Esercizio 1: Malware analysis

Download del file

Il file è stato scaricato dal link GitHub fornito dall'esercizio. Per consentire il download, è stato necessario disattivare temporaneamente le protezioni di Google Chrome. Il file è stato salvato all'interno della VM Win10 con snapshot pre-esecuzione e connessa in NAT, per evitare rischi di compromissione sia del sistema principale sia della VM.

Analisi statica

A. Analisi su Virustotal

Prima di aprire il malware faremo un'analisi statica veloce su virustotal.

Questa scansione veloce indica che questo file viene segnalato da 55 antivirus come un FakeAV e Trojan, appartenente alla famiglia Porcupine ovvero al gruppo di trojan creati e progettati per ingannare gli utenti e far loro credere che il pc sia infetto. L'hash MD5 del file è 248AADD395FFA7FFB1670392A9398454.

B. Analisi su ANY.RUN

Diamo il nostro file in pasto ad ANY.RUN e vediamo il report.

Nella parte in alto a destra della schermata è ben visibile e in rosso la dicitura "Malicious activity". Questo ci conferma che ANY.RUN ha rilevato comportamenti malevoli in tempo reale, già durante i primi istanti di esecuzione.

Nel pannello centrale a destra si osserva una catena di processi figli (come gli innumerevoli "conhost.exe" o "advfirewall reset") che hanno eseguito manipolazioni dirette delle impostazioni di rete e firewall, probabilmente per assicurarsi che la comunicazione esterna fosse consentita e per rimuovere eventuali blocchi o restrizioni imposte da protezioni preesistenti.

Nella parte inferiore si vedono alcune richieste GET con risposta 200 OK associate a processi interni come ad esempio "SearchApp.exe" o "MoUsoCoreWorker.exe"

In conclusione, il malware si installa e agisce subito in profondità, toccando rete, firewall e componenti di sistema tendendo al ripristino di connessioni, modificando le policy firewall e IP reset.

Analisi dinamica

A. Apriamo il malware

Avviamo il rogue av e noteremo una finestra di benvenuto di un'applicazione antivirus che invita a premere sul tasto "Scan".

Naturalmente ci fidiamo, click su Scan e attendiamo la fine del processo.

Il risultato mostra che la nostra VM ha ben 13 Malware con vari livelli di pericolo che vanno dal medio al molto alto. Prima di procedere oltre facciamo una ricerca veloce nel web per informarci sulle attività di questi malware che si fingono antivirus e su quale strumento da usare per analizzare.

I fake antivirus sono software dannosi che si fingono programmi di sicurezza per ingannare l'utente, facendo credere che il dispositivo sia infetto. In realtà, è proprio tentando di rimuovere il falso virus che il malware si attiva.

B. Analisi con Procmon

Passiamo all'analisi dei processi utilizzando Process Monitor e cerchiamo quello che ci interessa, per scoprire quale apriremo il task manager.

Identificato il processo col nome di "6AdwCleaner.exe" con PID "1856", torniamo su Procmon e lo cerchiamo con lo strumento "Find".

Poichè il malware esegue un elevato numero di processi andremo ad usare il filtro "Operation is RegSetValue" per cercare operazioni di modifica delle chiavi di registro.

Anche in questo caso ci sono molti processi completati con successo, il più preoccupante è il primo in cui cerca di modificare anche le regole del proxy intercettando il traffico e probabilmente bypassare i controlli e registri sulle connessioni effettuate.

Altre operazioni che il malware svolge sono quelle di apertura e chiusura di file e directory, probabilmente modificando anche loro. Proviamo ad usare un altro filtro "Operation is WriteFile".

13:58: AdwereCleaner	4800 🚡 WriteFile	C:\Users\user\AppData\Local\6AdwCleaner.exe
13:58: SAdwereCleaner	4800 🚡 WriteFile	C:\Users\user\AppData\Local\6AdwCleaner.exe
13:58: SAdwereCleaner	4800 🚡 WriteFile	C:\Users\user\AppData\Local\6AdwCleaner.exe
13:58: SAdwereCleaner	4800 🚡 Write File	C:\Users\user\AppData\Local\6AdwCleaner.exe
13:58: SAdwereCleaner	4800 🚡 WriteFile	C:\Users\user\AppData\Local\6AdwCleaner.exe
13:58: SAdwereCleaner	4800 🚡 Write File	C:\Users\user\AppData\Local\6AdwCleaner.exe
13:58: SAdwereCleaner	4800 🚡 WriteFile	C:\Users\user\AppData\Local\6AdwCleaner.exe
13:58:	4800 😭 Write File	C:\Users\user\AppData\Local\6AdwCleaner.exe

In effetti sta scrivendo dei file locali, molto preoccupante.

C. Analisi con Wireshark

Passiamo all'analisi di rete con Wireshark per verificare eventuali connessioni svolte dal malware, apriamo il terminale come amministratore e lanciamo il comando <netstat -abno>.

TCP	10.0.2.15:50355	142.250.180.170:443	ESTABLISHED	4444
ТСР	10.0.2.15:50356	142.250.180.170:443	ESTABLISHED	4444

Abbiamo trovato 2 connessioni stabilite sulla porta 443 all'IP 140.250.180.170.

