#### Dirac fermion dark matter



#### with Dirac neutrino masses

#### Diego Restrepo

May 21, 2019 - SUSY2019 - Corpus Christi

Instituto de Física Universidad de Antioquia Phenomenology Group http://gfif.udea.edu.co



#### Focus on

1812.05523 [PRD] and 1905.NNNNN

In collaboration with

Carlos Yaguna (UPTC), Julian Calle, Oscar Zapata, Andrés River (UdeA), Walter Tangarife (Loyola University Chicago)

# Hidden sectors



 $\frac{1}{\Lambda}L \cdot HL \cdot H$   $\frac{1}{\Lambda}(\nu_R)^{\dagger}L \cdot HS$ 









 $\frac{1}{\Lambda}L \cdot HL \cdot H$  $\frac{1}{\Lambda} (\nu_R)^{\dagger} L \cdot HS$ 



















Dark matter and unification

#### Unification: SO(10)

```
u_L
```

$$\Rightarrow \mathcal{L}_{SM} \supset h \, \mathbf{16}_F \times \mathbf{16}_F \times \mathbf{10}_S + \text{h.c}$$



| Standard Model: Z <sub>2</sub> -even                                         | New Z <sub>2</sub> -odd particles |
|------------------------------------------------------------------------------|-----------------------------------|
| Fermions: <b>16</b> <sub>F</sub>                                             | $10_F, 45_F, \cdots$              |
| Scalars: <b>10</b> <sub><i>H</i></sub> , <b>45</b> <sub><i>H</i></sub> · · · | 16 <sub><i>H</i></sub> , ⋅ ⋅ ⋅    |

Lightest Odd Particle (LOP) may be a suitable dark matter candidate, and can improve gauge coupling unification



| Standard Model: Z <sub>2</sub> -even | New Z <sub>2</sub> -odd particles         |
|--------------------------------------|-------------------------------------------|
| Fermions: <b>16</b> <sub>F</sub>     | 10 <sub>F</sub> , 45 <sub>F</sub> , · · · |
| Scalars: $10_{H}, 45_{H} \cdots$     | <b>16</b> <sub><i>H</i></sub> , · · ·     |

Lightest Odd Particle (LOP) may be a suitable dark matter candidate, and can improve gauge coupling unification

|                         | fermions                | scalars         |
|-------------------------|-------------------------|-----------------|
| $SU(2)_L \times U(1)_Y$ | even $SO(10)$           | odd $SO(10)$    |
| representation          | representations         | representations |
| $1_0$                   | 45, 54, 126, 210        | 16, 144         |
| $2_{\pm 1/2}$           | 10, 120, 126, 210, 210' | 16, 144         |
| $(3_0)$                 | 45, 54, 210             | 144             |

 $SU(3)_C: 3(T), 6, 8(\Lambda)$ 

$$m_{3_0} = 2.7 \text{ TeV}, \qquad m_{\Lambda} \sim 10^{10} \text{ TeV}, \qquad m_{\text{GUT}} \sim 10^{16} \text{ GeV} \,.$$

arXiv:0912.1545 (Frigerio-Hambye)

| Standard Model: Z <sub>2</sub> -even                                         | New Z <sub>2</sub> -odd particles     |
|------------------------------------------------------------------------------|---------------------------------------|
| Fermions: <b>16</b> <sub>F</sub>                                             | $10_F, 45_F, \cdots$                  |
| Scalars: <b>10</b> <sub><i>H</i></sub> , <b>45</b> <sub><i>H</i></sub> · · · | <b>16</b> <sub><i>H</i></sub> , ⋅ ⋅ ⋅ |

Lightest Odd Particle (LOP) may be a suitable dark matter candidate, and can improve gauge coupling unification

|                            | fermions                | scalars         |
|----------------------------|-------------------------|-----------------|
| $SU(2)_L \times U(1)_Y$    | even $SO(10)$           | odd $SO(10)$    |
| representation             | representations         | representations |
| $1_0$                      | 45, 54, 126, 210        | 16, 144         |
| $\left(2_{\pm 1/2}\right)$ | 10, 120, 126, 210, 210' | 16, 144         |
| $3_0$                      | 45, 54, 210             | 144             |

 $SU(3)_{C}: 3(T), 6, 8(\Lambda)$ 

Split-SUSY like

arXiv:1509.06313 (C. Arbelaez, R. Longas, D.R, O. Zapata)

