

Markscheme

November 2018

Chemistry

Higher level

Paper 2

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

C	Question		Answers	Notes	Total
1.	а	i	$\begin{aligned} &n_{\text{CuSO4}} \ \text{\'e} = 0.0800 \ \text{dm}^3 \times 0.200 \ \text{mol dm}^{-3} \text{\'e} = 0.0160 \ \text{mol } \textbf{\textit{AND}} \\ &n_{\text{Fe}} \ \text{\'e} = \frac{3.26 \ \text{g}}{55.85 \ \text{g mol}^{-1}} \text{\'e} = 0.0584 \ \text{mol} \ \text{\checkmark} \end{aligned}$		2
			CuSO₄ is the limiting reactant ✓	Do not award M2 if mole calculation is not shown.	
1.	a	ii	ALTERNATIVE 1: «0.0160 mol × 63.55 g mol ⁻¹ = » 1.02 «g» ✓ « $\frac{0.872 \text{g}}{1.02 \text{g}}$ × 100 = » 85.5 «%» ✓ ALTERNATIVE 2: « $\frac{0.872 \text{g}}{63.55 \text{g mol}^{-1}}$ = » 0.0137 «mol» ✓ « $\frac{0.0137 \text{mol}}{0.0160 \text{mol}}$ × 100 = » 85.6 «%» ✓	Accept answers in the range 85–86 %. Award [2] for correct final answer.	2

C	Questi	on	Answers	Notes	Total
1.	b	i	ALTERNATIVE 1: $q = \text{«}80.0 \text{ g} \times 4.18 \text{ J g}^{-1} \text{ K}^{-1} \times 7.5 \text{ K} = \text{»} 2.5 \times 10^3 \text{ «J»/}2.5 \text{ «kJ» } \checkmark$ «per mol of CuSO ₄ = $\frac{-2.5 \text{ kJ}}{0.0160 \text{ mol}} = -1.6 \times 10^2 \text{ kJ mol}^{-1} \text{»}$ «for the reaction» $\Delta H = -1.6 \times 10^2 \text{ «kJ» } \checkmark$ ALTERNATIVE 2: $q = \text{«}80.0 \text{ g} \times 4.18 \text{ J g}^{-1} \text{ K}^{-1} \times 7.5 \text{ K} = \text{»} 2.5 \times 10^3 \text{ «J»/}2.5 \text{ «kJ» } \checkmark$ « $n_{\text{Cu}} = \frac{0.872}{63.55} = 0.0137 \text{ mol } \text{»}$ «per mol of CuSO ₄ = $\frac{-2.5 \text{ kJ}}{0.0137 \text{ mol}} = -1.8 \times 10^2 \text{ kJ mol}^{-1} \text{»}$ «for the reaction» $\Delta H = -1.8 \times 10^2 \text{ «kJ» } \checkmark$	Award [2] for correct final answer.	2
1.	b	ii	density «of solution» is 1.00 g cm ⁻³ OR specific heat capacity «of solution» is 4.18 J g ⁻¹ K ⁻¹ /that of «pure» water OR reaction goes to completion OR iron/CuSO₄ does not react with other substances ✓	The mark for "reaction goes to completion" can only be awarded if 0.0160 mol was used in part (b)(i). Do not accept "heat loss".	1

(continued...)

(Question 1b continued)

Question		on	Answers	Notes	Total
1.	b	iii	ALTERNATIVE 1: «0.2°C × $\frac{100}{7.5$ °C = » 3 %/0.03 ✓ «0.03 × 160 kJ» = «±» 5 «kJ» ✓ ALTERNATIVE 2: «0.2°C × $\frac{100}{7.5$ °C = » 3 %/0.03 ✓ «0.03 × 180 kJ» = «±» 5 «kJ» ✓	Accept values in the range 4.1–5.5 «kJ». Award [2] for correct final answer.	2

C	Questi	on	Answers	Notes	Total
1.	С	i	initial concentration is zero <i>AND</i> concentration increases with time ✓ decreasing gradient as reaction proceeds ✓		2
1.	С	ii	«draw a» tangent to the curve at time = 0 ✓ «rate equals» gradient/slope «of the tangent» ✓	Accept suitable diagram.	2
1.	С	iii	piece has smaller surface area ✓ lower frequency of collisions OR fewer collisions per second/unit time ✓	Accept "chance/probability" instead of "frequency". Do not accept just "fewer collisions".	2

