Unidad 1.B. Representación finita de números reales en punto fijo

Dr. Ing. Hernán Garrido

Control y sistemas
Universidad Nacional de Cuyo, Facultad de Ingeniería

carloshernangarrido@gmail.com

Agosto de 2023

Contenidos

- Representación en punto fijo
 - Definición
 - Números enteros y punto fijo
 - Notación Qm.n Rango y precisión.
 - Conversión de punto flotante a punto fijo y viceversa.
 - Escala de representación. Rango dinámico.
- 2 Aritmética de punto fijo
 - Suma complemento a 2. Overflow. Saturación. Acumulador, bits de guarda.
 - Multiplicación en complemento a 2. Underflow. Esquemas de redondeo, Truncamiento y round-off.
 - Desplazamientos lógico y aritmético.

Motivación

- Es imposible representar infinitos números en una computadora.
- El programador debe elegir la mejor representación de acuerdo a la aplicación.

Figura: Recta real.

Motivación

Figura: El problema de Gangnam Style.

Números enteros

Representación en binario

Una palabra binaria de N bits $b_{N-1}...b_2b_1b_0$ puede representar un total de 2^N valores distintos.

- Enteros sin signo:
 - Rango: desde 0 hasta $2^N 1$.
 - El número en base 10 se recupera mediante:

$$n_{10} = 2^{N-1}b_{N-1} + \dots + 2^{1}b_{1} + 2^{0}b_{0}$$

- Enteros con signo en complemento a 2:
 - Rango: desde -2^{N-1} hasta $2^{N-1} 1$
 - El número en base 10 se recupera mediante:

$$n_{10} = -b_{N-1}2^{N-1} + 2^{N-2}b_{N-2}... + 2^{1}b_{1} + 2^{0}b_{0}$$

Números enteros: Ejemplos

Binario	Decimal sin signo	Decimal en complemento a dos
000	0	0
001	1	1
010	2	2
011	3	3
100	4	-4
101	5	-3
110	6	-2
111	7	-1

Cuadro: Comparación de enteros sin signo y en complemento a dos (3 bits).

En lenguaje C:

- 8 bits (char, int8_t): [-128, 127]
- 16 bits (short, int16_t): [-32768, 32767]
- 32 bits (int, long, int32_t): [-2147483648, 2147483647]

Representación en punto fijo

Un número real x se representa mediante un entero X con N=m+n+1 bits, donde

- N es el tamaño de la palabra binaria
- m es el número de bits de la parte entera (a la izquierda del punto binario)
- n es el número de bits de la parte fraccionaria (a la derecha del punto binario)
- 1 bit para el signo

Representación en punto fijo

- Los pesos de los bits fraccionarios son potencias negativas de 2: 1/2, 1/4, 1/8, ...
- El número decimal se recupera mediante:

$$n_{10} = -b_m 2^m + \left(\sum_{i=0}^{m-1} b_i 2^i + \sum_{i=1}^n b_i 2^{-i}\right)$$

- Rango: desde -2^m hasta $2^m 2^{-n}$
- Precisión: 2⁻ⁿ

Representación en punto fijo: Ejemplos

Notación Qm.n: m bits para la parte entera, n bits para la parte fraccionaria, 1 bit para el signo. Por ejemplo: Q1.1 es un número de 3 bits que permite representar:

Binario	Decimal	
0.00	0.0	
00.1	0.5	
01.0	1.0	
01.1	1.5	
10.0	-2.0	
10.1	-1.5	
11.0	-1.0	
11.1	-0.5	

- Rango: desde $-2^m = -2^1 = -2$ hasta $2^m 2^{-n} = 2^1 2^{-1} = 2 0.5 = 1.5$
- Precisión: $2^{-n} = 2^{-1} = 0.5$

Representación en punto fijo: Ejemplos

- Q0.15 (Q15)
 - 16 bits:
 - Rango: desde -1 hasta 0.99996948;
 - Precisión: $\frac{1}{32768}$ (2⁻¹⁵).
- Q3.12
 - 16 bits;
 - Rango: desde -8 hasta 7.9998;
 - Precisión: $\frac{1}{4096}$ (2⁻¹²).
- Q0.31 (Q31)
 - 32 bits;
 - Rango: desde -1 hasta 0.999999999534339;
 - Precisión: $4.6566129 \times 10^{-10} (2^{-31})$.

