Algumas fórmulas de derivação $\,$

função de x	$\frac{\mathrm{d}}{\mathrm{dx}}$
$m u(x), m \in \mathbb{R}$	m u'(x)
$u(x)^n, n \in \mathbb{R}$	$n u(x)^{n-1} u'(x)$
$ \ln_a u(x) , \ a \in \mathbb{R}^+ \setminus \{1\} $	$\frac{u'(x)}{u(x)\ln a}$ $a^{u(x)}u'(x)\ln a$
$a^{u(x)}, a \in \mathbb{R}^+$	$a^{u(x)}u'(x)\ln a$
$\sin u(x)$	$\cos u(x) u'(x)$
$\cos u(x)$	$-\sin u(x)u'(x)$
$\tan u(x)$	$\sec^2 u(x) u'(x)$
$\cot u(x)$	$-\csc^2 u(x) u'(x)$
$\sec u(x)$	$\tan u(x) \sec u(x) u'(x)$
$\csc u(x)$	$-\cot u(x) \csc u(x) u'(x)$
$\sinh u(x)$	$ \cosh u(x) u'(x) $
$\cosh u(x)$	$\sinh u(x) u'(x)$
$\arcsin u(x)$	$\frac{u'(x)}{\sqrt{1-u(x)^2}}$
$\arccos u(x)$	$-\frac{u'(x)}{\sqrt{1-u(x)^2}}$
$\arctan u(x)$	$\frac{u'(x)}{1+u(x)^2}$
$\operatorname{arccot} u(x)$	$-\frac{u'(x)}{1+u(x)^2}$

${\bf Algumas\ f\'ormulas\ trigonom\'etricas}$

$\sec u = \frac{1}{\cos u}$	$\csc u = \frac{1}{\sin u}$
$\cot u = \frac{\cos u}{\sin u}$	
$\cos^2 u = \frac{1 + \cos(2u)}{2}$	$\sin^2 u = \frac{1 - \cos(2u)}{2}$
$1 + \tan^2 u = \sec^2 u$	$1 + \cot^2 u = \csc^2 u$
$\cos^2(\arcsin u) = 1 - u^2$	$\sin^2(\arccos u) = 1 - u^2$

Algumas fórmulas hiperbólicas

$\sinh u = \frac{e^u - e^{-u}}{2}$	$ \cosh u = \frac{e^u + e^{-u}}{2} $
$\cosh^2 u - \sinh^2 u = 1$	