B. Lipshitz Sequence

time limit per test: 1 second memory limit per test: 256 megabytes

input: standard input output: standard output

A function is called Lipschitz continuous if there is a real constant K such that the inequality $|f(x) - f(y)| \le K |x - y|$ holds for all . We'll deal with a more... discrete version of this term.

For an array, we define it's Lipschitz constant as follows:

- if n < 2.
- if $n \ge 2$, over all $1 \le i < j \le n$

In other words, is the smallest non-negative integer such that $|h[i] - h[j]| \le L \cdot |i - j|$ holds for all $1 \le i, j \le n$.

You are given an array of size n and q queries of the form [l, r]. For each query, consider the subarray; determine the sum of Lipschitz constants of **all subarrays** of .

Input

The first line of the input contains two space-separated integers n and q ($2 \le n \le 100\ 000$ and $1 \le q \le 100$) — the number of elements in array and the number of queries respectively.

The second line contains n space-separated integers ().

The following q lines describe queries. The i-th of those lines contains two space-separated integers l_i and r_i $(1 \le l_i < r_i \le n)$.

Output

Print the answers to all queries in the order in which they are given in the input. For the i-th query, print one line containing a single integer — the sum of Lipschitz constants of all subarrays of .

Examples

```
input

10 4
1 5 2 9 1 3 4 2 1 7
2 4
3 8
7 10
1 9

output

17
82
23
210
```

```
input

7 6
5 7 7 4 6 6 2
1 2
2 3
2 6
1 7
4 7
3 5
output
```

2			
Θ			
22			
59			
16			
8			

Note

In the first query of the first sample, the Lipschitz constants of subarrays of with length at least 2 are:

The answer to the query is their sum.