эвольвентой плоской бирегулярной кривой γ называется кривая, которую описывает неподвижная точка прямой, катящейся без проскальзывания по γ .

 $^{^2}$ Здесь производные берутся по одному и тому же параметру s, но обозначены по-разному (точками и штрихами), потому что для кривой γ этот параметр натуральный, а для кривой $\tilde{\gamma}$ — нет.

Эвольвента (в отличие от эволюты) не определена однозначно, ведь можно выбрать любую точку на катящейся прямой. Так что у бирегулярной плоской кривой имеется однопараметрическое семейство эвольвент. Если r(s) — натуральная параметризация кривой γ , то легко получить (опять же, необязательно натуральную) параметризацию эвольвенты:

(2.11)
$$\widehat{\boldsymbol{r}}(s) = \boldsymbol{r}(s) - (s - s_0)\dot{\boldsymbol{r}}(s).$$

Константа s_0 как раз соответствует изначальному смещению точки по скользящей прямой, её выбор соответствует выбору эвольвенты.

Теорема 2.37. Пусть γ и $\widehat{\gamma}$ — регулярные кривые. Следующие условия равносильны:

- (1) кривая $\hat{\gamma}$ является эвольвентой кривой γ ;
- (2) кривая γ является огибающей поля нормалей к $\hat{\gamma}$;
- (3) кривая γ является эволютой кривой $\hat{\gamma}$.

Доказательство. Пусть r(s) — регулярная параметризация кривой γ .

 $(1) \Rightarrow (2)$. Кривая $\hat{\gamma}$ имеет параметризацию (2.11). Вычисляем вектор скорости:

$$\hat{\boldsymbol{r}}' = \dot{\boldsymbol{r}} - \dot{\boldsymbol{r}} - (s - s_0)\ddot{\boldsymbol{r}}$$

и видим, что он перпендикулярен вектору \dot{r} .

 $(2) \Leftarrow (1)$. Если кривая $\hat{\gamma}$ ортогональна касательным к γ , то её параметризация имеет вид $\hat{r}(s) = r(s) + \lambda(s)\dot{r}(s)$. При этом должно быть выполнено $\langle \hat{r}', \dot{r} \rangle = 0$:

$$0 = \langle (1 + \lambda')\dot{\mathbf{r}} + \lambda \ddot{\mathbf{r}}, \dot{\mathbf{r}} \rangle = 1 + \lambda'.$$

Отсюда $\lambda(s) = -(s-s_0)$, то есть данная кривая является эвольвентой кривой γ .

$$(2) \Leftrightarrow (3)$$
. См. предложение 2.35.

Дополнительные задачи

Здесь собраны задачи, которые показались мне интересными, но не вписались в основное повествование. Какие-то из них я умею решать, какие-то нет. Так или иначе, я надеюсь когда-нибудь написать сюда все решения.

Задача 2.38. Пусть r(s) — натуральная параметризация бирегулярной кривой γ в \mathbb{R}^3 с ненулевым кручением. Кривая γ лежит на сфере тогда и только тогда, когда

$$\frac{\varkappa}{k} = \frac{d}{ds} \left(\frac{dk/ds}{\varkappa k^2} \right).$$

Задача 2.39. Построить гладкую замкнутую плоскую кривую с числом вращения 0.

Задача 2.40. Доказать, что для замкнутой регулярной кривой в \mathbb{R}^3 выполняется

$$\oint_{\gamma} k(s)ds \geqslant 2\pi.$$

Задача 2.41. Пусть γ — гладкая регулярная замкнутая кривая. Доказать, что

$$\oint_{\gamma} (\mathbf{r} \, dk + \varkappa \mathbf{b} \, ds) = \mathbf{0}.$$

Задача 2.42. Вершинами кривой называются точки этой кривой, в которых k'(s) = 0. Доказать, что у любой замкнутой регулярной кривой есть по крайней мере четыре вершины.

Про механические часы

Фраза из эпиграфа связана с историей создания точных механических часов, рассказанной нам Александром Алексадровичем на семинаре.

Рис. 2.4: Циклоида

В XVII веке голландский математик³ X. Гюйгенс описал устройство точных механических часов, конструкция которых основана на маятнике, который обладает постоянным периодом качения независимо от амплитуды. Это действительно важное свойство — период колебания маятника в часах не должен зависеть от силы, с которой заводят часы, или от эффекта постепенного затухания колебаний. Как же может быть устроен такой маятник? Оказывается, конец его нити должен вырисовывать перевёрнутую «чашу циклоиды». Немного позже мы докажем, почему это действительно так, но сейчас зададимся вопросом, как же сделать такой *циклоидный маятник*.

Сначала выведем уравнение циклоиды. Примем за t=0 момент времени, когда точка окружности, движение которой мы отслеживаем, находится на прямой, по которой катится эта окружность. Предположим также, что окружность единичная, а её центр движется равномерно на единицу расстояния за единицу времени. Ясно, что все эти допущения не влияют существенно на уравнения, которые мы будем получать.

Рис. 2.5

Центр окружности в момент времени t находится в точке с координтами (t,1). Теперь представим, что окружность просто равномерно вращается с закреплённым центром. Тогда движение её граничной точки, конечно, будет описываться вектором $-(\sin t,\cos t)$. Собирая воедино движение центра и точки на границе, получаем искомые координаты в момент времени t: $(t-\sin t,1-\cos t)$. Однако далее мы всё время будем работать с «перевёрнутой» циклоидой, поэтому отразим её относительно горизонтальной прямой:

$$\mathbf{r}(t) = (t - \sin t, \cos t - 1).$$

 $^{^{3}}$ Гюйгенс, конечно, был не только математиком, но ещё и физиком и философом, что, впрочем, не было исключением для того времени.

Рис. 2.6: Циклоидный маятник

Рассмотрим маятник, у которого нить закреплена в вершине между двумя циклоидами (рис. 2.6). Оказывается, свободный конец нити такого маятника будет вырисовывать циклоиду. Ясно, что на самом деле он будет вырисовывать кусок эвольвенты этой циклоиды (просто по определению). Так что утверждение сводится к следующей задаче.

Задача 2.43. Доказать, что одной из эвольвент циклоиды является конгруэнтная ей циклоида, сдвинутая таким образом, чтобы её «острия» перешли в вершины.

Решение. Уравнения эвольвент легко писать, если на исходной кривой введён натуральный параметр. В данном случае это не так, и перейти к натуральному параметру затруднительно. Однако можно заметить, что формулу (2.11) легко модифицировать и на случай произвольного параметра:

$$\widehat{m{r}}(t) = m{r}(t) - rac{m{r}'(t)}{|m{r}'(t)|} \int\limits_{t_0}^t \left| m{r}'(t) \right| dt.$$

Действительно, мы просто везде выразили натуральный параметр s через какой-то произвольный параметр t. Вычисляем всё, что нужно, положив $t_0=\pi$ (так обнуляется константа в определённом интеграле).

$$\mathbf{r}'(t) = (1 - \cos t, -\sin t),$$

$$|\mathbf{r}'(t)|^2 = (1 - \cos t)^2 + \sin^2 t = 2(1 - \cos t) = 4\sin^2 \frac{t}{2} \Rightarrow |\mathbf{r}'(t)| = 2\sin\frac{t}{2},$$

$$\int_{\pi}^{t} 2\sin\frac{t}{2} dt = 4\int_{\pi}^{t} \sin\frac{t}{2} d\left(\frac{t}{2}\right) = -4\cos\frac{t}{2}\Big|_{\pi}^{t} = -4\cos\frac{t}{2}.$$

А теперь пишем, собственно, уравнение эвольвенты:

$$\begin{split} \widehat{r}(t) &= (t - \sin t, \cos t - 1) - \frac{2\left(\sin^2\frac{t}{2}, -\sin\frac{t}{2}\cos\frac{t}{2}\right)}{2 \cdot \sin\frac{t}{2}} \cdot \left(-4\cos\frac{t}{2}\right) = \\ &= (t - \sin t, \cos t - 1) + 2\left(2\sin\frac{t}{2}\cos\frac{t}{2}, -2\cos^2\frac{t}{2}\right) = \\ &= (t - \sin t, \cos t - 1) + (2\sin t, -2 - 2\cos t) = (t + \sin t, -\cos t - 3). \end{split}$$

Итак, получили

$$\hat{r}(t) = (t + \sin t, -\cos t - 3) = ((t + \pi) - \sin(t + \pi), \cos(t + \pi) - 1) - (\pi, 2).$$

Видно, что это сдвинутая циклоида. Легко проверить, что она сдвинута именно так, как указано в условии.

Теперь мы можем доказать главное утверждение — что период колебания такого маятника не зависит от амплитуды. Сформулировано оно здесь так же, как в задачнике.

Задача 2.44. Доказать, что период колебаний материальной точки малой массы, движущейся по чаше перевёрнутой циклоиде без трения в поле силы тяжести, не зависит от её начального положения.

3. Теория поверхностей в \mathbb{R}^3

Это яма, вырытая для нас великими предшественниками.

А. А. Гайфуллин

Криволинейные системы координат в \mathbb{R}^n

Рассмотрим область U пространства \mathbb{R}^n с декартовыми координатами (x^1,\ldots,x^n) . Предположим, что в другом экземпляре пространства \mathbb{R}^n с координатами (u^1,\ldots,u^n) задана область V и установлено взаимно однозначное соответствие между точками областей U и V. В этом случае для задания точки области U мы можем использовать набор чисел (u^1,\ldots,u^n) — декартовы координаты соответствующей точки в области V.

Определение 3.1. Будем говорить, что (u^1, \ldots, u^n) являются *криволинейными координа- тами* в области U, если:

(1) функции

$$x^i = x^i(u^1, \dots, u^n),$$

задающие биекцию между областями U и V, достаточно гладкие в области V;

(2) якобиан $J = \det\left(\frac{\partial x^{i}}{\partial u^{j}}\right)$ отличен от нуля в области V (условие регулярности);

По теореме об обратной функции (якобиан не равен нулю) существуют достаточно гладкие обратные отображения $u^i = u^i(x^1, \dots, x^n)$, причём якобиан $\widetilde{J} = \det\left(\frac{\partial u^i}{\partial x^j}\right)$ отличен от нуля (он равен J^{-1}).

В области U условия $u^i = \text{const}$ определяют n семейств $\kappa oopdunamhux$ $\epsilon unepnosepxhocme$ й. (Координатные гиперповерхности одного и того же семейства не пересекаются.)

Любые n-1 координатных гиперповерхностей, принадлежащих различным семействам, пересекаются по некоторой кривой. Такие кривые называют $\kappa oopdunamhы mu$ линия $\kappa oopdunamhu$ $\kappa oopdun$

Определение 3.2. Система криволинейных координат, вектора скорости координатных линий которой перпендикулярны друг другу, называется *ортогональной*.

Задача 3.3. Для эллипсоидальной системы координат, определяемой равенствами

$$x_1^2 = \frac{(a_1 - u_1)(a_1 - u_2)(a_1 - u_3)}{(a_2 - a_1)(a_3 - a_1)},$$

$$x_2^2 = \frac{(a_2 - u_1)(a_2 - u_2)(a_2 - u_3)}{(a_3 - a_2)(a_1 - a_2)},$$

$$x_3^2 = \frac{(a_3 - u_1)(a_3 - u_2)(a_3 - u_3)}{(a_1 - a_3)(a_2 - a_3)},$$

где $a_1 > a_2 > a_3 > 0$, $u_1 < a_3 < u_2 < a_2 < u_3 < a_1$,

- (1) найти координатные поверхности и координатные линии;
- (2) посчитать определители $\det\left(\frac{\partial x_i}{\partial u_j}\right)$ и $\det\left(\frac{\partial u_i}{\partial x_j}\right)$ и установить, в каких точках пространства \mathbb{R}^3 нарушается взаимная однозначность соответствия между криволинейными и прямоугольными декартовыми координатами;
- (3) определить, является ли эта система координат ортогональной.

