ГЛАВА 1

ОБЩИЕ СВЕДЕНИЯ

Обозначения, используемые в этой главе:

- Величины без риски: реальные траектории систем
- Величины с рисками: предсказанные траектории
- \bullet L-стоимость перехода
- ullet $(\cdot;t)$ значение, предсказанное в момент t
- Т горизонт предсказания
- Оптимальное значение функции $J^*(x(t)) = J(x(t), \bar{u}^*(t))$

1.1 Терминальная задача МРС

Приведем математическую формулировку для задачи с нулевым терминальным множеством:

Системная динамика: $\dot{x} = f(x, u), \ x(0) = x_0, \ x, u \in \mathbb{R}^n$

Ограничения: $x(t) \in X, u \in U, \forall t \ge 0$

Предположения:

- $f(0,0) \Rightarrow x_1 = 0$ точка равновесия для $u_1 = 0$
- $f: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$ дважды непрерывно дифференцируема
- \bullet U компактное множество (ограниченное и замкнутое)
- ullet X связанное и закрытое множество
- $(0,0) \in int(X \times U)$

Задача МРС:

В момент t, дано начальное состояние x(t)

$$\min_{\bar{u}(\cdot,t)} J(x(t),\bar{u}(\cdot;t))$$

with $J(x(t), \bar{u}(\cdot;t)) = \int_t^{t+T} L(\bar{x}(\tau;t), \bar{u}(\tau;t)) d\tau$ takoe, что

$$\dot{x} = f(x, u), \bar{x}(t; t) = x(t)$$

$$\bar{u}(\tau; t) \in U, \bar{x}(\tau; t) \in X, \ \forall \tau \in [t, t + T]$$

$$\bar{x}(t + T; t) = 0$$

Оптимальное управление открытой системы:

$$\bar{u}^*(\cdot;t) = arg \ min_{\bar{u}(\cdot;t)} J(x(t), \bar{u}(\cdot;t))$$

Отметим, что настоящая траектория системы может отличаться от предсказанной

Предположения:

• $L: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$ непрерывная и

$$\begin{cases}
L(0,0) = 0 \\
L(x,u) > 0 \\
\forall (x,u) \neq (0,0)
\end{cases}$$
(1.1)

• $J^*(x)$ непрерывна в точке x=0

Алгоритм МРС

- 1. В момент времени t, вычисляем x(t) и решаем оптимизационную задачу MPC
- 2. Применяем $u_{MPC}(\tau)=\bar{u}^*(\tau,t) \forall t\in [t,t+\delta)$ на временном промежутке δ
- 3. Устанавливаем $t:=t+\delta$ и переходим к шагу 1

Достижимость: Задача MPC достижима в момент времени t если существует хотя бы одно управление $\bar{u}(\cdot;t)$, удовлетворяющее ограничениям.

Theorem 1.1.1 Предположим, что

- 1. предположения выполняются
- 2. задача с нулевым терминальным множеством достижима в момент времени t=0

Тогда верно следующее:

- задача МРС рекуррентно достижима
- получаемая в результате замкнутая система является асимптотически стабильной

Пусть $D \subset \mathbb{R}^n$ является множеством всех точек, где выполняется (??). Тогда D называется областью притяжения замкнутой системы.

Приведем идею доказательства, представленной выше теоремы, так как такой это универсальный подход и он еще будет использоваться в дальнейшем для наших целей.

Доказательство.

- 1. рекуррентная достижимость доказывается по индукции
- 2. достижима в t = 0 по предположению индукции
 - \bullet допустим, что достижима в момент t. Рассмотрим следующее управление:

$$\bar{u}(\tau; t + \delta) = \begin{cases} \bar{u}^*(\tau; t) \ \tau \in [t + \delta, t + T] \\ 0 \ \tau \in [t + T, t + \delta + T] \end{cases}$$

3. асимптотическая стабильность

Идея в использовании функции $J^*(x(t))$ в качестве функции Ляпунова. Рассмотрим:

$$J(x(t+\delta), \bar{u}(\cdot; t+\delta)) = \int_{t+\delta}^{t+\delta+T} L(\bar{x}(\tau; t+\delta), \bar{u}(\tau; t+\delta)) d\tau =$$

$$= \int_{t+\delta}^{t+T} L(\bar{x}^*(\tau; t), \bar{u}^*(\tau; t)) d\tau + \int_{t+T}^{t+\delta+T} L(0, 0) d\tau (= 0) =$$

$$= J^*(x(t)) - \int_{t}^{t+\delta} L(\bar{x}^*(\tau; t), \bar{u}^*(\tau; t)) d\tau$$

из оптимальности

$$J^*(x(t+\delta)) \leq J(x(t+\delta), \bar{u}(\cdot; t+\delta)) \leq J^*(x(t)) - \int_t^{t+\delta} L(\bar{x}^*(\tau; t), \bar{u}^*(\tau; t)) d\tau$$

по индукции

$$J^*(x(\infty))(\geq 0) \leq J^*(x(0))(finite) - \int_0^\infty L(x_{MPC}(\tau), u_{MPC}(\tau))d\tau$$

Lemma 1 (Barbalat's) ϕ uniformly continuous $\phi: \mathbb{R} \to \mathbb{R}_{\geq 0}$

$$\lim_{t \to \infty} \int_0^t \phi(\tau) d\tau < \infty \Rightarrow \phi(t) \to 0, t \to \infty$$

Из леммы Barbalat's $L\to 0$ при $t\to \infty \Rightarrow$. Следовательно мы получаем, что $\|x_{MPC}(t)\|\to 0$ при $t\to \infty \Rightarrow$, что и означает сходимость.

