מבוא למרחבים מטריים וטופולוגיים - תרגול 4

ו שלמות ושקילות של מטריקות

 $(X,d_2) \Longleftarrow (X,d_1)$ אם על אם (X,d_1) אם על שלם שקולות טופולוגית שקולות שתי מטריקות שלם אם שלם י

 $d_2(x,y) = \left| \arctan(x) - \arctan(y) \right|$, $d_1(x,y) = \left| x - y \right|$ המטריקות, $X = \mathbb{R}$ לא, לדוגמה $a_n = n$ שלם, אבל (X, d_2) אינו שלם, לדוגמה הסדרה (X, d_2) שאינה מתכנסת. היא סדרת קושי (ביחס ל- X, d_2) שאינה מתכנסת.

לכן שלמות היא לא תכונה טופולוגית.

עם המטריקה אינו שלם. המטריקה הרגילה $X=\{\frac{1}{n}\,|\,n\in\mathbb{N}\}$ עם המטריקה אינו אינו דוגמה עוד דוגמה אבל למטריקה הדיסקרטית, אבל עם המטריקה הדיסקרטית אבל שלם.

Baire משפט 2

משפט 2.1 $\cot(\overline{A_n})=\emptyset$ משפט אות המקיימות קבוצות שלם, $\{A_n\}_{n=1}^\infty$ שלם, איז מרחב מטרי שלם מים איז $A=\cup_n A_n$ איז לקבוצה לקבוצה היק.

 $\operatorname{int}(A_m)
eq m$ כך אז קיים m כך שלם, A_n , $X = \cup A_n$ מסקנה 2.2 מרחב מטרי שלם, X

האם לכל מרחב מטריזבילי (X, au) קיימת מטריקה שלמה: לא, לדוגמה

מסקנה למטריקה מטריקה שלמה על $\mathbb Q$ ששקולה שלמה אין מטריקה מסקנה 2.3

הוכחה: אתרת,

$$\mathbb{Q} = \bigcup_{q \in \mathbb{Q}} \{q\}$$

זה איחוד בן מנייה של קבוצות סגורות בעלות פנים ריק, ונקבל סתירה למשפט בר.

[0,1]- באף נקודה ב- $f:[0,1] o \mathbb{R}$ האם קיימת פונקציה רציפה f:[0,1]

טענה 2.4 קיימת פונקציה כזאת.

הוא מרחב מטרי (X,d). על \sup י הוי מטריקת ותהי אותהי ותהי $X=C([0,1],\mathbb{R})$ הוא מרחב מטרי שלם (תרגיל).

נסמן

 $D = \{f \mid \exists x \in [0,1] : f \text{ is differentiable at } x\}$

 $D \subsetneq X$ צריכים להוכיח $m,n\in\mathbb{N}$ לכל

$$A_{m,n} = \left\{ f \mid \exists x \in [0,1], \forall t \in [0,1] : 0 < |t-x| < \frac{1}{m} \implies \left| \frac{f(t) - f(x)}{t - x} \right| \le n \right\}$$
(1)

נראה

$$D \subseteq \bigcup_{n,m \in \mathbb{N}} A_{m,n}$$
 .1

$$n,m\in\mathbb{N}$$
 סגורה לכל $A_{m,n}$.2

.3 בעלת פנים ריק.
$$A_{m,n}$$

-ממשפט Baire נקבל ש

$$D \subseteq \bigcup_{n,m \in \mathbb{N}} A_{m,n} \subsetneq X$$

-ט כך $x \in [0,1]$ קיים $f \in D$ כך ש

$$\lim_{t \to x} \frac{f(t) - f(x)}{t - x}$$

-לכן $m,n\in\mathbb{N}$ חסומה בסביבת x. כלומר קיימים חסומה לכן לכן

$$\left| \frac{f(t) - f(x)}{t - x} \right| \le n$$

.1. מ.ש.ל. $f\in A_{m,n}$

 $f\in A_{m,n}$. צ.ל. $f_i\in A_{m,n}$, וויל. בי תהי $f_i o f$

לכן קיים לתת סדרה על ידי ב-1. על ידי מעבר לתת סדרה נוכל x_i לכן קיים לכן לכן להוע לידי מתקיים התנאי $x \in [0,1]$ להנית בה"כ $x_i o x$ עבור

x נראה שf מקיים t עבור גינראה שt מקיים לב שיקיים $t \in [0,1]$ יהי $t \in [0,1]$ נשים לב

$$\frac{f(t) - f(x)}{t - x} = \lim_{i \to \infty} \frac{f_i(t) - f_i(x_i)}{t - x_i}$$

.2 .ש.ל. $\frac{f(t)-f(x)}{t-x}\leq n$ עבור i מספיק גדול. לכן $\frac{f_i(t)-f_i(x_i)}{t-x_i}\leq n$ הוכחת ב: יהי $f\in X,\epsilon>0$ צ.ל. $f\in X,\epsilon>0$

תחילה נבחר $g_1\in X$ ליפשיצית כך ש $\frac{\epsilon}{2}$ אוסף תחילה נבחר $g_1\in X$ ליפשיציות ב- g_1 למשל כי כל פונקציה רציפה ניתן לקרב על ידי הפונקציות הליפשיציות צפופות ב- g_1 את קבוע ליפשיץ של g_1 פונקציות לינאריות למקוטעין). נסמן ב- g_1 את קבוע ליפשיץ של

תהי ($\frac{\epsilon}{2},\frac{\epsilon}{2}$) בעלת שיפועים גדולים מ-(K+n). תהי (K+n) פונקציית "זיג-זג" בעלת שיפועים גדולים מ-(K+n). כלומר מקיימת שלכל K+n קיים K+n קרוב כרצוננו כך ש

$$\frac{\phi(t) - \phi(x)}{t - x} > K + n$$

 $g\in A_{m,n}\setminus B(f,\epsilon)$ נסתכל על $g=g_1+\phi$ נוכיח ש
. $g=g_1+\phi$ כי כי כי נוכיח כי כי $g\in B(f,\epsilon)$

$$d(f,g) = ||f - g||_{\infty} \le ||f - g_1||_{\infty} + ||\phi||_{\infty} < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

עבורו $0<|t-x|<rac{1}{m}$ כך ער כך קיים אקיים $x\in[0,1]$ עבורו $g\notin A_{m,n}$

$$\left| \frac{g(t) - g(x)}{t - x} \right| \ge \left| \frac{\phi(t) - \phi(x)}{t - x} \right| - \left| \frac{g_1(t) - g_1(x)}{t - x} \right| > (n + K) - K = n$$

מ.ש.ל. 3