Chord Recognition in Symbolic Music Using Semi-CRFs

Kristen Masada and Razvan Bunescu

Quick Summary

We use machine learning to automatically detect chords in a piece of sheet music.

Music Theory Background

How Do You Read Music?

*Click on image above to open link to audio.

(image from musictheoryacademy.com)

What Is a Chord?

- A group of 3 or more notes "that make sense when played or sung all at the same time" (Harmony and Voice Leading).
- Triad Prototypical instance of a chord in Western tonal music.
 - o 3 notes (root, third, and fifth).
 - *Why third and fifth?

What Is a Chord? (Cont.)

- Possesses a mode.
 - Determined by the **interval** (i.e. # of keys on piano) between the root and third.
 - E.g. major, minor.

*Click on chords above to open link to audio clip.

What Is a Chord? (Cont.)

- Can have an added note (fourth note).
 - E.g. Fourth, sixth, seventh.

*Click on chord above to open link to audio.

What Is Chord Recognition?

The partitioning of music into a sequence of segments such that the notes in each segment are consistent with a corresponding chord label.

"Martha My Dear" - the Beatles (Measures 1-4)

*Click on sheet music excerpt above to open link to audio.

Which Chords Are Correct?

Option 1:

*Click on sheet music excerpt above to open link to audio.

Which Chords Are Correct? (Cont.)

Option 2:

*Click on sheet music excerpt above to open link to audio.

Option 1 Is Correct

*Click on each sheet music excerpt to open link to audio.

Option 1:

Option 2:

Why Is Chord Recognition Hard?

- Not as simple as identifying the notes in a segment
- Complications:
 - Inversions root isn't bass note
 - Missing notes

C major chord

Arpeggios - chord notes played one at a time

missing fifth

Why Is Chord Recognition Hard? (Cont.)

- Complications (cont.):
 - Non-harmonic tones notes that do not belong to any chord
 - **■** E.g. Passing tones
 - Chords that share notes

D minor 7 chord or F major 6 chord in third inversion

Why Is Chord Recognition Hard? (Cont.)

- Which chord is "correct" for a given segment?
 - Duration
 - Root and third are usually long.
 - Accent Perceptual prominence of beat.
 - Root and third more likely to occur on first (strongest) beat of measure.
 - Common chord progressions.

Why Is Automatic Chord Recognition Useful?

- Music streaming services (e.g. Spotify, Apple Music)
 - Music identification
 - Music similarity computation
 - Automatic playlist generation
- Music information retrieval (MIR) research
 - Automatic accompaniment
 - Automatic composition
- Music education
- Playing instruments with other people

Machine Learning + Semi-CRFs

What Is Machine Learning?

- "The science of getting computers to act without being explicitly programmed." - Andrew Ng.
- Supervised learning

Why Did We Choose Semi-CRFs?

- Radicioni and Esposito's "BREVE: An HMPerceptron-Based Chord Recognition System" (2010).
 - Breaks the musical input into events (each unique note onset/offset).
 - Trains a *Hidden Markov Model* (HMM) to assign a chord label to each event in the sequence.
- *BREVE can only exploit the characteristics of 1-2 events at a time, while semi-CRF can exploit entire segments.

Segments vs. Events

What Are Semi-CRFs (semi-Markov Conditional Random Fields)?

- Partitions the given test example into segments and predict the labels that correspond to these segments (Sarawagi and Cohen, 2004).
- $\mathbf{s} = \langle s_1, s_2, ..., s_k \rangle$ denotes a segmentation of the musical input \mathbf{x} . $\circ s_k = \langle s_k, f, s_k, l \rangle$, where $s_k, f = \text{index of first event}$, $s_k, l = \text{index of last event}$.
- $\mathbf{y} = \langle \mathbf{y}_1, \mathbf{y}_2, ..., \mathbf{y}_K \rangle$ is the vector of chord labels corresponding to the segmentation \mathbf{s} .

$$P(\mathbf{s}, \mathbf{y} | \mathbf{x}, \mathbf{w}) = \frac{e^{\mathbf{w}^T \mathbf{F}(\mathbf{s}, \mathbf{y}, \mathbf{x})}}{Z(\mathbf{x})}$$
$$Z(\mathbf{x}) = \sum_{\mathbf{s}, \mathbf{y}} e^{\mathbf{w}^T \mathbf{F}(\mathbf{s}, \mathbf{y}, \mathbf{x})}$$
$$\mathbf{F}(\mathbf{s}, \mathbf{y}, \mathbf{x}) = \sum_{k=1}^{K} \mathbf{f}(s_k, y_k, y_{k-1}, \mathbf{x})$$

What Are Semi-CRFs? (Cont.)

- We use Muis and Lu's semi-CRF package*.
 - Restricts segment features to 2 types:
 - Segment-label features $f(s_k, y_k, \mathbf{x})$.
 - Transition features $g(y_k, y_{k-1}, \mathbf{x})$.
 - *Allows for faster training/inference.

$$P(\mathbf{s}, \mathbf{y} | \mathbf{x}, \mathbf{w}) = \frac{e^{\mathbf{w}^T \mathbf{F}(\mathbf{s}, \mathbf{y}, \mathbf{x}) + \mathbf{u}^T \mathbf{G}(\mathbf{s}, \mathbf{y}, \mathbf{x})}}{Z(\mathbf{x})}$$

$$\mathbf{F}(\mathbf{s}, \mathbf{y}, \mathbf{x}) = \sum_{k=1}^K \mathbf{f}(s_k, y_k, \mathbf{x})$$

$$\mathbf{G}(\mathbf{s}, \mathbf{y}, \mathbf{x}) = \sum_{k=1}^K \mathbf{g}(y_k, y_{k-1}, \mathbf{x})$$

How Do Semi-CRFs Work?

