

EDB Backup and Recovery Tool Version bart

1	BART Installation and Upgrade Guide	4
1.1	Requirements Overview	4
1.2	Installing BART	6
1.3	Configuring BART	10
1.4	Troubleshooting	36
1.5	Performing a BART Upgrade	37
1.6	Uninstallation	40
2	Backup and Recovery Tool Quickstart	40
2.1	Installation	41
2.2	Configuring BART	42
2.3	Configuring a Database Server	47
2.4	Taking a Backup	49
3	Backup and Recovery Reference Guide	53
3.1	Using BART Subcommands	54
3.1.1	BACKUP	56
3.1.2	CHECK-CONFIG	65
3.1.3	DELETE	66
3.1.4	INIT	70
3.1.5	MANAGE	77
3.1.6	RESTORE	83
3.1.7	SHOW-SERVERS	91
3.1.8	SHOW-BACKUPS	93
3.1.9	VERIFY-CHKSUM	96
3.1.10	Running the BART WAL Scanner	97
3.2	Examples	102
3.3	Restoring an Incremental Backup	134
3.4	A Sample BART System with Local and Remote Database Servers	139
4	Backup and Recovery User Guide	174
4.1	What's New	175
4.2	Conventions Used in this Guide	175
4.3	Overview	176
4.3.1	Block-Level Incremental Backup	179
4.3.1.1		180
4.3.1.2		181
4.3.1.3		183
4.3.1.4		185
4.3.1.5		187
4.3.2	Creating a Backup Chain	189
4.4	Using BART	189
4.4.1	BART Management Overview	190
4.4.1.1		191
4.4.1.2		194
4.4.2	Using a Retention Policy to Manage Backups	195
4.4.2.1		197
4.4.2.2		198
4.4.2.3		199
4.4.2.4		201
4.4.2.5	5 Managing Incremental Backups	204

4.4.3	Basic BART Subcommand Usage	207
4.4.3.1	CHECK-CONFIG	208
4.4.3.2	INIT	209
4.4.3.3	BACKUP	211
4.4.3.4	SHOW-SERVERS	217
4.4.3.5	SHOW-BACKUPS	218
4.4.3.6	VERIFY-CHKSUM	219
4.4.3.7	MANAGE	220
4.4.3.8	RESTORE	224
4.4.3.9	DELETE	227
4.4.4	Running the BART WAL Scanner	228
4.5	Using Tablespaces	231

1 BART Installation and Upgrade Guide

The EDB Postgres Backup and Recovery Installation and Upgrade Guide is a comprehensive guide to install and upgrade EDB Postgres Backup and Recovery. This guide provides detailed information about BART installation:

- The Requirements Overview section provides information about BART installation requirements and limitations.
- The Using an RPM Package to Install BART section provides instructions for installing and upgrading BART.
- The Configuring BART section provides instructions for configuring BART and the database servers.
- The Troubleshooting section provides information about installation troubleshooting.
- The Performing a BART Upgrade section provides information about upgrading BART.
- The Uninstallation section provides information about uninstalling BART.

1.1 Requirements Overview

The following sections detail the requirement for BART installation.

Supported Platforms

BART 2.5.1 can be installed on the following 64-bit platforms:

- CentOS 6.x or 7.x
- Red Hat Enterprise Linux (RHEL) 6.x or 7.x
- PPC-LE 8 running RHEL or CentOS 7.x
- Ubuntu 18.04 (Bionic)

• Debian 9.x (Stretch)

Supported Database Versions

BART 2.5.1 supports the following database versions:

- Advanced Server versions 9.5, 9.6, 10, 11, 12
- PostgreSQL versions 9.5, 9.6, 10, 11, 12

Software Requirements

The following sections detail the components required for BART installation.

`BART Host Components`

Use EnterpriseDB packages to add BART host components; see Installing BART using an RPM Package for installation instructions.

Additional Components

In addition to the BART host components, the following components must be enabled and activated:

- The Secure Shell (SSH) server daemon must be enabled and activated on the BART host as well as on any remote database server hosts on which BART will be managing backup and recovery.
- The SSH and Secure Copy (SCP) client programs must be available on the BART host as well as on the remote database server hosts.

See Authorizing SSH/SCP Access <authorizing_ssh/scp_access> for information about installing an configuring SSH and SCP.

BART uses the pg_basebackup utility program when taking full backups. Your pg_basebackup version must be the same or more recent than the database server to be backed up. For example, pg_basebackup version 10 can back up database server version 10, but cannot be used to back up database server version 11.

Limitations

• BART can take backups from database clusters with a WAL segment file size other than the default size of 16 MB. You can use the Advanced Server initdb --wal-segsize option to modify the WAL segment file size.

For information about using the Advanced Server initdb --wal-segsize option, see the *Customizable WAL Segment File Size* section in the EDB Postgres Advanced Server User Guide, available at:

https://www.enterprisedb.com/edb-docs/

• BART only supports taking a full backup of standby servers. Incremental backups and parallel backups cannot be taken from standby servers.

1.2 Installing BART

The instructions in this section will walk you through installing BART on a host on which an earlier BART version has not been installed:

- Using an RPM Package to Install BART describes the BART installation process using an RPM package.
- Installing BART on a Debian or Ubuntu Host describes the BART installation process on a Debian or Ubuntu host.

Using an RPM Package to Install BART

Perform the following steps to install BART using an RPM package:

Step 1 Assume superuser privileges and install the *Extra Packages for Enterprise Linux (EPEL)* package by invoking the following command:

yum install -y epel*

The **EPEL** package contains supporting libraries required by BART; if yum cannot access a repository that contains **epel-release**, see the **Troubleshooting** section for help.

Step 2 Use either yum or rpm to create the repository configuration file:

yum install -y https://yum.enterprisedb.com/edbrepos/edb-repo-latest.noarch.rpm

or

rpm -Uvh https://yum.enterprisedb.com/edbrepos/edb-repo-latest.noarch.rpm

Step 3 Visit the following website to request credentials to the EDB Yum Repository:

https://www.enterprisedb.com/repository-access-request/

Step 4 Use your choice of editor to open and modify the repository configuration file. The repository configuration file is named edb.rep and it resides in /etc/yum.repos.d.

Step 5 Enable the following repositories to install BART RPM packages by changing the value of the enabled parameter to 1, and replacing the user name and password placeholders in the baseurl specification with your user name and the repository password.

The following server repositories must be enabled for Advanced Server 9.5 or later. We highly recommend using the latest version of Advanced Server:

- enterprisedb-tools.
- enterprisedb-dependencies.

For example, to access the edbas11, enterprisedb-tools, and enterprisedb-dependency repositories, enable the following entries:

```
edbas11]
```

name=EnterpriseDB Advanced Server 11 \$releasever - \$basearch baseurl=https://<username>:<password>@yum.enterprisedb.com/11/redhat/rhel-\$releasever-\$basearch

enabled=0

gpgcheck=1

gpgkey=file:///etc/pki/rpm-gpg/ENTERPRISEDB-GPG-KEY

[enterprisedb-tools]

name=EnterpriseDB Tools \$releasever - \$basearch

baseurl=http://<username>:<password>@yum.enterprisedb.com/tools/redhat/rhel-

\$releasever-\$basearch

enabled=0

gpgcheck=1

gpgkey=file:///etc/pki/rpm-gpg/ENTERPRISEDB-GPG-KEY

[enterprisedb-dependencies]

name=EnterpriseDB Dependencies \$releasever - \$basearch baseurl=https://qmg:EdB123@yum.enterprisedb.com/dependencies/redhat/rhel-\$releasever-\$basearch enabled=1 gpgcheck=1 gpgkey=file:///etc/pki/rpm-gpg/ENTERPRISEDB-GPG-KEY

Ensure the required repository entries are enabled before proceeding to the next steps.

Step 6 After modifying applicable entries in the repository configuration file, save the configuration file and exit the editor.

Step 7 Optionally, install the pg_basebackup utility program using the server client package. If you do not already have the pg_basebackup program installed on the BART host, you can install a limited number of files that include the pg_basebackup program by using the following command to install the server client package:

yum install edb-asxx-server-client

In the above command, replace xx with the required advanced server version. For example, to install the as11 server client package, execute the command:

yum install edb-as11-server-client

Step 8 Use the following command to install the BART RPM package:

yum install edb-bart

Step 9 Repeat the installation process described in this section to install BART on each remote host on which an incremental backup is to be restored.

Step 10 Configure BART. For configuration details, refer to Configuration Section.

You can use the following command to verify the BART installation:

/usr/bin/bart --version

The bart --version command should return the current BART version. If the bart -version command returns an error stating the PATH is not available after switching
from the root user to another BART user account, adjust the setting of the PATH
environment variable to include the directory location of the BART bin subdirectory in

the ~/.bashrc or ~/.bash_profile files of the following user accounts:

- The BART user account on the BART host. See the Configuration Section (Step 3) for details.
- The remote user account on the remote host to which incremental backups are to be restored. For details, see the *Restoring an Incremental Backup on a Remote Host* Section of the EDB Postgres Backup and Recovery User Guide available at:

https://www.enterprisedb.com/edb-docs/

Upon successful installation, BART is installed in the BART_HOME directory:

/usr/edb/bart

The installation includes the following files:

File Name	Location	Description
bart	BART_HOME/bin	BART command line, executable program
bart-scanner	BART_HOME/bin	BART WAL scanner program
bart.cfg.sample	BART_HOME/etc	Sample BART configuration file
xlogreader_ident.so	BART_HOME/lib	Libraries supporting WAL versions
bart_license.txt	BART_HOME	License agreement

Installing BART on a Debian or Ubuntu Host

To install BART on a Debian or Ubuntu host, you must have credentials that allow access to the EnterpriseDB repository. To request credentials for the repository, visit the EnterpriseDB Repository Access Request page.

Perform the following steps to install a Debian package using the EnterpriseDB apt repository.

1. Assume the superuser privileges:

sudo su -

2. Configure the EnterpriseDB repository:

sh -c 'echo "deb https://username:password@apt.enterprisedb.com/\$(lsb_release -cs)-edb/ \$(lsb_release -cs) main" > /etc/apt/sources.list.d/edb-\$(lsb_release -cs).list'

3. Add support to your system for secure APT repositories:

```
apt-get install apt-transport-https
```

- 4. Add the EBD signing key; When invoking the command, replace the username and password with the credentials provided by EnterpriseDB:
 - > wget -q -O https://username:password@apt.enterprisedb.com/edb-deb.gpg.key
 | apt-key add —
- 5. Update the repository metadata:

```
apt-get update
```

6. Install the Debian package:

```
apt-get install edb-bart
```

1.3 Configuring BART

To configure BART, you must:

- 1. Establish the BART user account.
- 2. Configure the BART host.
- 3. Configure the database server.

Establishing the BART User Account

The *BART user account*, is an operating system user that will run the BART command line program. The BART user account must:

- own the BART backup catalog directory.
- be able to run the bart program and the bart-scanner program.
- use a password-less SSH/SCP connection established to and from each database

server managed by BART.

You can optionally use the enterprised database user as the BART user account for an Advanced Server database, or the postgres database user as the BART user account for a PostgreSQL server. If you do not wish to use an existing database user as the BART user account, you must create an operating system user to assume the role.

Configuring the BART Host

This section describes the initial BART configuration steps that must be performed on the BART host.

Step 1. Copy the bart.cfg.sample file to create the bart.cfg file. The BART configuration file is located in BART_HOME/etc/bart.cfg. For example, you can use the following command to create the bart.cfg file:

```
cp bart.cfg.sample bart.cfg
```

Step 2. Confirm that the pg_basebackup utility program is installed on the BART host. The pg_basebackup utility resides in the bin directory under your Postgres installation.

Step 3. Ensure that the LD_LIBRARY_PATH environment variable includes the location of the libpq library. If your libpq library does not reside in the default location (POSTGRES_INSTALL_HOME/lib), you must add the path to the library to the LD_LIBRARY_PATH environment variable. Modify the BART user account's profile so the settings take effect upon login:

```
# .bash_profile

# Get the aliases and functions

if [ -f ~/.bashrc ]; then
. ~/.bashrc

fi

# User specific environment and startup programs

export LD_LIBRARY_PATH=/usr/edb/as11/lib:$LD_LIBRARY_PATH
```

Step 4. Create the BART backup catalog. The BART user account must hold privileges to create subdirectories and files within the location specified in the backup_path parameter in the BART configuration file. In the following example, the BART configuration file specifies opt/backup as the parent directory for the BART backup catalog:

[BART]

bart_host = bartuser@192.168.2.22 backup_path = /opt/backup pg_basebackup_path = /usr/edb/as11/bin/pg_basebackup logfile = /tmp/bart.log scanner_logfile = /tmp/bart_scanner.log

In the following example, bartuser is the BART user account. The example creates and sets the ownership and permissions on the BART backup catalog:

su root mkdir /opt/backup chown bartuser /opt/backup chgrp bartuser /opt/backup chmod 700 /opt/backup

If the subdirectory does not exist, BART creates a subdirectory for each database server listed in the configuration file when you invoke the bart command line program.

Step 5. Specify values for required BART configuration parameters; some parameters must be set in the server section, while others may be set in either the server section or the global section. The BART configuration file is located in BART HOME/etc/bart.cfg.

In the table that follows, global refers to parameters set in the [BART] section. Global parameters apply to backup and recovery management on all BART managed database servers. The following table lists the scope of each BART configuration file parameter:

Parameter	Required	Default	Server	Global
bart_host	Yes	N/A	N/A	yes
backup_path	Yes	N/A	N/A	yes
pg_basebackup_path	Yes	N/A	N/A	yes

Parameter	Required	Default	Server	Global
xlog_method	No	Fetch	N/A	yes
retention_policy	No	0	N/A	yes
wal_compression	No	Disabled	Yes	yes
copy_wals_during_restore	No	Disabled	Yes	yes
logfile	No	Disabled	Yes	yes
scanner_logfile	No	None	Yes	yes
thread_count	No	1	Yes	yes
batch_size	No	49142	Yes	yes
scan_interval	No	0	Yes	yes
mbm_scan_timeout	No	20 seconds	Yes	yes
workers	No	1	Yes	yes

The following parameters are an example of the global section [BART]:

[BART]

```
bart_host = bartuser@192.168.2.22
backup_path = /opt/backup
pg_basebackup_path = /usr/edb/as11/bin/pg_basebackup
retention_policy = 3 MONTHS
logfile = /tmp/bart.log
scanner_logfile = /tmp/bart_scanner.log
```

- bart_host (required) bart_host_address is the IP address of the BART host. Specify the value for this parameter in the form of bart_user@bart_host_address.
- backup_path (required) Specify the path to the file system parent directory where all BART database server backups and archived WAL files are stored.
- pg_basebackup_path (required) Specify the path to the pg_basebackup program that you installed on the BART host. For information about pg_basebackup version-specific restrictions, see the pg basebackup Restrictions Section of the EDB Postgres Backup and Recovery User Guide available at:

https://www.enterprisedb.com/edb-docs/

 xlog_method (optional) - Specify how the transaction log is collected during execution of pg_basebackup through the BACKUP subcommand.

Set xlog_method to fetch to collect the transaction log files after the backup is completed. This is the default setting. Set to stream to stream to stream the transaction log in parallel with the full backup creation. If stream is used, the max_wal_senders configuration parameter in the postgresql.conf file for the affected database servers must account for an additional session for the streaming of the transaction log, (that is, the setting must be a minimum of 2).

• retention_policy (optional) - Specify when an active backup should be marked as obsolete. max_number is a positive integer; you can specify:

```
max_number BACKUPS
max_number DAYS
max_number WEEKS
max_number MONTHS
```

If you do not specify a keyword (BACKUPS, DAYS, WEEKS, or MONTHS), the integer is interpreted as max_number BACKUPS by default.

If the retention_policy parameter is not specified, then no backups are marked as obsolete when the MANAGE subcommand is used. For information about managing backups using a retention policy, see *Managing Backups* in the *EDB Postgres Backup and Recovery User Guide* available at:

https://www.enterprisedb.com/edb-docs/

 wal_compression (optional) - Set wal_compression to enabled to compress the archived WALS files in gzip format in the BART backup catalog when the MANAGE subcommand is invoked. By default it is set to disabled.

Note

The gzip compression program must be in the BART user account's PATH.

For information about using the MANAGE subcommand for WAL compression, see the EDB Postgres Backup and Recovery User Guide available at:

_

copy_wals_during_restore (optional) - Use copy_wals_during_restore to specify
how archived WAL files are collected when invoking the RESTORE subcommand.
Set copy_wals_during_restore to:

enabled to copy the archived WAL files from the BART backup catalog to the restore_path/archived_wals directory prior to the database server archive recovery.

disabled to retrieve the archived WAL files directly from the BART backup catalog during the database server archive recovery. This is the default setting.

During a RESTORE, recovery settings will be saved in the postgresql.auto.conf file. The restore_command in the postgresql.auto.conf file will be determined by the value specified in the copy_wals_during_restore parameter.

If the RESTORE subcommand is invoked:

with the -c option, the archived WAL files are copied from the BART backup catalog to the restore_path/archived_wals directory, thus overriding any setting of the copy_wals_during_restore parameter.

without the -c option, the value specified by the copy_wals_during_restore parameter is used.

For more information about the RESTORE command, see the EDB Postgres Backup and Recovery User Guide available at:

https://www.enterprisedb.com/edb-docs/.

- logfile (optional) Use logfile to specify the path to the location to which output from the bart program is written. The default location is /tmp/bart.log. The log file will be created the first time you invoke the bart command line program using the sample configuration file value. To change the default setting, you must delete the /tmp/bart.log file so that a new log file will be created and owned by the new BART user account.
- scanner_logfile (optional) Use scanner_logfile to specify the location to which output from the bart-scanner program is written. The default location is /tmp/bart_scanner.log. The scanner log file will be created the first time you invoke the bart command line program using the sample configuration file value. To change the default setting, you must delete the /tmp/bart.log file so that a new log file will be created and owned by the new BART user account.
- thread_count (optional) Specify the number of worker threads for copying blocks from the database server to the BART backup catalog when the BACKUP subcommand is invoked for incremental backups; the default thread count value is

- 1. The same parameter applies to full backups where the worker threads copy data files from the database server to the BART backup catalog.
 - If parallel backup is run with N number of worker threads, then it will initiate N +
 1 concurrent connections with the server.
 - thread count will not be effective if the backup is taken on a standby server.
 - The same set of processes are used for the compression operation when taking full backups in order to provide parallel, compressed backups when the BACKUP subcommand is specified with the -z or -c options.

Note

The compression operation does not apply to incremental backups.

- If the BACKUP subcommand is invoked with the --thread-count option, then the number of worker threads specified by this option overrides any setting of the thread count parameter in the BART configuration file.
- If the BACKUP subcommand is invoked without the --thread-count option, then the following determines the number of worker threads used:
 - The setting of the thread_count parameter in the server section of the BART configuration file overrides the setting of thread_count in the global section for that particular database server. If omitted in the server section, the setting of thread_count in the global section is used.
 - If the thread_count parameter is not specified in either section, the default is 1.

Note

When taking a full backup, if the thread count in effect is only 1, then the pg_basebackup utility is used to take the full backup unless the --no-pg_basebackup option is specified with the BACKUP subcommand.

- batch_size (optional) Specify the number of blocks of memory used for copying modified blocks from the database server to the BART backup catalog when the BACKUP subcommand is invoked for incremental backups. Each block is 8192 bytes; the default value is 49142 blocks. The maximum permitted value is 131072 (131072 * 8192 = 1 GB). The minimum permitted value is 1 (1 * 8192 = 8192 bytes). Reduce the setting if the server runs out of memory while executing pg_read_binary_file().
- scan_interval (optional) Specify the number of seconds before forcing a scan of the WAL files in the archive directory of the BART backup catalog. The default value is 0, which means no brute-force scanning will be started.

- mbm_scan_timeout (optional) Specify the number of seconds to wait for MBM files before timing out; the default value is 20 seconds. The mbm_scan_timeout parameter value must be greater than
 - 0. If the value is 0 or negative, then an error will be displayed during an incremental backup.

Note

The mbm_scan_timeout parameter is applicable only for incremental backup.

• workers (optional) - Specify the number of parallel worker processes required to stream the modified blocks of an incremental backup to the restore host. The default value is 1.

Step 6 Invoke the CHECK-CONFIG subcommand, omitting the -s option to check the parameter settings in the BART configuration file including bart_host, backup_path, and pg_basebackup_path. The CHECK-CONFIG subcommand displays an error message if the required configuration is not properly set.

The following example shows successful checking of the global section of the BART configuration file:

- bash-4.1\$ bart CHECK-CONFIG
- INFO: Verifying that pg_basebackup is executable
- INFO: success -

pg_basebackup(/opt/PostgresPlus/9.5AS/bin/pg_basebackup) returns version 9.500000

Configuring the Database Server

This section describes the procedure for enabling BART backup and recovery management for a database server:

- Authorizing SSH/SCP access without a password prompt.
- Creating and configuring a replication database user.
- Updating the BART configuration file (server section).
- Enabling WAL archiving of the server.
- Verifying the server configuration settings.

Note

You must authorize SSH/SCP access and set up a replication database user before

restarting the database server with WAL archiving enabled.

Authorizing SSH/SCP Access

BART uses the Secure Shell (ssh) and Secure Copy (scp) Linux utility programs to copy the backup and WAL files from the BART managed database servers to the BART host as well as to restore backups.

The client/server ssh and scp commands must not prompt for a password when establishing a connection with the server. A password-less connection uses *authorized public keys* to authenticate with the server. An *authorized public key* is the public key of a client user account that is authorized to connect to the target server. You must add the public key of each client user account to the target user account's authorized public keys list on the target server.

The sections that follow describe how to:

- Enable public key authentication on the server running the SSH server daemon.
- Configure the authorized public keys file.
- The combination of hosts for BART usage on which a connection must be established without a password prompt.

Specific examples are provided in the *EDB Postgres Backup and Recovery Reference Guide*, available at:

https://www.enterprisedb.com/edb-docs/

Enabling Public Key Authentication Usage

The following example enables SSH/SCP access on a CentOS 6.x host; similar (platform-specific) steps will apply to other platforms/versions.

 First, enable public key authentication; in the SSH server daemon configuration file (/etc/ssh/sshd_config) ensure that the following parameter is set to yes and is not commented:

PubkeyAuthentication yes

2. Reload the configuration file:

[root@localhost ssh]# service sshd reload

Reloading sshd: [OK]

Any of the following commands can be used instead of service sshd reload:

service sshd stop

service sshd start

service sshd restart

If you get any SSH or SCP errors, examine the following log file:

/var/log/secure

Authorized Public Key Generation

The target server (the server to which a password-less connection is being made) must contain an authorized_keys file located under the USER_HOME/.ssh directory.

USER_HOME is the home directory of the user account on the target server that will be used to establish the remote session.

The generated public key of each client that will connect to the target server must be copied to the target server and concatenated onto the USER_HOME/.ssh/authorized_keys file. The public key should be appended onto the end of any existing authorized_keys file. Any existing authorized_keys file should not be replaced in its entirety.

The following general instructions will walk you through generating a client's public key file and creating the target server's authorized public keys file.

Step 1. On the client system, log in as the user account that will be initiating the SSH or SCP connection.

Step 2. Navigate to the user account's home directory and check for an existing .ssh subdirectory. If the .ssh directory does not exist, use the following commands to create it:

mkdir .ssh chown user .ssh chgrp usergroup .ssh chmod 700 .ssh

Where user is the user account name and usergroup is the associated group of the user.

Step 3. Generate the public key file with the following command. Accept all prompted defaults and do not specify a passphrase when prompted for one.

ssh-keygen -t rsa

The public key file named id rsa.pub is created in the .ssh subdirectory.

Step 4. Create a copy of file id_rsa.pub on the target server.

For example, while logged into the client where you just generated the public key file, use SCP to make a temporary copy of it on the target server:

scp ~/.ssh/id_rsa.pub target_user@host_address:tmp.pub

Step 5. Log into the target server as target user.

For example, while logged into the client, use SSH to log into the target server:

ssh target_user@host_address

Step 6. Navigate into the target user account's home directory and check for an existing .ssh subdirectory. If not, create one as shown in Step 2.

Step 7. Append the temporary, client's public key file, tmp.pub, to the authorized keys file named authorized_keys. If an existing authorized keys file does not exist, create a new file, but do not completely replace any existing authorized keys file.

cat tmp.pub >> ~/.ssh/authorized_keys

Make sure the authorized_keys file is only accessible by the file owner and not by groups or other users. If the authorized_keys file does not have the required permission setting (600) or it was newly created, change the file permissions as follows:

chmod 600 ~/.ssh/authorized_keys

Step 8. Delete the temporary public key file, tmp.pub:

rm tmp.pub

Now, when logged into the client system as user there should be no prompt for a password when commands such as the following are given:

ssh target_user@host_address

or

scp file_name target_user@host_address:directory_path

or

scp target_user@host_address:directory_path/file file_name

BART Connections that Require Authentication without a Password

For BART usage, there are two scenarios that require a password-less SSH/SCP connection:

 When connecting from each BART managed database server (SSH/SCP client) to the BART host (target SSH/SCP server) to support WAL archiving as implemented by the archive_command parameter. In this case, the public key file (id_rsa.pub) is generated with the ssh-keygen -t rsa command on the host of the database server.

The public key file should be generated by the user account running the database server. The public key file name should be appended to the ~/.ssh/authorized_keys file on the BART host. The authorized_keys file is in the BART user account's home directory.

 When connecting from the BART host (SSH/SCP client) to each BART managed database server (target SSH/SCP server) for taking incremental backups and for supporting restoration of the full backup, the archived WAL files, and the modified blocks, which occurs when the BART RESTORE subcommand is given.

In this case, the public key file (id_rsa.pub) is generated with the ssh-keygen –t rsa command on the BART host. The public key file is generated by the BART user account. The public key file name should be appended to the ~/.ssh/authorized_keys file on the host of the database server. The authorized_keys file is in the home directory of the user account that owns the directory where the database backup is to be restored.

Note

If backups are to be taken from a given database server host, but restored to a different database server host, the password-less SSH/SCP connections must be configured from the BART host to the database server host from which the backup is to be taken as well as from the BART host to the database server host to which the backup is to be restored.

For examples of each scenario, see the *EDB Postgres Backup and Recovery Reference Guide* available at:

https://www.enterprisedb.com/edb-docs/

Setting up a Replication Database User

For each Postgres database server that is to be managed by BART, a database user must be chosen to serve as the *replication database user*. The replication database user:

- Sets the Postgres archive_command configuration parameter when the INIT subcommand in invoked.
- Creates backups when the BACKUP subcommand is invoked.

The replication database user must be a superuser.

When executed with the PSQL client, the following PostgreSQL command creates a superuser to be the replication database user:

CREATE ROLE repuser WITH LOGIN SUPERUSER PASSWORD 'password';

The pg_hba.conf file must minimally permit the replication database user to have access to the template1 database as shown for repuser in the following example. The IP address from which the replication database user has access to database template1 is the location of the BART host:

TYPE DATABASE USER ADDRESS METHOD

"local" is for Unix domain socket connections only

local all all md5

IPv4 local connections:

host template1 repuser 192.168.2.22/32 md5

host all enterprisedb 127.0.0.1/32 md5

IPv6 local connections:

host all all ::1/128 md5

Allow replication connections from localhost, by a user with the

replication privilege.

host replication repuser 192.168.2.22/32 md5

For pg_basebackup only: The replication database user must also be included in the pg_hba.conf file as a replication database connection as shown by the last entry in the example if pg_basebackup is to be used for taking any backups such as for standby servers.

The replication database user must be specified with the user parameter of the BART configuration file for the database server as shown by the following example:

[ACCTG]

```
host = 192.168.2.24

port = 5444

user = repuser

cluster_owner = enterprisedb

remote_host = enterprisedb@192.168.2.24

description = "Accounting"
```

There must be no password prompt when connecting to the database server with the replication database user. There are several Postgres standard ways to permit this. A recommended method is to use the .pgpass file located in the BART user account's home directory.

For example, if bartuser is the BART user account, then the .pgpass file located in /home/bartuser/.pgpass must contain the following entry:

```
192.168.2.24:5444::repuser:password
```

When bartuser invokes a BART backup, the password for the replication database user, repuser, is obtained from the .pgpass file of bartuser to connect to the database server running at 192.168.2.24 on port 5444.

The .pgpass file must contain an entry for each BART managed database server and its corresponding replication database user and password.

Updating the Server Configuration Parameters

To manage the backup and recovery of a database server, you must add entries to the server section of the BART configuration file (BART_HOME/etc/bart.cfg). Settings in the server section will override the settings in the [BART] section for that particular database server. If omitted, default values will be used.

For each cluster serviced by BART, the following parameters are required:

```
host = 192.168.2.24
port = 5432
user = postgres
cluster_owner = postgres
description = "EPAS 11 Server"
allow_incremental_backups = enabled
```

The following table lists the server-specific parameters and their default values (where applicable):

Parameter	Required	Default
[Server Name]	Yes	N/A
backup_name	No	N/A
host	Yes	N/A
port	No	5444
user	Yes	N/A
archive_command	No	N/A
cluster_owner	Yes	enterprisedb for Advanced Server database clusters installed in the mode compatible with Oracle databases.
		postgres for PostgreSQL database clusters and for Advanced Server database clusters installed in PostgreSQL mode.
remote_host	Yes	N/A
tablespace_path	No	N/A
retention_policy	No	0
xlog_method	No	Fetch
wal_compression	No	Disabled
copy_wals_during_restore	No	Disabled
allow_incremental_backup	No	Disabled
thread_count	No	1
batch_size	No	49142
scan_interval	No	0
mbm_scan_timeout	No	20
description	Yes	No
workers	No	1

Set the following parameters in the server section of the BART configuration file. The parameter setting in the server section overrides the setting in the global [BART] section for that particular database server. If omitted, the default value will be used.

• [ServerName] (required) - Specify the server name; this parameter is required. This is the name by which you refer to the database server when using BART; the name is case-insensitive when referenced with BART subcommand options. A lowercase conversion of this name is used to create a subdirectory in the BART

backup catalog for storing the backups and WAL files for this database server.

backup_name (optional) – Specify the template for user-defined, friendly names
that will be assigned to the backups of the database server. The maximum
permitted length of backup names is 49 characters. The template is an
alphanumeric string that may include the following variables that will be replaced
with the timestamp values when the backup is taken:

```
%year - 4-digit year

%month - 2-digit month

%day - 2-digit day

%hour - 2-digit hour

%minute - 2-digit minute

%second - 2-digit second
```

To include a percent sign (%) as a character in the backup name, specify %% in the template.

Do not enclose the template string in quotes even if you want the template to include space characters, otherwise the enclosing quotes are stored as part of the backup name. However, when referenced with the -i option by BART subcommands use of space characters in the backup name requires enclosing the backup name in quotes.

This parameter can be overridden by the --backup-name option of the BACKUP subcommand. If this parameter is omitted from the BART configuration file, and the --backup-name option with a user-defined name is not specified with the BACKUP subcommand, then the backup can only be referenced in BART subcommands by the BART assigned, integer backup identifier.

- host (required) Specify the IP address of the database server to be configured for backup.
- **port (optional)** Specify the port number identifying the database server instance (that is, the relevant database cluster) to be backed up. The default is port 5444.
- User (required) Specify the replication database user name used by BART to:
 - Establish the connection to the database server for full backups
 - Set the Postgres archive_command configuration parameter when running the

INIT subcommand

Take incremental backups. This database user must be a superuser.

While running as the BART user, the connection to the database server must not prompt for a password. The pg_hba.conf file must contain a replication connection entry for this database user name. See Setting up a Replication Database User for more information.

• archive_command (optional) - When the INIT subcommand is used, the content and variables specified in the BART archive_command result in the archive command string to be generated into the Postgres archive_command parameter in the postgresql.auto.conf file.

The BART archive_command parameter in the BART configuration file, and the Postgres archive_command parameter in the postgresql.conf file (or the postgresql.auto.conf file) refer to two different parameters that are to be set in different manners. You should carefully observe the distinction between the BART archive_command and the PostgreSQL archive_command when configuring these parameters.

The following information applies only to the BART archive_command parameter.

- Enclose the command string within single quotes (').
- If the archive_command parameter is omitted, it still results in its usage by the INIT subcommand as if it were actually specified with a setting of scp %p %h:%a/%f. The variables represent:
 - %p The path of the file to archive used by the Postgres archiving process.
 - %h Will be replaced by the bart host parameter setting.
 - %a Will be replaced by the BART archive path.
 - %f The archived file name used by the Postgres archiving process.

See Archive Command Auto Configuration for additional information.

- cluster_owner (required) Specify the Linux operating system user account that owns the database cluster. This is typically enterprised for Advanced Server database clusters installed in the Oracle compatible mode, or postgres for Advanced Server database clusters installed in the PostgreSQL compatible mode and PostgreSQL database clusters.
- **remote_host (optional).** Specify the IP address of the remote server to which a backup is to be restored. The value for this parameter must be specified in the form of remote user@remote host address. Where:

remote_user is the user account on the target database server host that accepts a password-less SSH/SCP login connection and owns the directory where the backup is to be restored.

remote_host_address is the IP address of the remote host. For restoring a backup to a remote host or for restoring any backup where remote_user and the BART user account are not the same users, either this parameter must be set or it may be specified with the -r option with the BART RESTORE subcommand.

- tablespace_path (optional) Specify paths to which tablespaces are to be restored in the format OID = tablespace_path; If the backup is to be restored to a remote host specified by the remote_host parameter, then the tablespace paths must exist on the remote host.
- allow_incremental_backups (optional) —Enables use of the WAL scanner for incremental backups. Permits taking incremental backups when the BACKUP subcommand is invoked with the --parent option.

Set this parameter to:

enabled to permit incremental backups.

disabled to disallow incremental backups and thus permit only full backups.

If the allow_incremental_backups parameter is not specified, the default is disabled.

For information about using the **BACKUP** subcommand and running the WAL scanner, please see the EDB Postgres Backup and Recovery User Guide available at:

https://www.enterprisedb.com/edb-docs/

• **Description (optional)** – Specify the description of the database server. This parameter is optional.

Refer to the Configuring the BART host section for information about configuring the following optional parameters.

- retention_policy
- xlog_method
- wal_compression
- copy_wals_during_restore.
- thread count.

- batch size.
- scan interval.
- mbm scan timeout.
- workers

After configuring the BART host and the database server(s), you can start using BART. For information about using BART, see the *EDB Postgres Backup and Recovery User Guide* available at:

https://www.enterprisedb.com/edb-docs/

The following example shows the configuration settings of three database servers:

```
[ACCTG]
host = 127.0.0.1
port = 5444
user = enterprisedb
cluster owner = enterprisedb
backup_name = acctg_%year-%month-%dayT%hour:%minute:%second
archive command = 'cp %p %a/%f'
allow incremental backups = enabled
retention policy = 8 BACKUPS
description = "Accounting"
[MKTG]
host = 192.168.2.24
port = 5444
user = repuser
cluster owner = enterprisedb
remote host = enterprisedb@192.168.2.24
allow incremental backups = enabled
description = "Marketing"
[HR]
host = 127.0.0.1
port = 5432
user = postgres
cluster_owner = postgres
```

retention_policy = 4 DAYS description = "Human Resources"

Enabling WAL Archiving

WAL archiving must be enabled for the database server for which BART is to perform backup and recovery management. For detailed information about WAL archiving, see the PostgreSQL Core Documentation. The following sections provide information about configuring WAL Archiving for BART:

- The WAL Archiving Configuration section describes the manual WAL Archiving Configuration process.
- The Archive Command Auto Configuration section describes an automated WAL Archiving process.

WAL Archiving Configuration

The following configuration parameters must be set in the postgresql.conf file to enable WAL archiving:

- Set wal_level to archive for Postgres 9.5 or to replica for Postgres 9.6 or later.
- Set archive_mode to on.
- Set the PostgreSQL archive_command parameter to copy the WAL files to the BART backup catalog. The archive_command configuration parameter mentioned here is located in the postgresql.conf file; the PostgreSQL archive_command parameter is used in a different manner than the BART archive_command parameter previously mentioned in this guide.
- Set max_wal_senders to a value high enough to leave at least one session available for the backup. If the xlog_method=stream parameter setting is to be used by this database server as determined in the BART configuration file, the max_wal_senders setting must account for an additional session for the transaction log streaming (the setting must be a minimum of 2). See Configuring the BART host for information about the xlog_method parameter.

The ARCHIVE PATH field displayed by the BART SHOW-SERVERS subcommand displays the full directory path where the WAL files should be copied as specified in the Postgres archive_command configuration parameter in the postgresql.conf file:

-bash-4.1\$ bart SHOW-SERVERS -s acctg

SERVER NAME : acctg

HOST NAME: 192.168.2.24

USER NAME: repuser

PORT: 5444

REMOTE HOST:

RETENTION POLICY: none DISK UTILIZATION: 0.00 bytes NUMBER OF ARCHIVES: 0

ARCHIVE PATH:/opt/backup/acctg/archived_wals

ARCHIVE COMMAND: (disabled)

XLOG METHOD: fetch

WAL COMPRESSION: disabled

TABLESPACE PATH(s):

INCREMENTAL BACKUP: DISABLED

DESCRIPTION: "Accounting"

The parameter settings in the following example will copy the WAL files to a directory named /opt/backup/acctg/archived_wals on the BART host located at 192.168.2.22 as the bartuser user account. Using the bartuser account ensures that the operation will have sufficient permissions to copy to the BART backup catalog owned by bartuser.

The database server must be restarted in order to initiate WAL archiving, but do not do so until you have verified that the full path of the BART backup catalog has been created by some prior BART subcommand or the archive operation will fail.

Start the WAL scanner by executing the following command:

./bart-scanner

Archive Command Auto Configuration

The Postgres archive_command parameter can be automatically configured with the INIT subcommand. The INIT subcommand invokes the Postgres ALTER SYSTEM command to set the Postgres archive_command configuration parameter in the postgresql.auto.conf file located in the managed database server's POSTGRES_INSTALL_HOME data directory. For additional information about the INIT subcommand, see the EDB Postgres Backup and Recovery User Guide available at:

https://www.enterprisedb.com/edb-docs/

The archive command string that the INIT subcommand generates into the postgresql.auto.conf file is determined by the parameter setting of the BART archive_command parameter located in the BART configuration file.

The server section of the BART configuration file can contain a BART archive_command parameter to specify the desired format of the archive command string to be generated into the Postgres archive_command parameter in the postgresql.auto.conf file. If the BART archive_command parameter is not set in the server section for a given database server, the command string that is configured uses the following default format:

scp %p %h:%a/%f

where:

%p

Path of the file to archive used by the Postgres archiving process

%h

Replaced by the setting of the bart_host parameter located in the global section of the BART configuration file

%a

Replaced by the *archive path* where the WAL files are to be stored. The archive path takes the form backup_path/server_name/archived_wals where backup_path is the BART backup catalog parent directory specified in the global section of the BART configuration file and server_name is the lowercase

conversion of the database server name specified for this database server in the server section of the BART configuration file.

%f

Archived file name used by the Postgres archiving process

The placeholders %h and %a are replaced by the INIT subcommand when creating the archive command string. The placeholders %p and %f are not replaced by the INIT subcommand, but are kept as given to be used by the Postgres archiving process.

For example, to use the default archive command format, the BART configuration file contains the following settings where the BART archive_command parameter is omitted from the server section for ACCTG:

```
[BART]
```

bart_host= bartuser@192.168.2.22
backup_path = /opt/backup
pg_basebackup_path = /usr/edb/as11/bin/pg_basebackup
logfile = /tmp/bart.log
scanner_logfile = /tmp/bart_scanner.log

[ACCTG]

host = 127.0.0.1 port = 5444 user = repuser cluster_owner = enterprisedb description = "Accounting"

The INIT subcommand is invoked by BART user account bartuser as follows:

[bartuser@localhost ~]\$ bart INIT -s acctg -o
INFO: setting archive_command for server 'acctg'
WARNING: archive_command is set. server restart is required

The BART backup catalog directory will be completed if it has not already been done so.

The resulting Postgres archive command string in the postgresql.auto.conf file located

in the managed database server's POSTGRES_INSTALL_HOME/data directory appears as follows:

```
# Do not edit this file manually!

# It will be overwritten by ALTER SYSTEM command.

archive_command = 'scp %p

bartuser@192.168.2.22:/opt/backup/acctg/archived_wals/%f'
```

Note

Run the INIT subcommand with the -o option to take advantage of the auto configuration process. This option overrides any existing Postgres archive_command setting in the postgresql.conf or the postgresql.auto.conf file. In addition, the -o option must be used to generate the command string if the archive_mode configuration parameter is set to off even if there are no existing settings of the Postgres archive_command in the postgresql.conf or postgresql.auto.conf files.

In this example, the following BART configuration file is used with an explicit setting of the BART archive_command parameter:

```
[BART]
```

```
bart_host= enterprisedb@192.168.2.22
backup_path = /opt/backup
pg_basebackup_path = /usr/edb/as11/bin/pg_basebackup
logfile = /tmp/bart.log
scanner_logfile = /tmp/bart_scanner.log
```

[ACCTG]

```
host = 127.0.0.1

port = 5444

user = repuser

cluster_owner = enterprisedb

archive_command = 'cp %p %a/%f'

description = "Accounting"
```

The INIT subcommand is invoked by BART user account enterprisedb as follows:

```
-bash-4.1$ bart INIT -s acctg -o INFO: setting archive_command for server 'acctg'
```

WARNING: archive command is set. server restart is required

The resulting Postgres archive_command parameter in the postgresql.auto.conf file appears as follows:

Do not edit this file manually!

It will be overwritten by ALTER SYSTEM command.

archive_command = 'cp %p /opt/backup/acctg/archived_wals/%f'

After generating the desired command string in the postgresql.auto.conf file, complete the required WAL archive settings in the postgresql.conf file:

- Set wal_level to archive for Postgres 9.5 or to replica for Postgres 9.6 or later.
- · Set archive mode to on.
- Set max_wal_senders to a value high enough to leave at least one session available for the backup. If the xlog_method=stream parameter setting is to be used by this database server as determined in the BART configuration file, the max_wal_senders setting must account for an additional session for the transaction log streaming (that is, the setting must be a minimum of 2). See Configuring the BART host section for information on the xlog_method parameter.

