

REGRESIÓN LINEAL (CONCEPTOS BÁSICOS)

Dr. Jorge Hermosillo Laboratorio de Semántica Computacional

FUNCIONES BASE DE CARACTERÍSTICAS (FEATURE BASIS FUNCTIONS)

Nociones básicas

MODELOS LINEALES DE REGRESIÓN

► Regresión lineal: combinación lineal de variables de entrada:

$$y(\mathbf{x}, \mathbf{w}) = w_0 + w_1 x_1 + \dots + w_d x_d \text{ donde } \mathbf{x} = (x_1, \dots, x_d)^T$$

► Regresión lineal con funciones base: combinaciones lineales de funciones no-lineales de las variables de entrada:

$$y(\mathbf{x}, \mathbf{w}) = w_0 + \sum_{j=1}^{M-1} w_j \phi_j(\mathbf{x})$$

► Sea $\phi_0(x) = 1$, de tal forma que:

$$y(\mathbf{x}, \mathbf{w}) = \sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \phi(\mathbf{x})$$

donde
$$\mathbf{w} = (w_0, ..., w_{M-1})^{\mathrm{T}} \, \mathbf{y} \, \phi = (\phi_0, ..., \phi_{M-1})^{\mathrm{T}}$$

Efecto de las funciones base sobre los datos

- Permiten dar a los datos "textura", incrementando el número de dimensiones.
- ► En tareas de clasificación, permiten encontrar un hiperplano que separe los datos

Ejemplo. Funciones base sobre datos unidimensionales

$$x = \{x_1, x_2, ..., x_n\}$$

Ejemplo. Funciones de características sobre datos unidimensionales

FEATURES (CARACTERÍSTICAS) COMUNES

- Si los datos originales están dados por el vector x, entonces sus características están dadas por $\{\phi_i(x)\}$
- ► Funciones base Polinomiales ("polynomial features"):

$$\phi_j(\mathbf{x}) = \mathbf{x}^j$$

► Funciones base Gaussianas ("Gaussian features")

$$\phi_j(\mathbf{x}) = \exp\left\{-\frac{\left(\mathbf{x} - \mu_j\right)^2}{2s^2}\right\}$$

► Funciones base Sigmoidales ("sigmoidal features")

$$\phi_j(\mathbf{x}) = \sigma\left(\frac{\mathbf{x} - \mu_j}{s}\right)$$
 donde $\sigma(a) = \frac{1}{1 + \exp(-a)}$

Distintas funciones de características

EJEMPLO REGRESIÓN POLINOMIAL

DATOS DE ENTRADA:

Un conjunto de N datos de entrenamiento y sus respectivos valores objetivo:

$$\mathbf{x} \equiv (x_1, x_2, \cdots, x_N)^T$$

$$\mathbf{t} \equiv (t_1, t_2, \cdots, t_N)^T$$

donde:

$$t_n = \sin(2\pi x_n) + \epsilon$$

 $con \epsilon \sim \mathcal{N}(0, (0.3)^2)$

SALIDA:

Un modelo lineal de ajuste polinomial:

$$y(\mathbf{x}, \mathbf{w}) = w_0 + w_1 \mathbf{x} + \dots + w_M \mathbf{x}^M = \sum_{j=0}^M w_j \mathbf{x}^j$$

FUNCIÓN DE ERROR/PÉRDIDA (LOSS FUNCTION)

Tomada de: Bishop, Christopher M. (2006). Pattern recognition and machine learning. New York. Springer.

$$y(x, \mathbf{w}) = w_0 + w_1 x + \dots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$

el ajuste se hace mediante la minimización de la función de error:

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

Donde t_n es el objetivo (valor de la muestra – puntos azules en la figura).

EFECTO DE LA COMPLEJIDAD DEL MODELO EN EL AJUSTE

MÉTRICA DE DESEMPEÑO: ERMS

Error cuadrático medio:

$$E_{\rm RMS} = \sqrt{2E(\boldsymbol{w}^*)/N}$$

O	V	e	rfi	itt	in	g
_						_

	M = 0	M = 1	M = 6	M=9
w_0^{\star}	0.19	0.82	0.31	0.35
w_1^{\star}		-1.27	7.99	232.37
w_2^{\star}			-25.43	-5321.83
w_3^{\star}			17.37	48568.31
w_4^{\star}				-231639.30
w_5^{\star}				640042.26
w_6^{\star}				-1061800.52
w_7^{\star}				1042400.18
w_8^{\star}				-557682.99
w_9^{\star}				125201.43
	ı			_ \

Tomadas de: Bishop, Christopher M. (2006). Pattern recognition and machine learning. New York. Springer.

