Solve the following recurrence relation:

$$T(n) = 8T(n/2) + 3n$$

$$T(1) = 1$$

Answer

Solve the following recurrence relation:

$$T(n) = 8T(n/2) + 3n$$

$$T(1) = 1$$

Find
$$T(n/2)$$
: $8(n/2^2) + 3(n/2)$

Plug in:
$$T(n)$$
: $8[8(n/2^2) + 3(n/2)] + 3n$

Find
$$T(n/4)$$
: $8T(n/2^3) + 3(n/2^2)$

Plug in:
$$T(n)$$
: $8^2 [8T(n/2^3) + 3(n/2^2)] + 8 * 3(n/2) + 3n$

$$= 8^{3}T(n/2^{3}) + 8^{2} * 3n/4 + 8 * 3n/2 + 3n$$

Answer Cont'd

```
8^{3}T(n/2^{3}) + 8^{2} * 3n/4 + 8 * 3n/2 + 3n
= 8^{3}T(n/2^{3}) + 3n(8^{2}/4 + 8/2 + 1)
= 8^{3}T(n/2^{3}) + 3n(4^{2} + 4^{1} + 4^{0})
> Pattern is:
8^{k}T(n/2^{k}) + 3n[4^{k-1} + ... + 4^{0})
```

We stop recursion at T(1) = 1, or $n/2^k = 1$, or $n = 2^k$

Take \lg of both sides to remove exponent: $\lg n = k \lg 2$, or $k = \lg n$. Substitute $\lg n$ back in to the equation:

```
8^{\lg n}T(1) + 3n[4^{\lg n-1} + ... + 4^{0}]
= 8^{\lg n}T(1) + 3n[(4^{\lg n} - 1) / 3]  (if confused about this step, check the slide in the lectures labeled important math!
= 8^{\lg n} + n(4^{\lg n} - 1)
= n^{\lg n} + n(n^{\lg n} - 1)
= n^{3} + n(n^{2} - 1)
```

 $= 2n^3 - n = \Theta(n^3)$

Chapter 2

Given that the comparison that takes place in the *else* statement is the basic operation, analyze Binary Search by finding its recurrence relation and determining its best-case and worst-case order.

```
index BinarySearch(index low, index high)
   if (low > high)
       return 0; // key not found in array
   else
       index middle = |(low + high) / 2|
       if (x == S[middle])
           return middle
       else if (x < S[middle])
           return BinarySearch(low, middle - 1)
       return BinarySearch (middle + 1, high)
```

Answer

A J J J J J J J J J J J J J J J J J J J
Buse case low > high w(1) = w(2) +1
1 (n) = w(n) +1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Assume implemented in Assembly efficiently only
one chech.
W(2)=W(2)+1-) W(n) = [V(2)+]+1
XIII
w(2) = w(2) +
X9M 193A 00,
v(n) = [v(2)+1]+1+1
(h) - (1)
0214 (22) + 30 (3)
100 SOE MOOD
W(k) = W(zn) + k
(2) 1 K
stop at case 1 n/2h >1
340(a) case 1 1 / 21
7k 112 = 000 1 62 21 50 60 = k
2k=n k g2 = gn g2 = 1 so gn=k
1 1 2 10 = A'(1)
1 + lgn (lgn)
AST 7 197 1 1 1 1

- 1. Sort [E₁, X, A, M, P, L, E₂] in alphabetical order using Mergesort. Show steps.
- 2. Sort 65, 60₁, 60₂, 60₃ in nondecreasing order using Mergesort. A sorting algorithm is called **stable** if it preserves the relative order of any two equal elements in its input. Is Mergesort stable? (hint: consider how the *Merge* procedure works)

Answers

1. Sort [E₁, X, A, M, P, L, E₂] in alphabetical order using Mergesort. Show steps.

Answers

2. Sort 65, 60_1 , 60_2 , 60_3 in nondecreasing order using Mergesort. A sorting algorithm is called **stable** if it preserves the relative order of any two equal elements in its input. Is Mergesort stable? (hint: consider how the *Merge* procedure works)

Mergesort is only stable if the comparison in merge is changed to <= rather than <

 $S = \{123, 34, 189, 56, 150, 12, 9, 240\}$

- 1. Show the recursion tree for sorting S with Quicksort.
- 2. Show the top-level partition on S.
- 3. Sort 65, 60₁, 60₂, 60₃ in nondecreasing order using Quicksort. A sorting algorithm is called **stable** if it preserves the relative order of any two equal elements in its input. Is Quicksort stable?

 $S = \{123, 34, 189, 56, 150, 12, 9, 240\}$

1. Show the top-level partition on S.

	60	16	19.56	0	2	4	\$ 678
i	5	1	STI	4	1943	56	152 12 9 240
-	-		123	34	189	-0	150 12 9 240
2	2	W	153	34	189	86	(50 12 9 2mg
3	2	180	123	34	180	56	150 12 9 240
4	3		123	34	180	56	150 12 9 240
5	3		123	34	56	189	100
6	4		123	34	56	139	13 6 360
7	5		123	34	56	12	9 189 9 200
8	5		123	34	56	12	7 187 100 20
					/ .	7	
	SW	ng	STI) with	SE))	173 189 150 240.
		1	9	334	56	12	11)