ЧИСЛОВЫЕ РЯДЫ

ЛЕКЦИЯ 1.

Определение 1. Пару числовых последовательностей $\{a_k\}_{k\geqslant 1}$, $\{S_n\}_{n\geqslant 1}$ называют числовым рядом, если их элементы являются вещественными числами и $S_n=a_1+a_2+\cdots+a_n, \ \forall \ n\geqslant 1$. При этом a_k называют k-ым или общим членом ряда, а S_n-n -ой частной суммой ряда.

Замечание 1. Числовой ряд $\{a_k\}_{k\geqslant 1},\ \{S_n\}_{n\geqslant 1}$ часто называют рядом с общим членом a_k или просто рядом $\{a_k\}_{k\geqslant 1},$ а иногда рядом $\sum_{k=1}^\infty a_k.$

Пример 1. $a_k = 1/k$ – общий член гармонического ряда $\sum_{k=1}^{\infty} \frac{1}{k} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{k} + \dots$

Определение 2. Числовой ряд $\{a_k\}_{k\geqslant 1}$ называют сходящимся, если $\exists \lim_{n\to\infty} S_n = S$ и $|S| < \infty$. При этом число S называют суммой сходящегося числового ряда $\{a_k\}_{k\geqslant 1}$ и пишут $S = \sum_{n=0}^{\infty} a_k$.

igcap Замечание 2. Числовой ряд $\{a_k\}_{k\geqslant 1}$ называют расходящимся, если $extstyle \lim_{n o\infty} S_n$ или $extstyle \lim_{n o\infty} S_n = \pm\infty$.

Замечание 3. Величину $R_n \stackrel{\triangle}{=} a_{n+1} + a_{n+2} + \dots$ называют n-ым остатком числового ряда $\{a_k\}_{k\geqslant 1}$. При этом, если $S \stackrel{\triangle}{=} \sum_{k=1}^{\infty} a_k$ — сумма числового ряда $\{a_k\}_{k\geqslant 1}$, а она может быть равной $\pm \infty$ или не существовать, то $S = S_n + R_n$. Если же числовой ряд $\{a_k\}_{k\geqslant 1}$ сходится, то $\exists \lim_{n\to\infty} S_n = S$ и $|S| < \infty$, т.е. $\exists \lim_{n\to\infty} R_n = \lim_{n\to\infty} (S - S_n) = S - \lim_{n\to\infty} S_n = S - S = 0$.

Теорема 1. (Необходимый признак сходимости). Если числовой ряд $\{a_k\}_{k\geqslant 1}$ сходится, то $\exists \lim_{n\to\infty} a_k = 0$.

Доказательство. По условию $\exists \lim_{n \to \infty} S_n = S$ и $|S| < \infty$. А так как $a_n = S_n - S_{n-1}$, то $\exists \lim_{n \to \infty} a_n = \lim_{n \to \infty} (S_n - S_{n-1}) = \lim_{n \to \infty} S_n - \lim_{n \to \infty} S_{n-1} = S - S = 0$.

Пример 2. Рассмотрим гармонический ряд с общим членом $a_k = 1/k$. $\exists \lim_{n \to \infty} a_k = 0$, т.е. необходимый признак имеет место и ряд может сходиться. Рассмотрим частную сумму

$$S_{2^{n+1}} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{2^{n+1}} \equiv 1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right) + \dots + \left(\frac{1}{2^n + 1} + \frac{1}{2^n + 2} + \dots + \frac{1}{2^n + 2^n}\right) > 1 + \frac{1}{2} + \frac{2}{2^2} + \frac{2^2}{2^3} + \dots + \frac{2^n}{2^{n+1}} = 1 + \frac{n+1}{2}.$$

Таким образом $\lim_{n\to\infty} S_{2^{n+1}}\geqslant \lim_{n\to\infty} \left(1+\frac{n+1}{2}\right)=\infty$ и рассматриваемый ряд расходится.

Пример 3. Рассмотрим числовой ряд с общим членом $a_k = \alpha_0 q^k$, где $k \geqslant 0$, а α_0 и q – ненулевые конечные фиксированные числа. В этом случае имеем:

 $(|q|<1)\Longrightarrow (\exists\lim_{k\to\infty}a_k=0)$ и ряд может сходиться;

 $(q=+1)\Longrightarrow (\exists \lim a_k=\alpha_0\neq 0)$ и ряд расходится;

 $(q > +1) \Longrightarrow (\exists \lim a_k = +\infty)$ и ряд расходится;

 $(q \leqslant -1) \Longrightarrow (\nexists \lim a_k)$ и ряд расходится.

Если |q|<1, то $S_n=\alpha_0(1+q+\ldots+q^n)=\alpha_0(1-q^{n+1})/(1-q)$ и, как следствие, $\exists\lim_{n\to\infty}S_n=\frac{\alpha_0}{1-q}$ Таким образом рассматриваемый числовой ряд сходится.

Доказательство. Согласно условию $\exists \lim_{n \to \infty} \sum_{k=1}^n a_k = S_a$ и $\exists \lim_{n \to \infty} \sum_{k=1}^n b_k = S_b$. При этом $|S_a| < \infty$ и $|S_b| < \infty$. Таким образом, при $|\lambda| < \infty$ и $|\mu| < \infty$ $\exists \lim_{n \to \infty} \sum_{k=1}^n (\lambda a_k + \mu b_k) = \lambda \lim_{n \to \infty} \sum_{k=1}^n a_k + \mu \lim_{n \to \infty} \sum_{k=1}^n b_k = \lambda S_a + \mu S_b$. А т.к. $|\lambda S_a + \mu S_b| \leq |\lambda| |S_a| + |\mu| |S_b| < \infty$, то теорема доказана полностью.

Следствие из теоремы 2. Линейная комбинация сходящегося и расходящегося числовых рядов расходящийся числовой ряд.

Предварительные рассуждения.

- **1.** $R_N \stackrel{\triangle}{=} S S_N = a_{N+1} + a_{N+2} + \ldots + a_{N+k} + \ldots$, т.е. N-ый остаток числового ряда $\{a_k\}_{k\geqslant 1}$ можно рассматривать как сумму числового ряда с общим членом a_{N+k} , где N фиксированное целое положительное число. Для этого числового ряда $\{a_{N+k}\}_{k\geqslant 1}$ можно рассматривать частные суммы и остатки.
- **2.** Пусть N фиксировано. Рассмотрим частную сумму $S_{N+p} \equiv S_N + (a_{N+1} + \ldots + a_{N+p})$. S_N конечное число, а $\sigma_p^N \stackrel{\triangle}{=} (a_{N+1} + \ldots + a_{N+p})$ p-ая частная сумма числового ряда $\{a_{N+k}\}_{k\geqslant 1}$, то есть p-ая частная сумма N-го остатка исходного ряда. Таким образом, $S_{N+p} = S_N + \sigma_p^N$ и конечные пределы при $p \to +\infty$ для S_{N+p} и σ_p^N либо одновременно существуют, либо нет. Отсюда вытекает следующая теорема.

Теорема 3. Любой числовой ряд сходится или расходится одновременно с любым своим остатком.

Следствие из теоремы 3. Пусть числовой ряд $\{b_j\}_{j\geqslant 1}$ получен из числового ряда $\{a_k\}_{k\geqslant 1}$ путем

 (α) замены в нем конечного числа элементов новыми;

21-HΦ

- (β) отбрасывания или приписывания конечного числа элементов;
- (γ) перестановки в нем конечного числа элементов.
- В этом случае числовые ряды $\{b_j\}_{j\geqslant 1}$ и $\{a_k\}_{k\geqslant 1}$ сходятся или расходятся одновременно.

Знакоположительные числовые ряды

Если $a_k > 0$; $\forall k \geqslant 1$, то $S_n = S_{n-1} + a_n > S_{n-1}$ и последовательность частных сумм знакоположительного числового ряда $\{a_k\}_{k\geqslant 1}$ является монотонно возрастающей. А так как монотонно возрастающая числовая последовательность может иметь конечный предел лишь в случае своей ограниченности, то имеет место следующая теорема.

Теорема 1. Знакоположительный числовой ряд сходится тогда и только тогда, когда монотонно возрастающая последовательность его частных сумм ограничена сверху.

Интегральный признак Коши. Если, начиная с некоторого номера N, члены знакоположительного числового ряда $\{a_k\}_{k\geqslant 1}$ могут быть представлены как значения некоторой непрерывной, положительной, монотонно убывающей функции $f(x): a_k = f(k); \forall \ k \geqslant N$, то

исходный ряд сходится или расходится одновременно с несобственным интегралом $\int\limits_{N}^{\infty}f(x)dx.$

Доказательство. Пусть выполнены условия теоремы. Тогда из свойств площадей объемлемых и объемлющих плоских фигур следует (см. рис. 30):

$$\sigma_{N+1}^k \stackrel{\triangle}{=} a_{N+1} + \ldots + a_{N+k} < \int_{N}^{N+k} f(x)dx < a_N + \sigma_{N+1}^{k-1} \equiv a_N + a_{N+1} + \ldots + a_{N+k-1},$$

где σ_{N+1}^m - m-ая частная сумма остатка R_{N+1} исходного ряда.

- (α) . Пусть рассматриваемый интеграл сходится. Тогда $\sigma_{N+1}^k < \int\limits_N^{N+n} f(x) dx < \int\limits_N^\infty f(x) dx < \infty, \ \forall \ k \geqslant 1$ и, согласно теореме 1 и теореме об остатках, исходный ряд сходится.
- (β). Пусть рассматриваемый интеграл расходится. Но тогда из неравенства $\int_N f(x)dx < a_N + \sigma_{N+1}^k$, справедливого $\forall k \geqslant 1$ следует монотонное неограниченное возрастание знакоположительной числовой последовательности $\{\sigma_{N+1}^k\}_{k\geqslant 1}$, т.е. расходимость остатка R_{N+1} и, как следствие (см. теорему об остатках), расходимость исходного ряда.
- (γ) . Пусть сходится исходный числовой ряд. Тогда одновременно с ним сходятся и все его остатки, т.е. $a_N + \sigma_{N+1}^{k-1} \leqslant b < \infty$, и, как следствие, имеют место неравенства $\int\limits_N^{N+k} f(x) dx < a_N + \sigma_{N+1}^{k-1} < b < \infty$, из которых и следует сходимость рассматриваемого несобственного интеграла.
- (δ) . Пусть исходный числовой ряд расходится. Тогда $\sigma_{N+1}^k \to \infty$ при $k \to \infty$ и из неравенства $\sigma_{N+1}^k < \int\limits_N^{N+k} f(x) dx$ следует расходимость рассматриваемого несобственного интеграла.

