汇编与接口技术

第8章 模拟接口

1

■声卡的工作原理框图

§ 8.1 模拟接口概述

模拟量的输入、输出通道是微型计算机与被控制对象之间的一种重要接口形式,也是实现工业过程自动控制的重要组成部分。

2

§ 8.2 D/A转换器

一、D/A 转换的原理

二、D/A转换器的分类

三、D/A转换器的性能指标

1. 分辨率 (精度)

指数字量最低有效位所对应的模拟电压的值。

是对输入量变化的敏感程度的描述,通常用数字量的位数来表示。

■相对量:
$$\frac{\frac{V_{REF}}{2^n} \times 1}{\frac{V_{REF}}{2^n} (2^n - 1)} = \frac{1}{2^n - 1}$$

2. 转换时间(速度)

完成一次D/A转换所需的时间。

1) 低速: $T_s > 100 \mu s$

2)中速: 10μs < T_s < 100μs

3) 高速: 1μs < T_s < 10μs

4) 超高速: T_s < 1μs

5

(二) DAC 0832的内部结构及引脚功能

1. DAC 0832的内部结构

四、DAC 0832及应用

(一) DAC 0832的特点

- 1.8位, 电流型DAC器件;
- 2. CMOS工艺;
- 3. 单电源供电, +5V~+15V;
- **4.**转换时间 T_s≈1µs

6

(二) DAC 0832的内部结构及引脚功能

1. DAC 0832的内部结构

2. 引脚功能

9

2. 引脚功 D/A转换器的基准电压, 可以在-10V到+10V之间选择。 DI₇ 0 13 DI₆ 0 14 DI₅ 0 15 DI₄ 0 4 DI₂ 0 5 Q7 D7 D_7 Q7 –o Vref 12 O Iout2 片内反馈电阻引脚, 8位输 可以外接输出增益调节电位器。 11 oIouti 寄存器 Q \mathbb{D}_0 \mathbb{Q}_0 <u>-9</u>_0R∙ 输入,低电平有效, LEı LE_2 传送控制信号。 3_0 AGND ILE o-20 o VCC 输入,低电平有效, $\frac{\overline{CS}}{WR_1}$ o 9& 数据写信号1。 10 DGND WR₂ O 输入,低电平有效, DAC寄存器的写选通信号。 11

2. 引脚功能

(二) DAC 0832的内部结构及引脚功能

1. DAC 0832的内部结构

3. DAC0832的控制方式

1) 直通方式

3) 双缓冲方式

两个寄存器均处于锁存控制状态。

- ①数据接收和启动转换可异步进行。
- ②可实现多个D / A通道同步输出。

2) 单缓冲方式

两个寄存器中任一个处于直通状态,另一个处于锁存控制状态。

(三) DAC 0832的应用举例

(三) DAC 0832的应用举例

1. 从V₀₂输出一个矩形波

START: MOV CX, 100

MOV AL, 0

S0: OUT 82H, AL

LOOP SO

MOV CX, 100

MOV AL, OFFH

S1: OUT 82H, AL

LOOP S1

JMP START

2. 从V₀₂输出一个三角波

START: MOV CX, OFFH

MOV AL, 0

R1: OUT 82H, AL

INC AL

LOOP R1

MOV CX, OFFH

D1: DEC AL

OUT 82H, AL

19

LOOP D1

JMP START

(三) DAC 0832的应用举例

■两片DAC 0832在系统中的连接与控制

■程序控制

内存中以DataX和DataY为首地址的缓冲区内里分别存放波形X和波形Y的数据序列,采用该电路,从输出端 V_X 、 V_Y 同步输出波形X和波形Y。试编写相应的子程序。

