位置相关服务(LBS): 基于R-树的查询

2017年

第五章 基于R-树的查询

范围查询作业最近邻查询作业

基于R-tree的范围查询

判断两个区域是否相交

基于R-tree的范围查询

目录

范围查询
作业
最近邻查询
作业

作业

❖ 实现基于R-树的范围查询

目录

范围查询作业最近邻查询作业

预备知识1:MinDist

- P: 给定的查询点 O: R树结点中的MBR
- ❖ 定义1:最小距离MinDist
 - 如果点P在O内部,最小距离为0
 - 如果点P在O外部,最小距离为P同O最近的一条边之间的距离

预备知识1:MinDist

- ❖ 推论1: MinDist等于点P与O的边界上任意点之间的最小距离
- ❖ 定理1:P与O之间的MinDist小于或等于P同O中可能包含的 所有数据之间的距离

预备知识2:MinMaxDist

❖ 推论2:对于R树中的所有的MBR,它们的每一条边至少包含一个数据集中的数据。

预备知识2:MinMaxDist

- ❖ 定义2:最小的最大可能距离MinMaxDist
 - 对于每一维,求出该维中距离点P比较近的边上所有点中与P距 离最远的那个点的距离
 - 将所有维的距离中选择最小的那个距离定义为MinMaxDist

MinDist和MinMaxDist的意义

❖ O中的所有数据与P之间的距离一定大于或等于MinDist

❖ O中至少有一个数据与P之间的距离小于或等于MinMaxDist

剪枝策略1

❖ 若某一个MBR与P之间的MinDist 大于另外一个MBR与P之间的 MinMaxDist,则可以放弃该MBR

证明:

- (1) $\forall O_1 \in MBR_1$, dist $(P, O_1) > MinDist1$;
- (2) $\exists O_2 \in MBR_2$, $dist(P, O_2) < MinMaxDist2$;

那么, $dist(P, O_1) > MinDist1 > MinMaxDist2 > dist(P, O_2)$ 所以,放弃MBR1。

剪枝策略2

❖ 若某一个数据与P之间的距离大于一个MBR与P之间的 MinMaxDist,则该数据可以放弃

证明:

- (1) $\operatorname{dist}(P, O_1) > \operatorname{MinMaxDist};$
- (2) $\exists O_2 \in MBR$, $\operatorname{dist}(P, O_2) < \operatorname{MinMaxDist}$; 那么, $\operatorname{dist}(P, O_1) > \operatorname{MinMaxDist} > \operatorname{dist}(P, O_2)$ 所以,放弃 O_1 。

剪枝策略3

❖ 若某一个MBR与P之间的MinDist大于某一个数据与P之间的距 离,则该MBR可以放弃

证明:

- (1) $\forall O_1 \in MBR_1$, $\operatorname{dist}(P, O_1) > \operatorname{MinDist}$;
- (2) $\operatorname{dist}(P, O_2) < \operatorname{MinDist};$

那么, $dist(P, O_1) > MinDist > dist(P, O_2)$

所以,放弃MBR。

基本思想:

从根节点开始深度优先遍历,采用MinDist和MinMaxDist进行剪枝。

- 1.按刚才所述步骤对该结点 中MBR进行取舍
- 2.对剩余的那个MBR对应的结点查询

1.由于该结点是叶子结点,包含实际的数据,计算P同每个数据之间的距离,从中选取最小的那个距离,作为当前的最小距离,并将该数据设为当前的最近邻

2.对该结点查询已经结束,返回上 层结点(由于程序是递归调用)

目录

范围查询作业最近邻查询作业

作业

❖ 实现基于R-树的最近邻查询

谢谢!

