Дельта-хеджирование американских опционов на основе алгоритма прайсинга Longstaff-Schwartz'a

Студент: Новиков В.В

Научный руководитель: Куликов А.В

Актуальность

- Стабилизация портфеля и управление рисками
- Поддержание нейтральной позиции к изменениям цен на базовые активы
- Уменьшение влияния волатильности на портфель
- Эффективное управление позицией маркетмейкерами
- Снижение вероятности крупных убытков
- Оптимизация использования капитала и ликвидности

Пайплайн действий

1 Семестр

- Реализация Монте-Карло симуляций с использованием antithetic variates
- Реализация алгоритма LongStaffSchwartz'a

2 Семестр

- Подсчет Implied Volatility
- Оценка американского пут опциона на основе модели LongStaffSchwartz'a
- Подсчет дельты опциона
- Реалзиация динамического дельта-хеджирование данного опциона
- Проверка результатов хеджирования

Прайсинг американского пут опциона

• Зная IV полученную оцениваем цену американского пута алгоритмом LongStaffSchwartz

$$-C_{T,i} = max(0, S \exp(v\Delta T + \sigma\sqrt{T}(\epsilon_i)) - K)$$

$$-\bar{C}_{T,i} = max(0, S \exp(v\Delta T + \sigma\sqrt{T}(-\epsilon_i)) - K)$$

	Sto	ck price	paths	
Path	t = 0	t = 1	t = 2	t = 3
1	1.00	1.09	1.08	1.34
2	1.00	1.16	1.26	1.54
3	1.00	1.22	1.07	1.03
4	1.00	.93	.97	.92
5	1.00	1.11	1.56	1.52
6	1.00	.76	.77	.90
7	1.00	.92	.84	1.01
8	1.00	.88	1.22	1.34

Path Exercise		Continuation	
1	.02	.0369	
2			
3	.03	.0461	
4	.13	.1176	
5			
6	.33	.1520	
7	.26	.1565	
8			

Regression at time 2		
Path	Y	X
1	$.00 \times .94176$	1.08
2	_	
3	$.07 \times .94176$	1.07
4	$.18 \times .94176$.97
5		_
6	$.20 \times .94176$.77
7	$.09 \times .94176$.84
8		

Opt	tion cash	flow m	atrix
Path	t = 1	t = 2	t = 3
1	.00	.00	.00
2	.00	.00	.00
3	.00	.00	.07
4	.17	.00	.00
5	.00	.00	.00
6	.34	.00	.00
7	.18	.00	.00
8	.22	.00	.00
	_		

Implied Volatility

Подразумеваемая волатильность

Цена опциона *call:*

$$C=SN(d_1)-Xe^{-rT}N(d_2)$$
, где

$$d_1 = rac{\ln(rac{S}{X}) + (r + rac{\sigma^2}{2})T}{\sigma\sqrt{T}},$$

$$d_2 = d_1 - \sigma \sqrt{T}$$
.

Цена опциона *put:*

$$P=Xe^{-rT}N(-d_2)-SN(-d_1).$$

Подсчет дельты

MK — Монте-Карло симуляции, матрица размерности(N, M)

N - кол-во симуляций, М - дней до экспирации

	Что	$LSS-\Phi$ ункция алгоритма LongStaffSchwartza
1	∂c	S— Цена базового актива
	∂S	$LSS_i(MK \cdot \frac{S_i + \epsilon}{S_i}) - LSS_i(MK \cdot \frac{S_i - \epsilon}{S_i})$
	$\partial^2 c$	$\delta_i = \frac{\delta_i}{2\epsilon}$

Подсчет хеджа

$$H - Xедж$$

 δ — Дельта подсчитанная на основе американского пута

S — Цена базового актива

r — Безрисковая процентная ставка

$$H_0 = American_put_price$$

$$H_i = \delta_{i-1} \cdot S_i + (H_{i-1} - \delta_{i-1} \cdot S_{i-1}) \cdot e^{r/365},$$

Проблемы

Проблемы с датасетом

- В датасете не было цен базовых активов в моменты сбора цен опционов, поэтому приходилось брать дневную цену открытия ВТС/ЕТН что привело к арбитражным возможностям, каких быть не должно
- Цены опционов бывают равны 0
- Повторяющиеся даты

```
ex = pd.read_csv('../data/server_data/crypto_option_candles_days.csv') ex: pandas DataFrame (63 print(f"Кол-во строчек с нулевыми ценами опционов в датасете: {len(ex[ex['close'] == 0])}\nПроце Executed at 2024.05.14 01:02:25 in 291ms

Кол-во строчек с нулевыми ценами опционов в датасете: 2607
Процент нулевых цен опционов в датасете 0.41%
```

```
print(f"Кол-во строчек с повторяющимися датами : {quantity}\nПроцент таких строчек по отноше Executed at 2024.05.07 16:34:44 in 14s 75ms

Кол-во строчек с повторяющимися датами : 15242
Процент таких строчек по отношению ко всему датасету: 2.41
```

Проблемы

Проблемы с датасетом

BTC-1DEC23-39000-P

Проблемы

 Проблема с подсчетом дельты через взятие производной из регрессий (не хватает симуляций, плохие регрессии)

Результаты

• Реализован бейзлайн оценки и дельта-хеджирования американского опциона пут с помощью Монте Карло симуляций с неточностями в расчетах и пока что существенной ошибкой

Выводы

Дальнейшие этапы будут заключать в себе:

- 1) Доработка алгоритма Longstaff-Schwartz'a посредством изменения методов расчета continuation value
- 2) Повышение качества Монте-Карло симуляций, используя importance sampling и оптимизацию количества симуляций
- 3) Доработка алгоритма динамического дельта-хеджирования с повышением отказоустойчивости

Литература

- Valuing American Options by Simulation: A Simple Least-Squares Approach (Francis A Longstaff, Eduardo S. Schwartz)
- Stochastic Calculus for Finance (Steven E. Shreve)
- Black. F. and M.Scholes, 1973 "The Pricing of Options and Co~porateLiabilities." Joitr-ila1 of Political Ecortomy. XI. 637-654.
- Options, Futures and Other Derivatives John C. Hull

Спасибо за внимание!