Formulaire de statistiques

Jeffery Petit

Préambule Définitions et propriétés utiles à destination des étudiants de L1 Psycho à l'université de Nantes. Ce formulaire contient uniquement l'essentiel : pas de graphique, peu de blabla. Le formalisme utilisé, parfois plus complexe que le document de cours officiel, n'est pas indispensable. Ce document ne sera pas autorisé à l'examen.

Formules usuelles de probabilité

Les formules qui vont suivre s'appliquent à une variable $Z \sim \mathcal{N}(\mu = 0, \sigma = 1)$.

Propriété 1 (Symétrie de la loi normale) On suppose que a est un nombre réel quelconque :

$$\mathbb{P}(Z > a) = 1 - \mathbb{P}(Z < a) \tag{1}$$

$$\mathbb{P}(Z < -a) = \mathbb{P}(Z > a) \tag{2}$$

Propriété 2 (Probabilités des intervalles) Supposons que b et c soient des nombres réels quelconques tels que b < c:

$$\mathbb{P}(b < Z < c) = \mathbb{P}(Z < c) - \mathbb{P}(Z < b) \tag{3}$$

Par conséquent, si l'on suppose que *d* est un nombre réel positif :

$$\mathbb{P}(-d < Z < d) = 2 \times \mathbb{P}(Z < d) - 1 \tag{4}$$

Normalisation

Propriété 3 (Normalisation) Le calcul de probabilté et de quantile nécessite de toujours se ramener au cas d'une varaible suivant une loi normale dite **centrée**, **réduite**, i.e. une loi $\mathcal{N}(0,1)$. Pour ce faire, on utilisera fréquemment la propriété suivante :

$$X \sim \mathcal{N}(\mu, \sigma) \Rightarrow Z = \frac{X - \mu}{\sigma} \sim \mathcal{N}(0, 1)$$
 (5)

Quantiles

Définition 1 (Notation de quantiles) Soit X une variable aléatoire de loi continue, on appelle quantile d'ordre α , et on note q_{α} la valeur vérifiant :

$$\mathbb{P}(X < q_{\alpha}) = \alpha \iff \mathbb{P}(X > q_{\alpha}) = 1 - \alpha \tag{6}$$

Par convention, lorsqu'on travaille sur une loi normale centrée réduite, e.g. $Z \sim \mathcal{N}(0,1)$, les quantiles sont notés z_{α} , i.e. $\mathbb{P}(Z < z_{\alpha}) = \alpha$

Propriété 4 (Symétrie des quantile pour la loi $\mathcal{N}(0,1)$) Supposons que z_{α} soit le quantile d'ordre α de la loi $\mathcal{N}(0,1)$

$$z_{\alpha} = -z_{1-\alpha} \Longleftrightarrow z_{1-\alpha} = -z_{\alpha} \tag{7}$$

Propriété 5 (Calcul des quantiles pour une loi quelconque $\mathcal{N}(\mu, \sigma)$) *Supposons que* q_{α} *soit le quantile* d'ordre α de la loi $\mathcal{N}(\mu, \sigma)$ et que z_{α} *soit le quantile* d'ordre α de la loi $\mathcal{N}(0, 1)$. On a alors :

$$q_{\alpha} = \mu + \sigma \times z_{\alpha} \tag{8}$$

Intervalles de confiance

Définition 2 (Définition d'un IC pour une moyenne μ **ou une proportion** p_0 **)** *On appelle « Intervalle de Confiance (IC) de niveau* $1 - \alpha$ *pour la moyenne* μ *» et on note* $IC_{1-\alpha}(\mu)$ *(resp.* $IC_{1-\alpha}(p_0)$ *), un intervalle qui a une probabilité* $1 - \alpha$ *de contenir la vraie valeur de* μ *(resp.* p_0 *).*

 $\longrightarrow \alpha$ est souvent appelé **seuil** ou **niveau de risque** de l'IC.

De manière générale, un IC bilatéral pour une moyenne (resp. une proportion) sera définit ainsi $IC_{1-\alpha}(\mu) = [\bar{x} \pm \varepsilon_{\alpha}]$ (resp. $IC_{1-\alpha}(p_0) = [p \pm \varepsilon_{\alpha}]$) où ε_{α} sera la marge d'erreur à calculer pour un risque donné.

Propriété 6 (Formule des écart-types)

$$s = \sqrt{\frac{N}{N-1}} \times \sigma \tag{9}$$

IC bilatéral pour une moyenne μ

Dans ce qui suit on suppose que l'on dispose d'un échantillon dont la distribution est une loi normale. On note N l'effectif de cet échantillon, \bar{x} la moyenne observée sur l'échantillon, σ l'écart-type d'observation et s l'écart-type d'échantillon.

