Unit 7: Multivariate Analysis Statistics for Linguists with R - A SIGIL Course

Designed by Stefan Evert¹ and Marco Baroni²

¹Computational Corpus Linguistics Group Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

> ²Center for Mind/Brain Sciences (CIMeC) University of Trento, Italy

SIGIL (Evert & Baroni)

sigil.r-forge.r-project.org

Distance metric

Setting up

Introduction

Outline

Mathematical background Feature matrix

Multivariate analysis

Orthogonal projection

Introduction Multivariate analysis

Outline

Introduction Multivariate analysis

Outline

Introduction

Multivariate analysis

What is multivariate analysis?

Univariate statistics

- ▶ focus on a single variable of interest (at a time)
- estimate population parameters $(\pi, \mu, \sigma^2, \dots)$
- comparison of two or more groups

► Bivariate statistics

- ► focus on interdependencies of two variables
- correlation & co-occurrence
- Regression modelling
 - predict single target variable ("dependent")
 - based on multiple other variables ("independent")

Multivariate statistics

- ► combined effects of many variables
- correlations & distribution patterns
- often "unsupervised": no target variable or comparison groups

SIGIL (Evert & Baroni) sigil.r-forge.r-project.org sigil.r-forge.r-project.org

Multivariate analysis

Introduction

Setting up

Application examples

- ► Register variation (Biber 1988, 1993)
- ► Translation studies (Evert & Neumann 2017; De Sutter et al. 2012)
- ► Stylometry: authorshop attribution (Evert et al. 2017)
- ▶ Dialectology (Speelman et al. 2003)
- ► Historical linguistics (Sagi et al. 2009; Perek 2018)
- ▶ Identification of confounding variables (Tummers et al. 2014)
- ► Linguistic productivity (Jenset & McGillivray 2012)
- ► Correspondence analysis (Greenacre 2007)
- ► Distributional semantics (see ESSLLI course)

SIGIL (Evert & Baroni)

7. Multivariate Analysis

sigil.r-forge.r-project.org

Outline

Introduction

Setting up

SIGIL (Evert & Baroni)

Introduction Setting up

Introduction Setting up

R packages

Required R packages:

- **▶** corpora (≥ 0.5)
- ▶ wordspace (≥ 0.2)

Recommended packages:

- ▶ ggplot2, reshape2 ... for plotting feature weights
- ▶ rgl ... for interactive 3-d visualization
- ► Hotelling, ellipse ... for significance testing
- ▶ e1071 ... for machine learning (SVM)
- ▶ Rtsne ... for low-dimensional maps
- ▶ ca . . . for correspondence analysis

install with package manager in RStudio or R GUI

Code & data sets

Download additional code & data sets from SIGIL homepage:

- ▶ multivar utils.R
- ▶ unit7 data.rda
- put all files in RStudio project directory (or working directory)

```
# basic utilities and some data sets
> library(corpora)
> library(wordspace)
                                 # for large and sparse matrices
> source("multivar_utils.R") # additional functions
```

> load("unit7_data.rda", verbose=TRUE) # further data sets

Introduction Setting up

Overview of data sets

- ▶ 65 Biber features for British National Corpus
 - ▶ BNCbiber = 4048×65 feature matrix
 - ▶ BNCmeta = complete metadata table
 - extensive documentation with ?BNCbiber. ?BNCmeta
- ▶ 67 Biber features for Brown Family corpora
 - ▶ BrownBiber_Matrix = 3500x67 feature matrix
 - ▶ BrownBiber Meta = metadata table
 - features are Biber-scaled z-scores obtained with MAT v1.3 http://sites.google.com/site/multidimensionaltagger/
 - see tagger manual for feature definitions

SIGIL (Evert & Baroni)

