Hafta 1 - Ulastirma Problemi ve Modeli

March 3, 2023

1 Transportation Problem (Ulaştırma)

- Bir A ürününün belirli arz kaynaklarından yine belirli talep merkezlerine optimum şekilde ulaştırılması ile ilgileneceğiz.
- Ulaştırma Problemlerini ulaştırma tablosu adı verilen bir tablo ile göstereceğiz.
- Bu tabloda n tane arz merkezi ve m tane talep merkezi olacak.
- Bu matrisin i. satır ve j. sütun değerleri bize 'bir adet A ürününün i. arz merkezinden j. talep merkezine ulaştırılmasının maliyetini (Pb) gösterecek.
- Diyelim ki bir ulaştırma probleminde 2 arz merkezi ve 3 talep merkezi olsun:

	Mağaza1	Mağaza2	Mağaza3	Arz
Fabrika 1	10	12	14	100
Fabrika 2	9	13	8	200
Talep	50	100	150	-

- Tabloya göre bir birim A ürününü Fabrika 1'den Mağaza 1'e göndermenin maliyeti 10pb'dir.
- Fabrika 1'in belirli bir dönemde gönderebileceği (arz edebileceği) miktar 100 birimdir (adet, kg, ton) (miktar)
- Tabloya göre bir birim A ürününü Fabrika 1'den Mağaza 3'e ulaştırmanın maliyeti 14 pb'dir.
- Tabloya göre bir birim A ürününü Fabrika 2'den Mağaza 2'ye ulaştırmanın maliyeti 13 pb'dir.
- Tabloya göre Mağaza 1'in belirli bir dönemdeki A ürünü talebi 50 adettir (adet, kg, ton) (miktar)

```
[2]: toplam_arz <- 100 + 200
```

TRUE

[5]: toplam_arz

300

[6]: toplam_talep

300

- Toplam arz toplam talebi eşit olduğu için (300 birim) tablonun **dengelenmiş** (**balanced**) olduğunu söyleriz.
- Biz bütün ulaştırma problemlerinin dengelenmiş olduğunu isteyeceğiz.
- Eğer problem dengelenmiş değilse, onu öncelikle dengeli hale getireceğiz.

The Problem

 Hangi fabrikadan hangi mağaza kaçar birimlik A ürünü gönderilmelidir ki toplam ulaştırma maliyetleri en küçük olsun.

	Mağaza1	Mağaza2	Mağaza3	Arz
Fabrika 1	$10 (x_{11})$	12	14	100
Fabrika 2	9	$13 (x_{22})$	$8(x_{23})$	200
Talep	50	100	150	-

1.0.1 Karar Değişkenlerinin Belirlenmesi

- x_{11} : 1. Fabrikadan 1. Mağazaya gönderilecek olan miktar.
- x_{22} : 2. Fabrikadan 2. Mağazaya gönderilecek olan miktar.
- x_{23} : 2. Fabrikadan 3. Mağazaya gönderilecek olan miktar.
- $x_{11}, x_{12}, x_{13}, x_{12}, x_{22}, x_{23}$ değerleri ne olmalıdır ki toplam ulaştırma maliyetleri en küçük olsun

1.0.2 Amaç Fonksiyonunun Belirlenmesi

$$\min z = 10x_{11} + 12x_{12} + 14x_{13} + 9x_{21} + 13x_{22} + 8x_{23}$$

1.1 Kısıtların Belirlenmesi

	Magaza 1	$Mareve{g}aza2$	Magaza 3	Arz
Fabrika 1	$10 (x_{11})$	$12 \ (x_{12})$	$14 (x_{13})$	100
Fabrika 2	$9(x_{21})$	$13 \ (x_{22})$	$8(x_{23})$	200
Talep	50	100	150	

