05: Buses II

Make sure all the way in a click should should

Engr 315: Hardware / Software Codesign Andrew Lukefahr *Indiana University*

Announcements

- P2: Due Wednesday
 - Need a Pynq
 - Groups of 2 allowed

• P3: Out now!

Bus terminology

- A "transaction" occurs between an "<u>initiator</u>" and "<u>target</u>"
- Any device capable of being an initiator is said to be a "<u>bus master</u>"
 - In many cases there is only one bus master (<u>single</u> <u>master</u> vs. <u>multi-master</u>).

 A device that can only be a target is said to be a "slave device".

P3 "EMA" uses two buses to move data between CPU + hardware

P3 "EMA" uses two buses to move data between CPU + <u>hardware</u>

AXI Stream Interface

ARESETN: AXI Reset NOT

Transferring data on a AXI4-Stream Bus.

Data (TDATA) is only transferred when

TVALID is 1.

This indicates the **MASTER** is trying to transmit new data.

TREADY is 1.

This indicates the **SLAVE** is ready to receive the data.

If either TVALID or TREADY are 0, no data is transmitted.

If TVALID and TREADY are 1, TDATA is transmitted

at the positive edge of ACLK

TLAST

• Special signal to indicate a group or "burst" of transmissions is complete.

"Indicates the boundary of a packet"

Transferring data on a AXI4-Stream Bus.

Let's build a custom block that does nothing!

```
module custom hw (
      input
            ACLK,
                                                  Custom
           ARESETN,
      input
                                                 Hardware 7
                                              S_TDATA
      input [31:0] S TDATA,
                                              S TVALID
      input
           S TVALID,
     output S TREADY,
                                              S_TREADY
                                                      M_TREADY
     output [31:0] M TDATA,
      output
            M TVALID,
      input
                 M TREADY
                     M-TDATA = S-TDATA;
      assign
assign
assign
                     M-TVALID = S-TVALID;
                     S_TRAAPY = M_TREADY,
endmodule
```

SLAVE

Let's build a custom block that does nothing!

```
module custom hw (
     input
           ACLK,
     input ARESETN,
     input [31:0] S TDATA,
     input S_TVALID,
     output S TREADY,
     output [31:0] M TDATA,
     output M TVALID,
     input M TREADY
assign M TDATA = S TDATA;
assign M_TVALID = S_TVALID;
assign S TREADY = M TREADY;
endmodule
```


How would I flip all the bits of TDATA?

```
module custom hw (
      input
                  ACLK,
      input ARESETN,
      input [31:0] S TDATA,
      input
           S TVALID,
      output S TREADY,
      output [31:0] M TDATA,
      output
                 M TVALID,
      input
            M TREADY
assign M_TDATA = 15_TDATA;
assign M TVALID = S TVALID;
assign S TREADY = M TREADY;
```

```
Oxffff
                      0× 00 66
                                        Custom
                                       Hardware
                              S_TDATA
                                                  M_TDATA
Oythen
                                                  M_TVALID
                              S_TVALID
                      MASTER
                                                           SLAVE
                              S_TREADY
                                                  M_TREADY
```

How would I flip all the bits of TDATA?

```
module custom hw (
     input
           ACLK,
     input ARESETN,
     input [31:0] S TDATA,
     input S TVALID,
     output S TREADY,
     output [31:0] M TDATA,
     output M TVALID,
     input M TREADY
assign M TDATA = ~S TDATA;
assign M TVALID = S TVALID;
assign S TREADY = M TREADY;
endmodule
```


Let's build a 1-cycle buffer state machine.

Let's build a buffer state machine.

Custom Hardware

M_TDATA

M_TVALID

M_TREADY

SLAVE

Let's build a buffer state machine.

```
always-comb
module custom hw buf (
         input
                           ACLK,
                                                  M-TDATA = 0
         input
                          ARESETN,
                                                                                      Custom
                                                                                     Hardware
                                                                               S_TDATA
         input [31:0] S TDATA,
                                                  M-TUALED = 0
                                                                               S TVALID
                                                                                            M TVALID
                                                                                                  SLAVE
         input
                      S_TVALID,
                                                   nstate = State;
noutf = buft; (state)
         output logic S_TREADY,
         output [31:0] (OSIC M TDATA,
                                                                               S_TREADY
                                                                                            M_TREADY
         output
                           M TVALID,
        input
enum 250,519 state, nstatei
louir Esi.03 buff, nbuffs
always-Ef @ posedse ACIK) begin
if (~ARESETN)
                                                                        if (S-TVALID==1) begin
                                                                             nstate= SI
                                                                             neuff = S-TDATA;
                                                                      M- TVALFO = 1
                                                                      if ( M-FREADY == 1) besin
endmodule
                                                                            nstate =50:
                                                                                                    22
```

Let's build a buffer state machine.

```
module custom hw buf (
      input
                ACLK,
      input ARESETN,
      input [31:0] S TDATA,
      input
                    S TVALID,
      output S TREADY,
      output [31:0] M TDATA,
      output M TVALID,
      input
                    M TREADY
enum {S0, S1} state, nextState;
reg [31:0] next Wat; Nout
always ff @(posedge ACLK) begin
   if (~ARESETN) begin
       state <= S0;
   end else begin
      state <= nextState;</pre>
      M TDATA <= nextVal;</pre>
   end
end
```

```
always comb begin
     S TREADY = 'h1;
                                               M_TREADY
                                  S TREADY
    M \text{ TVALID} = \text{'h0};
    nextState = state;
    nextVal = M TDATA;
    case(state)
         S0: begin
             if (S TVALID) begin
                  nextState = S1;
                  nextVal = S TDATA;
             end
         end
         S1: begin
              S TREADY = 'h0;
             M \text{ TVALID} = \text{'h1};
              if (M TREADY) begin
                 nextState = S0;
         end
    endcase
end
```

Custom Hardware

S_TVALID

M TDATA

M_TVALID

SLAVE

Vivado Demo

- Bitflip.sv
- ILA capture

Next Time

- Memory-Mapped I/O
- Memory-Mapped Buses

References

- Zynq Book, Chapter 19 "AXI Interfacing"
- Practical Introduction to Hardware/Software Codesign
 - Chapter 10
- AMBA AXI Protocol v1.0
 - http://mazsola.iit.uni-miskolc.hu/~drdani/docs_arm/AMBAaxi.pdf
- https://lauri.võsandi.com/hdl/zynq/axi-stream.html

05: Buses II

Engr 315: Hardware / Software Codesign Andrew Lukefahr Indiana University

