Лабораторная работа 2.5.1

Измерение коэффициента поверхностного натяжения жидкости

Шерхалов Денис Б02-204

13 марта 2023 г.

Цель работы: 1) измерение температурной зависимости коэффициента поверхностного натяжения дистиллированной воды с использованием известного коэффициента поверхностного натяжения спирта; 2) определение полной поверхностной энергии и теплоты, необходимой для изотермического образования единицы поверхности жидкости при различной температуре.

В работе используются: прибор Ребиндера с термостатом и микроманометром; исследуемые жидкости; стаканы.

1. Введение

Из-за поверхностного натяжения возникают разные давления с разных сторон искривленной поверхности жидкости:

$$\Delta P = P_{\text{внутри}} - P_{\text{снаружи}} = \frac{2\sigma}{r}$$
 (формула Лапласа) (1)

 σ - коэффициент поверхностного натяжения, r - радиус кривизны поверхности.

Экспериментальная установка: Схема экспериментальной установки представлена на рисунке 1. Исследуемая жидкость (дистиллированная вода) наливается в сосуд B. Тестовая жидкость (этиловый спирт) наливается в сосуд E, через пробку в него входит полая металлическая игла C. Колбы герметично закрываются. Верхний конец иглы открыт, а нижний погружен в жидкость. При создании достаточно разреженного воздуха в колбе, пузырьки воздуха начинают пробулькивать. Поверхностное натяжение можно определить по величине разряжения ΔP , необходимого для прохождения пузырьков (при известном радиусе иглы).

Разряжение в системе создается с помощью аспиратора A. Кран K2 разделяет две полости аспиратора. Верхняя полость при закрытом кране K2 заполняется водой. Затем кран K2 открывают и заполняют водой нижнюю полость аспиратора. Разряжение воздуха создается в нижней полости при открывании крана K1, когда вода вытекает из неё по каплям. В колбах B и C, соединённых трубками с нижней полостью аспиратора, создается такое же пониженное давление. Разность давлений в полостях с разряженным воздухом и атмосферой измеряется спиртовым микроманометром.

Рис. 1: Схема установки для измерения температурной зависимости коэффициента поверхностного натяжения

Для стабилизации температуры исследуемой жидкости через рубашку D колбы B непрерывно прогоняется вода из термостата. Для стабилизации температуры через рубашку колбы с исследуемой жидкостью прогоняется вода из термостата. Из-за большой теплопроводности трубки температура в разных частях трубки заметно различна и ввиду теплового расширения поднимается уровень жидкости при изменении температуры. Поэтому при температурном измерении кончик иглы опускают до самого дна сосуда, тогда:

$$\Delta P = P - \rho g h \tag{2}$$

 ρ - плотность жидкости, h - высота погружения иглы.

2. Выполнение

- 1. Проверим герметичность установки. Наблюдение за показаниями манометра показало отсутствие течи в установке
- 2. Начнём измерения. Откроем кран K1. Подберём частоту падения капель из аспиратора так, чтобы максимальное давление манометра не зависело от этой частоты (порядка 1 капля в 5 секунд).
- 3. Измерим максимальное давление $\Delta P_{\text{спирт}}$ при пробулькивании пузырьков воздуха через спирт.

$$x_0 = 41.0 \pm 0.5 \,\mathrm{MM}$$
 \Rightarrow $\Delta P_{\text{CHMDT}} = 9.81 \cdot 0.2 \cdot x_0 = 80.4 \pm 1.0 \,\mathrm{Ha}$

Табличное значение коэффициента поверхностного натяжения спирта $\sigma_{\rm cn}=22.78\,\frac{{}_{\rm M}{\rm H}}{{}_{\rm M}},$ значит, по формуле (1), диаметр иглы.

$$r=rac{2\sigma_{
m ch}}{\Delta P}=0.567\,{
m mm}, \quad \Delta r=rac{2\sigma_{
m ch}\delta P}{\Delta P^2}=0.007\,{
m mm}$$

Диаметр иглы, измеренный по микроскопу получился порядка $d=1.15\pm0.05\,\mathrm{mm}$, а значит, косвенное измерение радиуса совпадает с прямым в пределах погрешности.

4. Промоем и просушим от спирта иглу, вставим её в колбу с дистиллированной водой. Измерим максимальное давление P_1 при пробулькивании пузырьков, когда игла лишь касается поверхности воды.

$$x_1 = 129.0 \pm 0.5 \,\mathrm{mm} \quad \Rightarrow \quad \Delta P_1 = 9.81 \cdot 0.2 \cdot x_1 = 253.1 \pm 1.0 \,\mathrm{\Pi a}$$

Измерим расстояние между верхним концом иглы и неподвижной частью прибора $h_1=17.5\pm0.5\,\mathrm{mm}$.

