9) Let $\{a_n\}$ be a sequence defined by $a_n = n^{\frac{1}{n}}$, has limit 1. Which of the following option(s) is(are) true?

[Hint: Use v),vi) and viii) to find out the limits of the sequences given in the options.]

V

$$\lim_{n o\infty}\ln(n^{rac{1}{n}})=0$$

✓

$$\lim_{n o \infty} \ln(1 + n^{rac{1}{n}}) = 0$$

$$\lim_{n o\infty}rac{\ln 2-rac{1}{n}}{\ln(1+n^{rac{1}{n}})}=1$$

✓

$$\lim_{n o\infty} (4n^{rac{3}{n}}-1)=3$$

 $\lim_{n o\infty}\ln(1+n^{rac{1}{n}})=\ln(1+\lim_{n o\infty}n^{rac{1}{n}})=\ln(1+1)=\ln(2)$

Here, limits can be brought inside the function as log is a continuous function.

 $\lim_{n o\infty}rac{\ln2-rac{1}{n}}{\ln(1+n^{rac{1}{n}})}=rac{\ln2}{\ln2}=1$, the denominator can be calculated from the above and

$$\lim_{n o \infty} \ln 2 - rac{1}{n} = \ln 2$$

$$\lim_{n o \infty} (4n^{rac{3}{n}} - 1) = 4\lim_{n o \infty} (n^{rac{1}{n}})^3 - 1 = 4 - 1 = 3$$

Graded2

If the functions f(t) and g(t) denoting the profits of Company A and Company B, respectively, are known to be continuous at t=3, then what will be the values of n and m?

9) Assuming g to be continuous at t=3, choose the correct option from the following.

C

$$\lim_{t o 3-}rac{g(t)-g(3)}{t-3}=18$$
 and $\lim_{t o 3+}rac{g(t)-g(3)}{t-3}=18$ hence g is differentiable at $t=3$

 \bigcirc

$$\lim_{t o 3-}rac{g(t)-g(3)}{t-3}=9$$
 and $\lim_{t o 3+}rac{g(t)-g(3)}{t-3}=9$, hence g is differentiable at $t=3$.

C

$$\lim_{t\to 3-}rac{g(t)-g(3)}{t-3}=18$$
 and $\lim_{t\to 3+}rac{g(t)-g(3)}{t-3}=9$, hence g is not differentiable at $t=3$.

 \bigcirc

$$\lim_{t\to 3-}rac{g(t)-g(3)}{t-3}=9$$
 and $\lim_{t\to 3+}rac{g(t)-g(3)}{t-3}=18$, hence g is not differentiable at $t=3$.

Doubt: Not sure how this expression evaluates differentiability.

7. Let f and g be two functions which are differentiable at each $x \in \mathbb{R}$. Suppose that, $f(x) = g(x^2 + 5x)$, and f'(0) = 10. Find the value of g'(0). [Answer: 2]

Given
$$f(x) = g(x^2 + 5x) \implies f'(x) = g'(x^2 + 5x)(2x + 5)$$

So $f'(0) = 5g'(0) \implies g'(0) = \frac{10}{5} = 2$

AQ3.4

6) Let
$$f(x)=3x+1$$
 then find the value of the integral $\int_0^2 f(x)\,dx$ using limit of Riemann sums as $n\to\infty$, for the given partition $P=\{0=x_0,x_1=\frac{2}{n},\dots,x_i=\frac{2\times i}{n},\dots,x_n=2\}, i=1,2,\dots,n$ and $x_i^*\in[x_{i-1},x_i]$, where $x_i^*=\frac{2\times i}{n}$.

4) Find the value of given definite integral $\int_{-2021}^{2021} (x^{2021}.\cos 2021x + \sin 2021x) dx$.

