

UNIVERSIDAD TECNOLÓGICA DE PANAMÁ

FACULTAD DE INGENIERÍA DE SISTEMAS COMPUTACIONALES DEPARTAMENTO DE COMPUTACIÓN Y SIMULACIÓN DE SISTEMAS CARRERA: INGENIERÍA DE SISTEMAS Y COMPUTACIÓN

PROGRAMA ANALÍTICO DE ASIGNATURA

1. IDENTIFICACIÓN DE LA ASIGNATURA:

Denominación de la Asignatura: Ingeniería de Sistemas Dinámicos Código: 8451 Semestre: I Año: II
Fipo de Asignatura: Prerrequisitos: Matemáticas Superiores Para Ingenieros
Créditos: 4 Cantidad de Horas Teóricas: 4 Horas de Laboratorio: 1* Total de Horas prácticas: 1
Profesor Responsable de (la elaboración/actualización) del Programa: Itzomara A. Pinzón T.
Fecha de aprobación del Programa: febrero de 2011

2. MISIÓN Y VISIÓN DE LA UNIVERSIDAD TECNOLÓGICA DE PANAMÁ:

MISIÓN:

Formar y capacitar integralmente al más alto nivel recurso humano que genere, transforme, proyecte y transfiera ciencia y tecnología para emprender e impulsar el desarrollo tecnológico, económico, social y cultural del país.

VISIÓN:

Mantiene una oferta académica permanentemente actualizada y con alto nivel de excelencia acorde a la realidad nacional y a las tendencias mundiales; fundamentada en conocimiento, en las habilidades, en las actitudes y en los valores.

Posee y forma Recurso Humano íntegro, idóneo, motivado, conciente de sus deberes y derechos, con alto grado de compromiso, con sentido de identidad y pertenencia y comprometido con el bienestar y desarrollo de la Universidad y de la Sociedad.

Posee instalaciones e infraestructuras necesarias a nivel nacional, equipadas con los últimos adelantos tecnológicos para cumplir con su Misión.

Cuenta con los mecanismos que permiten lograr los recursos para hacerle frente a sus necesidades y para promover el desarrollo científico-tecnológico.

Es la Institución de Educación Superior Tecnológica acreditada Internacionalmente en sus actividades sustantivas de Docencia, Investigación, Extensión y Administración.

Mantiene una estrecha y continua vinculación con los sectores socioeconómicos y con sus egresados.

Extiende el radio de influencia de su gestión hacia la comunidad a lo largo de la República, desempeñando un papel relevante como Ente de desarrollo.

Cuenta con programas de investigación que aseguran la transformación, adecuación, proyección y transferencia de conocimiento en el campo de la Ciencia y Tecnología.

3. MISIÓN Y VISIÓN DE LA FACULTAD DE INGENIERÍA DE SISTEMAS COMPUTACIONALES

MISIÓN:

Formar y mantener actualizado recurso humano de la más alta calidad y confiabilidad, como ciudadano integral, dotado de todas las capacidades y destrezas que requiera el mercado de las tecnologías de información y comunicación (TIC's), para contribuir al desarrollo de nuestro país.

VISIÓN:

- 1. Cuenta con infraestructuras propias modernas, que albergan a todos sus estudiantes de la Sede Panamá, con aulas equipadas para el uso de tecnología audiovisual como apoyo al proceso enseñanza/aprendizaje.
- 2. Mantiene Laboratorios con equipo computacional de calidad, suficiente y apropiado para dar soporte a todas las carreras y programas que se ofrecen.
- 3. Cuenta con cerca de un 60% de su personal docente de tiempo completo con títulos o estudios de postgrados, maestrías y de doctorados.
- 4. Posee un recurso humano calificado en el dominio y uso de nuevas tecnologías (tecnología móvil, de multimedios, otros).
- 5. Mantiene planes de estudios actualizados y acordes con el mercado nacional e internacional, lo cual garantiza un profesional altamente calificado, competitivo y con un alto grado de autoestima.
- 6. Posee programas quinquenales de investigación formalmente definidos, que garantizan la proyección, la pertinencia y transferencia de conocimiento entre universidades, la empresa privada, las entidades estatales, en el campo de la tecnología de información y comunicación.
- 7. Posee alianzas estratégicas con los principales proveedores de hardware y software a nivel nacional e internacional, que garantiza una constante capacitación e investigación de los docentes y estudiantes en el área de tecnología de información y comunicación.
- 8. Cuenta con programas y servicios que ayudan al perfeccionamiento académico y de investigación de los estudiantes de las diversas carreras que ofrece la Facultad.

