Desvendando as Redes de Computadores: Do Básico à Aplicação Industrial

Nesta apresentação, exploraremos os fundamentos das redes de computadores, sua importância no cenário industrial e os modelos que as regem, como o OSI e o TCP/IP. Prepare-se para uma imersão técnica e prática!

O Conceito Fundamental das Redes de Computadores

Uma rede de computadores é um **conjunto interligado de dispositivos** — como computadores, servidores, switches e roteadores — que se comunicam para **compartilhar dados, recursos e serviços**. Essa interconexão pode ser feita via cabos ou sem fio, permitindo a comunicação tanto em ambientes locais quanto remotos.

Compartilhamento de Recursos

Impressoras, arquivos, e até mesmo capacidade de processamento.

Troca de Dados Eficiente

Transferência rápida e segura de informações entre dispositivos.

Comunicação Global

Acesso à internet e conexão com o mundo.

Importância Vital das Redes no Ambiente Industrial

No contexto da engenharia e automação industrial, as redes são a **espinha dorsal** da eficiência operacional. Elas permitem a integração de máquinas, sensores e sistemas de controle, habilitando a Indústria 4.0 e a IoT Industrial.

- Monitoramento e controle em tempo real.
- Otimização de processos e redução de custos.
- Suporte à manutenção preditiva e controle de qualidade.

Classificação das Redes por Abrangência

LAN (Local Area Network)

Rede de curta distância, típica de escritórios ou residências. Alta velocidade e baixa latência.

WAN (Wide Area Network)

Rede de longa distância, como a própria Internet. Conecta LANs e MANs globalmente.

MAN (Metropolitan Area Network)

Cobre uma área metropolitana, conectando redes LANs dentro de uma cidade.

CAN (Campus Area Network)

4

Rede de campus universitário ou empresarial, abrangendo múltiplos edifícios.

PAN (Personal Area Network)

Rede pessoal para dispositivos próximos (Bluetooth, USB).

Redes Físicas vs. Redes Lógicas: A Dualidade

Rede Física

O layout **real** dos cabos, equipamentos e a interligação dos dispositivos. É a infraestrutura tangível, o hardware que sustenta a comunicação.

Rede Lógica

A forma como os dados trafegam e são organizados, **independentemente da disposição física**. Uma rede física em estrela, por exemplo, pode operar com uma topologia lógica em barramento.

Compreender a distinção é crucial para o diagnóstico de problemas e a otimização de desempenho.

Modelo OSI: A Arquitetura em Sete Camadas

O Modelo de Interconexão de Sistemas Abertos (OSI), criado pela **ISO na década de 1980**, é uma estrutura conceitual que divide a comunicação de rede em sete camadas. Seu objetivo é **padronizar a comunicação** entre dispositivos de diferentes fabricantes, facilitando a interoperabilidade e a resolução de problemas.

Camadas Inferiores do OSI: Físico e Enlace de Dados

Camada 1: Física

É a camada mais baixa, responsável pela transmissão de **bits brutos** através do meio físico. Define características elétricas, mecânicas e funcionais.

- Conectores, cabos, voltagens, frequências.
- Exemplos: Ethernet (cabeamento), USB, DSL.

Camada 2: Enlace de Dados

Organiza os bits da camada física em **quadros (frames)**. Gerencia o acesso ao meio e realiza detecção/correção de erros simples.

- Endereçamento MAC (Media Access Control).
- Exemplos: Ethernet (MAC), PPP, Switches.

Camadas Intermediárias: Rede e Transporte

Camada 3: Rede

Responsável pelo **endereçamento lógico** (IP) e pelo **roteamento** de pacotes entre diferentes redes. Garante que os dados cheguem ao destino correto, mesmo em grandes infraestruturas.

Protocolos: IPv4, IPv6, ICMP, OSPF.

Camada 4: Transporte

Fornece comunicação **ponta a ponta** entre aplicações. Pode ser confiável (garantindo a entrega) ou não confiável (priorizando a velocidade).

