

Disciplina: Tópicos em Sistemas de Informação

Prof. Me. Fernando Roberto Proença

Diagrama de Estados - Conceito

- Modela os comportamentos possíveis dos objetos de uma classe ao longo de seu tempo de vida (ciclo de vida de um objeto)
 - Eventos, transições, estados entre eventos.
- O Diagrama de Estados (ou Diagrama de Transição de Estados DTE) descreve:
 - Todos os estados possíveis de um objeto
 - Como o estado de um objeto muda a partir de eventos.
- Pode ser utilizado para representar os estados de um Caso de Uso ou mesmo de um Subsistema ou Sistema Completo.

Estados típicos de um sistema

- Para entrar / logar em um sistema:
 - Aguardando a introdução de uma senha.
 - □ Em um sistema de fabricação de cerveja:
 - Misturando ingredientes ou aquecendo uma mistura.
 - □ Em um sistema de motorização:
 - Acelerando um motor.
 - □ Em um sistema de uma distribuidora de combustível:
 - **Enchendo** o tanque.

Outros estados típicos de um sistema

- Aguardando o próximo comando;
- Aguardando dados em um instrumento;
- Verificando dados;
- □ Ocioso sem fazer nada.

Diagramas de Estados – Principais elementos

- Estados;
- Transições;
- Eventos;
- Condições de guarda;
- Ações;
- Pontos de junção.

Diagrama de Estados – Elementos

Estados

- Um estado de um objeto pode ser caracterizado pelo valor de um ou mais atributos do objeto:
 - Um objeto de uma disciplina ofertada pode estar aberto (se há vaga) ou fechado (se não há mais vaga). Nesse caso, o estado é definido de acordo com o número de alunos matriculados.
- A situação de uma conta bancária passa para o **vermelho** quando o seu saldo fica negativo.

Estado Inicial

- □ Indica o estado de um objeto quando ele é criado;
- Só pode haver um estado inicial em um DTE.

Estado Final

- □ Indica o fim do ciclo de vida de um objeto;
- É opcional e pode haver mais de um estado final em um DTE.

Diagrama de Estados – Elementos

Transições

- Os estados estão associados a outros pelas transições.
- Quando uma transição entre estados ocorre, diz-se que a transição foi disparada.
- Representado por uma linha contínua conectando os estados, com uma seta apontando para um dos estados.
- Uma transição pode ser rotulada com uma expressão da seguinte forma:

evento (lista-parâmetros) / [guarda] / ação

Eventos

- Uma transição possui um evento associado.
- Um evento é algo que acontece em algum ponto no tempo e que pode modificar o estado de um objeto.
- A ocorrência de um evento provoca a transição entre estados de objetos de alguma classe pertencente ao sistema.

Aguardando Pagamento

Pagar()

Enviando Produto

- Exemplos de Eventos:
 - Finalizar()
 - Pagar()
 - Devolver()
 - Interromper()

Diagrama de Estados – Elementos

10

Eventos

□ Condição de guarda

- É uma expressão de valor lógico que condiciona o disparo de uma transição.
- A transição correspondente é disparada se e somente se o evento associado ocorre e a condição de guarda é verdadeira.
 - Uma transição que não possui condição de guarda é sempre disparada quando o evento ocorre.
- A condição de guarda pode ser definida utilizando-se parâmetros passados no evento e também atributos.

Diagrama de Estados – Elementos

□ Condição de guarda

[Acabou o tempo]

[Acabou o tempo]

[Acabou o tempo]

13

Ações

- Ao transitar de um estado para outro, um objeto pode realizar uma ou mais ações.
- Uma ação é uma expressão definida em termo dos atributos, das operações da classe ou dos parâmetros do evento.
- A ação associada a uma transição é executada se e somente se a transição for disparada.

Diagrama de Estados – Elementos

14

Ações

Diagrama de Estados – Exemplo

Diagrama de Estados – Exemplo

Diagrama de Estados de um telefone fixo...

Diagrama de Estados – Exemplo

Diagrama de Estados de um servidor...

Estado Iniciando servidor

Transição

Esperando conexão

Desligando servidor

Atendendo conexão

Estado final

Diagrama de Estados

18

Ponto de Decisões (ou ponto de ramificação)

- Decisão é um recurso utilizado para controlar desvios no fluxo de controle de um diagrama de atividade.
- É composto de condições booleanas e cada condição, quando satisfeita, dispara uma transição correspondente.
- Cada opção é identificada por meio de uma condição guarda.
- Possui uma única transição de entrada e várias transições de saída.
 - Para cada transição de saída, há uma condição de guarda associada.

19

Ponto de Decisões – Representação Gráfica

O losango do diagrama de Estado é um ícone de decisão, assim como nos fluxogramas.

Diagrama de Estados

20

Ponto de Decisões – Exemplo

21

Ponto de Decisões

- Cada condição deve ser mutuamente **exclusiva**, de modo que **somente uma opção** seja possível em qualquer ponto de decisão.
- Essa construção está relacionada a instruções case ou estruturas ifthen-else.

Diagrama de Estados

22

Ponto de Uniões (ou ponto de convergência)

- Consiste no ponto onde dois ou mais caminhos alternativos se juntam e continuam em um único caminho.
 - Ou seja, existe mais de uma transição de entrada e apenas uma transição de saída.
- Reúne diversas transições que, direta ou indiretamente, têm um ponto de ramificação em comum.

23

Ponto de Uniões – Notação Gráfica

■ O ícone de losango também é usado para modelar um ponto de união, o local onde dois caminhos alternativos se juntam e continuam como um.

Diagrama de Estados

24

□ Barras de Sincronização

- É utilizada quando da ocorrência de **estados paralelos** causados por **transições concorrentes**.
- Uma transição que começa numa barra de sincronização somente é executada quando <u>TODAS</u> as transições que chegam nesta barra ocorrerem.
- Quando uma transição chega a uma barra de sincronização, as transições que partem desta barra ocorrem simultaneamente e independentemente.
 - Ou seja, dois ou mais fluxos (transições) são executados simultaneamente.

□ Barras de Sincronização

- Existe dois tipos de barras de Sincronização:
 - Barra de bifurcação (concorrência): recebe uma transição de entrada, e cria dois ou mais fluxos (transições) de controle paralelos.
 - Cada fluxo é executado independentemente e em paralelo com os demais.
 - 2. <u>Barra de junção (sincronismo):</u> recebe duas ou mais transições de entrada e une os fluxos em um único fluxo.

Diagrama de Estados

□ Barras de Sincronização - Representação Gráfica

27

Verificando um Diagrama de Estados

- Todos os estados podem ser atingidos?
- Todos os estados tem saída?
- Foram definidos todos os estados possíveis?
- Em cada estado o sistema reage adequadamente a todas as condições possíveis?

Diagrama de Estados – Resumindo

2

- Exemplo 01: Preparar/Pegar Bebida
 - Definir os estados da água
 - Definir os estados do refrigerante
 - Definir os estados do café.

Diagrama de Atividades: Preparar/Pegar Bebida

Diagrama de Atividades: Preparar/Pegar Bebida

31

Diagrama de Estados: Preparar/Pegar Bebida

?2

Diagrama de Estados: Preparar/Pegar Bebida

33

Estados do café

Diagrama de Estados: Preparar/Pegar Bebida

34

Estados do refrigerante

Dúvidas?

3!

Prof. Me. Fernando Roberto Proença

fernando.proenca@uemg.br

Para o Projeto...

- □ Faça o Diagrama de Estados para os seguintes objetos do sistema:
 - 1. Ordem de Serviço
 - 2. Tarefa
 - 3. Usuário