МИНИСТЕРСТВО ОБЩЕГО И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

МОСКОВСКИЙ ЭНЕРГЕТИЧЕСКИЙ ИНСТИТУТ

A.A. AMOCOB

ЗАДАЧИ ПО ТЕОРИИ ФУНКЦИЙ И ФУНКЦИОНАЛЬНОМУ АНАЛИЗУ

Множества. Метрические и топологические пространства Мера и интеграл Лебега

Москва

Издательство МЭИ

1998

УДК

517

A 62

УДК: 517.5

Утверждено учебным управлением МЭИ в качестве учебного пособия для студентов.

Рецензенты:

доктор физ.-мат. наук проф. Дубинский Ю.А., доктор физ.-мат. наук доц. Ишмухаметов А.З.

Подготовлено на кафедре математического моделирования.

А.А. Амосов.

Задачи по теории функций и функциональному анализу. Множества. Метрические и топологические пространства. Мера и интеграл Лебега. - М.: Изд-во МЭИ, 1998. - 64 с.

ISBN 5-7046-0317-3

Пособие содержит задачи по ряду важных разделов курса теории функций и функционального анализа. Каждый параграф начинается с краткого теоретического введения, содержащего основные определения и теоремы, и завершается набором задач различного уровня трудности. Значительное число задач заимствовано автором из известных задачников и учебников, отраженных в списке литературы.

Предназначено для студентов специальности "Прикладная математика", а также для студентов старших курсов и аспирантов всех факультетов.

1. ЭЛЕМЕНТЫ ТЕОРИИ МНОЖЕСТВ

1.1. Операции над множествами

Пусть S - некоторое множество элементов произвольной природы, а A и B - его подмножества ($A \subset S, B \subset S$). Важную роль в теории множеств играет $nycmoe\$ множество \emptyset , не содержащее ни одного элемента. По определению $\emptyset \subset A$ для любого множества A.

Oбъединением (или суммой) множеств A и B называется множество $C = A \cup B$, состоящее из всех элементов, принадлежащих хотя бы одному из множеств A, B. Пересечением (или произведением) множеств A и B называется множество $C = A \cap B$, состоящее из всех элементов, принадлежащих как A, так и B. Для множеств $A \cup B$ и $A \cap B$ используются также обозначения A + B и $A \cdot B$ соответственно.

Отметим следующие свойства операций объединения и пересечения.

1.
$$A \cup B = B \cup A$$
, $A \cap B = B \cap A$.

2.
$$(A \cup B) \cup C = A \cup (B \cup C),$$
 $(A \cap B) \cap C = A \cap (B \cap C).$

3.
$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$$
, $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$.

Разностью множеств A и B называется множество $C = A \setminus B$, состоящее из всех элементов множества A, не принадлежащих множеству B. Дополнением множества A (до множества S) называется множество $\mathbb{C}A = S \setminus A$.

Пусть теперь I - некоторое множество (множество индексов), элементы которого (индексы) будем обозначать через α . Пусть каждому индексу α сопоставлено некоторое множество $A_{\alpha} \subset S$. Объединением множеств A_{α} называется множество $\bigcup_{\alpha \in I} A_{\alpha}$, состоящее из элементов, каждый из которых принадлежит хотя бы одному из множеств A_{α} :

$$a \in \bigcup_{\alpha \in I} A_{\alpha} \iff \exists \alpha \in I : \quad a \in A_{\alpha}.$$

Пересечением множеств A_{α} называется множество $\underset{\alpha \in I}{\cap} A_{\alpha}$, состоящее из элементов, которые принадлежат всем множествам A_{α} :

$$a \in \bigcap_{\alpha \in I} A_{\alpha} \iff a \in A_{\alpha} \quad \forall \alpha \in I.$$

Пусть $\{A_n\}_{n=1}^{\infty}$ – последовательность множеств. Верхним пределом

последовательности $\{A_n\}_{n=1}^{\infty}$ называется множество

$$\overline{\lim}_{n\to\infty}A_n=\bigcap_{n=1}^{\infty}\bigcup_{k=n}^{\infty}A_k.$$

 $\mathit{Huженим}\ \mathit{npedenom}\ \mathit{последовательности}\ \{A_n\}_{n=1}^{\infty}\ \mathit{называется}\ \mathit{множество}$

$$\underline{\lim}_{n \to \infty} A_n = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k.$$

Последовательность $\{A_n\}_{n=1}^\infty$ называется $\mathit{cxodsweйcs}, \mathit{ecni} \ \underline{\lim_{n \to \infty}} A_n =$

 $=\overline{\lim_{n\to\infty}}A_n$. В этом случае полагают $\lim_{n\to\infty}A_n=\underline{\lim_{n\to\infty}}A_n=\overline{\lim_{n\to\infty}}A_n$. Последовательность $\{A_n\}_{n=1}^\infty$ называется возрастающей, если $A_n\subset A_{n+1}$ для всех $n\geq 1$ и называется убывающей, если $A_n\supset A_{n+1}$ для всех $n\geq 1$.

Теорема 1.1. (Принцип двойственности.) Справедливы равенства $\mathbb{C} \cup_{\alpha} A_{\alpha} = \bigcap_{\alpha} \mathbb{C} A_{\alpha}, \qquad \mathbb{C} \cap_{\alpha} A_{\alpha} = \bigcup_{\alpha} \mathbb{C} A_{\alpha}.$

Теорема 1.2. Пусть $\{A_n\}_{n=1}^{\infty}$ – убывающая последовательность множеств. Тогда она сходится и $\lim_{n\to\infty} A_n = \bigcap_{n=1}^{\infty} A_n$.

Теорема 1.3. Пусть $\{A_n\}_{n=1}^{\infty}$ – возрастающая последовательность множеств. Тогда она сходится и $\lim_{n\to\infty} A_n = \bigcup_{n=1}^{\infty} A_n$.

- 1.1. Доказать включения:
- a) $(A \cap C) \cup (B \cap D) \subset (A \cup B) \cap (C \cup D);$
- 6) $(B \setminus C) \setminus (B \setminus A) \subset A \setminus C$;
- в) $A \setminus C \subset (A \setminus B) \cup (B \setminus C)$.
- **1.2.** Доказать, что $A \cap B = A \setminus (A \setminus B)$.
- **1.3.** Доказать, что C(CA) = A.
- 1.4. Доказать равенства:
- a) $A \setminus (B \setminus C) = (A \setminus B) \cup (A \cap C);$
- 6) $(A \setminus B) \setminus C = (A \setminus C) \setminus (B \setminus C)$.
- **1.5.** Вытекает ли из равенства $A \setminus B = C$, что $A = B \cup C$?
- **1.6.** Вытекает ли из равенства $A = B \cup C$, что $A \setminus B = C$?
- **1.7.** Доказать что равенство $A\setminus (B\setminus C)=(A\setminus B)\cup C$ верно, если $A\supset C$, и неверно, если $C\setminus A\neq \emptyset$.
 - 1.8. Доказать, что следующие равенства в общем случае неверны:
 - a) $A \cup (B \setminus C) = (A \cup B) \setminus (A \cup C);$

- 6) $A \setminus (B \cup C) = (A \setminus B) \cup (A \setminus C)$.
- **1.9.** Даны три множества A, B, C. Записать с помощью теоретикомножественных операций выражение для множества элементов, которые принадлежат:
 - а) всем трем множествам;
 - б) по крайней мере двум из этих множеств;
 - в) любым двум из этих множеств, но не принадлежат всем трем;
 - г) по крайней мере одному из этих множеств;
- д) любому одному из этих множеств, но не принадлежат двум остальным.
- **1.10.** Доказать включение $\bigcup_k A_k \setminus \bigcup_k B_k \subset \bigcup_k (A_k \setminus B_k)$. Показать на примере, что в общем случае знак включения нельзя заменить на знак равенства.
 - **1.11.** Доказать включение $\bigcup\limits_k \left(\bigcap\limits_n A_{kn} \right) \subset \bigcap\limits_n \left(\bigcup\limits_k A_{kn} \right).$
 - **1.12.** Доказать, что:
 - а) если $B_n = \bigcup_{i=1}^n A_i$, то $\bigcup_{n=1}^\infty A_n = \bigcup_{n=1}^\infty B_n$;
 - б) если $C_n = \bigcap_{i=1}^n A_i$, то $\bigcap_{n=1}^\infty A_n = \bigcap_{n=1}^\infty C_n$.
 - 1.13. Доказать следующие формулы:

a)
$$\bigcap_{n=1}^{\infty} A_n = A_1 \setminus \bigcup_{n=1}^{\infty} (A_n \setminus A_{n+1}); \quad \text{ f) } \bigcup_{n=1}^{\infty} A_n = A_1 + \bigcup_{n=1}^{\infty} (A_{n+1} \setminus A_n).$$

- **1.14.** Доказать, что $\lim_{n\to\infty} A_n$ состоит из тех и только тех элементов a, которые принадлежат всем множествам A_n , начиная с некоторого номера N(a). Доказать, что $\lim_{n\to\infty} A_n$ состоит из тех и только тех элементов, которые принадлежат бесконечному количеству членов последовательности $\{A_n\}_{n=1}^{\infty}$.
- **1.15.** Доказать, что последовательность множеств $\{A_n\}_{n=1}^{\infty}$ является сходящейся тогда и только тогда, когда любой элемент $a \in \bigcup_{n=1}^{\infty} A_n$ принадлежит лишь конечному числу множеств A_n либо принадлежит множествам A_n для всех номеров $n \geq N(a)$.
- **1.16.** Доказать, что для любой последовательности множеств имеют место включения $\bigcap_n A_n \subset \varinjlim_{n \to \infty} A_n \subset \varlimsup_{n \to \infty} A_n \subset \bigcup_n A_n$. Построить пример такой последовательности множеств, для которой ни один из знаков включения в этой цепочке не может быть заменен знаком равенства.
 - **1.17.** Пусть $A_n \subset X$ для всех $n \geq 1$. Доказать, что верны равенства:

a)
$$X \setminus \overline{\lim}_{n \to \infty} A_n = \underline{\lim}_{n \to \infty} (X \setminus A_n);$$
 6) $X \setminus \underline{\lim}_{n \to \infty} A_n = \overline{\lim}_{n \to \infty} (X \setminus A_n).$

1.2. Отображения. Взаимно однозначные соответствия

Пусть M и N — два произвольных множества. Говорят, что на M определено omoбражение (функция) f со значениями в N, если каждому элементу $x \in M$ поставлен в соответствие элемент $y = f(x) \in N$. В этом случае пишут $f: M \to N$ либо $M \xrightarrow{f} N$ и кратко говорят, что f есть отображение M g N.

Для данного элемента $x \in M$ элемент $y = f(x) \in N$ называется образом элемента x; при этом элемент x называется прообразом элемента y. Множество $\{x \in M \mid f(x) = y\}$ (т.е. множество всех тех $x \in M$, для которых f(x) = y), называется полным прообразом элемента y и обозначается через $f^{-1}(y)$.

Пусть $A\subset M$. Множество $f(A)=\{y\in N\mid y=f(x),x\in A\}$ называется образом множества A при отображении f. Пусть $B\subset N$. Множество $f^{-1}(B)=\{x\in M\mid f(x)=y,y\in B\}$ называется полным прообразом множества B при отображении f.

Говорят, что f есть отображение M на N, если f(M) = N. Отображение f называется взаимно однозначным, если оно есть отображение M на N и для любого элемента $y \in N$ его полный прообраз $f^{-1}(y)$ состоит ровно из одного элемента. В этом случае можно определить обратное отображение $f^{-1}: N \to M$ правилом $x = f^{-1}(y)$. Оно также будет взаимно однозначным.

Говорят, что множество A эквивалентно множеству B, если существует взаимно однозначное отображение A на B. Это свойство записывают так: $A \sim B$.

Множество A называется cчетным, если оно эквивалентно множеству натуральных чисел. Множество A называется не более чем cчетным, если оно конечно либо cчетно. Бесконечное множество, не являющееся cчетным, называют e

Теорема 2.1. Прообраз объединения любой совокупности множеств равен объединению их прообразов: $f^{-1}(\underset{\alpha}{\cup} B_{\alpha}) = \underset{\alpha}{\cup} f^{-1}(B_{\alpha}).$

Теорема 2.2. Прообраз пересечения любой совокупности множеств равен пересечению их прообразов: $f^{-1}(\bigcap_{\alpha} B_{\alpha}) = \bigcap_{\alpha} f^{-1}(B_{\alpha})$.

Теорема 2.3. Образ объединения любой совокупности множеств равен объединению их образов: $f(\bigcup_{\alpha} B_{\alpha}) = \bigcup_{\alpha} f(B_{\alpha})$.

Teopema 2.4. Всякое подмножество счетного множества не более чем счетно.

Teopema 2.5. Объединение не более чем счетной совокупности счетных множеств также является счетным множеством.

Teopema 2.6. Всякое бесконечное множество содержит счетное подмножество.

Теорема 2.7. (Теорема Кантора — Бернштейна.) Пусть A и B — два произвольных множества. Если существуют подмножества $A_1 \subset A$ и $B_1 \subset B$ такие, что $A \sim B_1$ и $B \sim A_1$, то $A \sim B$.

- **2.1.** Доказать теорему 2.1.
- **2.2.** Доказать теорему 2.2.
- **2.3.** Доказать теорему 2.3.
- **2.4.** Верно ли, что $f(\bigcap_{\alpha} B_{\alpha}) = \bigcap_{\alpha} f(B_{\alpha})$? Если нет, то как соотносятся эти множества?
 - **2.5.** Доказать, что $f^{-1}(\complement A) = \complement f^{-1}(A)$.
 - **2.6.** Верно ли, что f(CA) = Cf(A) ?
 - 2.7. Доказать следующие свойства отношения эквивалентности:
 - а) $A \sim A$ (рефлексивность),
 - б) $A \sim B \Rightarrow B \sim A$ (симметричность),
 - в) $A \sim B$ и $B \sim C \Rightarrow A \sim C$ (транзитивность).
- **2.8.** Пусть A и B конечные множества. Доказать, что они эквивалентны тогда и только тогда, когда состоят из одинакового числа элементов.
 - 2.9. Доказать, что множество целых чисел счетно.
 - 2.10. Доказать, что множество рациональных чисел счетно.
- **2.11.** Доказать, что множество алгебраических чисел счетно. (Напомним, что число x называется алгебраическим, если оно является корнем алгебраического уравнения $\sum\limits_{k=0}^{n}a_{k}x^{k}=0$ с целыми коэффициентами.)
- **2.12.** Установить взаимно однозначное соответствие между множеством $\mathbb N$ всех натуральных чисел и множеством:
 - а) всех четных положительных чисел,
 - б) всех четных чисел;
 - в) всех неотрицательных рациональных чисел.
 - 2.13. Построить взаимно однозначное отображение:
 - а) отрезка [0,1] на отрезок [a,b],

- б) интервала (0,1) на всю числовую прямую,
- в) числовой прямой на интервал (a, b),
- Γ) отрезка [0,1] на интервал (0,1),
- д) отрезка [0, 1] на всю числовую прямую,
- е) луча $[0, +\infty)$ на всю числовую прямую.
- **2.14.** Существует ли непрерывная функция, взаимно однозначно отображающая отрезок [a,b] на всю числовую ось?
- **2.15.** Существует ли непрерывная функция, взаимно однозначно отображающая отрезок [a,b] на интервал (c,d)?
- **2.16.** Построить взаимно однозначное отображение окружности единичного радиуса на отрезок [0,1].
 - 2.17. Установить взаимно однозначное соответствие между:
 - а) открытым единичным кругом и замкнутым единичным кругом,
 - б) окружностью и прямой,
 - в) сферой с одной выколотой точкой и плоскостью,
 - г) сферой и плоскостью.
- **2.18.** Установить взаимно однозначное соответствие между множеством всех иррациональных чисел и множеством всех действительных чисел.
- **2.19.** Запишем в виде бесконечной десятичной дроби координаты точки M(x,y), принадлежащей квадрату $\Pi=(0,1]\times(0,1]$: абсцисса $x=0.\alpha_1\alpha_2\alpha_3\ldots$, ордината $y=0.\beta_1\beta_2\beta_3\ldots$. Определим отображение $f:\Pi\to(0,1]$ такое, что $f(x,y)=0.\alpha_1\beta_1\alpha_2\beta_2\alpha_3\beta_3\ldots$ Является ли f отображением Π на (0,1]? Если да, то является ли оно взаимно однозначным?

1.3. Мощность множеств

Если два множества A и B эквивалентны, то говорят, что они имеют одинаковую мощность ($A \sim B \Leftrightarrow \overline{\overline{A}} = \overline{\overline{B}}$). Для конечных множеств понятие мощности совпадает с понятием числа элементов множества. Все счетные множества по определению имеют одинаковую мощность. Про множества, эквивалентные множеству чисел из отрезка [0,1], говорят, что они имеют мощность континуума. Эта мощность обозначается символом c.

Пусть множество A эквивалентно некоторому подмножеству множества B. Тогда говорят, что мощность множества A не превосходит мощности множества B и пишут $\overline{\overline{A}} \leq \overline{\overline{B}}$. Если $\overline{\overline{A}} \leq \overline{\overline{B}}$, но $\overline{\overline{A}} \neq \overline{\overline{B}}$, то говорят,

что мощность множества A меньше мощности множества B и пишут $\overline{\overline{A}} < \overline{\overline{B}}.$

Пусть \mathfrak{M} — множество, элементами которого являются всевозможные подмножества данного множества M. Мощность множества \mathfrak{M} обозначается через $2^{\overline{M}}$. Множество всех подмножеств чисел из отрезка [0,1] имеет мощность 2^c (мощность гиперконтинуума).

Теорема 3.1. (Переформулировка теоремы Кантора- Бернштейна.) Если $\overline{\overline{A}} \leq \overline{\overline{B}}$ и $\overline{\overline{B}} \leq \overline{\overline{A}}$, то $\overline{\overline{B}} = \overline{\overline{A}}$.

Теорема 3.2. $\overline{\overline{M}} < 2^{\overline{\overline{M}}}$.

Следствие. Для любого множества существует множество большей мощности.

