EAS PEMODELAN MATEMATIKA (C)

Pak Kamiran

Soal 1

Perhatikan model dengan sistem persamaan diferensial serta kontrol $U_1(t)$ dan $U_2(t)$, sebagai berikut:

$$\frac{dx}{dt} = (1 - u_1)y^2 - x^2 \quad \text{dan} \quad \frac{dy}{dt} = x - u_2 xy$$

Dengan syarat awal:

$$x(0) = 1$$
 dan $y(0) = 2$

maka:

a. Tentukan titik stabilitas non-negatif dan linierkan model tersebut untuk nilai kontrol $u_1 = \frac{3}{4}$ dan $u_2 = \frac{1}{2}$.

Jawab: Titik stabilitas non negatif dari persamaan tesebut adalah saat $\frac{dx}{dt} = 0$ dan $\frac{dy}{dt} = 0$ serta nilai koordinat (x, y) memiliki nilai non negatif. Maka

$$\begin{aligned} \frac{dx}{dt} &= (1 - u_1)y^2 - x^2 = 0\\ &(1 - \frac{3}{4})y^2 = x^2\\ &\frac{y^2}{4} = x^2 \end{aligned}$$

Sehingga diperoleh persamaan (1) sebagai berikut

$$y^2 = 4x^2 \tag{1}$$

Serta

$$\frac{dy}{dt} = x - u_2 xy = 0$$
$$x - \frac{1}{2}xy = 0$$
$$x(1 - \frac{1}{2}y) = 0$$
$$x = 0 \text{ atau } y = 2$$

Subsitusi x = 0 dan y = 2 pada persamaan (1). Sehingga diperoleh saat x = 0 maka y = 0 dan saat y = 2 maka diperoleh x sebagai berikut

$$4x^{2} = 2^{2}$$

$$4x^{2} = 4$$

$$x^{2} = 1$$

$$x = \pm 1$$

Oleh karena itu diperoleh 3 titik stabilitas yaitu (0,0), (1,2), dan (-1,2), dengan titik stabilitas nonnegatif yaitu (1,2) dan (0,0).

Selanjutnya akan dilakukan pelinieran model tersebut dengan menggunakan matriks Jacobian:

$$J = \begin{bmatrix} \frac{\partial}{\partial x} \left(\frac{dx}{dt} \right) & \frac{\partial}{\partial y} \left(\frac{dx}{dt} \right) \\ \frac{\partial}{\partial x} \left(\frac{dy}{dt} \right) & \frac{\partial}{\partial y} \left(\frac{dy}{dt} \right) \end{bmatrix}_{(x^*, y^*)}$$

Dengan (x^*, y^*) adalah titik stabilitas yang didapat sebelumnya, maka matriks Jacobian adalah sebagai berikut

$$J = \begin{bmatrix} \frac{\partial}{\partial x} \left((1 - u_1) y^2 - x^2 \right) & \frac{\partial}{\partial y} \left((1 - u_1) y^2 - x^2 \right) \\ \frac{\partial}{\partial x} \left(x - u_2 x y \right) & \frac{\partial}{\partial y} \left(x - u_2 x y \right) \end{bmatrix}_{(x^*, y^*)} = \begin{bmatrix} -2x & \frac{1}{2} y \\ 1 - \frac{1}{2} y & -\frac{1}{2} x \end{bmatrix}_{(x^*, y^*)}$$

Apabila menggunakan titik kesetimbangan (1,2), maka matriks Jacobian menjadi

$$J = \begin{bmatrix} -2x & \frac{1}{2}y \\ 1 - \frac{1}{2}y & -\frac{1}{2}x \end{bmatrix}_{(1,2)} = \begin{bmatrix} -2(1) & \frac{1}{2}(2) \\ 1 - \frac{1}{2}(2) & -\frac{1}{2}(1) \end{bmatrix} = \begin{bmatrix} -2 & 1 \\ 0 & -\frac{1}{2} \end{bmatrix}$$

Dan menggunakan titik kesetimbangan (0,0), diperoleh matriks Jacobian sebagai berikut

$$J = \begin{bmatrix} -2x & \frac{1}{2}y \\ 1 - \frac{1}{2}y & -\frac{1}{2}x \end{bmatrix}_{(0,0)} = \begin{bmatrix} -2(0) & \frac{1}{2}(0) \\ 1 - \frac{1}{2}(0) & -\frac{1}{2}(0) \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}.$$

