Prova scritta finale Istituzioni di Analisi Matematica

Sorce Francesco Mat: 638936

Esercizio 1. Dire se sono veri o falsi i seguenti fatti.

- a. Siano $A \in B$ sottoinsiemi convessi compatti di uno spazio di Banach X. Allora $co(A \cup B)$ è compatto.
- b. Sia C un sottoinsieme compatto di uno spazio di Banach X. Allora co(C) è compatto.

Soluzione.

La prima affermazione è vera e la seconda falsa:

a. Per definizione gli elementi di $co(A \cup B)$ sono della forma

$$\sum_{i=1}^{n} \lambda_i a_i + \sum_{i=1}^{m} \mu_i b_i$$

dove $a_1, \dots, a_n \in A$, $b_1, \dots, b_m \in B$, $\lambda_i, \mu_i \in [0,1]$ e, ponendo $\lambda = \sum_{i=1}^n \lambda_i$ e $\mu = \sum_{i=1}^m \mu_i$, si ha $\lambda + \mu = 1$. Poiché A e B sono convessi si ha che

$$a = \sum_{i=1}^{n} \frac{\lambda_i}{\lambda} a_i \in A, \quad b = \sum_{i=1}^{m} \frac{\mu_i}{\mu} b_i \in B.$$

Segue che ogni elemento di $co(A \cup B)$ si può scrivere come $\lambda a + \mu b$ per opportuni $a \in A, b \in B$ e $\lambda, \mu \in [0, 1]$ tali che $\lambda + \mu = 1$.

Segue che $\operatorname{co}(A \cup B)$ è l'immagine della mappa

$$T: \begin{array}{ccc} A \times B \times [0,1] & \longrightarrow & X \\ (a,b,t) & \longmapsto & ta + (1-t)b \end{array}$$

Dotando $A \times B \times [0,1]$ della topologia prodotto, notiamo che T è continua perché composizione di mappe continue: $A \subseteq X$ e $B \subseteq X$ sono continue per definizione di topologia di sottospazio, il prodotto per scalari $\mathbb{R} \times X \to X$ è continuo perché X SVT e quindi anche le restrizioni $[0,1] \times A \to X$ e $[0,1] \times B \to X$ lo sono, $t \mapsto 1-t$ è continua su [0,1] e infine $+: X \times X \to X$ è continua sempre per definizione di SVT.

Poiché $A, B \in [0,1]$ sono compatti, anche $A \times B \times [0,1]$ è compatto per la topologia prodotto, dunque per continuità l'immagine di T, che è co $(A \cup B)$, è compatta.

b. Abbiamo visto che ℓ_1 è uno spazio di Banach con la norma $\|\cdot\|_1$. In questo spazio consideriamo

$$K = \{0\} \cup \left\{\frac{1}{n}e_n\right\}_{n \in \mathbb{N} \setminus \{0\}}.$$

Osserviamo che K è compatto perché se U è un aperto che contiene 0 allora questo aperto contiene una palla di raggio ε attorno a 0 per qualche $\varepsilon>0$, ma allora per $n>\varepsilon^{-1}$ si ha che $\frac{1}{n}e_n$ appartiene a questa palla e quindi all'aperto di partenza. Segue che possiamo estrarre un sottoricoprimento finito prendendo un aperto per ogni elemento $\frac{1}{n}e_n$ per $n\leq \varepsilon^{-1}$ e poi prendendo l'aperto di prima che contiene 0.

Prendendo l'inviluppo convesso co(K) troviamo

$$co(K) = \left\{ \sum_{i=1}^k \lambda_i \frac{1}{i} e_i \mid k \in \mathbb{N} \setminus \{0\}, \ \lambda_i \in \mathbb{R}_{\geq 0}, \ \sum_{i=1}^k \lambda_i \leq 1 \right\}$$

In questo insieme troviamo elementi della forma

$$u_n = \sum_{i=1}^n \frac{2^{-i}}{i} e_i$$

e questa successione converge in ℓ_1 a

$$u = \sum_{i=1}^{\infty} \frac{2^{-i}}{i} e_i,$$

quindi ogni sottosuccessione di (u_n) converge a u in ℓ_1 , ma $u \notin co(K)$ perché ogni successione in questo inviluppo convesso è definitivamente nulla, quindi co(K) non è sequenzialmente compatto e in quanto metrico questo significa che non è compatto.

Esercizio 2. Per X spazio di Banach sia $\iota_X: X \to X^{**}$ l'inclusione canonica di X nel suo bi-duale. Per quali spazi di Banach X è vero che il bi-trasposto dell'inclusione canonica $\iota_X^{**}: X^{**} \to X^{****}$ coincide con l'inclusione canonica del bi-duale $\iota_{X^{**}}: X^{**} \to X^{****}$?

Solutione.

