Ch8. 대표적인 연속형 확률분포

Ch8. 대표적인 연속형 확률분포 정규분포

파라미터	μ , σ
취할 수 있는 값	실수 전체
밀도함수	$\frac{1}{\sqrt{2\pi}\sigma}\exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$
기댓값	μ
분산	σ^2
scipy.stats	$norm(\mu,\sigma)$

정규분포(Normal distribution)

: 곡선이 평균값을 중심으로 좌우대칭인 종 모양을 이루는 분포. 평균에서 좌우로 멀어질수록 x축에 무한히 가까워지는 특징을 가짐.

표준정규분포(Standard normal distribution)

: 모든 정규분포의 평균 μ 를 0으로, 분산 σ^2 를 1로 표준화시킨 정규분포.

$$X$$
 $Z = \frac{X - m}{\sigma}$ Z $N(m, \sigma^2)$ \longrightarrow $N(0, 1^2)$ 표준화 표준정규분포 $P(a \le X \le b) \Rightarrow P\left(\frac{a - m}{\sigma} \le Z \le \frac{b - m}{\sigma}\right)$

Ch8. 대표적인 연속형 확률분포 **지수분포**

파라미터	λ
취할 수 있는 값	양의 실수
밀도함수	$\lambda e^{-\lambda x}$
기댓값	$\frac{1}{\lambda}$
분산	$\frac{1}{\lambda^2}$
scipy.stats	expon(scale = $\frac{1}{\lambda}$)

포아송분포(Poisson distribution)

- : 임의의 사건이 단위 시간당 발생하는 건수가 따르는 이산형 확률분포.
- · 콜센터에 매시간 접수되는 전화요청 건수(발생횟수)
- · 한 달 동안 발생하는 교통사고 횟수(발생횟수)

지수분포(Exponential distribution)

: <u>포아송분포에서 한 사건이 일어나고 난 뒤 다음 사건이 일어날 때 까지 필요한</u> <u>시간이 따르는 **연속형 확률분포**</u>

- · 콜센터 전화요청과 전화요청 사이 경과시간
- · 교통사고와 교통사고 사이 경과시간

모수가 λ 인 포아송분포는 특정 사건이 단위 시간에서 평균 λ 번 일어나는 것을 나타내는데, 이를 바탕으로 한 지수분포의 확률변수 X가 모수 λ 인 지수분포를 따를 때 이를 $X \sim Exp(\lambda)$ 라고 나타낸다.