

ARMY RESEARCH LABORATORY

Explosive Bonding of Refractory Metal Liners

by William S. de Rosset

ARL-TR-3267

August 2004

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of manufacturer's or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory

Aberdeen Proving Ground, MD 21005-5069

ARL-TR-3267

August 2004

Explosive Bonding of Refractory Metal Liners

**William S. de Rosset
Weapons and Materials Research Directorate, ARL**

REPORT DOCUMENTATION PAGE			<i>Form Approved OMB No. 0704-0188</i>		
<p>Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.</p> <p>PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.</p>					
1. REPORT DATE (DD-MM-YYYY)	2. REPORT TYPE		3. DATES COVERED (From - To)		
August 2004	Final		January 2004–July 2004		
4. TITLE AND SUBTITLE			5a. CONTRACT NUMBER		
Explosive Bonding of Refractory Metal Liners			5b. GRANT NUMBER		
			5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)			5d. PROJECT NUMBER		
William S. de Rosset			AH84		
			5e. TASK NUMBER		
			5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)			8. PERFORMING ORGANIZATION REPORT NUMBER		
U.S. Army Research Laboratory ATTN: AMSRD-ARL-WM-MB Aberdeen Proving Ground, MD 21005-5069			ARL-TR-3267		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)			10. SPONSOR/MONITOR'S ACRONYM(S)		
			11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAILABILITY STATEMENT					
Approved for public release; distribution is unlimited.					
13. SUPPLEMENTARY NOTES					
14. ABSTRACT					
TPL, Inc. has successfully bonded a pure tantalum liner to the inside of an M242 Bushmaster barrel using a low-detonation-velocity explosive. This report examines the governing equations of the explosive bonding process as they apply to this particular situation. The relevant properties of other higher strength tantalum alloys are examined to see if they are suitable for explosive bonding, with the expectation that they would be better able to resist the wear forces at the rifled bore surface. For all candidate materials, attention is paid to the values of critical impact pressure, the critical flow transition velocity, the critical angle for jet formation, and maximum flyer plate velocity. Example plots are provided to indicate the bounds of explosive welding parameters that will result in a good bond.					
15. SUBJECT TERMS					
explosive bonding, gun tube liners, refractory metals, wear and erosion, Bushmaster					
16. SECURITY CLASSIFICATION OF:		17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON	
a. REPORT UNCLASSIFIED	b. ABSTRACT UNCLASSIFIED	c. THIS PAGE UNCLASSIFIED	UL	42	William S. de Rosset
					19b. TELEPHONE NUMBER (Include area code) (410) 306-0816

Standard Form 298 (Rev. 8/98)

Prescribed by ANSI Std. Z39.18

Contents

List of Figures	v
List of Tables	v
Acknowledgments	vii
1. Introduction	1
2. Background	2
3. Governing Equations	5
4. Application of Governing Equations	8
5. Discussion	12
6. Summary	14
7. References	15
Distribution List	17

INTENTIONALLY LEFT BLANK.

List of Figures

Figure 1. Donor tube wall thickness as a function of the donor tube outer radius for a fixed final liner thickness.....	3
Figure 2. Standoff normalized to donor tube wall thickness as a function of donor tube outer radius.....	4
Figure 3. Strain imparted to cylinder as a function of donor tube outer radius.....	5
Figure 4. Geometry of explosive bonding setup.....	6
Figure 5. Relation of pressure P in MPa vs. α in degrees for $V_c = 5$ km/s.....	10
Figure 6. Bounding plots for explosive bonding of tantalum and two alloys.....	11
Figure 7. Bounding plots for niobium.....	12
Figure 8. Relation between α (in degrees) and standoff for a specific case.....	14

List of Tables

Table 1. Tantalum alloy material properties.....	9
Table 2. Tantalum material properties.....	9
Table 3. Properties of niobium.....	12

INTENTIONALLY LEFT BLANK.

Acknowledgments

The author is indebted to Brian Scott for providing background information on explosive bonding. He also recognizes the help of Steven Segletes for advice in writing the report. Dattatraya P. Dandekar was the source of the equation-of-state data. Discussions with Jonathan Montgomery and Bob Lowey (TPL, Inc.) were helpful in writing the background section of the report. Finally, the author is indebted to Larry Burton for his critical review of the report.

INTENTIONALLY LEFT BLANK.

1. Introduction

Gun barrel wear and erosion has been a major determinant in the useful life of most Army guns. It is a problem that has been addressed with propellant additives, barrel coatings, and reduced flame-temperature propellants. The problem has become more of an issue with the push to use higher-performance, higher flame-temperature propellants. Thus, the need to reduce barrel wear and erosion is established on prolonging the life of current gun barrels as well as providing the opportunity to introduce new propellants into future gun systems.

As part of a Small Business Innovative Research (SBIR) Phase 2 program, TPL, Inc. has demonstrated its ability to line the inside of both a rifled and smooth-bore (honed out) M242 Bushmaster 25-mm gun barrel with pure tantalum (Lowey, 2002) using an explosive bonding process. Initial firing tests at the U.S. Army Aberdeen Test Center showed that the tantalum-lined barrels have a remarkable resistance to wear and the explosive bonding process produced an extremely strong bond between the tantalum and gun steel. Most of the work was conducted with a smooth-bore gun, and the question of wear on a rifled surface was still an issue.

This successful effort has prompted continuance of the work through a Manufacturing Technology (Mantech) program. The goal of the program is to reduce wear and erosion of the M242 25-mm Bushmaster gun tube. One of the tasks of this program is to examine the choice of liner materials to see if another candidate material is more suitable. It may be that pure tantalum is too soft to withstand the forces exerted on the lands and grooves of rifled guns. Tantalum is also considered an expensive material, and since cost avoidance is one of the principal tenets of the Mantech program, high material cost is an issue.

One criterion for choice of a liner material is its cladability. This report investigates the material properties that make materials amenable to being explosively bonded to gun steel. In the next section, the work that TPL did to bond the tantalum liner to the M242 will be reviewed.

Particular attention will be paid to the characteristics of the explosive and the geometry of the tantalum cylinder used in the TPL work. The governing equations used in explosive bonding are presented in section 3. These equations indicate what material parameters are important for the process to be successful. (Note that other important characteristics of the liner, such as hardness, resistance to chemical attack, and machinability, are not addressed in this particular task.) Section 4 takes the values of those material parameters for tantalum and several of its alloys to calculate the collision angle and collision velocity that give a good explosive bond. Results are also presented for niobium. The final section discusses the suitability of these metals and the implications for the choice of explosive.

2. Background

There is a certain amount of trial and error in establishing the operating parameters used in explosive bonding. This is evident in the number of different explosive formulation variations used by TPL in its work with the M242 Bushmaster gun barrel (Lowey, 2002). The final report for the Phase 2 effort omitted several important details; therefore, some suppositions about this work will be made for the remainder of this report. For instance, the actual formulation used to clad the three M242s was not explicitly specified in the final report; however, it can be inferred from the report that the explosive had a detonation velocity between 1.7 and 2.2 km/s.

The characteristic velocity, known as the Gurney velocity, $\sqrt{2E}$, can be estimated from the following:

$$\sqrt{2E} = D/2.97, \quad (1)$$

where D is the detonation velocity (Cooper, 1996). For this specific case, $\sqrt{2E}$ is calculated to be 0.74 km/s, using the upper limit of D (2.2 km/s). Values of the Gurney velocity for standard military explosives generally fall between 2 and 3 km/s (Zukas and Walters, 1998).