EFECTO DE LA CANTIDAD DE DATOS N EN EL AJUSTE

CONCLUSIONES

- ► El modelo es lineal en los parámetros, no en los datos. Esto es importante porque la optimización se hace con respecto a los parámetros.
- A mayor número de pesos, mayor complejidad -> mayor flexibilidad. Pero, modelos muy complejos son propensos al sobreajuste con pocos datos
- Con pocos datos, se requiere un modelo poco complejo, pero que resulta poco flexible ante el incremento en el número de datos.
- Deseamos un compromiso entre la complejidad del modelo (número de parámetros) y su flexibilidad (capacidad de ajuste).
- ► El sobreajuste se da cuando los parámetros escalan a valores muy altos.
- ► Idea: tratar de penalizar valores altos de los parámetros en función de la complejidad => Regularización

REGULARIZACIÓN

La forma más simple es la penalización sobre la norma del vector de pesos (parámetros).

$$\tilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$

Donde:

$$||w||^2 \equiv \mathbf{w}^{\mathrm{T}} \mathbf{w} = w_0^2 + w_1^2 + \dots + w_M^2$$

EFECTO DE LA REGULARIZACIÓN EN LOS PARÁMETROS

Tabla de pesos w para M=9 polinomios con varios valores para el parámetro de regularización λ . Nota que ln $\lambda=-\infty$ corresponde a un modelo sin regularización. Vemos que, a medida que el valor de λ aumenta, la magnitud típica de los pesos disminuye.

	$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
w_0^{\star}	0.35	0.35	0.13
w_1^{\star}	232.37	4.74	-0.05
w_{2}^{\star}	-5321.83	-0.77	-0.06
$w_3^{\overline{\star}}$	48568.31	-31.97	-0.05
w_4^{\star}	-231639.30	-3.89	-0.03
w_5^{\star}	640042.26	55.28	-0.02
w_6^{\star}	-1061800.52	41.32	-0.01
w_7^{\star}	1042400.18	-45.95	-0.00
w_8^\star	-557682.99	-91.53	0.00
w_9^{\star}	125201.43	72.68	0.01

EFECTO DE LA REGULARIZACIÓN EN EL AJUSTE

EFECTO DE LA REGULARIZACIÓN EN EL DESEMPEÑO

FUNCIONES DE PÉRDIDA (COSTO)

Nociones básicas

¿POR QUÉ FUNCIÓN DE "PÉRDIDA"?

- ► En ML, el propósito final se basa en minimizar o maximizar una función llamada "función objetivo".
- ► El grupo de funciones que se minimizan se denominan "funciones de pérdida".
- ▶ La función de pérdida se usa como medida de cuán bueno es un modelo de regresión/clasificación en términos de poder predecir el resultado esperado.

▶ Un clasificador separa los datos de entrada en regiones de decisión cuyos límites llamamos Fronteras (o superficies) de Decisión (FD).

Supongamos por ahora, que un punto está bien clasificado si $\operatorname{sign}(f(x_i))$ es y_i , donde $f(\cdot)$ es la función de clasificación y $y_i \coloneqq \{-1, +1\}$.

$$f(x) < 0$$
-
+
-
-
-
+
-
-
-
+

Fracción de veces que $sign(f(x_i))$ no es y_i :

$$\frac{1}{n} \sum_{i=1}^{n} y_i \neq \operatorname{sign}(f(x_i))$$

Minimizar esta función es computacionalmente muy difícil.

Supongamos por ahora, que un punto está bien clasificado si $\operatorname{sign}(f(x_i))$ es y_i , donde $f(\cdot)$ es la función de clasificación y $y_i \coloneqq \{-1, +1\}$.

$$yf(x) \approx 0$$
-
+
-
-
-
+
-
-
-
+

Fracción de veces que $sign(f(x_i))$ no es y_i :

$$\frac{1}{n} \sum_{i=1}^{n} y_i \neq \operatorname{sign}(f(x_i))$$

Minimizar esta función es computacionalmente muy difícil.

