This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Finally, dependent claim 35 has been amended to recite "the selection step," rather than "the detection step," to conform with the language used in independent claim 32.

As the foregoing amendments do not introduce any new matter, it is respectfully requested that they be entered by the Examiner.

The present invention is directed to antibodies which bind with p12 or p18 protein of HIV-1, antibodies which bind with immune complexes comprising p12 or p18 protein of HIV-1, mixtures of antibodies which bind with p12, p15, p18, p25, p36, p42, or p80 protein of HIV-1, mixtures of antibodies which bind with immune complexes comprising the HIV-1 proteins, immune complexes comprising p12 or p18 protein of HIV-1, and methods of producing antibodies against p12 or p18 protein of HIV-1.

The Examiner noted that applicants' claim for priority of Great Britain application No. 83 24800 was acknowledged, but stated that

[t]he conditions of 35 USC 119 have not been met owing to the lack of submission of a certified copy of the priority document.

See page 2, lines 2-4 of Paper No. 8.

Filed herewith is a Claim for Priority of Great Britain application No. 83 24800, filed September 15, 1983, and of South Africa application No. 84 7005, filed September 6, 1984. The Claim for Priority notes that a certified copy of GB 83 24800 was filed in related application Serial No. 06/558,109, and that

LAW OFFICES
FINNEGAN, HENDERSON
FARABOW, GARRETT
& DUNNER
1300 I STREET, N.W.
WASHINGTON, DC 20005
1-202-408-4000

a certified copy of SA 84 7005 was filed in grandparent application Serial No. 07/158,073. Accordingly, applicants have met the requirements of 35 U.S.C. § 119 for GB 83 24800 and SA 84 7005.

The Examiner objected to the application

because of alterations which have not been initialed and/or dated as is required by 37 C.F.R. §§ 1.52(c) and 1.56. A properly executed oath or declaration which complies with 37 C.F.R. § 1.67(a) and identifies the application by serial number and filing date is required. . . .

The declarations by inventors Chermann, Barre-Sinoussi, Rozenbaum, and Nugeyre have alterations that are not initialled [sic] and/or dated.

See pages 2-3 of Paper No. 8.

Although the Examiner appears to be referring to the original Oath/Declaration of the application, the only Declarations submitted by applicants signed by individual inventors were Declarations regarding the Response to Requirement for Statement under § 152 of the Atomic Energy Act, filed November 12, 1993. Applicants assume the Examiner is referring to these Declarations.

No changes were made to the Declaration of Francoise Barre-Sinoussi, a copy of which is attached as Exhibit 1.

Pursuant to M.P.E.P. § 602.03, applicants will file in the near future Supplemental Declarations for Willy Rozenbaum, Jean-Claude Chermann, and Marie-Therese Nugeyre. Applicants note that the original Declarations of Drs. Rozenbaum, Chermann, and

LAW OFFICES
FINNEGAN, HENDERSON
FARABOW, GARRETT
& DUNNER
1300 I STREET, N. W.
WASHINGTON, DC 20005
11-202-408-4000

Nugeyre were fully responsive to the Requirement for Statement under § 152 of the Atomic Energy Act, as the changes made to the Declarations were to the addresses of the inventors and not to the substance of the Declarations. Accordingly, the withdrawal of this ground of objection to the application is respectfully requested.

Claims 29-31 were rejected under 35 U.S.C § 101 as claiming the same invention as that of claims 1-3 and 8 of prior U.S. Patent No. 5,217,861 ("the '861 patent") to Montagnier et al. Applicants respectfully traverse this double patenting ground of rejection.

Claims 1-3 and 8 of the '861 patent claim in vitro diagnostic methods for detecting antibodies to HIV-1 employing pl2 or pl8 protein of HIV-1.

Claims 29-31 of the present application are directed to immunological complexes comprising p18 or p12 protein of HIV-1. The Examiner stated that

[t]he occurrence of an isolated and purified complex between an antibody reactive with HIV-1 proteins and HIV-1 proteins p12 or p18 is part of the reaction of combining purified proteins with antibodies with the proteins.

See page 3, lines 10-13 of Paper No. 8. Applicants respectfully disagree.

Applicants' claims directed to immune complexes are separately patentable from claims directed to the component antigen and antibody as this subject matter satisfies the

LAW OFFICES
FINNEGAN, HENDERSON
FARABOW, GARRETT
& DUNNER
1300 I STREET, N.W.
WASHINGTON, DC 20005
1-202-408-4000

statutory requirements for patentability. The claimed immune complexes are a novel, unobvious, composition of matter having utility.

For example, the claimed immune complexes can be used to obtain the component antigen or antibody. See e.g., page 4, NODES: lines 1-5, page 10, lines 21-25, and page 26, lines 15-21 of the original specification. Such techniques for producing and using immunological complexes were known in the art at the time the claimed invention was made. Preparation and isolation of antibodies and immunological complexes is described by Galfre et al., "Preparation of Monoclonal Antibodies: Strategies and Procedures, " Methods in Enzymology, 73, 3-46 (1981) (Exhibit 2). In particular, this reference describes binding assays in which insoluble antigen is reacted with antibody in culture fluid. Free antibody is washed away, leaving bound monoclonal antibody. See Galfre et al. at pages 22-32.

> In this respect, an immune complex is analogous to a chemical intermediate that can be used to obtain another compound, i.e., the component antibody or antigen. established in the chemical arts that the use of a chemical intermediate to produce a chemical compound satisfies the statutory requirement for utility. This issue was reviewed by the Court of Customs and Patent Appeals in <u>In re Irani</u>, 487 F.2d 924 (C.C.P.A. 1973).

At issue in Irani was the utility of claims directed to anhydrides of organo-phosphonic acids. An anhydride of an acid

LAW OFFICES FINNEGAN, HENDERSON FARABOW, GARRETT 8 DUNNER 1300 I STREET, N.W. WASHINGTON, DC 20005 1-202-408-4000

is formed when water is removed from the acid. With addition of water to the anhydride, the acid is formed. See e.g., Grant et al., Grant & Hackh's Chemical Dictionary, Fifth Edition, page 40 (McGraw-Hill, 1987) (Exhibit 3).

The Examiner and the Board of Patent Appeals concluded that as the organo-phosphonic acids were converted to the anhydride, and the anhydride was then converted back to the acid for use, the anhydride failed to satisfy the statutory requirement for utility. The Court of Customs and Patent Appeals disagreed with the Examiner and the Board in noting that:

[t]he acid having an established practical utility, it follows that the anhydride, which is taught by the specification to be a source of the acid, also has utility. Appellants have also pointed out that their claimed anhydride has a much higher melting point than the acid and is, therefore, more stable.

See Irani at 926.

Similarly, applicants' claimed immune complexes have chemical and physical properties distinct from the component antigen and antibody. Just as the antigen and antibody are useful and patentable, the immune complexes which can be used to obtain the antigen or antibody are also patentable. As the claimed immune complexes satisfy the statutory requirement for patentability pursuant to the decision in Irani, applicants respectfully request the withdrawal of this double patenting ground of rejection.

LAW OFFICES
FINNEGAN, HENDERSON
FARABOW, GARRETT
& DUNNER
1300 I STREET, N. W.
WASHINGTON, DC 20005
1-202-408-4000

Claims 15-21 and 32-36 were rejected under the judicially created doctrine of obviousness-type double patenting as being allegedly unpatentable over claims 4, 7, and 9-11 of U.S. Patent No. 5,217,861 ("the '861 patent"). Applicants respectfully traverse this ground of rejection.

Claims 4, 7, and 9-11 of the '861 patent are directed to p18 and p12 proteins of HIV-1, and mixtures of p18, p12, and p25 proteins of HIV-1. As noted above, this subject matter is patentably distinct from applicants' claimed invention.

While applicants courteously disagree with this ground of rejection, filed herewith is a Terminal Disclaimer for U.S.

Patent No. 5,217,861 (Exhibit 4). This Terminal Disclaimer is being filed for the sole purpose of advancing the prosecution of this application. Accordingly, the withdrawal of this ground of rejection is respectfully requested.

Claims 12-18 were rejected under 35 U.S.C. § 101 because the claimed invention allegedly lacks patentable utility.

Applicants respectfully traverse this ground of rejection, and note that claims 12-14 are not pending in this application.

The Examiner stated that

[a]pplicant has not disclosed a use for the claimed "immunological complex" which appears to be a product formed during immunological testing. As such, this complex would also contain a component of patient sera. Applicant has not disclosed a utility for this compound as it is formed during an assay procedure.

LAW OFFICES
FINNEGAN, HENDERSON
FARABOW, GARRETT
& DUNNER
1300 1 STREET, N.W.
WASHINGTON, DC 20005
1-202-408-4000

See page 4 of Paper No. 8. Applicants respectfully disagree.

It is noted that claims 15-18 of the present application are directed to isolated antibodies and a mixture of isolated antibodies. In a telephone conference of March 17, 1994, the Examiner stated that he intended to reject claims 29-31, directed to immunological complexes. For the sole purpose of advancing the prosecution of this case, the following remarks are made in regard to claims 29-31.

As noted above in response to the double patenting rejection of the claims, an "immunological complex" is a composition of matter that satisfies the statutory requirements for patentability, including utility under 35 U.S.C. § 101. As such, the withdrawal of this ground of rejection is respectfully requested.

Claims 31 and 35 were rejected under 35 U.S.C. § 112, second paragraph, as being allegedly indefinite for failing to particularly point out and distinctly claim the subject matter which applicants regard as the invention. Applicants respectfully traverse this ground of rejection.

Claim 31 was rejected as

[i]t is unclear where and how the label is attached to the complex of claim 31. No means are provided for the association of a labeling reagent to the immunocomplex. It is unclear if the label is attached to the antibody component or the antigen component of the complex or if it is common to both.

LAW OFFICES
FINNEGAN, HENDERSON
FARABOW, GARRETT
& DUNNER
1300 I STREET, N. W.
WASHINGTON, DC 20005
1-202-408-4000

See page 5, lines 10-14 of Paper No. 8.

Claim 31 has been amended to recite labeling of the protein or antibody of the immune complex. See e.g., page 14, lines 18-20 and 28-30, and page 15, lines 5-9 of the original specification.

In addition, claim 35 was rejected, as claim 32, on which claims 35 depends, lacks antecedent basis for "the detection step." See page 5, lines 15-16 of Paper No. 8. Dependent claim 35 has been amended to depend from claim 34, which recites "detecting antibodies," following the selection step.

As applicants' claims are definite, the withdrawal of this ground of rejection is courteously requested.

Claims 1-5, 7, and 8 were rejected under 35 U.S.C. § 102(a) as being allegedly anticipated by Barre-Sinoussi et al.

Applicants respectfully traverse this ground of rejection.

The Examiner cited a meeting Abstract by Barre-Sinoussi et al.,

"Analysis and Immunological Properties of Lymphadenopathy,

Associated Virus (LAV) Structural Proteins, "published in 1985,

in International Symposium: Retroviruses and Human Pathology,

edited by Gallo et al (Exhibit 4). The meeting was held on

September 24-26, 1984 in Italy. See the Acknowledgments page of

Gallo et al. As the meeting, and the publication of the

proceedings of the meeting, took place after applicants' claimed

priority dates of GB 83 24800, filed September 15, 1983, and SA

84 7005, filed September 6, 1984, Barre-Sinoussi et al. is not

LAW OFFICES
FINNEGAN, HENDERSON
FARABOW, GARRETT
& DUNNER
1300 I STREET, N.W.
WASHINGTON, DC 20005
1-202-408-4000

available as prior art against applicants' invention. Thus, the withdrawal of this ground of rejection is respectfully requested.

Claims 15-21 and 32-36 were rejected under 35 U.S.C. § 103 as being allegedly unpatentable over Barre-Sinoussi et al.

Applicants respectfully traverse this ground of rejection.

As noted above, Barre-Sinoussi is not available as prior art against applicants' invention. Thus, the withdrawal of this ground of rejection is respectfully requested.

It is courteously submitted that this application is now in condition for allowance. Reconsideration and reexamination of this application and allowance of the pending claims at the Examiner's convenience are respectfully requested.

The Commissioner is hereby authorized to charge any fees associated with this Amendment to our Deposit Account No. 06-0916. If a fee is required for an Extension of Time under 37 C.F.R. § 1.136 not accounted for above, such extension is requested and should also be charged to our Deposit Account.

Respectfully submitted,

FINNEGAN, HENDERSON, FARABOW, GARRETT & DUNNER

Bv:

Michele M. Schafer

Req. No. 34,717

Dated: April 26, 1994

LAW OFFICES
FINNEGAN, HENDERSON
FARABOW, GARRETT
& DUNNER
1300 I STREET, N.W.
WASHINGTON, DC 20005
1-202-408-4000

[1] Preparation of Monoclonal Antibodies: Strategies and Procedures

By G. GALFRE and C. MILSTEIN

I. Introduction

spleen cells can be selected from the parental components as the only cells plemented with hypoxanthine and thymidine (HAT medium) because they are unable to utilize the salvage pathway. Hybrids between such cells and that actively multiply in HAT selective medium. From the growing hybrids, individual clones can be selected that secrete the desired antibodies. Such antibodies are therefore of monoclonal origin. The selected clones, Such mutants cannot grow in medium containing aminopterin and suplacked the enzymes hypoxanthine guanine ribosyltransferase (azaguanine-resistant) or thymidine kinase (bromodeoxyuridine-resistant). 1975. The method was based on fusion between myeloma cells and spleen cells from suitably immunized animals. Spleen cells die in a short time under ordinary tissue culture conditions. Myeloma cells have been adapted to grow permanently in culture, and mutants were isolated that antibody directed against a predefined immunogen was first reported in The derivation of cell lines capable of permanent production of specific like ordinary myeloma lines, can be maintained indefinitely.

This basic methodology has been used to prepare antibodies against a This basic methodology has been used to prepare antibodies, small large variety of antigens. These include antibodies to haptens, small large variety of antigens. These include antibodies and pepnatural products with biological activity, such as neuropeptide and pepnatural products with biological activity, such as neuropeptide and pepnatural products with biological activity, such as neuropeptide and pepnatural products with bistocompatibility antigens, differentiation teins, lipopolysaccharides, histocompatibility antigens, differentiation antigens and other cell surface antigens, viruses, etc. The results justify antigens and other cell surface antigens, viruses, etc. The results justify antigens and other cell surface antigens, viruses, etc. The results justify antigens and other cell surface antigens, viruses, etc. The results justify antigens and other cell surface antigens, viruses, etc. The results justify antigens and other cell surface antigens, viruses, etc. The results justify antigens and other cell surface antigens, viruses, etc. The results justify antigens and other cell surface antigens, viruses, etc. The results justify antigens and other cell surface antigens, viruses, etc. The results justify antigens and other cell surface antigens, viruses, etc.

nunized animal can be incommentalizing cells expressing a tran-Cell fusion is therefore a way of immortalizing cells expressing a transient differentiated function. The outcome of the fusion between a given cell line and a heterogeneous population of normal cells is affected by the phenotype of the particular cell line used. Fusions with myelomas result in a high frequency of antibody-secreting hybrids. On the other hand, other cell lines, for example, T cell lymphomas, are used for the immortalization of other differentiated properties, such as T cell functions. The derivation of such hybrids is based on the same general principles. Since the out-

1 G. Köhler and C. Milstein, Nature (London) 256, 495 (1975).

Copyright (*) 1981 by Academic Press, Inc. All rights of reproduction in any form reserved. ISBN 0-12-181973-6

come is not an antibody that can be used as a general reagent, it will not be discussed further.

clonal antibodies (McAb) exhibiting certain desired properties presents widely different degrees of difficulty. Desired properties include not only fine specificity of the antibody, avidity and kinetic parameters imporspecific recognition of an antigen: other no less critical properties are the The derivation of permanent lines of hybrid cells producing monotant for radioimmunoassays, cytotoxic properties necessary for direct complement-dependent lysis, etc. When an animal is injected with a given antigen its usual response is the production of a highly heterogeneous population of antibodies directed against the immunogen. Among these many antibodies, some may have the desired properties but will be mixed When McAb are prepared by the hybrid myeloma method, the collection can be strong or very weak, and this will be reflected in the proportion of with many others that will express alternative or undesirable properties. of clopés randomly derived represents a cross section of such a heterogeneous population. In addition the overall response of the individual animal hybrid clones producing the desired antibody within the total population of actively growing hybrids. These considerations are paramount in the preliminary estimation of the degree of difficulty that may be involved in the derivation of specific reagents. No less important is the fact that the characteristics of the McAb that will be derived will depend to a large extent on the way the whole experiment was originally designed. In this chapter we will attempt to provide guidelines for the derivation of specific sionally refer to protocols and approaches that are not in use in our own McAb. For this we will draw on our own experience and will only occalaboratory. This is not because we consider our experience more valid than that of others, but, as in many complex operations, the final blend reflects the unique experience of the particular laboratory.