There were many steps needed to process the M242 gun tube. The parts dealing primarily with the explosive bonding process itself were filling a tantalum donor tube with explosive, inserting the donor tube into the gun tube, centering the donor tube so that it was concentric with the gun tube, evacuating the gun tube, and detonating the explosive. The gun tube had been bored out to an inner diameter of 1.064 in (27.03 mm) to accommodate the liner thickness. (The diameter reported in Lowey [2002] was given as 1.0547 in. This is a typographical error [Lowey, 2004b].) The original dimensions of the tantalum donor tube were 0.75 in (19.05 mm) for the diameter and 0.065 in (1.651 mm) for the wall thickness. Given the density of the explosive as 0.66 g/cm³ (Lowey, 2004a) and the density of tantalum as 16.65 g/cm³, the charge-to-mass ratio (C/M) can be calculated as 0.0856. Using the Gurney equation for the metal velocity V of the expanding cylindrical wall, we get the following:

$$V = \sqrt{2E} (M/C + \frac{1}{2})^{-1/2} = 0.212 \text{ km/s.} \quad (2)$$

The tantalum donor tube used in the explosive bonding to the M242 gun tube underwent a large amount of plastic strain. The radial component of strain ϵ on the outer surface of the cylinder can be found using the values of the following initial and final cylinder outer diameters:

$$\begin{aligned} \epsilon &= \ln(\text{final cylinder diameter}/\text{initial cylinder diameter}) \\ &= \ln(1.064/0.75) = 35\%. \end{aligned} \quad (3)$$

There is a certain amount of plastic strain associated with the explosive bond itself. Consequently, an important material characteristic for explosive bonding is material ductility. However, in this particular instance, the need for material ductility is increased due to the fact

that the tantalum donor tube has to expand and stay together within the gun tube. TPL made an attempt to use tantalum-10% tungsten (Ta-10W) as the liner material (Lowey, 2002). No successful bonds were ever achieved. One possible cause cited for this failure was that the Ta-10W might have had too many interstitial impurities. Also, the starting material may have been too strain-hardened. Mulligan et al. (2002) point out that "... commercially pure electron beam melted tantalum has an elongation of ~30 to 40% and a yield strength of ~5 ksi at 1000 °C, while Ta-10W has an elongation of ~25% (within limits of explosive bonding)..." If the same initial donor tube dimensions were used for Ta-10W as were used for the pure tantalum, the allowable elongation limit may have been exceeded.

The need to have liner ductility in excess of 30% elongation may be reduced if the initial donor tube diameter is increased. (The tantalum tubes used by TPL, Inc. were purchased as off-the-shelf items and therefore came in a standard size.) However, there is a limit to the diameter size of the donor tubes. This is due to the standoff (initial distance between the outer donor tube wall and the inner gun wall) needed in the explosive bonding process. A rough "rule of thumb" is that the standoff should be between 1/2 and 1× the flyer plate thickness (Wylie et al., 1970). In any event, the cylinder wall thickness can be calculated as a function of the outer radius of the cylinder, assuming that the M242 is honed to the same dimensions (1.064-in inner diameter) and that the same final liner thickness (0.044 in) is achieved. This relation is shown in figure 1.

Figure 1. Donor tube wall thickness as a function of the donor tube outer radius for a fixed final liner thickness.

As the donor tube outer radius changes, the standoff (distance from the outer diameter of the donor tube to the inner diameter of the gun tube) normalized to the donor tube wall thickness changes. This is shown in figure 2. Finally, the amount of strain imparted to the donor tube can be calculated as a function of the donor tube outer radius. This is shown in figure 3.

Figure 2. Standoff normalized to donor tube wall thickness as a function of donor tube outer radius.

These figures indicate that there is a range of possible initial conditions. The exact choice of these parameters will depend upon many other factors, including type of explosive used, availability of liner material with specified dimensions, and allowable elongation of the liner material. Similar plots can be made for other gun systems or for different choices of final liner thickness or initial gun tube diameter. The main point of these three figures is that if a normalized standoff less than 2 can be used, a lower elongation requirement can be met. For instance, a normalized standoff of 1.5 will result in a final elongation of less than 20%.

Figure 3. Strain imparted to cylinder as a function of donor tube outer radius.

3. Governing Equations

Explosion bonding has been used commercially for over 40 years to weld dissimilar metals that are otherwise difficult to join. The technology is relatively mature, and the governing equations have been documented in many publications. Carpenter and Wittman (1975) provide an excellent review of the technology, and most of what is presented in this section is taken from their work. (See this reference for a more thorough discussion of the equations.) In particular, they present four boundary conditions necessary to provide optimum explosion bonding characteristics. These are the critical angles for jet formation, the critical impact pressure, the critical flow transition velocity, and a maximum impact velocity.

Figure 4 briefly describes these governing equations and their rationale and shows the geometry of the explosive bonding setup. A constant standoff geometry is used for bonding the metal liner to the gun tube wall. (We distinguish between the initial liner configuration, called the donor tube, and the gun barrel.) In this figure, V is the flyer plate velocity, D is the velocity of detonation of the explosive, V_c is the collision point velocity, and α is the angle between the donor tube and the gun barrel at the collision point.

Figure 4. Geometry of explosive bonding setup.

In general,

$$V_c = D, \quad (4)$$

and

$$V = 2D \sin\alpha/2. \quad (5)$$

For small values of α ,

$$V = D \sin\alpha. \quad (6)$$

The first consideration is the minimum impact pressure needed to make the explosive bonding process work. Carpenter and Wittman (1975) provide an empirically-successful relation between the minimum donor tube impact velocity V_{\min} and the ultimate tensile strength σ_{ts} as follows:

$$V_{\min} = (\sigma_{ts} / \rho)^{1/2}, \quad (7)$$

where ρ is the donor tube density. It is presumed that the ultimate tensile strength is that strength measured at room temperature. However, it is expected that the donor tube will be heated during plastic deformation, lowering its strength. Consequently, the V_{\min} calculated may overestimate the actual value of V_{\min} . Note also that these same authors acknowledge that it would be better to use the Hugoniot elastic limit (HEL) to calculate V_{\min} (in another formula). However, the value of HEL for many alloys is not always available. Consequently, for sake of comparison among the alloys examined in this report, the ultimate tensile strength will be used in the calculations.

The second consideration is the existence of a specific collision velocity below, where researchers have found the bond line to be flat, and above, where they found it to be wavy. A wavy bond line is indicative of a good bond, implying that there is a lower limit to the collision velocity for a good bond. This transition velocity will be designated as V_T . Cowan et al. (1971) relate V_T to the density of the donor tube, ρ to the density of the gun barrel ρ_b , and H_F and H_B to

the diamond pyramid hardness of the donor tube and gun barrel, respectively, given a consistent set of units, in the following way:

$$V_T = \sqrt{2R_T(H_F + H_B)/(\rho + \rho_b)}. \quad (8)$$

R_T is an empirically determined parameter that, for a wide range of metals, averages to 10.6 (no units). This is the value that will be used for calculations in this report.

Wittman (1973) derived a formula for the maximum donor tube velocity that would not result in melt-induced defects destroying the bond strength. This maximum velocity, V_{max} , can be calculated from the following equation:

$$V_{max} = \frac{(T_{MP} C_B)^{1/2} (KCC_B)^{1/4}}{N V_c (\rho h)^{1/4}}. \quad (9)$$

The material characteristics associated with the flyer plate are as follows:

- T_{MP} , the melting point in °C;
- C_B , the bulk sound speed;
- K , the thermal conductivity;
- C , the specific heat;
- h , the flyer plate thickness; and
- ρ , the flyer plate density.

N is a constant that is not explicitly provided in the Carpenter and Wittman reference (1975). However, it can be derived from the table of material properties provided in this reference. First, calculate the value of V_{min} using the values of ρ and σ_{ts} with equation 7. Next, determine NV_{max} from the other parameters provided in Carpenter and Wittman (1975) and equation 9. The value of N can then be determined from the ratio of V_{max} to V_{min} provided in this reference. For the 12 metals listed, the average value of N is 0.11, with a mean deviation of 0.009. N will be taken as 0.11 (using cgs units) for calculations in this report.

