Problem 1

If $f(x) = x + \sqrt{2-x}$ and $g(x) = u + \sqrt{2-u}$, is it true that f = g?

Solution

True

Problem 2

If

$$f(x) = \frac{x^2 - x}{x - 1} \quad \text{and} \quad g(x) = x$$

is it true that f = g?

Solution

False

Problem 3

The graph of a function g is given:

1. State the values of g(-2), g(0), g(2) and g(3)

Solution

$$g(-2) = 2$$
 $g(0) = -2$ $g(2) = 1$ $g(3) = 2.5$

2. For what value(s) of x is g(x) = 3?

Solution

$$g(x) = 3 \Rightarrow x = -4$$

3. For what value(s) of x is $g(x) \leq 3$?

Solution

$$g(x) \le 3 \Rightarrow x \in [-4, 4]$$

4. State the domain and range of g

Solution

Domain: [-4, 4] Range: [-2, 3]

5. On what interval(s) is g increasing?

Solution

[0, 2]

Problem 4

The graph of f and g are given:

1. State the values of f(-4) and g(3)

Solution

$$f(-4) = -2$$
 $g(3) = 4$

2. Which is larger, f(-3) or g(-3)?

Solution

$$g(-3)$$

3. For what values of x is f(x) = g(x)?

Solution

$$x = \pm 2$$

4. On what interval(s) is $f(x) \leq g(x)$?

Solution

$$[-4, -2] \cup [2, 4]$$

5. State the solution of the equation f(x) = -1

Solution

$$f(x) = -1 \Rightarrow x = -3$$

6. On what interval(s) is g decreasing?

Solution

$$[-4, 0]$$

7. State the domain and range of f

Solution

Domain:
$$[-4, 4]$$
 Range: $[-2, 3]$

8. State the domain and range of g

Solution

Domain:
$$[-4, 3]$$
 Range: $[0.5, 4]$