Prednášky z Matematiky (4) – Logiky pre informatikov

Ján Kľuka, Jozef Šiška

Katedra aplikovanej informatiky FMFI UK Bratislava

Letný semester 2015/2016

1. prednáška

Syntax a sémantika výrokovej logiky

22. februára 2016

Obsah 1. prednášky

Výroková logika Opakovanie Na čo môže byť výroková logika dobrá? Syntax výrokovej logiky Sémantika výrokovej logiky Splniteľnosť, tautológie, ekvivalencia

Opakovanie: Výroková logika v prirodzenom jazyku

Výroky a pravdivostné hodnoty

Výrok – veta, o pravdivosti ktorej má zmysel uvažovať (zvyčajne oznamovacia).

Príklady

- Miro je v posluchárni F1.
- Slnečná sústava má desiatu planétu.
- Mama upiekla koláč, ale Editka dostala z matematiky štvorku.
- Niekto zhasol.

Negatívne príklady

- Píšte všetci modrým perom!
- Prečo je obloha modrá?

Opakovanie: Výroková logika v prirodzenom jazyku

Operácie s výrokmi

Operácie s výrokmi – logické spojky

- Vytvárajú nové výroky, zložené (súvetia).
- Majú povahu funkcií na pravdivostných hodnotách spájaných výrokov (pravdivostné tabuľky), teda pravdivostná hodnota zloženého výroku závisí iba od pravdivostných hodnôt podvýrokov.

Príklad

Negácia, konjunkcia, disjunkcia, implikácia, ekvivalencia, ...

Negatívny príklad

Spojku "pretože" nepovažujeme za logickú spojku.

Pravdivostná hodnota výroku "Emka ochorela, pretože zjedla babôčku" sa nedá určiť funkciou na pravdivostných hodnotách spájaných výrokov.

Čo vieme počítať výrokovou logikou?

Príklad

Chceme na párty pozvať niekoho z trojice Jim, Kim a Sára, bohužiaľ každý z nich má nejaké svoje podmienky:

- (P1) Sára nepôjde na párty, ak pôjde Kim.
- (P2) Jim pôjde na párty, len ak pôjde Kim.
- (P3) Sára nepôjde bez Jima.

Koho môžeme na párty pozvať?

Hádanku môžeme vyriešiť nájdením takej kombinácie pravdivostných hodnôt základných výrokov, pri ktorej budú pravdivé všetky podmienky.

Symboly jazyka výrokovej logiky

Definícia

Symbolmi jazyka výrokovej logiky sú:

- *výrokové premenné* z nejakej nekonečnej spočítateľnej množiny $\mathcal{V} = \{p_1, p_2, \dots, p_n, \dots\}$ neobsahujúcej symboly $\neg, \land, \lor, \rightarrow, (a)$;
- logické symboly (logické spojky): ¬, ∧, ∨, →
 (nazývané, v uvedenom poradí, "nie", "a", "alebo",
 "ak ..., tak ...");
- pomocné symboly: (a) (ľavá zátvorka a pravá zátvorka).

Spojka \neg je *unárna* (má jeden argument). Spojky \land , \lor , \rightarrow sú *binárne* (majú dva argumenty).

(Smullyan, 1979, I.1.1)

Symboly, výrokové premenné

Symbol je všeobecnejší pojem ako znak.

Príklad

Ako množinu výrokových premenných $\mathcal V$ môžeme zobrať všetky slová (teda konečné postupnosti) nad slovenskou abecedou a číslicami. Výrokovými premennými potom sú aj Jim, Kim, Sára.

Dohoda

Výrokové premenné budeme *označovať* písmenami *p*, *q*, ..., podľa potreby aj s dolnými indexmi.

Výrokové premenné formalizujú jednoduché výroky.

Formuly výrokovej logiky

Definícia

Formulou výrokovej logiky (skrátene formulou) je postupnosť symbolov vytvorená nasledovnými rekurzívnymi pravidlami:

- Každá výroková premenná je formula (hovoríme jej atomická formula).
- Ak A je formula, tak aj $\neg A$ je formula (negácia formuly A).
- Ak A a B sú formuly, tak aj (A ∧ B), (A ∨ B) a (A → B) sú formuly (konjunkcia, disjunkcia, implikácia formúl A a B).

Nič iné nie je formulou.

Dohoda

Formuly označujeme veľkými písmenami A, B, C, X, Y, Z, podľa potreby aj s dolnými indexmi. Množinu všetkých formúl označíme \mathcal{E} .

Formula je matematickou formalizáciou zloženého výroku.

Formuly výrokovej logiky

Príklad (a cvičenie)

Nech p, q, r, s sú navzájom rôzne výrokové premenné.