Пример 1. Пусть $a_k = \frac{1}{k^{\lambda}}$, $\forall k \geqslant 1$. При $\lambda = 1$ имеем расходящийся гармонический ряд, а при $\lambda \leqslant 0$ числовой ряд $\{a_k\}_{k\geqslant 1}$ расходится по необходимому признаку. Рассмотрим случай $(\lambda > 0) \land (\lambda \neq 1)$:

$$\int\limits_{-\infty}^{\infty}\frac{dx}{x^{\lambda}}=\frac{x^{1-\lambda}}{1-\lambda}\left|_{1}^{\infty}-\text{сходится при }\lambda>1\text{ и расходится при }0<\lambda<1.$$

Таким образом знакоположительный числовой ряд $\left\{\frac{1}{k^{\lambda}}\right\}_{k\geqslant 1}$ сходится при $\lambda>1$ и расходится при $\lambda\leqslant 1$.

Пример 2. Пусть $a_k = \frac{1}{k(\ln k)^{\mu}}$, где $k \geqslant 2$. В этом случае

$$\int_{2}^{\infty} \frac{dx}{x(\ln x)^{\mu}} = \int_{2}^{\infty} \frac{d\ln x}{(\ln x)^{\mu}} = \left\{ y = \ln x \right\} = \int_{\ln 2}^{\infty} \frac{dy}{y^{\mu}}.$$

Таким образом (см. пример 1) знакоположительный числовой ряд $\left\{\frac{1}{k(\ln k)^{\mu}}\right\}_{k\geqslant 2}$ сходится при

 $\mu > 1$ и расходится при $\mu \leqslant 1$.

Признак сравнения. Пусть $\{a_n\}_{n\geqslant 1}$ и $\{b_n\}_{n\geqslant 1}$ – два знакоположительных числовых ряда и $\exists \ N\geqslant 1 : \forall \ n\geqslant N \ a_n\geqslant b_n$. В этом случае из сходимости ряда $\{a_n\}_{n\geqslant 1}$ следует сходимость ряда $\{b_n\}_{n\geqslant 1}$, а из расходимости ряда $\{b_n\}_{n\geqslant 1}$ следует расходимость ряда $\{a_n\}_{n\geqslant 1}$.

Доказательство. По условию $\forall p \geqslant 1$ имеем $\sum_{k=N}^{N+p} a_k \geqslant \sum_{k=N}^{N+p} b_k$.

lpha). Если знакоположительный числовой ряд $\{a_n\}_{n\geqslant 1}$ – сходится, то $\sum_{k=N}^{N+p}b_k\leqslant \sum_{k=N}^{N+p}a_k<\sum_{k=N}^{\infty}<\infty.$

Таким образом, последовательность частных сумм для знакоположительного числового ряда $\{b_k\}_{n\geqslant 1}$, монотонно возрастая, ограничена сверху, т.е. она имеет конечный предел и ряд $\{b_k\}_{k\geqslant 1}$ – сходится.

eta). Если ряд $\{b_n\}_{n\geqslant 1}$ расходится, то $\sum_{k=N}^{N+p} a_k \geqslant \sum_{k=N}^{N+p} b_k \to \infty$ и ряд $\{a_n\}_{n\geqslant 1}$ – расходится.

Пример 1. $b_n = \frac{1}{n^2} \sin^2 n \leqslant \frac{1}{n^2} = a_n$. Ряд $\{a_n\}_{n\geqslant 1}$ сходится как ряд $\left\{\frac{1}{k^{\lambda}}\right\}_{k\geqslant 1}$ при $\lambda = 2 > 1$, т.е. и ряд $\{b_n\}_{n\geqslant 1}$ сходится.

Замечание к признаку сравнения. Если $\exists \lim_{n\to\infty} \frac{a_n}{b_n} = q \in (0,\infty)$, то ряды $\{a_n\}_{n\geqslant 1}$ и $\{b_n\}_{n\geqslant 1}$ сходятся или расходятся одновременно.

Доказательство. Как известно их курса математического анализа

 $\left(\exists \lim_{n \to \infty} \frac{a_n}{b_n} = q \in (0; \infty) \right) \Longleftrightarrow \left((\forall \, \varepsilon > 0) (\exists \, N(\varepsilon) > 0) : (n \geqslant N(\varepsilon)) \Longrightarrow \left(|a_n/b_n - q| < \varepsilon \right).$ Полагаем $\varepsilon = q/2$. Тогда $\forall \, n \geqslant N(q/2)$ имеем:

$$\left(\left|\frac{a_n}{b_n} - q\right| < \frac{q}{2}\right) \Longleftrightarrow \left(\frac{q}{2} < \frac{a_n}{b_n} < \frac{3q}{2}\right) \Longleftrightarrow \left\{\begin{array}{l} a_n < 1, 5q \ b_n & (*) \\ a_n > 0, 5q \ b_n & (**) \end{array}\right\} \text{ T.e.}$$

21-Hゆ

согласно (*) из сходимости ряда $\{b_n\}_{n\geqslant 1}$ следует сходимость ряда $\{a_n\}_{n\geqslant 1}$, а из расходимости ряда $\{a_n\}_{n\geqslant 1}$ следует расходимость ряда $\{b_n\}_{n\geqslant 1}$;

согласно (**) из сходимости ряда $\{a_n\}_{n\geqslant 1}$ следует сходимость ряда $\{b_n\}_{n\geqslant 1}$, а из расходимости ряда $\{b_n\}_{n\geqslant 1}$ следует расходимость ряда $\{a_n\}_{n\geqslant 1}$.

Пример 2. Ряд с общим членом $a_n = \left(1 - \cos\frac{1}{n}\right) = 2n\sin^2\frac{1}{n}$ расходится, т.к. ряд с общим членом $b_n = \frac{1}{n}$ расходится и $\lim_{n \to \infty} a_n/b_n = \lim_{n \to \infty} 2n^2\sin^2\frac{1}{n} = 2 \in (0; \infty)$.

Признак де'Аламбера. Если существует $N\geqslant 1$ и для любого $n\geqslant N$ имеет место неравенство $a_{n+1}/a_n\leqslant q<1$, то знакоположительный числовой ряд $\{a_k\}_{k\geqslant 1}$ сходится и расходится, если $a_{n+1}/a_n\geqslant q>1$.

Доказательство.

- (α) . Если $\forall n \geqslant N \geqslant 1$ имеет место неравенство $a_{n+1}/a_n \leqslant q < 1$, то $a_{N+1} \leqslant q \ a_N, a_{N+2} \leqslant q \ a_{N+1} \leqslant q^2 \ a_N, \dots, a_{N+p} \leqslant q^p \cdot a_N$. А так как a_N const и 0 < q < 1, то рассматриваемый числовой ряд $\{a_k\}_{k\geqslant 1}$ сходится по признаку сравнения со сходящейся геометрической прогрессией.
- (β) . Если q>1, $a_{N+p}\geqslant q^p\,a_N$ и ряд расходится по признаку сравнения с расходящейся геометрической прогрессией.

Замечание к признаку де'Аламбера. Если $\exists \lim_{n\to\infty} \frac{a_{n+1}}{a_n} = q$ и q<1, то ряд $\{a_k\}_{k\geqslant 1}$ сходится; если q>1, то ряд расходится; если же q=1, то необходимы дополнительные исследования.

4

ИГТУ ФН-12 МГТУ ФН-1

Доказательство.

$$\left(\exists \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 1\right) \Longleftrightarrow \left((\forall \, \varepsilon > 0)(\exists \, N(\varepsilon) > 0) \, : \, (n \geqslant N(\varepsilon)) \Longrightarrow \left|\frac{a_{n+1}}{a_n} - q\right| < \varepsilon\right) \Longleftrightarrow (q - \varepsilon < a_{n+1}/a_n < q + \varepsilon).$$

Если 0 < q < 1, то выбираем $\varepsilon = (1-q)/2$. Тогда $a_{n+1}/a_n < (q+1)/2 < 1$ и ряд $\{a_k\}_{k\geqslant 1}$ сходится по признаку де'Аламбера.

Если q>1, то выбираем $\varepsilon=(q-1)/2$. Тогда $a_{n+1}/a_n>(q+1)/2>1$ и ряд $\{a_k\}_{k\geq 1}$ расходится по признаку де'Аламбера.

Пример 3.
$$\left(a_n = \frac{3^n \cdot n!}{n^n}\right) \Rightarrow \left(a_{n+1} = \frac{3^{n+1}(n+1)!}{(n+1)^{n+1}}\right) \Rightarrow \left(\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{3^{n+1} \cdot n! \cdot (n+1)}{(n+1)^{n+1}} \times \frac{n^n}{3^n \cdot n!} = \lim_{n \to \infty} \frac{3n^n}{(n+1)^n} \equiv 3\lim_{n \to \infty} 1 / \left(1 + \frac{1}{n}\right)^n = \frac{2}{e} > 1\right)$$
 и ряд $\{a_n\}_{n \geqslant 1}$ расходится.

Признак Коши (с радикалом). Если существует $N \geqslant 1$ такой, что для любого $n \geqslant N$ имеет место неравенство $\sqrt[n]{a_n} \leqslant q < 1$, то ряд $\{a_n\}_{n\geqslant 1}$ сходится, если $\sqrt[n]{a_n} \geqslant q > 1$, то исходный ряд расходится.

Доказательство. Следует из очевидных неравенств: (α) $a_n \leqslant q^n$, где и q < 1; (β) $a_n \geqslant q^n$, где q > 1 и признаков сравнения.

Замечание к признаку Коши (с радикалом). Если $\exists \lim_{n\to\infty} \sqrt[n]{a_n} = q$, то при q < 1 ряд $\{a_n\}_{n\geqslant 1}$ сходится и расходится при q > 1.

Доказательство. $\left(\exists \lim_{n\to\infty} \sqrt[n]{a_n} = q\right) \Longleftrightarrow \left((\forall \varepsilon > 0)(\exists N(\varepsilon) > 0) : n \geqslant N(\varepsilon) \Rightarrow |\sqrt[n]{a_n} - q| < \varepsilon\right) \Longleftrightarrow \left((q-\varepsilon)^n < a_n < (q+\varepsilon)^n\right)$ — дальнейшее как и при доказательстве замечания к признаку де'Аламбера.

Пример 4.
$$\left(a_n = \frac{n^n}{(3n+4)^{n/2}}\right) \Rightarrow \lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \frac{n}{\sqrt{3n+4}} = \infty$$
 и ряд $\{a_n\}_{n\geqslant 1}$ расходится.

Знакопеременные числовые ряды — ряды, элементами которых являются вещественные числа, имеющие любой знак. Если элементы ряда последовательно изменяют знак, то ряд называют знакочередующимся.

Теорема Лейбница. Если $a_1 > a_2 > \ldots > a_k > a_{k+1} > \ldots > 0$ и $\lim_{n \to \infty} a_n = 0$, то знакочередующийся числовой ряд $\{(-1)^{k+1}a_k\}_{k\geqslant 1}$ сходится и его сумма $S < a_1$.

