Содержание

7 .	Комбинаторика	2
8.	Рекуррентности и производящие функции	9

7. Комбинаторика

Базовые понятия:

- Алфавит (Alphabet) Σ (или X, $Ex. X = \{a, b, c\}$) множество символов в нашей системе
- Диапазон (Range) $[n] = \{1, ..., n\}$ конечное множество последовательных натуральных чисел
- Расстановка (Ordered arrangement) последовательность каких-либо элементов (тоже самое, что кортеж), $Ex. \ x = (a,b,c,d,b,b,c) \ |x| = n$ Расстановку можно представить как функцию $f: [n] \to \sum_{\text{domain}} f$, которая по порядковому номеру выдает символ f : [n] : f(i) = c
- Перестановка (Permutation) $\pi:[n] \to \Sigma$, где $n=|\Sigma|$ Расстановка π биекция между [n] и Σ

 Одна из задач комбинаторики - посчитать количество различных расстановок или перестановок при заданных n и Σ

• k-перестановка (k-permutation) - расстановка из k различных элементов из Σ

$$Ex.$$
 31475 = 5 5-регт из Σ =[7] k -перестановка - инъекция $\pi:[k] \to \Sigma$ $(k \le n = |\Sigma|)$

- P(n,k) множество всех k-перестановок алфавита $\Sigma = [n]$ (если исходный алфавит не состоит из чисел, то мы можем сделать биекцию между ним и [n]) $P(n,k) = \{f \mid f : [k] \to [n]\}$ Чаще интересует не само множество, а его размер, поэтому под обозначением P(n,k) подразумевается |P(n,k)|
- $S_n = P_n = P(n, n)$ множество всех перестановок. Также чаще всего нас будет интересовать не множество, а его размер $|S_n| = n!$ всего существует n! перестановок $|P(n,k)| = n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot (n-k+1) = \frac{n!}{(n-k)!}$
- Циклические k-перестановки (Circular k-permutations) $\pi_1, \pi_2 \in P(n,k)$ циклически эквивалентны тогда и только тогда: $\exists s \mid \forall i \ \pi_1((i+s)\%k) = \pi_2(i)$

 $P_C(n,k)$ - множество всех циклических k-перестановок в Σ

$$|P_C(n,k)| \cdot k = |P(n,k)|$$

 $|P_C(n,k)| = \frac{|P(n,k)|}{k} = \frac{n!}{k(n-k)!}$

• Неупорядоченная расстановка k элементов (Unordered arrangement of k elements) - мультимножество Σ^* размера k

$$Ex. \ \Sigma^* = \{ \triangle, \triangle, \Box, \triangle, \circ, \Box \}^* = \{ 3 \cdot \triangle, 2 \cdot \Box, 1 \cdot \circ \} = (\Sigma, r)$$
 Неупорядоченную расстановку можно представить как функцию: $r : \Sigma \to \mathbb{N}, \quad r(x)$ - кол-во повторений объекта x

• k-сочетание (k-combination) - неупорядоченная перестановка из k различных элементов из Σ (еще называют k-подмножеством, k-subset)

Соответственно C(n,k) - множество всех таких k-сочетаний

$$|C(n,k)| = C_n^k = \binom{n}{k}$$

$$C(n,k) = \binom{\Sigma}{k}$$

$$\binom{n}{k} \cdot k! = |P(n,k)|$$

$$|C(n,k)| = \binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Th. Биномиальная теорема (Binomial theorem):

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

 $egin{pmatrix} n \ k \end{pmatrix}$ - биномиальный коэффициент

Th. Мультиномиальная теорема (Multinomial theorem)

$$(x_1 + \dots + x_r)^n = \sum_{\substack{k_i \in 1...n, \\ k_1 + \dots + k_r = n}} {n \choose k_1, \dots, k_r} x_1^{k_1} \cdot \dots \cdot x_r^{k_r}$$

$$\binom{n}{k_1,\ldots,k_r}=rac{n!}{k_1!\ldots k_r!}$$
 - мультиномиальный коэффициент

$$Ex.$$
 мультиномиальной теоремы:
$$(x+y+z)^4=1(x^4+y^4+z^4)+4(xy^3+xz^3+x^3y+yz^3+y^3z+yz^3)+6(x^2y^2+y^2z^2+x^2z^2)+12(xyz^2+xy^2z+x^2yz)$$

