

Neural Net Final Report

AllFresh

Reporter: o100442 Wei-Yuan Hsu

Advisor: Prof. Hahn-Ming Lee

Outline

Rank

Data

Model

Results

Discussion

Rank

Rank

Highest rank	200
Public score	294
Specialized Prize for the last 10 days	444
Specialized Prize for the second-day prediction	517
Last rank	523

293	3		Jiao_ran	0.62636
294	4		AllFresh =	0.62819
295	5	_%	Janicell	0.62991

Problem Statement

- Pollutant Prediction
 - PM2.5, PM10, O3 (Beijing only)

Platform

- **GPU** Server
- Pandas, Numpy, Keras

Keras

Data

Input Data - Data Preprocessing

- Remove outlier (ex. Temperature, wind direction)
- Denoising: median number

Reference:

- 1. Local Approximations in Signal and Image Processing, http://www.cs.tut.fi/~lasip/2D/
- 2. Wavelet Denoising and Nonparametric Function Estimation, https://goo.gl/HJWVrs

Input Data - Handling missing data

- Missing value
 - missing # <= 23 hrs pandas interpolation
 - missing 1 day (24 hrs) average of previous 3 days
- External data
 - beijingair

Feature Engineering

Feature engineering

RNN is powerful enough to learn the pattern behind features.

- **Important feature** (what we want to predict)
 - o PM2.5
 - o PM10
 - o **O3**
- Other pollution
 - NO2
 - \circ CO
 - SO2
- Weather information
 - temperature
 - o pressure
 - humidity
 - wind_direction
 - wind_speed/kph

Model

Training and Validation

- SMAPE loss boosting
 - Clipping
- Regularization
 - Overfit -> just fit
 - Neural Network: Dropout (20%)
- Early Stopping
 - Stop the rest training iteration at early stage if the model in case time waste
 - patience: 6

Reference:

- 1. Hands-On Machine Learning with Scikit-Learn and TensorFlow by Aurélien Géron
- 2. Why 50% when using dropout?

Phase I - Underfit

Input layer	(n_features, n_prev)	
Hidden layer	LSTM	
Hidden layer	LSTM (# of neuron = 300)	
Output layer	2 (London) 3 (Beijing)	
SMAPE (on original data)	0.650053029710999 46	

Model Design

- LSTM (GRU is not so good in this competition...)
- Seq2seq

$$z_{t} = \sigma (W_{z} \cdot [h_{t-1}, x_{t}])$$

$$r_{t} = \sigma (W_{r} \cdot [h_{t-1}, x_{t}])$$

$$\tilde{h}_{t} = \tanh (W \cdot [r_{t} * h_{t-1}, x_{t}])$$

$$h_{t} = (1 - z_{t}) * h_{t-1} + z_{t} * \tilde{h}_{t}$$

Reference

LSTM

Seq2Seq Model

- [1] <u>Understanding LSTM Networks</u>
- [2] Generative Model Chatbots
- [3] Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le. "Sequence to sequence learning with neural networks." Advances in neural information processing systems. 2014.
- [4] Zaytar, Mohamed Akram, and C. E. El Amrani. "Sequence to sequence weather forecasting with long short term memory recurrent neural networks." Int J Comput Appl 143.11 (2016).

Model Design (cont.)

- Model: Seq2Seq Model
- Layers: 4
- Number of LSTM neurons: 1000

Model Design (cont.) - Bidirectional RNN

SMAPE: 0.5227025467578719

SMAPE: 0.4267148125612628

Model Design (cont.) - Optimizer

Q: Batch Normalization Layer?

Ans: On RNN is a disaster, because the RNN often vary with the length of input sequence. SMAPE got a big escillation in test error

Reference:

- Quora: Why is it difficult to apply batch-normalization to RNNs?, https://www.quora.com/Why-is-it-difficult-to-apply-bat ch-normalization-to-RNNs
- Is it normal to use batch normalization in RNN/lstm RNN?, https://stackoverflow.com/questions/45493384/is-it-normal-to-use-batch-normalization-in-rnn-lstm-rnn

Model Design (cont.)

