

Мурашко И. В.

 $^{^{1}\}mathrm{Cahkt}$ Петербургский Государственный Политехнический Университет

Оглавление

1	Кла	ассиче	ская криптография	7			
	1.1	Однор	разовый блокнот	8			
	1.2	Пробл	емы классической криптографии	10			
2	Криптосистемы с открытым ключом						
	2.1	Алгор	итм RSA	13			
		2.1.1	Генерация ключей	13			
		2.1.2	Шифрование	14			
		2.1.3	Де-шифрование	14			
		2.1.4	Доказательство	15			
	2.2	Прото	кол Диффи-Хеллмана (Diffie-Hellman, DH)	16			
	2.3	Схема	Эль-Гамаля (Elgamal)	17			
	2.4	Эллип	тическая криптография	17			
3	Осн	ювные	положения квантовой механики	19			
	3.1	Дирак	овская формулировка квантовой механики	19			
		3.1.1	Кет-вектор	20			
		3.1.2	Бра-векторы	20			
		3.1.3	Операторы	21			
		3.1.4	Собственные значения и собственные векторы операторов	22			
		3.1.5	Наблюдаемые величины. Разложение по собственным век-				
			торам. Полнота системы собственных векторов	23			
		3.1.6	Оператор проектирования	23			
		3.1.7	След оператора	24			
		3.1.8	Средние значения операторов	25			
		3.1.9	Представление операторов через внешние произведения				
			собственных векторов	26			
		3.1.10	Волновые функции в координатном и импульсном пред-				
			ставлениях	26			
	3.2	Динам	ика изменения волновой функции	26			
		3.2.1	Уравнение Шрёдингера	27			

		3.2.2		200		
		202	Декогеренция	29		
		3.2.3	Редукция волновой функции. Измерение в квантовой механике	32		
			ханике	32		
4	Ква	антовь	ые вычисления	35		
	4.1	Основ	вные принципы квантовых вычислений	36		
		4.1.1	Представление информации. Классические и квантовые состояния	36		
		4.1.2	Обратимые вычисления			
	4.2		говые логические элементы			
	4.2	4.2.1	Преобразование Адамара			
		4.2.1	Управляющие элементы			
	4.3		оитм Шора			
	4.0	4.3.1	Факторизация чисел и нахождение периода функций			
	4.4	_	говое преобразование Фурье			
	4.4	4.4.1	Схема квантового преобразования Фурье			
		4.4.2	Нахождение периода функций с помощью квантового	42		
		4.4.2	преобразования Фурье	50		
	4.5	Краци	говое преобразование Фурье и дискретное логарифмиро-	50		
	4.0		Р	54		
	4.6					
	1.0	4.6.1	Описание алгоритма			
		4.6.2	Анализ алгоритма Гровера			
		4.6.3	Реализация базовых элементов алгоритма Гровера			
		1.0.0	т сализация базовых элементов алгоритма гровера	00		
5	Прі	иложе	кин	65		
	$5.\overline{1}$	Сравнение по модулю				
	5.2	_	ольший общий делитель. Алгоритм Евклида			
	5.3	Мала	я теорема Ферма	67		
		5.3.1	Псевдопростые числа	68		
	5.4	Дискр	ретный логарифм	68		
	5.5	Дискр	ретное преобразование Фурье	69		
		5.5.1	Определение	69		
		5.5.2	Свойства дискретного преобразования Фурье	71		
		5.5.3	Быстрое преобразование Фурье	74		
	5.6	Основ	вная теорема о рекуррентных соотношениях	75		
	5.7	Разде	еляй и властвуй	75		

Введение

Целью данного курса является введение в современную криптографию и то каким образом квантовая механика может быть использована для решения сложных криптографических задач.

В первой и второй части курса дается введение в современную классическую криптографию. Основной упор делается на несимметричные методы шифрования.

Во третьей части дается краткое введение в квантовую механику.

В последней, четвертой, части рассматриваются основы квантовых вычислений и их применения для решения задач классической криптографии. Описаны наиболее известные алгоритмы, такие как алгоритм Шора, позволяющий проводить факторизацию целых чисел за линейное время, и алгоритм Гровера, производящий поиск в не отсортированном массиве данных за время $O\left(\sqrt{N}\right)$.

Глава 1

Классическая криптография

С того момента, как была осознана важность информации, стали появляться средства ее защиты.

Изобретались новые методы шифрования, такие например, как шифр Цезаря, в котором каждая буква алфавита заменялась на другую (например, следующую через три позиции в алфавите после нее). Наряду с новыми методами шифрования появлялись способы вскрытия этих шифров, например для шифра Цезаря можно воспользоваться статистическими свойствами языка, на котором писалось исходное сообщение.

Очень часто безопасность шифра обеспечивалась тем, что алгоритм, по которому обеспечивалось шифрование, держался в секрете, как например в рассмотренном выше шифре Цезаря. В современной классической криптографии чаще всего алгоритмы публикуются и доступны для изучения каждому. Секретность обеспечивается тем, что само сообщение смешивается с секретным ключом по некоторому открытому алгоритму.

Допустим нам надо передать некоторое сообщение от Алисы к Бобу по некоторому защищенному каналу связи. Сообщение должно быть представлено в некоторой цифровой форме. Протокол, описывающий такую передачу, состоит из нескольких этапов. На первом Алиса и Боб должны получить некоторую общую случайную последовательность чисел, которая будет называться ключом. Эта процедура называется распределением ключа.

На следующем этапе Алиса должна с помощью некоторого алгоритма E получить из исходного сообщения P и ключа K зашифрованное сообщение C. Данная процедура может быть описана следующим соотношением:

$$E_K(P) = C. (1.1)$$

На третьем этапе полученное зашифрованное сообщение должно быть передано Бобу.

На последнем этапе Боб с помощью известного алгоритма D и полученного на первом этапе ключа K должен восстановить исходное сообщение P

из полученного зашифрованного C. Данная процедура может быть описана следующим соотношением

$$D_K(C) = P. (1.2)$$

При анализе данного протокола возникают следующие вопросы. Как реализовать безопасное распределение ключа. Второй - существует ли абсолютно стойкий алгоритм. И наконец последний - возможна ли безопасная передача зашифрованного сообщения, когда оно не может быть прослушано или подменено.

Классическая криптография дает однозначный ответ только на второй вопрос. Абсолютно криптостойкий алгоритм существует - он носит название одноразового блокнота. Ниже представлено детальное описание этого алгоритма.

1.1 Одноразовый блокнот

Схема одноразового блокнота была предложена в 1917 году Мэйджором Дж. Моборном и Г. Вернамом. Классический одноразовый блокнот представляет собой некоторый набор случайных ключей, каждый из которых равен по размеру отправляемому сообщению и используется только один раз.

Предположим что мы хотим зашифровать сообщение на некотором языке (например на английском). Число символов (букв) которое используется в алфавите обозначим через X. Для английского языка (без знаков препинания и различия регистра) X=26. Далее каждому из символов языка мы назначим некоторое число c, такое что $0 \le c \le X$. Например для английского языка можно записать

$$A \to 0$$

$$B \to 1$$

$$\cdots$$

$$Z \to 25$$

Процедура шифрования (1.1) описывается следующим выражением

$$E_{K_i}(P_i) = P_i + K_i mod X = C_i, (1.3)$$

где i номер шифруемого символа.

Процедура дешифрования (1.2) описывается следующим выражением

$$D_{K_i}(C_i) = C_i - K_i mod X = P_i, (1.4)$$

где i номер шифруемого символа.

a	b	$a \oplus b$
0	0	0
0	1	1
1	0	1
1	1	0

Таблица 1.1: XOR $a \oplus b$

Эта процедура легко обобщается на случай двоичных данных, при этом вместо сложения по модулю используется операция XOR $(a \oplus b)$ как для шифрования, так и для дешифрования :

Клод Шенон показал [5], что если ключ действительно случайный, имеет такую же длину, как исходное сообщение, и не используется повторно, то предложенная схема одноразового блокнота абсолютно защищена.

Согласно Шенону абсолютная защищенность (perfect security) может быть определена следующим образом.

Определение Шифр (E, D) абсолютно защищен если для любых двух сообщений одинаковой длины m_0 и m_1 , некоторого шифротекста c и ключа $k \leftarrow_R K$ вероятности того что исходный текст m_0 или m_1 равны:

$$P(E(m_0, k) = c) = P(E(m_1, k) = c)$$

Перефразируя это определение можно сказать, что по исходной статистике шифротекста невозможно получить никакой информации об исходном сообщении.

Теорема 1.1.1 (Криптостойкость одноразового блокнота). Схема одноразового блокнота имеет абсолютную защищенность.

Доказательство. Обозначим через |K| - число всех возможных ключей длины l. Где l также длина исходных сообщений: $|m_{0,1}| = l$. В силу того, что ключ которым зашифровано сообщение определяется единственным образом:

$$k_{0,1}=c\oplus m_{0,1},$$

получаем для вероятностей

$$P(E(m_0, k) = c) = P(E(m_1, k) = c) = \frac{1}{|K|}.$$

1.2 Проблемы классической криптографии

Если существует абсолютно защищенная криптографическая система (одноразовый блокнот) то что же не так в классической криптографии? Проблема заключается в получении ключей, удовлетворяющих требованиям одноразового блокнота (длина ключа равна длине сообщения, ключ состоит из случайных данных и ни разу не используется повторно) и передачи этих ключей Бобу и Алисе.

Проблемы возникают как на этапе генерации ключей, 1 так и на этапе передачи этих ключей.

Для передачи ключей в классической криптографии используются так называемые алгоритмы с открытым ключом. Существует несколько протоколов обмена ключей, основанных на криптографических системах с открытым ключом. Все они основаны на том, что существует два ключа, первый из которых, называемый открытым (public key), используется только для зашифрования, а второй - закрытый (private key) для дешифрования. Для того чтобы получить закрытый ключ из открытого, необходимо произвести какую-то сложную математическую операцию. Например безопасность одной из наиболее популярных систем с открытым ключом - RSA(см. 2.1), основана на трудности факторизации² больших чисел.

Схема протокола распределения ключа, основанная на криптографии с открытым ключом, может быть описана следующим образом. На первом этапе Алиса создает открытый и закрытый ключи и первый из них отсылает Бобу. Боб со своей стороны создает тот ключ, который хотелось бы иметь и Алисе и Бобу (который требуется распределить). Этот ключ шифруется (например по RSA) с помощью открытого ключа Алисы и пересылается ей. Алиса, получая этот зашифрованный ключ, может расшифровать его с помощью своего закрытого ключа.

Если злоумышленник (Ева) хочет узнать передаваемый ключ, она должна решить сложную математическую задачу по факторизации больших чисел. Считается, но не доказано, что сложность факторизации растет экспоненциально с ростом числа цифр в числе [12]. Таким образом при увеличении числа цифр задача быстро становится не решаемой.

В этой схеме имеется несколько проблем. Первая связана с тем что сложность факторизации не доказана. Мало того, существуют алгоритмы для квантовых компьютеров - алгоритм Шора(см. 4.3), которые решают зада-

 $^{^{1}}$ получение больших последовательностей случайных чисел является не тривиальной математической задачей

²разложении на простые множители

 $^{^3}$ Наиболее быстрый из известных алгоритмов решает задачу о факторизации числа N за время порядка $O\left(exp\left(log^{\frac{1}{3}}N\left(log log N\right)^{\frac{2}{3}}\right)\right)$.

чу о факторизации числа N за время O(log N), т. е. за время порядка числа цифр в N. Таким образом в тот момент, когда будет построен квантовый компьютер, все системы, основанные на RSA, утратят свою актуальность.

Глава 2

Криптосистемы с открытым ключом

Криптосистемы с открытым ключом являются основными используемыми в настоящий момент. Кроме того квантовые компьютеры могут эффективно их взламывать. В дальнейшем мы рассмотрим поподробнее эти алгоритмы.

2.1 Алгоритм RSA

Алгоритм RSA (аббревиатура от фамилий Rivest, Shamir и Adleman) - несимметричный алгоритм шифрования ¹, основанный на сложности разложения числа на простые множители.

2.1.1 Генерация ключей

Состоит из нескольких шагов

- ullet Выбираются два простых числа p и q
- Вычисляется произведение выбранных простых чисел $n=p\cdot q$
- ullet Вычисляется функция Эйлера $\phi\left(n
 ight)=\left(p-1
 ight)\left(q-1
 ight)$
- Выбирается целое число e такое что $1 < e < \phi(n)$ и e и $\phi(n)$ взаимно просты, т. е. НОД $(e,\phi(n))=1$.
- вычисляем $d \equiv e^{-1} \mod \phi(n)$, т. е. $d \cdot e \equiv 1 \mod \phi(n)$.

 $^{^{1}}$ Несимметричным (с открытым ключом) называется такой алгоритм шифрования, в котором используются два различных ключа: один для шифрования, а второй для де-шифрования

Открытый ключ состоит из двух чисел: модуля n и открытой экспоненты e. Именно эти два числа используются для шифрования исходного сообщения.

Закрытый ключ состоит тоже из двух чисел: модуля n и закрытой экспоненты d.

Исходные числа p и q держатся в секрете, потому что с их помощью можно вычислить закрытый ключ.

Пример 2.1.1. (RSA. Генерация ключей) Выбираем два простых числа p=3 и q=7. Произведение этих чисел n=21. Функция Эйлера $\phi(n)=(p-1)(q-1)=2\cdot 6=12$.

Выбираем число e (открытая экспонента), таким образом, что 1 < e < 12 и HOД(e,12) = 1. Очевидно e = 5 удовлетворяет заявленным условиям.

Вычисляем закрытую экспоненту $d \equiv 5^{-1} \mod 12$, т. е. d = 5. Действительно $5 \cdot 5 = 25 = 2 \cdot 12 + 1$, т. е. $5 \cdot 5 \equiv 1 \mod 12$.

Т. о. получаем

- Открытый ключ (n = 12, e = 5)
- Закрытый ключ (n = 12, d = 5)

2.1.2 Шифрование

Допустим надо зашифровать некоторое сообщение M. Вначале оно переводится в целое число (числа) m такое, что $0 < m < \phi(n)$. Далее вычисляется за зашифрованный текст c:

$$c \equiv m^e \mod n \tag{2.1}$$

Пример 2.1.2. (RSA. Шифрование) Допустим у нас есть открытый ключ (n=12,e=5) (см. прим. 2.1.1) и мы хотим зашифровать следующее сообщение $m=1101_2=11_{10}$. Шифротекст вычисляется по формуле (2.1) $c\equiv 11^5 \mod 21=2$.

2.1.3 Де-шифрование

m может быть восстановлено из c по следующей формуле:

$$m \equiv c^d \mod n. \tag{2.2}$$

Имея m можно восстановить исходное сообщение M.

Пример 2.1.3. (RSA. Де-шифрование) Допустим у нас есть закрытый ключ (n = 12, d = 5) (см. прим. 2.1.1) и шифротекст c = 2 из примера 2.1.2.

 $\mathit{Исход}$ ный текст вычисляется по формуле (2.2) $m \equiv 2^5 \mod 21 = 11 = 1101_2.$

2.1.4 Доказательство

Хотим доказать что

$$(m^e)^d \equiv m \mod p \cdot q$$

для любых положительных числ m когда p и q простые числа, а e и d удовлетворяют выражению

$$d \cdot e \equiv 1 \mod \phi (p \cdot q)$$
,

которое мы можем переписать в виде

$$d \cdot e - 1 = h(p-1)(q-1)$$
.

Таким образом

$$m^{e \cdot d} = mm^{h(p-1)(q-1)}.$$

Далее возможны два случая: когда m делится на p и когда m и p взаимно просты.

В первом случае

$$m^{e \cdot d} \equiv m \equiv 0 \mod p$$

Во втором случае используем малую теорему Ферма (Теорема 5.3.1):

$$mm^{h(p-1)(q-1)} = m (m^{p-1})^{h(q-1)} \equiv m \cdot 1^{h(q-1)} \equiv m \mod p.$$

Аналогично имеем либо

$$m^{e \cdot d} \equiv m \equiv 0 \mod q$$

либо в силу малой теоремы Ферма

$$mm^{h(p-1)(q-1)} = m (m^{q-1})^{h(p-1)} \equiv m \cdot 1^{h(p-1)} \equiv m \mod q$$

откуда

$$m^{e \cdot d} \equiv m \mod p \cdot q$$

2.2 Протокол Диффи-Хеллмана (Diffie-Hellman, DH)

Предположим существуют два абонента Алиса и Боб. Им известны два числа g и p, которые не являются секретными.