Доказательство:

$$(x_1+\cdots+x_r)^n=\sum_{\substack{i_j\in [r]\\j\in [n]}}x_{i_1}^1\cdot\cdots\cdot x_{i_n}^1=\sum_{\substack{i_j\in [r]\\j\in [n]}}x_1^{k_1}\cdot\cdots\cdot x_r^{k_r},$$
 где k_t - количество x с индексом t в

одночлене $(k_t = |\{j \in [n] | i_j = t\}|)$

Получается мультиномиальный коэффицциент $\binom{n}{k_1,\ldots,k_r}$ будет равен количество способов поставить k_1 единиц в индексы в $x_{i_1}^1 \cdot \dots \cdot x_{i_n}^1$, k_2 двоек в индексы и так далее

У нас есть $\binom{n}{k_1}$ способов поставить единицу в индексы в одночлен, $\binom{n-k_1}{k_2}$ способов

ПОСТАВИТЬ ДВОЙКУ И Т. Д., ПОЛУЧАЕМ:
$$\binom{n}{k_1,\ldots,k_r} = \binom{n}{k_1} \binom{n-k_1}{k_2} \ldots \binom{n-k_1-\cdots-k_{r-1}}{k_r} = [n-k_1-\cdots-k_r=0] = \frac{n!}{k_1!(n-k_1)!} \frac{(n-k_1)!}{k_2!(n-k_1-k_2)!} \ldots \frac{(n-k_1-\cdots-k_{r-1})!}{k_r!0!} = \frac{n!}{k_1!\ldots k_r!}$$

• Перестановка мультимножества Σ^* (Permutations of a multiset Σ^*) $\Sigma^* = \{ \Delta^1, \Delta^2, \Box, \star \} = (\Sigma, r) \quad r : \Sigma \to \mathbb{N}_0 \quad n = |\Sigma^*| = 4 \quad s = |\Sigma| = 3$

$$Nota.$$
 $\begin{cases} \Delta^1, \Delta^2, \square, \star \\ \Delta^2, \Delta^1, \square, \star \end{cases}$ считаются равными перестановками

$$|P^*(\Sigma^*,n)| = \frac{n!}{r_1!\dots r_s!} = \binom{n}{r_1,\dots,r_s}$$
 - количество перестановок мультимножества, где r_i - количество i -ого элемента в мультимножестве

• k-комбинация бесконечного мультимножества (k-combinations of infinite multiset) такое субмультимножество размера k, содержащее элементы из исходного мультимножества. При этом соблюдается, что количество какого-либо элемента r_i в исходном мультимножестве не больше размера комбинации k

$$\Sigma^* = \{\infty \cdot \triangle, \infty \cdot \square, \infty \cdot \star, \infty \cdot \not A\}^* \quad n = |\Sigma^*| = \infty$$

$$\Sigma = \{\triangle, \square, \star, \not A\} \quad s = |\Sigma| = 4$$

Ex. 5-комбинация: $\{ \triangle, \bigstar, \square, \bigstar, \square \}$

Разделяем на группы по Σ палочками:

Заменяем элементы на точечки - нам уже не так важен тип элемента, потому что мы знаем из разделения:

(другой
$$Ex. \bullet \bullet \bullet \bullet \parallel \bullet = \{4 \cdot \triangle, 1 \cdot \cancel{A}\}$$
)

Получается всего \ddot{k} точечек и s-1 палочек, всего k+s-1 объектов. Получаем мультимножество $\{k \cdot \bullet, (s-1) \cdot | \}$ (Star and Bars method)

Получаем количество перестановок этого мультимножества: $\frac{(k+s-1)!}{k!(s-1)!} = \binom{k+s-1}{k,s-1} =$

$$\binom{k+s-1}{k} = \binom{k+s-1}{s-1}$$

что и является количеством возможных k-комбинаций бесконечного мультимножества

• Слабая композиция (Weak composition) неотрицательного целого числа n в k частей это решение (b_1,\ldots,b_k) уравнение $b_1+\cdots+b_k=n,$ где $b_i\geq 0$

$$|\{$$
слабая композиция n в k частей $\}|=egin{pmatrix} n+k-1\\ n,k-1 \end{pmatrix}$

