Propositional Logic Proofs Part2

Dr. Igor Ivkovic

iivkovic@uwaterloo.ca

[with material from "Mathematical Logic for Computer Science", by Zhongwan, published by World Scientific]

Objectives

- Deduction Theorem Proof
- Soundness Proof
- Satisfiability and Consistency Proofs
- Completeness Proof
- Compactness Theorem and Applications (next time)

Deduction Theorem Revisited: Proof /1

Theorem 3.2. Deduction Theorem:

- For A, B ∈ Form (L^p) and $\Sigma \subseteq$ Form (L^p) , $\Sigma \vdash_H A \Rightarrow B$ iff $\Sigma \cup \{A\} \vdash_H B$
- Proof (if $\Sigma \vdash_{\mathsf{H}} \mathsf{A} \Rightarrow \mathsf{B}$ then $\Sigma \cup \{\mathsf{A}\} \vdash_{\mathsf{H}} \mathsf{B}$):
 - From $\Sigma \vdash_H A \Rightarrow B$ then (1) $\Sigma \cup \{A\} \vdash_H A \Rightarrow B$ (adding A as another assumption does not invalidate $A \Rightarrow B$)
 - Also, for $\Sigma \cup \{A\}$ it holds that $(2) \Sigma \cup \{A\} \vdash_H A$ (based on the definition of a deducible theorem) (Definition 4.1.1)
 - Hence, $\Sigma \cup \{A\} \vdash_H B \text{ (by R1, (1), (2))}$

Deduction Theorem Revisited: Proof /2

- Proof (if $\Sigma \cup \{A\} \vdash_H B$ then $\Sigma \vdash_H A \Rightarrow B$):
 - By induction on the structure of $\Sigma \cup \{A\} \vdash_H B$
- (Base Case)
 - If B is an axiom or B ∈ Σ then {B, (B \Rightarrow (A \Rightarrow B)), (A \Rightarrow B)} is the proof, so $\Sigma \vdash_H A \Rightarrow B$
 - □ For the above, if $B \in \Sigma$ then B is an assumption; else B is an axiom
 - If B equals A (i.e., B ∈ {A}) then $\vdash_H A \Rightarrow A$ is the proof for it, as shown in Lecture Notes #3, so $\Sigma \vdash_H A \Rightarrow B$
- (Inductive Case)
 - If B is not compliant with the base case then it must be obtained using R1 from some two formulas C and C ⇒ B
 - By the Induction Hypothesis:

$$\Sigma \cup \{A\} \vdash_H C \text{ so } \Sigma \vdash_H A \Rightarrow C$$

 $\Sigma \cup \{A\} \vdash_H C \Rightarrow B \text{ so } \Sigma \vdash_H A \Rightarrow (C \Rightarrow B)$

Deduction Theorem Revisited: Proof /3

- (Inductive Case Continued)
 - 1. $\Sigma \cup \{A\} \vdash_{\mathsf{H}} \mathsf{C} \text{ so } \Sigma \vdash_{\mathsf{H}} \mathsf{A} \Rightarrow \mathsf{C} \text{ (derived)}$
 - 2. $\Sigma \cup \{A\} \vdash_H C \Rightarrow B \text{ so } \Sigma \vdash_H A \Rightarrow (C \Rightarrow B) \text{ (derived)}$
 - 3. $\sum \vdash_{\mathsf{H}} (\mathsf{A} \Rightarrow (\mathsf{C} \Rightarrow \mathsf{B})) \Rightarrow ((\mathsf{A} \Rightarrow \mathsf{C}) \Rightarrow (\mathsf{A} \Rightarrow \mathsf{B})))$ (by Ax2)
 - 4. $\Sigma \vdash_{\mathsf{H}} (\mathsf{A} \Rightarrow \mathsf{C}) \Rightarrow (\mathsf{A} \Rightarrow \mathsf{B}) \text{ (by R1, (2), (3))}$
 - 5. $\sum \vdash_{\mathsf{H}} \mathsf{A} \Rightarrow \mathsf{B} \ (by \ R1, \ (1), \ (4))$
- Hence, $\Sigma \vdash_{\mathsf{H}} \mathsf{A} \Rightarrow \mathsf{B}$

Soundness of the Hilbert System: Proof

Soundness of the Hilbert System:

