

به نام خدا

تمرين چهارم

1401 بهار – جبر خطی کاربردی

توضيحات

- پاسخ به تمرین ها باید به صورت انفرادی صورت گیرد و درصورت مشاهده هرگونه تقلب نمره صفر برای کل تمرین منظور خواهد شد.
 - پاسخ ها مرتب و خوانا باشند.
- در صورت وجود هرگونه ابهام، از طریق ایمیل <u>la.spring1401.aut@gmail.com</u> سوال خود را بپرسید.
 - مهلت ارسال پاسخ ها تا ساعت 23:55 تاریخ 13 خرداد میباشد.
- با توجه به فشردگی برنامه تمرین ها در طول ترم، به هیچ عنوان امکان تمدید تمرین وجود نخواهد داشت.
 - پاسخ خود را به صورت یک فایل pdf و با فرمت HW?_Name_StudentNumber آپلود کنید.
 (مثال: HW4_LeiliBarekatein_9831072).

1- درستی یا نادرستی عبارات زیر را با آوردن دلیل مناسب تعیین کنید.

الف) λ مقدار وبژه از A است اگر و فقط اگر مقدار وبژه ای از A^T باشد.

ب) اگر A یک ماتریس قطری شدنی باشد و B با A مشابه باشد آنگاه B نیز قطری شدنی است.

ت) اگر B با A و C با A مشابه باشد آنگاه B با C مشابه است.

ث) اگر A معکوس پذیر باشد و با B مشابه باشد آنگاه B معکوس پذیر است و معکوس A با معکوس B مشابه است.

ج) اگر A با B مشابه باشد، آنگاه A^2 با B^2 مشابه است.

چ) اگر A و B مشابه باشند آنگاه رتبه یکسانی دارند.

ح) اگر λ مقدار ویژه ماتریس واون پذیر λ باشد آنگاه λ^{-1} مقدار ویژه ماتریس λ^{-1} است.

خ) اگر $A^2=0$ آنگاه تنها مقدار ویژه A صفر است.

2- مقادیر ویژه ماتریس A را به دست آورده و سپس بردار های ویژه ی آن را مشخص کنید.

$$A = \begin{bmatrix} 5 & 0 & 0 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$

3- فرض کنید میخواهیم دنباله فیبوناچی را با استفاده از مفاهیمی که تا به حال خوانده ایم مدل سازی کنیم. در این صورت خواهیم داشت:

$$\begin{bmatrix} F_n \\ F_{n-1} \end{bmatrix} = A \begin{bmatrix} F_{n-1} \\ F_{n-2} \end{bmatrix}$$

الف) ماتریس A را بیابید.

ب) مقادیر ویژه و بردار ویژه A را بیابید.

 $(A = PDP^{-1})$ ج) ماتریس A را تجزیه طیفی کنید.

د) ماترىس B را برحسب n بيابيد.

$$\begin{bmatrix} F_n \\ F_{n-1} \end{bmatrix} = B \begin{bmatrix} F_1 \\ F_0 \end{bmatrix}$$

ه) رابطه صریح برای F_n بیابید.

و بردار متناظر آن a-bi=e فرض کنید A یک ماتریس 2×2 و حقیقی با یک مقدار ویژه مختلط a-bi=e و بردار متناظر آن به نام c^2 تعریف شده باشد

الف) نشان دهید

$$aRe(v) + bIm(v) = A(Re(v))$$

$$-bRe(v) + aIm(v) = A(Im(v))$$

ب) اگر P و C به صورت زیر تعریف شوند

$$A=PCP^{-1}$$
 $P=(Re_v \ Im_v)$ $C=egin{pmatrix} a & -b \ b & a \end{pmatrix}$ ثابت کنید $AP=PC$ ثابت کنید

ون کنید $\beta=\{b_1$, b_2 , $b_3\}$ و R^3 و R^3 و $\epsilon=\{e_1$, e_2 , $e_3\}$ پایه ای برای فضای $T:R^3\to V$ باشد و $T:R^3\to V$ باشد و $R^3\to V$

$$T(x_1, x_2, x_3) = (x_3 - x_1)b_1 - (x_1 + x_2)b_2 + (x_1 - x_2)b_3$$

- را محاسبه کنید. $T(e_3), T(e_2), T(e_1)$.1
- یا محاسبه کنید. $[T(e_3)]_{eta}$, $[T(e_2)]_{eta}$, $[T(e_1)]_{eta}$.2
 - 3. ماترىس تېدىل T را تحت يايە ھاى β , و بيابيد.