Алиса выбирает случайное число a и пересылает Бобу следущее значение

$$A \equiv g^a \mod p. \tag{2.3}$$

Боб вычисляет следующее число (с помощью секретной случайной величины b)

$$B \equiv g^b \mod p. \tag{2.4}$$

Алиса, с помощью только ей известного числа a вычисляет ключ

$$K \equiv B^a \mod p \equiv g^{ab} \mod p. \tag{2.5}$$

Боб может получить то же самое значение ключа с помощью своего секретного числа b:

$$K \equiv A^b \mod p \equiv g^{ab} \mod p. \tag{2.6}$$

Таким образом Алиса и Боб получают один и тот же ключ, который в дальнейшем может быть использован для переди сообщения с помощью симметричных алгоритмов шифрования (например AES).

Пример 2.2.1. (Диффи-Хеллман) Исходные данные (открытая информация): g = 2, p = 23. Алиса выбирает случайное число a = 6 и вычисляет по формуле (2.3) число A = 18 и отсылает его Бобу. Боб выбирает случайное число b = 9 и, с помощью формулы (2.4), получает B = 6 и отсылает и отсылает это число Алисе.

Алиса вычисляет ключ K=12 по формуле (2.5). Боб может полчить тоже значение ключа K=12 используя (2.6)

Злоумышленнику Еве известны числа g, p, A и B. Для получения ключа K Еве необходимо получить одно из секретных чисел a или b:

$$a \equiv ind_a(A) \mod p$$
,

откуда с помощью (2.5) получается искомое значение K.

2.3 Схема Эль-Гамаля (Elgamal)

Одной из вариаций протокола Диффи-Хелмана является схема Эль Гамаля. Следует различать алгоритм шифрования и алгоритм цифровой подписи Эль-Гамаля. Цифровая подпись Эль-Гамаля лежит в основе стандартов цифровой подписи США (DSA) и России (ГОСТ Р 34.10-94). ТВD

2.4 Эллиптическая криптография

TBD

Глава 3

Основные положения квантовой механики

3.1 Дираковская формулировка квантовой механики

В курсе лекций по квантовой оптике мы будем всюду использовать формализм Дирака [11]. В обычной формулировке квантовой механики мы имеем дело с волновыми функциями, например $\psi\left(q,t\right)$ - волновая функция в координатном представлении. Одно и то же состояние системы можно описать волновыми функциями в различных представлениях, связанных друг с другом линейными преобразованиями. Например, волновая функция в импульсном представлении связана с волновой функцией в координатном представлении равенством

$$\phi(p,t) = \frac{1}{2\pi\hbar} \int_{-\infty}^{+\infty} \psi(q,t) e^{-i\frac{pq}{\hbar}} dq$$
 (3.1)

Главное здесь, что одно и то же состояние можно описывать волновыми функциями, выраженными через различные переменные. Отсюда следует, что можно ввести более общее образование, характеризующее состояние системы независимо от представления. Для такого образования Дирак ввел понятие волнового вектора, или вектора состояния, обозначаемого:

$$|\dots\rangle$$
 (3.2)

3.1.1 Кет-вектор

 $|...\rangle$ общее обозначение кет-вектора; $|a\rangle$, $|x\rangle$, $|\psi\rangle$ и т.д. означают кет-векторы, описывающие некоторые частные состояния, символы которых записываются внутри скобок.

3.1.2 Бра-векторы

Каждому кет-вектору соответствует сопряженный ему бра-вектор. Бра-вектор обозначается:

$$\langle \dots |, \langle a |, \langle \psi |.$$
 (3.3)

Названия бра- и кет-векторы образованы от первой и второй половины английского слова bra-cket (скобка).

Таким образом, бра-векторам $\langle a|, \langle x|, \langle \psi|$ соответствуют сопряженные им кет-векторы $|a\rangle, |x\rangle, |\psi\rangle$ и наоборот. Для векторов состояний справедливы те же основные соотношения, которые справедливы для волновых функций:

$$|u\rangle = |a\rangle + |b\rangle$$
, $\langle u| = \langle a| + \langle b|$, $|v\rangle = l|a\rangle$, $\langle v| = l\langle a|$. (3.4)

Бра- и кет-векторы связаны между собой операцией эрмитового сопряжения:

$$|u\rangle = (\langle u|)^+, \quad \langle u| = (|u\rangle)^+.$$
 (3.5)

В известных случаях это сводится к следующим соотношениям:

$$\left(\psi\left(q\right)\right)^{+} = \psi^{*}\left(q\right)$$

для волновой функции в координатном представлении;

$$\begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}^+ = (a_1^*, a_2^*, \cdots, a_n^*)$$

в матричном представлении.

При помощи бра- и кет-векторов можно определить скалярное произведение

$$\langle v|u\rangle = \langle u|v\rangle^*. \tag{3.6}$$

В конкретных случаях это означает:

$$\langle \psi | \phi \rangle = \int \psi^* \phi dq$$

в координатном представлении;

$$\langle a | b \rangle = (a_1^*, a_2^*, \dots, a_n^*) \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = a_1^* b_1 + a_2^* b_2 + \dots + a_n^* b_n$$

в матричном представлении.

Из соотношения (3.6) следует, что норма вектора вещественна. Дополнительно полагаем, что норма вектора положительна или равна нулю: $\langle a | a \rangle \ge 0$.

3.1.3 Операторы

В квантовой механике используют линейные операторы. Операторы связывают один вектор состояния с другим:

$$|q\rangle = \hat{L}|p\rangle \tag{3.7}$$

Сопряженное равенство имеет вид

$$\langle q| = \langle p|\,\hat{L}^+ \tag{3.8}$$

где \hat{L}^+ - оператор, сопряженный оператору \hat{L} .

Приведем некоторые соотношения, справедливые для линейных операторов:

$$\hat{L}^{++} = \hat{L}, \quad \left(|\hat{L}| a \right)^{+} = |l^{*}| \langle a| \hat{L}^{+},$$

$$\left(\left(\hat{L}_{1} + \hat{L}_{2} \right) |a \rangle \right)^{+} = |\langle a| \left(\hat{L}_{1}^{+} + \hat{L}_{2}^{+} \right),$$

$$\left(\left(\hat{L}_{1} \hat{L}_{2} \right) |a \rangle \right)^{+} = |\langle a| \left(\hat{L}_{2}^{+} \hat{L}_{1}^{+} \right),$$

$$\left(\left(\hat{L}_{1} \hat{L}_{2} \hat{L}_{3} \right) |a \rangle \right)^{+} = |\langle a| \left(\hat{L}_{3}^{+} \hat{L}_{2}^{+} \hat{L}_{1}^{+} \right), \quad \text{и т.д.}$$

$$(3.9)$$

Заметим, что алгебра операторов совпадает с алгеброй квадратных матриц. Матричные элементы операторов обозначаются следующим образом:

$$\langle a | \hat{L} | b \rangle = L_{ab} \tag{3.10}$$

Для матричных элементов справедливы равенства

$$\langle a | \hat{L} | b \rangle^* = \langle b | \hat{L}^+ | a \rangle, \quad \langle a | \hat{L_1} \hat{L_2} | b \rangle^* = \langle b | \hat{L_2}^+ \hat{L_1}^+ | a \rangle$$
 (3.11)

3.1.4 Собственные значения и собственные векторы операторов

Собственные значения и собственные векторы операторов определяются равенством

$$\hat{L}|l_n\rangle = l_n|l_n\rangle, \qquad (3.12)$$

где l_n собственное значение; $|l_n\rangle$ собственный вектор.

Для бра-векторов имеем аналогичные равенства:

$$\langle d_n | \hat{D} = d_n \langle d_n | . \tag{3.13}$$

Если операторы соответствуют наблюдаемым величинам, они должны быть самосопряженными:

$$\hat{L} = \hat{L}^+. \tag{3.14}$$

Собственные значения самосопряженного (эрмитова) оператора вещественны. Действительно из

$$\hat{L}|l\rangle = l|l\rangle$$

следует что

$$\langle l | \hat{L} | l \rangle = l \langle l | l \rangle.$$

С другой стороны, вспоминая про (3.9): $\langle l | \hat{L}^+ = l^* \langle l |$, из (3.14) имеем

$$\langle l | \hat{L} | l \rangle = l^* \langle l | l \rangle.$$

Таким образом $l \langle l| \ l \rangle = l^* \langle l| \ l \rangle$, т. е. $l = l^*$

Собственные векторы самосопряженного оператора ортогональны. Действительно рассмотрим два собственных вектора $|l_1\rangle$ и $|l_2\rangle$:

$$\hat{L} |l_1\rangle = l_1 |l_1\rangle$$
, $\hat{L} |l_2\rangle = l_2 |l_2\rangle$

Из второго соотношения получаем

$$\langle l_1 | \hat{L} | l_2 \rangle = l_2 \langle l_1 | l_2 \rangle$$

С учетом вещественности собственных чисел и соотношения (3.14) для вектора $|l_1\rangle$ получим:

$$\langle l_1 | \hat{L} = l_1 \langle l_1 | .$$

Откуда

$$\langle l_1 | \hat{L} | l_2 \rangle = l_1 \langle l_1 | l_2 \rangle.$$

Таким образом

$$(l_1 - l_2) \langle l_1 | l_2 \rangle = 0$$
, T. e. $\langle l_1 | l_2 \rangle = 0$, T. K. $l_1 \neq l_2$.

3.1.5 Наблюдаемые величины. Разложение по собственным векторам. Полнота системы собственных векторов

Операторы, соответствующие наблюдаемым физическим величинам, являются самосопряженными операторами. Это обеспечивает действительность значений наблюдаемой физической величины. Имеем набор собственных состояний некоторого эрмитового оператора $|l_n\rangle$, $\hat{L}\,|l_n\rangle=l_n\,|l_n\rangle$. Если набор собственных состояний полный, согласно принципам квантовой механики любое состояние можно представить суперпозицией состояний $|l_n\rangle$:

$$|\psi\rangle = \sum_{(n)} c_n |l_n\rangle. \tag{3.15}$$

Отсюда для коэффициентов разложения имеем: $c_n = \langle l_n | \psi \rangle$, и, следовательно, справедливо равенство

$$|\psi\rangle = \sum_{(n)} \langle l_n | \psi \rangle |l_n\rangle = \sum_{(n)} |l_n\rangle \langle l_n | \psi \rangle.$$
 (3.16)

Из равенства 3.16 следует важное соотношение:

$$\sum_{(n)} |l_n\rangle \langle l_n| = \hat{I}. \tag{3.17}$$

где \hat{I} - единичный оператор. Это равенство является условием полноты системы собственных векторов (условием разложимости).

3.1.6 Оператор проектирования

Рассмотрим оператор $\hat{P}_n = |l_n\rangle\,\langle l_n|$. Результатом действия этого оператора на состояние $|\psi\rangle$ будет

$$\hat{P}_n |\psi\rangle = \sum_{(k)} |l_n\rangle \langle l_n| c_k |l_k\rangle = c_n |l_n\rangle.$$
(3.18)

Оператор $\hat{P}_n = |l_n\rangle\,\langle l_n|$ называется оператором проектирования.

Можно написать следующие свойства этого оператора

$$\sum_{(n)} \hat{P}_n = \hat{I}. \tag{3.19}$$

Рис. 3.1: Оператор проектирования. Действие оператора может быть интерпретировано как проекция вектора $|\psi\rangle$ на ось $|l_n\rangle$

$$\hat{P}_n^2 = \hat{P}_n. \tag{3.20}$$

Действие оператора проектирования имеет простую геометрическую интерпретацию (см. рис. 3.1):

$$\hat{P}_n |\psi\rangle = \cos\theta |l_n\rangle,$$

где $\cos \theta = \langle \psi | l_n \rangle = c_n$.

3.1.7 След оператора

В ортонормированном базисе $\{|l_n\rangle\}$ величина

$$Sp\hat{L} = \sum_{n} \langle l_n | \hat{L} | l_n \rangle \tag{3.21}$$

называется следом оператора \hat{L} . При определенных условиях [9] ряд 3.21 абсолютно сходится и не зависит от выбора базиса.

Если использовать матричное представление

$$L_{kn} = \langle l_k | \hat{L} | l_n \rangle,$$

то след оператора - сумма диагональных элементов матричного представления

$$Sp\hat{L} = \sum_{n} L_{nn}$$

Можно написать следующие свойства следа оператора:

$$Sp\left(l\hat{L} + m\hat{M}\right) = lSp\hat{L} + mSp\hat{M},$$

$$Sp\left(\hat{L}\hat{M}\right) = Sp\left(\hat{M}\hat{L}\right). \tag{3.22}$$

3.1.8 Средние значения операторов

Среднее значение оператора \hat{L} в состоянии $|\psi\rangle$ дается равенством

$$\left\langle \hat{L} \right\rangle_{\psi} = \left\langle \psi \right| \hat{L} \left| \psi \right\rangle \tag{3.23}$$

при условии

$$\langle \psi | \psi \rangle = 1.$$

Действительно, если принять, что $|\psi\rangle$ раскладывается в ряд по собственным функциям оператора \hat{L} следующим образом:

$$|\psi\rangle = \sum_{n} c_n |l_n\rangle,$$

то $\hat{L} \ket{\psi}$ можно записать как

$$\hat{L} |\psi\rangle = \sum_{n} l_n c_n |l_n\rangle,$$

где l_n собственное число соответствующее собственному состоянию $|l_n\rangle$. Если теперь подставить два последних выражения в (3.23) то получим:

$$\langle \psi | \hat{L} | \psi \rangle = \sum_{n,m} l_n c_n c_m^* \langle l_m | l_n \rangle = \sum_n l_n c_n c_n^* = \sum_n l_n |c_n|^2,$$

что (при условии $\langle \psi | \psi \rangle = 1$) доказывает, что выражение (3.23) действительно представляет собой выражение для среднего значения оператора \hat{L} в состоянии $|\psi\rangle$. ¹

Если взять некоторый ортонормированный базис $\{|n\rangle\}$, образующий полный набор, т. е. подчиняющийся условию (3.17): $\sum_n |n\rangle \langle n| = \hat{I}$, то выражение (3.23) может быть переписано следующим образом:

$$\left\langle \hat{L} \right\rangle_{\psi} = \left\langle \psi \right| \hat{L} \left| \psi \right\rangle = \left\langle \psi \right| \hat{I} \hat{L} \left| \psi \right\rangle =$$

$$= \sum_{n} \left\langle \psi \right| \left| n \right\rangle \left\langle n \right| \hat{L} \left| \psi \right\rangle = \sum_{n} \left\langle n \right| \hat{L} \left| \psi \right\rangle \left\langle \psi \right| \left| n \right\rangle = Sp \left(\hat{L} \hat{\rho} \right),$$

где $\hat{\rho}=|\psi\rangle\,\langle\psi|=\hat{P}_{\psi}$ - оператор проектирования на состояние $|\psi\rangle$. С учетом (3.22) можно записать

$$\left\langle \hat{L} \right\rangle_{\psi} = Sp\left(\hat{\rho}\hat{L}\right).$$
 (3.24)

 $^{^1}$ Для этого достаточно вспомнить, что $|c_n|^2$ задает вероятность получить систему в состоянии $|l_n\rangle$, то есть получить показание измерительного прибора в l_n

3.1.9 Представление операторов через внешние произведения собственных векторов

Дважды используя условие полноты (3.16), получим

$$\hat{A} = \hat{I}\hat{A}\hat{I} = \sum_{(l)} \sum_{(l')} |l\rangle \langle l| \hat{A} |l'\rangle \langle l'| = \sum_{(l)} \sum_{(l')} |l\rangle \langle l'| A_{ll'}, \qquad (3.25)$$

где $A_{ll'}=\langle l|\hat{A}|l'\rangle$ - матричный элемент оператора \hat{A} в представлении $|l\rangle$.

