Линейные пространства

Определение: Множество элементов V называется линейным векторным пространством, если выполняются следующие условия:

- 1) В V введены две операции: сложение и умножение на скаляр так, что V замкнуто соответственно этих операций:
 - 1. $\forall \vec{x}, \vec{y} \in V : \vec{x} + \vec{y} \in V$
 - 2. $\forall \alpha \in \mathbb{R} : \alpha \bar{x} \in V$
- 2) Причем эти операции обладают следующими свойствами (Аксиомы)
 - 1. $\vec{x} + \vec{y} = \vec{y} + \vec{x}$
 - 2. $(\vec{x} + \vec{y}) + \vec{z} = \vec{x} + (\vec{y} + \vec{z})$
 - 3. $\exists \vec{o} \in V : \forall \vec{x} \in V : \vec{x} + \vec{o} = \vec{x}$ (нулевой элемент)
 - 4. $\forall \vec{x} \in V \exists (-\vec{x}) \in V : \vec{x} + (-\vec{x}) = \vec{o}$ (противоположный элемент)
 - 5. $1 \cdot \vec{x} = \vec{x}$
 - 6. $\lambda \cdot (\mu \vec{x}) = (\lambda \mu) \vec{x}$
 - 7. $\lambda \cdot (\vec{x} + \vec{y}) = \lambda \vec{x} + \lambda \vec{y}$
 - 8. $(\lambda + \mu)\vec{x} = \lambda \vec{x} + \mu \vec{x}$

Линейная зависимость и независимость. Базис и размерность

Определение линейной зависимости: Система векторов $\{\vec{a}_1...\vec{a}_n\} \in V$ называется линейно зависимой, если найдутся такие числа $\lambda_1...\lambda_n$, не равные одновременно нулю и такие, что $\lambda_1\vec{a}_1+...+\lambda_n\vec{a}_n=0$.

Определение линейной независимости: Система векторов $\{\vec{a}_1...\vec{a}_n\} \in V$ называется линейно независимой, если для любых чисел $\lambda_1 ... \lambda_n \in \mathbb{R}$ линейная комбинация равна ноль-вектору: $\lambda_1 \vec{a}_1 + ... + \lambda_n \vec{a}_n = 0$ тогда и только тогда, когда все коэффициенты равны нулю: $\lambda_1 = ... = \lambda_n = 0$.

Система $\{\vec{e}_1...\vec{e}_n\}$ называется **полной**, если эта система:

- 1) линейно независимая и
- 2) $\forall \vec{x} \in V$ система $\{\vec{e}_1 ... \vec{e}_n, \vec{x}\}$ линейно зависимая.

Базис – полная упорядоченная система векторов.

<u>Координаты произвольного вектора</u> $\vec{x} \in V$ <u>в базисе</u> $B = \{\vec{e}_1 \dots \vec{e}_n\}$ – это разложение вектора по базисным векторам на коэффициенты $x = x_1 \vec{e}_1 + \dots + x_n \vec{e}_n = (x_1 \dots x_n)$.

Размерность пространства $\dim V$:

- 1) Максимально возможное количество линейно независимых векторов
- 2) Количество векторов в базисе

Если $\dim V = n$, то любые n линейно независимых векторов образуют базис пространства.

- \checkmark Как проверить, что система из n векторов в пространстве V_n заданных своими координатами в каком-либо базисе образуют базис? Ответ: надо записать координаты в матрицу (по столбцам) и найти определитель:
 - 1) $\det A \neq 0 \Rightarrow$ векторы ЛНЗ и образуют базис,
 - 2) $\det A = 0 \Rightarrow$ векторы Л3 и не образуют базис.

Матрица перехода от базиса B_1 к базису B_2

Пусть даны два базиса: B_1 и B_2 . Матрицей перехода от базиса B_1 к базису B_2 называется матрица, столбцами которой являются координаты векторов базиса B_2 в базисе B_1 :

$$P_{B_1 o B_2} = egin{pmatrix} "старые" координаты \\ "новых" базисных векторов \\ записываем по столбцам \end{pmatrix} = egin{pmatrix} координаты вектора \\ B_2 в базисе B_1 по столбцам $B_2$$$

Формула связи координат вектора в разных базисах. Если $\vec{x} = (x_1 ... x_n)$ в базисе B_1 , то координаты этого вектора $\vec{x} = (x'_1 ... x'_n)$ в базисе B_2 выражаются по формуле:

$$\begin{pmatrix} x'_1 \\ \vdots \\ x'_n \end{pmatrix}_{B_2} = P_{B_1 \longrightarrow B_2}^{-1} \begin{pmatrix} x_1 \\ \vdots \\ x_2 \end{pmatrix}_{B_1}.$$

Линейные подпространства

Определение: Подмножество L пространства V_n называется линейным подпространством V_n , если L само является пространством.

Критерий: Подмножество L пространства V_n является подпространством $\Leftrightarrow L$ замкнуто относительно сложения векторов и умножения их на число:

- 1. $\forall \vec{x}, \vec{y} \in L : \vec{x} + \vec{y} \in L$
- 2. $\forall \alpha \in \mathbb{R} : \alpha \vec{x} \in L$

Линейная оболочка системы векторов $\{\vec{a}_1...\vec{a}_n\}$ – это множество всех линейных комбинаций этих векторов:

$$L\{\vec{a}_1 \dots \vec{a}_n\} = \{\alpha_1 \vec{a}_1 + \dots + \alpha_n \vec{a}_n; \ \alpha_1 \dots \alpha_n \in \mathbb{R}\}\$$

Линейная оболочка системы векторов $S \in V_n$ является подпространством V_n .

