ASSIGNMENT 01: K NEAREST NEIGHBORS

Name: Nguyen Trung Tam

Students ID: B1910697

Class: M02

1.1. Given a dataset as follows:

X1	X2	Class
0.376	0.488	0
0.312	0.544	0
0.298	0.624	0
0.394	0.6	0
0.506	0.512	0
0.488	0.334	1
0.478	0.398	1
0.606	0.366	1
0.428	0.294	1
0.542	0.252	1

Classifying the testset with 1NN, 3NN:

	X1	X2	Class
P1	0.55	0.364	?
P2	0.558	0.47	?
Р3	0.456	0.45	?
P4	0.45	0.57	?

We will use Euclidean distance to classify the test set as below:

Euclidean distance

with q = 2 => d is Euclidean distance

$$d(u,v) = \sqrt{(|u_1 - v_1|^2 + |u_2 - v_2|^2 + \dots + |u_n - v_n|^2)}$$

First, we will need to calculate the distance between the test points and every points in the training set

1.1.1. Calculate the distance between training points and P1

X1	X2	Class	Distance
0.376	0.488	0	0.213663287
0.312	0.544	0	0.298402413
0.298	0.624	0	0.362082863
0.394	0.6	0	0.282899275
0.506	0.512	0	0.154402073
0.488	0.334	1	0.068876701
0.478	0.398	1	0.079624117
0.606	0.366	1	0.056035703
0.428	0.294	1	0.140655608
0.542	0.252	1	0.112285351

From the results above, we see that the nearest point is

0.606 0.366 1 0.056035703

So 1NN = 1 for P1

From the results above, we see that the 3 nearest point is

0.606	0.366	1	0.056035703
0.488	0.334	1	0.068876701
0.478	0.398	1	0.079624117

1.1.2. Calculate the distance between training points and P1

X1	X2	Class	Distance
0.376	0.488	0	0.182887944
0.312	0.544	0	0.256889081
0.298	0.624	0	0.302185374
0.394	0.6	0	0.209274939
0.506	0.512	0	0.0668431
0.488	0.334	1	0.15295751
0.478	0.398	1	0.107628992
0.606	0.366	1	0.114542569
0.428	0.294	1	0.21880585
0.542	0.252	1	0.218586367

From the results above, we see that the nearest point is

0.506	0.512	0	0.0668431
-------	-------	---	-----------

So 1NN = 0 for P2

From the results above, we see that the 3 nearest point is

0.506	0.512	0	0.0668431
0.478	0.398	1	0.107628992
0.606	0.366	1	0.114542569

So 3NN = 1 for P2

1.1.3. Calculate the distance between training points and P3

X1	X2	Class	Distance
0.376	0.488	0	0.088566359
0.312	0.544	0	0.171965113
0.298	0.624	0	0.235031913
0.394	0.6	0	0.162308349
0.506	0.512	0	0.079649231
0.488	0.334	1	0.120332872
0.478	0.398	1	0.056462377
0.606	0.366	1	0.171918585
0.428	0.294	1	0.158492902
0.542	0.252	1	0.215870331

From the results above, we see that the nearest point is

0.478	0.398	1	0.056462377
-------	-------	---	-------------

So 1NN = 1 for P3

From the results above, we see that the 3 nearest point is

0.478	0.398	1	0.056462377
0.506	0.512	0	0.079649231
0.376	0.488	0	0.088566359

So 3NN = 0 for P3

1.1.4. Calculate the distance between training points and P4

X1	X2	Class	Distance
0.376	0.488	0	0.11045361
0.312	0.544	0	0.140427917
0.298	0.624	0	0.16130716
0.394	0.6	0	0.063529521
0.506	0.512	0	0.080622577
0.488	0.334	1	0.239039746
0.478	0.398	1	0.174264167
0.606	0.366	1	0.256811215
0.428	0.294	1	0.276875423
0.542	0.252	1	0.331040783

From the results above, we see that the nearest point is

0.394

So 1NN = 0 for P4

From the results above, we see that the 3 nearest point is

0.394	0.6	0	0.063529521
0.506	0.512	0	0.080622577
0.376	0.488	0	0.11045361

So 3NN = 0 for P4

To summary, we have the result as below

a. 1NN

	X1	X2	Class
P1	0.55	0.364	1
P2	0.558	0.47	0
Р3	0.456	0.45	1
P4	0.45	0.57	0

b. 3NN

	X1	X2	Class
P1	0.55	0.364	1
P2	0.558	0.47	1
Р3	0.456	0.45	0
P4	0.45	0.57	0

1.2. Implement kNN from scratch in Python

```
def euclidean distance(point1, point2):
def predict(train, test, k):
       labels.append(mode(pred labels).mode[0])
def report(train f, test f, k):
```

```
num_row, num_col = train_set.shape
    test_num_row, test_num_col = test_set.shape

x_test = test_set.values  # Get training data points (exclude class value)
    y_test = test_set.iloc[:, test_set.shape[1] - 1].values  # Get training class data points (the last column)

pred = predict(x_train, x_test, k)

print("-" * 24 + "CLASSIFY RESULT WITH K = %s" % k + "-" * 24)

print("* TRAIN FILE: %s, WITH %d SAMPLES" % (train_f, num_row))

print("* TEST FILE: %s, WITH %d SAMPLES" % (test_f, test_num_row))

print("* ACCURACY SCORE: %d%%" % (metrics.accuracy_score(y_test, pred) * 100))

print("* CONFUSION MATRIX:\n", metrics.confusion_matrix(y_test, pred))

print("* CLASSIFICATION REPORT:\n", metrics.classification_report(y_test, pred))

print("-" * 24 + "END OF CLASSIFY RESULT WITH K = %s" % k + "-" * 24)

if __name__ == '__main__':
    report('data/faces/data.trn', 'data/faces/data.tst', 1)
```

1.2.1. Iris (K = 1)

```
* TRAIN FILE: data/iris/iris.trn, WITH 100 SAMPLES
* TEST FILE: data/iris/iris.tst, WITH 50 SAMPLES
* ACCURACY SCORE: 100%
* CONFUSION MATRIX:
[[17 0 0]
[ 0 15 0]
[ 0 0 18]]
* CLASSIFICATION REPORT:
           precision
                     recall f1-score
                                    support
        0
               1.00
                      1.00
                              1.00
                                        17
        1
               1.00
                      1.00
                              1.00
                                        15
                              1.00
        2
               1.00
                      1.00
                                        18
   accuracy
                              1.00
                                        50
              1.00
                      1.00
                              1.00
  macro avg
                                        50
weighted avg
              1.00
                      1.00
                              1.00
                                        50
       ----- WITH K = 1------
```