Оператор, выраженный через свои же собственные векторы, может быть представляем разложением ²

$$\hat{L} = \sum_{(l)} l |l\rangle \langle l|. \tag{3.26}$$

Обобщение этого равенства для операторной функции имеет вид

$$F\left(\hat{L}\right) = \sum_{(l)} F\left(l\right) |l\rangle \langle l|. \tag{3.27}$$

3.1.10 Волновые функции в координатном и импульсном представлениях

Переход от вектора состояния к волновой функции осуществляется посредством скалярного умножения этого вектора состояния на вектор состояния соответствующей наблюдаемой величины. Например, для волновой функции в координатном представлении

$$\phi(q) = \langle q | \psi \rangle. \tag{3.28}$$

где $\langle q|$ - собственный вектор оператора координаты. В импульсном представлении получим

$$\phi(p) = \langle p | \psi \rangle. \tag{3.29}$$

где $\langle p|$ - собственный вектор оператора импульса.

3.2 Динамика изменения волновой функции

Волновая функция $|\phi\rangle$ может изменяться посредством двух механизмов:

- Редукция волновой функции во время измерения
- Уравнение Шрёдингера в промежутках между двумя последовательными измерениями

 $^{^2\}Pi$ ри условии нормировки собственных векторов: $\langle l|\ l\rangle=1$

3.2.1 Уравнение Шрёдингера

Изменение состояния чистой квантовой системы между двумя последовательными измерениями описывается следующим уравнением (Шрёдингера)

$$i\hbar \frac{\partial |\phi\rangle}{\partial t} = \hat{\mathcal{H}} |\phi\rangle.$$
 (3.30)

Уравнение (3.30) является обратимым и, соответственно, не применимо к описанию изменения волновой функции в момент измерения.

Уравнение Шрёдингера в представлении взаимодействия

Допустим что в гамильтониане можно выделить две части:

$$\hat{\mathcal{H}} = \hat{\mathcal{H}}_0 + \hat{\mathcal{V}}.$$

Введем следующее преобразование волновой функции:

$$|\phi\rangle_I = \exp\left(\frac{i\hat{\mathcal{H}}_0 t}{\hbar}\right)|\phi\rangle$$

и посмотрим чему будет равно следующее выражение:

$$i\hbar \frac{\partial |\phi\rangle_{I}}{\partial t} = i\hbar \frac{i\hat{\mathcal{H}}_{0}}{\hbar} \exp\left(\frac{i\hat{\mathcal{H}}_{0}t}{\hbar}\right) |\phi\rangle + \exp\left(\frac{i\hat{\mathcal{H}}_{0}t}{\hbar}\right) i\hbar \frac{\partial |\phi\rangle}{\partial t} =$$

$$= -\hat{\mathcal{H}}_{0} \exp\left(\frac{i\hat{\mathcal{H}}_{0}t}{\hbar}\right) |\phi\rangle + \exp\left(\frac{i\hat{\mathcal{H}}_{0}t}{\hbar}\right) \left(\hat{\mathcal{H}}_{0} + \hat{\mathcal{V}}\right) |\phi\rangle =$$

$$-\hat{\mathcal{H}}_{0} \exp\left(\frac{i\hat{\mathcal{H}}_{0}t}{\hbar}\right) |\phi\rangle + \hat{\mathcal{H}}_{0} \exp\left(\frac{i\hat{\mathcal{H}}_{0}t}{\hbar}\right) |\phi\rangle + \exp\left(\frac{i\hat{\mathcal{H}}_{0}t}{\hbar}\right) \hat{\mathcal{V}} |\phi\rangle =$$

$$= \exp\left(\frac{i\hat{\mathcal{H}}_{0}t}{\hbar}\right) \hat{\mathcal{V}} |\phi\rangle =$$

$$= \exp\left(\frac{i\hat{\mathcal{H}}_{0}t}{\hbar}\right) \hat{\mathcal{V}} \exp\left(-\frac{i\hat{\mathcal{H}}_{0}t}{\hbar}\right) \exp\left(\frac{i\hat{\mathcal{H}}_{0}t}{\hbar}\right) |\phi\rangle =$$

$$= \hat{\mathcal{V}}_{I} |\phi\rangle_{I},$$

где

$$\hat{\mathcal{V}}_I = \exp\left(\frac{i\hat{\mathcal{H}}_0 t}{\hbar}\right) \hat{\mathcal{V}} \exp\left(-\frac{i\hat{\mathcal{H}}_0 t}{\hbar}\right) \tag{3.31}$$

гамильтониан взаимодействия в представлении взаимодействия.

Таким образом получаем уравнение Шрёдингера в представлении взаимодействия:

$$i\hbar \frac{\partial |\phi\rangle_I}{\partial t} = \hat{\mathcal{V}}_I |\phi\rangle_I. \tag{3.32}$$

Уравнение движения матрицы плотности

Из соотношения (3.30) имеем

$$\begin{split} i\hbar\frac{\partial\left|\phi\right\rangle}{\partial t} &= \hat{\mathcal{H}}\left|\phi\right\rangle,\\ -i\hbar\frac{\partial\left\langle\phi\right|}{\partial t} &= \hat{\mathcal{H}}\left\langle\phi\right|, \end{split}$$

таким образом для матрицы плотности $\hat{
ho} = |\phi\rangle\,\langle\phi|$ получаем

$$i\hbar \frac{\partial \hat{\rho}}{\partial t} = i\hbar \frac{\partial |\phi\rangle \langle \phi|}{\partial t} = i\hbar \left(\frac{\partial |\phi\rangle}{\partial t} \langle \phi| + |\phi\rangle \frac{\partial \langle \phi|}{\partial t} \right) =$$

$$= \hat{\mathcal{H}} |\phi\rangle \langle \phi| - |\phi\rangle \langle \phi| \hat{\mathcal{H}} = \left[\hat{\mathcal{H}}, \hat{\rho} \right]$$
(3.33)

Уравнение (3.33) часто называется квантовым уравнением Лиувилля и уравнением фон Неймана.

Оператор эволюции. Представление Гейзенберга и представление Шредингера

Изменение волновой функции по закону (3.30) может быть также описано с помощью некоторого оператора (эволюции) $\hat{U}(t,t_0)$:

$$|\phi(t)\rangle = \hat{U}(t, t_0) |\phi(t_0)\rangle. \tag{3.34}$$

Уравнение (3.30) может быть переписано в виде

$$|\phi(t)\rangle = \exp\left(-\frac{i}{\hbar}\hat{\mathcal{H}}(t-t_0)\right)|\phi(t_0)\rangle,$$

откуда для оператора эволюции имеем

$$\hat{U}(t,t_0) = \exp\left(-\frac{i}{\hbar}\hat{\mathcal{H}}(t-t_0)\right)$$
(3.35)

Оператор эволюции - унитарный. Действительно:

$$\hat{U}(t, t_0) \hat{U}^+(t, t_0) =$$

$$= \exp\left(-\frac{i}{\hbar}\hat{\mathcal{H}}(t - t_0)\right) \exp\left(+\frac{i}{\hbar}\hat{\mathcal{H}}(t - t_0)\right) = \hat{I}$$

Наряду с представлением Шредингера где операторы от времени не зависят а меняются волновые функции существует представление Гейзенберга где операторы меняются во времени.

Очевидно средние значения операторов не должны зависеть от представления:

$$\langle \phi_H(t_0) | \hat{A}_H(t) | \phi_H(t_0) \rangle = \langle \phi_S(t) | \hat{A}_S | \phi_S(t) \rangle =$$

= $\langle \phi_H(t_0) | \hat{U}^+(t, t_0) \hat{A}_S \hat{U}(t, t_0) | \phi_H(t_0) \rangle$,

откуда с учетом $\hat{A}_{H}(t_{0})=\hat{A}_{S}(t_{0})$ получаем закон эволюции операторов в представлении Гейзенберга:

$$\hat{A}_{H}(t) = \hat{U}^{+}(t, t_{0}) \,\hat{A}_{H}(t_{0}) \,\hat{U}(t, t_{0}) \tag{3.36}$$

При этом уравнение для оператора \hat{A}_H будет выглядеть следующим образом:

$$\frac{\partial \hat{A}_{H}}{\partial t} = \frac{i}{\hbar} \hat{\mathcal{H}} \hat{U}^{+}(t, t_{0}) \,\hat{A}_{H}(t_{0}) \,\hat{U}(t, t_{0}) -
-\frac{i}{\hbar} \hat{U}^{+}(t, t_{0}) \,\hat{A}_{H}(t_{0}) \,\hat{U}(t, t_{0}) \,\hat{\mathcal{H}} = \frac{i}{\hbar} \left[\hat{\mathcal{H}}, \hat{A}_{H} \right]$$
(3.37)

3.2.2 Различия между чистыми и смешанными состояниями. Декогеренция

Особый интерес представляет собой различие между чистыми и смешанными состояниями, в частности - каким образом происходит переход от чистых состояний к смешанным.

Рассмотрим двухуровневое состояние (см. рис. 3.2). В чистом состоянии оно описывается следующей волновой функцией:

$$|\phi\rangle = c_a |a\rangle + c_b |b\rangle$$
,

соответствующая матрица плотности имеет вид

$$\hat{\rho} = |\phi\rangle \langle \phi| =$$

$$= |c_a|^2 |a\rangle \langle a| + |c_b|^2 |b\rangle \langle b| +$$

$$+ c_a c_b^* |a\rangle \langle b| + c_b c_a^* |b\rangle \langle a|, \qquad (3.38)$$

$$|a\rangle$$

Рис. 3.2: Модель двухуровневого атома, используемого для описания декогеренции.

или в матричном виде

$$\hat{\rho} = \begin{pmatrix} \left| c_a \right|^2 & c_a c_b^* \\ c_b c_a^* & \left| c_b \right|^2 \end{pmatrix}.$$

Матрица плотности для смешанного состояния имеет только диагональные элементы:

$$\hat{\rho} = \begin{pmatrix} |c_a|^2 & 0\\ 0 & |c_b|^2 \end{pmatrix} =$$

$$= |c_a|^2 |a\rangle \langle a| + |c_b|^2 |b\rangle \langle b|. \tag{3.39}$$

Переход от (3.38) к (3.39) называется декогеренцией. В описании процесса декогеренции мы будем следовать [10].

Отличие смешанных состояний от чистых проявляется во влиянии окружения \mathcal{E} . В случае чистых состояний рассматриваемая система и ее окружение независимы, т. е.

$$|\phi\rangle_{pure} = |\phi\rangle_{at} \otimes |\mathcal{E}\rangle.$$
 (3.40)

В случае смешанных состояний атом и его окружение образуют так называемое перепутанное состояние в котором состояниям $|a\rangle$ и $|b\rangle$ соответствуют различимые состояния окружения $|\mathcal{E}_a\rangle$ и $|\mathcal{E}_b\rangle$.

$$|\phi\rangle_{mix} = c_a |a\rangle |\mathcal{E}_a\rangle + c_b |b\rangle |\mathcal{E}_b\rangle.$$
 (3.41)

Матрица плотности соответствующая (3.41) имеет вид

$$\hat{\rho}_{mix} = |\phi\rangle_{mix} \langle \phi|_{mix} =$$

$$= |c_a|^2 |a\rangle \langle a| \otimes |\mathcal{E}_a\rangle \langle \mathcal{E}_a| + |c_b|^2 |b\rangle \langle b| \otimes |\mathcal{E}_b\rangle \langle \mathcal{E}_b| +$$

$$+c_a c_b^* |a\rangle \langle b| \otimes |\mathcal{E}_a\rangle \langle \mathcal{E}_b| + c_b c_a^* |b\rangle \langle a| \otimes |\mathcal{E}_b\rangle \langle \mathcal{E}_a|.$$
(3.42)

Если теперь применить к выражению (3.42) усреднение по переменным окружения, то получим

$$\langle \hat{\rho}_{mix} \rangle_{\mathcal{E}} = Sp_{\mathcal{E}} (\hat{\rho}) =$$

$$= \langle \mathcal{E}_a | \hat{\rho}_{mix} | \mathcal{E}_a \rangle + \langle \mathcal{E}_b | \hat{\rho}_{mix} | \mathcal{E}_b \rangle =$$

$$= |c_a|^2 |a\rangle \langle a| + |c_b|^2 |b\rangle \langle b|.$$
(3.43)

Выражение (3.43) получено в предположении ортонормированного базиса $\{|\mathcal{E}_a\rangle\,,|\mathcal{E}_b\rangle\}$:

$$\langle \mathcal{E}_a | \mathcal{E}_a \rangle = \langle \mathcal{E}_b | \mathcal{E}_b \rangle = 1,$$

$$\langle \mathcal{E}_a | \mathcal{E}_b \rangle = \langle \mathcal{E}_b | \mathcal{E}_a \rangle = 0.$$
 (3.44)

Условия (3.44) являются ключевыми для понимания того почему рассматриваемый базис атомной системы является выделенным и почему например в случае смешанных состояний не рассматривают другие базисы такие как базис полученный преобразованием Адамара по отношению к исходному:

$$|\mathcal{A}\rangle = \frac{|a\rangle + |b\rangle}{\sqrt{2}},$$

$$|\mathcal{B}\rangle = \frac{|a\rangle - |b\rangle}{\sqrt{2}}.$$
(3.45)

Состояния окружения соответствующие базису (3.45) не являются ортогональными откуда следует невозможность использования (3.45) в качестве базисных векторов для смешанных состояний.

Процесс декогеренции, т. е. перехода от (3.40) к (3.41) может быть описан с помощью уравнения Шредингера, и следовательно теоретически является обратимым. Единственное требование - ортогональность различимых состояний окружения: $\langle \mathcal{E}_a | \mathcal{E}_b \rangle = 0$. Это требование всегда выполняется для макроскопических систем, где состояние зависит от очень большого числа переменных. При этом в случае макроскопических систем стоит отметить, что существует большое число возможных вариантов конечных состояний $|\mathcal{E}_{a,b}\rangle$ в силу чего обратный процесс становится практически не реализуемым в силу того что необходимо контролировать большое число возможных переменных которыми описывается состояние окружения. В этом смысле процесс декогеренции имеет туже природу что второй закон термодинамики (возрастания энтропии), который описывает необратимые процессы. ³

³Надо быть немного аккуратным здесь поскольку второй закон термодинамики применим к закрытым системам а сами процессы декогеренции происходят в открытых системах

Рис. 3.3: Процесс измерения. Показание прибора соответствует одному из собственных чисел оператора \hat{L} : $\{l_k\}$

3.2.3 Редукция волновой функции. Измерение в квантовой механике

Процесс выбора (результата измерения) один из самых сложных в квантовой механике. В отличии от детерминистского изменения волновой функции, описываемого уравнением Шрёдингера (3.30), процесс измерения носит случайный характер и для его описания следует применять другие уравнения.

Рассмотрим вначале чистые состояния и предположим, что производится измерение физической наблюдаемой, описываемой оператором \hat{L} . Собственные числа и собственные функции этого оператора $\{l_k\}$ и $\{|l_k\rangle\}$ соответственно. В момент измерения показания прибора могут принимать значения соответствующие собственным числам измеряемого оператора (см. рис. 3.3). Допустим, что показание прибора - l_n в этом случае волновая функция должна быть $|l_n\rangle$, т. о. произошло следующее изменение волновой функции:

$$|\phi\rangle \to |l_n\rangle$$
,

которое может быть описано действием оператора проецирования $\hat{P}_n = |l_n\rangle \langle l_n|$ (3.18):

$$\hat{P}_n |\phi\rangle = c_n |l_n\rangle.$$

Не существует способа предсказать результат который будет получен в результате единичного измерения. Вместе с тем можно сказать с какой вероятностью будет получен тот или иной результат.

Рис. 3.4: Пример смешанного состояния. Цвет шара не меняется в результате "измерения"

Действительно в случае смешанного состояния

$$\hat{\rho} = \sum_{n} |c_n|^2 |l_n\rangle \langle l_n|$$

коэффициенты $P_n = |c_n|^2$ задают вероятности обнаружить систему в состоянии $|l_n\rangle$.

Для чистого состояния

$$|\phi\rangle = \sum_{n} c_n |l_n\rangle$$

мы также имеем, что вероятность обнаружить систему в состоянии $|l_n\rangle$ задается числом $P_n = |c_n|^2$.

Основное отличие чистых и смешанных состояний с точки зрения измерения заключается в том, что в первом случае (чистое состояние) в процессе измерение меняется волновая функция, т. е. само состояние. При этом если в процессе измерения было получено некоторое конечное состояние $|l_i\rangle$, то нельзя сказать, что оно было таким же и до измерения. Смешанные состояния ведут себя подобно классическим объектам, т. е. если в процессе измерения было получено состояние $|l_i\rangle$, то можно утверждать, что оно было таким же и до измерения, а само измерение представляет собой выбор одного состояния из многих возможных.

