15-150 Fall 2013

Lecture 3
Stephen Brookes

Specifications and proofs

Last time

- Expression evaluation produces a value (if it terminates)
 - e =>* v means e evaluates to v
- Declarations produce value bindings
 - $d = >^* [x_1:v_1, ..., x_k:v_k]$
- Pattern matching succeeds or fails
 - match(p, v) succeeds with $[x_1:v_1, ..., x_k:v_k]$
 - match(p, v) fails

Notation

- We write $[x_1:v_1, ..., x_k:v_k]$ for a collection of value bindings
- Conventions

```
x, x_1, ... variables

v, v_1, ... (syntactic) values

e, e_1, ... expressions

t, t_1, ... types
```

- Termination $e \downarrow when \exists v. e =>^* v$
- Non-termination e 1

Basic properties

Reflexive

Transitive

```
If e_1 = >^* e_2 \text{ and } e_2 = >^* e_3 then e_1 = >^* e_3
```

Substitution

Given a collection of value bindings

$$[x_1:v_1, ..., x_k:v_k]$$

and an expression e

we write

$$[x_1:v_1,...,x_k:v_k]$$
 e

for the expression obtained by substituting

$$v_1$$
 for $x_1, ..., v_k$ for x_k in e

Examples

[x:2] (x + x) is (2 + 2)
[x:2] (fn y => x + y) is (fn y => 2 + y)
[x:2] (if x>0 then I else
$$f(x-1)$$
)
is (if 2>0 then I else $f(2-1)$)

Evaluation

(only the well-typed instances)

Arithmetic

f

+ evaluates left-to-right

 $e_1 = >^* v_1$ and $e_2 = >^* v_2$ then

$$e_1 + e_2 =>^* v_1 + e_2$$

=>* $v_1 + v_2$

Boolean

If e =>* true, then
if e then e₁ else e₂ =>* e₁

Evaluation

(only the well-typed instances)

Functions

a function call evaluates its argument

lf

$$e_1 =>^* (fn x => e) and $e_2 =>^* v$
then$$

$$e_1 e_2 =>^* (fn x => e) e_2$$

=>* (fn x => e) v =>* [x:v]e

Declarations

In the scope of fun
$$f(x) = e$$

 $f = >^* (fn x = > e)$

Patterns

If matching p against v succeeds
with bindings [x₁:v₁, ..., x_k:v_k],
 (fn p => e) v =>* [x₁:v₁, ..., x_k:v_k]e

If matching p₁ against v fails,
 and matching p₂ against v succeeds
 with bindings [x₁:v₁, ..., x_k:v_k],

$$(\text{fn } p_1 => e_1 \mid p_2 => e_2) v$$

=>* [x₁:v₁, ..., x_k:v_k]]e₂

Inversion

(only the well-typed instances)

+ evaluates its arguments

Arithmetic

lf

$$e_1 + e_2 = >^* v$$

there are v₁, v₂ such that

$$e_1 = >^* v_1$$
 $e_2 = >^* v_2$
 $v_1 + v_2 = >^* v_2$

Evaluation

- =>* is the reflexive transitive closure of =>
 (one-step evaluation)
- =>+ is the transitive closure of =>

```
e => e' one step

e =>^* e' finitely many steps

e =>^+ e' at least one step
```

Example

fun f(x:int):int = f x

$$f 0 =>^+ (fn x => f x) 0$$

=>* [x:0] f x
=>* f 0
hence $f 0 =>^+ f 0$
and $(f 0) \uparrow$

Summary

- Using => and =>* we can talk precisely about program behavior
- But sometimes we may want to ignore evaluation order...

For all e_1 , e_2 : int and all v:int if $e_1 + e_2 =>^* v$ then $e_2 + e_1 =>^* v$

evaluation order is different but we only care about the final value

Example

```
fun add I (x:int, y:int):int = x + y
fun addr(x:int, y:int):int = y + x
```

- Let E be a well-typed expression of type int containing a call to addl
- Let E' be obtained by changing to addr
- E' is also well-typed with type int
- If E = > * 42 then also E' = > * 42

addl and addr are indistinguishable

Equality

(extensional equivalence)

 For each type t there is a mathematical notion of equality for expressions of that type

$$e_1 =_{int} e_2 \Leftrightarrow \forall n. (e_1 =>^* n \text{ iff } e_2 =>^* n)$$
 $f_1 =_{int->int} f_2 \Leftrightarrow (f_1 \downarrow \text{ iff } f_2 \downarrow) \text{ and}$
 $\forall e_1, e_2 : int. (e_1 =_{int} e_2 \text{ implies } f_1 e_1 =_{int} f_2 e_2)$

$$addl = int->int addr$$

Equations

(only the well-typed instances)

Arithmetic

$$e + 0 = e$$
 $e_1 + e_2 = e_2 + e_1$
 $e_1 + (e_2 + e_3) = (e_1 + e_2) + e_3$
 $21 + 21 = 42$

Boolean

if true then
$$e_1$$
 else $e_2 = e_1$
if false then e_1 else $e_2 = e_2$
 $(0 < 1) =$ true

