LES SUITES NUMERIQUES

I) RAPPELLES

1) Suites majorées, suites minorées, suites bornées.

Activité : soit $(u_n)_{n\in\mathbb{N}}$ la suite récurrente définie

$$\mathsf{par}: \begin{cases} u_0 = 0 \\ u_{n+1} = \sqrt{u_n + 2} \end{cases} \forall n \in \mathbb{N}$$

1- Calculer les 3 premiers termes.

2- Montrer par récurrence que : $\forall n \in \mathbb{N}$: $0 \le u_n$

3- Montrer par récurrence que : $\forall n \in \mathbb{N} : u_n \leq 2$

Solution :1)on a $u_{n+1} = \sqrt{u_n + 2}$

Pour n=0 on a: $u_1 = \sqrt{u_0 + 2}$ donc $u_1 = \sqrt{2}$

Pour n=1 on a: $u_2 = \sqrt{u_1 + 2}$ donc $u_2 = \sqrt{\sqrt{2} + 2}$

Pour n=2 on a: $u_3 = \sqrt{u_2 + 2}$ donc

$$u_3 = \sqrt{\sqrt{\sqrt{2}+2}+2}$$

2) Montrons par récurrence que : $\forall n \in \mathbb{N}$:

 $0 \le u_n$

1étapes : l'initialisation :Pour n=0 nous avons

 $u_0 = 0$ donc $0 \le u_0$.

Donc la proposition est vraie pour n=0

2étapes : d'hérédité ou Hypothèse de récurrence

Supposons que: $0 \le u_n$

3étapes : Montrons alors que : $0 \le u_{n+1}$??

Or on a: $u_{n+1} = \sqrt{u_n + 2} \ge 0$

donc: $\forall n \in \mathbb{N} : 0 \le u_n$

3) Montrons par récurrence que : $\forall n \in \mathbb{N}$:

 $u_n \le 2$

1étapes : l'initialisation :Pour n=0 nous avons

 $u_0 = 0$ donc $u_0 \le 2$.

Donc la proposition est vraie pour n=0

2étapes : d'hérédité ou Hypothèse de récurrence

Supposons que: $u_n \le 2$

3étapes : Montrons alors que : $u_{n+1} \le 2$??

on a : $u_n \le 2$ donc $u_n + 2 \le 4 \Rightarrow \sqrt{u_n + 2} \le \sqrt{4}$ $\Rightarrow u_{n+1} \le 2$

donc: $\forall n \in \mathbb{N} : 0 \le u_n$

Par suite :: $\forall n \in \mathbb{N}$: $0 \le u_n \le 2$

On dit que la suite $(u_n)_{n\in\mathbb{N}}$ est majorée par 0

 $\operatorname{car} u_n \leq 2 \quad \forall n \in \mathbb{N}$

On dit que la suite $(u_n)_{n\in\mathbb{N}}$ est minorée par 0

 $car 0 \le u_n \quad \forall n \in \mathbb{N}$

On dit que la suite $(u_n)_{n\in\mathbb{N}}$ est bornée car :

 $\forall n \in \mathbb{N} : 0 \le u_n \le 2$

Définition: Soit $(u_n)_{n\in I}$ une suite numérique.

On dit que la suite $(u_n)_{n\in I}$ est majorée s'il existe

un réel M tel que : $\forall n \in I \quad u_n \leq M$

ullet On dit que la suite $\left(u_{n}\right)_{n\in I}$ est minorée s'il existe

un réel m tel que : $\forall n \in I \quad m \leq u_n$

• On dit que la suite $((u_n)_{n\in I}$ est bornée si elle est majorée et minorée.

Exemple: soit $(v_n)_{n\geq 1}$ la suite définie par :

$$v_n = \sqrt{n+1} - \sqrt{n} \quad \forall n \in \mathbb{N}^*$$

1)Montrer que $(v_n)_{n\geq 1}$ est minorée par 0

2)Montrer que $(v_n)_{n\geq 1}$ est majorée par $\frac{1}{2}$

3)Que peut-on déduire ?

Solution :1)Montrons que : $\forall n \in \mathbb{N}^*$ $0 \le v_n$??

 $v_n = \sqrt{n+1} - \sqrt{n} = \frac{\left(\sqrt{n+1} - \sqrt{n}\right)\left(\sqrt{n+1} + \sqrt{n}\right)}{\sqrt{n+1} + \sqrt{n}}$ (Le conjugué)

$$v_{n} = \frac{\left(\sqrt{n+1}\right)^{2} - \left(\sqrt{n}\right)^{2}}{\sqrt{n+1} + \sqrt{n}} = \frac{n+1-n}{\sqrt{n+1} + \sqrt{n}} = \frac{1}{\sqrt{n+1} + \sqrt{n}} \ge 0$$

Donc: $0 \le v_n \quad \forall n \in \mathbb{N}^*$

Donc : $(v_n)_{n\geq 1}$ est minorée par 0

2)Montrons que : $v_n \le \frac{1}{2}$?? $\forall n \in \mathbb{N}^*$

$$v_n - \frac{1}{2} = \frac{1}{\sqrt{n+1} + \sqrt{n}} - \frac{1}{2} = \frac{2 - (\sqrt{n+1} + \sqrt{n})}{\sqrt{n+1} + \sqrt{n}}$$

On a: $n \ge 1$ et $n+1 \ge 2$ donc $\sqrt{n} \ge 1$ et $\sqrt{n+1} \ge \sqrt{2}$

Donc: $\sqrt{n+1} + \sqrt{n} \ge 1 + \sqrt{2}$ donc

$$-\left(\sqrt{n+1}+\sqrt{n}\right) \le -1-\sqrt{2}$$

donc $2 - \left(\sqrt{n+1} + \sqrt{n}\right) \le 1 - \sqrt{2}$ et puisque : $1 - \sqrt{2} < 0$

Donc $v_n - \frac{1}{2} \prec 0 \quad \forall n \in \mathbb{N}^*$

Donc $v_n \prec \frac{1}{2} \quad \forall n \in \mathbb{N}^*$

Donc la suite $(v_n)_{n\geq 1}$ est majorée par $\frac{1}{2}$

3)Donc la suite $(v_n)_{n\geq 1}$ est bornée car :

$$\forall n \in \mathbb{N}^* \quad : 0 < v_n < \frac{1}{2}$$

Exercice1: Soit la suite récurrente $(u_n)_{n\in\mathbb{N}}$ définie

$$par: u_n = \frac{2 + \cos n}{3 - \sin \sqrt{n}} \quad \forall n \in \mathbb{N}$$

Montrer que $(u_n)_{n\in\mathbb{N}}$ est bornée

Solutions: Soit $n \in \mathbb{N}$ on a:

 $-1 \le \cos n \le 1 \quad \forall n \in \mathbb{N} \quad \text{et} -1 \le \sin \sqrt{n} \le 1$

donc: $1 \le 2 + \cos n \le 3$ et $-1 \le -\sin \sqrt{n} \le 1$

donc: $1 \le 2 + \cos n \le 3$ et $2 \le 3 - \sin \sqrt{n} \le 4$

donc: $1 \le 2 + \cos n \le 3$ et $\frac{1}{4} \le \frac{1}{3 - \sin \sqrt{n}} \le \frac{1}{2}$

donc: $\frac{1}{4} \le \frac{2 + \cos n}{3 - \sin \sqrt{n}} \le \frac{3}{2}$

cad : $\frac{1}{4} \le u_n \le \frac{3}{2}$ donc : $(u_n)_{n \in \mathbb{N}}$ est bornée

Propriété : Une suite $(u_n)_{n\in I}$ est bornée si et seulement s'il existe un réel positif M tel que : $\forall n\in I \ |u_n|\leq M$

Exemple: Soit la suite récurrente $(u_n)_{n\in\mathbb{N}}$ définie

 $par: u_n = (-1)^n \sin \sqrt{n} \quad \forall n \in \mathbb{N}$

Montrer que $(u_n)_{n\in\mathbb{N}}$ est bornée

Solutions: Soit $n \in \mathbb{N}$ on a :

$$|u_n| = |(-1)^n \sin \sqrt{n}| = |(-1)^n| |\sin \sqrt{n}| = |\sin \sqrt{n}| \le 1$$

donc $|u_n| \le 1 \ \forall n \in \mathbb{N}$

donc: $(u_n)_{n\in\mathbb{N}}$ est bornée

2) Monotonie d'une suite.

Activité2 :soit $(u_n)_{n\in\mathbb{N}}$ la suite récurrente définie

$$par: \begin{cases} u_0 = 1 \\ u_{n+1} = \sqrt{u_n + 2} \end{cases} \forall n \in \mathbb{N}$$

Montrer par récurrence que $u_n \le u_{n+1} \quad \forall n \in \mathbb{N}$

Solutions:1étapes:on a $u_1 = \sqrt{u_0 + 2} = \sqrt{2}$

Pour n=0 nous avons $u_0 = 1$ donc $u_0 \le u_1$.

Donc la proposition est vraie pour n=0

2étapes : Supposons que: $u_n \le u_{n+1}$

3étapes : Montrons alors que : $u_{n+1} \le u_{n+2}$??

on a : $u_n \le u_{n+1}$ donc $u_n + 2 \le u_{n+1} + 2$

donc: $\sqrt{u_n + 2} \le \sqrt{u_{n+1} + 2}$ donc $u_{n+1} \le u_{n+2}$

Par suite :: $\forall n \in \mathbb{N}$: $u_n \le u_{n+1}$

On dit que la suite $(u_n)_{n\in\mathbb{N}}$ est croissante

Définition: Soit $(u_n)_{n=1}$ une suite numérique

On dit que la suite $(u_n)_{n\in I}$ est croissante si :

 $\forall n \in I \ \forall m \in I : m \le n \Longrightarrow u_m \le u_n$

On dit que la suite $(u_n)_{n\in I}$ est décroissante si :

 $\forall n \in I \ \forall m \in I : m \le n \Longrightarrow u_m \ge u_n$

On dit que la suite $(u_n)_{n\in I}$ est monotone si elle est croissante ou décroissante sur \mathbb{I} .

Théorème: Soit $(u_n)_{n\in I}$ une suite numérique.

• La suite $(u_n)_{n\in I}$ est croissante si et seulement si:

 $\forall n \in I \ u_{n+1} \ge u_n$

• La suite $(u_n)_{n\in I}$ est décroissante si et seulement si: $\forall n\in I\ u_{n+1}\leq u_n$

Exemple1: soit $(u_n)_{n\in\mathbb{N}^*}$ la suite définie par :

$$u_n = \sum_{k=1}^n \frac{2^k}{k} \qquad \forall n \in \mathbb{N}^*$$

Etudier la monotonie de la suite $(u_n)_{n\in\mathbb{N}^*}$

Solutions:

$$u_{n+1} - u_n = \sum_{k=1}^{n+1} \frac{2^k}{k} - \sum_{k=1}^n \frac{2^k}{k} = \sum_{k=1}^n \frac{2^k}{k} + \frac{2^{n+1}}{n+1} - \sum_{k=1}^n \frac{2^k}{k}$$

$$u_{n+1} - u_n = \frac{2^{n+1}}{n+1} \succ 0$$
 Donc: $u_n \le u_{n+1}$ $\forall n \in \mathbb{N}^*$

donc la suite $(u_n)_{n\in\mathbb{N}}$ est strictement croissante

Exemple2: soit $(u_n)_{n\in\mathbb{N}^*}$ la suite définie par :

$$u_n = \sum_{k=1}^n \frac{1}{n+k} \quad \forall n \in \mathbb{N}^*$$

Etudier la monotonie de la suite $(u_n)_{n\in\mathbb{N}}$

Solutions:
$$u_{n+1} - u_n = \sum_{k=1}^{n+1} \frac{1}{n+1+k} - \sum_{k=1}^{n} \frac{1}{n+k}$$

Et on a :
$$\sum_{k=1}^{n+1} \frac{1}{n+1+k} = \sum_{k'=2}^{n+2} \frac{1}{n+k'}$$
 on pose $k' = k+1$

Et puisque k' est un variable on peut l'appeler k'

$$\sum_{k=1}^{n+1} \frac{1}{n+1+k} = \sum_{k'=2}^{n+2} \frac{1}{n+k'} = \sum_{k=2}^{n+2} \frac{1}{n+k}$$

Donc

$$u_{n+1} - u_n = \sum_{k=2}^{n+2} \frac{1}{n+k} - \sum_{k=1}^{n} \frac{1}{n+k} = \frac{1}{2n+1} + \frac{1}{2n+2} - \frac{1}{n+1}$$

$$u_{n+1} - u_n = \frac{1}{2(n+1)(2n+1)} \succ 0 \quad \forall n \in \mathbb{N}^*$$

$$u_{n+1} - u_n = \frac{2^{n+1}}{n+1} \succ 0 \quad \forall n \in \mathbb{N}^*$$

donc la suite $(u_n)_{n\in\mathbb{N}}$ est strictement croissante

Exercice 2: soit $(u_n)_{n\in\mathbb{N}}$ la suite récurrente

définie par :
$$\begin{cases} u_{n+1} = \frac{8(u_n - 1)}{u_n + 2} & \forall n \in \mathbb{N} \\ u_0 = 3 & \end{cases}$$

- 1) Montrer que $(u_n)_{n\in\mathbb{N}}$ est minorée par 2
- 2) Montrer que $(u_n)_{n\in\mathbb{N}}$ est majorée par 4
- 3)Etudier la monotonie de la suite $(u_n)_{n\in\mathbb{N}}$

Solutions :1) Montrons que $2 \le u_n \quad \forall n \in \mathbb{N}$????

