ĐẠI HỌC BÁCH KHOA HÀ NỘI

ĐỒ ÁN TỐT NGHIỆP Tính toán thiết kế bàn nâng chữ X tải trọng 6 tấn

NGUYỄN TUẨN ANH

Anh.nt185971@sis.hust.edu.vn

Nhóm chuyên môn: Máy và tự động hóa thủy khí

Giảng viên hướng dẫn:	TS. Trần Khánh Dương	
		Chữ ký của GVHD
Giảng viên phản biện:	TS. Trương Văn Thuận	Chữ ký của GVPB

Khoa: Cơ khí động lực

Trường: Cơ khí

NHIỆM VỤ ĐÒ ÁN TỐT NGHIỆP

(NGÀNH MÁY VÀ TỰ ĐỘNG HÓA THỦY KHÍ)

1. Thông tin về sinh viên:

Họ và tên SV: Nguyễn Tuấn Anh Lớp: CKĐL-01 ĐT: 0974.296.256

Email (đại diện): nguyentuananhhust2000@gmail.com

Hệ đào tạo: Chính quy Chuyên ngành: Máy và tự động hóa thủy khí

Đồ án tốt nghiệp được thực hiện tại: Trường Cơ Khí – Bách Khoa Hà Nội

Thời gian làm ĐATN: Từ ngày 20/04/2023

2. Tên đề tài: Tính toán thiết kế bàn nâng chữ X tải trọng 6 tấn

Thông số	Giá trị	Đơn vị
Tải trọng nâng lớn nhất	6	Tấn
Hành trình nâng	1.8	m
Thời gian nâng hết hành trình	30	S
Thời gian hạ bàn	25-30	S
Dài	4	m
Rộng	2.4	m
Cao	0.6	m

Yêu cầu:

- Bản vẽ kết cấu bàn nâng (A0)
- Bản vẽ mạch thủy lực (A0)
- Bản vẽ trạm nguồn thủy lực (A0)
- Bản vẽ lắp xy lanh thủy lực (A0)
- Bản vẽ chế tạo quả piston (A0)

Hà Nội, ngày tháng năm 2023 Giáo viên hướng dẫn

ĐẠI HỌC BÁCH KHOA HÀ NỘI TRƯỜNG CƠ KHÍ

CỘNG HOÀ XÃ HỘI CHỦ NGHĨA VIỆT NAM

Độc lập - Tự do - Hạnh phúc

NHẬN XÉT ĐỔ ÁN TỐT NGHIỆP

(Dành cho Giáo viên hướng dẫn)

Tên đề tài: Tính toán thiết kế bàn nâng chữ X tải trọng 6 Tấn Họ và tên SV: **Nguyễn Tuán Anh** Lớp: CKĐL01

Chuyên ngành: Máy và tự động hóa thủy khí Giáo viên hướng dẫn: TS. Trần Khánh Dương

I.	NỘI DUNG NHẬN XÉT CỦA GIÁO VIÊN HƯỚNG DẪN Tác phong làm việc
II.	Những kết quả đạt được
• • • • •	
• • • • •	
• • • • •	
• • • • •	
••••	
••••	
III.	Hạn chế của đồ án
• • • • •	
• • • • •	
• • • • •	
• • • • •	
••••	
IV.	Kết luận
Ngườ	ri hướng dẫn đề nghị cho phép sinh viên (không) được bảo vệ đề tài tốt nghiệp trước Hội
	chấm đồ án tốt nghiệp.
_	<i>n giá:</i> điểm

Hà Nội, ngày tháng năm 20 Giáo viên hướng dẫn (Ký và ghi rõ họ tên)

ĐẠI HỌC BÁCH KHOA HÀ NỘI TRƯỜNG CƠ KHÍ

CỘNG HOÀ XÃ HỘI CHỦ NGHĨA VIỆT NAM

Độc lập - Tự do - Hạnh phúc

NHẬN XÉT ĐỔ ÁN TỐT NGHIỆP

(Dành cho Giáo viên phản biện)

Tên đề tài: Tính toán thiết kế bàn nâng chữ X tải trọng 6 Tấn

Họ và tên SV: **Nguyễn Tuấn Anh** Lớp: CKĐL01

Chuyên ngành: Máy và tự động hóa thủy khí

NỘI DUNG NHẬN XÉT CỦA GIÁO VIÊN PHẢN BIỆN

I.	Những kết quả đạt được
II.	Hạn chế của đồ án
III.	Kết luận
Người dư án tốt ng	uyệt (không) đồng ý để sinh viên được bảo vệ đề tài tốt nghiệp trước Hội đồng chấm đồ hiệp.
Đánh ơi	ά: điểm

Hà Nội, ngày tháng năm 20 Giáo viên phản biện (Ký và ghi rõ họ tên)

Lời cảm ơn

Sau khoảng thời gian học tập và nghiên cứu tại Bách Khoa Hà Nội em đã hoàn thành đồ án tốt nghiệp với đề tài: "TÍNH TOÁN THIẾT KẾ BÀN NÂNG CHỮ X TẢI TRỌNG 6 TẨN" dưới sự giúp đỡ, quan tâm của bạn bè và thầy cô.

Trong quá trình tính toán và thiết kế em có tham khảo từ các giáo trình như: các bài báo, tài liệu liên quan đến bàn nâng chữ X, ...qua đó từng bước làm quen với công việc thiết kế phục vụ nghề nghiệp của mình khi ra trường.

Em xin chân thành cảm ơn TS. Trần Khánh Dương đã hướng dẫn tận tình và dành nhiều sự đóng góp, giúp đỡ em trong suốt quá trình làm đồ án để em có thể hoàn thành đồ án này. Cảm ơn các thầy cô trong nhóm chuyên môn: Máy và Tự động hóa thủy khí đã hỗ trợ, giúp đỡ em trong xuyên suốt quá trình theo học tại trường.

Em xin chân thành cảm ơn anh Sao và anh Quyết cùng toàn thể công ty Máy và tự động thủy khí Minh Ngọc đã giúp đỡ em trong quá trình thực tập cũng như cho em những lời khuyên bổ ích để em hoàn thành đồ án này.

Cuối cùng em xin được bày tỏ sự biết ơn đến người thân, gia đình và bạn bè đã ủng hộ, động viên cả về mặt vật chất cũng như tinh thần trong suốt quá trình em theo học tại Bách Khoa Hà Nội.

Trong quá trình thực hiện với kinh nghiệm, kiến thức và thời gian còn hạn chế nên sẽ không thể tránh khỏi thiếu sót, do đó em mong nhận được sự góp ý thêm từ phía quý thầy cô để đồ án của em có thể được hoàn thiện hơn nữa.

Em xin chân thành cảm ơn!

Mục Lục

Lời cảm ơn	5
Mục Lục	6
CHƯƠNG 1. TỔNG QUAN VỀ BÀN NÂNG CHỮ X	10
1.1. Tìm hiểu chung về bàn nâng	10
1.1.1. Tìm hiểu chung	10
1.1.2. Phân loại bàn nâng	10
1.1.3. Tính ứng dụng của bàn nâng	13
CHƯƠNG 2: GIỚI THIỆU VỀ KẾT CẦU CƠ KHÍ VÀ QUÁ TRÌNH HÀNH BÀN NÂNG	
2.1. Cấu tạo chung	14
2.2. Vật liệu chế tạo	
2.3. Tính toán động lực học bàn nâng chữ X	16
CHƯƠNG 3: SƠ ĐỒ MẠCH THỦY LỰC VÀ NGUYÊN LÝ HOẠT Đ	
CỦA HỆ THỐNG	•
3.1. Sơ đồ hệ thống thủy lực	20
3.1.1. Sơ đồ mạch thủy lực	20
3.1.2. Các phần tử trong hệ thống thủy lực	22
3.1.3. Mạch role điều khiển bàn nâng	22
3.2. Nguyên lý làm việc của bàn nâng chữ X	23
3.2.1. Qúa trình chạy không tải	24
3.2.2. Qúa trình chạy có tải	24
CHƯƠNG 4: TÍNH TOÁN THIẾT KẾ HỆ THỐNG THỦY LỰC	25
4.1. Tính toán thiết kế xy lanh nâng	25
4.1.1. Tổng tải trọng 2 xy lanh tác động lên bàn nâng	
4.1.2. Tính toán các thông số làm việc của xy lanh	25
4.1.3. Tính toán lưu lượng làm việc của hệ thống	
4.2. Tính toán lưa chọn đường ống	

4.3. Tí	nh toán lựa chọn bơm nguồn và động cơ điện	30
4.3.1.	Tính toán tổn thất áp suất trong hệ thống	30
4.3.2.	Tính toán lựa chọn bơm nguồn và động cơ điện	32
4.4. Tí	nh toán lựa chọn các loại van	34
4.4.1.	Tính toán lựa chọn van một chiều số 04 của hệ thống	34
4.4.2.	Tính toán lựa chọn van phân phối 4/3	36
4.4.3.	Tính toán chọn van chống tụt tải số 09	38
4.4.4.	Tính toán lựa chọn van tiết lưu 1 chiều số 10	39
4.4.5.	Tính toán lựa chọn van an toàn số 06 cho hệ thống	41
4.5. Tí	nh toán thiết kế trạm nguồn thủy lực	42
4.5.1.	Tính toán thiết kế thùng dầu	42
4.5.2.	Chọn thước thăm dầu	45
4.5.3.	Tính toán lựa chọn bộ lọc	46
4.5.4.	Tính toàn lựa chọn đồng hồ áp suất	47
4.5.5.	Chọn nắp thùng dầu thủy lực	48
4.5.6.	Chọn khóa tay vặn	49
4.5.7.	Van xả (Van bi thủy lực/gạt tay 2 ngã)	49
4.6. Ch	on gioăng phớt cho xy lanh	50
	Phót gạt bụi	
4.6.2.	Phót ben cần piston	51
4.6.3.	Vòng dẫn hướng cho cần xy lanh	52
4.6.4.	Vòng dẫn hướng cho quả piston	53
4.6.5.	Phót ben cho quả piston	
	Gioăng chỉ làm kín	
	G 5: KÉT LUẬN	
TÀI LIỆU	THAM KHẢO	57

