

油品储运销环节油气回收 监管要点介绍

生态环境部机动车中心

- ■背景情况
- ■典型问题
- ■日常要求
- ■检查要点

一、背景情况

背景情况

任务

《打赢蓝天保卫战三年行动计划》中要求:到2020年,细颗粒物 (PM_{2.5})未达标地级及以上城市浓度比2015年下降18%以上,地级及以上城市空气质量优良天数比率达到80%,重度及以上污染天数比率比2015年下降25%以上。

问题

2020 年是打赢蓝天保卫战的收官之年,当前阶段,我国面临细颗粒物 (PM_{2.5}) 和臭氧 (O₃) 污染的双重压力。特别是在6—9 月的夏季,京津冀及周边地区、长三角地区、汾渭平原等重点 区域及苏皖鲁豫交界地区,O₃ 超标天数占全国70% 左右,O₃ 甚至已成为此区域内部分城市空气 质量超标的首要因子。O₃ 浓度超标对完成"三年行动计划"中的任务指标构成了较大的压力。

政策

VOCs 是PM_{2.5} 和O₃ 的共同前体物,加强VOCs治理是控制PM_{2.5} 和O₃污染的有效途径。部里相继出台了《"十三五"挥发性有机物污染防治工作方案》、《2019年地级及以上城市环境空气挥发性有机物监测方案》、《2020年挥发性有机物治理攻坚方案》、《关于组织开展夏季臭氧污染防治强化监督帮扶工作的通知》等文件。

背景情况

加油站油气回收系统由卸油油气回收系统、汽油密闭储存、加油油气回收系统、汽油密闭储存、加油油气回收系统、在线监控系统和油气排放处理装置组成。

《柴油车污染防治攻坚战行动计划》 要求: 2019年, 重点区域加油站、储油库、油罐车基本完成油气回收治理 工作, 其他区域城市建成区在2020年前基本完成。

油气回收阶 段	定义	执行时间	执行范围
一阶段	油罐车向地下储油罐卸油过程产生与卸油 等体积的油气,通过密闭方式收集进入油 罐车罐内	2012年1月1日	全部设市城市加油站 应安装一阶段油气回 收
二阶段	加油机发油时,通过油气回收真空泵把汽 车油箱里产生的油气收集到地下储油罐内	2015年1月1日	全部设市城市建成区 加油站应安装二阶段 油气回收
三阶段(后 处理阶段)	通过控制油站地下储罐的油气压力,利用压缩冷凝和先进的膜分离技术,将油气变成液体汽油和高浓度的油气回收利用,同时释放出清洁的空气(油气排放浓度≤25mg/L),保持加油站油气呼吸损失接近于零	按照地方生态 环境部门要求 执行	按照地方生态环境部 门要求执行

GB 20952 - 2007中规定各阶段油气回收执行时间及范围

二、典型问题

一、加油站油气回收系统未建设或安装不规范

1.1

尚有加油站未按要求 建设油气回收系统, 未安装油气回收处理 装置,油库中发油平 台未完成下装改造。

1.2

油气回收管线安装不规范,易造成管道内积液,影响油气回收效果。

图中回收管线安装不规范

图中回收管道内积液、加油机底部有明显油迹渗出

1.3

加油机内回收装置 检测口缺少开关或 堵头,液阻及密闭 性检测时会造成油 气直排。

图中标红处应安装堵头

图中标红处应安装阀门开关

1.4

加油机检测口安装不规范,加油机内油气回收装置的液阻、密闭性检测接口处空间狭小,不具备检测条件。

图中回收装置检测口空间狭小

1.5

管路连接不实,存在漏气、渗油现象。

图中标红处管路因连接不实导致渗油现象

1.6

加油枪集气罩安装位置不合理, 加油时集气罩无加油时集气罩无法与汽车油箱口闭合, 导致汽车加油时油气泄漏。

1.7

部分卸油口、油气回收口口径偏小,不符合标准的要求。

图中标红处加油枪集气罩位置不合理

二、气液比、密闭性、液阻三项指标现场检测超标率较高

造成原因:

A 一是加油枪老化, 回气通路不畅;

B 二是真空泵不工作 或效率降低。

三、加油站人员操作不规范现象普遍

3.1

手动开关开闭错误,如有 的加油站将地下汽油罐应 急排空管和呼吸阀通气管 手动开关搞混,将呼吸阀 门开关关闭,原应急排空 管阀门开关开启,导致油 气直排。

图中标记处地下罐应急排空管开关操作错误

3.2

加油站卸油口油气回收口阀门未完全闭合。

图中红色标注处未完全密闭

3.3

加油站卸油环节 未按标准要求在 卸油管和油气回 收管加装截流阀、快速密封接头。

3.4

加油站油气回收装置检测口开关未处于关闭状态。

四、加油站(库)开展第三方检测不及时,第三方检测报告 造假嫌疑严重

A

加油站(库)未做到定期开展第三方检测,如检查时发现某油库2020年2月份已有汽油发油记录,但油气回收装置自2018年停用后一直未做检测。

В

检查时发现某加油站未按规 定做到每年对油气回收系统 进行密闭性、液阻及气液比 的检测,提供的第三方检测 报告过期。

C

加油站加油机检测口安装不规范,不具备密闭性和液阻检测条件。但加油站负责人现场提供了油气回收系统检测报告。

D

检测报告中,对油气回 收系统密闭性的检测数 值出现错误,油罐容积 和实际不相符。

五、加油站油气回收系统运行记录台账及维护记录等资料不完整、 不规范或流于形式

▲ 加油站未建立油气回收系统日常维护检修和运行记录。

油气回收检测记录涉嫌造假。

油库泄漏点记录不完整。

油库未建立油气处理装置运行检查记录台账或台账记录不完整,未能反映油气处理装置是否正常运行。

六、加油站在线监控系统运行不规范

6.1

在线监控中显示对罐压、 地下液阻压力等参数与实 际不符。 6.2

加油站在线监测超标不报警或报警不及时、数值不准确。

三、日常要求

为深入推进2020年挥发性有机物治理攻坚,按照部领导"送政策、送技术、送方案"要求,生态环境部于6月底发布了《挥发性有机物治理实用手册》供地方生态环境部门、有关企业和社会公众学习借鉴。

