

Pontificia Universidad Católica de Chile Departamento de Ciencia de la Computación IIC2223 – Teoría de Autómatas y Lenguajes Formales Segundo semestre de 2024

PROFESOR: CRISTIAN RIVEROS AYUDANTE: AMARANTA SALAS

Ayudantia 8

Myhill-Nerode, 2DFA y Algoritmos de Evaluación de Auntómatas

Problema 1

- 1. Usando el Teorema de Myhill-Nerode, demuestre que el lenguaje $L = \{ww^r \mid w \in \Sigma^*\}$ no es regular.
- 2. Considere el lenguaje L dado por la expresión regular $a^*b^* + b^*a^*$. Construya una expresión regular para cada clase de equivalencia de la relación $\equiv_{\mathcal{A}}$.

Problema 2

Sea L un lenguaje regular sobre el alfabeto Σ . Demuestre que el siguiente lenguaje:

$$L^{\exists n} = \{ w \in \Sigma^* \mid \exists n \in \mathbb{N}. \ w^n \in L \}$$

es regular usando autómatas finitos en dos direcciones.

Problema 3

Considere el siguiente problema:

Problema: #RUNS-NFA

Input: Un NFA $\mathcal{A} = (Q, \Sigma, \Delta, I, F)$ y $w \in \Sigma^*$.

Output: $|\{\rho \mid \rho \text{ es una ejecución de aceptación de } \mathcal{A} \text{ sobre } w\}|.$

Esto es, el problema RUNS-NFA consiste en, dado un autómata finito no-determinista \mathcal{A} y dado una palabra w, contar todas las ejecuciones de aceptación de \mathcal{A} sobre w. Por ejemplo, usted puede comprobar que si $w \notin L(\mathcal{A})$, entonces el output con \mathcal{A} y w es 0.

Escriba un algoritmo que resuelva RUNS-NFA en tiempo $\mathcal{O}(|\mathcal{A}| \cdot |w|)$ donde $|\mathcal{A}|$ es el número de estados y transiciones de \mathcal{A} . Demuestre la correctitud de su algoritmo.

IIC2223 – Ayudantia 8 Página 1 de 1