**Project Design Phase-I** 

| Date          | 2 October 2022                                             |  |
|---------------|------------------------------------------------------------|--|
| Team ID       | PNT2022TMID01439                                           |  |
| Project Name  | A Novel Method For Handwritten<br>Digit Recognition system |  |
| Maximum Marks | 4 Marks                                                    |  |

## **Solution Architecture:**

- Break the image into small image tiles Similar to sliding window, we can pass sliding window over the entire large image and each result is saved as separate, as a segment of large image as tiny picture tile.
- Feeding each tiny tile into the smaller size neural network we rarely initialize the parameters with the same values and if not so, then we mark that tile as interesting.
- Save the results from each small tile into a new array we would not like to misplace the index of the original file.
- ·we place the results in a grid of the same arrangement as an original image.

## **Solution Architecture Diagram:**



- · Input: Raw pixel values are provided as input.
- Convolution Layer: Input layers translates the results of neuron layer. There is need to specify the filter to be used. Each filter can only be a 5\*5 window that slider over input data and get pixels with maximum intensities.
- Rectified linear unit [ReLU] layer: provided activation function on the data taken as an image. In the case of back propagation, ReLU function is used which prevents the values of pixels form changing.
- Pooling layer: Performs a down-sampling operation in volume along the dimensions (width, height).

| ·Fully connected layer: Score found. | class is focused, and | d a maximum score | of the input digits is |
|--------------------------------------|-----------------------|-------------------|------------------------|
|                                      |                       |                   |                        |
|                                      |                       |                   |                        |
|                                      |                       |                   |                        |
|                                      |                       |                   |                        |
|                                      |                       |                   |                        |
|                                      |                       |                   |                        |
|                                      |                       |                   |                        |
|                                      |                       |                   |                        |
|                                      |                       |                   |                        |
|                                      |                       |                   |                        |
|                                      |                       |                   |                        |
|                                      |                       |                   |                        |
|                                      |                       |                   |                        |
|                                      |                       |                   |                        |