Решение.

(1) Фиксируем $u_1 = \lambda$. Тогда

$$\frac{x_1^2}{a_1 - \lambda} + \frac{x_2^2}{a_2 - \lambda} + \frac{x_3^2}{a_3 - \lambda} = \frac{(a_1 - u_2)(a_1 - u_3)}{(a_2 - a_1)(a_3 - a_1)} + \frac{(a_2 - u_2)(a_2 - u_3)}{(a_3 - a_2)(a_1 - a_2)} + \frac{(a_3 - u_2)(a_3 - u_3)}{(a_1 - a_3)(a_2 - a_3)} = \frac{1}{(a_1 - a_2)(a_2 - a_3)(a_3 - a_1)} \Big((a_3 - a_2)(a_1 - u_2)(a_1 - u_3) + (a_1 - a_3)(a_2 - u_2)(a_2 - u_3) + (a_2 - a_1)(a_3 - u_2)(a_3 - u_3) \Big) = \varphi(u_2, u_3).$$

При этом $\varphi = Au_2 + Bu_3 + Cu_2u_3 + D$. Нетрудно убедиться, что все коэффициенты, кроме D, нулевые, а D равен 1. Например, для коэффициента при u_2 имеем

$$(\dots) \cdot A = (a_1 a_2 - a_1 a_3) + (a_2 a_3 - a_1 a_2) + (a_1 a_3 - a_2 a_3) =$$

$$= (a_1 a_2 - a_1 a_2) + (a_2 a_3 - a_2 a_3) + (a_3 a_1 - a_3 a_1) = 0.$$

Отсюда, $\varphi \equiv 1$. Итак, имеем координатные поверхности

$$\frac{x_1^2}{a_1 - \lambda} + \frac{x_2^2}{a_2 - \lambda} + \frac{x_3^2}{a_3 - \lambda} = 1,$$

представляющие собой эллипсоиды.

Для остальных координат всё аналогично. Фиксируя $u_2 = \mu$, получаем семейство однополостных гиперболоидов:

$$\frac{x_1^2}{a_1 - \mu} + \frac{x_2^2}{a_2 - \mu} - \frac{x_3^2}{\mu - a_3} = 1.$$

(Формула та же, но $a_3 < \mu$.) Для фиксированного $u_3 = \nu$ получаем семейство двуполостных гиперболоидов:

$$\frac{x_1^2}{a_1 - \nu} - \frac{x_2^2}{\nu - a_2} - \frac{x_3^2}{\nu - a_3} = 1.$$

(2) Найдём, например, производную $\partial x_1/\partial u_2$:

$$x_1(u_2) = \sqrt{\frac{(a_1 - u_1)(a_1 - u_2)(a_1 - u_3)}{(a_2 - a_1)(a_3 - a_1)}} = \sqrt{\frac{(a_1 - u_1)(a_1 - u_3)}{(a_2 - a_1)(a_3 - a_1)}} \cdot \sqrt{a_1 - u_2},$$

$$\frac{\partial x_1}{\partial u_2} = \sqrt{\frac{(a_1 - u_1)(a_1 - u_3)}{(a_2 - a_1)(a_3 - a_1)}} \cdot \frac{-1}{2\sqrt{a_1 - u_2}} = -\frac{1}{2}\sqrt{\frac{(a_1 - u_1)(a_1 - u_3)}{(a_2 - a_1)(a_3 - a_1)(a_1 - u_2)}}.$$

Отсюда понятен общий вид выражения $\partial x_i/\partial u_j$. Считаем определитель:

$$\det\left(\frac{\partial x_i}{\partial u_j}\right) = \\ = -\frac{1}{8} \det\left(\sqrt{\frac{(a_1 - u_2)(a_1 - u_3)}{(a_2 - a_1)(a_3 - a_1)(a_1 - u_1)}}} \sqrt{\frac{(a_1 - u_1)(a_1 - u_3)}{(a_2 - a_1)(a_3 - a_1)(a_1 - u_2)}}} \sqrt{\frac{(a_1 - u_1)(a_1 - u_2)}{(a_2 - a_1)(a_3 - a_1)(a_1 - u_2)}}{\sqrt{\frac{(a_2 - u_2)(a_2 - u_3)}{(a_1 - a_2)(a_3 - a_2)(a_2 - u_1)}}}} \sqrt{\frac{(a_2 - u_1)(a_2 - u_3)}{(a_2 - u_1)(a_2 - u_3)}}{\sqrt{\frac{(a_3 - u_1)(a_3 - a_2)(a_2 - u_2)}{(a_1 - a_2)(a_3 - a_2)(a_2 - u_3)}}} \sqrt{\frac{(a_2 - u_1)(a_2 - u_3)}{(a_1 - a_3)(a_2 - a_3)(a_3 - u_1)}}} \sqrt{\frac{(a_2 - u_1)(a_2 - u_3)}{(a_1 - a_3)(a_2 - a_3)(a_3 - u_2)}}} \sqrt{\frac{(a_2 - u_1)(a_2 - u_2)}{(a_1 - a_2)(a_2 - a_3)(a_3 - u_1)}}} \sqrt{\frac{(a_1 - u_2)(a_1 - u_3)}{(a_1 - u_1)(a_1 - u_3)}}{\sqrt{\frac{(a_2 - u_1)(a_2 - u_3)}{(a_2 - u_1)}}} \sqrt{\frac{(a_1 - u_1)(a_1 - u_2)}{(a_1 - u_1)(a_1 - u_2)}}{\sqrt{\frac{(a_2 - u_1)(a_2 - u_3)}{(a_2 - u_1)}}}} \sqrt{\frac{(a_2 - u_1)(a_2 - u_3)}{(a_1 - u_1)(a_1 - u_2)}}{\sqrt{\frac{(a_2 - u_1)(a_2 - u_3)}{(a_2 - u_1)}}}} \sqrt{\frac{(a_2 - u_1)(a_2 - u_3)}{(a_2 - u_1)(a_2 - u_2)}}{\sqrt{\frac{(a_2 - u_1)(a_2 - u_3)}{(a_3 - u_1)}}}} \sqrt{\frac{(a_2 - u_1)(a_2 - u_3)}{(a_2 - u_1)(a_2 - u_2)}}{\sqrt{\frac{(a_3 - u_1)(a_3 - u_2)}{(a_3 - u_1)}}}} \sqrt{\frac{(a_3 - u_1)(a_3 - u_2)}{(a_2 - u_3)}}} \sqrt{\frac{(a_3 - u_1)(a_3 - u_2)}{(a_2 - u_3)}}} \sqrt{\frac{(a_3 - u_1)(a_3 - u_2)}{(a_3 - u_1)(a_3 - u_2)}}} \sqrt{\frac{(a_3 - u_1)(a_3 - u_2)}{(a_3 - u_1)(a_3 - u_2)}}}{\sqrt{\frac{(a_3 - u_1)(a_3 - u_2)}{(a_3 - u_1)}}}} \sqrt{\frac{(a_3 - u_1)(a_3 - u_2)}{(a_3 - u_1)}} \sqrt{\frac{(a_3 - u_1)(a_3 - u_2)}{(a_3 - u_1)(a_3 - u_2)}}} \sqrt{\frac{(a_3 - u_1)(a_3 - u_2)}{(a_3 - u_1)(a_3 - u_2)}}} \sqrt{\frac{(a_3 - u_1)(a_3 - u_2)}{(a_3 - u_1)(a_3 - u_2)}}} \sqrt{\frac{(a_3 - u_1)(a_3 - u_2)}{(a_3 - u_1)(a_3 - u_2)}}} \sqrt{\frac{(a_3 - u_1)(a_3 - u_2)}{(a_3 - u_1)(a_3 - u_2)}}} \sqrt{\frac{(a_3 - u_1)(a_3 - u_2)}{(a_3 - u_1)(a_3 - u_2)}} \sqrt{\frac{(a_3 - u_1)(a_3 - u_2)}{(a_3 - u_1)(a_3 - u_2)}}} \sqrt{\frac{(a_3 - u_1)(a_3 - u_2)}{(a_3 - u_1)(a_3 - u_2)}}} \sqrt{\frac{(a_3 - u_1)(a_3 - u_2)}{(a_3 - u_1)(a_3 - u_2)}}} \sqrt{\frac{(a_3 - u_1)(a_3 - u_2)}{(a_3 - u_1)(a_3 - u_2)}}} \sqrt{\frac{(a_3 - u_1)(a_3 - u_2)}{(a_3 - u_1)(a_3 - u_2)}}} \sqrt{\frac{(a_3 - u_1)(a_3 - u_2)}{(a_3 - u_1)(a_3 - u_2)}}} \sqrt{\frac{(a_3 -$$

Чтобы вычислить оставшийся определитель, вычтем первую строку из двух других:

$$\det\begin{pmatrix} \frac{1}{a_1-u_1} & \frac{1}{a_1-u_2} & \frac{1}{a_1-u_2} \\ \frac{1}{a_2-u_1} & \frac{1}{a_2-u_2} & \frac{1}{a_2-u_3} \\ \frac{1}{a_3-u_1} & \frac{1}{a_3-u_2} & \frac{1}{a_3-u_2} \end{pmatrix} = \det\begin{pmatrix} \frac{1}{a_1-u_1} & \frac{1}{a_1-u_2} \\ \frac{1}{a_1-u_1} & \frac{1}{a_1-u_2} & \frac{1}{a_1-u_2} \\ \frac{1}{a_1-u_3} & \frac{1}{a_1-u_2} & \frac{1}{a_1-u_3} \\ \frac{1}{a_1-u_3} & \frac{1}{a_1-u_3} & \frac{1}{a_1-u_3} \\ \frac{1}{a_1-u_3} & \frac{1}{a_1-u_3} & \frac{1}{a_1-u_3} \\ \frac{1}{a_1-u_1} & \frac{1}{a_1-u_2} & \frac{1}{a_1-u_3} \\ \frac{1}{a_1-u_1} & \frac{1}{a_1-u_3} & \frac{1}{a_1-u_3} \\ \frac{1}{a_1-u_1} & \frac{1}{a_1-u_3} & \frac{1}{a_1-u_3} \\ \frac{1}{a_1-u_1} & \frac{1}{a_1-u_2} & \frac{1}{a_1-u_3} \\ \frac{1}{a_1-u_3} & \frac{1}{a_1-u_3} & \frac{1}{a_1-u_3} \\ \frac{1}{a_1-u_1} & \frac{1}{a_1-u_2} & \frac{1}{a_1-u_3} \\ \frac{1}{a_1-u_1} & \frac{1}{a_1-u_3} & \frac{1}{a_2-u_2} & \frac{1}{a_2-u_3} \\ \frac{1}{a_2-u_3} & \frac{1}{a_3-u_2} & \frac{1}{a_3-u_3} \\ \frac{1}{a_3-u_1} & \frac{1}{a_3-u_3} & \frac{1}{a_3-u_3} \\ \frac{1}{a_3-u_1} & \frac{1}$$

