Анализ данных

- 1. выполнить анализ и охарактеризовать клиентский портфель организации
- 2. построить базовую модель прогнозирования банкротства, одобряющую не менее 35% клиентов при банкротстве среди одобренных не выше 15%.
- 3. подготовить рекомендации и предложения по изменению признакового пространства, использованию внешних данных и иному развитию базовой модели.

Описание признакового пространства

- age Возраст заемщика
- lastcredit Время в днях, которое прошло с момента открытия последнего кредитного продукта
- time_to_lastcredit_closeddt Время в днях, которое прошло с момента закрытия последнего микрокредита (если есть активные кредиты, эта переменная будет равна 0)
- close_loan_median Медиана, взятая по количеству дней между закрытием предыдущего и следующего микрокредита (считается по всем последовательно открытым микрозаймам), т.е. сколько в среднем проходит времени между закрытием предыдущего и следующего микрокредита
- open_loan_median Медиана, взятая по количеству дней между открытием предыдущего и следующего микрокредита (считается по всем последовательно открытым микрозаймам), т.е. сколько в среднем проходит времени между открытием предыдущего и следующего микрокредита
- is_active_100 Количество активных кредитов, открытых за все время
- isnt_active_100 Доля не возвращенных кредитов относительно всех кредитов, взятых за все время
- is_lost_100 Невозвращенные кредиты, открытые за последний месяц (например, переданные по цессии)
- micro loans active 100 Активная сумма микрокредитов, открытых за всё время
- is active 12 Количество всех активных кредитов, открытых за последние 12 месяцев
- open_sum_12 Активная сумма кредитов, взятых за последние 12 месяцев
- isnt active 12 Количество закрытых кредитов, которые были открыты за последние 12 месяцев
- is_lost_12 Невозвращенные кредиты, открытые за последние 12 месяцев
- overdue_loans_12 Количество просроченных кредитов, открытых за последние 12 месяцев
- micro loans active 12 Активная сумма микрокредитов, открытых за последние 12 месяцев
- is_active_3 Количество всех активных кредитов, открытых за последние 3 месяца
- open sum 3 Активная сумма кредитов, взятых за последние 3 месяца
- isnt_active_3 Количество закрытых кредитов, которые были открыты за последние 3 месяца
- is_lost_3 Невозвращенные кредиты, открытые за последние 3 месяца
- overdue_loans_3 Количество просроченных кредитов, открытых за последние 3 месяца
- micro_loans_active_3 Активная сумма микрокредитов, открытых за последние 3 месяца
- is_active_1 Количество всех активных кредитов, открытых за последний месяц
- open_sum_1 Активная сумма кредитов, взятых за последний месяц
- isnt_active_1 Количество закрытых кредитов, которые были открыты за последний месяц
- is_lost_1 Невозвращенные кредиты, открытые за последний месяц (например, переданные по цессии)
- micro_loans_active_1 Активная сумма микрокредитов, открытых за последний месяц
- ratio_all_microloans_3_to_12 Отношение количества микрокредитов, взятых за последние 3 месяца, к количеству микрокредитов, взятых за последние 12 месяцев

- ratio_overdue_loans_3_to_12 Отношение количества просроченных микрокредитов, взятых за последние 3 месяца, к количеству просроченных микрокредитов, взятых за последние 12 месяцев
- ratio_history_100 Доля не возвращенных кредитов относительно всех кредитов, взятых за все время
- ratio_history_12 Доля не возвращенных кредитов относительно всех кредитов, взятых за последние 12 месяцев
- fraction_last_x_12 Доля кредитов, взятых за последние 12 месяцев, относительно всех кредитов истории
- ratio_history_3 Доля не возвращенных кредитов относительно всех кредитов, взятых за последние 3 месяца
- fraction_last_x_3 Доля кредитов, взятых за последние 3 месяца, относительно всех кредитов истории
- ratio_history_1 Доля не возвращенных кредитов относительно всех кредитов, взятых за последний месяц
- fraction_last_x_1 Доля кредитов, взятых за последний месяц, относительно всех кредитов истории
- mean delay 100 with lag Средняя просрочка за всё время (с лагом по времени в 2 месяца)
- mean_delay_12_with_lag Средняя просрочка за последние 12 месяцев (с лагом по времени в 2 месяца)
- mean_delay_3_with_lag Средняя просрочка за последние 3 месяца (с лагом по времени в 2 месяца)
- mean_delay_1_with_lag Средняя просрочка за последний месяц (с лагом по времени в 2 месяца)
- ratio_mean_delay_3_to_12 Отношение средней просрочки за последние 3 месяца к средней просрочке за последние 12 месяцев (в днях, с лагом по времени в 2 месяца)
- count_all_credits Количество всех кредитов в истории
- ratio_pattern_len_to_pattern_1 Отношение количества платежей в платежном паттерне к общему количеству запланированных платежей на данный момент
- ratio_pattern_len_to_pattern_2 Отношение количества просрочек в 0-5 дней в платежном паттерне к общему количеству запланированных платежей на данный момент
- ratio_pattern_len_to_pattern_3 -
- ratio_pattern_len_to_pattern_4 -
- ratio_pattern_len_to_pattern_bad_len Отношение количества символов сильной просрочки (> 60 дней) в платежном паттерне к общему количеству символов в строке
- last_microloan_openeddt Время в днях, которое прошло с момента открытия последнего микрокредита
- is_type_credit_card_100 Количество кредитов типа "кредитная карта", открытых за всё время
- is_type_consumer_100 Количество кредитов типа "потребительский кредит", открытых за всё время
- is_type_micro_100 Количество кредитов типа "микрокредит", открытых за всё время
- is_active_type_credit_card_100 Количество активных кредитов, открытых за всё время с типом займа "кредитная карта"
- is_active_type_consumer_100 Количество активных кредитов, открытых за всё время с типом займа "потребительский кредит"
- is_active_type_micro_100 Количество активных кредитов, открытых за все время с типом займа "микрокредит"
- is_type_credit_card_12 Количество кредитов типа "кредитная карта", открытых за последние 12 месяцев
- is_type_consumer_12 Количество кредитов типа "потребительский кредит", открытых за последние 12 месяцев
- is_type_micro_12 Количество кредитов типа "микрокредит", открытых за последние 12 месяцев