Доказательство.
$$S_{2n} = \sum_{k=1}^{2n} (-1)^k a_k \equiv (a_1 - a_2) + (a_3 - a_4) + \ldots + (a_{2n-1} - a_{2n}) > 0$$
, т.к. $a_{2k-1} > a_{2k}$.

Таким образом последовательность $\{S_{2n}\}$ является знакоположительной и монотонно возрастает. При этом $S_{2n} \equiv a_1 - (a_2 - a_3) - (a_4 - a_5) - \ldots - (a_{2n-2} - 2_{2n-1}) - a_{2n} < a_1$, т.к. $a_{2k} > a_{2k+1}$. Таким образом $\exists \lim_{n \to \infty} S_{2n} = S < a_1$.

С другой стороны
$$S_{2n+1} = S_{2n} + a_{2n+1}$$
 и $\exists \lim_{n \to \infty} a_{2n+1} = 0$, т.е. $\exists \lim_{n \to \infty} S_{2n+1} = \lim_{n \to \infty} S_{2n} = S < a_1$.

Пример 5. Знакочередующийся числовой ряд с общим членом $a_n = \frac{(-1)^{n+1}}{n}$ сходится, т.к.

$$\lim_{n \to \infty} |a_n| = \lim_{n \to \infty} \frac{1}{n} = 0 \text{ if } |a_n| = \frac{1}{n} > \frac{1}{n+1} = |a_{n+1}|.$$

Определение. Знакопеременный числовой ряд $\{b_n\}_{n\geqslant 1}$ называют абсолютно сходящимся, если сходится знакоположительной числовой ряд $\{|b_n|\}_{n\geqslant 1}$. При этом, если ряд $\{|b_n|\}_{n\geqslant 1}$ расходится, а ряд $\{b_n\}_{n\geqslant 1}$ сходится, то говорят, что исходный числовой ряд $\{|b_n|\}_{n\geqslant 1}$ сходится "условно".

Пример 6.

 (α) Знакочередующийся числовой ряд с общим членом $a_n = (-1)^n/n$ сходится "условно", т.к. он

ФH-12

Δ۲-ΗΦ

MLTY

ИГТУ ФН-12 МГТУ ФН-12

сходится, а знакоположительный числовой ряд $\{1/n\}_{n\geqslant 1}$ расходится.

(β) Знакочередующийся числовой ряд с общим членом $a_n = (-1)^n/n^2$ сходится абсолютно, т.к. сходится знакоположительный числовой ряд $\{1/n^2\}_{n\geqslant 1}$.

О структуре абсолютно и условно сходящихся радов.

Пусть $\{a_k\}_{k\geqslant 1}$ — знакопеременный числовой ряд. Далее рассмотрим числовые ряды, представленные своими общими членами:

 $(I) a_n ; (II) |a_n| ;$

$$(III) \ b_n \stackrel{\triangle}{=} \frac{1}{2} \{ |a_n| + a_n \} \equiv \left\{ \begin{array}{ccc} a_n & ; & a_n > 0 \\ 0 & ; & a_n < 0 \end{array} \right\} \ ;$$

$$(IV) \ c_n \stackrel{\triangle}{=} \frac{1}{2} \{ |a_n| - a_n \} \equiv \left\{ \begin{array}{ccc} 0 & ; & a_n > 0 \\ |a_n| & ; & a_n < 0 \end{array} \right\}.$$

При этом

$$(A) a_n = b_n - c_n \text{ if } |a_n| = b_n + c_n ;$$

(Б)
$$b_n \leqslant |a_n|$$
 и $c_n \leqslant |a_n|$.

Если ряд $\{|a_n|\}_{n\geqslant 1}$ сходится, то, по признаку сравнения, согласно (Б), сходятся знакоположительные числовые ряды $\{b_n\}_{n\geqslant 1}$, $\{c_n\}_{n\geqslant 1}$ и, согласно (А), сходится ряд $\{a_n\}_{n\geqslant 1}$ как их линейная комбинация. Таким образом абсолютно сходящийся числовой ряд — сходится.

Если одновременно сходятся ряды $\{c_n\}_{n\geqslant 1}$ и $\{b_n\}_{n\geqslant 1}$, то, согласно (A), сходятся и ряды $\{a_n\}_{n\geqslant 1}$ и $\{|a_n|\}_{n\geqslant 1}$.

Если ряд $\{a_n\}_{n\geqslant 1}$ — сходится, а ряд $\{|a_n|\}_{n\geqslant 1}$ — расходится, то ряды $\{b_n\}_{n\geqslant 1}$ и $\{c_n\}_{n\geqslant 1}$ не могут сходиться одновременно, а могут лишь одновременно расходиться.

Если ряд $\{b_n\}_{n\geqslant 1}$ – сходится, а ряд $\{a_n\}_{n\geqslant 1}$ – расходится или наоборот, то расходятся и числовые ряды $\{a_n\}_{n\geqslant 1}$ и $\{|a_n|\}_{n\geqslant 1}$.

Пример 7. $S = 1 - (2/3)^2 - (3/5)^3 + (4/7)^4 + (5/9)^5 + \ldots + (-1)^{\frac{n(n+1)}{2}} \cdot (n/(2n-1))^n + \ldots$ не является знакочередующимся и теорему Лейбница использовать нельзя. Но

 $\exists \lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} \frac{n}{2n-1} = \frac{1}{2} < 1$, т.е. исходный ряд сходится абсолютно.

Пример 8. $S = 1 - \frac{1}{5} + \frac{1}{2} - \frac{1}{5^2} + \ldots + \frac{1}{n} - \frac{1}{5^n} + \ldots$ – нарушается условие монотонности

 $|a_n| > |a_{n+1}|, \ \forall \ n \geqslant 1, \ \text{т.e.}$ теорему Лейбница использовать нельзя. Но

числовой ряд с общим членом $a_{2k-1}=\frac{1}{k}$ — расходится = — исходный ряд расходится по теореме числовой ряд с общим членом $a_{2k}=-\frac{1}{5^n}$ — сходится

о структуре абсолютно и условно сходящихся рядов.

41-12

Теорема 1. Линейная комбинация абсолютно сходящихся числовых рядов $\{a_k\}_{k\geqslant 1}$ и $\{b_k\}_{k\geqslant 1}$ – абсолютно сходящийся числовой ряд.

Доказательство следует из очевидного неравенства $|\lambda| a_k + \mu|b_k| \le |\lambda| \cdot |a_k| + |\mu| \cdot |b_k|$ и признака сравнения.

Теорема 2. Сумма абсолютно сходящегося числового ряда не изменится ни при какой перестановке его элементов (сумма не зависит от способа суммирования).

 $\begin{subarray}{ll} $\mathcal{A}oкaзameльcmвo$ следует из теоремы о структуре абсолютно и условно сходящихся рядов. \end{subarray}$

Числовые ряды в С

Определение. Пределом комплексной числовой последовательности $\{z_k\}$ называют комплексное число z и пишут $\lim_{k\to\infty}z_k=z$, если для любого $\varepsilon>0$ существует $N(\varepsilon)\geqslant 1$ такое, что для любого $n\geqslant N(\varepsilon)$ имеет место неравенство $|z_n-z|<\varepsilon$.

6

Замечание 1. Пусть $z_k = x_k + iy_k, \ \forall \ k \geqslant 0$. Тогда очевидны неравенства:

 $\left\{ \begin{array}{l} |x_k-x_0| \\ |y_k-y_0| \end{array} \right\} \leqslant \sqrt{(x_k-x_0)^2+(y_k-y_0)^2} = |z_k-z_0| \leqslant |x_k-x_0|+|y_k-y_0|, \text{ из которых непосредственно} \right.$

вытекает следующее утверждение: $\{\exists \lim_{n\to\infty} z_k = z_0\} \iff \{\exists \lim_{n\to\infty} x_n = x_0\} \land \{\exists \lim_{n\to\infty} y_k = y_0\}.$

Замечание 2. Если $z_k = x_k + iy_k$ - общий член комплексного числового ряда $\{z_k\}_{k\geqslant 1}$ с частной суммой $S_n = z_1 + \ldots + z_n, \ n\geqslant 1$ и $S_n^x \stackrel{\triangle}{=} \sum_{k=1}^n x_k, \ S_n^y = \sum_{k=1}^n y_k$ - n-ые частные суммы вещественных числовых рядов $\{x_k\}_{k\geqslant 1}$ и $\{y_k\}_{k\geqslant 1}$ соответственно, то $S_n = S_n^x + iS_n^y$. Поэтому, согласно замечанию 1 и определению сходящегося числового ряда, можно утверждать, что комплексный числовой ряд $\{z_k\}_{k\geqslant 1}$ сходится тогда и только тогда, когда одновременно сходятся вещественные числовые ряды $\{x_k\}_{k\geqslant 1}$ и $\{y_k\}_{k\geqslant 1}$.

Пример 1. Комплексный числовой ряд с общим членом $z_k = \frac{k^3 + ik^3 + 1}{k^2(k^3 + 1)} = \frac{1}{k^2} + i\frac{k}{k^3 + 1}$ сходится, т.к. одновременно сходятся вещественные числовые ряды с общими членами $x_k = \operatorname{Re} z_k = \frac{1}{k^2}$ и $y_k = \operatorname{Im} z_k = \frac{k}{k^3 + 1} \sim \frac{1}{k^2}.$

Замечание 3. Так как $\begin{vmatrix} x_k | \leqslant |z_k| \leqslant |x_k| + |y_k| ; \\ |y_k| \leqslant |z_k| \leqslant |x_k| + |y_k| \end{aligned}$, то комплексный числовой ряд $\{z_k\}_{k\geqslant 1}$ сходится абсолютно, т.е. сходится знакоположительный числовой ряд $\{|z_k|\}_{k\geqslant 1}$, тогда и только тогда, когда абсолютно сходятся вещественные числовые ряды $\{x_k\}_{k\geqslant 1}$ и $\{y_k\}_{k\geqslant 1}$.

Пример 2. Комплексный числовой ряд с общим членом $z_k = \frac{i^k}{\sqrt{k}} = \left\{ \begin{array}{l} (-1)^n/\sqrt{2n} \; ; \; k=2n \\ i(-1)^n/\sqrt{2n+1} \; ; \; k=2n+1 \end{array} \right\}$ сходится условно.

Пример 3. Если $z_k = (k+i)^k / (2k-i)^k$, то $\exists \lim_{k \to \infty} \sqrt[n]{|z_n|} = \lim_{n \to \infty} \frac{|n+i|}{|2n-i|} = \lim_{n \to \infty} \sqrt{\frac{n^2+1}{4n^2+1}} = \frac{1}{2} < 1$ и ряд $\{z_k\}_{k\geqslant 1}$ сходится абсолютно.

ФУНКЦИОНАЛЬНЫЕ РЯДЫ

Определение 1. Пусть $a_k = a_k(x)$, $\forall k \geqslant 1$ — скалярная функция, определенная на некотором множестве Ω . Тогда $\{a_k(x)\}_{k\geqslant 1}$ — функциональный ряд с общим членом $a_k(x)$, $x\in\Omega$. При этом совокупность значений аргумента, при каждом из которых соответствующий числовой ряд сходится, называют областью D сходимости исходного функционального ряда.

