Intercepts of the Quadratic

 $n_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \text{ ac}}}{2a}$ computes the n-intercepts of multiplicity 1.

Given a quadratic $m(n) = a n^2 + b n + c$ compute its discriminant \triangle :

m(0) = c computes the single m-intercept. Example 1.

$m(n) = -n^2 + 10 n - 9$ compute its discriminant \triangle : △=64>0

 $\triangle = \sqrt{b^2 - 4ac}$ Case1: △>0

Example 2.

no n-intercepts.

Example 3.

However there is a m-intercept.

 $n_{1,2}=9,1$ m(0) = -9 m-intercept. 100

△=0 n_{1,2}=-8,-8

 $m(n) = 3 n^2 + 48 n + 192$ compute its discriminant \triangle :

$m(n) = -4 n^2 + 72 n - 405$ compute its discriminant \triangle : $\triangle = -1296 < 0$ m(0) = -405 m-intercept.

-1500