1étapes : n=0 on a : $2 \le u_0$ car 2 < 3

Donc la proposition est vraie pour n=0

2étapes : Hypothèse de récurrence :

Supposons que: $2 \le u_n$

3étapes : Montrons alors que : $2 \le u_{n+1}$??

Prof/ATMANI NAJIB

$$u_{n+1} - 2 = \frac{8(u_n - 1)}{u_n + 2} - 2 = \frac{8(u_n - 1) - 2(u_n + 2)}{u_n + 2} = \frac{6u_n - 12}{u_n + 2}$$

$$u_{n+1} - 2 = \frac{6(u_n - 2)}{u_n + 2}$$
 et puisque on a : $2 \le u_n$

Donc: $u_n - 2 \ge 0$ et $u_n + 2 > 0$

Donc: $u_{n+1} - 2 \ge 0$

donc $2 \le u_n \quad \forall n \in \mathbb{N}$

2) Montrons que $u_n \le 4 \quad \forall n \in \mathbb{N}$????

1étapes : n=0 on a : $u_0 \le 4 \operatorname{car} 3 < 4$

Donc la proposition est vraie pour n=0

2étapes : Hypothèse de récurrence :

Supposons que: $u_n \le 4$

3étapes : Montrons alors que : $u_{n+1} \le 4$??

$$4 - u_{n+1} = 4 - \frac{8(u_n - 1)}{u_n + 2} = \frac{4(u_n + 2) - 8(u_n - 1)}{u_n + 2} = \frac{-4u_n + 16}{u_n + 2}$$

$$4-u_{n+1} = \frac{4(4-u_n)}{u_n+2} = \frac{4(4-u_n)}{u_n+2}$$
 et puisque on a :

$$u_n \leq 4$$

Donc: $4 - u_n \ge 0$ et $u_n + 2 > 0$

Donc $u_{n+1} \le 4$ par suite $u_n \le 4 \ \forall n \in \mathbb{N}$

3)
$$u_{n+1} - u_n = \frac{8(u_n - 1)}{u_n + 2} - u_n = \frac{8(u_n - 1) - u_n(u_n + 2)}{u_n + 2} = \frac{-u_n^2 + 6u_n - 8}{u_n + 2}$$

On va factoriser $-u_n^2 + 6u_n - 8$: $\Delta = 36 - 32 = 4 > 0$

$$x_1 = \frac{-6+2}{-2} = 2$$
 et $x_2 = \frac{-6-2}{-2} = 4$ donc:

$$-u_n^2 + 6u_n - 8 = -(u_n - 2)(u_n - 4)$$

Donc:
$$u_{n+1} - u_n = \frac{-(u_n - 2)(u_n - 4)}{u_n + 2}$$

Or on a: $u_n \ge 2$ et $u_n \le 4$

Donc: $u_{n+1} - u_n = \frac{-(u_n - 2)(u_n - 4)}{u_n + 2} \ge 0$ donc la suite

 $(u_n)_{n\in\mathbb{N}}$ est strictement croissante

3) Suite arithmétique et géométrique

Définition1:On appelle suite **arithmétique** toute suite $(u_n)_{n\in I}$ définie par son premier terme et par la relation récurrente : $\forall n\in I$ $u_{n+1}=u_n+r$

Où r est un réel fixe. Le réel r s'appelle **la raison** de la suite $(u_n)_{n \in I}$.

Propriétés : d'une suite arithmétique.

Soit $(u_n)_{n\in I}$ une suite arithmétique de raison r et u_n l'un de ses termes.

1)
$$u_n = u_p + (n-p)r \quad \forall n \in I$$

2)
$$s_n = u_p + u_{p+1} + ... + u_n = \frac{(n-p+1)}{2} (u_p + u_n)$$

Définition2:On appelle suite géométrique toute suite $(u_n)_n$ définie par son premier terme et par la relation récurrente : $u_{n+1} = qu_n \ \forall n \in I$ où q est un réel fixe. Le réel q s'appelle **la raison** de la suite $(u_n)_n$.

Le premier terme et la raison d'une suite géométrique s'appellent aussi les éléments de la suite géométrique.

Propriétés : d'une suite géométrique

Si $(u_n)_{n\in I}$ est une suite géométrique de raison q et si p est un entier naturel alors :

1)
$$u_n = q^{n-p} u_n \quad \forall n \in I$$

2)
$$s_n = u_p + u_{p+1} + u_{p+2} + ... + u_{n-2} + u_{n-1} + u_n$$

Si
$$q = 1$$
 alors : $s_n = (n-p+1)u_p$

Si
$$q \neq 1$$
 alors : $s_n = u_p \frac{1 - q^{n-p+1}}{1 - q}$

Exemple1: Un jeune homme se préparait à l'examen du baccalauréat ; son père, pour l'encourager, lui demanda ce qu'il désirait en récompense

Mon examen devant avoir lieu le 20 juin, répondt-il, donne-moi seulement 1 centime le 1^{er} juin, 2 centimes le lendemain, 4 centimes le surlendemain, en doublant chaque jour jusqu'au 20 inclusivement. Et donne mois la somme. J'emploierai cet argent pour faire un voyage pendant les vacances.

Le père pensa qu'avec cette somme son fils n'irait pas loin ; mais au bout de quelques jours, il commença à s'apercevoir de son erreur.

Avec quelle somme le fils va-t-il pouvoir partir en vacances ?

Solution:Les nombres de centimes à payer chaque jour sont les termes d'une suite géométrique de 20 termes dont le premier est : $u_1 = 1$ et et la raison q = 2

 $u_2 = 2$ (La somme à donner le 2 iem jour)

 $u_{20} = \dots$ (La somme à donner le 20^e jour)

Donc:
$$u_n = u_1 \times q^{n-1} = 1 \times 2^{n-1} = 2^{n-1}$$

$$u_{20} = 2^{20-1} = 2^{19} = 524288$$
 Centimes

La somme totale à payer serait :

$$s_{20} = u_1 + u_2 + u_3 + \dots + u_{20} = u_1 \frac{1 - 2^{20 - 1 + 1}}{1 - 2}$$

$$s_{20} = 2^{20} - 1 = 10485.75$$

centimes $s_{20} \simeq 1 million 500 dh$ Joli voyage!

Exemple2 : calculer en fonction de n la somme suivante :

$$s_n = \sum_{k=0}^{k=n-1} \left(\frac{1}{2}\right)^k = 1 + \frac{1}{2} + \left(\frac{1}{2}\right)^2 + \dots + \left(\frac{1}{2}\right)^{n-1}$$

Solutions:1)on pose: $u_n = \left(\frac{1}{2}\right)^n$

On a : $(u_n)_n$ une suite géométrique de raison

$$q = \frac{1}{2} \operatorname{Car} : \frac{u_{n+1}}{u_n} = \frac{1}{2} \operatorname{Donc} :$$

$$s_n = \sum_{k=0}^{k=n-1} \left(\frac{1}{2}\right)^k = 1 \frac{1 - \left(\frac{1}{2}\right)^n}{1 - \frac{1}{2}} = 2\left(1 - \left(\frac{1}{2}\right)^n\right)$$

Exercice3: soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par :

$$\begin{cases} u_{n+2} = \frac{1}{27} (12u_{n+1} - u_n) \\ u_0 = 2; u_1 = \frac{4}{9} \end{cases} \forall n \in \mathbb{N}$$

et on considère la suite $(v_n)_{n\in\mathbb{N}}$ définie par :

$$v_n = u_n - \frac{1}{3^n} \quad \forall n \in \mathbb{N}$$

- 1) Montrer que $u_{n+1} = \frac{1}{9}u_n + \frac{2}{3^{n+2}} \ \forall n \in \mathbb{N}$
- 2) a)Montrer que $(v_n)_{n\in\mathbb{N}}$ est une suite géométrique dont en déterminera la raison et le premier terme

b) écrire v_n et u_n en fonction de n

c) calculer la somme : $s_n = \sum_{k=0}^{k=n} u_k = u_0 + u_1 + ... + u_n$

Solution :1) montrons par récurrence que

$$u_{n+1} = \frac{1}{9}u_n + \frac{2}{3^{n+2}} \quad \forall n \in \mathbb{N}$$

1étapes : n=0 $u_1 = \frac{1}{9}u_0 + \frac{2}{3^{0+2}} = \frac{2}{9} + \frac{2}{9} = \frac{4}{9}$

Donc la proposition est vraie pour n=0

2étapes : Supposons que: $u_{n+1} = \frac{1}{9}u_n + \frac{2}{3^{n+2}}$

3étapes : Montrons alors que :

$$u_{n+2} = \frac{1}{9}u_{n+1} + \frac{2}{3^{n+3}}$$
??

on a:
$$u_{n+1} = \frac{1}{9}u_n + \frac{2}{3^{n+2}}$$
 donc $u_n = 9\left(u_{n+1} - \frac{2}{3^{n+2}}\right)$

et on a : $u_{n+2} = \frac{1}{27} (12u_{n+1} - u_n)$

$$u_{n+2} = \frac{1}{27} \left(12u_{n+1} - 9\left(u_{n+1} - \frac{2}{3^{n+2}}\right) \right)$$

$$u_{n+2} = \frac{1}{27} \left(3u_{n+1} + \frac{2}{3^n} \right)$$
 donc $u_{n+2} = \frac{1}{9} u_{n+1} + \frac{2}{3^{n+2}}$

Par suite :: $\forall n \in \mathbb{N}$: $u_{n+1} = \frac{1}{9}u_n + \frac{2}{3^{n+2}}$

2)a) on a:
$$v_{n+1} = u_{n+1} - \frac{1}{3^{n+1}}$$

Donc:
$$v_{n+1} = \frac{1}{9}u_n + \frac{2}{3^{n+2}} - \frac{1}{3^{n+1}} = \frac{1}{9}u_n - \frac{1}{3^{n+2}}$$

$$v_{n+1} = \frac{1}{9} \left(u_n - \frac{1}{3^n} \right)$$
 donc $v_{n+1} = \frac{1}{9} v_n$

