Another Example

$$G(s) = \frac{K_B}{(1+\tau s)^3} \quad K_B > 1$$

Low freq mag: Constant at KB

Low freq. phase: Constant at 0°

High freq. mag slope:

High freq. phase:

Another Example

$$G(s) = \frac{K_B}{(1+\tau s)^3} \quad K_B > 1$$

Low freq mag: Constant at KB

Low freq. phase: Constant at 0°

High freq. mag slope: -60 dB dec

High freq. phase: -2700

Recall: negative high freq. slope means

|G(jw)| -> Ø as w -> 00

Phase Crossover

The "phase crossover" of a polar plot is the point where the plot crosses through the negative real axis.

This corresponds to the point where $4G(j\omega) = -180^{\circ}$

Again, exsily seen from Bode Phase diagrams: call wa "phase crossover freq." The value of w for which $\times G(j\omega) = -180^{\circ}$.

Note: May be one, none, or many wa depending on system.

Important quantity: |G(jwa)| magnitude at phase xover frequency

Gain Margin

The gain margin, a, is defined as:

$$Q = \frac{1}{|G(j\omega_{\alpha})|}$$

Gain margin is commonly expressed in dB:

$$\alpha_{dB} = 20 \log \alpha$$

$$= -|G(jw_a)|_{dB}$$

So gain margin in dB is negative of Bode magnitude at Thase crossover freq.

Meaning of Gain and Phase marquis

a, 8 measure how close polar plot comes to point -1+0; ("-1 point") in complex plane. Recall -1+0; = 1x-180°

Two "pseudo-orthogonal" directions

- → a measures distance to -1 along real Axis
 as a ratio 1/16(jual)
- => 8 measures distance to -1 as an angle around Unit circle.

Note: a71 (a>ØdB) means phase crossover occurs inside unit circle. a<1 (a<ØdB) means phase crossover is outside unit circle

Effect of Gain Changes

Increasing or decreasing K_B uniformly expands or contrads polar plot about the origin \Longrightarrow Will generally Change crossovers and margins

Effect of Zeros

Since they affect magnitude and phase, zeros will change shape of polar plot.

Example:

$$G(s) = K_B \frac{(\tau_1 s + 1)}{(\tau_2 s + 1)^3} K_B > 1$$

high freq phase: - 180° here (Why??)

But this limit may be asymptotically approached from above or below as who were

This difference can have a profound impact on Shape of plot. Need to check Bode for accuracy, but can often "reason it out" for simple cases.

Poles at origin

Poles at origin will introduce a unique feature to a polar plot.

lim xG(jω) = xK_B - N 90°

and lim |G(jw)| = 00 in these cases

=) Polar plot will Exhibit a "tail" along one of the coordinate axes.

Example:

$$G(s) = \frac{K_B}{5(7s+1)^2} T_{,} K_B > \phi$$

Note: Which side of a coordinate axis the tail lies on is sometimes important.

=> Determined by asymptotic behavior of phase αο ω-> φ.

$$G(s) = K_{B} \left[\frac{(T_{1}S+1)}{5(T_{2}S+1)^{3}} \right]$$

if $T_1 << T_2$ (so $T_1 >> T_2$) then as $\omega -> 0$ phase approaches -90° from below (equivalently, phase is decreasing as ω increases from \varnothing).

Conversely, if T, >> Tz, phase approaches -90° from above as w-80.

Add'l poles at origin change the coordinate axis the tail lies along.

Example:
$$G(S) = \left\{ \frac{T_1S+1}{5^2(T_2S+1)^2} \right\}$$

A more complicated example

$$G(S) = K_{B} \left[\frac{(\tau_{i}S+i)^{2}}{5^{2}(\tau_{i}S+i)(\tau_{i}S+i)^{2}} \right]$$
With $\tau_{i} >> \tau_{i} >> \tau_{j} >> \phi$ $\left(\frac{1}{\tau_{i}} << \frac{1}{\tau_{i}} << \frac$

Low freq phase: -1800

high freq phase: -270°

Phase instally decreases from pole at - 1/T,

Then increases due to double zero at -1/Tz

Then falls again due to double pale at -1/13,

