Learning non-Gaussian Time Series using the Box-Cox Gaussian Process

Gonzalo Rios and Felipe Tobar

Department of Mathematical Engineering Center for Mathematical Modelling Universidad de Chile

December 18, 2018

In a nutshell

- ► Gaussian process for time series
- A recipe to construct non-Gaussian processes
- ► The proposed Box-Cox Gaussian process

In a nutshell

- ► Gaussian process for time series
- ► A recipe to construct non-Gaussian processes
- ► The proposed Box-Cox Gaussian process

In a nutshell

- ► Gaussian process for time series
- ► A recipe to construct non-Gaussian processes
- ► The proposed Box-Cox Gaussian process

The Regression Problem

Definition.

A generative model is a joint probability distribution over all variables of interest.

- ▶ Interpolate and extrapolate
- ▶ Probabilistic estimation
- ► Statistics and samples

The Regression Problem

Definition.

A generative model is a joint probability distribution over all variables of interest.

- ► Interpolate and extrapolate
- ► Probabilistic estimation
- ► Statistics and samples

The Regression Problem

Definition

A generative model is a joint probability distribution over all variables of interest.

- ► Interpolate and extrapolate
- ▶ Probabilistic estimation
- ► Statistics and samples

The Regression Problem

Definition.

A generative model is a joint probability distribution over all variables of interest.

- ► Interpolate and extrapolate
- ▶ Probabilistic estimation
- ▶ Statistics and samples

The Regression Problem

Definition.

A generative model is a joint probability distribution over all variables of interest.

- ► Interpolate and extrapolate
- ► Probabilistic estimation
- ► Statistics and samples

Multivariate Normal Distribution

A random vector $y \in \mathbb{R}^n$ is said to follow a normal distribution with mean $\mu \in \mathbb{R}^n$ and covariance matrix $\Sigma \in \mathbb{R}^{n \times n}$ if its density function is

$$\mathcal{N}_n\left(y;\mu,\Sigma
ight) = rac{1}{\left(2\pi
ight)^{rac{n}{2}}\left|\Sigma
ight|^{rac{1}{2}}}e^{-rac{1}{2}\left(y-\mu
ight)^{ op}\Sigma^{-1}\left(y-\mu
ight)}$$

Generative Model for Time Series

Definition.

Generative Model for Time Series

Definition.

Generative Model for Time Series

Definition.

Generative Model for Time Series

Definition.

Generative Model for Time Series

Definition.

Generative Model for Time Series

Definition.

Prior Distribution over Functions

A **GP** is a *prior* distribution over functions, denoted as

$$f\left(x
ight)\sim\mathcal{GP}\left(m(x),k\left(x,ar{x}
ight)
ight),$$

and it is fully-determined by a mean function $m(\cdot)$ and a covariance kernel $k(\cdot, \cdot)$. The *de-facto* kernel is the *Squared Exponential*

$$k_{SE}\left(x, \bar{x}\right) = \sigma^2 \exp\left(-\frac{(x-\bar{x})^2}{l^2}\right),$$

where $\sigma^2 > 0, l > 0$ are the hyperparameters.

A Posteriori Distribution

- ▶ Update the model
- Point predictions
- ► Confidence intervals
- ► Sample functions

A Posteriori Distribution

- ▶ Update the model
- Point predictions
- ► Confidence intervals
- ► Sample functions

A Posteriori Distribution

- ▶ Update the model
- ▶ Point predictions
- Confidence intervals
- ► Sample functions

A Posteriori Distribution

- ► Update the model
- ▶ Point predictions
- ► Confidence intervals
- ► Sample functions

A Posteriori Distribution

- ▶ Update the model
- ▶ Point predictions
- ► Confidence intervals
- ► Sample functions

A Posteriori Distribution

- ▶ Update the model
- ▶ Point predictions
- ► Confidence intervals
- ► Sample functions

Learning Hyperparameters

- ► Maximize likelihood
- Minimize negative log-likelihood

$$-\log \mathcal{L}(\theta) = \frac{n}{2} \log (2\pi) + \frac{1}{2} \log |K_{\theta}| + \frac{1}{2} (y - m(x))^{\top} K_{\theta}^{-1} (y - m(x))$$

- Quasi-Newton BFGS method (gradient)
- ► Powell's method (derivative-free)
- ► Markov Chain Monte Carlo methods (sampling)

Learning Hyperparameters

- ► Maximize likelihood
- ► Minimize negative log-likelihood

$$-\log \mathcal{L}(\theta) = \frac{n}{2} \log (2\pi) + \frac{1}{2} \log |K_{\theta}| + \frac{1}{2} (y - m(x))^{\top} K_{\theta}^{-1} (y - m(x))$$

- Quasi-Newton BFGS method (gradient)
- ► Powell's method (derivative-free)
- ► Markov Chain Monte Carlo methods (sampling)

Learning Hyperparameters

- ► Maximize likelihood
- ► Minimize negative log-likelihood

$$-\log \mathcal{L}(\theta) = \frac{n}{2} \log (2\pi) + \frac{1}{2} \log |K_{\theta}| + \frac{1}{2} (y - m(x))^{\top} K_{\theta}^{-1} (y - m(x))$$

- Quasi-Newton BFGS method (gradient)
- ► Powell's method (derivative-free)
- ► Markov Chain Monte Carlo methods (sampling)

Learning Hyperparameters

- ► Maximize likelihood
- ► Minimize negative log-likelihood

$$-\log \mathcal{L}(\theta) = \frac{n}{2} \log (2\pi) + \frac{1}{2} \log |K_{\theta}| + \frac{1}{2} (y - m(x))^{\top} K_{\theta}^{-1} (y - m(x))$$

- Quasi-Newton BFGS method (gradient)
- Powell's method (derivative-free)
- ► Markov Chain Monte Carlo methods (sampling)

Learning Hyperparameters

- ► Maximize likelihood
- ► Minimize negative log-likelihood

$$-\log \mathcal{L}(\theta) = \frac{n}{2} \log (2\pi) + \frac{1}{2} \log |K_{\theta}| + \frac{1}{2} (y - m(x))^{\top} K_{\theta}^{-1} (y - m(x))$$

- Quasi-Newton BFGS method (gradient)
- ► Powell's method (derivative-free)
- ► Markov Chain Monte Carlo methods (sampling)

Learning Hyperparameters

- ► Maximize likelihood
- ► Minimize negative log-likelihood

$$-\log \mathcal{L}(\theta) = \frac{n}{2}\log\left(2\pi\right) + \frac{1}{2}\log\left|K_{\theta}\right| + \frac{1}{2}\left(y - m(x)\right)^{\top}K_{\theta}^{-1}\left(y - m(x)\right)$$

- ▶ Quasi-Newton BFGS method (gradient)
- ► Powell's method (derivative-free)
- ► Markov Chain Monte Carlo methods (sampling)

Learning Hyperparameters

- ► Maximize likelihood
- ► Minimize negative log-likelihood

$$-\log \mathcal{L}(heta) = rac{n}{2}\log\left(2\pi
ight) + rac{1}{2}\log\left|K_{ heta}
ight| + rac{1}{2}\left(y - m(x)
ight)^{ op}K_{ heta}^{-1}\left(y - m(x)
ight)$$

