

5-8

NORMALISASI DATABASE

Arif Basofi, S.Kom, MT.

Objectives

- 1. Memahami pentingnya normalisasi.
- 2. Memahami aturan normalisasi pertama (1NF).
- 3. Memahami aturan normalisasi kedua (2NF).
- 4. Memahami aturan normalisasi ketiga (3NF).

PENTINGNYA NORMALISASI

- Suatu rancangan database disebut **buruk** jika:
 - Data yang sama tersimpan di beberapa tempat (file atau record)
 - Ketidakmampuan untuk menghasilkan informasi tertentu
 - Terjadi kehilangan informasi
 - Terjadi adanya redudansi (pengulangan) atau duplikasi data sehingga memboroskan ruang penyimpanan dan menyulitkan saat proses updating data
 - Timbul adanya NULL VALUE.

PENTINGNYA NORMALISASI

- Kehilangan informasi bisa terjadi bila pada waktu merancang database (melakukan proses <u>dekomposisi yang keliru</u>).
- Tujuan normalisasi adalah menyempurnakan struktur table dengan:
 - mengeliminasi adanya duplikasi informasi,
 - memudahkan pengubahan struktur tabel,
 - memperkecil pengaruh perubahan struktur database,
 - dll.
- Bentuk normalisasi yang sering digunakan adalah 1st NF, 2nd NF, 3rd NF, dan BCNF.
- 2NF adalah lebih baik dari 1NF; 3NF adalah lebih baik dari 2NF.
- Untuk kepentingan rancangan database bisnis, **3NF** adalah bentuk terbaik dalam proses normalisasi (sudah mencukupi).
- Normalisasi dengan level paling tinggi <u>tidak</u> selalu diharapkan.
- Jadi normalisasi dilakukan, sepanjang dirasa <u>sudah cukup normal</u> (dgn mengikuti pra-syarat normalisasi diatas)

FUNCTIONAL DEPENDENCY (FD)

- Untuk melakukan normalisasi, harus bisa menentukan terlebih dahulu <u>Functional Dependency (FD)</u> atau <u>Ketergantungan</u> <u>Fungsional</u>, khususnya dalam melakukan dekomposisi rancangan database.
- Functional Dependency (FD) dapat disimbolkan dengan:
 A → B: artinya B memiliki ketergantungan dengan A
- Berarti A secara fungsional <u>menentukan</u> B atau B secara fungsional <u>tergantung</u> pada A.
 - Dengan kondisi: jika dan hanya jika untuk setiap rows data pada tabel T, maka jk ada 2 rows di tabel T dengan nilai pd A yang sama, maka nilai pd B pasti juga sama.
- Jadi, diberikan 2 rows, yaitu: row r1 dan row r2 dalam tabel T, dimana A \rightarrow B, sehingga jika r1(A) = r2(A), maka r1(B)=r2(B)

FUNCTIONAL DEPENDENCY (FD)

Contoh:

	Mata_Kuliah	NRP	Nama	Nilai
row 1	Aplikasi Web	7405040100	Deni Astikapuri	Α
row 2	Aplikasi Web	7405040101	Uun Widiatmoko	Α
row 3	Basis Data 1	7405040100	Deni Astikapuri	В
row 4	Basis Data 1	7405040102	Wasis Waskito Adi	В
row 5	Basis Data 1	7405040103	lmam Bukhori	Α
row 6	Basis Data 2	7405040104	Aswina Rahayu Kumiati	Α
row 8	Administrasi Basis Data	7405040101	Uun Widiatmoko	AB

Functional Dependency:

- Fd1: NRP → Nama (nama bergantung pada NRP)
- Fd2: Mata_Kuliah, NRP → Nilai (nilai bergantung pd MK & NRP)

Non Functional Dependency:

- Mata_Kuliah → NRP
- NRP → Nilai

NORMALISASI 1NF

1st Normal Form (1NF)

- Merubah dari bentuk tabel tidak normal (unnormalized table) menjadi bentuk normal pertama (1NF).
- Suatu relation R disebut 1st NF jika dan hanya jika semua attribute value-nya simple/atomic (tidak boleh ada attribute yang composit & multivalue)
- Tujuan 1NF adalah:
 - Membuang adanya pengulangan (Redudansi) data,
 - Menghindari adanya pencatatan Null Value, dan
 - Menjaga setiap entry data dr relasi (perpotongan bariskolom) memiliki maksimal satu nilai tunggal.
- Beberapa table dapat mengandung partial depedency

