MA 108 - Spring 2018 Tutorial Sheet 4

- 1. Given one solution y_1 of homogeneous part, find a particular solution of the ODE by putting $y = vy_1$ into the ODE and solving for v.
 - (a) $y'' + 4xy' + (4x^2 + 2)y = 8e^{x(x+2)}$; $y_1 = e^{-x^2}$.
 - (b) $4x^2y'' 4x(x+1)y' + (2x+3)y = 4x^{5/2}e^{2x}$, $y_1 = x^{1/2}$.
 - (c) $xy'' y' + 4x^3y = 0$, x > 0; $y_1(x) = \sin x^2$.
- 2. Find the general solution of the ODE and then solve the IVP. Here y_1 is a solution of homogeneous part.
 - (a) $x^2y'' 3xy' + 4y = 4x^4$, y(-1) = 7, y'(-1) = 8; $y_1 = x^2$.
 - (b) (3x-1)y'' (3x+2)y' (6x-8)y = 0, y(0) = 2, y'(0) = 3; $y_1 = e^{2x}$.
- 3. Find a general solution to the following ODE and IVP where mentioned.
 - (a) y''' y = 0.
 - (b) $y^{(4)} + 64y = 0$.
 - (c) $y^{(5)} + y^{(4)} + y''' + y'' + y' + y = 0.$
 - (d) $y^{(4)} + 2y'' + y = 0$.
 - (e) y''' 2y'' + 4y' 8y = 0, y(0) = 0, y'(0) = -2, y''(0) = 0
 - (f) y''' 6y'' + 12y' 8y = 0, y(0) = 1, y'(0) = -1, y''(0) = -4
 - (g) $y^{(4)} + 2y''' 2y'' 8y' 8y = 0$, y(0) = 5, y'(0) = -2, y''(0) = 6, y'''(0) = 8.
- 4. Find the fundamental set of solutions for the following equations.
 - (a) $(D^2 + 9)^3 D^2 y = 0$.
 - (b) $D^3(D-2)^2(D^2+4)^2y=0$.
 - (c) $[(D-1)^4-16]y=0$
- 5. Using the annihilator method, find the general solution (i.e. $y = y_p + c_1y_1 + c_2y_2$, where y_p is a particular solution of ODE and y_1, y_2 is a basis of solutions of homogeneous part).
 - (a) $y'' 2y' 3y = e^x(-8 + 3x)$.
 - (b) $y'' + 5y' + 6 = \cos x + \sin x$.
 - (c) $y''' y'' y' + y = 2e^{-x} + 3$
- 6. Find the form of the particular solution (without explicitly finding the particular solution) of ODE's.
 - (a) $y'' + y = e^{-x}(2 4x + 2x^2) + e^{3x}(8 12x 10x^2)$.

(b)
$$y'' + 6y' + 13y = e^{-2x}[(4+20x)\cos 3x + (26-32x)\sin 3x].$$

(c)
$$y'' + 2y' + y = 8x^2 \cos x - 4x \sin x$$
.

(d)
$$y^{(4)} - 4y'' = 3x + \cos x$$
.

(e)
$$y''' - y'' - y' + y = e^x(7 + 6x)$$
.

(f)
$$4y^{(4)} - 11y'' - 9y' - 2y = -e^x(1 - 6x)$$
.

(g)
$$y''' + 3y'' + 4y' + 12y = 8\cos 2x - 16\sin 2x$$
.

(h)
$$y^{(4)} + 3y''' + 2y'' - 2y' - 4y = -e^{-x}(\cos x - \sin x)$$

7. Consider the ODE Ly = f. Find the annihilator A for f. Then write down a basis for the solutions of the equation ALy = 0.

(a)
$$y''' - 2y'' + y' = x^3 + 2e^x$$

(b)
$$y^{(4)} - y''' + y'' + y' = x^2 + 4 + x \sin x$$
.

(c)
$$y^{(4)} + 4y'' = \sin 2x + xe^x + 4$$
.

(d)
$$y''' - 2y'' + y' - 2y = -e^x[(9 - 5x + 4x^2)\cos 2x - (6 - 5x - 3x^2)\sin 2x]$$

(e)
$$y^{(4)} - 7y''' + 18y'' - 20y' + 8y = e^{2x}(3 - 8x - 5x^2)$$
.

(f)
$$y^{(4)} + 5y''' + 9y'' + 7y' + 2y = e^{-x}(30 + 24x) - e^{-2x}$$
.