Computer-generated proof of affine involution covering property

Eric MARBERG Yifeng ZHANG

March 23, 2020

${\bf Contents}$

1	Setup	1
2	Case: $y_i = i < j = y_j$ 2.1 Subcase (i) 2.2 Subcase (ii) 2.3 Subcase (iii)	2
3	Case: $y_i = i < j < y_j$ 3.1 Subcase (i) 3.2 Subcase (ii) 3.3 Subcase (iii)	6
4	Case: $y_i = i < y_j < j$ 4.1 Subcase (i)	13
5	Case: $i < y_i < j = y_j$ 5.1 Subcase (i) 5.2 Subcase (ii) 5.3 Subcase (iii)	20
6	Case: $y_i < i < j = y_j$ 6.1 Subcase (i) 6.2 Subcase (ii) 6.3 Subcase (iii)	27
7	Case: $i < y_i < j < y_j$ 7.1 Subcase (i) 7.2 Subcase (ii) 7.3 Subcase (iii)	34
8	Case: $i < y_i < y_j < j$ 8.1 Subcase (i) 8.2 Subcase (ii) 8.3 Subcase (iii)	51
9	Case: $y_i < i < j < y_j$ 9.1 Subcase (i) 9.2 Subcase (ii) 9.3 Subcase (iii)	69
10	Case: $y_i < i < y_j < j$ 10.1 Subcase (i)	86

11 Case: $i < j < y_i < y_j$	102
11.1 Subcase (i)	103
11.2 Subcase (ii)	104
11.2 Subcase (ii)	114
12 Case: $i < y_i < y_i < j$	122
12 Case: $i < y_j < y_i < j$ 12.1 Subcase (i)	122
12.2 Subcase (ii)	123
12.3 Subcase (iii)	133
13 Case: $y_i < y_j < i < j$	142
13 Case: $y_i < y_j < i < j$ 13.1 Subcase (i)	142
13.2 Subcase (ii)	143
13.3 Subcase (iii)	153
14 Conclusion	161

1 Setup

Let n be a positive integer. For the definition of the affine symmetric group \tilde{S}_n , see [2]. Fix an affine permutation $w \in \tilde{S}_n$ and an involution $y = y^{-1} \in \tilde{S}_n$. We set $y_a = y(a)$ for $a \in \mathbb{Z}$ and define

$$Cyc(y) = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} : a \le b = y_a\}.$$

As a shorthand, we write $w^{-1} = -a - b - c - \cdots - d$ — to mean that $w_a < w_b < w_c < \cdots < w_d$.

Lemma 1. One has $w \in \mathcal{A}(y)$ if and only if for all $(a,b), (a',b') \in \text{Cyc}(y)$, the following properties hold:

- (Y1) If a < b then $w^{-1} = -b a ...$
- $({\rm Y2}) \ \ {\rm If} \ a < a' \leq b' < b \ {\rm then} \ w^{-1} \neq --b a' a \ {\rm and} \ w^{-1} \neq --b b' a -.$
- (Y3) If a < a' and b < b' then $w^{-1} = -a b' ...$

Proof. This is equivalent to [2, Theorem 7.6].

Fix integers i < j that are not congruent modulo n. Let $t = t_{ij} \in \tilde{S}_n$ denote the reflection that interchanges i and j while fixing all integers not congruent to i or j modulo n. Write \lessdot for the covering relation in the Bruhat order on \tilde{S}_n .

Lemma 2. One has $w \leqslant wt$ if and only if the following property holds:

$$\text{(T)} \ \ w^{-1} = --i - j - \text{but if} \ i < e < j \ \text{then} \ w^{-1} \neq --i - e - j - .$$

Moreover, if i' and j' are integers with $i - i' = j - j' \in n\mathbb{Z}$, then property (T) is equivalent to the following:

(U)
$$w^{-1} = -i' - j'$$
 but if $i' < e < j'$ then $w^{-1} \neq -i' - e - j'$.

Proof. This is equivalent to [1, Proposition 8.3.6].

Recall the definition of the operator τ_{ij}^n from [2, §8] and let $z = z^{-1} = \tau_{ij}^n(y) \in \tilde{S}_n$.

Theorem. Assume $\{i, y_i\} + n\mathbb{Z}$ and $\{j, y_j\} + n\mathbb{Z}$ are disjoint. If $y \neq z, w \in \mathcal{A}(y)$, and $w \leqslant wt$, then $wt \in \mathcal{A}(z)$.

The proof of this statement occupies the rest of this computer-generated document.

Proof. Assume that $\{i, y_i\} + n\mathbb{Z}$ and $\{j, y_j\} + n\mathbb{Z}$ are disjoint and that $y \neq z$ and $w \in \mathcal{A}(y)$ and $w \lessdot wt$. Observe that if $i \neq y_i$ then the sets $i + n\mathbb{Z}$ and $y_i + n\mathbb{Z}$ are disjoint, and that if $j \neq y_j$ then the sets $j + n\mathbb{Z}$ and $y_j + n\mathbb{Z}$ are disjoint.

To show that $wt \in \mathcal{A}(z)$, it suffices by Lemma 1 to check that if $(a,b),(a',b') \in \operatorname{Cyc}(z)$ then the following properties hold:

(Z1) If
$$a < b$$
 then $(wt)^{-1} = -b - a - ...$

(Z2) If
$$a < a' \le b' < b$$
 then $(wt)^{-1} \ne -b - a' - a$ and $(wt)^{-1} \ne -b - b' - a$.

(Z3) If
$$a < a'$$
 and $b < b'$ then $(wt)^{-1} = -a - b' - ...$

Let $E = \{i, j, y_i, y_j\}$. Then $w_a = (wt)_a$ and $y_a = z_a$ for all integers $a \notin E + n\mathbb{Z}$, and we may decompose $\operatorname{Cyc}(z)$ as a disjoint union of four subsets $\operatorname{Cyc}(z) = \operatorname{Cyc}^1(z) \sqcup \operatorname{Cyc}^2(z) \sqcup \operatorname{Cyc}^3(z)$ where

$$Cyc^{1}(z) = \{(a, b) \in Cyc(z) : a, b \in E\},\$$

$$Cyc^{2}(z) = \{(a, b) \in Cyc(y) : a, b \notin E + n\mathbb{Z}\} = \{(a, b) \in Cyc(z) : a, b \notin E + n\mathbb{Z}\},\$$

$$Cyc^{3}(z) = \{(a + mn, b + mn) : 0 \neq m \in \mathbb{Z} \text{ and } (a, b) \in Cyc^{1}(z)\}.$$

When $(a, b), (a', b') \in \operatorname{Cyc}^2(z) \subset \operatorname{Cyc}(y)$, properties (Z1)-(Z3) are equivalent to (Y1)-(Y3) and therefore hold since $w \in \mathcal{A}(y)$. It remains to check properties (Z1)-(Z3) in the following cases:

- (i) When $(a, b), (a', b') \in Cyc^{1}(z)$.
- (ii) When one of the pairs (a, b), (a', b') belongs to $\operatorname{Cyc}^1(z)$ while the other belongs to $\operatorname{Cyc}^2(z)$.
- (iii) When $(a, b) \in \operatorname{Cyc}^1(z)$ and $(a', b') \in \operatorname{Cyc}^3(z)$, or $(a', b') \in \operatorname{Cyc}^1(z)$ and $(a, b) \in \operatorname{Cyc}^3(z)$.

