Probability			
Experiment: A repeatable procedure that generates an outcome			
Sample space: The set of all possible outcomes			
Event: An outcome or set of possible outcomes			
Conditions for independence of A and B:			
P(A B) = P(A)			
P(B A) = P(B)			
$P(A \cap B) = P(A)P(B)$			
Bayes' Theorem: $P(A B) = P(B A)P(A)/P(B)$			
Mean			
Expectation $E[X] = \sum x \cdot p(x)$			
Variance $Var(X) = E[(X - \mu)^2] = E[X^2] - \mu^2$			
Standard deviation(s.d). $\sigma = \sqrt{Var(X)}$			
$E[aX + b] = a \cdot E[X] + b$			
E[X+Y] = E[X] + E[Y]			
E[X - Y] = E[X] - E[Y]			
Variance			
$Var(X) = E[(X - \mu)^2] = E[X^2] - \mu^2$ $Var(nX) = E[(nX - n\mu)^2] = E[n^2(X - \mu)^2] = n^2 Var(X)$			
s.d. $\sigma = \sqrt{Var(X)}$			
Cow(V, V) F[VV]			
$Cov(X,Y) = E[XY] - \mu_X \mu_Y$ $Cov(aX + b, cY + d) = ac \cdot Cov(X,Y)$			
Cov(X+Y,Z) = Cov(X,Z) + Cov(Y,Z)			
Cov(X,X) = Var(X)			
For 2 dependent variables X and Y , $Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)$			
For 2 independent variables X and Y , $Cov(X,Y) = 0$			
$Cor(X,Y) = \rho = Cov(X,Y)/\sigma_X\sigma_Y$			
Discrete r.v.			
Probability mass function (PMF): $p_X(x) = P(X = x)$ for all values of x			
Cumulative distribution function (CDF): $F_X(x) = P(X \le x)$ for all values of x			
Continuous r.v.			
Probability density function (PDF): $f(x)$			
Cumulative distribution function (CDF): $F(x)$			
Distributions			
Bernoulli: $X \sim Ber(p)$, $E[X] = p$, $Var(X) = p(1-p)$			
Binomial: $X \sim Bin(n, p)$, $E[X] = np$, $Var(X) = np(1-p)$			
Binomial: $X \sim Bin(n, p)$, $E[X] = np$, $Var(X) = np(1 - p)$ Geometric: $X \sim Geo(p)$, $E[X] = \frac{1}{p}$, $Var(X) = \frac{1-p}{p^2}$ Uniform: $X \sim U(a, b)$, $E[X] = \frac{a+b}{2}$, $Var(X) = \frac{1}{12}(b-a)^2$			
Uniform: $X \sim U(a, b), E[X] = \frac{a+b}{2}, Var(X) = \frac{1}{12}(b-a)^2$			
Exponential : $F(x) = 1 - e^{-\lambda x}$, $f(x) = \lambda e^{-\lambda x}$ for $x \ge 0$ $E[X] = 1/\lambda$, $Var(X) = 1/\lambda^2$			
Normal: $X \sim N(\mu, \sigma^2)$			
Central Limit Theorem : For any r.v. where n is large, sum (S_n) and average (\bar{X}_n) are approximately normal. $S_n \simeq$			
$N(n\mu,n\sigma^2)$ and $\bar{X}_n\simeq N(\mu,\frac{\sigma^2}{n})$			
Linear Regression			
Least squares method: Ensure sum of squared deviations is minimised			

 $y = \beta_1 x + \beta_0$ Approximations: $\widehat{\beta_1} = \frac{S_{xy}}{S_{xx}} = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}, \widehat{\beta_0} = \bar{y} - \widehat{\beta_1} \; \bar{x}$

 $S_{xx} = \sum (x_i - \bar{x})^2$ $S_{yy} = \sum (y_i - \bar{y})^2$ $S_{xy} = \sum (x_i - \bar{x})(y_i - \bar{y})$ Sum of squared residuals (SSR) = $\sum (y_i - \hat{y}_i)^2$, where \hat{y}_i is the approximated value of y_i

Goodness of fit
$$r^2 = 1 - \frac{SSR}{S_{yy}} = \frac{S_{xy}^2}{S_{xx}S_{yy}}$$

Mean Absolute Error (MAE) =
$$\frac{1}{k}\sum |\hat{y_i} - y_i|$$

Root Mean Square Error (RMSE) =
$$\sqrt{\frac{1}{k}\sum(\widehat{y_i} - y_i)^2}$$