- ▶ Quasi-Newton BFGS method (gradient)
- ► Powell's method (derivative-free)
- ► Markov Chain Monte Carlo methods (sampling)

The Kernel Choice

- ightharpoonup Ornstein-Uhlenbeck: $k_{OU}\left(x, \bar{x}
 ight) = \sigma^2 \exp\left(-rac{|x-\bar{x}|}{2l^2}
 ight)$
- ightharpoonup Rational Quadratic: $k_{RQ}\left(x,ar{x}
 ight)=\sigma^2\left(1+rac{|x-ar{x}|^2}{2lpha l^2}
 ight)^{-lpha}$
- ► Spectral Mixture: $k_{SM}(x, \bar{x}) = \sigma^2 \exp\left(-\frac{|x-\bar{x}|^2}{2l^2}\right) \cos\left(\frac{2\pi}{p}|x-\bar{x}|\right)$

The Kernel Choice

- ightharpoonup Ornstein-Uhlenbeck: $k_{OU}\left(x, \bar{x}
 ight) = \sigma^2 \exp\left(-rac{|x-\bar{x}|}{2l^2}
 ight)$
- ightharpoonup Rational Quadratic: $k_{RQ}\left(x,ar{x}
 ight)=\sigma^2\left(1+rac{|x-ar{x}|^2}{2lpha l^2}
 ight)^{-lpha}$
- ► Spectral Mixture:

$$k_{SM}\left(x, \bar{x}\right) = \sigma^2 \exp\left(-\frac{|x-\bar{x}|^2}{2l^2}\right) \cos\left(\frac{2\pi}{p}|x-\bar{x}|\right)$$

The Kernel Choice

- ightharpoonup Ornstein-Uhlenbeck: $k_{OU}\left(x,ar{x}
 ight)=\sigma^2\exp\left(-rac{|x-ar{x}|}{2l^2}
 ight)$
- ightharpoonup Rational Quadratic: $k_{RQ}\left(x,ar{x}
 ight)=\sigma^2\left(1+rac{|x-ar{x}|^2}{2lpha l^2}
 ight)^{-lpha}$
- ► Spectral Mixture:

$$k_{SM}\left(x,ar{x}
ight)=\sigma^2\exp\left(-rac{|x-ar{x}|^2}{2l^2}
ight)\cos\left(rac{2\pi}{p}|x-ar{x}|
ight)$$

Weaknesses

GP is a useful modelling tool

- ► Closed-form formulas for training
- ► Closed-form formulas for prediction

But, the *hypothesis* that the observations are jointly normally distributed does not always hold in practice

- ► Non-Gaussian noise
- ► Asymmetric density
- ▶ Bounded domain
- ► Heavy tails

e.g. observations positive/bounded by a physical/economic restriction.

Weaknesses

GP is a useful modelling tool

- ▶ Closed-form formulas for training
- ► Closed-form formulas for prediction

But, the *hypothesis* that the observations are jointly normally distributed does not always hold in practice

- ► Non-Gaussian noise
- ► Asymmetric density
- ▶ Bounded domain
- ► Heavy tails

e.g. observations positive/bounded by a physical/economic restriction.

Weaknesses

GP is a useful modelling tool

- ► Closed-form formulas for training
- ▶ Closed-form formulas for prediction

But, the *hypothesis* that the observations are jointly normally distributed does not always hold in practice

- ► Non-Gaussian noise
- ► Asymmetric density
- ► Bounded domain
- ► Heavy tails

e.g. observations positive/bounded by a physical/economic restriction.

Weaknesses

GP is a useful modelling tool

- ► Closed-form formulas for training
- ► Closed-form formulas for prediction

But, the *hypothesis* that the observations are jointly normally distributed does not always hold in practice

- ► Non-Gaussian noise
- ► Asymmetric density
- ► Bounded domain
- ► Heavy tails

Weaknesses

GP is a useful modelling tool

- ▶ Closed-form formulas for training
- ▶ Closed-form formulas for prediction

But, the *hypothesis* that the observations are jointly normally distributed does not always hold in practice

- ► Non-Gaussian noise
- ► Asymmetric density
- Bounded domain
- ► Heavy tails

Weaknesses

GP is a useful modelling tool

- ► Closed-form formulas for training
- ▶ Closed-form formulas for prediction

But, the *hypothesis* that the observations are jointly normally distributed does not always hold in practice

- ► Non-Gaussian noise
- Asymmetric density
- ► Bounded domain
- ► Heavy tails

Weaknesses

GP is a useful modelling tool

- ► Closed-form formulas for training
- ► Closed-form formulas for prediction

But, the *hypothesis* that the observations are jointly normally distributed does not always hold in practice

- ► Non-Gaussian noise
- ► Asymmetric density
- ► Bounded domain
- ► Heavy tails

Weaknesses

GP is a useful modelling tool

- ► Closed-form formulas for training
- ▶ Closed-form formulas for prediction

But, the *hypothesis* that the observations are jointly normally distributed does not always hold in practice

- ► Non-Gaussian noise
- Asymmetric density
- Bounded domain
- ► Heavy tails

Weaknesses

GP is a useful modelling tool

- ▶ Closed-form formulas for training
- ▶ Closed-form formulas for prediction

But, the *hypothesis* that the observations are jointly normally distributed does not always hold in practice

- ► Non-Gaussian noise
- Asymmetric density
- ► Bounded domain
- ► Heavy tails

Definition

- ► A latent GP $x_t \sim \mathcal{GP}\left(m(t), k\left(t, \bar{t}\right)\right)$
- ightharpoonup A parametric non-linear \mathcal{C}^1 bijective scalar map $\varphi_{\theta}: \mathcal{Y} \to \mathcal{X}$
- ightharpoonup Define the coordinate-wise transformation $[\Phi_{\theta}x]_t = \varphi_{\theta}^{-1}(x_t)$
- $lackbox{ }$ Apply $\Phi_{ heta}$ to induce a new process as $y_t = [\Phi_{ heta} x]_t$
- ▶ Denoted this **WGP** as $y_t \sim \mathcal{WGP}\left(\phi_{\theta}, m\left(t\right), k\left(t, \bar{t}\right)\right)$

Definition

- ► A latent GP $x_t \sim \mathcal{GP}(m(t), k(t, \bar{t}))$
- ightharpoonup A parametric non-linear \mathcal{C}^1 bijective scalar map $\varphi_{\theta}: \mathcal{Y} \to \mathcal{X}$
- ightharpoonup Define the coordinate-wise transformation $[\Phi_{\theta}x]_t = \varphi_{\theta}^{-1}(x_t)$
- $lackbox{ }$ Apply $\Phi_{ heta}$ to induce a new process as $y_t = [\Phi_{ heta} x]_t$
- ▶ Denoted this WGP as $y_t \sim \mathcal{WGP}\left(\phi_{\theta}, m\left(t\right), k\left(t, \bar{t}\right)\right)$

Definition

- ► A latent GP $x_t \sim \mathcal{GP}(m(t), k(t, \bar{t}))$
- lacktriangleq A parametric non-linear \mathcal{C}^1 bijective scalar map $\varphi_{\theta}: \mathcal{Y} \to \mathcal{X}$
- ▶ Define the coordinate-wise transformation $[\Phi_{\theta}x]_t = \varphi_{\theta}^{-1}(x_t)$
- $lackbox{ }$ Apply $\Phi_{ heta}$ to induce a new process as $y_t = [\Phi_{ heta} x]_t$
- ▶ Denoted this **WGP** as $y_t \sim \mathcal{WGP}\left(\phi_{\theta}, m\left(t\right), k\left(t, \bar{t}\right)\right)$

