

DIALOG(R) File 351:Derwent WPI
(c) 2004 Thomson Derwent. All rts. reserv.

009177753 **Image available**

WPI Acc No: 1992-305188/ 199237

XRAM Acc No: C92-135929

XRPX Acc No: N92-233571

Solid state charge coupled image sensor - has titanium nitride
antireflective film on aluminium@ or aluminium@-silicon@ electrodes

NoAbstract

Patent Assignee: SHARP KK (SHAF)

Number of Countries: 001 Number of Patents: 001

Patent Family:

Patent No	Kind	Date	Applicat No	Kind	Date	Week
JP 4212459	A	19920804	JP 9111354	A	19910201	199237 B

Priority Applications (No Type Date): JP 90274801 A 19901011

Patent Details:

Patent No	Kind	Lan	Pg	Main IPC	Filing Notes
JP 4212459	A	7		H01L-027/148	

This Page Blank (uspto)

DIALOG(R) File 347:JAPIO
(c) 2004 JPO & JAPIO. All rts. reserv.

03847359 **Image available**
SOLID IMAGE PICK-UP ELEMENT

PUB. NO.: 04-212459 [J P 4212459 A]
PUBLISHED: August 04, 1992 (19920804)
INVENTOR(s): OKUNO MASARU
APPLICANT(s): SHARP CORP [000504] (A Japanese Company or Corporation), JP
(Japan)
APPL. NO.: 03-011354 [JP 9111354]
FILED: February 01, 1991 (19910201)
INTL CLASS: [5] H01L-027/148; H01L-021/3205; H01L-027/14
JAPIO CLASS: 42.2 (ELECTRONICS -- Solid State Components)
JAPIO KEYWORD: R098 (ELECTRONIC MATERIALS -- Charge Transfer Elements, CCD &
BBD)
JOURNAL: Section: E, Section No. 1294, Vol. 16, No. 558, Pg. 4,
 November 27, 1992 (19921127)

ABSTRACT

PURPOSE: To provide the title solid image pick-up element casting almost no reflection on the surface of an electrode wiring thereby developing no defective smear.

CONSTITUTION: An electrode material 6 comprising Al or Al-Si is formed on the whole surface of a silicon substrate 1 and then a titanium metal is sputtered in nitride gas atmosphere so as to form a reflection preventive film 21 comprising titanium nitride on the electrode wiring material 6. Through these procedures, the incoming beams on the surface of the electrode wiring are almost prevented from being reflected at all by the reflection preventive film so that almost no reflecting beams may come into the photodetector thereby enabling the defective smear to be avoided.

This Page Blank (uspto)

(19) 日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11) 特許出願公開番号

特開平4-212459

(43) 公開日 平成4年(1992)8月4日

(51) Int.Cl.⁵

H 01 L 27/148

21/3205

27/14

識別記号

府内整理番号

F I

技術表示箇所

8233-4M

7353-4M

H 01 L 27/14

21/88

B

B

審査請求 未請求 請求項の数3(全7頁) 最終頁に続く

(21) 出願番号 特願平3-11354

(22) 出願日 平成3年(1991)2月1日

(31) 優先権主張番号 特願平2-274801

(32) 優先日 平2(1990)10月11日

(33) 優先権主張国 日本 (JP)

(71) 出願人 000005049

シャープ株式会社

大阪府大阪市阿倍野区長池町22番22号

(72) 発明者 奥野 勝

大阪市阿倍野区長池町22番22号 シャープ

株式会社内

(74) 代理人 弁理士 梅田 勝

(54) 【発明の名称】 固体撮像素子

(57) 【要約】

【目的】 本発明は、電極配線表面での乱反射が少なく、スミア不良を生じない固体撮像素子を提供することを目的とする。

【構成】 A 1 または A 1 - S 1 の電極材料 6 がシリコン基板 1 上の全面に形成された後、チタン金属を空化ガス雰囲気中でスパッタリングを行い、電極配線材料 6 の上に空化チタンの反射防止膜 21 を形成する。