No need to simplify the integral. Note that sin(2021x) is an odd function. The area under the graph of an odd function is 0 in the interval [-2021, 2021]. Similarly, can you find the nature of the composite function in the first term and compute the area (integral)?

$$F(x) = 3x + 1$$

$$\Rightarrow \begin{cases} x^* = 2i \\ y \end{cases} ; \quad \Delta x_i = 2i - 2(-1) \\ \Rightarrow \langle \Delta x_i = 2 \\ y \end{cases}$$

$$\Rightarrow \langle \Delta x_i = 2 \\ \Rightarrow \langle \Delta x_i = 2i \\ \Rightarrow \langle \Delta x_i = 2$$

Practice3

Suppose $\int x \ln(1+x) dx = f(x) \ln(x+1) - \frac{x^2}{4} + Ax + B$, where B is the constant of integration. Which of the following are correct?

Solution: By using integration by parts:

$$\int x \ln(1+x) \, dx = \ln(1+x) \int x \, dx - \int \left\{ \frac{d(\ln(1+x))}{dx} \int x \, dx \right\} \, dx$$

$$= \frac{x^2 \ln(1+x)}{2} - \int \frac{x^2}{2(1+x)} \, dx$$

$$= \frac{x^2 \ln(1+x)}{2} - \int \frac{x^2 + x - x}{2(1+x)} \, dx$$

$$= \frac{x^2 \ln(1+x)}{2} - \int \frac{x^2 + x}{2(1+x)} \, dx + \int \frac{x}{2(1+x)} \, dx$$

$$= \frac{x^2 \ln(1+x)}{2} - \frac{x^2}{4} + \int \frac{x+1-1}{2(1+x)} \, dx$$

$$= \frac{x^2 \ln(1+x)}{2} - \frac{x^2}{4} + \int \frac{x+1}{2(1+x)} \, dx - \int \frac{1}{2(1+x)} \, dx$$

$$= \frac{x^2 \ln(1+x)}{2} - \frac{x^2}{4} + \frac{x}{2} - \frac{1}{2} \ln(1+x) + B$$

$$= \frac{x^2 - 1}{2} \ln(1+x) - \frac{x^2}{4} + \frac{x}{2} + B$$

If we equate coefficients then $f(x) = \frac{x^2 - 1}{4}$, and $A = \frac{1}{2}$.

https://www.youtube.com/watch?v=fTCDNe4GDHI

Consider a basis
$$S = \{V_1, V_2, V_3\}$$
 for R^3
 $V_1 = \{1, 1, 1\}$, $V_2 = \{1, 1, 0\}$, $V_3 = \{1, 0, 0\}$

Let $T : R^5 \rightarrow R^2$ be the Linear transformation for which $T(V_1^0) = \{1, 0\}$, $T(V_2^0) = \{2, -1\}$, $T(V_3^0) = \{4, 3\}$

Find a formula for $T(x_1, x_2, x_3)$ and then use that formula to compute $T(2, -3, 5)$
 $Sol T : V \rightarrow W$, $V = finite dimensional vector space $S = \{V_1, V_2, \dots, V_n\}$, for every $V \in V$, $T(V_1) = \{T(V_1) + C_1 T(V_2) + C_3 T(V_3)\}$
 $V = Q(\{1, 1, 1, 1\}) + C_2(\{1, 1, 0\}) + C_3(\{1, 0\}) +$$

AQ8.1

Let $W=\{(x,y,z)\mid x=2y+z\}$ be a subspace of \mathbb{R}^3 . Let $\beta=\{(2,1,0),(1,0,1)\}$ be a basis of W. Let $T:W\to\mathbb{R}^2$ be a linear transformation such that T(2,1,0)=(1,0) and T(1,0,1)=(0,1). Answer the questions 3, 4 and 5 using the given information.

5) What will be the matrix representation of T with respect to the basis β for W and $\gamma=\{(1,1),(1,-1)\}$ for \mathbb{R}^2 ?

Thus;
$$m(\bar{1}) = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$\theta = \cos^{-1}\left(\frac{u \cdot v}{\sqrt{(v \cdot v) \times (u \cdot u)}}\right)$$

Let us compute the angle θ between (1,0,0) and (1,0,1).

$$(1,0,0)\cdot(1,0,1)=1,(1,0,1)\cdot(1,0,1)=2,(1,0,0)\cdot(1,0,0)=1.$$

Hence,
$$\theta = \cos^{-1}\left(\frac{1}{\sqrt{2}}\right) = \frac{\pi}{4}$$
 radians or 45°.

