Government College of Technology, Coimbatore

TamilNadu Marginal Workers Assessment

Team Members:

- VenkatesaPerumal R
- Aravinth M
- Sugash M

1. Demographic Analysis for Age and Industry-Category:

```
# Perform demographic analysis

# Calculate distribution based on age
age_distribution = df['Age group'].value_counts()
age_distribution
```

```
df['Combined Category - A - Persons'] = (
    df['Industrial Category - A - Plantation, Livestock, Forestry,
Fishing, Hunting and allied activities - Persons'].astype(str) +
    df['Industrial Category - A - Agricultural labourers -
Persons'].astype(str) +
    df['Industrial Category - A - Cultivators - Persons'].astype(str)
)
df['Combined Category - A - Persons']
```

```
industrial_category_distribution_A = df['Combined Category - A -
Persons'].value_counts()
industrial_category_distribution_A
```

```
industrial_category_distribution_B = df['Industrial Category - B -
Persons'].value_counts()
industrial_category_distribution_B
```

```
df['Combined Category - C - Persons'] = (
    df['Industrial Category - C - HHI - Persons'].astype(str) +
    df['Industrial Category - C - Non HHI - Persons'].astype(str)
industrial category distribution C = df['Combined Category - C -
Persons'].value counts()
industrial category distribution C
industrial category distribution D E = df['Industrial Category - D & E
- Persons'].value counts()
industrial category distribution D E
industrial_category_distribution_F = df['Industrial Category - F -
Persons'].value counts()
industrial category distribution F
df['Combined Category - G - Persons'] = (
    df['Industrial Category - G - HHI - Persons'].astype(str) +
    df['Industrial Category - G - Non HHI - Persons'].astype(str)
industrial category distribution G =df['Combined Category - G -
Persons'].value counts()
industrial category distribution G
industrial category distribution H = df['Industrial Category - H -
Persons'].value counts()
industrial category distribution H
industrial category distribution I = df['Industrial Category - I -
Persons'].value counts()
industrial_category_distribution_I
df['Combined Category - J - Persons'] = (
    df['Industrial Category - J - HHI - Persons'].astype(str) +
    df['Industrial Category - J - Non HHI - Persons'].astype(str)
industrial category distribution J =df['Combined Category - J -
Persons'].value counts()
industrial_category_distribution J
```

```
industrial_category_distribution_K_and_M = df['Industrial Category - K
to M - Persons'].value_counts()
industrial_category_distribution_K_and_M

industrial_category_distribution_N_and_O = df['Industrial Category - N
to O - Persons'].value_counts()

industrial_category_distribution_P_and_Q = df['Industrial Category - P
to Q - Persons'].value_counts()
industrial_category_distribution_P_and_Q

df['Combined Category - R_to_U - Persons'] = (
    df['Industrial Category - R to U - HHI - Persons'].astype(str) +
    df['Industrial Category - R to U - Non HHI - Persons'].astype(str)
)
industrial_category_distribution_R_to_U = df['Combined Category - R_to_U - Persons'].value_counts()
industrial_category_distribution_R to_U
```

2. Visualizations:

```
# Create visualizations

# Visualization 1: Age distribution
plt.figure(figsize=(10, 6))
sns.barplot(x=age_distribution.index, y=age_distribution.values)
plt.xlabel('Age')
plt.ylabel('Count')
plt.title('Age Distribution of Marginal Workers')
plt.show()
```



```
plt.figure(figsize=(10, 6))
sns.barplot(x=industrial_category_distribution_A.index,
y=industrial_category_distribution_A.values)
plt.xlabel('Industrial Category_A')
plt.ylabel('Count')
plt.title('Industrial Category Distribution of Marginal Workers')
plt.show()
```

Age


```
plt.figure(figsize=(10, 6))
sns.barplot(x=industrial_category_distribution_B.index,
y=industrial_category_distribution_B.values)
plt.xlabel('Industrial Category_B')
plt.ylabel('Count')
plt.title('Industrial Category Distribution of Marginal Workers')
plt.show()
```



```
plt.figure(figsize=(10, 6))
sns.barplot(x=industrial_category_distribution_C.index,
y=industrial_category_distribution_C.values)
plt.xlabel('Industrial Category_C')
plt.ylabel('Count')
plt.title('Industrial Category Distribution of Marginal Workers')
plt.show()
```



```
plt.figure(figsize=(10, 6))
sns.barplot(x=industrial_category_distribution_D_E.index,
y=industrial_category_distribution_D_E.values)
plt.xlabel('Industrial Category_D_and_E')
plt.ylabel('Count')
plt.title('Industrial Category Distribution of Marginal Workers')
plt.show()
```

Industrial Category Distribution of Marginal Workers 250 200 100 0234567890123462890228289982336389624564890525358665682073738886999000131238809383485328909 Industrial Category D and E

```
plt.figure(figsize=(10, 6))
sns.barplot(x=industrial_category_distribution_F.index,
y=industrial_category_distribution_F.values)
plt.xlabel('Industrial Category_F')
plt.ylabel('Count')
plt.title('Industrial Category Distribution of Marginal Workers')
plt.show()
```


Industrial Category_F

```
plt.figure(figsize=(10, 6))
sns.barplot(x=industrial_category_distribution_G.index,
y=industrial_category_distribution_G.values)
plt.xlabel('Industrial Category_G')
plt.ylabel('Count')
plt.title('Industrial Category Distribution of Marginal Workers')
plt.show()
```


Industrial Category_G

```
plt.figure(figsize=(10, 6))
sns.barplot(x=industrial_category_distribution_H.index,
y=industrial_category_distribution_H.values)
plt.xlabel('Industrial Category_H')
plt.ylabel('Count')
plt.title('Industrial Category Distribution of Marginal Workers')
plt.show()
```


Industrial Category_H

```
plt.figure(figsize=(10, 6))
sns.barplot(x=industrial_category_distribution_I.index,
y=industrial_category_distribution_I.values)
plt.xlabel('Industrial Category_I')
plt.ylabel('Count')
plt.title('Industrial Category Distribution of Marginal Workers')
plt.show()
```


plt.figure(figsize=(10, 6)) sns.barplot(x=industrial category distribution J.index,


```
plt.figure(figsize=(10, 6))
sns.barplot(x=industrial_category_distribution_K_and_M.index,
y=industrial_category_distribution_K_and_M.values)
plt.xlabel('Industrial Category_K_and_M')
plt.ylabel('Count')
plt.title('Industrial Category Distribution of Marginal Workers')
plt.show()
```


plt.figure(figsize=(10, 6))
sns.barplot(x=industrial_category_distribution_N_and_0.index,
y=industrial_category_distribution_N_and_0.values)
plt.xlabel('Industrial Category_N_and_0')
plt.ylabel('Count')
plt.title('Industrial Category Distribution of Marginal Workers')
plt.show()


```
plt.figure(figsize=(10, 6))
sns.barplot(x=industrial_category_distribution_P_and_Q.index,
y=industrial_category_distribution_P_and_Q.values)
plt.xlabel('Industrial Category_P_and_Q')
plt.ylabel('Count')
plt.title('Industrial Category Distribution of Marginal Workers')
plt.show()
```



```
plt.figure(figsize=(10, 6))
sns.barplot(x=industrial_category_distribution_R_to_U.index,
y=industrial_category_distribution_R_to_U.values)
plt.xlabel('Industrial Category_R_to_U')
plt.ylabel('Count')
plt.title('Industrial Category Distribution of Marginal Workers')
plt.show()
```

Industrial Category Distribution of Marginal Workers for for to -

10

Industrial Category_R_to_U