C	Questio	n Answers	Notes	
1.	d	Anode (positive electrode): $2H_2O(l) \rightarrow O_2(g) + 4H^+(aq) + 4e^- \checkmark$	Accept " $4OH^{-}(aq) \rightarrow O_{2}(g) + 2H_{2}O(l) + 4e^{-n}$ OR " $Fe^{2+}(aq) \rightarrow Fe^{3+}(aq) + e^{-n}$ for M1.	
		Cathode (negative electrode):		
		$2H_2O (l) + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$ <i>OR</i> $2H^+(aq) + 2e^- \rightarrow H_2(g)$ ✓	Accept "Fe ²⁺ (aq) $+$ 2e ⁻ \rightarrow Fe (s)" OR "SO ₄ ²⁻ (aq) $+$ 4H ⁺ (aq) $+$ 2e ⁻ \rightarrow 2H ₂ SO ₃ (aq) $+$ H ₂ O (l)" for M2.	2

C	Question	Answers	Notes	Total
2.	а	win 100 g sample» $\frac{62.02 \text{ g}}{12.01 \text{ g mol}^{-1}}$ AND $\frac{10.43 \text{ g}}{1.01 \text{ g mol}^{-1}}$		
		OR		
		«in 100 g sample» 5.164 mol C <i>AND</i> 10.33 mol H ✓		
		27.55 %		3
		OR		
		1.722 mol O ✓		
		«empirical formula» C₃H ₆ O √		
2.	b	«absorption at wavenumber 1700–1750 cm ⁻¹ » C=O/carbonyl ✓	Do not accept "ketone" or "aldehyde".	1
2.	С	« <i>m</i> / <i>z</i> =» 58 √		1
2.	d	H O H		1

C	Question		Answers	Notes	Total
3.	а	i	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ¹⁰ 4p ⁵ OR [Ar] 4s ² 3d ¹⁰ 4p ⁵ ✓	Accept 3d before 4s.	1
3.	а	ii	Buengy (4p» (4p» (4p» (4p» (4p» (4p» (4p» (4p»	Accept double-headed arrows.	1

C	uestic	on	Answers	Notes	Total
3.	b	i	Structure I – follows octet rule: $ \begin{bmatrix} \vdots \circ & \neg Br \rightarrow \circ \vdots \\ \vdots \circ & \neg Br \rightarrow \circ \end{bmatrix}^{-} / \begin{bmatrix} \vdots \circ & \neg Br \rightarrow \circ \\ \vdots \circ & \neg Br \rightarrow \circ \end{bmatrix}^{-} $ Structure II – does not follow octet rule: $ \begin{bmatrix} \vdots \circ & \neg Br \rightarrow \circ \\ \vdots \circ & \neg Br \rightarrow \circ \\ \vdots \circ & \neg Br \rightarrow \circ \end{bmatrix}^{-} $ $ \vdots \circ & \neg Br \rightarrow \circ \\ \vdots \circ & \neg Br \rightarrow \circ \end{bmatrix}^{-} $ $ \vdots \circ & \neg Br \rightarrow \circ \end{bmatrix}^{-} $ $ \vdots \circ & \neg Br \rightarrow \circ \end{bmatrix}^{-} $ $ \vdots \circ & \neg Br \rightarrow \circ \end{bmatrix}^{-} $ $ \vdots \circ & \neg Br \rightarrow \circ \end{bmatrix}^{-} $ $ \vdots \circ & \neg Br \rightarrow \circ \end{bmatrix}^{-} $ $ \vdots \circ & \neg Br \rightarrow \circ \end{bmatrix}^{-} $ $ \vdots \circ & \neg Br \rightarrow \circ \end{bmatrix}^{-} $	Accept dots, crosses or lines to represent electron pairs.	2
3.	b	ii	<pre> «structure I» formal charge on Br = +2 OR «structure II» formal charge on Br = 0/+1 structure II is preferred AND it produces formal charge closer to 0 ✓</pre>	Ignore any reference to formal charge on oxygen.	2

C	uesti	on	Answers	Notes	Total
3.	С		Geometry: trigonal/pyramidal ✓		
			Reason: three bonds AND one lone pair OR four electron domains ✓	Accept "charge centres" for "electron domains".	3
			O–Br–O angle: 107° √	Accept answers in the range 104–109°.	
3.	d	i	$BrO_{3}^{-}(aq) + 6e^{-} + 6H^{+}(aq) \rightarrow Br^{-}(aq) + 3H_{2}O(l)$ correct reactants and products \checkmark balanced equation \checkmark	Accept reversible arrows.	2
3.	d	ii	$BrO_{3}^{-}(aq) + 6Fe^{2+}(aq) + 6H^{+}(aq) \rightarrow Br^{-}(aq) + 3H_{2}O(l) + 6Fe^{3+}(aq)$		1
3.	d	iii	$E^{\ominus}_{\text{reaction}} = $		2
3.	е		both are paramagnetic ✓ «both» contain unpaired electrons ✓	Accept orbital diagrams for both ions showing unpaired electrons.	2

