ДИСЦИПЛИНА Полное название дисциплины без аббревиатуры ИНСТИТУТ Радиотехнических и телекоммуникационных систем радиоволновых процессов и технологий полное название кафедры ГРУППА/Ы РРБО-1-3-18; РССО-1-3-18 номер групп/ы, для которых предназначены материалы ВИД УЧЕБНОГО МАТЕРИАЛА Лекция №12 лекция №12 лекция; материал к практическим занятиям; контрольно-измерительные материалы к практическим занятиям; руководство к КР/КП, практикам Исаков Владимир Николаевич фамилия, имя, отчество

CEMECTP

указать номер семестра обучения

Лекция 12 Линейные узкополосные цепи 1. Понятие узкополосной цепи

Одной из важнейших задач радиотехники является осуществление частотной избирательности, то есть различение узкополосных сигналов с различной несущей частотой. Для этих целей используются специальные виды цепей, называемые узкополосными.

Узкополосной (УПЦ) называется цепь, ширина полосы пропускания которой гораздо меньше, центральной частоты ее амплитудно-частотной характеристики (АЧХ):

$$\frac{\Delta\omega'}{\omega_0'} << 1$$
.

Центральная частота обычно соответствует режиму резонанса цепи и называется резонансной. Пример АЧХ УПЦ показан на рис. 1.

Рис. 1. АЧХ УПЦ и соответствующего НЧЭ

2. Понятие низкочастотного эквивалента узкополосной цепи

Комплексная частотная и импульсная характеристики линейной цепи являются Фурье — парой. Поскольку спектральная функция в этой паре локализована в области высоких частот, то временная функция — импульсная характеристика УПЦ - является узкополосным сигналом и может быть представлена в виде

$$h(t) = v_h(t)\cos(\omega_0't + \varphi_h(t)),$$

ИЛИ

$$h(t) = \operatorname{Re}(\dot{v}_h(t)e^{j\omega_0't}),$$

где $v_h(t)$ и $\phi_h(t)$ огибающая и мгновенная фаза, $\dot{v}_h(t) = v_h(t)e^{j\phi_h(t)}$ - комплексная огибающая ИХ.

Выражение для КЧХ цепи можно записать в виде

$$H(\omega) = \begin{cases} \frac{1}{2} V_h(\omega - \omega_0'), & \omega > 0 \\ \frac{1}{2} V_h^*(-(\omega + \omega_0')), & \omega < 0 \end{cases},$$

где $V_h(\Omega) \leftrightarrow \dot{v}_h(t)$ - спектральная плотность комплексной огибающей.

Обозначив $H_{\mathrm{HY} \ni}(\Omega) = \frac{1}{2} V_h(\Omega)$, выражение для КЧХ УПЦ

перепишем в виде

$$H(\omega) = \begin{cases} H_{\text{HY3}}(\omega - \omega_0'), \omega > 0 \\ H_{\text{HY3}}^*(-(\omega + \omega_0')), \omega < 0 \end{cases}$$

Таким образом КЧХ УПЦ можно рассматривать как результат переноса КЧХ некоторой низкочастотной цепи в область частоты ω_0' .

Цепь, комплексная частотная характеристика которой получается смещением КЧХ УПЦ в область низких частот, называется низкочастотным эквивалентом.

Выражение для КЧХ НЧЭ можно получить из выражения для КЧХ УПЦ в области положительных частот, заменив в нём $\omega = \Omega + \omega_0'$.

$$H_{\text{HY}}(\Omega) = H(\omega)|_{\substack{\omega > 0 \\ \omega = \Omega + \omega_{\text{p}}}}$$

Импульсную характеристику НЧЭ получим как обратное преобразование Фурье от его КЧХ

$$\dot{h}_{HY\ni}(t) = F^{-1}\{H_{HY\ni}(\Omega)\} = F^{-1}\{V_h(\Omega)/2\} = \frac{1}{2}\dot{v}_h(t).$$

Импульсная характеристика УПЦ связана с импульсной характеристикой НЧЭ

$$h(t) = \operatorname{Re}(\dot{v}_h(t)e^{j\omega'_0t}) = 2\operatorname{Re}(\dot{h}_{HY\Im}(t)e^{j\omega'_0t}).$$

Как видно из последних выражений ИХ НЧЭ в общем случае является комплексной функцией. Это означает, что НЧЭ является математической моделью УПЦ, не всегда реализуемой на практике.

