A Guide for CPS Component Design

http://d3s.mff.cuni.cz

Rima Al-Ali D3S 2020 Prague, Czech Republic

Design of uncertainty-aware component

Design of uncertainty-aware component

Framework to Design Uncertainty-Aware Autonomous Component in CPS

Assumptions and Available Inputs:

•

	Output1 method groups	
Uncertainty Type1 method groups	Groups intersection Assumption & input	

Rule condition (e.g. $x > y \rightarrow Boolean$)

f(x, y,, thresholds): Boolean

Deterministic operator

Operator over Stochastic Variables

Stochastic operator (i.e. function)

Analysis Methods

Sensors

(Un)known model

Fixed Threshold

Variable Threshold

Evaluation Data Threshold

Examples

Vehicles Platooning

Degree of Autonomy

Platoon Example

- High fluctuation in the traffic and Unreliable Communication

Estimation/Optimization (HU1)
Prediction (HU2)
Achieve goals (HU7)

- Distance is enough to brake and the communication is good -> CACC
- Distance is not enough to brake or the communication is bad -> ACC
- other -> AWS

Entities Communication	Context	Data Exchange
Vehicle <-> Platoon Leader	The vehicle is In platoon and the mode is CACC or ACC	Leader position and velocity Headway distance
Vehicle <-> Vehicle in front	The vehicle is In platoon and the mode is CACC	Vehicle position and velocityengine power, mass, route slops

calculateTargetAWS()calculateTargetACC()calculateTargetCACC()

platoon

Assumptions and Available Inputs:

- Input Type: Observation data, Feedback data
- Data: Time series gathered on runtime, independent and uncorrelated input measurements, dependent and correlated output data
- System: Known model

	Estimation/Optimization HU1, HU2, HU4	Prediction HU2, HU4, HU6	Satisfy Property/ Achieve goals HU5, HU7
Delay HU1, HU2, HU3, HU4	$m{HU1}$, $m{HU2}$, $m{HU4}$ Model		
Missing information HU1, HU4, HU6	HU1, HU4 Model f_1		
Noise HU1, HU4	HU1, HU4, HU2 Model, Historical Time series f_2	HU4 , HU2 prediction by historical data Historical Time series	
Operational Boundaries HU2, HU3, HU4, HU6, HU7	HU2, HU4 Historical Time series f_2	HU2 , HU4, <u>HU6</u> Historical Time series (f 2)	
Context HU2, HU4, HU7			HU7 f_3

platoon

Cleaner Robot

dirt

Cleaner Robot - Framework

- The battery finishes before finishing the cleaning
 A meeting starts before finishing the cleaning
- Estimation/Optimization (HU2), Prediction (HU2), Recognition (HU4), Achieve goals (HU7)

- Dirty ground and Battery is enough to clean alone and no near meeting -> soloCleaning
- Dirty ground and ((Battery is not enough to clean alone or a meeting is near) and the sum of their battery levels is enough for cleaning the room) -> groupCleaning
- Battery is low -> goCharging Cleaner in charger -> charging
- Meeting or cleaned area -> wait

Entities Communication	Context	Data Exchange
cleaner <-> cleaner	Cleaner is in groupCleaning mode and both cleaners are available	Battery level, cleaning area, cleaning time.
cleaner <-> charger	Charger of the cleaner and Cleaner is in goCharging mode	Battery level
cleaner <-> camera	Camera of the Cleaner	Images of the surrounding to detect dirt
cleaner <-> door sensors	Door sensors of the room	Occupant crossing the door

wait()

Cleaner Robot - Table

Assumptions and Available Inputs:

- Input Types: Observation data, Training data (Floor)
- Data: Time series gathered on runtime (Battery Level and Room Occupancy), seasonal (Room Occupancy)
- System: constraints for collaboration

	Estimation/Optin HU1, HU2, HU3, HU4, HU7		Recognition HU2, HU4, HU6		Achieve	_	Prediction HU2, HU4, HU6	
Noise HU1, HU2, HU3, HU4, HU6	HU1, HU2 , HU3 , HU4 historical time series	$\widehat{f_1}$					HU2 , HU4, HU6 historical time series	$\widehat{f_1}$
Operational Boundaries HU2, HU3, HU4, HU6, HU7					HU7	$\widehat{f_4}$		
Ambiguity and Ill-definition HU2, HU4, HU5, HU6, HU7			HU2, HU4 , HU6 training data	$\widehat{f_2}$				
Context HU2, HU4, HU7							HU2 , HU4 historical time series	f_3
Delays								

