EDF SCHEDULAR ON FREE RTOS

EG_FWD

Abdelrahman selim | augest cohort

Contents

EG_FWD	1
I. Task scheduling using the GPIO's	
II. Task 1	
III. Task 2	3
IV. Task 3	4
V. Task 4	4
2. Practical method	5
3. Checking system Schedulability using URM and time demand analysis	5
I. Using URM method:	5
II. Using Time demand analysis:	5

1. Analytical Method

The hyper loop of the system is 100ms as the lowest common factor LCM for (10, 20,50, 100) is 100

I. Task scheduling using the GPIO's

II.Task 1

The CPU load is calculated by the CPU utilization time percentage per hyper period

Task	execution time	periodicity and deadline	CPU
task 1	13.48us	50ms	((13.3)us/50ms) *100ms = 0.0026%
task 2	13.95us	50ms	(14us/50ms) *100ms = 0.0029%
task 3	20.93us	100ms	(20.9us/100ms) *100ms = 0.0020%
task 4	14.78us	20ms	(14.8us/50ms) *100ms =0.0015%
task 5	5000us	10ms	(5ms / 10ms) *100ms =50 %
task 6	12000us	100ms	(12.08ms/100ms)*100ms =12 %

Total CPU load about 62.01%

2. Practical method

By using vTaskGetRunTimeStats((char *)state Buffer);

```
Uart_rec <1%
periodic <1%
load 2
         12%
button 1 <1%
button 2 <1%
load 1
          51%
So
total 63%
```

- 3. Checking system Schedulability using URM and time demand analysis
- Using URM method:

```
As calculated before the CPU load is 0.621
U = 0.621, n = 6, n*(2^{(1/n)-1}) = 6*(2^{(1/6)-1}) = 0.73477
0.621 < 0.73477 \rightarrow U < URM, THE SYSTEM IS SCHEDULABLE.
```

11. Using Time demand analysis:

```
Task 1: {P: 50, E: 0.00135, D:50} Priority: 4
Task 2: {P: 50, E: 0.00140, D:50} Priority: 3
Task 3: {P: 100, E: 0.00209, D:100} Priority: 2
Task 4: {P: 20, E: 0.0015, D:20} Priority: 5
Task 5: {P: 10, E: 5, D:10} Priority: 6
Task 6: {P: 100, E: 12
                         , D:100} Priority: 1
    1. Task 5:
W(1) = 5 + 0 = 5
W(2) = 5 + 0 = 5
W(3) = 5 + 0 = 5
W(4) = 5 + 0 = 5
W(5) = 5 + 0 = 5 w(5) < T5 (10) so task 5 is feasible
    2. Task 4:
```

W(1) to w(10) = 0.0015 +)1/10)*5 = 5.0015

w(50)<T1 (50) so task 1 is feasible

W(11) to W(20) = 0.0015 + (n/10)*5 = 10.0015

w(20)<T4 (20) so task 4 is feasible Task 1: W(1) = 0.00135 + (1/10)*5 + (1/20)*0.0015 = 5.00285W(11) = 0.00135 + (11/10)*5 + (11/20)*0.0015 = 10.00285W(21) = 0.00135 + (21/10)*5 + (21/20)*0.0015 = 10.00435W(50) = 0.00135 + (50/10)*5 + (50/20)*0.0015 = 25.00585

3. Task 2:

W(1) = 0.00140 + (1/10)*5 + (1/20)*0.0015 + (1/50)*0.00135 = 5.00425

W(50) = 0.00140 + (50/10)*5 + (50/20)*0.0015 + (50/50)*0.00135 = 25.00725w(50)<T2 (50) so task 2 is feasible

4. Task 3:

W(1) = 0.00209 + (1/10)*5 + (1/20)*0.0015 + (1/50)*0.00135 + (1/50)*0.00140 = 5.00634

W(100) = 0.00209 + (100/10)*5 + (100/20)*0.0015 + (100/50)*0.0015 + (100/50)*0.00140 = 50.01539w(100)<T3 (100) so task 3 is feasible

5. Task 6:

W(1) = 12 + (1/10)*5 + (1/20)*0.0015 + (1/50)*0.00135 + (1/50)*0.00140 + (1/100)*0.00209 = 17.00634

W(100) = 12 + (100/10)*5 + (100/20)*0.0015 + (100/50)*0.00135 + (100/50)*0.00140 + (100/100)*0.00209 = (100/10)*5 + (100/10)*0.00209 = (100/10)*5 + (100/10)*0.00209 = (100/10)*5 + (100/10)*0.00209 = (162.01539

w(100)<T6 (100) so task 6 is feasible

4. SIMSO SIMULATION

5 . CONCLUSION

The EDF implementation working exactly as it should be and as calculated by hand and using SimSo simulation