EE-421: Digital System Design

Circuit Timing

Instructor: Dr. Rehan Ahmed [rehan.ahmed@seecs.edu.pk]

Where are we Heading?

This Lesson: Timing Concepts and Terminology

- Combinational Timing Constraints:
 - Gate Propagation Delay
 - Critical Path Delay

- Circuit Speed:
 - Minimum Clock Period
 - Maximum Clock Frequency

- Flip-Flop Timing Constraints:
 - Clock-to-Q Delay
 - Setup Time
 - Hold Time

Propagation Delay in Gates

Gate Delay (Propagation Delay)

 Time that it takes for combinational gate output to change after inputs change

Propagation Delay in Gates: But WHY?

Inside a Chip: Microscopic View

Physical Structure of an NMOS Transistor

- Wherever two types of materials meet or overlap inside the transistor, a capacitor is effectively created:
 - aka, parasitic or stray capacitance
 - Results as an undesired side effect of a transistor fabrication

Stray Capacitance in Logic Gates

(a) A NOT gate driving another NOT gate

(b) The capacitive load at node A

A number of parasitic capacitors are attached to node A, some caused by N1 and others caused by N2.

All capacitances are approximated by a single equivalent capacitance.

Impact of Stray Capacitance on Speed of Operation (1)

- The existence of stray capacitance has a negative effect on the speed of operation of logic circuits.
- Voltage across a capacitor cannot change instantaneously,
 - The time needed to charge or discharge a capacitor depends on the size of the capacitance C and on the amount of current through the capacitor.

VTC: Voltage Transfer Characteristics

Rise Time

- The time needed for V_A to change from low to high is called the rise time
 - i.e time elapsed from when V_A is at 10% of V_{DD} until it reaches 90% of V_{DD}

Fall Time

- The time needed for V_A to change from high to low is called the fall time
 - i.e time elapsed from when V_A is at 90% of V_{DD} until it reaches 10% of V_{DD}

Propagation Delay – (1)

- The total amount of time needed for the change at Vx to cause a change in VA:
 - This interval is known as the *propagation delay* (tp)
 - i.e the time from when Vx reaches 50% of VDD until the time
 VA reaches the same level

Propagation Delay – (2)

Propagation delay is given as:

$$t_p \cong \frac{1.7 \, C}{k_n' \frac{W}{L} V_{DD}}$$

- This expression specifies that speed of the circuit depends on:
 - C
 - W/L (dimension of the transistor or transistor size)

Transistor Sizes

- In logic circuits,
 - L is usually set to the minimum value that is permitted according to the specifications of the fabrication technology used (technology node i.e 180nm, 65nm ... 16nm, 7nm)
 - The value of W is chosen depending on the amount of current flow, hence propagation delay, that is desired

FPGA Speed Grade

- FPGA speed grade indicates the device speed:
 - Check the vendor documentation on speed grade
 - For example: Intel MAX and Classic devices use the speed grade to indicate the delay in nanoseconds (ns) through a macrocell in the device.
 - For example, a MAX device with a -10 speed grade has a delay of 10 ns through a macrocell.
 - Devices with low speed grade numbers run faster than devices with high speed grade numbers.
 - While true in general, again check the vendor documentation.

Sample Code: EPF10K130EQC240-1X

EPF 10K130E	Q	С	240	-1	х
FLEX 10K130E	Quad flat pack	Commercial range	240 pins	-1 speed grade	Has phase-locked loops (PLLs)

Path Delay

Recall: Gate Delay (Propagation Delay)

 Time that it takes for combinational gate output to change after inputs change

Path Delay

- Delay through a series of combinational gates:
 - Specifically, the time it takes for the output of the series of gates to change after the inputs to the path change.
- Example: What is the path delay in the following cct?
 - Assume propagation delay for each gate is the same (1ns in this example)

Path Delay

- Delay through a series of combinational gates:
 - Specifically, the time it takes for the output of the series of gates to change after the inputs to the path change.
- Example: What is the path delay in the following cct?
 - Assume propagation delay for each gate is the same (1ns in this example)

Comments on the Cct

- In the circuit above, if we apply all inputs at time 0, then all the outputs have settled to their final values after 5ns.
- Do you see any problem with this?
 - Some outputs might settle earlier
 - Some outputs may switch back and forth a few times before settling to a final value
 - What about input synchronization for the downstream logic?

How to Synchronize Inputs?

How to Synchronize Inputs?

- Rising edge on clock at time 0:
 - Assuming no delay in the flip-flops, the outputs of the source (left four) flip-flops change at time 0.
- Some time later (one clock cycle), the clock goes high again, and the destination flip-flops read in X and Y

General Structure of a Digital System

 Digital systems are made up of many stages of flip-flops and combinational logic.

You've Seen this Before

• Finite State Machines, shift registers, counters, etc...

Clock's purpose is to tell flip-flops when to read in data

Key Idea

1. On clock edge, new inputs sent into combinational logic

Key Idea

- 1. On clock edge, new inputs sent into combinational logic
- 2. Takes some time for outputs to settle

Key Idea

- 1. On clock edge, new inputs sent into combinational logic
- 2. Takes some time for outputs to settle
- 3. Don't want to read in new outputs before they are ready

Critical Path and its Delay

- Critical Path:
 - The path between the source FF output to destination FF input with the longest delay

- Critical Path Delay:
 - The delay of the critical path

Critical Path Delay: Example

- Critical Path:
 - B \rightarrow AND \rightarrow INV \rightarrow OR \rightarrow OR \rightarrow AND \rightarrow X
- Critical Path Delay:
 - 5ns

Clock period cannot be smaller than 5ns or else X register will read in wrong data

Impact of Critical Path Delay on Operating Frequency

 Critical path delay limits the clock period (and hence the maximum operating clock frequency)

$$t_{ClockMin} \ge t_{CritcalPath}$$

From the previous example:

What happens if you run the clock SLOWER than f_{Max} ?

$$f_{Clock} < f_{Max} \longleftrightarrow t_{Clock} > t_{CriticalPath}$$

- No problem!
- Combinational logic has more than enough time to settle

What happens if you run the clock FASTER than f_{Max} ?

$$f_{Clock} > f_{ClockMax} \leftrightarrow t_{Clock} < t_{CriticalPath}$$

WRONG DATA READ INTO OUTPUT FLIP-FLOPS

- Combinational logic does NOT have enough time to settle to correct value
 - Note: This only applies to your critical path(s).
 - Your non-critical path FFs might still be ok, but you need to design for the worst-case.

Critical Path in the Entire Design

 Since a single clock controls all flip-flops in all stages, you need to look for the critical path amongst all stages

$$t_{CriticalPath} = \max_{foreach pathi} (t_{crit_i})$$

Class Activity: Find the Critical Path

THANK YOU

