207

Newton's method

Spring 2023

Optimization on manifolds, MATH 512 @ EPFL

Instructor: Nicolas Boumal

Exploiting second-order information

We aim to minimize $f: \mathcal{M} \to \mathbf{R}$, smooth on a manifold.

Choose a retraction R, a Riemannian metric on \mathcal{M} , and $x_0 \in \mathcal{M}$.

Algorithms iterate $x_{k+1} = R_{x_k}(s_k)$ with some choice of s_k .

Gradient descent: $s_k = -\alpha_k \operatorname{grad} f(x_k)$. Fine, but slow...

Exploit $\operatorname{Hess} f(x_k)$ to choose a better s_k ?

Recall second-order Taylor expansions, with $c(t) = R_x(ts)$:

$$\begin{split} f\big(R_x(s)\big) &= f(x) + \langle \operatorname{grad} f(x), s \rangle_x + \frac{1}{2} \langle s, \operatorname{Hess} f(x)[s] \rangle_x \\ &+ \frac{1}{2} \langle \operatorname{grad} f(x), c''(0) \rangle_x + O(\|s\|_x^3) \end{split}$$

Mx: TxM -OR

Assume Hers f(2k) > 0; then the minimizer of mak is altained et its critical point, because the model is convex. Dmx(A)[A] = < gradf(x), i > + 2 < i, Henf(x)[A) > x + 2 LA, Hunfler[N]>x = < A, gladfles + Henfles[A] >= = grad mx (s). => The minimizer of Mx if Henflas & O is the vector A & TuM A.t. Henf(2)[A] = - g rad flus

Newton's method

- · Choose Xo E M.
- · For k in 0, 1, 2, 3, -...

Solve the linear system $Henflak)[Ak] = -greaf(x_k).$ $x_{k+1} = Rx_k(Ak)$

Fast local convergence...

Theorem: Let $x_{\star} \in \mathcal{M}$ satisfy $\operatorname{grad} f(x_{\star}) = 0$ and $\operatorname{Hess} f(x_{\star}) > 0$. There exists a neighborhood \mathcal{U} of x_{\star} on \mathcal{M} such that, for all $x_0 \in \mathcal{U}$, the sequence x_0, x_1, x_2, \dots generated by Newton's method converges to x_{\star} at least quadratically.

8 6.2

... and nothing else.

The global behavior of Newton's is horrendous.

See 3blue1brown video on Newton's fractals (picture)

The second secon

There are several fixes. The classical "globalized" algorithms are:

Trust-region methods

Cubic regularization methods

These also aim to control the per-iteration computational cost.