- **3.1.** Пусть множество A бесконечно, а множество B счетно. Доказать, что $A \cup B \sim A$.
- **3.2.** Доказать, что множество всех интервалов (a,b) с рациональными концами счетно.
 - **3.3.** Пусть $A \setminus B \sim B \setminus A$. Доказать, что $A \sim B$.
 - **3.4.** Пусть $A \subset B \subset C$ и $A \sim C$. Доказать, что $A \sim B$.
- **3.5.** Какова мощность множества всех треугольников на плоскости, вершины которых имеют рациональные координаты?
- **3.6.** Доказать, что множество точек разрыва монотонной функции, заданной на отрезке [a,b], конечно или счетно.
- **3.7.** Пусть E какое-либо несчетное множество положительных чисел. Доказать, что найдется такое число $\tau>0$, что множество $E\cap(\tau,+\infty)$ несчетно.
- **3.8.** Верно ли утверждение: "Если E бесконечное множество чисел, расположенное на полупрямой $(0, +\infty)$, то найдется такое число $\tau > 0$, что множество $E \cap (\tau, +\infty)$ бесконечно" ?
- **3.9.** Пусть E счетное множество точек на числовой прямой, а $E_a = \{x+a \mid x \in E\}$ сдвиг этого множества на величину a. Можно ли подобрать a так, чтобы E_a не пересекалось с E?
- **3.10.** Доказать, что если расстояние между любыми двумя точками множества E на прямой больше единицы, то множество E конечно или счетно.

- **3.11.** Доказать с помощью теоремы Кантора-Бернштейна эквивалентность замкнутого круга и открытого круга того же радиуса на плоскости.
- **3.12.** Доказать с помощью теоремы Кантора-Бернштейна эквивалентность квадрата $(0,1] \times (0,1]$ и промежутка (0,1] (использовать результат решения задачи 2.19).
- **3.13.** Доказать, что множество всех последовательностей, составленных из 0 и 1, имеет мощность континуума.
- **3.14.** Доказать, что множество всех конечных подмножеств счетного множества счетно.
- **3.15.** Какова мощность множества всех строго возрастающих последовательностей натуральных чисел?
- **3.16.** Какова мощность множества всех последовательностей натуральных чисел?
 - 3.17. Какова мощность множества всех отрезков на числовой прямой?
- **3.18.** На прямой задано множество попарно не пересекающихся отрезков. Что можно сказать о мощности этого множества?
- **3.19.** Какова мощность множества всех последовательностей действительных чисел?
- **3.20.** Доказать, что множество всех числовых функций, определенных на отрезке [a, b], имеет мощность гиперконтинуума.
- **3.21.** Доказать, что множество всех непрерывных на отрезке [a,b] функций имеет мощность континуума.
- **3.22.** Доказать, что объединение счетного набора множеств мощности континуума имеет мощность континуума.
- **3.23.** Доказать, что множество всех точек $x = (x_1, \dots, x_m) \in \mathbb{R}^m$ с рациональными координатими является счетным.

1.4. Разные задачи.

- 4.1. Доказать равенства:
- a) $(B \setminus C) \setminus (B \setminus A) = (A \cap B) \setminus C$;
- 6) $(A \setminus B) \cup (B \setminus C) = [(A \cup B) \setminus C] \cup [(A \cap C) \setminus B].$
- **4.2.** Пусть A и B эквивалентные бесконечные множества. Существует ли подмножество множества A, отличное от A и эквивалентное B?
 - **4.3.** Доказать, что если $A \subset B$ и $A \sim A \cup C$, то $B \sim B \cup C$.

- **4.4.** Верно ли следующее утверждение: "Если $A\sim C,\ B\sim D,$ причем $A\supset B,\ C\supset D,$ то $A\setminus B\sim C\setminus D$ "?
 - **4.5.** Пусть $A\supset C,\, B\supset D,\, C\cup B\sim C.$ Доказать, что $A\cup D\sim A.$
- **4.6.** Верно ли утверждение: " Если $A \sim B, \ C \supset A, \ C \supset B, \ \text{то} \ C \setminus A \sim C \setminus B$ "?
- **4.7.** Верно ли утверждение: " Если $A \sim B, \, A \supset C, \, B \supset C, \, \text{то} \, A \setminus C \sim B \setminus C$ "?
- **4.8.** Пусть E некоторое несчетное числовое множество. Доказать, что найдется такое число τ , что множество $E \cap (-\infty, \tau)$ несчетно.
- **4.9.** Какова мощность множества точек разрыва монотонной функции, определенной на всей числовой прямой?
- **4.10.** Пусть функция f(x), заданная на отрезке [0,1], имеет в каждой точке $x_0 \in [0,1]$ локальный минимум. Доказать, что множество значений функции f не более чем счетно.
- **4.11.** Доказать, что всякое счетное множество содержит счетное семейство попарно не пересекающихся счетных подмножеств.
- **4.12.** Доказать, что множество всех счетных подмножеств счетного множества имеет мощность континуума.
- **4.13.** Доказать, что множество всех счетных подмножеств множества мощности континуума имеет мощность континуума.
- **4.14.** Доказать, что множество всех монотонных функций, заданных на отрезке [0,1], имеет мощность континуума.

2. МЕТРИЧЕСКИЕ ПРОСТРАНСТВА

2.1. Определения и примеры метрических пространств

Пусть M — некоторое непустое множество. Заданная на $M \times M$ числовая функция $\rho(x,y)$ называется метрикой на M, если она обладает следующими тремя свойствами:

- 1) $\rho(x,y) \geq 0 \quad \forall x,y \in M$, причем $\rho(x,y) = 0 \iff x = y$;
- 2) $\rho(x,y) = \rho(y,x) \quad \forall x, y \in M ;$
- 3) $\rho(x,y) \le \rho(x,z) + \rho(z,y)$ $\forall x,y,z \in M$.

Последнее неравенство называется неравенством треугольника. Величина $\rho(x,y)$ называется расстоянием между элементами x и y. Множество M с введенной на нем метрикой ρ называется метрическим пространством.

Последовательность $\{x_n\}_{n=1}^{\infty}$ элементов метрического пространства M называется cxodsищейся κ элементу $x \in M$, если $\rho(x_n, x) \to 0$ при $n \to \infty$. Указанное свойство записывают в виде: $x_n \to x$ (в M) при $n \to \infty$ или $x = \lim_{n \to \infty} x_n$, а элемент x называют npedenom $nocnedos amenbeochu <math>\{x_n\}_{n=1}^{\infty}$.

Последовательность $\{x_n\}_{n=1}^{\infty}$ элементов метрического пространства M называется ϕ ундаментальной, если для любого $\varepsilon>0$ существует $N(\varepsilon)$ такое, что для всех $n>N(\varepsilon)$, $m>N(\varepsilon)$ выполняется неравенство $\rho(x_n,x_m)<\varepsilon$.

Метрическое пространство M называется nonhom, если в нем всякая фундаментальная последовательность является сходящейся к некоторому элементу этого пространства.

- 1.1. Показать, что метрическими пространствами являются:
- а) любое множество $M \subset \mathbb{R}$ с метрикой $\rho(x,y) = |x-y|$;
- б) любое множество $M \subset \mathbb{R}^m$ с метрикой $\rho(\mathbf{x}, \mathbf{y}) = |\mathbf{x} \mathbf{y}|;$
- в) произвольное нормированное пространство с метрикой $\rho(x,y) = \|x-y\|;$
- г) множество C[a,b] непрерывных на отрезке [a,b] функций с метрикой $\rho(x,y) = \max_{[a,b]} |x(t)-y(t)|;$
 - д) множество непрерывных на отрезке [a,b] функций с метрикой $\rho(x,y)=\int\limits_a^b|x(t)-y(t)|\,dt$;
 - е) множество непрерывных на отрезке [a,b] функций с метрикой $ho(x,y)=inom{b}{a}|x(t)-y(t)|^2\,dt\big)^{1/2};$
- ж) множество l_p (где $1 \le p < \infty$) всех числовых последовательностей $x = \{x_n\}_{n=1}^\infty$, для которых $\sum\limits_{n=1}^\infty |x_n|^p < \infty$, с метрикой $\rho(x,y) = \left(\sum\limits_{n=1}^\infty |x_n-y_n|^p\right)^{1/p}$, где $x = \{x_n\}_{n=1}^\infty$, $y = \{y_n\}_{n=1}^\infty$.
- з) множество l_{∞} всех ограниченных числовых последовательностей $x=\{x_n\}_{n=1}^{\infty}$ с метрикой $\rho(x,y)=\sup_{n>1}|x_n-y_n|.$
- **1.2.** Показать, что в метрическом пространстве всякая сходящаяся последовательность имеет только один предел.
- **1.3.** Показать, что в метрическом пространстве всякая сходящаяся последовательность является фундаментальной. Верно ли обратное?

1.4. Является ли следующая функция метрикой на \mathbb{R} :

a)
$$\rho(x, y) = \sin^2(x - y)$$
,

a)
$$\rho(x,y) = \sin^2(x-y)$$
, 6) $\rho(x,y) = \sqrt{|x-y|}$,

B)
$$\rho(x,y) = |x^2 - y^2|$$

B)
$$\rho(x,y) = |x^2 - y^2|,$$
 $\Gamma(x,y) = \frac{|x-y|}{1 + |x-y|}?$

Изменится ли ответ, если \mathbb{R} заменить на $[0, +\infty)$?

- **1.5.** Показать, что $\rho(x,y) = \arctan|x-y|$ является метрикой в \mathbb{R} . Является ли соответствующее метрическое пространство полным?
- **1.6.** Пусть X окружность. Примем за расстояние между точками $x, y \in X$ длину кратчайшей дуги окружности, соединяющей x и y. Удовлетворяет ли это расстояние аксиомам метрики?
- 1.7. Будет ли метрическим пространством семейство всех непустых подмножеств метрического пространства M, если расстояние между множествами $A, B \subset M$ определить равенством

$$\rho(A, B) = \inf_{x \in A, y \in B} \rho(x, y) \quad ?$$

- Пусть M произвольное непустое множество. Введем в нем следующую метрику: $\rho(x,y)=1$ при $x\neq y$ и $\rho(x,y)=0$ при x=y. Будет ли это пространство полным?
- Доказать, что следующие метрические пространства являются полными:
 - а) множество \mathbb{R} со стандартной метрикой;
- б) произвольное замкнутое множество $M \subset \mathbb{R}^m$ с евклидовой метрикой $\rho(\mathbf{x}, \mathbf{y}) = |\mathbf{x} - \mathbf{y}|;$
 - в) пространство C[a,b] (см. задачу 1.1 г);
 - г) пространство l_p , $1 \le p < \infty$ (см. задачу 1.1 ж);
 - д) пространство l_{∞} (см. задачу 1.1 з).
- 1.10. Показать, что метрическое пространство, введенное в задаче 1.1 д, не является полным.
- 1.11. Является ли полным введенное в задаче 1.1 е метрическое пространство?
- 1.12. Доказать, что множество всех ограниченных вещественнозначных функций, заданных на произвольном множестве E, образует метрическое пространство, если за расстояние между функциями φ и ψ при- $\rho(\varphi, \psi) = \sup_{t \in E} |\varphi(t) - \psi(t)|.$ АТКН
- Доказать полноту введенного в предыдущей задаче метрического пространства.

2.2. Открытые и замкнутые множества

Пусть M — метрическое пространство. Открытым шаром радиуса r>0 с центром в точке x_0 (или окрестностью точки x_0 радиуса r) называется множество $B_r(x_0)=\{x\in M\mid \rho(x,x_0)< r\}$. Замкнутым шаром радиуса r>0 с центром в точке x_0 называется множество $\overline{B}_r(x_0)=\{x\in M\mid \rho(x,x_0)\leq r\}$.

Множество $X\subset M$ называется $\mathit{orpahuчehhbm},$ если оно содержится в некотором шаре.

Пусть E - произвольное множество в метрическом пространстве M. Точка $x \in E$ называется внутренней точкой множества E, если существует окрестность точки x, целиком содержащаяся в E. Множество всех внутренних точек множества E называется внутренней частью множества E и обозначается через intE. Множество $G \subset M$ называется открытым, если все его точки являются внутренними (то есть если int G = G). Пустое множество \emptyset является открытым по определению.

Пусть E - произвольное множество в метрическом пространстве M. Точка $x \in M$ называется npedenhoù точкой множества E, если в любой окрестности точки x содержатся точки множества E, отличные от x. Множество всех предельных для E точек обозначается через E'. Множество $F \subset M$ называется amkhymm, если все предельные для F точки содержатся в F (то есть если $F' \subset F$). Заметим, что \emptyset – замкнутое множество.

Замыканием множества E называется множество $\overline{E} = E \cup E'$. Для замыкания множества E используется также обозначение [E].

Точка $x \in M$ называется точкой прикосновения множества E, если каждая окрестность точки x содержит хотя бы одну точку из E. Точка $x_0 \in E$ называется изолированной точкой множества E, если существует окрестность этой точки, не содержащая ни одной точки из E кроме x_0 .

Множество E называется cosepwenhым, если оно замкнуто и не содержит ни одной изолированной точки. Множество E называется nuede не nnomhum, если его замыкание не содержит ни одного открытого шара.

Точка $x \in M$ называется εp аничной для множества E, если любая ее окрестность содержит как точки множества E, так и точки множества $M \setminus E$. Множество всех граничных точек множества E называется εp аницей множества E и обозначается через ∂E .

- **Теорема 2.1.** (Теорема об отделимости замкнутых множеств.) Пусть F_1 и F_2 непересекающиеся замкнутые множества метрического пространства M. Тогда существуют непересекающиеся открытые множества G_1 и G_2 такие, что $F_1 \subset G_1$, $F_2 \subset G_2$.
- **Teopema 2.2.** Всякое открытое множество на числовой прямой может быть представлено в виде объединения не более чем счетной совокупности попарно непересекающихся интервалов, и это представление единственно.

Задачи

В задачах данного раздела рассматриваются множества из произвольного метрического пространства M (если не указано противное).

- **2.1.** Показать, что точка $x \in M$ является предельной точкой множества $E \subset M$ тогда и только тогда, когда существует последовательность $\{x_n\}_{n=1}^{\infty} \subset E$ такая, что $x_n \neq x$ и $x_n \to x$ при $n \to \infty$.
- **2.2.** Показать, что все метрическое пространство M является одновременно и открытым, и замкнутым множеством.
- **2.3.** Доказать, что множество G является открытым тогда и только тогда, когда множество $\complement G = M \setminus G$ является замкнутым.
- **2.4.** Доказать, что множество F является замкнутым тогда и только тогда, когда множество $\mathbf{C}F = M \setminus F$ является открытым.
- **2.5.** Доказать, что объединение любой совокупности открытых множеств в M есть открытое множество.
- **2.6.** Доказать, что пересечение конечного числа открытых множеств в M есть открытое множество.
- **2.7.** Показать, что пересечение бесконечной совокупности открытых множеств не обязано быть открытым. Привести пример, когда такое пересечение является замкнутым множеством.
- ${f 2.8.}$ Доказать, что пересечение любой совокупности замкнутых множеств и объединение конечного числа замкнутых множеств в M являются замкнутыми множествами.
- **2.9.** Обязано ли объединение любой совокупности замкнутых множеств в M быть замкнутым множеством ?
- **2.10.** Показать, что интервал (a,b) является открытым множеством в \mathbb{R} .
- **2.11.** Показать, что открытый шар $B_r(x_0)$ является открытым множеством.

- **2.12.** Показать, что отрезок [a,b] является замкнутым множеством.
- **2.13.** Показать, что замкнутый шар $\overline{B}_r(x_0)$ является замкнутым множеством.
- **2.14.** Доказать, что замыкание \overline{E} любого множества E является замкнутым множеством.
- **2.15.** Показать, что совокупность всех точек прикосновения множества E совпадает с \overline{E} .
- **2.16.** Показать, что отрезок [a,b] является совершенным множеством в \mathbb{R} .
- **2.17.** Показать, что всякое замкнутое множество на числовой прямой может быть получено удалением из нее не более чем счетной совокупности попарно непересекающихся интервалов.
- 2.18. Показать, что канторово совершенное множество имеет мощность континуума.
- **2.19.** Верно ли утверждение: "Внутренняя часть пересечения двух множеств равна пересечению их внутренних частей"? Верно ли аналогичное утверждение для пересечения бесконечной совокупности множеств?
- **2.20.** Верно ли утверждение: "Внутренняя часть объединения двух множеств равна объединению их внутренних частей"? Если нет, то имеется ли вместо равенства включение в какую-либо сторону?
 - **2.21.** Доказать, что $\partial E = \overline{E} \setminus int E$.
- **2.22.** Доказать, что граница объединения конечного числа множеств содержится в объединении их границ. Показать на примере, что аналогичное утверждение для бесконечной совокупности множеств неверно.
 - 2.23. Доказать, что граница каждого множества замкнута.
- **2.24.** На плоскости дана последовательность концентрических открытых кругов с радиусами $r_1 < r_2 < \ldots < r_n < \ldots$ Всегда ли их объединение является открытым множеством? Может ли оно быть замкнутым множеством?
- **2.25.** На плоскости дана последовательность концентрических открытых кругов с радиусами $r_1 > r_2 > \ldots > r_n > \ldots$ Всегда ли их пересечение является открытым множеством? Может ли оно быть замкнутым множеством?
- **2.26.** Пусть f заданная на \mathbb{R} непрерывная функция. Доказать, что множество E_a тех точек x, где $f(x) \geq a$, замкнуто.

- **2.27.** Пусть f заданная на $\mathbb R$ непрерывная функция. Доказать, что множество E_a тех точек x, где f(x)>a, открыто.
- **2.28.** Пусть f_0 фиксированная непрерывная на отрезке [0,1] функция. Доказать, что множество всех функций $f \in C[0,1]$, удовлетворяющих неравенству $f(x) \leq f_0(x)$ на [0,1], замкнуто в пространстве C[0,1].
- **2.29.** Доказать, что множество функций $f \in C[a,b]$, удовлетворяющих для всех $x \in [a,b]$ неравенствам $\alpha < f(x) < \beta$ (где $\alpha < \beta$ заданные числа), является открытым множеством в C[a,b].
- **2.30.** Доказать равносильность исходному определению замкнутого множества следующих определений: а) множество называется замкнутым, если оно содержит все свои точки прикосновения; б) множество называется замкнутым, если оно содержит все свои граничные точки.
- **2.31.** Доказать, что замыкание \overline{E} множества E есть пересечение всех замкнутых множеств, содержащих E.
- **2.32.** Доказать, что всякое замкнутое подмножество полного метрического пространства есть полное метрическое пространство.
- **2.33.** Доказать, что внутренняя часть любого множества является открытым множеством.
- **2.34.** Пусть $E\subset M$ и $\varepsilon>0$. Доказать , что ε окрестность множества E, определяемая как $E_{\varepsilon}=\{x\in M\mid \rho(x,E)<\varepsilon\}$, где $\rho(x,E)=\inf_{y\in E}\rho(x,y)$, является открытым множеством.
- **2.35.** Построить на числовой прямой множество, обладающее следующими тремя свойствами: 1) все его точки изолированные; 2) точная нижняя грань расстояний между различными его точками равна нулю; 3) оно не имеет предельных точек.
- **2.36.** Доказать, что отрезок [a,b] нельзя представить в виде объединения двух непустых непересекающихся замкнутых множеств.
- **2.37.** Убедиться в том, что канторово совершенное множество имеет следующую арифметическую структуру: оно состоит из тех и только тех точек отрезка [0,1], которые могут быть записаны в виде троичной дроби, не содержащей единицы в числе своих троичных знаков.
- **2.38.** Построим на плоскости множество A следующим образом : разделим квадрат $[0,1] \times [0,1]$ прямыми $x=\frac{1}{3}, \, x=\frac{2}{3}, \, y=\frac{1}{3}, \, y=\frac{2}{3}$ на девять одинаковых квадратов и удалим центральный открытый квадрат (то есть квадрат $(\frac{1}{3},\frac{2}{3}) \times (\frac{1}{3},\frac{2}{3})$). Затем каждый из оставшихся восьми

замкнутых квадратов разделим на девять одинаковых квадратиков и удалим центральные открытые квадратики. Далее продолжим этот процесс неограниченно. Полученное в результате указанного процесса множество называется "ковром Серпинского". Доказать, что это множество является совершенным и нигде не плотным.