Donc $(v_n)_{n\in\mathbb{N}}$ est une suite géométrique de raison

$$q = \frac{1}{9}$$
 et de premier terme $v_0 = 1$

2) b)écrire v_n et u_n en fonction de n

On a $\left(v_n\right)_{n\in\mathbb{N}}$ est une suite géométrique de raison $q=\frac{1}{\alpha} \ \ \text{et de premier terme} \ \ v_0=1$

Donc:
$$v_n = v_0 \times q^n \Leftrightarrow v_n = \left(\frac{1}{9}\right)^n \forall n \in \mathbb{N}$$

Puisque :
$$u_n = v_n + \frac{1}{3^n}$$
 donc $u_n = \left(\frac{1}{9}\right)^n + \left(\frac{1}{3}\right)^n$

2) c)
$$s_n = \sum_{k=0}^{k=n} u_k = u_0 + u_1 + ... + u_n$$
 ??

$$u_n = v_n + w_n$$
 avec $w_n = \left(\frac{1}{3}\right)^n$

on a $(v_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ sont deux suites

géométriques de raison $q = \frac{1}{9}$ et $q' = \frac{1}{3}$ donc

donc
$$s_n = \sum_{k=0}^{k=n} u_k = \sum_{k=0}^{k=n} v_k + \sum_{k=0}^{k=n} w_k$$

$$s_n = \sum_{k=0}^{k=n} u_k = v_0 \frac{1 - \left(\frac{1}{9}\right)^{n+1}}{1 - \frac{1}{9}} + w_0 \frac{1 - \left(\frac{1}{3}\right)^{n+1}}{1 - \frac{1}{3}} = \frac{9}{8} \left(1 - \left(\frac{1}{9}\right)^{n+1}\right) + \frac{3}{2} \left(1 - \left(\frac{1}{3}\right)^{n+1}\right)$$

$$\sum_{k=0}^{k=n} u_k = \frac{21}{8} - \frac{1}{8} \left(\frac{1}{9}\right)^n - \frac{1}{2} \left(\frac{1}{2}\right)^n$$

Exercice4: soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par :

$$\begin{cases} u_{n+1} = \frac{u_n}{\sqrt{u_n + 2}} & \forall n \in \mathbb{N} \\ u_0 \in]-1; 0[\end{cases}$$

- 1) Montrer que $-1 \prec u_n \prec 0 \quad \forall n \in \mathbb{N}$
- 2) Montrer que $(u_n)_{n\in\mathbb{N}}$ est une suite strictement croissante
- 3) Montrer que $u_{n+1} \ge \frac{u_n}{\sqrt{u_n + 2}} \quad \forall n \in \mathbb{N}$

Et en déduire que : $u_n \ge \frac{u_0}{\left(\sqrt{u_0 + 2}\right)^n} \quad \forall n \in \mathbb{N}$

Solution : 1) montrons par récurrence que $-1 \prec u_n \prec 0 \quad \forall n \in \mathbb{N}$

1étapes : n=0 on a : $-1 \prec u_0 \prec 0$

Donc la proposition est vraie pour n=0

2étapes : Supposons que: $-1 \prec u_n \prec 0$

3étapes : Montrons alors que : -1 ≺ u_{n+1} ≺ 0 ??

On a: $-1 \prec u_n \prec 0$ donc: $1 \prec u_n + 2 \prec 2$

donc: $1 \prec \sqrt{u_n + 2} \prec \sqrt{2}$ donc: $\frac{1}{\sqrt{2}} \prec \frac{1}{\sqrt{u_n + 2}} \prec 1$

et puisque : $0 < -u_n < 1$ alors : $0 < \frac{-u_n}{\sqrt{u_n + 2}} < 1$

donc:
$$-1 < \frac{u_n}{\sqrt{u_n + 2}} < 0$$
 donc $-1 < u_{n+1} < 0$

 $\mathsf{d'où} : -1 \prec u_n \prec 0 \quad \forall n \in \mathbb{N}$

2) Montrons que $(u_n)_{n\in\mathbb{N}}$ est une suite strictement croissante

$$u_{n+1} - u_n = \frac{u_n}{\sqrt{u_n + 2}} - u_n = \frac{u_n}{\sqrt{u_n + 2}} \left(1 - \sqrt{u_n + 2}\right)$$

et puisque :
$$1 - \sqrt{u_n + 2} \prec 0$$
 et $\frac{u_n}{\sqrt{u_n + 2}} \prec 0$

alors : $u_{n+1} - u_n \succ 0$ donc $(u_n)_{n \in \mathbb{N}}$ est une suite strictement croissante

3) Montrons que
$$u_{n+1} \ge \frac{u_n}{\sqrt{u_n + 2}} \quad \forall n \in \mathbb{N}$$

Soit $n \in \mathbb{N}$ on a: $u_n \ge u_0$ car $(u_n)_{n \in \mathbb{N}}$ croissante

Donc:
$$\sqrt{2+u_n} \ge \sqrt{2+u_0}$$
 cad $\frac{1}{\sqrt{2+u_n}} \le \frac{1}{\sqrt{2+u_0}}$

et puisque :
$$u_n \prec 0$$
 alors : $\frac{u_n}{\sqrt{2+u_n}} \ge \frac{u_n}{\sqrt{2+u_0}}$

Donc:
$$u_{n+1} \ge \frac{u_n}{\sqrt{2+u_0}} \quad \forall n \in \mathbb{N}$$

3)Soit
$$n \in \mathbb{N}$$
 on a: $0 \succ u_{n+1} \ge \frac{u_n}{\sqrt{2 + u_0}}$

Donc:
$$0 \le -u_{n+1} \le \frac{-u_n}{\sqrt{2+u_0}}$$

En donnant à n des valeurs on trouve :

$$0 \le -u_1 \le \frac{-u_0}{\sqrt{2+u_0}}$$

$$0 \le -u_2 \le \frac{-u_1}{\sqrt{2+u_1}}$$

.

$$0 \le -u_{n-1} \le \frac{-u_{n-2}}{\sqrt{2+u_0}}$$

$$0 \le -u_n \le \frac{-u_{n-1}}{\sqrt{2 + u_0}}$$

Le produit des inégalités donne :

$$0 \prec -u_n \leq \frac{-u_0}{\left(\sqrt{u_0+2}\right)^n}$$

$$\mathsf{Donc}: u_n \ge \frac{u_0}{\left(\sqrt{u_0 + 2}\right)^n} \quad \forall n \in \mathbb{N}$$

- 1) Montrer que $(v_n)_{n\in\mathbb{N}}$ est une suite géométrique
- 2) écrire u_n en fonction de n

Solution:

1)
$$v_{n+1} = 1 - \frac{2}{u_{n+1}} = 1 - \frac{2}{\frac{u_n}{3 - u_n}} = 1 - \frac{6 - 2u_n}{u_n}$$

$$v_{n+1} = 3\left(1 - \frac{2}{u_n}\right)$$
 donc $v_{n+1} = 3v_n$

Donc $(v_n)_{n\in\mathbb{N}}$ est une suite géométrique de raison q=3 et de premier terme $v_0=-3$

2) écrire u_n en fonction de n

On a $(v_n)_{n\in\mathbb{N}}$ est une suite géométrique de raison q=3 et de premier terme $v_0=-3$

Donc:
$$v_n = u_0 \times q^n \iff v_n = -3 \times 3^n = -3^{n+1} \forall n \in \mathbb{N}$$

Puisque :
$$v_n = 1 - \frac{2}{u_n}$$
 donc $u_n = \frac{2}{1 - v_n}$ donc $u_n = \frac{2}{1 + 3^{n+1}}$

II) LIMITE D'UNE SUITE

1)Activités:

Activité1: soit la suite $(u_n)_{n\in\mathbb{N}}$ définie par

$$u_n = 1 + n^2 \quad \forall n \in \mathbb{N}$$

- (a) à la calculatrice, conjecturer une "limite" pour $(u_n)_{n\in\mathbb{N}}$ quand n tend vers $+\infty$
- (b) que devient la valeur de u_n lorsque n tend vers $+\infty$?

Que dit-on alors ? (En terme de limite)

Remarques: $u_n = 1 + n^2$

\boldsymbol{n}	1	2	10	100	1000	10000
u_n	2	5	101	10001	1000001	100000001

On note alors: $\lim_{n\to\infty} u_n = +\infty$

Tous les termes de $\left(u_n\right)_{n\in\mathbb{N}}$ sont aussi grands que l'on veut à partir d'un certain rang

Activité2: soit la suite (un) définie : $u_n = 1 - \sqrt{n}$ pour $n \ge 0$

- (a) à la calculatrice, conjecturer une "limite" pour $(u_n)_{n\in\mathbb{N}}$ quand n tend vers $+\infty$
- (b) que devient la valeur de un lorsque n tend

vers +∞?

Que dit-on alors ? (En terme de limite)

Remarques : $u_n = 1 - \sqrt{n}$

n	1	2	10	100	1000	10000
u_n	0	\simeq -0,4	\simeq -2,2	-9	\simeq -30,7	-99

On note alors : $\lim_{n\to\infty} u_n = -\infty$

tous les termes de $(u_n)_{n\in\mathbb{N}}$ sont aussi petits que l'on veut à partir d'un certain rang

Activité3: soit la suite $(u_n)_{n\in\mathbb{N}}$ définie par : $u_n = 1 + \frac{1}{n}$ pour n ≥ 1

- (a) à la calculatrice, conjecturer une "valeur limite" I pour $(u_n)_{n\in\mathbb{N}}$ quand n tend vers + ∞
- (b) que devient la distance entre u_n et 1 lorsque n tend vers +∞?

Que dit-on alors ? (En terme de limite)

on dit : que la suite $(u_n)_{n\in\mathbb{N}}$ est convergente vers une limite 1

Remarques: $u_n = 1 + \frac{1}{n}$

n	1	2	10	100	1000	10000
u_n	2	1,5	1,1	1,01	1,001	1,0001
$ u_n - 1 $	1	0,5	0,1	0,01	0,001	0,0001

La distance entre u_n est 1 "se rapproche" de 0 lorsque n tend vers $+\infty$: on note alors: $\lim u_n = 1$

Remarque : L'expression « quand n tend vers + ∞ » est superflu car l'étude de la limite d'une suite c'est toujours quand n tend vers $+\infty$ et on se contente d'écrire : $\lim u_n = +\infty$

Remarque: $\lim_{n \to +\infty} u_n = -\infty \Leftrightarrow \lim_{n \to +\infty} -u_n = +\infty$

Propriété :(limites de référence)

Les suites (n); (n^2) ; (n^p) $p \in \mathbb{N}^*$; (\sqrt{n})

tendent Vers $+\infty$ en écrie : $\lim_{n\to+\infty} n = +\infty$ et

 $\lim_{n \to +\infty} n^2 = +\infty \; ; \; \lim_{n \to +\infty} n^p = +\infty \quad p \in \mathbb{N}^* \; \text{et} \quad \lim_{n \to +\infty} \sqrt{n} = +\infty$

Propriété :(limites de référence)

Les suites $\left(\frac{1}{n}\right)$; $\left(\frac{1}{n^2}\right)$; $\left(\frac{1}{n^3}\right)$; $\left(\frac{1}{n^p}\right)$; $\left(\frac{1}{\sqrt{n}}\right)$

tendent Vers + ∞ en écrit : $\lim_{n\to+\infty}\frac{1}{n}=0$ et

 $\lim_{n\to+\infty}\frac{1}{n^2}=0 \; ; \; \lim_{n\to+\infty}\frac{1}{n^p}=0 \; p\in\mathbb{N}^* \; \text{et} \quad \lim_{n\to+\infty}\frac{1}{\sqrt{n}}=0$

Définition 4 :1) Une suite qui tend vers une limite finie *l* s'appelle une suite convergente.

2)Une suite qui n'est pas convergente est une suite divergente.

Exemples: 1) les suites : $\left(\frac{1}{n}\right)$; $\left(\frac{1}{n^2}\right)$; $\left(\frac{1}{n^3}\right)$;

 $\left(\frac{1}{n^p}\right); \left(\frac{1}{\sqrt{n}}\right)$ sont des suites convergentes

2) les suites : (n); (n^p) $p \in \mathbb{N}^*$; (\sqrt{n}) ; $(\cos n)$; $((-1)^n)$ sont divergentes.

