FORMULARIO

Marco Aurelio Valles Leal - DES - UEM 28 de Marco de 2019

Contents

AMOSTRA ALEATORIA SIMPLES	2
MEDIA	2
VARIANCIA	2
TOTAL MEDIO	2
NORMAL REDUZIDA PADRAO Z	2
t STUDENT PADRAO	3
CALCULO DAS PROBABILIDADES ATRAVES DO Z E T CALCULADO	4
PARA Z CALCULADO (APROXIMACAO PARA Z PADRAO COM DISTRIBUICAO NOR-	
$MAL_{\sim}(0,1))$	4
PARA T CALCULADO COM DISTRIBUICAO t Student com n-1 graus de liberdade	4
DISTRIBUICAO AMOSTRAL DA MEDIA	5
DISTRIBUICAO AMOSTRAL DA DIFERENCA	5
INTERVALO DE CONFIANCA PARA A MEDIA	6
COM N $>= 30$ OU σ CONHECIDO	6
COM σ DESCONHECIDO E N<30	7
TAMANHO DA AMOSTRA PARA POPULACAO INFINITA	9
TAMANHO DA AMOSTRA PARA POPULACAO FINITA	9
TAMANHO DA AMOSTRA PARA POPULACAO FINITA para alpha=0.05	9
DIMENSIONAMENTO DA AMOSTRA A PARTIR DO COEFICIENTE DE VARIACAO (CV) .	10
AMOSTRA ALEATORIA SIMPLES PARA PROPORCOES	10
PARA POPULACAO FINITA	10
PARA POPULAÇÃO INFINITA	10
TAMANHO DE AMOSTRA PARA PROPORCAO (POPULACAO INFINITA)	11
TAMANHO DA AMOSTRA PARA PROPORCAO (POPULACAO FINITA)	11
TOTAL PARA A PROPORCAO	12
INTERVALO DE CONFIANCA PARA PROPORCAO	12
AMOSTRA ALEATORIA ESTRATIFICADA	13
MEDIA	13
ALOCACAO UNIFORME	13
PARTILHA OTIMA COM BASE NOS CUSTOS	14
PARTILHA OTIMA DE NEYMAN	16
PARTILHA PROPORCIONAL	17
ESTIMADORES	18
MEDIA ESTIMADA	18
VARIANCIA DA MEDIA ESTIMADA	19
TOTAL ESTIMADO	19
VARIANCIA PARA O TOTAL ESTIMADO	19
INTERVALO DE CONFIANCA	19
AULA 25-04	19

AMOSTRA ALEATORIA SIMPLES

MEDIA

POPULACIONAL: $\mu = \frac{1}{N} \sum X_i$

AMOSTRAL: $\bar{X} = \frac{1}{n} \sum X_i$

VARIANCIA

POPULACIONAL: $\sigma^2 = \frac{1}{N} \sum (X_i - \mu)^2$

AMOSTRAL: $S^2 = \frac{1}{n} \sum (X_i - \bar{X})^2$

TOTAL MEDIO

POPULACIONAL: $T = N\mu = \sum X_i$

AMOSTRAL(ESTIMADO): $\hat{T} = N\bar{X} = \frac{N}{n} \sum X_i$

NORMAL REDUZIDA PADRAO Z

PARA CALCULOS DE PROBABILIDADE UTILIZANDO A NORMAL, QUANDO TEMOS AS INFORMACOES DA POPULAÇÃO;

$$Z = \frac{X - \mu}{\sigma}$$

rm(list=ls())

z=0

x=0

mu=0

sd=0

n=0

z=(x-mu)/sd

QUANDO TEMOS UMA AMOSTRA DA POPULAÇÃO E QUER-EMOS ESTIMAR APARTIR DA AMOSTRA

$$Z = \frac{X - \mu}{\frac{\sigma^2}{n}} \text{ ou } Z = \frac{X - \mu}{\frac{\sigma}{\sqrt{n}}}$$

$$\mathbf{rm(list=ls())}$$

$$z=0$$

$$x=0$$

$$\mathbf{mu=0}$$

$$\mathbf{sd=0}$$

$$\mathbf{n=0}$$

$$z=(x-\mathbf{mu})/(\mathbf{sd/sqrt(n)})$$

t STUDENT PADRAO

UTILIZADA QUANDO N PEQUENO (<30), E PRINCIPALEMTNE QUANDO A VARIANCIA POPULACIONAL E DESCONHECIDA.

