Metody bioinformatyki (MBI)

Wykład 12 - mikromacierze DNA, struktury drugorzędowe RNA

Robert Nowak

2014L

mikromacierze DNA

Metoda badawcza, pozwalająca badać obecność wielu cząsteczek DNA lub RNA jednocześnie, utworzona do odczytywania sekwencji

Zastosowanie mikromacierzy:

- ▶ analiza DNA, badanie wiele markerów jednocześnie
- analiza genów ulegających ekspresji, badanie cząsteczek mRNA

tworzenie mikromacierzy DNA

badanie roztworów za pomocą mikromacierzy DNA

wynik badania

Dla każdego doświadczenia:

- m atrybutów ($m \approx 10^5$)
- ▶ wartości:
 - binarne: występuje, nie występuje
 - ► rzeczywiste: intensywność < 0,1 >
- zwykle przeprowadza się $n \approx 100$ doświadczeń
- ▶ mamy macierz $n \times m$, gdzie $n \ll m$ elementów x_{ij}
- problem znalezienia atrybutów istotnych

normalizacja danych

- usuwanie atrybutów, które mają tą samą wartość dla wszystkich przykładów
- ► obliczenie średniej i odchylenia standardowego

$$\mu_j = \frac{1}{n} \sum_{i=0}^n x_{ij}$$
 średnia

$$\sigma_j = \sqrt{\frac{1}{n} \sum_{i=0}^n (x_{ij} - \mu_j)^2}$$
 odchylenie standardowe

 \blacktriangleright przekształcenie danych, atrybut j ma $\mu=0$, $\sigma=1$

$$z_{ij} = \frac{x_{ij} - \mu_j}{\sigma_i}$$

algorytm grupowania hierarchicznego

- wymaga definicji odległości pomiędzy elementami
- wymaga definicji odległości pomiędzy grupami

definicja odległości

x, y oznaczają punkty ze zbiorów danych, każdy punkt ma m cech (atrybutów) $x = \langle x_1, x_2, ..., x_m \rangle$

▶ odległość Euklidesowa

$$d_{xy} = \sqrt{\sum_{i=1}^{m} (x_i - y_i)^2}$$

odległość Manhattan

$$d_{xy} = \sum_{i=1}^{m} |x_i - y_i|$$

korelacja

$$d_{xy} = \sum_{i=1}^{m} x_i y_i$$

odległości grup

pojedyncze wiązanie (najmniejsza odległość)

$$d_s(X, Y) = \min_{x \in X, y \in Y} d_{xy}$$

pełne wiązanie (największa odległość)

$$d_f(X, Y) = \max_{x \in X, y \in Y} d_{xy}$$

odległości grup (2)

średnia odległość

$$d_a(X,Y) = \frac{1}{|X||Y|} \sum_{x \in X, y \in Y} d_{xy}$$

gdzie |X| to ilość elementów w X

odległość pomiędzy środkami

$$d_c(X,Y) = d_{x'y'}$$

gdzie x' to średnia elementów $x \in X$

algorytm grupowania hierarchicznego (przykład)

- ▶ gdy dwie grupy: { {A, B, C, D, E}, {F, G, H }}
- ▶ gdy trzy grupy: { {A, B}, {C, D, E}, {F, G, H} }
- ▶ gdy cztery grupy: { {A, B}, {C, D, E}, {F}, { G, H} }
- ▶ itd.

algorytm grupowania hierarchicznego (przykład 2)

Tabela odległości pomiędzy obiektami A, B, C, D:

	Α	В	С	D
Α	0	2	6	11
В		0	4	9
С			0	5
D				0

Dla dwóch grup:

- jeżeli odległość między grupami to pojedyncze wiązanie (minimalna odległość pomiędzy elementami)? {A,B,C}{D}
- jeżeli odległość między grupami to pełne wiązanie (maksymalna odległość pomiędzy elementami)? {A,B}{C,D}

algorytm grupowania hierarchicznego - złożoność

- ▶ liczba przykładów: n, liczba atrybutów: m
- ▶ liczba kroków algorytmu n-1
- każda iteracja:
 - \blacktriangleright n(n-1)/2 razy oblicza odległość
 - ▶ koszt obliczenia odległości O(m)
 - ▶ koszt iteracji O(n²m)