Théorème: Si une suite $(u_n)_{n\in\mathbb{N}}$ admet une limite finie l cette limite est unique

4) Opération sur les limites des suites.

4-1) Limite de la somme :

$\lim u_n$	l	l		+∞	-∞	-8
$\lim v_n$	ľ	+∞	-∞	+∞	-∞	+∞
$\lim(u_n+v_n)$	l + l'	+∞	-∞	+∞	-∞	Formes indéterminées

4-2) Limites des produits

$\lim u_n$	l	$l > 0$ ou $+\infty$		l < 0 o	u −∞	±∞
$\lim v_n$	ľ	+∞	-∞	+∞	-8	0
$\lim(u_n \times v_n)$	l. l'	+∞	-∞	-∞	+∞	Formes indéterminées

4-3) Limites des inverses

$\lim u_n$	<i>l</i> ≠ 0	0+	0-	±∞
$\lim \left(\frac{1}{u_n}\right)_n$	$\frac{1}{l}$	+8	-8	0

4-4) Limites des quotients

$\lim u_n$	l	<i>l</i> > 0 ou +∞		l < 0 ou −∞		0	±∞
$\lim v_n$	l' ≠ 0	0+	0-	0+	0-	0	±∞
$\lim \left(\frac{u_n}{v_n}\right)_n$	<u>l</u> <u>l'</u>	+∞	-∞	-∞	+∞	Formes indéterminées	Formes indéterminées

Propriété: $\lim |u_n| = 0 \Leftrightarrow \lim u_n = 0$

Exemple: Utiliser les Opération sur les limites des suites pour calculer les limites suivantes :

1)
$$\lim_{n \to +\infty} \frac{2}{\sqrt{3n}} - \frac{2}{3n} + \frac{5}{n^2} - 1$$
 2) $\lim_{n \to +\infty} \left(-3 + \frac{1}{n} \right) \left(1 + \frac{2}{\sqrt{n}} \right)$

$$3) \lim_{n \to +\infty} n^2 - n$$

3)
$$\lim_{n \to +\infty} n^2 - n$$
 4) $\lim_{n \to +\infty} \sqrt{n} - 2n$

5)
$$\lim_{n \to \infty} 4n^2 - 2n - 5$$

5)
$$\lim_{n \to +\infty} 4n^2 - 2n - 5$$
 6) $\lim_{n \to +\infty} \frac{4n^2 - 3n - 7}{3n^2 + 5}$

7)
$$\lim_{n \to +\infty} \sqrt{n^2 - 3n + 2} - n$$

Solutions:

1)
$$\lim_{n\to+\infty} \frac{2}{\sqrt{3n}} - \frac{2}{3n} + \frac{5}{n^2} - 1 = 0 - 0 + 0 - 1 = -1$$

Car:
$$\lim_{n\to+\infty} \frac{2}{\sqrt{3n}} = 0$$
 et $\lim_{n\to+\infty} \frac{2}{3n} = 0$ et $\lim_{n\to+\infty} \frac{5}{n^2} = 0$

2)
$$\lim_{n \to +\infty} \left(-3 + \frac{1}{n} \right) \left(1 + \frac{2}{\sqrt{n}} \right) = (-3 + 0)(1 + 0) = (-3)(1) = -3$$

Car:
$$\lim_{n\to+\infty}\frac{1}{n}=0$$
 et $\lim_{n\to+\infty}\frac{2}{\sqrt{n}}=0$

3)
$$\lim_{n \to +\infty} n^2 - n$$
 directement on trouve une

forme indéterminée $(+\infty-\infty)$

$$\lim_{n \to +\infty} n^2 - n = \lim_{n \to +\infty} n(n-1) = +\infty$$

Car:
$$\lim_{n\to+\infty} n = +\infty$$
 et $\lim_{n\to+\infty} n - 1 = +\infty$ et

$$+\infty \times +\infty = +\infty$$

4)
$$\lim_{n \to +\infty} \sqrt{n} - 2n$$
 directement on trouve une forme

indéterminée $(+\infty-\infty)$

$$\lim_{n \to +\infty} \sqrt{n} - 2n = \lim_{n \to +\infty} \sqrt{n} \left(1 - 2\sqrt{n} \right) = -\infty$$

Car:
$$\lim_{n \to +\infty} \sqrt{n} = +\infty$$
 et $\lim_{n \to +\infty} (1 - 2\sqrt{n}) = -\infty$ et

$$+\infty \times -\infty = -\infty$$

5)
$$\lim_{n \to +\infty} 4n^2 - 2n - 5 = \lim_{n \to +\infty} n^2 \left(4 - \frac{2}{n} - \frac{5}{n^2} \right)$$

Et puisque :
$$\lim_{n\to+\infty} -\frac{2}{n} = 0$$
 et $\lim_{n\to+\infty} \frac{-5}{n^2} = 0$ et

$$\lim_{n \to +\infty} n^2 = +\infty$$

Alors:
$$\lim_{n \to +\infty} 4n^2 - 2n - 5 = +\infty$$

6)

$$\lim_{n \to +\infty} \frac{4n^2 - 3n - 7}{3n^2 + 5} = \lim_{n \to +\infty} \frac{n^2 \left(4 - \frac{3}{n} - \frac{7}{n^2}\right)}{n^2 \left(3 + \frac{5}{n^2}\right)} = \lim_{n \to +\infty} \frac{\left(4 - \frac{3}{n} - \frac{7}{n^2}\right)}{\left(3 + \frac{5}{n^2}\right)} = \frac{4}{3}$$

$$\lim_{n \to +\infty} \frac{4n^2 - 3n - 7}{3n^2 + 5} = \lim_{n \to +\infty} \frac{n^2 \left(4 - \frac{3}{n} - \frac{7}{n^2}\right)}{\left(3 + \frac{5}{n^2}\right)} = \lim_{n \to +\infty} \frac{\left(4 - \frac{3}{n} - \frac{7}{n^2}\right)}{\left(3 + \frac{5}{n^2}\right)} = \frac{4}{3}$$

$$\lim_{n \to +\infty} \sqrt{n + 2} - \sqrt{n} = \lim_{n \to +\infty} \frac{\left(\sqrt{n + 2} - \sqrt{n}\right)\left(\sqrt{n + 2} + \sqrt{n}\right)}{\left(\sqrt{n + 2} + \sqrt{n}\right)} = \lim_{n \to +\infty} \frac{2}{\left(\sqrt{n + 2} + \sqrt{n}\right)} = \lim_{n \to +\infty} \frac{2}{\left(\sqrt{n + 2} - \sqrt{n}\right)\left(\sqrt{n + 2} + \sqrt{n}\right)} = \lim_{n \to +\infty} \frac{2}{\left(\sqrt{n + 2} - \sqrt{n}\right)\left(\sqrt{n + 2} + \sqrt{n}\right)} = \lim_{n \to +\infty} \frac{2}{\left(\sqrt{n + 2} - \sqrt{n}\right)\left(\sqrt{n + 2} + \sqrt{n}\right)} = \lim_{n \to +\infty} \frac{2}{\left(\sqrt{n + 2} - \sqrt{n}\right)\left(\sqrt{n + 2} + \sqrt{n}\right)} = \lim_{n \to +\infty} \frac{2}{\left(\sqrt{n + 2} - \sqrt{n}\right)\left(\sqrt{n + 2} + \sqrt{n}\right)} = \lim_{n \to +\infty} \frac{2}{\left(\sqrt{n + 2} - \sqrt{n}\right)\left(\sqrt{n + 2} + \sqrt{n}\right)} = \lim_{n \to +\infty} \frac{2}{\left(\sqrt{n + 2} - \sqrt{n}\right)\left(\sqrt{n + 2} + \sqrt{n}\right)} = \lim_{n \to +\infty} \frac{2}{\left(\sqrt{n + 2} - \sqrt{n}\right)\left(\sqrt{n + 2} + \sqrt{n}\right)} = \lim_{n \to +\infty} \frac{2}{\left(\sqrt{n + 2} - \sqrt{n}\right)\left(\sqrt{n + 2} + \sqrt{n}\right)} = \lim_{n \to +\infty} \frac{2}{\left(\sqrt{n + 2} - \sqrt{n}\right)\left(\sqrt{n + 2} + \sqrt{n}\right)} = \lim_{n \to +\infty} \frac{2}{\left(\sqrt{n + 2} - \sqrt{n}\right)\left(\sqrt{n + 2} + \sqrt{n}\right)} = \lim_{n \to +\infty} \frac{2}{\left(\sqrt{n + 2} - \sqrt{n}\right)\left(\sqrt{n + 2} + \sqrt{n}\right)} = \lim_{n \to +\infty} \frac{2}{\left(\sqrt{n + 2} - \sqrt{n}\right)\left(\sqrt{n + 2} + \sqrt{n}\right)} = \lim_{n \to +\infty} \frac{2}{\left(\sqrt{n + 2} - \sqrt{n}\right)\left(\sqrt{n + 2} + \sqrt{n}\right)} = \lim_{n \to +\infty} \frac{2}{\left(\sqrt{n + 2} - \sqrt{n}\right)\left(\sqrt{n + 2} + \sqrt{n}\right)} = \lim_{n \to +\infty} \frac{2}{\left(\sqrt{n + 2} - \sqrt{n}\right)\left(\sqrt{n + 2} + \sqrt{n}\right)} = \lim_{n \to +\infty} \frac{2}{\left(\sqrt{n + 2} - \sqrt{n}\right)} = \lim_{n \to +\infty} \frac{2}{\left(\sqrt{n + 2} - \sqrt{n}\right)\left(\sqrt{n + 2} + \sqrt{n}\right)} = \lim_{n \to +\infty} \frac{2}{\left(\sqrt{n + 2} - \sqrt{n}\right)} = \lim_{n \to +\infty} \frac{2}{\left(\sqrt{n + 2} - \sqrt{n}\right)} = \lim_{n \to +\infty} \frac{2}{\left(\sqrt{n + 2} - \sqrt{n}\right)} = \lim_{n \to +\infty} \frac{2}{\left(\sqrt{n + 2} - \sqrt{n}\right)} = \lim_{n \to +\infty} \frac{2}{\left(\sqrt{n + 2} - \sqrt{n}\right)} = \lim_{n \to +\infty} \frac{2}{\left(\sqrt{n + 2} - \sqrt{n}\right)} = \lim_{n \to +\infty} \frac{2}{\left(\sqrt{n + 2} - \sqrt{n}\right)} = \lim_{n \to +\infty} \frac{2}{\left(\sqrt{n + 2} - \sqrt{n}\right)} = \lim_{n \to +\infty} \frac{2}{\left(\sqrt{n + 2} - \sqrt{n}\right)} = \lim_{n \to +\infty} \frac{2}{\left(\sqrt{n + 2} - \sqrt{n}\right)} = \lim_{n \to +\infty} \frac{2}{\left(\sqrt{n + 2} - \sqrt{n}\right)} = \lim_{n \to +\infty} \frac{2}{\left(\sqrt{n + 2} - \sqrt{n}\right)} = \lim_{n \to +\infty} \frac{2}{\left(\sqrt{n + 2} - \sqrt{n}\right)} = \lim_{n$$

car:
$$\lim_{n \to +\infty} -\frac{3}{n} = 0$$
 et $\lim_{n \to +\infty} \frac{-7}{n^2} = 0$ et $\lim_{n \to +\infty} \frac{5}{n^2} = 0$