$$t = \frac{X - \bar{X}}{S}$$
 $rm(list=ls())$
 $z=0$
 $x=0$
 $xbarra=0$
 $s=0$
 $n=0$
 $t=(x-xbarra)/(s/sqrt(n))$

CALCULO DAS PROBABILIDADES ATRAVES DO Z E T CALCULADO

Primeiro precisamos obter o Z ou T calculado.

$$z = \frac{X - \mu}{\sigma}$$
$$t = \frac{X - \bar{X}}{S}$$

onde S caso os desvio populacional for conhecido e amostra pequena fazemos a aproximação: $S = \frac{\sigma}{\sqrt{n}}$

PARA Z CALCULADO (APROXIMACAO PARA Z PADRAO COM DISTRIBUICAO NORMAL \sim (0,1))

Calcula a probabilidade/area ate o ponto Z Calculado anteiormente, ou seja temos um valor de Z e queremos saber qual o percentil que ele representa dentro da distribuicao.

$$z=1.96$$
round(pnorm(q = z,mean = 0,sd = 1),3)

Caso temos um percentil que queiramos saber qual o valor do Z equivalente fazemos: Ex calculando o valor de Z para 95% de significancia, lembrando que temos que considerar de forma bilateral pois sao $-\alpha_{\frac{Z}{2}}$ e $\alpha_{\frac{Z}{2}}$ para cada lado da normal.

$$alpha=(1-0.90)/2$$

 $round(abs(qnorm(p = alpha,mean = 0,sd = 1)),3)$

PARA T CALCULADO COM DISTRIBUICAO t Student com n-1 graus de liberdade

Calcula a probabilidade/area ate o ponto t Calculado anteiormente

```
rm(list=ls())
x=0
xbarra=0
s=0
n=0
t=(x-xbarra)/(s/sqrt(n))
pt(q = 1.64,330-1) ##p.valor
```

[1] 0.9490196

Caso temos um percentil que queiramos saber qual o valor do t equivalente fazemos:

$$qt(p = 0.95,330-1)$$

[1] 1.649498

DISTRIBUICAO AMOSTRAL DA MEDIA

$$E(\bar{X}) = \mu$$

$$VAR(\bar{X}) = \frac{\sigma^2}{n}$$
 ou $S = \frac{\sigma}{\sqrt{n}}$

DISTRIBUICAO AMOSTRAL DA DIFERENCA

$$E(\bar{X}_1 - \bar{X}_2) = \mu_1 - \mu_2$$

$$VAR(\bar{X}_1 - \bar{X}_2) = \frac{\sigma_1^2}{n} - \frac{\sigma_2^2}{n}$$

INTERVALO DE CONFIANCA PARA A MEDIA

COM N >= 30 OU σ CONHECIDO

Para a Media:

IC:
$$\bar{X} + Z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$$

```
rm(list=ls())
xbarra=0
sd=0
n=0
z=1.96
ic=data.frame(LI=xbarra-(z*(sd/sqrt(n))),LS=xbarra+(z*(sd/sqrt(n)))
##
      LI
          LS
## 1 NaN NaN
```

Usando Variancia Amostral

```
rm(list=ls())
xbarra=0
s=0
n=0
z=1.96
    ic=data.frame(LI=xbarra-(z*(s/sqrt(n))),LS=xbarra+(z*(s/s
      LI
          LS
##
```

