[ЦПМ, кружок по математике, 11 класс] [2024-2025 уч. г.] группа 11-1 26 сентября 2024 г.

Группы. Теория

Группой (G, \circ) называется множество G с заданной на нём бинарной операцией \circ , удовлетворяющей следующим свойствам:

- 1. (замкнутость) Для любых элементов $a, b \in G$ верно, что $a \circ b \in G$;
- 2. (ассоциативность) Для любых элементов $a,b,c\in G$ выполняется равенство $a\circ (b\circ c)=(a\circ b)\circ c;$
- 3. (нейтральный элемент) Существует элемент $e \in G$ такой, что $a \circ e = e \circ a = a$ для любого $a \in G$. Этот элемент e называется нейтральным;
- 4. (обратный элемент) Для каждого элемента $a \in G$ найдётся элемент $b \in G$ такой, что $a \circ b = b \circ a = e$. Элемент b называется обратным для a и обозначается a^{-1} .

Если дополнительно для любых $a,b \in G$ выполняется свойство ab=ba, то группа называется коммутативной или абелевой.

Если не возникает путаницы, то группу обозначают также как и множество, на котором она задана. То есть вместо «группа (G, \circ) » говорят и пишут «группа G».

Порядком конечной группы G называется число её элементов. Обозначение: |G|.

Порядком элемента группы называется наименьшая натуральная степень, при возведении в которую элемент становится нейтральным: $g^m = g \circ \cdots \circ g = e$. Если такой степени не существует, то говорят, что элемент имеет бесконечный порядок.

Примеры:

- 1. Числовые группы по сложению: $(\mathbb{Z}_n,+),(\mathbb{Z},+),(\mathbb{Q},+),(\mathbb{R},+),(\mathbb{C},+).$
- 2. Числовые группы по умножению: $(\mathbb{Z}_p \setminus \{0\}, *), (\mathbb{Q} \setminus \{0\}, *), (\mathbb{R} \setminus \{0\}, *), (\mathbb{C} \setminus \{0\}, *).$
- 3. Множество перестановок S_n и множество чётных перестановок A_n с операцией композиции.
- 4. Множества движений плоскости и пространства с операцией композиции.
- 5. Множество движений плоскости, переводящих правильный n-угольник в себя, с операцией композиции. Обозначение: D_n . Группа D_n состоит из n поворотов и n осевых симметрий.

Группы (G,*) и (H,\cdot) называются **изоморфными**, если существует взаимно однозначное соответствие $f:G\to H$, сохраняющее групповые операции: $\forall u,v\in G$ верно $f(u*v)=f(u)\cdot f(v)$. Отображение f называется **изоморфизмом** данных групп.

Левым смежным классом элемента $a \in G$ по подгруппе H называется множество $aH = \{ah \mid h \in H\}$. Аналогично определяется **правый смежный класс** $Ha = \{ha \mid h \in H\}$. Подгруппа H группы G называется **нормальной**, если gH = Hg для всех $g \in G$.

Элементы g и h называются сопряженными в группе G, если найдётся элемент $f \in G$ такой, что fg = hf (или $g = f^{-1}hf$). Обозначение: $g \sim h$.

Легко проверить, что \sim является отношением эквивалентности. Соответствующие классы эквивалентности называются **классами сопряжённости**.

[ЦПМ, кружок по математике, 11 класс] [2024-2025 уч. г.] группа 11-1 26 сентября 2024 г.

Группы. Задачи

Entry level:

- 1. Пусть |G| = 2n. Докажите, что найдётся элемент $g \in G$ порядка 2.
- 2. Докажите, что группа, в которой все неединичные элементы имеют порядок 2, абелева.
- **3.** В группе есть три элемента порядка 4. Докажите, что найдется и четвертый элемент этого порядка.
- **4.** (*Теорема Лагранжа.*) Если группа G конечна, а H её произвольная подгруппа, то |H| делит |G|.

Intermediate level:

- 5. Пусть подгруппа H имеет всего 2 левых смежных класса в G. Докажите, что H нормальная подгруппа.
- 6. Опишите группу самосовмещений куба.
- 7. (Теорема Кэли.) Докажите, что любая конечная группа изоморфна какой-то подгруппе S_n для достаточно большого n.

Advanced level:

- 8. Докажите, что мощность класса сопряжённости элемента конечной группы $g \in G$ равна количеству левых смежных классов подгруппы $Z_g = \{z \in G \mid z^{-1}gz = g\}$ в G.
- **9.** Покажите, что число неизоморфных конечных групп, содержащих менее миллиона классов сопряжённости, конечно.
- **10.** Назовём элемент конечной группы угрюмым, если он не коммутирует ни с кем, кроме самого себя и единицы. Покажите, что в неединичной группе угрюмых элементов либо ровно половина, либо вовсе нет.