Для решения воспользуемся аналогичным из доказательства мультиномиальной теоремы приемом:

$$n = 1 + 1 + 1 + \cdots + 1$$

Поставим палочки:
$$n = 1 + 1 \begin{vmatrix} 1 \\ 1 \end{vmatrix} \cdots + 1$$

Получаем задачу поиска количеств k-комбинаций в мультимножестве: $\{n \cdot 1, (k-1) \cdot | \}$;

получаем
$$\binom{n+k-1}{n,k-1}$$

• Композиция (Composition) - решение для $b_1+\cdots+b_k=n$, где $b_i>0$ $|\{$ композиция n в k частей $\}|=\binom{n-k+k-1}{n-k,k-1}$

Мы знаем, что одну единичку получит каждая b_i , поэтому мы решаем это как слабую композицию для n-k в k частей

• Число композиций *п* в некоторой число частей (Number of all compositions into some number of positive parts)

$$\sum_{k=1}^{n} \binom{n-1}{k-1} = 2^{n-1}$$

Пусть
$$t = k - 1$$
, тогда $\sum_{t=0}^{n-1} \binom{n-1}{t} = 2^{n-1}$

• Разбиения множества (Set partitions) - множество размера k непересекающихся непустых подмножеств

$$Ex. \ \{1,2,3,4\}, n=4, k=2 \to [\text{разбиение в 2 части}] \to \ \{\{1\},\{2,3,4\}\}, \\ \{\{1,2\},\{3,4\}\}, \\ \{\{1,2,3\},\{4\}\}, \\ \{\{1,4\},\{2,3\}\}, \\ \{\{2\},\{1,3,4\}\}, \\ \{\{3\},\{1,2,4\}\} \}$$

 $|\{$ разбиение n элементов в k частей $\}|={n\brace k}=S_k^{II}(n)=S(n,k)$ - число Стирлинга второго рода

Для примера выше число Стирлинга $S(4,2) = {4 \brace 2} = 7$

Согласно Википедии для формулы Стирлинга есть формула: $S(n,k) = \frac{1}{k!} \sum_{j=0}^{k} (-1)^{k+j} \binom{k}{j} j^n$

• Формула Паскаля (Pascal's formula)

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

• Рекуррентное отношение для чисел Стирлинга (Recurrence relation for Stirling⁽²⁾ number):

$$\binom{n}{k} = \binom{n-1}{k-1} + k \cdot \binom{n-1}{k}$$

Возьмем какое-либо разбиение для n-1 элементов на k частей, тогда возможны два случая:

- 1) В k-ое множество нет ни одного элемента, тогда мы обязаны в него положить наш n-ый элемент по определению, количество перестановок будет равно ${n-1 \brace k-1} \cdot 1$
- 2) В k-ом множестве уже есть элементы, тогда все множества будут заполнены и у нас будет выбор из k множеств, куда положить k-ый элемент, то есть $k \cdot {n-1 \brace k}$

Эти два случая независимы, поэтому получаем $\binom{n-1}{k-1} + k \cdot \binom{n-1}{k}$

 \bullet Число Белла (Bell number) - количество всех неупорядоченных разбиений множества размера n

Число Белла вычисляется по формуле: $B_n = \sum_{m=0}^n S(n,m)$

• Целочисленное разбиение (Integer partition) - решение для $a_1 + \cdots + a_k = n$, где $a_1 \ge a_2 \ge \cdots \ge a_k \ge 1$

p(n,k) - число целочисленных разбиений n в k частей

$$p(n) = \sum_{k=1}^{n} p(n,k)$$
 - число всех разбиений для n

• Принцип включения / исключения (Principle of Incusion/Exclusion (PIE)) $|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |B \cap C| - |A \cap C| + |A \cap B \cap C|$

Ex. есть n=11 объектов, нужно распределить их между k=3 группами A, B и C Эту задачу можно решить с помощью $Stars\ and\ bars\ method$, тогда мы получим $\binom{n+k-1}{n,k-1}=\binom{13}{2}=78$

Введем ограничение: пусть мощность каждого множества будет не больше 4.