Restart the database server when you are ready to initiate WAL archiving.

When the database server has been restarted, the ARCHIVE COMMAND field of the SHOW-SERVERS subcommand displays the active Postgres archive command as shown by the following example:

-bash-4.1\$ bart SHOW-SERVERS -s acctg

SERVER NAME : acctg HOST NAME : 127.0.0.1 USER NAME : repuser

PORT: 5444

REMOTE HOST:

RETENTION POLICY: none DISK UTILIZATION: 48.00 MB NUMBER OF ARCHIVES: 0

ARCHIVE PATH:/opt/backup/acctg/archived_wals

ARCHIVE SCOMMAND: cp %p /opt/backup/acctg/archived_wals/%f

XLOG METHOD : fetch

WAL COMPRESSION: disabled

TABLESPACE PATH(s):

INCREMENTAL BACKUP: DISABLED

DESCRIPTION: "Accounting"

Verifying Configuration Settings

The CHECK-CONFIG subcommand with the —s option checks the parameter settings of the database server specified after the -s option:

bart CHECK-CONFIG [-s server_name]

The CHECK-CONFIG subcommand displays an error message if the required configuration is not properly set. The following example shows the results from a successful configuration:

bash-4.1\$ bart CHECK-CONFIG -s mktg

INFO: Checking server mktg

INFO: Verifying cluster_owner and ssh/scp connectivity

INFO: success

INFO: Verifying user, host, and replication connectivity

INFO: success

INFO: Verifying that user is a database superuser

INFO: success

INFO: Verifying that cluster owner can read cluster data files

INFO: success

INFO: Verifying that you have permission to write to vault

INFO: success

INFO: /opt/backup/mktg

INFO: Verifying database server configuration

INFO: success

INFO: Verifying that WAL archiving is working

INFO: success

INFO: Verifying that bart-scanner is configured and running

INFO: success

The command confirms that:

- The cluster_owner parameter is set to the user account owning the database cluster directory.
- A password-less SSH/SCP connection is set between the BART user and the user account specified by the cluster_owner parameter.
- The BART user parameter specifies a database superuser.

- The BART user has access to the backup directory/catalog.
- The pg_hba.conf file contains a replication entry for the database superuser specified by the BART user parameter.
- The archive_mode parameter in the postgresql.conf file is enabled.
- The archive_command parameter in the postgresql.auto.conf or the postgresql.conf file is set.
- The allow_incremental_backups parameter in the BART configuration file is enabled for database servers for which incremental backups are to be taken.
- Archiving of WAL files to the BART backup catalog is in process.
- The WAL scanner program is running.

1.4 Troubleshooting

This section provides workaround for the following installation issue:

Yum cannot access a repository that contains epel-release

If yum cannot access a repository that contains epel-release, you will get an error message:

No package epel available.

Error: Nothing to do

Workaround:

To fix this issue, you must download the EPEL rpm package and install it manually. To manually install EPEL:

- 1. Download the rpm package.
- 2. Assume the superuser privileges and navigate to the directory that contains the package.
- 3. Install **EPEL** with the command:

yum install epel-release

1.5 Performing a BART Upgrade

This section outlines the process of upgrading to BART 2.5.1 if an existing BART version is installed on the host.

- Upgrading from BART 2.0 to BART 2.5.1 describes the upgrade process from BART 2.0 to 2.5.1.
- Upgrading from BART 2.1, 2.2, 2.3 or 2.4 to BART 2.5.1
 <upgrading_from_bart_2.1,_2.2,_2.3,_or_2.4_to_bart_2.5.1> describes the upgrade process from previous BART versions (except 2.0) to 2.5.1.

Upgrade Restrictions

The following restrictions apply with regard to previous BART versions (2.0, 2.1, 2.2, 2.3, and 2.4).

- When using the BART 2.5.1, the BART backup catalog (as specified by the backup_path parameter of the BART configuration file) must not be the same directory that was used by the previous BART versions for their backup catalogs. New full backups and incremental backups taken using BART 2.5.1 must be stored in a new BART backup catalog.
- BART 2.5.1 cannot be used to take incremental backups for parent full backups or parent incremental backups taken with a BART version older than 2.5.1. BART 2.5.1 can only take incremental backups when the parent full backups or parent incremental backup has been taken with BART 2.5.1.
- BART 2.5.1 cannot be used to restore *incremental* backups taken with any BART version older than 2.5.1. However, BART 2.5.1 can restore *full* backups taken with older BART versions.

Upgrading from BART 2.1, 2.2, 2.3 or 2.4 to BART 2.5.1

Perform the following steps to upgrade from BART versions 2.1, 2.2, 2.3, or 2.4 to BART 2.5.1:

Step 1: Assume the identity of the BART user account and invoke the following command to stop the BART 2.x WAL scanner program (bart-scanner):

bart-scanner STOP

Step 2: As the root user, upgrade to BART 2.5.1 with the yum upgrade command.

• To update the BART RPM package directly from the *EDB Yum Repository* website, specify only the package name:

yum upgrade edb-bart

You can also use a downloaded RPM package file to update. To use a downloaded BART RPM package file to update, use the yum command, specifying the complete RPM package file name:

```
yum upgrade edb-bart-2.5.x-x.rhel7.x86_64.rpm
```

Ensure the backup_path parameter of the BART 2.5.1 configuration file is set to a new directory and not to any existing BART 2.x backup catalog. New full backups and incremental backups taken using BART 2.5.1 must be stored in a new BART backup catalog.

Note

The bart.cfg configuration file is only required on the BART 2.5.1 host from which you will invoke BART subcommands. BART does not require the bart.cfg file on hosts on which an incremental backup will be restored.

Step 3: Repeat the process described in this section to upgrade to BART 2.5.1 on each remote hosts where an incremental backup will be restored.

For additional information about restoration of incremental backups on remote hosts, see the *EDB Postgres Backup and Recovery User Guide* available at:

https://www.enterprisedb.com/edb-docs/

If the bart --version command returns an error stating the PATH is not available after switching from root user to another BART user account, adjust the setting of the PATH environment variable to include the location of the BART 2.5 executable (the bin subdirectory) in the ~/.bashrc or ~/.bash_profile files of the following user accounts:

- The BART user account on the BART host. See Configuring the BART host for more information about BART user account.
- The remote user account on the remote host to which incremental backups are to be restored. For details, see the EDB Postgres Backup and Recovery User Guide available at:

https://www.enterprisedb.com/edb-docs/

The PATH setting should be the same as set for BART 2.x since all versions use

/usr/edb/bart/bin.

Note

After upgrading to BART 2.5.1, you must take a new full backup of your system before performing an incremental backup.

Upgrading from BART 2.0 to BART 2.5.1

Perform the following steps to upgrade BART 2.0 to BART 2.5.1:

Step 1: Install BART 2.5.1; for details, see Using an RPM Package to Install BART.

Step 2: Save a copy of your BART 2.0 configuration file. The default location of the BART 2.0 configuration file is /usr/edb/bart2.0/etc/bart.cfg.

Step 3: Invoke the following command to remove BART 2.0:

yum remove edb-bart20

Step 4: Place the BART 2.0 configuration file (bart.cfg) that you saved in Step 2 in the newly created /usr/edb/bart/etc directory. You can use many of the same configuration parameters for BART 2.5.1, but note that you must use a new directory for the BART backup catalog. A new set of full backups and incremental backups taken using BART 2.5.1 must be stored in a new BART backup catalog.

To specify an alternative configuration file name or location, use the -c option with BART subcommands. For details, see the EDB Postgres Backup and Recovery User Guide available at:

https://www.enterprisedb.com/edb-docs/

Note

The bart.cfg configuration file is only required on the BART 2.5.1 host from which you will invoke BART subcommands. BART does not require the bart.cfg file on hosts on which an incremental backup will be restored.

Step 5: Adjust the setting of the PATH environment variable to include the location of the BART 2.5.1 executable (the bin subdirectory) in the ~/.bashrc or ~/.bash_profile files for the following user accounts:

 The BART user account on the BART host. See Configuring the BART host, Step 3 for more information. • The user account on the remote host to which incremental backups will be restored. For details, see the *EDB Postgres Backup and Recovery User Guide* available at:

https://www.enterprisedb.com/edb-docs/

Step 6: Perform the BART 2.5.1 installation and BART 2.0 removal process on each remote host on which an incremental backup was restored using BART 2.0.

Note

After upgrading to BART 2.5.1, you must take a new full backup of your system before performing an incremental backup.

1.6 Uninstallation

To uninstall BART, assume the identity of the root user and invoke the following command:

yum remove edb-bart

Uninstalling BART does not delete the backup files and archived WAL files that reside in the BART backup catalog. To permanently delete the backup files and archived WAL files in the BART backup catalog (/opt/backup), use the BART DELETE subcommand (for information about BART DELETE subcommand refer the EDB Postgres Backup and Recovery User Guide available at https://www.enterprisedb.com/edb-docs/) or the following Linux command:

rm -rf /opt/backup

2 Backup and Recovery Tool Quickstart

This document provides shortcuts that allow you to install and configure BART, and take a full and incremental backup of a database server quickly. Please note that your system may have requirements that are not addressed in this document. For detailed

information about BART installation and configuration, see BART Installation and Upgrade Guide available at:

https://www.enterprisedb.com/edb-docs/

BART is supported on the following platforms (64 bit only):

- CentOS 6.x or 7.x
- RHEL 6.x or 7.x
- PPC-LE 8 running RHEL or CentOS 7.x
- Ubuntu 18.04 (Bionic)
- Debian 9.x (Stretch)

BART works with the following database versions:

- Advanced Server versions 9.5, 9.6, 10, 11, and 12.
- PostgreSQL versions 9.5, 9.6, 10, 11, and 12.

2.1 Installation

Before installing BART, ensure that your repository configuration allows access to the EDB repository. To request credentials to the EDB repository, visit:

https://www.enterprisedb.com/repository-access-request

1. Then, use yum to create the repository configuration file:

yum install -y https://yum.enterprisedb.com/edbrepos/edb-repo-latest.noarch.rpm

- 2. Modify the repository configuration file (named edb.repo, located in /etc/yum.repos.d) ensuring that the following repositories are enabled:
 - Advanced Server (version 9.5 or later)
 - enterprisedb-tools
 - enterprisedb-dependencies
- 3. Before installing other software, use yum to install the EPEL package:

yum install epel-release

- 4. Then, use yum to install an Advanced Server or PostgreSQL database on any server on which an incremental backup will be restored. The host of the BART server is not required to have an installation of Postgres, but must include a copy of the following:
 - Postgres libpq library
 - Postgres pg_basebackup utility program
 - Boost Libraries version 1.48 and 1.53 (for RHEL/CentOS 6 and RHEL/CentOS 7 only).
- Enable and activate Secure Shell (SSH) and Secure Copy (SCP) client programs on the BART host as well as on the remote database server hosts. The BART host and target database server host must accept a password-less SSH/SCP login connection.

After meeting the prerequisites, you can install the BART RPM package directly from the EnterpriseDB yum repository with the following command:

yum install edb-bart

Repeat the installation process described in this section to install BART 2.4 on all remote hosts where incremental backups are to be restored.

BART is installed in the /usr/edb/bart directory location referred to as BART HOME.

2.2 Configuring BART

To configure the BART host and each database server that is to be managed by BART you must:

- 1. Establish the BART user account and ensure it runs the bart and the bart-scanner program.
- 2. Use the bart.cfg.sample file to create the bart.cfg file. The BART configuration file is located in *BART HOME*/etc/bart.cfg:

cp bart.cfg.sample bart.cfg

3. Set the environment variable for the BART user account. If the libpq library does not reside in the default installation location, you must add the libpq library to the

LD_LIBRARY_PATH environment variable and place the following settings in the BART user account's profile so they take effect upon login:

```
# .bash\_profile

# Get the aliases and functions

if [ -f ~/.bashrc ]; then
. ~/.bashrc

fi

# User specific environment and startup programs

export LD_LIBRARY_PATH=/usr/edb/as11/lib:$LD_LIBRARY_PATH
```

1. Set the following parameters in the [BART] section of the BART configuration file:

bart_host (required)

Specify this parameter value in the form of bart_user>@<bart_host_address>.

backup_path (required)

Create the BART backup catalog and specify the path to the file system parent directory where BART database server backups and archived WAL files are stored. Ensure the BART user account owns the location specified in the backup_path parameter.

pg basebackup path (required)

Specify the path to the pg_basebackup program on the BART host.

xlog_method (optional)

Set to fetch (default) to collect the transaction log files after the backup is completed. Set to stream to stream the transaction log in parallel with the full backup creation.

retention_policy (optional)

Specify when an active backup should be marked as obsolete when the MANAGE subcommand is used. Specify max_number BACKUPS (default setting), max_number DAYS, max_number WEEKS, or max_number MONTHS where max_number is a positive integer.

wal compression (optional)

Set to enabled to compress the archived WAL files in gzip format when the MANAGE subcommand is invoked. Please note: The gzip compression program must be in the BART user account's PATH.

copy_wals_during_restore (optional)

Set to enabled to copy the archived WAL files from the BART backup catalog to the *restore_path/archived_wals* directory prior to the database server archive recovery.

logfile (optional)

Use logfile to specify the path to the location to which output from the bart program is written. The log file will be created the first time you invoke the bart command using the sample configuration file value.

scanner_logfile (optional)

Use scanner_logfile to specify the path to the location to which output from the bart-scanner program is written. The scanner log file will be created the first time you invoke the bart command using the sample configuration file value.

thread count (optional)

Specify the number of worker threads to copy blocks from the database server to the BART backup catalog when the BACKUP subcommand is invoked for incremental backups.

When taking a full backup, if the thread count is 1, then the pg_basebackup utility is used to take the full backup unless the --no-pg_basebackup option is specified with the BACKUP subcommand.

batch_size (optional)

Specify the number of blocks of memory used for copying modified blocks from the database server to the BART backup catalog when the BACKUP subcommand is invoked for incremental backups. The maximum permitted value is 131072 (131072 * 8192 = 1 GB). The minimum permitted value is 1 (1 * 8192 = 8192 bytes).

scan_interval (optional)

Specify the number of seconds before forcing a scan of the WAL files in the

archive directory of the BART backup catalog. The default value is 0, which means no brute-force scanning will be started.

mbm_scan_timeout (optional)

Specify the number of seconds to wait for MBM files before timing out; the default value is 20 seconds. The mbm_scan_timeout parameter value must be greater than 0. The mbm_scan_timeout parameter is applicable only for incremental backup.

workers (optional)

Specify the number of parallel worker processes required to stream the modified blocks of an incremental backup to the restore host. The default value is 1.

- 1. Invoke the CHECK-CONFIG subcommand omitting the -s option to check the parameter settings in the BART configuration file including bart_host, backup path, and pg basebackup path.
- 2. Set the following parameters for each database server in the server section of the BART configuration file. The parameter setting in the server section overrides the setting in the global [BART] section for that particular database server.

[ServerName] (required)

Specify a database server name.

backup name (optional)

Specify user-friendly name for the backups of the database server.

host (required)

Specify the IP address of the database server to be configured for backup.

port (optional)

Specify the port number identifying the database server instance to be backed up. The default is port 5444.

user (required)

Specify the replication database user name used by BART to establish the connection to the database server for full backups.

archive_command (optional)

When the INIT subcommand is used, the content and variables specified in the BART archive_command result in the archive command string to be generated into the Postgres archive_command parameter in the postgresql.auto.conf file. The following information applies only to the BART archive_command parameter.

Enclose the command string within single quotes (').

If the archive_command parameter is omitted, it still results in its usage by the INIT subcommand with a setting of 'scp %p %h:%a/%f' where %p is the path of the file to archive used by the Postgres archiving process, %h is replaced by the bart_host parameter setting, %a is replaced by the BART archive path, and %f is the archived file name used by the Postgres archiving process.

cluster_owner (required)

Specify the Linux operating system user account that owns the database cluster. This is typically enterprised for Advanced Server clusters installed in compatible mode, or postgres for PostgreSQL or Advanced Server clusters installed in the PostgreSQL compatible mode.

remote_host (optional)

Specify this parameter value in the form of <a href="mailto: where remote_user is the user account on the target database server host and remote_host_address is the IP address of the remote host.

tablespace_path (optional)

Specify the path to which tablespaces are to be restored in the OID = tablespace_path; OID = tablespace_path ... format. If the backup is to be restored to a remote host (specified by the remote_host parameter), then the tablespace must exist on the remote host.

allow_incremental_backups (optional)

Set to enabled to permit incremental backups.

description (optional)

Specify the database server description.

For detailed information about configuring the optional parameters in the server section, refer to the BART Installation and Upgrade Guide available at:

https://www.enterprisedb.com/edb-docs/

- Retention_policy
- xlog_method
- wal_compression
- copy_wals_during_restore
- thread count
- batch_size
- scan interval
- mbm_scan_timeout
- workers

2.3 Configuring a Database Server

To configure a database server, you must:

- 1. Authorize SSH/SCP access to the server.
- 2. Create and configure a replication database user.
- 3. Enable WAL archiving of the server.
- 4. Verify the server configuration settings.

Note

You must authorize SSH/SCP access and set up a replication database user before restarting the database server with WAL archiving enabled.

Authorizing SSH/SCP Access

The following example enables SSH/SCP access on a CentOS 6.x host; similar (platform-specific) steps will apply to other platforms/versions.

- 1. First, enable the usage of public key authentication:
 - 1. In the SSH server daemon configuration file /etc/ssh/sshd_config, ensure that the following parameter is set to yes">yes and is not commented out:

PubkeyAuthentication yes

2. Reload the configuration file using the service sshd reload, service sshd stop, service sshd start, or service sshd restart command.

Note

If you get any SSH or SCP errors, examine the log file (/var/log/secure).

1. Then, execute the following command to create a password-less connection:

```
ssh-copy-id target_user@host_address
```

For more information about how to generate the authorized public key, see the *Authorized Public Keys Generation* section of the BART Installation and Upgrade Guide available at:

https://www.enterprisedb.com/edb-docs

Setting up a Replication Database User

To set up a replication database user:

- 1. Choose a database user to serve as the *replication database user* (a superuser) for each Postgres database server to be managed by BART.
- 2. Modify the pg_hba.conf file to allow the replication database user to access the template1 database. Include the replication database user in the pg_hba.conf file as a replication connection if pg_basebackup is to be used for taking any backups.
- 3. Specify the replication database user for the database server in the BART configuration file in the user parameter.

Enabling WAL Archiving

To enable WAL archiving, set the following parameters in the postgresql.conf file for any database server for which BART is to perform a backup. Set:

- wal_level to archive for Postgres 9.5 or to replica for Postgres 9.6 or later.
- · archive mode to on.
- archive_command to copy the WAL files to the BART backup catalog.
- max_wal_senders to a value high enough to leave at least one session available for the backup. If the xlog_method=stream parameter setting is to be used by this server, the max_wal_senders setting must account for an additional session for transaction log streaming.

Note

Run the INIT subcommand with the -o option to override any existing archive_command setting in the postgresql.conf or the postgresql.auto.conf file.

- 1. After verifying that the full path of the BART backup catalog has been created, restart the database server to initiate WAL archiving.
- 2. Start the WAL scanner by executing the following command:

./bart-scanner

Verifying Configuration Setting

• Use the CHECK-CONFIG subcommand with the —s option to verify the parameter settings in the database server configuration for which the —s option is specified.

```
bart CHECK-CONFIG [ -s <server_name> ]
```

In addition, the following postgresql.conf parameters for the database server must be properly set and activated for certain processes:

- The <u>cluster_owner</u> parameter must be set to the user account owning the database cluster directory.
- A password-less SSH/SCP connection must be set between the BART user and the user account specified by the <u>cluster_owner</u> parameter.
- The BART user parameter must specify a database superuser.
- The pg_hba.conf file must contain a replication entry for the database superuser specified by the BART user parameter.
- The archive_mode parameter in the postgresql.conf file must be enabled.
- The archive_command parameter in the postgresql.auto.conf or the postgresql.conf file must be set.
- The allow_incremental_backups parameter in the BART configuration file must be enabled for database servers for which incremental backups are to be taken.
- Archiving of WAL files to the BART backup catalog must be in process.
- The WAL scanner program must be running.

2.4 Taking a Backup

This section provides information about creating a full or incremental backup of a database server. For detailed information about taking a full backup, incremental backup, point-in-time recovery and restore process, see BART User Guide available at:

https://www.enterprisedb.com/edb-docs

The syntax of the **BACKUP** subcommand is:

```
bart BACKUP -s { server_name | all }
[ -F { p | t } ]
[ -z ] [ -c compression_level ]
[ --parent { backup_id | backup_name } ]
[ --backup-name backup_name ]
[ --thread-count number_of_threads ]
[ { --with-pg_basebackup | --no-pg_basebackup } ]
[ --check ]
```

Note

While a BACKUP subcommand is in progress, no other processes may run in parallel.

Along with the BACKUP subcommand, you can:

• Specify the —s option and replace the *server_name* with the server name to be backed up (it must be configured in the BART configuration file). Specify all to take a backup of all servers. This argument is mandatory.

The backup is saved in the backup path/server name/backup id directory.

Specify the following options only if required. If you do not specify any of the following options, the backup is created using the default settings.

- Specify the -Fp option to create a backup in the plain text format and -Ft to create a backup in tar format (default). If the transaction log streaming method is used, then the -Fp option must be specified.
- Specify the -z option to use gzip compression on the tar file output using the default compression level. This option is applicable only for the tar format.
- Specify the —c option to apply the gzip compression level on the tar file output, and replace *compression_level* with the digit 1 through 9, with 9 being the best compression (applicable only for the tar format).
- If you want to take an incremental backup, specify the option --parent and replace backup_id with the backup identifier of a parent backup or replace backup_name with the parent backup name. Incremental backup can only be taken in the plain

text format (-F p). Specify the option --check before taking an incremental backup to verify if the required MBM files are present in the BART backup catalog. The --parent option must be specified when the --check option is used.

- Specify the option --backup-name and replace backup_name with the user-friendly name assigned to the backup.
- Specify the option —thread count and replace *number_of_threads* with the number of worker threads to run in parallel to copy blocks for incremental backups
- Specify the option --with-pg_basebackup to use pg_basebackup to take a full backup. The number of thread counts in effect is ignored as given by the thread_count parameter in the BART configuration file.

Note

If the thread count in effect is greater than 1, then the pg_basebackup utility is not used to take the full backup unless the --with-pg_basebackup option is specified with the BACKUP subcommand.

 Specify the option --no pg_basebackup to not use pg_basebackup to take a full backup.

The following example creates a full backup in the default tar format with gzip compression. Note that checksums are generated for the full backup and user-defined tablespaces for the tar format backup.

[edb@localhost bin]\$./bart BACKUP -s hr -z

INFO: DebugTarget - getVar(checkDiskSpace.bytesAvailable)

INFO: new backup identifier generated 1567591909098

INFO: creating 5 harvester threads

NOTICE: all required WAL segments have been archived

/home/edb/bkup_new/hr/1567591909098

INFO: backup completed successfully

INFO:

BART VERSION: 2.5 BACKUP DETAILS:

BACKUP STATUS: active

BACKUP IDENTIFIER: 1567591909098

BACKUP NAME: none BACKUP PARENT: none

BACKUP LOCATION: /home/edb/bkup new/hr/1567591909098

BACKUP SIZE: 13.91 MB BACKUP FORMAT: tar.gz

BACKUP TIMEZONE: America/New York

XLOG METHOD: fetch

BACKUP CHECKSUM(s): 0

TABLESPACE(s): 3

Oid Name Location

16387 test1 /home/edb/tbl1 16388 test2 /home/edb/tbl2 16389 test3 /home/edb/tbl3

START WAL LOCATION: 000000010000000000000025 STOP WAL LOCATION: 000000010000000000000026

BACKUP METHOD: streamed

BACKUP FROM: master

START TIME: 2019-09-04 06:11:49 EDT STOP TIME: 2019-09-04 06:11:53 EDT

TOTAL DURATION: 4 sec(s)

The following example shows an incremental backup taken by specifying the --parent option. The option -F p must be specified as well for plain text format.

[edb@localhost bin]\$./bart BACKUP -s hr -F p --parent hr_full_1 --backup-name

hr_incr_1

INFO: DebugTarget - getVar(checkDiskSpace.bytesAvailable)

INFO: checking /home/edb/bkup_new/hr/archived_wals for MBM files from

0/20000028 to 0/22000000

INFO: new backup identifier generated 1566899827751

INFO: creating 5 harvester threads

NOTICE: all required WAL segments have been archived

INFO: backup completed successfully

INFO:

BART VERSION: 2.5 BACKUP DETAILS:

BACKUP STATUS: active

BACKUP IDENTIFIER: 1566899827751

BACKUP NAME: hr_incr_1

BACKUP PARENT: 1566899819709

BACKUP LOCATION: /home/edb/bkup new/hr/1566899827751

BACKUP SIZE: 7.19 MB BACKUP FORMAT: plain

BACKUP TIMEZONE: America/New York

XLOG METHOD: fetch

BACKUP CHECKSUM(s): 0

TABLESPACE(s): 0

START WAL LOCATION: 000000010000000000000022 STOP WAL LOCATION: 000000010000000000000023

BACKUP METHOD: streamed

BACKUP FROM: master

START TIME: 2019-08-27 05:57:07 EDT STOP TIME: 2019-08-27 05:57:08 EDT

TOTAL DURATION: 1 sec(s)

3 Backup and Recovery Reference Guide

This guide acts as a quick reference for BART subcommands and provides comprehensive examples of the following BART operations:

- Performing a full backup of database servers
- Performing point-in-time recovery (PITR) on a remote PostgreSQL database server
- Restoring an incremental backup
- Restoring a database cluster with tablespaces
- Evaluating, marking, and deleting backups and incremental backups
- Local and remote database server configuration and operation

For detailed information about BART subcommands and operations, see *EDB Postgres Backup and Recovery User Guide* available at:

https://www.enterprisedb.com/edb-docs/

The current document is organized as follows:

- The BART Subcommands section provides information about BART subcommands with options and examples.
- The Examples section provides examples of BART operations.
- The Sample BART System section provides a comprehensive example of both local and remote database server configuration and operation.

3.1 Using BART Subcommands

This section briefly describes the BART subcommands.

Invoking BART

BART subcommands are invoked at the Linux command line. You can invoke the bart program (located in the <BART_HOME>/bin directory) with the desired options to manage your BART installation.

The following examples demonstrate ways of invoking BART. In these examples, the BART user account is named bartuser.

\$ su bartuser

Password:

\$ export

LD_LIBRARY_PATH=/opt/PostgresPlus/9.5AS/lib/:\$LD_LIBRARY_PATH

\$./bart SHOW-SERVERS

To run BART from any current working directory:

\$ su bartuser

Password:

\$ export

LD_LIBRARY_PATH=/opt/PostgresPlus/9.5AS/lib/:\$LD_LIBRARY_PATH

\$ bart SHOW-SERVERS

To use a BART configuration file other than <BART_HOME>/etc/bart.cfg, include the configuration and the path and name of the configuration file:

\$ su bartuser

Password:

\$ export

LD LIBRARY PATH=/opt/PostgresPlus/9.5AS/lib/:\$LD LIBRARY PATH

\$ bart -c /home/bartuser/bart.cfg SHOW-SERVERS

Syntax for invoking BART

bart [< general option >]... [< subcommand >] [< subcommand option >]...

Note

You can use either abbreviated (for example -h) or long (for example --help) option forms on the command line.

General Options

You can specify the following general options with bart.

- -h or (--help)
 - Displays general syntax and information about BART usage.
 - All subcommands support a help option (-h, --help). If the help option is specified, information is displayed regarding that particular subcommand. The subcommand, itself, is not executed.

The following code sample shows the result of invoking the --help option for the BACKUP subcommand:

-bash-4.2\$ bart BACKUP --help

bart: backup and recovery tool

Usage:

bart BACKUP [OPTION]...

Options:

- -h, --help Show this help message and exit
- -s, --server Name of the server or 'all' (full backups only) to specify all servers
- -F, --format=p|t Backup output format (tar (default) or plain)
- -z, --gzip Enables gzip compression of tar files
- -c, --compress-level Specifies the compression level (1 through 9, 9 being best compression)
- --backup-name Specify a friendly name for the current backup
- --parent Specify parent backup for incremental backup
- --check Verify checksum of required mbm files
 - -v (or --version)

Displays information about BART version.

-d (or --debug)

Displays information about debugging output while executing BART subcommands.

-c (or --config-path) <config_file_path>

Specifies config_file_path as the full directory path to a BART configuration file. Use this option if you do not want to use the default BART configuration file BART HOME/etc/bart.cfg.

The following section describes the BART subcommands. The option help is omitted from the syntax diagrams in the following sections for the purpose of providing clarity for the subcommand options.

3.1.1 BACKUP

Use the **BACKUP** subcommand to create a full or incremental backup.

Syntax for a Full Backup:

```
bart BACKUP -s { <server_name> | all } [ -F { p | t } ]

[ -z ] [ -c <compression_level> ]

[ --backup-name <backup_name> ]

[ --thread-count <number_of_threads> ]

[ { --with-pg_basebackup | --no-pg_basebackup } ]
```

Note

While a BACKUP subcommand is in progress, no other subcommands (INIT, DELETE, MANAGE, SHOW BACKUPS, VERIFY-CHKSUM) must be issued. Any subcommands issued while a backup is in progress will skip and ignore the backups.

Syntax for an Incremental Backup:

```
bart BACKUP -s { <server_name> | all } [ -F p]

[ --parent { <backup_id> | <backup_name> } ]
```

```
[ --backup-name <backup_name> ]
[ --thread-count <number_of_threads> ]
[ --check ]
```

Before performing an incremental backup, you must take a full backup.

For more details about incremental backup, refer to the *Block-Level Incremental Backup* section of the *EDB Postgres Backup and Recovery User Guide* available at:

https://www.enterprisedb.com/edb-docs/

Options

```
- -s { <server_name> | all } or --server {<server_name> | all }
```

<server_name> is the name of the database server to be backed up (as specified in the BART configuration file). If all is specified, all servers are backed up.

```
- -F { p | t } or --format { p | t }
```

Use this option to specify the backup file format. - Specify p to take backup in plain text format and specify t to take backup in tar format. If the p or t option is omitted, the default is tar format. - Use p option with the BACKUP subcommand when streaming is used as a backup method.

Note

Specify p option while taking an incremental backup since an incremental backup can only be taken in plain text format.

• -z or --gzip (applicable only for full backup and tar format)

Use this option to enable gzip compression of tar files using the default compression level (typically 6).

 -c <compression_level> or --compress-level <compression_level> (applicable only for full backup and tar format)

Use this option to specify the gzip compression level on the tar file output. compression_level is a digit from 1 through 9, with 9 being the best compression.

- --parent { <backup id> | <backup name> }
 - Use this option to take an incremental backup. The parent backup is a backup taken prior to the incremental backup; it can be either a full backup or an incremental backup. backup_id is the backup identifier of a parent backup and backup_name is the user-defined alphanumeric name of a parent backup. You must specify the -F p option as an incremental backup can only be taken in plain text format.
 - --backup-name <backup_name>
 - <backup_name> is a user-defined, alphanumeric friendly name to be assigned to the backup. The maximum permitted length of backup name is 49 characters.
 - The backup name may include the following variables to be substituted by the timestamp values when the backup is taken:
 - 1. %year 4-digit year
 - 1. %month 2-digit month
 - 1. %day 2-digit day
 - 1. %hour 2-digit hour
 - 1. %minute 2-digit minute
 - 1. %second 2-digit second

The following example demonstrates invoking BACKUP:

```
./bart backup -s ppas12 -Ft --backup-name "YEAR = %year MONTH = %month DAY = %day"
```

To include the percent sign (%) as a character in the backup name, specify
%% in the alphanumeric string.

For example,

```
./bart backup -s ppas12 -Ft --backup-name "YEAR = %year MONTH = %month DAY = %day %%"
```

If the backup name contains space characters or when backup name is referenced with the option -i by other subcommands (such as restore), enclose the string in single quotes (') or double quotes (").

For example,

./bart show-backups -s ppas12 -i "test backup"

- If the option --backup-name is not specified and the backup_name parameter is not set for this database server in the BART configuration file, then the backup can only be referenced in other BART subcommands by the BART assigned backup identifier.
- --thread-count number_of_threads
 - number_of_threads is the number of worker threads to run in parallel to copy blocks for a backup.
 - If the option --thread-count is omitted, then the thread_count parameter in the BART configuration file applicable to this database server is used.
 - If the option --thread-count is not enabled for this database server, then the thread_count setting in the global section of the BART configuration file is used.
 - If the option --thread-count is not set in the global section as well, the default number of threads is 1.
 - If parallel backup is run with N number of worker threads, then it will initiate N+ 1 concurrent connections with the server.
 - Thread count will not be effective if backup is taken on a standby server.

For detailed information about the --thread-count parameter, see the configuration section of the *EDB Postgres Backup and Recovery Installation and Upgrade Guide* available at:

https://www.enterprisedb.com/edb-docs/

- --with-pg_basebackup (applicable only for full backup)
 - Specifies that pg_basebackup is to be used to take a full backup. The number of thread counts in effect is ignored as given by the thread_count parameter in the BART configuration file.
 - When taking a full backup, if the thread count in effect is greater than 1, then
 the pg_basebackup utility is not used to take the full backup (parallel worker
 threads are used) unless the --with-pg_basebackup option is specified with the
 BACKUP subcommand.
- --no-pg_basebackup (applicable only for full backup)
 - Specifies that pg_basebackup is not to be used to take a full backup.
 - When taking a full backup, if the thread count in effect is only 1, then the pg_basebackup utility is used to take the full backup unless the --nopg_basebackup option is specified with the BACKUP subcommand.
- --check (applicable only for incremental backup)
 - Use this option to verify if the required MBM files are present in the BART

backup catalog before taking an incremental backup. However, an actual incremental backup is not taken when the --check option is specified.

--parent option must be used along with the --check option.

Examples

The following example creates a full backup in the default tar format with gzip compression. Note that checksums are generated for the full backup and user-defined tablespaces for the tar format backup.

[edb@localhost bin]\$./bart BACKUP -s hr -z

INFO: DebugTarget - getVar(checkDiskSpace.bytesAvailable)

INFO: new backup identifier generated 1567591909098

INFO: creating 5 harvester threads

NOTICE: all required WAL segments have been archived

/home/edb/bkup_new/hr/1567591909098 INFO: backup completed successfully

INFO:

BART VERSION: 2.5 BACKUP DETAILS:

BACKUP STATUS: active

BACKUP IDENTIFIER: 1567591909098

BACKUP NAME: none BACKUP PARENT: none

BACKUP LOCATION: /home/edb/bkup_new/hr/1567591909098

BACKUP SIZE: 13.91 MB BACKUP FORMAT: tar.gz

BACKUP TIMEZONE: America/New_York

XLOG METHOD: fetch

BACKUP CHECKSUM(s): 0

TABLESPACE(s): 3

Oid Name Location

16387 test1 /home/edb/tbl1 16388 test2 /home/edb/tbl2 16389 test3 /home/edb/tbl3

START WAL LOCATION: 000000010000000000000025 STOP WAL LOCATION: 000000010000000000000026

BACKUP METHOD: streamed

BACKUP FROM: master

START TIME: 2019-09-04 06:11:49 EDT STOP TIME: 2019-09-04 06:11:53 EDT

TOTAL DURATION: 4 sec(s)

The following example shows the directory containing the full backup:

[edb@localhost bin]\$number_of_threads>

[edb@localhost bin]\$ Is -I /home/edb/bkup_new/hr/

total 8

drwxrwxr-x. 3 edb edb 34 Aug 27 05:57 1566899819709

drwxrwxr-x. 3 edb edb 58 Aug 27 05:57 1566899827751

drwxrwxr-x. 3 edb edb 4096 Sep 4 06:11 1567591909098

drwxrwxr-x. 2 edb edb 4096 Sep 4 06:11 archived_wals

[edb@localhost bin]\$

The following example shows the creation of a full backup while streaming the transaction log. Note that the -F p option must be specified with the BACKUP subcommand when streaming is used.

[edb@localhost bin]\$./bart BACKUP -s ACCTG -F p

INFO: DebugTarget - getVar(checkDiskSpace.bytesAvailable)

INFO: new backup identifier generated 1566898964200

INFO: creating 5 harvester threads

NOTICE: pg_stop_backup complete, all required WAL segments have been archived

INFO: backup completed successfully

INFO:

BART VERSION: 2.5 BACKUP DETAILS:

BACKUP STATUS: active

BACKUP IDENTIFIER: 1566898964200

BACKUP NAME: none BACKUP PARENT: none

BACKUP LOCATION: /home/edb/bkup_new/acctg/1566898964200

BACKUP SIZE: 46.03 MB BACKUP FORMAT: plain

BACKUP TIMEZONE: US/Eastern

XLOG METHOD: fetch

BACKUP CHECKSUM(s): 0

TABLESPACE(s): 0

START WAL LOCATION: 00000001000000000000017

BACKUP METHOD: streamed

BACKUP FROM: master

START TIME: 2019-08-27 05:42:44 EDT STOP TIME: 2019-08-27 05:42:46 EDT

TOTAL DURATION: 2 sec(s)

The following example shows the assignment of a user-defined backup name with the --backup-name option:

[edb@localhost bin]\$./bart BACKUP -s acctg --backup-name acctg_%year-%month-%day

INFO: DebugTarget - getVar(checkDiskSpace.bytesAvailable)

INFO: new backup identifier generated 1566899004804

INFO: creating 5 harvester threads

NOTICE: pg_stop_backup complete, all required WAL segments have been archived

/home/edb/bkup new/acctg/1566899004804

INFO: backup completed successfully

INFO:

BART VERSION: 2.5 BACKUP DETAILS:

BACKUP STATUS: active

BACKUP IDENTIFIER: 1566899004804 BACKUP NAME: acctg 2019-08-27

BACKUP PARENT: none

BACKUP LOCATION: /home/edb/bkup_new/acctg/1566899004804

BACKUP SIZE: 46.86 MB BACKUP FORMAT: tar

BACKUP TIMEZONE: US/Eastern

XLOG METHOD: fetch

BACKUP CHECKSUM(s): 0

TABLESPACE(s): 0

START WAL LOCATION: 0000000100000000000001A

BACKUP METHOD: streamed

BACKUP FROM: master

START TIME: 2019-08-27 05:43:24 EDT STOP TIME: 2019-08-27 05:43:24 EDT

TOTAL DURATION: 0 sec(s)

The following example shows an incremental backup taken by specifying the --parent option. The option -F p must be specified as well for plain text format.

[edb@localhost bin]\$./bart BACKUP -s hr -F p --parent hr_full_1 --backup-name

hr_incr_1

INFO: DebugTarget - getVar(checkDiskSpace.bytesAvailable)

INFO: checking /home/edb/bkup_new/hr/archived_wals for MBM files from

0/20000028 to 0/22000000

INFO: new backup identifier generated 1566899827751

INFO: creating 5 harvester threads

NOTICE: all required WAL segments have been archived

INFO: backup completed successfully

INFO:

BART VERSION: 2.5 BACKUP DETAILS:

BACKUP STATUS: active

BACKUP IDENTIFIER: 1566899827751

BACKUP NAME: hr_incr_1

BACKUP PARENT: 1566899819709

BACKUP LOCATION: /home/edb/bkup_new/hr/1566899827751

BACKUP SIZE: 7.19 MB BACKUP FORMAT: plain

BACKUP TIMEZONE: America/New_York

XLOG METHOD: fetch

BACKUP CHECKSUM(s): 0

TABLESPACE(s): 0

START WAL LOCATION: 000000010000000000000022 STOP WAL LOCATION: 0000000100000000000000023

BACKUP METHOD: streamed

BACKUP FROM: master

START TIME: 2019-08-27 05:57:07 EDT STOP TIME: 2019-08-27 05:57:08 EDT

TOTAL DURATION: 1 sec(s)

Error messages

The following table lists the error messages that may be encountered when using BART with the BACKUP subcommand.

error message

Cause

error message

Cause

edb@localhost bin]\$./bart backup s mktg -Ft

WARNING: xlog_method is empty, defaulting to global policy

ERROR: backup failed for server 'mktg'

free disk space is not enough to backup the server 'mktg'

space available 13.35 GB, approximately required 14.65 GB

Insufficient free disk space.

ERROR: backup failed for server 'mktg'

command failed with exit code 1

pg_basebackup: could not get transaction log end position from server: ERROR: requested WAL segment 000000010000000D50000006B has already been removed The wal_keep_segments configuration parameter is not set to a sufficiently large value in the postgresql.conf file.

ERROR: backup failed for server 'mktg'

connection to the server failed: could not connect to server: Connection refused

Is the server running on host "172.16.114.132" and accepting

TCP/IP connections on port 5444?

A connection to a database server listed in the BART configuration file fails. As a result the backup for that database server is skipped, but the backup operation continues for other database servers

3.1.2 CHECK-CONFIG

The CHECK-CONFIG subcommand checks the parameter settings in the BART configuration file as well as the database server configuration for which the -s option is specified.

Syntax:

```
bart CHECK-CONFIG [ -s <server_name> ]
```

In the above syntax diagram, CHECK-CONFIG is the BART subcommand and -s <server_name> is the subcommand option.

Option

```
-s (or --server) <server_name>
```

<server_name> is the name of the database server whose configuration parameter
settings are to be checked. If you do not specify the <server_name>, the settings of
the BART configuration file global section are checked.

Example

The following example demonstrates a bart CHECK-CONFIG command without the – s option. It successfully checks the global section of the BART configuration file:

bash-4.1\$ bart CHECK-CONFIG

INFO: Verifying that pg_basebackup is executable

INFO: success -

INFO: success - pg_basebackup(/usr/edb/as11/bin/pg_basebackup) returns

version 11.400000

The following example demonstrates executing a bart CHECK-CONFIG command with the —s option. It successfully checks the database server parameter settings:

[edb@localhost bin]\$./bart check-config -s hr

INFO: Checking server hr

INFO: Verifying cluster_owner and ssh/scp connectivity

INFO: success

INFO: Verifying user, host, and replication connectivity

INFO: success

INFO: Verifying that user is a database superuser

INFO: success

INFO: Verifying that cluster_owner can read cluster data files

INFO: success

INFO: Verifying that you have permission to write to vault

INFO: success

INFO: /home/edb/bkup_new/hr

INFO: Verifying database server configuration

INFO: success

INFO: Verifying that WAL archiving is working

INFO: waiting 30 seconds for

/home/edb/bkup new/hr/archived wals/0000000100000000000001E

INFO: success

INFO: Verifying that bart-scanner is configured and running

INFO: success

3.1.3 DELETE

The **DELETE** subcommand removes the subdirectory and data files from the BART backup catalog for the specified backups along with archived WAL files.

