The closeness centrality of a vertex v is defined as

$$C_C(v_i) = \frac{n-1}{\sum_{i\neq j} d(v_i, v_j)}$$
 where $d(v_i, v_j)$ is distance from v_i to v_j .

Cycle C_n :

n even

$$CC(v) = \frac{n-1}{2 \cdot 1 + 2 \cdot 2 + 2 \cdot 3 + \dots + 2 \cdot \left(\frac{n}{2} - 1\right) + \frac{n}{2}}$$
$$= \frac{n-1}{2(1+2+\dots+\left(\frac{n}{2} - 1\right) + \frac{n}{2}} = \frac{4(n-1)}{n^2}$$

n odd:

$$CC(v) = \frac{n-1}{2.1 + 2.2 + 2.3 + \dots + 2.\left(\frac{n-1}{2}\right)}$$
$$= \frac{n-1}{2\left(1+2+\dots+\frac{n-1}{2}\right)} = \frac{4}{n+1}$$

 $K_{p,q}$:

Let
$$|V_1|=p$$
, $|V_2|=q$ and $u\in V_1$, $v\in V_2$.
$$CC(u)=\frac{n-1}{1.\,q+(p-1)2}=\frac{n-1}{n+p-2}$$

$$CC(v)=\frac{n-1}{1.p+(q-1)2}=\frac{n-1}{n+q-2}$$

Betweenness centrality $C_B(v) = \sum_{s \neq v \neq t} \frac{\sigma_{st}(v)}{\sigma_{st}}$, where σ_{st} is the total number of shortest paths from vertex s to vertex t and $\sigma_{st}(v)$ is the number of shortest paths from vertex s to vertex t that pass through v.

In C_6 all the vertices will have same $C_B(v) = 2$

In a complete bipartite graph, $K_{1.n-1}$, all the pendant vertices have $C_B(v)=0$ and the central vertex will have $C_B(v)={}^{n-1}C_2$.

Obtain closeness centrality of all the vertices in P_n , $K_n \setminus e$.

Obtain betweenness centrality of all the vertices in P_7 , $K_n \setminus e$, $K_{p,q}$.