COMP20005 Workshop Week 9

```
Representation of integers
Representation of floats
Numerical Computation & Root Finding
Small-group exercises
Implement:
• Ex 9.11 if you think you remember physics
• Output the bit-patterns of a double value
```

Numeral Systems

2 1 1 3 9 $2 \times 10^{2} + 1 \times 10^{1} + 1 \times 10^{0} + 3 \times 10^{-1} + 9 \times 10^{-2}$ $\Rightarrow base = 10$

```
Other bases: binary (base= 2), octal (base= 8) ... 21.3_{(8)} = 2 \times 8^{1} + 1 \times 8^{0} + 3 \times 8^{-1} = 17.375_{(10)}1001_{(2)} = 1 \times 2^{3} + 0 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0} = 9_{(10)}1021_{(2)} = ?
```

Changing Binary -> Decimal

Just expand using the base=2:

...
$$b_3$$
 b_2 b_1 b_0 b_{-1} b_{-2} ... (2) is ... $b_3x2^3 + b_2x2^2 + b_1x 2^1 + b_0 + b_{-1}x2^{-1} + b_{-2}x2^{-2}$... so 10101 and 1.101 are $2^5 + 2^3 + 1 = 41$ and $1 + 2^{-1} + 2^{-3} = 1.625$

Practical advise: remember

128 64 32 16 8 4 2 1 0.5 0.25 0.125 0.0625
$$2^7$$
 2^6 2^5 2^4 2^3 2^2 2^1 2^0 2^{-1} 2^{-2} 2^{-3} 2^{-4}

Changing Decimal -> Binary

Remember and apply the power-of-two sequence:

Algorithm: Decimal \rightarrow Binary, Integer Part

Changing integer x to binary: Just divide x and the subsequent quotients by 2 until getting zero. The sequence of remainders, in reverse order of appearance, is the binary form of x.

Example: 23

operation	quotoion	remainder
23 :2	11	1
11:2	5	1
5:2	2	1
2:2	1	0
1:2	0	1

So:
$$23 = 10111_{(2)}$$

Algorithm: Decimal -> Binary, Fraction Part

Fraction: Multiply it, and subsequent fractions, by 2 until getting zero. Result= sequence of integer parts of results, in appearance order. Examples:

0.	375		0.1
operation	int	fraction	operation int fraction
.375 x 2	0	.75	.1 x 2 0 .2
.75 x 2	1	.5	.2 x 2 0 .4
.5 x 2	1	.0	.4 x 2 0 .8
			.8 x 2 1 .6
			.6 x 2 1 .2

So: $0.375 = 0.011_{(2)}$ $0.1 = 0.00011(0011)_{(2)}$

Now try convert: 6.875 to binary

Converting Decimal->Binary

- $17_{(10)} = ?_{(2)}$
- 34₍₁₀₎ =
- $6.375_{(10)} =$

Representation of integers

representation of integers in w bits

CASE	w data bits for:	
x ≥ 0	binary form of x	
x < 0	twos-compliment form of x	

Examples using w=4, representation:

- of 2 is 0010
- of 5 is 0101
- of -5 is 1011

Finding twos-complement representation in w bits for negative numbers in 3 step

Suppose that we need to find the twos-complement representation of $-\infty$, where \times is positive, in w=16 bits. It can be done easily in 3 steps:

- 1) Find binary representation of |x| in w bits
- 2) Take the result above, inverse 1 to 0 and vice versa
- 3) Add 1 to the above to get the final twos-complement representation

find the 2-comp repr of -40		Bit seq	uence	
1) bin repr of 40 in 16 bits	0000	0000	0010	1000
2) inverse	1111	1111	1101	0111
3) add 1	1111	1111	1101	1000

Note: Step 3 (adding 1) can be easily be done by:

- finding the right most zero-bit, then
- inversing all bits from this position to the right end.

This note can be combined with steps 1-2 to make a shorter algorithm ©

Ex: 2-complement representation in w=16 bits

Q: What are 17, -17, 34, and -34 as 16-bit twoscomplement binary numbers, when written as (a) binary digits, and (b) hexadecimal digits?

Representation of floats

- 1 bit sign
- w_e bits two-compl of e
- w_m bits representation of first n bits of mantissa m
- Convert |x| to binary form, and transform so that: $|x| = 0.b_1b_2b_3... \times 2^e$ with $b_1 = 1$
- **e** is called exponent, $\mathbf{m} = b_1 b_2 b_3 \dots$ is called mantissa
- Three components: sign, **e**, **m** are represented as in the diagram.

Ex: Representation of float

Q: Using the same representation as on page 27 $(w=16, w_s=1, w_e=3, w_m=12)$ of the numericA.pdf slides, what are the floating point representations of -3.125, 17.5, and 0.09375, when written as (a) binary digits, and (b) hexadecimal digits?

Quiz

What is the binary form of $13.625_{(10)}$?

A. 1101.101

B. 1011.101

C. 1101.11

D. 1011.11

Quiz

What is the binary form of $65535_{(10)}$?

```
A. 1000 0000 0000 0001
```

```
B. 1000 0000 0000 0000
```

```
C. 111 1111 1111 1111
```

D. 1111 1111 1111 1111

Numerical Computations

int, float, double all have some range:

- int 32 bits: about $-2x10^9$ $2x10^9$
- int 64 bits:
- float
- double

computation on float/double is imprecise

- use fabs(x) < EPS instead of x==0
- adding a large value to a small value might have problems

Roof Finding for f(x)=0

Know about the methods:

- bracketing vs open
- bisection
- false position
- fixed-point iteration
- Newton-Raphson
- secant

Exercise

Re-examine the cube_root() function on page 77 of the textbook, croot.c. What method does it use? Explore what happens if: (a) very large numbers are provided as input; (b) very small (close to zero) numbers are provided; and (c) if ITERATIONS is made larger or smaller.

```
double cube_root(double v) {
    double x= 1.0;
    int i;
    ...
    for (i=0; i<ITERATIONS; i++) {
        x= (2*x+v/(x*x))/3;
    }
    return x;
}</pre>
```

Lab

- 1. Ex 9.11 if you think you remember physics
- 2. Output the bit-patterns of a double value

Hints for 2): mimic Alistair's floatbits.c, or DIY by

- a) using a "unsigned long long" pointer to access the "double" variable
- b) using bitwise operations to get value of a bit. For example, if n is an "unsigned long long" then:

```
(n >> (63-i)) & 1
```

would give the value of the i-th bit of n (from the left).

Decimal -> Binary: Integer Part

Changing integer x to binary: Just divide x and the subsequent quotients by 2 until getting zero. The sequence of remainders, in reverse order of appearance, is the binary form of x.

Example: 23

operation	quotoion	remainder
23 :2	11	1
11:2	5	1
5:2	2	1
2:2	1	0
1:2	0	1

So:
$$23 = 10111_{(2)}$$

Decimal → Binary: Fraction Part

Fraction: Multiply it, and subsequent fractions, by 2 until getting zero. Result= sequence of integer parts of results, in appearance order. Examples:

0.	375		0.1
operation	int	fraction	operation int fraction
.375 x 2	0	.75	.1 x 2 0 .2
.75 x 2	1	.5	.2 x 2 0 .4
.5 x 2	1	.0	.4 x 2 0 .8
			.8 x 2 1 .6
			.6 x 2 1 .2

So: $0.375 = 0.011_{(2)}$ $0.1 = 0.00011(0011)_{(2)}$

Now try convert: 6.875 to binary