Since we assume $z = \tau_{ij}^n(y) \neq y$, there are twelve possibilities for the relative orders of i, j, y_i , and y_j . We examine each of these possibilities in turn and check directly that properties (Z1)-(Z3) hold in cases (i), (ii), and (iii).

2 Case: $y_i = i < j = y_j$

Suppose y is such that $y_i = i < j = y_j$. Then $z = \tau_{ij}^n(y)$ has $\operatorname{Cyc}^1(z) = \{(i, j)\}$.

2.1 Subcase (i)

We must have $w^{-1} = -i - j$ — since no other ordering is possible:

1. If
$$w^{-1} = -i - i$$
— then (T) fails.

Hence if $y_i = i < j = y_i$ then

$$(wt)^{-1} = -i - i - i$$

When $(a,b),(a',b') \in \operatorname{Cyc}^1(z) = \{(i,j)\}$, properties (Z1)-(Z3) are equivalent to the following conditions which all hold in this case:

- $(Z1) \Leftrightarrow (wt)^{-1} = -i i .$
- $(Z2) \Leftrightarrow (no condition).$
- $(Z3) \Leftrightarrow (no condition).$

Thus properties (Z1)-(Z3) hold whenever (a, b), (a', b') are as in case (i) and $y_i = i < j = y_j$.

2.2 Subcase (ii)

Suppose R is an integer such that $(R,R) \in \operatorname{Cyc}^2(z) \subset \operatorname{Cyc}(y)$, so that $R = y_R = z_R \notin \{i,j\} + n\mathbb{Z}$.

- 1. Suppose R < i < j.
 - (a) If $w^{-1} = -i R j$ then (Y3) fails for (a,b) = (R,R) and (a',b') = (i,i).
 - (b) If $w^{-1} = -i j R$ then (Y3) fails for (a, b) = (R, R) and (a', b') = (i, i).

Thus if R < i < j then one of the following holds:

•
$$w^{-1} = -R - i - j$$
 and $(wt)^{-1} = -R - j - i$.

When (a, b) = (R, R) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(i, j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -i - i - .$$

$$(Z2) \Leftrightarrow (no condition).$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -R - j - .$$

2. Suppose i < j < R.

(a) If
$$w^{-1} = -R - i - j$$
— then (Y3) fails for $(a, b) = (i, i)$ and $(a', b') = (R, R)$.

(b) If
$$w^{-1} = -i - R - j$$
— then (Y3) fails for $(a, b) = (j, j)$ and $(a', b') = (R, R)$.

Thus if i < j < R then one of the following holds:

•
$$w^{-1} = -i - j - R$$
 and $(wt)^{-1} = -j - i - R$.

When (a, b) = (R, R) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(i, j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -i - i - .$$

$$(Z2) \Leftrightarrow (no condition).$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -i - R - .$$

3. It cannot happen that i < R < j since:

(a) If
$$w^{-1} = -i - R - j$$
— then (T) fails.

(b) If
$$w^{-1} = -i - j - R$$
— then (Y3) fails for $(a, b) = (R, R)$ and $(a', b') = (j, j)$.

(c) If
$$w^{-1} = -R - i - j$$
— then (Y3) fails for $(a, b) = (i, i)$ and $(a', b') = (R, R)$.

Next suppose P < Q are integers with $(P,Q) \in \operatorname{Cyc}^2(z) \subset \operatorname{Cyc}(y)$, so that $Q = y_P = z_P$ and $P,Q \notin \{i,j\} + n\mathbb{Z}$.

1. Suppose i < P < j < Q.

(a) If
$$w^{-1} = -i - Q - P - i$$
 then (T) fails.

(b) If
$$w^{-1} = -Q - i - P - j$$
— then (T) fails.

(c) If
$$w^{-1} = -i - Q - j - P$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, j)$.

(d) If
$$w^{-1} = -Q - i - j - P$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, j)$.

(e) If
$$w^{-1} = -Q - P - i - j$$
— then (Y3) fails for $(a, b) = (i, i)$ and $(a', b') = (P, Q)$.

Thus if i < P < j < Q then one of the following holds:

•
$$w^{-1} = -i - j - Q - P - \text{ and } (wt)^{-1} = -j - i - Q - P - .$$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(i, j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -i - i - i$$

$$(Z2) \Leftrightarrow (\text{no condition}).$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -i - Q - .$$

2. Suppose P < Q < i < j.

(a) If
$$w^{-1} = -i - Q - j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, i)$.

(b) If
$$w^{-1} = -i - Q - P - j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, i)$.

(c) If
$$w^{-1} = -Q - i - j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, i)$.

(d) If
$$w^{-1} = -Q - i - P - j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, i)$.

(e) If
$$w^{-1} = -i - j - Q - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, i)$.

Thus if P < Q < i < j then one of the following holds:

•
$$w^{-1} = -Q - P - i - j$$
 and $(wt)^{-1} = -Q - P - j - i$.

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(i, j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -j - i - .$$

 $(Z2) \Leftrightarrow (no condition).$

$$(Z3) \Leftrightarrow (wt)^{-1} = -P - j - .$$

3. Suppose P < i < Q < j.

(a) If
$$w^{-1} = -i - Q - j - P$$
— then (T) fails.

(b) If
$$w^{-1} = -i - Q - P - j$$
 then (T) fails.

(c) If
$$w^{-1} = -Q - i - j - P$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, i)$.

(d) If
$$w^{-1} = -Q - i - P - j$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, i)$.

(e) If
$$w^{-1} = -i - j - Q - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, j)$.

Thus if P < i < Q < j then one of the following holds:

$$\bullet \ w^{-1} = -Q - P - i - j - \text{ and } (wt)^{-1} = -Q - P - j - i -.$$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(i, j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -j - i - i$$

 $(Z2) \Leftrightarrow (no condition).$

$$(Z3) \Leftrightarrow (wt)^{-1} = -P - j - .$$

4. Suppose i < j < P < Q.

(a) If
$$w^{-1} = -Q - P - i - j$$
 then (Y3) fails for $(a, b) = (i, i)$ and $(a', b') = (P, Q)$.

(b) If
$$w^{-1} = -Q - i - j - P$$
— then (Y3) fails for $(a, b) = (i, i)$ and $(a', b') = (P, Q)$.

(c) If
$$w^{-1} = -Q - i - P - j$$
 — then (Y3) fails for $(a,b) = (i,i)$ and $(a',b') = (P,Q)$.

(d) If
$$w^{-1} = -i - Q - j - P$$
— then (Y3) fails for $(a, b) = (j, j)$ and $(a', b') = (P, Q)$.

(e) If
$$w^{-1} = -i - Q - P - j$$
 then (Y3) fails for $(a, b) = (j, j)$ and $(a', b') = (P, Q)$.

