MATH730 Functional Analysis Homework 4

Joel Sleeba

October 28, 2024

1. Solution:

- (a) We approach this problem in cases.
 - i. Let $1 . We claim that the unit circle <math>\mathbb{T}_p = \{x \in \ell_p : ||x||_p = 1\}$ is the collection of all extreme points of the unit ball of ℓ_p , which we'll denote by B_p .

To see that the elements of \mathbb{T}_p are indeed extreme points of the unit ball, assume x=ta+(1-t)b, where $x\in\mathbb{T}_p,a,b\in B_p$. Then Minkowski inequality $1=\|x\|\leq t\|a\|+(1-t)\|b\|$ forces $\|a\|=\|b\|=1$. Thus we see that $1=\|x\|=\|ta\|+\|(1-t)y\|$. Thus the Minkowski inequality is an equality here. We know that in ℓ_p spaces where $1< p<\infty$, the Minkowski inequality is an equality if and only if (1-t)b=kta for some k>0. Thus we get x=ta+kta=(k+1)ta. Now using the fact that a,x and (k+1)ta all must have norm 1, gives us that (k+1)t=1 and thus a=x. Replacing a with x in x=ta+(1-t)b gives us that b=x. Thus we see that $\mathbb{T}_p\subset \operatorname{Ext}(B_p)$.

Now to prove that \mathbb{T}_p are precisely the extreme points, we'll show that $\overline{\operatorname{co}}(\mathbb{T}_p) = B$. Then inverse Krein-Milman would show that $\operatorname{Ext}(B_p) \subset \mathbb{T}_p$. Let $x \in B$. Then $\frac{x}{\|x\|_p}, \frac{-x}{\|x\|_p} \in \mathbb{T}_p$ and

$$x = \left(\frac{1 + \|x\|_p}{2}\right) \frac{x}{\|x\|_p} - \left(\frac{1 - \|x\|_p}{2}\right) \frac{x}{\|x\|_p}$$

shows that $\overline{\text{co}}(\mathbb{T}_p) = B_p$. Hence we're done.

ii. Let p = 1. Then we claim that $S = \{re_j : e_j(n) = \delta_j(n), |r| = 1\}$ are all the extreme points of the unit ball of ℓ_1 , which we'll denote by B_1 .

To see that re_j is an extreme point, assume that $re_j = tx + (1-t)y$, where $x, y \in B_1$. Then if $x_j = x(j), y_j = y(j)$, we see that $r = tx_j + (1-t)y_j$ fails if either $|x_j| < 1$ or $|y_j| < 1$. Thus $|x_j|, |y_j| \ge 1$ Moreover since $|x_j| \le ||x||_1 = 1 = ||y||_1 \ge |y_j|$, we see that $|x_j| = |y_j| = 1$. Now if $i \ne j$ and $x_i \ne 0$. Then $|x_j| + |x_i| = 1 + |x_i| > ||x||_1$ is a contradiction. Thus we see that $x = z_1e_j$ for some $|z_1| = 1$. By the same reasoning, we get that $y = z_2e_j$ for some $|z_2| = 1$. Then we see that $r = tz_1 + (1-t)z_2$ for the above z_1, z_2 . But the strict convexity of $\mathbb C$ forces $r = z_1 = z_2$ which gives $x = y = re_j$ Hence we get $S \subset \operatorname{Ext}(B_1)$.

Let $x = (x_1, x_2, \ldots) \in B_1$. We'll show that if $0 < |x_j| < 1$ for any $j \in \mathbb{N}$, then $x \notin \operatorname{Ext}(B_1)$. Without loss of generality, assume that $0 < |x_1| < 1$. Then there exist a $\epsilon > 0$ such that $B_{\epsilon}(x_1) \subset \mathbb{D}$, the closed unit ball of \mathbb{C} . Let $y \in B_{\epsilon}(0)$. Then $|x_1 + y|, |x_1 - y| < |x_1| + \epsilon$. Since ϵ was arbitrary, we can find y such that $|x_1 + y|, |x_1 - y| < |x_1|$. Then for $a = (x_1 + y, x_2, \ldots), b = (x_1 - y, x_2 - y, \ldots)$, we see that $a, b \in B_1$ and

