네트워크 구성 요소 (CCNA)

1. 네트워크

- 정보 공유를 목적으로 시스템과 시스템들을 연결하여 구성한 망을 의미한다.
- 목적: 정보 공유
- 구성: 시스템과 시스템들을 연결
- 장점: 시간 단축, 비용 절감, 통합 운영 관리
- 단점: 보안성 취약 (정보유출/탈취, 서버공격, 악성코드 유포)

보안성 취약 사례:

- SQL injection
 - ID: 'or 1=1 --
 - PW: 1234
- 사회 공학적 기법을 이용한 'webchat.apk' 유포
 - 스팸문자(주소)
 - QR코드

2. 프로토콜(Protocal)

- 네트워크 환경에서 데이터를 전송할 때 전송 방법을 정의한 규약 및 도구를 의미한다.

```
    Expression...

  Filter:
                                  Destination 114.111.46.22/
                                                     Protocol Length Info
TCP 62 1980→80 [SYN] Seq=0 Win=65535 Len=0 MSS=1260 S
   Time Source 94 2.265436 1/2.16.5.254
   95 2.271040 114.111.46.227
                                   172.16.5.254
                                                     TCP
                                                               60 80→1980 [SYN, ACK] Seq=0 Ack=1 Win=5840 Len=0
                                                               54 1980→80 [ACK] Seq=1 Ack=1 Win=65535 Len=0
   96 2.271104 172.16.5.254
                                   114.111.46.227
                                                     TCP
   97 2.271361 172.16.5.254
                                   114.111.46.227
                                                     TCP
                                                           1314 [TCP segment of a reassembled PDU]
    98 2.271704 172.16.5.254
                                                     HTTP
                                                              983 GET /addAndList.nhn?r=linkedMember&cafeKey=121
                                   114.111.46.227
   99 2.277605 114.111.46.227
                                   172.16.5.254
                                                     TCP
                                                              60 80-1980 [ACK] Seq=1 Ack=1261 Win=7560 Len=0
  100 2.277634 114.111.46.227
                                   172.16.5.254
                                                     TCP
                                                               60 80→1980 [ACK] Seq=1 Ack=2190 Win=10080 Len=0
  101 2.279901 114.111.46.227
                                                              902 HTTP/1.1 200 OK (text/plain)
                                   172.16.5.254
                                                     HTTP
# Frame 98: 983 bytes on wire (7864 bits), 983 bytes captured (7864 bits)
# Ethernet II, Src: RealtekS_14:62:ba (00:e0:4c:14:62:ba), Dst: Cisco_31:81:b1 (00:13:60:31:81:b1)
⊕ Internet Protocol Version 4, Src: 172.16.5.254 (172.16.5.254), Dst: 114.111.46.227 (114.111.46.227)
⊕ Transmission Control Protocol, Src Port: 1980 (1980), Dst Port: 80 (80), Seq: 1261, Ack: 1, Len: 929
⊞ [2 Reassembled TCP Segments (2189 bytes): #97(1260), #98(929)]
■ Hypertext Transfer Protocol
 @ GET /addAndList.nhn?r=linkedMember&cafeKey=12166211&ncmc4=6452b6988bc5a91b41afe8fff2017904f8ab56b5e0c62
   Accept: */*\r\n
   Accept-Language: ko-KR\r\n
   Referer: http://cafe.naver.com/common/flash/ajax.swf\r\n
   x-flash-version: 11,7,700,224\r\n
   Accept-Encoding: gzip, deflate\r\n
   User-Agent: Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.1; Trident/4.0; .NET CLR 2.0.50727; .NET CLF
   Host: lm3.cafe.naver.com\r\n
   Connection: Keep-Alive\r\n
    [truncated]Cookie: npic=+uGiqTlaxTt6qfX4TIbo1QhEKJmb3OGiaj5TiI1Akq3G6mE3Tns3dxGVUekI8xh4CA==; NNB=Z3BK
    [Full request URI [truncated]: http://lm3.cafe.naver.com/addAndList.nhn?r=linkedMember&cafeKey=12166211
    [HTTP request 1/1]
   [Response in frame: 101]
```

글자 정보를 가지고 있는 HTTP(HyperText Transfer Protocol)를 전송하기 위해서 TCP. TP. Ethernet 프로토콜 3개를 사용한다.

- 글자 정보를 가지고있는 물건을 배송하기위해 박스3개를 사용한다.

arp라는 데이터는 Ethernet만을 사용해서 보낸다.

***전송하는 데이터마다 사용하는 프로토콜들이 정해져있다.

ETH | IP | TCP | HTTP

- HTTP 데이터를 전송할때는 TCP -> IP -> ETH 순서로 보내진다.

