第三章作业

1. 计算图中反相器平均传输延迟 t_P ,上升时延 t_r ,下降时延 t_f ,其中 $C_L=1pF$

	NMOS	PMOS
V _T	+0.6V	-0.6V
K'	100μA/V ²	40μA/V ²

2. 在这道题中,我们设计一个能达到期望 延迟值的对称反相器。

设计要求:设计一个对称反相器的(W/L)_N, (W/L)_P,使其在电源电压为 3.3V、驱动负载为 0.2pF 时,平均传输延迟 t_p 为 250ps。假设 CMOS 工艺的阈值电压为 V_{TN} = - V_{PN} = 0.75V。(假设 K'_{N} =100 μ A/V², K'_{P} =40 μ A/V²)

- 3. 要使得反相器上升和下降时间相等,上拉和下拉的导通电阻需要相等。请验证在第2题中,导通电阻 R_{onN}和 R_{onP}相等。
- 4. 利用第 3 题得到的结果,进行 SPICE 仿真,发现大约有 280ps 的传输延迟。这是因为 t_p 计算公式,要求输入的是理想阶跃函数。利用仿真结果,求实际达到 250ps 的平均传输延迟,所需要的 $(W/L)_N$, $(W/L)_P$ 。

 $(美于延迟\,t_{p}$ 等相应计算公式,请参见课件,如: t_{PHL} =1.2 $R_{onN}C$ 。单位转换: $s/F \to \Omega$)

- 5. (1) 环形振荡器的用途?
 - (2) n (n 为奇数) 个反相器首尾相连构成环形振荡器,其工作频率为 f,每个反相器的平均传输延迟为 t_p ,请问 f 和 n, t_p 的关系是什么?
 - (3) 从电路工作频率理解对称反相器的优点是什么?
- 6. 为了驱动大的负载电容,在反相器级联中,每一级后续的反相器中晶体管的 W/L 都按 β 增加,而负载电容 $C_{L}=\beta$ $^{N}C_{0}$,其中, C_{0} 是标准参考反相器的输入电容。假设指定节点的负载电容由下一个反相器的输入电容决定,即第一个反相器负载电容为 β C_{0} ,以此类推,如下图所示。

- (1) 列出 β , C_0 , C_L 的关系式子?
- (2) 如果驱动负载电容 C₀ 的单位尺寸反相器传输延迟为 t,则上图每一级 反相器的传输延迟为多少?

- (3) N 级反相器的总传输延迟 t_B 为多少? (根据第(1)问, 列出 t_B , t, N, C_0 , C_L 的关系式子)
- (4) 是否可以在第(3)问基础上,对变量 N 求导并当导数为 0 时,得到 t_B 最优时,对应的 N? (提示: t, C_0 , C_L 为已知项; 在求导之前,可对 式子两边取对数 ln,简化运算)