Cleaner Robot - Tree

- Dirty ground and Battery is enough to clean alone and no near meeting -> soloCleaning
- Dirty ground and ((Battery is not enough to clean alone or a meeting is near) and the sum of their battery levels is enough for cleaning the room) -> groupCleaning
- Battery is low -> goCharging
- Cleaner in charger -> charging This rule does not include considered uncertainty
- Meeting or cleaned area -> wait

Evaluation

Guide - Demonstrators

ClouT project - Clouds

OrPHEuS project - Energy

Hydrobionets project – Factory

ClouT: Clouds (MAPE-K)

ClouT – Framework

ClouT - Table - Tree

- Detection of data faults -> faulty
- Detection of system failure -> failure

Wireless sensor network

Assumptions and Available Inputs:

- Input Types: Observation data
- Data: Historical Time series gathered on runtime from local sensors and neighbor sensors
- System: model

	Classification HU2, HU4, HU6	External Involvement
Ambiguity and Ill- definition HU2, HU4, HU5, HU6, HU7	HU2, HU4, HU6 historical time series	 - - -
Failures HU1, HU2, HU3, HU5, HU7	HU2, HU6, historical time series f_2	-, HU6 (f ₃)

Hydrobionets

Hydrobionets – microServer Framework

Entities Communication	Context	Data Exchange
microServer <-> Sensor	The sensors in the communication range	Collected data, thresholds, frequencies
microServer <-> Actuator	The actuators in the communication range and the mode is cleaning/backwash	Activate, dosage quantities, frequencies
microServer <-> gateways	The gateways in the communication range	Data to be fused

Hydrobionets - Table

Assumptions and Available Inputs:

- Input Types: Observation data, Training data
- Data: real-time data collection (better prediction)
- System: *states*
- Infrastructure: distributed

	Estimation/Optimization HU1, HU2, HU3, HU4, HU7			Prediction HU2, HU4, HU6	
Network and Delays HU1, HU2, HU3, HU4	HU1, HU2, HU3, HU4 states	$\widehat{f_1}$	$\widehat{f_2}$		
Missing Information HU1, HU4, HU6	HU1, HU4	f_4			
Noise HU1, HU2, HU3, HU4, HU6	HU1 , HU2, HU3, HU4 States	f_4	$\widehat{f_1}$		
Ambiguity and III-definition HU2, HU4, HU5, HU6, HU7				HU2, HU4, HU6 Training data	$\widehat{f_2}$ $\widehat{f_5}$
Failures HU1, HU2, HU3, HU5, HU7	HU1, HU2, HU3 , HU7 States	$\widehat{f_1}$	$\widehat{f_3}$		

Hydrobionets - Tree

- Biofilm measurements == th1 -> backwash
- Biofilm measurements == th2 -> cleaning
- Other -> normal

 The sensors in the spatial communication range and the sensor is activated -> Collected data, thresholds, frequencies

OrPHEuS: Energy

OrPHEuS - Framework

Entities Communication	Context	Data Exchange	
Prosumers <-> centralized electrical boiler	The prosumer is associated to the central e- boilers and the	 PV surplus, storage statues, heat demand, price information, thresholds (coupling parameters) 	

OrPHEuS - Table

Assumptions and Available Inputs:

- Input Types: Observation data, Training data, Feedback data
- Data: historical data gathered on runtime

	Estimation/Op HU1, HU2, HU3, HU4,		Prediction HU2, HU4, HU6	
Delays HU1, HU2, HU3, HU4	HU1, HU2 , HU3, HU4	$\widehat{f_1}\widehat{f_2}\widehat{f_3}$		
Missing Information HU1, HU4, HU6	HU1, HU2, HU3 , HU4	$\widehat{f_1}\widehat{f_2}\widehat{f_3}$		
Operational Boundaries HU2, HU3, HU4, HU6, HU7	HU2 , HU3 , HU4 , HU7 Training data, Feedback data	$(f_1)(f_2)(f_3)$		
Context HU2, HU4, HU7	HU2, HU4 , HU7 Training data, Feedback data	$\widehat{f_3}$	HU2, HU4 Training data, Feedback data	$\widehat{f_3}$

OrPHEuS - Tree

- Heat storage not full and Peak is expected -> maxHeat
- Boiler produces more than the demand -> filledStorage

 The prosumer is associated to the central e-boilers -> PV surplus, storage statues, heat demand, price information, thresholds

Thank you for your attention!