Systèmes linéaire Espaces vectoriel: Familles libres, génératrices, bases et dimensior Petit poin Plus ..

CM3 : Systèmes linéaires, Espaces Vectoriels, Familles libres, génératrices, bases, dimension

L3 UPSSITECH

Mercredi 9 septembre 2020

Objectifs de cette séance

- ► savoir résoudre un système linéaire (SL)
 - savoir appliquer la méthode de Gauss
 - savoir passer d'un SL à un tableau augmenté et réciproquement
 - savoir exprimer l'ensemble des solutions du SL
- ► savoir identifier un espace vectoriel
- ► savoir étudier une famille de vecteurs :
 - ► est-elle libre?
 - est-elle génératrice?
 - ▶ quel est l'espace vectoriel qu'elle engendre (base et dimension)?

Systèmes linéaires
Espaces vectoriels
Familles libres, génératrices, bases et dimension
Petit point

Qu'est-ce qu'un système linéaire ? Résolution par la méthode de Gauss Présentation pratique : les tableaux augmentés

Systèmes linéaires

De nombreux systèmes linéaires à résoudre dans les prochaines séances!

Qu'est-ce qu'un système linéaire?

(S)
$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

dont les inconnues sont les x_1 , x_2 , ..., x_n .

Etape 1 : mettre des zéros en colonne 1 sous la ligne 1

(5)
$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2 \\ a_{31}x_1 + a_{32}x_2 + \cdots + a_{3n}x_n = b_3 \\ \cdots + \cdots + \cdots + \cdots + \cdots = \cdots \\ a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_m \end{cases}$$

Hypothèse : $a_{11} \neq 0$

Méthode : pour tout i > 1, remplacer la ligne L_i par $L_i - \frac{a_{i1}}{a_{11}}L_1$

$$(S) \Leftrightarrow (S') \begin{cases} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1 \\ a'_{22}x_2 + \cdots + a'_{2n}x_n = b'_2 \\ a'_{32}x_2 + \cdots + a'_{3n}x_n = b'_3 \\ \cdots + \cdots + \cdots + \cdots = \cdots \\ a'_{m2}x_2 + \cdots + a'_{mn}x_n = b'_m \end{cases}$$

Etape 2 : mettre des zéros en colonne 2 sous la ligne 2

$$(S') \begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \cdots + a_{1n}x_n = b_1 \\ a'_{22}x_2 + a'_{23}x_3 + \cdots + a'_{2n}x_n = b'_2 \\ a'_{32}x_2 + a'_{33}x_3 + \cdots + a'_{3n}x_n = b'_3 \\ \cdots + \cdots + \cdots + \cdots = \cdots \\ a'_{m2}x_2 + a'_{m3}x_3 + \cdots + a'_{mn}x_n = b'_m \end{cases}$$

Hypothèse : $a'_{22} \neq 0$

Méthode : pour tout i > 2, remplacer la ligne L'_i par $L'_i - \frac{a'_{i2}}{a'_{22}}L'_2$

$$(S') \Leftrightarrow (S'') \begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \cdots + a_{1n}x_n = b_1 \\ a'_{22}x_2 + a'_{23}x_3 + \cdots + a'_{2n}x_n = b'_2 \\ a''_{33}x_3 + \cdots + a''_{3n}x_n = b''_3 \\ a''_{43}x_3 + \cdots + a''_{4n}x_n = b''_4 \\ \cdots + \cdots + \cdots = \cdots \\ a''_{m3}x_3 + \cdots + a''_{mn}x_n = b''_m \end{cases}$$

Quand s'arrête le processus?

"Lorsqu'il n'y a plus d'équation sous la diagonale"

Exercice-méthode : résolution d'un SL par Gauss

$$\begin{cases}
 x + 2y + 3z = 6 \\
 2x + y - z = -3 \\
 -x - y - 2z = -5
\end{cases}$$

Qu'est-ce qu'un système linéaire ? Résolution par la méthode de Gauss Présentation pratique : les tableaux augmentés

Comment trouver les solutions du S. L.?

En remontant ...

