OPIS PROGRAMU DO KONTROLI TREŚCI MAPY SOZOLOGICZNEJ VER. 2.0.0

1

Na płycie CD załączonej do niniejszego opracowania umieszczono aplikację *ThmCtrlS.mbx* służąca do automatycznego generowania zestawień tematycznych dla mapy sozologicznej. Aplikację napisano w środowisku MapBasic 7.0, użytkowanie oraz konfiguracja narzędzia nie wymaga od operatora znajomości programowania. Poniżej opisano metody posługiwania się aplikacja.

1. Pliki konfiguracyjne, struktura katalogów

a) Zawartość katalogu aplikacji:

Nazwa 🗡	Rozmiar	Тур	Zmodyfikowany	
in chk		Folder plików	2005-04-06 13:11	
🗀 log		Folder plików	2005-04-07 05:23	
🛅 prj		Folder plików	2005-04-07 05:23	
AMAIN.PRJ	2 KB	Dokument tekstowy	2005-04-05 13:03	
ThmCtrl5.MBX	129 KB	MapBasic Application	2005-04-07 05:14	
<u> </u>				
Typ: MapBasic Application				

Rys. 1 Zawartość katalogu aplikacji

Plik *ThmCtrlH.mbx* to skompilowana wersja aplikacji służąca kontroli treści mapy. Plik *Main.prj* zawiera informacje o położeniu katalogu roboczego (**chk**), ścieżki do zapisu raportów kontrolnych (**log**) oraz lokalizacji plików definiujących klasy obiektów wraz z ich symbologią (**prj**).

b) Pliki konfiguracyjne aplikacji

Nazwa 🛆	Rozmiar	Тур	Zmodyfikowany
≣ sozo.lay	4 KB	Plik LAY	2005-04-05 13:06
zest_15.prj	15 KB	Dokument tekstowy	2005-04-06 22:54
zest_25.prj	6 KB	Dokument tekstowy	2005-04-06 22:02
zest_35.prj	11 KB	Dokument tekstowy	2005-04-06 19:59
zest_45.prj	11 KB	Dokument tekstowy	2005-04-07 05:18

Rys. 2 Zawartość podkatalogu [prj]

Pliki konfiguracyjne aplikacji znajdują się w podkatalogu [prj]. Zawiera on 4 pliki definiujące pola robocze MapInfo (*.prj) – zawierających kompletny opis wyodrębnianych klas obiektów wraz z ich symbologią. Pliki te są w pełni definiowalne przez użytkownika, co pozwala na duży stopień elastyczności aplikacji, oraz możliwość określenia własnej symbologii, dodania (lub usunięcia) poszczególnych klas obiektów z zestawienia tematycznego. Dodatkowo w katalogu znajduje się plik sozo.lay, zawierający kompletną listę warstw numerycznych mapy sozologicznej. Plik ten wykorzystywany jest przy weryfikacji i przypisaniu wartości KONTROLA_ID oraz podczas przeprowadzenia kontroli geometrycznej.

Nazwa 🗡	Rozmiar	Тур	Zmodyfikowany
🖺 thmctrl.20050321.log	30 KB	Plik LOG	2005-03-21 14:28
thmctrl.20050322.log	18 KB	Plik LOG	2005-03-22 14:37
thmctrl.20050323.log	8 KB	Plik LOG	2005-03-23 16:34
thmctrl.20050325.log	24 KB	Plik LOG	2005-03-25 14:28
thmctrl.20050330.log	8 KB	Plik LOG	2005-03-30 14:26
thmctrl.20050331.log	1 KB	Plik LOG	2005-03-31 11:31
thmctrl.20050401.log	8 KB	Plik LOG	2005-04-01 15:36
thmctrl.20050402.log	12 KB	Plik LOG	2005-04-02 19:02
thmctrl.20050403.log	4 KB	Plik LOG	2005-04-03 21:27
thmctrl.20050404.log	3 KB	Plik LOG	2005-04-04 16:34
thmctrl.20050405.log	7 KB	Plik LOG	2005-04-05 12:24

Rys. 3 Zawartość podkatalogu [log]

Katalog [log] zawiera zestaw raportów kontrolnych dotyczących kontroli geometrycznej.