- For $A \in \text{Form } (L^p) \text{ and } \Sigma \subseteq \text{Form } (L^p), \Sigma \vdash_{\mathsf{H}} A \Rightarrow \Sigma \vDash \mathsf{A}$
- Proof by induction on the structure of A
- (Base Case)
 - If A is an axiom then \models A since all axioms are valid, so it follows that $\sum \models$ A
 - If $A \in \Sigma$ then for some truth valuation t such that $\Sigma^t = 1$ it must hold that $A^t = 1$ (i.e., $mod(\Sigma) \subseteq mod(A)$)
- (Inductive Case)
 - If A is not compliant with the base case then it must be obtained using R1 from some two formulas C ⇒ A and C
 - By the Induction Hypothesis: $\Sigma \models C \Rightarrow A$ and $\Sigma \models C$
 - Based on the truth table for $(C \Rightarrow A) \land C$, A must be true
 - Hence, it follows that $\Sigma \models A$

Theorem 4.1. Formula Inconsistency:

- If $\Sigma \subseteq \text{Form } (L^p)$ is inconsistent iff for all $A \in \text{Form } (L^p)$ it holds that $\Sigma \vdash_H A$
- Proof (LHS \Rightarrow RHS):
 - Let A be an arbitrary formula
 - If ∑ is inconsistent then for some B both (1) ∑ ⊢_H B and (2) ∑ ⊢_H ¬B must hold
 - Based on the theorem (3) $\vdash_H B \Rightarrow (\neg B \Rightarrow A)$ (Notes #3), using R1 on (1) and (3) derives (4) $\Sigma \vdash_H \neg B \Rightarrow A$
 - Then, using R1 on (2) and (4) derives ∑ ⊢_H A as required

Theorem 4.1. Formula Inconsistency:

- If $\Sigma \subseteq \text{Form } (L^p)$ is inconsistent iff for all $A \in \text{Form } (L^p)$ it holds that $\Sigma \vdash_H A$
- Proof (RHS \Rightarrow LHS):
 - Let us assume that for all $A \in Form(L^p)$ it holds that $\sum \vdash_H A$ but \sum is still consistent
 - Consider A and its negation ¬A
 - Based on the above, both $\Sigma \vdash_{\mathsf{H}} \mathsf{A}$ and $\Sigma \vdash_{\mathsf{H}} \neg \mathsf{A}$ must hold
 - But, based on the definition of the formula consistency, if Σ is consistent then $\Sigma \vdash_{\mathsf{H}} \mathsf{A}$ and $\Sigma \vdash_{\mathsf{H}} \neg \mathsf{A}$ cannot both hold for any $\mathsf{A} \in \mathsf{Form}\ (L^p)$; and this is a contradiction
 - Hence, if for all $A \in Form$ (L^p) it holds that $\sum \vdash_H A$ then \sum is inconsistent

- Theorem 3.3. Formula Consistency: (Exercise 5.2.2)
 - A set $\Sigma \subseteq \text{Form } (L^p)$ is consistent iff there is $A \in \text{Form } (L^p)$ such that $\Sigma \vdash_H A$ does not hold

Proof:

- Based on Theorem 4.1 that was just shown, it follows that if ∑ is consistent there must exist A ∈ Form (L^p) for which ∑ ⊢_H A does not hold (LHS ⇒ RHS)
- Similarly based on Theorem 4.1, if there exists $A \in Form(L^p)$ for which $\sum \vdash_H A$ does not hold then \sum is consistent (RHS \Rightarrow LHS)
- Hence, a set $\Sigma \subseteq \text{Form } (L^p)$ is consistent iff there is $A \in \text{Form } (L^p)$ such that $\Sigma \vdash_{\mathsf{H}} A$ does not hold (LHS \Leftrightarrow RHS)