Definition

- ► A latent GP $x_t \sim \mathcal{GP}(m(t), k(t, \bar{t}))$
- ightharpoonup A parametric non-linear \mathcal{C}^1 bijective scalar map $\varphi_{\theta}: \mathcal{Y} \to \mathcal{X}$
- ▶ Define the coordinate-wise transformation $[\Phi_{\theta}x]_t = \varphi_{\theta}^{-1}(x_t)$
- Apply Φ_{θ} to induce a new process as $y_t = [\Phi_{\theta} x]_t$
- ▶ Denoted this WGP as $y_t \sim \mathcal{WGP}\left(\phi_{\theta}, m\left(t\right), k\left(t, \bar{t}\right)\right)$

Definition

- ► A latent GP $x_t \sim \mathcal{GP}(m(t), k(t, \bar{t}))$
- ▶ A parametric non-linear C^1 bijective scalar map $\varphi_{\theta}: \mathcal{Y} \to \mathcal{X}$
- ▶ Define the coordinate-wise transformation $[\Phi_{\theta}x]_t = \varphi_{\theta}^{-1}(x_t)$
- $lackbox{ }$ Apply $\Phi_{m{ heta}}$ to induce a new process as $y_t = [\Phi_{m{ heta}} x]_t$
- ▶ Denoted this WGP as $y_t \sim \mathcal{WGP}\left(\phi_{\theta}, m\left(t\right), k\left(t, \bar{t}\right)\right)$

Definition

Warped Gaussian Process (WGP) approach is based on:

- ▶ A latent GP $x_t \sim \mathcal{GP}(m(t), k(t, \bar{t}))$
- lacktriangledown A parametric non-linear \mathcal{C}^1 bijective scalar map $\varphi_{\theta}: \mathcal{Y} \to \mathcal{X}$
- ▶ Define the coordinate-wise transformation $[\Phi_{\theta}x]_t = \varphi_{\theta}^{-1}(x_t)$
- Apply Φ_{θ} to induce a new process as $y_t = [\Phi_{\theta} x]_t$
- ▶ Denoted this **WGP** as $y_t \sim \mathcal{WGP}\left(\phi_{\theta}, m\left(t\right), k\left(t, \bar{t}\right)\right)$

The induced process y_t is non-Gaussian!

Definition

Warped Gaussian Process (WGP) approach is based on:

- ► A latent GP $x_t \sim \mathcal{GP}(m(t), k(t, \bar{t}))$
- lacktriangledown A parametric non-linear \mathcal{C}^1 bijective scalar map $\varphi_{\theta}: \mathcal{Y} \to \mathcal{X}$
- ▶ Define the coordinate-wise transformation $[\Phi_{\theta}x]_t = \varphi_{\theta}^{-1}(x_t)$
- Apply Φ_{θ} to induce a new process as $y_t = [\Phi_{\theta} x]_t$
- ▶ Denoted this **WGP** as $y_t \sim \mathcal{WGP}\left(\phi_{\theta}, m\left(t\right), k\left(t, \bar{t}\right)\right)$

The induced process y_t is non-Gaussian!

Closed-Form Formulas

Let be $\mathbf{t} = [t_1, ..., t_n]^{\mathsf{T}}$ and $\mathbf{t'} = [t'_1, ..., t'_m]^{\mathsf{T}}$, where $\mathbf{x} \sim \mathcal{N}(\mu_{\mathbf{x}}, \Sigma_{\mathbf{x}})$ and $\mathbf{x'} \sim \mathcal{N}(\mu_{\mathbf{x'}}, \Sigma_{\mathbf{x'}})$ are the resp. finite distributions of x_t . With $\mathbf{x} = \varphi(\mathbf{y})$ and $\mathbf{x'} = \varphi(\mathbf{y'})$, through the change-of-variables theorem we have:

- ▶ Density: $p(\mathbf{y}) = \prod_{i=1}^{n} \frac{d\varphi(y_i)}{dy} \mathcal{N}\left(\varphi(\mathbf{y}) | \mu_{\mathbf{x}}, \Sigma_{\mathbf{x}}\right)$
- Posterior: $p(\mathbf{y}|\mathbf{y}') = \prod_{i=1}^{n} \frac{d\varphi(y_i)}{dy} \mathcal{N}\left(\varphi(\mathbf{y}) | \mu_{\mathbf{x}|\mathbf{x}'}, \Sigma_{\mathbf{x}|\mathbf{x}'}\right)^{1}$
- ► NLL: $-\log p(\mathbf{y}|\theta_x, \theta_{\varphi}) = \frac{n}{2}\log(2\pi) + \frac{1}{2}|K_{\theta}| \sum_{i=1}^{n}\log\left(\frac{d\varphi(y_i)}{dy}\right) + \frac{1}{2}(\varphi(\mathbf{y}) m_{\theta})^{\mathsf{T}}K_{\theta}^{-1}(\varphi(\mathbf{y}) m_{\theta})$

The posterior mean and covariance of $\mathbf{x}|\mathbf{x}'$ are $\mu_{\mathbf{x}|\mathbf{x}'} = \mu_{\mathbf{x}} + \Sigma_{\mathbf{x}\mathbf{x}'}\Sigma_{\mathbf{x}'\mathbf{x}'}^{-1}(\mathbf{x}' - \mu_{\mathbf{x}'})$ and $\Sigma_{\mathbf{x}|\mathbf{x}'} = \Sigma_{\mathbf{x}\mathbf{x}} - \Sigma_{\mathbf{x}\mathbf{x}'}\Sigma_{\mathbf{x}'\mathbf{x}'}^{-1}\Sigma_{\mathbf{x}'\mathbf{x}}$ resp.

Closed-Form Formulas

Let be $\mathbf{t} = [t_1, ..., t_n]^{\mathsf{T}}$ and $\mathbf{t'} = [t'_1, ..., t'_m]^{\mathsf{T}}$, where $\mathbf{x} \sim \mathcal{N}(\mu_{\mathbf{x}}, \Sigma_{\mathbf{x}})$ and $\mathbf{x'} \sim \mathcal{N}(\mu_{\mathbf{x'}}, \Sigma_{\mathbf{x'}})$ are the resp. finite distributions of x_t . With $\mathbf{x} = \varphi(\mathbf{y})$ and $\mathbf{x'} = \varphi(\mathbf{y'})$, through the change-of-variables theorem we have:

- ▶ Density: $p(\mathbf{y}) = \prod_{i=1}^{n} \frac{d\varphi(y_i)}{dy} \mathcal{N}(\varphi(\mathbf{y})|\mu_{\mathbf{x}}, \Sigma_{\mathbf{x}})$
- ▶ Posterior: $p(\mathbf{y}|\mathbf{y}') = \prod_{i=1}^{n} \frac{d\varphi(y_i)}{dy} \mathcal{N}\left(\varphi(\mathbf{y}) | \mu_{\mathbf{x}|\mathbf{x}'}, \Sigma_{\mathbf{x}|\mathbf{x}'}\right)^{1}$
- ► NLL: $-\log p(\mathbf{y}|\theta_x, \theta_{\varphi}) = \frac{n}{2}\log(2\pi) + \frac{1}{2}|K_{\theta}| \sum_{i=1}^{n}\log\left(\frac{d\varphi(y_i)}{dy}\right) + \frac{1}{2}(\varphi(\mathbf{y}) m_{\theta})^{\top}K_{\theta}^{-1}(\varphi(\mathbf{y}) m_{\theta})$

