。Requirements

Course:

CSA2001 - Fundamentals of AI and ML Project-Based Learning – Autonomous Delivery Agent

Project Title:

Design and Implementation of an Autonomous Delivery Agent in a 2D Grid City

Objective:

To design an intelligent autonomous agent capable of navigating a **2D grid-based city** to deliver packages efficiently. The agent must plan optimal routes considering **dynamic obstacles**, **terrain costs**, and **time/fuel constraints** using various AI search algorithms.

Functional Requirements:

- 1. Environment Model:

 Represent static obstacles (walls, buildings, etc.).

 Incorporate varying terrain movement costs (e.g., road, grass, water).
 - Include dynamic obstacles like moving vehicles.
- 2. Rational Agent:

 The agent must make rational decisions to minimize delivery time and fuel usage.

3. Search Algorithms Implementation:

Uninformed Search: BFS or Uniform-cost Search or Informed Search: A* (with admissible heuristic) or Local Search: Hill-climbing with random restarts or Simulated Annealing

4. Dynamic Replanning:

 Replan when new obstacles appear or when paths are blocked dynamically.

5. Algorithm Comparison:

 Evaluate and compare each algorithm's performance on different maps.
 Metrics: path cost, number of nodes expanded, time taken.

6. Analysis Report:

 Provide detailed analysis describing when and why certain algorithms perform better.

Required Deliverables:

1. Source Code (Well-documented): o

Preferably in Python. o Include CLI to run each planner.

- o Must include:
 - Logging of dynamic replanning
 - Modular structure with comments and doestrings

2. Test Maps (Minimum 4):

- Small
 o Medium
 o Large
 o One with dynamic moving obstacles
 o Maps must be in .txt or grid file format.
- 3. Short Report (Max 6 pages): Environment model Agent and algorithm design Heuristics used Experimental results with tables and plots Analysis and conclusion

Technical Constraints & Assumptions:

- Grid cells have integer movement costs ≥ 1 Moving obstacles:
 - Move deterministically based on a known schedule (for A*, BFS) or move unpredictably (for local search testing)
- Agent can move in 4 directions: up, down, left, right (diagonal optional – mention in report)
- Code must be testable and reproducible (include dependencies and instructions)

Tools & Libraries:

- Programming Language: Python 3.8+ · Libraries:
 - numpy, matplotlib, pandas, pygame (for visualization), tqdm
- · CLI Interface: argparse

Version Control: Git (with README and setup instructions)