Math 4317 (Prof. Swiech, S'18): HW #4

Peter Williams 4/15/2018

Section 20

A. Prove that if f is defined for $x \ge 0$ by $f(x) = \sqrt{x}$, then f is continuous at every point of its domain.

For $f(x) = \sqrt{x}$, $\mathcal{D}(f) = \{x \in \mathbb{R} : x \ge 0\}$, let $a \in \mathcal{D}(f)$.

When a = 0, $|f(x) - f(a)| = |\sqrt{x} - 0| = \sqrt{x} < \varepsilon$. If we let $\delta(\varepsilon) = \varepsilon^2$, when $x < \varepsilon^2$, $|f(x)| < \varepsilon$.

When $a \neq 0$, $|f(x) - f(a)| = |\sqrt{x} - \sqrt{a}| = \frac{|\sqrt{x} - \sqrt{a}|}{|\sqrt{x} + \sqrt{a}|} |\sqrt{x} + \sqrt{a}| = \frac{|x - a|}{|\sqrt{x} + \sqrt{a}|} < \frac{|x - a|}{\sqrt{a}} < \varepsilon \implies \text{when } |x - a| < \varepsilon \sqrt{a},$ then, $|f(x) - f(a)| < \varepsilon$, thus we can choose $\delta(\varepsilon) = \varepsilon \sqrt{a} \implies f$ is continuous at every point in its domain.

B. Show that a "polynomial function"; that is, a function f with the form $f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$, $x \in \mathbb{R}$ is continuous at every point of \mathbb{R} .

Relying on the properties of algebraic combinations of continuous of functions, we construct f as a combination of continuous functions to show its continuity. Considering the last term of the polynomial function, denoted here, $f_0(x) = a_0$, $f_0(x)$ is a continuous, constant function, since, for any $a \in \mathbb{R}$ we have $|f_0(x) - f_0(a)| = |a_0 - a_0| < \varepsilon = \delta(\varepsilon)$, $\varepsilon > 0$. We consider the second to last term of f, a_1x , as a constant, a_1 multiplied by the identity function, denoted, $f_1(x) = x$. Since $f_1(x) = x$, for any real number $a \in \mathbb{R}$, we have $|f_1(x) - f_1(a)| = |x - a| < \varepsilon = \delta(\varepsilon)$, $\varepsilon > 0 \implies a_1 f_1(x) = a_1 x$ is continuous.

Relying on the continuity of $f_1(x) = x$ multiplied by any constant, we can construct higher order terms of f through repeated multiplication of $f_1(x)$, e.g. $a_2 \cdot f_1(x) \cdot f_1(x) = a_2 x^2$ and $a_n \prod_{j=1}^n f_1(x) = a_n \cdot f_1(x) \cdot f_1(x) \cdot \dots \cdot f_1(x) = a_n x^n$, and so on, where each term constructed $a_n x^n$ is continuous on \mathbb{R} since it is constructed via algebraic combinations of continuous functions $\implies f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$, is continuous at every point $x \in \mathbb{R}$.

E. Let f be the function on $\mathbb{R} \to \mathbb{R}$ defined by f(x) = x, x irrational, f(x) = 1 - x, x rational. Show that f is continuous at $x = \frac{1}{2}$ and discontinuous elsewhere.

Considering the point $a=\frac{1}{2}$, we have $f(a)=\frac{1}{2}$, and $|f(x)-f(a)|=|1-x-\frac{1}{2}|=|\frac{1}{2}-x|=|x-a|<\varepsilon=\delta(\varepsilon)$. So if $|f(x)-f(a)|<\varepsilon=\delta(\varepsilon)>0 \Longrightarrow |x-a|<\delta(\varepsilon)$, and then we have f continuous at the point $a=\frac{1}{2}$. For the case $a\neq\frac{1}{2}$, a irrational, take a sequence $X=(x_n)$ of rational numbers converging to a. Since the sequence $(f(x_n))$ converges to 1-a, and we have f(a)=a, f is not continuous at irrational points by the Discontinuity Criterion. For the case $a\neq\frac{1}{2}$, a rational, take a sequence $Y=(Y_n)$ of irrational numbers converging to a, the sequence $(f(y_n))$ converges to a, but f(a)=1-a, which equation is only satisfied when $a=\frac{1}{2}$, thus f is not continuous for rational numbers at any point other than $\frac{1}{2}$.

F.Let f be continuous on $\mathbb{R} \to \mathbb{R}$. Show that if f(x) = 0 for rational x, then f(x) = 0 for all $x \in \mathbb{R}$.

Every real point, $x \in \mathbb{R}$ is the limit of a sequence of rational numbers. If f is continuous \Longrightarrow for a sequence of rational numbers $X = (x_n) \to x$, we have $(f(x_n)) = 0$, for all $n \in \mathbb{N}$. Since f is continuous at each rational point $x \in \mathbb{R}$, we can find $|f(x_n) - f(x)| < \varepsilon$, $\varepsilon > 0$, and $|x_n - a| < \delta(\varepsilon) \Longrightarrow (f(x_n)) \to f(x) = 0, \forall x \in \mathbb{R}$.

I. Using the results of the preceding exercise, show that the function g, defined on $\mathbb{R} \to \mathbb{R}$ by $g(x) = x\sin(\frac{1}{x})$, $x \neq 0$, g(x) = 0, x = 0 is continuous at every point. Sketch a graph of this function.

