- 1. Refer to the datasheet for 74C00. (https://pdf1.alldatasheet.com/datasheet-pdf/view/351452/ONSEMI/74HC00.html)
 - i) Under normal conditions what is the largest LOW-state voltage that should appear at the output of this gate where V_{CC} =6 V?
 - ii) What is the ESD voltage for the Human Body Model (HBM)?
- 2 In a digital system define the following parameters:
 - a) Propagation delay time -
 - b) Power consumption -
 - c) noise immunity -
- 3. Two different logic circuits have the following characteristics:

	Circuit A	Circuit B
V supply	6 V	10 V
V _{IH}	1.6 V	1.8 V
V IL	0.9 V	0.7 V
V _{OH}	2.2 V	2.5 V
V _{OL}	0.4 V	0.3 V
t _{PLH}	10 ns	18 ns
t _{PHL}	8 ns	14 ns
P _D	16 mW	10 mW

- a) Which circuit has the best LOW-state dc noise immunity?
- b) Which circuit has the best HIGH-state dc noise immunity?
- c) Which circuit operates at the higher frequency?
- d) Which circuit has the lower power consumption?
- 4. List any 3 characteristics of the CMOS ICs.
- 5. Give a comparison of CMOS ICs to that of TTL ICs with reference to the following:

	Parameters	CMOS	TTL
1	Speed		
2	Power		
3	Noise Immunity		
4	Voltage Range		
5	ESD tolerance		

- 6. The greater the noise margin, the greater is the noise immunity. True/False
- 7. List any two common Electrostatic Sensitive Device (ESD).

- 8. Explain what is Electrostatic Discharge?
- 9. List four precautions how should an ESD device be handled?
- 10. Explain why an unused input of CMOS chips must not be left unattended? With an aid of a diagram, show how an unused input of a AND gate should be handled.

Formula for Q3

Noise margin calculation:	VNH = VOH(max) -VIH(min)	VNL = VIL(min) -VOL(max)
Propagation delay, Pd Frequency, f	Pd= tpLH + tpHL /2	f = 1/Pd