

Software-Management

Software-Management

Das Software-Management besteht im wesentlichen aus den drei Bereichen:

- Projektmanagement
- Konfigurationsmanagement
- Qualitätsmanagement

Projekt-Management

Projektmanagement

Der Projektmanager muss über Daten von hoher Aktualität verfügen, wie z.B.:

Plandaten: als Übersicht über Entwicklungsstand, aktuell einsetzbarer

Mittel und Ressourcen (inkl. Personal) in jeder Phase der

Produktentwicklung.

Risikoanalysen: als quantitative Aussagen zu Entwicklungsvarianten und

Entwicklungsproblemen mit damit zusammenhängenden Risiken,

Kostenanalysen: auf die Kosten bezogene Angaben zum Entwicklungsstand,

den noch vorhandenen und den aktuell noch benötigten Mitteln,

Reviews und Audits:

als Fehleranalysen, Qualitätsbeschreibungen und Prüfberichte.

Projektmanagement

Weitere Hilfsmittel und Begriffe für das Projektmanagement:

Meilensteine: (*milestone*) Planungsabschnitt, für den exakte Zielangaben

existieren. Wird vor allem zur Terminplanung eingesetzt.

Function-Point- Methode zur direkten und indirekten Aufwands- und

Methode: Kostenabschätzung

Personalplanung: Planung des Einsatzes des verfügbaren Personals.

Wichtige Faktoren:

Projektumfang, Projektplan (Zeitplan),

Personal (Verfügbarkeit, Ausbildungsstand und Erfahrung),

(daraus:) Kosten des Personals,

Motivation des Personals,....

Konfigurations-Management

Konfigurationsmanagement

Es dient zur Sicherstellung der Konsistenz der Verknüpfungen zwischen Programmen, Objekten, Modulen, Versionen, etc. eines (SW-)Produkts.

Eine Konsistenzproblematik macht sich spätestens dann bemerkbar, wenn die Beteiligten sich ärgern, dass

- Sie die eben bearbeiteten Programmversionen verändert wiederfinden
- die letzte Version nicht mehr auffindbar ist
- Programme, die früher fehlerfrei liefen, nach einer Neukompilierung plötzlich nicht mehr lauffähig sind
- Änderungen nicht in allen Softwarekomponenten nachgeführt wurden
- nicht alle zu einem Produkt gehörenden Komponenten auffindbar sind
- wiederverwendbare Komponenten mehrfach programmiert wurden
- keine Transparenz über die eingesetzten Komponenten besteht

Konfigurationsmanagement

Das Konfigurationsmanagement stellt sicher, dass

- Produkte eindeutig identifizierbar sind,
- Zusammenhänge und Unterschiede von verschiedenen Versionen einer Konfiguration erkennbar bleiben und
- Produktänderungen nur kontrolliert durchgeführt werden können

Es kann in vier Bereiche untergliedert warden (s. V-Modell):

- KM-Planung
- Produkt- und Konfigurationsverwaltung
- Änderungsmanagement (KM-Steuerung)
- KM-Dienste

Konfigurationsmanagement

Konfigurationsmanagement-Planung

- Verbindliche Festlegung der für das Projekt geltenden Richtlinien und Verfahren
 - → Voraussetzung für ein zuverlässiges Konfigurationsmanagement

Produkt- und Konfigurationsverwaltung

- stellt sicher, dass Produkte und Konfigurationen eindeutig identifiziert, zugriffsgesichert und rekonstruierbar gespeichert sind.
 - 1. Einsatz einer Versionsverwaltung (CVS, subversion, SourceSafe, ClearCase, Git, ...)
 - → muss geplant und konsequent durchgeführt werden!
 - 2. Zugriff auf die Konfigurationselemente soll gesteuert erfolgen,
 - → Produkte (Module) können weder absichtlich noch unabsichtlich zerstört werden.
 - 3. Zur Rekonstruierbarkeit: sämtliche Änderungen am System zurückverfolgbar gestalten
 - → setzt die Identifizierbarkeit aller Produkte voraus!
 - 4. Automatisierte Konfigurationserstellung → CI (Continuous Integration)
 - Automatisierte Auslieferung der Software → CD (Continuous Delivery)

Konfigurationsmanagement-Dienste

Sie werden in bestimmten Intervallen oder nach Bedarf durchgeführt.

