BEST AVAILABLE COPY

PATENT ABSTRACTS OF JAPAN

(11) Publication number:

07-023245

(43)Date of publication of application: 24.01.1995

(51)Int.CI.

H04N 1/60 G03F 3/08 G03G 15/01 G06T 5/00 H04N 1/46

(21)Application number: 05-150258

(71)Applicant: CANON INC

(22)Date of filing:

22.06.1993

(72)Inventor: KAWAI TAKASHI

OTA KENICHI

(54) PICTURE PROCESSING UNIT

(57)Abstract:

PURPOSE: To simplify the operability of color adjustment with simple hardware configuration through only matrix arithmetic operation having a matrix coefficient decided properly in response to the adjustment quantity from an operation section using three variables of lightness, saturation and hue as adjustment items.

CONSTITUTION. A color conversion section 204a extracts a minimum value of each picture element from a color input signal from a picture input section 220 to obtain a difference signal between the input color signal and the extracted minimum signal, and the obtained difference signal is converted into a matrix according to a matrix conversion coefficient generated by a matrix conversion coefficient generating section 204b in response to the adjustment variable of adjustment items of an operation section 211 being three variables of lightness, hue and saturation.

LEGAL STATUS

[Date of request for examination]

22.06.2000

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公別番号

特開平7-23245

(43)公開日 平成7年(1995)1月24日

(51) Int.Cl. H 0 4 N 1/60	. 觀別記号	庁内整理番号	FΙ			技術表	支示箇所
GO3F 3/08	A	7369-2H					
G 0 3 G 15/01	S			·			
		4226-5C	H04N	1/ 40	e	D .	
-		9191-5L	G06F	15/ 68	310	A	
		審査請求	未請求 請求項	頁の数12 OL	(全 13 頁) 最終頁	に絞く
(21)出願番号	特願平5-150258		(71)出願人	000001007			
(00) (Lusser				キヤノン株式会	会社		
(22)出顧日	平成5年(1993)6月	122日		東京都大田区	下丸子3丁	目30番2号	
			(72)発明者				
			:	東京都大田区プレン株式会社内		30番2号	キヤ
	e e	•	(72)発明者	太田 健一	_		
				東京都大田区	「丸子3丁」	30番2号	キヤ
	,			ノン株式会社内			- 3
			(74)代理人	弁理士 大塚		11名)	

(54) 【発明の名称】 画像処理装置

(57)【要約】

【目的】 明度、彩度、色相の3変数を調整項目とする操作部からの調整量に応じて適応決定されたマトリックス係数を有するマトリックス演算のみの簡単なハード構成で色調整の操作性の簡便化を計るにある。

【構成】 画像入力部220よりのカラー入力信号に対し、色変換部204aは、前記入力カラー信号から画素毎にその最小値を抽出し、入力カラー信号と抽出された最小値信号の差信号を求め、求めた差信号を、明度、色相、彩度の3変数を調整項目とする操作部211の調整項目の調整量に応じてマトリックス変換係数に従つて、マトリックス変換する。

【特許請求の範囲】

【請求項1】 出力されるべき画像の再現色に対し、明度、色相、彩度の3変数のいずれかの調整量を設定入力する入力手段と、

該入力手段から入力される調整量に応じて決定されるマ トリックス変換係数を生成するマトリックス変換係数生 成手段と、

前記入力カラー信号から画素毎にその最小値を抽出する 最小値抽出手段と、

前記入力カラー信号と抽出された最小値信号の差信号を 生成する差信号生成手段と、

該差信号生成手段で生成された差信号を前記マトリックス変換係数生成手段で生成されたマトリックス変換係数でマトリックス変換手段と、

該マトリツクス変換手段でマトリツクス変換された信号値を用いて入力カラー信号を新たな色分解信号に変換する変換手段とを備えることを特徴とする画像処理装置。

【請求項2】 前記操作部の明度、色相、彩度の3変数の調整項目は、出力画像の再現色のうち、Y (イエロー), M (マゼンタ)、C (シアン), R (レッド), G (グリーン), B (ブルー)の6原色に対し、それぞれ対し設置され、6色それぞれ独立に明度、色相、彩度の調整が可能であることを特徴とする請求項1記載の画像処理装置。

【請求項3】 前記操作部の明度,色相,彩度の3変数の調整項目は「肌色」に対する3変数を調整項目に含むことを特徴とする請求項1記載の画像処理装置。

【請求項4】 前記マトリックス変換係数生成手段で生成するマトリックス変換係数の決定は、あらかじめ決められた調整項目の基準色に対するカラー信号と調整目標 30 色に対するカラー信号で決まる連立方程式を求める手段により実現することを特徴とする請求項1記載の画像処理装置。

【請求項5】 入力画像原稿を特定色の色分解信号として入力する画像入力手段と、

前記入力画像原稿の下地レベル (白レベル) を検出する 第1の検出手段と、

前記入力画像原稿のあらかじめ決められた色空間上での 分布を検出する第2の検出手段と、

前記入力画像原稿の無彩色ダークレベル (黒レベル) を 検出する第3の検出手段と、

前記第1乃至第3の検出手段での検出下地レベル、色空間分布、無彩色ダークレベルより決定されるマトリツクス変換係数により画像信号のマトリツクス変換を行なう変換手段とを備えることを特徴とする画像処理装置。

【請求項6】 第1の検出手段は、入力画像原稿の色分解信号のうち、無彩色ハイライト信号を検出し、該無彩色ハイライト信号が画像原稿全面積のうち予め決められた面積以上を占めることを判定して下地レベルを決定することを特徴とする請求項5記載の画像処理装置。

【請求項7】 第2の検出手段での検出対象の予め決められた色空間は、CIE1976-L*u*ν* 均等色空間であることを特徴とする請求項5記載の画像処理装置。

2 .

