blog post

pranat32

January 2022

Introduction 1

Cohomology is used in QFT to check for non-contractible surfaces on a manifold i.e. if $H^2(C) \neq 0$ where C is our configuration on which we define our path integrals, we get that there are non-contractible two surfaces in our configuration space. So, today we'll be focusing are attention on specifically on cohomology of lie groups. They come up

2 Basic Set-Up

Suppose $g \in G$ where G is our lie-group and the representation of that element g can be given by $g = exp(i\theta^a t^a)$. Now, we can construct lie-algebra valued one form as follows:

$$\omega = g^{-1}dg = -it^a E^a_i d\theta^i = -it^a E^a$$

where, $E^a = E_i^a(\theta)d\theta^i$ are the frame fields. For my more information on frame bundles and frame fields refer to my blog post on Principal G-Bundles.

3 Constructing Traces of forms

we can build $Tr(\omega^k)$ and these will vanish if k is even because of cyclicity of trace.

$$Tr(\omega^2) = Tr(t^a t^b) E^a \wedge E^b = -Tr(t^a t^b) E^b \wedge E^a = -Tr(\omega^2)$$

For odd values we define $\Omega^{(k)} = Tr(\omega^k)$ these are non-zero generally and: $d\omega = d(g^{-1}dg) = -g^{-1}dgg^{-1}dg = -\omega^2$ $d\Omega^{(k)} = -Tr(\omega^2\omega^{k-1} - \omega\omega^2\omega^{k-2}...) = 0$

$$d\omega = d(g^{-1}dg) = -g^{-1}dgg^{-1}dg = -\omega^2$$

$$d\Omega^{(k)} = -Tr(\omega^2 \omega^{k-1} - \omega \omega^2 \omega^{k-2}...) = 0$$

Thus $\Omega^{(k)}$ are closed but not exact and hence will be an element of the cohomology group.

Example: U(1) here $g = exp(i\theta)$ and $\Omega^{(1)} = id\theta$, integrating the form over a circle with constraints $\theta \in [0, 2\pi]$

$$-i \oint \Omega^{(1)} = 2\pi,$$

Thus $\Omega^{(1)}$ is closed but not exact if it were exact it could be written in the form

like $\Omega^{(1)}=d\alpha$ for some one-form α which is periodic function of θ . This shows that $\Omega^{(1)}$ is an element of $H^1(U(1),R)$