

Table of Contents

Pre	eface	5
	About the Author	6
	Foreword	7
	Dedication	8
	Dojos	9
Cha	apter 1 - Welcome	11
	Overview	12
	The Challenge	13
	Our Cast	14
	Conclusion	19
Cha	apter 2 - Introduction to Product Engineering	20
	Purpose	21
	Learning Outcomes	22
	Opening Scroll	23
	Product Engineering	25
	Moving from a Project to a Product Mindset	27
	Role of Product Engineer	30
	Product Engineer - Skill Set	31
	Pop Quiz 1	35
	Product Engineering - Stages	36
	Product Engineering - Brainstorming Ideas	39
	Product Engineering - Need for a Manifesto	41
	Product Engineering Manifesto	44
	Pop Quiz 2	45

	Conclusion	46
Cha	apter 3 - Design Thinking	48
	Purpose	49
	Learning Outcomes	50
	Opening Scroll	51
	Role of Design Thinking	54
	Design Thinking	55
	Pop Quiz 1	58
	Design Thinking vs Traditional Thinking	59
	Key Elements and Challenges	61
	IDEO Design Thinking Process	63
	Pop Quiz 2	65
	Getting Started With Design Thinking	66
	Conclusions	67
Cha	apter 4 - Getting Started	71
	Purpose	72
	Learning Outcomes	73
	Opening Scroll	74
	Improving Product Engineering Practices at Scale	76
	Build Product Squads	77
	Product Squad Enablement	79
	Pop Quiz 1	81
	Getting Started	82
	Lifecycle	84
	Pop Quiz 2	86
	Integrating With Current Practices	88
	Conclusion	91

Appendix 1 - Assessment			
Purpose			
Appendix 2 - Answers96			
Introduction to Product Engineering			
Pop Quiz 2			
Design Thinking			
Getting Started			
Assessment			
Conclusion106			

Preface

Humans love stories, the urge to tell stories is in our DNA. The eBook can be considered as the novelization of <u>Online Product Engineering Dojo</u> which takes a pioneering role-based story telling approach to help achieve hands-on learning at scale.

The <u>Online Product Engineering Dojo</u> modules are set in the same **Pet Clinic** multi-verse as DXC's Online DevOps Dojo - <u>https://dxc-technology.github.io/about-devops-dojo/.</u>

Both Dojo's place learners in real-world-like scenarios, scenarios where they work with a virtual cast of characters sharing the challenges and aspirations of the **Universal Imports** team as they learn about Product Engineering.

About the Author

Tom recently recognized as a Distinguished Engineer by DXC Technology currently works in an Agile/DevOps enablement role in the Innovation and Automation group of DXC's Delivery organization. He has experience of a variety of sectors including factory automation, supply chain & logistics, lecturing, eLearning & training and finance where he has performed a variety of roles from software development to technical management. Currently Tom is helping teams in DXC to transform how they work to a DevOps model in support of product aligned value streams. Tom has helped incorporate the learnings from these coaching engagements in to DXC's DevOps & Product Engineering Dojos thus facilitating the scaled adaption of the associated culture, practices and tools across DXC.

Foreword

Dedication

To my family members those who have come before, are here now and are yet to arrive.

July, 2021

Dojos

This eBook's roots lie in a number of interactive Dojos DXC developed to train it's own employees and then open sourced in order to share with the wider community.

DevOps Dojos

DevOps Dojos became popular since Target, an important U.S.-based retail company, started to introduce such a practice back in 2014 in support of its DevOps transformation. Since then, multiple conference talks, white papers and books have been published about DevOps Dojos.

DXC have been running DevOps Dojos for own employees and customers for some time, however we quickly came to a point where our physical DevOps Dojos were not enough to cover all the needs. Everyone was loving the experience, and to this day the on-site experience still leads to great results. But we had a scalability issue: we could not accommodate everyone we needed to address so we developed an interactive browser based DevOps Dojo for our staff.

Following the success of that effort we released an open source version of our DevOps Dojo - the <u>Online DevOps Dojo</u>.

In parallel we continued to apply the Dojo model to other problem domains.

Product Engineering Dojo

DXC's customer-centric approach is facilitated by the judicious application of product engineering, underpinned by Agile and DevOps principles.

As a result DXC invests heavily in helping customer-facing teams adopt new approaches like Product Engineering to increase their agility, collaboration and responsiveness to customer needs.

Product engineering embraces concepts of design thinking, which aims to create better products and services by understanding how users interact with them and the conditions under which they are to operate. It emphasizes bidirectional communication, feedback loops, learning from mistakes and experiential approaches.

DXC wanted to provide training to help our people make the cultural shift from a project mindset to a product mindset, to do so we created an interactive browser based **Product Engineering Dojo**. The objective being to help ensure the software applications and integrations we develop, as well as the managed services we provide, are better suited to the needs of the business and the demands of the market.

Open Sourcing

We use the **Product Engineering Dojo** to:

- Train people at scale on Product Engineering.
- Help people prepare for a face-to-face or virtual Product Engineering Dojo or Design Thinking Workshop by learning techniques in advance.
- Provide a product engineering curriculum with interactive modules.
- Provide a browser based way to allow students get knowledge when they need it.
- Share what "good looks like" when answering enquiries in relation to Product Engineering or Design Thinking patterns
- Following on from the success of the Online DevOps Dojo continue to leverage the story and the characters by extending the story and thus create more learning experiences in effect creating the Pet Clinic multi-verse.

To continue giving something back to the community we also released an open source version of our Product Engineering Dojo - the Online Product Engineering Dojo.

Universal Imports - A Story

Our challenge as coaches was to make the experience engaging. There is nothing better than a good story to engage people, so we created one to support the training.

The dojo tells the story of a fictitious group of companies, the "Universal Imports Group" and its employees on their Product Engineering journey. You will meet those employees in subsequent chapters, share their journeys and hopefully gain some insights from those journeys that will help you in your own Product Engineering journey.

Ready to Begin?

Ready to begin? If so go grab a cup of your favorite or a. Resist the temptation to multitask, turn off all electronic devices devices other than the device you are reading this ebook on, of course.

Let's get started on Product Engineering!

Use the dojo!

Chapter 1 - Welcome

Thank you for making time to peruse this book. We hope the investment of your time is rewarded with Product Engineering learnings and insights. We further hope that you can apply these learnings in your work and in your team's work.

This book includes **4** chapters and an assessment:

- Welcome
- Introduction to Product Engineering
- Design Thinking
- Getting Started
- Assessment

Overview

In this Welcome chapter, we will get you started by introducing you to the scenario and the cast of characters. Once you are all set, you can complete the other chapters at your own pace.