1.2.2. Iris (K = 3)

```
------CLASSIFY RESULT WITH K = 3-----
* TRAIN FILE: data/iris/iris.trn, WITH 100 SAMPLES
* TEST FILE: data/iris/iris.tst, WITH 50 SAMPLES
* ACCURACY SCORE: 100%
* CONFUSION MATRIX:
[[17 0 0]
[ 0 15 0]
[ 0 0 18]]
* CLASSIFICATION REPORT:
            precision recall f1-score support
        0
               1.00
                       1.00
                               1.00
                                          17
         1
               1.00
                       1.00
                               1.00
                                          15
               1.00
                       1.00
                               1.00
                                          18
                                1.00
                                          50
   accuracy
  macro avg
              1.00
                        1.00
                               1.00
                                          50
weighted avg
              1.00
                       1.00
                                1.00
                                          50
     -----END OF CLASSIFY RESULT WITH K = 3----
```

1.2.3. Iris (K = 5)

```
* TRAIN FILE: data/iris/iris.trn, WITH 100 SAMPLES
* TEST FILE: data/iris/iris.tst, WITH 50 SAMPLES
* ACCURACY SCORE: 100%
* CONFUSION MATRIX:
[[17 0 0]
[ 0 15 0]
[ 0 0 18]]
* CLASSIFICATION REPORT:
            precision recall f1-score support
                      1.00
                              1.00
        0
              1.00
                                        17
        1
              1.00
                      1.00
                              1.00
                                        15
        2
              1.00
                       1.00
                              1.00
                                        18
   accuracy
                              1.00
                                        50
                              1.00
                                        50
  macro avg
              1.00
                       1.00
weighted avg
             1.00
                      1.00
                              1.00
                                        50
    ----- WITH K = 5-----END OF CLASSIFY RESULT WITH K = 5-----
```

1.2.4. Faces (K = 1)

```
----- WITH K = 1-----
* TRAIN FILE: data/faces/data.trn, WITH 768 SAMPLES
* TEST FILE: data/faces/data.tst, WITH 192 SAMPLES
* ACCURACY SCORE: 100%
* CONFUSION MATRIX:
 [[17
       0 0
                 0 0
                       0
                          0 0 0 0
                                       0
                                          0
                                               0
                                                  0
                                                    0
                                                        0
                                                            0
                                                                 0]
 0 10
                                          0
                                              0
                                                 0
                                                    0
                                                       0
                                                           0
                                                                 0]
         0
             0
                0
                   0
                       0
                          0
                             0
                                0
                                    0
                                       0
                                                              0
                                                                 0]
      0
             0
                0
                   0
                       0
                          0
                             0
                                0
                                    0
                                       0
                                          0
                                              0
                                                 0
                                                    0
                                                       0
                                                           0
                                                              0
      0
                0
                                              0
                                                           0
                                                                 0]
          0
             4
                   0
                       0
                          0
                             0
                                0
                                    0
                                       0
                                          0
                                                 0
                                                    0
                                                       0
      0
          0
             0
                6
                   0
                       0
                          0
                             0
                                 0
                                    0
                                       0
                                          0
                                              0
                                                 0
                                                    0
                                                       0
                                                           0
                                                              0
                                                                 0]
 [ 0
      0
             0
                0 10
                          0
                                0
                                       0
                                              0
                                                 0
                                                    0
                                                       0
                                                           0
                                                              0
                                                                 0]
          0
                       0
                             0
                                    0
                                          0
   0
      0
          0
             0
                0
                   0
                       8
                          0
                             0
                                 0
                                    0
                                       0
                                          0
                                              0
                                                 0
                                                    0
                                                       0
                                                           0
                                                                 0]
 [ 0
      0
         0
             0
                0
                   0
                       0
                          4
                             0
                                0
                                    0
                                       0
                                          0
                                              0
                                                 0
                                                    0
                                                       0
                                                           0
                                                              0
                                                                 0]
 [ 0
                                              0
                                                                 0]
      0
          0
             0
                0
                   0
                       0
                          0
                             8
                                0
                                    0
                                       0
                                          0
                                                 0
                                                    0
                                                       0
                                                           0
                                                              0
                       0
                             0
                                                 0
      0
          0
             0
                0
                   0
                          0
                               19
                                    0
                                       0
                                          0
                                              0
                                                    0
                                                       0
                                                           0
                                                              0
                                                                 0]
   0
      0
          0
             0
                0
                   0
                       0
                          0
                             0
                                0
                                    9
                                       0
                                          0
                                              0
                                                 0
                                                    0
                                                       0
                                                           0
                                                              0
                                                                 0]
 [ 0
      0
         0
             0
                0
                   0
                       0
                          0
                             0
                                0
                                    0
                                       8
                                          0
                                              0
                                                 0
                                                    0
                                                       0
                                                           0
                                                              0
                                                                 0]
      0
                   0
                       0
                                0
                                    0
                                       0 11
                                              0
                                                 0
                                                    0
 [ 0
          0
             0
                0
                          0
                             0
                                                       0
                                                           0
                                                              0
                                                                 0]
   0
      0
          0
             0
                0
                   0
                       0
                          0
                             0
                                0
                                    0
                                       0
                                          0 12
                                                 0
                                                    0
                                                       0
                                                           0
                                                              0
                                                                 0]
                                                 8
   0
      0
          0
             0
                0
                   0
                       0
                          0
                             0
                                0
                                    0
                                       0
                                          0
                                              0
                                                    0
                                                       0
                                                           0
                                                              0
                                                                 0]
 [ 0
      0
          0
             0
                   0
                       0
                          0
                             0
                                0
                                    0
                                       0
                                          0
                                              0
                                                 0
                                                    5
                                                       0
                                                           0
                                                              0
                                                                 0]
                0
   0
      0
          0
             0
                0
                   0
                       0
                          0
                             0
                                0
                                    0
                                       0
                                          0
                                              0
                                                 0
                                                    0
                                                       8
                                                           0
                                                              0
                                                                 0]
                                0
                                    0
                                              0
                                                 0
                                                                 0]
   0
      0
         0
             0
                0
                   0
                       0
                          0
                             0
                                       0
                                          0
                                                    0
                                                       0 21
                                                              0
                                0
                                              0
                                                       0
                                                           0
                                                                 0]
 [ 0
      0
         0
             0
                0
                   0
                       0
                          0
                             0
                                    0
                                       0
                                          0
                                                 0
                                                    0
                                                              7
                   0
                      0
                          0
                             0
                                0
                                    0
                                       0
                                          0
                                              0
                                                 0
                                                    0
                                                       0
                                                              0 10]]
```