1 NaN NaN

Para T(total):

```
IC: N * [\bar{X} + Z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}]
rm(list=ls())
xbarra=0
sd=0
n=0
z=1.96
N=0
ic=data.frame(LI=N*(xbarra-(z*(sd/sqrt(n)))),LS=N*(xbarra+(z*
        LI
##
              LS
## 1 NaN NaN
Usando Variancia Amostral
rm(list=ls())
xbarra=0
s=0
n=0
z=1.96
N=0
 ic=data.frame(LI=N*(xbarra-(z*(s/sqrt(n)))),LS=N*(xbarra+(z*
COM \sigma DESCONHECIDO E N<30
Usamos a distribuicao t de Student:
Para a Media:
IC: \bar{X}_{-}^{+}t_{n-1}*\sqrt{\left(\frac{N-n}{N}\right)}*\frac{S}{\sqrt{n}}
rm(list=ls())
```

x=0

```
xbarra=0
s=0
n=0
z=1.96
N=0
t=(x-xbarra)/(s/sqrt(n)) ##ou
t=qt(p = 0.975, n-1);t
## Warning in qt(p = 0.975, n - 1): NaNs produzidos
## [1] NaN
ic=data.frame(LI=xbarra-(t*(sqrt((N-n)/N))*(s/sqrt(n))),LS=xb
       LI
           LS
##
## 1 NaN NaN
Para a T(total):
IC: N * [\bar{X}_{-}^{\pm} t_{n-2} \sqrt{(\frac{N-n}{N})} \frac{S}{\sqrt{n}}]
rm(list=ls())
x=0
xbarra=0
s=0
n=0
z=1.96
N=0
t=(x-xbarra)/(s/sqrt(n))##ou
t=qt(p = 0.975, n-1);t
## Warning in qt(p = 0.975, n - 1): NaNs produzidos
```

[1] NaN

ic=data.frame(LI=N*(xbarra-(t*(
$$sqrt((N-n)/N)$$
)*($s/sqrt(n)$))),
LS=N*(xbarra+(t*($sqrt((N-n)/N)$)*($s/sqrt(n)$))));

LI LS

1 NaN NaN

TAMANHO DA AMOSTRA PARA POPULACAO INFINITA

$$n_0 = (\frac{z \cdot s}{d})^2$$

onde d e o "erro" calculado por:

$$d = (Z_{\frac{\alpha}{2}}.\frac{S}{\sqrt{(n_0)}})$$
$$d=z^*(s/\operatorname{sqrt}(n_0))$$

TAMANHO DA AMOSTRA PARA POPULAÇÃO FINITA

Aplica-se a correcao abaixo, assim que obtido o valor de n_0

$$n = \frac{n_0}{1 + \frac{n_0}{N}}$$

n=n0/(1+(n0/N))

TAMANHO DA AMOSTRA PARA POPULACAO FINITA para alpha=0.05

$$n_0 = \frac{4.S^2}{d^2}$$

$$n0=(4*(s**2))/d**2$$

DIMENSIONAMENTO DA AMOSTRA A PARTIR DO COEFICIENTE DE VARIACAO (CV)

$$n_0 = (\frac{CV_x}{CV_{\bar{x}}})^2$$

onde:

$$CV = (\frac{S}{\bar{X}}).100$$

AMOSTRA ALEATORIA SIMPLES PARA PROPORCOES

PARA POPULACAO FINITA

$$E(p) = P$$

$$\sigma_p = \sqrt{\frac{P.(1-P)}{n}}.\sqrt{\frac{N-n}{N-1}}$$

```
rm(list=ls())
p=0.5
q=1-p
N=0
n=0
sigmap=sqrt((p*q)*n)*sqrt((N-n)/(N-1))
```

PARA POPULACAO INFINITA

$$E(p) = P$$

$$\sigma_p = \sqrt{\frac{P.(1-P)}{n}}$$

```
rm(list=ls())
p=0.5
q=1-p
N=0
n=0
sigmap=sqrt((p*q)*n)
```

TAMANHO DE AMOSTRA PARA PROPORCAO (POPULACAO INFINITA)

$$n_0 = \frac{Z^2 \cdot P \cdot Q}{d_p^2}$$

```
rm(list=ls())
p=0.5
q=1-p
N=0
n=0
z=0
d=0
n0=(p*q)*(z/d)**2
```

TAMANHO DA AMOSTRA PARA PROPORCAO (POPULACAO FINITA)