5. Утопим иглу до предела (так, чтобы образующийся пузырёк не касался дна). Измерим $h_2 = 7.5 \pm 0.5$ мм. Измерим максимальное давление в пузырьках P_2 .

$$x_2 = 179.0 \pm 0.5 \,\mathrm{mm} \quad \Rightarrow \quad \Delta P_2 = 9.81 \cdot 0.2 \cdot x_2 = 351.2 \pm 1.0 \,\mathrm{\Pi a}$$

По разности давлений $\Delta P_{12} = P_2 - P_1 = 98.1 \pm 1.0 \, \Pi$ а определим глубину погружения иглы косвенно:

$$\Delta h_{12} = \frac{\Delta P_{12}}{\rho g} = \frac{98.1}{998.2 \cdot 9.81} = 10.0 \pm 0.1 \,\text{mm}$$

Что совпадает с прямым измерением погружения иглы $\Delta h_{12}^* = h_1 - h_2 = 10.0 \pm 0.5$ мм.

Снимем температурную зависимость σ(Т) дистиллированной воды. Для этого включим термостат и подождём, пока нужная температура не стабилизируется. После этого проведём измерение давления. (Таблица №1, график №1).

Посчитаем погрешности. Приборные:

$$\Delta t = 0.1^{\circ}C$$
, $\Delta H = 0.5 \,\mathrm{mm}$

Далее:

$$\delta P = 0.2 \cdot 9.81 \cdot \Delta H \approx 1.0 \,\Pi \text{a}, \quad \Delta(\rho g h) = \rho g \Delta h_{12} \approx 1.0 \,\Pi \text{a}, \quad \Delta(\Delta P) = \frac{1}{2} (\delta P + \Delta(\rho g h)) = 1.0 \,\Pi \text{a}$$

$$\Delta \sigma = 0.5 \,(\Delta(\Delta P) \, r + \Delta P \,\Delta r) \approx 1.14 \,^{\text{MH}}/_{\text{M}}$$

Таблица 1: Измерение $\sigma(t)$

$t, {}^{\circ}C$	H, mm	Р, Па	$ ho_{ m вода}, {}^{ m \kappa r}/{}_{ m M}$ з	$\rho g h$, Πa	ΔP , Πa	σ , MH/M
30.0	179	351.2	995.6	97.7	253.5	71.87 ± 1.17
40.0	176	345.3	992.2	97.4	247.9	70.28 ± 1.15
45.0	174	341.4	990.2	97.2	244.2	69.23 ± 1.14
50.0	173	339.4	988.0	97.0	242.4	68.72 ± 1.13
60.0	169	331.6	983.2	96.5	235.1	66.65 ± 1.11

7. По графику найдём температурный коэффициент $\frac{d\sigma}{dT} = -0.17 \pm 0.07^{\,\mathrm{MH}}/_{\mathrm{M}^{\circ}C}$ Для нахождения погрешности проведём прямую МНК (красный цвет) и крайние варианты (серый цвет).

$$k_{max} \approx -0.10^{\,\mathrm{MH}}/_{\mathrm{M}^{\circ}C}, \quad k_{min} = -0.25^{\,\mathrm{MH}}/_{\mathrm{M}^{\circ}C} \quad \Rightarrow \quad \Delta\left(\frac{d\sigma}{dT}\right) = \frac{|k_{max} - k_{min}|}{2} = 0.7^{\,\mathrm{MH}}/_{\mathrm{M}^{\circ}C}$$

Несмотря на сильную погрешность результата, он идеально совпадает с табличным $\frac{d\sigma}{dT}^* = -0.17\,{}^{\rm MH}/{}_{{}^{\rm M}{}^{\rm C}}$

Таблица 2: Таблица теоретической зависимости плотности ρ , $^{\rm kr}/_{\rm M^3}$ от температуры $t,\ ^{\circ}C$ воды и спирта

$t, {}^{\circ}C$	$ ho_{ m вода}, {}^{ m \kappa r}/{}_{ m M}$ з	$ ho_{ m cпирт}, {}^{ m \kappa r}/{}_{ m M}$ з	σ^* , MH/M
30	995.6	781.0	71.20
40	992.2	772.2	69.60
45	990.2	767.8	68.78
50	988.0	763.3	67.94
60	983.2	754.1	66.24

Рис. 2: График №1

- 8. Построим теперь график теплоты образования единицы поверхности жидкости от температуры $q=-T\frac{d\sigma}{dT}.$ (График №2).
- 9. И график поверхностной энергии U единицы площади F: $\frac{U}{F}=(\sigma-T\frac{d\sigma}{dT})$. (График N3).

3. Вывод

В интервале температур от 30°C до 60°C зависимость $\sigma = \sigma(T)$ является линейной с коэффициентом наклона $\frac{d\sigma}{dT} = -0.17 \pm 0.07 \, ^{\rm MH}/_{\rm M^{\circ}C}$. Стоит отметить, что наш результат в пределах погрешности совпадает с табличным значением $\frac{d\sigma}{dT} \approx -0.16 \, ^{\rm MH}/_{\rm M^{\circ}C}$.

Теплоты образования единицы поверхности жидкости q=q(T) линейно зависит от температуры на исследуемом интервале температур.

Внутренняя энергия поверхности $\frac{U}{F}$ не зависит от температуры и есть константа U=77 $^{_{\rm M}\!\!\!/_{\rm M}}/_{_{\rm M}^2}.$

Рис. 3: График №2

Рис. 4: График №3