Installiamo Wireshark 3.2.7 (versioni più aggiornate non vengono eseguite per colpa di un file .dll mancante) e lo apriamo catturando il traffico di rete. Diamo un filtro "tcp.port==443" perché come abbiamo visto prima la connessione avviene su quella porta.

	ort==443				
No.	Time	Source	Destination	Protocol	Length Info
14	45 93.798007	fd00::d0ac:e833:8260:6d49	2a00:1450:400c:c02::54	TCP	86 49585 + 443 [SYN] Seq=0 Win=8192 Len=0 MSS=1440 WS=256 SACK_PERM=1
14	46 93.798490	2a00:1450:400c:c02::54	fd00::d0ac:e833:8260:6d49		74 443 → 49585 [RST, ACK] Seq=1 Ack=1 Win=65535 Len=0
2!	52 93.966279	fd00::d0ac:e833:8260:6d49	2a00:1450:4002:411::2003	TCP	86 49586 → 443 [SYN] Seq=0 Win=8192 Len=0 MSS=1440 WS=256 SACK_PERM=1
2	54 93.966496	2a00:1450:4002:411::2003	fd00::d0ac:e833:8260:6d49	TCP	74 443 → 49586 [RST, ACK] Seq=1 Ack=1 Win=65535 Len=0
2	70 94.012873	fd00::d0ac:e833:8260:6d49	2a00:1450:4002:415::200a	TCP	86 49587 -> 443 [SYN] Seq=0 Win=8192 Len=0 MSS=1440 WS=256 SACK_PERM=1
2	71 94.013196	2a00:1450:4002:415::200a	fd00::d0ac:e833:8260:6d49	TCP	74 443 → 49587 [RST, ACK] Seq=1 Ack=1 Win=65535 Len=0
_ 29	96 94.099126	10.0.2.15	142.251.168.84	TCP	66 49588 + 443 [SYN] Seq=0 Win=8192 Len=0 MSS=1460 WS=256 SACK PERM=1
3:	11 94.137044	142.251.168.84	10.0.2.15	TCP	60 443 → 49588 [SYN, ACK] Seq=0 Ack=1 Win=65535 Len=0 MSS=1460
3:	12 94.137084	10.0.2.15	142.251.168.84	TCP	54 49588 -> 443 [ACK] Seg=1 Ack=1 Win=64240 Len=0
3:	13 94.138218	10.0.2.15	142.251.168.84	TLSv1.3	1815 Client Hello
3:	14 94.138345	142.251.168.84	10.0.2.15	TCP	60 443 → 49588 [ACK] Seq=1 Ack=1461 Win=65535 Len=0
3:	15 94.138758	142.251.168.84	10.0.2.15	TCP	60 443 → 49588 [ACK] Seq=1 Ack=1762 Win=65535 Len=0
3:	19 94.177456	142.251.168.84	10.0.2.15	TLSv1.3	1466 Server Hello, Change Cipher Spec
33	20 94.177762	142.251.168.84	10.0.2.15	TCP	1466 443 → 49588 [PSH, ACK] Seq=1413 Ack=1762 Win=65535 Len=1412 [TCP segment of a reassembled PDU]
33	21 94.177776	10.0.2.15	142.251.168.84	TCP	54 49588 → 443 [ACK] Seg=1762 Ack=2825 Win=64240 Len=0
3:	22 94.178381	142.251.168.84	10.0.2.15	TCP	1466 443 → 49588 [PSH, ACK] Seq=2825 Ack=1762 Win=65535 Len=1412 [TCP segment of a reassembled PDU]
33	23 94.178530	142.251.168.84	10.0.2.15	TLSv1.3	1204 Application Data
33	24 94.178542	10.0.2.15	142.251.168.84	TCP	54 49588 + 443 [ACK] Seq=1762 Ack=5387 Win=64240 Len=0
3	25 94,179676	10.0.2.15	142.251.168.84	TLSv1.3	

Potremo osservare un tentativo di connessione a più indirizzi remoti su porta 443 (che fa riferimento al servizio HTTPS), in più alcune connessioni IPv6 sono state immediatamente rifiutate (RST/ACK) probabilmente dal firewall di Windows.

Il contenuto delle comunicazioni non è visibile a causa della cifratura, ma il comportamento suggerisce un possibile uso di canali HTTPS ad esempio per il download di payload aggiuntivi.

Indicatori di compromissione

Tutte queste analisi hanno portato a numerosi indicatori di compromissione e in ordine abbiamo:

- File drop sospetto, ovvero "6AdwCleaner.exe", generato all'esecuzione del file principale.
- Processo figlio "conhost.exe" eseguito più volte per manipolare file di sistema e chiavi di registro.
- Comandi malevoli come "advfirewall reset" per forzare il reset della configurazione del firewall di windows.
- Connessioni HTTP/GET sulla porta 443 verso domini sospetti usando processi apparentemente innocui come "SearchApp.exe"

Conclusioni

L'analisi del file, inizialmente apparentemente legittimo, ha rivelato un comportamento malevolo riconducibile a un malware progettato per compromettere il sistema e manipolare impostazioni di rete e sicurezza.

Questo malware non solo compromette la privacy dell'utente ma potrebbe potenzialmente aprire backdoor per attività successive.

Questo esercizio dimostra l'importanza di adottare un approccio metodico all'analisi malware, utilizzando analisi statiche, dinamiche e di monitoraggio del traffico di rete per sviluppare efficaci strategie di rilevamento e mitigazione.

Pertanto, si deve passare alla rimozione immediata del file insieme ai relativi processi e il tempestivo isolamento del sistema compromesso per poi passare all'analisi retroattiva degli loC riportati.