Syntax:

```
bart DELETE -s <server_name>
-i { all | [']{ <backup_id> | <backup_name> },... }['] }
[ -n ]
```

Note

While invoking the **DELETE** subcommand, you must specify a database server.

For database servers under a retention policy, there are conditions where certain backups may not be deleted. For more information regarding this, see the Deletions Permitted Under a Retention Policy section of the *EDB Postgres Backup and Recovery User Guide* available at:

https://www.enterprisedb.com/edb-docs/

Options

-s (or --server) <server_name>

<server_name> is the name of the database server whose backups are to be
deleted.

```
- -i (or --backupid) { all | [']{ <backup_id> | <backup_name> }',... }[`] }
```

- <backup_id> is the backup identifier of the backup to be deleted.
 <backup_name> is the user-defined alphanumeric name for the backup. Multiple backup identifiers and backup names may be specified in a comma-separated list. The list must be enclosed within single quotes if there is any white space appearing before or after each comma (see Example section). If all is specified, all backups and their archived WAL files for the specified database server are deleted.
- -n or --dry-run

Performs the test run and displays the results prior to actually physically removing files, however, no files are actually deleted.

Example

The following example deletes a backup from the specified database server.

[edb@localhost bin]\$ /bart DELETE -s acctg -i acctg 2019-08-27

INFO: deleting backup 'acctg_2019-08-27' of server 'acctg'

INFO: deleting backup '1566900093665'

INFO: WALs of deleted backup(s) will belong to prior backup(if any), or will

be marked unused

WARNING: not marking any WALs as unused WALs, the WAL file

'/home/edb/bkup_new/acctg/archived_wals/0000000100000000000000025'

is required, yet not available in archived_wals directory

INFO: backup(s) deleted

[edb@localhost bin]\$

After the deletion, the BART backup catalog for the database server no longer contains the corresponding directory for the deleted backup ID. The archived_wals subdirectory no longer contains the backup WAL files.

[edb@localhost acctg]\$ ls -l total 16

```
drwxrwxr-x. 3 edb edb 4096 Aug 27 06:03 1566900199604
drwxrwxr-x. 3 edb edb 4096 Aug 27 06:03 1566900204377
```

drwxrwxr-x. 3 edb edb 4096 Aug 27 06:03 1566900209087

drwxrwxr-x. 3 edb edb 4096 Aug 27 06:05 1566900321228

drwxrwxr-x. 2 edb edb 6 Aug 27 06:01 archived_wals

The following example deletes multiple backups from the database server.

[edb@localhost bin]\$./bart DELETE -s acctg -i `1566988095633,1566988100760, acctg_2019-08-28`

INFO: deleting backup `1566988095633` of server `acctg`

INFO: deleting backup `1566988095633`

INFO: WALs of deleted backup(s) will belong to prior backup(if any), or will be marked unused

WARNING: not marking any WALs as unused WALs, the WAL file `home/edb/bkup_new/acctg/archived_wals/00000010000000000000037` is required,

yet not available in archived_wals directory

INFO: backup(s) deleted

INFO: deleting backup `1566988100760` of server `acctg`

INFO: deleting backup `1566988100760`

INFO: WALs of deleted backup(s) will belong to prior backup(if any), or will be marked unused

WARNING: not marking any WALs as unused WALs, the WAL file `/home/edb/bkup_new/acctg/archived_wals/000000010000000000000039` is

required, yet not available in archived_wals directory

INFO: backup(s) deleted

INFO: deleting backup 'acctg_2019-08-28' of server 'acctg'

INFO: deleting backup `1566988115512`

INFO: WALs of deleted backup(s) will belong to prior backup(if any), or will be marked unused

WARNING: not marking any WALs as unused WALs, the WAL file

 $`/home/edb/bkup_new/acctg/archived_wals/00000001000000000000003C` is required,$

yet not available in archived_wals directory

INFO: backup(s) deleted

[edb@localhost bin]\$

[edb@localhost bin]\$

[edb@localhost bin]\$

[edb@localhost acctg]\$ [edb@localhost acctg]\$ Is -I

total 8

drwxrwxr-x. 3 edb edb 4096 Aug 28 06:28 1566988105086

drwxrwxr-x. 3 edb edb 4096 Aug 28 06:28 1566988109477

drwxrwxr-x. 2 edb edb 6 Aug 28 06:09 archived_wals

[edb@localhost acctg]\$

Deleting Multiple Backups with Space Characters

The following example also deletes multiple backups, but since there are space characters in the comma-separated list, the entire list must be enclosed within single quotes.

[edb@localhost bin]\$./bart DELETE -s acctg -i

`1566900199604,1566900204377,1566900209087`;

INFO: deleting backup `1566900199604` of server `acctg`

INFO: deleting backup `1566900199604`

INFO: WALs of deleted backup(s) will belong to prior backup(if any), or will be marked unused

WARNING: not marking any WALs as unused WALs, the WAL file `/home/edb/bkup_new/acctg/archived_wals/000000010000000000000028` is

required,

yet not available in archived_wals directory

INFO: backup(s) deleted

INFO: deleting backup `1566900204377` of server `acctg`

INFO: deleting backup `1566900204377`

INFO: WALs of deleted backup(s) will belong to prior backup(if any), or will be marked unused

WARNING: not marking any WALs as unused WALs, the WAL file

`/home/edb/bkup_new/acctg/archived_wals/000000010000000000000002A` is required,

yet not available in archived_wals directory

INFO: backup(s) deleted

INFO: deleting backup `1566900209087` of server `acctg`

INFO: deleting backup `1566900209087`

INFO: WALs of deleted backup(s) will belong to prior backup(if any), or will

be marked unused

WARNING: not marking any WALs as unused WALs, the WAL file

`/home/edb/bkup_new/acctg/archived_wals/00000001000000000000002C` is

```
required,
yet not available in archived_wals directory
INFO: backup(s) deleted
[edb@localhost bin]$
[edb@localhost acctg]$ ls -l
total 4
drwxrwxr-x. 3 edb edb 4096 Aug 27 06:05 1566900321228
drwxrwxr-x. 2 edb edb 6 Aug 27 06:01 archived_wals
[edb@localhost acctg]$
```

3.1.4 INIT

The INIT subcommand is used to create the BART backup catalog directory, rebuild the BART backupinfo file, and set the archive_command in the PostgreSQL server based on the archive_command setting in the bart.cfg file.

Syntax:

```
bart INIT [ -s { <server_name> | all } ] [ -o ]
[ -r [ -i { <backup_id> | <backup_name> | all } ] ]
[-- no-configure]
```

Options

```
- -s or --server { <server_name> | all }
```

<server_name> is the name of the database server to which the INIT actions are to be applied. If all is specified or if the option is omitted, actions are applied to all servers.

-o or –override

Overrides the existing Postgres archive_command configuration parameter setting in the postgresql.conf file or the postgresql.auto.conf file using the BART

archive_command parameter in the BART configuration file. The INIT generated archive command string is written to the postgresql.auto.conf file.

-r or –rebuild

Rebuilds the backupinfo file located in each backup subdirectory.

- -i or --backupid { <backup id> | <backup name> | all }

<backup_id> is an integer, backup identifier and <backup_name> is the user-defined alphanumeric name for the backup. If all is specified or if the option is omitted, the backupinfo files of all backups for the database servers specified by the -s option are recreated. The -i option can only be used with the -r option.

--no-configure

Prevents the archive_command from being set in the PostgreSQL server.

<server_name>

Database server name to which the **INIT** actions are to be applied. If all is specified or if the option is omitted, actions are applied to all servers.

Examples

In the following example, you can see that archive_mode = off and archive_command is not set. After invoking the BART INIT subcommand, archive_mode is set to on and archive_command is set.

```
archive_mode = off # enables archiving; off, on, or always
# (change requires restart)
archive_command = "
# command to use to archive a logfile segment
[edb@localhost bin]$ ./bart init -s ppas11
INFO: setting archive_mode/archive_command for server 'ppas11'
WARNING: archive_mode/archive_command is set. Restart the PostgreSQL
server using 'pg_ctl restart'
[edb@localhost bin]$
# Do not edit this file manually!
# It will be overwritten by the ALTER SYSTEM command.
archive_mode = 'on'
archive_command = 'scp %p
edb@127.0.0.1:/home/edb/bkup/ppas11/archived_wals/%f'
```

In this following example, you can see that archive_mode = on, and archive_command is not set. After invoking BART INIT subcommand, archive_command is set.

```
archive_mode = on # enables archiving; off, on, or always
# (change requires restart)
archive_command = " # command to use to archive a logfile segment
[edb@localhost bin]$ ./bart init -s ppas11
INFO: setting archive_mode/archive_command for server 'ppas11'
WARNING: archive_command is set. Reload the configuration in the
PostgreSQL server using pg_reload_conf() or 'pg_ctl reload'
[edb@localhost bin]$
# Do not edit this file manually!
# It will be overwritten by the ALTER SYSTEM command.
archive_command = 'scp %p
edb@127.0.0.1:/home/edb/bkup/ppas11/archived_wals/%f'
```

In the following example, you can see that archive_command archive_command is already set. After invoking BART INIT subcommand, there is no change in the setting.

Note

To override the existing archive_command, you must include the -o option.

```
archive_mode = on # enables archiving; off, on, or always
# (change requires restart)
archive_command = 'scp %p
edb@127.0.0.1:/home/edb/bkup/ppas11/archived_wals/%f' # command to use
to archive a logfile segment
# placeholders: %p = path of file to archive
[edb@localhost bin]$ ./bart init -s ppas11
INFO: setting archive_mode/archive_command for server 'ppas11'
WARNING: archive_command is not set for server 'ppas11'
[edb@localhost bin]$
# Do not edit this file manually!
# It will be overwritten by the ALTER SYSTEM command.
```

In this following example, you can see that archive_mode = off and archive_command is already set. After invoking BART INIT subcommand, archive_mode is set to on.

```
archive_mode = off # enables archiving; off, on, or always
# (change requires restart)
archive_command = 'scp %p
edb@127.0.0.1:/home/edb/bkup/ppas11/archived_wals/%f' # command to use
to archive a log file segment
[edb@localhost bin]$ ./bart init -s ppas11
INFO: setting archive_mode/archive_command for server 'ppas11'
WARNING: archive_mode/archive_command is set. Restart the PostgreSQL
server using 'pg_ctl restart'
# Do not edit this file manually!
# It will be overwritten by the ALTER SYSTEM command.
archive_mode = 'on'
archive_command = 'scp %p
edb@127.0.0.1:/home/edb/bkup/ppas11/archived_wals/%f'
```

The following example overrides an existing archive command setting by resetting the archive_command in the PostgreSQL server with the archive_command = 'cp %p %a/%f' parameter from the bart.cfg file.

The following parameters are set in the bart.cfg file:

```
[BART]

bart_host= enterprisedb@192.168.2.22

backup_path = /opt/backup_edb
pg_basebackup_path = /usr/edb/as11/bin/pg_basebackup
logfile = /tmp/bart.log
scanner_logfile = /tmp/bart_scanner.log

[ACCTG]

host = 127.0.0.1
port = 5444
user = repuser
cluster_owner = enterprisedb
archive_command = 'cp %p %a/%f'
description = "Accounting"
```

The archive_mode and archive_command parameters in the database server are set as follows:

Invoke the INIT subcommand with the -o option to override the current archive_command setting in the PostgreSQL server:

```
-bash-4.1$ bart INIT -s acctg -o
INFO: setting archive_mode/archive_command for server 'acctg'
WARNING: archive_command is set. Reload the configuration in the
PostgreSQL server using pg_reload_conf() or 'pg_ctl reload'
```

Reload the database server configuration; a restart of the database server is not necessary to reset only the archive_command parameter.

[root@localhost tmp]# service ppas11 reload

The archive_command in the PostgreSQL server is now set as follows:

The new command string is written to the postgresql.auto.conf file:

```
# Do not edit this file manually!

# It will be overwritten by ALTER SYSTEM command.

archive_command = 'cp %p /opt/backup_edb/acctg/archived_wals/%f'
```

Example of BART INIT with the -r Option

When you invoke the BART INIT command with the -r option, BART rebuilds the backupinfo file using the content of the backup directory for the server specified or for all servers. The BART backupinfo file is initially created by the BACKUP subcommand and contains the backup information used by BART.

Note

If the backup was initially created with a user-defined backup name, and then the INIT -r option is invoked to rebuild that backupinfo file, the user-defined backup name is no longer available. Thus, future references to the backup must use the backup identifier.

The following example shows the backupinfo file location in a backup subdirectory:

[root@localhost acctg]# pwd
/opt/backup/acctg
[root@localhost acctg]# ls -l

[root@localnost acctg]# is -i

total 4

drwx----- 2 enterprisedb enterprisedb 38 Oct 26 10:21 1477491569966

drwxrwxr-x 2 enterprisedb enterprisedb 4096 Oct 26 10:19 archived_wals

[root@localhost acctg]# ls -l 1477491569966

total 61144

-rw-rw-r-- 1 enterprisedb enterprisedb 703 Oct 26 10:19 backupinfo

-rw-rw-r-- 1 enterprisedb enterprisedb 62603776 Oct 26 10:19 base.tar

The backupinfo file content is as follows:

BACKUP DETAILS:

BACKUP STATUS: active

BACKUP IDENTIFIER: 1477491569966

BACKUP NAME: none BACKUP PARENT: none

BACKUP LOCATION: /opt/backup/acctg/1477491569966

BACKUP SIZE: 59.70 MB BACKUP FORMAT: tar BACKUP TIMEZONE: XLOG METHOD: fetch

BACKUP CHECKSUM(s): 1

ChkSum File

84b3eeb1e3f7b3e75c2f689570d04f10 base.tar

TABLESPACE(s): 0

START WAL LOCATION: 2/A5000028 (file 0000000100000002000000A5)

STOP WAL LOCATION: 2/A50000C0 (file 0000000100000002000000A5)

CHECKPOINT LOCATION: 2/A5000028

BACKUP METHOD: streamed

BACKUP FROM: master

START TIME: 2016-10-26 10:19:30 EDT LABEL: pg_basebackup base backup STOP TIME: 2016-10-26 10:19:30 EDT

TOTAL DURATION: 0 sec(s)

If the backupinfo file is missing, you will get an error message when invoking a BART subcommand:

-bash-4.2\$ bart SHOW-BACKUPS

ERROR: 'backupinfo' file does not exist for backup '1477491569966' please use 'INIT -r' to generate the file

The backupinfo file may be missing if the BACKUP subcommand did not complete successfully.

The following example rebuilds the backupinfo file of the specified backup for database server acctg.

-bash-4.1\$ bart INIT -s acctg -r -i 1428346620427

INFO: rebuilding BACKUPINFO for backup '1428346620427' of server 'acctg' INFO: backup checksum: ced59b72a7846ff8fb8afb6922c70649 of base.tar

The following example shows how the backupinfo files of all backups are rebuilt for all database servers.

-bash-4.1\$ bart INIT -r

INFO: rebuilding BACKUPINFO for backup '1428347191544' of server 'acctg' INFO: backup checksum: 1ac5c61f055c910db314783212f2544f of base.tar INFO: rebuilding BACKUPINFO for backup '1428346620427' of server 'acctg' INFO: backup checksum: ced59b72a7846ff8fb8afb6922c70649 of base.tar INFO: rebuilding BACKUPINFO for backup '1428347198335' of server 'dev' INFO: backup checksum: a8890dd8ab7e6be5d5bc0f38028a237b of base.tar INFO: rebuilding BACKUPINFO for backup '1428346957515' of server 'dev' INFO: backup checksum: ea62549cf090573625d4adeb7d919700 of base.tar

Example of BART INIT with the -r -i Options

```
edb@localhost bin]$ ./bart init -s ppas11 -i 1551778898392 -r
INFO: rebuilding BACKUPINFO for backup '1551778898392' of server
'ppas11'
[edb@localhost bin]$ ls /home/edb/bkup/ppas11/1551778898392/
backupinfo backup_label base base-1.tar base-2.tar base-3.tar
base-4.tar base-5.tar base.tar
```

Example of BART INIT with the --no-configure Option

You can use the --no-configure option with the INIT subcommand to prevent the archive_command option from being set in the PostgreSQL server.

```
[edb@localhost bin]$ ./bart init -s ppas11 -o --no-configure
[edb@localhost bin]$
# Do not edit this file manually!
# It will be overwritten by the ALTER SYSTEM command.
```

3.1.5 MANAGE

The MANAGE subcommand can be invoked to:

- Evaluate backups, mark their status, and delete obsolete backups based on the retention policy parameter in the BART configuration file.
- Compress the archived WAL files based on the wal_compression parameter in the BART configuration file.

Syntax:

> bart MANAGE [-s { <server_name> | all}]

```
[-I][-d]
[-c { keep | nokeep }
-i { <backup_id> | <backup_name> | all } ]
[-n]
```

To view detailed information about the MANAGE subcommand and retention policy management, see the EDB Postgres Backup and Recovery User Guide. For

information about setting the wal_compression parameter, see the *EDB Postgres*Backup and Recovery Installation and Upgrade Guide. These guides are available at:

https://www.enterprisedb.com/edb-docs/

Options

```
- -s { <server_name> | all } or --server { <server_name> | all }
```

- > `<server_name>` is the name of the database server to which the `MANAGE` actions are to be applied.
- > If `all` is specified or if the `-s` option is omitted, actions are applied to all database servers.
 - -l or --list-obsolete

Lists the backups marked as obsolete.

• -d or --delete-obsolete

Deletes the backups marked as obsolete. This action physically deletes the backup along with its archived WAL files and any MBM files for incremental backups.

```
- -c { keep | nokeep } or --change-status { keep | nokeep }
```

- Specify `keep` to change the backup status to `keep`. It is used to retain the backup indefinitely.
- Specify `nokeep` to change the status of any backup back to active status. You can then re-evaluate and possibly mark the backup as obsolete (according to the retention policy) using the `MANAGE` subcommand.

Note

The -c option can only be used with the -i option.

- <backup_id> is a backup identifier and <backup_name> is the user-defined alphanumeric name for the backup. If all is specified, actions are applied to all backups. The -i option can only be used with the -c option.
- -n, --dry-run

Performs the test run and displays the results prior to actually implementing the

actions as if the operation was performed, however, no changes are actually made.

- If you specify -n with the -d option, it displays which backups would be deleted, but does not actually delete the backups.
- If you specify -n with the -c option, it displays the keep or nokeep action, but does not actually change the backup status.
- If you specify -n alone with no other options or if you specify -n with only the -s option, it displays which active backups would be marked as obsolete, but does not actually change the backup status. In addition, no compression is performed on uncompressed, archived WAL files even if WAL compression is enabled for the database server.

Example

The following example performs a dry run for the specified database server displaying which active backups are evaluated as obsolete according to the retention policy, but does not actually change the backup status:

-bash-4.2\$ bart MANAGE -s acctg -n

INFO: processing server 'acctg', backup '1482770807519'

INFO: processing server 'acctg', backup '1482770803000'

INFO: marking backup '1482770803000' as obsolete

INFO: 1 WAL file(s) marked obsolete

INFO: processing server 'acctg', backup '1482770735155'

INFO: marking backup '1482770735155' as obsolete

INFO: 2 incremental(s) of backup '1482770735155' will be marked obsolete

INFO: marking incremental backup '1482770780423' as obsolete

INFO: marking incremental backup '1482770763227' as obsolete

INFO: 3 WAL file(s) marked obsolete

INFO: 1 Unused WAL file(s) present

INFO: 2 Unused file(s) (WALs included) present, use 'MANAGE -I' for the

list

The following example marks active backups as obsolete according to the retention policy for the specified database server:

-bash-4.2\$ bart MANAGE -s acctg

INFO: processing server 'acctg', backup '1482770807519'

INFO: processing server 'acctg', backup '1482770803000'

INFO: marking backup '1482770803000' as obsolete

INFO: 1 WAL file(s) marked obsolete

INFO: processing server 'acctg', backup '1482770735155'

INFO: marking backup '1482770735155' as obsolete

INFO: 2 incremental(s) of backup '1482770735155' will be marked obsolete

INFO: marking incremental backup '1482770780423' as obsolete INFO: marking incremental backup '1482770763227' as obsolete

INFO: 3 WAL file(s) marked obsolete INFO: 1 Unused WAL file(s) present

INFO: 2 Unused file(s) (WALs included) present, use 'MANAGE -I' for the

list

The following example lists backups marked as obsolete for the specified database server:

-bash-4.2\$ bart MANAGE -s acctg -l

SERVER NAME: acctg

BACKUP ID: 1482770803000 BACKUP STATUS: obsolete

BACKUP TIME: 2016-12-26 11:46:43 EST

BACKUP SIZE: 59.52 MB

WAL FILE(s): 1

WAL FILE: 00000001000000100000055

SERVER NAME: acctg

BACKUP ID: 1482770735155 BACKUP STATUS: obsolete

BACKUP TIME: 2016-12-26 11:45:35 EST

BACKUP SIZE: 59.52 MB

INCREMENTAL BACKUP(s): 2 BACKUP ID: 1482770780423

BACKUP PARENT: 1482770735155

BACKUP STATUS: obsolete

BACKUP TIME: 2016-12-26 11:45:35 EST

BACKUP SIZE: 59.52 MB

BACKUP ID: 1482770763227

BACKUP PARENT: 1482770735155

BACKUP STATUS: obsolete

BACKUP TIME: 2016-12-26 11:45:35 EST

BACKUP SIZE: 59.52 MB

WAL FILE(s): 3

WAL FILE: 00000001000000100000054

WAL FILE: 00000001000000100000053 WAL FILE: 0000000100000010000052

UNUSED FILE(s): 2

UNUSED FILE: 00000001000000100000051

UNUSED FILE: 0000000100000001510000280000000152000000.mbm

The following example deletes the obsolete backups for the specified database server:

-bash-4.2\$ bart MANAGE -s acctg -d

INFO: removing all obsolete backups of server 'acctg'

INFO: removing obsolete backup '1482770803000'

INFO: 1 WAL file(s) will be removed

INFO: removing WAL file '00000001000000100000055'

INFO: removing obsolete backup '1482770735155'

INFO: 3 WAL file(s) will be removed

INFO: 2 incremental(s) of backup '1482770735155' will be removed

INFO: removing obsolete incremental backup '1482770780423'

INFO: removing obsolete incremental backup '1482770763227'

INFO: removing WAL file '00000001000000100000054'

INFO: removing WAL file '00000001000000100000053'

INFO: removing WAL file '00000001000000100000052'

INFO: 8 Unused file(s) will be removed

INFO: removing (unused) file '00000001000000100000056.00000028.backup'

INFO: removing (unused) file '00000001000000100000056'

INFO: removing (unused) file '00000001000000100000055.00000028.backup'

INFO: removing (unused) file '00000001000000100000054.00000028.backup'

INFO: removing (unused) file '00000001000000100000053.00000028.backup'

INFO: removing (unused) file '00000001000000100000052.00000028.backup'

INFO: removing (unused) file '00000001000000100000051'

INFO: removing (unused) file

'000000100000001510000280000000152000000.mbm'

The following example changes the specified backup to keep status to retain it indefinitely:

-bash-4.2\$ bart MANAGE -s acctg -c keep -i 1482770807519

INFO: changing status of backup '1482770807519' of server 'acctg' from

'active' to 'keep'

INFO: 1 WAL file(s) changed

-bash-4.2\$ bart SHOW-BACKUPS -s acctg -i 1482770807519 -t

SERVER NAME: acctg

BACKUP ID: 1482770807519

BACKUP NAME : none BACKUP PARENT : none BACKUP STATUS : keep

BACKUP TIME: 2016-12-26 11:46:47 EST

BACKUP SIZE: 59.52 MB WAL(S) SIZE: 16.00 MB

NO. OF WALS: 1

FIRST WAL FILE: 00000001000000100000057 CREATION TIME: 2016-12-26 11:52:47 EST LAST WAL FILE: 00000001000000100000057 CREATION TIME: 2016-12-26 11:52:47 EST

The following example resets the specified backup to active status:

-bash-4.2\$ bart MANAGE -s acctg -c nokeep -i 1482770807519

INFO: changing status of backup '1482770807519' of server 'acctg' from

'keep' to 'active'

INFO: 1 WAL file(s) changed

-bash-4.2\$ bart SHOW-BACKUPS -s acctg -i 1482770807519 -t

SERVER NAME: acctg

BACKUP ID: 1482770807519

BACKUP NAME : none BACKUP PARENT : none BACKUP STATUS : active

BACKUP TIME: 2016-12-26 11:46:47 EST

BACKUP SIZE: 59.52 MB WAL(S) SIZE: 16.00 MB

NO. OF WALS: 1

FIRST WAL FILE: 00000001000000100000057 CREATION TIME: 2016-12-26 11:52:47 EST LAST WAL FILE: 00000001000000100000057 CREATION TIME: 2016-12-26 11:52:47 EST

The following example uses the enabled wal_compression parameter in the BART configuration file as shown by the following:

[ACCTG]

```
host = 127.0.0.1

port = 5445

user = enterprisedb

cluster_owner = enterprisedb

allow_incremental_backups = disabled

wal_compression = enabled

description = "Accounting"
```

When the MANAGE subcommand is invoked, the following message is displayed indicating that WAL file compression is performed:

```
-bash-4.2$ bart MANAGE -s acctg
INFO: 4 WAL file(s) compressed
WARNING: 'retention_policy' is not set for server 'acctg'
```

The following example shows the archived WAL files in compressed format:

```
-bash-4.2$ pwd
/opt/backup/acctg
-bash-4.2$ Is -I archived wals
total 160
-rw----- 1 enterprisedb enterprisedb 27089 Dec 26 12:16
0000001000000010000005B.gz
-rw----- 1 enterprisedb enterprisedb 305 Dec 26 12:17
000000100000010000005C.00000028.backup
-rw----- 1 enterprisedb enterprisedb 27112 Dec 26 12:17
00000010000001000005C.gz
-rw----- 1 enterprisedb enterprisedb 65995 Dec 26 12:18
0000001000000010000005D.gz
-rw----- 1 enterprisedb enterprisedb 305 Dec 26 12:18
000000100000010000005E.00000028.backup
-rw----- 1 enterprisedb enterprisedb 27117 Dec 26 12:18
0000001000000010000005E.gz
```

3.1.6 RESTORE

The **RESTORE** subcommand restores a backup and its archived WAL files for the designated database server to the specified directory location.

Syntax for Restore:

To view detailed information about the RESTORE subcommand, see the EDB Postgres Backup and Recovery User Guide available at:

https://www.enterprisedb.com/edb-docs/

If the backup is restored to a different database cluster directory than where the original database cluster resided, then certain operations dependent upon the database cluster location may fail. This happens if their supporting service scripts are not updated to reflect the new directory location of restored backup.

For information about the use and modification of service scripts, see the *EDB Postgres Advanced Server Installation Guide* available at:

https://www.enterprisedb.com/edb-docs/

The following table lists the service scripts with Database Cluster Location for RHEL 6/CentOS 6.

Location	Description
/etc	Product information for upgrades
/etc/init.d	Service script for Advanced Server 9.5 from interactive installer
/etc/init.d	Service script for Advanced Server 9.6 from interactive installer
/etc/init.d	Service script for Advanced Server 10 from interactive installer
/etc/init.d	Service script for Advanced Server 11 from interactive installer
	/etc /etc/init.d /etc/init.d /etc/init.d

File Name	Location	Description
edb-as-12	/etc/init.d	Service script for Advanced Server 12 from interactive installer
ppas-9.5	/etc/sysconfig/ppas	Configuration script for Advanced Server 9.5 from RPM package
edb-as- 9.6.sysconfig	/etc/sysconfig/edb/as9.6	Configuration script for Advanced Server 9.6 from RPM package
edb-as- 10.sysconfig	/etc/sysconfig/edb/as10	Configuration script for Advanced Server 10 from RPM package
edb-as- 11.sysconfig	/etc/sysconfig/edb/as11	Configuration script for Advanced Server 11 from RPM package
postgresql-9.5	/etc/init.d	Service script for PostgreSQL 9.5 from interactive installer
postgresql-9.6	/etc/init.d	Service script for PostgreSQL 9.6 from interactive installer
postgresql-10	/etc/init.d	Service script for PostgreSQL 10 from interactive installer
postgresql-11	/etc/init.d	Service script for PostgreSQL 11 from interactive installer
postgresql-12	/etc/init.d	Service script for PostgreSQL 12 from interactive installer

Before modifying the service unit files for Advanced Server in RHEL 7/CentOS 7, review the instructions in the *Modifying the Data Directory Location on CentOS or RedHat 7.x* section in the *EDB Postgres Advanced Server Installation Guide* for your release available at:

https://www.enterprisedb.com/edb-docs/

The following table lists the service unit files and scripts with Database Cluster Location for RHEL 7/CentOS 7.

File Name	Location	Description
postgres- reg.ini	/etc	Product information for upgrades
ppas- 9.5.service	/usr/lib/systemd/system	Service unit file and script for Advanced Server 9.5 from interactive installer
ppas-9.5.sh		

edb-as- 9.6.service edb-as- 9.6.sh	/usr/lib/systemd/system	Service unit file and script for Advanced Server 9.6 from interactive installer
edb-as- 10.service edb-as-10.sh	/usr/lib/systemd/system	Service unit file and script for Advanced Server 10 from interactive installer
edb-as-11	/usr/lib/systemd/system	Service unit file and script for Advanced Server 11 from interactive installer
ppas- 9.5.service ppas-9.5.sh	/usr/lib/systemd/system	Service unit file and script for Advanced Server 9.5 from RPM package
edb-as- 9.6.service	/usr/lib/systemd/system	Service unit file for Advanced Server 9.6 from RPM package
edb-as- 10.service	/usr/lib/systemd/system	Service unit file for Advanced Server 10 from RPM package
edb-as-11	/usr/lib/systemd/system	Service unit file for Advanced Server 11 from RPM package
postgresql- 9.5.service	/usr/lib/systemd/system	Service unit file for PostgreSQL 9.5 from
	, a.e.,e, eyetettia, eyetetti	interactive installer
postgresql- 9.6.service	/usr/lib/systemd/system	Service unit file for PostgreSQL 9.6 from interactive installer
		Service unit file for PostgreSQL 9.6 from

Options

-s <server_name> or --server <server_name>

<server_name> is the name of the database server to be restored.

-p <restore path> or --restore-path <restore path>

<restore_path> is the directory path where the backup of the database server is to be restored. The directory must be empty and have the proper ownership and privileges assigned to it.

```
- -i { <backup_id> | <backup_name> } or --backupid { <backup_id> | <backup_name> }
```

- `backup_id` is the backup identifier of the backup to be used for the restoration and `<backup name>` is the user-defined alphanumeric name for the backup.
- If the option is omitted, the default is to use the latest backup.
- -r <remote_user>@<remote_host_address> or --remote-host <remote_user@remote_host_address>
 - <remote_user> is the user account on the remote database server host that accepts a password-less SSH/SCP login connection and is the owner of the directory where the backup is to be restored.
 - <remote_host_address> is the IP address of the remote host to which the backup is to be restored. This option must be specified if the remote_host parameter for this database server is not set in the BART configuration file.

If the BART user account is not the same as the operating system account that owns the <restore_path> directory given with the -p option, the remote_host BART configuration parameter or the RESTORE subcommand -r option must be used to specify the <restore_path> directory owner even when restoring to a directory on the same host as the BART host. For information about the remote_host parameter, see the configuration section of the EDB Postgres Backup and Recovery Installation and Upgrade Guide available at:

https://www.enterprisedb.com/edb-docs/

-w <number_of_workers> or --workers <number_of_workers>

<a href="mailto:

For example, if four worker processes are specified, four receiver processes on the restore host and four streamer processes on the BART host are used. The output of each streamer process is connected to the input of a receiver process. When the receiver gets to the point where it needs a modified block file, it obtains those modified blocks from its input. With this method, the modified block files are never written to the restore host disk. If the -w option is omitted, the default is 1 worker process.

-t <timeline id> or --target-tli <timeline id>

<timeline_id> is the integer identifier of the timeline to be used for replaying the
archived WAL files for point-in-time recovery.

-x <target_xid> or --target-xid <target_xid>

<target_xid> is the integer identifier of the transaction ID that determines the transaction up to and including, which point-in-time recovery encompasses.

-g <target_timestamp> or --target-timestamp <target_timestamp>

<target_timestamp is the timestamp that determines the point in time up to and including, which point-in-time recovery encompasses.

-c or --copy-wals

Specify this option to copy archived WAL files from the BART backup catalog to restore_path/archived_wals directory.

The restore_command retrieves the WAL files from
<restore_path>/archived_wals for the database server archive recovery. If the -c
option is omitted and the copy_wals_during_restore parameter in the BART
configuration file is not enabled in a manner applicable to this database server,
then the restore_command in the postgresql.conf retrieves the archived WAL
files directly from the BART backup catalog. For information about the
copy_wals_during_restore parameter, see the EDB Postgres Backup and
Recovery Installation and Upgrade Guide available at:

https://www.enterprisedb.com/edb-docs/

Example

The following example restores a database server(named mktg) to the /opt/restore directory up to timestamp 2015-12-15 10:47:00:

-bash-4.1\$ bart RESTORE -s mktg -i 1450194208824 -p /opt/restore -t 1 -g '2015-12-15 10:47:00'

INFO: restoring backup '1450194208824' of server 'mktg'

INFO: restoring backup to enterprisedb@192.168.2.24:/opt/restore

INFO: base backup restored

INFO: WAL file(s) will be streamed from the BART host

INFO: writing recovery settings to postgresql.auto.conf file

INFO: archiving is disabled

INFO: tablespace(s) restored

The following parameters are set in the postgresql.auto.conf file:

```
restore_command = 'scp -o BatchMode=yes -o PasswordAuthentication=no enterprisedb@192.168.2.22:/opt/backup/mktg/archived_wals/%f %p' recovery_target_time = '2015-12-15 10:47:00' recovery_target_timeline = 1
```

The following is a list of the restored files and subdirectories:

```
[root@localhost restore]# pwd
/opt/restore
[root@localhost restore]# ls -l
total 108
-rw----- 1 enterprisedb enterprisedb 208 Dec 15 10:43 backup label
drwx----- 6 enterprised enterprised 4096 Dec 2 10:38 base
drwx----- 2 enterprised enterprised 4096 Dec 15 10:42 dbms pipe
drwx----- 2 enterprisedb enterprisedb 4096 Dec 15 11:00 global
drwx----- 2 enterprised enterprised 4096 Nov 10 15:38 pg clog\
-rw----- 1 enterprised enterprised 4438 Dec 2 10:38 pg hba.conf
-rw----- 1 enterprised enterprised 1636 Nov 10 15:38 pg ident.conf
drwxr-xr-x 2 enterprisedb enterprisedb 4096 Dec 15 10:42 pg_log
drwx----- 4 enterprisedb enterprisedb 4096 Nov 10 15:38 pg multixact
drwx----- 2 enterprised enterprised 4096 Dec 15 10:42 pg notify
drwx----- 2 enterprised enterprised 4096 Nov 10 15:38 pg serial
drwx----- 2 enterprisedb enterprisedb 4096 Nov 10 15:38 pg_snapshots
drwx----- 2 enterprisedb enterprisedb 4096 Dec 15 10:42 pg stat
drwx----- 2 enterprised enterprised 4096 Dec 15 10:43 pg stat tmp
drwx----- 2 enterprised enterprised 4096 Nov 10 15:38 pg subtrans
drwx----- 2 enterprisedb enterprisedb 4096 Dec 15 11:00 pg_tblspc
drwx----- 2 enterprisedb enterprisedb 4096 Nov 10 15:38 pg twophase
-rw----- 1 enterprisedb enterprisedb 4 Nov 10 15:38 PG VERSION
drwx----- 2 enterprised enterprised 4096 Dec 15 11:00 pg xlog
-rw----- 1 enterprisedb enterprisedb 23906 Dec 15 11:00
postgresql.conf
-rw-r--r-- 1 enterprisedb enterprisedb 217 Dec 15 11:00
postgresql.auto.conf
```

Example

The following example performs a RESTORE operation with the copy_wals_during_restore parameter enabled to copy the archived WAL files to the local <restore_path>/archived_wals directory:

```
-bash-4.1$ bart RESTORE -s hr -i hr_2017-03-29T13:50 -p
/opt/restore_pg95 -t 1 -g '2017-03-29 14:01:00'
INFO: restoring backup 'hr_2017-03-29T13:50' of server 'hr'
INFO: base backup restored
INFO: copying WAL file(s) to
postgres@192.168.2.24:/opt/restore_pg95/archived_wals
INFO: writing recovery settings to postgresql.auto.conf file
INFO: archiving is disabled
INFO: permissions set on $PGDATA
INFO: restore completed successfully
```

The following parameters are set in the postgresql.auto.conf file:

```
restore_command = 'cp archived_wals/%f %p'
recovery_target_time = '2017-03-29 14:01:00'
recovery_target_timeline = 1
```

The following is a list of the restored files and subdirectories:

```
-bash-4.1$ pwd
/opt/restore pg95
-bash-4.1$ ls -l
total 128
drwxr-xr-x 2 postgres postgres 4096 Mar 29 14:27 archived_wals
-rw----- 1 postgres postgres 206 Mar 29 13:50 backup label
drwx----- 5 postgres postgres 4096 Mar 29 12:25 base
drwx----- 2 postgres postgres 4096 Mar 29 14:27 global
drwx----- 2 postgres postgres 4096 Mar 29 12:25 pg_clog
drwx----- 2 postgres postgres 4096 Mar 29 12:25 pg commit ts
drwx----- 2 postgres postgres 4096 Mar 29 12:25 pg dynshmem
-rw----- 1 postgres postgres 4212 Mar 29 13:18 pg hba.conf
-rw----- 1 postgres postgres 1636 Mar 29 12:25 pg_ident.conf
drwxr-xr-x 2 postgres postgres 4096 Mar 29 13:45 pg log
drwx----- 4 postgres postgres 4096 Mar 29 12:25 pg logical
drwx----- 4 postgres postgres 4096 Mar 29 12:25 pg multixact
drwx----- 2 postgres postgres 4096 Mar 29 13:43 pg_notify
```

```
drwx----- 2 postgres postgres 4096 Mar 29 12:25 pg_replslot
drwx----- 2 postgres postgres 4096 Mar 29 12:25 pg_serial
drwx----- 2 postgres postgres 4096 Mar 29 12:25 pg_snapshots
drwx----- 2 postgres postgres 4096 Mar 29 13:43 pg_stat
drwx----- 2 postgres postgres 4096 Mar 29 13:50 pg_stat_tmp
drwx----- 2 postgres postgres 4096 Mar 29 12:25 pg_subtrans
drwx----- 2 postgres postgres 4096 Mar 29 12:25 pg_tblspc
drwx----- 2 postgres postgres 4096 Mar 29 12:25 pg_twophase
-rw----- 1 postgres postgres 4 Mar 29 12:25 PG_VERSION
drwx----- 3 postgres postgres 4096 Mar 29 13:24 postgresql.auto.conf
-rw-r--- 1 postgres postgres 21458 Mar 29 14:27 postgresql.auto.conf
-rw-r--r-- 1 postgres postgres 118 Mar 29 14:27 postgresql.auto.conf
```

3.1.7 SHOW-SERVERS

The SHOW-SERVERS subcommand displays information for the managed database servers listed in the BART configuration file.

Syntax:

```
> bart SHOW-SERVERS [ -s { <server_name> | all } ]
```

In the above syntax diagram, SHOW-SERVERS is the BART subcommand and —s server_name and all are subcommand options.

Options

```
- -s { <server name> | all } or --server { <server name> | all }
```

<server_name> is the name of the database server to which the actions are to be applied. - If all is specified or if the -s option is omitted, the actions are applied to all database servers.

Example

The following example shows all database servers managed by BART when you execute the SHOW-SERVERS subcommand:

-bash-4.2\$ bart SHOW-SERVERS

SERVER NAME : acctg

BACKUP FRIENDLY NAME: acctg_%year-%month-%dayT%hour:%minute

HOST NAME: 127.0.0.1 USER NAME: enterprisedb

PORT: 5444

REMOTE HOST:

RETENTION POLICY: 6 Backups
DISK UTILIZATION: 0.00 bytes
NUMBER OF ARCHIVES: 0

ARCHIVE PATH:/opt/backup/acctg/archived_wals

ARCHIVE COMMAND: (disabled)

XLOG METHOD: fetch

WAL COMPRESSION: disabled

TABLESPACE PATH(s):

INCREMENTAL BACKUP: DISABLED

DESCRIPTION: "Accounting"

SERVER NAME: hr

BACKUP FRIENDLY NAME: hr_%year-%month-%dayT%hour:%minute

HOST NAME: 192.168.2.24

USER NAME: postgres

PORT: 5432

REMOTE HOST: postgres@192.168.2.24

RETENTION POLICY: 6 Backups DISK UTILIZATION: 0.00 bytes NUMBER OF ARCHIVES: 0

ARCHIVE PATH: /opt/backup/hr/archived wals

ARCHIVE COMMAND: (disabled)

XLOG METHOD: fetch

WAL COMPRESSION: disabled

TABLESPACE PATH(s):

INCREMENTAL BACKUP: DISABLED DESCRIPTION: "Human Resources"

SERVER NAME: mktg

BACKUP FRIENDLY NAME: mktg %year-%month-%dayT%hour:%minute

HOST NAME: 192.168.2.24

USER NAME: repuser

PORT: 5444

REMOTE HOST: enterprisedb@192.168.2.24

RETENTION POLICY: 6 Backups DISK UTILIZATION: 0.00 bytes NUMBER OF ARCHIVES: 0

ARCHIVE PATH:/opt/backup/mktg/archived_wals

ARCHIVE COMMAND: (disabled)

XLOG METHOD: fetch

WAL COMPRESSION: disabled

TABLESPACE PATH(s):

INCREMENTAL BACKUP: DISABLED\

DESCRIPTION: "Marketing"

3.1.8 SHOW-BACKUPS

The SHOW-BACKUPS subcommand displays the backup information for the managed database servers.