Standard Model:  $Z_2$ -evenNew  $Z_2$ -odd particlesFermions:  $\mathbf{16}_F$  $\mathbf{10}_F, \mathbf{45}_F, \cdots$ Scalars:  $\mathbf{10}_H, \mathbf{45}_H \cdots$  $\mathbf{16}_H, \cdots$ 

Lightest Odd Particle (LOP) may be a suitable dark matter candidate, and can improve gauge coupling unification



Partial Split-SUSY-like spectrum: bino-higgsino-wino

rartial spiit-sost-like spectrum. bino-mggsmo-wii

 $10'_H$  with fermion DM or,  $16_H, \cdots$  with scalar DM

Standard Model:  $Z_2$ -evenNew  $Z_2$ -odd particlesFermions:  $\mathbf{16}_F$  $\mathbf{10}_F, \mathbf{45}_F, \cdots$ Scalars:  $\mathbf{10}_H, \mathbf{45}_H \cdots$  $\mathbf{16}_H, \cdots$ 

Lightest Odd Particle (LOP) may be a suitable dark matter candidate, and can improve gauge coupling unification

|                              | fermions                | scalars         |
|------------------------------|-------------------------|-----------------|
| $SU(2)_L \times U(1)_Y$      | even $SO(10)$           | odd $SO(10)$    |
| representation               | representations         | representations |
| $1_0$                        | 45, 54, 126, 210        | 16) 144         |
| $(2_{\pm 1/2})(2_{1/2}^{S})$ | 10, 120, 126, 210, 210' | 16, 144         |
| $3_0$                        | 45, 54, 210             | 144             |
| CU(2) $O(T)$ $O(C)$          | 1509.06313              |                 |

 $SU(3)_C: \overline{3(T)} \ 6, \overline{8(\Lambda)}$ 

SUSY-like spectrum: bino-higgsino-wino

 $10'_H$  with fermion DM or,  $16_H, \cdots$  with scalar DM

Left-Right symmetric realization

#### Singlet-doublet fermion dark matter

| Field             | Multiplicity | $3_c 2_L 2_R 1_{B-L}$ | Spin | SO(10) origin |
|-------------------|--------------|-----------------------|------|---------------|
| Φ                 | 1            | (1, 2, 2, 0)          | 0    | 10            |
| $\chi$ , $\chi^c$ | 1            | (1, 2, 2, 0)          | 1/2  | 10            |
| N                 | 1            | (1, 1, 1, 0)          | 1/2  | 45            |

Table 1: The relevant part of the field content. Note that, the two fermion doublets  $\chi$  and  $\chi^c$  come from an only fermionic LR bidoublet. In the third column the relevant fields are characterized by their  $SU(3)_c \times SU(2)_L \times SU(2)_R \times U(1)_{B-L}$  quantum numbers while their SO(10) origin is specified in the fourth column.

#### Unification

| $m_{LR}$ (GeV)    | $3_c 2_L 2_R 1_{B-L}$                                                                  | $m_G$ (GeV)           |
|-------------------|----------------------------------------------------------------------------------------|-----------------------|
| $2 \times 10^{3}$ | $\Phi_{1,2,2,0} + 2\Phi_{1,1,3,-2} + \Psi_{1,1,3,0} + \Phi_{1,1,3,0} + \Phi_{8,1,1,0}$ | $1.65 \times 10^{16}$ |
| ÷                 | :                                                                                      | ÷                     |

Table 2:  $\Delta_{L,R} = 2\Phi_{1,1,3,-2}$ .  $m_{LR}$  and  $m_G$  are given in GeV.

# Triplets

# Minimal Left-Right Symmetric Standard Model

| Field          | Multiplicity | $3_c 2_L 2_R 1_{B-L}$             | Spin | SO(10) origin |
|----------------|--------------|-----------------------------------|------|---------------|
| Q              | 3            | $(3,2,1,+\frac{1}{3})$            | 1/2  | 16            |
| Q <sup>c</sup> | 3            | $(\overline{3},1,2,-\frac{1}{3})$ | 1/2  | 16            |
| L              | 3            | (1, 2, 1, -1)                     | 1/2  | 16            |
| <sub>C</sub>   | 3            | (1,1,2,+1)                        | 1/2  | 16            |
| Ф              | 1            | (1, 2, 2, 0)                      | 0    | 10            |
| $\Delta_R$     | 1            | (1,1,3,-2)                        | 0    | 126           |

