

IE400 TERM PROJECT

Section: 3 | Group: 39

GROUP MEMBERS:

MERT ÜNLÜ - 22003747 BARIŞ TAN ÜNAL - 22003617 UMUT EGE ÖZDEMİR - 21802251

PART A: Win the Election

Question #01

Fixed Values:

• E[i,j]: expected investment amount of city [i,j]

Decision Variables:

- X[i,j]: amount of investment in city i=0,1,2,3,4; j=0,1,2,3,4,5,6
- W[i,j]: = 1 if we win the city [i,j] = 0 otherwise

Objective Function:

• $min(\sum_{i=0}^{4} \sum_{j=0}^{6} X[i,j])$

Constraints:

- $\sum_{i=0}^{4} \sum_{j=0}^{6} W[i,j] \ge 18$
- $\bullet \quad W[i,j] \leq \ W[i-1,j] \ + \ W[i+1,j] \ + \ W[i,j-1] \ + \ W[i,j+1]$

for any [i, j]; i=0..4, j=0..6; where out of bounds indexes are 0.

• $15W[i,j] \le \frac{(X[i-1,j]+X[i+1,j]+X[i,j-1]+X[i,j+1])}{4}$ for any [i,j]; i=0..4; j=0..6;

where out of bounds indexes are 15.

- $E[i,j] X[i,j] \le Mz$ for any [i,j]; i=0..4, j=0..6
- $W[i,j] \le M(1-z)$ where $z \in \{0,1\}$ and M = 30

Question #02

- All the cities with non-zero investment has voted for us with a total of 18.
- None of the cities without investment has voted for us (trivial).

PART B: Region Partitioning – I

Question #01

E	F	F	F	F	F	G
E	В	В	В	C	С	G
E		В				G
E	A	A		D		G
E	A	A		D	D	G

Question #02

Fixed Values:

W[i,j]: = 1 if we win the city [i,j] (fixed from part A)
 = 0 otherwise

Decision Variables:

- $S_X[i,j]:=1$ if the city [i,j] is in the region $X=\{0,1,2,3,4,5,6\}$ = 0 otherwise (where 0:A, 1:B, 2:C, 3:D, 4:E, 5:F, 6:G)
- R_X : = 1 region X={0,1,2,3,4,5,6} is won = 0 otherwise

Objective Function:

• $max(\sum_{i=0}^{6} R_X)$

Constraints:

- $\sum_{i=0}^{4} \sum_{j=0}^{6} S_X[i,j] = 5$ for any X={0,1,2,3,4,5,6}
- $\sum_{x=0}^{6} S_X[i,j] = 1$ for any $i = \{0,1,2,3,4\}; j = \{0,1,2,3,4,5,6\}$
- $3 \sum_{i=0}^{4} \sum_{j=0}^{6} (S_X[i,j] * W[i,j]) \le Mz$
- $R_x \le M(1-z)$ where $z \in \{0,1\}$ and M=3
- $S_E[i,0] = 1$ for $i = \{0,1,2,3,4\}$
- $S_F[0,j] = 1$ for $j = \{1,2,3,4,5\}$
- $S_G[i,6] = 1$ for $i = \{0,1,2,3,4\}$
- $S_A[i,j] = 1$ for $[i,j] = \{ [3,1], [3,2], [4,1], [4,2] \}$
- $S_B[i,j] = 1$ for $[i,j] = \{ [1,1], [1,2], [1,3], [2,2] \}$
- $S_C[i,j] = 1$ for $[i,j] = \{ [1,4], [1,5] \}$
- $S_D[i,j] = 1$ for $[i,j] = \{ [3,4], [4,4], [4,5] \}$

PART C: Region Partitioning - II

Fixed Values:

• W[i,j]: = 1 if we win the city [i,j] (fixed from part A)
= 0 otherwise

Decision Variables:

- $S_X[i,j]$: = 1 if the city [i,j] is in the region X={0,1,2,3,4,5,6} = 0 otherwise (where 0:A, 1:B, 2:C, 3:D, 4:E, 5:F, 6:G)
- R_X : = 1 region X={0,1,2,3,4,5,6} is won = 0 otherwise

Objective Function:

• $max(\sum_{i=0}^{6} R_X)$

Constraints:

- $\sum_{i=0}^{4} \sum_{j=0}^{6} S_X[i,j] = 5$ for any X={0,1,2,3,4,5,6}
- $\sum_{x=0}^{6} S_X[i,j] = 1$ for any $i = \{0,1,2,3,4\}$; $j = \{0,1,2,3,4,5,6\}$
- $3 \sum_{i=0}^{4} \sum_{j=0}^{6} (S_X[i,j] * W[i,j]) \le Mz$
- $R_x \le M(1-z)$ where $z \in \{0,1\}$ and M=3