Übungsaufgaben

1. Aussagenlogik

•	Bitte kreuzen Sie an (区), ob die folgende logische Formel erfüllbar, falsifizierbar,
	allgemeingültig (Tautologie) und/oder unerfüllbar (Kontradiktion) ist.

$$((C \land \neg A \land B) \lor (A \land B)) \Rightarrow C \lor A$$

- ☐ erfüllbar ☐ falsifizierbar ☐ Tautologie ☐ Kontradiktion
- Überprüfen Sie, ob für die logischen Formeln ϕ und ξ gilt:

$$\varphi \models \xi \qquad \xi \models \varphi \quad \text{und/oder} \quad \varphi \equiv \xi$$

$$\varphi: A \Rightarrow B \lor C$$
 $\xi: \neg C \Rightarrow (\neg B \Rightarrow \neg A)$

Führen Sie den Beweis

- a) durch Aufstellen der Wahrheitstabelle und
- b) durch Umformen der Formeln.
- c) Kennzeichnen Sie mittels **E**, zu welchem Ergebnis Sie gekommen sind.

$$\Box$$
 $\xi \models \varphi$

\Box $\phi \equiv \xi$

2. Prädikatenlogik

Übersetzen Sie folgende umgangssprachlichen Sätze in eine prädikatenlogische Formel:

- Jeder Mensch weiß etwas.
- Kein Mensch weiß alles.
- Manche Menschen wissen gar nichts.
- Kein Mensch kennt jemanden (einen Menschen), der alles weiß.
- Jeder duzt sich mit irgendjemandem (einem Menschen).
- Es gibt eine Mannschaft, gegen die der FC St. Pauli noch nie verloren hat.
- In Deggendorf scheint im Sommer immer die Sonne.
- Nachts sind alle Katzen grau.
- Die Bayern lieben ihre Nachbarn.
- Die Deggendorfer essen nur Fleisch.
- Ich kenne jemanden, der jemanden kennt, der schon mal in Australien war.
- Eine Aktie ist attraktiv, wenn ihr Kurs steigt.
- Eine Aktie habe ich.

3. Resolutions beweis

- Aussagenlogik:
 - Beweisen Sie mittels Resolution, ob die folgende Schlussfolgerung aus den gegebenen S\u00e4tzen abgeleitet werden kann oder nicht.

Gegeben:

Ich trage Gummistiefel oder die Sonne scheint.

Die Sonne scheint nicht oder ich trage einen Sonnenhut.

Schlussfolgerung:

Ich trage Gummistiefel oder ich trage einen Sonnenhut.

Prädikatenlogik:

o **Gegeben** sind die folgenden Formeln

Pferde sind schneller als Hunde.

 $\forall P \ \forall H \ (pferd(P) \land hund(H)) \Rightarrow schneller(P,H)$

Es gibt einen Windhund, der schneller als jeder Hase ist.

 $\exists W \ \forall R \ windhund(W) \land (hase(R) \Rightarrow schneller(W,R))$

Ein Windhund ist ein Hund.

 $\forall W \text{ windhund}(W) \Rightarrow \text{hund}(W)$

Fury ist ein Pferd.

pferd(fury

Bunny ist ein Hase.

hase(bunny

Beweisen Sie mittels Resolution, dass Fury schneller als Bunny ist.

o **Gegeben** sind die folgenden Formeln

Politiker mögen niemanden, der knausrig ist.

 $\forall P \text{ politiker}(P) \Rightarrow \neg \exists X \text{ mag}(P, X) \land \text{knausrig}(X)$

Jeder Politiker mag eine Firma.

 $\forall P \text{ politiker}(P) \Rightarrow \exists X \text{ firma}(X) \land \text{mag}(P,X)$

Es gibt Politiker.

∃P politiker(P)

Beweisen Sie, dass es eine Firma gibt, die nicht knausrig ist.

4. Suche

1. Aufgabe

Gegeben ist der nachfolgende Graph

Startknoten ist a. Zielknoten ist k.

Die Kosten stehen an den Kanten, im Knoten ist die Heuristik notiert. Wie finden Suchstrategien die Lösung?

Hinweis:

Wenn 2 Nachfolgeknoten die gleiche Bewertung haben, soll der bevorzugt werden, der im Alphabet weiter vorn steht.

Gesucht ist pro Suchalgorithmus

- Die Reihenfolge der besuchten Knoten.
- Der Pfad zum Ziel.