【請求項 8】 第2の検出手段での検出対象の予め決められた色空間は、CIE1976-L*a*b*均等色空間であることを特徴とする請求項5記載の画像処理装置。

【請求項9】 第2の検出手段での検出対象の予め決められた色空間は入力R、G、B信号をそれぞれ1/3乗変換した後、各々の線型加重和をとることによつて得られる3信号の色空間であることを特徴とする請求項5記載の画像処理装置。

【請求項10】 第3の検出手段は、入力画像原稿の色分解信号のうち、各信号各々全てが予め決められたレベル以下の信号のうち最小となる色分解信号を無彩色ダークレベルと決定することを特徴とする請求項5記載の画像処理装置。

【請求項11】 変換手段でのマトリックス変換係数 20 は、接続可能な画像出力部の色再現範囲を反映したカラー画像信号と、第1乃至第3の検出手段より決定された 下地レベル、色空間分布、無彩色ダークレベルを反映し たカラー画像信号で決まる連立方程式の解を求めること により決定されることを特徴とする請求項5記載の画像 処理装置。

【請求項12】 変換手段によつて生成された新たなる 色分解信号は、接続可能な画像出力部の色再現範囲を反映した値であることを特徴とする請求項5記載の画像処理装置。

0 【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は画像処理装置に関し、例えばカラー画像原稿をR,G,B色分解信号で入力してマトリックス変換するカラー画像処理装置に適用可能である。

[0002]

【従来の技術】一般に、カラー複写機においては、ハードコピー出力画像は原稿画像に対し色再現性、階調性等ができるだけ忠実に再現されることが望ましい。しかし、実際には原稿画像の色分解とハードコピー出力装置の色再現範囲との相違から次の3つの点に関し問題点が指摘されており、また、その対策が行なわれている。

【0003】 ①原稿画像に下地と呼ばれる背景部分(通常白色で構成される)を持つ原稿では、できる限り白色(印刷しない)で再現することが望まれる。さらに、下地を除去しても他の色の色再現性を劣化させることなく、色再現することが望まれる。これに対する解決策としては、例えば特願平3-223909号のように、下地レベルを検出し、R、G、B信号の非線型変換処理によって下地を除去する方法が提案されている

50 よつて下地を除去する方法が提案されている。

【0004】②原稿画像の色分布がハードコピー出力装置の色再現範囲を逸脱している原稿では、その部分の階調性が損なわれる。この様な原稿では原稿画像の色分布をハードコピー出力装置の色再現範囲内にマッピングすることが望ましく、これに関し、例えば特願平4-168968号では、原稿画像の色分布を検出し、検出された色分布に従つてマトリックス変換を行ない、色再現範囲内にマッピングする方法が提案されている。

.1

【0005】③カラー複写装置では、于め想定された入力画像のダイナミックレンジを、階調変換し、ダイナミックレンジの圧縮を行なつているが、原稿画像があらかじめ想定されているダイナミックレンジより大きなレンジを有するとき、ダーク部で階調性が損なわれる。これに対する解決策としては、例えば画像信号の輝度一濃度変換処理での対数変換回路において、変換式を修正してダイナミックレンジの圧縮率を調整するという方法がある。

【0006】一方、また、カラー複写機には以上の構成の他に操作部が具備されており、操作者の希望により各種の色調整が行える様になつている。例えば、出力画像の赤味を増したい時、図8に示すようなカラー複写機装置の操作部の操作によつて、M(マゼンタ) 濃度を上げて(シアン) 濃度を下げていた。即ち、色・階調修正回路では、この操作部の設定に従い、図9(A),(B)に示す様なガンマ変換が行なわれ(図中、点線がγ=1の標準値である)、マゼンタのガンマ特性が立ち全体のマゼンタ濃度が増し、シアンのガンマ特性が変て、シアン濃度が減り、トータルで赤味が増すように制御していた。

[0007]

【発明が解決しようとする課題】しかしながら、上述したような忠実な色再現のための方策は、個々の問題に対し独立に提案された対策であり、実際に前記問題点が同時に出現する場合(例えば、原稿画像の色空間の逸脱とダークレベルのつぶれが存在する場合など)、一方の問題点の対策に対する信号変換処理が他方の対策に対する信号変換処理に影響を及ぼし、それぞれの対策に対する効果を充分発揮できないという問題を生じる。

【0008】又、ハードウェアの構成上も、各々の対策処理の場所が画像処理信号系の複数箇所に分散し、これ 40に関わるコストが大きい、設計しにくいという問題点があつた。また、一般に、色調整を行なう場合、カラーサンプル画像に対し、明度、彩度、色相を変数とする概念で色調整を行うことが多く、例えば「明るさ(明度)を一定に、色味を変えず(色相一定)、鮮やかにしたい(彩度を上げる)。」などの調整を考えている。

【0009】しかしながら、前記従来例での色調整方法では、明度、彩度、色相の調整量を図8のようにY、M、C、Bkの各カラー濃度調整の組み合わせに置き換えなければならず、所望の色に調整するのが非常に難し

いという欠点があつた。また、一部の画像処理装置では、R, G, B信号をC1E-L* a* b* 均等色空間に座標変換し、L* a* b* 空間上で色変換を行ない、再度RGB信号に戻す色調方法があるが、RGB信号からL* a* b* 信号への変換は非線形演算を含む処理を伴なうため、カラー複写機のような膨大なデータ数(画素数)をリアルタイム高速処理する装置では、負荷が大きくハード規模が大きくる欠点があつた。