$$x = \frac{1}{2}a + \frac{1}{2}b$$

Thus the only extreme points of B_1 are those sequences $x = (x_1, x_2, ...)$ with $|x_i| = 1, 0$. But the fact that ||x|| = 1 forces $x \in S$. Thus we see that $\text{Ext}(B_1) = S$

iii. Let $p = \infty$. We claim that $S = \{x = (x_1, x_2, \dots) : |x_i| = 1\}$ are all the extreme points of the unit ball of ℓ_{∞} , which we'll denote by B_{∞} . To see that elements of S are extreme points of B_{∞} , let $x \in S$ and assume that x = ta + (1-t)b for $a, b \in B_{\infty}$. Then $x_j = ta_j + (1-t)b_j$ for all $j \in \mathbb{N}$ with $-1 \le |a_j|, |b_j| \le 1$. Since $|x_j| = 1$, by the same reasoning, we used for ℓ_1 case, we get $|a_j| = |b_j| = 1$. Then again the strict convexity of \mathbb{C} gives us that $x_j = a_j = b_j$. Since j was arbitrary, we see x = a = b. Thus $S \subset \text{Ext}(B_{\infty})$.

Assume $x = (x_1, x_2, ...) \in B_{\infty}$ such that $x \notin S$. Without loss of generality assume that $|x_1| < 1$. Note that $|x_1| \not> 1$ since $1 = ||x|| \ge |x_1|$. Then there exists $\epsilon > 0$ such that $B_{\epsilon}(x_1) \subset \mathbb{D}$, the closed unit ball in \mathbb{C} . Let $y \in B_{\epsilon}(0)$, then $|x_1 + y|, |x_1 - y| < 1$. Thus $a = (x_1 + y, x_2, ...), b = (x_1 - y, x_2, ...) \in B_{\infty}$. Then

$$\frac{a+b}{2} = \frac{1}{2}(x_1+y, x_2, \dots) + \frac{1}{2}(x_1-y, x_2, \dots, x_n) = (x_1, x_2, \dots) = x$$

shows that x is not an extreme point. Thus, we get that $\operatorname{Ext}(B_{\infty}) = S$.

- (b) Here also we approach using subparts.
 - i. Let $1 . We claim that <math>\mathbb{T}_p = \{f \in L^p([0,1]) : ||f||_p = 1\}$ is the collection of all extreme points of the closed unit ball of $L^1([0,1])$. We notice that the same proof for ℓ_p also works for $L^p([0,1])$.
 - ii. If p=1, we claim that there are no extreme points for the closed unit ball B. To see this let $f \in B$, the unit ball of L^1 with $\int |f| \ d\mu = 1$. Then there is a non-null set E, where $|f(x)| < \frac{1}{2}$ for all $x \in E$. Then $\int |f| \chi_E \ d\mu \le \frac{\mu(E)}{2}$. And since

$$\int |f| \ d\mu = 1 = \int |f| \chi_E \ d\mu + \int |f| \chi_{E^c} \ d\mu$$

we get

$$\int |f| \chi_{E^c} d \mu = 1 - \int |f| \chi_E d\mu \le 1 - \frac{\mu(E)}{2}$$

Therefore $\frac{2f\chi_E}{\mu(E)}, \frac{f\chi_{E^c}}{2-\mu(E)} \in B$ and

$$\frac{\mu(E)}{2} \left(\frac{2f\chi_E}{\mu(E)} \right) + \left(1 - \frac{\mu(E)}{2} \right) \frac{f\chi_{E^c}}{1 - \frac{\mu(E)}{2}} = f\chi_E + f\chi_{E^c} = f$$

shows that f is not an extreme point of B.

