Blatt 9

Luca Krüger, Jonas Otto, Jonas Merkle (Gruppe R)

8. Juli 2019

1 Gewichtsinitialisierung

- 1. a) $u_i^{(1)}$ ist normal verteilt mit $\mathcal{N}(0, \sqrt{\frac{m}{2}})$.
 - b) Durch die Verwendung von tanh als Transferfunktion ändert sich die Ausgabe der Neuronen bei Änderung des bereits relativ großen u_i kaum, die Ableitung $f'(u_i) \to 0$. Die Errorfunktion ist wie in a) ebenfalls über die Summe über die Gewichte w_1, \ldots, w_n definiert. Dies führt dann zu großen Lernschritten, da gilt $E(w) \propto \mathcal{N}(0, \sqrt{\frac{m}{2}})$
 - c) $u_i^{(1)}$ ist normalverteilt mit $\mathcal{N}(0, \frac{1}{\sqrt{2}})$.
 - d) Alle Potentiale u_i liegen in einem Bereich, in dem f'(u) deutlich von 0 verschieden ist. Die Gewichte werden dadurch nicht mit Extremwerten initialisiert, die statistisch zwar selten, aber eben doch auftreten können.
- 2. Verteilung A passt zu Strategie I, da in Verteilung A die Gradienten alle ≈ 0 sind und die axonalen Potentiale 1 oder -1, was auf ein betragsmäßig großes Argument der tanh Aktivierungsfunktion hindeutet. Verteilung B entspricht der skalierten Normalverteilung. Die Gradienten sind von 0 verschieden und die axonalen Potentiale nahezu gleichverteilt.

2 Regularisierung

- 1. Einfluss auf Lernregeln
 - a)

$$\frac{dE}{dw} = \nabla E_0(w(t)) + \lambda w(t)$$

$$\implies w(t+1) = w(t) - \eta \nabla E_0(w(t)) - \eta \lambda w(t)$$

$$= (1 - \eta \cdot \lambda)w(t) - \eta \cdot \nabla E_0(w(t))$$

b) i. $w(n) = 2 \cdot 0.6^n$, w(10) = 0.012

- ii. Das Gewicht nimmt exponentiell ab.
- iii. Für $\eta \cdot \lambda < 1$ gilt:

$$\lim_{t\to\infty} w(t) = \lim_{t\to\infty} w(0) \cdot (\eta \cdot \lambda)^t = 0$$

- iv. $\nabla E_0(w(t)) \neq 0$ gilt auch für $t \to \infty$, somit gilt keineswegs $\lim_{t \to \infty} w(t) = 0$
- c) Durch den Regularisierungsterm werden die Gewichte in jedem Schritt reduziert, auch wenn $\nabla E \approx 0$ gilt. Dadurch bewegen sich die suboptimal initialisierten Gewichte schnell in sinnvollere Bereiche.
- 2. Der Term für das Update des Bias enthält im Gegensatz zum Term für das Gewicht den Faktor x_{μ} nicht. Verrauschter Input wirkt sich also bereits mit der bekannten Lernregel nicht direkt auf den Bias aus. Starkes Rauschen wird sogar durch $f(wx + b) \cdot f'(wx + b)$ geglättet.
- 3. Mit größerem λ nähert sich die Errorfunktion $|w|^2$ an:

Abbildung 1: Errorfunktion mit $\lambda = 0$

Abbildung 2: Errorfunktion mit $\lambda=0.2$

4. (Siehe Jupyter Notebook)