

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САМАРСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИМЕНИ АКАДЕМИКА С.П. КОРОЛЕВА (САМАРСКИЙ УНИВЕРСИТЕТ)»

ИНСТИТУТ ИНФОРМАТИКИ И КИБЕРНЕТИКИ

Кафедра программных систем

А.В. Баландин

ОСНОВЫ МОДЕЛИРОВАНИЯ В СИСТЕМЕ ANYLOGIC

Методические указания

Самара

Основы моделирования в системе AnyLogic: Метод. указания по контролируемой самостоятельной работе / Самар. ун-т; *А.В. Баландин*. Самара, 2023. 21 с.

В методических указаниях описан порядок выполнения контролируемой самостоятельной работы по освоению базовых инструментальных средств создания моделей в программной системе AnyLogic. В практическом задании описан предмет моделирования, сформулированы цели, описаны этапы и контролируемые результаты работы.

Методические указания предназначены для организации самостоятельной работы обучающихся при изучении дисциплины «Моделирование информационных процессов и систем» по направлению «Фундаментальные информатика и информационные технологии».

ОГЛОВЛЕНИЕ

введение	4
МОДЕЛИРОВАНИЕ ПРУЖИННОГО МАЯТНИКА	5
Описание предмета моделирования	5
ОБОБЩЁННАЯ МОДЕЛЬ ПРУЖИННОГО МАЯТНИКА	6
Параметры и отношения между параметрами	6
Модель времени	
Интерпретация отношений между параметрами	8
исследование модели	10
Эксперименты с моделью	14
Создание эксперимента	14
Запуск эксперимента	
Презентация хода эксперимента	
Остановка эксперимента	19
ИТОГОВЫЕ РЕЗУЛЬТАТЫ	20

Введение

При подготовке к выполнению контролируемой самостоятельной работы (КСР) в системе AnyLogic необходимо предварительно ознакомится с перечнем методических материалов, представленных в "облаке"¹, и в дальнейшем следить за их обновлением. Выполнение КСР необходимо начать с изучения основ моделирования систем в AnyLogic ² в объёме, необходимом для выполнения контролируемой самостоятельной работы.

Для выполнения КСР необходимо:

- 1. Установить систему моделирования AnyLogic на компьютер.
- 2. Изучить начала использования системы AnyLogic.
- 3. Ознакомится со структурой справочной системы AnyLogic.
- 4. Научиться использовать средства навигации справочной системы AnyLogic для получения оперативной информации по использованию инструментальных средств при разработке проекта модели.
- 5. Изучит пользовательский интерфейс для управления созданием проекта модели и проведения экспериментов: набор панелей (вкладок) на рабочей области экрана и окно графического редактора.
- 6. Освоить создание, сохранение и открытие проекта модели в AnyLogic.
- 7. Изучить состав конструктивных графических элементов панели **Палитра**, используемых для создания моделей в виде графических диаграмм.
- 8. Освоить работу с графическим редактором для построения моделей.
- 9. Освоить работу в проекте модели с окном Свойства для управления свойствами элементов модели.

¹ https://cloud.mail.ru/public/54h6/WfBXxw5hV.

² Баландин А.В. Моделирование систем в среде AnyLogic7.

- 10.Освоить создание, настройку параметров и проведение «простых» экспериментов с моделью.
- 11.Освоить реализованные в AnyLogic модели времени и режимы управления модельным временем в процессе выполнения эксперимента («прогона» модели).
- 12. Изучить конструктивный элемент Событие, и использовать его в модели для автоматического завершения прогона эксперимента.

Моделирование пружинного маятника

Описание предмета моделирования

Предмет моделирования S представляет собой физическую систему, состоящую из груза, прикреплённого к концу пружины, который изначально покоится на горизонтальной поверхности, находясь в жидкой среде (Рисунок 1). На груз, находящийся в жидкой среде в состоянии покоя, действуют в горизонтальной плоскости две уравновешивающие друг друга силы: сила упругости пружины и сила тяжей, приложенная к грузу с противоположной стороны. Сила тяжести груза равна выталкивающей силой жидкости, и груз не оказывает давления на горизонтальную поверхность.

Если груз отпустить (убрать силу тяги), груз начнёт горизонтальное движение за счёт силы упругости сокращающейся/сжимающейся пружины. При этом мгновенно в жидкости возникает сила сопротивления движению. За счёт попеременного сжатия и растяжения пружины движение груза будет колебательным относительно начала координат. Колебательный процесс будет протекать с затуханием, так как энергия пружины будет тратиться на работу по преодолению силы сопротивления жидкости, вектора силы которой будет периодически менять направление на противоположное вектору скорости движения груза.