Пример 1. Пусть $\Omega = \mathbb{R}^1$ и общий член рассматриваемого функционального ряда $a_k(x) \stackrel{\triangle}{=} (x+1)^k/k$, $\forall k \geqslant 1$. Если |x+1| > 1, то есть $(x>0) \land (x<-2)$, то рассматриваемый ряд расходится по необходимому признаку; если |x+1| < 1, то $|a_k(x)| = |x+1|^k/k < |x+1|^k$ и ряд $\{|a_k(x)|\}_{k\geqslant 1}$ сходится по признаку сравнения со сходящейся геометрической прогрессией, т.е. при $x \in (-2;0)$ исходный ряд сходится абсолютно; числовой ряд с общим членом $a_k(0) = 1/k$ расходится, а числовой ряд с общим членом $a_k(-2) = (-1)^k/k$ сходится условно. Таком образом $D = \{x : -1 \leqslant x < 0\}$.

Определение 2. Говорят, что функциональный ряд $\{a_k(x)_{k\geqslant 1} \text{ сходится равномерно на множестве } M \subset D \subset \Omega$, если $(\forall \varepsilon > 0)$ $(\exists N(\varepsilon) \geqslant 1)$: $|S(x) - S_n(x)| < \varepsilon$, $(\forall n \geqslant N(\varepsilon)) \land (\forall x \in M)$.

ΦH-12

 $\mathbf{NL}^{T}\mathbf{L}$

Δ۲-ΗΦ

 $MLL\lambda$

Рис.30а

Пример 2. Пусть $\Omega = \{x \in \mathbb{R}^1 : 0 \leqslant x \leqslant 1\}; \ a_k(x) \stackrel{\triangle}{=} \left\{ \begin{array}{l} x \\ x^n - x^{n-1} \end{array} ; \begin{array}{l} k = 1 \\ k > 1 \end{array} \right\}.$ $S_n(x) = x + (x^2 - x) + (x^3 - x^2) + \ldots + (x^n - x^{n-1}) = x^n \equiv \left\{ \begin{array}{l} 0 \ ; \quad x = 0 \\ x^n \ ; \quad 0 < x < 1 \end{array} \right\}$ и $\exists \lim_{n \to \infty} S_n(x) = S(x) \equiv \left\{ \begin{array}{l} 0 \ ; \quad 0 \leqslant x < 1 \\ 1 \ ; \quad x = 1 \end{array} \right\}.$ Но тогда $|S(x) - S_n(x)| = \left\{ \begin{array}{l} |x|^n \ ; \quad 0 < x < 1 \\ 0 \ ; \quad x = 1 \text{ и } x = 0 \end{array} \right\} < \varepsilon \Rightarrow (|x|^n < \varepsilon) \Rightarrow \left(n > \ln \varepsilon / \ln |x| \equiv N(\varepsilon, x) \right),$ т.е исходный ряд сходится, но не равномерно.

Признак Вейерштрасса. Если на множестве $M \subset D$ для функционального ряда $\{a_k(x)\}_{k\geqslant 1}$ существует мажоранта $\{b_k\}_{k\geqslant 1}$, т.е. $|a_k(x)|\leqslant b_k, \ \forall \ k\geqslant 1, \ \forall \ x\in M$ и знакоположительный числовой ряд $\{b_k\}_{k\geqslant 1}$ сходится, то ряд $\{a_k(x)\}_{k\geqslant 1}$ сходится на множестве $M\subset D$ абсолютно и равномерно.

 $\overline{\mathcal{A}}$ оказательство. Пусть выполнены условия теоремы. Тогда $|a_k(x)| < b_k, (\forall \ k \geqslant 1) \land (\forall \ x \in M \subset D)$. А так как ряд $\{b_k\}_{k\geqslant 1}$ сходится, то по признаку сравнения в каждой точке $x \in M$ исходный функциональный ряд сходится абсолютно.

Пусть $R_n(x) \stackrel{\triangle}{=} a_{n+1}(x) + \ldots + a_{n+m}(x) + \ldots$ - n-ый остаток исходного функционального ряда и $\sigma_{n+m}(x) \stackrel{\triangle}{=} a_{n+1}(x) + \ldots + a_{n+m}(x)$ - m-ая частная сумма этого n-го остатка.

Так как ряд $\{a_k(x)\}_{k\geqslant 1}$ сходится на $M\subset D$ абсолютно, то он сходится на $M\subset D$ и $\sigma_{nm}(x)\to R_n(x)$ при $m\to\infty$ $\forall x\in M\subset D$. А так как знакоположительный числовой ряд $\{b_k\}_{k\geqslant 1}$ сходится, то

 $(\forall \ \varepsilon > 0)(\exists \ N(\varepsilon) \geqslant 1) : b_{n+1} + \ldots + b_{n+m} \leqslant \sum_{k=1}^{\infty} b_{n+k} < \varepsilon, \ \forall \ n \geqslant N(\varepsilon) \land \ \forall \ m \geqslant 1.$ Таким образом, $(\forall n \geqslant N(\varepsilon)) \land (\forall x \in M) \land (\forall \ m \geqslant 1) \ |\sigma_{nm}(x)| \leqslant |a_{n+1}(x)| + \ldots + |a_{n+m}(x)| \leqslant b_{n+1} + \ldots + b_{n+m} < \varepsilon, \ \forall m \geqslant 1,$ т.е. $|R_n(x)| = \lim_{m \to \infty} \sigma_{nm}(x)| < \varepsilon, (\forall \ n \geqslant N(\varepsilon)) \land (\forall \ x \in M)$, что и требовалось доказать.

Пример 3. Ряд с общим членом $a_n(x) \stackrel{\triangle}{=} x^n/n^2$ при $|x| \leqslant 1$ сходится равномерно, так как в рассматриваемом случае $|a_k(x)| \leqslant 1/k^2, \ \forall \ k \geqslant 1$ и знакоположительный числовой ряд $\{1/k^2\}_{k\geqslant 1}$ сходится.

Свойства равномерно сходящихся рядов

- 1. Если $\forall k \geqslant 1$ функция $a_k(x)$ непрерывна на $M \subset D$ и на M равномерно сходится функциональный ряд $\{a_k(x)\}_{k\geqslant 1}$, то его сумма S(x) непрерывна на M (см. пример 2).
- **2.** Сумму S(x) равномерно сходящегося на $M \subset D$ функционального ряда $\{a_k(x)\}_{k\geqslant 1}$ непрерывных (дифференцируемых) на $M \subset D$ функций $a_k(x), k\geqslant 1$, можно почленно интегрировать (дифференцировать) на M.

Определение 3. Если $a_k(x) = \alpha_k \cdot (x - x_0)^k$; $\forall k \ge 0$, где α_k – вещественное или комплексное число, то функциональный ряд $\{\alpha_k \cdot (x - x_0)^k\}_{k \ge 0}$ называют степенным рядом.

Замечание 1. Заменой $t \stackrel{\triangle}{=} x - x_0$ степенной ряд $\{\alpha_k \cdot (x - x_0)^k\}_{k \geqslant 0}$ всегда может быть приведен к стандартному виду $\{\alpha_k \ t^k\}_{k \geqslant 0}$.

МГТУ ФН-12 МГТУ ФН-12 МГТ

Определение 4. Интервалом сходимости вещественного степенного ряда $\{\alpha_k \, x^k\}_{k\geqslant 0}$ называют множество $(-R;+R)\subset \mathbb{R}^1$, в каждой точке которого исходный ряд сходится абсолютно и расходится при |x|>R, где R называют радиусом сходимости.

Замечание 2. Существование интервала сходимости следует из теоремы Абеля, которую мы сформулируем и докажем для комплексных степенных рядов. На данном этапе ограничимся следующими формальными рассуждениями.

По признаку Д'Аламбера, формально имеем:

 $\lim_{k \to \infty} \left| \frac{a_{k+1}(x)}{a_k(x)} \right| = |x| \lim_{k \to \infty} \frac{|\alpha_{k+1}|}{|\alpha_k|} < 1, \text{ т.е. ряд } \{\alpha_k \cdot x^k\}_{k \geqslant 0} \text{ сходится абсолютно при } |x| < R = \lim_{k \to \infty} \left| \frac{\alpha_k}{\alpha_{k+1}} \right|$ и расходится при |x| > R — см. так же пример 1. Если использовать признак Коши с радикалом, то $R = 1/\lim_{k \to \infty} \sqrt[k]{|\alpha_k|}$.

Пример 4. Если $\alpha_k(x) = \frac{x^k}{k+1}$, то $R = \lim_{k \to \infty} \frac{k+2}{k+1} = 1$. Таким образом ряд $\left\{\frac{x^k}{k+1}\right\}_{k \geqslant 0}$ сходится

абсолютно при |x| < 1 и расходится при |x| > 1. $a_k(-1) = \frac{(-1)^k}{k+1}$ и $a_k(+1) = \frac{1}{k+1}$, то есть при x = -1 рассматриваемый ряд сходится условно, а при x = +1 он расходится.

Пример 5. Если $a_k(x) = x^k/k!$, то $\alpha_k = 1/k!$ и $R = \lim_{k \to \infty} \frac{(k+1)!}{k!} = \infty$ и функциональный ряд $\{x^k/k!\}_{k\geqslant 0}$ сходится абсолютно при $|x| < R = \infty$.

Основные утверждения о степенных рядах

I. Если R>0 – радиус сходимости степенного ряда $\{\alpha_k \ x^k\}_{k\geqslant 0}$, то этот ряд будет сходиться равномерно на любом отрезке $[-r;+r]\subset (-R;+R)$.

Доказательство. Если 0 < r < R, то при |x| = r исходный ряд сходится абсолютно, т.е. сходится знакоположительный числовой ряд $\{|\alpha_k| \, r^k\}$. Но тогда при любом $x \in [-r; r]$ имеем $|x| \leqslant r$, т.е. $|\alpha_k| x^k = |\alpha_k| \, |x|^k \leqslant |\alpha_k| \, r^k$ и осталось воспользоваться т. Вейерштрасса.

II. Сумму S(x) степенного ряда $\{\alpha_k x^k\}_{k\geqslant 0}$ с радиусом сходимости R>0 можно почленно дифференцировать в интервале сходимости произвольное число раз. При этом все производные степенные ряды имеют тот же радиус сходимости R.

Доказательство. Согласно утверждению I исходный ряд сходится равномерно на любом отрезке $[-r;r] \subset (-R;R)$ и его сумму можно почленно дифференцировать. Пусть $\{\beta_k \ x^k\}_{k\geqslant 0}$ — производный степенной ряд, т.е. $\beta_k = (k+1) \ \alpha_{k+1}, \forall \ k\geqslant 0$. Таким образом $R = \lim_{k\to\infty} \frac{|\alpha_k|}{|\alpha_{k+1}|} \equiv \lim_{k\to\infty} \frac{k \ |\alpha_k|}{(k+1)|\alpha_{k+1}|} = \lim_{k\to\infty} \frac{|\beta_{k-1}|}{|\beta_k|}$, что и требовалось доказать.