$$yf(x) < 0 yf(x) > 0$$

$$- + + + + -$$

$$+ + + -$$

$$+ + -$$

$$0-1 \text{ Loss} 1[yf(x) < 0] yf(x)$$

$$\begin{array}{c}
1_{[yf(x)<0]} \\
0 & yf(x)
\end{array}$$

Fracción de veces que
$$\operatorname{sign}(f(x_i))$$
 no es $y_i = \frac{1}{n} \sum_{i=1}^n 1_{[y_i \neq \operatorname{sign}(f(x_i))]}$

$$= \frac{1}{n} \sum_{i=1}^{n} 1_{[y_i f(x_i) < 0]}$$

$$\leq \frac{1}{n} \sum_{i=1}^{n} L(y_i f(x_i))$$

Fracción de veces que $sign(f(x_i))$ no es $y_i = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{n} \frac{1}{n}$

$$= \frac{1}{n} \sum_{i=1}^{n} 1_{[y_i \neq \text{sign}(f(x_i))]}$$

Objetivo

$$\min_{\substack{i=1}}^{1} \sum_{i=1}^{n} L(y_i f(x_i))$$

$$= \frac{1}{n} \sum_{i=1}^{n} 1_{[y_i f(x_i) < 0]}$$

$$\leq \frac{1}{n} \sum_{i=1}^{n} L(y_i f(x_i))$$

DESCENSO DE GRADIENTE

Nociones básicas

Ejemplo de problema

Conjunto de entrenamiento de precios de casas (Portland, Oregon, USA)

Tamaño en pies² (x)	Precio (\$) en miles (y)
2104	460
1416	232
1534	315
852	178

Modelación del problema (I)

Conjunto de entrenamiento de precios de casas (Portland, Oregon, USA)

		Tamaño en pies (x)	Precio (\$) en miles (y)		
		2104	460		
		1416	232		
N=	47 –	1534	315		
		852	178		

Notación:

N : número de instancias (ejemplos) de entrenamiento

x : variable de "entrada" / atributos (features)

y : variable de "salida" / variable "objetivo"

Modelación del problema (II)

Conjunto de entrenamiento de precios de casas (Portland, Oregon, USA)

	Tamaño en pies² (x)			Precio (\$) en miles (y)		
		2104	$\chi^{(1)}$	460 y(1)		
		1416	$x^{(2)}$	232		
N=	47 –	1534		315		
		852		178		

Notación:

N : número de instancias (ejemplos) de entrenamiento

x : variable de "entrada" / atributos (features)

y : variable de "salida" / variable "objetivo"

(x,y) – un ejemplo de entrenamiento

 $(x^{(i)}, y^{(i)})$ – i-ésimo ejemplo de entrenamiento

Problema de Aprendizaje

Problema de Aprendizaje

¿Cómo representamos h?

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Regresión lineal de una variable (univariada).

FUNCIÓN DE COSTO

Problema de aprendizaje

Conjunto de entrenamiento

	Tamaño en pies² (x)		Precio (\$) en miles (y)
		2104	460
		1416	232
N=4	17 –	1534	315
		852	178

Hipótesis: $h_{\theta}(x) = \theta_0 + \theta_1 x$

 θ_i 's : Parámetros

¿Cómo elegir los θ_i 's?

Hipótesis en función de los parámetros

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$\theta_0 = 1.5$$
$$\theta_1 = 0$$

$$\theta_0 = 0$$
$$\theta_1 = 0.5$$

$$\theta_0 = 1$$
$$\theta_1 = 0.5$$

Función de costo

Idea: Elige θ_0 , θ_1 de tal forma que $h_{\theta}(x)$ esté cerca de y para nuestros ejemplos de entrenamiento (x,y)

Función de error cuadrático:

$$\Rightarrow J(\theta_0, \theta_1) = \frac{1}{2N} \sum_{i=1}^{N} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)$$

$$h_{\theta}(x^{(i)}) = \theta_0 + \theta_1 x^{(i)}$$

Minimización de costo

Idea: Elige θ_0 , θ_1 de tal forma que $h_{\theta}(x)$ esté cerca de y para nuestros ejemplos de entrenamiento (x,y)

$$J(\theta_0, \theta_1) = \frac{1}{2N} \sum_{i=1}^{N} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Función de costo

$$\min_{\theta_0, \theta_1} J(\theta_0, \theta_1)$$

$$\min_{\theta_0, \theta_1} \frac{1}{2N} \sum_{i=1}^{N} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

$$h_{\theta}(x^{(i)}) = \theta_0 + \theta_1 x^{(i)}$$

FUNCIÓN DE COSTO

Intuición I

Problema de minimización

Hipótesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parámetros:

Función de costo:

$$J(\theta_0, \theta_1) = \frac{1}{2N} \sum_{i=1}^{N} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Objetivo: $\min_{\theta_0,\theta_1} J(\theta_0,\theta_1)$

Minimización simplificada

Hipótesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parámetros:

Función de costo:

$$J(\theta_0, \theta_1) = \frac{1}{2N} \sum_{i=1}^{N} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

 $\min_{\theta_0,\theta_1} J(\theta_0,\theta_1)$ Objetivo:

Simplificación:

$$h_{\theta}(x) = \theta_1 x$$

Parámetros:

Función de costo:

$$J(\theta_1) = \frac{1}{2N} \sum_{i=1}^{N} \left(\underline{h_{\theta}(x^{(i)})} - y^{(i)} \right)^2$$
Objetivo:
$$\min_{\theta_1} J(\theta_1) \qquad \theta_1$$

Objetivo:

$$\min_{\theta_1} J(\theta_1)$$

(para un θ_1 fijo, esto es una función de x)

$$J(heta_1)$$
 (función del parámetro $heta_1$)

$$J(\theta_1) = \frac{1}{2N} \sum_{i=1}^{N} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2 = \frac{1}{2N} \sum_{i=1}^{N} \left(\theta_1 x^{(i)} - y^{(i)} \right)^2 \qquad J(1) = 0$$

$$J(1) = \frac{1}{2 \cdot 3} (0^2 + 0^2 + 0^2) = 0$$
Expressignation en

 $J(heta_1)$ (función del parámetro $heta_1$)

$$J(0.5) = \frac{1}{2 \cdot 3} [(0.5 - 1)^2 + (1 - 2)^2 + (1.5 - 3)^2] \approx 0.58$$

$$J(0) = \frac{1}{2 \cdot 3} [(1)^2 + (2)^2 + (3)^2] \approx 2.3$$

FUNCIÓN DE COSTO

Intuición II

Problema de minimización de costo

Hipótesis: $h_{\theta}(x) = \theta_0 + \theta_1 x$

Parámetros: θ_0 , θ_1

Función de costo: $J(\theta_0, \theta_1) = \frac{1}{2N} \sum_{i=1}^{N} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$

Objetivo: $\min_{\theta_0,\theta_1} J(\theta_0,\theta_1)$

Gráficos de contorno

 $J(\theta_0,\theta_1)$ (función de los parámetros θ_0,θ_1)

 $h_{ heta}(x)$ (para un $heta_1, heta_2$ fijos, esto es una función de x)

 $J(\theta_0,\theta_1)$ (función de los parámetros θ_0,θ_1)

 $J(\theta_0,\theta_1)$ (función de los parámetros θ_0,θ_1)

2000

 $J(\theta_0,\theta_1)$ (función de los parámetros θ_0,θ_1)

DESCENSO DE GRADIENTE

Problema de minimización

Función de costo: $J(\theta_0, \theta_1)$

Objetivo: $\min_{\theta_0,\theta_1} J(\theta_0,\theta_1)$

Descripción resumida:

- Comienza con algún θ_0 , θ_1
- Cambia θ_0 , θ_1 para reducir $J(\theta_0,\theta_1)$ hasta que (ojalá) lleguemos a un mínimo.

Topología de la función de costo

Topología de la función de costo

Algoritmo de descenso de gradiente

Repite hasta la convergencia {

$$\theta_j \coloneqq \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$
 (para $j = 0$ y $j = 1$)

Asignación simultánea!!!

Correcto: actualización simultánea

$$temp0 \coloneqq \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$temp1 \coloneqq \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_0 \coloneqq temp0$$

$$\theta_1 \coloneqq temp1$$

Incorrecto:

$$temp0 \coloneqq \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$
 $\theta_0 \coloneqq temp0$
 $temp1 \coloneqq \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$
 $\theta_1 \coloneqq temp1$

INTUICIÓN DEL DESCENSO DE GRADIENTE

Algoritmo de descenso de gradiente

Repite hasta la convergencia {

$$\min_{\theta_1} J(\theta_1) \qquad \theta_1 \in \mathbb{R}$$

Actualización en función de la pendiente

$$\theta_1 := \theta_1 - \frac{\partial}{\partial \theta_1} J(\theta_1)$$

If α is too small, gradient descent can be slow.

If α is too large, gradient descent can overshoot the minimum. It may fail to converge, or even diverge.