7. Multivariate Analysis

sigil.r-forge.r-project.org

Introduction Setting up

Overview of data sets

- ▶ 19 type-token complexity measures for \triangle corpus
 - ▶ complexity scores for 10,000-token text slices from 75 novels
 - ▶ DeltaComplexity\$DE\$Matrix = 996 × 19 matrix (German)
 - ▶ DeltaComplexity\$EN\$Matrix = 1147 × 19 matrix (English)
 - ▶ DeltaComplexity\$FR\$Matrix = 679 × 19 matrix (French)
 - ▶ DeltaComplexity\$DE\$Meta, ... = metadata tables
 - ▶ can be used to study correlational patterns between measures
- ▶ 7 syntactic complexity measures for 969 German novels
 - ► SyntacticComplexity_Matrix = 969 × 7 feature matrix
 - SyntacticComplexity_Meta = metadata tables
 - ▶ can be used to compare high-brow against low-brow literature

Overview of data sets

▶ 27 SFL-inspired features for translation pairs (CroCo corpus)

Setting up

- ► CroCo Matrix = 452 × 27 feature matrix
- ► CroCo Meta = metadata table
- ► CroCo_orig2trans = row numbers of translation pairs
- ▶ data from Evert & Neumann (2017)
- \triangleright Literary authorship attribution with \triangle measures
 - ▶ data: sparse document-term matrices for 20,000 most frequent words (mfw) as wordspace DSM objects
 - ▶ Delta\$DE = 75 × 20000 matrix (German novels, 25 authors)
 - ▶ Delta\$EN = 75 × 20000 matrix (English novels, 25 authors)
 - ▶ Delta\$FR = 75 × 20000 matrix (French novels, 25 authors)
 - ▶ Delta\$DE\$rows, Delta\$EN\$rows, ... = metadata tables
 - ► DeltaLemma = lemmatized version
 - ▶ data from Jannidis et al. (2015); Evert et al. (2017)

sigil.r-forge.r-project.org

Mathematical background

Feature matrix

Outline

Mathematical background

Feature matrix

SIGIL (Evert & Baroni) sigil.r-forge.r-project.org SIGIL (Evert & Baroni) sigil.r-forge.r-project.org

Feature matrix

Feature matrix records quantitative features for each text

	[· · ·	\mathbf{m}_1]
	• • •	\mathbf{m}_2	
M =		÷	
		:	
	<u>_</u>	\mathbf{m}_k]

	nominal pass prep				subord ttr	
	n_{OU}	pass	s pre'	r sub	ttr	
$orig_1$	1.205	5.013	6.883	4.483	1.285	
$orig_2$	0.738	2.537	6.486	6.157	1.714	
orig ₃	1.252	4.462	8.463	4.785	2.476	
$orig_4$	1.105	2.899	8.119	3.966	1.519	
orig ₅	1.764	4.268	7.167	3.947	1.792	
orig ₈	1.545	7.268	7.461	5.455	1.572	
$trans_1$	0.463	2.208	6.297	6.089	2.339	
trans ₂	1.131	2.597	6.307	4.844	1.810	
trans ₄	0.935	1.744	7.098	4.012	1.403	
trans ₅	0.867	3.604	7.511	5.154	1.902	
trans ₇	1.387	4.290	8.211	3.998	1.822	

> M <- MultiVar_Matrix</pre> > M

sigil.r-forge.r-project.org

Mathematical background

Distance metric

Geometric distance = metric

- ► Distance between vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n \rightarrow \text{(dis)similarity}$
 - $\mathbf{u} = (u_1, \dots, u_n)$ $\mathbf{v} = (v_1, \dots, v_n)$
- **Euclidean** distance $d_2(\mathbf{u}, \mathbf{v})$
- ► "City block" Manhattan distance $d_1(\mathbf{u}, \mathbf{v})$
- ► Both are special cases of the Minkowski p-distance $d_p(\mathbf{u}, \mathbf{v})$ (for $p \in [1, \infty]$)

