Cycles in Graphs

Stepan Kuznetsov

Computer Science Department, Higher School of Economics

Outline

Königsberg Bridges. Euler Cycles

Constructing a Euler Cycle

Hamiltonian Paths

Acyclic Directed Graphs. Topological Sorting

A notable question by Leonhard Euler (1736).

- A notable question by Leonhard Euler (1736).
- You see a map of Königsberg (nowadays Kaliningrad) from the times of Euler.

 Two islands (A and D) and two banks of the river (C and B) were connected by 7 bridges.

- Two islands (A and D) and two banks of the river (C and B) were connected by 7 bridges.
- Could one visit each bridge exactly once?

• City areas = vertices; bridges = edges.

- City areas = vertices; bridges = edges.
- Suppose our tour starts at B, ends at C and visits each edge exactly once.

- City areas = vertices; bridges = edges.
- Suppose our tour starts at B, ends at C and visits each edge exactly once.
- Vertex A is visited in the middle.

Vertex A is visited, say, k times.

- Vertex A is visited, say, k times.
- The number of edges adjacent to A is 2k.

- Vertex A is visited, say, k times.
- The number of edges adjacent to A is 2k.
- Contradiction: 5 is odd!

- Vertex A is visited, say, k times.
- The number of edges adjacent to A is 2k.
- Contradiction: 5 is odd!
- All vertices are odd, thus, Euler's problem is unsolvable.

Formal definitions:

 A Euler path is a path in the graph which visits each edge exactly once.

Formal definitions:

- A Euler path is a path in the graph which visits each edge exactly once.
- A Euler cycle is a Euler path which starts and ends at the same vertex.

Formal definitions:

- A Euler path is a path in the graph which visits each edge exactly once.
- A Euler cycle is a Euler path which starts and ends at the same vertex.
- An odd vertex is a vertex which has an odd number of edges adjacent to it.

 If there exists a Euler path, then the graph has at most two odd vertices.

- If there exists a Euler path, then the graph has at most two odd vertices.
- If there exists a Euler cycle, then the graph has no odd vertices.

- If there exists a Euler path, then the graph has at most two odd vertices.
- If there exists a Euler cycle, then the graph has no odd vertices.
- Question: can a graph have exactly one odd vertex?

Outline

Königsberg Bridges. Euler Cycles

Constructing a Euler Cycle

Hamiltonian Paths

Acyclic Directed Graphs. Topological Sorting

The Problem

 Suppose our graph has no odd vertices. Does this guarantee existence of a Euler cycle?

The Problem

- Suppose our graph has no odd vertices. Does this guarantee existence of a Euler cycle?
- In general, **no:** there could be other obstacles.

The Problem

- Suppose our graph has no odd vertices. Does this guarantee existence of a Euler cycle?
- In general, **no:** there could be other obstacles.
- E. g., the graph could be disconnected:

• OK, OK, suppose the graph is connected: there is a path between any two vertices...

- OK, OK, suppose the graph is connected: there is a path between any two vertices...
- ... and there are no odd vertices ...

- OK, OK, suppose the graph is connected: there is a path between any two vertices...
- ... and there are no odd vertices ...
- ... then let's just start walking!

• No odd vertices, so we never get stuck ...

- No odd vertices, so we never get stuck ...
- ... at some point, we return to the starting vertex, completing the cycle ...

- No odd vertices, so we never get stuck ...
- ... at some point, we return to the starting vertex, completing the cycle ...
- ... but what if there is still something left?

Outline

Königsberg Bridges. Euler Cycles

Constructing a Euler Cycle

Hamiltonian Paths

Acyclic Directed Graphs. Topological Sorting

Hamiltonian Paths and Cycles

 The notion of Hamiltonian path is much like the Euler one, but a Hamiltonian path must visit each vertex exactly once.

Hamiltonian Paths and Cycles

- The notion of Hamiltonian path is much like the Euler one, but a Hamiltonian path must visit each vertex exactly once.
- A Hamiltonian cycle is a Hamiltonian path which starts and ends at the same vertex (and this is counted as one visit).

Hamiltonian Cycle on a Dodecahedron

 A dodecahedron is a regular (Platonic) solid with 12 pentagonal faces.

Hamiltonian Cycle on a Dodecahedron

- A dodecahedron is a regular (Platonic) solid with 12 pentagonal faces.
- Using the polar projection, the dodecahedron can be represented as a graph on the plane:

Hamiltonian Cycles

In contrast to Euler cycles, constructing
 Hamiltonian cycles requires some creativity.

Hamiltonian Cycles

- In contrast to Euler cycles, constructing
 Hamiltonian cycles requires some creativity.
- No "good" criterion whether a Hamiltonian cycle exists (in a given graph) is known.

Hamiltonian Cycles

- In contrast to Euler cycles, constructing
 Hamiltonian cycles requires some creativity.
- No "good" criterion whether a Hamiltonian cycle exists (in a given graph) is known.
- Unless P=NP, there is also no efficient algorithm for finding Hamiltonian cycles.

• A specific case of Hamiltonian cycle is the *knight tour question*.

- A specific case of Hamiltonian cycle is the knight tour question.
- The challenge is to find a walk of a chess knight over the board, in which each square is visited exactly once.

