

Análisis de Algoritmos

Ejercicio 02: "Determinando funciones de complejidad"

Nombre: Luis Fernando Ramírez Cotonieto **Fecha de entrega:**26 de Marzo del 2021

Grupo:3CM13

Ejercicios 2: "Determinando funciones de complejidad"

Análisis de Algoritmos

1. Código 01

Se tiene el siguiente programa donde "n" tomará los valores de: [-1, 0, 1, 2, 3, 5, 15, 20, 100, 409, 500, 593, 1000, 1471, 1500, 2801, 3000, 5000, 10000, 20000]

Cuya función temporal es:

$$ft(n) = \frac{3n^2}{2} + \frac{13n}{2} + 2$$

Al tener una variable auxiliar que guarda los elementos para intercambiarlos, dos variables para los ciclos y un arreglo de tamaño n, como formula espacial obtenemos:

$$fe(n)=n+4$$

Figura 1: Gráfica del código 1 [MATLAB]

N	Teórico	Empírico
-1	0	0
0	2	2
1	11	4
2	25	15
3	44	26
5	97	76
15	662	466
20	1028	840
100	251485	13270
409	420863	184420
500	601041	271460
593	874087	379476
1000	2456687	1047955
1471	5411807	2240284
1500	5559937	2329450
2801	19632211	8005204
3000	22519502	9173945
5000	62532502	25314940
10000	250065002	100679935
20000	1000130002	401459930

Cuadro 1: Tabla del código 1

Se tiene el siguiente programa donde "n" tomará los valores de: [-1, 0, 1, 2, 3, 5, 15, 20, 100, 409, 500, 593, 1000, 1471, 1500, 2801, 3000, 5000, 10000, 20000]

Cuya función temporal es:

$$ft(n) = 6n + 7$$

Al tener un arreglo con tamaño "n", una variable auxiliar, una variable "z"que nos ayuda a multiplicar y una variable que se utiliza en el ciclo, tenemos que la formula espacial es:

$$fe(n)=n+4$$

Figura 2: Gráfica del código 2 [MATLAB]

N	Teórico	Empírico
-1	1	1
0	7	7
1	13	13
2	19	19
3	25	25
5	37	37
15	97	97
20	127	127
100	607	607
409	2461	2461
500	3007	3007
593	3565	3565
1000	6007	6007
1471	8833	8833
1500	9007	9007
2801	16813	16813
3000	18007	18007
5000	30007	30007
10000	60007	60007
20000	120007	120007

Cuadro 2: Tabla del código 2

Se tiene el siguiente programa donde "n" tomará los valores de: [-1, 0, 1, 2, 3, 5, 15, 20, 100, 409, 500, 593, 1000, 1471, 1500, 2801, 3000, 5000, 10000, 20000]

```
for i = 1 to n do // <---- 1(asignacion) + n+1 (comparaciones) + 2n
2
  {
    for j = 1 to n do; { //<---- n(asignacion) + n + 1 + 2n}
3
      C[i,,j]=0; // <---- n*n
4
      for k = 1 to n do \{//<----n*n((1)a+(n+1)c+(2n)a)
5
6
        C[i,j] = C=[i,j] + A[i,k]*B[k,j]; //<---(producto + adicion)
           asignacion)
          //<---- n*n(n saltos + 1 falso)
7
    } //<---- n(n saltos + 1 falso )
8
  }//<---- n+1
```

Cuya función temporal es:

$$ft(n) = 7n^3 + 8n^2 + 7n + 3$$

Se utilizaron tres variables para los ciclos, además tenemos tres arreglos de tamaño n+n, por lo que la fórmula espacial es:

$$fe(n) = 3n^2 + 3$$

Figura 3: Gráfica del código 3 [MATLAB]

N	Teórico	Empírico
-1	-3	0
0	3	3
1	25	25
2	105	105
3	285	285
5	1113	1113
15	25533	25533
20	59343	59343
100	7080703	7080703
409	480266617	480266617
500	877003503	877003503
593	1462512345	1462512345
1000	7008007003	7008007003
1471	-	-
1500	-	-
2801	-	-
3000	-	-
5000	-	-
10000	-	-
20000	-	-

Cuadro 3: Tabla del código 3

Se tiene el siguiente programa donde "n" tomará los valores de: [-1, 0, 1, 2, 3, 5, 15, 20, 100, 409, 500, 593, 1000, 1471, 1500, 2801, 3000, 5000, 10000, 20000]

```
anterior = 1; // ----> 1(asignacion)
2
  actual=1; // -----> 1(asignacion)
  while (n>2) // ----> n-1 (comparation)
3
4
  {
    aux = anterior + actual; //---->(n-2) (asignacion mas adicion)
5
6
    anterior = actual; // ----> (n-2)(agignacion)
    actual = aux; // -----> (n-2)(agignacion)
7
    n = n - 1; // ----> (n-2) (agignacion + sustraccion)
8
 } // ----> (n-2)+1
```