7)

$$\lim_{n \to +\infty} \sqrt{n^2 - 3n + 2} - n = \lim_{n \to +\infty} \frac{\left(\sqrt{n^2 - 3n + 2} + n\right)\left(\sqrt{n^2 - 3n + 2} - n\right)}{\left(\sqrt{n^2 - 3n + 2} + n\right)}$$

$$= \lim_{n \to +\infty} \frac{n^2 - 3n + 2 - n^2}{\sqrt{n^2 - 3n + 2} + n} = \lim_{n \to +\infty} \frac{-3n + 2}{\sqrt{n^2 \left(1 - \frac{3}{n} + \frac{2}{n^2}\right)} + n}$$

$$= \lim_{n \to +\infty} \frac{n\left(-3 + \frac{2}{n}\right)}{n\left(\sqrt{\left(1 - \frac{3}{n} + \frac{2}{n^2}\right)} + 1\right)} \lim_{n \to +\infty} \frac{-3 + \frac{2}{n}}{\sqrt{\left(1 - \frac{3}{n} + \frac{2}{n^2}\right)} + 1} = -\frac{3}{2}$$

Remarques: 1) La limite d'une suite polynôme en est la limite de son plus grand terme

La limite d'une suite rationnelle en est la limite du rapport des termes de plus grand degré

Exemple: calculer les limites suivantes:

1)
$$\lim_{n \to +\infty} 4n^3 - 5n^2 + 3n - 1$$
 2) $\lim_{n \to +\infty} 6n^3 - 2n^5 + 7n - 9$

3)
$$\lim_{n \to +\infty} \frac{9n-3}{3n+5}$$
 4) $\lim_{n \to +\infty} \frac{6n^2-9}{3n+1}$ 5) $\lim_{n \to +\infty} \frac{7n^2+1}{14n^3-5n+9}$

6)
$$\lim_{n\to+\infty} \frac{n^2+1}{n^5+3n-4}$$

Solutions :

1)
$$\lim_{n \to +\infty} 4n^3 - 5n^2 + 3n - 1 = \lim_{n \to +\infty} 4n^3 = +\infty$$

2)
$$\lim_{n \to +\infty} 6n^3 - 2n^5 + 7n - 9 = \lim_{n \to +\infty} -2n^5 = -\infty$$

3)
$$\lim_{n\to+\infty} \frac{9n-3}{3n+5} = \lim_{n\to+\infty} \frac{9n}{3n} = \frac{9}{3} = 3$$

4)
$$\lim_{n \to +\infty} \frac{6n^2 - 9}{3n + 1} = \lim_{n \to +\infty} \frac{6n^2}{3n} = \lim_{n \to +\infty} \frac{3 \times 2 \times n \times n}{3n} = \lim_{n \to +\infty} 2 \times n = +\infty$$

5)
$$\lim_{n \to +\infty} \frac{7n^2 + 1}{14n^3 - 5n + 9} = \lim_{n \to +\infty} \frac{7n^2}{14n^3} = \lim_{n \to +\infty} \frac{7n \times n}{14n \times n \times n} = \lim_{n \to +\infty} \frac{1}{2n} = 0$$

6)
$$\lim_{n \to +\infty} \frac{n^2 + 1}{n^5 + 3n - 4} = \lim_{n \to +\infty} \frac{n^2}{n^5} = \lim_{n \to +\infty} \frac{n \times n}{n \times n \times n \times n \times n} = \lim_{n \to +\infty} \frac{1}{n^3} = 0$$

Exercice 5: calculer les limites suivantes

1)
$$\lim_{n \to \infty} \sqrt{n+2} - \sqrt{n}$$
 2) $\lim_{n \to \infty} \sqrt{n^2 + n + 1} - n$

Solutions:

$$\lim_{n \to +\infty} \sqrt{n+2} - \sqrt{n} = \lim_{n \to +\infty} \frac{\left(\sqrt{n+2} - \sqrt{n}\right)\left(\sqrt{n+2} + \sqrt{n}\right)}{\left(\sqrt{n+2} + \sqrt{n}\right)} = \lim_{n \to +\infty} \frac{2}{\left(\sqrt{n+2} + \sqrt{n}\right)} = 0$$

2)
$$\lim_{n \to +\infty} \sqrt{n^2 + n + 1} - n = \lim_{n \to +\infty} \frac{\left(\sqrt{n^2 + n + 1} - n\right)\left(\sqrt{n^2 + n + 1} + n\right)}{\left(\sqrt{n^2 + n + 1} + n\right)}$$

$$= \lim_{n \to +\infty} \frac{n+1}{\left(\sqrt{n^2 + n + 1} + n\right)} = \lim_{n \to +\infty} \frac{n+1}{\left(\sqrt{n^2 \left(1 + \frac{1}{n} + \frac{1}{n^2}\right)} + n\right)} = \lim_{n \to +\infty} \frac{1 + \frac{1}{n}}{\sqrt{\left(1 + \frac{1}{n} + \frac{1}{n^2}\right)} + 1} = \frac{1}{2}$$

5) Les limites et l'ordre et techniques de calculs des limites et critères de convergences.

Théorème 1: Si la suite $(u_n)_{n\in\mathbb{N}}$ est définie

d'une façon explicite $u_n = f(n)$ alors :

$$\lim_{n \to +\infty} u_n = \lim_{x \to +\infty} f(x)$$

Exemple:

1)
$$\lim_{n \to +\infty} \sqrt[3]{n^5 + 2n^3 - n + 4} = \lim_{x \to +\infty} \sqrt[3]{n^5} = \sqrt[3]{+\infty} = +\infty$$

2)
$$\lim_{n \to +\infty} nar \tan \frac{1}{n}$$
? on pose: $\frac{1}{n} = t$

$$n \to +\infty \Leftrightarrow t \to 0$$

$$\lim_{n \to +\infty} nar \tan \frac{1}{n} = \lim_{t \to 0} \frac{ar \tan t}{t} = 1$$

Théorème 1 :Soit $(u_n)_{n\in\mathbb{N}}$ une suites convergente vers L tel que : $(\exists N\in\mathbb{N})(\forall n>N):u_n\geq 0$ Alors : $L\geq 0$

Théorème 3 : Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites convergentes tels que :

 $(\exists N \in \mathbb{N})(\forall n > N)(v_n \leq u_n) \text{ Alors} : \lim v_n \leq \lim u_n$

Preuve : On pose : $W_n = u_n - v_n$

On a : $w_n \ge 0$ et $(w_n)_{n \in \mathbb{N}}$ convergente

Donc: $\lim w_n \ge 0$ donc: $\lim u_n - \lim v_n \ge 0$

donc: $\lim u_n - \lim v_n \ge 0$ donc: $\lim v_n \le \lim u_n$

Remarque :si $v_n \prec u_n \quad (\forall n > N)$

On n'a pas obligatoirement $\lim v_n \prec \lim u_n$

Exemple : Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites

numériques tels que: $u_n = 3 - \frac{1}{n}$ et $v_n = 3 + \frac{1}{n}$ $\forall n \in \mathbb{N}^*$

On a : $u_n < v_n \ \ \forall n \in \mathbb{N}^* \ \ \text{mais} : \lim_{n \to +\infty} v_n = \lim_{n \to +\infty} u_n = 3$

Théorème 4 : (critères de divergence1)

Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites numériques

tels que : $(\exists N \in \mathbb{N})(\forall n > N)(v_n \leq u_n)$ et

 $\lim v_n = +\infty$ on a alors : $\lim u_n = +\infty$

Exemple : Soit $(v_n)_{n\in\mathbb{N}}$ une suites tel que :

$$v_n = 2(-1)^n + \frac{4}{3}n^2 + 2 \quad \forall n \in \mathbb{N}$$

1)montrer que : $v_n \ge \frac{4}{3}n^2 \quad \forall n \in \mathbb{N}$

2)en déduire : $\lim_{n\to+\infty} v_n$

Solutions :1) on a : $(-1)^n \ge -1 \quad \forall n \in \mathbb{N}$

Donc: $2(-1)^n \ge -2$ donc $2(-1)^n + \frac{4}{3}n^2 + 2 \ge -2 + \frac{4}{3}n^2 + 2$

Donc: $v_n \ge \frac{4}{3}n^2 \quad \forall n \in \mathbb{N}$

2) on a: $v_n \ge \frac{4}{3}n^2 \quad \forall n \in \mathbb{N} \text{ et } \lim \frac{4}{3}n^2 = +\infty$

Donc : $\lim_{n\to +\infty} v_n = +\infty$ d'après : Théorème 4

Exercice6: Soit $(v_n)_{n\in\mathbb{N}}$ une suites tel que :

 $v_n = 3n + 5\sin n \quad \forall n \in \mathbb{N}$

calculer: $\lim_{n\to+\infty} v_n$

Solutions: on a: $\sin n \ge -1 \quad \forall n \in \mathbb{N}$

Donc: $5\sin n \ge -5$ donc $v_n \ge 3n-5$

on a: $v_n \ge 3n-5 \quad \forall n \in \mathbb{N} \text{ et } \lim 3n-5 = +\infty$

Donc : $\lim_{n\to+\infty} v_n = +\infty$ d'après : Théorème 4

Théorème 5 : (critères de divergence2)

Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites numériques

tels que : $(\exists N \in \mathbb{N})(\forall n > N)(v_n \le u_n)$ et $\lim u_n = -\infty$

on a alors : $\lim v_n = -\infty$

Exemple: Soit $(v_n)_{n\in\mathbb{N}}$ une suites tel que :

 $v_n = -4n + 3\cos n \qquad \forall n \in \mathbb{N}$

calculer: $\lim_{n \to +\infty} v_n$

Solutions: on a: $\cos n \le 1 \quad \forall n \in \mathbb{N}$

Donc: $3\cos n \le 3$ donc $v_n \le -4n+3$

on a: $v_n \le -4n+3$ $\forall n \in \mathbb{N}$ et $\lim -4n+3 = -\infty$

Donc : $\lim_{n\to+\infty} v_n = -\infty$ d'après : Théorème 5

Théorème 6 : (critères de convergence)

Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites numériques

et l un réel. tels que: $|u_n - l| \le v_n \quad \forall n \ge p$

et $\lim_{n\to +\infty} v_n = 0$ alors $\lim_{n\to +\infty} u_n = l$

Exemple2 : soit (u_n) la suite définie par :

$$u_n = 3 + \frac{\sin n}{n^3} \quad \forall n \in \mathbb{N}^*$$

calculer: $\lim_{n\to+\infty} u_n$

Solutions: on a: $u_n = 3 + \frac{\sin n}{n^3}$

donc:
$$u_n - 3 = \frac{\sin n}{n^3}$$
 donc: $|u_n - 3| = \left| \frac{\sin n}{n^3} \right|$

donc:
$$|u_n - 3| \le \frac{1}{n^3}$$
 car: $|\sin n| \le 1$

et puisque :
$$\lim_{n \to +\infty} \frac{1}{n^3} = 0$$
 alors : $\lim_{n \to +\infty} u_n = 3$

Théorème 7 : (critères de convergence)

Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ des suites numériques et l un réel. Tels que :

$$w_n \prec u_n \prec v_n$$
 et $\forall n \geq p$ et $\lim_{n \to +\infty} v_n = \lim_{n \to +\infty} w_n = l$

Alors :
$$(u_n)_{n\in\mathbb{N}}$$
 est convergente et $\lim_{n\to+\infty}u_n=l$

Exemple: calculer:
$$\lim_{n\to+\infty} \frac{\sin n}{n}$$

Solutions: on a:
$$-1 \le \sin n \le 1 \quad \forall n \in \mathbb{N}$$

Donc:
$$\frac{-1}{n} \le \frac{\sin n}{n} \le \frac{1}{n} \quad \forall n \in \mathbb{N}^*$$

Or on a :
$$\lim_{n \to +\infty} \frac{-1}{n} = \lim_{n \to +\infty} \frac{1}{n} = 0$$
 donc : $\lim_{n \to +\infty} \frac{\sin n}{n} = 0$

Théorème 8:1) Toute suite croissante et majorée est convergente.

