Options Pricing and Risk Analysis

Report submitted by

Akash Ringe 606079174 Masters in Financial Engineering UCLA Anderson School of Management

Overview

This project explores the pricing of Asian options and call options, and it further evaluates their potential risk by using a Monte Carlo simulation approach. The pricing and risk analysis is especially useful for derivatives pricing, risk management, and investment decisions. The project is divided into two parts:

- 1. **Asian Options Pricing**: We use Monte Carlo simulations to evaluate the price of arithmetic and geometric Asian options. We also investigate the difference between these two types of Asian options and how this difference changes with respect to the strike price.
- Call Options Pricing and Risk Analysis: We develop a complex pricing model for an exotic call
 option on a collateral loan that integrates jump-diffusion processes and credit risk factors. We
 simulate multiple scenarios to estimate the potential default risk and expected time of option
 exercise.

Problem 1 - Pricing Arithemetic and Geometric Asian Options

- 1. Define the initial parameters:
 - Risk-free rate
 - Strike price
 - o Underlying asset's price
 - Underlying asset's volatility
 - Time to maturity
- 2. Define the Monte Carlo simulation:
 - For each simulation, generate a path of the underlying asset's price using geometric Brownian motion.
 - Calculate the average price for both arithmetic and geometric Asian options using given formula.
- 3. For each simulation:
 - Calculate the payoff of the arithmetic and geometric Asian options.
 - Discount the payoffs to present value using the risk-free rate.
- 4. Calculate the average of the discounted payoffs across all simulations to obtain the option prices.

5. Calculaate the difference between the arithmetic Asian option price and the geometric Asian option price for different strike prices and volatilities.

Inputs: r=0.05 sigma=0.25 S0=50 T=1 X=30 m=20 x=2.5

Outputs:

	Strike	AC price	GC price	AC-GC	A/G price
0	30.0	20.249573	20.258587	-0.009014	0.168987
1	32.5	17.900042	17.981510	-0.081468	0.203831
2	35.0	15.515606	15.426364	0.089241	0.054313
3	37.5	13.150060	13.035956	0.114104	0.104551
4	40.0	10.859687	10.727787	0.131900	0.267773
5	42.5 45.0 47.5	8.578851	8.539357	0.039494	0.090195
6		6.685563	6.677025	0.008539	0.124450
7		4.946273	4.783212	0.163061	0.198847
8	50.0	3.420930	3.436882	-0.015952	0.113390
9	52.5	2.318921	2.208071	0.110850	0.036724
10	55.0 57.5 60.0		1.494048	0.028589	0.047266
11			0.896720	0.050521	0.227557
12		0.557181	0.528670	0.028511	0.114076
13	62.5	0.333998	0.303362	0.030636	0.040430
14	65.0	0.192543	0.185089	0.007454	0.219648
15	67.5	0.096478	0.086636	0.009842	0.078890
16	70.0	0.058865	0.040008	0.018857	0.001769
17	72.5	0.036719	0.030675	0.006045	0.103288
18	75.0	0.015564	0.005983	0.009581	-0.071930
19	77.5	0.006638	0.005554	0.001083	0.200854

Problem 2

- 1. Define the initial parameters:
 - o Risk-free rate
 - Strike price
 - Collateral value and its volatility
 - Credit quality of the borrower
 - Parameters for the jump-diffusion process (lambda1 and lambda2)
- 2. Define the Monte Carlo simulation:
 - For each simulation, generate a path of the collateral value using a jump-diffusion model.
- 3. For each simulation:
 - o Evaluate the borrower's default probability.
 - Calculate the payoff of the call option considering the default risk.
 - Discount the payoff to present value using the risk-free rate.
- 4. Calculate the average of the discounted payoffs across all simulations to obtain the price of the call option.
- 5. Output the default probability and expected exercise time of the call option for different lambda1, lambda2, and maturity parameters

```
Inputs: V0 = 20000 L0 = 22000 mu = -0.1 sigma = 0.2 gamma = -0.4 lambda1 = 0.2 T = 5 r0 = 0.02 delta = 0.25 lambda2 = 0.4 alpha = 0.7 recovery = 0.95
```

Outputs:

For
$$\lambda_1 = 0.2$$
 $\lambda_2 = 0.4$ $T = 5$

```
option, prob, exercise_time = calc_option_value(0.print(f"Option Value: {option}")
print(f"Probablity of default: {prob}")
print(f"Expected Option Exercise time: {exercise_t
```