Здесь вычтем первый столбец из двух остальных:

$$\det\begin{pmatrix} \frac{1}{\frac{1}{a_2-u_1}} & \frac{1}{\frac{1}{a_2-u_2}} & \frac{1}{\frac{1}{a_2-u_3}} \\ \frac{1}{\frac{1}{a_3-u_1}} & \frac{1}{\frac{1}{a_3-u_1}} & \frac{1}{\frac{1}{a_3-u_3}} & \frac{1}{\frac{1}{a_3-u_3}} \end{pmatrix} = \det\begin{pmatrix} \frac{1}{\frac{1}{a_2-u_1}} & \frac{0}{\frac{u_1-u_2}{(a_2-u_2)(a_2-u_1)}} & \frac{u_1-u_3}{\frac{u_1-u_2}{(a_3-u_2)(a_3-u_1)}} \\ \frac{1}{\frac{u_1-u_2}{(a_3-u_2)(a_3-u_1)}} & \frac{u_1-u_3}{\frac{u_1-u_3}{(a_3-u_1)(a_3-u_3)}} \end{pmatrix} = \det\begin{pmatrix} \frac{u_1-u_2}{(a_2-u_1)(a_2-u_3)} & \frac{u_1-u_3}{(a_3-u_1)(a_3-u_3)} \\ \frac{u_1-u_2}{(a_3-u_2)(a_3-u_1)} & \frac{u_1-u_3}{(a_3-u_1)(a_3-u_3)} \end{pmatrix} = \frac{(u_1-u_2)(u_1-u_3)}{(a_2-u_1)(a_3-u_1)} \det\begin{pmatrix} \frac{1}{\frac{1}{a_2-u_2}} & \frac{1}{\frac{1}{a_2-u_3}} \\ \frac{1}{a_3-u_2} & \frac{1}{a_3-u_3} \end{pmatrix} = \\ = \frac{(u_1-u_2)(u_1-u_3)}{(a_2-u_1)(a_3-u_1)} \begin{pmatrix} \frac{1}{(a_2-u_2)(a_3-u_3)} - \frac{1}{(a_3-u_2)(a_2-u_3)} \\ \frac{1}{(a_2-u_2)(a_3-u_3)} - \frac{1}{(a_3-u_2)(a_2-u_3)} \end{pmatrix} = \\ = \frac{(u_1-u_2)(u_1-u_3)(u_2-u_3)(u_2-u_3)(a_3-u_2)}{(a_2-u_1)(a_3-u_1)(a_3-u_1)(a_3-u_1)(a_3-u_2)(a_2-u_3)}.$$

Подставляем результат в промежуточную формулу:

$$\frac{(a_1-a_2)(a_2-a_3)(a_3-a_1)}{-\prod\limits_{i,j=1}^{3}(a_i-u_j)}(u_1-u_2)(u_2-u_3)(u_3-u_1).$$

И, наконец, пишем ответ:

$$\det\left(\frac{\partial x_i}{\partial u_j}\right) = \frac{(u_1 - u_2)(u_2 - u_3)(u_3 - u_1)}{8\sqrt{-\prod_{i,j=1}^{3} (a_i - u_j)}}.$$

Взаимная однозначность координат нарушается в точках, где якобиан равен 0. Как видно из выведенной нами формулы, это происходит при $u_i = u_j$ (для каких-то $i \neq j$). Однако по условию $u_1 < u_2 < u_3$, так что в выбранной области эллипсоидальные координаты взаимно однозначны.

(3) Из полученных уравнений координатных поверхностей видно, что они образуют квадрики, являющиеся телами вращения софокусных эллипсов и гипербол. А как известно из курса аналитической геометрии, софокусные эллипс и гипербола перпендикулярны друг другу. (А софокусные друг другу эллипсы не пересекаются, как и софокусные друг другу гиперболы.) Значит, и координатные линии, получающиеся как пересечения таких координатных поверхностей, перпендикулярны друг другу. Так что данная система координат является ортогональной.

Задача 3.4. Преобразовать *оператор Лапласа* $\Delta V := \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2}$ к полярным координатам $x = \rho \cos \varphi, \ y = \rho \sin \varphi.$

Решение. Формулы перехода от декартовых координат к полярным имеют вид

$$\rho = \sqrt{x^2 + y^2}, \quad \operatorname{tg} \varphi = \frac{y}{x}.$$

Выражаем частные производные первого порядка:

$$\frac{\partial V}{\partial x} = \frac{\partial V}{\partial \rho} \frac{\partial \rho}{\partial x} + \frac{\partial V}{\partial \varphi} \frac{\partial \varphi}{\partial x}.$$

Здесь V'_{ρ} и V'_{φ} — то, что нам нужно. Осталось выразить частные производные ρ'_x и φ'_x .

$$\frac{\partial \rho}{\partial x} = (\sqrt{x^2 + y^2})_x' = \frac{x}{\sqrt{x^2 + y^2}} = \frac{\cancel{r} \cos \varphi}{\cancel{r}} = \cos \varphi.$$

Отметим, что для вычисления φ'_x нельзя просто взять arctg от обеих частей выражения $\operatorname{tg} \varphi = y/x$, ведь φ меняется от 0 до 2π , а областью значений функции arctg является интервал $\left(-\frac{\pi}{2}; \frac{\pi}{2}\right)$. Вместо этого выражение можно продифференцировать (по x):

Отсюда находим $\frac{\partial \varphi}{\partial x} = -\frac{y}{x^2}\cos^2\varphi = -\frac{\sin\varphi}{\rho}$. Итого,

$$\frac{\partial V}{\partial x} = \frac{\partial V}{\partial \rho} \cos \varphi - \frac{\partial V}{\partial \varphi} \frac{\sin \varphi}{\rho}.$$

Аналогично находим

$$\frac{\partial V}{\partial y} = \frac{\partial V}{\partial \rho} \frac{\cos \varphi}{\rho} + \frac{\partial V}{\partial \varphi} \sin \varphi.$$

Переходим к нахождению вторых производных.

$$\begin{split} \frac{\partial^2 V}{\partial x^2} &= \frac{\partial}{\partial x} \left(\frac{\partial V}{\partial x} \right) = \frac{\partial}{\partial \rho} \left(\frac{\partial V}{\partial x} \right) \cdot \frac{\partial \rho}{\partial x} + \frac{\partial}{\partial \varphi} \left(\frac{\partial V}{\partial x} \right) \cdot \frac{\partial \varphi}{\partial x} = \\ &= \left(\frac{\partial^2 V}{\partial \rho^2} \cos \varphi - \frac{\partial^2 V}{\partial \varphi \partial \rho} \frac{\sin \varphi}{\rho} + \frac{\partial V}{\partial \varphi} \frac{\sin \varphi}{\rho^2} \right) \cdot \cos \varphi + \\ &\quad + \left(\frac{\partial^2 V}{\partial \rho \partial \varphi} \cos \varphi - \frac{\partial V}{\partial \rho} \sin \varphi - \frac{\partial^2 V}{\partial \varphi^2} \frac{\sin \varphi}{\rho} - \frac{\partial V}{\partial \varphi} \frac{\cos \varphi}{\rho} \right) \cdot \left(-\frac{\sin \varphi}{\rho} \right). \end{split}$$

Раскрывая скобки, получаем

$$\frac{\partial^2 V}{\partial x^2} = \frac{\partial^2 V}{\partial \rho^2} \cos^2 \varphi - \frac{\partial^2 V}{\partial \rho \partial \varphi} \frac{\sin 2\varphi}{\rho} + \frac{\partial^2 V}{\partial \varphi^2} \frac{\sin^2 \varphi}{\rho^2} + \frac{\partial V}{\partial \varphi} \frac{\sin 2\varphi}{\rho^2} + \frac{\partial V}{\partial \rho} \frac{\sin^2 \varphi}{\rho}.$$

Аналогично находим

$$\frac{\partial^2 V}{\partial y^2} = \frac{\partial^2 V}{\partial \rho^2} \sin^2 \varphi + \frac{\partial^2 V}{\partial \rho \partial \varphi} \frac{\sin 2\varphi}{\rho} + \frac{\partial^2 V}{\partial \varphi^2} \frac{\cos^2 \varphi}{\rho^2} + \frac{\partial V}{\partial \rho} \frac{\cos^2 \varphi}{\rho} - \frac{\partial V}{\partial \varphi} \frac{\sin 2\varphi}{\rho^2}.$$

Полученные выражения нужно сложить:

$$\Delta V = \frac{\partial V}{\partial x^2} + \frac{\partial V}{\partial y^2} = \frac{\partial^2 V}{\partial \rho^2} \underbrace{(\cos^2 \varphi + \sin^2 \varphi)}_{1} + \underbrace{\frac{\partial^2 V}{\partial \varphi^2}}_{1/\rho^2} \underbrace{\left(\frac{\sin^2 \varphi + \cos^2 \varphi}{\rho^2}\right)}_{1/\rho^2} + \underbrace{\frac{\partial V}{\partial \rho \partial \varphi}}_{0} \underbrace{\left(-\frac{\sin 2\varphi}{\rho} + \frac{\sin 2\varphi}{\rho}\right)}_{0} + \underbrace{\frac{\partial V}{\partial \rho}}_{1/\rho} \underbrace{\left(\frac{\sin^2 \varphi + \cos^2 \varphi}{\rho^2}\right)}_{1/\rho} + \underbrace{\frac{\partial V}{\partial \varphi}}_{0} \underbrace{\left(-2\frac{\sin 2\varphi}{\rho^2} + 2\frac{\sin 2\varphi}{\rho^2}\right)}_{0}.$$

Получаем итоговое выражение оператора Лапласа в полярных координатах:

$$\Delta V = \frac{\partial^2 V}{\partial \rho^2} + \frac{1}{\rho^2} \frac{\partial^2 V}{\partial \varphi^2} + \frac{1}{\rho} \frac{\partial V}{\partial \rho}.$$

Эту формулу часто записывают в виде

$$\Delta V = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial V}{\partial \rho} \right) + \frac{1}{\rho^2} \frac{\partial^2 V}{\partial \varphi^2}.$$

Риманова метрика в криволинейных координатах

Функции $x^i=x^i(u^1,\ldots,u^n)$ удобно рассматривать одновременно для всех $i=1,\ldots,n,$ используя для этого вектор-функцию

$$r = r(u^1, ..., u^n)$$
, где $r = (x^1, ..., x^n)$.

Векторы $\mathbf{r}_k = \partial \mathbf{r}/\partial u^k$ имеют направления касательных к координатным линиям, так что в каждой точке области U они линейно независимы. Они определяют в окрестности некоторой точки (u^1, \dots, u^n) малый вектор $d\mathbf{r} = \mathbf{r} du^i$. Квадрат его длины, выраженный в криволинейных координатах, определяет метрику:

$$ds^2 = \langle d\mathbf{r}, d\mathbf{r} \rangle = \langle \mathbf{r}_i du^i, \mathbf{r}_j du^j \rangle = g_{ij} du^i du^j,$$

где $g_{ij} = \langle \boldsymbol{r}_i, \boldsymbol{r}_j \rangle$ — элементы матрицы Грама векторов $\boldsymbol{r}_1, \dots, \boldsymbol{r}_n$. При переходе к другим координатам $\widetilde{u}^1, \dots, \widetilde{u}^n$ матрица Грама преобразуется так, как и положено преобразовываться матрице квадратичной формы (по тензорному закону):

(3.1)
$$\widetilde{g}_{ij} = \left\langle \frac{\partial \mathbf{r}}{\partial \widetilde{u}^i}, \frac{\partial \mathbf{r}}{\partial \widetilde{u}^j} \right\rangle = \left\langle \frac{\partial \mathbf{r}}{\partial u^k} \frac{\partial u^k}{\partial \widetilde{u}^i}, \frac{\partial \mathbf{r}}{\partial u^l} \frac{\partial u^l}{\partial \widetilde{u}^j} \right\rangle = \frac{\partial u^k}{\partial \widetilde{u}^i} \frac{\partial u^l}{\partial \widetilde{u}^j} g_{kl}.$$

Определение 3.5. Говорят, что в области $U \subset \mathbb{R}^n$ задана *риманова метрика*, если для любой криволинейной системы координат (u^1, \dots, u^n) в U задана матрица $g_{ij}(u)$, которая:

- (1) симметрична: $g_{ij}(u) = g_{ji}(u)$;
- (2) невырожденна и положительно определена;
- (3) при замене координат изменяется по формулам (3.1).

