代数学方法(第一卷)勘误表 跨度: 2019—2022

李文威

2022-03-31

以下页码等信息参照高等教育出版社 2019 年 1 月出版之《代数学方法》第一卷, ISBN: 978-7-04-050725-6. 这些错误已在修订版改正 (2022 年 3 月网络发布, 纸本待出).

- ◇ 第 12 页, 倒数第 8 行 原文 也可以由稍后的无穷公理保证. 更正 也可以划入稍后的无穷公理. 感谢王东瀚指正.
- ◇第16页,定义 1.2.8原文若传递集 α 对于 \in 构成良序集更正若传递集 α 对 $\exists x < y \overset{\text{EV}}{\Longleftrightarrow} x \in y$ 成为良序集感谢王东瀚指正.
- **◇ 第 16 页, 倒数第 5 行 原文** 于是有 $\gamma \in \gamma$, 这同偏序的反称性矛盾. **更正** 于是 有 $\gamma \in \gamma$, 亦即在偏序集 (α, \leq) 中 $\gamma < \gamma$, 这同 < 的涵义 (≤ 但 \neq) 矛盾. 感谢王东 瀚指正.
- **◇ 第 18 页, 倒数第 10 行 原文** 而性质... 是容易的. **更正** 而且使性质... 成立, 这是容易的.
- \diamond 第 19 页, 倒数第 5 行
 原文
 $a_{\alpha} \notin C_{\alpha}$ 更正
 $a_{\alpha} \notin \{a_{\beta}\}_{\beta < \alpha}$ 感谢胡旻杰指正
- ◆ 第 23 页, 第 5 行
 原文
 由于 α 无穷...
 更正
 由于 Ν_α 无穷...
 感谢王东瀚指正.
- \diamond **第 26 页, 第一章习题 5** 将题目中的三个 $\mathbb{Z}_{\geq 1}$ 全改成 $\mathbb{Z}_{\geq 0}$.
- \diamond 第 35 页, 倒数第 4 行
 原文
 $X \in Ob(\mathscr{C})$ 更正
 $X \in Ob(\mathscr{C}')$ 感谢尹梓僮指正.
- **◇ 第 38 页, 第 12 行 (命题 2.2.10 证明)** 将两个箭头的方向调换. 感谢尹梓僮指正.

- ◆ 第 42 页, 倒数第 2 行
 原文
 … 同构. Z(…) ≃…
 更正
 … 同构 Z(…) ≃…
 感谢

- ◇ 第 50 页, 第 3 行
 原文
 η_X
 更正
 η

感谢蒋之骏指正

⋄第54页最后 更正 图表微调成

兴许更易懂.

感谢熊锐提供意见.

- ◇ 第 56 页, 倒数第 13 行原文 $\epsilon'(FG\epsilon')(F\eta G)$ 更正 $\epsilon'(FG\epsilon'')(F\eta G)$ (严格来说, 这行里的所有 ϵ 都应该改作 ϵ .)感谢张好风指正
- ◇ 第 61 页, 第 2–3 行
 原文
 $\lim_{\longleftarrow} (\alpha(S)), \lim_{\longleftarrow} (\beta(S))$ 更正
 $\lim_{\longleftarrow} (\alpha(S)), \lim_{\longleftarrow} (\beta(S))$ 感

 谢巩峻成指正
- ◇第66页,第1行 余完备当且仅当它有所有"余"等化子和小余积. 感谢巩峻成指正
- \diamond 第 67 页, 第 7 行原文f(x)h(y)更正f(x)g(y)感谢巩峻成指正
- \diamond 第 77 页, 倒数第 8 和倒数第 6 行 将 $\xi_F: F(\cdot) \times F(\cdot)$ 改成 $\xi_F: F(\cdot) \otimes F(\cdot)$. 将 $\eta_F: F(\cdot \otimes \cdot) \to F(\cdot)$ 改成 $\eta_F: F(\cdot \otimes \cdot) \to F(\cdot)$ 感谢巩峻成指正
- \diamond **第 78 页, 第 1** 行 **原文** 使得下图... **更正** 使得 θ_{1_1} 为同构, 而且使下图... 图表之后接一句 "作为练习, 可以证明对标准的 φ_F 和 φ_G 必然有 $\varphi_G = \theta_{1_1} \varphi_F$." 后续另起一段.
- **⋄ 第 91 页, 倒数第 6 行** "对于 2-范畴"后加上逗号.

