Mathus. Тепловые двигатели. Задачи 40, 44, 46

Задача 40. В архиве лорда Кельвина нашли график циклического процесса, совершенного над фиксированным количеством одноатомного идеального газа (рис.). От времени чернила выцвели, и информация про направления некоторых процессов была утрачена. Также была утрачена и информация про то, что отложено по оси абсцисс. Известно лишь, что на оси абсцисс отложена одна из следующих величин: объем, давление, температура или плотность, а шкала выполнена в условных единицах. По оси ординат отложена молярная теплоемкость газа С. Найдите максимально возможный КПД цикла.

Возможное решение. Заметим, что цикл состоит из трех процессов, с теплоемкостями $\frac{5}{2}R, \frac{3}{2}R$ и 2R, значит первые два процесса это соответственно — изохорический, изобарический. Выясним какой процесс имеет теплоемкость 2R.

$$C = \frac{dQ}{dT} = \frac{\frac{3}{2}(PdV + VdP) + PdV}{\frac{1}{R}(PdV + VdP)} = 2R$$

откуда получим PdV = VdP или $\frac{P}{V} = \frac{dP}{dV}$, что соответствует процессу в котором давление пропорционально объему.

Заметим, что изохорический процесс на графике в условии представлен в виде точки, что означает, что по оси абсцисс отложен объем или плотность. Рассмотрим вариант, где по оси абсцисс отложен объем. Тогда используя тот факт, что один из процессов - это изобарическое расширение и что изохорический процесс происходит при наименьшем значении объема на изобаре, получаем следующий вид цикла (рис. 27).

Найдем его КПД, обозначив минимальные давления и объем за P_0 и V_0 .

$$\eta = \frac{A}{Q_{\text{пол}}} = \frac{\frac{1}{2} \cdot 2P_0 \cdot 2V_0}{\frac{3}{2} \left(3P_0 \cdot 3V_0 - P_0V_0\right) + 3P_0 \cdot 2V_0} = \frac{2P_0V_0}{18P_0V_0} = 1/9$$

Если по оси абсцисс графика из условия отложено ρ или $\frac{1}{V}$, то соответствующий график процесса представлен на рисунке (рис. 28).

Рассчитаем КПД цикла в этом случае:

$$\eta = \frac{A}{Q_{\text{пол}}} = \frac{\frac{1}{2} \cdot 2P_0 \cdot 2V_0}{\frac{3}{2} \left(3P_0 \cdot 3V_0 - P_0V_0\right) + \frac{P_0 + 3P_0}{2} \cdot 2V_0} = \frac{2P_0V_0}{16P_0V_0} = 1/8$$

Таким образом максимальный $K\Pi Д$ цикла равен 1/8.

Задача 44. Моль гелия расширяется изобарически, совершая работу 3,4 Дж, затем изохорически уменьшают его температуру, и, наконец, сжимают ади-абатически, возвращая в начальное состояние. Найдите к.п.д. цикла, если в адиабатическом процессе над газом была совершена работа 1,7 Дж.

Возможное решение. Работа газа за цикл: A=3,4-1,7=1,7 Дж. Газ получает тепло при изобарическом расширении. Из первого начала термодинамики следует, что в изобарических процессах с одноатомным идеальным газом величины $Q, \Delta U$ и A всегда относятся соответственно, как 5:3:2. Значит, $Q_+ = \frac{5}{2}A_{12} = 2, 5 \cdot 3, 4 = 8, 5$ Дж. К.п.д. цикла равен

$$\eta = \frac{A}{Q_{+}} = \frac{3, 4 - 1, 7}{8, 5} = 0, 2$$

Задача 46. Идеальный одноатомный газ (количество вещества ν) участвует в циклическом процессе, состоящем из двух изотерм и двух изохор. При изохорическом нагревании газ получает количество теплоты Q_1 , а при изотермическом расширении — количество теплоты Q_2 . Минимальная температура газа в данном циклическом процессе равна T_{min} . Найдите:

- а) максимальную температуру газа;
- б) количества теплоты, отданные газом при изохорическом охлаждении и изотермическом сжатии;
- в) работу, совершённую газом на каждой из стадий процесса;
- г) КПД теплового двигателя, работающего по рассматриваемому циклу.