Suchalgorithmen:

- Tiefensuche:
 - Besuchte Knoten:
 - o Pfad:
- Breitensuche:
 - o Besuchte Knoten:
 - o Pfad:
- Bestensuche:
 - o Besuchte Knoten:
 - o Pfad:
- Hill Climbing:
 - o Besuchte Knoten:
 - o Pfad:
- Hill Climbing with Backtracking:
 - Besuchte Knoten:
 - o Pfad:
- Nearest Neighbour Heuristic:
 - Besuchte Knoten:
 - o Pfad:
- A /A*:
 - o Besuchte Knoten:
 - o Pfad:

Findet der A* Algorithmus den optimalen Weg?

□ ja □ nein

Falls Nein, woran liegt das?

2. Aufgabe

Gegeben ist ein Brett mit 5 Feldern, links 2 weiße, rechts 2 schwarze Steine, der mittlere Platz ist leer.

Man darf

- Einen Stein schieben
- Über einen anderen Stein springen oder
- Über 2 Steine springen

Kosten: Schieben/Springen über 1 Steine=1, über 2 Steine=2 Wie löst man das Problem mittels Suche?

5. Bayessche Formel

- Im Mittel sagt der Wetterbericht für den kommenden Tag zu 60 % schönes und zu 40% schlechtes Wetter voraus; die Trefferquote liegt für die Voraussage "schön" bei 80% und für die Voraussage "schlecht" bei 90 %.
 - (a) Wieviel % schöne Tage gibt es?
 - (b) Trotz schönen Wetters ist Kumpel Bob nicht zum verabredeten Fallschirmsprung erschienen mit dem Hinweis, der gestrige Wetterbericht wäre schlecht gewesen, so dass er anders disponierte. Mit welcher Wahrscheinlichkeit war dies bei Unkenntnis des gestrigen Wetterberichts nur eine Ausrede?
- In Deggendorf wird im Mittel zu 10% Schwarzgefahren. 70% der Schwarzfahrer haben keine Fahrkarte, während die anderen 30% gefälschte oder illegal besorgte Karten besitzen. Von den ehrlichen Fahrgästen haben im Mittel 5% ihre Fahrkarte vergessen. Mit welcher Wahrscheinlichkeit ist ein kontrollierter Fahrgast, der keine Karte vorzeigen kann, ein Schwarzfahrer?

6. Fuzzy

Tante Erna möchte in den Urlaub fahren. Ihre Kriterien sind:

- Der Urlaub soll möglichst in die Ferienzeit 20.6. 10.8. fallen.
- · Sie will an die See.
- Die Reise soll preiswert oder der Urlaubsplatz "sonnensicher" sein.

Es liegen ihr drei Angebote vor:

Es negen un diel / ingebote vor.				
Reiseziel	Zeitraum	Preis		
Hamburg	19.62.7.	1000		
Bordeaux	1.714.7.	2000		
Mallorca	30.712.8.	1800		

Aus diesen Angeboten soll mit Hilfe der Fuzzy-Logik das Angebot auswählt werden, welches am besten auf Tante Ernas Anforderungen passt. Die Fuzzy-Werte für die Bewertung sind wie folgt gegeben.

Achtung: nachfolgend wurde nach Fuzzy-Wert sortiert!!!

Preis	Fuzzy-Wert
2000	0,2
1800	0,33
1000	0,87

Sonne	Fuzzy-Wert
Hamburg	0,8
Bordeaux	0,9
Mallorca	0,95

See	Fuzzy-Wert
Bordeaux	0,8
Hamburg	0,95
Mallorca	0,99

Zeit	Fuzzy-Wert
30.712.8.	0,86
19.62.7.	0,93
1.714.7.	1

Ermitteln Sie die Bewertung für alle 3 Reisen mittels der 3 Ihnen bekannten Berechnungsvorschriften.

7. Constraints

Gegeben sind das folgende Kreuzgitter und die 6 Lösungsworte.

abalone abandon enhance anagram connect elegant

Wie würden Sie dieses Problem als Constraint-Solving-Problem beschreiben?

8. Planen

Blocksworld: Mittels STRIPS soll das folgende Problem gelöst werden: Ein Greifarm kann **ein** freies Klötzchen greifen (und anheben) sowie bewegen (und absetzen). Auf dem Tisch ist genügend Platz, um weitere Türmchen zu bauen. Bitte notieren Sie die Zustandsbeschreibungen und Operatoren entsprechend.

Könnte man dieses Problem auch mit metrisch monotoner Suche lösen?

□ ja □ nein

Falls Nein, woran liegt das?