Пример 1. $\sum_{k=0}^{\infty} x^k = \frac{1}{(1-x)}$ при |x| < 1. Тогда $\left(\frac{1}{1-x}\right)' = \left(\sum_{k=0}^{\infty} x^k\right)'$, то есть при |x| < 1

$$\frac{1}{(1-x)^2} = \sum_{k=0}^{\infty} k \, x^{k-1} \, . \, \text{При } |x| < 1 \Longleftrightarrow \sum_{k=1}^{\infty} k \, x^{k-1} = \frac{1}{(1-x)^2}.$$

Полагая n = k - 1, т.е k = n + 1, получаем:

$$\frac{1}{(1-x)^2} = \sum_{n=0}^{\infty} (n+1)x^n \text{ при } |x| < 1. \text{ Далее имеем: } \left(\frac{1}{(1-x)^2}\right)' = \left(\sum_{n=0}^{\infty} (n+1)x^n\right)' = \sum_{n=0}^{\infty} n(n+1)x^{n-1}.$$

Таким образом $\sum_{n=1}^{\infty} n(n+1) x^{n-1} = \frac{2}{(1-x)^3}$, при |x| < 1. Полагаем m = n-1, т.е. n = m+1. Тогда

$$\sum_{m=0}^{\infty} (m+1)(m+2)x^m = \frac{2}{(1-x)^3} \text{ при } |x| < 1 \text{ и т.д.}$$

TY OH-12

Δ۲-ΗΦ

MLLX

МГТУ ФН-12 МГТУ ФН-12

III. Сумму степенного ряда $\{\alpha_k \ x^k\}_{k\geqslant 0}$ с радиусом сходимости R>0 можно почленно интегрировать в интервале сходимости произвольное число раз. При этом полученный степенной ряд имеет тот же радиус сходимости R.

 \mathcal{A} оказательство. Согласно I исходный степенной ряд сходится равномерно на любом отрезке $[-r;r] \subset (-R;R)$ и допустимо почленное интегрирование его суммы. Пусть $\{\beta_n \ x^n\}_{n\geqslant 0}$ — новый степенной ряд, полученный путем интегрирования исходного ряда при |x| < R:

$$\int\limits_0^x\alpha_k\ x^kdx = \frac{\alpha_k\ x^{k+1}}{k+1}, \quad \text{т.e.} \qquad \beta_k = \frac{\alpha_{k-1}}{k} \quad \text{и} \quad \beta_{k+1} = \frac{\alpha_k}{k+1}. \qquad \text{Ho тогда}$$

$$R = \lim_{k \to \infty} \frac{|\alpha_k|}{|\alpha_{k+1}|} = \lim_{k \to \infty} \frac{(k+1)|\beta_{k+1}|}{(k+2)|\beta_{k+2}|} = \lim_{k \to \infty} \frac{|\beta_{k+1}|}{|\beta_{k+2}|}$$
, что и требовалось доказать.

Пример 2.
$$\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}$$
 при $|x| < 1$. Тогда $\int_0^x \frac{dx}{1-x} = \int_0^x \sum_{k=0}^{\infty} x^k \ dx; \ |x| < 1$, то есть

$$-\ln(1-x) \ = \ \sum_{k=0}^{\infty} \int\limits_{0}^{x} x^k dx \ = \ \sum_{k=0}^{\infty} \frac{1}{k+1} \ x^{k+1}, \ |x| \ < \ 1. \ \text{ Если } n \ = \ k+1, \ \text{то} \ \sum_{n=1}^{\infty} \frac{1}{n} \ x^n \ = \ -\ln(1-x)$$
при $|x| \ < \ 1.$

Ряд Тейлора

І. Пусть функция y = f(x) определена и бесконечно дифференцируема в интервале $(a; b) \subset \mathbb{R}^1$. Если $x_0 \in (a; b)$, то по формуле Тейлора имеем:

$$f(x) = f(x_0) + \sum_{k=1}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + R_n(x; x_0); \ \forall \ x \in (a; b)$$

При этом, если для любого фиксированного $x \in (a;b)$ существует $\lim_{n \to \infty} R_n(x,x_0) = 0$, то степенной ряд $\{[f^{(k)}(x_0)/k!] (x-x_0)^k\}_{k\geqslant 0}$ является на (a;b) сходящимся, а f(x) является его суммой:

$$f(x) = f(x_0) + \sum_{k=1}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k; \ x, x_0 \in (a; b).$$

II. Для бесконечно дифференцируемой функции f(x) степенной ряд $\left\{\frac{f^{(k)}(x_0)}{k!}(x-x_0)^k\right\}_{k\geqslant 0}$ называют ее рядом Тейлора вне зависимости от характера сходимости этого ряда. Если $x_0=0$, то ряд Тейлора называют рядом Маклорена.

III. Для анализа сходимости ряда Тейлора можно использовать стандартные приемы теории степенных рядов, но можно использовать и следующую теорему.

Теорема. Если в интервале $(a;b) \subset \mathbb{R}^1$ при некоторых B>0 и C>0 выполняется неравенство

 $\frac{1}{B^k \cdot k!} \sup_{a < x < b} |f^{(k)}(x)| \leqslant C; \ \forall \ k \geqslant 1, \ \text{то ряд Тейлора, бесконечно дифференцируемой на } (a;b) \ функции \\ f(x), \ \text{сходится во всех точках } x \in (a;b), \ \text{для которых } |x-x_0| < 1/B.$

Доказательство. Пусть выполнены условия теоремы, тогда

$$R_n(x, x_0) = \frac{(x - x_0)^{n+1}}{(n+1)!} f^{(n+1)}(x^*); \ x < x^* < x_0$$
 или $x_0 < x^* < x$.

2r-Hp

Таким образом,

$$|R_n(x,x_0)| \leqslant \frac{|x-x_0|^{n+1}}{(n+1)!} \sup_{a < x^* < b} |f^{(n+1)}(x^*)| \leqslant \frac{|x-x_0|^{n+1}}{(n+1)!} \cdot C \cdot B^{n+1} \cdot (n+1)! = C \cdot \{B|x-x_0|\}^{n+1} \underset{n \to \infty}{\longrightarrow} 0$$

тогда и только тогда, когда $|x - x_0| < 1/B$.

10

ФН-12 МГТУ **ФН-12**

Степенные ряды в $\mathbb C$

Теорема Абеля. Если степенной ряд $\{a_k z^k\}_{k\geqslant 0}$ с комплексными членами сходится при некотором $z=z_1\neq \theta$, то он абсолютно сходится $\forall z:|z|<|z_1|$. Если же он расходится при некотором $z=z_2\neq \theta$, то он расходится $\forall z\in \mathbb{C}:|z|>|z_1|$.

Доказательство. Пусть ряд $\{a_k z_1^k\}_{k\geqslant 0}$ сходится. Тогда по необходимому признаку $\exists \lim_{k\to\infty} a_k z_1^k = \theta$, то есть $(\forall \, \varepsilon > 0)(\exists \, N(\varepsilon) > 0): |a_n \, z_1^n| < \varepsilon, \, \forall \, n \geqslant N(\varepsilon)$. Пусть $z \in \mathbb{C}$ и $|z| < |z_1|$. Тогда

$$|a_n\cdot z^n| = \left|a_n\cdot z_1^n\cdot \left(\frac{z}{z_1}\right)^n\right| = |a_n\cdot z_1^n| \left|\frac{z}{z_1}\right|^n = \varepsilon\cdot q^n, \ \forall\ n\geqslant N(\varepsilon), \ \text{где}\ q\stackrel{\triangle}{=} \frac{|z|}{|z_1|} < 1 \ \text{откуда и следует}$$
 абсолютная сходимость ряда $\{a_k\ z^k\}_{k\geqslant 0}$ при $|z|<|z_1|$.

Пусть теперь $z_* \in \mathbb{C}$ и $|z_*| > |z_2|$. Если бы ряд $\{a_k z_*^k\}_{k\geqslant 0}$ сходился , то, согласно уже доказанному, в точке z_2 он бы сходился абсолютно, т.к. $|z_2| < |z_*|$. Таким образом исходная посылка является ложной и в любой точке $z_* \in \mathbb{C}$: $|z| > |z_2|$ рассматриваемый ряд расходится.

Следствия из теоремы Абеля.

- 1. Для каждого комплексного степенного ряда $\{a_n z^k\}_{k\geqslant 0}$ в $\mathbb C$ существует круг с центром в θ и радиусом R, в каждой внутренней точке которого исходный ряд сходится абсолютно и расходится в каждой внешней точке.
- **2.** $R = \lim_{k \to \infty} |a_k|/|a_{k+1}| = \lim_{k \to \infty} 1/\sqrt[k]{|a_k|}.$
- **3.** Если хоть в одной точке окружности $l_R \stackrel{\triangle}{=} \{z \in \mathbb{C} : |z| = R\}$ круга сходимости исходный степенной ряд $\{\alpha_k z^k\}_{k\geqslant 0}$ сходится абсолютно, то он сходится абсолютно в каждой точке окружности l_R .

 \mathcal{A} оказательство. Пусть $z_0 \in l_R$ и ряд $\{a_k z_0^k\}_{k\geqslant 0}$ сходится абсолютно, т.е. сходится знакоположительный числовой ряд $\{|a_k||z_0|^k\}_{k\geqslant 0}$. Но тогда $\forall z \in l_R$ имеют место равенства $|a_k z^k| = |a_k||z|^k = |a_k||z_0|^k = |a_k||R^k$, откуда и следует искомый результат.

Пример 1. Пусть $\alpha_k(z) = \left\{\frac{z^k}{2^k \cdot k \sqrt{k}}\right\}_{k\geqslant 1}$, т.е. $a_k = \frac{1}{k\sqrt{k} \cdot 2^k}$. Тогда $R = \lim_{k\to\infty} |a_k|/|a_{k+1}| = 2$ и $l_R = \{z \in \mathbb{C} : |z| = 2\}$. Если $z \in l_R$, то $|\alpha_k \cdot z^k| = \frac{|z_k|}{k\sqrt{k} \cdot 2^k} = \frac{1}{k^{3/2}}$ и исходный ряд сходится абсолютно при $|z| \leqslant 2$ и расходится при |z| < 2.