Пусть имеем параметризованную кривую r(t) в криволинейных координатах (u^1, \ldots, u^n) с римановой метрикой, заданной матрицей $G = g_{ij}$. Измеряем длину кривой, заметаемой при изменении параметра от a до b:

(3.2)
$$l = \int_{a}^{b} \left| \frac{d\mathbf{r}}{dt} \right| dt = \int_{a}^{b} \sqrt{\left\langle \frac{d\mathbf{r}}{dt}, \frac{d\mathbf{r}}{dt} \right\rangle} dt = \int_{a}^{b} \sqrt{\frac{ds^{2}}{(dt)^{2}}} dt = \int_{a}^{b} \sqrt{g_{ij} \frac{du^{i}}{dt} \frac{du^{j}}{dt}} dt.$$

Задача 3.6. Проверить, что матрица

$$G(u,v) = \frac{1}{1 - u^2 - v^2} \begin{pmatrix} 1 - v^2 & uv \\ uv & 1 - u^2 \end{pmatrix}$$

задаёт риманову метрику в единичном круге на плоскости с координатами (u,v). Вычислить в этой метрике длину кривой $u^2+v^2=a^2$, где 0< a<1.

Доказательство. Нужно проверить лишь то, что матрица G невырожденна и положительно определена, для этого можно воспользоваться критерием Сильвестра. Для минора 1×1 всё очевидно, остаётся проверить знак определителя всей матрицы 2×2 :

$$\det \mathcal{G} = \frac{(1-v^2)(1-u^2) - u^2v^2}{1-u^2-v^2} = \frac{1-u^2-v^2}{1-u^2-v^2} = 1.$$

Если параметризовать нашу кривую как r(t) = (u(t), v(t)), где $u(t) = a \cos t$, $v(t) = a \sin t$ (где t меняется от 0 до 2π), то длина вычисляется по формуле (3.2):

$$l = \int_{0}^{2\pi} \sqrt{\left(\dot{u}(t) \quad \dot{v}(t)\right) \mathcal{G}\left(\frac{\dot{u}(t)}{\dot{v}(t)}\right)} dt.$$

Подставляем:

$$\int_{0}^{2\pi} \sqrt{(-a\sin t - a\cos t) \cdot \left(\frac{1}{1-a^{2}} \begin{pmatrix} 1-a^{2}\sin^{2}t - a^{2}\sin t\cos t \\ a^{2}\sin t\cos t - 1 - a^{2}\cos^{2}t \end{pmatrix}) \cdot \begin{pmatrix} -a\sin t \\ a\cos t \end{pmatrix}} dt =$$

$$= \int_{0}^{2\pi} \sqrt{(-a\sin t - a\cos t) \cdot \left(\frac{1}{1-a^{2}} \begin{pmatrix} -a\sin t (1-a^{2}) \\ a\cos t (1-a^{2}) \end{pmatrix}\right)} dt =$$

$$= \int_{0}^{2\pi} \sqrt{a^{2}(\cos^{2}t + \sin^{2}t)} dt = \int_{0}^{2\pi} a dt = 2\pi a.$$

Правильно думать, что матрица $\mathcal{G}(u^1,\ldots,u^n)$ (как матрица Грама линейно независимых векторов) симметрична и положительно определена, а потому задаёт скалярное произведение (своё в каждой точке области $U \subset \mathbb{R}^n$). В криволинейной системе координат (u^1,\ldots,u^n) мы работаем именно в этом скалярном произведении. Например, можем считать длины кривых (что уже было продемонстрировано) или углы между кривыми.

Задача 3.7. Найти угол между кривыми v=2u+1 и v=-2u+1 на плоскости с координатами (u,v) с метрикой

$$ds^2 = 2du^2 + 2dudv + 4dv^2.$$

Решение. Данная в условии метрика задаётся матрицей

$$\mathcal{G} = \begin{pmatrix} 2 & 1 \\ 1 & 4 \end{pmatrix}.$$

Параметризуем обе эти кривые: $\mathbf{r}_1(t) = (t, 2t+1)$, $\mathbf{r}_2(t) = (t, -2t+1)$. Они пересекаются в единственной точке (0,1) при t=0. Вектора скорости этих кривых в данной точке есть $\mathbf{v}_1 = (1,2)$, $\mathbf{v}_2 = (1,-2)$. Находим угол между этими векторами по формуле:

$$\cos \angle(\boldsymbol{v}_1, \boldsymbol{v}_2) = \frac{\langle \boldsymbol{v}_1, \boldsymbol{v}_2 \rangle_{\mathcal{G}}}{\sqrt{\langle \boldsymbol{v}_1, \boldsymbol{v}_1 \rangle_{\mathcal{G}} \cdot \sqrt{\langle \boldsymbol{v}_2, \boldsymbol{v}_2 \rangle_{\mathcal{G}}}}} = \frac{-14}{\sqrt{22} \cdot \sqrt{14}} = -\sqrt{\frac{7}{11}}.$$

Отсюда получаем $\angle(v_1, v_2) = \arccos\sqrt{\frac{7}{11}}$.

Двумерные поверхности в трёхмерном пространстве

Определение 3.8. Простым куском поверхности в \mathbb{R}^3 называется подмножество в \mathbb{R}^3 , гомеоморфное двумерному диску D^2 .

Определение 3.9. Если \mathcal{M} — простой кусок поверхности, то гомеоморфизм $r: \Omega \to \mathcal{M}$, где Ω — некоторая плоская область⁴, называется *параметризацией* куска \mathcal{M} . Параметризация называется *гладкой*, если таково отображение r, и *регулярной*, если область Ω имеет кусочно-гладкую границу и ранг матрицы Якоби J_r равен двум во всех точках области Ω .

Определение 3.10. Простой кусок поверхности называется *гладким*, если он допускает регулярную параметризацию.

 Γ ладкой поверхностью в \mathbb{R}^3 будем называть любое подмножество $\mathcal{M} \subset \mathbb{R}^3$ такое, что для любой точки $\boldsymbol{x} \in \mathbb{R}^3$ пересечение $\mathcal{M} \cap \overline{B}_{\varepsilon}(\boldsymbol{x})$ множества \mathcal{M} с некоторым замкнутым шаром с центром в точке \boldsymbol{x} либо пусто, либо является гладким простым куском поверхности.

Любой гладкий простой кусок поверхности, содержащийся в \mathcal{M} , будем называть *куском* поверхности \mathcal{M} .

Это определение Ивана Алексеевича, и вот что он сам пишет по этому поводу:

«Данное определение содержит ряд ограничений на поверхность, которые не являются общепринятыми или обязательными для доказательства нижеследующих теорем...

Эти ограничения наложены из соображений краткости изложения».

Определение 3.11. Точка x простого куска поверхности \mathcal{M} называется для него *внутренней*, если она соответствует внутренней точке области Ω при некоторой параметризации $\Omega \to \mathcal{M}$. В противном случае она называется *граничной*.

Предложение 3.12. Данное выше определение внутренней точки простого куска поверхности корректно, то есть не зависит от параметризации.

Доказательство. Пусть $r_1: \Omega_1 \to \mathcal{M}$ и $r_2: \Omega_2 \to \mathcal{M}$ — две параметризации простого куска поверхности \mathcal{M} , точка $x \in \mathcal{M}$ соответствует некоторой внутренней точке области Ω_1 . Так как отображение r_2 является гомеоморфизмом, то у точки x есть окрестность U_x , гомеоморфная диску открытому $\operatorname{Int} D^2$. Но тогда и у прообраза точки x при отображении x_2 тоже есть окрестность, гомеоморфная открытому диску.

Определение 3.13. Точка x гладкой поверхности \mathcal{M} называется для этой поверхности внутренией, если для некоторого шара $\overline{B}_{\varepsilon}(x)$ она является внутренией точкой простого куска $\mathcal{M} \cap \overline{B}_{\varepsilon}(x)$. В противном случае она называется граничной. Множество все граничных точек поверхности называется её краем и обозначается через $\partial \mathcal{M}$.

Предложение 3.14. Покажите, что край поверхности либо пусто, либо состоит из не более чем счётного числа простых (замкнутых или незамкнутых) кривых.

Доказательство. Появится позднее.

В дальнейшем мы будем использовать (более или менее) единую систему обозначений, не оговаривая её каждый раз. Евклидовы координаты в \mathbb{R}^2 будут обозначаться через x,y (или, когда это удобно, через x^1 и x^2), аналогично для евклидовых координат в \mathbb{R}^3 . Мы будем в основном рассматривать локальные свойства поверхностей, и тогда будем предполагать, что дана регулярная параметризация некоторого её куска, то есть отображение r из некоторой области $\Omega \subset \mathbb{R}^2$ в \mathcal{M} . Параметры в соответствующей области Ω будут как правило обозначаться через u,v (в иных случаях — через u^1,u^2) и использоваться в формулах как криволинейные координаты на соответствующем простом куске поверхности. Поскольку эти координаты параметризуют только кусок поверхности, они будем называть их локальными координатами. Если на куске заданы две локальные системы координат, то функции, выражающие одни через другие будут называться функциями перехода.

Предложение 3.15. В окрестности внутренней точки x_0 гладкая поверхность в \mathbb{R}^3 может быть задана (без ограничения общности) уравнением вида

$$z = f(x, y),$$

где f — некоторая гладкая функция. В этой окрестности любые другие локальные координаты выражаются через (x,y) гладкими функциями.

⁴У Ивана Алексеевича здесь фигурирует <u>простая</u> область, но я пока не понимаю, зачем накладывать такое ограничение. Оно здесь, кажется, совсем не нужно.

Доказательство. Пусть u, v — локальные координаты в окрестности точки x_0 , соответствующие некоторой регулярной параметризации r, тогда $\mathrm{rk}\,J_r(x_0)=2$. Без ограничения общности можем считать, что невырожден минор $(\partial r^i/\partial x^j)_{i=1,2}^{j=1,2}$, тогда по теореме об обратной функции координаты (u,v) в окрестности точки x_0 можно выразить на данной поверхности через (x,y) гладкими функциями: $u=\varphi(x,y), \ v=\psi(x,y)$. Получим, что в этой окрестности поверхность задаётся уравнением

$$z = r^3 (\varphi(x, y), \psi(x, y)),$$

что и требовалось.

Следствие 3.16. Функции перехода между локальными координатами всегда гладкие.

Доказательство. Пусть (u, v) и $(\widetilde{u}, \widetilde{v})$ — две локальные системы координат в окрестности точки x_0 . В, возможно меньшей, окрестности этой точки можно гладко выразить координаты (u, v) через евклидовы (x, y), а их, в свою очередь, гладко через $(\widetilde{u}, \widetilde{v})$.

Следствие 3.17. Пусть $F: \mathbb{R}^m \to \mathbb{R}^3$ — гладкое отображение, причём $\operatorname{Im} F \subset \mathcal{M}$, где \mathcal{M} — гладкая поверхность в \mathbb{R}^3 . Тогда для любой точки $\boldsymbol{y}_0 \in \mathbb{R}^m$ и любой регулярной параметризации $\boldsymbol{r}(u,v)$ поверхности \mathcal{M} в окрестности точки $F(\boldsymbol{y}_0)$ найдутся гладкие функции $\varphi, \psi \colon \mathbb{R}^m \to \mathbb{R}$ такие, что в этой окрестности точки \boldsymbol{y}_0 следующая диаграмма коммутативна:

Доказательство. Поскольку любая пара локальных координат выражается через любую другую гладкими функциями, справедливость утверждения достаточно установить для какой-либо одной параметризации. Но для параметризации, заданной парой евклидовых координат, утверждение очевидно.