> 1、加油站(加油环节)

- ✓ 需使用油气回收型加油枪,有密封罩,且密封罩完好无损
- ✓ 应采用真空辅助方式密闭收集加油油气,加油时油气回收泵需正常工作
- ✓ 油气回收管线上的开关应常开, 检测口开关应常闭
- ✓ 加油机内油气回收相关管路、接头不得有跑冒滴漏现象

▶ 1、加油站 (卸油环节)

- ✓ 卸油的油气回收接口应安装截流阀(或密封式快速接头)和帽盖
- ✓ 连接软管应采用密封式快速接头与卸油车连接,卸油后连接软管内不能存留残油
- ✓ 卸油完毕后,应确保油气回收阀及卸油阀关严关实

▶ 1、加油站(汽油密封储存环节)

- ✓ 埋地油罐应采用电子式液位计进行油气密闭测量,避免人工量油的情况,宜选择具有测漏功能的电子式液位测量系统
- ✓ 对于未安装后处理装置的加油站,应将顶部安装了真空/压力阀 (P/V阀) 的汽油排放管上的阀门保持常开; 原顶部安装了防火罩的油气排放管上的阀门保持常闭; 对于安装油气回收后处理设施的, 真空/压力阀 (P/V阀) 和防火罩的油气排放管上的阀门均需保持关闭

▶ 1、加油站(其他环节)

- ✓ 应指定专人负责油气回收设施,组织日常检查,如实填写日常检查记录、检修维护记录台账等
- ✓ 每年至少1次对系统气液比、密闭性、液阻、后处理装置(如有)油气排放浓度等指标进行委托检测

> 2、储油库(发油环节)

✓ 油气处理装置可开启并正常运行,应采用底部发油,因故障停用时不得进行发油作业,应急排空口应 采用P/V阀密封

▶ 2、储油库(油气储存环节)

- ✓ 储油库储存汽油应按照标准规定采用浮顶罐储油
- ✓ 浮顶罐所有密封结构不应有造成漏气的破损和开口,浮盘上所有可开启设施在非需要开启时都应保持 密封状态,应定期对浮盘进行检查,并记录检查过程与结果

> 2、储油库(检查维护环节)

- ✓ 每年至少检测1次油气收集装置任何泄漏点排放的油气浓度,并对检测结果、过程进行记录
- ✓ 每年至少检测1次油气回收处理装置的油气排放浓度,并对检测结果、过程进行记录
- ✓ 应对进、出处理装置的气体流量计进行监测,流量计应具备连续测量和数据至少保存1年的功能,并符合安全要求
- ✓ 应建立燃油供销台账、回收装置每日运行检查记录台账,后台监控应正常使用,并可调取近期装油、 发油的监控视频

>3、油罐车

- ✓ 油罐汽车应具备底部装卸油系统。在装卸油时,管路应紧密连接,人孔盖严格密封,禁止油气泄漏
- ✓ 油罐汽车卸油后、道路行驶过程中,禁止人为开启人孔盖,防止油气泄漏

▶ 1、加油站(自查机制)

每天至少对油气回收系统检查1次,并填写日常记录,检查主要包括以下内容:

- ✓ 加油机内油气回收系统的相关管路不得有跑冒滴漏现象
- ✓ 油气回收泵应正常工作,回收泵损坏或停机后,对应加油枪不得进行加油作业,应及时修理或更换
- ✓ 汽油加油枪集气罩应完好无破损; 加油枪胶管应定期检查维护, 不得有裂纹、破损
- ✓ 卸油口、人井口、量油口、潜泵等处,应紧密连接且密封,不得有油气泄漏
- ✓ 在加油站卸油的油罐车应紧密连接回气管路,密闭卸油,不得有油气泄漏

▶ 2、储油库(自查机制)

每天至少检查下装发油和油气处理装置1次,并填写日常记录,检查主要包括以下内容:

- ✓ 储油库油气处理装置应开启并正常运行,因故障停用时不得进行发油作业
- ✓ 与油罐车连接的发油鹤管和回气管均应紧密连接, 汽油、油气均不得泄漏
- ✓ 储油库油气处理装置应急排空口应采用PV阀密封,不得直排

四、检查要点

检查要点

常规检查判断方法

- 一、加油机在给汽车加油时,在油箱附近是否有较浓的汽油味,加油机内部油气回收泵是否异响
- 二、打开加油机箱盖,观察铜管接头处是否有液体泄漏,检测口球阀堵盖是否关严,是否在加油机内部会有较浓汽油味
- 三、进入油罐区,打开人井盖,若油罐区法兰接口,量油口等处存在泄漏点,通常会有较高浓度油气挥发出来
- 四、量油口, 卸油口等安装有球阀的地方, 注意观察是否完全密闭

检查要点

> 气液比检测

- ✓ 对回气量控制的检测
- ✓ 气液比大于1.2, 回气量过大将造成罐压增高
- ✓ 气液比小于1,即在加油区产生排放

> 液阻检测

- ✓ 回气管线气体通过能力的检测
- ✓ 回气管线的堵塞或不畅将严重影响油气回收系统运行效果

〉密闭性检测

✓ 对加油站整个油气空间的密闭性检测

