Given a board of R rows \times C columns. The rows are numbered from 0 to R-1, the columns are numbered from 0 to C-1.

There are N tiles on the board (each tile occupies exactly 1 cell), numbered from 1 to N.

Given Q queries, each query has the form "i direction", where $1 \le i \le N$ and direction $\in \{\text{"up"}, \text{"down"}, \text{"left"}, \text{"right"}\}$ means slide the tile numbered i 1 unit in that direction. If there are another tile at this cell, move that tile 1 unit in that direction... (do not move anything if the operation would push one tile out of the board's edge)

Input

There are multiple (≤ 2) tests, process tests until EOF is seen.

- Line 1: 5 numbers R, C, N, Q, B $(1 \le B \le 10^8)$
- N subsequent lines: each line has the form "r[i] c[i]" specifies the location of the tile numbered i. (1 ≤ i ≤ N, it's guaranteed that there are no two different tiles in the same location)
- Q subsequent lines: each line consistent of a query, with the format specified above.

Output

Number the cells in the board top-to-bottom, left-to-right.

Let a_i ($0 \le i \le R \times C - 1$) be the number of the tile in the cell i, or 0 if there's no tile.

Print

$$(a_0B^{R\times C-1} + a_1B^{R\times C-2} + \cdots + a_{R\times C-1}B^0) \mod 998244353$$

Subtask

- Subtask 1 (10%): There are only "up"/"down" query types.
- Subtask 2 (30%): There are only "left"/"right" query types.
- Subtask 3 (60%): No restriction.

Sample Input	Sample Output
3 3 3 3 10	312000000
0 0	
0 1	
10	
1 right	
1 right	
3 up	

Note (operation 2 is not doing anything, otherwise, tile 2 is out of the board)

Initial state of the board:

Final state of the board:

1	2	
3		

3	1	2