第七章 代数系统

第七节 二元运算的特殊元小结

二元运算中的特殊元素小结

- 令 ★, \circ 是定义在非空集合 X 上的二元运算,
- 1. 幂等元: $a \in X$,有 $a \star a = a$ 。
- 2. 幺元: $e \in X$, $\forall x \in X$, 有 $e \star x = x \star e = x$ 。
- 5. 零元: $\theta \in x$, $\forall x \in X$, 有 $\theta \star x = x \star \theta = \theta$ 。
- 7. 逆元: $x \in X$, 有 $x^{-1} \in X$, 使得 $x^{-1} \star x = x \star x^{-1} = e$.
- 8. 可消去元: $a \in X$, $\forall x, y \in X$, 有

$$a \star x = a \star y \Rightarrow x = y$$

或者
$$x \star a = y \star a \Rightarrow x = y$$
。

例子

例: 下面是三个运算表

- (1) 说明那些运算是可交换的、可结合的、幂等的.
- (2) 求出每个运算的幺元、零元、所有可逆元素的逆元

*	a	b	C
a	c	a	b
b	a	b	\boldsymbol{c}
c	b	\boldsymbol{c}	a

0	a	b	c
a b	a b	a b	a b
c	c	c	

•	a	b	C
a	a	b	C
b	b	\boldsymbol{c}	C
c	C	\boldsymbol{c}	\boldsymbol{c}

*	a	b	c
a	С	a	b
$\mid b \mid$	a	b	\boldsymbol{c}
c	b	\boldsymbol{c}	a

0	a	b	c
а b	а <i>b</i>	a b	а b
c	c	c	c

•	a	b	С
a	a	b	\boldsymbol{c}
$\mid b \mid$	b	C	C
C	C	C	C

解: (1)*运算满足交换律、结合律,不满足幂等律. 。运算不满足交换律,满足结合律,满足幂等律. 运算满足交换律,满足结合律,不满足幂等律. 说明: 关于结合律的判断, 需要针对运算元素的每种选择进行验证, 若|A|=n, 一般需要验证 n^3 个等式。

单位元和零元不必参与验证.

通过对具体运算性质的分析也可能简化验证的复杂性。

*	a b c
a	c a b
b	a b c
c	b c a

0	a	b	C
a	a	a	a
b	b	b	b
c	C	C	C

•	a	b	C
a	a		
$\begin{array}{ c c c } b \\ c \end{array}$	$\begin{array}{c c} b \\ c \end{array}$	c	c

- (2) * 运算的幺元为b,没有零元, $a^{-1}=c$, $c^{-1}=a$, $b^{-1}=b$ 。
 - 。运算的幺元和零元都不存在, a, b, c 均是左零元, 也是 右逆元。但没有可逆元素。
 - ·运算的单位元为a,零元为c, $a^{-1}=a$,b,c不是可逆元素。

第七节 结束