Effects of chronic and acute salinity changes on thermal tolerance in the

tidepool copepod (Tigriopus californicus)

Brian Hizon¹, Emma Strand¹, Shaina Alves¹, John Lane², Mark W. Denny², W. Wesley Dowd¹

¹Department of Biology, Loyola Marymount University; ²Hopkins Marine Station of Stanford University

Background and Objective

- The copepod *Tigriopus californicus* inhabits dynamic, high-intertidal pools where multiple environmental factors vary in both predictable and unpredictable fashion.
- In particular, salinity and temperature can vary over a wide range, and they do so following different temporal patterns.
- *Tigriopus californicus* can serve as a model system for examining species' responses to variation in more than one type of stressor.
- To quantify interactions between variation in salinity and acute thermal tolerance, we conducted three related experiments in which the timing and/or intensity of salinity change varied.

Experiment # 1: Females reared to maturity at constant salinity and temperature

Methods

- Mature, egg-bearing females were placed in seawater at 33 PSU or 60 PSU, in each of two different temperatures (15 and 23°C).
- As they developed, mature, egg-bearing female offspring were subjected to acute heat stress at a range of temperatures in a PCR machine (Fig. 1).
- Survival at 3 days was used to estimate the lethal temperature (LT_{50}) in each treatment.

Figure 1. Microcentrifuge tubes with a single female copepod in each and 1ml of salt water, before exposure to a heat ramp in a PCR machine.

Results

- Rearing juveniles for their entire life from eggs to adult, egg-bearing females at two different constant temperatures had no effect on LT₅₀ it was ~38°C in both groups raised at 33 PSU (Table 1).
- Sample size was limited due to lower reproductive performance at elevated salinity, but egg-bearing females reared at 60 PSU in either 15 or 23°C exhibited 100% survival after 38°C heat ramp (n=6 for each temperature)
- Therefore, chronic developmental exposure to high salinity had more of an effect on acute thermal tolerance than variation in chronic temperature exposure.

Table 1. Median lethal
temperature (LT ₅₀) of adult
female copepods reared at two
temperatures and two salinities

	33PSU	60PSU
15°C	37.8 ± 0.2°C	> 38.0°C
23°C	38.0 ± 0.2°C	> 38.0°C

Experiment #2: Adults exposed to acute salinity change following constant salinity acclimation

Methods

- Copepods collected from Hopkins Marine Station were acclimated in 60 PSU or 30 PSU seawater at constant temperature of 22°C (room temperature) for two weeks.
- Individuals were acutely transferred to one of six test salinities (5, 20, 35, 60, 80, or 100 PSU).
- Each source x acute salinity group was then tested in each of seven acute temperature ramps in a PCR machine, with 5 animals per tube (n = 10-20 at 22, 34, 36, 37, 38, 40, and 42°C).

Results

- Thermal tolerance (LT₅₀) varied dramatically between the two acclimation salinities when transferred to high acute salinities (Fig. 2):
- 100 PSU: 9.3°C difference
- Figure 2. Lethal temperature ($LT_{50} \pm SE$) at

- 80 PSU: 4.8°C difference

each test salinity for adult copepods acclimated to each of two salinities for two weeks prior to the thermal tolerance assay. LT_{50} was estimated from a binomial GLM.

- Animals acclimated to 60 PSU outperformed those from 30 PSU only when exposed to thermal stress at even higher salinity.
- We hypothesize that this physiological "cross-talk" occurs via accumulation of osmolytes that are also thermoprotectants.

Experiment # 3: Adults exposed to natural variation in salinity and temperature

Methods

- Mature, egg-bearing female copepods from a tidepool at Hopkins Marine Station (Fig. 3) were opportunistically sampled for thermal tolerance, before and after a natural wave event caused a dramatic decline in salinity.
- Acute thermal tolerance was quantified as in Experiments 1 & 2.

Figure 3. Twice daily water quality monitoring of the Hopkins Marine Station tidepool. The white temperature datalogger is also visible.

Results

Figure 4. Salinity (red) increases slowly but temperature (blue) oscillates daily in the source tidepool. Lethal temperature ($LT_{50} \pm SE$) of mature females was determined on three dates. NOTE: LT_{50} on 7/21 is an underestimate, because all females survived at this temperature.

- Temporal patterns of thermal tolerance in egg-bearing females reflected changes in ambient salinity in the tidepool.
- Specifically, LT_{50} decreased from 37.6 at 86 PSU to 37.1°C after the salinity decreased to 37 PSU in a stochastic, overnight wave event.
- The LT₅₀ then increased by more than 2°C after the salinity naturally increased to 110 PSU over several weeks.

Conclusions and Future Directions

- Altogether, copepods exposed to a higher salinity both chronically and acutely exhibit compensatory physiological responses that enhance survivability of acute temperature stress.
- Such interactions between covarying environmental parameters add complexity to biological forecasts.
- Future laboratory studies will covary these environmental parameters in a more realistic fashion (Fig. 4):
 - 1) Diel fluctuations of temperature; 2) "Sawtooth" patterns of salinity driven by evaporative concentration, followed by wave inundation; 3) Salinity and temperature variation will be superimposed on realistic, diel fluctuations of oxygen (Fig. 5) and pH/pCO₂.

Acknowledgements

- The faculty and staff of Hopkins Marine Station of Stanford University
- The Alcantar Family Fund, LMU Seaver College of Science and Engineering
- National Science Foundation Integrative Organismal Systems Grant IOS-1256186 to WWD

Figure 5. Diel cycling of dissolved oxygen percentages over a 6-week period in the HMS tidepool. Measurements were taken twice daily, just after sunrise and in mid-afternoon.

