NP-Completude

Análise de Algoritmos - Ciência da Computação

Prof. Daniel Saad Nogueira Nunes

IFB – Instituto Federal de Brasília, Campus Taguatinga

Sumário

- Introdução
- $\bigcirc\hspace{-0.4cm}\mathcal{P}$ vs \mathcal{NP}

Introdução \mathcal{P} vs \mathcal{NP}

Sumário

- Até agora vimos diversos problemas que podem ser resolvidos em tempo polinomial.
- Todos os problemas podem ser resolvidos em tempo polinomial?

- Existem problemas que podem ser resolvidos em tempo polinomial:
 - Ordenação.
 - Compressão LZ77.
 - Seleção de Eventos.
 - Subsequência comum mais longa.

- Existem problemas em que, independente do tempo, é impossível resolvê-los com os modelos computacionais relevantes (tese de Church-Turing):
 - Problema da parada.
 - Problema da Correspondência de Post.

- Existem problemas em que não são conhecidas soluções eficientes para eles:
 - Ciclo Hamiltoniano.
 - Caixeiro Viajante.
 - Cobertura de Vértices.
 - ► SAT.

Complexidade Computacional

- O campo de Complexidade Computacional estuda a dificuldade dos problemas.
- Procura classificar os problemas em classes de complexidade.
- Por que precisamos estudar Complexidade Computacional?

Complexidade Computacional

- O estudo da Complexidade Computacional permite:
 - Verificar a dificuldade de um problema.
 - Estabelecer a dificuldade de um problema baseado em outro.
 - Procurar por soluções aproximadas ou heurísticas, caso o problema seja identificado como "difícil".

Introdução $\mathcal{P} \text{ vs } \mathcal{NP}$

Problemas Tratáveis

- O que é um problema difícil?
- O é uma solução eficiente?
- Qual o conceito formal de eficiência?
- Quando um problema é considerável tratável?

Problemas Tratáveis

- Na literatura, problemas tratáveis admitem uma solução em $O(n^k)$ para algum k>0.
- Soluções polinomiais são ditas "eficientes", mesmo que o polinômio tenha grau alto.
- Por exemplo: $O(n^{10})$.
- Isto não corresponde totalmente à prática, mas necessitamos deste parâmetro de eficiência para desenvolver a teoria.

Introdução $\mathcal{P} \text{ vs } \mathcal{NP}$

Problemas Tratáveis

- De maneira geral, problemas que admitem solução polinomial são ditos tratáveis.
- Problemas que não admitem solução em tempo polinomial são denominados de intratáveis pela literatura.

Introdução $\mathcal{P} \text{ vs } \mathcal{NP}$

A Classe \mathcal{P}

• A classe de complexidade $\mathcal P$ corresponde aos problemas de decisão que podem ser resolvidos em tempo $O(n^k)$ por algum algoritmo.

- SORT: Ordenação.
 - ► Entrada: $V = (v_0, v_1, \dots, v_{n-1})$.
 - \blacktriangleright Saída: $V'=(v'_0,v'_1,\dots,v'_{n-1})$, uma permutação de V, tal que $v'_i < v'_{i+1}$ para $0 \le i < n-1.$
- Pode ser resolvido em tempo $O(n \lg n)$.

- TOP-K: Seleção dos k maiores.
 - ▶ Entrada: $V = (v_0, v_1, \dots, v_{n-1})$ e um inteiro k.
 - ▶ Saída: $V' = (v'_0, v'_1, \dots, v'_{k-1})$, os k maiores elementos de V.
- Pode ser resolvido em tempo $O(n \lg k)$.

- HUFF: Codificação Huffman.
 - ightharpoonup Entrada: T sobre um alfabeto Σ .
 - ightharpoonup Saída: T' codificado de acordo com o código de Huffman.
- Pode ser resolvido em tempo $O(n \lg |\Sigma|)$.

Introdução $\mathcal{P} \text{ vs } \mathcal{NP}$

- LCS: Subsequência Comum mais Longa.
 - ▶ Entrada: *strings* X[0, n-1] e Y[0, m-1].
 - lacktriangle Saída: Z, uma subsequência comum de X e Y de tamanho maximal.
- Pode ser resolvido em tempo $O(n \cdot m) \subseteq O(\max\{n, m\}^2)$.

- EVENT: Seleção de eventos.
 - ▶ Entrada: tempo de eventos $E = ([l_0, r_0], [l_1, r_1], \dots, [l_{n-1}, r_{n-1}]).$
 - Saída: tamanho do conjunto maximal de eventos compatíveis.
- Pode ser resolvido em tempo $O(n \lg n)$.

Problemas de Decisão

Definição (Problemas de Decisão)

Problemas de decisão são aqueles que para qualquer instância I do problema a saída será **Verdadeiro** ou **Falso**.

- Podemos converter os problemas visto anteriormente em sua versão de decisão.
- A nossa teoria será baseada em problemas de decisão, que não são mais difíceis que os problemas de otimização ou busca.

Introdução $\mathcal{P} \text{ vs } \mathcal{NP}$

A Classe \mathcal{P}

• A classe de complexidade $\mathcal P$ corresponde aos problemas de **decisão** que podem ser resolvidos em tempo $O(n^k)$ por algum algoritmo.

