Computer Models for Physical Processes

Project presentation
on
"Finite Difference Method for Stationary 2D heat conduction problem"

Submitted to: Professor Carsten Könke

Contents

- 1. Introduction: Physical Problem Formulation
- 2. Mathematical Formulation to establish an appropriate finite difference term
- 3. Boundary Conditions
- 4. Investigation of the temperature field using MATLAB® implementation
- 5. Analytical validation using ANSYS® Fluent
- 6. Conclusion: Evaluation of results

Introduction

The focus of this project is to determine the temperature distribution within the plate in a steady-state condition.

On a broader level the project can be split into the below 5 parts:

2. Mathematical Formulation to establish an appropriate finite difference term

3. Investigation of the temperature field using MATLAB® implementation

4. Analytical validation using ANSYS® Fluent

5. Evaluation of results

Introduction

1. Physical Problem Formulation

Material parameters

heat conductivity $c = 50 \frac{W}{mK}$ thickness of plate h = 0.15m

 $Dimension = 2.0m \times 1.0m$

Boundary values:

$$T_1=50^{\circ}\mathrm{C}$$
 $T_2=10^{\circ}\mathrm{C}$
 $Q_1=-200\frac{W}{m^2}$ (heat output)
 $Q_2=0\frac{W}{m^2}$

Mathematical Formulation to establish an appropriate finite difference term

General Equation for Heat Conduction Problem

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} + \frac{Q}{K} = \rho \times C \times \frac{\partial T}{\partial t}$$
 = \text{Eq.1}

Assumptions and Simplifications

- 2D Steady-State Condition $\frac{\partial^2 T}{\partial z^2} \& \frac{\partial T}{\partial t} = \mathbf{0}$
- Constant Thermal Conductivity C
- No Internal Heat Generation $oldsymbol{Q} = oldsymbol{0}$

$$\nabla^2 T = \frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = 0$$
 Eq.2

Mathematical Formulation to establish an appropriate finite difference term

Approximation of Derivatives using Finite Differences

$$\nabla^2 T = \frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = 0$$

- First-order Derivatives: Approximation of $\frac{\partial T}{\partial x}$ and $\frac{\partial T}{\partial y}$
 - Central Difference (for $\frac{\partial T}{\partial x}$):

 Central Difference (for $\frac{\partial T}{\partial y}$): $\frac{\partial T}{\partial x} \approx \frac{(T_{i+1,j} T_{i-1,j})}{2 \times \Delta x} \longrightarrow \text{Eq.3}$ $\frac{\partial T}{\partial x} \approx \frac{(T_{i,j+1} T_{i,j-1})}{2 \times \Delta x} \longrightarrow \text{Eq.4}$
- Second-order Derivatives: Approximation of $\frac{\partial^2 T}{\partial x^2}$ and $\frac{\partial^2 T}{\partial x^2}$

$$\frac{\partial^2 T}{\partial x^2} \approx \frac{(T_{i+1,j} - 2T_{i,j} + T_{i-1,j})}{\Delta x^2} \rightarrow \text{Eq.5}$$

• Central Difference $(for \frac{\partial^2 T}{\partial x^2})$: • Central Difference $(for \frac{\partial^2 T}{\partial y^2})$:

$$\frac{\partial^2 T}{\partial x^2} \approx \frac{(T_{i+1,j} - 2T_{i,j} + T_{i-1,j})}{\Delta x^2} \rightarrow \text{Eq.5} \qquad \frac{\partial^2 T}{\partial y^2} \approx \frac{(T_{i,j+1} - 2T_{i,j} + T_{i,j-1})}{\Delta y^2} \rightarrow \text{Eq.6}$$

Mathematical Formulation to establish an appropriate finite difference term

Approximation of Derivatives using Finite Differences

$$\nabla^2 T = \frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = 0$$

For $\Delta x \neq \Delta y$, unequal grid spacing

$$T_{i,j} = \frac{(\Delta y^2) \times (T_{i+1,j} + T_{i-1,j}) + (\Delta x^2) \times (T_{i,j+1} + T_{i,j-1})}{2 \times (\Delta x^2 + \Delta y^2)} \longrightarrow \text{Eq.7}$$