There is experimental evidence that a jet is formed at the intersection of colliding surfaces during the explosive bonding process (Bergmann et al., 1966). It is generally accepted that this jet rids the colliding surfaces of any oxides and promotes a metallurgical bond. However, not all collisions result in a jet. Walsh et al. (1953) first proposed the concept of a critical collision angle for jet formation. This is the minimum angle at a specified collision velocity that is required for jet formation. Cowan et al. (1971) extended this work to asymmetric collisions. They give the angle α in terms of the shock parameters and V_c :

$$\tan \alpha = U_p(V_c^2 - U_s^2)^{1/2} / (V_c^2 - U_p U_s). \quad (10)$$

At the critical collision angle, the partial derivative of the pressure with respect to α is zero (fixed V_c) (Walsh et al., 1953). The pressure P is related to the shock velocity U_s and the particle velocity U_p through the following usual equation:

$$P = \rho U_s U_p. \quad (11)$$

The empirically determined relation between U_s and U_p is also required to determine the critical angle. The relation between the shock velocity and V_c is given by the following:

$$U_s = V_c \sin \beta, \quad (12)$$

where β is the angle between the shock front and the material flow vector into the collision point viewed from a frame of reference that is stationary with respect to the collision point. Rather than calculate α explicitly in terms of P and take the partial derivative, it was easier to fix V_c and vary β . This generated values of U_s , U_p , P , and α . A plot of P vs. α showed a distinct maximum, and the critical angle for the given value of V_c was obtained. This was done for enough values of V_c to generate the required information.

4. Application of Governing Equations

Some cautions must be stated before applying the governing equations. First, they are to be applied with the understanding that the equations provide guidelines only. The actual parameters used to obtain the best possible bond will still be determined through a trial and error experimental process. Second, in applying these equations, it is important that a consistent set of units be used. In many instances, material property data are gathered from different sources that use different units. Some care must be exercised in converting all the data so that the units are consistent. Note that in equation 9, the value of N was determined using centimeter-gram-seconds °C as the set of units. Finally, it may not be possible to obtain the exact material properties for all alloys. In these cases, best estimates will be made.

While the use of pure tantalum resulted in a successful cladding of a liner to the M242 Bushmaster barrel, it may be that a higher-strength alloy is needed in a rifled bore configuration. Such alloys as tantalum-3% tungsten (Ta-3W) and Ta-10W are likely candidates. The densities of these two alloys can be found from a rule of mixtures, where the density of tantalum is taken to be 16.65 g/cm^3 and the density of tungsten is taken to be 19.3 g/cm^3 . The ultimate tensile strength of tantalum varies as a function of temperature. A value of $250 \text{ MPa} = 36 \text{ ksi}$ is used for the room temperature value of σ_{ts} (American Society for Metals, 1979). The values of σ_{ts} for Ta-3W and Ta-10W are 60 ksi and 120 ksi, respectively (Aimone, 2004). The calculated values of V_{min} are given in table 1.

Table 1. Tantalum alloy material properties.

Material	Density (kg/m ³)	Ultimate Tensile Strength, (MPa)	V _{min} (km/s)	V _T (km/s)
Tantalum	16.65 × 10 ³	250	0.123	2.05
Ta-3W	16.73 × 10 ³	414	0.157	2.10
Ta-10W	16.92 × 10 ³	828	0.221	2.15

The transition velocity V_T for these materials can be found from equation 8. The Vickers hardness ranges for tantalum and Ta-3W are 90–100 and 110–130 (Aimone, 2004). An estimate of the hardness range for Ta-10W is 140–160 Vickers. Note that the hardness of the tantalum liner (after explosively bonding) was measured by Pepi et al. (2003) to be 140 Vickers. It is likely that the explosive bonding process increased the hardness of the liner above the original hardness. The gun steel hardness reported in Pepi et al. (2003) was 400 Vickers. For purposes here, the lower end of the hardness ranges of tantalum and its alloys before explosive bonding occurs will be used; the value of 400 Vickers will be used for the steel. The calculated values for V_T are also shown in table 1.

It is expected that the critical angle for jet formation and V_{max} will depend on the bulk properties of the material so that a calculation for tantalum will provide close approximations of these values for the Ta-3W and Ta-10W alloys (Furnish et al., 1995). The values of the bulk properties of tantalum used to calculate V_{max} are shown in table 2. The relation between the shock velocity U_s and the particle velocity U_p (Marsh, 1995) is given by the following:

$$U_s = 3.43 \text{ (km/s)} + 1.19 U_p. \quad (13)$$

In this equation, U_s and U_p are in kilometers per second.

Table 2. Tantalum material properties.

Property	Value	Reference
Bulk sound speed	3.43 km/s	(Marsh, 1980)
Density	16.65 × 10 ³ kg/m ³	(American Society for Metals, 1979)
Melting point	3269° K	(American Society for Metals, 1979)
Thermal conductivity	54.4 w/m K	(American Society for Metals, 1979)
Specific heat	139.1 J/kg K	(American Society for Metals, 1979)

A flyer plate thickness of 0.15 cm (0.059 in) was selected. The table 2 values of input parameters were converted to the cgs system, and equation 9 was used to find V_{max} in terms of V_c.

$$V_{\max} = 0.923 \times 10^{10} / V_c, \quad (14)$$

where V_{max} and V_c are now in centimeters per second. We then have the following condition on α at V=V_{max}:

$$\alpha = 2\sin^{-1}(V_{\max}/2V_c) = 2\sin^{-1}(0.923/2V_c^2), \quad (15)$$

with V_{\max} and V_c in kilometers per second.

The calculation for the critical angle for jet formation is as follows. First, fix a value of V_c . Then,

$$U_s = V_c \sin\beta. \quad (16)$$

From the relation between U_s and U_p ,

$$U_p = (V_c \sin\beta - 3.43)/1.19. \quad (17)$$

Also,

$$P = \rho (V_c \sin\beta)(V_c \sin\beta - 3.43)/1.19. \quad (18)$$

Then, from equation 10,

$$\tan \alpha = ((\sin\beta - 3.43/V_c)/1.19)(1 - \sin^2\beta)^{1/2}/(1 - \sin\beta(\sin\beta - 3.43/V_c)/1.19). \quad (19)$$

By varying β , values of P and α can be generated. A plot of P vs. α for the case of $V_c = 5$ is shown in figure 5.

Figure 5. Relation of pressure P in MPa vs. α in degrees for $V_c = 5$ km/s.

It is clear from this figure that the maximum value of α is $\sim 5.4^\circ$. Thus, the critical angle for $V_c = 5$ km/s is 5.4° . The relation between V_c and α can be generated with this approach.

The end result of all these calculations is a plot similar to that shown in Carpenter and Wittman (1975), shown in figure 6. For each metal, there is a central area bounded by four lines that indicate appropriate ranges of parameters. Bounded from below are the plots of V_{\min} for each of the metals. On the left, the boundary is V_T . The values for each metal are so close together that V_T is represented by a single thick vertical line. On the right, the area is bounded by the condition for the critical angle for collision. At the top, the area is bounded by V_{\max} .

Figure 6. Bounding plots for explosive bonding of tantalum and two alloys.

A similar plot can be made for niobium (annealed). Table 3 lists the properties that were used for the calculations. All values were obtained from the Metals Handbook (American Society for Metals, 1979) except for the bulk sound speed, obtained from Marsh (1980). In addition, the relation

$$U_s = 4.46 \text{ (km/s)} + 1.20U_p \quad (20)$$

and a value of 0.15 cm for the flyer plate thickness were used to generate the plots in figure 7.

Considering the fact that the material properties for niobium are not too different from those of tantalum and its alloys, it is not surprising that the bounding plots in figure 7 appear similar to those in figure 6.

Table 3. Properties of niobium.