Définition 3 (Marge d'erreur si N < 30) La marge d'erreur pour un seuil α que l'on peut noter ε_{α} est la quantité suivante :

$$\varepsilon_{\alpha} = \frac{s}{\sqrt{N}} \times t_{1 - \frac{\alpha}{2}} \tag{10}$$

Où $t_{1-\frac{\alpha}{2}}$ est le quantile d'ordre $1-\frac{\alpha}{2}$ de la loi de Student à N-1 degrés de liberté (ddl).

Propriété 7 (Condition sur N si N < 30) Supposons que l'on cherche la valeur de N à partir de laquelle on obtient une marge d'erreur plus faible qu'un certain ε au seuil α . La condition que N doit alors vérifier est :

$$N \ge \left(\frac{s}{\varepsilon} \times t_{1-\frac{\alpha}{2}}\right)^2 \tag{11}$$

Définition 4 (IC si N < 30)

$$IC_{1-\alpha}(\mu) = [\bar{x} \pm \varepsilon_{\alpha}]$$

$$= [\bar{x} - \varepsilon_{\alpha}; \bar{x} + \varepsilon_{\alpha}]$$

$$= [\bar{x} - \frac{s}{\sqrt{N}} \times t_{1-\frac{\alpha}{2}}; \bar{x} + \frac{s}{\sqrt{N}} \times t_{1-\frac{\alpha}{2}}]$$
(12)

Définition 5 (Marge d'erreur si $N \ge 30$) La marge d'erreur pour un seuil α que l'on peut noter ε_{α} est la quantité suivante :

$$\varepsilon_{\alpha} = \frac{s}{\sqrt{N}} \times z_{1 - \frac{\alpha}{2}} \tag{13}$$

Où $z_{1-\frac{\alpha}{2}}$ est le quantile d'ordre $1-\frac{\alpha}{2}$ de la loi normale $\mathcal{N}(0,1)$.

Propriété 8 (Condition sur N si $N \ge 30$) Supposons que l'on cherche la valeur de N à partir de laquelle on obtient une marge d'erreur plus faible qu'un certain ε au seuil α . La condition que N doit alors vérifier est :

$$N \ge \left(\frac{s}{\varepsilon} \times z_{1-\frac{\alpha}{2}}\right)^2 \tag{14}$$

Définition 6 (IC si N > 30)

$$IC_{1-\alpha}(\mu) = [\bar{x} \pm \varepsilon_{\alpha}]$$

$$= [\bar{x} - \varepsilon_{\alpha}; \bar{x} + \varepsilon_{\alpha}]$$

$$= [\bar{x} - \frac{s}{\sqrt{N}} \times z_{1-\frac{\alpha}{2}}; \bar{x} + \frac{s}{\sqrt{N}} \times z_{1-\frac{\alpha}{2}}]$$
(15)

IC bilatéral pour une proportion p_0

Dans ce qui suit on note p la proportion observée dans l'échantillon.

Conditions indispensables

$$N \ge 30$$

$$N \times p \geq 5$$

$$N \times (1 - p) \ge 5$$

Définition 7 (Marge d'erreur pour une proportion) *La marge d'erreur pour un seuil* α *que l'on peut noter* ϵ_{α} *est la quantité suivante :*

$$\varepsilon_{\alpha} = \sqrt{\frac{p(1-p)}{N}} \times z_{1-\frac{\alpha}{2}} \tag{16}$$

Où $z_{1-\frac{\alpha}{2}}$ est le quantile d'ordre $1-\frac{\alpha}{2}$ de la loi normale $\mathcal{N}(0,1).$

Propriété 9 (Condition sur N **pour une proportion)** Supposons que l'on cherche la valeur de N à partir de laquelle on obtient une marge d'erreur plus faible qu'un certain ε au seuil α . La condition que N doit alors vérifier est :

$$N \ge \left(\frac{z_{1-\frac{\alpha}{2}}}{\varepsilon}\right)^2 \times p(1-p) \tag{17}$$

Définition 8 (IC pour une proportion)

$$IC_{1-\alpha}(p_0) = [p \pm \varepsilon_{\alpha}]$$

$$= [p - \varepsilon_{\alpha}; \bar{x} + \varepsilon_{\alpha}]$$

$$= [p - \sqrt{\frac{p(1-p)}{N}} \times z_{1-\frac{\alpha}{2}}; p + \sqrt{\frac{p(1-p)}{N}} \times z_{1-\frac{\alpha}{2}}]$$
(18)

Remarque: attention, l'IC s'exprime soit en pourcentage, soit en décimal. Par exemple, pour une proportion de $\overline{52.94\%}$ soit on calcul l'IC en posant p=52.94, soit en posant p=0.5294 mais il ne faut pas mélanger les deux!

Jeffery Petit Laboratoire des Sciences du Numérique de Nantes (LS2N) École Centrale Nantes jeffery.petit@ls2n.fr