Syntax:

```
> bart SHOW-BACKUPS [ -s { <server_name> | all } ]
```

```
[ -i { <backup_id> | <backup_name> | all } ]
[ -t ]
```

Options

```
- -s { <server_name> | all } or --server { <server_name> | all }
```

- > `<server_name>` is the name of the database server whose backup information is to be displayed.
- > If `all` is specified or if the option is omitted, the backup information for all database servers is displayed with the exception as described by the following note:
- > > If you invoke the `SHOW-BACKUPS` subcommand while the BART `BACKUP` subcommand is in progress, backups affected by the backup process are shown in progress status in the displayed backup information.

```
- -i { <backup_id> | <backup_name> | all } or --backupid { <backup_id> |
<backup_name> | all }
```

- > `<backup_id>` is a backup identifier and `<backup_name>` is the user-defined alphanumeric name for the backup.
- > If `all` is specified or if the option is omitted, all backup information for the relevant database server is displayed.
 - -t or --toggle

Displays detailed backup information in list format. If the option is omitted, the default is a tabular format.

Example

The following example shows the backup from database server dev:

-bash-4.2\$ bart SHOW-BACKUPS -s dev

SERVER NAME BACKUP ID BACKUP NAME BACKUP

PARENT

BACKUP TIME BACKUP SIZE WAL(s) SIZE WAL FILES

STATUS

dev 1477579596637 dev 2016-10-27T10:46:36 none

2016-10-27 10:46:37 EDT 54.50 MB 96.00 MB 6 active

The following example shows detailed information using the -t option.

-bash-4.2\$ bart SHOW-BACKUPS -s dev -i 1477579596637 -t

SERVER NAME: dev

BACKUP ID: 1477579596637

BACKUP NAME: dev 2016-10-27T10:46:36

BACKUP PARENT : none BACKUP STATUS : active

BACKUP TIME: 2016-10-27 10:46:37 EDT

BACKUP SIZE: 54.50 MB WAL(S) SIZE: 80.00 MB

NO. OF WALS: 5

FIRST WAL FILE: 000000010000001000000EC

CREATION TIME: 2016-10-27 10:46:37 EDT LAST WAL FILE: 000000010000001000000F0

CREATION TIME: 2016-10-27 11:22:01 EDT

The following example shows a listing of an incremental backup along with its parent backup.

-bash-4.2\$ bart SHOW-BACKUPS

SERVER NAME BACKUP ID BACKUP NAME BACKUP PARENT

BACKUP TIME BACKUP SIZE WAL(s) SIZE WAL FILES

STATUS

acctg 1477580293193 acctg 2016-10-27 none

2016-10-27 10:58:13 EDT 16.45 MB 16.00 MB 1 active

acctg 1477580111358 acctg_2016-10-27 none 2016-10-27 10:55:11 EDT 59.71

MB 16.00 MB 1 active

The following example shows the complete, detailed information of the incremental backup and the parent backup.

-bash-4.2\$ bart SHOW-BACKUPS -t

SERVER NAME : acctg

BACKUP ID: 1477580293193

BACKUP NAME: none

BACKUP PARENT: acctg 2016-10-27

BACKUP STATUS: active

BACKUP TIME: 2016-10-27 10:58:13 EDT

BACKUP SIZE: 16.45 MB WAL(S) SIZE: 16.00 MB

NO. OF WALS: 1

FIRST WAL FILE: 000000010000002000000D9

CREATION TIME: 2016-10-27 10:58:13 EDT

LAST WAL FILE: 000000010000002000000D9

CREATION TIME: 2016-10-27 10:58:13 EDT

SERVER NAME: accto

BACKUP ID: 1477580111358

BACKUP NAME: acctg_2016-10-27

BACKUP PARENT : none BACKUP STATUS : active

BACKUP TIME: 2016-10-27 10:55:11 EDT

BACKUP SIZE: 59.71 MB WAL(S) SIZE: 16.00 MB

NO. OF WALS: 1

FIRST WAL FILE: 000000010000002000000D8

CREATION TIME: 2016-10-27 10:55:12 EDT

LAST WAL FILE: 000000010000002000000D8 CREATION TIME: 2016-10-27 10:55:12 EDT

3.1.9 VERIFY-CHKSUM

The VERIFY-CHKSUM subcommand verifies the MD5 checksums of the full backups and any user-defined tablespaces for the specified database server or for all database servers. The checksum is verified by comparing the current checksum of the backup against the checksum when the backup was taken.

The VERIFY-CHKSUM subcommand is only used for tar format backups. It is not applicable to plain format backups.

Syntax:

```
bart VERIFY-CHKSUM
[ -s { <server_name> | all } ]
[ -i { <backup_id> | <backup_name> | all } ]
```

Options

```
--s { <server name> | all } or --server { <server name> | all }
```

<server_name> is the name of the database server whose tar backup checksums are to be verified. - If all is specified or if the -s option is omitted, the checksums are verified for all database servers.

```
- -i { <backup_id> | <backup_name> | all } or --backupid {<backup_id> |
<backup_name> | all }
```

<backup_id> is the backup identifier of a tar format full backup whose checksum is to be verified along with any user-defined tablespaces. <backup_name> is the user-defined alphanumeric name for the full backup. - If all is specified or if the -i option is omitted, the checksums of all tar backups for the relevant database server are verified.

Example

The following example verifies the checksum of all tar format backups of the specified

database server:

```
-bash-4.1$ bart VERIFY-CHKSUM -s acctg -i all
SERVER NAME BACKUP ID VERIFY
acctg 1430239348243 OK
acctg 1430232284202 OK
acctg 1430232016284 OK
acctg 1430231949065 OK
acctg 1429821844271 OK
```

3.1.10 Running the BART WAL Scanner

Use the BART WAL scanner to invoke the bart-scanner program located in the BART_HOME bin directory. When invoking the WAL scanner, the current user must be the BART user account. For detailed information about WAL scanner and its usage, see the Running the BART WAL Scanner section of EDB Postgres Backup and Recovery User Guide available at:

https://www.enterprisedb.com/edb-docs/

Syntax:

```
bart-scanner
[-d]
[-c <config_file_path>]
{-h |
-v |
--daemon |
-p <mbm_file> |
<wal_file> |
RELOAD |
STOP }
```

When the bart-scanner program is invoked, it forks a separate process for each database server enabled with the allow_incremental_backups parameter.

The WAL scanner processes can run in either the foreground or background

depending upon usage of the --daemon option:

- If the --daemon option is specified, the WAL scanner process runs in the background. All output messages can be viewed in the BART log file.
- If the --daemon option is omitted, the WAL scanner process runs in the foreground. All output messages can be viewed from the terminal running the program as well as in the BART log file.

Options

-h or --help

Displays general syntax and information on WAL scanner usage.

-v or --version

Displays the WAL scanner version information.

-d or --debug

Displays debugging output while executing the WAL scanner with any of its options.

-c <config_file_path> or --config-path <config_file_path>

Specifies <config_file_path> as the full directory path to a BART configuration file. Use this option if you do not want to use the default BART configuration file <BART HOME>/etc/bart.cfg

--daemon

Runs the WAL scanner as a background process.

• -p <mbm_file> or --print <mbm_file>

Specifies the full directory path to an MBM file whose content is to be printed. The archive path directory charge-varchived_wals contains the MBM files.

wal file

Specifies the full directory path to a WAL file to be scanned. The archive path directory chackup_path>/<server_name>/archived_wals contains the WAL files. Use it if a WAL file in the archive path is missing its MBM file.

This option is to be used for assisting the EnterpriseDB support team for

debugging problems that may have been encountered.

RELOAD

- Reloads the BART configuration file. The keyword RELOAD is case-insensitive.
- The RELOAD option is useful if you make changes to the configuration file after the WAL scanner has been started. It will reload the configuration file and adjust the WAL scanners accordingly. For example, if a server section allowing incremental backups is removed from the BART configuration file, then the process attached to that server will stop. Similarly, if a server allowing incremental backups is added, a new WAL scanner process will be launched to scan the WAL files of that server.

STOP

Stops the WAL scanner. The keyword STOP is not case-sensitive.

Example

The following example shows the startup of the WAL scanner to run interactively. The WAL scanner begins scanning existing WAL files in the archive path that have not yet been scanned (that is, there is no corresponding MBM file for the WAL file):

The following code snippet is the content of the archive path showing the MBM files created for the WAL files. (The user name and group name of the files have been removed from the example to list the WAL files and MBM files in a more readable manner):

```
-rw----- 1 ... ... 16777216 Dec 20 09:15 00000001000000000000000F0
-rw----- 1 ... ... 16777216 Dec 20 09:16 0000000100000000000000F1
-rw----- 1 ... ... 305
                    Dec 20 09:16 00000001000000000000F1.00000028.backup
-rw-rw-r-- 1 ... ... 161
                     Dec 20 09:18
00000010000000ED0000280000000EE000000.mbm
-rw-rw-r-- 1 ... ... 161
                     Dec 20 09:18
00000010000000EE0000280000000EF000000.mbm
-rw-rw-r-- 1 ... ... 161
                     Dec 20 09:18
00000010000000EF0000280000000F0000000.mbm
-rw-rw-r-- 1 ... ... 161
                     Dec 20 09:18
00000010000000F00000280000000F1000000.mbm
-rw-rw-r-- 1 ... ... 161
                     Dec 20 09:18
00000010000000F10000280000000F2000000.mbm
```

To stop the interactively running WAL scanner, either enter ctrl-C at the terminal running the WAL scanner or invoke the bart-scanner program from another terminal with the STOP option:

```
-bash-4.2$ bart-scanner STOP
-bash-4.2$
```

The terminal on which the WAL scanner was running interactively now appears as follows after it has been stopped:

The following example shows how to invoke the WAL scanner to run as a background process with the --daemon option:

```
-bash-4.2$ bart-scanner --daemon
-bash-4.2$
```

The WAL scanner runs as a background process. There is also a separate background process for each database server that has been enabled for WAL scanning with the allow_incremental_backups parameter in the BART configuration file:

```
-bash-4.2$ ps -ef | grep bart
enterpr+ 4340 1 0 09:48 ? 00:00:00 bart-scanner --daemon
enterpr+ 4341 4340 0 09:48 ? 00:00:00 bart-scanner --daemon
enterpr+ 4415 3673 0 09:50 pts/0 00:00:00 grep --color=auto bart
```

To stop the WAL scanner processes, invoke the WAL scanner with the stop option:

```
-bash-4.2$ bart-scanner STOP
-bash-4.2$
```

If it is necessary to individually scan a WAL file, this can be done as follows:

```
-bash-4.2$ bart-scanner
/opt/backup/acctg/archived_wals/0000001000000000000000FF
-bash-4.2$
```

Should it be necessary to print the content of an MBM file for assisting the EnterpriseDB support team for debugging problems that may have been encountered, use the -p option to specify the file as in the following example:

```
-bash-4.2$ bart-scanner -p /opt/backup/acctg/archived_wals/00000010000000FF00002800000010000000.mb m
```

Header:

Version: 1.0:90500:1.2.0

Scan Start: 2016-12-20 10:02:11 EST, Scan End: 2016-12-20 10:02:11 EST, Diff: 0

sec(s)

Start LSN: ff000028, End LSN: 100000000, TLI: 1

flags: 0, Check Sum: f9cfe66ae2569894d6746b61503a767d

Path: base/14845/16384 NodeTag: BLOCK_CHANGE

Relation: relPath base/14845/16384, isTSNode 0, Blocks

First modified block: 0
Total modified blocks: 1

Path: base/14845/16391

NodeTag: BLOCK_CHANGE

Relation: relPath base/14845/16391, isTSNode 0, Blocks

*

First modified block: 0
Total modified blocks: 1

3.2 Examples

This section lists examples of the following BART operations.

- Restoring a Database Cluster with Tablespaces.
- Evaluating, marking, and deleting backups and incremental backups using redundancy and recovery window retention policy.
- Restoring an incremental backup.

Restoring a Database Cluster with Tablespaces

The following example illustrates taking a backup and restoring a database cluster on a remote host containing tablespaces. For detailed information regarding tablespaces, see the *EDB Postgres Backup and Recovery User Guide* available at:

https://www.enterprisedb.com/edb-docs/

On an Advanced Server database running on a remote host, the following tablespaces are created and used by two tables:

```
edb=# CREATE TABLESPACE tblspc_1 LOCATION '/mnt/tablespace_1';
CREATE TABLESPACE
edb=# CREATE TABLESPACE tblspc_2 LOCATION '/mnt/tablespace_2';
CREATE TABLESPACE
edb=# \db
List of tablespaces
Name | Owner | Location
```

```
-----+-----+
pg default | enterprisedb
pg_global | enterprisedb
tblspc 1 | enterprisedb | /mnt/tablespace 1
        | enterprisedb | /mnt/tablespace_2
tblspc 2
(4 rows)
edb=# CREATE TABLE tbl tblspc 1 (c1 TEXT) TABLESPACE tblspc 1;
CREATE TABLE
edb=# CREATE TABLE tbl tblspc 2 (c1 TEXT) TABLESPACE tblspc 2;
CREATE TABLE
edb=# \d tbl tblspc 1
Table "enterprisedb.tbl tblspc 1"
Column | Type | Modifiers
-----+-----
c1
    | text |
Tablespace: "tblspc_1"
edb=# \d tbl_tblspc_2
Table "enterprisedb.tbl tblspc 2"
Column | Type | Modifiers
-----+-----
с1
     | text |
Tablespace: "tblspc_2"
```

The following example shows the OIDs assigned to the tablespaces and the symbolic links to the tablespace directories:

```
-bash-4.1$ pwd
/opt/PostgresPlus/9.5AS/data/pg_tblspc
-bash-4.1$ ls -l
total 0
lrwxrwxrwx 1 enterprisedb enterprisedb 17 Nov 16 16:17 16587 ->/mnt/tablespace_1
lrwxrwxrwx 1 enterprisedb enterprisedb 17 Nov 16 16:17 16588 ->/mnt/tablespace_2
```

The BART configuration file contains the following settings. Note that the tablespace path parameter does not have to be set at this point.

```
[BART]
bart_host= enterprisedb@192.168.2.22
```

```
backup_path = /opt/backup
pg_basebackup_path = /usr/edb/as11/bin/pg_basebackup
logfile = /tmp/bart.log
scanner_logfile = /tmp/bart_scanner.log

[ACCTG]
host = 192.168.2.24
port = 5444
user = repuser
cluster_owner = enterprisedb
remote_host = enterprisedb@192.168.2.24
tablespace_path =
```

After the necessary configuration steps are performed to ensure BART manages the remote database server, a full backup is taken.

```
-bash-4.1$ bart BACKUP -s acctg
```

description = "Accounting"

INFO: creating backup for server 'acctg' INFO: backup identifier: '1447709811516' 54521/54521 kB (100%), 3/3 tablespaces

INFO: backup completed successfully

INFO: backup checksum: 594f69fe7d26af991d4173d3823e174f of 16587.tar INFO: backup checksum: 7a5507567729a21c98a15c948ff6c015 of base.tar INFO: backup checksum: ae8c62604c409635c9d9e82b29cc0399 of 16588.tar

INFO:

BACKUP DETAILS:

BACKUP STATUS: active

BACKUP IDENTIFIER: 1447709811516

BACKUP NAME: none

BACKUP LOCATION: /opt/backup/acctg/1447709811516

BACKUP SIZE: 53.25 MB BACKUP FORMAT: tar XLOG METHOD: fetch

BACKUP CHECKSUM(s): 3

ChkSum File

594f69fe7d26af991d4173d3823e174f 16587.tar

7a5507567729a21c98a15c948ff6c015 base.tar ae8c62604c409635c9d9e82b29cc0399 16588.tar

TABLESPACE(s): 2

Oid Name Location

16587 tblspc_1 /mnt/tablespace_1 16588 tblspc_2 /mnt/tablespace_2

BACKUP METHOD: streamed

BACKUP FROM: master

START TIME: 2015-11-16 16:36:51 EST STOP TIME: 2015-11-16 16:36:52 EST

TOTAL DURATION: 1 sec(s)

Note in the output from the preceding example that checksums are generated for the tablespaces as well as the full backup.

Within the backup subdirectory 1447709811516 of the BART backup catalog, the tablespace data is stored with file names 16587.tar.gz and 16588.tar.gz as shown by the following example:

-bash-4.1\$ pwd

/opt/backup/acctg

-bash-4.1\$ ls -l

total 8

drwx----- 2 enterprisedb enterprisedb 4096 Nov 16 16:36 1447709811516

drwx----- 2 enterprised enterprised 4096 Nov 16 16:43 archived wals

-bash-4.1\$ ls -l 1447709811516

total 54536

-rw-rw-r-- 1 enterprisedb enterprisedb 19968 Nov 16 16:36 16587.tar

-rw-rw-r-- 1 enterprisedb enterprisedb 19968 Nov 16 16:36 16588.tar

-rw-rw-r-- 1 enterprisedb enterprisedb 949 Nov 16 17:05 backupinfo

-rw-rw-r-- 1 enterprisedb enterprisedb 55792640 Nov 16 16:36 base.tar

When you are ready to restore the backup, in addition to creating the directory to which the main database cluster is to be restored, prepare the directories to which the tablespaces are to be restored.

On the remote host, directories <code>/opt/restore_tblspc_1</code> and <code>/opt/restore_tblspc_2</code> are created and assigned the proper ownership and permissions as shown by the following example. The main database cluster is to be restored to <code>/opt/restore</code>.

```
[root@localhost opt]# mkdir restore tblspc 1
[root@localhost opt]# chown enterprised restore tblspc 1
[root@localhost opt]# chgrp enterprisedb restore tblspc 1
[root@localhost opt]# chmod 700 restore_tblspc_1
[root@localhost opt]# mkdir restore tblspc 2
[root@localhost opt]# chown enterprised restore tblspc 2
[root@localhost opt]# chgrp enterprisedb restore_tblspc_2
[root@localhost opt]# chmod 700 restore_tblspc_2
[root@localhost opt]# ls -l
total 20
drwxr-xr-x 3 root daemon 4096 Nov 10 15:38 PostgresPlus
drwx----- 2 enterprised enterprised 4096 Nov 16 17:40 restore
drwx----- 2 enterprisedb enterprisedb 4096 Nov 16 17:40
restore tblspc 1
drwx----- 2 enterprisedb enterprisedb 4096 Nov 16 17:41
restore tblspc 2
drwxr-xr-x. 2 root root 4096 Nov 22 2013 rh
```

Set the tablespace_path parameter in the BART configuration file to specify the tablespace directories.

Also note that the remote host user and IP address are specified by the remote_host configuration parameter.

```
[ACCTG]

host = 192.168.2.24

port = 5444

user = repuser

cluster_owner = enterprisedb

remote_host = enterprisedb@192.168.2.24

tablespace_path =

16587=/opt/restore_tblspc_1;16588=/opt/restore_tblspc_2

description = "Accounting"
```

The following example shows invocation of the **RESTORE** subcommand:

```
-bash-4.1$ bart RESTORE -s acctg -i 1447709811516 -p /opt/restore INFO: restoring backup '1447709811516' of server 'acctg'
```

INFO: restoring backup to enterprisedb@192.168.2.24:/opt/restore

INFO: base backup restored INFO: archiving is disabled INFO: tablespace(s) restored

The following example shows the restored full backup including the restored tablespaces:

```
bash-4.1$ pwd
/opt
-bash-4.1$ Is -I restore
total 104
-rw----- 1 enterprisedb enterprisedb 206 Nov 16 16:36 backup label.old
drwx----- 6 enterprisedb enterprisedb 4096 Nov 10 15:38 base
drwx----- 2 enterprised enterprised 4096 Nov 16 17:46 global
drwx----- 2 enterprisedb enterprisedb 4096 Nov 10 15:38 pg_clog
-rw----- 1 enterprised enterprised 4438 Nov 10 16:23 pg hba.conf
-rw----- 1 enterprised enterprised 1636 Nov 10 15:38 pg ident.conf
drwxr-xr-x 2 enterprisedb enterprisedb 4096 Nov 16 17:45 pg log
drwx----- 4 enterprisedb enterprisedb 4096 Nov 10 15:38 pg multixact
drwx----- 2 enterprised enterprised 4096 Nov 16 17:45 pg notify
drwx----- 2 enterprisedb enterprisedb 4096 Nov 10 15:38 pg serial
drwx----- 2 enterprisedb enterprisedb 4096 Nov 10 15:38 pg snapshots
drwx----- 2 enterprisedb enterprisedb 4096 Nov 16 17:47 pg stat
drwx----- 2 enterprisedb enterprisedb 4096 Nov 16 17:47 pg_stat_tmp
drwx----- 2 enterprisedb enterprisedb 4096 Nov 10 15:38 pg subtrans
drwx----- 2 enterprisedb enterprisedb 4096 Nov 16 17:42 pg tblspc
drwx----- 2 enterprisedb enterprisedb 4096 Nov 10 15:38 pg twophase
-rw----- 1 enterprisedb enterprisedb 4 Nov 10 15:38 PG VERSION
drwx----- 3 enterprisedb enterprisedb 4096 Nov 16 17:47 pg xlog
-rw----- 1 enterprised enterprised 23906 Nov 16 17:42 postgresql.conf
-rw----- 1 enterprisedb enterprisedb 61 Nov 16 17:45 postmaster.opts
-bash-4.1$
-bash-4.1$ Is -I restore_tblspc_1
total 4
drwx----- 3 enterprisedb enterprisedb 4096 Nov 16 16:18
PG 9.5 201306121
-bash-4.1$ Is -I restore tblspc 2
total 4
```

```
drwx----- 3 enterprisedb enterprisedb 4096 Nov 16 16:18
PG_9.5_201306121
```

The symbolic links in the pg_tblspc subdirectory point to the restored directory location:

```
bash-4.1$ pwd
/opt/restore/pg_tblspc
-bash-4.1$ ls -l
total 0
lrwxrwxrwx 1 enterprisedb enterprisedb 21 Nov 16 17:42 16587 ->
/opt/restore_tblspc_1
lrwxrwxrwx 1 enterprisedb enterprisedb 21 Nov 16 17:42 16588 ->
/opt/restore_tblspc_2
```

Queries within psql also show the restored tablespaces:

Managing Backups

This section illustrates evaluating, marking, and deleting backups using the MANAGE subcommand with two examples – the first for a redundancy retention policy and the second for a recovery window retention policy. For detailed information about the MANAGE subcommand, see the EDB Postgres Backup and Recovery User Guide available at:

https://www.enterprisedb.com/edb-docs/

- Using a Redundancy Retention Policy provides example of evaluating, marking, and deleting backups using the redundancy retention policy
- Using a Recovery Window Retention Policy provides examples of evaluating,

marking, and deleting backups using the recovery window retention policy

Using a Redundancy Retention Policy

The following example uses a redundancy retention policy to evaluate, mark, and delete backups as shown by the following server configuration:

```
[ACCTG]
host = 127.0.0.1
port = 5444
user = enterprisedb
archive_command = 'cp %p %a/%f'
retention_policy = 3 BACKUPS
description = "Accounting"
```

The following list is the set of backups. Note that the last backup in the list has been marked as keep.

```
-bash-4.1$ bart SHOW-BACKUPS -s acctg
SERVER NAME BACKUP ID
                            BACKUP TIME
                                                 BACKUP SIZE WAL(s)
SIZE
WAL FILES STATUS
       1428768344061 2015-04-11 12:05:46 EDT 5.72 MB
                                                          48.00 MB
acctg
3
       active
        1428684537299 2015-04-10 12:49:00 EDT 5.72 MB
                                                          272.00 MB
acctg
17
       active
       1428589759899 2015-04-09 10:29:27 EDT 5.65 MB
                                                          96.00 MB
acctg
6
       active
        1428502049836 2015-04-08 10:07:30 EDT 55.25 MB
                                                           96.00 MB
acctg
6
       active
acctg
        1428422324880 2015-04-07 11:58:45 EDT 54.53 MB
                                                           32.00 MB
2
       active
        1428355371389 2015-04-06 17:22:53 EDT 5.71 MB
                                                          16.00 MB
acctg
1
       keep
```

Invoke the MANAGE subcommand with the -n option to perform a dry run to observe which active backups would be changed to obsolete according to the retention policy:

```
-bash-4.1$ bart MANAGE -s acctg -n
```

INFO: processing server 'acctg', backup '1428768344061' INFO: processing server 'acctg', backup '1428684537299' INFO: processing server 'acctg', backup '1428589759899' INFO: processing server 'acctg', backup '1428502049836' INFO: marking backup '1428502049836' as obsolete

INFO: 6 WAL file(s) marked obsolete

INFO: processing server 'acctg', backup '1428422324880'

INFO: marking backup '1428422324880' as obsolete

INFO: 2 WAL file(s) marked obsolete

INFO: processing server 'acctg', backup '1428355371389'

The dry run shows that backups 1428502049836 and 1428422324880 would be marked as obsolete.

Note

A dry run does not change the backup status. The two backups that would be considered obsolete are still marked as active:

	R NAME BACKUP	· ·	BACKUP	SIZE WAL(s)
WAL FI	LES STATUS			
acctg	1428768344061	2015-04-11 12:05:46 EDT	5.72 MB	48.00 MB
3	active			
acctg	1428684537299	2015-04-10 12:49:00 EDT	5.72 MB	272.00 MB
17	active			
acctg	1428589759899	2015-04-09 10:29:27 EDT	5.65 MB	96.00 MB
6	active			
acctg	1428502049836	2015-04-08 10:07:30 EDT	55.25 MB	96.00 MB
6	active			
acctg	1428422324880	2015-04-07 11:58:45 EDT	54.53 MB	32.00 MB
2	active			
acctg	1428355371389	2015-04-06 17:22:53 EDT	5.71 MB	16.00 MB
1	keep			

Invoke the MANAGE subcommand omitting the -n option to change and mark the status of the backups as obsolete:

```
-bash-4.1$ bart MANAGE -s acctg
```

INFO: processing server 'acctg', backup '1428768344061'

INFO: processing server 'acctg', backup '1428684537299' INFO: processing server 'acctg', backup '1428589759899'

INFO: processing server 'acctg', backup '1428502049836'

INFO: marking backup '1428502049836' as obsolete

INFO: 6 WAL file(s) marked obsolete

INFO: processing server 'acctg', backup '1428422324880'

INFO: marking backup '1428422324880' as obsolete

INFO: 2 WAL file(s) marked obsolete

INFO: processing server 'acctg', backup '1428355371389'

The obsolete backups can be observed in a number of ways. Use the MANAGE subcommand with the -I option to list the obsolete backups:

-bash-4.1\$ bart MANAGE -s acctg -l

INFO: 6 WAL file(s) will be removed

SERVER NAME: acctg

BACKUP ID: 1428502049836 BACKUP STATUS: obsolete

BACKUP TIME: 2015-04-08 10:07:30 EDT

BACKUP SIZE: 55.25 MB

WAL FILE(s): 6

INFO: 2 WAL file(s) will be removed

SERVER NAME: acctg

BACKUP ID: 1428422324880 BACKUP STATUS: obsolete

BACKUP TIME: 2015-04-07 11:58:45 EDT

BACKUP SIZE: 54.53 MB

WAL FILE(s): 2

The STATUS field of the SHOW-BACKUPS subcommand displays the current status:

-bash-4.1\$ bart SHOW-BACKUPS -s acctg

SERVER NAME BACK	UP ID BACKUP TIME	BACKUP SIZE WAL(s)
SIZE		
WAL FILES STATUS		
acctg 14287683440	61 2015-04-11 12:05:46 ED	T 5.72 MB 48.00 MB
3 active		
acctg 14286845372	99 2015-04-10 12:49:00 ED	T 5.72 MB 272.00 MB
17 active		
acctg 14285897598	99 2015-04-09 10:29:27 ED	T 5.65 MB 96.00 MB
6 active		
acctg 14285020498	36 2015-04-08 10:07:30 ED	T 55.25 MB 96.00 MB
6 obsolete		
acctg 14284223248	80 2015-04-07 11:58:45 ED	T 54.53 MB 32.00 MB
2 obsolete		
acctg 14283553713	89 2015-04-06 17:22:53 ED	T 5.71 MB 16.00 MB
1 keep		

The details of an individual backup can be displayed using the SHOW-BACKUPS subcommand with the -t option. Note the status in the BACKUP STATUS field.

-bash-4.1\$ bart SHOW-BACKUPS -s acctg -i 1428502049836 -t

SERVER NAME : acctg

BACKUP ID: 1428502049836

BACKUP NAME: none

BACKUP STATUS: obsolete

BACKUP TIME: 2015-04-08 10:07:30 EDT

BACKUP SIZE: 55.25 MB WAL(S) SIZE: 96.00 MB

NO. OF WALS: 6

CREATION TIME: 2015-04-09 10:25:46 EDT

Use the MANAGE subcommand with the -d option to physically delete the obsolete backups including the unneeded WAL files.

-bash-4.1\$ bart MANAGE -s acctg -d

INFO: removing all obsolete backups of server 'acctg' INFO: removing obsolete backup '1428502049836'

INFO: 6 WAL file(s) will be removed

The SHOW-BACKUPS subcommand now displays the remaining backups marked as active or keep:

-bash-4.	1\$ bart SHOW-BACK	UPS -s acctg		
SERVER	R NAME BACKUP II	D BACKUP TIME	BACKUP	SIZE WAL(s)
SIZE				
WAL FIL	ES STATUS			
acctg	1428768344061	2015-04-11 12:05:46 EDT	5.72 MB	48.00 MB
3	active			
acctg	1428684537299	2015-04-10 12:49:00 EDT	5.72 MB	272.00 MB
17	active			
acctg	1428589759899	2015-04-09 10:29:27 EDT	5.65 MB	96.00 MB
6	active			
acctg	1428355371389	2015-04-06 17:22:53 EDT	5.71 MB	16.00 MB
1	keep			

Using a Recovery Window Retention Policy

This section illustrates the evaluation, marking, and deletion of backup using a recovery window retention policy. To use the recovery window retention policy, set the retention_policy parameter to the desired length of time for the recovery window.

This section provides examples of the following:

- How to view the calculated recovery window.
- How to evaluate, mark, and delete backup using a recovery window retention policy.

Viewing the Calculated Recovery Window

By using any of the following methods, you can view the actual, calculated recovery window:

- By invoking the MANAGE subcommand in debug mode (along with the -n option).
- By using the SHOW-SERVERS subcommand.

Invoking the Manage Subcommand to View the Recovery Window

By invoking BART in debug mode and the MANAGE subcommand with the -n option, time length of the recovery window is calculated based on the retention_policy setting and the current date/time.

For example, using the following retention policy settings:

```
[ACCTG]
host = 127.0.0.1
port = 5444
user = enterprisedb
archive command = 'cp %p %a/%f'
retention policy = 3 DAYS
backup-name = acctg_%year-%month-%dayT%hour:%minute:%second
description = "Accounting"
[DEV]
host = 127.0.0.1
port = 5445
user = enterprisedb
archive command = 'cp %p %a/%f'
retention_policy = 3 WEEKS
description = "Development"
[HR]
host = 127.0.0.1
port = 5432
user = postgres
retention policy = 3 MONTHS
description = "Human Resources"
```

If the MANAGE subcommand is invoked in debug mode along with the -n option on 2015-04-17, the following results are displayed:

```
-bash-4.1$ bart -d MANAGE -n
DEBUG: Server: acctg, Now: 2015-04-17 16:34:03 EDT, RetentionWindow:
259200 (secs) ==> 72 hour(s)
DEBUG: Server: dev, Now: 2015-04-17 16:34:03 EDT, RetentionWindow:
1814400 (secs) ==> 504 hour(s)
DEBUG: Server: hr, Now: 2015-04-17 16:34:03 EDT, RetentionWindow:
7776000 (secs) ==> 2160 hour(s)
```

For server acctg, 72 hours translates to a recovery window of 3 days.

For server dev, 504 hours translates to a recovery window of 21 days (3 weeks).

For server hr, 2160 hours translates to a recovery window of 90 days (3 months).

For a setting of <max_number> MONTHS, the calculated total number of days for the recovery window is dependent upon the actual number of days in the preceding months from the current date/time. Thus, <max_number> MONTHS is not always exactly equivalent to <max_number> x 30 DAYS. (For example, if the current date/time is in the month of March, a 1-month recovery window would be equivalent to only 28 days because the preceding month is February. Thus, for a current date of March 31, a 1-month recovery window would start on March 3.) However, the typical result is that the day of the month of the starting recovery window boundary will be the same day of the month of when the MANAGE subcommand is invoked.

Viewing the Recovery Window using the Show-Servers Subcommand

This section provides example of viewing the recovery window using the SHOW-SERVERS subcommand, the RETENTION POLICY field displays the start of the recovery window.

In the following example, the recovery window retention policy setting considers the backups taken within a 3-day recovery window as the active backups.

```
[ACCTG]
host = 127.0.0.1
port = 5444
user = enterprisedb
archive_command = 'cp %p %a/%f'
retention_policy = 3 DAYS
description = "Accounting"
```

The start of the 3-day recovery window displayed in the RETENTION POLICY field is 2015-04-07 14:57:36 EDT when the SHOW-SERVERS subcommand is invoked on 2015-04-10.

At this current point in time, backups taken on or after 2015-04-07 14:57:36 EDT would be considered active. Backups taken prior to 2015-04-07 14:57:36 EDT would be considered obsolete except for backups marked as keep.

-bash-4.1\$ date

Fri Apr 10 14:57:33 EDT 2015

-bash-4.1\$

-bash-4.1\$ bart SHOW-SERVERS -s acctg

SERVER NAME : acctg
HOST NAME : 127.0.0.1

USER NAME : enterprisedb

PORT : 5444 REMOTE HOST :

RETENTION POLICY : 2015-04-07 14:57:36 EDT

DISK UTILIZATION : 824.77 MB NUMBER OF ARCHIVES : 37

ARCHIVE PATH : /opt/backup/acctg/archived_wals

ARCHIVE COMMAND : cp %p /opt/backup/acctg/archived_wals/%f

XLOG METHOD : fetch

WAL COMPRESSION : disabled

TABLESPACE PATH(s): DESCRIPTION: "Accounting"

In the following example, the recovery window retention policy setting considers the backups taken within a 3-week recovery window as the active backups.

host = 127.0.0.1

port = 5445

[DEV]

user = enterprisedb

archive_command = 'cp %p %a/%f'

retention_policy = 3 WEEKS

description = "Development"

The start of the 3-week recovery window displayed in the RETENTION POLICY field is 2015-03-20 14:59:42 EDT when the SHOW-SERVERS subcommand is invoked on 2015-04-10.

At this current point in time, backups taken on or after 2015-03-20 14:59:42 EDT would be considered active. Backups taken prior to 2015-03-20 14:59:42 EDT would be considered obsolete except for backups marked as keep.

-bash-4.1\$ date

Fri Apr 10 14:59:39 EDT 2015

-bash-4.1\$

-bash-4.1\$ bart SHOW-SERVERS -s dev

SERVER NAME : dev HOST NAME : 127.0.0.1 USER NAME : enterprisedb

PORT : 5445

REMOTE HOST:

RETENTION POLICY: 2015-03-20 14:59:42 EDT

DISK UTILIZATION: 434.53 MB NUMBER OF ARCHIVES: 22

ARCHIVE PATH:/opt/backup/dev/archived_wals

ARCHIVE COMMAND : cp %p /opt/backup/dev/archived_wals/%f

XLOG METHOD: fetch

WAL COMPRESSION: disabled

TABLESPACE PATH(s):

DESCRIPTION: "Development"

In the following example, the recovery window retention policy setting considers the backups taken within a 3-month recovery window as the active backups.

[HR]

host = 127.0.0.1

port = 5432

user = postgres

retention_policy = 3 MONTHS

description = "Human Resources"

The start of the 3-month recovery window displayed in the RETENTION POLICY field is 2015-01-10 14:04:23 EST when the SHOW-SERVERS subcommand is invoked on 2015-04-10.

At this current point in time, backups taken on or after 2015-01-10 14:04:23 EST would be considered active. Backups taken prior to 2015-01-10 14:04:23 EST would be considered obsolete, except for backups marked as keep.

-bash-4.1\$ date

Fri Apr 10 15:04:19 EDT 2015

-bash-4.1\$

-bash-4.1\$ bart SHOW-SERVERS -s hr

SERVER NAME: hr

HOST NAME: 127.0.0.1 USER NAME: postgres

PORT: 5432

REMOTE HOST:

RETENTION POLICY: 2015-01-10 14:04:23 EST

DISK UTILIZATION: 480.76 MB NUMBER OF ARCHIVES: 26

ARCHIVE PATH: /opt/backup/hr/archived wals

ARCHIVE COMMAND: scp %p

enterprisedb@192.168.2.22:/opt/backup/hr/archived_wals/%f

XLOG METHOD: fetch

WAL COMPRESSION: disabled

TABLESPACE PATH(s):

DESCRIPTION: "Human Resources"

Evaluating, marking, and deleting backup using a recovery window retention policy.

The following example uses a recovery window retention policy to evaluate, mark, and delete backups as shown by the following server configuration:

[DEV]

host = 127.0.0.1

port = 5445

user = enterprisedb

archive command = 'cp %p %a/%f'

retention policy = 3 DAYS

description = "Development"

The following is the current set of backups. Note that the last backup in the list has been marked as keep.

-bash-4.1\$ bart SHOW-BACKUPS -s dev

SERVER NAME BACKUP ID BACKUP TIME BACKUP SIZE WAL(s)

SIZE

WAL FIL	ES STATUS			
dev	1428933278236	2015-04-13 09:54:40 EDT	5.65 MB	16.00 MB
1	active			
dev	1428862187757	2015-04-12 14:09:50 EDT	5.65 MB	32.00 MB
2	active			
dev	1428768351638	2015-04-11 12:05:54 EDT	5.65 MB	32.00 MB
2	active			
dev	1428684544008	2015-04-10 12:49:06 EDT	5.65 MB	224.00 MB
14	active			
dev	1428590536488	2015-04-09 10:42:18 EDT	5.65 MB	48.00 MB
3	active			
dev	1428502171990	2015-04-08 10:09:34 EDT	5.65 MB	80.00 MB
5	keep			

The current date and time is 2015-04-13 16:46:35 EDT as shown by the following:

```
-bash-4.1$ date
Mon Apr 13 16:46:35 EDT 2015
```

Thus, a 3-day recovery window would evaluate backups prior to 2015-04-10 16:46:35 EDT as obsolete except for those marked as keep.

Invoke the MANAGE subcommand with the -n option to perform a dry run to observe which active backups would be changed to obsolete according to the retention policy.

```
-bash-4.1$ bart MANAGE -s dev -n
INFO: processing server 'dev', backup '1428933278236'
INFO: processing server 'dev', backup '1428862187757'
INFO: processing server 'dev', backup '1428768351638'
INFO: processing server 'dev', backup '1428684544008'
INFO: marking backup '1428684544008' as obsolete
INFO: 14 WAL file(s) marked obsolete
INFO: 1 Unused WAL file(s) present
INFO: processing server 'dev', backup '1428590536488'
INFO: marking backup '1428590536488' as obsolete
```

INFO: 3 WAL file(s) marked obsolete

INFO: 1 Unused WAL file(s) present

INFO: processing server 'dev', backup '1428502171990'

The dry run shows that backups 1428684544008 and 1428590536488 would be

marked as obsolete.

Also note that a dry run does not change the backup status. The two backups that would be considered obsolete are still marked as active:

-bash-4.	1\$ bart SHOW-BAC	KUPS -s dev\		
SERVE	R NAME BACKUP	ID BACKUP TIME	BACKUP	SIZE WAL(s)
SIZE				
WAL FI	LES STATUS			
dev	1428933278236	2015-04-13 09:54:40 EDT	5.65 MB	16.00 MB
1	active			
dev	1428862187757	2015-04-12 14:09:50 EDT	5.65 MB	32.00 MB
2	active			
dev	1428768351638	2015-04-11 12:05:54 EDT	5.65 MB	32.00 MB
2	active			
dev	1428684544008	2015-04-10 12:49:06 EDT	5.65 MB	224.00 MB
14	active			
dev	1428590536488	2015-04-09 10:42:18 EDT	5.65 MB	48.00 MB
3	active			
dev	1428502171990	2015-04-08 10:09:34 EDT	5.65 MB	80.00 MB
5	keep			

Invoke the MANAGE subcommand omitting the -n option to change and mark the status of the backups as obsolete:

```
-bash-4.1$ bart MANAGE -s dev
INFO: processing server 'dev', backup '1428933278236'
INFO: processing server 'dev', backup '1428862187757'
INFO: processing server 'dev', backup '1428768351638'
INFO: processing server 'dev', backup '1428684544008'
INFO: marking backup '1428684544008' as obsolete
INFO: 14 WAL file(s) marked obsolete
INFO: 1 Unused WAL file(s) present
INFO: processing server 'dev', backup '1428590536488'
INFO: marking backup '1428590536488' as obsolete
INFO: 3 WAL file(s) marked obsolete
INFO: 1 Unused WAL file(s) present
INFO: processing server 'dev', backup '1428502171990'
```

The obsolete backups can be observed in a number of ways. Use the MANAGE

subcommand with the -I option to list the obsolete backups:

-bash-4.1\$ bart MANAGE -s dev -l

INFO: 14 WAL file(s) will be removed

INFO: 1 Unused WAL file(s) will be removed

SERVER NAME: dev

BACKUP ID: 1428684544008 BACKUP STATUS: obsolete

BACKUP TIME: 2015-04-10 12:49:06 EDT

BACKUP SIZE: 5.65 MB

WAL FILE(s): 14

UNUSED WAL FILE(s): 1

WAL FILE: 00000010000000000000028

WAL FILE: 00000001000000000000027

WAL FILE: 000000010000000000000026

WAL FILE: 000000010000000000000025

WAL FILE: 00000001000000000000024

WAL FILE: 000000010000000000000023

WAL FILE: 00000001000000000000022

WAL FILE: 00000001000000000000021

UNUSED WAL FILE: 000000010000000000000F.00000028

INFO: 3 WAL file(s) will be removed

INFO: 1 Unused WAL file(s) will be removed

SERVER NAME: dev

BACKUP ID: 1428590536488 BACKUP STATUS: obsolete

BACKUP TIME: 2015-04-09 10:42:18 EDT\

BACKUP SIZE: 5.65 MB

WAL FILE(s): 3

UNUSED WAL FILE(s): 1

UNUSED WAL FILE: 000000010000000000000F.00000028

The STATUS field of the SHOW-BACKUPS subcommand displays the current status:

SERVE	-bash-4.1\$ bart SHOW-BACKUPS -s dev SERVER NAME BACKUP ID BACKUP TIME BACKUP SIZE WAL(s)				
SIZE					
WAL FI	LES STATUS				
dev	1428933278236	2015-04-13 09:54:40 EDT	5.65 MB	16.00 MB	
1	active				
dev	1428862187757	2015-04-12 14:09:50 EDT	5.65 MB	32.00 MB	
2	active				
dev	1428768351638	2015-04-11 12:05:54 EDT	5.65 MB	32.00 MB	
2	active				
dev	1428684544008	2015-04-10 12:49:06 EDT	5.65 MB	224.00 MB	
14	obsolete				
dev	1428590536488	2015-04-09 10:42:18 EDT	5.65 MB	48.00 MB	
3	obsolete				
dev	1428502171990	2015-04-08 10:09:34 EDT	5.65 MB	80.00 MB	
5	keep				
	ı				

The details of an individual backup can be displayed using the SHOW-BACKUPS subcommand with the -t option. Note the status in the BACKUP STATUS field.