# Left-singlet right-triplet DM

| Field             | Multiplicity | $3_c 2_L 2_R 1_{B-L}$        | Spin | SO(10) origin |
|-------------------|--------------|------------------------------|------|---------------|
| Q                 | 3            | $(3,2,1,+\frac{1}{3})$       | 1/2  | 16            |
| Q <sup>c</sup>    | 3            | $(\bar{3},1,2,-\frac{1}{3})$ | 1/2  | 16            |
| L                 | 3            | (1,2,1,-1)                   | 1/2  | 16            |
| Lc                | 3            | (1,1,2,+1)                   | 1/2  | 16            |
| Ф                 | 1            | (1, 2, 2, 0)                 | 0    | 10            |
| $\Delta_R$        | 1            | (1,1,3,-2)                   | 0    | 126           |
| Ψ <sub>1130</sub> | 1            | (1, 1, 3, 0)                 | 1/2  | 45            |
|                   |              |                              |      |               |



Figure 1: Proper relic density scan:  $0.5 < v_R/\text{TeV} < 50$ 

## Mixed Left-singlet right-triplet DM

| Field             | Multiplicity | $3_c 2_L 2_R 1_{B-L}$        | Spin | SO(10) origin |
|-------------------|--------------|------------------------------|------|---------------|
| Q                 | 3            | $(3,2,1,+\frac{1}{3})$       | 1/2  | 16            |
| Q <sup>c</sup>    | 3            | $(\bar{3},1,2,-\frac{1}{3})$ | 1/2  | 16            |
| L                 | 3            | (1,2,1,-1)                   | 1/2  | 16            |
| Lc                | 3            | (1,1,2,+1)                   | 1/2  | 16            |
| Ф                 | 1            | (1, 2, 2, 0)                 | 0    | 10            |
| $\Delta_R$        | 1            | (1,1,3,-2)                   | 0    | 126           |
| Ψ <sub>1130</sub> | 1            | (1, 1, 3, 0)                 | 1/2  | 45            |
|                   | ĺ            |                              |      | '             |

# Mixed Left-singlet right-triplet DM

| Field             | Multiplicity | $3_c 2_L 2_R 1_{B-L}$        | Spin | SO(10) origin |
|-------------------|--------------|------------------------------|------|---------------|
| Q                 | 3            | $(3,2,1,+\frac{1}{3})$       | 1/2  | 16            |
| Q <sup>c</sup>    | 3            | $(\bar{3},1,2,-\frac{1}{3})$ | 1/2  | 16            |
| L                 | 3            | (1,2,1,-1)                   | 1/2  | 16            |
| Lc                | 3            | (1,1,2,+1)                   | 1/2  | 16            |
| Ф                 | 1            | (1, 2, 2, 0)                 | 0    | 10            |
| $\Delta_R$        | 1            | (1,1,3,-2)                   | 0    | 126           |
| Ψ <sub>1130</sub> | 1            | (1,1,3,0)                    | 1/2  | 45            |
| $\Psi_{1132}$     | 1            | (1,1,3,2)                    | 1/2  | 126           |
| $\Psi_{113-2}$    | 1            | (1,1,3,-2)                   | 1/2  | 126           |
|                   |              |                              |      |               |

$$\Psi_{1132} = \begin{pmatrix} \Psi^{+}/\sqrt{2} & \Psi^{++} \\ \Psi^{0} & -\Psi^{+}/\sqrt{2} \end{pmatrix}, \qquad \bar{\Psi}_{113-2} = \begin{pmatrix} \Psi^{-}/\sqrt{2} & \overline{\Psi}^{0} \\ \Psi^{--} & -\Psi^{-}/\sqrt{2} \end{pmatrix}. \tag{1}$$

$$L \supset M_{11} \operatorname{Tr}(\Psi_{1130}\Psi_{1130}) + M_{23} \operatorname{Tr}(\Psi_{1132}\bar{\Psi}_{113-2}) + \lambda_{13} \operatorname{Tr}(\Delta_R\bar{\Psi}_{113-2}\Psi_{1130}) + \lambda_{12} \operatorname{Tr}(\Delta_R^{\dagger}\Psi_{1132}\Psi_{1130}),$$
 (2)

$$\tan \gamma = \frac{\lambda_{13}}{\lambda_{12}}, \qquad \lambda = \sqrt{\lambda_{12}^2 + \lambda_{13}^2}. \tag{3}$$

Blind spot at

$$M_{23}\sin 2\gamma - M_{\rm DM} = 0 \tag{4}$$

#### Proper relic density scan



**Figure 2:**  $M_{11} = 50 \text{ TeV } 2.7 < M_{23}/\text{TeV} < 3.1$  (Right:  $\tan \gamma > 5$ )



Figure 3:



**Figure 3:** Proper relic density scan:  $v_R$ : [2,50] TeV,  $M_{23}$ : [0.2,50] TeV,  $M_{11}$ : 50 TeV,  $\tan \gamma = -1$  and  $\lambda = 0.14$ .