We will begin by introducing Universal Imports the group of companies led by the Charlie the CEO of Pet Clinic fame and our troupe of characters.

Some of you may already be familiar with Charlie and the Pet Clinic crew from the ONLINE **DEVOPS DOJO**

Product Engineering the final frontier: these are the # voyages of the Universal Imports Group as they work to introduce Product Engineering ...

The Challenge

Charlie is keen to ensure that the teams working in his group of companies apply the discipline of Product Engineering when designing and developing solutions.

The introduction of Product Engineering is hot on the heels of his initiative to pilot DevOps improvements in the Pet Clinic company.

Details of that initiative and the associated adventures can be found in the $\underline{\text{ONLINE DEVOPS}}$ $\underline{\text{DOJO}}$.

The group of companies which are collectively known as the **Universal Imports Group** includes the following

- Daily Mentioner a national newspaper.
- **InGen** a space exploration company.
- Pet Clinic one of a number of online retailing businesses in the group.

All of the companies in the Universal Imports Group rely on software to run their business. Some of this software is purchased, some of it is open source and some of it is developed inhouse.

The objective in improving Product Engineering practices in the group is to:

Ensure that any software applications and integrations developed, and any managed services provided will be better suited to the needs of the business and to the demands of the market.

Our Cast

Before we proceed lets take a few minutes to catch up with some of the Pet Clinic crew and to meet some new friends from the other companies in the Universal Imports Group.

We will share in their challenges, opportunities and achievements as our story unfolds.

This book has several characters which play a role throughout the story. Some of these characters were originally introduced in the <u>ONLINE DEVOPS DOJO</u>.

Charlie has gathered the following key individuals together from across the group to lead the adoption of Product Engineering in the Universal Imports Group under a program called **Overlook**.

Charlie (CEO)

Charlie is a technology entrepreneur, investor and philanthropist.

Charlie is a serial disruptor, he understands the importance of adaptability and speed.

Being an entrepreneur he has had successes and failures in the past, he expects to have successes and failures in the future.

He views the discipline of Product Engineering as being essential to tilting the scales in favour of future successes.

His motto is to "Better to fail fast if you are likely to fail at all" so he is keen to see more work done in the design and prototyping phases of projects.

Miyagi (Product Engineering Mentor)

Miyagi Product Engineering Coach and Mentor hired by Charlie to help increase the use of Product Engineering within the Universal Imports Group.

Miyagi's coaching philosophy is to engage, coach, empower and support the teams he works with to enable those teams to solve problems for themselves.

He finds coaching to be a rewarding experience but on the rare occasions it is not, he destresses by doing a little DIY including painting fences, sanding floors and waxing cars.

Miyagi has worked in a number of industry and sectors. He has coached clients in how to design and develop better products at scale.

Miyagi is keen to apply those learnings in the Universal Imports Group and to also learn from the good work in the space already underway across the group.

Adriana (Architect) - InGen - Space Exploration Company

Adriana the **A**rchitect working on the R237 control software for Redrum, InGen's revolutionary rocket designed for suborbital flights.

She caught the space bug as a child watching the lunar landings on a grainy old TV set and is busy pursuing her passion for all things Space with InGen.

Adriana has an interest in all phases of the Product Engineering life cycle but has a particular interest in architecture for testability.

She wants to ensure the rockets InGen plan to send to infinity (figuratively speaking) and beyond return safely.

Pennyworth (Project Manager) - The Daily Mentioner - National Newspaper

Pennyworth a **P**roject Manager from the Daily Mentioner national newspaper is a servant leader, he facilitates the work of the teams on the projects he manages.

A loyal and longstanding confidant of Charlie Pennyworth often acts as Charlie's weather wayne pardon the pun on new programs.

Pennyworth works to ensure that new programs become shining examples of best practices and is thus ideally suited to helping on the Overlook program.

Paulo (Product Owner) - Pet Clinic Application

Paulo is an Agile Product Owner for the Pet Clinic company.

Paulo works with the Pet Clinic business to understand what functionality is needed, why it is needed and when it is needed. He then manages the back log, working with the development team to groom the backlog in response to the evolving business priorities.

Paulo perhaps inspired by his pet cat, John Connor, regularly comments "The backlog has not been written. There is not fate but for what we make for ourselves" much to the bemusement of the team.

Paulo is excited by the increasing focus on Product Engineering.

He is particularly keen to understand more about approaches to ideation, conceptualization and prototyping in the hope of making improvements in the Pet Clinic application development process.

Brenda (Business) - Pet Clinic Application

Brenda works in the Pet Clinic Business. One of her goals is to help grow the company, to that end she works with Paulo and the Pet Clinic development team to introduce new features which will leave Pet Clinic's competitors far behind.

A recent foray by the Pet Clinic into Fair Trade pet products was very successful. To leverage that opportunity to its full potential a number of new business applications/modules will be needed in support of the associated product launches.

Brenda is keen to understand how Product Engineering principles can be applied to those developments to help ensure the right product are developed for the intended users in the most efficient manner possible.

Dan (Developer) - Pet Clinic Application

Dan, one of the Pet Clinic development team. During the Pet Clinics' DevOps transformation Dan focused on test-driven development, continuous integration and continuous delivery pipelines.

Dan has been asked to participate in the Product Engineering Chapter to give a developer's perspective and to help tailor the Product Engineering practices for software development.

Merida (Offering Lead) - Managed Services

Merida, is an offering lead for one of the managed service offerings of the Universal Imports Group.

Merida has been asked to participate in the Product Engineering Chapter to give the perspective of an offering lead and to help tailor the Product Engineering practices for managed services.

Conclusion

Hopefully upon completing the **Product Engineering** book, the next time you have need for a bigger \triangleq it will be Product Engineered accordingly.

Buckle up we are going on an adventure, where we are going we don't need roads \mathscr{A} but first a challenge ...

Now that you have decided to read this book there is an optional challenge awaiting you.

The challenge is to take some time to consider and make some notes as to your current understanding of and on the use of Product Engineering in your team.

The ask is that you review and reflect on those notes upon completion of the **Product Engineering** eBook.

Good luck with the challenge.

Chapter 2 - Introduction to Product Engineering

Purpose

The primary objective of the this chapter is to give you an introduction to Product Engineering concepts and practices.

Learning Outcomes

By the end of the chapter you will be able to

This module will give you an introduction to Product Engineering including

- Definition of Product Engineering
- Role of Product Engineer
- Product Engineer Skill Set
- Product Engineering Life Cycle
- Product Engineering Manifesto

Opening Scroll

Charlie has formed a small team to implement Product Engineering across the companies in the Universal Imports Group.

Miyagi Product Engineering coach and mentor tasked with increasing the use of Product Engineering within the Universal Imports Group.

