

# Unidad 1

# Nicolás Gómez Morgado Arquitectura de Computadores

9 de julio de 2024

# Índice

1. Ejercicios 2



## 1. Ejercicios

#### 1. Suponer:

Tiempo en mover cabeza a un bloque: 15ms.

Tiempo transferencia de un bloque: 0.4ms

$$R\bowtie S$$

$$B(R) = 1000$$

$$B(S) = 500$$

$$M = 101$$

a) ¿Cuantas E/S de disco se requieren para realizar esta operación join?

| 1 <sup>er</sup> pasada | Leer M bloques de R en MP (ordenar, escribir contenido ordenando) | 2B(R) crear sublistas<br>ordenadas |
|------------------------|-------------------------------------------------------------------|------------------------------------|
| $2^{da}$ pasada        | El atributo de ordenación y unión                                 | B(R) leer cada sublista            |

#### Total:

Lo mismo para  $S \to 3B(S)$  App. requerimientos  $\sqrt{B(R) + B(S)}$ 

Disco E/S = 
$$3(B(R) + B(S))$$
  
=  $3(1000 + 500)$   
=  $4500$ 

Por lo tanto son necesarias  $4500~\mathrm{E/S}$  de disco para realizar la union.

b) Sublista de R = 
$$\frac{B(R)}{100} = \frac{1000}{100} = 10$$
  
Sublista de S =  $\frac{B(S)}{100} = \frac{500}{100} = 5$ 

| 1 <sup>er</sup> pasada | R (Lectura y escritura) y S (Lectura y escritura): misma                         |
|------------------------|----------------------------------------------------------------------------------|
| 1 pasada               | pista de lectura/escritura secuenciales                                          |
|                        | $[15+(10)\cdot[(100\cdot4)+(100\cdot4)]]+[15+(5\cdot[(100\cdot4)+(100\cdot4)])]$ |
|                        | $[15 + (10) \cdot [80]] + [15 + (5 \cdot [80])]$                                 |
|                        | [15 + 800] + [15 + 400]                                                          |
|                        | 815 + 415                                                                        |
|                        | 1230 ms.                                                                         |

| $2^{da}$ pasada |                                                                 | Nueva: 15 buffers $c/u$ con 6 blo-                              |  |
|-----------------|-----------------------------------------------------------------|-----------------------------------------------------------------|--|
|                 | 15  buffers c/u con 1 bloque                                    | ques                                                            |  |
|                 | $15 \text{ buffers} \cdot 15 \text{ ms}$                        | $17 \text{ times} \cdot 15 \text{ buffers} \cdot 15 \text{ ms}$ |  |
|                 | $= 100 	ext{ times} \cdot 15 	ext{ buffers} \cdot 15 	ext{ ms}$ | $\sim 3825 \text{ ms}$                                          |  |
|                 | $= 25500 \; \mathrm{ms} = 22.5 \; \mathrm{seg}$                 | $\sim 3.825 \text{ seg}$                                        |  |



1 buffer 
$$-1$$
 bloque =  $1230ms + 22500ms = 23730ms \approx 23,7seg$ .  
1 buffer  $-6$  bloques =  $1230ms + 3825ms = 5055ms \approx 5,05seg$ .

c) R(a,b) S(b,c) T(c,d) U(d,e)

$$\begin{array}{lll} T(R) = 100 & T(T) = 100 \\ V(R,b) = 100 & V(T,c) = 10 \\ T(S) = 100 & V(T,d) = 100 \\ V(S,b) = 100 & T(U) = 100 \\ V(S,c) = 10 & V(U,d) = 100 \end{array}$$

#### a) Dinámica

| R   | S   | Τ   | U   |
|-----|-----|-----|-----|
| 100 | 100 | 100 | 100 |
| 0   | 0   | 0   | 0   |
| R   | S   | Т   | U   |

Considerando los pares:

- 1)  $R \bowtie S = 100$
- 2)  $R \bowtie T = 10000$
- 3)  $R \bowtie U = 10000$
- 4)  $S \bowtie T = 1000$
- 5)  $S \bowtie U = 10000$
- 6)  $T \bowtie U = 100$

|           | R,S | R,T   | R,U   | S,T  | S,U   | T,U |
|-----------|-----|-------|-------|------|-------|-----|
| Size      | 100 | 10000 | 10000 | 1000 | 10000 | 100 |
| Cost.     |     |       |       |      |       |     |
| Best plan |     |       |       |      |       |     |

Ahora considerar la unión de 3 de las 4 relaciones. Elegir 2 para unir primero.