1.2 МРС на квази-бесконечном горизонте

Цель: ослабить ограничения нулевой терминальной задачи

Идея: терминальная функция + локальная функция управления Ляпунова

Задача оптимизации MPC. В момент времени t

$$\min_{\bar{u}(\cdot;t)} J(x(t), \bar{u}(\cdot;t)) = \int_t^{t+T} L(\bar{x}(\tau;t), \bar{u}(\tau;t)) d\tau + F(\bar{x}(t+T;t))$$

 $F(\bar{x}(t+T;t))$ - терминальная стоимость такая что

$$\dot{\bar{x}} = f(\bar{x}, \bar{u}), \bar{x}(t; t) = x(t)$$

$$\bar{x}(t; t) \in X \ \bar{u}(t; t) \in U \ \forall \tau \in [t, t + T]$$

$$\bar{x}(t + T; t) \in X^f$$

 X^f - терминальный регион

Оптимальное решение: $\bar{u}^*(\cdot,t),\ J^*(x(t))$

Предположение 1: Терминальный регион + терминальное управление Пусть существует локальное вспомогательное управление $u=k^{loc}(x)$ такое что

- 1. X^f является инвариантным множеством для $\dot{x} = f(x, k^{loc}(x))$
- 2. $k^{loc}(x) \in U \ \forall x \in X^f$
- 3. $\dot{F}(x) + L(x, k^{loc}(x)) < 0 \ \forall x \in X^f$
 - $\Rightarrow F$ это локальная функция Ляпунова.

Theorem 1.2.1 Предположим, что предположение 1 выполняется и задача MPC достижима в точке t=0. Тогда:

- рекурсивна достижима
- закрытая система является асимптотически устойчивая

Как предположение 1 может быть удовлетворено? Предположим:

- функция стоимости перехода является квадратической $L(x,u) = x^TQx + u^TRu, \ Q, R > 0$
- линеаризация в нуле стабилизируемая $\dot{x} = Ax + Bu$ $A = \frac{\partial F}{\partial x}(0,0)$ $B = \frac{\partial F}{\partial u}(0,0)$

Подход:

- Линейное вспомогательное управление $k^{loc}(x) = Kx$
- Квадратическая терминальная функция $F(x) = x^T P x, P > 0$
- \bullet Терминальный регион $X^f_{\alpha}=\{x\in\mathbb{R}^n|x^TPx\leq \alpha\}$ для некоторой $\alpha>0$
- Определим P, K, α так что предположения 1.1-1.3 выполняются

Для предположения 1.3:

$$\frac{d}{dt}x(t)^T P x(t) \le -x(t)^t (Q + K^T R K) x(t) = -x(t)^T Q^* x(t)$$

$$[\boldsymbol{x}^T \boldsymbol{Q} \boldsymbol{x} + \boldsymbol{u}^T \boldsymbol{R} \boldsymbol{u} = [\boldsymbol{u} = \boldsymbol{K} \boldsymbol{x}] = \boldsymbol{x}^T (\boldsymbol{Q} + \boldsymbol{K}^T \boldsymbol{R} \boldsymbol{K}) \boldsymbol{x})]$$

$$\frac{d}{dt}x(t)^T P x(t) = f(x, Kx)^T P x + x^T P f(x, Kx)$$

 $[f(x,Kx) = (A+BK)x + \phi(x), A+BK = A_K, K$ выбирается так что A+BK является гурвицевой]

Верхняя граница для $x^T P \phi(x)$: $L_{\phi} := \sup\{\frac{|\phi(x)|}{|x|}, x \in X_{\alpha}^f, x \neq 0\}$

$$x^{T} P \phi(x) \le |x^{T} P| |\phi(x)| \le ||P|| L_{\phi}|x|^{2} \le \frac{||P|| L_{\phi}}{\lambda_{min}(P)} x^{T} P x$$
 (1.2)

Выберем α достаточно малой для

$$L_{\phi} \le \frac{k\lambda_{min}(P)}{\|P\|} \tag{1.3}$$

для некоторого k>0. Подставим это в (1.2): $x^T P \phi(x) \leq k x^T P x$. Подставим это в $\frac{d}{dt} x^T P x \leq x^T (A_K P + P A_K) x + 2k x^T P x$

$$= x^{T}((A_K + kI)^{T}P + P(A_K + kI))x$$

все это нам гарантирует, что $\leq -x^T Q^* x$

 \Rightarrow равенство ляпунова может быть решено тогда и только тогда, когда $A_K + kI$ является гурвицевой

$$\Leftrightarrow k < -max \ Re\{\lambda(A_K)\} \tag{1.4}$$

$$\Rightarrow (A_K + kI)^T P + P(A_K + kI) = -Q^*$$
 (1.5)