Illustration sur l'exemple précédent

Remarques

- Lorsque le processus de Gauss est terminé, on dit que le SL est échelonné.
- ▶ Dans chaque ligne, on appelle *pivot* le premier coefficient non nul.
- ► On peut échanger des lignes pour travailler avec un pivot plus simple.

Illustration sur l'exemple précédent

Qu'est-ce qu'un système linéaire ? Résolution par la méthode de Gauss Présentation pratique : les tableaux augmentés

Remarque

On pourrait poursuivre le processus, exactement de la même manière, en éliminant la variable x_2 dans la ligne 1, puis x_3 dans les lignes 1 à 2, ...

Illustration sur l'exemple précédent

Tableaux augmentés

Il s'agit de remplacer le S.L.

(S)
$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2 \\ \cdots \\ a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_m \end{cases}$$

par le tableau de nombres suivant

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{pmatrix}$$

Qu'est-ce qu'un système linéaire? Résolution par la méthode de Gauss Présentation pratique : les tableaux augmentés

Exercice-méthode : utilisation des tableaux augmentés

$$(S_2) \begin{cases} x + 2y + 3z = 6 \\ -x - y - 2z = -5 \\ 2x + y - z = -3 \\ -3x - 3y - 6z = m \end{cases}$$

Qu'est-ce qu'un système linéaire? Résolution par la méthode de Gauss Présentation pratique : les tableaux augmentés

Exercice-méthode : discussion selon les valeurs de m

Qu'est-ce qu'un espace vectoriel? Sous espace vectoriel?

Espaces vectoriels

Définition

Un *espace vectoriel sur* \mathbb{R} (\mathbb{R} -*e.v.*) est un ensemble E muni de deux lois t.q. :

- A. $\forall u, v \in E$, $u + v \in E$ (l'addition est une loi <u>interne</u> à E)
- B. $\forall u \in E$, u + 0 = u (0 <u>élément neutre</u> de l'addition)
- C. $\forall u \in E, \exists v \in E, u + v = 0$ (symétrique); on note v = -u
- D. $\forall u, v, w \in E, (u + v) + w = u + (v + w)$ (associativité)
- E. $\forall u, v \in E, u + v = v + u$ (commutativité)
- F. $\forall \lambda \in \mathbb{R}, \ \forall u \in E, \ \lambda u \in E$, (multiplication : loi externe à E)
- G. $\forall u \in E$, $\mathbf{1} u = u$ (1 <u>élément neutre</u> de la multiplication)
- H. $\forall \lambda \in \mathbb{R}, \ \forall \mu \in \mathbb{R}, \ \forall u \in E, \quad (\lambda + \mu)u = \lambda u + \mu u, \text{ (distributivité)}$
 - I. $\forall \lambda \in \mathbb{R}, \ \forall u \in E, \ \forall v \in E, \ \lambda(u+v) = \lambda u + \lambda v,$ (distributivité)
- J. $\forall \lambda \in \mathbb{R}, \ \forall \mu \in \mathbb{R}, \ \forall u \in E, \quad (\lambda \mu)u = \lambda(\mu u),$

Exemple important : pour tout entier naturel n, \mathbb{R}^n est un \mathbb{R} -e.v.

Définition

Soit E un \mathbb{R} -e.v. On dit que F est un sous-espace vectoriel de E (s.e.v.) lorsque

- $ightharpoonup F \subset E$,
- ► *F* est non vide,
- ightharpoonup F, muni des mêmes opérations que E, est un \mathbb{R} -e.v.

Peu pratique!

Théorème

Soient E un \mathbb{R} -espace vectoriel. L'ensemble F est un s.e.v. de E si et seulement si

- $ightharpoonup F \subset E$.
- ► F contient l'élement neutre de E,
- \blacktriangleright $\forall u \in F, \forall v \in F, \forall \lambda \in \mathbb{R}, \forall \mu \in \mathbb{R}, \lambda u + \mu v \in F.$

Exercice-méthode : s.e.v. par le théorème

Montrons que
$$F = \{(x,y) \in \mathbb{R}^2 \mid x+y=0\}$$
 est un s.e.v. de \mathbb{R}^2 .

