BIGTREE TECH

MMB CAN V1.0

用户手册

修订历史

版本	日期	修改说明	
v1.00	2023/8/23	初稿	

目录

修订	历史	1
– ,	产品简介	4
	1.1 产品特点	4
	1.2 产品参数	4
	1.3 固件支持	5
	1.4 产品尺寸	5
二、	外设接口	5
	2.1 Pin 脚说明	5
三、	接口介绍	6
	3.1 USB 供电	6
	3.2 Servo 接线	6
	3.3 RGB-WS2812 接线	7
	3.4 Sensor(如 CRT5000 红外传感器)接线	7
	3.5 I2C(如 AHT10 温湿度传感器)接线	8
	3.6 Endstop(如霍尔传感器)接线	8
四、	Klipper 固件	9
	4.1 烧录 CANBOOT	9
	4.2 编译 Klipper 固件 1	0
	4.3 通过 CANBOOT 进行固件更新 1	2
	4.4 通过 DFU 进行固件更新 1	3
4	4.5 CAN bus 配置 1	3
	4.6 配置 Klinner 1	4

一、产品简介

BIGTREETECH MMB CAN V1.0 是深圳市必趣创新科技有限公司 3D 打印团队针对多色挤出机制作的挤出控制板,可以通过 USB 或者 CAN 进行通讯,大大简化接线。

1.1 产品特点

- · 主板预留 BOOT 和 RESET 按键,用户可以通过 USB 进入 DFU 模式更新固件
- · 预留 I2C 接口,此端口也可用于断料、堵料检测,或者进行其它功能的 DIY 操作
- · 电源接口有防反接保护,避免客户在 DIY 时接反电源线导致板子烧毁
- · 支持 CAN 或 USB 通讯, 其中 CAN 的终端电阻 120R 可通过跳线帽选择, 且预留 CAN 拓展接口
- · USB 口增设 ESD 保护芯片, 防止主控被 USB 口静电击穿
- · 采用艾迈斯接口进行 CAN 通讯及主板供电,让接线简单化
- · 步进电机驱动支持高低压选择,方便客户 DIY 使用

1.2 产品参数

外观尺寸 125mm x 54mm

安装尺寸 详情请参考: BIGTREETECH MMB CAN V1.0-SIZE.pdf

微处理器 ARM Cortex-M0+ STM32G0B1CBT6 64MHz

输入电压 DC12V-DC24V 9A

逻辑电压 DC 3.3V

舵机接口(MOT)最大输出 5V 2A,峰值 2.5A

拓展接口 STP1-STP11, I2C, RGB, Sensor (红外传感器接口),

USB 接口, CAN 接口

电机驱动支持 EZ 系列驱动(支持电压选择)

驱动工作模式 STEP/DIR、UART、SPI

步进电机接口 M1、M2、M3、M4

USB 通信接口 USB Type-C

DCDC 5V 输出最大电流 3.6A

1.3 固件支持

此产品当前仅支持 Klipper 固件

1.4 产品尺寸

二、外设接口

2.1 Pin 脚说明

三、接口介绍

3.1 USB 供电

主板上电之后, 电源灯会亮起,表示供电正常。板上标识 VUSB 是电源选择端,仅当使用 USB 给主板供电时,才需要使用跳帽将 VUSB 短接。

3.2 Servo 接线

3.3 RGB-WS2812 接线

3.4 Sensor (如 CRT5000 红外传感器) 接线

3.5 I2C (如 AHT10 温湿度传感器) 接线

3.6 Endstop (如霍尔传感器) 接线

四、Klipper 固件

4.1 烧录 CANBOOT

注意: CanBoot 旨在通过 CAN bus 接口直接更新 MCU 固件,若您更倾向于使用 DFU 更新方法,请跳过此步骤。

"树莓派或 CB1 烧录 CanBoot",参考此处说明下载 CanBoot 工程 https://github.com/Arksine/CanBoot

输入
 cd ~
 跳转到主目录,输入
 git clone https://github.com/Arksine/CanBoot
 下载 CanBoot 工程,然后输入
 cd CanBoot
 跳转到 CanBoot 目录中。

