Univers	idad de Buenos Aires	Facultad de Ingeniería			
2º Cuatrimestre 2009	75.12 - Análisis Numérico I. Curso 008	Parcial. Última Oportunidad.	Tema Único	Nota	
Padrón:	Apellido y Nombres				

Ejercicio 1.

i	хi	yi		A=	5	0	B=	9		Newton	A0 + A2 (x-x1)(x-x3)
0	-2	y0			0	10		0			
1	-1	у1									LB con x0,x2,x4
2	x2	y2		3	1	1		5		1	PLB (-0.5) = 1
3	1	у3		1	5	3	. X =	9	X0 =	1	PLB (0.5) = 1
4	х4	у4		4	1	6		11		1	PLB (1.5) = 1

- a) A partir de la matriz A correspondiente al Ajuste polinómico por Cuadrados Mínimos (CM), obtener una Ecuación No Lineal (ENL) que permita calcular x4, sin resolverla.
- b) Resolver la ENL obtenida mediante un método de refinamiento en el intervalo [1.5,2.3] adoptando una tolerancia absoluta de 10⁻³ (No se admitirá la aplicación de métodos de arranque, ni despeje simple).
- c) Con el valor de x4 hallado en el punto anterior, obtener el valor de x2.
- d) Aplicar una perturbación relativa r=0.002 sobre el valor de x4 hallado para obtener el nuevo valor de x2 y estimar un valor de Cp para este problema. ¿Puede desarrollar la expresión teórica del Cp?
- e) A partir de los datos correspondientes a la interpolación por Lagrange Baricéntrico (LB), construir un Sistema de Ecuaciones Lineales (SEL) que permita obtener (y0,y2,y4).
- f) Indicar al menos un método que no pueda aplicarse a la resolución del SEL obtenido (justificar).
- g) Realizar una iteración por el método de Gauss-Seidel para resolver el SEL obtenido, tomando como vector inicial el XO del enunciado.
- h) Adoptando el resultado del punto anterior para (y0,y2,y4) y aprovechando la expresión del polinomio de Newton y el vector B de CM, obtener los valores y1 e y3.
- i) Indicar el grado de los polinomios y los puntos utilizados en el ajuste por CM y la interpolación por LB.
- j) Indicar el grado y la cantidad de polinomios de Spline que obtendría utilizando todos los puntos de la tabla.

NOTA 1: Si no ha podido obtener el SEL solicitado, utilice el que se da en el enunciado

NOTA 2: Si no ha podido obtener la ENL solicitada, utilice la expresión $x^2-2x+x^3=8$

Ejercicio 2. El Método del Descenso Más Rápido obtiene en forma iterativa la solución de un sistema de ecuaciones lineales. La expresión principal del método es:

$$x^{\langle i+1\rangle} = x^{\langle i\rangle} + \alpha_i R^{\langle i\rangle}$$

Explique por qué a este método se lo incluye en los llamados «métodos iterativos no estacionarios». Justifique su respuesta.