

D2.1.1 – Modelica extensions for properties modeling Part IVb: FORM-L and Modelica: syntax and relationships

WP2.1 – Properties modelling language WP2 – Properties modelling and Safety

MODRIO (11004)

Version 3.0

Date April 19, 2016

Authors Alfredo Garro, Andrea Tundis University of Calabria, Italy

Martin Otter DLR SR, Germany

Accessibility : PUBLIC

Revision

Version	Authors	Description	
2016.04.19	Martin Otter	Final clean-up	
2015.02.26	Alfredo Garro, Andrea Tundis	The document has been improved by introducing Section 9, Check Properties Set, with both a list of	
	(University of Calabria)	FORM_L operators and a mapping to the related Modelica operators, as well as by updating the document	
		according to the implementation of several operators.	
2014.09.25	Alfredo Garro, Andrea Tundis	The document has been improved through restructuring the table by splitting it in sub-tables according to	
	(University of Calabria)	their content as well as by introducing a textual description for each aspect.	
2014.07.23	Martin Otter (DLR)	Considerably improved + operators implemented in prototype Modelica library added.	
2014.07.12	Alfredo Garro, Andrea Tundis	First version (List of FORM_L operators and proposed mapping to Modelica operators)	
	(University of Calabria)		

Executive summary

This document provides more detailed information to deliverable D2.1.1 Part IV. It contains a detailed description how to express FORM_L language constructs (Thuy 2016) in a reasonable similar way in Modelica, or express it with Modelica language constructs as Modelica functions or blocks. All elements that are not specially marked are either already available in Modelica 3.2 (with the extensions sketched in D2.1.1 Part IV) or are provided in the accompanying Modelica library Modelica_Requirements 0.6.

Contents

Exe	cutive summary	2
	Introduction	
	Properties, Requirements, Assumptions, Guards	
	Basic Language Constructs	
4.	Conditions	7
5.	Set Operators	8
6.	Continuous Time Locators	9
7.	Combining/Transforming Continuous Time Locators	11
8.	Discrete Time Locators	12
9.	Conclusion	14
Refe	erences	15

Note

- FORM-L constructs not yet implemented are marked in light blue.
- Operators that are unclear, are marked in yellow.
- The numbers in parenthesis (e.g. 12.3), are the chapter numbers of the FORM_L specification.
- Modelica functions start with a lower case letter (= operators without memory). Functions can be called with positional arguments (e.g. "card(b)").
- Modelica blocks start with an upper case letter (= operators with memory). Blocks can only be called with named arguments (e.g. "After(u=b)").
- In many cases the input argument of the Modelica function/block is called "u" (as usual in the Modelica Standard Library). The question is whether this should be changed (in some cases to "event", if the rising edge of the input is used; or in some cases to "condition").

1. Introduction

This document aims at providing a summarization of the main concepts that the FORM-L language has introduced as well as their mapping on the Modelica language. In particular, the following Tables (from Table 1 to Table 7) summarize the aspects that have been covered such as properties, requirements, assumptions, guards, etc. The first column of each table shows the FORM_L syntax, the second column the corresponding Modelica constructs, and in the third column additional comments are provided for a better comprehension.

2. Properties, Requirements, Assumptions, Guards

In Table 1 are reported the main concepts that have been identified for modeling systems properties: (i) Requirements, which are properties that MUST be satisfied; (ii) Assumptions, which are properties that are supposed to be satisfied; (iii) Guards, which are properties that state the conditions that must be satisfied for a model to be valid (see Figure 1).

Figure 1: Semantic of the Properties in FORM-L

Operator mapping		Description (Modelica)
FORM-L		
Properties, F		
Boolean b;	Boolean b;	Boolean variable with values false or
Boolean S7	boolean by	true.
	Proposition in 1	Enumeration with values Violated,
property p;	Property p;	Undecided, Satisfied
		Block where property is monitored. The
		information about a violated or
	D	untested property is written on a log file
required property r = p;	<pre>Requirement r(property = p);</pre>	(for further post-processing) and at the
		end of the simulation a summary is
		printed to the output window.
		Block where property is monitored. The
		information about an untested property
		is written on a log file (for further post-
		processing) and at the end of the
<pre>assumed property a = p;</pre>	Assumption a(property a = p);	simulation a summary is printed to the
		output window. If property a = Violated,
		an assert stops the simulation. This is
		also reported on the log file.
		An assertion is raised if property p is
	agrant/n at Proporty Wieleted Nilston (Nilston)	Violated and the text "descr" is printed
<pre>guard property g = p;</pre>	<pre>assert(p <> Property.Violated, "descr.");</pre>	as error message (so the simulation is
		stopped with an error)

Table 1: Properties, Requirements, Assumptions, Guards from FORM-L to the Modelica language

Accessibility : PLIRLIC	
ACCESSIBILITY . I ODLIC	

3. Basic Language Constructs

In Table 2 the mapping among the basic constructs of the FORM-L language and those already offered by the Modelica language is reported.