For the case a=0, we have $|g(x)-g(a)|=|x\sin\frac{1}{x}-0|=|x||\sin\frac{1}{x}|\leq |x|\cdot 1<\varepsilon,\ \varepsilon>0,$ since $-1\leq\sin\frac{1}{x}\leq 1.$ So when $|g(x)-g(0)|<\varepsilon=\delta(\varepsilon),$ we then have $|x|=|x-0|<\delta(\varepsilon)\implies g$ continuous at 0.

For the case $a \neq 0$, we have $|g(x) - g(a)| = |x \sin \frac{1}{x} - a \sin \frac{1}{a}| = |x \sin \frac{1}{x} - a \sin \frac{1}{a} - a \sin \frac{1}{a} - a \sin \frac{1}{x} + a \sin \frac{1}{x}| = |(x - a)(\sin \frac{1}{x}) + a(\sin \frac{1}{x} - \sin \frac{1}{a})| \leq |x - a| |\sin \frac{1}{x}| + |a| |\sin \frac{1}{x} - \sin \frac{1}{a}|,$ by Triangle Inequality. Since both $|\sin \frac{1}{x}| \leq 1$ and $|\sin \frac{1}{x} - \sin \frac{1}{a}| \leq 1$, we have $|x - a| |\sin \frac{1}{x}| + |a| |\sin \frac{1}{x} - \sin \frac{1}{a}| \leq |x - a| \cdot 1 + |a| \cdot 1 = |x - a| + |a| < \varepsilon$.

It then follows that if $\delta(\varepsilon) = \varepsilon - |a|$, i.e. $\varepsilon > \delta(\varepsilon) + |a|$, when $|g(x) - g(a)| < \varepsilon$, then $|x - a| < \delta(\varepsilon) \implies g$ continuous at every point in \mathbb{R} .

Sketch of function below:

N. Let $g: \mathbb{R} \to \mathbb{R}$ satisfy the relation g(x+y) = g(x)g(y), $x,y \in \mathbb{R}$. Show that if g is continuous at x = 0, then g is continuous at every point. Also if g(a) = 0 for some $a \in \mathbb{R}$, then g(x) = 0 for all $x \in \mathbb{R}$.

If g is continuous at $x=0 \implies g(x+y)=g(y)=g(0)\cdot g(y)$. This implies also that $g(0)g(y)=g(y) \implies g(0)g(y)-g(y)=0=g(y)(g(0)-1)=0 \implies g(0)=1$, or that g(0)=0. If $g(0)=0 \implies -g(y)=0=g(y)$. In this case then $g(y)=0, \ \forall y\in\mathbb{R} \implies g(x)=0, \ \forall x\in\mathbb{R}$. On the other hand if $g(0)=1, \implies g(0)\cdot g(y)=g(y)$ continuous for every point $y\in\mathbb{R}$.

Section 21

I. Let g be a linear function from $\mathbb{R}^p \to \mathbb{R}^q$. Show that g is one-one and only if g(x) = 0 implies that x = 0. Since g is linear \Longrightarrow for $x, y \in \mathbb{R}^p$, g(x+y) = g(x) + g(y). Then if $g(x) = 0 \Longrightarrow g(x+y) = 0 + g(y) = g(y) \Longrightarrow g(x+y) = g(y) \Longrightarrow g(x+y) = g(y) \Longrightarrow g(x+y) = g(y)$ which implies x = 0. If we assume that g is one-one, then for any $g(x) = g(y) \Longrightarrow x = y$. So in the case g(x) = 0, and g(x+y) = g(x) + g(y) = 0 + g(y). Since $g(x) + g(y) = g(y) \Longrightarrow g(y) - g(x) = g(y) \Longrightarrow x + y = x - y$, which is satisfied when x = 0.

J. If h is a one-one linear function from $\mathbb{R}^p \to \mathbb{R}^p$, show that the inverse function h^{-1} is a linear function from $\mathbb{R}^p \to \mathbb{R}^p$.

Since h is one-one \Longrightarrow if $h(x_1) = h(x_2)$, $x_1 = x_2$, $x_1, x_2 \in \mathbb{R}^p$. Extending the the linear case, we have if $h(ax + by) = h(ax_1 + by_1) = ah(x) + bh(y) = ah(x_1) + bh(y_1)$ then $ax_1 + by_1 = ax + by$. By definition $h^{-1} = \{ax + by : h(ax + by) \in \mathbb{R}^p\} = \{ax : h(ax) \in \mathbb{R}^p\} + \{by : h(by) \in \mathbb{R}^p\}$. This implies $h^{-1}(ax + by) = h^{-1}(h(ax)) + h^{-1}(h(by)) \Longrightarrow h^{-1}$ is linear, and $h^{-1} : \mathbb{R}^p \to \mathbb{R}^p$, since $h^{-1}(h(ax)) + h^{-1}(h(by)) = ax + by \in \mathbb{R}^p$ by construction.

K. Show that the sum and the composition of two linear functions are linear functions.

By definition a function is linear if f(ax + by) = af(x) + bf(y), $a, b \in \mathbb{R}$, $x, y \in \mathbb{R}^p$.

For the sum of two linear functions we then have $(f+g)(ax+by)=f(ax+by)+g(ax+by)=af(x)+bf(y)+ag(x)+bf(y)=a(f(x)+g(x))+b(f(y)+g(y))=a(f+g)(x)+b(f+g)(y) \Longrightarrow$ linearity. For the composition of two linear functions we have $f\circ g(ax+bx)=f(g(ax+by))=f(ag(x)+bg(y))=af(g(x))+bf(g(y))=a(f\circ g)(x)+b(f\circ g)(y)\Longrightarrow$ composition of two linear functions is linear.

