ZAVRŠNI ISPIT IZ ELEKTRONIKE 1

ZADACI

ZADATAK 1. Za pojačalo na slici zadano je: $U_{DD} = 12 \text{ V}$, $R_g = 500 \Omega$, $R_S = 820 \Omega$, $R_1 = 180 \text{ k}\Omega$, $R_2 = 300 \text{ k}\Omega$, $R_D = 2 \text{ k}\Omega$, $R_T = 4.7 \text{ k}\Omega$. Parametri *n*-kanalnog MOSFET-a su: $K = 2.25 \text{ mA/V}^2$, $U_{GSO} = 0.5 \text{ V}$ i $\lambda = 0.0045 \text{ V}^{-1}$.

- a) Odrediti statičku radnu točku tranzistora (*I_{DQ}*, *U_{DSQ}*, *U_{GSQ}*) te strminu i dinamički otpor u radnoj točki. Pri proračunu statičke radne točke zanemariti porast struje odvoda u području zasićenja.
 (3 boda)
- b) Nacrtati nadomjesnu shemu za dinamičku analizu te izvesti izraz i izračunati naponsko pojačanje $A_{Vg} = u_{iz}/u_g$. (4 boda)
- c) Izvesti izraz i izračunati izlazni otpor R_{iz} . (1 bod)

ZADATAK 2. Silicijski *npn* tranzistor ima homogene koncentracije primjesa u emiteru i bazi iznosa $8 \cdot 10^{17}$ cm⁻³ i $3 \cdot 10^{16}$ cm⁻³. Pokretljivosti manjinskih nosilaca su 300 cm²/Vs i 550 cm²/Vs. Efektivna širina baze je 1 μm, a emitera 2 μm. Širine baze i emitera su puno manje, a širina kolektora puno veća od difuzijskih duljina manjinskih nosilaca. Vrijeme života elektrona u bazi je 0,1 μs. Površina tranzistora je 0,2 mm². Naponi na spojevima su $U_{BE} = 0,6$ V i $U_{CB} = 3$ V. Pretpostaviti T = 300 K i $I_{CB0} = 1$ pA.

- a) Skicirati raspodjelu manjinskih nosilaca u tranzistoru (označiti ravnotežne i rubne koncentracije manjinskih nosilaca u E, B i C) (2 boda).
- b) Izračunati sve komponente struja tranzistora i ukupne struje emitera, baze i kolektora (računati s točnosti od 1 μ A) (**5 bodova**).
- c) Izračunati faktor injekcije, te faktore pojačanja α i β (1 bod).

ZADATAK 3. Za pojačalo na slici zadani sljedeći podaci: $U_{CC} = 12 \text{ V},$ $R_g = 500 \Omega$, $R_1 = 50 \text{ k}\Omega$, $R_2 = 20 \text{ k}\Omega$, $R_C = 2 \text{ k}\Omega$, $R_E = R_T = 1 \text{ k}\Omega$. Zadano je da vrijedi $\beta \approx h_{fe}$. Generator signala daje sinusni signal amplitude 1,5 mV, dok amplituda izmjeničnog signala na bazi iznosi 1 mV, a na kolektoru 50 mV. Zanemariti porast struje kolektora u normalnom aktivnom području. $U_T = 25 \text{ mV}.$

- a) Nacrtati nadomjesnu shemu pojačala za dinamičku analizu te izvesti izraz za naponsko pojačanje $A_V = u_{iz}/u_{ul}$ i ulazni otpor R_{ul} . (3 boda)
- b) Odrediti statičku radnu točku tranzistora, tj. izračunati I_{BO} , I_{CO} , U_{CEO} . (5 bodova)

ZADATAK 4. Za sklop na slici zadano je R = 1,5 k Ω , U = 15 V, $U_Z = 6,3$ V uz $I_{Zmin} = 5,7$ mA. Ukoliko je dioda Z_1 ili Z_2 propusno polarizirana, pad napona na diodi iznosi $U_D = 0,7$ V. Operacijsko pojačalo je idealno. Naponi napajanja operacijskog pojačala iznose $U_{CC} = -U_{EE} = 15$ V.

- a) Da li je struja kroz diodu Z_2 dovoljno velika da bi se osigurao pad napona U_Z u području proboja. Minimalna potrebna struja kroz diodu jednaka je I_{Zmin} ? (2 boda)
- b) Kolika je vrijednost izlaznog napona?(3 boda)
- c) Da li operacijsko pojačalo radi kao linearno pojačalo i zašto? (1 bod)

PITANJA

1. Za pojačalo na slici vrijedi: (2 boda)

- a) Pojačalo je u spoju zajedničkog uvoda, radna točka je stabilizirana.
- b) Pojačalo je u spoju zajedničkog odvoda, radna točka nije stabilizirana.
- c) Pojačalo je u spoju zajedničke upravljačke elektrode, radna točka je stabilizirana.
- d) Pojačalo je u spoju zajedničkog uvoda, radna točka nije stabilizirana.
- e) Pojačalo je u spoju zajedničkog odvoda, radna točka je stabilizirana.