2.3. Компактные множества. Лемма Гейне-Бореля

Множество K, принадлежащее метрическому пространству M, называется $npe \partial \kappa omna\kappa m$ ным или $omna\kappa m$ ным кой последовательности элементов $\{x_n\}_{n=1}^{\infty} \subset K$ можно выбрать сходящуюся подпоследовательность. Множество $K \subset M$ называется $\kappa omna\kappa m$ ным (или $\kappa omna\kappa m$ ом), если из всякой последовательности элементов $\{x_n\}_{n=1}^{\infty} \subset K$ можно выбрать подпоследовательность, сходящуюся к элементу $x \in K$.

Система множеств $\{G_{\alpha}\}\subset M$ называется покрытием множества $K\subset M$, если $K\subset \underset{\alpha}{\cup} G_{\alpha}$. Покрытие, состоящее из открытых множеств, называется открытым покрытием. Конечная система множеств $\{G_{\alpha_n}\}_{n=1}^N$, содержащаяся в покрытии $\{G_{\alpha}\}$ и сама являющаяся покрытием, называется конечным подпокрытием.

Лемма Гейне-Бореля. Из всякого открытого покрытия компактного множества можно выделить конечное подпокрытие.

- **3.1.** Показать, что всякое компактное множество является предкомпактным.
- **3.2.** Показать, что на числовой прямой отрезок [a,b] является компактным множеством, а интервал (a,b) является предкомпактным множеством, но не является компактным множеством.
- **3.3.** Показать, что в \mathbb{R}^m множество K является компактным тогда и только тогда, когда оно замкнуто и ограничено. Какие множества являются относительно компактными в \mathbb{R}^m ?
- **3.4.** Используя лемму Гейне-Бореля, доказать, что всякая непрерывная на отрезке [a,b] функция является ограниченной на этом отрезке.
- **3.5.** Используя лемму Гейне-Бореля, доказать, что всякая непрерывная на отрезке [a,b] функция является равномерно непрерывной на этом отрезке.

- **3.6.** Доказать, что любое относительно компактное множество в метрическом пространстве M ограничено, а любое компактное ограничено и замкнуто.
- **3.7.** Доказать, что для компактности множества в метрическом пространстве M необходимо и достаточно, чтобы оно было относительно компактно и замкнуто в M.
- **3.8.** Доказать, что любое замкнутое подмножество компакта есть компакт.
- **3.9.** Пусть E относительно компактное подмножество метрического пространства M. Доказать, что множество \overline{E} компактно.
- **3.10.** Доказать, что множество функций вида $y=kx^2$, где k пробегает отрезок [0,3], компактно в C[0,1].
- **3.11.** Доказать, что множество всех функций вида y = kx + b (где $0 \le k \le 1, \ 0 \le b \le 1$) компактно в C[0,1].
- **3.12.** Доказать, что множество всех непрерывных на [0,1] функций таких, что $|f(x)| \le a$ (где a фиксированное положительное число), ограничено и замкнуто в C[0,1], однако не компактно (и даже не относительно компактно).

 $\it 3амечание.$ Рассматриваемое множество представляет собой замкнутый шар в $\it C[0,1].$

- **3.13.** Привести пример замкнутого ограниченного множества в l_2 , не являющегося компактом.
- **3.14.** Доказать, что объединение конечного числа компактов есть компакт, а объединение конечного числа относительно компактных множеств относительно компактное множество.

2.4. Разные задачи

- **4.1.** Пусть Φ дважды непрерывно дифференцируемая на $[0,\infty)$ функция, которая удовлетворяет следующим условиям: а) $\Phi(0)=0,\ \Phi(x)>0$ при x>0; б) $\Phi'(x)\geq 0$ и $\Phi''(x)\leq 0$ при $x\geq 0$. Доказать, что функция $\rho(x,y)=\Phi(|x-y|)$ определяет метрику на $\mathbb R$.
- **4.2.** Пусть функция f строго возрастает на \mathbb{R} . Может ли служить метрикой величина $\rho(x,y)=|f(x)-f(y)|$?
- **4.3.** Проверить, что на множестве натуральных чисел можно определить метрику формулой

$$ho(m,n) = \left\{ egin{array}{ll} 0, & ext{если } m=n \ 1+rac{1}{m+n}, & ext{если } m
eq n \end{array}
ight..$$

- **4.4.** Привести пример метрического пространства, в котором любое множество является открытым.
- **4.5.** В пространстве C[0,1] дать описание открытого шара радиуса r>0 с центром в элементе x_0 (в терминах графиков функций).
- **4.6.** Пусть $\psi(t)$ неотрицательная неубывающая на $[0, +\infty)$ функция, для которой $\psi(0) = 0$ и $\psi(a+b) \le \psi(a) + \psi(b)$ для любых a>0, b>0 (например, $\psi(t) = \alpha x$ с $\alpha>0$ или $\psi(t) = \sqrt{t}$).

Показать, что если M – метрическое пространство с метрикой $\rho(x,y)$, то функция $\psi(\rho(x,y))$ также служит метрикой на M. Указать другие примеры функций ψ .

4.7. Пусть $0 и <math>l_p$ – множество числовых последовательностей $x = \{x_n\}_{n=1}^\infty,$ таких, что $\sum_{n=1}^\infty |x_n|^p < \infty$. Доказать, что: а) функция

$$ho(x,y) = \sum_{n=1}^{\infty} |x_n - y_n|^p$$
 задает метрику на l_p (здесь $y = \{y_n\}_{n=1}^{\infty}$);

- б) с указанной метрикой пространство l_p является полным.
- **4.8.** Пусть M множество числовых последовательностей $x = \{x_n\}_{n=1}^{\infty}$ таких, что $x_n \neq 0$ только для конечного набора индексов n (возможно, пустого). Определим на $M \times M$ функцию $\rho(x,y)$, равную числу индексов n таких, что $x_n \neq y_n$ (здесь $y = \{y_n\}_{n=1}^{\infty}$). Проверить, что $\rho(x,y)$ является метрикой на M.
- **4.9.** Пусть F_1, F_2 два компактных непересекающихся подмножества метрического пространства M. Показать, что

$$\rho(F_1, F_2) = \inf_{x \in F_1, y \in F_2} \rho(x, y) > 0.$$

3. МЕРА ЛЕБЕГА И ИЗМЕРИМЫЕ ФУНКЦИИ

3.1. Измеримые множества. Мера Лебега.

Пусть $a=(a_1,a_2,\ldots,a_m),\ b=(b_1,b_2,\ldots,b_m)\in\mathbb{R}^m,$ где $a_k< b_k$ для всех k. Полуоткрытым промежутком (или просто промежутком) в \mathbb{R}^m называется множество

$$\Delta = [a,b) = \{x = (x_1,x_2\dots,x_m) \in \mathbb{R}^m \mid a_k \leq x_k \leq b_k, k = 1,2,\dots,m\}.$$
 Мерой промежутка Δ называется число $|\Delta| = \prod_{k=1}^m (b_k - a_k).$

Пусть $n=(n_1,n_2,\ldots,n_m)$ – вектор с целыми координатами и $e=(1,1,\ldots,1)$. Пространство \mathbb{R}^m можно представить в виде $\mathbb{R}^m=$

$$=igcup_n\Delta_n^{(p)},$$
 где $0\leq p$ — целое, $\Delta_n^{(p)}=\left[rac{n}{2^p},rac{n+e}{2^p}
ight)$ — промежуток ранга $p.$

Пусть G — произвольное открытое множество в \mathbb{R}^m . Построим κ аноническое разбиение множества G на попарно непересекающиеся промежутки при помощи последовательности шагов.

- Шаг 1. Выберем все промежутки ранга 0, целиком содержащиеся в G вместе со своими замыканиями.
- Шаг 2. Выберем все промежутки ранга 1, целиком содержащиеся в G вместе со своими замыканиями и не содержащиеся в уже выбранных промежутках.

.

Шаг р. Выберем все промежутки ранга p-1, целиком содержащиеся в G вместе со своими замыканиями и не содержащиеся в уже выбранных промежутках.

.

В результате этого построения получается последовательность измельчающихся промежутков $\Delta_1, \Delta_2, \ldots$ такая, что $G = \bigcup_{k=1}^{\infty} \Delta_k$. Мерой открытого множества G называется число $|G| = \sum_{k=1}^{\infty} |\Delta_k| \le +\infty$.

Пусть E –произвольное множество в \mathbb{R}^m . Внешней мерой множества E называется точная нижняя грань мер всевозможных открытых множеств G, содержащих множество E: $|E|^* = \inf_{G \supset E} |G| \le +\infty$.

Свойства внешней меры.

- 1. $|E+h|^* = |E|^*$, где $E+h = \{x+h \mid x \in E\}$.
- 2. $E_1 \subset E_2 \Rightarrow |E_1|^* \le |E_2|^*$.
- $3. \quad |\bigcup_k E_k|^* \le \sum_k |E_k|^*.$

Множество E называется измеримым (по Лебегу), если $\inf_{G\supset E} |G\setminus E|^* = 0$; здесь точная нижняя грань берется по всевозможным открытым множестам G, содержащим множество E. Для измеримого множества E мерой этого множества называется его внешняя мера: $|E| = |E|^*$. Для меры множества E используются также обозначения $mes\ E$ и $\mu(E)$.

Множество E называется множеством типа F_{σ} , если существует последовательность замкнутых множеств $\{F_n\}_{n=1}^{\infty}$ такая, что $E = \bigcup_{n=1}^{\infty} F_n$. Множество E называется множеством типа G_{δ} , если существует последовательность открытых множеств $\{G_n\}_{n=1}^{\infty}$ такая, что $E = \bigcap_{n=1}^{\infty} G_n$.

- **Teopema 1.1.** Объединение и пересечение не более чем счетной системы измеримых множеств измеримы.
 - Теорема 1.2. Открытые и замкнутые множества измеримы.
- **Teopema 1.3.** Дополнение измеримого множества измеримо. Разность двух измеримых множеств есть измеримое множество.
- **Теорема 1.4.** Множество E измеримо тогда и только тогда, когда для любого числа $\varepsilon > 0$ существует открытое множество $G_{\varepsilon} \supset E$ такое, что $|G_{\varepsilon} \setminus E|^* < \varepsilon$.
- **Теорема 1.5.** Множество E измеримо тогда и только тогда, когда для любого числа $\varepsilon > 0$ существует замкнутое множество $F_{\varepsilon} \subset E$ такое, что $|E \setminus F_{\varepsilon}|^* < \varepsilon$.
- **Теорема 1.6.** (О счетной аддитивности меры Лебега.) Пусть $\{E_k\}_{k=1}^{\infty}$ последовательность попарно непересекающихся измеримых по Лебегу множеств. Тогда $|\bigcup_k E_k| = \sum_k |E_k|$.
- **Теорема 1.7.** Пусть $\{E_n\}_{n=1}^{\infty}$ монотонная (возрастающая или убывающая) последовательность множеств конечной меры. Тогда $|E| = \lim_{n \to \infty} |E_n|$.
- **Теорема 1.8.** Пусть E произвольное измеримое по Лебегу множество. Тогда существуют множество E_1 типа F_{σ} и множество E_2 типа G_{δ} такие, что $E_1 \subset E \subset E_2$ и $|E_1| = |E| = |E_2|$.
 - **Теорема 1.9.** Существует неизмеримое множество $E \subset [0,1)$.

- **1.1.** Используя только определение измеримости, показать, что всякое открытое множество G измеримо, причем $|G| = |G|^*$.
- **1.2.** Пусть A произвольное измеримое множество конечной меры и B его измеримое подмножество. Доказать, что $|A \setminus B| = |A| |B|$.
- **1.3.** Пусть A и B произвольные измеримые множества. Верно ли, что $|A\setminus B|=|A|-|B|$?
- **1.4.** Пусть $\{E_n\}_{n=1}^{\infty}$ монотонная последовательность измеримых множеств. Можно ли утверждать, что $|\lim_{n\to\infty}E_n|=\lim_{n\to\infty}|E_n|$?
- **1.5.** Показать, что каждое открытое множество является множеством типа F_{σ} и множеством типа G_{δ} .

- **1.6.** Показать, что каждое замкнутое множество является множеством типа F_{σ} и множеством типа G_{δ} .
 - 1.7. Доказать, что мера множества рациональных чисел равна нулю.
- **1.8.** Доказать, что всякое множество E, расположенное на оси Ox (даже если оно является неизмеримым множеством на прямой), измеримо на плоскости Оху и его плоская мера равна нулю.
- **1.9.** Построить на отрезке [0,1] нигде не плотное совершенное множество, мера которого равна 0.9.
- **1.10.** Построить на отрезке [0,1] нигде не плотное совершенное множество заданной меры a<1.
- **1.11.** Какова плоская мера множества, построенного в задаче 2.38 предыдущей главы ("ковра Серпинского")?
- **1.12.** Может ли равняться нулю мера множества, которое содержит хотя бы одну внутреннюю точку?
- **1.13.** Можно ли построить на отрезке [a,b] замкнутое множество линейной меры b-a, отличное от всего отрезка?
- **1.14.** Может ли пересечение $E = \bigcap_n E_n$ убывающей последовательности $\{E_n\}$ измеримых множеств бесконечной меры иметь бесконечную меру? Конечную меру, отличную от нуля? Меру нуль?
- **1.15.** Может ли объединение $E = \bigcup_n E_n$ возрастающей последовательности измеримых множеств конечной меры иметь конечную меру? Бесконечную меру?
- **1.16.** Пусть E множество всех тех точек отрезка [0,1], в разложении которых в бесконечную двоичную дробь на всех четных местах стоят нули. Доказать, что E нигде не плотно и что мера E равна нулю.
- **1.17.** Может ли неограниченное измеримое множество на прямой иметь конечную положительную меру?
- **1.18.** Пусть множество E на отрезке [0,1] имеет меру нуль. Должно ли его замыкание \overline{E} быть множеством меры нуль?
- **1.19.** Пусть E нигде не плотное множество меры нуль на отрезке [0,1]. Должно ли его замыкание \overline{E} быть множеством меры нуль?
- **1.20.** Доказать, что если E измеримое множество положительной меры на прямой, то в нем найдутся точки, расстояние между которыми иррационально.
- **1.21.** Каково строение и какова мера множества E тех точек отрезка [0,1], которые допускают разложение в десятичную дробь без использования цифры 7?

- **1.22.** Пусть $\{E_n\}_{n=1}^{\infty}$ последовательность измеримых множеств на отрезке [0,1], обладающая тем свойством, что для любого $\varepsilon > 0$ найдется такое k, что mes $E_k > 1 \varepsilon$. Доказать, что мера объединения E этих множеств равна 1.
- **1.23.** Доказать, что если E_1 и E_2 измеримые множества в \mathbb{R}^m , то $\operatorname{mes} E_1 + \operatorname{mes} E_2 = \operatorname{mes} (E_1 \cup E_2) + \operatorname{mes} (E_1 \cap E_2)$
- **1.24.** Пусть E измеримое множество на прямой, k произвольное действительное число. Доказать, что множество $kE = \{kx \mid x \in E\}$ измеримо и mes (kE) = |k| mes E.
- **1.25.** Пусть $E_1, E_2, \dots, E_n, \dots$ измеримые множества. Доказать, что

$$\sum_{i} |E_i| \le |\bigcup_{i} E_i| + \sum_{i \ne j} |E_i \cap E_j|$$

3.2. Измеримые функции. Последовательности измеримых функций

Кроме числовой оси $\mathbb{R}=(-\infty,+\infty)$ введем в рассмотрение расши-ренную числовую ось $\overline{\mathbb{R}}=[-\infty,+\infty]$. Определим арифметические операции с участием несобственных чисел $-\infty$ и $+\infty$ следующим образом: $-\infty+(-\infty)=-\infty, +\infty+(+\infty)=+\infty, (-\infty)\times(-\infty)=+\infty, (+\infty)\times(+\infty)=+\infty; -\infty+a=-\infty, +\infty+a=+\infty, a/(+\infty)=0, a/(-\infty)=0$ для всех $a\in\mathbb{R}; (+\infty)\times(-a)=-\infty, (+\infty)\times a=+\infty$ для всех $a\in(0,+\infty)$.

Всюду в этом параграфе E — измеримое множество в \mathbb{R}^m . Рассматриваются функции $f:E \to \overline{\mathbb{R}}$ и используются обозначения $E[f>a]=\{x\in E\mid f(x)>a\},\ E[f\geq a]=\{x\in E\mid f(x)\geq a\}$ и т.д.

Функция f, определенная на измеримом множестве E, называется uз-меримой, если множество E[f>a] измеримо для всех $a\in\mathbb{R}$.

Свойства измеримых функций.

- 1. Пусть функция f измерима на множестве E. Тогда она измерима на каждом измеримом множестве $E_1 \subset E$.
- 2. Пусть $E = \bigcup_k E_k$. Если функция f измерима на каждом из множеств E_k , то она измерима и на всем множестве E.
- 3. Любая функция f, определенная на множестве меры нуль, является измеримой.
 - 4. Если измерима функция f, то измерима и функция |f|.

Говорят, что некоторое свойство выполнено noumu всюду на E, если это свойство выполнено для всех $x \in E$ за исключением множества меры нуль.

Функции f и g, которые равны почти всюду на E, называются эквивалентными на E.

Пусть функции $f, f_n \ (n=1,2,\dots)$ измеримы на E и принимают почти всюду на E конечные значения. Говорят, что последовательность $\{f_n\}_{n=1}^{\infty}$ $cxodumcs\ \kappa\ f\ no\ mepe,\ если\ mes\ E\ [|f_n-f|>\delta]\ \to\ 0\ при\ n\ \to\infty$ для любого $\delta>0$.