Рисунок 1 Горизонтальный пружинный маятник в жидкой среде

Целью моделирования является исследование изменения пространственного положения груза во времени (фазовая траектория), после прекращения действия силы тяги.

Обобщённая модель пружинного маятника

Обобщённая схема моделирования является формальным методом моделирования, предназначенным для выделения и спецификации параметров предмета моделирования, а также установления отношений между ними в наиболее общем виде. Так как предмет моделирования является физической системой, то проинтерпретируем представленную семантическую (описательную) модель пружинного маятника в жидкой среде в терминах физики. Груз далее будем называть физическим *телом* заданной массы, а предмет моделирования — *системой*.

Параметры и отношения между параметрами

Проанализируем предмет моделирования в соответствии с целью моделирования и специфицируем множество параметров моделируемой системы - P:

- m масса тела;
- c коэффициент жёсткости пружины;
- k коэффициент сопротивления жидкости;
- x смещение тела от начала координат;

- x_0 исходное смещение тела от начала координат в момент прекращения действия силы тяги (точка начала координат x=0).
- \vec{F} вектор силы тяги;
- \vec{F}_{ynp} вектор силы упругости пружины;
- \vec{F}_{c} сила сопротивления жидкости;
- \vec{v} вектор скорости движения тела;
- t параметр времени.

Из физических представлений ясно, что все параметры детерминированные, ряд параметров системы изменяются во времени, т.е. система является *детерминированной* и *динамической*. Все параметры принимают значения в стандартных физических единицах измерения на непрерывных множествах, т.е. являются *непрерывными*.

Параметр x_0 является независимым (экзогенным) и управляемым параметром - входное воздействие. Величина параметра x_0 ограничена размерами пружины и принимает значения на конечном непрерывном множестве вещественных чисел: $x_0 \in [x_{min}, x_{max}].$

Параметр $x(t) \in [x_{min}, x_{max}]$ — положение колеблющегося тела в текущий момент времени, является экзогенным динамическим параметром - выходная характеристика моделируемой системы. Смещение x=0 — точка начала координат, в которой на тело не действует сила упругости пружины - $\vec{F}_{ynp} = 0$.

Параметр c - коэффициент жёсткости пружины, является вещественной константой, экзогенный внутренний неуправляемый параметр, характеризующий жёсткость пружины.

Параметр k — коэффициент сопротивления жидкости, является вещественной константой, экзогенный внутренний неуправляемый параметр, фактор внешней среды.

Параметр $\vec{F}(x_0)$ - сила тяги, эндогенный статический параметр, зависящий от параметра $x_0 = x(0)$ — фактор внешней среды, действующий в момент времени t=0.

Параметр $\vec{F}_{ynp}(x)$ — сила упругости пружины, эндогенный динамический параметр, зависящий от смещения x(t) - выходная характеристика моделируемой системы, $\vec{F}_{ynp}(0) = 0$.

Модули векторов силы упругости пружины и силы тяги будут принимать значения на одном и том же конечном непрерывном множестве вещественных чисел: $F_{\rm ynp}(x), F(x_0) \in [F(x_{min}), F(x_{max})], \vec{F}_{\rm ynp}(x_0) = -\vec{F}(x_0).$

Параметр $\vec{v}(x)$ — вектор мгновенной скорости в точке x - выходная характеристика моделируемой системы, эндогенный динамический параметрвектор, модуль которого принимающий значения на конечном непрерывном множестве вещественных чисел $[0, v_{max}]$. Верхняя конечная граница v_{max} изменения значения модуля вектора скорости априори не известна.

Все параметры, зависящие от x, являются динамическими опосредованно.

Параметр t = time() модель времени.

Модель времени

Анализ поведения пружинного маятника во времени позволяет сделать вывод, что в качестве модели времени time(), формирующей значение параметра времени t, естественно принять модель непрерывного времени - $M_{I}(t_0,\delta t)$, где t_0 =0.

Интерпретация отношений между параметрами

Построенная обобщённая модель пружинного маятника является непрерывнодетерминированной моделью. Поэтому интерпретацию отношений между параметрами будем осуществлять в формате D-схемы. Для этого будем использовать известные физические законы движения объёмного тела заданной массы в жидкой среде под действием приложенных сил в непрерывном времени. Эти законы в общем случае выражаются дифференциальными или, в частности, алгебраическими уравнениями.

