Obstruction Cochain

概要

Obstruction cochain が特性写像のとりかたに依らないこと、およびそれが cocycle であることの証明

目次

0	基本群のホモトピー群への作用	1
0.1	便利な写像	1
0.2	基本群のホモトピー群への作用	1
0.3	ホモトピー完全列との関係	5

0 基本群のホモトピー群への作用

0.1 便利な写像

 C_i で inclusion $i: S^{n-1} \to D^n$ の mapping cylinder を表すことにする。ただし, $CS^{n-1} = I \times S^{n-1} /$ の $1 \times S^{n-1}$ と ∂D^n を接着しているとする。同相写像 $C_i \to D^n$ を次のように作る。

$$(t,x) \mapsto \frac{2-t}{2}x \quad ((t,x) \in CS^{n-1})$$

 $x \mapsto x/2 \qquad (x \in D^n)$

これの逆を $b: D^n \to C_i$ とおく.

0.2 基本群のホモトピー群への作用

■絶対ホモトピー群への作用 G. W. Whitehead の III 章を参照*1 (この小節の内容よりも一般の状況でいろいろ書いてある).

X の点 x_1, x_0 を結ぶ path $\gamma: (I,0,1) \to (X,x_1,x_0)$ の,ホモトピー群 $\pi_n(X,x_0)$ への作用を定める。spheroid* $^2f: (D^n,S^{n-1}) \to (X,x_0)$ に対し, $\tau_\gamma(f): (D^n,S^{n-1}) \to (X,x_1)$ を $\tau_\gamma(f):=((\mathrm{id}_I\times\gamma)\cup f)\circ b$ と定める* 3 .

補題 0.1. γ, γ' が端点を止めてホモトピック,f, f' が基点を止めてホモトピックであるとする. このとき, $\tau_{\gamma}(f)$ と $\tau_{\gamma'}(f')$ は基点を止めてホモトピックである.

^{*1} 一度立ち止まって、この文章を声に出して読め、

 $^{*^2}$ 球面からの連続写像を spheroid と呼ぶことにする.

^{*3} $f\colon CS^{n-1}\to X$ と $g\colon D^n\to X$ で, $f|_{1\times S^{n-1}}=g|_{\partial D^n}$ を満たすものが引き起こす写像 $C_i\to X$ のことを $f\cup g$ と書くことにする.

Proof. γ, γ' のホモトピーを $h: I \times I \to X$, f, f' のホモトピーを $H: I \times D^n \to X$ とおく. このとき, ホモトピー $\Phi: I \times D^n \to X$ を, $\Phi_t := ((\mathrm{id}_I \times h_t) \cup H_t) \circ b$ と定める. これを具体的に書くと

$$\begin{cases} x \mapsto H(t, 2x) & (0 \le ||x|| \le 1/2) \\ x \mapsto (2 - 2||x||, h(t, x/||x||)) & (1/2 \le ||x|| \le 1) \end{cases}$$

である.これは連続で,境界は基点にうつる.また $\Phi_0= au_\gamma(f)$, $\Phi_1= au_{\gamma'}(f')$ である. \qed

この補題から、 γ の端点を止めたホモトピー類 $\alpha=[\gamma]$ は写像 $\tau_\alpha\colon\pi_n(X,x_0)\to\pi_n(X,x_1)$ を定める.

■相対ホモトピー群への作用 $f:(D^n,S^{n-1},*)\to (X,A,x_0)$ と path $\gamma:(I,0,1)\to (A,x_1,x_0)$ を任意にとる. $\tau'_{\gamma}(f):(D^n,S^{n-1},*)\to (X,A,x_1)$ を $\tau'_{\gamma}(f):=(\gamma\vee f)\circ b'$ と定める.

補題 0.2. γ, γ' が端点を止めてホモトピック、f, f' が $\pi_n(X, A, x_0)$ の同じ元を代表するとする. このとき、 $\tau'_{\gamma}(f)$ と $\tau'_{\gamma'}(f')$ は $\pi_n(X, A, x_1)$ の中で同じである.

Proof. 絶対バージョンの同じ補題とパラレルである. □

上の補題から、 γ の端点を止めた A の中でのホモトピー類 α は写像 τ'_{α} : $\pi_n(X,A,x_0) \to \pi_n(X,A,x_1)$ を定める.

0.3 ホモトピー完全列との関係

基本群の作用が対のホモトピー完全列に引き起こす準同型を見る. inclusion の引き起こす準同型 j_* を j_* : $\pi_n(X) \to \pi_n(X,A)$ を, $j_*[f] := [f \circ p]$ と定める. ここで, p は $p: (D^n,S^{n-1}) \to (D^n/S^{n-1},S^{n-1}/S^{n-1}) = (S^n,*)$ である. あとの i_* や ∂_* は自明なとおりである.

定理 0.3. (X,A) を空間対, $n \ge 0$ とする.このとき各 $[\gamma] = \alpha \in \pi_1(A)$ に対し,次の図式は可換である.ただし, $\beta := i_*\alpha$ である.

$$\longrightarrow \pi_{n+1}(X,A) \xrightarrow{\partial_*} \pi_n(A) \xrightarrow{i_*} \pi_n(X) \xrightarrow{j_*} \pi_n(X,A) \longrightarrow$$

$$\downarrow^{\tau'_{\alpha}} \qquad \downarrow^{\tau_{\alpha}} \qquad \downarrow^{\tau_{\beta}} \qquad \downarrow^{\tau'_{\alpha}}$$

$$\longrightarrow \pi_{n+1}(X,A) \xrightarrow{\partial_*} \pi_n(A) \xrightarrow{i_*} \pi_n(X) \xrightarrow{j_*} \pi_n(X,A) \longrightarrow$$

Proof. (左の四角について) $[f] \in \pi_{n+1}(X,A)$ を任意にとる. 右上からたどる合成について,

$$\tau_{\alpha}\partial_*[f] = \tau_{\gamma}(|_{S^n}) = (\gamma \vee f|_{S^n}) \circ b$$

である. また, 左下の合成は

$$\partial_*\tau_\alpha'[f] = \partial_*((\gamma \vee f) \circ b') = (\gamma \vee f) \circ b = (\gamma \vee f|_{S^n}) \circ b$$

だから左の四角は可換である.

(真ん中の四角について) $[f] \in \pi_n(A)$ を任意にとる. 右上からたどる合成について,

$$\tau_{\beta}i_*[f] = \tau_{i_*\alpha}[f] = ((i \circ \gamma) \vee f) \circ b = (\gamma \vee f) \circ b$$

左下をたどる合成について,

$$i_*\tau_{\alpha}[f] = i_*((\gamma \vee f) \circ b) = (\gamma \vee f) \circ b$$

よって真ん中は可換である.

(右の四角について) $[f] \in \pi_n(X)$ を任意にとる. 右上をたどる合成について,

$$\tau'_{\alpha}j_{*}[f] = \tau'_{\gamma}(f \circ p) = (\gamma \vee (f \circ p)) \circ b'$$

左下をたどる合成について,

$$j_*\tau_\beta[f] = j_*\tau_\gamma(f) = j_*((\gamma \vee f) \circ b) = (\gamma \vee f) \circ b \circ p$$

補題 0.4. $\gamma*$ は群準同型である.

Proof. $[f], [g] \in \pi_n(X, x_1)$ をとる.