Equations

(only the well-typed instances)

Applications

$$(fn x => e) v = [x:v]e$$

only when argument is a value

Declarations

In the scope of fun
$$f(x) = e$$

 $f = (fn x => e)$

Equations

(only the well-typed instances)

• When e_1 and e_2 have type t -> t'

 $e_1 = e_2$ if and only if for all values v_1 , v_2 of type t $v_1 = v_2$ implies $e_1 v_1 = e_2 v_2$

extensionality

Compositionality

(only the well-typed instances)

- Substitution of equals
 - If $e_1 = e_2$ and $e_1' = e_2'$ then $(e_1 e_1') = (e_2 e_2')$
 - If $e_1 = e_2$ and $e_1' = e_2'$ then $(e_1 + e_1') = (e_2 + e_2')$

and so on

Useful facts

(when well-typed)

- If e => e' then e = e'
- If $e = >^* v$ then e = v
- If $e = >^* v$ then (fn x = > E) e = [x:v] E

Summary

- Can use precise math notation to talk about the applicative behavior of functional programs
- Equality is compositional
- Equality is defined in terms of evaluation
- $e =>^* v$ is consistent with ML

Specifications

For a function definition, specify (* as comments *)

- name and type of the function
- a requires-condition
 - assumptions about the argument
- an **ensures**-condition
 - guarantees about the result of function call, when the argument has required properties

Specifications

- Be clear and precise
- Use bound variables consistently
- Use =>* (evaluation) and = (equality)
 accurately and consistently
- Don't leave any assumptions hidden

eval spec

```
fun eval ([]:int list): int = 0
                eval (d::L) = d + 10 * (eval L);
(* eval:int list -> int *)
(* REQUIRES:
  every integer in L is a decimal digit *)
  ENSURES:
     eval(L) evaluates to a non-negative integer *)
```

decimal spec

```
fun decimal (n:int) : int list =
         if n<10 then [n]
                 else (n mod 10) :: decimal (n div 10);
(* decimal:int -> int list *)
(* REQUIRES: n \ge 0
   ENSURES:
      decimal(n) evaluates to
         a list L of decimal digits,
         such that eval(L) = n
                                              */
```

Does it work?

- A specification asserts a correctness property about the applicative behavior of a function
- How do we prove that a function satisfies a specification?
 - That it does ensure a correct result whenever applied to an argument that meets the requirements
- It's not usually feasible or sufficient to do testing....

Proofs

- We give math-based proofs using equational or evaluational reasoning
- Use the program structure as a guide

program syntax	reasoning
if-then-else	boolean case analysis
case p of	case analysis
fun f(x) =f	induction

Induction

- A family of proof techniques
 - simple (mathematical) induction
 - complete (strong) induction
 - structural induction
 - well-founded induction

Our plan

- Introduce induction
 - templates to help write accurately
 - learn when applicable
- Focus on examples
- Specifications will involve equality and evaluation

Simple induction

- To prove a property of the form
 P(n), for all non-negative integers n
- First, prove P(0). base case
- Then show that, for all $k \ge 0$, P(k+1) follows logically from P(k).

inductive step

Why it works

- P(0) gets a direct proof
- P(I) follows from P(0)
- P(2) follows from P(1)
- Similarly, for each $n \ge 0$ we can show P(n)
 - for k>0, at the k^{th} step we've already shown P(k), so P(k+1) follows logically

Example

```
fun f(x:int):int =

if x=0 then | else f(x-1) + 1

(* REQUIRES x \ge 0 *)

(* ENSURES f(x) = x+1 *)
```

To prove:

For all values x:int such that $x \ge 0$, f(x) = x+1

Proof by simple induction

- Let P(n) be f(n) = n+1
- Base case: we prove P(0), i.e. f(0) = 0+1

```
f 0 = (fn x => if x=0 then I else f(x-I)+I) 0
   = [x:0](if x=0 then I else f(x-1)+1)
   = if 0=0 then | else f(0-1) + 1
   = if true then | else f(0-1) + |
   = |
0+1 = 1
So f(0) = 0+1
```

Proof by simple induction

- Let P(n) be f(n) = n+1
- Inductive step:

```
let k \ge 0, assume P(k), prove P(k+1).
```

Let v be the numeral for k+1.

$$f(k+1) = if v=0 then | else f(v-1) + 1$$

$$= if false then | else f(v-1) + 1$$

$$= f(v-1) + 1$$

$$= f(k) + 1 \qquad since v=k+1$$

$$= (k+1) + 1 \qquad by assumption P(k)$$

So P(k+1) follows from P(k)

Using simple induction

- Q:When can I use simple induction to prove a property of a recursive function f?
- A:When there is a non-negative measure of argument size and f(x) only makes recursive calls of form f(y) with size(y) = size(x)-1

Example

To prove:

For all values L:int list there is an integer n such that eval L =>* n

When it doesn't work

```
You cannot use simple induction for
```

```
fun decimal (n:int) : int list =
  if n<10 then [n]
  else (n mod 10) :: decimal (n div 10)</pre>
```

Why not?