L. If f is a linear map on $\mathbb{R}^p \to \mathbb{R}^q$, define $||f||_{pq} = \sup\{||f(x)|| : x \in \mathbb{R}^p, ||x|| \le 1\}$. Show that the mapping $f \to ||f||_{pq}$ defines a norm on the vector space $\mathcal{L}(\mathbb{R}^p, \mathbb{R}^q)$ of all linear functions on $\mathbb{R}^p \to \mathbb{R}^q$. Show that $||f(x)|| \le ||f||_{pq}||x||$ for all $x \in \mathbb{R}^p$.

We have $x = (x_1, x_2, ..., x_p) \in \mathbb{R}^p$, $f(x) = y = (y_1, y_2, ..., y_q) \in \mathbb{R}^q$, and matrix $A_{q \times p} = (c_{ij})$, $1 \le i \le q$, $1 \le j \le p$, with

$$y_1 = c_{11}x_1 + x_{12}x_2 + \dots + c_{1p}x_p$$

. . .

$$y_q = c_{q1}x_1 + x_{q2}x_2 + \dots + c_{qp}x_p$$

We then have $||f(x)|| = ||(y_1, ..., y_q)|| = \sqrt{y_1^2 + ... + y_q^2}$. To show $||f||_{qp} = \sup\{||f(x)|| : x \in \mathbb{R}^p, \ ||x|| \le 1\}$ is a norm in $\mathcal{L}(\mathbb{R}^p, \mathbb{R}^q)$, we have (i) $||f||_{pq} \ge 0$, $x \in \mathbb{R}^p$? Since each element in $||f(x)|| = \sqrt{y_1^2 + ... + y_q^2}$, $y_j^2 \ge 0$, $\forall j = 1, ..., q \implies \sup\{||f(x)||\} \ge 0 \forall x \in \mathbb{R}^p$ since by definition, $\sup\{||f(x)||\} \ge ||f(x)|| \forall x \in \mathbb{R}^p \implies ||f||_{pq} \ge 0$.

(ii) $||f||_{pq} = 0 \iff f(x) = 0$? Since $||f(x)|| = ||y|| = \sqrt{y_1^2 + \dots + y_q^2} = 0 \implies \text{each } y_j^2 = 0, \forall j = 1, \dots, q$ (iii) $\sup ||af(x)|| = |a| \sup ||f(x)|| = |a|||f||_{qp}, \ a \in \mathbb{R}$? We have $||af(x)|| = ||ay|| = \sqrt{a^2y_1^2 + \dots + a^2y_1^2} = \sqrt{a^2||y||} = |a|||y||, \text{ and } |a| > 0 \implies \sup\{||af(x)||\} = \sup\{|a|||f(x)||\} = |a|\sup\{||f(x)||\}.$ (iv) $\sup\{||f(x+x)||\} \le \sup||f(x)|| + \sup||f(x)||, \ x, x' \in \mathbb{R}^p$? Since f is linear $||f(x+x)|| = ||f(x)+f(x')|| \le ||f(x)|| + ||f(x')||, \ \forall x, x' \in \mathbb{R}^p$ by Triangle Inequality, then $\sup\{||f(x)+f(x')||\} \le \sup\{||f(x)||\} + \sup\{||f(x')||\}$. This implies $||f||_{qp}$ is a norm.

To show $||f(x)|| \le ||f||_{pq}||x||$, we use the earlier notation for a linear map, f(x) = Ax, where, $A_{q \times p} = (c_{ij})$. Thus $||f(x)|| = ||Ax|| \le |A|||x||$ as shown in (21.5). This implies $\sup\{||f(x)|| : x \in \mathbb{R}^p, ||x|| \le 1\} = \sup\{||Ax||\} \le \sup\{|A|||x||\}$ which is achieved when x is the max value in its domain, i.e. ||x|| = 1. This implies $\sup\{||Ax||\}||x|| = \sup\{||f(x)||\}||x|| = \sup\{||f(x)||\} \cdot 1$. This implies $||f(x)|| \le \sup\{||f(x)|| : x \in \mathbb{R}^p, ||x|| \le 1\}||x|| \forall x \in \mathbb{R}^p$.

Section 22

B. Let $H: \mathbb{R} \to \mathbb{R}$ be defined by, $h(x) = 1, 0 \le x \le 1$. h(x) = 0, otherwise. Exhibit an open set G such that $h^{-1}(G)$ is not open in \mathbb{R} , and a closed set F, such that $h^{-1}(F)$ is not closed in \mathbb{R} .

If we take G = (0, 2), and open set, $h^{-1}(G) = \{x \in \mathcal{D}(f) : h(x) \in G\} = [0, 1]$, a closed set. If we take F = [-2, 0], a closed set, the inverse image, $h^{-1}(F) = \{x \in \mathcal{D}(f) : h(x) \in F\}$ is the union of two open sets $(-\infty, 0) \cup (1, +\infty)$ which is open.

C. If f is bounded and continuous on $\mathbb{R}^p \to \mathbb{R}$ and if $f(x_0) > 0$, show that f is strictly positive on some neighborhood of x_0 . Does the same conclusion hold if f is merely continuous at x_0 ?

f is bounded and continuous which implies $0 < f(x_0) < M$, for some M > 0. Since f is continuous, for each point $a \in \mathcal{D}(f)$, there is a neighborhood V of f(a) and a neighborhood $U(a) \cap D$ such that if $f(a) \in V \implies a \in U(a)$. Since $f(a) > 0 \implies$ we can take a neighborhood V of f(a) that is also strictly positive, i.e. $V = \{y \in \mathbb{R} : 0 < y < M\}$. If f is not bounded the same argument can be made with $V = \{y \in \mathbb{R} : y > 0\}$.