NORMALISASI 1NF

Contoh-1:

1. Apakah bentuk relasi table Department sudah memenuhi normal 1 (1NF)? Jika belum normalisasikan.

DEPARTMENT						
<u>DNO</u>	DNAME	DMGRSSN	DLOCATIONS			

2. Apakah bentuk relasi table Emp_Proj sudah memenuhi normal 1 (1NF)? Jika belum normalisasikan.

EMP_PROJ					
<u>SSN</u>	ENAME	PNO	HOURS		

Contoh-1 (1)

NORMALISASI 1NF

• Sebuah bentuk relasi table Department <u>dengan asumsi</u> tiap department dapat memiliki sejumlah lokasi.

- Bentuk relasi table partment pd gambar tsb <u>bukan merupakan bentuk normal 1NF</u>, karena <u>DLOCATIONS</u> <u>bukan atribut atomic</u>, shg pada kasus ini <u>DLOCATIONS</u> <u>tidak benar-benar</u> <u>Functional Dependent</u> (FD) pada <u>Primary Key <u>DNUMBER</u></u>. DNUMBER
- Atribut/kolom **DLOCATIONS**, dapat mengandung **nilai lebih dari satu** sehingga termasuk **multivalue** seperti ilustrasi gambar berikut..

Contoh-1 (1)

NORMALISASI 1NF

Terdapat 3 cara untuk melakukan normalisasi dlm mendapatkan bentuk normal 1 (1NF) dari skema relasi DEPARTMENT, yaitu:

1. Penulisan berulang sesuai dengan atribut key-nya yg masih dlm 1 relasi (PK kombinasi {DNO,DLOCATIONS}), akan tetapi solusi ini kurang menguntungkan karena menyebabkan terjadinya redudancy dengan penulisan DNAME & DMGRSSN berulangulang (seperti pada gambar (b)).

DEPARTMENT

DNUMBER	DNAME	DMGRSSN	DLOCATIONS
5	Research	333445555	Bellaire, Sugarland, Houston
4	Administration	987654321	Stafford
1	Headquarters	888665555	Houston

DEPARTMENT

DNUMBER	DNAME	DMGRSSN	DLOCATIONS
5	Research	333445555	Bellaire
5	Research	333445555	Sugarland
5	5 Research		Houston
4	4 Administration		Stafford
1	Headquarters	888665555	Houston

(a) Department

(b) Department

Contoh-1 (1)

NORMALISASI 1NF

2. Dengan mencari nilai max atribut DLOCATIONS, misal terdapat 3 lokasi dalam 1 department, sehingga strukturnya dirubah menjadi DLOCATION1, DLOCATION2, DLOCATION3, maka dapat menyebabkan terjadinya adalah **NULL VALUE** pada salah satu atribut/kolom DLOCATION-n.

DEPARTMENT						
DNAME	DNUMBER	DMGRSSN	DLOCATION1	DLOCATION2	DLOCATION3	DLOCATION-N

Contoh-1 (1)

NORMALISASI 1NF

3. Hapus atribut **DLOCATIONS** lalu pisahkan sehingga membentuk table baru **Dept_Locations**, atributnya terdiri atas **Primary Key** dari table **Department** dan atribut itu sendiri **DLOCATIONS**. Kedua atribut tersebut {**DNO,DLOCATIONS**} digabung membentuk **Primary Key**.

Dari ketiga teknik diatas, yang lebih memenuhi adalah teknik yang **terakhir (3)**.

Contoh-2

NORMALISASI 1NF

Contoh-2

NORMALISASI 1NF

A. Unnormalized table (tabel tidak normal)

Suatu tabel dikatakan unnormalized jika:

a) Mempunyai <u>penggandaan field yang sejenis</u> <u>Contoh</u>:

Tabel dibawah adalah tabel siswa mengambil mata kuliah (MK)

SISWA

NRP Nama	MK1	MK2	мкз
----------	-----	-----	-----

Tabel siswa diatas mempunyai 3 field yang sejenis, yaitu MK1, MK2 dan MK3. Sehingga tabel diatas adalah termasuk <u>unnormalized</u>.

Jika kita isikan nilai datanya, maka akan terjadi kemungkinan <u>null</u> <u>value</u>, atau data mata kuliah yang diambil bisa lebih dari satu atau <u>multivalue</u>.