【効果】 電極配線の上面に入射した光が反射防止膜で殆ど反射されないために、受光部に入射する反射光は殆どなく、スミア不良の発生を防止することができる。

1

【特許請求の範囲】

【請求項1】複数の受光部と上記各受光部に隣接した電荷転送領域を形成した基板上の上記各電荷転送領域の上に電荷転送用電極を形成すると共に上記電荷転送用電極と上記受光部を覆うように絶縁層を形成し、上記各電荷転送用電極の上の絶縁層の上に電極配線を形成し、更にその上に保護膜を形成した固体撮像素子において、上記電極配線の上面に上記電極配線の反射率よりも小さい反射防止膜を形成したことを特徴とする固体撮像素子。

【請求項2】複数の受光部と上記各受光部に隣接した電荷転送領域を形成した基板上の上記各電荷転送領域の上に電荷転送用電極を形成すると共に上記電荷転送用電極と上記受光部を覆うように絶縁層を形成し、上記各電荷転送用電極の上の絶縁層の上に電極配線を形成し、更にその上に保護膜を形成した固体撮像素子において、上記電極配線の上面と側面に上記電極配線の反射率よりも小さい反射率の反射防止膜を形成したことを特徴とする固体撮像素子。

【請求項3】複数の受光部と上記各受光部に隣接した電荷転送領域を形成した基板上の上記各電荷転送領域の上に電荷転送用電極を形成すると共に上記電荷転送用電極と上記受光部を覆うように絶縁層を形成し、上記各電荷転送用電極の上の絶縁層の上に電極配線を形成し、更にその上に保護膜を形成した固体撮像素子において、上記電極配線が、表面が低反射率となる形成条件で形成されたA1-S1膜から成ることを特徴とする固体撮像素子。

【発明の詳細な説明】

【0001】

【産業上の利用分野】この発明は、固体撮像素子に関するものである。

【0002】

【従来の技術】図6は従来のCCD(電荷結合素子)固体撮像素子の断面図である。この図6において、1はシリコン基板、2は受光部、3は電荷転送領域、4は酸化膜、5は電荷転送用ポリシリコン電極、6は遮光メタルを兼ねる電極配線、7はSiO₂膜又はSiN膜の透明の保護膜である。

【0003】図7はこの固体撮像素子の製造工程を示す断面図である。ここで図7(a)は電極配線材料6がシリコン基板1上の全面に形成された状態を示す。この状態から次に図7(b)に示すようにポジ系レジスト8を塗布した後、矢印で示すようにガラスマスクにより受光部2とフィールド部9の一部を選択露光する。その後レジスト8の現象を行った状態を図7(c)に示す。図7(d)は未露光部のレジスト8をエッチングマスクとして電極配線材料6がエッチングされた状態である。次に、レジスト8を除去した後、図7(e)に示すように保護膜7を形成する。そして、図7(f)に示すように、ワイヤーボンディングを行う為にボンディングパッ

10

2

ド部10の開孔を行う。この工程は保護膜7上にポジレジストを形成し、工程(b), (c), (d)のように、露光、現像、エッチングおよびレジスト除去の処理により行うことができる。

【0004】

【発明が解決しようとする課題】ところで、上記従来の固体撮像素子は、電極配線6の材料としてA1又はA1-S1(1%)が用いられ、出力10kw以上、真空間度10mmTorr以下の条件でスパッタリングにより形成されるが、これらは反射率の高い金属であるため、透明の保護膜7を通って電極配線6上に入射した光はほとんど反射される。また、電極配線6は微結晶の集合であり、その表面は平坦ではない上に、電極配線形成前の下地表面には、電極5等によるそれまでの製造工程により形成された凹凸が存在するため、電極配線6の上面の形状もその凹凸を継承している。このため、電極配線表面での反射光は乱反射となり、その一部は受光部2に入射する。この乱反射による受光部2への入射光は信号光線以外の光線であるためスミア不良の原因となる。また、受光部2の上方に、シアン、マゼンタ、イエロー、グリーンのカラーフィルタが形成されたカラー用固体撮像素子の場合でも同様のことがいえる。

20

【0005】そこで、この発明の目的は、電極配線表面での乱反射が少なく、スミア不良を生じない固体撮像素子を提供することにある。

【0006】

【課題を解決するための手段】上記目的を達成するため、第1の発明は、複数の受光部と上記各受光部に隣接した電荷転送領域を形成した基板上の上記各電荷転送領域の上に電荷転送用電極を形成すると共に上記電荷転送用電極と上記受光部を覆うように絶縁層を形成し、上記各電荷転送用電極の上の絶縁層の上に電極配線を形成し、更にその上に保護膜を形成した固体撮像素子において、上記電極配線の上面に上記電極配線の反射率よりも小さい反射率の反射防止膜を形成したことを特徴としている。