【0010】さらに、前記従来例のようなY, M, C, Bkのカラー濃度の調整方法は、前述の赤味を増す調整において、マゼンタ濃度を上げシアン濃度を下げると、画像の赤色部分の赤味は増すが、シアンとイエローの混色であるグリーンがシアン濃度を下げることにより黄色味がかかつてしまうなど、副作用的な色の変化が生じてしまう欠点があつた。

[0011]

【課題を解決するための手段】本発明は上述の課題を解決することを目的としてなされたもので、上述の課題を解決する一手段として以下の構成を備える。即ち、入力画像原稿を特定色の色分解信号として入力する画像、入力画像原稿の下地レベル(白レベル)を検出する第1の検出手段と、入力画像原稿のあらかじめ決められた色空間上での分布を検出する第2の検出手段と、入力画像原稿の無彩色ダークレベル(黒レベル)を検出する第3の検出手段と、前記第1乃至第3の検出手段での検出下地レベル、色空間分布、無彩色ダークレベルより決定されるマトリックス変換係数により画像信号のマトリックス変換を行なう変換手段とを備える。

[0013]

【作用】以上の構成において、カラー画像原稿の下地レベル検出手段と、色分布検出手段とダークレベル検出手段と、マトリックス変換係数生成手段と、マトリックス変換手段を設け、各検出手段より検出された画像信号からマトリックス変換係数を生成し、カラーハードコピーの下地レベル補正、色空間圧縮、ダークレベル補正をマトリックス変換にて一括処理可能とするものである。

【0014】また、明度、彩度、色相の3変数のいずれ

30

5

かの調整量を設定入力する入力手段と、入力手段からの 調整量に応じて適応決定されたマトリックス係数を有す るマトリックス演算回路とを設けることにより、簡単な ハード構成で色調整の操作性の簡便化を計つたものであ る。

[0015]

【実施例】以下、図面を参照して本発明に係る第1の実 施例を詳細に説明する。

[第1の実施例] 図1は本実施例のカラー複写機のプロック構成を示す図である。図1において、CCDセンサ201よりのRGB輝度信号がA/D変換回路202で対応するデジタル信号に変換され、シエーデイング補正回路203でシエーデイング補正され、マトリクス変換回路204でマトリクス変換及び後述する色変換/色補正処理がなされ、濃度変換回路205に送られる。

【0016】 濃度変換回路205では、これをY(イエロー), M(マゼンタ), C(シアン)の濃度信号に変換し、更に黒抽出・下色除去回路206で下色除去され、K(プラツク)信号を生成して色・階調修正回路207に送られる。そして更にシヤープネス修正回路208でシヤープネス処理され、二(多)値化回路209で二(多)値化され、プリンタ210で印刷・記録される。

【0017】なお、211は各種の操作入力を行う操作部であり、操作部には色補正指示のための入力部も設けられている。この操作部211の色補正指示部の詳細構成を図2に示す。本実施例においては操作部211での色調整は、色相(色味)・彩度(鮮やかさ)・明度(明るさ)の3つの調整項目によつで行なう。なお、図2に示す色調整に関する操作部レイアウトにおいて、色相(色味)・彩度(鮮やかさ)の調整部において、グリーン、シアン、ブルーの部分については、他の色部分と同様構成であるため、詳細表示を省略する。

【0018】図2において、色相、、彩度の調整は、左側に同心円放射線状に配置された操作キーによつて調整される。図中では、イエロー(Y)、マゼンタ(M)、シアン(C)、レッド(R)、グリーン(G)、ブルー(B)の6色に関する調整を図示しているが、これらの色以外も調整対象色とすることもできる。さて、この操作部の同心円放射線状の操作キー配列は、"マンセル表色系"や"CIE-L° a° b° 表色系"で表わされるような"均等色空間"の座標系に準拠した配列としており、同心円・円周方向は色相環を表わし、同心円・放射線方向は彩度を表わす。

【0019】図2では、基準値(図中、 "斜線" で示す キーであり、設定値が変更されていない場合には "編み 目" のみで示されている)を中心として、色相に±2ス テップ、彩度も±2ステップの調整キー (調整量) を例 示した。もちろん、これら調整ステップ数は適宜増やす ことが良い。通常、デフォルト状態では、各調整ステッ ブの中心が基準設定されていて、例えば、液晶パネル表示された操作部上の選択されたキーは、ネガ/ポジ反転して見易い様にしてある。図2においては、何らの選択されていないキーが斜線等のない"口"で示すポジ表示で表示され、"編み目"で示す選択されているキーがネガ表示で表示されている)。

【0020】今、「赤を色味を変えずに鮮やかにしたい」時、図2に示すようにレッド調整キーを基準設定値である斜線に示す値から放射線方向、外向きに配置された調整キーである "編み目"で示されたキーを選択し、他の色(Y, M, C, G, B)は、基準設定("編み目"で示されたキー)のままで良い。さらに、「赤を黄色味方向に鮮やかにしたい」時には、図2に示すレッドの "編み目"で示す調整キーの選択の代わりに、1ステップ(又は2ステップ)イエロー側に配列された調整キーを選択すればよい。

【0021】一方、明度(明るさ)に関する調整は、図2の右側に配置された操作キーによつて調整され、図では基準値(図中、"斜線"で示すキーであり、設定値が変更されていない場合には"編み目"のみで示されている)を中心とした±2ステップの調整を例示した。明度に関する調整も、前記(Y, M, C, R, G, B) 同様、調整キーとなる。

【0022】今、「赤を明るくしたい」時、図2のようにレッド調整キーを "斜線" で示す基準値から上向きに配置された "編み目" で示す調整キーを選択し、他の色は基準値のままで良い。このように、明度、彩度、色相の3変数の組み合わせで、間隔的にわかり易い調整ができる。例えば、図2に示される調整は、明度、彩度、色相のトータルで「赤を色味を変えずに明るく鮮やかに」調整したものである。