- TCP (Transmission Control Protocol): Confiável e orientado à conexão.
- UDP (User Datagram Protocol): Rápido e sem garantia de entrega.

Camadas Superiores: Sessão, Apresentação e Aplicação

1 Camada 5: Sessão

Gerencia e estabelece as **sessões de comunicação** entre aplicações, controlando diálogos e sincronização.

2 Camada 6: Apresentação

Responsável pela **formatação dos dados**, compressão e criptografia, garantindo que os dados sejam compreendidos pela camada de Aplicação.

3 Camada 7: Aplicação

A camada mais próxima do usuário, onde as **aplicações de rede** interagem diretamente. Fornece serviços de rede para softwares.

OSI vs. TCP/IP: Modelos em Comparação

Enquanto o Modelo OSI é uma referência teórica abrangente, o modelo TCP/IP é a base prática da Internet. Ambos descrevem a comunicação em camadas, mas com diferenças importantes.

Camadas	7	4
Origem	ISO	DoD (EUA)
Enfoque	Teórico, referência	Prático, usado na Internet
Compatibilidade	Geral	Internet e redes privadas

Ambos são essenciais para entender como as redes funcionam, mas o TCP/IP é o padrão dominante em implementações reais.

Topologias de Rede: Conceito

1

O que é uma Topologia?

A topologia de rede define a estrutura pela qual os dispositivos estão conectados e como os dados circulam entre eles. É a "arquitetura" da sua rede.

2

Física vs. Lógica

Pode ser **física** (conexões reais, cabos, hardware) ou **lógica** (como os dados efetivamente trafegam, independente da conexão física).

3

Impacto Essencial

A escolha da topologia influencia diretamente o custo de implementação, o desempenho da rede, a facilidade de gerenciamento e a tolerância a falhas do sistema.

Topologia Física: Barramento

Na topologia de barramento, todos os dispositivos são conectados a um único cabo principal, conhecido como **backbone**. É uma das formas mais simples e econômicas de montar uma rede.

- Simples e Barata: Requer menos cabos e equipamentos.
- **Difícil Expansão:** Adicionar novos dispositivos pode ser complexo e degradar o desempenho.
- Diagnóstico de Falhas: Um rompimento no cabo ou falha em um conector pode derrubar toda a rede, sendo difícil identificar o ponto exato do problema.

Topologia Física: Estrela

A topologia estrela é uma das mais comuns atualmente. Todos os dispositivos são conectados individualmente a um ponto central, que geralmente é um switch ou hub.

- **Fácil de Instalar e Gerenciar:** Adicionar ou remover dispositivos é simples e não afeta a rede.
- **Isolamento de Falhas:** A falha de um cabo ou dispositivo afeta apenas aquele ponto, não toda a rede.
- **Ponto Central Crítico:** Se o dispositivo central (switch/hub) falhar, toda a rede conectada a ele para de funcionar.

Topologia Física: Anel

Conexão Circular

Dispositivos conectados em um formato de círculo fechado, onde cada um está ligado a exatamente outros dois, formando um anel.

Token Ring

Historicamente, era muito utilizada com o protocolo Token Ring, que garantia que apenas um dispositivo transmitisse por vez, evitando colisões.

Fluxo Unidirecional

Os dados circulam geralmente em um único sentido (unidirecional) ou, em versões mais complexas, nos dois sentidos (bidirecional).

Sensibilidade a Falhas

Em sua forma mais simples, a falha de um único dispositivo ou cabo pode romper o anel e derrubar toda a comunicação da rede.

Topologias Física: Malha e Híbrida

Topologia de Malha (Mesh)

Características: Cada dispositivo está conectado a todos os outros dispositivos na rede.

- Alta Redundância: Se uma conexão falhar, existem múltiplos caminhos para os dados chegarem ao destino.
- Custo Elevado: O número de cabos e portas de conexão aumenta exponencialmente com o número de dispositivos, tornando-a muito cara para grandes redes.
- **Uso:** Comumente utilizada em redes críticas onde a disponibilidade é primordial, como em algumas redes de telecomunicações.

Topologia Híbrida

Características: Combinação de duas ou mais topologias físicas básicas em uma única rede.