3. Метод низкочастотного эквивалента (метод огибающей)

Метод низкочастотного эквивалента используется при анализе преобразования радиосигналов в узкополосных цепях, когда несущая частота радиосигнала и центральная частота АЧХ узкополосной цепи совпадают иди отличаются незначительно.

Рассмотрим воздействие УПС на УПЦ в указанных условиях, когда несущая частота УПС и центральная частота УПЦ близки, то есть $|\omega_0 - \omega_0'| << \omega_0$.

Выражение для сигнала на входе цепи имеет вид

$$u_{ex}(t) = v_{ex}(t)\cos(\omega_0 t + \varphi_{ex}(t)),$$

ИЛИ

$$u_{ex}(t) = \text{Re}(\dot{v}_{ex}(t)e^{j\omega_0 t}).$$

где $v_{ex}(t)$ и $\phi_{ex}(t)$ огибающая и мгновенная фаза сигнала, $\dot{v}_{ex}(t) = v_{ex}(t)e^{j\phi_{ex}(t)} - \text{его комплексная огибающая}.$

Спектральная плотность сигнала на входе

$$U_{ex}(\omega) = \begin{cases} \frac{1}{2} V_{ex}(\omega - \omega_0), \omega > 0 \\ \frac{1}{2} V_{ex}^*(-(\omega + \omega_0)), \omega < 0 \end{cases},$$

Исаков В.Н. Радиотехнические цепи и сигналы (курс лекций 2020) Материалы сайта «Учебный портал МИРЭА» https://online-edu.mirea.ru где $V_{ex}(\Omega) \leftrightarrow \dot{v}_{ex}(t)$ - спектральная плотность комплексной огибающей входного сигнала.

Спектральная плотность сигнала на выходе

$$U_{eblx}(\omega) = U_{ex}(\omega)H(\omega) = \begin{cases} \frac{1}{2}V_{ex}(\omega-\omega_0)H_{HY\ni}(\omega-\omega_0'), \omega > 0\\ \\ \frac{1}{2}[V_{ex}(-(\omega+\omega_0))H_{HY\ni}(-(\omega+\omega_0'))]^*, \omega < 0 \end{cases}$$

Как видно сигнал на выходе является УПС и может быть описан как

$$u_{eblx}(t) = v_{eblx}(t)\cos(\omega_0 t + \varphi_{eblx}(t)) = \operatorname{Re}(\dot{v}_{eblx}(t)e^{j\omega_0 t}),$$

где $\dot{v}_{\rm BMX}(t) = v_{\rm BMX}(t)e^{j\phi_{\rm BMX}(t)}$ - комплексная огибающая сигнала.

Выражение для спектра сигнала на выходе может быть записано в виде

$$U_{\text{Bblx}}(\omega) = \begin{cases} \frac{1}{2}V_{\text{Bblx}}(\omega - \omega_0), \omega > 0\\ \frac{1}{2}V_{\text{Bblx}}^*(-(\omega + \omega_0)), \omega < 0 \end{cases},$$

где $V_{\mathit{вых}}(\Omega) \leftrightarrow \dot{v}_{\mathit{выx}}(t)$ - спектральная плотность комплексной огибающей выходного сигнала.

Приравнивая выражения для спектра сигнала на выходе, получим $V_{\textit{вых}}(\omega-\omega_0) = V_{\textit{ex}}(\omega-\omega_0) H_{HY\!\!\!\!-\!\!\!\!-\!\!\!\!-}(\omega-\omega_0').$

Обозначим $\Omega = \omega - \omega_0$;

 $\Delta\Omega = \omega_0 - \omega_0'$ - расстройка несущей частоты от резонансной.

