Étude d'un filtre passe bas du second ordre

Objectif:

• Identifier les paramètres et comprendre l'utilisation des relations pour un filtre du second ordre (fréquence propre f_0 et facteur d'amortissement m), afin de prévoir et vérifier les valeurs particulières du diagramme de Bode du gain pour une cellule de Sallen-Key passe-bas.

Préparation: Obligatoire.

Compte rendu papier : À remettre à la fin de la séance de TP.

1 Préparation (5 points)

On étudie le montage suivant :

1. Montrer que:

$$v_A = \frac{v_{out}(1 + jRC_1\omega) + v_{in}}{2 + jRC_1\omega}$$

2. Montrer que:

$$v_{out} = \frac{v_A}{1 + jRC_2\omega}$$

3. À l'aide des expressions précédentes montrer que la fonction de transfert $H(j\omega)$ du montage est :

$$H(j\omega) = \frac{1}{1 + 2RC_2j\omega + R^2C_1C_2(j\omega)^2}$$

4. La fonction de transfert canonique (normalisée) d'un filtre passe bas du second ordre est :

$$H(j\omega) = \frac{1}{1 + 2m\frac{j\omega}{\omega_0} + \left(\frac{j\omega}{\omega_0}\right)^2}$$

avec m le facteur d'amortissement et ω_0 la pulsation propre. Par identification, exprimer m et ω_0 en fonction de R, C_1 et C_2 .

On souhaite fixer la valeur de ω_0 à $10^4~rad.s^{-1}$. Les valeurs des composants mis à disposition sont les suivantes :

Pour R : 1,8 k Ω 2,2 k Ω 22 k Ω

Pour C_1 et C_2 : 1 nF 22 nF 33 nF 47 nF 68 nF

5. Trouver les valeurs de R, C_1 et C_2 qui permettent de régler au plus près les valeurs du tableau suivant, puis compléter celui-ci.

Valeurs souhaitées			Valeurs normalisées			Valeurs exactes		
ω_0 (rad.s ⁻¹)	f_0 (Hz)	m	$R(k\Omega)$	$C_1(nF)$	$C_2(nF)$	ω_0 (rad.s ⁻¹)	f_0 (Hz)	m
		0,2						
10^{4}		0,7						
		1,2						

2 Manipulations (15 points)

Une maquette de manipulation correspondant au montage étudié est mise à disposition. Sur cette maquette, il est possible, à l'aide de cavaliers, de régler les différentes valeurs de R, C_1 et C_2 . Ainsi, à l'aide des cavaliers et de votre préparation théorique, sélectionner les composants permettant d'obtenir $\mathbf{m} = \mathbf{0}, \mathbf{2}$. En complément d'informations, les expressions théoriques pour la réponse fréquentielle d'un système du second ordre sont données en annexe.

- 1. Mesurer expérimentalement la fréquence propre f_0 . Préciser la méthode de mesure. Comparer la valeur mesurée de f_0 avec celle prédéterminée dans la préparation.
- 2. Mesurer avec précision le gain maximum G_{max} et la fréquence f_r correspondante.
- 3. Tracer le diagramme de Bode du gain sur une feuille de papier semi-log. Effectuer une quinzaine de mesures dont en particulier les points correspondant à $f = f_0/10$, f_0 , f_0
- 4. Mesurer également avec précision la fréquence de coupure à -3 dB (f_c). Préciser la méthode de mesure.
- 5. Proposer une méthode pour déterminer le plus précisément possible le facteur d'amortissement m. Comparer la valeur obtenue de m avec celle prédéterminée dans la préparation.

Reprendre l'ensemble des questions précédentes pour $\mathbf{m} = \mathbf{0,7}$ et $\mathbf{m} = \mathbf{1,2}$. Tracer les diagrammes de Bode sur la feuille de papier semi-log utilisée pour $\mathbf{m} = \mathbf{0,2}$.

Annexe : Réponse fréquentielle d'un système du second ordre

Fonction de transfert :

$$H(j\omega) = \frac{1}{1 + 2m\frac{jf}{f_0} + \left(\frac{jf}{f_0}\right)^2}$$

Allure de la courbe de gain avec $m < \frac{\sqrt{2}}{2}$

Paramètre	Expression théorique		
Fréquence de résonance (f_r)	$f_0\sqrt{1-2m^2}$		
G_{max}	$-20log_{10}\left(2m\sqrt{1-2m^2}\right)$		
G_Q	$20log_{10}\left(\frac{1}{2m}\right)$		
Fréquence de coupure à -3 dB (f_c)	$f_0\sqrt{1-2m^2+\sqrt{1+(1-2m^2)^2}}$		