Astronomie Timp Fenomene care modifică poziția aștrilor

Cristina Blaga

9 noiembrie 2021

Obiectivele seminarului

- ▶ Timp sideral şi timp solar mediu. Transformări de timp.
- Fenomene care modifică poziţia aştrilor pe bolta cerească: refacţia astronomică, aberaţia luminii şi paralaxa.

Timp

- ► Timpul sideral, notat θ , este unghiul orar al punctului vernal.
- ► Timpul solar adevărat, notat t_a , este unghiul orar al Soarelui adevărat H_{\odot} la care se adaugă 12^h

$$t_a = H_{\odot} + 12^h. \tag{1}$$

Timpul solar mediu, notat t_m, este unghiul orar al Soarelui mediu la care adăugăm 12^h.

Ecuaţia timpului

Diferența dintre timpul adevărat și timpul solar mediu, notată cu η , se numește *ecuația timpului*:

$$\eta = t_{\mathsf{a}} - t_{\mathsf{m}}. \tag{2}$$

Momentul de timp solar mediu corespunzător unui moment de timp sideral dat

- Fie două fenomene astronomice, care s-au produs la momentele de timp sideral cunoscute θ şi θ_0 .
- Momentele de timp solar mediu corespunzătoare sunt notate t_m şi t_{m_0} .
- ▶ Dacă ştim momentul de timp solar mediu t_{m_0} , pentru a afla momentul de timp solar t_m , folosim relaţia

$$t_m - t_{m_0} = \frac{365,2422}{366,2422}(\theta - \theta_0). \tag{3}$$

Timpul sideral la miezul nopţii

- ▶ La miezul nopţii, Soarele este la culminaţia inferioară şi timpul solar mediu local este 0^h.
- ▶ Timpul sideral corespunzător la Greenwich notat $\theta_{0 Gr}$ este publicat în anuarele astronomice.
- Timpul sideral la miezul nopţii într-o localitate de longitudine L se poate află din

$$\theta_0 = \theta_{0 Gr} - 9,856^{s}L \tag{4}$$

unde L se exprimă în ore şi fracţiuni de oră, cu semn plus pentru emisfera estică şi minus în emisfera vestică.

Momentul de timp sideral corespunzător unui moment de timp solar mediu dat

▶ Reciproc, momentul de timp solar mediu t_m se transformă în timp sideral, θ , cu ajutorul relaţiei:

$$\theta = \theta_0 + \frac{366,2422}{365,2422} \cdot (t_m - t_{m_0}) \tag{5}$$

unde timpul solar mediu t_{m_0} şi timpul sideral corespunzător θ_0 sunt cunoscute.

Timpul și longitudinea

Fie un eveniment astronomic observat simultan din două locuri de pe Pământ A şi B, la momentele de timp măsurate t_A , t_B , atunci

$$t_A - t_B = L_A - L_B \tag{6}$$

unde t poate fi unghi orar, timp sideral, timp solar mediu sau adevărat, iar longitudinile L_A şi L_B , exprimate în ore, minute şi secunde de timp sunt pozitive pentru localitățile aflate în emisfera terestră estică şi negative în cea vestică.

Timpul solar mediu

Pentru un loc dat de pe glob timpul solar mediu este

$$t_m = H_{\odot} + 12^h + \eta \tag{7}$$

unde H_{\odot} este unghiul orar al Soarelui măsurat din locul considerat, iar η ecuația timpului.

▶ Pentru un observator de la Greenwich ($L_{Gr} = 0^h$) şi

$$t_{m Gr} = t_m - L = H_{\odot} + 12^h + \eta - L,$$
 (8)

unde unghiul orar al Soarelui este măsurat din locul de longitudine *L*.

Timp universal, timp local

- ► Timpul local al meridianul Greenwich este timpul universal, notat TU.
- Timpul local pentru un observator aflat la longitudinea L, exprimată în grade şi fracţiuni de grad, este dat de formula

$$T = TU \pm n$$
 unde $n = [(|L| + 7, 5) : 15]$ (9)

unde semnul + este pentru longitudine estică, iar semnul - pentru longitudine vestică, iar [a] este partea întreagă a numărului a.