2. Użytkowanie aplikacji

Uruchomienie aplikacji: *Narzędzia->Uruchom aplikację MapBasic...*(wer. angielska: *Tools->Run MapBasic Program...* wskazujemy położenie aplikacji *ThmCtrlH.mbx*

Rys. 4 Uruchomienie aplikacji

Do menu podręcznego zostanie dodana pozycja: "Kontrola mapy sozologicznej". Narzędzie złożone 3 głównych elementów (Patrz Rys. 5):

- 1. Weryfikacja i przypisanie wartości KONTROLA_ID
- 2. Kontrola geometryczna
- 3. Kontrola tematyczna (5 zestawień tematycznych)

Rys. 5 Menu podręczne aplikacji

Narzędzie kontrolujące służy weryfikacji poprawności wykonania mapy numerycznej, warstw "POCHODZENIE" oraz połączonych arkuszy map w jedną spójną całość. Poniższa tabela przedstawia schematycznie możliwość zastosowania odpowiednich funkcji narzędzia dla poszczególnych elementów mapy sozologicznej:

	WARSTWY TEMATYCZNE	WARSTWY POCHODZENIE	BAZY SCALONE
Weryfikacja i nadanie KONTROLA_ID	×	×	×
Kontrola geometryczna	×	×	×
Kontrola tematyczna	×	-	-

2.1.1 Weryfikacja KONTROLA_ID

Opcja weryfikacji wartości KONTROLA_ID służy sprawdzeniu poprawności wypełnienia kolumny (oraz istnienia samej kolumny) w obszarze warstw numerycznych mapy sozologicznej. Ze względu na bardzo ważną funkcję, jaką pełni pole KONTROLA_ID – funkcję identyfikacji segmentów wektorowych mapy, wykorzystywaną podczas identyfikacji błędów – należy zapewnić niepowtarzalność tego pola.

Narzędzie weryfikuje poprawność wypełnienia pola według trzech podstawowych kryteriów:

- 1. Czy cała tabela posiada przypisaną wartość KONTROLA_ID?
- Czy w obrębie tabeli nie znajdują się pojedyncze wiersze z niewypełnioną wartością KONTROLA ID?

3. Czy wszystkie wartości kolumny posiadają unikatowe wartości?

Rys. 6 Narzędzie wskazuje na błędy w oknie informacyjnym aplikacji

Celem korekty zidentyfikowanych błędów, wykorzystać należy opcję "Przypisanie KONTROLA_ID" lub (w przypadku nielicznych, pojedynczych błędów) skorygować je ręcznie.

UWAGA!!! Właściwie przypisanie wartości KONTROLA_ID warunkuje poprawność wykonania dalszych etapów: kontroli geometrycznej oraz tematycznej.

Rys. 7 Poprawność wypełnienia KONTROLA ID sygnalizowane jest komunikatem

2.1.2 Przypisanie KONTROLA_ID

Narzędzie kontrolujące przypisuje wartość KONTROLA_ID w specyficzny sposób – zachowywane są wcześniej przypisane wartości (jeśli takowe istniały) w obrębie badanej warstwy numerycznej. Zasada zachowania wartości KONTROLA_ID ma duże znaczenie, jeśli wcześniej wykonano wydruki kontrolne. Nie zostają modyfikowane raz nadane i zidentyfikowane na wydrukach segmenty wektorowe. Sprowadza się to zatem do modyfikowania wszystkich niewypełnionych ("zerowych") pól kolumny KONTROLA_ID.

Z dużą uwagą należy stosować przypisanie wartości KONTROLA_ID z opcją "zerowania" wartości. Opcji tej nie należy używać po wykonaniu wydruków tematycznych – mogą zostać modyfikowane wcześniej nadane wartości, a w konsekwencji niemożność zidentyfikowania na wydruku, właściwego elementu mapy numerycznej. Opcja ta bardzo przydatna jest przy nadaniu wartości KONTROLA_ID dla połączonych map w

jedną spójną całość (bazy scalone), lub jeśli narzędzie do weryfikacji stwierdziło powielenie tej samej wartości identyfikatora w obrębie pojedynczej warstwy numerycznej mapy.

Rys. 8 Potwierdzenie zastosowania opcji "zerowania" KONTROLA_ID

2.2 Kontrola geometryczna

W celu identyfikacji niedozwolonych elementów geometrycznych wybrać należy opcję "Kontrola geometryczna". Pamiętać należy o wcześniejszym nadaniu wartości KONTROLA_ID – raportowanie błędów odbywa się przy wykorzystaniu tego identyfikatora.

Typy geometryczne dozwolone dla mapy numerycznej to: *elipsa, lamana (polilinia), punkt, powierzchnia* oraz *tekst* – wszystkie pozostałe elementy geometryczne raportowane są jako niedozwolone. Dodatkowo jako błędne identyfikowane są elementy określane mianem MPLINE (multi – polilinia) oraz MREGION (multi – region). MPLINE powstaje w wyniku integracji dwóch (lub więcej) łamanych, z których przynajmniej jedna nie jest dokładnie "snapowana" do sąsiedniej. W przypadku obiektów MREGION – powstają one w wyniku integracji dwóch (lub więcej) obiektów powierzchniowych nie sąsiadujących ze sobą.