- **Теорема 2.1.** Пусть функции f и g измеримы на E и принимают конечные значения. Тогда функции f+g, f-g, $f \cdot g$ и f/g (последнее в случае, если $g(x) \neq 0$ почти всюду на E) также измеримы на E.
- **Теорема 2.2.** Если функция f непрерывна почти всюду на E, то она измерима на E.
- **Теорема 2.3.** (Теорема Лузина.) Для того, чтобы функция f, заданная на отрезке [a,b], была измеримой, необходимо и достаточно, чтобы для любого $\varepsilon > 0$ существовала такая непрерывная на отрезке [a,b] функция f_{ε} , что $\operatorname{mes}\{x \in [a,b] \mid f_{\varepsilon}(x) \neq f(x)\} < \varepsilon$.
- **Теорема 2.4.** Пусть $\{f_n\}_{n=1}^{\infty}$ последовательность измеримых на E функций. Если $f_n(x) \to f(x)$ при $n \to \infty$ почти всюду на E, то функция f измерима на E.
- **Теорема 2.5.** Пусть функции $f, f_n \ (n = 1, 2, ...)$ измеримы на множестве E конечной меры и принимают почти всюду на E конечные значения. Если $f_n \to f$ почти всюду на E, то $f_n \to f$ по мере на E.
- **Теорема 2.6.** (Теорема Рисса.) Пусть функции f, f_n (n = 1, 2, ...) измеримы на множестве E конечной меры и принимают почти всюду на E конечные значения. Если последовательность $\{f_n\}_{n=1}^{\infty}$ сходится к f по мере на E, то существует подпоследовательность $\{f_n\}_{k=1}^{\infty}$, сходящаяся к f почти всюду на E.
- **Теорема 2.7.** (Теорема Егорова.) Пусть E измеримое множество конечной меры и последовательность $\{f_n\}_{n=1}^{\infty}$ измеримых на E функций сходится к функции f почти всюду на E. Тогда для всякого $\delta > 0$ найдется такое измеримое множество $E_{\delta} \subset E$, что: 1) $mes(E \setminus E_{\delta}) < \delta$; 2) $\{f_n\}_{n=1}^{\infty}$ сходится к f равномерно на E_{δ} .

Teopema 2.8. Если функция f интегрируема по Риману на отрезке [a,b], то она измерима на этом отрезке.

- **2.1.** Показать, что при замене в определении измеримой функции множества E[f>a] для всех $a\in\mathbb{R}$ на одно из следующих множеств:
- а) $E[f \ge a]$, б) $E[f \le a]$, в) E[f < a] получается эквивалентное определение.
 - 2.2. Доказать свойство 1 измеримых функций.
 - 2.3. Доказать свойство 2 измеримых функций.
 - 2.4. Доказать свойство 3 измеримых функций.
- **2.5.** Доказать, что если функция f измерима на E, то и функция |f| измерима на E. Показать на примере, что обратное утверждение неверно.
- **2.6.** Доказать, что если функция f^3 измерима на E, то и функция f измерима на E.
- **2.7.** Показать, что из того, что функция f^2 измерима на E, не следует, что f измерима на E.
- **2.8.** Пусть функции f и g измеримы на E. Доказать, что функции $m(x) = \min\{f(x), g(x)\}, M(x) = \max\{f(x), g(x)\}$ также измеримы на E.
- **2.9.** Пусть функция f задана на отрезке [a,b] и измерима на любом отрезке $[\alpha,\beta] \subset (a,b)$. Доказать, что она измерима на всем отрезке [a,b].
- **2.10.** Пусть f и g эквивалентные на измеримом множестве E функции. Показать, что функция f измерима на E тогда и только тогда, когда измерима на E функция g.
- **2.11.** Измерима ли функция f(x), равная x^2 во всех точках пересечения канторова множества и некоторого неизмеримого множества E, и равная x^3 во всех остальных точках отрезка [0,1]?
- **2.12.** Доказать, что если f(x) имеет производную f'(x) во всех точках отрезка [a,b], то эта производная является измеримой функцией на отрезке [a,b].
- **2.13.** Доказать, что если E измеримое множество, то его характеристическая функция $\chi_E(x)$ измерима. Если же E неизмеримое множество, то $\chi_E(x)$ неизмеримая функция.
- **2.14.** Пусть функция f измерима на E и пусть G и F произвольные открытое и замкнутое множества на числовой прямой. Доказать, что множества $f^{-1}(G)$ и $f^{-1}(F)$ измеримы.

- **2.15.** Пусть функции $f_n(x)$ (n = 1, 2, ...) измеримы на E. Показать, что измеримыми на Е являются следующие функции:

 - a) $\varphi(x) = \inf_{n \ge 1} f_n(x), \ \psi(x) = \sup_{n \ge 1} f_n(x),$ 6) $\underline{f}(x) = \underline{\lim}_{n \to \infty} f_n(x), \ \overline{f}(x) = \underline{\lim}_{n \to \infty} f_n(x).$
- **2.16.** Пусть φ измеримая функция, заданная на множестве E, и f непрерывная функция, заданная на множестве $E_1 = \varphi(E)$. Доказать, что функция $f(\varphi(x))$ измерима.
- **2.17.** Пусть φ измеримая функция, заданная на множестве E, а f– измеримая функция, заданная на множестве $E_1 = \varphi(E)$. Обязана ли функция $f(\varphi(x))$ быть измеримой?
- 2.18. Привести пример последовательности измеримых на множестве E функций, которая сходится почти всюду на E, но не сходится на E по мере. Нет ли здесь противоречия с теоремой 2.5?
- 2.19. Привести пример последовательности измеримых функций, сходящейся по мере на отрезке [0, 1], но не сходящейся в обычном смысле ни в одной точке этого отрезка.
- 2.20. Выделить из последовательности, построенной в предыдущей задаче, подпоследовательность, сходящуюся почти всюду на [0, 1].
- Пусть E измеримое множество конечной меры, $\{f_n\}_{n=1}^{\infty}$ и $\{g_n\}_{n=1}^{\infty}$ – две последовательности измеримых функций, сходящиеся по мере на множестве E соответственно к функциям f и g. Доказать, что последовательности $\{f_n+g_n\}_{n=1}^{\infty},\ \{f_n\cdot g_n\}_{n=1}^{\infty}, \{f_n/g_n\}_{n=1}^{\infty}$ сходятся по мере соответственно к функциям $f+g,\ f\cdot g,\ f/g$ (последнее в случае, если $g(x) \neq 0$ почти всюду на E).
- **2.22.** Пусть последовательность $\{f_n\}_{n=1}^{\infty}$ сходится по мере на E к функции f. Доказать, что если для всех n имеет место неравенство $f_n(x) \leq a$ почти всюду на E, то $f(x) \leq a$ почти всюду на E.
- **2.23.** Пусть $f_n \to f$ по мере на множестве E. Показать, что $\sin f_n \to \sin f$ по мере на E.
- **2.24.** Пусть $f_n \to f$ по мере на множестве E. Показать, что $|f_n| \to |f|$ по мере на E.

3.3. Разные задачи

- **3.1.** Пусть E неизмеримое множество и A множество нулевой меры. Доказать, что множество $E \cap A$ измеримо.
- **3.2.** Пусть A, B открытые множества на прямой. Доказать, что плоская мера множества $A \times B$ равна $|A| \cdot |B|$.
- **3.3.** Пусть χ характеристическая функция множества рациональных чисел. Доказать, что функция $\chi \cdot f$ измерима на $\mathbb R$ независимо от того, какова функция f.
- **3.4.** Пусть f измеримая на E функция и E_1 произвольное измеримое множество на числовой прямой. Обязано ли множество $f^{-1}(E_1)$ быть измеримым?
- **3.5.** Пусть f измеримая на множестве $E \subset \mathbb{R}$ функция и E_0 произвольное измеримое подмножество множества E. Обязано ли множество $f(E_0)$ быть измеримым?
- **3.6.** Пусть K канторово совершенное множество. Является ли измеримой функция f, равная 0 в точках $x \in K$ и равная 1 в точках $x \notin K$? Найти все точки разрыва этой функции. Какого они рода?
- **3.7.** Доказать, что в \mathbb{R}^m $(m \geq 2)$ существует неизмеримое множество. Указание. Использовать существование неизмеримого множества в \mathbb{R} .
- **3.8.** Пусть f монотонная функция, определенная на \mathbb{R} . Показать, что ее график имеет на плоскости нулевую меру.
- **3.9.** Пусть f непрерывная на \mathbb{R} функция. Показать, что ее график имеет на плоскости нулевую меру.
- **3.10.** Пусть A и B два множества в \mathbb{R}^m , причем A измеримо, а B неизмеримо. Что можно сказать об измеримости множеств $A \cup B$, $A \cap B$, $A \setminus B$, $B \setminus A$?

Ответить на тот же вопрос в случае, когда A и B неизмеримы.

- **3.11.** Пусть множество $E \subset [a,b]$ измеримо. Доказать, что функция $f(x) = \text{mes } (E \cap [x,b])$ монотонна и непрерывна на [a,b].
- **3.12.** Построить на плоскости такое измеримое множество, проекции которого на координатные оси являются неизмеримыми множествами на прямой.
- **3.13.** Доказать, что совокупность всех измеримых множеств в \mathbb{R} имеет мощность гиперконтинуума.
- **3.14.** Пусть E измеримое множество в \mathbb{R} и mes E=p>0. Доказать, что для любого $q\in(0,p)$ найдется множество $E_q\subset E$, для которого mes $E_q=q$.

- **3.15.** Показать, что плоская мера круга радиуса r > 0 равна πr^2 .
- **3.16.** Показать, что всякая монотонная функция, определенная на измеримом множестве $E \subset \mathbb{R}$, измерима на E.
- **3.17.** Существует ли на отрезке [0,1] несчетное множество меры нуль, плотное на этом отрезке ?
- **3.18.** Существует ли на отрезке [0,1] неизмеримое множество, плотное на этом отрезке ?
- **3.19.** Доказать, что при добавлении к произвольному множеству E или изъятии из него множества A меры нуль внешняя мера множества E не меняется.
- **3.20.** Пусть f и g измеримые функции, заданные на измеримом множестве E. Показать, что множество E[f=g] измеримо.
- **3.21.** Пусть f и g измеримые функции, причем f(x)>0. Показать, что функция $h(x)=f(x)^{g(x)}$ измерима.
- **3.22.** Пусть функция f задана на измеримом множестве E и для каждого $c \in \mathbb{R}$ множество E[f=c] измеримо. Следует ли из этого, что функция f измерима ?
- **3.23.** Существует ли измеримое множество, для которого мера границы больше меры самого множества ?

4. ИНТЕГРАЛ ЛЕБЕГА. ПРОСТРАНСТВА $L_p(E)$

4.1. Суммируемые по Лебегу функции

Всюду в этой главе E – измеримое множество в \mathbb{R}^m .

Пусть сначала E – ограниченное измеримое множество и f – заданная на E ограниченная измеримая функция.

Конечная система измеримых множеств $T = \{E_k\}_{k=1}^n$ называется разбиением множества E, если $\bigcup_{k=1}^n E_k = E$ и $|E_i \cap E_j| = 0$ при $i \neq j$.

Фиксируем некоторое разбиение T множества E и положим

$$m_k = \inf_{x \in E_k} f(x), \quad M_k = \sup_{x \in E_k} f(x), \quad k = 1, 2, \dots, n.$$

Составим нижнюю и верхнюю интегральные суммы

$$s_T(f) = \sum_{k=1}^n m_k |E_k|, \quad S_T(f) = \sum_{k=1}^n M_k |E_k|.$$

Введем нижний и верхний интегралы Лебега функции f на множестве E: $\underline{J}(f) = \sup_{T} s_{T}(f), \quad \overline{J}(f) = \inf_{T} S_{T}(f).$

Функция f называется интегрируемой по Лебегу на множестве E (или суммируемой на E), если $\underline{J}(f)=\overline{J}(f)$. Число $J(f)=\underline{J}(f)=\overline{J}(f)$ называется интегралом Лебега функции f на множестве E и обозначается так:

$$J(f) = \int_E f(x) \, dx$$

Свойства интеграла Лебега

1. Пусть функция f суммируема на E и $\lambda \in \mathbb{R}$. Тогда функция λf суммируема на E и справедливо равенство

$$\int_{E} \lambda f(x) \, dx = \lambda \int_{E} f(x) \, dx.$$

2. Пусть функции f и g суммируемы на E. Тогда функция f+g суммируема на E и справедливо равенство

$$\int_E (f+g)(x) dx = \int_E f(x) dx + \int_E g(x) dx.$$

- 3. Пусть $E=E_1+E_2$, где E_1 и E_2 измеримые непересекающиеся множества.
- а) Если функция f суммируема на E, то f суммируема на E_1 и на E_2 , причем

$$\int_{E} f(x) dx = \int_{E_1} f(x) dx + \int_{E_2} f(x) dx.$$

- б) Если функция f суммируема на E_1 и на E_2 , то f суммируема на E.
- 4. Пусть функция f(x) суммируема на E. Тогда для всякого $h \in \mathbb{R}^m$ функция f(x-h) суммируема на E+h и

$$\int_{E+h} f(x-h) dx = \int_{E} f(x) dx.$$

- 5. Пусть |E|=0. Тогда $\int\limits_E f(x)\,dx=0$.
- 6. Пусть функции f и g суммируемы на E, причем $f(x) \geq g(x)$ почти всюду на E. Тогда $\int\limits_E f(x)\,dx \geq \int\limits_E g(x)\,dx$.

Teopema 1.1. (Теорема Лебега.) Любая ограниченная измеримая на множестве E конечной меры функция f интегрируема по Лебегу на этом множестве.

Теорема 1.2. Если функция f интегрируема по Риману на отрезке [a,b], то она интегрируема на [a,b] по Лебегу, причем интегралы Римана и Лебега совпа дают.

Пусть f — неограниченная неотрицательная измеримая функция, заданная на ограниченном измеримом множестве E.

Введем $cpeз\kappa y$ функции f формулой $[f]_N(x)=\min\{f(x),N\}$, где N>0. Функция $[f]_N$ ограничена, измерима и поэтому суммируема на E.

Будем говорить, что функция f интегрируема по Лебегу на множестве E (или суммируема на E), если существует конечный предел $\lim_{N\to\infty}\int\limits_E [f]_N(x)\,dx$. Этот предел называется интегралом Лебега функции f на множестве E и обозначается символом $\int\limits_E f(x)\,dx$.

Пусть f — неограниченная измеримая функция произвольного знака, заданная на ограниченном измеримом множестве E.

Введем функции $f^+(x)=\max\{f(x),0\},\ f^-(x)=-\min\{f(x),0\}.$ Заметим, что функции $f^+,\ f^-$ измеримы, $f^+\geq 0,\ f^-\geq 0$ и $f=f^+-f^-.$

Будем говорить, что функция f интегрируема по Лебегу на множестве E (или суммируема на E), если интегрируемы по Лебегу функции f^+ и f^- . Интегралом Лебега функции f на множестве E в этом случае называется число

$$\int_E f(x) dx = \int_E f^+(x) dx - \int_E f^-(x) dx.$$

Наконец, пусть f – произвольная измеримая функция, заданная на произвольном измеримом множестве E.

Положим $E_N = E \cap \{|x| < N\}$. Будем говорить, что функция f интегрируема по Лебегу на множестве E (или суммируема на E), если существуют конечные пределы $\lim_{N\to\infty} \int\limits_{E_N} f^+(x)\,dx$ и $\lim_{N\to\infty} \int\limits_{E_N} f^-(x)\,dx$. В этом случае интегралом Лебега функции f на множестве E называется число

$$\int_{E} f(x) dx = \lim_{N \to \infty} \int_{E_N} f^+(x) dx - \lim_{N \to \infty} \int_{E_N} f^-(x) dx.$$

Множество всех суммируемых на E функций обозначим через L(E). Отметим, что для суммируемых на E функций справедливы указанные выше свойства 1-6. Справедливо также следующее свойство.

7. Функция f суммируема на E тогда и только тогда, когда она измерима и ее модуль |f| суммируем на E.

Справедливы следующие важные теоремы.

Теорема 1.3. (Теорема о счетной аддитивности интеграла Лебега.) Пусть $E=\bigcup\limits_{k=1}^{\infty}E_k$, где $\{E_k\}_{k=1}^{\infty}$ – семейство попарно непересекающихся измеримых множеств.

а) Если $f\in L(E)$, то $f\in L(E_k)$ для всех $k\geq 1$, причем

$$\int_{E} f(x) dx = \sum_{k=1}^{\infty} \int_{E_k} f(x) dx.$$

- б) Если $f \in L(E_k)$ для всех $k \geq 1$ и сходится ряд $\sum\limits_{k=1}^{\infty} \int\limits_{E_k} |f(x)| \, dx,$ то $f \in L(E).$
- **Теорема 1.4.** (Теорема об абсолютной непрерывности интеграла Лебега.) Пусть $f \in L(E)$. Тогда для всякого $\varepsilon > 0$ существует такое $\delta(\varepsilon) > 0$, что $\left| \int\limits_e f(x) \, dx \right| < \varepsilon$ для всякого измеримого множества $e \subset E$ такого, что $|e| < \delta(\varepsilon)$.

Задачи

В задачах этого раздела через $\int\limits_a^b f(x)\,dx$ обозначается интеграл Лебега функции f на отрезке [a,b]. Соответствующий интеграл Римана обозначается через $(R)\int\limits_a^b f(x)\,dx$.

- **1.1.** Пусть функция f(x) равна x^2 в точках канторова множества и равна $1/2^n$ на тех смежных интервалах, длина которых равна $1/3^n$. Вычислить $\int\limits_0^1 f(x)\,dx$.
- **1.2.** Интегрируема ли по Риману функция из предыдущей задачи? Если да, то чему равен ее интеграл Римана?
- **1.3.** Интегрируема ли по Риману на отрезке [0,1] функция f(x), которая равна x^3 , если x иррационально, и равна 1, если x рационально. Интегрируема ли она по Лебегу на отрезке [0,1]? Если да, то чему равны эти интегралы ?
- **1.4.** Пусть E измеримое подмножество отрезка [a,b]. Доказать, что его характеристическая функция $\chi_E(x)$ интегрируема по Лебегу на [a,b], причем $\int\limits_a^b \chi_E(x) \, dx = mes \, E$.
- **1.5.** Пусть f неотрицательная суммируемая на E функция и $\operatorname{mes} E[f \geq c] = a$. Доказать, что $\int\limits_E f(x)\,dx \geq ac$.
- **1.6.** Пусть функция f(x) равна x^2 во всех точках пересечения канторова множества и некоторого (не обязательно измеримого) множества E и равна x^3 в остальных точках отрезка [0,1]. Чему равен интеграл Лебега на множестве [0,1] от этой функции?
- **1.7.** Пусть $f(x) = 1/\sqrt{x}$ для иррациональных x>0 и $f(x)=x^3$ для рациональных x. Вычислить $\int\limits_0^1 f(x)\,dx$.

