Announcements: November 12

- Final Exam Dec 11 6-8:50p (cumulative!)
- No WeBWorK due this week
- No office hours this week
- Math Lab Monday-Thursday 11:15-5:15 Clough 280 → Schedule
- PLUS Sessions
 - ► Tue/Thu 6-7 Westside Activity Room
 - ► Mon/Wed 6-7 GT Connector

Where are we?

We have learned to solve Ax = b and $Av = \lambda v$.

We have one more main goal.

What if we can't solve Ax=b? How can we solve it as closely as possible?

The answer relies on orthogonality.

Chapter 7

Orthogonality

Section 7.1

Dot products and Orthogonality

Outline

- Dot products
- Length and distance
- Orthogonality

Dot product

Say $u=(u_1,\ldots,u_n)$ and $v=(v_1,\ldots,v_n)$ are vectors in \mathbb{R}^n

$$u \cdot v = \sum_{i=1}^{n} u_i v_i$$
$$= u_1 v_1 + \dots + u_n v_n$$
$$= u^T v$$

Example. Find $(1, 2, 3) \cdot (4, 5, 6)$.

Dot product

Some properties of the dot product

- $u \cdot v = v \cdot u$
- $\bullet \ (u+v) \cdot w = u \cdot w + v \cdot w$
- $(cu) \cdot v = c(u \cdot v)$
- $u \cdot u \ge 0$
- $u \cdot u = 0 \Leftrightarrow u = 0$

Length

Let v be a vector in \mathbb{R}^n

$$||v|| = \sqrt{v \cdot v}$$

$$= \text{length of } v$$

Why? Pythagorean Theorem

Fact.
$$||cv|| = c||v||$$

v is a unit vector of ||v|| = 1

Problem. Find the unit vector in the direction of (1, 2, 3, 4).

Distance

The distance between v and w is the length of v - w (or w - v!).

Problem. Find the distance between (1,1,1) and (1,4,-3).

Orthogonality

Fact.
$$u \perp v \Leftrightarrow u \cdot v = 0$$

Why? Pythagorean theorem again!

$$u \perp v \Leftrightarrow ||u||^2 + ||v||^2 = ||u - v||^2$$

$$\Leftrightarrow u \cdot u + v \cdot v = u \cdot u - 2u \cdot v + v \cdot v$$

$$\Leftrightarrow u \cdot v = 0$$

Problem. Find a vector in \mathbb{R}^3 orthogonal to (1,2,3).

Summary of Section 7.1

- $u \cdot v = \sum u_i v_i$
- $u \cdot u = ||u||^2$ (length of u squared)
- The unit vector in the direction of v is $v/\|v\|$.
- The distance from u to v is $\|u-v\|$
- $u \cdot v = 0 \Leftrightarrow u \perp v$

Section 7.2 Orthogonal complements

Outline of Section 7.2

- Orthogonal complements
- Computing orthogonal complements

Orthogonal complements

$$\begin{split} W &= \text{subspace of } \mathbb{R}^n \\ W^\perp &= \{ v \text{ in } \mathbb{R}^n \mid v \perp w \text{ for all } w \text{ in } W \} \end{split}$$

Question. What is the orthogonal complement of a line in \mathbb{R}^3 ?

Facts.

- 1. W^{\perp} is a subspace of \mathbb{R}^n
- 2. $(W^{\perp})^{\perp} = W$
- 3. $\dim W + \dim W^{\perp} = n$
- 4. If $W = \operatorname{Span}\{w_1, \dots, w_k\}$ then $W^{\perp} = \{v \text{ in } \mathbb{R}^n \mid v \perp w_i \text{ for all } i\}$
- 5. The intersection of W and W^{\perp} is $\{0\}$.

Orthogonal complements

Finding them

Problem. Let $W = \mathrm{Span}\{(1,1,-1)\}$. Find the equation of the plane W^{\perp} .

Problem. Let $W = \mathrm{Span}\{(1,1,-1),(-1,2,1)\}$. Find the equation of the line W^{\perp} .

Orthogonal complements

Finding them

Problem. Let $W = \mathrm{Span}\{(1,1,-1),(-1,2,1)\}$. Find the equation of the line W^{\perp} .

Theorem. $A = m \times n$ matrix

$$(\operatorname{Row} A)^{\perp} = \operatorname{Nul} A$$

Why? $Ax = 0 \Leftrightarrow x$ is orthogonal to each row of A

Orthogonal decomposition

Fact. Say W is a subspace of \mathbb{R}^n . Then any vector v in \mathbb{R}^n can be written uniquely as

$$v = v_W + v_{W^{\perp}}$$

where v_w is in W and $v_{W^{\perp}}$ is in W^{\perp} .

Why? Say that $w_1+w_1'=w_2+w_2'$ where w_1 and w_2 are in W and w_1' and w_2' are in W^{\perp} . Then $w_1-w_2=w_2'-w_1'$. But the former is in W and the latter is in W^{\perp} , so they must both be equal to 0.

→ Demo

Next time: Find v_W and $v_{W^{\perp}}$.

Orthogonal Projections

Many applications, including:

Summary of Section 7.2

- $W^{\perp} = \{ v \text{ in } \mathbb{R}^n \mid v \perp w \text{ for all } w \text{ in } W \}$
- Facts:
 - 1. W^{\perp} is a subspace of \mathbb{R}^n
 - 2. $(W^{\perp})^{\perp} = W$
 - 3. $\dim W + \dim W^{\perp} = n$
 - 4. If $W = \operatorname{Span}\{w_1, \dots, w_k\}$ then $W^{\perp} = \{v \text{ in } \mathbb{R}^n \mid v \perp w_i \text{ for all } i\}$
 - 5. The intersection of W and W^{\perp} is $\{0\}$.
- $(\operatorname{Row} A)^{\perp} = \operatorname{Nul} A$ (this is how you find W^{\perp})
- \bullet Every vector v can be written uniquely as v=w+w' with w in W and w' in W^\perp

Section 7.3 Orthogonal projection

Outline

- Orthogonal bases
- A formula for projecting onto any subspace
- Breaking a vector into components

Orthogonal Projections

The orthogonal projection of a vector \boldsymbol{v} onto a subspace \boldsymbol{W} is:

$$v_W = v - v_{W^{\perp}}$$

Fact. The orthogonal projection v_W is the closest point in W to v. The distance from v to W is $\|v_{W^{\perp}}\|$.

Orthogonal Projections

Theorem. If W is a subspace of \mathbb{R}^n with $W = \mathrm{Span}\{v_1, \ldots, v_m\}$ and let A be the matrix whose columns are v_1, \ldots, v_m . For any vector v in \mathbb{R}^n , the equation

$$A^T A x = A^T v$$

is consistent and the orthogonal projection v_{W} is equal to Ax where x is any solution.

Why? Notice $Av_{W^{\perp}}=0$ and write $v_W=c_1v_1+\cdots+c_mv_m$. So:

$$A^{T}v = A^{T}(v_{W} + v_{W^{\perp}}) = A^{T}v_{W} = A^{T}(c_{1}v_{1} + \dots + c_{m}v_{m}) = A^{T}Ax$$

where $x = (c_1, \ldots, c_m)$.

Orthogonal Projection onto a line

Theorem. Let $L = \operatorname{Span}\{u\}$. For any vector v in \mathbb{R}^n we have:

$$v_L = \frac{u \cdot v}{u \cdot u} u$$