Пример 3.2.1. Выбор из урны с шарами двух цветов Допустим у нас имеется урна с 4 шарами. С вероятностью $\frac{1}{2}$ будет извлечен либо белый либо черный шар. Допустим что в результате эксперимента был получен черный шар. Если рассматриваемая система является квантовой и находится в смешанном состоянии (см. рис. 3.4), то состояние извлеченного шара (цвет) не изменилось в результате эксперимента.

Если рассматриваемая система является чистой (см. рис. 3.5), то состояние каждого шара описывается суперпозицией двух цветов - черного и

Рис. 3.5: Пример чистого состояния. Цвет шара меняется в результате "измерения"

белого. Таким образом в результате эксперимента эта суперпозиция разрушается и шар приобретает определенный цвет (черный в нашем случае), т. е. можно сказать что цвет шара меняется.

Глава 4

Квантовые вычисления

Алгоритмы играют большую роль в вычислительной технике. Алгоритм представляет собой последовательность шагов необходимых для получения ответа на некоторую задачу. Каждая задача характеризуется некоторым числом, который определяет ее размер. Сложность алгоритма оценивается как число простейших операций необходимых для решения поставленной задачи. Очевидно, что в большинстве случаев (но не всегда) это число растет с размером задачи.

Пример 4.0.1. Поиск элемента массива 3adaча - найти элемент массива, удовлетворяющий некоторым условиям. Размером задачи является число элементов массива N.

B общем случае (не структурированный массив данных) поиск ведется простым перебором. Этот поиск требует число операций (сравнений) которое растет линейно с размером массива O(N).

B случае структурированных данных число операций требуемое для поиска может быть уменьшено. Например в случае отсортированного массива сложность задачи растет как O(log N).

Вместе с тем существование алгоритма еще не гарантирует его практической реализуемости. В частности алгоритмы требующие экспоненциального числа шагов от размера исходной задачи считаются практически не реализуемыми не смотря на то, что с теоретической точки зрения решение существует.

Одним из примеров является задача о факторизации натурального числа, т. е. задача о разложении его на простые множители (см. пример 4.0.2).

Пример 4.0.2. Факторизация натуральных чисел Задача - найти разложение числа на простые множители. Размером задачи является разрядность исходного числа. Например для случая разрядности r=4: $1 \le N=15 \le 2^r=2^4=16$). Результат может быть найден легко и быстро: $15=3\cdot 5$.

C ростом числа разрядов r число операций необходимых для факторизации в классических алгоритмах растет как $O(2^r)$, что для случая r=1000-2000 означает практическую невозможность факторизации таких чисел.

Квантовые объекты обладают свойствами отличающимися от классических объектов, соотвественно алгоритмы, построенные на базе квантовых объектов могут в ряде случаев обладать характеристиками недоступными для классических алгоритмов. Например квантовый алгоритм Гровера [2] решает задачу о поиске в неструктурированном массиве данных (см. пример 4.0.1) с помощью $O\left(\sqrt{N}\right)$ операций. Алгоритм Шора [6] позволяет решить задачу о факторизации числа (см. пример 4.0.2) используя линейное число операций $O\left(r\right)$.

4.1 Основные принципы квантовых вычислений

4.1.1 Представление информации. Классические и квантовые состояния

Основное отличие квантовых и классических компьютеров заключается в том как они хранят информацию.

В классическом случае информация хранится в некоторых ячейках памяти. Состояние каждой ячейки памяти описывается одним числом которое может принимать значение 0 или 1. Если объединяются m ячеек памяти то общее состояние классической системы (которое она может принимать в конкретный момент времени) описывается m числами.

В квантовом случае ячейка памяти представлена кубитом для описания которого необходимо два комплексных числа α_0 и α_1^{-1} :

$$|\psi\rangle_1 = \alpha_0 |0\rangle + \alpha_1 |1\rangle$$
.

Для описания составной системы состоящей из m кубитов необходимо 2^m комплексных чисел. Иначе можно сказать что квантовое состояние содержит в качестве суперпозиции все возможные классические состояния. В качестве примера можно рассмотреть систему состоящию из 3 кубитов:

$$|\psi\rangle_{3} = \alpha_{0} |000\rangle + \alpha_{1} |001\rangle + \alpha_{2} |010\rangle + \alpha_{3} |011\rangle + \alpha_{4} |100\rangle + \alpha_{5} |101\rangle + \alpha_{6} |110\rangle + \alpha_{7} |111\rangle. \tag{4.1}$$

¹Более правильно говорить тремя вещественными числами, потому что на $\alpha_{0,1}$ действует следующее ограничение $|\alpha_0|^2+|\alpha_1|^2=1$ откуда с учетом $\alpha_{0,1}=r_{0,1}e^{i\theta_{0,1}}$ получим что $r_0^2=1-r_1^2$

Рис. 4.1: Классические вычисления. На вход подается число x состоящее из n бит, а на выходе имеем результат y = f(x) описываемый m битами

Рис. 4.2: Квантовые обратимые вычисления. На вход подается число $|x\rangle$ состоящее из n кубит и затравка из нулевых состояний (m кубит), а на выходе имеем результат $|y\rangle = |f(x)\rangle$ описываемый m кубитами и исходное состояние $|x\rangle$

Как видно любое классическое состояние системы из 3 бит представлено в качестве одного из членов суперпозиции (4.1). Например число $5_{10}=101_2$ входит в (4.1) с коэфициентом α_5 .

4.1.2 Обратимые вычисления

В классическом случае вычисление состоит в преобразовании исходных n битов в результат, описываемый m битами (см. рис. 4.1). Преобразование при этом задается некоторой функцией f(x). Типичный пример - сложение по модулю 2 (см. табл. 1.1) в котором на входе имеем 2 бита (n=2), а на выходе - 1 бит (m=1).

Такая схема не будет работать в квантовом случае прежде всего потому что изменение чистых квантовых состояний во времени должно осуществятся посредством унитарного оператора эволюции (3.35), т. е. должно быть обра-

$$|x\rangle$$
 — \hat{H} — $|y\rangle$

Рис. 4.3: Преобразование Адамара на одном кубите

тимым что для нашего классического примера невозможно ². В силу этого в квантовых вычислениях используют другую схему (см. рис. 4.2) при которой возможны обратимые вычисления.

На вход вместе с исходными данными x описываемыми n кубитами подаются m кубитов в состоянии $|0\rangle$, таким образом чтобы общее число входов и выходов соответствовало друг другу. Следовательно связь между входом и выходом может быть описана в ввиде 3

$$\underbrace{|x\rangle}_{n}\underbrace{|f(x)\rangle}_{m} = \hat{U}_{f}\underbrace{|x\rangle}_{n}\underbrace{|0\dots0\rangle}_{m}.$$
(4.2)

4.2 Квантовые логические элементы

Каким образом может быть сконструирован элемент осуществляющий преобразование \hat{U}_f (4.2).

Набор квантовых вентилей называют универсальным, если любое унитарное преобразование можно аппроксимировать с заданной точностью конечной последовательностью вентилей из этого набора.

4.2.1 Преобразование Адамара

Одним из базовых квантовых логических элементов является преобразование Адамара (см. рис. 4.3), которое определяется следующими соотношениями

$$\hat{H} |0\rangle = |+\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}},$$

$$\hat{H} |1\rangle = |-\rangle = \frac{|0\rangle - |1\rangle}{\sqrt{2}},$$

Это преобразование используется для получения суперпозиции состояний содержащие все возможные значения аргумента вычисляемой функции (см. рис. 4.4).

ром k кубит который не используется в вычислениях и служит цели обеспечения унитарности оператора \hat{U}_f

 $^{^{2}}$ невозможно получить из одного бита (результат) два бита исходной информации

 $^{^3}$ Более правильно записывать в общем виде как $\underbrace{|x\rangle}_n\underbrace{|f\left(x\right)\rangle}_m\underbrace{|r\rangle}_k=\hat{U}_f\underbrace{|x\rangle}_n\underbrace{|0\dots0\rangle}_{m+k}$, где $|r\rangle$ остаток разме-

Рис. 4.4: Преобразование Адамара $\hat{H}^{\otimes n}$ на нескольких кубитах

Рис. 4.5: Управляющий элемент CNOT

4.2.2 Управляющие элементы

4.3 Алгоритм Шора

Один из наиболее популярных алгоритмов шифрования RSA (см. разд. 2.1) построен на предположении о сложности факторизации (разложимости на простые множители) больших чисел. Соответственно алгоритмы позволяющие осуществлять разложение на простые множители представляют особый интерес. Ниже представлено описание такого алгоритма предложенное Шором [6].

4.3.1 Факторизация чисел и нахождение периода функций

Задача факторизации некоторого числа N тесно связана с нахождением периода функций. Рассмотрим следующую, которая называется функцией возведения в степень по модулю

$$f(x,a) = a^{x} mod N.$$

$$|x_{1}\rangle - |y_{1}\rangle$$

$$|x_{2}\rangle - |\hat{U}| - |y_{2}\rangle$$

$$(4.3)$$

Рис. 4.6: Управляющий элемент

Рис. 4.7: Управляемый фазовый сдвиг \hat{R}_{lpha}

Рис. 4.8: График функции $f(x,a) = a^x \mod N$ при a = 2, N = 21. Период функции r = 6.

Функция (4.3) зависит от анализируемого числа N и двух аргументов x и a. Аргумент a выбирается из следующих условий

$$0 < a < N,$$

 $HOД(N, a) = 1.$ (4.4)

Типичный график функции (4.3) представлен на рис. 4.8.

Условия выбора коэффициента a (4.4) такие что a и N не имеют общих делителей. Если же такие делители существуют, то они являются искомым решением задачи факторизации и легко находятся с помощью алгоритма Евклида (см. разд. 5.2).

Функция (4.3) периодическая, т. е. существует такое число r, что f(x+r,a)=f(x,a). Минимальное из возможных чисел r называется периодом функции (4.3).

Для доказательства периодичности отметим, что f(x,a) не может быть равной нулю. Действительно если выполнено условие f(x,a)=0, то

$$\exists x \in \{0, 1, \dots\} : a^x = k \cdot N,$$

где k - целое число, что не возможно в силу взаимной простоты a и N (4.4)

Таким образом область значений функции (4.3) ограничена множеством

$$f(x,a) \in \{1,\ldots,N-1\},\$$

откуда

$$\exists k, j : k > j, k, j \in \{0, 1, \dots, N\}, f(k, a) = f(j, a),$$

что и доказывает периодичность функции (4.3).

Пусть k = j + r, тогда

$$a^k \mod N = a^{j+r} \mod N = a^j a^r \mod N = a^j \mod N,$$

т. к. a и N взаимно просты то мы можем записать

$$a^r \equiv 1 \mod N. \tag{4.5}$$

Период функции (4.3) может быть как четным так и нечетным. В алгоритме Шора нам интересен первый вариант: период - четное число. В противном случае выбирают новое число a и повторяют нахождение периода. Таким образом с учетом $r=2\cdot l$ мы можем переписать (4.5) в виде

$$a^{2 \cdot l} \equiv 1 \mod N$$
,

при этом в силу того r - минимальное число удовлетворяющее условию периодичности, то

$$a^l \not\equiv 1 \mod N$$
.

Если при этом подобрать число a таким образом, что

$$a^l \not\equiv -1 \mod N$$
,

то имеем

$$(a^l - 1)(a^l + 1) = k \cdot N,$$
 (4.6)

где k - некоторое целое число. Из (4.6) получаем что $a^l\pm 1$ имеют общие нетривиальные (отличные от 1) делители с N.

Пример 4.3.1. Нахождение делителей числа N=21 B качестве примера рассмотрим задачу о нахождении делителей числа N=21. Выбрав a=2 мы получим период функции (4.3) r=6 (см. рис. 4.8). Очевидно что

$$2^3 \equiv 8 \mod 21 \not\equiv -1 \mod 21.$$

 $^{^4\}Pi$ ри это предполагается очевидно, что N>1

Таким образом находя соответствующие наибольшие общие делители решаем задачу

$$HO\mathcal{J}(2^3 - 1, 21) = HO\mathcal{J}(7, 21) = 7,$$

 $HO\mathcal{J}(2^3 + 1, 21) = HO\mathcal{J}(9, 21) = 3,$
 $21 = 7 \cdot 3.$

Таким образом задача факторизации числа N может быть сведена к задаче о нахождении периода некоторой функции посредством следующего алгоритма:

Алгоритм 1 Алгоритм Шора

```
a \Leftarrow 0
repeat
Выбрать новое число a такое, что 0 < a < N
if HOД(a, N) \neq 1 then
return a
end if

Найти период r функции f(x, a) = a^x \mod N
until (r \not\equiv 0 \mod 2) or (a^{\frac{r}{2}} \equiv -1 \mod N)
return HOД(a^{\frac{r}{2}} \pm 1, N)
```

4.4 Квантовое преобразование Фурье

Для анализа периодических последовательностей (функций) может быть использовано дискретное преобразование Фурье (см. разд. 5.5), которое определяется следующим соотношением (5.6):

$$\tilde{X}_k = \sum_{m=0}^{M-1} x_m e^{-\frac{2\pi}{M}k \cdot m},$$
(4.7)

где исходная последовательность чисел $\{x_m\}$ имеет M членов.

4.4.1 Схема квантового преобразования Фурье

Квантовое преобразование Фурье ⁵ имеет дело с состояниями вида

$$|x\rangle = \sum_{k=0}^{M-1} x_k |k\rangle, \qquad (4.8)$$

 $^{^{5}}$ Для анализа работы схемы квантового преобразования Фурье была использована работа [3]

где имеется последовательнеость амплитуд $\{x_k\}$, которая задает исходную последовательность для преобразования Фурье (4.7). В базисном векторе $|k\rangle$ записан номер члена этой последовательности.

Очевидно, что члены последовательности (4.8) должны удовлетворять условию нормировки

$$\sum_{k} |x_k|^2 = 1.$$

Допустим что некоторый оператор \hat{F}^M (оператор квантового преобразования Фурье) преобразует базисный вектор $|k\rangle$ по правилу задаваемому соотношением (5.6):

$$\hat{F}^{M} |k\rangle = \frac{1}{\sqrt{M}} \sum_{j=0}^{M-1} e^{-i\omega k j} |j\rangle_{inv}$$
(4.9)

Системы базисных векторов $\{|k\rangle\}$ и $\{|k\rangle_{inv}\}$ представляют собой один и тот же набор векторов которые пронумерованны различным способом.

Из (4.8) и (4.9) получим

$$\hat{F}^{M} |x\rangle = \sum_{j=0}^{M-1} x_k \hat{F}^{M} |k\rangle =$$

$$= \frac{1}{\sqrt{M}} \sum_{k=0}^{M-1} \sum_{j=0}^{M-1} e^{-i\omega k j} x_k |j\rangle_{inv} =$$

$$= \sum_{j=0}^{M-1} \left\{ \frac{1}{\sqrt{M}} \left(\sum_{k=0}^{M-1} e^{-i\omega k j} x_k \right) \right\} |j\rangle_{inv} =$$

$$= \sum_{j=0}^{M-1} \tilde{X}_j |j\rangle_{inv} = \left| \tilde{X} \right\rangle_{inv},$$

где

$$\tilde{X}_j = \tilde{X}_j^M = \frac{1}{\sqrt{M}} \sum_{k=0}^{M-1} e^{-i\omega k j} x_k.$$
 (4.10)

Выражение (4.10) повторяет классический аналог (5.6), т. е. можно записать

$$|x\rangle \longleftrightarrow \left|\tilde{X}\right\rangle_{inv}$$
.

