Sciences Physiques: DS n° 2

18 Décembre 2018

Compétence	Maitrise
Utiliser la relation liant vitesse, distance et durée dans le cas d'un mouvement uniforme	
Vitesse : direction, sens et valeur.	
Mouvements uniformes et myts dont la vitesse varie au cours du temps en direction ou en valeur.	

Le soin et la qualité de rédaction sont pris en compte dans la notation.

Exercice 1 Valeur, direction et sens (3 points)

On a représenté ci-dessous, les vitesses de 4 objets (A, B, C et D) à un moment précis.

- 1. Á l'instant représenté, quels objets ont :
 - (a) (1 point) la même direction?
 - (b) (1 point) le même sens de déplacement?
 - (c) (1 point) la même valeur?

Exercice 2 Représentation de la vitesse (4 points)

- 1. Représenter la vitesse d'un objet à un instant précis, dans les conditions suivantes :
 - (a) (2 points) Mouvement : horizontal de gauche à droite;
 - Valeur de la vitesse : 25 m/s;
 - Échelle choisie : 1 cm pour 10 m/s.
 - (b) (2 points) Mouvement : chute verticale d'un objet;
 - Valeur de la vitesse : 10 m/s;
 - Échelle choisie : 1 cm pour 5 m/s.

Exercice 3 Proxima du centaure (4 points)

Proxima du centaure est l'étoile la plus proche de notre système solaire. Sa lumière nous parvient après avoir parcouru 39 700 milliards de kilomètres à la vitesse de 300 000 km/s.

- 1. (1 point) Quelle est la distance parcourue par la vitesse en un an?
- 2. (1 point) Quelle est la durée, en année, du parcours de la lumière issue de cette étoile jusqu'à nous?
- 3. (2 points) Quelle serait la durée, en année, de ce parcours pour une personne marchant à $5 \,\mathrm{km/h}$?

Exercice 4 Le lièvre et la tortue (7 points + 3 bonus)

«Rien ne sert de courir; il faut partir à point» est une maxime tirée de la fable «le lièvre et la tortue» de Jean de la Fontaine (1621 - 1695).

Après avoir fait la sieste sous un arbre à 40.0m de la ligne d'arrivée, le lièvre se réveille et aperçoit la tortue qui le précède d'une distance d = 39.4m. Elle file vers le succès dans cette ligne droite avec une vitesse de valeur constante $v_{tortue} = 0.2m/s$.

Le lièvre se met alors à courir en accélérant jusqu'à atteindre une vitesse de valeur $v_{lievre} = 18,0m/s$ et il s'y maintient.

- 1. (1 point) Comment qualifie-t-on le mouvement de la tortue?
- 2. (2 points) Utiliser la formule de la vitesse
 - (a) (1 point) Combien de temps faut-il à la tortue pour parcourir la distance qui la sépare de la ligne d'arrivée?
 - (b) (1 point) Quelle distance peut parcourir le lièvre à sa vitesse maximale pendant cette même durée?
- 3. (4 points) Lors de la phase d'accélération, on peut calculer la distance parcourue par le lièvre depuis l'arbre avec la formule suivante (t est le temps que dure la phase d'accélération) :

$$distance = 4.5 \times t^2$$

- (a) (2 points) On considère que cette accélération dure 2 secondes; à quelle distance de l'arbre se trouve-t-il?
- (b) (1 point) A la fin de cette phase d'accélération, quelle distance lui reste-t-il à parcourir?
- (c) (1 point) Montrer alors qu'il a perdu la course.
- 4. (3 points) Une coccinelle, qui s'était endormie au bout de l'aiguille du chronomètre, fut entrainée dans son mouvement. (Bonus)
 - (a) (1 point) Décrire la trajectoire de la coccinelle.
 - (b) (2 points) Calculer sa vitesse en cm/s, puis en m/s.