- is_active_type_credit_card_12 Количество активных кредитов, открытых за последние 12 месяцев с типом займа "кредитная карта"
- is_active_type_consumer_12 Количество активных кредитов, открытых за последние 12 месяцев с типом займа "потребительский кредит"
- is_active_type_micro_12 Количество активных кредитов, открытых за последние 12 месяцев с типом займа "микрокредит"
- is_type_credit_card_3 Количество кредитов типа "кредитная карта", открытых за последние 3 месяца
- is_type_consumer_3 Количество кредитов типа "потребительский кредит", открытых за последние 3 месяца
- is_type_micro_3 Количество кредитов типа "микрокредит", открытых за последние 3 месяца
- is_active_type_credit_card_3 Количество активных кредитов, открытых за последние 3 месяца с типом займа "кредитная карта"
- is_active_type_consumer_3 Количество активных кредитов, открытых за последние 3 месяца с типом займа "потребительский кредит"
- is_active_type_micro_3 Количество активных кредитов, открытых за последние 3 месяца с типом займа "микрокредит"
- is_type_credit_card_1 Количество кредитов типа "кредитная карта", открытых за последние 12 месяцев
- is_type_consumer_1 Количество кредитов типа "потребительский кредит", открытых за последний месяц
- is_type_micro_1 Количество кредитов типа "микрокредит", открытых за последний месяц
- is_active_type_credit_card_1 Количество активных кредитов, открытых за последние 12 месяцев с типом займа "кредитная карта"
- is_active_type_consumer_1 Количество активных кредитов, открытых за последний 1 месяц с типом займа "потребительский кредит"
- is_active_type_micro_1 Количество активных кредитов, открытых за последний 1 месяц с типом займа "микрокредит"
- overall_worst_overdue_state_12 -
- ratio_sum_outstanding_to_open_sum Отношение суммы просрочки по всем кредитам к сумме взятых кредитов за всю историю

In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import shap

from sklearn.model_selection import KFold, cross_val_score, train_test_split
from sklearn.metrics import r2_score, f1_score, confusion_matrix, classification_report
from sklearn.ensemble import RandomForestRegressor
import xgboost as xgb

pd.set_option('display.max_columns', None)
pd.set_option('display.float_format', lambda x: '%.5f' % x)
%matplotlib inline
```

In [2]:

```
# ф-я пишет сколько пропусков и какой процент от общего числа строк пропущенно def chech_omissions(data):
    print("всего строк: {}".format(data.shape[0]))
    for i, col in list(zip(data.isna().sum(),data.columns)):
        print("{}: кол-во пропусков: {}, процент: {} % ".format(col,i , round(i/data.sha
```

In [3]:

```
# корреляция

def cor(data, target):
    correlation = data.corr()
    corr_with_target = correlation[target].sort_values(ascending = False)
    print(corr_with_target)
    fig, axes = plt.subplots(figsize = (14,12))
    plt.title("Correlation of Numeric Features with target", y=1, size=16)
    sns.heatmap(correlation, square=True, vmax=0.8, cmap="viridis")
    return corr_with_target, correlation
```

In [4]:

In [5]:

In [6]:

```
# ф-я заменяет пропуски с нужным порогом на медиану

def fillna_omissions(data_df, p= 0):
    data = data_df.copy()

# print("всего строк: {}".format(data.shape[0]))

for i, col in list(zip(data.isna().sum(),data.columns)):
    if i> p:
        print("{}: кол-во пропусков замененных на медиану: {} ".format(col,i,1))

# print(percent, col)
    data[col].fillna(data[col].median(), inplace=True)

return data
```

In [7]:

```
ф-я заменяет бесконечность на медиану

"""

def fillna_inf(data_df):
    data = data_df.copy()
    for i in data.columns:
        inf_col = np.where(abs(data[i]) == np.inf)

        if len(list(inf_col)[0]) > 0:
            data.loc[data[i] == np.inf, i] = data[i].median()
            data.loc[data[i] == -np.inf, i] = data[i].median()
        return data
```

In [8]:

```
.....
ф-я определяет нелинейную связь признаков, возвращает список из 15 наиболее важных
def nonlianer_comun(data, target="target")-> list:
   parameters = {"max_depth": 6, "n_estimators": 25, "random_state": 27, "n jobs": 2}
   forest = RandomForestRegressor(**parameters)
   forest.fit(data.drop(target, axis=1), data[target])
   # numerical original
   top = []
   n top = 15
   importances = forest.feature_importances_
    idx = np.argsort(importances)[::-1][0:n top]
   feature names = data.drop(target, axis=1).columns
   plt.figure(figsize=(20, 5))
   sns.barplot(x=feature_names[idx], y=importances[idx], palette="viridis")
   top.append(feature_names[idx])
   plt.title("What are the top important features to start with?", size=14)
   plt.xticks(rotation=90)
    return top
```

```
In [9]:
```

```
def model_fit(model_f, data, param=False, random_state=42):
   x_train, x_test, y_train, y_test = train_test_split(data.drop("target", axis=1), dat
   print("x_train.shape: ", x_train.shape)
   print("y_train.shape: "
                           , y_train.shape)
   print("x_test.shape: ", x_test.shape)
   print("y_test.shape: ", y_test.shape)
   if param:
        model = model_f(params= param, random_state=random_state)
   else:
        model = model f(random state=random state)
   model.fit(x_train, y_train)
   pred = model.predict(x_test)
   test_score = confusion_matrix(y_test, pred)
   ax= plt.subplot()
   sns.heatmap(test_score, annot=True, fmt='g', ax=ax); #annot=True to annotate cells,
   # labels, title and ticks
   ax.set_xlabel('Predicted labels');ax.set_ylabel('True labels');
   ax.set_title('Confusion Matrix');
   ax.xaxis.set_ticklabels(['True', 'False']); ax.yaxis.set_ticklabels(['True', 'False'])
   print(classification_report(y_test, pred))
    return model, x_train, x_test
```

Базовый анализ данных

```
In [10]:
```

```
cl = pd.read_csv("data/all_reject_data.csv")
cr = pd.read_csv("data/new_training_data_31_08_2022.csv")

print("cl rows: {}, columns: {}".format(*cl.shape))
print("cr rows: {}, columns: {}".format(*cr.shape))

cl rows: 106511, columns: 74
cr rows: 42529, columns: 75

In [11]:

cl.head(n=3)
```

Out[11]:

	Unnamed: 0	age	lastcredit	time_to_lastcredit_closeddt	close_loan_median	open_loa
0	4	35.00000	903.00000	44683.00000	0.00000	43
1	6	32.00000	4.00000	0.00000	0.00000	
2	9	25.00000	17.00000	0.00000	0.00000	
4						•

In [12]:

```
cr.head(n=3)
```

Out[12]:

	Unnamed: 0	age	lastcredit	time_to_lastcredit_closeddt	close_loan_median	open_loar
0	0	43.00000	81.00000	235.00000	0.00000	_
1	1	35.00000	3.00000	0.00000	0.00000	
2	2	27.00000	19.00000	65.00000	0.00000	
4						>

In [13]:

```
cl.rename(columns={"Unnamed: 0": "id"}, inplace=True)
cr.rename(columns={"Unnamed: 0": "id"}, inplace=True)
```

In [14]:

```
cr.describe()
```

Out[14]:

	id	age	lastcredit	time_to_lastcredit_closeddt	close_loan_media
count	42529.00000	42529.00000	42529.00000	42529.00000	42520.0000
mean	16848.10764	34.81008	10.63573	127.21907	0.3418
std	10120.47745	8.82418	75.48064	2343.82402	13.0845
min	0.00000	18.00000	1.00000	0.00000	0.0000
25%	8134.00000	28.00000	2.00000	0.00000	0.0000
50%	16522.00000	33.00000	4.00000	0.00000	0.0000
75%	25052.00000	39.00000	7.00000	0.00000	0.0000
max	35684.00000	75.00000	5029.00000	44785.00000	1428.5000
4					•

По таблице сверху видно, что организация чаще выдает микрозаймы, чем карточки или потребительские кредиты

In [15]:

```
count_days = cr.time_to_lastcredit_closeddt.value_counts()
count_days
```

Out[15]:

0.00000	40674					
2.00000	103					
3.00000	83					
4.00000	82					
1.00000	72					
	• • •					
187.00000	1					
200.00000	1					
190.00000	1					
449.00000	1					
2094.00000	1					
Name: time_	_to_lastcre	edit_closeddt	, Length:	401,	dtype:	int64

name: elme_co_lastereale_closeade, lengent tol, depper lines

В основном все кредиты в кредитной организации закрыты

посмотрим на возраст людей наиболее часто берущих займы

In [16]:

cr["age"].value_counts()

Out[16]:

22 00000	2225
32.00000	2235
33.00000	2162
31.00000	2152
35.00000	2089
30.00000	2046
29.00000	2009
34.00000	2002
28.00000	1839
36.00000	
	1827
27.00000	1788
37.00000	1737
26.00000	1644
38.00000	1587
39.00000	1455
25.00000	1378
40.00000	1295
24.00000	1270
23.00000	1128
41.00000	1117
42.00000	057
	957
22.00000	882
43.00000	876
44.00000	787
45.00000	558
46.00000	538
21.00000	510
47.00000	503
	202
48.00000	486
49.00000	440
51.00000	372
50.00000	343
52.00000	297
53.00000	286
55.00000	216
54.00000	197
57.00000	163
20.00000	161
56.00000	139
59.00000	135
58.00000	124
60.00000	123
61.00000	114
19.00000	84
62.00000	80
63.00000	73
64.00000	71
65.00000	56
66.00000	37
68.00000	34
69.00000	32
67.00000	27
70.00000	20
18.00000	19
71.00000	13
73.00000	10
72.00000	4
75.00000	1
74.00000	1
Name: age	dtvne:

Name: age, dtype: int64

Видно, что самое большое кол-во человек когда либо берущих займы в кредитной организации это люди в возрасте от 25 до 40 лет, тк их больше всего

In [17]:

```
cr_age = cr[["age","is_active_100"]].groupby(["age"]).mean()
cr_age.plot()
```

Out[17]:

<AxesSubplot:xlabel='age'>

Активных кредитов в основном у людей в возрасте от 25 до 60

In [18]:

```
cr_age = cr[["age","isnt_active_100"]].groupby(["age"]).mean()
cr_age.plot()
```

Out[18]:

<AxesSubplot:xlabel='age'>

Интересно, что люди преклоннго возраста реже возвращают деньги

In [19]:

```
cr_active = cr[["is_active_100","isnt_active_100"]].groupby(["is_active_100"]).count()
cr_active.plot()
```

Out[19]:

<AxesSubplot:xlabel='is_active_100'>

По данному графику можно предположить, что люди стараются быстрее закрыть кредит

In [20]:

```
cr_age_close = cr[["age","close_loan_median"]].groupby(["age"]).mean()
cr_age_close.plot()
```

Out[20]:

<AxesSubplot:xlabel='age'>

Люди 40-50, 60-, наиболее большой перерыв между закрытым и заного взятым кредитом

In [21]:

```
cr_age = cr[["age", "is_type_micro_100"]].groupby(["age"]).mean()
cr_age.plot()
```

Out[21]:

<AxesSubplot:xlabel='age'>

In [22]:

```
cr["is_type_micro_100"].value_counts()
```

Out[22]:

```
30.00000
             487
34.00000
             458
32.00000
             456
44.00000
             441
28.00000
             438
576.00000
               1
781.00000
               1
656.00000
               1
415.00000
               1
674.00000
Name: is_type_micro_100, Length: 748, dtype: int64
```

In [23]:

Out[23]:

	is_type_micro_100	age
4733	33.00000	18.00000
5987	35.00000	18.00000
5986	35.00000	18.00000
580	35.00000	18.00000
1537	33.00000	19.00000
390	36.00000	19.00000
3295	35.00000	19.00000
2245	34.00000	19.00000
1579	34.00000	19.00000
315	38.00000	19.00000
6653	34.00000	19.00000
2671	32.00000	19.00000
3946	31.00000	19.00000
1338	34.00000	19.00000
1630	39.00000	19.00000
2847	40.00000	19.00000
1955	37.00000	19.00000
2742	40.00000	19.00000
4764	39.00000	19.00000
887	34.00000	19.00000

от 30 тр до 40 тр , в такой сумме чаще нуждаются люди

In [27]:

Посмотрим пропуски chech_omissions(cl)

