Faculty of Engineering & Technology Fourth Semester B.E. (Computer Science Engineering) (C.B.S.) Examination

THEORETICAL FOUNDATION COMPUTER SCIENCE

Paper—IV

Time—Three Hours]

[Maximum Marks—80

INSTRUCTIONS TO CANDIDATES

- (1) All questions carry marks as indicated.
- (2) Assume suitable data wherever necessary.
- (3) Illustrate your answers wherever necessary with the help of neat sketches.
- 1. (a) Define the following terms with the help of examples:
 - (i) Transitive Closure
 - (ii) Reflexive Transitive Closure
 - (iii) Equivalence Relation.

6

4

(b) Prove the following by Mathematical Induction:

$$1+2+3+..... n-1=\frac{n(n-1)}{2}$$
.

(c) Write a short note on Pigeonhole principle.

OR

- 2. (a) Explain the following with suitable examples:
 - (i) Alphabet set
 - (ii) Proper prefix
 - (iii) Proper suffix
 - (iv) Power set.

8

- (b) Write short notes on:
 - (i) Countability
 - (ii) Diagonalization.

6

- 3. (a) Design a finite state machine which determines the residue mod 3 for any binary string. Design Moore and Mealy machine for the same.
 - (b) Minimize the DFA:

(e) Differentiate between NFA and DFA.

3

OR

4. (a) Desing a DFA accepting following language:

$$L = \begin{cases} w & w \in (a \mid b)^* \\ n(a) & \text{MOD } 3 > nb(w) \text{ MOD } 3 \end{cases}$$

where $na(w) \rightarrow Number of a's in w$ $nb(w) \rightarrow Number of b's in w$.

8

- (b) Desing a Moore and Melay Machine that generates output EVEN if the number of a's are Even and generates output ODD if the number of a's are odd for $\Sigma = \{a, b\}$.
- 5. (a) Convert the following Grammar from Right Linear to Left Linear form.

$$S \rightarrow 01A \mid 10$$

$$A \rightarrow 10A \mid 10$$
5

(b) Reduce the following Grammar:

$$S \rightarrow AB \mid CA$$
 $B \rightarrow BC \mid AB$
 $A \rightarrow a$
 $C \rightarrow aB \mid b$
4

(c) Write a short note on Ambiguity of Grammar. Prove that the following Grammar is ambiguous:

$$S \rightarrow aSbS \mid bSaS \mid \in.$$
 4

OR

6. (a) Desing a NFA with ∈-moves for the following regular expression then find equivalent DFA;

$$(a + b)^* aba' (a + ba)^* b$$
 8

(b) Find Regular Expression for following finite Automata:

5

MIS-771

3

Contd.

7.	(a)	Design PDA to check for a well formed parenthe	sis,	
		write an algorithm for the same. Explain it w		
		transition diagram.	6	
	(b)	Convert the PDA accepting following language		
		$L = \{a^nb^{2n} \mid n \ge 1\}$ into equivalent CFG.	8	
		OR		
8.	(a)	Construct a PDA for the CFG and show acceptance/rejection of string	the	
		w = ababab		
		$S \rightarrow aSa bSb a b$	7	
	(b)	Construct PDA for the language:		
		$L = \{a^n b^n c^m d^m / m, n \ge 1\}.$	7	
9.	(a)	Explain various types of Turing Machine.	6	
	(b)	Design a Turing Machne to perform 2's complement		
		of binary number. [Explain with Transition diagram		
		and algorithm].	5	
	(c)	Explain Unrestricted Grammar.	2	
		OR		
10.	(a)	Design a Turing machine for:		
		$L = \{W \subset W^R \mid W = (a, b)^*\}.$	7	
	(b)	What are the closure properties of Recu	rsive	
	(*)	Enumerable Language.	6	

MIS--771

4

Contd.

- 11. (a) Show that Halting problem is unsolvable. 4
 - (b) Explain PCP problem and give solution for following:

$$X = \{babbb, ba, b\}, Y = \{ba, a, bbb\}.$$
 5

(c) Define μ-recursive function. 4

OR

- 12. (a) Find Ackermann's function A(1, 1) = ? and A(2, 3) = ?
 - (b) Explain PRF and prove that the function is PRF:

(i)
$$f(x, y) = x + y$$

(ii)
$$f(x, y) = x^y$$
.

(c) Explain Church's Hypothesis. 3