Project Planning Phase Project Planning Template (Product Backlog, Sprint Planning, Stories, Story points)

Date	07 November 2022					
Team ID	PNT2022TMID42723					
Project Name	roject Name SmartFarmer- IoT based Smart Farming Application					
Maximum Marks	8 Marks					

Product Backlog, Sprint Schedule, and Estimation (4 Marks)

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Simulation creation	USN-1	Connect Sensors and Arduino with python code	2	High	Nishanth G, Kesavamoorthi J, Mayavan A, Saravanaperumal V
Sprint-2	Software	USN-2	Creating device in the IBM Watson IoT platform, workflow for IoT scenarios usingNode-Red	2	High	Nishanth G, Kesavamoorthi J, Mayavan A, Saravanaperumal V
Sprint-3	MIT App Inventor	USN-3	Develop an application for the Smart farmerproject using MIT App	2	High	Nishanth G, Kesavamoorthi J, Mayavan A, Saravanaperumal V
Sprint-3	Dashboard	USN-3	Design the Modules and test the app	2	High	Nishanth G, Kesavamoorthi J, Mayavan A, Saravanaperumal V
Sprint-4	Web UI	USN-4	To make the user to interact with software	2	High	Nishanth G, Kesavamoorthi J, Mayavan A, Saravanaperumal V

Project Tracker, Velocity & Burndown Chart: (4 Marks)

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date(Actual)
Sprint-1	20	7 Days	30 Oct 2022	06 Nov 2022	20	29 Oct 2022
Sprint-2	20	9 Days	31 Oct 2022	09 Nov 2022		05 Oct 2022
Sprint-3	20	6 Days	06 Nov 2022	13 Nov 2022		12 Oct 2022
Sprint-4	20	6 Days	11 Nov 2022	17 Nov 2022		15 Oct 2022

Velocity:

Imagine we have a 10-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day)

$$AV = \frac{sprint\ duration}{velocity} = \frac{20}{10} = 2$$