Lecture 19

Name: Harsh Sanjay Roniyar

Roll Number: 22B3942

Assignment 3 has been released

Recap:

- Hidden Layers
- Universal Approximation (Cybenko's) Theorem
- Activation Functions
 - Softmax is generalization of sigmoid for multi-class classification
 - e.g. $\operatorname{Softmax}\left(\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix}p_1\\p_2\\p_3\end{bmatrix}$, where $0 \leq p_j \leq 1$ and $\sum_{j=1}^c p_j = 1$ with

$$p_j = rac{e^{x_j}}{\sum_{i=j}^c e^{x_j}}$$

• The CE loss is $CE = -\sum_{j=1}^{c} t_j \log p_j$, where t_j is the target class. This is an extension of the binary cross entropy loss discussed earlier (when c = 2).

Multi-Class SVM

Choice 1:

Class i vs Class j SVMs $\implies \binom{c}{2}$ SVMs

Choice 2:

Class i vs Rest SVMs $\implies c$ SVMs

 $rg \max_{j} \ \left(w_{j}^{T}x + b_{j}
ight)$ would give us the decided class and j is the class.

Basic Structure of a Neural Network

- Output Layer
- Hidden Layer(s)

Input Layer

Backpropagation

as a method to update the gradient weights

Chain Rule of Differentiation

Computation Graph

Source: Neural Networks - Harsh S Roniyar

Vector Valued Functions

$$f(x)=egin{bmatrix} f_1(ar x)\ f_2(ar x) \end{bmatrix}=egin{bmatrix} f_1(x_1,x_2,x_3)\ f_2(x_1,x_2,x_3) \end{bmatrix}$$

Jacobians

The Jacobian for a function f(x) as defined above would be -

$$J(f) = egin{bmatrix} rac{\partial f}{\partial x_1} & rac{\partial f}{\partial x_2} & rac{\partial f}{\partial x_3} \end{bmatrix}$$

Issues with Gradient Descent

- Need to find good step-size
- Lots of computation before each update
- Can get stuck in local minima

Summary of GD

Loop until stopping criterion

loss
$$l \leftarrow 0, \ \nabla l \leftarrow 0$$

Loop over training samples:

$$l_i \leftarrow \operatorname{loss}(\theta, x_i, t_i)$$
 $abla l_i \leftarrow \operatorname{grad}(\theta, x_i, t_i)$
 $abla l_i \leftarrow \operatorname{prad}(\theta, x_i, t_i)$
 $abla l_i \leftarrow \theta - \eta abla l_i$
 $abla l_i \leftarrow \theta - \eta abla l_i$