Pennyworth Project Manager from The Daily Mentioner National Newspaper, part of the Universal Imports Group of companies, tasked with chairing the effort.

Adriana Architect from the InGen Space Exploration Company, part of the Universal Imports Group of companies, lending her expertise to the Product Engineering effort.

Paulo Product Owner for the Pet Clinic Application.

Brenda Business representative from the Pet Clinic who was the main Business champion of the DevOps transformation.

The remainder of this chapter gives an introduction to Product Engineering.

It includes a series of conversational snippets taken at various points in the timeline of the introduction of Product Engineering in the Universal Imports Group.

Product Engineering

The team meet to start work on program Overlook, the program created to increase the adoption of Product Engineering in the Universal Imports Group.

Pennyworth kicks off the session by explaining the ask from **C**harlie.

He then asks **M**iyagi to give an overview of Product Engineering to the team. This is to ensure they start work on the program with an agreed definition of the discipline of Product Engineering.

shares the following definition of Product Engineering with the team.

Product engineering is an engineering discipline that deals with both design and manufacturing aspects of a product. - Wikipedia

The team, following a detailed discussion agree that

- Their objective is to help their respective companies to be more successful in taking products from ideas to production.
- They need to leverage the vast domain expertise and industry experience that exists in the Universal Imports Group.
- They want teams to move from a project to a product mindset.
- The companies have to work to ensure Product Engineering becomes part of their DNA.
- They want to ensure that any in-house developed software is designed, built, tested, released, deployed and operated in manner that ensures it delivers the expected value to the business at the required cadence.

- They recognize that the development teams mostly practice iterative development models, with a mix of 'Kanban' and 'Scrum' based styles in operation.
- They acknowledge that whilst the teams are at various stages in their DevOps journeys, they are committed to those journeys.
- They are confident that the group has versatile development teams which are capable of adjusting to new ways of doing things.
- They want to encourage teams to test ideas, to validate solutions, and to market opportunities through early prototypes and MVPs.

Moving from a Project to a Product Mindset

I am happy with what we have agreed to focus on as a team.

In my opinion, this is not primarily a re-tooling exercise, this is about making a cultural pivot. Of course that pivot may, in time, need to be supported by tooling.

We found that culture rather than tooling was key to the success of the Pet Clinic's DevOps transformation.

I agree that establishing a Product Engineering culture is important. I think that encouraging teams to move from a project to a product mindset is key to the delivery of incremental value to the business via continuous product innovation. We need to ensure we factor what such a move might entail into our considerations.

To facilitate those considerations I offer the following definitions of a project and a product.

Project

A project is designed to achieve a specific goal. Projects typically have a set lifespan with a defined beginning and a defined end. They may involve the formation of a dedicated project

team to deliver the project.

Product

A product is a solution created to address the needs of a particular set of customers, the aim is to create one solution to address the needs of many customers. Software Products come in many forms including applications, APIs, managed services, platforms etc. Products are typically developed, deployed and operated by dedicated teams.

Cultural Impacts

I would like to note for the record before the "Project Managers" guild, with **P**ennyworth leading them, turn up at my door with torches and pitchforks ala Shrek that these impacts are not intended as sweeping generalized statements as to the ills of a Project Management approach.

These impacts are intended to convey how the cultural challenges that exist in **many** organizations and in **many** projects can be addressed by a pivot to a product mindset.

Impact	Project	Product
Purpose	Meet the IT needs of the business	Meet the needs of internal and external customers
Lifecycle	Defined start and end dates	Iterative
Structure	Typically organized by individual, often siloed functions	Multi-disciplinary product teams
People	Individual contributors engaged for duration of project	Members of empowered persistent teams
Risk Management	Analysis done before project starts, mitigations factored into project plan	Managed in parallel to development lifecycle using DevOps, Lean & Agile practices

Impact	Project	Product
Leadership	Hierarchical, PMO, PM	Servant leaders, Empowered self- organizing teams
Scheduling	Due Date, Left to right scheduling	Capacity based incremental delivery
Requirements	Dedicated phase(s) to capture customer requirements	On-going backlog management supported by Agile ceremonies
Deliverables	Systems focus	Customer focus
Unit of Work	% Complete	Value Added
Ownership	Gates, Hand offs, KTs, Functional Teams	Team builds it, teams deploy it, teams run it
Technical Debt	Responsibility for and accountability for technical debt may be a different team or even a different organization	Product team owns technical debt for their product and are accountable for it
Funding	IT Projects	Business Outcomes

Role of Product Engineer

The team spend time discussing the role of the Product Engineer in a product development squad given the importance of the role to establishing a Product Engineering mindset across the Universal Imports Group.

They specify the following as being the requirements for the role

• Help shape the product.

- Participate in product development process.
- Understand technical constraints, resources and opportunities.
- Work to achieve practical product/technical tradeoffs.
- Ability to directly interact with customers.
- Focus on Return on Investment (ROI).
- Deliver a mix of products including
 - Proof of Concepts (POCs).
 - Minimum Viable Products (MVPs).
 - Highly available scalable systems.

Product Engineer - Skill Set

The team discuss the skill set required by Product Engineers

Pop Quiz 1

Question 1

Which of the following are the responsibilities of a Product Engineer?

- []Help shape the product
- []Participate in product development process
- []Understand technical constraints, resources and opportunities
- []Work to achieve practical product/technical tradeoffs
- []Focus on ROI
- []Deliver a mix of products
- []All of the above

Question 2

Which of the following are included in the Skill Set of a Product Engineer?

- []Strong focus on and deep understanding of the Product
- []Make data driven decisions
- []Effective communicator
- []Prioritization and estimation
- []Engineering execution
- []All of the above

Product Engineering - Stages

The team have discussed and agreed on the

- Definition of Product Engineering
- Role of Product Engineer
- Skill set required by Product Engineer

Following a series of workshops the team decide to recommend and start to implement the following Product Engineering Cycle in the Universal Imports Group.

Phase	Description	Comments
Ideation and Conceptualization	Conceive the idea. Document it. Idea worth pursuing or not?	UI/UX prototyping tools like <u>Axure</u>
Architecture and Prototyping	Create engineering designs. Bring finalized concept to life.	Look to design companies like DXC's <u>argodesign</u>
Design & Development	Develop product including items such as CI/CD, Test Automation & SRE. Manage implementation costs.	×

Phase	Description	Comments
System Testing, Scans, and UAT	System testing, scans and UAT. Validate developed product meets the intended use and is fault free. Identify & fix any issues.	×
Product Delivery	Release to market.	×
Product Support	Periodic updates and enhancements. Maintenance. Support.	×

Note: Take the **Getting Started** module in this course to learn how the workshops were conducted and for more details as to the outcomes from the workshops.