30

40

【0007】また、第2の発明は、複数の受光部と上記各受光部に隣接した電荷転送領域を形成した基板上の上記電荷転送領域の上に電荷転送用電極を形成すると共に上記電荷転送用電極と上記受光部を覆うように絶縁層を形成し、上記各電荷転送用電極の上の絶縁層の上に電極配線を形成し、更にその上に保護膜を形成した固体撮像素子において、上記電極配線の上面と側面に上記電極配線の反射率よりも小さい反射率の反射防止膜を形成したことを特徴としている。

50

【0008】さらに、第3の発明は、複数の受光部と上記各受光部に隣接した電荷転送領域を形成した基板上の上記各電荷転送領域の上に電荷転送用電極を形成すると共に上記電荷転送用電極と上記受光部を覆うように絶縁層を形成し、上記各電荷転送用電極の上の絶縁層の上に

電極配線を形成し、更にその上に保護膜を形成した固体撮像素子において、上記電極配線が、表面が低反射率となる形成条件で形成されたA1-S1膜から成ることを特徴としている。

【0009】また、上記第1の発明及び第2の発明共、上記反射防止膜として、窒化チタン膜若しくは金属酸化物膜、又は、従来よりも、スパッタ条件において、出力を低くし、真空度を上げることにより形成されたA1-S1膜（以下「低反射A1-S1膜」という）を用いることができる。さらに、上記金属酸化物がチタン酸化物またはチタンナイトライド酸化物であることができる。

【0010】また、上記第3の発明の電極配線として、従来よりも、スパッタ条件において、出力を低くし、真空度を上げることにより形成された低反射A1-S1電極配線を用いることができる。

【0011】

【作用】第1の発明においては、電極配線の上面にその電極配線の反射率よりも小さい反射率の反射防止膜を形成しているので、保護膜を通じて上記電極配線の上面に入射した光は上記反射防止膜で殆ど反射されないために、受光部に入射する反射光は殆どなく、スミア不良の発生を防止することができる。

【0012】また、第2の発明においては、電極配線の上面と側面にその電極配線の反射率よりも小さい反射率の反射防止膜を形成しているので、保護膜を通じて上記電極配線の上面および側面に入射した光は上記反射防止膜で殆ど反射されないために、受光部に入射する反射光は第1の発明に比べて更に少なく、スミア不良の発生を一層防止することができる。

【0013】さらに、第3の発明においては、保護膜を通じて上記電極配線の上面に入射した光は該電極配線で殆ど反射されないために、受光部に入射する反射光は殆どなく、スミア不良の発生を防止することができる。

【0014】

【実施例】以下、この発明を図示の実施例により詳細に説明する。

【0015】

第1の発明の実施例

図1は第1の発明の一実施例のCCD撮像素子の製造工程を示す断面図である。

【0016】図1(a)は図7(a)と同様、A1またはA1-S1(1%)の電極配線材料6がシリコン基板1上の全面に形成された状態を示す。この状態から次にチタン金属を窒素ガス雰囲気中でスパッタリングを行い、図1(b)に示すように電極配線材料6の上に窒化チタンの反射防止膜21を形成する。次に図1(c)において、図7(b)と同様に、ポジレジスト8を塗布した後、矢印で示すようにガラスマスクにより受光部2とフィールド部9の一部を選択露光する。その後レジスト8の現象を行った状態を図1(d)に示す。図1

(e)は未露光部のレジスト8をエッチングマスクとして、反射防止膜21および電極配線材料6をエッチングした後、レジスト8を除去した状態を示す。次に、その上から保護膜7を形成した後、図1(f)に示すように、ワイヤーボンディングを行う為にボンディングパッド部1の開孔を行う。この工程は保護膜7上にボジレジストを形成し、露光、現像、エッチングおよびレジスト除去の処理により行うことができる。

【0017】このように製造されたCCD撮像素子は、電極配線6の上面に形成された窒化チタン膜21の反射率が非常に小さいため、保護膜7を通じて電極配線上に入射した光は窒化チタン膜21で殆ど反射されないため、乱反射による受光部2への入射光は従来例の場合に比べて非常に減少し、スミア不良は大幅に改善される。そして、このCCD撮像素子をビデオカメラに使用した場合には、室内等の通常の使用状態では殆ど問題にならないことが確認されている。