Contoh-2

NORMALISASI 1NF

b) Elemen datanya memungkinkan untuk **null value** (tidak berisi)

Contoh:

Tabel yang mencatat No. SIM yang dimiliki siswa

SISWA_SIM

NIS	Nama	No SIM
1	Budi	12345
2	Amin	
3	Irfan	67890
4	Bayu	

Tampak dalam tabel diatas bahwa elemen data dari no SIM si-Amin dan si-Bayu adalah **null** atau tidak berisi nilai. Sehingga tabel di atas adalah termasuk **unnormalized**.

Contoh-2

NORMALISASI 1NF

B. NORMAL I (1NF)

• Suatu tabel dikatakan berada pada bentuk **normal I** jika ia tidak berada pada bentuk **unnormalized** table. Unnormalized table SISWA disebabkan karena adanya **multivalue** column yaitu **MK**, sehingga dilakukan proses **normalisasi I** (**1NF**).

Contoh:

Kalau tabel pada contoh (a) diatas kita normalisasi 1, dengan melakukan decompose menjadi 2 table yaitu :

Contoh-2

NORMALISASI 1NF

Kalau pada contoh (b) diatas kita normalisasi I, maka hasilnya akan didapatkan seperti ini :

Contoh-3

NORMALISASI 1NF

Contoh 1NF:

• Suatu format tabel yang dikenal sehari-hari :

Nama	Alamat	Nama_Anak	Pendidikan_Anak
Amir	Keputih 21	Ali	TK
		Budi	SD
		Cici	SMP

• Bentuk UnNormalize : (redudancy pada alamat)

Nama	Alamat	Nama_Anak	Pendidikan_Anak
Amir	Keputih 21	Ali	TK
Amir	Keputih 21	Budi	SD
Amir	Keputih 21	Cici	SMP

• Bentuk Normal 1NF & 2NF:

Contoh-3

NORMALISASI 1NF

Contoh Lain 1NF:

• Suatu format tabel yang dikenal sehari-hari :

<u>NIP</u>	Nama_Karwayan	Nama_Departemen	Gaji	<u>Kurs us</u>	Tgl_Seles ai
25210021	Ali Topan	Geologi Komputasi	2.000.000	AutoCAD Map	8-Oct-2002
				Potoshop	9-Oct-2002
25210022	James Bond	Pengeboran	1.250.000	3D MAX	9-Oct-2002
25210023	Cici Faramida	Geofisika Eksplorasi	1.500.000	3D MAX	9-Oct-2002
				ArcView	10-Dec-2002
25210024	Siti Nurhaliza	Sistem Informasi	2.500.000	Oracle	21-Sep-2002
				SQL Server	21-Sep-2003

• Bentuk UnNormalize (redudancy):

<u>NIP</u>	Nama_Karyawan	Nama_Departemen	Gaji	<u>Kursus</u>	Tgl_Seles ai
25210021	Ali Topan	Geologi Komputasi	2.000.000	AutoCAD Map	8-Oct-2002
25210021	Ali Topan	Geologi Komputasi	2.000.001	Potoshop	9-Oct-2002
25210022	James Bond	Pengeboran	1.250.000	3D MAX	9-Oct-2002
25210023	Cici Faramida	Geofisika Eksplorasi	1.500.000	3D MAX	9-Oct-2002
25210023	Cici Faramida	Geofisika Eksplorasi	1.500.001	Arc∀iew	10-Dec-2002
25210024	Siti Nurhaliza	Sistem Informasi	2.500.000	Oracle	21-Sep-2002
25210024	Siti Nurhaliza	Sistem Informasi	2.500.001	SQL Server	21-Sep-2003

NORMALISASI 2NF

2st Normal Form (2NF)

- Sudah dalam bentuk / lolos 1NF.
- Dibuat berdasarkan <u>FULL FUNCTIONAL</u>
 <u>DEPENDENCY</u> (ketergantungan fungsional penuh)
- Normalisasi 2NF: jika tabel berada dalam bentuk normal pertama (1NF) dan setiap atribut <u>bukan kunci</u> (bukan PK) <u>bergantung penuh (FULL DEPENDENT)</u> pada <u>kunci primer (PK)</u>.
- Sehingga tidak ada atribut bukan kunci yang bergantung pada sebagian (parsial) kunci primer.