Представим ниже весь алгоритм

- 1. Найдем K такое что (A + BK) гурвицева
- 2. Выберем k > 0 такую что (1.4) и решаем (1.5)
- 3. Найдем наибольшее α_1 такое что $Kx \in U, \ \forall x \in X^f_{\alpha_1}$
- 4. Найдем наибольшее $\alpha \in (0, \alpha_1]$ такое что (1.3) выполняется.

Шаг (4) мы можем заменить на альтернативный Решить задачу оптимизации

$$\max_{x} x^{T} P \phi(x) - kx^{T} P x \ s.t. \ x^{T} P x \le \alpha \tag{1.6}$$

Постепенно будем уменьшать α относительно α_1 до тех пор, пока оптимальное значение (4) является отрицательным.

В итога мы имеем следующие степени свободы:

- ullet нахождение K
- \bullet выбор k определяет компромисс между "большим"
терминальным регионом и большим P

1.3 Неогрниченный МРС

Цель: гарантировать стабильность + оценить на сколько управление MPC отличается от оптимального

Постановка задачи:

- $\dot{x} = f(x, u), x(0) = x_0$
- ограничения на управление $u(t) \in \mathbb{U} \subseteq \mathbb{R}^m \ \forall t \geq 0$

Функция стоимости на бесконечном горизонте $J_{\infty}(x_0, \bar{u}(\cdot; 0)) = \int_0^{\infty} L(\bar{x}(\tau; 0), \bar{u}(\tau; 0)) d\tau \Rightarrow$ оптимальное значение функции $J_{\infty}^*(x_0)$

Предположение: $J_{\infty}^{*}(x_{0}) < \infty, \forall x_{0} \Rightarrow$ система асимптотически стабильна Функция стоимости на конечном горизонте: $J_{T}(x(t), \bar{u}(\cdot;t)) = \int_{0}^{T} L(\bar{x}(\tau;t), \bar{u}(\tau;t)) d\tau$

Функцию стоимости на бесконечном горизонте получаем, как результат применения MPC

$$J_{\infty}^{MPC}(x_0) = \int_0^\infty L(\bar{x}_{MPC}(\tau), \bar{u}_{MPC}(\tau)) d\tau$$

Определение 1.1 Индекс субоптимальности α : $\alpha J_{\infty}^{MPC}(x_0) \leq J_{\infty}^*(x_0) \forall x_0$

- $\alpha \leq 1$ следует из оптимальности J_{∞}^*
- $\alpha > 0$ дает стабильность замнкнутой сиистемы (лемма Барбашина???)

Предположим, что существует $\alpha \in (0,1]$ такое что $\forall x \in \mathbb{R}^n$ $J_T^*(x(t+\delta)) \leq J_T^*(x(t)) - \alpha \int_t^{t+\delta} L(\bar{x}^*(\tau;t), \bar{u}^*(\tau;t)) d\tau$ (*) Тогда для всех $x \in \mathbb{R}^n$ верна следующая цепочка неравенств

$$\alpha J_{\infty}^*(x(t)) \le \alpha J_{\infty}^{MPC}(x(t)) \le J_{T}^*(x(t)) \le J_{\infty}^*(x(t)) \tag{1.7}$$

Введем обозначение $L^*(t;t) = L(\bar{x}^*(\tau;t), \bar{u}^*(\tau;t))$ Рассмотрим следующие два уравнения:

$$(c): J_T^*(x(t+\delta)) \le \frac{1}{\epsilon} \int_{t+\delta}^{t+T} L^*(\tau;t) d\tau : (b)$$
 (1.8)

$$(b): \int_{t+\delta}^{t+T} L^*(\tau;t)d\tau \le \gamma \int_t^{t+\delta} L^*(\tau;t)d\tau: (a)$$

$$(1.9)$$

Теорема 1.1 Предположим, что существуют $\epsilon \in (0;1]$ и $\gamma>0$ такие что 1.8 - 1.9 выполняется. Тогда (*) выполняется при $\alpha=1-\gamma\frac{1-\epsilon}{\epsilon}$

$$J_T^*(x(t+\delta)) - J_T^*(x(t)) = J_T^*(x(t+\delta)) - \int_t^{t+T} L^*(\tau;t)d\tau \le^{(1.8)}$$
$$\le \frac{1-\epsilon}{\epsilon} \int_{t+\delta}^{t+T} L^*(\tau;t)d\tau - \int_t^{t+\delta} L^*(\tau;t)d\tau \le^{(1.9)}$$

$$\leq (\gamma \frac{1-\epsilon}{\epsilon} - 1) \int_{t}^{t+\delta} L^{*}(\tau; t) d\tau$$

