Module MA2341 (Frolov), Advanced Mechanics I Homework Sheet 1

Each set of homework questions is worth 100 marks

Problem 1. Consider a particle moving in a D-dimensional flat space with the following Lagrangian

$$L = \frac{1}{2}mv_i^2 - U(r)$$
, $r = \sqrt{x_i^2}$, $m > 0$ is a constant,

where U(r) is the "Mexican hat" (or Higgs) potential

$$U(r) = \frac{k^2}{4g} - \frac{k}{2}r^2 + \frac{g}{4}r^4$$
, $k > 0$, $g > 0$, k , g are constants,

Here and in what follows the summation over the repeated indices is assumed. That means

$$a_i b_i \equiv \sum_{i=1}^{D} a_i b_i = a_1 b_1 + a_2 b_2 + \dots + a_D b_D, \quad a_i^2 \equiv a_i a_i$$

for any sets of objects a_1, \ldots, a_D and b_1, \ldots, b_D .

- (a) Find the absolute minimum and a local maximum of the potential. Use Mathematica to plot the potential for $D=1\,,\,2,\,k=1,\,g=1.$
- (b) Find equations of motion (eom) of the particle.
- (c) Prove that L is invariant under the O(D) group of rotations and reflections of the coordinates x_i :

$$x_i \to \mathcal{O}_{ij}x_j$$
, summation over $j!$,

where \mathcal{O}_{ij} is an orthogonal D by D matrix, that is for any indices i and j

$$\mathcal{O}_{ik}\mathcal{O}_{jk} = \delta_{ij}$$
, summation over k !

and δ_{ij} is the Kronecker delta: $\delta_{ij} = 1$ if i = j, and $\delta_{ij} = 0$ if $i \neq j$.

Problem 2. Consider a system with s degrees of freedom and the Lagrangian

$$L = \frac{1}{2} m_{ij} \dot{q}^i \dot{q}^j + b_{ij} \dot{q}^i q^j - \frac{1}{2} k_{ij} e^{q^i + q^j}, \qquad (0.1)$$

where m_{ij} , k_{ij} and b_{ij} are constants, and we sum over repeated indices.

- (a) Explain why without loss of generality for any i and j one can assume that $m_{ij} = m_{ji}$ and $k_{ij} = k_{ji}$ that is the matrices (m_{ij}) and (k_{ij}) with the entries m_{ij} and k_{ij} , respectively, are symmetric. Explain why (m_{ij}) is positive definite.
- (b) Find equations of motion of this system.
- (c) Explain why the equations of motion depend only on the anti-symmetric part of b_{ij} .

Problem 3. Consider a relativistic charged particle of rest mass m and charge e moving in constant uniform electric $\vec{E} = \{E_1, E_2, E_3\}$ and magnetic $\vec{B} = \{B_1, B_2, B_3\}$ fields described by the following Lagrangian (c is the speed of light)

$$L = -mc^2 \sqrt{1 - \frac{v_i^2}{c^2}} + e x_i E_i + \frac{e}{2c} \epsilon_{ijk} B_i x_j v_k, \quad v_i^2 \equiv v_i v_i,$$

where ϵ_{ijk} is the antisymmetric tensor with $\epsilon_{123} = 1$.

- (a) Find the momentum \vec{p} of the particle as a function of its velocity \vec{v} . What is the component of the momentum along the x_3 -axis?
 - Find the velocity \vec{v} of the particle as a function of \vec{p} . What is the component of the velocity along the x_2 -axis?
- (b) Find eom of the particle.
- (c) Show that in the absence of the electric field, $\vec{E} = 0$, the speed of the particle is constant.