(Question	Answers Notes	Total
4.	а	nuclear charge/number of protons/Z _{eff} increases «causing a stronger pull on the outer electrons» ✓ same number of shells/«outer» energy level/shielding ✓	2
4.	b	isoelectronic/same electronic configuration/«both» have 2.8 ✓ more protons in Na ⁺ ✓	2
4.	C	Sketch showing: largest increase between third and fourth ionization energies ✓ $IE_1 < IE_2 < IE_3 < IE_4 < IE_5$ ✓	2

С	Question		Answers	Notes	Total
4.	d		Fe ²⁺ AND smaller size/radius	M1 not needed for M2.	
			OR		
			Fe ²⁺ AND higher charge density √		2
			stronger interaction with «polar» water molecules ✓		

5.	а	all «species» are in same phase ✓	Accept "all species are in same state". Accept "all species are gases".	1
5.	b	negative <i>AND</i> fewer moles/molecules «of gas» in the products ✓		1
5.	С	$\Delta G^{\ominus} = \text{«-}RT \ln K_c = \text{»} -8.31 \text{J K}^{-1} \text{mol}^{-1} \times 1000 \text{K} \times \ln 280$ OR $\Delta G^{\ominus} = -4.7 \times 10^4 \text{«J» } \checkmark$ « $\Delta G^{\ominus} = \text{»} -47 \text{«kJ» } \checkmark$	Award [2] for correct final answer.	2
5.	d	ΔG^{\ominus} < 0/spontaneous AND ΔS^{\ominus} < 0/unfavourable \checkmark exothermic AND ΔH^{\ominus} «must be» negative/favourable \checkmark		2

Q	uestion	Answers	Notes	Total
5.	е	«reaction quotient/Q =» $\frac{[SO_3]^2}{[SO_2]^2[O_2]} / \frac{0.500^2}{0.200^2 \times 0.300} / 20.8$ ✓		
		reaction quotient/Q/20.8/answer < K_c /280 OR mixture needs more product for the number to equal K_c \checkmark		3
		reaction proceeds to the right/products ✓	Do not award M3 without valid reasoning.	

Q	uestic	on	Answers	Notes	Total
6.	а	i	Butanoic acid: $ CH_3CH_2CH_2COOH\left(aq\right) + H_2O\left(l\right) \rightleftharpoons CH_3CH_2CH_2COO^{-}\left(aq\right) + H_3O^{+}\left(aq\right) \checkmark $ $ Ethylamine: \\ CH_3CH_2NH_2\left(aq\right) + H_2O\left(l\right) \rightleftharpoons CH_3CH_2NH_3^{+}\left(aq\right) + OH^{-}\left(aq\right) \checkmark $		2
6.	а	ii	CH ₃ CH ₂ CH ₂ —C; — O Diagram showing: dotted line along O–C–O AND negative charge	Accept correct diagrams with pi clouds.	1
6.	а	iii	-1 ✓		1
6.	b	i			1

(continued...)

(Question 6b continued)

C	Question		Answers	Notes	Total
6.	b	ii	«p K_b = 3.35, K_b = 10 ^{-3.35} = 4.5 × 10 ⁻⁴ » «C ₂ H ₅ NH ₂ + H ₂ O \rightleftharpoons C ₂ H ₅ NH ₃ ⁺ + OH ⁻ »	Award [3] for correct final answer.	
			$K_b = \frac{[OH^-][CH_3CH_2NH_3^+]}{[CH_3CH_2NH_2]}$ OR		
			$K_b = 4.5 \times 10^{-4} = \frac{[OH^-][CH_3CH_2NH_3^+]}{0.250}$		
			« K_b =» 4.5 × 10 ⁻⁴ = $\frac{x^2}{0.250}$ ✓		3
			$x = [OH^{-}] = 0.011 \text{ (mol dm}^{-3}) \checkmark$		
			$wpH = -\log \frac{1.00 \times 10^{-14}}{0.011} = w \ 12.04$		
			OR		
			«pH = 14.00 − (−log 0.011)=» 12.04 √		

Question	Answers	Notes	Tota
Question 6. c	14 12 10 10 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Notes	Total
	6-		3
	2—		
	0 10 20 30 40 50		
	Volume of butanoic acid / cm³		
	decreasing pH curve √		
	pH close to 7 (6–8) at volume of 25 cm³ butanoic acid ✓		
	weak acid/base shape with no flat «strong acid/base» parts on th	e curve √	

