

marcel.koeppen [©] uni-osnabrueck.de marcel.luetkedreimann [©] uni-osnabrueck.de

Übung zur Vorlesung Betriebssysteme Wintersemester 2021/22

Übungsblatt 6: Verklemmungen und Interprozess-Kommunikation

♦ Abgabe der Lösungen bis Montag, 29. November 14:00 im AsSESS

Aufgabe 1: Grundlagen (1+1+1=3 Punkte)

- 1. Beschreiben Sie den Unterschied zwischen einem Deadlock und einem Livelock.
- 2. Was sind Vor- und Nachteile von synchronem und asynchronem Nachrichtenaustausch zwischen Prozessen?
- 3. Erklären Sie den gewünschten und tatsächlichen Effekt des folgenden Systemaufrufs in einem C-Programm unter Linux: signal(SIGKILL, SIG_IGN);

Aufgabe 2: Deadlock? (1+2=3 Punkte)

Betrachten Sie ein System mit vier gleichartigen Ressourcen, die von drei Prozessen gemeinsam genutzt werden. Jeder Prozess benötigt höchstens zwei Ressourcen.

- 1. Identifizieren Sie die mögliche kritische Situation in diesem System und stellen Sie diese in einem Betriebsmittelbelegungsgraphen dar. Geben Sie dazu eine Liste der Kanten des Graphen in folgender Notation an: A -> B für "es gibt eine gerichtete Kante von A nach B".
- 2. Kann in diesem System ein Deadlock entstehen? Begründen Sie Ihre Antwort.

Aufgabe 3: Bankier-Algorithmus (3+4=7 Punkte)

Betrachten Sie den folgenden Zustand eines Systems von fünf Prozessen P_0, \ldots, P_4 , in dem die Belegung der Ressourcen A, B, C, D mit dem Bankier-Algorithmus verwaltet wird. Von Ressource A sind im System 3 Instanzen vorhanden, von Ressource B gibt es 14 Instanzen und von den Ressourcen C und D jeweils 12 Instanzen.

	A	В	C	D
P_0	0	0	1	2
P_1	1	0	0	0
P_2	1	3	5	4
P_3	0	6	3	2
P_4	0	0	1	4

Aktuell belegt

	A	В	C	D
P_0	0	0	0	0
P_1	0	7	5	0
P_2	1	0	0	3
P_3	0	0	2	0
P_4	0	6	4	2

Maximale Nachforderung

1. Untersuchen Sie mit dem Bankier-Algorithmus, ob dieser Zustand sicher ist. Geben Sie die mögliche Ablaufreihenfolge und für jeden Schritt die freien Ressourcen an.

2. Nehmen Sie an, dass nun Prozess P_1 weitere Ressourcen anfordert, nämlich 5 Instanzen von B und 2 Instanzen von C. Kann diese Anforderung sofort erfüllt werden? Geben Sie die Startkonfiguration des Algorithmus und die Schritte wie in Aufgabenteil 1 an.

Die Graphen-Notation aus Aufgabe 2 lässt sich mit wenig Aufwand in eine Eingabe für das Visualisierungs-Tool Graphviz umwandeln, indem sie am Anfang um digraph { und am Ende um } ergänzt wird. Solche Graphviz-Dateien (Dateiendung: .dot) lassen sich z.B. mit dem Programm xdot anzeigen oder mit dot -Tpdf -o ausgabe.pdf eingabe.dot in ein PDF zeichnen. Die Form der Knoten lässt sich ebenfalls festlegen:

```
digraph {
    node [shape=circle] A, C
    node [shape=box] B, D
    A -> B
    B -> C
    C -> D
}
```