 $O(n^3m)$

algorytm K-średnich (grupowanie niehierarchiczne)

zakłada podział na K grup

 $\begin{array}{l} \bullet \ \, \text{odleglość} \\ x = < x_1, x_2, ..., x_m > \\ \text{od } c \end{array}$

$$d_{xc} = \sum_{i=1}^m (x_i - c_i)^2$$

 funkcja błędu (którą minimalizujemy)

$$E = \sum_{a} \sum_{x \in a} d_{xc}$$

algorytm K-średnich (2)

Algorytm optymalizacyjny:

- ▶ inicjacja: losowa
- ▶ funkcja celu:

$$\underset{C_1, C_2, \dots, C_k}{\arg\min} \sum_{c=1}^k \sum_{x_i \in C_c} \sum_{j=1}^m (x_{ij} - c_{cj})^2$$

- ► poszukiwane 3 grupy
- inicjacja punktów centralnych

obliczenie przykładów należących do danej grupy

aktualizacja położenia punktów centralnych

obliczenie przykładów należących do danej grupy

aktualizacja punktów centralnych

algorytm K-średnich - złożoność

- ▶ liczba przykładów: n, liczba atrybutów m, liczba kroków algorytmu $p \approx n$
- ▶ każda iteracja:
 - ► koszt obliczenia odległości O(m)
 - koszt znalezienia grupy: dla n punktów k razy oblicza odległość od punktu centralnego, więc O(knm)
 - ▶ koszt obliczenia nowego punktu środkowego, dla *n* punktów oblicza średnią *O*(*nm*)
 - ▶ iteracja O(knm + nm) = O(knm)

$O(kn^2m)$

algorytm znacznie wydajniejszy niż grupowanie hierarchiczne $O(n^3 m)$, ponieważ $k \ll n$, ale problemy z właściwą inicjacją

algorytm analizy składowych głównych (PCA)

- pozwala na redukcję wymiaru problemu
- transformuje (liniowo) przestrzeń atrybutów dostarczając nowych współrzędnych

Dane wejściowe:

-				
	atrybut			
pomiar	1	2		m
1	<i>x</i> ₁₁	<i>X</i> ₁₂		<i>X</i> _{1 <i>m</i>}
2	<i>x</i> ₂₁	<i>X</i> ₂₂		x_{2m}
n	X_{n1}	X_{n2}		X_{nm}

- ▶ obliczenie μ_i oraz σ_i
- ▶ normalizacja danych

$$z_{ij} = \frac{x_{ij} - \mu_j}{\sigma_i}$$

algorytm PCA (2)

dane wejściowe (10 przykładów, 2 atrybuty):

$$\mu_1 = 300$$
 $\sigma_1 = 146.4$
 $\mu_2 = 150$
 $\sigma_2 = 74.4$

normalizacja:

$$z_{i1} = \frac{x_{i1} - \mu_1}{\sigma_1}$$

 $z_{i2} = \frac{x_{i2} - \mu_2}{\sigma_2}$

algorytm PCA (3)

po normalizacji wszystkie atrybuty mają parametry:

- $\blacktriangleright \mu = 0$
- $ightharpoonup \sigma = 1$

chcemy znaleźć nowy układ współrzędnych

> zakładamy tylko przekształcenia liniowe (obroty, odbicia)

algorytm PCA (4)

Kierunki składowych dla rozpatrywanego przykładu:

Założenia algorytmu PCA:

- ► rozpatrywane przekształcenia liniowe
- maksymalizowana jest wariancja (wariancja klasyczna miara zróżnicowania)
- ▶ nowe kierunki składowych są ortogonalne

algorytm PCA (5) - kowariancja

$$\mathbf{Z} = \begin{bmatrix} z_{11} & z_{12} & \dots & z_{1m} \\ z_{21} & z_{22} & \dots & z_{2m} \\ \dots & \dots & \dots & \dots \\ z_{n1} & z_{n2} & \dots & z_{nm} \end{bmatrix} \mathbf{a_i} = \begin{bmatrix} z_{1i} \\ z_{2i} \\ \dots \\ z_{ni} \end{bmatrix} \mathbf{a_j} = \begin{bmatrix} z_{1j} \\ z_{2j} \\ \dots \\ z_{nj} \end{bmatrix}$$

dane po normalizacji:
$$\mu_{a_i} = \frac{1}{n} \sum_{k=0}^{n} z_{ki} = 0, \sigma_{a_i}^2 = \frac{1}{n} \sum_{k=0}^{n} z_{ki}^2 = 1$$

