Распределение Пуассона (с параметром λ)

$$P(\xi = k) = e^{-\lambda} \frac{\lambda^k}{k!} \qquad k = 0, 1, \dots$$

Распределение редких событий

λ – параметр интенсивности
(среднее число событий в единицу времени/в заданной области пространства)

Геометрическая вероятность

Пусть Ω — область в R^k (прямая, плоскость, пространство) Случайный эксперимент: наудачу бросается точка в Ω . Тогда

$$P(A) = \frac{\rho(A)}{\rho(\Omega)}$$

Где $\rho(A)$ – мера множества A (длина, площадь, объём)

Равномерное распределение координат наудачу брошенной точки

Вероятностное пространство $\left(\Omega,\mathscr{F},P\right)$

Дискретное

 $(\Omega$ – не более чем счётно)

• Любое подмножество Ω является случайным событием

Непрерывное

• Не любое подмножество является случайным событием!

Сигма-алгебра событий Э

• Совокупность всех подмножеств Ω

Свойства замкнутости относительно счётного объединения подмножеств и дополнения выполняются автоматически

ullet Сигма-алгебра подмножеств Ω

Свойства замкнутости относительно счётного объединения подмножеств Ω и дополнения **HE** выполняются автоматически

Вероятностное пространство $\left(\Omega,\mathscr{F},P\right)$

Дискретное

Непрерывное

Вероятность Р

Вероятностная мера на (Ω, \mathscr{F}) – функция $P: \mathscr{F} \to R$

• (Р1)
$$p_i=p(\omega_i)\geq 0$$
 для $\forall\,\omega_i\in\Omega$ • (Р1) $P(A)\geq 0$ для любого $A\in\mathscr{F}$

Аксиома существования вероятности

• **(P2)**
$$P(\Omega) = 1$$

$$P(\Omega) = 1$$

Условие нормировки

• **(P3)**
$$P(A_1 \cup A_2 \cup ...) = P(A_1) + P(A_2) + ...$$

Аксиома счётной аддитивности

Борелевская σ-алгебра

Минимальной сигма-алгеброй, содержащей набор множеств *S*, называется пересечение всех сигма-алгебр, содержащих *S*

Минимальная сигма-алгебра, содержащая множество всех интервалов на вещественной прямой, называется борелевской сигма-алгеброй в R и обозначается $\mathscr{D}(R)$

Пусть задано вероятностное пространство $\left(\Omega,\mathscr{F},P\right)$

Определение 1 Функция $\xi:\Omega \to R$ называется случайной

величиной, если для любого борелевского множества $B \in \mathcal{B}(R)$ множество $\xi^{-1}(B)$ является событием, т. е.

принадлежит сигма-алгебре \mathscr{F} (ξ – измеримая функция)

Определение 2 Функция $\xi:\Omega \to R$ называется случайной

величиной, если для любого $x \in R$, множество $\{\omega : \xi(\omega) \le x\}$

является событием, т. е. принадлежит сигма-алгебре ${\mathscr F}$

Функция распределения

Функцией распределения случайной величины ξ называется функция $F_{\xi}: R \to [0,1]$ при каждом x равная следующей вероятности:

$$F_{\xi}(x) = P(\omega : \xi(\omega) \le x) = P(\xi \le x)$$

Свойства функции распределения

Любая функция распределения обладает следующими свойствами

1)
$$\exists$$
 пределы $\lim_{x\to\infty} F_{\xi}(x) = 1$, $\lim_{x\to-\infty} F_{\xi}(x) = 0$

- 2) F_{ξ} не убывает: $F_{\xi}(x_1) \le F_{\xi}(x_2)$ для $\forall x_1 \le x_2$
- 3) F_{ξ} непрерывна справа: $\lim_{x \to x_0^+} F_{\xi}(x) = F_{\xi}(x_0)$

$$F(x) = F_{\xi}(x)$$
 для $\forall x \in R$

Дискретное распределение

Случайная величина ξ имеет <u>дискретное</u> распределение, если множество её значений конечно или счётно, т.е. существует набор чисел $a_1, a_2, ...$ такой, что

$$\forall i \quad P(\xi = a_i) > 0, \quad \sum_i P(\xi = a_i) = 1$$

Непрерывное распределение

Случайная величина ξ имеет *непрерывное* распределение, если её функция распределения $F_{\xi}(x)$ непрерывна

Абсолютно непрерывное распределение. Функция плотности

Случайная величина *ξ* имеет *абсолютно непрерывное* распределение, если существует неотрицательная функция

$$f_{\xi}(x)$$
 такая, что:

$$F_{\xi}(x) = \int_{-\infty}^{x} f_{\xi}(t)dt$$

Функция $f_{\xi}(x)$ называется функцией плотности

распределения (плотностью вероятности) с.в. ξ

Свойства функции плотности

1)
$$f_{\xi}(x) \ge 0$$

$$2) \int_{-\infty}^{+\infty} f_{\xi}(x) dx = 1$$

Замечание Свойства (1)-(2) характеризуют класс плотностей, т.е. если функция g(x) удовлетворяет свойствам (1)-(2), то она является функцией плотности распределения некоторой случайной величины, т.е. найдётся вероятностное пространство $\left(\Omega,\mathscr{F},\mathrm{P}\right)$ и определённая на нём случайная величина ξ такая, что $g(x)=f_{\xi}(x)$