Esonero di Fondamenti di Reti di Telecomunicazioni – TRACCIA A - 21/11/2019 (2 ore)

Nome______Matricola_____

Esercizio 1.

Due stazioni distanti 4km intendono attivare una trasmissione su un canale asimmetrico (C(A,B)=300kbps, C(B,A)=250kbps) utilizzando un protocollo ARQ di tipo Go-Back-N con ACK cumulativi e con finestra pari a 6 (Ws). La sorgente sta inviando uno streaming audio di un

brano musicale di 2 minuti 23 secondi in MP3 a 32 kbps. Conosciamo l'MTU di livello IP pari a1500 Byte e sappiamo che a livello trasporto e a livello rete l'header è pari a 20 Byte, mentre a livello collegamento l'header è di 22 Byte ed il trailer di 4 Byte. Sappiamo inoltre che la dimensione minima della trama è pari a 84 Byte, la velocità di propagazione è pari a 4*10⁶ m/s ed il tempo di elaborazione è di 5*10⁻⁴ s. Calcolare:

- 1) Dimensione di segmento, pacchetto e trama;
- 2) Numero massimo di trame da inviare;
- 3) Durata complessiva della trasmissione.
- 4) Cosa succede se la trama numero 9 non raggiunge la destinazione? Mostrare l'andamento della finestra di invio al trasmettitore e calcolare la nuova durata della trasmissione.
- 5) Che accade se, invece, di perdere la trama si dovesse perdere l'ACK di tale trama?
- Si consideri un tempo di timeout pari ad un tempo di ciclo di una trama aumentato di 20,346 ms.

Esercizio 2.

Sia il rate medio di arrivo dei frame nelle stazioni pari a 12 frame/s. Ipotizzando di avere frame di lunghezza costante 512 byte potenzialmente inviabili dalle stazioni e di considerare un bus di comunicazione con capacità C= 400 kbps e ritardo di propagazione di 2 µs, si risolvano i seguenti punti:

- 1. Considerando il caso in cui le stazioni possano inviare in degli slot temporali, calcolare il throughput medio.
- 2. Quale sarebbe il massimo throughput S_{max} supportabile dalla rete?
- 3. Indicare il rate minimo λ_{min} per iniziare ad avere il collasso della rete.

Esercizio 3.

La rete rappresentata in figura è costituita da **6 LAN** interconnesse mediante varie tecnologie (fast ethernet, collegamenti punto punto). Di ciascuna LAN è noto il numero di host (comprensivo del o dei router che appartengono alla stessa LAN). Si chiede, a partire dall'indirizzo 192.168.8.0, di:

- indirizzare tutte le sottoreti;
- calcolare le relative maschere di sottorete (sia nella notazione / che in quella decimale) e gli indirizzi di broadcast per ogni sottorete;
- calcolare la percentuale di utilizzazione per ogni sottorete;

Domanda.

Indicare per linee generali cosa cambia tra protocolli di accesso al mezzo centralizzati e protocolli di accesso al mezzo distribuiti. Indicare vantaggi e svantaggi delle due tipologie di MAC.

formule efficienza protocolli accesso al mezzo: 1) S = Ge^{-G} -- 2) S = Ge^{-2G} -- 3)
$$S = \frac{G*e^{-aG}}{G(1+2a)+e^{-aG}}$$