-bash-4.1\$ bart SHOW-BACKUPS -s dev -i 1428684544008 -t

SERVER NAME : dev

BACKUP ID : 1428684544008

BACKUP NAME : none

BACKUP STATUS: obsolete

BACKUP TIME : 2015-04-10 12:49:06 EDT

BACKUP SIZE : 5.65 MB WAL(S) SIZE : 224.00 MB

NO. OF WALS : 14

FIRST WAL FILE: 000000010000000000000021 CREATION TIME: 2015-04-10 12:49:06 EDT LAST WAL FILE: 00000001000000000000002E CREATION TIME: 2015-04-11 12:02:15 EDT

Use the MANAGE subcommand with the -d option to physically delete the obsolete backups including the unneeded WAL files.

```
-bash-4.1$ bart MANAGE -s dev -d
INFO: removing all obsolete backups of server 'dev'
INFO: removing obsolete backup '1428684544008'
INFO: 14 WAL file(s) will be removed
INFO: 1 Unused WAL file(s) will be removed
INFO: removing WAL file '0000000100000000000002E'
INFO: removing WAL file '000000100000000000002D'
INFO: removing WAL file '0000000100000000000002C'
INFO: removing WAL file '0000000100000000000002B'
INFO: removing WAL file '0000000100000000000002A'
INFO: removing WAL file '000000010000000000000029'
INFO: removing WAL file '00000001000000000000028'
INFO: removing WAL file '00000001000000000000027'
INFO: removing WAL file '000000010000000000000025'
INFO: removing WAL file '00000001000000000000024'
INFO: removing WAL file '000000010000000000000023'
INFO: removing WAL file '00000001000000000000022'
INFO: removing WAL file '00000001000000000000001'
INFO: removing (unused) WAL file '0000000100000000000000F.00000028'
INFO: removing obsolete backup '1428590536488'
INFO: 3 WAL file(s) will be removed
INFO: removing WAL file '000000010000000000001F'
INFO: removing WAL file '0000000100000000000001E'
```

The SHOW-BACKUPS subcommand now displays the remaining backups marked as active or keep:

-bash-	-bash-4.1\$ bart SHOW-BACKUPS -s dev				
SERVE	ER NAME BACKUP	ID BACKUP TIME	BACKUP S	SIZE WAL(s)	
SIZE					
WAL F	ILES STATUS				
dev	1428933278236	2015-04-13 09:54:40 EDT	5.65 MB	16.00 MB	
1	active				
dev	1428862187757	2015-04-12 14:09:50 EDT	5.65 MB	32.00 MB	
2	active				
dev	1428768351638	2015-04-11 12:05:54 EDT	5.65 MB	32.00 MB	
2	active				

dev	1428502171990	2015-04-08 10:09:34 EDT	5.65 MB	80.00 MB
5	keep			

Managing Incremental Backups

This section illustrates evaluating, marking, and deleting incremental backups using the MANAGE and DELETE subcommands with two examples – the first for a redundancy retention policy and the second for a recovery window retention policy. For detailed information about the MANAGE and DELETE subcommands, as well as the redundancy retention and recovery window retention policy, see the EDB Postgres Backup and Recovery User Guide available at:

https://www.enterprisedb.com/edb-docs/

- Redundancy Retention Policy Section provides example of using the MANAGE and DELETE subcommands when a 3 backup redundancy retention policy is in effect.
- Recovery Window Retention Policy Section provides example of using the MANAGE and DELETE subcommands when a 1-day recovery window retention policy is in effect.

Using a Redundancy Retention Policy

The following examples show using the MANAGE and DELETE subcommands to evaluate, mark, and delete incremental backups when a 3 backup redundancy retention policy is in effect. This is shown by the following server configuration:

```
[ACCTG]

host = 192.168.2.24

port = 5445

user = enterprisedb

cluster_owner = enterprisedb

remote_host = enterprisedb@192.168.2.24

allow_incremental_backups = enabled

retention_policy = 3 BACKUPS

description = "Accounting"
```

The following is the current set of backups. (In these examples, some columns have

been omitted from the SHOW-BACKUPS output in order to display the relevant information in a more observable manner).

```
-bash-4.2$ bart SHOW-BACKUPS -s acctg

SERVER NAME BACKUP ID ... BACKUP PARENT BACKUP TIME ...

STATUS

acctg 1481749696905 ... 1481749673603 2016-12-14 16:08:17 EST ... active acctg 1481749673603 ... 1481749651927 2016-12-14 16:07:53 EST ... active acctg 1481749651927 ... 1481749619582 2016-12-14 16:07:32 EST ... active acctg 1481749619582 ... none 2016-12-14 16:07:00 EST ... active
```

There is one backup chain. The first backup is the initial full backup.

```
Backup chain: 1481749619582 => 1481749651927 => 1481749673603 => 1481749696905
```

The MANAGE subcommand is invoked as shown by the following:

```
-bash-4.2$ bart MANAGE -s acctg
INFO: processing server 'acctg', backup '1481749619582'
INFO: 2 Unused WAL file(s) present
INFO: 4 Unused file(s) (WALs included) present, use 'MANAGE -l' for the list
```

The following example shows the resulting status of the backups:

```
-bash-4.2$ bart SHOW-BACKUPS -s acctg

SERVER NAME BACKUP ID ... BACKUP PARENT BACKUP TIME ...

STATUS

acctg 1481749696905 ... 1481749673603 2016-12-14 16:08:17 EST ... active acctg 1481749673603 ... 1481749651927 2016-12-14 16:07:53 EST ... active acctg 1481749651927 ... 1481749619582 2016-12-14 16:07:32 EST ... active acctg 1481749619582 ... none 2016-12-14 16:07:00 EST ... active
```

The status remains active for all backups. Even though the total number of backups exceeds the 3 backup redundancy retention policy, it is only the total number of full backups that is used to determine if the redundancy retention policy has been exceeded.

Additional full backups are added including a second backup chain. The following example shows the resulting list of backups:

```
-bash-4.2$ bart SHOW-BACKUPS -s acctg
SERVER NAME BACKUP ID
                             ... BACKUP PARENT
                                                    BACKUP TIME
STATUS
acctg
         1481750365397 ... none
                                       2016-12-14 16:19:26 EST ... active
         1481750098924 ... 1481749997807
                                            2016-12-14 16:14:59 EST ... active
acctg
         1481749997807 ... none
                                       2016-12-14 16:13:18 EST ... active
acctg
                                       2016-12-14 16:13:12 EST ... active
         1481749992003 ... none
acctg
         1481749696905 ... 1481749673603
                                            2016-12-14 16:08:17 EST ... active
acctg
         1481749673603 ... 1481749651927
                                            2016-12-14 16:07:53 EST ... active
acctg
acctg
         1481749651927 ... 1481749619582
                                            2016-12-14 16:07:32 EST ... active
         1481749619582 ... none
                                       2016-12-14 16:07:00 EST ... active
acctg
```

Second backup chain: 1481749997807 => 1481750098924

The MANAGE subcommand is invoked, but now with a total of four active full backups.

```
INFO: processing server 'acctg', backup '1481750365397'
INFO: processing server 'acctg', backup '1481749997807'
INFO: processing server 'acctg', backup '1481749992003'
INFO: processing server 'acctg', backup '1481749619582'
INFO: marking backup '1481749619582' as obsolete
INFO: 3 incremental(s) of backup '1481749619582' will be marked obsolete
INFO: marking incremental backup '1481749696905' as obsolete
INFO: marking incremental backup '1481749673603' as obsolete
INFO: marking incremental backup '1481749651927' as obsolete
INFO: 4 WAL file(s) marked obsolete
INFO: 2 Unused WAL file(s) present
INFO: 4 Unused file(s) (WALs included) present, use 'MANAGE -I' for the
list
```

The oldest full backup and its chain of incremental backups are now marked as obsolete.

```
-bash-4.2$ bart SHOW-BACKUPS -s acctg

SERVER NAME BACKUP ID ... BACKUP PARENT BACKUP TIME ...

STATUS

acctg 1481750365397 ... none 2016-12-14 16:19:26 EST ... active

acctg 1481750098924 ... 1481749997807 2016-12-14 16:14:59 EST ... active
```

```
2016-12-14 16:13:18 EST ... active
         1481749997807
acctg
                           ... none
acctg
         1481749992003
                                         2016-12-14 16:13:12 EST ... active
                           ... none
acctg
         1481749696905
                           ... 1481749673603 2016-12-14 16:08:17 EST ...
obsolete
accta
         1481749673603
                           ... 1481749651927 2016-12-14 16:07:53 EST ...
obsolete
         1481749651927
                           ... 1481749619582 2016-12-14 16:07:32 EST ...
acctg
obsolete
                                         2016-12-14 16:07:00 EST ... obsolete
acctg
         1481749619582
                           ... none
```

Invoking the MANAGE subcommand with the -d option deletes the entire obsolete backup chain.

```
-bash-4.2$ bart MANAGE -s acctg -d
INFO: removing all obsolete backups of server 'acctg'
INFO: removing obsolete backup '1481749619582'
INFO: 4 WAL file(s) will be removed
INFO: 3 incremental(s) of backup '1481749619582' will be removed
INFO: removing obsolete incremental backup '1481749696905'
INFO: removing obsolete incremental backup '1481749673603'
INFO: removing obsolete incremental backup '1481749651927'
INFO: removing WAL file '00000001000000100000000'
INFO: removing WAL file '000000010000000000000FF'
INFO: removing WAL file '000000010000000000000FE'
INFO: removing WAL file '000000010000000000000000000D'
INFO: 16 Unused file(s) will be removed
INFO: removing (unused) file '0000000100000010000004.00000028.backup'
INFO: removing (unused) file
'00000010000000FB0000280000000FC000000.mbm'
```

The following example shows the remaining full backups and the second backup chain.

```
-bash-4.2$ bart SHOW-BACKUPS -s acctg

SERVER NAME BACKUP ID ... BACKUP PARENT BACKUP TIME ...

STATUS

acctg 1481750365397 ... none 2016-12-14 16:19:26 EST ... active

acctg 1481750098924 ... 1481749997807 2016-12-14 16:14:59 EST ... active
```

acctg	1481749997807 none	2016-12-14 16:13:18 EST active
acctg	1481749992003 none	2016-12-14 16:13:12 EST active

Using a Recovery Window Retention Policy

The following examples show using the MANAGE and DELETE subcommands to evaluate, mark, and delete incremental backups when a 1-day recovery window retention policy is in effect. This is shown by the following server configuration:

```
[ACCTG]

host = 192.168.2.24

port = 5445

user = enterprisedb

cluster_owner = enterprisedb

remote_host = enterprisedb@192.168.2.24

allow_incremental_backups = enabled

retention_policy = 1 DAYS

description = "Accounting"
```

The following is the current set of backups. (In these examples, some columns have been omitted from the SHOW-BACKUPS output in order to display the relevant information in a more observable manner.)

```
-bash-4.2$ bart SHOW-BACKUPS -s acctg
SERVER NAME BACKUP ID ... BACKUP PARENT BACKUP TIME ... STATUS
acctg 1481559303348 ... 1481554203288 2016-12-12 11:15:03 EST ... active
acctg 1481559014359 ... 1481554802918 2016-12-12 11:10:14 EST ... active
acctg 1481554802918 ... 1481553914533 2016-12-12 10:00:03 EST ... active
acctg 1481554203288 ... 1481553651165 2016-12-12 09:50:03 EST ... active
acctg 1481553914533 ... 1481553088053 2016-12-12 09:45:14 EST ... active
acctg 1481553088053 ... 1481552078404 2016-12-12 09:31:28 EST ... active
acctg 1481552078404 ... none 2016-12-12 09:14:39 EST ... active
```

There are two backup chains. In each of the following chains, the first backup is the initial full backup.

First backup chain: 1481552078404 => 1481553088053 => 1481553914533 =>

1481554802918 => 1481559014359

Second backup chain: 1481553651165 => 1481554203288 => 1481559303348

The MANAGE subcommand is invoked when the first full backup 1481552078404 falls out of the recovery window. When the MANAGE subcommand is invoked, it is 2016-12-13 09:20:03 EST, thus making the start of the 1-day recovery window at 2016-12-12 09:20:03 EST exactly one day earlier. This backup was taken at 2016-12-12 09:14:39 EST, which is about 5 ½ minutes before the start of the recovery window, thus making the backup obsolete.

-bash-4.2\$ date

Tue Dec 13 09:20:03 EST 2016

-bash-4.2\$ bart MANAGE -s acctg

INFO: processing server 'acctg', backup '1481553651165'

INFO: processing server 'acctg', backup '1481552078404'

INFO: marking backup '1481552078404' as obsolete

INFO: 4 incremental(s) of backup '1481552078404' will be marked obsolete

INFO: marking incremental backup '1481559014359' as obsolete

INFO: marking incremental backup '1481554802918' as obsolete

INFO: marking incremental backup '1481553914533' as obsolete

INFO: marking incremental backup '1481553088053' as obsolete

INFO: 7 WAL file(s) marked obsolete

INFO: 1 Unused WAL file(s) present

INFO: 2 Unused file(s) (WALs included) present, use 'MANAGE -I' for the list

The entire first backup chain is now marked obsolete.

The incremental backup date and time are within the recovery window since they were taken after the start of the recovery window of 2016-12-12 09:20:03 EST, but all backups in the chain are marked as obsolete.

```
-bash-4.2$ bart SHOW-BACKUPS -s acctg\
SERVER NAME
                 BACKUP ID
                               ... BACKUP PARENT
                                                      BACKUP TIME
... STATUS
           1481559303348 ... 1481554203288
                                               2016-12-12 11:15:03 EST
acctg
... active
           1481559014359 ... 1481554802918
acctg
                                               2016-12-12 11:10:14 EST
... obsolete
           1481554802918 ... 1481553914533
                                               2016-12-12 10:00:03 EST
acctg
... obsolete
```

acctg active	1481554203288 1481553651	165	2016-12-12 09:50:03 EST	
active				
acctg obsolete	1481553914533 1481553088	053	2016-12-12 09:45:14 EST	
acctg active	1481553651165 none	2016	6-12-12 09:40:51 EST	
acctg obsolete	1481553088053 1481552078	404	2016-12-12 09:31:28 EST	
acctg obsolete	1481552078404 none	2016	6-12-12 09:14:39 EST	

The following example shows how the entire backup chain is changed back to active status by invoking the MANAGE subcommand with the -c nokeep option on the full backup of the chain.

-bash-4.2\$ bart MANAGE -s acctg -c nokeep -i 1481552078404 INFO: changing status of backup '1481552078404' of server 'acctg' from

INFO: status of 4 incremental(s) of backup '1481552078404' will be changed

INFO: changing status of incremental backup '1481559014359' of server 'acctg' from 'obsolete' to 'active'

INFO: changing status of incremental backup '1481554802918' of server 'acctg' from 'obsolete' to 'active'

INFO: changing status of incremental backup '1481553914533' of server 'acctg' from 'obsolete' to 'active'

INFO: changing status of incremental backup '1481553088053' of server

'acctg' from 'obsolete' to 'active'

INFO: 7 WAL file(s) changed

'obsolete' to 'active'

The backup chain has now been reset to active status.

```
-bash-4.2$ bart SHOW-BACKUPS -s acctg
SERVER NAME BACKUP ID
                                ... BACKUP PARENT BACKUP TIME
STATUS
acctg
          1481559303348
                           ... 1481554203288 2016-12-12 11:15:03 EST ... active
          1481559014359
                           ... 1481554802918 2016-12-12 11:10:14 EST ... active
acctg
                           ... 1481553914533 2016-12-12 10:00:03 EST ... active
          1481554802918
acctg
                           ... 1481553651165 2016-12-12 09:50:03 EST ... active
          1481554203288
acctg
          1481553914533
                           ... 1481553088053 2016-12-12 09:45:14 EST ... active
acctg
```

acctg	1481553651165	none 2016-12-12 09:40:51 EST active
acctg	1481553088053	1481552078404 2016-12-12 09:31:28 EST active
acctg	1481552078404	none 2016-12-12 09:14:39 EST active

The following example shows usage of the DELETE subcommand on an incremental backup. The specified incremental backup 1481554802918 in the first backup chain as well as its successive incremental backup 1481559014359 are deleted.

-bash-4.2\$ bart DELETE -s acctg -i 1481554802918

INFO: deleting backup '1481554802918' of server 'acctg'

INFO: deleting backup '1481554802918'

INFO: 1 incremental backup(s) will be deleted

INFO: deleting incremental backup '1481559014359'

INFO: WALs of deleted backup(s) will belong to prior backup(if any), or

will be marked unused

INFO: 2 Unused file(s) will be removed

INFO: removing (unused) file '0000000100000000000000BA'

INFO: removing (unused) file

'00000010000000BA0000280000000BB000000.mbm'

INFO: backup(s) deleted

The results show that incremental backup 1481554802918 as well as its successive backup 1481559014359 are no longer listed by the SHOW-BACKUPS subcommand.

```
-bash-4.2$ bart SHOW-BACKUPS -s acctg
SERVER NAME BACKUP ID
                             ... BACKUP PARENT BACKUP TIME
STATUS
acctg
         1481559303348 ... 1481554203288 2016-12-12 11:15:03 EST ... active
         1481554203288 ... 1481553651165 2016-12-12 09:50:03 EST ... active
acctg
         1481553914533 ... 1481553088053 2016-12-12 09:45:14 EST ... active
acctg
        1481553651165 ... none
                                     2016-12-12 09:40:51 EST ... active
acctg
         1481553088053 ... 1481552078404 2016-12-12 09:31:28 EST ... active
acctg
         1481552078404 ... none
                                     2016-12-12 09:14:39 EST ... active
acctg
```

The MANAGE subcommand is invoked again. This time both backup chains are marked obsolete since the full backups of both chains fall out of the start of the recovery window, which is now 2016-12-12 09:55:03 EST.

```
-bash-4.2$ date
```

Tue Dec 13 09:55:03 EST 2016

-bash-4.2\$ bart MANAGE -s acctg

INFO: processing server 'acctg', backup '1481553651165'

INFO: marking backup '1481553651165' as obsolete

INFO: 2 incremental(s) of backup '1481553651165' will be marked obsolete

INFO: marking incremental backup '1481559303348' as obsolete

INFO: marking incremental backup '1481554203288' as obsolete

INFO: 38 WAL file(s) marked obsolete

INFO: processing server 'acctg', backup '1481552078404'

INFO: marking backup '1481552078404' as obsolete

INFO: 2 incremental(s) of backup '1481552078404' will be marked obsolete

INFO: marking incremental backup '1481553914533' as obsolete

INFO: marking incremental backup '1481553088053' as obsolete

INFO: 7 WAL file(s) marked obsolete

The following example shows both backup chains marked as obsolete.

```
-bash-4.2$ bart SHOW-BACKUPS -s acctg
SERVER NAME BACKUP ID
                               ... BACKUP PARENT BACKUP TIME
... STATUS
          1481559303348 ... 1481554203288 2016-12-12 11:15:03 EST
accta
... obsolete
          1481554203288 ... 1481553651165 2016-12-12 09:50:03 EST
acctg
... obsolete
          1481553914533 ... 1481553088053 2016-12-12 09:45:14 EST
acctg
... obsolete
                                       2016-12-12 09:40:51 EST
acctg
          1481553651165 ... none
... obsolete
          1481553088053 ... 1481552078404 2016-12-12 09:31:28 EST
accta
... obsolete
          1481552078404 ... none
                                       2016-12-12 09:14:39 EST
acctg
... obsolete
```

The following example shows usage of the MANAGE subcommand with the -c keep option to keep a backup chain indefinitely. The MANAGE subcommand with the -c keep option must specify the backup identifier or backup name of the full backup of the chain, and not any incremental backup.

-bash-4.2\$ bart MANAGE -s acctg -c keep -i 1481553651165

INFO: changing status of backup '1481553651165' of server 'acctg' from 'obsolete' to 'keep'

'obsolete' to 'keep'

INFO: status of 2 incremental(s) of backup '1481553651165' will be

changed

INFO: changing status of incremental backup '1481559303348' of server

'acctg' from 'obsolete' to 'keep'

INFO: changing status of incremental backup '1481554203288' of server

'acctg' from 'obsolete' to 'keep' INFO: 38 WAL file(s) changed

The following now displays the full backup 1481553651165 of the backup chain and its successive incremental backups 1481554203288 and 1481559303348, changed to keep status.

```
-bash-4.2$ bart SHOW-BACKUPS -s acctg
SERVER NAME BACKUP ID
                              ... BACKUP PARENT BACKUP TIME
... STATUS
         1481559303348 ... 1481554203288 2016-12-12 11:15:03 EST
acctg
... keep
         1481554203288 ... 1481553651165 2016-12-12 09:50:03 EST
acctg
... keep
         1481553914533 ... 1481553088053 2016-12-12 09:45:14 EST
acctg
... obsolete
acctg
         1481553651165 ... none
                                      2016-12-12 09:40:51 EST
... keep
         1481553088053 ... 1481552078404 2016-12-12 09:31:28 EST
acctg
... obsolete
                                      2016-12-12 09:14:39 EST
         1481552078404 ... none
acctg
... obsolete
```

Finally, the MANAGE subcommand with the -d option is used to delete the obsolete backup chain.

-bash-4.2\$ bart MANAGE -s acctg -d

INFO: removing all obsolete backups of server 'acctg'

INFO: removing obsolete backup '1481552078404'

INFO: 7 WAL file(s) will be removed

INFO: 2 incremental(s) of backup '1481552078404' will be removed

INFO: removing obsolete incremental backup '1481553914533'

INFO: removing obsolete incremental backup '1481553088053'

INFO: removing WAL file '000000100000000000001'

INFO: removing WAL file '000000010000000000000BF'

```
INFO: removing WAL file '00000001000000000000BE'
INFO: removing WAL file '0000000100000000000BD'
INFO: removing WAL file '000000010000000000BC'
INFO: removing WAL file '000000010000000000BB'
INFO: 48 Unused file(s) will be removed
INFO: removing (unused) file '0000000100000000000FA'
.
.
.
INFO: removing (unused) file '0000000100000000000BB.00000028.backup'
```

Only the backup chain with the keep status remains as shown by the following.

```
-bash-4.2$ bart SHOW-BACKUPS -s acctg
SERVER NAME BACKUP ID ... BACKUP PARENT BACKUP TIME
... STATUS
acctg 1481559303348 ... 1481554203288 2016-12-12 11:15:03 EST
... keep
acctg 1481554203288 ... 1481553651165 2016-12-12 09:50:03 EST
... keep
acctg 1481553651165 ... none 2016-12-12 09:40:51 EST
... keep
```

3.3 Restoring an Incremental Backup

Restoring an incremental backup may require additional setup steps depending upon the host on which the incremental backup is to be restored. For more information, see Restoring an Incremental Backup section of the *EDB Postgres Backup and Recovery User Guide* available at:

https://www.enterprisedb.com/edb-docs/

This section provides an example of creating backup chains and then restoring an incremental backup.

Creating a Backup Chain

A *backup chain* is the set of backups consisting of a full backup and all of its successive incremental backups. Tracing back on the parent backups of all incremental backups in the chain eventually leads back to that single, full backup.

In the following example, the <u>allow_incremental_backups</u> parameter is set to <u>enabled</u> in the BART configuration file to permit incremental backups on the listed database server:

```
[BART]
```

bart_host= enterprisedb@192.168.2.27
backup_path = /opt/backup
pg_basebackup_path = /usr/edb/as11/bin/pg_basebackup
logfile = /tmp/bart.log
scanner_logfile = /tmp/bart_scanner.log

[ACCTG]

host = 127.0.0.1

port = 5445

user = enterprisedb

cluster_owner = enterprisedb

allow_incremental_backups = enabled

description = "Accounting"

After the database server has been started with WAL archiving enabled to the BART backup catalog, the WAL scanner is started:

```
-bash-4.2$ bart-scanner --daemon
```

First, a full backup is taken.

```
-bash-4.2$ bart BACKUP -s acctg --backup-name full_1
```

INFO: creating backup for server 'acctg'

INFO: backup identifier: '1490649204327'\

63364/63364 kB (100%), 1/1 tablespace

INFO: backup completed successfully

INFO: backup checksum: aae27d4a7c09dffc82f423221154db7e of base.tar

INFO:

BACKUP DETAILS:

BACKUP STATUS: active

BACKUP IDENTIFIER: 1490649204327

BACKUP NAME: full_1
BACKUP PARENT: none

BACKUP LOCATION: /opt/backup/acctg/1490649204327

BACKUP SIZE: 61.88 MB BACKUP FORMAT: tar

BACKUP TIMEZONE: US/Eastern

XLOG METHOD: fetch

BACKUP CHECKSUM(s): 1

ChkSum File

aae27d4a7c09dffc82f423221154db7e base.tar

TABLESPACE(s): 0

START WAL LOCATION: 000000010000000000000000000

BACKUP METHOD: streamed

BACKUP FROM: master

START TIME: 2017-03-27 17:13:24 EDT STOP TIME: 2017-03-27 17:13:25 EDT

TOTAL DURATION: 1 sec(s)

A series of incremental backups are taken. The first incremental backup specifies the full backup as the parent. Each successive incremental backup then uses the preceding incremental backup as its parent.

-bash-4.2\$ bart BACKUP -s acctg -F p --parent full_1 --backup-name

incr 1-a

INFO: creating incremental backup for server 'acctg'

INFO: checking mbm files /opt/backup/acctg/archived_wals

INFO: new backup identifier generated 1490649255649

INFO: reading directory /opt/backup/acctg/archived_wals

INFO: all files processed

NOTICE: pg_stop_backup complete, all required WAL segments have been

archived

INFO: incremental backup completed successfully

INFO:

BACKUP DETAILS:

BACKUP STATUS: active

BACKUP IDENTIFIER: 1490649255649

BACKUP NAME: incr 1-a

BACKUP PARENT: 1490649204327

BACKUP LOCATION: /opt/backup/acctg/1490649255649

BACKUP SIZE: 16.56 MB BACKUP FORMAT: plain

BACKUP TIMEZONE: US/Eastern

XLOG METHOD: fetch

BACKUP CHECKSUM(s): 0

TABLESPACE(s): 0

BACKUP METHOD: pg start backup

BACKUP FROM: master

START TIME: 2017-03-27 17:14:15 EDT STOP TIME: 2017-03-27 17:14:16 EDT

TOTAL DURATION: 1 sec(s)

-bash-4.2\$ bart BACKUP -s acctg -F p --parent incr_1-a --backup-name

incr 1-b

INFO: creating incremental backup for server 'acctg'

INFO: checking mbm files /opt/backup/acctg/archived_wals

INFO: new backup identifier generated 1490649336845

INFO: reading directory /opt/backup/acctg/archived_wals

INFO: all files processed

NOTICE: pg_stop_backup complete, all required WAL segments have been

archived

INFO: incremental backup completed successfully

.

-bash-4.2\$ bart BACKUP -s acctg -F p --parent incr_1-b --backup-name

incr_1-c

INFO: creating incremental backup for server 'acctg'

INFO: checking mbm files /opt/backup/acctg/archived_wals

INFO: new backup identifier generated 1490649414316

INFO: reading directory /opt/backup/acctg/archived_wals

INFO: all files processed

NOTICE: pg stop backup complete, all required WAL segments have been

archived

INFO: incremental backup completed successfully

.

The following output of the SHOW-BACKUPS subcommand lists the backup chain, which are backups full_1, incr_1-a, incr_1-b, and incr_1-c.

```
-bash-4.2$ bart SHOW-BACKUPS -s acctg
SERVER NAME BACKUP ID BACKUP NAME BACKUP PARENT BACKUP TIME ...
acctg 1490649414316 incr_1-c incr_1-b 2017-03-27 17:16:55 ...
acctg 1490649336845 incr_1-b incr_1-a 2017-03-27 17:15:37 ...
acctg 1490649255649 incr_1-a full_1 2017-03-27 17:14:16 ...
acctg 1490649204327 full_1 none 2017-03-27 17:13:25 ...
```

Note

For the full backup full_1, the BACKUP PARENT field contains none. For each incremental backup, the BACKUP PARENT field contains the backup identifier or name of its parent backup.

A second backup chain is created in the same manner with the BACKUP subcommand. The following example shows the addition of the resulting, second backup chain consisting of full backup full_2 and incremental backups incr_2-a and incr_2-b.

```
-bash-4.2$ bart SHOW-BACKUPS -s acctg
                             BACKUP NAME BACKUP PARENT BACKUP TIME
SERVER NAME BACKUP ID
         1490649605607 incr 2-b
                                  incr 2-a
                                              2017-03-27 17:20:06 ...
acctg
acctg
        1490649587702 incr 2-a
                                  full 2
                                             2017-03-27 17:19:48 ...
acctg
        1490649528633 full 2
                                 none
                                            2017-03-27 17:18:49 ...
         1490649414316 incr 1-c
                                  incr 1-b
                                              2017-03-27 17:16:55 ...
acctg
        1490649336845 incr 1-b
                                  incr 1-a
                                              2017-03-27 17:15:37 ...
acctg
                                             2017-03-27 17:14:16 ...
        1490649255649 incr 1-a
                                  full 1
acctg
         1490649204327 full 1
                                            2017-03-27 17:13:25 ...
acctg
                                 none
```

The following additional incremental backups starting with incr_1-b-1, which designates incr_1-b as the parent, results in the forking from that backup into a second line of backups in the chain consisting of full_1, incr_1-a, incr_1-b-2, and incr_1-b-3 as shown in the following list:

```
-bash-4.2$ bart SHOW-BACKUPS -s acctg

SERVER NAME BACKUP ID BACKUP NAME BACKUP PARENT BACKUP

TIME ...

acctg 1490649791430 incr_1-b-3 incr_1-b-2 2017-03-27 17:23:12 ...

acctg 1490649763929 incr_1-b-2 incr_1-b-1 2017-03-27 17:22:44 ...
```

acctg	1490649731672 incr_1-b-	1 incr_1-b	2017-03-27 17:22:12
acctg	1490649605607 incr_2-b	incr_2-a	2017-03-27 17:20:06
acctg	1490649587702 incr_2-a	full_2	2017-03-27 17:19:48
acctg	1490649528633 full_2	none	2017-03-27 17:18:49
acctg	1490649414316 incr_1-c	incr_1-b	2017-03-27 17:16:55
acctg	1490649336845 incr_1-b	incr_1-a	2017-03-27 17:15:37
acctg	1490649255649 incr_1-a	full_1	2017-03-27 17:14:16
acctg	1490649204327 full_1	none	2017-03-27 17:13:25

Restoring an Incremental Backup

Restoring an incremental backup is done with the RESTORE subcommand in the same manner as for restoring a full backup. Specify the backup identifier or backup name of the incremental backup to be restored as shown in the following example.

```
-bash-4.2$ bart RESTORE -s acctg -p /opt/restore -i incr_1-b INFO: restoring incremental backup 'incr_1-b' of server 'acctg'
```

INFO: base backup restored INFO: archiving is disabled

INFO: permissions set on \$PGDATA

INFO: incremental restore completed successfully

Restoring incremental backup incr_1-b as shown by the preceding example results in the restoration of full backup full_1, then incremental backups incr_1-a and finally, incr_1-b.

3.4 A Sample BART System with Local and Remote Database Servers

This section describes a sample BART managed backup and recovery system consisting of both local and remote database servers. The complete steps to configure and operate the system are provided.

For detailed information about configuring a BART system, see the *EDB Postgres Backup and Recovery Installation and Upgrade Guide* and for information about the operational procedures and BART subcommands, see *EDB Postgres Backup and Recovery User Guide* available at:

https://www.enterprisedb.com/edb-docs/

The environment for this sample system is as follows:

- BART on host 192.168.2.22 running with BART user account enterprisedb
- Local Advanced Server on host 192.168.2.22 running with user account enterprisedb
- Remote Advanced Server on host 192.168.2.24 running with user account enterprisedb
- Remote PostgreSQL server on host 192.168.2.24 running with user account postgres

Password-less SSH/SCP connections are required between the following:

- BART on host 192.168.2.22 and the local Advanced Server on the same host 192.168.2.22
- BART on host 192.168.2.22 and the remote Advanced Server on host 192.168.2.24
- BART on host 192.168.2.22 and the remote PostgreSQL server on host 192.168.2.24

The following sections show the configuration steps and operation for this system for taking full backups only. (For supporting incremental backups as well, enable the allow_incremental_backups parameter for the desired database servers and use the WAL scanner program).

- BART Configuration Section shows the settings used in the BART configuration file
- SSH/SCP Password-Less Connections <establishing_ssh/scp_password-less_connections> Section provides example of how to establish SSH/SCP Password-Less Connection
- Replication Database User Section provides example of how to configure the replication database user.
- WAL Archiving Configuration Section provides example of WAL archiving configuration parameters in the postgresql.conf file to enable WAL archiving.
- BART Backup Catalog Section provides information about creating BART Backup Catalog.
- Database Servers Section provides example of starting the database servers with WAL archiving.
- Backup Section illustrates the first full backup of the database servers.
- Point-In-Time Recovery Section demonstrates the point-in-time recovery operation on the remote PostgreSQL database server.

The BART Configuration File

The following code snippet shows the settings used in the BART configuration file for the examples that follow:

```
[BART]
bart host= enterprisedb@192.168.2.22
backup_path = /opt/backup
pg basebackup path = /usr/edb/as11/bin/pg basebackup
retention policy = 6 BACKUPS
logfile = /tmp/bart.log
scanner_logfile = /tmp/bart_scanner.log
[ACCTG]
host = 127.0.0.1
port = 5444
user = enterprisedb
cluster_owner = enterprisedb
backup_name = acctg_%year-%month-%dayT%hour:%minute
archive_command = 'cp %p %a/%f'
description = "Accounting"
[MKTG]
host = 192.168.2.24
port = 5444
user = repuser
cluster owner = enterprisedb
backup name = mktg %year-%month-%dayT%hour:%minute
remote host = enterprisedb@192.168.2.24
description = "Marketing"
[HR]
host = 192.168.2.24
port = 5432
user = postgres
cluster owner = postgres
backup_name = hr_%year-%month-%dayT%hour:%minute
remote host = postgres@192.168.2.24
copy_wals_during_restore = enabled
```

Establishing SSH/SCP Password-Less Connections

This section shows how the password-less SSH/SCP connections are established with the authorized public keys files.

Generating a Public Key File for the BART User Account

The BART user account is enterprised with the home directory of /opt/PostgresPlus/9.5AS.

To generate the public key file, first create the .ssh subdirectory in the BART user's home directory:

```
[root@localhost 9.5AS]# pwd
/opt/PostgresPlus/9.5AS
[root@localhost 9.5AS]# mkdir .ssh
[root@localhost 9.5AS]# chown enterprisedb .ssh
[root@localhost 9.5AS]# chgrp enterprisedb .ssh
[root@localhost 9.5AS]# chmod 700 .ssh
[root@localhost 9.5AS]# ls -la | grep ssh
drwx------ 2 enterprisedb enterprisedb 4096 Apr 23 13:02 .ssh
```

Make sure there are no groups or other users that can access the .ssh directory.

Now, generate the public key file.

```
[user@localhost ~]$ su - enterprisedb
Password:
-bash-4.1$ pwd
/opt/PostgresPlus/9.5AS
-bash-4.1$ ssh-keygen -t rsa
Generating public/private rsa key pair.
Enter file in which to save the key
(/opt/PostgresPlus/9.5AS/.ssh/id_rsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
```

```
Your identification has been saved in
/opt/PostgresPlus/9.5AS/.ssh/id rsa.
Your public key has been saved in
/opt/PostgresPlus/9.5AS/.ssh/id rsa.pub.
The key fingerprint is:
de:65:34:d6:b1:d2:32:3c:b0:43:c6:a3:c0:9f:f4:64
enterprisedb@localhost.localdomain
The key's randomart image is:
+----[ RSA 2048]----+
    . .+ . |
     o .oE+ o o |
      + * o.X + |
      + .+ * |
      S o |
      ..0
      . .
```

The following are the resulting files. id_rsa.pub is the public key file of BART user account enterprisedb.

```
-bash-4.1$ ls -l .ssh
total 8
-rw----- 1 enterprisedb enterprisedb 1675 Apr 23 13:04 id_rsa
-rw-r--r-- 1 enterprisedb enterprisedb 416 Apr 23 13:04 id_rsa.pub
```

Configuring Access between Local Advanced Server and the BART Host

Even when the Advanced Server database is on the same host as the BART user account, and the Advanced Server database cluster owner is also the BART user account (enterprised is this case), a password-less SSH/SCP connection must be established from the same user account to itself.

On the BART host where the public key file was just generated as shown in Generating a Public Key File for the BART User Account Section create the authorized keys file by appending the public key file to any existing authorized keys file.

Log into the BART host as the BART user account and append the public key file, id_rsa.pub onto the authorized_keys file in the same .ssh directory.

```
[user@localhost ~]$ su - enterprisedb
Password:
Last login: Thu Mar 23 10:27:35 EDT 2017 on pts/0
-bash-4.2$ pwd
/opt/PostgresPlus/9.5AS
-bash-4.2$ Is -I .ssh
total 12
-rw----- 1 enterprised enterprised 1675 Mar 23 09:54 id rsa
-rw-r--r-- 1 enterprisedb enterprisedb 416 Mar 23 09:54 id_rsa.pub
-rw-r--r-- 1 enterprisedb enterprisedb 345 Mar 23 10:05 known hosts
-bash-4.2$ cat ~/.ssh/id rsa.pub >> ~/.ssh/authorized keys
-bash-4.2$ Is -I .ssh
total 16
-rw-rw-r-- 1 enterprisedb enterprisedb 416 Mar 23 10:33 authorized_keys
-rw----- 1 enterprised enterprised 1675 Mar 23 09:54 id rsa
-rw-r--r-- 1 enterprisedb enterprisedb 416 Mar 23 09:54 id rsa.pub
-rw-r--r-- 1 enterprisedb enterprisedb 345 Mar 23 10:05 known_hosts
```

The authorized_keys file must have file permission 600 as set by the following chmod command, otherwise the password-less connection fails:

```
-bash-4.2$ chmod 600 ~/.ssh/authorized_keys
-bash-4.2$ ls -l .ssh
total 16
-rw------ 1 enterprisedb enterprisedb 416 Mar 23 10:33 authorized_keys
-rw------ 1 enterprisedb enterprisedb 1675 Mar 23 09:54 id_rsa
-rw-r--r-- 1 enterprisedb enterprisedb 416 Mar 23 09:54 id_rsa.pub
-rw-r--r-- 1 enterprisedb enterprisedb 345 Mar 23 10:05 known_hosts
```

Test the password-less connection. Use the ssh command to verify that you can access the same user account as you are currently logged in as (enterprisedb) without being prompted for a password:

```
-bash-4.2$ ssh enterprisedb@127.0.0.1
Last login: Thu Mar 23 10:27:50 2017
-bash-4.2$ exit
logout
```

Configuring Access from Remote Advanced Server to BART Host

On the remote host 192.168.2.24, create the public key file for the remote database server user account, enterprisedb, for access to the BART user account, enterprisedb, on the BART host 192.168.2.22.