Посчитаем количество неподходящих вариантов:

$$|A| = |\{b_A \ge 5\}| = 1 \cdot {11 - 5 + 3 - 1 \choose 3 - 1} = {8 \choose 2} = 28$$

$$|A \cap B| = |\{b_A \ge 5 \land b_B \ge 5\}| = \binom{3}{2} = 3$$

 $|A \cap B \cap C| = |\{b_A \ge 5 \land b_B \ge 5 \land b_C \ge 5\}| = 0$

Итого получаем $28 \cdot 3 + 3 \cdot 3 + 0 = 75$ вариантов.

Далее исключаем эти варианты из количества всех вариантов, а значит подходящих вариантов всего 78 - 75 = 3

• Принцип включения / ucключения (Inclusion / Exclusion Principle (PIE))

- X начальное множество элементов
- $-P_1,\ldots,P_m$ свойства
- Пусть $X_i = \{x \in X \mid P_i$ свойство для $x\}$
- Пусть $S \in [m]$ множество свойств
- Пусть $N(S) = \bigcap_{i \in S} X_i = \{x \in X \mid x \text{ имеет все свойства } P_1, \dots, P_m\}$

$$N(\emptyset) = X \quad |N(\emptyset)| = |X| = n$$

• **Теорема** ПВ/И (Theorem PIE)

$$|X \setminus (X_1 \cup X_2 \cup \ldots \cup X_m)| = \sum_{S \subseteq [m]} (-1)^{|S|} |N(S)|$$
 - количество элементов множества X , не

имеющих никакое из свойств

Доказательство:

Пусть $x \in X$

Если x не имеет свойств P_1, \ldots, P_m , то $x \in N(\emptyset)$ и $x \notin N(S) \ \forall S \neq \emptyset$

Поэтому x дает в общую сумму 1

Иначе, если x имеет $k \ge 1$ свойств $T \in \binom{\lfloor m \rfloor}{k}$,

то $x \in N(S)$ тогда и только тогда, когда $S \subseteq T$

Поэтому
$$x$$
 дает в сумму $\sum_{S\subseteq T} (-1)^{|S|} = \sum_{i=0}^k \binom{k}{i} (-1)^i = 0$

• Следствие

$$|\bigcup_{i \in [m]} X_i| = |X| - \sum_{S \subseteq [m]} (-1)^{|S|} |N(S)| = \sum_{S \subseteq [m], S \neq \emptyset} (-1)^{|S|-1} |N(S)|$$

• Приложения:

- * Определяете «плохие» свойства P_1, \ldots, P_m
- * Посчитываете N(S)
- * Применяете ПВ/И

• Количество сюръекций (правототальных функций)

- * $X = \{ \text{функция } f : [k] \rightarrow [n] \}$
- * Плохое свойство $P_i: X_i = \{f: [k] \to [n] \mid \nexists j \in [k]: f(j) = i\}$ * |{сюръекции $f: [k] \to [n]\}| = |X \setminus (X_1 \cup \ldots \cup X_m)|$ $\stackrel{\text{PIE}}{=} \sum_{S \subseteq [m]} (-1)^{|S|} |N(S)| = \sum_{S \subseteq [m]} (-1)^{|S|} (n 1)^{|S|} |N(S)| = \sum_{S \subseteq [m]} (-1)^{|S|} |N(S)| = \sum_{S$

$$|S|)^k = \sum_{i=0}^k (-1)^i \binom{k}{i} (k-i)^n$$

• Количество биекций

$$n! = \sum_{i=0}^{n} (-1)^{i} \binom{n}{i} (n-i)^{n}$$

• Число Стирлинга (опять)

Заметим, что сюръекция = разбиение, тогда:

$$\sum_{i=0}^{k} (-1)^{i} {k \choose i} (k-i)^{n} = n! S_{n}^{II}(k)$$

• Беспорядки (Derangements) - перестановка без фиксированных точек

Если f(i) = i, то i - фиксированная точка

- *X = все n! перестановок
- * Плохие свойства $P_1,\ldots,P_m:\pi\in X$ имеет свойство $P_i\Longleftrightarrow\pi(i)=i$
- * Посчитаем N(S): N(S) = (n |S|)!
- * Применяем ПВ/И: $X \setminus (X_1 \cup \ldots \cup X_n) = \sum_{S \subseteq [n]} (-1)^{|S|} N(S) = \sum_{S \subseteq [n]} (-1)^{|S|} (n |S|)! =$

$$\sum_{i=0}^{n} (-1)^{i} \binom{n}{i} (n-i)!$$

8. Рекуррентности и производящие функции

• Производящие функции (Generating Functions)

$$\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \dots$$

 Φ ункция выше задает последовательность a_0, a_1, a_2, \dots

Ex.
$$3 + 8x^2 + x^3 + \frac{1}{7}x^5 + 100x^6 + \dots \rightarrow (3, 0, 8, 1, 0, \frac{1}{7}, 100, \dots)$$