Conversión a y desde punto flotante

Definición de desplazamiento a la izquierda

```
Unidad (1): 1 << n = 1 \cdot 2^n
Un medio (1/2): 1 << (n-1) = 1 \cdot 2^{n-1}
```

Conversión de número de punto flotante x (real) a número de punto fijo X mediante casting:

Conversión de número de punto fijo X a número de punto flotante \times (real) mediante casting:

```
x = (float)X / (1 << n);

x = (float)X * pow(2, -n); // equivalente pero

\rightarrow ineficiente
```

Factor de escala

- No hay diferencia a nivel de CPU (ALU) entre los números de punto fijo y los números enteros.
- La diferencia se basa en el concepto de factor de escala, que está completamente en la cabeza del programador.
- Los números de punto fijo en notación Qm.n pueden verse como un número entero con signo simplemente multiplicado por 2^{-n} , la precisión.
- De hecho, el factor de escala puede ser una escala arbitraria que no sea una potencia de dos.

Por ejemplo: Queremos números de 16 bits entre 8000H y 7FFFH para representar valores decimales entre -5 y +5.

- Entero: -32768 a 32767 (8000H 7FFFH).
- (-32768×2^{-15}) a $(32767 \times 2^{-15}) = -1$ a 0.99996948242.
- (-1×5) a $(0.99996948242 \times 5) = -5$ a 4.99984741211.

El factor de escala y la precisión son iguales (5×2^{-15})

Rango dinámico

Definición

$$DR_{dB} = 20 \log_{10} \left(\frac{\text{valor-mas-grande-posible}}{\text{valor-mas-chico-posible}} \right) \text{ [dB]}$$

Para enteros con signo de N bits:

$$DR_{dB} = 20 \log_{10} \left(\frac{2^{N-1} - 1}{1} \right)$$
 $DR_{dB} \approx 20 \log_{10} \left(2^{N-1} \right)$
 $DR_{dB} \approx 20(N-1) \log_{10} 2$

$$DR_{dB} \approx 6.02(N-1)$$

Regla de pulgar: 6 dB por bit útil.

Precisión y rango dinámico: Ejemplos

Ejemplos de representaciones en punto fijo de 16 bits con signo (todos tienen el mismo rango dinámico de 90.3 dB):

Qm.n	Precisión	V_{min}	$V_{\sf max}$
Q15.0	$2^0 = 1$	-32768	32767
Q10.5	$2^{-5} = 0.03125$	-1024.00000	1023.96875
Q1.14	$2^{-14} = 0.0000610$	-2.000000000000000	1.99993896484375
Q0.15	$2^{-15} = 0.0000305$	-1.00000000000000000	0.999969482421875

Tabla de contenidos

- Representación en punto fijo
 - Definición
 - Números enteros y punto fijo
 - Notación Qm.n Rango y precisión.
 - Conversión de punto flotante a punto fijo y viceversa.
 - Escala de representación. Rango dinámico.
- 2 Aritmética de punto fijo
 - Suma complemento a 2. Overflow. Saturación. Acumulador, bits de guarda.
 - Multiplicación en complemento a 2. Underflow. Esquemas de redondeo, Truncamiento y round-off.
 - Desplazamientos lógico y aritmético.

Suma complemento a 2

- Sumar dos números de N bits puede producir un resultado de hasta N + 1 bits.
- El resultado tiene el mismo número de bits en la parte fraccional.
- Sólo la parte entera puede crecer en 1 bit.

Si los últimos dos bits del acarreo son diferentes, hubo overflow.

Suma en complemento a 2: Overflow

- El overflow ocurre cuando el resultado es menor que -2^{N-1} o mayor que $2^{N-1}-1$. Esto es viendo el número como un entero con signo de N bits en total.
- El overflow produce una caída en escalera:

Suma en complemento a 2: Overflow

Características del overflow:

- El efecto del overflow no controlado es catastrófico, ya que el resultado es muy diferente del esperado. En el caso de un sistema de control, esto implica una discontinuidad.
- Sólo sucede cuando se suman dos número positivos o dos números negativos con valores absolutos muy grandes.
- Nunca ocurre si los sumandos son de signo opuesto.

