Linear Regression Error

Consider a noisy target $y = w^{*T}x + \varepsilon$, where $x \in \mathbb{R}^d$ (with the added coordinate $x_0 = 1$), $y \in \mathbb{R}$, w^* is an unknown vector, and ε is a noise term with zero mean and σ^2 variance. Assume ε is independent of x and of all other ε 's. If linear regression is carried out using a training data set $\mathcal{D} = \{(x_1, y_1), ..., (x_N, y_N), ..., (x_N, y_$ y_N), and outputs the parameter vector w_{lin} , it can be shown that the expected in-sample error E_{lin} with respect to \mathcal{D} is given by:

$$\mathbb{E}_{\mathcal{D}}[E_{\text{in}}(w_{\text{lin}})] = \sigma^2 \left(1 - \frac{d+1}{N}\right)$$

An exercise: σ =0.1, d=8, E_{in} > 0.008

For σ = 0.1 and d = 8, determine the smallest number of examples N that will result in an expected $E_{\rm in}$ greater than 0.008 using the following cutoffs: 10, 25, 100, 500, 1000

$$\begin{aligned} & \texttt{MaxNforE[edin_, \sigma_, d_]} := Solve \Big[edin = \sigma^2 \left(1 - \frac{d+1}{N} \right), N \Big] \\ & \texttt{MaxNforE[0.008, 0.1, 8]} \end{aligned}$$

Solve::ratnz: Solve was unable to solve the system with inexact coefficients. The answer was obtained by solving a corresponding exact system and numericizing the result. >>

 $\{\{N \rightarrow 45.\}\}$

 $Edin[\sigma_{-}, d_{-}, N_{-}] := \sigma^{2} \left(1 - \frac{d+1}{N}\right)$ Edin[0.1, 8, 10]

Edin[0.1, 8, 25]

Edin[0.1, 8, 100]

Edin[0.1, 8, 500]

Edin[0.1, 8, 1000]

0.001

0.0064

0.0091

0.00982

0.00991