Aplica-se a correcao abaixo, assim que obtido o valor de n_0

$$n = \frac{n_0}{1 + \frac{n_0}{N}}$$

```
N=0
p=0.5
q=1-p
z=1.96
n0=(p*q)*(z/d)**2
```

TOTAL PARA A PROPORCAO

PARAMETRO: T=N.P ESTIMADOR: $\hat{T} = N.p$

INTERVALO DE CONFIANCA PARA PROPORCAO

$$IC: \hat{p}.\frac{+}{-}Z.\sqrt{\frac{P(1-P)}{n}}$$

```
p=0.5
q=1-p
z=1.96
n=0
N=0

ic=data.frame(LI=p-(z*sqrt((p*q)/n)),LS=p+(z*sqrt((p*q)/n)));
## LI LS
## 1 -Inf Inf
```

```
ic=data.frame(LI=N*(p-(z*sqrt((p*q)/n))),LS=N*(p+(z*sqrt((p*q)/n))),LS=N*(p+(z*sqrt((p*q)/n))),LS=N*(p+(z*sqrt((p*q)/n))),LS=N*(p+(z*sqrt((p*q)/n))),LS=N*(p+(z*sqrt((p*q)/n))),LS=N*(p+(z*sqrt((p*q)/n))),LS=N*(p+(z*sqrt((p*q)/n))),LS=N*(p+(z*sqrt((p*q)/n))),LS=N*(p+(z*sqrt((p*q)/n))),LS=N*(p+(z*sqrt((p*q)/n))),LS=N*(p+(z*sqrt((p*q)/n))),LS=N*(p+(z*sqrt((p*q)/n))),LS=N*(p+(z*sqrt((p*q)/n))),LS=N*(p+(z*sqrt((p*q)/n))),LS=N*(p+(z*sqrt((p*q)/n))),LS=N*(p+(z*sqrt((p*q)/n))),LS=N*(p+(z*sqrt((p*q)/n))),LS=N*(p+(z*sqrt((p*q)/n))),LS=N*(p+(z*sqrt((p*q)/n))),LS=N*(p+(z*sqrt((p*q)/n))),LS=N*(p+(z*sqrt((p*q)/n))),LS=N*(p+(z*sqrt((p*q)/n))),LS=N*(p+(z*sqrt((p*q)/n))),LS=N*(p+(z*sqrt((p*q)/n))),LS=N*(p+(z*sqrt((p*q)/n))),LS=N*(p+(z*sqrt((p*q)/n))),LS=N*(p+(z*sqrt((p*q)/n))),LS=N*(p+(z*sqrt((p*q)/n))),LS=N*(p+(z*sqrt((p*q)/n))),LS=N*(p+(z*sqrt((p*q)/n))),LS=N*(p+(z*sqrt((p*q)/n))),LS=N*(p+(z*sqrt((p*q)/n))),LS=N*(p+(z*sqrt((p*q)/n))),LS=N*(p+(z*sqrt((p*q)/n))),LS=N*(p+(z*sqrt((p*q)/n))),LS=N*(p+(z*sqrt((p*q)/n))),LS=N*(p+(z*sqrt((p*q)/n))),LS=N*(p+(z*sqrt((p*q)/n))),LS=N*(p+(z*sqrt((p*q)/n))),LS=N*(p+(z*sqrt((p*q)/n))),LS=N*(p+(z*sqrt((p*q)/n))),LS=N*(p+(z*sqrt((p*q)/n))),LS=N*(p+(z*sqrt((p*q)/n))),LS=N*(p+(z*sqrt((p*q)/n))),LS=N*(p+(z*sqrt((p*q)/n))),LS=N*(p+(z*sqrt((p*q)/n))),LS=N*(p+(z*sqrt((p*q)/n))),LS=N*(p+(z*sqrt((p*q)/n))),LS=N*(p+(z*sqrt((p*q)/n))),LS=N*(p+(z*sqrt((p*q)/n))),LS=N*(p+(z*sqrt((p*q)/n))),LS=N*(p+(z*sqrt((p*q)/n))),LS=N*(p+(z*sqrt((p*q)/n))),LS=N*(p+(z*sqrt((p*q)/n))),LS=N*(p+(z*sqrt((p*q)/n))),LS=N*(p+(z*sqrt((p*q)/n))),LS=N*(p+(z*sqrt((p*q)/n))),LS=N*(p+(z*sqrt((p*q)/n))),LS=N*(p+(z*sqrt((p*q)/n))),LS=N*(p+(z*sqrt((p*q)/n))),LS=N*(p+(z*sqrt((p*q)/n))),LS=N*(p+(z*sqrt((p*q)/n))),LS=N*(p+(z*sqrt((p*q)/n))),LS=N*(p+(z*sqrt((p*q)/n))),LS=N*(p+(z*sqrt((p*q)/n))),LS=N*(p+(z*sqrt((p*q)/n))),LS=N*(p+(z*sqrt((p*q)/n))),LS=N*(p+(z*sqrt((p*q)/n))),LS=N*(p+(z*sqrt((p*q)/n))),LS=N*(p+(z*sqrt((p*q)/n))),LS=N*(p+(z*sqrt((p*q)/n))),LS=N*(p+(z*sqrt((p*q)/n))),LS=N*(p+(z*sqrt((p*q)/n))),LS=N*(p+(z*sqrt((p*q)/n))),LS
```