A Classe \mathcal{P}

- Vários Problemas interessantes encontram-se em \mathcal{P} .
- Podem ser resolvidos em tempo eficiente.
- Nem todos os problemas possuem esta propriedade...
- Estudaremos agora problemas decidíveis, que possuem solução, mas não conhecemos uma solução eficiente para eles.

Introdução $\mathcal{P} \text{ vs } \mathcal{NP}$

A Classe \mathcal{NP}

- A classe \mathcal{NP} engloba problemas **decisão** em que conseguem ser verificados em tempo polinomial.
- Um problema pode ser verificado se, dado um "Certificado" da solução, é possível verificar se ele está correto em um tempo polinomial.

Exemplo de Problema em \mathcal{NP}

SUBSET-SUM

- **Entrada:** Um conjunto de inteiros positivos $S = s_0, s_1, \ldots, s_{n-1}$ e um inteiro k.
- Saída:

Verdadeiro, se existe
$$S' \subseteq S$$
 com $\sum_{x \in S'} x = k$ **Falso**, caso contrário

Exemplo de Problema em \mathcal{NP}

$$S = \{1, 3, 8, 13, 22, 37, 62, 47, 83, 20, 33, 100, 65\}$$
$$k = 215$$

A saída para esta entrada é Verdadeiro ou Falso?

Exemplo de Problema em \mathcal{NP}

$$S = \{1, 3, 8, 13, 22, 37, 62, 47, 83, 20, 33, 100, 65\}$$
$$k = 215$$

- A saída para esta entrada é Verdadeiro ou Falso?
- Verdadeiro: $S' = \{8, 62, 47, 33, 65\}$

SUBSET-SUM

Algorithm 1: SUBSET-SUM-SOLVER(S, k)

Input: S,k

Output: True se e somente se existe $S' \subseteq S, \sum_{x \in S'} x = k$

1 return Subset-Sum-Solver(S,k,0,0)

SUBSET-SUM

Algorithm 2: SUBSET-SUM-SOLVER(S, k, i, psum)

Input: S,k,i,psum

Output: True se e somente se existe $S' \subseteq S, \sum_{x \in S'} x = k$

- 1 if (psum = k)
- 2 return True
- 3 else if($(psum > k) \lor (i == |S|)$)
- 4 return False
- 5 $b \leftarrow \text{SUBSET-SUM-SOLVER}(S, k, i+1, psum + S[i])$
- **6** $b \leftarrow b \lor \text{SUBSET-SUM-SOLVER}(S, k, i + 1, psum)$
- 7 return b

SUBSET-SUM

- Claramente o algoritmo anterior leva tempo $\Omega(2^n)$.
- Não conhecemos um algoritmo que leve tempo $O(n^k)$, para algum k>0.
- No entanto conseguimos verificar o certificado em tempo polinomial:
 - ▶ Basta fazer a soma de $\{8,62,47,33,65\}$, no exemplo anterior.
- SUBSET-SUM $\in \mathcal{NP}$.

\mathcal{NP}

Definição (Classe \mathcal{NP})

Um problema está em \mathcal{NP} se existe um algoritmo verificador V para o problema que, dado uma instância I cuja saída é **Verdadeiro** e um certificado W, V(I,W) diz **Verdadeiro** e roda em tempo polinomial.

trodução ${\cal P}$ vs ${\cal N}\!{\cal P}$

Sumário

${\mathcal P}$ vs ${\mathcal N}{\mathcal P}$

Teorema ($\mathcal{P} \subseteq \mathcal{NP}$)

Todo problema que está em \mathcal{P} também está em \mathcal{NP} .

Demonstração.

Todos os problemas em \mathcal{P} podem ser resolvidos em tempo polinomial, logo o verificador pode simplesmente ignorar o certificado e resolver o problema para obter a resposta.

$\mathcal P$ vs $\mathcal N\mathcal P$

- Mostramos que $\mathcal{P} \subseteq \mathcal{NP}$.
- Será que todo problema que pode ser verificado em tempo polinomial também pode ser resolvido em tempo polinomial, isto é, $\mathcal{NP} \subseteq \mathcal{P}$? Se este for o caso $\mathcal{P} = \mathcal{NP}$, caso contrário, $\mathcal{P} \neq \mathcal{NP}$.
- A resposta para esta pergunta vale 1 milhão de dólares: http://www.claymath.org/millennium-problems/p-vs-np-problem

$\mathcal P$ vs $\mathcal N\mathcal P$

- A chave para a resposta da questão $\mathcal P$ vs $\mathcal N\mathcal P$ está nos problemas $\mathcal N\mathcal P$ -completos, pertencentes à $\mathcal N\mathcal P\mathcal C$, considerados os mais difíceis de $\mathcal N\mathcal P$.
- Para compreender a classe NPC, precisamos compreender o conceito de Redução de problemas, o qual veremos na próxima aula.

${\mathcal P}$ vs ${\mathcal N}{\mathcal P}$

Figura: Conjecturando $\mathcal{P} \neq \mathcal{NP}$

${\mathcal P}$ vs ${\mathcal N}{\mathcal P}$

Figura: Conjecturando $\mathcal{P} = \mathcal{NP}$