* CLASSIFICATI					
	precision	recall	f1-score	support	
0	1.00	1.00	1.00	17	
1	1.00	1.00	1.00	10	
2	1.00	1.00	1.00	7	
3	1.00	1.00	1.00	4	
4	1.00	1.00	1.00	6	
5	1.00	1.00	1.00	10	
6	1.00	1.00	1.00	8	
7	1.00	1.00	1.00	4	
8	1.00	1.00	1.00	8	
9	1.00	1.00	1.00	19	
10	1.00	1.00	1.00	9	
11	1.00	1.00	1.00	8	
12	1.00	1.00	1.00	11	
13	1.00	1.00	1.00	12	
14	1.00	1.00	1.00	8	
15	1.00	1.00	1.00	5	
16	1.00	1.00	1.00	8	
17		1.00	1.00	21	
18	1.00	1.00	1.00	7	
19	1.00		1.00	10	
accuracy			1.00	192	
	1.00	1.00		192	
weighted avg				192	
	EN	D OF CLAS	SIFY RESULT	WITH K =	1

1.2.5. Faces (K = 3)

```
-----CLASSIFY RESULT WITH K = 3------
* TRAIN FILE: data/faces/data.trn, WITH 768 SAMPLES
* TEST FILE: data/faces/data.tst, WITH 192 SAMPLES
* ACCURACY SCORE: 100%
* CONFUSION MATRIX:
0 10 0
          0 0 0 0
                    0 0 0
                           0
                              0
                                0
                                   0
                                      0
                                        0
                                           0
                                             0 0 0]
 0
       7
            0
               0
                 0
                    0
                         0
                           0
                              0
                                 0
                                   0
                                      0
                                        0
                                           0
                                             0 0
                                                  0]
          0
                       0
     0
       0
          4
            0
               0
                  0
                    0
                       0
                         0
                           0
                              0
                                 0
                                   0
                                      0
                                        0
                                           0
                                             0 0
                                                  01
 [ 0
            6
                              0
 [ 0
     0
       0
          0
               0
                 0
                    0
                      0
                         0
                           0
                                 0
                                   0
                                      0
                                        0
                                           0
                                             0 0
                                                  0]
            0 10
                   0
                         0
                                           0 0 0
                                                  0]
 [ 0
     0
       0 0
                 0
                       0
                           0
                              0
                                 0
                                   0
                                      0
                                        0
 [ 0
     0
       0 0
            0
               0
                  8
                    0
                       0
                         0
                           0
                              0
                                 0
                                   0
                                      0
                                        0
                                           0 0 0
                                                  01
 [ 0
     0
       0
          0
            0
               0
                 0
                    4
                       0
                         0
                            0
                              0
                                 0
                                   0
                                      0
                                        0
                                           0
                                             0
                                               0
                                                  0]
               0
                 0
                                           0 0 0
                                                  0]
 [ 0
     0
       0
         0
            0
                    0
                       8
                         0
                           0
                              0
                                 0
                                   0
                                      0
                                        0
 0
     0
       0 0
            0
               0
                 0
                    0
                       0 19
                            0
                              0
                                 0
                                   0
                                      0
                                        0
                                           0 0 0
                                                  0]
 [ 0
     0
       0
            0
                 0
                    0
                      0
                            9
                              0
                                 0
                                   0
                                      0
                                        0
                                           0
                                             0 0
                                                  0]
          0
               0
                         0
 [ 0
     0
       0
         0 0
               0
                 0
                    0
                       0
                         0
                           0
                              8
                                 0
                                   0
                                      0
                                        0
                                           0 0 0
                                                  0]
                              0 11
 [ 0
     0
       0 0
            0
               0
                 0
                    0
                       0
                         0
                           0
                                   0
                                      0
                                        0
                                           0 0 0 0]
 [ 0
                                           0
                                                  0]
     0
       0
          0
            0
               0
                 0
                    0
                       0
                         0
                           0
                              0
                                 0 12
                                      0
                                        0
                                             0
                                               0
                                 0
 [ 0
     0
       0
         0
            0
               0
                  0
                    0
                       0
                         0
                           0
                              0
                                   0
                                      8
                                        0
                                           0
                                             0 0
                                                  0]
       0 0 0
               0
                 0
                    0
                       0
                         0 0
                              0
                                   0
                                      0
                                        5
                                           0 0 0 0]
 [ 0
     0
                                 0
 [ 0
     0
       0
          0
            0
               0
                 0
                    0
                       0
                         0
                            0
                              0
                                 0
                                   0
                                      0
                                        0
                                           8
                                             0
                                               0 0]
 [ 0
     0
       0
          0
            0
               0
                  0
                    0
                       0
                         0
                            0
                              0
                                 0
                                   0
                                      0
                                        0
                                           0 21
                                                0
                                                  0]
 [ 0
     0
       0
          0
            0
               0
                 0
                    0
                       0
                         0
                            0
                              0
                                 0
                                   0
                                      0
                                        0
                                           0 0 7
                                                  0]
 Γ 0
                    0
                      0
                         0
                              0
                                 0
                                        0
                                           0
     0
       0
          0
            0
               0
                 0
                            0
                                   0
                                      0
                                             0 0 10]]
```

* CLASSIFICAT:			5-		
	precision	recall	f1-score	support	
0	1.00	1.00	1.00	17	
1	1.00	1.00	1.00	10	
2	1.00	1.00	1.00	7	
3				4	
	1.00	1.00	1.00		
4	1.00	1.00	1.00	6	
5	1.00	1.00	1.00	10	
6	1.00	1.00	1.00	8	
7	1.00	1.00	1.00	4	
8	1.00	1.00	1.00	8	
9	1.00	1.00	1.00	19	
10	1.00	1.00	1.00	9	
11	1.00	1.00	1.00	8	
12	1.00	1.00	1.00	11	
13	1.00	1.00	1.00	12	
14	1.00	1.00	1.00	8	
15	1.00	1.00	1.00	5	
16	1.00	1.00	1.00	8	
17	1.00	1.00	1.00	21	
18	1.00	1.00	1.00	7	
19	1.00	1.00	1.00	10	
accuracy			1.00	192	
macro avg	1.00	1.00	1.00	192	
weighted avg	1.00	1.00	1.00	192	
	EN	D OF CLAS	SIFY RESULT	WITH K =	3

