WO 03/106709

PCT/GB03/02524

- 1 -

SEQUENCE LISTING

<110> AstraZeneca AB 5 <120> Methods <130> JHU/100691-1 GB 10APR02 <140> 10 <141> <160> 17 <170> PatentIn Ver. 2.1 15 <210> 1 <211> 25 <212> DNA <213> Artificial Sequence 20 <220> <223> Description of Artificial Sequence: PCR forward primer OATP8-1F 25 <400> 1 aggccctgaa tgaatattag agaa 24 <210> 2 30 <211> 25 <212> DNA <213> Artificial Sequence <220> 35 <223> Description of Artificial Sequence:PCR reverse primer OATPF8-1R <400> 2 taatgtacgc ttcaatggaa aaat 24 40 <210> 3 <211> 24 <212> DNA 45 <213> Artificial Sequence

45 <400> 6

<220> <223> Description of Artificial Sequence: PCR forward primer OATP8-2F 5 <400> 3 24 ttactttctt catctatgga ggac 10 <210> 4 <211> 24 <212> DNA <213> Artificial Sequence 15 <220> <223> Description of Artificial Sequence:PCR reverse primer OATP8-2R <400> 4 24 20 aaagetgact ctagatgatt tgag <210> 5 <211> 24 25 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: PCR forward 30 primer OATP8-3F <400> 5 24 taagatatgc atactgggga gaaa 35 <210> 6 <211> 23 <212> DNA <213> Artificial Sequence 40 <220> <223> Description of Artificial Sequence:PCR reverse primer OATP8-3R

- 3 -

	ctgcaggatc ttaatgggag gtt	23
_	<210> 7	
5	<211> 24	
	<212> DNA	
•	<213> Artificial Sequence	
10	<220>	
·	<223> Description of Artificial Sequence:PCR forward	
	primer OATP8-4F	
	<400> 7	
	taagatatgc atactgggga gaaa	24
15	caagacacac acac-sagga gama	
	<210> 8	
	<211> 23	
	<212> DNA	
20	<213> Artificial Sequence	
	<220>	
	<223> Description of Artificial Sequence: PCR reverse	
	primer OATP8-4R	
25		
	<400> 8	
	ctgcaggatc ttaatgggag gtt	23
~~		
30	<210> 9	
	<211> 24	
	<212> DNA	
	<213> Artificial Sequence	
35	<220>	
JJ	<pre><223> Description of Artificial Sequence:PCR forward</pre>	
	primer OATP8-5F	
	•	
	<400> 9	
40	tttgagggaa ggtacaatgt cttg	24
	<210> 10	

<211> 24

45 <212> DNA

-4-

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:PCR reverse primer OATP8-5R

<400> 10

tctcaaaagg taactgccca ctta

24

10

<210> 11

<211> 24

<212> DNA

<213> Artificial Sequence

15

<220>

<223> Description of Artificial Sequence:PCR forward primer OATP8-6F

20 <400> 11

tgtaagccaa accaatggaa taat

24

<210> 12

25 <211> 24

<212> DNA

<213> Artificial Sequence

<220>

30 <223> Description of Artificial Sequence:PCR reverse primer OATP8-6R

<400> 12

accagaatgc ttgatacaat agtg

24

35

<210> 13

<211> 24

<212> DNA

40 <213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:PCR forward primer OATP8-7F