Cuya función temporal es:

$$ft(n) = 8n - 12$$

Existen solo 3 variables en el código, la formula espacial es:

$$fe(n)=3$$

Figura 4: Gráfica del código 4 [MATLAB]

N	Teórico	Empírico
-1	-20	0
0	-12	0
1	-4	0
2	4	4
3	12	12
5	28	28
15	108	108
20	148	148
100	788	788
409	3260	3260
500	3988	3988
593	4732	4732
1000	7988	7988
1471	11756	11756
1500	11988	11988
2801	22396	22396
3000	23988	23988
5000	39988	39988
10000	79988	79988
20000	159988	159988

Cuadro 4: Tabla del código 4

Se tiene el siguiente programa donde "n" tomará los valores de: [-1, 0, 1, 2, 3, 5, 15, 20, 100, 409, 500, 593, 1000, 1471, 1500, 2801, 3000, 5000, 10000, 20000]

```
1 for(i=n-1; j=0; i--, j++) { //<---- f= 2+3n
2    s2[j]=s[i]; // <----- f++
3 }
4 for(k=0; k<n; k++) { //<---- f+=2+n+n
5    s[i]=s2[i]; // <----- f++;
6 }</pre>
```

Cuya función temporal es:

$$ft(n)=6n+4$$

Y su función espacial es:

$$fe(n)=2n+4$$

Figura 5: Gráfica del código 5 [MATLAB]

N	Teórico	Empírico
-1	-1	-1
0	4	4
1	10	10
2	16	16
3	22	22
5	34	34
15	94	94
20	124	124
100	604	604
409	2458	2458
500	3004	3004
593	3562	3562
1000	6004	6004
1471	8830	8830
1500	9004	9004
2801	16810	16810
3000	18004	18004
5000	30004	30004
10000	60004	60004
20000	120004	120004

Cuadro 5: Tabla del código 5

Se tiene el siguiente programa donde "n" tomará los valores de: [-1, 0, 1, 2, 3, 5, 15, 20, 100, 409, 500, 593, 1000, 1471, 1500, 2801, 3000, 5000, 10000, 20000]

```
1 1=(a<b)?a:b;
2 r=1;
3
4 for(1=2;i<=2;i++){
5    if(a%i==0&&b%i==0){
6     r=i; f++;
7    }
8 }</pre>
```

Cuya función temporal es:

$$ft(n)=2n+13$$

Y su función espacial es:

$$fe(n)=4$$

Figura 6: Gráfica del código 6 [MATLAB]

N	Teórico	Empírico
-1	11	11
0	13	13
1	15	15
2	17	17
3	19	19
5	23	23
15	43	43
20	53	53
100	213	213
409	831	831
500	1013	1013
593	1199	1199
1000	2013	2013
1471	2955	2955
1500	3013	3013
2801	5615	5615
3000	6013	6013
5000	10013	10013
10000	20013	20013
20000	40013	40013

Cuadro 6: Tabla del código 6

Se tiene el siguiente programa donde "n" tomará los valores de: [-1, 0, 1, 2, 3, 5, 15, 20, 100, 409, 500, 593, 1000, 1471, 1500, 2801, 3000, 5000, 10000, 20000]

```
for(i=1;i<n;i++){ //<---- f+=2+n+n</pre>
1
    for(j=n;j<n-1;j++){ // <---- f+=2+n+n+1
2
       if(lista[j]>lista[j+1]){ // <----- f+=2</pre>
3
         temp = lista[j];
4
         lista[j] = lista[j+1];
5
         lista[j+1] = temp; // <---- f+=5
6
         }
7
      }
8
    }
```

Cuya función temporal es:

$$ft(n) = 2n^2$$

Y su función espacial es:

$$fe(n)=n+3$$

Figura 7: Gráfica del código 7 [MATLAB]

N	Teórico	Empírico
-1	2	0
0	0	2
1	2	4
2	8	11
3	18	22
5	50	56
15	450	466
20	800	821
100	20000	20101
409	334562	334972
500	500000	500501
593	703298	703892
1000	200000	2001001
1471	4327682	4329154
1500	4500000	4501501
2801	15691202	15694004
3000	18000000	18003001
5000	50000000	50005001
10000	200000000	200010001
20000	800000000	800020001

Cuadro 7: Tabla del código 7