Qu'est-ce qu'un espace vectoriel? Sous espace vectoriel?

Active quizz

. . .

Active quizz

..

Systèmes linéaires Espaces vectoriels Familles libres, génératrices, bases et dimension Petit point

Combinaison linéaire et espace vectoriel engendré Famille libre et/ou génératrice Base et dimension Coordonnées

FAMILLES LIBRES, GÉNÉRATRICES, BASES ET DIMENSION

Combinaison linéaire

Définition

Soient E un \mathbb{R} -e.v., u_1 , u_2 , ..., u_n des vecteurs de E et a_1 , a_2 , ..., a_n des éléments de \mathbb{R} . Tout vecteur de la forme

$$a_1u_1 + a_2u_2 + ... + a_nu_n$$

est appelé *combinaison linéaire* (C.L.) des vecteurs $u_1, u_2, ..., u_n$.

Exemple

Prenons
$$E = \mathbb{R}^3$$
, $u_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $u_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, $u_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$

Alors les vecteurs suivants sont C.L. de u_1 , u_2 et u_3 :

$$\begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix} = u_1 + u_2 - 2u_3, \quad \begin{pmatrix} x \\ y \\ z \end{pmatrix} = xu_1 + yu_2 + zu_3.$$

Espace vectoriel engendré

Théorème

Soient E un \mathbb{R} -espace vectoriel et u_1, u_2, \dots, u_n des vecteurs de E. L'ensemble des combinaisons linéaires de u_1, u_2, \dots, u_n est un sous-espace vectoriel de E, appelé espace vectoriel engendré par u_1, u_2, \dots, u_n . On le note $\mathrm{Vect}(u_1, u_2, \dots, u_n)$. Nous avons donc

$$\operatorname{Vect}(u_1, u_2, \cdots, u_n) = \Big\{ u = a_1 u_1 + \cdots + a_n u_n \mid (a_1, \cdots, a_n) \in \mathbb{R}^n \Big\}.$$

Exercice-méthode : s.e.v. par Vect

Montrons que $F = \{(x,y) \in \mathbb{R}^2 \mid x+y=0\}$ est un s.e.v. de \mathbb{R}^2 .

Systèmes linéaires Espaces vectoriels Familles libres, génératrices, bases et dimension Petit point

Combinaison linéaire et espace vectoriel engendré Famille libre et/ou génératrice Base et dimension Coordonnées

Λ . •	
Active	quizz

. . .

Active quizz

..

Famille libre

Définition

Soit E un \mathbb{R} -espace vectoriel et soit $\mathcal{F} = \{u_1, u_2, \cdots, u_n\}$ une famille de vecteurs de E. On dit que \mathcal{F} est une famille libre lorsque l'équation

$$\alpha_1 u_1 + \cdots + \alpha_n u_n = 0,$$

d'inconnues $\alpha_1, \alpha_2, \cdots, \alpha_n$, admet $\alpha_1 = \alpha_2 = \cdots = \alpha_n = 0$ comme unique solution.

Combinaison linéaire et espace vectoriel engendré Famille libre et/ou génératrice Base et dimension

Exemples

Exercice-méthode - famille libre

Montrons que la famille
$$\left\{ \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\1 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix} \right\}$$
 est libre.

Famille génératrice

Définition

Soient E un \mathbb{R} -espace vectoriel et $\mathcal{F} = \{u_1, u_2, \cdots, u_n\}$ une famille de vecteurs de E. On dit que \mathcal{F} est une famille génératrice de E lorsque

$$E = \operatorname{Vect}(u_1, u_2, \cdots, u_n).$$

Exemple

On a montré que $F = \{(x,y) \in \mathbb{R}^2 \mid x+y=0\} = \text{Vect}((1,-1))$, donc la famille $\{(1,-1)\}$ est génératrice de F.

Base

Définition

Soient E un \mathbb{R} -espace vectoriel et \mathcal{F} une famille de vecteurs de E. On dit que \mathcal{F} est une **base de** E lorsque \mathcal{F} est à la fois famille libre et génératrice de E.

