1. You are given three sequences of n positive integers: a_1,\ldots,a_n , b_1,\ldots,b_n , and c_1,\ldots,c_n , together with an integer D. The question is to determine whether there exist three permutations π,ψ,ϕ (i.e., bijections that map an index $\{1,\ldots,n\}$ to another index $\{1,\ldots,n\}$) such that for all $i=1,\ldots,n$ it holds that $a_{\pi(i)}+b_{\psi(i)}+c_{\phi(i)}=D$.

For example, you are given a=(20,23,49), b=(22,25,27) and c=(19,40,45) and D=90, then the answer is yes, because with $\pi(i)=i$ (identity), $\psi(1)=2$, $\psi(2)=3$, $\psi(3)=1$, and $\phi(1)=3$, $\phi(2)=2$, and $\phi(3)=1$, it holds that $a_1+b_2+c_3=20+25+45=90$, $a_2+b_3+c_2=23+27+40=90$ and $a_3+b_1+c_1=49+22+19=90$.

(a) (3 points) Use the technique of preprocessing the data to get an exact algorithm with time complexity $O^*(n!)$ instead of $O^*(n!^3)$.

Solution:

First observe that if such permutations exist, there also exist two permutations π and ψ when we just take $\phi(i) = i$.

Next, sort the list b_1,\ldots,b_n . Then, for each permutation π , for each $i=1,\ldots,n$ search for $D-c_i-a_{\pi(i)}$ in this list b. If such an element exists, assign the original index to $\psi(i)$ and delete this element from the list b. Otherwise, reset ψ and b and try the next permutation π . Return success when the list b is empty.

- 1 point for sorting one of the lists and searching in it with D- two other elements
- 1 point for observing that one permutation is completely obsolete
- (b) (1 point) If by preprocessing the runtime for solving a problem is reduced from $O^*(n!^3)$ to $O^*(n!)$, can we say that this problem is *kernelizable*? Explain why or why not.

Solution: No, the reduced runtime is not because of a problem instance being reduced, and certainly not to a size less than g(k).

BTW: A decision problem with input (I, k) is *kernelizable* if every such input can be reduced to an instance (I', k') s.t.:

- 1. $k' \leq k$
- 2. |I'| is smaller than g(k) for some function g only depending on k
- 3. (I', k') has a solution if and only if (I, k) has one, and
- 4. the reduction from (I, k) to (I', k') must be computable in polynomial time.