

1 1. A method comprising:
2 forming a circuit element over a triple well in a
3 substrate; and
4 biasing a well of said triple well through a
5 resistor.

1 2. The method of claim 1 including forming an
2 integrated inductor over a triple well.

1 3. The method of claim 1 including forming a P-type
2 well in an N-type well formed in said substrate.

1 4. The method of claim 3 including biasing the N-
2 type and P-type wells through different resistors.

1 5. The method of claim 1 including providing a
2 common bias potential to different wells through separate
3 resistors for each well.

1 6. The method of claim 5 including forming a radio
2 frequency circuit element over a triple well.

1 7. The method of claim 5 including biasing said
2 wells through resistors having a resistance greater than
3 one hundred ohms.

1 8. The method of claim 7 including forming a
2 complementary metal oxide semiconductor transistor over a
3 triple well and biasing at least one of the wells of said
4 triple well through a resistor.

1 9. The method of claim 1 including forming a
2 plurality of triple wells in said substrate and forming a
3 circuit element over each of said triple wells, biasing at
4 least one well of each of said triple wells through a
5 common potential, each of said potentials being applied to
6 said wells through a resistor.

1 10. The method of claim 9 including applying a supply
2 potential to said plurality of wells through a resistor.

1 11. An integrated circuit comprising:
2 a substrate;
3 a circuit element formed over said substrate;
4 a triple well formed in said substrate under said
5 circuit element; and
6 a resistor connectable to a bias potential and
7 coupled to a well of said triple well.

1 12. The circuit of claim 11 wherein the triple well
2 each includes a P-well formed in an N-well formed in the
3 substrate.

1 13. The circuit of claim 11 wherein said resistor is
2 coupled to a supply voltage.

1 14. The circuit of claim 11 including a plurality of
2 circuit elements formed over said substrate, each of said
3 circuit elements formed over a triple well, each of said
4 triple wells having at least one well connectable to a bias
5 potential.

1 15. The circuit of claim 14 including a resistor
2 coupled to each of said wells, each of said resistors
3 connectable to a bias potential so as to supply resistance
4 in the path of said bias potential to said well.

1 16. The circuit of claim 15 wherein the same
2 potential is applied to a plurality of wells.

1 17. The circuit of claim 16 wherein said plurality of
2 resistors are connectable to the same bias source.

1 18. The circuit of claim 17 wherein each of said
2 resistors is connectable to a supply voltage.

1 19. The circuit of claim 16 wherein each of said
2 resistors is connected to a path that is common with the
3 path of each of the other resistors coupled to wells.

1 20. A method comprising:
2 forming a first circuit element over a triple
3 well in a substrate;
4 biasing a first well of said first triple well
5 through a first resistor with a first bias potential;
6 forming a second circuit element over a second
7 triple well in a substrate; and
8 biasing a second well of said second triple well
9 through a second resistor coupled to said first bias
10 potential.

1 21. The method of claim 20 including coupling the
2 first bias potential to said first and second wells through
3 a common trace to a supply potential.

1 22. The method of claim 20 including forming an
2 integrated inductor over the first triple well.

1 23. The method of claim 20 including forming a P-type
2 well and an N-type well formed in said substrate.

1 24. The method of claim 23 including biasing the N-
2 type and P-type wells through different resistors.

1 25. The method of claim 20 including forming a radio
2 frequency element over said first triple well.

1 26. The method of claim 25 including biasing said
2 wells through resistors having a resistance greater than
3 100 ohms.

1 27. An integrated circuit comprising:
2 a substrate;
3 a first circuit element formed over said
4 substrate;
5 a first triple well formed in said substrate
6 under said first circuit element;
7 a first resistor connectable to a first bias
8 potential and coupled to a first well of said first triple
9 well;
10 a second circuit element formed over said
11 substrate;
12 a second triple well formed in said substrate
13 under said second circuit element; and
14 a second resistor connectable to the first bias
15 potential and coupled to the second well of said second
16 triple well.

1 28. The circuit of claim 27 wherein said first
2 circuit element is a complementary metal oxide
3 semiconductor transistor.

1 29. The integrated circuit of claim 27 wherein said
2 first circuit element is an integrated inductor.

1 30. The integrated circuit of claim 27 wherein said
2 first bias potential is a supply voltage.