II. Materials for Tissue Culture²

A. Media

Tissue culture grade water is used throughout. This is usually deionized and double-distilled over glass.

For the preparation of McAb the most commonly used media are Dulbecco's Modified Eagle's Medium (DMM) and RPMI-1640. For prac-

tical reasons it is better to standardize with one medium. Alternative media are often required for cell lines from other laboratories. Whichever medium is chosen, particular attention must be devoted to its preparation. We will discuss here only the use of DMM, but the same general principles apply to any media. DMM is commercially available in different forms.

PREPARATION OF MONOCLONAL ANTIBODIES

1 × DMM: The ready-to-use DMM (1 × DMM) can be bought as complete medium to which only pyruvate or glutamine and extra components are added before use, following the manufacturer's components are added before use, following the manufacturer's instructions (1 × DMM, Gibco Europe, Glasgow, Scotland, Cat. No. 196G; or Flow Laboratories, Irvine, Scotland, Cat. No. 12-834.54). Different batches may vary slightly. It is therefore advisable to buy batches in sufficient quantities to allow work for a reable to buy batches in sufficient quantities to allow work for a reable to buy batches in sufficient quantities to allow work for a reable to buy batches in sufficient quantities to allow work for a reable are kept in the dark at 4°. For critical operations it is advisite to use media that are not more than 3 months old—especially when, as is the case with the 1 × medium, the exact date of preparation is not known.

Europe, Glasgow, Cat. No. 330-2501; or Flow Laboratories. Ir-Europe, Glasgow, Cat. No. 330-2501; or Flow Laboratories. Irvine, Cat. No. 14-330-49) are also available. About 4 liters of tissue vine, Cat. No. 14-330-49) are also available. About 4 liters of tissue culture grade water are autoclaved in a 6-liter glass flask and allowed to cool to room temperature. The 10 × medium and other components as specified by the manufacturer are then added. If necessary the volume is adjusted to approximately 5 liters with

Powder DMM: Prepared from dry powder (Gibco Laboratories, Grand Island, New York, Cat. No. 430-2100) following the manufacturer's instructions. This requires filter sterilizing units of 20-

liter capacity or larger.

We find media prepared directly from powder to be the best, probable because they are usually used when fresher. The 1 × medium is almost good but is much more expensive and requires more 4° storage space. We favor a supply of a few liters of 1 × DMM for comparison and for emergency cases. The medium prepared from the 10 × concentrate is generally not as good, and the batches are more variable. We use it only on well established lines when our production capacity from powder medium established lines when our production capacity from powder medium for cloning in soft agar or agarose, and it is best to prepare 2 × medium from dry powder.

HAT medium 100 × HT: 136.1 mg of hypoxanthine (Sigma, Poole, Dorset, Engloo × HT: 136.1 mg of hypoxanthine (Sigma, Cat. gland, Cat. No. H9377) and 38.75 mg of thymidine (Sigma, Cat.

² A more detailed discussion on procedures for tissue culture can be found in J. Paul, "Cell and Tissue Culture," 5th ed., Churchill-Livingstone, Edinburgh and London, 1975; and W. B. Jakoby and I. H. Pastan, this series, Vol. 58.

PREPARATION OF MONOCLONAL ANTIBODIES

 $50 \times HT$: Dilute $100 \times HT$ with 1 volume of DMM. Filter sterilize and store in 25 ml aliquots at 4°.

1000 × aminopterin: Aminopterin (Sigma, Cat. No. A2255) 17.6 mg/100 ml. Proceed as for $100 \times HT$.

50 imes HAT: 50 ml of 100 imes HT, 5 ml of 1000 imes aminopterin, and 45 ml of DMM. Filter, sterilize, and store in 25-ml aliquots at 4°.

100 ml of FCS, 12 ml of 50 \times HAT or 50 \times HT, and antibiotics as × HT and 1 × HAT [20% fetal calf serum (FCS)]: 500 ml of DMM,

B. Additives for Contamination Control

medium. Gentamycin (Flow Laboratories, Cat. No. 16-762-45) is then reserved to control outbreaks of penicillin-streptomycin-resistant bac-The most common tissue culture contaminants are bacteria, yeast, and fungi. To control them there is no substitute for a good, sterile technique. Bacterial contamination is not generally difficult to control with appropriate antibiotics. However, the routine inclusion of antibiotics in the medium leads to the selection of resistant bacteria. Sometimes these are slow growing and difficult to detect and become permanent and undesirable guests in the laboratory. A good compromise is to have penicillin and streptomycin (Gibco Europe, penicillin-streptomycin, 5000 units/ml, Cat. No. 507, used at a final dilution of 50 units/ml) routinely included in the teria in important experiments. Gentamycin is said to be effective for mycoplasma infections. We have not found such infections a common problem. We have not ourselves found a satisfactory control for yeast and fungi. Contamination with yeast usually occurs in isolated cultures and does not spread. Fungal contamination is more difficult to confine. Spores quickly spread in the plates, out into the incubators, and eventually into the whole room. Particular attention must therefore be devoted to separating and eliminating the infected cultures as soon as possible. It is definitely worthwhile to prepare duplicates of important cultures in separate plates as soon as feasible.

C. Choice of Serum

sources vary greatly, and each batch must be properly tested. Because of its low immunoglobulin content, FCS does not generally interfere with the Special care in the choice of serum is essential. Sera from different assay of specific McAb. This is the most important reason for using FCS,

nactivated horse serum, and early fusions were prepared with it. This was body activities. Horse serum devoid of its γ -globulin fraction has been shortage of FCS, alternatives are being sought. Most parental myelomas were originally adapted to grow in medium supplemented with heatfound to give unacceptable backgrounds when screening for certain antibe required in specific cases. Because of the high price and extreme but not the only one; FCS seems also to give the highest efficiency in the preparation of hybrids. Heat inactivation is not usually necessary but may suggested as one alternative, but a wider search is required.

from 20% to 10% FCS in the medium. When cells are well adapted we For the fusion, selection, and cloning steps, we recommend medium containing 20% FCS. As soon as a hybrid is selected we routinely shift take them to 5% FCS. At concentrations lower than 5% FCS, cells grow more slowly, and this can be advantageous for routine maintenance.

If heat-inactivation is required it should be done carefully. Frozen bottles are thawed quickly in a 37° bath and left at 37° to warm up. They are then transferred to a 56° bath and left for 30-45 min, depending on the size of the container, with occasional mixing.

the dispenser syringe-holder must be cut to allow the plastic syringe to snap in.) The plate is wrapped in cling film (e.g., Alcan Wrap) to reduce After 3 days wells are examined for the presence of live cells, and after syringes must be trimmed at the ring head to fit the dispenser or, better, the risk of contamination and is incubated at 37° in a CO_2 humid incubator. From a logarithmic growing culture of any cell line, preferably a hybrid and 250 cells/ml. Dispense 150 μ l of medium containing 20% FCS that is to be tested into the wells of rows 1-6 of a 96-well microtiter plate (Steri-No. M29AFTL.). In rows 7-12 apply an equal volume of medium contain-Testing of Serum Batches. Careful testing of the quality of serum batches is recommended in all cases. This is easily done by growthefficiency tests. We routinely use a limiting dilution method as follows: not yet growing vigorously, prepare four tubes containing 2000, 1000, 500, lin, Teddington, Middlesex, England, flat-bottom microtiter plates, Cat. ing a control FCS for comparison. A multidispenser (e.g., Hamilton, Cat. No. PB600) fitted with a 10-ml plastic syringe is convenient. Apply $20~\mu l$ done with a multidispenser fitted with disposable 1-ml syringes. (Plastid of each cell suspension into 24 consecutive wells. This is conveniently 7-10 days for active growth.

D. Equipment

oratories and include 37° incubators with and without a controlled atmosphere of CO₂ and humidity. The CO₂ concentration should be adjusted to The essential requirements are common to ordinary tissue culture labPREPARATION OF MONOCI.ONAL ANTIBODIES

3

Ξ

Ξ

give a steady pH of 7.2 to a sample of medium in an open container. Sterile work benches, inverted and ordinary microscopes preferably with phase contrast, water baths and/or hot blocks thermostatically controlled glassware. Other items of equipment range from highly desirable to For long-term continuous culture and for mass culture of cells we strongly favor spinner vessels. These are enclosed glass vessels of 1luxurious and are listed when recommended.

(e.g., Tecam Dry Block 08-3), centrifuge, liquid N2 storage, plastic and

20-liter capacity with ports for delivery and removal of liquids and air and nient arrangement for long-term cultures is shown in Fig. 1, in which a water-jacketed unit is used. These units are better than the non-waterjacketed type in terms of reliability of temperature control, but they are a Teflon-coated magnetic bar clear of the bottom of the vessel. A conve-

more cumbersome and therefore less convenient for short-term mass cultures. Components should be glass or Teflon as far as possible. Flexible tubing must be tissue culture grade (e.g., silicon rubber). When metal parts cannot be avoided, these must be of stainless steel 18/8 grade.

Mouth-pipetting is not recommended. We use a pipette-aid (Drummond Scientific Co., supplied by Bellco Glass Inc., Cat. No. 1225-80122) to which a flexible rubber tubing is attached. In this way long, as well as short, pipettes can comfortably be used.

III. Parental Cells

The choice and preparation of the two types of cells that are used as mune state of the animal from which the spleen is taken can make all the organs can be used, particularly lymph nodes. Indeed in specific cases this parents during fusion is of paramount importance. In particular the imdifference between success and failure. For the rest of this chapter we will discuss only procedures utilizing spleen cells. However, other lymphoid may be a better alternative if used in conjunction with certain immunization protocols.3

A. Immunization of Animals

The purity of the immunogen per se is irrelevant. It becomes important only if (a) impure material gives weaker specific responses; (b) the methods of assay do not distinguish between antibodies to the specific component and antibodies to the impurities. Some antigens are immunodominant

Fig. 1. Water-jacketed spinner vessel for continuous growth of cell lines. Simpler versions, with no water jacket, are used for short-term cultures and for 20-liter capacity (Cambridge Glassblowing, Crane Industrial Estate, or Wingent Engineering, 1.1d., Cambridge. U.K.). SC are stericonnectors, size S 1/4 L.H. Engineering Co., Ltd., Stoke Poges, U.K.

amounts. But the responsiveness of individual animals to the various sion as well as induction. There are so many factors to be taken into and give strong immune responses even when present in only trace chemical components of a mixture is rather variable, involving suppres-

³ D. Zagury, L. Phalente, J. Bernard, E. Hollande, and G. Buttin, Eur. J. Immunol. 9, 1

PREPARATION OF MONOCLONAL ANTIBODHES

consideration that exhaustive studies on the best immunization protocols are justified only in special cases. On the other hand, it is highly recommended that more than one immunization schedule should be tried, using several animals. Tests on different species and strains is a desirable practice. When no other information is available, note that the immunization protocol described below has been successful in many cases. In the final choice consideration should also be given to the species and strain of the parental myeloma. Interspecies hybrid lines are not suitable for production of antibodies in animals. If the animal chosen is of a strain different from that of the myeloma parent, the growth of tumor will require the use of F₁ hybrid animals. Other considerations being equal, the simplest animals to use are BALB/c mice and LOU rats.

Protocol. If the antigen is a soluble protein, a solution of about 1-5 mg/ml in saline is emulsified with an equal volume of Freund's complete adjuvant. This can be done by repeatedly squirting the suspension through the nozzle of a syringe. A total of about 0.3 or 0.6 ml is injected into multiple sites in mice and rats, respectively. The injections could be subcutaneous in at least three or four sites—for instance, in the back near the legs and the base of the tail. The treatment can be repeated at intervals of 3-5 weeks. About 10 days after each injection a drop of blood is taken by cutting the end of the tail of each animal, and this blood is used to test for the presence of specific antibodies. The animals giving the best antiserum are selected for fusion. After a rest period of a month or longer 0.2-0.4 ml of the protein solution (without Freund's adjuvant) is injected intravenously. The animals are sacrificed 3-4 days later, and the spleen cells are used as described in the fusion protocol.

The procedure can be speeded up by attempting a "blind" fusion using a primary immunized animal. In this case only an intravenous injection is performed 3-4 days before fusion.

B. Choice of Myelomas

The first point to consider is the species. Unless there are specific reasons against it, the myeloma should be of the same species as the immunized animal. This will permit easy development of tumors when hybrid myelomas have been derived. The choice between the rat and the mouse systems should be based on several considerations. The most important is the relative immune response to the antigen in question. If, after immunization of different rats and mice, individual animals show a better response, the myeloma parental cells should match the animal. If the responses are only marginally different, other considerations become important.

The rat system is better for the preparation of large amounts of antibody. Rats are considerably bigger than mice and just as easy to handle. Derivation of the hybrids with the rat lines has been found to be less straightforward than with the mouse lines, but with more experience the problems seem to disappear. On the other hand, the final recovery of positive clones from early hybrid cultures appears to be easier with rat lines. This may be because the percentage of growing hybrids expressing spleen immunoglobulins is 60% when mouse myeloma parental lines are used and over 90% with rat. This is taken into consideration in the estimate of overall performance in Table 1.

of class and type of chain. Moreover, mixed molecules containing both Although thorough investigations for all classes have not been carried out. the general rule seems to be that heavy chains of different subclasses, but not of different classes, can associate to form mixed molecules. For inlin molecules of the type LHHK, KGGL, LGGL, and KHHK, regardless parental heavy chains of the type LHGK, KHGL, and all other permutations may also arise, but this depends on the class of the heavy chains. chains contributed by the parental myeloma; H and L are the respective cells. Coexpression of chains from both parents within a single cell leads to the secretion of mixed molecular species. Thus, in addition to the parental types LHHL and KGGK, the hybrids will express immunoglobuence these are designated as follows: G and K are the heavy and light chains (regardless of class or type) contributed by the spleen parental brid myelomas codominantly express the immunoglobulin chains of both parental cells. If the myeloma line expresses both heavy and light chains of an immunoglobulin, the hybrid will express four chains. For conveni-The next consideration is the chain composition of the myeloma. Hystance, $\gamma 1$ can combine with $\gamma 2a$ and $\gamma 2b$ but not with μ chains.

Hybrid myelomas of the type HLGK (i.e., expressing all four immunoglobulin chains) give rise with high frequency to mutant clones that no longer express one of the chains. This is not a random event, and the pattern of losses is shown in the diagram of Fig. 2. In Section IX, we describe the method for the derivation of segregants. It is much simpler to start with a myeloma that expresses only light chains. Such myelomas give rise directly to HLK hybrids (see diagram, Fig. 2). From here variants of the HL or HK type can be derived, but, particularly with the rate y3 line, the frequency with which they arise is not so high. Using lines not expressing any myeloma chain (nonproducers), the hybrids will express only the antibody of the parental spleen. In Table I we give a subjective

C. Milstein, M. R. Clark, G. Galfre, and A. C. Cuello, in "Immunology" (M. Fougereau, ed.), p. 17. Academic Press, New York, 1980.

