17 уравнений, которые изменили ход истории

1 марта 2018 г.

1.Теорема Пифагора	$a^2 + b^2 = c^2$	Пифагор, 530 год до н.э.
2.Логарифмы	$\log xy = \log x + \log y$	Джон Непер, 1610
3.Теорема Ньютона-Лейбница	$\frac{df}{dt} = \lim_{h \to 0} = \frac{f(t+h) - f(t)}{h}$	Ньютон, 1668
4.Закон всемирного тяготения	$F = G \frac{m_1 m_2}{r^2}$	Ньютон, 1687
5.Мнимая единица	$i^2 = -1$	Эйлер, 1750
6. Теорема Эйлера для многогранников	V - E + F = 2	Эйлер, 1751
7. Нормальное распределение	$\Phi(x) = \frac{1}{\sqrt{2\pi\rho}} e^{\frac{(x-\mu)^2}{2\rho^2}}$	Γaycc, 1810
8.Волновое уравнение	$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$	Д'Аламбер, 1746
9.Преобразование Фурье	$f(\omega) = \int_{\infty}^{\infty} f(x)e^{-2\pi ix\omega}dx$	Фурье, 1822
10. Уравнения Навье-Стокса	$\rho(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} = -\nabla p + \nabla \cdot \mathbf{T} + \mathbf{f})$	Навье, Стокс, 1845
11. Уравнения Максвелла	$\nabla \cdot \mathbf{E} = 0 \ \nabla \cdot \mathbf{H} = 0$	Максвелл, 1865
	$ abla imes \mathbf{E} = -rac{1}{c}rac{\partial \mathbf{H}}{\partial t} \; abla imes \mathbf{H} = rac{1}{c}rac{\partial E}{\partial t}$	
12.Второй закон термодинамики	$dS \ge 0$	Больцман, 1874
13. Теория относительности	$E = mc^2$	Эйнштейн, 1905
14.Уравнение Шредингера	$ih\frac{\partial}{\partial t}\Psi = H\Psi$	Шредингер, 1927
15. Теория информации	$H = -\sum p(x)\log p(x)$	Шеннон, 1949
16.Теория хаоса	$x_{t+1} = kx_t(1 - x_t)$	Роберт Мей
17.Уравнение Блэка-Шоулза	$\frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + r S \frac{\partial V}{\partial S} + \frac{\partial V}{\partial t} - r V = 0$	Блэк, Шоулз, 1990