The posterior mean and covariance of $\mathbf{x}|\mathbf{x}'$ are $\mu_{\mathbf{x}|\mathbf{x}'} = \mu_{\mathbf{x}} + \Sigma_{\mathbf{x}\mathbf{x}'}\Sigma_{\mathbf{x}'\mathbf{x}'}^{-1}(\mathbf{x}' - \mu_{\mathbf{x}'})$ and $\Sigma_{\mathbf{x}|\mathbf{x}'} = \Sigma_{\mathbf{x}\mathbf{x}} - \Sigma_{\mathbf{x}\mathbf{x}'}\Sigma_{\mathbf{x}'\mathbf{x}'}^{-1}\Sigma_{\mathbf{x}'\mathbf{x}}$ resp.

Closed-Form Formulas

Let be $\mathbf{t} = [t_1, ..., t_n]^{\mathsf{T}}$ and $\mathbf{t'} = [t'_1, ..., t'_m]^{\mathsf{T}}$, where $\mathbf{x} \sim \mathcal{N}(\mu_{\mathbf{x}}, \Sigma_{\mathbf{x}})$ and $\mathbf{x'} \sim \mathcal{N}(\mu_{\mathbf{x'}}, \Sigma_{\mathbf{x'}})$ are the resp. finite distributions of x_t . With $\mathbf{x} = \varphi(\mathbf{y})$ and $\mathbf{x'} = \varphi(\mathbf{y'})$, through the change-of-variables theorem we have:

- ▶ Density: $p(\mathbf{y}) = \prod_{i=1}^{n} \frac{d\varphi(y_i)}{dy} \mathcal{N}(\varphi(\mathbf{y}) | \mu_{\mathbf{x}}, \Sigma_{\mathbf{x}})$
- ▶ Posterior: $p(\mathbf{y}|\mathbf{y}') = \prod_{i=1}^{n} \frac{d\varphi(y_i)}{dy} \mathcal{N}\left(\varphi(\mathbf{y}) | \mu_{\mathbf{x}|\mathbf{x}'}, \Sigma_{\mathbf{x}|\mathbf{x}'}\right)^{1}$
- ► NLL: $-\log p(\mathbf{y}|\theta_x, \theta_{\varphi}) = \frac{n}{2}\log(2\pi) + \frac{1}{2}|K_{\theta}| \sum_{i=1}^{n}\log\left(\frac{d\varphi(y_i)}{dy}\right) + \frac{1}{2}(\varphi(\mathbf{y}) m_{\theta})^{\top}K_{\theta}^{-1}(\varphi(\mathbf{y}) m_{\theta})$

¹The posterior mean and covariance of $\mathbf{x}|\mathbf{x}'$ are $\mu_{\mathbf{x}|\mathbf{x}'} = \mu_{\mathbf{x}} + \Sigma_{\mathbf{x}\mathbf{x}'}\Sigma_{\mathbf{x}'\mathbf{x}'}^{-1}(\mathbf{x}' - \mu_{\mathbf{x}'})$ and $\Sigma_{\mathbf{x}|\mathbf{x}'} = \Sigma_{\mathbf{x}\mathbf{x}} - \Sigma_{\mathbf{x}\mathbf{x}'}\Sigma_{\mathbf{x}'\mathbf{x}'}^{-1}\Sigma_{\mathbf{x}'\mathbf{x}}$ resp.

Closed-Form Formulas

Let be $\mathbf{t} = [t_1, ..., t_n]^{\mathsf{T}}$ and $\mathbf{t'} = [t'_1, ..., t'_m]^{\mathsf{T}}$, where $\mathbf{x} \sim \mathcal{N}(\mu_{\mathbf{x}}, \Sigma_{\mathbf{x}})$ and $\mathbf{x'} \sim \mathcal{N}(\mu_{\mathbf{x'}}, \Sigma_{\mathbf{x'}})$ are the resp. finite distributions of x_t . With $\mathbf{x} = \varphi(\mathbf{y})$ and $\mathbf{x'} = \varphi(\mathbf{y'})$, through the change-of-variables theorem we have:

- ▶ Density: $p(\mathbf{y}) = \prod_{i=1}^{n} \frac{d\varphi(y_i)}{dy} \mathcal{N}(\varphi(\mathbf{y}) | \mu_{\mathbf{x}}, \Sigma_{\mathbf{x}})$
- ▶ Posterior: $p(\mathbf{y}|\mathbf{y}') = \prod_{i=1}^{n} \frac{d\varphi(y_i)}{dy} \mathcal{N}\left(\varphi(\mathbf{y}) | \mu_{\mathbf{x}|\mathbf{x}'}, \Sigma_{\mathbf{x}|\mathbf{x}'}\right)^{1}$
- ► NLL: $-\log p(\mathbf{y}|\theta_x, \theta_{\varphi}) = \frac{n}{2}\log(2\pi) + \frac{1}{2}|K_{\theta}| \sum_{i=1}^{n}\log\left(\frac{d\varphi(y_i)}{dy}\right) + \frac{1}{2}(\varphi(\mathbf{y}) m_{\theta})^{\mathsf{T}}K_{\theta}^{-1}(\varphi(\mathbf{y}) m_{\theta})$

¹The posterior mean and covariance of $\mathbf{x}|\mathbf{x}'$ are $\mu_{\mathbf{x}|\mathbf{x}'} = \mu_{\mathbf{x}} + \Sigma_{\mathbf{x}\mathbf{x}'}\Sigma_{\mathbf{x}'\mathbf{x}'}^{-1}(\mathbf{x}' - \mu_{\mathbf{x}'})$ and $\Sigma_{\mathbf{x}|\mathbf{x}'} = \Sigma_{\mathbf{x}\mathbf{x}} - \Sigma_{\mathbf{x}\mathbf{x}'}\Sigma_{\mathbf{x}'\mathbf{x}'}^{-1}\Sigma_{\mathbf{x}'\mathbf{x}}$ resp.