【0023】さらに、これらは、赤色など1色に限らず、例えば、「①赤を色味を変えずに明るく鮮やかにし、②マゼンタを色味、明るさを変えずに鮮やかにし、③グリーンを明度、彩度を変えずに青つぼくする」などのように各色の調整の組み合わせで細かな色調整操作も設定できる。次に、以上の操作部211により指示入力された本実施例の色調整を実現する色信号変換回路の構成を説明する。

【0024】図3はR、G、Bカラー画像信号に対する 色調整を行う部分の構成を抜き出して示したもので、図 1のCCDセンサ201〜シエーデイング補正回路20 2を含む画像入力部220よりのR、G、Bカラー画像 信号は、マトリクス変換回路204の色変換部204a に入力される。また、同時にマトリクス変換回路204 のマトリクス係数生成部204bには操作部211より の操作結果が入力される。

【0025】ここで、差準設定値の色座標を (L*oa*ob*o)、調整値 (X) の色座標を (L*ia*ib*i) とし、色調整色 (L*ia*ib*i) のうち設定された色座標

を(L*'a*'b*')とする。そしてこの設定値に従つてマトリクス変換処理がなされ、色調整が成される。操作部211によつて調整量が決定された(L*'a*'b*')信号(又はそれに対応した信号)は、マトリックス係数生成部204bに送られ、ここで後述する方法でaijが求められる。aijは、図4のブロック図で示される色変換部204aに入力され、係数が設定される。係数設定後、画像入力部22よりRGBカラー画像信号が出力され、色変換部204aで色変換され調整色R'G'B'を出力する。

【0026】この色変換部204aの詳細構成を図4に示す。図4において、501はR、G、Bの各画像信号における最小値を抽出する最小値抽出回路であり、最小値信号X | min(R、G、B) | を出力する。502,503,504は入力信号と最小値信号の差をとる減算回路であり、減算回路502はR-Xを、減算回路*

$$\begin{bmatrix} dR \\ dG \\ dB \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} & a_{15} & a_{16} \\ a_{21} & a_{22} & a_{23} & a_{24} & a_{25} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} & a_{35} & a_{34} \end{bmatrix}$$

ここで、用いられるマトリツクス変換係数 aijは、前述の色調整の設定値(調整量)をもとに決定される。なお、その詳細は後述する。

【0030】512,513,514は上式(数1)で得られたdR,dG,dBと、もともとのR,G,B信号を加算する加算器であり、変換後の色分解信号R',G',B'を出力する。

[0031]

【数2】

$$\begin{bmatrix} R' \\ G' \\ B' \end{bmatrix} = \begin{bmatrix} R \\ G \\ B \end{bmatrix} + \begin{bmatrix} d & R \\ d & G \\ d & B \end{bmatrix}$$

次に、マトリツクス係数生成部204 b での(数1)式 のマトリツクス変換係数 a i j の求め方について説明す る。

【0032】図5はL* a* b* 均等色空間上に、本実施例におけるカラー複写機のプリンタ210の色再現範囲を模式的にプロットした図である。この色空間上に、前述のカラー調整操作部の基準設定値の色座標をY.

M, C, R, G, B各色について決定し(図中 *編み ※

 $X = X_0 * [(L^* + 16) / 116 + a^* / 500]^3$ $Y = Y_0 * [(L^* + 16) / 116]^3$ $Z = Z_0 * [(L^* + 16) / 116 + b^* / 200]^3$

【0036】 【数4】

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} 1.9106 & -0.5326 & -0.2883 \\ -0.9843 & 1.9984 & -0.0283 \\ 0.0584 & -0.1185 & 0.9895 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$

これをY. M. C. R. G. Bの6色について行なう。 50 【0037】調整しない色については、(L*'a*'

*503はG-Xを、減算回路504はB-Xをそれぞれ 演算して出力する。

【0027】505, 506, 507 は減算回路502, 503, 504 の出力を一時的にラッチするラッチ回路である。508, 509, 510 は、それぞれR-X, G-X, B-X の2 次項を演算する乗算回路であり、乗算回路508 は (R-X)*(G-X) を、乗算回路509 は (G-X)*(B-X) を、乗算回路510 は (B-X)*(R-X) を演算して出力する。

10 【0028】511は以上で得られた6個の信号値をマトリックス変換するマトリックス変換回路であり、具体的には以下の演算を行い、dR, dG, dBを出力する。

【0029】 【数1】

※目"丸で示す色座標)、基準設定値に対し、色相方向、 彩度方向にそれぞれ等間隔で調整ステップ数分の色座標 を決定する。

【0033】図2に示す操作部211の例では、色相、彩度方向、ともに±2ステップの調整キーを設けたので、図5に"編み目"丸で示す色座標を中心とした±2ステップずつの対応とする色座標を"×"で図示した(なお、図5においては、各色について全く同じ構成であるため、Rだけについて図示し、YMBCGについての詳細表示を省略した)。

【0034】上述した様に、基準設定値の色座標を(L*oa*ob*o)、調整値(×)の色座標を(L*ia*ib*i)のうち設定された色座標を(L*'a*'b*')とした場合に、(L*oa*ob*o)及び(L*'a*'b*')を以下の式に従つてRGB信号に色座標変換する。

[0035]

【数3】

(L°o a°o b°o) と調整色 (L°' a°' b°') をそれぞれ R, G, Bに変換した時の信号 (Ro Go Bo) と

> (Ro Go B₀) → IR' G' Y: (255 2 5 0 $10) \rightarrow$ (255 250 M: (200 10 $90) \rightarrow$ (R." G. C: (10 9 5 200) -(10 9 5 R: (160 - 20 10) --(R.' G,' G: (20 100 20) -(R₀' Go' C: (15 1 0 $100) \rightarrow$ (15

