Velocity Triangles

- You need to draw velocity triangles over a turbine rotor and compressor rotor.
- Be careful with signs and indices of stator and rotor.

Nomenclature

Stator exit angle	α_1
Rotor inlet angle	β_1
Rotor outlet angle	β_2
Rel. rotor inlet velocity	W_1
Rel. rotor outlet velocity	W_2
Absolute frame of reference:	
Velocity	C
Angle	α
Relative frame of reference:	
Velocity	W
Angle	β

Calculations

Rotational speed	$U = \omega \cdot r = 2\pi \cdot f \cdot r$
Mass flow	$\dot{m} = \rho \cdot A \cdot C_x$
Geometry	$C_{\theta 1} = C_x \tan(\alpha_1)$
	$C_{\theta 1} = r\omega - C_x \tan\left(\beta_2\right)$
	$\Delta h_T = U \cdot \Delta C_{\theta} = U \left(C_{\theta 2} - C_{\theta 1} \right)$
Euler Work	$\Delta W = \frac{\text{Power}}{m} = \Delta h_T = U \cdot \Delta C_{\theta}$

Thermodynamics

1st Law of Thermodynamics	du = dq - dw
	$\dot{W} - \dot{Q} = \dot{m} \left(h_1 - h_2 + \frac{v_1^2 - v_2^2}{\rho} + g \left(z_1 - z_2 \right) \right)$
TDS Equation 1	Tds = du + pdv
TDS Equation 2	Tds = dh - vdp
Enthalpy	h = u + pv
	dh = du + pdv + vdp

Ideal Gas

Ideal Gas Equation	pv = RT
G	$p = \rho RT$
Constant Volume	$c_v = (\partial u/\partial T)_v$ $du = c_v(T)dT$
Constant Pressure	$au = c_v(T)aT$ $c_p = (\partial h/\partial T)_p$
	$dh = c_p(T)dT$
Thermal coefficients	$R = c_p - c_v$
Specific Enthalpy of Gases	$ \gamma = k = \frac{c_p}{c_v} h = u + pv = u(T) + RT = h(T) $
specific Enthalpy of Gases	h = u + pv - u(1) + h(1) \Rightarrow does not depend on pressure

Ideal Gas – Isentropic Conditions

$$\frac{T_2}{T_1} = \left(\frac{p_2}{p_1}\right)^{\frac{\gamma - 1}{\gamma}} \qquad \frac{T_2}{T_1} = \left(\frac{v_1}{v_2}\right)^{\gamma - 1}$$

$$\frac{p_2}{p_1} = \left(\frac{v_1}{v_2}\right)^{\gamma}$$

Personally, I struggle with the above formulae. They are, however very easy to derive. You only need to know two things:

 $\mathbf{pv} = \mathbf{RT}$ and $\mathbf{p_1v_1^{\gamma}} = \mathbf{p_2v_2^{\gamma}}$, the first is the ideal gas law and the second follows from the isentropic condition $p \cdot v^{\gamma} = \text{const.}$

From this we get:

$$\frac{p_2}{p_1} = \left(\frac{v_1}{v_2}\right)^{\gamma} \Rightarrow \frac{v_1}{v_2} = \left(\frac{p_2}{p_1}\right)^{1/\gamma}$$

$$\frac{T_2}{T_1} = \underbrace{\frac{p_2 v_2}{p_1 v_1}}_{\text{ideal gas law}} = \underbrace{\left(\frac{v_1}{v_2}\right)^{\gamma}}_{\text{from above}} \cdot \frac{v_2}{v_1} = \left(\frac{v_1}{v_2}\right)^{\gamma - 1}$$

$$\frac{T_2}{T_1} = \underbrace{\frac{p_2 v_2}{p_1 v_1}}_{\text{ideal gas law}} = \frac{p_2}{p_1} \cdot \underbrace{\left(\frac{p_2}{p_1}\right)^{-1/\gamma}}_{\text{from above}} = \left(\frac{p_2}{p_1}\right)^{1-\frac{1}{\gamma}} = \left(\frac{p_2}{p_1}\right)^{\frac{\gamma-1}{\gamma}}$$

Turbines, Compressors, Refrigerator and Heat Pump

 $\begin{array}{ll} \text{Isentr. turbine efficiency} & \eta_{\text{turbine}} = \frac{h_{in} - h_{out}}{h_{in} - h_{out,s}} = \frac{\text{real work}}{\text{ideal work}} \\ \text{Isentr. compressor efficiency} & \eta_{\text{compressor}} = \frac{h_{out,s} - h_{in}}{h_{out} - h_{in}} = \frac{\text{ideal work}}{\text{real work}} \\ \text{Thermal efficiency} & \eta_{\text{thermal}} = \frac{W_{\text{out, net}}}{Q_{\text{in}}} \\ \text{Ideal pump work} & \Delta h = v \cdot \Delta p \\ & \textbf{Careful: } p \text{ in Pa, not bar!} \\ \text{Isentropic Compression} & h_2 = h_1 + v_1 \left(p_2 - p_1 \right) \\ \text{Heat pump "Leistungsziffer"} & \varepsilon_{HP} = \frac{\dot{Q}_{out}}{W_{komp}} \left(= \frac{h_2 - h_3}{h_2 - h_1} \right) \\ \text{Refrigerator "Leistungsziffer"} & \varepsilon_{KM} = \frac{\dot{Q}_{in}}{W_{komp}} \left(= \frac{h_1 - h_4}{h_2 - h_1} \right) \end{array}$

General

You should know:

- The t-s diagrams by heart and be able to draw it.
- How to draw the p-v diagrams of the Otto and Diesel Cycle.
- How the Brayton Cycle works.
- How the heat pump and refrigerator cycles work.
- Ottoprozess: Gleichraumprozess (isochor), Diesel: Gleichdruckprozess (isobar).