Semi-Supervised Learning

Barnabas Poczos

Slides Courtesy: Jerry Zhu, Aarti Singh

Supervised Learning

Feature Space \mathcal{X}

Label Space \mathcal{Y}

Goal: Construct a **predictor** $f: \mathcal{X} \to \mathcal{Y}$ to minimize

$$R(f) \equiv \mathbb{E}_{XY} \left[loss(Y, f(X)) \right]$$

Optimal predictor (Bayes Rule) depends on unknown P_{XY} , so instead learn a good prediction rule from training data $\{(X_i, Y_i)\}_{i=1}^n \stackrel{\text{iid}}{\sim} P_{XY}(\text{unknown})$

Training data
$$\square$$
 Learning algorithm \square Prediction rule $\{(X_i,Y_i)\}_{i=1}^n$

Labeled

Labeled and Unlabeled data

Unlabeled data, X_i

→

Human expert/
Special equipment/
Experiment

"Crystal" "Needle" "Empty"

"0" "1" "2" ...

"Sports"
"News"

"Science"

. . .

Labeled data, Y_i

Cheap and abundant!

Expensive and scarce!

Free-of-cost labels?

Luis von Ahn: Games with a purpose (ReCaptcha)

Email address	
Password	
STEDIA I	poti
Type the two words:	Word challenging to OCR (Optical Character Recognition) Stop Spam. Feed Books. You provide a free label!
Log In	

Semi-Supervised learning

Training data
$$\square$$
 Learning algorithm \square Prediction rule $\{(X_i,Y_i)\}_{i=1}^n$ $\widehat{f}_{n,m}$ $\{X_i\}_{i=1}^m$

Supervised learning (SL)

Labeled data $\{X_i, Y_i\}_{i=1}^n$

"Crystal"

 X_i

 Y_i

Semi-Supervised learning (SSL)

Labeled data $\{X_i,Y_i\}_{i=1}^n$ and Unlabeled data $\{X_i\}_{i=1}^m$

Goal: Learn a better prediction rule than based on labeled data alone.

Semi-Supervised learning in Humans

Cognitive science

Computational model of how humans learn from labeled and unlabeled data.

- concept learning in children: x=animal, y=concept (e.g., dog)
- Daddy points to a brown animal and says "dog!"
- Children also observe animals by themselves

Can unlabeled data help?

- Positive labeled data
- Negative labeled data
- Unlabeled data

Assume each class is a coherent group (e.g. Gaussian)

Then unlabeled data can help identify the boundary more accurately.

Can unlabeled data help?

Unlabeled Images

Labels "0" "1" "2" ...

This embedding can be done by manifold learning algorithms

"Similar" data points have "similar" labels

Some SSL Algorithms

- Self-Training
- Generative methods, mixture models
- Graph-based methods
- Co-Training
- Semi-supervised SVM
- Many others

Notation

- instance \mathbf{x} , label y
- learner $f: \mathcal{X} \mapsto \mathcal{Y}$
- labeled data $(X_l, Y_l) = \{(x_{1:l}, y_{1:l})\}$
- unlabeled data $X_u = \{\mathbf{x}_{l+1:l+u}\}$, available during training. Usually $l \ll u$. Let n = l + u
- test data $\{(x_{n+1...}, y_{n+1...})\}$, not available during training

Self-training

Our first SSL algorithm:

```
Input: labeled data \{(\mathbf{x}_i, y_i)\}_{i=1}^l, unlabeled data \{\mathbf{x}_j\}_{j=l+1}^{l+u}.
```

- 1. Initially, let $L = \{(\mathbf{x}_i, y_i)\}_{i=1}^l$ and $U = \{\mathbf{x}_j\}_{j=l+1}^{l+u}$.
- 2. Repeat:
- 3. Train f from L using supervised learning.
- 4. Apply f to the unlabeled instances in U.
- 5. Remove a subset S from U; add $\{(\mathbf{x}, f(\mathbf{x})) | \mathbf{x} \in S\}$ to L.

Self-training is a wrapper method

- \bullet the choice of learner for f in step 3 is left completely open
- good for many real world tasks like natural language processing
- but mistake by f can reinforce itself

Self-training Example

Propagating 1-NN

Input: labeled data $\{(\mathbf{x}_i, y_i)\}_{i=1}^l$, unlabeled data $\{\mathbf{x}_j\}_{j=l+1}^{l+u}$, distance function d().

