Ιόνιο Πανεπιστήμιο – Τμήμα Πληροφορικής Αρχιτεκτονική Υπολογιστών 2022-23

Αρχιτεκτονικές Συνόλου Εντολών

(Instruction Set Architectures - ISA)

http://mixstef.github.io/courses/comparch/

Μ.Στεφανιδάκης

Ο (μικρο)επεξεργαστής

- (Micro)processor
 - Μέρος ενός ευρύτερου υπολογιστικού συστήματος
 - Αρχικά: μόνο η Κεντρική Μονάδα Επεξεργασίας (ΚΜΕ)
 - Central Processing Unit (CPU)
 - Περιέχει σήμερα πολλαπλές υπομονάδες επεξεργασίας
 - Cores
 - Με διαφορετικά χαρακτηριστικά ή/και ρόλους
 - Και μέρος της ιεραρχίας μνήμης
 - Καθώς και μέρος των μονάδων ελέγχου συσκευών εισόδουεξόδου

Κεντρική Μονάδα Επεξεργασίας

- Central Processing Unit (CPU)
 - Ένας όρος που τείνει προς εξαφάνιση
 - Μετά την εμφάνιση των πολλών/διαφορετικών μονάδων επεξεργασίας στο ίδιο τσιπ
- Ποιος ο ρόλος μιας Μονάδας Επεξεργασίας
 - Μετασχηματίζει (επεξεργάζεται) δεδομένα σύμφωνα με ένα πρόγραμμα ελέγχου
 - Το πρόγραμμα ελέγχου αποτελείται από εντολές μηχανής

Το μοντέλο «von Neumann»

υπολογιστικό σύστημα

- Το πρόγραμμα ελέγχου, όπως και τα δεδομένα, αποθηκεύονται στη μνήμη του υπολογιστή
 - "Stored-program computer"

Εκτέλεση εντολών: ο κύκλος μηχανής

Fetch: Φέρε την επόμενη εντολή προς εκτέλεση από τη μνήμη Decode: Αποκωδικοποίησε την εντολή (προετοίμασε τα σήματα ελέγχου και τις πηγές των δεδομένων) Execute: Εκτέλεσε την απαιτούμενη πράξη/λειτουργία Store: Αποθήκευσε τα αποτελέσματα (εάν απαιτείται)

Εκτέλεση εντολών

- Επόμενη εντολή προς εκτέλεση
 - Program Counter (PC): καταχωρητής που περιέχει τη διεύθυνση της θέσης μνήμης όπου βρίσκεται η επόμενη εντολή
 - Σειριακή αύξηση διεύθυνσης μετά την εκτέλεση εντολής
 - Ή μεταπήδηση σε νέα θέση μνήμης (διακλάδωση)
 - Η διαδικασία επαναλαμβάνεται συνεχώς
 - Όσο η Μονάδα Επεξεργασίας είναι σε λειτουργία
 - Πολλές μονάδες μπορούν να «παγώσουν» τη λειτουργία τους (κατάσταση HALT)
 - Σε αναμονή εξωτερικού σήματος επανεκκίνησης

Η πρώτη εντολή που εκτελείται

- Εκκίνηση εκτέλεσης
 - Με την εφαρμογή τάσης ο PC παίρνει μια προκαθορισμένη τιμή
 - Συνήθως στην αρχή ή στο τέλος της υποστηριζόμενης περιοχής μνήμης
 - Ανάλογα με την αρχιτεκτονική της κάθε Μονάδας Επεξεργασίας
 - Εκεί ο κατασκευαστής έχει τοποθετήσει τις πρώτες εντολές αρχικοποίησης του συστήματος

Αρχιτεκτονική Συνόλου Εντολών

- Instruction Set Architecture (ISA)
 - Το ορατό μέρος ενός υπολογιστικού συστήματος για τον προγραμματιστή (και τον μεταγλωττιστή)
 - Δεκαετία 60-70: συνώνυμο του όρου «αρχιτεκτονική Η/Υ»
 - « η δομή ενός υπολογιστή, την οποία ο προγραμματιστής πρέπει να γνωρίζει για να γράψει ένα σωστό (χρονικά ανεξάρτητο) πρόγραμμα σε γλώσσα μηχανής για τον υπολογιστή αυτόν» (IBM)

