STUDENT ID NO									

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 2, 2018/2019

TMA 1301 - COMPUTATIONAL METHODS

(All sections / Groups)

6 March 2019 9 AM – 11 AM (2 Hours)

INSTRUCTIONS TO STUDENTS

- 1. This Question paper consists of 6 pages only with 3 Questions.
- 2. Attempt ALL **THREE** questions. The distribution of the marks for each question is given.
- 3. Please write your answers in the Answer Booklet provided, and start each solution of a question on a new page.
- 4. Show all steps.

STUDENT ID NO									

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 2, 2018/2019

TMA 1301 - COMPUTATIONAL METHODS

(All sections / Groups)

6 March 2019 9 AM – 11 AM (2 Hours)

INSTRUCTIONS TO STUDENTS

- 1. This Question paper consists of 6 pages only with 3 Questions.
- 2. Attempt ALL **THREE** questions. The distribution of the marks for each question is given.
- 3. Please write your answers in the Answer Booklet provided, and start each solution of a question on a new page.
- 4. Show all steps.

Question 1 (5 marks)

Suppose $f(x) = \frac{2 - \sqrt{x}}{x - 4}$.

(a) Compute f(4.1) by using four-digit arithmetic with rounding.

[1 mark]

(b) Convert the function f into a form that avoid the loss of significance when x is near to 4 and denotes it as function g(x).

[2 marks]

(c) Compute g(4.1) by using four-digit arithmetic with rounding.

[1 mark]

(d) If the actual value of f(4.1) is estimated to be -0.2485. Find the relative errors for values computed from (a) and (c).

[1 mark]

Question 2 (15 marks)

- You are asked to estimate the root of an equation f(x) = 0 using Newton's method with initial guess at $x = p_0$.
 - (i) Use a graph to illustrate how the algorithm determines the next point p_1 from p_0 . Hence, derives the algebraic formula for p_1 .

[1.5 marks]

(ii) Approximate the root of equation $f(x) = x^3 + 5x^2 - 5 = 0$ starting at $p_0 = 1$ with tolerance 10^{-3} . Use SIX decimal places and show all the necessary working steps.

[3.5 marks]

(b) Suppose y(x) = Ax + B is a line passes through points (x_1, y_1) and (x_2, y_2) and $h = x_2 - x_1$. Show that $\int_{x_1}^{x_2} y(x) dx = \frac{h}{2} [y_1 + y_2]$.

[2 marks]

(c) Approximate $\int_{2}^{4} 5 \ln(2x^2 + 1) dx$ by using the Trapezoidal Rule with **five** points. Approximate your answer to **SIX** decimal places.

[3 marks]

(d) Approximate $\int_{2}^{4} 5 \ln(2x^2 + 1) dx$ by completing the following table using Romberg algorithm. Approximate your answers to SIX decimal places.

[**Hint**:
$$R(n,m) = R(n,m-1) + \frac{1}{4^m - 1} [R(n,m-1) - R(n-1,m-1)], \text{ where } n \ge 1, m \ge 1]$$

	m=0	m=1	m=2
n=0	R(0,0) =		
n = 1	R(1, 0) =	R(1, 1) =	
n=2	R(2,0) =	R(2,1) =	R(2, 2) =

[5 marks]

Question 3 (20 marks)

(a) Use row reduction technique to find an upper triangular U and lower triangular L in the LU factorization of the following matrix:

$$\begin{bmatrix} 3 & -7 & -2 & 2 \\ -3 & 5 & 1 & 0 \\ 6 & -4 & 0 & -5 \\ -9 & 5 & -5 & 12 \end{bmatrix}$$

[4.5 marks]

(b) Construct the equations for x, y and z of the following linear system. Then compute the three iterations for x, y and z using the Gauss-Seidel Method.

$$4x - y - z = 3$$

$$-2x + 6y + z = 9$$

$$-x + y + 7z = -6$$

Copy the following table into your Answer Booklet and complete it. Write your answers correct to three decimal places.

n	x	У	Z
0	0	0	0
1			
2			
3			

[3.5 marks]

(c) Find the eigenvalues for the following matrix A:

$$A = \begin{bmatrix} 2 & 3 \\ 3 & -6 \end{bmatrix}$$

[2 marks]

(d) A 7-Eleven store manager notices that sales of soft drinks are mostly higher on hotter days and he records the data as in the following table.

Temperature in $^{\circ}F(x)$	55	58	64	68	70	75	80	84
Number of cans sold (y)	340	335	410	460	450	610	735	780

(i) Copy the following table into your Answer Booklet and complete it.

х	У	x^2	ху
55	340		
58	335		
64	410		
68	460		
70	450		
75	610		
80	735		
84	780		
$\sum x =$	$\sum y =$	$\sum x^2 =$	$\sum xy =$

[2 marks]

(ii) From (i), find the equation of the best fit linear line y = a + bx that models the data by using the *least squares method*. Round your answers to **TWO** decimal place.

[Hint:
$$a = \frac{\sum_{i=1}^{n} x_i^2 \sum_{i=1}^{n} y_i - \sum_{i=1}^{n} x_i y_i \sum_{i=1}^{n} x_i}{n \sum_{i=1}^{n} x_i^2 - \left(\sum_{i=1}^{n} x_i\right)^2}, b = \frac{n \sum_{i=1}^{n} x_i y_i - \sum_{i=1}^{n} x_i \sum_{i=1}^{n} y_i}{n \sum_{i=1}^{n} x_i^2 - \left(\sum_{i=1}^{n} x_i\right)^2}$$

[2.5 marks]

(iii) From (ii), estimate the number of cans sold if the temperature is 95°F.

[0.5 mark]

(e) Given the following divided difference (DD) table of a function f.

x_k	y_k	First DD	Second DD	Third DD	Fourth DD
0	0				
i	1			1	
2	8	·1 =		1	0
				1	
3	27				
4	64				

(i) Complete the above table.

[3.5 marks]

(ii) Hence, find the *cubic Newton polynomial* $P_3(x)$.

[1 mark]

(iii) Approximate f(2.5) from the obtained $P_3(x)$ in (ii). Round your answer to three decimal places.

[0.5 mark]

End of Page