```
всего строк: 106511
id: кол-во пропусков: 0, процент: 0 %
аде: кол-во пропусков: 0, процент: 0 %
lastcredit: кол-во пропусков: 0, процент: 0 %
time_to_lastcredit_closeddt: кол-во пропусков: 0, процент: 0 %
close loan median: кол-во пропусков: 138, процент: 0 %
open loan median: кол-во пропусков: 138, процент: 0 %
is_active_100: кол-во пропусков: 0, процент: 0 %
isnt active 100: кол-во пропусков: 0, процент: 0 %
is_lost_100: кол-во пропусков: 0, процент: 0 %
micro_loans_active_100: кол-во пропусков: 0, процент: 0 %
is active 12: кол-во пропусков: 0, процент: 0 %
open sum 12: кол-во пропусков: 0, процент: 0 %
isnt_active_12: кол-во пропусков: 0, процент: 0 %
is_lost_12: кол-во пропусков: 0, процент: 0 %
overdue_loans_12: кол-во пропусков: 0, процент: 0 %
micro_loans_active_12: кол-во пропусков: 0, процент: 0 %
is_active_3: кол-во пропусков: 0, процент: 0 %
open_sum_3: кол-во пропусков: 0, процент: 0 %
isnt active 3: кол-во пропусков: 0, процент: 0 %
is_lost_3: кол-во пропусков: 0, процент: 0 %
overdue_loans_3: кол-во пропусков: 0, процент: 0 %
micro_loans_active_3: кол-во пропусков: 0, процент: 0 %
is_active_1: кол-во пропусков: 0, процент: 0 %
open_sum_1: кол-во пропусков: 0, процент: 0 %
isnt_active_1: кол-во пропусков: 0, процент: 0 %
is_lost_1: кол-во пропусков: 0, процент: 0 %
micro_loans_active_1: кол-во пропусков: 0, процент: 0 %
ratio_all_microloans_3_to_12: кол-во пропусков: 589, процент: 1 %
ratio_overdue_loans_3_to_12: кол-во пропусков: 14863, процент: 14 %
ratio history 100: кол-во пропусков: 27, процент: 0 %
ratio_history_12: кол-во пропусков: 491, процент: 0 %
fraction_last_x_12: кол-во пропусков: 27, процент: 0 %
ratio_history_3: кол-во пропусков: 2384, процент: 2 %
fraction_last_x_3: кол-во пропусков: 27, процент: 0 %
ratio_history_1: кол-во пропусков: 3874, процент: 4 %
fraction_last_x_1: кол-во пропусков: 27, процент: 0 %
mean_delay_100_with_lag: кол-во пропусков: 0, процент: 0 %
mean_delay_12_with_lag: кол-во пропусков: 0, процент: 0 %
mean delay 3 with lag: кол-во пропусков: 0, процент: 0 %
mean_delay_1_with_lag: кол-во пропусков: 0, процент: 0 %
ratio mean delay 3 to 12: кол-во пропусков: 2903, процент: 3 %
count all credits: кол-во пропусков: 0, процент: 0 %
ratio_pattern_len_to_pattern_1: кол-во пропусков: 138, процент: 0 %
ratio_pattern_len_to_pattern_2: кол-во пропусков: 138, процент: 0 %
ratio_pattern_len_to_pattern_3: кол-во пропусков: 138, процент: 0 %
ratio_pattern_len_to_pattern_4: кол-во пропусков: 138, процент: 0 %
ratio pattern len to pattern bad len: кол-во пропусков: 138, процент: 0 %
last microloan openeddt: кол-во пропусков: 0, процент: 0 %
is_type_credit_card_100: кол-во пропусков: 0, процент: 0 %
is type consumer 100: кол-во пропусков: 0, процент: 0 %
is_type_micro_100: кол-во пропусков: 0, процент: 0 %
is active type credit card 100: кол-во пропусков: 0, процент: 0 %
is active type consumer 100: кол-во пропусков: 0, процент: 0 %
is active type micro 100: кол-во пропусков: 0, процент: 0 %
is type credit card 12: кол-во пропусков: 0, процент: 0 %
is_type_consumer_12: кол-во пропусков: 0, процент: 0 %
is_type_micro_12: кол-во пропусков: 0, процент: 0 %
is_active_type_credit_card_12: кол-во пропусков: 0, процент: 0 %
is active type consumer 12: кол-во пропусков: 0, процент: 0 %
is active type micro 12: кол-во пропусков: 0, процент: 0 %
```

```
is_type_credit_card_3: кол-во пропусков: 0, процент: 0 % is_type_consumer_3: кол-во пропусков: 0, процент: 0 % is_type_micro_3: кол-во пропусков: 0, процент: 0 % is_active_type_credit_card_3: кол-во пропусков: 0, процент: 0 % is_active_type_micro_3: кол-во пропусков: 0, процент: 0 % is_active_type_micro_3: кол-во пропусков: 0, процент: 0 % is_type_credit_card_1: кол-во пропусков: 0, процент: 0 % is_type_consumer_1: кол-во пропусков: 0, процент: 0 % is_active_type_credit_card_1: кол-во пропусков: 0, процент: 0 % is_active_type_credit_card_1: кол-во пропусков: 0, процент: 0 % is_active_type_micro_1: кол-во пропусков: 0, процент: 0 % overall_worst_overdue_state_12: кол-во пропусков: 0, процент: 0 % ratio_sum_outstanding_to_open_sum: кол-во пропусков: 1380, процент: 1 %
```

In [28]:

chech_omissions(cr)