Ricordiamo che $\iota_X: X \to X^{**}$ è data da $x \mapsto val_x$ e similmente $\iota_{X^{**}}$. Sia $\alpha \in X^{**}$ e consideriamo l'effetto delle due mappe:

$$\iota_{X^{**}}(\alpha) = val_{\alpha}: \begin{array}{ccc} X^{***} & \longrightarrow & \mathbb{K} \\ A & \longmapsto & A(\alpha) \end{array}$$

mentre per il bi-trasposto

$$\iota_X^*: \begin{array}{cccc} X^{***} & \longrightarrow & X^* \\ A & \longmapsto & A \circ \iota_X \end{array}, \quad \iota_X^{**}: \begin{array}{cccc} X^{**} & \longrightarrow & X^{****} \\ \alpha & \longmapsto & A \mapsto \alpha(A \circ \iota_X) \end{array}$$

$$\iota_X^{**}(\alpha): \begin{array}{cccc} X^{***} & \longrightarrow & \mathbb{K} \\ A & \longmapsto & \alpha(A \circ \iota_X) \end{array}$$

Quindi la richiesta è capire per quali spazi di Banach vale

$$A(\alpha) = \alpha(A \circ \iota_X) \quad \forall A \in X^{***}, \ \forall \alpha \in X^{**}.$$

Affermiamo che queste identità valgono se e solo se X è uno spazio di Banach riflessivo.

Se X è riflessivo allora per ogni $\alpha \in X^{**}$ esiste $x \in X$ tale che $\alpha = val_x$, da cui

$$\alpha(A \circ \iota_X) = A(\iota_X(x)) = A(val_x) = A(\alpha).$$

 \Longrightarrow Supponiamo ora che valga $\iota_X^{**} = \iota_{X^{**}}$. Abbiamo visto in classe che

$$X$$
 riflessivo $\iff X^*$ riflessivo $\iff X^{**}$ riflessivo,

quindi proviamo a mostrare che ι_X^* è iniettiva, infatti se lo è allora per il teorema dell'immagine chiusa

$$\operatorname{Imm} \iota_{X^{**}} = \operatorname{Imm} \iota_X^{**} = (\ker \iota_X^*)^{\perp} = \{0\}^{\perp} = X^{****}.$$

Per mostrare l'iniettività voluta è sufficiente trovare una inversa sinistra. Consideriamo la composizione $\iota_{X^*} \circ \iota_X^*$:

$$\iota_{X^*}(\iota_X^*(A))(\alpha) = \iota_{X^*}(A \circ \iota_X)(\alpha) = \alpha(A \circ \iota_X) \stackrel{\iota_X^{**} = \iota_{X^{**}}}{=} A(\alpha) = id_{X^{***}}(A)(\alpha),$$

cioè $\iota_{X^*} \circ \iota_X^* = id_{X^{***}}$ come voluto.

Lemma 1.

Sia H uno spazio di Hilbert, $A \in L(H)$ autoaggiunto non-negativo, $n \in \mathbb{N}$. Supponiamo che esista $B \in L(H)$ simmetrico non-negativo tale che $B^n = A$, allora

$$\ker A = \ker B$$

Dimostrazione.

Se $Ax \neq 0$ allora

$$0 \neq Ax = (B)^{n-1}Bx \implies Bx \neq 0.$$

Supponiamo ora che Ax = 0. Se n = 2m allora

$$0 = Ax \cdot x = B^n x \cdot x = ||B^m||^2 \implies B^m x = 0.$$

Se n=2m-1 allora

$$0 = Ax \cdot Bx = B^{2m-1}x \cdot Bx = ||B^m x||^2 \implies B^m x = 0.$$

Poiché $m \leq n$ in entrambe le scritture con uguaglianza che vale solo per n=1, in un numero di passi finiti arriviamo a mostrare che Bx=0.

Lemma 2.

Sia $T \in L(H)$ un operatore autoaggiunto non-negativo. Allora T è iniettivo se e solo se è positivo.

Dimostrazione.

Abbiamo visto in classe (o comunque è possibile leggere il primo paragrafo del prossimo esercizio) che T ammette una radice \sqrt{T} simmetrica non negativa.

Se T è iniettivo allora per il lemma (1) \sqrt{T} è iniettivo, quindi se $x \neq 0$ si ha che

$$Tx \cdot x = \sqrt{T^2}x \cdot x = \left\|\sqrt{T}x\right\|^2 > 0.$$

Viceversa, se T è positivo allora per $x \neq 0$ si ha $Tx \cdot x > 0$, quindi in particolare $Tx \neq 0$.

Esercizio 3. Sia H uno spazio di Hilbert, $A \in L(H)$ autoaggiunto non-negativo, $n \in \mathbb{N}$. Provare che esiste un unico $B \in L(H)$ autoaggiunto non-negativo tale che $B^n = A$.

Soluzione.

Per quanto sappiamo sullo spettro di operatori simmetrici non-negativi

$$\sigma(A) \subseteq \left[\inf_{\|x\|=1} Ax \cdot x, \sup_{\|x\|=1} Ax \cdot x\right] \subseteq [0, \infty).$$

Poiché $\sqrt[n]{\Phi}$ è una funzione continua non-negativa ben definita su $[0,\infty)$, per quanto sappiamo sul calcolo funzionale esiste un operatore simmetrico non-negativo $\sqrt[n]{A}$. Poiché la mappa $\Phi: C^0(\sigma(A),\mathbb{C}) \to L(H)$ è un omomorfismo, $\sqrt[n]{A}^n = A$ quindi è della forma cercata.