Option Value: 54.75903441031755 Probablity of default: 0.01559

Expected Option Exercise time: 2.499679281590763

For lambda1 = 0.2 fixed

	Lambda2	T	Option Value	Probablity of Default	Expected Exercise Time	24	0.1	6	18.432511	0.007	3.000000
0	0.1	3	11.739792	0.003	1.333333	25	0.2	6	41.096370	0.012	3.250000
1	0.2	3	13.094392	0.004	1.250000	26	0.3	6	30.120747	0.010	2.500000
2	0.3	3	22.054972	0.006	1.166667	27	0.4	6	56.657636	0.015	3.133333
3	0.4	3	39.358081	0.012	1.416667	28	0.5	6	98.825555	0.020	3.000000
4	0.5	3	29.840262	0.009	1.444444	29	0.6	6	101.163085	0.028	3.000000
5	0.6	3	48.179344	0.011	1.272727	30	0.7	6	135.158721	0.040	2.800000
6	0.7	3	59.488783	0.015	1.200000	31	0.8	6	152.356229	0.046	2.630435
7	8.0	3	96.300708	0.020	1.450000	32	0.1	7	3.686904	0.001	3.000000
8	0.1	4	7.748929	0.002	1.500000	33	0.2	7	51.911621	0.016	3.375000
9	0.2		18.128613	0.007	2.571429	34	0.3	7	56.508141	0.018	3.722222
10	0.3		13.847434	0.004	1.500000	35	0.4	7	71.996864	0.023	3.391304
11	0.4		37.663423	0.007	1.571429	36	0.5	7	97.473255	0.028	3.571429
12	0.5		66.660106	0.017	2.176471	37	0.6	7	110.061799	0.028	4.142857
13	0.6		55.777485	0.015	1.800000	38	0.7	7	120.926814	0.036	3.250000
14	0.7		78.431245	0.021	2.238095	39	0.8	7	188.172079	0.063	3.396825
15	0.8		49.989940	0.011	1.909091	40	0.1	8	16.672064	0.006	3.500000
16	0.1		16.481959	0.003	3.000000	41	0.2	8	48.788242	0.016	4.625000
17	0.2		27.177351 33.907688	0.007	2.571429 2.272727	42	0.3	8	92.112872	0.028	3.892857
19	0.3		26.255069	0.008	2.250000	43	0.4	8	66.684974	0.016	3.312500
20	0.4		64.794897	0.008	2.250000	44	0.5	8	120.531487	0.037	4.810811
21	0.6		78.966046	0.020	2.722222	45	0.6	8	133.935068	0.037	4.432432
22	0.0		112.276142	0.010	2.200000	46	0.7	8	137.315426	0.045	4.088889
23	0.7		92.580932	0.030	2.363636	47	0.8		169.257770	0.054	3.592593
23	0.0	J	92.000932	0.022	2.303030		0.0				2.232000

For lambda2 = 0.4 fixed

	Lambda1	т	Option Value	Probablity of Default	Expected Exercise Time						
_		_		•		22	0.35	5	44.941039	0.014	2.357143
0	0.05		28.786654	0.007	1.571429	23	0.40	5	58.575167	0.016	2.562500
1	0.10	3	34.662412	0.007	1.714286	24	0.05	6	49.678262	0.014	3.071429
2	0.15	3	29.129425	0.006	1.500000	25	0.10	6	83.949449	0.023	2.956522
3	0.20	3	25.217242	0.004	1.000000	26	0.15	6	64.117591	0.018	2.666667
4	0.25	3	41.044778	0.013	1.307692	27	0.20	6	72.116908	0.019	2.684211
5	0.30	3	27.816774	0.008	1.750000	28	0.25	6	53.509886	0.018	2.777778
6	0.35	3	25.674848	0.006	1.666667	29	0.30	6	62.500184	0.015	3.466667
						30	0.35	6	71.896442	0.020	2.600000
7	0.40		53.031500	0.011	1.363636	31	0.40	6	81.552875	0.025	3.200000
8	0.05	4	36.598873	0.012	2.166667	32	0.05	7	72.322983	0.020	3.800000
9	0.10	4	37.185353	0.008	1.875000	33	0.10	7	91.980152	0.027	3.777778
10	0.15	4	26.031747	0.007	2.000000	34	0.15	7	63.148526	0.021	3.809524
11	0.20	4	40.725825	0.011	2.454545	35	0.20	7	86.243374	0.024	3.458333
12	0.25	4	14.111335	0.002	2.000000	36	0.25	7	91.223579	0.028	3.357143
13	0.30	4	64.589823	0.014	2.000000	37	0.30	7	72.906679	0.022	3.636364
14	0.35		31.968979	0.006	2.500000	38	0.35	7	78.284250	0.024	3.333333
						39	0.40	7	65.399968	0.020	3.250000
15	0.40		29.017663	0.008	1.375000	40	0.05	8	72.805444	0.027	4.222222
16	0.05	5	70.210347	0.021	2.761905	41	0.10	8	67.511130	0.021	3.761905
17	0.10	5	60.187346	0.018	2.500000	42	0.15	8	74.458553	0.024	3.666667
18	0.15	5	62.072928	0.019	2.578947	43	0.20	8	57.819989	0.018	4.166667
19	0.20	5	49.903920	0.013	2.769231	44	0.25	8	119.402180	0.035	3.771429
20	0.25	5	45.339486	0.015	2.133333	45	0.30	8	78.171651	0.025	4.360000
21	0.30		49.033683	0.017	2.352941	46	0.35	8	76.808876	0.027	4.074074
21	0.30	J	48.033003	0.017	2.302941	47	0.40	8	90 965563	0.026	4 153846

Call Option Price Plots

