Faster Matroid Partition Algorithms

Tatsuya Terao

Kyoto University

ICALP 2023 @Paderborn July 14, 2023

Summary

Result

Three fast algorithms for matroid partition

- Algorithm 1.
 - $\widetilde{O}(kn\sqrt{p})$ independence queries
- Algorithm 2.
 - $\tilde{O}(k^{1/3}np + kn)$ independence queries
- Algorithm 3.
 - $\widetilde{O}((n+k)\sqrt{p})$ rank queries

n = #elements, k = #matroidsp = solution size

Summary

Result

Three fast algorithms for matroid partition

- Algorithm 1.
 - $\widetilde{O}(kn\sqrt{p})$ independence queries
- Algorithm 2.
 - $\tilde{O}(k^{1/3}np + kn)$ independence queries
- Algorithm 3.
 - $\widetilde{O}((n+k)\sqrt{p})$ rank queries

A new approach

Edge Recycling Augmentation

<u>Outline</u>

- Summary
- Preliminaries
 - -Matroid
 - -Matroid Intersection
 - -Matroid Partition
- Result
 - -Faster Matroid Partition Algorithms
- Idea
 - -Blocking Flow
 - -Edge Recycling Augmentation
- Conclusion

Matroid $\mathcal{M} = (V, \mathcal{I})$

Def

A finite set V and non-empty family of **independent** sets $\mathcal{I} \subseteq 2^V$ such that

- \bullet $S' \subseteq S \in \mathcal{I} \implies S' \in \mathcal{I}$
- $S, T \in \mathcal{I}, |S| > |T| \Longrightarrow \exists e \in S T \text{ s.t. } T \cup \{e\} \in \mathcal{I}$

Graphic Matroid

Linear Matroid

$$\begin{bmatrix} 0 & 1 & 2 & 0 \\ 3 & 1 & 2 & 3 \\ 2 & 0 & 1 & 3 \\ 1 & 2 & 3 & 0 \end{bmatrix} \quad V = \text{row vectors} \\ \mathcal{I} = \text{linearly independent}$$

Matroid $\mathcal{M} = (V, \mathcal{I})$

Def

A finite set V and non-empty family of **independent** sets $\mathcal{I} \subseteq 2^V$ such that

- $\bullet S' \subseteq S \in \mathcal{I} \implies S' \in \mathcal{I}$
- $S, T \in \mathcal{I}, |S| > |T| \Longrightarrow \exists e \in S T \text{ s.t. } T \cup \{e\} \in \mathcal{I}$

Algorithm accesses a matroid through an **oracle**

Matroid $\mathcal{M} = (V, \mathcal{I})$

Def

A finite set V and non-empty family of **independent** sets $\mathcal{I} \subseteq 2^V$ such that

- $S, T \in \mathcal{I}, |S| > |T| \Longrightarrow \exists e \in S T \text{ s.t. } T \cup \{e\} \in \mathcal{I}$

Algorithm accesses a matroid through an **oracle**

• Independence oracle query: Is $S \in \mathcal{I}$?

Matroid Intersection

Input : two matroids $\mathcal{M}_1 = (V, \mathcal{I}_1), \mathcal{M}_2 = (V, \mathcal{I}_2)$

Find : maximum **common independent set** $S \in \mathcal{I}_1 \cap \mathcal{I}_2$

E.g. Bipartite Matching

V = edges

 $J_1 =$ each left vertex has at most 1 edge

 $J_2 = each right vertex has at most 1 edge$

Edmonds' Algorithm for Matroid Intersection

[Edmonds 1970, Aigner-Dowling 1971, Lawler 1975]

Algorithm for Matroid Intersection

[Edmonds 1970, Aigner-Dowling 1971, Lawler 1975]

Prior Work on Matroid Intersection

Independence query complexity

1970s	Edmonds, Lawler, Aigner-Dowling	$O(nr^2)$
1986	Cunningham	$O(nr^{3/2})$
2015	Lee-Sidford-Wong	$\tilde{O}(n^2)$
2019	Nguyễn, Chakrabarty-Lee-Sidford-Singla-Wong	$\tilde{O}(nr)$
2021	Blikstad-v.d.Brand-Mukhopadhyay-Nanongkai	$\tilde{O}(n^{9/5})$
2021	Blikstad	$\tilde{O}(nr^{3/4})$

n = |V|, r =solution size