Thus if i < j < P < Q then one of the following holds:

$$\bullet \ w^{-1} = -i - j - Q - P - \ \text{and} \ (wt)^{-1} = -j - i - Q - P -.$$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(i, j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

 $(Z2) \Leftrightarrow (no condition).$

$$(Z3) \Leftrightarrow (wt)^{-1} = -i - Q - .$$

5. Suppose P < i < j < Q.

(a) If
$$w^{-1} = -Q - i - j - P$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, i)$.

(b) If
$$w^{-1} = -Q - i - P - j$$
 then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, i)$.

(c) If
$$w^{-1} = -i - Q - j - P$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, j)$.

Thus if P < i < j < Q then one of the following holds:

•
$$w^{-1} = -i - j - Q - P - \text{ and } (wt)^{-1} = -j - i - Q - P - .$$

•
$$w^{-1} = -Q - P - i - j - \text{ and } (wt)^{-1} = -Q - P - j - i - i$$

$$\bullet \ w^{-1} = -i - Q - P - j - \ \text{and} \ (wt)^{-1} = -j - Q - P - i -.$$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(i, j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -j - i - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -Q - i - P - \text{ and } (wt)^{-1} \neq -Q - j - P - i$$

- $(Z3) \Leftrightarrow (no condition).$
- 6. It cannot happen that i < P < Q < j since:
 - (a) If $w^{-1} = -i Q j P$ then (T) fails.
 - (b) If $w^{-1}=-i-Q-P-j-$ then (T) fails.
 - (c) If $w^{-1} = -Q i P j$ then (T) fails.
 - (d) If $w^{-1} = -i j Q P$ then (Y3) fails for (a,b) = (P,Q) and (a',b') = (j,j).
 - (e) If $w^{-1} = -Q P i j$ then (Y3) fails for (a,b) = (i,i) and (a',b') = (P,Q).
 - (f) If $w^{-1} = -Q i j P$ then (Y3) fails for (a, b) = (i, i) and (a', b') = (P, Q).

We conclude that properties (Z1)-(Z3) hold whenever (a, b), (a', b') are as in cases (i) or (ii) and $y_i = i < j = y_j$.

2.3 Subcase (iii)

Suppose i' and j' are integers such that $0 \neq i - i' = j - j' \in n\mathbb{Z}$, so that w(i) - w(i') = w(j) - w(j') = i - i'.

- 1. Suppose i' < j' < i < j.
 - (a) If $w^{-1} = -i' i j' j$ then (Y3) fails for (a, b) = (j', j') and (a', b') = (i, i).

Thus if i' < j' < i < j then one of the following holds:

•
$$w^{-1} = -i' - j' - i - j$$
 and $(wt)^{-1} = -j' - i' - j - i$.

When $(a,b) \in \operatorname{Cyc}^1(z) = \{(i,j)\}$ and $(a',b') \in \{(i',j')\}$, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

- $(Z1) \Leftrightarrow (wt)^{-1} = -j i and (wt)^{-1} = -j' i' and (wt)^{-1} = -j' and (wt)^{-1} = -j'$
- $(Z2) \Leftrightarrow (no condition).$
- $(Z3) \Leftrightarrow (wt)^{-1} = -i' j .$
- 2. It cannot happen that i' < i < j' < j since:
 - (a) If $w^{-1} = -i' i j' j$ then (T) fails.
 - (b) If $w^{-1} = -i' j' i j$ then (Y3) fails for (a, b) = (i, i) and (a', b') = (j', j').

We conclude that properties (Z1)-(Z3) hold for all $(a, b), (a', b') \in \text{Cyc}(z)$ when $y_i = i < j = y_j$.

3 Case: $y_i = i < j < y_j$

Suppose y is such that $y_i = i < j < y_j$. Then $z = \tau_{ij}^n(y)$ has $\operatorname{Cyc}^1(z) = \{(i, y_j), (j, j)\}$.

3.1 Subcase (i)

We must have $w^{-1} = -i - y_j - j$ — since no other ordering is possible:

- 1. If $w^{-1} = -j i y_i$ then (T) fails.
- 2. If $w^{-1} = -j y_i i$ then (T) fails.
- 3. If $w^{-1} = -y_i j i$ then (T) fails.
- 4. If $w^{-1} = -i j y_j$ then (Y1) fails for $(a, b) = (j, y_j)$.

5. If $w^{-1} = -y_i - i - j$ — then (Y3) fails for (a,b) = (i,i) and $(a',b') = (j,y_j)$.

Hence if $y_i = i < j < y_j$ then

$$(wt)^{-1} = -j - y_i - i - i$$

When $(a, b), (a', b') \in \operatorname{Cyc}^1(z) = \{(i, y_j), (j, j)\}$, properties (Z1)-(Z3) are equivalent to the following conditions which all hold in this case:

$$(Z1) \Leftrightarrow (wt)^{-1} = -y_j - i - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -y_i - j - i - .$$

$$(Z3) \Leftrightarrow (no condition).$$

Thus properties (Z1)-(Z3) hold whenever (a, b), (a', b') are as in case (i) and $y_i = i < j < y_j$.

3.2 Subcase (ii)

Suppose R is an integer such that $(R,R) \in \operatorname{Cyc}^2(z) \subset \operatorname{Cyc}(y)$, so that $R = y_R = z_R \notin \{i,j,y_j\} + n\mathbb{Z}$.

- 1. Suppose $i < j < y_j < R$.
 - (a) If $w^{-1} = -R i y_j j$ then (Y3) fails for (a, b) = (i, i) and (a', b') = (R, R).
 - (b) If $w^{-1}=-i-R-y_j-j$ then (Y3) fails for $(a,b)=(j,y_j)$ and (a',b')=(R,R)-1
 - (c) If $w^{-1} = -i y_j R j$ then (Y3) fails for $(a, b) = (j, y_j)$ and (a', b') = (R, R).

Thus if $i < j < y_i < R$ then one of the following holds:

$$\bullet \ w^{-1} = -i - y_j - j - R - \ \text{and} \ (wt)^{-1} = -j - y_j - i - R -.$$

When (a, b) = (R, R) and $(a', b') \in \text{Cyc}^1(z) = \{(i, y_j), (j, j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -y_i - i - .$$

 $(Z2) \Leftrightarrow (no condition).$

$$(Z3) \Leftrightarrow (wt)^{-1} = -i - R - \text{ and } (wt)^{-1} = -j - R - .$$

- 2. Suppose $i < j < R < y_i$.
 - (a) If $w^{-1} = -i y_i R j$ then (Y2) fails for $(a, b) = (j, y_j)$ and (a', b') = (R, R).
 - (b) If $w^{-1} = -R i y_i j$ then (Y3) fails for (a, b) = (i, i) and (a', b') = (R, R).

Thus if $i < j < R < y_i$ then one of the following holds:

•
$$w^{-1} = -i - y_i - j - R$$
 and $(wt)^{-1} = -j - y_i - i - R$.

•
$$w^{-1} = -i - R - y_j - j$$
 and $(wt)^{-1} = -j - R - y_j - i$.

When (a, b) = (R, R) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(i, y_j), (j, j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -y_i - i - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -y_i - R - i - .$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -i - R - .$$

- 3. Suppose $R < i < j < y_i$.
 - (a) If $w^{-1} = -i y_j j R$ then (Y3) fails for (a,b) = (R,R) and (a',b') = (i,i).
 - (b) If $w^{-1} = -i R y_j j$ then (Y3) fails for (a,b) = (R,R) and (a',b') = (i,i).
 - (c) If $w^{-1} = -i y_j R j$ then (Y3) fails for (a,b) = (R,R) and (a',b') = (i,i).