PREPARATION OF MONOGLONAL ANTIBODIES

Ξ

SHILMSHILS

PARENTAL MYELOMA LINES IN USE IN OUR LABORATORY **TABLE 1**

Estimated overa performance	Expected expression in hybrids	Immunoglobulin expression	Derived from	nistt2	Name
·		·			ouse lines
	PAU IN	MOPC 21' IgG, (K)	P3K ^o	BALB/c	P3-X63/Ag 80
++	HFCK ₄	k chains (nonsecreted)	ыж	BALB/c	1.4 8A.1\ISV
++	-:::	• •	8 gA\£9X	BALB/c	`££3.8 &A\£9}
++ .	ПН	ano V.	45q2 birdyH	BALB/c	₽O/7d
+ .	нг	None		BALB/c	I/OSN
+++	нг	None	1.4 gA.1\12N	2/071/4	t lines
	<i>7.</i> III	S210 k chain"	R210.RCY3	Lou*	¥3-Ag 1.2.3³
+++	нгк		Hybrid YB2/3°	$(Lou \times AO)F_1$	(B2/3.0 Ag 20"
+++	ΉΓ	None	CARL Bucks	1 -(

- (M. Potter, Physiol. Rev. 52, 631 (1972).
- d See also Fig. 2. ' Köhler ei al. ³⁸
- (1 F. Kearney, A. Radbruch, B. Liesegang, and K. Rajewsky, J. Immunol. 123, 1548 (1979).
- M. Shulman, C. D. Wilde, and G. Köhler, Nature (London) 276, 269 (1978).
- Sp2 is a hybrid myeloma prepared with X63/Ag 8 and a spleen from a BALB/c mouse immunized with sheep red cells.
- ' This is a subline of MSI/1. Ag 4.1 that does not express the intracellular light chains (M. Clark, B. W. Wright and C. Milstein, unpublished
- ' Galfre et al."
- * Obtainable from H. Bazin, Ph.D., Experimental Immunology Unit, Bte UCL 3056, Clos Chapelle-Aux-Champs 30, 1200 Brussels,
- R. G. H. Cotton and C. Milstein, Nature (London) 244, 42 (1973).
- " B. W. Wright and C. Milstein, unpublished data, 1980. P. Querinjean, H. Bazin, A. Beckers, C. Deckers, J. F. Heremans, and C. Milstein, Eur. J. Biochem. 31, 354 (1972).
- » YB2/3 is a hybrid myeloma prepared with Y3 cells and a spleen from an A0 rat immunized with human complement (see Lachman et al. 22).
- g K

myeloma heavy and light chains. O refers to no intracellular or secreted chains. The plus sign Fig. 2. Chain composition of hybrids and the derivation of segregants. H and L are the heavy and light chains contributed by the cells from the immune animal, and G and K are the +) indicates specific antibody. Dashed lines indicate uncommon or never observed.

the relative chances of success in the derivation of specific clones taking a assessment of the "performance" of each line. It is an attempt to estimate number of factors into consideration.

its ideal negative control (HK). For the preparation of standard reagents However, there are cases where the artificial combinations may be a iant clones HL and HK are prepared could provide an antibody (HL) and for commercial distribution, this may prove to be highly desirable. Other It follows that as a general rule the nonproducer myelomas are the best desirable by-product. For instance, an HLK hybrid from which the varexamples where such hybrids may be useful are in the preparation and testing of anti-idiotypic antibodies and when mixed molecules can be used choice, especially as lines with good performance are now available. or specific purposes.

of the culture vessel. Some workers advise the use of trypsin or other he most important factor for the successful derivation of hybrids is the The goal is logarithmic growth for as long as possible, certainly not less than a week before fusion. We strongly advise the use of spinner cultures as opposed to stationary suspension cultures. This may be an essential requirement when using the rat line Y3, which tends to stick to the walls Maintenance of Myeloma Cells. Whatever is the choice of myeloma. enzymes to detach the cells, but we have no experience of this procedure. way in which the myeloma culture has been maintained prior to fusion.

IV. Experimental Procedures

A scheme of the general procedures involved in the derivation of monoclonal antibodies is presented in Fig. 3. A number of well defined separate steps can be identified. These will be discussed individually under separate headings. However, it must be emphasized that this is by no means a rigid general protocol. Variations can be introduced at almost every step. Some variations, however, may affect more than a single step, and this should be carefully considered at the experimental design stage.

A. Preparation of Parental Cells for Fusion

1. Spleen Cells

Materials

FCS-DMM, 2.5%: 500 ml of DMM, 12 ml of FCS

CO₂ chamber: a 2-liter beaker containing Dry Ice covered with paper towels, with an aluminum foil lid

Alcohol, 70%: Prepare about 300 ml in a 500-ml beaker

Round-bottom plastic tubes (e.g., Sterilin 142AS), 10 ml

Pestle from a round-tip Teffon homogenizer to fit very loosely (1 mm clearance) the round-bottom plastic tubes

Sterile dissection instruments (forceps, scissors)

- 1. Kill the animal by placing it in the CO₂ chamber for 1-2 min.
- 2. Dip it in 70% alcohol. Place it on a board in a sterile cabinet, and remove the spleen under sterile conditions.
 - 3. Put the spleen in a petri dish containing about 5 ml of 2.5% FCS-DMM kept on ice, and wash gently.
- 4. Transfer the spleen to a 10-ml round-bottom tube, cutting it into three or four pieces. Add 5 ml of fresh 2.5% FCS-DMM.
- 5. With the Teflon pestle squash the pieces gently to make a cell suspension.
 - 6. Allow the remaining clumps and pieces of connective tissue to sediment for about 3 min, then transfer the cell suspension to a 10-ml round-bottom plastic tube.
- 7. Fill the tube with 2.5% FCS-DMM and spin at room temperature for 7–10 min at $400 \, \mathrm{g}$. (During this interval start the preparation of myeloma cells as below.)
- Resuspend pellet in about 10 ml of fresh medium and centrifuge as above.

Fig. 3. Basic protocol for the derivation of monoclonal antibodies from hybrid myelomas.

Ξ

Ξ

9. Resuspend pellet in 10 ml of medium, and count the cells. This suspension can also be used as a feeder layer for the culture of the fused cells.

Viability, determined by phase-contrast microscopic examination (or Trypan blue exclusion test), should be higher than 80%

2. Myeloma Cells

growth are pelleted by centrifugation at room temperature for 10 min at Enough (see below) myeloma cells from a culture in logarithmic $400\,g$. The pellet is resuspended in 10 ml of 2.5% FCS-DMM and counted.

B. Cell Fusion and Selection of Hybrids

scheme of Fig. 3. There are ways in which certain stages can be bypassed. These will generally be dealt with under the heading Other Proce-Although the fusion and the initial selection of hybrids by growth in HAT medium are quite distinct stages, they are described together for convenience. We will describe in detail procedures that follow the general dures (Section IV, B, 3).

1. Fusion of Cells in Suspension 3-16

Materials

Sterile conical tube, 50-ml (Falcon, Cat. No. 2070)

Sterile conical tube, 10-ml (Sterilin, Cat. No. 144AS)

Water bath, 40°

Hot block, 37°

Beaker, 200-ml

50% PEG: Polyethylene glycol (10 g), MW 1500 (BDH Chemicals Ltd., Poole, Dorset, England, Cat. No. 29575) is autoclaved in a The pH is checked by the color of the phenol red and adjusted to around 7 by leaving the tube open in a sterile hood or by blowing 25-ml glass tube. While still liquid 10 ml of warm (37°) sterile DMM are added, and the solution is thoroughly mixed, inverting the tube. 10% CO₂-air mixture into the tube.

Sterile pipettes, 1-, 10-, and 25-ml capacity

Linbro 24 wells plates (Flow Laboratories, Cat. No. 76-033-05)

PREPARATION OF MONOCLONAL ANTIBODIES

20% FCS-DMM and 2.5% FCS-DMM: 500 ml of DMM, 100 ml and 12 ml of FCS, respectively

HAT medium: 600 ml (see Section II,A)

- 1. Parental cells are prepared as described above.
- Mix 10* spleen cells and 107 (mouse) or $6\times 10^7 \, ({\rm rat})$ myeloma cells in a 50-ml conical tube; add DMM to a volume of 50 ml
- The cells are spun down at room temperature for 8 min at about
- The supernatant is removed with a Pasteur pipette connected to a vacuum line. Complete removal of the supernatant is essential to avoid dilution of PEG. 4.
- tube is placed in a 200-ml beaker containing water at 40° and kept there during the fusion (steps 6-12). We do not consider it necessary to use a more cumbersome 37° water bath within the sterile The pellet is broken by gently tapping the bottom of the tube. The v.
- Add 0.8 ml of 50% PEG prewarmed at 40° to the pellet using a 1-ml pipette, over a period of 1 min, continually stirring the cells with the pipette tip. <u>ن</u>
- Stirring of the cells in 50% PEG is continued for a further 1.5-2 min. By then agglutination of cells must be evident. ۲.
- containing 10 ml of DMM kept at 37° in the hot block, to the fusion With the same pipette, add I ml of DMM, taken from a tube mixture, continuously stirring as before, over a period of 1 min. ∞.
 - Repeat step 8.
- Repeat step 8 twice, but add the medium in 30 sec. <u>.</u>
- Always with the same pipette and continuously stirring, add the rest of the 10 ml of DMM over a period of about 2 min.
 - With a 10-ml pipette add dropwise 12-13 ml of prewarmed DMM
 - Spin down as in step 3. 3.
- Discard the supernatant, break the pellet by gently tapping the bottom of the tube, and resuspend in 49 ml of 20% FCS-DMM. 4.
- Distribute the fusion suspension in the 48 wells of two Linbro plates. These may contain a feeder layer of fibroblasts (see Section X). ₹.
- Add a further 1 ml of 20% FCS-DMM. If a fibroblast feeder layer is not being used, add 103 spleen cells/ml (prepared as described in Section IV, A, I, step 9). <u>.</u>
 - Incubate overnight at 37° in a CO₂ incubator.
 - With a Pasteur pipette connected to the vacuum line remove 1 ml <u>-7</u> <u>8</u>

G. Galfre, S. C. Howe, C. Milstein, G. W. Butcher, and J. C. Howard, Nature (London)

⁶ G. Galfre, C. Milstein, and B. W. Wright, Nature (London) 277, 131 (1979)

Ξ

Ξ

<u>∞</u>

PREPARATION OF MONOCLONAL ANTIBODIES

- of culture medium from each cup without disturbing the cells that have settled in the bottom.
- Feed the plate, adding 1 ml of HAT medium to each cup. Feeding with HAT medium is repeated for the next 2 or 3 days and after that once a week until vigorous growth of hybrids. This becomes evident under the micrgscope after day 10, but might take up to a month. At this stage the cultures become more yellow and are ready to be tested for antibody activity. <u>6</u>
- Duplicates of the growing hybrid cultures—either all or selected ones—are prepared and fed for a week with HT medium. Larger cultures can be prepared and frozen in liquid N2. After a week in HT medium the cultures can be grown in the absence of HAT additives. Adaptation to lower concentration of serum can now be attempted. 50.

2. Filter Fusion

The above procedure is not suitable for handling fewer than 4×10^7 spleen cells. For smaller numbers of cells we use a different protocol, essentially as described by Buttin et al. 7

Materials

tube 3 cm long, made either of stainless steel or autoclavable plastic (see Fig. 4). The unit is fitted with a 25 mm 3.0 micropore size cellulose acetate filter (Millipore, S.A. Cat. No. SSWPO2500). The propriate size (e.g., M.S.E., Cat. No. 34411-166). The tube is containing the mesh, the support, and the Teflon gasket. The top half holding the filter in position is replaced by a properly designed assembled unit is placed in an autoclavable centrifuge tube of apclosed, and the cap is held in position by a strip of autoclave tape. Petri dishes: 3 cm diameter sterile (Sterilin, Cat. No. 301V); 4.5 cm Filter fusion unit: We use the bottom half of a Millipore filtration set diameter sterile (Sterilin, Cat. No. 302V)

Sterile forceps

Linbro 24 wells plate with feeder layer (see Section X)

Sterile pipettes: Pasteur, 10 and 25 ml capacity

Sterile tubes, 25 ml capacity

The following reagents as described above:

50% PEG, 2 ml

DMM, 5 ml

Fig. 4. Unit for filter fusions, The 3 cm-long tube (1) is of stainless steel 18/8 or Delrin (needs to be autoclaved and remachined a few times before use). The Teflon gasket (2) and filter support and mesh (4) are from a Swinnex-25 filter unit (Millipore S.A.); (3) is a celluloss

2.5% FCS-DMM, 20 ml 20% FCS-DMM, 50 ml HAT medium

- 1. Parental cells are prepared as described in Section IV,A.
- 2. Mix 10^6 spleen cells and 10^3 (mouse) or 6×10^3 (rat) myeloma cells and dilute to a total volume of 4 ml with DMM
 - Open the tube containing the filter fusion unit and transfer the cell mixture to the unit.
- Close the centrifuge tube and spin for 5 min at 400 κ at room Add 1.5 ml of warm (40°) 50% PEG to a 3-cm diameter petri temperature. 4 Š
- forceps, place the filter fusion unit in an open sterile petri dish (4.) After centrifugation open the centrifuge tube and, using steril Ġ
- Carefully dismantle the unit and remove the filter with sterile cm in diameter). No medium must be present on the filter.
- Place the filter on top of the 50% PEG (step 5) with the cell layer facing down. Avoid bubbles under the filter. Incubate 1-3 min. တ်
- In the meantime transfer 5 ml of 20% FCS-DMM to a 4.5 cm diameter petri dish. 9
 - Remove the filter from the 50% PEG and place, cells facing down, in the 20% FCS-DMM. ≘
 - Incubate overnight at 37° in a CO₂ incubator.
- During the incubation most of the cells will detach from the filter

⁷ G. Buttin, G. LeGuern, L. Phalente, E. C. C. Linn, L. Medrano, and P. A. Cazenave, Curr. Top. Microbiol. Immunol. 81, 27 (1978).

- and settle on the bottom of the petri dish. Lift the filter with sterile forceps and wash the remaining adhering cells into the petri dish. using a Pasteur pipette and medium from the dish.
 - Using the same pipette transfer all the cells to a tube and add 20 ml of 20% FCS-DMM. <u>.</u>
- Distribute the cell suspension in the 24 wells of the previously prepared Linbro plate containing a feeder layer. Add 1 ml of HAT per well. 4.
- Incubate at 37° in a CO2 incubator and proceed as described in Section PV,B,1 from step 18 on. Vigorous growth of hybrids will usually become discernible under the microscope after 2 weeks. <u>.</u>

3. Other Procedures

polyethylene glycol," changes in the concentration and molecular weight of polyethylene glycol as well as time of treatment, 9.10 centrifugation of cells on flat surfaces," and variations in the ratio of spleen to myeloma Variations to the fusion protocol are described by several authors. The most important involve the addition of dimethyl sulfoxide to the cells. The choice of protocol does not seem to be critical, as all of them have been used successfully.

After fusion it is not necessary to fractionate the cell suspension as from fractionation into a much greater number of microcultures, and in described in Section IV, B, 1, step 15 on. Alternative procedures range $200-\mu l$ well plates, to direct cloning onto semisolid agar.

of failure. The reagents and equipment used in the fusion and selection reasons, but the first to be considered is the correct maintenance of the parental cells as discussed in Section III, B. Overgrown cultures will not recover in a few days, and frozen cultures are likely to take 2 weeks before they are in a suitable state for fusion. Poor media or accidental contamination with toxic substances is the second most common source stages should be quality-controlled. For instance, the HAT medium Failure to grow hybrids after HAT selection is not uncommon on the introduction of the technique to a laboratory. This can be due to many should be controlled by growing established hybrids at low dilutions.

PREPARATION OF MONOCLONAL ANTIBODIES

--

Ξ

HAT. The parental myeloma cells should show signs of growth. This can be most carefully controlled by limiting dilution analysis, comparing the growth in the absence of HAT of those cells treated and not treated with Polyethylene glycol damages cells: overtreatment results in excessive cell death, undertreatment in insufficient fusion. The simplest check consists of careful examination of cells the day after fusion, before addition of

antibodies. This is for two main reasons. First, the concentration of antibody in the tissue culture supernatant is usually much lower than that of a hyperimmune serum, and, second, traditional immunoassays often rely on the polyvalent recognition of antigens typically obtained with polyclonal antisera. Taking these factors into consideration, it is usually possible to adapt any immunoassay to detect monoclonal antibody in the supernatant of hybrid cultures. There are two general ways to detect the presence of antibody-secreting hybrids. The first utilizes the spent medium of growing croenvironment of isolated cells or clones of cells grown in a semisolid The choice of assay used during the screening stages, to detect and clone the hybrid secreting the desired antibody, is of the utmost imporlance and should be given the greatest attention. Over the years immunologists have developed an enormous variety of ways of detecting the munoassays to assays based on the biological activities of the recognized antigens. Extensive reviews of such methods are to be found in other articles in this volume, in the "Handbook of Experimental Immunology,"12 etc. But not all such assays are directly applicable to monoclonal cultures: the second directly detects the presence of antibody in the mipresence of antibodies, ranging from precipitation reactions and radioim-

V. Detection of Antibody in the Spent Medium

No method guarantees detection of all the clones secreting specific antibodies. For instance, not all immunoglobulin classes can fix complement, and therefore not all are detectable by direct lytic assay. This can be overcome by the addition of a second developing antibody (antiglobulin antibody, indirect lysis). However, the ratios of both antibodies are critical, and excess of either can inhibit lysis. The multiplicity of classes and subclasses makes it difficult to choose conditions that will ensure lysis for

^{*}T. H. Norwood, C. J. Zeigler, and G. M. Martin, Som. Cell Gen. 2, 263 (1976).

R. L. Davidson, K. A. O'Malley, and T. B. Wheeler, Som. Cell Gen. 2, 271 (1976).

¹⁰ M. L. Gefter, D. H. Margulies, and M. D. Scharff, Som. Cell Gen. 3, 231 (1977).

¹¹ K. A. O'Malley and R. L. Davidson, Som. Cell Gen. 3, 441 (1977).

^{12 &}quot;Handbook of Experimental Immunology" (D. M. Weir, ed.), 3rd ed. Blackwell,

S

Ξ

Ξ

all of them. Indirect binding assays are more generally used for their simplicity, accuracy, versatility and ability to detect the largest proportion of antibody-secreting clones. But even they are limited by the specificity of the second antibody and by the number of binding sites.