Последнее следствие обретает смысл при m=1. Пусть отображение $F\colon I\to\mathbb{R}^3$ задаёт кривую, лежащую в поверхности \mathcal{M} . Тогда эта кривая в окрестности каждой своей точки может быть гладко запараметризована в локальных координатах в виде $u=u(t),\,v=v(t)$.

Предложение 3.18. Пусть $F: \mathbb{R}^3 \to \mathbb{R}$ — гладкая функция, \boldsymbol{x}_0 — её регулярная точка такая, что $F(\boldsymbol{x}_0) = 0$. Тогда в достаточно малой окрестности точки \boldsymbol{x}_0 уравнение $F(\boldsymbol{x}) = 0$ задаёт гладкую поверхность.

Доказательство. Без ограничения общности можем считать, что в точке x_0 производная $\partial F/\partial z$ отлична от нуля. Тогда по теореме о неявной функции в некоторой окрестности точки x_0 уравнение F(x)=0 равносильно уравнению z=f(x,y), где f— некоторая гладкая функция. Таким образом, в этой окрестности множество решений уравнения F(x)=0 параметризуется следующим образом:

$$\mathbf{r}(u,v) = (u,v,f(u,v)).$$

Легко видеть, что первые два столбца матрицы Якоби $J_r(x_0)$ составляют единичную матрицу, поэтому данная параметризация регулярна.

Поверхности как двумерные многообразия

Рассмотрим гладку кривую, лежащую на поверхности. Если поверхность задана параметрически, то кривая представляется как композиция отображений $I \to \Omega \to \mathcal{M}$:

$$t \mapsto (u(t), v(t)) \mapsto r(u(t), v(t)).$$

Вектор скорости равен

$$\frac{d\boldsymbol{r}\big(u(t),v(t)\big)}{dt}=\boldsymbol{r}_u\dot{u}+\boldsymbol{r}_v\dot{v}.$$

Более того, любой вектор вида $\boldsymbol{\xi} = \xi^1 \boldsymbol{r}_u(u_0, v_0) + \xi^2 \boldsymbol{r}_v(u_0, v_0)$ является вектором скорости некоторой кривой на поверхности. Например, можно взять кривую, имеющую в локальных координатах вид

$$u = u_0 + \xi^1 t$$
, $v = v_0 + \xi^2 t$.

Эти векторы образуют двумерное векторное пространство, называемое *касательным* пространством в точке $\mathbf{r}(u_0, v_0)$, причём векторы $\mathbf{r}_u(u_0, v_0)$ и $\mathbf{r}_v(u_0, v_0)$ задают базис этого пространства (условие регулярности параметризации \mathbf{r}).

На координаты бывает полезно смотреть как на функции. В нашем случае локальные координаты u и v на куске U поверхности суть гладкие на этом куске функции u(x,y) и v(x,y) от координат x и y в области $V \subset \mathbb{R}^2$. Если f(x,y) — такая функция, то её дифференциалу можно придать смысл как линейной функции на касательном пространстве:

$$(df)(\mathbf{r}_u) = \frac{\partial f}{\partial u}, \quad (df)(\mathbf{r}_v) = \frac{\partial f}{\partial v},$$

далее по линейности. Легко видеть, что $(du)(\boldsymbol{r}_u)=1$, $(dv)(\boldsymbol{r}_v)=1$ и $(du)(\boldsymbol{r}_v)=(dv)(\boldsymbol{r}_u)=0$. Таким образом, линейные функции du и dv образуют двойственный к $\boldsymbol{r}_u, \boldsymbol{r}_v$ базис двойственного пространства к касательному. Это пространство называется кокасательным пространством в точке $\boldsymbol{r}(u_0,v_0)$.

Ситуация с касательными векторами хорошо описывается в книге [Шарп] (глава 1, §4):

«Касательные векторы имеют двойственную природу. С одной стороны, у них имеется геометрический аспект, заключающийся в том, что они задают направления в пространстве: если я стою на многообразии, то могу двигаться в различных направлениях, которые можно описать касательными векторами в точке моего положения. С другой стороны, у них имеется аналитический аспект, в котором они выступают как "производные по направлению"».

Пример 3.19.

- (1) Если поверхность задана уравнением F(x,y,z) = 0, то её касательное пространство состоит из векторов, перпендикулярных градиенту ∇F (см. напоминания из аналитической геометрии).
- (2) Если поверхность задана как график функции z=f(x,y), то векторы $(1,0,f_x)$ и $(0,1,f_y)$ задают базисы в касательных пространствах.

На регулярной поверхности $\mathcal{M} \subset \mathbb{R}^3$ можно рассмотреть открытое покрытие внутренностями простых кусков этой поверхности. Согласно теореме Линделёфа⁵, такая поверхность покрывается не более чем счётным набором этих простых кусков: $\mathcal{M} = \bigcup_{\alpha} U_{\alpha}$, при этом

- (1) в каждой куске U_{α} можно ввести локальные координаты $(x_{\alpha}^{1}, x_{\alpha}^{2});$
- (2) локальные координаты $(x_{\alpha}^1, x_{\alpha}^2)$ принимают значения в некоторой области $V_{\alpha} \subset \mathbb{R}^2$, и каждой точке из области V_{α} соответствует в точности одна точка из куска U_{α} на поверхности.

 $^{^5}$ Если топологическое пространство обладает не более чем счётной базой, то из всякого открытого покрытия этого пространства можно выделить не более чем счётное подпокрытие.

(3) в пересечении $U_{\alpha} \cap U_{\beta}$ локальные координаты $(x_{\alpha}^1, x_{\alpha}^2)$ и $(x_{\beta}^1, x_{\beta}^2)$ связаны взаимно обратными гладкими отображениями — заменами координат

$$x_\alpha^i = x_\alpha^i(x_\beta^1, x_\beta^2), \quad x_\beta^j = x_\beta^j(x_\alpha^1, x_\alpha^2), \qquad i,j = 1, 2,$$

с ненулевыми якобианами:

$$\det\left(\frac{\partial x_{\alpha}^{i}}{\partial x_{\beta}^{j}}\right) \neq 0, \quad \det\left(\frac{\partial x_{\beta}^{i}}{\partial x_{\alpha}^{j}}\right) \neq 0.$$

Определение 3.20. Совокупность областей U_{α} , удовлетворяющих свойствам 1-3 называется *атласом поверхности*, а сами области U_{α} называются *картами*.

Теперь мы можем перенести на случай регулярных поверхностей некоторые определения из анализа:

- (a) областью на поверхности \mathcal{M} называется такое множество точек $U \subset \mathcal{M}$, что координаты $(x_{\alpha}^1, x_{\alpha}^2)$ точек из пересечения множества U с любой картой U_{α} , заполняют область в \mathbb{R}^2 :
- (б) любая область U, содержащая точку $x \in \mathcal{M}$, называется окрестностью точки x;
- (в) функция $f: \mathcal{M} \to \mathbb{R}$ называется гладкой, если в каждой карте U_{α} она задаётся как гладкая функция локальных координат $(x_{\alpha}^1, x_{\alpha}^2)$.
- (г) Отображение поверхностей $f: \mathcal{M}_1 \to \mathcal{M}_2$ называется гладким, если всюду в локальных координатах оно задаётся гладкими функциями

$$(x,y) \mapsto (u(x,y),v(x,y)),$$

где (x,y) — локальные координаты на \mathcal{M}_1 , а (u,v) — локальные координаты на \mathcal{M}_2 Из следствия 3.16 и теоремы о дифференцируемости сложной функции вытекает, что гладкость функции на поверхности в точке x_0 достаточно проверить в какой-либо одной локальной системе координат в окрестности x_0 . В частности, получаем корректность определения гладкой функции на поверхности. Однако заметим, что имеет смысл говорить только о гладкости функций, меньшей, чем гладкость замен локальных координат, иначе это понятие станет неинвариантным. Обычно мы говорим о бесконечно гладких параметризациях (класс C^{∞}), так что этот вопрос не возникает.

Определение гладкого отображения поверхностей корректно по тем же причинам, что и определение гладкой функции на поверхности.

Заметим, что регулярные поверхности в \mathbb{R}^3 обладают дополнительным свойством хаусдорфовости:

(4) для любой пары различных точек x, y на поверхности существуют их окрестности U и V, которые не пересекаются:

$$U \cap V = \varnothing$$
, $x \in U$, $y \in V$.

Определение 3.21. Совокупность точек, для которой задан атлас, удовлетворяющий условиям 1-4, называется двумерным гладким многообразием.

Определение 3.22. *Касательным вектором* ξ в точке x_0 двумерного многообразия называется вектор скорости гладкой кривой r(t) в точке x_0 :

$$oldsymbol{\xi} = \left. rac{doldsymbol{r}}{dt}
ight|_{t_0}, \quad oldsymbol{r}(t_0) = oldsymbol{x}_0.$$

В разных координатах он записывается по-разному. Если точка x_0 лежит в пересечении двух карт U_α и U_β и в координатах (x_α^1, x_α^2) мы имеем

$$\boldsymbol{\xi}_{\alpha} = (\dot{x}_{\alpha}^1, \dot{x}_{\alpha}^2),$$

то по теореме о производной сложной функции в координатах $(x_{\beta}^1, x_{\beta}^2)$ этот же касательный вектор записывается как

$$\boldsymbol{\xi}_{\beta} = \left(\frac{dx_{\beta}^{1}(x_{\alpha}^{1}(t), x_{\alpha}^{2}(t))}{dt}, \frac{dx_{\beta}^{2}(x_{\alpha}^{1}(t), x_{\alpha}^{2}(t))}{dt}\right) = \left(\frac{\partial x_{\beta}^{1}}{\partial x_{\alpha}^{i}} \dot{x}_{\alpha}^{i}, \frac{\partial x_{\beta}^{2}}{\partial x_{\alpha}^{i}} \dot{x}_{\alpha}^{i}\right).$$

Поэтому касательный вектор в точке x_0 может быть определён как объект $\boldsymbol{\xi}=(\xi^1,\xi^2),$ записи которого $\boldsymbol{\xi}_{\alpha},\,\boldsymbol{\xi}_{\beta}$ в различных локальных координатах связаны соотношением

$$\xi_{\beta}^{i} = \left. \frac{\partial x_{\beta}^{i}}{\partial x_{\alpha}^{j}} \right|_{x_{\alpha}} \xi_{\alpha}^{j}.$$

Определение 3.23. Все касательные векторы в точке x двумерного многообразия \mathcal{M} образуют векторное пространство, которое называется *касательным пространством* в точке x и обозначается через $\mathcal{T}_x\mathcal{M}$.

Риманова метрика на поверхностях

В окрестности каждой точки поверхности можно ввести локальные криволинейные координаты. Они, как обсуждалось выше, задают риманову метрику. На пересечениях атласов гладкие функции перехода дают согласованность между атласами. Таким образом, получаем естественное определение римановой метрики на поверхности.

