Raport 1

Rekurencyjne mnożenie macierzy

Michał Kobiera, Maciej Pięta

1. Opis pseudokodu

Algorytm Binet`a:

- Jeśli rozmiar macierzy wynosi 2x2:
 - o Pomnóż macierz standardowym mnożeniem macierzy
 - o Zwróć wynik
- W przeciwnym przypadku:
 - o Podziel macierze na 4 mniejsze części (A11, A12, A21, A22)
 - Rekurencyjnie oblicz cztery iloczyny macierzy
 C11 = wynik mnożenia A11 i B11, a także wynik mnożenia
 A12 i B21, dodane do siebie.
 - C12 = wynik mnożenia A11 i B12, a także wynik mnożenia A12 i B22, dodane do siebie.
 - C21 = wynik mnożenia A21 i B11, a także wynik mnożenia A22 i B21, dodane do siebie.
 - C22 = wynik mnożenia A21 i B12, a także wynik mnożenia A22 i B22, dodane do siebie.
 - o Zwróć obliczoną macierz C jako wynik

Algorytm Strassena:

- Jeśli rozmiar macierzy wynosi 2x2:
 - o Pomnóż macierz standardowym mnożeniem macierzy
 - Zwróć wynik
- W przeciwnym przypadku:
 - o Podziel macierze na 4 mniejsze części (A11, A12, A21, A22)
 - Wykonaj siedem rekurencyjnych wywołań, obliczając siedem częściowych wyników:
 - P1 = StrassenMlt(A11 + A22, B11 + B22)
 - P2 = StrassenMlt(A21 + A22, B11)
 - P3 = StrassenMlt(A11, B12 B22)
 - P4 = StrassenMlt(A22, B21 B11)
 - P5 = StrassenMlt(A11 + A12, B22)
 - P6 = StrassenMlt(A21 A11, B11 + B12)
 - P7 = StrassenMlt(A12 A22, B21 + B22)
 - Oblicz cztery podmacierze wynikowe C11, C12, C21 i C22 za pomocą wyrażeń:

$$C11 = P1 + P4 - P5 + P7$$

```
C12 = P3 + P5
C21 = P2 + P4
C22 = P1 - P2 + P3 + P6

Zwróć obliczoną macierz C jako wynik
```

2. Kluczowe fragmenty kodu

Generowanie macierzy

```
def random_matrix(matrix_size, min_val, max_val):
    """Return matrix with random floats from [min_val, max_val)"""
    return (max_val - min_val) * np.random.random(matrix_size) + min_val

exp = 4
    matrix_size = (exp, exp)

min_val = 0.00000001
    max_val = 1

A = random_matrix(matrix_size, min_val, max_val)
B = random_matrix(matrix_size, min_val, max_val)
V 0.00s
Python
```

Rysunek 1

Do generowania macierzy została wykorzystana funkcja random.random() z modułu numpy

Funkcja random_matrix() zwraca macierz wypełnioną wartościami z przedziału [min_val, max_val)

```
else:
    matrix size = len(A)
    A11 = A[:matrix size//2, :matrix size//2]
    A12 = A[:matrix size//2, matrix size//2:]
    A21 = A[matrix_size//2:, :matrix_size//2]
    A22 = A[matrix_size//2:, matrix_size//2:]
    B11 = B[:matrix_size//2, :matrix_size//2]
    B12 = B[:matrix_size//2, matrix_size//2:]
    B21 = B[matrix_size//2:, :matrix_size//2]
    B22 = B[matrix_size//2:, matrix_size//2:]
    C11 = binet_mlt(A11, B11) + binet_mlt(A12, B21)
    C12 = binet_mlt(A11, B12) + binet_mlt(A12, B22)
    C21 = binet_mlt(A21, B11) + binet_mlt(A22, B21)
    C22 = binet_mlt(A21, B12) + binet_mlt(A22, B22)
    operation_count += matrix_size ** 2
    return np.vstack((np.hstack((C11, C12)), np.hstack((C21, C22))))
```

