زبان های نامنظم

- برای درک قدرت ماشین ها باید محدودیت های آن ها را بشناسیم.
- برخی از زبان ها را نمی توان با ماشین حالت متناهی تشخیص داد.
- مثلاً برای تشخیص زبان زیر باید در حالت ها تعداد 0 ها را حفظ کنیم.

$$B = \{0^n 1^n | n \ge 0\}$$

- اما حالت های متناهی یک DFA پاسخگوی تعداد نامتناهی حالات ممکن نیست.
 - نیاز به یک مبنای نظری برای اثبات منظم نبودن داریم: *لم پامپینگ*

لم پامپینگ

THEOREM

Pumping lemma If A is a regular language, then there is a number p (the pumping length) where, if s is any string in A of length at least p, then s may be divided into three pieces, s = xyz, satisfying the following conditions:

- 1. for each $i \geq 0$, $xy^i z \in A$,
- **2.** |y| > 0, and
- 3. $|xy| \leq p$.

ایده اثبات

PROOF IDEA

Let $M = (Q, \Sigma, \delta, q_1, F)$ be a DFA that recognizes A. We assign the pumping length p to be the number of states of M.

• بنا به اصل لانه کبوتری، برای رشته هایی با بیش از این طول، حداقل یک حالت در دنباله حالات تکرار می شود.

$$s = s_1 + s_2 + s_3 + s_4 + s_5 + s_6 + \dots + s_n + s_6 + \dots +$$

state q_9 repeating when M reads s

اثبات

PROOF

```
Let M = (Q, \Sigma, \delta, q_1, F) be a DFA recognizing A.
    p: the number of states of M.
    s = s_1 s_2 \cdots s_n be a string in A of length n \ge p.
    r_1, \ldots, r_{n+1} the sequence of states that M enters while processing s.
    r_{i+1} = \delta(r_i, s_i) for 1 \le i \le n.
pigeonhole principle \Rightarrow \exists j, l \leq n+1 : r_i = r_l
Let x = s_1 \cdots s_{j-1}, y = s_j \cdots s_{l-1}, and z = s_l \cdots s_n.
   x takes M from r_1 to r_i,
   y takes M from r_j to r_j, \Rightarrow M must accept xy^iz for i \geq 0.
   z takes M from r_j to r_{n+1},
   j \neq l \Rightarrow |y| > 0; and l \leq p+1, so |xy| \leq p.
```

• با استفاده از لم پامپینگ و برهان خلف ثابت می کنیم که زبان زیر منظم نیست:

$$B = \{0^n 1^n | n \ge 0\}.$$

Let p be the pumping length given by the pumping lemma.

Choose $s = 0^p 1^p$.

pumping lemma $\Rightarrow s = xyz$, where for any $i \ge 0$ the string xy^iz is in B.

- 1. The string y consists only of 0s.
- 2. The string y consists only of 1s.
- 3. The string y consists of both 0s and 1s.

• چرا هیچ یک از سه حالت فوق نمی تواند درست باشد؟

• با استفاده از لم پامپینگ و برهان خلف ثابت می کنیم که زبان زیر منظم نیست:

 $C = \{w | w \text{ has an equal number of 0s and 1s} \}.$

Let p be the pumping length given by the pumping lemma.

Choose $s = 0^p 1^p$.

pumping lemma $\Rightarrow s = xyz$, where for any $i \ge 0$ the string xy^iz is in B.

If $|xy| \leq p$, then y must consist only of 0s, so $xyyz \notin C$.

• روش دیگر:

If C were regular, $C \cap 0^*1^*$ also would be regular. But $C \cap 0^*1^*$ equals B, and we know that B is nonregular.

زبان $\{n \geq 1^{n^2} | n \geq 1^{n^2} \}$. را در نظر بگیرید. می توان نشان داد که این زبان نامنظم است.

اگر p طول پمپ کردن باشد رشته مورد نظر می تواند به صورت p^2 ایب $y|z|=p^2$ باشد. آنگاه p^2 $y|z|=p^2$ و p^2 باشد. آنگاه p^2 $p|z|=p^2$ که به وضوح مطلقا از p^2 $p+p^2$ که به وضوح مطلقا از p^2 که به وضوح مطلقا و نمی تواند با آن بر ابر باشد.

- زبان کپی $\{ \{0,1\}^* \}$ را در نظر $\{0,1\}^* \}$ بگیرید. با استفاده از لم پمپینگ می توان نشان داد که این زبان نامنظم است. فرض کنید $\{0,1\}^* \}$ طول پمپ کردن باشد.
 - اگر رشته مورد نظر را S=OP1OP1 بگیریم جواب خواهد داد.

 $E = \{0^{i}1^{j}: i>j\}$ فرض کنید •

• با استفاده از لم پمپینگ می توان ثابت کرد که زبان فوق نیز نامنظم است. با در نظر گرفتن طول پمپ برابر p، رشته مورد استفاده می تواند S=Op+11p باشد.