2. 输入

make menuconfig

并按照下图配置

```
Micro-controller Architecture (STMicroelectronics STM32) --->
   Processor model (STM32G0B1) --->
   Build Katapult deployment application (Do not build)
   Clock Reference (8 MHz crystal) --->
   Communication interface (CAN bus (on PB0/PB1)) --->
   Application start offset (8KiB offset)
(1000000) CAN bus speed
() GPIO pins to set on bootloader entry
[*] Support bootloader entry on rapid double click of reset button
[ ] Enable bootloader entry on button (or gpio) state
[ ] Enable Status LED
[Space/Enter] Toggle/enter
                               [?] Help
                                                    [/] Search
[O] Quit (prompts for save)
                                [ESC] Leave menu
```

3. 输入 make 编译固件,当 make 执行完成后会在 home/biqu/CanBoot/out 文件夹中 生成我们所需要的"canboot.bin"固件,在 SSH 软件左侧可以直接下载到电脑

中;

- 4. 请按住 Boot 按钮,然后使用 Type-C 线连接至树莓派/CB1,此时芯片进入 DFU 模式
- 5. 在 SSH 终端命令行中输入

1susb

查询 DFU 设备 ID

```
pi@fluiddpi:~ $ lsusb

Bus 001 Device 005: ID

Bus 001 Device 004: ID 1d50:6061 OpenMoko, Inc. Geschwister Schneider CAN adapter

Bus 001 Device 003: ID 0424:000 Microchip Technology, Inc. (formerly SMSC) SMC9512/9514 Fast Ethernet Adapter

Bus 001 Device 002: ID 0424:9514 Microchip Technology, Inc. (formerly SMSC) SMC9514 Hub

Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
```

6. 请输入以下命令以烧录 CanBoot

make flash FLASH_DEVICE=0483:df11

其中"0483:df11" 需替换为上一步中查询到的实际设备 ID

7. 烧录完成后,请拔下Type-C数据线。

4.2 编译 Klipper 固件

1. SSH 连接到 CB1/树莓派后,在命令行输入:

cd ~/klipper/

make menuconfig

使用下面的配置编译固件(如果没有下列选项,请更新 Klipper 固件源码到最新版本);

```
(Top)
[*] Enable extra low-level configuration options
   Micro-controller Architecture (STMicroelectronics STM32)
   Processor model (STM32G0B1)
   Bootloader offset (No bootloader)
   Clock Reference (8 MHz crystal)
   Communication interface (USB (on PA11/PA12))
   USB ids
GPIO pins to set at micro-controller startup
[Space/Enter] Toggle/enter
                                [?] Help
                                                    [/] Search
                                [ESC] Leave menu
[Q] Quit (prompts for save)
[*] Enable extra low-level configuration optionsMicro-controller
   Micro-controller Architecture (STMicroelectronics STM32)
   Processor model (STM32G0B1)
如果不使用 CanBoot
   Bootloader offset (No bootloader)
如果使用 CanBoot
   Bootloader offset (8KiB bootloader) --->
如果使用 Type-C 上的 USB 通信
   Communication interface (USB (on PA11/PA12)) --->
如果使用 CANBus 通信
   Communication interface (CAN bus (on PBO/PB1)) --->
   (1000000) CAN bus speed
```

- 2. 配置选择完成后,输入 'q'退出配置界面,当询问是否保存配置时选择 "Yes";
- 3. 输入 make 编译固件,当 make 执行完成后会在 home/pi/klipper/out 文件夹中生成我们所需要的"klipper.bin"固件,在 SSH 软件左侧可以直接下载到电脑中

4.3 通过 CANBOOT 进行固件更新

- 1. 使用 CAN bus 需要接好 CAN bus 线缆以及插上 120R 终端电阻的跳线帽。
- 2. 输入

cd ~/CanBoot/scripts

然后输入

python3 flash_can.py -i can0 -q

查询 canbus ID (需提前接好 CAN 线并通电),如下图已找到设备的 UUID

```
biqu@BTT-CB1:~/CanBoot/scripts$ python3 flash_can.py -i can0 -q
Resetting all bootloader node IDs...
Checking for canboot nodes
Detected UUID: be69315a613c, Application: CanBoot
Query Complete
biqu@BTT-CB1:~/CanBoot/scripts$ ■
```

3. 输入

python3 flash_can.py -i can0 -f ~/klipper/out/klipper.bin -u be69315a613c

替换为实际的 UUID,注意: klipper.bin 需要提前 make 生成出来,并且 CanBoot 的 Application start offset 为 8KiB offset,所以 Klipper 的 menuconfig 中 Bootloader offset 也要为 8KiB bootloader,如下图已经烧录成功。