As one can easily see, a knight tour is exactly a Hamiltonian path in the following *knight's graph:*

- If it is a Hamiltonian cycle, then the knight tour is called *closed*.
- Otherwise, if the tour does not return to the initial square, it is *open*.

Example of a closed knight's tour on the standard 8×8 chessboard:

Wikipedia

• In contrast to the general case, there exist efficient algorithms for constructing knight's tours on an arbitrary $n \times n$ board.

- In contrast to the general case, there exist efficient algorithms for constructing knight's tours on an arbitrary $n \times n$ board.
- Good criteria whether such a tour exists are also available.

 Besides toy examples like knight's tour, there are serious applications of Hamiltonian paths.

- Besides toy examples like knight's tour, there are serious applications of Hamiltonian paths.
- In genomics, Hamiltonian paths are used for reconstructing the genome from its fragments: vertices = fragments, edges connect overlapping fragments, each fragment should be used exactly once.

- Besides toy examples like knight's tour, there are serious applications of Hamiltonian paths.
- In genomics, Hamiltonian paths are used for reconstructing the genome from its fragments: vertices = fragments, edges connect overlapping fragments, each fragment should be used exactly once.
- In electronic circuit design, they are used for implementing efficient power gating.

- Besides toy examples like knight's tour, there are serious applications of Hamiltonian paths.
- In genomics, Hamiltonian paths are used for reconstructing the genome from its fragments: vertices = fragments, edges connect overlapping fragments, each fragment should be used exactly once.
- In electronic circuit design, they are used for implementing efficient power gating.
- In computer graphics, Hamiltonian paths help in compact representation of data.

Outline

Königsberg Bridges. Euler Cycles

Constructing a Euler Cycle

Hamiltonian Paths

Acyclic Directed Graphs. Topological Sorting

Cycles in Directed Graphs

In directed graphs, cycles should also be directed!

Cycles in Directed Graphs

In directed graphs, cycles should also be directed!

this is a directed cycle

Cycles in Directed Graphs

In directed graphs, cycles should also be directed!

this is not a directed cycle

Directed Acyclic Graphs

 A directed graph without directed cycles is called acyclic.

Directed Acyclic Graphs

- A directed graph without directed cycles is called acyclic.
- Directed acyclic graphs are called DAGs.

Directed Acyclic Graphs

- A directed graph without directed cycles is called acyclic.
- Directed acyclic graphs are called DAGs.
- Example:

• Let vertices represent actions to be performed.

- Let vertices represent *actions* to be performed.
- There is an edge from A to B if action B cannot be performed before A.

- Let vertices represent *actions* to be performed.
- There is an edge from A to B if action B cannot be performed before A.
- Examples:

- Let vertices represent actions to be performed.
- There is an edge from A to B if action B cannot be performed before A.
- Examples:
 - · automated software installers;

- Let vertices represent actions to be performed.
- There is an edge from A to B if action B cannot be performed before A.
- Examples:
 - automated software installers;
 - software build scripts (like make);

- Let vertices represent actions to be performed.
- There is an edge from A to B if action B cannot be performed before A.
- Examples:
 - automated software installers;
 - software build scripts (like make);
 - · job scheduling;

- Let vertices represent actions to be performed.
- There is an edge from A to B if action B cannot be performed before A.
- Examples:
 - automated software installers;
 - software build scripts (like make);
 - · job scheduling;
 - ...

 In a DAG, vertices can be enumerated in such a way that all edges go forward.

- In a DAG, vertices can be enumerated in such a way that all edges go forward.
- That is, if there is an edge from vertex i to vertex j, then j > i.

- In a DAG, vertices can be enumerated in such a way that all edges go forward.
- That is, if there is an edge from vertex i to vertex j, then j > i.
- This is called topological sorting of a DAG.

- In a DAG, vertices can be enumerated in such a way that all edges go forward.
- That is, if there is an edge from vertex i to vertex j, then j > i.
- This is called *topological sorting* of a DAG.
- For graphs with (directed) cycles topological sorting is impossible.

- In a DAG, vertices can be enumerated in such a way that all edges go forward.
- That is, if there is an edge from vertex i to vertex j, then j>i.
- This is called *topological sorting* of a DAG.
- For graphs with (directed) cycles topological sorting is impossible.
- In dependency graphs, topological sorting represents correct execution order of actions.

 We prove existence of topological sorting of an arbitary DAG by presenting an algorithm which finds it.

- We prove existence of topological sorting of an arbitary DAG by presenting an algorithm which finds it.
- This algorithm is based on depth-first search.

a — c — d

Suppose we have already correctly sorted some of the vertices...

a — c — d

...and wish to append a new one to the beginning of the list.

...and wish to append a new one to the beginning of the list.

? — a — c — d

We pick a random vertex...

...and follow arrows until a vertex from which no edge leads to a vertex not previously sorted.

...and follow arrows until a vertex from which no edge leads to a vertex not previously sorted.

...and follow arrows until a vertex from which no edge leads to a vertex not previously sorted.

? — a — c — d

This vertex is safe to add!

g — a — c — d

This vertex is safe to add!

q - a - c - d

Vertices a, c, d were added before, in the same manner...

q — a — c — d

... and we can continue this process, until all vertices are listed.

... and we can continue this process, until all vertices are listed.

$$f - b - e - h - g - a - c - d$$

This is the necessary topological sorting.