

高精度线性内置M OS 管单节锂电池充电器控制电路

特点

- 4.2V 单节锂离子或锂聚合物电池充电器的理想控制电路;
- 高于 1%的电压精度;
- 恒定电流充电,充电电流可调;
- 恒定电压充电过程;
- 自动再充电过程:
- 电池饱和结束电压可调;
- 双 LED 充电状态指示;
- 电池不正常状态的检测;
- 电源电压低时,处于低功耗的 Sleep 模式,电池漏电流极小;
- 极少的外围元器件;
- 小型化的 SOP8 或 MSOP8 封装;

概述

SUN4004 是一款专门为高精度的线性锂电池充电器而设计的电路,非常适合那些低成本、便携式的充电器使用。它集高精度预充电、恒定电

流充电、恒定电压充电、电池状态检测、充电结束低泄漏、充电状态指示等性能于一身,可以广泛地使用于 EPC、移动多媒体、手持设备等领域。

SUN4004 通过检测电池电压来决定其充电状态:预充电、恒流充电、恒压充电。当电池电压小于阈值电压 V_{MIN}(一般为 3V)时,处于预充电状态,以较小的电流对电池进行充电,预充电的电流可以通过外部电阻进行调整。预充电使电池电压达到 V_{MIN} 后,进入恒定电流充电的快速充电状态,充电电流 I_{REG} 可以通过外围电阻 R1 调整,恒定电流充电使电池电压上升到恒定电压充电电压 V_{REG}(一般为 4.2V)。然后进入恒定电压充电状态,充电电压的精度优于±1%,在该状态下,充电电流将逐渐减小,当充电电流小于阈值 I_{TERM},充电结束。充电结束后,将始终对电池电压进行监控,当电池电压小于阈值 V_{RECHG}(一般为 V_{REG} - 200mV)时,对电池进行再充电,进入下一个充电周期。

SUN4004 还可以通过调节外围电阻来提高充电电压,从而有效地缩短充电时间。

功能框图

图 1 SUN4004 功能框图

无锡日晟微电子有限公司

订购信息

型号	输出电压	再充电电压	封装形式	管脚数
SUN4004S	4.2V	4.025V	SOP	8
SUN4004M	4.2V	4.025V	MSOP	8

管脚排列

图 2 SUN4004 引脚

引脚描述

引脚名称	引脚序号	I/O	引脚功能			
LEDS	1	0	充电状态指示。在充电过程中,该引脚被下拉到 VSS;充电结束后,呈高阻态;			
DRN	2	0	输出驱动.与内部的驱动口端相连			
VSS	3	PWR	接地端。与供电电源和电池的负极相连。			
BAT	4	I	电池电压检测输入端。与电池相接时需串接 330~680 欧姆电阻,同时,电池两端需用一个10 µ F 的电容去耦.			
RG	5	I	调整管驱动端 .需要用 1 K电阻上拉到 VCC			
CS1	6	I	充电电流控制端 . 可设置预充电和恒定电流充电的电流。			
LEDT	7	1/0	充电结束后,该引脚被下拉到 VSS,可以用来作为充电结束指示。			
VCC	8	PWR	电源端。与供电电源的正极连接,该引脚需用一个 10 µ F/16V 的电容去耦。			

www.sunriseic.net -2- sales@sunriseic.net

无锡日晟微电子有限公司

SUN4004

极限参数

供电电源 VCC 0.3V ~ + 18V	功耗 P _D (T _A = 25)
CS1、LED、RG、BAT、DRG	SOP8TBD
LEDS 端允许输入电压 0.3V ~ VCC + 0.3V	MSOP8TBD
工作温度 T _A 40 ~ +85	贮存温度 65 ~ 150
结温150	焊接温度(锡焊,10秒)300

注:超出所列的极限参数可能导致器件的永久性损坏。以上给出的仅仅是极限范围,在这样的极限条件下工作,器件的技术指标将得不到保证, 长期在这种条件下还会影响器件的可靠性。