Мгновенный вектор переменной силы $\vec{\Phi}(t)$, действующей на тело в момент времени t, когда сила тяги отсутствует ($\vec{F}=0$), определяется суперпозицией векторов силы упругости пружины $\vec{F}_{\rm ynp}(t)$ и силы сопротивления жидкости $\vec{F}_{\rm c}(t)$:

$$\vec{\Phi}(t) = m \frac{d\vec{v}(t)}{dt} = \vec{F}_{ynp}(t) + \vec{F}_{c}(t)$$
,

Так как все вектора параллельны оси абсцисс, а силы действуют в противоположных направлениях, то переходя к проекциям сил на ось абсцисс, уравнение примет вид:

$$m\frac{dv(t)}{dt} = F_{y\pi p} - F_{c}.$$

Сила упругости пружины пропорциональна величине сжатия (растяжения) пружины, т.е. величине смещения x(t) относительно точки x=0, и действует в направлении противоположном смещению (т.е. имеют разные знаки). Следовательно, сила упругости будет равна:

$$F_{\rm ynp} = -c \cdot x(t).$$

Сила сопротивления жидкости при малых скоростях пропорциональна скорости движения тела - v(t), и равна:

$$F_{c} = k \cdot v(t)$$
.

Так как движение тела является переменным, то мгновенная скорость его движения в произвольный момент времени t задаётся дифференциальным уравнением вида:

$$v(t) = \frac{dx(t)}{dt}.$$

Состояние системы во времени в фазовом пространстве $X \times V$ будет представляться парой - $(x(t), v(t)) \in X \times V$. В итоге, фазовая траектория движения

точки центра масс (x(t), v(t)) груза в фазовом пространстве будет выражать отношения между параметрами предмета моделирования S - $\{x, v, t\}$ в виде системы дифференциальных уравнений:

$$\begin{cases} m\frac{dv(t)}{dt} = -c \cdot x(t) - k \cdot v(t), \\ \frac{dx(t)}{dt} = v(t). \end{cases}$$

Значение начальной фазовой координаты при t=0 (момент прекращения действия силы тяги) равно:

$$\begin{cases} x(0) = x_0, \\ v(0) = 0. \end{cases}$$

В итоге математическая модель пружинного маятника выразилась в форме системы простых дифференциальных уравнений с заданными начальными условиями.

Исследование модели

Для изучения поведения пружинного маятника во времени не сложно получить аналитическое решение построенной системы дифференциальных уравнений в и затем исследовать полученные функциональные зависимости фазовых координат точки центра масс груза от времени. В данной работе необходимо получить численное решение полученной математической модели в AnyLogic. Для этого в системе AnyLogic необходимо создать проект модели (например, с именем "Пружина") и полученную систему дифференциальных уравнений представить средствами графического редактора для моделирования динамических систем и системной динамики в виде диаграммы. Затем осуществить с полученной в AnyLogic графической моделью вычислительные эксперименты ("прогоны"), наблюдая на экране в процессе прогона презентацию фазовой траектории точки центра масс груза во времени.

При построении диаграммы дифференциальные уравнения представляются в окне графического редактора в виде элемента типа Накопитель. Поместим соответствующие двум дифференциальным уравнениям два элемента диаграммы типа Накопитель в окно графического редактора, перетащив их из палитры Системная динамика (Рисунок 2).

Рисунок 2 Палитра элементов системной динамики

Переименуем один из накопителей в xt, и установим ему **Свойства**: Режим задания уравнения: Произвольный. Сформируем в поле для дифференциального уравнения формулу: $\frac{dxt}{dt} = Vt$. Установим начальное значение смещения xt (начальное отклонение от нулевого значения) равным 10 (Рисунок 3).

Рисунок 3 Панель свойств накопителя хt

Повторим действия предыдущего шага для второго накопителя — Vt (Рисунок 4).

Рисунок 4 Панель свойств накопителя Vt

Откроем палитру Агент и введём в диаграмму два атрибута типа Параметр - Параметр для задания жёсткости пружины — c и коэффициента сопротивления жидкости — k, а также атрибут типа Переменная Переменная для задания массы тела - m. Заданные в их окнах свойств начальные значения по умолчанию (равные нулю) изменим: для c — на 10, для k — на 10, и начальное значение m — на 100. Установим между атрибутами и накопителем требуемые связи, используя элемент Связь палитры Системная динамика (анализируя сообщения об ошибках и следуя подсказкам системы по их устранению). В итоге диаграмма, отражающая дифференциальные уравнения в графической форме, примет вид (Рисунок 5).

Рисунок 5 Итоговая диаграмма модели

Эксперименты с моделью

Создание эксперимента

Эксперименты с построенной в виде агентной диаграммы моделью заключаются в решении построенной системы дифференциальных уравнений численными методами, встроенными в систему AnyLogic. При этом модель непрерывного времени - $M_{7}(t_{0},\delta t)$, в математической модели, в AnyLogic заменяется либо моделью дискретного монотонного времени (реальное относительное время) с заданным тиком Δt - $M_{7}(t_{0},\Delta t)$, либо моделью дискретного спорадического времени (виртуальное относительное время) - $M_{7}(t_{0}, \not\cong \Delta t)$, с неопределённым тиком $\not\cong \Delta t$.