Допустим теперь, что на вход нашей системы подается состояние вида (4.8) которое представляет собой суперпозицию M базисных состояний $\{|k\rangle\}$ (см. рис. 4.9). Предположим что число базисных состояний является степенью

Рис. 4.9: Схема квантового преобразования Фурье основанная на алгоритме быстрого преобразования Фурье. Исходные данные и данные на выходе

двойки, т. е. базисное состояние представимо в виде тензорного произведения $n = \log_2 M$ кубитов:

$$|k\rangle = \left|a_0^{(k)}\right\rangle \otimes \left|a_1^{(k)}\right\rangle \otimes \cdots \otimes \left|a_{n-1}^{(k)}\right\rangle,$$

где

$$k = a_0^{(k)} + 2^1 a_1^{(k)} + \dots + 2^{n-1} a_{n-1}^{(k)},$$
$$a_i^{(k)} \in \{0, 1\}.$$

На выходе (см. рис. 4.9) мы имеем суперпозицию M базисных состояний $\{|j\rangle_{inv}\},$ где для состояния $|j\rangle_{inv}$ получим

$$|j\rangle_{inv} = \left|b_{n-1}^{(j)}\right\rangle \otimes \left|b_{n-2}^{(j)}\right\rangle \otimes \cdots \otimes \left|b_0^{(j)}\right\rangle,$$

где

$$j = b_0^{(j)} + 2^1 b_1^{(j)} + \dots + 2^{n-1} b_{n-1}^{(j)},$$
$$b_i^{(j)} \in \{0, 1\}.$$

Из формулы (5.12) можно заметить, что если у нас имеется входной сигнал x состоящий из $n = \log_2 M$ битов, то бит $a_0^{(k)}$ может быть использован для выбора четных (первого члена суммы (5.12)) или нечетных (второго члена суммы (5.12)).

Рис. 4.10: Схема квантового преобразования Фурье основанная на алгоритме быстрого преобразования Фурье. Шаг 1: $|x\rangle \to \hat{F}^{\frac{M}{2}} \sum_{m=0}^{\frac{M}{2}-1} x_{2m} |2m\rangle + \hat{F}^{\frac{M}{2}} \sum_{m=0}^{\frac{M}{2}-1} x_{2m+1} |2m+1\rangle$

Действительно, исключая $a_0^{(k)}$, состояние (4.8) можно представить в виде суммы четных и нечетных компонент:

$$|x\rangle = \sum_{k=0}^{M-1} x_k |k\rangle = \sum_{k=0}^{M-1} x_k |a_0^{(k)}\rangle \otimes |a_1^{(k)}\rangle \otimes \cdots \otimes |a_{n-1}^{(k)}\rangle =$$

$$= \sum_{m=0}^{\frac{M}{2}-1} x_{k=2m} |0\rangle \otimes |a_1^{(k)}\rangle \otimes \cdots \otimes |a_{n-1}^{(k)}\rangle +$$

$$+ \sum_{m=0}^{\frac{M}{2}-1} x_{k=2m+1} |1\rangle \otimes |a_1^{(k)}\rangle \otimes \cdots \otimes |a_{n-1}^{(k)}\rangle =$$

$$= \sum_{m=0}^{\frac{M}{2}-1} x_{k=2m} |0\rangle \otimes |m\rangle + \sum_{m=0}^{\frac{M}{2}-1} x_{k=2m+1} |1\rangle \otimes |m\rangle =$$

$$= \sum_{m=0}^{\frac{M}{2}-1} x_{2m} |2m\rangle + \sum_{m=0}^{\frac{M}{2}-1} x_{2m+1} |2m+1\rangle,$$

где

$$m = a_1^{(k)} + 2^1 a_2^{(k)} + \dots + 2^{n-2} a_{n-1}^{(k)}.$$

Применяя преобразование Фурье только для старших бит $\hat{F}^{\frac{M}{2}}$, т. е. ис-

ключая $a_0^{(k)}$, получим (см. рис. 4.10):

$$|x\rangle \to \hat{F}^{\frac{M}{2}} \sum_{m=0}^{\frac{M}{2}-1} x_{2m} |2m\rangle + \hat{F}^{\frac{M}{2}} \sum_{m=0}^{\frac{M}{2}-1} x_{2m+1} |2m+1\rangle =$$

$$= \hat{F}^{\frac{M}{2}} \sum_{m=0}^{\frac{M}{2}-1} x_{2m} |0\rangle \otimes |m\rangle + \hat{F}^{\frac{M}{2}} \sum_{m=0}^{\frac{M}{2}-1} x_{2m+1} |1\rangle \otimes |m\rangle =$$

$$= \sum_{m=0}^{\frac{M}{2}-1} x_{2m} |0\rangle \otimes \hat{F}^{\frac{M}{2}} |m\rangle + \sum_{m=0}^{\frac{M}{2}-1} x_{2m+1} |1\rangle \otimes \hat{F}^{\frac{M}{2}} |m\rangle. \tag{4.11}$$

С учетом выражения (4.9) получим

$$\hat{F}^{\frac{M}{2}} |m\rangle = \sqrt{\frac{2}{M}} \sum_{j=0}^{\frac{M}{2}-1} e^{-i\frac{4\pi}{M}mj} |j\rangle_{inv}.$$

Таким образом для (4.11) имеем

$$\begin{split} |x\rangle &\to \sum_{m=0}^{\frac{M}{2}-1} x_{2m} \, |0\rangle \otimes \hat{F}^{\frac{M}{2}} \, |m\rangle + \sum_{m=0}^{\frac{M}{2}-1} x_{2m+1} \, |1\rangle \otimes \hat{F}^{\frac{M}{2}} \, |m\rangle = \\ &= \sqrt{\frac{2}{M}} \sum_{j=0}^{\frac{M}{2}-1} e^{-i\frac{4\pi}{M}mj} \sum_{m=0}^{\frac{M}{2}-1} x_{2m} \, |0\rangle \otimes |j\rangle_{inv} + \\ &+ \sqrt{\frac{2}{M}} \sum_{j=0}^{\frac{M}{2}-1} e^{-i\frac{4\pi}{M}mj} \sum_{m=0}^{\frac{M}{2}-1} x_{2m+1} \, |1\rangle \otimes |j\rangle_{inv} = \\ &= \sum_{j=0}^{\frac{M}{2}-1} \left(\sqrt{\frac{2}{M}} \sum_{m=0}^{\frac{M}{2}-1} e^{-i\frac{4\pi}{M}mj} x_{2m} \right) \, |j\rangle_{inv} + \\ &+ \sum_{j=0}^{\frac{M}{2}-1} \left(\sqrt{\frac{2}{M}} \sum_{m=0}^{\frac{M}{2}-1} e^{-i\frac{4\pi}{M}mj} x_{2m+1} \right) \, \left| \frac{M}{2} + j \right\rangle_{inv} = \\ &= \sum_{j=0}^{\frac{M}{2}-1} \tilde{A}_{j} \, |j\rangle_{inv} + \sum_{j=0}^{\frac{M}{2}-1} \tilde{B}_{j} \, \left| \frac{M}{2} + j \right\rangle_{inv}, \end{split}$$

Рис. 4.11: Схема квантового преобразования Фурье основанная на алгоритме быстрого преобразования Фурье. Шаг 2: $|x\rangle \to \hat{F}^{\frac{M}{2}} \sum_{m=0}^{\frac{M}{2}-1} x_{2m} |2m\rangle + \hat{R}\hat{F}^{\frac{M}{2}} \sum_{m=0}^{\frac{M}{2}-1} x_{2m+1}$

где

$$\tilde{A}_{j} = \sqrt{\frac{2}{M}} \sum_{m=0}^{\frac{M}{2}-1} e^{-i\frac{4\pi}{M}mj} x_{2m}$$

$$\tilde{B}_{j} = \sqrt{\frac{2}{M}} \sum_{m=0}^{\frac{M}{2}-1} e^{-i\frac{4\pi}{M}mj} x_{2m+1}$$
(4.12)

Если добавить теперь фазовый сдвиг для нечетных элементов, т. е. для тех у которых $a_0^k=1$ то получим схему изображенную на рис. 4.11:

$$|x\rangle \to \hat{F}^{\frac{M}{2}} \sum_{m=0}^{\frac{M}{2}-1} x_{2m} |2m\rangle + \hat{R}\hat{F}^{\frac{M}{2}} \sum_{m=0}^{\frac{M}{2}-1} x_{2m+1} |2m+1\rangle =$$

$$= \sum_{j=0}^{\frac{M}{2}-1} \tilde{A}_{j} |j\rangle_{inv} + \sum_{j=0}^{\frac{M}{2}-1} \tilde{B}_{j}\hat{R} \left| \frac{M}{2} + j \right\rangle_{inv},$$

$$= \sum_{j=0}^{\frac{M}{2}-1} \tilde{A}_{j} |j\rangle_{inv} + \sum_{j=0}^{\frac{M}{2}-1} \tilde{C}_{j} \left| \frac{M}{2} + j \right\rangle_{inv}. \tag{4.13}$$

Воспользовавшись выражением

$$\hat{R}_l \left| b_l^{(j)} \right\rangle = exp\left(-2\pi i \frac{b_l^{(j)}}{2^{n-l}} \right) \left| b_l^{(j)} \right\rangle$$

получим, что оператор \hat{R} действует на состояние $\left|\frac{M}{2}+j\right\rangle_{inv}$ следующим образом:

$$\hat{R} \left| \frac{M}{2} + j \right\rangle_{inv} = \hat{R} \left| 1 \right\rangle \otimes \left| j \right\rangle_{inv} =
= \left| 1 \right\rangle \otimes \hat{R}_0 \left| b_0^{(j)} \right\rangle \otimes \cdots \otimes \hat{R}_{n-2} \left| b_{n-2}^{(j)} \right\rangle =
= \prod_{l=0}^{n-2} exp \left(-2\pi i \frac{2^l b_l^{(j)}}{2^n} \right) \left| 1 \right\rangle \otimes \left| j \right\rangle_{inv} =
= exp \left(-2\pi i \frac{j}{M} \right) \left| \frac{M}{2} + j \right\rangle_{inv} \tag{4.14}$$

При выводе (4.14) было учтено, что $j = b_0^{(j)} + 2^1 b_1^{(j)} + \dots + 2^{n-2} b_{n-2}^{(j)}$.

Таким образом для \tilde{C}_j в (4.13) имеем

$$\tilde{C}_{j} = \sqrt{\frac{2}{M}} \sum_{m=0}^{\frac{M}{2}-1} e^{-2\pi i \frac{j}{M}} e^{-i \frac{4\pi}{M} m j} x_{2m+1} =$$

$$= \sqrt{\frac{2}{M}} \sum_{m=0}^{\frac{M}{2}-1} e^{-i \frac{2\pi}{M} (2m+1) j} x_{2m+1}$$
(4.15)

Если теперь применить преобразование Адамара для кубита $|a_0\rangle$, то получим схему изображенную на рис. 4.12. При этом исходное состояние пре-

Рис. 4.12: Схема квантового преобразования Фурье основанная на алгоритме быстрого преобразования Фурье

образуется по следующему закону:

$$|x\rangle \to \hat{H}_{0}\hat{F}^{\frac{M}{2}} \sum_{m=0}^{\frac{M}{2}-1} x_{2m} |2m\rangle + \hat{H}_{0}\hat{R}\hat{F}^{\frac{M}{2}} \sum_{m=0}^{\frac{M}{2}-1} x_{2m+1} =$$

$$= \sum_{j=0}^{\frac{M}{2}-1} \tilde{A}_{j}\hat{H} |0\rangle \otimes |j\rangle_{inv} + \sum_{j=0}^{\frac{M}{2}-1} \tilde{C}_{j}\hat{H} |1\rangle \otimes |j\rangle_{inv} =$$

$$= \frac{1}{\sqrt{2}} \sum_{j=0}^{\frac{M}{2}-1} \tilde{A}_{j} (|0\rangle + |1\rangle) \otimes |j\rangle_{inv} + \frac{1}{\sqrt{2}} \sum_{j=0}^{\frac{M}{2}-1} \tilde{C}_{j} (|0\rangle - |1\rangle) \otimes |j\rangle_{inv} =$$

$$= \sum_{j=0}^{\frac{M}{2}-1} \frac{\tilde{A}_{j} + \tilde{C}_{j}}{\sqrt{2}} |0\rangle \otimes |j\rangle_{inv} + \sum_{j=0}^{\frac{M}{2}-1} \frac{\tilde{A}_{j} - \tilde{C}_{j}}{\sqrt{2}} |1\rangle \otimes |j\rangle_{inv} =$$

$$= \sum_{j=0}^{\frac{M}{2}-1} \frac{\tilde{A}_{j} + \tilde{C}_{j}}{\sqrt{2}} |j\rangle_{inv} + \sum_{j=0}^{\frac{M}{2}-1} \frac{\tilde{A}_{j} - \tilde{C}_{j}}{\sqrt{2}} |\frac{M}{2} + j\rangle_{inv}. \quad (4.16)$$

Для членов (4.16) с учетом равенств (4.12) и (4.15) имеем:

$$\frac{\tilde{A}_{j} + \tilde{C}_{j}}{\sqrt{2}} = \sqrt{\frac{1}{M}} \sum_{m=0}^{\frac{M}{2}-1} e^{-i\frac{4\pi}{M}mj} x_{2m} + \sqrt{\frac{1}{M}} \sum_{m=0}^{\frac{M}{2}-1} e^{-i\frac{2\pi}{M}(2m+1)j} x_{2m+1} =$$

$$= \sqrt{\frac{1}{M}} \sum_{m=0}^{M-1} e^{-i\frac{2\pi}{M}mj} x_{m} \quad (4.17)$$

И

$$\frac{\tilde{A}_{j} - \tilde{C}_{j}}{\sqrt{2}} = \sqrt{\frac{1}{M}} \sum_{m=0}^{\frac{M}{2}-1} e^{-i\frac{4\pi}{M}mj} x_{2m} - \sqrt{\frac{1}{M}} \sum_{m=0}^{\frac{M}{2}-1} e^{-i\frac{2\pi}{M}(2m+1)j} x_{2m+1} =$$

$$= \sqrt{\frac{1}{M}} \sum_{m=0}^{M-1} e^{-i\frac{2\pi}{M}mj} x_{m} \frac{1 + e^{-i\pi m}}{2} - \sqrt{\frac{1}{M}} \sum_{m=0}^{M-1} e^{-i\frac{2\pi}{M}mj} x_{m} \frac{1 - e^{-i\pi m}}{2} =$$

$$= \sqrt{\frac{1}{M}} \sum_{m=0}^{M-1} e^{-i\frac{2\pi}{M}mj} e^{-i\pi m} x_{m} = \sqrt{\frac{1}{M}} \sum_{m=0}^{M-1} e^{-i\frac{2\pi}{M}mj} e^{-i\frac{2\pi}{M}m\frac{M}{2}} x_{m} =$$

$$= \sqrt{\frac{1}{M}} \sum_{m=0}^{M-1} e^{-i\frac{2\pi}{M}m} e^{-i\frac{2\pi}{M}m} e^{-i\frac{2\pi}{M}m\frac{M}{2}} x_{m} =$$

$$= \sqrt{\frac{1}{M}} \sum_{m=0}^{M-1} e^{-i\frac{2\pi}{M}m\frac{M}{2}} x_{m} =$$

$$= \sqrt{\frac{1}{M}} \sum_{m=0}^{M-1} e^{-i\frac{2\pi}{M}m\frac{M}{2}} x_{m} =$$

$$= \sqrt{\frac{1}{M}} \sum_{m=0}^{M-1} e^{-i\frac{2\pi}{M}m\frac{M}{2}} x_{m} =$$

Объединяя (4.16), (4.17) и (4.18) окончательно получим

$$|x\rangle \to \sum_{j=0}^{\frac{M}{2}-1} \sqrt{\frac{1}{M}} \sum_{m=0}^{M-1} e^{-i\frac{2\pi}{M}mj} x_m |j\rangle_{inv} + \sum_{j=0}^{\frac{M}{2}-1} \sqrt{\frac{1}{M}} \sum_{m=0}^{M-1} e^{-i\frac{2\pi}{M}m(\frac{M}{2}+j)} x_m \left| \frac{M}{2} + j \right\rangle_{inv} = \sum_{j=0}^{M-1} \tilde{X}_j^M |j\rangle_{inv}$$

4.4.2 Нахождение периода функций с помощью квантового преобразования Фурье

Для определения периода функции (4.3) используется схема представленная на рис. 4.13.