#### Direct detection cross section



Figure 4:  $v_R$  : [2,50] TeV,  $M_{23}$  : [0.2,50] TeV,  $M_{11}$  : 50 TeV,  $\tan \gamma = -1$  and  $\lambda = 0.14$ .

#### Unification

| Field             | Multiplicity | $3_c 2_L 2_R 1_{B-L}$        | Spin | SO(10) origin |
|-------------------|--------------|------------------------------|------|---------------|
| Q                 | 3            | $(3,2,1,+\frac{1}{3})$       | 1/2  | 16            |
| Q <sup>c</sup>    | 3            | $(\bar{3},1,2,-\frac{1}{3})$ | 1/2  | 16            |
| L                 | 3            | (1,2,1,-1)                   | 1/2  | 16            |
| Γc                | 3            | (1,1,2,+1)                   | 1/2  | 16            |
| Ф                 | 1            | (1, 2, 2, 0)                 | 0    | 10            |
| $\Delta_R$        | 1            | (1,1,3,-2)                   | 0    | 126           |
| Ψ <sub>1130</sub> | 1            | (1, 1, 3, 0)                 | 1/2  | 45            |
| $\Psi_{1132}$     | 1            | (1, 1, 3, 2)                 | 1/2  | 126           |
| $\Psi_{113-2}$    | 1            | (1,1,3,-2)                   | 1/2  | 126           |
|                   |              |                              |      |               |

#### Unification

| Field                    | Multiplicity | $3_c 2_L 2_R 1_{B-L}$        | Spin | SO(10) origin |
|--------------------------|--------------|------------------------------|------|---------------|
| Q                        | 3            | $(3,2,1,+\frac{1}{3})$       | 1/2  | 16            |
| Q <sup>c</sup>           | 3            | $(\bar{3},1,2,-\frac{1}{3})$ | 1/2  | 16            |
| L                        | 3            | (1,2,1,-1)                   | 1/2  | 16            |
| Γc                       | 3            | (1,1,2,+1)                   | 1/2  | 16            |
| Ф                        | 1            | (1, 2, 2, 0)                 | 0    | 10            |
| $\Delta_R$               | 1            | (1,1,3,-2)                   | 0    | 126           |
| $\Psi_{1130}$            | 1            | (1, 1, 3, 0)                 | 1/2  | 45            |
| $\Psi_{1132}$            | 1            | (1, 1, 3, 2)                 | 1/2  | 126           |
| $\Psi_{113-2}$           | 1            | (1,1,3,-2)                   | 1/2  | 126           |
| $\Psi_{1310}$            | 1            | (1, 3, 1, 0)                 | 1/2  | 45            |
| $\Psi_{8110}$            | 1            | (1, 1, 8, 0)                 | 1/2  | 45            |
| $\Psi_{321\frac{1}{3}}$  | 1            | (3, 2, 1, 1/3)               | 1/2  | 16            |
| $\Psi_{321-\frac{1}{3}}$ | 1            | (1,2,3,-1/3)                 | 1/2  | 16            |

## **Unification quality**



#### Conclusions

In addition to accommodate usual simplified dark matter models, Left-right symmetric standard models have additional DM portals:

New  $\Delta_R$  portal for direct detection of left-singlet right-triplet mixed dark matter, in companion with left-singlets charged and doubly charged fermions.

