1.有五个进程P1、P2、P3、P4、P5,它们同时依次进入就绪队列,它们的优先数和需要的 处理器时间如下表

进程	处理器时间	优先级(数小优 先级高)
P1	10	3
P2	1	1
P3	2	3
P4	1	4
P5	5	2

忽略进行调度等所花费的时间,回答下列问题:

- a. 写出采用"先来先服务"、"短作业(进程)优先"、"非抢占式的优先数"和"轮转法"等调度 算法,进程执行的次序。(其中轮转法的时间片为2)
- b. 分别计算上述算法中各进程的周转时间和等待时间,以及平均周转时间。

1 先来先服务

	P1	P2	P3	P4	P5	平均
周转时间	10	11	13	14	19	13.4
等待时间	0	10	11	13	14	

短作业优先

(同等长度的作业按进入就绪队列的先后顺序)

	P1	P2	P3	P4	P5	平均
周转时间	19	1	4	2	9	7
等待时间	9	0	2	1	4	

非抢占式优先数 1)优先级数小的优先级高

	P1	P2	P3	P4	P5	平均
周转时间	16	1	18	19	6	12
等待时间	6	0	16	18	1	

	P1	P2	P3	P4	P5	平均
周转时间	19	3	5	6	15	9.6
等待时间	9	2	3	5	10	

2. 死锁产生的四个必要条件是什么?

互斥条件

不剥夺条件

请求和保持条件

环路等待条件

3.线程的基本概念是什么?引入线程的好处是什么? 减小进程切换的开销 提高进程内的并发程度 共享资源

4. 一个系统有4个进程和5个可分配资源,当前分配和最大需求如下:

	已分配资源	最大需求量	可用资源
进程A	10211	11213	00x12
进程B	20110	22210	
进程C	11010	21310	
进程D	11110	11221	

若保持该状态是安全状态,那么x的最小值是多少?

答:

需求矩阵如下:

A 01002

B 02100

C 10300

D 00111

如果x为0,我们会立刻死锁。如果x是1,进程D可以分配资源运行,当它结束时,可用资源向量为 1 1 2 2 2,这时候进程A可以分配资源执行,当A结束时,可用资源向量为21433。这时候进程C可以被满足,当C执行结束后,可用资源向量为32443。最后进程B运行完毕。所以x的最小值为1。