# INFORMATION SECURITY



This assignment focuses on analyzing an Apache log file using a Bash script in Kali Linux. The script extracts key metrics such as request counts, unique IPs, failure rates, and request trends by hour. I created and executed the script to summarize traffic behavior, identify issues, and provide improvement suggestions based on the findings.

#### **PREPARED BY:**

Mariam Beshr

## STEP 1: REQUEST COUNTS

Step 1: Request Counts Total requests: 10000 GET requests: 9952 POST requests: 5

Total Requests: 10,000GET Requests: 9,952POST Requests: 5

 GET requests make up 99.52% of all traffic, indicating static content access is predominant.

### **Recommendation:**

If the application is expected to handle dynamic interactions, ensure POST operations are being processed and logged correctly.

### STEP 2: UNIQUE IP ADDRESSES & ADDITIONAL: MOST ACTIVE IP BY GET/POST

```
Step 2: Unique IP Addresses
Total unique IPs: 1753
GET and POST per IP:
94.79.44.40
                 "GET
                         12
101.226.33.222
                 "GET
                         2
95.153.95.223
                 "GET
                         1
173.192.238.44
                 "GET
                         1
166.137.8.20
                 "GET
                         2
                 "GET
177.6.142.6
74.105.15.185
                 "GET
                         5
68.183.65.140
                 "GET
                         6
108.170.215.93
                 "GET
                         4
201.244.101.132
                 "GET
                         1
212.201.44.247
                 "GET
                         2
                  "GET
174.26.93.238
                        6
77.11.205.74
                 "GET
                         6
                 "GET
24.196.39.217
                         2
122.61.197.176
                 "GET
                         1
71.191.158.163
                 "GET
```

```
Additional - Most Active IP by GET
482 66.249.73.135
Most Active IP by POST
3 78.173.140.106
```

- Unique IPs: 1,753
- Most IPs made minimal requests, indicating bot traffic or occasional access.
- Top GET requester: 66.249.73.135 (likely Googlebot)
- Top POST requester: 78.173.140.106 (3 requests)

#### **Recommendation:**

Implement rate limiting or CAPTCHA to prevent scraping or abuse from bots. Monitor high-frequency IPs.

## **STEP 3: FAILED REQUESTS**

Step 3: Failed Requests Failed requests: 220

Failure percentage: 2.20%

Total Failures: 220Failure Rate: 2.20%

Majority were 404 Not Found errors (213 times)

#### Recommendation:

Audit your site for broken or outdated links. Implement user-friendly error pages and consider automatic redirects for common 404s.

### STEP 4: MOST ACTIVE IP

Step 4: Most Active IP 482 66.249.73.135

• IP: 66.249.73.135

• Requests: 482 (highest)

### Recommendation:

Monitor this IP's activity closely. If it's a crawler, ensure your robots.txt is properly configured to guide its behavior.

### **STEP 5: DAILY REQUEST AVERAGES**

```
Step 5: Daily Request Averages
1632 17/May/2015
2893 18/May/2015
2896 19/May/2015
2579 20/May/2015
Average requests per day: 2500.00
```

- · 4 days of logs analyzed
- Average: 2,500 requests per day
- Peak days: 18 May and 19 May (~2,900 requests each)

#### Recommendation:

Plan server resource allocation according to peak usage days. Use this data for load testing.

# **Step 6: Days with Most Failures**

```
Step 6: Days with Most Failures
66 19/May/2015
66 18/May/2015
58 20/May/2015
30 17/May/2015
```

- 19 May and 18 May: 66 failures each they were also the peak days
- Likely server or deployment issues

#### Recommendation:

Review error logs and recent code or server changes around these dates.

## **Step 7: Requests by Hour**

```
Step 7: Requests by Hour
Hour 00: 361 requests
Hour 01: 360 requests
Hour 02: 365 requests
Hour 03: 354 requests
Hour 04:
          355 requests
Hour 05: 371 requests
Hour 06: 366 requests
Hour 07: 357 requests
Hour 08: 345 requests
Hour 09:
          364 requests
Hour 10: 443 requests
Hour 11:
          459 requests
Hour 12: 462 requests
Hour 13:
          475 requests
Hour 14: 498 requests
Hour 15: 496 requests
Hour 16:
          473 requests
Hour 17: 484 requests
Hour 18:
          478 requests
Hour 19: 493 requests
Hour 20:
          486 requests
Hour 21:
          453 requests
Hour 22: 346 requests
Hour 23:
          356 requests
```

- Traffic gradually increases from morning and peaks between 14:00 to 20:00
- Highest at 14:00 with 498 requests

#### **Recommendation:**

Optimize server performance during peak periods. Use caching or load balancers if needed.

# Step 8: Request Trends (Visualized)

- Consistent and steady usage throughout the day
- No unusual spikes, indicating normal activity

### **Recommendation:**

Use visual trends to forecast usage. If any spikes occur later, investigate for DDoS or viral content.

### Additional: Status Code Breakdown

```
Additional - Status Code Breakdown
200 9126
206 45
301 164
304 445
403 2
404 213
416 2
500 3
```

• 200 OK: 9126

• 404 Not Found: 213

• 500 Internal Server Error: 3

• Others: 301, 304, 403, 416

### Recommendation:

Urgently fix 500 errors. Consider monitoring tools to notify about recurring 4xx and 5xx statuses.

## Additional: Failure Patterns by Hour



• Most failures occurred between 09:00 and 14:00, aligning with peak load.

#### Recommendation:

Reinforce infrastructure or backend handling during this time. Automate alerting for failure surges.

# **General Summary**

The system is stable, but some improvements are needed in error handling and crawler management.

Resource planning should account for peak hours (14:00–20:00) and high-traffic days (18–19 May).

Security and performance can be enhanced by applying proper monitoring, optimization, and access control.



THE END