45

- 5 -

<400> 13 aggccctgaa tgaatattag agaa 24 5 <210> 14 <211> 24 <212> DNA <213> Artificial Sequence 10 <220> <223> Description of Artificial Sequence: PCR reverse primer OATP8-7R <400> 14 15 taatgtacgc ttcaatggaa aaat 24 <210> 15 <211> 500 20 <212> DNA <213> Homo sapiens <400> 15 ttcataaatc ttgtaatctg gatatgtaga aaatataaaa attttaattt ctataattta 60 25 aaattgttgt tcatacaatc tagtgtgtgg ttttatatta tttacttgtt tcaaatttct 120 ctctatgaaa attattttc taagcaaatt ataatctctt taggctagga gtttgtctct 180 gtettteete etetgtgtee ageattgaee tagteetgtg gteaggaaat ageaggeeet 240 gaatgaatat tagagaatga ttgattgatt gatattgagc ttgtggcttt tcctattttt 300 aaattgtata ttgttaaagt aaaataaatt atactttttc ttttttaaca ggtgatcatt 360 30 tcaaaccaag catcagcaac aattaaaaat attcacttgg tatctgtagt ttaataatgg 420 accaacatca acatttgaat aaaacagcag agtcagcatc ttcagagaaa aagaaaacaa 480 gacgctgcaa tggattcaag 500 35 <210> 16 <211> 2646 <212> DNA <213> Homo sapiens 40 <400> 16 atcagcaaca attaaaatat tcacgtggta tctgtagttt aataatggac caacatcaac 60 atttgaataa aacagcagag tcagcatctt cagagaaaaa gaaaacaaga cgctgcaatg 120 gattcaagat gttcttggca gccctgtcat tcagctatat tgctaaagca ctaggtggaa 180 tcattatgaa aatttccatc actcaaatag aaaggagatt tgacatatcc tcttctcttg 240 45 ctggtttaat tgatggaagc tttgaaattg gaaatttgct tgtgattgta tttgtaagtt 300

```
actttggatc taaactacac agaccgaagt taattggaat tggttgtctc cttatgggaa 360
   ctggaagtat tttgacatct ttaccacatt tcttcatggg atattatagg tattctaaag 420
   aaacccatat taatccatca gaaaattcaa catcaagttt atcaacctgt ttaattaatc 480
   aaaccttatc attcaatgga acatcacctg agatagtaga aaaagattgt gtaaaggaat 540
 5 etgggteaca catgtggate tatgtettea tggggaatat gettegtgge ataggggaaa 600
   cccccatagt accattgggg atttcataca ttgatgattt tgcaaaagaa ggacattctt 660
   ccttgtattt aggtagtttg aatgcaatag gaatgattgg tccagtcatt ggctttgcac 720
   tgggatetet gtttgetaaa atgtaegtgg atattggata tgtagatetg ageactatea 780
   gaataactcc taaggactct cgttgggttg gagcttggtg gcttggtttc cttgtgtctg 840
10 gactattttc cattatttct tccataccat tttttttctt gccgaaaaat ccaaataaac 900
   cacaaaaaga aagaaaaatt tcactatcat tgcatgtgct gaaaacaaat gatgatagaa 960
   atcaaacagc taatttgacc aaccaaggaa aaaatgttac caaaaatgtg actggttttt 1020
   tccagtcttt gaaaagcatc cttaccaatc ccctgtatgt tatatttctg cttttgacat 1080
   tgttacaagt aagcagcttt attggttctt ttacttacgt ctttaaatat atggagcaac 1140
15 agtacggtca gtctgcatct catgctaact ttttgttggg aatcataacc attcctacgg 1200
   ttgcaactgg aatgttttta ggaggattta tcattaaaaa attcaaattg tctttagttg 1260
   gaattgccaa attttcattt cttacttcga tgatatcctt cttgtttcaa cttctatatt 1320
   tccctctaat ctgcgaaagc aaatcagttg ccggcctaac cttgacctat gatggaaata 1380
   attcagtggc atctcatgta gatgtaccac tttcttattg caactcagag tgcaattgtg 1440
20 atgaaagtca gtgggaacca gtctgtggga acaatggaat aacttacctg tcaccttgtc 1500
   tagcaggatg caaatcctca agtggtatta aaaagcatac agtgttttat aactgtagtt 1560
   gtgtggaagt aactggtctc cagaacagaa attactcagc acacttgggt gaatgcccaa 1620
   gagataatac ttgtacaagg aaatttttca tctatgttgc aattcaagtc ataaactctt 1680
   tgttctctgc aacaggaggt accacattta tcttgttgac tgtgaagatt gttcaacctg 1740
25 aattgaaagc acttgcaatg ggtttccagt caatggttat aagaacacta ggaggaattc 1800
   tageteeaat atattttggg getetgattg ataaaacatg tatgaagtgg teeaceaaca 1860
   gctgtggagc acaaggagct tgtaggatat ataattccgt attttttgga agggtctact 1920
   tgggcttatc tatagcttta agattcccag cacttgtttt atatattgtt ttcatttttg 1980
   ctatgaagaa aaaatttcaa ggaaaagata ccaaggcatc ggacaatgaa agaaaagtaa 2040
30 tggatgaagc aaacttagaa ttcttaaata atggtgaaca ttttgtacct tctgctggaa 2100
   cagatagtaa aacatgtaat ttggacatgc aagacaatgc tgctgccaac taacattgca 2160
   ttgattcatt aagatgttat ttttgaggtg ttcctggtct ttcactgaca attccaacat 2220
   tctttactta cagtggacca atggataagt ctatgcatct ataataaact ataaaaaatg 2280
   ggagtaccca tggttaggat atagctatgc ctttatggtt aagattagaa tatatgatcc 2340
35 ataaaattta aagtgagagg catggttagt gtgtgataca ataaaaagta attgtttggt 2400
   agttgtaact gctaataaaa ccagtgacta gaatataagg gaggtaaaaa ggacaagata 2460
   gattaatagc ctaaataaag agaaaagcct gatgccttta aaaaatgaaa cactttggat 2520
   gtattactta ggccaaaatc tggcctggat ttatgctata atatatattt tcatgttaag 2580
   40 aaaaaa
                                                                    2646
```