2) Toute suite décroissante et minorée est convergente

Exemple1: (Exercice déjà corrigé)

soit $(u_n)_{n\in\mathbb{N}}$ la suite récurrente définie par :

$$\begin{cases} u_{n+1} = \frac{8(u_n - 1)}{u_n + 2} \ \forall n \in \mathbb{N} \\ u_0 = 3 \end{cases}$$

1)On a montré La suite $((u_n)_{n\in\mathbb{N}}$ est croissante.

2)On a montré que $(u_n)_{n\in\mathbb{N}}$ est majorée par 4.

Donc elle est convergente.

Exemple2: soit $(v_n)_{n\geq 4}$ la suite récurrente

$$\text{d\'efinie par : } \begin{cases} v_{n+1} = \frac{5v_n}{n+1} \\ v_4 = 10 \end{cases}$$

montrer que La suite $((v_n)_{n\geq 4})$ est convergente.

Solutions : 1)
$$v_{n+1} - v_n = \frac{5v_n}{n+1} - v_n = \frac{4-n}{n+1}v_n$$

Et puisque $v_n \succ 0 : \forall n \ge 4$ (vérifier le par récurrence)

Alors : $v_{n+1} - v_n \le 0 \quad \forall n \ge 4 \text{ Donc} : ((v_n)_{n \ge 4} \text{ est décroissante})$

Remarque : Une suite peut être convergente sans qu'elle est monotone : exemple :

$$u_n = \frac{\left(-1\right)^n}{n}$$
: n'est pas monotone mais elle est convergente.

Exercice7: calculer les limites suivantes:

1)
$$\lim_{n \to +\infty} \frac{\cos n}{n+2}$$
 2) $\lim_{n \to +\infty} \frac{3n-2\sin\frac{1}{n}}{4n+\sin\frac{1}{n}}$

Solutions: 1) $\lim_{n \to +\infty} \frac{\cos n}{n+2}$??

on a: $-1 \le \cos n \le 1 \quad \forall n \in \mathbb{N}$

Donc:
$$\frac{-1}{n+2} \le \frac{\cos n}{n+2} \le \frac{1}{n+2} \quad \forall n \in \mathbb{N}^*$$

Or on a :
$$\lim_{n \to 2} -\frac{1}{n+2} = \lim_{n \to 2} \frac{1}{n+2} = 0$$
 donc :

$$\lim_{n\to+\infty}\frac{\cos n}{n+2}=0$$

2)
$$\lim_{n \to +\infty} \frac{3n - 2\sin\frac{1}{n}}{4n + \sin\frac{1}{n}}$$
 posons : $u_n = \frac{3n - 2\sin\frac{1}{n}}{4n + \sin\frac{1}{n}}$

donc:
$$\left| u_n - \frac{3}{4} \right| = \frac{11}{4} \left| \frac{\sin \frac{1}{n}}{4n + \sin \frac{1}{n}} \right|$$
 (a vérifier)

et on a : $-1 \le \sin n \le 1 \quad \forall n \in \mathbb{N} \text{ donc}$:

$$4n-1 \le 4n+\sin\frac{1}{n} \le 4n+1 \quad \forall n \in \mathbb{N}^*$$

Donc:
$$\frac{1}{4n+1} \le \frac{1}{4n+\sin{\frac{1}{n}}} \le \frac{1}{4n-1}$$

et puisque
$$\left|\sin\frac{1}{n}\right| \le 1$$
 et $\left|\frac{1}{4n+\sin\frac{1}{n}}\right| \le \frac{1}{4n-1} \ \forall n \in \mathbb{N}^*$

Donc:
$$\left| \frac{\sin \frac{1}{n}}{4n + \sin \frac{1}{n}} \right| \le \frac{1}{4n - 1}$$
 Donc: $\left| u_n - \frac{3}{4} \right| \le \frac{11}{4(4n - 1)}$

et puisque : $\lim \frac{11}{4(4n-1)} = 0$ alors ;

$$\lim_{n \to +\infty} \frac{3n - 2\sin\frac{1}{n}}{4n + \sin\frac{1}{n}} = \frac{3}{4}$$

Théorème 9:1) Toute suite croissante et non majorée tend vers $+\infty$

2) Toute suite décroissante et non minorée tend vers $-\infty$

Exemple : Soit $(v_n)_{n\in\mathbb{N}}$ une suites tel que :

$$v_{n+1} = v_n + n^4$$
 $\forall n \in \mathbb{N}$ et $v_0 = 1$

montrer que : $\lim_{n\to+\infty} v_n = +\infty$

Solutions: on a: $v_{n+1} - v_n = n^4 \ge 0 \quad \forall n \in \mathbb{N}$

Donc: $(v_n)_{n\in\mathbb{N}}$ est croissante

Montrons que $(v_n)_{n\in\mathbb{N}}$ est non majorée ?

Supposons que $(v_n)_{n\in\mathbb{N}}$ est majorée

Donc: $(v_n)_{n\in\mathbb{N}}$ converge vers un $l\in\mathbb{R}$

Donc: $\lim_{n\to+\infty} v_n = l$ et on a aussi $\lim_{n\to+\infty} v_{n+1} = l$

Donc : $\lim_{n \to +\infty} v_{n+1} - v_n = 0$ or on a : $v_{n+1} - v_n = n^4$

Donc: $\lim_{n\to+\infty} v_{n+1} - v_n = \lim_{n\to+\infty} n^4 = +\infty$ absurde $(+\infty = 0)$

donc $(v_n)_{n\in\mathbb{N}}$ est non majorée et croissante

donc: $\lim_{n\to+\infty} v_n = +\infty$

Exercice8: Soit la suite (u_n) définie par : $u_0 = 1$ et

$$u_{n+1} = f(u_n)$$
 où $f(x) = x^2 + x + 1$

1. Monter que la suite (u_n) est croissante

2. Montrer que la suite (u_n) est non majorée (Par absurde) .

3. En déduire la limite de la suite (u_n)

6) Suite de la forme : $v_n = f(u_n)$

Théorème: Soit f une fonction continue sur un intervalle I; et (u_n) une suite numérique telle que $(\exists N \in \mathbb{N})(\forall n > N)(u_n \in I)$

Si $\lim_{n\to+\infty} u_n = l$ et f continue en l

Alors $\lim_{n \to +\infty} f(u_n) = f(l)$

Exemple : Soit $(v_n)_{n\in\mathbb{N}}$ une suites tel que :

$$v_n = \sqrt{\frac{2n^2 - n + 1}{3n^2 + 4}} \qquad \forall n \in \mathbb{N}$$

Calculer $\lim_{n\to +\infty} v_n$

Solutions: on pose: $u_n = \frac{2n^2 - n + 1}{3n^2 + 4}$

Donc: $v_n = f(u_n)$ avec: $f(x) = \sqrt{x}$

On a: $\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} \frac{2n^2 - n + 1}{3n^2 + 4} = \lim_{n \to +\infty} \frac{2n^2}{3n^2} = \frac{2}{3}$

Et f est continue en $\frac{2}{3}$

Donc: $\lim_{n\to+\infty} v_n = f\left(\frac{2}{3}\right) = \sqrt{\frac{2}{3}}$

Exercice9: calculer les limites suivantes:

 $1) \lim_{n \to +\infty} \tan \left(\frac{\pi n + 1}{3n + 4} \right)$

2) $\lim_{n \to +\infty} \sqrt{\frac{16n^2 - 3n + 1}{2n^2 + 1}}$

3) $\lim_{n \to +\infty} \arctan\left(n \sin\left(\frac{1}{n}\right)\right)$

Solutions: 1) $\lim_{n\to+\infty} \frac{\pi n+1}{3n+4} = \frac{\pi}{3}$ et la fonction f

tel que : $f(x) = \tan x$ est continue en $\frac{\pi}{3}$

 $\lim_{n \to +\infty} \tan\left(\frac{\pi n + 1}{3n + 4}\right) = \tan\left(\frac{\pi}{3}\right) = \sqrt{3}$

2) $\lim_{n \to +\infty} \frac{16n^2 - 3n + 1}{2n^2 + 1} = \lim_{n \to +\infty} \frac{16n^2}{2n^2} = 8$ et la fonction f

tel que : $f(x) = \sqrt{\sqrt{x}}$ est continue en 8

$$\lim_{n \to +\infty} \sqrt{\sqrt{\frac{16n^2 - 3n + 1}{2n^2 + 1}}} = \sqrt{\sqrt{8}} = \sqrt[4]{8}$$

3) $\lim_{n \to +\infty} \arctan\left(n \sin\left(\frac{1}{n}\right)\right)$

 $\lim_{n \to +\infty} n \sin\left(\frac{1}{n}\right) = ? \text{ on pose : } t = \frac{1}{n}$

 $n \to +\infty \Leftrightarrow t \to 0$

 $\lim_{t\to 0} \frac{\sin t}{t} = 1 \quad \text{donc} : \lim_{n\to +\infty} n \sin\left(\frac{1}{n}\right) = 1$

et la fonction f tel que : $f(x) = \arctan(x)$ est continue en 1

donc:
$$\lim_{n \to +\infty} \arctan\left(n \sin\left(\frac{1}{n}\right)\right) = \arctan\left(1\right) = \frac{\pi}{4}$$

7)limite de Suite de la forme : a^n et n^p

Proposition: $a \in \mathbb{R}$

1)a)si
$$a > 1$$
 $\lim_{n \to +\infty} a^n = +\infty$

b)si
$$-1 \prec a \prec 1 \lim_{n \to +\infty} a^n = 0$$

c)si
$$a \le -1$$
 (a^n) n'a pas de limites

2)
$$\lim_{n\to+\infty} n^p = +\infty$$
 Si $p \in \mathbb{N}^*$

Preuve :1) a)
$$a > 1 \Leftrightarrow a = 1 + \alpha$$
 avec $\alpha > 0$

Donc :
$$a^n = (1+\alpha)^n \ge 1+n\alpha$$
 d'après l'inégalité de

Bernoulli

Donc:
$$a^n \ge n\alpha$$
 et puisque $\lim_{n \to +\infty} n\alpha = +\infty$

alors :
$$\lim_{n\to+\infty} a^n = +\infty$$

b)si
$$-1 \prec a \prec 1$$
 alors $|a| \prec 1$ donc : $\frac{1}{|a|} \succ 1$

donc:
$$\lim_{n\to+\infty} \left(\frac{1}{|a|}\right)^n = +\infty$$
 donc: $\lim_{n\to+\infty} |a^n| = 0$

donc:
$$\lim_{n\to+\infty} a^n = 0$$

c)si
$$a \le -1$$
 alors: $\lim_{n \to +\infty} |a^n| = \lim_{n \to +\infty} |a|^n = +\infty$ car $|a| > 1$

mais a^n change de signe donc $\left(a^n\right)$ n'a pas de limites

2)
$$\lim_{n \to +\infty} n^p$$
 si $p \in \mathbb{N}^*$?