Closed-Form Formulas

Let be $\mathbf{t} = [t_1, ..., t_n]^{\mathsf{T}}$ and $\mathbf{t'} = [t'_1, ..., t'_m]^{\mathsf{T}}$, where $\mathbf{x} \sim \mathcal{N}(\mu_{\mathbf{x}}, \Sigma_{\mathbf{x}})$ and $\mathbf{x'} \sim \mathcal{N}(\mu_{\mathbf{x'}}, \Sigma_{\mathbf{x'}})$ are the resp. finite distributions of x_t . With $\mathbf{x} = \varphi(\mathbf{y})$ and $\mathbf{x'} = \varphi(\mathbf{y'})$, through the change-of-variables theorem we have:

- ▶ Density: $p(\mathbf{y}) = \prod_{i=1}^{n} \frac{d\varphi(y_i)}{dy} \mathcal{N}(\varphi(\mathbf{y}) | \mu_{\mathbf{x}}, \Sigma_{\mathbf{x}})$
- ▶ Posterior: $p(\mathbf{y}|\mathbf{y}') = \prod_{i=1}^{n} \frac{d\varphi(y_i)}{dy} \mathcal{N}\left(\varphi(\mathbf{y}) | \mu_{\mathbf{x}|\mathbf{x}'}, \Sigma_{\mathbf{x}|\mathbf{x}'}\right)^{1}$
- ► NLL: $-\log p(\mathbf{y}|\theta_x, \theta_{\varphi}) = \frac{n}{2}\log(2\pi) + \frac{1}{2}|K_{\theta}| \sum_{i=1}^{n}\log\left(\frac{d\varphi(y_i)}{dy}\right) + \frac{1}{2}(\varphi(\mathbf{y}) m_{\theta})^{\mathsf{T}}K_{\theta}^{-1}(\varphi(\mathbf{y}) m_{\theta})$

¹The posterior mean and covariance of $\mathbf{x}|\mathbf{x}'$ are $\mu_{\mathbf{x}|\mathbf{x}'} = \mu_{\mathbf{x}} + \Sigma_{\mathbf{x}\mathbf{x}'}\Sigma_{\mathbf{x}'\mathbf{x}'}^{-1}(\mathbf{x}' - \mu_{\mathbf{x}'})$ and $\Sigma_{\mathbf{x}|\mathbf{x}'} = \Sigma_{\mathbf{x}\mathbf{x}} - \Sigma_{\mathbf{x}\mathbf{x}'}\Sigma_{\mathbf{x}'\mathbf{x}'}^{-1}\Sigma_{\mathbf{x}'\mathbf{x}}$ resp.

Example: Log Gaussian Processes

- A standard strategy to transform non-Gaussian positive values is to apply the logarithmic function $\varphi_{\log}(y) = \log(y)$
- \triangleright y_t is a positive-valued heavy-tailed stochastic processes (LogGP)
- ▶ The *n*-th moment of y_t is given by $\mathbb{E}_y[y_t^n] = \exp\left(nm_{x_t} + \frac{1}{2}n^2\sigma_{x_t}^2\right)$

Computation of Predictions

For any map ϕ , we can calculate explicitly

- Median: $Q_{\frac{1}{2}}(y_t) = \phi^{-1}\left(Q_{\frac{1}{2}}(x_t)\right) = \phi^{-1}\left(m(t)\right)$
- ► Confidence intervals:

$$I_{y_t}^p = \left[\phi^{-1}(m(t) - z_p\sigma(t)), \phi^{-1}(m(t) + z_p\sigma(t))\right]^{-2}$$

Sampling: $x(\mathbf{t}) \sim \mathcal{N}(m(\mathbf{t}), k(\mathbf{t}, \mathbf{t}))$ and then $y(\mathbf{t}) = \phi^{-1}(x(\mathbf{t}))$

The moments can be efficiently computed numerically using the Gauss-Hermite (GH) quadrature. The k-approx.³ of the mean of y_t is

$$\mathbb{E}\left[y_t\right] = \int \phi^{-1}\left(x\right) p_{x_t}\left(x\right) dx \approx \frac{1}{\sqrt{\pi}} \sum_{i=1}^{\kappa} w_i \phi^{-1}\left(\sqrt{2}\sigma(t) x_i + m(t)\right)$$

 $^{^{2}\}sigma(t) = \sqrt{k(t,t)}$ and z_{p} is the p-quantile of standard normal (ex. $z_{0.975} \approx 1.96$)

³It is exact when the integrand is a polynomial of order 2k-1 or less.

Computation of Predictions

For any map ϕ , we can calculate explicitly

- Median: $Q_{\frac{1}{2}}(y_t) = \phi^{-1}\left(Q_{\frac{1}{2}}(x_t)\right) = \phi^{-1}\left(m(t)\right)$
- ► Confidence intervals:

$$I_{y_t}^p = \left[\phi^{-1}\left(m(t) - z_p\sigma(t)
ight), \phi^{-1}\left(m(t) + z_p\sigma(t)
ight)
ight]^{-2}$$

Sampling: $x(\mathbf{t}) \sim \mathcal{N}(m(\mathbf{t}), k(\mathbf{t}, \mathbf{t}))$ and then $y(\mathbf{t}) = \phi^{-1}(x(\mathbf{t}))$

The moments can be efficiently computed numerically using the Gauss-Hermite (GH) quadrature. The k-approx.³ of the mean of y_t is

$$\mathbb{E}\left[y_{t}\right] = \int \phi^{-1}\left(x\right) p_{x_{t}}\left(x\right) dx \approx \frac{1}{\sqrt{\pi}} \sum_{i=1}^{\kappa} w_{i} \phi^{-1}\left(\sqrt{2}\sigma(t)x_{i} + m(t)\right)$$

 $^{^{2}\}sigma(t) = \sqrt{k(t,t)}$ and z_{p} is the p-quantile of standard normal (ex. $z_{0.975} \approx 1.96$)

³It is exact when the integrand is a polynomial of order 2k-1 or less.

Computation of Predictions

For any map ϕ , we can calculate explicitly

- Median: $Q_{\frac{1}{2}}(y_t) = \phi^{-1}\left(Q_{\frac{1}{2}}(x_t)\right) = \phi^{-1}\left(m(t)\right)$
- ► Confidence intervals:

$$I_{y_t}^p = \left[\phi^{-1}\left(m(t) - z_p\sigma(t)
ight), \phi^{-1}\left(m(t) + z_p\sigma(t)
ight)
ight]^{-2}$$

▶ Sampling: $x(\mathbf{t}) \sim \mathcal{N}(m(\mathbf{t}), k(\mathbf{t}, \mathbf{t}))$ and then $y(\mathbf{t}) = \phi^{-1}(x(\mathbf{t}))$

The moments can be efficiently computed numerically using the Gauss-Hermite (GH) quadrature. The k-approx.³ of the mean of y_t is

$$\mathbb{E}\left[y_{t}\right] = \int \phi^{-1}\left(x\right) p_{x_{t}}\left(x\right) dx \approx \frac{1}{\sqrt{\pi}} \sum_{i=1}^{\kappa} w_{i} \phi^{-1}\left(\sqrt{2}\sigma(t)x_{i} + m(t)\right)$$

 $^{^{2}\}sigma(t) = \sqrt{k(t,t)}$ and z_{p} is the p-quantile of standard normal (ex. $z_{0.975} \approx 1.96$)

³It is exact when the integrand is a polynomial of order 2k-1 or less.