1.2.6. Faces (K = 5)

```
-----CLASSIFY RESULT WITH K = 5-----
* TRAIN FILE: data/faces/data.trn, WITH 768 SAMPLES
* TEST FILE: data/faces/data.tst, WITH 192 SAMPLES
* ACCURACY SCORE: 99%
* CONFUSION MATRIX:
0 10
                                                    0]
               0
                  0
                     0
                       0
                          0
                             0
                               0
                                  0
                                     0
                                       0
                                          0
                                             0
                                               0
                                                  0
       0
          0
             0
 0
       7
          0
             0
                0
                  0
                     0
                       0
                          0
                             0
                               0
                                  0
                                     0
                                       0
                                          0
                                             0
                                               0
                                                  0 0]
     0
       0 4 0 0
                  0
                     0
                       0
                          0
                             0
                               0
                                  0
                                     0
                                       0
                                          0
                                             0
                                               0 0 0]
 [ 0
 [ 0
     0
        0
             6
                0
                  0
                     0
                       0
                          0
                             0
                               0
                                  0
                                     0
                                       0
                                          0
                                             0
                                               0
                                                  0
                                                    0]
          0
 0
             0 10
                     0
                       0
                          0
                             0
                               0
                                  0
                                     0
                                       0
                                          0
                                             0
                                               0
                                                  0 0]
     0
        0
          0
                  0
 [ 0
     0
             0
                0
                  8
                     0
                        0
                          0
                             0
                               0
                                  0
                                     0
                                       0
                                          0
                                             0
                                               0 0 0]
        0
          0
 [ 0
     0
       0
          0
            0 0
                  0
                     4
                       0 0
                             0
                               0
                                  0
                                     0
                                       0
                                          0
                                             0 0 0 0]
 [ 0
     0
            0
               0
                  0
                       8 0
                             0
                                  0
                                     0
                                       0
                                             0 0
                                                  0 0]
        0
          0
                     0
                               0
                                          0
                       0 19
 0
     0
        0
          0
             0
                0
                  0
                     0
                             0
                               0
                                  0
                                     0
                                       0
                                          0
                                             0
                                               0 0 0]
          0
             0
                0
                  0
                     0
                       1
                             8
                               0
                                  0
                                     0
                                       0
                                          0
                                             0
 [ 0
     0
        0
                          0
                                               0 0 0]
 [ 0
     0
        0
          0
            0
               0
                  0
                     0
                       0 0
                             0
                               8 0
                                     0
                                       0
                                          0
                                             0 0
                                                 0 0]
 0
     0
        0
          0
             0
                0
                  0
                     0
                       0
                          0
                             0
                               0 11
                                     0
                                       0
                                          0
                                             0
                                               0
                                                 0 0]
 [ 0
                                  0 12
     0
        0
          0
             0
                0
                  0
                     0
                       0
                          0
                             0
                               0
                                       0
                                          0
                                             0
                                               0 0 0]
 [ 0
     0
        0
             0
                0
                  0
                       0
                             0
                                  0
                                       8
                                             0
                                                  0 0]
          0
                     0
                          0
                               0
                                     0
                                          0
                                               0
 [ 0
     0
        0
          0 0
                0
                  0
                     0
                       0
                          0
                             0
                               0
                                  0
                                     0
                                       0
                                          5
                                             0 0
                                                 0 0]
 [ 0
     0
        0
          0 0
                0
                  0
                     0
                       0
                          0
                             0
                               0
                                  0
                                     0
                                       0
                                          0
                                             8 0 0 0]
 [ 0
                                                    0]
     0
        0
          0
             0
                0
                  0
                     0
                       0
                          0
                             0
                               0
                                  0
                                     0
                                       0
                                          0
                                             0 21
                                                  0
 [ 0
     0
        0
          0
             0
                0
                  0
                     0
                       0
                          0
                             0
                               0
                                  0
                                     0
                                       0
                                          0
                                             0 0
                                                  7
                                                    0]
  0
     0
        0
          0
             0
                0
                  0
                     0
                        0
                          0
                             0
                               0
                                  0
                                     0
                                       0
                                          0
                                             0 0
                                                  0 10]]
```

* CLASSIFICATI	ON REPORT:				
	precision	recall	f1-score	support	
	,				
0	1.00	1.00	1.00	17	
1	1.00	1.00	1.00	10	
2	1.00	1.00	1.00	7	
3	1.00	1.00	1.00	4	
4	1.00	1.00	1.00	6	
5	1.00	1.00	1.00	10	
6	1.00	1.00	1.00	8	
7	1.00	1.00	1.00	4	
8	0.89	1.00	0.94	8	
9	1.00	1.00	1.00	19	
10	1.00	0.89	0.94	9	
11	1.00	1.00	1.00	8	
12	1.00	1.00	1.00	11	
13	1.00	1.00	1.00	12	
14	1.00	1.00	1.00	8	
15	1.00	1.00	1.00	5	
16	1.00	1.00	1.00	8	
17	1.00	1.00	1.00	21	
18	1.00	1.00	1.00	7	
19	1.00	1.00	1.00	10	
accuracy			0.99	192	
macro avg	0.99	0.99	0.99	192	
	1.00	0.99	0.99	192	

1.2.7. Optics (K = 1)

```
------CLASSIFY RESULT WITH K = 1------
* TRAIN FILE: data/optics/opt.trn, WITH 3823 SAMPLES
* TEST FILE: data/optics/opt.tst, WITH 1797 SAMPLES
* ACCURACY SCORE: 98%
* CONFUSION MATRIX:
[[178
     0
         0 0 0 0 0
                               0]
                            0
                                0]
  0 182
        0
            0
                0
                  0
                         0
                      0
                             0
                      0 0
  0
      2 175
            0
               0 0
                             0
                                0]
     0 0 180 0
                   0
                      0 2
                             0 1]
  0
            0 178
                                0]
      2
         0
                   0
                      0
                         0
                             1
0 1 179
                      0 0 0 2]
     0 0 0 0 0 181 0 0
                               0]
     0 0 0 0
                                2]
                      0 177
[ 0
                      0 0 168 1]
     5 0 0 0
                   0
[ 0
     0 0 3 2
                   1
                      0
                         0
                             3 171]]
* CLASSIFICATION REPORT:
            precision recall f1-score
                                    support
        0
               1.00
                       1.00
                               1.00
                                        178
        1
               0.95
                       1.00
                               0.98
                                        182
        2
               1.00
                       0.99
                               0.99
                                        177
                               0.98
        3
               0.98
                       0.98
                                        183
        4
               0.98
                       0.98
                               0.98
                                        181
        5
               0.99
                       0.98
                               0.99
                                        182
        6
               1.00
                       1.00
                               1.00
                                        181
               0.99
                       0.99
                               0.99
                                        179
        8
               0.98
                       0.97
                               0.97
                                        174
        9
               0.97
                       0.95
                               0.96
                                        180
                               0.98
   accuracy
                                       1797
                               0.98
               0.98
                       0.98
  macro avg
                                       1797
               0.98
                       0.98
                               0.98
                                       1797
weighted avg
     ------ WITH K = 1-----END OF CLASSIFY RESULT WITH K = 1------
```

