

Teknisk notat

Tittel: Frekvensmultiplikator

Referanse: Elsys-2021-LL-1

Forfattar: L. Lundheim

Versjon: 1.2 Dato: 24.04.2023

Ein ide

Av og til er det ynskjeleg å kunne endra frekvensen til eit sinusforma signal. Me ser her på ein mogeleg ide for å få dette til, meir spesifikt å kunne mulitplisera frekvensen med eit heiltal.

Me har altso eit signal $x_1 = A_1 \cos(2\pi f t)$ med kjent frekvens f og me vil produsera et nytt signal $x_k = A_k \cos(2\pi k f t + \phi)$ der k er eit heiltal.

Ideen er skissert i figur 1.

Figur 1: Ide til frekvensmultiplikator. Eit ulineært system forvrenger eit sinussignal slik at overharmoniske vert generert. Eit bandpassfilter filtrerer ut den k-te harmoniske.

Fyrst vert signalet $x_1(t)$ sendt gjennom eit ulineært system, som sender ut signalet y(t) med same periode som $x_1(t)$. Men det ulineære systemet vil forvrenga signalet slik at det ikkje lenger er sinusforma. Sidan det har same periode som $x_1(t)$, vil det ha grunnfrekevens f, men i tillegg frekvenskomponentar ved frekvensane $2f, 3f, 4f, \ldots$ Dette signalet sender me so til eit smalt bandpassfilter som slepper gjennom den ynskte frekvenskomponenten kf og dempar alle andre. Dersom filteret er tilstrekkeleg smalt, vil utgangen av filteret, $\hat{x}_k(t)$ vera eit tilnærma sinusforma signal med frekvensen kf.

Eit enkelt ikkje-lineært system

Ei diode og ein motstand kopla som vist i figur 2 kan vera ein mogeleg ulinearitet for å realisera ideen.

Figur 2: Eit mogeleg ulineæart system. Eit periodisk signal x(t) på inngangen gjev eit signal y(t) med same periode på utgangen. Med x(t) sinusforma vil y(t) innehalda overharmoniske av denne.

Kva er eit "smalt" bandpassfilter?

Den absolutte bandbreidda B til eit bandpassfilter er avstanden mellom dei to frekvensane der amplitudresponsen har sunke med 3 dB. Smale bandpassfilter med senterfrekvens f_0 er ofte basert på ein eller annan form for resonans, og då er det den relative bandbreidda B/f_0 som ein prøver få so lita som råd. I praktis nyttar ein ofte det inverse av denne storleiken, den sokalla Q-faktoren:

$$Q = f_0/B$$
.

Stor Q-faktor vil seia smalt filter. For bandpassfilteret i figur 3 kan ein visa¹ [1, Kap. 14.4] at Q-faktoren er gjeven ved

$$Q = \sqrt{\frac{L}{CR^2}}.$$

Dette resultatet kan vera greitt å hugsa når ein skal velja komponentar til eit slikt filter.

Figur 3: Eit enkelt 2. ordens bandpassfilter.

¹Det er eigentleg ikkje so vanskeleg, og ei fin øving.

Eit kvalitetsmål

Me innser at det ikkje er realistisk å få eit perfekt sinussignal med den føreslegne metoden. Men korleis skal me vurdera kor god tilnærminga er? Eit mogeleg måle er eit sokalla signaltil-distorsjonstilhøve.

Me tenkjer oss at det produserte signalet $\hat{x}_k(t)$ er gjeve som summen av det ynskte $x_k(t)$ og ei forstyrring (ein distorsjon) d(t). Alle signala har ei periode som gjeng opp i T = 1/f, og me kan finna middeleffektene til dei respektive signala som høvesvis

$$P_{x_k} = \frac{1}{T} \int_0^T x_k^2(t) dt,$$

$$P_{\hat{x}_k} = \frac{1}{T} \int_0^T \hat{x}_k^2(t) dt$$

og

$$P_d = \frac{1}{T} \int_0^T d^2(t) dt.$$

Dermed kan me skriva signal-til-distorsjonstilhøvet som²

$$SDR = \frac{P_{x_k}}{P_d}.$$

Ved Parsevals sats, veit me no at effekten til $\hat{x}_k(t)$ kan skrivast

$$P_{\hat{x}_k} = \sum_{n=-\infty}^{\infty} |c_n|^2 = |c_0|^2 + 2\sum_{n=1}^{\infty} |c_n|^2.$$

Signalet x_k med ein k gongar so stor frekvens som i x_1 , er no den k—te-harmoniske til $\hat{x}_k(t)$ slik at me får

$$P_{x_k} = 2|c_k|^2$$

og

$$P_d = P_{\hat{x}_k} - P_{x_k}.$$

Dermed kan me estimera SDR ved hjelp av ein spektrums-analysator. Der kan me nemleg lesa av effektverdiane (RMS) til dei ulike spektralkomponentane i eit signal. Desse verdiane er

²Engelsk Signal-to-Distortion-Ratio SDR.

proporsjonale med dei tilhøyrande fourierkoeffisientane. Nemner me effektivverdiane (RMS) for signala som $V_{\hat{x}_k}$ for det signalet me faktisk får ut frå filteret (kan målast med oscilloskop) og V_{x_k} for den frekvenskomponenten me er interessert i (kan lesast av i spektrumsanalysator) finn me:

$$SDR = \frac{P_{x_k}}{P_{\hat{x}_k} - P_{x_k}} = \frac{V_{x_k}^2}{V_{\hat{x}_k}^2 - V_{x_k}^2}.$$

Sidan SDR kan variera stort, er det praktisk å nytta eit logaritmisk mål, for vår del decibel. Dermed får me

$$SDR[dB] = 10 \lg \frac{V_{x_k}^2}{V_{\hat{x}_k}^2 - V_{x_k}^2}.$$

Kva er eit "godt" SDR?

Det fins ikkje noko eintydig svar på kor stor SDR "bør" vera. Det kjem heilt an på kva applikasjon systemet skal inn i.

Referanser

[1] J. W. Nilsson og S. A. Riedel, "Electric Circuits", Tenth Edition, Prentice Hall, 2015.