4. MISIÓN Y VISIÓN DE LA LICENCIATURA EN Ingeniería de Sistemas y Computación

MISIÓN:

La carrera de Ingeniería de Sistemas y Computación forma ingenieros con un enfoque integrador del hombre, de la sociedad y de su labor profesional, entendida ésta como servicio y generadora de cambio social, a través de la síntesis de los saberes humanísticos, tecnológicos y científicos.

VISIÓN:

El Programa de Ingeniería de Sistemas y Computación es reconocido, a nivel nacional como regional, en el área de su competencia mediante la conjugación de tres elementos esenciales: investigación, innovación y extensión a la sociedad, a través de:

- La participación y creación de líneas de investigación e innovación que apunten al trabajo en tecnologías de punta y al planteamiento de alternativas de solución a problemas de nuestro entorno.
- Profesionales que sean altamente competitivos e influyentes en los sectores que produzcan o utilicen tecnologías informáticas.
- Un profesional preparado para plantear políticas, ejecutar planes y desarrollar proyectos que proveerán soluciones en tecnologías de computación, comunicación, hardware, sistemas operativos y servo mecanismos.
- La creación de empresas de desarrollo de tecnología de elementos de hardware y software.

5. PERFIL DEL EGRESADO BASADO EN COMPETENCIAS.

<u>PROPÓSITO PRINCIPAL</u>: Satisfacer los requerimientos del mercado en las áreas de investigación, desarrollo e innovación a través de proyectos de sistemas y computación, de acuerdo a normas y estándares de calidad, basado en principios éticos y aplicando conocimientos académicos.

- Aplicar los conocimientos de las ciencias básicas de la ingeniería, las ciencias sociales, las ciencias ambientales, los fundamentos de los sistemas y la computación que cumplan las exigencias y requerimientos del mercado y la sociedad.
- Crear proyectos de sistemas y computación en las áreas de: simulación de sistemas, procesadores de lenguajes, inteligencia computacional, diseño computacional, multimedios y gráficos por computadoras, de acuerdo a los requerimientos del mercado.

- Producir aplicaciones de sistemas y computación en las áreas de simulación de sistemas, procesadores de lenguajes, inteligencia computacional, diseño computacional, multimedios y gráficos por computadoras, de acuerdo a los requerimientos del mercado.
- Administrar proyectos de sistemas y computación en las áreas de simulación de sistemas, procesadores de lenguajes, inteligencia computacional, diseño computacional, multimedios y gráficos por computadoras, basados en principios de administración reconocidos.
- Participar en el desarrollo de proyectos de investigación, desarrollo e innovación (I+D+I) en el área de sistemas y computación y sus campos de aplicación, de acuerdo a los requerimientos establecidos.
- Facilitar conocimiento en el área de sistemas y computación y sus aplicaciones, de acuerdo a las exigencias del entorno.

6. JUSTIFICACIÓN Y COMPETENCIAS:

TITULO DEL CURSO:	INGENIERÍA DE SISTEMAS DINÁMICOS	CÓDIGO : 8451	CANTIDAD DE HORAS: 5	
modelado de sistemas contir sistemas que ha probado su particularmente en los sistem Durante el desarrollo del cu básicos del comportamiento características de los mismo	Sistemas Dinámicos presenta diferentes metodologías de nuos con el paradigma metodológico de la teoría general de la utilidad para el estudio de sistemas de todo tipo, pero muy as sociales, empresariales, económico y ecológicos. TSO SE PRETENTA DE LA CONTRA DEL CONTRA DE LA CONTRA DEL CONTRA DE LA CONTRA DEL CONTRA DE LA CONTRA	COMPETENCIAS BÁSICAS: 1. Aplicar el pensamiento lógico y analítico bajo una metodología de garantice la comprensión, análisis y solución de problemas atendiendo a las necesidades de la especialidad. 2. Habilidad para la lógica 3. Disposición para aprender 4. Búsqueda de información 5. Comunicación oral y escrita 6. Disposición en la matemática 7. Lectura y comprensión del idioma inglés 8. Responsabilidad individual		
COMPETENCIAS GENÉRICAS: 1. Habilidad analítica. 2. Espíritu investigador. 3. Capacidad Crítica 4. Capacidad de Aprender a aprender 5. Trabajo en equipo 6. Iniciativa 7. Liderazgo. 8. Ética, valores y responsabilidad social		abstracción en base a est Dinámica de Sistemas. 2. Estructurar los comp mediante la Dinámica de Sist	soluciones de sistemas en sus distintos niveles de ándares de modelados aplicables, de acuerdo a la conentes de proyectos de simulación de sistemas emas. e sistemas y computación en el área de Dinámica de	