START: MOV CX, COUNT ; 设置循环次数

MOV SI, 0 ; 设置地址指针

CHANGE: MOV BX, OFFSET DataX

MOVAL, [BX+SI] ; 取波形X的数据

OUT 84H, AL ; 送数据到1# DAC0832输入寄存器

MOV BX, OFFSET DataY

MOVAL, [BX+SI]; 取波形Y的数据

OUT 86H, AL ; 送数据到2# DAC0832输入寄存器

OUT 88H, AL ; 启动转换

INC SI ;指向下一个数据 CALL DELAY ;调用延时子程序

LOOP CHANGE ; 检测D/A转换是否完成,未完则继续

RET ; 转换完成,返回

■两片DAC 0832在系统中的连接与控制

§ 8.3 A/D转换器

- 一、A/D转换的一般步骤 包括采样、保持、量化、编码。
 - 1. 采样与保持

■采样定理

采样频率应大于等于模拟信号最高频率分量的2倍。

fs≥2f_{imax}

2. 量化与编码

1) 量化

将采样值转化为某个最小单位的整数倍。该最小单位----量化单位。

2) 编码

将量化所得的整数用二进制数进行编码。

■例: 将0~1V电压范围转换为三位二进制数。

25

二、A/D转换器的分类

1. 转换原理 電压-频率转换型 逐位逼近型 双积分型 并行比较型

2. 分辨率: 4/8/10/12/16

三、A/D转换器的性能指标

1. 分辨率

数字输出最低位(LSB) 所对应的模拟输入的电压值。 常用数字量的位数来表示分辨率。

2. 转换时间

指完成一次A/D转换所需的时间,该时间的倒数即为转换速度。

2. 量化与编码

1) 量化

将采样值转化为某个最小单位的整数倍。该最小单位----量化单位。

2) 编码

将量化所得的整数用二进制数进行编码。

■例: 将0~1V电压范围转换为三位二进制数。

四、ADC 0809及其应用

(一) 功能特点

- 1. 逐次逼近型8位A / D转换器。
- 2. 片内有8路模拟开关,可输入八个模拟电压。
- 3. 单极性输入,量程为0~5伏。
- 4. 典型的转换速度为100us。

(二) ADC 0809的内部结构及工作原理

29

(三) ADC 0809的引脚功能

ADC0809采用28个引脚双列直插封装形式(DIP28)。

(二) ADC 0809的内部结构及工作原理

30

(三) ADC 0809的引脚功能

ADC0809采用28个引脚双列直插封装形式(DIP28)。

(三) ADC 0809的引脚功能

ADC0809采用28个引脚双列直插封装形式(DIP28)。

(三) ADC 0809的引脚功能

ADC0809采用28个引脚双列直插封装形式(DIP28)。

(三) ADC 0809的引脚功能

ADC0809采用28个引脚双列直插封装形式(DIP28)。

(三) ADC 0809的引脚功能

ADC0809采用28个引脚双列直插封装形式(DIP28)。

(四) ADC 0809应用举例

(四) ADC 0809应用举例

(四) ADC 0809应用举例

(四) ADC 0809应用举例

■程序控制

利用该电路对8路模拟输入进行A/D转换,并将转换结果送到以ADSUM为首地址的内存缓冲区中。

START: MOV BX, OFFSET ADSUM; 取缓冲区首地址 MOV CX, 8 ; 设置通道数 MOV DX, 110H; 取通道0端口地址 ; 开中断 STI ADCHG: OUT DX, AL ; 启动A/D转换 ; 等待转换结束 HLT MOV [BX], AL; 转换结果送入缓冲区 INC BX : 修改缓冲区指针 : 修改通道端口地址 INC DX LOOP ADCHG RET 中断服务程序

SERVE: IN AL, DX; 读取转换数据 STI; IRET;

41

■另一种硬件连接方式

■另一种硬件连接方式

■程序控制

STI:

IRET:

START: MOV BX, OFFSET ADSUM; 取缓冲区首地址 MOV CX, 8 ; 设置通道数 MOV DX, 110H : 取通道共用端口地址 : 取通道0地址码 MOV AH, 0 ;开中断 STI ADCHG: MOV AL, AH OUT DX, AL ; 启动A/D转换 HLT ; 等待转换结束 MOV [BX], AL ; 转换结果送入缓冲区 INC BX ; 修改缓冲区指针 ; 修改通道地址码 INC AH LOOP ADCHG RET 中断服务程序 SERVE: IN AL, DX; 读取转换数据