NORMALISASI 3NF

Contoh 2NF:

• Suatu format tabel Normal I (1NF): (menghilangkan redudansi)

• Bentuk Normal II (2NF) : (decompose)

NORMALISASI 3NF

Contoh 2NF: (Penjelasan)

• Suatu format tabel Normal I (1NF): (menghilangkan redudansi)

<u>NIP</u>	Nama_Karyawan	Nama_Departemen	Gaji	<u>Kursus</u>	Tgl_Seles ai
25210021	Ali Topan	Geologi Komputasi	2.000.000	AutoCAD Map	8-Oct-2002
25210021	Ali Topan	Geologi Komputasi	2.000.001	Potoshop	9-Oct-2002
25210022	James Bond	Pengeboran	1.250.000	3D MAX	9-Oct-2002
25210023	Cici Faramida	Geofisika Eksplorasi	1.500.000	3D MAX	9-Oct-2002
25210023	Cici Faramida	Geofisika Eksplorasi	1.500.001	Arc∀iew	10-Dec-2002
25210024	Siti Nurhaliza	Sistem Informasi	2.500.000	Oracle	21-Sep-2002
25210024	Siti Nurhaliza	Sistem Informasi	2.500.001	SQL Server	21-Sep-2003

• Bentuk Normal II (2NF) : (decompose)

KARYAWAN

NIP	Nama_Karyawan	Nama_Departemen	Gaji							
25210021	Ali Topan	Geologi Komputasi	2.000.000							
25210022	James Bond	Pengeboran	1.250.000							
25210023	Cici Faramida	Geofisika Eksplorasi	1.500.000							
25210024	Siti Nurhaliza	Sistem Informasi	2.500.000							

PENGAMBILAN KURSUS

<u>NIP</u>	Kursus	Tgl_Seles ai
25210021	Auto CAD Map	8-Oct-2002
25210021	Potoshop	9-Oct-2002
25210022	3D MAX	9-Oct-2002
25210023	3D MAX	9-Oct-2002
25210023	Arc∀iew	10-Dec-2002
25210024	Oracle	21-Sep-2002
25210024	SQL Server	21-Sep-2003

NORMALISASI 3NF

3rd Normal Form (3NF)

- Suatu relasi R disebut **normal ke tiga** (3rd NF) jika sudah memenuhi dalam bentuk **normal ke dua** (2nd NF) dan **tidak** dijumpai adanya <u>ketergantungan TRANSITIF</u> (<u>Transitive Dependency</u>).
- Kebergantungan transitif (transitive dependency) adalah ketergantungan fungsional antara 2 (atau lebih) atribut <u>bukan key</u> (kunci/PK).

Syarat 3NF:

- Harus berada dalam bentuk normal ke dua (2NF).
- Ketergantungan field-field yang bukan PK adalah harus secara mutlak (full-dependent). Artinya harus tidak ada transitive dependency (ketergantungan secara transitif).

NORMALISASI 3NF

Contoh 3NF:

• Bentuk Normal ke Dua (2NF):

Tabel di samping sudah masuk dalam bentuk Normal 2. Akan tetapi kita lihat bahwa field Nama dan Nilai adalah full**dependent** terhadap **NRP** yang bertindak sebagai PK. Berbeda dengan field Keterangan di atas yang dependent kepada NRP akan tetapi tidak mutlak. Ia lebih dekat ketergantungannya dengan field Nilai. Karena field Nilai dependent kepada NRP dan field Keterangan dependent kepada **Nilai**, maka field **Keterangan** juga dependant kepada NRP. Ketergantungan yang demikian ini yang dinamakan transitive-dependent (dependent secara

transitif atau samar/tidak langsung).

Untuk itu dilakukan **normalisasi 3 (3NF)**. -

		▼	▼
NRP	Nama	Nilai	Keterangan
1	Budi	75	Baik
2	Amin	95	Istimewa
2	Irfan	85	Cukup baik
3	Bayu	40	Kurang

fd2

Bentuk Normal ke Tiga (3NF) :

NRP	Nama	Nilai
		111111
1	Budi	75
2	Amin	95
2	Irfan	85
3	Bayu	40

Nilai	Keterangan
90	Istimewa
80	Baik
70	Cukup baik
60	Lumayan
0	Kurang

NORMALISASI 3NF

Contoh Lain 3NF:

• Tabel Bentuk Normal ke dua (2NF), dengan ketergantungan fungsional pada tanda panah:

PENJUALAN

fdl	↓	↓	↓
No_Pelanggan	Nama_Pelanggan	Nama_Sales	Wilayah
2521	Ariel	Ali	Surabaya
2522	Fajar	Ria	Malang
2523	Reni	Ana	Ngawi
2524	Hilda	Ari	Yogyakarta
		f40	A