Zu den KM-Diensten zählen:

 Daten administrieren 	Gewährleistung eines zentralen, unternehmensweiten,
	einheitlichen und konsistenten Datenkatalogs

- SW-Produkte katalogisieren dadurch Wiederverwendbarkeit ermöglichen
- Schnittstellen koordinieren
 Kompatibilität und Vermeidung einseitiger Änderungen
- *Ergebnisse sichern* zur Dokumentation des erreichten Projektstands und um sie für spätere Projekte zur Verfügung zu stellen

Weitere KM-Dienste:

- KM-Dokumentation führen Dokumenterstellung für KM-Belange
- Release-Management
 Kontrolle der Konfigurationsfreigabe und -verteilung
- Projekthistorie führen

 Gewährleistung einer umfassenden und nachvollziehbaren Dokumentation des Projektverlaufs zur Verbesserung künftiger Projekte

Release-Management als KM-Dienst

- Planung und Festlegung, wann welche Version (Release) des Produkts mit welchen Inhalten fertig gestellt wird.
- Zwei Aufgabenbereiche:
 - 1. Release-Planung

Vorteile:

- Arbeit im Projekt besser planbar
- Fortschrittsmessung anhand der erzielten Ergebnisse möglich
- Verwaltung unterschiedlicher Varianten eines Produkts für verschiedene Kunden
- 2. Verwaltung der verschiedenen Stände
 - Verwendung eines Versionsverwaltungssystems
 (z. B. CVS, subversion, SourceSafe, ClearCase, Git, ...).

Konfigurations-Arten

Vollproduktkonfiguration

eine Konfiguration über ein ganzes Produkt hinweg. Es wird eine komplette Stücklistenauflösung mittels der Produktwurzeln vorgenommen

Teilproduktkonfiguration

beziehen sich nur auf Teile eines Produktes. Andere Elemente von anderen Produkten werden nicht mit einbezogen. Es wird ebenfalls eine Stücklistenauflösung mittels der Produktwurzeln vorgenommen.

Änderungskonfiguration

Nur wenn Änderungen ausgeliefert werden. Eine Auflösung wird nicht vorgenommen, und es werden nur die geänderten Module in die Konfiguration mit einbezogen.

Qualitäts-Management

Was ist Qualität?

Raumfahrt: Softwarefehler waren in den 90er Jahren häufigste Fehlerquelle

Explosion der ersten Ariane-5-Rakete am 4. Juni 1996

1996, Ariane 5:

- Software sollte von Ariane 4 übernommen werden (Kosten)
- Messwerte wurden von 64-bit Double in signed 16-bit Integer umgewandelt (Wert > 32768 → Overflow → Sprengung)

Quelle: golem.de vom 24.11.2015

Was ist Qualität?

• Luftfahrt: Softwarefehler als Absturzursache

(Quellen: spiegel.de vom 19.05.2015)

(welt.de vom 28.06.2015)

- 2015, Airbus M400 Software für Triebwerke war nicht korrekt aufgespielt (nur bei drei Triebwerken)
 - Elektronik schaltete in Leerlauf

Was ist (SW-)Qualität?

- SW-Qualität:
 - Normale Software: 10 20 Fehler pro 1000 Codezeilen
 - Gute Software: 2 Fehler pro 1000 Codezeilen
 - Space Shuttle: < 1 Fehler pro 10.000 Codezeilen (insg. ca. 400.000 CZ)</p>
- Codezeilen zum Vergleich (Quelle: t3n.de, 25.05.2014):
 - Mars Curiosity Rover: 4 Mio.
 - Linux Kernel 2.6: 4 Mio.
 - Windows 7: 40 Mio (Vista 50 Mio)
 - Facebook (incl. Backend-Code): 61 Mio
 - OS X "Tiger": 84 Mio
 - Debian 5.0 Codebase: 67 Mio.
 - Fahrzeug-SW: 100 Mio.

Qualitäts-Management

Qualitätsplanung

Auswählen, Klassifizieren und Gewichten der Qualitätsmerkmale sowie Festlegen der Qualitätsanforderung unter Berücksichtigung der Realisierungsmöglichkeiten

Qualitätsprüfung

Feststellen, inwieweit eine Einheit die Qualitätsanforderung erfüllt

Qualitätslenkung

Überwachung und Korrektur der Realisierung einer Einheit mit dem Ziel, die Qualitätsanforderung zu erfüllen.

- Qualitätsgestaltung
 alle Tätigkeiten zur konstruktiven Erzeugung der geforderten Qualität
- Qualitätsbeurteilung
 Überwachung der Qualitätsmanagement-Maßnahmen, Auswertung von
 Qualitätsdaten und Entscheidung über weiteres Vorgehen (z.B. Freigaben,
 Korrektive Maßnahmen)

Qualitäts-Management (Prinzipien)

Prinzipien, abgeleitet aus den Zielen der Softwareerstellung (Termintreue, Kostenoptimierung und zufriedenstellende Qualität)

- Produktabhängige Qualitätsplanung
- Rückkopplung der Ergebnisse der Qualitätsprüfung
- Maximale konstruktive Maßnahmen zum Qualitätsmanagement
- Frühzeitige Fehlererkennung
- Werkzeugunterstützte Qualitätssicherung
- Integriertes entwicklungsbegleitendes Qualitätsmanagement
- Unabhängigkeit der Qualitätsprüfungen
- Bewertung von QM-Maßnahmen (interne Qualitätsaudits)

19

Qualitäts-Sicherung (ISO 9000)

Zur Sicherstellung der gewünschten Produktqualität (Produkthaftungsgesetz)

Definitionen:

Qualitätssicherung: Zusammenfassung von geplanten und systematisch durch-

geführten Tätigkeiten, damit ein Produkt den vorgegebenen

Qualitätsanforderungen entspricht.