Oprócz typowych błędów geometrycznych, aplikacja identyfikuje błędy braku spakowania tabeli (wyjątkowo w tym przypadku identyfikacja błędu odbywa się po ROWID – numerze wiersza tabeli). Narzędzie pozwala również na identyfikację rekordów sierocych – są to rekordy nie mające swojego odpowiednika w postaci elementu wektorowego.

Narzędzie raportuje wszystkie identyfikowane błędy geometryczne w oknie informacyjnym, dodatkowo tworzony jest plik raportu (patrz Rys. 3). Zakończona sesja rozpoznawalna jest poprzez nagłówek zawierający datę wykonania kontroli, godzinę oraz położenie katalogu z weryfikowanymi plikami mapy numerycznej:

Polozenie plikow: E:\N-33-089-D\Mapa numeryczna\

Rys. 9 Skrócony raport kontroli geometrycznej znajduje się w oknie informacyjnym Mapinfo

2.3 Kontrola tematyczna

Procedurę kontroli tematycznej mapy rozpoczynamy od wskazania katalogu zawierającego mapy numeryczne mapy sozologicznej. Powoduje to rozpoczęcie pobierania danych z dostępnych dla danego arkusza tabel projektowych MapInfo (wyodrębniane zostają klasy obiektów wraz z ich symbologią – zgodnie ze specyfikacją określoną w dokumencie "Procedury kontroli treści mapy sozologicznej").

Podczas tworzenia zestawień tematycznych, często zdarza się, że nie wszystkie klasy obiektów są dostępne dla kontrolowanego arkusza mapy. Aplikacja wynotowuje nieobecność plików w oknie informacyjnym aplikacji.

Rys. 10 Nieobecność poszczególnych klas obiektów sygnalizowane jest w oknie informacyjnym

Efektem działania aplikacji jest tworzenie szeregu zapytań (patrz dokument: "Zestaw zapytań kontrolujących") mających swoje odzwierciedlenie w postaci "wirtualnych tabel" - nie mających fizycznej reprezentacji na dysku komputera. Część tych tabel nie zawiera żadnych obiektów, aplikacja usuwa tego typu tabele z aktywnego zestawienia tematycznego. Dla tabel zawierających aktywne rekordy podana jest aktualna liczba elementów, odzwierciedlenie takiej informacji zawiera automatycznie generowana legenda kartograficzna. Tworzony jest również zestaw zapytań demaskujący występowanie błędów oczywistych: brak wypełnienia pola, niezgodność atrybutów zależnych w obrębie klasy obiektu, niezgodność ze słownikiem danych – elementy takie wyprowadzane są jako zapytania identyfikowane prefiksem *ERR*_*. Weryfikacja poprawności wypełnienia atrybutów stałych powinna zostać rozpoczęta od usunięcia tych błędów.

Rys. 11 Puste tabele usuwane są z aktywnego zestawienia, dla pozostałych tabel podawana jest informacja o ilości rekordów.

Automatycznie generowana legenda kartograficzna zawiera pełną charakterystyką ilościową

Po wczytaniu niezbędnych plików narzędzie ustala symbologię, zgodnie z regułami określonymi w plikach *.prj

2.3.1 Konfiguracja plików parametrycznych aplikacji

W plikach projektowych *.prj znajdują się kompletne definicje klas obiektów umieszczane na zestawieniach tematycznych. Plik składa się z dwóch zasadniczych części: pierwsza określa klasy obiektów importowane do środowiska MapInfo, druga – symbologię elementów.

Określone operacje definiowane są poprzez nagłówki, identyfikowane nawiasem kwadratowym "[]". Przyjęta konwencja:

```
[main]
numFiles=17

Określa liczbę importowanych klas obiektów (tabel MapInfo)

[file1]
tab=CIEKI_BEZ_NAZWY

[file2]
tab=ZESPOLY_ZRODEL_STALYCH
.
.
.
.
[file17]
tab=TERENY_PODMOKLE
```

Określa nazwy tabel i klas obiektów. Liczba plików powinna zgadzać się z parametrem numFiles. Podczas definicji klas obiektów należy zwrócić szczególną uwagę na właściwe nazwy plików – klas obiektów MapInfo.

2.3.2 Definicja symbologii klas obiektów (resymbolizacja)

a) Obiekty punktowe

Definicja stylu symboli dla obiektów punktowych odbywa się poprzez określenie w plikach parametrycznych następujących wartości:

symbolname

Nazwa pliku *.bmp (w formacie "mh_4500.bmp") reprezentująca dany symbol. Zmienna typu znakowego (max długość – 31 znaków). Uwaga! Dany plik bitmapy umieszczony musi być w katalogu CUSTSYMB Mapinfo!