F. A subset $D \subseteq \mathbb{R}^p$ is disconnected if and only if there exists a continuous function $f: D \to \mathbb{R}$ such that $f(D) = \{0, 1\}$.

 $\to D$ disconnected implies there exists two open sets B, C such that $B \cap D$ and $C \cap D$ are disjoint and $(B \cap D) \cup (C \cap D) = D$. We can then construct a function f on D, f(x) = 1, $x \in (B \cap D)$, f(x) = 0, $x \in (C \cap D)$. \leftarrow Let $f: D \to \mathbb{R}$ be such that $f(D) = \{0,1\}$ \Longrightarrow the inverse image $f^{-1}(\{0,1\}) = \{x \in D \subseteq f(x) \in \{0,1\}\}$ could consist of two disjoint open sets such for f on D, f(x) = 1, $x \in (B \cap D)$, f(x) = 0, $x \in (C \cap D)$, where $D = (B \cap D) \cup (C \cap D) \subseteq \mathcal{D}(f)$ \Longrightarrow there exists a continuous function $f: D \to \mathbb{R}$ such that $f(D) = \{0,1\}$.

H. Let f, g_1, g_2 be related by the formulas in the preceding exercise. Show that from the continuity of g_1 and g_2 at t = 0 one cannot prove the continuity of f at (0,0).

Considering g_1, g_2 which are valid are restrictions of the domain of f, given $x = (x_1, x_2) \in \mathbb{R}^2$, we can construct $f(x) = 0, x_1 \cdot x_2 = 0, f(x) = 1, x_1 \cdot x_2 \neq 1$. With this f we have $\lim_{x\to(0,0)} \neq 0$, and $f((0,0)) = 0 \implies$ discontinuity for f at (0,0). Therefore continuity for g_1, g_2 on restrictions of $\mathcal{D}(f)$ does not imply continuity of f.

K. Give an example of a bounded and continuous function g on $\mathbb{R} \to \mathbb{R}$ which does not take on either of the numbers $\sup\{g(x): x \in \mathbb{R}\}$ or $\inf\{g(x): x \in \mathbb{R}\}$

If we take $f: \mathbb{R} \to \mathbb{R}$, f(x) = x, $x \in (0,1) \subseteq \mathbb{R}$, the function is bounded above by 1, below by 0, and continuous on (0,1), but $f(x) \neq 1 = \sup\{f(x) : x \in (0,1)\}$, and $f(x) \neq 0 = \inf\{f(x) : x \in (0,1)\}$ for any x in interval (0,1).

O. Let f be a continuous function on $\mathbb{R} \to \mathbb{R}$ which is strictly increasing (in the sense that if $x^{'} < x^{''}$ then $f(x^{'}) < f(x^{''})$). Prove that f is injective and that its inverse function is continuous and strictly increasing.

For points $x, a, b \in \mathcal{D}(f)$, by f be strictly increasing, we have $a > b \implies f(a) > f(b)$, $a = b \implies f(a) = f(b)$ and $a < b \implies f(a) < f(b)$. If we take point x to be a < x < b, we can define two neighborhoods $(a, b) \subseteq \mathcal{D}(f)$, and $(f(a), f(b)) \subseteq \mathcal{R}(f)$, such that $x \in (a, b)$, and $f(x) \in (f(a), f(b))$. This implies f^{-1} in continuous, and since $f^{-1}(f(a)) = a > f^{-1}(f(b)) = b$ if f(a) > f(b), implies f^{-1} is strictly increasing. Also since, $f(a) = f(b) \implies a = b$, f is injective.

Section 23

- A. Examine each of the functions in Example 20.5 and either show that the function is uniformly continuous on its domain or not.
- (a) The constant function, $\mathcal{D}(f) \subseteq \mathbb{R}$, f(x) = c, $\forall x \in \mathcal{D}(f)$, where c is a real number. Let $\varepsilon > 0$, we have $|f(x) - f(y)| = |0 - 0| = 0 < \varepsilon$, $\forall x, y \in \mathcal{D}(f)$. Regardless of the choice of $\delta(\varepsilon)$, we have $|f(x) - f(y)| < \varepsilon$ whenever $|x - y| < \delta(\varepsilon) \implies$ uniform continuity.
 - (b) The identity function f(x) = x, $x \in \mathbb{R}$. For all $x, y \in \mathbb{R}$, we have $|f(x) - f(y)| < \varepsilon$, $\varepsilon > 0$. Choose $\delta(\varepsilon) = \varepsilon$. Then whenever $|f(x) - |f(y)| = |x - y| < \varepsilon = \delta(\varepsilon)$ we have $|x - y| < \delta(\varepsilon) \implies$ uniform continuity.
 - (c) $f(x)=x^2, x\in\mathbb{R}$ If we take $\varepsilon=1$,, and consider point positive real points $x,y=x+\frac{1}{2}$, then for $|f(x)-f(y)|=|x^2-y^2|=|x^2-(x+\frac{1}{2})^2|=|x^2-x^2-x-\frac{1}{4}|=|(-1)(x+\frac{1}{4})|=x+\frac{1}{4}<1=\varepsilon$, which is a contradiction, for example, for all $x>1\implies f(x)$ not uniformly continuous.
- (d) $f(x) = \frac{1}{x}, x \in \{x \in \mathbb{R} : x \neq 0\}$ If we take $\varepsilon = 1$, consider points $x, y = \frac{x}{2} \in (0, 1) \subseteq \mathbb{R}$ we have $|f(x) - f(y)| = |\frac{1}{x} - \frac{1}{\frac{x}{2}}| = |\frac{-1}{x}| = \frac{1}{x}$. Since both $0 < x, y = \frac{x}{2} < 1 \implies \frac{1}{x} > 1$ for all $x, y \in (0, 1)$ which implies $f(x) = \frac{1}{x}$ is not uniformly continuous on its domain.
- (e) f(x) = 0, $x \ge 0$, f(x) = 1, x > 1Since f is not continuous at point a = 0, and a is in the domain of f, f is not uniformly continuous, since we can find sequence $(f(x_n)) = (f(1/n)) = (1)$ which does not converge to f(0).
- (f) f(x) = 1, x rational, f(x) = 0, x irrational f is discontinuous at every point in its domain, therefore f cannot be uniformly continuous.
- (g) $\mathcal{D}(f) = \{x \in \mathbb{R} : x > 0\}$, f(x) = 0, x irrational, x > 0. For rational numbers of the form $\frac{m}{n}$, with $m, n \in \mathbb{N}$ that have no common factor but 1, $f(\frac{m}{n}) = \frac{1}{n}$. Since f is continuous at precisely irrational points, and not all points in its domain, f is not uniformly continuous.