DANH MỤC HÌNH ẢNH

Hình 1. 1: Bàn nâng chữ X	10
Hình 1. 2: Bàn nâng xe máy	11
Hình 1. 3: Bàn nâng ô tô	11
Hình 1. 4: Bàn nâng đặt âm	12
Hình 1. 5: Bàn nâng đặt dương	13
Hình 2. 1: Kết cấu chung của một bàn nâng	14
Hình 2. 2: Kết cấu thép hình I	15
Hình 2. 3: Thép C45 chế tạo piston	
Hình 2. 4: Sơ đồ vật thể tự do cho vị trí ban đầu	16
Hình 2. 5: Lực tác dụng tại điểm E	17
Hình 2. 6: Sơ đồ vật thể tự do cho từng chân riêng biệt	17
Hình 2. 7: Hình chiếu của chân	18
Hình 3. 1: Sơ đồ thủy lực của bàn nâng	21
Hình 3. 2: Mạch role điều khiển bàn nâng	23
Hình 4. 1: Kết cấu cơ khí của động cơ 3 pha vihem	33
Hình 4. 2: Catalogue bom parker	34
Hình 4. 3: Van một chiều	35
Hình 4. 4: Mối quan hệ giữa lưu lượng và tổn thất áp suất khi qua van	36
Hình 4. 5: Cấu tạo của van phân phối 4/3	37
Hình 4. 6: Kết cấu cơ khí của van phân phối 4/3	37
Hình 4. 7: Cấu tạo van chống tụt tải	38
Hình 4. 8: Kết cấu cơ khí của van chống tụt	39
Hình 4. 9: Van tiết lưu 1 chiều	40
Hình 4. 10: Kết cấu cơ khí van tiết lưu	40
Hình 4. 11: Cấu tạo và kí hiệu của van an toàn số 06	41
Hình 4. 12: Kết cấu cơ khí của van an toàn số 06	42
Hình 4. 13: Các thông số của thước thăm dầu	45
Hình 4. 14: Các thông số lọc dầu đường hồi của hệ thống	47
Hình 4. 15: Các thông số của đồng hồ áp suất	48
Hình 4. 16: Các thông số của nắp thùng dầu	49
Hình 4. 17: Khóa tay	49
Hình 4. 18: Các thông số của van xả	50
Hình 4. 19: Thông số của phót gạt bụi	51
Hình 4. 20: Các thông số phót ben cần piston	
Hình 4 21: Các thông số vòng dẫn hướng cho cần xy lanh	53

Hình 4. 22: Các thông số dẫn hướng quả piston	54
Hình 4. 23: Các thông số phót ben quả piston	55
Hình 4. 24: Gioăng chỉ làm kín	55
DANH MỤC BẢNG BIỂU	
Bảng 3. 1: Các phần tử thủy lực trong mạch	22
Bảng 3. 2: Bảng trạng thái làm việc của xy lanh thủy lực	23
Bảng 4. 1: Bảng tổng hợp các thông số của xy lanh	26
Bảng 4. 2: Tốc độ vận hành của bàn nâng	26
Bảng 4. 3: Vận tốc trên các đường ống	27
Bảng 4. 4: Ông thép đúc thủy lực (theo tiêu chuẩn DIN 2391)	28
Bảng 4. 5: Ông mềm chịu áp cao của hãng Parker	29
Bảng 4. 6: Thông số của các loại dầu thủy lực được dùng trong hệ thống thủy lụ	ľC
	31
Bảng 4. 7: Bảng tổng hợp các thông số động cơ điện đã chọn	33
Bảng 4. 8: Bảng tổng hợp các thông số của bơm thủy lực đã chọn	34
Bảng 4. 9: Bảng tổng hợp các thông số của van một chiều	36
Bảng 4. 10: Bảng tổng hợp các thông số của van phân phối 4/3	38
Bảng 4. 11: Bảng tổng hợp các thông số của van chống tụt tải	
Bảng 4. 12: Bảng tổng hợp các thông số của van tiết lưu	41
Bảng 4. 13: Bảng tổng hợp các thông số của van an toàn số 06	42
Bảng 4. 14: Các thông số thiết kế của thùng dầu	45

CHƯƠNG 1. TỔNG QUAN VỀ BÀN NÂNG CHỮ X

1.1. Tìm hiểu chung về bàn nâng

1.1.1. Tìm hiểu chung

Hình 1. 1: Bàn nâng chữ X

Bàn nâng thủy lực là thiết bị dung trong việc nâng hạ hang hóa, máy móc nguyên khối. Thiết bị này sử dụng nguyên lý thủy lực (áp lực dầu) để hoạt động nâng hạ các vật dụng, đồ vật nặng, giảm thiểu sức người và đẩy nhanh tiến độ công việc.

Ngày nay, bàn nâng thủy lực được sử dụng rất phổ biến trong các nhà máy xí nghiệp bởi sự tối ưu trong thiết kế và tốc độ nâng hàng hóa nhanh chóng, hiệu quả cao. Vì vậy, với những doanh nghiệp có nhu cầu nâng hạ nhiều, thường xuyên thì việc đầu tưu bàn nâng thủy lực sẽ giúp tiết kiệm thời gian, chi phí và công sức. Thiết bị phù hợp với các doanh nghiệp hoạt động trong những lĩnh vực: gia công cơ khí, máy móc thiết bị nặng, doanh nhiệp làm về logictic và vận chuyển hàng hóa với số lượng lớn cần thiết những dây chuyền với những máy móc hiện đại để nâng hạ hang hóa từ nhà máy lên container giúp tiết kiệm thời gian và nâng cao giá trị thặng dư.

1.1.2. Phân loại bàn nâng

a. Phân loại theo mục đích sử dụng

• Bàn nâng thủy lực xe máy

Là một trong những thiết bị được sử dụng rộng rãi ở các tiệm sửa xe máy, loại bàn nâng này được thiết kế đặt âm nền nên không hề gây ra sự cản trở về không gian của tiệm. Sử dụng bàn nâng này sẽ giúp thợ sửa xe dễ dàng thao tác, sửa chữa ở

những vị trí thấp của xe như hộp số, gầm xe, nhông xích, bánh xe,...Nhờ đó mà hiệu quả cũng tăng lên rõ rệt.

Hình 1. 2: Bàn nâng xe máy

• Bàn nâng thủy lực nâng ô tô, máy chuyên dụng

Loại bàn nâng này được sử dụng nhiều trong các gara ô tô chuyên nghiệp hoặc các nhà xưởng, kho bãi. Có thể sử dụng để đưa ô tô lên bãi đậu tầng 2, nâng cả xe hàng để vận chuyển lên thùng xe tải, container,....giúp cho việc vận chuyển hàng hóa được thuận tiện hơn.

Hình 1. 3: Bàn nâng ô tô

• Phân loại bàn nâng theo trọng lượng

Bàn nâng phân theo trọng lượng, cách phân loại này thường được sử dụng trong nâng chuyển hàng hóa. Hiện nay có nhiều loại bàn nâng khối lượng từ thấp đến cao như bàn nâng 150kg, 300kg, 1000kg, 2000kg, 6000kg,... Tùy vào mục đích sử dụng mà có thể lựa chọn sao cho phù hợp với nhu cầu

- b. Phân loại theo vị trí đặt bàn nâng được chia ra làm:
 - Bàn nâng đặt âm: bàn nâng được đặt chìm xuống dưới mặt sàn.

Bàn nâng được đặt âm dưới mặt nền của xưởng, thường được đặt ở những vị trí cố định và được tính toán trước. Khi hạ bàn xuống phải kín khít với mặt nền nên không cần các cơ cấu để đưa xe lên xuống bàn nâng, loại này được dùng phổ biến vì không làm hạn chế không gian khi lắp đặt

Hình 1. 4: Bàn nâng đặt âm

Bàn nâng đặt dương: bàn nâng đặt trên mặt sàn

Bàn nâng được đặt trên mặt nền, dễ dàng di chuyển, được sử dụng trong các khu vực có không gian rộng. Bàn nâng thường được thiết kế có thêm tấm lên xuống để đưa xe lên và xuống khỏi bàn nâng.

Hình 1. 5: Bàn nâng đặt dương

c. Theo cách hoạt động của bàn nâng chia làm

- Bàn nâng hoạt động bằng thủy lực.
- Bàn nâng hoạt động bằng điện thủy lực.

1.1.3. Tính ứng dụng của bàn nâng

Nhờ sự xuất hiện của bàn nâng mà đã giảm thiểu tối đa sức người cho việc thực hiện công việc mất nhiều công sức. Thay vì việc sử dụng sức người để bê vác, nâng hạ hàng hóa, thì nhờ sản phẩm này đã thay thế hoàn toàn cho sức người. Người dùng chỉ việc thực hiện công việc những công việc đơn giản như điều khiển, kéo đẩy vô cùng nhẹ nhàng, không mất công sức nhiều.

Theo đó, bàn nâng được sử dụng phổ biến trong các công việc như:

- Sử dụng xe bàn nâng thủy lực để di chuyển, nâng hạ các loại cây cảnh một cách nhẹ nhàng, an toàn
- Sử dụng để có thể thực hiện công việc di chuyển các thùng, linh kiện, hàng hóa tại các nhà máy, công xưởng
- Dùng để di chuyển đồ vật trong nhà, các thiết bị máy móc cần thiết, nâng hạ xe trong các xưởng gara, kho bãi,...

CHƯƠNG 2: GIỚI THIỆU VỀ KẾT CẦU CƠ KHÍ VÀ QUÁ TRÌNH VẬN HÀNH BÀN NÂNG

2.1. Cấu tạo chung

Bàn nâng thủy lực bao gồm 4 phần chính bao gồm:

- O Hệ thống trạm nguồn thủy lực gồm có bom thủy lực, van, dây dẫn
- Xy lanh thủy lực
- O Phần cơ khí gồm có mặt sàn, phần cắt kéo và phần đế
- Phần điện gồm có tủ điện điều khiển

Hình 2. 1: Kết cấu chung của một bàn nâng

2.2. Vật liệu chế tạo

Vật liệu được chọn để thiết kế khung bàn nâng đó là thép hình I với mác thép là CT3 của Nga sản xuất theo tiêu chuẩn GOT 380-88. Chọn thép hình chữ I với thông số: I-120*64*4.8. Với các ưu điểm giữ cân bằng và chịu lực tốt, khả năng chống ăn mòn và tuổi thọ cao, hoạt động trong môi trường khắc nghiệt nên thép hình I được ứng dụng rất rộng rãi như: dùng làm đòn bẩy, đòn cân, đường ray và cột dầm cho các máy móc công trình kết cấu thép,...