Kowariancja - miarą liniowej zależności pomiędzy a_i i a_j

$$\sigma_{a_i a_j} = \frac{1}{n} \sum_{k=0}^{n} z_{ik} z_{jk} = \frac{1}{n} \mathbf{a_i} \mathbf{a_j}^T \text{ gdzie } \mathbf{a_j}^T = \begin{bmatrix} z_{1j} & z_{2j} & \dots & z_{nj} \end{bmatrix}$$

$$-1 \leq \sigma_{\mathsf{a_i\,a_i}} \leq 1$$

algorytm PCA (6) - macierz kowariancji

$$\mathbf{C}_{\mathbf{Z}} = \frac{1}{n} \mathbf{Z} \mathbf{Z}^{T} = \begin{bmatrix} \sigma_{1}^{2} & \sigma_{12} & \dots & \sigma_{1m} \\ \sigma_{21} & \sigma_{2}^{2} & \dots & \sigma_{2m} \\ \dots & \dots & \dots & \dots \\ \sigma_{n1} & \sigma_{n2} & \dots & \sigma_{m}^{2} \end{bmatrix} = \begin{bmatrix} 1 & \sigma_{12} & \dots & \sigma_{1m} \\ \sigma_{21} & 1 & \dots & \sigma_{2m} \\ \dots & \dots & \dots & \dots \\ \sigma_{n1} & \sigma_{n2} & \dots & 1 \end{bmatrix}$$

Ponieważ $\sigma_{ii} = \sigma_{ii}$ macierz C_z jest symetryczna

sumaryczna wariancja

$$\sum_{i=0}^m \sigma_i = m$$

 po zmianie (rotacja, odbicie) układu współrzędnych sumaryczna wariancja nie zmieni się

algorytm PCA (7) - przekształcenie układu współrzędnych

 $\mathbf{Y} = \mathbf{P}\mathbf{Z}$, gdzie \mathbf{P} jest macierzą przekształcenia , macierz \mathbf{P} zawiera wektory, które są kierunkami składowych

$$P=\left[p_1,p_2,...,p_m\right]$$

Wykorzystując algorytmy algebry liniowej przekształca się przestrzeń, aby macierz kowariancji była diagonalna

$$\mathbf{C}_{\mathbf{Y}} = \left[\begin{array}{ccccc} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_m \end{array} \right]$$

algorytm PCA (8) - jak znaleźć przekształcenie P

$$C_{Y} = \frac{1}{n}YY^{T} = \frac{1}{n}(PZ)(PZ)^{T} = \frac{1}{n}PZZ^{T}P^{T} = PC_{Z}P^{T}$$

dla macierzy symetrycznej **A**, macierzy jej wektorów własnych **E** zachodzi zależność:

 $A = EDE^T$, gdzie D jest macierzą diagonalną

więc: P jest macierzą wektorów własnych macierzy C_Z

algorytm PCA (9) - przykład

Dla rozpatrywanego przykładu:

$$\mathbf{C}_{\mathbf{Z}} = \left[\begin{array}{cc} 1 & 0.994 \\ 0.994 & 1 \end{array} \right]$$

po rozkładzie na wartości własne i wektory własne:

$$\left[\begin{array}{cc} 1 & 0.994 \\ 0.994 & 1 \end{array}\right] = \left[\begin{array}{cc} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \end{array}\right] \left[\begin{array}{cc} 1.994 & 0 \\ 0 & 0.006 \end{array}\right] \left[\begin{array}{cc} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \end{array}\right]$$

Nowe kierunki

$$\mathbf{p_1} = \begin{bmatrix} \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{bmatrix}, \mathbf{p_2} = \begin{bmatrix} \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} \end{bmatrix}, \lambda_1 = 1.994, \lambda_2 = 0.006$$

algorytm PCA (10) - przykład

$$\lambda_1 = 1.994, \lambda_2 = 0.006$$

- Po zamianie współrzędnych i eliminacji drugiego wymiaru będziemy mieli 99.7% wariancji dla pierwszego wymiaru (utracimy tylko 0.3% wariancji)
- ► W ten sposób można wybrać tylko istotne atrybuty

algorytm PCA (11) - podsumowanie

- algorytm nie posiada parametrów
- ► liniowo przekształca przestrzeń atrybutów
- wykorzystuje macierz korelacji, eliminuje kowariancję czyli liniowe zależności pomiędzy atrybutami
- pozwala na redukcję wymiarów, opuszczanie atrybutów o mniejszym znaczeniu (kompresja informacji)