- **4.** Если хоть в одной точке окружности l_R круга сходимости исходный ряд расходится по необходимому признаку, то он расходится в каждой точке этой окружности доказательство аналогично доказательству следствия 3.
- Пример 2. Ряд $\{z^k\}_{k\geqslant 0}$ сходится абсолютно при |z|<1 и расходится при $|z|\geqslant 1$, т.к. $l_R=\{z\in\mathbb{C}:\,|z|=1\}$ и $\forall\,z\in l_R\,\,\exists\lim_{k\to\infty}|z|^k=1\neq 0.$
- **4.** Если $\exists z_0 \in l_R$ и ряд $\{a_k z_0^k\}_{k\geqslant 0}$ сходится условно, то в точках окружности l_R исходный ряд может как расходиться, так и сходиться условно.

Пример 3. Для ряда $\left\{\frac{z^k}{k}\right\}_{k\geqslant 1}$ радиус сходимости R=1, т.е. $l_R=\{z\in\mathbb{C}:\ |z|=1\}.$ В любой

точке $z \in l_R \frac{|z|^k}{k} = \frac{1}{k}$, т.е. в любой точке окружности круга сходимости исходный ряд абсолютно сходиться не может, но необходимый признак выполняется.

B точке $z=+1\in l_R$ исходный ряд расходится, то как $\left.\frac{z^k}{k}\right|_{z=+1}=rac{1}{k}.$

Sr-HO

В точке $z=-1\in l_R$ исходный ряд сходится условно, так как $\left.\frac{z^k}{k}\right|_{z=-1}=\frac{(-1)^k}{k}.$

5. Если R – радиус сходимости, то в любом круге $K_r = \{z: |z| \leqslant r < R\}$ исходный степенной

Доказательство полностью аналогично вещественному случаю.

Ряды Фурье

Функцию y = f(x) называют интегрируемой с квадратом на $[a;b] \subset$ Определение 1. Совокупность всех функций, интегрируемых с квадратом на $[a;b] \subset \mathbb{R}^1$,обозначают $\mathbb{L}^2[a;b]$.

Свойства функций из $\mathbb{L}^2[a;b]$.

ряд сходится равномерно.

- Если функции $f(x), \varphi(x) \in \mathbb{L}^2[a,b]$, то функция $f(x) \cdot \varphi(x)$ абсочинтегрируема на [a,b], т.к. $|f(x) \cdot \varphi(x)| \leqslant 0, 5\{f^2(x) + \varphi^2(x)\}$ и (1).лютно $\int f(x)\varphi(x)dx \bigg| \leqslant \int |f(x)\varphi(x)|dx \leqslant \frac{1}{2} \int \{f^2(x) + \varphi^2(x)\}dx = \frac{1}{2} \int f^2(x)dx + \frac{1}{2} \int \varphi^2(x)dx < \infty.$
- (2). $\mathbb{L}^2[a,b]$ линейное пространство относительно стандартных операций сложения функций и их умножения на число. Действительно, для любых конечных вещественных чисел λ , μ и для любых $f(x), \varphi(x) \in \mathbb{L}^2[a;b]$ имеем:

$$\int_{a}^{b} \{\lambda f(x)\varphi(x) + \mu\varphi(x)\}^{2} dx \equiv \int_{a}^{b} |\lambda^{2} f^{2}(x) + 2\lambda\mu f(x)\varphi(x) + \mu^{2}\varphi^{2}(x)|dx \leqslant$$

$$\leqslant \int_{a}^{b} |\lambda|^{2} \{f^{2}(x) + 2|\lambda\mu||f(x)||\varphi(x)| + |\mu|^{2}\psi^{2}(x)\}dx < +\infty.$$

Таким образом, если $|\lambda| < \infty$, $|\mu| < \infty$, $f(x) \in \mathbb{L}^2[a;b]$, $\varphi(x) \in \mathbb{L}^2[a;b]$, то $(\lambda f(x) + \mu \varphi(x)) \in \mathbb{L}^2[a;b]$ и $\mathbb{L}^2[a;b]$ – линейное пространство.

Определение 2. Две функции f(x) и $\varphi(x)$ из $\mathbb{L}^2[a,b]$ называют эквивалентными и пишут $f(x) \sim \varphi(x)$, если $\int \{f(x) - \varphi(x)\}^2 dx = 0$.

Замечания к определению 2.

- (1). Если f(x), $\varphi(x) \in \mathbb{L}^2[a;b]$ и $f(x) \sim \varphi(x)$, то значения этих функций могут различаться лишь на конечном множестве точек из [a;b].
- (2). Если в $\mathbb{L}^2[a;b]$ понятие "равенство" заменить понятием "эквивалентность", то скалярное произведение в этом линейном пространстве может быть введено стандартными способом, так как для

любых $f(x), \varphi(x) \in \mathbb{L}^2[a,b]$ определено вещественное число $(f;\varphi) = \int f(x)\varphi(x)dx$ и при этом:

$$\alpha$$
) $(f;f) = \int_a^b f^2(x)dx \geqslant 0$ и $(f;f) = 0 \Longleftrightarrow f(x) \sim 0;$

$$\beta) (f;\varphi) = \int_{a}^{b} f(x)\varphi(x)dx = \int_{a}^{b} \varphi(x)f(x)dx = (\varphi;f);$$

2Γ-HΦ

$$\delta) (f + \varphi; \psi) = \int_a^b \{f(x) + \varphi(x)\}\psi(x)dx = \int_a^b f(x)\psi(x)dx + \int_a^b \varphi(x)\psi(x)dx = (f; \psi) + (\varphi; \psi).$$

(3). Так как линейное пространство $\mathbb{L}^2[a,b]$ с введенным скалярным произведением является евклидовым пространством, то в нем стандартным образом может быть введена норма:

$$||f|| = \sqrt{(f;f)} \equiv \sqrt{\int_a^b f^2(x)dx}, \ \forall \ f(x) \in \mathbb{L}^2[a,b].$$

При этом все аксиомы нормы:

- $\alpha) \|f(x)\| = \sqrt{(f;f)} \geqslant 0 \land \|f\| = 0 \Longleftrightarrow f(x) \sim 0;$
- $\beta) \|\lambda f(x)\| = |\lambda| \cdot \|f(x)\|;$
- γ) $||f(x) + \varphi(x)|| \le ||f(x)|| + ||\varphi(x)||$ выполняются автоматически.
- (4). В евклидовом пространстве $\mathbb{L}^2[a,b]$ со стандартной нормой метрику (расстояние), как правило, вводят следующим образом:

$$\rho(f;\varphi) \stackrel{\triangle}{=} ||f(x) - \varphi(x)|| = \sqrt{(f - \varphi; f - \varphi)} \equiv \sqrt{\int_a^b \{f(x) - \varphi(x)\}^2 dx}.$$

При этом все аксиомы метрики выполняются автоматически:

- α) $\rho(f;\varphi)\geqslant 0$ и $(f;\varphi)=0\Longleftrightarrow f(x)\sim \varphi(x);$
- β) $\rho(f;\varphi) = \rho(\varphi;f);$
- γ) $\rho(f;\varphi) \leq \rho(f;\psi) + \rho(\varphi;\psi)$.
- (5). В евклидовом пространстве $\mathbb{L}^2[a,b]$ со стандартной нормой и стандартной метрикой понятие сходимости так же вводят стандартным способом: пусть $f(x) \in \mathbb{L}^2[a,b]$ и $\{f_k(x)\}_{k\geqslant 1} \in \mathbb{L}^2[a,b]$. Функцию f(x) называют пределом последовательности $\{f_k(x)\}_{k\geqslant 1}$ и пишут $\lim_{k\to\infty} f_k(x) = f(x)$, если существует

$$\lim_{k \to \infty} \rho(f_k, f) = 0$$
, то есть, если $\exists \lim_{k \to \infty} \sqrt{\int_a^b \{f_k(x) - f(x)\}^2 dx} = 0$.

21-HO

Задача о наилучшей аппроксимации в $\mathbb{L}^2[a,b]$

Пусть $\{\psi_k(x)\}_{k=1}^{\infty} \in \mathbb{L}^2[a,b]$ — некоторая ортонормированная система функций, т.е. $(\varphi_k;\varphi_m) = \left\{ egin{array}{l} 0 & ; & k \neq m \\ 1 & ; & k = m \end{array} \right\}, \, f(x) \in \mathbb{L}^2[a,b]$ и $S_n(x) = \sum_{k=1}^n C_k \varphi_k(x)$. Для фиксированного n необходимо найти $\{C_k\}_{k=1}^n \in \mathbb{R}^1$ такие, что $\rho(f;S_n) \equiv \|f(x) - S_n(x)\| \to \min$.

Решение.

$$\rho^{2}(f, S_{n}) \equiv \|f(x) - S_{n}(x)\|^{2} \equiv (f(x) - S_{n}(x); f(x) - S_{n}(x)) \equiv \left(f(x) - \sum_{k=1}^{n} C_{k} \varphi_{k}(x); f(x) - \sum_{k=1}^{n} C_{k} \varphi_{k}(x)\right) = \left(f(x) - \sum_{k=1}^{n} C_{k} \varphi_{k}(x); f(x) - \sum_{k=1}^{n} C_{k} \varphi_{k}(x)\right) = \left(f(x) - \sum_{k=1}^{n} C_{k} \varphi_{k}(x); f(x) - \sum_{k=1}^{n} C_{k} \varphi_{k}(x)\right) = \left(f(x) - \sum_{k=1}^{n} C_{k} \varphi_{k}(x); f(x) - \sum_{k=1}^{n} C_{k$$

МГТУ ФН-12

Общие замечания.

(1). Если $\{\varphi_k\}_{k=1}^n \in \mathbb{L}^2[a,b]$ – ортонормированная система функций, то $\forall f(x) \in \mathbb{L}^2[a,b]$ ее наилучшая аппроксимация $S_n(x)$ определяется равенством: $S_n(x) = \sum_{k=0}^n (f;\varphi_k) \cdot \varphi_k(x)$.

OH-12

- (2). Так как при наилучшей аппроксимации $C_k \equiv (f; \varphi_k)$, то $0 \leqslant \rho^2(f, S_n) \equiv \|f(x) S_n(x)\|^2 \equiv \|f\|^2 \sum_{k=1}^n (f; \varphi_k)^2$. Таким образом $\forall n \geqslant 1$ имеет место неравенство $\|f\|^2 \geqslant \sum_{k=1}^n (f; \varphi_k)^2$, известное как **неравенство Бесселя**.
- (3). Так как последовательность $\left\{\sum_{k=1}^{n}(f;\varphi_{k})^{2}\right\}_{n\geqslant 1}$ является неубывающей и, согласно неравенству Бесселя, ограничена сверху, то при наличии счетной ортонормированной системы функций $\left\{\varphi_{k}(x)\right\}_{k=1}^{\infty}\in\mathbb{L}^{2}[a,b]$ неравенство Бесселя допускает обобщение $\sum_{k=1}^{\infty}(f;\varphi_{k})^{2}\leqslant\|f\|^{2}$.

Определение 3. Ортонормированную систему функций $\{\varphi_k(x)\}_{k=1}^{\infty} \in \mathbb{L}^2[a,b]$ называют замкнутой (полной), если $\forall f(x) \in \mathbb{L}^2[a,b]$ имеет место равенство Парсеваля: $\sum_{k=1}^{\infty} (f;\varphi_k)^2 \equiv \|f\|^2$.