Sehingga setelah dilakukan pelinieran di sekitar titik kesetimbangan diperoleh 2 bentuk persamaan differensial yaitu

$$\begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = \begin{bmatrix} -2 & 1 \\ 0 & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \quad \text{dan } \begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

b. Apakah model tersebut stabil dengan nilai kontrol tersebut?
 Jawab: Suatu sistem dikatakan stabil apabila nilai eigen model tersebut adalah negatif. Maka akan dihitung nilai eigen model dengan menggunakan persamaan:

$$|A - \lambda I| = 0$$

Dengan $A = \begin{bmatrix} -2 & 1 \\ 0 & -\frac{1}{2} \end{bmatrix}$ maka nilai eigennya adalah

$$\begin{vmatrix} -2 - \lambda & 1 \\ 0 & -\frac{1}{2} - \lambda \end{vmatrix} = 0$$
$$(-2 - \lambda) \left(-\frac{1}{2} - \lambda \right) = 0$$
$$\lambda_1 = -2 \operatorname{dan} \lambda_2 = -\frac{1}{2}$$

Karena kedua nilai eigen adalah negatif, maka model stabil.

Untuk $A = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$ maka nilai eigennya adalah

$$\begin{vmatrix} -\lambda & 0 \\ 1 & -\lambda \end{vmatrix} = 0$$
$$\lambda^2 = 0$$
$$\lambda_{1,2} = 0$$

Karena nilai eigen bernilai 0, maka model stabil tidak asimtotis.

c. Selesaikan bentuk linier dari sistem persamaan diferensial tersebut.
 Jawab: Akan dipilih model linier yang stabil dari sistem persamaan differensial yaitu

$$\begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = \begin{bmatrix} -2 & 1 \\ 0 & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Langkah pertama yaitu mencari nilai eigen yaitu didapat melalui perhitungan sebelumnya, nilai eigen sistem adalah $\lambda_1 = -2$ dan $\lambda_2 = -\frac{1}{2}$. Selanjutnya mencari vektor eigen dengan persaman

$$(A - \lambda I)\mathbf{v} = 0$$

- Untuk $\lambda_1 = -2$ diperoleh vektor eigen $v_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$
- Untuk $\lambda_2 = -\frac{1}{2}$ diperoleh vektor eigen $v_2 = \begin{bmatrix} 1 \\ \frac{3}{2} \end{bmatrix}$.

Sehingga penyelesaian umum sistem persamaan differensial yaitu

$$\begin{bmatrix} x \\ y \end{bmatrix} = C_1 e^{\lambda_1 t} + C_2 e^{\lambda_2 t}$$
$$\begin{bmatrix} x \\ y \end{bmatrix} = C_1 e^{-2t} \begin{bmatrix} 1 \\ 0 \end{bmatrix} + C_2 e^{-\frac{1}{2}t} \begin{bmatrix} \frac{1}{3} \\ \frac{1}{2} \end{bmatrix}$$

Kemudian akan dicari penyelesaian khusus sistem persamaan diferensial yaitu melalui nilai awal x(0) = 1 dan y(0) = 2.

$$\begin{bmatrix} x(0) \\ y(0) \end{bmatrix} = C_1 e^{-2 \times 0} \begin{bmatrix} 1 \\ 0 \end{bmatrix} + C_2 e^{-\frac{1}{2} \times 0} \begin{bmatrix} \frac{1}{3} \\ \frac{1}{2} \end{bmatrix}$$
$$\begin{bmatrix} 1 \\ 2 \end{bmatrix} = C_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + C_2 \begin{bmatrix} \frac{1}{3} \\ \frac{1}{2} \end{bmatrix}$$

Diperoleh

$$\frac{3}{2}C_2 = 2$$

$$C_2 = \frac{4}{3}$$

dan

$$C_1 + C_2 = 1$$

 $C_1 = 1 - \frac{4}{3}$
 $C_1 = -\frac{1}{3}$

Sehingga penyelesaian khusus sistem persaman diferensial adalah

$$\begin{bmatrix} x \\ y \end{bmatrix} = -\frac{1}{3}e^{-2t} \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \frac{4}{3}e^{-\frac{1}{2}t} \begin{bmatrix} 1 \\ \frac{3}{2} \end{bmatrix}$$

d. Selesaikan bentuk nonlinier dari sistem persamaan diferensial tersebut secara numerik (metode Runge-Kutta).