Sia ora B simmetrico non-negativo tale che $B^n = A$ qualsiasi e mostriamo che $B = \sqrt[n]{A}$. Notiamo che B commuta con A in quanto $BA = B^{n+1} = AB$, quindi B commuta anche con $\sqrt[n]{A}$: se p_n è una successione di polinomi che tende a $\sqrt[n]{\bullet}$ allora

$$B\sqrt[n]{A}x = B\lim_{n} p_n(A)x = \lim_{n} Bp_n(A)x = \lim_{n} p_n(A)Bx = \sqrt[n]{A}Bx.$$

Scriviamo $H = H_1 \oplus H_0$ con $H_0 = \ker A$ e $H_1 = (\ker A)^{\perp} = \overline{\operatorname{Imm} A}$. Per costruzione $A_{\mid_{H_1}} : H_1 \to H_1$ è iniettivo e

$$\left(\sqrt[n]{A}\right)|_{H_1} = \sqrt[n]{A|_{H_1}}$$

per definizione. Poiché B e $\sqrt[n]{A}$ commutano con A, preservano spazi invarianti per A, quindi preservano la decomposizione $H = H_1 \oplus H_0$. Possiamo dunque ricondurci a studiare separatamente i casi $H = \ker A$ e A iniettivo.

 $\ker A = (0)$ Poiché $B \in \sqrt[n]{A}$ commutano vale

$$0 = B^{n} - (\sqrt[n]{A})^{n} = \left((\sqrt[n]{A})^{n-1} + B(\sqrt[n]{A})^{n-2} + \dots + B^{n-2}\sqrt[n]{A} + B^{n-1} \right) (B - \sqrt[n]{A}).$$

Poiché A è iniettivo anche $\sqrt[n]{A}$ è iniettivo per il lemma (1), quindi anche $(\sqrt[n]{A})^{n-1}$ è iniettivo. Essendo questa potenza anche simmetrica non-negativa è anche un operatore positivo per il lemma (2). Poiché

$$\left((\sqrt[n]{A})^{n-1} + B(\sqrt[n]{A})^{n-2} + \dots + B^{n-2}\sqrt[n]{A} + B^{n-1} \right) \ge (\sqrt[n]{A})^{n-1} > 0$$

si ha che quella somma è iniettiva in quanto positiva per il lemma (2), quindi dall'equazione sopra troviamo $B - \sqrt{A} = 0$, infatti se $x \in H$ allora per iniettività $(B - \sqrt{A})x = 0$ se e solo se

$$0 = \left((\sqrt[n]{A})^{n-1} + B(\sqrt[n]{A})^{n-2} + \dots + B^{n-2}\sqrt[n]{A} + B^{n-1} \right) (B - \sqrt[n]{A})x$$

che è vero.

 $\ker A = H$ Per il lemma (1)

$$H = \ker A = \ker B = \ker \sqrt[n]{A}$$

quindi $B = \sqrt[n]{A}$ in quanto sono entrambi l'operatore nullo.

Lemma 3.

U è un isomorfismo isometrico se e solo se è unitario, cioè $U^* = U^{-1}$.

Dimostrazione

Se $U^* = U^{-1}$ allora $x \cdot y = U^*Ux \cdot y = Ux \cdot Uy$. Viceversa se $Ux \cdot Uy = x \cdot y$ per ogni x e y allora $U^*Ux \cdot y = x \cdot y$ per ogni x e y, dunque $U^*U = id_H$. Poiché id_H è autoaggiunto segue anche $UU^* = id_H$.

Esercizio 4. Sia H uno spazio di Hilbert, $T \in L(H)$.

- a. Provare che esistono un unico operatore $S \in L(H)$ autoaggiunto non-negativo e un'unica isometria $U : \overline{\operatorname{Imm} T^*} \to \overline{\operatorname{Imm} T}$ tali che T = US.
- **b.** Si descriva l'operatore U e le sue iterate U^n nel caso dell'operatore di Volterra $T \in L(L^2([0,\pi],\mathbb{C}))$ definito da

$$(Tu)(x) := \int_0^x u(t)dt.$$

Solutione.

Poiché siamo su uno spazio di Hilbert $T^{**}=T$. Per un conto visto in classe $\overline{\operatorname{Imm} T}=(\ker T^*)^{\perp}$ (annullatore e preannullatore sono la stessa cosa su spazi di Hilbert), quindi $H=\overline{\operatorname{Imm} T}\oplus\ker T^*$ in quanto esiste un proiettore ortogonale con immagine $\ker T^*$ e nucleo $(\ker T^*)^{\perp}$ ($\ker T^*$ è chiuso perché preimmagine di 0 tramite T^* che è continuo). Analogamente $H=\overline{\operatorname{Imm} T^*}\oplus\ker T$.

Fissiamo una successione di polinomi p_n che converge a $\sqrt{\bullet}$ tali che $p_n(0) = 0$, che possiamo fare perché $\sqrt{0} = 0$.

