

FACULTY OF TELECOMMUNICATION AND INFORMATION ENGINEERING

COMPUTER ENGINEERING DEPARTMENT Lab 2: Exploratory Data Analysis (EDA)

Objective

The objective of this lab is to perform an in-depth **Exploratory Data Analysis (EDA)** on the Titanic dataset to:

- 1. Understand the structure and basic features of the dataset.
- 2. Perform Univariate Analysis to study individual variables.
- 3. Conduct **Bivariate Analysis** to examine relationships between two variables.
- 4. Explore Multivariate Analysis to identify patterns involving multiple variables.
- 5. Visualize data effectively using various plots and derive actionable insights.

By the end of this lab, you will have a thorough understanding of the dataset and its underlying patterns.

Libraries Installation

Before starting, ensure that the required libraries are installed in your Python environment. Run the following command:

pip install pandas numpy matplotlib seaborn

Explanation of Libraries

- 1. pandas: For data manipulation and analysis.
- 2. **numpy**: For numerical computations.
- 3. matplotlib: For creating static visualizations.
- 4. **seaborn**: For advanced and aesthetically pleasing statistical plots.

FACULTY OF TELECOMMUNICATION AND INFORMATION ENGINEERING

COMPUTER ENGINEERING DEPARTMENT

1. Boxplot

- Purpose:
 - Identifies **outliers** (extreme data points).
 - Summarizes the distribution of data based on the minimum, first quartile (Q1), median, third quartile (Q3), and maximum.
- When to Use:
 - To visualize and compare the spread of numerical data across categories.

2. Histogram

- Purpose:
 - Displays the frequency distribution of a single numerical variable.
 - Helps understand data spread, shape, skewness, and peaks (modes).
- When to Use:
 - To observe how frequently values occur within specified ranges (bins).

3. Distplot/Histplot

- Purpose:
 - Combines a histogram with a **KDE** (**Kernel Density Estimate**) to show the probability density of a variable.
- When to Use:
 - To understand both the frequency and density of a numerical variable.

4. Heatmap

- Purpose:
 - Visualizes the **correlation** between numerical variables using color intensity.
 - Shows which variables are positively or negatively correlated.

FACULTY OF TELECOMMUNICATION AND INFORMATION ENGINEERING

COMPUTER ENGINEERING DEPARTMENT

- When to Use:
 - To identify patterns or relationships between variables.

5. Pie Chart

- Purpose:
 - Displays proportions or percentages of categories as slices of a circle.
- When to Use:
 - To visualize the **composition** of a single categorical variable.

6. Countplot

- Purpose:
 - Displays the **frequency** of each category in a categorical variable.
- When to Use:
 - To count and compare occurrences of categories.

7. Scatterplot

- Purpose:
 - Plots individual data points to show the **relationship** between two numerical variables.
 - Identifies trends, clusters, or outliers.
- When to Use:
 - To examine how one variable changes with another.

FACULTY OF TELECOMMUNICATION AND INFORMATION ENGINEERING

COMPUTER ENGINEERING DEPARTMENT

8. Pairplot

- Purpose:
 - Displays pairwise scatterplots for all numerical variables in the dataset.
 - Useful for detecting patterns, correlations, and outliers across multiple features.
- When to Use:
 - To perform a comprehensive comparison of all numerical variables.

9. Bar Chart

- Purpose:
 - Visualizes data for **categorical variables** as bars, where the height represents the frequency or value.
- When to Use:
 - To compare the size or count of different categories.

10. Line Plot

- Purpose:
 - Shows trends over time or a sequence by connecting data points with a line.
- When to Use:
 - To analyze time-series data or sequential patterns.

FACULTY OF TELECOMMUNICATION AND INFORMATION ENGINEERING

COMPUTER ENGINEERING DEPARTMENT

11. Violin Plot

- Purpose:
 - Combines a boxplot and KDE to show the distribution of data, including its density and spread.
- When to Use:
 - To understand how data is distributed, especially when comparing multiple groups.