1 NaN NaN

AMOSTRA ALEATORIA ESTRATIFICADA

MEDIA

$$W_h = \frac{N_h}{\sum N_h}$$
$$\hat{x}_{est} = \sum (W_h * \hat{x}_h)$$

Exemplo:

[1] 62.34333

ALOCACAO UNIFORME

$$n_0 = \frac{\sum (W_h^2 * S_h^2)}{V}$$
$$V = \frac{d^2}{Z^2}$$

Exemplo: Admitindo a media estima no item anterior:

```
s2=c(73.46,726.34,1819.58)
wh=sapply(1:3,function(i) nh[i]/sum(nh))
d=0.075*62.35
z=1.96
v=round(d**2/z**2,1);v

## [1] 5.7
n0=sum(sapply(1:3,function(i) (wh[i]**2) * (s2[i]) ))/v
round(n0)
## [1] 24
n=round(n0/(1+(n0/N)));n

## [1] 22
n*3
```

[1] 66

PARTILHA OTIMA COM BASE NOS CUSTOS

Calculamos o N0 apartir da formula abaixo:

$$n_0 = \frac{\sum (N_h * S_h * \sqrt{c_h}) * \sum \frac{N_h * S_h}{\sqrt{c_h}}}{N^2 * V}$$

Corrigimos N0 atraves da formula:

$$n = \frac{n_0}{1 + \frac{n_0}{N}}$$

e por fim calculamos cada n_n atraves da formula:

$$n_n = n * \frac{\frac{(N_h * S_h)}{\sqrt{C_h}}}{\sum \frac{(N_h * S_h)}{\sqrt{C_h}}}$$

```
rm(list=ls())
nh=c(160,90,50)
N=sum(nh)
ch=c(100,140,160)
media=c(30.7,86.4,120.3)
s=c(8.57,26.95,42.66)
s2=c(73.46,726.34,1819.58)
wh=sapply(1:3,function(i)
                           nh[i]/sum(nh))
d=0.075*62.35
z=1.96
v = round(d**2/z**2,1); v
## [1] 5.7
n0=round((sum(sapply(1:3,function(i)nh[i]*s[i]*sqrt(ch[i])))
    sum(sapply(1:3 , function(i) (nh[i]*s[i])/(sqrt(ch[i]))))
n0
## [1] 69
n=round(n0/(1+(n0/N)));n
## [1] 56
n_n=sapply(1:3,function(i) ((nh[i]*s[i])/(sqrt(ch[i])) )) /
    sum(sapply(1:3,function(i) (nh[i]*s[i])/(sqrt(ch[i]))) )
n n=round(n n*n)
n_n
## [1] 15 22 18
```