3. 인캡슐레이션(Encapsulation) -데이터 발신:

- 데이터를 전송하기 위해서 프로토콜 정보를 추가하는 패키지 과정을 의미한다.
- <u>프로토콜 정보를 더 많이 추가함으로서 보내는 장소가 정확</u>해진다.
- 물건을 포장하기 위해 박스포장하는 과정
- Ex) ETH | IP | TCP | HTTP 헤더 헤더 헤더
- Ex) HTTP 포장과정:
 - TCP | HTTP
 - IP | TCP | HTTP
 - ETH | IP | TCP | HTTP

4. 디캡슐레이션(Decapsulation) -데이터 수신:

- 데이터를 받을때 포장을 푸는 과정
- HTTP데이터를 받을때
 - ETH | IP | TCP | HTTP
 - IP | TCP | HTTP (ETH의 주소가 맞을경우 ETH 프로토콜 삭제)
 - TCP | HTTP (IP의 주소가 맞을경우 IP 프로토콜 삭제)
 - HTTP (TCP의 주소가 맞을경우 TCP 프로토콜 삭제)

**여기서 주소는 다음을 의미한다:

Ex) '1-1.프로토콜.pcap'에서 http, telnet, ssl, dns, icmp 의 헤더 구조와 헤더 크기를 확인한다.

```
Νo
        Protocol
98
                        ETH | IP | TCP | http
        http
                         14
                                20
                                      20
2081
        telnet
363
        ssl
55
        dns
1359
        icmp
9
        arp
```

헤더 크기 보는법:

2081 telnet:

ETH | IP | TCP | TELNET 14 20 20

363 ssl:

ETH | IP | TCP | SSL 14 20 20

Byte -> Bit 변경법 Byte * 8 = Bit

십진수	이진수	8진수	16진수
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	Α
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	E
15	1111	17	F
16	10000	20	10

4. 네트워크 유형

1) LAN(local Area Network)

- 내부 네트워크 (건물 안)
- 장비: 스위치, PC, 랜카드, UTP 케이블, 무선 AP
- 프로토콜: Ethernet
- 구축 방식: 버스 토폴로지, 스타 토폴로지
- 권장 연결: 스타 토폴로지 + 이중화 구성
- 설계 핵심: 확장성, 이중성, 가용성
- 관리: 사내 관리자 및 업체 관리자

2) WAN(Wide Area Network)

- a) LAN과 LAN 을 연결하는 외부 네트워크 (멀리 떨어져있는 공간 연결, 서울 - 대전)
- b) 장비: 라우터
- c) 프로토콜: [HDLC, PPP, Frame-Relay 잘 안씀], Ethernet**
- d) 연결 방법: 기업 입장에서는 ISP 업체로부터 회선(네트워크망/인터넷망)을 임대한다.
- e) 관리: ISP 업체 관리자 및 SI/NI 업체 관리자
- f) WAN 구간에서도 Ethernet 프로토콜을 주고 사용하고 있으며 이유는 다음과 같이 Ethernet 프로토콜을 지원하는 장치들의 대역폭이 크기 때문이다.

장치명	대역폭	
Ethernet 인터페이스	10M	
FastEthernet 인터페이스	100M	
GigabitEthernet 인터페이스	1000M	
10GigabitEthernet 인터페이스	10000M	

ISP(internet service provider)

ex) SKT. KT. LGU+

- 기업 고객 및 사용자에게 네트워크 망을 임대해주는 기업

SI/NI(시스템 네트워크 구조를 만들어주는 업체)

- 기업 고객 및 사용자에게 시스템 및 네트워크 환경을 구축해주는 기업

밴더

- 자사 기술력으로 제품을 연구, 개발, 생산, 판매, 기술 지원을 제공하는 기업

KT 2026년 IPv6 망 구축 사업(3조)

버스 토폴로지(군대 훈련식. 한군데가 나가면 다나감):

스타 토폴로지(군대식. 스위치를 연결해 안정성 강화):

스타 토폴로지 + 이중화 구성 예시:

3) Internet(International network)

- 전 세계적으로 연결된 네트워크 망
- 프로토콜: TCP/IP. UDP
- 해저 케이블 웹사이트: https://www.submarinecablemap.com/

4) Intranet

- 기업 내부에서 사용하는 네트워크 망
- 용도: 회사 게시판, 공지사항, 기록 열람 기타 등등
- 현재는 대부분 웹 서비스로 제공하고 있기 때문에 일반 사용자들도 사용하기 간편하다. (외부에서 접근이 가능하면 진짜 인트라넷이 아니다)
- 인트라넷은 보안상의 이유 때문에 외부에서 접속하는것은 추천하지 않는다.
- 구글 검색: intitle:("인트라넷")"Intranet"

5) 데이터 전송 관계

- 요청에 의한 응답 관계
- **요청자**: 클라이언트(CLient)
- 응답자: 서버(Server)

Ex) PC 브라우저에서 'www.naver.com' 접속했을때, 서버와 클라이언트는 각각 어떻게 되는가?

- PC: Client

- Naver server: Server

6) 데이터 전송 방식

- a) 유니캐스트 (Unicast)
- 1:1 데이터 전송
- Ex) 인터넷. 네이버 접속
- b) 브로드캐스트(Broadcast)
- 1:전체 데이터 전송 (각각의 스위치에서 복제해서 연결된 컴퓨터에 데이터를 보낸다)
- Ex) ARP 요청, DHCP 요청, 내부 네트워크에서만 사용함 (절대 다른 네트워크로 나가지 않음.)
- c) 멀티캐스트(Multicast)
- 1:특정 그룹 데이터 전송 (각각의 스위치에서 복제해서 정해진 그룹한테 데이터를 보낸다)
- Ex) IPTV
- Ex1) 여러 사용자에게 실시간으로 영상 서비스를 하기 위한 효율적인 방식은 무엇인가?
 - Broadcast, multicast
- Ex2) 과금을 실시한 다수의 사용자에게만 실시간으로 영상 서비스를 하기 위한 방식
 - Multicast
- Ex3) VOD와 같은 과금을 실시하여 특정 사용자에게만 영상서비스를 하기 위한 효율적인 방식은 무엇인가?
 - Unicast