1) (R,S,T) =  

$$R \bowtie S = 100 \leftarrow$$
  
 $R \bowtie T = 10000$   
 $S \bowtie T = 1000$ 

$$\begin{split} T((R\bowtie S)\bowtie T) &= \frac{T(R\bowtie S)\cdot T(T)}{\max\{V(R\bowtie S,c),V(T,c)\}} = \frac{100\cdot 100}{\max\{10,10\}} \\ &= \frac{10000}{10} = 1000 \end{split}$$



2) (R,S,U) =  

$$R \bowtie S = 100 \leftarrow$$
  
 $R \bowtie U = 10000$   
 $S \bowtie U = 10000$ 

### NIIDEA

$$T((R \bowtie S) \bowtie U) = \frac{T(R \bowtie S) \cdot T(U)}{\max\{V(R \bowtie S, c), V(U, c)\}} = \frac{1000 \cdot 100}{\max\{10, 10\}}$$
$$= \frac{100000}{10} = 10000$$

3) 
$$(R,T,U) = R \bowtie T = 10000$$
  
 $R \bowtie U = 10000$   
 $T \bowtie U = 100 \leftarrow$ 

$$\begin{split} T((R\bowtie T)\bowtie U) &= \frac{T(R\bowtie T)\cdot T(U)}{\max\{V(R\bowtie T,d),V(U,d)\}} = \frac{10000\cdot 100}{\max\{100,100\}} \\ &= \frac{1000000}{100} = 10000 \end{split}$$

4) 
$$(S,T,U) = S \bowtie T = 1000$$
  
 $S \bowtie U = 10000$   
 $T \bowtie U = 100 \leftarrow$ 

$$\begin{split} T((S\bowtie T)\bowtie U) &= \frac{T(S\bowtie T)\cdot T(U)}{\max\{V(S\bowtie T,d),V(U,d)\}} = \frac{1000\cdot 100}{\max\{100,100\}} \\ &= \frac{100000}{100} = 1000 \end{split}$$

|   | RST                       | RSU                     | RTU                     | STU                       |
|---|---------------------------|-------------------------|-------------------------|---------------------------|
| S | 1000                      | 10000                   | 10000                   | 1000                      |
| С | 100                       | 100                     | 100                     | 100                       |
| Р | $(R \bowtie S) \bowtie T$ | $(R\bowtie S)\bowtie U$ | $(T\bowtie U)\bowtie R$ | $(T \bowtie U) \bowtie S$ |

Tripletes.

Considerar arboles.





### Agrupando:



### Agrupando:

$$(T \bowtie U) \bowtie (R \bowtie S) = 100 + 100 = 200 \leftarrow (S \bowtie U) \bowtie (R \bowtie U) = 10000 + 1000 = 11000 (R \bowtie T) \bowtie (S \bowtie U) = 10000 + 10000 = 20000$$



#### b) Greedy

#### Se toma una decision sin retroceder.

<u>Base</u>: Pares de relaciones cuyo tamaño estimado es el mas pequeño (árbol actual).

$$R, S = 100$$
 (1)  $S, T = 10000$   
 $R, T = 10000$   $S, U = 10000$   
 $R, U = 10000$   $T, U = 100$  (2)

Inducción: Encontrar todas las relaciones no includes para T y U.

$$R\bowtie S-((R\bowtie S)\bowtie U)=10000$$
 
$$R\bowtie S-((R\bowtie S)\bowtie T)=1000$$

Se escoge T. Luego hay que unirse a U, no hay mas opciones.

$$(((R \bowtie S) \bowtie T) \bowtie U) = 1100$$