Q	uestic	on	Answers	Notes	Total
6.	d		Any two of: butanoic acid forms more/stronger hydrogen bonds ✓ butanoic acid forms stronger London/dispersion forces ✓ butanoic acid forms stronger dipole—dipole interaction/force ✓	Accept "butanoic acid forms dimers". Accept "butanoic acid has larger M _r /hydrocarbon chain/number of electrons" for M2. Accept "butanoic acid has larger «permanent» dipole/more polar" for M3.	2 max
6.	е	i	lithium aluminium hydride/LiAlH₄ √		1
6.	е	ii	butan-1-ol/1-butanol/CH₃CH₂CH₂CH₂OH ✓		1

Question		Answers	Notes	Total
7.	а	«electrophilic» addition/A _E	Accept "hydrogenation".	
		OR		1
		reduction ✓		
7.	b	«(-286 kJ) + (-1411 kJ) =» -1697 «kJ» √		1
7.	С	«–1697 kJ + 1561 kJ =» –136 «kJ»		
		OR		1
		« $\Delta H^{\ominus} = \Delta H_{\rm f}^{\ominus}$ (products) − $\Delta H_{\rm f}^{\ominus}$ (reactants) = −84 kJ − 52 kJ =» −136 «kJ» \checkmark		

	Question	Answers	Notes	Total
7.	d	Accurate:		
		no approximations were made in the cycle		
		OR		
		values are specific to the compounds		
		OR		
		Hess's law is a statement of conservation of energy		
		OR		
		method is based on a law		
		OR		
		data in table has small uncertainties ✓		
		Approximate:		2
		values were experimentally determined/had uncertainties		
		OR		
		each value has been determined to only three/four significant figures		
		OR		
		different sources have «slightly» different values for enthalpy of combustion		
		OR		
		law is valid until disproved		
		OR		
		law of conservation of energy is now conservation of mass-energy		
		OR		
		small difference between two quite large terms «leads to high percentage uncertainty» ✓		

(Questi	on	Answers	Notes	Total
8.	а		angle between bonds is 60°/strained/smaller than 109.5° ✔		1
8.	b	•	Any two of: CH ₃ COCH ₃ ✓ CH ₃ CH ₂ CHO ✓ CH ₂ =CHCH ₂ OH ✓ CH ₃ OCH=CH ₂ ✓ OH OH OH OH OH OH OH OH OH O	Accept displayed or condensed structural formulas or skeletal formulas. Accept CH(OH)=CHCH ₃ and CH ₂ =C(OH)CH ₃ .	2
8.	b	ii	no <i>AND</i> only one «axial/methyl/CH₃» substituent «at the ring» OR no <i>AND</i> two «axial» substituents required «for cis/trans-isomers» ✓	Accept "no AND «O in the ring and» one carbon has two H atoms".	1
8.	С		Chemical shift: 3.7–4.8 «ppm» ✓ Splitting pattern: doublet ✓		2

C	uestion	Answers	Notes	Total
9.	а	polarity/polar «molecule/bond» OR carbon–halogen bond is weaker than C–H bond ✓		1
9.	b	primary <i>AND</i> Br/bromine is attached to a carbon bonded to two hydrogens <i>OR</i> primary <i>AND</i> Br/bromine is attached to a carbon bonded to one C/R/alkyl «group» ✓	Accept "primary AND Br/bromine is attached to the first carbon in the chain".	1
9.	C	HO: CH ₃ CH ₂ HOCBr CH ₃ CH ₂ Curly arrow going from lone pair/negative charge on O in HO⁻ to C ✓ curly arrow showing Br leaving ✓ representation of transition state showing negative charge, square brackets and partial bonds ✓ formation of organic product CH ₃ CH ₂ CH ₂ OH <i>AND</i> Br⁻ ✓	Do not allow curly arrow originating on H in HO ⁻ . Accept curly arrow either going from bond between C and Br to Br in 1-bromopropane or in the transition state. Do not penalize if HO and Br are not at 180° to each other. Do not award M3 if OH–C bond is represented.	4
9.	d	«Lewis» base <i>AND</i> donates a pair of electrons ✓		1

C	Question	Answers	Notes	Total
9.	e	Any two of: choose «most» appropriate reaction «for preparing the target compound» ✓ design/discover new reactions/reagents ✓ apply this knowledge to other areas of chemistry/science ✓ «retro-»synthesis «more effective» ✓ control/predict «desired» products ✓ control rate of reaction «more effectively» ✓ satisfy intellectual curiosity ✓ predicting how changing reagents/conditions might affect reaction ✓ suggesting intermediates/transition states ✓	Accept other reasonable answers.	2 max

10.	а	B: reactant ✓	
		D: intermediate √	2
10.	b	$rate = k[A][B] \checkmark$	1
10.	С	1.80 «mol dm ⁻³ s ⁻¹ » √	1