Next: Search for them in compressed spectra scenarios at the LHC

Dirac fermion dark matter

#### Isosinglet dark matter candidate

 $\psi$  as a isosinglet Dirac dark matter fermion charged under a local U(1)<sub>X</sub> (SM) cuples to a SM-singlet vector mediator X as

$$\mathcal{L}_{\text{int}} = -g_{\psi} \, \overline{\psi} \gamma^{\mu} \psi X_{\mu} - \sum_{f} g_{f} \bar{f} \gamma^{\mu} f X_{\mu} \,,$$

where f are the Standard Model fermions



#### Isosinglet Dirac fermion dark matter model and Seesaw scale

| Left Field              | $U(1)_{B-L}$ |
|-------------------------|--------------|
| $(\nu_{R_1})^{\dagger}$ | +1           |
| $( u_{R_2})^\dagger$    | +1           |
| $( u_{R_2})^\dagger$    | +1           |
| $\psi_L$                | -r           |
| $(\psi_{R})^\dagger$    | r            |
| $\phi$                  | 2            |

$$\chi = \begin{pmatrix} \psi_{\mathsf{L}} \\ \psi_{\mathsf{R}} \end{pmatrix}$$



Duerr et al: 1803.07462 [PRD]

# Singlet-Doublet Dirac Dark matter

Model (SD<sup>3</sup>M)

#### Singlet-Doublet Dirac Dark Matter (SD<sup>3</sup>M) By Carlos E. Yaguna. arXiv:1510.06151 [PRD].

The model extends the standard model (SM) particle content with Dirac Fermions: from SU(2) doublets of Weyl fermions:  $\Psi_L = (\Psi_L^0, \Psi_L^-)^\mathsf{T}, \widetilde{(\Psi_R)} = ((\Psi_R^-)^\dagger, -(\Psi_R^0)^\dagger)^\mathsf{T}$  and singlet Weyl fermions  $\psi_{LR}$  that interact among themselves and with the SM fields

$$\mathcal{L} \supset M_{\psi} (\psi_R)^{\dagger} \psi_L + M_{\psi} (\widetilde{\Psi}_R) \cdot \Psi_L + y_1 (\psi_R)^{\dagger} \Psi_L \cdot H + y_2 (\widetilde{\Psi}_R) \cdot \widetilde{H} \psi_L + \text{h.c}$$
 (5)

Four free parameters:

$$M_{\psi}, M_{\Psi} < 2 \text{ GeV},$$
  $y_1, y_2 > 10^{-6}$  (6)

Two neutral Dirac fermion eigenstates:

$$M = \begin{pmatrix} M_{\psi} & y_2 v / \sqrt{2} \\ y_1 v / \sqrt{2} & M_D \end{pmatrix}, \qquad M_{\text{diag}} = \begin{pmatrix} M_{\chi_1} & 0 \\ 0 & M_{\chi_2} \end{pmatrix} = U_L^{\dagger} M U_R$$
 (7)

#### SD<sup>3</sup>M By Carlos E. Yaguna. arXiv:1510.06151 [PRD].



#### SD<sup>3</sup>M By Carlos E. Yaguna. arXiv:1510.06151 [PRD].



Compressed spectra region





LUX - XENON1T - LZ

Neutrino masses

#### Lepton number

- Lepton number (*L*) is an accidental discret or Abelian symmetry of the standard model (SM).
- · Without neutrino masses  $L_e$ ,  $L_\mu$ ,  $L_\tau$  are also conserved.
- The processes which violates individual *L* are called Lepton flavor violation (LFV) processes.
- · All the neutrino mass models predict, to some extent, LFV processes
- Only models with Majorana neutrinos predict processes with total  $L = L_e + L_\mu + L_\tau$  violation, like neutrino less doublet beta decay (NLDBD).
- NLDBD is experimentally challenging, specially if there is a massless neutrino in the spectrum.

#### NLDBD prospects for a model with a massless neutrino (arXiv:1806.09977 [PLB] with Reig, Valle and Zapata)



# Total lepton number: $L = L_e + L_\mu + L_\tau$

# Majorana U(1)[

Field 
$$Z_2 (\omega^2 = 1)$$
  
SM 1  
 $L \qquad \omega$   
 $(e_R)^{\dagger} \qquad \omega$   
 $(\nu_R)^{\dagger} \qquad \omega$ 

$$\mathcal{L}_{\nu} = h_D (\nu_R)^{\dagger} L \cdot H + M_R \nu_R \nu_R + \text{h.c.}$$

$$h_D \sim \mathcal{O}(1)$$

# Dirac $U(1)_L$

Field 
$$Z_3$$
 ( $\omega^3 = 1$ )

SM 1

 $L$   $\omega$ 
 $(e_R)^{\dagger}$   $\omega^2$ 
 $(\nu_R)^{\dagger}$   $\omega^2$ 

$$\mathcal{L}_{\nu} = h_D (\nu_R)^{\dagger} L \cdot H + \text{h.c.}$$

$$h_D \sim \mathcal{O}(10^{-11})$$

# Total lepton number: $L=L_e+L_\mu+L_ au$

# Majorana U(1)[

Field 
$$Z_2$$
 ( $\omega^2 = 1$ )