A. Binding Assays

The insoluble antigen and the antibody in the culture fluid are allowed to react. The free antibody is washed away. The amount of monoclonal antibody bound is measured directly (direct binding assay) or by binding of a second, labeled antibody capable of recognizing the first (indirect binding assay). This second antibody can be labeled in several ways. We will describe two of the most commonly used. Others include, for instance, enzyme-linked derivatives, ^{13,14} or the use of protein A as an alternative to the second antibody. ¹³ It should be remembered that protein A does not bind to some classes (notably IgM) or even to some IgG subclasses of mouse and rat antibodies.

1. Insolubilization of Antigen

Antigens are often naturally insoluble (e.g., cell surface antigens). Others need to be rendered insoluble, and this can be conveniently done by attachment to plastic, e.g., microtiter plates (as described below) or polystyrene balls. ¹⁶ If antigens are small molecules, like haptens, they can be conjugated with proteins as a preliminary step.

Materials

Phosphate buffered saline (PBS): NaCl, 8.0 g/liter; KCl, 0.2 g/liter; Na₂HPO₄, 1.15 g/liter; KH₂PO₄, 0.2 g/liter

Protein antigen solution: 20-100 μ g/ml in PBS containing 5 mM EDTA, 0.1% azide

BSA-PBS: 10% BSA in PBS (w/v)

Microtiter plates: flexible polyvinyl chloride microtitration plates, 96 round U wells (Cooke microtitre plate, Cat. No. 1-220-24)

Procedure

- 1. Dispense 50 μ l of protein antigen solution in each well of a microtiter plate except for those that are to be used as controls.
 - 2. Incubate at 4° overnight.
- 13 S. Avrameas, Int. Rev. Cytol. 27, 349 (1970).
- 14 E. Enguall and P. Perlman, Immunochemistry 8, 871 (1971).
 - ¹⁵ S. Jonsson and G. Kronvall, Eur. J. Immunol. 4, 29 (1974).
- 16 B. R. Ziola, M. T. Matikainen, and A. Salmi, J. Immunol. Methods 17, 309 (1977).

PREPARATION OF MONOCLONAL ANTIBODIES

- 3. Empty the wells. Often the same solution can be used two or three times for coating plates, but it needs to be tested.
 - 4. Fill the plate with BSA-PBS and incubate at room temperature for 3-4 hr. At this stage it can be stored for 1 week at 4°.
 - . Remove the BSA-PBS.
- 2. Preparation of Iodine-Labeled Second Antibody

Materials

PBS: see above

Sephadex G-50 fine: preswollen in PBS

Chloramine-T: 2 mg/ml in 0.3 M sodium phosphate buffer, pH 7.3.

prepared fresh before use.

Tyrosine solution: saturated solution of tyrosine in H₂O 1% BSA-PBS: 10% BSA (w/v) in PBS, adjusted to pH 7.3

Protein solution: about 1 mg/ml in PBS

gram of iodine (Radiochemical Centre, Amersham, England, Cat.

No. IMS.30)

Disposable pipette, 5-ml (Falcon pipette 7543)

Glass wool, Parafilm, glass test tube

Hamilton syringe, $50-\mu$ l

Several Pasteur pipettes

- Cut the 5-ml disposable pipette a few centimeters above the gradation, plug the pipette tip with a small amount of glass wool, and place in a stand.
 - 2. Fill to the 5-cm mark with Sephadex G-50 fine in PBS.
- 3. Run 3 or 4 ml of 1% BSA-PBS through the column.
- Wash the column thoroughly with several milliliters of PBS, leaving about 0.5 ml above the Sephadex.
 - 5. Seal both ends of the column with Parafilm until ready for use.
- Using 50-μl Hamilton syringe, transfer to the glass tube 10 μl of 123-Jabeled solution. Add 10 μl of chloramine-T and, quickly, 20 μl of protein solution.
- 7. Mix well and incubate for 15 sec-2 min (varies from protein to protein). Add 25 μ l of tyrosine, 50 μ l of 1% BSA-PBS, and 200 μ l of PBS; mix.
- 8. Using a Pasteur pipette, carefully apply the mixture to the column prepared in steps 1-6.
 - 9. Load three times in succession 0.2 ml and, finally, 0.5 ml of PBS.

PREPARATION OF MONOCLONAL ANTIBODIES

Ξ

- 11. Load 1.5 ml of PBS. 10. Discard effluent.
- Collect effluent containing the labeled protein. The column can be Dilute 10 μ l of labeled protein solution in 1 ml of PBS and count 10 washed with PBS and used several times. 15. 3
 - μ l of this dilution in a gamma counter. In a standard preparation about $5 \times 10^5 \, \mathrm{cpm}/\mu l$ of column eluate would be expected.
 - Store at -20° in small aliquots and use within 1-2 months. 4

3. Indirect Binding Assay 17.18

Materials

PBS-10% FCS: PBS containing 10% FCS (or 1% B5.3) and 0.1% NaNs. Animal serum other than FCS can be used if it does not interfere with the assay.

1231-labeled second antibody: prepared as above, adjusted to about $5 \times 10^4 \text{ cpm/} 50 \mu \text{J}$

Microtiter plates: flexible polyvinyl chloride microtitration plates, 96 round U-wells (Cooke microtitre plate, Cat. No. 1-220-24)

Centrifuge plate carrier: to spin plates in a refrigerated centrifuge Rotary plate shaker (optional): microshaker (Dynatech, Microtitre)

stretched by a spring at a height of 8 mm from the base. An electric Hot wire cutter: a device formed by a rigid base (30 cm imes 15 cm imesI cm) with a tungsten wire across the middle of the base, kept current from a variable rheostat is used to heat the wire to a proper when insoluble antigen (e.g., cells) not bound to the plates is used. emperature to cut the wells from the rest of the microtiter plate. This is done by sliding the plate along the base and slicing away the top part. Adhesive paper is stuck on the bottom of all the wells before they are cut out with the hot wire.

Multidispenser: multichannel reagent dispenser (Cooke Engineering Co.; available from Gibco-Europe, Cat. No. AM58)

Procedure

1. Antigen-coated microtiter plates are prepared as described in Section V,A,1. Alternatively, if cells or other particles are used as 50 μ l of cell suspension containing between 5 \times 103 and 6 \times 106 antigen, they are suspended in PBS-10% FCS. Apply to each well

17 A. F. Williams, Contemp. Top. Mol. Immunol. 6, 83 (1977).

(D. M. Weir, ed.), 3rd ed., Chapter 12.22. Blackwell, Oxford, 1978.

- body) to each well. A negative control must be included, using tissue culture medium. A positive control containing dilutions of Add 50 μ l of spent culture medium that is to be tested (first antithe serum of the immune animals, or other antibodies previously obtained, is desirable.
- Mix contents of wells (about 10 sec if using a rotary plate shaker).
 - Cover the plate and incubate at 4° for 45-60 min. 4. v.
- with 150 μ l of PBS-10% FCS (a multidispenser can be used) and empty by inverting and vigorously shaking the plate over a sink rately). Repeat the cycle twice. (b) To wash the wells containing of PBS-10% FCS to each well. Repeat the whole cycle, spin as Wash the plate. (a) If antigen-coated plates are used, fill each well (or a 1-liter beaker if radioactive material is to be discarded sepasuction. Shake the plate for 10 sec in the rotary shaker. Add $200~\mu$ cells, spin the plate 5 min at $400~\mathrm{g}$ at 4°. Remove medium by above, and remove medium by suction.
 - Add 50 µl of radioactive second antibody.
- Cover the plate and shake for about 10 sec in the shaker.
 - Incubate at 4° for 45-60 min. ∞.
- Wash plate as above, adding at least one extra cycle.
- wire. Care should be taken to keep the wells attached to adhesive Dry the plate for 30 min in a 37° oven and cut the wells with a hot paper to keep them in order.
 - Using forceps, transfer each well into clean, labeled counting tubes. Count in a gamma counter. \equiv

to each well. The pellets are resuspended by shaking the plate; they are then transferred to clean tubes to be counted. If the antigen is immobilized An alternative possibility after step 9 is to add 50 μ l of PBS-10% FCS on the plate, 50μ of 1 N NaOH can be used to solubilize the material.

4. Fluoresceinated Second Antibody

This reagent is easily adaptable to qualitative screening, especially in combination with fluorescent microscopy 19 and cytofluorometry, 20

Materials

Buffer: NaCl, 1.5 g/liter; Na2CO3, 1.95 g/liter; NaHCO3, 2.66 g/liter;

¹⁹ G. D. Johnson, E. J. Holbrow, and J. Dorling in "Handbook of Experimental Immunology" (D. M. Weir, ed.), 3rd ed., Chapter 15.16. Blackwell, Oxford, 1978

²⁰ L. A. Herzenberg and L. A. Herzenberg, in "Handbook of Experimental Immunology" (D. M. Weir, ed.), 3rd ed., Chapter 22.1. Blackwell, Oxford, 1978.

[&]quot;L. A. Herzenberg and L. A. Herzenberg, in "Handbook of Experimental Immunology"

PREPARATION OF MONOCLONAL ANTIBODIES

 $\widehat{\Xi}$

Ξ

FITC solution: fluoresceinisothiocyanate (isomer I from Sigma, Cat. No. F7250), 1 mg/ml in buffer, pH 9.3

Protein solution: about 1 mg/ml in buffer pH 9.3

Sephadex G-50 column prepared exactly as described in the protocol for 1231-labeling (steps 1-6) and equilibrated with PBS

Procedure

- 1. Add 0.3 ml of FITC solution to 1 ml of protein solution and incubate at room temperature for 3 hr.
 - Load onto the Sephadex G-50 column previously prepared
- Load three times in succession 0.2 ml and, finally, 0.5 ml of PBS.
- 4. Discard column effluent.
- Load 1.5 ml of PBS.
- Collect five fractions of about 0.3 ml.
- Measure the optical density at 280 nm and at 495 nm. Pool the fractions, giving a ratio OD₂₈₀: OD₄₈₅ of about 1. (Alternatively the fraction containing fluorescent protein can be identified under an ultraviolet light.)
- Dilute with 1 volume of 10% BSA-PBS (0.1% NaN3) and store at 4° or frozen in aliquots at -20° .
- Dilute as appropriate before use.

5. Preparation of Internally Labeled Antibody

labeled internally at high specific activity, using radioactive amino acid precursors. The choice of these is based on the efficiency of incorporation of labeled amino acids into secreted immunoglobulin in culture conditions (Table II). We normally use radioactive lysine. Although the incorporation per amino acid residue is higher for arginine and phenylalanine, the number of lysine residues is usually higher. The more commonly used leucine is only about half as efficient as lysine. We reserve [33S]Met or [33S]Cys labeling for special uses. We routinely use [3H]Lys for quantitative binding studies and for immunocytochemistry.21 For the chemical characterization of the monoclonal antibody (Section IX) it is simpler to use Unlike ordinary antibodies, monoclonal antibodies can be easily

Materials

Dialyzed FCS: fetal calf serum is dialyzed against double-distilled -Lys DMM: DMM without L-lysine (Gibco Bio-Cult)

21 A. C. Cuello, C. Milstein, and J. V. Priestley, Brain Rev. Bull. 5, 5 (1980).

MOPC 21 UNDER TISSUE CULTURE CONDITIONS^{4,6} ELLICIENCY OF INCORPORATION OF DIFFICENT AMINO ACIDS INTO MYELOMA PROTEIN

Amino	Radioactivity ^c	Radioactivity residues.4
l.ys	20.1	3.2
His	9.1	9.0
Arg	15.5	5.5
Asp	0.6	0.06
Thr	II.2	Ξ
Ser	£.3	0.3
Cilu	F.3	- · · ·
Pro	7.6	×.c
Gly	3.6	0.5
Ala	0.5	0.1
Val	4.0	+"≎
Met	6.0	0,4
le E	3.2	0.1
l.eu	8.3 2.3	7.
Phe	17.3	

[&]quot;Unpublished data of J. Svasti and C. Milstein

water. After dialysis, add 1/9th volume of 10 times balanced saline

[3H]Lys or [14C]Lys: 1.-[4,5-3H]lysine monohydrochloride, 5 mCi in ΓRK.520), or 1-1U-11Cllysine monohydrochloride, 250 μCi in 5 ml 5 ml (The Radiochemical Centre, Amersham, England, Cat. No. (Cat. No. CFB.69). solution.

FCS, 0.5 ml or -Lys DMM, 2.5 ml; [3H]Lys, 1.8 ml; 10 times Incorporation medium: -Lys DMM, 9 ml; [11C]L.ys, 1 ml: dialyzed balanced saline solution, 0.2 ml; dialyzed FCS, 0.5 ml

Procedure. About $2 \times 10^{\circ}$ cells from an exponentially growing culture are centrifuged, resuspended in - Lys DMM and pelleted by centrifugation. They are resuspended in 1 ml of incorporation medium and incubated at 37° in a water-saturated CO2 incubator. Radioactive supernatant can be collected after 16–20 hr of incubation. Alternatively, after 8 hr of incubation a further 2'× 106 cells are washed as above and the pellet is

[&]quot;For this experiment the an mixture was used and incorporation was measured after total hydrolysis of the purified IgG.

[&]quot;Recovered after total hydrolysis.

Refers to the number of moles of each residue per mole of protein after total hydrolysis.

Ξ

5.

added to the radioactive culture. The supernatant is collected after a further 10-12 hr of incubation.

For quantitative binding and immunocytochemical applications, purification is required to reduce the radioactive background. Often extensive dialysis is sufficient. *In other cases more extensive purification is required.*2

6. Inhibition of Direct Binding

Among the quantitative binding studies, internally labeled monoclonal antibodies are particularly valuable to recognize other monoclonal antibodies with similar specificity. This is important for mapping antigenic determinants and detecting possible redundancy during the screening of hybrid cultures. ^{23.24} For these purposes we measure the inhibition of the direct binding of a labeled monoclonal antibody by the supernatants of the hybrids under study. The procedure is essentially as described in Section V, A, 3 with the following modifications: (a) omission of step 5: (b) in step 6, the use of internally labeled monoclonal antibody instead of radioactive second antibody: (c) in step 11, transfer of each well to counting tubes and addition of 2 ml of Aquasol-2 (New England Nuclear, Cat. No. NEF-952) before counting. Quantitative inhibition studies require adequate titration of reagents.

Appropriate monoclonal anti-immunoglobulin antibodies can also be internally labeled and used as second antibody for indirect binding assays.

B. Hemagglutination Assays²⁵

These assays are based on the ability of an antibody to agglutinate red cells carrying the specific antigen. They have all the advantages in terms of extreme simplicity, speed, and direct visual reading of results. The disadvantages are the inhibitory effects due to excess antibody (prozone effects) and quantitative inaccuracy. In practice these assays often fail to detect a number of antibody-secreting clones.

Inhibition of hemagglutination is a very simple way in which to define the specificity of the antibodies. This is done by simply adding excess antigen and antigen analogs to an appropriate dilution of hybrid supernatants before the addition of red blood cells.

1. Attachment of Protein Antigens to Red Cells

Materials

Red blood cells (RBC), usually from sheep

Saline: 0.9% NaCl in distilled water

CrCl₃ solution: 0.5 mg of CrCl₃ per milliliter in saline adjusted to about pH 5 by addition of NaOH, taking care to avoid the formation of any precipitate.

Protein antigen: about 1 mg/ml in saline. (Not PBS: phosphate inhib-

its CrCl₃ coupling.) PBS, pH 7.2

Procedure

- 1. Wash the RBC three or four times in saline.
- 2. In a round-bottom tube containing I volume of packed RBC, add I volume of CrCl₃ solution and I volume of protein antigen solution. The two solutions should be added simultaneously, using two pipettes.
- 3. Immediately resuspend the cells by inverting the tube several times; continue this for 2 min.
- 4. Add at least 10 volumes of PBS; mix by inversion, and spin down at 1000 g for 5 min.
 - Repeat the wash three times and resuspend the coated RBS in PBS.
 Sterile coated RBC can be stored for several weeks at 4°.

2. Direct Hemagglutination

In each well of a microtiter plate (round-bottom U-wells) dispense $25 \,\mu$ l of RBC-PBS (1:16, v/v). Add $25 \,\mu$ l of supernatant to be tested and mix well using a plate shaker. Incubate at room temperature for 2 hr. Agglutinated RBC fail to settle as a tight pellet. The plate can be photographed. For a more accurate reading, the pellet of each well is carefully transferred onto a microscope slide. Microscopic examination can detect very weak agglutination.

3. Indirect Hemagglutination

At the end of the direct agglutination test it is possible to add a titrated amount of anti-immunoglobulin to each well. The pellets are then resuspended and allowed to settle for a further 2 hr. After this period, results can be recorded as above. Better, but more time-consuming, is to remove the first antibody before the addition of the second. The second antibody must be tested before use. It must not agglutinate coated RBC in the absence of the first antibody at the concentration used in the final test.