Property	Value
Tensile strength	275 MPa
Density	8.57 g/cm ³
Hardness	80 Vickers
Melting point	2468 °C
Bulk sound speed	4.46 km/s
Specific heat (at 20° C)	270 J/kg K
Thermal conductivity (at 0° C)	52.3 w/m K

Figure 7. Bounding plots for niobium.

5. Discussion

The governing equations presented in section 3 have been developed as a result of many years of experience in explosive welding. While they are based on a physical understanding of the explosive bonding process, reliance is also placed on fixing certain parameters obtained from averages of a large number of tests. For this reason, the governing equations should be taken as guidelines to establish the approximate operating parameters for a specific case. Note also that the equations were based primarily on experience gained with cladding flat pats on a flat

substrate. In the case of explosively bonding a liner to the inside of a gun tube, the geometry is different. The large amount of hoop strain that might occur in bonding liners could affect material properties to the extent that the equations are no longer good approximations. This is especially true if the material properties are highly strain and/or strain rate sensitive.

In any event, the governing equations help to assess the cladability of a material. Perhaps the most important material property is the ultimate tensile strength. As seen in figure 6, as the ultimate tensile strength of the various tantalum alloys increases, the V_c - α operating area decreases. This is because the lower limit (V_{min}) is raised, but the upper limit, being based on bulk properties such as density and sound speed, stays about the same. Consequently, the choice of high explosive is more restrictive as small alloy additions increase a material's strength. Note that if annealing can lower the tensile strength of the Ta-10W, its cladability would improve (Montgomery, 2004).

The choice of explosive will have a great deal to do with the cladability of a material. The explosive used by TPL had an upper limit on the detonation velocity D of 2.2 km/s. Since $D = V_c$, TPL may have been operating at the far left portion of the bounded area for tantalum and the two alloys. V_T for Ta-10W was calculated to be 2.15 km/s, providing another possibility as to why efforts to form a good bond were not successful with this material. For $V = 0.212$ km/s and $D = 2.2$ km/s, $\alpha = 5.5^\circ$. This value appears to lie close to the V_{min} line shown in figure 6 and may provide another reason why the use of this particular explosive was not successful in bonding the Ta-10W. However, the explosive should work for the Ta-3W.

The value of α can be varied by changing V where D is fixed (equations 5 or 6). This can be done by changing the charge-to-mass ratio (see equation 2). The possible range of α can be calculated with the following assumptions. First, we expect that the liner will be fully packed with explosive since allowing a hollow portion down the axis of the explosive may result in a dimension less than the failure diameter. Next, consider standoffs between 0.01 and 0.25 in. This will allow the mass of both the metal liner and explosive to vary. Finally, we use the dimensions previously discussed (1.064-in inner diameter of the gun tube and a final liner thickness of 0.044 in).

The relation between α and standoff is shown in figure 8. The larger standoffs reduce the amount of explosive and increase the thickness of the metal liner. Thus, the value of V will decrease for larger standoffs, resulting in a decrease in α . Referring to figure 6, it can be seen that the values of α in the range of 4–8° at $V_c = 2.2$ km/s are acceptable and may even allow explosive bonding of the higher-strength alloys for the higher values of α (shorter standoff).

A final consideration in choice of explosives is failure diameter. For all explosives, there is a minimum dimension needed to sustain a detonation without confinement. In general, explosives with low detonation velocities such as ammonium nitrate have large failure diameters. For the current application, this minimum dimension must be less than 25 mm, the bore diameter of the M242 gun tube. This condition limits the available choices of explosives for bonding the liner to the gun tube.

Figure 8. Relation between α (in degrees) and standoff for a specific case.

6. Summary

A pure tantalum liner has been successfully bonded to the inside of an M242 Bushmaster medium-caliber cannon in previous work performed by TPL, Inc. under a Phase 2 SBIR. In expectation that the tantalum will be too soft to resist wear forces at the lands and grooves in the gun barrel, other alloys were examined for suitability for cladding. Semiempirical equations governing explosive bonding were applied to two tantalum alloys and niobium. The equations indicated that for the particular explosive used by TPL, a shorter standoff would facilitate the bonding of higher-strength alloys by increasing the collision angle α and reducing the amount of strain in the liner produced by the explosive bonding process.

7. References

- Aimone, Paul. H. C. Starck Co. Private communication, March 2004.
- American Society for Metals. *Metals Handbook, 9th Edition, Volume 2—Properties and Selection: Nonferrous Alloys and Pure Metals*; Metals Park, OH, 1979.
- Bergmann, O. R.; Cowan, G. R.; Holtzman, A. H. Experimental Evidence of Jet Formation During Explosion Cladding. *Transactions of the Metallurgical Society of AIME* **1966**, 236, 646.
- Carpenter, S. H.; Wittman, R. H. Explosion Welding. *Ann. Rev. Mat. Sci.* **1975**, 5.
- Cooper, P. W. *Basics of Explosive Engineering*; VCH: New York, 1996.
- Cowan, G. R., Bergman, O. R.; Holtzman, A. H. Mechanism of Bond Zone Wave Formation in Explosion-Clad Metals. *Met. Trans.* **1971**, 2.
- Furnish, M. D.; Lassila, D. H.; Chhabildas, L. C.; Steinberg, D. J. *Dynamic Material Properties of Refractory Metals: Tantalum and Tantalum/Tungsten Alloys, in Shock Compression of Matter—1995*; Schmidt, S. C., Tao, W. C., Eds.; AIP Press: Woodbury, NY, 1995.
- Lowey, R. F. *Gun Tube Liner Erosion and Wear Protection*; TPL-FR-ER31; under contract DAAD19-99-C-0002, TPL, Inc.: Albuquerque, NM, 28 May 2002.
- Lowey, R. F. TPL, Inc., Albuquerque, NM. Private communication, 2004a.
- Lowey, R. F. TPL, Inc., Albuquerque, NM. Private communication, 2004b.
- Marsh, S. P., Ed. *LASL Shock Hugoniot Data*; University of California Press: Berkley, CA, 1980.
- Montgomery, J. U.S. Army Research Laboratory, Aberdeen Proving Ground, MD. Private communication, April 2004.
- Mulligan, C.; Audino, M.; Cote, P.; Kendall, G.; Rickard, C.; Smith, S.; Todaro, M. *Characterization of Explosively Bonded and Fired Tantalum Liners Applied to 25-mm Gun Tubes*; ARCCB-TR-02016; Benet Laboratories: Watervliet, NY, November 2002.
- Pepi, M.; Snoha, D. J.; Montgomery, J. S.; de Rosset, W. S. *Examination of Intermetallic Phases and Residual Stresses Resulting from Explosive Bonding of Refractory Metal Gun Tube Liners*; ARL-MR-550; U.S. Army Research Laboratory: Aberdeen Proving Ground, MD, February 2003.

Walsh, J. M.; Schreffler, R. G.; Willig, F. J. Limiting Conditions for Jet Formation in High Velocity Collisions. *Journal of Applied Physics* **1953**, 24 (3).

Wittman, R. H. *Proceedings of the Second International Symposium Use Explosive Energy Mfg. Metallic Materials*, Marianske-Lazne, Czechoslovakia, 1973.

Wylie, H. K.; Williams, P. E. G.; Crossland, B. An Experimental Investigation of Explosive Welding Parameters. *Proceedings of the First International Symposium, Use of Explosive Energy in Manufacturing Metallic Materials of New Properties and Possibilities of Application Thereof in Chemical Industry*, Marianske-Lazne, Czechoslovakia, 1970.

Zukas, J. A.; Walters, W. P. *Explosive Effects and Applications*; Springer-Verlag: New York, NY, 1998.