- (A) Sú nasledujúce postupnosti (B) Sú formuly $(p \rightarrow q)$ symbolov formulami?
 - 1 p
 - **2** (p)
 - $(p \land \neg p)$
 - $4 ((\neg p) \rightarrow (q \rightarrow r))$
 - \bigcirc $q \vee r$
 - $(p)(\land q \land p)$
 - $(p \land q \land \neg r)$
 - $(\neg(p \land q) \rightarrow (\neg p))$
 - 9 $(\neg\neg p); (\neg(\neg p)); \neg\neg p$

- a $(r \rightarrow s)$ rovnaké?
- (C1) formula z if-then-else a \top ,
- (C2) aritmetický výraz;
- (C3) alt. definície (Smullyan, 1979, str. 20)

Alternatívna definícia formuly

Definícia pomocou vytvárajúcej postupnosti

Definícia

Vytvárajúca postupnosť je ľubovoľná konečná postupnosť, ktorej každý člen je výroková premenná, alebo má tvar $\neg A$, pričom A je nejaký predchádzajúci člen postupnosti, alebo má jeden z tvarov $(A \wedge B)$, $(A \vee B)$, $(A \rightarrow B)$, kde A a B sú nejaké predchádzajúce členy postupnosti.

Definícia

Postupnosť symbolov A je formula, ak existuje vytvárajúca postupnosť, ktorej posledným prvkom je A. Túto postupnosť voláme tiež vytvárajúca postupnosť pre A.

Príklad (podobne na cvičeniach)

Nájdime vytvárajúcu postupnosť pre formulu $(\neg p \rightarrow (p \lor q))$.

Jednoznačnosť rozkladu formúl výrokovej logiky

Veta (o jednoznačnosti rozkladu)

Pre každú formulu X platí práve jedna z nasledujúcich možností:

- X je výroková premenná.
- Existuje práve jedna formula A taká, že $X = \neg A$.
- Existuje práve jedna dvojica formúl A, B a jedna spojka b ∈ {∧, ∨, →} taká, že X = (A b B).

Cvičenie

TODO

Vytvárajúci strom formuly

Definícia

Vytvárajúci strom pre formulu *X* je binárny strom *T* obsahujúci v každom vrchole formulu, pričom platí:

- v koreni T je formula X,
- ak vrchol obsahuje formulu ¬A, tak má práve jedno dieťa, ktoré obsahuje formulu A,
- ak vrchol obsahuje formulu (A b B), kde b je jedna z binárnych spojok, tak má dve deti, pričom ľavé dieťa obsahuje formulu A a pravé formulu B,
- vrcholy obsahujúce výrokové premenné sú listami.

Príklad (a podobne cvičenie)

Nájdime vytvárajúci strom pre formulu $(p \land q) \rightarrow ((\neg p \lor \neg \neg q) \lor (q \rightarrow \neg p)).$

Podformuly

Definícia (Priama podformula)

- Priamou podformulou $\neg A$ je formula A.
- Priamymi podformulami $(A \land B)$, $(A \lor B)$ a $(A \to B)$ sú formuly A (*l'avá* priama podformula) a *B* (*pravá* priama podformula).

Definícia (Podformula)

- Ak X je priamou podformulou Y, tak X je podformulou Y.
- Ak X je podformulou Y a Y je podformulou Z, tak X je podformulou Z.

Stupeň formuly a indukcia

Definícia (Stupeň formuly deg(X))

- Výroková premenná je stupňa 0.
- Ak A je stupňa n, tak $\neg A$ je stupňa n + 1.
- Ak A je stupňa n_1 a B je stupňa n_2 , tak $(A \wedge B)$, $(A \vee B)$ a $(A \rightarrow B)$ sú stupňa $n_1 + n_2 + 1$.

Veta (Princíp indukcie na stupeň formuly)

Nech P je ľubovoľná vlastnosť formúl ($P \subseteq \mathcal{E}$). Ak platí, že

- 1° každá formula stupňa 0 má vlastnosť P,
- 2° z predpokladu, že X je formula a všetky formuly menšieho stupňa ako deg(X) majú vlastnosť P, vyplýva, že aj X má vlastnosť P,

tak všetky formuly majú vlastnosť $P(P = \mathcal{E})$.

Indukcia na stupeň formuly

Cvičenie

Dokážte, že množina všetkých formúl vo vytvárajúcom strome formuly *X* je práve množinou všetkých podformúl *X*.

Cvičenie

- Zadefinujte množinu vars(X) všetkých výrokových premenných formuly X.
- b) Dokážte, že $|vars(X)| \le deg(X) + 1$.

Cvičenie

Dokážte, že každá formula má práve jeden vytvárajúci strom až na izomorfizmus.

Presnejšie: pre každú formulu a každé dva jej vytvárajúce stromy $T_1=(V_1,H_1,\ell_1)$ a $T_2=(V_2,H_2,\ell_2)$ platí, že existuje izomorfizmus f medzi

Literatúra

SMULLYAN, R. M. *Logika prvého rádu*. Alfa, 1979. Z angl. orig. *First-Order Logic*, Berlin-Heidelberg: Springer-Verlag, 1968 preložil Svätoslav Mathé.