DM n^o4

Théorème de Müntz

On désigne par C([0,1]) l'espace vectoriel des fonctions réelles continues sur [0,1]. Pour tout $\lambda \geq 0$, on note ϕ_{λ} l'élément de C([0,1]) défini par $\phi_{\lambda}(x) = x^{\lambda}$. Par convention on a posé $0^0 = 1$ de sorte que ϕ_0 est la fonction constante 1.

Soit $(\lambda_k)_{k\in\mathbb{N}}$ une suite de réels ≥ 0 deux à deux distincts. On note W le sous- espace vectoriel de C([0,1]) engendré la famille $(\phi_{\lambda_k})_{k\in\mathbb{N}}$. Le but du problème est d'établir des critères de densité de l'espace W dans C([0,1]) pour l'une ou l'autre des deux normes classiques N_{∞} ou N_2 définies par :

$$N_{\infty}(f) = \sup_{x \in [0,1]} |f(x)|$$
 et $N_2(f) = \left(\int_0^1 |f(x)|^2 dx\right)^{\frac{1}{2}}$

La question préliminaire et les parties A, B, C et D sont indépendantes les unes des autres.

Question préliminaire

1) Montrer que $(\phi_{\lambda})_{{\lambda} \geq 0}$ est une famille libre de C([0,1]).

A. Déterminants de Cauchy (À ne pas réiger).

On considère un entier n > 0 et deux suites finies $(a_k)_{1 \le k \le n}$ et $(b_k)_{1 \le k \le n}$ de réels telles que $a_k + b_k \ne 0$ pour tout $k \in \{1, 2, ..., n\}$. Pour tout entier m tel que $0 < m \le n$, le déterminant de Cauchy d'ordre m est défini par :

$$D_m = \begin{vmatrix} \frac{1}{a_1 + b_1} & \frac{1}{a_1 + b_2} & \dots & \frac{1}{a_1 + b_m} \\ \frac{1}{a_2 + b_1} & \frac{1}{a_2 + b_2} & \dots & \frac{1}{a_2 + b_m} \\ \vdots & \vdots & & \vdots \\ \frac{1}{a_m + b_1} & \frac{1}{a_m + b_2} & \dots & \frac{1}{a_m + b_m} \end{vmatrix}.$$

On définit la fraction rationnelle :

$$R(X) = \frac{\prod_{k=1}^{n-1} (X - a_k)}{\prod_{k=1}^{n} (X + b_k)}.$$

2) Montrer que si R(X) est de la forme $R(X) = \sum_{k=1}^{n} \frac{A_k}{X + b_k}$, alors

$$A_n D_n = R(a_n) D_{n-1}$$

On pourra pour cela considérer le déterminant obtenu à partir de D_n en remplaçant la dernière colonne par

$$\begin{pmatrix} R(a_1) \\ R(a_2) \\ \vdots \\ R(a_n) \end{pmatrix}.$$

3) En déduire que

$$D_n = \frac{\prod_{\substack{1 \le i < j < \le n \\ 1 \le j \le n}} (a_j - a_i)(b_j - b_i)}{\prod_{\substack{1 \le i \le n \\ 1 \le j \le n}} (a_i + b_j)}.$$

B. Distance d'un point à une partie d'un espace normé

Soit E un espace vectoriel normé par une norme $\|\cdot\|$. On rappelle que la distance d'un élément $x\in E$ à une partie non vide A de E est le réel noté d(x,A) défini par :

$$d(x, A) = \inf_{y \in A} ||x - y||.$$

- 4) Montrer que d(x, A) = 0 si et seulement si x est adhérent à A.
- **5)** Montrer que si $(A_n)_{n\geq 0}$ est une suite croissante de parties de E et si $A=\bigcup_{n\geq 0}A_n$ alors $d(x,A)=\lim_{n\to\infty}d(x,A_n)$.

On considère un sous-espace vectoriel V de dimension finie de E, et on note $B = \{y; ||y - x|| \le ||x||\}.$

- **6)** Montrer que $B \cap V$ est compacte et que $d(x, V) = d(x, B \cap V)$ pour tout $x \in E$.
- 7) En déduire que pour tout $x \in E$, il existe un élément $y \in V$ tel que d(x, V) = ||x y||.

C. Distance d'un point à un sous-espace de dimension finie dans un espace euclidien

Dans cette partie, on suppose que la norme sur l'espace vectoriel E est définie à partir d'un produit scalaire $(\cdot \mid \cdot)$ sur $E : ||x|| = \sqrt{(x \mid x)}$.

8) Montrer que si V est un sous-espace vectoriel de dimension finie de E, alors pour tout $x \in E$, la projection orthogonale de x sur V est l'unique élément $y \in V$ vérifiant d(x, V) = ||x - y||.

