Parallelization of the Riemann Zeta Function

Assem ElQersh 120210321

1 Introduction

This report analyzes the parallelization of the Riemann Zeta function computation using static and dynamic block-cyclic distribution with C++11 threads. We computed $\zeta(2)$ for n=2048 values using 8 threads with various chunk sizes.

2 Results

Distribution	Execution Time (seconds)			
	Chunk 1	Chunk 2	Chunk 4	Chunk 8
Sequential	38.025			
Static Dynamic	5.286 5.174	5.267 5.262	5.297 5.239	5.433 5.362

Table 1: Execution times comparison

3 Analysis

- \bullet Both methods achieved approximately 7× speedup over sequential execution
- Dynamic distribution slightly outperformed static distribution across all chunk sizes
- Smaller chunk sizes (1 and 2) performed better than larger ones (4 and 8)
- Best performance: Dynamic distribution with chunk size 1 (5.174s, $7.35 \times$ speedup)

4 Conclusion

Dynamic block-cyclic distribution with chunk size 1 provided the best performance for the Riemann Zeta function computation. This approach better han-

dled the inherent load imbalance caused by the $O(k^2)$ complexity, as computations with larger k values require significantly more time than those with smaller values. Despite the synchronization overhead, dynamic distribution's ability to adaptively assign work resulted in more efficient resource utilization.