Замечания к определению 3.

- (1). Всякая замкнутая в $\mathbb{L}^2[a,b]$ система ортонормированных функций образует ортонормированный базис, т.к. в противном случае $\exists \varphi_0(x) \in \mathbb{L}^2[a,b] : (\|\varphi_0(x)\| = 1) \wedge ((\varphi_0;\varphi_k) \equiv 0, \ \forall \ k \geqslant 1)$. Но согласно равенству Парсеваля $1 = \|\varphi_0\|^2 = \sum_{1}^{\infty} (\varphi_0;\varphi_k)^2 \equiv 0$ и мы приходим к противоречию.
- (2). Если $\{\varphi_k(x)\}_{k=1}^{\infty} \in \mathbb{L}^2[a,b]$ ортонормированный базис в $\mathbb{L}^2[a,b]$, то $\forall f(x) \in \mathbb{L}^2[a,b]$ существует счетное множество чисел $\{C_k\}_{k=1}^{\infty}$, где $C_k \equiv (f;\varphi_k)$, $\forall k \geqslant 1$ коэффициенты Фурье (координаты функции f(x) в базисе $\{\varphi_k(x)\}_{k=1}^{\infty}$) такое, что последовательность $\{S_f^n(x)\}_{n\geqslant 1}$, $S_f^n(x) \stackrel{\triangle}{=} \sum_{k=1}^n C_k \varphi_k(x)$ сходится к f(x) в $\mathbb{L}^2[a,b]$. Ряд $\{(f;\varphi_k)\cdot\varphi_k(x)\}_{k\geqslant 1}$ называют рядом Фурье функции f(x) и при этом $\|f(x)-\sum_{k=1}^{\infty}(f;\varphi_k)\varphi_k(x)\|^2 \equiv \lim_{n\to\infty} \|f(x)-\sum_{k=1}^n(f;\varphi_k)\varphi_k(x)\|^2 = \lim_{n\to\infty} \{\|f(x)\|^2-\sum_{k=1}^n(f(x);\varphi(x))\} = 0$, т.е. $\sum_{k=1}^{\infty}(f;\varphi_k)\varphi_k(x) \sim f(x)$. При этом функцию $S_f(x) \stackrel{\triangle}{=} \sum_{k=1}^{\infty}(f;\varphi_k)\varphi_k(x)$ называют суммой ряда Фурье $\{(f;\varphi_k)\varphi_k(x)\}_{k\geqslant 1}$

Тригонометрический ряд Фурье

Пример 1. Система тригонометрических функций $\{1;\cos(kx);\sin(kx)\}_{k=1}^{\infty}$ является ортогональной на отрезке $[C;C+2\pi]$ для любого конечного вещественного числа C, так как

$$(1;\cos(kx)) = \int_{C}^{C+2\pi} 1 \cdot \cos(kx) dx = +\frac{1}{k} \sin(kx) \Big|_{C}^{C+2\pi} \equiv \frac{1}{k} \Big\{ \sin[k(C+2\pi)] - \sin(kC) \Big\} \equiv 0 ;$$

$$(1;\sin(kx)) = \int_{C}^{C+2\pi} 1 \cdot \sin(kx) dx = -\frac{1}{k} \cos(kx) \Big|_{C}^{C+2\pi} = -\frac{1}{k} \Big\{ \cos[k(C+2\pi)] - \cos(kC) \Big\} \equiv 0 ;$$

21-HQ

$$(k \neq n) \Longrightarrow \left(\cos(kx); \cos(nx)\right) = \int_{C}^{C+2\pi} \cos(kx) \cos(nx) dx = \int_{C}^{C+2\pi} \left\{\cos\left[(k+n)x\right] + \cos\left[(k-n)x\right]\right\} dx \equiv 0;$$

$$(k \neq n) \Longrightarrow \left(\sin(kx); \sin(nx)\right) = \int_{C}^{C+2\pi} \sin(kx) \sin(nx) dx = \int_{C}^{C+2\pi} \left\{\cos\left[(k-n)x\right] - \cos\left[(k+n)x\right]\right\} dx \equiv 0;$$

$$\left(\sin(kx); \cos(nx)\right) = \int_{C}^{C+2\pi} \sin(kx) \cos(nx) dx = \int_{C}^{C+2\pi} \left\{\sin\left[(k+n)x\right] + \sin\left[(n-k)x\right]\right\} dx \equiv 0, \ (\forall k \geqslant 1) \land (\forall n \geqslant 1)$$

При этом
$$\|1\|^2 = \int\limits_C^{C+2\pi} 1^2 dx = 2\pi$$
 ;

$$\|\cos(kx)\|^2 = \int_C^{C+2\pi} \cos^2(kx) dx = \frac{1}{2} \int_C^{C+2\pi} \{1 + \cos(2kx)\} dx \equiv \pi ;$$

$$\|\sin(kx)\|^2 = \int_C^{C+2\pi} \sin^2(kx)dx = \frac{1}{2} \int_C^{C+2\pi} \{1 - \cos(2kx)\}dx \equiv \pi.$$

Таким образом $\left\{\frac{1}{\sqrt{2\pi}}; \frac{\cos(kx)}{\sqrt{\pi}}; \frac{\sin(kx)}{\sqrt{\pi}}\right\}_{k=1}^{\infty}$ — ортонормированная система на отрезке $[C; C+2\pi], \ \forall \ C \in \mathbb{R}^1.$ Ее полнота следует из теоремы Дирихле, которую мы сформулируем ниже.

Пример 2. Пусть $f(x) \in \mathbb{L}^2[-\pi;\pi]$. Считая систему тригонометрических функций $\left\{\frac{1}{\sqrt{2\pi}}; \frac{\cos(kx)}{\sqrt{\pi}}; \frac{\sin(kx)}{\sqrt{\pi}}\right\}_{k=1}^{\infty}$ полной, имеем:

$$S_f(x) = \left(f; \frac{1}{\sqrt{2\pi}}\right) \frac{1}{\sqrt{2\pi}} + \sum_{k=1}^{\infty} \left(f; \frac{\cos(kx)}{\sqrt{\pi}}\right) \frac{\cos(kx)}{\sqrt{\pi}} + \left(f; \frac{\sin(kx)}{\sqrt{\pi}}\right) \frac{\sin(kx)}{\sqrt{\pi}} \equiv \frac{1}{2} \left\{\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx\right\} + \sum_{k=1}^{\infty} \left\{\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(kx) dx\right\} \cos(kx) + \left\{\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(kx) dx\right\} \sin(kx).$$

Таким образом:

$$S_f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos(kx) + b_k \sin(kx)$$
, где

$$a_{n\geqslant 0} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx ;$$

$$b_{k\geqslant 1} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(kx) dx.$$

При этом ряд Фурье функции f(x) по использованной ортонормированной системе функций называют тригонометрическим рядом Фурье.

Теорема Дирихле. Если на $[-\pi;\pi]$ определена ограниченная функция f(x) такая, что: 1) на $[-\pi;\pi]$ она кусочно-непрерывна, т.е. может иметь лишь конечное число точек разрыва I-го

15

Δ1-HΦ

рода;

2) на $[-\pi;\pi]$ она кусочно-монотонна, т.е. $[-\pi;\pi]$ можно разбить на конечное число участков монотонности,

тогда y=f(x) может быть представлена суммой своего тригонометрического ряда Фурье и

- α) в каждой точке непрерывности функции f(x) имеет место равенство $S_f(x) = f(x)$;
- β) в кажлой точке разрыва $S_f(x) = \{f(x-0) + f(x+0)\}/2;$
- γ) $S_f(-\pi) = S_f(+\pi) \equiv \{f(-\pi+0) + f(\pi-0)\}/2;$
- δ) на всяком частичном отрезке непрерывности f(x) ее тригонометрический ряд Фурье сходится равномерно.

Замечания к теореме Дирихле.

1). Если функция f(x) определена на отрезке $[-\pi;\pi] \subset \mathbb{R}^1$, то сумма $S_f(x)$ ее тригонометрического ряда Фурье определена на всей числовой оси и является периодической функцией. Этот факт используют для периодического продолжения функций, заданных на отрезке.

Пример 3. Функция $f(x) = \left\{ \begin{array}{ll} C_1 \;\; ; \;\; -\pi < x \leqslant 0 \\ C_2 \;\; ; \;\; 0 < x < \pi \end{array} \right\}$ удовлетворяет условиям теоремы Дирихле

$$a_{0} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x)dx = \frac{1}{\pi} \left\{ \int_{-\pi}^{0} C_{1} dx + \int_{0}^{\pi} C_{2} dx \right\} = C_{1} + C_{2};$$

$$a_{k}|_{k \geqslant 1} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(kx) dx = \frac{1}{\pi} \left\{ \int_{-\pi}^{0} C_{1} \cos(kx) dx + \int_{0}^{\pi} C_{2} \cos(kx) dx \right\} \equiv 0;$$

$$b_{k}|_{k \geqslant 1} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(kx) dx = \frac{1}{\pi} \left\{ \int_{-\pi}^{0} C_{1} \sin(kx) dx + \int_{0}^{\pi} C_{2} \sin(kx) dx \right\} = \frac{1}{\pi k} \left\{ -C_{1} \cos(kx) \Big|_{-\pi}^{0} - C_{2} \cos(kx) \Big|_{0}^{\pi} \right\} = \frac{1}{\pi k} \left\{ -C_{1} + C_{1} \cos(\pi k) - C_{2} \cos(\pi k) + C_{2} \right\} = \frac{C_{2} - C_{1}}{\pi k} \left\{ 1 - \cos(\pi k) \right\}.$$

Таким образом имеем:

$$S_f(x) = \frac{C_1 + C_2}{2} - \frac{2(C_1 - C_2)}{\pi} \sum_{k=1}^{\infty} \frac{\sin(2k+1)x}{2k+1}.$$

- **2).** Реализация условий теоремы Дирихле обеспечивает поточечную сходимость тригонометрического ряда Фурье. Эти условия являются достаточными условиями представимости функции суммой ее тригонометрического ряда Фурье.
- **Пример 4.** Функция $f = \frac{1}{\sqrt[3]{x}}$: $|x| < \pi$ не удовлетворяет условиям теоремы Дирихле, так как в нуле имеет разрыв второго рода. Но

$$\int_{-\pi}^{\pi} f_{(x)}^2 dx = \int_{-\pi}^{\pi} x^{-2/3} dx = 2 \int_{0}^{\pi} x^{-2/3} dx = 6x^{1/3} \Big|_{0}^{\pi} = 6\sqrt[3]{\pi} < \infty \text{ и } f(x) \in \mathbb{L}^2[-\pi;\pi].$$
 Таким образом $f(x)$

может быть представлена суммой своего тригонометрического ряда Фурье и $S_f(x) \sim f(x)$.

