SimFem

Roland Becker

April 19, 2018

Contents

1	Geo	metry and finite elements	1
		Simplices	
		Finite elements	
	1.3	Numerical integration	2
	1.4	Element matrices for C^1	3
		1.4.1 Mass matrix	3
2	Test	problems	
	2.1	Advection-Diffusion-Reaction	3
		2.1.1 Courant element	
	2.2	Turing	3
		2.2.1 The influence of diffusion	4

1 Geometry and finite elements

1.1 Simplices

We consider an arbitrary non-degenerate simplex $K=(x_0,x_1,\ldots,x_d).$ The (signed) volume of K is given by

$$|K| = \frac{1}{d!} \det(x_1 - x_0, \dots, x_d - x_0) = \frac{1}{d!} \det(1, x_0, x_1 \dots, x_d) \quad 1 = (1, \dots, 1)^\mathsf{T}. \tag{1}$$

The d+1 sides S_k (co-dimension one, d-1-simplices or facets) are defined by $S_k=(x_0,\ldots,x_k,\ldots,x_d)$. The height is $d_k=|P_{S_k}x_k-x_k|$, where P_S is the orthogonal projection on the hyperplane associated to S. We have

$$d_k = d\frac{|K|}{|S_{l\cdot}|} \qquad \text{(and for } d = 3 \; |S_k| = \tfrac{1}{2} |u \times v|)$$

1.2 Finite elements

The d+1 basis functions of the Courant element are the barycentric coordinates λ_i defined as being affine with respect to the coordinates and $\lambda_i(x_j) = \delta_{ij}$. The constant gradient is given by

$$\nabla \lambda_i = -\frac{1}{d_i} \vec{n_i}.$$

The relation with the d + 1 Crouzeix-Raviart basis functions ψ_i is given by

$$\psi_{i} = 1 - d\lambda_{i}$$

Finally the d+1 Raviart-Thomas basis functions ξ_i , associated to side S_i , i.e. the opposite node x_i , are given by

$$\xi_i = \frac{x - x_i}{d_i} = \frac{1}{d_i} \sum_{\substack{j=0 \ i \neq j}}^d x_j \lambda_j$$

1.3 Numerical integration

Any polynomial in the barycentric coordinates can be integrates exactly.

$$\int_{K} \prod_{i=1}^{d+1} \lambda_{i}^{n_{i}} dv = d! |K| \frac{\prod_{i=1}^{d+1} n_{i}!}{\left(\sum_{i=1}^{d+1} n_{i} + d\right)!}$$
(2)

see [EisenbergMalvern73], [VermolenSegal18].

Let $V = Vect(\phi)$. For a smooth function f and $u = \sum_j u_j \phi_j$ we use and approximation based on $Vect(\psi)$ such that $\psi_l(x_k - = \delta_{kl})$ and

$$f(u) \approx \sum_k f(u(x_k)) \psi_k = \sum_k f(\sum_j u_j \phi_j(x_k)) \psi_k$$

Then

$$\begin{split} \int_K f(u)\phi_i &\approx \sum_k f_k \int_K \psi_k \phi_i, \quad f_k = f(\sum_l u_l \phi_l(x_k)) \\ \int_K f'(u)(\phi_j)\phi_i &\approx \sum_k f'_{k,j} \int_K \psi_k \phi_i, \quad f'_{k,j} = f'(\sum_l u_l \phi_l(x_k))\phi_j(x_k) \end{split}$$

For $\psi = \phi$ this becomes considerably cheaper:

$$\begin{split} &\int_K f(u)\phi_i \approx \sum_k f_k \int_K \phi_k \phi_i, \quad f_k = f(u_k) \\ &\int_K f'(u)(\phi_j)\phi_i \approx f_j' \int_K \phi_j \phi_i, \quad f_k' = f'(u_k) \end{split}$$

1.4 Element matrices for C¹

1.4.1 Mass matrix

$$M_{ij} = \begin{cases} \frac{2d!|K|}{(2+d)!} & i=j \\ \frac{d!|K|}{(2+d)!} & i\neq j \end{cases} \quad M^{1D} = |K| \begin{bmatrix} \frac{1}{3} & \frac{1}{6} \\ \frac{1}{6} & \frac{1}{3} \end{bmatrix}, \; M^{2D} = |K| \begin{bmatrix} \frac{1}{6} & \frac{1}{12} & \frac{1}{12} \\ \frac{1}{12} & \frac{1}{6} & \frac{1}{12} \\ \frac{1}{12} & \frac{1}{12} & \frac{1}{6} \end{bmatrix}, \; M^{3D} = |K| \begin{bmatrix} \frac{1}{10} & \frac{1}{20} & \frac{1}{20} & \frac{1}{20} \\ \frac{1}{20} & \frac{1}{10} & \frac{1}{20} & \frac{1}{20} \\ \frac{1}{20} & \frac{1}{20} & \frac{1}{20} & \frac{1}{10} \end{bmatrix}$$

Lumped mass

$$\tilde{M}_{ij} = \begin{cases} \frac{|K|}{(1+d)} & i=j \\ 0 & i\neq j \end{cases}$$

2 Test problems

2.1 Advection-Diffusion-Reaction

$$\operatorname{div}(\beta \mathbf{u}) - \operatorname{div}(\mathbf{k}\nabla \mathbf{u}) + \psi(\mathbf{u}) = \mathbf{f} \quad \text{in } \Omega, \qquad \mathbf{u} = \mathbf{u}^{\mathbf{D}} \text{on } \Gamma_{\mathbf{D}}, \qquad \mathbf{k} \frac{\partial \mathbf{u}}{\partial \mathbf{n}} = \mathbf{q}^{\mathbf{D}} \text{on } \Gamma_{\mathbf{N}}$$
 (3)