- (h) $\mathcal{D}(f) = \mathbb{R}^2, \ f: \mathbb{R}^2 \to \mathbb{R}^2, \ f(x,y) = (2x+y,x-3y).$ For $(x,y), (a,b) \in \mathcal{D}(f)$ we have $||f(x,y)-f(a,b)|| = ||(2x+y-2a-b,x-3y-a+3b)|| \leq \sqrt{2}\sup\{||2x+y-2a-b||, ||x-3y-a+3b||\} \leq \sqrt{2}\cdot 4||(x,y)-(a,b)|| \leq \varepsilon,$ since $|x-a| \leq \sqrt{(x-a)^2+(y-b)^2} = ||(x,y)-(a,b)|| \implies ||2x+y-2a-b|| = ||2(x-a)+(y-b)|| \leq 3||(x,y)-(a,b)||,$ and since $||x-3y-a+3b|| = ||(x-a)+3(b-y)|| \leq 4||(x,y)-(a,b)||.$ Putting this together, we have for $\varepsilon > 0$, whenever $||f(x,y)-f(a,b)|| < \varepsilon$ we have $||(x,y)-(a,b)|| \leq \frac{\varepsilon}{4\sqrt{2}}$ which implies uniform continuity.
- (i) $\mathcal{D}(f) = \mathbb{R}^2$, $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x,y) = (x^2 + y^2, 2xy)$. Based on 20.j, if $||(x,y) - (a,b)|| < \delta(\varepsilon)$, then we have $||f(x,y) - f(a,b)|| < \varepsilon$ when $\delta(\varepsilon) = \inf\{1, \frac{\varepsilon}{2\sqrt{2}(|a|+|b|+1)}\}$, but since the choice of $\delta(\varepsilon)$ is not independent of points $(a,b) \in \mathbb{R}^2$, implying we can not use the number of all points $(a,b) \in \mathcal{D}(f)$.

C. If B is bounded in \mathbb{R}^p and $f: B \to \mathbb{R}^p$ is uniformly continuous, show that f is bounded on B. Show that this conclusion fails if B is not bounded in \mathbb{R}^p .

If we take two sequences in B, x_n, y_n , $n \in \mathbb{N}$ by uniform continuity of f, whenever $||x_n - y_n|| \le \frac{1}{n}$ we have $||f(x_n) - f(y_n)|| < \varepsilon$ for some $\varepsilon > 0$. If we consider the point $x_0 \in B$, for which $f(x_0) = M = \sup\{||f(x)|| : x \in B\}$. By Bolzano-Weierstrass, we can find a subsequence of (x_n) , $(x_{n1}, ..., x_{nk})$ that converges to $x_0 \Longrightarrow$ whenever $||x_0 - y_n|| \le \frac{1}{n}$, $n \in \mathbb{N}$, we have $||f(x_0) - f(y_n)|| \le \varepsilon \Longrightarrow f$ is bounded on B.

D. Show that $f(x) = \frac{1}{1+x^2}$ for $x \in \mathbb{R}$ is uniformly continuous.

Take $\varepsilon > 0$, for $x,y \in \mathbb{R}$, we have $|f(x) - f(y)| = |\frac{1}{1+x^2} - \frac{1}{1+y^2}| = |\frac{(1+y^2)}{(1+x^2)(1+y^2)} - \frac{(1+x^2)}{(1+y^2)(1+x^2)}| = |\frac{y^2-x^2}{(1+y^2)(1+x^2)}| = |x+y||x-y||\frac{1}{(1+x^2)(1+y^2)}| \le (|\frac{x}{(1+x^2)(1+y^2)}| + |\frac{y}{(1+x^2)(1+y^2)}|)|x-y| \le (|\frac{y}{(1+y^2)}| + |\frac{x}{(1+x^2)}|)|x-y|$. Since $\forall x \in \mathbb{R}$, we have $|\frac{x}{1+x^2}| < 1$, we have $(|\frac{y}{(1+y^2)}| + |\frac{x}{(1+x^2)}|)|x-y| < 2|x-y| = 2\delta(\varepsilon) \implies$ if we choose $\delta(\varepsilon) = \frac{\varepsilon}{2}$ whenever $|x-y| < \frac{\varepsilon}{2}$ we have $|f(x) - f(y)| < \varepsilon$, for all $x, y \in \mathbb{R}$

F. Show that $f(x) = \frac{1}{x^2}$, $\mathcal{D}(f) = \{x \in \mathbb{R} : x > 0\}$ is not uniformly continuous on its domain. If we take $\delta(\varepsilon) = \varepsilon/2$, and $\varepsilon = 1$, and consider points in a subset of $\mathcal{D}(f)$, namely $x, y \in (0, 1)$, and then take $y = \frac{x}{2} \in (0, 1)$, we have we have $|x - y| = |x/2| < \varepsilon/2 = 1/2 \implies |f(x) - f(y)| = |\frac{1}{x^2} - \frac{4}{x^2}| = \frac{3}{x^2} < 1$. But, for all $x, y \in (0, 1)$, $\frac{3}{x^2} > 1 \implies f(x)$ is not uniformly continuous on its domain.

