Control and estimation under communication constraints

Alexander Pogromsky

Lecture 4

(τ, Q) -spanning set

$$x(t+1) = \varphi(x, u) := \varphi_u(x), \quad x \in \mathbb{R}^n, \quad u \in \mathcal{U}, \quad t \in \mathbb{N}$$

$$\underline{u} := \{u_0, u_1, u_2, \dots, \} - \text{sequence of controls}$$
 $F(j, x, \underline{u}) = \varphi_{u_{j-1}} \circ \varphi_{u_{j-2}} \circ \dots \circ \varphi_{u_0}(x) := x_u(j, x)$

Let $Q \in \mathbb{R}^n$ be a compact set with nonvoid interior.

For a natural τ a set $\mathcal S$ is called (τ,Q) -spanning, if for every $x\in Q$ there is a control sequence $\underline u$ of length τ such that

$$x_u(j,x) \in \text{int} Q, \ \forall j=1,\ldots,\tau$$

The minimal cardinality of the (τ, Q) -spanning set is denoted by $r_{\mathsf{inv}}(\tau, Q)$.

Definition

The invariance entropy is

$$H_{\mathsf{inv}}(Q) = \limsup_{ au o \infty} rac{1}{ au} \log_2 r_{\mathsf{inv}}(au, Q)$$

A limited number of examples.

An excited pendulum (Kapitza pendulum)

$$\ddot{\psi} + \delta \dot{\psi} - (u(t) + \omega^2) \sin \psi = 0$$

https://youtu.be/rwGAzy0noU0
https://www.youtube.com/watch?v=R_XH9IaDFtU (start watching from 21:20)
TU/e Technische Universiteit
Unive

8. Stabilization over communication channels

$$x(t+1) = Ax(t) + Bu, \quad y = Cx$$

Problem

What is the smallest data rate so that there is a coder and controller which stabilize the system?

Theorem W. Wong and R. Brockett (1997,1998), G. Nair and R. Evans (1998, 2000, 2002, 2004), S. Tatikonda (2000)

$$c_* = \sum_{\mathsf{unstable}\lambda_i} \log_2 |\lambda_i|$$

Milton Erikson, used to tell a story, that a centipede was asked how it was able to move all the hundred legs in such a synchronous way. After this question had been put to the poor creature, it had been unable to make a step ever since.

J. Haley, Jay Haley On Milton H. Erikson, Brunner/Mazel, Bristol, 1993

borneo.avi Lego-Centipede.avi centipede4-1.mp4

Volvox: a colony or an organism?