- a. Mostriamo prima l'unicità e poi esistenza
 - $|\cdot|$ Se T = US allora

$$T^*T = SU^*US \stackrel{(3)}{=} S^2 \implies S = \sqrt{T^*T} = |T|$$

dove questa implicazione segue dall'esercizio precedente (T^*T è simmetrico perché $T^{**}=T$ e non negativo perché $T^*Tx \cdot x = Tx \cdot Tx = \|Tx\|^2 \geq 0$). Osserviamo che ker $S = \ker T$, infatti per il lemma (1) ker $|T| = \ker T^*T$ e poiché $H = \overline{\operatorname{Imm}}T \oplus \ker T^*$ si ha che ker $T^*T = \ker T$. Segue dunque che $S|_{\overline{\operatorname{Imm}}T^*}$ è iniettiva ma ha la stessa immagine di S, cioè è un isomorfismo con l'immagine, da cui

$$U = T(S|_{\overline{\operatorname{Imm}}\,T^*})^{-1} = (T|_{\overline{\operatorname{Imm}}\,T^*})(S|_{\overline{\operatorname{Imm}}\,T^*})^{-1}.$$

|T| è autoaggiunto e non-negativo per l'esercizio precedente. Il dominio di U è la chiusura dell'immagine di $S_{|\overline{\text{Imm}}T^*}$, che per quanto detto è la chiusura dell'immagine di $S = |T| = \sqrt{T^*T}$. Notiamo che $\text{Imm}(T^*T) = \text{Imm}\,T^*$ in quanto $\ker T^*$ è in somma diretta con $\overline{\text{Imm}}T$. Per definizione

$$|T| x = \lim_{n} p_n(T^*T)x \stackrel{p_n(0)=0}{\in} \overline{\operatorname{Imm}(T^*T)} = \overline{\operatorname{Imm} T^*}.$$

 $^{^{1}}$ Il corrispondente operatore S è stato calcolato nelle esercitazioni.

Viceversa, se consideriamo $y = T^*x$ allora a meno di cambiare rappresentante in $H/\ker T^*$ possiamo supporre $x \in \overline{\mathrm{Imm}\, T}$. Sia z_n una successione tale che $Tz_n \to x$ e notiamo che per continuità $T^*Tz_n = |T| (|T|z_n) \to y$, cioè $y \in \overline{\mathrm{Imm}\, |T|}$.

Osserviamo ora che $\operatorname{Imm} U = \overline{\operatorname{Imm} T}$. Per quanto detto il contenimento \subseteq è evidente in quanto $T(\overline{\operatorname{Imm} T^*}) = \operatorname{Imm} T$, vicevesa se $y = \lim_n T x_n$ allora, a meno di cambiare classe in $H/\ker T$, si ha che $x_n = T^*z_n$ e quindi $y = \lim_n TT^*z_n = T(\lim_n T^*z_n)$ e per quanto detto $\overline{\operatorname{Imm} T^*} = \operatorname{Imm}((S|_{\overline{\operatorname{Imm} T^*}})^{-1})$.

Per concludere basta mostrare che U è unitario per il lemma (3):

$$\begin{split} UU^* = & (T_{|\overline{\text{Imm }T^*}})(S_{|\overline{\text{Imm }T^*}})^{-1}((S_{|\overline{\text{Imm }T^*}})^{-1})^*(T_{|\overline{\text{Imm }T^*}})^* = \\ = & (T_{|\overline{\text{Imm }T^*}})((T^*T)_{|\overline{\text{Imm }T^*}})^{-1}(T^*)_{|\overline{\text{Imm }T}} = \\ = & \left(T_{|\overline{\text{Imm }T^*}}(T_{|\overline{\text{Imm }T^*}})^{-1}\right)\left((T^*_{|\overline{\text{Imm }T}})^{-1}T^*_{|\overline{\text{Imm }T}}\right) = id_{\overline{\text{Imm }T}} \end{split}$$

$$\begin{split} U^*U = & ((S|_{\overline{\operatorname{Imm}}\,T^*})^{-1})^* (T|_{\overline{\operatorname{Imm}}\,T^*})^* (T|_{\overline{\operatorname{Imm}}\,T^*}) (S|_{\overline{\operatorname{Imm}}\,T^*})^{-1} = \\ = & ((S|_{\overline{\operatorname{Imm}}\,T^*})^{-1}) (T^*T|_{\overline{\operatorname{Imm}}\,T^*}) (S|_{\overline{\operatorname{Imm}}\,T^*})^{-1} = \\ = & ((S|_{\overline{\operatorname{Imm}}\,T^*})^{-1}) (S|_{\overline{\operatorname{Imm}}\,T^*}) (S|_{\overline{\operatorname{Imm}}\,T^*}) (S|_{\overline{\operatorname{Imm}}\,T^*})^{-1} = id_{\overline{\operatorname{Imm}}\,T^*}. \end{split}$$

b. Ricordiamo che gli autovalori di T^*T per l'operatore di Vitali con $I=[0,\pi]$ sono

