MATH-300 Andrew Jones

Worksheet 4

Let R be a relation from A to B, let S be a relation from B to C, and let T be a relation from C to D.

Prove	the	following	statements.
TIOVE	une	10HOW HIE	statements.

1.	$I_A \circ R = R$	
	Proof.	
2.	$R \circ I_A = R$	
	Proof.	
3.	$(R^{-1})^{-1} = R$	
	Proof.	
4.	$(S \circ R)^{-1} = R^{-1} \circ S^{-1}$	
	Proof.	
5.	$(T \circ S) \circ R = T \circ (S \circ R)$	
	Proof.	
6.	$DomR = RngR^{-1}$	
	Proof.	
7.	$RngR = DomR^{-1}$	
	Proof.	
For C	Question 8–10, suppose that $A = B = C$.	
8.	If R and S are equivalence relations, then $S \circ R$ is an equivalence re	elation.
	Proof.	
9.	If R is a partial order, then $R \circ R$ is a partial order.	
	Proof.	

10.	If R and S are partial orders, then it is not generally true that $S \circ R$ is a partial order.
	Proof.
Bon that	us Questions Give an example of two relations R and S on a set A such
11.	$R \circ S \neq S \circ R.$
	Proof.
12.	$S \circ R$ is an equivalence relation, but neither R nor S is an equivalence relation.
	Proof.