# Diffraction and Refraction

(insert good subtitle here)

# Refraction

#### What is Refraction



- "Refraction, in physics, the change in direction of a wave passing from one medium to another"
- Why?
- Where is this seen?

#### Water



- Fish in a Pond
- Light bends when it hits water
- Eyes do not Compensate
- Object is Lower Down and Farther than Image





# Why?

- Lawn Mower on grass
- Lawn Mower is going straight and right wheel hits
  Grass
- The wheel on grass moves slower than left wheel
- The Lawn Mower turns
- After the second wheel hits the grass the mower goes straight

### Terms, Part 1



- Medium: What the light is traveling through
- Refractive Index: Ratio of speed of light in different mediums
- Interface: The "border" between the mediums
- Normal: Line Perpendicular to the interface
- Incident Ray: Ray going into the interface
- Refracted Ray: Ray leaving the interface

#### Terms Part 2 (and a bit of math)



 Incident Angle: The Angle Between the Incident ray to the Normal, not the Interface

Refracted Ray: The Angle Between the Refracted ray to the
 Normal, not the Interface

Snell's Law, the Math:

In General



Snell's Law:  $n_1 \sin \theta_1 = n_2 \sin \theta_2$ 

- High to low Refractive index: Bends light away from normal
- Low to High refractive index: Bends light towards normal

#### **Refraction and Rainbows**



- Refraction Makes Rainbows!!!
- Different Color have Different refractive indexes
- White light = All the colors combined
- Colors separate
- Rainbow!



#### **Refraction and Reflection**

- When light hits a interface, it boths Reflects and Refracts
- Water: Reflection and Refraction
- Advanced: Brewster's Angle
- Colors?





#### **TIR: Total Internal Reflection**

- What if everything is a reflection?
- How does it work?
- What are some uses?



#### Review

What is Refraction?

What are some substances that refract waves?

If an incident angle is 60 degrees, how many degrees is it away from the normal?

When a wave hits water, does it refract or reflect?

What is total internal reflection useful for?

# Diffraction

#### **Diffraction**

Waves "bend" around objects

Why can we hear sound around a doorway?





#### Non-slit diffraction

Waves can easily bend around objects.

Why can we hear sound around a post?



## Large vs small slits

The smaller the slit, the more obvious the diffraction

Diffraction occurs because there's a barrier; the closer the two sides of the barrier are to each other, the closer the diffraction effects of the top and bottom are









#### Interference?

Last week we saw this image with two point sources...

How can we create point sources?



#### Diffraction interference!

We can see "dark" and "light" spots on the wall if we send a light wave into 2 slits. Why?



# Single slit diffraction???



## More diffraction examples

It's a single slit, so why do we see dark/light spots?





# Wavelength

Longer wavelengths diffract more!

More likely to bend





# Spectral lines?

Separate colors so we can see which colors exist!



#### Review

What is diffraction?

Where do we see this?

What role does the length of the slit play?

What role does wavelength play?

How does this help us see interference?

# Pog principle!?

# Huygen's principle

What shape is the wave when we throw a pebble in water?

All waves act as point sources; explains refraction/diffraction!



# Scattering

# Scattering

Particles absorb and reemit waves



#### **Different colors**

You're more likely to be hit by a wave with a shorter wavelength. Why?



## Day, dusk, and dawn

Orange-ish light comes only when we look in the direction of the sun; blue light is scattered everywhere. What does this mean?



#### Review

What role do atoms have in scattering light?

What wavelengths are scattered more?

Why is the sky blue?

Why is a sunset and sunrise red-ish orange-ish?