7. DESCRIPCIÓN:

Es una asignatura profesional no fundamental en la carrera Ingeniería de Sistemas y Computación, la cual pretende capacitar al alumno en el conocimiento y uso de la tecnología de Dinámica de Sistemas, mediante el aprendizaje de los siguientes tópicos:

- I. Teoría General de Sistemas y El Enfoque de Sistemas
- II. Representaciones de los sistemas (Modelos)
- III. Dinámica de Sistemas aplicando Diagramas de Ciclo Causal
- IV. Representación y experimentación de sistemas usando Diagramas de Flujo Dinámico

Se encuentra ubicada en el primer semestre del tercer año del plan de estudio de la carrera. En total cuenta con 4 créditos, distribuidos de la siguiente manera: 4 horas de teoría y 1 de laboratorio.

El desarrollo de la asignatura se dará a través de los métodos: expositivo, inductivo, lógico, colectivo, analítico, activo e individual, en la medida que se requiera por parte de los facilitadores y alumnos. Se darán discusiones grupales, talleres, laboratorios, proyectos, investigaciones, demostraciones en el computador por parte del facilitador y luego los estudiantes desarrollarán problemas de modelaje y simulación en el computador asignado por el facilitador.

8. ESTRUCTURA PROGRAMÁTICA

OBJETIVOS GENERALES DE LA ASIGNATURA / CURSO:

Modelar sistemas dinámicos empleando el lenguaje sistémico de acuerdo a la metodología de la Dinámica de Sistemas.

TITULO DEL MÓDULO / UNIDAD:

I. Teoría General de Sistemas y El Enfoque de Sistemas

- 1. Comprender el enfoque de sistemas y valorar sus contribuciones al desarrollo moderno.
- 2. Aplicar la taxonomía de sistemas para el análisis de problemas reales, identificando sus componentes, relaciones y propiedades.

RESULTADOS DE APRENDIZAJES	CONTENIDOS	ESTRATEGIAS	RECURSOS	TIEMPO	EVALUACIÒN
Explicar el enfoque de sistemas. Aplicar la descripción de	El enfoque de sistemas 1. El concepto de sistemas 1.1 Definición 1.2 Elementos 1.3 Taxonomía de los	Técnica expositiva Lluvias de ideas Método de preguntas Laboratorios Demostraciones	Computador 1 por cada estudiante Plataforma virtual (Moodle) Pizarrón Guías de Laboratorio	(3 Semanas) Cuando se utilicen los laboratorios por semana se emplearan dos	 Pruebas Cortas Ejercicios Prácticos, Lista de cotejo para evaluar laboratorios, trabajos grupales e individuales, Proyecto y su rubrica
sistemas de casos comunes del diario vivir.	sistemas 2. La sistemología como disciplina integradora	6. Resolución de problemas 7. Cuestionarios 8. Pruebas Cortas 9. Mapas	5. Material Impreso 6. Correo electrónico itzomara.pinzon@utp.ac.pa 7. Diapositivas 8. Proyector Multimedia	horas de clase. Para las pruebas cortas de 15 minutos dependiendo del grado de dificultad	
Diferencias sistemas de acuerdo a sus características.	2.1 Definición.2.2 Antecedentes.2.3 Teoría general de sistemas	conceptuales	Software VENSIM Ontafolio	de los problemas. Investigaciones, proyectos, presentaciones orales serán	
Comprender el aporte de				asignados y	

la dinámica de sistemas al desarrollo científico, tecnológico y organizacional.	3. El enfoque de sistemas 3.1 Pensamiento Sistémico 3.2 Fundamentos del pensamiento Sistémico 3.3 Niveles del pensamiento		recogidos en no mas de 15 días. Las lluvias de ideas o cualquier otra estrategia empleada se dará	
Clasificar los sistemas de acuerdo a sus características y comportamiento aplicando la taxonomía de los sistemas.	Sistémico. 4. La dinámica de sistemas y sus contribuciones. 4.1 Introducción. 4.2 Desarrollo y aportes 4.3 Casos de aplicación 4.4 Ejemplos.		en cada clase para proceso de retroalimentación, verificar dominio de tema, antes de pasar a otro tema	

OBJETIVOS GENERALES DE LA ASIGNATURA / CURSO:

₩ Modelar sistemas dinámicos empleando el lenguaje sistémico de acuerdo a la metodología de la Dinámica de Sistemas.