上記対応関係は、前述の調整例

「①赤の色味を変えずに明るく鮮やかにし、②マゼンタ を色相・明度を変えずに彩度を上げ、③グリーンを明度 ・彩度を変えずに青つぼくする」という調整に従い、 R, M, Gの項に関し調整量に応じた (R' G' B') がそれぞれ(R, 'G, 'B, '), (R, 'G, 'B ■ '), (Rg ' Gg ' Bg') が設定されていて、他 の項目 (Y, C, B) に関しては (Ro Go Bo) = (R'G'B')となつている。

【0039】上記の対応関係(Ro Go Bo)と(R' G'B')を式(数1)と(数2)の(RGB)及び (R'G'B') に代入すると、18個の連立1次方程 式ができる。一方、未知数としてaijは18個であるの で、一義的に解くことができ、マトリックス変換係数が 決定される。以上説明した様に第1の実施例において は、操作部211を均等色空間上で調整する様に指示可 能に構成し、この調整をR,G.B信号のマトリツクス 変換で処理することにより、簡単なハード構成で簡便に 細かな色調整が実現できる。又、Y, M, C, R, G, Bの6原色が独立に色調整できる効果がある。

【0040】 [第2の実施例] 上述した第1の実施例に おいては、均等色空間としてCIE-L* a* b* を用 いたが、他の均等色空間を用いても同様の効果が得られ る。例えば、CIE-L* u* ν* や、マンセル表色系 DIN表色系などが考えられ、それぞれについて各色表 系からRGB信号へ変換する式又は対応テーブルを (数 3), (数4) 式に代えればよい。

【0041】 [第3の実施例] 以下にカラーハードコピ ーの下地レベル補正、色空間圧縮、ダークレベル補正を マトリツクス変換にて一括処理可能とする本発明に係る 第3の実施例を図面を用いて説明する。図6は本発明に 係る第3の実施例の構成を示すブロック図である。図6 において、カラー画像入力部101は、本カラー複写装 置のリーダ部や外部画像入力装置からの画像信号入力部 などから成り、ここからRGBカラー画像色分解信号を 出力する。

【0042】カラー画像入力部101よりのRGB信号 は、まず第一に下地レベル検出回路102に入力され る。下地レベル検出回路102では、例えば前述の特願 平3-223909号 (カラー画像処理装置) にあるよ * (R'G'B') の対応関係の1例を以下に示す。 [0038] 【数5】

10

B') 10) B.') 200) B.') Bg') 10 100)

> うなヒストグラムを用いた検出方法などにより検出され る。ただし、この回路の検出要素として無彩色ハイライ トを検出する手段と、この無彩色ハイライト信号が下地 と画像中の一部分であることを区別するため、于め決め られた面積以上を占有していることを判定する手段を備 えている。

【0043】下地レベル検出回路102によつて検出さ れた下地レベルは、そのR, G, B信号R* G* B* = (RGB) 。として出力される。RGBカラー画像原稿 信号はまた、色分布検出回路103に入力される。色分 布検出回路103では、例えば前述の特願平4-168 968号(カラー画像処理装置)にあるような検出方法 で、カラー画像原稿中で、カラー画像出力部の色再現範 囲を逸脱する色信号のうち最も彩度の高い色信号を基本 原色 (R, G, B, C, M, Y) について行う。本回路 103によつて検出された色分布は、それぞれの基本原 色に対し、

(RGB) R (RGB) G (RGB) B (RGB) C (RGB) W $(RGB)_Y = (RGB)_I$ 但し、1=1~6 30 の形で出力される。

【0044】さらに、RGBカラー画像信号はダークレ ベル検出回路104にも入力される。本ダークレベル検 出回路104では、例えば、

R<RPO かつG<GPO かつB<BPO

のように、RGBいずれもが所定の一定値Rpo, Gpo, Bro以下を満たす画素のうち最小のものをダークレベル とする。ここで、Reo, Geo, Beoはカラー画像出力部 108で色再現される色のうち最も黒い色のRGB信号 値を表わす。

【0045】このように、本検出回路104で検出され たダークレベルは、(RGB) οの形で出力される。以 上の3回路102,103,104よりの出力はマトリ ツクス変換係数生成回路105に出力され、該回路10 5は以上の出力を元に、マトリックス変換回路106で のマトリツクス変換係数 aijを生成して、マトリツクス 変換回路106に出力する。マトリツクス変換回路10 6 では、このマトリックス変換係数 a i j に従つてマトリ クス変換し、色修正手段107で所望の色修正を行い、 カラー画像出力部108より画像出力される。

【0046】以上のマトリツクス変換回路106の詳細

50

構成を図7に示す。図7において、上述した図4に示す 第1実施例のマトリツクス変換回路である色変換部20 4 a と同様構成には同一番号を付し、詳細説明を省略す る。入力カラー画像信号R.G.Bが入力され、該入力 画像信号は図示しない駆動クロツク、リセツト信号など と共に順次転送処理されて行く。

【0047】図7において、611はR, G, Bの3事 項を演算する乗算回路であり、R*G*Bを出力する。 612はR、G、Bの反転信号の3次積を演算する乗算* *回路であり、画像データを8ピツト(0~255)とす るとき、(255-R) * (255-G) * (255-B)を出力する。613は以上で得られた8個の信号値 のマトリックス変換するマトリックス変換回路であり、 具体的には以下の演算を行いdR,dG,dBを出力す. る。