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
1 (PDF Only)	DEFENSE TECHNICAL INFORMATION CTR DTIC OCA 8725 JOHN J KINGMAN RD STE 0944 FT BELVOIR VA 22060-6218	1	<u>ABERDEEN PROVING GROUND</u> DIR USARL AMSRD ARL CI OK TP (BLDG 4600)
1	COMMANDING GENERAL US ARMY MATERIEL CMD AMCRDA TF 5001 EISENHOWER AVE ALEXANDRIA VA 22333-0001		
1	INST FOR ADVNCD TCHNLGY THE UNIV OF TEXAS AT AUSTIN 3925 W BRAKER LN STE 400 AUSTIN TX 78759-5316		
1	US MILITARY ACADEMY MATH SCI CTR EXCELLENCE MADN MATH THAYER HALL WEST POINT NY 10996-1786		
1	DIRECTOR US ARMY RESEARCH LAB AMSRD ARL CS IS R 2800 POWDER MILL RD ADELPHI MD 20783-1197		
3	DIRECTOR US ARMY RESEARCH LAB AMSRD ARL CI OK TL 2800 POWDER MILL RD ADELPHI MD 20783-1197		
3	DIRECTOR US ARMY RESEARCH LAB AMSRD ARL CS IS T 2800 POWDER MILL RD ADELPHI MD 20783-1197		

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
1	DIRECTOR US ARMY RESEARCH LAB AMSRD ARL SE L D SNIDER 2800 POWDER MILL RD ADELPHI MD 20783-1197	1	COMMANDER US ARMY ARDEC AMSTA AR FSE PICATINNY ARSENAL NJ 07806-5000
1	DIRECTOR US ARMY RESEARCH LAB AMSRD ARL SE DE R ATKINSON 2800 POWDER MILL RD ADELPHI MD 20783-1197	1	COMMANDER US ARMY ARDEC AMSTA AR TD PICATINNY ARSENAL NJ 07806-5000
5	DIRECTOR US ARMY RESEARCH LAB AMSRD ARL WM MB A ABRAHAMIAN M BERMAN M CHOWDHURY T LI E SZYMANSKI 2800 POWDER MILL RD ADELPHI MD 20783-1197	13	COMMANDER US ARMY ARDEC AMSTA AR CCH A F ALTAMURA M NICOLICH M PALATHINGUL D VO R HOWELL A VELLA M YOUNG L MANOLE S MUSALLI R CARR M LUCIANO E LOGSDEN T LOUZEIRO PICATINNY ARSENAL NJ 07806-5000
1	COMMANDER US ARMY MATERIEL CMD AMXMI INT 5001 EISENHOWER AVE ALEXANDRIA VA 22333-0001		
2	PM MAS SFAE AMO MAS MC PICATINNY ARSENAL NJ 07806-5000	1	COMMANDER US ARMY ARDEC AMSTA AR CCH P J LUTZ PICATINNY ARSENAL NJ 07806-5000
3	COMMANDER US ARMY ARDEC AMSTA AR CC M PADGETT J HEDDERICH H OPAT PICATINNY ARSENAL NJ 07806-5000	1	COMMANDER US ARMY ARDEC AMSTA AR FSF T C LIVECCHIA PICATINNY ARSENAL NJ 07806-5000
2	COMMANDER US ARMY ARDEC AMSTA AR AE WW E BAKER J PEARSON PICATINNY ARSENAL NJ 07806-5000	1	COMMANDER US ARMY ARDEC AMSTA ASF PICATINNY ARSENAL NJ 07806-5000

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
1	COMMANDER US ARMY ARDEC AMSTA AR QAC T C J PAGE PICATINNY ARSENAL NJ 07806-5000	1	US ARMY ARDEC INTELLIGENCE SPECIALIST AMSTA AR WEL F M GUERRIERE PICATINNY ARSENAL NJ 07806-5000
1	COMMANDER US ARMY ARDEC AMSTA AR M D DEMELLA PICATINNY ARSENAL NJ 07806-5000	10	COMMANDER US ARMY ARDEC AMSTA AR CCH B P DONADIA F DONLON P VALENTI C KNUTSON G EUSTICE K HENRY J MCNABOC G WAGNECZ R SAYER F CHANG PICATINNY ARSENAL NJ 07806-5000
3	COMMANDER US ARMY ARDEC AMSTA AR FSA A WARNASH B MACHAK M CHIEFA PICATINNY ARSENAL NJ 07806-5000		
2	COMMANDER US ARMY ARDEC AMSTA AR FSP G M SCHIKSNIS D CARLUCCI PICATINNY ARSENAL NJ 07806-5000	6	COMMANDER US ARMY ARDEC AMSTA AR CCL F PUZYCKI R MCHUGH D CONWAY E JAROSZEWSKI R SCHLENNER M CLUNE PICATINNY ARSENAL NJ 07806-5000
2	COMMANDER US ARMY ARDEC AMSTA AR CCH C H CHANIN S CHICO PICATINNY ARSENAL NJ 07806-5000	1	PM ARMS SFAE GCSS ARMS BLDG 171 PICATINNY ARSENAL NJ 07806-5000
1	COMMANDER US ARMY ARDEC AMSTA AR QAC T D RIGOGLIOSO PICATINNY ARSENAL NJ 07806-5000	1	COMMANDER US ARMY ARDEC AMSTA AR WEA J BRESCIA PICATINNY ARSENAL NJ 07806-5000
1	COMMANDER US ARMY ARDEC AMSTA AR WET T SACHAR BLDG 172 PICATINNY ARSENAL NJ 07806-5000	1	PM MAS SFAE AMO MAS PICATINNY ARSENAL NJ 07806-5000

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
1	PM MAS SFAE AMO MAS CHIEF ENGINEER PICATINNY ARSENAL NJ 07806-5000	1	COMMANDER US ARMY TACOM PM SURVIVABLE SYSTEMS SFAE GCSS W GSI H M RYZYI 6501 ELEVEN MILE RD WARREN MI 48397-5000
1	PM MAS SFAE AMO MAS PS PICATINNY ARSENAL NJ 07806-5000	1	COMMANDER US ARMY TACOM CHIEF ABRAMS TESTING SFAE GCSS W AB QT T KRASKIEWICZ 6501 ELEVEN MILE RD WARREN MI 48397-5000
2	PM MAS SFAE AMO MAS LC PICATINNY ARSENAL NJ 07806-5000	1	COMMANDER WATERVLIET ARSENAL SMCWV QAE Q B VANINA BLDG 44 WATERVLIET NY 12189-4050
1	COMMANDER US ARMY ARDEC PRODUCTION BASE MODERN ACTY AMSMC PBM K PICATINNY ARSENAL NJ 07806-5000	1	TNG, DOC, & CBT DEV ATZK TDD IRS A POMEY FT KNOX KY 40121
1	COMMANDER US ARMY TACOM PM COMBAT SYSTEMS SFAE GCS CS 6501 ELEVEN MILE RD WARREN MI 48397-5000	2	HQ IOC TANK AMMUNITION TEAM AMSIO SMT R CRAWFORD W HARRIS ROCK ISLAND IL 61299-6000
1	COMMANDER US ARMY TACOM AMSTA SF WARREN MI 48397-5000	2	COMMANDER US ARMY AMCOM AVIATION APPLIED TECH DIR J SCHUCK FT EUSTIS VA 23604-5577
1	DIRECTOR AIR FORCE RESEARCH LAB MLLMD D MIRACLE 2230 TENTH ST WRIGHT PATTERSON AFB OH 45433-7817	1	NSWC DAHLGREN DIV CODE G06 DAHLGREN VA 22448
1	OFC OF NAVAL RESEARCH J CHRISTODOULOU ONR CODE 332 800 N QUINCY ST ARLINGTON VA 22217-5600	2	US ARMY CORPS OF ENGR CERD C T LIU CEW ET T TAN 20 MASSACHUSETTS AVE NW WASHINGTON DC 20314
1	US ARMY CERL R LAMPO 2902 NEWMARK DR CHAMPAIGN IL 61822		