- **Flexibilidade:** Permite otimizar a rede para diferentes necessidades e ambientes.
- Exemplo: Uma rede corporativa pode ter vários andares com topologia estrela, conectados entre si por um backbone em barramento.
- Complexidade: Pode ser mais complexa de projetar e gerenciar devido à integração de diferentes estruturas.

Topologias Lógicas

Enquanto a topologia física mostra como os dispositivos estão **fisicamente** conectados, a topologia lógica descreve como os dados **realmente** trafegam entre eles.

Exemplo Prático: Uma rede pode ser fisicamente em estrela (com todos os computadores conectados a um switch central), mas logicamente operar como um barramento, onde todos os dados transmitidos pelo switch são, em essência, "vistos" por todos os dispositivos conectados, dependendo da configuração e dos protocolos utilizados.

① Protocolos de rede como Ethernet, Token Ring e suas configurações de hardware e software determinam a topologia lógica de uma rede, influenciando o comportamento do tráfego de dados.

Meios de Transmissão

Guiados

Utilizam um caminho físico (cabo) para direcionar o sinal, proporcionando maior segurança e velocidade em ambientes controlados.

- **Cabo Coaxial:** Antigo padrão, resistente a interferências, mas hoje em desuso para redes locais.
- Par Trançado (UTP/STP): O mais comum em redes Ethernet (LANs). UTP é sem blindagem, STP possui blindagem para reduzir interferência.
- Fibra Óptica: Transmite luz, oferecendo altíssimas velocidades, longa distância e imunidade total a interferências eletromagnéticas. Ideal para backbones e grandes distâncias.

Não Guiados

Transmitem dados pelo ar ou espaço, sem a necessidade de um meio físico contínuo, oferecendo mobilidade e flexibilidade.

- Wi-Fi: Base para redes locais sem fio (WLANs), presente em praticamente todos os dispositivos móveis e ambientes modernos.
- **Rádio:** Usado em diversas aplicações, desde comunicação de longo alcance até dispositivos Bluetooth de curto alcance.
- Micro-ondas: Utilizado para enlaces de alta capacidade ponto a ponto, como em pontes de rede entre edifícios ou transmissão via satélite.

Modos de Transmissão

Simplex

1

A comunicação ocorre em apenas um sentido. Exemplo: Transmissão de rádio ou TV (o receptor apenas ouve/assiste, não envia dados de volta).

Half-Duplex

2

A comunicação ocorre em ambos os sentidos, mas não simultaneamente. Os dispositivos precisam se revezar. Exemplo: Walkie-talkie (um fala, o outro ouve, e vice-versa).

Full-Duplex

3

A comunicação acontece em ambos os sentidos e de forma simultânea. Exemplo: Uma conversa telefônica, onde ambos podem falar e ouvir ao mesmo tempo.

MÉTODOS DE TRANSMISSÃO

Como os Dados Viajam?

Os métodos de transmissão definem a **maneira como os dados são enviados** de um ponto a outro em uma rede. A escolha do método certo impacta diretamente a **velocidade**, **eficiência** e **confiabilidade** da comunicação.

Síncrona vs. Assíncrona

Foco na temporização e sincronismo dos dados.

Serial vs. Paralela

Foco na quantidade de bits enviados simultaneamente.

TRANSMISSÃO SÍNCRONA

Comunicação em Ritmo Acelerado

Na transmissão síncrona, os dados são enviados em **blocos (quadros)**, com sincronização precisa entre o emissor e o receptor. Isso requer um **relógio comum** ou um mecanismo de sincronismo que garanta que ambos os lados operem na mesma cadência.

Este método é **mais eficiente para grandes volumes de dados**, pois minimiza o overhead de controle de fluxo e tempo.

TRANSMISSÃO ASSÍNCRONA

Simplicidade e Flexibilidade

A transmissão assíncrona envia dados **caractere por caractere**, utilizando bits de **início (start)** e **parada (stop)** para delimitar cada conjunto de dados. Isso significa que não é necessário um sincronismo constante entre emissor e receptor, o que a torna mais flexível.

Embora seja **mais simples de implementar**, é **menos eficiente** para grandes volumes de dados devido ao overhead adicional dos bits de controle por caractere.

Exemplo Prático:

Comumente empregada em comunicações seriais de baixo custo, como a interface RS-232, usada em modems e alguns dispositivos periféricos mais antigos.

TRANSMISSÃO SERIAL

Um Bit de Cada Vez

Na transmissão serial, os bits de dados são enviados **um após o outro** através de um único canal de comunicação. Esta abordagem pode ser tanto **síncrona** quanto **assíncrona**, dependendo da necessidade de sincronismo de clock.

Sua principal vantagem é a capacidade de percorrer longas distâncias com baixo custo de cabeamento, pois exige menos fios.

USB

Ethernet

RS-485

Universal Serial Bus, padrão para periféricos.

Principal padrão para redes locais (LANs).

Comunicação industrial e automação.

TRANSMISSÃO PARALELA

Todos Juntos, Rapidamente

Diferente da serial, na transmissão paralela, **vários bits são enviados simultaneamente**, cada um por um fio ou canal separado. Isso permite uma **alta velocidade** de transmissão, especialmente em **curtas distâncias**.

No entanto, a transmissão paralela é **mais suscetível a interferências** (crosstalk) e problemas de **sincronismo** (**skew**) entre os múltiplos fios, o que limita seu uso em distâncias maiores.

? Onde Encontramos?

Exemplos incluem barramentos de impressora **Centronics** (padrão paralelo antigo) e, internamente, na comunicação entre **CPU e memória** em computadores, onde a velocidade é crucial e as distâncias são mínimas.

Convertendo Dados em Pulsos

Encoding

O1 </> Bits

Modulation

Simplicidade de Níveis de Tensão

Na codificação NRZ, o bit "1" e o bit "0" são representados por **dois níveis de tensão distintos**, sem que o sinal retorne ao nível zero entre os bits. Por exemplo, um "1" pode ser uma tensão positiva e um "0" uma tensão negativa ou zero.

Sua principal característica é a **simplicidade e eficiência** no uso da largura de banda, pois não há transições extras.

Desafio Principal:

Pode levar à **perda de sincronismo** em longas sequências de bits iguais (ex: vários "1"s ou vários "0"s consecutivos), pois não há transições para o receptor usar como referência de clock. Foi usado em fitas magnéticas e alguns protocolos mais antigos.

CODIFICAÇÃO MANCHESTER

Sincronismo Embutido

A codificação Manchester é uma técnica **auto-sincronizadora** que combina os dados e o sinal de clock em uma única linha. Um bit "1" é representado por uma **transição de baixo para alto** no meio do intervalo do bit, e um "0" por uma **transição de alto para baixo** no meio.

Essa característica de transição garantida em cada bit **facilita a sincronização** entre emissor e receptor.

Embora seja robusta para sincronização, ocupa mais largura de banda (duas transições para cada bit) e é menos eficiente que NRZ. Foi amplamente utilizada em redes Ethernet antigas (10BASE-T).

DETECÇÃO DE ERROS

Garantindo a Integridade dos Dados

A detecção de erros é crucial para garantir que os dados transmitidos cheguem ao destino sem alterações. Vamos ver dois métodos comuns:

10%

90%

Paridade Simples

Adiciona um **bit extra** (paridade) para indicar se a quantidade de bits "1" é par ou ímpar.

- Paridade Par: Total de "1"s deve ser par.
- Paridade Ímpar: Total de "1"s deve ser ímpar.

É um método simples, mas **não detecta todos os erros** (ex: erro em 2 bits).

CRC (Cyclic Redundancy Check)

Utiliza um **cálculo matemático robusto** sobre os dados transmitidos para gerar um valor de verificação.

Muito mais robusto que a paridade, é capaz de detectar **múltiplos erros em blocos de dados**.

Amplamente usado em **Ethernet**, **HDs**, **CDs** e diversos protocolos de rede, garantindo alta confiabilidade na transmissão.