2.1.1 Courant element

$$\int_{\Omega} \psi(u)v + \int_{\Omega} k \nabla u \cdot \nabla v - \int_{\Omega} u \beta \cdot \nabla v + \int_{\partial\Omega} \beta_n^+ uv = \int_{\Omega} fv + \int_{\partial\Omega} |\beta_n^-| u^D v$$

Piecewise constant approximation for k

$$\int_K \nabla \lambda_i \cdot \nabla \lambda_j = |K| \frac{n_i}{d_i} \cdot \frac{n_j}{d_j} = |K| \frac{|S_i|}{d|K|} \frac{|S_j|}{d|K|} n_i \cdot n_j = \frac{1}{d^2|K|} \tilde{n}_i \cdot \tilde{n}_j$$

$$\begin{split} -\int_K u\beta\cdot\nabla\lambda_i &= u(x_K)|K|\beta\cdot\frac{n_i}{d_i} = u(x_K)\frac{1}{d}\beta\cdot\tilde{n}_i\\ -\int_S f\frac{\partial v_i}{\partial n} &= -f(x_S)|S|\nabla v_i\cdot n = f(x_S)|S|\frac{1}{d_i}n_i\cdot n = f(x_S)|S|\frac{|S_i|}{d|K|}n_i\cdot n = f(x_S)\frac{\tilde{n}_i\cdot\tilde{n}}{d|K|} \end{split}$$

2.2 Turing

We consider a reaction-diffusion system on $\Omega =]-1$, $+1[^d$

$$\begin{cases} \frac{\partial u}{\partial t} - k_u \Delta u = f(u, v) & \text{in } \Omega, & \frac{\partial u}{\partial n} = 0 & \text{on } \partial \Omega, \\ \frac{\partial v}{\partial t} - k_v \Delta v = g(u, v) & \text{in } \Omega, & \frac{\partial v}{\partial n} = 0 & \text{on } \partial \Omega, \end{cases}$$
(4)

Alan Turing discovered that the astonishing effect of destabilization by diffusion [Turing52], which leads to pattern formation ¹

$$f(u, v) = (a - u) - \psi(u, v),$$
 $g(u, v) = \psi(u, v).$ (5)

An equilibrium point satisfies

$$\mathbf{u}^* = \mathbf{a}, \qquad \psi(\mathbf{a}, \mathbf{v}^*) = 0$$

The linear stability analysis is based on the Jacobian

$$\begin{bmatrix} -1 - \psi'_{\mathbf{u}} & -\psi'_{\mathbf{v}} \\ \psi'_{\mathbf{u}} & \psi'_{\mathbf{v}} \end{bmatrix} \quad \Rightarrow \quad \mathrm{tr} = \psi'_{\mathbf{v}} - \psi'_{\mathbf{u}} - 1, \quad \det = -\psi'_{\mathbf{v}}$$

The brusselator is given by

$$\psi(u, v) = bu - u^2 v$$
 $(\psi'_u = b - 2uv, \quad \psi'_v = -u^2).$ (6)

An equilibrium point of (6) necessarily satisfies $u^* = a$ and $v^* = b/a$. We now have

$$tr = -b + 2uv - u^2 - 1$$
, $det = u^2$

and for the equilibrium point

$$tr^* = -1 - b + 2b - a^2 = b - 1 - a^2$$
. $det^* = a^2$

We conclude that a Hopf bifurcation appears if $b > a^2 + 1$.

2.2.1 The influence of diffusion

We consider an expansion into eigenfunctions of the Laplace operator with eigenvalues $l \ge 0$. The for the frequency l we have the Jacopian

$$\begin{bmatrix} -1 - \psi_u' - k_u l & -\psi_v' \\ \psi_u' & \psi_v' - k_v l \end{bmatrix} \quad \Rightarrow \quad tr = \psi_v' - \psi_u' - 1 - (k_u + k_v) l,$$

$$\det = (1 + k_u l)(k_v l - \psi_v') + k_v l \psi_u' = k_u k_v l^2 + (k_v (\psi_u' + 1) - k_u \psi_v') l - \psi_v'$$

For the brusselator we have at the eqilubrium

$$det = k_u k_v l^2 + (k_u a^2 - k_v (b-1))l + a^2. \label{eq:det_energy}$$

The discriminant is

$$\Delta = (k_u a^2 - k_v (b - 1))^2 - 4a^2 k_u k_v$$

¹For an introduction and references see https://en.wikipedia.org/wiki/Reaction-diffusion_system.

which is positive (a = 1) for

$$b \le b^* = 1 + \frac{k_u}{k_v} + 2\frac{\sqrt{k_u}}{\sqrt{k_v}} \tag{7}$$

The critical frequency is

$$l^* = \frac{k_v(b^* - 1) - k_u}{2k_uk_v} = 2k_u^{-1/2}k_v - 3/2$$

The data for our test problems are

(cas 1)
$$\quad \text{a} = 1.0 \text{ , } \quad b = 2.1 \text{, } \quad k_u = 0.0 \text{ , } \quad k_v = 0.0 \text{ , } \quad T = 20.0$$

(cas 2)
$$\mbox{a} = 1.0 \mbox{ ,} \quad b = 1.9 \mbox{,} \quad k_u = 0.0001 \mbox{ ,} \quad k_v = 0.01 \mbox{ ,} \quad T = 20.0 \label{eq:cas}$$

$$u_0(x) = \begin{cases} 1 & \text{if for all i } x_i \in [-0.4, 0.0] \\ 0 & \text{else} \end{cases} \quad v_0(x) = \begin{cases} 1 & \text{if for all i } x_i \in [-0.2, 0.2] \\ 0 & \text{else} \end{cases}$$