- 1. Initially, let $L = \{(\mathbf{x}_i, y_i)\}_{i=1}^l$ and $U = \{\mathbf{x}_j\}_{j=l+1}^{l+u}$.
- 2. Repeat until U is empty:
- 3. Select $\mathbf{x} = \operatorname{argmin}_{\mathbf{x} \in U} \min_{\mathbf{x}' \in L} d(\mathbf{x}, \mathbf{x}')$.
- 4. Set $f(\mathbf{x})$ to the label of \mathbf{x} 's nearest instance in L. Break ties randomly.
- 5. Remove **x** from U; add $(\mathbf{x}, f(\mathbf{x}))$ to L.

Propagating 1-Nearest-Neighbor: now it works

(d) Final labeling of all instances

Propagating 1-Nearest-Neighbor: now it doesn't

But with a single outlier...

Mixture Models for Labeled Data

Labeled data (X_l, Y_l) :

Assuming each class has a Gaussian distribution, what is the decision boundary?

Mixture Models for Labeled Data

Model parameters: $\theta = \{w_1, w_2, \mu_1, \mu_2, \Sigma_1, \Sigma_2\}$ The GMM: Estimate the parameters from the labeled data

$$p(x, y|\theta) = p(y|\theta)p(x|y, \theta)$$

= $w_y \mathcal{N}(x; \mu_y, \Sigma_y)$

Classification:
$$p(y|x,\theta) = \frac{p(x,y|\theta)}{\sum_{y'} p(x,y'|\theta)} \ge 1/2$$

Decision for any test point not in the labeled dataset

Mixture Models for Labeled Data

The most likely model, and its decision boundary:

Mixture Models for SSL Data

Adding unlabeled data:

Mixture Models

With unlabeled data, the most likely model and its decision boundary:

Mixture Models SL vs SSL

They are different because they maximize different quantities.

Mixture Models

Assumption

knowledge of the model form $p(X, Y|\theta)$.

joint and marginal likelihood

$$p(X_l, Y_l, X_u | \theta) = \sum_{Y_u} p(X_l, Y_l, X_u, Y_u | \theta)$$

• find the maximum likelihood estimate (MLE) of θ , the maximum a posteriori (MAP) estimate, or be Bayesian

Gaussian Mixture Models

Binary classification with GMM using MLE.

- with only labeled data

 - ▶ MLE for θ trivial (sample mean and covariance)
- with both labeled and unlabeled data

$$\log p(X_l, Y_l, X_u | \theta) = \sum_{i=1}^l \log p(y_i | \theta) p(x_i | y_i, \theta)$$
$$+ \sum_{i=l+1}^{l+u} \log \left(\sum_{y=1}^2 p(y | \theta) p(x_i | y, \theta) \right)$$

MLE harder (hidden variables): EM

EM for Gaussian Mixture Models

- Start from MLE $\theta = \{w, \mu, \Sigma\}_{1:2}$ on (X_l, Y_l) ,
 - w_c =proportion of class c
 - μ_c =sample mean of class c
 - Σ_c =sample cov of class c

repeat:

- ② The E-step: compute the expected label $p(y|x,\theta) = \frac{p(x,y|\theta)}{\sum_{y'} p(x,y'|\theta)}$ for all $x \in X_u$
 - ▶ label $p(y = 1|x, \theta)$ -fraction of x with class 1
 - ▶ label $p(y = 2|x, \theta)$ -fraction of x with class 2
- **3** The M-step: update MLE θ with (now labeled) X_u

Assumption for GMMs

- **Assumption**: the data actually comes from the mixture model, where the number of components, prior p(y), and conditional $p(\mathbf{x}|y)$ are all correct.
- When the assumption is wrong:

Assumption for GMMs

Assumption for GMMs

Heuristics to lessen the danger

- Carefully construct the generative model, e.g., multiple Gaussian distributions per class
- Down-weight the unlabeled data ($\lambda < 1$)

$$\log p(X_l, Y_l, X_u | \theta) = \sum_{i=1}^{l} \log p(y_i | \theta) p(x_i | y_i, \theta)$$
$$+ \frac{\lambda}{\lambda} \sum_{i=l+1}^{l+u} \log \left(\sum_{y=1}^{2} p(y | \theta) p(x_i | y, \theta) \right)$$