Пусть на поверхности r(u,v) задана кривая (u(t),v(t)). Вектор скорости есть

$$(\dot{x}, \dot{y}, \dot{z}) = \boldsymbol{r}_u \dot{u} + \boldsymbol{r}_v \dot{v},$$

где

$$\dot{x} = x_u \dot{u} + x_v \dot{v}, \quad \dot{y} = y_u \dot{u} + y_v \dot{v}, \quad \dot{z} = z_u \dot{u} + z_v \dot{v}.$$

Длина (фрагмента) этой кривой равна

$$l = \int_{-\infty}^{b} \sqrt{\dot{x}^2 + \dot{y}^2 + \dot{z}^2} \, dt.$$

Подставляя в подынтегральное выражение формулы для \dot{x}, \dot{y} и $\dot{z},$ получаем

$$\dot{x}^2 + \dot{y}^2 + \dot{z}^2 = E\dot{u}^2 + 2F\dot{u}\dot{v} + G\dot{v}^2,$$

где

$$E = \langle \boldsymbol{r}_{u}, \boldsymbol{r}_{u} \rangle = x_{u}^{2} + y_{u}^{2} + z_{u}^{2},$$

$$F = \langle \boldsymbol{r}_{u}, \boldsymbol{r}_{v} \rangle = x_{u}x_{v} + y_{u}y_{v} + z_{u}z_{v},$$

$$G = \langle \boldsymbol{r}_{v}, \boldsymbol{r}_{v} \rangle = x_{v}^{2} + y_{v}^{2} + z_{v}^{2}.$$

Для использования нотации Эйнштейна коэффициенты $E,\ F$ и G можно обозначать через матрицу Грама

$$\begin{pmatrix} E & F \\ F & G \end{pmatrix} =: \begin{pmatrix} g_{11} & g_{12} \\ g_{12} & g_{22} \end{pmatrix} = \mathcal{G},$$

а координаты u и v — через x^1 и x^2 .

Определение 3.24. Выражение

$$ds^2 = g_{ij}dx^i dx^j = Edu^2 + 2Fdudv + Gdv^2$$

называется первой квадратичной формой (или римановой метрикой) на поверхности. Здесь коэффициенты матрицы $\mathcal{G} = g_{ij}$, вообще говоря, зависят от координат u и v.

В каждой точке поверхности эта форма задаёт на касательном пространстве евклидово скалярное произведение:

$$\boldsymbol{\xi} = \xi^i \frac{\partial \boldsymbol{r}}{\partial x^i}, \ \boldsymbol{\eta} = \eta^j \frac{\partial \boldsymbol{r}}{\partial x^j} \leadsto \langle \boldsymbol{\xi}, \boldsymbol{\eta} \rangle_{\mathcal{G}} = g_{ij} \xi^i \eta^j.$$

С помощью него можно, например, находить длины кривых и углы между кривыми на поверхностях (что мы, на самом деле, раньше уже делали). Но сперва нужно доказать корректность этого определения, то есть согласованность с тем, что мы раньше называли римановой метрикой (определение 3.5).

Предложение 3.25. Коэффициенты первой квадратичной формы, записанной по отношению к разным системам координат (x^1, x^2) и $(\widetilde{x}^1, \widetilde{x}^2)$, связаны соотношениями⁶

$$g_{ij} = \widetilde{g}_{kl} \frac{\partial \widetilde{x}^k}{\partial x^i} \frac{\partial \widetilde{x}^l}{\partial x^j}.$$

Доказательство. Пусть в какой-то области поверхности введены две разные системы координат (x^1, x^2) и $(\tilde{x}^1, \tilde{x}^2)$, связанные формулами перехода. Один и тот же касательный вектор раскладывается по разным базисам:

$$\boldsymbol{\xi} = \xi^i \frac{\partial \boldsymbol{r}}{\partial x^i} = \widetilde{\xi}^j \frac{\partial \boldsymbol{r}}{\partial \widetilde{x}^j}.$$

Так как его длина не зависит от базиса, мы имеем

$$g_{ij}\xi^i\xi^j = \widetilde{g}_{kl}\widetilde{\xi}^k\widetilde{\xi}^l.$$

Равенство длин переписывается как $g_{ij}dx^idx^j=\widetilde{g}_{ij}d\widetilde{x}^id\widetilde{x}^j$. Подставляя в правую часть выражения вида $d\widetilde{x}^k=\frac{\partial\widetilde{x}^k}{\partial x^i}dx^i$, получаем

$$g_{ij}dx^idx^j = \widetilde{g}^{kl} \frac{\partial \widetilde{x}^k}{\partial x^i} \frac{\partial \widetilde{x}^l}{\partial x^j} dx^i dx^j.$$

Равенство форм означает равенство всех коэффициентов, что и требовалось.

Напомним, что дифференциалы du и dv можно воспринимать как линейные функции на касательном пространстве к каждой точке $\boldsymbol{x} \in \mathcal{M}$. Так что выражение ds^2 задаёт корректно определённую квадратичную форму, которая обозначается через **I**. Её значение на касательном векторе $\boldsymbol{\xi} \in \mathcal{T}_{\boldsymbol{x}}\mathcal{M}$ есть просто квадрат длины этого вектора:

$$\mathbf{I}(\boldsymbol{\xi}) = \langle \boldsymbol{\xi}, \boldsymbol{\xi} \rangle.$$

Пример 3.26.

(1) Если поверхность задана как график функции z = f(x, y), то

$$m{r}_x = (1, 0, f_x), \quad m{r}_y = (0, 1, f_y),$$
 $g_{11} = \langle m{r}_x, m{r}_x \rangle = 1 + f_x^2, \quad g_{12} = \langle m{r}_x, m{r}_y \rangle = f_x f_y, \quad g_{22} = \langle m{r}_y, m{r}_y \rangle = 1 + f_y^2.$

 $^{^6}$ Мы хотим доказать, что первая квадратичная форма действительно является квадратичной формой (на касательном пространстве) в смысле определения из линейной алгебры. Для этого нужно проверить выполнение тензорного закона, что мы здесь и делаем.

(2) Пусть поверхность задана уравнением F(x,y,z)=0 и $F_z\neq 0$ в окрестности точки (x_0,y_0,z_0) . Примем x и y за локальные координаты: $u=x,\ v=y$. Условие F=0 влечёт тождество

$$F_x \dot{x} + F_y \dot{y} + F_z \dot{z} = 0$$

для касательных векторов $(\dot{x}, \dot{y}, \dot{z})$ к поверхности. Из него следует, что

$$\dot{z} = -\frac{1}{F_z}(F_x \dot{x} + F_y \dot{y}).$$

Отсюда выводим, что

$$\dot{x}^2 + \dot{y}^2 + \dot{z}^2 = \dot{x}^2 + \dot{y}^2 + \frac{1}{F_z^2} (F_x^2 \dot{x}^2 + 2F_x F_y \dot{x} \dot{y} + F_y^2 \dot{y}^2) =$$

$$= \left(1 + \frac{F_x^2}{F_z^2}\right) \dot{x} + 2\frac{F_x F_y}{F_z^2} \dot{x} \dot{y} + \left(1 + \frac{F_y^2}{F_z^2}\right) \dot{y}^2.$$

В итоге получаем следующие формулы для метрики:

$$g_{11} = 1 + \frac{F_x^2}{F_z^2}, \quad g_{12} = \frac{F_x F_y}{F_z^2}, \quad g_{22} = 1 + \frac{F_y^2}{F_z^2}.$$

Задача 3.27. Вычислить первую квадратичную форму

(1) псевдосферы Бельтрами

$$x = a \sin u \cos v, \quad y = a \sin u \sin v, \quad z = a \left(\ln \operatorname{tg} \frac{u}{2} + \cos u \right),$$

где $0 < u < \pi/2$, $0 \le v < 2\pi$, $a \ne 0$.

(2) поверхности главных нормалей $r(s,\lambda) = \rho(s) + \lambda n(s)$ кривой $\rho(s)$.

Рис. 3.7: Псевдосфера

Решение.

(1) Напрямую вычисляем коэффициенты⁷:

$$\mathbf{r}_{u} = (a\cos u\cos v, \ a\cos u\sin v, \ a\cot u\cos u), \quad \mathbf{r}_{v} = (-a\sin u\sin v, \ a\sin u\cos v, 0),$$

$$g_{11} = \langle \mathbf{r}_{u}, \mathbf{r}_{u} \rangle = a^{2}\cos^{2}u\left(\underbrace{(\cos^{2}v + \sin^{2}v)}_{1} + \cot^{2}u\right) = a^{2}\cos^{2}u\underbrace{(1 + \cot^{2}u)}_{1/\sin^{2}u} = a^{2}\cot^{2}u,$$

$$g_{12} = \langle \mathbf{r}_{v}, \mathbf{r}_{v} \rangle = -\frac{a^{2}}{4}\sin^{2}u\sin^{2}v + \frac{a^{2}}{4}\sin^{2}u\sin^{2}v = 0,$$

$$g_{22} = \langle \mathbf{r}_{v}, \mathbf{r}_{v} \rangle = a^{2}\sin^{2}u\underbrace{(\sin^{2}v + \sin^{2}v)}_{1} = a^{2}\sin^{2}u.$$

Пишем первую квадратичную форму:

$$a^2 \operatorname{ctg}^2 u \, du^2 + a^2 \sin^2 u \, dv^2$$

(2) Считаем частные производные, пользуясь формулами Френе:

$$r_s = v + \lambda \dot{n} = v + \lambda (-kv + \varkappa b) = (1 - k\lambda)v + \varkappa \lambda b, \quad r_\lambda = n.$$

Вычисляем коэффициенты первой квадратичной формы:

$$g_{11} = \langle \boldsymbol{r}_s, \boldsymbol{r}_s \rangle = (1 - k\lambda)^2 + \varkappa^2 \lambda^2,$$

 $g_{12} = \langle \boldsymbol{r}_s, \boldsymbol{r}_\lambda \rangle = 0,$
 $g_{22} = \langle \boldsymbol{r}_\lambda, \boldsymbol{r}_\lambda \rangle = 1.$

Итак, выписываем первую квадратичную форму: $((1-k\lambda)^2 + \varkappa^2\lambda^2)ds^2 + d\lambda^2$.

Обратим внимание на «непорядочность» принятых обозначений в пункте (2) — за ds мы обозначили как единицу длины, так и дифференциал по натуральному параметру на данной кривой. Делать так, конечно же, нехорошо, но дальнейших вычислений у нас нет, поэтому конкретно здесь это не так важно.

Задача 3.28. Найти угол между линиями v=u+1 и v=3-u на поверхности $x=u\cos v,$ $y=u\sin v,$ $z=u^2.$

Решение. Для начала нужно найти первую квадратичную форму данной поверхности.

$$\begin{aligned} \boldsymbol{r}_{u} &= (\cos v, \sin v, 2u), \quad \boldsymbol{r}_{v} &= (-u \sin v, u \cos v, 0), \\ g_{11} &= \langle \boldsymbol{r}_{u}, \boldsymbol{r}_{u} \rangle = \underbrace{\cos^{2} v + \sin^{2} v}_{1} + 4u^{2} = 4u^{2} + 1, \\ g_{12} &= \langle \boldsymbol{r}_{u}, \boldsymbol{r}_{v} \rangle = -\frac{u}{2} \sin 2v + \frac{u}{2} \sin 2v = 0, \\ g_{22} &= \langle \boldsymbol{r}_{v}, \boldsymbol{r}_{v} \rangle = u^{2} \underbrace{(\sin^{2} v + \cos^{2} v)}_{1} = u^{2}. \end{aligned}$$

Получаем риманову метрику, заданную матрицей

$$\mathcal{G}(u,v) = \begin{pmatrix} 4u^2 + 1 & 0\\ 0 & u^2 \end{pmatrix}.$$

Данные в условии кривые пересекаются в единственной точке (1,2). Их вектора скорости в этой точке есть (1,1) и (1,-1). Угол между кривыми находим по формуле

$$\cos \angle(\boldsymbol{v}_1, \boldsymbol{v}_2) = \frac{\langle \boldsymbol{v}_1, \boldsymbol{v}_2 \rangle_{\mathcal{G}(1,2)}}{\sqrt{\langle \boldsymbol{v}_1, \boldsymbol{v}_1 \rangle_{\mathcal{G}(1,2)}} \cdot \sqrt{\langle \boldsymbol{v}_2, \boldsymbol{v}_2 \rangle_{\mathcal{G}(1,2)}}} = \frac{4}{\sqrt{6} \cdot \sqrt{6}} = \frac{2}{3}.$$

Отсюда $\angle(\boldsymbol{v}_1,\boldsymbol{v}_2)=\arccos\frac{2}{3}.$

Определение 3.29. Площадью области U на поверхности r = r(u, v) называется величина

$$\sigma(U) := \iint_{U} \sqrt{\deg \mathcal{G}} \, du dv.$$

(Здесь область U задана параметрически координатами u и v.)