$$\lambda_n = \frac{4}{(2n+1)^2},$$

al variare di $n \in \mathbb{N}$, con relative autofunzioni normalizzate

$$\varphi_n(x) = \sqrt{\frac{2}{\pi}} \cos\left(\frac{(2n+1)}{2}x\right)$$

Abbiamo visto che

$$|T|\,\varphi_n = \sqrt{\lambda_n}\varphi_n.$$

Poiché ogni $u \in L^2(I)$ si scrive

$$u = \sum_{n \ge 0} \langle u, \varphi_n \rangle \, \varphi_n,$$

per $u \in \overline{\operatorname{Imm} T^*}$ abbiamo

$$\begin{split} Uu(x) = & T \, |T|^{-1} \, u(x) = \sum_{n \geq 0} \frac{\langle u, \varphi_n \rangle}{\sqrt{\lambda_n}} T \varphi_n(x) = \int_0^x \sum_{n \geq 0} \frac{\langle u, \varphi_n \rangle}{\sqrt{\lambda_n}} \varphi_n(s) ds = \\ & = \int_0^x \int_I \sum_{n \geq 0} \frac{1}{\sqrt{\lambda_n}} u(t) \varphi_n(t) \varphi_n(s) dt ds = \\ & = \int_I \left(\sum_{n \geq 0} \frac{1}{\sqrt{\lambda_n}} \varphi_n(t) \int_0^x \varphi_n(s) ds \right) u(t) dt = \\ & = \int_I \left(\sum_{n \geq 0} \frac{1}{\sqrt{\lambda_n}} \sqrt{\frac{2}{\pi}} \cos \left(\frac{(2n+1)}{2} t \right) \sqrt{\frac{2}{\pi}} \sqrt{\lambda_n} \sin \left(\frac{(2n+1)}{2} x \right) \right) u(t) dt = \\ & = \int_I \left(\sum_{n \geq 0} \frac{2}{\pi} \cos \left(\frac{(2n+1)}{2} t \right) \sin \left(\frac{(2n+1)}{2} x \right) \right) u(t) dt = \\ & = -\frac{\partial}{\partial x} \left(\int_I \left(\sum_{n \geq 0} \frac{4}{\pi (2n+1)} \cos \left(\frac{(2n+1)}{2} t \right) \cos \left(\frac{(2n+1)}{2} x \right) \right) u(t) dt \right) = \\ & = -\frac{\partial}{\partial x} (|T| u(x)) = \left(-\frac{\partial}{\partial x} |T| \right) u. \end{split}$$

Lemma 4.

$$Sia\ X \subseteq E^*,\ allora\ \overline{\operatorname{Span}_{\mathbb{R}} X}^{w^*} = \overline{\operatorname{Span}_{\mathbb{Q}} X}^{w^*}.$$

Dimostrazione

Basta mostrare che $\operatorname{Span}_{\mathbb{R}} X \subseteq \overline{\operatorname{Span}_{\mathbb{Q}} X}^{w^*}$. Poiché $(E^*, w^*) \to (E^*, \|\cdot\|_{E^*})$ è continua in realtà basta mostrare

$$\operatorname{Span}_{\mathbb{R}} X \subseteq \overline{\operatorname{Span}_{\mathbb{Q}} X}^{\|\cdot\|}.$$

Senza perdita di generalità supponiamo $X = \operatorname{Span}_{\mathbb{Q}} X$. L'unica cosa da dimostrare che se $x \in X$ allora $\lambda x \in \overline{X}$ per ogni $\lambda \in \mathbb{R}$. Sia $(\lambda_n) \subseteq \mathbb{Q}$ una successione convergente a λ .

$$\|\lambda x - \lambda_n x\| = |\lambda - \lambda_n| \|x\| \to 0$$

quindi $\lambda_n x \xrightarrow{\|\cdot\|} \lambda x$ e dunque λx appartiene alla chiusura.

Esercizio 5. Sia E uno spazio vettoriale topologico su \mathbb{R} localmente convesso metrizzabile e separabile. È vero che il duale E^* è separabile rispetto alla topologia $\sigma(E^*, E)$?

Soluzione.

Mostriamo che E^* è w^* -separabile. Ricordiamo che per spazi metrici separabilità equivale a II-numerabilità, quindi E è topologizzato da una quantità numerabile di seminorme $\{q_i\}_{i\in\mathbb{N}}$. Sia $\{e_i\}_{i\in\mathbb{N}}$ un sottoinsieme numerabile denso di E.

Ricordiamo che $Y \subseteq E^*$ R-sottospazio vettoriale è denso per la topologia debole star se

$$E^* = \overline{Y}^{w^*} = \overline{\operatorname{Span}(Y)}^{w^*} = (Y_\perp)^\perp.$$

Per il lemma (4), se Y è un \mathbb{Q} -sottospazio vettoriale allora $\overline{Y}^{w^*} = \overline{\operatorname{Span}_{\mathbb{R}} Y}^{w^*} = (Y_{\perp})^{\perp}$, quindi se troviamo $Z \subseteq E^*$ numerabile tale che $Z_{\perp} = (0)$ allora

$$(0) = Z_{\perp} = \operatorname{Span}_{\mathbb{Q}}(Z)_{\perp} \implies \overline{\operatorname{Span}_{\mathbb{Q}} Z}^{w^*} = \overline{\operatorname{Span}_{\mathbb{R}} Z}^{w^*} = (Z_{\perp})^{\perp} = E^*$$

cioè $\operatorname{Span}_{\mathbb{Q}} Z$ sarebbe numerabile ($|\operatorname{Span}_{\mathbb{Q}} Z| \leq \aleph_0 \times \aleph_0 = \aleph_0$) e w^* -denso in E^* come voluto.

