

FIR Digital Filter Design

7.1 线性相位FIR数字滤波器的条件和特点

7.2 利用窗函数法设计FIR滤波器

利用频率采样法设计FIR滤波器

利用等波纹逼近法设计FIR滤波器

FIR Digital Filter Design

7.2 利用窗函数法设计FIR滤波器(1)

窗函数法设计FIR滤波器

- > 音频滤波实例
- > 窗函数设计法的设计思路
- > 加窗对滤波器频谱带来的影响以及窗函数的选择
- > 窗函数设计法的步骤

有一个被高频噪声污染的音频信号,分析信号的频谱,用窗函数法设计一个FIR线性相位滤波器对该音频信号进行滤波处理,去除高频噪声。

> 分析理想低通滤波器的频率响应

$$\boldsymbol{H}_{d}(e^{j\omega}) = \left|\boldsymbol{H}_{d}(e^{j\omega})\right| e^{j\theta_{d}(\omega)}$$

理想幅频、相频响应

理想频率响应及单位脉冲响应

问题: 窗函数会使滤波器频率响应H(ei[®])发生什么变化?

时域相乘 $h(n) = h_d(n)w(n)$

DTFT

频域卷积 $H(e^{j\omega}) = H_d(e^{j\omega}) * W(e^{j\omega})$

设
$$w(n)=R_N(n)$$
,则 DTFT[$R_N(n)$]= $W_R(e^{j\omega})$

$$W_{R}(e^{j\omega}) = \sum_{n=-\infty}^{\infty} \frac{R_{N}(n)e^{-jn\omega}}{R_{N}(n)e^{-jn\omega}} = \sum_{n=0}^{N-1} e^{-jn\omega} = \frac{1 - e^{-j\omega N}}{1 - e^{-j\omega}}$$

$$= \frac{e^{-j\omega\frac{N}{2}} \left[(e^{j\omega\frac{N}{2}} - e^{-j\omega\frac{N}{2}})/2j \right]}{e^{-j\omega\frac{1}{2}} \left[(e^{j\omega\frac{1}{2}} - e^{-j\omega\frac{1}{2}})/2j \right]}$$

$$= e^{-j\omega \frac{N-1}{2}} \frac{\sin(\frac{N}{2}\omega)}{\sin(\frac{1}{2}\omega)}$$

> 频域卷积给幅度响应带来的影响

$$H(e^{j\omega}) = H_d(e^{j\omega}) *W(e^{j\omega})$$

出现 过渡带 和 振荡起伏 的现象

与窗函数形状和N值有关

仅与窗函数形状有关

ightharpoonup 不同窗函数w(n)及其它们的频谱 $W(e^{j\omega})$

\ge 增加窗函数长度后,窗函数w(n)及其它们的频谱 $W(e^{j\omega})$

窗谱指标和加窗后滤波器性能指标

	窗谱性能指标		加窗后滤波器性能指标		
窗函数	主瓣	旁瓣	过渡		阻带
类型	宽度	峰值	带宽		最小衰减
	(rad)	(dB)	$\triangle \omega$ (rad)		$\alpha_s(\mathbf{dB})$
矩形窗	4π/N	-13	1.8π	/ N	-21
三角形窗	8π/N	-25	6.1π	/ N	-25
汉宁窗	8π/N	-31 A	→ 6.2π	/ N	-44
海明窗	8π/N	-41	6.6π	/ N	-53
布拉克曼窗	12π/N	-57	11π	/ N	-74

$$\alpha_s$$
 窗函数类型 $N = \frac{A}{\Delta \omega}$

FIR Digital Filter Design

7.2 利用窗函数法设计FIR滤波器(1)

FIR Digital Filter Design

7.2 利用窗函数法设计FIR滤波器(2)

> 音频去噪实例分析

音频去噪仿真结果与分析

矩形窗

華東謂正大學

音频去噪仿真结果与分析

華東理工大學

音频去噪仿真结果与分析

華東習工大學

華東理工大學

例:请设计一个线性相位FIR低通滤波器,技术指标如下:

- (1) 抽样频率为 f_s =15KHz;
- (2) 通带截止频率为 f_p =1.5KHz;
- (3) 阻带截止频率为 f_{st} =3KHz;
- (4) 阻带衰减不小于50dB。

解: (1) 求数字滤波器指标

$$\omega_p = 2\pi \frac{f_p}{f_s} = 0.2\pi (\text{rad})$$
 $\omega_{st} = 2\pi \frac{f_{st}}{f_s} = 0.4\pi (\text{rad})$

$$\omega_c = \frac{\omega_p + \omega_{st}}{2} = 0.3\pi (\text{rad})$$

$$\alpha_s = 50dB$$
 $\Delta \omega = |\omega_{st} - \omega_p| = 0.2\pi (\text{rad})$

(2) 求
$$h_d(n)$$
:

(2)
$$\Re h_d(n)$$
:
$$H_d(e^{j\omega}) = \begin{cases} e^{-j\omega\tau} & |\omega| \le \omega_c \\ 0 & \omega_c < |\omega| \le \pi \end{cases}$$

$$h_d(n) = \frac{1}{2\pi} \int_{-\omega_c}^{\omega_c} e^{-j\omega\tau} e^{j\omega n} d\omega$$
$$= \frac{1}{2\pi} \int_{-\omega_c}^{\omega_c} e^{j\omega(n-\tau)} d\omega$$

$$=\frac{\sin[\omega_c(n-\tau)]}{\pi(n-\tau)} \qquad \tau = \frac{N-1}{2}$$

(3) 选择窗函数: 由 $\alpha_s = 50dB$ 确定海明窗(-53dB)

$$w(n) = [0.54 - 0.46\cos(\frac{2n\pi}{N-1})]R_N(n)$$

(4) 确定N 值 海明窗带宽: $\Delta \omega = \frac{6.6\pi}{N}$

$$\Delta \omega = \left| \omega_{st} - \omega_p \right| = 0.2\pi (\text{rad})$$

$$N = \frac{A}{\Delta \omega} = \frac{6.6\pi}{0.2\pi} = 33$$
 $\tau = \frac{(N-1)}{2} = 16$

(5) 确定FIR滤波器的h(n)

$$h(n) = h_d(n)w(n) = \frac{\sin\left[0.3\pi(n-16)\right]}{\pi(n-16)} \left[0.54 - 0.46\cos(\frac{n\pi}{16})\right] R_{33}(n)$$

(6) 求 $H(e^{j\omega})$, 验证。

若不满足技术指标,则改变N或窗形状重新 设计。

FIR Digital Filter Design

7.2 利用窗函数法设计FIR滤波器(2)

FIR Digital Filter Design

7.2 利用窗函数法设计FIR滤波器(3)

线性相位FIR高通滤波器的设计

理想高通的频响:

$$H_d(e^{j\omega}) = \begin{cases} e^{-j\omega\tau} & \omega_c \le |\omega| < \pi \\ 0 & 0 \le |\omega| \le \omega_c \end{cases} \quad \tau = \frac{N-1}{2}$$

$$\omega_c \leq |\omega| < \pi$$

$$0 \le |\omega| \le \omega_c$$

$$\tau = \frac{N-1}{2}$$

N必须为奇数!

其单位抽样响应:

$$h_d(n) = \frac{1}{2\pi} \left[\int_{-\pi}^{-\omega_c} e^{j\omega(n-\tau)} d\omega + \int_{\omega_c}^{\pi} e^{j\omega(n-\tau)} d\omega \right]$$

$$= \frac{1}{\pi(n-\tau)} \left[\sin[\pi(n-\tau)] - \sin[\omega_c(n-\tau)] \right]$$

高通滤波器 (ω_c) = 全通滤波器—低通滤波器 (ω_c)

线性相位FIR带通滤波器的设计

華東習工大學

理想带通的频响:

$$H_{d}(e^{j\omega}) = \begin{cases} e^{-j\omega\tau} & 0 < \omega_{1} \leq |\omega| \leq \omega_{2} < \pi \\ 0 & 其它\omega \end{cases} \tau = \frac{N-1}{2}$$

其单位抽样响应:

$$h_d(n) = \frac{1}{2\pi} \left[\int_{-\omega_2}^{-\omega_1} e^{j\omega(n-\tau)} d\omega + \int_{\omega_1}^{\omega_2} e^{j\omega(n-\tau)} d\omega \right]$$

$$= \frac{1}{\pi(n-\tau)} \left[\sin[\omega_2(n-\tau)] - \sin[\omega_1(n-\tau)] \right]$$

带通滤波器 (ω_1,ω_2) =低通滤波器 (ω_2) -低通滤波器 (ω_1)

$$\Delta\omega_1 = |\omega_{p1} - \omega_{s1}|$$

$$\Delta\omega_2 = |\omega_{p2} - \omega_{s2}|$$

> 线性相位FIR 带阻滤波器的设计

理想带阻的频响:

$$H_d(e^{j\omega}) = \begin{cases} e^{-j\omega\tau} & 0 \le |\omega| \le \omega_1, & \omega_2 \le |\omega| \le \pi \\ 0 &$$
其它 ω

其单位抽样响应:

N必须为奇数!

$$h_d(n) = \frac{1}{2\pi} \left[\int_{-\pi}^{-\omega_2} e^{j\omega(n-\tau)} d\omega + \int_{-\omega_1}^{\omega_1} e^{j\omega(n-\tau)} d\omega + \int_{\omega_2}^{\pi} e^{j\omega(n-\tau)} d\omega \right]$$

$$= \frac{1}{\pi(n-\tau)} \left[\sin[\pi(n-\tau)] + \sin[\omega_1(n-\tau)] - \sin[\omega_2(n-\tau)] \right]$$

带阻滤波器 ω_1,ω_2)=高通滤波器 ω_2)+低通滤波器 ω_1)

FIR Digital Filter Design

7.2 利用窗函数法设计FIR滤波器(3)