Técnicas para tratar el overflow: Acumulador largo

Solución simple: Un acumulador para el resultado más largo que los sumandos.

- Si son dos sumandos de N bits, un acumulador de N+1 bits es suficiente.
- Si son s sumandos de N bits, el acumulador debe tener: $N + \log_2(s)$.
 - Por ejemplo, para sumar 256 números de 8 bits, se necesita un acumulador de $8 + \log_2(256) = 8 + 8 = 16$ bits.

```
int32_t a[K];
int64_t c = 0;
/* Asignación de valores de a */
for (i=0; i<K; i++)
{
    c = c + (int64_t) a[i];
}</pre>
```

Técnicas para tratar el overflow: Saturación

Otra solución: La saturación no evita el overflow pero sí la caída en escalera o rollover. Esto es menos catastrófico.

- Introduce una no linealidad pero evita la discontinuidad.
- De todos modos se requiere operar primero con un acumulador más largo.


```
#include <stdint.h>
int32_t saturate(int64_t x) {
   if (x > INT32_MAX) { return INT32_MAX; }
   else if (x < INT32_MIN) { return INT32_MIN; }
   else { return (int32_t)x; }
}</pre>
```

Multiplicación en complemento a 2: Enteros

Multiplicar dos números de N bits puede producir un resultado de hasta 2N bits.

Multiplicación en complemento a 2: Punto fijo

Multiplicar dos números de N bits puede producir un resultado de hasta 2N bits. En punto fijo se duplica el número de bits de la parte fraccional.

Multiplicación en complemento a 2: Underflow

- Después de multiplicar dos números de N bits, se obtiene un número de 2N bits que normalmente debe almacenarce en memoria con N bits.
- El *underflow* ocurre si el resultado de la multiplicación es menor a 2^{-n} .
 - Al truncar los n bits que aparecen, se obtiene exactamente 0.
- Ejemplo: La precisión de Q0.3 es $2^{-3} = 1/8$

- ¿Qué número habría que almacenar -1/8 o -2/8?
- Siempre será necesario algún *esquema de redondeo* si se desea usar el mismo tamaño para los factores y el resultado.

Esquemas de redondeo: Truncamiento

Truncamiento

$$y = Q(x)$$

Es un redondeo a $-\infty$.

```
#include <stdint.h>
/* n es el número de bits de la parte fraccionaria */
int32_t truncation(int64_t X)
{
   int32_t a;
   a = (int32_t) (X >> n);
   return a;
}
```

Esquemas de redondeo: Redondeo

Redondeo

$$y = Q(x + 2^{-(n+1)})$$

Es un redondeo al valor más cercano. Se suma la mitad de la precisión y luego se trunca.

```
int32_t roundoff(int64_t X)
{
    int32_t a;
    a = X + (1 << (n-1));
    return truncation(a);
}</pre>
```


Operación MAC

La operación MAC (multiplicaciones y acumulación) es la operación básica en los procesadores digitales de señales.

```
int32_t a[K];
int32_t b[K];
int64_t c = 0;
for (i=0; i<K; i++){
    c = c + ((int64_t) a[i] * (int64_t) b[i])
};</pre>
```

- Es la implementación en código de la convolución.
- Los Procesadores Digitales de Señales (DSP) la ejecutan por hardware (directamente en la ALU). Los DSP tienen:
 - acumuladores con bits de guarda para evitar overflow, y
 - manejan los esquemas de redondeo automáticamente.

Desplazamientos lógico y aritmético

- Multiplicación por 2: todos los bits se desplazan hacia la izquierda en una posición.
- División por 2: todos los bits se desplazan hacia la derecha en una posición (desplazamiento lógico).
- ¿ Qué sucede con números en complemento a 2?
- ¡El bit de signo debe ser preservado! (desplazamiento aritmético).
- Desplazamiento aritmético \neq desplazamiento lógico.

Bibliografía

- Richard G. Lyons. Understanding Digital Signal Processing, 3rd Ed. Prentice Hill. 2010. Chapter 12.
- ② Bruno Paillard. An Introduction To Digital Signal Processors, Chapter 5.