Pada tabel diatas, kita lihat terdapat ketergantungan transitif, yaitu **wilayah** yang secara fungsional bergantung pada **Nama_Sales**, sedang **Nama_Sales** bergantung pada **No_Pelanggan.** Sehingga terdapat beberapa anomali pembaharuan pada relasi **Penjualan** diatas:

- Anomali Penyisipan (**Insert**): Pada saat memasukkan data <u>nama sales baru</u>, maka data No_Pelanggan dan data lain juga harus dimasukkan.
- Anomali Penghapusan (**Delete**): Pada saat dilakukan penghapusan <u>No_Pelanggan = 2522</u>, maka informasi tentang nama sales juga akan ikut terhapus.
- Anomali Modifikasi (**Update**): Pada saat dilakukan update data <u>nama sales</u>, maka harus dilakukan peng-update-an pada semua baris (row) pada tabel, hal ini sangat tidak efisien.

NORMALISASI 3NF

Bentuk Normal 3NF:

A Dependency Diagram: First Normal Form (1NF)

FIGURE 5.3 A DEPENDENCY DIAGRAM: FIRST NORMAL FORM (1NF) PROJ_NAME EMP_NAME JOB_CLASS CHG_HOUR **HOURS** PROJ_NUM EMP_NUM **Transitive** Partial dependency dependency **Partial dependencies**

Second Normal Form (2NF) Conversion Results

Third Normal Form (3NF) Conversion Results

The Completed Database

FIGURE 5.6 THE COMPLETED DATABASE

Database name: Ch05_ConstructCo

Table name: PROJECT

		PROJ_NUM	PROJ_NAME	EMP_NUM
•	+	15	Evergreen	105
	+	18	Amber Wave	104
	+	22	Rolling Tide	113
	+	25	Starflight	101

Table name: JOB

	JOB_CODE	JOB_DESCRIPTION	JOB_CHG_HOUR
1	500	Programmer	\$35.75
+	501	Systems Analyst	\$96.75
+	502	Database Designer	\$105.00
\blacksquare	503	Electrical Engineer	\$84.50
+	504	Mechanical Engineer	\$67.90
+	505	Civil Engineer	\$55.78
+	506	Clerical Support	\$26.87
+	507	DSS Analyst	\$45.95
+	508	Applications Designer	\$48.10
\pm	509	Bio Technician	\$34.55
+	510	General Support	\$18.36

NORMALISASI

The Completed Database (continued)

Lessons

- 1. Bentuk Normal Ke Tiga (3NF)
- 2. Bentuk Normal BCNF

NORMALISASI BCNF

Boyce-Codd Normal Form (BCNF)

- Secara praktis, tujuan rancangan database adalah cukup sampai pada level **3NF**. Akan tetapi untuk kasus-kasus tertentu kita bisa mendapatkan rancangan yang lebih baik lagi apabila bisa mencapai ke **BCNF**.
- BCNF ditemukan oleh: R.F. Boyce dan E.F. Codd
- Suatu relasi R dikatakan dalam bentuk **BCNF**: jika dan hanya jika setiap **atribut kunci** (**Key**) pada suatu relasi adalah **kunci kandidat** (**candidate key**).
- Kunci kandidat (candidate key) adalah atribut-atribut dari entitas yang mungkin dapat digunakan sebagai kunci (key) atribut.
- BCNF hampir sama dengan 3NF, dengan kata lain setiap BCNF adalah 3NF.

NORMALISASI 3NF

Contoh BCNF:

• Suatu format tabel Normal II (2NF):

• Bentuk Normal III (3NF) atau BCNF:

NORMALISASI 3NF

Contoh BCNF Dilakukan konversi sebagai berikut:

- Pembimbing bagian dari kunci primer yang bersifat komposit.
 Atribut Mata_kuliah secara fungsional bergantung pada
 Pembimbing menjadi atribut bukan kunci.
- Terdapat ketergantungan fungsional parsial antara Mata_Kuliah dengan Pembimbing, yang merupakan salah satu komponen dari kunci primer, sehingga relasi baru ini dalam bentuk normal pertama (1NF).
- Langkah kedua, decompose relasi untuk menghilangkan ketergantungan parsial. Hasilnya seperti dibawahnya yang berupa relasi bentuk normal ketiga (3NF). Fakta bahwa relasi tersebut juga BCNF sebab hanya satu kunci kandidat (yang selanjutnya disebut kunci primer), membuat kita mengambil kesimpulan bahwa untuk kasus ini bentuk normal ketiga (3NF) dan BCNF adalah sama/ekivalen.