感谢巩峻成指正

- ◇ **第 94 页, 习题 5 倒数第 2 行 原文** Yang-Baxter 方程. **更正** 杨-Baxter 方程.
- ◇ 第 102 页, 第 6 行 原文 它们仅与… 更正 前者仅与… 感谢巩峻成指正
- **⋄第 113 页倒数第 3 行, 第 115 页引理 4.4.12 原文** 这相当于要求对所有… **更正** 这相当于要求 *X* 非空, 并且对所有…

原文 设 *X* 为 *G*-集 **更正** 设 *X* 为非空 *G*-集

感谢郑维喆指正

```
◇ 第 114 页, 倒数第 1 行原文Aut(G_1) \times Aut(G_2)^{op}更正Aut(G_1)^{op} \times Aut(G_2)感谢巩峻成指正
```

$$\diamond$$
 第 116 页, 第 5 行
 原文
 $\bar{H} \subseteq N_{\bar{G}}(\bar{H})$
 更正
 $\bar{H} \subseteq N_{\bar{G}}(\bar{H})$

感谢巩峻成指正

$$\diamondsuit$$
 第 137 页, 倒数第 12 行原文 $sgn(\sigma) = \pm 1$ 更正 $sgn(\sigma) \in \{\pm 1\}$ 感谢巩峻成指正

◇ 第 149 页, 第 3 行 CRing 表交换环范畴. 另外此行应缩进.

感谢阳恩林指正

$$\diamond$$
 第 156 页, 第 4 行 原文 $Ir = rI = I$ 更正 $IR = I = RI$ 感谢巩峻成指正

感谢雷嘉乐指正

感谢巩峻成指正

$$\diamond$$
 第 190 页, 第 7 行
 原文
 $f = \sum_{i=1}^{n}$
 更正
 $f = \sum_{i=0}^{n}$

感谢巩峻成指正

⋄ 第 190 页, 倒数第 2 行的公式 改成:

$$\bar{b}_k X^k +$$
 高次项, $\bar{b}_k \neq 0$,

感谢巩峻成指正

《第 191 页, 第 12 行 将 $(b_1, ..., b_m)$ 改成 $(b_1, ..., b_n)$, 并且将之后的"留意到..." 一句删除. 感谢巩峻成指正

- **第 191 页, 第 15 和 16 行** 原文
 $m_{\lambda_1,...,\lambda_n}$ 更正
 $m_{\lambda_1,...,\lambda_r}$

 原文
 $(\lambda_1,...,\lambda_r)$ 的所有不同排列.
 更正
 $(\lambda_1,...,\lambda_r,0,...,0)$ 的所有不同排列.

 排列 $(n \land \gamma)$ 量).
 感谢巩峻成指正
- 。第 192 页,第 1 段最后 1 行 原文 使 m_λ 落在 Λ_n 中的充要条件是 λ_1 (即 Young 图 的宽度) 不超过 n. 更正 如果分拆的长度 r (即 Young 图的高度) 超过给定的 n,相应的 $m_\lambda \in \Lambda_n$ 规定为 0. 感谢巩峻成指正
- **第 193 页, 第 2 行和第 5 行** 原文
 $X_{i_1} \cdots X_{i_n}$.
 更正
 $X_{i_1} \cdots X_{i_k}$.

 原文
 $\prod_{i=1}^{n} (Y X_i)$,
 更正
 $\prod_{i=1}^{n} (Y + X_i)$ 感谢巩峻成指正

- ◇ 第 203 页, 第 17 行 原文 ker(φ) 更正 ker(φ) 感谢胡龙龙指正
- **家 205 页, 第 7** 行
 原文
 M 作为 R/ann(M)-模自动是无挠的.
 更正
 M 作为

 R/ann(M)-模的零化子自动是 $\{0\}$.
 感谢戴懿韡指正.
- ◇ 第 218 页, 第 13 行原文B(rx,ys) = rB(x,y)s, $r \in R$, $s \in S$.更正B(qx,ys) = qB(x,y)s, $q \in Q$, $s \in S$.感谢冯敏立指正.
- **◇第220页** 本页出现的 Bil(•ו;•) 都应该改成 Bil(•,•;•), 以和 216 页的符号保持一致.