Thus if $R < i < j < y_j$ then one of the following holds:

•
$$w^{-1} = -R - i - y_j - j$$
 and $(wt)^{-1} = -R - j - y_j - i$.

When (a, b) = (R, R) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(i, y_j), (j, j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(\mathbf{Z}1) \Leftrightarrow (wt)^{-1} = -y_j - i - .$$

$$(Z2) \Leftrightarrow (no condition).$$

$$(\mathbf{Z3}) \Leftrightarrow (wt)^{-1} = -R - j - \text{ and } (wt)^{-1} = -R - y_j -.$$

4. It cannot happen that $i < R < j < y_i$ since:

(a) If
$$w^{-1} = -i - R - y_j - j$$
— then (T) fails.

(b) If
$$w^{-1} = -i - y_j - R - j$$
— then (T) fails.

(c) If
$$w^{-1} = -i - y_j - j - R$$
— then (Y3) fails for $(a, b) = (R, R)$ and $(a', b') = (j, y_j)$.

(d) If
$$w^{-1} = -R - i - y_j - j$$
 — then (Y3) fails for $(a,b) = (i,i)$ and $(a',b') = (R,R)$.

Next suppose P < Q are integers with $(P,Q) \in \operatorname{Cyc}^2(z) \subset \operatorname{Cyc}(y)$, so that $Q = y_P = z_P$ and $P,Q \notin \{i,j,y_j\} + n\mathbb{Z}$.

1. Suppose $P < i < j < Q < y_j$.

(a) If
$$w^{-1} = -Q - i - P - y_j - j$$
 — then (Y2) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,i)$.

(b) If
$$w^{-1} = -i - y_j - j - Q - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

(c) If
$$w^{-1} = -i - y_j - Q - j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

(d) If
$$w^{-1} = -i - y_j - Q - P - j$$
— then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (j,y_j)$.

(e) If
$$w^{-1} = -i - Q - y_j - P - j$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

(f) If
$$w^{-1} = -i - Q - y_j - j - P$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (j,y_j)$.

(g) If
$$w^{-1} = -Q - i - y_i - P - j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_i)$.

$$\text{(h) If } w^{-1} = -Q - i - y_j - j - P - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (j,y_j).$$

Thus if $P < i < j < Q < y_i$ then one of the following holds:

•
$$w^{-1} = -i - Q - P - y_i - j$$
 and $(wt)^{-1} = -j - Q - P - y_i - i$.

•
$$w^{-1} = -Q - P - i - y_i - j$$
 and $(wt)^{-1} = -Q - P - j - y_i - i$.

When (a,b) = (P,Q) and $(a',b') \in \text{Cyc}^1(z) = \{(i,y_j),(j,j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -y_i - i - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -Q-j-P-$$
.

$$(Z3) \Leftrightarrow (wt)^{-1} = -P - y_i - .$$

2. Suppose $P < i < Q < j < y_i$.

(a) If
$$w^{-1} = -i - y_i - Q - j - P$$
 then (T) fails.

(b) If
$$w^{-1} = -i - y_i - Q - P - j$$
 then (T) fails.

(c) If
$$w^{-1} = -i - Q - y_j - P - j$$
— then (T) fails.

(d) If
$$w^{-1} = -i - Q - P - y_i - j$$
 then (T) fails.

(e) If
$$w^{-1} = -i - Q - y_i - j - P$$
— then (T) fails.

(f) If
$$w^{-1} = -Q - i - P - y_j - j$$
— then (Y2) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,i)$.

(g) If
$$w^{-1} = -i - y_j - j - Q - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

$$\text{(h) If } w^{-1} = -Q - i - y_j - P - j - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (j,y_j).$$

(i) If
$$w^{-1} = -Q - i - y_j - j - P$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

Thus if $P < i < Q < j < y_j$ then one of the following holds:

•
$$w^{-1} = -Q - P - i - y_i - j$$
 and $(wt)^{-1} = -Q - P - j - y_i - i$.

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(i, y_j), (j, j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -y_i - i - .$$

$$(Z2) \Leftrightarrow (no condition).$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -P - j - \text{ and } (wt)^{-1} = -P - y_i - .$$

3. Suppose $i < j < y_i < P < Q$.

(a) If
$$w^{-1} = -i - y_j - Q - j - P$$
 then (Y3) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

(b) If
$$w^{-1} = -i - y_j - Q - P - j$$
 then (Y3) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

(c) If
$$w^{-1} = -Q - i - P - y_j - j$$
 then (Y3) fails for $(a,b) = (j,y_j)$ and $(a',b') = (P,Q)$.

$$\text{(d) If } w^{-1} = -i - Q - y_j - P - j - \text{ then (Y3) fails for } (a,b) = (j,y_j) \text{ and } (a',b') = (P,Q).$$

(e) If
$$w^{-1} = -i - Q - P - y_j - j$$
— then (Y3) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

(f) If
$$w^{-1} = -Q - P - i - y_j - j$$
 then (Y3) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

(g) If
$$w^{-1} = -i - Q - y_j - j - P$$
— then (Y3) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

(h) If
$$w^{-1} = -Q - i - y_j - P - j$$
 then (Y3) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

(i) If
$$w^{-1} = -Q - i - y_j - j - P$$
 then (Y3) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

Thus if $i < j < y_j < P < Q$ then one of the following holds:

•
$$w^{-1} = -i - y_j - j - Q - P - \text{ and } (wt)^{-1} = -j - y_j - i - Q - P - .$$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(i, y_j), (j, j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -y_i - i - .$$

$$(Z2) \Leftrightarrow (\text{no condition}).$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -i - Q - \text{ and } (wt)^{-1} = -j - Q - .$$

4. Suppose $i < j < P < y_i < Q$

(a) If
$$w^{-1} = -i - y_j - Q - j - P$$
 then (Y3) fails for $(a,b) = (j,y_j)$ and $(a',b') = (P,Q)$.

(b) If
$$w^{-1} = -i - y_j - Q - P - j$$
— then (Y3) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

(c) If
$$w^{-1} = -Q - i - P - y_j - j$$
 then (Y3) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

(d) If
$$w^{-1} = -i - Q - y_j - P - j$$
 then (Y3) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

(e) If
$$w^{-1}=-i-Q-P-y_j-j-$$
 then (Y3) fails for $(a,b)=(j,y_j)$ and $(a',b')=(P,Q)$.

(f) If
$$w^{-1} = -Q - P - i - y_i - j$$
 then (Y3) fails for $(a, b) = (j, y_i)$ and $(a', b') = (P, Q)$.