Η διεπαφή ISA στην ιεραρχία επιπέδων

- Αρχιτεκτονική Εντολών (ISA)
 - Η διεπαφή υλικού-λογισμικού

Αρχιτεκτονική Συνόλου Εντολών (ISA)

- Τι περιγράφει;
 - Διαθέσιμες πράξεις/λειτουργίες
 - Κωδικοποίηση λειτουργιών
 - Μορφή των δεδομένων εισόδου-εξόδου
 - Operands
 - Μέθοδοι προσπέλασης μνήμης
 - Προέλευση των δεδομένων
 - Χώροι προσωρινής αποθήκευσης
 - Καταχωρητές
 - Διακοπές και καταστάσεις σφάλματος
 - Ποια η "αντίδραση" του επεξεργαστή

Αρχιτεκτονική σωρού (stack)

- 0-address architecture
- Δημοφιλές σχήμα κατά τη δεκαετία του 60
- Δύσκολη προσπέλαση σωρού, απαιτούνται πολλαπλές αντιμεταθέσεις και αντιγραφές για να έρθουν τα δεδομένα στη σωστή θέση

Αρχιτεκτονική συσσωρευτή (accumulator)

- Μια πηγή δεδομένων και ταυτόχρονα θέση αποθήκευσης
 του αποτελέσματος είναι πάντα ο συσσωρευτής
 - 1-address architecture
 - Αρχιτεκτονική των πρώτων υπολογιστών

Αρχιτεκτονικές με καταχωρητές (registers)

- Memory-register
 - Οποιαδήποτε εντολή μπορεί να προσπελάσει τη μνήμη
- Όμως:
 - Πολλαπλές προσπελάσεις μνήμης
 - Λήψη εντολής Λήψη δεδομένων εντολής
 - Πολύπλοκη εκτέλεση εντολής σε στάδια
 - Συνωστισμός στον δίαυλο επικοινωνίας με μνήμη

Αρχιτεκτονικές με καταχωρητές (registers)

add R1, R2,R3 (R1 = R2 + R3)

- Register-register (load-store)
 - Μόνο εντολές load-store μπορούν να προσπελάσουν τη μνήμη
- Η αρχιτεκτονική των σύγχρονων επεξεργαστών
 - Οι καταχωρητές προσπελαύνονται πολύ γρήγορα
 - Χρειάζονται λιγότερα bits για να επιλεγούν
 - Οι μεταγλωττιστές αναθέτουν μεταβλητές σε καταχωρητές

Η εξέλιξη της αρχιτεκτονικής εντολών

- Οι πρώτοι υπολογιστές (.. '60)
 - Αρχιτεκτονική συσσωρευτή και αργότερα σωρού
 - Ικανοποιητική λύση λόγω της απλής τεχνολογίας των μεταγλωττιστών
- Πολύπλοκες αρχιτεκτονικές ('70 ..)
 - Ενσωμάτωση σύνθετων μορφών εντολών και μεθόδων προσπέλασης μνήμης
 - Προσπάθεια υποστήριξης υψηλών γλωσσών
 προγραμματισμού μείωσης κόστους λογισμικού
 - Πολλά χαρακτηριστικά έμεναν αχρησιμοποίητα...
 - Complex Instruction Set Computers (CISC)

Η εξέλιξη της αρχιτεκτονικής εντολών

- Reduced Instruction Set Computers (RISC) ('80 ...)
 - Απλούστερες και φθηνότερες load-store αρχιτεκτονικές με σταθερό μήκος εντολών
 - Μεγαλύτερη απόδοση ταχύτερη εκτέλεση εντολών
 - Ευνοείται από την αφθονία υλικού χαμηλού κόστους και την προηγμένη τεχνολογία των μεταγλωττιστών
 - Οι σημερινοί επεξεργαστές με εντολές CISC (π.χ. η αρχιτεκτονική x86), μεταφράζουν εσωτερικά σε εντολές RISC

