Seminar 3

- ① Fie $n \in \mathbb{N}$, $n \ge 2$. So se determine ideale le maximale ale lui \mathbb{Z}_n .
- 2 Fie nEH, n > 2 n fre R, ..., Rn inele comutative
 Sd ce determine idealele moximale ele leci
 R, x ... x Rn.
- (3) File Fun corp comutative. Sa se drote cal privind Fco pe un domeniu de integliétale, corpul lui de froctié este isomorf cu F.
- 4) Fie Z[i]={a+bi|a,beZ}n'Q[i]={a+bi|a,beQ}.

 So re orote co Z[i] este subinel ol lui C

 (melul intregilor lui Gows), Q[i] este subcorp

 el lui C, ier corpul de frochii ol lui Z[i]

 este isomorf cu Q[i].
- (3) generat de elementul 3. Sa se vate ca

inelul factor $K = \frac{\mathbb{Z} \tilde{c}i}{3}$ este corp au 9 elemente. Ce conocteristica cre corpul K?

- © Fie ρ un numér prim n K un corp comutation ole conocteristica ρ. Fie φ: K > K, φ(*) = x P pt. 8 vice x ∈ K. Sa se orate cd: (i) φ este morfism de corpuli
 - (ii) Doca k este finit, étunci q este izomosfism de corpuri.
- Reamintim cò o presentere a corpului cueternioniler este H=2 a+bi+cj+dk[a,5,c,d $\in \mathbb{R}^3$], unall a+bi+cj+dk = a'+b'i+c'j+d'k (=) a=a',5=5',c=c',d=d', (a+bi+cj+dk)+(a'+b'i+c'j+d'k)=(a+a')+(5+b')i+(c+c')j+(d+d')k

 At orice a,5,c,d,a',5',c',d' $\in \mathbb{R}$, ior annulicee pe

 Heste definité in exe fel most: orice a $\in \mathbb{R}$ comutol cu
 i, j \neq k; i=j=k=-1; ij=-ji=k; jk=-kj=i; ki=-ik=j.

 Doco $x=a+bi+cj+dk\in H$, notom x=a-bi-cj-dk, $T(x)=x+x\neq N(x)=xx$.
- (a) Så se colculeze produsul (d) Så se determine centrul (1+2i-j+k)(2-i+3j+2k). lui H.
- (b) Só se dote cò T(x), $N(x) \in \mathbb{R}$ $n \times^2 - T(x) \times + N(x) = 0$ nt drice $x \in \mathbb{H}$. (c) Sd se resolve eccustia (c) Sá se colculeze inversul lui x = -1 in \mathbb{H} . 1 + 2i - i + k dn \mathbb{H} .