Rysunek 2

Implementacja algorytmu Binet`a

Macierze z modułu numpy dzielone są na mniejsze bloki

Następnie rekurencyjnie obliczana jest macierz C

Funkcja zwraca wynik "składając" macierz C wykorzystując np.hstack() orac np.vstack()

```
A11 = A[:n//2, :n//2]
B11 = B[:n//2, :n//2]
A12 = A[:n//2, (n//2):]
B12 = B[:n//2, (n//2):]
A21 = A[(n//2): , :n//2]
B21 = B[(n//2): , :n//2]
A22 = A[(n//2):, (n//2):]
B22 = B[(n//2):, (n//2):]
P1 = strassen_mlt((A11 + A22), (B11 + B22))
P2 = strassen_mlt((A21 + A22), B11)
P3 = strassen_mlt(A11, (B12 - B22))
P4 = strassen_mlt(A22, (B21 - B11))
P5 = strassen_mlt((A11 + A12), B22)
P6 = strassen mlt((A21 - A11), (B11 + B12))
P7 = strassen_mlt((A12 - A22), (B21 + B22))
C11 = (P1 + P4 - P5 + P7)
C12 = (P3 + P5)
C21 = (P2 + P4)
C22 = (P1 - P2 + P3 + P6)
result = np.empty((n, n))
result[:n // 2, :n // 2] = C11
result[:n // 2, n // 2:] = C12
result[n // 2:, :n // 2] = C21
result[n // 2:, n // 2:] = C22
return result
```

Rvsunek 3

Implementacja algorytmu Strassena

Analogicznie jak w poprzednim punkcie, macierz dzielona jest na mniejsze bloki Następnie rekurencyjnie liczone są bloki pomocnicze P według podanych wzorów Z obliczonych mniejszych bloków składana i zwracana jest macierz wynikowa C.

Rysunek 4

Obie implementacje w warunku końcowym rekurencji korzystają ze standardowego mnożenia macierzy 2x2

```
for exp in exponents:
   A = random_matrix((exp, exp), min_val, max_val)
   B = random_matrix((exp, exp), min_val, max_val)
   t_start = time()
   std_op = standard_mlt(A, B)[1]
   std_time = time() - t_start
   operation_count = 0
   t_start = time()
   binet_mlt(A, B)
   bin_time = time() - t_start
   bin_op = operation_count
   operation_count = 0
   t_start = time()
   strassen_mlt(A, B)
   str_time = time() - t_start
   str_op = operation_count
   res_times.append((std_time, bin_time, str_time))
   res_operations.append((std_op, bin_op, str_op))
```

Rysunek 5

W celu przetestowania szybkości działania implementacji zostały obliczone szybkość wykonania oraz ilość operacji dla poszczególnych wykładników

```
filename = "factorizations_r.npz"
  with open(filename, 'rb') as f:
    factorizations = dict(np.load(f, allow_pickle=True))

v 0.3s

for key in factorizations:
    u, v, w = factorizations[key]
    rank = u.shape[-1]
    assert rank == v.shape[-1] and rank == w.shape[-1]
    print(f'{key}: rank={u.shape[-1]}')

v 0.0s
Python
```

Rysunek 6

Rysunek 7

```
for i in range(mul_len):
    A_elements = t1[:, i]
    B_elements = t2[:, i]
    A_factor = np.zeros((n,m), dtype = float)
    for j in range(len(A_elements)):
        if A_elements[j] != 0:
            x,y = np.unravel_index(j, (4,5))
            A_{\text{factor}} += A[x*n:(x+1)*n, y*m: (y+1)*m]*A_{\text{elements}}[j]
            # plus_count += len(A_factor[0])*len(A_factor)
            operation_count += len(A_factor)*len(A_factor[0])
    B_factor = np.zeros((k,k), dtype = float)
    for j in range(len(B_elements)):
        if B_elements[j] != 0:
            x,y = np.unravel_index(j, (5,5))
            B_{\text{factor}} += B[x*k:(x+1)*k, y*k: (y+1)*k]*B_{\text{elements}}[j]
            # plus_count += len(B_factor)**2
            operation_count += len(B_factor)**2
    m_res = ai_mlt(A_factor, B_factor, factor)
    #operation count += 1
    mtab[i] = m_res
```

```
xind = 0
yind = 0
for i in range(t3.shape[0]):
    x,y = np.unravel_index(i, (4,5))
    res_fragment = np.zeros((n,m), dtype = float)
    C_elements = t3[i, :]
    for j in range(len(C_elements)):
        if C_elements[j] != 0:
            res_fragment += mtab[j]*C_elements[j]
            operation_count += len(mtab[i])*len(mtab[j][0])

if xind >= 4:
        yind+=1
            xind=0

res_matrix[xind*n:(xind+1)*n, yind*m: (yind+1)*m] = res_fragment
        xind+=1

return res_matrix
```