$$d_p(\mathbf{u}, \mathbf{v}) := (|u_1 - v_1|^p + \dots + |u_n - v_n|^p)^{1/p}$$

$$d_{\infty}(\mathbf{u}, \mathbf{v}) = \max\{|u_1 - v_1|, \dots, |u_n - v_n|\}$$

Outline

Mathematical background

Distance metric

Mathematical background

Distance metric

Geometric distance = metric

- Distance between vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n \rightarrow \text{(dis)similarity}$
 - $\mathbf{u} = (u_1, \dots, u_n)$ $\mathbf{v} = (v_1, \dots, v_n)$
- **Euclidean** distance $d_2(\mathbf{u}, \mathbf{v})$
- ► "City block" Manhattan distance $d_1(\mathbf{u}, \mathbf{v})$
- \triangleright Extension of p-distance $d_p(\mathbf{u}, \mathbf{v})$ (for $0 \le p \le 1$)

$$d_{p}(\mathbf{u}, \mathbf{v}) := |u_{1} - v_{1}|^{p} + \dots + |u_{n} - v_{n}|^{p}$$
$$d_{0}(\mathbf{u}, \mathbf{v}) = \#\{i \mid u_{i} \neq v_{i}\}$$

sigil.r-forge.r-project.org SIGIL (Evert & Baroni)

sigil.r-forge.r-project.org

Distance and vector length = norm

- ► Intuitively, distance $d(\mathbf{u}, \mathbf{v})$ should correspond to length $\|\mathbf{u} - \mathbf{v}\|$ of displacement vector $\mathbf{u} - \mathbf{v}$
 - \rightarrow $d(\mathbf{u}, \mathbf{v})$ is a metric
 - ▶ $\|\mathbf{u} \mathbf{v}\|$ is a **norm**
 - ▶ $\|\mathbf{u}\| = d(\mathbf{u}, \mathbf{0})$
- ► Any norm-induced metric is translation-invariant

- $d_{p}(\mathbf{u},\mathbf{v}) = \|\mathbf{u} \mathbf{v}\|_{p}$
- ▶ Minkowski *p*-norm for $p \in [1, \infty]$ (not p < 1):

$$\|\mathbf{u}\|_{p} := (|u_{1}|^{p} + \cdots + |u_{n}|^{p})^{1/p}$$

SIGIL (Evert & Baroni)

Mathematical background Orthogonal projection

Outline

Mathematical background

Orthogonal projection

Computing distances

Compute distances between all pairs of texts:

```
> round(dist(M), 2) # returns a triangular 'dist' object
```

> round(dist(M, method="manhattan"), 2) # Manhattan metric

Use wordspace function for additional metrics:

```
> dist.matrix(M, method="mink", p=0.5) # full matrix
> dist.matrix(M, method="mink", p=0.5, as.dist=TRUE)
```

Standardize features for equal contribution to Euclidean metric:

```
> Z <- scale(M)</pre>
                        # matrix of z-scores
> round(dist(Z), 2) # default: Euclidean metric
```

Mathematical background

Orthogonal projection

Linear subspace & basis

▶ A linear subspace $B \subseteq \mathbb{R}^n$ of rank r < n is spanned by a set of r linearly independent basis vectors

$$B = \{\mathbf{b}_1, \dots, \mathbf{b}_r\}$$

► Every point **u** in the subspace is a unique linear combination of the basis vectors

$$\mathbf{u} = x_1 \mathbf{b}_1 + \ldots + x_r \mathbf{b}_r$$

▶ Coordinate vector $\mathbf{x} \in \mathbb{R}^r$ with respect to the basis

SIGIL (Evert & Baroni)

Linear subspace & basis

▶ Basis matrix $\mathbf{V} \in \mathbb{R}^{n \times r}$ with column vectors \mathbf{b}_i :

$$\mathbf{u} = x_1 \mathbf{b}_1 + \ldots + x_r \mathbf{b}_r = \mathbf{V} \mathbf{x}$$

$$\begin{bmatrix} x_1b_{11} + \dots + x_rb_{1r} \\ x_1b_{21} + \dots + x_rb_{2r} \\ \vdots \\ x_1b_{n1} + \dots + x_rb_{nr} \end{bmatrix} = \begin{bmatrix} b_{11} & \dots & b_{1r} \\ b_{21} & \dots & b_{2r} \\ \vdots & & \vdots \\ b_{n1} & \dots & b_{nr} \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ \vdots \\ x_r \end{bmatrix}$$