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
1	US ARMY COLD REGIONS RSCH & ENGRNG LAB P DUTTA 72 LYME RD HANOVER NH 03755	1	NSWC TECH LIBRARY CODE 323 17320 DAHLGREN RD DAHLGREN VA 22448
14	COMMANDER US ARMY TACOM AMSTA TR R R MCCLELLAND D THOMAS J BENNETT D HANSEN AMSTA JSK S GOODMAN J FLORENCE K IYER D TEMPLETON A SCHUMACHER AMSTA TR D D OSTBERG L HINOJOSA B RAJU AMSTA CS SF H HUTCHINSON F SCHWARZ WARREN MI 48397-5000	2	USA SBCCOM MATERIAL SCIENCE TEAM AMSSB RSS J HERBERT M SENNETT KANSAS ST NATICK MA 01760-5057
		2	OFC OF NAVAL RESEARCH D SIEGEL CODE 351 J KELLY 800 N QUINCY ST ARLINGTON VA 22217-5660
		1	NSWC CRANE DIVISION M JOHNSON CODE 20H4 LOUISVILLE KY 40214-5245
		2	NSWC U SORATHIA C WILLIAMS CD 6551 9500 MACARTHUR BLVD WEST BETHESDA MD 20817
14	BENET LABS AMSTA AR CCB R FISCELLA M SOJA E KATHE M SCAVULO G SPENCER P WHEELER S KRUPSKI J VASILAKIS G FRIAR R HASENBEIN AMSTA CCB R S SOPOK E HYLAND D CRAYON R DILLON WATERVLIET NY 12189-4050	2	COMMANDER NSWC CARDEROCK DIVISION R PETERSON CODE 2020 M CRITCHFIELD CODE 1730 BETHESDA MD 20084
		8	DIRECTOR US ARMY NGIC D LEITER MS 404 M HOLTUS MS 301 M WOLFE MS 307 S MINGLEDORF MS 504 J GASTON MS 301 W GSTATTENBAUER MS 304 R WARNER MS 305 J CRIDER MS 306 2055 BOULDERS RD CHARLOTTESVILLE VA 22911-8318
1	USA SBCCOM PM SOLDIER SPT AMSSB PM RSS A J CONNORS KANSAS ST NATICK MA 01760-5057		

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
1	NAVAL SEA SYSTEMS CMD D LIESE 1333 ISAAC HULL AVE SE 1100 WASHINGTON DC 20376-1100	8	NSWC J FRANCIS CODE G30 D WILSON CODE G32 R D COOPER CODE G32 J FRAYSSE CODE G33 E ROWE CODE G33 T DURAN CODE G33 L DE SIMONE CODE G33 R HUBBARD CODE G33 DAHLGREN VA 22448
1	EXPEDITIONARY WARFARE DIV N85 F SHOUP 2000 NAVY PENTAGON WASHINGTON DC 20350-2000		
8	US ARMY SBCCOM SOLDIER SYSTEMS CENTER BALLISTICS TEAM J WARD W ZUKAS P CUNNIFF J SONG MARINE CORPS TEAM J MACKIEWICZ BUS AREA ADVOCACY TEAM W HASKELL AMSSB RCP SS W NYKVIST S BEAUDOIN KANSAS ST NATICK MA 01760-5019	1	NSWC CARDEROCK DIVISION R CRANE CODE 6553 9500 MACARTHUR BLVD WEST BETHESDA MD 20817-5700
7	US ARMY RESEARCH OFC A CROWSON H EVERETT J PRATER G ANDERSON D STEPP D KISEROW J CHANG PO BOX 12211 RESEARCH TRIANGLE PARK NC 27709-2211	1	AFRL MLSS R THOMSON 2179 12TH ST RM 122 WRIGHT PATTERSON AFB OH 45433-7718
1	AFRL MLBC 2941 P ST RM 136 WRIGHT PATTERSON AFB OH 45433-7750	2	AFRL F ABRAMS J BROWN BLDG 653 2977 P ST STE 6 WRIGHT PATTERSON AFB OH 45433-7739
1	DIRECTOR LOS ALAMOS NATL LAB F L ADDESSIO T 3 MS 5000 PO BOX 1633 LOS ALAMOS NM 87545	5	DIRECTOR LLNL R CHRISTENSEN S DETERESA F MAGNESS M FINGER MS 313 M MURPHY L 282 PO BOX 808 LIVERMORE CA 94550
1	AFRL MLS OL L COULTER 5851 F AVE BLDG 849 RM AD1A HILL AFB UT 84056-5713	1	OSD JOINT CCD TEST FORCE OSD JCCD R WILLIAMS 3909 HALLS FERRY RD VICKSBURG MS 29180-6199

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
3	DARPA M VANFOSSEN S WAX L CHRISTODOULOU 3701 N FAIRFAX DR ARLINGTON VA 22203-1714	3	NASA Langley Research CTR AMSRD ARL VS W ELBER MS 266 F BARTLETT JR MS 266 G FARLEY MS 266 HAMPTON VA 23681-0001
2	SERDP PROGRAM OFC PM P2 C PELLERIN B SMITH 901 N STUART ST STE 303 ARLINGTON VA 22203	1	NASA Langley Research CTR T GATES MS 188E HAMPTON VA 23661-3400
1	OAK RIDGE NATL LAB R M DAVIS PO BOX 2008 OAK RIDGE TN 37831-6195	1	FHWA E MUNLEY 6300 GEORGETOWN PIKE MCLEAN VA 22101
1	OAK RIDGE NATL LAB C EBERLE MS 8048 PO BOX 2008 OAK RIDGE TN 37831	1	USDOT FEDERAL RAILROAD M FATEH RDV 31 WASHINGTON DC 20590
3	DIRECTOR SANDIA NATL LABS APPLIED MECHS DEPT MS 9042 J HANDROCK Y R KAN J LAUFFER PO BOX 969 LIVERMORE CA 94551-0969	3	CYTEC FIBERITE R DUNNE D KOHLI R MAYHEW 1300 REVOLUTION ST HAVRE DE GRACE MD 21078
1	OAK RIDGE NATL LAB C D WARREN MS 8039 PO BOX 2008 OAK RIDGE TN 37831	1	DIRECTOR NGIC IANG TMT 2055 BOULDERS RD CHARLOTTESVILLE VA 22911-8318
4	NIST M VANLANDINGHAM MS 8621 J CHIN MS 8621 J MARTIN MS 8621 D DUTHINH MS 8611 100 BUREAU DR GAITHERSBURG MD 20899	2	3TEX CORP A BOGDANOVICH J SINGLETARY 109 MACKENAN DR CARY NC 27511
1	HYDROGEOLOGIC INC SERDP ESTCP SPT OFC S WALSH 1155 HERNDON PKWY STE 900 HERNDON VA 20170	1	3M CORP J SKILDUM 3M CENTER BLDG 60 IN 01 ST PAUL MN 55144-1000