SM 1

 $L \qquad \omega$ 
 $(e_R)^{\dagger} \qquad \omega$ 
 $(\nu_R)^{\dagger} \qquad \omega$ 

$$\mathcal{L}_{\nu} = h_D (\nu_R)^{\dagger} L \cdot H + M_R \nu_R \nu_R + \text{h.c.}$$

$$h_D \sim \mathcal{O}(1)$$

# Dirac $U(1)_{B-L}$

Field 
$$Z_3$$
 ( $\omega^3 = 1$ )  
SM 1  
 $L$   $\omega$   
 $(e_R)^{\dagger}$   $\omega^2$   
 $(\nu_R)^{\dagger}$   $\omega^2$ 

$$\mathcal{L}_{\nu} = h_D (\nu_R)^{\dagger} L \cdot H + \text{h.c.}$$

$$h_D \sim \mathcal{O}(10^{-11})$$

Explain smallness ala Peccei-Quinn:  $U(1)_{B-L} \xrightarrow{(S)} Z_N$ ,  $N \ge 3$ .

To explain the smallness of Dirac neutrino masses choose  $U(1)_{B-L}$  which:

• Forbids tree-level mass (TL) term (Y(H) = +1/2)

$$\mathcal{L}_{T.L} = h_D \epsilon_{ab} (\nu_R)^{\dagger} L^a H^b + \text{h.c}$$
$$= h_D (\nu_R)^{\dagger} L \cdot H + \text{h.c}$$

To explain the smallness of Dirac neutrino masses choose  $U(1)_{B-L}$  which:

• Forbids tree-level mass (TL) term ( Y(H) = +1/2 )

$$\mathcal{L}_{T.L} = h_D \epsilon_{ab} (\nu_R)^{\dagger} L^a H^b + \text{h.c}$$
$$= h_D (\nu_R)^{\dagger} L \cdot H + \text{h.c}$$

• Forbids Majorana term:  $u_{R} 
u_{R}$ 

To explain the smallness of Dirac neutrino masses choose  $U(1)_{B-L}$  which:

• Forbids tree-level mass (TL) term (Y(H) = +1/2)

$$\mathcal{L}_{T.L} = h_D \epsilon_{ab} (\nu_R)^{\dagger} L^a H^b + \text{h.c}$$
$$= h_D (\nu_R)^{\dagger} L \cdot H + \text{h.c}$$

- Forbids Majorana term:  $\nu_R \nu_R$
- Realizes of the 5-dimension operator which conserves lepton number in  $SU(3)_c \times SU(2)_L \times U(1)_Y \times U(1)_{B-L}$ :

$$\mathcal{L}_{5-D} = \frac{h_{\nu}}{\Lambda} (\nu_R)^{\dagger} L \cdot HS + \text{h.c}$$





To explain the smallness of Dirac neutrino masses choose  $U(1)_{B-L}$  which:

• Forbids tree-level mass (TL) term ( Y(H) = +1/2 )

$$\mathcal{L}_{T.L} = h_D \epsilon_{ab} (\nu_R)^{\dagger} L^a H^b + \text{h.c}$$
$$= h_D (\nu_R)^{\dagger} L \cdot H + \text{h.c}$$

- Forbids Majorana term:  $\nu_R \nu_R$
- Realizes of the 5-dimension operator which conserves lepton number in  $SU(3)_c \times SU(2)_L \times U(1)_Y \times U(1)_{B-L}$ :

$$\mathcal{L}_{5-D} = \frac{h_{\nu}}{\Lambda} (\nu_R)^{\dagger} L \cdot HS + \text{h.c.}$$



 $U(1)_{B-L} \stackrel{\langle S \rangle}{\to} Z_N$ 

• Enhancement to the effective number of degrees of freedom in the early Universe  $\Delta N_{\rm eff} = N_{\rm eff} - N_{\rm eff}^{\rm SM}$  (see arXiv:1211.0186)

