RECEIVED CENTRAL FAX CENTER

DEC 1 9 2006

008325 USA/AGS/IBSS Application No: 10/816,152 Page 2 of 14

IN THE CLAIMS

Please substitute the following listing of claims for the previous listing of claims.

- 1. (Currently amended) An electrostatic chuck capable of attachment to a pedestal in a process chamber, the chuck comprising:
- (a) an electrostatic puck comprising a cerâmic body with an embedded electrode, the ceramic body having a substrate support surface with an annular periphery; and
- (b) a base plate below the electrostatic puck, the base plate having an annular flange extending beyond the periphery of the ceramic body, wherein the base plate comprises a composite of a ceramic material comprising pores that are at least partially filled by and a metal.
- 2. (Original) A chuck according to claim 1 wherein the annular flange comprises a plurality of holes to allow connectors to pass therethrough.
 - 3. (Cancel)
- 4. (Currently amended) A chuck according to claim 1 wherein in (b) the <u>ceramic material composite</u> comprises silicon carbide <u>and the metal comprises</u> infiltrated with aluminum.
- 5. (Original) A chuck according to claim 4 wherein the volume percentage of aluminum in the composite is from about 20% to about 80%.

008325 USA/AGS/IBSS Application No: 10/816,152 Page 3 of 14

- 6. (Currently amended) An electrostatic chuck capable of exhibiting reduced thermal expansion mismatch in a process chamber, the chuck comprising:
- (a) an electrostatic puck comprising a ceramic body with an embedded electrode, the ceramic body having a substrate support surface and an annular periphery; and
- (b) a base plate below the electrostatic puck, the base plate having an annular flange extending beyond the annular periphery of the ceramic body, the annular flange comprising a plurality of holes that are shaped and sized to allow connectors to pass therethrough, wherein the base plate comprises a composite comprising a ceramic material comprising pores that are at least partially infiltrated with a metal; and
- (c) a support pedestal having a housing and an annular ledge, the annular ledge extending outwardly from the housing, wherein the annular ledge is capable of being attached to the annular flange of the base plate by the connectors.
- 7. (Currently amended) A chuck according to claim 6 wherein in (b) the <u>ceramic material</u> base plate comprises a composite comprising silicon carbide <u>and</u> the <u>metal comprises</u> infiltrated with aluminum, and wherein the volume percentage of infiltrated aluminum in the composite is from about 20% to about 80%.
- 8. (Original) A chuck according to claim 6 further comprising a heat transfer plate below the base plate, the heat transfer plate having a heat transfer fluid channel embedded therein.
- 9. (Original) A chuck according to claim 8 wherein the heat transfer plate comprises an upper portion comprising a first material and a lower portion comprising a second material, and the heat transfer fluid channel being embedded therebetween.
- 10. (Original) A chuck according to claim 9 wherein the first material comprises copper and the second material comprises stainless steel.

008325 USA/AGS/IBSS Application No: 10/816,152 Page 4 of 14

- 11. (Currently amended) [[A]] An electrostatic chuck for a process chamber, the chuck comprising:
- (a) an electrostatic puck comprising a ceramic body with an embedded electrode, the ceramic body having a substrate support surface and an annular periphery;
- (b) a base plate below the electrostatic puck, the base plate having an annular flange extending beyond the annular periphery of the ceramic body, the annular flange comprising a plurality of holes that are shaped and sized to allow connectors to pass therethrough, and the base plate comprising a composite comprising a ceramic material infiltrated with a metal;
- (c) a support pedestal having a housing and an annular ledge, the annular ledge extending outwardly from the housing, the annular ledge being capable of being attached to the annular flange of the base by the connectors; and
- 8 wherein the heat transfer plate having a heat transfer fluid channel comprising comprises first and second spiral channels embedded therein, the first spiral channel being adapted to provide a flow of fluid therethrough that is that is substantially opposite a flow of fluid through the second spiral channel.
- 12. (Original) A chuck according to claim 11 wherein at least one of the first and second spiral channels encircles a center of the heat transfer plate 3 times.
- 13. (Original) A chuck according to claim 8 further comprising a spring assembly to apply a pressure to the heat transfer plate.
- 14. (Original) A chuck according to claim 8 further comprising a thermally conductive layer between the heat transfer plate and base plate.

4155388380

008325 USA/AGS/IBSS Application No: 10/816,152 Page 5 of 14

- 15. (Currently amended) A chuck according to claim 6 further comprising an aluminum bond layer between the electrostatic puck layer and the base plate.
- 16. (Original) A substrate processing chamber comprising the electrostatic chuck of claim 6 and further comprising a gas supply to provide a process gas in the chamber, a gas energizer to energize the gas, and an exhaust to exhaust the gas.
- 17. (Currently amended) An electrostatic chuck capable of exhibiting reduced thermal expansion mismatch in a process chamber, chuck comprising:
- (a) an electrostatic puck comprising a ceramic body with an embedded electrode, the ceramic body having a substrate support surface and an annular periphery;
- (b) a base plate below the electrostatic puck, the base plate having an annular flange extending beyond the periphery of the ceramic body, wherein the base plate comprises a composite of a ceramic material comprising pores that are at least partially filled by and a metal;
- (c) a support pedestal having a housing and an annular ledge, wherein the annular ledge extends outwardly from the housing to attach to the annular flange of the base plate, thereby supporting the base plate and electrostatic puck;
- (d) a heat transfer plate below the base plate and at least partially surrounded by the pedestal housing, the heat transfer plate comprising an embedded heat transfer fluid channel; and
- (e) a spring assembly at least partially surrounded by the pedestal housing, the spring assembly being biased to press the heat transfer plate against the base plate.

4155388380

008325 USA/AGS/IBS\$ Application No: 10/816,152 Page 6 of 14

- 18. (New) A chuck according to claim 7 wherein the volume percentage of aluminum in the composite is from about 20% to about 80%.
- 19. (New) A chuck according to claim 11 further comprising a spring assembly to apply a pressure to the heat transfer plate.
- 20. (New) A chuck according to claim 11 further comprising a thermally conductive layer between the heat transfer plate and the base plate.
- 21. (New) A chuck according to claim 11 further comprising an aluminum bond layer between the electrostatic puck layer and base plate.