Times Series Assignment5

12111603 Tan Zhiheng 2023-12-04

Question 1

(a)

Consider the following seasonal AR model:

$$(1 - \phi B)(1 - \Phi B^s)X_t = W_t,$$

which is

$$X_t - \phi W_{t-1} - \Phi X_{t-s} + \phi \Phi X_{t-s-1} = W_t$$

where $W_t \sim WN(0, \sigma^2)$.

Thus, we have

$$\begin{split} \gamma_w(h) &= Cov(X_{t+h} - \phi W_{t+h-1} - \Phi X_{t+h-s} + \phi \Phi X_{t+h-s-1}, \ X_t - \phi W_{t-1} - \Phi X_{t-s} + \phi \Phi X_{t-s-1}) \\ &= \gamma_x(h) - \phi \gamma_x(h+1) - \Phi \gamma_x(h+s) + \phi \Phi \gamma_x(h+s+1) \\ &- \phi [\gamma_x(h-1) - \phi \gamma(h) - \Phi \gamma_x(h+s-1) + \phi \Phi \gamma_x(h+s)] \\ &- \Phi [\gamma_x(h-s) - \phi \gamma_x(h+1-s) - \Phi \gamma_x(h) + \phi \Phi \gamma_x(h+1)] \\ &+ \phi \Phi [\gamma_x(h-s-1) - \phi \gamma_x(h-s) - \Phi \gamma_x(h-1) + \phi \Phi \gamma_x(h)] \end{split}$$

Then apply $\gamma_w(h) = \int_{-\frac{1}{2}}^{\frac{1}{2}} g_w(\nu) e^{2\pi i \nu h} d\nu$, $\gamma_x(h) = \int_{-\frac{1}{2}}^{\frac{1}{2}} f_x(\nu) e^{2\pi i \nu h} d\nu$ and by the uniqueness of Fourier transformation, we can derive that $\frac{g_w(\nu)}{f_x(\nu)} = \frac{\sigma^2}{f_x(\nu)} = \frac{\sigma^2}{f_x(\nu)}$

$$egin{aligned} [1+\phi^2+\Phi^2+(\phi\Phi)^2] - 2(\phi+\phi\Phi^2)\cos(2\pi
u) - 2(\Phi+\phi^2\Phi)\cos(2\pi
u s) \ + 2\phi\Phi[\cos(2\pi
u(s+1)) + \cos(2\pi
u(s-1))]. \end{aligned}$$

Therefore, the spectral density of X_t is $f_x(\nu) =$

$$\frac{\sigma^2}{1+\phi^2+\Phi^2+(\phi\Phi)^2-2(\phi+\phi\Phi^2)\cos(2\pi\nu)-2(\Phi+\phi^2\Phi)\cos(2\pi\nu s)+2\phi\Phi[\cos(2\pi\nu(s+1))+\cos(2\pi\nu(s-1))]}.$$

(b)

library (forecast)

```
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
```

```
phi <- rep(0,13)
phi[1] <- 0.5
phi[12]<- 0.9
phi[13] <- -0.45
set.seed(12)
simulated_data \leftarrow arima.sim(n = 1000, list(ar = phi))
spec <- spec.pgram(simulated_data, spans = c(2), taper = 0, plot = FALSE)</pre>
par(mfrow = c(1, 1))
plot(spec, main = "Spectral density plot", col = "blue")
    my_function <- function(sigma_squared, phi, Phi, x) {</pre>
      result <- sigma_squared /
        (1 + phi^2 + Phi^2 + (phi*Phi)^2
      - 2*(phi+ phi*Phi^2)*cos(2*pi*x)
      -2*(Phi + phi^2*Phi)*cos(2*pi*x*12)
      + 2*phi*Phi*(cos(2*pi*x*13) + cos(2*pi*x*11)))
      return (result)
    }
  curve(my\_function(sigma\_squared = 1, phi = 0.5, Phi = 0.9, x), from = 0, to = 0.5,
        col = "red", add = TRUE)
  legend("bottomleft", legend = c("practical", "theoretical"),
         fill = c("blue", "red"), cex = 1 )
```

Spectral density plot

The theoretical and practical results are consistent.