Popularne kryterium dobierania ilości składowych (kryterium Kaisera-Guttmana)

należy zachować składowe, dla których wartości własne są większe od 1, czyli wkład składowej większy, niż wkład pojedynczej zmiennej

Czułość i selektywność

macierz pomyłek

		stan	
		plus	minus
wynik testu	dodatni ujemny	prawdziwie dodatni fałszywie ujemny	fałszywie dodatni prawdziwie ujemny

$${\sf czułość} = \frac{{\sf prawdziwie\ dodatni}}{{\sf prawdziwie\ dodatni} + {\sf fałszywie\ ujemny}}$$

$$\mathsf{selektywność} = \frac{\mathsf{prawdziwie} \ \mathsf{dodatni}}{\mathsf{prawdziwie} \ \mathsf{dodatni} + \mathsf{falszywie} \ \mathsf{dodatni}}$$

Czułość i selektywność (2)

TP = 4	FP = 2
FN = 1	TN = 3

czułość = 0.8selektywność = 0.67 Test na kolor:

TEST	TEST HA KOIOL.			
nr	stan	wynik testu		
0	NIE	NIE		
1	TAK	NIE		
2	TAK	TAK		
3	TAK	TAK		
4	TAK	TAK		
5	TAK	TAK		
6	NIE	TAK		
7	NIE	TAK		
8	NIE	NIE		
9	NIE	NIE		

Biologia syntetyczna

Biologia syntetyczna

Biologia syntetyczna – dziedzina inżynierii, projektowanie i realizacja sztucznych systemów biologicznych.

- chemiczna synteza DNA o zadanej sekwencji, 1970 r.
- ► synteza sztuczego genu, 1972 r.¹
- synteza sztucznego genomu
 - wirus, 7500 bp, 2002 r.²
 - ▶ bakteria, 1 Mbp, 2010 r ³

Narzędzia informatyczne stosowane do:

- symulacje reakcji i procesów biologicznych
- przewidywania struktur cząsteczek
- optymalizacji warunków reakcji

 $^{{}^1}$ Khora, Total synthesis of the structural gene for an alanine transfer ribonucleic acid from yeast

²Cello, Chemical synthesis of poliovirus cDNA: generation of infectious virus in the absence of natural template

Sibson Creation of a bacterial cell controlled by a chemically synthesized genome

Struktura pierwszorzędowa, drugorzędowa i trzeciorzędowa

- struktura pierwszorzędowa sekwencja symboli
- badanie struktur drugorzędowych DNA, RNA i białek (uwzględnienie oddziaływania nukleotydów lub aminokwasów)
- badanie struktur trzeciorzędowych (struktura atomów w przestrzeni 3D)

struktura pierwszorzędowa:

GCCGAUUAAA CCACAGAAUC CACCUGUGUC UUUUUCCCAU AUAUGGCUCG GGAG... struktura drugorzędowa:

Struktura drugorzędowa - notacje

Sekwencja RNA $S = x_1x_2...x_n$ Struktura drugorzędowa: zbiór par (i,j), gdzie $1 \le i < j \le n$, takich, że:

- > j-i > 3 (pętle zewnętrzne nie mogą być krótsze niż 4 nukleotydy)
- ▶ jeżeli (i,j) oraz (i',j') są dwoma parami zasad to:
 - i < j < i' < j'(i,j) poprzedza (i',j')
 - i' < j' < i < j
 (i',j') poprzedza (i,j)
 - i < i' < j' < j(i,j) obejmuje (i',j')
 - i' < i < j < j'(i',j') obejmuje (i,j)

Rodzaje połączeń wewnątrz struktur drugorzędowych

trzon (ang. (stem))

pętle:

- wybrzuszenie (ang. bulge loop)
- pętla wewnętrzna (ang. interior loop)
- pętla zewnętrzna (ang. hairpin loop)
- pętla wieloramienna (ang. multi-branched loop)

wiszące końce

Struktury trzeciorzędowe - przykłady

Algorytmy oparte o minimalizację energii swobodnej

- cząsteczka przyjmuje strukturę o najniższej energii
- energia w zależności od siły wiązania dla poszczególnych par
- energia dla struktury: suma dla poszczególnych par

$$E(S) = \sum_{i,j \in S} e(x_i, x_j)$$

Przykładowa macierz energii:

e(i,j)	Α	С	G	U
A	0	0	0	2
С	0	0	3	0
G	0	3	0	1
U	2	0	1	0

Algorytm Nussinov

▶ inicjacja - pętle zewnętrzne nie mogą być krótsze niż 4 nukleotydy

▶ podział sekwencji

$$F(i,j) = \max \left\{ \begin{array}{ll} 0 & j-i \leq 3 \\ F(i+1,j-1) + e(x_i,x_j) & \text{połączenie} \\ F(i+1,j) & x_i \text{ bez pary} \\ F(i,j-1) & x_j \text{ bez pary} \\ \max_{k:i \leq k < j} F(i,k) + F(k+1,j) & \text{podział} \\ \vdots & \vdots & \vdots & \vdots \end{array} \right.$$

CAAGGAAC

	Α	С	G	Т
Α	0	0	0	2
С	0	0	3	0
G	0	3	0	0
T	2	0	0	0

$$(i,j) = \max \left\{$$

$$F(i,j) = \max \begin{cases} 0 & j-i \leq 2 \\ F(i+1,j-1) + e(x_j,x_j) \\ F(i+1,j) \\ F(i,j-1) \\ \max_{k:j \leq k < j} F(i,k) + F(k+1,j) \end{cases}$$

0 0 0

CA	AGGA	AC	C G T	0 0 2	0 3 0	3 0 0	0 0	F(i,j)	= max 〈
С	Α	Α	G	G		Α	Α	С	
0	0	0	3	3	[3 -	3	6	С
	0	0	0	0		0	0	3	Α
		0	0	0		0	0	3	A
			0	0		0	0	3	G
				0		0	0	3	G
						0	0 1	0	Α
							0	0	Α
								0	С

	0 $F(i+1, j-1) + e(x_i, x_j)$ F(i+1, j) F(i, j-1)	$j-i \leq 2$
Į	F(i+1,j)	
1	F(i,j-1)	
ı	$\max_{k:i < k > i} F(i,k) + F(k+1,j)$	

Algorytm Zukera

- ► elementy stabilizujące
 - trzonki
- elementy destabilizujące:
 - pętle zewnętrzne (spinki)
 - pętle wewnętrzne (w tym wybrzuszenia)
 - petle wieloramienne

analizie podlegają pary par nukleotydów (a nie pojedyncze nukleotydy)

Algorytm Zukera (2)

- wykorzystuje programowanie dynamiczne
- ▶ dostarczane są energie (wynikające z pomiarów) dla:
 - ► szpilek *e_H*
 - ▶ połączonych par e_S
 - ▶ pętli e_L
- oblicza macierz V elementy (i, j) tworzą parę, oraz W element (i, j) jest częścią pętli wieloramiennej

$$W(i,j) = \max \left\{ egin{array}{l} W(i+1,j) \ W(i,j-1) \ max_{k:i \leq k < j} W(i,k) + W(k+1,j) \ V(i,j) \end{array}
ight.$$

Algorytm Zukera (3)

$$V(i,j) = \max \left\{ \begin{array}{l} e_H(i,j) \\ \text{ostatnie wiązanie przed szpilką} \\ e_S(i,i+1,j,j-1) + V(i+1,j-1) \\ \text{trzonek (połączenie)} \\ \max_{i < i' < j' < j:i'-i+j'-j>2} e_L(i,i',j,j') + V(i',j') \\ \text{pętla wewnętrzna} \end{array} \right.$$

Algorytmy minimalizacji energii swobodnej - podsumowanie

- Algorytm Nussinov
 - ► bada oddziaływania między pojedynczymi nukleotydami
 - uwzględnia ograniczenia dla 'szpilek'
- Algorytm Zukera
 - bada oddziaływania między dwiema parami nukleotydów
 - ► inaczej obliczana energia dla pętli, trzonka, itd.

Problemy

- duża średnia liczba sub-optymalnych struktur, nie pozwala uwzględniać wszystkich możliwości
- nie uwzględniane oddziaływania trzeciorzędowe (pseudo-węzły, itp.)
- łańcuchy RNA niekoniecznie muszą przyjmować strukturę o minimalnej energii, konformacja może być wymuszona kinetyką tworzenia struktury drugorzędowej

Dziękuję