HOCHSCHULE BONN-RHEIN-SIEG

PMR, Quiz 03

SUMMER SEMESTER 2018

1 Ancs	wer the following questions:	
(a)	What is marginalisation?	
		/ 1
(b)	Write down the law of total probability (the conditioning rule).	_ / 1
(0)	write down the law of total probability (the conditioning rate).	
		_/1
(c)	What is the qualification problem?	
		_/1
(d)	What is conditional independence?	
		/ 1
(e)	Why is Bayes' rule useful in practice?	_/1
(0)	why is bayes rule useful in practice.	
		_/1
(f)	What are mutually exclusive and exhaustive events?	
		_/1
(g)	What is inference? How can we infer the distribution of a variable X given an e set of variables e ?	vidence
	set of variables c:	
		_/1
(h)	When do we say that two events are independent? Why do we care about independent	
	when specifying probability distributions?	
		1.4
		/ 1

^	C1 41 4 D	/ A	DIO	, D	(1 2	γ\ D	/ DI	α			ח	/ 4	רבו	α	, D	/ A I	α	
2.	Show that P	(A, .	B[C])=P	(A C	$^{\prime})P$	(B	(C)	is eq	juivalent t	oP	(A	B	, C)=P	(A	C).

_ / 3

3. Assume that we are given two random variables X and Y, both of which are discrete, such that X takes the values 0 and 1, while Y takes the values 0, 1, and 2. The probability distribution functions of the random variables are given as follows:

$$f(x) = \begin{cases} \frac{1}{3}, & x = 0\\ \frac{2}{3}, & x = 1\\ 0, & \text{otherwise} \end{cases}$$

$$f(y) = \begin{cases} \frac{1}{4}, & y = 0, 2\\ \frac{1}{2}, & y = 1\\ 0, & \text{otherwise} \end{cases}$$

Calculate the joint probability distribution of X and Y under the assumption that the variables are independent. Write your results in the following table:

X	0	1	2
0			
1			

_/3

- 4. Let's revisit the youBot tool picking problem from last week's quiz and assignment. In the problem, we assumed that a box in the RoboCup@Work lab has 100 tools inside 20 wrenches, 50 screwdrivers, and 30 pairs of pliers. If the robot picks up a wrench, there is a 0.2 probability that it will drop it; similarly, there is a 0.1 probability that it will drop a screwdriver and a 0.3 probability that it will drop a pair of pliers.
 - (a) What is the prior probability that the robot will pick up a wrench?

_/1

(b) What is the probability that a tool will be dropped?

/ 2

(c) If we know that a tool was dropped, what is the probability that a screwdriver had been picked up?

/ 3