TITULO DEL MÓDULO / UNIDAD:

II. Representaciones de los sistemas (Modelos)

- 1. Comprender los conceptos de descripción de sistemas y aplicarlos en el análisis de casos reales.
- 2. Identificar la lógica de los sistemas a través del concepto de sistema dinámico.
- 3. Comprender y utilizar los principios de modelación de sistemas dinámicos.

RESULTADOS DE APRENDIZAJES	CONTENIDOS	ESTRATEGIAS	RECURSOS	TIEMPO	EVALUACIÒN
Definir el concepto de Sistemas Dinámicos. Representar la estructura de un sistema. Identificar la frontera para un sistema dado y explicar su importancia Distinguir entre los sistemas	II Sistemas y sus representaciones 1. Descripción de los sistemas 1.1 Estructura 1.2 Fronteras. 1.3 Comportamiento. 1.4 Estructura interna de los sistemas 1.5 Diagramas de Bloque y flujo de Señales. 1.6 Agrupaciones abiertas y Retroalimentación. 2. Sistemas Dinámicos y sus representaciones 2.1 Definición sistema dinámico 2.2 Características 2.3 Pasos para el diseño	1. Técnica expositiva 2. Lluvias de ideas 3. Laboratorios 4. Cuestionarios 5. Presentaciones Orales 6. Resolución de problemas 7. Pruebas Cortas 8. Mapas conceptuales	1. Computador 1 por cada estudiante 2 Plataforma virtual (Moodle) 3. Pizarrón 4. Guías de Laboratorio 5. Material Impreso 6. Correo electrónico itzomara.pinzon@utp.a c.pa 7. Diapositivas 8. Proyector Multimedia 9. Software VENSIM 10. Portafolio	(2 Semanas) ♣ Cuando se utilicen los laboratorios por semana se emplearan dos horas de clase. ♣ Para las pruebas cortas de 15 minutos dependiendo del grado de dificultad de los problemas. ♣ Investigaciones, proyectos, presentaciones orales serán asignados y	 ♣ Pruebas cortas ♣ Ejercicios Prácticos, ♣ Lista de cotejo para evaluar laboratorios, trabajos grupales e individuales, ♣ Proyecto y su rubrica ♣ Parcial ♣ Portafolio

tradicionales y los sistemas de	2.4 Ejemplos	recogidos en no mas de 15 días.
retroalimentación.	El concepto de modelo. 3.1 Definición	Las lluvias de ideas o cualquier otra estrategia
Comprender el comportamiento	3.2 Estructura. 3.3 Fronteras.	empleada se dará en cada clase para
dinámico de los sistemas	3.4 Modelos confiables y observables 3.6 Taxonomía de los modelos -De acuerdo al enfoque	proceso de retroalimentación, verificar dominio de tema, antes de
Clasificar los modelos de acuerdo	-De acuerdo a sus variaciones -Otras clasificaciones	pasar a otro tema
a sus características	3.7 Ejemplificar las diversas clasificaciones.	
Explicar la clasificación de los modelos.		

OBJETIVOS GENERALES DE LA ASIGNATURA / CURSO:

₩ Modelar sistemas dinámicos empleando el lenguaje sistémico de acuerdo a la metodología de la Dinámica de Sistemas.

TITULO DEL MÓDULO / UNIDAD:

III. Dinámica de Sistemas aplicando Diagramas de Ciclo Causal

- 1. Conocer los elementos constitutivos de los diagramas de ciclo causal y describir el significado de una red causal.
- 2. Aplicar los diagramas de ciclo causal como metodología para la modelación de sistemas dinámicos.