G. A function $g: \mathbb{R} \to \mathbb{R}^p$ is periodic if there exists a number p > 0 such that g(x+p) = g(x) for all $x \in \mathbb{R}$. Show that a continuous periodic function is bounded and uniformly continuous on \mathbb{R} .

We assume g is continous, it implies for $x \in \mathbb{R}$, if we consider points x, y over the domain/interval $[x_0, x_0 + p]$ whenever $|x - y| \le |x_0 - x_0 - p| = |-p| = p = \delta > 0$ we have $|g(x) - g(y)| < \varepsilon$. Considering points $x + np, y + np, \ n \in \mathbb{N}$, we have $|(x + np) - (y + np)| = |x - y| < \delta$ implying that $|g(x + np) - g(y + np)| = |g(x) - g(y)| < \varepsilon \implies g$ is bounded and uniformly continuous on \mathbb{R} .

H. Let f be defined on $D \subseteq \mathbb{R}^p$ to \mathbb{R}^q , and suppose that f is uniformly continuous on D. If (x_n) is a Cauchy sequence in D, show that $(f(x_n))$ is a Cauchy sequence in \mathbb{R}^q .

A sequence is Cauchy if for some $\delta > 0 \ \exists M \in \mathbb{N}$ such that for all $m, n \geq M$ then we $||x_m - x_n|| < \delta$. Since f is uniform continuous, for $||f(x_m) - f(x_n)||$, for $x_m, x_n \in D$ for all $m, n \in \mathbb{N}$, whenever $||x_m - x_n|| < \delta$, we have $||f(x_m) - f(x_n)|| \leq \varepsilon$ for some $\varepsilon > 0 \Longrightarrow$ there exists some $M \in \mathbb{N}$ such that for all $m, n \geq M$, $||f(x_m) - f(x_n)|| \leq \varepsilon \Longrightarrow (f(x_n))$ is Cauchy.

Section 24

B. Give an example of a sequence of everywhere discontinuous functions which converges uniformly to a continuous function.

If we take the example:

$$f_n(x) = \begin{cases} \frac{1}{n} & x \text{ rational} \\ 0 & \text{otherwise} \end{cases}$$

We have discontinuity pointwise, but $\sup\{||f_n - f||\} = \frac{1}{n} \to_{n \to \infty} 0 \implies \text{uniform continuity.}$

D. Let (f_n) be a sequence of continuous functions on $D \subseteq \mathbb{R}^p$ to \mathbb{R}^q such that (f_n) converges uniformly to f on D, and let (x_n) be a sequence of elements in D which converges to $x \in D$. Does it follow that $(f_n(x_n))$

converges to f(x)?

Since each $f_n, n \in N$ is continuous, f is continuous. Then whenever, $||x_n - x|| < \delta$, for some $n \ge K \in \mathbb{N}$ we can take $||f(x_n) - f(x)|| < \frac{\varepsilon}{2}$, for some $\varepsilon > 0$. Considering the sequence f_n , we have $||f(x_n) - f(x)|| = ||f(x_n) - f_n(x_n)|| + ||f_n(x_n) - f(x)|| = ||f_n(x_n) - f(x_n)|| + ||f_n(x_n$

For $0 \le x < 1$, we have $f_n(x) = \frac{x^n}{1+x^n} \to_{n\to\infty} 0$ since $x^n \to 0$ for $0 \le x < 1$. For x = 1, $f_n(x) = \frac{x^n}{1+x^n} = \frac{1}{2}$, $\forall n \in \mathbb{N}$. For x > 1, $f_n(x) = \frac{x^n}{1+x^n} \to_{n\to\infty} 1$ which implies (f_n) is pointwise convergent. To examine uniform convergence, we have limit function f(x) = 0, $0 \le x < 1$, $f(x) = \frac{1}{2}$, x = 1, and then $f(x) = 1, x > 1 \Longrightarrow$ uniform converges on closed intervals falling within the interval x > 1, or within the interval $0 \le x < 1$, but not for closed intervals containing the point 1, since the limit function, for example, for x approaching 1 from below, $\lim f_n(x) = 0$, but $f_n(1) = 1/2, \forall n \in \mathbb{N}$. We then do not have uniform convergence over the entire domain, given discontinuous limit functions.