Ex. Последовательность $(1,1,1,\dots)$ задает функцию $1+x+x^2+\dots=\sum_{n=0}^{\infty}x^n$

Пусть
$$S=1+x+x^2+\ldots$$
, тогда $xS=x+x^2+\ldots$, $(1-x)S=1\Longrightarrow$ $S=\frac{1}{1-x}$ задает последовательность $(1,1,1,\ldots)$

$$\frac{1}{1+x} = 1 - x + x^2 - x^3 + \dots = \sum_{n=0}^{\infty} (-1)^n x^n$$

$$\frac{1}{1-3x} = 1 + 3x + 9x^2 + 27x^3 + \dots = \sum_{n=0}^{\infty} 3^n x^n$$

$$\frac{2}{1-x} = 2 + 2x + 2x^2 + 2x^3 + \dots = \sum_{n=0}^{\infty} 2x^n$$

$$(2,4,10,28,82,\dots) = (1,1,1,1,1,\dots) + (1,3,9,27,81,\dots)$$

$$\frac{1}{1-x} + \frac{1}{1-3x} = \frac{2-4x}{(1-x)(1-3x)}$$

$$\frac{1}{1-x^2} = 1 + x^2 + x^4 + x^6 + \dots = \sum_{n=0}^{\infty} x^{2n} \to (1,0,1,0,\dots)$$

$$\frac{x}{1-x^2} = x + x^3 + x^5 + \dots = \sum_{n=0}^{\infty} x^{2n+1} \to (0,1,0,1,\dots)$$

Взятие производной:

$$\frac{d}{dx}(\frac{1}{1-x}) = \frac{1}{(1-x)^2} = \frac{d}{dx}(1+x+x^2+\dots) = 1+2x+3x^2+4x^3+\dots \to (1,2,3,4,\dots)$$

 $\it Ex.$ Найти ПФ для $(1,3,5,7,9,\ldots)$

$$A(x) = 1 + 3x + 5x^2 + \dots$$

$$xA = 0 + x + 3x^2 + 5x^3 + \dots$$

$$(1-x)A = 1 + 2x + 2x^2 + 2x^3 + \dots$$

$$(1-x)A = 1 + \frac{2x}{1-x}$$
 $A = \frac{1 + \frac{2x}{1-x}}{1-x} = \frac{1+x}{(1-x)^2}$

Ex. Найти ПФ для $(1,4,9,16,\dots)$

$$A = 1 + 4x + 9x^{2} + 16x^{3} + \dots$$
 $(1 - x)A =$

• Подсчет, используя производящие функции

Найти число решений для
$$x_1+x_2+x_3=6$$
, где $x_i\geq 0, x_1\leq 4, x_2\leq 3, x_3\leq 5$ $A_1(x)=1+x+x^2+x^3+x^4$

$$A_2(x) = 1 + x + x^2 + x^3$$

 $A_3(x) = 1 + x + x^2 + x^3 + x^4 + x^5$
 $A(x) = A_1 \cdot A_2 \cdot A_3 = 1 + 3x + 6x^2 + 10x^3 + 14x^4 + 17x^5 + \underline{18x^6} + 17x^7 + \dots$
Ответ - 18

• Рекуррентные соотношения (Recurrence relations)

Решить рекуррентное соотношение - найти закрытую формулу

Ех. Арифметическая прогрессия

$$a_n = \begin{cases} a_0 = const & n = 0\\ a_{n-1} + d, & n > 0 \end{cases}$$

Решение: $a_n = a_0 + nd$ - анзац (Ansatz, догадка)

Проверка: $a_n = a_0 + nd = a_{n-1} + d = a_0 + (n-1)d + d = a_0 + nd$ -

• Метод характеристического уравнения

Рекуррентное соотношение $\stackrel{a_n \to r^n}{\leadsto}$ Характеристическое решение корни $\stackrel{магия}{\leadsto}$ Решение \leadsto Проверка

