home: instruction: mathematics: geometry: formula reference sheet

School Improvement in MARYLAND

Custom Sea

INSTRUCTION & ASSESSMENT

DATA ANALYSIS

SCHOOL IMPROVEMENT

Geometry/Instructional Strategies/

FORMULA REFERENCE SHEET

Shape	Formulas for Area (A) and Circumference (C)
Triangle	$A = \frac{1}{2}bh = \frac{1}{2} \times \text{base } \times \text{height}$
Rectangle	$A = Iw = \text{length } \times \text{width}$
Trapezoid	$A = \frac{1}{2}(b_1 + b_2)h = \frac{1}{2} \times \text{sum of bases } \times \text{ height}$
Parallelogram	$A = bh = base \times height$
	$A = \pi r^2 = \pi \times \text{square of radius}$ $C = 2\pi r = 2 \times \pi \times \text{radius}$ $C = \pi d = \pi \times \text{diameter}$

Figure	Formulas for Volume (V) and Surface Area (SA)
Rectangular Prism	$V = lwh = length \times width \times height$ SA = 2lw + 2hw + 2lh
General Prisms	= 2(length x width) + 2(height x width) + 2(length x height) V = Bh = area of base x height SA = sum of the areas of the faces
Right Circular Cylinder	V = Bh = area of base x height $SA = 2B + Ch = (2 \times $ area of base) + (circumference x height)
Square Pyramid	$V = \frac{1}{3}Bh = \frac{1}{3} \times \text{ area of base} \times \text{ height}$ $SA = B + \frac{1}{2}P\ell$
Right Circular Cone	= area of base + $(\frac{1}{2} \times \text{perimeter of base} \times \text{slant height})$ $V = \frac{1}{3}Bh = \frac{1}{3} \times \text{area of base} \times \text{height}$
Sphere	$SA = B + \frac{1}{2} C \ell$ = area of base + ($\frac{1}{2} \times$ circumference \times slant height) $V = \frac{4}{3} \pi r^3 = \frac{4}{3} \times \pi \times$ cube of radius
	$SA = 4\pi r^2 = 4 \times \pi \times \text{square of radius}$

Equations of a Line

Standard Form:

Ax + By = C

where A and B are not both zero

Slope-Intercept Form:

$$y = mx + b \text{ or } y = b + mx$$

where m = slope and b = y-intercept

Point-Slope Formula:

$$y-y_1 = m(x-x_1)$$

where m = slope, $(x_1, y_1) = \text{point on line}$

Coordinate Geometry Formulas

Let (x_1,y_1) and (x_2,y_2) be two points in the

slope =
$$\frac{y_2 - y_1}{x_2 - x_1}$$
 where $x_2 \neq x_1$

midpoint =
$$\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

distance =
$$\sqrt{(x_2-x_1)^2 + (y_2-y_1)^2}$$

Distance Traveled

$$d = rt$$

distance = rate x time

Simple Interest

$$I = prt$$

interest = principal x interest rate x time

Polygon Angle Formulas

Sum of degree measures of the interior angles of a polygon:

180 (n - 2)

Degree measure of an interior angle of a regular polygon:

site map about mdk12.org feedback copyright © 1997–2016 msde