Create the .ssh directory for user account enterprisedb on the remote host:

```
[root@localhost 9.5AS]# pwd
/opt/PostgresPlus/9.5AS
[root@localhost 9.5AS]# mkdir .ssh
[root@localhost 9.5AS]# chown enterprisedb .ssh
[root@localhost 9.5AS]# chgrp enterprisedb .ssh
[root@localhost 9.5AS]# chmod 700 .ssh
[root@localhost 9.5AS]# ls -la | grep ssh
drwx------ 2 enterprisedb enterprisedb 4096 Apr 23 13:08 .ssh
```

Generate the public key file on the remote host for user account enterprisedb.

```
Password:
-bash-4.1$ ssh-keygen -t rsa
Generating public/private rsa key pair.
Enter file in which to save the key
(/opt/PostgresPlus/9.5AS/.ssh/id rsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in
/opt/PostgresPlus/9.5AS/.ssh/id rsa.
Your public key has been saved in
/opt/PostgresPlus/9.5AS/.ssh/id rsa.pub.
The key fingerprint is:
15:27:1e:1e:61:4b:48:66:67:0b:b2:be:fc:ea:ea:e6
enterprisedb@localhost.localdomain
The key's randomart image is:
+--[ RSA 2048]---+
    ..=.@..
```

[user@localhost ~]\$ su - enterprisedb

Copy the generated public key file, id_rsa.pub, to the BART user account, enterprisedb, on the BART host, 192.168.2.22:

```
-bash-4.1$ scp ~/.ssh/id_rsa.pub enterprisedb@192.168.2.22:/tmp/tmp.pub
The authenticity of host '192.168.2.22 (192.168.2.22)' can't be
established.
RSA key fingerprint is b8:a9:97:31:79:16:b8:2b:b0:60:5a:91:38:d7:68:22.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '192.168.2.22' (RSA) to the list of known hosts.
enterprisedb@192.168.2.22's password:
id_rsa.pub
```

Log into the BART host as the BART user account and append the temporary public key file, /tmp/tmp.pub onto the authorized_keys file owned by the BART user account.

```
-bash-4.1$ ssh enterprisedb@192.168.2.22 enterprisedb@192.168.2.22's password:

Last login: Tue Apr 21 17:03:24 2015 from 192.168.2.22
-bash-4.1$ pwd
/opt/PostgresPlus/9.5AS
-bash-4.1$ cat /tmp/tmp.pub >> ~/.ssh/authorized_keys
-bash-4.1$ ls -l .ssh
total 12
-rw-rw-r-- 1 enterprisedb enterprisedb 416 Apr 23 13:15 authorized_keys
-rw------ 1 enterprisedb enterprisedb 416 Apr 23 13:04 id_rsa
-rw-r--r-- 1 enterprisedb enterprisedb 416 Apr 23 13:04 id_rsa.pub
```

The authorized_keys file must have file permission 600 as set by the following chmod command, otherwise the password-less connection fails:

```
-bash-4.1$ chmod 600 ~/.ssh/authorized_keys
-bash-4.1$ ls -l .ssh
total 12
-rw------ 1 enterprisedb enterprisedb 416 Apr 23 13:15 authorized_keys
-rw------ 1 enterprisedb enterprisedb 1675 Apr 23 13:04 id_rsa
-rw-r--r-- 1 enterprisedb enterprisedb 416 Apr 23 13:04 id_rsa.pub
-bash-4.1$ rm /tmp/tmp.pub
-bash-4.1$ exit
logout
Connection to 192.168.2.22 closed.
```

Test the password-less connection. From the remote host, verify that you can log into the BART host with the BART user account without being prompted for a password:

```
-bash-4.1$ ssh enterprisedb@192.168.2.22
Last login: Thu Apr 23 13:14:48 2015 from 192.168.2.24
-bash-4.1$ exit
logout
Connection to 192.168.2.22 closed.
```

Configuring Access from BART Host to Remote Advanced Server

On the BART host 192.168.2.22, copy the public key file for the BART user account, enterprisedb, for access to the remote database server user account, enterprisedb, on the remote host 192.168.2.24.

The following lists the current SSH keys files in the BART user's .ssh directory on the BART host:

```
[user@localhost ~]$ su - enterprisedb
Password:
-bash-4.1$ pwd
/opt/PostgresPlus/9.5AS
-bash-4.1$ ls -l .ssh
total 12
-rw------ 1 enterprisedb enterprisedb 416 Apr 23 13:15 authorized_keys
-rw-r---- 1 enterprisedb enterprisedb 416 Apr 23 13:04 id_rsa
-rw-r--r-- 1 enterprisedb enterprisedb 416 Apr 23 13:04 id_rsa.pub
```

The public key file, id_rsa.pub, for BART user account enterprised on the BART host was generated in Generating a Public Key File for the BART User Account Section, and is now copied to the remote Advanced Server host on 192.168.2.24:

```
-bash-4.1$ scp ~/.ssh/id_rsa.pub enterprisedb@192.168.2.24:/tmp/tmp.pub
The authenticity of host '192.168.2.24 (192.168.2.24)' can't be
established.
RSA key fingerprint is 59:41:fb:0c:ae:64:3d:3f:a2:d9:90:95:cf:2c:99:f2.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '192.168.2.24' (RSA) to the list of known
hosts.
enterprisedb@192.168.2.24's password:
id_rsa.pub
```

Log into the enterprisedb user account on the remote host and copy the public key file onto the authorized_keys file of the remote enterprisedb user account under its .ssh directory:

```
-bash-4.1$ ssh enterprisedb@192.168.2.24
enterprisedb@192.168.2.24's password:

Last login: Tue Apr 21 09:53:18 2015 from 192.168.2.22
-bash-4.1$ pwd
/opt/PostgresPlus/9.5AS
-bash-4.1$ ls -l .ssh
total 12
-rw------ 1 enterprisedb enterprisedb 1675 Apr 23 13:11 id_rsa
-rw-r--r-- 1 enterprisedb enterprisedb 394 Apr 23 13:12 known_hosts
-bash-4.1$ cat /tmp/tmp.pub >> ~/.ssh/authorized_keys
```

Adjust the file permission on authorized keys.

```
-bash-4.1$ chmod 600 ~/.ssh/authorized_keys
-bash-4.1$ ls -l .ssh
total 16
-rw------ 1 enterprisedb enterprisedb 416 Apr 23 13:26 authorized_keys
-rw------ 1 enterprisedb enterprisedb 1675 Apr 23 13:11 id_rsa
-rw-r--r-- 1 enterprisedb enterprisedb 416 Apr 23 13:11 id_rsa.pub
-rw-r--r-- 1 enterprisedb enterprisedb 394 Apr 23 13:12 known_hosts
-bash-4.1$ rm /tmp/tmp.pub
```

-bash-4.1\$ exit logout Connection to 192.168.2.24 closed.

While logged into the BART host, test the password-less connection from the BART host to the remote Advanced Server host.

-bash-4.1\$ ssh enterprisedb@192.168.2.24 Last login: Thu Apr 23 13:25:53 2015 from 192.168.2.22 -bash-4.1\$ exit

logout

Connection to 192.168.2.24 closed.

Configuring Access from Remote PostgreSQL to BART Host

On the remote host 192.168.2.24, create the public key file for the remote database server user account, postgres, for access to the BART user account, enterprisedb, on the BART host 192.168.2.22.

Create the .ssh directory for user account postgres on the remote host:

[root@localhost 9.5]# cd /opt/PostgreSQL/9.5 [root@localhost 9.5]# mkdir .ssh [root@localhost 9.5]# chown postgres .ssh [root@localhost 9.5]# chgrp postgres .ssh [root@localhost 9.5]# chmod 700 .ssh [root@localhost 9.5]# ls -la | grep ssh drwx----- 2 postgres postgres 4096 Apr 23 13:32 .ssh

Create and copy the generated public key file, id rsa.pub, to the BART user account, enterprisedb, on the BART host, 192.168.2.22:

[user@localhost ~]\$ su - postgres

Password:

-bash-4.1\$ pwd

/opt/PostgreSQL/9.5

-bash-4.1\$ ssh-keygen -t rsa

Generating public/private rsa key pair.

Enter file in which to save the key (/opt/PostgreSQL/9.5/.ssh/id rsa):

```
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /opt/PostgreSQL/9.5/.ssh/id_rsa.
Your public key has been saved in /opt/PostgreSQL/9.5/.ssh/id rsa.pub.
The key fingerprint is:
1f:f8:76:d6:fc:a5:1a:c5:5a:66:66:01:d0:a0:ca:ba
postgres@localhost.localdomain
The key's randomart image is:
+--[ RSA 2048]----+
      0+.
    . .. |
    . .
   . . . . . . .
   o S. O |
  . 0.@ |
  + = 0
   . . 0 . 0.
   E ....
  ----+
-bash-4.1$ ls -l .ssh
total 8
-rw----- 1 postgres postgres 1671 Apr 23 13:36 id rsa
-rw-r--r-- 1 postgres postgres 412 Apr 23 13:36 id rsa.pub
-bash-4.1$ scp ~/.ssh/id rsa.pub enterprisedb@192.168.2.22:/tmp/tmp.pub
The authenticity of host '192.168.2.22 (192.168.2.22)' can't be
established.
RSA key fingerprint is b8:a9:97:31:79:16:b8:2b:b0:60:5a:91:38:d7:68:22.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '192.168.2.22' (RSA) to the list of known
```

Log into the BART host as the BART user account and append the temporary public key file, /tmp/tmp.pub, onto the authorized_keys file owned by the BART user account.

```
-bash-4.1$ ssh enterprisedb@192.168.2.22
enterprisedb@192.168.2.22's password:
Last login: Thu Apr 23 13:19:25 2015 from 192.168.2.24
```

enterprisedb@192.168.2.22's password:

hosts.

id_rsa.pub

```
-bash-4.1$ pwd
/opt/PostgresPlus/9.5AS
-bash-4.1$ cat /tmp/tmp.pub >> ~/.ssh/authorized_keys
-bash-4.1$ ls -l .ssh
total 16
-rw------ 1 enterprisedb enterprisedb 828 Apr 23 13:40 authorized_keys
-rw------ 1 enterprisedb enterprisedb 1675 Apr 23 13:04 id_rsa
-rw-r--r-- 1 enterprisedb enterprisedb 416 Apr 23 13:04 id_rsa.pub
-rw-r--r-- 1 enterprisedb enterprisedb 394 Apr 23 13:24 known_hosts
-bash-4.1$ rm /tmp/tmp.pub
-bash-4.1$ exit
logout
Connection to 192.168.2.22 closed.
```

Make sure the authorized_keys file has file permission 600 as shown, otherwise the password-less connection fails. Test the password-less connection. From the remote host, while logged in as user account postgres, verify that you can log into the BART host with the BART user account without being prompted for a password:

```
-bash-4.1$ pwd
/opt/PostgreSQL/9.5
-bash-4.1$ ssh enterprisedb@192.168.2.22
Last login: Thu Apr 23 13:40:10 2015 from 192.168.2.24
-bash-4.1$ exit
logout
Connection to 192.168.2.22 closed.
```

Configuring Access from the BART Host to Remote PostgreSQL

On the BART host 192.168.2.22, copy the public key file for the BART user account, enterprisedb, for access to the remote database server user account, postgres, on the remote host 192.168.2.24.

The following lists the current SSH keys files in the BART user's .ssh directory on the BART host:

```
[user@localhost ~]$ su - enterprisedb
Password:
-bash-4.1$ ls -l .ssh
```

```
total 16
-rw----- 1 enterprisedb enterprisedb 828 Apr 23 13:40 authorized_keys
-rw----- 1 enterprisedb enterprisedb 1675 Apr 23 13:04 id_rsa
-rw-r--r- 1 enterprisedb enterprisedb 416 Apr 23 13:04 id_rsa.pub
-rw-r--r- 1 enterprisedb enterprisedb 394 Apr 23 13:24 known_hosts
```

The public key file, id_rsa.pub, for BART user account enterprised on the BART host was generated in Generating a Public Key File for the BART User Account Section, and is now copied to the remote PostgreSQL host on 192.168.2.24:

```
-bash-4.1$ scp ~/.ssh/id_rsa.pub postgres@192.168.2.24:/tmp/tmp.pub postgres@192.168.2.24's password: id_rsa.pub
```

Log into the postgres user account on the remote host and copy the public key file onto the authorized_keys file of postgres under its .ssh directory:

```
-bash-4.1$ ssh postgres@192.168.2.24
postgres@192.168.2.24's password:
Last login: Mon Jan 26 18:08:36 2015 from 192.168.2.19
-bash-4.1$ pwd
/opt/PostgreSQL/9.5
-bash-4.1$ cat /tmp/tmp.pub >> ~/.ssh/authorized_keys
```

Adjust the file permissions on authorized_keys.

```
-bash-4.1$ ls -l .ssh
total 16
-rw-rw-r-- 1 postgres postgres 416 Apr 23 13:52 authorized_keys
-rw------ 1 postgres postgres 1671 Apr 23 13:36 id_rsa
-rw-r--r-- 1 postgres postgres 412 Apr 23 13:36 id_rsa.pub
-rw-r--r-- 1 postgres postgres 394 Apr 23 13:36 known_hosts
-bash-4.1$ chmod 600 ~/.ssh/authorized_keys
-bash-4.1$ ls -l .ssh
total 16
-rw------ 1 postgres postgres 416 Apr 23 13:52 authorized_keys
-rw------ 1 postgres postgres 1671 Apr 23 13:36 id_rsa
-rw-r--r-- 1 postgres postgres 412 Apr 23 13:36 id_rsa.pub
-rw-r--r-- 1 postgres postgres 394 Apr 23 13:36 known_hosts
-bash-4.1$ rm /tmp/tmp.pub
```

```
-bash-4.1$ exit
logout
Connection to 192.168.2.24 closed.
```

Test the password-less connection from the BART host to the remote PostgreSQL host.

```
[user@localhost ~]$ su - enterprisedb
Password:
-bash-4.1$ ssh postgres@192.168.2.24
Last login: Thu Apr 23 13:52:25 2015 from 192.168.2.22
-bash-4.1$ exit
logout
Connection to 192.168.2.24 closed.
```

Configuring a Replication Database User

This section shows how the replication database user is established.

All database servers must use a superuser as the replication database user.

The replication database user for each database server is specified by the user parameter in the BART configuration file as shown by the following:

```
[ACCTG]

host = 127.0.0.1

port = 5444

user = enterprisedb <=== Replication Database User

cluster_owner = enterprisedb

backup_name = acctg_%year-%month-%dayT%hour:%minute

archive_command = 'cp %p %a/%f'

description = "Accounting"

[MKTG]

host = 192.168.2.24

port = 5444

user = repuser <=== Replication Database User

cluster_owner = enterprisedb
```

```
backup_name = mktg_%year-%month-%dayT%hour:%minute
remote_host = enterprisedb@192.168.2.24
description = "Marketing"

[HR]
host = 192.168.2.24
port = 5432
user = postgres <=== Replication Database User
cluster_owner = enterprisedb
backup_name = hr_%year-%month-%dayT%hour:%minute
remote_host = postgres@192.168.2.24
copy_wals_during_restore = enabled
description = "Human Resources"
```

Add entries to the .pgpass file on each server to allow the BART user account to initiate a backup without being prompted for credentials. The .pgpass file is located in /opt/PostgresPlus/9.5AS/.pgpass.

```
127.0.0.1:5444:*:enterprisedb:password
192.168.2.24:5444:*:repuser:password
192.168.2.24:5432:*:postgres:password
```

For more information about using a .pgpass file, please see the PostgreSQL documentation available at:

https://www.postgresql.org/docs/current/libpq-pgpass.html/

While connected to MKTG on 192.168.2.24, the following CREATE ROLE command is given to create the replication database superuser:

CREATE ROLE repuser WITH LOGIN SUPERUSER PASSWORD 'password';

The pg_hba.conf file for the local Advanced Server, ACCTG is set as follows:

```
# TYPE
          DATABASE
                            USER
                                      ADDRESS
                                                     METHOD
# "local" is for Unix domain socket connections only
local
        all
                   all
                                    md5
# IPv4
        local connections:
                                                 md5
host
       template1
                     enterprisedb 127.0.0.1/32
                   enterprisedb 127.0.0.1/32
host
       edb
                                               md5
```

```
127.0.0.1/32
#host
         all
                     all
                                                md5
# IPv6 local connections:
                              ::1/128
host
        all
                     all
                                             md5
# Allow replication connections from localhost, by a user with the
# replication privilege.
#local
         replication
                        enterprisedb
                                                  md5
host
        replication
                        enterprisedb 127.0.0.1/32
                                                       md5
```

The pg_hba.conf file for the remote Advanced Server, MKTG is set as follows:

```
# TYPF
          DATABASE
                             USFR
                                        ADDRESS
                                                           METHOD
# "local" is for Unix domain socket connections only
local
        all
                    all
                                         md5
# IPv4 local connections:
host
        template1
                        repuser
                                   192.168.2.22/32
                                                       md5
host
        all
                    enterprisedb 127.0.0.1/32
                                                   md5
                             127.0.0.1/32
#host
         all
                                               md5
# IPv6 local connections:
host
        all
                    all
                             ::1/128
                                            md5
# Allow replication connections from localhost, by a user with the
# replication privilege.
#local replication
                       enterprisedb
                                                 md5
                                   192.168.2.22/32
host
       replication
                       repuser
                                                      md5
```

The pg_hba.conf file for the remote PostgreSQL server, HR is set as follows:

```
DATABASE
                             USER
                                                             METHOD
# TYPE
                                        ADDRESS
# "local" is for Unix domain socket connections only
local
        all
                    all
                                          md5
# IPv4 local connections:
                        postgres 192.168.2.22/32
host
        template1
                                                         md5
                            127.0.0.1/32
                    all
host
        all
                                                md5
# IPv6 local connections:
        all
                    all
                            ::1/128
                                             md5
host
# Allow replication connections from localhost, by a user with the
q# replication privilege.
#local
         replication
                                                 md5
                       postgres
        replication
                       postgres
                                  192.168.2.22/32
                                                        md5
host
```

WAL Archiving Configuration Parameters

Use the following parameters in the postgresql.conf file to enable WAL archiving. The postgresql.conf file for the local Advanced Server, ACCTG is set as follows:

When the INIT subcommand is invoked, the Postgres archive_command configuration parameter in the postgresql.auto.conf file will be set based on the BART archive_command parameter located in the BART configuration file.

Note

If the Postgres archive_command is already set, to prevent the archive_command from re-setting invoke the INIT subcommand with the -- no-configure option. For details, see INIT section.

```
[BART]
bart_host= enterprisedb@192.168.2.22
backup_path = /opt/backup
pg_basebackup_path = /usr/edb/as11/bin/pg_basebackup
retention_policy = 6 BACKUPS
logfile = /tmp/bart.log
scanner_logfile = /tmp/bart_scanner.log

[ACCTG]
host = 127.0.0.1
port = 5444
user = enterprisedb
cluster_owner = enterprisedb
backup_name = acctg_%year-%month-%dayT%hour:%minute
archive_command = 'cp %p %a/%f'
```

```
description = "Accounting"
```

When the INIT subcommand is invoked, the postgresql.auto.conf file contains the following:

```
# Do not edit this file manually!
# It will be overwritten by ALTER SYSTEM command.
archive_command = 'cp %p /opt/backup/acctg/archived_wals/%f'
```

The archive_command uses the cp command instead of scp since the BART backup catalog is local to this database cluster and the BART user account (owning the backup catalog, enterprisedb), is the same user account running Advanced Server. The result is that there is no directory permission conflict during the archive operation.

The postgresql.conf file for the remote Advanced Server, MKTG is set as follows:

```
wal_level = archive
archive_mode = on  # allows archiving to be done
# (change requires restart)
archive_command = " # command to use to archive a
logfile segment
# placeholders: %p = path of
file to archive
# %f = file name only
max_wal_senders = 3
```

When the INIT subcommand is invoked, the Postgres archive_command configuration parameter in the postgresql.auto.conf file will be set by the default BART format of the BART archive_command parameter (since it is not explicitly set for this database server in the BART configuration file).

```
[BART]
bart_host= enterprisedb@192.168.2.22
backup_path = /opt/backup
pg_basebackup_path = /usr/edb/as11/bin/pg_basebackup
retention_policy = 6 BACKUPS
logfile = /tmp/bart.log
scanner_logfile = /tmp/bart_scanner.log
.
.
```

[MKTG] host = 192.168.2.24 port = 5444 user = repuser cluster_owner = enterprisedb backup_name = mktg_%year-%month-%dayT%hour:%minute remote_host = enterprisedb@192.168.2.24 description = "Marketing"

The default, BART archive_command format is the following:

```
archive_command = 'scp %p %h:%a/%f'
```

The postgresql.auto.conf file contains the following after the INIT subcommand is invoked:

```
# Do not edit this file manually!

# It will be overwritten by ALTER SYSTEM command.

archive_command = 'scp %p

enterprisedb@192.168.2.22:/opt/backup/hr/archived_wals/%f'
```

The archive_command uses the scp command since the BART backup catalog is remote relative to this database cluster. The BART user account, enterprisedb, is specified on the scp command since this is the user account owning the BART backup catalog where the archived WAL files are to be copied. The result is that there is no directory permission conflict during the archive operation.

The postgresql.conf file for the remote PostgreSQL server, HR is set as follows:

When the INIT subcommand is invoked, the Postgres archive command

configuration parameter in the postgresql.auto.conf file will be set by the default BART format of the BART archive_command parameter (since it is not explicitly set for this database server in the BART configuration file).

```
[BART]
bart host= enterprisedb@192.168.2.22
backup_path = /opt/backup
pg_basebackup_path = /usr/edb/as11/bin/pg_basebackup
retention policy = 6 BACKUPS
logfile = /tmp/bart.log
scanner_logfile = /tmp/bart_scanner.log
[HR]
host = 192.168.2.24
port = 5432
user = postgres
cluster owner = postgres
backup name = hr %year-%month-%dayT%hour:%minute
remote host = postgres@192.168.2.24
copy wals during restore = enabled
description = "Human Resources"
```

The default, BART archive command format is the following:

```
archive_command = 'scp %p %h:%a/%f'
```

The postgresql.auto.conf file contains the following after the INIT subcommand is invoked:

```
# Do not edit this file manually!

# It will be overwritten by ALTER SYSTEM command.

archive_command = 'scp %p

enterprisedb@192.168.2.22:/opt/backup/hr/archived_wals/%f'
```

The archive_command uses the scp command since the BART backup catalog is remote relative to this database cluster. The BART user account, enterprisedb, is specified on the scp command since this is the user account owning the BART backup

catalog where the archived WAL files are to be copied. The result is that there is no directory permission conflict during the archive operation.

Creating the BART Backup Catalog (backup_path)

Create the directory specified by the backup path configuration parameter.

[BART]

```
bart_host= enterprisedb@192.168.2.22
backup_path = /opt/backup
pg_basebackup_path = /usr/edb/as11/bin/pg_basebackup
retention_policy = 6 BACKUPS
logfile = /tmp/bart.log
scanner_logfile = /tmp/bart_scanner.log
```

Make sure it is owned by the BART user account:

```
[root@localhost opt]# pwd
/opt
[root@localhost opt]# mkdir backup
[root@localhost opt]# chown enterprisedb backup
[root@localhost opt]# chgrp enterprisedb backup
[root@localhost opt]# chmod 700 backup
[root@localhost opt]# ls -l | grep backup
drwx------ 2 enterprisedb enterprisedb 4096 Apr 23 15:36 backup
```

Use the BART INIT subcommand to complete the directory structure and set the Postgres archive command configuration parameter.

Note

Before invoking any BART subcommands, set up a profile under the BART user account's home directory to set the LD_LIBRARY_PATH and PATH environment variables.

For more information regarding setting this variable, see the Configuring the BART host section of *EDB Postgres Backup and Recovery Installation and Upgrade Guide* available at:

https://www.enterprisedb.com/edb-docs/

The -o option is specified with the INIT subcommand to force the setting of the Postgres archive_command configuration parameter when archive_mode is off or if the Postgres archive_command parameter is already set and needs to be overridden.

[user@localhost ~]\$ su - enterprisedb

Password:

-bash-4.1\$ bart INIT -o

INFO: setting archive_command for server 'acctg'

WARNING: archive command is set. server restart is required

INFO: setting archive command for server 'hr'

WARNING: archive_command is set. server restart is required

INFO: setting archive_command for server 'mktg'

WARNING: archive command is set. server restart is required

The BART SHOW-SERVERS subcommand displays the following:

-bash-4.1\$ bart SHOW-SERVERS

SERVER NAME: acctg

BACKUP FRIENDLY NAME: acctg_%year-%month-%dayT%hour:%minute

HOST NAME: 127.0.0.1 USER NAME: enterprisedb

PORT: 5444

REMOTE HOST:

RETENTION POLICY: 6 Backups
DISK UTILIZATION: 0.00 bytes

NUMBER OF ARCHIVES: 0

ARCHIVE PATH: /opt/backup/acctg/archived wals

ARCHIVE COMMAND: (disabled)

XLOG METHOD: fetch

WAL COMPRESSION: disabled

TABLESPACE PATH(s):

INCREMENTAL BACKUP: DISABLED

DESCRIPTION: "Accounting"

SERVER NAME: hr

BACKUP FRIENDLY NAME: hr %year-%month-%dayT%hour:%minute

HOST NAME: 192.168.2.24

USER NAME: postgres

PORT: 5432

REMOTE HOST: postgres@192.168.2.24

RETENTION POLICY: 6 Backups

DISK UTILIZATION: 0.00 bytes

NUMBER OF ARCHIVES: 0

ARCHIVE PATH: /opt/backup/hr/archived_wals

ARCHIVE COMMAND: (disabled)

XLOG METHOD: fetch

WAL COMPRESSION: disabled

TABLESPACE PATH(s):

INCREMENTAL BACKUP: DISABLED

DESCRIPTION: "Human Resources"

SERVER NAME: mktg

BACKUP FRIENDLY NAME: mktg_%year-%month-%dayT%hour:%minute

HOST NAME: 192.168.2.24

USER NAME: repuser

PORT: 5444

REMOTE HOST: enterprisedb@192.168.2.24

RETENTION POLICY: 6 Backups
DISK UTILIZATION: 0.00 bytes

NUMBER OF ARCHIVES: 0

ARCHIVE PATH: /opt/backup/mktg/archived_wals

ARCHIVE COMMAND: (disabled)

XLOG METHOD: fetch

WAL COMPRESSION: disabled

TABLESPACE PATH(s):

INCREMENTAL BACKUP: DISABLED

DESCRIPTION: "Marketing"

-bash-4.1\$ cd /opt/backup

-bash-4.1\$ pwd

/opt/backup

-bash-4.1\$ ls -l

total 12

drwxrwxr-x 3 enterprisedb enterprisedb 4096 Mar 29 13:16 acctg

drwxrwxr-x 3 enterprisedb enterprisedb 4096 Mar 29 13:16 hr

drwxrwxr-x 3 enterprisedb enterprisedb 4096 Mar 29 13:16 mktg

-bash-4.1\$ Is -I acctg

total 4

drwxrwxr-x 2 enterprisedb enterprisedb 4096 Mar 29 13:16 archived_wals

-bash-4.1\$ ls -l hr

total 4

drwxrwxr-x 2 enterprisedb enterprisedb 4096 Mar 29 13:16 archived_wals

-bash-4.1\$ ls -l mktg total 4

drwxrwxr-x 2 enterprisedb enterprisedb 4096 Mar 29 13:16 archived_wals

The ARCHIVE PATH field displays the full directory path to where the WAL files are copied. This directory path must match the directory path specified in the Postgres archive_command parameter of the postgresql.conf file or the postgresql.auto.conf file of each database server.

Starting the Database Servers with WAL Archiving

After the BART backup catalog directory structure has been completed, begin the archiving of WAL files from the database servers by restarting each database server. On BART host 192.168.2.22:

[root@localhost data]# service ppas-9.5 restart

On remote host 192.168.2.24:

[root@localhost data]# service ppas-9.5 restart

[root@localhost data]# service postgresql-9.5 restart

In the BART backup catalog, verify that the WAL files are archiving.

Archived WAL files may not appear very frequently depending upon how often WAL archiving is set to switch to a new segment file with the archive_timeout parameter in your database server configuration settings.

Verify that there are no archiving-related errors in the database server log files.

Taking a Full Backup

The following code snippet shows the first full backup of the database servers.

-bash-4.1\$ bart BACKUP -s acctg -z

INFO: creating backup for server 'acctg'

INFO: backup identifier: '1490809695281'

60776/60776 kB (100%), 1/1 tablespace

INFO: backup completed successfully

INFO: backup checksum: 37f3defb98ca88dcf05079815555dfc2 of base.tar.gz

INFO:

BACKUP DETAILS:

BACKUP STATUS: active

BACKUP IDENTIFIER: 1490809695281
BACKUP NAME: acctg_2017-03-29T13:48

BACKUP PARENT: none

BACKUP LOCATION: /opt/backup/acctg/1490809695281

BACKUP SIZE: 6.10 MB BACKUP FORMAT: tar.gz

BACKUP TIMEZONE: US/Eastern

XLOG METHOD: fetch

BACKUP CHECKSUM(s): 1

ChkSum File

37f3defb98ca88dcf05079815555dfc2 base.tar.gz

TABLESPACE(s): 0

BACKUP METHOD: streamed

BACKUP FROM: master

START TIME: 2017-03-29 13:48:15 EDT STOP TIME: 2017-03-29 13:48:17 EDT

TOTAL DURATION: 2 sec(s)

-bash-4.1\$ bart BACKUP -s mktg -z

INFO: creating backup for server 'mktg' INFO: backup identifier: '1490809751193'

61016/61016 kB (100%), 1/1 tablespace

INFO: backup completed successfully

INFO: backup checksum: 8b010e130a105e76d01346bb56dfcf14 of base.tar.gz

INFO:

BACKUP DETAILS:

BACKUP STATUS: active

BACKUP IDENTIFIER: 1490809751193 BACKUP NAME: mktg_2017-03-29T13:49 **BACKUP PARENT: none**

BACKUP LOCATION: /opt/backup/mktg/1490809751193

BACKUP SIZE: 6.13 MB BACKUP FORMAT: tar.gz

BACKUP TIMEZONE: US/Eastern

XLOG METHOD: fetch

BACKUP CHECKSUM(s): 1

ChkSum File

8b010e130a105e76d01346bb56dfcf14 base.tar.gz

TABLESPACE(s): 0

START WAL LOCATION: 000000010000000100000085

BACKUP METHOD: streamed

BACKUP FROM: master

START TIME: 2017-03-29 13:49:11 EDT STOP TIME: 2017-03-29 13:49:14 EDT

TOTAL DURATION: 3 sec(s)

-bash-4.1\$ bart BACKUP -s hr -z

INFO: creating backup for server 'hr'

INFO: backup identifier: '1490809824946' 38991/38991 kB (100%), 1/1 tablespace

INFO: backup completed successfully

INFO: backup checksum: 277e8a1a80ba3474f541eb316a417c9a of base.tar.gz

INFO:

BACKUP DETAILS:

BACKUP STATUS: active

BACKUP IDENTIFIER: 1490809824946 BACKUP NAME: hr_2017-03-29T13:50

BACKUP PARENT: none

BACKUP LOCATION: /opt/backup/hr/1490809824946

BACKUP SIZE: 2.59 MB BACKUP FORMAT: tar.gz

BACKUP TIMEZONE: US/Eastern

XLOG METHOD: fetch

BACKUP CHECKSUM(s): 1

ChkSum File

277e8a1a80ba3474f541eb316a417c9a base.tar.gz

TABLESPACE(s): 0

START WAL LOCATION: 000000010000000000000002

BACKUP METHOD: streamed

BACKUP FROM: master

START TIME: 2017-03-29 13:50:25 EDT STOP TIME: 2017-03-29 13:50:26 EDT

TOTAL DURATION: 1 sec(s)

The following code snippet shows the backup directories created for each backup of each database server. The backup ID is used as the backup directory name.

```
-bash-4.1$ cd /opt/backup
-bash-4.1$ ls -l
total 12
drwxrwxr-x 4 enterprisedb enterprisedb 4096 Mar 29 13:48 acctg
drwxrwxr-x 4 enterprisedb enterprisedb 4096 Mar 29 13:50 hr
drwxrwxr-x 4 enterprisedb enterprisedb 4096 Mar 29 13:49 mktg
-bash-4.1$ Is -I acctg
total 8
drwx----- 2 enterprisedb enterprisedb 4096 Mar 29 13:48 1490809695281
drwxrwxr-x 2 enterprisedb enterprisedb 4096 Mar 29 13:48 archived_wals
-bash-4.1$ ls -l hr
total 8
drwx----- 2 enterprisedb enterprisedb 4096 Mar 29 13:50 1490809824946
drwxrwxr-x 2 enterprisedb enterprisedb 4096 Mar 29 13:50 archived_wals
-bash-4.1$ Is -I mktg
total 8
drwx----- 2 enterprisedb enterprisedb 4096 Mar 29 13:49 1490809751193
drwxrwxr-x 2 enterprisedb enterprisedb 4096 Mar 29 13:49 archived wals
```

Using Point-In-Time Recovery

The following section demonstrates the point-in-time recovery operation on the remote PostgreSQL database server.

The following tables were created about two minutes apart while WAL archiving is enabled:

```
postgres=# \dt
```

```
List of relations

Schema | Name | Type | Owner

------

public | hr_rmt_t1_1356 | table | postgres

public | hr_rmt_t1_1358 | table | postgres

public | hr_rmt_t1_1400 | table | postgres

public | hr_rmt_t1_1402 | table | postgres

public | hr_rmt_t1_1404 | table | postgres

public | hr_rmt_t1_1406 | table | postgres

public | hr_rmt_t1_1406 | table | postgres

(6 rows)
```

In the table name <a href="hr_rmt_t<n>_<hhmi>, n represents the active timeline. ">hhmi>" is the approximate time the table was created. For example, hr_rmt_t1_1356">hr_rmt_t1_1356 was created at approximately 1:56 PM while timeline #1 is active.

The PostgreSQL database server was then stopped.

WAL files that have been created, but not yet archived must be identified, and then saved.

The following are the archived WAL files in the BART backup catalog:

```
-bash-4.1$ Is -I hr/archived_wals
total 49156
-rw------ 1 enterprisedb enterprisedb 16777216 Mar 29 13:50
00000001000000000000001
-rw----- 1 enterprisedb enterprisedb 16777216 Mar 29 13:50
00000010000000000000000002
-rw----- 1 enterprisedb enterprisedb 302 Mar 29 13:50
000000100000000000000000028.backup
-rw----- 1 enterprisedb enterprisedb 16777216 Mar 29 14:07
0000000100000000000000000
```

The following lists the current PostgreSQL server WAL files. The unarchived WAL files are marked with two stars (**).

```
-bash-4.1$ cd /opt/PostgreSQL/9.5/data/pg_xlog
-bash-4.1$ pwd
/opt/PostgreSQL/9.5/data/pg_xlog
```

```
-bash-4.1$ ls -l
total 49160
-rw----- 1 postgres postgres 302 Mar 29 13:50
00000001000000000000000002.00000028.backup
-rw----- 1 postgres postgres 16777216 Mar 29 14:07
00000001000000000000003
-rw----- 1 postgres postgres 16777216 Mar 29 14:07
**00000010000000000000004**
-rw----- 1 postgres postgres 16777216 Mar 29 13:50
**00000010000000000000005**
drwx----- 2 postgres postgres 4096 Mar 29 14:07 archive_status
```

Copies of the unarchived WAL files are saved to a temporary location:

On the remote host, the directory is created to which the PostgreSQL database cluster is to be restored. This restore path is /opt/restore_pg95 owned by user account postgres.

```
[user@localhost ~]$ su root
Password:
[root@localhost user]# cd /opt
[root@localhost opt]# mkdir restore_pg95
[root@localhost opt]# chown postgres restore_pg95
[root@localhost opt]# chgrp postgres restore_pg95
[root@localhost opt]# chmod 700 restore_pg95
[root@localhost opt]# is -l
total 16
drwxr-xr-x 4 root daemon 4096 Mar 29 12:10 PostgresPlus
drwxr-xr-x 3 root daemon 4096 Mar 29 12:25 PostgreSQL
drwx----- 2 postgres postgres 4096 Mar 29 14:15 restore_pg95
```

drwxr-xr-x. 2 root root 4096 Nov 22 2013 rh

Note

In the BART configuration file, the remote user and remote host IP address, postgres@192.168.2.24, have been set with the remote_host parameter. If not given in the BART configuration file, this information must then be specified by the --remote-host option when giving the RESTORE subcommand (for example, bart RESTORE --remote-host postgres@192.168.2.24 ...).

[HR]

host = 192.168.2.24

port = 5432

user = postgres

cluster_owner = postgres

backup_name = hr_%year-%month-%dayT%hour:%minute

remote_host = postgres@192.168.2.24

copy_wals_during_restore = enabled

description = "Human Resources"

Use the SHOW-BACKUPS subcommand to identify the backup to use with the RESTORE subcommand.

SERVER NAME **BACKUP ID** BACKUP NAME **BACKUP PARENT BACKUP TIME BACKUP SIZE** WAL FILES **STATUS** WAL(s) SIZE acctg 1490809695281 acctg 2017-03-29T13:48 none 2017-03-29 13:48:17 EDT 6.10 MB 32.00 MB active hr 1490809824946 hr 2017-03-29T13:50 none 2017-03-29 13:50:26 EDT 2.59 MB 32.00 MB active 1490809751193 mktg 2017-03-29T13:49 none mktg 2017-03-29 13:49:14 EDT 6.13 MB 64.00 MB 4 active

The -t option with the SHOW-BACKUPS subcommand displays additional backup information:

-bash-4.1\$ bart SHOW-BACKUPS -s hr -i 1490809824946 -t

SERVER NAME: hr

BACKUP ID : 1490809824946

BACKUP NAME : hr_2017-03-29T13:50

BACKUP PARENT : none BACKUP STATUS : active

BACKUP TIME : 2017-03-29 13:50:26 EDT

BACKUP SIZE : 2.59 MB WAL(S) SIZE : 32.00 MB

NO. OF WALS : 2

A recovery is made using timeline 1 to 2017-03-29 14:01:00.

-bash-4.1\$ bart RESTORE -s hr -i hr_2017-03-29T13:50 -p

/opt/restore_pg95 -t 1 -g '2017-03-29 14:01:00'

INFO: restoring backup 'hr_2017-03-29T13:50' of server 'hr'

INFO: base backup restored INFO: copying WAL file(s) to

postgres@192.168.2.24:/opt/restore_pg95/archived_wals INFO: writing recovery settings to postgresql.auto.conf file

INFO: archiving is disabled

INFO: permissions set on \$PGDATA INFO: restore completed successfully

The following example shows the restored backup files in the restore path directory, /opt/restore pg95:

-bash-4.1\$ pwd

/opt/restore_pg95

-bash-4.1\$ ls -l

total 128

drwxr-xr-x 2 postgres postgres 4096 Mar 29 14:27 archived_wals

-rw----- 1 postgres postgres 206 Mar 29 13:50 backup_label

drwx----- 5 postgres postgres 4096 Mar 29 12:25 base

drwx----- 2 postgres postgres 4096 Mar 29 14:27 global

drwx----- 2 postgres postgres 4096 Mar 29 12:25 pg_clog

drwx----- 2 postgres postgres 4096 Mar 29 12:25 pg_commit_ts

```
drwx----- 2 postgres postgres 4096 Mar 29 12:25 pg dynshmem
-rw----- 1 postgres postgres 4212 Mar 29 13:18 pg hba.conf
-rw----- 1 postgres postgres 1636 Mar 29 12:25 pg_ident.conf
drwxr-xr-x 2 postgres postgres 4096 Mar 29 13:45 pg log
drwx----- 4 postgres postgres 4096 Mar 29 12:25 pg logical
drwx----- 4 postgres postgres 4096 Mar 29 12:25 pg multixact
drwx----- 2 postgres postgres 4096 Mar 29 13:43 pg_notify
drwx----- 2 postgres postgres 4096 Mar 29 12:25 pg replslot
drwx----- 2 postgres postgres 4096 Mar 29 12:25 pg serial
drwx----- 2 postgres postgres 4096 Mar 29 12:25 pg snapshots
drwx----- 2 postgres postgres 4096 Mar 29 13:43 pg_stat
drwx----- 2 postgres postgres 4096 Mar 29 13:50 pg stat tmp
drwx----- 2 postgres postgres 4096 Mar 29 12:25 pg subtrans
drwx----- 2 postgres postgres 4096 Mar 29 12:25 pg tblspc
drwx----- 2 postgres postgres 4096 Mar 29 12:25 pg_twophase
-rw----- 1 postgres postgres 4 Mar 29 12:25 PG VERSION
drwx----- 3 postgres postgres 4096 Mar 29 14:27 pg xlog
-rw----- 1 postgres postgres 169 Mar 29 13:24 postgresgl.auto.conf
-rw-r--r-- 1 postgres postgres 21458 Mar 29 14:27 postgresql.conf
-rw-r--r-- 1 postgres postgres 118 Mar 29 14:27 postgresql.auto.conf
```

Copy the saved, unarchived WAL files to the restore path pg_xlog subdirectory (/opt/restore_pg95/pg_xlog):

Inspect the /opt/restore_pg95/postgresql.auto.conf file to verify that it contains the correct recovery settings:

```
restore_command = 'cp archived_wals/%f %p'
recovery_target_time = '2017-03-29 14:01:00'
recovery_target_timeline = 1
```

Note that it restores from the <u>archived_wals</u> subdirectory of <u>/opt/restore_pg95</u> since the <u>copy_wals_during_restore</u> parameter in the BART configuration file is set to <u>enabled</u> for database server <u>hr</u>.

Start the database server to initiate the point-in-time recovery operation.

```
[user@localhost ~]$ su postgres
Password:
bash-4.1$ cd /opt/restore_pg95
bash-4.1$ /opt/PostgreSQL/9.5/bin/pg_ctl start -D /opt/restore_pg95 -l
/opt/restore_pg95/pg_log/logfile
server starting
```

Inspect the database server log file to ensure the operation did not result in any errors.

```
"0000001000000000000003" from archive
2017-03-29 14:33:23 EDT LOG: recovery stopping before commit of
transaction 1762, time 2017-03-29 14:02:28.100072-04
2017-03-29 14:33:23 EDT LOG: redo done at 0/303F390
2017-03-29 14:33:23 EDT LOG: last completed transaction was at log time
2017-03-29 14:00:43.351333-04
cp: cannot stat `archived_wals/0000002.history': No such file or
directory
2017-03-29 14:33:23 EDT LOG: selected new timeline ID: 2
cp: cannot stat `archived wals/0000001.history': No such file or
directory
2017-03-29 14:33:23 EDT LOG: archive recovery complete
2017-03-29 14:33:23 EDT LOG: MultiXact member wraparound protections are
now enabled
2017-03-29 14:33:23 EDT LOG: database system is ready to accept
connections
2017-03-29 14:33:23 EDT LOG: autovacuum launcher started
```

The tables that exist in the recovered database cluster are the following:

```
postgres=# \dt
List of relations

Schema | Name | Type | Owner

-------
public | hr_rmt_t1_1356 | table | postgres
public | hr_rmt_t1_1358 | table | postgres
public | hr_rmt_t1_1400 | table | postgres
(3 rows)
```

Since recovery was up to and including 2017-03-29 14:01:00, the following tables created after 14:01 are not present:

```
public | hr_rmt_t1_1402 | table | postgres
public | hr_rmt_t1_1404 | table | postgres
public | hr_rmt_t1_1406 | table | postgres
```

Note

The BART RESTORE operation stops WAL archiving by adding an archive_mode = off parameter at the very end of the postgresql.conf file. This last parameter in the file overrides any other previous setting of the same parameter in the file. Delete the last

setting and restart the database server to start WAL archiving.

```
# Add settings for extensions here archive_mode = off 4.
```

4 Backup and Recovery User Guide

The EDB Backup and Recovery Tool (BART) is an administrative utility that provides simplified backup and recovery management for multiple local or remote EDB Postgres Advanced Server and PostgreSQL database servers.

