Data Pre-Processing [1]: # Import necessary libraries import pandas as pd import numpy as np from sklearn.model_selection import train_test_split	
<pre>from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report from sklearn.preprocessing import StandardScaler, LabelEncoder from sklearn.impute import SimpleImputer</pre> [2]: # Load the dataset df = pd.read_csv(r"C:\Users\rpsie\Downloads\Sunbase Assignment\customer_churn_large_dataset.csv")	
[4]:	
[5]: df.isnull().sum() [5]: CustomerID	
Calss 'pandas.core.frame.DataFrame'> RangeIndex: 100000 entries, 0 to 99999	
Female 50216 Male 49784 Name: Gender, dtype: int64 [8]: df['Churn'].value_counts()	
[8]: 0 50221 1 49779 Name: Churn, dtype: int64 [9]: df['Location'].value_counts() [9]: Houston 20157 Los Angeles 20041	
Miami 20031 Chicago 19958 New York 19813 Name: Location, dtype: int64 10]: # Handle missing data	
<pre>imputer = SimpleImputer(strategy='median') df[['Age', 'Monthly_Bill', 'Total_Usage_GB']] = imputer.fit_transform(df[['Age', 'Monthly_Bill', 'Total_Usage_GB']]) 12]: # Split data into features (X) and target (y) X = df.drop('Churn', axis=1) y = df['Churn']</pre>	
<pre>print(X.head()) print(y.head()) CustomerID Name Age Gender Location Subscription_Length_Months \ 0 1 0 63.0 1 2</pre>	
2	
<pre># Split data into training and testing sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42, stratify=y) print(len(X_train)) print(len(X_test)) print(len(y_train)) print(len(y_test))</pre> 70000 30000 70000	
Feature Engineering # Encode categorical variables	
<pre>label_encoder = LabelEncoder() df['Gender'] = label_encoder.fit_transform(df['Gender']) df['Location'] = label_encoder.fit_transform(df['Location']) df['Name'] = label_encoder.fit_transform(df['Name']) df.head()</pre> CustomerID Name Age Gender Location Subscription_Length_Months Monthly_Bill Total_Usage_GB Churn	
CustomerID Name Age Gender Location Subscription_Length_Months Monthly_Bill Total_Usage_GB Churn 0 1 0 63.0 1 2 17 73.36 236.0 0 1 2 11112 62.0 0 4 148.76 172.0 0 2 3 22223 24.0 0 2 5 85.47 460.0 0 3 4 33334 36.0 0 3 97.94 297.0 1	
<pre>from sklearn.preprocessing import StandardScaler scaler = StandardScaler() X_train_scaled = scaler.fit_transform(X_train) X_test_scaled = scaler.transform(X_test) print('X_train_scaled',X_train_scaled) print('X_test_scaled',X_test_scaled)</pre>	
<pre>X_train_scaled [[-1.0837931 -1.39563574 1.04732722 0.94240111 -0.50951727 -0.40679669] [1.6001857 1.5863186 -0.71903127 1.08708096 -0.87571583 -0.88950773] [-0.55955307 -0.81316303 0.06601695 -0.64907719 -0.21537394</pre>	
-0.00836852] [0.60105648 0.47625685 0.7202238 0.94240111 0.92813291	
[-1.48617881 0.62360528 -0.980714010.21503765 0.64484722 1.70027532] [-0.77270295 -1.0500002 -0.26108648 0.50836157 1.1995739 -0.06200308] [-0.87386175 -1.1623629 -0.391927850.21503765 0.34182038 -1.61740533]]	
Model Building and Evaluation from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score, classification_report	
<pre># Choose the model model = RandomForestClassifier() # Train the model model.fit(X_train_scaled, y_train) # Validate the test model y_pred = model.predict(X_test_scaled) # Evaluate the test model test_accuracy = accuracy_score(y_test, y_pred) test_report = classification_report(y_test, y_pred)</pre>	
<pre>print(f'Accuracy: {test_accuracy}') print(test_report) # Validate the test model y_pred = model.predict(X_train_scaled) # Evaluate the test model train_accuracy = accuracy_score(y_train, y_pred) train_report = classification_report(y_train, y_pred) print(f'Accuracy: {train_accuracy}') print(train_report)</pre>	
print(train_report) Accuracy: 0.4986666666666665	
accuracy 0.50 30000 macro avg 0.50 0.50 0.50 30000 weighted avg 0.50 0.50 0.50 30000 Accuracy: 1.0 precision recall f1-score support 0 1.00 1.00 1.00 35155 1 1.00 1.00 1.00 34845	
1 1.00 1.00 1.00 34845 accuracy	
Model Deployement 75]: input=X_test_scaled[1] # Provide index number of Test Dataset array=np.array(input) reshaped_array=array.reshape(1,-1) prediction=model.predict(reshaped_array) print(prediction)	
<pre>if (prediction==0): print("Churned") else: print("Not Churned")</pre>	
[1] Not Churned	