See E. Ma, Rahul Srivastava: arXiv:1411.5042 [PLB] for tree-level realization

# From 1210.6350 and 1805.02025: $\Delta N_{\text{eff}} = 3 (T_{\nu_R}/T_{\nu_L})^4$

$$\Gamma_{\nu_R}(T) = n_{\nu_R}(T) \sum_f \langle \sigma_f(\nu_R \bar{\nu}_R \to f\bar{f}) v \rangle$$

$$= \sum_f \frac{g_{\nu_R}^2}{n_{\nu_R}} \int \frac{d^3p}{(2\pi)^3} \frac{d^3q}{(2\pi)^3} f_{\nu_R}(p) f_{\nu_R}(q) \sigma_f(s) (1 - \cos\theta),$$

$$s = 2pq(1 - \cos \theta), f_{\nu_R}(k) = 1/(e^{k/T} + 1)$$

$$n_{\nu_R}(T) = g_{\nu_R} \int \frac{d^3k}{(2\pi)^3} f_{\nu_R}(k), with g_{\nu_R} = 2$$

$$\sigma_f(s) \simeq \frac{N_C^f (Q_{BL}^f)^2 Q^2 s}{12\pi} \left(\frac{g'}{M_{el}}\right)^4, In the limit M_{Z'}^2 \gg s.$$

with three right-handed neutrinos, the Hubble parameter is

$$H(T) = \sqrt{\frac{4\pi^3 G_N \left[g(T) + 21/4\right]}{45}} T^2.$$

The right-handed neutrinos decouple when

$$\Gamma_{\nu_R}(T_{\text{dec}}^{\nu_R}) = H(T_{\text{dec}}^{\nu_R}).$$



A. Solaguren-Beascoa, M. C. Gonzalez-Garcia: arXiv:1210.6350 [PLB]

# From 1210.6350 and 1805.02025: $\Delta N_{\text{eff}} = 3 \left( T_{\nu_R} / T_{\nu_L} \right)^4$

$$\begin{split} \Gamma_{\nu_R}(T) &= n_{\nu_R}(T) \sum_f \langle \sigma_f(\nu_R \bar{\nu}_R \to f\bar{f}) v \rangle \\ &= \sum_f \frac{g_{\nu_R}^2}{n_{\nu_R}} \int \frac{d^3p}{(2\pi)^3} \frac{d^3q}{(2\pi)^3} f_{\nu_R}(p) f_{\nu_R}(q) \sigma_f(s) (1 - \cos\theta), \end{split}$$

$$\begin{split} s = &2pq(1-\cos\theta), & f_{\nu_R}(k) = &1/(e^{k/T}+1) \\ n_{\nu_R}(T) = &g_{\nu_R} \int \frac{d^3k}{(2\pi)^3} f_{\nu_R}(k), & \text{with } g_{\nu_R} = &2 \\ \sigma_f(s) \simeq &\frac{N_C^f(Q_{BL}^f)^2 Q^2 s}{12\pi} \left(\frac{g'}{M_{Pl}}\right)^4, & \text{In the limit } M_{Z'}^2 \gg s. \end{split}$$

with three right-handed neutrinos, the Hubble parameter is

$$H(T) = \sqrt{\frac{4\pi^3 G_N \left[g(T) + 21/4\right]}{45}} T^2.$$

The right-handed neutrinos decouple when

$$\Gamma_{\nu_R}(T_{\text{dec}}^{\nu_R}) = H(T_{\text{dec}}^{\nu_R}).$$



E. Ma, R. Srivastava: arXiv:1411.5042 [PLB]



Z.-L. Han, W. Wang: arXiv:1805.02025 [EJPC]

(also: Planck 1807.06209, Riess et al 1903.07603)