The team aim to ensure the recommended Product Engineering lifecycle becomes seamlessly integrated with Agile, Lean and DevOps practices:

They believe Design Thinking to have the potential to become a key enabler of the **Ideation** and **Conceptualization** and **Architecture and Prototyping** phases of the Product Engineering lifecycle.

Note: See the **Design Thinking** module in this course for how Design Thinking can be applied to solve complex problems, and provide solutions for customers.

Product Engineering - Brainstorming Ideas

Pennyworth, pleased with the progress the team are making, is keen to keep the momentum going.

He arranges a brainstorming session to generate as many ideas or solutions as possible to support their goal: the Introduction of Product Engineering into the Universal Imports Group.

The session is facilitated by **M**iyagi. Before starting the session, **M**iyagi reminds the team that:

- Everyone should feel free to contribute any and all ideas to the session.
- There is no such thing as a bad or a silly idea, within reason.
- Everyone is free to build upon the ideas of others.
- People are encouraged to challenge the expected norms.
- Everyone has an equal voice.
- Initial aim is for quantity over quality, so as soon as an idea occurs to them add it to the board.

The brainstorming session results in the following ideas.

Pennyworth thanks the team for the ideas and explains the next step is to get the planning process started.

In the planning session the team will select the best ideas and put a plan in place to action them.

Product Engineering - Need for a Manifesto

The team decides to create a Product Engineering Manifesto as a declaration of values and principles.

The team plans to use the Product Engineering Manifesto to share its views, and intentions in relation to the use of Product Engineering within the Universal Imports Group.

Product Engineering Manifesto

Inspired by the <u>Agile Manifesto</u> the team settle on the following draft **Product Engineering Manifesto** for the Universal Imports Group.

We are uncovering better ways of engineering products by doing it and helping others do it.

Through this work we have come to value these 12 principles:

- Focus on Customers underpinned by a deep empathy for their needs.
- Make Data Driven Decisions at all stages of the product life cycle.
- Foster a Culture of Experimentation via Ideation, Validation, Realization, Feedback and Iteration.
- Engage, Coach, Empower, Support Teams and Team Members.
- Value on Practice over Theory, Guidelines over Standards & Culture over Tooling.
- Create loosely coupled components supported by APIs, Microservices & Integrations.
- Actively work to optimize flow across the entire value stream.
- Aim for optimal DevOps Continuous Integration & Continuous Delivery per product.
- Apply Inner Source Principles supported by an Everything as Code first approach.
- Celebrate Success / Learn from Failures.
- Everybody's free (to Automate Testing).
- Encourage teams to have fun, if they don't enjoy making a product, chances are consumers won't enjoy using it.

Pop Quiz 2

Question 1

In which phase of the Product Engineering Cycle should teams ideally focus on determining if a proposed product or feature is worth pursuing or not?

- []Ideation and Conceptualization
- []Architecture and Prototyping
- []Design and Development
- []System Testing, Scans and UAT
- []Product Delivery
- []Product Support
- []Product Maintenance

Question 2

What should a team create as a declaration of their Product Engineering values and principles, a Product Engineering ... ?

Conclusion

Our hope is that following this chapter you have a better understanding of the

- Definition of Product Engineering
- Role of Product Engineer
- Product Engineer Skill Set
- Product Engineering Life Cycle
- Product Engineering Manifesto

If so there is an optional challenge awaiting you.

The challenge is to review the Universal Imports groups' Product Engineering lifecycle

and the Universal Imports groups' Product Engineering Manifesto with your team with a view to agreeing and documenting your teams'

- Product Engineering Cycle
- Product Engineering Manifesto

We wish you well with the challenge. We hope it leads to some interesting insights and actionable items to improve your teams' Product Engineering practices.

Chapter 3 - Design Thinking

Purpose

The primary objective of the $\bf Design\ Thinking\ chapter$ is to introduce you to Design Thinking concepts and practices.

Learning Outcomes

This module will give you an introduction to Design Thinking it includes

- An overview of Design Thinking.
- Reasons to use Design Thinking.
- Differences between what might be termed Traditional Thinking and Design Thinking.
- Key Elements of and Challenges with Design Thinking.
- Process of Design Thinking.
- Getting Started with Design Thinking.

Opening Scroll

The team working to improve Product Engineering practices across the companies in the Universal Imports Group include

Miyagi Product Engineering Coach and Mentor tasked with increasing the use of Product Engineering within the Universal Imports Group.

Pennyworth Project Manager from The Daily Mentioner National Newspaper, part of the Universal Imports Group of companies, tasked with chairing the effort.

Adriana Architect from the InGen Space Exploration Company, part of the Universal Imports Group of companies, lending her expertise to the Product Engineering effort.

Paulo Product Owner for the Pet Clinic Application.

Brenda Business representative from the Pet Clinic who was the main Business champion of the DevOps transformation.

They have recommended the following Product Engineering lifecycle

In parallel to that effort, the DevOps transformation recently piloted in the Pet Clinic is about to be rolled out across the wider group. For details on the Pet Clinic DevOps transformation see <u>ONLINE DEVOPS DOJO</u>.

The team expects that the DevOps transformation will support and improve the following Product Engineering lifecycle phases

- Design & Development
- QA & Testing
- Product Delivery

- Product Support
- Product Maintenance

However the team has identified a gap which needs to be addressed in the early Product Engineering lifecycle phases

- Ideation and Conceptualization
- Architecture and Prototyping

The team wants these critical phases to be seamlessly integrated with the subsequent phases. They believe that having teams adapt Design Thinking will ensure a strong interlock is established between the Architecture & Prototyping phase and the Design & Development phase.

The remainder of this chapter gives an overview of Design Thinking. It includes a series of conversational snippets taken at various points in the timeline of the evaluation and introduction of Design Thinking in support of the Product Engineering lifecycle in the Universal Imports Group.

Role of Design Thinking

The team discusses the need to ensure a strong interlock is established between the Architecture & Prototyping phase and the Design & Development phase of the Product Engineering lifecycle, and how Design Thinking could be used establish that interlock.

TOTO dialogs

Design Thinking

Introduction

The aim of Design Thinking is to

- Create superior products and services.
- Lower the costs and risks associated with development of products and services.
- Get user and employee buy-in for the Design Process and to the resulting products and services.

Design Thinking is a creative-problem solving process. Design Thinking is performed to create better products and services by understanding how users are to interact with them and the conditions under which they are to operate.

Design Thinking

- Is for everyone.
- Is a user-centered approach to problem solving.
- Provides a means of exploring new ideas, new solutions & new alternatives.
- Allows designers and teams to apply their collective skills to large challenging problems.
- Is an iterative step-by-step process with amplified feedback loops.