- $x_{11} + x_{12} + x_{13} = 100 \rightarrow \text{Fabrika 1 toplam arzı olan 100 birimi mağazalara paylaştırsın.}$
- $x_{21} + x_{22} + x_{23} = 200 \rightarrow$ Fabrika 2 toplam arzı olan 200 birimi mağazalara paylaştırsın.
- $x_{11} + x_{21} = 50 \rightarrow \text{Mağaza 1'in gereksinimi olan 50 birim karşılansın.}$
- $x_{12} + x_{22} = 100 \rightarrow \text{Mağaza 2'nin gereksinimi olan 100 birim karşılansın.}$
- $x_{13} + x_{23} = 150 \rightarrow \text{Mağaza 3'ün gereksinimi olan 150 birim karşılansın.}$
- n tane fabrika ve m tane mağaza için toplamda n+m adet arz ve talep kısıtı yazdık.
- Kısıtlardaki eşit sembolünü kullanmamıza imkan sağlayan durum, problemin dengelenmiş olmasıdır.
- $x_{ij} \ge 0$ olmalı, burada i = 1, 2 ve j = 1, 2, 3.

1.2 Optimizasyon Problemi

$$\begin{aligned} \min z &= 10x_{11} + 12x_{12} + 14x_{13} + 9x_{21} + 13x_{22} + 8x_{23} \\ \text{Subject to:} \\ x_{11} + x_{12} + x_{13} &= 100 \rightarrow \text{Fabrika 1 için Arz kısıtı} \\ x_{21} + x_{22} + x_{23} &= 200 \rightarrow \text{Fabrika 2 için Arz kısıtı} \\ x_{11} + x_{21} &= 50 \rightarrow \text{Mağaza 1 için Talep kısıtı} \\ x_{12} + x_{22} &= 100 \rightarrow \text{Mağaza 2 için Talep kısıtı} \\ x_{13} + x_{23} &= 150 \rightarrow \text{Mağaza 3 için Talep kısıtı} \\ x_{ij} &\geq 0 \rightarrow \text{Negatif olmama kısıtı} \\ i &= 1, 2 \\ j &= 1, 2, 3 \end{aligned}$$

1.3 Çözüm

- Simpleks yöntemiyle çözüm (Bunun için de genelde bilgisayar yazılımı kullanacağız).
- Diğer etkin çözüm yöntemleri.

1.3.1 Çözümün Excel ve Solver ile Elde edilmesi

- Excel çözümüne göre
- $\bullet \ \ x_{11}=0, x_{12}=100, x_{13}=0, x_{21}=50, x_{22}=0, x_{23}=150.$
- 100 birim A ürünü Fabrika 1'den Mağaza 2'ye ulaştırılsın. Böylece Fabrika 1'in tüm arzını Mağaza 2'ye gönderdiğini görüyoruz.
- Fabrika 2 200 birimlik arzını Mağaza 1 ve Mağaza 3 arasında farklı oranlarda paylaştırmış.
- Yatay toplamlar sırasıyla 100 ve 200
- Dikey toplamlar sırasıyla 50, 100 ve 150.
- O halde çözüm tüm kısıtları sağlar
- Aynı zamanda 2850 pb minimum maliyet gösterir.
- Yani Fabrikalardan Mağazalara daha ucuz bir ulaştırma stratejisi bulamayız.

	Mağaza1	Mağaza2	Mağaza3	Arz
Fabrika 1	10	12 (100)	14	100
Fabrika 2	9(50)	13	8 (150)	200
Talep	50	100	150	-

[10]: total_cost <- 12*100 + 9*50 + 8*150

[11]: total_cost

2850

1.3.2 Dengelenmiş olmama durumu (Talep Fazlası)

	Mağaza1	$Mareve{g}aza2$	Mağaza3	Arz
Fabrika 1	10	12	14	100
Fabrika 2	9	13	8	180
Talep	50	100	150	-

[13]: toplam_talep <- 50 + 100 + 150 toplam_arz <- 100 + 180 toplam_talep == toplam_arz

FALSE

[14]: toplam_talep

300

[15]: toplam_arz

280

- Toplam talep toplam arza eşit olmadığı için problem **dengelenmiş** değildir (unbalanced).
- Probleme aradaki arz açığını giderecek şekilde hayali bir fabrika ekleyelim.

	$Mareve{g}aza1$	$Mareve{g}aza2$	$Mareve{g}aza3$	Arz
Fabrika 1	10	12	14	100
Fabrika 2	9	13	8	180
Fabrika H	0	0	0	20
Talep	50	100	150	-

• Toplam arz 300, toplam talep de 300, o halde bu haliyle problem dengelenmiştir.