One-loop realization of  $\mathcal{L}_{5-D}$  with

total L







Dirac neutrino masses 
$$\nu_R\nu_R$$
 
$$(\nu_R)^\dagger LH$$
 
$$\nu_R\psi_R$$
 
$$(\nu_R)^\dagger \nu_R$$
 
$$(\nu_R)^\dagger \nu_R$$
 
$$(\nu_R)^\dagger \nu_R$$
 
$$(\nu_R)^\dagger \nu_R$$
 Allows 
$$(\nu_R)^\dagger \psi_L$$
 
$$(\nu_R)^\dagger \psi_L$$
 
$$(\nu_R)^\dagger \psi_L S$$

# One loop topologies $U(1)_{B-L} \oplus Z_2 \oplus Z_2$



# One loop topologies $U(1)_{B-L}$ only!



### One loop topologies $U(1)_{B-L}$ only! with J. Calle, C. Yaguna, and O. Zapata, arXiv:1812.05523 [PRD]



Anomaly cancellation conditions

$$\sum_{i} f_{i} = 3$$

$$\sum_{i} f_{i}^{3} = 3$$

#### One loop topologies $U(1)_{B-L}$ only! with J. Calle, C. Yaguna, and O. Zapata, arXiv:1812.05523 [PRD]



T1-3-E

| Fields: fi | $(\nu_{R3})^{\dagger}$ | $(\nu_{R2})^{\dagger}$ | $(\nu_{R1})^{\dagger}$ | $\psi_{L}$  | $(\psi_R)^\dagger$ | S                |
|------------|------------------------|------------------------|------------------------|-------------|--------------------|------------------|
| (A)        | +4                     | +4                     | -5                     | -r          | r                  | +3               |
| (B)        | + = 5                  | + = 5                  | + 2/5                  | 7<br>_<br>5 | $-\frac{10}{5}$    | + <del>-</del> 5 |

 $\psi_{L,R} \rightarrow \text{Singlet fermions (quiral)}$ 

 $\Psi_{L,R} 
ightarrow$ Vector-like doublet fermions

 $\sigma \to Singlet scalar$ 

 $\eta \rightarrow Doublet scalar$ 





Anomaly cancellation conditions

$$\sum_{i} f_{i} = 3$$

$$\sum_{i} f_{i}^{3} = 3$$

$$\int_{i}^{3} =3$$

### $SD^3M+\sigma_i~(i=1,2)$ with J. Calle, C. Yaguna, and O. Zapata, arXiv:1812.05523 [PRD]

 $\psi_{L,R} \to \text{Singlet fermions (quiral)}$ 

 $\Psi_{L,R} o$ Vector-like doublet fermions : 10/5

 $\sigma \to \text{Singlet scalar}: 15/5$ 



| Fields: fi | $(\nu_{R3})^{\dagger}$ | $(\nu_{R2})^{\dagger}$ | $(\nu_{R1})^{\dagger}$ | $\psi_{L}$  | $(\psi_R)^\dagger$ | S              |
|------------|------------------------|------------------------|------------------------|-------------|--------------------|----------------|
| (A)        | +4                     | +4                     | -5                     | -r          | r                  | +3             |
| (B)        | + 8/5                  | + 8 - 5                | $+\frac{2}{5}$         | 7<br>_<br>5 | $-\frac{10}{5}$    | $+\frac{3}{5}$ |
|            |                        |                        |                        |             |                    |                |

#### Anomaly cancellation conditions

$$\sum_{i} f_{i} = 3$$

$$\sum_{i} f_{i}^{3} = 3$$

# $SD^{3}M+\sigma_{i}$ (*i* = 1, 2)

$$M_{\psi} = h_1 \langle S \rangle$$
,  $y_2 = 0$ :

$$\mathcal{L} = \mathcal{L}_{\text{SD}^{3}\text{M}} + h_{3}^{ia}\widetilde{(\Psi_{R})} \cdot L_{i} \, \sigma_{a} + h_{2}^{\beta a} \left(\nu_{R\beta}\right)^{\dagger} \psi_{L} \, \sigma_{a}^{*} - V(\sigma_{a}, S, H) \, . \label{eq:loss_loss}$$

with A.F Rivera, W. Tangarife, arXiv:19nn.nnnnn





### Spin independent (SI) direct detection cross section



 $10^{-4}$ 10-8  $\begin{array}{c}
10^{-12} \\
\text{qd} \\
10^{-16}
\end{array}$   $\begin{array}{c}
(IS) \\
10^{-20}
\end{array}$ Vector S 10-24 Scalar SI XENON1T 10-28 PandaX 10-32  $10^{1}$ 10<sup>3</sup>  $m_{\chi_1^0}(\text{GeV})$ 

Vector SI (blue points) and scalar SI (green points)

#### Conclusions

A single U(1) symmetry to explain both the smallnes of Dirac neutrino masses and the stability of Dirac fermion dark matter

#### Conclusions'

A single U(1) symmetry to explain both the smallnes of Dirac neutrino masses and the stability of Dirac fermion dark matter

#### Dirac neutrino masses and DM

- Spontaneously broken  $U(1)_{B-L}$  generates a radiative Dirac neutrino masses
- A remnant symmetry makes the lightest field circulating the loop stable and good dark matter candidate.
- For T1-2-A: Either Singet Doublet Dirac Dark Matter or Singlet Scalar Dark Matter with extra scalar and vector portal
- · With relaxed direct detection constraints