²² P. J. Lachmann, R. G. Oldroyd, C. Milstein, and B. W. Wright, Immunology 8, 503 (1980).
²³ T. Springer, G. Galfre, D. Secher, and C. Milstein, Eur. J. Immunol. 8, 539 (1978).

²⁴ J. C. Howard, G. W. Butcher, G. Galfre, C. Milstein, and C. P. Milstein, Immunol. Rev. 47,

²³ R. R. A. Coombs, in "Immunoassays for the 80s" (A. Voller, ed.), MTP Press, London,

C. Lytic Assays

This and other related methods are particularly applicable to cell surface antigens. 26.27 We will describe another method that is based on visual observation of lysis of red cells.24 This is of general application. Soluble The extent of cell lysis can be measured in several ways. One is the release of 31Cr incorporated into target cells carrying the desired antigen. antigens can be attached to the red cell surface as is done for hemaggluti-These assays are based on lysis of cells by antibody and complement. nation assays. 1

Spot Tests

Materials

Agarose 0.6%: 6 g of indubiose A37 (l'Industrie Biologique Fran-Coated RBC: Prepare as described in Section V;B,1. Use as 1:4 (v/v) çaise) dissolved in 100 ml of PBS by boiling for at least 10 min

Monoclonal antibody: If tissue culture supernatants are to be tested Developing antibody: Anti-rat or mouse immunoglobulin antiserum. The developing antibody should not lyse coated RBC and should be titrated in a spot test procedure similar to the one to be used: add one drop of 5% NaN3, 1.2 M HEPES to 1 ml of spent medium. excess causes inhibition of lysis. suspension in PBS.

at 1500 $\rm g$ for 20 min at 4°. To 9 volumes of serum add 1 volume of 0.1 M EDTA in PBS and 3 volumes of packed RBC. Incubate for at least 1 hr at 4° with continuous mixing by inversion of the tube (about 1 inversion per second). Add 1 volume of CaCl₂, 0.1 M in PBS. Centrifuge for 10 min at 1500 μ at 4°. The GPC' should be aliquoted and stored at -70° or, preferably, in liquid N₂. Complement activity is easily lost by freezing and thawing. Thawing is Guinea pig complement (GPC'): Blood from normal adult guinea pigs is allowed to clot at 37° for 1 hr. Clarify the serum by centrifugation done at 37° with mixing.

Petri dishes: The procedures given below apply to plastic petri dishes 9 cm in diameter. Different sizes can be used, adjusting the reagent plastic ones are to be used, to coat them by pouring a base of 7 ml of 1.5% agarose in PBS in each 9-cm dish. These can be stored volumes. It is advisable, particularly if glass petri dishes or small

²⁶ H. S. Goodman, Nature (London) 190, 269 (1961).

PREPARATION OF MONOCI.ONAL.ANTIBODIES

Ξ

Ξ

inverted in a humid chamber at 4° for several weeks. Before use, a reticulate is drawn with a Magic Marker on the base of the dish, dividing it into approximately 20-30 identifiable areas.

Glass tubes: The convenient size to hold 2 ml of agarose is about 5 cm long, 10 mm in diameter, round-bottomed and rimless.

Quick Mix Procedure

- 200 μ l of GPC', and 100 μ l of developing antibody at an appropriate 1. In a glass tube kept at 42° add 2 ml of 0.6% agarose, 100 μ l of RBC, dilution.
- Mix well by rotating the glass tube between the hands and pour immediately onto the petri dish to form an even layer. Let the agarose set for 5-10 min.
- medium to be tested. Cover with the lid and incubate at 37° in a humid chamber. Lytic areas are generally evident after I hr. but longer incubations may be required. Lysis can best be seen against Spot onto the marked area of each petri dish 3-5 μ l of the spent a dark background and with lateral illumination.

Two-Step Procedure

- 1. To 2 ml of 0.6% agarose kept in a glass tube at 42° add 100 μl of
- Mix well by rotating the tube between the hands and pour to form an even layer on the petri dish. Set for 5-10 min.
- leaving the dish open, for 5 min. Cover and incubate at 37° in a Spot 3-5 μ l of the supernatants to be tested. Allow the drops to dry, humid chamber for 1 hr.
- Pour into each dish 3 ml of a solution containing 10% GPC' and a titrated amount of developing antibody. 4.
- 5. Incubate at 37° in a humid chamber. Lytic areas are generally evident at 1 hr, but it is advisable to incubate for at least 4-6 hr before giving results a negative score.

D. Assays Based on Biological Activity of Antigen

pure interferon preparation29). After a suitable period of incubation, a decrease in biological activity is taken as preliminary evidence for the of an antigenic substance. The simplest way is to add individual culture supernatants to a biologically active preparation of antigen (e.g., an im-Antibodies can be recognized by their effect on the biological activity

²⁷ T. Pearson, G. Galfre, A. Ziegler, and C. Milstein, Eur. J. Immunol. 7, 684 (1977).
²⁸ N. K. Jerne and A. A. Nordin, Science 140, 405 (1963).

²⁹ D. S. Secher and D. C. Burke, Nature (London) 285, 446 (1980).

Ξ

mouse or rat immunoglobulin to equivalence. Alternatively, anti-rat or used to absorb the antigen-antibody complexes. 30 The important aspect of presence of inhibitory antibody. On the other hand, the precipitation of instance, by addition of carrier mouse or rat immunoglobulin and antiantigen-antibody complexes can be effected by different procedures; for anti-mouse immunoglobulin or protein A attached to Sepharose can be these methods is that they afford an exquisite specificity of recognition without the need for antigen purification.

VI. Direct Detection of Antibody-Secreting Cells

Direct identification of antibody-producing cells relies on detecting the minute amount of antibody present on the cell surface or in the immediate vicinity of the cells immobilized on semisolid medium.

has recently been described whereby cells in suspension are rendered fluorescent in this way and are automatically separated from the rest by a Antibody-secreting cells, under appropriate conditions, bind a certain antibody by attaching the antigen to fluorescent microspheres. A method amount of antigen. It has been possible to detect cells secreting specific fluorescent-activated cell sorter.31

antigen. For instance, a suspension of antigen-coupled erythrocytes is overlaid and the unbound erythrocytes washed away. Red spots delineate the surface of the agarose containing the growing hybrid clones. After a suitable time, the filter is removed and the presence of localized areas containing specific antibody can be revealed by the binding of labeled When cells are grown on a semisolid support of agar or agarose, the antibody secreted by the cells diffuses slowly, and methods have been developed to visualize it, either in situ1.32 or by replica methods. The replica immunoadsorption method33 is based on the adsorption of the antibody secreted by the clones onto nitrocellulose filters that have been precoated with antigen or anti-immunoglobulin. The filters are placed on the sites at which antitody-forming clones are present in the agarose.

A. Plaque-Forming Clones

We describe here in detail a method34 for the direct visualization of antibody-secreting clones based on the complement-dependent, localized

30 T. Pearson and L. Anderson, Anal. Biochem. 101, 377 (1980).

31 R. Parks, V. M. Bryan, V. T. Oi, and L. A. Herzenberg, Proc. Natl. Acad. Sci. U.S.A. 76, 1962 (1979).

33 N. K. Jerne, C. Henry, A. A. Nordin, H. Fuji, A. M. C. Koros, and I. Lefkovits, Transplant. Rev. 18, 130 (1974).

33 J. Sharon, S. L. Morrison, and E. A. Kabat, Proc. Natl. Acad. Sci. U.S.A. 76, 1420 (1979).

34 C. Milstein and B. W. Wright, unpublished data, 1979.

lysis of antigen-coated red blood cells. The optical properties of sheep secreting clones. The lysis of other types of target cells can also be used to localize antibody, but then live and dead target cells are visualized by vital strains.35 The method has been applied to the detection and isolation of RBC allow easy visualization of local areas of lysis around antibodyclones secreting antibodies to cell surface antigens.36

has anticomplement activity. From this point of view, indubiose recommended for new batches. Agarose is suspended in tissue Agarose, 1.2% (w/v): The quality of the agarose is critical. It often A37 is best, but we have been unsuccessful in using it for cloning agarose (Marine Colloids, Inc.) are appropriate for both: preliminary tests, using it for spot tests (as described in Section V,C); are (although it is best for overlays; see below). Some batches of LGT culture grade distilled water, autoclaved, and kept at 42°.

Concentrated FCS-DMM: 500 ml of 2 imes DMM (Section II, A); 20 ml of penicillin-streptomycin, 5000 units/ml 200 ml of FCS; and 10 ml of

Agarose, 0.5%: I volume of 1.2% agarose and 1.2 volume of concen-100 mM sodium pyruvate

trated FCS-DMM. Keep at 42°.

Cells: A vigorously growing culture should be used. Wash cells and prepare suspensions in 20% FCS-DMM containing appropriate cell dilutions (e.g., 1000, 5000, and 25,000 cells/ml). Keep at 37°.

Linbro plates: 6-dish Linbro plate (Flow Laboratories, Cat. No. FB-6-TC)

sorbed and developing second antibody (optional) are as described Coupled SRBC (1:4 in PBS), guinea pig complement suitably abin Section V,C.

Preparations of Base Layers. Use at least one 6-dish plate for each culture to be cloned. The dishes should preferably be seeded with a feeder layer 24 hr in advance. Remove all the medium and apply 2 ml of 0.5%agarose to every dish. Set at 4° on a level surface.

Controls with 20% FCS-DMM substituting the cell suspension should also be carried out to test the stability of red cells in the absence of hybrids. Put plates back into refrigerator; keep level for about 15 min to suspension and 15 μ l of coupled SRBC. Apply dropwise and as evenly as possible to the top of the cold agarose base layers. Prepare duplicates Cloning. Take 150 μ l of 0.5% agarose and add 135 μ l of each cell using 150 μ l of 0.5% agarose and 150 μ l of cell suspension, but no SRBC.

B. H. Fuji, M. Zaleski, and F. Milgrom, J. Immunol. 106, 56 (1971).
 P. Lake, E. A. Clark, M. Khorshidi, and G. M. Sunshine, Eur. J. Immunol. 9, 875 (1979).

solidify top layer. Transfer to 37° in CO_2 incubators. Check for growth after 48 hr.

Revealing Clone Plaques

- about 48 hr. Densely growing certures could result in complete lysis. Add to each well 0.3 ml of 10% FCS-DMM containing 10% GPC' (and developing antiglobulin antibody at the appropriate concentration when required). Replace plates in the incubator. Observe under dark field after 2 hr, 4 hr, and overnight. A stereomicroscope with low magnification is very useful for this purpose. Areas of lysis (plaques) should appear around antibody-producing clones. These are allowed to grow for 7-10 days before picking them.
 - 2. The wells that do not contain red cells can be left for about 7 days, and clone plaques can be revealed by an overlay procedure. Add to each well 0.3 ml of a suspension made up of 2 ml of 0.5% agarose, 0.2 ml of GPC' and 0.1 ml of coated SRBC. Addition of anti-mouse immunoglobulin antibody is also recommended. The amount to be used should first be titrated as it is inhibitory in excess. Lytic areas around clones usually appear within 2 hr at 37°.

Variations in the order of addition of the reagents can have dramatic effects on the results. For instance, the agarose overlay containing the red cells can be applied first. After incubation for 2 hr, a 0.3 ml solution containing the guinea pig complement and the second antibody is added. Lytic areas should appear on further incubation at 37° . This two-step method allows the monoclonal antibody to bind to the red cells before the antiglobulin reacts with it and is more sensitive. At first sight this appears less risky, but this is not so. The problem is much more complex, and in some cases rings of lysis are observed. This is because the essential requirement for lysis is the formation of an aggregate of monoclonal antibody and anti-immunoglobulin at the surface of the red cell. Excess of either of the two antibodies is inhibitory. The concentration of monoclonal antibody decreases as the distance from the clone increases. The rings of lysis appear at the point at which both antibodies are at equivalence. 37

VII. Cloning

The timing of the cloning requires careful consideration. As a general rule it is best to clone as early as possible. Multiple clones in a single culture compete for growth and this, together with chromosome segrega-

³⁷ C. D. Wilde, Ph.D. Dissertation, Cambridge Univ. Library, 1979.

tion, conspires against stability of expression (see Section VIII). However, hybrid lines are easier to clone after some time of active growth. It is possible to clone immediately after fusion (step 14, Section IV,B,I) without prior fractionation on Linbro plates. This is not recommended unless a method of direct detection of antibody-secreting clones is being used (Section VI).

If the standard protocol in Fig. 3 is followed, supernatants from the microcultures at step 19 of Section IV, B, I have been assayed. The cloning strategy somewhat depends on the number of independent positive cultures.

- 1. If only a few cultures are positive, it is worthwhile to subdivide them by limiting dilutions (see below), preferably in the presence of a feeder layer, and at the same time subject them to a cloning procedure.
 - 2. If there are too many positive cultures to be conveniently handled in this way, duplicates should be prepared (to minimize the risk of accidental loss) and cell stocks be frozen in liquid N₂.

It is important at this stage to attempt to assess the interest of the different antibodies. This assessment must give priority to the use for which the monoclonal antibody is intended. There are two aspects of the antibody properties to be assessed. One relates to the antigenic recognition, and the other to the functional properties of the antibody. Antigenic recognition includes cross-reactive patterns, antigenic distribution on natural carriers, and fine specificity. Other functional properties include kinetic and thermodynamic parameters of antigen-antibody interactions, cytotoxicity, agglutination, effect of the antibody on the biological activity of antigens. In this analysis it must be kept in mind that, at this stage, supernatants may contain multiple antibody species.

When individual cultures are identified as of special interest they can be treated as in item 1 above. It may be that no special preference can be attached to individual cultures, in which case they are probably best left growing and more frozen stocks prepared. Instability and clonal competition will simplify the problem. Supernatants should be tested at regular intervals. Some cultures will gradually become negative, and the more resilient ones are those that will be easiest to clone and to handle.

If at any stage it is found that interesting clones have been lost, attempts to recover them can be made using the frozen stocks. In this event only stocks prepared well before the culture became negative should be used. It must be remembered that antibody can still be present when antibody-producing cells are no longer growing.

1. Limiting Dilution Fractionation

ence. The positive culture containing the minimum number of seeded cells plate containing a feeder layer. After thorough mixing a twofold dilution series is prepared over the first 12 cups (maximum dilution of about 600 cells in cup 12) or over all 24 cups (about one cell in cup 21 or 22 and none in cups 23 and 24). Part of the medium is changed every 4 or 5 days. Supernatants are collected and tested when the cultures approach conflucan either be fractionated again as above or cloned in semisolid medium as soon as possible. Many variations on this basic protocol can be made. A About 3×10^3 cells are transferred to the first cup of a 24-well Linbro common one is to use 96-well microtiter plates.

The positive cultures selected in this way should not be regarded as · monoclonal. Correct cloning as described below should be performed at sig least ofice, and preferably twice.

2. Cloning on Semisolid Supports

- $2 \times \text{DMM-}20\% \text{ FCS: } 100 \text{ ml of } 2 \times \text{DMM from dry powder, } 40 \text{ ml of }$
- ries) in 100 ml of tissue culture grade distilled water. Autoclave for 1% agar: 1 g of Agar (Bacto Agar, Cat. No. 0140-01, Difco Laborato-15-20 min. Keep at 42°.
- prepared by mixing I volume of 5% agar in water with I volume of Keep at 42°. [If 10 \times DMM is to be used, the 0.5% agar is better $2\times DMM-20\%$ FCS (prepared from the $10\times DMM$), and 8 volumes 0.5% agar: 1 volume of 1% agar, 1 volume of 2 \times DMM-20% FCS. of 20% FCS-DMM (prepared from the 1 \times DMM).]

HAT or other additives as required

Petri dishes: 9 cm in diameter plastic, tissue culture grade (Sterilin, Cat. No. 304V).

suspension (at room temperature). Mix by rotating the tube between the hands and pour immediately onto the agar base. Allow to set for at least 10 Procedure. Pour into each petri dish (with or without a feeder layer) and 50,000 cells/ml. Add 1 ml of 0.5% agar (at 42°) to 1 ml of each cell about 15 ml of 0.5% agar. Set for about 15 min at room temperature. Prepare several cell suspensions containing, for instance, 100, 500, 5000, min at room temperature and incubate at 37° in a CO2 incubator.

after 7-10 days, directly, and transferred to individual cups of a 24-well Linbro plate. It may be essential to have feeder cells in the cups, espe-Clones can be picked at days 4-5 using a dissection microscope or, cially if small clones are picked. A clone should not be considered pure until it has been recovered from a plate grown at low density.

3. Cloning by Limiting Dilution

PREPARATION OF MONOCLONAL ANTIBODIES

dilution is used so that, at most, only one cell is present in each microculture well. A fluorescent-activated cell sorter with a cloning attachinental is very convenient for this purpose; otherwise we prefer cloning on This is performed as described in Section VII,1 except that a single semisolid supports.