4. 再次输入

python3 flash_can.py -i can0 -q

查询,此时 Application 由之前的 CanBoot 变为 Klipper,代表 Klipper 已经正常运行

```
biqu@BTT-CB1:~/CanBoot/scripts$ python3 flash_can.py -i can0 -q
Resetting all bootloader node IDs...

Checking for canboot nodes...

Detected UUID: be69315a613c, Application: Klipper
Query Complete
biqu@BTT-CB1:~/CanBoot/scripts$
```

4.4 通过 DFU 进行固件更新

树莓派或 CB1 通过 DFU 更新

- 1. 请按住 Boot 按钮,然后使用 Type-C 线连接至树莓派/CB1,此时芯片进入 DFU 模式
- 2. 在 SSH 终端命令行中输入

1susb

查询 DFU 设备 ID

```
pi@fluiddpi:~ $ Isusb

Bus 001 Device 005: ID

Bus 001 Device 004: ID

Bus 001 Device 003: ID

Bus 001 Device 003: ID

Bus 001 Device 003: ID

Bus 001 Device 002: ID

Bus 001 Device 002: ID

Bus 001 Device 002: ID

Bus 001 Device 001: ID

Bus 001 Device 002: ID

Bus 001 Device 002: ID

Bus 001 Device 003: ID

Bus 00424:9514 Microchip Technology, Inc. (formerly SMSC) SMC9514 Hub

Bus 001 Device 001: ID

Bus 001 Device 002: ID

Bus 001 Device 002: ID

Bus 003 Device 004: ID

Bus 005 Device 005: ID

Bus 006 Device 007: ID

Bus 007 Device 008: ID

Bus 008 Device 008: ID

Bus 009 Device 009: ID

Bus 009
```

3. 输入

cd klipper

跳转到 klipper 目录下,输入

make flash FLASH_DEVICE=0483:df11

开始烧录固件(注意:将 0483:df11 更换为上一步中查询到的实际的设备 ID)

4. 固件烧录完成后,输入

ls /dev/serial/by-id/

查询设备的 Serial ID (只有通过 USB 通信的方式才会有此 ID, CANBus 方式忽略此步骤)。

5. 如果使用 USB 通信,第一次烧录完成之后,再次更新时无需手动按 Boot 按钮进入 DFU 模式,可以直接输入

make flash FLASH_DEVICE=/dev/serial/by-id/usb-Klipper_stm32g0b1xx_4550357128922FC8-if00 烧录固件(注意: 将/dev/serial/by-id/xxx 更换为上一步中查询到的实际的 ID)。

6. 如果使用 CAN bus 通信,烧录完成后,请拔下 Type-C 数据线。

4.5 CAN bus 配置

搭配 BIGTREETECH U2C 模块使用

1. 在 SSH 终端中输入

sudo nano /etc/network/interfaces.d/can0

命令,新增以下内容

allow-hotplug can0

iface can0 can static

bitrate 1000000

up ifconfig \$IFACE txqueuelen 1024

将 CAN bus 速度设置为 **1M**(必须与固件中设置的速度一致(**1000000**) CAN bus speed),修改后保存(Ctrl + S)并退出(Ctrl + X),输入

sudo reboot

重启树莓派。

- 2. CANBus 上的每个设备都会根据 MCU 的 UID 生成一个 canbus_uuid,要查找每个微控制器设备 ID,请确保硬件已通电并正确接线,然后运行:
 - ~/klippy-env/bin/python ~/klipper/scripts/canbus query.py can0
- 3. 如果检测到未初始化的 CAN 设备,上述命令将报告设备的 canbus_uuid Found canbus uuid=0e0d81e4210c
- 4. 如果 Klipper 已经正常运行并且连接到此设备,那么 canbus_uuid 将不会被上报,此为正常现象。

4.6 配置 Klipper

1. 在电脑的浏览器中输入树莓派的 IP 访问,如下图所示的路径中下载名为 "sample-bigtreetech-mmb-canbus. cfg"的参考配置,如果找不到此文件,请更新 Klipepr 固件源码到最新版本,或者到 GitHub 下载:

https://github.com/bigtreetech/MMB

2. 将主板的配置文件上传到 Configuration Files 中;

- 3. 并在 "printer.cfg" 文件中添加此主板的配置 [include sample-bigtreetech-mmb-canbus.cfg]
- 4. 将配置文件中的 ID 号修改为主板实际的 ID (USB serial 或者 canbus)
- 5. 按照下方链接的说明配置模块的具体功能: https://www.klipper3d.org/Overview.html