Quantifying selection in coding sequences

1.) selectively constrained:

 $d_N/d_S < 1$

2.) strictly neutral:

$$d_{\rm N}/d_{\rm S}=1$$

3.) adaptive evolution:

$$d_{\rm N}/d_{\rm S} > 1$$

Credit: Joe Bielawski

Codon substitution models

the instantaneous rate matrix, Q, is very big: 61 × 61

phenomenological codon models: just a few parameters are needed to cover the 3721 changes between codons!

	to codon below:							
From codon below:	TTT (Phe)	TTC (Phe)	TTA (Leu)	ΠG (Leu)	CTT (Leu)	CTC (Leu)	••••	GGG (Gly)
TTT (Phe)		$\kappa\pi_{\mathrm{TTC}}$	$\omega\pi_{ ext{TTA}}$	$\omega\pi_{\mathrm{TTG}}$	$\omega \kappa \pi_{ ext{TTT}}$	0	···▶	0
TTC (Phe)	$\kappa\pi_{ m TTT}$		$\omega\pi_{ ext{TTA}}$	$\omega\pi_{ ext{TTG}}$	0	$\omega \kappa \pi_{\mathrm{CTC}}$	•••	0
TTA (Leu)	$\omega\pi_{ ext{TTT}}$	$\omega\pi_{\mathrm{TTC}}$			0	0	•••	0
TTG (Leu)	$\omega\pi_{ ext{TTT}}$	$\omega\pi_{\mathrm{TTC}}$	$\kappa\pi_{ ext{TTA}}$		0	0	···▶	0
CTT (Leu)	$\omega\kappa\pi_{\mathrm{TTT}}$	0	0	0		$\kappa\pi_{\mathrm{CTC}}$	••••	0
CTC (Leu)	0	$\omega \kappa \pi_{\mathrm{TTC}}$	0	0	$\kappa\pi_{ m TTT}$		···▶	0
<u>:</u>	<u>:</u>	<u>:</u>	<u>:</u>	<u>:</u>	<u>:</u>	.	******	
GGG (Gly)	0	0	0	0	0	0	0	

^{*} This is equivalent to the codon model of Goldman and Yang (1994). Parameter ω is the ratio d_N/d_S , κ is the transition/transversion rate ratio, and π_i is the equilibrium frequency of the target codon (i).