On a:
$$n^p \ge n$$
 car $p \in \mathbb{N}^*$ et puisque : $\lim_{n \to +\infty} n = +\infty$

alors:
$$\lim_{n\to+\infty} n^p = +\infty$$

Exemples: calculer les limites suivantes:

$$\lim_{n \to +\infty} 2^n \quad ; \lim_{n \to +\infty} \left(\frac{2}{3}\right)^n \quad ; \lim_{n \to +\infty} \left(-5\right)^n$$

Solutions:
$$\lim_{n\to+\infty} 2^n = +\infty$$
 car $a=2>1$

$$\lim_{n \to +\infty} \left(\frac{2}{3}\right)^n = 0 \quad \text{car } -1 < a = \frac{2}{3} < 1$$

$$(-5)^n$$
 N'a pas de limites car $a=-5<-1$

Exercice10: calculer les limites suivantes

$$\lim_{n \to +\infty} (0,7)^n \; ; \; \lim_{n \to +\infty} (\sqrt{2})^n \; ; \; \lim_{n \to +\infty} (-2)^n \; ; \; \lim_{n \to +\infty} (4)^{-n}$$

$$\lim_{n \to +\infty} \frac{(5)^n}{(4)^n} \; ; \; \lim_{n \to +\infty} (3)^n - \frac{1}{2^n} \; ; \; \lim_{n \to +\infty} \frac{(3)^n + (2)^n}{(2)^n}$$

Solutions: $\lim_{n \to +\infty} (0,7)^n = 0$ car -1 < a = 0,7 < 1

$$\lim_{n \to +\infty} \sqrt{2}^n = +\infty \qquad \text{car } a = \sqrt{2} > 1$$

 $\lim_{n\to\infty} (-2)^n$ N'a pas de limites car a=-2<-1

$$\lim_{n \to +\infty} \left(4 \right)^{-n} = \lim_{n \to +\infty} \frac{1}{\left(4 \right)^n} = \lim_{n \to +\infty} \left(\frac{1}{4} \right)^n = 0 \ \text{car} - 1 < a = \frac{1}{4} < 1$$

$$\lim_{n\to+\infty} \frac{\left(5\right)^n}{\left(4\right)^n} = \lim_{n\to+\infty} \left(\frac{5}{4}\right)^n = +\infty \text{ car } a = \frac{5}{4} > 1$$

$$\lim_{n \to +\infty} (3)^n - \frac{1}{2^n} = +\infty - 0 = +\infty \text{ car } a = 3 > 1 \text{ et } -1 < \frac{1}{2} < 1$$

$$\lim_{n \to +\infty} \frac{\left(3\right)^{n} + \left(2\right)^{n}}{\left(2\right)^{n}} = \lim_{n \to +\infty} \frac{\left(3\right)^{n}}{\left(2\right)^{n}} + \frac{\left(2\right)^{n}}{\left(2\right)^{n}} = \lim_{n \to +\infty} \left(\frac{3}{2}\right)^{n} + 1 = +\infty + 1 = +\infty$$

8) Suite de la forme : $u_{n+1} = f(u_n)$

Activité: Soit la fonction $f(x) = \frac{1}{2}x + 1$

- 1. Déterminer le point d'intersection de C_f avec la droite (Δ) y = x
- 2. Soit la suite (u_n) définie par : $u_0 = 0$ et $u_{n+1} = f(u_n)$
- a) Poser sur l'axe des abscisses les 3 premiers termes de la suite (u_n)
- b) Conjecturer la monotonie de la suite $\left(u_{\scriptscriptstyle n}\right)$ et sa limite potentielle.
- 3. Montrer que la suite (u_n) est croissante majorée par 2.
- 4. Soit la suite définie par : $\forall n \in \mathbb{N} \ v_n = u_n + \alpha$
- a) Déterminer α pour que la suite (v_n) soit géométrique.
- b) Déterminer v_n puis u_n en fonction de n
- c) Déterminer la limite de la suite (u_n)

Théorème: Soit f une fonction définie sur un intervalle I et (u_n) une suite numérique telle que

- a) f est continue sur I
- b) $f(I) \subset I$
- c) $(\forall n \in \mathbb{N})(u_{n+1} = f(u_n))$
- d) $u_0 \in I$ (donc $(\forall n \in \mathbb{N})(u_n \in I)$
- e) (u_n) est convergente

Alors la suite (u_n) tend vers l solution de l'équation f(x) = x

Remarque:

1- Par fois l'équation f(x) = x admet plusieurs solutions ; Dans ce cas prenez celle qui est dans I.

S'il y a plusieurs solutions de l'équation f(x) = x; utiliser la monotonie de (u_n)

2- La fonction f et la suite (u_n) n'ont pas nécessairement la même monotonie :

Exercice11: Soit la suite (u_n) définie par : $u_0 = 1$

et
$$u_{n+1} = f(u_n)$$
 où $f(x) = \sqrt{\frac{1+x}{2}}$

- 1) Etudier les variations de f sur I = [0,1] et Montrer que $f(I) \subset I$
- 2) a) Montrer que :($\forall n \in \mathbb{N}$) $u_n \in I = [0,1]$
- b) Montrer que la suite (u_n) est croissante, puis en déduire qu'elle est convergente.
- c) Calculer la limite de la suite (u_n)

Solution: 1)
$$f(x) = \sqrt{\frac{1+x}{2}}$$

La fonction f est croissante et continue sur I = [0,1] donc :

$$f(I) = f([0,1]) = [f(0), f(1)] = \left\lceil \frac{\sqrt{2}}{2}, 1 \right\rceil \subset [0,1]$$

- 2) a) montrons que :($\forall n \in \mathbb{N}$) $0 \le u_n \le 1$
 - on a : $0 \le u_0 \le 1$ la ppté est vraie pour n=0
 - supposons que : $0 \le u_n \le 1$
 - montrons que : $0 \le u_{n+1} \le 1$?

on a: $0 \le u_n \le 1$ donc $u_n \in I = [0,1]$

donc: $f(u_n) \in f(I) \subset I$ donc: $u_{n+1} \in [0,1]$

 $\mathsf{donc}:\ 0\leq u_{\scriptscriptstyle n+1}\leq 1$

Conclusion : $(\forall n \in \mathbb{N}) \ 0 \le u_n \le 1$

2) b)
$$u_{n+1} - u_n = \sqrt{\frac{1 + u_n}{2}} - u_n$$

$$u_{n+1} - u_n = \left(\frac{1 + u_n}{2} - u_n^2\right) \times \frac{1}{\sqrt{\frac{1 + u_n}{2} + u_n}}$$

On a:
$$\frac{1+u_n}{2} - u_n^2 = \frac{-2u_n^2 + u_n + 1}{2} = \frac{-2(u_n - 1)(u_n + \frac{1}{2})}{2}$$

Et puisque : $0 \le u_n \le 1$ alors : $u_{n+1} - u_n \ge 0$

Donc: la suite (u_n) est croissante

et puisque : (u_n) majorée par 1 alors :

 (u_n) est convergente.

c) (u_n) est convergente et la limite est solutions de l'équation f(x) = x

donc:
$$l = f(l) \Leftrightarrow l = \sqrt{\frac{1+l}{2}} \Leftrightarrow 2l^2 - l - 1 = 0$$

donc: l=1 ou $l=-\frac{1}{2}$ et puisque: $0 \le l \le 1$

donc: $\lim_{n\to +\infty} u_n = 1$

Exercices 12 : Soit la suite (u_n) définie par :

$$u_0 = 0$$
 et $u_{n+1} = f(u_n)$ où $f(x) = \frac{3x+2}{x+2}$

- 1. Etudier les variations de f et déterminer f ([0,2])
- 2. a) Montrer que : $(\forall n \in \mathbb{N}) \ u_n \in I = [0, 2]$
- b) Montrer que la suite (u_n) est croissante, puis en déduire qu'elle est convergente.
- c) Calculer la limite de la suite (u_n)

Propriété: Toute suite convergente est bornée **Remarque**: La réciproque n'est pas vraie: $u_n = (-1)^n$ est bornée mais pas convergente.

Exercices 13: Soit les suites numériques (u_n)

et
$$(v_n)$$
 définies par : $u_n = \sum_{k=0}^n \frac{1}{k!}$

et
$$v_n = u_n + \frac{1}{n \times n!}$$

 $\forall n \in \mathbb{N}$

- 1. Montrer que la suite (u_n) est croissante et que la suite (v_n) est décroissante.
- 2. Montrer que $(\forall n \in \mathbb{N})(v_n > u_n)$
- 3. Montrer que les suites (u_n) et (v_n) sont convergentes et ont la même limite.

Exercice14: Considérons les suites (u_n) et (v_n)

définies par : $u_0 = a$ et $v_0 = b$ avec 0 < a < b < 2a

$$u_n v_n = ab$$
 et $v_{n+1} = \frac{u_n + v_n}{2}$

1. Montrer que $(\forall n \in \mathbb{N})(0 < u_n < v_n)$

2. En déduire que la suite (u_n) est croissante et que la suite (v_n) est décroissante

3. a) Montrer
$$(\forall n \in \mathbb{N})$$
 $v_{n+1} - u_{n+1} \prec \frac{1}{2}(v_n - u_n)$

b) En déduire : $\lim_{n\to+\infty}v_n-u_n$

Exemple: Soit les suites numériques (u_n) et (v_n)

définies par :
$$u_n = \sum_{k=1}^n \frac{1}{k^3}$$
 et $v_n = u_n + \frac{1}{n}$

 $\forall n \in \mathbb{N}^*$

1) Montrer que la suite (u_n) est croissante et que la suite (v_n) est décroissante.

2) calculer : $\lim_{n\to+\infty} v_n - u_n$

Solution:

1)
$$u_{n+1} - u_n = \frac{1}{(n+1)^3} > 0$$
 donc: (u_n) est croissante

$$v_{n+1} - v_n = u_{n+1} - u_n + \frac{1}{n+1} - \frac{1}{n}$$

$$v_{n+1} - v_n = \frac{1}{(n+1)^3} + \frac{1}{n+1} - \frac{1}{n} = -\frac{(n^2 + n + 1)}{n(n+1)^3} < 0$$

donc : (v_n) est décroissante.

2)on a
$$\lim_{n \to +\infty} v_n - u_n = \lim_{n \to +\infty} \frac{1}{n} = 0$$

Exercice15: Soit les suites numériques (u_n) et

$$(v_n)$$
 définies par : $u_n = \sum_{k=1}^n \frac{1}{\sqrt{k}} - 2\sqrt{n+1}$ et

$$v_n = \sum_{k=1}^n \frac{1}{\sqrt{k}} - 2\sqrt{n} \quad \forall n \in \mathbb{N}^*$$

1) Montrer que la suite (u_n) est croissante et que la suite (v_n) est décroissante.

2) calculer : $\lim_{n\to+\infty} v_n - u_n$

Solution:

1)
$$u_{n+1} - u_n = \frac{1}{\sqrt{n+1}} - 2\sqrt{n+2} + 2\sqrt{n+1}$$

$$u_{n+1} - u_n = \frac{\sqrt{n+2} - \sqrt{n+1}}{\sqrt{n+1} \left(\sqrt{n+2} + \sqrt{n+1}\right)} > 0$$

donc: (u_n) est croissante

$$v_{n+1} - v_n = \frac{1}{\sqrt{n+1}} - 2\sqrt{n+1} + 2\sqrt{n}$$

$$v_{n+1} - v_n = \frac{-\left(\sqrt{n+1} - \sqrt{n}\right)}{\sqrt{n+1}\left(\sqrt{n+1} + \sqrt{n}\right)} < 0$$

donc : (v_n) est décroissante.

2)
$$\lim_{n \to +\infty} v_n - u_n = \lim_{n \to +\infty} \frac{2}{\sqrt{n+1} + \sqrt{n}} = 0$$

Exercice16: Soit les suites numériques : (x_n) et

$$(u_n)$$
 et (v_n) définies par : $x_n = \sum_{k=1}^n \frac{(-1)^{k+1}}{k^2}$ et

$$u_n = x_{2n}$$
 et $v_n = x_{2n+1}$ $\forall n \in \mathbb{N}^*$

Montrer que les suites (u_n) et (v_n) sont convergentes et ont la même limite.

Solution: il suffit de montrer que Les suites (u_n) et (v_n) sont adjacentes ???

$$u_{n+1} - u_n = x_{2n+2} - x_{2n} = \frac{1}{(2n+1)^2} - \frac{1}{(2n+2)^2} > 0$$

donc: (u_n) est croissante

$$v_{n+1} - v_n = x_{2n+3} - x_{2n+1} = \frac{1}{(2n+3)^2} - \frac{1}{(2n+2)^2} < 0$$

donc: (v_n) est décroissante.

Et on a

$$\lim_{n \to +\infty} v_n - u_n = \lim_{n \to +\infty} x_{2n+1} - x_{2n} = \lim_{n \to +\infty} \frac{1}{(2n+1)^2} = 0$$

alors Les suites (u_n) et (v_n) sont adjacentes donc convergentes et ont la même limite.