- ◇ 第 228 页, 倒数第 12 行 原文 粘合为 $y' \to B$ 更正 粘合为 $y' \to M$ 感谢巩 峻成指正
- ◇第230页,第13行
 原文
 萃取处
 更正
 萃取
- ◇ 第 230 页, 第 6 行; 第 231 页, 第 9—10 行 原文 0; 更正 0; 感谢郑维喆指正
- **◇ 第 235 页底部** 图表中的垂直箭头 f_i , f_{i-1} 应改为 ϕ_i , ϕ_{i-1} .

感谢巩峻成指正

- \diamond 第 237 页, 第 2 行原文存在 $r: M' \to M$ 更正存在 $r: M \to M'$ 感谢雷嘉乐指正
- ◇ 第 237 页, 命题 6.8.5 证明第二行 原文 由于 f 满 更正 由于 f 单 感谢巩峻成指正
- **◇第238页,第8行 原文** $Y' \to Y \to Y$ 正合 **更正** $Y' \to Y \to Y''$ 正合
- ◆ 第 240 页, 定义 6.9.3 第二条 原文 … 正合, 则称 I 是内射模. 更正 … 正合, 亦即它保持短正合列, 则称 I 是内射模.
- **◇第244页,倒数第10行** 原文 下面的引理 6.10.4 更正 引理 5.7.4 感谢郑维喆 指正
- ◆ 第 246 页, 第 2 行和定理 6.10.6, 6.10.7 "交换 Noether 模"应改为 "交换 Noether 环".
 两个定理的陈述中应该要求 *R* 是交换 Noether 环.
 感谢郑维喆指正
- ◇第 246 頁, 第 16 行 **原文** *u_if_i* 更正 *u_iα_i*

感谢陆睿远指正.

- **◇第247頁,第6—7行 原文** 其长度记为 n + 1. **更正** 其长度定为 n.
- ◇ 第 251 页, 第 6 行原文im $(u^{\infty}) = \ker(u^n)$ 更正im $(u^{\infty}) = \operatorname{im}(u^n)$ 感谢巩峻成指正
- ◆ **第 251 页起, 第 6.12 节** 术语 "不可分模"似作 "不可分解模"更佳,以免歧义. (第 4 页倒数第 3 行和索引里的条目也应当同步修改) 感谢郑维喆指正
- 第 252 頁,第 2 行
 原文
 1 ≤ 1 ≤ n.
 感谢傅煌指正.
- ◇ 第 255 页, 第 1 题 原文

$$N = \left\langle \alpha(f)(x_i) - x_j : i \xrightarrow{f} j, \ x_i \in M_i, x_j \in M_j \right\rangle$$

更正

$$N = \left(\alpha(f)(x_i) - x_i : i \xrightarrow{f} j, \ x_i \in M_i \right)$$

感谢郑维喆指正

- ◆ **第 264** 頁**,第 14** 行 **原文** 如果 ann(M) = {0} 更正 如果 ann(N) = {0}
- **◇ 第 270 页, 注记 7.3.6 原文** 秩为 *A, B* 的秩之和 **更正** 秩为 *A, B* 的秩之积 感谢汤一鸣指正
- \diamond 第 270 页, (7.6) 式 前两项改为 $M_n(A)\otimes M_m(B)\simeq A\otimes M_n(R)\otimes M_m(R)\otimes B$, 后续不变. 感谢巩峻成指正
- **⋄ 第 274 页, 倒数第 2 行** 将两处 $A^k(M)$ 改成 $A^k(X)$.
- ◇第 279 页,第 12 行
 原文
 Tⁱ(M)
 更正
 Tⁿ(M)
 感谢巩峻成指正
- **◇ 第 279 页, 定理 7.5.2 陈述 原文** 唯一的 *R*-模同态... **更正** 唯一的 *R*-代数同态... 感谢巩峻成指正
- \diamond **第 284 頁, 定理 7.6.6** 将定理陈述中的 U 由 "忘却函子" 改成 "映 A 为 A_1 的函子", 其余不变. 相应地, 证明第二行的 $\varphi: M \to A$ 应改成 $\varphi: M \to A_1$. 感谢郑维喆指正
- ◇ 第 285 頁, 倒数第 5 行 $T^n_\chi(M) := \{x \in T^n(M) : \forall \sigma \in \mathfrak{S}_n, \ \sigma x = \chi(\sigma)x\}$ 感谢郑维喆指正
- **◇ 第 286 頁, 第 10** 行 **原文** $\chi = 1, \sigma$ 更正 $\chi = 1, sgn$
- \diamond **第 286 頁, 定理 7.6.10** 原 "因而有 R-模的同构" 改为 "因而恒等诱导 R-模的同构". 以下两行公式开头的 $e_1:$ 和 $e_{sgn}:$ 皆删去. 感谢郑维喆指正