(c)

Similarly, for times series $X_t^{(1)}$ which satisfies

$$X_t^{(1)} - 0.5 X_{t-1}^{(1)} = W_t,$$

we can derive its spectral density:

$$f_{X_t^{(1)}}(
u) = rac{\sigma^2}{1-\cos(2\pi
u)+0.25}.$$

```
set.seed(12)
ts_data <- arima.sim(n = 1000, model = list(order = c(1,0,0), ar = 0.5))
spec <- spec.pgram(ts_data, spans = c(2), taper = 0, plot = FALSE)
plot(spec, main = "Spectral density plot of AR(1) with \( \phi = 0.5"\), col = "blue")

my_function1 <- function(sigma_squared, phi, x) {
    result <- sigma_squared / (1 - 2 * phi * cos(2 * pi * x) + phi^2)
    return(result)
}

curve(my_function1(sigma_squared = 1, phi = 0.5, x), from = 0, to = 0.5
    , col = "red", add = TRUE)
legend("bottomleft", legend = c("practical", "theoretical"),
    fill = c("blue", "red"), cex = 1)</pre>
```

Spectral density plot of AR(1) with $\phi = 0.5$

Again by performing the same method, for times series $X_t^{(2)}$ which satisfies

$$X_t^{(2)} - 0.9 X_{t-12}^{(2)} = W_t, \,$$

we can derive its spectral density:

$$f_{X_t^{(2)}}(
u) = rac{\sigma^2}{1 - 1.8\cos(24\pi
u) + 0.81}.$$

```
set.seed(12)
phi <- rep(0,12)
phi[12] <- 0.9
ts_data <- arima.sim(n = 1000, model = list(ar = phi))
spec <- spec.pgram(ts_data, spans = c(2), taper = 0, plot = FALSE)
plot(spec, main = "Spectral density plot of seasonal AR(1) with Φ = 0.9", col = "blue")

my_function2 <- function(sigma_squared, phi, x) {
    result <- sigma_squared / (1 - 2 * phi * cos(24 * pi * x) + phi^2)
    return(result)
}

curve(my_function2(sigma_squared = 1, phi = 0.9, x), from = 0, to = 0.5,
    , col = "red", add = TRUE)
legend("bottomleft", legend = c("practical", "theoretical"),
    fill = c("blue", "red"), cex = 1 )</pre>
```

Spectral density plot of seasonal AR(1) with $\Phi = 0.9$

(d)

```
my_function <- function(sigma_squared, phi, Phi, x) {</pre>
                 result <- sigma_squared /
                       (1 + phi^2 + Phi^2 + (phi*Phi)^2
                 - 2*(phi+ phi*Phi^2)*cos(2*pi*x)
                 - 2*(Phi + phi^2*Phi)*cos(2*pi*x*12)
                  + 2*phi*Phi*(cos(2*pi*x* 13) + cos(2*pi*x*11)))
                  return (result)
      curve(my_function(sigma_squared = 1, phi = 0.5, Phi = 0.9, x), from = 0, to = 0.5, ylab = "spectrum", xlab="frequency",
 ylim = c(0, 150), col = "darkgreen")
      my_function1 <- function(sigma_squared, phi, x) {</pre>
      result \langle - \text{sigma\_squared} / (1 - 2 * \text{phi} * \cos(2 * \text{pi} * x) + \text{phi}^2)
      return (result)
curve(my_function1(sigma_squared = 1, phi = 0.5, x), from = 0, to = 0.5
                 , col = "blue", add = TRUE)
\verb|my_function2| \leftarrow \verb|function(sigma_squared, phi, x)| \{
      result <- sigma_squared / (1 - 2 * phi * cos(24 * pi * x) + phi^2)
      return(result)
curve(my\_function2(sigma\_squared = 1, phi = 0.9, x), from = 0, to = 0.5,
                 , col = "orange", add = TRUE)
 legend ("topright", legend = c ("Spectral density of the original times series", "Spectral density of AR(1) part", "Spectral density of AR(2) part", "Spectral density of AR(3) part", "Spectral density of AR(4) part", "Spectral density of AR(4
 density of seasonal AR(1) part"), fill = c("darkgreen", "blue", "orange"))
```


According to the spectral density plots, we can maintain that the seasonal AR(1) part dominates the seasonality of the original times series.