- iii. I claim that the collection $S = \{\chi_E \chi_{E^c} : E \subset [0,1], E \in M_\sigma\}$ are the extreme points of unit ball of $L^\infty([0,1])$.
- (c) I claim that the only extreme points of the unit ball of $C([0,1])_{\mathbb{R}} = \{f : [0,1] \to \mathbb{R} : f \text{ is continuous}\}$ are the $\mathbf{1}, -\mathbf{1}$ functions. If $f \notin \{\mathbf{1}, -\mathbf{1}\}$ is any function in the closed unit ball of C([0,1]),

$$g = \frac{f+1}{2}, \quad h = f + \frac{(f-1)}{2}$$

are two functions in the unit ball of C([0,1]) with

$$f = \frac{g}{2} + \frac{h}{2}$$

Hence there can be no other extreme points than $\{1, -1\}$.

Now for the case of complex valued functions we claim that the corresponding extreme points are the set $S = \{f \in C([0,1])_{\mathbb{C}} : |f(x)| = 1, \text{ for all } x \in [0,1]\}$. If $f \notin S$, then $\exists x_0 \in [0,1]$ such that |f(x)| < 1. Then we can find a function $g \in C([0,1])_{\mathbb{C}}$ with $||g|| \leq 1, ||f-g|| \leq \frac{1}{2}$

that vary from f only on a neighborhood of x_0 . Now chose h = 2f - g. Then $||h|| \le 1$ with

$$f = \frac{g+h}{2}$$

shows that all the extreme points are in S.

Conversely, if $f \in S$ and f = tg + (1-t)h, then f(x) = tg(x) + (1-t)g(x) for all $x \in [0,1]$ and thus taking absolute values on both sides, the strict convexity of \mathbb{C} forces f(x) = g(x) = h(x) for all $x \in [0,1]$. Thus we see that f is an extreme point of the unit ball of C([0,1]).

(d) I claim that there are no extreme points for the closed unit ball in $C_0(\mathbb{C})$, denoted by B. Let $g \in B$ with ||g|| = 1. Then there is a compact set K such that $|g(x)| < \frac{1}{2}$ whenever $x \notin K$. Let $h \in C_0(\mathbb{C})$ such that h(x) = 0 on K but $||h|| = \frac{1}{4}$. Then ||h| + g|| = 1 and

$$g = \frac{g+h}{2} + \frac{g-h}{2}$$

Shows g is not an extreme points. Now if $||g|| \neq 1$, then we can rescale it to have norm 1 and proceed as above.

2. Solution:

(a) i. $(C_b(\mathbb{R}), \|\cdot\|_{\infty})$ is complete.

Let f_n be a Cauchy sequence in $C_b(\mathbb{R})$. Then $f_n(x)$ is Cauchy for all $x \in \mathbb{R}$. Since \mathbb{C} is complete $f_n(x)$ converge for each $x \in \mathbb{R}$. Let $f(x) = \lim_{n \to \infty} f_n(x)$. We'll show that $f_n \to f$ in the sup norm, and that $f \in C_b(\mathbb{R})$. This will show that $C_b(\mathbb{R})$ is complete under the sup norm.

Let $\epsilon > 0$. Then there is a N_{ϵ} such that for all $n, m \geq N_{\epsilon}$, we have

$$|f_n(x) - f_m(x)| < \epsilon$$
, for all $x \in \mathbb{R}$

Now taking limit as $m \to \infty$, we get that $||f_n - f|| < \epsilon$. Now for $f \in C_b(\mathbb{R})$, we notice that the convergence is uniform which guaranteed the boundedness and continuity of the f.

ii. $(C_0(\mathbb{R}), \|\cdot\|_{\infty})$ is complete.

Let f_n be Cauchy sequence in $C_0(\mathbb{R})$ and f be the function as before. Since $C_0(\mathbb{R}) \subset C_b(\mathbb{R})$, most of the proof follows similarly as before. We just need to show that f vanishes at infinty. Let $\epsilon > 0$. Let f_n be the function in the sequence such that $||f_n - f|| \leq \frac{\epsilon}{2}$. Since $f_n \in C_0(\mathbb{R})$, there is a compact set $K \subset \mathbb{R}$ such that $||f_n(x)|| < \frac{\epsilon}{2}$ for all $x \in K^c$. Then we claim that $|f(x)| < \epsilon$ for all $x \in K^c$. Let $x \notin K^c$, then

$$|f(x)| = |f(x) - f_n(x) + f_n(x)|$$

$$\leq ||f - f_n|| + |f_n(x)|$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2}$$

$$= \epsilon$$

shows that $f \in C_0(\mathbb{R})$

iii. $(C_h(\mathbb{R}), \tau)$ is complete.

