Équivalence et négligeabilité

Exercice 1 (Vrai ou faux?)

- (a) Si $\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} v_n$ alors $u_n \underset{n \to +\infty}{\sim} v_n$.
- (b) Si $u_n \underset{n \to +\infty}{\sim} v_n$, alors u et v ont la même limite.
- (c) $\lim_{n \to +\infty} (u_n v_n) = 0 \iff e^{u_n} \underset{n \to +\infty}{\sim} e^{v_n}$
- (d) $u_n \underset{n \to +\infty}{\sim} v_n \Rightarrow u_n v_n \underset{n \to +\infty}{\sim}$

Négligeabilité

Exercice 2 (Echelle de grandeur 1)

Dans chaque cas, classer les termes généraux ci-dessous par "ordre de négligeabilité".

- (a) $\frac{1}{n}$ $\frac{1}{n\sqrt{n}}$ $\frac{\ln(n)}{\sqrt{n}}$ $\frac{(\ln n)^3}{n}$ $\frac{1}{n\ln(n)}$ (b) $n n\sqrt{n}$ $\frac{(\ln n)^3}{\sqrt{n}}$ $\frac{n^2}{(\ln n)^5}$ $\sqrt{n\ln(n)}$

Exercice 3 (Echelle de grandeur 2)

$$f_1(x) = e^{-x}$$
 $f_2(x) = 1$ $f_3(x) = \frac{1}{x}$
 $f_4(x) = e^x$ $f_5(x) = x^2$ $f_6(x) = x$,
 $f_7(x) = \ln(x)$ $f_8(x) = \frac{1}{x^2}$ $f_9(x) = 2^x$

Classer ces fonctions par "ordre de négligeabilité" au voisinage de :

- (b) 0 (sauf f_1, f_2 et f_9) $(a) + \infty$
- (c) $-\infty$ (sauf f_7)

Calculs directs d'équivalents

Exercice 4 (Facile)

Déterminer un équivalent simple lorsque $n \to +\infty$.

(a) $\frac{1}{n^2} - \frac{1}{2n}$

- (b) $\frac{2n^2+1}{1+2n-n^3}$
- (c) $\left(1 \cos\left(\frac{1}{n}\right)\right) (n + \sqrt{n})$ (d) $\frac{1}{e^{3n} + \ln(2n)}$
- (e) $(n^2 + \cos(n) + 2)^3$

Exercice 5 (Moins facile)

Déterminer un équivalent simple lorsque $n \to +\infty$.

- (a) $\ln(2n^2+1)$
- (b) $\exp\left(n+\frac{1}{n}\right)$
- (c) $e^{1/n} 1 + \tan\left(\frac{2}{n}\right)$ (d) $e^n 3^n + 2n$
- (e) $\sqrt{n^2 + n} + n + \sqrt{n}$ (f) $n^{1/n} 1$

Exercice 6 (Limites de fonctions)

Chercher un équivalent pour déterminer les limites :

(a)
$$\lim_{x \to -\infty} \frac{2x^2 - x}{-5x^3 + x}$$

(b)
$$\lim_{x \to 0} \frac{2x^2 - x}{-5x^3 + x}$$

(c)
$$\lim_{x\to 0} \frac{\sqrt[3]{1+3x}-1}{\sqrt{x}}$$

(d)
$$\lim_{x \to 0} \frac{\ln(\cos x)}{x}$$

Exercice 7 (Étude de signe)

Étudier le signe de f au voisinage de $+\infty$.

$$f(x) = \frac{3x^3 - 4x^2 + 3}{-x^2 + 10x + 5}$$

Exercice 8 (Équivalent de arctan)

Montrer que $\arctan(x) \sim x$.

Indication: Utiliser l'équivalent de tan(y) en 0.

Équivalents à partir d'encadrements

Exercice 9 (Méthode générale)

Trouver un équivalent simple de u_n lorsque :

- (a) $\forall n \in \mathbb{N}, \ 1 \leqslant \frac{u_n}{n+1} \leqslant 1 + \frac{1}{2n}$
- (b) $\forall n \in \mathbb{N}, \ n + \sqrt{n} \leqslant u_n \leqslant n + 2\sqrt{n}.$
- (c) $\lim_{n \to +\infty} (n-1)u_n = 2$

Exercice 10 (Série harmonique)

On pose $\forall n \in \mathbb{N}^*$, $S_n = \sum_{k=1}^n \frac{1}{k}$. ("série harmonique"). 1. Montrer : $\forall x \geqslant 1$, $\frac{1}{x+1} \leqslant \ln(x+1) - \ln(x) \leqslant \frac{1}{x}$.

- 2. Déduire un encadrement puis un équivalent de S_n .

Exercice 11 (Équivalent de ln(n!))

1. Montrer que pour tout entier $k \geqslant 2$,

$$\int_{k-1}^{k} \ln(t)dt \leqslant \ln k \leqslant \int_{k}^{k+1} \ln(t)dt.$$

2. En déduire que pour tout
$$n \ge 2$$
,
$$\int_{1}^{n} \ln(t)dt \le \ln(n!) \le \int_{2}^{n+1} \ln(t)dt.$$

3. En déduire finalement $\ln(n!) \underset{n \to +\infty}{\sim} n \ln(n)$.

Exercice 12 (Équivalent d'une fonction définie par une intégrale)

On pose: $\forall x \in \mathbb{R}_+, f(x) = \int_{\hat{x}}^x \sqrt{1+t^4} dt.$

- 1. Montrer: $\forall t \in \mathbb{R}_+, t^2 \leqslant \sqrt{1+t^4} \leqslant 1+t^2$
- 2. En déduire un encadrement de f(x) pour $x \in \mathbb{R}_+$, puis un équivalent de f(x) en $+\infty$.

