A Generalized Reduction of Ordered Binary Decision Diagram (GroBdd)

Joan Thibault

Reduced Ordered Binary Decision Diagram (ROBDD)

Applications

- Computer Aided Design (e.g. equivalence checking)
- Knowledge Representation (e.g. Artificial Intelligence)
- Combinatorial Problems (e.g. N-Queens problem)
- What are required operation?
 - Compact representation
 - Operations (e.g. composing, concatening, evaluation)
 - Operators (e.g. AND, XOR, ITE, NOT)
 - Reductions (e.g. quantification, partial evaluation, SAT)

Shannon's Binary Decision Tree

Shannon's Decision Diagram (We merged isomorphic sub-trees)

Reduced Ordered Binary Decision Diagram (ROBDD)

ROBDD: reduction rule

Reduced Ordered Binary Decision Diagram (ROBDD)

"output negation": reduction rule (N1)

"output negation": reduction rule (N2)

"output negation": reduction rule (N3)

ROBDD + "output negation"

Zero supressed Binary Decision Diagram (ZBDD)

ZBDD: reduction rule

Zero supressed Binary Decision Diagram (ZBDD)

ZBDD + "output negation"

ZBDD + "output negation"

ZBDD + "output negation"

Generalized Reduction of Ordered Binary Decision Diagram (GroBdd)

Shannon's Decision Diagram

"Useless variables extraction": reduction rule (U1)

"Useless variables extraction": reduction rule (U2)

Functions of arity 4

Functions of arity 3

Functions of arity 2

Functions of arity 1

Functions of arity 0

"output negation": reduction rule (N1)

"output negation": reduction rule (N2)

"output negation": reduction rule (N3)

Functions of arity 4

Functions of arity 3

Functions of arity 2

Functions of arity 1

Functions of arity 0

Functions of arity 4

Functions of arity 3

Functions of arity 2

Functions of arity 1

Functions of arity 0

Functions of arity 4

Functions of arity 3

Functions of arity 2

Functions of arity 1

Functions of arity 0

Functions of arity 4

Functions of arity 3

Functions of arity 2

Functions of arity 1

Functions of arity 0

Functions of arity 4

Functions of arity 3

Functions of arity 2

Functions of arity 1

Functions of arity 0

Functions of arity 4

Functions of arity 3

Functions of arity 2

Functions of arity 1

Functions of arity 0

Functions of arity 4

Functions of arity 3

Functions of arity 2

Functions of arity 1

Functions of arity 0

N vs NU

N vs NU: Example 2

N vs NU: Example 3

N vs NU: Example 4

"1-prediction": reduction rule (X1-'1')

"1-prediction": reduction rule (X1-'O')

O = If 1 then 1

"1-prediction": reduction rule (X2-'0')

Functions of arity 3

Functions of arity 2

Functions of arity 1

Functions of arity 0

Section 3: model NU-X

Functions of arity 4

Functions of arity 3

Functions of arity 2

Functions of arity 1

Functions of arity 0

Section 3: model NU-X

I = If 0 then 1O = If 1 then 1

5-Queens: N or NU

5-Queens: Z

5-Queens: NU-X

Results

Average reduction of the {number of nodes / estimated memory cost} on four benchmarks

	Cir	cuits (den	se function	ns)	CNF formulas (sparse functions)			
	lgsynth91		iscas99		uf20-91		uf50-218	
variants	#node	mem	#node	mem	#node	mem	#node	mem
Z	+233%	+233%	<u>+162%</u>	<u>+162%</u>	-41%	-41%	-42%	-42%
NU	-26%	-21%	-25%	-20%	-3%	<u>+7%</u>	-3%	<u>+22%</u>
NU-X	-64%	-58%	-55%	-46%	-96%	-95%	-97%	-96%

Can we go further?

"input/output negation"

"useless variables extraction" + "anti-variables extraction"

"input/output negation"
+ "1-prediction extraction"

"output negation" +

"useless variables extraction"
+ "anti-variables extraction"
+ "1-prediction extraction"

"useless variables extraction" + "1-prediction extraction"

Conclusion

- Software implemented in OCaml:
 - https://github.com/JoanThibault/DAGaml/tree/grobdd-dev
 - ~ 12 000 lines of OCaml
- Fewer nodes & Less memory
- Future Work
 - Quantify the dependency between variables' order and #node
 - Solve & Implement NUA-X and NNI-X versions
- TO DO
 - Quantification Operators
 - Variable Reordering
 - Parallelism & hardware acceleration
- Other Applications
 - Apply similar strategies to compress other DAG
 - DAG / Graph isomorphism

5-Queens: NNI

Results

Average reduction of the {number of nodes / estimated memory cost} on four benchmarks

	Circuits (dense functions)				CNF formulas (sparse functions)			
	lgsynth91		iscas99		uf20-91		uf50-218	
variants	#node	mem	#node	mem	#node	mem	#node	mem
Z	+233%	+233%	<u>+162%</u>	<u>+162%</u>	-41%	-41%	-42%	-42%
NU	-26%	-21%	-25%	-20%	-3%	<u>+7%</u>	-3%	<u>+22%</u>
NNI	-60%	-53%	-56%	-49%	-30%	-10%	-39%	<u>+5%</u>
NU-X	-64%	-58%	-55%	-46%	-96%	-95%	-97%	-96%