$$-\alpha := \gamma \frac{1-\epsilon}{\epsilon} - 1$$

Предположение 1: Асимптотическая управляемость

Для всех x, существует некое управление $\hat{u}_x(\cdot)$ удовлетворяющее $\hat{u}_x(t) \in \mathbb{U}, \forall t \geq 0$ такое что

$$L(\hat{x}(t), \hat{u}(t)) \le \beta(t) \min_{u} L(x, u), \forall t > 0$$

где $\beta:\mathbb{R}\to\mathbb{R}_{\geq 0}$ - непрерывная, положительная, строго убывающая с $\lim_{t\to 0}\beta(t)=0\Rightarrow \int_0^\infty\beta(\tau)d\tau<\infty\ B(t)=\int_0^t\beta(\tau)d\tau$

Сейчас покажем, как найти ϵ и γ :

Lemma 2 Пусть предположение 1 выполняется. Тогда неравенство

$$J_T^*(x(t+\delta)) \le \int_{t+\delta}^{t+t'} L^*(\tau;t)d\tau + B(T+\delta-t')L^*(t+t';t)$$
 (1.10)

верно для всех $t' \in [\delta, T]$

Основываясь на предыдыщей лемме, найдем чему равно ϵ :

$$J_T^*(x(t+\delta)) \le \min_{t' \in [\delta,T]} \left(\int_{t+\delta}^{t+t'} L^*(\tau;t) d\tau + B(T+\delta-t') L^*(t+t';t) \right) \le \int_{t+\delta}^{t+T} L^*(\tau;t) d\tau + B(T) \min_{t' \in [\delta,T]} L^*(t+t';t)$$

так как $\min_{t'\in[\delta,T]}L^*(t+t';t)\leq \frac{1}{T-\delta}\int_{t+\delta}^{t+T}L^*(\tau;t)d\tau$ минимум менее или равен среднему

$$= (1 + \frac{B(T)}{T - \delta}) \int_{t+\delta}^{t+T} L^*(\tau; t) d\tau$$

$$(1 + \frac{B(T)}{T - \delta}) = \frac{1}{\epsilon}$$

Аналогичным способом найдем, чему равно γ .

Lemma 3

$$\int_{t+t'}^{t+T} L^*(\tau;t)d\tau \le B(T-t')L^*(t+t';t)\forall t' \in [0;T]$$

$$\gamma = \frac{B(T)}{\delta}$$

В результате

$$\alpha = 1 - \gamma \frac{1 - \epsilon}{\epsilon} = 1 - \frac{B(T)}{\delta} (\frac{B(T)}{T - \delta})$$

1.4 Robust MPC

Рассмотрим линейную (дискретную) систему: x(t+1) = Ax(t) + Bu(t) + w(t) или в краткой записи $x^+ = Ax + Bu + w$

Введем следующие ограничения: $x(t) \in X, u(t) \in U, \forall t = 0, 1...$

Ограничения на W: W является компактным, выпуклым множеством, содержащим $0.\ w(t) \in W \ \forall t=0,1,...$

Главная идея: используем дополнительную обратную связь по ошибке, такую, что будет обеспечивать нахождения состояния нашей системы внутри "трубки"вокруг некого номинального состояния системы.

Определим номинальную систему следующим образом:

$$z^+ = Az + Bv$$

В момент времени t, дано z(t), решаем

$$\min_{v(\cdot|t)} \hat{J}(z(t), v(\cdot|t)) = \sum_{i=t}^{t+N-1} L(z(i|t), v(i|t)) + F(z(t+N|t))$$

такое что

$$z(i+1|t) = Az(i|t) + Bv(i|t), z(t|t) = z(t)$$
$$z(i|t) \in Z, v(i|t) \in V, t \le i \le t + N - 1$$
$$z(t+N|t) \in Z^f \subseteq Z$$

Таким образом, найдя оптимально значения $V^*(\cdot|t)$, мы найдем оптимальное значение $\hat{J}^*(z(t))$

Предположение 1:

ullet Стоимость является квадратичной функцией $L(z,v) = z^T Q z +$

$$v^t R v, Q, R > 0$$

• Существует локальное вспомогательное управление $k^{loc}=Kx$ такое что

1.
$$Z^f$$
 инвариантно по отношению $Z^+ = (A + BK)z$, $A_k = A + BK$, i.e. $A_k Z^f \subseteq Z^f$

2.
$$Kz \in V \forall z \in Z^f$$

3.
$$F(A_k z) - F(z) \le -L(z, Kz) \forall z \in Z^f$$

Из предположения 1 следует, что

$$\hat{J}^*(z(t+1)) - \hat{J}^*(z(t)) \le -L(z(t), v_{MPC}(t))$$

Так как L квадратичная, то существуют ограничения $c_2 > c_1 > 0$ такие что $\forall z \in Z_N$

1.
$$c_1|z|^2 \leq \hat{J}^*(z)$$

2.
$$\hat{J}^*(z^+) - \hat{J}^*(z) \le -c_1|z|^2$$

3.
$$\hat{J}^*(z) \le c_2|z|^2$$

Влияние возмущения:

Определение 1.2 Сумма Минковского:

$$A, B \subseteq \mathbb{R}^n A \oplus B = \{a + b | a \in A, b \in B\}$$

Разница Понтрягина:

$$A, B \subseteq \mathbb{R}^n A \ominus B = \{ a \in \mathbb{R}^n | a + b \in A, \forall b \in B \}$$
$$(A \ominus B) \oplus B \subseteq A$$
$$A \subseteq (A \oplus B) \ominus B$$

Определение 1.3 Робастное инвариантное множество :

S является робастным инвариантным множеством для $x^+ = Ax + w$ если $AS \oplus W \subseteq S$ (или эквивалентно $Ax + w \in S \forall x \in S, \forall w \in W$)

Пример 1.1 $x^+ = 0.5x + w$. $w \in [-5, 5]$. Робастное инвариантное множество: S = [-20, 20], минимальное: S = [-10, 10]

Минимальное робастное инвариантное множество:

$$S_{\infty} = \sum_{i=0}^{\infty} A^{i} w$$

Следует отметить, что представленная выше сумма существует и ограничена, если A является мартрицей Шура.

В общем случае трудно подсчитать S_{∞} .

Однако в некоторых случаях мы можем приближенно найти это множество.

Пример 1.2 Найти робастное инвариантное множество:

$$S_{\infty} = \sum_{i=0}^{\infty} A^{i} w$$

Для заданной системы с ограниченным возмущением.

$$x^+ = \frac{1}{2}x + w, \ w \in [-5, 5]$$

$$S_{\infty} = \sum_{i=0}^{\infty} (\frac{1}{2})^{i} [-5, 5] = [-10, 10]$$

Пусть наше управление выглядит следующим образом:

$$u_{MPC} = v_{MPC}(x) + K(x - z)$$

Утверждение 1

Пусть $x^+=Ax+Bu+w$ и $z^+=Az+Bv$. Если $x\in Z\oplus S$ и u=v+K(x-z), тогда $X^+\in Z^+\oplus S$ (инвариантное множество для $x^+=(A+BK)x+w)$

Представим алгоритм для robust MPC

В момент времени t, дано x(t), решаем

$$\min_{z(t|t),v(\cdot|t)} J(x(t),v(\cdot|t)) = \sum_{i=1}^{t+N-1} L(z(i|t),v(i|t)) + F(z(t+N|t))$$

$$s.t.z(i+1|t) = Az(i|t) + Bv(i|t)$$

$$z(i|t) \in Z = X \ominus S$$

$$v(i|t) \in V = U \ominus KS$$

$$t \le i \le t + N - 1$$
$$z(t + N|t) \in Z_N \subseteq Z$$

Начальные условия $x(t) \in z(t|t) \oplus S$

 \rightarrow оптимальные значения для $J^*(x(t))$: достигаются в $z^*(t|t), v^*(\cdot|t) \rightarrow$

ightarrow строим управление для исходной задачи: $u(t) = v^*(t|t) + K(x(t) - z^*(t|t))$

Свойство робастного MPC (введем обозначение $z^*(x(t)) := z^*(t|t)$)

- достижимое множество $X_N = Z_N \oplus S \subseteq X$
- $J^*(x) = \hat{J}^*(z^*(x))$ по определению J^* и \hat{J}^*
- $J^*(x) = 0 \ \forall x \in S$

Theorem 1.4.1 Пусть предположение 1 выполняется и система робастного MPC достижима в точке t=0.

Тогда:

- 1. задача робастного МРС рекурентно достижима
- 2. замкнутая система робастно экспоненциально сходится к S
- 3. замкнутая система удовлетворяет ограничениям на управление и состояния, то есть $x(t) \in X, \, u(t) \in U \,\, \forall t=0,1...$

 $|x(i)|_S$ - point-to-set distance

Важным обобщением использования данного метода являются применение его к системама вида

$$x(t+1) = A(t)x(t) + B(t)u(t)$$

 $(A(t),B(t))\in
ho:con(A_j,B_j), j=1,...,J\ orall\ \geq 0$ Введем значения: $ar{A}:=rac{1}{J}\sum_{i=0}^J A_i,\,ar{B}:=rac{1}{J}\sum_{i=0}^J B_i$

$$x(t+1) = \bar{A}x(t) + \bar{B}u(t) + w(t)$$

$$w(t) \in W := (A - \bar{A})x + (B - \bar{B})u|(A, B) \in \rho, x \in X, u \in U$$

W является компактом, если X,U компакты

Как уже говорилось, сложно вычислить в общем случае минимальное робастное инвариантное множество S_{∞} .

$$S_{\infty} := \sum_{i=0}^{\infty} A^i w$$

Представим один из способов его аппроксимации. Определим $S_k := \sum_{i=0}^{k-1} A^i w \ k \geq 1$

В общем случае, S_k для конечного k не является инвариантным (это верно только в том случае, если A нильпотентна)