(g) If
$$w^{-1} = -i - Q - y_j - j - P$$
— then (Y3) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

$$\text{(h) If } w^{-1} = -Q - i - y_j - P - j - \text{ then (Y3) fails for } (a,b) = (j,y_j) \text{ and } (a',b') = (P,Q).$$

(i) If
$$w^{-1} = -Q - i - y_j - j - P$$
 then (Y3) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

Thus if $i < j < P < y_i < Q$ then one of the following holds:

•
$$w^{-1} = -i - y_i - j - Q - P - \text{ and } (wt)^{-1} = -j - y_i - i - Q - P - i$$

When (a, b) = (P, Q) and $(a', b') \in \text{Cyc}^1(z) = \{(i, y_j), (j, j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -y_i - i - .$$

 $(Z2) \Leftrightarrow (\text{no condition}).$

$$(Z3) \Leftrightarrow (wt)^{-1} = -i - Q - \text{ and } (wt)^{-1} = -j - Q - .$$

5. Suppose $P < Q < i < j < y_j$.

- (a) If $w^{-1} = -Q i P y_i j$ then (Y3) fails for (a, b) = (P, Q) and (a', b') = (i, i).
- (b) If $w^{-1}=-i-Q-P-y_j-j$ then (Y3) fails for (a,b)=(P,Q) and (a',b')=(i,i).
- (c) If $w^{-1} = -i y_j j Q P$ then (Y3) fails for (a,b) = (P,Q) and $(a',b') = (j,y_j)$.
- (d) If $w^{-1} = -i y_j Q j P$ then (Y3) fails for (a,b) = (P,Q) and $(a',b') = (j,y_j)$.
- (e) If $w^{-1} = -i y_j Q P j$ then (Y3) fails for (a,b) = (P,Q) and $(a',b') = (j,y_j)$.
- (f) If $w^{-1} = -i Q y_j P j$ then (Y3) fails for (a,b) = (P,Q) and $(a',b') = (j,y_j)$.
- (g) If $w^{-1} = -i Q y_i j P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (j, y_i)$.
- $\text{(h) If } w^{-1} = Q i y_j P j \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (j,y_j).$
- (i) If $w^{-1} = -Q i y_j j P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (j, y_j)$.

Thus if $P < Q < i < j < y_j$ then one of the following holds:

•
$$w^{-1} = -Q - P - i - y_j - j$$
 and $(wt)^{-1} = -Q - P - j - y_j - i$.

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(i, y_j), (j, j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -y_i - i - .$$

- $(Z2) \Leftrightarrow (no condition).$
- $(Z3) \Leftrightarrow (wt)^{-1} = -P j \text{and } (wt)^{-1} = -P y_i .$
- 6. Suppose $i < P < j < y_i < Q$.
 - (a) If $w^{-1} = -i y_j Q P j$ then (T) fails.
 - (b) If $w^{-1} = -Q i P y_i j$ then (T) fails.
 - (c) If $w^{-1} = -i Q y_i P j$ then (T) fails.
 - (d) If $w^{-1} = -i Q P y_i j$ then (T) fails.
 - (e) If $w^{-1} = -Q i y_i P j$ then (T) fails.
 - (f) If $w^{-1} = -i y_i Q j P$ then (Y2) fails for (a, b) = (P, Q) and $(a', b') = (j, y_i)$.
 - (g) If $w^{-1} = -i Q y_i j P$ then (Y2) fails for (a, b) = (P, Q) and $(a', b') = (j, y_i)$
 - (h) If $w^{-1} = -Q i y_i j P$ then (Y2) fails for (a, b) = (P, Q) and $(a', b') = (j, y_j)$.
 - (i) If $w^{-1} = -Q P i y_i j$ then (Y3) fails for (a, b) = (i, i) and (a', b') = (P, Q).

Thus if $i < P < j < y_i < Q$ then one of the following holds:

•
$$w^{-1} = -i - y_i - j - Q - P - \text{ and } (wt)^{-1} = -j - y_i - i - Q - P - .$$

When (a,b) = (P,Q) and $(a',b') \in \operatorname{Cyc}^1(z) = \{(i,y_j),(j,j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -y_i - i - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -Q-j-P-.$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -i - Q - .$$

- 7. Suppose $P < i < j < y_i < Q$.
 - (a) If $w^{-1} = -Q i P y_j j$ then (Y2) fails for (a, b) = (P, Q) and (a', b') = (i, i).
 - (b) If $w^{-1} = -i y_i Q j P$ then (Y2) fails for (a, b) = (P, Q) and $(a', b') = (j, y_i)$.
 - (c) If $w^{-1} = -i Q y_j P j$ then (Y2) fails for (a,b) = (P,Q) and $(a',b') = (j,y_j)$.
 - (d) If $w^{-1} = -i Q y_i j P$ then (Y2) fails for (a,b) = (P,Q) and $(a',b') = (j,y_j)$.
 - (e) If $w^{-1} = -Q i y_i P j$ then (Y2) fails for (a, b) = (P, Q) and $(a', b') = (j, y_j)$.
 - (f) If $w^{-1} = -Q i y_j j P$ then (Y2) fails for (a, b) = (P, Q) and $(a', b') = (j, y_j)$.

Thus if $P < i < j < y_j < Q$ then one of the following holds:

•
$$w^{-1} = -i - y_i - j - Q - P - \text{ and } (wt)^{-1} = -j - y_i - i - Q - P - .$$

•
$$w^{-1} = -i - y_j - Q - P - j$$
 and $(wt)^{-1} = -j - y_j - Q - P - i$.

•
$$w^{-1} = -i - Q - P - y_i - j$$
 and $(wt)^{-1} = -j - Q - P - y_i - i$.

•
$$w^{-1} = -Q - P - i - y_j - j$$
 and $(wt)^{-1} = -Q - P - j - y_j - i$.

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(i, y_j), (j, j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(\mathbf{Z}\mathbf{1}) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -y_j - i -.$$

- $(Z3) \Leftrightarrow (no condition).$
- 8. Suppose $i < j < P < Q < y_j$.

(a) If
$$w^{-1}=-i-y_j-Q-j-P$$
— then (Y2) fails for $(a,b)=(j,y_j)$ and $(a',b')=(P,Q)$.

(b) If
$$w^{-1} = -i - y_j - Q - P - j$$
— then (Y2) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

(c) If
$$w^{-1} = -i - Q - y_j - P - j$$
 then (Y2) fails for $(a,b) = (j,y_j)$ and $(a',b') = (P,Q)$.

(d) If
$$w^{-1} = -Q - i - y_j - P - j$$
 then (Y2) fails for $(a,b) = (j,y_j)$ and $(a',b') = (P,Q)$.

(e) If
$$w^{-1} = -Q - i - P - y_i - j$$
— then (Y3) fails for $(a, b) = (i, i)$ and $(a', b') = (P, Q)$.

(f) If
$$w^{-1} = -Q - P - i - y_i - j$$
— then (Y3) fails for $(a, b) = (i, i)$ and $(a', b') = (P, Q)$.

(g) If
$$w^{-1} = -Q - i - y_j - j - P$$
— then (Y3) fails for $(a, b) = (i, i)$ and $(a', b') = (P, Q)$.

Thus if $i < j < P < Q < y_j$ then one of the following holds:

•
$$w^{-1} = -i - Q - y_i - j - P - \text{ and } (wt)^{-1} = -j - Q - y_i - i - P - .$$

•
$$w^{-1} = -i - y_i - j - Q - P - \text{ and } (wt)^{-1} = -j - y_i - i - Q - P - .$$

•
$$w^{-1} = -i - Q - P - y_j - j$$
 and $(wt)^{-1} = -j - Q - P - y_j - i$.