- **1.8.** Пусть $f(x) = x^3$ для иррациональных $x < 1/3; \ f(x) = x^2$ для иррациональных $x \ge 1/3; \ f(x) = 0$ для рациональных x. Вычислить $\int_{0}^{1} f(x) \, dx$.
- **1.9.** Пусть f(x) суммируемая на [a,b] функция. Доказать, что если $\int\limits_{a}^{c}f(x)\,dx=0$ при любом $c\in[a,b]$, то f(x)=0 почти всюду на [a,b].
 - **1.10.** Вычислить $\int_{1}^{2} \frac{1}{\sqrt[3]{x-1}} dx$.
 - **1.11.** Суммируемы ли функции 1/x и $1/x^2$ на интервале (0,1) ?
- **1.12.** При каких значениях параметра α функция $1/x^{\alpha}$ суммируема: а) на (0,1); б) на $(1,+\infty)$; в) на $(0,+\infty)$?
- **1.13.** Пусть ограниченная функция f(x) интегрируема по Лебегу на множестве E. Будут ли интегрируемы по Лебегу на этом множестве функции $f(x)^{10}$, |f(x)|, 1/f(x), $\cos f(x)$?
- **1.14.** Пусть функция f неотрицательна и измерима на множестве E конечной меры. Доказать, что эта функция суммируема на E тогда и только тогда, когда сходится ряд $\sum_{k=1}^{\infty} k \operatorname{mes} E_k$, где $E_k = E[k \le f < k+1]$.
- **1.15.** Доказать, что если функция f(x) суммируема на отрезке [0,a], то при любом k>0 функция f(kx) суммируема на отрезке [0,a/k] и

$$\int_{0}^{a} f(x) dx = k \int_{0}^{a/k} f(kx) dx.$$

- **1.16.** Пусть функция f(x) измерима на множестве E конечной меры. Доказать, что существует положительная измеримая на E функция $\varphi(x)$ такая, что произведение $f(x)\varphi(x)$ суммируемо на E.
 - **1.17.** Доказать, что функция $\frac{1}{x}\cos\frac{1}{x}$ не суммируема на (0,1).
- **1.18.** Пусть функция f интегрируема по Лебегу на [a,b] и интегрируема по Риману на [c,b] для всех $c\in(a,b)$. Показать, что несобственный интеграл Римана $(R)\int\limits_a^b f(x)\,dx=\lim\limits_{\varepsilon\to+0}\,(R)\int\limits_{a+\varepsilon}^b f(x)\,dx$ сходится, причем его значение равно $\int\limits_a^b f(x)\,dx$.
- **1.19.** Привести пример функции f, которая непрерывна на промежутке (a,b], имеет сходящийся несобственный интеграл Римана

$$(R)\int\limits_a^b f(x)\,dx=\lim\limits_{arepsilon o+0}\,(R)\int\limits_{a+arepsilon}^b f(x)\,dx,$$
 но не является суммируемой на $(a,b).$

- **1.20.** Доказать, что для суммируемой на измеримом множестве E функции f справедливо неравенство $\left|\int\limits_{E}f(x)\,dx\right|\leq\int\limits_{E}\left|f(x)\right|dx.$
- **1.21.** Пусть E измеримое множество, f неотрицательная суммируемая на E функция, g измеримая на E функция, удовлетворяющая почти всюду на E неравенствам $\alpha \leq g(x) \leq \beta$. Доказать, что существует число $\gamma \in [\alpha, \beta]$ такое, что $\int\limits_E f(x)g(x)\,dx = \gamma \int\limits_E f(x)\,dx$.
- **1.22.** Пусть $f \in L(E)$ и f(x) > 0 почти всюду на E. Доказать, что в этом случае из равенства $\int\limits_E f(x)\,dx = 0$ следует, что |E| = 0.

4.2. Последовательности суммируемых по Лебегу функций

Пусть $f, f_n \in L(E)$ $(n=1,2,\dots)$. Будем писать, что $f_n \to f$ в L(E), если $\int\limits_E |f_n(x)-f(x)|\,dx \to 0$ при $n\to\infty$.

Теорема 2.1. Пусть $f, f_n \in L(E)$ (n = 1, 2, ...) и $\delta > 0$. Справедливо неравенство Чебышёва

$$mesE[|f_n - f| > \delta] \le \frac{1}{\delta} \int_E |f_n(x) - f(x)| dx.$$

Следствие $Ec \mathcal{A} u \ f_n \to f \ s \ L(E), \ mo \ f_n \to f \ no \ мере \ нa \ E.$

Теорема 2.2. (Теорема Лебега о мажорированной сходимости.) Пусть $f, f_n \in L(E)$ $(n=1,2,\dots)$ и существует функция $F \in L(E)$ такая, что $|f_n(x)| \leq F(x)$ почти всюду на E для всех $n \geq 1$. Если $f_n(x) \to f(x)$ почти всюду на E, то $f_n \to f$ в L(E) и

$$\lim_{n \to \infty} \int_{E} f_{n}(x) dx = \int_{E} f(x) dx.$$

Замечание. Теорема 2.2 останется верной, если в ее условиях заменить сходимость $f_n \to f$ почти всюду на E на сходимость по мере на E и потребовать дополнительно конечность меры множества E.

Теорема 2.3. (Теорема Б.Леви.) Пусть $\{f_n\}_{n=1}^{\infty}$ – неубывающая последовательность суммируемых на E функций и $f(x) = \lim_{n \to \infty} f_n(x)$ почти всюду на E. Если последовательность интегралов $\{\int_E f_n(x) \, dx\}_{n=1}^{\infty}$ ограничена, то функция f суммируема на E и

$$\lim_{n \to \infty} \int_E f_n(x) \, dx = \int_E f(x) \, dx.$$

B противном случае функция f несуммируема на E.

Теорема 2.4. (Теорема Фату.) Пусть $\{f_n\}_{n=1}^{\infty}$ – последовательность неотрицательных суммируемых на E функций и $f(x) = \underset{n \to \infty}{\underline{\lim}} f_n(x)$. Если $\int_E f_n(x) \, dx \le C$ для всех $n \ge 1$, то $f \in L(E)$ и $\int_E f(x) \, dx \le C$.

Следствие. Пусть $\{f_n\}_{n=1}^{\infty} \subset L(E)$ и $\int\limits_{E} |f_n(x)| \, dx \leq C$ для всех $n \geq 1$. Если $f_n \to f$ по мере на E, то $f \in L(E)$ и $\int\limits_{E} |f(x)| \, dx \leq C$.

- **2.1.** Пусть $\{f_n\}_{n=1}^{\infty}$ последовательность измеримых на E ограниченных неотрицательных функций. Пусть $\int_{E} f_n(x) dx \to 0$ при $n \to \infty$. Следует ли из этого, что $f_n(x) \to 0$ при $n \to \infty$ всюду или хотя бы почти всюду на E?
- **2.2.** Построить на каком-либо множестве E конечной меры последовательность ограниченных измеримых функций $\{f_n\}_{n=1}^{\infty}$, сходящуюся почти всюду на E к функции φ , которая несуммируема на E.
- **2.3.** Построить на каком-либо множестве E конечной меры последовательность суммируемых функций $\{f_n\}_{n=1}^{\infty}$, которая сходится почти всюду на E к суммируемой функции φ и существует предел $\lim_{n\to\infty} \int_E f_n(x)\,dx$, но он не равен $\int_E \varphi(x)\,dx$.
- **2.4.** Пусть функции f, f_1, f_2, \ldots измеримы на множестве E конечной меры. Доказать, что последовательность $\{f_n\}_{n=1}^{\infty}$ сходится к f на E по мере в том и только том случае, когда

$$\lim_{n \to \infty} \int_{E} \frac{|f_n(x) - f(x)|}{1 + |f_n(x) - f(x)|} dx = 0.$$

- **2.5.** Пусть $f_n \to f$ в L(a,b). Доказать, что $\cos f_n \to \cos f$ в L(a,b).
- **2.6.** Существует ли предел $\lim_{n \to \infty} \int_{0}^{1} e^{\sin \frac{x}{n}} \frac{1 \cos \frac{x}{n}}{\sin^{2}(\frac{x^{5/4}}{n})} dx$?
- **2.7.** Пусть $f_n(x) \to f(x)$ по мере на \mathbb{R} . Можно ли утверждать, что $e^{f_n(x)} \to e^{f(x)}$ по мере на \mathbb{R} ?
- **2.8.** Пусть $f_n(x), f(x)$ измеримые функции, заданные на \mathbb{R} и $f_n(x) \to f(x)$ почти всюду на \mathbb{R} . Показать, что $\int\limits_{-\infty}^{\infty} e^{-x^2} \sin f_n(x) \, dx \to \int\limits_{-\infty}^{\infty} e^{-x^2} \sin f(x) \, dx \quad \text{при } n \to \infty.$

4.3. Пространства Лебега $L_p(E)$

Всюду в этом параграфе E – фиксированное измеримое множество в \mathbb{R}^m и p – фиксированное число, $p \in [1, \infty]$.

Пусть $p \in [1,\infty)$. Обозначим через $L_p(E)$ множество всех заданных на E измеримых функций f, для которых $\int\limits_E |f(x)|^p \, dx < \infty$. Ясно, что $L_1(E) = L(E)$. Функции $f,g \in L_p(E)$ считаются равными тогда и только тогда, когда они эквивалентны на E.

Теорема 3.1. При $p \in [1, \infty)$ множество $L_p(E)$ является линейным пространством.

Теорема 3.2. Пусть $p, q \in [1, \infty), 1/p + 1/q = 1$. Если $f \in L_p(E), g \in L_q(E)$, то $fg \in L_1(E)$ и справедливо неравенство Гёльдера для интегралов $\left| \int_E f(x)g(x) \, dx \right| \leq \left(\int_E |f(x)|^p \, dx \right)^{1/p} \left(\int_E |g(x)|^q \, dx \right)^{1/q}$.

Теорема 3.3. Если $p \in [1, \infty)$ и $f, g \in L_p(E)$, то справедливо неравенство Минковского для интегралов

$$\left(\int_{E} |f(x) + g(x)|^{p} dx \right)^{1/p} \le \left(\int_{E} |f(x)|^{p} dx \right)^{1/p} + \left(\int_{E} |g(x)|^{p} dx \right)^{1/p}.$$

Теорема 3.4. При $p \in [1,\infty)$ пространство $L_p(E)$ – нормированное c нормой $\|f\|_{L_p(E)} = \left(\int\limits_E |f(x)|^p \, dx\right)^{1/p}$.

Введение метрики $\rho(f,g) = \|f-g\|_{L_p(E)}$ делает пространство $L_p(E)$ метрическим пространством.

Теорема 3.5. При $p \in [1, \infty)$ пространство $L_p(E)$ – полное.

Функция $f:E\to\mathbb{R}$ называется npocmoй, если она измерима, принимает конечное число значений и mes $E[f\neq 0]<\infty$.

Лемма 3.1. Для всякой неотрицательной измеримой функции f, заданной на E, существует неубывающая последовательность простых функций $\{f_n\}_{n=1}^{\infty}$, сходящаяся к f почти всюду на E.

Теорема 3.6. При $p \in [1, \infty)$ множество простых функций плотно в $L_p(E).$

Hocumeлем функции $f:E o\mathbb{R}$ называется множество $\overline{E[f
eq0]}\cap E.$

Определенная и непрерывная на открытом множестве G функция f называется \emptyset инитной, если ее носитель ограничен и $\overline{\{f \neq 0\}} \subset G$. Через $C_0(\mathbb{R}^m)$ обозначается линейное пространство заданных на \mathbb{R}^m непрерывных финитных функций.

Теорема 3.7. При $p \in [1, \infty)$ пространство $C_0(\mathbb{R}^m)$ плотно в $L_p(E)$.

Теорема 3.8. (Теорема о непрерывности функций из L_p относительно сдвига.) Если $f \in L_p(\mathbb{R}^m), \ p \in [1, \infty), \ то$

$$\lim_{h \to 0} \|f(x+h) - f(x)\|_{L_p(\mathbb{R}^m)} = 0.$$

Пусть f – заданная на множестве E измеримая функция. Говорят, что функция f имеет на E конечный существенный максимум, если существует число c такое, что |E[f>c]|=0. В этом случае cyщественным максимумом функции f называется число

ess
$$\sup_{x \in E} f(x) = \inf\{c : |E[f > c]| = 0\}.$$

Аналогичным образом вводится существенный минимум

$$\operatorname*{ess\ inf}_{x \in E} f(x) = \inf\{c : |E[f < c]| = 0\}.$$

Обозначим через $L_{\infty}(E)$ множество всех заданных на E измеримых функций f, для которых |f| имеет на E конечный существенный максимум. Функции $f,g\in L_{\infty}(E)$ считаются равными тогда и только тогда, когда они эквивалентны на E.

Теорема 3.9. $L_{\infty}(E)$ – линейное нормированное пространство c нормой $||f||_{L_{\infty}(E)} = \operatorname*{ess\ sup}_{x\in E}|f(x)|.$

Введение метрики $\rho(f,g) = \|f-g\|_{L_{\infty}(E)}$ делает $L_{\infty}(E)$ метрическим пространством.

Теорема 3.10. Пространство $L_{\infty}(E)$ – полное.

Задачи

- **3.1.** При каком значении показателя $p \in [1, \infty]$ функция $\frac{\sin x}{x}$ принадлежит пространству $L_p(1, \infty)$?
- **3.2.** При каком значении показателя $p \in [1, \infty]$ функция $\frac{\cos x}{\sqrt{x}}$ принадлежит пространству $L_p(0,1)$?
- **3.3.** Пусть $1 . Привести пример функции, которая принадлежит пространству <math>L_p(0,\infty)$, но не принадлежит пространствам $L_r(0,\infty)$ для всех $r \neq p$.
 - **3.4.** Пусть $f \in L_1(E)$ и $g \in L_\infty(E)$. Доказать, что $f \cdot g \in L_1(E)$ и $\|f \cdot g\|_{L_1(E)} \leq \|f\|_{L_1(E)} \cdot \|g\|_{L_\infty(E)}.$

- **3.5.** Пусть $f, g \in L_{\infty}(E)$. Доказать, что $f \cdot g \in L_{\infty}(E)$.
- **3.6.** Пусть f заданная на множестве E измеримая функция и $f \cdot g \in L_1(E)$ для всех $g \in L_1(E)$. Доказать, что $f \in L_\infty(E)$.
- **3.7.** Пусть E множество конечной меры и $1 \le p_1 \le p_2 \le +\infty$. Показать, что $L_{p_2}(E) \subset L_{p_1}(E)$.

Верно ли это утверждение в случае, когда $mes\ E=\infty$?

- **3.8.** Пусть E множество конечной меры и $f\in L_\infty(E)$. Доказать, $\lim_{n\to +\infty} \|f\|_{L_p(E)} = \|f\|_{L_\infty(E)}.$
- **3.9.** Пусть $f_n \to f$ в $L_4(E)$ и $g_n \to g$ в $L_4(E)$. Показать, что $f_n \cdot g_n \to f \cdot g$ в $L_2(E)$.
 - **3.10.** Пусть $f_n \to f$ в $L_2(E)$. Показать, что $f_n \to f$ по мере на E.
- **3.11.** Пусть $f_n \to f$ в $L_2(a,b)$ и $g_n \to g$ в $L_2(a,b)$. Показать, что $f_n \cdot g_n \to f \cdot g$ по мере на (a,b).
 - **3.12.** Пусть $f_n \to f$ в $L_2(\mathbb{R})$. Верно ли, что $f_n \to f$ в $L_1(\mathbb{R})$?
- **3.13.** Пусть $f_n \to f$ в $L_\infty(E)$. Следует ли отсюда, что: а) $f_n \to f$ в $L_1(E)$; б) $f_n \to f$ почти всюду на E; в) $f_n \to f$ по мере на E?
 - **3.14.** Пусть $1 \leq p_1 < p_2 \leq \infty$ и $f \in L_{p_1}(E) \cap L_{p_2}(E)$. Доказать, что:
 - а) $f \in L_p(E)$ для всех $p \in [p_1, p_2];$
 - б) справедливо мультипликативное неравенство

$$||f||_{L_p(E)} \le ||f||_{L_{p_1}(E)}^{\lambda} \cdot ||f||_{L_{p_2}(E)}^{1-\lambda},$$

где $\lambda = (1/p - 1/p_2) / (1/p_1 - 1/p_2), p \in [p_1, p_2].$

- **3.15.** Пусть $1 \le p \le \infty$ и $f_n \to f$ в $L_p(E)$. Доказать, что $\sin f_n \to \sin f$ в $L_p(E)$.
- **3.16.** Пусть $\{f_n\}_{n=1}^{\infty} \subset L_{\infty}(E)$, причем $\|f_n\|_{L_{\infty}(E)} \leq c$ для всех $n \geq 1$. Пусть также $f_n(x) \to f(x)$ почти всюду на E. Доказать, что $f \in L_{\infty}(E)$ и $\|f\|_{L_{\infty}(E)} \leq c$.
- **3.17.** Пусть $f \in L_1(\mathbb{R})$ и $f_h(x) = \frac{1}{2h} \int_{x-h}^{x+h} f(\xi) d\xi ycpe \partial$ нение по Стежлову функции f. Доказать, что $f_h(x) \to f(x)$ в $L_1(\mathbb{R})$ при $h \to 0$.
- **3.18.** Пусть $f \in L_{\infty}(E)$. Доказать, что усреднение f_h удовлетворяет неравенствам $\underset{x \in E}{ess \, sup \, f(x)} \leq f_h(x) \leq \underset{x \in E}{ess \, sup \, f(x)}$ для почти всех $x \in E$.

4.4. Разные задачи.