Timpul legal român, ora oficială de vară

Timpul legal român este

$$T = TU + 2^h \tag{10}$$

 Din ultimul sfârşit de săptămână din martie până în ultimul sfârşit de săptămână de octombrie se foloseşte ora oficială de vară

$$T = TU + 3^h. (11)$$

- 1. Să se afle timpul sideral local corespunzător momentului de timp solar mediu local $t_m = 18^h 21^m 41^s$, ştiind că timpul sideral mediu la Greenwich la 0^h TU este $\theta_{Gr} = 9^h 35^m 42,95^s$. Observaţiile se fac de la longitudinea vestică $L = 66^\circ 38' 28''$.
- 2. Din Cluj-Napoca s-a observat un satelit artificial al Pământului la ora legală $t=17^h35^m43,2^s$. Care a fost momentul sideral al observaţiei, ştiind longitudinea observatorului $L_C=1^h34^m23,46^s$ şi că timpul sideral la miezul nopţii la Greenwich a fost $1^h13^m32,6^s$.

- 3. Calculaţi ora legală corespunzătoare momentului de timp solar adevărat 16^h05^m ştiind că ecuaţia timpului în acel moment a fost +1^m45^s, iar longitudinea locului este 2^h30^m15^s (longitudine estică).
- 4. Când la Moscova este miezul zilei (12^h) la Kazan ceasul indică 12^h46^m. Calculaţi longitudinea localităţii Kazan ştiind că longitudinea Moscovei este 2^h30^m?

5. De pe o corabie s-a observat culminaţia superioară a Soarelui la 8^h23^m după un cronometru care indica timpul sideral Greenwich. Distanţa zenitală a Soarelui în acel moment a fost $z=22^{\circ}2'$. Să se găsească latitudinea şi longitudinea locului în care se găsea corabia, ştiind că la acel moment coordonatele ecuatoriale ale Soarelui au fost: $\alpha=5^h26^m$, $\delta=-18^{\circ}25'$.

Fenomene care modifică poziția aștrilor pe cer Refractia astronomică

- Datorită refracţiei astronomice astrul se vede mai sus decât este în realitate.
- ► Fie z distanţa zenitală a astrului şi z₀ distanţa zenitală măsurată (aparentă) a astrului. Atunci are loc relaţia

$$z = z_0 + k \cdot \mathsf{tg} z_0 \tag{12}$$

unde k = 60,3'' este constanta refracției.

Fenomene care modifică poziția aștrilor pe cer

- Paralaxa diurnă este unghiul sub care se vede din astru raza Pământului.
- Fie z distanţa zenitală topocentrică a astrului, z_0 distanţa zenitală geocentrică a astrului şi $p = z z_0$ unghiul de paralaxă diurnă. Atunci are loc relaţia

$$\sin p = \frac{R_{\oplus}}{r_0} \sin z. \tag{13}$$

unde R_⊕ este raza Pământului.

▶ p este maxim când astrul este la orizont \Rightarrow $\sin p_0 = \frac{R_{\oplus}}{r_0}$, unde p_0 este paralaxa orizontală a astrului.

Fenomene care modifică poziția aștrilor pe cer

Paralaxa trigonometrică

- Paralaxa anuală sau trigonometrică, notată π este unghiul sub care se vede din astru semiaxa mare a orbitei terestre.
- Are loc relaţia

$$\sin \pi = \frac{a}{r} \tag{14}$$

unde *a* este distanţa medie Soare-Pământ, iar *r* distanţa topocentrică a stelei.

 Distanţa de la care semiaxa mare a orbitei terestre se vede sub un unghi de o secundă de arc este egală cu un parsec şi

1
$$pc = 206265 \ u.a. = 3,08 \cdot 10^{16} \ m = 3,26 \ a.l.$$
 (15)

unde *u.a.* este unitatea astronomică iar *a.l.* este distanţa parcursă de un foton în vid într-un an tropic.

6. O stea circumpolară culminează superior la nord de Zenit la o distanţă zenitală măsurată de 17° 14′ 32″. La culminaţia inferioară distanţa zenitală măsurată a stelei a fost 67° 29′ 51″. Calculaţi declinaţia stelei şi latitudinea observatorului ţinând seama de refracţie. Constanta refracţiei este egală cu 60.3″.