Для перехода к этапу численного экспериментирования с построенной агентной диаграммой системы дифференциальных уравнений необходимо сгенерировать (построить) соответствующий ей программный код. Кроме того, необходимо в проекте создать «эксперимент», как особый объект для настройки параметров эксперимента. В одном проекте, можно создать набор различных экспериментов с разными агентами проекта, используя меню Файл (Рисунок 6).

По умолчанию при создании проекта модели в нём автоматически создаётся эксперимент для агента main с именем Simulation и типом «Простой эксперимент». Простой эксперимент заключается в том, что в процессе его выполнения все динамические атрибуты изменяют свои значения в соответствии с изменением параметра модельного времени. В результате изменяются и все зависящие от них переменные модели.

Рисунок 6 Создание эксперимента

Эксперимент как объект характеризуется набором настраиваемых свойств, унаследованных от агентной диаграммы. В качестве наследуемых экспериментом свойств выступают атрибуты диаграммы типа Параметр и заданные атрибуты модели времени (Рисунок 7). Запуская очередной прогон эти атрибуты эксперимента можно изменять, не изменяя их значения в диаграмме. Заметим, что атрибут типа Переменная, эксперимент не наследует.

Рисунок 7 Настройка параметров эксперимента

Запуск эксперимента

Запускаемый эксперимент необходимо выбрать из списка экспериментов (Рисунок 8).

Рисунок 8 Меню выбора эксперимента

В результате открывается окно управления прогоном эксперимента (Рисунок 9).

Рисунок 9 Окно управления прогоном эксперимента

В нижней части окна располагаются кнопки управления экспериментом. Запуск эксперимента осуществляется нажатием кнопки .

Презентация хода эксперимента

Хода эксперимента выражается в визуализации изменения атрибутов графической диаграммы модели в процессе выполнения эксперимента, называемой презентацией. Окно презентации диаграммы модели открывается сразу после запуска эксперимента. В окне презентации в процессе прогона визуализируются изменения значений атрибутов во времени. Для более выразительного отображения динамики изменения значений атрибутов модели для них в презентации можно открывать окно-«инспект», например для накопителей (Рисунок 10). Окно инспекта открывается двойным щелчком мыши по значку атрибута на диаграмме. Инспект позволяет выбрать форму отображения значения атрибута параметра в числовом или графическом виде. С помощью мыши окно инспекта можно перемещать и растягивать (изменять размеры). Кнопка позволяет (при необходимости) корректировать текущее числовое значение параметра. Щелчок по кнопке с «графиком» переводит инспект в режим показа графика изменения параметра во времени.

Рисунок 10 Презентации модели с открытыми «инспектами»

Остановка эксперимента

Запущенный на выполнение эксперимент можно временно остановить, нажав в нижней части окна эксперимента кнопку ■, а затем продолжить, нажав кнопку ■. Однако эксперимент можно вручную прервать и завершить, нажав кнопку ■. Однако эксперимент может завершится и автоматически, если в каком-то из элементов модели запуститься программный фрагмент, в котором выполниться функция finishSimulation(). Например, в модель можно добавить элемент из панели Агент. Этот элемент позволяет задать условие над параметрами модели, при выполнении которого будет выполнено включённое в него запланированное программное действие. В качестве такого действия можно выполнить функцию завершения эксперимента finishSimulation(). В нашем случае эксперимент можно

автоматически остановить, когда в крайнем положении и модуль скорости, и модуль смещения практически равны 0 ($|Vt| \approx 0 \& |xt| \approx 0$) — колебания практически затухли. Для этого в диаграмму надо добавить элемент Событие, например с именем стоп, с заданным условием и действием (Рисунок 11).

Рисунок 11 Остановка эксперимента по событию

Итоговые результаты

КСР считается выполненной, если:

- 1. Система моделирования AnyLogic установлена на компьютер.
- 2. Изучена структура и средства навигации справочной системы AnyLogic.
- 3. Изучен пользовательский интерфейс для создания и управления проектом и проведения экспериментов с моделью: набор панелей (вкладок) на рабочей области экрана, окно графического редактора, окно управления экспериментом.
- 4. Изучен состав тематических конструктивных элементов панели Палитра (группы Агент и Системная динамика) и их использование при построении графической диаграммы модели.

- 5. Освоена работа с графическим редактором для построения моделей.
- 6. Освоена работа с окном Свойства для управления свойствами элементов диаграммы модели.
- 7. Освоены создание, настройка параметров и проведение «простых» экспериментов с моделью.
- 8. Освоена работа с моделями времени, настройка модели времени и управление модельным временем в процессе выполнения эксперимента («прогона» модели).
- 9. Изучен и использован в диаграмме модели элемент Событие для автоматического завершения прогона эксперимента.