

Uncertainty Estimation with Recursive Feature Machines

Daniel Gedon¹, Amirhesam Abedsoltan², Thomas B. Schön¹, Mikhail Belkin² ¹Uppsala University (Sweden), ²UC San Diego (USA)

Penalize off-diagonal elements: $oldsymbol{M} = rac{1}{n} \sum_{i=1}^n
abla_{oldsymbol{x}} f_{oldsymbol{M}}(oldsymbol{x})
abla_{oldsymbol{x}} f_{oldsymbol{M}}(oldsymbol{x})^ op + \lambda_{oldsymbol{M}} oldsymbol{I}_d$

Visualising feature matrix M

Data: $\boldsymbol{x} \sim \mathcal{U}(0_d, 1_d), \ y = (\sum_{j=1}^{10} \boldsymbol{x}_{[j]})^2$ \rightarrow introduce correlation.

Interpretation:

- RFM features capture correlation.
- Correlation in real-world data sets.

Gaussian Process (GP)

Recursive Feature Machine (RFM) [1]

Model parameterization

pred. function $f(\mathbf{x}) = k(\mathbf{x}, \mathbf{X}) \boldsymbol{\alpha}$

RBF (or Laplace) kernel

$$K_{\boldsymbol{M}}(\boldsymbol{x}, \boldsymbol{z}) = \exp(-\gamma \|\boldsymbol{x} - \boldsymbol{z}\|_{M}^{2})$$

with Auto. Relevance Det. (ARD)

$$M^{-1} = \operatorname{diag}([\ell_1^2, \dots, \ell_d^2])$$

Laplace kernel

$$K_{\mathbf{M}}(\boldsymbol{x}, \boldsymbol{z}) = \exp(-\gamma \|\boldsymbol{x} - \boldsymbol{z}\|_{M})$$

with Mahalanobis distance

$$\|oldsymbol{x} - oldsymbol{z}\|_{oldsymbol{M}} = \sqrt{(oldsymbol{x} - oldsymbol{z})^ op} oldsymbol{M} (oldsymbol{x} - oldsymbol{z})$$

Training procedure

Maximum Likelihood Estimation $arg min_{\boldsymbol{\theta}} - log p(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{\theta})$

with
$$\boldsymbol{\theta} = \{\ell_1, \dots, \ell_d\}$$

For t in T:

1. Solve for kernel weights

$$\boldsymbol{\alpha} = (k_{\boldsymbol{M}}(\boldsymbol{x}, \boldsymbol{X}) + \lambda_{\boldsymbol{\alpha}} \boldsymbol{I}_n)^{-1} \boldsymbol{y}$$

2. Average gradient outer product (AGOP)

$$oldsymbol{M} = rac{1}{n} \sum_{i=1}^n
abla_{oldsymbol{x}} f_{oldsymbol{M}}(oldsymbol{x}_i)
abla_{oldsymbol{x}} f_{oldsymbol{M}}(oldsymbol{x}_i)^ op$$

Main results

3P KL ARD-RBF
3-ARD-RBF Laplace
GP-ARD-Laplace NGBoost
CatBoost-Ensemble
CatBoost-Ensemble

Negative log-likelihood on tabular data.

	Gauss. Process		Boosting	
Dataset	ARD-Lap.	$ \mathbf{RFM} $	NG	Cat
cpu-act	2.30	2.21	2.33	2.17
pol	2.84	2.73	3.55	2.09
elevators	-4.75	-4.86	-4.48	-4.73
isolet	3.43	2.34	2.71	2.52
wine	0.95	0.95	1.04	1.03
Ailerons	-7.33	-7.37	-7.42	<u>-7.41</u>
houses	<u>-0.10</u>	-0.07	0.07	-0.12
houses-16H	0.72	0.69	0.57	0.51
Bra-houses	-1.82	-2.11	-2.18	-2.66
bike	6.03	6.04	5.62	5.58
house-sales	-0.30	-0.32	-0.27	<u>-0.31</u>
$\overline{\mathbf{best}}$, $\underline{2nd\ best}$				

OpenML datasets [2].

• 16 tabular datasets

- 5 613 features
- 6,497 22,784 samples

Setup.

- 20 seeds
- each dataset

Interpretation.

- GP-RFM best in RMSE
- normalised metrics for GP-RFM overall competitive

Out-of-distribution data

Data. Housing data with increasing target (price) OOD shift. Interpretation. GP-RFM most reliable method under OOD shift.

Conclusion

 $\mathbf{GP} + \mathbf{RFM} o \mathbf{competitive}$ results

Missing in GP literature.

Full feature matrix M often outperforms diagonal approach

References

- Radhakrishnan A, Beaglehole D, Pandit P, Belkin M. "Mechanism for feature learning in neural networks and backpropagation-free machine learning models". Science, 2024.
- [2] Vanschoren J, Van Rijn JN, Bischl B, Torgo L. "OpenML: networked science in machine learning." ACM SIGKDD Explorations Newsletter, 2014.