- Optimizer Baseline ADAM
- How's other Optimizer (ex. rmsprop, adagrad etc)?

Final Model

Reproducible Results - Random seed

- Initialization random weights of Neural Net Model
- Given same initial to keep same random value (start from same position)

Reference:

- 1. How to Get Reproducible Results with Keras
- 2. Why Do I Sometimes Get Better Accuracy With A Higher Learning Rate Gradient Descent?

Results

Training Time

- 48 Models for every station
- Batch size: 32
- Average Time
 - \circ 1 hr ~ 1.5 hr each city
- Total Time
 - o around 2 ~ 3 days

Analysis

- RNN Model Underfit Solution
 - Add more layer
 - Add more hidden unit
 - Fully Connected Layer stabilized model when hidden neuron is a large number
 - SMAPE drop from 1.X -> 0.5 ~ 0.8

- SMAPE baseline is around 0.75 ~ 0.8
- SMAPE of 2 cities:
 - Beijing: [0.3, 0.85]
 - o London: [0.4, 0.57]

2 0 8 8 KDD CUP

Analysis (cont.)

- PM 2.5 Official data statistics
 - "...北京市全年PM2.5主要来源中本地排放占三分之二, 区域 传输占三分之一[1]"
 - Car emissions gas: CO, NO2 [2]

Reference:

图 2 现阶段北京市大气 PM2.5 本地来源。

图 1 2017 年北京市重污染日大气 PM25本地和区域贡献。

- 1. <u>最新科研成果新一轮北京市PM2.5来源解析正式发布</u>, Beijing Environmental Protection Bureau
- 2. Wiki -- Exhaust gas

- Correlation: feature importance analysis
- Batch size: 64
- Drop SO2 -> SMAPE no too much difference
 - Save time

Correlation	Feature 1	Feature 2	
Positive (+)	PM2.5	СО	around 0.75
	PM2.5	PM2.5	around 0.5
X	PM10	O3	
Negative (-)	O3	NO2	around - 0.5

Beijing city feature correlation plot

- Batch Size
 - 0 32
 - How about larger? 64 or 128?
- SMAPE issue

0

- batch size (up), smape (down)
- o Beijing: [0.45, **1.X**]
- o London: [0.65, 0.8]

0.1

0.2

0.3

0.4

LOSS vs. LEARNING RATE FOR DIFFERENT BATCH SIZES

Reference

[1] Visualizing Learning rate vs Batch size

Discussion

Discussion

- Food(Data) for big guy(RNN) may be not enough
 - Seems the data in this competion is a little too few for the models like RNN. [1]
 - Web Traffic Time Series Forecasting data set range almost 10 years

Lesson Learned...

About competition

- Do this as early as possible
- Data Preprocessing & Cleansing consumes up to 60 70% of time
- Fancy is not always good (A non-convergent Model is a nightmare)

Coworking

• One man do it all ~

Future Plan

- More team member
- Data Preprocessing

Other Resource

- 1. Kaggle Competition Web Traffic Time Series Forecasting
- 2. <u>Arturus/kaggle-web-traffic</u>

Reference

- Géron, Aurélien. Hands-on machine learning with Scikit-Learn and TensorFlow: concepts, tools, and techniques to build intelligent systems. "O'Reilly Media, Inc.", 2017.
- VanderPlas, Jake. Python data science handbook: Essential tools for working with data. "O'Reilly Media, Inc.", 2016.
- Müller, Andreas C., and Sarah Guido. Introduction to machine learning with Python: a guide for data scientists. "O'Reilly Media, Inc.", 2016.
- Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le. "Sequence to sequence learning with neural networks." Advances in neural information processing systems. 2014.
- Zaytar, Mohamed Akram, and C. E. El Amrani. "Sequence to sequence weather forecasting with long short term memory recurrent neural networks." Int J Comput Appl 143.11 (2016).

Thank You For Your Attention

Q&A