- **4.1.** Вычислить интеграл Лебега от функции f на отрезке [0,1], если f(x)=10 в точках канторова множества, а на смежных интервалах графиком функции служат верхние полуокружности, опирающиеся на эти интервалы как на диаметры.
- **4.2.** Пусть f измеримая на [a,b] функция. Предположим, что она имеет производную f' на $[a,b] \setminus E_0$, и эта производная ограничена на $[a,b] \setminus E_0$, а mes $E_0 = 0$. Показать, что f' интегрируема по Лебегу на [a,b].
- **4.3.** Пусть $\tau(x)$ функция Кантора. Доказать, что $\tau \in L_1(0,1)$. Вычислить $\int\limits_0^1 \tau(x)\,dx$.
- **4.4.** Пусть функция f измерима на множестве E конечной меры. Доказать, что для суммируемости этой функции на E необходима и достаточна сходимость каждого из рядов

$$\sum_{k=1}^{\infty} k \max E[k \le |f| < k+1], \quad \sum_{k=1}^{\infty} \max E[k \le |f|].$$

- **4.5.** Пусть f измеримая функция, заданная на измеримом множестве E. Доказать, что условие $\operatorname{mes} E[|f|>k]=o(1/k)$ является необходимым, но не является достаточным для суммируемости f на E.
- **4.6.** Пусть функция f интегрируема по Риману на отрезке [a,b]. Можно ли утверждать, что $f \in L_{\infty}(a,b)$?
- **4.7.** Пусть $f \in L_1(E)$ и известно, что $\int\limits_E f(x)g(x)\,dx = 0$ для любой функции $g \in L_\infty(E)$. Доказать, что f(x) = 0 для почти всех $x \in E$.
- **4.8.** Пусть f неотрицательная суммируемая на множестве E функция. Показать, что если f(x)>0 на подмножестве ненулевой меры, то $\int\limits_E f(x)\,dx>0$.
 - **4.9.** Пусть $f, g \in L_1(E)$. Доказать, что

$$||f + g||_{L_1(E)} = ||f||_{L_1(E)} + ||g||_{L_1(E)}$$

тогда и только тогда, когда для почти всех $x \in E$ значения f(x) и g(x) одного знака.

4.10. Пусть $f_n, f \in L_1(E) \cap L_\infty(E)$ и известно, что $f_n \to f$ в $L_1(E)$ и $\sup_{n \ge 1} \|f_n\|_{L_\infty(E)} < \infty$. Доказать, что $f_n \to f$ в $L_p(E)$ для всех $p \in (1, \infty)$.

Можно ли утверждать, что $f_n \to f$ в $L_\infty(E)$?

- **4.11.** Пусть $f, f_n \in L_1(E), g, g_n \in L_\infty(E)$ и известно, что $f_n \to f$ в $L_1(E), g_n \to g$ почти всюду на E и $\sup_{n \ge 1} \|g_n\|_{L_\infty(E)} < \infty$. Показать, что $f_n \cdot g_n \to f \cdot g$ в $L_1(E)$.
- **4.12.** Пусть $f(x) \in L_1(E_1), g(y) \in L_1(E_2)$, где $E_1 \subset \mathbb{R}^n, E_2 \subset \mathbb{R}^m$. Доказать, что $f(x)g(y) \in L_1(E_1 \times E_2)$.
- **4.13.** Является ли открытым в $L_2(0,1)$ множество измеримых на (0,1) функций f, удовлетворяющих условию 0 < f(x) < 1 для всех $x \in (0,1)$?
- **4.14.** Какова мощность множества простых функций, определенных на отрезке [0,1] ?
 - **4.15.** Какова мощность множества $L_1(0,1)$?
 - **4.16.** Пусть $f(x)e^{-x/2}\in L_2(0,\infty)$. Доказать, что $\left(\int\limits_0^\infty f(x)e^{-x}\,dx\right)^2\leq \int\limits_0^\infty f^2(x)e^{-x}\,dx.$
- **4.16.** Пусть $f_k \in L_{p_k}(E), \ p_k \in [1,\infty]$ для $k=1,2,\ldots,n,$ причем $\sum_{k=1}^n \frac{1}{p_k} = 1.$ Доказать обобщенное неравенство Γ ель ∂ ера

$$||f_1 \cdot f_2 \cdot \ldots \cdot f_n||_{L_1(E)} \le ||f_1||_{L_{p_1}(E)} \cdot ||f_2||_{L_{p_2}(E)} \cdot \ldots \cdot ||f_n||_{L_{p_n}(E)}.$$

- **4.17.** Пусть $f \in L(E)$ и для любого измеримого множества $A \subset E$ верно $\int\limits_A f(x) \, dx = 0$. Доказать, что f(x) = 0 почти всюду на E.
- **4.18.** Верно ли, что характеристическая функция всякого измеримого множества $E \subset [0,1]$ интегрируема по Риману на [0,1]?
- **4.19.** Пусть f ограниченная неотрицательная измеримая на отрезке [a,b] функция и $E=\{(x,y)\mid a\leq x\leq b, 0\leq y\leq f(x)\}$. Показать, что множество E измеримо и mes $E=\int\limits_a^b f(x)\,dx$.
 - **4.20.** Доказать, что $\lim_{n\to\infty}\int\limits_1^\infty \exp\left[-x-n\,\sin^2\left(\frac{x}{n}\right)\right]\,dx=1.$
 - **4.21.** Доказать, что $\lim_{n \to \infty} \int_{0}^{1} \frac{1 + x^{n}}{\sqrt{x} + \sqrt{n}\sin^{2}(\frac{x}{n})} dx = 2.$
- **4.22.** Пусть $0 . Введем множество <math>L_p(E)$, которое состоит из измеримых на E функций f таких, что $|f|^p \in L_1(E)$. Доказать, что:
 - а) для $f,g \in L_p(E)$ верно неравенство

$$\eta_p(f+g) \leq ([\eta_p(f)]^p + [\eta_p(g)]^p)^{1/p} \leq 2^{\frac{1-p}{p}} (\eta_p(f) + \eta_p(g)),$$
где $\eta_p(f) = \left(\int\limits_E |f(x)|^p\,dx\right)^{1/p};$

- б) $L_p(E)$ линейное пространство;
- в) величина $\rho(f,g) = [\eta_p(f-g)]^p$ является метрикой на $L_p(E)$;
- г) $L_p(E)$ полное метрическое пространство.
- **4.23.** Пусть $1 \le p \le \infty$ и $f \in L_p(E)$. При $\delta > 0$ введем функцию

$$f^{(\delta)}(x) = \left\{ egin{array}{ll} f(x), & ext{ если } |f(x)| \leq \delta \ 0, & ext{ если } |f(x)| > \delta. \end{array}
ight.$$

Показать, что:

а)
$$f^{(\delta)} \in L_r(E)$$
 и $||f^{(\delta)}||_{L_r(E)} \le \delta^{1-p/r} ||f||_{L_p(E)}^{p/r}$ при $p \le r \le \infty$;

б)
$$f - f^{(\delta)} \in L_r(E)$$
 и $\|f - f^{(\delta)}\|_{L_r(E)} \le \delta^{1-p/r} \|f\|_{L_p(E)}^{p/r}$ при $1 \le r \le p$.

4.24. Пусть $f \in L_1(E) \cap L_\infty(E)$. Доказать, что при всех $1 \le p \le \infty$, $1 \le q \le \infty$, 1/p + 1/q = 1 справедливо неравенство

$$||f||_{L_p(E)}||f||_{L_q(E)} \le ||f||_{L_1(E)}||f||_{L_\infty(E)}.$$

4.25. Пусть $1 \leq p_1 и <math>f \in L_p(E)$. Доказать, что справедливо представление $f = f_1 + f_2$, где $f_1 \in L_{p_1}(E)$, $f_2 \in L_{p_2}(E)$ и

$$||f_1||_{L_{p_1}(E)} \le ||f||_{L_p(E)}, \quad ||f_2||_{L_{p_2}(E)} \le ||f||_{L_p(E)}.$$

4.26. Пусть функция f задана на отрезке [0,1], непрерывна справа в точке 0 и пусть $f \in L_1(0,1)$. Доказать, что

$$\int\limits_0^1 f(x)e^{-\alpha x}\,dx = \frac{1}{\alpha}(f(0)+o(1)) \qquad \text{при} \quad \alpha \to +\infty.$$

4.27. Пусть $f \in L_{\infty}(E)$. Доказать формулу

$$||f||_{L_{\infty}(E)} = \inf_{E_0 \subset E, \text{ mes } E_0 = 0} \sup_{x \in E/E_0} |f(x)|.$$

Убедиться в том, что указанный inf достигается.

4.28. Пусть $1 \le p \le \infty$ и $f \in L_p(0,1)$. При $n \ge 1$ введем кусочно-постоянную функцию f_n такую, что

$$f_n(x) = \frac{1}{h} \int_{(i-1)h}^{ih} f(\xi) d\xi$$
 при $(i-1)h \le x < ih$,

где i = 1, 2, ..., n, а h = 1/n. Доказать, что:

- a) $||f_n||_{L_p(0,1)} \le ||f||_{L_p(0,1)};$
- б) если $1 \leq p < \infty$, то $f_n \to f$ в $L_p(0,1)$ при $n \to \infty$;

- в) если p=2, то $\|f-f_n\|_{L_2(0,1)}\leq \|f-g\|_{L_2(0,1)}$ для любой функции g, постоянной на интервалах $((i-1)h,ih),\ i=1,\dots,n.$
- **4.29.** Пусть $1 \leq p \leq \infty$ и $f \in L_p(0,1)$. При $n \geq 1$ введем непрерывную кусочно-линейную функцию $f_n(x) = \sum_{i=0}^n f_i^h e_0\left(\frac{x}{h} i\right)$, где

$$f_0^h = \frac{2}{h} \int_0^h f(x)e_0(x) dx, \quad f_i^h = \frac{1}{h} \int_{-h}^h f(x+ih)e_0(x) dx \quad (0 < i < n),$$

 $f_n^h=rac{2}{h}\int\limits_{-h}^0f(x+1)e_0(x)\,dx,\,e_0(x)=\max\{1-|x|,0\},\,\mathrm{a}\;h=1/n.$ Доказать, что:

- a) $||f_n||_{L_p(0,1)} \le ||f||_{L_p(0,1)};$
- б) если $1 \leq p < \infty$, то $f_n \to f$ в $L_p(0,1)$ при $n \to \infty$.
- **4.30.** Пусть $f_1, f_2..., f_n \in L_1(0,1)$. Положим $F(x_1,...,x_n) = f_1(x_1) \cdot f_2(x) \cdot ... \cdot f(x_n)$. Доказать, что $F \in L_1((0,1)^n)$ и верно равенство $\|F\|_{L_1((0,1)^n)} = \|f_1\|_{L_1(0,1)} \cdot \|f_2\|_{L_1(0,1)} \cdot ... \cdot \|f_n\|_{L_1(0,1)}$.
- **4.31.** Пусть $F(x_1,x_2,x_3)=f_1(x_1,x_2)f_2(x_2,x_3)f_3(x_1,x_3)$, где $f_1,$ $f_2,f_3\in L_1((0,1)^2)$. Доказать, что $F\in L_1((0,1)^3)$ и верно неравенство $\|F\|_{L_1((0,1)^3)}\leq \|f_1\|_{L_2((0,1)^2)}\|f_2\|_{L_2((0,1)^2)}\|f_3\|_{L_2((0,1)^2)}.$

5. ДОПОЛНИТЕЛЬНЫЕ СВЕДЕНИЯ О МЕТРИЧЕСКИХ ПРОСТРАНСТВАХ.

5.1. Полные метрические пространства

Напомним (см. параграф 2.1), что метрическое пространство M называется *полным*, если в нем всякая фундаментальная последовательность является сходящейся к некоторому элементу этого пространства.

Теорема 1.1. (Теорема о вложенных шарах.) Для того, чтобы метрическое пространство M было полным, необходимо и достаточно, чтобы в нем всякая последовательность вложенных друг в друга замкнутых шаров, радиусы которых стремятся к нулю, имела непустое пересечение.

Пусть A и B – два множества в метрическом пространстве M. Множество называется *плотным* в B, если $\overline{A} \supset B$. Множество A называется всюду плотным (в метрическом пространстве M), если $\overline{A} = M$.

Множество A называется uurde не nлотным, если оно не плотно ни в одном шаре из M.

Метрическое пространство, в котором имеется счетное всюду плотное подмножество, называется *сепарабельным*.

Множество $A \subset M$ называется множеством 1-й категории, если оно представимо в виде объединения счетной системы нигде не плотных множеств. Если множество A не является множеством 1-й категории, его называют множеством 2-й категории.

Teopema 1.2. (Теорема Бэра о категориях.) Всякое полное метрическое пространство является множеством 2-й категории.

Полное метрическое пространство M^* называется пополнением метрического пространства M, если: а) M является подпространством пространства M^* ; б) M всюду плотно в M^* .

Теорема 1.3. (Теорема Хаусдорфа о пополнении.) Каждое метрическое пространство имеет пополнение, и это пополнение единственно с точностью до изометрии, оставляющей неподвижными точки из M.

Задачи

- **1.1.** Доказать, что в метрическом пространстве пересечение замкнутых вложенных шаров, радиусы которых стремятся к нулю, не может состоять более чем из одной точки.
- **1.2.** Диаметром множества A в метрическом пространстве называется число diam $A=\sup_{} \rho(x,y).$

Доказать, что в полном метрическом пространстве всякая последовательность вложенных друг в друга непустых замкнутых множеств, диаметры которых стремятся к нулю, имеет непустое пересечение.

- **1.3.** Привести пример полного метрического пространства и последовательности вложенных друг в друга замкнутых шаров в нем, имеющей пустое пересечение.
- **1.4.** Можно ли в условии теоремы о вложенных шарах заменить замкнутые шары на открытые?
- **1.5.** Доказать, что канторово совершенное множество нигде не плотно на отрезке [0,1].
- **1.6.** Доказать, что дополнение к нигде не плотному множеству является всюду плотным. Показать, что обратное утверждение неверно.
- 1.7. Доказать, что подпространство полного метрического пространства M полно тогда и только тогда, когда оно замкнуто в M.

- **1.8.** Показать, что пространство ℓ_{∞} не является сепарабельным.
- **1.9.** Показать, что пространство $L_{\infty}(0,1)$ не является сепарабельным.
- **1.10.** Показать, что пространство ℓ_2 сепарабельно.
- **1.11.** Показать, что пространство C[a,b] сепарабельно.

Указание. Использовать следующую аппроксимационную теорему Вейеритрасса: для всякой функции $f \in C[a,b]$ и произвольного $\varepsilon > 0$ найдется такой алгебраический многочлен $P_n(x)$ степени $n = n(f,\varepsilon)$, что $\max_{x \in [a,b]} |f(x) - P_n(x)| < \varepsilon$.

5.2. Принцип сжимающих отображений

Пусть M — метрическое пространство. Отображение $A: M \to M$ называется сжимающим отображением, если существует такое число $q \in [0,1)$, что

$$\rho(Ax, Ay) \le q \,\rho(x, y) \quad \forall x, y \in M.$$

Точка $x_0 \in M$ называется nenodeuжной moчкой отображения A, если $x_0 = Ax_0$ (иначе говоря, x_0 является решением уравнения x = Ax).

Teopema 2.1. (Теорема Банаха — принцип сжимающих отображений.) Всякое сжимающее отображение, действующее в полном метрическом пространстве, имеет одну и только одну неподвижную точку.

Теорема 2.2. Пусть A – такое отображение полного метрического пространства в себя, что для некоторого натурального m отображение $B = A^m$ является сжимающим. Тогда отображение A имеет одну и только одну неподвижную точку.

Задачи

- **2.1.** Показать, что всякое сжимающее отображение является непрерывным.
- **2.2.** Всякое ли непрерывное отображение, действующее в полном метрическом пространстве, имеет неподвижную точку?
- **2.3.** Можно ли в формулировке принципа сжимающих отображений условие: существует такое число $q \in [0,1)$, что $\rho(Ax,Ay) \leq q \, \rho(x,y)$ $\forall x,y \in M$ заменить: а) таким же условием с $q \in [0,1]$; б) условием $\rho(Ax,Ay) < \rho(x,y) \quad \forall x,y \in M$?
- **2.4.** Можно ли в формулировке принципа сжимающих отображений убрать требование полноты метрического пространства?

- **2.5.** Пусть φ непрерывная на отрезке [a,b] функция, переводящая [a,b] в себя. Доказать, что функция φ имеет на [a,b] неподвижную точку.
- **2.6.** Пусть f дифференцируемая на отрезке [a,b] функция такая, что $m \leq f'(x) \leq M$ на [a,b]. Можно ли подобрать параметр λ так, чтобы оператор $\varphi(x) = x \lambda f(x)$ был сжимающим?
- **2.7.** Пусть $0 < \varepsilon < 1, \, k > 0$. Доказать, что функциональное уравнение $u(x) = x + \varepsilon u(x^k)$ имеет единственное решение $u \in C[0,1]$.
- **2.8.** Доказать, что при $0 \le a \le 1$ последовательность, определяемая рекуррентным соотношением $x_{n+1} = x_n \frac{1}{2}(x_n^2 a) \ (n = 0, 1, \dots),$ $x_0 = 0$ имеет предел и найти его.
 - 2.9. Доказать, что последовательность

$$2, 2 + \frac{1}{2}, 2 + \frac{1}{2 + \frac{1}{2}}, 2 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2}}}, \dots$$

имеет предел и найти его.

- **2.10.** Доказать, что уравнение $y(x)=rac{1}{2}\int\limits_0^1 e^{\sin(xs)}y(s)\,ds+f(x)$ на [0,1], где $f\in C[0,1],$ имеет единственное решение $y\in C[0,1].$
- **2.11.** Привести достаточные условия разрешимости интегрального уравнения $y(x) = \int\limits_a^b K(x,s)y(s)ds + f(x)$ в пространстве $L_2(a,b)$.

5.3. Критерии компактности в метрических пространствах

Напомним (см. параграф 2.3), что множество K, принадлежащее метрическому пространству M, называется компактным, если из всякой последовательности элементов $\{x_n\}_{n=1}^{\infty} \subset K$ можно выбрать подпоследовательность, сходящуюся к элементу $x \in K$.

Teopema 3.1. Множество K компактно тогда и только тогда, когда из любого его открытого покрытия можно выделить конечное подпокрытие.

Пусть M — метрическое пространство и B — множество в M, а $\varepsilon > 0$ — некоторое число. Множество $A \subset M$ называется ε - $cemь \omega$ для B, если для всякой точки $x \in B$ существует хотя бы одна точка $a = a(x) \in A$ такая, что $\rho(x,a) \leq \varepsilon$.

Подмножество метрического пространства называется вполне ограниченным, если для него при всяком $\varepsilon > 0$ существует конечная ε -сеть. **Teopema 3.2.** (Критерий Хаусдорфа.) Множество, принадлежащее полному метрическому пространству, предкомпактно тогда и только тогда, когда оно вполне ограничено.

Следствие. Множество, принадлежащее полному метрическому пространству, компактно тогда и только тогда, когда оно замкнуто и вполне ограничено.

Пусть K – компактное метрическое пространство. Обозначим через C(K) множество всех заданных на K непрерывных вещественнозначных функций.

Теорема 3.3. (Теорема Вейерштрасса.) Пусть $f \in C(K)$. Тогда функция f ограничена и достигает на K своих точной верхней и точной нижней граней.

Теорема 3.4. Пусть $f \in C(K)$. Тогда функция f равномерно непрерывна.

