EE 382V: Parallel Algorithms

Summer 2017

Lecture 16: July 1

Lecturer: Vijay Garg Scribe: John Martinez

16.1 Introduction

This section will involve the notion of estimating probability (bound calculation) by using the following methods: Markov, Chebyshev and Chernoff. The following notes are based on *Probability and Computation* by Mitzenmacher and Upfal, pages 44-49 & 64.

16.2 Flipping coin example and other preliminaries

Given a coin x_i , where 0 is tails and heads is 1, the probability \mathbb{P} that once flipped the coin will be heads can be denoted:

$$\mathbb{P}[x_i = 1] = \frac{1}{2}, \quad x_i = \begin{cases} 0\\ 1 \end{cases}$$

This type of experiment, where only two outcomes are possible, each with the same probability, is called a Bernoulli (binomial) trial. The expected value \mathbb{E} of this trial using coin x_i , also called the average, is:

$$\mathbb{E}[x_i] = \frac{1}{2}$$

If you flip it n times then we obtain a random variable X:

$$X = \sum_{i=1}^{n} x_i$$

16.2.1 Linearity of Expectation aka Golden Rule

The expected value of a sum of random variables is equal to the sum of the individual expectation. Hence, given random variables x_i and not assuming any relationship among them, then:

$$\forall x_i \mid X = x_1 + x_2 + \ldots + x_n \Longleftrightarrow \mathbb{E}[X] = \mathbb{E}[x_1] + \mathbb{E}[x_2] + \ldots + \mathbb{E}[x_n]$$

Using the coin example, and since $\sum \mathbb{E} = \mathbb{E} \sum$, then:

$$\mathbb{E}[X] = \sum_{i=1}^{n} \mathbb{E}[x_i] = \frac{1}{2} \sum_{i=1}^{n} 1 = \frac{n}{2}$$

16-2 Lecture 16: July 1

16.2.2 Variance & Covariance

Variace can be informally thought of as the measure of how far a set of random numbers are spread out from their mean. Formally, given that X is a random variable, $\mathbb{E}[X]$ is a constant, $\mathbb{E}[\mathbb{E}[X]] = \mathbb{E}[X]$, and $\mathbb{E}[cX] = c \mathbb{E}[X]$, then:

$$\begin{split} Var(X) &= \mathbb{E}[\,(X - \mathbb{E}[X])^2\,] \\ &= \mathbb{E}[\,X^2 + (\mathbb{E}[X])^2 - 2X\,\mathbb{E}[X]\,] \\ &= \mathbb{E}[X^2] + \mathbb{E}[X]^2 - 2\,\mathbb{E}[X]\,\mathbb{E}[X] \\ &= \mathbb{E}[X^2] + \mathbb{E}[X]^2 - 2\,\mathbb{E}[X]^2 \\ &= \mathbb{E}[X^2] - \mathbb{E}[X]^2 \end{split}$$

For two random variables X and Y:

$$\begin{aligned} Var(X+Y) &= \mathbb{E}[\,(X+Y-\mathbb{E}[X+Y])^2\,] \\ &= \mathbb{E}[\,(X+Y-\mathbb{E}[X]-\mathbb{E}[Y])^2\,] \\ &= \mathbb{E}[\,(X-\mathbb{E}[X])^2 + (Y-\mathbb{E}[Y])^2 + 2(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])\,] \\ &= Var(X) + Var(Y) + 2\,cov(X,Y) \end{aligned}$$

A property of a joint probability distribution, **covariance** is a measure of the joint variability of two random variables (like X and Y above). Formally, it is defined as $cov(X,Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])] = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$.

If X and Y are independent then cov(X,Y)=0 and $\mathbb{P}[X=x,Y=y]=\mathbb{P}[X=x]\cdot\mathbb{P}[Y=y]$. Moreover:

$$\begin{split} \mathbb{E}[X,Y] &= \sum_{x,y} xy \, \mathbb{P}[X=x,Y=y] \\ &= \sum_{x,y} xy \, \mathbb{P}[X=x] \, \mathbb{P}[Y=y] \\ &= \sum_{x,y} x \, \mathbb{P}[X=x] \cdot y \, \mathbb{P}[Y=y] \\ &= \mathbb{E}[X] \cdot \mathbb{E}[Y] \end{split}$$