Hình 2. 2: Kết cấu thép hình I

Vật liệu dùng để chế tạo quả piston đó là thép C45. Thép C45 là một loại thép hợp kim có hàm lượng cacbon cao, có độ cứng, độ kéo phù hợp với việc chế tạo khuôn mẫu, ứng dụng trong cơ khí chết tạo máy, các chi tiết tải trọng và sự va đập mạnh Sau đây là ưu điểm nổi bật của thép C45:

Hình 2. 3: Thép C45 chế tạo piston

- Do có độ bền kéo từ 570-690 Mpa, thép C45 có khả năng chống bào mòn, chống oxy hóa tốt và chịu được tải trọng cao.

- Tính đàn hồi tốt, khả năng chịu được va đập mạnh của thép C45 cũng được thể hiện bởi độ bền kéo và giới hạn chảy cao.

2.3. Tính toán động lực học bàn nâng chữ X

Các tính toán về lực, ứng xuất và phản lực của kết cấu đóng vai trò quan trọng nhất trong thiết kế bởi vì kết quả của các tính toán này có độ chính xác của nó phụ thuôc vào độ ổn định, an toàn và sự làm việc thành công của toàn bộ cơ cấu. bàn nâng là một cơ cấu động, nhưng tốc độ tác động tương dối thấp nên có thể bỏ qua thực tế này và có thể coi hệ thống này là tĩnh. Sau đó, chỉ cần xem xét hai vị trí, đó là vị trí ban đầu khi máy nâng hạ xuống và chỉ nằm trên sàn, và vị trí cao nhất, khi cơ cấu nâng vật nặng lên một khoảng cách cao nhất có thể. Ở hai vị trí này quan sát được phản lực và nội lực cao nhất. Ở tất cả các vị trí khác, kết quả sẽ nằm giữa hai vị trí được đề cập ở trên.

Hình 2. 4: Sơ đồ vật thể tự do cho vị trí ban đầu

Khi tác dụng lực lên giữa hoặc lên chung trên mặt bàn, nó truyền đều cho A và B và các gối tựa. "Wleg" là tải do trọng lượng của các khung chữ X gây ra, nó cũng tác động ở giữa, nhưng chỉ ở vị trí ban đầu. Ngoài ra, tổng các lực tới phải bằng tổng các lực ra, có nghĩa là bất cứ điều gì đang xảy ra bên trong hệ thì tổng các phản ứng Dy và Cy sẽ bằng trọng lượng. Khi đó phản lực thẳng đứng D và C bằng một nửa trọng lượng của tải chính cộng với trọng lượng của khung chữ X.

$$C_y = D_y = \frac{w + w_{leg}}{2}$$

Hình 2. 5: Lực tác dụng tại điểm E

Trên hình 2.5, ta có lực tác dụng lên xylanh là P, có thể thấy lực P này được tách thành các thành phần Y và X

$$\sin \beta = \frac{P_y}{P} \Rightarrow P_y = P \sin \beta$$

$$\cos \beta = \frac{P_X}{P} \Rightarrow P_X = P \cos \beta$$

Sau đó, sơ đồ vật thể tự do được vẽ cho từng chân riêng biệt trên hình 2.6, Fy và Fx là thành phần của lực F tác dụng lên chốt, chưa biết giá trị và hướng của chúng

Hình 2. 6: Sơ đồ vật thể tự do cho từng chân riêng biệt

Ngoài ra, cần có hình chiếu của các kích thước của chân sẽ được gọi là "L", kích thước giữa E và O được gọi là "a". Kết quả tương tự có thể được sử dụng để chiếu CE, kích thước của nó là (L/2+a) như thể hiện trên Hình 2.7

Hình 2. 7: Hình chiếu của chân

$$\cos \alpha = \frac{L_x}{L} \Rightarrow L_x = L\cos \alpha$$

$$\sin \alpha = \frac{L_y}{L} \Rightarrow L_y = L \sin \alpha$$

Sau đó, sử dụng biểu đồ trên hình 2.6, cần xem xét sự cân bằng của các lực theo phương Y và X và cũng là sự cân bằng của các moment tạo ra bởi tác dụng của các lực. Nó chỉ được thực hiện cho AC, nhưng sẽ có kết quả giống hệt nhau trên DB vì các kích thước giống nhau.

+)
$$\sum F_{ox} = 0 \Rightarrow P_x - F_x = 0 \Rightarrow P_x = F_x$$

+) $\sum F_{oy} = 0 \Rightarrow -\frac{W}{2} + P_y - F_y - \frac{W_{leg}}{2} + C_y = 0 \Rightarrow -\frac{W}{2} + P_y - F_y - \frac{W_{leg}}{2} + C_y = 0 \Rightarrow -\frac{W}{2} + P_y - F_y - \frac{W_{leg}}{2} + C_y = 0 \Rightarrow -\frac{W}{2} + P_y - F_y - \frac{W_{leg}}{2} + C_y = 0 \Rightarrow -\frac{W}{2} + P_y - F_y - \frac{W_{leg}}{2} + C_y = 0 \Rightarrow -\frac{W}{2} + P_y - F_y - \frac{W_{leg}}{2} + C_y = 0 \Rightarrow -\frac{W}{2} + P_y - F_y - \frac{W_{leg}}{2} + C_y = 0 \Rightarrow -\frac{W}{2} + P_y - F_y - \frac{W_{leg}}{2} + C_y = 0 \Rightarrow -\frac{W}{2} + P_y - F_y - \frac{W_{leg}}{2} + C_y = 0 \Rightarrow -\frac{W}{2} + P_y - F_y - \frac{W_{leg}}{2} + C_y = 0 \Rightarrow -\frac{W}{2} + P_y - F_y - \frac{W_{leg}}{2} + C_y = 0 \Rightarrow -\frac{W}{2} + P_y - F_y - \frac{W_{leg}}{2} + C_y = 0 \Rightarrow -\frac{W}{2} + P_y - F_y - \frac{W_{leg}}{2} + C_y = 0 \Rightarrow -\frac{W}{2} + P_y - F_y - \frac{W_{leg}}{2} + C_y = 0 \Rightarrow -\frac{W}{2} + P_y - \frac{W_{leg}}{2} + C_y = 0 \Rightarrow -\frac{W}{2} + \frac{W_{leg}}{2} +$

$$\frac{W + W_{leg}}{2} = 0 \Rightarrow P_y = F_y$$

$$F_y = P \sin \beta$$

Quay quoanh điểm C, $\sum M_c = 0$

$$\Rightarrow \frac{W_{leg}}{2} \cdot \frac{L}{2} \cos \alpha + \frac{W}{2} L \cos \alpha - P \sin \beta \left(\frac{L}{2} + a\right) \cos \alpha + F_y \frac{L}{2} \cos \alpha - P \cos \beta \left(\frac{L}{2} + a\right) \sin \alpha + F_x \frac{L}{2} \sin \alpha = 0$$

$$\Rightarrow \frac{W_{leg}}{2} \cdot \frac{L}{2} \cos \alpha + \frac{W}{2} L \cos \alpha - P \sin \beta \left(\frac{L}{2} + a\right) \cos \alpha + P \sin \beta \frac{L}{2} \cos \alpha$$
$$- P \cos \beta \left(\frac{L}{2} + a\right) \sin \alpha + P \cos \beta \frac{L}{2} \sin \alpha = 0$$

$$\Rightarrow \frac{W_{leg}}{2} \cdot \frac{L}{2} \cos \alpha + \frac{W}{2} L \cos \alpha + P(-\sin \beta (\frac{L}{2} + \alpha) \cos \alpha + \sin \beta \frac{L}{2} \cos \alpha - \cos \beta (\frac{L}{2} + \alpha) \sin \alpha + \cos \beta \frac{L}{2} \sin \alpha) = 0$$

$$\Rightarrow \frac{W_{leg}}{2} \cdot \frac{L}{2} \cos \alpha + \frac{W}{2} L \cos \alpha + P(\sin \beta \cos \alpha (-(\frac{L}{2} + a) + \frac{L}{2}))$$
$$+ \cos \beta \sin \alpha (-(\frac{L}{2} + a) + \frac{L}{2})) = 0$$

$$\Rightarrow \frac{W_{leg}}{2} \cdot \frac{L}{2} \cos \alpha + \frac{W}{2} L \cos \alpha + P(-2\alpha(\sin \beta \cos \alpha + \cos \beta \sin \alpha)) = 0$$

Mà: $\sin \beta \cos \alpha + \cos \beta \sin \alpha = \sin(\alpha + \beta)$

$$\rightarrow P = \frac{L\cos\alpha \left(\frac{W}{2} + \frac{W_{leg}}{4}\right)}{2a\sin(\alpha + \beta)}$$

• Xy lanh ở vị trí thấp nhất:

Chiều dài thanh L=3679 mm, a=518 mm, vật nặng W=7100kg= 71000N, Wleg=500kg= 5000N, α =80, β =17,60

Suy ra: P= 299096 (N)

• Xy lanh ở vị trí cao nhất:

$$\alpha = 34^{\circ}, \beta = 57^{\circ}$$

Suy ra: P = 108210 (N)

⇒ Vậy lực max nhất mà xy lanh cần có là 299096 N, ta tính thêm sai số do các lực ma sát giữa các cơ cấu. Suy ra lực cần thiết của xy lanh Ta lấy tròn =300000 (N).

CHƯƠNG 3: SƠ ĐỒ MẠCH THỦY LỰC VÀ NGUYÊN LÝ HOẠT ĐỘNG CỦA HỆ THỐNG

3.1. Sơ đồ hệ thống thủy lực

3.1.1. Sơ đồ mạch thủy lực

Từ quá trình khảo sát kết cấu cơ khí và nguyên lý hoạt động của bàn nâng thủy lực chữ X tải trọng 6 Tấn. Hệ thống thủy lực của máy cần đảm bảo: tốc độ nâng hạ bàn vừa phải, êm, tuổi thọ dài và dễ dàng bảo dưỡng sửa chữa khi cần thiết.

