Les exercices marqués par une étoile sont plus difficiles que las autres.

1. Continuité

Dans ce qui suit I désigne un intervalle de \mathbb{R} et f une application de I dans \mathbb{R} .

Théorème 1.1. Soient $a, b \in I$ tels que a < b, et λ un réel compris entre f(a) et f(b). Alors il existe $c \in [a, b]$ tel que $f(c) = \lambda$.

(Plus généralement l'image d'un connexe par une application continue est connexe.)

Théorème 1.2. Soit I un compact de \mathbb{R} et f une application continue sur I. Alors f est bornée et atteint ses bornes.

(Plus généralement, l'image d'un compact par une application continue est un compact).

Exercice 1.1 Soit f une application continue définie sur $[0, +\infty[$ telle que $f(x) \to 0$ quand $x \to +\infty$. Montrer que f est bornée.

Exercice 1.2 (*) Soit f une fonction continue définie sur [0,1]. Montrer que si f(0) = f(1) alors, pour tout entier p > 0 il existe $x \in [0, 1 - \frac{1}{p}]$ tel que $f(x + \frac{1}{p}) = f(x)$. On pourra commencer par regarder ce qui se passe pour p = 2. Interprétation géométrique?

2. Fonctions dérivables

Théorème 2.1. Soit $f:[a,b] \longrightarrow \mathbb{R}$, continue sur [a,b], dérivable sur [a,b] et telle que f(a) = f(b). Alors il existe un réel $c \in [a,b[$ tel que f'(c) = 0.

Exercice 2.3 Soit $f:[a,+\infty[\longrightarrow \mathbb{R} \text{ continue sur } [a,+\infty[,\text{ dérivable sur }]a,+\infty[$ et telle que $\lim_{x\to\infty} f(x)=f(a)$. Alors il existe un réel $c\in]a,+\infty[$ tel que f'(c)=0.

Exercice 2.4 Soient a < b deux réels et $f : [a, b] \to \mathbb{R}$ une fonction continue dérivable sur]a, b[. Si f' possède une limite à gauche, ℓ , au point b alors f est dérivable à gauche au point b et $f'_g(b) = \ell$ (on pourra considérer la fonction $\varphi : t \mapsto f(t) - f(b) - (t - b)\ell$).

Exercice 2.5 [Théorème de Darboux] Soit f une fonction dérivable sur un intervalle I. Montrer que f' possède la propriété de la valeur intermédiaire.

En déduire, à l'aide de 2 que les discontinuités dérivée sont toutes de seconde espèce.

Exercice 2.6 Soient a et b deux réels et n un entier, montrer que l'équation $x^n + ax + b$ a au plus deux solutions sur \mathbb{R} si n est pair et au plus trois si n est impair.

Théorème 2.2. Soit $f:[a,b] \to \mathbb{R}$ continue sur [a,b], dérivable sur [a,b]. Alors il existe un réel $c \in]a,b[$ tel que f(b)-f(a)=f'(c)(b-a).

Théorème 2.3. Soit $f:[a,b] \longrightarrow \mathbb{R}$ une fonction continue sur [a,b] et dérivable sur [a,b]. S'il existe $k \in \mathbb{R}^*_+$ tel que |f'(x)| < k pour tout $x \in [a,b]$, alors

$$|f(b) - f(a)| < k|b - a|.$$

Contrairement au théorème des accroissements finis, l'inégalité des accroissements finis se généralise à des espaces de dimension supérieure à 1.

Exercice 2.7 Soit f une application dérivable de \mathbb{R} dans \mathbb{R} montrer que si $f'(x) \to \ell$ quand $x \to +\infty$ alors $\frac{f(x)}{x} \to \ell$ quand $x \to +\infty$.