$$\mathbf{u} \qquad = \qquad \mathbf{V} \qquad \mathbf{x}$$

$$(n \times 1) \qquad (n \times r) \qquad (r \times 1)$$

7. Multivariate Analysis sigil.r-forge.r-project.org

An aside: Matrix multiplication

$$\begin{bmatrix} a_{ij} & & \\ & & \\ & & \end{bmatrix} = \begin{bmatrix} b_{i1} & \cdots & b_{in} \\ & & \\ & & \\ & c_{nj} \end{bmatrix} \cdot \begin{bmatrix} c_{1j} & & \\ \vdots & & \\ c_{nj} & & \\ & & \end{bmatrix}$$

$$A = B \cdot C$$

- $(n \times m)$
- \triangleright B and C must be conformable (in dimension n)
- \triangleright Element a_{ii} is the inner product of the *i*-th row of **B** and the *j*-th column of **C**

$$a_{ij} = b_{i1}c_{1j} + \ldots + b_{in}c_{nj} = \sum_{t=1}^{n} b_{it}c_{tj}$$

Mathematical background Orthogonal projection

Orthonormal basis

▶ Particularly convenient with orthonormal basis:

$$\|\mathbf{b}_i\|_2 = 1$$

 $\mathbf{b}_{i}^{T}\mathbf{b}_{i}=0$ for $i\neq j$

► Corresponding basis matrix **V** is (column)-orthogonal

$$V^TV = I_r$$

and defines a Cartesian coordinate system in the subspace

From now on always assume orthonormal basis

Mathematical background Orthogonal projection

The mathematics of projections

- ▶ 1-d subspace spanned by basis vector $\|\mathbf{b}\|_2 = 1$
- For any point u, we have

$$\cos \varphi = \frac{\mathbf{b}^T \mathbf{u}}{\|\mathbf{b}\|_2 \cdot \|\mathbf{u}\|_2} = \frac{\mathbf{b}^T \mathbf{u}}{\|\mathbf{u}\|_2}$$

► Trigonometry: coordinate of point on the line is $\mathbf{x} = \|\mathbf{u}\|_2 \cdot \cos \varphi = \mathbf{b}^T \mathbf{u}$

▶ The projected point in original space is then given by

$$\mathbf{b} \cdot \mathbf{x} = \mathbf{b}(\mathbf{b}^T \mathbf{u}) = (\mathbf{b}\mathbf{b}^T)\mathbf{u} = \mathbf{P}\mathbf{u}$$

where P is a projection matrix of rank 1

The mathematics of projections

 \triangleright For an orthogonal basis matrix **V** with columns $\mathbf{b}_1, \ldots, \mathbf{b}_r$, the projection into the rank-r subspace B is given by

$$\mathbf{P}\mathbf{u} = \left(\sum_{i=1}^{r} \mathbf{b}_{i} \mathbf{b}_{i}^{T}\right) \mathbf{u} = \mathbf{V} \mathbf{V}^{T} \mathbf{u}$$

and its subspace coordinates are $\mathbf{x} = \mathbf{V}^T \mathbf{u}$

▶ Projection can be seen as decomposition into the projected vector and its orthogonal complement

$$u = Pu + (u - Pu) = Pu + (I - P)u = Pu + Qu$$

▶ Because of orthogonality, this also applies to the squared Euclidean norm (according to the Pythagorean theorem)

$$\|\mathbf{u}\|^2 = \|\mathbf{P}\mathbf{u}\|^2 + \|\mathbf{Q}\mathbf{u}\|^2$$

SIGIL (Evert & Baroni)

