Computer Vision

Course No.	Type	Subject	L	Т	P	Credits	CA	MS	ES	CA	ES	Pre- requisites
COCS C26		Computer Vision	3	1	0	4	25	25	50	-	-	

COURSE OUTCOMES

- 1. Implement fundamental image processing techniques required for computer vision.
- 2. Recognize Image formation process.
- 3. Perform shape analysis and extract features form Images and do analysis of Images.
- 4. Generate 3D model from images and develop applications using computer vision techniques.
- 5. Understand video processing, motion computation and 3D vision and geometry.

COURSE CONTENTS:

UNIT I

Digital Image Formation and Low-level processing: Overview and State-of-the-art, Fundamentals of Image Formation, Transformation: Orthogonal, Euclidean, Affine, Projective, etc; Fourier Transform, Convolution and Filtering, Image Enhancement, Restoration, Histogram Processing. Perspective space, Homography, DLT, RANSAC, 3-D reconstruction framework.

UNIT II

Feature Extraction: Edges - Canny, LOG, DOG; Line detectors, Hough Transform, Comers - Harris and Hessian Affine, Orientation, Histogram, SIFT, SURF, HOG, GLOH, : Eigen value, Eigen vector, Feature scoring, Scale-Space Analysis- Image Pyramids and Gaussian derivative filters, Gabor Filters and DWT.

UNIT III

Image Segmentation: Region Growing, Edge Based approaches to segmentation, Graph-Cut, Mean-Shift, MRFs, Texture Segmentation; Object detection

UNIT IV

Pattern Analysis: Clustering: K-Means, K-Medoids, Mixture of Gaussians, Classification: Discriminant Functions, Supervised, Un-supervised and Semi-supervised; Classifiers: Bayes, KNN, ANN models; Dimensionality Reduction: PCA, LDA, ICA; Non-parametric methods.

Motion Analysis: Background Subtraction and Modeling, Optical Flow, KLT, Spatio-Temporal Analysis; Dynamic Stereo; Motion parameter estimation.

UNIT V

Miscellaneous: Applications: CBIR, CBVR Activity Recognition computational photography, Biometrics, Healthcare, stitching and document processing; Modem trends - super-resolution; GPU, Augmented reality; cognitive models, fusion and SR&CS.

SUGGESTED READINGS

- 1. Richard Szeliski, Computer Vision: Algorithms and Applications, Springer-Verlag London Limited 2011.
- 2. Computer Vision: A Modern Approach, D. A. Forsyth, J. Ponce, Pearson Education, 2003.
- 3. Richard Hartley and Andrew Zisserman, Multiple View Geometry in Computer Vision, Second Edition, Cambridge University Press, March 2004.
- 4. K. Fukunaga; Introduction to Statistical Pattern Recognition, Second Edition, Academic Press, Morgan Kaufmann, 1990.
- 5. Introductory Techniques for 3D Computer Vision, by E. Trucco and A. Verri, Publisher: Prentice Hall.
- 6. Simon J. D. Prince, Computer Vision: Models, Learning, and Inference, Cambridge University Press, 2012