- Represents a fundamental change, with ensuing challenges and opportunities for organizations.
- When practiced correctly leads to innovation.

Design Thinking - Five Phase Model

There are a number variants of Design Thinking all of which embody similar principles. One of the most popular variants is the five-phase model proposed by researchers at Stanford this can be represented as

Empathize Define Ideate Prototype Test

Oustomers Understandings Insights Ideas Prototype Solutions

Design Thinking

Note: The process is non linear. Typically the process is iterative and includes feedback loops between the five phases:

- Empathize with your users to better understand and thus define the problem.
- Define your users' problems in the form of use cases and customer journeys which include the teams' insights.
- Ideate create ideas for innovative solutions which challenge assumptions.
- Prototype to start creating viable solutions and spark new ideas.
- Test solutions to better understand user expectations and to spark new ideas.

In this model, our understanding of the users' expectations are constantly being questioned and knowledge is constantly being acquired. This allows us to iteratively redefine a problem and identify alternative solutions. These might not be apparent with our initial understanding of the problem domain.

Pop Quiz 1

Question 1

During the Design Thinking Test stage the team conclude there is a need to 'revisit the defined problem' why might that be?

- []Prototype will create problems for companies' other product lines.
- []Prototype may result in competition for your partners' products.
- []Team built the wrong prototype.
- []Prototype identified a problem which the design did not address.

Question 2

What is the purpose of a prototype in the context of Design Thinking?

- []A model that describes the problem to be solved.
- []Brainstorming session to come up with ideas.
- []A model of the proposed solution which end users can test and provide feedback on.
- []Fully functional product that includes all functionality required to address the problem to be solved.

Design Thinking vs Traditional Thinking

The adoption of Design Thinking may require a significant cultural shift on the part of an organization, a shift from what may be termed as "Traditional Thinking" to Design Thinking.

For the purposes of this discussion, "Traditional Thinking" can be considered as taking a methodical and scientific approach to problem solving. In this approach, a problem is defined, the process and tools to generate a solution are identified, then a plan is created and followed in the expectation of arriving at the desired outcomes.

Design Thinking takes a different approach an approach which:

- Focuses on user expectations
- Expectations, once defined, result in ideas
- The most promising ideas are embodied in the form of prototypes
- Prototypes, once tested, are turned into products and services to improve user experiences.

Traditional Thinking	Design Thinking
Top Down Communication	Bi-directional Communication
Focus on avoiding mistakes	Learn from mistakes
Reports, documentation & gates	Show, don't tell
Maintaining order	Encouraging reasonable risk taking
Decisions based on Logic underpinned by Numerical models	Decisions based on Emotional Insights underpinned by Experiential models

Traditional Thinking	Design Thinking
Focus on arriving at the one answer to rule them all, the best answer	Experimental approach intended to hone in on the best answer in an iterative manner
Upfront Planning	Incremental Delivery
Business Requirements Definition	Customer Journeys and Use Cases

Key Elements and Challenges

Key Elements

There are a number of elements key to the successful adaption of Design Thinking:

- *People-centered* Empathy is key Focus on what people, users, customers, consumers, etc., need or want to do.
- *Highly Creative* Look at problems differently. Problems are opportunities to add value & to come up with new solutions.
- Show, Don't Tell Use visuals to communicate what you are thinking.
- Hands-on Less talking, more making Use prototypes and have users validate them Realize that failure is a (necessary) part of the process The trick is to fail fast and to incorporate any learnings from those failures in the eventual solutions.
- *Iterative Process* Process depends on having lots of ideas Prototyping, testing, analyzing, and refining one or more of those ideas in to a solution.
- *Transparent Collaboration* Bring together designers, innovators and stakeholders with different backgrounds, skills and viewpoints.

Challenges

There are also challenges in successfully adapting Design Thinking. There is a need to:

- Accept more ambiguity Better experiences are difficult to quantify in terms of value delivered.
- Embrace risk Iterative innovation is inherently risky Requires trust and a culture which allows people to take risks sometimes when only having a partial understanding of the problem domain.
- Set realistic expectations Design is not a cure for all ills, stakeholder expectations need to be managed appropriately and aligned to a realistic delivery timeline.

Thank you **M**iyagi. I think we all now have a better understanding of how companies which commit to the cultural pivot can achieve strong interlocks between design and development.

IDEO Design Thinking Process

Design Thinking provides a structure for the innovation process.

Design Thinking as we have learnt per the Stanford model is a five stage process:

Empathize -> Define -> Ideate -> Prototype -> Test

IDEO, a design and consultancy firm, recommend a similar process for innovation:

Understand -> Observe -> Visualize / Realize -> Evaluate -> Implement

The phases in the IDEO model are closely aligned with the *phases* in the Stanford model.

Understand => Empathize

- Client
- Market
- Technology

Observe => Define

- Sources of Confusion?
- What is disliked?
- What needs are not being met?

Visualize / Realize => Ideate

Role Play

- Create story boards
- Build early stage Prototype

Evaluate / Refine => Prototype

- Expect to have to create several prototypes
- Concurrent engineering

Implement => *Test*

- Verify the final product works
- Commercialize
- Go to market

Pop Quiz 2

Question 1

How can Universal Imports continue to innovate after introducing Design Thinking?

- []By extending the Ideate phase
- []By implementing a process of continuous improvement
- []By creating new Design Thinking stages
- []All of the above

Question 2

Having brainstormed a number of ideas to solve a problem, what should a team do to test those ideas?

- []Develop prototypes for all of the brainstormed ideas
- []Create a reference architecture
- []Write a business requirements document
- []Select the most promising ideas and create viable prototypes

Getting Started With Design Thinking

The team, now armed with an understanding of Design Thinking, discuss how they can introduce it to the Universal Imports Group.

TODO dialogs.

Conclusions

Hopefully this overview of Design Thinking has given you an insight into how simple and yet how revolutionary an idea it is.

The chapter included

•	An overview of Design Thinking.
•	Reasons to use Design Thinking.

- Differences between what might be termed Traditional Thinking and Design Thinking.
- Key Elements of and Challenges with Design Thinking.
- Process of Design Thinking.
- Getting Started with Design Thinking

We trust that after this introduction to Design Thinking you are ready to:

- Empathize
- Define
- Ideate
- Prototype
- Test

and that you realize that Design Thinking:

- Is for everyone.
- Is a user-centered approach to problem solving.
- Allows designers and teams to apply their collective skills to large challenging problems.
- Is a step-by-step process with amplified feedback loops repeated over multiple iterations.
- Represents a fundamental change, with ensuing challenges and opportunities for organizations.

If that is the case, then you are in luck as there is an optional challenge awaiting you.