<210> 17

<211> 702

45 <212> PRT

-7-

<213> Homo sapiens

<400>	- 17

Met Asp Gln His Gln His Leu Asn Lys Thr Ala Glu Ser Ala Ser Ser 5 1 5 10 15

Glu Lys Lys Lys Thr Arg Arg Cys Asn Gly Phe Lys Met Phe Leu Ala 20 25 30

10 Ala Leu Ser Phe Ser Tyr Ile Ala Lys Ala Leu Gly Gly Ile Ile Met 35 40 45

Lys Ile Ser Ile Thr Gln Ile Glu Arg Arg Phe Asp Ile Ser Ser Ser 50 55 60

15

Leu Ala Gly Leu Ile Asp Gly Ser Phe Glu Ile Gly Asn Leu Leu Val 65 70 75 80

Ile Val Phe Val Ser Tyr Phe Gly Ser Lys Leu His Arg Pro Lys Leu 20 85 90 95

Ile Gly Ile Gly Cys Leu Leu Met Gly Thr Gly Ser Ile Leu Thr Ser
100 105 110

25 Leu Pro His Phe Phe Met Gly Tyr Tyr Arg Tyr Ser Lys Glu Thr His 115 120 125

Ile Asn Pro Ser Glu Asn Ser Thr Ser Ser Leu Ser Thr Cys Leu Ile 130 135 140

30

Asn Gln Thr Leu Ser Phe Asn Gly Thr Ser Pro Glu Ile Val Glu Lys
145 150 155 160

Asp Cys Val Lys Glu Ser Gly Ser His Met Trp Ile Tyr Val Phe Met 35 165 170 175

Gly Asn Met Leu Arg Gly Ile Gly Glu Thr Pro Ile Val Pro Leu Gly
180 185 190

40 Ile Ser Tyr Ile Asp Asp Phe Ala Lys Glu Gly His Ser Ser Leu Tyr
195 200 205

Leu Gly Ser Leu Asn Ala Ile Gly Met Ile Gly Pro Val Ile Gly Phe 210 215 220

45

-8-

	.Ala 225		Gly	_Ser	Leu	Phe.	_Ala	Lys	Met	Tyr	Val 235	Asp	Ile	Gly	Tyr	Val 240
5	Asp	Leu	Ser	Thr	Ile 245	Arg	Ile	Thr	Pro	Lys 250	Asp	Ser	Arg	Trp	Val 255	Gly
	Ala	Trp	Trp	Leu 260	Gly	Phe	Leu	Val	Ser 265	Gly	Leu	Phe	Ser	Ile 270	Ile	Sei
10	Ser	Ile	Pro 275	Phe	Phe	Phe	Leu	Pro 280	Lys	Asn	Pro	Asn	Lys 285	Pro	Gln	Lys
	Glu	Arg 290	Lys	Ile	Ser	Leu	Ser 295	Leu	His	Val	Leu	Lys 300	Thr	Asn	Asp	Asp
15	Arg	Asn	Gln	Thr	Ala	Asn 310	Leu	Thr	Asn	Gln	Gly 315	Lys	Asn	Val	Thr	Lys 320
20	Asn	Val	Thr	Gly	Phe 325	Phe	Gln	Ser	Leu	L уs 330	Ser	Ile	Leu	Thr	Asn 335	Pro
