1. Reverse a Singly Linked List

Problem: Write a function to reverse a singly linked list.

Explanation:

- Input: 1 -> 2 -> 3 -> 4 -> 5
- Output: $5 \rightarrow 4 \rightarrow 3 \rightarrow 2 \rightarrow 1$

2. Detect a Loop in a Linked List

Problem: Write a function to detect if a singly linked list has a cycle (loop).

Explanation:

- Input: $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 2$ (where the last node points back to the second node)
- Output: true

3. Remove Duplicates from a Sorted Linked List

Problem: Write a function to remove duplicates from a sorted singly linked list.

Explanation:

- Input: $1 \to 1 \to 2 \to 3 \to 3$
- Output: 1 -> 2 -> 3

4. Merge Two Sorted Linked Lists

Problem: Write a function to merge two sorted singly linked lists into one sorted list.

Explanation:

- Input: 1 -> 3 -> 5 and 2 -> 4 -> 6
- Output: 1 -> 2 -> 3 -> 4 -> 5 -> 6

5. Find the Middle of a Linked List

Problem: Write a function to find the middle node of a singly linked list. If there are two middle nodes, return the second one.

Explanation:

- Input: $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5$
- Output: 3

6. Remove the N-th Node from the End of a Linked List

Problem: Write a function to remove the N-th node from the end of a singly linked list.

Explanation:

- Input: $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5$, N = 2
- Output: 1 -> 2 -> 3 -> 5

7. Check if a Linked List is a Palindrome

Problem: Write a function to check if a singly linked list is a palindrome.

Explanation:

- Input: $1 \to 2 \to 3 \to 2 \to 1$
- Output: true

8. Intersection of Two Linked Lists

Problem: Write a function to get the intersection point of two singly linked lists.

Explanation:

- Input: $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5$ and $6 \rightarrow 7 \rightarrow 4 \rightarrow 5$
- Output: Node with value 4

9. Delete a Node in the Middle of a Linked List

Problem: Given only access to a node in the middle of a singly linked list, write a function to delete this node.

Explanation:

- Input: Node with value 3 in 1 -> 2 -> 3 -> 4 -> 5
- Output: 1 -> 2 -> 4 -> 5

10. Partition a Linked List Around a Value

Problem: Write a function to partition a singly linked list around a value x, such that all nodes less than x come before nodes greater than or equal to x.

Explanation:

- Input: 3 -> 5 -> 8 -> 5 -> 10 -> 2 -> 1, x = 5
- Output: $3 \rightarrow 2 \rightarrow 1 \rightarrow 5 \rightarrow 8 \rightarrow 5 \rightarrow 10$