Jawab: Rumus Runge-Kutta untuk menghitung iterasi x_n dan y_n adalah sebagai berikut:

$$x_n = x_{n-1} + \frac{h}{6}(k_1 + 2k_2 + 2k_3 + k_4),$$

$$y_n = y_{n-1} + \frac{h}{6}(l_1 + 2l_2 + 2l_3 + l_4).$$

dengan:

$$\begin{aligned} k_1 &= h \cdot f(x_0, y_0), \quad l_1 &= h \cdot g(x_0, y_0), \\ k_2 &= h \cdot f\left(x_0 + \frac{1}{2}k_1, y_0 + \frac{1}{2}l_1\right), \quad l_2 &= h \cdot g\left(x_0 + \frac{1}{2}k_1, y_0 + \frac{1}{2}l_1\right), \\ k_3 &= h \cdot f\left(x_0 + \frac{1}{2}k_2, y_0 + \frac{1}{2}l_2\right), \quad l_3 &= h \cdot g\left(x_0 + \frac{1}{2}k_2, y_0 + \frac{1}{2}l_2\right), \\ k_4 &= h \cdot f(x_0 + k_3, y_0 + l_3), \quad l_4 &= h \cdot g(x_0 + k_3, y_0 + l_3). \end{aligned}$$

Hitung nilai k dan l yaitu

$$k_{1} = h \cdot f(x_{0}, y_{0}) = 0.1 \cdot \left(\left(1 - \frac{3}{4}\right)(2)^{2} - (1)^{2}\right) = 0,$$

$$l_{1} = h \cdot g(x_{0}, y_{0}) = 0.1 \cdot \left(1 - \frac{1}{2}(1)(2)\right) = 0.$$

$$k_{2} = h \cdot f\left(x_{0} + \frac{1}{2}k_{1}, y_{0} + \frac{1}{2}l_{1}\right) = 0.1 \cdot f(1, 2) = 0,$$

$$l_{2} = h \cdot g\left(x_{0} + \frac{1}{2}k_{1}, y_{0} + \frac{1}{2}l_{1}\right) = 0.1 \cdot g(1, 2) = 0.$$

$$k_{3} = h \cdot f\left(x_{0} + \frac{1}{2}k_{2}, y_{0} + \frac{1}{2}l_{2}\right) = 0.1 \cdot f(1, 2) = 0,$$

$$l_{3} = h \cdot g\left(x_{0} + \frac{1}{2}k_{2}, y_{0} + \frac{1}{2}l_{2}\right) = 0.1 \cdot g(1, 2) = 0.$$

$$k_{4} = h \cdot f(x_{0} + k_{3}, y_{0} + l_{3}) = 0.1 \cdot f(1, 2) = 0,$$

$$l_{4} = h \cdot g(x_{0} + k_{3}, y_{0} + l_{3}) = 0.1 \cdot g(1, 2) = 0.$$

Sehingga x_1 dan y_1 adalah

$$x_1 = x_0 + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4) = 1 + \frac{1}{6}(0 + 2(0) + 2(0) + 0) = 1,$$

$$y_1 = y_0 + \frac{1}{6}(l_1 + 2l_2 + 2l_3 + l_4) = 2 + \frac{1}{6}(0 + 2(0) + 2(0) + 0) = 2.$$

Karena iterasi yang cukup panjang maka untuk x_n dan y_n selanjutnya akan dilanjutkan dengan bantuan bahasa pemograman dalam bentuk grafik yang ada pada jawaban (e).

e. Tampilkan grafik penyelesaian poin (c) dan (d) dalam satu frame. **Jawab**: Dengan menggunakan bantuan *software* MATLAB, didapatkan grafik dibawah ini:

Soal 2

Perhatikan model dengan sistem persamaan diferensial serta kontrol $U_1(t)$ dan $U_2(t)$, sebagai berikut:

$$\frac{dx}{dt} = (1 - u_1)y^2 - x^2 \quad \text{dan} \quad \frac{dy}{dt} = x - u_2 xy$$

Dengan syarat awal:

$$x(0) = 1$$
 dan $y(0) = 2$

Dan diberikan kontrol optimum sebagai berikut:

$$J = \min \int_0^{10} \left(x + y + \frac{1}{2} (u_1^2 + u_2^2) \right) dt$$

Dengan; $0 \le u_1 \le 1$, $0 \le u_2 \le 1$ memenuhi persamaan diferensial di atas.

a. Nyatakan bentuk fungsi Hamiltonian dari model di atas.