1.2.8. Optics (K = 3)

```
------CLASSIFY RESULT WITH K = 3-----
* TRAIN FILE: data/optics/opt.trn, WITH 3823 SAMPLES
* TEST FILE: data/optics/opt.tst, WITH 1797 SAMPLES
* ACCURACY SCORE: 97%
* CONFUSION MATRIX:
[[178
       0
           0 0 0 0 0 0 0]
  0 180
          0
             0 0
                   0 1 0
                               1
                                 0]
      4 173 0 0
                    0 0 0
                               0 01
                                  0]
      0
         0 181 0
                               1
                    0
                        0 1
[ 0 2 0 0 178 0 [ 0 0 0 1 1 179 [ 0 0 0 0 0 0 0 0 0 0
                                  0]
                      0 0 1
                        0 0 0 1]
                               0 0]
                    0 181
                           0
                        0 172 1 6]
                                  2]
   0
      8 0 1 0
                    0
                        0 0 163
 [ 0
          0
             3
                 0 1
                        0 0
                               1 175]]
* CLASSIFICATION REPORT:
            precision recall f1-score support
         0
                1.00
                        1.00
                                 1.00
                                           178
         1
                0.93
                         0.99
                                 0.96
                                           182
                        0.98
         2
                1.00
                                 0.99
                                           177
         3
                0.97
                         0.99
                                 0.98
                                           183
         4
                0.99
                                 0.99
                                           181
                         0.98
         5
                0.99
                         0.98
                                 0.99
                                           182
         6
                0.99
                        1.00
                                 1.00
                                           181
                0.99
                        0.96
                                 0.98
                                           179
                        0.94
                                 0.95
                                           174
         8
                0.97
         9
                0.95
                         0.97
                                 0.96
                                           180
   accuracy
                                 0.98
                                          1797
                                 0.98
  macro avg
                0.98
                         0.98
                                          1797
weighted avg
               0.98
                         0.98
                                 0.98
                                          1797
     ----- WITH K = 3-----END OF CLASSIFY RESULT WITH K = 3-----
```

1.2.9. Optics (K = 5)

```
-----CLASSIFY RESULT WITH K = 5-----
* TRAIN FILE: data/optics/opt.trn, WITH 3823 SAMPLES
* TEST FILE: data/optics/opt.tst, WITH 1797 SAMPLES
* ACCURACY SCORE: 98%
* CONFUSION MATRIX:
[[178
                0 0 0 0 0]
       0
           0 0
   0 181
          0
             0
                 0
                    0
                       1
                           0
                              0
                                 0]
      3 174
             0
                 0
                    0 0
                              0
                                 0]
          1 178
                                 0]
      1
                 0
                    1
                       0
                           1
                              1
   0
]
                              1
     1
          0
            0 179
                    0
                      0 0
                                 0]
   0
   0 0 0
            0 1 180
                       0
                          0
                              0
                                 1]
                    0 181
                              0
                                 0]
   0
      0 0
             0 0
                           0
   0
     0 0 0 0
                    0
                       0 173
                              1 5]
   0
      8
          0
             1
                 0
                    1
                       0 0 163 1]
[ 0
      0
          0
             2
                 1
                    1
                       0 0
                              1 175]]
* CLASSIFICATION REPORT:
            precision
                       recall f1-score support
         0
                1.00
                        1.00
                                 1.00
                                          178
         1
                        0.99
                                 0.96
                                          182
                0.93
                        0.98
                                 0.99
         2
                0.99
                                          177
         3
                0.98
                        0.97
                                 0.98
                                          183
                        0.99
         4
                                 0.99
                                          181
                0.99
         5
                                 0.99
                0.98
                        0.99
                                          182
                0.99
                                 1.00
                                          181
         6
                        1.00
         7
                0.99
                        0.97
                                 0.98
                                          179
         8
                0.98
                        0.94
                                 0.96
                                          174
         9
                                          180
                0.96
                        0.97
                                 0.97
                                 0.98
                                         1797
   accuracy
                                 0.98
                                         1797
  macro avg
                0.98
                        0.98
weighted avg
               0.98
                        0.98
                                 0.98
                                         1797
      ----- WITH K = 5-----END OF CLASSIFY RESULT WITH K = 5-----
```

1.2.10. Fp (K = 1)

```
------CLASSIFY RESULT WITH K = 1------
* TRAIN FILE: data/fp/fp.trn, WITH 320 SAMPLES
* TEST FILE: data/fp/fp.tst, WITH 160 SAMPLES
* ACCURACY SCORE: 91%
* CONFUSION MATRIX:
[[29 0 0 0 0 0 0 0 0 0 0 0 0 0]
[ 0
    4 0 0
           0
             0 0 0 0
                        0 0 0 0 0
    0 10 0 0
               1
                       0
                          0
                            0 0 01
             0
                 0
                  0
                     0
    0 0 5
          0 0
              2
                 0 0
                     0
                        0
                         0 0 0 0]
    0 0 0 9 0
               0
                       0 0 0 0 0
                 0
                   0
                     0
[1 0 0 0 0 13 0 0
                   0
                     0
                       0
                         0 0 0 0]
[ 0
    0 0 0 0 0 10 0
                     0
                         0 0 0 0]
                   0
                       0
    0 0 0 0 0 1 10
                   0
                     0
                       0
                         0 0 0 0]
[ 0
    0 0 0 0 0 0
                     0 0 0 0 0 0]
[00000010
                     3
                         0 0 0 0]
                   0
                       0
    0 0 0
                     0 10
[ 0
          0 0 0 0
                   0
                         0 0 0 0]
                          9 0 0 0]
[ 0
    0 0 0
          0 0
               0 0
                   0
                     0
                        0
                         1 7 0 0]
[ 0
    0 0 0 0 0 2 0 0
                     0
                        0
[000000
               0 0 0 0
                          2 0 6 2]
[00000000000000014]]
```

* CLASSIFICATI	ON REPORT:					
	precision	recall	f1-score	support		
1	0.94	1.00	0.97	29		
2	1.00	1.00	1.00	4		
3	1.00	0.83	0.91	12		
4	1.00	0.71	0.83	7		
5	1.00	1.00	1.00	9		
6	1.00	0.93	0.96	14		
7	0.59	1.00	0.74	10		
8	1.00	0.91	0.95	11		
9	1.00	1.00	1.00	7		
10	1.00	0.75	0.86	4		
11	1.00	1.00	1.00	10		
12	0.75	1.00	0.86	9		
13	1.00	0.70	0.82	10		
14	1.00	0.60	0.75	10		
15	0.88	1.00	0.93	14		
accuracy			0.91	160		
macro avg	0.94	0.90	0.91	160		
weighted avg	0.94	0.91	0.91	160		
	ENI	OF CLAS	SIFY RESULT	WITH K =	1	