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
1	DIRECTOR DEFENSE INTLLGNC AGNCY TA 5 K CRELLING WASHINGTON DC 20310	1	ROM DEVELOPMENT CORP R O MEARA 136 SWINEBURNE ROW BRICK MARKET PLACE NEWPORT RI 02840
1	ADVANCED GLASS FIBER YARNS T COLLINS 281 SPRING RUN LANE STE A DOWNTON PA 19335	2	TEXTRON SYSTEMS T FOLTZ M TREASURE 1449 MIDDLESEX ST LOWELL MA 01851
1	COMPOSITE MATERIALS INC D SHORTT 19105 63 AVE NE PO BOX 25 ARLINGTON WA 98223	1	O GARA HESS & EISENHARDT M GILLESPIE 9113 LESAIN DR FAIRFIELD OH 45014
1	JPS GLASS L CARTER PO BOX 260 SLATER RD SLATER SC 29683	2	MILLIKEN RESEARCH CORP H KUHN M MACLEOD PO BOX 1926 SPARTANBURG SC 29303
1	COMPOSITE MATERIALS INC R HOLLAND 11 JEWEL CT ORINDA CA 94563	1	CONNEAUGHT INDUSTRIES INC J SANTOS PO BOX 1425 COVENTRY RI 02816
1	COMPOSITE MATERIALS INC C RILEY 14530 S ANSON AVE SANTA FE SPRINGS CA 90670	1	ARMTEC DEFENSE PRODUCTS S DYER 85 901 AVE 53 PO BOX 848 COACHELLA CA 92236
2	SIMULA J COLTMAN R HUYETT 10016 S 51ST ST PHOENIX AZ 85044	1	NATL COMPOSITE CTR T CORDELL 2000 COMPOSITE DR KETTERING OH 45420
2	PROTECTION MATERIALS INC M MILLER F CRILLEY 14000 NW 58 CT MIAMI LAKES FL 33014	3	PACIFIC NORTHWEST LAB M SMITH G VAN ARSDALE R SHIPPELL PO BOX 999 RICHLAND WA 99352
2	FOSTER MILLER M ROYLANCE W ZUKAS 195 BEAR HILL RD WALTHAM MA 02354-1196	1	SAIC M PALMER 1410 SPRING HILL RD STE 400 MS SH4 5 MCLEAN VA 22102

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
1	ALLIANT TECHSYSTEMS INC 4700 NATHAN LN N PLYMOUTH MN 55442-2512	5	NORTHROP GRUMMAN B IRWIN K EVANS D EWART A SHREKENHAMER J MCGLYNN BLDG 160 DEPT 3700 1100 WEST HOLLYVALE ST AZUSA CA 91701
1	APPLIED COMPOSITES W GRISCH 333 NORTH SIXTH ST ST CHARLES IL 60174		
1	CUSTOM ANALYTICAL ENG SYS INC A ALEXANDER 13000 TENSOR LANE NE FLINTSTONE MD 21530	1	HERCULES INC HERCULES PLAZA WILMINGTON DE 19894
1	AAI CORP DR N B MCNELLIS PO BOX 126 HUNT VALLEY MD 21030-0126	1	BRIGS COMPANY J BACKOFEN 2668 PETERBOROUGH ST HERNDON VA 22071-2443
1	OFC DEPUTY UNDER SEC DEFNS J THOMPSON 1745 JEFFERSON DAVIS HWY CRYSTAL SQ 4 STE 501 ARLINGTON VA 22202	1	ZERNOW TECHNICAL SERVICES L ZERNOW 425 W BONITA AVE STE 208 SAN DIMAS CA 91773
3	ALLIANT TECHSYSTEMS INC J CONDON E LYNAM J GERHARD WV01 16 STATE RT 956 PO BOX 210 ROCKET CENTER WV 26726-0210	1	GENERAL DYNAMICS OTS L WHITMORE 10101 NINTH ST NORTH ST PETERSBURG FL 33702
1	PROJECTILE TECHNOLOGY INC 515 GILES ST HAVRE DE GRACE MD 21078	2	GENERAL DYNAMICS OTS FLINCHBAUGH DIV K LINDE T LYNCH PO BOX 127 RED LION PA 17356
1	HEXCEL INC R BOE PO BOX 18748 SALT LAKE CITY UT 84118	1	GKN WESTLAND AEROSPACE D OLDS 450 MURDOCK AVE MERIDEN CT 06450-8324
1	PRATT & WHITNEY C WATSON 400 MAIN ST MS 114 37 EAST HARTFORD CT 06108	2	BOEING ROTORCRAFT P MINGURT P HANDEL 800 B PUTNAM BLVD WALLINGFORD PA 19086

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
5	SIKORSKY AIRCRAFT G JACARUSO T CARSTENSAN B KAY S GARBO MS S330A J ADELMANN 6900 MAIN ST PO BOX 9729 STRATFORD CT 06497-9729	1	NORTHRUP GRUMMAN CORP ELECTRONIC SENSORS & SYSTEMS DIV E SCHOCH MS V 16 1745A W NURSERY RD LINTHICUM MD 21090
1	AEROSPACE CORP G HAWKINS M4 945 2350 E EL SEGUNDO BLVD EL SEGUNDO CA 90245	1	GDLS DIVISION D BARTLE PO BOX 1901 WARREN MI 48090
2	CYTEC FIBERITE M LIN W WEB 1440 N KRAEMER BLVD ANAHEIM CA 92806	2	GDLS D REES M PASIK PO BOX 2074 WARREN MI 48090-2074
2	UDLP G THOMAS M MACLEAN PO BOX 58123 SANTA CLARA CA 95052	1	GDLS MUSKEGON OPER M SOIMAR 76 GETTY ST MUSKEGON MI 49442
1	UDLP WARREN OFC A LEE 31201 CHICAGO RD SOUTH SUITE B102 WARREN MI 48093	1	GENERAL DYNAMICS AMPHIBIOUS SYS SURVIVABILITY LEAD G WALKER 991 ANNAPOLIS WAY WOODBRIDGE VA 22191
2	UDLP R BRYNSVOLD P JANKE MS 170 4800 EAST RIVER RD MINNEAPOLIS MN 55421-1498	6	INST FOR ADVANCED TECH H FAIR I MCNAB P SULLIVAN S BLESS W REINECKE C PERSAD
1	LOCKHEED MARTIN SKUNK WORKS D FORTNEY 1011 LOCKHEED WAY PALMDALE CA 93599-2502	1	3925 W BRAKER LN STE 400 AUSTIN TX 78759-5316
1	LOCKHEED MARTIN R FIELDS 5537 PGA BLVD SUITE 4516 ORLANDO FL 32839	1	ARROW TECH ASSOC 1233 SHELBURNE RD STE D8 SOUTH BURLINGTON VT 05403-7700
		1	R EICHELBERGER CONSULTANT 409 W CATHERINE ST BEL AIR MD 21014-3613

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
1	SAIC G CHRYSSOMALLIS 8500 NORMANDALE LAKE BLVD SUITE 1610 BLOOMINGTON MN 55437-3828	2	PENN STATE UNIV R MCNITT C BAKIS 212 EARTH ENGR SCIENCES BLDG UNIVERSITY PARK PA 16802
1	UCLA MANE DEPT ENGR IV H T HAHN LOS ANGELES CA 90024-1597	1	PURDUE UNIV SCHOOL OF AERO & ASTRO C T SUN W LAFAYETTE IN 47907-1282
2	UNIV OF DAYTON RESEARCH INST R Y KIM A K ROY 300 COLLEGE PARK AVE DAYTON OH 45469-0168	1	STANFORD UNIV DEPT OF AERONAUTICS & AEROBALLISTICS S TSAI DURANT BLDG STANFORD CA 94305
1	UMASS LOWELL PLASTICS DEPT N SCHOTT 1 UNIVERSITY AVE LOWELL MA 01854	1	UNIV OF MAINE ADV STR & COMP LAB R LOPEZ ANIDO 5793 AEWC BLDG ORONO ME 04469-5793
1	IIT RESEARCH CTR D ROSE 201 MILL ST ROME NY 13440-6916	1	JOHNS HOPKINS UNIV APPLIED PHYSICS LAB P WIENHOLD 11100 JOHNS HOPKINS RD LAUREL MD 20723-6099
1	GA TECH RESEARCH INST GA INST OF TCHNLGY P FRIEDERICH ATLANTA GA 30392	1	UNIV OF DAYTON J M WHITNEY COLLEGE PARK AVE DAYTON OH 45469-0240
1	MICHIGAN ST UNIV MSM DEPT R AVERILL 3515 EB EAST LANSING MI 48824-1226	1	NORTH CAROLINA ST UNIV CIVIL ENGINEERING DEPT W RASDORF PO BOX 7908 RALEIGH NC 27696-7908
1	UNIV OF WYOMING D ADAMS PO BOX 3295 LARAMIE WY 82071	5	UNIV OF DELAWARE CTR FOR COMPOSITE MTRLS J GILLESPIE M SANTARE S YARLAGADDA S ADVANI D HEIDER 201 SPENCER LAB NEWARK DE 19716
1	PENN STATE UNIV R S ENGEL 245 HAMMOND BLDG UNIVERSITY PARK PA 16801		