Computation of Predictions

For any map ϕ , we can calculate explicitly

- Median: $Q_{\frac{1}{2}}(y_t) = \phi^{-1}\left(Q_{\frac{1}{2}}(x_t)\right) = \phi^{-1}\left(m(t)\right)$
- ► Confidence intervals:

$$I_{y_t}^p = \left[\phi^{-1}\left(m(t) - z_p\sigma(t)
ight), \phi^{-1}\left(m(t) + z_p\sigma(t)
ight)
ight]^{-2}$$

Sampling: $x(\mathbf{t}) \sim \mathcal{N}(m(\mathbf{t}), k(\mathbf{t}, \mathbf{t}))$ and then $y(\mathbf{t}) = \phi^{-1}(x(\mathbf{t}))$

The moments can be efficiently computed numerically using the Gauss-Hermite (**GH**) quadrature. The k-approx.³ of the mean of y_t is

$$\mathbb{E}\left[y_{t}
ight] = \int \phi^{-1}\left(x
ight)p_{x_{t}}\left(x
ight)dx pprox rac{1}{\sqrt{\pi}}\sum_{i=1}^{\kappa}w_{i}\phi^{-1}\left(\sqrt{2}\sigma(t)x_{i}+m(t)
ight)$$

 $^{{}^2\}sigma(t)=\sqrt{k(t,t)}$ and z_p is the *p*-quantile of standard normal (ex. $z_{0.975}\approx 1.96$)

³It is exact when the integrand is a polynomial of order 2k-1 or less.

The Box-Cox transformation: The Generalized Logarithm

Transformation	arphi(y)	$rac{d arphi(y)}{d y}$	$\varphi^{-1}(x)$
Affine	a+by	b	$\frac{x-a}{b}$
Logarithm	$\log(y)$	y^{-1}	$\exp(x)$
Box-Cox	$rac{sgn(y) y ^{\lambda}-1}{\lambda}$	$ y ^{\lambda-1}$	$sgn(\lambda x+1) \lambda x+1 ^{\frac{1}{\lambda}}$

- ▶ The Box-Cox mapping φ_{λ} is a power transformation (good **GH**)
- $ho \varphi_1(y) = y 1$ (affine) and $\lim_{\lambda \to 0} \varphi_{\lambda}(y) = \log(y)$ (logarithm)
- ► The Box-Cox Gaussian process (BCGP) can model a standard GP, a LogGP and everything in between!
- ▶ The mode of the induced distribution is

$$\text{mode}_{y_t} = \left[\frac{1}{2}\left(1 + \lambda m(t) + \sqrt{\left(1 + \lambda m(t)\right)^2 + 4\sigma(t)^2\lambda\left(\lambda - 1\right)}\right)\right]^{\frac{1}{\lambda}}$$

The Box-Cox transformation: The Generalized Logarithm

Transformation	arphi(y)	$rac{d arphi(y)}{d y}$	$arphi^{-1}(x)$
Affine	a+by	b	$\frac{x-a}{b}$
Logarithm	$\log(y)$	y^{-1}	$\exp(x)$
Box-Cox	$\frac{sgn(y) y ^{\lambda}-1}{\lambda}$	$ y ^{\lambda-1}$	$sgn(\lambda x+1) \lambda x+1 ^{\frac{1}{\lambda}}$

- ▶ The Box-Cox mapping φ_{λ} is a power transformation (good **GH**)
- $ho \varphi_1(y) = y 1$ (affine) and $\lim_{\lambda \to 0} \varphi_{\lambda}(y) = \log(y)$ (logarithm)
- ► The Box-Cox Gaussian process (BCGP) can model a standard GP, a LogGP and everything in between!
- ▶ The mode of the induced distribution is

$$mode_{y_t} = \left[\frac{1}{2}\left(1 + \lambda m(t) + \sqrt{\left(1 + \lambda m(t)\right)^2 + 4\sigma(t)^2\lambda\left(\lambda - 1\right)}\right)\right]^{\frac{1}{\lambda}}$$

The Box-Cox transformation: The Generalized Logarithm

Transformation	arphi(y)	$rac{d arphi(y)}{d y}$	$arphi^{-1}(x)$
Affine	a+by	b	$\frac{x-a}{b}$
Logarithm	$\log(y)$	y^{-1}	$\exp(x)$
Box-Cox	$\frac{sgn(y) y ^{\lambda}-1}{\lambda}$	$ y ^{\lambda-1}$	$sgn(\lambda x+1) \lambda x+1 ^{\frac{1}{\lambda}}$

- ▶ The Box-Cox mapping φ_{λ} is a power transformation (good **GH**)
- $ho \varphi_1(y) = y 1$ (affine) and $\lim_{\lambda \to 0} \varphi_{\lambda}(y) = \log(y)$ (logarithm)
- ► The Box-Cox Gaussian process (BCGP) can model a standard GP, a LogGP and everything in between!
- ▶ The mode of the induced distribution is

$$mode_{y_t} = \left[\frac{1}{2}\left(1 + \lambda m(t) + \sqrt{\left(1 + \lambda m(t)\right)^2 + 4\sigma(t)^2\lambda\left(\lambda - 1\right)}\right)\right]^{\frac{1}{\lambda}}$$

The Box-Cox transformation: The Generalized Logarithm

Transformation	arphi(y)	$rac{d arphi(y)}{d y}$	$arphi^{-1}(x)$
Affine	a+by	b	$\frac{x-a}{b}$
Logarithm	$\log(y)$	y^{-1}	$\exp(x)$
Box-Cox	$\frac{sgn(y) y ^{\lambda}-1}{\lambda}$	$ y ^{\lambda-1}$	$sgn(\lambda x+1) \lambda x+1 ^{\frac{1}{\lambda}}$

- ▶ The Box-Cox mapping φ_{λ} is a power transformation (good **GH**)
- $ho \varphi_1(y) = y 1$ (affine) and $\lim_{\lambda \to 0} \varphi_{\lambda}(y) = \log(y)$ (logarithm)
- ► The Box-Cox Gaussian process (**BCGP**) can model a standard **GP**, a **LogGP** and everything in between!
- ▶ The mode of the induced distribution is

$$\text{mode}_{y_t} = \left[\frac{1}{2}\left(1 + \lambda m(t) + \sqrt{\left(1 + \lambda m(t)\right)^2 + 4\sigma(t)^2\lambda\left(\lambda - 1\right)}\right)\right]^{\frac{1}{\lambda}}$$

The Box-Cox transformation: The Generalized Logarithm

Transformation	arphi(y)	$rac{d arphi(y)}{d y}$	$arphi^{-1}(x)$
Affine	a+by	b	$\frac{x-a}{b}$
Logarithm	$\log(y)$	y^{-1}	$\exp(x)$
Box-Cox	$\frac{sgn(y) y ^{\lambda}-1}{\lambda}$	$ y ^{\lambda-1}$	$sgn(\lambda x+1) \lambda x+1 ^{\frac{1}{\lambda}}$

- ▶ The Box-Cox mapping φ_{λ} is a power transformation (good **GH**)
- $ho \varphi_1(y) = y 1$ (affine) and $\lim_{\lambda \to 0} \varphi_{\lambda}(y) = \log(y)$ (logarithm)
- ► The Box-Cox Gaussian process (**BCGP**) can model a standard **GP**, a **LogGP** and everything in between!
- ▶ The mode of the induced distribution is

$$\mathrm{mode}_{y_t} = \left[rac{1}{2} \left(1 + \lambda m(t) + \sqrt{\left(1 + \lambda m(t)
ight)^2 + 4 \sigma(t)^2 \lambda \left(\lambda - 1
ight)}
ight)
ight]^{rac{1}{\lambda}}$$

