07. Statistical Estimation

By Yang Lin^1 (2023 秋季, @NJU)

Contents

- 1 Maximum likelihood estimation
- 2 Optimal detector design
- *3 Experiment design

Parametric distribution estimation

- 1. Distribution estimation problem: estimate probability density p(y) of a random variable from observed values
- 2. Parametric distribution estimation: choose from a family of densities $p_x(y)$, indexed by a parameter x

Maximum Likelihood Estimation

maximize (over
$$x$$
) $\log p_x(y)$

- 1. y is observed value
- 2. $l(x) = \log p_x(y)$ is called log-likelihood function
- 3. can add constraints $x \in C$ explicitly, or define $p_x(y) = 0$ for $x \notin C$
- 4. a convex optimization problem if $\log p_x(y)$ is concave in x for fixed y

Linear Measurement Model

$$y_i = a_i^T x + v_i, \quad i = 1, \dots, m$$

 $x \in \mathbf{R}^n$ is vector of unknown parameters v_i is IID measurement noise, with density p(z) y_i is measurement: y has density $p_x(y) = \prod_{i=1}^m p(y_i - a_i^T x)$ maximum likelihood estimate: any solution x of

maximize (over x)
$$l(x) = \sum_{i=1}^m \log p(y_i - a_i^T x)$$

y is observed value

1. Gaussian noise $\mathcal{N}(0, \sigma^2)$: $p(z) = (2\pi\sigma^2)^{-1/2} e^{-z^2/(2\sigma^2)}$,

$$l(x) = -\frac{m}{2}\log(2\pi\sigma^2) - \frac{1}{2\sigma^2}(a_i^T x - y_i)^2$$

ML estimate is LS solution

2. **Laplacian noise**: $p(z) = (1/(2a))e^{-|z|/a}$,

$$l(x) = -m\log(2a) - \frac{1}{a} \sum_{i=1}^{m} |a_i^T x - y_i|$$

ML estimate is 1-norm solution

3. uniform noise on [-a, a]:

$$l(x) = \begin{cases} -m \log(2a) & |a_i^T x - y_i| \le a, \ i = 1, \dots, m \\ -\infty & \text{otherwise} \end{cases}$$

ML estimate is any x with $|a_i^T x - y_i| \le a$

Logistic regression

Random variable $y \in \{0, 1\}$ with distribution

$$p = \mathbf{prob}(y = 1) = \frac{\exp(a^T u + b)}{1 + \exp(a^T u + b)}$$

- 1. a, b are parameters; $u \in \mathbf{R}^n$ are (observable) explanatory variables
- 2. Estimation problem: estimate a, b from m observations (u_i, y_i) log-likelihood function (for $y_1 = \cdots = y_k = 1, y_{k+1} = \cdots = y_m = 0$):

$$l(a,b) = \log \left(\prod_{i=1}^k \frac{\exp(a^T u_i + b)}{1 + \exp(a^T u_i + b)} \prod_{i=k+1}^m \frac{1}{1 + \exp(a^T u_i + b)} \right)$$
$$= \sum_{i=1}^k (a^T u_i + b) - \sum_{i=1}^m \log(1 + \exp(a^T u_i + b))$$

concave in a, b

1 maximum likelihood estimation

example (n = 1, m = 50 measurements)

circles show 50 points (u_i, y_i) solid curve is ML estimate of $p = \exp(au + b)/(1 + \exp(au + b))$

2 Optimal Detector Design

(Binary) hypothesis testing

detection (hypothesis testing) problem

given observation of a random variable $X \in \{1, ..., n\}$, choose between:

- 1. hypothesis 1: X was generated by distribution $p=(p_1,\ldots,p_n)$
- 2. hypothesis 2: X was generated by distribution $q = (q_1, \ldots, q_n)$

Randomized detector

a nonnegative matrix $T \in \mathbf{R}^{2 \times n}$, with $\mathbf{1}^T T = \mathbf{1}^T$

if we observe X = k, we choose hypothesis 1 with probability t_{1k} , hypothesis 2 with probability t_{2k}

if all elements of T are 0 or 1, it is called a deterministic detector

detection probability matrix:

$$D = [Tp \ Tq] = \begin{bmatrix} 1 - P_{\rm fp} & P_{\rm fn} \\ P_{\rm fp} & 1 - P_{\rm fn} \end{bmatrix}$$