Qua quá trình tìm hiểu và tham khảo hệ thống thủy lực của một số loại bàn nâng trên thị trường, từ đó xây dựng được sơ đồ hệ thống mạch thủy lực cho bàn nâng chữ X tải trọng 6 tấn hình 3.1 bên dưới.

Sơ đồ hệ thống thủy lực của bàn nâng chữ X tải trọng 6 Tấn bao gồm 3 phần chính:

- Bộ phận nguồn: bao gồm các thiết bị (bơm nguồn thủy lực, động cơ điện 3 pha, thùng chứa dầu, bộ lọc dầu hút, và các phụ kiện đi kèm thùng chứa dầu)
- Bộ phận các van điều khiển và các van điều chỉnh: bao gồm các thiết bị (van on off, van chống tụt, ...)
- Bộ phận cơ cấu chấp hành: 2 xy lanh thủy lực

Hình 3. 1: Sơ đồ thủy lực của bàn nâng

3.1.2. Các phần tử trong hệ thống thủy lực

Bảng 3. 1: Các phần tử thủy lực trong mạch

STT	Tên phần tử	Chức năng	
1	Thùng dầu	-Dùng để lưu trữ và cung cấp dầu thủy lực cho hệ thống.	
		-Trao đổi nhiệt giữa dầu thủy lực với môi trường xung quanh giúp giảm nhiệt độ dầu thủy lực.	
		-Là nơi chứa cũng là nơi tiến hành lọc cặn, bụi bẩn và không khí có trong dầu thủy lực.	
2	Bơm bánh răng	Cung cấp dầu cho hệ thống hoạt động.	
3	Động cơ điện	Dẫn động bơm thủy lực	
4	Van một chiều	Không cho dầu chảy ngược lại bơm đê bảo vệ bơm thủy lực	
5	Đồng hồ đo áp	Xem được áp suất làm việc của hệ thống trong quá trình làm việc	
6	Van an toàn	Đặt áp suất max của hệ thống (p max)	
7	Lọc dầu hồi	Lọc tất cả các hạt bẩn, mạt sắt được sinh ra từ hệ thống (các van, các cơ cấu chấp hành, đường ống) trước khi dầu được đưa về thùng chứa.	
8	Van phân phối 4/3	Có tác dụng điều khiển hướng của dòng dầu giúp vận hành các cơ cấu chấp hành theo chức năng cụ thể	
9	Van chống tụt tải	Giúp cho xy lanh không bị trôi, tụt khi nâng tải nặng	
10	Van tiết lưu 1 chiều	Dùng để điều khiển dòng lưu lượng giúp cho bàn nâng khi hạ được êm dịu	
11	Xy lanh thủy lực	Tạo ra lực đẩy để đẩy khung bàn nâng nâng lên và hạ xuống trong quá trình hoạt động	

3.1.3. Mạch role điều khiển bàn nâng

Hình 3. 2: Mạch role điều khiển bàn nâng

3.2. Nguyên lý làm việc của bàn nâng chữ X

Trong sơ đồ hệ thống thủy lực của bàn nâng chữ X có hai xy lanh là hai cơ cấu chấp hành. Hai xy lanh này giống nhau về kích thước đường kính cần xy lanh, đường kính piston và hành trình xy lanh. Chúng được điều khiển chung 1 cụm van, hai xy lanh sẽ di chuyển thò ra thụt vào cùng nhau và được đồng tốc bởi hệ thống cơ khí khung bàn nâng.

Trạng thái Xy lanh đứng yên Xy lanh đi lên (20 mm/s) Giữ tải (Δt) Xy lanh đi xuống (30 mm/s)

Xy lanh 1

Xy lanh 2

Bảng 3. 2: Bảng trạng thái làm việc của xy lanh thủy lực

3.2.1. Qúa trình chạy không tải

Khi hệ thống chưa làm việc, Động cơ (03) chạy kéo bơm bánh răng số (02), bơm hút dầu từ thùng dầu (01) qua van một chiều số (04), tới của P của van phân phối số (0) rồi qua cửa T, qua lọc hồi số (07) rồi về bể. Lúc này van số (07) đóng vai trò giảm tải cho bơm thủy lực khi hệ thống chưa làm việc. Dầu chạy tuần hoàn trên trạm, không tổn hao, không gây sinh nhiệt.

3.2.2. Qúa trình chạy có tải

a. Qúa trình nâng bàn

- Van phân phối số 08 được cấp điện, lúc này van làm việc ở vị trí bên trái
- Đầu được hút từ bơm qua van phân phối số 08 (P → A) qua van chống tụt 09 (A1→ B1) qua van tiết lưu 10 (A → B). Dòng dầu được chia đều thành 2 nhánh vào khoang không cần của 2 xy lanh đẩy cần 2 xy lanh đi ra, nâng bàn lên.
- Đồng thời, đường tín hiệu X2 của van chống tụt số 09 nhận tín hiệu dòng dầu có áp kích mở van một chiều, dầu trong khoang có cần của xy lanh qua van chống tụt số 09 (B2 → A2), qua van phân phối 08 (B → T) về bể.

b. Qúa trình giữ tải(chống tụt)

Van phân phối 08 mất tín hiệu điện lò xo đẩy van về vị trí chính giữa, dòng dầu từ bơm chảy về thùng dầu (P→T), không còn dầu cấp lên xy lanh cần xy lanh dừng lại. Van chống tụt 09 có chức năng chống cho xy lanh bị tụt. Để mở khóa van chống tụt cần phải có tín hiệu của dòng dầu có áp lực.

c. Qúa trình hạ bàn

- Qúa trình hạ bàn dùng chính tải trọng bản thân của bàn và tải trọng trên mặt bàn
- Van phân phối số 08 được cấp điện, lúc này van làm việc ở vị trí bên phải.
 Cung cấp dòng dầu có áp cho đường tín hiệu X1 kích mở van chống tụt số 09
- Dầu trong khoang không cần của xy lanh qua van tiết lưu số 10 (B → A), qua van chống tụt số 09 (B1 → A1), qua van phân phối 08 (A→T) về bể.
- Cụm van chống tụt 09 và van tiết lưu 10 có tác dụng giúp cho bàn nâng hạ xuống từ từ không gây nguy hiểm.

CHƯƠNG 4: TÍNH TOÁN THIẾT KẾ HỆ THỐNG THỦY LỰC

4.1. Tính toán thiết kế xy lanh nâng

4.1.1. Tổng tải trọng 2 xy lanh tác động lên bàn nâng

Dựa theo phần tính toán thiết kế động học bàn nâng chữ X đã tính ở trên, ta có tổng tải trọng 2 xy lanh tác động lên bàn nâng:

$$F_{xl} = 300 \, (kN)$$

Tải trọng do 1 xy lanh tác động lên bàn nâng:

$$F_{1xl} = \frac{F_{xl}}{2} = 150 \text{ (kN)}$$

Chọn áp suất làm việc của xy lanh: p = 210 (bar)

4.1.2. Tính toán các thông số làm việc của xy lanh

Đường kính trong của xy lanh:

$$D = \sqrt{\frac{4F_{1xl}}{p\pi}}$$

Trong đó:

Kí hiệu	Tên	Gía trị	Đơn vị
F_{1xl}	Tải trọng trên mỗi xy lanh	150	kN
р	Áp suất làm việc	210	bar

Do đó:
$$D_{sb} = 0.95 (m) = 95 (mm)$$

Theo bảng catalog của hãng Rexroth, ta chọn đường kính xy lanh là:

$$D = 100 \, (mm)$$

Chọn đường kính cần piston là: $d = 70 \ (mm)$

Hành trình của xy lanh bằng: 490 (mm)

Tính lại áp suất làm việc của xy lanh:

$$p_{xl} = \frac{4.\,F_{1xl}}{\pi.\,D^2} = 191(bar)$$

Bảng 4. 1: Bảng tổng hợp các thông số của xy lanh

Xy lanh	1	$F_{1 xl}$	Tải trọng trên mỗi xy lanh	150	kN
	2	р	Áp suất làm việc	191	Bar
	3	D	Đường kính nòng xy lanh	100	Mm
	4	d	Đường kính cần	70	Mm

4.1.3. Tính toán lưu lượng làm việc của hệ thống

Tốc độ vận hành của bàn nâng

Bảng 4. 2: Tốc độ vận hành của bàn nâng

Tốc độ	m/s	Cm/s
Tốc độ nâng bàn(30s)	0,06	6
Tốc độ nâng xy lanh	0,0163	1,63
Tốc độ hạ bàn(25s)	0,072	7,2
Tốc độ hạ xy lanh	0,0196	1,96

Trường hợp 1: Hành trình nâng bàn

Lưu lượng cần cấp vào khoang không cần của xy lanh là: $Q_{nb} = A. v_{nb}$

Trong đó: $A = \frac{\pi D^2}{4}$

Thay số vào ta được: $Q_{nb} = 0.000128(m^3/s) = 7.68(l/ph)$

Trường hợp 2: Hành trình hạ bàn

Lưu lượng cần cấp vào khoang có cần của xy lanh là: : $Q_{hb} = A_c$. v_{hb}

Trong đó: $A_c = \frac{\pi(D^2 - d^2)}{4}$

Thay số vào ta được: $Q_{hb} = 0.000079(m^3/s) = 4.71 (l/ph)$

Nhận xét: Do quá trình hạ bàn cần lưu lượng bao nhiều thì van phân phối đều có thể đáp ứng, nên ta chỉ cần đảm bảo hành trình xy lanh đi ra bom cung cấp đủ lưu lượng là được. Chính vì thế ta sẽ dùng Q_{nb} để tính toán.

Ở đây hệ thống sử dụng 2 xy lanh hoạt động đồng thời và có kích thước giống nhau, do đó: Lưu lượng lớn nhất cần cấp cho quá trình hoạt động của xy lanh sẽ tính bằng:

$$Q_{max} = 2. Q_{nb}$$

Ngoài ra ta cần têm 10% Q_{max} lên để bù cho những tổn thất lưu lượng:

$$Q_{b (yc)} = 2. Q_{nb} + 0.1. (2. Q_{nb})$$

Lưu lượng bơm cần cung cấp cho hệ thống:

$$Q_{b (yc)} = 0.000282 (m3/s) = 16.896 (l/ph)$$

Chúng ta sẽ sử dụng lưu lượng này để tính toán chọn bơm thủy lực.