Costruiamo un un tale Z: Notiamo che q_i è sublineare (per definizione di seminorma), quindi se $\widetilde{f}_{i,j} \in \langle x_j \rangle$ è definito da $\widetilde{f}_{i,j}(\lambda x_j) = \lambda q_i(x_j)$ allora esso si estende per il teorema di Hahn-Banach ad un funzionale $f_{i,j} \in E^*$ tale che $f_{i,j} \leq q_i$.

Affermiamo che $Z = \{f_{i,j}\}_{(i,j) \in \mathbb{N}^2}$ ha la proprietà cercata: vogliamo mostrare che se $x \in Z_{\perp}$, cioè $x \in E$ è tale che $f_{i,j}(x) = 0$ per ogni $i, j \in \mathbb{N}$, allora x = 0. Poiché E^* è Hausdorff e topologizzato dalle q_i , basta mostrare che $q_i(x) = 0$ per ogni i. Sia (e_{j_k}) una sottosuccessione del denso in E che converge a x e notiamo che

$$q_i(e_{j_k}) = f_{i,j_k}(e_{j_k}) = f_{i,j_k}(e_{j_k} - x) \le q_i(e_{j_k} - x),$$

quindi passando al limite in k per entrambi i membri troviamo $q_i(x) \le q_i(x-x) = 0$, cioè $q_i(x) = 0$ come voluto.

Esercizio 6. Sia F uno spazio vettoriale topologico su $\mathbb C$ localmente convesso metrizzabile completo. Sia $T: F \to F$ lineare continuo. Sia $\Sigma = \{\lambda \in \mathbb C: T - \lambda \text{ non è un omeomorfismo}\}$. Cosa è sempre vero?

- **a.** Σ è chiuso;
- **b.** $\Sigma \neq \emptyset$;
- c. $\Sigma \neq \mathbb{C}$.

Solutione.

b. e **c.** non sono sempre vere.

a.

b. Sia $E = C^{\infty}(\mathbb{R}, \mathbb{C})$ visto con la topologia indotta dalle norme $\|\cdot\|_{\infty, m, [-n, n]}$ al variare di $n, m \in \mathbb{N}$. Procedendo come in classe si mostra che E è di Fréchet. Sia

$$F = \left\{ f \in E \mid f^{(p)}(0) = 0, \ \forall p \in \mathbb{N} \right\}$$

e notiamo che F è chiuso in E, quindi è ancora di Fréchet.

Sia $T = \frac{d}{dx}$ l'operatore derivata e, per definizione, questo è un endomorfismo continuo di E. Inoltre $T_{\mid F}$ è un endomorfismo di F in quanto se $f \in F$ allora $f^{(p+1)}(0) = 0$ in quanto lo abbiamo imposto per ogni derivata. Cerchiamo ora una inversa continua di $T - \lambda$, ma per quanto sappiamo sulle equazioni differenziali l'unica possibilità è

$$S_{\lambda}(f)(x) = e^{\lambda x} \int_{0}^{x} e^{-\lambda t} f(t) dt.$$

 S_{λ} è chiaramente lineare in fe inverte $T-\lambda.$ S_{λ} è continua in quanto

$$||S_{\lambda}(f)||_{\infty,m,[-n,n]} = \max_{p \le m} ||T^{p}S_{\lambda}(f)||_{\infty,[-n,n]} = \max_{p \le m} ||T^{p-1}(\lambda S_{\lambda}(f) + f)||_{\infty,[-n,n]} =$$

$$= \max_{p \le m} ||\lambda T^{p-1}(S_{\lambda}(f)) + f^{(p-1)}||_{\infty,[-n,n]} =$$

$$= \max_{p \le m} ||f^{(p-1)} + \lambda f^{(p-2)} + \dots + \lambda^{p-1} f + \lambda^{p} S_{\lambda}(f)||_{\infty,[-n,n]} \le$$

$$\le \frac{1 - |\lambda|^{p}}{1 - |\lambda|} ||f||_{\infty,m,[-n,n]} + \max_{\substack{p \le m \\ i \ne M_{m}}} |\lambda|^{p} ||S_{\lambda}(f)||_{\infty,[-n,n]} \le$$

$$\le \frac{1 - |\lambda|^{p}}{1 - |\lambda|} ||f||_{\infty,m,[-n,n]} + M_{m} 2n ||f||_{\infty,[-n,n]} \le$$

$$\le \left(\frac{1 - |\lambda|^{p}}{1 - |\lambda|} + 2nM_{m}\right) ||f||_{\infty,m,[-n,n]}$$