BART features:

- Support for complete, hot, physical backups of multiple Advanced Servers and PostgreSQL database servers
- Support for two types of backups full base backups and block-level incremental backups
- Backup and recovery management of database servers on local or remote hosts
- A single, centralized catalog for backup data
- Retention policy support for defining and managing how long backups should be kept
- The capability to store the backup data in compressed format
- Verified backup data with checksums
- Backup information displayed in an easy-to-read format
- A simplified point-in-time recovery process

This guide provides the following information about using BART:

- an overview of the BART components and concepts.
- information about the backup and recovery management process with BART.
- information about using tablespaces.

4.1 What's New

The following enhancements have been added in BART 2.5.1:

- BART supports EDB Postgres Advanced Server version 12.
- From this release forward, recovery settings will be saved in the postgresql.auto.conf file instead of the recovery.conf file.

BART 2.5.1 Documentation Improvement

BART 2.5.1 now has a Reference guide that enables you to access information about subcommands quickly. The guide also lists comprehensive examples of BART operations.

For details, please see the *EDB Postgres Backup and Recovery Reference Guide* available at:

https://www.enterprisedb.com/edb-docs/

4.2 Conventions Used in this Guide

The following is a list of conventions used throughout this document.

- Much of the information in this document applies interchangeably to the PostgreSQL and EDB Postgres Advanced Server database systems. The term Advanced Server is used to refer to EDB Postgres Advanced Server. The term Postgres is used to generically refer to both PostgreSQL and Advanced Server. When a distinction needs to be made between these two database systems, the specific names, PostgreSQL or Advanced Server are used.
- The installation directory of the PostgreSQL or Advanced Server products is referred to as POSTGRES_INSTALL_HOME:
 - For PostgreSQL Linux installations, this defaults to /opt/PostgreSQL/x.x for version 10 and earlier. For later versions, the installation directory is /var/lib/pgsql/x.
 - For Advanced Server Linux installations performed using the interactive installer for version 10 and earlier, this defaults to /opt/PostgresPlus/x.xAS

or /opt/edb/asx.x. For Advanced Server Linux installations performed with an RPM package, this defaults to /usr/ppas-x.x or /usr/edb/asx.x. For Advanced Server Linux installations performed with an RPM package for version 11, this defaults to /usr/edb/as11.

Restrictions on pg_basebackup

BART takes full backups using the pg_basebackup utility program under the following conditions:

- The backup is taken on a standby server.
- The --with-pg_basebackup option is specified with the BACKUP subcommand for forcing the usage of pg_basebackup (see Section Backup).
- The number of thread counts in effect is 1, and the -pg_basebackup option is not specified with the BACKUP subcommand.
- Database servers can only be backed up by using pg_basebackup of the same or later version than the database server version. For example, pg_basebackup version 9.5 can back up database server version 9.5, but it cannot be used to back up database server version 9.6.

In the global section of the BART configuration file, the pg_basebackup_path parameter specifies the complete directory path to the pg_basebackup program.

For information about this parameter and also for setting the thread_count, see the configuration section of the EDB Postgres Backup and Recovery Installation and Upgrade Guide available at:

https://www.enterprisedb.com/edb-docs/

For information about pg_basebackup, see the PostgreSQL Core Documentation.

4.3 Overview

BART provides a simplified interface for the continuous archiving and point-in-time recovery method provided with Postgres database servers. This consists of the following processes:

· Capturing a complete image of a database cluster as a full base backup or referred

to simply as a full backup

- Capturing a modified image of a database cluster called a block-level incremental backup, which is similar to a full backup, but contains the modified blocks of the relation files that have been changed since a previous backup instead of all, full relation files
- Archiving the Write-Ahead Log segments (WAL files), which continuously record changes to be made to the database files
- Performing Point-In-Time Recovery (PITR) to a specified transaction ID or timestamp with respect to a timeline using a full backup along with successive, block-level incremental backups <block-level_incremental_backup> that reside in the same backup chain, and the WAL files

Detailed information regarding WAL files and point-in-time recovery is documented in the PostgreSQL Core Documentation.

Block-level incremental backups are referred as incremental backups.

The general term *backup* refers to both full backups and incremental backups. When a distinction must be made between the two, the complete term *full backup* or *incremental backup* is used.

For information about standby servers, see the PostgreSQL Core Documentation.

When taking a full backup of a standby server, BART uses the PostgreSQL pg_basebackup utility program.

Note

For standby servers, only a full backup can be taken. Incremental backups and parallel backups cannot be taken from standby servers.

For information about pg_basebackup, see the PostgreSQL Core Documentation.

These features provide a complete backup and recovery methodology for Postgres database servers, however, the management of this process can be quite complex, especially when dealing with multiple database servers in a distributed environment.

BART simplifies this management process by use of a centralized backup catalog, a single configuration file, and a command line interface controlling the necessary operations. Reasonable defaults are automatically used for various backup and restore options. BART also performs the necessary recovery file configuration required for point-in-time recovery using its command line interface.

BART also provides the following features to enhance backup management:

• Automation of the WAL archiving command configuration

- Usage of retention policies to evaluate, categorize, and delete obsolete backups
- Compression of WAL files to conserve disk space
- Customizable naming of backups to ease their usage
- Easy access to comprehensive information about each backup

The key components of a BART installation are:

- **BART Host.** The host system on which BART is installed. BART operations are invoked from this host system. The database server backups and archived WAL files are stored on this host as well.
- **BART User Account.** Linux operating system user account you choose to run BART. The BART user account owns the BART backup catalog directory.
- **BART Configuration File.** File in editable text format containing the configuration information used by BART.
- BART Backup Catalog. File system directory structure containing all of the backups and archived WAL files for the database servers managed by BART.
- BART Backupinfo File. File in text format containing information for a BART backup. A backupinfo file resides in each backup subdirectory within the BART backup catalog.
- BART Command Line Utility Program. Single, executable file named bart, which is used to manage all BART operations.
- **BART WAL Scanner Program.** Single, executable file named bart-scanner, which is used to scan WAL files to locate and record the modified blocks for incremental backups.

Other concepts and terms referred to in this document include the following:

• Postgres Database Cluster. Also commonly called the *data directory*, this is the file system directory where all of the data files related to a particular Postgres database server instance are stored. (Each specific running instance is identified by its host and port number when connecting to a database.) The database cluster is identified by the —D option when it is created, started, stopped, etc. by the Postgres initdb and pg_ctl commands. Typically by default, the initial database cluster is located in directory POSTGRES_INSTALL_HOME/data. A full backup is a copy of a database cluster.

Note

The terms database cluster and database server are used somewhat interchangeably throughout this document, though a single database server can run multiple database clusters.

 Postgres User Account. Linux operating system user account that runs the Advanced Server or PostgreSQL database server and owns the database cluster directory.

- By default, the database user account is enterprisedb when Advanced Server is installed to support compatibility with Oracle databases.
- By default, the database user account is postgres when Advanced Server is installed in PostgreSQL compatible mode. For a PostgreSQL database server, the default database user account is also postgres.

Note

The BART configuration parameter cluster_owner must be set to the database user account for each database server.

Replication Database User. For each database server managed by BART, a
database superuser must be selected to act as the replication database user. This
database user is used to connect to the database server when backups are taken.
The database superusers created with an initial Postgres database server
installation (enterprisedb or postgres) may be used for this purpose.

Note

The BART configuration parameter user must be set to this replication database user for each database server.

• Secure Shell (SSH)/Secure Copy (SCP). Linux utility programs used to log into hosts (SSH) and copy files (SCP) between hosts. A valid user account must be specified that exists on the target host and in effect, is the user account under which the SSH or SCP operations occur.

For information on how all of these components are configured and used with BART, see the *Configuration* section of the *EDB Postgres Backup and Recovery Installation and Upgrade Guide* available at:

https://www.enterprisedb.com/edb-docs/

4.3.1 Block-Level Incremental Backup

This section describes the basic concepts of a block-level incremental backup (referred to as an incremental backup). An incremental backup is functionality unique to BART.

An incremental backup provides a number of advantages when compared to using a full backup:

- The amount of time required to produce an incremental backup is generally less than a full backup, as modified relation blocks are saved instead of all full relation files of the database cluster.
- An incremental backup uses less disk space than a full backup taken in plain text format.

Note

Taking the full backup in tar format saves disk space as well.

Generally, all BART features (such as retention policy management) apply to incremental backups as well as full backups. See Section Managing Incremental Backups for information about retention policy management as applied to incremental backups.

4.3.1.1 Incremental Backup Limitations and Requirements

The following limitations apply to incremental backup:

- If you have restored a full or incremental backup, you must take a full backup before enabling incremental backup.
- If a standby node has been promoted to the role of primary node, you must take a full backup before enabling incremental backup on the cluster.
- An incremental backup cannot be taken on a standby database server.

The following requirements must be met before implementing incremental backup:

- You must create or select an operating system account to be used as the BART user account.
- You must create or select the replication database user, which must be a superuser.
- In the BART configuration file:
 - You must set the <u>cluster_owner</u> parameter to the Linux operating system user account that owns the database cluster directory from which incremental backups are to be taken.

- You must enable the allow incremental backups parameter.
- A password-less SSH/SCP connection must be established between the BART user account on the BART host and the <u>cluster_owner</u> user account on the database server.

Note

A password-less SSH/SCP connection must be established even if BART and the database server are running on the same host and the BART user account and the cluster_owner user account are the same account.

- In addition to the BART host where the BART backup catalog resides, the BART package must also be installed on every remote database server on which incremental backups are to be restored. In order to restore an incremental backup, the bart program must be executable on the remote host by the remote user specified by the remote_host parameter in the BART configuration file or by the -r option when using the RESTORE subcommand to restore the incremental backup.
- When restoring incremental backups on a remote database server, a password-less SSH/SCP connection must be established from the BART user account on the BART host to the remote user on the remote host that is specified by the remote_host parameter in the BART configuration file or by the -r option when using the RESTORE subcommand to restore the incremental backup.
- Compression of archived WAL files in the BART backup catalog is not permitted for database servers on which incremental backups are to be taken. The wal_compression setting in the BART configuration file must be disabled for those database servers.
- The incremental backup must be on the same timeline as the parent backup. The timeline changes after each recovery operation so an incremental backup cannot use a parent backup from an earlier timeline.

For information about setting or configuring all these requirements, see the Configuration section of the EDB Postgres Backup and Recovery Installation and Upgrade Guide available at:

https://www.enterprisedb.com/edb-docs/

The following section provides an overview of the basic incremental backup concepts.

4.3.1.2 Concept Overview

Using incremental backups involves the following sequence of steps:

- 1. Configure BART (see the EDB Postgres Backup and Recovery Installation and Upgrade Guide for details about configuring BART).
- 2. Enable and initiate archiving of WAL files to the BART backup catalog in the same manner as done for full backups.
- 3. Take an initial full backup with the BACKUP subcommand. This full backup establishes the parent of the first incremental backup.
- 4. Scan all WAL files produced by database servers on which incremental backups are to be taken. These WAL files are scanned once they have been archived to the BART backup catalog. Each scanned WAL file results in a modified block map (MBM) file that records the location of modified blocks obtained from the corresponding WAL file. The BART WAL scanner program bart-scanner performs this process.
- 5. Take incremental backups using the **BACKUP** subcommand with the --parent option to specify the backup identifier or name of a previous, full backup or an incremental backup. Any previous backup may be chosen as the parent as long as all backups belong to the same timeline.
- 6. The incremental backup process identifies which WAL files may contain changes from when the parent backup was taken to the starting point of the incremental backup. The corresponding MBM files are used to locate and copy the modified blocks to the incremental backup directory along with other database cluster directories and files. Instead of backing up all, full relation files, only the modified blocks are copied and saved. In addition, the relevant MBM files are condensed into one consolidated block map (CBM) file that is stored with the incremental backup.

Note

Multiple block copier threads can be used to copy the modified blocks to the incremental backup directory. See the *Configuration* section of the *EDB Postgres Backup and Recovery Installation and Upgrade Guide* for information about setting the thread_count parameter in the BART configuration file. See Section - Backup for using the --thread-count option with the BACKUP subcommand.

1. Invoke the restore process for an incremental backup using the RESTORE subcommand in the same manner as restoring a full backup. The -i option specifies the backup identifier or name of the incremental backup to restore. The restore process begins by going back through the chain of past, parent incremental backups until the initial full backup starting the chain is identified. This full backup provides the initial set of directories and files to be restored to the location specified with the -p option. Each subsequent incremental backup in the chain is then restored. Restoration of an incremental backup uses its CBM file to restore the modified blocks from the incremental backup.

The following sections provide some additional information on these procedures.

4.3.1.3 WAL Scanning – Preparation for an Incremental Backup

The WAL scanner program (bart-scanner) scans the WAL files created from the time of the parent backup up to the start of the incremental backup to determine which blocks have modified since the parent backup, and records the information in a file called the *modified block map (MBM) file*. One MBM file is created for each WAL file.

The MBM file is stored in the archive path directory:

backup path/server name/archived wals

Where:

backup_path is the BART backup catalog parent directory specified in the global section of the BART configuration file.

server_name is the lowercase conversion of the database server name specified for this database server in the server section of the BART configuration file.

This is the same directory where the archived WAL files are stored in the BART backup catalog.

The following code snippet is the content of the archive path showing the MBM files created for the WAL files. (The user name and group name of the files have been removed from the example to list the WAL files and MBM files in a more comparable manner.)

```
-rw----- 1 ... ... 16777216 Oct 12 09:47 000000010000001000007F
-rw-rw-r-- 1 ... ... 161 Oct 12 09:49
00000010000000178000028000000179000000.mbm
-rw-rw-r-- 1 ... ... 684 Oct 12 09:49
00000010000000179000028000000017A000000.mbm
-rw-rw-r-- 1 ... ... 161 Oct 12 09:49
0000001000000017A000028000000017B000000.mbm
-rw-rw-r-- 1 ... ... 161 Oct 12 09:49
0000001000000017B000028000000017C000000.mbm
-rw-rw-r-- 1 ... ... 1524 Oct 12 09:49
0000001000000017C000028000000017D000000.mbm
-rw-rw-r-- 1 ... ... 161 Oct 12 09:49
0000001000000017D00002800000017E000000.mbm
-rw-rw-r-- 1 ... ... 161 Oct 12 09:49
000000100000017E00002800000017F000000.mbm
-rw-rw-r-- 1 ... ... 161 Oct 12 09:49
000000100000017F000028000000180000000.mbm
```

MBM files have the suffix, .mbm.

In preparation for any incremental backup, the WAL files should be scanned as soon as they are copied to the BART backup catalog. Thus, the WAL scanner should be running as soon as the WAL files from the database cluster are archived to the BART backup catalog.

If the BART backup catalog contains WAL files that have not yet been scanned, starting the WAL scanner begins scanning these files. If WAL file fails to be scanned (resulting in a missing MBM file), you can use the WAL scanner to specify an individual WAL file.

Note

Under certain conditions (such as when the rsync utility is used to copy WAL files to the BART backup catalog), the WAL files may have been missed by the WAL scanner program for scanning and creation of MBM files. Use the scan_interval parameter in the BART configuration file to force scanning of WAL files in the archive directory of the BART backup catalog to ensure MBM files are generated. See the Configuration section of the EDB Postgres Backup and Recovery Installation and Upgrade Guide for more information.

See Running the BART WAL Scanner for information about using the WAL scanner.

4.3.1.4 Performing an Incremental Backup

The WAL files produced at the time of the parent backup up to the start of the incremental backup contain information about which blocks were modified during that time interval. That information is consolidated into an MBM file for each WAL file by the WAL scanner.

The MBM files for the relevant WAL files are read, and the information is used to copy the modified blocks from the database cluster to the BART backup catalog. When compared to a full backup, the number and sizes of relation files can be significantly less for an incremental backup.

For comparison, the following is an abbreviated list of the files copied to the archived base subdirectory of a full backup for one database:

```
[root@localhost 14845]# pwd
/opt/backup/acctg/1476301238969/base/base/14845
[root@localhost 14845]# ls
112
       13182 vm 14740 16467 16615
                                    2608 vm 2655 2699
                                                         2995
113
       13184
              14742 16471 174
                                 2609
                                        2656 2701
                                                    2995 vm ...
1247
       13186
               14745 16473 175
                                  2609 fsm 2657 2702
                                                       2996
                14747 16474 2187
                                                         2998
1247 fsm 13187
                                    2609 vm 2658 2703
1247 vm 13187 fsm 14748 16476 2328
                                      2610
                                             2659 2704
                                                         2998 vm ...
1249
       13187 vm 14749 16477 2328 fsm 2610 fsm 2660 2753
                                                           2999
                 14752 16479 2328_vm 2610_vm 2661 2753_fsm 2999 vm
1249 fsm 13189
1249 vm 13191
                 14754 16488 2336
                                    2611
                                           2662 2753 vm 3079
1255
       13192
               14755 16490 2336 vm 2611 vm 2663 2754
                                                         3079 fsm ...
                  16465 16603 2608 fsm 2654
                                              2696 2893 vm 3501 vm
13182 fsm 14739
```

In contrast, the following is the content of the archived base subdirectory of the same database from a subsequent incremental backup:

```
[root@localhost 14845]# pwd
```

```
/opt/backup/acctg/1476301835391/base/base/14845

[root@localhost 14845]# ls

1247 1249 1259 16384 17006 2608 2610 2658 2663 2678 ...

1247_fsm 1249_fsm 1259_fsm 16387 17009 2608_fsm 2610_fsm 2659 2673

2679 ...

1247_vm 1249_vm 1259_vm 16389 17011 2608_vm 2610_vm 2662 2674

2703 ...
```

The information from the MBM files are consolidated into one file called a *consolidated block map* (CBM) file. During the restore operation for the incremental backup, the CBM file is used to identify the modified blocks to be restored for that backup.

In addition, the incremental backup also stores other required subdirectories and files from the database cluster as is done for full backups.

Before taking an incremental backup, an initial full backup must be taken with the BACKUP subcommand. This full backup establishes the parent of the first incremental backup.

The syntax for taking a full backup is:

```
bart BACKUP -s { server_name | all } [ -F { p | t } ]
  [ -z ] [ -c compression_level ]
  [ --backup-name backup_name ]
  [ --thread-count number_of_threads ]
  [ { --with-pg_basebackup | --no-pg_basebackup } ]
```

Note

While a BACKUP subcommand is in progress, no other processes must run in parallel. For more details about BACKUP subcommand, see the Section - BACKUP.

The syntax for taking an incremental backup is:

```
bart BACKUP -s { server_name | all } [ -F p]
[ --parent { backup_id | backup_name } ]
[ --backup-name backup_name ]
[ --thread-count number_of_threads ]
[ --check ]
```

Specify the -F p option for plain text format as incremental backup can only be taken in the plain text format.

Specify the option --check before taking an incremental backup to verify if the required MBM files are present in the BART backup catalog. The --parent option must be specified when the --check option is used.

See the BACKUP section for more information about using the BACKUP subcommand to take an incremental backup.

4.3.1.5 Restoring an Incremental Backup

Restoring an incremental backup may require additional setup steps depending upon the host on which the incremental backup is to be restored:

- Restoring an Incremental Backup on a BART Host This section outlines restoring an incremental backup onto the same host where BART has been installed.
- Restoring an Incremental Backup on a Remote Host This section outlines restoring an incremental backup onto a remote host where BART has not been installed.

Ensure the bart program is available on the remote host when restoring an incremental backup on a remote host; the invocation of the RESTORE subcommand for an incremental backup results in the execution of the bart program on the remote host to restore the modified blocks to their proper location.

Restoring an Incremental Backup on a BART Host

Specify a backup identifier or name, and include the -i option when invoking the RESTORE subcommand to restore an incremental backup. All RESTORE options may be used in the same manner as when restoring a full backup.

First, all files from the full backup from the beginning of the backup chain are restored. For each incremental backup, the CBM file is used to identify and restore blocks from the incremental backup. If there are new relations or databases identified in the CBM file, then relevant relation files are copied. If consolidated block map information is found indicating the drop of a relation or a database, then the relevant files are removed from the restore directory. Similarly, if there is any indication of a table truncation, then the related files are truncated.

Also note that you can use the -w option of the RESTORE subcommand to specify a multiple number of parallel worker processes to stream the modified blocks to the restore host.

Restoring an Incremental Backup on a Remote Host

To restore an incremental backup onto a remote host where BART has not been installed, follow the restore process steps outlined in Restoring an Incremental Backup on a BART Host and then, perform the following steps:

Step 1: Install BART on the remote host to which an incremental backup is to be restored.

Note: No editing is needed in the bart.cfg file installed on the remote host.

Step 2: Determine the Linux operating system user account on the remote host to be used as the remote user. This user is specified by the remote_host parameter in the BART configuration file or by the -r option when using the RESTORE subcommand to restore the incremental backup. The remote user must be the owner of the directory where the incremental backup is to be restored on the remote host. By default, the user account is enterprised for Advanced Server or postgres for PostgreSQL.

Step 3: Ensure a password-less SSH/SCP connection is established from the BART user on the BART host to the remote user on the remote host.

See the configuration section of the *EDB Postgres Backup and Recovery Installation and Upgrade Guide* for BART installation and configuration.

Example

When restoring an incremental backup, specify the **RESTORE** subcommand and the backup identifier or name of the incremental backup that will be restored. For example:

-bash-4.2\$ bart RESTORE -s acctg -p /opt/restore -i incr_1-b

INFO: restoring incremental backup 'incr_1-b' of server 'acctg'

INFO: base backup restored INFO: archiving is disabled

INFO: permissions set on \$PGDATA

INFO: incremental restore completed successfully

Restoring incremental backup incr_1-b as shown in the preceding example results in the restoration of full backup full_1, then incremental backups incr_1-a and finally,

incr_1-b.

4.3.2 Creating a Backup Chain

A *backup chain* is the set of backups consisting of a full backup and all of its successive incremental backups. Tracing back on the parent backups of all incremental backups in the chain eventually leads back to that single, full backup.

It is possible to have a *multi-forked* backup chain, which is two or more successive lines of incremental backups, all of which begin with the same, full backup. Thus, within the chain there is a backup that serves as the parent of more than one incremental backup.

Since restoration of an incremental backup is dependent upon first restoring the full backup, then all successive incremental backups up to, and including the incremental backup specified by the RESTORE subcommand, it is crucial to note the following:

- Deletion or corruption of the full backup destroys the entire backup chain. It is not possible to restore any of the incremental backups that were part of that chain.
- Deletion or corruption of an incremental backup within the chain results in the
 inability to restore any incremental backup that was added to that successive line of
 backups following the deleted or corrupted backup. The full backup and incremental
 backups prior to the deleted or corrupted backup can still be restored.

The actions of retention policy management are applied to the full backup and all of its successive incremental backups within the chain in an identical manner as if they were one backup. Thus, use of retention policy management does not result in the breakup of a backup chain.

See the *EDB Postgres Backup and Recovery Reference Guide* for examples of creating a backup chain and restoring an incremental backup.

4.4 Using BART

After installing and configuring the BART host and the database servers, you can start using BART. For detailed information about installation and configuration, see the *EDB Postgres Backup and Recovery Installation and Upgrade Guide* available at:

https://www.enterprisedb.com/edb-docs

This section describes how to perform backup and recovery management operations using BART. Review the sections that follow before proceeding with any BART operation.

4.4.1 BART Management Overview

After configuring BART, you can begin the BART backup and recovery management process. The following steps will help you get started:

- 1. Run the CHECK-CONFIG subcommand without the -s option. When the CHECK-CONFIG subcommand is used without specifying the -s option, it checks the parameters in the global section of the BART configuration file.
- 2. Run the INIT subcommand (if you have not already done so) to finish creation of the BART backup catalog, which results in the complete directory structure to which backups and WAL files are saved. This step must be done before restarting the database servers with enabled WAL archiving, otherwise the copy operation in the archive_command parameter of the postgresql.conf file or the postgresql.auto.conf file fails due to the absence of the target archive directory. When the directory structure is complete, the lowest level subdirectory named server_name/archived_wals, referred to as the archive path, should exist for each database server.
- 3. Start the Postgres database servers with archiving enabled. Verify that the WAL files are appearing in the server_name/archived_wals archive paths for each database server. (The archiving frequency is dependent upon other postgresql.conf configuration parameters.) Check the Postgres database server log files to ensure there are no archiving errors. Archiving should be operational before taking a backup in order to ensure that the WAL files that may be created during the backup process are archived.
- 4. Start the WAL scanner if you intend to take incremental backups. Since the WAL scanner processes the WAL files copied to the archive paths in the BART backup catalog, it is advantageous to commence the WAL scanning as soon as the WAL files begin to appear in the BART backup catalog in order to keep the scanning in pace with the WAL archiving.

- 5. Run the BART CHECK-CONFIG subcommand for each database server with the soption specifying the server name. This ensures the database server is properly configured for taking backups.
- 6. Create a full backup for each database server. The full backup establishes the starting point of when point-in-time recovery can begin and also establishes the initial parent backup for any incremental backups to be taken.

There are now a number of other BART management processes you may perform:

- Execute the BACKUP subcommand to create additional full backups or incremental backups.
- Use the VERIFY-CHKSUM subcommand to verify the checksum of the full backups .
- Display database server information with the SHOW-SERVERS subcommand.
- Display backup information with the SHOW-BACKUPS subcommand.
- Compress the archived WAL files in the BART backup catalog by enabling WAL compression in the BART configuration file and then invoking the MANAGE subcommand.
- Determine and set the retention policy for backups in the BART configuration file.
- Establish the procedure for using the MANAGE subcommand to enforce the retention policy for backups. This may include using cron jobs to schedule the MANAGE subcommand.

4.4.1.1 Performing a Restore Operation

Perform the following steps for restore operation:

Step 1: Stop the Postgres database server on which you will be performing the restore operation.

Step 2: Inspect the pg_xlog subdirectory of the data directory and save any WAL files that have not yet been archived to the BART backup catalog (backup_path/server_name/archived_wals). If there are files that have not been archived, save them to a temporary location.

Step 3: If you are restoring to:

- the current data directory, delete all files and subdirectories under the data directory.
- a new directory, create the directory on which you want to restore the backed up database cluster. Ensure the data directory can be written to by the BART user account or by the user account specified by the remote_host configuration parameter, or by the --remote-host option of the RESTORE subcommand (if these are to be used).

Step 4: Perform the same process for tablespaces as described in Step 3. The tablespace_path parameter in the BART configuration file must contain the tablespace directory paths to which the tablespace data files are to be restored. See the *Configuration* section of the *EDB Postgres Backup and Recovery Installation and Upgrade Guide* for more information.

Step 5: Identify the timeline ID you wish to use to perform the restore operation.

The available timeline IDs can be identified by the first non-zero digit of the WAL file names reading from left to right.

Step 6: Identify the backup to use for the restore operation and obtain the backup ID or backup name.

To use the latest backup, omit the -i option; the RESTORE subcommand uses that backup by default. The backups can be listed with the SHOW-BACKUPS subcommand.

Step 7: Run the BART RESTORE subcommand.

- If you have specified the -t timeline_id, -x target_xid, or -g target_timestamp option, then recovery settings will be saved in the postgresql.auto.conf file and point-in-time recovery will be performed when you restart the database server.
- If you do not specify -t timeline_id, -x target_xid, or -g target_timestamp, then
 minimal recovery settings will be saved in the postgresql.auto.conf file and
 archive recovery will proceed only until consistency is reached, with no
 restoration of files from the archive. See the Restore section for detailed
 information about Restore subcommand.
- If the -c option is specified or if the enabled setting of the copy_wals_during_restore BART configuration parameter is in effect for this database server, then the following actions occur:
 - In addition to restoring the database cluster to the directory specified by the -p restore_path option, the archived WAL files of the backup are copied from the BART backup catalog to the subdirectory

- restore path/archived wals.
- If recovery settings are saved in the postgresql.auto.conf file, the command string set in the restore_command parameter retrieves the WAL files from this archived_wals subdirectory relative to the restore_path parent directory as: restore_command = cp archived_wals/%f %p

Note

You must ensure that valid options are specified when using the RESTORE subcommand. BART will not generate an error message if invalid option values or invalid option combinations are provided. BART will accept the invalid options and pass them to the postgresql.auto.conf file, which will then be processed by the database server when it is restarted.

Step 8: Copy any saved WAL files from Step 2 to the restore_path/pg_xlog subdirectory.

Step 9: Inspect the restored directories and data files of the restored database cluster in directory restore_path.

All files and directories must be owned by the user account that you intend to use to start the database server. Recursively change the user and group ownership of the restore_path directory, its files, and its subdirectories if necessary. There must only be directory access privileges for the user account that will start the database server. No other groups or users can have access to the directory.

Step 10: Inspect the postgresql.auto.conf file (if you are performing a point-in-time recovery) located in the restore_path directory to verify if it contains the appropriate parameter settings to recover to the indicated point. Otherwise, the postgresql.auto.conf file should be configured to recover only until the cluster reaches consistency. In either case, the settings may be modified as desired.

Step 11: Disable WAL archiving at this point. The BART RESTORE subcommand adds archive_mode = off to the end of the postgresql.conf file.

- If you want to restart the database server with WAL archiving activated, ensure that this additional parameter is deleted.
- The original archive_mode parameter still resides in the postgresql.conf file in its initial location with its last setting.

Step 12: Start the database server to initiate recovery. After completion, check the database server log file to ensure the recovery was successful.

Note

If the backup is restored to a different location than where the original database cluster

resided, operations dependent upon the database cluster location may fail if supporting service scripts are not updated to reflect the location where the backup has been restored. For information about the use and modification of service scripts, see the EDB Postgres Advanced Server Installation Guide.

4.4.1.2 Point-In-Time Recovery Operations

The following steps outline how to perform a point-in-time recovery operation for a database cluster:

- 1. Use your system-specific command to shut down the database server.
- 2. If you want to restore the database cluster and tablespace files to new directories, create the new directories with the appropriate directory ownership and permissions.
 - If you plan to reuse existing database cluster directories, delete all the files and subdirectories in the existing directories. We strongly recommended that you make a copy of this data before deleting it. Be sure to save any recent WAL files in the pg_xlog subdirectory that have not been archived to the BART backup catalog server name/archived wals subdirectory.
- 3. Run the BART SHOW-BACKUPS -s <server_name> subcommand to list the backup IDs and backup names of the backups for the database server. You will need to provide the appropriate backup ID or backup name with the BART RESTORE subcommand, unless you intend to restore the latest backup in which case the -i option of the RESTORE subcommand for specifying the backup ID or backup name may be omitted.
- 4. Run the BART RESTORE subcommand with the appropriate options.
 - The backup is restored to the directory specified by the -p restore_path option.
 - In addition, if the RESTORE subcommand -c option is specified or if the enabled setting of the copy_wals_during_restore BART configuration parameter is applicable to the database server, then the required, archived WAL files from the BART backup catalog are copied to the restore path/archived wals subdirectory.

Note

Ensure the restore_path directory and all subdirectories and files in the

restore_path are owned by the proper Postgres user account (for example, enterprisedb or postgres). Also ensure that only the Postgres user account has access permission to the restore_path directory.

Use the **chown** command to make the appropriate adjustments to file permissions; for example, the following command changes the ownership of restore_path to enterprisedb:

chown -R enterprisedb:enterprisedb restore path

The following command restricts access to restore_path:

chmod 700 restore_path

- 1. Copy any saved WAL files from Step 2 that were not archived to the BART backup catalog to the restore path/pg xlog subdirectory.
- 2. For point-in-time recovery, verify that the postgresql.auto.conf file created in the directory specified with the RESTORE subcommand's -p <restore_path> option generated the correct recovery parameter settings.

Note

If the RESTORE subcommand -c option is specified or if the enabled setting of the copy_wals_during_restore BART configuration parameter is applicable to the database server, then the restore_command parameter retrieves the archived WAL files from the <restore_path>/archived_wals subdirectory that was created by the RESTORE subcommand, otherwise the restore_command retrieves the archived WAL files from the BART backup catalog.

- 1. The BART RESTORE subcommand disables WAL archiving in the restored database cluster. If you want to immediately enable WAL archiving, modify the postgresql.conf file by deleting the archive_mode = off parameter that BART appends to the end of the file.
- 2. Start the database server, which will then perform the point-in-time recovery operation if recovery settings are saved in the postgresql.auto.conf file.

A detailed description of the RESTORE subcommand is available in Basic Bart Subcommand Usage; see the EDB Postgres Backup and Recovery Reference Guide for a Point-in-Time recovery example.

4.4.2 Using a Retention Policy to Manage Backups

Over the course of time when using BART, the number of backups can grow significantly. This ultimately leads to a large consumption of disk space unless an administrator periodically performs the process of deleting the oldest backups that are no longer needed. This process of determining when a backup is old enough to be deleted and then actually deleting such backups can be done and automated with the following basic steps:

- 1. Determine and set a retention policy in the BART configuration file. A *retention policy* is a rule that determines when a backup is considered obsolete. The retention policy can be applied globally to all servers, but each server can override the global retention policy with its own (see the configuration section of the *EDB Postgres Backup and Recovery Installation and Upgrade Guide* for details).
- 2. Use the MANAGE subcommand to categorize and manage backups according to the retention policy.
- 3. Create a cron job to periodically run the MANAGE subcommand to evaluate the backups and then list and/or delete the obsolete backups.

Note

There is a difference on how retention policy management applies to incremental backups as compared to full backups. See Section - Managing Incremental Backups for information about how retention policy management applied to full backups affects incremental backups.

The following sections describe how retention policy management generally applies to backups, and its specific usage and effect on full backups:

- Section Overview Managing Backups Using a Retention Policy provides an overview of the terminology and types of retention policies.
- Section Marking the Backup Status describes the concept of marking the status of backups according to the retention policy.
- Section Setting the Retention Policy describes setting the different types of retention policies.
- Section Managing the Backups Based on the Retention Policy describes the process of managing the backups such as marking the backup status, keeping selected backups indefinitely, listing obsolete backups, and deleting obsolete backups.

Note

The examples shown in the previously listed sections were generated with BART version 1.1. The retention policy management process is the same for the current BART version, however the displayed output of the SHOW-BACKUPS and SHOW-SERVERS subcommands now include a few additional fields that do not influence the retention policy.

4.4.2.1 Overview - Managing Backups Using a Retention Policy

The BART retention policy results in the categorization of each backup in one of three statuses –*active, obsolete*, and *keep*:

- Active. The backup satisfies the retention policy applicable to its server. Such backups would be considered necessary to ensure the recovery safety for the server and thus should be retained.
- **Obsolete.** The backup does not satisfy the retention policy applicable to its server. The backup is no longer considered necessary for the recovery safety of the server and thus can be deleted.
- **Keep.** The backup is to be retained regardless of the retention policy applicable to its server. The backup is considered vital to the recovery safety for the server and thus should not be deleted for an indefinite period of time.

There are two types of retention policies - redundancy retention policy and recovery window retention policy.

- Redundancy Retention Policy The redundancy retention policy relies on a specified, maximum number of most recent backups to retain for a given server. When the number of backups exceeds that maximum number, the oldest backups are considered obsolete (except for backups marked as keep).
- Recovery Window Retention Policy The recovery window retention policy relies on a time frame (the recovery window) for when a backup should be considered active. The boundaries defining the recovery window are the current date/time (the ending boundary of the recovery window) and the date/time going back in the past for a specified length of time (the starting boundary of the recovery window).
 - If the date/time the backup was taken is within the recovery window (that is, the backup date/time is on or after the starting date/time of the recovery window), then the backup is considered active, otherwise it is considered obsolete (except for backups marked as keep).
 - Thus, for the recovery window retention policy, the recovery window time frame dynamically shifts, so the end of the recovery window is always the current date/time when the MANAGE subcommand is run. As you run the MANAGE subcommand at future points in time, the starting boundary of the recovery window moves forward in time. At some future point, the date/time of when a backup was taken will be earlier than the starting boundary of the recovery window. This is when an active backup's status will then be considered obsolete.
 - You can see the starting boundary of the recovery window at any point in time by running the SHOW-SERVERS subcommand. The RETENTION POLICY

field of the SHOW-SERVERS subcommand displays the starting boundary of the recovery window.

4.4.2.2 Marking the Backup Status

When a backup is initially created with the BACKUP subcommand, it is always recorded with active status. Use the MANAGE subcommand to evaluate if the backup status should be changed to obsolete in accordance with the retention policy. See MANAGE for usage and option information for the MANAGE subcommand.

Active backups are evaluated and also marked (that is, internally recorded by BART) as obsolete only when the MANAGE subcommand is invoked either with no options or with only the -s option.

Once a backup has been marked as obsolete, you cannot change it back to active unless you perform the following steps:

- Use the MANAGE subcommand with the -c option along with the backup identifier or name with the -i option. To keep this particular backup indefinitely, use -c keep, otherwise use -c nokeep.
- If you use the -c nokeep option, the backup status is changed back to active. When the MANAGE subcommand is used the next time, the backup is re-evaluated to determine if its status needs to be changed back to obsolete based on the current retention policy in the BART configuration file.

After setting the retention_policy parameter and running the MANAGE subcommand to mark the backups according to that retention_policy setting if you change the retention_policy parameter, the current, marked status of the backups are probably inconsistent with the new retention_policy setting.

To modify the backup status to be consistent with the new retention_policy setting, you need to run the MANAGE subcommand with:

- the -c nokeep option to change the obsolete status to active status if there are backups currently marked as obsolete that would no longer be considered obsolete under a new retention policy. You can also specify the -i all option to change all backups back to active status, including those currently marked as keep.
- no options or with only the -s option to reset the marked status based on the new retention_policy setting in the BART configuration file.

Note

You can review the current marking (the status) of your backups with the SHOW-BACKUPS subcommand.

4.4.2.3 Setting the Retention Policy

The retention policy is determined by the retention_policy parameter in the BART configuration file. It can be applied globally to all servers, but each server can override the global retention policy with its own. For information about creating a global retention policy and an individual database server retention policy, see the Configuration section of the EDB Postgres Backup and Recovery Installation and Upgrade Guide.

There are two types of retention policies - redundancy retention policy and the recovery window retention policy as described in the following sections.

Redundancy Retention Policy

To use the redundancy retention policy, set retention_policy = max_number

BACKUPS where max_number is a positive integer designating the maximum number of most recent backups.

Additional Restrictions:

- The keyword BACKUPS must always be specified in plural form (for example, 1 BACKUPS).
- BART will accept a maximum integer value of 2,147,483,647 for max_number; however, you should use a realistic, practical value based on your system environment.

Note: The redundancy retention policy is the default type of retention policy if all keywords BACKUPS, DAYS, WEEKS, and MONTHS following the max_number integer are omitted as shown by the following example:

retention policy = 3

In the following example the redundancy retention policy setting considers the three

most recent backups as the active backups. Any older backups, except those marked as keep, are considered obsolete.

```
[ACCTG]
host = 127.0.0.1
port = 5444
user = enterprisedb
archive_command = 'cp %p %a/%f'
retention_policy = 3 BACKUPS
description = "Accounting"
```

The SHOW-SERVERS subcommand displays the 3 Backups redundancy retention policy in the RETENTION POLICY field:

-bash-4.1\$ bart SHOW-SERVERS -s acctg

SERVER NAME : acctg
HOST NAME : 127.0.0.1
USER NAME : enterprisedb

PORT : 5444 REMOTE HOST :

RETENTION POLICY : 3 Backups
DISK UTILIZATION : 627.04 MB
NUMBER OF ARCHIVES : 25

ARCHIVE PATH : /opt/backup/acctg/archived_wals

ARCHIVE COMMAND : cp %p /opt/backup/acctg/archived_wals/%f

XLOG METHOD : fetch

WAL COMPRESSION : disabled

TABLESPACE PATH(s):

DESCRIPTION : "Accounting"

Recovery Window Retention Policy

To use the recovery window retention policy, set the retention_policy parameter to the desired length of time for the recovery window in one of the following ways:

- Set to max_number DAYS to define the start date/time recovery window boundary
 as the number of days specified by max_number going back in time from the
 current date/time.
- Set to max_number WEEKS to define the start date/time recovery window

- boundary as the number of weeks specified by max_number going back in time from the current date/time.
- Set to max_number MONTHS to define the start date/time recovery window boundary as the number of months specified by max_number going back in time from the current date/time.

Additional Restrictions:

- The keywords DAYS, WEEKS, and MONTHS must always be specified in plural form (for example, 1 DAYS, 1 WEEKS, or 1 MONTHS).
- BART will accept a maximum integer value of 2,147,483,647 for max_number, however, a realistic, practical value based on your system environment must always be used.

A backup is considered active if the date/time of the backup is equal to or greater than the start of the recovery window date/time.

You can view the actual, calculated recovery window by:

- Invoking the MANAGE subcommand in debug mode, along with the -n option.
- Using the SHOW-SERVERS subcommand.

See the *EDB Postgres Backup and Recovery Reference Guide* for examples of how to view the actual, calculated recovery window.

4.4.2.4 Managing the Backups Based on the Retention Policy

The MANAGE subcommand is used to evaluate and categorize backups according to the retention policy set in the BART configuration file. When a backup is first created with the BACKUP subcommand, it is always marked as active. By using the MANAGE subcommand, an active backup may be marked as obsolete. Obsolete backups can then be deleted.

This section covers following aspects of backup management:

- The rules for deleting backups dependent upon the backup status and the subcommand used.
- The process to retain a backup indefinitely by marking it as keep. This section also

- provides information about resetting backups marked as obsolete and keep back to active status.
- The general process for evaluating, marking, and then deleting obsolete backups <evaluating_marking_and_deleting_obsolete_backups>.

Deletions Permitted Under a Retention Policy

This section describes how and under what conditions backups may be deleted under a retention policy.

You must use the MANAGE subcommand to delete obsolete backups. Use the DELETE subcommand only for special administrative purposes.

The deletion behavior of the MANAGE subcommand and the DELETE subcommand are based on different aspects of the retention policy.