12

$$\frac{dR}{dG} = \begin{bmatrix}
a_{11} & a_{12} & a_{13} & a_{14} & a_{14} & a_{14} & a_{14} & a_{14} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} & a_{25} & a_{26} & a_{27} & a_{23} \\
a_{31} & a_{32} & a_{32} & a_{34} & a_{34} & a_{34} & a_{34} & a_{34}
\end{bmatrix}
\begin{bmatrix}
R - X \\
G - X \\
B - X \\
(R - X) - (G - X) \\
(G - X) - (B - X) \\
(B - X) - (R - X)
\end{bmatrix}$$

$$(B - X) \cdot (R - X)$$

$$R \cdot G \cdot B$$

$$(255 - R) (255 - G) (255 - B)$$

ここで用いられるマトリツクス変換係数ai¡は後述する 方法で求められる。

【0049】512,513,514は、上式(数6) で得られたdR, dG, dBと、もともとのR, G, B 信号を加算する加算器であり、変換後の色分解信号 R', G', B'を出力する。すなわち、次の(数7) 式を実行する。

[0050] 【数7】

$$\begin{bmatrix} R \\ G \end{bmatrix} = \begin{bmatrix} R \\ G \\ B \end{bmatrix} + \begin{bmatrix} d & R \\ d & G \\ d & B \end{bmatrix}$$

換係数aijの求め方について説明する。

【0051】前述の検出回路より検出された8種類、8 *3=24個のRGB信号はいずれもこのまま出力する と、色再現範囲を逸脱していたり、下地がかぶつている 画像信号である。このため、第3の実施例においてこれ らの信号に所望のターゲットとなる色を対応付ける。例 えば以下の説明は、一例として下地レベル検出回路 10 2が検出したカラー画像原稿の下地レベルが、R=24 0. G=240. B=235であつた場合を例に説明す※ ※る。なお、本来、白レベルは R' = 255, G' = 25 5, B'=255が理想値である。

【0052】また、例えば色分布検出回路103が検出 20 した最も彩度の高い赤色がR=200、G=15、B= 0という信号であつたとする。しかし、通常ハードコピ 一の色再現範囲内で最も彩度の高い赤色はR'=16 0, G'=20, B'=10であるとする。上記のマト リツクス変換の目的は、検出回路より出力された画信号 をハードコピーの色再現範囲にマツピングすることであ るので、マトリツクス変換によつて上記RGB信号を R' G' B' にマトリツクス変換すればよい。

【0053】このような対応関係を、白レベル(1 次に第3の実施例における(数6)式のマトリックス変 30 色)、色空間分布 (YMCRGBの6色)、黒レベル (1色)、系8色全てについて設定すると(数6)式と (数1)式から24個の連立1次方程式ができる。未知 数として、マトリツクス係数 a ijがやはり24個あるの で、一義的に解くことができてマトリツクス係数が決定 される。対応関係の一例を以下に示す。

> [0054] 【数8】

以上の手順によつて下地レベル、色空間圧縮、ダークレ ベルの全てに対し所望の変換が得られる。

【0055】以上説明した様に第3の実施例によれば、 50 下地レベル補正、色空間圧縮、ダークレベル補正がマト リックス変換により一括して実現でき、各補正がそれぞれの補正に障害を与えることなく、良好な画像を出力することが可能となる。また、画像処理部もマトリックス変換回路1ケ所なのでコストダウンにもなる。尚、本発明は、複数の機器から構成されるシステムに適用しても良い。

【0056】また、本発明はシステム或は装置にプログラムを供給することによつて達成される場合にも適用できることは言うまでもない。

[0057]

【発明の効果】以上説明した様に本発明によれば、操作部を均等色空間上で調整し、R, G, B信号のマトリックス変換で処理することにより、簡単なハード構成で簡便に細かな色調整が実現できる。又、Y, M, C, R, G, Bの6原色が独立に色調整できる効果がある。

【0058】また本発明によれば、下地レベル補正、色空間圧縮、ダークレベル補正がマトリツクス変換により一括して実現でき、各補正がそれぞれの補正に障害を与えることなく、良好な画像を出力することが可能となる。また、画像処理部もマトリツクス変換回路1ケ所な 20のでコストダウンが図れる。

【図面の簡単な説明】

【図1】本発明に係る一実施例のカラー複写機の構成を示すプロック図である。

【図2】図1に示す操作部の詳細例を示す図である。

【図3】本実施例の色調整部の構成を示す図である。

【図4】図3に示す色変換部の詳細構成を示す図である。

【図5】本発明の操作部色調整キー個々に対応する均等 色空上の色座標の例を示す図である。

【図6】本発明に係る第3の実施例の構成を表わすプロック図である。

【図7】図6に示すマトリックス変換回路の詳細回路プロック図である。

【図8】従来の色調整操作部の構成を示す図である。

【図9】従来の色調整方法に基づくマゼンタとシアンの 濃度信号γ調整の図である。

【符号の説明】

101 カラー画像入力部

102 下地レベル検出回路

103 色分布検出回路

104 ダークレベル検出回路

105 マトリツクス変換係数生成回路

10 106 マトリックス変換回路

107 色修正手段

10.8 カラー画像出力部

201 CCDセンサ

202 A/D変換回路

203 シエーデイング補正回路

204 マトリクス変換回路

204a 色変換部

204b マトリクス係数生成部

205 濃度変換回路

20 206 黒抽出·下色除去回路

207 色・階調修正回路

208 シヤープネス修正回路

209 二 (多) 値化回路

210 プリンタ

2 1 1 操作部

220 画像入力部

220よりのR, G, Bカラー画像信号は、マトリクス 変換回路204の

501 最小值抽出回路

30 502, 503, 504 減算回路

505, 506, 507 ラッチ回路

508, 509, 510, 611, 612 乗算回路

5 1 1, 6 1 3 マトリックス変換回路

5 1 2, 5 1 3, 5 1 4 加算器

[図9]