per $|\lambda| \neq 1$, se $|\lambda| = 1$ allora in modo simile

$$||S_{\lambda}(f)||_{\infty,m,[-n,n]} = \max_{p \le m} ||T^{p}S_{\lambda}(f)||_{\infty,[-n,n]} = \max_{p \le m} ||T^{p-1}(\lambda S_{\lambda}(f) + f)||_{\infty,[-n,n]} =$$

$$= \max_{p \le m} ||\lambda T^{p-1}(S_{\lambda}(f)) + f^{(p-1)}||_{\infty,[-n,n]} =$$

$$= \max_{p \le m} ||f^{(p-1)} + \lambda f^{(p-2)} + \dots + \lambda^{p-1} f + \lambda^{p} S_{\lambda}(f)||_{\infty,[-n,n]} \le$$

$$\leq \max_{p \le m} (p-1) ||f||_{\infty,m,[-n,n]} + ||S_{\lambda}(f)||_{\infty,[-n,n]} \le$$

$$\leq (m-1+2n) ||f||_{\infty,m,[-n,n]}.$$

In ogni caso $||S_{\lambda}(f)||_{\infty,m,[-n,n]}$ è limitata e quindi S_{λ} è continua, mostrando che $T-\lambda$ è un omeomorfismo.

- c. Topologicamente, identifichiamo \mathbb{C} con \mathbb{R}^2 nel modo standard. Sia $K_n = \overline{B(0,n)}$ e notiamo che ogni K_n è compatto, $K_n \subseteq K_{n+1}$ per ogni $n \in \bigcup_{n \in \mathbb{N}} K_n = \mathbb{C}$. Poniamo $F = C^0(\mathbb{C}, \mathbb{C})$ munito della topologia indotta dalle seminorme $\left\{\|\cdot\|_{\infty,K_n}\right\}_{n \in \mathbb{N}}$. Queste sono effettivamente seminorme come \mathbb{C} -spazio vettoriale, infatti per ogni K compatto
 - $\begin{aligned} &- \|f\|_{\infty,K} = \max_{K} |f| \ge 0 \\ &- \|\lambda f\|_{\infty,K} = \max_{K} |\lambda f| = |\lambda| \max_{K} |f| = |\lambda| \|f\|_{\infty,K} \\ &- \|f + g\|_{\infty,K} = \max_{K} |f + g| \le \max_{K} |f| + \max_{K} |g| = \|f\|_{\infty,K} + \|g\|_{\infty,K}. \end{aligned}$

Abbiamo visto che una topologia indotta da una famiglia di seminorme è una topologia di SVTLC, quindi dobbiamo solo verificare metrizzabilità e completezza. Come distanza possiamo considerare

$$d(f,g) = \sum_{j>0} 2^{-j} \arctan(\|f - g\|_{\infty,K_j}).$$

La topologia indotta è completa perché se $(f_n) \subseteq F$ è di Cauchy, cioè $(f_n|_{K_j})$ è di Cauchy rispetto a $\|\cdot\|_{\infty,K_j}$ per ogni j, allora f_n converge uniformemente su questi compatti. In particolare possiamo definire un limite f puntualmente ma questo è continuo perché deriva da una convergenza uniforme su compatti.

Consideriamo ora la funzione

$$T: \begin{array}{ccc} F & \longrightarrow & F \\ f & \longmapsto & z \mapsto z f(z) \end{array}$$

Questa mappa è ben definita perché se f è continua $\mathbb{C} \to \mathbb{C}$ allora zf è continua. T è lineare per verifica diretta

$$z((\lambda f + \mu g)(z)) = z(\lambda f(z) + \mu g(z)) = \lambda z f(z) + \mu z g(z)$$

e continua perché per ogni compatto $K\subseteq\mathbb{C}$ si ha

$$\|zf(z)\|_{\infty,K} \le \max_K |z| \, \|f(z)\|_{\infty,K}$$

cioè per ogni seminorma $q=\|\cdot\|_{\infty,K}$ che topologizza F, esiste $M=\max_K |z|$ e una seminorma $p=\|\cdot\|_{\infty,K}$ tale che $q(T(f))\leq Mp(f)$ per ogni $f\in F$.

Osserviamo che $T-\lambda$ non è mai un omeomorfismo perché in particolare non è mai surgettiva: un generico elemento g dell'immagine è della forma

$$g(z) = zf(z) - \lambda f(z) = (z - \lambda)f(z),$$

in particolare $g(\lambda) = 0 \cdot f(\lambda) = 0$. Poiché esistono elementi di F che non si annullano in λ per un qualsiasi $\lambda \in \mathbb{C}$, $T - \lambda$ non è surgettiva.

Lemma 5.

Se $h \in C^{\infty}(\mathbb{R}, \mathbb{C})$ e $u \in \mathcal{D}'(\mathbb{R})$ allora D(hu) = h'u + hDu.

Dimostrazione.

Sia $\phi \in \mathcal{D}(\mathbb{R})$ e vediamo che le due espressioni coincidono

$$D(hu)(\phi) = -(hu)(\phi') = -u(h\phi') =$$

$$= -u((h\phi)' - h'\phi) =$$

$$= Du(h\phi) + u(h'\phi) =$$

$$= hDu(\phi) + h'Du(\phi).$$

Lemma 6.