12. KDE Plot

- Purpose:
 - Represents the **probability density function** of a variable, showing where data points are concentrated.
- When to Use:
 - To smooth out the data and observe the overall distribution.

13. Jointplot

- Purpose:
 - Combines scatterplots and histograms (or KDEs) to display the relationship between two numerical variables, along with their individual distributions.
- When to Use:
 - To analyze the relationship between two variables while examining their marginal distributions.

FACULTY OF TELECOMMUNICATION AND INFORMATION ENGINEERING

COMPUTER ENGINEERING DEPARTMENT

14. Stacked Bar Chart

- Purpose:
 - Displays proportions of categories within each group in a stacked format.
- When to Use:
 - To show both the total and the composition of groups.

Dataset Overview

The dataset contains the following columns:

Column Name	Description
PassengerId	Unique ID for each passenger
Survived	Survival status (0 = No, 1 = Yes)
Pclass	Passenger class (1 = First, 2 = Second, 3 = Third)
Name	Full name of the passenger
Sex	Gender of the passenger
Age	Age of the passenger
SibSp	Number of siblings/spouses aboard
Parch	Number of parents/children aboard
Ticket	Ticket number
Fare	Ticket fare paid
Cabin	Cabin number
Embarked	Port of embarkation (C = Cherbourg, Q = Queenstown, S = Southampton)

FACULTY OF TELECOMMUNICATION AND INFORMATION ENGINEERING

COMPUTER ENGINEERING DEPARTMENT

Basic Exploration

Display Basic Dataset Information

Import necessary libraries import pandas as pd import matplotlib.pyplot as plt import seaborn as sns

Load dataset
df = pd.read_csv('train.csv')

Display the first 5 rows
print(df.head())

Display dataset information
print(df.info())

Display descriptive statistics print(df.describe())

Explanation:

- 1. head(): Displays the first five rows of the dataset for a quick overview.
- 2. **info()**: Provides information about column data types and non-null counts, helping identify missing values.
- 3. **describe()**: Summarizes numerical columns with statistics like mean, median, standard deviation, min, and max values.

Basic Plotting

1. Boxplot

sns.boxplot(x=df['Fare'])
plt.title("Boxplot of Fare")
plt.xlabel("Fare")
plt.show()

Description:

• **Boxplot** helps detect **outliers** (data points that are significantly different from others) and shows the distribution's spread, median, and quartiles.

2. Distplot

sns.histplot(df['Age'], kde=True, bins=20, color='skyblue')
plt.title("Age Distribution with KDE")
plt.xlabel("Age")
plt.ylabel("Frequency")
plt.show()

FACULTY OF TELECOMMUNICATION AND INFORMATION ENGINEERING

COMPUTER ENGINEERING DEPARTMENT

Description:

- Combines a **histogram** and a **KDE curve** to visualize the distribution of the numerical data
- Identifies skewness, modality, and overall spread of the data.

3. Heatmap

```
sns.heatmap(df.corr(), annot=True, cmap='coolwarm', fmt='.2f')
plt.title("Correlation Heatmap")
plt.show()
```

Description:

- **Heatmap** shows pairwise correlations between numerical variables.
- Highlights strong positive or negative relationships for further analysis.

4. Histogram

```
df['Age'].plot(kind='hist', bins=20, color='green', alpha=0.7)
plt.title("Histogram of Age")
plt.xlabel("Age")
plt.ylabel("Frequency")
plt.grid(axis='y', linestyle='--', alpha=0.7)
plt.show()
```

Description:

- Visualizes the frequency distribution of Age.
- Useful for identifying common age ranges and trends in passenger demographics.

5. Pie Chart

```
survival_counts = df['Survived'].value_counts()
labels = ['Did Not Survive', 'Survived']
plt.pie(survival_counts, labels=labels, autopct='%1.1f%%', startangle=140, colors=['lightcoral', 'skyblue'])
plt.title("Survival Proportion")
plt.show()
```

Description:

 Highlights proportions or percentages of passengers who survived versus those who did not.

