For Even Roll number please use this dataset.

https://www.kaggle.com/datasets/nadeemajeedch/students-performance-10000-clean-data-eda

login with your Kaggle account. And click the new Notebook.

You will get the following Notebook page.

On execution of the cell, you will get the path of the file. Use this path to load the data file.

df= pd.read_csv("/kaggle/input/students-performance-10000-clean-data-eda/Student_performance_10k.csv")

Click here and change the file name.

Don't forget to vote for the dataset.

Student Performance Dataset: Academic Insights 10K

Tasks: Preprocessing and EDA Steps

Step 1: Load the Data

- Import the necessary libraries (pandas, numpy, matplotlib, seaborn, etc.).
- Load the dataset into a pandas DataFrame using pd.read csv().
- Display the first few rows of the dataset using .head().

Step 2: Understand the Data

- 1. Check the shape of the dataset using .shape to see the number of rows and columns.
- 2. Display the column names using .columns.
- 3. Use .info() to examine the data types and the number of non-null values in each column.
- 4. Use .describe() to get a summary of numeric columns (mean, min, max, standard deviation).

Step 3: Identify Missing Values

- 1. Check for missing values using .isnull().sum().
- 2. Visualize missing data using a heatmap (sns.heatmap) to see patterns of missingness.
- 3. Decide how to handle missing values:
 - o For numeric columns, use mean or median imputation.
 - o For categorical columns, use mode imputation or a placeholder (e.g., "Unknown").

Step 4: Handle Duplicates

- Check for duplicate rows using .duplicated().sum().
- Drop duplicates using .drop duplicates () if any are found.

Step 5: Check for Inconsistent or Faulty Data

- 1. Examine categorical columns (gender, race_ethnicity, etc.) for typos or inconsistent values using .unique().
- 2. Ensure numeric columns (math_score, total_score, etc.) contain valid numbers (e.g., no special characters like? or negative values).
 - o Convert math score to numeric using pd. to numeric() with errors='coerce'.
 - o Handle invalid entries by replacing them with NaN and imputing or dropping them.

Step 6: Drop Irrelevant Columns

- Decide if any columns (like roll no) should be dropped because they do not contribute to analysis.
- Drop columns using .drop().

Step 7: Convert Data Types

- Ensure all columns have appropriate data types:
 - o Convert categorical columns (e.g., gender, grade) to category using .astype ('category').
 - o Convert scores and other numeric data to float or int as needed.

Step 8: Explore Distributions

1. Use .value counts () to explore the distribution of categorical variables (e.g., gender, grade).

- 2. Plot the distributions of numeric variables (math_score, reading_score, etc.) using histograms (sns.histplot).
- 3. Use box plots (sns.boxplot) to detect outliers in numeric columns.

Step 9: Handle Outliers

- 1. Use box plots or the Interquartile Range (IQR) method to identify outliers in numeric columns.
- 2. Decide whether to remove, transform, or cap outliers.

Step 10: Encode Categorical Variables

- 1. Use one-hot encoding or label encoding to convert categorical columns into numeric formats for analysis.
- 2. Use pd.get dummies() for one-hot encoding or LabelEncoder for label encoding.

Step 11: Correlation Analysis

- 1. Use .corr() to find correlations between numeric variables.
- 2. Visualize the correlation matrix using a heatmap (sns.heatmap).

Step 12: Investigate Relationships

- 1. Explore relationships between variables using scatter plots (sns.scatterplot).
 - o Example: Compare math score vs. total score.
- 2. Use bar plots (sns.barplot) to analyze the impact of categorical variables (e.g., gender or race ethnicity) on numeric scores.

Step 13: Feature Engineering

- 1. Create new features, if applicable:
 - o Example: Add a performance ratio = total score / max score column.
- 2. Bin numeric columns into categories (e.g., "low", "medium", "high") using pd.cut().

Step 14: Summarize Findings

- 1. Summarize key insights from the data exploration.
- 2. Highlight any patterns, anomalies, or trends observed during preprocessing or EDA.

If you think any other related task, you can add in notebook.

Happy Learning 😊