- **⋄ 第 293 页第 8, 10, 13 行** 将 *M* 都改成 *E*, 共三处.

感谢巩峻成指正

感谢巩峻成指正

- **◇第311页, 命题 8.3.2 证明第4行** 更正 分别取...... 和 \overline{F}' | E' .
- ◆ 第 313 頁, 命题 8.3.9 (iii) "交"改为"非空交". 相应地, 证明第四行的"一族正规子扩张"后面加上"且 *I* 非空".感谢郑维喆指正
- \diamond 第 315 頁, 定理 8.4.3 (iv) 原文 $\sum_{k\geq 0}^n$ 更正 $\sum_{k=0}^n$ 感谢郑维喆指正
- ◇ 第 315 页, 倒数第 2 行原文deg $f(X^p) = pf(X)$ 更正deg $f(X^p) = p \deg f(X)$ 感谢杨历指正.
- ◇ **第 317 页, 倒数第 13 行** (出现两次) **原文** ∏ⁿ_{i-1} ... **更正** ∏ⁿ_{m-1} ...

- ◇ 第 325 页, 第 10 行 (定义-定理 8.7.3 证明) 原文 a^{-p^m} 更正 $a^{p^{-m}}$
- ◇ 第 326 页第 4 行 原文 既然纯不可分扩张是特出的 更正 既然纯不可分扩张 对复合封闭 感谢巩峻成指正
- ◆ 第 340 页最后一行
 原文
 于是 Gal(E|K) 确实是拓扑群
 更正
 于是 Gal(E|F) 确

 实是拓扑群
 感谢巩峻成指正
- **◇ 第 343 页, 倒数第 6, 7 行** 倒数第 6 行的 $Gal(K|L \cap M) \subset \cdots$ 改成 $Gal(L|K) \subset \cdots$, 另外 倒数第 7 行最后的 "故"字删去. 感谢张好风指正
- ◇ 第 348 页, 命题 9.3.6 陈述和证明原文 $\lim_{m \to \infty} \mathbb{Z}/n\mathbb{Z}$ 更正 $\lim_{m \to \infty} \mathbb{Z}/m\mathbb{Z}$ 原文 $\lim_{m \to \infty} \mathbb{Z}/n!\mathbb{Z}$ $\mathbb{Z}/n!\mathbb{Z}$ 感谢郑维喆和巩峻成指正
- ◆ 第 350 页, 第 8 行
 原文
 ⇒ d | n
 更正
 ⇒ n | d
 感谢巩峻成指正
- ◆ 第 352 页, 第 7 行
 原文
 p | n | 更正
 p ∤ n | 感谢郑维喆指正
- \diamond 第 355 页, 第 6 行 $\boxed{\text{原文}}$ 设 T 不可逆 $\boxed{\text{更正}}$ 设 $\mathscr T$ 不可逆 $\boxed{\text{感谢雷嘉乐指正}}$
- ◇ 第 357 页, 第 4 行 删除 "= Gal(E|F)".
 感谢巩峻成指正
- ◇ 第 357 页, 倒数第 8 行 原文 F(S)|S 更正 F(S)|F 感谢张好风指正
- \diamond 第 359 页, 第 5 行原文透过 Γ_E 分解更正透过 $\operatorname{Gal}(E|F)$ 分解感谢巩峻成指正
- ◇ 第 360 页, 定理 9.6.8 陈述 在 (9.10) 之后补上一句 (不缩进): "证明部分将解释如何定义 Hom 的拓扑."
 感谢张好风指正
- \diamond 第 360 页, 定理 9.6.8 证明将证明第三行等号下方的 $\Gamma = \Gamma_F/\Gamma$ 和上方的文字删除,等号改成 $\stackrel{1:1}{\longleftrightarrow}$.感谢杨历和巩峻成指正

- **第 368 页, 定理 9.8.2 的表述第一句** 原文
 给定子集 $\{0,1\}$ \subset \mathcal{S} \subset \mathbb{C} , 生成的...