Ex.
$$a_n = a_{n-1} + 6a_{n-2}$$

 $r^n - r^{n-1} - 6r^{n-2} = 0$
 $r^{n-2}(r^2 - r - 6) = 0$

$$r_{1,2} = -2, 3$$

Если $r_1 \neq r_2$, то $a_n = ar_1^n + br_2^n$ - общее решение Если $r_1 = r_2 = r$, то $a_n = ar^n + bnr^n$

$$a_n = a(-2)^n + b(3)^n$$
Пусть $\begin{cases} a_0 = 1 = a + b \\ a_1 = 8 = -2a + 3b \end{cases}$
 $-5a = 5 \Longrightarrow \begin{cases} a = -1 \\ b = 2 \end{cases} \Longrightarrow a_n = -(-2)^n + 2 \cdot 3^n$
Разделяй и властвуй (Divide-and-Conque

• Разделяй и властвуй (Divide-and-Conquer)

$$T(n) = \underbrace{2T\left(\frac{n}{2}\right)}_{\text{работа рекурсии}} + \underbrace{\theta(n)}_{\text{работа разделения/слияния}}$$

• Основная теорема о рекуррентных соотношениях (Master Theorem) *_{ТЫК}*

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$
We arrow $c = \log x$

Из этого, $c_{crit} = \log_b a$

$$\frac{\text{I случай: слияние} < \text{рекурсия}}{f(n) \in O(n^c), \text{ где } c < c_{crit} \Longrightarrow T(n) \in \Theta(n^{c_{crit}})}$$
 $f(n) \in O(n^c) \Longleftrightarrow f(n) \in o(n^{c_{crit}})$

II случай: слияние ≈ рекурсия

$$\overline{f(n)} \in \Theta(n^{c_{crit}} \log^k n) \Longrightarrow T(n) \in \Theta(n^{c_{crit}} \log^{k+1} n)$$

Здесь $k \ge 0$. В общем случае см. википедию

III случай: слияние > рекурсия
$$f(n) \in \Omega(n^c)$$
, где $c > c_{crit} \Longrightarrow T(n) \in \Theta(f(n))$

• Метод Акра-Бацци (Akra-Bazzi method)

$$T(n) = f(n) + \sum_{i=1}^k a_i T(b_i n + h_i(n)) \Longrightarrow T(n) \in \Theta\left(n^p \cdot \left(1 + \int_1^n \frac{f(x)}{x^{p+1}} dx\right)\right)$$
, где p - решение для

$$\sum_{i=1}^k a_i b_i^p = 1$$

$$\begin{cases} k = const \\ a_i > 0 \\ 0 < b_i < 1 \\ h_1(n) \in O(\frac{n}{\log^2 n}) \text{ - малые возмущения} \end{cases}$$

$$Ex.\ T(n) = T\left(\lfloor \frac{n}{2} \rfloor\right) + T\left(\lceil \frac{n}{2} \rceil\right) + n$$
 - асимптотика сортировки слиянием $T(n) = T\left(\frac{n}{2} + O(1)\right) + T\left(\frac{n}{2} - O(1)\right) + \theta(n)$ Здесь $b_i = \frac{1}{2}, \quad h = \pm O(1) \in O\left(\frac{n}{\log^2 n}\right)$

Ex.
$$T(n) = T\left(\frac{3n}{4}\right) + T\left(\frac{n}{4}\right) + n$$

 $a_1 = 1, b_1 = \frac{3}{4}, a_2 = 1, b_2 = \frac{1}{4}, f(n) = n$
 $(\frac{3}{4})^p + \left(\frac{1}{4}\right)^p = 1$
 $p = 1$
 $\int_1^n \frac{x}{x^{1+1}} dx = \int_1^n \frac{dx}{x} = \ln x \Big|_1^n = \ln n$
 $T(n) \in \Theta(n \cdot (1 + \ln n))$
 $T(n) \in \Theta(n \ln n)$

• Решить рекуррентное соотношение $a_n = 3a_{n-1} - 2a_{n-1}$, где $a_0 = 1$, $a_1 = 3$

Используем производящие функции:
$$A(x) = \frac{1}{1 - 3x + 2x^2} = \frac{1}{(1 - x)(1 - 2x)} = \frac{-1}{1 - x} + \frac{2}{1 - 2x} \rightarrow 2^{n+1} - 1$$