VIII. Selection of Positive Clones

the lower number of growing clones, several (at least six) should be picked when they are about 100-1000 cells. They are then transferred for further Positive clones growing on semisolid supports can be identified by direct detection methods (see Section VI). From those plates containing growth (Section VII,2).

well as large ones. On the other hand, if consistent or increasing titers are being obtained over a period of weeks or months, a random collection of domly. The number of clones to be transferred for further growth depends on the expected frequency of positive clones. An informed guess is based essentially on the history of the antibody titer of the hybrid culture. Large numbers of random clones should be picked when the antibody titer decreases with time of culture. Care should be taken to pick small clones as 24 clones is a convenient number. The picked clones are allowed to grow If direct detection of positives is not possible, clones are picked ranto confluence, and the supernatant is assayed for antibody activity.

If none of the picked clones is positive, the most probable explanation is the presence of more vigorous negative competing clone(s). These can very low frequencies. This is done by a reverse-plaque method.38 The be variant clones that have lost the ability to secrete complete immunoglobulin secretion can be detected by direct methods, even if present at detailed protocol is as described in Section VI, A. The red cells are coated with anti-immunoglobulin antibody that has previously been purified by affinity chromatography. Alternatively the red cells can be coated with protein A.39 An in situ precipitation method can also be used that does not globulin (Fig. 2). If this is the case, clones that are positive for immunorely on lysis of red cells. 40 The plaque-forming clones secrete immunoglobulin but not necessarily the specific antibody. Such clones should be randomly picked and assayed for specific antibody. 29

A simpler means of concentrating the specific antibody-producing clone can also be attempted by limiting dilution fractionation as described

³⁸ G. Köhler, S. C. Howe, and C. Milstein, Eur. J. Immunol. 6, 292 (1976).

³⁹ E. Gronowicz, A. Coutinho, and F. Melchers, Eur. J. Immunol. 6, 588 (1976).
⁴⁰ P. Coffino and M. D. Scharff, Proc. Natl. Acad. Sci. U.S.A. 68, 219 (1971).

above. But if this is to be done it may be much better to use stocks of cells frozen at earlier stages. This can become a rather tiresome exercise involving hundreds of microcultures. 41 It is only justified when chasing particularly valuable specificities.

invariably negative. This may, be due to cloning conditions selecting Sometimes cultures remain positive for long periods, yet the clones are against the positive clone. The best course of action is modification of cloning conditions and methods.

IX. Derivation of Variants

From the collection of positive clones derived from each hybrid culture, at least three random ones should be grown up and frozen stocks prepared as a precautionary measure. Parallel to this an analysis should be made to explore the possible presence of individual clones producing different antibodies and of clonal variants. Sometimes the assay of the antibody secreted is very useful. Several tests can be made but a simple one is based on labeling the secreted products with radioactive amino radioactive supernatants are directly analyzed by sodium dodecyl sulfate antibody activity of the supernatant will give either a clue to or a strong indication of clonal differences. Otherwise a biochemical analysis of the acids (see Section V.A,5) and subsequent electrophoretic analysis. The gel electrophoresis 12 in the presence of reducing agents. Preliminary dialysis is unnecessary. The antibody can also be analyzed by isoelectric focusing. Full details of the apparatus and procedures used to analyze a large number of samples are given by Secher et al. 13 Intact IgM penetrates the acrylamide gel only under special conditions. 14 Isoelectric focusing of separated chains is described by Köhler and Milstein. It is essential to include control samples on the electrophoretic plates to permit easy interpretation of results. This analysis gives a description of the chain composition of the antibody and distinguishes the γ and μ classes of heavy chain. Depending on the choice of parental myeloma line used for fusions, segregants that have lost the expression of the myeloma chains may be detected, and stocks from these should be frozen separately.

On the basis of the above analysis, of the growth characteristics of each clone, and of the stability of the antibody titer of the confluent supernatants, individual clones are transferred to bottles for the preparation of frozen stocks. Larger amounts of antibody can now be prepared,

PREPARATION OF MONOCLONAL ANTIBODIES

ensure monoclonality and to achieve better stability of production. Even the best cloning technique cannot totally exclude the possibility of crossbut at the same time we consider it to be essential to reclone the line to contamination. A second cloning step performed at low cell density provides a fail-safe device.

ing hybrids tend to lose chromosomes and to attain a more stable genotype. It is therefore convenient to allow a certain amount of drift to It is better to use cultures that have been growing for a certain time for the second cloning. This is because for several months after fusion dividerties and the desired chain composition. The derivation of subclones follows the protocol described in Section VII. The number of subclones to acilitate the selection of a subclone that will have the best stability propbe collected is based on the considerations discussed in Section VIII, However, if chain loss variants are sought many more subclones must be except that when dealing with stable lines fewer subclones can be picked.

Procedure for the Derivation of Chain Loss Variants

- 1. It is preferable to use a culture that has not been recloned and that has been in continuous growth for a reasonable period (a month or
- Prepare clones as described in Section VII.2.
- With a Pasteur pipette suck up a plug of agar containing a single large (at least 1000 cells) clone and blow the agar plug into a well of a microtiter plate containing 150 μ l of incorporation medium (Section V,A,5). A few cells remain in the pipette, and these are carefully washed into a well of a second microtiter plate containing 150 µl of 20% FCS-DMM, with or without a feeder layer. ر ا
 - Repeat this procedure with at least 48 clones.
 - Put both plates in a humid CO2 incubator.
- After at least 16 hr of incubation, centrifuge the plate containing the radioactive samples for 5 min at 400 g. Transfer the supernatant to the empty wells of the plate or to another plate. 9
- Analyze the radioactive supernatant by the electrophoretic method of choice.
- If variants are identified, the culture contained in the replica plate is transferred into a larger culture dish. ∞.
- Recloning of the selected variant should be performed as soon as possible because of the high risk of cross-contamination introduced by the requirement of large clones at step 3. 6.

Mind Water Land

A procedure based on anti-idiotypic antiserum has been described.

3 T. Springer, J. Immunol. Methods (in press).

¹¹ A. F. Williams, G. Galfre, and C. Milstein, Cell 12, 663 (1977).

⁴² U. K. Laemmli and M. Faure, J. Mol. Biol. 80, 575 (1973).

¹³ D. S. Secher, C. Milstein, and K. Adetugbo, Immunol. Rev. 36, 51 (1977).

[&]quot; A. Ziegler and H. Hengartner, Eur. J. Immunol. 7, 690 (1977).

Ξ

X. Feeders

ability of cultured cells to grow at very low densities. The use of feeders is therefore essential for isolating hybrid clones that are otherwise difficult to grow. It increases the yield of viable hybrids after the fusion step and is strongly recommended in the fusion protocol (Section IV, B, I) and is essential for the protocol of Section IV, B, 2. It is also essential when cloning by limiting dilution. However the indiscriminate use of feeders introduces an often unnecessary complication. Furthermore, as the final aim of the There is no doubt that the presence of a feeder layer increases the overall protocol is the preparation of cloned hybrid lines that will grow vigorously in the least demanding culture media, we prefer to avoid the use of feeders as soon as this is possible.

alternative. Many different fibroblast lines can be used, and we have For the fusion itself the simplest, although not necessarily the best, feeder is the same cell as used for the fusion. Different workers have recommended other normal cells, notably thymocytes and macrophages. It is objectionable and often less convenient to use cells from specially sacrificed animals. Feeders made from irradiated fibroblasts are a good obtained reasonable results with the 3T3 mouse line obtainable from most tissue culture collections and suppliers.

10,000 rad. After irradiation the cells are resuspended in freezing medium Titration and control of each batch prepared is necessary. A vial is from each frozen vial. The dilution plate is kept for a further 7-10 days to Procedure. A large culture of fibroblasts is harvested in the logarithmic thawed, and from this twofold dilution cultures are prepared in a 24-well Linbro plate. After 3-4 days of culture, the well giving a 50% confluent monolayer is used to calculate the number of wells that can be prepared phase of growth, washed by centrifugation and irradiated with about and frozen (see Section XI) in aliquots of about 5×10^3 cells/0.5 ml. check that no further growth is evident.

XI. Freezing of Cells

specific needs of derivation of hybrid myelomas. We find it very reliable Many methods for freezing viable cells have been described, and some rely on fairly sophisticated apparatus to provide programmed temperature decrease. The method we will describe does not rank high in terms of recovery of viable cells, but it is extremely simple and ideally suited to the provided that the cell stock used for freezing is in full logarithmic growth.

tion at 400 g at 4° for 7 min. The supernatant is removed, and the pellet is Freezing Procedure. About 106 to 107 cells are pelleted by centrifuga-

Cat. No. 506), and this is placed in a small insulating box (1 cm thick expanded polystyrene is adequate) and put at -70° for at least 20 hr. The resuspended in 0.5 ml of freezing medium (9 parts FCS, 1 part dimethyl sulfoxide) at 4°. The suspension is transferred to a freezing vial (Sterilin, PREPARATION OF MONOCLONAL, ANTIBODIES vial is then transferred directly to liquid N2. Ξ

pend the cells in about 5 ml of fresh medium, and transfer to a small tissue Thuwing Procedure. Thaw the vials as quickly as possible in a 37° water bath. When thawing is nearly complete, transfer the cell suspension to a 10-ml centrifuge tube in an ice bath. Slowly add 10 ml of cold 10% FCS-DMM, mixing carefully. Centrifuge at $400 \, \mathrm{g}$ at 4° for 7 min. Resusculture flask. It is better, but more laborious, to resuspend the cells in 2 ml and prepare a series of twofold dilution cultures in Linbro plates, with or without feeders.

XII. Large-Scale Production of Monoclonal Antibody

antibody is secreted and is accumulated in the spent medium of the cul-The two methods of production are complementary, as both have advantages and disadvantages. The concentration of monoclonal antibody in the spent medium is of the order of 10 µg/ml but can be increased to perhaps 50 µg/ml or even 100 µg/ml. The concentration of monoclonal antibody in reach 3 or 4 times that value. The animal serum is therefore usually 1000 The reasons for this are not clear, but it seems that some macroglobulins Large amounts of monoclonal antibody can be produced either by culturing cells in vitro or growing them as tumors in vivo. The monoclonal the serum of a tumor-bearing animal is often about 10 mg/ml and may tured cells and in the serum and body fluids of the tumor-bearing animals. times more concentrated. But this is not always so. It has been observed that certain macroglobulins never reach high concentrations in the serum. have a higher catabolic rate, preventing their accumulation in the serum. In one example the anti-blood group A activity of a monoclonal antibody taken from the serum was of a lower quality than the equivalent product taken from tissue culture. This was interpreted as being due to partial proteolytic degradation. 46

controlled because most come as components of medium. In particular the monoclonal antibody is the only immunoglobulin of rat (or mouse) origin in the spent medium. In contrast, serum from tumor-bearing ani-The protein impurities present in the spent medium can largely be mals always contains immunoglobulin impurities that are of the same species. Although such animals have a severe depletion of their normal

^{**} D. Voak and C. Milstein, unpublished data, 1979.

Ξ

immunoglobulin components, the antibody is not likely to be much better than 90% of the pure monoclonal variety. Tissue culture material is therefore intrinsically better as a source of monoclonal antibody. It is to be preferred when concentration is well above that required.

ammonium sulfate precipitate gives better than 50% pure monoclonal raphy) are widely discussed in the literature. In the long run, even largescale preparations of pure monoclonal antibody may use spent medium The high concentration of monoclonal antibody in the fluids of tumorbearing animals makes them better for the preparation of chemically purified antibody. The purification protocol has to be adapted to each individual case, depending mainly on the antibody class. Usually a 50% antibody. Further purifications (for instance DEAE-column chromatogfrom cultured cells as a more humane and better controlled source. But this will depend on the technological development of large-scale cell culture methods.

A. Production in Culture

Before large-scale growth it is advisable to adapt the chosen clone to medium containing a low percentage of serum. This is usually achieved by feeding a vigorously growing culture with 5% FCS-DMM.

mark) and dilute to about 50 ml with 2.5% FCS-DMM. Gas with 10% After 1-2 days add a further 150 ml of 2.5% FCS-DMM and let the culture For Small Quantities. Transfer 20 ml of cells from above to a tissue culture bottle (800 ml, Flask Nunclon-Delta, Cat. No. N-1475, Nunc, Den-CO₂-90% air. Close bottle tightly and keep it in a dry incubator at 37°. grow for a further 2 days or more until it has been in stationary phase at least one day. Collect the supernatant by centrifugation.

For Medium Quantities. Transfer 30 ml of a vigorously growing culture DMM, close tightly, and keep rolling (1 rpm) at 37°. Open the bottle daily for 5-10 min in a sterile hood to allow gas exchange. Harvest the supering at 37° in a dry incubator. After 1-2 days add 700 ml of 2.5% FCSnatant at least I day after cells have reached the stationary phase of into a roller flask (850 cm2 Roller Bottles, Falcon, No. 3027) and add 70 ml of 2.5% FCS-DMM. Gas as above. Close bottle tightly and keep it standgrowth.

For Larger Quantities. Transfer 200 ml of a vigorously growing culture to a 5-liter spinner (Fig. 1), dilute it with 200 ml of 5% FCS-DMM, and check for growth after 24 hr. If growth is vigorous, start diluting the culture with 2.5% FCS-DMM at a rate that will keep the culture in logarithmic growth. When the spinner is full, allow it to achieve stationary phase, leave it for a further 1-2 days, and harvest. Checks of antibody titers can be used as an indicator of the best harvesting time.

ganized in such a way that one spinner is kept permanently in logarithmic If even larger volumes are required a series of spinners can be orgrowth with 5% FCS-DMM and the others are used to dilute with 2.5% PREPARATION OF MONOCLONAL ANTIBODIES FCS-DMM.

FCS-DMM. Centrifuge cells and resuspend at a density of 1 to 4 \times 10 $^{\circ}$ Serumless Preparations. For synthetic media that do not include serum some formulations have been proposed. 17 But ordinary DMM (with no serum) can also be used. Prepare a vigorously growing culture in 5% cells/ml in DMM. Gas the flask. Incubate at 37° for 24-48 hr. Harvest.

Concentration of Antibody from Spent Medium

Minicon Concentrator, B15, Amicon Corporation). For larger volumes we Spent medium can be concentrated using ultrafiltration devices (e.g., prefer the following procedure.

Add solid (NH4)2SO4 with gentle stirring to 50% saturation. Allow to equilibrate for at least 30 min. Centrifuge. Dissolve the precipitate with PBS (or alternative saline solution) using a volume of about 1/100 of the original spent medium. Dialyze against the chosen saline solution and clarify by centrifugation. The procedure is best carried out at 4°. Some monoclonal antibodies may be unstable to this treatment.

B. Production in Animals

Tumors can be derived as either solid or ascitic. Solid tumors are somewhat easier to derive and to manage, but the yield of antibody is usually higher from ascitic fluid. Animals should be histocompatible with the hybrid clone to be injected. For instance, a clone made with myeloma X63 (BALB/c origin) and spleen cells from a C3H mouse should be injected into (BALB/c × C3H) F₁ hybrids. Partial mismatching is sometimes acceptable but may require immunosuppressive treatment. In any faster tumor growth. In some cases this is essential even with fully histation. The use of drastic immunosuppression or immunodeficient strains of animals (e.g., nude mice) has been recommended for the growth of event partial immunosuppressive treatment is often recommended for tocompatible combinations, possibly owing to somatic drift of tumor antigens. Adequate immunosuppression is usually achieved with a relatively low X-ray irradiation dose (say 500 rads) and/or an injection of about 0.5 mg of cyclophosphamide/20 g animal weight 24 hr before tumor transplantotally histoincompatible tumors, such as clones derived from a mouse myeloma and spleen cells from rats. We did not find that this procedure

⁴⁷ N. N. Iscove and F. Melchers, J. Exp. Med. 147, 923 (1978).

PREPARATION OF MONOCLONAL ANTIBODIES

yielded better material than we could prepare by concentrating spent medium.

are given 0.2 ml of cell suspension in each site and rats about twice as FCS-DMM. Animals are inoculated subcutaneously in the center of the back, not too near the neck, and high up in each flank near the spine. Mice much, using a somewhat higher cell density. Freshly excised tumors can be used for transplanting in other animals. Tumors of a good size are sliced (discarding recrotic parts) in a petri dish containing 10 ml of Earle's balanced salt solution. A cell suspension is prepared with a loose-fitting homogenizer. The preparation can be used to inoculate about 10 other trifuged and resuspended to a cell density of about 1 to 3×10^7 ml in 5% Solid Tumors. Cells taken from a vigorously growing culture are cen-

off is collected in a suitable container. This first "tap" does not usually ried out every 1-3 days. It is possible to repeat the operation perhaps 10 After 1-9 weeks about 107 cells are suspended in 0.5 ml of medium and injected intraperitoneally. As soon as ascitic fluid accumulates (usually For this a hypodermic needle (size 19, 1-inch or 20 G 14 inch 40/9) is inserted in the abdominal area close to the surface. The liquid that drips contain a high concentration of antibody. Further tapping should be car-Ascitic Jumors. Before the induction of tumors mice should be inocuabout 10 days after inoculation), it is removed by "tapping" the mouse. ated intraperitoneally with 0.5 ml of pristane (tetramethylpentadecane). imes without sacrificing the animal.