Размерность линейной оболочки = ранг системы векторов = ранг матрицы из координат этих векторов.

Линейной комбинацией системы векторов $\{\vec{a}_1...\vec{a}_n\} \in V_n$ с коэффициентами α_1 , $\alpha_2 ... \alpha_n \in \mathbb{R}$ называется вектор:

$$\alpha_1 \vec{a}_1 + \alpha_2 \vec{a}_2 + \dots + \alpha_n \vec{a}_n \in V_n$$

Примеры линейных векторных пространств:

 V_3 – пространство геометрических векторов.

Канонический базис V_3 : $\left\{\vec{\mathbf{i}},\vec{j},\vec{k}\right\}$; $\dim V_3=3$.

Координаты произвольного вектора $\vec{x} \in V_3$ в каноническом базисе:

 $ec{x} = x \cdot ec{i} + y \cdot ec{j} + z \cdot ec{k} = (x,y,z)$. Координаты

базисных векторов в этом же базисе:

$$\vec{t} = 1 \cdot \vec{t} + 0 \cdot \vec{j} + 0 \cdot \vec{k} = (1; 0; 0)$$
$$\vec{k} = 0 \cdot \vec{t} + 1 \cdot \vec{j} + 0 \cdot \vec{k} = (0; 1; 0)$$

 $\vec{k} = 0 \cdot \vec{i} + 0 \cdot \vec{j} + 1 \cdot \vec{k} = (0; 0; 1)$

 $\mathbb{R}^n = \{(x_1 \dots x_n); x \in \mathbb{R}\}$ арифметическое n-мерное пространство; состоит из упорядоченных наборов из n чисел (так называемые энки). Пример:

1. $\mathbb{R}^n = \{(x_1, x_2, x_3)\}$ – упорядоченные тройки. Канонический базис: $d\mathrm{im}\mathbb{R}^3 = 3$

\mathcal{X}_1	x_2	x_3		
1	0	0	\Rightarrow	$\vec{e}_1 = (1,0,0)$
0	1	0	\Rightarrow	$\vec{e}_2 = (0,1,0)$
0	0	1	\Rightarrow	$\vec{e}_3 = (0,0,1)$

Координаты произвольного вектора в каноническом базисе (разложение вектора по базисным):

$$\vec{x} = (x_1, x_2, x_3) = x_1 \cdot \vec{e}_1 + x_2 \cdot \vec{e}_2 + x_3 \cdot \vec{e}_3$$

2. $\mathbb{R}^n = \{(x_1, x_2, x_3, x_4)\}$. Канонический базис (естественный)

	x_1	x_2	x_3	X_4	_			
	1	0	0	0	_	$\vec{e}_1 = (1, 0, 0, 0)$		
	0	1	0	0	\Rightarrow	$\vec{e}_2 = (0, 1, 0, 0)$		
	0	0	1	0	_	$\vec{e}_3 = (0,0,1,0)$		
	0	0	0	1	_	$\vec{e}_4 = (0,0,0,1)$		
	= () = 1 = 1							

$$\vec{x} = (x_1, x_2, x_3, x_4) = x_1 \cdot \vec{e}_1 + x_2 \cdot \vec{e}_2 + x_3 \cdot \vec{e}_3 + x_4 \cdot \vec{e}_4$$

 $M_{n \times m}$ – пространство матриц размера n на m; $\dim M_{n \times m} = n \cdot m$. Пример:

$$M_{2\times 2}=\left\{\begin{pmatrix} a & b \\ c & d \end{pmatrix}; a,b,c,d\in\mathbb{R}\right\},$$

 $\dim M_{2\times 2} = 2\cdot 2 = 4$. Канонический базис:

а	b	С	d			
1	0	0	0	\Rightarrow	$E_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$	=(1,0,0,0)
					$E_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$	
					$E_2 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$	
0	0	0	1	\Rightarrow	$E_3 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$	=(0,0,0,1)

Координаты произвольного вектора (матрицы) в каноническом базисе:

$$x = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = a \cdot E_1 + b \cdot E_2 + c \cdot E_3 + d \cdot E_4 = (a, b, c, d)$$

 P_n -пространство многочленов степени не выше n. Пример:

$$P_2 = \{at^2 + bt + c; a, b, c \in \mathbb{R}\}; \dim P_n = n+1$$
 Канонический базис:

	b		_	
1	0	0	\Rightarrow	$e_1 = t^2 = (1, 0, 0)$
0	1	0	\Rightarrow	$e_2 = t = (0, 1, 0)$
0	0	1	\Rightarrow	$e_3 = 1 = (0, 0, 1)$

Координаты произвольного вектора (многочлена)

$$P(t) = at^2 + bt + c = a \cdot \vec{e}_1 + b \cdot \vec{e}_2 + c \cdot \vec{e}_3 = (a, b, c)$$

$$P_3 = \left\{ a_3 t^3 + a_2 t^2 + a_1 t + a_0 \right\}$$