Wskazówka: Katalog CUSTSYMB dla aktualnie zalogowanego użytkownika znajduje się w jego tzw. katalogu macierzystym. Położenie katalogu można określić poprzez odnalezienie ciągu "CustSymb" w drzewie rejestu: HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Installer\Folders (Tutaj można również zmodyfikować położenie katalogu z symbolami użytkownika - operacja ta powinna być jednak wykonywana tylko przez doświadczonego użytkownika lub administratora systemu)

symbolcolor

Zmienna typu całkowitego wskazująca na zastosowany kolor. Wartość zmiennej definiuje się poprzez zastosowanie formuły:

```
symbolcolor= ( Czerwony * 65536) + ( Zielony * 256) + Niebieski gdzie:
```

```
Czerwony (1,\ldots,255), Zielony(1,\ldots,255), Niebieski(1,\ldots,255)
```

symbolsize

Zmienna typu całkowitego w zakresie od 1 do 48. Określa wielkość znaku przypisanego do obiektu punktowego.

symbolstyle

Zmienna typu całkowitego odpowiedzialna za sposób wyświetlania symbolu. Dozwolone wartości:

- 1 opcja "pokaż tło" jest włączona piksele o kolorze białym są przedstawione jako wypełnienie
- 2 opcja "zastosuj kolor" włączona wszystkie piksele na bitmapie oprócz białych, przedstawione są w kolorze określonym zmienną symbolcolor
- 0 opcja "pokaż tło" oraz "zastosuj kolor" są wyłączone. Symbol przedstawiony jest na zestawieniu w sposób identyczny, jak zdefiniowano go w pliku bitmapy.
- 3 opcja pozwalająca na jednoczesne włączenie opcji 1 i 2

b) Obiekty liniowe

Definicja stylu obiektów liniowych odbywa się poprzez określenie w plikach parametrycznych następujących wartości:

Penwidth

Zmienna typu całkowitego określająca grubość zastosowanej linii (w pikselach). Przyjmuje wartości od 1 do 7. Linia niewidoczna: penwidth=0 i penpattern=1

Penpattern

Zmienna typu całkowitego, przyjmująca wartość z zakresu od 0 do 123. Patrz Rys. 12.

Rys. 12 Biblioteka dostępnych patternów dla obiektów liniowych

pencolor

Zmienna typu całkowitego określająca kolor obiektu liniowego. Dla szczegółów sposobu wyznaczania, patrz parametr symbolcolor

c) Obiekty powierzchniowe

Definicja stylu wyświetlania obiektów powierzchniowych odbywa się poprzez określenie w plikach parametrycznych następujących wartości:

bwidth

Definicja grubości obrysu elementu powierzchniowego. Patrz penwidth

bpattern

Definicja patternu obrysu elementu powierzchniowego. Patrz penpattern

bcolor

Definicja koloru obrysu elementu powierzchniowego. Patrz pencolor

brushpattern

Zmienna całkowita z zakresu od 1 do 8 lub od 12 do 71. Patrz Rysunek poniżej.

Rys. 13 Biblioteka dostępnych patternów dla obiektów powierzchniowych

brushfgcolor

Zmienna typu całkowitego, określająca kolor pierwszoplanowy. Sposób wyznaczania wartości zmiennej – patrz **symbolcolor**

brushbgcolor

Zmienna typu całkowitego, określająca kolor tła. Sposób wyznaczania wartości zmiennej – patrz symbolcolor.

d) Etykiety

labelcolor

Zmienna typu całkowitego, określająca kolor etykiety. Sposób wyznaczania wartości zmiennej – patrz symbolcolor.

labelsize

Zmienna typu całkowitego w zakresie od 1 do 48. Określa wielkość etykiety.

attlabel

Nazwa atrybutu, po którym następuje etykietowanie

e) Kolejność warstw

layernum

Zmienna typu całkowitego określająca kolejność warstw. Obowiązuje zasada: im mniejszy **layernum**, tym warstwa znajduje się wyżej w oknie zestawienia.

UWAGA!!!

W plikach konfiguracyjnych *.prj zdefiniowano symbologię elementów które znajdą się na poszczególnych zestawieniach tematycznych. W przypadkach szczególnych wymagana będzie ingerencja użytkownika. Prosimy o załączanie na płytach CD, zawierających opracowane wersje numeryczne mapy sozologicznej, wykorzystywane narzędzie do kontroli geometrycznej, wraz z plikami raportowymi i konfiguracyjnymi.

3 Gdzie szukać aktualnej wersji programu?

Aktualna wersja programu wraz z niniejszą dokumentacją udostępniane są w formie elektronicznej na stronach Głównego Urzędu Geodezji i Kartografii: www.gugik.gov.pl