Jawab: Fungsi Hamiltonian yaitu

$$\begin{split} H(x,y,u_1,u_2,\lambda_1,\lambda_2) &= L(x,y,u_1,u_2) + \lambda_1 \frac{dx}{dy} + \lambda_2 \frac{dy}{dt} \\ H(x,y,u_1,u_2,\lambda_1,\lambda_2) &= x + y + \frac{1}{2}(u_1^2 + u_2^2) + \lambda_1 \{(1-u_1)y^2 - x^2\} + \lambda_2 (x - u_2 xy) \\ H(x,y,u_1,u_2,\lambda_1,\lambda_2) &= x + y + \frac{1}{2}u_1^2 + \frac{1}{2}u_2^2 + \lambda_1 y^2 - \lambda_1 u_1 y^2 - \lambda_1 x^2 + \lambda_2 x - \lambda_2 u_2 xy \end{split}$$

Turunan parsial terhadap u_1 dan u_2 :

$$\frac{\partial H}{\partial u_1} = u_1 - \lambda_1 y^2 = 0 \implies u_1 = \lambda_1 y^2$$

$$\frac{\partial H}{\partial u_2} = u_2 - \lambda_2 xy = 0 \implies u_1 = \lambda_2 xy$$

b. Linierkan model tersebut dan analisa kestabilannya pada titik stabilitas nonnegatif. **Jawab**: Titik stabilitas non negatif dari persamaan tesebut adalah saat $\frac{dx}{dt} = 0$ dan $\frac{dy}{dt} = 0$ serta nilai koordinat (x, y) memiliki nilai non negatif. Maka

$$\frac{dx}{dt} = 0$$

$$(1 - u_1)y^2 - x^2 = 0$$

$$(1 - u_1)y^2 = x^2$$

Sehingga diperoleh

$$x = \pm \sqrt{1 - u_1} y \tag{2}$$

Selanjutnya pada

$$\frac{dy}{dt} = 0$$
$$x - u_2 x y = 0$$
$$x(1 - u_2 y) = 0$$

Diperoleh x=0 dan $y=\frac{1}{u_2}$. Subsitusi nilai tersebut pada persamaan (2), maka diperoleh 3 titik stabilitas yaitu (0,0) dan $(\pm\sqrt{1-u_1}\frac{1}{u_2},\frac{1}{u_2})$. Dengan titik stabilitas nonnegatif yaitu (0,0) dan $(\sqrt{1-u_1}\frac{1}{u_2},\frac{1}{u_2})$.

Akan dilakukan pelinieran disekitar titik stabilitas nonnegatif dengan matrisk Jacobian sebagai berikut.

$$J = \begin{bmatrix} \frac{\partial}{\partial x} \left(\frac{dx}{at} \right) & \frac{\partial}{\partial y} \left(\frac{dx}{at} \right) \\ \frac{\partial}{\partial x} \left(\frac{dy}{at} \right) & \frac{\partial}{\partial y} \left(\frac{dy}{at} \right) \end{bmatrix}_{(x^*, y^*)}.$$

Dengan (x^*, y^*) adalah titik stabilitas yang didapat sebelumnya, maka matriks Jacobian adalah sebagai berikut

$$J = \begin{bmatrix} \frac{\partial}{\partial x} \left((1 - u_1) y^2 - x^2 \right) & \frac{\partial}{\partial y} \left((1 - u_1) y^2 - x^2 \right) \\ \frac{\partial}{\partial x} \left(x - u_2 x y \right) & \frac{\partial}{\partial y} \left(x - u_2 x y \right) \end{bmatrix}_{(x^*, y^*)} = \begin{bmatrix} -2x & 2(1 - u_1) y \\ 1 - u_2 y & -u_2 x \end{bmatrix}_{(x^*, y^*)}$$

Dengan menggunakan salah satu titik stabilitas nonnegatif yaitu (0,0) maka matriks Jacobian menjadi

$$J = \begin{bmatrix} -2x & 2(1-u_1)y \\ 1-u_2y & -u_2x \end{bmatrix}_{(0,0)} = \begin{bmatrix} -2(0) & 2(1-u_1)(0) \\ 1-u_2(0) & -u_2(0) \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$$

Selanjutnya akan dianalisa kestabilannya, yaitu dengan melihat nilai eigennya. Dengan persamaan

$$|A - \lambda I| = 0$$

$$\begin{vmatrix}
-\lambda & 0 \\
1 & -\lambda
\end{vmatrix} = 0$$

$$\lambda^2 = 0$$

$$\lambda_{1,2} = 0$$

Karena nilai eigen bernilai 0, maka model stabil tidak asimtotis.