PARTILHA OTIMA DE NEYMAN

Calculamos o N0 apartir da formula abaixo:

$$n_0 = \frac{\sum (N_h * S_h)^2}{N^2 * V}$$
$$V = \frac{d^2}{Z^2}$$

Corrigimos N0 atraves da formula:

$$n = \frac{n_0}{1 + \frac{n_0}{N}}$$

e por fim calculamos cada n_n atraves da formula:

$$n_n = n * \frac{(N_h * S_h)}{\sum (N_h * S_h)}$$

Exemplo:

```
rm(list=ls())
nh=c(160,90,50)
N=sum(nh)
ch=c(100,140,160)
media=c(30.7,86.4,120.3)
s=c(8.57,26.95,42.66)
s2=c(73.46,726.34,1819.58)
wh=sapply(1:3,function(i) nh[i]/sum(nh))
d=0.075*62.35
z=1.96
v=round(d**2/z**2,1);v
```

[1] 5.7

```
n0=round(sum(sapply(1:3 ,function(i) nh[i]*s[i] ) )**2 /(N**
n0
```

[1] 69

```
n=round(n0/(1+(n0/N)));n

## [1] 56

n_n=sapply(1:3,function(i) (nh[i]*s[i])) /
        sum(sapply(1:3,function(i) (nh[i]*s[i])))

n_n=round(n_n*n)
n_n
```

[1] 13 23 20

PARTILHA PROPORCIONAL

Calculamos o N0 apartir da formula abaixo:

$$n_0 = \frac{\sum (N_h * S_h^2)^2}{N * V}$$
$$V = \frac{d^2}{Z^2}$$

Corrigimos N0 atraves da formula:

$$n = \frac{n_0}{1 + \frac{n_0}{N}}$$

e por fim calculamos cada n_n atraves da formula:

$$n_n = n * \frac{N_h}{N}$$

Exemplo:

```
rm(list=ls())
nh=c(160,90,50)
N=sum(nh)
ch=c(100,140,160)
media=c(30.7,86.4,120.3)
s=c(8.57,26.95,42.66)
```

```
s2=c(73.46,726.34,1819.58)
wh=sapply(1:3,function(i) nh[i]/sum(nh))
d=0.075*62.35
z=1.96
v=round(d**2/z**2,1);v
## [1] 5.7
n0=round(sum (sapply(1:3,function(i) (nh[i]*s2[i]))) / (N
## [1] 98
n=round(n0/(1+(n0/N)));n
## [1] 74
n_n=round(n*sapply(1:3,function(i) nh[i]/N) )
n n
## [1] 39 22 12
ESTIMADORES
MEDIA ESTIMADA
W_h = \frac{N_h}{\sum N_h}
wh=sapply(1:3,function(i) nh[i]/sum(nh))
\hat{x}_{est} = \sum (W_h * \hat{x}_h)
nh=c(160,90,50)
media=c(30.7,86.4,120.3)
s=c(8.57,26.95,42.66)
xest=sum(sapply(1:3,function(i) (nh[i]/sum(nh)) *media[i]
```

xest

[1] 62.34333

VARIANCIA DA MEDIA ESTIMADA

$$V(\bar{X})_{est} = (\frac{N-n}{n*N}) * \Sigma W_h * S_h^2$$

sd=sum(sapply(1:2,function(i) (nh[i]/sum(nh)) *s2[i])) * ((N

TOTAL ESTIMADO

$$Total_{est} = N * \Sigma W_h * \bar{x_h}$$

VARIANCIA PARA O TOTAL ESTIMADO

$$V(T)_{est} = N^2 * V(\bar{x})_{est}$$
 ou

$$V(T) = \left(\frac{N-n}{n}\right) * \Sigma \left(N_h * S_h^2\right)$$

$$V(T)_{est} = N^2 * V(\bar{x})_{est} = EP^2 = d^2$$

INTERVALO DE CONFIANCA

ic_est=data.frame(LI=xest-(z*(sd/sqrt(n))),LS=xest+(z*(sd/sqrt(n))));ic_e

##

LI

LS

1 61.74703 62.93963

AULA 25-04

\$\$