0		
FORM-L	FORM-L Modelica	
Basic		
function	variable	
real	Real	Available Modelica language constructs
integer	Integer	
fixed	parameter	
constant	constant	
real v initially 0.0 end v;	<pre>Real v(start=0, fixed=true);</pre>	
<pre>sum {S in Steps S.DemandToBPS};</pre>	<pre>sum(S.DemandToBPS for S in Steps);</pre>	
<pre>when not(Powered) then 0.0 else</pre>	<pre>if not Powered then 0.0 else Power;</pre>	
Power;	11 not rowered then 0.0 tipe rower	

Table 2: Basic Language Elements from FORM-L to the Modelica language

4. Conditions

Table 3 reports the matching about conditions that in FORM-L represent expressions or functions that can be evaluated over time and can assume three values: true, false or undefined.

FORM-L	Modelica	Description (Modelica)	
	Conditions (4.)		
		Built-in operators of Modelica on	
		Boolean variables.	
<pre>not(condition)</pre>	not condition	(3-valued logic is planned to be	
condition or condition condition and condition	condition or condition condition and condition;	supported only in a very limited form	
	0011411011011 4114 001141101101	by a few operators: Requirement,	
		during).	
condition xor condition	xor(u1,u2)	xor/nand/xnor of two Booleans.	
condition nand condition condition xnor condition	<pre>nand(u1,u2) xnor(u1,u2)</pre>		
condition excl condition	excl(u1,u2)	= a and not b	
		Until condition has a falling edge (true	
first(condition)	<pre>First(u=);</pre>	-> false), the block returns u.	
		Otherwise, it returns false.	
		Returns how often the Boolean input	
count(condition)	Count(u=);	has a rising edge (changes from false	
		to true)	

Table 3: Conditions from FORM-L to the Modelica language

Accessibility : PUBLIC	

5. Set Operators

In Table 4 a set of Boolean and arithmetic operators that allow managing and making easier operation on vectors are reported.

Operator mapping		
FORM-L	FORM-L Modelica	
Set C		
card set	gend(b):	Returns the number of elements of a
cara set	card (b);	Boolean vector b that are true
first(set)	<pre>first(b);</pre>	= b[1]
<pre>last(set)</pre>	last (b);	= b[end]
		Returns true if at least one element of
<pre>or{p in pumps p.isActive}</pre>	<pre>exists({p.isActive for p in pumps});</pre>	a Boolean vector is true ('or' of all
		elements)
		Returns true if all elements of a
<pre>and{p in pumps p.p_a >p_cavitate}</pre>	<pre>foral1({p.p_a > p_cavitate for p in pumps});</pre>	Boolean vector are true ('and' of all
		elements)"
	<pre>oneTrue({p.isActive for p in pumps});</pre>	Returns true if exactly one element of
<pre>xor{p in pumps p.isActive}</pre>		a Boolean vector is true ('xor' of all
		elements)

Table 4: Set Operators from FORM-L to the Modelica language

6. Continuous Time Locators

In Table 5 the definition of Continuous Time Locators in FORM-L, that follow a Linear Temporal Logic (LTL) with the additional notion of sliding time windows, is reported.

0		
FORM-L	Modelica	Description (Modelica)
Continue		
		Returns check, as long as the
	<pre>implies(condition, check);</pre>	condition is true, otherwise returns
		true (2-valued logic return value)
		As long as the condition is true,
		returns Violated if check=false and
	<pre>during(condition, check);</pre>	Satisfied if check=true. Otherwise
During condition check signal		Undecided is returned (3-valued logic
		return value)
		As long as the condition is true,
	<pre>during3(condition, check);</pre>	returns check (= Violated, Undecided
		or Satisfied). Otherwise Undecided is
		returned
		(3-valued logic check and return value)
duringAny duration check signal	<pre>duringAny(duration=, check=);</pre>	Return true if check has been true for
duringally duration check signal		at least the given duration
	<pre>duringAccumulated(interval=Dt, duration=dt, check=Off);</pre>	If input signal check is cumulatively
<pre>duringAny Dt check duration(Off) >=</pre>		true for the defined duration within a
dt		sliding time window of length interval,
		true is returned, otherwise false.

	After (u=);	After the Boolean input u has a rising
after event		edge, the output remains true,
		otherwise it is false.
		After the Boolean input u1 has a rising
after event1 untilNext event2	AfterUntil (u1=,u2=);	edge and until the Boolean input u2
arter events untrinext events		has a rising edge, the output remains
		true, otherwise it is false
after event for duration		After the Boolean input u has a rising
	AfterFor(u=, duration=);	edge for a duration interval length,
after event within duration		the output remains true, otherwise it
		is false
after signal becomes true for		In Modelica the same as AfterFor().
duration		
		The output remains true, until the
<pre>until event</pre>	<i>Until</i> (u=);	Boolean input u has a rising edge.
		Afterwards it is false.
	<pre>Every(interval=, duration =);</pre>	Return true during every interval for a
every duration1 for duration2		duration length. Otherwise return
		false.