RESULTADOS DE APRENDIZAJES	CONTENIDOS	ESTRATEGIAS	RECURSOS	TIEMPO	EVALUACIÒN
Explicar las generalidades de los diagramas de ciclo causal (DCC). Comprender la simbología básica para la representación de las relaciones de causalidad. Identificar la variables que representan causalidad para la resolución de un problema. Identificar los principales ciclos de retroalimentación. Determinar la polaridad del ciclo causal.	 III. Sistemas Dinámicos y Diagramas de Ciclo Causal 1.Teoría de causalidad 2. Relaciones causa-efecto y su representación 2.1 Simbología 2.2 Significado de la dirección de la influencia 2.3 Tipos de influencias. 2.4 Ley de los signos 2.5 Ejemplos 3. Diagramas de Ciclo causal 3.1 Ventajas y Desventajas 3.2 Propiedades 4. Ciclos de retroalimentación 4.1 Retroalimentación Positiva 	1. Técnica expositiva 2. Lluvias de ideas 3. Laboratorios 4. Demostraciones Prácticas 5. Presentaciones Orales 6. Mapas conceptuales 7. Pruebas Cortas 8. Resolución de problemas 9. Método de proyecto	1. Computador 1 por cada estudiante 2 Plataforma virtual (Moodle) 3. Pizarrón 4. Guías de Laboratorio 5. Material Impreso 6. Correo electrónico itzomara.pinzon@utp.a c.pa 7. Diapositivas 8. Proyector Multimedia 9. Software VENSIM 10. Portafolio	 Cuando se utilicen los laboratorios por semana se emplearan dos horas de clase. Para las pruebas cortas de 15 minutos dependiendo del grado de dificultad de los problemas. Investigaciones, proyectos, presentaciones orales serán asignados y recogidos en no mas de 15 días. Las lluvias de 	 ♣ Pruebas Pruebas cortas ♣ Ejercicios Prácticos, ♣ Lista de cotejo para evaluar laboratorios, trabajos grupales e individuales, ♣ Proyecto y su rubrica ♣ Parcial ♣ Portafolio

Modelar los sistemas reales en términos de ciclos de retroalimentación.	 4.2 Retroalimentación Negativa 4.3 Combinación de Ciclos 4.4 Dominancia 4.5 Diversidad de comportamiento 4.6 Variables Exógenas 5. Graficación y análisis de Sistemas de Retroalimentación. 5.1 Patrones 5.2 Definición de tasas y niveles 5.3 Gráficos y ciclos causales 6. Ejemplos 7. Ejercicios de creación de modelos 8. Desarrollo de casos 			ideas o cualquier otra estrategia empleada se dará en cada clase para proceso de retroalimentación, verificar dominio de tema, antes de pasar a otro tema	
---	--	--	--	---	--

OBJETIVOS GENERALES DE LA ASIGNATURA / CURSO:

♣ Modelar sistemas dinámicos empleando el lenguaje sistémico de acuerdo a la metodología de la Dinámica de Sistemas.

TITULO DEL MÓDULO / UNIDAD:

IV. Representación y experimentación de sistemas usando Diagramas de Flujo Dinámico

- 1. Diseñar modelos de flujo dinámico para representar sistemas.
- 2. Aplicar la definición de escenarios en el proceso de decisión.
- 3. Análisis de resultados para la toma de decisiones.

RESULTADOS DE APRENDIZAJES	CONTENIDOS	ESTRATEGIAS	RECURSOS	TIEMPO	EVALUACIÒN
Explicar los principales componentes de un diagrama de flujo dinámico (DFD). Explicar los sistemas de ecuaciones que se usan para describir el funcionamiento del sistema. Construir diagramas de flujos dinámicos a	 DIAGRAMAS DE FLUJOS DINÁMICOS Introducción Tipos de Variables y Símbolos para Diagramas de Flujo Dinámico Niveles Tipos de Flujos Ratas Variables Auxiliares Constantes Retrasos Estructuras de Sistemas Dinámicos Ciclo de Retroalimentación Niveles y Ratas Definiciones Identificación de niveles y ratas Elementos Genéricos de una Estructura de 	1. Técnica expositiva 2. Lluvias de ideas 3. Laboratorios 4. Demostraciones Prácticas 5. Presentaciones Orales 6. Mapas conceptuales 7. Pruebas Cortas 8. Resolución de problemas 9. Método de proyecto	1. Computador 1 por cada estudiante 2 Plataforma virtual (Moodle) 3. Pizarrón 4. Guías de Laboratorio 5. Material Impreso 6. Correo electrónico itzomara.pinzon@utp.a c.pa 7. Diapositivas 8. Proyector Multimedia 9. Software VENSIM 10. Portafolio	 Cuando se utilicen los laboratorios por semana se emplearan dos horas de clase. Para las pruebas cortas de 15 minutos dependiendo del grado de dificultad de los problemas. Investigaciones, proyectos, presentaciones orales serán asignados y recogidos en no 	1. Lluvias de ideas 2. Laboratorios 3. Demostraciones Prácticas 4. Presentaciones Orales 5. Investigaciones 6. Pruebas Cortas

