

COMP30810 Intro to Text Analytics

Dr. Binh Thanh Le

thanhbinh.le@ucd.ie

Insight Centre for Data Analytics
School of Computer Science
University College Dublin

Today goals

- Understand Random Forest
- Understand how to apply RF in Text Analytics

What is Random Forest?

Random forest = learning ensemble consisting of a bagging of unpruned decision tree learners with a randomized selection of features at each split.

- The term came from random decision forests that was first proposed by Tin Kam Ho of Bell Labs in 1995.
- The method combines Breiman's "bagging" idea and the random selection of features.

What is Decision Tree?

- Decision trees ... one of most popular learning methods commonly used for data exploration
- A decision tree is a tree where each node represents a feature(attribute), each link(branch) represents a decision(rule) and each leaf represents an outcome(categorical or continues value).
- A decision tree is drawn upside down with its root at the top

Why Decision trees?

Decision tress often mimic the human level thinking so its so simple to understand the data and make some good interpretations.

→ Interpretability

Example of a tree

How to build the tree?

- There are couple of algorithms there to build a decision tree
 - **►** ID3
 - **≻** C4.5
 - **≻** C5.0
 - CART

Classification And Regression Tree

First question: What is the ROOT?

Possible questions

Is the color green?

Is the diameter >=3?

Is the color yellow?

• • •

Let's take an example:

Color	Diameter	Label
Green	3	Apple
Yellow	3	Apple
Red	1	Grape
Red	1	Grape
Yellow	3	Lemon

Gini Impurity - Gini Index

Impurity = 0.64

$$p(Apple) = 2/5$$

 $p(Grape) = 2/5$
 $p(Lemon) = 1/5$

Gini Impurity =
$$1 - \left[\left(\frac{2}{5} \right)^2 + \left(\frac{2}{5} \right)^2 + \left(\frac{1}{5} \right)^2 \right]$$

= 0.64

Information Gain

Information Gain

Question	Gain	
Color == Green?	0.14	
Diameter >= 3?	0.37	
Color == Yellow?	0.17	
Color == Red?	0.37	
Diameter >=1?	0	

This is the ROOT

Apple 100%

Apple 50%

Lemon 50%

"pure" (has instances from only one class) tag it as a leaf and return.

Random Forest

Random Forest vs Decision Tree

Random Forest	Decision Tree		
- Classification + Regression	- Classification + Regression		
- Require much of data for Bagging step	- Does not require much of data		
	- Easy to interpret and make for straightforward visualizations		
- Can provide the Feature Importance scores			
	- This is a greedy model, meaning it makes the most optimal decision at each step, but does not consider the global optimum.		
- Can avoid the overfitting	- Decision trees are prone to overfitting, especially when a tree is particularly deep		
- Many trees can make the algorithm to slow and ineffective for real-time predictions			

Why vote?

Decision Trees have usually **low bias** because they maximally overfit to the training data.

Example for Text Analytics – Ham/Spam SMS

```
ham Go until jurong point, crazy.. Available only in bugis n great world la
ham Ok lar... Joking wif u oni...
        Free entry in 2 a wkly comp to win FA Cup final tkts 21st May 2005.
ham U dun say so early hor... U c already then say...
ham Nah I don't think he goes to usf, he lives around here though
        FreeMsq Hey there darling it's been 3 week's now and no word back!
ham Even my brother is not like to speak with me. They treat me like aids p
ham As per your request 'Melle Melle (Oru Minnaminunginte Nurungu Vettam)'
        WINNER!! As a valued network customer you have been selected to rec
spam
       Had your mobile 11 months or more? U R entitled to Update to the la
spam
ham I'm gonna be home soon and i don't want to talk about this stuff anymor
        SIX chances to win CASH! From 100 to 20,000 pounds txt> CSH11 and s
spam
       URGENT! You have won a 1 week FREE membership in our £100,000 Prize
spam
ham I've been searching for the right words to thank you for this breather.
ham I HAVE A DATE ON SUNDAY WITH WILL!!
```

Download at: https://archive.ics.uci.edu/ml/datasets/SMS+Spam+Collection

SMS Spam Collection Data Set

Download: Data Folder, Data Set Description

Abstract: The SMS Spam Collection is a public set of SMS labeled messages that have been collected for mobile phone spam research.

Data Set Characteristics:	Multivariate, Text, Domain-Theory	Number of Instances:	5574	Area:	Computer
Attribute Characteristics:	Real	Number of Attributes:	N/A	Date Donated	2012-06-22
Associated Tasks:	Classification, Clustering	Missing Values?	N/A	Number of Web Hits:	200580

Example in Text Analysis

```
import pandas as pd
import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split, cross_val_score
df = pd.read csv('SMSSpamCollection', delimiter='\t',header=None)
X train raw, X test raw, y train, y test = train test split(df[1],df[0])
vectorizer = TfidfVectorizer()
X train = vectorizer.fit transform(X train raw)
classifier = RandomForestClassifier()
classifier.fit(X_train, y_train)
X test = vectorizer.transform(['URGENT! Your Mobile No 1234 was awarded a Prize'])
predictions = classifier.predict(X test)
print('URGENT! Your Mobile No 1234 was awarded a Prize',' is predicted as:', predictions)
X test = vectorizer.transform( [ 'Hey honey, whats up?'] )
predictions = classifier.predict(X test)
print('Hey honey, whats up?',' is predicted as:', predictions)
URGENT! Your Mobile No 1234 was awarded a Prize is predicted as: ['spam']
Hey honey, whats up? is predicted as: ['ham']
```

Feature Importance

It is nice if we can see "How are important of token words?"

- → Make an extra analysis on this
- Dictionary for corpus?
- Feature extraction/selection?

```
import pandas as pd
importances = classifier.feature_importances_
index = vectorizer.get_feature_names()

feature_importances = pd.DataFrame(importances,index,columns=['importance']).sort_values('importance',ascending=False)
feature_importances.head(10)
```

\$	importance \$
call	0.040612
stop	0.029926
mobile	0.029911
txt	0.023254
claim	0.020901
100	0.016373
uk	0.015602
www	0.014504
18	0.013985
nokia	0.013433

