EE24BTECH11009 - Mokshith Kumar Reddy

Question:

In what ratio does the point (-4,6) divide the line segment joining the points $\mathbf{A}(-6,0)$ and $\mathbf{B}(3,-8)$?

Solution:

Fig. 0.1: Stem Plot of y(n)

Fig. ?? we can see that the given point doesn't lie on the line segment joining A and B. Distance between vectors A and C is:

$$d_1 = \|(A - C)\| \implies \left\| \begin{pmatrix} -2 \\ -6 \end{pmatrix} \right\| \tag{0.1}$$

$$d_1 = \begin{pmatrix} -2 & -6 \end{pmatrix} \begin{pmatrix} -2 \\ -6 \end{pmatrix} \tag{0.2}$$

$$d_1 = \sqrt{2^2 + 6^2} = \sqrt{40} \tag{0.3}$$

(0.4)

1

Distance between vectors B and C is:

$$d_2 = \|(B - C)\| \implies \left\| \begin{pmatrix} 7 \\ -14 \end{pmatrix} \right\| \tag{0.5}$$

$$d_2 = \begin{pmatrix} 7 & -14 \end{pmatrix} \begin{pmatrix} 7 \\ -14 \end{pmatrix} \tag{0.6}$$

$$d_2 = \sqrt{7^2 + 14^2} = 7\sqrt{5} \tag{0.7}$$

$$d_{2} = \begin{pmatrix} 7 & -14 \end{pmatrix} \begin{pmatrix} 7 \\ -14 \end{pmatrix}$$

$$d_{2} = \sqrt{7^{2} + 14^{2}} = 7\sqrt{5}$$

$$\therefore \frac{d_{1}}{d_{2}} = \frac{\sqrt{40}}{7\sqrt{5}}$$

$$(0.6)$$

$$(0.7)$$

Parameter	Description
A	$\begin{pmatrix} -6 \\ 0 \end{pmatrix}$
В	$\begin{pmatrix} 3 \\ -8 \end{pmatrix}$
С	$\begin{pmatrix} -4 \\ 6 \end{pmatrix}$
d_1	Distance between vectors A and C
d_2	Distance between vectors B and C

TABLE 0