Discrete Mathematical Structures (CS330)

owledge of the concepts needed to test the

Course Outcomes

Course

Outcomes

logic of the program.

CO2: Demonstrate the understanding of relations and

able to determine the properties.

CO3: Perceive, construct and decode group codes

ties.

based on the various methods.

CO4: Demonstrate different traversal methods for

Course Contents

Fundamental of Logic: Basic Connectives and Truth Tables, Logical Equivalence: The Laws of Logic, Logical Implication: Rules of Inference, The Use of Quantifiers, Quantifiers, Definitions and the Proofs of Theorems.

08

Relations: Properties of relations, Computer Recognition: Zeros- One Matrices and Directed Graphs, Partial; orders: Hasse diagrams, Equivalence Relations and Partitions, Lattices.	08
Elements of coding theory and Hamming Metric, generation of codes using Parity check and Generator matrices.	08
Graph theory: Definitions and Examples, Subgraphs, Complements, and Graph Isomorphism, Vertex degree, Euler trail and circuits, Planar Graphs, Hamiltonian Paths and cycles.	08
Trees: Definitions, Properties and Examples, Rooted trees, trees and sorting weighted trees and prefix Codes.	07

Text and Reference Books

1.

What is Discrete Mathematics?

Fundamentals of Logic

A

or Artif

Example

disjunction •

disjunction

Negation •

Negation Continued... •

• Either P or Q" (but not both),

T

T

F

Example

 $[(q \land \neg r) \rightarrow (p \lor r)]$

p	q	r	p → q (a) 1	q ∧ ¬ r 0	A p ∨	[(q ∧ ¬ r) → (p ∨ r)] (b)	a ^
			1	v	r o	•	1
0	0	1	1	0	1	1	1
0	1	0	1	1	0	0	0
0	1	1	1	0	1	1	1
1	0	0	0	0	1	1	0
1	0	1	0	0	1	1	0

1	1	0	1	1	1	1	1
1	1	1	1	0	1	1	1

Exercise Problems continues...

Exercise problems continues...

Exercise problems continues...

Exercise problems

continues...

Contingency.

Exercise problems:

a)

2.

Definitions

T

Р	q	P∨q	~(p	~p	~q	~(p) ^ ~(q)
0	0	0	∨q) 1	1	1	1
0	1	1	0	1	0	0
1	0	1	0	0	1	0
1	1	1	0	0	0	0

Distributive Law

Implication Law

Exercise Problems

A

Exercise Problems

Exercise Problems

Application to Switching Networks •

Switching Networks...

etwork_

Examples:

This shows that the given network with 4 switches is

equivalent to a network that contains only one switch.

Example 3 & 4

Solution 3

Try It Yourself

Not

p	q	¬р	¬q	¬pv¬q	¬(p ^ q) ↑
0	0	1	1	1	1
0	1	1	0	1	1
1	0	0	1	1	1
1	1	0	0	0	0

Exercise problems:

