01076117 ปฏิบัติการเครือข่ายคอมพิวเตอร์ 2/2565 ภาควิชาวิศวกรรมคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง

กิจกรรมที่ 6 : TCP Connection

กิจกรรมครั้งนี้จะเป็นการทำความเข้าใจกับโปรโตคอล TCP (Transmission Control Protocol) ซึ่ง TCP มี คุณสมบัติในการทำงานอยู่ 5 ประการได้แก่

- Reliable, in-order delivery คือ ส่งข้อมูลได้ครบถ้วนถูกต้องและตรงตามลำดับ
- Connection-oriented คือ ต้องมีการสร้างการเชื่อมต่อก่อน และมีการแลกเปลี่ยนข้อมูลควบคุม
- Flow Control ควบคุมการไหลของข้อมูลระหว่าง Process ทั้ง 2 ด้าน
- Congestion Control ควบคุมการไหลของข้อมูลผ่านอุปกรณ์เครือข่าย
- Full Duplex data สามารถส่งได้ทั้ง 2 ทาง ในการเชื่อมต่อเดียวกัน

รูปแสดง TCP Header

TCP Connection Setup (TCP 3-way Handshake)

ก่อนเริ่มการส่งข้อมูลทุกครั้งของ TCP จะต้องมีการสร้าง Connection ขึ้นมาก่อนโดย Client จะเริ่มสร้างการ เชื่อมต่อไปที่ Server ซึ่งประกอบด้วยการรับส่ง TCP segment ระหว่าง Client-Server จำนวน 3 TCP segments

- Client ส่ง TCP segment ที่เซต SYN flag ไปที่ Server โดย Client จะสร้างหมายเลข Sequence Number เรียกว่า Initial Sequence Number (ISN) ขึ้นมา (ในรูปสมมติว่า 100) ใส่ใน SEQ# แล้วส่ง
- เมื่อ Server ได้รับ TCP segment ที่เซต SYN flag แล้วจะตอบกลับไปด้วย TCP segment ที่เซต SYN-ACK flags โดย Server จะมีการสร้างหมายเลข ISN ของตนเองขึ้นมาเช่นกัน โดยใส่ใน SEQ# และนำ หมายเลข SN:Client+1 แล้วใส่ใน ACK# แล้วส่ง
- เมื่อ Client ได้รับ TCP segment ที่เซต SYN-ACK flags ก็จะตอบกลับด้วย TCP segment ที่เซต ACK flag ซึ่งถือเป็น TCP segment สุดท้ายในการสร้าง TCP Connection โดย Client จะนำ SN:Client+1 ใส่ ใน SEQ# และนำ SN:Server+1 ใส่ใน ACK# แล้วส่ง เมื่อส่ง TCP segment ดังกล่าวออกไปแล้ว จะถือ ว่าฝั่ง Client สร้างการเชื่อมต่อสำเร็จแล้ว ซึ่ง Client สามารถจะเริ่มส่งข้อมูลได้
- เมื่อ Server ได้รับ TCP segment สุดท้ายในการสร้าง TCP Connection ซึ่งมี ACK flag เซตเอาไว้ จะ ถือว่าฝั่ง Server สร้างการเชื่อมต่อสำเร็จแล้วเช่นกัน

1. ให้เปิดไฟล์ http-browse101d.pcapng คันหา 3-way handshake แรกในไฟล์แล้ว บันทึกข้อมูลลงใน ตารางด้านล่าง (ทั้ง Seq# และ Ack# ให้ใช้แบบ raw ในช่อง Flag ให้บอกว่ามี Flag ใดที่ Set บ้าง

SYN

Src Port : 61598	Dest Port : 80
Seq # : 610997682	
Ack # : 0	
Flags : SYN	Window Size : 8192
SYN-ACK	

Src Port : 80	Dest Port : 61598
Seq # : 4134094401	
Ack # : 610997683	
Flags : SYN/ACK	Window Size : 14300

ACK

Src Port : 61598	Dest Port : 80
Seq # : 610997683	
Ack # : 4134094402	
Flags : ACK	Window Size: 16445 [factored: 65780]

- ค่าความยาวข้อมูลของ packet ทั้ง 3 เท่ากับเท่าไรบ้าง Packet Length เป็น 66, 66, 54 ตามลำดับ ส่วน Payload เป็น 0 ทั้งหมด
- ใน packet ที่เซต SYN flag มีข้อมูลอื่นๆ ส่งมาด้วยหรือไม่ อะไรบ้าง (ดูในคอลัมน์ info) และ ข้อมูลต่างๆ เหล่านั้นมีความหมายอะไรหรือนำไปใช้อะไร (ให้ค้นหาข้อมูลเพิ่มเติมจากหนังสือ)

ข้อมูล	ความหมาย
Len = 0	ขนาดของ Payload ของ TCP Segment
MSS = 1460	Maximum Segment Size ขนาดของ Segment ที่มากที่สุด
Windows Scale = 2	ตัวคูณของ Window Size (x4)
SACK permitted	สามารถใช้ Selective ACK ได้

- ใน packet ที่เซต SYN-ACK flags มีข้อมูลอื่นๆ ส่งมาด้วยหรือไม่ อะไรบ้าง (ดูในคอลัมน์ info) และข้อมูลต่างๆ เหล่านั้นมีความหมายอะไรหรือนำไปใช้อะไร

ข้อมูล	ความหมาย
Len = 0	ขนาดของ Payload ของ TCP Segment
MSS = 1430	Maximum Segment Size ขนาดของ Segment ที่มากที่สุด
Windows Scale = 6	ตัวคูณของ Window Size (x64)
SACK permitted	สามารถใช้ Selective ACK ได้

- ให้ดู packet ที่ส่งข้อมูล packet แรก (หรือ packet อื่นก็ได้) ให้ตอบว่าในข้อมูลที่ไม่เท่ากันของ Client กับ Server ในการเลือกใช้ข้อมูลหนึ่ง (เนื่องจากทั้ง 2 ด้านต้องใช้พารามิเตอร์เดียวกันใน การส่งข้อมูล) คิดว่ามีหลักในการเลือกอย่างไร SACK ถ้า permit ทั้งสองด้าน จะสามารถใช้ selective ack ได้ MSS เป็นค่าที่แลกเปลี่ยนระหว่างคู่สนทนา เพื่อแจ้งไปยังอีกฝั่งว่ารองรับ MSS เท่าใด ทั้งสอง ผั่งไม่ได้จำเป็นต้องใช้ค่าเดียวกัน ไม่ได้เป็นการตกลงค่าเดียวกัน (RFC879 section 3) Window Size เป็นค่าที่แลกเปลี่ยนระหว่างคู่สนทนา เพื่อแจ้งไปยังอีกฝั่งว่าตนมีพื้นที่ว่างพร้อม รับข้อมูลเท่าใด ถ้าตอบ SACK ถูกให้ถือว่าเป็นคำตอบที่ถูกต้อง

TCP Connection Termination (หรือ TCP Connection Teardown)

เมื่อสิ้นสุดการส่งข้อมูลแล้ว ใน TCP จะมีการปิด Connection ซึ่งประกอบด้วย 4 ขั้นตอน

- ฝ่ายใดฝ่ายหนึ่งที่ต้องการปิด Connection (ต่อไปจะเรียก A และเรียกอีกฝั่งว่า B) จะส่ง packet ที่มี FIN/ACK flag มา โดยใช้ SEQ# และ ACK# เท่ากับ packet สุดท้ายก่อนจะปิด connection
- ฝั่ง B จะตอบด้วย packet ที่มี ACK flag โดยใช้ SEQ# เท่ากับ ACK# ของ FIN/ACK ก่อนหน้า และใช้ ACK# เท่ากับของ SYN# ของ packet ล่าสุด โดยเมื่อ A ได้รับ packet นี้ จะถือว่าเป็นการสิ้นสุด connection ของฝั่ง A (หมายเหตุ บางครั้งอาจไม่มีการส่ง packet นี้ โดยอาจรวมไปกับ packet ที่ 3
- ฝั่ง B จะเริ่มปิด Connection บ้าง โดยจะส่ง packet ที่มี FIN/ACK flag โดยใช้ SEQ# เท่ากับ ACK# ของ FIN/ACK ก่อนหน้า และใช้ ACK# เท่ากับของ SYN# ของ packet ล่าสุด +1
- ฝั่ง A จะตอบกลับการปิด Connection โดยจะส่ง packet ที่มี FIN/ACK flag โดยใช้ SEQ# เท่ากับ ACK# ของ FIN/ACK ก่อนหน้า และใช้ ACK# เท่ากับของ SYN# ของ packet ล่าสุด +1 เมื่อถึงจุดนี้จะถือว่า เป็นการสิ้นสุด Connection ของ B
- 2. ให้หา Packet ที่ปิด Connection ของ Connection ในข้อ 1 โดยให้บอกขั้นตอนการหาและป้อน รายละเอียดลงในตาราง (ข้อมูล Seq# และ Ack # ให้ใช้แบบ Relative)