1.2.11. Fp (K = 3)

```
-----CLASSIFY RESULT WITH K = 3-----
* TRAIN FILE: data/fp/fp.trn, WITH 320 SAMPLES
* TEST FILE: data/fp/fp.tst, WITH 160 SAMPLES
* ACCURACY SCORE: 90%
* CONFUSION MATRIX:
[[29 0 0 0 0 0 0 0 0 0 0 0 0 0]
[ 0 4 0 0 0
              0 0 0 0 0 0 0 0 0 0]
    0 10
              0
                   0
                     0 0 0 0
                                    0]
    0
                        0 0 0
                                    0]
                 0
                   0
                     0
                              0
                                  0
    0
       0
         0
            9 0
                 0
                   0
                     0 0 0
                             0
                               0 0
                                    0]
  2
       0
         0
            0 12 0
                   0
                     0 0 0
                             0
                               0 0
                                    0]
              0 10 0
                     0 0 0
                             0
                               0
                                    0]
    0
       0
         0
            0
              0 0 10 0 0 0
                             0
                               0 0
                                    0]
[ 0
                                    0]
    0
       0
         0
            0
              0
                 0
                   0
                        0
                          0
                             0
                               0
  0
                     0
                             0
                                    0]
    0
       0
         0
            0
              0
                0
                   0
                        4 0
                               0 0
    0
       0
         0
            0
              0
                0
                   0
                     0 0 10
                             0
                               0 0
                                    0]
    0
              0
                 0
                   0
                     0
                        0
                             8
                               0
                                    0]
[ 0
    0
       0
         0
                   0 0 0 0
                             0
                               6 0 0]
            0
              0
                 4
[ 0
    0
       0
         0
            0
              0 1 0 0 0 3 0 0 6 0]
    0 0 0 0 0 0 0 0 0 0 0 0 14]]
```

* CLASSIFICATI	ON REPORT:				
	precision	recall	f1-score	support	
1	0.83	1.00	0.91	29	
2	1.00	1.00	1.00	4	
3	1.00	0.83	0.91	12	
4	1.00	0.86	0.92	7	
5	1.00	1.00	1.00	9	
6	1.00	0.86	0.92	14	
7	0.67	1.00	0.80	10	
8	1.00	0.91	0.95	11	
9	1.00	1.00	1.00	7	
10	1.00	1.00	1.00	4	
11	0.71	1.00	0.83	10	
12	1.00	0.89	0.94	9	
13	1.00	0.60	0.75	10	
14	1.00	0.60	0.75	10	
15	1.00	1.00	1.00	14	
accuracy			0.91	160	
macro avg	0.95	0.90	0.91	160	
weighted avg	0.93	0.91	0.91	160	
	EN	OF CLAS	SIFY RESUL	WITH K =	3

1.2.12. Fp(K = 5)

```
------ WITH K = 5-----
* TRAIN FILE: data/fp/fp.trn, WITH 320 SAMPLES
* TEST FILE: data/fp/fp.tst, WITH 160 SAMPLES
* ACCURACY SCORE: 88%
* CONFUSION MATRIX:
[[29 0 0 0 0 0 0 0 0 0 0 0 0 0]
Γ 0
       0 0 0 0
               0
                 0
                   0
                     0
                       0
                         0
                           0
                             01
   4 0
[ 2
   0100000
               0 0 0 0 0 0 0]
[ 2
   0 0 5 0 0 0
               0 0 0 0 0 0 0]
                 0 0 0 0 0 0 0]
[0000900
               0
[ 2 0 0 0 0 12 0
                 0 0 0
                       0 0 0 0]
               0
[ 0
   0 0 0 0 0 10
               0
                 0 0 0
                       0 0 0 0]
[ 1
    0 0 0 0 0 10
                 0 0 0
                       0 0 0 0]
[0000000
                 6 0 1
                       0 0 0 0]
               0
[0000001
               0
                 0 3 0
                       0 0 0 0]
               0 0 0 10
[ 0 0 0 0 0 0 0 
                       0 0 0 0]
[ 0 0 0 0
         0 0
             0
               0
                 0
                   0
                     2
                       7 0 0 0]
                       0 6 0 0]
         0 0 2
                 0 0 2
[0000
                0
[000000100030060]
```

* CLASSIFICAT	ION REPORT:				
	precision	recall	f1-score	support	
1	0.81	1.00	0.89	29	
2	1.00	1.00	1.00	4	
3	1.00	0.83	0.91	12	
4	1.00	0.71	0.83	7	
5	1.00	1.00	1.00	9	
6	1.00	0.86	0.92	14	
7	0.71	1.00	0.83	10	
8	1.00	0.91	0.95	11	
9	1.00	0.86	0.92	7	
10	1.00	0.75	0.86	4	
11	0.56	1.00	0.71	10	
12	1.00	0.78	0.88	9	
13	1.00	0.60	0.75	10	
14	1.00	0.60	0.75	10	
15	1.00	1.00	1.00	14	
accuracy			0.88	160	
macro avg	0.94	0.86	0.88	160	
weighted avg			0.88	160	
	END	OF CLAS	SIFY RESULT	WITH K =	5

1.2.13. Letter (K = 1)

	CLASSIFY RESULT WITH K = 1																		
* T	RAI	N FI	LE:	data	a/let														
* T	EST	FIL	E: 0	data/	/lett	ter/1	.et.t	st,	WITH	1 666	56 SA	MPLE	S						
* A	CCU	JRACY	SCO	DRE:	99%														
* C	ONF	USIO	N MA	ATRI	(:														
[[271	L 3	(9 (9 (9 6	9 6	9 0	(9 (9 (9 (9 (9 6	9 (9 (9 6	0	
	0	0	0	0	0	0	0	0]											
[240	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0]											
[0		226	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0]								_		-	
[0	0		277	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0]				•				•	•	•	
[0	0	0	0	260	1	1	0	0	0	0	0	0	0	0	0	0	0	
r	0	0	0	0	0	9	0	0]		0	0	0	0	0	0	0	•	0	
[0	0	9	0	9	267 0	1 0	0 0]	0	0	0	0	0	0	0	0	0	0	
г	0	9	0	0	0	0	263	9 [8	0	0	0	0	0	0	0	0	0	0	
[0	0	0	0	0	0	203	0 0]		0	0	0	Ø	Ø	Ø	Ø	0	Ø	
[0	0	0	0	0	1		225	0	0	2	0	0	0	0	0	0	0	
L	0	0	0	0	0	0	0	0]		0	_			O		0		Ü	
[0	0	0	0	0	0	0		263	6	0	0	0	0	0	0	0	0	
-	0	0	0	0	0	0	0	0]											
Γ	0	0	0	0	0	0	0	1		231	0	0	0	0	0	0	0	0	
-	0	0	0	0	0	0	0	0]											
[0	0	0	0	0	0	0	0	0	0	243	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0]											
[0	0	0	0	0	0	0	0	0	1	0	269	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0]											
[0	0	0	0	0	0	0	0	0	0	0	0	244	1	0	0	0	0	
	0	0	0	0	0	0	0	0]											
[0	0	0	0	0	0	0	0	0	0	0	0	4	267	1	0	0	0	
	0	0	0	0	0	0	0	0]											
[0	0	0	0	0	0	0	0	0	0	0	0	0	0	237	0	0	0	
	0	0	0	0	0	0	0	0]											
[0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	264	2	0	
	0	0	0	0	0	0	0	0]											
[0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	277	0	
г	0	0	0	0	0	0	0	0]		0	0	_	0	0	0	0	_	274	
																			_