Control of Production

body in the serum/ascites at every tumor passage. It is not uncommon to antibody. This is most probably due to negative variants with increased Alternatively, direct determination of myeloma protein concentration can It is important to monitor the concentration of the monoclonal antifind that on continuous passage tumors lose the capacity to produce the malignancy overgrowing the original positive cells. The monitoring can be done by determining the antibody titer using the most convenient assay. be made by conventional methods. Electrophoresis on cellulose acetate gives a very fast visual estimation of the concentration as well as of the mobility characteristics of the monoclonal antibody. This is a reassuring chemical check. Accidental mix-ups may not be detectable by specific strips, as routinely performed for blood samples in hospital laboratories, antibody tests if the products are directed against a common target.

tive after only a few passages, it may be necessary to prepare a more tumors should be induced from frozen stock. If the production goes nega-If the production of antibody declines on continuous passage, new stable clone, using the tumor cells for recloning.

Ξ

Ξ

antisera. Sterile samples can usually be stored for reasonable periods at 4°. Addition of preservatives such as NaN₃ at 0.1% is common. For very Generally speaking monoclonal antibody can be stored as conventional long periods it is probably better to store at -20° , but freezing and thawing should be avoided whenever possible, especially when dealing with IgM antibodies.

antibodies as regards stability. Conventional antisera contain many different monoclonal antibodies, each with different stability. If only some are sensitive to a particular treatment, the activity of the preparation may not be seriously impaired by that treatment, even when done repeatedly. For instance, one out of two monoclonal antibodies to antigen X may be totally destroyed during freeze-drying, but the activity of their mixture There is a critical difference between monoclonal and conventional will only decrease to 50% of the original. It is advisable to test the stability of a given monoclonal antibody to any particular treatment before committing a large batch.

XIII. Unusual Properties of Monoclonal Antibodies

When compared with ordinary antisera, monoclonal antibodies are likely to display unusual serological features. The most obvious differtains multiple identical subunits, the monoclonal antibodies are unlikely to ences arise from synergistic efects. For instance, unless the antigen congive precipitating reactions because no three-dimensional lattices are ikely to be produced.4

Cytotoxicity reactions are affected not only by the class of the monoclonal antibody, but also by the local distribution of the determinants on the cell surface. This local concentration can be increased dramatically by multiple antibodies recognizing the same antigen. For instance, in a case of two different monoclonal antibodies recognizing histocompatibility antigens, neither alone is cytotoxic, but the mixture of the two is strongly can also become very useful tools—for example, to reveal cells secreting so. Although these types of synergistic effects can be very confusing, they a "nonlytic" antibody, using red cells pretreated with a previously isolated monoclonal antibody.24

Cooperative effects are also likely to be among the reasons why tional (polyclonal) antisera.22 But other facts are likely to complicate the monoclonal antibodies are often less good agglutinators than the convenproblem. For instance, the indirect hemagglutination by a monoclonal anti-1gG was found to be very different when sheep red cells were coated with two different monoclonal anti-sheep red cells. It was negative when the cells were coated with Sp2 (a monoclonal antibody recognizing a high

[2]

Precipitation analysis of labeled monoclonal antibodies mixed with polyvalent antisera is a method that is likely to be used extensively. It was observed that under these conditions the labeled monoclonal antibodies were able to diffuse through the precipitin lines to which they bind and coprecipitate with another line. This is contrary to the old assumption that precipitin lines act as diffusion barriers. One monoclonal antibody in excess may not be able to dissolve the precipitate and diffuse through it to bind to other precipitin lines containing the same determinant on a different molecular species.²²

The fine specificity of monoclonal antibodies is a great asset but should be used with caution. Negative results with a monoclonal antibody do not prove absence of the antigen itself. Changes in the environment of the antigenic determinant, or of the way the antigen is presented, could alter results. On the other hand, reaction with a monoclonal antibody could, at least in theory, occur through recognition of more than a single antigenic structure. More commonly the same antigenic determinants could be expressed in different molecular species—e.g., carbohydrate moieties or structural features in evolutionarily related proteins.

[2] Production of Antisera with Small Doses of Immunogen: Multiple Intradermal Injections

By JUDITH L. VAITUKAITIS

A wide variety of immunization techniques has been used to generate specific antisera in laboratory animals. Those techniques incorporate a variety of injection routes, vehicles, and frequencies of injection into appropriate laboratory animals. Moreover, the concentrations of immunogen have ranged from gram to milligram concentrations. With the advent of more sophisticated isolation techniques, as well as the capacity readily to synthesize polypeptides, successful immunization with small amounts of immunogen has become imperative. Consequently, an approach to

generate specific ant crograms of immuno the use of small quar tions of antibody wir substance injected.³

INTRA

Principle. Admini gen intradermally or lymph nodes in the prantibody generation.

Reagents

Buffer Immunogen: 2 charide, poly Freund's adjuv Dried, heat-kille

Immunization

The water-in-oil e immunogen is initiall molarity to enhance s tion. An equal volum plete or incomplete a which contains per mi be certain that the in-Mycobacterium is usu tom of the vial. It n heat-killed tubercle t emulsion will contain Freund's incomplete quently, 5 mg of heatemulsion. It is impor tained. The aqueous a on standing. We have for 5-15 min or until t stroked with a glass r cannister containing t

Copyright © 1981 by Academic Press, Inc. All rights of reproduction in any form reserved. ISBN 0-12-181973-6

¹ J. L. Vaitukaitis, J. B. Ro 33, 988 (1971).

² J. L. Vaitukaitis and G. T. H. N. Eisen and G. W. S.

GRANT & HACKH'S

CHEMICAL DICTIONARY

[American, International, European and British Usage]

Containing the Words Generally Used in Chemistry, and Many of the Terms Used in the Related Sciences of Physics, Medicine, Engineering, Biology, Pharmacy, Astrophysics, Agriculture, Mineralogy, etc.

Based on Recent Scientific Literature

FIFTH EDITION
Completely Revised and Edited by

ROGER GRANT

M.A., D. de l'U., Ph.D., C. Chem., M.R.S.C. Consultant

CLAIRE GRANT

M.B., B.S., M.R.C.P.E. Medical Practitioner

McGRAW-HILL BOOK COMPANY

New York St. Louis San Francisco Auckland Bogotá
Hamburg Johannesburg London Madrid Mexico
Milan Montreal New Delhi Panama
Paris São Paulo Singapore
Sydney Tokyo Toronto

Library of Congress Cataloging-in-Publication Jata

Hackh, Ingo W. D. (Ingo Waldemar Dagobert), 1890–1938. Grant & Hackh's chemical dictionary.

Rev. ed. of: Chemical dictionary. 4th ed. 1969.

1. Chemistry—Dictionaries. I. Grant, Roger L.

II. Grant, Claire. III. Title. IV. Title: Grant & Hackh's chemical dictionary.

V. Title: Chemical dictionary.

QD5.H3 1987 540'.3 86-7496
ISBN 0-67-024067-1

Copyright © 1987 by McGraw-Hill, Inc. All rights reserved. Printed in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a data base or retrieval system, without the prior written permission of the publisher.

1234567890 DOCDOC 8943210987

ISBN 0-07-024067-1

The previous edition of this book was Hackh's Chemical Dictionary, 4th ed., published by McGraw-Hill in 1969. It was prepared by Dr. Julius Grant from a Chemical Dictionary compiled by Ingo W. D. Hackh. The current, or 5th, edition of this book was prepared by Dr. Roger L. Grant, whose father prepared the 4th edition.

The editors for this book were Betty J. Sun and Susan Thomas, the designer was Naomi Auerbach, and the production supervisor was Teresa F. Leaden. It was set in Palatino by University Graphics, Inc.

Printed and bound by R. R. Donnelley & Sons Company.

secretion of Piptadenia rigida (Leguminosae) of Brazil. Cf. cebil

angiology The science of blood and lymph vessels. angioneurosin Nitroglycerin.

angiosperm A flowering plant whose seeds are enclosed in a fruit; e.g., the peapod. Cf. gymnosperm.

angle The inclination between two converging lines where they meet. acute ~ An a. less than 90°. adjacent ~ An a. which has one line common with another a. complementary ~ The complement of an a. is 90° less the a. critical ~ See critical angle. meter ~ See meter angle. oblique ~ An a. that is not a right a. obtuse ~ An a. greater than 90°. right ~ An a. of 90°. supplementary ~ The supplement of an a. is 180° less the a.

a. thermometer An L-shaped thermometer. anglesite PbSO₄. Occurs native in colored orthorhombic crystals. Cf. sardinianite.

angora A long, silky, curly goat's wool.

angostura A S. American tree, Galipea cusparia, Cusparia febrifuga, (Rutaceae). a. alkaloids The alkaloids of a.; as, angosturine. a. bark Cusparia bark, carony bark. The bark of a.; a bitter. a. oil An essential oil from the bark of a. Yellow, aromatic liquid, d.0.930-0.960, soluble in alcohol. It contains galipene, galipol, cadinene, and pinene; used in

angosturine $C_{10}H_{40}O_{14}N = 398.4$. An alkaloid from angostura bark. Colorless crystals, m.85; a bitter. Ångström, A. J. (1814–1874) Swedish optical physicist. angstrom Å. A unit of wavelength; $1 \text{ Å} = 10^{-7} \text{ mm} =$ 10^{-10} m = 1 am. (atom meter.) international \sim I.A. The wavelength of the red line of cadmium = 6438.4696 I.A. in air at 15°C. Thence the I.A. = 10^{-10} m. Cf. kX: angular Having sharp angles. a. acceleration A. acceleration (α) = $(\omega_t - \omega_0)/t$, where ω_t is the a. speed after time t, and ω_0 the initial a. speed; unit is rad/s². a. aperture The largest angle subtended by a wave surface transmitted by an objective. a. momentum Spin. The product of the a. speed and moment of inertia of a body expressed in g/cm·s. a. motion The motion of a line, fixed at one end in one plane, relative to a straight line through the center of rotation. a. speed A. velocity. The ratio $\omega = \theta/t$, where θ is the angle traversed in time t; unit is rad/s.

angustione C₁₁H₁₆O₃ = 196.2. A cyclohexane triketone isolated from the oil of *Backhousia angustifolia* (Myrtaceae). Colorless liquid, b_{15mm}129.

anhalamine C₂H₂(OCH₃)₂OH·NH = 209.2. An alkaloid from *mescal buttons*, q.v. anhaline Hordenine.

anhalonidine C₁₂H₁₇O₃N = 223.3. 1,2,3,4-Tetrahydro-8hydroxy-6,7-methoxy-1-methylisoquinoline. An alkaloid from mescal buttons: Colorless octahedra, m:154, soluble in water. anhalonine C₁₂H₁₅O₃N = 221.3. 1,2,3,4-Tetrahydro-6methoxy-1-methyl-7,8-methylenedioxyquinoline. An extremely poisonous alkaloid from Anhalonium species (Cactaceae). Colorless needles, m.254, soluble in water. Anhalonium A Mexican cactus species, A. lewinii (peyotl), containing narcotic alkaloids. Cf. mescal buttons. a. alkaloids See anhalamine, anhalonine, lophophorine, mescaline, pellotine. anhidrotic Antihidrotic. A drug which reduces perspiration. anhydride* A compound (usually an acid) from which water has been removed; as, $H_2XO_3 - H_2O = XO_2$. acid \sim The oxides of nonmetals, which form acids with water. basic ~ The oxides of metals which yield bases with water. inner ~ A ring compound formed by the abstraction of water; as, lactones. Cf. acetic-, chromic-, etc.

Anhydrite (1) Trade name for a desiccant containing chiefly anhydrous calcium sulfate. (2) (not cap.) CaSO₄. A native anhydrous calcium sulfate; gray, orthorhombic masses. insoluble $\sim \beta$ -Calcium sulfate. soluble $\sim \gamma$ -Calcium sulfate. Dehydrated bassanite, solubility 0.5% (20°C). Cf. muriacite, tripestone, vulpinite.

anhydro-* Prefix to compounds denoting that one or more water molecules have been removed from the prefixed compound. Cf. anhydrous.

anhydroecgonine $C_9H_{13}O_2N = 167.2$. Ecgonidine. Colorless crystals, m.235 (decomp.), soluble in water.

anhydroformaldehyde aniline PhN:CH₂ = 105.1. A solid, m.120, insoluble in water.

anhydroglycochloral Chloralose.

Anhydrone Trade name for anhydrous magnesium perchlorate prepared by igniting the trihydrate; a powerful desiccant.

anhydrosynthesis The theoretical coupling of a group with another compound, with the subsequent elimination of water. Cf. derivative.

anhydrotimboine Timbonine.

anhydrous Describing a compound that has lost all its water. Cf. anhydro-.

anibine $C_{11}H_9O_3N = 213.3$, 4-Methoxy-6(3-pyridyl)-2*H*-pyran-2-one. An alkaloid from the wood of the S. American rosewood, *Aniba duckei*.

anilides (1)*Phenyl-substituted amides, thus containing the C_6H_5NH — radical, from aniline; e.g., benzanilide, $Ph\cdot NH\cdot CO\cdot Ph.$ (2) Sometimes applied to compounds containing the $NH_2C_6H_4$ — group (anilinate); as, arsenic acid anilide (arsanilic acid). acet \sim Acetanilide*. form \sim $C_6H_5NH\cdot CHO$. Colorless crystals, m.46.

anilinate NH₂C₆H₄M. A compound of aniline and a metal. Cf. anilides.

aniline* C₆H₅NH₂ = 93.1. Phenylamine, benzenaminet, aminobenzene, aniline oil, benzidam. A pale brown liquid, darkening with age, m. - 6, b.184, slightly soluble in water. Used as a reagent for aldehydes, chloroform, fusel oil, phenols, etc.; in bacteriology, for preparing staining solutions; and in the dye and rubber industries for organic synthesis and in the manufacture of resins and varnishes. Cf. anilides, s anilinate, nitrobenzene reduction. acetyl ~ Acetanilide*. allyl ~ See allylaniline. amino ~ Phenylenediamine. aminodimethyl ~ Dimethylphenylenediamine. benzal benzilidene ~ See benzylidene. benzoyl ~ Benzanilide. benzyl ~ See benzylaniline. bi- Benzidine*. bromo ~ NH₂C₆H₄Br = 172.0. Aminobromobenzene. ortho-~ Colorless crystals, m.31, soluble in alcohol. meta-~ Colorless crystals, m.18, soluble in alcohol. Colorless rhombs, m.66 (decomp.), insoluble in water. chloro ~ * NH₂C₆H₄Cl = 127.6. Aminochlorobenzene. ortho- Colorless liquid, b.207, soluble in water. meta-Colorless liquid, b.230. para- Rhombs, m.70, soluble in hot water. cyano ~ cyanoanilide. diacetyl ~ Diacetanilide. dibenzyl ~ See benzyl aniline. dichloro ~ NH₂C₆H₃Cl₂ = 162.0. Aminodichlorobenzene. 2,4- ≈ Colorless needles, m.63, soluble in alcohol. 3,4- ≈ Colorless needles, m.72, soluble in alcohol. 3,5- ~ Colorless needles, m.51, soluble in alcohol. diethyl $\sim C_6H_5N(C_2H_5)_2 = 149.2$. Yellow liquid, m.38, sparingly soluble in water. Ndiethylnitro ~ * NO₂C₆H₄NEt₂ = 194.2. ortho-~ Soluble oil, b.290. para ~ Colorless needles, m.77, soluble in hot alcohol. N-diethylnitroso ~ 1 $C_6H_4(NO)NEt_2 = 178.2$. para- Colorless needles, m.84, slightly soluble in water. dimethyl ~

1/9/2
DIALOG(R)File 120:US Copyrights
(c) format only 1995 Dialog Info.Svcs. All rts. reserv.

04757013

Retroviruses and human pathology / edited by Robert C. Gallo, Dominiqu Stehelin, and Oliviero E. Varnier.

CLASS: TX (Textual Works)

LC RETRIEVAL CODE: B (Monographic works of a non-dramatic literary nature)

STATUS: Registered

REGISTRATION NUMBER: TX1813266

DATE REGISTERED: May 13, 1986 (19860513)

DATE OF CREATION: 1986

DATE OF PUBLICATION: April 09, 1986

AUTHOR(s): Gallo, Robert C.; Stehelin, Dominique; Varnier,

Oliviero E.; Humana Press, Inc

APPLICATION AUTHOR(s): collective work: Humana Press, Inc., employer for hire.