Theorem 1.4.2 Если $0 \in int(W)$ и A является матрицей Шура, тогда существует целое число k>0 и $\alpha\in[0,1)$ такое, что

$$A^k W \subseteq \alpha W \tag{1.11}$$

Если (1.11) выполняется, то

$$S(\alpha, k) := (1 - \alpha)^{-1} S_k$$

является инвариантным множеством для $x^+ = Ax + w$

Представим алгоритм для нахождения инвариантного множества

- 1. Фиксируем $\alpha \in (0,1)$ и целое k > 0
- 2. проверяем, выполняется ли (1.11) holds:
 - \bullet если да: $S(\alpha, k)$ это инвариантное множество
 - если нет: устанавливаем k := k + 1 и переходим к шагу (2)

ГЛАВА 2

МОДЕЛЬ (НАЗВАТЬ ИНАЧЕ)

В данной главе введем основные понятия и обозначения, которые будем использовать в дальнейшем для решения задачи оптимизации портфеля.

Портфель – совокупность инвестиционных вложений, состоящих из ценных бумаг и свободных финансов.

Портфель состоит из N типов бумаг. Количество бумаг i-го типа в момент времени $t \in \overline{0,T}$ равняется $x_i(t)$, где $x_i(t) \in R_{\geq 0}$. Введем вектор

$$X(t) = \{x_1(t), x_2(t), \dots, x_N(t)\}^T$$

Обозначим $x_0(t)$ как количество свободных финансов в момент времени t.

Под $u_i^+(t)$ мы будем понимать сколько мы купили ценных бумаг типа i в момент времени t. Под $u_i^-(t)$ мы будем понимать сколько мы продали ценных бумаг типа i в момент времени t. При этом стоимость покупки этой бумаги равна $b_i(t)$ (buy), а продажа $s_i(t)$ (sell).

Таким образом, на каждом шаге покупаем ценнных бумаг типа i на сумму $u_i^+(t)b_i(t)$ и продаем на сумму $u_i^-(t)s_i(t)$.

Таким образом, количество свободных средств в следующий момент времени будет равно

$$x_0(t+1) = x_0(t) - \sum_{i=1}^{N} \left(-u_i^+(t)b_i(t) + u_i^-(t)s_i(t) \right)$$

Количество ценных бумаг типа i в момент времени t+1 будет равно

$$x_i(t+1) = x_i(t) + u^+(i) - u^-(i)$$

Представим все это в векторной форме. Введем следующие определения:

$$U^{+}(t) = \{u_{1}^{+}(t), \dots, u_{N}^{+}(t)\}^{T}$$
$$U^{-}(t) = \{u_{1}^{-}(t), \dots, u_{1}^{-}(t)\}^{T}$$

$$B(t) = \{b_1(t), \dots, b_N(t)\}^T$$

$$S(t) = \{s_1(t), \dots, s_N(t)\}^T$$

Тогда имеем функцию перехода для X(t):

$$X(t+1) = X(t) + U^{+}(t) - U^{-}(t)$$

И для $x_0(t)$:

$$x_0(t+1) = x_0(t) + U^+(t)^t B(t) - U^-(t)^t S(t)$$

На значения X, U^+, U^-, x_0 накладываются следующие естественные ограничения:

$$X(t) \ge 0, \quad \forall t = \overline{0, T}$$

$$U^{+}(t) \ge 0, \quad \forall t = \overline{0, T - 1}$$

$$U^{-}(t) \ge 0, \quad \forall t = \overline{0, T - 1}$$

$$x_0(t) \ge 0, \quad \forall t = \overline{0, T}$$

Введем понятие общей стоимости портфеля.

Пусть $w_i(t)$ общая стоимость бумаг типа i, и она равна сумме, которую мы сейчас можем выручить из ее продажи, т.е. $w_i(t) = x_i(t)s_i(t)$. $w_0(t)$ будем считать равным $x_0(t)$. Тогда общая стоимость портфеля равна

$$w(t) = \sum_{i=0}^{N} w_i(t)$$

. Или в векторном виде:

$$w(t) = x_0(t) + X(t)^T S(t)$$

2.0.1 Данные для численных экспериментов

В данной главе описаны данные, которые используются для проведения численных экспериментов. Тут же дано описание того, как строятся прогнозы в случае, когда работаем с недетерминированной моделью.

Будем работать с двумя типами данных, сгенерированных искусственно и реальными котировками на рынке криптовалют.

Сгенерированные данные представляют собой сумму линейной и суносойднойй функции

$$B_i(t) = k_{i0} + k_i * t + \alpha_i * sin(r_i + g_i * t)$$
$$S_i(t) = 0.99B_i(t)$$

Значения k_{i0} , k_i , α_i , r_i , g_i подобраны таким образом, чтоб ни для каких $i \neq j$ не совпадали периоды. $S_i(t)$ выбрана в таком виде, так как это является неплохим приближением реально существующий картины, когда разница между покупкой и продажей приблизительно равна фиксированному проценту.

