Lecture 10: Minimum Spanning Trees and Prim's Algorithm

CLRS Chapter 23

Outline of this Lecture

- Spanning trees and minimum spanning trees.
- The minimum spanning tree (MST) problem.
- Prim's algorithm for the MST problem.
 - The algorithm
 - Correctness
 - Implementation + Running Time

Spanning Trees

Spanning Trees: A subgraph T of a undirected graph G = (V, E) is a spanning tree of G if it is a tree and contains every vertex of G.

Spanning Trees

Theorem: Every connected graph has a spanning tree.

Question: Why is this true?

Question: Given a connected graph G, how can you find a spanning tree of G?

Weighted Graphs

Weighted Graphs: A weighted graph is a graph, in which each edge has a weight (some real number).

Weight of a Graph: The sum of the weights of all edges.

Minimum Spanning Trees

A **Minimum Spanning Tree** in an undirected connected weighted graph is a spanning tree of minimum weight (among all spanning trees).

Minimum Spanning Trees

Remark: The minimum spanning tree may not be unique. However, if the weights of all the edges are pairwise distinct, it is indeed unique (we won't prove this now).

Minimum Spanning Tree Problem

MST Problem: Given a connected weighted undirected graph G, design an algorithm that outputs a minimum spanning tree (MST) of G.

Question: What is most intuitive way to solve?

Generic approach: A tree is an acyclic graph. Idea is to start with an empty graph and try to add edges one at a time, always making sure that what is built remains acyclic.

We introduce two greedy algorithms (Prim's and Kruskal's algorithms) for computing a MST.

They differ in how to choose edges to add.

Greedy: make the cheapest possible choice in each step.

What is Prim's Algorithm?

- A greedy algorithm for the MST problem.
- Looks very much like Dijkstra's algorithm:
 Grow a Tree
 - Start by picking any vertex r to be the root of the tree.
 - While the tree does not contain all vertices in the graph find shortest edge leaving the tree and it to the tree.
- Running time is $O((|V| + |E|) \log |V|)$.

More Details

Step 0: Choose any element r; set $S = \{r\}$ and $A = \emptyset$. (Take r as the root of our spanning tree.)

Step 1: Find a lightest edge such that one endpoint is in S and the other is in $V \setminus S$. Add this edge to A and its (other) endpoint to S.

Step 2: If $V \setminus S = \emptyset$, then stop & output (minimum) spanning tree (S, A). Otherwise go to Step 1.

The idea: expand the current tree by adding the lightest (shortest) edge leaving it and its endpoint.

Worked Example

Connected graph

$$S=\{a\}$$

$$V \setminus S = \{b,c,d,e,f,g\}$$

lightest edge =
$$\{a,b\}$$

Prim's Example - Continued

Step 1.1 before $S=\{a\}$ $V \setminus S = \{b,c,d,e,f,g\}$ $A=\{\}$ lightest edge = $\{a,b\}$

Step 1.1 after $S=\{a,b\}$ $V \setminus S = \{c,d,e,f,g\}$ $A=\{\{a,b\}\}$ lightest edge = $\{b,d\}$, $\{a,c\}$

Prim's Example – Continued

Step 1.2 before $S=\{a,b\}$ $V \setminus S = \{c,d,e,f,g\}$ $A=\{\{a,b\}\}$ lightest edge = $\{b,d\}$, $\{a,c\}$

Step 1.2 after $S=\{a,b,d\}$ $V \setminus S = \{c,e,f,g\}$ $A=\{\{a,b\},\{b,d\}\}$ lightest edge = $\{d,c\}$

Prim's Example - Continued

Step 1.3 before $S=\{a,b,d\}$ $V \setminus S = \{c,e,f,g\}$ $A=\{\{a,b\},\{b,d\}\}$ lightest edge = $\{d,c\}$

Step 1.3 after $S=\{a,b,c,d\}$ $V \setminus S = \{e,f,g\}$ $A=\{\{a,b\},\{b,d\},\{c,d\}\}$ lightest edge = $\{c,f\}$