Тогда последнее выражение можно переписать в виде

$$V_{eblx}(\Omega) = V_{ex}(\Omega)H_{HYO}(\Omega + \Delta\Omega)$$
.

Как видно, комплексную огибающую сигнала на выходе цепи можно определить в результате анализа прохождения комплексной огибающей сигнала на входе через некоторую эквивалентную цепь с КЧХ

$$H_{\mathfrak{I}}(\Omega) = H_{HY\mathfrak{I}}(\Omega + \Delta\Omega).$$

Импульсную характеристику эквивалентной цепи определим как обратное преобразование Фурье от её КЧХ, с учётом свойства смещения спектра

$$h_{\mathcal{I}}(t) = h_{HY\mathcal{I}}(t)e^{-j\Delta\Omega t}$$
.

Интеграл Дюамеля для комплексных огибающих запишется в виде

$$\dot{v}_{eblx}(t) = \int_{0}^{t} \dot{v}_{ex}(t-x)h_{\mathcal{I}}(x)dx = \int_{0}^{t} \dot{v}_{ex}(t-x)h_{H\mathcal{I}}(x)e^{-j\Delta\Omega t}dx.$$

Метод низкочастотного эквивалента (рис.2) предполагает переход от радиосигнала на входе к его комплексной огибающей, и от узкополосной цепи к эквивалентной цепи. Затем, в результате анализа преобразования комплексной огибающей входного сигнала эквивалентной цепью отыскивается комплексная огибающая сигнала на выходе, а далее и сам выходной сигнал.

Рис.2. Схема метода низкочастотного эквивалента

4. Приближённый метод анализа преобразования радиосигналов в узкополосной цепи

В случае, когда спектр радиосигнала можно считать локализованным, а ширина спектра меньше полосы пропускания узкополосной цепи, то при преобразовании радиосигнала используется только конечный фрагмент комплексной частотной характеристики. Указанная особенность сохраняется и при переходе к комплексным огибающим и эквивалентной цепи (рис.3).

В пределах используемого участка (то есть на конечном интервале частот) КЧХ эквивалентной цепи можно приблизительно представить многочленом от $j\omega$, поскольку в этом случае существование сколько угодно точного приближающего многочлена для мнимой и действительной частей КЧХ гарантирует аппроксимационная теорема Вейерштрасса:

Рис.3. АЧХ эквивалентной цепи и амплитудный спектр комплексной огибающей радиосигнала

$$H_{\mathfrak{I}}(\Omega) \approx \dot{\gamma}_0 + \dot{\gamma}_1 \cdot (j\omega) + \dot{\gamma}_2 \cdot (j\omega)^2 + ... + \dot{\gamma}_N \cdot (j\omega)^N.$$

Выбор степени аппроксимирующего многочлена и его коэффициентов в каждом случае индивидуален, обычно достаточно $N \le 2$.

Для комплексной огибающей сигнала на выходе можем записать

$$\begin{split} \dot{V}_{\text{вых}}\left(\Omega\right) &= \dot{V}_{\text{вх}}\left(\Omega\right) H_{\ni}(\Omega) \approx \\ &\approx \dot{V}_{\text{вх}}\left(\Omega\right) \left(\dot{\gamma}_0 + \dot{\gamma}_1 \cdot (j\omega) + \dot{\gamma}_2 \cdot (j\omega)^2 + ... + \dot{\gamma}_N \cdot (j\omega)^N\right). \end{split}$$

Взяв обратное преобразование Фурье, с учётом свойства дифференцирования, получим

$$\dot{v}_{\rm BbIX}(t) \approx \dot{\gamma}_{0} \dot{v}_{\rm BbIX}(t) + \dot{\gamma}_{1} \dot{v}_{\rm BbIX}'(t) + \dot{\gamma}_{2} \dot{v}_{\rm BbIX}''(t) + ... + \dot{\gamma}_{N} \dot{v}_{\rm BbIX}^{(N)}(t)$$

5. Линейные узкополосные цепи 2-го порядка

Рассмотрим частный случай, когда линейная цепь имеет передаточную функцию вида

$$\overline{H}(p) = \frac{a_0 + a_1 p}{b_0 + b_1 p + b_2 p^2}, \ b_2 \neq 0.$$

Характеристическое уравнение рассматриваемой цепи имеет вид:

$$b_0 + b_1 p + b_2 p^2 = 0$$
.