Similarly, the angle between between (1,0,0) and (1,1,1) is $\cos^{-1}\left(\frac{1}{\sqrt{3}}\right)$.

Representing vector as a linear combination

 $\left\{\frac{1}{\sqrt{10}}(1,3),\frac{1}{\sqrt{10}}(-3,1)\right\}$ is an orthonormal basis of \mathbb{R}^2 . Write (2,5)

$$\left\{\frac{1}{\sqrt{10}}(1,3), \frac{1}{\sqrt{10}}(-3,1)\right\} \text{ is an orthonormal basis of } \mathbb{R}^2. \text{ Write } (2,5)$$
as a linear combination in terms of these basis vectors.

$$(2,5) = C_1 + C_2 + C_3 + C_4 + C_4 + C_5 + C_5$$

Finding the projection of a vector into a subspace

$$V = \mathbb{R}^{2}, W = \langle (3,1) \rangle, v = (1,3). \text{ Then } proj_{W}(v) = (1.8,0.6).$$

$$\frac{1}{\sqrt{10}} (3,1) \text{ is an orn basis for } W.$$

$$\frac{1}{\sqrt{10}} (3,1) = \langle v, \frac{1}{\sqrt{10}} (3,1) \rangle = \langle (1,3), (3,1) \rangle \frac{1}{\sqrt{10}} (3,1)$$

$$= (1\times3 + 5\times1) - (3,1) = \frac{6}{\sqrt{10}} (3,1) = \frac{6}{\sqrt{10}}$$

$$V = \mathbb{R}^3$$
, $W = \langle (1,0,0), (0,1,0) \rangle$, $v = (2,3,5)$.
Then $proj_W(v) = (2,3,0)$.

0.n. basis
$$\langle (1,0,0), (0,1,0) \rangle$$
.

$$| (0,1,0) \rangle = \langle (2,3,5), (1,00) \rangle + \langle (2,3,5), (6,1,6) \rangle (0,1,0)$$

$$= \langle (2,3,5), (1,00) \rangle + \langle (2,3,5), (6,1,6) \rangle (0,1,0)$$

$$= \langle (1,0,0) \rangle + \langle (0,1,0) \rangle = \langle (2,3,0) \rangle.$$

Let W be the 2-dimensional subspace of $V = \mathbb{R}^3$ spanned by the orthogonal vectors $v_1 = (1, 2, 1)$ and $v_2 = (1, -1, 1)$. What is the projection of V = (-2, 2, 2) on W?

$$proj_{v_1}v = \frac{\langle v, v_1 \rangle}{\langle v_1, v_1 \rangle}v_1 = \frac{4}{6}(1, 2, 1) = \frac{2}{3}(1, 2, 1).$$

$$proj_{v_2}v = \frac{\langle v, v_2 \rangle}{\langle v_2, v_2 \rangle}v_2 = -\frac{2}{3}(1, -1, 1).$$

Hence
$$proj_W(v) = Rroj_{v_1}(v) + Rroj_{v_2}(v)$$

= $\frac{2}{3}(1,2,1) - \frac{2}{3}(1,-1,1)$
= $(0,2,0)$.

Practice 10

An earthworm is crawling about on a sunny day. We draw coordinates axes on the ground where it is crawling and find that the body temperature of the earthworm at a point (x, y) is given by the function:

$$T(x,y) = 2x^2 + 3xy + y^2$$

To arrive at the answer, take partial derivative of T(x, y) on x at (1,1), multiply with x component of the unit vector in direction (2,3); take partial derivative of T(x, y) on y at (1,1), multiply with y component of the unit vector in direction (2,3); add them together.

$$(7,5)\cdot\frac{1}{\sqrt{13}}(2,3)=\frac{29}{\sqrt{13}}$$

Thus,

If the earthworm moves parallel to the straight line joining the origin and the point (2,3), then rate of change of its body temperature at the point (1,1) is given by $\frac{29}{\sqrt{13}}$.