Intro: Computing Runtimes

Daniel Kane

Department of Computer Science and Engineering University of California, San Diego

Data Structures and Algorithms Algorithmic Toolbox

Learning Objectives

- Describe some of the issues involved with computing the runtime of an actual program.
- Understand why finding exact runtimes is a problem.

Outline

1 Revisit Fibonacci

2 Other Things to Consider

Runtime Analysis

Function FibList(n)

create an array
$$F[0...n]$$

 $F[0] \leftarrow 0$

$$F[1] \leftarrow 1$$
for i from 2 to n :

for i from 2 to n:

return F[n]

 $F[i] \leftarrow F[i-1] + F[i-2]$

Runtime Analysis

Function FibList(n)

create an array F[0...n] $F[0] \leftarrow 0$ $F[1] \leftarrow 1$ for i from 2 to n: $F[i] \leftarrow F[i-1] + F[i-2]$ return F[n]

2n + 2 lines of code. Does this really describe the runtime of the algorithm?

```
Function FibList(n)
create an array F[0...n]
F[0] \leftarrow 0
F[1] \leftarrow 1
for i from 2 to n:
  F[i] \leftarrow F[i-1] + F[i-2]
return F[n]
```

Depends on memory management system.

```
Function FibList(n)
create an array F[0...n]
F[0] \leftarrow 0
F[1] \leftarrow 1
for i from 2 to n:
  F[i] \leftarrow F[i-1] + F[i-2]
return F[n]
```

Assignment.

Function FibList(n)create an array F[0...n] $F[0] \leftarrow 0$ $F[1] \leftarrow 1$ for i from 2 to n: $F[i] \leftarrow F[i-1] + F[i-2]$ return F[n]

Assignment.

Function FibList(n)create an array F[0...n] $F[0] \leftarrow 0$ $F[1] \leftarrow 1$ for i from 2 to n: $F[i] \leftarrow F[i-1] + F[i-2]$ return F[n]

Increment, comparison, branch.

```
Function FibList(n)
create an array F[0...n]
F[0] \leftarrow 0
F[1] \leftarrow 1
for i from 2 to n:
  F[i] \leftarrow F[i-1] + F[i-2]
return F[n]
```

Lookup, assignment, addition of big integers.

Function FibList(n) create an array F[0...n] $F[0] \leftarrow 0$ $F[1] \leftarrow 1$ for i from 2 to n: $F[i] \leftarrow F[i-1] + F[i-2]$ return F[n]

Lookup, return.

Outline

1 Revisit Fibonacci

2 Other Things to Consider

Computing Runtime

To figure out how long this simple program would actually take to run on a real computer, we would also need to know things like:

Speed of the Computer

The System Architecture

The Compiler Being Used

Details of the Memory Hierarchy

Problem

 Figuring out accurate runtime is a huge mess

Problem

- Figuring out accurate runtime is a huge mess
- In practice, you might not even know some of these details

Goal

Want to:

- Measure runtime without knowing these details.
- Get results that work for large inputs.