[图2]

【图4】

[图6]

[图7]

フロントページの続き

(51) Int.CI.6

識別記号

庁内整理番号

FI

技術表示箇所

G 0 6 T 5/00 H 0 4 N 1/46

4226-5C

H 0 4 N 1/46

Z

【公報種別】特許法第17条の2の規定による補正の掲載 【部門区分】第7部門第3区分 【発行日】平成13年7月6日(2001.7.6)

【公開番号】特開平7-23245

【公開日】平成7年1月24日(1995.1.24)

【年通号数】公開特許公報7-233

【出願番号】特願平5-150258

【国際特許分類第7版】

H04N 1/60

G03F 3/08

G03G 15/01

G06T 5/00

H04N 1/46

[FI]

H04N 1/40

G03F 3/08 A

G03G 15/01

S

G06F 15/68

310 A

HO4N 1/46

7

【手続補正書】

【提出日】平成12年6月22日 (2000. 6. 2 2)

【手続補正1】

【補正対象普類名】明細審

【補正対象項目名】発明の名称

【補正方法】変更

【補正内容】

【発明の名称】

画像処理装置及び画像処理方

法

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】特許請求の範囲

【補正方法】変更

【補正内容】

【特許請求の範囲】

【請求項1】 <u>カラー画像を形成する画像形成手段を備</u> える画像処理装置において、

カラー画像信号に対する調整量を手動で設定する設定手 段と、

前記設定手段で設定した前記調整量と前記画像形成手段 の再現色データに応じて処理すべきカラー画像信号の各 注目画素に対する色補正処理のための色補正条件を生成 する生成手段と、

前記生成手段で生成した色補正条件に基づいてカラー画 像信号を色補正するカラー処理手段とを備え、

前記設定手段は、複数の代表的な色相に対してグラフィック表示を用いて色相と彩度の調整量をそれぞれ色相と 彩度独自に調整可能な第1の調整手段と、複数の代表的 な色相に対してそれぞれ独立して明度に関する調整量を 調整可能な第2の調整手段とを含むことを特徴とする画 像処理装置。

【請求項2】 <u>更に、原画像を読み込み処理すべきカラ</u> 一画像データを生成する読込手段を備え、

前記画像形成手段は、前記カラー処理手段によって処理 されたカラー画像信号に基づいてカラー画像データを生 成することを特徴とする請求項1記載の画像処理装置。

【請求項<u>3</u>】 前記<u>注目画素のカラー画像信号には、Y</u> (1×1) , M (2×1) , C (2×1) , R (1×1) , G (2×1) , B (2×1) , G (2×1) , B (2×1) , G (2×1) , B (2×1) ,

【請求項4】 前記第1の調整手段は、色相環を用いて 色相と彩度の調整量を調整することを特徴とする請求項 1 乃至請求項3のいずれかに記載の画像処理装置。

【請求項5】 入力画像原稿を特定色の色分解信号として入力する画像入力手段と、

前記入力画像原稿の下地レベル (白レベル) を検出する 第1の検出手段と、

前記入力画像原稿のあらかじめ決められた色空間上での 分布を検出する第2の検出手段と、

前記入力画像原稿の無彩色ダークレベル (黒レベル) を 検出する第3の検出手段と、

前記第1乃至第3の検出手段での検出下地レベル、色空間分布、無彩色ダークレベルより決定されるマトリックス変換係数により画像信号のマトリックス変換を行なう変換手段とを備えることを特徴とする画像処理装置。

【請求項6】 第1の検出手段は、入力画像原稿の色分解信号のうち、無彩色ハイライト信号を検出し、該無彩色ハイライト信号が画像原稿全而積のうち子め決められた而積以上を占めることを判定して下地レベルを決定することを特徴とする請求項5記載の画像処理装置。

【請求項7】 第2の検出手段での検出対象の予め決められた色空間は、CIE1976-L* u* v* 均等色空間であることを特徴とする請求項5または請求項6記載の画像処理装置。

【請求項8】 第2の検出手段での検出対象の予め決められた色空間は、CIE1976-L* a* b* 均等色空間であることを特徴とする請求項5または請求項6記載の画像処理装置。

【請求項9】 第2の検出手段での検出対象の予め決められた色空間は入力R, G, B信号をそれぞれ1/3乗変換した後、各々の線型加重和をとることによつて得られる3信号の色空間であることを特徴とする請求項5または請求項6記載の画像処理装置。

【請求項10】 第3の検出手段は、入力画像原稿の色分解信号のうち、各信号各々全でが予め決められたレベル以下の信号のうち最小となる色分解信号を無彩色ダークレベルと決定することを特徴とする請求項5乃至請求項9のいずれかに記載の画像処理装置。

【請求項11】 変換手段でのマトリックス変換係数は、接続可能な画像出力部の色再現範囲を反映したカラー画像信号と、第1乃至第3の検出手段より決定された下地レベル、色空間分布、無彩色ダークレベルを反映したカラー画像信号で決まる連立方程式の解を求めることにより決定されることを特徴とする請求項5乃至請求項10のいずれかに記載の画像処理装置。

【請求項12】 変換手段によつて生成された新たなる 色分解信号は、接続可能な画像出力部の色再現範囲を反映した値であることを特徴とする請求項5乃至請求項1 1のいずれかに記載の画像処理装置。