4.2. Tính toán lựa chọn đường ống

Thông thường khi chọn đường ống ta cần phải đảm bảo tổn thất qua đường ống là nhỏ nhất và phải đảm bảo chỉ tiêu về kinh tế.

Nếu đường ống quá nhỏ thì tổn thất sẽ lớn còn nếu đường ống quá lớn thì tổn thất ít nhưng giá thành lại cao, do đó ta cần phải lựa chọn đường ống sao cho phù hợp.

Thực tế cho thấy, chọn đường ống phụ thuộc vào vận tốc và áp suất. Thông thường ta chọn đường ống theo vận tốc, để tính toán đường ống ta chọn vận tốc như trong bảng 4.3

Bảng 4. 3: Vận tốc trên các đường ống

	STT	Kí hiệu	Tên	Giá trị	Đơn vị		
Đường	1	Vhút	Vhút $< 2m/s$.	1,5	m/s		
ống	2	Vđẩy	Vđẩy < 6 m/s.	4	m/s		
_	3	Vxå	$Vx\dot{a} < 4 \text{ m/s}.$	2,5	m/s		
	Theo tiêu chuẩn DIN						

Đường kính của ống được tính theo công thức: $d = \sqrt{\frac{4Q}{\pi . v}}$

Kí hiệu	Tên	Đơn vị
Q	Lưu lượng chuyển qua đường ống	m^3/s

V	Vận tốc dòng chất lỏng	m/s

Lưu lượng ở đây chính là lưu lượng bơm cung cấp cho hệ thống. Bơm nguồn cung cấp lưu lượng cho xy lanh hoạt động nên lưu lượng yêu cầu của bơm là lưu lượng cung cấp cho xy lanh có lưu lượng lớn nhất thêm vào khoảng 10% để bù cho những tổn thất lưu lượng.

Ở đây hệ thống sử dụng hai xy lanh hoạt động đồng thời và có kích thước giống nhau nên lưu lượng bơm sẽ tính theo lưu lượng lớn nhất cần cấp cho quá trình hoạt động của hai xy lanh.

Sau khi tính toán được đường kính sơ bộ của ống:

- Đối với ống cứng: ta chọn ống thép đúc thủy lực tra bảng kích thước ống thép đúc để chọn (theo tiêu chuẩn DIN 2391)
- Đối với ống mềm: ta chọn loại 4 lớp chịu áp cao của hãng Parker, tra theo catalogue của hãng để chọn.

Bảng 4. 4: Ông thép đúc thủy lực (theo tiêu chuẩn DIN 2391)

Item	Descriptions	Din	nensions (r	nm)	Length	Weigh	W.P
item	Descriptions	O.D	I.D	Thick	Mt	Kg/mt	Bar
1	Tube_OD06x1.0x6000mm	6	4	1,0	6	0.12	389
2	Tube_OD08x1.0x6000mm	8	6	1,0	6	0.17	333
3	Tube_OD10x1.0x6000mm	10	8	1,0	6	0.22	282
4	Tube_OD10x1.5x6000mm	10	7	1,5	6	0.31	373
5	Tube_OD12x1.5x6000mm	12	9	1,5	6	0.39	353
6	Tube_OD12x2.0x6000mm	12	8	2,0	6	0.49	409
7	Tube _OD15x1.5x6000mm	15	12	1,5	6	0.50	282
8	Tube_OD15x2.0x6000mm	15	11	2,0	6	0.64	336
9	Tube _OD16x2.0x6000mm	16	12	2,0	6	0.69	353
10	Tube_OD16x2.5x6000mm	16	11	2,5	6	0.83	386
11	Tube_OD18x2.0x6000mm	18	14	2,0	6	0.79	313
12	Tube_OD20x2.5x6000mm	20	15	2,5	6	1.08	353
13	Tube_OD20x3.0x6000mm	20	14	3,0	6	1.26	373
14	Tube_OD22x2.0x6000mm	22	18	2,0	6	0.99	256
15	Tube_OD25x2.5x6000mm	25	20	2,5	6	1.39	282
16	Tube_OD25x3.0x6000mm	25	19	3,0	6	1.63	338
17	Tube_OD28x2.5x6000mm	28	23	2,5	6	1.57	252
18	Tube_OD30x3.0x6000mm	30	24	3,0	6	2.0	282
19	Tube_OD30x4.0x6000mm	30	22	4,0	6	2.56	336
20	Tube_OD35x2.0x6000mm	35	31	2,0	6	1.63	161
21	Tube_OD35x3.0x6000mm	35	29	3,0	6	2.37	223
22	Tube_OD38x4.0x6000mm	38	30	4,0	6	3.35	298
23	Tube_OD38x5.0x6000mm	38	30	4,0	6	4.07	332
24	Tube_OD42x3.0x6000mm	42	36	3,0	6	2.89	201

Bảng 4. 5: Ông mềm chịu áp cao của hãng Parker

# Part Number	Part			O.D.	22000000	Working Pressure		Minimum Bend Radius		ਟ ਡੀ ight	Parkrimp
	inch	mm	inch	mm	psi	MPa	inch	mm	lbs/ft	kg/m	43 Series
304-4	1/4	6,3	0.59	15	5000	34,5	4	100	0.26	0,39	•
304-6	3/8	10	0.75	19	4000	27,5	5	130	0.37	0,55	•
304-8	1/2	12,5	0.88	22	3500	24	7	180	0.45	0,67	•
304-10	5/8	16	1.00	25	2750	19	8	200	0.53	0,79	•
304-12	3/4	19	1.16	29	2250	15,5	9-1/2	240	0.67	1,00	•
304-16	1	25	1.50	38	2000	13,8	12	300	1.00	1,49	•
304-20	1-1/4	31,5	1.86	47	1625	11,2	16-1/2	420	1.16	1,73	•
304-24	1-1/2	38	2.14	54	1250	8,6	20	500	1.44	2,14	•
304-32	2	51	2.64	67	1125	7,8	25	630	1.99	2,96	

Phần trước ta đã tính toán được lưu lượng mà bơm yêu cầu là:

Lưu lượng	m^3/s	l/ph
Qb(yc)	0,000282	16,896

Do đó ta tính được đường kính của các đường ống như sau:

a. Tính toán đường ống hút

- Đường kính trong của ống hút bơm: $d_h = \sqrt{\frac{4 \, Q}{\pi . v}}$
- Ta có:

V hút	1,5	m/s
Qh= Qsb	0,000282	m^3/s

- Thay số vào ta được: $d_h = 15,47 \ (mm)$

Tra theo bảng kích thước ống thép đúc ta được: $d_h=18\ (mm)$

b. Tính toán đường ống đẩy

- Đường kính trong của ống đẩy bơm: $d_d = \sqrt{\frac{4 \ Q}{\pi . v}}$

- Ta có:

V đẩy	4	m/s
Qđ	0,000297	m^3/s

- Do trên đường ống đẩy có tổn thất nên:

Qd = Qsb/0,95 (Lấy hiệu suất 95%)

Thay số vào ta được: $d_d = 9,72 \text{ (mm)}$

Tra bảng kích thước ống mềm ta chọn được ống 1/2 có: $d_d=12,5$ (mm)

- * Óng mềm ta chọn loại ống 4 lớp chịu áp cao của hãng Parker
- * Ông cứng ta chọn ống thép đúc thủy lực (theo tiêu chuẩn DIN 2391)
- c. Tính toán đường ống hồi

Đường kính trong của ống hồi bơm: $d_h = \sqrt{\frac{4Q_{\text{max}}}{\pi . v}}$

Ta có:

V đẩy	2,5	m/s
Qh = Qsb	0,000282	m^3/s

Thay số vào ta được: $d_h = 11,98 \ (mm)$

Tra theo bảng kích thước ống thép đúc ta được: $d_h = 18 \ (mm)$

4.3. Tính toán lựa chọn bơm nguồn và động cơ điện

4.3.1. Tính toán tổn thất áp suất trong hệ thống

Tổn thất áp suất trên toàn hệ thống: $\Delta P = \Delta P_1 + \Delta P_2 + \Delta P_3$

a. Xác định tổn thất qua các thiết bị (van, lọc dầu, bộ làm mát)

Tra trong đồ thị của catalog ta có tổn thất trên các thiết bị:

STT	Tên phần tử	Tổn thất (bar)
1	Tổn thất qua các van	10
2	Tổn thất qua lọc	5
Τά	δ ng tổn thất $\Delta P1$	15

b. Xác định tổn thất dọc đường ΔP_2

$$\Delta P_2 = \frac{\rho.\,\alpha_1.\,L_1.\,v_1^2}{2.\,d_1} + \frac{\rho.\,\alpha_2.\,L_2.\,v_2^2}{2.\,d_2} + \frac{\rho.\,\alpha_3.\,L_3.\,v_3^2}{2.\,d_3}$$

Trong đó:

*Dầu thủy lực:

Ở đây ta chọn loại dầu thủy lực VG46 thường được sử dụng trong các hệ thống thủy lực lớn và trung bình.