2. Koju logičku funkciju ostvaruje CMOS sklop na slici? (2 boda)

a)
$$Y = \overline{AB(C+D+E)}$$

b)
$$Y = \overline{A + B + CDE}$$

c)
$$Y = AB(C+D+E)$$

d) niti jedan od odgovora

e)
$$Y = A + B + CDE$$

3. Izlazna karakteristika nekog tranzistora prikazana je na slici. Koliki su strmina g_m i ulazni dinamički otpor r_{be} u radnoj točki A ako je $U_T = 25$ mV? (2 boda)

b)
$$g_m = 200 \text{ mA/V}, r_{be} = 50 \Omega,$$

c)
$$g_m = 198 \text{ mA/V}, r_{be} = 500 \Omega,$$

d)
$$g_m = 2 \text{ mA/V}, r_{be} = 50 \Omega,$$

e)
$$g_m = 200 \text{ mA/V}, r_{be} = 5 \text{ k}\Omega.$$

4. Za pojačalo na slici za izlazni otpor R_{iz} te hod izlaznog napona u_{iz} vrijedi sljedeća tvrdnja: (2 boda)

- a) R_{iz} je mali, u_{iz} ima najveći hod uz $R_C = 0$,
- b) R_{iz} je veliki, u_{iz} ima najveći hod uz $R_C = R_E || R_T$,
- c) R_{iz} je veliki, u_{iz} ima najveći hod uz $R_C = 0$,
- d) R_{iz} je mali, u_{iz} ima najveći hod uz $R_C = R_E || R_T$,
- e) R_{iz} je mali, u_{iz} ima najveći hod uz $R_C = R_T$.

5. Zajednički i diferencijski napon diferencijskog pojačala sa slike su $u_z = -2\sin\omega t$ mV i $u_d = +4\sin\omega t$ mV. Koliki su naponi u_{g1} i u_{g2} ? (2 boda)

a)
$$u_{g1} = +0\sin\omega t \text{ mV}$$
 i $u_{g2} = +4\sin\omega t \text{ mV}$

b)
$$u_{g1} = -4\sin\omega t \text{ mV}$$
 i $u_{g2} = +0\sin\omega t \text{ mV}$

c)
$$u_{g1} = -6\sin\omega t \text{ mV i } u_{g2} = +2\sin\omega t \text{ mV}$$

d)
$$u_{g1} = -3\sin\omega t \text{ mV} \text{ i } u_{g2} = +1\sin\omega t \text{ mV}$$

e)
$$u_{g1} = -5\sin \omega t \text{ mV i } u_{g2} = +3\sin \omega t \text{ mV}$$

6. Invertori s bipolarnim tranzistorima spojeni su prema slici. Kolika je struja baze i_B tranzistora T_{n1} , T_{n2} i T_{n3} kada je $u_{UL} = 0$ V? Koliki je u tom slučaju napon na izlazu invertora s tranzistorom T_1 ? Zadano je $U_{CC} = 5$ V, $U_{CEzas} = 0.2$ V, $U_{Bezas} = 0.8$ V, $R_C = 3$ k Ω , $R_B = 50$ k Ω , $R_C = 100$. (2 boda)

- a) $i_B = 71.2 \mu A$, $U_I = 4.36 \text{ V}$
- b) $i_B = 71.2 \mu A$, $U_I = 4.79 \text{ V}$
- c) $i_B = 79.2 \mu A$, $U_1 = 4.76 \text{ V}$
- d) $i_B = 79.2 \mu A$, $U_I = 4.28 \text{ V}$
- e) $i_B = 79.2 \mu A$, $U_1 = 5 \text{ V}$

7. Što će se dogoditi sa izlaznim naponom ako se ulazni napon promjeni sa 0 V na 5 V? Zadano je: $R_1 = 100 \text{ k}\Omega$, $R_2 = 10 \text{ k}\Omega$, $R_3 = 1 \text{ k}\Omega$, $R_4 = 3.3 \text{ k}\Omega$, $U_{Z1} = 3.3 \text{ V}$, $U_{Z2} = 4.7 \text{ V}$. Diode nisu idealne. (2 boda)

- a) Izlazni napon se neće promijeniti.
- b) Izlazni napon će promijeniti predznak iz pozitivnog u negativni.
- c) Izlazni napon će promijeniti predznak iz negativnog u pozitivni.
- d) Izlazni napon će porasti.
- e) Ne može se reći što će biti sa izlaznim naponom.