- (c) $\frac{x^n}{n+x^n}$, For $0 \le x < 1$, we have $f_n(x) = \frac{x^n}{n+x^n} \to \frac{0}{n+0} \to 0$. For x=1, we have $f_n(1) = \frac{1}{n+1} \to 0$. And for x>1, we have $f_n(x) = \frac{x^n}{n+x^n} = \frac{x^n}{1+\frac{x^n}{n}} \to 1$, which implies pointwise convergence over $x \ge 0$. To examine uniform convergence we have limit function f(x) = 0 for $0 \le x \le 1$, and then f(x) = 1 for x>1. For $x \in [0,1]$, we have $||f_n-f||_D = \sup\{||x^n/(n+x^n)|| : x \in [0,1]\} = \frac{1}{n+1} \to_{n\to\infty} 0 \Longrightarrow$ uniform continuity on interval [0,1]. For x>1, we have $||f_n-f||_D = \sup\{||\frac{x^n}{n+x^n}-1|| : x>1\}$, and $||\frac{x^n}{n+x^n}-1|| = ||\frac{x^n}{n+x^n}-\frac{n+x^n}{n+x^n}|| = ||\frac{-n}{n+x^n}|| = \frac{1/n}{n+x^n} = \frac{1/n}{(1/n)+(x^n/n)} \to 0$, since x>1. This implies uniform convergence on the interval $x \in [a,\infty)$, such that a>1.
- (d) $\frac{x^{2n}}{1+x^n}$, For $0 \le x < 1$, we have $f_n(x) = \frac{x^{2n}}{1+x^n} \to \frac{0}{1+0} \to 0 = f(x)$. For x = 1, we have $f_n(1) = \frac{1}{1+1} \to \frac{1}{2} = f(1)$. And for x > 1, we have $f_n(x) = \frac{x^{2n}}{1+x^n} = \frac{x^{2n}/n}{1/n+x^n/n} \to \frac{x^{2n}/n}{x^n/n} \to x^n \to +\infty$, which implies pointwise convergence over the first two intervals, $0 \le x < 1$, and x = 1. To examine uniform convergence, we have limit function f(x) = 0, $0 \le x < 1$, $f(x) = \frac{1}{2}$, x = 1, and then divergence for x > 1. This implies uniform converges on closed intervals falling within the interval $0 \le x < 1$, but including the point 1, since the limit function, for example, for x approaching 1 from below, $\lim f_n(x) = 0$, but $f_n(1) = 1/2$, $\forall n \in \mathbb{N}$. For x > 1 we have a divergent sequence of functions. We then do not have uniform convergence given discontinuous limit functions.
- (e) $\frac{x^n}{1+x^{2n}}$ For $0 \le x < 1$, we have $f_n(x) = \frac{x^n}{1+x^{2n}} \to \frac{0}{1+0} \to 0 = f(x)$. For x = 1, we have $f_n(1) = \frac{1}{1+1} \to \frac{1}{2} = f(1)$. And for x > 1, we have $f_n(x) = \frac{x^n}{1+x^{2n}} = \frac{x^n/n}{1/n+x^{2n}/n} \to \frac{x^n/n}{x^{2n}/n} = \frac{1}{x^n} \to 0$, which implies pointwise convergence over the first two intervals, $0 \le x < 1$, and x = 1. To examine uniform convergence, we have limit function f(x) = 0, $0 \le x < 1$, $f(x) = \frac{1}{2}$, x = 1, and then f(x) = 0 for x > 1. For $0 \le x < 1$, we have $||f_n f||_D = \sup\{\frac{x^n}{1+x^{2n}} : 0 \le x < 1\} = 0 \Longrightarrow$ uniform convergence on closed intervals contained in clopen interval [0,1). For x > 1, we have $||f_n f||_D = \sup\{\frac{x^n}{1+x^{2n}} : x > 1\} = 0 \Longrightarrow$ uniform convergence on closed intervals contained interval $[a,\infty)$, such that a > 1. For x = 1 we have $f_n(1) = 1/2$, and f(1) = 1/2, and thus have discontinuous limit functions.
- J. Prove the following theorem of G. Polya. If for each $n \in \mathbb{N}$ the function f_n on $I \to \mathbb{R}$ is monotone increasing and if $f(x) = \lim(f_n(x))$ is continuous on I, then the convergence is uniform on I. (Observe that it is not assumed that f_n is continuous.)

We have f monotone increasing, and since f is uniformly continuous, if $\varepsilon > 0$, let $0 = x_0 < x_1 < ... < x_h = 1$

be such that $f(x_j) - f(x_{j-1}) < \varepsilon$ and let n_j be such that if $n \ge n_j$; then $|f(x_j) - f_n(x_j)| < \varepsilon$. If we take $||f(x_j) - f_n(x_j)|| \le \varepsilon$, and take $x \in [x_j, x_{j+1}]$, since f is monotone, we have $f_n(x_j) \le f_n(x) \le f_n(x_{j+1})$, and also have $||f_n(x_j) - f(x_j)||$, $||f_n(x) - f(x)||$, $||f_n(x_{j+1}) - f(x_{j+1})||$ are all less than $\varepsilon > 0$. This implies $f(x_j) - \varepsilon \le f_n(x) \le f(x_{j+1}) + \varepsilon$, and $f(x_j) \ge f(x) - \varepsilon$, and $f(x_{j+1}) - \varepsilon \le f(x)$. Putting this together, we then $f(x) - 3\varepsilon \le f_n(x) \le f(x) + 3\varepsilon$ which implies uniform convergence.

N. If $f_3(x) = x^3$ for $x \in \mathcal{I}$, calculate the n^{th} Bernstein polynomial for f_3 . Show directly that this sequence of polynomials converges uniformly to f_3 on \mathbb{I} .