Using the coin example above, let $p = \mathbb{P}[x=1] = \frac{1}{2}$ and $q = \mathbb{P}[x=0] = 1 - p = \frac{1}{2}$ then:

$$\mathbb{E}[X] = 1 \cdot p + 0 \cdot q = p = \frac{1}{2}$$

$$Var(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = p - p^2 = p(1-p) = p \cdot q = \frac{1}{4}$$

16.2.3 More on Bernoulli trials

$$x_i = \begin{cases} 0, \ \mathbb{P} = p \\ 1, \ \mathbb{P} = q = 1 - p \end{cases}$$

Lecture 16: July 1

$$X = \sum_{i=1}^{n} x_{i}$$

$$\mathbb{E}[X] = \mathbb{E}[\sum_{i=1}^{n} x_{i}] = \sum_{i=1}^{n} \mathbb{E}[x_{i}] = \sum_{i=1}^{n} p = n \cdot p$$

$$Var(X) = Var(\sum_{i=1}^{n} x_{i}) = \sum_{i=1}^{n} Var(x_{i}) = \sum_{i=1}^{n} p \cdot q = n \cdot p \cdot q$$

A binomial distribution gives the probability distribution of obtaining exactly m successes out of n Bernoulli trials. In other words, the probability that a random variable X with binomial distribution B(n,p) is equal to the value m, where $m=0,1,\ldots,n$, is given by

$$\mathbb{P}[X = m] = \binom{n}{m} p^m \cdot q^{n-m}$$
$$= \frac{n!}{(n-m)! \, m!} \, p^m \cdot q^{n-m}$$

16.3 Markov's Inequality

This inequality relates probabilities to expectations by giving an upper bound for the probability that a non-negative function of a random variable is greater than or equal to some positive constant. Thus, given a random variable $x \ge 0$:

$$\forall a > 0 \mid \mathbb{P}[x \ge a] \le \frac{\mathbb{E}[x]}{a} \equiv \mathbb{P}[x \ge k \, \mathbb{E}[x]] \le \frac{1}{k}$$

To prove it, let $I = \begin{cases} 0, & x \ge a \\ 1, & otherwise \end{cases}$, hence $I \le \frac{x}{a}, \forall x \ge 0, \forall a > 0$. It follows:

$$\mathbb{E}[I] = 1 \cdot \mathbb{P}[x \geq a] + 0 \cdot (1 - \mathbb{P}[x \geq a]) = \mathbb{P}[x \geq a]$$

$$\mathbb{E}[I] \leq \mathbb{E}[\frac{x}{a}]$$
 which is the same as $\frac{\mathbb{E}[x]}{a}$

Using the coin example, the probability ??????? can be expressed $\mathbb{P}[x \geq \frac{3}{4}n] = \mathbb{P}[x \geq \frac{3}{2}\frac{n}{2}] \leq \frac{2}{3}$

16.4 Chebyshev's Inequality

This inequality has great utility because it can be applied to any probability distribution in which the mean and variance are defined.

$$\mathbb{P}[|x - \mathbb{E}[x]| \ge a] = \mathbb{P}[(x - \mathbb{E}[x])^2 \ge a^2)] \le \frac{Var(x)}{a^2}$$

Using the previous coin example, the bound for $\mathbb{P}[x \geq \frac{3}{4}n]$ can be calculated as follows:

$$\mathbb{P}[\,|x - \mathbb{E}[x]| \geq (\frac{3}{4}n - \mathbb{E}[x])\,] = \mathbb{P}[\,|x - \mathbb{E}[x]| \geq \frac{n}{4}\,] \leq \frac{Var(x)}{(\frac{n}{4})^2} = \frac{\frac{n}{4}}{(\frac{n}{4})^2} = \frac{4}{n}$$

16-4 Lecture 16: July 1

16.5 Chernoff Bounds

This method gives exponentially decreasing bounds on tail distributions of sums of *independent* random variables. Formally, Let x_1, \ldots, x_n be independent variables, where $\mathbb{P}[x_i = 1] = p_i$ and:

$$X = \sum_{i=1}^{n} x_i, \quad \mu = \mathbb{E}[X]$$

Then the bounds are defined as:

1.
$$\forall \delta > 0$$
, $\mathbb{P}[x \ge (1+\delta) \cdot \mu] \le \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu}$

2.
$$\forall \delta \in (0,1]$$
, $\mathbb{P}[x \ge (1+\delta) \cdot \mu] \le e^{\frac{-\mu\delta^2}{3}}$

3.
$$\forall R \geq 6\mu$$
, $\mathbb{P}[x \geq R] \leq 2^{-R}$