3). Пусть y=f(x) определена на отрезке $[-\pi;\pi]\subset \mathbb{R}^1$ и удовлетворяет на нём условиям теоремы

Дирихле. Тогда
$$f(x) \sim S_f(x)$$
 и $S_f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos(kx) + b_k \sin(kx)$,

где

$$a_{k\geqslant 0} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(kx) dx; \quad b_{k\geqslant 1} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(kx) dx.$$

При этом.

 ${\bf 3}(\alpha)$ если f(x) – четная функция, т.е. $f(-x) = f(x) \ \forall \ x \in [-\pi;\pi]$, то

$$S_f = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos(kx); \quad a_{k\geqslant 0} = \frac{2}{\pi} \int_{0}^{\pi} f(x) \cos(kx) dx; \quad b_{k\geqslant 1} \equiv 0;$$

 ${f 3}(eta)$ если f(x) – нечетная функция, т.е. $f(-x) = -f(x) \ \forall \ x \in [-\pi;\pi]$, то

$$S_f(x) = \sum_{k=1}^{\infty} b_k \sin(kx); \quad a_{k\geqslant 0} \equiv 0; \quad b_{k\geqslant 1} = \frac{2}{\pi} \int_{0}^{\pi} f(x) \sin(kx) dx;$$

4. Если функция f(x) определена на отрезке [-l;l]) и удовлетворяет на нём условиям теоремы Дирихле, то заменой $x=lt/\pi$ производим взаимно-однозначное отображение отрезка [-l;l] на отрезок $[-\pi;\pi]$. Функция $\varphi(t)=f(lt/\pi)\equiv f(x)$ определена на отрезке $[-\pi;\pi]$ и удовлетворяет на нём условиям теоремы Дирихле. Таким обзазом

$$\left(S_{\varphi}(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos(kt) + b_k \sin(kt)\right) \iff \left(S_f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos\left(\frac{\pi kx}{l}\right) + b_k \sin\left(\frac{\pi kx}{l}\right)\right);$$

$$a_{k\geqslant 0} = \frac{1}{\pi} \int_{-\pi}^{\pi} \varphi(t) \cos(kt) dt = \left\{\begin{array}{l} t = \frac{\pi x}{l}; dt = \frac{\pi}{l} dx\\ (t = \pm \pi) \iff (x = \pm l) \end{array}\right\} = \frac{1}{l} \int_{-l}^{l} f(x) \cos\frac{\pi kx}{l} dx;$$

$$b_{k\geqslant 1} = \frac{1}{\pi} \int_{-\pi}^{\pi} \varphi(t) \sin(kt) dt = \left\{\begin{array}{l} t = \frac{\pi x}{l}; dt = \frac{\pi}{l} dx\\ (t = \pm \pi) \iff (x = \pm l) \end{array}\right\} = \frac{1}{l} \int_{-l}^{l} f(x) \sin\frac{\pi kx}{l} dx.$$

При этом, все ранее полученные результаты распространяются и на данный случай.

Пример 5. Предположим, что функцию $f(x) = \left\{ \begin{array}{ll} \sin \frac{\pi x}{l} & ; & 0 < x < \frac{l}{2} \\ 0 & ; & \frac{l}{2} < x < l \end{array} \right\}$ нужно "разложить в

ряд Фурье по синусам."

Рис.3

Фактически необходимо "разложить в ряд Фурье" функцию $f_1(x)$, являющуюся нечетным про-

должением исходной функции f(x).

Рис.32

В рассматриваемом случае

$$a_k = 0, \ \forall \ k \geqslant 0$$
 и $S_f(x) = \sum_{k=1}^{\infty} b_k \sin \frac{\pi kx}{l};$

$$b_k = \frac{2}{l} \int_0^l f(x) \sin \frac{\pi kx}{l} dx \equiv \frac{2}{l} \int_0^{l/2} \sin \frac{\pi kx}{l} \sin \frac{\pi kx}{l} dx \equiv \frac{1}{l} \int_0^{l/2} \left\{ \cos \frac{\pi (k+1)x}{l} - \cos \frac{\pi (k-1)x}{l} \right\} dx.$$

17

ΦH-12

DH-12

DH-12

$$b_1 = \frac{1}{l} \int_0^{l/2} \left\{ \cos \frac{2\pi x}{l} - 1 \right\} dx = -\frac{1}{2}$$

$$b_{k>1} = \frac{1}{l} \left\{ \frac{l}{\pi(k+1)} \sin \frac{\pi(k+1)x}{l} \Big|_0^{l/2} - \frac{l}{\pi(k-1)} \sin \frac{\pi(k-1)x}{l} \Big|_0^{l/2} \right\} \equiv \frac{1}{\pi} \left\{ \frac{1}{k+1} \sin \frac{\pi(k+1)}{2} - \frac{1}{k-1} \sin \frac{\pi(k-1)}{2} \right\}$$

При этом

$$(k = 2n + 1) \Longrightarrow (b_k \equiv 0), \text{ т.к. } \sin \frac{\pi}{2} (2n + 1 \pm 1) \equiv \sin \pi (n \pm 1) \equiv 0;$$

$$(k=2n) \Longrightarrow \left(\sin\frac{\pi}{2}(2n\pm 1) \equiv \sin(\pi n \pm \pi/2), \text{ r.e. } \sin\frac{\pi}{2}(2n+1) = (-1)^n\right) \wedge \left(\sin\frac{\pi}{2}(2n-1) = (-1)^{n-1}\right).$$

Таким образом

$$b_{2n} \equiv \frac{1}{\pi} \left\{ \frac{1}{2n+1} \cdot (-1)^n - \frac{1}{2n-1} \cdot (-1)^{n-1} \right\} \equiv (-1)^n \frac{4n}{\pi (4n^2 - 1)};$$

$$S_f(x) = -\frac{1}{2}\sin\frac{\pi x}{l} + \sum_{n=1}^{\infty} \frac{4n(-1)^n}{\pi(4n^2 - 1)}\sin\frac{2\pi nx}{l}$$

5. Пусть функция f(x) определена и удовлетворяет условиям теоремы Дирихле на отрезке $[a,b]\subset\mathbb{R}.$ Тогда $C\stackrel{\triangle}{=}(a+b)/2$ – центр, а $l\stackrel{\triangle}{=}(b-a)/2$ – полуразмах отрезка $[a;b]\subset\mathbb{R}^1.$ Далее полагаем

 $x=\frac{b-a}{2\pi}\,t+\frac{a+b}{2}$ и устанавливаем взаимно-однозначное соответствие между отрезками

[a,b] и $[-\pi,\pi]$. Таким образом, если

$$\varphi(x)\stackrel{\triangle}{=} f\left(rac{b-a}{2\pi}\,t+rac{a+b}{2}
ight)\equiv f(t),$$
 то согласно замечанию 3 к теореме Дирихле

$$S_{\varphi}(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos(kt) + b_k \sin(kt);$$

$$a_{k\geqslant 0} = \frac{1}{\pi} \int_{-\pi}^{\pi} \varphi(t) \cos(kt) dt = \left\{ t = \left[x - \frac{a+b}{2} \right] \cdot \frac{2\pi}{b-a} ; dt = \frac{2\pi}{b-a} dx \middle| \begin{array}{c} (t = -\pi) & \Longleftrightarrow & (x = a) \\ (t = \pi) & \Longleftrightarrow & (x = b) \end{array} \right\}$$

$$= \frac{1}{\pi} \int_{a}^{b} f(x) \cos \left\{ k \left[x - \frac{a+b}{2} \right] \cdot \frac{2\pi}{b-a} \right\} \cdot \frac{2\pi}{b-a} dx \equiv \frac{2}{b-a} \int_{a}^{b} f(x) \cos \frac{2\pi kx}{b-a} dx,$$

т.к. $(a+b)/2 \equiv C$ — центр интервала, $(b-a)/2 \equiv l$ — его полуразмах, а ортогональность тригонометрической системы функций $\left\{1,\,\cos\frac{\pi kx}{l},\,\sin\frac{\pi kx}{l}\right\}_{k\geqslant 1}$ доказана на отрезке $[C;C+2l], \forall\,C\in\mathbb{R}^1.$

Совершенно аналогично показываем, что

$$b_{k\geqslant 1} = \frac{2}{b-a} \int_{a}^{b} f(x) \sin \frac{2\pi kx}{b-a} dx ;$$

ФН-12

$$S_f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos \frac{2\pi kx}{b-a} + b_k \sin \frac{2\pi kx}{b-a}$$

Пример 6. Пусть $f(x) = \left\{ \begin{array}{ll} 1 & ; & 1 < x < 2 \\ 0 & ; & 2 < x < 5 \end{array} \right\}$. В данном случае $a=1,\ b=5$ и l=2. Таким

$$a_0 = \frac{1}{2} \int_{1}^{5} f(x)dx = \frac{1}{2} \int_{1}^{2} dx = \frac{1}{2};$$

$$a_{k\geqslant 1} = \frac{1}{2} \int_{1}^{5} f(x) \cdot \cos \frac{\pi kx}{2} dx \equiv \frac{1}{2} \int_{1}^{2} \cos \frac{\pi kx}{2} dx = \frac{1}{2} \cdot \frac{2}{\pi k} \sin \frac{\pi kx}{2} \Big|_{1}^{2} = \frac{-1}{\pi k} \sin \frac{\pi k}{2} ;$$

$$(k=2n) \Longrightarrow (a_{2n} \equiv 0) ,$$

$$(k = 2n - 1) \Longrightarrow (a_{2n-1} \equiv (-1)^n / \pi (2n - 1))$$

$$(k = 2n) \Longrightarrow (a_{2n} \equiv 0)$$
, $(k = 2n - 1) \Longrightarrow (a_{2n-1} \equiv (-1)^n / \pi (2n - 1))$. Совершенно аналогично находим
$$b_{k\geqslant 1} = \frac{1}{2} \int_{1}^{5} f(x) \sin \frac{\pi kx}{2} \equiv \frac{1}{2} \int_{1}^{2} \sin \frac{\pi kx}{2} dx = -\frac{1}{2} \cdot \frac{2}{\pi k} \cos \frac{\pi kx}{2} \Big|_{1}^{2} = -\frac{1}{\pi k} \left\{ \cos \pi k - \sin \frac{\pi k}{2} \right\} = -\frac{1}{\pi k} \left\{ (-1)^k - \sin \frac{\pi k}{2} \right\} \dots$$

$$= -\frac{1}{\pi k} \left\{ (-1)^k - \sin \frac{\pi k}{2} \right\} \dots$$

$$S_f(x) = \frac{1}{4} - \sum_{k=1}^{\infty} \left\{ \frac{1}{\pi k} \sin \frac{\pi k}{2} \sin \frac{\pi k x}{2} + \frac{1}{\pi k} \left[(-1)^k - \sin \frac{\pi k}{2} \right] \cos \frac{2\pi k x}{2} \right\}$$