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
1	DEPT OF MTRLS SCIENCE & ENGRG UNIV OF ILLINOIS AT URBANA CHAMPAIGN J ECONOMY 1304 WEST GREEN ST 115B URBANA IL 61801		<u>ABERDEEN PROVING GROUND</u>
1	UNIV OF MARYLAND DEPT OF AEROSPACE ENGRG A J VIZZINI COLLEGE PARK MD 20742	1	US ARMY ATC CSTE DTC AT AC I W C FRAZER 400 COLLERAN RD APG MD 21005-5059
1	DREXEL UNIV A S D WANG 3141 CHESTNUT ST PHILADELPHIA PA 19104	91	DIR USARL AMSRD ARL CI AMSRD ARL O AP EG M ADAMSON AMSRD ARL SL BA AMSRD ARL SL BB D BELY AMSRD ARL WM J SMITH H WALLACE
3	UNIV OF TEXAS AT AUSTIN CTR FOR ELECTROMECHANICS J PRICE A WALLS J KITZMILLER 10100 BURNET RD AUSTIN TX 78758-4497		AMSRD ARL WM B A HORST T KOGLER AMSRD ARL WM BA D LYON AMSRD ARL WM BC J NEWILL P PLOSTINS A ZIELINSKI
3	VA POLYTECHNICAL INST & STATE UNIV DEPT OF ESM M W HYER K REIFSNIDER R JONES BLACKSBURG VA 24061-0219		AMSRD ARL WM BD P CONROY B FORCH M LEADORE C LEVERITT R LIEB R PESCE RODRIGUEZ B RICE
1	SOUTHWEST RESEARCH INST ENGR & MATL SCIENCES DIV J RIEGEL 6220 CULEBRA RD PO DRAWER 28510 SAN ANTONIO TX 78228-0510		AMSRD ARL WM BF S WILKERSON AMSRD ARL WM M B FINK J MCCUALEY AMSRD ARL WM MA
1	BATELLE NATICK OPERS B HALPIN 313 SPEEN ST NATICK MA 01760		L GHIORSE S MCKNIGHT E WETZEL AMSRD ARL WM MB
3	DIRECTOR US ARMY RESEARCH LAB AMSRD ARL WM MB A FRYDMAN 2800 POWDER MILL RD ADELPHI MD 20783-1197		J BENDER T BOGETTI L BURTON R CARTER K CHO W DE ROSSET G DEWING R DOWDING W DRYSDALE

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
R EMERSON	AMSRD ARL WM TB		
D HENRY	P BAKER		
D HOPKINS	AMSRD ARL WM TC		
R KASTE	R COATES		
L KECKES	AMSRD ARL WM TD		
M MINNICON	D DANDEKAR		
B POWERS	T HADUCH		
D SNOHA	T MOYNIHAN		
J SOUTH	M RAFTENBERG		
M STAKER	S SCHOENFELD		
J SWAB	T WEERASOORIYA		
J TZENG	AMSRD ARL WM TE		
AMSRD ARL WM MC	A NIILER		
J BEATTY	J POWELL		
R BOSSOLI			
E CHIN			
S CORNELISON			
D GRANVILLE			
B HART			
J LASALVIA			
J MONTGOMERY			
F PIERCE			
E RIGAS			
W SPURGEON			
AMSRD ARL WM MD			
B CHEESEMAN			
P DEHMER			
R DOOLEY			
G GAZONAS			
S GHIORSE			
C HOPPEL			
M KLUSEWITZ			
W ROY			
J SANDS			
D SPAGNUOLO			
S WALSH			
S WOLF			
AMSRD ARL WM RP			
J BORNSTEIN			
C SHOEMAKER			
AMSRD ARL WM T			
B BURNS			
AMSRD ARL WM TA			
W BRUCHEY			
M BURKINS			
W GILLICH			
B GOOCH			
T HAVEL			
E HORWATH			
M NORMANDIA			
J RUNYEON			
M ZOLTOSKI			

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
1	LTD R MARTIN MERL TAMWORTH RD HERTFORD SG13 7DG UK	1	ISRAEL INST OF TECHLGY S BODNER FACULTY OF MECHANICAL ENGR HAIFA 3200 ISRAEL
1	SMC SCOTLAND P W LAY DERA ROSYTH ROSYTH ROYAL DOCKYARD DUNFERMLINE FIFE KY 11 2XR UK	1	DSTO WEAPONS SYSTEMS DIVISION N BURMAN RLLWS SALISBURY SOUTH AUSTRALIA 5108 AUSTRALIA
1	CIVIL AVIATION ADMINISTRATION T GOTTESMAN PO BOX 8 BEN GURION INTRNL AIRPORT LOD 70150 ISRAEL	1	DEF RES ESTABLISHMENT VALCARTIER A DUPUIS 2459 BLVD PIE XI NORTH VALCARTIER QUEBEC CANADA PO BOX 8800 COURCELETTE GOA IRO QUEBEC CANADA
1	AEROSPATIALE S ANDRE A BTE CC RTE MD132 316 ROUTE DE BAYONNE TOULOUSE 31060 FRANCE	1	ECOLE POLYTECH J MANSON DMX LTC CH 1015 LAUSANNE SWITZERLAND
1	DRA FORT HALSTEAD P N JONES SEVEN OAKS KENT TN 147BP UK	1	TNO DEFENSE RESEARCH R IJSELSTEIN ACCOUNT DIRECTOR R&D ARMEE PO BOX 6006 2600 JA DELFT THE NETHERLANDS
1	SWISS FEDERAL ARMAMENTS WKS W LANZ ALLMENDSTRASSE 86 3602 THUN SWITZERLAND	2	FOA NATL DEFENSE RESEARCH ESTAB DIR DEPT OF WEAPONS & PROTECTION B JANZON R HOLMLIN S 172 90 STOCKHOLM SWEDEN
1	DYNAMEC RESEARCH LAB AKE PERSSON BOX 201 SE 151 23 SODERTALJE SWEDEN		

NO. OF
COPIES ORGANIZATION

- 2 DEFENSE TECH & PROC
AGENCY GROUND
I CREWTHER
GENERAL HERZOG HAUS
3602 THUN
SWITZERLAND
- 1 MINISTRY OF DEFENCE
RAFAEL
ARMAMENT DEVELOPMENT
AUTH
M MAYSELESS
PO BOX 2250
HAIFA 31021
ISRAEL
- 1 TNO DEFENSE RESEARCH
I H PASMAN
POSTBUS 6006
2600 JA DELFT
THE NETHERLANDS
- 1 B HIRSCH
TACHKEMONY ST 6
NETAMUA 42611
ISRAEL
- 1 DEUTSCHE AEROSPACE AG
DYNAMICS SYSTEMS
M HELD
PO BOX 1340
D 86523 SCHROBENHAUSEN
GERMANY

NO. OF
COPIES ORGANIZATION

ABERDEEN PROVING GROUND

15 DIR USARL
AMSRD ARL WM TC
L MAGNESS
AMSRD ARL WM TB
J WATSON
AMSRD ARL WM TD
S SEGLETES
AMSRD ARL WM MB
W DE ROSSET (10 CPS)
AMSRD ARL WM MC
V CHAMPAGNE
AMSRD ARL WM MD
B SCOTT

INTENTIONALLY LEFT BLANK.