FACULTY OF TELECOMMUNICATION AND INFORMATION ENGINEERING

COMPUTER ENGINEERING DEPARTMENT

Section 1: Univariate Analysis

Numerical Data

sns.histplot(df['Fare'], kde=True, color='blue')
plt.title("Distribution of Fare")
plt.show()
sns.boxplot(x=df['Age'])
plt.title("Boxplot of Age")
plt.show()

Description:

• **Histograms** visualize the frequency distribution, while **boxplots** detect outliers and show data spread.

Categorical Data

```
sns.countplot(x='Pclass', data=df, palette='viridis')
plt.title("Passenger Count by Class")
plt.xlabel("Passenger Class")
plt.ylabel("Count")
plt.show()

df['Embarked'].value_counts().plot(kind='bar', color='orange')
plt.title("Embarked Port Count")
plt.xlabel("Port")
plt.ylabel("Count")
plt.show()
```

Description:

- Countplots display the frequency of categorical variables like passenger class.
- Bar charts highlight the distribution of values across categories.

Section 2: Bivariate Analysis

Numerical-Numerical

sns.scatterplot(x='Age', y='Fare', data=df)
plt.title("Scatterplot of Age vs Fare")
plt.xlabel("Age")
plt.ylabel("Fare")
plt.show()

FACULTY OF TELECOMMUNICATION AND INFORMATION ENGINEERING

COMPUTER ENGINEERING DEPARTMENT

Description:

• Scatterplots highlight relationships between two numerical features.

Categorical-Categorical

sns.countplot(x='Pclass', hue='Survived', data=df)
plt.title("Survival Count by Passenger Class")
plt.xlabel("Passenger Class")
plt.ylabel("Count")
plt.show()

Description:

• Grouped countplots compare survival counts across classes.

Numerical-Categorical

sns.boxplot(x='Survived', y='Age', data=df)
plt.title("Boxplot of Age by Survival Status")
plt.xlabel("Survived")
plt.ylabel("Age")
plt.show()

Description:

• **Boxplots** compare distributions (e.g., Age) across survival categories.

Section 3: Multivariate Analysis

sns.pairplot(df[['Age', 'Fare', 'Pclass', 'Survived']], hue='Survived', palette='coolwarm')
plt.suptitle("Pairplot of Selected Features", y=1.02)
plt.show()

Description:

• Pairplots allow simultaneous comparison of multiple features to detect relationships and patterns.

FACULTY OF TELECOMMUNICATION AND INFORMATION ENGINEERING

COMPUTER ENGINEERING DEPARTMENT

Task 1: Dataset Exploration

- 1. Question: What is the structure of the Titanic dataset?
 - Use basic functions like head(), info(), and describe() to understand the dataset's structure, data types, and summary statistics.
 - Identify missing values and duplicates in the dataset.

Task 2: Numerical Data Analysis

- 2. **Question:** What are the key statistical properties and distributions of the numerical columns?
 - Analyze columns such as Age, Fare, and Parch using summary statistics and visualizations.
 - Plot histograms, boxplots, and KDE plots to understand distributions and detect outliers.

Task 3: Categorical Data Analysis

- 3. Question: What is the frequency distribution of categorical columns?
 - Explore Pclass, Sex, Embarked, and Survived using value_counts().
 - Visualize the distributions using countplots and pie charts.

Task 4: Relationship Between Variables (Bivariate Analysis)

4. Question: How are variables related to each other?

Analyze the relationship between:

- Numerical-Numerical: Age vs Fare (scatter plot and correlation).
- Categorical-Categorical: Pclass vs Survived (grouped bar chart).
- Numerical-Categorical: Age distribution across survival status (boxplot).

FACULTY OF TELECOMMUNICATION AND INFORMATION ENGINEERING

COMPUTER ENGINEERING DEPARTMENT

Task 5: Multivariate Analysis

- 5. **Question:** How do multiple variables interact with each other?
 - Perform a pairwise analysis on selected columns such as Age, Fare, Pclass, and Survived using pairplots.
 - Visualize overall correlations using a heatmap.