При решении характеристического уравнения возможны три случая: его корни могут быть различны и действительны, оно может иметь один действительный корень кратности 2, оно может иметь два различных комплексно-сопряжённых корня. В двух

первых случаях передаточная функция представляется в виде произведения сомножителей, соответствующих цепям первого порядка и цепь второго порядка формально можно рассматривать как последовательное соединение звеньев первого порядки. Эти случаи нам не интересны. Рассмотрим оставшийся случай, когда характеристическое уравнение имеет два комплексно-сопряжённых корня. При этом дискриминант уравнения отрицателен

$$D = b_1^2 - 4b_0b_2 < 0,$$

$$\sqrt{D} = j\sqrt{4b_0b_2 - b_1^2}.$$

Корень характеристического уравнения

$$p_0 = \frac{-b_1 + j\sqrt{4b_0b_2 - b_1^2}}{2b_2} = -\frac{b_1}{2b_2} + j\sqrt{\frac{b_0}{b_2} - \left(\frac{b_1}{2b_2}\right)^2} \ .$$

Обозначим $\alpha = \frac{b_1}{2b_2}$; $\omega_0' = \sqrt{\frac{b_0}{b_2} - \alpha^2}$, тогда корни характеристиче-

ского уравнения представляются в виде

$$p_0 = -\alpha + j\omega'_0$$
 и $p_0^* = -\alpha - j\omega'_0$.

Для устойчивой цепи $\alpha > 0$.

Поскольку найдены корни знаменателя передаточной функции, можно её выражение переписать следующим образом

$$\bar{H}(p) = \frac{a_0 + a_1 p}{b_2 (p - p_0)(p - p_0^*)}.$$

Импульсную характеристику цепи найдём как обратное преобразование Лапласа от передаточной функции:

$$h(t)\Big|_{t\geq 0} = \frac{1}{2\pi i} \int_{a-j\infty}^{a+j\infty} \overline{H}(p)e^{pt}dp = \operatorname{res}_{p=p_0} \overline{H}(p)e^{pt}dp + \operatorname{res}_{p=p_0^*} \overline{H}(p)e^{pt}dp =$$

$$= \frac{a_0 + a_1 p}{b_2 (p-p_0)(p-p_0^*)} e^{pt} (p-p_0) \Big|_{p=p_0} +$$

$$+ \frac{a_0 + a_1 p}{b_2 (p-p_0)(p-p_0^*)} e^{pt} (p-p_0^*) \Big|_{p=p_0^*} =$$

Исаков В.Н. Радиотехнические цепи и сигналы (курс лекций 2020) Материалы сайта «Учебный портал МИРЭА» https://online-edu.mirea.ru

$$= \frac{a_0 + a_1 p_0}{b_2 (p_0 - p_0^*)} e^{p_0 t} + \frac{a_0 + a_1 p_0^*}{b_2 (p_0^* - p_0)} e^{p_0^* t} = 2 \operatorname{Re} \frac{a_0 + a_1 p_0}{b_2 (p_0 - p_0^*)} e^{p_0 t} =$$

$$= 2 \operatorname{Re} \frac{a_0 - a_1 \alpha + a_1 j \omega_0'}{b_2 2 j \omega_0'} e^{-\alpha t} e^{j \omega_0' t}.$$