 $\min z = 10x_{11} + 12x_{12} + 14x_{13} + 9x_{21} + 13x_{22} + 8x_{23} + 0x_{31} + 0x_{32} + 0x_{33}$ Subject to:

$$\begin{array}{l} x_{11} + x_{12} + x_{13} = 100 \to {\rm Fabrika} \ 1 \ {\rm için} \ {\rm Arz} \ {\rm kısıtı} \\ x_{21} + x_{22} + x_{23} = 180 \to {\rm Fabrika} \ 2 \ {\rm için} \ {\rm Arz} \ {\rm kısıtı} \\ x_{31} + x_{32} + x_{33} = 20 \to {\rm Fabrika} \ {\rm H} \ {\rm için} \ {\rm Arz} \ {\rm kısıtı} \\ x_{11} + x_{21} + x_{31} = 50 \to {\rm Mağaza} \ 1 \ {\rm için} \ {\rm Talep} \ {\rm kısıtı} \\ x_{12} + x_{22} + x_{32} = 100 \to {\rm Mağaza} \ 2 \ {\rm için} \ {\rm Talep} \ {\rm kısıtı} \\ x_{13} + x_{23} + x_{33} = 150 \to {\rm Mağaza} \ 3 \ {\rm için} \ {\rm Talep} \ {\rm kısıtı} \\ x_{ij} \ge 0 \to {\rm Negatif} \ {\rm olmama} \ {\rm kısıtı} \\ i = 1, 2, 3 \\ j = 1, 2, 3 \end{array}$$

- Fabrika 1, arzının 20'sini Mağaza 1'e, 80'inini Mağaza 2'ye gönderecek.
- Fabrika 2, arzının 30'unu Mağaza 1'e, 150'sini Mağaza 3'e gönderecek.
- Hayali Fabrika 20 olan arzının tamamını Mağaza 2'ye gönderecek.
- Toplam ulaştırma maliyeti 2630 Pb.
- Eğer arzı 20 birimlik yeni bir fabrika kursaydık (veya depo açsaydık, veya fason üretim yapan bir kurumla anlaşsaydık) bunun Mağaza 2'ye yakın olmasını tercih ederdik.

1.3.3 Dengelenmemiş olma durumu (Arz Fazlası)

	Mağaza1	Mağaza2	Mağaza3	Arz
Fabrika 1	10	12	14	130
Fabrika 2	9	13	8	200
Talep	50	100	150	-

• Toplam arz, toplam talepten fazla.

				Mağaza	
	$Mareve{g}aza1$	$Mareve{g}aza2$	$Mareve{g}aza3$	H	Arz
Fabrika 1	10	12	14	0	130
Fabrika 2	9	13	8	0	200
Talep	50	100	150	30	-

Problemin yeni hani dengelenmiştir.

$$\begin{aligned} \min z &= 10x_{11} + 12x_{12} + 14x_{13} + 0x_{14} + 9x_{21} + 13x_{22} + 8x_{23} + 0x_{24} \\ \text{Subject to:} \\ x_{11} + x_{12} + x_{13} + x_{14} &= 130 \to \text{Fabrika 1 için Arz kısıtı} \\ x_{21} + x_{22} + x_{23} + x_{24} &= 200 \to \text{Fabrika 2 için Arz kısıtı} \\ x_{11} + x_{21} &= 50 \to \text{Mağaza 1 için Talep kısıtı} \\ x_{12} + x_{22} &= 100 \to \text{Mağaza 2 için Talep kısıtı} \\ x_{13} + x_{23} &= 150 \to \text{Mağaza 3 için Talep kısıtı} \\ x_{14} + x_{24} &= 30 \to \text{Mağaza H için Talep kısıtı} \\ x_{ij} &\geq 0 \to \text{Negatif olmama kısıtı} \\ i &= 1, 2 \\ j &= 1, 2, 3, 4 \end{aligned}$$

- Hayali Mağaza'nın talebi 30 birimdi.
- Bu talebinin tamamını Fabrika 1'den temin etmektedir.
- 30 birimlik üretim fazlalığı hayali mağazaya gönderildi.
- O halde birinci fabrikanın arzını 30 birim kısmalıyız.

[]: