Team IDK Project Proposal

Movie Recommender System

Table of Contents

1 Team Members	3
2 Our Dataset	3
2.1 Description of dataset	3
2.2 Breakdown of data files	3
3 Motivations and Goals of the Project	5
4 Exploratory Data Analysis	6
MovieLens Dataset	6
movies.csv	6
ratings.csv	14
genome-tags.csv	18
genome-scores.csv	19
tags.csv	21
links.csv	22
5 Project Techniques	24

1 Team Members

Our team comprises:

- 1. Yingxuan Wu
- 2. Zijun Li
- 3. Rena Pei Qi Chong
- 4. Chua Ming Feng

2 Our Dataset

2.1 Description of dataset

Our dataset (MovieLens 25M, ml-25m) is obtained from MovieLens, a web-based movie recommender service. ml-25m contains 25000095 ratings and 1093360 tag applications across 62423 movies. The data was collected by MovieLens from 162541 unique users between January 09 1995 and November 21 2019, where each user had rated at least 20 movies.

The ml-25m dataset consists of the following files:

- 1. Tag Genome (genome-scores.csv & genome-tags.csv)
- 2. Links Data (links.csv)
- 3. Movies Data (movies.csv)
- 4. Ratings Data (ratings.csv)
- 5. Tags Data (tags.csv)

2.2 Breakdown of data files

Data File	Features	Description
Tag Genome (genome-scores.csv & genome-tags.csv)	genome-scores.csv: movield; tagld; relevance	Contains the tag relevance scores for the movies. Each movie has a value for every tag in the genome.

	genome-tags.csv: tagld; tag	genome-scores.csv provides movie-tag relevance. genome-tags.csv provides the tag descriptions for each tag ID.
Links Data (links.csv)	movield; imdbld; tmdbld	Can be used to link to other sources of movie data.
Movies Data (movies.csv)	movield; title; genres	Each movie is labeled with the corresponding genres.
Ratings Data (ratings.csv)	userld; movield; rating; timestamp	Ratings were made on a scale of 5 stars, with 0.5 star increments. Timestamps represent seconds since midnight Coordinated Universal Time (UTC) of January 1 1970.
Tags Data (tags.csv)	userId; movieId; tag; timestamp	Each movie is given a tag, which could be a single word or short phrase.

This is the source link to our chosen dataset: https://grouplens.org/datasets/movielens/25m/

3 Motivations and Goals of the Project

Recommender systems have become an integral part of our lives, supposedly working seamlessly to suggest new content and material for user consumption. It is a field that is constantly worked and improved on in the industry and in research, and users have thus been able to enjoy the quality of life changes on their favorite platforms. Recommender systems can identify relevant products in the form of suggestions, provide personalized content recommendations etc. For instance, on Amazon, each item listing is accompanied by various other product listings catered for the user. Recommender systems are also integral to companies like Youtube and Netflix, who utilize them to entice and recommend relevant content to users based on the choices they make, such as likes, duration of video elapsed, watch history etc.

Tentatively, our goal is to create a functional movie recommender system built upon item-based collaborative filtering which searches for similar movies and recommends similar movies that the user has not watched. Further improvements will be made after model diagnosis.

4 Exploratory Data Analysis

MovieLens Dataset

Source: https://files.grouplens.org/datasets/movielens/ml-25m-README.html

About the dataset: https://files.grouplens.org/datasets/movielens/ml-25m-README.html

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

movies.csv

Variables: - movieId (integer) - title (string) -> year is in brackets behind - genres (string) -> multiple genres separated by |

movies = pd.read_csv("../ml-25m/movies.csv")

movies

	movieId	title	genres
0	1	Toy Story (1995)	Adventure Animation Children Comedy Fantasy
1	2	Jumanji (1995)	Adventure Children Fantasy
2	3	Grumpier Old Men (1995)	Comedy Romance
3	4	Waiting to Exhale (1995)	Comedy Drama Romance
4	5	Father of the Bride Part II (1995)	Comedy

```
6241
        209157 We (2018)
                                          Drama
 8
 6241
        209159
                  Window of the Soul Documentary
 9
                  (2001)
 6242
        209163
                  Bad Poems (2018)
                                          Comedy|Drama
 0
 6242
        209169
                  A Girl Thing (2001)
                                          (no genres listed)
 1
 6242
        209171
                  Women
                             of
                                  Devil's Action|Adventure|Drama
 2
                  Island (1962)
# strip white spaces from strings
movies["title"] = movies["title"].str.strip()
movies["genres"] = movies["genres"].str.strip()
movies.isnull().values.any()
False
```

Movie release year

We extract the year from the "title" column of the dataframe. Movies without a year specified in the title column will have the "year" column value specified as NaN.

```
# extract movie year from title as new column

movies["year"] = movies["title"].str.extract("(\(\d{4}\\)))$")

# movies["year"] = movies["title"].str[-6:]

movies["year"] = movies["year"].str[1:5]

movies["year"].unique()

array(['1995', '1994', '1996', '1976', '1992', '1988', '1967', '1993',

'1964', '1977', '1965', '1982', '1990', '1991', '1989', '1937',
```

```
'1940', '1969', '1981', '1973', '1970', '1960', '1955', '1959',
'1968', '1980', '1975', '1986', '1948', '1943', '1950', '1946',
'1987', '1997', '1974', '1956', '1958', '1949', '1972', '1998',
'1933', '1952', '1951', '1957', '1961', '1954', '1934', '1944',
'1963', '1942', '1941', '1953', '1939', '1947', '1945', '1938',
'1935', '1936', '1926', '1932', '1985', '1979', '1971', '1978',
'1966', '1962', '1983', '1984', '1931', '1922', '1999', '1927',
'1929', '1930', '1928', '1925', '1914', '2000', '1919', '1923',
'1920', '1918', '1921', '2001', '1924', '2002', '2003', '1915',
'2004', '1916', '1917', '2005', '2006', '1902', '1903', '2007',
'2008', '2009', '1912', '2010', nan, '1913', '2011', '1898',
'1899', '1894', '2012', '1910', '2013', '1896', '2014', '2015',
'1895', '1909', '1911', '1900', '2016', '2017', '2018', '2019',
'1905', '1904', '1891', '1892', '1908', '1897', '1887', '1888',
'1890', '1878', '1874', '1901', '1907', '1906', '1883', '1880'],
dtype=object)
```

movies[movies["year"].isna()] # movies without year labelled

	movieId	title	genres	year
1503 6	79607	Millions Game, The (Das Millionenspiel)	Action Drama Sci-Fi Thri ller	NaN
1878 9	98063	Mona and the Time of Burning Love (Mona ja pal	Drama	NaN
2538 7	123619	Terrible Joe Moran	(no genres listed)	NaN

2628 4	125571	The Court-Martial of Jackie Robinson	(no genres listed)	NaN
2630 9	125632	In Our Garden	(no genres listed)	NaN
				•••
6207 1	207714	Tales of Found Footage	(no genres listed)	NaN
6210 4	207884	Enduring Destiny	(no genres listed)	NaN
6228 5	208597	Punk the Capital: Building a Sound Movement	Documentary	NaN
6232 6	208763	Yosemite: The Fate of Heaven	(no genres listed)	NaN
6238 0	208973	The Falklands War: The Untold Story	(no genres listed)	NaN

From here, we can obtain the number of movies corresponding to each release year.

1874 1

1878 1

1880 1

Name: year, Length: 135, dtype: int64

sns.countplot(x="year", data=movies)

<AxesSubplot:xlabel='year', ylabel='count'>

Movie genres

Genres for this dataset: Action, Adventure, Animation, Children's, Comedy, Crime, Documentary, Drama, Fantasy, Film-Noir, Horror, IMAX, Musical, Mystery, Romance, Sci-Fi, Thriller, War, Western

If there are no genres listed for the movie: (no genres listed)

movies[movies["genres"] == "(no genres listed)"]

	movieId	title	genres		year
1588 1	83773	Away with Words (San tiao ren) (1999)	(no listed)	genres	199 9
1606 0	84768	Glitterbug (1994)	(no listed)	genres	199 4
1635 1	86493	Age of the Earth, The (A Idade da Terra) (1980)	(no listed)	genres	198 0
1649 1	87061	Trails (Veredas) (1978)	(no listed)	genres	197 8
1740 4	91246	Milky Way (Tejút) (2007)	(no listed)	genres	200 7

6240	209101	Hua yang de nian hua (2001)	(no	genres	200
0			listed)		1
6240	209103	Tsar Ivan the Terrible (1991)	(no	genres	199
1			listed)		1
6240	209133	The Riot and the Dance (2018)	(no	genres	201
7			listed)	8	8
6241	209151	Mao Zedong 1949 (2019)	(no	genres	201
5			listed)		9
6242	209169	A Girl Thing (2001)	(no	genres	200
1	207107	Trum Timig (2001)	listed)	Semes	1

There are 5062 movies with no genres listed.

```
movies_with_genre = movies[movies["genres"] != "(no genres listed)"]

movies["genres"] = movies_with_genre["genres"].apply(lambda x: x.split("|"))
```

The genres for each movies is split by the delimeter "|". Applying the above function will split the genres by the delimeter and make all genres of the movie into a list. For movies with "(no genres listed)", the value becomes NaN. We can confirm this in the next two code blocks.

m	~	111	20
111	() \	/ I E	es

	movieId	title			genres			year
0	1	Toy Story (199	95)		[Adventure, Comedy, Fanta	Animation,	Children,	199 5
1	2	Jumanji (1995	5)		[Adventure, Ch	nildren, Fantasy	·]	199 5
2	3	Grumpier (1995)	Old	Men	[Comedy, Rom	ance]		199 5

3	4	Waiting to Exhale (1995)	[Comedy, Drama, Romance]	199 5
4	5	Father of the Bride Part II (1995)	[Comedy]	199 5
6241 8	209157	We (2018)	[Drama]	201 8
6241 9	209159	Window of the Soul (2001)	[Documentary]	200 1
6242 0	209163	Bad Poems (2018)	[Comedy, Drama]	201 8
6242 1	209169	A Girl Thing (2001)	NaN	200 1
6242 2	209171	Women of Devil's Island (1962)	[Action, Adventure, Drama]	196 2

movies[movies["genres"].isnull()] # movies with no genres listed, which are the same as those before the genre column was manipulated

	movieId	title	genres	year
1588 1	83773	Away with Words (San tiao ren) (1999)	NaN	199 9
1606 0	84768	Glitterbug (1994)	NaN	199 4
1635 1	86493	Age of the Earth, The (A Idade da Terra) (1980)	NaN	198 0

1649 1	87061	Trails (Veredas) (1978)	NaN	197 8
1740 4	91246	Milky Way (Tejút) (2007)	NaN	2007
6240 0	209101	Hua yang de nian hua (2001)	NaN	200
6240 1	209103	Tsar Ivan the Terrible (1991)	NaN	199 1
6240 7	209133	The Riot and the Dance (2018)	NaN	201 8
6241 5	209151	Mao Zedong 1949 (2019)	NaN	201 9
6242 1	209169	A Girl Thing (2001)	NaN	200 1

From here, we explore the number of movies categorised into each genre.

```
# genre_count = movies["genres"].apply(lambda x: [i for i in x]).stack().value_counts()

genre_count = movies["genres"].apply(lambda x: pd.Series(x).value_counts()).sum()

genre_count = genre_count.astype("int")

genre_count.sort_index(inplace=True)

genre_count

Action 7348

Adventure 4145

Animation 2929

Children 2935
```

Comedy 16870 Crime 5319 Documentary 5605 Drama 25606 2731 Fantasy Film-Noir 353 Horror 5989 IMAX 195 Musical 1054 Mystery 2925 Romance 7719 Sci-Fi 3595 Thriller 8654 War 1874 Western 1399 dtype: int32 genre_count.plot.bar() <AxesSubplot:>

ratings.csv

Variables: - userId (integer) - movieId (integer) - rating (float) - timestamp (integer) -> seconds since midnight of UTC timezone

```
ratings = pd.read_csv("../ml-25m/ratings.csv")
ratings
```

userId movieId rating timestamp

0	1	296	5.0	114788004 4
1	1	306	3.5	114786881 7
2	1	307	5.0	114786882 8
3	1	665	5.0	114787882 0
4	1	899	3.5	114786851 0
				•••
2500009 0	16254 1	50872	4.5	124095337 2
2500009 1	16254 1	55768	2.5	124095199 8
2500009 2	16254 1	56176	2.0	124095069 7
2500009 3	16254 1	58559	4.0	124095343 4
2500009 4	16254 1	63876	5.0	124095251 5

ratings["datetime"] = pd.to_datetime(ratings["timestamp"], unit="s") # format timestamp to
datetime

ratings["year"] = pd.DatetimeIndex(ratings["datetime"]).year # extract year from datetime

Spread of year ratings were made

ratings["year"].value_counts()

2016	1757440
2000	1735398
2017	1689935
2005	1613550
2015	1604971
1996	1430093
2018	1310761
2019	1200634
1999	1059080
2001	1058750
2004	1048116
2006	1038458
2008	1018001
2007	931432
2003	920295
2009	810127
2010	792436
2002	776654
2011	676498
2012	635208
1997	626202
2013	515684
2014	478270
1998	272099

```
1995 3
```

Name: year, dtype: int64

rating_year_spread = sns.countplot(x="year", data=ratings)

plt.ticklabel_format(style='plain', axis='y')

rating_year_spread.bar_label(rating_year_spread.containers[0], rotation="vertical", padding=5)

rating_year_spread.set_xticklabels(rating_year_spread.get_xticklabels(), rotation=45)

None

ratings

	userId	movieId	rating	timestamp	datetime	year
0	1	296	5.0	114788004 4	2006-05-17 15:34:04	200 6
1	1	306	3.5	114786881 7	2006-05-17 12:26:57	200 6
2	1	307	5.0	114786882 8	2006-05-17 12:27:08	200 6
3	1	665	5.0	114787882 0	2006-05-17 15:13:40	200 6
4	1	899	3.5	114786851 0	2006-05-17 12:21:50	200 6
2500009 0	16254 1	50872	4.5	124095337 2	2009-04-28 21:16:12	200 9
2500009 1	16254 1	55768	2.5	124095199 8	2009-04-28 20:53:18	200 9

2500009	16254	56176	2.0	124095069	2009-04-28 20:31:37	200
2	1			7		9
2500009	16254	58559	4.0	124095343	2009-04-28 21:17:14	200
3	1			4		9
2500009	16254	63876	5.0	124095251	2009-04-28 21:01:55	200
4	1			5		9

genome-tags.csv

Variables: - tagId (integer) - tag (text)

genome_tags = pd.read_csv("../ml-25m/genome-tags.csv")

genome_tags

	tagId	tag
0	1	007
1	2	007 (series)
2	3	18th century
3	4	1920s
4	5	1930s
112 3	1124	writing
112 4	1125	wuxia
112 5	1126	wwii

```
112 1127 zombie6112 1128 zombies7
```

genome-scores.csv

Variables: - movieId (integer) - tagId (integer) - relevance (float) -> score for relevance of tag to the movie