Exercice 2.8 Déterminer les applications f dérivables de \mathbb{R} dans \mathbb{R} telles que

$$f(2x) = 2f(x)$$

pour tout $x \in \mathbb{R}$. (On pourra considérer une fonction $\varphi(x) = f(x) - \alpha x$ pour une valeur convenable de α)

Exercice 2.9 (*) Soit P un polynôme à coefficients réels. Montrer que si P est scindé, il en est de même de P' et que les racines de P' sont dans l'enveloppe convexe de celles de P (i.e., si $a_1 < a_1 < \cdots < a_k$ sont les racines de P, celles de P' sont dans l'intervalle $[a_1, a_k]$).

3. Formules de Taylor

Théorème 3.1. Si $n \in \mathbb{N}$ et si $f : [a,b] \to \mathbb{R}$ est de classe \mathcal{C}^{n+1} on a

$$f(b) = f(a) + \sum_{1}^{n} \frac{(b-a)^{k}}{k!} f^{(k)}(a) + \int_{a}^{b} \frac{(b-t)^{n}}{n!} f^{(n+1)}(t) dt.$$

Théorème 3.2. Soient $n \in \mathbb{N}^*$ et $f : [a,b] \longrightarrow \mathbb{R}$ une fonction de classe C^n sur [a,b] et telle que $f^{(n)}$ soit dérivable sur [a,b[. Alors il existe un réel $c \in [a,b[$ tel que

$$f(b) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (b-a)^{k} + \frac{f^{(n+1)}(c)}{(n+1)!} (b-a)^{n+1}.$$

Théorème 3.3. Soit f une fonction définie dans un voisinage d'un point $x_0 \in \mathbb{R}$. Si f est n fois dérivable en x_0 on a

$$f(x) = \sum_{0}^{n} \frac{(x - x_0)^k}{k!} f^{(k)}(x_0) + o((x - x_0)^n).$$

Exercice 3.10 Soit f une fonction de classe $\mathcal{C}^{+\infty}$ définie sur \mathbb{R}^+ . On suppose que

- $-\,$ Toutes les dérivées de f sont nulle en 0.
- Il existe un réel $\lambda > 0$ tel que pour tout entier n on ait $||f^{(n)}||_{\infty} \leq \lambda^n n!$. Montrer que f est identiquement nulle. On pourra commencer par montrer que f est nulle sur un intervalle de centre 0 bien choisi.

Exercice 3.11 (*) Soit $f: \mathbb{R}^+ \to \mathbb{R}$ une application de classe C^{∞} . On suppose que f(0) = 0 et que $f(x) \to 0$ quand $x \to +\infty$. Montrer qu'il existe une suite strictement croissante de rééels positifs tels que pour tout entier n on ait $f^{(n)}(a_n) = 0$.

Exercice 3.12 Soit f une fonction de classe C^2 sur \mathbb{R} . On suppose que f et f" sont bornées sur \mathbb{R} et on pose $M_0 = \sup ||f||$ et $M_2 = \sup |f|'|$.

(1) Montrer que f' est bornée.

(2) Soit h un réel. En utilisant la formule de Taylor sur $\left[x-h,x\right]$ et $\left[x,x+h\right]$ montrer que

$$|f'(x)| \le \frac{M_0}{2|h|} + |h|M_2.$$

En déduire que $M_1 \leq \sqrt{2M_0M_2}$

Exercice 3.13 (*) Soit f une fonction de classe C^2 de I = [a, b] dans \mathbb{R} telle que f(a) = f(b) = 0. Montrer que pour tout $x \in I$ il existe $c \in I$ tel que

$$f(x) = \frac{(x-a)(x-b)}{2}f''(c).$$

Plus généralement, soit f une fonction de classe \mathcal{C}^n sur I telle qu'il existe $a_1 = a < a_2 < \cdots < a_n = b$ tels que pour tout $i \in \{1, \ldots, n\}$ on ait $f(a_i) = f(a)$. Montrer que pour tout $x \in I$ il existe $c \in I$ vérifiant

$$f(x) = \frac{f^{(n)}(c)}{n!} \prod_{1}^{n} (x - a_i).$$