Pour tout suite finie $(x_1, x_2, ..., x_n) \in E^n$, on désigne par $G(x_1, x_2, ..., x_n)$ le déterminant de la matrice de Gram d'ordre n définie par :

$$M(x_1, x_2, \dots, x_n) = \begin{pmatrix} (x_1 \mid x_1) & (x_1 \mid x_2) & \cdots & (x_1 \mid x_n) \\ (x_2 \mid x_1) & (x_2 \mid x_2) & \cdots & (x_2 \mid x_n) \\ \vdots & \vdots & & \vdots \\ (x_n \mid x_1) & (x_n \mid x_2) & \cdots & (x_n \mid x_n) \end{pmatrix}.$$

- 9) Montrer que $G(x_1, x_2, \dots, x_n) = 0$ si et seulement si la famille (x_1, x_2, \dots, x_n) est liée.
- 10) On suppose que la famille $(x_1, x_2, ..., x_n)$ est libre et l'on désigne par V l'espace vectoriel qu'elle engendre. Montrer que, pour tout $x \in E$,

$$d(x,V)^{2} = \frac{G(x_{1}, x_{2}, \dots, x_{n}, x)}{G(x_{1}, x_{2}, \dots, x_{n})}.$$

D. Comparaison des normes N_{∞} et N_2

Pour toute partie A de C([0,1]), on note \overline{A}^{∞} et \overline{A}^2 les adhérences de A pour les normes N_{∞} et N_2 respectivement. Pour $f \in C([0,1])$, la notation d(f,A) désigne toujours la distance de f à A relativement à la norme N_2 (on ne considérera jamais, dans l'énoncé, la distance d'un élément à une partie relativement à la norme N_{∞}).

11) Montrer que pour tout $f \in C([0,1])$, $N_2(f) \leq N_{\infty}(f)$. En déduire que pour toute partie A de C([0,1]), on a $\overline{A}^{\infty} \subset \overline{A}^2$.

On considère l'ensemble $V_0 = \{ f \in C([0,1]); f(0) = 0 \}$, et on rappelle que ϕ_0 désigne la fonction constante 1.

- 12) Montrer que $\phi_0 \in \overline{V_0}^2$.
- 13) En déduire que V_0 est dense dans C([0,1]) pour la norme N_2 , mais n'est pas dense pour la norme N_{∞} .
- 14) Montrer que si V est un sous-espace vectoriel d'un espace vectoriel normé, alors son adhérence \overline{V} est également un espace vectoriel.
- **15)** Montrer qu'un sous-espace vectoriel V de C([0,1]) est dense pour la norme N_{∞} si et seulement si pour tout entier $m \geq 0, \ \phi_m \in \overline{V}^{\infty}$.

16) En déduire qu'un sous-espace vectoriel V de C([0,1]) est dense pour la norme N_2 si et seulement si pour tout entier $m \ge 0, \ \phi_m \in \overline{V}^2$.

E. Un critère de densité de W pour la norme N_2

Pour tout $n \in \mathbb{N}$, on note W_n l'espace vectoriel engendré par la famille finie $(\phi_{\lambda_k})_{0 \le k \le n}$.

- 17) Montrer que l'espace W est dense dans C([0,1]) pour la norme N_2 si et seulement si $\lim_n d(\phi_\mu, W_n) = 0$ pour tout entier $\mu \geq 0$.
- **18)** Montrer que pour tout $\mu \geq 0$,

$$d(\phi_{\mu}, W_n) = \frac{1}{\sqrt{2\mu + 1}} \prod_{k=0}^{n} \frac{|\lambda_k - \mu|}{\lambda_k + \mu + 1}.$$

- 19) Montrer que pour tout $\mu \geq 0$, la suite $\left(\frac{|\lambda_k \mu|}{\lambda_k + \mu + 1}\right)_{k \in \mathbb{N}}$ tend vers 1 si et seulement si la suite $(\lambda_k)_{k \in \mathbb{N}}$ tend vers $+\infty$. (On pourra pour cela étudier les variations de la fonction $x \in [0, \mu] \mapsto \frac{\mu x}{x + \mu + 1}$.)
- **20)** En déduire que l'espace W est dense dans C([0,1]) pour la norme N_2 si et seulement si la série $\sum_{k} \frac{1}{\lambda_k}$ est divergente.

F. Un critère de densité de W pour la norme N_{∞}

- 21) Montrer que si W est dense dans C([0,1]) pour la norme N_{∞} , alors la série $\sum_{k} \frac{1}{\lambda_k}$ est divergente.
- **22)** Soit $\psi = \sum_{k=0}^{n} a_k \phi_{\lambda_k}$ un élément quelconque de W_n . Montrer que si $\lambda_k \geq 1$ pour tout $k \in \{0, 1, \dots, n\}$, alors pour tout $\mu \geq 1$, on a :

$$N_{\infty}(\phi_{\mu} - \psi) \le N_2 \left(\mu \phi_{\mu-1} - \sum_{k=0}^{n} a_k \lambda_k \phi_{\lambda_k - 1}\right).$$

23) On suppose que la suite $(\lambda_k)_{k\in\mathbb{N}}$ vérifie les deux conditions suivantes :

$$(i): \lambda_0 = 0; (ii): \lambda_k \ge 1 \text{ pour tout } k \ge 1.$$

Montrer que sous ces conditions, si la série $\sum_{k} \frac{1}{\lambda_k}$ est divergente, alors W est dense dans C([0,1]) pour la norme N_{∞} .

24) Montrer que la conclusion précédente est encore valable si on remplace la condition (ii) par (ii'): $\inf_{k\geq 1} \lambda_k > 0$.