For $\Delta x = \Delta y$, for equal grid spacing

$$T_{i,j} = \frac{(T_{i+1,j}) + (T_{i-1,j}) + (T_{i,j+1}) + (T_{i,j-1})}{4} \longrightarrow \text{Eq.8}$$

Boundary Conditions

Temperature Boundary Conditions (T)

- right side column of grid points= T₁
- \triangleright bottom side row of grid points = T_2

Boundary Conditions

- Heat Flux Boundary Conditions (Q)
- ➤ For left side boundary condition (Q₂):

$$q = -C \times \frac{\partial T}{\partial \mathbf{x}}$$

$$q = -C \times \frac{\left(T_{i,j} - T_{i+1,j}\right)}{\Delta x}$$

$$\longrightarrow \text{Eq.9}$$

For Top sideboundary condition(Q₁)

$$q = -C \times \frac{\partial T}{\partial y}$$

$$q = -C \times \frac{\left(T_{i,j} - T_{i,j-1}\right)}{\Delta y}$$

$$\longrightarrow \text{Eq.10}$$

$$T_{left \ side \ end \ column} = T_{left \ side \ end \ column-1} - \frac{(Q_2 \times d_x)}{c}$$

$$T_{top \ side \ end \ row} = T_{top \ side \ end \ row-1} - \frac{(Q_1 \times d_y)}{c}$$

Investigation of the temperature field using MATLAB® implementation

Discretization of The 2D Plate

$$dx = \frac{L_x}{N_x - 1} \qquad dy = \frac{L_y}{N_y - 1}$$

Investigation of the temperature field using MATLAB® implementation

- ANSYS® Fluent is used to validated the MATLAB data
- The Fluid Flow (Fluent) in ANSYS® Workbench is used to do the required simulation

Mesh

- In this section boundary walls are named and the 2-D domain
- Equidistance Quadrilateral meshes are drawn on the plate

ANSYS

Setup & Solution

- In this section we select Energy equation for the simulation.
- The material of the plate is chosen, we kept it
 Aluminium because the material of the plate do
 not play any role in the calculation.
- We setup the boundary conditions provided in the problem statement before running the simulation for solution.

Result

- In this section we extract the results from the solution.
- To compare the data, temperature data of horizontal mid-point line and vertical mid-point line of the plate is used.
- We divide the mid-point lines into grid points and extract the temperature value for each grid point. The grid points correspond to the number of meshes.

Conclusion

	Horizontal midline		Vertical midline	
No. of Meshes				
	Max difference	Average difference	Max difference	Average difference
100	2.51276381	1.832376204	4.3920025	2.147666243
200	2.07700129	1.726038221	4.19	2.052288557
300	0.55606093	0.237455986	0.94312382	0.225470157

References

- 1. Könke, Carsten. "Numerical Discretization Methods " Computer Models for Physical Processes. Bauhaus-Universität. Weimar. WiSe 2023.
- 2. Powell, Adam. "Finite Difference Solution of the Heat Equation" dspace.mit.edu, 15 December 2023,

 www.dspace.mit.edu/bitstream/handle/1721.1/35256/22-00JSpring-2002/NR/rdonlyres/Nuclear-Engineering/22-00JIntroduction
 to-Modeling-and-SimulationSpring2002/55114EA2-9B81-4FD8-90D5-5F64F21D23D0/0/lecture_16.pdf
- 3. dos Santos, Vânia Gonçalves de Brito, and Paula Tamires Gomes dos Anjos. "Finite Difference Method Applied in Two-Dimensional Heat Conduction Problem in the Permanent Regime in Rectangular Coordinates." *Advances in Pure Mathematics* 12.9 (2022): 505-518.

Thank You

