Reconnaître un type de réaction

L'huile essentielle de menthe contient 47 % de menthol et 22 % de menthone.

- a. Déterminer la formule brute (formule moléculaire) de ces deux espèces.
- **b.** En écrivant une demi-équation électronique, montrer que le couple menthone/menthol est un couple oxydant-réducteur.
- **c.** La menthone peut être transformée en menthol par réaction avec le tétrahydroborate de sodium NaBH₄. Préciser si ce dernier est un oxydant ou un réducteur.

18 Choisir un réactif dans une banque de réactions

Le fonctionnement de certains éthylotests repose sur la transformation de l'éthanol CH₃CH₂OH en acide éthanoïque CH₃COOH.

- a. Montrer à l'aide d'une demi-équation électronique qu'il s'agit d'une oxydation du substrat.
- **b.** Choisir dans la banque de réactions p. 524 un réactif permettant de réaliser cette transformation.

79 Retour sur l'ouverture du chapitre

La transformation suivante est envisagée:

- a. Montrer, à l'aide de la banque de réactions p. 524, que la transformation peut conduire à une autre espèce chimique.
- **b.** Proposer une séquence réactionnelle utilisant des transformations de protection/déprotection permettant d'obtenir le produit souhaité.

20 Justifier l'ordre d'une séquence

a. À l'aide de la banque de réactions p. 524 proposer un réactif pour chacune des transformations suivantes.

b. Pour réaliser la transformation suivante, indiquer l'ordre dans lequel il faut utiliser les deux réactifs précédents. Justifier.

$$CI \longrightarrow HO \longrightarrow C$$

27 α-Terpinéol

L'a-terpinéol est une espèce chimique présente dans l'huile essentielle de pin. Elle peut aussi être synthétisée en deux étapes grâce à la séquence réactionnelle ci-contre.

a. Identifier la nature des transformations mises en jeu.

b. Rechercher dans la banque de réactions p. 524 les réactifs et les conditions permettant de réaliser les deux transformations.

29 Synthèse de l'acide lactique

Chez les mammifères, le lactaldéhyde **A** est transformé sélectivement en acide lactique **B** grâce à un oxydant (usuellement noté *NAD*⁺) en présence d'une enzyme, la protéine aldéhyde déshydrogénase (image ci-contre).

- a. La transformation d'un aldéhyde en acide carboxylique peut être réalisée en utilisant le permanganate de potassium KMnO₄. Montrer, à l'aide de la banque de réactions p. 524, que le traitement de **A** par le permanganate de potassium ne conduit pas à **B**, mais à une espèce **C**. Représenter **C**.
- **b.** Proposer une séquence réactionnelle s'appuyant sur une stratégie de protection/déprotection pour réaliser la transformation de **A** en **B**.