Question 2

(a)

From the inverse Fourier transformation, we have

$$\gamma(0) = \int_{-rac{1}{2}}^{rac{1}{2}} f(
u) e^{2\pi i
u 0} d
u = \int_{rac{1}{6} \le |
u| \le rac{1}{2}}^{} 5 \; d
u = rac{5}{3}$$

and

$$\gamma(1) = \int_{-rac{1}{2}}^{rac{1}{2}} f(
u) e^{2\pi i
u} d
u = \int_{rac{1}{6} \le |
u| \le rac{1}{3}}^{} 5 \cos(2\pi
u) d
u = rac{5}{\pi} [\sin(rac{2\pi}{3}) - \sin(rac{\pi}{3})] = 0.$$

(b)

Since

$$\gamma_{y}(h) = Cov(X_{t+h} - X_{t+h-12}, \ X_t - X_{t-12}) = 2\gamma_{x}(h) - \gamma_{x}(h+12) - \gamma_{x}(h-12),$$

then apply inverse Fourier transformation we obtain

$$\int_{-rac{1}{2}}^{rac{1}{2}}f_y(
u)e^{2\pi i
u h}d
u=\int_{-rac{1}{2}}^{rac{1}{2}}[2-2\cos(24\pi
u)]f_x(
u)e^{2\pi i
u h}d
u.$$

Due to the uniqueness of Fourier transformation, we have

$$f_y(
u) = [2 - 2\cos(24\pi
u)]f_x(
u).$$

Consequently, the spectral density of Y_t is

$$f_y(
u) = \left\{egin{array}{ll} 10 - 10\cos(24\pi
u), & rac{1}{6} \leq |
u| \leq rac{1}{3} \ 0, & else. \end{array}
ight.$$

Question 3

(a)

Consider the model $X_t-0.99X_{t-1}=W_t$, where $W_t\sim WN(0,\sigma^2)$, we have $\gamma_w(h)=Cov(X_{t+h}-0.99X_{t+h-3},\ X_t-0.99X_{t-3})=(1+0.99^2)\gamma_x(h)-0.99[\gamma_x(h+3)+\gamma_x(h-3)]$. Then apply inverse Fourier transformation $\gamma(h)=\int_{-\frac{1}{2}}^{\frac{1}{2}}f(\nu)e^{2\pi i\nu h}d\nu$ and notice the uniqueness of Fourier transformation, we will obtain

$$f_w(
u) = [1 + 0.99^2 - 1.98\cos(6\pi
u)]f_x(
u).$$

Thus, the spectral density of X_t is

$$f_x(
u) = rac{f_w(
u)}{1 + 0.99^2 - 1.98\cos(6\pi
u)} = rac{1}{1 + 0.99^2 - 1.98\cos(6\pi
u)}.$$

```
my_function <- function(sigma_squared, phi, x) {
  result <- sigma_squared / (1 - 2 * phi * cos(6 * pi * x) + phi^2)
  return(result)
}

curve(my_function(sigma_squared = 1, phi = 0.99, x), from = 0, to = 0.5, ylim = c(0,2000)
  , col = "blue", main = "Spectral density of Xt", xlab = "frequency", ylab = "spectrum")</pre>
```

Spectral density of Xt

(b)

Check the spectral density plot and we can figure out that it shows an obvious sudden peak at frequency $\nu = 0.33$ approximately, which means the times series X_t exhibit an oscillation with frequency 0.33, i.e., the period is 3 approximately.

```
set.seed(123)
ts <- arima.sim(model = list(ar = c(0,0,0.99)), n = 100)
plot(ts, col = "blue", main = "Times series plot")</pre>
```

Times series plot

From the plot we can maintain that the times series X_t oscillates with period 3 approximately, which is consistent with the conclusion of part (b).

(d)

Since $Y_t = \frac{X_{t-1} + X_t + X_{t+1}}{3}$, then we have

$$\gamma_y(h) = rac{1}{9}[3\gamma_x(h) + 2(\gamma_x(h+1) + \gamma(h-1)) + (\gamma_x(h-2) + \gamma_x(h+2))].$$

Thus, by performing the inverse Fourier transformation and notice the uniqueness of Fourier transformation, we can obtain that

