

PART 1 BioJava Project

History Resources Setup

BioJava

BioJava is an open-source project dedicated to providing a Java framework for processing biological data

File parsers

- FASTA
- PDB
- MMCIF
- MMTF

Data models

- Biological sequences
- Protein structures

Algorithms

- Sequence and structure alignment
- DSSP
- Symmetry

Resources

- BLAST
- Protein domains: SCOP, CATH, FCOD

History of BioJava

BioJava Resources

Website: https://biojava.org

Source code: https://github.com/biojava/biojava/

Wikipedia: https://en.wikipedia.org/wiki/BioJava

General information about the project

Tutorial: https://github.com/biojava/biojava-tutorial

Educational introduction into the tools provided by BioJava

Cookbook: http://biojava.org/wiki/BioJava:CookBook

Collection of "How do I...?" recipes for common tasks

Setting up BioJava

 Project Object Model (POM): XML file that contains information about the project and configuration details

Setting up BioJava

BioJava modules

Create a new Maven repository in Eclipse

- Create a new Maven repository in Eclipse
 - 1. File > New > Project
 - 2. Maven Project

- Create a new Maven repository in Eclipse
 - 1. File > New > Project
 - 2. Maven Project
 - 3. Use defaults

Create a new Maven repository in Eclipse

- 1. File > New > Project
- 2. Maven Project
- 3. Use defaults
- 4. Choose your group and project id

Problem 1

- Configure the new Maven repository and add the BioJava dependency
 - Task 1: fill in the URL field (replace the default URL)
 - Task 2: configure the Java 8 JDK. Insert these properties in the POM:

```
<jdk.version>1.8</jdk.version>
<maven.enforcer.jdk-version>1.8</maven.enforcer.jdk-version>
<maven.compiler.source>1.8</maven.compiler.source>
<maven.compiler.target>1.8</maven.compiler.target>
```

- Task 3: insert the biojava-stucture-gui dependency (hint: https://github.com/biojava/biojava-tutorial/blob/master/installation.md)
- Task 4: ensure BioJava version is the latest (5.0.0-alpha8)

Configure the BioJava environment

1. Eclipse > Preferences > Java > Installed JREs

2. Edit...

- Configure the BioJava environment
 - 1. Eclipse > Preferences > Java > Installed JREs
 - 2. Edit...
 - 3. Add -DPDB_DIR= directory

PART 2 BioJava Structures

Structure objects
Loading and writing
Operations

Structure Objects

Group Types

- BioJava uses the Chemical Component Dictionary to assign group types
 - Amino Acid (L-peptides)
 - Nucleotide (DNA or RNA)
 - Waters
 - Hetatoms

https://github.com/biojava/biojava-tutorial/blob/master/structure/chemcomp.md

Loading Structure Objects

AtomCache

- PDB ids (2HHB)
- Structural ranges (2HHB.A:1-20)
- SCOP, CATH & ECOD ids (d2hhba_)
- Many configuration options

StructureIO

Load a structure in different formats

Write a structure from BioJava to a file

Problem 2

- Traverse BioJava structures
 - Task 1: number of models. Hint: nrModels
 - Task 2: number of polymer chains. Hint: PolyChains
 - Task 3: number of amino acids in a chain.
 - Take a look at the *GroupType* class first
 - Hint: use one method from the Chain object
 - Task 4: number of oxygens in the amino acids of a chain.
 - Take a look at the Element class
 - Hint: use a double loop iteration over List of Groups and Atoms

PART 3 BioJava Applications

Biological assemblies Visualization in Jmol

Biological Assemblies

Important concepts

- Asymmetric Unit (AU)
- Unit cell
- Crystal lattice

Resource:

 https://pdb101.rcsb.org/learn/guide-to-understanding-pdbdata/biological-assemblies

Visualization in Jmol

- Interface for quick and simple visualization of structures in Jmol
 - Start a JFrame
 - 2. Insert a **Jmol** panel
 - 3. Convert the **BioJava** structure to a structure file (PDB, MMTF)
 - 4. Send the structure file to the **Jmol** panel

Problem 3

- Display the symmetry of a biological assembly
 - Task 1: download a biological assembly.
 - Hint: use the StructureIO class directly.
 - Warning: set the multiModel option to true (false is default) to be able to visualize the results (due to limitation of single letter chains in PDB format)
 - Task 2: change the parameters for pseudo-symmetry analysis.
 - Hint: structural clustering instead of sequence.
 - Task 3: obtain the symmetry and stoichiometry from the result.
 - Hint: use getter methods.

Thank you!

Contributing

- Do you want to use BioJava for your project?
- Do you have any ideas?
- Would you like to stay tuned?
- Join us at:
 - GitHub issues: https://github.com/biojava/biojava/issues
 - Mailing list: http://biojava.org/wiki/BioJava%3AMailingLists
 - Gitter: https://gitter.im/biojava/biojava