OWNER(s): Humana Press, Inc.

IN NOTICE: notice: 1985

IMPRINT: Clifton, N. J.: The Press, c1985.

REGISTRATION DEPOSIT: 557 p.

This material may be protected. Copyright law (Title 17, U.S. Gode)

Medicine

by Robert C. Gallo, er, 1985 T. Borchardt, Arnold

Idmann and N. A.

to Immune Regulation, Lamb, and James N.

lism and Regulation, eph Eichberg, and

ted by Philip Skehan

d by Carl W. Pierce, enjamin D. Schwartz,

, edited by Marshall

lited by John R. J.

and Cellular Regulation,

International Symposium:

RETROVIRUSES AND HUMAN PATHOLOGY

Edited by

Robert C. Gallo,
Dominique Stehelin,
and Oliviero E. Varnier

Humana Press · Clifton, New Jersey

1985

system, or transmitted in any 3, microfilming, recording, or

and Human Pathology, held in a, Centro studi della cassa di y the Istituto di microbiologia anoa, Italy.

resses. 3. Carcinogenesis III. Varnier, Oliviero E. IV. lology (1984: Lerici, Italy) V: nazionale per la ricerca sul ine (Clifton, NJ) [DNLM: 1. ses. 3. Tumor Virus

Acknowledgments

This volume contains the proceedings of the International Symposium on Retroviruses and Human Pathology held in San Terenzo di Lerici (La Spezia), Italy at the Villa Marigola, Centro Studi della Cassa di Risparmio della Spezia on September 24–26, 1984. The symposium was organized by:

Istituto di Microbiologia dell'Universita and Istituto Nazionale per la Ricerca sul Cancro Genova, Italia

under the auspices of:

Universita' degli Studi di Genova Assessorato della Sanita, Regione Liguria Comune di Lerici Cassa di Risparmio della Spezia Cassa di Risparmio di Genova e Imperia Consiglio Nazionale delle Ricerche Ministero della Pubblica Istruzione Ministero degli Affari Esteri

Front cover and title page logo designed by: Marco Matricardi

٧

agata, and Yasunaga

ERSTAND

ete nucleotide cucture has now LV-I, including ied gene coding ease, which is 10,11,12). BLV understanding

Y., Ikawa, Y. 26, 813-820. ma, M., Izawa,

uzuku-Kawamura, d. Sci. U.S.A.

13-314. (1982) Proc.

(1982). Proc.

& Yoshida, M.
8-3622.
(1983) Nature

in press) FEBS

K., Tsuzukuress) EMBO J.izuku-Kawamura,) Proc. Natl.

ANALYSIS AND IMMUNOLOGICAL PROPERTIES OF

LYMPHADENOPATHY ASSOCIATED VIRUS (LAV) STRUCTURAL PROTEINS

F. Barre-Sinoussi, J.C. Chermann and L. Montagnier

Institut Pasteur, Viral Oncology Unit, 25, rue du Dr. Roux, 75015 Paris, France

LAV or LAV related viruses were isolated from patients with AIDS or with lymphadenopathy. The results presented here indicate that four major components (p45, p25, p18 and pl3) are detected in purified virions. The p25 and the pl3 are internal proteins of LAV since they cannot be easily iodinated in the virions. The p25 can be purified phosphocellulose chromatography and the protein can be labelled with I. The p18 is either a gag gene product or a transmembrane protein. The major core proteins p25 of different viral isolates are antigenically identical but are not related to the major structural proteins of other retroviruses. Antibodies to LAV p25 are predominantly found in the sera of patients with AIDS or with pre-AIDS but in some cases, antibodies to p18 and p13 are also detected. These results confirm that the various LAV isolates represent a new human retroviruses associated with AIDS.

Lymphadenopathy Associated Virus (LAV) was initially isolated from cultured T cels of a patient with lymphadenopathy syndrome (1). Additional isolates of similar viruses were then easily obtained from AIDS patients belonging to all the groups at risk for the disease (2, 3, 4, 5). Epidemiological studies (6) and the

selective tropism of LAV for the helper-inducer T lymphocytes (7) strongly support the involvement of this retrovirus in AIDS. Here, we present biochemical and immunological characterization of the structural proteins of LAV.

Figure 1. SDS polyacrylamide gel electrophoresis of purified LAV. LAV producing cells were labelled either 35 methionine (50 uCi/ml) (lane a), C amino acids (5 uCi/ml) (lane b) or with C glucosamine (lane d) (15 uCi/ml) for 18 hours. Purified labelled viruses were dtergent disrupted (15 minutes at 0-4 C) and labelled proteins were analyzed by electrophoresis on 12% polyacrylamide gels (SDS-PAGE). In some experiments (lane c), purified disrupted virus was lebelled with I sodium iodine (5 uCi/ug) by iodogen procedure.

Studies on using LAV proplymphocytes or i described (1, 3 density gradient

Figure 1 shown labelled either sodium iodine or

Four major (of 45,000, 25,00 in unpurified v: with aminoacids indicates that p of this aminoac: with aminoacids glycosylated. Ho the envelope pr protein could no polypeptide (100 cases which may precursor of th: polypeptides radioiodination iodinated and t purified p25 can this indicates proteins inacces sufficiently dis previously publis core protein (3, iodinated, these whether this pro is a transmembra

Barre-Sinoussi et al.

lper-inducer T vement of this iochemical and ctural proteins

rophoresis of
belled either
C amino acids
(lane d) (15
viruses were
and labelled
sis on 12%
eriments (lane
th I sodium

Analysis and Immunology of LAV Structural Proteins

LABELLED POLYPEPTIDES OF LAV

Studies on LAV structural proteins were performed using LAV propagated in primary cultures of blood lymphocytes or in human cord blood T cells as previously described (1, 3, 8), and purified by standard sucrose density gradient centrifugation.

Figure 1 shows an analysis by SDS PAGE of LAV proteins labelled either with ${}^{\rm S}_{\rm I}$ methionine, C amino acids, ${}^{\rm I25}_{\rm I}$ sodium iodine or with C glucosamine.

Four major components with apparent molecular weight of 45,000, 25,000, 18,000 and 13,000 daltons are present in unpurified virions. All these components are labelled with aminoacids whether labelling with S methionine indicates that p18 and p13 proteins contain a low amount of this aminoacid. Correspondence of components labelled with aminoacids and glucosamine indicates that the p45 is glycosylated. However, whether this proteins represents the envelope protein or a contamination by a cellular protein could not be determined. A high molecular weight polypeptide (100,000 daltons) is also detected in both cases which may represent either an envelope protein or a precursor of this protein. Localization of constitutitve polypeptides in the virion was also assessed radioiodination of purified virus. The is not 25a iodinated and the p13 is only slightly labelled. Since purified p25 can be easily iodinated (data not shown) (9), this indicates that these two proteins are internal gag proteins inaccessible to labelling until the virions were sufficiently disrupted. This result is consistent with previously published data considering the p25 as the viral core protein (3, 8, 10). Since the p18 protein is easily iodinated, these experiments do not allow determination of whether this protein is a gag gene product or whether it is a transmembrane protein.

Figure 2. Competition radioimmunoassay for the major structural protein of LAV. Competition radioimmunoassay with our positive reference serum and $\ ^{125}$ labelled LAVp25 was carried out as previously published (5, 9). Virus extracts from different isolates were used as competitive antigens.

COMPARISON OF LAVp25 AND MAJOR CORE PROTEINS OF OTHER VIRAL ISOLATES

Purified viruses from two AIDS patients were used as competitive antigens in homologous radioimmunoassays (RIAS) which have been performed by the double antibody method described earlier (9), using as labelled antigen, purified LAVp25 (Figure 2).

The quantitative pattern of the competition observed in this assay indicates that the major core proteins of IDAV1 (isolate from a homosexual with Kaposi's sarcoma) and IDAV2 (isolate from a young B hemophiliac) were

Analysis and Immi

identical to previously robtained from Similar coother human antigens (9). competes in the Such study should distinct antigens

ANALYSIS OF

As previo protein special using purified

Figure 3 antibodies to amounts of ant in the sera. protein labell by patients se can be ident experiments hafrom different not shown).

In order antigens recog book), selected antigens by the et al. (11). fractionated by transferred electrophoretimas cut into 0 human sera. detected by in the strips with diaminabenziding

dav 1 dav 2

for the major radioimmunoassay labelled LAVp25 (5, 9). Virus as competitive

PROTEINS

ts were used as adioimmunoassays double antibody belled antigen,

tition observed ore proteins of posi's sarcoma) ophiliac) were identical to LAVp25. This confirmed the similarity previously reported between all the viral isolates obtained from AIDS patients (5, 8, 10).

Similar competition assays have been performed using other human or mammalian retroviruses as competitve antigens (9). None of them, incuding HTLV-I and HTLV-II competes in the homologous LAVp25 assay (data not shown). Such study shows that the major internal protein p25 is a distinct antigen specific for LAV isolates.

ANALYSIS OF SERA FOR ANTIBODIES TO LAV MAJOR PROTEINS

As previously reported (8, 10), LAVp25 is the main protein specifically recognized by patients sera in RIPA using purified 35 S labelled virus.

Figure 3 shows an example of the detection of antibodies to this protein in patients sera. Various amounts of antibodies against this protein can be detected in the sera. The major core protein p25 is the only protein labelled with 35S methionine which is recognized by patients sera. No antibodies against an evelope protein can be identified by this assay. Furthermore, these experiments have also shown that all the viral isolates from different AIDS patients are antigenicly related (data not shown).

In order to understand the molecular nature of the antigens recognized by ELISA (Brun-Vézinet et al., this book), selected sera were examined for antibodies to LAV antigens by the sensitive Western Blot technique of Towbin et al. (11). For this study, a lysate of LAV was fractionated by SDS polyacrylamide gel electrophoresis and transferred to а nitrocellulose electrophoretic blotting method. The nitrocellulose sheet was cut into 0.5 cm strips and reacted with samples of the human sera. Antigen-antibody complexes formed detected by immunoenzymatic reaction after incubation of the strips with goat anti-human IgG peroxydase and then diaminabenzidine and H₂O₂.

Polyaclylamide gel electrophoresis of es between S labelled LAV and antibodies 3. immune-complexes between in patients sera. Radioimmunoprecipitation experiments were performed as previously described (1, 8). Briefly, S methionine labelled virus was concentrated by ultracentrifugation and lysed in RIPA buffer. For immunoprecipitation, aliquots (2x10° cpm) were incubated with 5 ul of various sera (2 hours at 37 C, 18 hours at 4 C). Immune complexes were isolated by protein A sepharose beads and analysed by electrophoresis on polyacrylamide gels. The sera used for this assay were normal human serum (lane a); our positive reference serum (lane b); sera from patients with AIDS or with pre-AIDS (lane c to f).

Analysis and Immi

Figure 4 reactions in from patients most patients sera react wi as p18 or, i antigens are antibodies in whereas none serum. This exbe considered

pat.

25- --

18 --

Figure 4. Ana Western Blot. et al and is d left, sera lymphadenopath serum (lane a)

trophoresis of and antibodies ion experiments 1, 8). Briefly, concentrated by A buffer. For were incubated C, 18 hours at by protein A ctrophoresis on this assay were reference serum or with pre-AIDS

Figure 4 shows representative patterns of antibody reactions in the Western Blot assay with selected sera from patients with AIDS or with lymphadenopathy. Although most patients' sera react predominantly with LAVp25, some sera react with the lower molecular weight proteins such as p18 or, in few cases, p13. Therefore, three viral antigens are, at least, specificly recognized by antibodies in the serum of patients with AIDS or pre-AIDS, whereas none of them is detected with a normal human serum. This experiment confirms that p25, p18 and p13 can be considered as virus coded proteins.

Figure 4. Analysis of sera for antibodies to LAV by Western Blot. This assay was performed according to Towbin et al and is described in more details in the text. On the left, sera from patients with AIDS or with lymphadenopathy. On the right, our positive reference serum (lane a) and a normal human serum (lane b).

Analysis and Immuno

McDougal, J. F.A. & Franc

- 6. Brun-Vezinet
 Klatzmann,
 Montagnier,
 1253-1256.
- 7. Klatzmann, l
 Dauguet, Ch.
 F., Rouzioux
 Montagnier L.
- 8. Montagnier,
 Chamaret, S.
 Dauguet, C.
 Harbour Publi
 Viruses" 1 vc
- 9. Kalyanaraman,
 Narayanan,
 Barre-Sinouss
 Kaplan, J., I
 Francis D.P.
- 10. Barre-Sinouss (1984) Manipu Tadao Aoki (J
- 11. Towbin, H.,
 Natl. Acad. S

CONCLUSIONS

Among the four major components found in LAV, p25, p18, and p13 are the three viral antigens specificly recognized by antibodies in the serum of AIDS or pre-AIDS patients. p25 and p13 are probably gag encoded proteins whereas p18 can be either a gag product or a transmembrane protein. LAVp25 is a highly conserved determinant, as it is for all major core proteins of retroviruses.

The complete nucleotide sequence of LAV genome, recently cloned (M. Alizon et al., submitted) with allow confirmaton of these data and identification of the env gene product.

REFERENCES

- Barre-Sinoussi, G., Chermann, J.C., Rey, F., Nugeyre, M.T., Chamaret, S., Gruest, J., Dauguet, C., Axler-Blin, C., Brun-Vezinet, F., Rouzioux, C., Rozenbaum, W. & Montagnier L. (1983) Science 220, 868-871.
- Vilmer, E., Rouzioux, C., Vezinet-Brun, F., Fischer, A., Chermann, J.C., Barre-Sinoussi, F., Gazengel, C., Dauguet, C., Manignet, P. & Griscelli, C. 1984. Lancet ii, 753-757.
- 3. Chermann, J.C., Barre-Sinoussi, F. & Montagnier, L. Acquired immune deficiency syndrome UCLA symposia on molecular and cellular biology; new series; Volume 16 eds. Michael S. Gottlieb and Jerome E. Groopman, Alan R. Liss, Inc., New York 1984, p. 31-46.
- Ellrodt, A., Barre-Sinoussi, F., Le Bras, Nugeyre, M.T., Palazzo, L., Rey, F., Brun-Vezinet, F., Rouzioux, C., Segond, P., Caquet, R., Montagnier, L. & Chermann, J.C. (1984) Lancet i, 1383-1385.
- 5. Feorino, M.P., Kalyanaraman, V.S., Haverkos, H.W., Cabradilla, C.D., Warfield, D.T., Jaffe, H.W., Harrison, A.K., Goldringer, D., Gottlieb, M.S., Chermann, J.C., Barre-Sinoussi, F., Spira, T.J..

Analysis and Immunology of LAV Structural Proteins

McDougal, J.S., Curran, J.W., Montagnier, L., Murphy, F.A. & Francis D.P. (1984) Science 225, 69-72.

- Brun-Vezinet, F., Rouzioux, C., Barre-Sinoussi, F., Klatzmann, D., Saimaot, A.G., Rozenbaum, W., Montagnier, L. & Chermann J.C. (1984) Lancet i, 1253-1256.
- Klatzmann, D., Barre-Sinoussi, F., Nugeyre, M.T., Dauguet, Ch., Vilmer, E., Grisceli, C., Brun-Vezinet, F., Rouzioux, C., Gluckman, J.C., Chermann, J.C. & Montagnier L. (1984). Science 225, 59-63.
- 8. Montagnier, L., Chermann, J.C., Barre-Sinoussi, F., Chamaret, S., Gruest, J., Nugeyre, M.T., Rey, F., Dauguet, C. & Axler-Blin, C. (1984) Cold Spring Harbour Publication Meeting on "Human T-cell leukemia Viruses" 1 vol., 363-379.
- 9. Kalyanaraman, V.S., Cabradilla, C.D., Getchell, J.P., Narayanan, R., Braff, E.H., Chermann, J.C., Barre-Sinoussi, F., Montagnier, L., Spira, T.J., Kaplan, J., Fishbein, D., Jaffe, H.W., Curran, J.W. & Francis D.P. (1984) Science 225, 321-323.
- 10. Barre-Sinoussi, F., Chermann, J.C. & Montagnier, F. (1984) Manipulation of Host Defense Mechanisms" ed. Tadao Aoki (Japan), 1 vol.
- 11. Towbin, H., Staehlin, T. & Gordon J., (1979) Proc. Natl. Acad. Sci. USA 76, 4350-4353.

in LAV, p25, ens specificly IDS or pre-AIDS moded proteins a transmembrane erminant, as it

LAV genome, ed) with allow on of the env

F., Nugeyre,
Dauguet, C.,
Rouzioux, C.,
Science 220,

F., Fischer, Gazengel, C., . 1984. Lancet

A symposia on
es; Volume 16
E. Groopman,
46.

ras, Nugeyre, Vezinet, F., Itagnier, L. &

verkos, H.W., Jaffe, H.W., tlieb, M.S., Spira, T.J.,