Se $u \in \mathcal{D}'(\mathbb{R})$ risolve l'equazione Du = 0 allora $u = T_c$ dove $c \in C^{\infty}(\mathbb{R}, \mathbb{C})$ è una funzione costante.

Dimostrazione.

Se Du=0 allora per ogni $\phi\in\mathcal{D}(\mathbb{R})$ si ha $u(\phi')=0$. Fissiamo $\sigma\in\mathcal{D}(\mathbb{R})$ tale che $\int \sigma dx=1$ (basta prendere una qualsiasi funzione in $\mathcal{D}(\mathbb{R})$ con integrale non nullo e normalizzare) e poniamo $c=u(\sigma)$.

Se $\phi \in \mathcal{D}(\mathbb{R})$ poniamo $w = \int \phi dx$ e notiamo che $w\sigma - \phi$ è la derivata di $\alpha(x) = \int_{-\infty}^{x} w\sigma(t) - \phi(t)dt$, che è liscia a supporto finito: il supporto è contenuto in co(supp $\sigma \cup$ supp ϕ), limitato inferiormente per ovvi motivi e superiormente perché

$$\int_{\mathbb{R}} w\sigma(t) - \phi(t)dt = w \cdot 1 - \int \phi dt = w - w = 0$$

e $\alpha(t)$ è costante per $t > \sup \operatorname{co}(\sup \sigma \cup \sup \phi)$. $\alpha(x)$ è liscia perché ha derivata liscia.

Per quanto detto segue che $u(w\sigma - \phi) = u(\alpha') = 0$, cioè

$$0 = u(w\sigma - \phi) = wc - u(\phi) \iff u(\phi) = \int c\phi dx = T_c(\phi)$$

ovvero $u = T_c$ come volevamo.

Esercizio 7. Sia $P \in \mathbb{C}[z]$. Si consideri l'equazione ordinaria omogenea a coefficienti costanti P(D)u = 0. Vi sono soluzioni distribuzionali² $u \in \mathcal{D}'(\mathbb{R})$ oltre a quelle classiche in $C^{\infty}(\mathbb{R}, \mathbb{C})$?

 $^{^2}$ Cioè interpretando D come la derivata distribuzionale $D:\mathcal{D}'(\mathbb{R})\to\mathcal{D}'(\mathbb{R})$

Soluzione.

Per evitare equazioni banali supponiamo $P \neq 0$, altrimenti ogni distribuzione sarebbe una soluzione. Possiamo dunque senza perdita di generalità supporre P monico. Se deg P=0, cioè P=1 in quanto monico, allora abbiamo l'equazione u=0, e effettivamente $0=T_0$ quindi $u\in C^{\infty}(\mathbb{R},\mathbb{C})$. Supponiamo ora $n\geq 1$ e fattorizziamo $P(z)=\prod_{i=1}^n(z-\alpha_i)$.

Mostriamo per induzione su n che per ogni $f \in C^{\infty}(\mathbb{R}, \mathbb{C})$ le soluzioni di P(D)u = f sono funzioni lisce. La tesi segue considerando f = 0.

Stiamo considerando un'equazione della forma $Du - \lambda u = f$. Per la teoria classica esiste una soluzione particolare u_P della forma T_h per qualche $h \in C^{\infty}(\mathbb{R}, \mathbb{C})$, quindi basta mostrare che la tesi vale per il caso omogeneo perché in tal caso $u - u_P = T_g$ e quindi $u = T_{g+h}$.

Sia $h = e^{-\lambda x}$ e notiamo che se u è soluzione

$$D(hu) \stackrel{(5)}{=} h'u + hDu = -\lambda hu + hDu = h(Du - \lambda u) = 0$$

quindi hu è costante per il lemma (6), cioè $e^{-\lambda x}u=T_c$ e quindi $u=e^{\lambda x}T_c=T_{ce^{\lambda x}}$, che è una funzione classica.

> 1 | Consideriamo prima il caso omogeneo: se P(D)u = 0 allora

$$(D - \alpha_n) \frac{P(z)}{(z - \alpha_n)} (D) u = 0,$$

cioè $\frac{P(z)}{(z-\alpha_n)}(D)u$ risolve $(D-\alpha_n)v=0$, dunque per ipotesi induttiva forte $\frac{P(z)}{(z-\alpha_n)}(D)u$ è una soluzione classica, che chiamiamo g. Allora u risolve

$$\frac{P(z)}{(z-\alpha_n)}(D)u = g$$

e per induzione sul grado questo conclude il caso omogeneo.

Consideriamo ora il caso generale P(D)u = f. Dalla teoria classica esiste una soluzione particolare classica $u_P = T_h$ e per linearià $u - u_P$ deve essere una soluzione di P(D)v = 0. Per il caso omogeneo $u - u_P$ deve essere T_h per qualche h funzione liscia, ma allora $u = T_{h+g}$ e quindi u stessa è una soluzione classica.