Отчет о выполнении лабораторной работы 2.1.4 Определение теплоемкости твердых тел

Костылев Влад, Б01-208

17 мая 2023 г.

Аннотация

Цель работы: измерение количества подведённого тепла и вызванного им нагрева твёрдого тела; 2) определение теплоёмкости по экстраполяции отношения $\triangle Q/\triangle T$ к нулевым потерям тепла.

В работе используются: калориметр с нагревателем и термометром сопротивления; амперметр; вольтметр; мост постоянного тока; источник питания 36 В.

1 Теоретическая справка

Запишем формулу, по которой можно найти теплоемкость тела. Если Q - тепло, подведенное к телу за какое-то время Δt , а ΔT - температура, на которую нагрелось тело, то:

$$C = \frac{Q}{\Delta T} \tag{1}$$

Чтобы увеличить точность, нужно учитывать тепловые потери. Тогда закон сохранения энергии примет вид:

$$C\Delta t = P\Delta t - \lambda (T - T_{\kappa})\Delta t \tag{2}$$

где P - мощность нагревателя, λ - коэффициент теплоотдачи стенок калориметра.

В дифференциальной форме оно примет вид (для случаев нагревания и охлаждения):

$$Cdt = Pdt - \lambda (T_{heat}(t) - T_{\kappa}(t))dt$$
(3)

$$Cdt = -\lambda (T_{cool}(t) - T_{\kappa}(t))dt \tag{4}$$

Итого, в этой работе нам нужно измерить 3 зависимости:

- 1. $R_{heat}(t)$ зависимость показаний термометра сопротивления от температуры при постоянной мощности нагревателя.
- 2. $R_{cool}(t)$ зависимость показаний термометра сопротивления от температуры при выключенном нагревателе.
- 3. $T_{\kappa}(t)$ фиксирование изменений температуры воздуха в течение эксперимента.

2 Методика эксперимента

Нам представлены 3 металла: латунь, железо и алюминий.

Поочередно помещая их в калориметр, схема устройства которого представлена выше, проходимся по пунктам и нужные нам данные вносим в таблицу для дальнейшей обработки.

Я не буду приводить выкладки по получению формул (очень долго писать), но справедливо следующее:

$$T(R) = 273 + \frac{R}{\alpha R_{\kappa}} [1 + \alpha (T_{\kappa} - 273)] - \frac{1}{\alpha}$$
 (5)

$$T_{cool}(t) = (T_0 - T_\kappa)e^{-\lambda t/C} + T_\kappa \tag{6}$$

$$T_{heat}(t) = \frac{P}{\lambda} (1 - e^{-\lambda t/C}) + T_{\kappa}$$
(7)

Это был описан интегральный способ нахождения теплоемкостей.

Так же можно использовать другой способ. Возьмем точки на кривых нагревания и охлаждения при одинаковой температуре. Тогда обозначим за $A = (\frac{\partial T}{\partial t})_{heat}$ и за $B = (\frac{\partial T}{\partial t})_{cool}$. Тогда, используя два уравнения, которые мы получим через дифференцирование (6) и (7), получим следующее:

$$\lambda = \frac{P}{(T - T_\kappa)(1 - \frac{A}{B})} \tag{8}$$

$$C = \frac{P}{A - B} \tag{9}$$

И так, нам предстоит изобразить на графике зависимость $T_{cool}(t)$ в координатах $y = ln(T_{cool} - T_{\kappa})/(T_0 - T_{\kappa})), x = t$, чтобы получить прямую с коэффициентом $-\frac{\lambda}{C}$. Затем находим из уравнения (7) теплоемкость исследуемой системы. Отсюда находим теплоемкости материалов. Эти результаты надо сравнить с результатами, полученными по дифференциальному методу, описанному выше.

3 Используемое оборудование

В работе используются: калориметр с нагревателем и термометром сопротивления; амперметр; вольтметр; мост постоянного тока; источник питания 36 В.

4 Результаты измерений и обработка данных

После всех измерений, давайте внесем наши данные в одну таблицу (так как данных очень много, то ниже показана только часть):

t	R, Om	t	Т, гр.Ц.
14:20:36	17,8422966	14:20:36	24,9662952
14:20:37	17,8427906	14:20:37	24,9824123
14:20:38	17,8422107	14:20:38	24,9276142
14:20:39	17,8422355	14:20:39	24,9450855
14:20:40	17,8422737	14:20:40	24,9550895
14:20:41	17,8422966	14:20:41	24,9795799
14:20:42	17,8423976	14:20:42	24,9769172
14:20:43	17,8424129	14:20:43	24,970499
14:20:44	17,8418922	14:20:44	24,970005
14:20:45	17,8423843	14:20:45	24,981224
14:20:46	17,8424873	14:20:46	25,0262851

Теперь давайте изобразим графики представленных величин от времени:

Теперь переведем наши результаты в градусы по Кельвину. Для сопротивления, формула:

$$T = 14.5839550 \times R + 39.3551401K$$

Внесем их в новую таблицу и построим соответствующий график:

Ниже представлен ход нашей работы:

14:21	начало	15:13	достаем латунный
14:23	охлаждаем	15:15	вставили железный и output
14:26	выравниваем	15:42	нагреваем
14:30	вынимаем	15:52	достаем железный
14:33	возвращаем в воду, output	16:00	охлаждаем и вставляем алюминий
15:00	выключаем output при 18.2	16:23	нагреваем
15:08	охлаждаем на 1 градус	16:33	стоп
15:09	охлаждаем		

Разделим наш цельный график на части, руководствуясь приведенной выше таблице:

4.1 Интегральный метод

Итого, у меня получилось:

Система	$\lambda/C, c^{-1}$
Пустой калориметр	$0,380 \cdot 10^{-3}$
Калориметр + железо	$0,178 \cdot 10^{-3}$
Калориметр + аллюминий	$0,189 \cdot 10^{-3}$

Теперь найдем λ . $\lambda=(1-e^{-\frac{\lambda t}{C}})\frac{P}{T_{heat}-T_{\kappa}}=0.17\pm0.02\Rightarrow C_{\kappa a.n}=662\pm27\frac{\mathcal{A}_{>\!\!\!/C}}{K}$ Итого, получились следующие теплоемкости:

Материал	$C, \frac{\mathcal{A}_{\mathcal{H}}}{K}$	$c, \frac{\mathcal{A}_{\mathcal{H}c}}{K \cdot \kappa \epsilon}$
Калориметр	662	-
Железо	280	350
Аллюминий	163	815

4.2 Дифференциальный метод

В этих таблицах находятся значения производных $A\ u\ B,$ а также значения теплоемкостей материалов.

Производная	калориметр	калориметр + железо	калориметр + аллюминий
A	0,0023	0,003	0,005
В	-0,004	-0,0025	-0,003

материал	$C, \frac{\mathcal{A}_{\mathcal{H}}}{K}$	$c, \frac{\mathcal{L}_{\mathcal{H}c}}{K \cdot \kappa \epsilon}$
калориметр	825 ± 78	_
железо	150 ± 21	375 ± 45
аллюминий	175 ± 30	875 ± 53

5 Заключение

В данной работе мы научились точно измерять теплоемкости различных металлов, а также оценивать тепловые потери в калориметре в ходе выполнения лабораторной.