c. Dapatkan semua sistem persamaan diferensial state dan co-state.
 Jawab: Persamaan state:

$$\frac{dx}{dt} = (1 - u_1)y^2 - x^2$$
$$\frac{dy}{dt} = x - u_2 xy$$

Persamaan co-state:

$$\begin{aligned} \frac{d\lambda_1}{dt} &= -\frac{\partial H}{\partial x} = -1 + 2\lambda_1 x - \lambda_2 (1 - u_2 y) \\ \frac{d\lambda_2}{dt} &= -\frac{\partial H}{\partial x} = -1 - 2\lambda_1 (1 - u_1) y + \lambda_2 u_2 x \end{aligned}$$

Kondisi Optimal:

$$u_1 = \min(1, \max(0, \lambda_1 y^2))$$

 $u_2 = \min(1, \max(0, \lambda_2 xy))$

d. Selesaikan model di atas secara numerik.

Jawab: Dengan menggunakan metode runge kutta dapat dihitung dengan nilai awal adalah $x_0 = 1$, $y_0 = 2$, $l_1 = 0.1$, dan $l_2 = 0.1$, serta langkah waktu h = 0.5.

$$k_1 x = \frac{dx}{dt} = (1 - 0.4) \times 2^2 - 1^2 = 0.6 \times 4 - 1 = 2.4 - 1 = 1.4$$

$$k_1 y = \frac{dy}{dt} = 1 - 0.2 \times 1 \times 2 = 1 - 0.4 = 0.6$$

$$k_1 \lambda_1 = \frac{d\lambda_1}{dt} = -1 + 2 \times 0.1 \times 1 - 0.1 \times (1 - 0.2 \times 2)$$

$$= -1 + 0.2 - 0.1 \times (1 - 0.4) = -1 + 0.2 - 0.1 \times 0.6 = -1 + 0.2 - 0.06 = -0.86$$

$$k_1 \lambda_2 = \frac{d\lambda_2}{dt} = -1 - 2 \times 0.1 \times (1 - 0.4) \times 2 + 0.1 \times 0.2 \times 1$$

$$= -1 - 2 \times 0.1 \times 0.6 \times 2 + 0.1 \times 0.2 = -1 - 0.24 + 0.02 = -1.22$$

Karena iterasi yang cukup panjang maka untuk x_n , y_n , λ_1 , dan λ_2 selanjutnya akan dilanjutkan dengan bantuan bahasa pemograman. Dapat dilihat pada tabel dan grafik yang ada pada jawaban (e).

Table 1: Tabel Hasil Perhitungan Iterasi Runge Kutta 4

t	X	y	λ_1	λ_2
0.0000	1.0000	2.0000	0.1000	0.1000
0.5000	2.2533	2.7055	-0.7640	0.1279
1.0000	1.6545	1.4906	-6.0057	8.1339
1.5000	1.3826	1.2295	-22.1465	39.1454
2.0000	1.2219	1.1201	-69.8463	137.3262
2.5000	1.1296	1.0669	-205.7548	420.8886
3.0000	1.0764	1.0386	-584.9809	1209.3277
3.5000	1.0455	1.0228	-1630.4555	3365.9332
3.5000	1.0455	1.0228	-1630.4555	3365.9332
4.0000	1.0272	1.0136	-4492.2858	9223.2600
4.5000	1.0163	1.0081	-12293.0109	25085.6678
5.0000	1.0099	1.0049	-33502.1011	67999.6335
5.5000	1.0060	1.0030	-91078.4016	184076.2364
6.0000	1.0036	1.0018	-247236.1306	498089.1870
6.5000	1.0022	1.0011	-670528.0240	1347756.6357
7.0000	1.0013	1.0007	-1817542.9311	3647337.7484
7.5000	1.0008	1.0004	-4925026.6029	9872224.2619
8.0000	1.0005	1.0002	-13342746.8462	26725277.3031
8.5000	1.0003	1.0001	-36143399.1253	72357687.0195
9.0000	1.0002	1.0001	-97899536.9022	195924641.4463
9.5000	1.0001	1.0001	-265162926.6982	530547148.6415
10.0000	1.0001	1.0000	-718179745.3160	1436747776.9143

e. Tampilkan grafik penyelesaian x, y, u_1 , dan u_2 . **Jawab**: Dengan menggunakan bantuan MATLAB, maka grafik penyelesaian x, y, u_1 , dan u_2 adalah sebagai berikut