Related: Cluster and Label

Input: $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_l, y_l), \mathbf{x}_{l+1}, \dots, \mathbf{x}_{l+u},$ a clustering algorithm \mathcal{A} , a supervised learning algorithm \mathcal{L}

- 1. Cluster $\mathbf{x}_1, \ldots, \mathbf{x}_{l+u}$ using \mathcal{A} .
- 2. For each cluster, let S be the labeled instances in it:
- 3. Learn a supervised predictor from S: $f_S = \mathcal{L}(S)$.
- 4. Apply f_S to all unlabeled instances in this cluster.

Output: labels on unlabeled data y_{l+1}, \ldots, y_{l+u} .

But again: **SSL** sensitive to assumptions—in this case, that the clusters coincide with decision boundaries. If this assumption is incorrect, the results can be poor.

Cluster-and-label: now it works, now it doesn't

Example: A=Hierarchical Clustering, \mathcal{L} =majority vote.

Graph Based Methods

Assumption: Similar unlabeled data have similar labels.

Handwritten digits recognition with pixel-wise Euclidean distance

Graph Regularization

Similarity Graphs: Model local neighborhood relations between data points

- Nodes: $X_l \cup X_u$
- Edges: similarity weights computed from features, e.g.,
 - ▶ k-nearest-neighbor graph, unweighted (0, 1 weights)
 - fully connected graph, weight decays with distance $w_{ij} = \exp(-\|x_i x_j\|^2/\sigma^2)$
 - ightharpoonup ϵ -radius graph

Assumption:

Nodes connected by heavy edges tend to have similar label

Graph Regularization

If data points i and j are similar (i.e. weight w_{ij} is large), then their labels are similar $f_i = f_i$

$$\min_{f} \sum_{i \in l} (y_i - f_i)^2 + \lambda \sum_{i,j \in l,u} w_{ij} (f_i - f_j)^2$$
 Loss on labeled data (mean square,0-1) Graph based smoothness prior on labeled and unlabeled data

Co-training

Assumptions

- feature split $x = [x^{(1)}; x^{(2)}]$ exists
- ullet $x^{(1)}$ or $x^{(2)}$ alone is sufficient to train a good classifier

Co-training Algorithm

Co-training (Blum & Mitchell, 1998) (Mitchell, 1999) assumes that

- (i) features can be split into two sets;
- (ii) each sub-feature set is sufficient to train a good classifier.
- Initially two separate classifiers are trained with the labeled data, on the two sub-feature sets respectively.
- Each classifier then classifies the unlabeled data, and 'teaches' the other classifier with the few unlabeled examples (and the predicted labels) they feel most confident.
- Each classifier is retrained with the additional training examples given by the other classifier, and the process repeats.

Co-training Algorithm

Blum & Mitchell'98

Input: labeled data $\{(\mathbf{x}_i, y_i)\}_{i=1}^l$, unlabeled data $\{\mathbf{x}_j\}_{j=l+1}^{l+u}$ each instance has two views $\mathbf{x}_i = [\mathbf{x}_i^{(1)}, \mathbf{x}_i^{(2)}]$, and a learning speed k.

- 1. let $L_1 = L_2 = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_l, y_l)\}.$
- 2. Repeat until unlabeled data is used up:
- 3. Train view-1 $f^{(1)}$ from L_1 , view-2 $f^{(2)}$ from L_2 .
- 4. Classify unlabeled data with $f^{(1)}$ and $f^{(2)}$ separately.
- Add $f^{(1)}$'s top k most-confident predictions $(\mathbf{x}, f^{(1)}(\mathbf{x}))$ to L_2 . Add $f^{(2)}$'s top k most-confident predictions $(\mathbf{x}, f^{(2)}(\mathbf{x}))$ to L_1 . Remove these from the unlabeled data.

Semi-Supervised SVMs

SVMs

Semi-supervised SVMs (S3VMs) = Transductive SVMs (TSVMs)

Assumption: Unlabeled data from different classes are separated with large margin.

Semi-Supervised Learning

- Generative methods
- Graph-based methods
- Co-Training
- Semi-Supervised SVMs
- Many other methods

SSL algorithms can use unlabeled data to help improve prediction accuracy if data satisfies appropriate assumptions