Сделаем множество C(K) метрическим пространством введением метрики $\rho(f,g) = \max_{t \in K} |f(t) - g(t)|.$

Теорема 3.5. Метрическое пространство C(K) полно.

Множество $F\subset C(K)$ называется равномерно ограниченным, если существует число M>0 такое, что $\max_{t\in K}|f(t)|\leq M$ для всех $f\in F.$

Множество $F \subset C(K)$ называется равностепенно непрерывным, если для всякого $\varepsilon > 0$ существует число $\delta(\varepsilon) > 0$ такое, что для всех $f \in F$ при любых $t', t'' \in K$, $\rho(t', t'') < \delta$ верно неравенство $|f(t') - f(t'')| < \varepsilon$.

Теорема 3.6. (Критерий Асколи-Арцела.) Пусть K – компактное метрическое пространство. Множество $F \subset C(K)$ предкомпактно в C(K) тогда и только тогда, когда оно равномерно ограничено и равностепенно непрерывно.

Пусть E — ограниченное измеримое множество в \mathbb{R}^m . Рассмотрим критерий предкомпактности в $L_p(E)$, где $1 \leq p < \infty$. Будем считать, что всякая функция $f \in L_p(E)$ доопределена нулем вне E.

Множество $F \subset L_p(E)$ называется равномерно ограниченным, если существует число M>0 такое, что $\|f\|_{L_p(E)}\leq M$ для всех $f\in F$.

Множество F называется равностепенно непрерывным в $L_p(E)$, если для всякого $\varepsilon>0$ существует число $\delta=\delta(\varepsilon)>0$ такое, что для всех $f\in F$ при любых $h\in \mathbb{R}^m$, $|h|<\delta$ верно неравекнство $\|f(x+h)-f(x)\|_{L_p(G)}<\varepsilon$.

Теорема 3.7. (Критерий Рисса.) Пусть $F \subset L_p(E)$, $1 \leq p < \infty$. Множество F предкомпактно в $L_p(E)$ тогда и только тогда, когда оно равномерно ограничено и равностепенно непрерывно в $L_p(E)$.

Задачи

- **3.1.** Показать, что всякое вполне ограниченное множество является ограниченным.
- **3.2.** Показать, что шар в ℓ_2 является ограниченным, но не является вполне ограниченным множеством.
- **3.3.** Верно ли, что если A является ε сетью для B, то A является ε сетью и для [B] ?
- **3.4.** Пусть A является ε сетью для B, а B является ε сетью для C. Показать, что A является 2ε сетью для C.
- **3.5.** Доказать, что всякое вполне ограниченное метрическое пространство является сепарабельным.
- **3.6.** Пусть E множество положительной меры в \mathbb{R}^m . Показать, что шар в $L_2(E)$ является ограниченным, но не является вполне ограниченным множеством.
- **3.7.** Доказать, что метрическое пространство M является сепарабельным тогда и только тогда, когда при любом $\varepsilon > 0$ для M существует не более чем счетная ε -сеть.
 - **3.8.** Доказать теорему 3.4.
- **3.9.** Доказать, что для относительно компактного множества в метрическом пространстве можно при любом $\varepsilon > 0$ выбрать конечную ε —сеть так, чтобы она содержалась в этом множестве.
- **3.10.** Доказать, что любое относительно компактное (а следовательно и любое компактное) множество в ℓ_2 нигде не плотно в ℓ_2 .
- **3.11.** Доказать, что любое относительно компактное (а следовательно и любое компактное) множество в C[a,b] нигде не плотно в C[a,b].

5.4. Разные задачи

- **4.1.** Верно ли, что в произвольном метрическом пространстве $diam\ B(x_0,r)=2r?$
- **4.2.** Показать, что $\rho(A,B) = \rho([A],[B])$, где A и B произвольные подмножества метрического пространства M.

- **4.3.** Показать, что всякое конечное множество в метрическом пространстве вполне ограничено.
- **4.4.** Пусть E ограниченное измеримое множество в \mathbb{R}^n и $K(x,s) \in L_2(E \times E)$. Доказать, что интегральный оператор $Au(x) = \int_E K(x,s)u(s)ds$ переводит единичный шар в $L_2(E)$ в относительно компактное в $L_2(E)$ множество.
- **4.5.** Пусть A интегральный оператор из предыдущей задачи. Доказать, что $ImA \subset L_2(E)$, но $ImA \neq L_2(E)$.
- **4.6.** Доказать, что мощность любого сепарабельного метрического пространства не превосходит мощности континуума.
- **4.7.** Доказать, что множество \mathcal{P}_N всех многочленов степени не выше N (где N фиксированное натуральное число) нигде не плотно в C[0,1].
- **4.8.** Доказать, что множество всех числовых последовательностей $\{x_n\}_{n=1}^{\infty}$, у которых лишь конечное число членов отлично от нуля, плотно в пространстве ℓ_2 .
- **4.9.** Доказать, что множество всех числовых последовательностей $\{x_n\}_{n=1}^{\infty}$, у которых $x_n=0$ для всех n>N (где N фиксированное натуральное число), нигде не плотно в ℓ_2 .
- **4.10.** Является ли множество непрерывных на отрезке [0,1] функций f, удовлетворяющих условию f(0)=0, всюду плотным: а) в C[0,1]; б) в $L_p(0,1)$?
- **4.11.** Является ли множество непрерывно дифференцируемых на отрезке [0,1] функций f, удовлетворяющих условию f'(0)=0, всюду плотным в C[0,1]?
- **4.12.** Пусть f функция, заданная на \mathbb{R} и удовлетворяющая двум условиям: а) f(x) = f(y) тогда и только тогда, когда x = y; б) область значений функции f замкнутое множество.

Показать, что формула $\rho(x,y) = |f(x) - f(y)|$ определяет метрику в \mathbb{R} , с которой это пространство \mathbb{R} является полным.

- **4.13.** Пусть $\Phi \subset C[0,1]$ некоторое равномерно ограниченное множество функций. Показать, что множество первообразных $\{F(x) = \int_0^x f(t) \, dt \mid f \in \Phi\}$ предкомпактно в C[0,1].
- **4.14.** Пусть $F = \{f \in C^1[0,1] \mid |f(t)| \leq 1, |f'(t)| \leq 1 \ \forall t \in [0,1]\}.$ Доказать, что множество F предкомпактно в C[0,1]. Является ли оно компактным в C[0,1]?
 - **4.15.** Является ли множество $\{\sin nt\}_{n=1}^{\infty}$ предкомпактным в C[0,1]?

- **4.16.** Пусть $f \in C^1[a,b], f:[a,b] \to [a,b]$ и |f'(x)| < 1 для всех $x \in [a,b].$ Доказать, что уравнение x = f(x) имеет на отрезке [a,b] единственное решение.
- **4.17.** Доказать, что уравнение $y(x) = \int\limits_0^\alpha e^{x-s}\cos(xs)y(s)\,ds + f(x)$, где $f\in C[0,1],\, 0<\alpha<1$, имеет единственное решение $y\in C[0,1].$
- **4.18.** Пусть M такое метрическое пространство, на котором каждая вещественнозначная непрерывная функция достигает своей верхней грани. Доказать, что M полно и компактно.

6. ТОПОЛОГИЧЕСКИЕ ПРОСТРАНСТВА

6.1. Топологии. Открытые и замкнутые множества

Пусть X — некоторое множество. $Tononorue\ddot{u}$ называется любая система τ его подмножеств, удовлетворяющая следующим требованиям:

- 1) $\emptyset \in \tau, X \in \tau$;
- 2) если $G_{\alpha} \in \tau$ для всех индексов $\alpha \in I$, то $\bigcup_{\alpha \in I} G_{\alpha} \in \tau$;
- 3) если $G_k \in \tau$ для $k=1,\ldots,n,$ то $\bigcap\limits_{k=1}^n G_k \in \tau.$

Множество X с заданной на нем топологией τ (т.е. пара $T=(X,\tau)$) называется monoлогическим npocmpaнcmeom. Если на множестве X задана одна фиксированная топология, топологическое пространство будет обозначаться просто через X.

Множества, входящие в топологию τ , называются *открытыми*. Множества, дополнительные к открытым (т.е. множества вида $X \setminus G$, где G – открытое множество) называются *замкнутыми*.

Элементы множества X называются moчками. Oкрестностью точки $x \in X$ называется всякое открытое множество G, содержащее x. Аналогично okpecmhocmbю множества $M \subset X$ называется всякое открытое множество G, для которого $M \subset G$.

Точка $x \in X$ называется точкой прикосновения множества $M \subset X$, если каждая окрестность точки x содержит хотя бы одну точку из M. Точка x называется предельной точкой множества M, если каждая окрестность точки x содержит хотя бы одну точку из M, отличную от x. Совокупность всех точек прикосновения множества M называется замыканием множества M и обозначается через \overline{M} или [M].

Точка $x \in M \subset X$ называется изолированной точкой множества M, если существует ее окрестность, не содержащая других точек из M.

Пусть на одном множестве X заданы две топологии τ_1 и τ_2 . Если

 $au_1 \subset au_2$, то говорят, что топология au_1 слабее (или epy bee), чем au_2 , а топология au_2 сильнее (или epu bee), чем топология $epu teta_1$.

Пусть (X,τ) — топологическое пространство и A — произвольное подмножество множества X. Следом на A топологии τ называется система множеств τ_A , состоящая из всех множеств вида $B\cap A$, где $B\subset \tau$. Топологическое пространство (A,τ_A) называется nodnpocmpancmeom топологического пространства (X,τ) .

Teopema 1.1. Множество M замкнуто тогда и только тогда, когда M = [M].

Теорема 1.2. Операция замыкания обладает следующими свойствами:

- 1) $M \subset [M]$;
- 2) если [[M]] = [M], то [M] замкнутое множество;
- 3) если $M_1 \subset M_2$, то $[M_1] \subset [M_2]$;
- 4) $[M_1 \cup M_2] = [M_1] \cup [M_2].$

Теорема 1.3. Пересечение произвольного множества топологий τ_{α} в X является топологией в X. Она слабее любой из топологий τ_{α} .

Задачи.

- **1.1.** Пусть (X, τ) произвольное топологическое пространство. Показать, что:
 - 1) множества \emptyset и X замкнуты;
 - 2) пересечение любого числа замкнутых множеств замкнуто;
 - 3) объединение конечного числа замкнутых множеств замкнуто.
- **1.2.** Пусть X произвольное непустое множество. Показать, что система множеств $\tau = \{\emptyset, X\}$ (которую называют *тривиальной топологией*) действительно является топологией.
- **1.3.** Показать, что система всех подмножеств множества X является топологией (эту топологию называют $\partial uc\kappa pemhoй$). Проверить, что в этой топологии каждое подмножество из X одновременно является и открытым и замкнутым.
- **1.4.** Показать, что произвольное метрическое пространство M можно рассматривать как топологическое, если за топологию принять систему всех открытых в M множеств.
- **1.5.** Пусть $X = \{a, b\}$. Показать, что система множеств $\{\emptyset, X, \{b\}\}$ образует топологию в X. (Заметим, что это топологическое пространство принято называть связным двоеточием.) Какие подмножества в X являются замкнутыми в этой топологии?

- **1.6.** Построить все топологии в пространстве X, состоящем: а) из двух точек; б) из трех точек.
- **1.7.** Пусть в X введена тривиальная топология. Показать, что для любого непустого множества $M \subset X$ имеем [M] = X.
- **1.8.** Доказать, что [M] есть наименьшее замкнутое множество, содержащее M.
- **1.9.** Показать, что замыкание множества M равно пересечению всех замкнутых множеств, содержащих M.
- **1.10.** Показать, что для связного двоеточия (см. задачу 1.5) верно $[\{b\}] = X$.
- **1.11.** Пусть M множество, лежащее в топологическом пространстве X. Показать, что всякая точка прикосновения множества M есть либо предельная либо изолированная точка множества M.
- **1.12.** Доказать, что в топологическом пространстве множество M является замкнутым тогда и только тогда, когда оно содержит все свои предельные точки.
 - **1.13.** Доказать теорему 1.3.
- **1.14.** Доказать, что след τ_A топологии τ на множестве $A \subset X$ действительно образует топологию на A.
- **1.15.** Пусть x изолированная точка множества $A \subset X$. Доказать, что одноточечное множество x открыто в топологии τ_A .
- **1.16.** Пусть $B \subset A$. Показать, что замыкание множества B в топологии τ_A совпадает с множеством $[B] \cap A$.
- **1.17.** Пусть G открытое множество, а F замкнутое множество в некотором топологическом пространстве. Показать, что $G \setminus F$ открытое множество, а $F \setminus G$ замкнутое множество.
- **1.18.** Пусть A замкнутое подмножество топологического пространства X, рассматриваемое как подпространство. Доказать, что если $F \subset A$ и F замкнуто в подпространстве A, то F замкнуто и в X. Верно ли, что если $G \subset A$ и G открыто в A, то G открыто в X?
- **1.19.** Пусть A открытое подмножество топологического пространства X, рассматриваемое как подпространство. Доказать, что если $G \subset A$ и G открыто в подпространстве A, то G открыто в X. Верно ли, что если $F \subset A$ и F замкнуто в A, то F замкнуто в X?
- **1.20.** Пусть X = [0,1] и система множеств τ составлена из пустого множества и всех множеств, которые получаются из X путем выбра-

сывания не более чем счетной совокупности точек. Показать, что τ – топология.

6.2. Базы. Аксиомы счетности

Совокупность \Im открытых подмножеств множества X называется δa зой топологии τ пространства (X,τ) , если всякое открытое множество $G \in \tau$ может быть представлено как объединение некоторого набора множеств из \Im .

Важный класс топологических пространств образуют *пространства* со счетной базой, т.е. такие пространства, в которых существует хотя бы одна база, состоящая из не более чем счетного набора множеств. Такие пространства называют еще *пространствами со второй аксиомой счетности*.

Топологическое пространство называется *сепарабельным*, если в нем существует *не более чем счетное всюду плотное множество*, т.е. такое не более чем счетное множество, замыкание которого совпадает со всем пространством.

Пусть для каждой точки x топологического пространства существует не более чем счетная система окрестностей $\{O_n(x)\}$ такая, что для всякого открытого множества G, содержащего x, найдется окрестность $O_n(x) \subset G$. Такая система окрестностей называется определяющей системой окрестностей точки x. Топологическое пространство, обладающее указанным свойством, называется пространством c первой аксиомой счетности.

Теорема 2.1. Для того, чтобы система множеств \Im образовывала базу некоторой топологии, необходимо и достаточно, чтобы выпонялись следующие условия: 1) каждая из точек $x \in X$ содержится хотя бы в одном из множеств $G \in \Im$; 2) если x содержится в пересечении двух множеств G_1 и G_2 из \Im , то существует множество $G_x \in \Im$ такое, что $x \in G_x \subset G_1 \cap G_2$.

Теорема 2.2. Для того, чтобы система множеств $\mathfrak{I} \subset \tau$ была базой данной топологии τ , необходимо и достаточно, чтобы для каждого открытого множества $G \in \tau$ и всякой точки $x \in G$ существовало множество $G_x \in \mathfrak{I}$ такое, что $x \in G_x \subset G$.

Teopema 2.3. Всякое топологическое пространство со счетной базой является сеперабельным.

Teopema 2.4. Метрическое пространство обладает счетной базой тогда и только тогда, когда оно сепарабельно.

Задачи

- **2.1.** Показать, что совокупность всех открытых шаров в метрическом пространстве M образует базу топологии этого пространства.
- 2.2. Показать, что совокупность всех интервалов образует базу естественной топологии на числовой прямой.
- 2.3. Образует ли базу естественной топологии на числовой прямой совокупность всех интервалов с рациональными концами?
- **2.4.** Показать, что всякое метрическое пространство является пространством с первой аксиомой счетности.
- **2.5.** Образует ли базу какой-либо топологии на прямой система всех пар точек?
- **2.6.** Образует ли базу естественной топологии на плоскости система всех открытых квадратов?
- **2.7.** Укажите иные, чем в задаче 2.6, базы естественной топологии на плоскости.
- **2.8.** Показать, что всякое пространство со счетной базой является пространством с первой аксиомой счетности.
- 2.9. Показать, что в сепарабельном топологическом пространстве множество всех изолированных точек не более чем счетно.
- **2.10.** Обязано ли подпространство сепарабельного топологического пространства быть сепарабельным?
- **2.11.** Показать, что в сепарабельном топологическом пространстве всякая система попарно непересекающихся открытых множеств является не более чем счетной.
- **2.12.** Доказать, что мощность множества всех открытых множеств данного топологического пространства со счетной базой не превышает мощности континуума.
- **2.13.** Доказать, что мощность множества всех замкнутых множеств топологического пространства со счетной базой не превышает мощности континуума.

6.3. Сходимость. Непрерывные отображения топологических пространств

Последовательность $\{x_n\}_{n=1}^{\infty}$ точек топологического пространства X называется $\mathit{cxodsumeŭcs}$ к точке $x \in X$ (т.е. $x_n \to x$ при $n \to \infty$), если

для любой окрестности точки x найдется номер N, начиная с которого все элементы последовательности принадлежат этой окрестности.

Пусть X и Y – два топологических пространства. Отображение f пространства X в пространство Y называется непрерывным в точке x_0 , если для любой окрестности U_{y_0} точки $y_0 = f(x_0)$ найдется окрестность V_{x_0} точки x_0 такая, что $f(V_{x_0}) \subset U_{y_0}$. Отображение $f: X \to Y$ называется непрерывным, если оно непрерывно в каждой точке $x \in X$.

Отображение f называется открытым, если оно переводит каждое открытое множество в открытое, и называется замкнутым, если оно переводит каждое замкнутое множество в замкнутое.

Взаимно однозначное отображение f топологического пространства X на топологическое пространство Y называется гомеоморфизмом, если само отображение f и обратное к нему отображение f^{-1} непрерывны. При наличии такого отображения пространства X и Y называются гомеоморфными.

Теорема 3.1. Пусть X – топологическое пространство c первой аксиомой счетности и $M \subset X$. Точка x принадлежит [M] тогда и только тогда, когда существует последовательность $\{x_n\}_{n=1}^{\infty} \subset M$ такая, что $x_n \to x$ при $n \to \infty$.

Теорема 3.2. Пусть X,Y – топологические пространства. Для того, чтобы отображение $f:X\to Y$ было непрерывным, необходимо и достаточно, чтобы прообраз $f^{-1}(G)$ всякого открытого множества $G\subset Y$ был открыт.

Теорема 3.3. Пусть X, Y, Z – топологические пространства и пусть f – непрерывное отображение X в Y, а g – непрерывное отображение Y в Z. Тогда суперпозиция h = g \circ f (такая, что h(x) = g(f(x)) для всех $x \in X$) является непрерывным отображением X в Z.