- Distanta zenitală aparentă măsurată a Lunii a fost egală cu 43°28′. Calculaţi distanţa zenitală adevărată a Lunii aproximând paralaxa orizontală a Lunii cu 60′. (Neglijaţi refracţia astronomică.)
- 8. Un satelit geostaţionar care se mişcă în planul ecuatorului terestru se află la o distanţă de 4.2 · 10⁴ km de centrul Pământului. Calculaţi paralaxa orizontală a satelitului. Presupuneţi că raza Pământului este 6.38 · 10³ km.

- Aflaţi paralaxa unei stele aflate la i) 25 pc distanţă, respectiv la ii) 94 ani lumină distanţă.
- 10. Paralaxele a două stele sunt 0.074", respectiv 0.047". Cele două stele au aceeaşi ascensie dreaptă, declinaţiile lor fiind 62°N, respectiv 56°N. Calculaţi distanţele de la Soare la cele două stele şi distanţa dintre ele. Exprimaţi distanţele cerute în parseci.

SEM 4_ Perole 1

1.
$$t_{n} = 18^{4} 21^{4} 41^{3}$$
 $\theta = 9^{4} 31^{-4} 42.55^{-3}$
 $t_{n} = 9^{4} 31^{-4} 42.55^{-3}$
 $t_{n} = 66^{\circ} 38^{\circ} 28^{\circ} 1$
 $t_{$

 Din Cluj-Napoca s-a observat un satelit artificial al Pământului la ora legală t = 17^h35^m43,2^s. Care a fost momentul sideral al observaţiei, ştiind longitudinea observatorului L_C = 1^h34^m23,46^s şi că timpul sideral la miezul nopţii la Greenwich a fost 1^h13^m32,6^s.

$$7 = 17^{h} 35^{m} 43_{1}^{2}$$

$$L_{c} = 1^{h} 34^{m} 23_{1} 46^{n}$$

$$66r = 1^{h} 13^{m} 32_{1}6^{n}$$

$$\frac{\partial}{\partial t} = \frac{2^{h}}{4^{2}} + \frac{2^{m}}{55,52}$$

Ex4 cand la Moscova este reservel silei (12h) la Kasan casoul indick 12h 46m. Calculati lougitudinea localitàtii hazan, stiind ca longitudinea Moscovel este 2h 30m?

Lyoscova = 2h 30m tyoscova = 12h thazan = 12h 46m

Ne folosion de formula $t_A-t_B=L_A-L_B$, unde: A-Moscoia, B-Kasan

=) thoseova - thazan = L Moscova - L Kazan

= 12h 46m - 12h + 2h 30m = 10h 46m + 2h 30m = 3h 16m > 0 =) Kasan se afta in emistera terestrà Extica

SEM 4-Perole 6

PROBLEMA 7

Distanto semitala apareenta masurata a Lunii a fost egala cu 43° 28! Calculati distanto semitala saduratiata a Lunii asteoximand paralaxa senitala a Lunii cu 60!

SOLUTIE:

Interità paralaxei orizontale, un observatore suprafato Pamantalui una Luna la o distantà zenifala mai mare devat o unde un observator din rentrul Pamantalui.

Relatio dimitro distanto senitalà aparenta (2a) si rea georemtria zo este za=zo+po unde paralaxa Lunii p este data de p= P. sin za ru P paralaxa orizontalà a Lunii si za distanto senitalà a ei. Suloruim si obtinem;

20 = 2a - P. 8MZa - 42° 46.721

DETEGAN MINA - CHEERGHE 99 832 Seminar exeg. Aflati paralaxa unei stele aflate la: i) 25 po distanta ii) 34 ani lumina distanta. clatam en u paralaxa stelie exprimate in secunde arc; me di unde d'este clistanta la stea eseprimata in parseci. ii) 34 a.l. = 3,26 = 28,83 4"= 1/28/23 = 0,034"

SEM 4 Prof-10

Pho 10.
$$d_1 = 0.074^{11}$$
 $d_2 = 0.047^{11}$
 $x_1 = d_2$ $d_1 = 62^{\circ}$ $x_2 = 56^{\circ}$
 $d_{0-\Lambda_1} d_{0-\Lambda_2}$, $d_{0-\Lambda_2}$, $d_{0-\Lambda_1} = \frac{1}{d_1} = 53$
 $d_{0-\Lambda_1} = \frac{1}{d_2} = 53$