Рис. 4.13: Определение периода функций с помощью квантового преобразования Фурье

Первым элементом стоит преобразование Адамара n кубит, которое подготавливает исходное состояние в виде:

$$|in\rangle = \frac{1}{\sqrt{2^n}} \sum_{x=0}^{2^n - 1} |x\rangle \otimes |0\rangle.$$

После элемента вычисляющего функцию \hat{U}_f имеем для состояния

$$\hat{U}_f |in\rangle = \frac{1}{\sqrt{2^n}} \sum_{x=0}^{2^n - 1} |x\rangle \otimes |f(x)\rangle.$$

После измерения значения функции в списке координат останутся только те элементы для которых значение функции будет равно измеренному значению. В результате на вход элемента, измеряющего преобразование Фурье подается состояние вида

$$|in'\rangle = \sum_{x'} |x'\rangle$$
,

где все ненулевые элементы имеют одинаковую амплитуду и следуют с периодом равным периоду исследуемой функции. При этом начальное значение будет со сдвигом который зависит от эксперимента (в разных экспериментах будет разный сдвиг). В силу леммы 5.5.1 фурье образ будет одинаковым для различных измерений функций.

Далее в силу леммы 5.5.2 (о периодичности) следует что наиболее вероятные отсчеты (максимумы вероятности) следуют с периодом связанным с исходным периодом функции. Таким образом в результате нескольких экспериментов период искомой функции может быть найден с требуемым уровнем вероятности (см. рис. 4.14).

Рис. 4.14: Алгоритм Шора. Нахождение периода функции $f(x,a)=a^x \mod N$ при $a=2,\ N=21$ (верхний график). Значение функции 1 повторяется с периодом r=6 (средний график). Локальные максимумы преобразования Фурье от среднего графика идут с периодом $\frac{M}{r}\approx 10.67$ (нижний график). См прим. 4.4.1

Пример 4.4.1. Нахождение периода функции $f(x) = 2^x \mod 21$ B качестве примера рассмотрим задачу о нахождении периода функции $f(x,a) = a^x \mod N$ при a = 2, N = 21 см. рис. 4.14

Число отсчетов M должно быть степенью двойки. B нашем примере мы выбираем $M=2^6=64$ в качестве числа отсчетов. Таким образом необходимо 6 кубит для нашего примера.

Исходное состояние после преобразования Адамара имеет вид:

$$|in\rangle = \frac{1}{8} \sum_{x=0}^{63} |x\rangle \otimes |0\rangle,$$

где $|x\rangle$ представляет собой тензорное произведение 6 кубит которые кодируют бинарное представление аргумента исследуемой функции. Например при $x=5_{10}=000101_2$ имеем

$$|x\rangle = |0\rangle \otimes |0\rangle \otimes |0\rangle \otimes |1\rangle \otimes |0\rangle \otimes |1\rangle$$

После вычесления функции мы имеем состояние вида (см. верхний график на рис. 4.14)

$$\hat{U}_f |in\rangle = \frac{1}{8} \sum_{x=0}^{63} |x\rangle \otimes |f(x)\rangle =$$

$$= \frac{1}{8} (|0\rangle \otimes |2\rangle + |1\rangle \otimes |4\rangle + |2\rangle \otimes |8\rangle + \dots +$$

$$+ |62\rangle \otimes |8\rangle + |63\rangle \otimes |16\rangle). \tag{4.19}$$

Если результат измерения функции был равен 1, то из всей суммы (4.19) останутся члены для которых значение функции равно 1 (см. средний график на рис. 4.14):

$$|in'\rangle = \frac{1}{\sqrt{10}} (|5\rangle \otimes |1\rangle + |11\rangle \otimes |1\rangle + |17\rangle \otimes |1\rangle + \dots + |60\rangle \otimes |1\rangle). \tag{4.20}$$

Выражение (4.20) содержит 10 членов одинаковой амплитуды, поэтому нормирующий множитель имеет вид $\frac{1}{\sqrt{10}}$.

Преобразование фурье для последовательности (4.20) изображено на нижнем графике рис. 4.14. Наиболее вероятными значениями результата измерения фурье образа будут значения соотвествующие локальным максимумам которые повторяются с периодом $\frac{M}{r} \approx 10.67$ откуда можно найти период искомой функции r=6.

Рис. 4.15: Поиск в неструктурированном объеме данных (поиск "иголки в стоге сена")

4.5 Квантовое преобразование Фурье и дискретное логарифмирование

Дискретный логарифм (см. разд. 5.4) является основой для большого числа современных криптографических алгоритмов. Вместе с тем метод предложеный Шором для факторизации целых чисел может быть также применен для вычисления дискретных логарифмов, что делает возможным взлом соотвествующих криптографических алгоритмов.

4.6 Алгоритм Гровера

Рассмотрим следующую задачу. Допустим имеется большой набор данных состоящий из N элементов в котором необходимо найти элемент удовлетворяющий некоторым условиям (см. рис. 4.15). Если данные отсортированны, то с помощью алгоритмов типа "разделяй и властвуй" искомый элемент может быть найдет за время порядка O(logN) (см. разд. 5.7). В ряде случаев исходный набор данных не может быть подготовлен для быстрого поиска, в этом случае классический поиск осуществляется за время порядка O(N).

Одним из примеров являются алгоритмы симметричного шифрования в которых стоит задача определения ключа по известному шифрованному тексту и соотвествующему ему оригинальному тексту. В этом случае предварительная обработка данных представляется невозможной и решением задачи "в лоб" является простой перебор всех возможных значений.

Алгоритм Гровера [2] решает задачу неструктурированного поиска за время порядка $O\left(\sqrt{N}\right)$.

Рис. 4.16: Вычисление функции f(x). На выходе схемы имеем суперпозицию состояний вида $\frac{1}{\sqrt{N}} \left(\sum_{x \neq x^*} |x\rangle \otimes |0\rangle + |x^*\rangle \otimes |1\rangle \right)$

4.6.1 Описание алгоритма

Допустим у нас имеется квантовый контур который вычисляет значение функции f(x) которая может принимать только два значения: 0 и 1. При этом значение 1 справедливо только для искомого элемента:

$$f(x)|_{x=x^*} = 1,$$

 $f(x)|_{x \neq x^*} = 0.$ (4.21)

На рис. 4.16 изображена схема для вычесления искомой функции. На выходе мы имеем сотояние вида

$$|out\rangle = \frac{1}{\sqrt{N}} \left(\sum_{x \neq x^*} |x\rangle \otimes |0\rangle + |x^*\rangle \otimes |1\rangle \right),$$
 (4.22)

где N - общее число элементов в последовательности в которой производится поиск.

Если посмотреть на выражение (4.22), то можно заметить, что предложенная схема, несмотря на то что она производит вычисление функции в искомой точке, не позволяет выбрать искомый элемент, потому что все элементы результирующей последовательности равновероятны, т. е. каждый элемент может быть выбран (в результате измерения) с одинаковой вероятностью: $\frac{1}{N}$.

Гровером был предложен алгоритм, который позволил бы повысить вероятность обнаружения искомого элемента в результирующей суперпозиции (4.22).

Схема, реализующая алгоритм Гровера представляет собой некоторый блок, описываемый оператором \hat{U}_G , который повторяется некоторое число раз (см. рис. 4.17). При этом на каждом шаге итерации вероятность обнаружения искомого элемента повышается.

Рис. 4.17: Алгоритм Гровера

Рис. 4.18: Алгоритм Гровера. Базовый элемент

Базовый элемент \hat{U}_G представляет собой последовательное действие двух операторов (см. рис. 4.18):

$$\hat{U}_G = \hat{U}_s \hat{U}_{x^*},$$

где \hat{U}_{x^*} - оператор инверсии фазы, \hat{U}_s - оператор обращения относительно среднего.

Действие оператора \hat{U}_{x^*} описывается следующим соотношением (см. рис. 4.19):

$$\hat{U}_{x^*} \left(\sum_{x} \alpha_x |x\rangle \right) = \sum_{x} \alpha_x (-1)^{f(x)} |x\rangle. \tag{4.23}$$

Оператор \hat{U}_{x^*} может быть переписан в виде

$$\hat{U}_{x^*} = \hat{I} - 2 |x^*\rangle \langle x^*|.$$

Действительно

$$\left(\hat{I} - 2 |x^*\rangle \langle x^*|\right) \left(\sum_{x} \alpha_x |x\rangle\right) =$$

$$= \sum_{x} \alpha_x |x\rangle - 2\alpha_{x^*} |x^*\rangle = \sum_{x \neq x^*} \alpha_x |x\rangle - \alpha_{x^*} |x^*\rangle =$$

$$= \sum_{x} \alpha_x (-1)^{f(x)} |x\rangle,$$

Рис. 4.19: Алгоритм Гровера. Инверсия фазы. Описывается следующим соотношением $\hat{U}_{x^*}\left(\sum_x \alpha_x |x\rangle\right) = \sum_x \alpha_x \left(-1\right)^{f(x)} |x\rangle$

что совпадает с (4.23).

Действие оператора \hat{U}_s описывается следующим соотношением (см. рис. 4.20):

$$\hat{U}_s \left(\sum_x \alpha_x |x\rangle \right) = \sum_x (2\mathcal{M} - \alpha_x) |x\rangle, \qquad (4.24)$$

где $\mathcal{M} = \sum_{x} \frac{\alpha_x}{N}$.

Оператор \hat{U}_s может быть переписан в следующем виде

$$\hat{U}_s = 2 |s\rangle \langle s| - \hat{I},$$

где $|s\rangle=\frac{1}{\sqrt{N}}\sum_x|x\rangle$ - начальное состояние в алгоритме Гровера. Действительно

$$\left(2\left|s\right\rangle\left\langle s\right| - \hat{I}\right) \left(\sum_{x} \alpha_{x} \left|x\right\rangle\right) =$$

$$= 2\sum_{x} \alpha_{x} \left\langle s \left|x\right\rangle \left|s\right\rangle - \sum_{x} \alpha_{x} \left|x\right\rangle =$$

$$= \frac{2}{N} \sum_{x} \alpha_{x} \sum_{x} \left|x\right\rangle - \sum_{x} \alpha_{x} \left|x\right\rangle =$$

$$= \sum_{x} \left(2\mathcal{M} - \alpha_{x}\right) \left|x\right\rangle,$$

что совпадает с (4.24).

Рис. 4.20: Алгоритм Гровера. Обращение относительно среднего. Описывается следующим соотношением $\hat{U}_s\left(\sum_x \alpha_x |x\rangle\right) = \sum_x \left(2\mathcal{M} - \alpha_x\right) |x\rangle$

4.6.2 Анализ алгоритма Гровера

Нас будет интересовать два вопроса: какова алгоритмическая сложность алгоритма Гровера и существуют ли алгоритмы которые могут выполнять задачу поиска в неструктурированном объеме данных более эффективно чем алгоритм Гровера.

Критерием эффективности алгоритма служит следующий факт: хороший алгоритм должен находить искомое значение с минимальным числом вызовов функции (4.21).

Рассмотрим самую первую итерацию. Начальное состояние $|\psi\rangle_0$ имеет следующий вид

$$|\psi\rangle_0 = \sum_x \alpha_x |x\rangle = |s\rangle = \frac{1}{\sqrt{N}} \sum_x |x\rangle = \frac{1}{\sqrt{N}} \sum_{x \neq x^*} |x\rangle + \frac{1}{\sqrt{N}} |x^*\rangle.$$

Таким образом коэффициент перед искомым элементом имеет вид $\alpha_x^* = \frac{1}{\sqrt{N}}$. После применения оператора инверсии фазы U_{x^*} из (4.23) получим

$$\hat{U}_{x^*} |\psi\rangle_0 = \frac{1}{\sqrt{N}} \sum_{x \neq x^*} |x\rangle - \frac{1}{\sqrt{N}} |x^*\rangle.$$

После применения оператора обращения относительно среднего \hat{U}_s из (4.24)

получим

$$\hat{U}_{s}\hat{U}_{x^{*}}|\psi\rangle_{0} = \hat{U}_{G}|\psi\rangle_{0} \approx \sum_{x \neq x^{*}} \left(2\frac{1}{\sqrt{N}} - \frac{1}{\sqrt{N}}\right)|x\rangle + \left(2\frac{1}{\sqrt{N}} + \frac{1}{\sqrt{N}}\right)|x^{*}\rangle =$$

$$= \frac{1}{\sqrt{N}} \sum_{x \neq x^{*}} |x\rangle + \frac{3}{\sqrt{N}}|x^{*}\rangle. \tag{4.25}$$

При выводе (4.25) было принятно

$$\mathcal{M} = \frac{\sum_{x} \alpha_{x}}{N} \approx \frac{N}{N\sqrt{N}} = \frac{1}{\sqrt{N}}.$$

Таким образом после первой итерации алгоритма Гровера амплитуда α_{x^*} возросла на $\frac{2}{\sqrt{N}}$. Если апроксимировать этот результат на произвольную итерацию, то можно получить, что 50% вероятность обнаружить $|x^*\rangle$ будет достижима за следующее число итераций:

$$\frac{1}{\sqrt{2}}/\frac{2}{\sqrt{N}} = \frac{\sqrt{N}}{2\sqrt{2}} = O\left(\sqrt{N}\right).$$

Более точные расчеты [4] дают для числа итераций $\frac{\pi}{4}\sqrt{N}$. Таким образом алгоритм Гровера может быть записан следующим образом

Алгоритм 2 Алгоритм Гровера

$$|\psi\rangle_0 \Leftarrow \frac{1}{\sqrt{N}} \sum_x |x\rangle$$
 $t \Leftarrow 1$
repeat
 $|\psi\rangle_t \Leftarrow \hat{U}_s \hat{U}_{x^*} |\psi\rangle_{t-1}$
 $t \Leftarrow t+1$
until $(t < \frac{\pi}{4}\sqrt{N})$
return результат измерения состояния $|\psi\rangle_t$

Можно задать вопрос об оптимальности алгоритма Гровера: существует ли квантовый алгоритм, который выполняет поиск в неструктурированном объеме данных быстрее чем за $O\left(\sqrt{N}\right)$ обращений к функции (4.21). В статье [7] показано, что такого алгоритма не существует.

Рис. 4.21: Алгоритм Гровера. Реализация инверсии фазы. Приняв $b=|-\rangle=\frac{|0\rangle-|1\rangle}{\sqrt{2}}$ получим для изображенной схемы $\hat{U}_f\left(\sum_x \alpha_x \left|x\right\rangle\right)\otimes \left|-\right\rangle=\sum_x \alpha_x \left(-1\right)^{f(x)} \left|x\right\rangle\otimes \left|-\right\rangle$

4.6.3 Реализация базовых элементов алгоритма Гровера

Инверсия фазы

Каким образом может быть реализована инверсия фазы: как выглядит квантовый логический элемент который осуществляет преобразование (4.23), т. е. каким образом f(x) может быть "послано" в фазу?

Рассмотрим схему изображенную на рис. 4.21. Предложенная схема осуществляет следующее преобразование:

$$|x\rangle \otimes |b\rangle \rightarrow |x\rangle \otimes |b\otimes f(x)\rangle$$
.