Prim's Example - Continued

Step 1.4 before

$$S = \{a,b,c,d\}$$

$$V \setminus S = \{e,f,g\}$$

$$A = \{\{a,b\},\{b,d\},\{c,d\}\}$$

lightest edge =
$$\{c,f\}$$

Step 1.4 after

$$S = \{a,b,c,d,f\}$$

$$V \setminus S = \{e,g\}$$

$$A = \{\{a,b\},\{b,d\},\{c,d\},\{c,f\}\}$$

lightest edge =
$$\{f,g\}$$

Prim's Example - Continued

Step 1.5 before $S=\{a,b,c,d,f\}$ $V \setminus S = \{e,g\}$ $A=\{\{a,b\},\{b,d\},\{c,d\},\{c,f\}\}$ lightest edge = $\{f,g\}$

Step 1.5 after $S=\{a,b,c,d,f,g\}$ $V \setminus S = \{e\}$ $A=\{\{a,b\},\{b,d\},\{c,d\},\{c,f\},\{f,g\}\}$ lightest edge = $\{f,e\}$

Prim's Example – Continued

Step 1.6 before $S=\{a,b,c,d,f,g\}$ $V \setminus S = \{e\}$ $A=\{\{a,b\},\{b,d\},\{c,d\},\{c,f\},\{f,g\}\}$ lightest edge = $\{f,e\}$

Step 1.6 after $S=\{a,b,c,d,e,f,g\}$ $V \setminus S = \{\}$ $A=\{\{a,b\},\{b,d\},\{c,d\},\{c,f\},$ $\{f,g\},\{f,e\}\}$ $MST \ completed$

Recall Idea of Prim's Algorithm

- **Step 0:** Choose any element r and set $S = \{r\}$ and $A = \emptyset$. (Take r as the root of our spanning tree.)
- **Step 1:** Find a lightest edge such that one endpoint is in S and the other is in $V \setminus S$. Add this edge to A and its (other) endpoint to S.
- **Step 2:** If $V \setminus S = \emptyset$, then stop and output the minimum spanning tree (S, A). Otherwise go to Step 1.

Questions:

- Why does this produce a Minimum Spanning Tree?
- How does the algorithm find the lightest edge and update A efficiently?
- How does the algorithm update S efficiently?

Correctness of Prim's Algorithm

Lemma: Let (S,A) be a subtree of a MST of an undirected graph G=(V,E), where $S\subset V$ and $A\subset E$. Let $e=\{u,v\}$ be an edge such that

- (1) $u \in S$ and $v \in V \setminus S$;
- (2) e has lowest weight among all the edges between a vertex in S and a vertex in $V \setminus S$.

Then $(S \cup \{v\}, A \cup \{e\})$ is a subtree of a MST.

Proof: Let T be a MST of G that contains (S, A). If e is an edge of T, we are done.

Suppose that e is not an edge of T.

There is a unique path from u to v in T. There must be at least one edge $e' = \{u', v'\}$ in the path such that $u' \in S$ and $v' \in V \setminus S$. By (2) above,

$$W(e) \le W(e'). \tag{*}$$

Consider the new tree $T' := (T \cup \{e\}) \setminus \{e'\}$. Since T is MST,

$$W(T) \le W(T') = W(T) - W(e') + W(e)$$

and so $W(e') \leq W(e)$. Combined with (*), this proves that W(e') = W(e), and so W(T') = W(T). Therefore T' is also a MST, and T' contains $(S \cup \{v\}, A \cup \{e\})$.

Correctness of Prim's Algorithm

Lemma: Let (S,A) be a subtree of a MST of an undirected graph G=(V,E), where $S\subset V$ and $A\subset E$. Let $e=\{u,v\}$ be an edge such that

- (1) $u \in S \text{ and } v \in V \setminus S;$
- (2) e has the lowest weight among all the edges between a vertex in S and a vertex in $V \setminus S$.

Then $(S \cup \{v\}, A \cup \{e\})$ is a subtree of a MST.

We can now prove the correctness of Prim's algorithm by induction.

When the algorithm starts, $(\{r\}, \emptyset)$ is definitely a subtree of a MST of G (why).

At each step the algorithm chooses an edge $e = \{u, v\}$ that satisfies (1) and (2) so, from the lemma, $(S \cup \{v\}, A \cup \{e\})$ remains a subtree of some MST of G.