电气参数

参数名称	符号	测试条件		最小值	典型值	最大值	单位
供电电源	VCC		•	4.5		12	V
电源电流	1	VCC = 5V	•		1	3	mA
	I _{SUPPLY}	VCC = 12V	•		2		mA
有效电源电压	V_{UVLO}	VCC 上升	•	3.5	4.0	4.3	V
Sleep 模式电池漏电流	I _{SLEEP}	VCC 悬空, V _{BAT} = 4.2V	•		7	20	μA
恒定电压充电							
充电电压	V	VCC = V _{CS1}		4.168	4.2	4.232	V
元 电电压	V_{REG}		•	4.158	4.2	4.242	V
输入电压调整率		VCC = 4.5V ~ 12V			0.05		%
进入再充电状态状态							
BAT 端电压	V_{RECHG}			V _{REG} - 0.300	V _{REG} - 0.200	V _{REG} - 0.120	V
恒定电流充电							
CS1 端电压	V _{CSREG}	相对于 VCC (注1)	•	135	150	165	mV
预充电电流							
CS1 端电压	V _{CSPRE}	相对于 VCC (注1)		10	18	28	mV
充电结束阈值							
CS1 端电压	V _{CSTERM}	相对于 VCC (注1)		8	15	22	mV
预充电结束阈值			•				
BAT 端电压	V_{MIN}			2.90	3.00	3.10	V

www.sunriseic.net sales@sunriseic.net

无锡日晟微电子有限公司

电气参数(续)

(除非特别注明, VCC = 9V。标注"◆"的工作温度为: - 40 T_A 85 ; 未标注"◆"的工作温度为: T_A = 25 ; 典型值的测试温度为: T_A = 25)

14-23							
参数名称	符号	测试条件		最小值	典型值	最大值	单位
电池不正常状态判别							
BAT 端电压	V_{BSC}			0.3	0.8	1.2	V
LEDS 端输出脉冲周期				0.3	0.5	0.75	S
LEDS 端输出脉冲占空比					50		%
LEDS 端 , LEDT 端灌电 流		V _{LEDS} =V _{LEDT} =0.3V		10			mA
BAT 端输入电流		V _{BAT} = 7.2V			10	20	μA
BAT 端外接电容	•			4.7		47	μF

注:1 除非特别注明,表中的电压值均相对于 VSS 而言;

2 参见应用线路图 3;

功能描述

SUN4004 是一款专门为高精度线性单节 锂电池充电器而设计的电路,图 3 为应用图.

图 4 示出了充电过程中的电流、电压曲线.图 5 为充电周期的流程图。

图 3 应用线路图

www.sunriseic.net - 4 - sales@sunriseic.net

图 4 充电过程中的电流、电压曲线

1、预充电

SUN4004 检测到如下两种情况之一即开始进入充电周期:

- a)加上适当的电源后(VCC>4.2V),插上锂 电池(V_{BAT}<V_{RECHG});
- b) 已经插上锂电池(V_{BAT} < V_{REG}), 然后加上 适当的电源(VCC > 4.2V);

如果锂电池的初始电压低于预充电阈值 V_{MIN} 则首先进入预充电阶段。

 I_{PRECHG} 相对于恒定电流充电时的电流来说是比较小的,这是因为当电池电压 V_{BAT} 较小时,如果用大电流对其进行充电,会存在安全上的隐患;同时,当电池电压 V_{BAT} 低时,在内部调整管 Q1 上的压降较大,减小电流对降低 Q1 的功耗也是非常有利的。电流计算公式: I_{PRECHG} = $V_{CSPRE}/R1$

注意,在情况 a)中,如果电池电压 V_{BAT} 大于 再充电阈值 V_{RECHG} , SUN4004 不会立刻进入 充电阶段,它必须等到 $V_{BAT} < V_{RECHG}$ 后,由于需 再充电而进入下一个充电周期;在情况 b)中,只 要电池电压 V_{BAT} 小于阈值 V_{REG} ,无论其是否大于 V_{RECHG} , SUN4004 都会立刻进入充电阶段,直至充电结束。