The challenge is to review the Universal Imports groups' Product Engineering lifecycle, shown below, with your team:

Also discuss where and how you might apply Design Thinking:

in support of **all** phases of the Product Engineering lifecycle.

We wish you well with the challenge.

Chapter 4 - Getting Started

Purpose

The primary objective of the **Getting Started** chapter is to help you to start assessing, understanding and improving your development team's Product Engineering practices.

Building and fostering product-oriented engineering teams isn't easy, as the saying goes "if it was everyone would be doing it".

Product-oriented engineering teams should not be considered as feature factories. They are capable of and ultimately responsible for so much more than just cutting code.

They need to be

- Empowered stakeholders and custodians of all facets of the product experience.
- Aware of the value proposition of and the impact of the product they are building.
- In constant contact with, and thus in tune with the needs of the customers.
- Focused on continuous improvement and the elimination of waste in all phases of the product development and product lifecycle.
- Plugged into the ideation and design process.
- Committed to the cultural pivot needed to move an organization from a project to a product mindset.

Learning Outcomes

By the end of the chapter you will be able to

- Access your current Product Engineering practices.
- Understand "Universal Imports Group's" recommended Product Engineering practices.
- Introduce or improve your Product Engineering practices.
- Create an environment which enables your team to better influence the products they are responsible for.

Opening Scroll

Charlie, the CEO of the Universal Imports Group of companies, sponsored a DevOps Transformation in the Pet Clinic. Details on that initiative can be found at <u>ONLINE DEVOPS</u> <u>DOIO</u>.

The Pet Clinic's DevOps Transformation is starting to deliver results including:

- Improvements in the development team's culture, process and tooling.
- Requested features being made available sooner to the business.
- Increases in quality and operability of the business features deployed.
- Stronger links between business and IT teams.
- Improved experiences for customers with a resulting increase in customer satisfaction.

A recent workshop was held to facilitate the group leaderships' desire to see the learnings from the Pet Clinic's DevOps Transformation applied to the other companies in the Universal Imports Group.

Amongst the attendees were Paulo and Brenda from the Pet Clinic transformation team

Output

The purpose of the meeting was to brief the representatives from the other companies in the Universal Imports Group on the Pet Clinic's DevOps Transformation with a view to having them champion similar transformation efforts in their respective companies.

One of the main outcomes from the meeting was the general recognition how Lean principles were applied to a relatively complex development environment. This enabled the Pet Clinic team to document, analyze, and improve the processes involved in the delivery of the Pet Clinic application to their customers in the business. The resulting process improvements helped the Pet Clinic team to identify and eliminate waste in their processes.

The team, now faced with the challenge of improving Product Engineering practices within the Universal Imports Group, are considering applying the techniques learnt during the workshop to help scale Product Engineering practices across the Universal Imports Group.

This chapter covers the ensuing discussions and the actions arising from those discussions.

Miyagi Product Engineering Coach and Mentor, tasked with increasing the use of Product Engineering within the Universal Imports Group.

Pennyworth Project Manager from The Daily Mentioner National Newspaper, part of the Universal Imports Group of companies, tasked with chairing the effort.

Adriana Architect from the InGen Space Exploration Company, part of the Universal Imports Group of companies, lending her expertise to the Product Engineering effort.

Paulo Product Owner for the Pet Clinic Application.

Brenda Business representative from the Pet Clinic, who was the main Business champion of the DevOps transformation.

Improving Product Engineering Practices at Scale

The team discusses how to scale the improvement of Product Engineering practices in the Universal Imports Group.

TODO Comic Strip

Build Product Squads

We in the Universal Imports Group want to build the best possible products.

To do that I suggest we should first invest time, energy and budget in to building the best engineering teams that we can. Then we need to make additional investments to support those teams ensuring we foster accountability, creativity and also encourage experimentation.

Stronger engineering teams will build better products.

Miyagi any suggestions as to how we might go about doing this?

The structure and culture I recommend for Product Engineering teams is known as the "Product Squad" which was first popularized by Spotify.

Product squads are cross-functional teams comprised of a small number of developers and a product owner. Product squads own a complete product or a specific functional area of a product line, they are also responsible for developing domain expertise in support of an organizations product portfolio.

I am sure you are thinking that sounds remarkably similar to Agile scrum teams.

It is, the key differentiator being in the squad model is that the squad are fully empowered. They release their work to the business when they deem their work to be ready. More often than not there are no other approvals required.

However with great power comes great responsibility as the squad are on point for

- Writing code.
- Testing the code.
- Testing the functionality.
- Deploying the "live" product.
- Monitoring and supporting the product.
- Managing technical debt.

Makes sense to me. The essence of what you are saying is that we need to empower our teams for success and to trust them to use that power wisely. I think the teams will welcome such an approach.

To do that, we will need to provide our teams some guidance on how to move to a squad model.

Product Squad Enablement

I think any help we provide has to be guided by the Universal Import Groups' **Product Engineering Manifesto** we just created.

We are uncovering better ways of engineering products by doing it and helping others do it.

Through this work we have come to value these 12 principles:

- Focus on Customers underpinned by a deep empathy for their needs.
- Make Data Driven Decisions at all stages of the product life cycle.
- Foster a Culture of Experimentation via Ideation, Validation, Realization, Feedback and Iteration.
- Engage, Coach, Empower, Support Teams and Team Members.
- Value on Practice over Theory, Guidelines over Standards & Culture over Tooling.
- Create loosely coupled components supported by APIs, Microservices & Integrations.
- Actively work to optimize flow across the entire value stream.
- Aim for optimal DevOps Continuous Integration & Continuous Delivery per product.
- Apply Inner Source Principles supported by an Everything as Code first approach.
- Celebrate Success / Learn from Failures.
- Everybody's free (to Automate Testing).
- Encourage teams to have fun, if they don't enjoy making a product, chances are consumers won't enjoy using it.

We can't expect teams to hit all those marks out of the gate, but we need to ensure that teams are able to commit time to both Product (building new features) and Engineering (documentation, addressing technical debt, monitoring etc) activities.

Our Product Owners have a key role in ensuring that balance between Product and Engineering work is maintained.

Agreed, we can do that by creating appropriate Feature and Enabler epics in the respective product backlogs and ensuring the squads are given sufficient time to work on both types of epics.

Pop Quiz 1

Question 1

Which of the following are responsibilities of a Product Squad?

- []Writing Code.
- []Testing the code and the functionality implemented.
- []Deploying the "live" product.
- []Supporting the product

Question 2

Which of the following are principles in the Universal Imports Group's Product Engineering Manifesto?