sigil.r-forge.r-project.org

Mathematical background Orthogonal projection

References I

- Biber, Douglas (1988). Variation Across Speech and Writing, Cambridge University Press, Cambridge
- Biber, Douglas (1993). The multi-dimensional approach to linguistic analyses of genre variation: An overview of methodology and findings. Computers and the Humanities. 26, 331-345.
- De Sutter, Gert; Delaere, Isabelle; Plevoets, Koen (2012). Lexical lectometry in corpus-based translation studies: combining profile-based correspondence analysis and logistic regression modeling. In M. P. Oakes and J. Meng (eds.), Quantitative methods in corpus-based translation studies: a practical guide to descriptive translation research, volume 51 of Studies in Corpus Linguistics, pages 325-345. John Beniamins.
- Evert, Stefan and Neumann, Stella (2017). The impact of translation direction on characteristics of translated texts. A multivariate analysis for English and German. In G. De Sutter, M.-A. Lefer, and I. Delaere (eds.), Empirical Translation Studies. New Theoretical and Methodological Traditions, number 300 in Trends in Linguistics. Studies and Monographs (TiLSM), pages 47-80. Mouton de Gruyter, Berlin.

Optimal projections and subspaces

Orthogonal decomposition of squared distances btw. vectors

$$\|\mathbf{u} - \mathbf{v}\|^2 = \|\mathbf{P}\mathbf{u} - \mathbf{P}\mathbf{v}\|^2 + \|\mathbf{Q}\mathbf{u} - \mathbf{Q}\mathbf{v}\|^2$$

► Define projection loss as difference btw. squared distances

$$\begin{split} & \big| \left\| P(u - v) \right\|^2 - \left\| u - v \right\|^2 \big| \\ &= \| u - v \|^2 - \| P(u - v) \|^2 \\ &= \| Q(u - v) \|^2 \end{split}$$

Projection quality measure:

$$R^2 = \frac{\|P(u - v)\|^2}{\|u - v\|^2}$$

SIGIL (Evert & Baroni)

sigil.r-forge.r-project.org

Mathematical background

Orthogonal projection

References II

- Evert, Stefan; Proisl, Thomas; Jannidis, Fotis; Reger, Isabella; Pielström, Steffen; Schöch, Christof: Vitt. Thorsten (2017), Understanding and explaining Delta measures for authorship attribution. Digital Scholarship in the Humanities, 22(suppl 2), ii4-ii16.
- Greenacre, Michael (2007). Correspondence Analysis in Practice. Interdisciplinary Statistics Series. Chapman & Hall, CRC, 2nd edition.
- Jannidis, Fotis; Pielström, Steffen; Schöch, Christof; Vitt, Thorsten (2015). Improving Burrows' Delta. An empirical evaluation of text distance measures. In Proceedings of the Digital Humanities Conference 2015, Sydney, Australia.
- Jenset, Gard B. and McGillivray, Barbara (2012). Multivariate analyses of affix productivity in translated english. In M. P. Oakes and J. Meng (eds.), Quantitative methods in corpus-based translation studies: a practical guide to descriptive translation research, volume 51 of Studies in Corpus Linguistics, pages 301-324 John Benjamins.
- Perek, Florent (2018). Recent change in the productivity and schematicity of the way-construction: A distributional semantic analysis. Corpus Linguistics and Linguistic Theory, **14**(1), 65–97.

SIGIL (Evert & Baroni) 7. Multivariate Analysis sigil.r-forge.r-project.org sigil.r-forge.r-project.org

Mathematical background Orthogonal projection

References III

- Sagi, Eyal; Kaufmann, Stefan; Clark, Brady (2009). Semantic density analysis: Comparing word meaning across time and phonetic space. In Proceedings of the Workshop on Geometrical Models of Natural Language Semantics (GEMS), pages 104-111, Athens, Greece.
- Speelman, Dirk; Grondelaers, Stefan; Geeraerts, Dirk (2003). Profile-based linguistic uniformity as a generic method for comparing language varieties. Computers and the Humanities, 37, 317-337.
- Tummers, José; Speelman, Dirk; Geeraerts, Dirk (2014). Spurious effects in variational corpus linguistics: Identification and implications of confounding. International Journal of Corpus Linguistics, 19(4), 478-504.

SIGIL (Evert & Baroni) 7. Multivariate Analysis sigil.r-forge.r-project.org