Table 5: Continuous Time Locators from FORM-L to the Modelica language

7. Combining/Transforming Continuous Time Locators

FORM-L allows deriving complex Continuous Time Locators by combining the existing ones except sliding time windows that can be neither transformed nor combined directly. Such constructs are summarized in Table 6.

Operator mapping		
FORM-L	Modelica	Description (Modelica)
Combining/Transform		
		nsCTL: non-sliding Continuous Time
not(nsCTL)		Locators
nsCLT1 or nsCTL2	was about NG and the arm (A) "	In Modelica the Boolean operators
nsCTL xor nsCTL2	see above "Conditions (4.)"	from above (not, or, and, xor) can
nsCTL excl nsCTL2		be used (and have the same
		effect).
		Provide the input as output exactly
and the second s	<pre>DelayedRising(u=, duration=);</pre>	delayed by duration. If time less
nsCTL + duration		than duration the initial value
		yStart hold (with a default of false).
nsCTL <i>trunc</i> duration	???	Semantics not clear

Table 6: Combining/Transforming Continuous Time Locators from FORM-L to the Modelica language

Accessibility : PUBLIC	

8. Discrete Time Locators

A Discrete Time Locator defines one or more positions in time and have not any notion of duration time but are associated to an event. When the event occurs then something can happen as a consequence. In Table 7 the main constructs defined in FORM-L and the related syntax in Modelica language are reported.

Operator mapping					
		FORM-L		Modelica	Description (Modelica)
	Discrete Time Locators (8.2)			te Time Locators (8.2)	
when	condition	becomes	true	<pre>edge(condition);</pre>	
when	condition	becomes	false	<pre>c = not condition; edge(c);</pre>	Available Modelica language construts
when	condition	changes		<pre>change(condition);</pre>	
					When condition has a rising edge, the
					return value is Satisfied (if check=true)
	aondition	hagamag	troug aboats a	When Diging (goodition _ ghodb-g):	or Violated (if check=false). The return
wnen	when condition becomes	Decomes	true cneck c	<pre>WhenRising(condition=, check=c);</pre>	value is kept, until condition has a
					rising edge again. Before the first
					rising edge, Undecided is returned.
					When condition has a falling edge, the
	when condition becomes		oecomes false check	<pre>WhenFalling(condition=, check=c);</pre>	return value is Satisfied (if check=true)
when		becomes			or Violated (if check=false). The return
С					value is kept, until condition has a
					falling edge again. Before the first
					falling edge, Undecided is returned.
					When condition has a changing edge,
when	condition	changes	check c	WhenChanging(condition=, check=c);	the return value is Satisfied (if
				check=true) or Violated (if	

Accessibility · DURLIC	
ACCESSIBILITY . I ODLIC	
,	

Page 13 of 15

check=false). The return value is kept,
until condition has a changing edge
again. Before the first changing edge,
Undecided is returned.

Table 7: Discrete Time Locators from FORM-L to the Modelica language

9. Check Properties Set

In Table 8 the definition of a set of other Check Properties operators is reported.

Operator mapping		
FORM-L	Modelica	
	Check Properties Set	
DuringMin condition check signal	<pre>MinDuration(condition=, check=, durationMin=);</pre>	In every true condition phase, check must be true for at least the defined duration.
DuringMax condition check signal	<pre>MaxDuration(condition=,check=,durationMax=);</pre>	In every true condition phase, check must be true for at most the defined duration.
DuringBand condition check signal	<pre>BandDuration(condition=,check=,durationMin=, durationMax=);</pre>	In every true condition phase, check must be true at least the defined durationMin and at most the defined durationMax.
RisingZero condition check signal	NoRising(condition=,check=,nRising=);	In every true condition phase, the number of check rising edges must

Accessibility · DURLIC	
ACCESSIBILITY . I ODLIC	
,	

		be zero.
RisingFixed condition check signal	<pre>FixedRising(condition=,check=,nRising=);</pre>	In every true condition phase, a
		defined number of check rising
		edges must occur.
		In every true condition phase, a
RisingMax condition check signal	<pre>MinRising(condition=,check=,nRisingMin=);</pre>	minimum number of check rising
		edges must occur
		In every true condition phase, the
RisingMin condition check signal	<pre>MaxRising(condition=,check=,nRisingMax=);</pre>	number of check rising edges must
		be bounded.
	<pre>BandRising(condition=,check=, nRisingMin=, nRisingMax=);</pre>	In every true condition phase, a
Disimple of condition short		minimum number of check rising
RisingBand condition check signal		edges must occur and the number
		of check rising edges must be
		bounded.

Table 8: Check Properties Set operators

10. Conclusion

The document presented a summary of the concepts provided by the FORM-L language along with the related syntax in the Modelica language. Mapping tables are used to show relation from each FORM-L construct and the related Modelica language syntax.

Accessibility : PUBLIC	

Page 15 of 15

References

Thuy Nguyen (2016): D2.1.1 – Part III: Formal Requirements Modelling Language FORM-L, MODRIO deliverable, April 2016.