Each movie has a score for every tag

genome_scores = pd.read_csv("../ml-25m/genome-scores.csv")
genome_scores

	movieId	tagId	relevance
0	1	1	0.02875
1	1	2	0.02375
2	1	3	0.06250
3	1	4	0.07575
4	1	5	0.14075
1558444 3	206499	1124	0.11000
1558444 4	206499	1125	0.04850
1558444 5	206499	1126	0.01325

```
1558444 206499 1127 0.14025
6
1558444 206499 1128 0.03350
7
```

Mean tag relevance score for tags across all movies

```
tag_mean_scores = genome_scores[["tagld", "relevance"]].groupby(["tagld"]).mean()

tag_mean_scores.reset_index(inplace=True)

tag_mean_scores = tag_mean_scores.merge(genome_tags, how="inner", on="tagld")

tag_mean_scores.sort_values("relevance", ascending=False, inplace=True)

tag_mean_scores
```

	tagId	relevance	tag
74 1	742	0.724424	original
64 5	646	0.541578	mentor
18 7	188	0.476752	catastrophe
46 7	468	0.475400	great ending
97 1	972	0.450228	storytelling
97 5	976	0.007379	studio ghibli

57	573	0.007345	james bond
2			
11	117	0.007059	batman
6			
4.4	440	0.005500	
11	119	0.005523	beatles
8			
10	489	0.004000	hannibal lecter
48	409	0.004099	naminal lecter
8			

tags.csv

This file is to be explored further on how it can be integrated with our project

tags = pd.read_csv("../ml-25m/tags.csv")

tags

	userId	movieId	tag	timestamp
0	3	260	classic	143947235 5
1	3	260	sci-fi	143947225 6
2	4	1732	dark comedy	157394359 8
3	4	1732	great dialogue	157394360 4
4	4	7569	so bad it's good	157394345 5

109335	16252	66934	Neil Patrick Harris	142731161
5	1			1
400005	4 (050	100011		4.40504405
109335	16252	103341	cornetto trilogy	142731125
6	1			9
109335	16253	189169	comedy	152751817
7	4			5
109335	16253	189169	disabled	152751818
8	4			1
109335	16253	189169	robbery	152751819
9	4			3

links.csv

Variables: - movieId - imdbId - tmdbId

Potential use of this file: merging with other datasets (TMDB or IMDB) to obtain more information about the movie

links = pd.read_csv("../ml-25m/links.csv")

links

	movieId	imdbId	tmdbId
0	1	114709	862.0
1	2	113497	8844.0
2	3	113228	15602.0
3	4	114885	31357.0
4	5	113041	11862.0

6241 8	209157	667124 4	499546.0
6241 9	209159	297986	63407.0
6242 0	209163	675536 6	553036.0
6242 1	209169	249603	162892.0
6242 2	209171	55323	79513.0

5 Project Techniques

Preliminary ideas on techniques the team will apply to achieve your goals

We have done our preliminary research on commonly used recommender systems and have decided on building our project using the item-based collaborative filtering approach in the initial stage. This approach would search for similar movies and recommend movies that the user has not watched. The similarity measure can be computed using cosine similarity, which measures the degree of similarity between 2 non-zero vectors defined in an inner product space.

cosine similarity =
$$\cos(\theta) = \frac{AB}{||A|| ||B||}$$

This filtering technique functions by searching for every pair of movies that were rated by the same user and measures the cosine similarity of those rated across all users who rated both movies. We can implement this approach using the K-Nearest Neighbors (KNN) algorithm for prediction of potential relevant movies for the user.

The data frame would have to be of $m \times n$ dimension, where m and n represent the number of movies and number of users respectively. We can represent the ratings of a movie as a vector (rating vector) in n-dimensional space. The data in the data frame is expected to be sparse as it is likely for there to be movies that are rated by a small number of users. The converse is also true where there is likely to be users who have only rated a small number of movies. Thus, it is important for us to address this data sparsity when training our model.

When presented with a target movie from the user, the KNN algorithm can calculate the distance between the rating vector of this targeted movie to all other rating vectors. The distances are ranked and the algorithm returns the top K nearest movies as the most similar movie recommendations.