We just need to show any Cauchy net f_{λ} converges in τ . Let f_{λ} be a Cauchy net in the unit ball of $C_b(\mathbb{R}), \tau$. Then for $\epsilon > 0$, there is a λ_{ϵ} such that for all $\lambda_1, \lambda_2 > \lambda_{\epsilon}$, we get $\rho_g(f_{\lambda_1} - f_{\lambda_2}) < \epsilon$ for all $g \in C_0(\mathbb{R})$. This is equivalent to $\|gf_{\lambda_1} - gf_{\lambda_2}\|_{\infty} < \epsilon$ for all $C_0(\mathbb{R})$. Since $g \in C_0(\mathbb{R})$ and f_{λ} is bounded, we see that gf_{λ} is a Cauchy net in $(C_0(\mathbb{R}), \|\cdot\|_{\infty})$ and hence converges to some ϕ_g for each $g \in C_0(\mathbb{R})$. Let $g \in C_0(\mathbb{R})$ such that 0 < g(x) < 1 for all $x \in \mathbb{R}$. Since f_{λ} is a net in the unit ball of $C_b(\mathbb{R})$, we get $gf_{\lambda} < g$ for all f_{λ} . Hence taking limits preserve the inequality and we see that $\phi_g < g$. Hence $\frac{\phi_g}{g} < 1$ and $\frac{\phi_g}{g} \in C_b(\mathbb{R})$.

Now tracing back our construction of ϕ_g , we see that $f_{\lambda} \to \frac{\phi_g}{g}$. Since any Cauchy net can be rescaled to be inside the unit ball, we see that $C_b(\mathbb{R})$ is complete in τ .

(b) Let $f_n \to f$ in $(C_b(\mathbb{R}), \|\cdot\|_{\infty})$. We have to show that $f_n \to f$ in τ , which is equivalent to show that $\|g(f_n - f)\| \to 0$ for all $g \in C_b(\mathbb{R})$. But since $\|g(f_n - f)\| < \|g\|\|f_n - f\|$, by the algebra of limits, we get that $f_n \to f$ in τ . Hence open sets of τ are open in $\|\cdot\|_{\infty}$.

To show that the converse is not true, consider the sequence of functions $f_n \in C_b(\mathbb{R})$ such that $\chi_{[-n,n]} < f_n < \chi_{[-n-1,n+1]}$. Existence of such functions are guaranteed by the Urysohn's lemma, since $(-n-1,n+1) \subset [-n-1,n+1]$ (We don't even need Urysohn if I hand draw). Then $||f_n - f_{n+1}|| = 1$ and thus f_n is not Cauchy in $||\cdot||_{\infty}$. But we claim that f_n is Cauchy in τ .

Let $\epsilon > 0$ and $g \in C_0(\mathbb{R})$ be given. Then there is a compact set $K \subset \mathbb{R}$ such that $g(x) < \epsilon$ for all $x \in K^c$. Moreover there is an $N \in \mathbb{N}$ such that

 $K \subset [-N, N]$. Then for m > n > N, we have

$$|g(x)f_n(x) - g(x)f_m(x)| = 0$$
, when $x \in K$

since $f_n(x) = f_m(x) = 1$ when $x \in K$. And

$$|g(x)f_n(x) - g(x)f_m(x)| \ge |g(x)| < \epsilon$$
, when $x \in K^c$

since $f_m(x) - f_n(x) < 1$ everywhere. Thus we see that $\rho_g(f_n - f_m) < \epsilon$. Since $g \in C_0(\mathbb{R})$ was arbitrary, this gives that f_n is Cauchy in τ . Hence we see that the topology of τ and $\|\cdot\|_{\infty}$ in $C_b(\mathbb{R})$ are not the same.