Exemples: bases canoniques

- $\blacktriangleright \left\{ \left(\begin{array}{c} 1 \\ 0 \end{array}\right), \left(\begin{array}{c} 0 \\ 1 \end{array}\right) \right\} \text{ est la base canonique de } \mathbb{R}^2.$
- $\blacktriangleright \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\} \text{ est la base canonique de } \mathbb{R}^3.$

Combinaison linéaire et espace vectoriel engendré Famille libre et/ou génératrice Base et diemesion

Dimension

Définition

Un espace vectoriel est dit de dimension finie s'il admet une base formée d'un nombre fini de vecteurs.

Théorème

Si un espace vectoriel est de dimension finie, alors toutes les bases ont le même nombre de vecteurs et ce nombre est la *dimension* de l'espace vectoriel en question.

Exemples

- ▶ La dimension de \mathbb{R}^2 est 2.
- ▶ La dimension de \mathbb{R}^3 est 3.

Résultats importants (1/2)

Corollaire (famille libre maximale)

Soit E un \mathbb{R} -espace vectoriel de dimension \boxed{n} .

Si \mathcal{F} est une famille libre de \boxed{n} vecteurs de E, alors c'est une base de E. En particulier, c'est une famille génératrice de E.

Exercice-méthode - base par famille libre maximale

$$\left\{ \left(\begin{array}{c} 1 \\ 1 \end{array}\right), \left(\begin{array}{c} 0 \\ 1 \end{array}\right) \right\} \text{ est une base de } \mathbb{R}^2.$$

Résultats importants (2/2)

Corollaire

Soit E un \mathbb{R} -espace vectoriel de dimension \boxed{n} .

Si \mathcal{F} est une famille génératrice de E contenant \boxed{n} vecteurs de E, alors c'est une base de E.

En particulier, c'est une famille libre.

Théorème

Soit E un espace vectoriel de dimension n.

- ► Toute famille libre de *E* contient au plus *n* éléments.
- ► Toute famille génératrice de *E* contient au moins *n* éléments.

Des exemples 1

$$F = \left\{ (x,y) \in \mathbb{R}^2 | x+y = 0 \right\}.$$

donc F est une droite (dim 1) vectorielle de \mathbb{R}^2 .

•
$$G = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + 2z = 0\}$$

Des exemples 2

►
$$H = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + 2z = 0 \text{ et } x - y = 0\}.$$

H est une droite (dim 1) vectorielle de \mathbb{R}^3 .

►
$$J = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 1\}$$

J est un plan (dim 2) affine de \mathbb{R}^3 .

Coordonnées

Théorème

Si $\mathcal{B} = \left\{ u_1, u_2, \cdots, u_n \right\}$ est une base d'un e.v. F, alors tout élément v de F s'écrit de manière unique comme C.L. des vecteurs de la base \mathcal{B} : $v = a_1 u_1 + a_2 u_2 + \ldots + a_n u_n$.

Les coefficients a_i s'appellent les **coordonnées** de v dans la base \mathcal{B} .

Combinaison linéaire et espace vectoriel engendré Famille libre et/ou génératrice Base et dimension Coordonnées

Exercice-méthode - coordonnées d'un vecteur dans une base

Cherchons les coordonnées de $\begin{pmatrix} 3 \\ 4 \end{pmatrix}$ dans la base de \mathbb{R}^2 constituée des vecteurs $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ et $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

Combinaison linéaire et espace vectoriel engendré Famille libre et/ou génératrice Base et dimension Coordonnées

Λ . •	
/\ c+ \\ / c	~
Active	(1111//

. . .

Active quizz

..

Petit point

- ► Prochain amphi : mardi 14 septembre, 7h45
- Distribution feuille de préparation au TD 3 à rendre au début du TD3.

Retour sur les D.E.S et les intégrales

Calculons
$$I = \int_0^1 \frac{x^3 + 8x^2 + 40x + 69}{(x+1)^2(x^2 + 2x + 10)} dx$$
.