Packet# 1663	
Src Port : 61598	Dest Port : 80
Seq # : 323	
Ack # : 1127	
Flags : FIN/ACK	Window Size : 16163 [factored: 64652]

Packet# 1664	
Src Port : 80	Dest Port : 61598
Seq # : 1127	
Ack # : 324	
Flags : FIN/ACK	Window Size :241 [factored: 15424]

Packet# 1665	
Src Port : 61598	Dest Port : 80
Seq # : 324	
Ack # : 1128	
Flags : ACK	Window Size: 16163 [factored: 64652]

วิธีค้นหา

__ใช้ follow TCP Stream หรือใช้ Statistics | Conversation หรือใส่ display filter หา IP ผู้รับ และผู้ส่ง แล้วตรวจสอบ 3 ถึง 4 packets สุดท้ายของ Stream__ 3. ใน Wireshark เราสามารถจะหา packet ที่มีคุณลักษณะของ flags เฉพาะได้ โดยใช้ display filter tcp.flags เช่น tcp.flags.syn==1 หรือ tcp.flags.ack==1 ซึ่งเราสามารถใช้หา RTT ของ TCP handshake ได้ โดยการหา RTT ของ TCP handshake มี 3 แบบ คือ วัดจากฝั่ง Client จะใช้เวลา ระหว่าง SYN และ SYN-ACK

และวัดจากฝั่ง Server จะใช้เวลาระหว่าง SYN/ACK กับ ACK

แต่ในกรณีที่วัดจากอุปกรณ์ ควรใช้ระหว่าง SYN และ ACK ตามรูป

- 4. จากไฟล์ http-browse101d.pcapng ให้สร้าง display filter ที่สามารถแสดงเฉพาะ packet ต่อไปนี้ โดยไม่ มี packet อื่นๆ มาปน (นักศึกษาพยายามคิดด้วยตนเอง)
 - packet SYN และ SYN/ACK ของ 3 way handshake (packet ที่ 1 และ 2)
 - packet SYN/ACK และ ACK ของ 3 way handshake (packet ที่ 2 และ 3)
 - packet SYN และ ACK 3 way handshake (packet ที่ 1 และ 3)

```
หา SYN และ SYN/ACK ใช้ tcp.flags.syn==1
หา SYN/ACK และ ACK ใช้ (tcp.flags.syn==1 && tcp.flags.ack==1) || (tcp.seq==1 && tcp.ack==1) && (tcp.flags.fin==0) && (tcp.len==0)
หา SYN และ ACK ใช้ (tcp.flags.syn==1 && tcp.flags.ack==0) || (tcp.seq==1 && tcp.ack==1) && (tcp.flags.fin==0) && tcp.len ==0
สามารถตอบ display filter อื่น ๆ ได้ที่ให้ผลตรงกัน
```

5. เราสามารถใช้ค่า RTT ของ TCP handshaking ตามข้อ 4 มาใช้วัดประสิทธิภาพของ Web Server ได้ เช่นกัน โดย Server ที่มีค่า RTT น้อย แสดงถึงการตอบสนองที่รวดเร็ว ดังนั้นให้ capture ข้อมูลจากเว็บ และใช้ display filter ตามข้อ 4 (ให้นักศึกษาเลือกใช้ตัวที่เหมาะสม) เพื่อหาค่า RTT ของเว็บต่างๆ จำนวน 3 เว็บ แล้วนำค่ามาใส่ตาราง

URL	เวลา
www.kmitl.ac.th	0.007318
www.reg.kmitl.ac.th	0.005622
www.google.com	0.021372

คำตอบแต่ละคนไม่เท่ากัน แต่จะเห็นว่าเว็บที่อยู่ใกล้จะมี RTT ที่น้อยกว่า

- ให้ตอบว่าระหว่าง RTT ที่วัดในครั้งนี้ กับ HTTP RTT ที่วัดในครั้งก่อนหน้านี้ บอกถึงอะไร และ แตกต่างกันอย่างไร

RTT ที่วัดครั้งนี้วัดจากการทำงานของ TCP/IP Stack ของระบบปฏิบัติการ ซึ่งไม่นับรวมเวลาใน การให้บริการเว็บนั้น ๆ ในขณะที่ HTTP RTT เป็นการทำงานของที่นับรวมเวลาในการให้บริการ เว็บซึ่งให้บริการโดย Web Server Software เข้าไปด้วย