	1	ρ	Khối lượng riêng	870	kg/m^3	
Dầu thủy			Độ nhớt động		cSt	
lực	2	V	học	46	(mm²/s)	
	Dầu thủy lực VG 46 (ρ = 0.87 kg/l = 870 kg/m^3)					

Bảng 4. 6: Thông số của các loại dầu thủy lực được dùng trong hệ thống thủy lực

ĐẶC TÍNH	ĐV ĐO	PV Hydraulic VGV					
ĐẶC TINH	DV DO	15	32	46	68	100	
Tỷ trọng ở 20°C, min	_	0,8700	0,8720	0,8740	0,8770	0,8820	
Độ nhớt ở 40°C	cSt	13-17	29-35	41-50	61-75	90-110	
Chỉ số độ nhớt, min	_	145	145	145	145	145	
Nhiệt độ chớp cháy cốc hở, min	°C	180	200	220	235	235	
Nhiệt độ đông đặc, max	°C	-30	-30	-30	-30	-30	
Hàm lượng nước, max	%, thể tích	0,02	0,02	0,02	0,02	0,02	

^{*}Xác định hệ số Reynolds:

$$Re = \frac{V.d}{v}$$

*Xác định hệ số ma sát:

Do là dòng chảy tầng nên hệ số ma sát: $\alpha = \frac{64}{Re}$

Thay số vào ta được tổn thất dọc đường trên từng đoạn đường ống:

	v (m/s)	d (m)	L _{sb} (m)	Re	α	ΔP2
Đường ống			2.2 ()			
hút	1,5	0,018	0,5	441,176	0,145	3590,400
Đường ống						
đẩy	4	0,0125	5	1352,941	0,047	28958,490
Đường ống						
hồi	2,5	0,018	1	845,588	0,075	9049,527

Tổng tổn thất dọc đường: $\Delta P_2 = 41498,43(\frac{N}{m^2}) = 0,42 (bar)$

c. Xác định tổn thất cục bộ ΔP_3

$$\Delta P_3 = \frac{\rho.\,\xi}{2}.\,(v_1^2 + v_2^2 + v_3^2)$$

Hệ số phụ thuộc vào khuỷu ống ở đây ta coi khuỷu ống là thẳng góc và chọn: gải sử có 1 điểm trên đường ống hút, đẩy, hồi xảy ra tổn thất cục bộ: $\varepsilon = 1,2$

Tổng tổn thất cục bộ:
$$\Delta P_3 = 12936 \left(\frac{N}{m^2}\right) = 0.13(bar)$$

Vậy tổng tổn thất áp suất trên toàn hệ thống chọn sơ bộ là: $\Delta P = 15,55$ (bar)

4.3.2. Tính toán lựa chọn bơm nguồn và động cơ điện

a. Tính chọn động cơ điện:

Dựa vào áp suất và lưu lượng của bơm theo công thức đã tính ở trên, ta có thể tính được công suất cần thiết của động cơ điện:

$$N_{\text{d}c} = \frac{p_b.\,Q_b}{612.\,\eta_{ht}}$$

Trong đó: $N_{\text{d}c}$ (kW); p_b (bar); Q_b (l/ph); 612 là hệ số tính toán chuyển đổi đơn vị Hiệu suất hệ thống: $\eta_{ht} = \eta_{dc}$. η_b . η_{ck}

Ta có:

Hiệu suất tổng	η_{Σ}	1	-
Công suất của động cơ	Nđc	5,71	kW

Tra catalog của hãng VIHEM (Việt Hung) với: N'đc \geq Nđc và n'đc \approx nđc ta chọn được động cơ: 3K132M4

Hình 4. 1: Kết cấu cơ khí của động cơ 3 pha vihem

Bảng 4. 7: Bảng tổng hợp các thông số động cơ điện đã chọn

Mã động cơ	3K132M4	ı
Công suất	7,5	kW
Số vòng quay	1460	vg/ph

b. Chọn bơm thủy lực

Tính toán lại lưu lượng và áp suất cho bơm: Áp suất của bơm bằng áp suất lớn nhất của xy lanh cộng với tổn thất áp suất qua mạch: $p=p_{{\rm dã}\;chon}+\Delta p$

Tên	Ký hiệu	Giá trị	Đơn vị
Áp suất	p_b	206,55	(bar)
Lưu lượng	Q_b	16,93	(l/ph)
Số vòng quay của động			
co	n	1460	(vòng/phút)
Lưu lượng riêng	q=Q/n	11,60	(cm ³ /vòng)

Từ lưu lượng riêng q và áp suất đã tính p(b) ta chọn được bơm theo catalogue của hãng Parker ta chọn được bơm: PGP - 511 - A - 0120

PGP/PGM511 Specifications

Code		0040	0050	0060	0070	0080	0100	0110	0120	0140	0160	0180	0190	0210	0230	0250	0270	0280	0310	0330
Displacements	cm³/ rev	4	5	6	7	8	10	11	12	14	16	18	19	21	23	25	27	28	31	33
Displacements	in³/ rev	0.24	0.31	0.37	0.43	0.49	0.61	0.67	0.73	0.85	0.98	1.10	1.16	1.28	1.40	1.53	1.65	1.71	1.89	2.01
Continuous	bar	250	250	250	250	250	250	250	250	250	250	250	250	235	225	210	190	185	165	155
Pressure	psi	3625	3625	3625	3625	3625	3625	3625	3625	3625	3625	3625	3625	3410	3265	3045	2755	2685	2395	2248
Intermittent	bar	275	275	275	275	275	275	275	275	275	275	275	275	240	235	220	200	190	170	160
Pressure	psi	3988	3988	3988	3988	3988	3988	3988	3988	3988	3988	3988	3988	3480	3408	3190	2900	2755	2465	2320
Min. Speed @ Max. Outlet Pressure	rpm	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500
Max. Speed @ 0 Inlet & Max. Outlet Pressure	rpm	3500	3500	3500	3500	3500	3500	3500	3500	3500	3500	3250	3250	2800	2750	2500	2350	2350	2350	2000
Pump Input Power @Max.	HP	4.02	5.03	6.03	7.04	8.05	10.06	11.13	12.07	14.08	16.09	18.10	19.18	19.31	19.71	19.98	20.12	21.19	22.40	23.20
Pressure and 1500 rpm	kW	3.0	3.8	4.5	5.3	6.0	7.5	8.3	9.0	10.5	12.0	13.5	14.3	14.4	14.7	14.9	15.0	15.8	16.7	17.3
Dimension L	mm	47.0	48.6	50.1	51.7	53.3	56.5	58.0	59.6	62.8	65.9	69.0	70.6	73.7	76.9	80.0	83.2	84.8	89.5	92.6
Diffiension L	in	1.85"	1.91"	1.97"	2.04"	2.10"	2.22"	2.28"	2.35"	2.47"	2.59"	2.72"	2.78"	2.90"	3.03"	3.15"	3.28"	3.34"	3.52"	3.65"
Approximate	lbs	7.1	7.3	7.5	7.7	7.7	7.8	7.9	8.2	8.2	8.4	8.6	8.6	8.8	9.0	9.3	9.3	9.5	9.7	9.9
Weight	kg	3.2	3.3	3.4	3.5	3.5	3.6	3.6	3.7	3.7	3.8	3.9	3.9	4.0	4.1	4.2	4.2	4.3	4.4	4.5

Hình 4. 2: Catalogue bom parker

Bảng 4. 8: Bảng tổng hợp các thông số của bơm thủy lực đã chọn

Hãng	Parker						
Mã bom	PGP - 511 - A - 0120						
Áp suất tối đa bơm tạo ra	250						
Luu lượng riêng	12	(cm^3/vòng)	0,012	1/vòng			

4.4. Tính toán lựa chọn các loại van

4.4.1. Tính toán lựa chọn van một chiều số 04 của hệ thống

Hình 4. 3: Van một chiều

Van một chiều số 04 có công dụng chỉ cho đường dầu qua bơm chảy vào hệ thống, ngăn dầu chảy ngược về bơm để bảo vệ bơm nguồn.

Với áp suất làm việc lớn nhất là: p = 250 (bar)

Lưu lượng làm việc lớn nhất là: Q = 17,52 (l/ph)

Tra catalog của hãng REXROTH ta chọn được van: S10A00 - 12/450

Với lưu lượng làm việc lớn nhất : Q = 17,52 (l/ph) ta tra được tổn thất áp suất lớn nhất là: $\Delta p = 0,8$ (bar)

Hình 4. 4: Mối quan hệ giữa lưu lượng và tổn thất áp suất khi qua van Bảng 4. 9: Bảng tổng hợp các thông số của van một chiều

	1		Số lượng	1	Van
	2		Mã van	S10A00 - 12/450	-
Van mật	3		Hãng sản xuất	Rexroth, Đức	_
Van một chiều	4	Q	Lưu lượng qua van	60	l/phút
Cilleu	5	pmax	Áp suất max	450	bar
			Tổn thất áp suất		
	6	Δр	qua van	0,8	bar

4.4.2. Tính toán lựa chọn van phân phối 4/3

Mạch thủy lực sử dụng một van phân phối 4/3 điều khiển hai đầu bằng điện có hồi vị bằng lò xo có chức năng định hướng dòng dầu cấp vào hệ thống.

Lưu lượng qua van là: $Q_v = 17,52$ (l/ph)

Áp suất làm việc của hệ thống: 250 (bar)

Hình 4. 5: Cấu tạo của van phân phối 4/3

Tra catalogue của hãng **REXROTH** ta chọn được van có mã:

4WE - 6 - H6X/EG24N9K4

Với các thông số: $p_{max} = 350$ (bar)

Lưu lượng max: $Q_{max} = 80$ (l/ph)

Hình 4. 6: Kết cấu cơ khí của van phân phối 4/3

Bảng 4. 10: Bảng tổng hợp các thông số của van phân phối 4/3

	1		Số lượng	1	Van
	2		Mã van	4WE – 6 – H6X/EG24N9K4	-
Van	3		Hãng sản xuất	Rexroth, Đức	-
phân			Lưu lượng qua		
phối	4	Q	van	80	l/phút
4/3	5	pmax	Áp suất max	350	bar
			Tổn thất áp suất		
	6	Δp	qua van	2,5	bar

4.4.3. Tính toán chọn van chống tụt tải số 09

Hình 4. 7: Cấu tạo van chống tụt tải

Lưu lượng qua van là: $Q_{max} = 17,52 (l/ph)$

Áp suất làm việc lớn nhất: $p_{max} = 250$ (bar)

Tra catalogue của hãng **Rexroth** ta chọn van có mã:

$$VSO - DE - L - 05.53.03 - 00 - 03 - 01$$

Hình 4. 8: Kết cấu cơ khí của van chống tụt

Bảng 4. 11: Bảng tổng hợp các thông số của van chống tụt tải

	1		Số lượng	1	Van
				VSO – DE – L – 05.53.03 –	
	2		Mã van	00 - 03 - 01	-
Van	3		Hãng sản xuất	Rexroth, Đức	
chống			Lưu lượng qua		
tụt tải	4	Q	van	50	l/phút
	5	pmax	Áp suất max	350	bar
			Tổn thất áp suất		
	6	Δр	qua van	3,5	bar

4.4.4. Tính toán lựa chọn van tiết lưu 1 chiều số 10

Hình 4. 9: Van tiết lưu 1 chiều

Lưu lượng qua van là: $Q_{max} = 17,52$ (l/ph)

Áp suất làm việc lớn nhất: $p_{max} = 250$ (bar)

Tra catalogue của hãng OLEOWEB ta chọn van có mã: STUF - 120 - NPT

Hình 4. 10: Kết cấu cơ khí van tiết lưu

Bảng 4. 12: Bảng tổng hợp các thông số của van tiết lưu

	1		Số lượng	1	Van
	2		Mã van	STUF – 120 – NPT	-
Van	3		Hãng sản xuất	Oleoweb, Italia	_
tiết			Lưu lượng qua		
lưu	4	Q	van	50	l/phút
	5	pmax	Áp suất max	400	bar
			Tổn thất áp suất		
	6	Δр	qua van	1,5	bar

4.4.5. Tính toán lựa chọn van an toàn số 06 cho hệ thống

Hình 4. 11: Cấu tạo và kí hiệu của van an toàn số 06

Van an toàn số 06 được sử dụng để đặt áp suất max cho hệ thống, khi áp suất hệ thống vượt quá áp suất đặt của van, lúc này van sẽ được mở để dầu chảy về bể giúp bảo vệ hệ thống tránh làm việc quá tải gây hỏng hóc và xảy ra các sự cố nguy hiểm khác.