- The MANAGE subcommand deletion relies solely upon how a backup status is currently marked (that is, internally recorded by BART). The current setting of the retention_policy parameter in the BART configuration file is ignored.
- The DELETE subcommand relies solely upon the current setting of the retention_policy parameter in the BART configuration file. The current active, obsolete, or keep status of a backup is ignored.

The specific deletion rules for the MANAGE and DELETE subcommands are as follows:

- MANAGE subcommand: The MANAGE subcommand with the -d option can only delete backups marked as obsolete. This deletion occurs regardless of the current retention_policy setting in the BART configuration file. The deletion of backups relies on the last occasion when the backups have been marked.
- DELETE subcommand:
 - Under a redundancy retention policy currently set with the retention_policy parameter in the BART configuration file, any backup regardless of its marked status, can be deleted with the DELETE subcommand when the backup identifier or name is specified with the -i option and if the current total number of backups for the specified database server is greater than the maximum number of redundancy backups currently specified with the retention_policy parameter.

If the total number of backups is less than or equal to the specified, maximum number of redundancy backups, then no additional backups can be deleted using DELETE with the -i backup option.

- Under a recovery window retention policy currently set with the retention_policy parameter in the BART configuration file, any backup regardless of its marked status, can be deleted with the DELETE subcommand when the backup identifier or name is specified with the -i option, and if the backup date/time is not within the recovery window currently specified with the retention_policy parameter. If the backup date/time is within the recovery window, then it cannot be deleted using DELETE with the -i backup option.
- Invoking the **DELETE** subcommand with the -i all option results in the deletion of all backups regardless of the retention policy and regardless of whether the status is marked as active, obsolete, or keep.

The following table summarizes the deletion rules of backups according to their marked status. An entry of Yes indicates the backup may be deleted under the specified circumstances. An entry of No indicates that the backup may not be deleted.

Table 3-1 Allowable Backup Deletion by Status

Operation	Redundancy Retention Policy			Recovery Window	Retention Policy	
	Active	Obsolete	Keep	Active	Obsolete	Keep
MANAGE –d	No	Yes	No	No	Yes	No
DELETE –i <i>backup</i>	Yes (see Note 1)	Yes (see Note 1)	Yes (see Note 1)	Yes (see Note 2)	Yes (see Note 2)	Yes (see Note 2)
DELETE –i all	Yes	Yes	Yes	Yes	Yes	Yes

Note

Deletion occurs only if the total number of backups for the specified database server is greater than the specified, maximum number of redundancy backups currently set with the redundancy policy parameter in the BART configuration file.

Deletion occurs only if the backup is not within the recovery window currently set with the redundancy_policy parameter in the BART configuration file.

Marking Backups for Indefinite Keep Status

There may be certain backups that you wish to keep for an indefinite period of time and do not wish to delete based upon the retention policy applied to the database server. Such backups can be marked as keep to exclude them from being marked as obsolete.

Use the MANAGE subcommand with the -c keep option to retain such backups indefinitely. See the *EDB Postgres Backup and Recovery Reference Guide* to view examples of MANAGE subcommand.

Evaluating, Marking, and Deleting Obsolete Backups

When the MANAGE subcommand is invoked, BART evaluates active backups:

- If you include the -s option when invoking MANAGE, BART evaluates backups for the database server.
- If you include the -s all option when invoking MANAGE, BART evaluates backups for all database servers.
- If the -s option is omitted, the command evaluates the current number of backups for the database server based on the redundancy retention policy or the current date/time for a recovery window retention policy.

Note

The status of backups currently marked as obsolete or keep is not changed. To reevaluate such backups and then classify them, their status must first be reset to active with the MANAGE -c nokeep option. See Marking the Backup Status for more information.

See the *EDB Postgres Backup and Recovery Reference Guide* to view an example of how to evaluate, mark, and delete backups using redundancy retention policy and recovery window retention policy.

4.4.2.5 Managing Incremental Backups

The following section summarizes how retention policy management affects

incremental backups.

- The retention policy rules are applied to full backups.
 - A redundancy retention policy uses the number of **full** backups to determine if a backup is obsolete. Incremental backups are excluded from the comparison count against the <u>retention_policy</u> setting for the maximum number of backups.
 - A recovery window retention policy uses the backup date/time of any full backups to determine if a backup is obsolete. The backup date/time of any successive incremental backups in the chain are ignored when comparing with the recovery window.
- The retention status of all incremental backups in a chain is set to the same status applied to the full backup of the chain.
- The actions applied by the MANAGE and DELETE subcommands on a full backup are applied to all incremental backups in the chain in the same manner.
- Thus, a backup chain (that is, the full backup and all its successive incremental backups) are treated by retention policy management as if they are all one, single backup.
 - The status setting applied to the full backup is also applied to all incremental backups in its chain.
 - If a full backup is marked as obsolete and then deleted according to the retention policy, all incremental backups in the chain are also marked obsolete and then deleted as well.

The following are some specific points regarding the MANAGE and DELETE subcommands on incremental backups:

MANAGE subcommand:

- When the MANAGE subcommand is invoked, the status applied to the full backup is also applied to all successive incremental backups in the chain.
- The MANAGE subcommand with the -c { keep | nokeep} option cannot specify the backup identifier or backup name of an incremental backup with -i backup option. The -i backup option can only specify the backup identifier or backup name of a full backup.
 - You can also use the -i all option to take a backup of all backups. When the
 MANAGE subcommand with the -c { keep | nokeep } option is applied to a full
 backup, the same status change is made to all incremental backups in the chain.

• **DELETE** subcommand:

• The DELETE subcommand with the -s server -i backup option specifies the backup identifier or backup name of an incremental backup in which case that incremental backup along with all its successive incremental backups are deleted, thus shortening that backup chain.

Using a Redundancy Retention Policy with Incremental Backups

When a redundancy retention policy is used and the MANAGE subcommand is invoked, the status of the oldest active full backup is changed to obsolete if the number of full backups exceeds the maximum number specified by the retention_policy parameter in the BART configuration file.

Note

When a full backup is changed from active to obsolete, all successive incremental backups in the chain of the full backup are also changed from active to obsolete.

When determining the number of backups that exceeds the number specified by the retention_policy parameter, only full backups are counted for the comparison. Incremental backups are not included in the count for the comparison against the retention_policy parameter setting.

See the *EDB Postgres Backup and Recovery Reference Guide* for examples demonstrating use of the MANAGE and DELETE subcommands when a redundancy retention policy is in effect.

Using a Recovery Window Retention Policy with Incremental Backups

If the MANAGE command is invoked when BART is configured to use a recovery window retention policy, the status of active full backups are changed to obsolete if the date/time of the full backup is outside of the recovery window.

Note

If a full backup is changed from active to obsolete, all successive incremental backups in the chain of the full backup are also changed from active to obsolete.

The status of an incremental backup is changed to obsolete regardless of whether or not the date/time of when the incremental backup was taken still lies within the recovery window.

See the *EDB Postgres Backup and Recovery Reference Guide* for examples demonstrating use of the MANAGE and DELETE subcommands when a recovery window retention policy is in effect.

4.4.3 Basic BART Subcommand Usage

This section briefly describes the BART subcommands and options. You can invoke the bart program (located in the <BART_HOME>/bin directory) with the desired options and subcommands to manage your BART installation.

Syntax for invoking BART:

bart [general_option]... [subcommand] [subcommand_option]...

Please note:

- When invoking a subcommand, the subcommand name is case-insensitive (that is, the subcommand can be specified in uppercase, lowercase, or mixed case).
- Each subcommand has a number of its own applicable options that are specified following the subcommand. All options are available in both single-character and multi-character forms.
- Keywords are case-sensitive; options are generally specified in lowercase unless specified otherwise in this section.
- When invoking BART, the current user must be the BART user account (operating system user account used to run the BART command line program). For example, enterprised or postgres can be selected as the BART user account when the managed database servers are Advanced Server or PostgreSQL respectively.
- The chosen operating system user account must have the following capabilities:
 - Own the BART backup catalog directory.
 - Be able to run the bart program and the bart scanner program.
 - Have a password-less SSH/SCP connection established between database servers managed by BART.

You can specify one or more of the following general options:

Options

-h or –help

Displays general syntax and information on BART usage.

All subcommands support a help option (-h, --help). If the help option is specified, information is displayed regarding that particular subcommand. The subcommand, itself, is not executed.

-v or -version

Displays the BART version information.

-d or –debug

Displays debugging output while executing BART subcommands.

-c or --config-path config_file_path

Specifies config_file_path as the full directory path to a BART configuration file. Use this option if you do not want to use the default BART configuration file BART_HOME>/etc/bart.cfg.

Troubleshooting: Setting Path Environment Variable

If execution of BART subcommands fails with the following error message, then you need to set the LD_LIBRARY_PATH to include the libpq library directory:

./bart: symbol lookup error: ./bart: undefined symbol: PQping

Workaround: Set the LD_LIBRARY_PATH environment variable for the BART user account to include the directory containing the libpq library. This directory is POSTGRES_INSTALL_HOME/lib as shown by the following example:

export LD_LIBRARY_PATH=/opt/PostgresPlus/9.5AS/lib/:\$LD_LIBRARY_PATH

It is suggested that the PATH and the LD_LIBRARY_PATH environment variable settings be placed in the BART user account's profile. See the configuration section of the EDB Postgres Backup and Recovery Installation and Upgrade Guide for details.

Note

In the following sections, the help option is omitted from the syntax diagrams for the purpose of providing readability for the subcommand options.

4.4.3.1 CHECK-CONFIG

The CHECK-CONFIG subcommand checks the parameter settings in the BART configuration file as well as the database server configuration for which the -s option is specified. To view examples of CHECK-CONFIG subcommand, refer to the EDB Postgres Backup and Recovery Reference Guide.

Syntax:

bart CHECK-CONFIG [-s server_name]

Options

-s or --server <server_name>

server_name is the name of the database server to be checked for proper configuration. If the option is omitted, the settings of the global section of the BART configuration file are checked.

Please note:

- When the -s option is omitted, the global section [BART], which contains
 parameters including bart_host, backup_path, and pg_basebackup_path is
 checked.
- When the -s option is specified, the parameters in the specified server section are checked. In addition, certain postgresql.conf parameters for the database server must be properly set and the database server must be activated for certain processes. These requirements include the following:
 - The cluster_owner parameter must be set to the user account owning the database cluster directory.
 - A password-less SSH/SCP connection must be set between the BART user and the user account specified by the cluster_owner parameter.
 - A database superuser must be specified by the BART user parameter.
 - The pg_hba.conf file must contain a replication entry for the database superuser specified by the BART user parameter.
 - The archive_mode parameter in the postgresql.conf file must be enabled.
 - The archive_command parameter in the postgresql.auto.conf or the postgresql.conf file must be set.
 - The allow_incremental_backups parameter in the BART configuration file must be enabled for database servers for which incremental backups are to be taken.
 - Archiving of WAL files to the BART backup catalog must be in process.
 - The WAL scanner program must be running.

The CHECK-CONFIG subcommand displays an error message if the required configuration is not properly set.

4.4.3.2 INIT

The **INIT** subcommand is used to perform the following actions:

- Create the BART backup catalog directory.
- Rebuild the BART backupinfo file.
- Set the archive_command in the PostgreSQL server based on the archive_command setting in the bart.cfg file.

Note

If the <u>archive_mode</u> configuration parameter is set to off, then the -o option must be used to set the Postgres <u>archive_command</u> using the BART <u>archive_command</u> parameter in the BART configuration file even if the <u>archive_command</u> is not currently set in <u>postgresql.conf</u> nor in <u>postgresql.auto.conf</u>.

To view examples of INIT subcommand, see the EDB Postgres Backup and Recovery Reference Guide.

Syntax:

```
bart INIT [ -s { <server_name> | all } ] [ -o ]
[ -r [ -i { <backup_id> | <backup_name> | all } ] ]
[--no-configure]
```

In the above syntax diagram, INIT is the BART subcommand and —s server_name, all, -o, -r, -i, no-configure are the subcommand options.

Note

The subcommand option keywords must generally be in lowercase, except when specified differently in this section.

Options

```
- -s or --server {<server_name> | all }
```

server_name is the name of the database server to which the INIT actions are to be applied. If all is specified or if the option is omitted, the actions are applied to all servers.

• -o or -override

Overrides the existing, active Postgres archive_command configuration parameter setting in the postgresql.conf file or the postgresql.auto.conf file using the BART archive_command parameter in the BART configuration file. The INIT generated archive command string is written to the postgresql.auto.conf file.

-r or –rebuild

Rebuilds the backupinfo file (a text file named backupinfo) located in each backup subdirectory.

- -i or --backupid { <backup_id> | <backup_name> | all }

<backup_id> is an integer, backup identifier and <backup_name> is the user-defined alphanumeric name for the backup. If all is specified or if the option is omitted, the backupinfo files of all backups for the database servers specified by the -s option are recreated. The -i option can only be used with the -r option.

Archive Command Setting

After the archive_command is set, you need to either restart the PostgreSQL server or reload the configuration file in the PostgreSQL server based on the following conditions. See the EDB Postgres Backup and Recovery Reference Guide for examples of each of this condition.

- If the archive_mode is set to off and archive_command is not set in the PostgreSQL server, the archive_command is set based on the archive_command setting in the bart.cfg and also sets the archive_mode to on. In this case, you need to restart the PostgreSQL server using pg_ctl restart
- If the archive_mode is set to on and archive_command is not set in the PostgreSQL server, the archive_command is set based on the archive_command setting in the bart.cfg. In this case, you need to reload the configuration in the PostgreSQL server using pg_reload_conf() or pg_ctl reload.
- If the archive_mode is set to off and archive_command is already set in the PostgreSQL server, the archive_mode is set to on. In this case, you need to restart the PostgreSQL server using pg_ctl restart
- If the archive_mode is set to on and archive_command is already set in the PostgreSQL server, then the archive_command is not set unless -o option is specified.

4.4.3.3 BACKUP

The BACKUP subcommand is used to create a full backup or an incremental backup. To view examples of a full backup and an incremental backup, see the *EDB Postgres Backup and Recovery Reference Guide*.

Syntax for full backup:

```
bart BACKUP -s { server_name | all } [ -F { p | t } ]
  [ -z ] [ -c compression_level ]
  [ --backup-name backup_name ]
  [ --thread-count number_of_threads ]
  [ { --with-pg_basebackup | --no-pg_basebackup } ]
```

Note

While taking a backup, if there is a file exceeding 1GB size in the \$PGDATA directory, the backup will fail. To avoid such backup failure, you need to store large files outside the \$PGDATA directory.

For example, if the database server log file exceeds 1 GB size in the \$PGDATA directory, you need to store them outside the \$PGDATA directory to avoid backup failure.

Syntax for incremental Backup:

```
bart BACKUP -s { server_name | all } [ -F p]
[ --parent { backup_id | backup_name } ]
[ --backup-name backup_name ]
[ --thread-count number_of_threads ]
[ --check ]
```

Note

To take an incremental backup, you must take a full backup first followed by incremental backup.

Please Note:

 While a BACKUP subcommand is in progress, no other subcommands (INIT, DELETE, MANAGE, SHOW BACKUPS, VERIFY-CHKSUM) must be issued. Any subcommands issued while a backup is in progress will skip and ignore the backups.

For full backup, the target default format is a tar file. For incremental backup, only plain format must be specified.

The backup is saved in the following backup_path/server_name/backup_id directory.

where

- backup_path is the value assigned to the backup_path parameter in the BART configuration file.
- server_name is the lowercase name of the database server as listed in the configuration file.
- <backup_id> is a backup identifier assigned by BART to the particular backup.
- MD5 checksums of the full backup and any user-defined tablespaces are saved as well for tar backups.
- When you use BART to take a backup of PostgreSQL server versions:
 - 9.5 or prior, only one backup per server may be in progress at any given time and if a backup is interrupted, you must manually run the pg_stop_backup() command to terminate the backup mode.
 - 9.6 or higher, multiple backups can be taken simultaneously and if a backup is interrupted, the backup mode is terminated automatically without the need to run pg_stop_backup() command manually to terminate the backup.
- Before performing the backup, BART checks to ensure if there is enough disk space to completely store the backup in the BART backup catalog.
- See the error message table in the BACKUP section of the EDB Postgres Backup and Recovery Reference Guide for the error message that will be displayed if BART detects insufficient disk space.
- In the postgresql.conf file, ensure the wal_keep_segments configuration parameter is set to a sufficiently large value. See the error message table in the BACKUP section of the EDB Postgres Backup and Recovery Reference Guide for the error message that will be displayed if wal_keep_segments configuration parameter is not set to a sufficiently large value.
- A low setting of the <a href="wal_keep_segments" configuration parameter may result in the deletion of some WAL files before the BART BACKUP" subcommand saves them to the BART backup catalog. For information about the wal_keep_segments parameter, see the PostgreSQL Core Documentation.
- If in the BART configuration file, parameter setting xlog_method=stream applies to a given database server, streaming of the transaction log in parallel with creation of the backup is performed for that database server, otherwise the transaction log files are collected upon completion of the backup. See the EDB Postgres Backup and

Recovery Installation and Upgrade Guide for details about database server setting.

Note

If the transaction log streaming method is used, the -F p option for a plain text backup format must be specified with the BACKUP subcommand.

Options

Along with the BACKUP subcommand, you can specify the following options:

- -s { server_name | all } or --server { server_name | all } server_name is the database server name to be backed up as specified in the BART configuration file. If all is specified, all servers are backed up. This option is mandatory.

Note

If all is specified, and a connection to a database server listed in the BART configuration file cannot be opened, the backup for that database server is skipped, but the backup operation continues for the other database servers. See the error message table in the BACKUP section of the EDB Postgres Backup and Recovery Reference Guide for the error message that will be displayed when a database server connection fails.`

Specify the following options only if required. If you do not specify any of the following options, backup is created with the default setting.

```
- -F { p | t } or --format { p | t }
```

Specifies the backup file format. Use `p` for plain text or `t` for tar. If the option is omitted, the default is tar format.

Note

For taking incremental backups, the option -F p must be specified.

• -z or --gzip (applicable only for full backup)

Specifies usage of gzip compression on the tar file output using the default compression level. This option is applicable only for the tar format.

 -c compression_level or --compress-level compression_level (applicable only for full backup)

Specifies the gzip compression level on the tar file output. compression_level is a

digit from 1 through 9, with 9 being the best compression. This option is applicable only for the tar format.

- --parent { backup_id | backup_name }

- > Specify this option if you want to take an incremental backup. `<backup_id>` is the backup identifier of a parent backup. `<backup_name>` is the user-defined alphanumeric name of a parent backup.
- > The parent is a backup taken prior to the incremental backup. The parent backup can be either a full backup or an incremental backup.
- > The option `-F p` must be specified since an incremental backup can only be taken in plain text format.

```
> <div class="note">
> <div class="title">
> <div class="title">
> Note
> Note
> </div>
> An incremental backup cannot be taken on a standby database server. See <span class="title-ref">Section - Block-Level Incremental Backup &It;block-level\_incremental\_backup&gt;</span> for additional information on incremental backups.
```

--backup-name <backup_name>

>

> </div>

User-defined, alphanumeric friendly name to be assigned to the backup. The maximum permitted length of backup name is 49 characters.

The backup name may include the following variables to be substituted by the timestamp values when the backup is taken: 1) %year - 4-digit year, 2) %month - 2-digit month, 3) %day - 2-digit day, 4) %hour - 2-digit hour,
 5) %minute - 2-digit minute, and 6) %second - 2-digit second.

For example,

./bart backup -s ppas12 -Ft --backup-name "YEAR = %year

```
MONTH = %month DAY = %day"
```

To include the percent sign (%) as a character in the backup name, specify
%% in the alphanumeric string.

For example,

```
./bart backup -s ppas12 -Ft --backup-name "YEAR = %year MONTH = %month DAY = %day %%"
```

 If the backup name contains space characters (i.e. more than one word) or when referenced with the option -i by other subcommands (such as restore), enclose the string in single quotes (') or double quotes (").

For example,

```
./bart show-backups -s ppas12 -i "test backup"
```

- If the option --backup-name is not specified, and the backup_name parameter is not set for this database server in the BART configuration file, then the backup can only be referenced in other BART subcommands by the BART assigned backup identifier.
- --thread-count number_of_threads

If the option --thread-count is:

- specified, number_of_threads is the number of worker threads to run in parallel to copy blocks for a backup.
- omitted, then the thread_count parameter in the BART configuration file applicable to this database server is used.
- not enabled for this database server, then the thread_count setting in the global section of the BART configuration file is used.
- not set in the global section as well, the default number of threads is 1.

Note

- If parallel backup is run with N number of worker threads, then it will initiate N+ 1 concurrent connections with the server.
- Thread count will not be effective if backup is taken on a standby server.

See the configuration section of the *EDB Postgres Backup and Recovery Installation* and *Upgrade Guide* for information about the --thread-count parameter.

--with-pg basebackup (applicable only for full backup)

Specifies that pg_basebackup is to be used to take a full backup. The number of thread counts in effect is ignored as given by the thread_count parameter in the BART configuration file.

Note

When taking a full backup, if the thread count in effect is greater than 1, then the pg_basebackup utility is not used to take the full backup (parallel worker threads are used) unless the option --with-pg_basebackup is specified with the BACKUP subcommand.

--no-pg_basebackup (applicable only for full backup)

Specifies that pg_basebackup is not to be used to take a full backup.

Note

When taking a full backup, if the thread count in effect is only 1, then the pg_basebackup utility is used to take the full backup unless the option --no-pg_basebackup is specified with the BACKUP subcommand.

--check (applicable only for incremental backup)

Verifies that the required MBM files are present in the BART backup catalog before taking an incremental backup,. The option --parent must be specified when the option --check is used. An actual incremental backup is not taken when the option --check is specified.

4.4.3.4 SHOW-SERVERS

The SHOW-SERVERS subcommand displays the information for the managed database servers listed in the BART configuration file. To view examples of SHOW-SERVERS subcommand, see the EDB Postgres Backup and Recovery Reference Guide.

Syntax:

> bart SHOW-SERVERS [-s { <server_name> | all }]

In the above syntax diagram, SHOW-SERVERS is the BART subcommand and -s <server_name> and all are the subcommand options.

Options

-s { <server_name> | all } or --server { <server_name> | all } <server_name> is the name of the database server whose BART configuration information is to be displayed. If all is specified or if the option is omitted, information for all database servers is displayed.

4.4.3.5 SHOW-BACKUPS

The SHOW-BACKUPS subcommand displays the backup information for the managed database servers. To view examples of SHOW-BACKUPS subcommand, see the EDB Postgres Backup and Recovery Reference Guide.

Syntax:

```
bart SHOW-BACKUPS [ -s { <server_name> | all } ]
[ -i { <backup_id> | <backup_name> | all } ]
[ -t ]
```

In the above syntax diagram, SHOW-BACKUPS is the BART subcommand and -s <server_name>, all, <backup_id>, <backup_name>, -i, -t are the subcommand options.

Options

```
- -s { <server_name> | all } or --server { <server_name> | all }
```

- `<server_name>` is the name of the database server whose backup information is to be displayed.
- If `all` is specified or if the option is omitted, the backup information for all database servers is displayed with the exception as described by the following note:

```
> <div class="note">
> <div class="title">
```

```
> Note
> </div>
> If `SHOW-BACKUPS` is invoked while the BART `BACKUP` subcommand is in progress, backups affected by the backup process are shown in progress status in the displayed backup information.
> </div>
```

<backup_id> is a backup identifier. <a href="color:

- -i { <backup id> | <backup name> | all } or --backupid { <backup id> |

• -t or -toggle

<backup name> | all }

Displays more backup information in list format. If the option is omitted, the default is a tabular format.

4.4.3.6 VERIFY-CHKSUM

The VERIFY-CHKSUM subcommand verifies the MD5 checksums of the full backups and any user-defined tablespaces for the specified database server or for all database servers. The checksum is verified by comparing the current checksum of the backup against the checksum when the backup was taken.

Note

The VERIFY-CHKSUM subcommand is only used for tar format backups. It is not applicable to plain format backups.

Syntax:

bart VERIFY-CHKSUM

```
[ -s { <server_name> | all } ]
[ -i { <backup_id> | <backup_name> | all } ]
```

Options

```
- -s { <server_name> | all } or --server { <server_name> | all }
```

<server_name> is the name of the database server whose tar backup checksums
are to be verified. If all is specified or if the -s option is omitted, the checksums
are verified for all database servers.

```
- -i { <backup_id> | <backup_name> | all } or --backupid { <backup_id> |
<backup_name> | all }
```

<backup_id> is the backup identifier of a tar format full backup whose checksum is to be verified along with any user-defined tablespaces. <backup_name> is the user-defined alphanumeric name for the full backup. If all is specified or if the -i option is omitted, the checksums of all tar backups for the relevant database server are verified.

Example

The following example verifies the checksum of all tar format backups of the specified database server.

```
-bash-4.1$ bart VERIFY-CHKSUM -s acctg -i all SERVER NAME BACKUP ID VERIFY

acctg 1430239348243 OK acctg 1430232284202 OK acctg 1430232016284 OK acctg 1430231949065 OK acctg 1429821844271 OK
```

4.4.3.7 MANAGE

The MANAGE subcommand can be invoked to:

- Evaluate backups, mark their status, and delete obsolete backups based on the
 retention_policy parameter in the BART configuration file (See Section Managing
 Backups Using a Retention Policy for information about retention policy
 management).
- Compress the archived WAL files based on the wal_compression parameter in the BART configuration file (See the configuration section of the EDB Postgres Backup and Recovery Installation and Upgrade Guide for information about setting this parameter).

Syntax:

```
bart MANAGE [ -s { <server_name> | all} ]
  [ -l ] [ -d ]
  [ -c { keep | nokeep }
    -i { <backup_id> | <backup_name> | all } ]
  [ -n ]
```

The following summarizes the actions performed under certain conditions and options when the MANAGE subcommand is invoked.

- When the MANAGE subcommand is invoked with no options or with only the -s <server_name> or -s all option, the following actions are performed:
 - For the server specified by the -s option, or for all servers (if -s all is specified or the -s option is omitted), active backups are marked as obsolete in accordance with the retention policy.
 - All backups that were marked obsolete or keep prior to invoking the MANAGE subcommand remain marked with the same prior status.
 - If WAL compression is enabled for the database server, then any uncompressed, archived WAL files in the BART backup catalog of the database server are compressed with gzip.
- When the MANAGE subcommand is invoked with any other option besides the -s option, the following actions are performed:
 - For the server specified by the -s option, or for all servers, the action performed is determined by the other specified options (that is, -l to list obsolete backups, -d to delete obsolete backups, -c to keep or to return backups to active status, or -n to perform a dry run of any action).
 - No marking of active backups to obsolete status is performed regardless of the retention policy.
 - All backups that were marked obsolete or keep prior to invoking the MANAGE subcommand remain marked with the same prior status unless the -c option (without the -n option) is specified to change the backup status of the particular backup or all backups referenced with the -i option.

 No compression is applied to any uncompressed, archived WAL file in the BART backup catalog regardless of whether or not WAL compression is enabled.

The following are additional considerations when using WAL compression:

- Compression of archived WAL files is not permitted for database servers on which incremental backups are to be taken.
- The gzip compression program must be installed on the BART host and be accessible in the PATH of the BART user account.
- When the RESTORE subcommand is invoked, if the -c option is specified or if the copy_wals_during_restore BART configuration parameter is enabled for the database server, then the following actions occur:
 - If compressed, archived WAL files are stored in the BART backup catalog and the location to which the WAL files are to be restored is on a remote host relative to the BART host:
 - the archived WAL files are transmitted across the network to the remote host in compressed format only if the gzip compression program is accessible in the PATH of the remote user account that is used to log into the remote host when performing the RESTORE operation.
 - This remote user is specified with either the remote_host parameter in the BART configuration file or the RESTORE -r option (see the Section - RESTORE).
 - Transmission of compressed WAL files results in less network traffic.
 After the compressed WAL files are transmitted across the network, the RESTORE subcommand uncompresses the files for the point-in-time recovery operation.
 - If the gzip program is not accessible on the remote host in the manner described in the previous bullet point, then the compressed, archived WAL files are first uncompressed while on the BART host, then transmitted across the network to the remote host in uncompressed format.
- When the RESTORE subcommand is invoked without the -c option and the copy_wals_during_restore BART configuration parameter is disabled for the database server, then any compressed, archived WAL files needed for the RESTORE operation are uncompressed in the BART backup catalog. The uncompressed WAL files can then be saved to the remote host by the restore_command in the postgresql.auto.conf file when the database server archive recovery begins.

Options

--s { <server_name> | all } or --server { <server_name> | all }

<server_name> is the name of the database server to which the actions are to be
applied. If all is specified or if the -s option is omitted, the actions are applied to
all database servers.

-l or --list-obsolete

List the backups marked as obsolete.

• -d or --delete-obsolete

Delete the backups marked as obsolete. This action physically deletes the backup along with its archived WAL files and any MBM files for incremental backups.

- -c { keep | nokeep } or --change-status { keep | nokeep }
 - Change the status of a backup to keep to retain it indefinitely. Specify nokeep to change the status of any backup back to active status. The backup can then be reevaluated and possibly be marked to obsolete according to the retention policy by subsequent usage of the MANAGE subcommand.

Note

The -i option must be included when using the -c option.

Note

The -i option must only be used with the -c option.

• -n, --dry-run

Performs the test run and displays the results prior to actually implementing the actions as if the operation was performed, however, no changes are actually made.

If -n is specified:

 with the -d option, it displays which backups would be deleted, but does not actually delete the backups.

- with the -c option, it displays the keep or nokeep action, but does not actually change the backup from its current status.
- alone with no other options, or with only the -s option, it displays which
 active backups would be marked as obsolete, but does not actually
 change the backup status. In addition, no compression is performed on
 uncompressed, archived WAL files even if WAL compression is enabled
 for the database server.

4.4.3.8 **RESTORE**

The RESTORE subcommand restores the backup and its archived WAL files for the designated database server to the specified directory location. If the appropriate RESTORE options are specified, all recovery settings will be saved in the postgresql.auto.conf file. To view examples of how to restore the database server, see the EDB Postgres Backup and Recovery Reference Guide.

Syntax:

Review the information about using a continuous archive backup for recovery in the PostgreSQL Core Documentation.

This reference material provides detailed information about the underlying point-in-time recovery process and the meaning and usage of the restore options that are generated into the postgresql.auto.conf file by BART.

Please note:

 For special requirements when restoring an incremental backup to a remote database server, see the Section - Restoring an Incremental Backup on a Remote Host

- Check to ensure that the host where the backup is to be restored contains enough disk space for the backup and its archived WAL files. The RESTORE subcommand may result in an error while copying files if there is not enough disk space available.
- See the Section Performing a Restore Operation to view steps on how to perform a restore operation and see the Section Point-In-Time Recovery Operation to view steps on how to perform a point-in-time recovery operation.
- If the backup is restored to a different database cluster directory than where the
 original database cluster resided, certain operations dependent upon the database
 cluster location may fail. This happens if their supporting service scripts are not
 updated to reflect the new directory location of restored backup. For information
 about the usage and modification of service scripts, see the EDB Postgres
 Advanced Server Installation Guide.

See the *EDB Postgres Backup and Recovery Reference Guide* to view the table listing the service scripts for RHEL 6/CentOS 6 and RHEL 7/CentOS 7.

Options

-s <server name> or --server <server name>

<server_name> is the name of the database server to be restored.

-p <restore_path> or --restore-path <restore_path>

<restore_path> is the directory path where the backup of the database server is to be restored. The directory must be empty and have the proper ownership and privileges assigned to it.

```
- -i { <backup_id> | <backup_name> } or --backupid { <backup_id> | <backup_name> }
```

<backup_id> is the backup identifier of the backup to be used for the restoration.
<backup_name> is the user-defined alphanumeric name for the backup. If the
option is omitted, the default is to use the latest backup.

-r <remote_user@remote_host_address> or --remote-host <remote_user@remote_host_address>

<remote_user> is the user account on the remote database server host that accepts a password-less SSH/SCP login connection and is the owner of the directory where the backup is to be restored.

<remote_host_address> is the IP address of the remote host to which the backup
is to be restored. This option must be specified if the <remote_host> parameter

for this database server is not set in the BART configuration file.

Note

If the BART user account is not the same as the operating system account owning the <restore_path> directory given with the -p option, use the <remote_host> BART configuration parameter or the RESTORE subcommand -r option to specify the <restore_path> directory owner even when restoring to a directory on the same host as the BART host.

See the configuration section of the *EDB Postgres Backup and Recovery Installation and Upgrade Guide* for information about the remote_host> parameter.

-w <number of workers> or --workers <number of workers>

<number_of_workers> is the specification of the number of worker processes to run in parallel to stream the modified blocks of an incremental backup to the restore location.

For example, if 4 worker processes are specified, 4 receiver processes on the restore host and 4 streamer processes on the BART host are used. The output of each streamer process is connected to the input of a receiver process. When the receiver gets to the point where it needs a modified block file, it obtains those modified blocks from its input. With this method, the modified block files are never written to the restore host disk. If the -w option is omitted, the default is 1 worker process.

• -t <timeline id> or --target-tli <timeline id>

<timeline_id> is the integer identifier of the timeline to be used for replaying the
archived WAL files for point-in-time recovery.

-x <target_xid> or --target-xid <target_xid>

<target_xid> is the integer identifier of the transaction ID that determines the
transaction up to and including, which point-in-time recovery encompasses.
Include either the -x <target_xid> or the --target-xid <target_xid> option if pointin-time recovery is desired.

-g <target_timestamp> or --target-timestamp <target_timestamp>

<target_timestamp> is the timestamp that determines the point in time up to and including, which point-in-time recovery encompasses. Include either the --target-timestamp <target_timestamp> or the -g <target_timestamp> option if point-in-time recovery is desired.

-c or --copy-wals

Specify this option to copy archived WAL files from the BART backup catalog to restore_path/archived_wals directory.

- If recovery settings are saved in the postgresql.auto.conf file for point-in-time recovery, the restore_command retrieves the WAL files from
 <restore_path>/archived_wals for the database server archive recovery.
- If the -c option is omitted and the copy_wals_during_restore parameter in the BART configuration file is not enabled in a manner applicable to this database server, the restore_command in the postgresql.auto.conf file is generated by default to retrieve the archived WAL files directly from the BART backup catalog. See the EDB Postgres Backup and Recovery Installation and Upgrade Guide for information about the copy_wals_during_restore parameter.

4.4.3.9 **DELETE**

The **DELETE** subcommand removes the subdirectory and data files from the BART backup catalog for the specified backups along with its archived WAL files. To view examples of how to use the **DELETE** subcommand, see the *EDB Postgres Backup and Recovery Reference Guide*.

Syntax:

```
bart DELETE -s <server_name>
-i { all |
    [']{ <backup_id> | <backup_name> },... }[']
}
[ -n ]
```

Note

While invoking the **DELETE** subcommand, you must specify a specific database server.

For database servers under a retention policy, there are conditions where certain backups may not be deleted. See the Section Deletions Permitted Under a Retention Policy for information regarding permitted backup deletions.

Options

-s or --server <server_name>

<server_name> is the name of the database server whose backups are to be
deleted.

```
- -i (or -backupid) { all | [']{ <backup_id> | <backup_name> },... }['] }
```

- > `<backup_id>` is the backup identifier of the backup to be deleted.
- `<backup_name>` is the user-defined alphanumeric name for the backup.
- > Multiple backup identifiers and backup names may be specified in a commaseparated list. The list must be enclosed within single quotes if there is any white space appearing before or after each comma.
- > If `all` is specified, all of the backups and their archived WAL files for the specified database server are deleted.
 - -n or --dry-run

Displays the results as if the deletions were done, however, no physical removal of the files are actually performed. In other words, a test run is performed so that you can see the potential results prior to actually initiating the action.

After the deletion, the BART backup catalog for the database server no longer contains the corresponding directory for the deleted backup ID. The archived_wals subdirectory no longer contains the WAL files of the backup.

4.4.4 Running the BART WAL Scanner

Use the BART WAL scanner to invoke the bart-scanner program located in the BART_HOME/bin directory.

Syntax:

```
bart-scanner
[ -d ]
[ -c <config_file_path> ]
```

Note

For clarity, the syntax diagram shows only the single-character form (-d) of the option, but the multi-character form (--debug) is supported as well.

The WAL scanner processes each WAL file to find and record modified blocks in a corresponding modified block map (MBM) file. The default approach is that the WAL scanner gets notified whenever a new WAL file is added to the archived_wals directory of the BART backup catalog. It then scans the WAL file and produces the MBM file.

The default approach does not work in some cases; for example when the WAL files are shipped to the BART backup catalog using the rsync utility and also in case of some specific platforms. This results in the WAL files being copied to the archived_wals directory, but the WAL scanner does not scan them ((as WAL scanner is not aware of WAL file) and produce the MBM files. This results in the failure of an incremental backup. This can be avoided by using the timer-based WAL scanning approach, which is done by using the scan_interval parameter in the BART configuration file. The value for scan_interval is the number of seconds after which the WAL scanner will scan the new WAL files.

When the bart-scanner program is invoked, it forks a separate process for each database server enabled with the allow_incremental_backups parameter.

The WAL scanner processes can run in either the foreground or background depending upon usage of the --daemon option:

- If the --daemon option is specified, the WAL scanner process runs in the background. All output messages can be viewed in the BART log file.
- If the --daemon option is omitted, the WAL scanner process runs in the foreground. All output messages can be viewed from the terminal running the program as well as in the BART log file.

See the configuration section of the *EDB Postgres Backup and Recovery Installation and Upgrade Guide* for additional information about WAL scanning, scan_interval, allow_incremental_backups, and logfile parameters.

When invoking the WAL scanner, the current user must be the BART user account.

Note

The BART user account's LD_LIBRARY_PATH environment variable may need to be set to include the directory containing the libpq library if invocation of the WAL scanner program fails. See the Section - Basic BART Subcommand Usage for information about setting LD_LIBRARY_PATH.

Options

-h or —help

Displays general syntax and information on WAL scanner usage.

-v or —version

Displays the WAL scanner version information.

-d or –debug

Displays debugging output while executing the WAL scanner with any of its options.

-c config_file_path or --config-path config_file_path

Specifies config_file_path as the full directory path to a BART configuration file. Use this option if you do not want to use the default BART configuration file BART_HOME/etc/bart.cfg.

--daemon

Runs the WAL scanner as a background process.

• -p mbm_file or --print mbm_file

Specifies the full directory path to an MBM file whose content is to be printed. The archive path directory backup_path/server_name/archived_wals contains the MBM files.

wal_file

Specifies the full directory path to a WAL file to be scanned. The archive path directory backup_path/server_name/archived_wals contains the WAL files. Use it if a WAL file in the archive path is missing its MBM file.

Note

This option is to be used for assisting the EnterpriseDB support team for debugging problems that may have been encountered.

RELOAD

- Reloads the BART configuration file. The keyword RELOAD is caseinsensitive.
- The RELOAD option is useful if you make changes to the configuration file after the WAL scanner has been started. It will reload the configuration file and adjust the WAL scanners accordingly. For example, if a server section allowing incremental backups is removed from the BART configuration file, then the process attached to that server will stop. Similarly, if a server allowing incremental backups is added, a new WAL scanner process will be launched to scan the WAL files of that server.

STOP

Stops the WAL scanner. The keyword STOP is case-insensitive.

See the *EDB Postgres Backup and Recovery Reference Guide* for examples of usage of BART WAL scanner and its options.

4.5 Using Tablespaces

If the database cluster contains user-defined tablespaces (that is, tablespaces created with the CREATE TABLESPACE command):

- You can take full backups with the plain text (-F p) backup file format.
- You must take incremental backups in the plain text (-Fp) backup file format.
- You can take full backups using the transaction log streaming method
 (xlog_method = stream in the BART configuration file) --with-pg_basebackup and
 the BACKUP subcommand in either tar (-F t) or plain text (-F p) backup file
 format.

Note

If the particular database cluster you plan to back up contains tablespaces created by

the CREATE TABLESPACE command, then you must set the tablespace_path parameter in the BART configuration file before you perform a BART RESTORE operation.

The tablespace_path parameter specifies the directory paths to which you want the tablespaces to be restored. It takes the following format:

```
OID_1=tablespace_path_1;OID_2=tablespace_path_2 ...
```

Where OID_1, OID_2, ... are the Object Identifiers of the tablespaces. You can find the OIDs of the tablespaces and their corresponding soft links to the directories by listing the contents of the POSTGRES_INSTALL_HOME/data/pg_tblspc subdirectory as shown in the following example:

```
[root@localhost pg_tblspc]# pwd
/opt/PostgresPlus/9.5AS/data/pg_tblspc
[root@localhost pg_tblspc]# ls -l
total 0
lrwxrwxrwx 1 enterprisedb enterprisedb 17 Aug 22 16:38 16644 -> /mnt/tablespace_1
lrwxrwxrwx 1 enterprisedb enterprisedb 17 Aug 22 16:38 16645 -> /mnt/tablespace_2
```

The OIDs are 16644 and 16645 to directories /mnt/tablespace_1 and /mnt/tablespace_2, respectively.

• If you later wish to restore the tablespaces to the same locations as indicated in the preceding example, the BART configuration file must contain the following entry:

```
[ACCTG]
host = 127.0.0.1
port = 5444
user = enterprisedb
cluster_owner = enterprisedb
tablespace_path = 16644=/mnt/tablespace_1;16645=/mnt/tablespace_2
description = "Accounting"
```

• If you later wish to restore the tablespaces to different locations, specify the new directory locations in the tablespace path parameter.

In either case, the directories specified in the tablespace_path parameter must exist and be empty at the time you perform the BART RESTORE operation.

If the database server is running on a remote host (in other words you are also using the remote_host configuration parameter or will specify the --remote-host option with

the **RESTORE** subcommand), the specified tablespace directories must exist on the specified remote host.

To view example of backing up and restoring a database cluster on a remote host containing tablespaces, see the *EDB Postgres Backup and Recovery Reference Guide*.

The directories must be owned by the user account with which you intend to start the database server (typically the Postgres user account) with no access by other users or groups as is required for the directory path to which the main full backup is to be restored.

To view a sample BART managed backup and recovery system consisting of both local and remote database servers, see the *EDB Postgres Backup and Recovery Reference Guide*. For detailed information about steps to configure and operate the system, see the *EDB Postgres Backup and Recovery Installation and Upgrade Guide*.