Konstruktive QS: Verwendung von Methoden, Sprachen und Werkzeugen, die

dafür sorgen, dass das entstehende Produkt à priori bestimmte

Eigenschaften besitzt.

analytische QS: Diagnostische Maßnahmen (sie bringen in das Produkt keine

Qualität per se). Messung des existierenden Qualitätsniveaus.

Qualitäts-

anforderungen:

Qualitative und quantitative Eigenschaften, die an die Qualität

eines Produktes gestellt werden.

- Helmut Balzert,
 Lehrbuch der Softwaretechnik Band 2, Spektrum Akademischer Verlag, Heidelberg, Berlin, 1998, ISBN 3-8274-0065-1
- 2. http://www.software-kompetenz.de/, vom BMBF geförderte Web-Seiten zum Thema SW-Engineering

DHBW Duale Hochschule Baden-Württemberg Aufgabe zu PM (Erstellung eines Projektplans, Teil 1)

Für die Entwicklung eines Softwareprojekts soll ein Projektplan erstellt und im weiteren Verlauf des Projekts angepasst werden. Randbedingungen:

- 1. Alle Mitarbeiter sind gleich qualifiziert
- 2. SW-Auftrag entspricht bereits durchgeführten Projekten
- 3. Eine Arbeitswoche umfasst 5 Arbeitstage à 8 Arbeitsstunden
- 4. Es sind 4 Personen im Entwicklungsteam
- 5. Start des Projekts in 4 Wochen (von heute aus gerechnet)
- 6. Es laufen noch weitere Projekte:
 - Für 1 Person noch 8 Wochen (von heute aus gerechnet)
 - Für 2 Personen noch 5 Wochen
 - Für 1 Person noch 4 Wochen
- 7. Veranschlagte Man-Power sind 100 Personenwochen
- 8. Entwicklungskosten betragen 100 € pro Stunde und Mitarbeiter, an Wochenenden und bei Überstunden 150 €
- 9. "Überstunden": Es dürfen max. 2 Mitarbeiter an max. 3 aufeinander folgenden Wochen maximal 6 Tage arbeiten, ansonsten nur 5 Tage. Maximale Arbeitstagdauer ist 12 Stunden.

DHBW Duale Hochschule Baden-Württemberg Aufgabe zu PM (Erstellung eines Projektplans, Teil 2)

Aufgabe 1: Erstellen Sie einen Projektplan für obigen Auftrag (gerechnet ab kommender Woche).

- 1. Welche Kosten werden für diesen Auftrag veranschlagt?
- 2. Welchen Fertigstellungstermin können Sie anbieten?

	Wo 1	Wo 2	Wo 3	Wo 4	Wo 5	Wo 6	Wo 7	Wo 8	
Person 1									
Person 2									
Person 3									
Person 4									

Aufgabe zu PM (Erstellung eines Projektplans, Teil 3)

Aufgabe 2: Passen Sie den Projektplan an folgende Ereignisse an:

- 1. Mitarbeiter Nr. 2 wird in der 3. Woche nach dem Start für 2 Wochen krank.
- 2. Ein Mitarbeiter (Nr. 4) erinnert Sie daran, dass er in der 6. Woche nach dem Start für 3 Wochen in Urlaub ist.
- 3. Zur Bewältigung neuer Anforderungen wird eine neue SW-Version erforderlich. Dies schlägt mit 20.000 € zu Buche.
- 4. Eine weitere neue Anforderung in der 10. Woche nach dem Start verursacht eine 1-wöchige Schulung eines Mitarbeiters (10.000 € Schulungskosten).
- 5. Ein neuer Auftrag über 50 Personenwochen soll in 4 Wochen begonnen werden. Diese Info erschien in der 10. Woche nach dem Start (→ Woche 14).
- 6. Eine Woche Aufschub wird durch den Kunden ermöglicht.
- 7. Ein Mitarbeiter (Nr. 3) wird 5 Arbeitstage früher fertig als geplant.
- 8. Testergebnisse erfordern eine Überarbeitung => 10 Personentage mehr!

Welche reale Kosten haben sich nun ergeben und welcher Fertigstellungstermin kann eingehalten werden?