- []Focus on Customers underpinned by a deep empathy for their needs.
- []Foster a Culture of Experimentation via Ideation, Validation, Realization, Feedback and Iteration.
- []Value on Theory over Practice, Standards over Guidelines & Tooling over Culture.
- []Create tightly coupled components supported by APIs, Microservices & Integrations.

Getting Started

The team have agreed to follow a Product Engineering approach using Design Thinking - Empathize, Define, Ideate, Prototype & Test - to Introduce Product Engineering across the Universal Imports Group

Miyagi reminds everyone of the teams' Defined mission statement:

Improve the Product Engineering Practices across the Universal Imports Group

and of their agreed Product:

A set of best practices representing the recommended Product Engineering Practices for the Universal Imports Group and collateral to help teams implement those practices

The team meet. Ideas ebb and flow. Serious amounts of \P and \P and \P are consumed.

Deliberations are intense, engaging and heated at times but ultimately rewarding.

The results of those discussions is the following Getting Started with Product Engineering steps for teams across the Universal Imports Group.

- Teams are to adapt the groups' Product Engineering Manifesto.
- Teams are to appoint a champion to spearhead the introduction of Product Engineering.

A champion is a squad member empowered and willing to lead the introduction of Production Engineering in their squad. They are authorized to facilitate the 'pull' of Product Engineering into the squad whilst ensuring the squad is aligned with both the pivot in the organization's culture and the company's goals.

• Champions will participate in a bi-weekly Product Engineering Guild.

A Guild, another concept introduced by Spotify, is basically a community of interest. Guilds are where people from different squads can help each other and exchange information on a topic.

Communication facilitates flow squads need to work to improve communication pathways.

Product squads need to continually optimize flow, one of the best ways of doing that is communication with both upstream and downstream stakeholders.

Iteration provides a pathway to rapid value creation.

Product squads focus on delivering a solution that will address the problem at hand as quickly as possible. That solution may not be perfect initially but as the customer and the squad learn more about the problem domain the solution is improved in subsequent iterations.

• Cherish and encourage direct customer interactions.

Product squads need to have a clear understanding of customer expectations, wishes and problems, to better influence product direction. They best way to get this understanding is direct customer interactions at all stages of the product lifecycle.

Establishing a culture of experimentation is essential.

Experimentation often drives innovation, high performing squads realize this simple truth and foster a culture of experimentation in the squad. This can be experimenting with new ways of doing things, new tools, new technologies etc. all done with the aim of engineering a better product.

Allocate time for both Product and Feature work.

Squads need to commit time to both Product (building new features) and Engineering (documentation, addressing technical debt, monitoring etc) work. That can often mean going slower when developing features, in order to have the robust engineering and automations in place to enable the squad to go faster in the long run.

• Celebrate successes, learn from failures and have fun.

Happy and engaged teams build better products, successes should be celebrated and lessons should be viewed as learning opportunities.

Lifecycle

The team brainstorm Ideas to create a Prototype or "example of good" for Product Engineering Life Cycle which will:

- Enable the companies in the group to create new revenue-generating business models.
- Cover the end-to-end product value chain from ideation through the development process to deployment and after-market product support.
- Use Agile, Lean and DevOps principles to facilitate highly efficient development processes.
- Facilitate value creation at a lower cost base and with a lower cost of ownership.

The team agrees to recommend the following Product Engineering life cycle to share with the teams working to improve their Product Engineering practices:

Pop Quiz 2

Question 1

Which of the following should good Product Engineering practices support?

- []Help shape the product
- []Participate in product development process
- []Understand technical constraints, resources and opportunities
- []Work to achieve practical product/technical tradeoffs
- []Focus on ROI
- []Deliver a mix of products
- []All of the above

Question 2

Which two phases are missing from the Product Engineering Life Cycle diagram?

- []Architecture and Prototyping.
- []Product Delivery.
- []Program Increment.
- []Business Requirements Definition.

Integrating With Current Practices

How would the recommended Product Engineering lifecycle fit with our current DevOps practices?

I was wondering about the same thing, and put together the following diagram to help illustrate that point.

I see the recommended Product Engineering lifecycle seamlessly integrating with our current lifecycle, thus helping to accelerate the deployment of best Agile, Lean, and DevOps practices.

Thanks the team and explains that having created Product Engineering

- Manifesto
- Getting Started Guidelines
- Lifecycle
- Interactive Training Course

and formed a

• Product Engineering Guild

The next steps are to work with the teams to help them introduce Product Engineering across the Universal Imports Group.

I love it when a plan comes together, can't wait to see this start to get rolled out across the group.

Thanks to all, for all your contributions.

Conclusion

Thank you for reading the **Getting Started** chapter.

You now should be able to:

- Access your current Product Engineering practices.
- Understand "Universal Imports Group's" recommended Product Engineering practices.
- Introduce or improve your Product Engineering practices.
- Create an environment which enables your team to better influence the products they are responsible for.

We trust having completed this chapter that you have a better understanding of the importance of the need to improve your teams' Product Engineering practices and how you can start to improve your teams' Product Engineering practices.

If that is the case then there is an optional challenge awaiting you.

The challenge is to set some time aside on your teams' calendar to review your approach to Product Engineering, to document that approach and to compare with the Universal Imports Group's recommended Product Engineering practices.

We wish you well with the challenge, should you decide to accept it. Hopefully it will help you identify and, in time, make significant improvements in the Product Engineering practices applied in your teams' applications and services.

Appendix 1 - Assessment

Purpose

The primary objective of the **Assessment** is to help you verify the knowledge gained from reading this tome on **Product Engineering**.

Question 1

Who was appointed as the coach and mentor for the adaption of Product Engineering in the Universal Imports Group?

- []Charlie
- []Paulo
- []Miyagi
- []Adriana
- []Brenda

Question 2

In the Product Engineering Manifesto, which of the following is valued?

- []Theory over Practice
- []Standards over Guidelines
- []Culture over Tooling

Question 3

What is the name given to a squad member empowered and willing to lead the Introduction of Production Engineering in their squad?

- []Champion
- []Mentor
- []Product Owner

Question 4

What is the first phase of the Product Engineering Lifecycle being adapted by the Universal Imports Group?

- []Architecture and Prototyping
- []Product Delivery
- []Ideation and Conceptualization

Question 5

What is the first phase in the Stanford Design Thinking model?

- []Empathize
- []Ideate
- []Define
- []Test
- []Prototype

Question 6

Design Thinking is seen as a means of addressing which identified gap in Universal Imports Group recommended Product Engineering LifecyCle?

- []Product Delivery
- []Product Support
- []Ideation and Conceptualization

Question 7

Which of these is the correct sequence of the phases in the Stanford Design Thinking model?