partir de diagramas	Retroalimentación de un Modelo de un	mas de 15 días.
de ciclo causal de	Sistema Dinámico	Las Iluvias de
sistemas dinámicos.	4.1 Integración gráfica para estimar	ideas o cualquier otra estrategia
	comportamiento	empleada se dará
	4.1.1 Flujos Exógenos	en cada clase para
	4.1.2 Función Step	proceso de
	4.1.3 Funciones Rampa	retroalimentación,
Generar sistemas de	5. Redes (Secuencia Rata-Nivel)	verificar dominio de tema, antes de
ecuaciones a partir	6. Sistemas de Ecuaciones	pasar a otro tema
de diagramas de	6.1 Periodos de Tiempo	
flujo de datos.	6.2 Ecuaciones	
	6.2.1 De nivel	
	6.2.2 De Rata	
	6.2.3 Auxiliares	
	6.2.4 Constantes	
	7. Conceptualización de una situación	
	determinada	
	Metodología para el desarrollo de un	
	proyecto de modelación y análisis de	
	sistemas.	
	9. Simulación en computador	
	10. Comportamiento del modelo	
	11. Definición de escenarios	
	12. Análisis de resultados	
	13. Ejercicios prácticos	

9. PONDERACIÓN DE LA EVALUACIÓN

Descripción	Porcentaje (P)
Asistencia y Participación	10%
Asignaciones y trabajos en general	10%
Parciales	25%
Laboratorios, Proyectos Individuales y Grupales	15%
Evaluación Semestral	35%
Portafolio	5%
	100%

10. MÉTODO DE EVALUACIÓN

Se realiza una evaluación basándose en los siguientes criterios:

- La asistencia a clases se registrará diariamente.
- Se realizarán pruebas cortas, tanto presencial como no presencial, las cuales pueden ser grupales o individuales.
- Las prácticas de resoluciones de problemas propuestas se evaluarán de forma continua, en el aula y en el laboratorio y durante los horarios asignados a las clases y en los plazos indicados, la realización, individual o en grupos de dos a tres alumnos.
- Se realizarán investigaciones que deberán ser expuestas en clase para complementar los temas revisados y mejorar las evaluaciones de las actividades realizadas hasta el momento.
- Se podrá realizar una prueba escrita sobre los contenidos de la materia en caso de que los procedimientos anteriores no puedan ser aplicados o si se estima oportuno.
- Las pruebas cortas se aplicarán con propósitos formativos con el propósito de verificar la asimilación de contenidos.
- La realización de parciales es indispensable, los cuales pueden ser escritos o en las máquinas, el primer parcial será teórico el resto será teórico y práctico.
- Los parciales teórico práctico, podrán ser escritos o con el uso de los laboratorios y se realizarán en las horas de clases.
- Las pruebas parciales se realizarán en las fechas previamente establecidas en el cronograma de actividades

11. MÉTODO DOCENTE SUGERIDOS.

Utilizaremos un conjunto de actividades que favorezcan un proceso de aprendizaje significativo, participativo y colaborativo tanto del facilitador como del alumno

Esto significa que emplearán un conjunto de métodos: expositivo, lógico, colectivo, analítico, activo que garantice las competencias en el alumno. Finalmente se ofrecerá por parte de los facilitadores.

- Exposiciones
- Discusiones grupales,
- Prácticas de resoluciones de problemas,
- Laboratorios,
- Proyectos,
- Investigaciones,
- Demostraciones de problemas aplicando los conceptos impartidos
- Finalmente los estudiantes resolverán problemas de sistemas mediante las técnicas impartidas

12. SOPORTES RECOMENDADOS EN EL AULA

Cualquiera ayuda didáctica y tecnológica que se tenga y entre las cuales podemos mencionar las siguientes:

- 1. Computador 1 por cada estudiante
- 2 Plataforma virtual (Moodle)
- 3. Pizarrón
- 4. Guías de Laboratorio
- 5. Material Impreso
- 6. Correo electrónico itzomara.pinzon@utp.ac.pa
- 7. Diapositivas
- 8. Proyector Multimedia
- 9. Software VENSIM
- 10. Portafolio