Обозначим
$$\begin{split} \frac{2\dot{H}_0}{\tau} &= \frac{a_0 - a_1\alpha + a_1j\omega_0'}{b_2j\omega_0'} = \frac{2H_0}{\tau}e^{j\phi_{H_0}}\,, \text{ тогда} \\ h(t) &= \sigma(t)\text{Re}\frac{2H_0}{\tau}e^{j\phi_{H_0}}e^{-\alpha t}e^{j\omega_0't} = \sigma(t)\frac{2H_0}{\tau}e^{-\alpha t}\cos(\omega_0't + \phi_{H_0})\,. \end{split}$$

Импульсная характеристика является экспоненциальным радиоимпульсом при выполнении условия $\alpha \ll \omega_0'$. Поскольку мы рассматриваем узкополосные цепи, то указанное условие узкополосности в дальнейшем считаем выполненным. При этом

$$\omega_0' = \sqrt{\frac{b_0}{b_2} - \alpha^2} \approx \sqrt{\frac{b_0}{b_2}}; \frac{2\dot{H}_0}{\tau} \approx \frac{a_0 + a_1 j \omega_0'}{j \omega_0' b_2}.$$

Комплексная огибающая импульсной характеристики

$$\dot{v}_h(t) = \sigma(t) \frac{2\dot{H}_0}{\tau} e^{-\alpha t},$$

её спектр

$$\dot{V}_h(\omega) = \frac{2\dot{H}_0}{\tau} \frac{1}{\alpha + j\omega} = \frac{2\dot{H}_0}{\alpha\tau + j\omega\tau}.$$

Выберем $\tau = \frac{1}{\alpha}$, тогда

$$\dot{V}_h(\omega) = \frac{2\dot{H}_0}{1 + j\omega\tau}$$

и для комплексной частотной характеристики низкочастотного эквивалента сможем записать

$$H_{\text{HY3}}(\omega) = \frac{1}{2}\dot{V}_h(\omega) = \frac{\dot{H}_0}{1 + j\omega\tau},$$

а сама комплексная частотная характеристика узкополосной цепи представится в виде

$$H(\omega) = \begin{cases} \frac{\dot{H}_0}{1 + j(\omega - \omega_0')\tau}, & \omega > 0\\ \frac{\dot{H}_0^*}{1 + j(\omega + \omega_0')\tau}, & \omega < 0 \end{cases}$$

Как видно из полученного выражения введённый параметр \dot{H}_0 имеет смысл резонансного значения комплексной частотной характеристики цепи.

Для импульсных характеристик низкочастотного эквивалента и узкополосной цепи запишем

$$h_{\text{HY}\ni}(t) = \sigma(t) \frac{\dot{H}_0}{\tau} e^{-\frac{t}{\tau}};$$

$$h(t) = \sigma(t) \frac{2H_0}{\tau} e^{-\frac{t}{\tau}} \cos(\omega_0' t + \varphi_{H_0}).$$

Примеры амплитудно-частотной, фазочастотной и импульсной характеристик узкополосной цепи 2-го порядка приведены на рис.4,5.

Рис.4. Частотные характеристики узкополосной цепи 2-го порядка

Исаков В.Н. Радиотехнические цепи и сигналы (курс лекций 2020) Материалы сайта «Учебный портал МИРЭА» https://online-edu.mirea.ru

Рис.5. Импульсная характеристика узкополосной цепи 2-го порядка

Рассмотрим однородное дифференциальное уравнение цепи

$$b_0 + b_1 u'_{\text{BMX}} + b_2 u''_{\text{BMX}} = 0$$

ИЛИ

$$\frac{b_0}{b_2} + \frac{b_1}{b_2} u'_{\text{BMX}} + u''_{\text{BMX}} = 0$$

откуда

$$u''_{\text{BMX}} + 2\alpha u'_{\text{BMX}} + (\omega'_0)^2 = 0$$

Свободный процесс в рассматриваемых цепях является общим решением записанного однородного линейного дифференциального уравнения 2-го порядка с комплексно-сопряжёнными корнями характеристического уравнения и, как известно, описывается выражением:

$$u_{\rm CR}(t) = Ce^{-\alpha t}\cos(\omega_0't + \varphi_{\rm C}),$$

где C и $\phi_{\rm C}$ - произвольные постоянные.

