Vertex of the Quadratic

Given a quadratic $v(k) = a k^2 + b k + c$ compute its value at $k_1 = -\frac{b}{2a}$ namely $v(k_1) = c - \frac{b^2}{4a}$

Now compute the same quadratic at
$$k_1+h$$
, namely $V(k_1+h) = -\frac{b^2}{4a} + ah^2 + c$

 $v(k_1+h) = -\frac{b^2}{4a} + a h^2 + c$ Compute $\triangle = v(k_1 + h) - v(k_1) = a h^2$

Since $h^2 > 0$, therefore if a > 0 then $\triangle > 0$ or vertex is the global minimum:

Example 1. $v(k) = 4 k^2 - 24 k + 66$