Áp suất đặt của van an toàn: $p_{vat} \ge p_{xl} + \Delta p = 206,55$ (bar)

Tra catalogue của hãng Rexroth ta chọn van có mã: $Z\ 2\ DB\ 6\ VP\ 2-4X/315$

Hình 4. 12: Kết cấu cơ khí của van an toàn số 06

Bảng 4. 13: Bảng tổng hợp các thông số của van an toàn số 06

	1		Số lượng	1	Van
				Z 2 DB 6 VP 2	
Van an toàn	2		Mã van	- 4X/315	ı
hệ thống	3		Hãng sản xuất	Rexroth, Đức	ı
	4	Q	Lưu lượng qua van	60	l/phút
	5	pmax	Áp suất max	315	bar

4.5. Tính toán thiết kế trạm nguồn thủy lực

4.5.1. Tính toán thiết kế thùng dầu

Trong hệ thống thủy lực thùng dầu được thiết kế đảm bảo các chức năng như:

- Cấp dầu đảm bảo cho hệ thống hoạt động bình thường
- Nạp dầu mới xả dầu cũ của hệ thống
- Bù rò rỉ cho hệ thống
- Loại bỏ bọt khí ra khỏi dầu
- Lắng đọng các cặn bẩn bị lẫn vào dầu
- Tỏa nhiệt làm mát cho dầu
- Dùng để lắp các phần tử thủy lực
- a. Xác định chiều cao h_{min}(Chọn và bố trí que thăm dầu)

Ta có đường kính ống hút: $d_{hut} = 18 \ (mm)$

Khi bơm dầu vào 2 xy lanh lượng dầu còn lại cần ngập ống hút 1 đoạn:

$$(3\div 5)d_{hut} = 72 \ (mm)$$

Khoảng cách từ miệng ống hút tới đáy bể dầu cần trong khoảng:

$$(3 \div 5)d_{hut} = 60,3 \ (mm)$$

Vậy thể tích dầu còn ít nhất trong thùng sẽ có mức:

$$h_{min} = 136 \ (mm) = 13.5 \ (cm)$$

b. Xác định các kích thước của thùng dầu

Thể tích của thùng dầu được tính toán theo kinh nghiệm: Thông thường theo kinh nghiệm, người ta tính toán thể tích dầu cần đủ cho hệ thống ở mức (3÷5) lần lưu lượng bơm trong 1 phút.

$$V = (3 \div 5). Q_b (lit)$$

Với lưu lượng bom đã chọn: $Q_b = 17,52$ (l/ph)

Thay số vào ta được: $V = 53,46 \div 89,1$ (1)

Từ đó ta chọn thể tích thùng dầu: V = 80 (lít) = 0,08 (m³) (I)

Với yêu cầu bể dầu được lắp đặt bên ngoài khung thân máy nên ta chọn kích thước thùng dầu có dạng hình hộp chữ nhật với các kích thước:

Chiều dài L: 1,7a

Chiều rộng W: a

Chiều cao H: 0,7a

Thể tích thùng dầu cần thiết kế: $V = 1,7a.a.0,7a = 1,19a^3$ (II)

Từ (I) và (II) giải phương trình ta được: a = 0.407 (m)

Chọn: a = 40 (cm)

Suy ra: L = 75 (cm) và H = 30 (cm)

Vậy kích thước của thùng dầu được thiết kế là:

$$Dài*Rộng*Cao = 75*40*30 (cm)$$

Thể tích thùng dầu là 90 (lít)

c. Tính toán nhiệt trong hệ thống thủy lực

- 0 Công suất của động cơ điện: $N_{dc} = 7.5 \text{ (kw)}$
- \circ Công suất tổn hao do sinh nhiệt: $N_{th} = 0.05.N_{dc} = 0.375$ (kw)
- \circ Nhiệt lượng tỏa ra trong hệ thống: $Q = 860.N_{th}$
- \circ Nhiệt độ của dầu (chọn nhỏ hơn hoặc bằng 55 độ C): T = 55 (°C)
- o Nhiệt độ của môi trường đặt máy: $T_0 = 35$ (°C)
- \circ Lượng nhiệt trao đổi với bộ làm mát (nếu có bộ làm mát): $Q_I = 0$ (Kcal/h)
- Lượng nhiệt mà bể dầu trao đổi với môi trường bên ngoài:

$$Q_2 = 322,5 \ (Kcal/h)$$

- 0 Hệ số truyền nhiệt từ dầu sang môi trường: K=21 (Kcal/kg.°C. h) (Bể dầu đặt trong thân máy K=8,7; Bể dầu đặt ngoài môi trường K=21)
- O Diện tích bề mặt truyền nhiệt của bể dầu:

$$F = 2.(L.W + W.H + H.L) = 1,29 (m^2)$$

Kiểm tra điều kiện thoát nhiệt của bể dầu vừa thiết kế: Đảm bảo nhiệt độ dầu không quá 55°C:

Ta có:
$$T - T_0 = 20$$
 (°C); $\frac{Q2}{K.F} = 11.9$ (°C)

Ta thấy: $T - T_0 > \frac{Q^2}{K.F}$. Vậy thùng dầu thỏa mãn điều kiện tỏa nhiệt của hệ thống.

Bảng 4. 14: Các thông số thiết kế của thùng dầu

	1	L	Chiều dài	75	cm
	2	W	Chiều rộng	40	cm
	3	Н	Chiều cao	30	cm
	4	V	Thể tích dầu	90	lít
Thùng dầu			V dầu còn ít nhất trong		
Thung dau	5	hmin	thùng	15	cm
		Sử			
	6	dụng	Bộ làm mát	0	Βộ
	Kiểm				
	7	tra	Điều kiện tỏa nhiệt	Đạt	

4.5.2. Chọn thước thăm dầu

Với chiều cao của thùng dầu: 300 (mm)

Thể tích dầu còn ít nhất trong thùng sẽ có mức: $h_{min} = 150 \text{ (mm)} = 13,5 \text{ (cm)}$

Lựa chọn thước thăm dầu: LS-5" của hãng Libo

Hình 4. 13: Các thông số của thước thăm dầu

Bảng tổng hợp các thông số của thước thăm dầu đã chọn:

Mã sản phẩm	LS-5''
Thương hiệu	Libo

Xuất xứ	Đài Loan
---------	----------

4.5.3. Tính toán lựa chọn bộ lọc

Để đảm bảo độ tin cậy và tuổi thọ của các phần tử thủy lực trong mạch thủy lực không bị các tác nhân là cặn bẩn phá hỏng ta cần sử dụng các bộ lọc.

Bộ lọc có thể được đặt tại 3 vị trí trong mạch thủy lực tùy vào từng ứng dụng cụ thể:

- Vị trí 1: Đặt tại đường hút của bơm, phương pháp này thường được sử dụng nhưng chỉ lọc bụi bẩn có kích thước không lớn hơn
- Vị trí 2: Đặt tại đường ống đẩy của bơm. Thường áp dụng khi hệ thống đòi hỏi yêu cầu cao về độ sạch của dầu thủy lực tới các van và cơ cấu chấp hành.
- Vị trí 3: Đặt tại đường dầu hồi về của hệ thống. Hầu hết các mạch thủy lực đều lựa chọn phương pháp này do bộ lọc được đặt ở nơi có áp suất thấp nên chỉ cần một bộ lọc với giá thành rẻ hơn.

Chọn lọc đường dầu hồi cho hệ thống:

Thương hiệu: Hydac, Đức

Mã sản phẩm: **HF4R BN 09 V F 3 C 1.X / 3 B2.7 C T**

Áp suất max: 7 bar

Hình 4. 14: Các thông số lọc dầu đường hồi của hệ thống

4.5.4. Tính toàn lựa chọn đồng hồ áp suất

Với áp suất làm việc lớn nhất của hệ thống là: $p_{max} = 250$ (bar)

Chọn đồng hồ có thể đo được mức áp suất lớn hơn áp suất max bơm tạo ra trong quá trình làm việc với dải đo: 0-1000 (bar) của hãng Wika

Hình 4. 15: Các thông số của đồng hồ áp suất

Bảng tổng hợp các thông số:

Hãng	Wika
Thương hiệu	Đức
Dải đo	0-1000 (bar)
Mã	Wika 232.50

4.5.5. Chọn nắp thùng dầu thủy lực

Nắp thùng dầu thủy lực **AB1163** được dùng ở trên mặt thùng dầu, chỗ đổ dầu thủy lực vào thùng dầu. Bên cạnh là nắp thùng dầu - nó làm cho thùng dầu kín, sạch sẽ, không bị các vật bẩn chui vào được thùng dầu.

Hình 4. 16: Các thông số của nắp thùng dầu

4.5.6. Chọn khóa tay vặn

Sử dụng khi cần thay thế nắp thùng ta sẽ khóa lại để bụi không đi vào thùng dầu Van cửa tay vặn khóa hơi, nước Kitz ren 60 mm

Hình 4. 17: Khóa tay

4.5.7. Van xả (Van bi thủy lực/gạt tay 2 ngã)

Van bi là một dạng của van một phần tư sử dụng một quả bóng rỗng, đục lỗ và xoay để kiểm soát dòng chảy qua nó. Nó mở khi lỗ của quả bóng phù hợp với dòng chảy.