Реальные же данные взяты по ... из исторических курсов за период ...

Предсказание значений

В общем случае, данные будущих стоимостей $S_i(t)$ и $B_i(t)$ не известны. В этой работе будем пытаться предсказать будущие значения на основе предыдущих наблюдений.

В работе используется линейная регриссионная модель, зависимости стоимости от времени, в этом разделе будет дано краткое теоретическое ее описание и пример использования для приближенного нахождения будущих значений.

Оценка предсказаний

В данной секции рассказывается о качестве найденных оценок. Показывается, что они будут несмещенными, вычисляется распределение и дисперсия ошибки.

Дисперсия будет в дальнейшем использоваться для функции стоимости перехода в виде

$$L_t(U^+(t), U^-(t), \bar{B}(t), \bar{S}(t), D[W(t)^T]) = \alpha * D[W(t)^T] \left(\bar{B}(t)^T U^+(t) + \bar{S}(t)^T U^-(t)\right)^2$$

Где W(t) это собственно и сама ошибка предсказания.

2.0.2 Детерменированная модель

В данной главе мы рассмотрим детерминированную модель, а именно, когда нам точно известны наперед все значения $s_i(t)$ и $b_i(t)$.

Иными словами
$$\hat{s}(t) = s(t)$$
 и $\hat{b}(t) = b(t)$

В таком случае, мы можем рассмотреть следующие модели:

- максимизация стоимости портфеля без терминального множества
- максимизация стоимости портфеля с терминальным множеством

Максимизация стоимости портфеля без терминального множества Рассмотрим следующую задачу MPC на горизонте планирования T

$$\max_{U^{+},U^{-}} J(x,u) = w(T) = x_{0}(T) + X(T)^{T} S(T)$$

$$X(t+1) = X(t) + U^{+}(t) - U^{-}(t)$$

$$x_{0}(t+1) = x_{0}(t) - B(t)^{T} U^{+}(t) + S(t)^{T} U^{-}(t)$$

$$X(t) \ge 0, \quad \forall t = \overline{0,T}$$

$$U^{+}(t) \ge 0, \quad \forall t = \overline{0,T-1}$$

$$U^{-}(t) \ge 0, \quad \forall t = \overline{0,T-1}$$

$$x_{0}(t) \ge 0, \quad \forall t = \overline{0,T}$$
(2.1)

Отметим, что в данной задаче функция стоимости не ограничена, кроме того, тут отсутствуют стоимости переходов а есть только терминальная стоимость.

Так как предположение $J_{\infty}^*(x_0) < \infty$ из главы (1.3) не выполняется, то мы не можем гарантировать устойчивость и исследовать на субоптимальность.

Проведем численные эксперименты для T=6 и N=2 для синтетических и настоящих данных.

TODO вставить картинки

Как видим, у нас происходят частые операции вида: продать все бумаги типа i и на освободившиеся деньги купить бумаги типа j. Это может представлять собой проблему, так как мы производим сразу большие переводы, что может привносить с собой большие риски (подробнее об этом будет рассказано в главе с недетерменированной моделью)

Изменим функцию стоимости таким образом, чтоб добавить в нее стоимость перехода.

$$\min_{U^+,U^-} J(x,u) = \sum_{i=0}^T L(U^+(i), U^-(i)) - w(T)$$

Если в качестве функции стоимости взять, скажем

$$L(U^{+}(t), U^{-}(t)) = \alpha(B(t)^{T}U^{+}(t) + S(t)^{T}U^{-}(t))$$

то есть весь оборот денег, который был в момент t, то наши графики изменятся уже следующим образом (для $\alpha=0.1$)

Максимизация стоимости портфеля с терминальным множеством Рассмотрим следующую задачу MPC на горизонте планирования T

$$\max_{U^{+},U^{-}} J(x(t_{0}), u) = x_{0}(t_{0} + T) + X(t_{0} + T)^{T} S(t_{0} + T)
X(t+1) = X(t) + U^{+}(t) - U^{-}(t)
x_{0}(t+1) = x_{0}(t) - B(t)^{T} U^{+}(t) + S(t)^{T} U^{-}(t)
X(t_{0} + t) \ge 0, \quad \forall t = \overline{0, T}
U^{+}(t_{0} + t) \ge 0, \quad \forall t = \overline{0, T - 1}
U^{-}(t_{0} + t) \ge 0, \quad \forall t = \overline{0, T - 1}
x_{0}(t_{0} + t) \ge 0, \quad \forall t = \overline{0, T}
\frac{x_{k}(t_{0} + T)}{\sum_{i=0}^{N} x_{i}(t_{0} + T)} = \frac{x_{k}(0)}{\sum_{i=0}^{N} x_{i}(0)}, \quad \forall k \in \overline{0, N}$$
(2.2)

иными словами, требуется, чтоб в момент времени $t_0 + T$ пропорции в портфеле вернулись к тем, что были в нулевой момент времени. Идея данного подхода совпадает с той, что используется в экономическом MPC (только там в качестве устойчивого состояния используется точка x_s , а в нашем случае это целый луч).