Заметим, что параметр $\tau = 1/\alpha$ характеризует скорость экспоненциального затухания свободных процессов в цепи и имеет смысл постоянной времени.

Добротностью узкополосной цепи называется величина, пропорциональная отношению текущей энергии свободного процесса к энергии, теряемой им за период $T = \frac{2\pi}{\omega_0'}$ квазиколебаний. Доб-

 ω_0 ротность характеризует быстроту затухания свободных процессов

в узкополосной цепи: $E(t,+\infty)$

$$Q = 2\pi \frac{E(t, +\infty)}{E(t, +\infty) - E(t+T, +\infty)}.$$

Найдём

$$E(t,+\infty) = \int_{t}^{+\infty} u_{\text{CB}}^{2}(t')dt' = \frac{1}{2} \int_{t}^{+\infty} v_{\text{CB}}^{2}(t')dt' = \frac{1}{2} \int_{t}^{+\infty} C^{2}e^{-2\alpha t'}dt' =$$

$$= -\frac{C^{2}}{4\alpha} \int_{t}^{+\infty} e^{-2\alpha t'}d(-2\alpha t') = -\frac{C^{2}}{4\alpha} e^{-2\alpha t'} \Big|_{t}^{+\infty} = \frac{C^{2}}{4\alpha} e^{-2\alpha t},$$

откуда

$$Q = 2\pi \frac{\frac{C^2}{4\alpha} e^{2\alpha t}}{\frac{C^2}{4\alpha} e^{2\alpha t} - \frac{C^2}{4\alpha} e^{2\alpha t}} = \frac{2\pi}{1 - e^{-2\alpha T}} = \frac{2\pi}{1 - e^{-2\alpha T}} = \frac{2\pi}{1 - e^{-2\alpha T}} \Big|_{\substack{\alpha \ll \omega'_0 \\ e^{-x} \Big|_{x < 1} \approx 1 - x}} = \frac{2\pi}{1 - \left(1 - \frac{4\pi\alpha}{\omega'_0}\right)} = \frac{\omega'_0}{2\alpha} = \frac{\omega'_0 \tau}{2}.$$

При выполнении условия узкополосности Q>>1 - это условия часто рассматривается как альтернативная формулировка условия узкополосности.

Подставляя выражения для α и ω_0' через коэффициенты дифференциального уравнения цепи, для добротности получим

$$Q = \frac{\sqrt{\frac{b_0}{b_2}}}{2\frac{b_1}{2b_2}} = \frac{b_2}{b_1}\sqrt{\frac{b_0}{b_2}} = \frac{1}{b_1}\sqrt{b_0b_2}.$$

Узкополосная цепь второго порядка полностью характеризуется тремя параметрами: резонансным значением КЧХ \dot{H}_0 , резонансной частотой ω_0' и постоянной времени τ .

Литература

Основная литература

- 1. Радиотехнические цепи и сигналы: Учеб. для вузов / О. А. Стеценко. М.: Высш. шк., 2007.
- 2. Радиотехнические цепи и сигналы: Учебник для студентов радиотехн. спец. вузов / И. С. Гоноровский. М.: Дрофа, 2006.
- 3. Радиотехнические цепи и сигналы: Учебник для студентов радиотехн. спец. вузов / И. С. Гоноровский. М.: Радио и связь, 1986.
- 4. Радиотехнические цепи и сигналы: учеб. для вузов / С. И. Баскаков. М.: Высш. шк., 2000.

Дополнительная литература

- 5. Теория радиотехнических цепей / Н. В. Зернов, В. Г. Карпов.
- Л.: Энергия, 1972. 816 с.: ил. Библиогр.: с. 804 (15 назв.)
- 6. Сигналы. Теоретическая радиотехника: Справ. пособие / А. Н. Денисенко. М.: Горячая линия Телеком, 2005. 704 с.
- 7. Справочник по математике для инженеров и учащихся вузов / И. Н. Бронштейн, К. А. Семендяев. М.: Наука, 1998. 608 с.