7
Выкладка: $\left(\ln \lg \frac{u}{2}\right)' = \frac{1}{\lg \frac{u}{2}} \cdot \frac{1}{\cos^{2} \frac{u}{2}} \cdot \frac{1}{2} = \frac{1}{2 \sin \frac{u}{2} \cos \frac{u}{2}} = \frac{1}{\sin u}.$

Это определение (как и определение длины кривой) принимается как данность. Мотивировка такого определения в том, что $\det \mathcal{G}$ — это (ориентированная) площадь параллелограмма, натянутого на касательные вектора \mathbf{r}_u и \mathbf{r}_v .

Площадь можно определить (примерно так же) и не только на поверхности, а в любой метрике. Просто здесь становится более-менее понятной мотивация такого определения.

Пример 3.30. В качестве доказательства пунктов (2) и (3) смотреть пример 3.26.

(1) Если поверхность задана в параметрической форме r = r(u, v) и V — такая область на плоскости (u, v), что r(V) = U, то

$$\sigma(U) = \iint\limits_{V} |\boldsymbol{r}_{u} \times \boldsymbol{r}_{v}| \, du \, dv.$$

(2) Если поверхность задана как график функции z = f(x, y) и область U проектируется на область V на плоскости (x, y), то

$$\sigma(U) = \iint\limits_{V} \sqrt{1 + f_x^2 + f_y^2} dx \, dy.$$

(3) Если поверхность задана уравнением $F(x,y,z)=0,\ F_z\neq 0$ в области U, которая проектируется на область V на плоскости (x,y). Тогда

$$\sigma(U) = \iint\limits_V \frac{|\nabla F|}{|F_z|} \, dx dy.$$

Задача 3.31. Найти площадь тора

$$\begin{cases} x = (R + r\cos\psi)\cos\varphi, \\ y = (R + r\cos\psi)\sin\varphi, \\ z = r\sin\psi, \end{cases}$$

где r < R, $0 \le \varphi, \psi < 2\pi$.

Решение. Находим частные производные радиус-вектора:

$$\mathbf{r}_{\varphi} = (R + r\cos\psi) \left(-\sin\varphi, \cos\varphi, 0\right),$$

$$\mathbf{r}_{\psi} = r\left(-\cos\varphi\sin\psi, -\sin\varphi\sin\psi, \cos\psi\right),$$

затем риманову метрику на торе:

$$\mathcal{G} = \begin{pmatrix} (R + r\cos\psi)^2 & 0\\ 0 & r^2 \end{pmatrix}.$$

Считаем искомую площадь:

$$\sigma = \iint_{\varphi,\psi} \sqrt{\det \mathcal{G}} \, d\varphi d\psi = \int_0^{2\pi} d\varphi \int_0^{2\pi} (R + r\cos\psi) r \, d\psi =$$

$$= 2\pi r \int_0^{2\pi} (R + r\cos\psi) \, d\psi = 2\pi r \cdot 2\pi R = 4\pi^2 Rr.$$

Кривизна поверхности

Сначала мы дадим «дурацкое» определение, а затем предоставим к нему исчерпывающую мотивацию. Рассмотрим поверхность, заданную параметрически: $\boldsymbol{r} = \boldsymbol{r}(u,v)$. Зададим к ней нормаль \boldsymbol{n} в каждой точке:

$$oldsymbol{n} \coloneqq rac{oldsymbol{r}_u imes oldsymbol{r}_v}{|oldsymbol{r}_u imes oldsymbol{r}_v|}.$$

Определение 3.32. Вторую квадратичную форму определим как выражение

$$L du^2 + 2M du dv + N dv^2$$
,

где

$$L := \langle \boldsymbol{r}_{uv}, \boldsymbol{n} \rangle, \quad M := \langle \boldsymbol{r}_{uv}, \boldsymbol{n} \rangle, \quad N := \langle \boldsymbol{r}_{vv}, \boldsymbol{n} \rangle.$$

Полагая $x^1 = u$, $x^2 = v$, будем также записывать её в виде

$$b_{ij} dx^i dx^j$$
,

где

$$\mathcal{B} = \begin{pmatrix} b_{11} & b_{12} \\ b_{12} & b_{22} \end{pmatrix} := \begin{pmatrix} L & M \\ M & N \end{pmatrix}.$$

Для второй квадратичной формы, как и для первой, нужно доказать корректность определения — то есть независимость от системы координат, в которой она записывается. Мы не будем утруждать себя лобовым доказательством тензорного закона, а увидим, что вторая квадратичная форма имеет геометрический смысл, инвариантный относительно выбора системы координат.

Рассмотрим кривую $\rho = \rho(u(t), v(t))$ на нашей поверхности, параметризованную в локальных координатах в окрестности точки $r(u_0, v_0) \ni \text{Im } \rho$. Нормаль к поверхности в этой точке обозначим через n. Тогда имеем (здесь через точку обозначена производная по t)

$$\ddot{\boldsymbol{\rho}} = \boldsymbol{\rho}_{uu}\dot{u}^2 + 2\boldsymbol{\rho}_{uv}\dot{u}\dot{v} + \boldsymbol{\rho}_{vv}\dot{v}^2 + \boldsymbol{\rho}_{u}\ddot{u} + \boldsymbol{\rho}_{v}\ddot{v},$$
$$\langle \ddot{\boldsymbol{\rho}}, \boldsymbol{n} \rangle = L\dot{u}^2 + 2M\dot{u}\dot{v} + M\dot{v}^2,$$

так как $\rho_u \perp n$ и $\rho_v \perp n$. Получается, что значение второй квадратичной формы на векторе скорости кривой ρ (который, конечно же, является касательным вектором к поверхности) есть длина проекции вектора ускорения этой кривой на нормаль к поверхности.

Теперь имеем полное право называть определённое выше выражение квадратичной формой, обозначим её через \mathbf{II} . Попутно мы доказали следующее предложение.

Предложение 3.33. Если $\rho = \rho(u(t), v(t))$ — гладкая кривая на поверхности, то

$$\langle \ddot{\boldsymbol{\rho}}, \boldsymbol{n} \rangle = \mathbf{II}(\dot{\boldsymbol{\rho}}).$$

Позже мы вернёмся к этому сюжету, но пока вынуждены отступить от него.

Главные кривизны и нормальные сечения

Подытожим наши рассуждения. В касательном пространстве к каждой точке поверхности определены две квадратичные формы — \mathbf{I} и \mathbf{II} , — при этом форма \mathbf{I} положительно определена. Из курса линейной алгебры известно, что тогда эти квадратичные формы можно привести к главным осям, то есть выбрать базис (в касательном пространстве), в котором матрица формы \mathbf{I} будет единичной, а матрица формы \mathbf{II} — диагональной.

Кратно напомним, как это делать (подробные объяснения и теоретические обоснования смотреть в теорминимуме, скоро там всё появится). Сначала нужно найти собственные значение пары квадратичных форм, то есть решить уравнение

$$(3.3) det(\mathcal{B} - \lambda \mathcal{G}) = 0$$

относительно λ , где \mathcal{G} и \mathcal{B} — матрицы первой и второй квадратичной формы в каком-то базисе касательного пространства. Сразу отметим, что в силу само уравнение (3.3) инвариантно относительно замены координат и определяется самой поверхностью. Поэтому его коэффициенты в развёрнутом и приведённом виде

$$\lambda^2 - H\lambda + K = 0$$

имеет смысл как-то обозначить.

Определение 3.34. Коэффициент H называется cpedней $\kappa puвизной$ поверхности в данной точке⁸, а коэффициент K — $ray ccoso i \kappa puвизной$. Корни λ_1 и λ_2 уравнения (3.3) называются $ras hыми \kappa puвизнами$. (По теореме Виета имеем $H = \lambda_1 + \lambda_2$, $K = \lambda_1 \lambda_2$.)

Все эти кривизны имеют для нас фундаментальное значение. Их очень глубокий геометрический смысл будет ясен позднее.

Если $\lambda_1 \neq \lambda_2$, то главные направления ${\pmb \xi}_1$ и ${\pmb \xi}_2$ ортогональны и находятся из уравнений

$$(\mathcal{B} - \lambda_i G) \boldsymbol{\xi}_i = \mathbf{0},$$

где i = 1, 2.

А если $\lambda_1 = \lambda_2$, то первая и вторая квадратичные формы пропорциональны, и любые векторы подойдут как главные направления. Такие точки называются *омбилическими*.

Лобовым раскрытием скобок можем получить явные формулы для гауссовой и средней кривизн через коэффициенты первой и второй квадратичных форм:

$$K = \frac{g_{11}g_{22} - g_{12}^2}{b_{11}b_{22} - b_{12}^2} = \frac{\det \mathcal{G}}{\det \mathcal{B}}, \qquad H = \frac{g_{11}b_{22} + g_{22}b_{11} - 2g_{12}b_{12}}{g_{11}g_{22} - g_{12}^2}.$$

Задача 3.35. Найти главные направления, гауссову и среднюю кривизны у псевдосферы

$$x = a \sin u \cos v, \quad y = a \sin u \sin v, \quad z = a \left(\ln \operatorname{tg} \frac{u}{2} + \cos u \right),$$

где $0 < u < \pi/2, \ 0 \leqslant v < 2\pi, \ a \neq 0.$

Решение. Первую квадратичную форму у псевдосферы мы уже считали в задаче 3.27, получили

$$\mathcal{G} = \begin{pmatrix} a^2 \operatorname{ctg}^2 u & 0\\ 0 & a^2 \sin^2 u \end{pmatrix}.$$

Посчитаем вторую квадратичную форму. Для этого нам нужно считать вторые производные от параметризации r нашей поверхности. Первые, опять же, мы уже считали:

 $\mathbf{r}_u = (a\cos u\cos v, a\cos u\sin v, a\cot u\cos u), \quad \mathbf{r}_v = (-a\sin u\sin v, a\sin u\cos v, 0).$

Считаем вторые:

$$\mathbf{r}_{uu} = \left(-a\sin u\cos v, -a\sin u\sin v, -a\cos u(2+\operatorname{ctg}^{2}u)\right),$$
$$\mathbf{r}_{uv} = \left(-a\cos u\sin v, a\cos u\cos v, 0\right),$$
$$\mathbf{r}_{vv} = \left(-a\sin u\cos v, -a\sin u\sin v, 0\right).$$

 $^{^{8}}$ «Данная точка» здесь — это та, в касательном пространстве к которой мы сейчас находимся.

