Week 9: Tutorial Handout on Uniform and Integral convergence

- Pointwise convergence $f_n(x_0) \to f(x_0)$ is defined as $|f_n(x_0) f(x_0)| \to 0$.
- Uniform convergence $f_n \rightrightarrows f$ is defined as $||f_n f||_{\infty} \to 0$.

8.1 Limits of functions

- 1. (D&D 8.1.B) Let $f_n(x) := nx(1-x^2)^n$ on [0,1] for $n \ge 1$. Find the limit $\lim_{n \to \infty} f_n(x)$. Is it uniform? Compare $\lim_{n \to \infty} \int_0^1 f_n(x) dx$ with $\int_0^1 \lim_{n \to \infty} f_n(x) dx$.
- 2. (D&D 8.1.B) Let $f_n(x) := nxe^{-nx}$ on [0,R] for $n \ge 1$. Find the limit $\lim_{n \to \infty} f_n(x)$. Is it uniform? Compare $\lim_{n \to \infty} \int_0^R f_n(x) dx$ with $\int_0^R \lim_{n \to \infty} f_n(x) dx$. What happens when $R \to +\infty$?

8.2 Uniform convergence properties

- 3. Find the pointwise limits of the following functions. Find an interval on which convergence is uniform and another on which it is not.
 - $f_n(x) := (\frac{x}{2})^n + (\frac{1}{x})^n$
 - $g_n(x) := \frac{nx}{2+5nx}$.

Integral convergence

4. (D&D 8.3.D): For $n \ge 1$ define f_n on $[0, \infty)$ by

$$f_n(x) := \begin{cases} e^{-x} & 0 \le x \le n \\ e^{-2n}(e^n + n - x) & n \le x \le e^n + n \\ 0 & e^n + n \le x \end{cases}$$

- (a) Find the pointwise limit f and show that the convergence is uniform on $[0, \infty)$.
- (b) compute $\lim_{n\to\infty} \int_0^R f_n(x) dx$ and $\int_0^R \lim_{n\to\infty} f_n(x) dx$ (Take n > R).
- (c) What happens as $R = \infty$? Why doesn't it contradict the integral convergence theorem?