```
всего строк: 42529
id: кол-во пропусков: 0, процент: 0 %
аде: кол-во пропусков: 0, процент: 0 %
lastcredit: кол-во пропусков: 0, процент: 0 %
time_to_lastcredit_closeddt: кол-во пропусков: 0, процент: 0 %
close loan median: кол-во пропусков: 9, процент: 0 %
open loan median: кол-во пропусков: 9, процент: 0 %
is_active_100: кол-во пропусков: 0, процент: 0 %
isnt active 100: кол-во пропусков: 0, процент: 0 %
is_lost_100: кол-во пропусков: 0, процент: 0 %
micro_loans_active_100: кол-во пропусков: 0, процент: 0 %
is active 12: кол-во пропусков: 0, процент: 0 %
open sum 12: кол-во пропусков: 0, процент: 0 %
isnt_active_12: кол-во пропусков: 0, процент: 0 %
is_lost_12: кол-во пропусков: 0, процент: 0 %
overdue_loans_12: кол-во пропусков: 0, процент: 0 %
micro_loans_active_12: кол-во пропусков: 0, процент: 0 %
is_active_3: кол-во пропусков: 0, процент: 0 %
open_sum_3: кол-во пропусков: 0, процент: 0 %
isnt active 3: кол-во пропусков: 0, процент: 0 %
is_lost_3: кол-во пропусков: 0, процент: 0 %
overdue_loans_3: кол-во пропусков: 0, процент: 0 %
micro_loans_active_3: кол-во пропусков: 0, процент: 0 %
is_active_1: кол-во пропусков: 0, процент: 0 %
open_sum_1: кол-во пропусков: 0, процент: 0 %
isnt_active_1: кол-во пропусков: 0, процент: 0 %
is_lost_1: кол-во пропусков: 0, процент: 0 %
micro_loans_active_1: кол-во пропусков: 0, процент: 0 %
ratio_all_microloans_3_to_12: кол-во пропусков: 32, процент: 0 %
ratio_overdue_loans_3_to_12: кол-во пропусков: 6844, процент: 16 %
ratio history 100: кол-во пропусков: 0, процент: 0 %
ratio_history_12: кол-во пропусков: 23, процент: 0 %
fraction last x 12: кол-во пропусков: 0, процент: 0 %
ratio_history_3: кол-во пропусков: 218, процент: 1 %
fraction_last_x_3: кол-во пропусков: 0, процент: 0 %
ratio_history_1: кол-во пропусков: 393, процент: 1 %
fraction_last_x_1: кол-во пропусков: 0, процент: 0 %
mean_delay_100_with_lag: кол-во пропусков: 0, процент: 0 %
mean_delay_12_with_lag: кол-во пропусков: 0, процент: 0 %
mean delay 3 with lag: кол-во пропусков: 0, процент: 0 %
mean_delay_1_with_lag: кол-во пропусков: 0, процент: 0 %
ratio mean delay 3 to 12: кол-во пропусков: 2561, процент: 6 %
count all credits: кол-во пропусков: 0, процент: 0 %
ratio_pattern_len_to_pattern_1: кол-во пропусков: 9, процент: 0 %
ratio_pattern_len_to_pattern_2: кол-во пропусков: 9, процент: 0 %
ratio_pattern_len_to_pattern_3: кол-во пропусков: 9, процент: 0 %
ratio_pattern_len_to_pattern_4: кол-во пропусков: 9, процент: 0 %
ratio pattern len to pattern bad len: кол-во пропусков: 9, процент: 0 %
last microloan openeddt: кол-во пропусков: 0, процент: 0 %
is_type_credit_card_100: кол-во пропусков: 0, процент: 0 %
is type consumer 100: кол-во пропусков: 0, процент: 0 %
is_type_micro_100: кол-во пропусков: 0, процент: 0 %
is active type credit card 100: кол-во пропусков: 0, процент: 0 %
is active type consumer 100: кол-во пропусков: 0, процент: 0 %
is active type micro 100: кол-во пропусков: 0, процент: 0 %
is type credit card 12: кол-во пропусков: 0, процент: 0 %
is_type_consumer_12: кол-во пропусков: 0, процент: 0 %
is_type_micro_12: кол-во пропусков: 0, процент: 0 %
is_active_type_credit_card_12: кол-во пропусков: 0, процент: 0 %
is active type consumer 12: кол-во пропусков: 0, процент: 0 %
is active type micro 12: кол-во пропусков: 0, процент: 0 %
```

```
is_type_credit_card_3: кол-во пропусков: 0, процент: 0 % is_type_consumer_3: кол-во пропусков: 0, процент: 0 % is_type_micro_3: кол-во пропусков: 0, процент: 0 % is_active_type_credit_card_3: кол-во пропусков: 0, процент: 0 % is_active_type_consumer_3: кол-во пропусков: 0, процент: 0 % is_active_type_micro_3: кол-во пропусков: 0, процент: 0 % is_type_credit_card_1: кол-во пропусков: 0, процент: 0 % is_type_consumer_1: кол-во пропусков: 0, процент: 0 % is_type_micro_1: кол-во пропусков: 0, процент: 0 % is_active_type_credit_card_1: кол-во пропусков: 0, процент: 0 % is_active_type_consumer_1: кол-во пропусков: 0, процент: 0 % is_active_type_micro_1: кол-во пропусков: 0, процент: 0 % overall_worst_overdue_state_12: кол-во пропусков: 0, процент: 0 % ratio_sum_outstanding_to_open_sum: кол-во пропусков: 2800, процент: 7 % target: кол-во пропусков: 0, процент: 0 %
```

In [29]:

```
# меняю пропуски на медиану, т.к. пропусков мало cr = fillna_omissions(cr)
```

```
close_loan_median: кол-во пропусков замененных на медиану: 9 open_loan_median: кол-во пропусков замененных на медиану: 9 ratio_all_microloans_3_to_12: кол-во пропусков замененных на медиану: 32 ratio_overdue_loans_3_to_12: кол-во пропусков замененных на медиану: 6844 ratio_history_12: кол-во пропусков замененных на медиану: 23 ratio_history_3: кол-во пропусков замененных на медиану: 218 ratio_history_1: кол-во пропусков замененных на медиану: 393 ratio_mean_delay_3_to_12: кол-во пропусков замененных на медиану: 2561 ratio_pattern_len_to_pattern_1: кол-во пропусков замененных на медиану: 9 ratio_pattern_len_to_pattern_2: кол-во пропусков замененных на медиану: 9 ratio_pattern_len_to_pattern_4: кол-во пропусков замененных на медиану: 9 ratio_pattern_len_to_pattern_bad_len: кол-во пропусков замененных на медиану: 9 ratio_sum_outstanding_to_open_sum: кол-во пропусков замененных на медиану: 9 ratio_sum_outstanding_to_open_sum: кол-во пропусков замененных на медиану: 9
```

In [30]:

```
# Проверяю есть-ли в данных значения бесконечности
for i in cr.columns:
    inf_col = np.where(abs(cr[i]) == np.inf) # беру модуль, тк может быть и минус бе
    print(i, inf_col, len(inf_col[0]))
```