Rysunek 9

```
for x in range(4):
       for y in range(5):
           mb = r2[x*n:(x+1)*n, y*m: (y+1)*m]
           ma = r1[x*n:(x+1)*n, y*m: (y+1)*m]
           # print(ma)
           # print("----")
           # print(mb)
           print(np.allclose(ma, mb), x, y)
           if not np.allclose(ma, mb):
             print(exists(r1, r2, ma))
           # print("\n\n")
✓ 0.0s
True 0 0
True 0 1
True 0 2
True 0 3
True 0 4
True 1 0
True 1 1
True 1 2
True 1 3
True 1 4
True 2 0
True 2 1
True 2 2
True 2 3
True 2 4
True 3 0
True 3 1
True 3 2
```

Rysunek 10

3. Wykresy

Multiplication times comparision standard mlt binet mlt strassen mlt 400 200 100 360264 128 256 512 exponent

Wykres 1

Wykres 2

Wykres ilustrujący porównanie szybkości wykonania poszczególnych algorytmów. (Linie na wykresie zostały dodane w celu poprawy czytelności obrazu)

Wykres ilustrujący ilość wykonanych operacji zmiennoprzecinkowych dla poszczególnych algorytmów. Wyniki dla standardowego mnożenia macierzy i mnożenia metodą Binte`a są bardzo podobne i nie widać różnicy liczbie wykonanych operacji dla takiej skali na wykresie. (Linie na wykresie zostały dodane w celu poprawy czytelności obrazu)

Wykresy ilustrujące szybkość działania poszczególnych algorytmów przy niskich wartościach wykładnika (Na drugim wykresie poglądowo zostały dodane linie łączące punkty)

Wykres 7

Wykresy ilustrujące ilość wykonanych operacji zmiennoprzecinkowych poszczególnych algorytmów przy niskich wartościach wykładnika

(Na drugim wykresie poglądowo zostały dodane linie łączące punkty)

Wykresy ilustrujące porównanie czasów działania oraz ilości wykonanych operacji algorytmu AI ze standardowym mnożeniem macierzy.

Wykres 10

4. Ocena złożoności obliczeniowej

Złożoność

```
In [119...
                  from scipy.optimize import curve_fit
In [120...
                 def func(x, a, b):
    return a * np.power(x,b)
In [121...
                 print(res_operations)
                  y_data = np.array(res_operations)
print(y_data)
              [(16, 12, 12), (128, 112, 156), (1024, 960, 1380), (8192, 7936, 10812), (65536, 64512, 80292), (524288, 520192, 580476), (4 194304, 4177920, 4137060), (33554432, 33488896, 29254332), (268435456, 268173312, 205959972), (2147483648, 2146435072, 1446
              438396)]
                                                                12]
156]
                                           112
960
7936
64512
                             128
                         1024
8192
65536
                                                              1380]
10812]
                                                              802921
                     524288 520192
4194304 4177920
33554432 33488896
                                                           580476]
4137060]
                                                       292543321
                [ 268435456 268173312 205959972]
[2147483648 2146435072 1446438396]]
```

```
In [124... print(params_std)
        [2. 3.]
In [125... params_binet, cov_binet = curve_fit(func, x_da
In [126... print(params_binet)
        [1.98896337 3.00072789]
In [127... params_strassen, cov_strassen = curve_fit(func
In [128... print(params_strassen)
        [4.95078383 2.81222024]
```

5. Sprawdzenie poprawności

Do sprawdzenia poprawności wykorzystaliśmy moduł numpy.

```
operation_count = 0
res = binet_mlt(A, B)

print(f"Matrix size: 2**{exp}")
print("Is correct?:", np.allclose(res, A@B))
print("Number of operations:", operation_count)
print("Number of operations (Standard mlt):", standard_mlt(A, B)[1])
# print("Result:", res, sep='\n')
```

Matrix size: 2**6
Is correct?: True
Number of operations: 520192
Number of operations (Standard mlt): 524288