In particular, when the algorithm ends, S = V and A is a tree on V. We know from above that (S, A) is a subtree of some MST of G but, since A itself is a tree on G, this means that A itself is a MST.

Question: How does the algorithm update *S* efficiently?

Answer: Color the vertices. Initially all are white. Change the color to black when the vertex is moved to S. Use $\operatorname{color}[v]$ to store color.

Question: How does the algorithm find the lightest edge and update A efficiently?

Answer:

- (a) Use a priority queue to find the lightest edge.
- (b) Use pred[v] to update A.

Reviewing Priority Queues

Priority Queue is a data structure (can be implemented as a heap) which supports the following operations:

insert(u, key):

Insert u with the key value key in Q.

u = extractMin():

Extract the item with the minimum key value in Q.

decreaseKey(u, new-key):

Decrease u's key value to new-key.

Remark: Priority Queues can be implemented so that each operation takes time $O(\log |Q|)$. See CLRS!

Using a Priority Queue to Find the Lightest Edge

Each item of the queue is a triple (u, pred[u], key[u]), where

- u is a vertex in $V \setminus S$,
- key[u] is the weight of the lightest edge from u to any vertex in S, and
- pred[u] is the endpoint of this edge in S.
 The array is used to build the MST tree.

→ f has the minimum key

key[i] = 23, pred[i] = f

After adding the new edge and vertex f, update the key[v] and pred[v] for each vertex v adjacent to f

Description of Prim's Algorithm

Remark: G is given by adjacency lists. The vertices in $V \setminus S$ are stored in a priority queue with key=value of lightest edge to vertex in S.

```
Prim(G, w, r)
\{ \text{ for each } u \in V \}
                                               initialize
   \{ key[u] = +\infty;
      color[u] = W;
   key[r] = 0;
                                               start at root
   pred[r] = NIL;
   Q = \text{new PriQueue}(V);
                                               put vertices in Q
                                               until all vertices in MST
   while (Q \text{ is nonempty})
   { u=Q.extraxtMin();
                                               lightest edge
       for each (v \in adj[u])
          if ((color[v] == W)\&(w[u, v] < key[v]))
                                              new lightest edge
          key[v] = w[u, v];
          Q.decreaseKey(v, key[v]);
          pred[v] = u;
       color[u] = B;
```

When the algorithm terminates, $Q = \emptyset$ and the MST is

$$T = \{\{v, pred[v]\} : v \in V \setminus \{r\}\}.$$

The pred pointers define the MST as an inverted tree rooted at r.

Example for Running Prim's Algorithm

u	a	b	c	d	e	f
key[u]						
pred[u]						

Analysis of Prim's Algorithm

Let n = |V| and e = |E|. The data structure PriQueue supports the following two operations: (See CLRS)

- $O(\log n)$ to extract each vertex from the queue. Done once for each vertex = $O(n \log n)$.
- O(log n) time to decrease the key value of neighboring vertex.

Done at most once for each edge = $O(e \log n)$.

Total cost is then

$$O((n+e)\log n)$$

Analysis of Prim's Algorithm – Continued

```
Prim(G, w, r) {
  for each (u in V)
     key[u] = +infinity;
                                                            2n
     color[u] = white;
  \text{key}[r] = 0;
  pred[r] = nil;
  Q = new PriQueue(V);
                                                              n
  while (Q. nonempty())
     u = Q.extractMin();
                                         O(\log n)
     for each (v in adj[u])
       if ((color[v] == white) &
           (w(u,v) < kev[v])
                                           O(deg(u) \log n)
          key[v] = w(u, v);
          Q.decreaseKey(v, key[v]);
                                         O(\log n)
          pred[v] = u;
     color[u] = black;
                             [O(\log n) + O(\deg(u) \log n)]
                        u in V
```

Analysis of Prim's Algorithm – Continued

So the overall running time is

$$T(n,e)$$
= $3n + 2 + \sum_{u \in V} [O(\log n) + O(\deg(u) \log n)]$
= $3n + 2 + O\left[(\log n) \sum_{u \in V} (1 + \deg(u))\right]$
= $3n + 2 + O[(\log n)(n + 2e)]$
= $O[(\log n)(n + 2e)]$
= $O[(\log n)(n + e)]$
= $O[(|V| + |E|) \log |V|]$.