 更正
 给定子集 $\{0,1\}$ \subset \mathcal{S} \subset \mathbb{C} , 基于上述讨论不妨假定 \mathcal{S} 对复共轭封闭, 它生成的...
 感謝郑维喆指正
- **\$\sigma\$\$ 370 页, 习题 2** 将本题的所有 q 代换成 p, 将"仿照…"改为"参照", 开头加上"设 p 是素数, …" 感谢郑维喆指正

- **\$\phi\$ 372 页, 第 20 题** 条件 (b) 部分的 $P \in F[X]$ 改成 $Q \in F[X]$, 以免符号冲突. 相应地, 提示第一段的 P 都改成 Q. 感谢郑维喆指正
- **◇第 395–396 页, 引理 10.5.3 的证明** 从第 395 页倒数第 3 行起 (即证明第二段), 修改如下:

置 $f_k = \sum_{h\geq 0} c_{k,h} t^h$. 注意到 $\lim_{k\to\infty} \|f_k\| = 0$, 这确保 $c_h := \sum_{k\geq 0} c_{k,h}$ 存在. 我们断言 $f := \sum_{h\geq 0} c_h t^h \in K\langle t \rangle$ 并给出 $\sum_{k=0}^{\infty} f_k$.

对任意 $\epsilon > 0$, 取 M 充分大使得 $k \ge M \implies \|f_k\| < \epsilon$, 再取 N 使得当 $0 \le k < M$ 而 $h \ge N$ 时 $|c_k|_0 < \epsilon$. 于是

$$h \ge N \implies (\forall k \ge 0, |c_{k,h}| \le \epsilon) \implies |c_h| \le \epsilon,$$

故 $f := \sum_{h>0} c_h t^h \in K\langle t \rangle$. 其次, 在 $K\langle t \rangle$ 中有等式

$$f - \sum_{k=0}^M f_k = \sum_{h \geq 0} \left(c_h - \sum_{k=0}^M c_{k,h} \right) t^h = \sum_{h \geq 0} \underbrace{\left(\sum_{k > M} c_{k,h} \right)}_{|\cdot| < \epsilon} t^h,$$

从而 $f = \sum_{k=0}^{\infty} f_k$.

感谢高煦指正.

- ◇第397页,条目 V 下第6行
 原文
 W_{x,-}
 更正
 W_{x,-}
- ◇ 第 398 页, 倒数第 12 行 原文 , 而 $v: K^{\times} \to \Gamma$ 是商同态. 更正 . 取 $v: K^{\times} \to \Gamma$ 为商同态.
- **◇ 第 400 页, 倒数第 5–6 行** 改为: $e(w \mid u) = e(w \mid v)e(v \mid u), f(w \mid u) = f(w \mid v)f(v \mid u).$ 感谢巩峻成指正
- ◆ 第 406 页, 倒数第 3 行
 原文
 |Stab_{Gal(L|K)}(w)|
 更正
 |Gal(L|K)| |Stab_{Gal(L|K)}(w)|
 感谢巩峻成 指正
- ◇ 第 407 页, 第 8 行
 「原文」 | Stab_{Gal(L|K)}(w)| 更正」
 □ | Gal(L|K)| | Stab_{Gal(L|K)}(w)|
 感谢巩峻成指正
- **◇ 第 416 页, 定理 10.9.7** 将陈述的第一段修改为: "在所有 W(R) 上存在唯一的一族交换环结构, 使得 $w:W(R)\to\prod_{n\geq 0}R$ 为环同态, (0,0,...) 为零元, (1,0,...) 为幺元, 而且: "(换行, 开始表列)

对于表列第二项 ("存在唯一确定的多项式族… 所确定"), 最后补上 "… 所确定, 这 些多项式与 *R* 无关."

证明第一段的"群运算"改为"环运算".

⋄ 第 417 页. 最后一行 它被刻画为对...