Mínimos locales

Convergencia

 \blacktriangleright El descenso de gradiente puede converger a un mínimo local, aún con una tasa de aprendizaje α fija.

 $\theta_1 \coloneqq \theta_1 - \alpha \frac{\mathrm{d}}{\mathrm{d}\theta_j} J(\theta_1)$

- Conforme nos acercamos a un mínimo local, el descenso de gradiente toma automáticamente pasos más pequeños.
- ightharpoonup De esta forma, no es necesario decrementar α en el tiempo.

REGRESIÓN LINEAL

$$y(\mathbf{x}, \mathbf{w}) = \sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \phi(\mathbf{x})$$

Suponiendo que los datos a predecir (objetivo) t están centrados en y(x, w) con ruido aditivo gaussiano, es decir

$$p(t|\mathbf{x}, \mathbf{w}, \beta) = \mathcal{N}(t|y(\mathbf{x}, \mathbf{w}), \beta^{-1})$$

Consideremos un conjunto de entradas $\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$ con objetivos correspondientes t_1, \dots, t_N . Juntamos estas variables objetivo en un vector \mathbf{t} (conjunto de variables unidimensionales).

La función de verosimilitud está dada por

$$p(\mathbf{t}|\mathbf{X}, \mathbf{w}, \beta) = \prod_{n=1}^{N} \mathcal{N}(t_n|\mathbf{w}^{\mathrm{T}} \mathbf{\phi}(\mathbf{x}_n), \beta^{-1})$$

Tomando el logaritmo tenemos

$$\ln p(\mathbf{t}|\mathbf{X}, \mathbf{w}, \beta) = \sum_{n=1}^{N} \ln \mathcal{N}(t_n|\mathbf{w}^{\mathrm{T}} \phi(\mathbf{x}_n), \beta^{-1})$$

Considerando la forma estándar de la gaussiana obtenemos

$$\ln p(\mathbf{t}|\mathbf{X}, \mathbf{w}, \beta) = \frac{N}{2} \ln \beta - \frac{N}{2} \ln(2\pi) - \beta E_D(\mathbf{w})$$

Donde la función de error de suma de cuadrados está definida como

$$E_D = \frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}} \mathbf{\phi}(\mathbf{x}_n)\}^2$$

Usamos Máximo de Verosimilitud, donde maximizar

$$p(\mathbf{t}|\mathbf{X},\mathbf{w},\beta)$$

Es equivalente a minimizar

$$E_D = \frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}} \mathbf{\phi}(\mathbf{x}_n)\}^2$$

Calculando el gradiente con respecto a w :

$$\nabla_{\mathbf{w}} p(\mathbf{t}|\mathbf{X}, \mathbf{w}, \beta) = \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}} \phi(\mathbf{x}_n)\} \phi(\mathbf{x}_n)^{\mathrm{T}}$$

Igualando a cero, obtenemos:

$$0 = \sum_{n=1}^{N} t_n \phi(\mathbf{x}_n)^{\mathrm{T}} - \mathbf{w}^{\mathrm{T}} \left(\sum_{n=1}^{N} \phi(\mathbf{x}_n) \phi(\mathbf{x}_n)^{\mathrm{T}} \right)$$

Despejando para w

$$\mathbf{w}_{\mathrm{ML}} = \left(\Phi^{\mathrm{T}}\Phi\right)^{-1}\Phi^{\mathrm{T}}\mathbf{t}$$

Note that the Que se conocen como las ecuaciones normales del problema de mínimos cuadrados. Aquí Φ es una matriz $M \times M$ llamada la matriz de diseño. Cuyos elementos son $\Phi_{nj} = \phi_i(\mathbf{x}_n)$

$$\Phi = \begin{pmatrix} \phi_0(\mathbf{x}_1) & \phi_1(\mathbf{x}_1) & \dots & \phi_{M-1}(\mathbf{x}_1) \\ \phi_0(\mathbf{x}_2) & \phi_1(\mathbf{x}_2) & \dots & \phi_{M-1}(\mathbf{x}_2) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_0(\mathbf{x}_N) & \phi_1(\mathbf{x}_N) & \dots & \phi_{M-1}(\mathbf{x}_N) \end{pmatrix}$$

La cantidad

$$\Phi^{\dagger} = (\Phi^{\mathsf{T}}\Phi)^{-1}\Phi^{\mathsf{T}}\mathbf{t}$$

se conoce como la pseudo-inversa Moore-Penrose de la matriz Φ .