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(i, y_j), (j, j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -y_i - i - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -y_i - P - i - \text{ and } (wt)^{-1} \neq -y_i - Q - i - .$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -j - Q - .$$

9. It cannot happen that $i < P < j < Q < y_i$ since:

(a) If
$$w^{-1} = -i - y_i - Q - P - j$$
 then (T) fails.

(b) If
$$w^{-1} = -Q - i - P - y_i - j$$
 then (T) fails.

(c) If
$$w^{-1} = -i - Q - y_i - P - j$$
— then (T) fails.

(d) If
$$w^{-1} = -i - Q - P - y_i - j$$
 then (T) fails.

(e) If
$$w^{-1} = -Q - i - y_i - P - j$$
 then (T) fails.

(f) If
$$w^{-1} = -i - y_j - j - Q - P$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

(g) If
$$w^{-1} = -i - y_j - Q - j - P$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

(h) If
$$w^{-1} = -i - Q - y_i - j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_i)$.

(i) If
$$w^{-1} = -Q - i - y_j - j - P$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

(j) If
$$w^{-1} = -Q - P - i - y_j - j$$
— then (Y3) fails for $(a,b) = (i,i)$ and $(a',b') = (P,Q)$.

10. It cannot happen that $i < P < Q < j < y_i$ since:

(a) If
$$w^{-1} = -i - y_j - Q - j - P$$
— then (T) fails.

(b) If
$$w^{-1} = -i - y_i - Q - P - j$$
 then (T) fails.

- (c) If $w^{-1} = -Q i P y_i j$ then (T) fails.
- (d) If $w^{-1} = -i Q y_i P j$ then (T) fails.
- (e) If $w^{-1} = -i Q P y_j j$ then (T) fails.
- (f) If $w^{-1} = -i Q y_j j P$ then (T) fails.
- (g) If $w^{-1} = -Q i y_j P j$ then (T) fails.
- (h) If $w^{-1} = -i y_j j Q P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (j, y_j)$.
- (i) If $w^{-1} = -Q i y_j j P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (j, y_j)$.
- (j) If $w^{-1} = -Q P i y_j j$ then (Y3) fails for (a,b) = (i,i) and (a',b') = (P,Q).

We conclude that properties (Z1)-(Z3) hold whenever (a, b), (a', b') are as in cases (i) or (ii) and $y_i = i < j < y_j$.

3.3 Subcase (iii)

Suppose i' and j' are integers such that $0 \neq i - i' = j - j' \in n\mathbb{Z}$, so that w(i) - w(i') = w(j) - w(j') = i - i'.

- 1. Suppose $i' < j' < i < j < y_{i'} < y_i$.
 - (a) If $w^{-1} = -i' y_{j'} i j' y_j j$ then (Y2) fails for $(a, b) = (j', y_{j'})$ and (a', b') = (i, i).
 - (b) If $w^{-1} = -i' y_{j'} i y_j j' j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (j, y_j)$.
 - (c) If $w^{-1} = -i' i y_{j'} y_j j' j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (j, y_j)$.

Thus if $i' < j' < i < j < y_{j'} < y_j$ then one of the following holds:

- $\bullet \ w^{-1} = -i' y_{j'} j' i y_j j \text{ and } (wt)^{-1} = -j' y_{j'} i' j y_j i .$
- $w^{-1} = -i' i y_{i'} j' y_i j$ and $(wt)^{-1} = -j' j y_{i'} i' y_i i$.

When $(a, b) \in \operatorname{Cyc}^1(z) = \{(i, y_j), (j, j)\}$ and $(a', b') \in \{(i', y_{j'}), (j', j')\}$, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -y_i - i - \text{ and } (wt)^{-1} = -y_{i'} - i' - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -y_{i'} - j - i' - i$$

(Z3)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -i' - y_j - \text{ and } \\ (wt)^{-1} = -j' - j - \text{ and } \\ (wt)^{-1} = -j' - y_j - . \end{cases}$$

- 2. Suppose $i' < j' < y_{j'} < i < j < y_j$.
 - (a) If $w^{-1} = -i' i y_{j'} j' y_j j$ then (Y3) fails for $(a,b) = (j',y_{j'})$ and (a',b') = (i,i).
 - (b) If $w^{-1} = -i' y_{j'} i j' y_j j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and (a', b') = (i, i).
 - (c) If $w^{-1} = -i' y_{j'} i y_j j' j$ then (Y3) fails for $(a,b) = (j',y_{j'})$ and $(a',b') = (j,y_j)$.
 - (d) If $w^{-1} = -i' i y_{j'} y_j j' j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (j, y_j)$.

Thus if $i' < j' < y_{j'} < i < j < y_j$ then one of the following holds:

•
$$w^{-1} = -i' - y_{i'} - j' - i - y_i - j$$
 and $(wt)^{-1} = -j' - y_{i'} - i' - j - y_i - i$.

When $(a, b) \in \operatorname{Cyc}^1(z) = \{(i, y_j), (j, j)\}$ and $(a', b') \in \{(i', y_{j'}), (j', j')\}$, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -y_j - i - \text{ and } (wt)^{-1} = -y_{j'} - i' - .$$

 $(Z2) \Leftrightarrow (no condition).$

(Z3)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -i' - j - \text{ and } \\ (wt)^{-1} = -i' - y_j - \text{ and } \\ (wt)^{-1} = -j' - j - \text{ and } \\ (wt)^{-1} = -j' - y_j - . \end{cases}$$

- 3. Suppose $i' < j' < i < y_{j'} < j < y_j$.
 - (a) If $w^{-1} = -i' i y_{j'} j' y_j j$ then (T) fails.
 - (b) If $w^{-1} = -i' i y_{j'} y_j j' j$ then (T) fails.
 - (c) If $w^{-1} = -i' y_{j'} i j' y_j j$ then (Y2) fails for $(a, b) = (j', y_{j'})$ and (a', b') = (i, i).
 - $\text{(d) If } w^{-1} = -i' y_{j'} i y_j j' j \text{ then (Y3) fails for } (a,b) = (j',y_{j'}) \text{ and } (a',b') = (j,y_j).$

Thus if $i' < j' < i < y_{j'} < j < y_j$ then one of the following holds:

•
$$w^{-1} = -i' - y_{i'} - j' - i - y_i - j$$
 and $(wt)^{-1} = -j' - y_{i'} - i' - j - y_i - i$.

