# Криптография

Лекция 8. Шифрование файлов.

#### Шифрование отдельных файлов

- Архиваторы (Zip, Rar)
  - Симметричные алгоритмы: RC4, AES
- PGP / GnuPG
  - Симметричные алгоритмы: 3DES, AES, Blowfish, Twofish, Camellia
  - Асимметричные алгоритмы: ElGamal, RSA

- удобно использовать для передачи файлов
- ✓ кроссплатформенно
- после изменения файла требуется вручную перешифровать его
- временные копии расшифрованных файлов хранятся на диске

#### Шифрованные файловые системы



EFS (Windows), EncFS, eCryptfs (Linux)

- "прозрачная" работа
- позволяет выполнять инкрементное резервное копирование
- не скрывает количество файлов и их размер
- сохраняет все ограничения файловой системы-источника

#### Шифрованные контейнеры / дисковые разделы



BitLocker (Windows), BestCrypt, DiskCryptor, TrueCrypt, VeraCrypt

- ✓ "прозрачная" работа
- скрывает всю информацию о файловой системе
- затруднено резервное копирование: только контейнер целиком
- фиксированный размер контейнера

#### Аппаратно шифруемые диски



- у работает независимо от ОС и приложений
- скрывает всю информацию на диске
- ▼ возможно уничтожение данных после N неудачных попыток разблокировки
- резервное копирование невозможно без расшифровки
- закрытая архитектура

## Аппаратно шифруемые диски



#### Схема работы VeraCrypt





### Режим шифрования XTS



#### Правдоподобное отрицание

- Цель отрицать наличие секрета, причем так, чтобы у атакующего не было возможности доказать обратное.
- Уровень 0: контейнер выглядит как случайные данные
  - нет открытых заголовков и сигнатур
  - нет узнаваемой структуры данных
  - нет статистических особенностей (кроме высокой энтропии)
- Уровень 1, 2 ... N: скрытые разделы
  - позволяет раскрыть часть секретов, сохранив остальные



#### Скрытые разделы



- Скрытый раздел расположен внутри основного в случайном месте
- Скрытый раздел имеет собственный заголовок и шифруется собственными ключами
- Без знания ключа скрытый раздел выглядит как свободная часть основного (случайные данные)
- Запись в основной раздел может повредить информацию в скрытом. Этого можно избежать, используя режим защиты (требует ключ скрытого раздела)

#### Задача

Боб написал программу для шифрования дисков. Алгоритм её работы:

- 1. Ключ шифрования формируется из пароля путем дополнения нулями до длины 32 байта.
- 2. Первые 16 байт дискового раздела содержат MD5-хеш ключа для проверки его корректности.
- 3. Шифрование/расшифровка данных выполняется блоками по 16 байт с использованием алгоритма AES-256 в режиме CTR (значение счетчика = номер блока). Данный режим обеспечивает произвольный доступ, а также то, что блоки с одинаковым содержимым шифруются в различающиеся шифроблоки.

Алиса говорит, что это — полное дно. Согласны ли вы с ней? Какие ошибки и уязвимости есть в программе Боба?

#### Ссылки

- Обратная связь:
  - android.ruberoid@gmail.com
  - lesswrongru.slack.com @android\_ruberoid
- Анонсы:
  - facebook.com/kocherga.club
  - w vk.com/kocherga club
  - w vk.com/kocherga\_prog
- Материалы лекций:
  - github.com/notOcelot/Kocherga\_crypto
- Видео:
  - youtube.com/channel/UCeLSDFOndl4eKFutg3oowHg