- Theorem 4.2. Soundness Applied: (Theorem 5.2.3)
 - If $\Sigma \subseteq \text{Form } (L^p)$ is satisfiable then Σ is consistent
- Proof:
 - If $\Sigma \subseteq$ Form (L^p) is satisfiable then $\Sigma^t = 1$ for some truth valuation t (i.e., $t \models \Sigma$)
 - For the same t there must exist A for which $A^t \neq 1$, and from there $\Sigma \models A$ does not hold (i.e., $mod(\Sigma) \not\subset mod(A)$)
 - Choose any proposition or its negation for which t does not hold
 - Based on the contra positive of the Soundness Theorem, if $\Sigma \models A$ does not hold then $\Sigma \vdash_H A$ also cannot hold
 - Based on Theorem 4.1 since there exists A for which $\Sigma \vdash_H A$ does not hold Σ is consistent
 - Hence, if $\Sigma \subseteq \text{Form } (L^p)$ is satisfiable then Σ is consistent

Completeness of the Hilbert System:

- For $A \in \text{Form } (L^p) \text{ and } \Sigma \subseteq \text{Form } (L^p), \ \Sigma \models A \Rightarrow \Sigma \vdash_{\mathsf{H}} A$
- The proof of this will require several steps
- Theorem 4.3.
 - For $\Sigma = \{A_1, A_2, ... A_n\}$, if $\Sigma \models A$ then $(1) \models A_1 \Rightarrow (A_2 \Rightarrow (... (A_n \Rightarrow A)...))$ (is a tautology)
- Proof:
 - Let us assume that there exists a valuation t for which (1) evaluates to false
 - Based on the truth table of "⇒" applied recursively to (1), it follows that the only way for (1) to be false is for A to be false and all A_i to be true
 - Since $\Sigma \vDash A$ was given (i.e., $mod(\Sigma) \subseteq mod(A)$) having A be false is a contradiction; hence, $\vDash A_1 \Rightarrow (A_2 \Rightarrow (... (A_n \Rightarrow A)...))$
- Consider B = $A_1 \Rightarrow (A_2 \Rightarrow (... (A_n \Rightarrow A)...))$ for the next step

Theorem 4.4.

- Used to prove that if ⊨ B then ⊢_H B (i.e., if B is a tautology then B is a theorem)
- Let B be a formula such that p₁, p₂, ... p_n are its only propositional atoms
- Let k be any line in A's truth table for a valuation t
- Let A_i equal p_i in line k if $p_i^t = 1$, or A_i equal $\neg p_i$ if $p_i^t = 0$, for all $1 \le i \le n$
- It then follows that $\{A_1, A_2, ..., A_n\} \vdash_H B$ is provable if the entry for B in line k valuates to true (i.e., $B^t \models 1$)
- And that $\{A_1, A_2, ... A_n\} \vdash_H \neg B$ is provable if the entry for B in line k valuates to false (i.e., $B^t \models 0$)

Proof:

By induction on the structure of B

Example:

- If the truth table is a tautology then there are 2^n table entries for which $\{A_1, A_2, ..., A_n\} \vdash_H B$
- Consider propositions p and q and formula $p \land q \Rightarrow p$, which is a tautology and for which $\models p \land q \Rightarrow p$ holds
- The theorem produces:

$$\begin{aligned} \{p, q\} &\vdash_{H} p \land q \Rightarrow p \\ \{\neg p, q\} &\vdash_{H} p \land q \Rightarrow p \\ \{p, \neg q\} &\vdash_{H} p \land q \Rightarrow p \\ \{\neg p, \neg q\} &\vdash_{H} p \land q \Rightarrow p \end{aligned}$$

■ Using the Hilbert extensions, we can deduce that $\vdash_H p \land q \Rightarrow p$

- Finally, we need to prove that {A₁, A₂, ... Aո} ⊢H A
 - Based on the previous step, it follows that (1) $\vdash_H A_1 \Rightarrow (A_2 \Rightarrow (... (A_n \Rightarrow A)...))$
 - Let us introduce (2) $\{A_1, A_2, ..., A_n\}$ as assumptions
 - If we recursively apply R1 on (1) and (2) it follows that $\{A_1, A_2, ... A_n\} \vdash_H A$
 - Therefore, for $A \in \text{Form } (L^p)$ and $\Sigma \subseteq \text{Form } (L^p)$, $\Sigma \models A \Rightarrow \Sigma \vdash_H A$

Food for Thought

Read:

- Chapters 4 and 5 (Sections 5.2 and 5.3) from Zhongwan
 - Read proofs discussed in class in more detail
 - Skip the material not related to propositional logic
- Answer the following exercises (from Section 5.3):
 - Exercises 5.3.1, 5.3.3 and 5.3.4