- []Empathize -> Define -> Ideate -> Prototype -> Test
- []Ideate -> Empathize -> Define -> Prototype -> Test
- []Define -> Empathize -> Ideate -> Prototype -> Test

Question 8

Product Engineering is a discipline that deals with which aspects of a product?

- []Design
- []Testing
- []Delivery
- []Support
- []Development
- []All of the above

Question 9

The cultural pivot required for a successful adaption of Product Engineering requires a shift to which type of mindset?

- []Project
- []Product

Question 10

In which phase of the Product Engineering Lifecycle being adapted by the Universal Imports Group is the product released to the market?

- []Product Support
- []Product Maintenance
- []Product Delivery

Appendix 2 - Answers

Introduction to Product Engineering

Pop Quiz 1

Question 1

Which of the following are the responsibilities of a Product Engineer?

The correct answer is All of the above

The following are some of the responsibilities of a Product Engineer

- Help shape the product
- Participate in product development process
- Understand technical constraints, resources and opportunities
- Work to achieve practical product/technical tradeoffs
- Focus on ROI
- Deliver a mix of products
 - o POCs
 - MVPs
 - Highly scalable systems

Question 2

Which of the following are included in the Skill Set of a Product Engineer?

The correct answer is **All of the above**

The following are skills needed by a Product Engineer

- Strong focus on and deep understanding of the Product
- Make data driven decisions
- Effective communicator
- Prioritization and estimation
- Engineering execution

Pop Quiz 2

Question 1

In which phase of the Product Engineering Cycle should teams ideally focus on determining if a proposed product or feature is worth pursuing or not?

The correct answer is **Ideation and Conceptualization**

The **Ideation and Conceptualization** stage of the Product Engineering Cycle is where teams

- Conceive the idea.
- Document it.
- Decide if idea is worth pursuing or not.

Question 2

What should a team create as a declaration of their Product Engineering values and principles, a Product Engineering ... ?

The correct answer is **manifesto**, a team should create a Product Engineering manifesto as a declaration of their Product Engineering values and principles.

Design Thinking

Pop Quiz 1

Question 1

During the Design Thinking Test stage the team conclude there is a need to 'revisit the defined problem' why might that be?

The correct answer is **Prototype identified a problem which the design did not address**

Design Thinking is not a linear process, prototypes are created to both validate and identify issues in designs and proposed solutions.

Question 2

What is the purpose of a prototype in the context of Design Thinking?

The correct answer is A model of the proposed solution which end users can test and provide feedback on

In Design Thinking prototypes are used to produce an early stage scaled down version of a product. Prototypes allow a group of end users evaluate a potential solution, thus enable teams to gather feedback and identify potential problems with the design.

Pop Quiz 2

Question 1

How can Universal Imports continue to innovate after introducing Design Thinking?

The correct answer is By implementing a process of continuous improvement

Continuous Improvement or Kaizen events should be run to identify and implement innovation opportunities.

Ouestion 2

Having brainstormed a number of ideas to solve a problem, what should a team do to test those ideas?

The correct answer is **Select the most promising ideas and create viable prototypes**

Having brainstormed a number of ideas to solve a problem a team should select the most promising ideas and create viable prototypes to test those ideas.

Getting Started

Pop Quiz 1

Question 1

Which of the following are responsibilities of a Product Squad?

The correct answer is **all of them** as these are all responsibilities of a Product Squad

- Writing Code.
- Testing the code and the functionality implemented.
- Deploying the "live" product.
- Supporting the product.

Question 2

Which of the following are principles in the Universal Imports Group's Product Engineering Manifesto?

The correct answer is Focus on Customers underpinned by a deep empathy for their needs and Foster a Culture of Experimentation via Ideation, Validation, Realization, Feedback and Iteration are principles in the Universal Imports Group's Product Engineering Manifesto.

Pop Quiz 2

Question 1

Which of the following should good Product Engineering practices support?

The correct answer is Good Product Engineering practices should support all of them

• Creation of new revenue-generating business models.

- End-to-end product value chain from ideation through the development process, to deployment and after-market product support.
- Application of Agile, Lean and DevOps principles to facilitate highly efficient development processes.
- Value creation at a lower cost base and with a lower cost of ownership.

Question 2

Which two phases are missing from the Product Engineering Life Cycle diagram?

The two phases of the Product Engineering Life Cycle missing from the Product Engineering Life Cycle are

Architecture and Prototyping and Product Delivery.

The recommended Product Engineering Life Cycle is

Assessment

Question 1

Who was appointed as the coach and mentor for the adaption of Product Engineering in the Universal Imports Group?

The correct answer is **Paulo** refer to Chapter 1 - Welcome for more details

Question 2

In the Product Engineering Manifesto, which of the following is valued?

The correct answer is **Culture over Tooling** refer to Chapter 4 - Getting Started for more details

Ouestion 3

What is the name given to a squad member empowered and willing to lead the Introduction of Production Engineering in their squad?

The correct answer is **Champion** refer to Chapter 4 - Getting Started for more details

Question 4

What is the first phase of the Product Engineering Lifecycle being adapted by the Universal Imports Group?

The correct answer is **Ideation and Conceptualization** refer to Chapter 4 - Getting Started for more details

Ouestion 5

What is the first phase in the Stanford Design Thinking model?

The correct answer is **Empathize** refer to Chapter 3 - Design Thinking for more details

Ouestion 6

Design Thinking is seen as a means of addressing which identified gap in Universal Imports Group recommended Product Engineering LifecyCle?

The correct answer is **Ideation and Conceptualization** refer to Chapter 3 - Design Thinking for more details

Question 7

Which of these is the correct sequence of the phases in the Stanford Design Thinking model?

The correct answer is **Empathize -> Define -> Ideate -> Prototype -> Test** refer to Chapter 3 - Design Thinking for more details

Question 8

Product Engineering is a discipline that deals with which aspects of a product?

The correct answer is **All of the above** refer to Chapter 2 - Introduction to Product Engineering for more details

Question 9

The cultural pivot required for a successful adaption of Product Engineering requires a shift to which type of mindset?

The correct answer is **Product** refer to Chapter 2 - Introduction to Product Engineering for more details

Question 10

In which phase of the Product Engineering Lifecycle being adapted by the Universal Imports Group is the product released to the market?

The correct answer is **Product Delivery** refer to Chapter 2 - Introduction to Product Engineering for more details

Conclusion

You have now completed the **Product Engineering** manuscript. Thank you for taking the time to read it.

We trust you have enjoyed the book and as promised in the Welcome chapter the next time you have need for that bigger \triangleq you can Product Engineer it accordingly.

If this book has been your introduction to Product Engineering we hope that it is just the start of your foray in to Product Engineering and that you will apply your learnings in the teams you work with.