- 1. P_{fp} is probability of selecting hypothesis 2 if X is generated by distribution 1 (false positive)
- 2. $P_{\rm fn}$ is probability of selecting hypothesis 1 if X is generated by distribution 2 (false negative)

multicriterion formulation of detector design

$$\begin{array}{ll} \text{minimize (w.r.t. } \mathbf{R}_+^2) & (P_{\mathrm{fp}}, P_{\mathrm{fn}}) = ((Tp)_2, (Tq)_1) \\ \text{subject to} & t_{1k} + t_{2k} = 1, \ k = 1, \dots, n \\ & t_{ik} \geq 0, \quad i = 1, 2, \quad k = 1, \dots, n \end{array}$$

variable $T \in \mathbf{R}^{2 \times n}$

2 Optimal Detector Design

scalarization (with weight $\lambda > 0$)

minimize
$$(Tp)_2 + \lambda (Tq)_1$$

subject to $t_{1k} + t_{2k} = 1, \ t_{ik} \ge 0, i = 1, 2, \ k = 1, \dots, n$

an LP with a simple analytical solution

$$(t_{1k}, t_{2k}) = \begin{cases} (1,0) & p_k \ge \lambda q_k \\ (0,1) & p_k < \lambda q_k \end{cases}$$

A deterministic detector, given by a likelihood ratio test

If $p_k = \lambda q_k$ for some k, any value $0 \le t_{1k} \le 1$, $t_{1k} = 1 - t_{2k}$ is optimal (i.e., Pareto-optimal detectors include non-deterministic detectors)

minimax detector

minimize
$$\max\{P_{\text{fp}}, P_{\text{fn}}\} = \max\{(Tp)_2, (Tq)_1\}$$

subject to $t_{1k} + t_{2k} = 1, t_{ik} \ge 0, i = 1, 2, k = 1, \dots, n$

an LP; solution is usually not deterministic

2 Optimal Detector Design

example

$$P = \left[\begin{array}{ccc} 0.70 & 0.10 \\ 0.20 & 0.10 \\ 0.05 & 0.70 \\ 0.05 & 0.10 \end{array} \right]$$

solutions 1, 2, 3 (and endpoints) are deterministic; 4 is minimax detector

3 Experiment Design

m linear measurements $y_i = a_i^T x + w_i, i = 1, ..., m$ of unknown $x \in \mathbf{R}^n$

- 1. measurement errors w_i are IID $\mathcal{N}(0,1)$
- 2. ML(least-squares) estimate is

$$\hat{x} = \left(\sum_{i=1}^{m} a_i a_i^T\right)^{-1} \sum_{i=1}^{m} y_i a_i$$

error $e = \hat{x} - x$ has zero mean and covariance

$$E = \mathbf{E}ee^T = \left(\sum_{i=1}^m a_i a_i^T\right)^{-1}$$

confidence ellipsoids are given by $\{x|(x-\hat{x})^T E^{-1}(x-\hat{x}) \leq \beta\}$ experiment design: choose $a_i \in \{v_1, \ldots, v_p\}$ (a set of possible test vectors) to make E 'small'

3 Experiment Design

vector optimization formulation

minimize (w.r.t.
$$\mathbf{S}^n_+$$
) $E = \left(\sum_{k=1}^p m_k v_k v_k^T\right)^{-1}$ subject to $m_k \geq 0, \ m_1 + \cdots + m_p = m$ $m_k \in \mathbf{Z}$

- 1. variables are m_k (# vectors a_i equal to v_k)
- 2. difficult in general, due to integer constraint

relaxed experiment design

assume $m \gg p$, use $\lambda_k = m_k/m$ as (continuous) real variable

minimize (w.r.t.
$$\mathbf{S}^n_+$$
) $E = (1/m) \left(\sum_{k=1}^p \lambda_k v_k v_k^T\right)^{-1}$ subject to $\lambda \succeq 0, \ \mathbf{1}^T \lambda = 1$

common scalarizations: minimize log det E, $\mathbf{tr}E$, $\lambda_{\max}(E)$,... can add other convex constraints, e.g., bound experiment cost $c^T\lambda < B$

3 Experiment Design

D-optimal design

minimize
$$\log \det \left(\sum_{k=1}^{p} \lambda_k v_k v_k^T\right)^{-1}$$
 subject to $\lambda \succeq 0$, $\mathbf{1}^T \lambda = 1$

interpretation: minimizes volume of confidence ellipsoids

dual problem

maximize
$$\log \det W + n \log n$$

subject to $v_k^T W v_k \leq 1, \quad k = 1, \dots, p$

interpretation: $\{x|x^TWx\leq 1\}$ is minimum volume ellipsoid centered at origin, that includes all test vectors v_k

complementary slackness: for λ, W primal and dual optimal

$$\lambda_k (1 - v_k^T W v_k) = 0, \quad k = 1, \dots, p$$

optimal experiment uses vectors v_k on boundary of ellipsoid defined by W