Bayesian Inference

Hypothesis (H): A statement we wish to accept or reject

Prior $\underline{P(H)}$: What we believe about the hypothesis without any evidence

Likelihood L(H|E) = P(E|H): Likelihood of the hypothesis

Posterior P(E|H): Updated belief after seeing evidence

Conditional independence:

$$p(x|y,\theta) = p(x|\theta)$$

$$p(y|x,\theta) = p(y|\theta)$$

$$p(x, y|\theta) = p(x|\theta)p(y|\theta)$$
, where θ is the parameter

Updating normal distributions:

If n datapoints x_1,x_2,\ldots,x_n are drawn from N(θ,σ^2), where θ^2 is known, $\sigma_{post}^2=1/(\frac{1}{\sigma_{prior}^2}+\frac{n}{\sigma^2})$

$$\sigma_{post}^2 = 1/(\frac{1}{\sigma_{nrior}^2} + \frac{n}{\sigma^2})$$

$$\mu_{post} = \frac{\sigma_{post}^2}{\sigma_{prior}^2} \mu_{prior} + \frac{n\sigma_{post}^2}{\sigma^2} \bar{x}$$

Note also that
$$\frac{\sigma_{post}^2}{\sigma_{prior}^2} + \frac{n\sigma_{post}^2}{\sigma^2} = 1$$
, and $\sigma_{post}^2 < \sigma_{prior}^2$

Frequentist Inference

Type I error: Reject H_0 when H_0 is true

Type II error: Do not reject H_0 when H_1 is true

Significance level (\alpha) = P(Type I error)

Power of a test = 1 - P(Type II error) – note that this requires the knowledge of the distribution of our random variable under H_1 as well

Variance approximation: if σ^2 is unknown, we approximate it as $s^2 = \frac{1}{n-1} \sum_{i=1}^{n-1} (x_i - \bar{x})^2$

(i.e. 1/(n-1) * sample variance

Conversion to T-distribution: Given $X{\sim}N(\mu_0,\sigma^2)$ with unknown σ^2 ,

$$T = \frac{X - \mu_0}{\frac{\sqrt{S^2}}{\sqrt{n}}} \sim t(n-1)$$

 $\frac{\sqrt{n}}{\text{t-test for 2 samples}}$: take pooled sample variance (s_p^2) as

$$s_p^2 = \frac{(n-1)s_x^2 + (m-1)s_y^2}{(n-1) + (m-1)} (\frac{1}{n} + \frac{1}{m})$$

Maximum Likelihood Estimation

MLE: Consider data x drawn from some distribution with an unknown parameter p. The MLE estimation of p is the value of θ^* that maximises the likelihood p(x|p)

$$\theta^* = \arg\max_{\alpha} P(x|p=\theta)$$

$$\theta^* = \arg\max_{\theta} P(x|p=\theta)$$
Geometric and Exponential:
$$\theta^* = \frac{occurences}{total\ time} = \frac{1}{average\ time\ per\ occurence}$$

Bernoulli and Binomial: $\theta^* = \frac{successes}{total time}$

Uniform: $\hat{b} = \max(x_1, ..., x_n)$, $\hat{a} = \min(x_1, ..., x_n)$

Normal: Sample mean and sample variance

Confidence Interval: Consider data drawn from some distribution with an unknown, fixed value θ . The interval estimator $[\widehat{\theta_L},\widehat{\theta_U}]$ is called a confidence interval if $P(\widehat{\theta_L} \leq \theta \leq \widehat{\theta_H}) = 1 - \alpha$, where $1 - \alpha$ is the confidence level

Bias of point estimators: $\hat{\theta}$ is an unbiased estimator if $E[\hat{\theta}] = \theta$, and biased otherwise

Classification

Naïve Bayes': Assume that all features are mutually independent.

$$p(x_{i,1}, x_{i,2}, ..., x_{i,m}|y_i) = \prod p(x_{i,j}|y_i)$$

Laplacian smoothing: When the likelihood of any feature is 0, add 1 for each class and feature value

Prediction (1/0)

Ground truth	True Positive (TP)	False Negative (FN)	
(1/0)	False Positive (FP)	True Negatve (TN)	
Accuracy: TP+TN TP+TN+FP+FN			
Precision: TP TP+FP			
$\mathbf{Recall:} \frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FN}}$			
F-score: Harmon	nic mean of precision and recall $F_1=rac{1}{r}$	$\frac{2}{\text{ecall}^{-1} + \text{precision}^{-1}} = 2 \frac{\text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}} = \frac{\text{TP}}{\text{TP} + \frac{1}{2}(\text{FP} + \text{FN})}$	