- Generates a probabilistic graphical model.
 - Each node is a candidate segment.
 - For each event, considers a number of candidate segments starting at that position.
 - Length 1, 2, up to a maximum segment length (usually 20).
- arg $\max_{s,y} P(s,y|x,w)$ is computed using a semi-Markov analogue of the Viterbi algorithm.
 - Finds the most likely sequence of segments.

$$y = G:maj, s.f = 1, s.l = 2.$$

 $y = G:maj, s.f = 1, s.l = 3.$
 $y = G:maj, s.f = 1, s.l = 4.$
 $y = G:maj, s.f = 1, s.l = 5.$

Chord Recognition Features

Segment Features - Segment Purity

• Feature f_1 determines the fraction of the notes in candidate segment s that are harmonic (i.e. belong to chord y).

$$f_1(s,y) = \frac{\sum_{n \in s.Notes} \mathbf{1}[n \in y]}{|s.Notes|}$$

$$y = \text{Eb:maj}, s = \text{(segment to left)}$$

 $f_1(s, y) = 9 / 10 = 90\%^*$

Segment Features - Chord Coverage

• Features f_4 - f_6 determine which of the chord notes belongs to the candidate segment s.

$$f_4(s,y) = \mathbf{1}[y.root \in s.Notes]$$

$$f_5(s,y) = \mathbf{1}[y.third \in s.Notes]$$

$$f_6(s,y) = \mathbf{1}[y.fifth \in s.Notes]$$

$$y.fifth (D)$$

$$y = \mathbf{G:maj}, s = (\text{segment to left})$$

$$f_4(s,y) = 1$$

$$f_5(s,y) = 1$$

$$f_6(s,y) = 1$$

Segment Features - Chord Coverage (Cont.)

• Feature f_{11} determines the fraction of the notes in candidate segment s that are the root note and weighs each note n by its duration n.len.

$$f_{11}(s,y) = \frac{\sum_{n \in s.Notes} \mathbf{1}[n = y.root] * n.len}{\sum_{n \in s.Notes} n.len}$$

$$y = Eb:maj$$
, $s = (segment to left)$
 $f_{11}(s, y) = (1 * 0.5 + 1 * 0.5 + 1 * 0.5) / 6 = 25\%$

Segment Features - Bass

• Features f_{20} - f_{22} define the bass of segment s as the lowest note of the first event e_1 of s--s. e_1 .bass--and determines which chord note it corresponds to.

$$f_{20}(s,y) = \mathbf{1}[s.e_1.bass = y.root]$$

 $f_{21}(s,y) = \mathbf{1}[s.e_1.bass = y.third]$
 $f_{22}(s,y) = \mathbf{1}[s.e_1.bass = y.fifth]$

$$y = \text{Eb:maj}, s = \text{(segment to left)}$$

 $f_{20}(s, y) = 1$
 $f_{21}(s, y) = 0$
 $f_{22}(s, y) = 0$

Transition Features - Chord Bigram

- Feature template g1 captures chord transition information between the current segment y and the previous segment y'.
 - mode: major (M), minor (m), or diminished (d).
 - \circ added note: none (\varnothing), fourth (4), sixth (6), or seventh (7).
 - interval in semitones between the roots of the two chords.
 - *generalizes to unseen chords.
 - *Generates 1,728 possible features.

$$g_{1}(y, y') = \mathbf{1}[y.mode = \{M, m, d\} \land y.added = \{\emptyset, 4, 6, 7\} \land y'.mode = \{M, m, d\} \land y'.added = \{\emptyset, 4, 6, 7\} \land |y.root - y'.root| = \{0, 1, ..., 11\}]$$

$$y = C:maj, y' = G:maj$$

 $g_1(y, y') = 1 [M^{\circ} \otimes M^{\circ} \otimes 7] = 1$

Datasets

Experimental Evaluation

Bach Choral Harmony Dataset (BaCh)

- Corpus of 60 four-part Bach chorales.
 - Contains 5,664 events and 3,090 segments.
- 10 fold cross-validation.
 - 60 chorales / 10 folds = 6 songs per fold.
 - 9 folds for training, 1 for testing.
- 102 chords in dataset.
 - 3 modes (major, minor, diminished) x 12 root pitches x 4 added notes (none, 4, 6, 7) = 144 total possible labels.
- *Features that appear less than 5 times in training removed.

System	Acc _E	P _S	R _S	F _s
semi-CRF	83.16%	77.60%	73.48%	75.48%
HMP-tron*	80.30%	74.18%	69.76%	71.90%

TAVERN

- Corpus of 27 complete sets of theme and variations for piano, composed by Mozart and Beethoven.
 - Contains 63,876 events and 12,802 segments.
- One split.
 - Training 11 Beethoven + 6 Mozart sets.
 - Testing 6 Beethoven + 4 Mozart sets.
- 69 chords in dataset.

System	Acc _E	P _s	R _s	F _s
semi-CRF	77.47%	66.86%	60.35%	63.44%
HMP-tron*	60.55%	27.83%	23.21%	25.31%

Questions

Our research paper: http://bit.ly/2jxZ0Dg