【0018】しかしながら、窒化チタンの反射率は十分小さくないため、上記ビデオカメラを晴天の屋外や強力なライトのある屋外で使用した場合にスミア不良を生じることがある。

【0019】そこで、このような使用の場合でもスミア不良が生じないようにするために、上記反射防止膜21の材料として、窒化チタンよりも更に反射率の小さい材料、例えばチタン酸化物($T_{1-x}O_y$)あるいはチタンナイトライド酸化物($T_{1-x}N_yO_z$)を用いればよい。

【0020】上記チタン酸化物の反射防止膜は、チタンをアルゴンガスと酸素ガスの混合ガス中でスパッタリングすることにより形成され、チタンナイトライド酸化物の反射防止膜は、チタンをアルゴンガスと酸素ガスと窒素ガスの混合ガス中でスパッタリングすることにより形成される。そして、これらは共に黒色であるため、窒化チタンよりも反射率が小さくスミア不良は改善される。

【0021】また、図4(a); (b)に、それぞれ、低反射A1-S1膜を反射防止膜として用いた場合の実施例を示している。図4(a)に示すように、電極配線材料にA1(100%)を用いた場合、電極配線が形成された状態から、A1-S1を出力10kw以下、真空度10mmTorr以上の条件でスパッタリングを行い、電極配線6の上に低反射A1-S1膜から成る反射防止膜33を形成する。

【0022】また、図4(b)に示すように、電極配線材料にA1-S1を用いた場合、まずA1(100%)膜34をスパッタリングで遮光膜として形成し、その後、出力10kw以下、真空度10mmTorr以上の条件でスパッタリングを行い、前記A1(100%)膜34上に低反射A1-S1膜から成る反射防止膜を形成する。例えば、7kwの出力、20mmTorrの真空度の条件でA1-S1をスパッタリングする場合、従来の場

合の約50%の反射率となる。

【0023】上記チタン酸化物やチタンナイトライド酸化物の反射防止膜を形成する方法としては、上述した方法の他に図2に示す方法がある。

【0024】図2(a)は図1(a)と同様、電極配線材料6がシリコン基板1上の全面に形成された状態を示す。この状態から、次にチタンまたはチタンナイトライドの膜31をスパッタリングにより、図2(b)に示すように電極配線材料6の上に形成する。図2(c)は上記膜31の上にポジ系レジスト8を塗布した後、ガラスマスクにより受光部2とフィールド部9の一部を選択露光し、レジスト8の現象を行った状態を示す。図2(d)は末露光部のレジスト8をエッチングマスクとして、反射防止膜31および電極配線材料6をエッチングした後、レジスト8を除去した状態を示す。次に、酸素雰囲気中で加熱処理を行い、上記チタンまたはチタンナイトライドの膜31を酸化して、図2(e)に示すようなチタン酸化物またはチタンナイトライド酸化物の反射防止膜32を得る。このときの加熱温度は電極配線材料がA1系材料の場合は500°C以下が望ましい。次に、図2(f)に示すように、図1(f)と同様の方法で保護膜7を形成し、ボンディングパッド部10の開孔を行う。上記チタンまたはチタンナイトライドの加熱処理による酸化は図2(b)の工程の後で行うようにしてもよい。

【0025】

第2の発明の実施例

図3は第2の発明の一実施例のCCD撮像素子の製造工程を示す断面図である。

【0026】本実施例の撮像素子は、図1に示す撮像素子が電極配線の上面にのみ反射防止膜を形成したものであるのに対して、電極配線の上面と側面の両方に反射防止膜を形成したものであり、その他の構成は図1のものと同様である。同一構成品には同一符号を付して説明を省略する。

【0027】図3(a)は電極配線6のバーニングが終わった状態を示している。次に、図3(b)に示すように、チタン金属を窒素ガスの雰囲気中でスパッタリングを行って、窒化チタン膜21を基板1上の全面に形成した後、その上にポジレジスト8を塗布形成し、電極配線6の上面および側面が窒化チタン膜21で被覆できるよう選択露光を行う。次に、ポジレジスト8を現像後、残ったポジレジスト8をエッチングマスクとして窒化チタン膜21をエッチングし、図3(c)の状態となる。上記残ったポジレジスト8を除去して図3(d)の状態とした後、図3(e)に示すように図1(f)と同様の方法で保護膜7を形成し、ボンディングパッド部10の開孔を行う。