6- ماتریس های زیر را در صورتی که بر مجموعه ی اعداد حقیقی قطری شدنی هستند، قطری سازی کنند.

$$a) \begin{bmatrix} 0 & -1 & -1 \\ 1 & 2 & 1 \\ -1 & -1 & 0 \end{bmatrix}$$

$$b) \begin{bmatrix} 1 & 2 & -3 \\ 2 & 5 & -2 \\ 1 & 3 & 1 \end{bmatrix}$$

7- ثابت كنيد:

- 1. مجموعه درایه های روی قطر اصلی هر ماتریس قطری شدنی برابر است با مجموع مقادیر ویژه ی آن ماتریس.
 - 2. اگر A یک ماتریس مربعی باشد و $A^2=A$ (چنین ماتریسی را ماتریس تصویر می نامند)، آنگاه مقادیر ویژه ی این ماتریس 0 یا 1 است.

8- فرضیات زیر را در نظر بگیرید:

$$A = \begin{bmatrix} 0.5 & 0.2 & 0.3 \\ 0.3 & 0.8 & 0.3 \\ 0.2 & 0 & 0.4 \end{bmatrix}, v_1 = \begin{bmatrix} 0.3 \\ 0.6 \\ 0.1 \end{bmatrix}, v_2 = \begin{bmatrix} 1 \\ -3 \\ 2 \end{bmatrix}, v_3 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}, w = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

- د. نشان دهید v_1, v_2, v_3 بردار ویژه های v_1, v_2, v_3 هستند.
- 2. فرض کنید x_0 برداری در R^3 باشد که درایه های آن نامنفی باشند و مجموعشان 1 باشد. ثابت ... x_0 برداری در x_0 باشد ... x_0 باشد. x_0 دراید وجود دارند ثابت هایی مثل x_0 مثل x_0 دراید و تنیجه بگیرید x_0 دراید x_0 باشد. x_0 دراید و تنیجه بگیرید x_0 دراید و تنیجه بگیرید x_0 دراید و تنیجه بگیرید x_0 دراید و تنیجه بگیرید و تنیجه بگیرید x_0 دراید و تنیجه بگیرید x_0 دراید و تنیجه بگیرید و تنیجه بگیرید x_0 دراید و تنید و تن
 - .3 برای x_0 عرفی شده است 2 معرفی شده است x_0 که $x_k = A^k x_0$ تعریف می کنیم $x_k = 1,2,3,...$ نشان دهید $x_k \to v_1$ زمانی که x_k افزایش می یابد.

9- ماتریس A به همراه دنباله ی x_k که از power method به دست آمده، آورده شده است. بیشترین مقدار ویژه و بردار ویژه متناظر با آن را تخمین بزنید.

$$A = \begin{bmatrix} 0.5 & 0.2 \\ 0.4 & 0.7 \end{bmatrix}$$

دنباله ی χ_k به ترتیب k صعودی از چپ به راست:

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0.8 \end{bmatrix}, \begin{bmatrix} 0.6875 \\ 1 \end{bmatrix}, \begin{bmatrix} 0.5577 \\ 1 \end{bmatrix}, \begin{bmatrix} 0.5188 \\ 1 \end{bmatrix}$$

10- (امتیازی) فرض کنید A یک ماتریس $n \times n$ با مقادیر ویژه متمایز λ_1 , ... , λ_k باشد. موارد زیر را ثابت کنید :

- 1. بعد فضای ویژه مربوط به λ_k کمتر از تکرر آن است.
- 2. ماتریس A قطری شدنی است اگر و فقط اگر بعد فضای ویژه مربوط به λ_k برابر با تکرر آن باشد.

11-(امتیازی) ماتریس مربعی A را درنظر بگیرید.

الف)در صورتی که مجموع هر سطر آن برابر s باشد، نشان دهید s یک مقدار ویژه برای A است. ب)اگر به جای سطر، مجموع درایه های ستون های این ماتریس s باشد، آیا گزاره همچنان درست است؟

 ψ)با توجه به گزاره های بالا فرض کنید جمع درایه های ستون یک ماتریس 1 باشد. فرض کنید که $\lambda \neq 1$ یک مقدار ویژه آن ماتریس باشد و ω بردار ویژه متناظر با ω باشد. ثابت کنید که جمع درایه های ω برابر صفر است.