							_											
[e		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
6		0	0	0		251	0]											
[6		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0		0	0	0	0	0	259]]											
* CLASSIFICATION REPORT: precision																		
			pre	ClSl	on	re	call	†1	-scor	re	sup	port						
		•		1 0	•	•	00		0.00			274						
		0		1.0			.99		0.99			274						
		1		0.9			.00		0.99			240						
		2		1.0			.00		1.00			226						
		3		1.0			.00		1.00			277						
		4		1.0			.99		0.99			262						
		5		0.9			.99		0.99			269						
		6		0.9			.00		0.99			263						
		7		1.0			.98		0.99			230						
		8		0.9			.98		0.98			269						
		9		0.9			.97		0.97			239						
		10		0.9		1.00			1.00			243						
		11		1.0			.00		1.00			270						
		12		0.9			.00		0.99			245						
		13		1.0			.98		0.99			272						
		14		0.9			.00		0.99			237						
		15		1.0			.99		1.00			266						
		16		0.9			.99		0.99			280						
		17		1.0			.00		1.00			271						
		18		1.0	0	1	.00		1.00	9		264						
		19		1.0	0	1	.00		1.00	9		244						
		20		1.0	0	1	.00		1.00	9		274						
		21		1.0	0	1	.00		1.00	9		238						
		22		1.0	0	1	.00		1.00	3		241						
		23		1.0	0	1	.00		1.00	9		261						
		24		1.0	0	1	.00		1.00	9		252						
		25		1.0	0	1	.00		1.00	9		259						
а	ccura	асу							0.99	9	6	666						
ma	icro a	avg		0.9	9	0	.99		0.99	9	6	666						
weigh	ited a	avg		0.9	9	0	.99		0.99	9	6	666						
					El	ND OF	CLAS	SIF	Y RES	SULT	WIT	H K =	: 1					

1.2.14. Letter (K = 3)

	CLASSIFY RESULT WITH K = 3																		
* T	<pre>* TRAIN FILE: data/letter/let.trn, WITH 13334 SAMPLES * TEST FILE: data/letter/let.tst, WITH 6666 SAMPLES</pre>																		
* T	EST	FILE	E: 0	lata,	/leti	ter/I	let.t	st, l	WITH	1 666	66 SA	MPLE	ES						
* A	CCU	IRACY	SCC	RE:	99%														
* C	ONF	USIO	N MA	(IRT	(:														
[[273	1	6	9 (9 (9 (9 6	0	6	9 6	9 (9 (9 6	9 (9 (9 (9 0	0	
	0	0	0	0	0	0	0	0]											
[0	240	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0]											
[1	0	225	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0]											
[0	0	0	277	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0]											
[0	0	1			2	1	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0]											
[0	0	0	0		267	1	1_	0	0	0	0	0	0	0	0	0	0	
_	0	0	0	0	0	0	0	0]											
[0	0	0	0	1	0	262	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0]											
[0	0	0	0	0	0	2	227	0	0	1	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0]	0 = 4	4.5					•				
[0	0	0	0	0	2	0		254	13	0	0	0	0	0	0	0	0	
-	0	0	0	0	0	0	0	0]	_	222	0	0	•	0	0	0	•	0	
[0	0	0	0	0	0	0	0 01	/	232	0	0	0	0	0	0	0	0	
г	0	0	0	0	0 0	9 9	0	0] 1	0	0	242	0	0	0	0	0	0	0	
[0	0	0	0	0	0	0	ø]	0	0	242	0	0	0	0	0	0	0	
[0	0	0	0	0	0	0	9 9]	0	1	a	269	0	0	0	0	0	0	
L	0	0	0	0	0	0	0	ø]	O	1	0	203	0	0	0	0	0	0	
[0	0	0	0	0	0	0	9	0	0	0	a	242	3	0	0	0	0	
L	0	0	0	0	0	0	0	ø]	U	0		0	272	,	0	0	0	0	
[0	0	0	0	0	0	0	9	0	0	0	0	4	264	4	0	0	0	
L	0	0	0	0	0	0	0	ø]										J	
Γ	0	0	0	0	0	0	0	9	0	0	0	0	0	0	237	0	0	0	
L	0	0	0	0	0	0	0	0]											
[0	0	0	0	0	0	0	9	0	0	0	0	0	0	0	264	2	0	
_	0	0	0	0	0	0	0	0]											
Γ	0	0	0	0	0	0	0	9	0	0	0	0	0	0	4	0	275	1	
_	0	0	0	0	0	0	0	0]											
г	^	0	^	0	0	^	^	^	0	^	0	0	0	0	0	^	^	274	

[0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0		1	1	0		249	0]											
[0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
- 0		0	0	0	0	0	259]]											
* CLA	SSIFI	CATI	ON R	EPOR ⁻	Τ:													
	precision				re	call	f1-score			supp	ort							
		0		1.0			.00		1.00			274						
		1		1.00			.00		1.00			240						
		2		1.0			.00		1.00			226						
		3		1.0			.00		1.00			277						
		4		1.0			.98		0.99			262						
		5		0.99			.99	0.99				269						
		6		0.9			.00		0.99			263						
		7		0.9			.99		0.99			230						
		8		0.9			.94	0.96				269						
		9		0.9			.97	0.96				239						
		10		1.0			.00		1.00			243						
		11		1.00		1	1.00				270							
		12		0.9		0	0.99				245							
		13		0.9		0.97 0.						272						
		14		0.9			.00	0.98				237						
		15		1.00			.99		1.00			266						
		16		0.9			.98	0.99				280						
		17		1.00			.00	1.00				271						
		18		1.0			.00	1.00				264						
		19		1.0			.00	1.00				244						
		20		0.99			.00		0.99			274						
		21		0.99			.00		0.99			238						
		22		1.00			.99		1.00			241						
		23		1.00			.00		1.00			261						
		24		1.0			.99		0.99			252						
		25		1.00	9	1.00			1.00			259						
									0.00									
	ccura			0.0			00		0.99			566						
	cro a			0.99			.99		0.99			566						
weigh	rea a	vg		0.9	9	0	.99		0.99		66	566						
					EN	ID OF	CLAS	SIF	/ RES	ULT	WITH	1 K =	3					_