	Leu	Tyr	Val	Ile 340	Phe	Leu	Leu	Leu	Thr 345	Leu	Leu	Gln	Val	Ser 350	Ser	Phe
25	Ile	Gly	Ser 355	Phe	Thr	Tyr	Val	Phe	Lys	Tyr	Met	Glu	Gln 365	Gln	Tyr	Gly
	Gln	Ser 370	Ala	Ser	His	Ala	Asn 375	Phe	Leu	Leu	Gly	Ile 380	Ile	Thr	Ile	Pro
30	Thr 385	Val	Ala	Thr	Gly	Met 390	Phe	Leu	Gly	Gly	Phe 395	Ile	Ile	Lys	Lys	Phe
35	Lys	Leu	Ser	Leu	Val	Gly	Ile	Ala	Lys	Phe 410	Ser	Phe	Leu	Thr	Ser 415	Met
	Ile	Ser	Phe	Leu 420	Phe	Gln	Leu	Leu	Tyr 425	Phe	Pro	Leu	Ile	Cys 430	Glu	Ser
40	Lys	Ser	Val 435	Ala	Gly	Leu	Thr	Leu 440	Thr	Tyr	Asp	Gly	Asn 445	Asn	Ser	Val
	Ala	Ser 450	His	Val	Asp	Val	Pro 455	Leu	Ser	Tyr	Сув	Asn 460	Ser	Glu	Cys	Asn
45																

										-						
	Cys 465	qaA	Gl u	Ser	Gln	Trp	Glu	Pro	Val	Cys	Gly 475	Asn	Asn	Gly	Ile	Thr 480
_	Tyr	Leu	Ser	Pro		Leu	Ala	Gly	Cys		Ser	Ser	Ser	Gly		Lys
5					485					490					495	
	Lys	His	Thr	Val 500	Phe	Tyr	Asn	Сув	Ser 505	Сув	Val	Glu	Val	Thr 510	Gly	Leu
10	Gln	Asn	Arg 515	Asn	Tyr	Ser	Ala	His 520	Leu	Gly	Glu	Суз	Pro 525	Arg	Asp	Asn
15	Thr	Суз 530	Thr	Arg	ГÀЗ	Phe	Phe 535	Ile	Tyr	Val	Ala	11e 540	Gln	Val	Ile	Asn
13	Ser 545	Leu	Phe	Ser	Ala	Thr 550	Gly	Gly	Thr	Thr	Phe 555	Ile	Leu	Leu	Thr	Val 560
20	Lys	Ile	Val	Gln	Pro 565	Glu	Leu	Lys	Ala	Leu 570	Ala	Met	Gly	Phe	Gln 575	Ser
	Met	Val	Ile	Arg 580	Thr	Leu	Gly	Gly	Ile 585	Leu	Ala	Pro	Ile	Туr 590	Phe	Gly
25	Ala	Leu	Ile 595	Asp	Lys	Thr	Суз	Met 600	Lys	Trp	Ser	Thr	Asn 605		Cys	Gly
30	Ala	Gln 610		Ala	Сув	Arg	Ile 615	Tyr	Asn	Ser	Val	Phe 620		.G1y	Arg	Va]
50	Тух 625		Gly	Leu	Ser	Ile 630		Leu	Arg	Phe	Pro 635		Leu	Val	Leu	Ty:
35	Ile	val	Phe	Ile	Phe 645		Met	Lys	Lys	Lys 650		Gln	Gly	' Lys	Asp 655	
	Lys	Ala	Ser	Asp 660		Glu	. Arg	Lys	Val		asp.	Glu	a Ala	670		Gl
40	Phe	. Leu	Asn 675		Gly	Glu	His	Phe 680		Pro	Ser	Ala	685		Asp	Se.
	Lys	690	_	Asn	Leu	Asp	Met 695	Gln	Asp	Asr	a Ala	700		a Asr	1	