A Flexible and Tractable Non-Gaussian Process

Reconstruction and forecasting of the Sunspots time series

- Positive almost-periodic time series
- ► Training with 131 random observations before 1961
- ► Standard **GP** vs **Box-Cox GP** with 2-component SM kernel
- ▶ BFGS vs Hybrid BFGS-Powell for training hyperparameters
- ▶ Reconstructing the signal before 1961 (131 datapoints)
- ► Forecasting the signal after 1961 (47 datapoints)
- ▶ Performance evaluated with MAE, MSE and NLPD scores

Reconstruction and forecasting of the Sunspots time series

- ► Positive almost-periodic time series
- ► Training with 131 random observations before 1961
- ► Standard **GP** vs **Box-Cox GP** with 2-component SM kernel
- ▶ BFGS vs Hybrid BFGS-Powell for training hyperparameters
- ▶ Reconstructing the signal before 1961 (131 datapoints)
- ► Forecasting the signal after 1961 (47 datapoints)
- ▶ Performance evaluated with MAE, MSE and NLPD scores

Reconstruction and forecasting of the Sunspots time series

- ▶ Positive almost-periodic time series
- ► Training with 131 random observations before 1961
- ► Standard **GP** vs **Box-Cox GP** with 2-component SM kernel
- ▶ BFGS vs Hybrid BFGS-Powell for training hyperparameters
- ► Reconstructing the signal before 1961 (131 datapoints)
- ► Forecasting the signal after 1961 (47 datapoints)
- ▶ Performance evaluated with MAE, MSE and NLPD scores

Reconstruction and forecasting of the Sunspots time series

- ▶ Positive almost-periodic time series
- ► Training with 131 random observations before 1961
- ▶ Standard **GP** vs **Box-Cox GP** with 2-component SM kernel
- ▶ BFGS vs Hybrid BFGS-Powell for training hyperparameters
- ▶ Reconstructing the signal before 1961 (131 datapoints)
- ► Forecasting the signal after 1961 (47 datapoints)
- ▶ Performance evaluated with MAE, MSE and NLPD scores

Reconstruction and forecasting of the Sunspots time series

- ▶ Positive almost-periodic time series
- ► Training with 131 random observations before 1961
- ▶ Standard **GP** vs **Box-Cox GP** with 2-component SM kernel
- ▶ BFGS vs Hybrid BFGS-Powell for training hyperparameters
- ▶ Reconstructing the signal before 1961 (131 datapoints)
- ► Forecasting the signal after 1961 (47 datapoints)
- ▶ Performance evaluated with MAE, MSE and NLPD scores

Reconstruction and forecasting of the Sunspots time series

- ▶ Positive almost-periodic time series
- ► Training with 131 random observations before 1961
- ▶ Standard **GP** vs **Box-Cox GP** with 2-component SM kernel
- ▶ BFGS vs Hybrid BFGS-Powell for training hyperparameters
- ▶ Reconstructing the signal before 1961 (131 datapoints)
- ► Forecasting the signal after 1961 (47 datapoints)
- ▶ Performance evaluated with MAE, MSE and NLPD scores

Reconstruction and forecasting of the Sunspots time series

- ► Positive almost-periodic time series
- ► Training with 131 random observations before 1961
- ▶ Standard **GP** vs **Box-Cox GP** with 2-component SM kernel
- ▶ BFGS vs Hybrid BFGS-Powell for training hyperparameters
- ▶ Reconstructing the signal before 1961 (131 datapoints)
- ► Forecasting the signal after 1961 (47 datapoints)
- Performance evaluated with MAE, MSE and NLPD scores

Reconstruction and forecasting of the Sunspots time series

Sunspot time series between 1700 and 2008 (309 points)

- ▶ Positive almost-periodic time series
- ► Training with 131 random observations before 1961
- ▶ Standard **GP** vs **Box-Cox GP** with 2-component SM kernel
- ▶ BFGS vs Hybrid BFGS-Powell for training hyperparameters
- ► Reconstructing the signal before 1961 (131 datapoints)
- ► Forecasting the signal after 1961 (47 datapoints)
- ▶ Performance evaluated with MAE, MSE and NLPD scores

50

Reconstruction and forecasting of the Sunspots time series

Reconstruction and forecasting of the Sunspot series using GP (top) and BCGP (bottom) trained using BFGS-Powell.

150

Year

200

250

100

300

Reconstruction and forecasting of the Sunspots time series

		MAE	MSE	NLPD	NLL
Reconst.	GP BFGS	11.06	237.19	4.06	608.27
	GP BFGS-Powell	10.37	217.96	4.03	587.98
	BCGP BFGS	11.06	239.36	4.03	578.68
	BCGP BFGS-Powell	8.85	150.36	3.90	542.58
Forecast	GP BFGS	40.36	2509.55	5.36	608.27
	GP BFGS-Powell	30.68	1414.81	5.17	587.98
	BCGP BFGS	40.25	2526.24	5.20	578.68
	BCGP BFGS-Powell	26.90	1253.10	4.95	542.58

Performance of GP and BCGP for reconstruction and forecasting of the Sunspots data trained using BFGS and BFGS-Powell.

Learning Macroeconomic time series

- Non-negative values and large positive deviations
- ► Training with 30 datapoints (15%)
- ▶ Standard **GP** vs **Box-Cox GP** with square exponential kernel
- Hybrid BFGS-Powell vs MCMC for training hyperparameter

Learning Macroeconomic time series

- Non-negative values and large positive deviations
- ► Training with 30 datapoints (15%)
- ► Standard **GP** vs **Box-Cox GP** with square exponential kernel
- Hybrid BFGS-Powell vs MCMC for training hyperparameter

Learning Macroeconomic time series

- ▶ Non-negative values and large positive deviations
- ► Training with 30 datapoints (15%)
- ► Standard **GP** vs **Box-Cox GP** with square exponential kernel
- Hybrid BFGS-Powell vs MCMC for training hyperparameter

Learning Macroeconomic time series

- ▶ Non-negative values and large positive deviations
- ► Training with 30 datapoints (15%)
- ► Standard **GP** vs **Box-Cox GP** with square exponential kernel
- Hybrid BFGS-Powell vs MCMC for training hyperparameter

Learning Macroeconomic time series

- Non-negative values and large positive deviations
- ► Training with 30 datapoints (15%)
- ▶ Standard **GP** vs **Box-Cox GP** with square exponential kernel
- ▶ Hybrid BFGS-Powell vs MCMC for training hyperparameters

Learning Macroeconomic time series

Standard GP (top) and Box-Cox GP (bottom) trained using the ensemble MCMC method on a macroeconomic time series.

Learning Macroeconomic time series

	MAE	MSE	NLPD	NLL
GP BFGS-Powell	1.28	2.83	1.94	64.27
GP MCMC	0.95	1.79	1.74	64.96
BCGP BFGS-Powell	0.93	1.94	1.69	59.21
BCGP MCMC	0.88	1.75	1.42	57.36

Performance of GP and BCGP for reconstruction of macroeconomic data trained using BFGS-Powell and MCMC.

Log-likelihood against scores for BCGP on macroeconomic data.

Learning Macroeconomic time series

Scatter plot of BCGP hyperparameters against their log-likelihood.

Line 1: BFGS-Powell model – Line 2: MCMC model.