Для случая $|b
angle=|angle=rac{|0
angle-|1
angle}{\sqrt{2}}$ имеем

$$|x\rangle \otimes |-\rangle \to |x\rangle \otimes \left(\frac{|0\otimes 0\rangle - |1\otimes 0\rangle}{\sqrt{2}}\right) =$$

$$= |x\rangle \otimes \left(\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right) = |x\rangle \otimes |-\rangle, x \neq x^*,$$

$$|x\rangle \otimes |-\rangle \to |x\rangle \otimes \left(\frac{|0\otimes 1\rangle - |1\otimes 1\rangle}{\sqrt{2}}\right) =$$

$$= |x\rangle \otimes \left(\frac{|1\rangle - |0\rangle}{\sqrt{2}}\right) = -|x\rangle \otimes |-\rangle, x = x^*,$$

т. о. мы имеем следующее преобразование

$$|x\rangle \otimes |-\rangle \to (-1)^{f(x)} |x\rangle \otimes |-\rangle.$$
 (4.26)

Рис. 4.22: Алгоритм Гровера. Реализация обращения относительно среднего: $|\psi\rangle \otimes |-\rangle \rightarrow |\psi^*\rangle \otimes |-\rangle$, где $|\psi\rangle = \sum_x \alpha_x |x\rangle$, $|\psi^*\rangle = \sum_x (2\mathcal{M} - \alpha_x) |x\rangle$. Предложенная схема осуществляет следующее преобразование: $\hat{H}^{\otimes n} \hat{U}_{x\neq 0} \hat{H}^{\otimes n} \sum_x \alpha_x |x\rangle \otimes |-\rangle = \sum_x (2\mathcal{M} - \alpha_x) |x\rangle \otimes |-\rangle$

Обращение относительно среднего

Рассмотрим схему изображенную на рис. 4.22. Элемент $\hat{U}_{x\neq 0}$ осуществляет преобразование аналогичное (4.26) при этом функция f(x) = 0, при x = 0 и f(x) = 1, при $x \neq 0$, т. о.

$$\begin{split} \hat{U}_{x\neq0} \left| x \right\rangle \otimes \left| - \right\rangle &= \left| x \right\rangle \otimes \left| - \right\rangle, x = 0, \\ \hat{U}_{x\neq0} \left| x \right\rangle \otimes \left| - \right\rangle &= - \left| x \right\rangle \otimes \left| - \right\rangle, x \neq 0, \end{split}$$

т. е. матрица преобразования выглядит следующим образом

$$\hat{U}_{x\neq 0} = \begin{pmatrix} 1 \otimes |-\rangle & 0 & 0 & \cdots & 0 \\ 0 & -1 \otimes |-\rangle & 0 & \cdots & 0 \\ 0 & 0 & -1 \otimes |-\rangle & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & -1 \otimes |-\rangle \end{pmatrix} = \\ = \begin{cases} \begin{pmatrix} 2 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix} - \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix} \end{cases} \otimes |-\rangle.$$

Объединяя этот результат с двумя преобразованиями Адамара получаем:

$$\hat{H}^{\otimes n} \left\{ \begin{pmatrix} 2 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix} - \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix} \right\} \otimes |-\rangle \hat{H}^{\otimes n} =$$

$$= \left\{ \hat{H}^{\otimes n} \begin{pmatrix} 2 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix} \hat{H}^{\otimes n} - \hat{H}^{\otimes n} \hat{I} \hat{H}^{\otimes n} \right\} \otimes |-\rangle =$$

$$= \left\{ \begin{pmatrix} \frac{2}{N} & \frac{2}{N} & \frac{2}{N} & \cdots & \frac{2}{N} \\ \frac{2}{N} & \frac{2}{N} & \frac{2}{N} & \cdots & \frac{2}{N} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \frac{2}{N} & \frac{2}{N} & 1 & \frac{2}{N} & \cdots & \frac{2}{N} \\ \frac{2}{N} & \frac{2}{N} & 1 & \cdots & \frac{2}{N} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \frac{2}{N} & \frac{2}{N} & \frac{2}{N} & 1 & \cdots & \frac{2}{N} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \frac{2}{N} & \frac{2}{N} & \frac{2}{N} & 1 & \cdots & \frac{2}{N} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \frac{2}{N} & \frac{2}{N} & \frac{2}{N} & \cdots & \frac{2}{N} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \frac{2}{N} & \frac{2}{N} & \frac{2}{N} & \cdots & \frac{2}{N} \\ \frac{2}{N} & \frac{2}{N} & \frac{2}{N} & \cdots & \frac{2}{N} \\ \frac{2}{N} & \frac{2}{N} & \frac{2}{N} & \cdots & \frac{2}{N} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \frac{2}{N} & \frac{2}{N} & \frac{2}{N} & \cdots & \frac{2}{N} \\ \frac{2}{N} & \cdots & \frac{2}{N} & \cdots & \frac{2}{N} \\ \frac{2}{N} & \frac{2}{N} & \cdots & \frac{2}{N} \\ \frac{2}{N} & \cdots & \frac{2}{N} & \cdots & \frac{2}{N} \\ \frac{2}{N} & \cdots & \frac{2}{N} & \cdots & \frac{2}{N} \\ \frac{2}{N} & \cdots & \frac{2}{N} & \cdots & \frac{2}{N} \\ \frac{2}{N} & \cdots & \frac{2}{N} & \cdots & \frac{2}{N} \\ \frac{2}{N} & \cdots & \frac{2}{N} & \cdots & \frac{2}{N} \\ \frac{2}{N} & \cdots & \frac{2}{N} \\ \frac{2}{N} & \cdots & \frac{2}{N} & \cdots & \frac{2}{N} \\ \frac{2}{N} & \cdots & \frac{2}{N} & \cdots & \frac{2}{N} \\ \frac{2}{N} & \cdots & \frac{2}{N} & \cdots & \frac{2}{N} \\ \frac{2}{N} & \cdots & \frac{2}{N} \\ \frac{2}{N} & \cdots & \frac{2}{N} & \cdots & \frac{2}{N} \\$$

Если воздействовать оператором $\hat{H}^{\otimes n}\hat{U}_{x\neq 0}\hat{H}^{\otimes n}$, то используя результат (4.27) получим:

$$\hat{H}^{\otimes n}\hat{U}_{x\neq 0}\hat{H}^{\otimes n}\sum_{x}\alpha_{x}\left|x\right\rangle =$$

$$=\begin{pmatrix} \frac{2}{N}-1 & \frac{2}{N} & \frac{2}{N} & \cdots & \frac{2}{N} \\ \frac{2}{N} & \frac{2}{N}-1 & \frac{2}{N} & \cdots & \frac{2}{N} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \frac{2}{N} & \frac{2}{N} & \frac{2}{N} & \cdots & \frac{2}{N}-1 \end{pmatrix}\begin{pmatrix} \alpha_{0} \\ \alpha_{1} \\ \alpha_{2} \\ \vdots \\ \alpha_{N-1} \end{pmatrix} =$$

$$=\begin{pmatrix} \frac{2}{N}\sum_{x}\alpha_{x}-\alpha_{0} \\ \frac{2}{N}\sum_{x}\alpha_{x}-\alpha_{1} \\ \frac{2}{N}\sum_{x}\alpha_{x}-\alpha_{2} \\ \vdots \\ \frac{2}{N}\sum_{x}\alpha_{x}-\alpha_{N-1} \end{pmatrix} = \sum_{x}\left(2\mathcal{M}-\alpha_{x}\right)\left|x\right\rangle.$$

Т. о. схема предложенная на рис. 4.22 действительно осуществляет обращение

относительно среднего.

Глава 5

Приложения

5.1 Сравнение по модулю

Определение Запись

$$a \equiv b \mod c \tag{5.1}$$

означает, что a и b имеют одинаковые остатки при делении на c или a и b сравнимы по модулю натурального числа c. При этом число c называется модулем сравнения.

Определение 5.1 может также трактоваться как то, что разность a-b делится на c.

Пример 5.1.1. Сравнение по модулю $30 \equiv 8 \mod 11$, *потому что*, $30 = 2 \cdot 11 + 8$.

5.2 Наибольший общий делитель. Алгоритм Евклида

Определение Наибольшим общим делителем числ a и b (НОД (a,b)) называется максимальный из их общих делителей.

Теорема 5.2.1 (Теорема об общих делителях). Допустим, что выполняются следующие неравенства a > b > 0, а число r является остатком от деления a на b. T. o. можно записать

$$a = x \cdot b + r, \tag{5.2}$$

где $x \ge 1$, $b > r \ge 0$. Если r = 0, то b является максимальным числом на которое делятся без остатка u a u b. B случае, если r > 0, то

$$HO\mathcal{A}(a,b) = HO\mathcal{A}(b,r).$$
 (5.3)

Доказательства (5.3) покажем, что любой делитель пары чисел (a,b) является делителем пары чисел (b,r). Пусть d некоторый общий делитель чисел a и b, т. е. $a = d \cdot x_1$, $b = d \cdot x_2$. Т. о. из (5.2) следует

$$r = a - x \cdot b = d \cdot (x_1 - x \cdot x_2),$$

т. е. d является делителем числа r.

Теперь докажем, что любой общий делитель чисел b и r будет является общим делителем чисел a и b, действительно пусть d - общий делитель чисел b и r, т. е. $b = y_1 \cdot d$ и $r = y_2 \cdot d$, т. о. (5.2) переписывается в виде

$$a = x \cdot y_1 \cdot d + y_2 \cdot d = d \cdot (x \cdot y_1 + y_2),$$

т. е. d является делителем числа a.

Таким образом пары чисел (a,b) и (b,r) имеют общие делители, в том числе и максимальный делитель для одной пары будет являться таковым и для второй.

Соотношение (5.3) приводит к следующему алгоритму вычисления наибольшего общего делителя

Алгоритм 3 Алгоритм Евклида

```
a>b

if b=0 then

return a

end if

a \Leftarrow 0

r \Leftarrow b

b \Leftarrow a

repeat

a \Leftarrow b

b \Leftarrow r

r \Leftarrow \text{ остаток от деления } a \text{ на } b

until (r \neq 0)

return b
```

Для оценки сложности алгоритма 3 запишем его в следующем виде

$$f_k = x_k \cdot f_{k+1} + f_{k+2},$$

$$f_0 = a, \ f_1 = b,$$

$$x_k \ge 1, \ f_k > f_{k+1} > f_{k+2},$$

т. о. $f_k > 2 \cdot f_{k+2}$, или же $f_0 > 2 \cdot f_2 > \cdots > 2^n f_{2n}$ т. е. алгоритм остановится при $n = log_2(f_0) = log_2(a)^{-1}$. Число шагов алгоритма при этом очевидно равно 2n или же $2 \cdot log_2(a)$. Т. о. алгоритмическая сложность алгоритма Евклида может быть записана как $O(\log(a))$.

Пример 5.2.1. (НОД (2345, 1456))

$$2345 = 1456 + 889,$$

$$1456 = 889 + 567,$$

$$889 = 567 + 322,$$

$$567 = 322 + 245,$$

$$322 = 245 + 77,$$

$$245 = 3 \cdot 77 + 14,$$

$$77 = 5 \cdot 14 + 7,$$

$$14 = 2 \cdot 7.$$

т. о. HOД(2345, 1456) = 7. Число шагов алгоритма $8 < 2 \cdot log_2 2345 \approx 2 \cdot 11.2 = 22.4$.

5.3 Малая теорема Ферма

Теорема 5.3.1 (Малая теорема Ферма). Если p простое число, u a не ∂e лится на p, то

$$a^{p-1} \equiv 1 \mod p \tag{5.4}$$

Доказательство. Рассмотрим следующее соотношение

$$a \cdot k_i \mod p$$
,

где
$$k_i \subset \{1, \ldots, p-1\}$$
.
Очевидно, что

$$a \cdot k_i \equiv k_j \mod p. \tag{5.5}$$

Действительно

$$a \cdot k_i \mod p \subset \{1, \dots, p-1\},$$

т. к. любой остаток от деления на p принимает значения $0,1,\ldots p-1$. Нулевой остаток невозможен т. к. a и p взаимно просты.

Кроме этого каждый из остатков $a \cdot k_i \mod p$ встречается только один раз, действительно допустим что $a \cdot k_i \mod p = a \cdot k_j \mod p$ или же $a \cdot (k_i - k_j) \equiv 0 \mod p$, т. е. a делится на p, что противоречит условию взаимной простоты.

 $^{^{1}}$ Дальнейшие выкладки сделаны в предположении, что $log_{2}\left(a\right)$ - целое число

Перемножив все выражения выр. 5.5 получим

$$a \cdot 2a \cdot 3a \cdot \cdots \cdot a (p-1) \equiv 1 \cdot 2 \cdot 3 \cdot \cdots \cdot (p-1) \mod p$$
.

или же

$$a^{p-1}(p-1)! \equiv (p-1)! \mod p,$$

откуда получаем требуемое равенство в силу взаимной простоты p и (p-1)!:

$$a^{p-1} \equiv 1 \mod p$$

5.3.1 Псевдопростые числа

Обобщение малой теоремы Ферма не верно, т. е. если a и p взаимно простые числа которые удовлетворяют соотношению выр. 5.4 то p может быть не простым. Например

$$2^{341-1} \equiv 1 \mod 341,$$

при том, что $341 = 11 \cdot 31$.

Числа p удовлетворяющие соотношению выр. 5.4, но при этом не являющиеся простыми называется псевдопростыми числами по основанию a. Например 341 - первое псевдопростое число по основанию 2.

5.4 Дискретный логарифм

Определение Дискретным логарифмом $ind_g(a) \mod p^2$ называется минимальное число x, которое удовлетворяет следующему уравнению (если такое число существует):

$$g^x \equiv a \mod p$$

Пример 5.4.1. ($ind_313 \mod 17$) Решим задачу методом перебора [8]:

$$3^1 \equiv 3 \mod 17, \ 3^2 \equiv 9 \mod 17, \ 3^3 \equiv 10 \mod 17, \ 3^4 \equiv 13 \mod 17, \ 3^5 \equiv 5 \mod 17, \ 3^6 \equiv 15 \mod 17, \ 3^7 \equiv 11 \mod 17, \ 3^8 \equiv 16 \mod 17, \ 3^9 \equiv 14 \mod 17, \ 3^{10} \equiv 8 \mod 17, \ 3^{11} \equiv 7 \mod 17, \ 3^{12} \equiv 4 \mod 17, \ 3^{13} \equiv 12 \mod 17, \ 3^{14} \equiv 2 \mod 17, \ 3^{15} \equiv 6 \mod 17, \ 3^{16} \equiv 1 \mod 17,$$

 $m. \ o. \ можно \ видеть, \ что \ ind_313 \ \ mod \ 17 = 4, \ m. \ \kappa. \ 3^4 \equiv 13 \ \ mod \ 17.$

²От слова **ind**ex - альтернативного названия для дискретного логорифма

Задача о нахождении дискретного логарифма является сложной задачей. Самый быстрый из известных алгоритмов [1] решает ее за время порядка $O\left(c \cdot exp\left(\log p^{\frac{1}{3}}\log\log p^{\frac{2}{3}}\right)\right)$, где c - некоторая константа, что обуславливает широкое применение алгоритмов использующих дискретный логарифм в криптографии.

5.5 Дискретное преобразование Фурье

Преобразование Фурье играет важную роль в обработке цифровых сигналов, в частности для анализа периодических последовательностей.

5.5.1 Определение

Определение Допустим имеется M отсчетов $x_0, x_1, \ldots, x_{M-1}$ тогда дискретное преобразование Фурье задается следующим соотношением

$$\tilde{X}_k = \sum_{m=0}^{M-1} x_m e^{-\frac{2\pi}{M}k \cdot m},$$
(5.6)

которое так же записывается в виде

$$\{x_m\}\longleftrightarrow \left\{\tilde{X}_k\right\}.$$

На рис. 5.1 приведен график некоторой периодической функции и ее преобразования Фурье.