When $(a, b) \in \operatorname{Cyc}^1(z) = \{(i, y_j), (j, j)\}$ and $(a', b') \in \{(i', y_{j'}), (j', j')\}$, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -y_j - i - \text{ and } (wt)^{-1} = -y_{j'} - i' - .$$

 $(Z2) \Leftrightarrow (no condition).$

(Z3)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -i' - j - \text{ and } \\ (wt)^{-1} = -i' - y_j - \text{ and } \\ (wt)^{-1} = -j' - j - \text{ and } \\ (wt)^{-1} = -j' - y_j - . \end{cases}$$

- 4. It cannot happen that $i' < i < j' < y_{j'} < j < y_j$ since:
 - (a) If $w^{-1} = -i' y_{j'} i y_j j' j$ then (T) fails.
 - (b) If $w^{-1} = -i' i y_{j'} j' y_j j$ then (T) fails.
 - (c) If $w^{-1} = -i' i y_{i'} y_i j' j$ then (T) fails.
 - (d) If $w^{-1} = -i' y_{j'} i j' y_j j$ then (T) fails.
 - (e) If $w^{-1} = -i' y_{i'} j' i y_i j$ then (Y3) fails for (a, b) = (i, i) and $(a', b') = (j', y_{j'})$.
- 5. It cannot happen that $i' < i < j' < j < y_{i'} < y_i$ since:
 - (a) If $w^{-1} = -i' y_{i'} i y_i j' j$ then (T) fails.
 - (b) If $w^{-1} = -i' i y_{j'} j' y_j j$ then (T) fails.
 - (c) If $w^{-1} = -i' i y_{j'} y_j j' j$ then (T) fails.
 - (d) If $w^{-1} = -i' y_{j'} i j' y_j j$ then (T) fails.
 - (e) If $w^{-1} = -i' y_{j'} j' i y_j j$ then (Y3) fails for (a, b) = (i, i) and $(a', b') = (j', y_{j'})$.

We conclude that properties (Z1)-(Z3) hold for all $(a, b), (a', b') \in \operatorname{Cyc}(z)$ when $y_i = i < j < y_i$.

4 Case: $y_i = i < y_j < j$

Suppose y is such that $y_i = i < y_j < j$. Then $z = \tau_{ij}^n(y)$ has $\operatorname{Cyc}^1(z) = \{(i, j), (y_j, y_j)\}$.

4.1 Subcase (i)

We must have $w^{-1} = -i - j - y_j$ — since no other ordering is possible:

- 1. If $w^{-1} = -i y_j j$ then (T) fails.
- 2. If $w^{-1} = -y_j j i$ then (T) fails.
- 3. If $w^{-1} = -j i y_j$ then (T) fails.
- 4. If $w^{-1} = -j y_j i$ then (T) fails.
- 5. If $w^{-1} = -y_j i j$ then (Y1) fails for $(a,b) = (y_j,j)$.

Hence if $y_i = i < y_j < j$ then

$$(wt)^{-1} = -j - i - y_j - .$$

When $(a,b),(a',b') \in \operatorname{Cyc}^1(z) = \{(i,j),(y_j,y_j)\}$, properties (Z1)-(Z3) are equivalent to the following conditions which all hold in this case:

$$(\mathbf{Z}\mathbf{1}) \Leftrightarrow (wt)^{-1} = -j - i -.$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -j-y_j-i-.$$

$$(Z3) \Leftrightarrow (no condition).$$

Thus properties (Z1)-(Z3) hold whenever (a, b), (a', b') are as in case (i) and $y_i = i < y_j < j$.

4.2 Subcase (ii)

Suppose R is an integer such that $(R,R) \in \text{Cyc}^2(z) \subset \text{Cyc}(y)$, so that $R = y_R = z_R \notin \{i,j,y_i\} + n\mathbb{Z}$.

- 1. Suppose $i < y_j < j < R$.
 - (a) If $w^{-1} = -R i j y_j$ then (Y3) fails for (a, b) = (i, i) and (a', b') = (R, R).
 - (b) If $w^{-1} = -i R j y_j$ then (Y3) fails for $(a, b) = (y_j, j)$ and (a', b') = (R, R).
 - (c) If $w^{-1} = -i j R y_j$ then (Y3) fails for $(a, b) = (y_j, j)$ and (a', b') = (R, R).

Thus if $i < y_i < j < R$ then one of the following holds:

•
$$w^{-1} = -i - j - y_i - R$$
 and $(wt)^{-1} = -j - i - y_i - R$.

When (a, b) = (R, R) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(i, j), (y_j, y_j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(\mathbf{Z}1) \Leftrightarrow (wt)^{-1} = -j - i - .$$

 $(Z2) \Leftrightarrow (no condition).$

$$(Z3) \Leftrightarrow (wt)^{-1} = -i - R - \text{ and } (wt)^{-1} = -y_i - R - .$$

- 2. Suppose $i < y_j < R < j$.
 - (a) If $w^{-1} = -i R j y_j$ then (T) fails.
 - (b) If $w^{-1}=-i-j-R-y_j$ then (Y2) fails for $(a,b)=(y_j,j)$ and (a',b')=(R,R).
 - (c) If $w^{-1} = -R i j y_j$ then (Y3) fails for (a, b) = (i, i) and (a', b') = (R, R).

Thus if $i < y_j < R < j$ then one of the following holds:

$$\bullet \ w^{-1} = -i - j - y_j - R - \ \text{and} \ (wt)^{-1} = -j - i - y_j - R -.$$

When (a, b) = (R, R) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(i, j), (y_j, y_j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -i - i - .$$

$$(\mathbf{Z}2) \Leftrightarrow (wt)^{-1} \neq -j - R - i - .$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -y_j - R - .$$

- 3. Suppose $R < i < y_i < j$.
 - (a) If $w^{-1} = -i j y_i R$ then (Y3) fails for (a, b) = (R, R) and (a', b') = (i, i).
 - (b) If $w^{-1}=-i-R-j-y_j$ then (Y3) fails for (a,b)=(R,R) and (a',b')=(i,i).
 - (c) If $w^{-1} = -i j R y_j$ then (Y3) fails for (a, b) = (R, R) and (a', b') = (i, i).

Thus if $R < i < y_i < j$ then one of the following holds:

•
$$w^{-1} = -R - i - j - y_i$$
 and $(wt)^{-1} = -R - j - i - y_i$.

When (a, b) = (R, R) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(i, j), (y_j, y_j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

- $(Z1) \Leftrightarrow (wt)^{-1} = -j i .$
- $(Z2) \Leftrightarrow (no condition).$

$$(Z3) \Leftrightarrow (wt)^{-1} = -R - j - \text{and } (wt)^{-1} = -R - y_j - .$$

- 4. It cannot happen that $i < R < y_i < j$ since:
 - (a) If $w^{-1} = -i R j y_i$ then (T) fails.
 - (b) If $w^{-1}=-i-j-y_i-R$ then (Y3) fails for (a,b)=(R,R) and $(a',b')=(y_j,j)$.
 - (c) If $w^{-1} = -i j R y_j$ then (Y3) fails for (a, b) = (R, R) and $(a', b') = (y_j, j)$.
 - (d) If $w^{-1} = -R i j y_j$ then (Y3) fails for (a,b) = (i,i) and (a',b') = (R,R).

Next suppose P < Q are integers with $(P,Q) \in \operatorname{Cyc}^2(z) \subset \operatorname{Cyc}(y)$, so that $Q = y_P = z_P$ and $P,Q \notin \{i,j,y_j\} + n\mathbb{Z}$.