- ▶ **GP** is a generative model for time series with closed-form formulas for training and prediction.
- ► Real-world time series not necessarily normally distributed
- ▶ Warped GP is a formal recipe to construct non-Gaussian models
- ▶ Box-Cox GP has the ability to discover non-Gaussian features
- ▶ Gradient-based method **BFGS** has lower performance on training than the derivative-free methods as **Powell** and **MCMC**
- ► Further research towards more expressive transformations
 - ▶ Gonzalo Rios and Felipe Tobar. Learning non-Gaussian Time Series using the Box-Cox Gaussian Process. arXiv preprint arxiv.org/abs/1803.07102 (2018).
 - ▶ Gonzalo Rios and Felipe Tobar. Compositionally-Warped Gaussian Processes. Under review at IEEE Transactions on Neural Networks and Learning System (2018).

- ▶ **GP** is a generative model for time series with closed-form formulas for training and prediction.
- ▶ Real-world time series not necessarily normally distributed
- ▶ Warped GP is a formal recipe to construct non-Gaussian models
- ▶ Box-Cox GP has the ability to discover non-Gaussian features
- ► Gradient-based method **BFGS** has lower performance on training than the derivative-free methods as **Powell** and **MCMC**
- ► Further research towards more expressive transformations
 - ▶ Gonzalo Rios and Felipe Tobar. Learning non-Gaussian Time Series using the Box-Cox Gaussian Process. arXiv preprint arxiv.org/abs/1803.07102 (2018).
 - ▶ Gonzalo Rios and Felipe Tobar. Compositionally-Warped Gaussian Processes. Under review at IEEE Transactions on Neural Networks and Learning System (2018).

- ▶ **GP** is a generative model for time series with closed-form formulas for training and prediction.
- ► Real-world time series not necessarily normally distributed
- ▶ Warped GP is a formal recipe to construct non-Gaussian models
- ▶ Box-Cox GP has the ability to discover non-Gaussian features
- ► Gradient-based method **BFGS** has lower performance on training than the derivative-free methods as **Powell** and **MCMC**
- ► Further research towards more expressive transformations
 - ▶ Gonzalo Rios and Felipe Tobar. Learning non-Gaussian Time Series using the Box-Cox Gaussian Process. arXiv preprint arxiv.org/abs/1803.07102 (2018).
 - ▶ Gonzalo Rios and Felipe Tobar. Compositionally-Warped Gaussian Processes. Under review at IEEE Transactions on Neural Networks and Learning System (2018).

- ▶ **GP** is a generative model for time series with closed-form formulas for training and prediction.
- ► Real-world time series not necessarily normally distributed
- ▶ Warped GP is a formal recipe to construct non-Gaussian models
- ▶ Box-Cox GP has the ability to discover non-Gaussian features
- ► Gradient-based method **BFGS** has lower performance on training than the derivative-free methods as **Powell** and **MCMC**
- Further research towards more expressive transformations
 - ▶ Gonzalo Rios and Felipe Tobar. Learning non-Gaussian Time Series using the Box-Cox Gaussian Process. arXiv preprint arxiv.org/abs/1803.07102 (2018).
 - ▶ Gonzalo Rios and Felipe Tobar. Compositionally-Warped Gaussian Processes. Under review at IEEE Transactions on Neural Networks and Learning System (2018).

- ▶ **GP** is a generative model for time series with closed-form formulas for training and prediction.
- ▶ Real-world time series not necessarily normally distributed
- ▶ Warped GP is a formal recipe to construct non-Gaussian models
- ▶ Box-Cox GP has the ability to discover non-Gaussian features
- ► Gradient-based method **BFGS** has lower performance on training than the derivative-free methods as **Powell** and **MCMC**
- ► Further research towards more expressive transformations
 - ▶ Gonzalo Rios and Felipe Tobar. Learning non-Gaussian Time Series using the Box-Cox Gaussian Process. arXiv preprint arxiv.org/abs/1803.07102 (2018).
 - ▶ Gonzalo Rios and Felipe Tobar. Compositionally-Warped Gaussian Processes. Under review at IEEE Transactions on Neural Networks and Learning System (2018).

- ▶ **GP** is a generative model for time series with closed-form formulas for training and prediction.
- ▶ Real-world time series not necessarily normally distributed
- ▶ Warped GP is a formal recipe to construct non-Gaussian models
- ▶ Box-Cox GP has the ability to discover non-Gaussian features
- ► Gradient-based method **BFGS** has lower performance on training than the derivative-free methods as **Powell** and **MCMC**
- ► Further research towards more expressive transformations
 - ▶ Gonzalo Rios and Felipe Tobar. Learning non-Gaussian Time Series using the Box-Cox Gaussian Process. arXiv preprint arxiv.org/abs/1803.07102 (2018).
 - ▶ Gonzalo Rios and Felipe Tobar. Compositionally-Warped Gaussian Processes. Under review at IEEE Transactions on Neural Networks and Learning System (2018).

- ▶ **GP** is a generative model for time series with closed-form formulas for training and prediction.
- ▶ Real-world time series not necessarily normally distributed
- ▶ Warped GP is a formal recipe to construct non-Gaussian models
- ▶ Box-Cox GP has the ability to discover non-Gaussian features
- ► Gradient-based method **BFGS** has lower performance on training than the derivative-free methods as **Powell** and **MCMC**
- ▶ Further research towards more expressive transformations
 - ▶ Gonzalo Rios and Felipe Tobar. Learning non-Gaussian Time Series using the Box-Cox Gaussian Process. arXiv preprint arxiv.org/abs/1803.07102 (2018).
 - ▶ Gonzalo Rios and Felipe Tobar. Compositionally-Warped Gaussian Processes. Under review at IEEE Transactions on Neural Networks and Learning System (2018).

- ▶ **GP** is a generative model for time series with closed-form formulas for training and prediction.
- ▶ Real-world time series not necessarily normally distributed
- ▶ Warped GP is a formal recipe to construct non-Gaussian models
- ▶ Box-Cox GP has the ability to discover non-Gaussian features
- ► Gradient-based method **BFGS** has lower performance on training than the derivative-free methods as **Powell** and **MCMC**
- ► Further research towards more expressive transformations
 - ► Gonzalo Rios and Felipe Tobar. Learning non-Gaussian Time Series using the Box-Cox Gaussian Process. arXiv preprint arxiv.org/abs/1803.07102 (2018).
 - ▶ Gonzalo Rios and Felipe Tobar. Compositionally-Warped Gaussian Processes. Under review at IEEE Transactions on Neural Networks and Learning System (2018).

- ▶ **GP** is a generative model for time series with closed-form formulas for training and prediction.
- ► Real-world time series not necessarily normally distributed
- ▶ Warped GP is a formal recipe to construct non-Gaussian models
- ▶ Box-Cox GP has the ability to discover non-Gaussian features
- ► Gradient-based method **BFGS** has lower performance on training than the derivative-free methods as **Powell** and **MCMC**
- ▶ Further research towards more expressive transformations
 - ► Gonzalo Rios and Felipe Tobar. Learning non-Gaussian Time Series using the Box-Cox Gaussian Process. arXiv preprint arxiv.org/abs/1803.07102 (2018).
 - ▶ Gonzalo Rios and Felipe Tobar. Compositionally-Warped Gaussian Processes. Under review at IEEE Transactions on Neural Networks and Learning System (2018).

Thanks!

 ${\bf Questions?}$