Возможное решение. Количество теплоты Q_1 , сообщаемое газу при изохорическом нагревании от температуры T_{\min} , которую газ имел на нижней изотерме (см. рисунок), до максимальной температуры T_{\max} на верхней изотерме, идёт на изменение его внутренней энергии:

$$Q_1 = (3/2)\nu R \left(T_{\text{max}} - T_{\text{min}}\right)$$

Следовательно, $T_{\max} = T_{\min} + \frac{Q_1}{(3/2)\nu R}$.

Заметим, что величины работ A_2 и A_4 , совершаемых газом на изотермических стадиях, относятся, как площади криволинейных трапеций (см. рисунок) под гиперболами, описываемыми следующими уравнениями: $p = \nu R T_{\rm max}/V$ (верхняя изотерма) и $p = \nu R T_{\rm min}/V$ (нижняя изотерма). Поскольку при изменении объёма на малую величину ΔV газ совершает работу

$$\Delta A = (\nu R \Delta V/V)T$$

, то величина работы, совершён-ной в изотермическом процессе, пропорциональна температуре T, которую имеет газ в этом процессе. Поэтому $A_2/|A_4| =$ $T_{\rm max}/T_{\rm min}$.

Таким образом, можно найти работы, совершаемые газом на каждой из стадий данного циклического процесса.

- 1) Изохорическое нагревание: $A_1 = 0$.
- 2) Изотермическое расширение: $A_2 = Q_2$, так как внутренняя энергия газа не изменяется.
- 3) Изохорическое охлаждение: $A_3 = 0$.
- 4) Изотермическое сжатие:

$$A_4 = -A_2 \frac{T_{\min}}{T_{\max}} = -Q_2 \frac{(3/2)\nu RT_{\min}}{(3/2)\nu RT_{\min} + Q_1}$$

При изохорическом охлаждении (стадия 3) газ отдаёт количество теплоты $|Q_3| = (3/2)\nu R (T_{\rm max} - T_{\rm min}) = Q_1$, а при изотермическом сжатии (стадия 4) - количество теплоты

$$|Q_4| = |A_4| = Q_2 \frac{(3/2)\nu RT_{\min}}{(3/2)\nu RT_{\min} + Q_1}$$

 $K\Pi \coprod \eta$ теплового двигателя, работающего по рассматриваемому циклу, равен отношению совершённой работы

$$A = A_2 + A_4 = A_2 \left(1 - \frac{T_{\min}}{T_{\max}} \right) = Q_2 \left(1 - \frac{T_{\min}}{T_{\max}} \right)$$

к полученному количеству теплоты $Q_1 + Q_2$. Следовательно,

$$\eta = \frac{Q_1 Q_2}{(Q_1 + Q_2) \left(\frac{3}{2} \nu R T_{\min} + Q_1\right)}$$

Ответ:

a)
$$T_{\text{max}} = T_{\text{min}} + \frac{Q_1}{(3/2)\nu R}$$

6)
$$|Q_3| = Q_1, |Q_4| = Q_2 \frac{(3/2)\nu RT_{\min}}{(3/2)\nu RT_{\min} + Q_1}$$

a)
$$T_{\max} = T_{\min} + \frac{Q_1}{(3/2)\nu R}$$

6) $|Q_3| = Q_1, |Q_4| = Q_2 \frac{(3/2)\nu RT_{\min}}{(3/2)\nu RT_{\min} + Q_1}$
B) $A_1 = A_3 = 0, A_2 = Q_2, A_4 = -Q_2 \frac{(3/2)\nu RT_{\min}}{(3/2)\nu RT_{\min} + Q_1}$
 Γ) $\eta = \frac{Q_1Q_2}{(Q_1+Q_2)\left(\frac{3}{2}\nu RT_{\min} + Q_1\right)}$

$$\Gamma) \eta = \frac{Q_1 Q_2}{(Q_1 + Q_2) \left(\frac{3}{2} \nu R T_{\min} + Q_1\right)}$$