Κωδικοποίηση Εντολών

opcode operand1 operand2 .. operandN

- Σειρά δυαδικών ψηφίων
 - Μεταβλητού μήκους
 - Συμπαγή προγράμματα (μικρότερο μέγεθος)
 - Σημαντικά πολυπλοκότερο υλικό
 - Σταθερού μήκους
 - Απλούστερη και ταχύτερη λήψη-αποκωδικοποίηση
 - Μεγαλύτερα προγράμματα (οι εντολές έχουν μεγαλύτερο μέγεθος)
 - Μέθοδοι συμπίεσης

Κωδικοποίηση Εντολών

Εντολές: κατηγορίες λειτουργιών

- Οι βασικές κατηγορίες
 - Αριθμητικές και λογικές πράξεις
 - Μεταφορά δεδομένων
 - Από-πρός Καταχωρητές και Μνήμη
 - Έλεγχος ροής εκτέλεσης
 - Διακλαδώσεις και κλήσεις συναρτήσεων

Αριθμητικές/λογικές εντολές

- Αριθμητικές-λογικές πράξεις
 - Είδος πράξης
 - Είδος δεδομένων
 - Πηγές δεδομένων και προορισμός
 - Παράδειγμα (θεωρητικό):
 - Rd = Rs1 + Rs2

add	Rd	Rs1	Rs2
4	i l		

- Rd: προορισμός (καταχωρητής αποθήκευσης αποτελέσματος)
- Rs1, Rs2: πηγές (καταχωρητές δεδομένων εισόδου)

Εντολές μεταφοράς δεδομένων

- Μεταφορά δεδομένων
 - Κατεύθυνση: από (load) ή προς (store) τη μνήμη,
 - Πηγή δεδομένων και προορισμός
 - Μήκος μεταφερόμενης λέξης
 - Παράδειγμα (θεωρητικό):
 - Rd = mem[addr]

- Στο παράδειγμα η διεύθυνση είναι απόλυτη (προσδιορίζεται μέσα στην εντολή)
 - Δεν είναι η χρησιμότερη μορφή διεύθυνσης!

Εντολές διακλάδωσης

- Ο επεξεργαστής
- ISA
- Κατηγορίες εντολών

- Διακλάδωση
 - Με ή χωρίς συνθήκη
 - bne R1, R2, +8 // branch if not R1==R2
 - Σε απόλυτη διεύθυνση
 - jump 0xFF97DE00
 - Σχετικά ως προς την τρέχουσα θέση (offset)
 - jump +130 // offset = +130
 - Ο παραγόμενος κώδικας μπορεί να τοποθετηθεί οπουδήποτε στη μνήμη

bne R1 R2 +8

Μέθοδοι προσπέλασης μνήμης

- Τουλάχιστον κάποιες εντολές προσπελαύνουν τη μνήμη
 - για ανάγνωση ή εγγραφή δεδομένων
 - Πώς σχηματίζεται η διεύθυνση προσπέλασης;
 - Η γενική ιδέα: υποβοήθηση του λογισμικού
 - Διαφορετικός σχηματισμός διεύθυνσης για
 - Τοπικές μεταβλητές
 - Δείκτες (έμμεση προσπέλαση)
 - Στατικά δεδομένα
 - Διάσχιση πινάκων
 - (Σταθερές τιμές)
- Υποστήριξη ανάλογα με αρχιτεκτονική

Μέθοδοι προσπέλασης μνήμης

- Στο σχηματισμό της διεύθυνσης μνήμης μπορούν να συμμετέχουν:
 - Απόλυτες τιμές διεύθυνσης
 - Καταχωρητές
 - Σταθερές τιμές μετατόπισης (offsets)

πιθανή	
χρήση	

displacement	mem[offs+reg]	τοπικές
register indirect	mem[reg]	δείκτες
indexed	mem[reg1+reg2]	πίνακες
direct	mem[addr]	στατικές
memory indirect	mem[mem[reg]]	*δείκτες
auto-increment	mem[reg++]	πίνακες
scaled	mem[offs+reg1+reg2*d]	πίνακες