【請求項13】 カラー画像を形成する画像形成手段を備える画像処理装置において、カラー画像信号に対する調整量を手動で設定し、設定した前記調整量と前記画像形成手段の再現色データに応じて処理すべきカラー画像信号の各注目画素に対する色補正処理のための色補正条件を生成し、生成した色補正条件に基づいてカラー画像信号を色補正するカラー画像処理方法であって、

カラー画像信号に対する調整量の設定を、

複数の代表的な色相に対して、グラフィック表示を用いて色相と彩度の調整量をそれぞれ色相と彩度独自に調整可能とするとともに、複数の代表的な色相に対してそれぞれ独立して明度に関する調整量を調整可能とすることを特徴とする画像処理方法。

【請求項14】 更に、原画像を読み込んで処理すべき カラー画像データを生成し、前記生成されたカラー画像 に対して色補正処理されたカラー画像信号を前記画像形 成手段に出力し、前記画像形成手段は前記色補正処理されたカラー画像信号に基づいてカラー画像データを生成することを特徴とする請求項13記載の画像処理方法。 【請求項15】 前記注目画素のカラー画像信号には、Y(イエロー)、M(マゼンタ)、C(シアン)、R(レッド)、G(グリーン)、B(ブルー)が含まれることを特徴とする請求項13または請求項14記載の画像処理方法。

【請求項16】 前記色相と彩度の調整量の調整は、色相環を用いて色相と彩度の調整量を調整することを特徴とする請求項13乃至請求項15のいずれかに記載の画像処理方法。

【請求項17】 入力画像原稿を特定色の色分解信号として入力し、前記入力画像原稿の下地レベル (白レベル) と、前記入力画像原稿のあらかじめ決められた色空間上での分布と、前記入力画像原稿の無彩色ダークレベル (黒レベル) とを検出し、前記検出した下地レベル、色空間分布、無彩色ダークレベルより決定されるマトリックス変換係数により画像信号のマトリックス変換を行なうことを特徴とする画像処理方法。

【請求項18】 前記入力画像原稿の下地レベル (白レベル) の検出は、入力画像原稿の色分解信号のうち、無彩色ハイライト信号を検出し、該無彩色ハイライト信号が画像原稿全面積のうち子め決められた面積以上を占めることを判定して下地レベルを決定することを特徴とする請求項17記載の画像処理方法。

【請求項19】 前記入力画像原稿のあらかじめ決められた色空間上での分布の検出において、検出対象の予め 決められた色空間は、CIE1976-L*u* レ* 均等色空間であることを特徴とする請求項17または請求項18記載の画像処理方法。

【請求項20】 前記入力画像原稿のあらかじめ決められた色空間上での分布の検出において、検出対象の予め 決められた色空間は、CIE1976-L*a*b* 均等色空間であることを特徴とする請求項17または請求項18記載の画像処理方法。

【請求項21】 前記入力画像原稿のあらかじめ決められた色空間上での分布の検出において、検出対象の予め決められた色空間は入力R、G、B信号をそれぞれ1/3乗変換した後、各々の線型加重和をとることによつて得られる3信号の色空間であることを特徴とする請求項17または請求項18記載の画像処理方法。

【請求項22】 前記入力画像原稿の無彩色ダークレベル (黒レベル) の検出は、入力画像原稿の色分解信号のうち、各信号各々全てが于め決められたレベル以下の信号のうち最小となる色分解信号を無彩色ダークレベルと決定することを特徴とする請求項17乃至請求項21のいずれかに記載の画像処理方法。

【請求項23】 前記マトリツクス変換係数は、接続可能な画像出力部の色再現範囲を反映したカラー画像信号

と、前記入力画像原稿の下地レベル(白レベル)と、前記入力画像原稿のあらかじめ決められた色空間上での分布と、前記入力画像原稿の無彩色ダークレベル(黒レベル)との検出より決定された下地レベル、色空間分布、無彩色ダークレベルを反映したカラー画像信号で決まる連立方程式の解を求めることにより決定されることを特徴とする請求項17乃至請求項22のいずれかに記載の画像処理方法。

【請求項24】 前記マトリックス変換によつて生成された新たなる色分解信号は、接続可能な画像出力部の色再現範囲を反映した値であることを特徴とする請求項17乃至請求項23のいずれかに記載の画像処理方法。

【手続補正3】

【補正対象費類名】明細書

【補正対象項目名】0011

【補正方法】変更

【補正内容】

[0011]

【課題を解決するための手段】本発明は上述の課題を解決することを目的としてなされたもので、上述の課題を解決する一手段として以下の構成を備える。即ち、カラー画像を形成する画像形成手段を備える画像処理装置において、カラー画像信号に対する調整量を手動で設定す

る設定手段と、前記設定手段で設定した前記調整量と前記画像形成手段の再現色データに応じて処理すべきカラー画像信号の各注目画素に対する色加正処理のための色加正条件を生成する生成手段と、前記生成手段で生成した色加正条件に基づいてカラー画像信号を色補正するカラー処理手段とを備え、前記設定手段は、複数の代表的な色相に対して、グラフィック表示を用いて色相と彩度の調整量をそれぞれ色相と彩度独自に調整可能な第1の調整手段と、複数の代表的な色相に対してそれぞれ独立して明度に関する調整量を調整可能な第2の調整手段とを含むことを特徴とする。

【手続補正4】

【補正対象書類名】明細書

【補正対象項目名】 0057

【補正方法】変更

【補正内容】

[0057]

【発明の効果】以上説明した様に本発明によれば、彩度、色相、明度をそれぞれ手動で調整し、注目画素に関連する画像形成手段の色再現データに基づいて色補正処理を行えることにより、簡単なハード構成で簡便に細かな色調整が実現できる。又、Y、M、C、R、G、Bの各色が独立に色調整できる効果がある。

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRĀPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
MOTHER: SMALL TEXT

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.