Exercice17: Soit la suite (u_n) définie par : $u_0 = 1$

et
$$u_{n+1} = f(u_n)$$
 où $f(x) = \frac{1}{x+1}$

1)Etudier les variations de f sur \mathbb{R}^+

2) on pose : $\alpha_n = u_{2n+1}$ et $\beta_n = u_{2n}$ $\forall n \in \mathbb{N}$

a) Montrer que la suite (α_n) est croissante et que la suite (β_n) est décroissante

b) Montrer que : $\alpha_n \leq \beta_n \ \forall n \in \mathbb{N}$

3) Montrer que : $(\forall n \in \mathbb{N}) \frac{1}{2} \le u_n \le 1$

4) Montrer que $|u_{n+1} - u_n| \le \frac{1}{n} \quad \forall n \in \mathbb{N}^*$

5) calculer : $\lim \alpha_n - \beta_n$

Solution :1) $f'(x) = -\frac{1}{(x+1)^2} < 0 \quad \forall x \in \mathbb{R}^+$

Donc f est décroissante Sur \mathbb{R}^+

2)on a : $\alpha_n = u_{2n+1}$ et $\beta_n = u_{2n}$ et $u_{n+1} = f(u_n)$ $\forall n \in \mathbb{N}$

Donc: $\alpha_{n+1} = (f \circ f)(\alpha_n)$ et $\beta_{n+1} = (f \circ f)(\beta_n)$

Et puisque f est décroissante Sur \mathbb{R}^+ et

 $f(\mathbb{R}^+)\subset\mathbb{R}^+$ alors : $f\circ f$ est croissante Sur \mathbb{R}^+

a)montrons que : $\alpha_n \le \alpha_n + 1$ et $\beta_{n+1} \le \beta_n \ \forall n \in \mathbb{N}$

• pour n=0 on a : $\alpha_0 = \frac{1}{2} \le \alpha_1 = \frac{3}{5}$ et $\beta_1 = \frac{2}{3} \le \beta_0 = 1$

• on suppose que : $\alpha_n \le \alpha_{n+1}$ et $\beta_{n+1} \le \beta_n$

• montrons que : $\alpha_{n+1} \le \alpha_{n+2}$ et $\beta_{n+2} \le \beta_{n+1}$?

on a : $\alpha_n \le \alpha_{n+1}$ et $\beta_{n+1} \le \beta_n$ et puisque $f \circ f$ est croissante Sur \mathbb{R}^+ alors :

$$(f \circ f)(\alpha_n) \le (f \circ f)(\alpha_{n+1})$$
 et $(f \circ f)(\beta_{n+1}) \le (f \circ f)(\beta_n)$

Donc: $\alpha_{n+1} \le \alpha_{n+2}$ et $\beta_{n+2} \le \beta_{n+1}$

Donc: $\alpha_n \leq \alpha_{n+1}$ et $\beta_{n+1} \leq \beta_n \ \forall n \in \mathbb{N}$

donc : $(\alpha_{\scriptscriptstyle n})$ est croissante et la suite $(\beta_{\scriptscriptstyle n})$ est

décroissante

b) Montrons que : $\alpha_n \leq \beta_n \ \forall n \in \mathbb{N}$

• pour n=0 on a : $\alpha_0 = \frac{1}{2}$ et $\beta_1 = 1$ donc : $\alpha_0 \le \beta_0$

• on suppose que : $\alpha_n \leq \beta_n$

• montrons que : $\alpha_{n+1} \leq \beta_{n+1}$?

on a : $\alpha_{\scriptscriptstyle n} \leq \beta_{\scriptscriptstyle n}$ et puisque $f \circ f$ est croissante Sur

 \mathbb{R}^+ alors : $(f \circ f)(\alpha_n) \leq (f \circ f)(\beta_n)$

donc: $\alpha_{n+1} \le \beta_{n+1}$ donc: $\alpha_n \le \beta_n \ \forall n \in \mathbb{N}$

3) Montrons que : $(\forall n \in \mathbb{N})$ $\frac{1}{2} \le u_n \le 1$

Puisque : $\alpha_0 \le \alpha_n \le \beta_n \le \beta_0 \quad (\forall n \in \mathbb{N})$

Donc: $\frac{1}{2} \le u_{2n+1} \le u_{2n} \le 1$

Donc: $\frac{1}{2} \le u_n \le 1 \quad (\forall n \in \mathbb{N})$

3) Montrons que : $|u_{n+1} - u_n| \le \frac{1}{n} \quad \forall n \in \mathbb{N}^*$

• pour n=1 on a : $|u_2 - u_1| = \frac{1}{6}$ donc : $|u_2 - u_1| \le \frac{1}{1}$

• on suppose que : $|u_{n+1} - u_n| \le \frac{1}{n}$

• montrons que : $|u_{n+2} - u_{n+1}| \le \frac{1}{n+1}$?

on a: $|u_{n+2} - u_{n+1}| = \left| \frac{1}{u_{n+1} + 1} - \frac{1}{u_n + 1} \right|$

 $= \frac{1}{(u_{n+1}+1)(u_n+1)} |u_{n+1}-u_n|$

Et on a : $\frac{1}{2} \le u_n \le 1$ et $\frac{1}{2} \le u_{n+1} \le 1$

Donc: $\frac{3}{2} \le 1 + u_n \le 2$ et $\frac{3}{2} \le 1 + u_{n+1} \le 2$

Donc: $\frac{1}{2} \le \frac{1}{u_{n+1} + 1} \le \frac{2}{3}$ et $\frac{1}{2} \le \frac{1}{u_n + 1} \le \frac{2}{3}$

Donc: $\frac{1}{(u_{n+1}+1)(u_n+1)} \le \frac{4}{9}$ et $|u_{n+1}-u_n| \le \frac{1}{n}$

Donc: $\frac{1}{(u_{n+1}+1)(u_n+1)}|u_{n+1}-u_n| \le \frac{4}{9n}$

Et on a : $\frac{1}{n+1} - \frac{4}{9n} = \frac{5n-4}{9n(n+1)} > 0$ donc :

 $\frac{4}{9n} \prec \frac{1}{n+1}$

Donc: $|u_{n+2} - u_{n+1}| \le \frac{1}{n+1}$

donc: $|u_{n+1} - u_n| \le \frac{1}{n} \ \forall n \in \mathbb{N}^*$

5)montrons que la suite (u_n) est convergente

Et déterminons la limite de la suite (u_n) ??

On a: $|u_{n+1} - u_n| \le \frac{1}{n} \ \forall n \in \mathbb{N}^*$

donc: $|u_{2n+1} - u_{2n}| \le \frac{1}{2n} \forall n \in \mathbb{N}^*$

donc: $\left|\alpha_n - \beta_n\right| \le \frac{1}{2n} \ \forall n \in \mathbb{N}^*$

et puisque : $\lim \frac{1}{2n} = 0$ alors : $\lim \alpha_n - \beta_n = 0$

Exercice18 :Soit la suite $(u_n)_{n\in\mathbb{N}^*}$ définie par :

 $u_1 = 1 \text{ et } u_{n+1} = \frac{12u_n}{9 + u_n^4} \quad \forall n \in \mathbb{N}^*$

1) Montrer que : $\forall n \in \mathbb{N}^*$ $1 \le u_n \le \sqrt{\sqrt{3}}$

2) Etudier la monotonie de la suite $(u_n)_{n\in\mathbb{N}^*}$ Et en déduire sa convergence et sa limite **Solution :**

On a:
$$u_1 = 1$$
 et $u_{n+1} = \frac{12u_n}{9 + u_n^4} \quad \forall n \in \mathbb{N}^*$

1) Montrons que : $\forall n \in \mathbb{N}^*$ $1 \le u_n \le \sqrt{\sqrt{3}}$?

Soit la fonction f tel que : $f(x) = \frac{12x}{9+x^4}$

la fonction f est continue et dérivable sur $\mathbb R$

$$f'(x) = 12 \frac{9 + x^4 - 4x^4}{(9 + x^4)^2} = 36 \frac{3 - x^4}{(9 + x^4)^2} = 36 \frac{(\sqrt{3} + x^2)(\sqrt{3} - x^2)}{(9 + x^4)^2}$$

Le signe de f'(x) est celui de : $\sqrt{3} - x^2$

$$\sqrt{3} - x^2 = \left(\sqrt{\sqrt{3}} - x\right)\left(\sqrt{\sqrt{3}} + x\right)$$

Donc : f est croissante sur $\left[-\sqrt{\sqrt{3}}; \sqrt{\sqrt{3}}\right]$

Et f est décroissante sur $\left] -\infty; -\sqrt{\sqrt{3}} \right]$ et $\left[\sqrt{\sqrt{3}}; +\infty \right[$

Montrons par récurrence que : $\forall n \in \mathbb{N}^*$

$$1 \le u_n \le \sqrt{\sqrt{3}}$$

n=1 $u_1 = 1$ donc: $1 \le u_1 \le \sqrt{\sqrt{3}}$

supposons que : $1 \le u_n \le \sqrt{\sqrt{3}}$

montrons que : $1 \le u_{n+1} \le \sqrt{3}$

on a: $1 \le u_n \le \sqrt{\sqrt{3}}$

et puisque : f est croissante sur $I = \begin{bmatrix} 1; \sqrt{\sqrt{3}} \end{bmatrix}$

on a:
$$f(1) \le f(u_n) \le f(\sqrt{\sqrt{3}})$$
 donc $\frac{6}{5} \le u_n \le \sqrt{\sqrt{3}}$

donc: $1 \le u_{n+1} \le \sqrt{\sqrt{3}} \quad \forall n \in \mathbb{N}^*$

2) Etudions la monotonie de la suite $(u_n)_{n\in\mathbb{N}^*}$?

$$u_{n+1} - u_n = \frac{12u_n}{9 + u_n^4} - u_n = u_n \left(\frac{12}{9 + u_n^4} - 1\right) = u_n \left(\frac{3 - u_n^4}{9 + u_n^4}\right)$$

Puisque : $1 \le u_n \le \sqrt{\sqrt{3}}$ donc :

 $0 < u_n$ et $3 - u_n^4 \ge 0$ et $9 + u_n^4 > 0$

Donc: $u_{n+1} - u_n \ge 0$

Donc $(u_n)_{n\in\mathbb{N}^*}$ est croissante

Déduction de sa convergence et sa limite ? la suite (u_n) est croissante et puisque (u_n)

majorée par $\sqrt{\sqrt{3}}$ alors : (u_n) est convergente.

Soit: $\lim u_n = l$ on a donc: $1 \le l \le \sqrt{\sqrt{3}}$

Soit la fonction f tel que : $f(x) = \frac{12x}{9+x^4}$

On donc:

a) f est continue sur $I = \begin{bmatrix} 1; \sqrt{\sqrt{3}} \end{bmatrix}$

b)
$$f(I) = f\left(\left[1; \sqrt{\sqrt{3}}\right]\right) = \left[f(1); f\left(\sqrt{\sqrt{3}}\right)\right]$$

$$f(I) = \left[\frac{6}{5}; \sqrt{\sqrt{3}}\right] \subset I$$

c) $(\forall n \in \mathbb{N})(u_{n+1} = f(u_n))$

d) $u_0 \in I$ e) (u_n) est convergente

Alors la limite l de la suite (u_n) vérifie l'équation :

l = f(l) et $l \in I$

$$l = f(l) \Leftrightarrow l = \frac{12l}{9+l^4} \Leftrightarrow 9+l^4 = 12 \Leftrightarrow l^4 = 3$$

donc: $l = \sqrt{\sqrt{3}}$ ou $l = -\sqrt{\sqrt{3}}$ et puisque: $l \in I$

donc: $\lim_{n \to +\infty} u_n = l = \sqrt{\sqrt{3}}$

C'est en forgeant que l'on devient forgeron » Dit un proverbe.

C'est en s'entraînant régulièrement aux calculs et exercices

Que l'on devient un mathématicien