$$f_y(
u) = [rac{1}{3} + rac{4}{9} \cos(2\pi
u) + rac{2}{9} \cos(4\pi
u)] f_x(
u) = rac{rac{1}{3} + rac{4}{9} \cos(2\pi
u) + rac{2}{9} \cos(4\pi
u)}{1 + 0.99^2 - 1.98 \cos(6\pi
u)}.$$

```
my_function( <- function(phi, x) {
  result <- (1/3 + 4*cos(2*pi*x)/4 + 2*cos(4*pi*x)/9) / (1 - 2 * phi * cos(6 * pi * x) + phi^2)
  return(result)
}

curve(my_function1( phi = 0.99, x), from = 0, to = 0.5, ylim = c(-500,2000)
        , col = "blue", main = "Spectral density of Xt", xlab = "frequency", ylab = "spectrum")

my_function <- function(sigma_squared, phi, x) {
  result <- sigma_squared / (1 - 2 * phi * cos(6 * pi * x) + phi^2)
  return(result)
}

curve(my_function(sigma_squared = 1, phi = 0.99, x), from = 0, to = 0.5, ylim = c(0,2000)
        , col = "red", main = "Spectral density of Xt", xlab = "frequency", ylab = "spectrum", add =TRUE)
legend("topright", legend = c("Spectral density of Xt", "Spectral density of Yt"),
        fill = c("red", "blue"))</pre>
```

Spectral density of Xt

Mathematically, $f_y(\nu) = \left[\frac{1}{3} + \frac{4}{9}\cos(2\pi\nu) + \frac{2}{9}\cos(4\pi\nu)\right]f_x(\nu)$ while graphically, they both exhibit an obvious sudden peak at the same frequency and two spectral density plots coincide mostly except around frequency $\nu = 0.33$.

(e)

```
set.seed(123) ts \leftarrow arima.sim(model = list(ar = c(0,0,0.99)), n = 100) filtered \leftarrow filter(ts, rep(1/3,3), side = 2) plot(filtered, col = "blue", main = "Plot of times series after filtered")
```

Plot of times series after filtered

The filtered times series Y_t does NOT exhibit an oscillatory behavior, which cannot support the spectral density plot in part (d). For detail, we plot both the practical and theoretical spectral density plots of Y_t as follows.

```
par(mfrow = c(2,1))
spec <- spec.pgram(filtered[2:99], spans = c(2), taper = 0, plot = FALSE)
plot(spec, main = "Practical spectral density plot of Yt", col = "blue")

my_function1 <- function(phi, x) {
  result <- (1/3 + 4*cos(2*pi*x)/4 + 2*cos(4*pi*x)/9) / (1 - 2 * phi * cos(6 * pi * x) + phi^2)
  return(result)
}

curve(my_function1( phi = 0.99, x), from = 0, to = 0.5, ylim = c(-500,2000)
  , col = "red", main = "Theoretical spectral density plot of Yt", xlab = "frequency", ylab = "spectrum")</pre>
```

Practical spectral density plot of Yt

Theoretical spectral density plot of Yt

Confidently, we can maintain that the practical results in part (e) are inconsistent with the theoretical results in part (d).

Question 4

```
set.seed(123)
startvalue <- rnorm(13)
ts <- rep(0, 413)
ts[1:13] <- startvalue
for (t in 14:413) {
   ts[t] <- 0.5*ts[t-1] + 0.7*ts[t-12] - 0.35*ts[t-13]
}
ts <- as.ts(ts)
acf(ts, main = "Sample ACF Plot", lag.max = 100)</pre>
```

Sample ACF Plot

Consider the equivalent seasonal ARMA model

$$X_t = 0.5X_{t-1} + 0.7X_{t-12} - 0.35X_{t-13} + W_t$$

where $W_t \sim WN(0, \sigma^2)$.

Notice that for any time t, X_t is determined only by X_{t-1} , X_{t-12} and X_{t-13} , which means $\gamma(h) = 0$ for all $h \notin \{0, k, 12k, 13k\}$ where $k \in \mathbb{Z}$. Moreover, we can obtain

$$\gamma(h) = 0.5\gamma(h-1) + 0.7\gamma(h-12) - 0.35\gamma(h-13).$$

Since $|\phi_{12}| = 0.7$ is the largest one of $|\phi_1|$, $|\phi_{12}|$ and $|\phi_{13}|$, which indicates the seasonal AR part $X_t = 0.7X_{t-12} + W_t$ dominates the times series to some extent, then we can approximately maintain that $\gamma(12h)$ should exhibit an exponentially decreasing behaviour.

Consequently, we give some properties of true ACF should behave:

- $\gamma(h) = 0$ for all $h \notin \{0, k, 12k, 13k\}$ where $k \in \mathbb{Z}$.
- $\gamma(12h)$ should exhibit an exponential decreasing behaviour.

From the sample ACF plot, we discover that it substantially obey the properties above. Though $\hat{\gamma}(2)$ is beyond 95% confidence interval, we are still able to draw the conclusion that the sample ACF is consistent with the true theoretical ACF.