```
id (array([], dtype=int64),) 0
age (array([], dtype=int64),) 0
lastcredit (array([], dtype=int64),) 0
time_to_lastcredit_closeddt (array([], dtype=int64),) 0
close_loan_median (array([], dtype=int64),) 0
open_loan_median (array([], dtype=int64),) 0
is_active_100 (array([], dtype=int64),) 0
isnt_active_100 (array([], dtype=int64),) 0
is_lost_100 (array([], dtype=int64),) 0
micro_loans_active_100 (array([], dtype=int64),) 0
is_active_12 (array([], dtype=int64),) 0
open_sum_12 (array([], dtype=int64),) 0
isnt_active_12 (array([], dtype=int64),) 0
is_lost_12 (array([], dtype=int64),) 0
overdue_loans_12 (array([], dtype=int64),) 0
micro_loans_active_12 (array([], dtype=int64),) 0
is_active_3 (array([], dtype=int64),) 0
open_sum_3 (array([], dtype=int64),) 0
isnt_active_3 (array([], dtype=int64),) 0
is_lost_3 (array([], dtype=int64),) 0
overdue_loans_3 (array([], dtype=int64),) 0
micro_loans_active_3 (array([], dtype=int64),) 0
is_active_1 (array([], dtype=int64),) 0
open_sum_1 (array([], dtype=int64),) 0
isnt_active_1 (array([], dtype=int64),) 0
is_lost_1 (array([], dtype=int64),) 0
micro_loans_active_1 (array([], dtype=int64),) 0
ratio_all_microloans_3_to_12 (array([], dtype=int64),) 0
ratio_overdue_loans_3_to_12 (array([], dtype=int64),) 0
ratio_history_100 (array([], dtype=int64),) 0
ratio_history_12 (array([], dtype=int64),) 0
fraction_last_x_12 (array([], dtype=int64),) 0
ratio_history_3 (array([], dtype=int64),) 0
fraction_last_x_3 (array([], dtype=int64),) 0
ratio_history_1 (array([], dtype=int64),) 0
fraction_last_x_1 (array([], dtype=int64),) 0
mean_delay_100_with_lag (array([], dtype=int64),) 0
mean_delay_12_with_lag (array([], dtype=int64),) 0
mean_delay_3_with_lag (array([], dtype=int64),) 0
mean_delay_1_with_lag (array([], dtype=int64),) 0
ratio_mean_delay_3_to_12 (array([], dtype=int64),) 0
count_all_credits (array([], dtype=int64),) 0
ratio_pattern_len_to_pattern_1 (array([], dtype=int64),) 0
ratio_pattern_len_to_pattern_2 (array([], dtype=int64),) 0
ratio_pattern_len_to_pattern_3 (array([], dtype=int64),) 0
ratio_pattern_len_to_pattern_4 (array([], dtype=int64),) 0
ratio_pattern_len_to_pattern_bad_len (array([], dtype=int64),) 0
last_microloan_openeddt (array([], dtype=int64),) 0
is type credit card 100 (array([], dtype=int64),) 0
is_type_consumer_100 (array([], dtype=int64),) 0
is_type_micro_100 (array([], dtype=int64),) 0
is_active_type_credit_card_100 (array([], dtype=int64),) 0
is_active_type_consumer_100 (array([], dtype=int64),) 0
is_active_type_micro_100 (array([], dtype=int64),) 0
is_type_credit_card_12 (array([], dtype=int64),) 0
is_type_consumer_12 (array([], dtype=int64),) 0
is_type_micro_12 (array([], dtype=int64),) 0
is_active_type_credit_card_12 (array([], dtype=int64),) 0
is_active_type_consumer_12 (array([], dtype=int64),) 0
is_active_type_micro_12 (array([], dtype=int64),) 0
is_type_credit_card_3 (array([], dtype=int64),) 0
```

```
is_type_consumer_3 (array([], dtype=int64),) 0
is_type_micro_3 (array([], dtype=int64),) 0
is active type credit card 3 (array([], dtype=int64),) 0
is_active_type_consumer_3 (array([], dtype=int64),) 0
is_active_type_micro_3 (array([], dtype=int64),) 0
is_type_credit_card_1 (array([], dtype=int64),) 0
is_type_consumer_1 (array([], dtype=int64),) 0
is_type_micro_1 (array([], dtype=int64),) 0
is_active_type_credit_card_1 (array([], dtype=int64),) 0
is_active_type_consumer_1 (array([], dtype=int64),) 0
is_active_type_micro_1 (array([], dtype=int64),) 0
overall_worst_overdue_state_12 (array([], dtype=int64),) 0
ratio_sum_outstanding_to_open_sum (array([ 2646, 3078, 3644, 4839,
                                                                       65
     7849, 11264, 11285, 11829,
       14644, 14993, 15045, 15311, 15711, 19327, 20002, 20956, 21193,
       21485, 21686, 23204, 23312, 23534, 23724, 24965, 25794, 27152,
       27178, 27963, 28574, 28646, 28698, 28990, 29996, 30095, 32165,
       32352, 32611, 32849, 33393, 33400, 33693, 34682, 35126, 35396,
       35878, 37382, 38213, 38735, 41499, 41584, 41724, 41879, 42247],
      dtype=int64),) 54
target (array([], dtype=int64),) 0
In [31]:
# меняю np.inf на медиану
cr = fillna_inf(cr)
```

baseline

```
In [32]:
```

```
x_train, x_test, y_train, y_test = train_test_split(cr.drop("target", axis=1), cr["target")
```

In [33]:

```
print(x_train.shape)
print(y_train.shape)
print(x_test.shape)
print(y_test.shape)
```

```
(34023, 74)
(34023,)
(8506, 74)
(8506,)
```

In [34]:

```
model = xgb.XGBClassifier(random_state=1)
model.fit(x_train, y_train)
```

Out[34]:

In [35]:

```
pred = model.predict(x_test)
```

In [36]:

```
test_score = confusion_matrix(y_test, pred)
```

In [37]:

```
ax= plt.subplot()
sns.heatmap(test_score, annot=True, fmt='g', ax=ax); #annot=True to annotate cells, ftm
# labels, title and ticks
ax.set_xlabel('Predicted labels');ax.set_ylabel('True labels');
ax.set_title('Confusion Matrix');
ax.xaxis.set_ticklabels(['True', 'False']); ax.yaxis.set_ticklabels(['True', 'False']);
```


In [38]:

```
print(classification_report(y_test, pred))
```

	precision	recall	f1-score	support
0.0	0.75	0.93	0.83	6178
1.0	0.47	0.16	0.23	2328
accuracy			0.72	8506
macro avg	0.61	0.54	0.53	8506
weighted avg	0.67	0.72	0.67	8506

неплохой результат для baseline

In [39]:

```
explainer = shap.Explainer(model, algorithm="tree")
shap_values = explainer(x_train)
```

ntree_limit is deprecated, use `iteration_range` or model slicing instea
d.

In [40]:

shap.plots.waterfall(shap_values[0])

In [41]:

На графиках можно увидеть наиболее значимые признаки

посмотрим распределение целевой переменной

In [42]:

cr.target.value_counts()

Out[42]:

0.00000 30729 1.00000 11800

Name: target, dtype: int64

посмотрим линейную зависимость данных

In [43]:

list_corr, corr = cor(cr, "target") 1.00000 target overall_worst_overdue_state_12 0.10446 ratio_history_100 0.10419 ratio_history_12 0.08024 mean_delay_100_with_lag 0.07500 micro_loans_active_12 -0.07797 micro_loans_active_100 -0.08276 overdue_loans_12 NaN overdue_loans_3 NaN ratio_overdue_loans_3_to_12 NaN Name: target, Length: 75, dtype: float64

Краткий вывод:

Видно, что некоторые признаки сильно коррелируют между собой, что для обучения модели будет не очень хорошо

Лучше от них избавиться на данном этапе

In [44]:

list_corr = dict(list_corr)
list_corr

Out[44]:

```
{'target': 1.0,
  'overall worst overdue state 12': 0.10445678996592271,
  'ratio_history_100': 0.10418744916795468,
  'ratio_history_12': 0.08024497459465531,
  'mean_delay_100_with_lag': 0.07500454052382886,
  'is lost 100': 0.06131998970117157,
  'ratio_history_3': 0.054237302599499694,
  'mean_delay_12_with_lag': 0.053987407871768735,
  'open loan median': 0.04106627856197758,
  'is_lost_12': 0.04047975379988168,
  'is_lost_3': 0.03633040390462604,
  'mean delay 3 with lag': 0.03188488534155772,
  'ratio_history_1': 0.0297240730939936,
  'ratio_pattern_len_to_pattern_bad_len': 0.02687464295209383,
  'is_lost_1': 0.02670666750656655,
  'lastcredit': 0.026328202312190217,
  'ratio_all_microloans_3_to_12': 0.02611643022024763,
<sup>ln</sup>ratio_pattern_len_to_pattern_2': 0.020506145839237547,
forlgse, loan inedianri. Otems 9512137121537,
   ratio_pattern_Ten.to_pattern_3': 0.019444614337089383,
  'ratio_pattérn_len_to_pattern_4': 0.017390374144382367,
  'mean_delay_1_with_lag': 0.015902800000541263,
   last_microloan_openeddt': 0.014773067589946372,
target 1.0 consumer 1': 0.013081021686110533, overall worst overale state 12.0 104233944646262486, time to target target 1.0 104233944646262486,
ratio history 100 0.10118744916795468381678 16795468 115,
  'is_type_consumer_3': 0.009144324633819312,
краптирвивод: Фина зависими с в в зависими в в в зависими в з
   is_active_type_consumer_1': 0.0079106671213074,
  'is_active_type_consumer_3': 0.006604653274036468,
Imis46dtive type_credit_card_3': 0.006355316390335842,
'is active type credit card 1': 0,005779611754077081, signs type credit card 1: 0.005410817399518365,
signs (torn last_x_3': 0.0052849526416825126,
  'is_type_credit_card_3': 0.00515959124783723,
{0i35type620a5ume8712[!la0t00165046ab40p5m9ddt',
  'ˈtatme_tomleststedmitngleseddeh]sum': -0.008155259937400405,
 0i8308884636656764ns where ro'loa0s0092148380057333$5active_100'],
  0i968609845490444reditscardive_12-0.01s136620930006177,
  0i54869430003600454100'isn0.012095342542545697tive_100'],
 0i83t3p2877207482ard[10icro0]0an08452364489815;is_active_100'],
 Of03442435535872222'['i0.028374248479466077jve_100'],
 Or54239B012020110A:to'ppenenu13:,-01023591967800473122,
  Oa568813696089024409$1408658ctive_3', 'is_active_100'],
 0i8407860051886377ns(immic100loan0.080447525135285a08jve_100'],
  0i82387012008546070371191374194412, 'is_active_100'],
  0i50a2568a294pa4a&cr6'open_0u03199471894894283100'],
 0iZ5649&7582486004041103390053020888ctive_1', 'is_active_100'],
 0i50a59048554B52A8cr6'Bount0a04281841000$476ctive_100'],
 0id150800043097866978468729pe_credit_card_100', 'is_active_100'],
  0орб0830Б86580307044186$6300107600pe_credit_card_100', 'is_active_10
0'ls_active_type_credit_card_100': -0.046876789877651336,
  ወወፀጀቨ7ያਯሕ48081502047<u>6</u>2828028295<u>8</u>94pe_micro_100', 'is_active_100'],
 0i6686065406427359rd[100'typ0.04816642135682142tive_100'],
  'is active 12': -0.04968287761423081,
  'is active type micro 12': -0.05031709578439231,
  'isnt active 3': -0.05206561984150432,
  'is_active_type_micro_100': -0.054588700570409904,
  'open_sum_12': -0.05566151154928737,
  'isnt active 1': -0.05684408668858893,
  'isnt active 100': -0.05763505898992622,
```

```
'is active_100': -0.05901845129053918,

Imis_dtype_micro_3': -0.059330236181124166,

'is type_micro_100': -0.0602803095155859,

lencro_tcotumns_-

'is_type_micro_1': -0.06127309224021715,

'count_all_credits': -0.061756389105500326,

Owisht_active_12': -0.06260991424885302,

75micro_loans_active_1': -0.06655805370865521,

'is_type_micro_12': -0.06818836011858545,

'micro_loans_active_3': -0.07285024812150512,

ImmieBo:loans_active_12': -0.07797076994162863,

'micro_loans_active_100': -0.08276300412948036,

crofeTdb: 18BNs_12': nan,

'overdue_loans_3': nan,

'ratio_overdue_loans_3_to_12': nan}

In [49]:

# Удаляю признаки коррелирующие между собой

cr_c = del_columns_corr(cr, signs_corr)
```

In [50]:

```
len(cr_c.columns)
```

Out[50]:

24

In [51]:

```
chech_omissions(cr_c)
```

```
всего строк: 42529
id: кол-во пропусков: 0, процент: 0 %
аде: кол-во пропусков: 0, процент: 0 %
lastcredit: кол-во пропусков: 0, процент: 0 %
time_to_lastcredit_closeddt: кол-во пропусков: 0, процент: 0 %
close_loan_median: кол-во пропусков: 0, процент: 0 %
open_loan_median: кол-во пропусков: 0, процент: 0 %
is active 100: кол-во пропусков: 0, процент: 0 %
is_lost_100: кол-во пропусков: 0, процент: 0 %
overdue loans 12: кол-во пропусков: 0, процент: 0 %
overdue loans 3: кол-во пропусков: 0, процент: 0 %
ratio all microloans 3 to 12: кол-во пропусков: 0, процент: 0 %
ratio_overdue_loans_3_to_12: кол-во пропусков: 0, процент: 0 %
mean_delay_12_with_lag: кол-во пропусков: 0, процент: 0 %
mean_delay_3_with_lag: кол-во пропусков: 0, процент: 0 %
ratio_mean_delay_3_to_12: кол-во пропусков: 0, процент: 0 %
ratio pattern len to pattern 1: кол-во пропусков: 0, процент: 0 %
ratio_pattern_len_to_pattern_2: кол-во пропусков: 0, процент: 0 %
ratio pattern len to pattern 4: кол-во пропусков: 0, процент: 0 %
ratio_pattern_len_to_pattern_bad_len: кол-во пропусков: 0, процент: 0 %
is type consumer 100: кол-во пропусков: 0, процент: 0 %
is type credit card 3: кол-во пропусков: 0, процент: 0 %
overall worst overdue state 12: кол-во пропусков: 0, процент: 0 %
ratio sum outstanding to open sum: кол-во пропусков: 0, процент: 0 %
target: кол-во пропусков: 0, процент: 0 %
```

найдем нелинейную зависимость признаков с целевой переменной

In [52]:

nonlianer = nonlianer_comun(cr_c, "target")

In [53]:

len(nonlianer[0])

Out[53]:

15

Краткий вывод:

14 наиболее значимых признаков зависимых нелинейно

Думаю будет достаточно для начала и получения хорошего baseline

ТК зависимости нелинейные, буду использовать нелинейные модели

In [54]:

nonlianer = list(nonlianer[0])

In [55]:

nonlianer.append("target")

```
In [56]:
nonlianer
Out[56]:
['id',
 'overall_worst_overdue_state_12',
 'open_loan_median',
 'ratio_all_microloans_3_to_12',
 'is_active_100',
 'ratio_sum_outstanding_to_open_sum',
 'lastcredit',
 'mean_delay_12_with_lag',
 'age',
 'is_lost_100',
 'mean_delay_3_with_lag',
 'is_type_consumer_100',
 'ratio_mean_delay_3_to_12',
 'time_to_lastcredit_closeddt',
 'ratio_pattern_len_to_pattern_bad_len',
 'target']
In [57]:
cr_c = cr_c[nonlianer]
In [58]:
cr_c.shape
Out[58]:
(42529, 16)
In [59]:
cr_c.drop("id", inplace=True, axis=1)
```

train model

XGBClassifier

```
In [60]:
```

```
model_fit(xgb.XGBClassifier, cr_c)
                (34023, 14)
x_train.shape:
y_train.shape:
                (34023,)
x_test.shape:
               (8506, 14)
y_test.shape:
               (8506,)
              precision
                            recall f1-score
                                                support
         0.0
                   0.73
                              0.96
                                        0.83
                                                   6140
         1.0
                   0.47
                              0.08
                                        0.14
                                                   2366
                                        0.72
                                                   8506
    accuracy
                   0.60
                              0.52
                                        0.48
                                                   8506
   macro avg
weighted avg
                   0.66
                              0.72
                                        0.64
                                                   8506
Out[60]:
(XGBClassifier(base_score=0.5, booster='gbtree', callbacks=None,
               colsample_bylevel=1, colsample_bynode=1, colsample_bytr
ee=1,
               early_stopping_rounds=None, enable_categorical=False,
Type Markdown and LaTeX: \alpha^2
In [61]:
from sklearn import preprocessing
In [62]:
X = cr_c.drop("target", axis=1)
In [63]:
x = X.values #returns a numpy array
min_max_scaler = preprocessing.MinMaxScaler()
x_scaled = min_max_scaler.fit_transform(x)
df = pd.DataFrame(x scaled, columns=[X.columns])
In [64]:
df["target"] = cr_c["target"]
```

In [65]:

```
model_xgb, x_train, x_test = model_fit(xgb.XGBClassifier, df)
```

x_train.shape: (34023, 14)
y_train.shape: (34023, 1)
x_test.shape: (8506, 14)
y_test.shape: (8506, 1)

dropping on a non-lexsorted multi-index without a level parameter may imp act performance.

	precision	recall	f1-score	support	
0.0	0.73	0.97	0.83	6175	
1.0	0.46	0.08	0.13	2331	
accuracy			0.72	8506	
macro avg	0.60	0.52	0.48	8506	
weighted avg	0.66	0.72	0.64	8506	

catboost

In [66]:

from catboost import CatBoostClassifier

In [67]:

```
model cat, x train, x test = model fit(CatBoostClassifier, df)
                (34023, 14)
x_train.shape:
y_train.shape: (34023, 1)
x_test.shape: (8506, 14)
y_test.shape: (8506, 1)
Learning rate set to 0.046452
dropping on a non-lexsorted multi-index without a level parameter may
impact performance.
0:
        learn: 0.6828558
                                total: 189ms
                                                remaining: 3m 8s
        learn: 0.6729944
1:
                                total: 217ms
                                                remaining: 1m 48s
        learn: 0.6640291
2:
                                total: 242ms
                                                remaining: 1m 20s
        learn: 0.6558172
3:
                                total: 264ms
                                                remaining: 1m 5s
4:
        learn: 0.6484386
                                total: 286ms
                                                remaining: 56.8s
        learn: 0.6418077
                                total: 305ms
5:
                                                remaining: 50.6s
        learn: 0.6357257
                                total: 325ms
                                                remaining: 46s
6:
7:
        learn: 0.6306305
                                total: 342ms
                                                remaining: 42.4s
8:
        learn: 0.6259841
                                total: 357ms
                                                remaining: 39.3s
9:
        learn: 0.6213834
                                total: 372ms
                                                remaining: 36.8s
10:
        learn: 0.6173608
                                total: 387ms
                                                remaining: 34.8s
```

Краткий вывод:

Поиск нелинейных зависимостей и удаление коррелирующих между собой признаков только ухудшили модель. Можно пойти по пути постепенного удаления признаков, начиная с тех, которые менее важны. Для начала, конечно, лучше выбрать модель для дальнейшего обучения.

Для улучшеня признакого пространства можно использовать алоритмы уменьшения размерности. Создать собственные признаки. Например, отношение возраста к возращенным кредитам за весь срок или за месяц и тд.

Посмотреть, какой с ними будет результат.

Хооший Результат дает ансамбль моделей.

Сделать доверительный интервал.

В создании модели хорошо иметь такие признаки, как: наличие работы, наличие машины или квартиры, семейное положение, наличие детей. Если есть возможность, то узнать, на, что берутся деньги.