Находим вектор нормали:

$$r_u \times r_v = \det \begin{pmatrix} e_1 & e_2 & e_3 \\ a\cos u\cos v & a\cos u\sin v & a\cot u\cos u \\ -a\sin u\sin v & a\sin u\cos v & 0 \end{pmatrix} =$$

$$= a^2 \left(-\cos^2 u\cos v, -\cos^2 u\sin v, \frac{1}{2}\sin 2u \right).$$

$$|\mathbf{r}_{u} \times \mathbf{r}_{v}|^{2} = \cos^{4} u \underbrace{\left(\cos^{2} v + \sin^{2} v\right)}_{1} + \frac{1}{4} \sin^{2} 2u = \cos^{4} u + \cos^{2} u (1 - \cos^{2} u) = \cos^{2} u,$$

$$\mathbf{n} = \frac{\mathbf{r}_{u} \times \mathbf{r}_{v}}{|\mathbf{r}_{u} \times \mathbf{r}_{v}|} = a(-\cos u \cos v, -\cos u \sin v, \sin u).$$

Теперь можем найти коэффициенты второй квадратичной формы:

$$b_{11} = \langle \boldsymbol{r}_{uu}, \boldsymbol{n} \rangle = a^2 \cos u \sin u \underbrace{(\cos^2 v + \sin^2 v)}_{1} - a^2 \sin u \cos u (2 + \operatorname{ctg}^2 u) =$$

$$= -a^2 \sin u \cos u \underbrace{(1 + \operatorname{ctg}^2 u)}_{1/\sin^2 u} = -a^2 \operatorname{ctg} u,$$

$$b_{12} = \langle \boldsymbol{r}_{uv}, \boldsymbol{n} \rangle = 0,$$

$$b_{22} = \langle \boldsymbol{r}_{vv}, \boldsymbol{n} \rangle = a^2 \cos u \sin u \underbrace{(\cos^2 v + \sin^2 v)}_{1} = \frac{1}{2} a^2 \sin 2u.$$

Можем выписать матрицу второй квадратичной формы:

$$\mathcal{B} = \begin{pmatrix} -a^2 \operatorname{ctg} u & 0\\ 0 & \frac{1}{2}a^2 \sin 2u \end{pmatrix}.$$

Находим главные кривизны:

$$\det(\mathcal{B} - \lambda \mathcal{G}) = 0,$$

$$\det\begin{pmatrix} -\cot u - \lambda \cot^2 u & 0\\ 0 & \frac{1}{2}\sin 2u - \lambda \sin^2 u \end{pmatrix} = 0,$$

$$\cos^2 u \cdot \lambda^2 + \left(-\frac{\cos^3 u}{\sin u} + \cos u \sin u \right) \cdot \lambda - \cos^2 u = 0, \quad |: \cos^2 u$$

$$\lambda^2 - (\cot u - \cot u)\lambda - 1 = 0.$$

Отсюда, $\lambda_1 = -\lg u$, $\lambda_2 = \operatorname{ctg} u$ и $H = \operatorname{ctg} u - \lg u$, $K \equiv -1$. Наконец, можем найти главные направления.

$$(\mathcal{B} - \lambda_1 \mathcal{G}) \boldsymbol{\xi}_1 = \mathbf{0},$$

 $\begin{pmatrix} 0 & 0 \\ 0 & \operatorname{tg} u \end{pmatrix} \boldsymbol{\xi}_1 = \mathbf{0}.$

В качестве решения подойдёт, например, вектор $\boldsymbol{\xi}_1 = (1,0)$. Ищем второй вектор:

$$(\mathcal{B} - \lambda_2 \mathcal{G}) \boldsymbol{\xi}_2 = \mathbf{0},$$

$$\begin{pmatrix} -\frac{\cos u}{\sin^3 u} & 0\\ 0 & 0 \end{pmatrix} \boldsymbol{\xi}_2 = \mathbf{0}.$$

Здесь подойдёт вектор $\boldsymbol{\xi}_2=(0,1)$. Итак, мы нашли главные направления в базисе $(\boldsymbol{r}_u,\boldsymbol{r}_v)$ касательного пространства. Можно записать их и в базисе \mathbb{R}^3 , в котором находится наша поверхность. Для этого пишем $\boldsymbol{\xi}_i=\xi_i^1\boldsymbol{r}_u+\xi_i^2\boldsymbol{r}_v$. В данном случае всё очевидно — $\boldsymbol{\xi}_1=\boldsymbol{r}_u,\,\boldsymbol{\xi}_2=\boldsymbol{r}_v$.

Нам повезло, и векторы изначального базиса (r_u, r_v) оказались главными направлениями. Так происходит редко, в общем случае мы найдём подходящие векторы, нормируем их и запишем в трёхмерных координатах.

С каждой неомбилической точкой гладкой поверхности можно связать ортонормированный базис (ξ_1, ξ_2, n) из главных направлений и вектора единичной нормали. Вблизи этой точки можно задать нашу функцию как график z = f(x, y), к такому заданию поверхностей мы уже обращались в примере 3.26. С одной стороны, первая квадратичная форма имеет вид

$$\begin{pmatrix} 1 + f_x^2 & f_x f_y \\ f_x f_y & 1 + f_y^2 \end{pmatrix}.$$

Но с другой стороны, в базисе из главных направлений матрица первой квадратичной формы в рассматриваемой точке единичная, отсюда находим $f_x = f_y = 0$. В выбранном базисе имеем n = (0,0,1), поэтому легко находим и коэффициенты второй квадратичной формы:

$$\begin{pmatrix} f_{xx} & f_{xy} \\ f_{xy} & f_{yy} \end{pmatrix},$$

при этом в выбранном базисе эта форма диагональна, то есть $f_{xy} = 0$. Таким образом, имеем следующие матрицы квадратичных форм:

$$\mathcal{G} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \qquad \mathcal{B} = \begin{pmatrix} f_{xx} & 0 \\ 0 & f_{yy} \end{pmatrix}.$$

Сразу видим главные кривизны: $\lambda_1 = f_{xx}, \ \lambda_2 = f_{yy}$. Можно написать разложение функции z = f(x,y) в ряд Тейлора, которое в нашем случае выглядит так:

(3.4)
$$z = \frac{\lambda_1}{2}x^2 + \frac{\lambda_2}{2}y^2 + \overline{o}(x^2 + y^2).$$

Отбросив $\overline{o}(x^2+y^2)$, мы получим уравнение параболоида, который приближает нашу поверхность вблизи начала координат. Эта соприкасающайся поверхность второго порядка служит аналогом соприкасающейся окружности к кривой.

Далее мы приведём очень явный геометрический смысл главных кривизн. Для этого мы будем рассматривать сечения поверхности плоскостями.

Определение 3.36. *Нормальным сечением* поверхности \mathcal{M} в некоторой точке $x \in \mathcal{M}$ называется кривая в пересечении этой поверхности и плокости, порождённой каким-то касательным вектором $\xi \in \mathcal{T}_x \mathcal{M}$ и нормалью к поверхности в точке x.

В дальнейшем в этом разделе кривизна нормального сечения будет пониматься в контексте ориентированной кривизны.

Для начала рассмотрим сечения нашей поверхности координатными плоскостями, например, $\mathrm{span}(\boldsymbol{\xi}_1,\boldsymbol{n})$ (это плоскость y=0). Вблизи начала координат получающаяся кривая имеет вид

$$z = \frac{\lambda_1}{2}x^2 + \overline{o}(x^2).$$

Мы утверждаем, что кривизна этой кривой в точке x = 0 (то есть, в начале координат) равна λ_1 . Действительно, как уже отмечалось в начале доказательства теоремы 2.23, для подсчёта кривизны достаточно приблизить нашу кривую параболой

$$z = \frac{\lambda_1}{2}x^2,$$

кривизну которой посчитать легко. Аналогично, кривизна сечения плоскостью $\mathrm{span}(\boldsymbol{\xi}_2, \boldsymbol{n})$ равна λ_2 . Это и есть геометрический смысл главных кривизн.

Теперь рассмотрим произвольное нормальное сечение. Его однозначно можно задать углом φ (0 $\leqslant \varphi < 2\pi$) относительно вектора $\pmb{\xi}_1$.

Рис. 3.8

Можем ввести в плоскости $\mathrm{span}(\boldsymbol{\xi}_1,\boldsymbol{\xi}_2)$ полярные координаты $(\boldsymbol{\xi},\varphi)$ и переписать через них формулу (3.4):

$$z = \frac{\lambda_1 \cos^2 \varphi + \lambda_2 \sin^2 \varphi}{2} \xi^2 + \overline{o}(\xi^2).$$

Аналогично уже сделанным выкладкам, легко посчитать кривизну нормального сечения плоскостью $\mathrm{span}(n,\xi)$.

Теорема 3.37 (Формула Эйлера). Кривизна нормального сечения, порождённого касательным вектором $\boldsymbol{\xi}$, равна

$$\lambda_1 \cos^2 \varphi + \lambda_2 \sin^2 \varphi$$

где λ_1 и λ_2 — главные кривизны, а φ — угол между ξ и главным направлением ξ_1 (соответствующим λ_1).

Положим для определённости $\lambda_1 \leqslant \lambda_2$. Тогда главные кривизны λ_1 и λ_2 — минимум и максимум, соответственно, кривизн нормальных сечений в рассматриваемой точке.

Обратимся к предложению 3.33. (Здесь также точками обозначены производые по t.) Обозначим через n_{ρ} вектор главной нормали кривой ρ в рассматриваемой точке, а через θ — угол между ним и вектором нормали к поверхности, то есть $\theta = \angle(n_{\rho}, n)$. Кривизна кривой ρ определяется из соотношения

$$\frac{d^2\boldsymbol{\rho}}{ds^2} = k_{\rm or}\boldsymbol{n}_{\boldsymbol{\rho}},$$

где s — натуральный параметр на кривой, то есть ds — метрика на нашей поверхности (вспомнить предложение 2.13). Мы уже поняли, что

$$\left\langle \frac{d^2 \boldsymbol{\rho}}{ds^2}, \boldsymbol{n} \right\rangle = b_{11} \dot{u}^2 + 2b_{12} \dot{u} \dot{v} + b_{22} \dot{v}^2 = \frac{b_{ij} \, dx^i dx^j}{ds^2},$$

причём, из определения натурального параметра, $ds^2 = |\dot{\boldsymbol{\rho}}| dt^2$:

$$k_{\mathrm{or}}\langle \boldsymbol{n}_{
ho}, \boldsymbol{n} \rangle = \left\langle \frac{d^{2} \boldsymbol{\rho}}{ds^{2}}, \boldsymbol{n} \right\rangle = \frac{b_{ij} \dot{x}^{i} \dot{x}^{j}}{\mathbf{I}(\dot{\boldsymbol{\rho}})} = \frac{\mathbf{II}(\dot{\boldsymbol{\rho}})}{\mathbf{I}(\dot{\boldsymbol{\rho}})},$$

причём $\langle \boldsymbol{n}_{\rho}, \boldsymbol{n} \rangle = \cos \theta$. Таким образом, нами доказана следующая теорема.

Теорема 3.38. Если кривая лежит на поверхности в \mathbb{R}^3 , то произведение кривизны кривой на косинус угла между нормалью к поверхности и главной нормалью к кривой равно отношению значений второй и первой квадратичных форм на векторе скорости этой кривой.

Следствие 3.39 (Теорема Менье). Рассмотрим нормальное сечение поверхности \mathcal{M} , порождённое вектором $\boldsymbol{\xi} \in \mathcal{T}_{\boldsymbol{x}}\mathcal{M}$. Затем наклоним плоскость сечения вокруг вектора $\boldsymbol{\xi}$ на угол θ ($0 \le \theta < \frac{\pi}{2}$). Кривизна в точке \boldsymbol{x} получившегося сечения равна

$$k_{\rm or} = \frac{1}{\cos \theta} \frac{\mathbf{II}(\boldsymbol{\xi})}{\mathbf{I}(\boldsymbol{\xi})}.$$

При $\theta = 0$ получаем кривизну нормального сечения:

$$k_n = \frac{\mathbf{II}(\boldsymbol{\xi})}{\mathbf{I}(\boldsymbol{\xi})}.$$

Кривизна сечения под углом θ теперь выражается через кривизну нормального сечения:

$$k_{\theta} = \frac{k_n}{\cos \theta}.$$

Рис. 3.9