【0028】このように窒化チタンの反射防止膜を電極配線6の上面と側面の両方に形成したので、上記反射防

止膜を電極配線の上面だけに形成した第1の発明の実施例のものに比べて乱反射が少くなり、スミア不良を一層軽減することができる。なお、本実施例においても、第1の発明の実施例と同様に、空化チタンの反射防止膜を形成する代わりに、チタン酸化物若しくはチタンナイトライド酸化物、又は低反射A1-S1膜の反射防止膜を形成することにより、スミア不良を更に軽減させることができる。なお、低反射A1-S1膜を反射防止膜に用いた場合、チタン酸化物やチタンナイトライド酸化物を用いた反射防止膜に比べ、反射率は大きいが、歩留りは高い。

【0029】

第3の発明の実施例

図5に、第3の発明の一実施例のCCD撮像素子の構造断面図を示す。

【0030】電極配線形成において、出力10kW以下、真空度10mmTorr以上の条件でスパッタリングを行い、エッチングにより、図5に示すような低反射A1-S1電極配線35が形成される。次に、その上から保護膜7を形成した後、ワイヤーボンディングを行う為のボンディングパッド部10の開孔を行う。

【0031】このように低反射A1-S1電極配線35を形成したので、従来のA1-S1電極配線6に比べ乱反射は少くなり、スミア不良を軽減することができる。

【0032】

【発明の効果】以上より明らかなように、第1の発明の固体撮像素子は、電極配線の上面にその電極配線の反射率よりも小さい反射率の反射防止膜を形成しているので、保護膜を通じて上記電極配線の上面に入射した光は上記反射防止膜で殆ど反射されないために、受光部に入射する反射光は殆どなく、スミア不良の発生を防止することができる。

【0033】また、第2の発明の固体撮像素子は、電極配線の上面と側面にその電極配線の反射率よりも小さい反射率の反射防止膜を形成しているので、保護膜を通じて上記電極配線の上面および側面に入射した光は上記反射防止膜で殆ど反射されないために、受光部に入射する反射光は第1の発明に比べて更に少なく、スミア不良の発生を一層防止することができる。

【0034】さらに、第3の発明の固体撮像素子は、低反射A1-S1膜を用いて電極配線を形成しているので、保護膜を通じて該電極配線に入射した光は、殆ど反射されないために、受光部に入射する反射光は、従来の反射防止膜を設けていない電極配線に比べて少なく、スミア不良をより効果的に防止することができる。

【0035】また、上記第1の発明の固体撮像素子および第2の発明の固体撮像素子共、上記反射防止膜を、チタン酸化物若しくはチタンナイトライド酸化物などの金属酸化物又は低反射A1-S1膜の反射防止膜とするこ

7

8

とにより、スミア不良をより効果的にすることができ
る。

【図面の簡単な説明】

【図1】第1の発明の一実施例の製造工程を示す断面図である。

【図2】第1の発明の他の実施例の製造工程を示す断面図である。

【図3】第2の発明の一実施例の製造工程を示す断面図である。

【図4】(a)および(b)は、それぞれ、低反射A1-S1膜を反射防止膜として用いた場合の第1の発明の実施例の構造断面図である。

【図5】第3の発明の一実施例の構造断面図である。

【図6】従来例の構造断面図である。

【図7】従来例の製造工程を示す断面図である。

【符号の説明】

- | | |
|----|---------------------|
| 1 | シリコン基板 |
| 2 | 受光部 |
| 3 | 電荷転送領域 |
| 4 | 酸化膜 |
| 5 | 電荷転送用電極 |
| 6 | 電極配線 |
| 7 | 保護膜 |
| 8 | ポジレジスト |
| 9 | フィールド部 |
| 10 | 電極パッド部 |
| 21 | 空化チタン等の反射防止膜 |
| 31 | チタン等の金属膜 |
| 32 | チタン酸化物等の金属酸化物の反射防止膜 |
| 33 | 低反射A1-S1反射防止膜 |
| 34 | A1(100%)膜 |
| 35 | 低反射A1-S1電極配線 |

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図7】

フロントページの続き

(51) Int. Cl. 5

識別記号 庁内整理番号
8233-4MF I
H 01 L 27/14

技術表示箇所

D

This Page Blank (uspto)