NORMALISASI 3NF

NRP	Nama_Mhs	Alamat_Mhs	Tgl_Lahir	Kode_Mk	Nama_MK	SKS	Semester	Nilai	Waktu	Ruang	Nama_Dsn	Alamat_Dsn	
2696100001	Manisha Koirala	Jl. Bombay No. 09,	21-09-1979	IF-110	Struktur Data	3	2	2	Senin, 08.00 - 10.15	Ruang A	Prof. Ali Khan	Jl. Gebang 21,	
2030100001	Walts a rollad	Surabaya, 60009	217051515	11 -110	Struktur Data		4		Kamis, 10.30 - 12.20	Trucking (1101. AITOMI	Surabaya, 60021	
2696100001	Manisha Koirala	Jl. Bombay No. 09,	21-09-1979	IF-111	Basis Data	3	3	A	Selasa,10.30 - 12.20	Ruang B	Prof. Sharukh Khan	Jl. Keputih 12,	
2030100001	Walts a Rollala	Surabaya, 60009	21705-1313			٦	٠,		Jum 'at, 08.00 - 10.15	Trucking D	FIOI. SHARUKTINTALI	Surabaya, 60012	
2696100001	Manisha Koirala	JI. Bombay No. 09,	21-09-1979	IF-112	Jaringan Komputer	3	4	4		Rabu, 08.00 - 10.15	Ruang J	Dr. Ajay Khan	Jl. Mulyosari 42,
2000100001		Surabaya, 60009	21-00-1010	11 -112					10.10	- reading o	D1.11,00) 1.0001	Surabaya, 60042	
2696100002	Amir Khan	Jl. Bolly No. 12,	12-12-1972	IF-111	11 Basis Data	3	3	l a l	Selasa,10.30-12.20	Ruang B	Prof. Sharukh Khan	Jl. Keputih 12,	
2000100002		Surabaya, 60012	12 12 1012					L.,	Jum 'at, 08.00 - 10.15	r.com g D	1101. Oralakii ka	Surabaya, 60012	
2696100002	Amir Khan	Jl. Bolly No. 12,	12-12-1972	IF_117	1F 2117 1	Administrasi 3	3	3	AB	Rabu, 10.30 - 12.20	Ruang B	Prof. Sharukh Khan	Jl. Keputih 12,
2000100002		Surabaya, 60012	12 12 1012		Basis Data	,	ľ	۰ ۲	Kamis, 08.00 - 10.15	r.com g D	1 TOT. STAIRMITKINI	Surabaya, 60012	
2696100004	Salman Khan	Jl. Khan-Khan No. 06, ne.ne.	06-06-1976	IF-111	Basis Data	3	3	AB	Selasa,10.30-12.20	Ruang B	Prof. Sharukh Khan	Jl. Keputih 12,	
2000100001		Surabaya, 60006	00-00-1010		Dasis Data	,	,		Jum 'at, 08.00 - 10.15	reading 0	1 TOI. OFMIGIGITITIES	Surabaya, 60012	
2696100004	Salman Khan	Jl. Khan-Khan No. 06,	06-06-1976	IF-110	Struktur Data	3	2	2		Senin, 08.00 - 10.15	Ruang A	Prof. Ali Khan	Jl. Gebang 21,
2030100004	SaimaiTNTBH	Surabaya, 60006	00-00-1310	11 -1 10	Stratta Data				Kamis, 10.30 - 12.20	Truming A	TTOT. AITHIGH	Surabaya, 60111	

LATIHAN NORMALISASI 3NF

Latihan:

Apakah skema table berikut sudah memenuhi normalisasi? Jika belum termasuk kategori normal keberapa? Dan Normalisasikan beserta Functional Dependency (FD) untuk tiap-tiap relasi normalisasi yang terjadi.

- 1. EMP PROJ
 SSN PNUMBER HOURS ENAME PNAME PLOCATION
- 2. EMP_DEPT
 SSN_ ENAME BDATE ADDRESS DNUMBER DNAME DMGRSSN
- 3. DEPARTMENT

 | DNO | DNAME | DLOCATION1 | DLOCATION2 | DLOCATION3 | DMGRSSN | DMGRNAME | DMGRADDRESS
- 4. WORKS_ON

 SSN PNO ROOM_ID EMP_NAME EMP_ADDR PNAME HOURS ROOM_NAME START_OCCUPIED END_OCCUPIED