13. SOPORTES RECOMENDADOS EN EL LABORATORIO

En los laboratorios usaremos lo siguiente:

- Un Computador por estudiante, esto sería lo ideal
- La plataforma virtual Moodle
- Guías de Laboratorio
- Software VENSIM (o similar)

14. REFERENCIAS BIBLIOGRÁFICAS

LIBROS Actualización 2017

AUTOR	NOMBRE DEL LIBRO	EDITORIAL
Pinzón T., Itzomara A.	Apuntes: Ingeniería de Sistemas Dinámicos	Personal
Martín García, Juan	Teoría y Ejercicios Prácticos de Dinámica de Sistemas	Edición Personal. BARCELONA. Tercera Edición. 2011 ISBN 84-607-9304-4
Martín García, Juan	Sysware: La toma de decisiones Empresariales en un Mundo Complejo	Edición Personal. Barcelona Séptima Edición, 2007 ISBN 846092462-9
Gilbert, Nigel y Troitzch, Klaus	Simulación Para las Ciencias Sociales	Mc Graw Hill, España (traducción) 2006 ISBN 84-481-4623-9
ROBERTS / ANDERSEN / DEAL.	Computer Simulation	Addison-Wesley
TUÑÓN, Modaldo	Dinámica de los Sistemas	Edición personal, Panamá, 2005.
Meadow, Donella H.	Beyon the Limits	Chelsea Green Publishing Company. USA 1992
Martín García, Juan	Conceptos de Dinámica de Sistemas	Martin García, 2017
Morlán santa Catalina, Iñaki (tesis)	Modelo de Dinámica de Sistemas para la implementación de Tecnología de la información en la Gestión Estratégica Universitaria	Universidad del País Vasco, Departamento de Lenguajes y Sistemas Informáticos Septiembre 2010
Caballero, Berbey, Alvarez, Galán, Sanz, Guerra, Flores	Un enfoque inferencial de Lógica Borrosa para la estimación de la Demanda del flujo de Pasajeros	Universidad Tecnológica de Panamá. Producción Científica en TICS

WEB BIBLIOGRAFIA

1. Aracil, Javier, Isdefe, Dinámica de Sistemas,

http://www.isdefe.es/webisdefe.nsf/0/F570FAE5D8CF4452C1256E5500497B2A?OpenDocument.

Fecha de consulta Enero 2005.

2. Bustos Farías, Eduardo, Teoría General de Sistemas.

http://www.angelfire.com/planet/computacionysociedad/teoria_gral_sistemas_bertanlanffy.pdf

Fecha de consulta: Marzo 2011

3. Leyva, Ernesto Alonso, Instituto Tecnológico de Sonora

http://jmonzo.net/blogeps/ids1.pdf

Fecha de consulta: Agosto 2010

4. Martín García, Juan. Dinámica de Sistemas

http://www.dinamica-de-sistemas.com/

Fecha de consulta, Enero 2010

5. Martín García, Juan. Aplicaciones Prácticas de la Dinámica de Sistemas en un Mundo Complejo.

http://136.145.236.35/isdweb/Congreso-ISD/conf%20J%20Martin.pdf

Universidad de Puerto rico. Diciembre 2006

Fecha de Consulta: Junio 2010

6. P.G., William. La dinámica de sistemas

http://dinamicadesistemas.wordpress.com/author/williampg/

Fecha de consulta junio 2010

7. DEDALUS, ¿Qué es la dinámica de sistemas? http://www.daedalus.es/AreasDSDef-E.php.

Fecha de consulta Marzo 2005

8. Capítulo Latinoamericano. Sociedad de Dinámica de Sistemas

http://dinamica-sistemas.mty.itesm.mx/index.php/welcome/inicio

Fecha de consulta: Mayo 2006

9. López, Alfredo. Teoría General de Sistemas

http://www.monografias.com/trabajos/tgralsis/tgralsis.shtml

Fecha de consulta: fecha de consulta 2006

10. Ramírez, José. Diagrama Causa-Efecto Ishikawa.

Fecha de consulta. Junio 2010

http://www.monografias.com/trabajos42/diagrama-causa-efecto/diagrama-causa-efecto2.shtml

Bajar el software VENSIM (o similar)

www.vensim.com

Plataforma virtual: Moodle