• Линейные рекуррентности (Linear recurrences)

$$\underbrace{k_1a_n+k_2a_{n-1}+k_3a_{n-2}+\dots}_{$$
линейная комб. рекуррентных членов функция от n

Линейное рекуррентное соотношение - $\begin{cases} f=0 \Longrightarrow \text{гомогенное (однородное)} \\ f \neq 0 \Longrightarrow \text{негомогенное (неоднородное)} \end{cases}$

Ех. Последовательность Фибоначчи:

$$F(n) = \begin{cases} 0, & n = 0 \\ 1, & n = 1 \\ F(n-1) + F(n-2) \end{cases}$$

$$F(n) - F(n-1) - F(n-2) = 0$$
 - однородное

• Операторы:

Сумма:
$$(f+g)(n) = f(n) + g(n)$$

Умножение на число: $(\alpha \cdot f)(n) = \alpha f(n)$
Сдвиг: $(Ef)(n) = f(n+1)$
 $Ex.\ E(f-3(g-h)) = Ef + (-3)Eg + 3Eh$
Составные операторы: $(E-2)f = Ef + (-2)f = f(n+1) - 2f(n)$
 $E^2f = E(Ef) = f(n+2)$
 $Ex.\ f(n) = 2^n$
 $2f = 2 \cdot 2^n$
 $Ef = 2^{n+1}$
 $(E^2-1)f(n) = E^2f(n) - f(n) = 2^{n+2} - 2^n = 3 \cdot 2^n$

• **Аннигилятор** (Annihilator) - оператор, который трансформирует f в функцию, тождественную 0

Ex. Оператор (E-2) аннигилирует функцию $f(n)=2^n$

Ex. (E-c) аннигилирует c^n

Ex. (E-3)(E-2) аннигилирует $2^{n}+3^{n}$

 $Ex. (E-c)^d$ аннигилирует любую функцию формы $p(n) \cdot C^n$, где p(n) - многочлен степени не больше d-1

Nota. Любой составной оператор аннигилирует класс функций

Nota. Любая функция, составленная из полинома и экспоненты, имеет свой единственный аннигилятор

Если X аннигилирует f, то X также аннигилирует Ef

Если X аннигилирует f и Y аннигилирует q, то XY аннигилирует $f \pm q$

- Аннигилирование рекуррентностей:
 - 1. Запишите рекуррентное соотношение в форме операторов
 - 2. Выделите аннигилятор для соотношения
 - 3. Разложите на множители (если понадобится)
 - 4. Выделите общее решение из аннигилятора
 - 5. Найдите коэффициенты используя базовые случаи (если даны)

$$Ex. \ r(n) = 5r(n-1), r(0) = 3$$
1. $r(n+1) - 5r(n) = 0 \quad (E-5)r(n) = 0$
2. $(E-5)$ аннигилирует $r(n)$
3. $(E-5)$ уже разложен
4. $r(n) = \alpha \cdot 5^n$
5. $r(0) = 3 \Longrightarrow \alpha = 3$

Ex.
$$T(n) = 2T(n-1) + 1$$
, $T(0) = 0$
1. $(E-2)T(n) = 1$

2. (E-2) не аннигилирует T(n), остается 1. Тогда добавим аннигилятор (E-1), получим, что (E-1)(E-2) аннигилирует T(n)

- 3. Разложение не требуется
- 4. $T(n) = \alpha \cdot 2^n + \beta$ общее решение 5. $T(0) = 0 = \alpha \cdot 2^0 + \beta$ $T(1) = 1 = \alpha \cdot 2^1 + \beta$

5.
$$T(0) = 0 = \alpha \cdot 2^{0} + \beta$$

$$T(1) = 1 = \alpha \cdot 2^1 + \beta$$

$$\alpha = 1, \beta = -1$$

• Псевдонелинейные уравнения (Pseudo-non-linear equations)

Ex.
$$a_n = 3a_{n-1}^2, a_0 = 1$$

 $\log_2 a_n = \log_2(3a_{n-1}^2)$
Пусть $b_n = \log_2 a_n$
 $b_n = 2b_{n-1} + \log_2 3, b_0 = 0$
 $b_n = (2^n - 1)\log_2 3$
 $a_n = 2^{(2^n - 1)\log_2 3} = 3^{2^n - 1}$