Exercices classiques

Exercice 13 (Équivalent d'une suite récurrente)

On pose $u_0 = 1$ et $\forall n \in \mathbb{N}^*, \ u_n = 1 + \frac{u_{n-1}}{n}$.

- 1. Montrer que $\forall n \in \mathbb{N}, u_n \in [1, 2]$.
- 2. En déduire que la suite converge vers 1. (Indication : Trouver un encadrement de u_n !)
- 3. Déterminer un équivalent de $u_n 1$.
- 4. En déduire que l'on peut écrire :

$$u_n \underset{n \to +\infty}{=} 1 + \frac{1}{n} + o\left(\frac{1}{n}\right).$$

Exercice 14 (Équivalent d'une suite implicite)

Pour tout $n \in \mathbb{N}$, on pose : $f_n(x) = x^5 + nx - 1$.

- 1. Montrer que pour tout $n \in \mathbb{N}$, il existe un unique réel strictement positif u_n tel que $f_n(u_n) = 0$.
- 2. (a) Montrer que pour tout $n \in \mathbb{N}$, $f_{n+1}(u_n) = u_n$.
- (b) En déduire que (u_n) est décroissante .
- (c) Montrer que $\lim_{n\to+\infty} u_n = 0$.
- 3. Établir l'équivalent : $u_n \underset{n \to +\infty}{\sim} \frac{1}{n}$.
- 4. Pour tout $n \in \mathbb{N}$, on pose $a_n = \frac{1}{n} u_n$.
- (a) Montrer que : $\forall n \in \mathbb{N}, \ na_n = u_n^5$.
- (b) En déduire un équivalent de a_n .
- (c) En déduire finalement que l'on peut écrire :

$$u_n = n^{-1} - n^{-6} + o(n^{-6}).$$

Exercice 15 (Une autre suite implicite)

- 1. Pour $n \in \mathbb{N}^*$, montrer que l'équation $x^n e^x = 1$ possède une unique solution positive notée x_n , et que, de plus, $x_n \in]0,1[$.
- 2. Montrer que $\forall n \in \mathbb{N}^*, \ x_n = e^{\frac{-x_n}{n}},$ et en déduire $\lim_{n \to +\infty} x_n$.
- 3. Déterminer un équivalent de $x_n 1$.
- 4. En déduire finalement : $x_n = 1 \frac{1}{n} + o\left(\frac{1}{n}\right)$

Exercice 16 (Composer un équivalent par \ln)

Soit $a \in \mathbb{R} \cup \{+\infty, -\infty\}$. Soient f et g deux fonctions définies au voisinage de a telles que $f(x) \underset{x \to a}{\sim} g(x)$. On suppose également f > 0 au voisinage de a (donc g > 0 aussi).

(a) Montrer que si $\lim_{x\to a} f(x) = 0$ ou $\lim_{x\to a} f(x) = +\infty$, alors :

$$\ln(f(x)) \underset{x \to a}{\sim} \ln(g(x)).$$

(Indication : on pourra écrire $f(x) = g(x) \times \frac{f(x)}{g(x)}$)

(b) Montrer que c'est faux lorsque $\lim_{x\to a} f(x) = 1$! (On pourra trouver un contre-exemple)

Oral ESCP 2017

On admet la propriété suivante (Théorème de Césaro) : Pour toute suite réelle $(a_n)_{n\geqslant 1}$,

$$\lim_{n \to \infty} a_n = \ell \in \mathbb{R} \Longrightarrow \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n a_k = \ell$$

 $Autrement\ dit,\ si\ une\ suite\ converge\ vers\ une\ limite\ \ell,\ alors\ la\ suite\ de\ ses\ moyennes\ converge\ aussi\ vers\ \ell.$

On considère la suite $(u_n)_{n\geqslant 1}$ définie par : $u_1=2,\ u_2=1$ et la relation de récurrence :

pour tout
$$n \ge 1$$
, $u_{n+2} = \frac{u_{n+1}}{1 + u_{n+1}\sqrt{u_{n+1}u_n}}$

- 1. (a) Montrer que la suite $(u_n)_{n\geqslant 1}$ est bien définie.
 - (b) Déterminer le sens de variation de la suite $(u_n)_{n\geq 1}$.
 - (c) Montrer que la suite $(u_n)_{n\geqslant 1}$ converge vers 0.
- 2. Montrer que la suite de terme général $a_n = \frac{1}{u_{n+2}^2} \frac{1}{u_{n+1}^2}$ converge vers 2.
- 3. Pour tout $n \in \mathbb{N}^*$, exprimer $\frac{1}{n} \sum_{k=1}^n a_k$ en fonction de n et u_{n+2} .
- 4. En déduire finalement un équivalent simple de u_n lorsque $n \to +\infty$.