For $f_3:[0,1]\to\mathbb{R}$, to calculate $B_n(x;f_3)$, for n=n-3, k=j, we have $1=\sum_{j=0}^{n-3}\binom{n-3}{j}x^j(1-x)^{n-(j+3)}$ This $x^3=\sum_{j=0}^{n-3}\binom{n-3}{j}x^{j+3}(1-x)^{n-(j+3)}=\sum_{j=0}^{n-3}\frac{(j+3)(j+2)(j+1)}{n(n-1)(n-2)}\binom{n}{j+3}x^{j+3}(1-x)^{n-(j+3)}.$ If we let k=j+3, we then have $x^3=\sum_{k=0}^n\frac{(k)(k-1)(k-2)}{n(n-1)(n-2)}\binom{n}{j+3}x^k(1-x)^{n-k}$, multiplying through by $\frac{1}{n^3}$, we have $\frac{1}{n^3}n(n-1)(n-2)x^3=\sum_{k=0}^n\frac{k^3-3k^2+2k}{n^3}\binom{n}{j+3}x^k(1-x)^{n-k}=\sum_{k=0}^n\frac{k^3}{n^3}\binom{n}{j+3}x^k(1-x)^{n-k}-\frac{3}{n}[(1-\frac{1}{n})x^2+\frac{1}{n}x]+\frac{2}{n^2}x$, since we have from (24.6), $x=\sum_{j=0}^n\frac{k}{n}\binom{n}{k}x^k(1-x)^{n-k}$, and $(1-\frac{1}{n})x^2+\frac{1}{n}x=\sum_{j=0}^n\frac{k^2}{n^2}\binom{n}{k}x^k(1-x)^{n-k}$. We then have $\sum_{k=0}^n\frac{k^3}{n^3}\binom{n}{j+3}x^k(1-x)^{n-k}=B_n(x;f_3)=\frac{n(n-1)(n-2)x^3}{n^3}+\frac{3x^2(n-1)}{n^2}+\frac{x^2}{n}$. By Bernstein approximation theorem, for $f_3(x)=x^3$, we have $\sup\{|f_3-B_n(x;f_3)|:x\in[0,1]\}\le 1*(1-\frac{n(n-1)(n-3)}{n^3})+\frac{3}{n}+\frac{1}{n}\to_{n\to\infty}0$, which implies uniform continuity on [0,1].

S. Show that the Weierstrass Approximation Theorem fails for bounded open intervals. Take (a,b) to be an open bounded interval, with b>a. The function $f(x)=\frac{1}{b-x},\ x\in(a,b)$, we have $||f(x)-P_n(x)||_D=\sup\{||\frac{1}{b-x}-P_n(x)||:x\in(a,b)\}=\infty$, since $P_n(x)$ must be bounded on (a,b), and f(x) is unbounded as $x\to b$.

Section 26

N. If $K \subseteq \mathbb{R}^p$ is compact and (f_n) is a sequence of continuous functions on K to \mathbb{R}^q which is uniformly convergent on K, show that the family $\{f_n\}$ is uniformly equicontinuous on K in the sense of Definition 26.6. By uniform equicontinuity, whenever $|x-y| \leq \delta$, $\delta > 0$, then we can have $|f_n(x) - f_n(y)| \leq \frac{\varepsilon}{3}$, $\varepsilon > 0$, $\forall n \in \mathbb{N}$. Since each f_n is continuous it implies for $n \geq M(\varepsilon) \in \mathbb{N}$ we can find $||f_n(x) - f(x)|| \leq \frac{\varepsilon}{3}$, and $||f_n(x) - f_n(y)|| \leq \frac{\varepsilon}{3}$, and also $||f(x) - f(y)|| \leq \frac{\varepsilon}{3}$. This implies by triangle inequality, $||f_n(x) - f(x)|| \leq ||f_n(x) - f_n(y)|| + ||f_n(x) - f(y)|| + ||f(y) - f(x)|| \leq \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon$, which implies for $x, y \in K$, $n \geq M(\varepsilon)$, we have uniform equicontinuity on K.

O. Let \mathcal{F} be a bounded and uniformly equicontinuous collection of functions on $D \subseteq \mathbb{R}^p$ to \mathbb{R} and let f be defined on $D \to \mathbb{R}$ by $f = \sup\{f(x) : f \in \mathcal{F}\}$. Show that f is continuous on $D \to \mathbb{R}$. We have for any $\varepsilon > 0$, there exists $\delta(\varepsilon) > 0$, such that for $x, y \in D \subseteq \mathbb{R}^p$, whenever we have $||x - y|| < \delta(\varepsilon)$, and $f \in \mathcal{F} \Longrightarrow ||f(x) - f(y)|| < \varepsilon$. Since functions in \mathcal{F} are bounded and equicontinuous, by Arzela-Ascoli theorem, we have $f^* = \sup\{f(x) : f \in \mathcal{F}\}$, and for some $n \geq K(\varepsilon)$, we can find a sequence of functions $(f_n) \to f^*$, that is $||f_n(x) - f^*(x)|| < \varepsilon \Longrightarrow f^*$ is continuous on D.

- Q. Consider the following sequences of functions which show that the Arzela-Ascoli Theorem 26.7 may fail if the various hypotheses are dropped.
- (a) $f_n(x) = x + n, x \in [0, 1];$
- [0,1] is compact, and for $x, y \in [0,1]$ whenever $|x-y| < \delta$ have $|f(x) f(y)| < \varepsilon = \delta$, however $f_n(x)$ is not bounded, since we can always find $|f_n(x)| < |f_n(x)| < |f_n(x)| < \delta$. (b) $f_n(x) = x^n$, $x \in [0,1]$;
- [0,1] is compact, and $0 \le |f_n(x)| \le 1$, $\forall n \in \mathbb{N}$, but not uniformly equicontinuos, example being problem 23.A(c), for case n=2. (c) $f_n(x)=\frac{1}{1+(x-n)^2}$, $x \in [0,+\infty)$.

We have $0 < f_n(x) \le 1$, bounded and uniformly continuous,i.e. $||f_n - f||_D \to_{n \to \infty} 0$, but the domain $[0, \infty)$ is not compact.