VLAN a VTP

VLAN (Virtual LAN)

- Slouží k logickému rozdělení sítě nezávisle na fyzickém uspořádání
- Toto dělení šetří čas (manuální přepojení sítě) i peníze (samostatné switche pro každou síť)
- Fyzické umístění počítačů není omezené prostorem
 - o Bez VLAN bychom umístili počítače, například ze stejného oddělení, blízko sebe
- Každá VLANa je samostatná podsíť
 - Zařízení z různých VLAN spolu nemohou komunikovat, i když jsou připojeny ke stejnému switchi
 - Zmenšujeme tím broadcast doménu
- Vždy existuje alespoň jedna VLANa → defaultní (označení 1)
- Zvýšená bezpečnost oddělením komunikace

Přiřazení do VLAN

- 1. Podle portu
 - Port na switchi je staticky přiřazen k VLANě
 - Veškerá komunikace přicházející z tohoto portu spadá do dané VLANy
 - Nejpoužívanější metoda
 - Výhody: jednoduchá správa, rychlé nasazení, přehledné
- 2. Podle MAC adresy
 - Rámec se zařadí do VLANy podle zdrojové MAC adresy
 - Potřebujeme tabulku MAC adres
 - Je to dynamický způsob
 - Realizace:
 - Port se přiřadí do VLANy podle prvního přijatého rámce (do vypnutí portu)
 - Každý rámec se řadí do VLANy samostatně (náročné na výkon)
- 3. Podle protokolu
 - Například oddělení IP od AppleTalk či dělení dle IP adresy
 - V praxi se moc nepoužívá
 - Zařízení musí mít pevně definovanou IP adresu a switch musí pracovat i na 3. vrstvě
- 4. Podle autentizace
 - Uživatel nebo zařízení se ověří pomocí protokolu IEEE 802.1X a podle informací se automaticky zařadí do VLAN
 - Bezpečnostní metoda
 - Velmi univerzální

Druhy portů

- Access port
 - o Má přiřazenou jednu VLANu
 - Je k němu připojeno zařízení a rámcům říkáme nativní
 - Switch nepřepíná rámce mezi dvěma access porty z různých VLAN
- Trunk port
 - o "Teče" přes něj komunikace z několika VLAN
 - ∨yužívá protokol IEEE 802.1q kterým značkuje rámce → tagovaný rámec
 - o K označení dojde až v době potřeby (rámec se má poslat přes trunk port)

VLAN Trunking Protocol (VTP)

- Proprietární síťový protokol firmy Cisco
- Zajišťuje přenášení čísel a názvů VLAN mezi přepínači; usnadňuje nám správu
- Dostupný na většině přepínačů Cisco

Princip

- Druhy přepínačů
 - o Server má informace o VLANách a distribuuje je při změně klientům
 - Client přijímá změny ze serveru
 - o Transparent změny si neukládají, ale jen je posílají dál
- Přepínače jsou přiřazeny do domény (označené textovým řetězcem)
- Synchronizace je zajištěna číslem revize (32bitové číslo) které vytváří server a s každou revizí ho inkrementuje o jedničku
- Komunikace probíhá přes multicast MAC adresu a má tři typy paketů
 - Summary advertisement
 - Vysílán každých 5 minut a obsahuje jméno domény, číslo revize a čas poslední změny
 - Klient po obdržení zkontroluje doménu a jestli je číslo revize vyšší než poslední uložené (pokud ano, tak vyšle Advertisement request)
 - Subset advertisement
 - Vysílán serverem v případě změny nastavení
 - Obsahuje název domény, číslo revize a informace o jedné nebo více VLAN číslo, stav (aktivní/neaktivní), jméno a velikost MTU (Maximum transmission unit)
 - o Advertisement request
 - Posílá klient v případě resetu, změny domény či jako odpověď na Summary advertisement, který měl vyšší číslo revize

VTP Pruning

- Zabraňuje zbytečnému odesílání všesměrových (broadcast) paketů z určité VLAN na přepínače, které nemají aktivní žádné zařízení na této VLAN
- Nastaví se na serveru a klienti ho převezmou automaticky

Směrování mezi VLANy

- Defaultně switch pracuje na vrstvě L2
- Chceme-li použít L3 IP routing, musíme ho zapnout
- Směrování probíhá na jednom zařízení, a proto není potřeba směrovací protokol (přímo připojená rozhraní jsou automaticky zapsány do směrovací tabulky)

Routované a neroutované VLANy

- Routovaná VLAN umožňujeme jí komunikaci s ostatními VLANy
- Neroutovaná VLAN izolovaná od ostatních VLAN
- Omezeně routovaná může komunikovat pouze s některými VLANy (zajištěno pomocí ACL)