Kraków 20 kwietnia 2015

Zadanie E2: Mysz w labiryncie

Labirynt służący do badania zachowań myszy składa się z n pomieszczeń połączonych m ruchomymi korytarzykami. Każdy korytarzyk łączy dwa pomieszczenia, ale w taki sposób, że mysz może poruszać się po nim tylko w jednym kierunku (zgodnie z ruchem taśmy).

Eksperyment polega na umieszczeniu myszy w jednym z pomieszczeń i obserwowaniu jej dalszej wędrówki po labiryncie. Po kolejnych eksperymentach zauważono, że myszy starają się unikać wchodzenia w takie korytarzyki, po przejściu których nigdy nie będą mogły już wrócić do pomieszczenia z którego w ten korytarzyk weszły. Dlatego eksperymentator postanowił umieścić, przed rozpoczęciem kolejnego doświadczenia, w każdym z takich korytarzyków kawałek sera.

Twoim zadaniem jest stwierdzenie ile co najwyżej kawałków sera może zjeść mysz w czasie swojej wędrówki po labiryncie i do którego pomieszczenia powinien ją początkowo wpuścić eksperymentator, by rzeczywiście miała możliwość zjedzenia tej ilości sera.

Dostępna pamięć: 512MB

Wejście

W pierwszej linii wejścia znajdują się dwie liczba pomieszczeń n i liczba korytarzyków m ($1 \le n \le 1\,000\,000$; $0 \le m \le 1\,000\,000$). W każdej z kolejnych m linii znajduje się opis jednego z korytarzyków: dwie liczby całkowite oznaczające numery pomieszczeń, w których się on zaczyna i kończy (pomieszczenia numerujemy od 1).

Wyjście

W pierwszej linii wyjścia powinna się znaleźć największa liczba kawałków sera, jaka może być zjedzona podczas wędrówki. Druga linia powinna zawierać liczbę pomieszczeń, z których można zacząć optymalną wędrówkę, a ostatnia, trzecia linia – oddzielone spacjami numery wszystkich takich pomieszczeń podane w kolejności rosnącej.

Przykład

Dla danych wejściowych:	Poprawną odpowiedzią jest:
5 5	2
1 2	3
2 3	1 2 3
3 4	
3 1	
4 5	