CSC6780 - Data Science; Assignment 8

Jesse Annan \parallel ID: 002708111 April 6, 2023

Find data in the attached notebook.

(i) The sums of squared errors

$$\begin{split} \textbf{Error[Model 1 Prediction]} &= \frac{1}{2} \sum_{1}^{30} (Target[i] - Model1Prediction[i])^2 \\ &= 16750 \\ \textbf{Error[Model 2 Prediction]} &= \frac{1}{2} \sum_{1}^{30} (Target[i] - Model2Prediction[i])^2 \\ &= 47369 \end{split}$$

(ii) The R^2 measure

$$R^2 \text{ [Model 1 Prediction]} = 1 - \frac{\frac{1}{2} \sum_{1}^{30} (Target[i] - Model1Prediction[i])^2}{\frac{1}{2} \sum_{1}^{30} (Target[i] - Target_mean)^2} \\ \approx 0.92844$$

$$R^2 \text{ [Model 2 Prediction]} = 1 - \frac{\frac{1}{2} \sum_{1}^{30} (Target[i] - Model2Prediction[i])^2}{\frac{1}{2} \sum_{1}^{30} (Target[i] - Target_mean)^2} \\ \approx 0.79762$$

Model:

HEATING LOAD = $-26.030 + 0.0497 \times SURFACE AREA + 4.942 \times HEIGHT - 0.090 \times ROOF AREA + 20.523 \times GLAZING AREA$

ID3: Heating Load = -26.030 + 0.0497 * 563.5 + 4.942 * 7.0 - 0.090 * 122.5 + 20.523 * 0.40 33.75415

ID4: Heating Load = -26.030 + 0.0497*637.0 + 4.942*6.0 - 0.090*147.0 + 20.523*0.60 34.3647

 ${\tt Imputation}$

age[3] = 32.7 and $socio_economic_band[5] = 'a'$

Normalized Features

ID	AGE	SOCIO ECONOMIC BAND	SHOP FREQUENCY	SHOP VALUE
1	-0.11111	\mathbf{a}	-0.34615	0.42127
2	0.68889	b	-0.46154	-0.07559
3	-1.00000	\mathbf{c}	1.23077	-0.95490
4	-0.34667	b	-0.56538	0.76890
5	0.95556	\mathbf{a}	-0.75000	-0.06513

$$\begin{split} & \operatorname{Logistic}(\mathtt{X}) = \frac{1}{1 + \exp{(-X)}} \\ & ID1_wd = 0.6679 - 0.5795 * -0.11111 + 0 + 2.0499 * -0.34615 + 3.4091 * 0.42127 \\ & ID1 = \operatorname{Logistic}(\mathtt{ID1_wd}) \approx 0.811357 \\ & ID2_wd = 0.6679 - 0.5795 * 0.68889 - 0.1981 + 2.0499 * -0.46154 + 3.4091 * -0.07559 \\ & ID2 = \operatorname{Logistic}(\mathtt{ID2_wd}) \approx 0.243571 \\ & ID3_wd = 0.6679 - 0.5795 - 1 - 0.2318 + 2.0499 * 1.23077 + 3.4091 * -0.95490 \\ & ID3 = \operatorname{Logistic}(\mathtt{ID3_wd}) \approx 0.570335 \\ & ID4_wd = 0.6679 - 0.5795 * -0.34667 - 0.1981 + 2.0499 * -0.56538 + 3.4091 * 0.76890 \\ & ID4 = \operatorname{Logistic}(\mathtt{ID4_wd}) \approx 0.894065 \\ & ID5_wd = 0.6679 - 0.5795 * 0.95556 + 0 + 2.0499 * -0.75000 + 3.4091 * -0.06513 \\ & ID5 = \operatorname{Logistic}(\mathtt{ID5_wd}) \approx 0.161744 \end{split}$$

(a) Yes, with a reasonable choice of k. Similarity-based predictive modeling approach (KNN) will be a good choice for this data set.

(b)

$$\begin{split} & Logistic(\texttt{X}) = \frac{1}{1 + \exp{(-X)}} \\ & ID1_wd = -0.848*(1) + 1.545*(0.50) - 1.942*(0.75) + 1.973*(0.50^2) \\ & \quad + 2.495*(0.75^2) + 0.104*(0.50^3) + 0.095*(0.75^3) + 3.009*(0.50*0.75) \\ & ID1 = \mathsf{Logistic}(\mathsf{ID1_wd}) \approx 0.824356 \\ & ID2_wd = -0.848*(1) + 1.545*(0.10) - 1.942*(0.75) + 1.973*(0.10^2) \\ & \quad + 2.495*(0.75^2) + 0.104*(0.10^3) + 0.095*(0.75^3) + 3.009*(0.10*0.75) \\ & ID2 = \mathsf{Logistic}(\mathsf{ID1_wd}) \approx 0.386754 \\ & ID3_wd = -0.848*(1) + 1.545*(-0.47) - 1.942*(-0.39) + 1.973*(-0.47^2) \\ & \quad + 2.495*(-0.39^2) + 0.104*(-0.47^3) + 0.095*(-0.39^3) + 3.009*(-0.47*-0.39) \\ & ID3 = \mathsf{Logistic}(\mathsf{ID1_wd}) \approx 0.630339 \\ & ID4_wd = -0.848*(1) + 1.545*(-0.47) - 1.942*(0.18) + 1.973*(-0.47^2) \\ & \quad + 2.495*(0.18^2) + 0.104*(-0.47^3) + 0.095*(0.18^3) + 3.009*(-0.47*0.18) \\ & ID4 = \mathsf{Logistic}(\mathsf{ID1_wd}) \approx 0.158179 \\ \end{split}$$