Trabalho de Métodos de Amostragem

Jayme Gomes dos Santos Junior Curitiba 2018

Sumário

1	Tral	balho 1	2
	1.1	Teorema 1	2
	1.2	Exercício	2

Tabela 1: População de Tamanho N=6

População	Valores
y1	2
y2	4
y3	5
y4	7
y5	8
y6	9

1 Trabalho 1

1.1 Teorema 1

Tendo uma população de tamanho ${\bf N}$, ao extrair uma amostra de tamanho ${\bf n}$, temos que o estimador não evezado para \overline{Y} é:

$$\overline{y} = \sum_{i=1}^{n} \frac{y_i}{n}$$

1.2 Exercício

Com base na população dada na tabela 1, encontrar a média de todas as combinações possíveis de amostras de tamanhos: n = 2, n = 3 e n = 4.

1.2.1 Resolução

Sabendo que a média populacional é dada por:

$$\overline{Y} = \sum_{i=1}^{N} \frac{y_i}{N} = \frac{2+4+5+7+8+9}{6} = 5.833$$

O objetivo é mostrar que a média de todas as combinações de amostras possíveis terão o mesmo valor da média populacional.

OBS: ys = médias amostrais, P(ys) = probabilidade de cada amostra acontecer e ys.P(ys) = média amostral multiplicada pela sua probabilidade.

Tabela 2: Amostras Possíveis com
n=2

Amostra	ys	P(ys)	ys.P(ys)
2,4	3	1/15	0.2
2,5	3.5	1/15	0.23
2,7	4.5	1/15	0.3
2,8	5	1/15	0.33
2,9	5.5	1/15	0.37
4,5	4.5	1/15	0.3
4,7	5.5	1/15	0.37
4,8	6	1/15	0.4
4,9	6.5	1/15	0.43
5,7	6	1/15	0.4
5,8	6.5	1/15	0.43
5,9	7	1/15	0.47
7,8	7.5	1/15	0.5
7,9	8	1/15	0.53
8,9	8.5	1/15	0.57

1.2.1.1 Para n = 2, temos:

Comparando os resultados das médias populacional e amostral com n=2, temos que: Média populacional 5.83= Média de todas as amostras possíveis de tamanho 2 5.83