Programação Dinâmica

Algoritmos e Estrutura de Dados - IF672

Andreywid Yago Lima de Souza <ayls> João Victor Nascimento <jvsn2> Mateus Freire <mfvd>

Programação Dinâmica

- Método Iterativo de solucionar problemas;
- Simplifica problemas complexos, transformando-os em subproblemas mais tragáveis
- Soluciona esses problemas mais simples primeiro, armazenando os valores numa tabela de resultados parciais;
- Troca o tempo de processamento por espaço do programa;
- Métodos
 - bottom-up: resolve todos os subproblemas;
 - top-down: resolve os subproblemas necessário;
- Alguns problemas: Fibonacci, menor caminho, knapsack;

Diferenças top-down, bottom-up

Top-down (memoization):

- Divide recursivamente o problema em subproblemas menores e guarda os valores na tabela de PD;
- Útil para problemas maiores e mais efetivo em guardar soluções de menos subproblemas;

Bottom-up (tabulação):

- Começa com o menor problema e gradualmente constrói a solução final, guardando seus valores na tabela de PD;
- Mais útil para problemas menores onde a solução ótima é mais facilmente encontrada a partir dos seus subproblemas

Exemplo: Fibonacci para um valor n

Na força bruta:

- fib(0) = 0 e fib(1) = 1;
- Para encontrar fib(n), calcula todos os valores abaixo de n: onde fib(n) = fib(n-1) + fib(n-2);

Com PD:

- Para cada f(n) checa a tabela para os valores f(n-1) e f(n-2);
- Garante que cada valor na tabela vai ser calculado apenas 1 vez;

Exemplo: Fibonacci para um valor n

Com PD:

Fibonacchi Series

Floyd-Warshall:

- Usa PD para encontrar o menor caminho entre todos os pares de vértices de um grafo;
- Funciona tanto para grafos dirigidos ou não dirigidos;
- Usa a tabela de PD para guardar os valores entre os pares i.e.
 Tabela[i][j] guarda o menor caminho entre os vértices i e j

Floyd-Warshall Algoritmo:

- Inicializa a matriz igual ao input da matriz de grafo;
- Atualiza a matriz de solução considerando todos os vértices como intermediários no caminho;
- Pega todos os vértices e atualiza todos os menores caminhos que incluem o vértice atual como intermediário no menor caminho;
- Quando pegamos um vértice n, já consideramos todos os vértices < n como intermediários
- Para cada par tem dois possíveis casos:
 - n não é um vértice intermediário, e então tab[i][j] continua igual;
 - atualizamos tab[i][j] como tab[i][n] + tab[n][j]se tab[i][j] > tab[i][n] + tab[n][j]

Passo 1:

Distance[i][j] = min (Distance[i][j], Distance[i][C] + Distance[C][j])

	Α	В	С	D	E
Α	?	?	5	?	?
В	?	?	1	?	?
С	2	6	0	3	12
D	?	?	1	?	?
Е	?	?	6	?	?

	Α	В	С	D	E
Α	0	4	5	5	10
В	3	0	1	4	6
С	2	6	0	3	12
D	3	7	1	0	2
E	1	5	6	4	0

O problema do knapsack

- Suponhamos que tenhamos uma mochila de capacidade x, onde queremos preencher com itens de valor y, com o melhor valor;
- Faz uma tabela com nº de colunas = x+1 e y+1 linhas;
- Inicializa a matriz com coluna[0] = 0 e linha[0] = 0;
- Faz o algoritmo linha por linha:
 - solução[i][j] = solução[i-1][j-peso[i-1]] + valor[i-1]
- Se a solução [i][j] não é o caso ótimo (maior), repete o valor da linha anterior;
- Solução em [x][y];

O problema do knapsack

- Suponhamos que tenhamos uma mochila de capacidade x, onde queremos preencher com itens de valor y, com o melhor valor;
- W = {1, 2, 3}; P = {10, 15, 20}

	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0						
2	0						
3	0						

Praticando com Zé

√5. {2,0 pt.} Considerando uma mochila com capacidade de 6 kg, e os itens (peso, valor): $i_1 = (2, 15), i_2 = (3, 50), i_3 = (2, 20), i_4 = (3, 25),$ encontre o subconjunto de itens mais valioso que cabe na mochila. Só existe uma unidade de cada item e os itens são indivisíveis. Use programação dinâmica (bottom-up) e apresente a matriz construída na busca. A matriz tem tamanho item +1 por capacidade + 1 e a primeira linha/coluna são preenchidas com 0.

Praticando com Zé

Obrigado !!!

Estudem !!!