2、恒定电流充电

当电池电压达到 V_{MIN} 时,电池将进入下一个充电阶段:恒定电流充电。 其充电电流由 I_{REG} = $V_{CSREG}/R1$ 来确定。因此,通过调整电阻 R1 即可获得希望得到的充电电流。

3、恒定电压充电

随着恒定电流充电的进行,电池电压上升,当电池达到一定电压 (V_{REG})时,即进入恒定电压充电阶段。在此阶段,电池电压不再上升,被恒定在 V_{REG} ,且充电电流逐渐减小。

4、充电结束

在恒定电压充电阶段,充电电流逐渐减小,当电流减小到 $I_{TERM} = V_{CSTERM}/R1$ 时,电池充电结束,同时,充电电流降为零。

5、充电指示

SUN4004 有两个充电指示端:LEDS端和LEDT端。

LEDS 为充电状态指示,一般通过红色发光管 Red 连接到 VCC,在预充电、恒定电流充电、恒定电压充电阶段,LEDS 为低电平,Red " 亮 ";当电池状态不正常 ($V_{BAT} < V_{BSC}$) Red " 闪烁 " 充电结束后,LEDS 呈高阻态,Red " 灭 "。

LEDT 作为充电结束指示端,可以通过绿色发光管 Green 连接到 VCC,在充电过程中,其电压接近于 VCC,Green"灭";充电结束后,LEDT端为低电平,Green"亮"。

6、SLEEP 模式

当 电 源 电 压 VCC 低 于 电 池 电 压 时 , SUN4004 将进入低功耗的 Sleep 模式, 电池 有极小的漏电流输出。

7、电池不正常状态的提示

当电池电压 V_{BAT} 低于 V_{BSC} 时, SUN4004 认为电池存在" 短路"的可能性,此时, Red" 闪烁"用来提醒用户,但充电过程继续进行,如果充到可以使 V_{BAT} 大于 V_{BSC} ,则 Red 停止"闪烁", 变为"亮",继续充电。

8、再充电

充电结束后,电池电压 V_{BAT} 应等于 V_{REG} , Red " 灭 ",Green " 亮 ",表示处于充电结束阶段;但 是,如果电池电压 V_{BAT} 下降到再充电阈值 V_{RECHG} 时, SUN4004 会自动进入再充电阶段,开始下一个充电周期,同时,指示二极管 Red " 亮 ",Green " 灭 ",表示又重新处于充电阶段。

9、R10的确定

通过 R10 可以调节充电电池结束电压值 ,把电阻调大就可以提高电池饱和电压。

10、PCB 板的布局与布线

在制作 PCB 过程中,R1 放置在 VCC 与 SUN4004的 CS1 端之间,应使R1 两端的连线尽量的短,同时C1 应紧挨着R1 放置;电容C2 应紧 挨着电路SUN4004;为了取得更好的散热效果;在散热片底盘布线尽量宽点;这样有助于散热。

图 5 充电周期的流程图

www.sunriseic.net -7- sales@sunriseic.net

SOP8 PACKAGE OUTLINE DIMENSIONS

<i>⇔ 5</i> /7	Dimensions Ir	n Millimeters	Dimensions In Inches		
字符	Min	Max	Min	Max	
Α	1. 350	1. 750	0. 053	0. 069	
A1	0. 050	0. 150	0. 004	0. 010	
A2	1. 350	1. 550	0. 053	0. 061	
b	0. 330	0. 510	0. 013	0. 020	
С	0. 170	0. 250	0. 006	0. 010	
D	4. 700	5. 100	0. 185	0. 200	
D1	3. 202	3. 402	0. 126	0. 134	
E	3. 800	4. 000	0. 150	0. 157	
E1	5. 800	6. 200	0. 228	0. 244	
E2	2. 313	2. 513	0. 091	0. 099	
е	1. 270 (BSC)		0. 050 (BSC)		
L	0. 400	1. 270	0. 016	0. 050	
θ	0°	8°	0°	8°	

图 6 SOP8封装外形尺寸图

www.sunriseic.net sales@sunriseic.net

图 7 MSOP8 封装外形尺寸图

www.sunriseic.net -9- sales@sunriseic.net