Выражение (5.6) может быть также переписано в матричной форме

$$\vec{\tilde{X}} = \hat{F}\vec{x},$$

где

$$\vec{x} = \begin{pmatrix} x_0 \\ x_1 \\ \vdots \\ x_{M-1} \end{pmatrix}, \vec{\tilde{X}} = \begin{pmatrix} \tilde{X}_0 \\ \tilde{X}_1 \\ \vdots \\ \tilde{X}_{M-1} \end{pmatrix},$$

Рис. 5.1: Периодическая функция $f(x,a)=a^x \mod N$ при $a=2,\,N=21$ (верхний график) и ее дискретное преобразование Фурье (нижний график)ю Период исходной функции r=6. Число отсчетов M=64, видны локальные максимумы с периодом $T\approx \frac{M}{r}\approx 10.67$

а матрица \hat{F} имеет вид

$$\hat{F} = \begin{pmatrix} 1 & 1 & 1 & \cdots & 1\\ 1 & e^{-i\omega} & e^{-2i\omega} & \cdots & e^{-(M-1)i\omega}\\ 1 & e^{-2i\omega} & e^{-4i\omega} & \cdots & e^{-2(M-1)i\omega}\\ 1 & e^{-3i\omega} & e^{-6i\omega} & \cdots & e^{-3(M-1)i\omega}\\ \vdots & \vdots & \vdots & \ddots & \vdots\\ 1 & e^{-(M-1)i\omega} & e^{-2(M-1)i\omega} & \cdots & e^{-(M-1)(M-1)i\omega} \end{pmatrix},$$
(5.7)

где

$$\omega = \frac{2\pi}{M}.$$

Для матричного элемента матрицы (5.7) можно записать

$$F_{nm} = e^{-i\omega nm}, (5.8)$$

где $n, m \in \{0, 1, \dots, M-1\}.$

5.5.2 Свойства дискретного преобразования Фурье

Следует отметить следующие свойства преобразования Фурье, которые играют основную роль в алгоритме Шора:

Лемма 5.5.1. (Сдвиг) Если
$$\{x_n\}\longleftrightarrow \left\{\tilde{X}_k\right\}\ mo\ \left\{x_{(n-m)\mod M}\right\}\longleftrightarrow \left\{e^{-i\omega mk}\tilde{X}_k\right\}$$

Доказательство. Для последовательности $\{x_{(n-m) \mod M}\}$ можно записать

$$\{x_{(n-m) \mod M}\} = \begin{pmatrix} x_{-m \mod M} \\ x_{-m+1 \mod M} \\ \vdots \\ x_{-1 \mod M} \\ x_0 \\ x_1 \\ \vdots \\ x_{M-m-1} \end{pmatrix} = \begin{pmatrix} x_{M-m} \\ x_{M-m+1} \\ \vdots \\ x_{M-1} \\ x_0 \\ x_1 \\ \vdots \\ x_{M-m-1} \end{pmatrix},$$

при этом

$$\hat{F}\left\{x_{(n-m) \mod M}\right\} = \begin{pmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & e^{-i\omega} & e^{-2i\omega} & \cdots & e^{-(M-1)i\omega} \\ 1 & e^{-2i\omega} & e^{-4i\omega} & \cdots & e^{-2(M-1)i\omega} \\ 1 & e^{-3i\omega} & e^{-6i\omega} & \cdots & e^{-3(M-1)i\omega} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & e^{-(M-1)i\omega} & e^{-2(M-1)i\omega} & \cdots & e^{-(M-1)(M-1)i\omega} \end{pmatrix} \begin{pmatrix} x_{M-m} \\ x_{M-m+1} \\ \vdots \\ x_0 \\ \vdots \\ x_{M-m-1} \end{pmatrix} = \begin{pmatrix} x_{M-m} + x_{M-m+1} + \cdots + x_0 + \cdots + x_{M-m-1} \\ x_{M-m} + e^{-i\omega}x_{M-m+1} + \cdots + e^{-i\omega m}x_0 + \cdots + e^{-i\omega(M-1)}x_{M-m-1} \\ x_{M-m} + e^{-2i\omega}x_{M-m+1} + \cdots + e^{-2i\omega m}x_0 + \cdots + e^{-2i\omega(M-1)}x_{M-m-1} \\ \vdots \\ x_{M-m} + e^{-mi\omega}x_{M-m+1} + \cdots + e^{-mi\omega m}x_0 + \cdots + e^{-mi\omega(M-1)}x_{M-m-1} \\ \vdots \\ x_{M-m} + e^{-mi\omega}x_{M-m+1} + \cdots + e^{-mi\omega m}x_0 + \cdots + e^{-mi\omega(M-1)}x_{M-m-1} \\ \vdots \\ x_{M-m} + e^{-mi\omega}x_{M-m+1} + \cdots + e^{-mi\omega m}x_0 + \cdots + e^{-mi\omega(M-1)}x_{M-m-1} \\ \vdots \\ x_{M-m} + e^{-mi\omega}x_{M-m+1} + \cdots + e^{-mi\omega m}x_0 + \cdots + e^{-mi\omega(M-1)}x_{M-m-1} \\ \vdots \\ x_{M-m} + e^{-mi\omega}x_{M-m+1} + \cdots + e^{-mi\omega m}x_0 + \cdots + e^{-mi\omega(M-1)}x_{M-m-1} \\ \vdots \\ x_{M-m} + e^{-mi\omega}x_{M-m+1} + \cdots + e^{-mi\omega m}x_0 + \cdots + e^{-mi\omega(M-1)}x_{M-m-1} \\ \vdots \\ x_{M-m} + e^{-mi\omega}x_{M-m+1} + \cdots + e^{-mi\omega m}x_0 + \cdots + e^{-mi\omega(M-1)}x_{M-m-1} \\ \vdots \\ x_{M-m} + e^{-mi\omega}x_{M-m+1} + \cdots + e^{-mi\omega m}x_0 + \cdots + e^{-mi\omega(M-1)}x_{M-m-1} \\ \vdots \\ x_{M-m} + e^{-mi\omega}x_{M-m+1} + \cdots + e^{-mi\omega m}x_0 + \cdots + e^{-mi\omega(M-1)}x_{M-m-1} \\ \vdots \\ x_{M-m} + e^{-mi\omega}x_{M-m+1} + \cdots + e^{-mi\omega m}x_0 + \cdots + e^{-mi\omega(M-1)}x_{M-m-1} \\ \vdots \\ x_{M-m} + e^{-mi\omega}x_{M-m+1} + \cdots + e^{-mi\omega m}x_0 + \cdots + e^{-mi\omega(M-1)}x_{M-m-1} \\ \vdots \\ x_{M-m} + e^{-mi\omega}x_{M-m+1} + \cdots + e^{-mi\omega m}x_0 + \cdots + e^{-mi\omega(M-1)}x_{M-m-1} \\ \vdots \\ x_{M-m} + e^{-mi\omega}x_{M-m+1} + \cdots + e^{-mi\omega m}x_0 + \cdots + e^{-mi\omega(M-1)}x_{M-m-1} \\ \vdots \\ x_{M-m} + e^{-mi\omega}x_{M-m+1} + \cdots + e^{-mi\omega m}x_0 + \cdots + e^{-mi\omega(M-1)}x_{M-m-1} \\ \vdots \\ x_{M-m} + e^{-mi\omega}x_{M-m+1} + \cdots + e^{-mi\omega m}x_0 + \cdots + e^{-mi\omega(M-1)}x_{M-m-1} \\ \vdots \\ x_{M-m} + e^{-mi\omega}x_0 + \cdots + e^{-mi\omega(M-1)}x_{M-m-1} \\ \vdots \\ x_{M-m} + e^{-mi\omega}x_0 + \cdots + e^{-mi\omega(M-1)}x_0 + \cdots + e^{-mi\omega($$

С учетом соотоношения

$$e^{-i\omega kM} = 1, k \in \{0, 1, \dots\},\$$

выражение (5.9) может быть переписано в следующем виде

$$\hat{F}\left\{x_{(n-m) \mod M}\right\} = \\ = \begin{pmatrix} x_{M-m} + \dots + x_{M-m-1} \\ e^{-i\omega m} e^{-i\omega(M-m)} x_{M-m} + \dots + e^{-i\omega 2m} e^{-i2\omega(M-m-1)} \\ e^{-i\omega 2m} e^{-i2\omega(M-m)} x_{M-m} + \dots + e^{-i\omega 2m} e^{-i2\omega(M-m-1)} \end{pmatrix} = \\ \vdots \\ = \begin{pmatrix} \tilde{X}_0 \\ e^{-i\omega m} \tilde{X}_1 \\ e^{-i\omega 2m} \tilde{X}_2 \\ \vdots \end{pmatrix}.$$

Лемма 5.5.2. (Периодичность) Если последовательность $\{x_n\}$ имеет период $r: x_n = x_{n+r}$, а число отсчетов M кратно r, то не нулевые члены преобразования Фурье следуют с периодом $\frac{M}{r}$.

$$1 - e^{-i\omega kr} \neq 0,$$

П

откуда

$$\tilde{X}_{k} = \sum_{n=0}^{M-1} e^{-i\omega k n} x_{n} =
= \sum_{n=0}^{r-1} e^{-i\omega k n} x_{n} + \sum_{n=0}^{r-1} e^{-i\omega k (n+r)} x_{n+r} + \sum_{n=0}^{r-1} e^{-i\omega k (n+2r)} x_{n+2r} + \cdots =
= \sum_{n=0}^{r-1} e^{-i\omega k n} x_{n} + \sum_{n=0}^{r-1} e^{-i\omega k (n+r)} x_{n} + \sum_{n=0}^{r-1} e^{-i\omega k (n+2r)} x_{n} + \cdots =
= \sum_{n=0}^{r-1} x_{n} e^{-i\omega k n} \sum_{l=0}^{\frac{M}{r}-1} e^{-i\omega k l r} = \sum_{n=0}^{r-1} x_{n} e^{-i\omega k n} \frac{1 - e^{-i\omega k \frac{M}{r}} r}{1 - e^{-i\omega k r}} =
= \frac{1 - e^{-i\omega k M}}{1 - e^{-i\omega k r}} \sum_{n=0}^{r-1} x_{n} e^{-i\omega k n} = 0. \quad (5.10)$$

Если $M \mod r = 0$ и $kr \mod M = 0$, то

$$e^{-i\omega kr} = e^{-i\frac{2\pi}{M}kr} = 1,$$

откуда

$$\tilde{X}_{k} = \sum_{n=0}^{M-1} e^{-i\omega k n} x_{n} =$$

$$= \sum_{n=0}^{r-1} e^{-i\omega k n} x_{n} + \sum_{n=0}^{r-1} e^{-i\omega k n} x_{n+r} + \sum_{n=0}^{r-1} e^{-i\omega k n} x_{n+2r} + \dots =$$

$$= \sum_{n=0}^{r-1} e^{-i\omega k n} x_{n} + \sum_{n=0}^{r-1} e^{-i\omega k n} x_{n} + \sum_{n=0}^{r-1} e^{-i\omega k n} x_{n} + \dots =$$

$$= \frac{M}{r} \sum_{n=0}^{r-1} e^{-i\omega k n} x_{n} \neq 0.$$
 (5.11)

Таким образом из выражений (5.10) и (5.11) следует что ненулевые члены следуют с периодом $T=\frac{M}{r}$.

Стоит отметить, что выражение (5.10) в случае когда период не кратен числу отсчетов: $M \mod r \neq 0$. Будет приближенно равно 0 для тех значений k которые сильно отличаются от значений кратных $\frac{M}{r}$, т. е. локальные максимумы перобразования Фурье будут повторяться с периодом $\frac{M}{r}$.

5.5.3 Быстрое преобразование Фурье

Вычисления по формуле (5.6) имеют сложность порядка $O(M^2)$, где M - число элементов (отсчетов) 3 .

Существует алгоритм быстрого расчета по формуле (5.6) который имеет сложность $O(M \log M)$.

Воспользовавшись парадигмой "разделяй и властвуй" (см. разд. 5.7) можно обратить внимание на форму записи (5.8) и заметить, что выражение (5.6) может быть переписано в в виде

$$\tilde{X}_k = \sum_{m=0}^{M-1} F_{km}^M x_m,$$

где запись F_{km}^M обозначает, что используется матрица (5.8) размера $M \times M$. Если M четно, то

$$\tilde{X}_k = \sum_{m=0}^{M-1} F_{k,m}^M x_m = \sum_{m=0}^{\frac{M}{2}-1} F_{k,2m}^M x_{2m} + \sum_{m=0}^{\frac{M}{2}-1} F_{k,2m+1}^M x_{2m+1},$$

где

$$\begin{split} F_{k,2m}^{M} = e^{-i\omega k2m} = e^{-ikm\frac{2\pi}{M}} = F_{k,m}^{\frac{M}{2}}, \\ F_{k,2m+1}^{M} = e^{-i\omega k(2m+1)} = e^{-i\omega k}e^{-ikm\frac{2\pi}{M}} = e^{-2\pi i\frac{k}{M}}F_{k,m}^{\frac{M}{2}}, \end{split}$$

т. е.

$$\tilde{X}_{k} = \sum_{m=0}^{\frac{M}{2}-1} F_{k,m}^{\frac{M}{2}} x_{2m} + \exp\left(-2\pi i \frac{k}{M}\right) \sum_{m=0}^{\frac{M}{2}-1} F_{k,m}^{\frac{M}{2}} x_{2m+1}.$$
 (5.12)

Сложность вычислений по формуле (5.12) определяется следующим соотношением

$$T(M) = 2T\left(\frac{M}{2}\right) + O(M). \tag{5.13}$$

В справедливости (5.13) можно убедится если заметить что вычисления сложности T(M) в (5.12) распадаются на две подзадачи по вычислениям сложности $T\left(\frac{M}{2}\right)$.

Используя основную теорему о рекуррентных соотношениях (случай 2) (Теорема 5.6.1) получаем

$$T(M) = O(M \log M).$$

 $^{^3 \}mbox{Действительно}$ необходимо получить Mэлементов, для подсчета каждого из которых требуется Mопераций умножения

5.6 Основная теорема о рекуррентных соотношениях

Теорема 5.6.1 (Основная теорема о рекуррентных соотношениях). *Если* имеется следующее рекурентное соотоношение для сложности некоторого алгоритма

 $T(n) = aT\left(\frac{n}{b}\right) + f(n),$

то возможно определить асимптотическое поведение функции $T\left(n\right)$ в следующих случаях

- 1. Если $f(n) = O(n^{\log_b a \epsilon})$, при некоторых $\epsilon > 0$, то $T(n) = \Theta(n^{\log_b a})$
- 2. Если $f(n) = \Theta\left(n^{\log_b a} \log^k n\right)$, то $T(n) = \Theta\left(n^{\log_b a} \log^{k+1} n\right)$
- 3. Если $f(n) = \Omega\left(n^{\log_b a + \epsilon}\right)$, при некоторых $\epsilon > 0$ и $af\left(\frac{n}{b}\right) \leq cf\left(n\right)$ для некоторой константы c < 1 и больших n, то $T\left(n\right) = \Theta\left(f\left(n\right)\right)$

5.7 Разделяй и властвуй

"Разделяй и властвуй" (divide and conquer) - важная парадигма в решении алгоритмических задач, которая заключается в разделении исходной задачи на более простые.

Предметный указатель

Криптостойкость одноразового
блокнота
определение теоремы, 9
Малая теорема Ферма, 15
определение теоремы, 67
Одноразовый блокнот, 8
Основная теорема о рекуррентных
соотношениях, 74
определение теоремы, 75

```
Теорема об общих делителях определение теоремы, 65 алгоритм RSA, 10, 11, 13, 39 де шифрование, 14 генерация ключей, 13 шифрование, 14
```

алгоритм Гровера, 54 алгоритм Шора, 42

Литература

- [1] Gordon, D. M. Discrete logarithms in gf(p) using the number field sieve / Daniel M. Gordon // SIAM J. Discrete Math. -1993. Vol. 6. P. 124–138.
- [2] Grover, L. K. A fast quantum mechanical algorithm for database search / Lov K. Grover // ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING. ACM, 1996. P. 212-219.
- of fourier [3] Ivan Murashko. Analyze quantum transform circuit Ivan Murashko, Constantine Korikov // Internet implementation / of Things, Smart Spaces, and Next Generation Networks and Systems - 15th International Conference, NEW2AN 2015, and 8th Conference, ruSMART 2015, St. Petersburg, Russia, August 26-28, 2015, Proceedings / Ed. by Sergey Balandin, Sergey D. Andreev, Yevgeni Koucheryavy. — Springer, 2015. — Vol. 9247 of Lecture Notes in Computer Science. http://dx.doi.org/10.1007/978-3-319-23126-6.
- [4] Nielsen, M. Quantum Computation and Quantum Information / M.A. Nielsen, I.L. Chuang. Cambridge Series on Information and the Natural Sciences. Cambridge University Press, 2000. http://books.google.ru/books?id=65FqEKQOfP8C.
- [5] Shannon, C. E. Communication Theory of Secrecy Systems / Claude E. Shannon // Bell Systems Technical Journal. 1949. Vol. 28. P. 656—715.
- [6] Shor, P. W. Algorithms for quantum computation: Discrete logarithms and factoring / Peter W. Shor // FOCS. IEEE Computer Society, 1994. P. 124–134.
- [7] Strengths and weaknesses of quantum computing / Charles H. Bennett, Ethan Bernstein, Gilles Brassard, Umesh Vazirani // SIAM J. Comput.— 1997.—oct.—Vol. 26, no. 5.—P. 1510—1523.—http://dx.doi.org/10.1137/S0097539796300933.

- [8] Wikipedia. Дискретное логарифмирование Wikipedia, The free encyclopedia. http://ru.wikipedia.org/wiki/Дискретное_логарифмирование. 2013. [Online; accessed 29-October-2013].
- [9] В. А. Ильин. Линейная алгебра / В. А. Ильин, Э. Г. Поздняк. 6 изд. Москва: Физматлит, 2005. С. 115.
- [10] Михаил Борисович Менский. Квантовые измерения и декогеренция. Модели и феноменология / Михаил Борисович Менский. Москва: Физматлит, 2001. С. 228.
- [11] Поль Дирак. Принципы квантовой механики / Поль Дирак. Москва: Наука, 1979.
- [12] Физика квантовой информации / Под ред. А. Цайлингера. Москва: Постмаркет, 2002. С. 376.