Теорема 2.1 Задача (2.7) разрешима Доказательство. Заметим, что управление

$$U^{+}(t_{0}+) = U^{-}(t_{0}+t) \equiv 0, \quad \forall t = \overline{0, T-1}$$

является допустимым, следовательно наша задача разрешима.

Введем понятие нулевого управления, под ним мы будем понимать управление, постоянно равное нулю и обозначим его NULL

$$U^+(t) = U^-(t) \equiv 0$$

Теорема 2.2 Пусть для $x_0(0), X(0)$ из задачи $(\ref{eq:condition})$ получено управление MPC

$$\{(U(0), X(1)), (U(1), X(2)), \dots\}$$

тогда любого M > 0 верно:

$$\max_{U+|U|=T} J(x(M), u) \ge x_0(0) + X(0)^T S(M+T)$$

Доказательство. Будет добавлено позже

Иными словами, это означает, что в любой момент времени, портфель, управляемый MPC за T шагов может быть приведен в терминальное множество и при этом стоимость портфеля будет больше, нежели мы бы постоянно использовали нулевое управление.

2.0.3 Недетерминированная модель

В данной главе рассмотрен случай, когда точно не известны будущие стоимости активов и мы должны

В случае, когда точно не известны значения $s_i(t)$ и $b_i(t)$, наша функция перехода для $x_0(t)$ имеет следующий вид:

$$x_0(t+1) = x_0(t) - B(t)^T U^+(t) + S(t)^T U^-(t)$$
(2.3)

Где

$$B(t) = \{b_1(t), \dots, b_N(t)\}^T$$

 $S(t) = \{s_1(t), \dots, s_N(t)\}^T$

И при этом $B(t)=\bar{B}(t)(1+W_1(t)),$ где $\bar{B}(t)$ это предсказанное состояние а $M[W_1(t)]=0.$ Аналогично для $S(t)=\bar{S}(t)(1+W_2(t)).$

Так как изменение цены покупки и продажи происходит одинаково, то будем считать, что $W_1(t)\equiv W_2(t)=W(t)$

Сейчас перепишем (2.3):

$$x_0(t+1) = x_0(t) + \bar{B}(t)^T U^+(t) + \bar{S}(t)^T U^-(t) - (\bar{B}(t)W(t))^T U^+(t) + (\bar{S}(t)W(t))^T U^-(t)$$
(2.4)

Оценим для величины $x_0(t+1)$ математическое ожидание и дисперсию:

$$M[x_0(t+1)] = M[x_0(t)] + \bar{B}(t)^T U^+(t) + \bar{S}(t)^T U^-(t)$$
(2.5)

Будем считать, что величины $x_0(t)$ и W(t) независимы

$$D[x_0(t+1)] = D[x_0(t) - (\bar{B}(t)W(t))^T U^+(t) + (\bar{S}(t)W(t))^T U^-(t)] =$$

$$= D[x_0(t)] + D[W(t)^T (\bar{B}(t)^T U^+(t) + \bar{S}(t)^T U^-(t))] =$$

$$= D[x_0(t)] + D[W(t)^T] (\bar{B}(t)^T U^+(t) + \bar{S}(t)^T U^-(t))^2$$
(2.6)

Сейчас можем добавить учет дисперсии в функцию перехода, эта добавка будит служить своего рода ограничением дисперсии при максимизации математического ожидания.

$$L_t(U^+(t), U^-(t), \bar{B}(t), \bar{S}(t), D[W(t)^T]) = \alpha *D[W(t)^T] \left(\bar{B}(t)^T U^+(t) + \bar{S}(t)^T U^-(t)\right)^2$$

Оценки на значения $D[W(t)^T]$ зависят от способа предсказания векторов S(t) и B(t).

$$\max_{U^{+},U^{-}} - \sum_{t=0}^{T-1} L_{t}(U^{+}(t), U^{-}(t), \bar{B}(t), \bar{S}(t), D[W(t)^{T}]) + \\
+ x_{0}(t_{0} + T) + X(t_{0} + T)^{T} S(t_{0} + T) \\
X(t+1) = X(t) + U^{+}(t) - U^{-}(t) \\
x_{0}(t+1) = x_{0}(t) - B(t)^{T} U^{+}(t) + S(t)^{T} U^{-}(t) \\
X(t_{0} + t) \geq 0, \quad \forall t = \overline{0, T} \\
U^{+}(t_{0} + t) \geq 0, \quad \forall t = \overline{0, T - 1} \\
U^{-}(t_{0} + t) \geq 0, \quad \forall t = \overline{0, T - 1} \\
x_{0}(t_{0} + t) \geq 0, \quad \forall t = \overline{0, T} \\
\frac{x_{k}(t_{0} + T)}{\sum_{i=0}^{N} x_{i}(t_{0} + T)} = \frac{x_{k}(0)}{\sum_{i=0}^{N} x_{i}(0)}, \quad \forall k \in \overline{0, N}$$

$$(2.7)$$