1.2.15. Letter (K = 5)

						CI	_ASSI	FY R	ESUI	T W	CTH K	(= !	5						
* T	* TRAIN FILE: data/letter/let.trn, WITH 13334 SAMPLES* TEST FILE: data/letter/let.tst, WITH 6666 SAMPLES																		
* T	EST	FIL	E: 0	lata,	/leti	ter/	let.t	st,	WITH	1 666	56 SA	MPLE	S						
		JRACY																	
		USIO																	
[[273						9 6			9 (9 6) (9 6	9 () (9 (9 0	0	
_	0	0	0	0	0	0	0	0]						_					
[0	240	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
-	0	0	9	0	0	0	0	0]	0	0	0	0	0	•	0	0	0	0	
[0	1 0	225 0	0	9 9	0	0	0 0]	0	0	0	0	0	0	0	0	0	0	
[0	1	0	276	0	0	0	9 9	0	0	0	0	0	0	0	0	0	0	
L	0	0	0	0	0	0	0	ø]		0			0					0	
[0	0	1	0		1	1	0	0	0	0	0	0	0	0	0	0	0	
-	0	0	0	0	0	0	0	0]											
[0	0	0	0	0	266	1	2	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0]											
[0	0	0	0	1	0	261	1	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0]											
[0	0	0	0	0	0	3	226	0	0	1	0	0	0	0	0	0	0	
-	0	0	0	0	0	0	0	0]		4.0	•	•	•	•	•	•			
[0	0	0	0	0	2	0		254	13	0	0	0	0	0	0	0	0	
[0	0	0	0	9 9	0	0	0] 0	Q	231	0	0	0	0	0	0	0	0	
L	0	0	0	0	0	0	0	ø]	0	231	0	O	0	O	O	O	O	O	
[0	0	0	0	0	0	0	9	0	0	243	0	0	0	0	0	0	0	
-	0	0	0	0	0	0	0	0]											
	0	0	0	0	0	0	0	0	0	1	0	269	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0]											
[0	0	0	0	0	0	0	0	0	0	0	0	244	1	0	0	0	0	
	0	0	0	0	0	0	0	0]											
[0	0	0	0	0	0	0	0	0	0	0	0	4	260	8	0	0	0	
г	0	0	0	0	0	0	0	0]							227			0	
L	0	0	0	0	0	0	0	0 a1	0	0	0	0	0	0	237	0	0	0	
[0	0	0 0	0	9 9	0	0	0] 0	0	0	0	0	0	0	a	263	2	1	
L	0	0	0	0	0	0	0	0]	0	0	0	0	0	0	0	203	_	_	
[0	0	0	0	0	0	0	9	0	0	0	0	0	0	1	0	278	1	
_	0	0	0	0	0	0	0	0]											
Г	0	0	^	0	0	0	0	^	0	0	0	0	0	0	0	0	0	270	

								-											
[0	0	0	0	0	0		0_	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	1		250	0]											
[0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	259]]											
* (LASS	IFI(CATI		EPORT														
				pre	cisi	on	re	call	f1	-scoi	°e	sup	port						
			0		1.00			.00		1.00			274						
			1		0.99			.00		0.99			240						
			2		1.00			.00		1.00			226						
			3		1.00			.00		1.00			277						
			4		1.00			.99		0.99			262						
			5		0.99			.99		0.99			269						
			6		0.98			.99		0.99			263						
			7		0.99			.98		0.98			230						
			8		0.97			.94		0.96			269						
			9		0.94	4	0	.97	0.95				239						
		:	10		1.00	9	1.00 1.00						243						
		:	11		1.00	9	1	1.00				270							
			12		0.98	3	1.00			0.99			245						
		:	13		1.00	9	0.96			0.98			272						
		:	14		0.9	5	1	.00	0.98				237						
		:	15		1.00	9	0	.99		0.99	9		266						
		:	16		0.99	9	0	.99	0.99			280							
		:	17		0.99	9	1	.00	0.99				271						
		:	18		1.00	9	0	.99	1.00				264						
		:	19		1.00	9	1	.00		1.00	3		244						
			20		1.00	9	1	.00		1.00	3		274						
			21		0.99	9	1	.00		0.99	9		238						
			22		0.99	9	0	.99		0.99	9		241						
		:	23		1.00	9	1	.00		1.00	3		261						
		:	24		1.00	9	0	.99		1.00	9		252						
			25		1.00	9	1	.00		1.00	3		259						
	acc	cura	су							0.99	9	6	666						
	macr	o av	vg		0.99	9	0	.99		0.99	9	6	666						
wei	.ghte	ed av	vg		0.99	9	0	.99		0.99	9	6	666						
						EI	ND OF	CLAS	SIF	Y RES	SULT	WIT	H K =	= 5					

1.3. Proof of Cover-Hart's theorem:

Theorem: For sufficiently large training set size n, the error rate of the 1NN classifier is less than twice the Bayes error rate.

Proof: Let x be a query point and let r be its closest neighbor. The expected error rate of the 1NN classifier is

$$\sum_{i=1}^{c} p(i|x)[1-p(i|r)]$$

where p(i|x) is the probability that x has label i and 1 - p(i|r) is the probability that r has a different label. The critical fact is that if the number n of training examples is large enough, then the label probability distributions for all x and r will be essentially the same. In this case, the expected error rate of the 1NN classifier is

$$\sum_{i=1}^{c} p(i|x)[1-p(i|x)]$$

To prove the theorem we need to show that

$$\sum_{i=1}^{c} p(i|x)[1 - p(i|r)] \le 2\left[1 - \max_{i} p(i|x)\right]$$

Let $\max_{i} p(i|x) = r$ and let this maximum be attained with i = j. Then the lefthand side is

$$r(1-r) + \sum_{i \neq j}^{c} p(i|x)[1-p(i|r)]$$

and the righthand side is 2(1-r). The summation above is maximized when all values p(i|x) are equal for $i \neq j$. The value of the lefthand side is then

$$A = r(1-r) + (c-1)\frac{1-r}{c-1}\frac{(c-1)-(1-r)}{c-1}$$
$$= r(1-r) + (1-r)\frac{c+r-2}{m-1}$$

Now $r \le 1$ and c - 2 + r < c - 1 so A < 2(1 - r) which is what we wanted to prove