GE2 DIN/ISO 228 BSP

	Standard									CARBON STEEL	STAINLESS STEEL								
TYPE	PN	DN	A	В	C	D	E	F	G	Н	1	L	ØM	CH	SW	OLW	KG	ITEM CODE	ITEM CODE
GE2 G 1/8	50 MPa	4	35	14,5	71	42,4	11,1	49,25	30	110	87	14,3	G 1/8	24	9	4	0,549	GE2GGT05011A000	GE2GGT05044A000
GE2 G 1/4	50 MPa	6	35	14,5	71	42,4	11,1	49,25	30	110	87	14,3	G 1/4	24	9	6	0,497	GE2GGT15011A000	GE2GGT15044A000
GE2 G 3/8	50 MPa	10	40	17,4	73	44,4	11,1	54,25	35	110	93	14,3	G 3/8	30	9	10	0,652	GE2GGT25011A000	GE2GGT25044A000
GE2 G 1/2	50 MPa	13	43	17,95	83	48,4	11,1	57,25	37	110	97	17,3	G 1/2	32	9	13	0,77	GE2GGT35011A000	GE2GGT35044A000
GE2 G 3/4	42/40 MPa	20	57	25,4	95	62,5	14,35	75,5	49	180	105	16,25	G3/4	41	14	20	1,46	GE2GGT44011A000	GE2GGT44044A000
GE2 G 1	42/35 MPa	25	65	29,5	112,4	66,5	14,35	83,5	55	180	113	22,95	G 1	50	14	25	2,23	GE2GGT53011A000	GE2GGT53044A000
GE2 G 1 1/4 R	35 MPa	25	65	29,5	120,4	66,5	14,35	83,5	55	180	113	26,95	G 11/4	55	14	25	2,299	GE2GGR63011A000	GE2GGR63044A000
GE2 G 1 1/2 R	35 MPa	25	65	29,5	124,4	66,5	14,35	83,5	55	180	113	28,95	G 11/2	60	14	25	2,413	GE2GGR73011A000	GE2GGR73044A000

Hình 4. 18: Các thông số của van xả

Bảng tổng hợp các thông:

Hãng	Gemels				
Xuất xứ	Italy				
Mã sản phẩm	GE2GGT15011A000				

4.6. Chọn gioăng phớt cho xy lanh

4.6.1. Phót gạt bụi

Ở đầu xy lanh thủy lực ta bố trí một phót gạt bụi nhằm mục đích làm sạch cần xy lanh: giữ lại chất bẩn bên ngoài cũng như nước mưa hay tạp chất trước khi chúng vào trong ống xy lanh. Do hệ thống thủy lực rất kỵ với chất bẩn dù rất nhỏ đi nữa dưới áp suất cao sẽ tạo ra những vết xước trên bề mặt nòng ống xy lanh, bề mặt răng của bơm bánh răng, gây xước gioăng phót từ đó không đảm bảo khả năng làm kín, gây mất áp.

Với áp suất làm việc khoảng: 191 bar, đường kính cần xy lanh là 70 (mm), đường kính nòng xy lanh là 150 (mm) và vận tốc hoạt động lớn nhất là 1,96 (cm/s), nhiệt độ làm việc khoảng 80 độ. Tra catalogue gioăng phót của hãng Parker ta chọn được phót gạt bụi: **A1 7005 N3587**

Hình 4. 19: Thông số của phót gạt bụi

4.6.2. Phót ben cần piston

Phót cần piston thủy lực có nhiệm vụ bảo đảm dầu thủy lực không bị tràn ra ngoài xy lanh trong quá trình hoạt động với áp suất cao. Ngoài ra, nó cũng có chức năng đảm bảo nước hay bất kỳ loại chất lỏng nào không xâm nhập vào được bên trong khoang xy lanh.

Với áp suất làm việc khoảng: 191 bar, đường kính cần xy lanh là 70 (mm) và vận tốc hoạt động lớn nhất là 1,96 (cm/s), nhiệt độ làm việc khoảng 80 độ. Tra catalogue gioăng phót của hãng Parker ta chọn được phót ben cần piston có mã:

R3 0069 00251

Hình 4. 20: Các thông số phớt ben cần piston

4.6.3. Vòng dẫn hướng cho cần xy lanh

Đây là chi tiết có nhiệm vụ đảm bảo cho trục của piston luôn song song với ống xy lanh thủy lực. Đối với các xy lanh có hành trình nhỏ, tải trọng thấp thì chi tiết này có thể bỏ qua. Song hầu hết xy lanh thủy lực đều hoạt động với tải trọng lớn, hành trình dài, một số trường hợp còn gá đặt nghiêng làm cho trục của piston và ống xy lanh không đảm bảo song song khi làm việc. Ảnh hường của việc không song song khi mang tải trọng lớn khi hoạt động liên tục là gây ra ma sát lớn giữa quả piston và thành ống xy lanh, từ đó sinh nhiệt, tổn hao công suất cũng như gây mòn không đều, mòn nhanh bề mặt piston và xy lanh gây rò rỉ giữa hai khoang từ đó mất áp.

Để tránh hiện tượng trên ta sẽ trang bị hai vòng dẫn hướng ở đầu quả piston và hai vòng dẫn hướng ở đầu ống xy lanh.

Với áp suất làm việc khoảng: 191 bar, đường kính cần xy lanh là 70 (mm), đường kính nòng xy lanh là 100 (mm) và vận tốc hoạt động lớn nhất là 1,96 (cm/s), nhiệt độ làm việc khoảng 80 độ. Tra catalogue gioăng phót của hãng Parker ta chọn được vòng dẫn hướng cần xy lanh: **FR 7005 Q5038**

Hình 4. 21: Các thông số vòng dẫn hướng cho cần xy lanh

4.6.4. Vòng dẫn hướng cho quả piston

Đây là chi tiết có nhiệm vụ đảm bảo cho trục của piston luôn song song với ống xy lanh thủy lực. Đối với các xy lanh có hành trình nhỏ, tải trọng thấp thì chi tiết này có thể bỏ qua. Song hầu hết xy lanh thủy lực đều hoạt động với tải trọng lớn, hành trình dài, một số trường hợp còn gá đặt nghiêng làm cho trục của piston và ống xy lanh không đảm bảo song song khi làm việc. Ảnh hường của việc không song song khi mang tải trọng lớn khi hoạt động liên tục là gây ra ma sát lớn giữa quả piston và thành ống xy lanh, từ đó sinh nhiệt, tổn hao công suất cũng như gây mòn không đều, mòn nhanh bề mặt piston và xy lanh gây rò rỉ giữa hai khoang từ đó mất áp.

Để tránh hiện tượng trên ta sẽ trang bị hai vòng dẫn hướng ở đầu quả piston.

Với áp suất làm việc khoảng: 191 bar, đường kính nòng xy lanh là 100 (mm) và vận tốc hoạt động lớn nhất là 1,96 (cm/s), nhiệt độ làm việc khoảng 80 độ. Tra catalogue gioăng phót của hãng Parker ta chọn được: **FK A095 Q5038**

Hình 4. 22: Các thông số dẫn hướng quả piston

4.6.5. Phót ben cho quả piston

Để piston sinh lực được đồi hỏi hai khoang làm việc của xy lanh phải tách biệt hoàn toàn, nếu như có một chút rò rỉ giữa hai khoang thì dưới áp suất cao dầu thủy lực từ khoang cao áp sẽ chảy sang khoang xả về bể dầu dẫn đến hiện tượng mất áp. Phót gạt dầu tại đầu quả piston phải làm việc dưới điều kiện khắc nghiệt. Đặc biệt là vào mùa đông, khi gioăng phót đang ở trạng thái bình thường sau khi hoạt động được một thời gian dầu bắt đầu nóng lên, gioăng phót bắt đầu giãn nở. Nếu như nhiệt độ dầu cứ nóng lên mà không giảm sẽ gây ra chảy hay biến dạng phót. Vì vậy chất lượng của phót quả piston phải được chú ý hơn so với các vị trí khác.

Số lượng chọn: 2 phót

Với áp suất làm việc khoảng: 191 bar, đường kính cần xy lanh là 70 (mm), đường kính nòng xy lanh là 100 (mm) và vận tốc hoạt động lớn nhất là 1,96 (cm/s), nhiệt độ làm việc khoảng 80 độ. Tra catalogue gioăng phót của hãng Parker ta chọn được vòng dẫn hướng cần xy lanh: 2 - 339

Hình 4. 23: Các thông số phót ben quả piston

4.6.6. Gioăng chỉ làm kín

Tra theo catalogue của hãng Parker ta chọn loại: V1 4086 P5008 và V1 9330 P5008

Hình 4. 24: Gioăng chỉ làm kín

CHƯƠNG 5: KẾT LUẬN

Sau hơn hai tháng làm đồ án tốt nghiệp, với việc sử dụng các phương pháp và quy trình tính toán trong các tài liệu chuyên ngành có liên quan trong việc tính toán và thiết kế bàn nâng chữ X tải trọng 6 tấn cùng với các kiến thức đã học được trên giảng đường. Kết quả đồ án phù hợp với các vấn đề đã đặt ra đáp ứng nhu cầu thực tiễn.

Thông qua đồ án giúp em hiểu rõ hơn về các kiễn thức đã được học, biết được quy trình tính toán và thiết kế cũng như các phần mềm sử dụng trong quá trình thiết kế như autocad, solidwork, ... và tăng thêm các kĩ năng sử dụng các ứng dụng văn phòng.

Sinh viên thực hiện (ký và ghi rõ họ tên)

TÀI LIỆU THAM KHẢO

- [1] Trần Thế San Khí n
én & thủy lực. Nhà xuất bản Khoa học và Kỹ thuật, Hà Nội, 2020
- [2] Ninh Đức Tốn Dung sai và Lắp ghép. Nhà xuất bản Giao dục Việt Nam, Hà nội, 2013
- [3] Catalogue Parker, https://www.parker.com/us/en/home.html
- [4] Catalogue Rexroth, https://www.boschrexroth.com/vi/vn/
- [5] Catalogue Vihem, https://vihem.vn/
- [6] Catalogue Oleoweb, https://www.oleoweb.com/
- [7] Công ty Thịnh thành phát, https://thinhthanhphat.com.vn/
- [8] Công ty TNHH máy và tự động thủy khí minh ngọc, http://www.thuykhiminhngoc.com/