Задачи

В данном разделе X и Y – топологические пространства.

- **3.1.** Показать, что для случая метрических пространств введенное в этом параграфе определение сходимости эквивалентно стандартному.
- **3.2.** Пусть $x_n \to x$ при $n \to \infty$, причем $x_n \in M \subset X$. Показать, что $x \in [M]$.
- **3.3.** Верно ли, что для всякой точки $x \in [M]$ найдется последовательность $\{x_n\}_{n=1}^{\infty} \subset M$ такая, что $x_n \to x$ при $n \to \infty$?

- **3.4.** Убедиться, что для случая метрических пространств введенное в этом параграфе определение непрерывности отображения эквивалентно стандартному.
- **3.5.** Доказать, что отображение $f: X \to Y$ непрерывно тогда и только тогда, когда прообраз $f^{-1}(F)$ всякого замкнутого множества $F \subset Y$ замкнут.
- **3.6.** Пусть f непрерывное отображение. Обязано ли оно быть открытым или замкнутым?
- **3.7.** Показать, что гомеоморфизм является и открытым, и замкнутым отображением.
- **3.8.** Верно ли в произвольном топологическом пространстве утверждение о единственности предела сходящейся последовательности?
- **3.9.** Какому условию должна удовлетворять топология, чтобы единственность предела сходящейся последовательности имела место?
- **3.10.** Доказать, что отображение $f: X \to Y$ непрерывно тогда и только тогда, когда для любого множества $M \subset X$ имеет место включение $f([M]) \subset [f(M)]$.
- **3.11.** Пусть F_1 и F_2 замкнутые множества в X, и $F_1 \cup F_2 = X$. Пусть $f_1: F_1 \to Y, f_2: F_2 \to Y$ два непрерывных отображения, совпадающих на $F_1 \cap F_2$. Доказать, что отображение f, действующее

по правилу
$$f(x)=\left\{egin{array}{ll} f_1(x), & \mbox{если } x\in F_1 \\ f_2(x), & \mbox{если } x\in F_2 \end{array}, \right.$$
 непрерывно.

- **3.12.** Доказать, что непрерывное отображение $f: X \to Y$ замкнуто тогда и только тогда, когда для любого множества $M \subset Y$ и любой окрестности O множества $f^{-1}(M)$ существует такая окрестность U множества M, что $f^{-1}(U) \subset O$.
- **3.13.** Доказать, что если непрерывное отображение $f: X \to Y$ замкнуто (открыто), то для любого множества $M \subset Y$ отображение, являющееся сужением отображения f на множество $f^{-1}(M)$, также замкнуто (соответственно открыто) как отображение из $f^{-1}(M)$ на M.
- **3.14.** Доказать, что если взаимно однозначное непрерывное отображение f пространства X на пространство Y замкнуто, то обратное отображение $f^{-1}:Y\to X$ непрерывно и замкнуто.
- **3.15.** Пусть $X = \bigcup_{\alpha} O_{\alpha}$, где O_{α} открытые множества. Доказать, что если отображение $f: X \to Y$ таково, что его сужение на каждое O_{α} является непрерывным, то и все отображение непрерывно.

- **3.16.** Пусть $f_n: X \to \mathbb{R}, \ f: X \to \mathbb{R}, \ \text{где } \{f_n\}_{n=1}^{\infty}$ последовательность непрерывных на X функций. Доказать, что если f_n равномерно на X сходится к f, то f непрерывная функция.
- **3.17.** Пусть $f:[a,b]\to R$ непрерывная функция. Можно ли утверждать, что ее график гомеоморфен отрезку [a,b] ?
- **3.18.** Доказать, что для того, чтобы взаимно однозначное отображение f пространства X на пространство Y было гомеоморфизмом, необходимо и достаточно, чтобы некоторая база пространства X отображалась с помощью f на некоторую базу пространства Y.

6.4. Связность

Топологическое пространство X, в котором нет других кроме \emptyset и X множеств, являющихся одновременно открытыми и замкнутыми, называется $censuremath{sanhum}$.

Так как всякое подмножество M топологического пространства само является топологическим пространством (с топологией τ_M), то для M также определено понятие связности.

Всякое открытое связное множество G в \mathbb{R}^m называется областью.

- **Teopema 4.1.** Топологическое пространство является связным тогда и только тогда, когда его нельзя представить в виде объединения двух непересекающихся непустых открытых множеств.
- **Teopema 4.2.** Топологическое пространство является связным тогда и только тогда, когда его нельзя представить в виде объединения двух непересекающихся непустых замкнутых множеств.
- **Лемма 4.1.** Пусть A и B два непересекающиеся замкнутые (открытые) множества в топологическом пространстве. Если множество $M \subset A \cup B$ связно, то оно целиком содержится либо в A, либо в B.
- **Теорема 4.3.** Если для любой пары точек x_1, x_2 топологического пространства X найдется содержащее их связное множество, то X связно.
- **Теорема 4.4.** Пусть A_{α} связные множества и $\underset{\alpha}{\cap}A_{\alpha}\neq\emptyset$. Тогда множество $M=\underset{\alpha}{\cup}A_{\alpha}$ связно.
- **Теорема 4.5.** Связными множествами на числовой прямой являются: пустое множество, одноточечные множества, отрезки, полуотрезки (конечные и бесконечные) и интервалы (конечные и бесконечные). Других связных множеств на числовой прямой нет.

- **Теорема 4.6.** Для того, чтобы открытое множество G в \mathbb{R}^m было связно, необходимо и достаточно, чтобы любые две его точки можно было соединить ломаной, целиком лежащей в G.
- **Teopema 4.7.** Непрерывная вещественнозначная функция, заданная на связном топологическом пространстве и принимающая какие-либо два значения a и b, принимает и всякое значение c, лежащее между a и b.
- **Teopema 4.8.** Пусть A связное множество в топологическом пространстве X. Если $A \subset B \subset [A]$, то B связно.

Задачи

3адачи 4.1-4.5 решить, используя лишь определение связности.

- **4.1.** Доказать, что отрезок [a,b] связное множество.
- **4.2.** Показать, что числовая прямая с удаленной точкой не является связным множеством.
- **4.3.** Показать, что множество на числовой прямой, являющееся объединением двух непересекающихся отрезков, не связно.
 - 4.4. Является ли связным множество всех рациональных чисел?
 - 4.5. Является ли связным множество всех иррациональных чисел?
 - **4.6.** Доказать теорему 4.1.
 - **4.7.** Доказать теорему 4.2.
- **4.8.** Пусть $X = A \cup B$, где A и B непустые открытые непересекающиеся множества. Доказать, что если $M \subset X$ и M связно, то M полностью лежит в одном из множеств A или B.
 - 4.9. Являются ли связными на плоскости следующие множества:
- а) круг; б) окружность; в) парабола; г) гипербола; д) кольцо.
 - **4.10.** Доказать, что сфера в \mathbb{R}^m является связным множеством.
- **4.11.** Доказать, что всякое выпуклое множество в \mathbb{R}^m является связным.

6.5. Аксиомы отделимости

Важный тип дополнительных условий на топологические пространства составляют так называемые *аксиомы отделимости*.

Аксиома T_1 (первая аксиома отделимости). Для любых различных точек x,y топологического пространства существует окрестность O_x точки x, не содержащая точку y, и окрестность O_y точки y, не содержащая точку x.

Топологическое пространство, удовлетворяющие аксиоме T_1 , называется T_1 -пространством.

Аксиома T_2 (вторая аксиома отделимости или аксиома отделимости Хаусдорфа). Любые две различные точки x, y топологического пространства имеют непересекающиеся окрестности O_x и O_y .

Топологическое пространство, удовлетворяющее аксиоме T_2 , называется T_2 -пространством или $xaycdop\phioвым$ пространством.

Аксиома T_3 (третья аксиома отделимости). Любые точка и не содержащее ее замкнутое множество имеют непересекающиеся окрестности.

Топологическое пространство, удовлетворяющее аксиомам T_1 и T_3 , называется peryлярным.

Аксиома T_4 (аксиома нормальности). Выполнена аксиома T_1 и всякие два непересекающиеся замкнутые множества имеют непересекающиеся окрестности.

Топологическое пространство, удовлетворяющее аксиоме T_4 , называется *нормальным*.

Теорема 5.1. В T_1 -пространстве всякое множество M, состоящее из конечного числа точек, замкнуто.

Теорема 5.2. В T_1 -пространстве точка x является предельной для множества M тогда и только тогда, когда любая окрестность этой точки содержит бесконечно много точек из M.

Теорема 5.3. (Большая лемма Урысона.) Если X – нормальное пространство и F_1 , F_2 – два его непересекающихся замкнутых подмножества, то существует непрерывная функция $f: X \to [0,1]$, равная нулю на F_1 и единице на F_2 .

Теорема 5.4. (Теорема Титце-Урысона.) Пусть φ – ограниченная непрерывная вещественнозначная функция, заданная на замкнутом множестве F нормального пространства X. Тогда существует непрерывная на всем пространстве X вещественнозначная функция Φ , совпадающая с φ на F и такая, что $\sup_X |\Phi| = \sup_X |\varphi|$.

Задачи

- **5.1.** Показать, что всякое метрическое пространство удовлетворяет первой аксиоме отделимости.
 - **5.2.** А.Н.Колмогоровым введена следующая аксиома отделимости.

Аксиома T_0 . Из любых двух точек топологического пространства по крайней мере одна имеет окрестность, не содержащую вторую из точек.

Привести пример топологического пространства, удовлетворяющего аксиоме T_0 , но не удовлетворяющего аксиоме T_1 .

- **5.3.** Привести пример T_1 -пространства, не являющегося T_2 -пространством.
- **5.4.** Привести пример T_2 -пространства, не являющегося регулярным пространством.
- **5.5.** Доказать, что топологическое пространство тогда и только тогда является T_1 -пространством, когда в нем все одноточечные множества замкнуты.
- **5.6.** Доказать, что в T_1 -пространстве любое множество является пересечением некоторого семейства открытых множеств.
- **5.7.** Доказать, что всякое подпространство T_1 -пространства является T_1 -пространством.
- **5.8.** Доказать, что всякое подпространство T_2 -пространства является T_2 -пространством.
- **5.9.** Доказать, что всякое подпространство регулярного пространства является регулярным пространством.
- **5.10.** Доказать, что всякое подпространство нормального пространства является нормальным пространством.
- **5.11.** Пусть X хаусдорфово пространство, в котором всякое подмножество либо открыто, либо замкнуто. Доказать, что:
- а) в пространстве X не может существовать более одной предельной для него точки;
- б) если x предельная для X точка, то для любой точки $y \neq x$ множество $\{y\}$ открыто.
- **5.12.** Доказать, что в T_1 -пространстве точка, имеющая конечную определяющую систему окрестностей, изолирована.
- **5.13.** Показать, что всякое метрическое пространство является нормальным.

6.6. Компактность. Непрерывные отображения компактных пространств

Топологическое пространство называется компактным, если любое его открытое покрытие содержит конечное подпокрытие. Компактное топологическое пространство, удовлетворяющее аксиоме отделимости Хаусдорфа, называется компактом. Множество M в топологическом пространстве называется npedkomnakmhim (или omhocumenhim компактным), если его замыкание [M] компактно.

Система подмножеств $\{A\}$ множества X называется μ ентрированной, если любое конечное пересечение $\bigcap_{k=1}^{n} A_k$ членов этой системы не пусто.

- **Teopema 6.1.** Для того, чтобы топологическое пространство было компактным, необходимо и достаточно, чтобы каждая центрированная система его замкнутых подмножеств имела непустое пересечение.
- **Teopema 6.2.** Каждое бесконечное подмножество компактного топологического пространства имеет хотя бы одну предельную точку.
- **Teopema 6.3.** Замкнутое подмножество компактного топологического пространства компактно.
- **Teopema 6.4.** Всякое компактное подпространство хаусдорфова пространства замкнуто.
- **Теорема 6.5.** Пусть f непрерывное отображение топологического пространства X в топологическое пространство Y. Если X компактно, то и образ f(X) компактен.
- **Teopema 6.6.** Взаимно однозначное и непрерывное отображение φ компактного топологического пространства X на хаусдорфово пространство Y есть гомеоморфизм.
- **Теорема 6.7.** Пусть f непрерывная вещественнозначная функция, заданная на компактном топологическом пространстве X. Тогда f ограничена на X и достигает на X своих точной верхней и точной нижней граней.

Задачи

- **6.1.** Доказать, что в каждом бесконечном компактном топологическом пространстве существует счетное незамкнутое множество.
- **6.2.** Доказать, что любое компактное подпространство хаусдорфова пространства X является замкнутым в X множеством.

- **6.3.** Доказать, что множество в \mathbb{R} компактно тогда и только тогда, когда оно ограничено и замкнуто.
- **6.4.** Доказать, что незамкнутое подпространство хаусдорфова пространства не является компактным пространством.
- **6.5.** Доказать, что объединение конечного числа компактных множеств является компактным множеством. Верно ли, что объединение любого семейства компактных множеств является компактным множеством?
 - 6.6. Доказать, что компактное хаусдорфово пространство регулярно.
 - 6.7. Доказать, что компактное хаусдорфово пространство нормально.
- **6.8.** Доказать, что любое подпространство компактного метризуемого пространства сепарабельно. (Топологическое пространство называется *метризуемым*, если его топологию можно задать с помощью какойлибо метрики.)
- **6.9.** Доказать, что компактное хаусдорфово пространство метризуемо тогда и только тогда, когда оно обладает счетной базой.

6.7. Разные задачи

- **7.1.** Привести пример топологического пространства, в котором множество, состоящее из конечного числа точек, не является замкнутым.
- **7.2.** Доказать, что подмножество топологического пространства замкнуто тогда и только тогда, когда оно содержит все свои предельные точки.
- **7.3.** Пусть топологическое пространство X удолетворяет аксиоме T_1 . Пусть a предельная точка множества $A \subset X$, U произвольная окрестность точки a. Доказать, что множество $U \cap A$ бесконечно.
- **7.4.** Доказать, что в T_1 -пространстве для любого подмножества A множество всех предельных для A точек замкнуто.
- **7.5.** Пусть X топологическое пространство, $A \subset X$. Доказать, что если всякое подмножество множества A замкнуто, то множество A не имеет предельных точек.
- **7.6.** Гильбертовым кирпичом в ℓ_2 называется множество точек $x = \{x_k\}_{k=1}^{\infty} \subset \ell_2$, подчиненных условиям $|x_k| \leq 1/2^{k-1}$ $(k=1,2,\dots)$. Доказать, что гильбертов кирпич является связным множеством.
- **7.7.** Привести пример регулярного пространства, не являющегося нормальным пространством.

ЛИТЕРАТУРА

- 1. Александров П.С. Введение в теорию множеств и общую топологию. М.: Наука, 1977. 368 с.
- 2. Гуревич А.П., Зеленко Л.Б. Сборник задач по функциональному анализу. Саратов: Изд-во Саратовского университета, 1987. 108 с.
- 3. Клюшин В.Л. Топологические пространства. М.: Изд-во УДН, 1989. $56~\mathrm{c}.$
- 4. Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа. М.: Наука, 1976. 544 с.
- 5. Луцюк А.В. Методические указания к решению задач по функциональному анализу. М.: Изд-во УДН, 1987. 44 с.
- 6. Люстерник Л.А., Соболев В.И. Краткий курс функционального анализа. М.: Высшая школа. 1982. 272 с.
- 7. Натансон И.П. Теория функций вещественной переменной. М.: Наука, 1974. 480 с.
- 8. Очан Ю.С. Сборник задач по математическому анализу. М.: Просвещение. 1981. 272 с.
- 9. Рисс Ф., Сёкельфави-Надь Б. Лекции по функциональному анализу. М.: Мир, 1979. 592 с.
- 10. Соболев В.И. Лекции по дополнительным главам математического анализа. М.: Наука, 1968. 288 с.
- 11. Теляковский С.А. Сборник задач по теории функции действительного переменного. М.: Наука, 1980. 112 с.
 - 12. Треногин В.А. Функциональный анализ. М.: Наука, 1980. 496 с.
- 13. Треногин В.А., Писаревский Б.М., Соболева Т.С. Задачи и упражнения по функциональному анализу. М.: Наука, 1984. 256 с.

ОГЛАВЛЕНИЕ

1.	Эл	ементы теории множеств	. 3
	1.1.	Операции над множествами	. 3
	1.2.	Отображения. Взаимно однозначные соответствия	. 6
	1.3.	Мощность множеств	. 8
	1.4.	Разные задачи	10
2.	$M\epsilon$	етрические пространства	11
	2.1.	Определения и примеры метрических пространств	11
	2.2.	Открытые и замкнутые множества	14
	2.3.	Компактные множества. Лемма Гейне-Бореля	18
	2.4.	Разные задачи	19
3.	$M\epsilon$	ера Лебега и измеримые функции	20
	3.1.	Измеримые множества. Мера Лебега	20
	3.2.	Измеримые функции. Последовательности измеримых функци	ий
24			
		Разные задачи	
4.	Ин	теграл Лебега. Пространства $L_p(E)$	29
		Суммируемые по Лебегу функции	
		Последовательности суммируемых по Лебегу функций	
	4.3.	Пространства Лебега $L_p(E)$	36
	4.4.	Разные задачи	39
5 .		полнительные сведения о метрических пространствах	
		Полные метрические пространства	
	5.2.	Принцип сжимающих отображений	44
	5.3.	Критерии компактности в метрических пространствах	45
	5.4.	Разные задачи	47
6.		пологические пространства	
	6.1.	Топологии. Открытые и замкнутые множества	49
	6.2.	Базы. Аксиомы счетности	52
		Сходимость. Непрерывные отображения топологических	
пр	_	ранств	
		Связность	
	6.5.	Аксиомы отделимости	57
		Компактность. Непрерывные отображения компактных	
пр		ранств	
		Разные задачи	
	Ли	гература	62

Учебное издание Андрей Авенирович Амосов

ЗАДАЧИ ПО ТЕОРИИ ФУНКЦИЙ И ФУНКЦИОНАЛЬНОМУ АНАЛИЗУ

Множества. Метрические и топологические пространства Мера и интеграл Лебега

> Учебное пособие по курсу "Теория функций и функциональный анализ"

Редактор А.А. Злотник. Редактор издательства Н.Л. Черныш. ЛР № 20528 от

Темплан издания МЭИ 1998(I), учебн. Подписано к печати Формат $60 \times 84/16$ Физ. печ. л. 4,0 Уч.-изд. л. 3,2 Тираж 150 Изд. № Заказ № Цена 4,5 руб.

Издательство МЭИ, 11250, Москва, Красноказарменная. д. 14 Отпечатано в типографии издательства "Фолиум" Москва, 127238, Дмитровское ш., д.58