- 1. Suppose $P < i < y_i < Q < j$.
 - (a) If $w^{-1} = -i Q j P y_i$ then (T) fails.
 - (b) If $w^{-1} = -i Q P j y_i$ then (T) fails.
 - (c) If $w^{-1} = -i Q j y_j P$ then (T) fails.
 - (d) If $w^{-1} = -Q i P j y_i$ then (Y2) fails for (a, b) = (P, Q) and (a', b') = (i, i).
 - (e) If $w^{-1} = -i j y_j Q P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_j, j)$.
 - (f) If $w^{-1} = -i j Q y_j P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_j, j)$.
 - (g) If $w^{-1} = -i j Q P y_j$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_j, j)$.
 - (h) If $w^{-1} = -Q i j P y_j$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_j, j)$.
 - (i) If $w^{-1} = -Q i j y_j P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_j, j)$.

Thus if $P < i < y_j < Q < j$ then one of the following holds:

•
$$w^{-1} = -Q - P - i - j - y_j - \text{ and } (wt)^{-1} = -Q - P - j - i - y_j - .$$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(i, j), (y_j, y_j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

- $(Z1) \Leftrightarrow (wt)^{-1} = -Q P \text{ and } (wt)^{-1} = -i i i$
- $(Z2) \Leftrightarrow (wt)^{-1} \neq -Q-y_i-P-.$
- $(Z3) \Leftrightarrow (wt)^{-1} = -P j .$
- 2. Suppose $P < i < Q < y_i < j$.
 - (a) If $w^{-1} = -i Q j P y_i$ then (T) fails.
 - (b) If $w^{-1} = -i Q P j y_i$ then (T) fails.
 - (c) If $w^{-1} = -i Q j y_i P$ then (T) fails.
 - (d) If $w^{-1} = -Q i P j y_j$ then (Y2) fails for (a,b) = (P,Q) and (a',b') = (i,i).
 - (e) If $w^{-1} = -i j y_j Q P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_j, j)$.
 - (f) If $w^{-1} = -i j Q y_j P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_j, j)$.
 - (g) If $w^{-1} = -i j Q P y_j$ then (Y3) fails for (a,b) = (P,Q) and $(a',b') = (y_j,j)$.
 - (h) If $w^{-1} = -Q i j P y_j$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_j, j)$.
 - (i) If $w^{-1} = -Q i j y_i P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_j, j)$.

Thus if $P < i < Q < y_i < j$ then one of the following holds:

•
$$w^{-1} = -Q - P - i - j - y_i$$
 and $(wt)^{-1} = -Q - P - j - i - y_i$.

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(i, j), (y_j, y_j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -j - i - .$$

 $(Z2) \Leftrightarrow (no condition).$

$$(Z3) \Leftrightarrow (wt)^{-1} = -P - j - \text{and } (wt)^{-1} = -P - y_i - .$$

3. Suppose $i < y_i < j < P < Q$.

(a) If
$$w^{-1} = -i - j - Q - y_j - P$$
 then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

(b) If
$$w^{-1} = -i - j - Q - P - y_i$$
 then (Y3) fails for $(a, b) = (y_i, j)$ and $(a', b') = (P, Q)$.

(c) If
$$w^{-1} = -Q - i - P - j - y_j$$
 — then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

(d) If
$$w^{-1} = -i - Q - j - P - y_j$$
 then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

(e) If
$$w^{-1} = -i - Q - P - j - y_j$$
 then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

$$\text{(f) If } w^{-1} = - Q - P - i - j - y_j - \text{ then (Y3) fails for } (a,b) = (y_j,j) \text{ and } (a',b') = (P,Q).$$

(g) If
$$w^{-1} = -i - Q - j - y_j - P$$
— then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

$$\text{(h) If } w^{-1} = -Q - i - j - P - y_j - \text{ then (Y3) fails for } (a,b) = (y_j,j) \text{ and } (a',b') = (P,Q).$$

(i) If
$$w^{-1} = -Q - i - j - y_j - P$$
 — then (Y3) fails for $(a,b) = (y_j,j)$ and $(a',b') = (P,Q)$.

Thus if $i < y_j < j < P < Q$ then one of the following holds:

•
$$w^{-1} = -i - j - y_i - Q - P - \text{ and } (wt)^{-1} = -j - i - y_i - Q - P - .$$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(i, j), (y_j, y_j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -j - i - .$$

 $(Z2) \Leftrightarrow (no condition).$

$$(Z3) \Leftrightarrow (wt)^{-1} = -i - Q - \text{ and } (wt)^{-1} = -y_i - Q - .$$

4. Suppose $i < y_j < P < j < Q$.

(a) If
$$w^{-1} = -Q - i - P - j - y_i$$
 then (T) fails.

(b) If
$$w^{-1} = -i - Q - P - j - y_i$$
 then (T) fails.

(c) If
$$w^{-1} = -i - j - Q - y_j - P$$
— then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

(d) If
$$w^{-1} = -i - j - Q - P - y_i$$
 then (Y3) fails for $(a, b) = (y_i, j)$ and $(a', b') = (P, Q)$.

(e) If
$$w^{-1} = -i - Q - j - P - y_j$$
 — then (Y3) fails for $(a,b) = (y_j,j)$ and $(a',b') = (P,Q)$.

(f) If
$$w^{-1} = -Q - P - i - j - y_j$$
 — then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

(g) If
$$w^{-1} = -i - Q - j - y_j - P$$
 — then (Y3) fails for $(a,b) = (y_j,j)$ and $(a',b') = (P,Q)$.

$$\text{(h) If } w^{-1} = -Q - i - j - P - y_j - \text{ then (Y3) fails for } (a,b) = (y_j,j) \text{ and } (a',b') = (P,Q).$$

(i) If
$$w^{-1} = -Q - i - j - y_j - P$$
 then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

Thus if $i < y_j < P < j < Q$ then one of the following holds:

$$\bullet \ w^{-1} = -i - j - y_j - Q - P - \ \text{and} \ (wt)^{-1} = -j - i - y_j - Q - P - .$$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(i, j), (y_j, y_j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -i - i - i$$

 $(Z2) \Leftrightarrow (\text{no condition}).$

$$(Z3) \Leftrightarrow (wt)^{-1} = -i - Q - \text{ and } (wt)^{-1} = -y_i - Q - .$$

5. Suppose $P < Q < i < y_i < j$.

(a) If
$$w^{-1} = -Q - i - P - j - y_j$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,i)$.

- (b) If $w^{-1} = -i Q P j y_j$ then (Y3) fails for (a, b) = (P, Q) and (a', b') = (i, i).
- (c) If $w^{-1} = -i j y_j Q P$ then (Y3) fails for (a,b) = (P,Q) and $(a',b') = (y_j,j)$.
- $\text{(d) If } w^{-1} = -i j Q y_j P \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_j,j).$
- (e) If $w^{-1} = -i j Q P y_j$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_j, j)$.
- (f) If $w^{-1} = -i Q j P y_j$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_j, j)$.
- (g) If $w^{-1} = -i Q j y_j P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_j, j)$.
- (h) If $w^{-1} = -Q i j P y_j$ then (Y3) fails for (a,b) = (P,Q) and $(a',b') = (y_j,j)$.
- (i) If $w^{-1} = -Q i j y_j P$ then (Y3) fails for (a,b) = (P,Q) and $(a',b') = (y_j,j)$.

Thus if $P < Q < i < y_i < j$ then one of the following holds:

$$\bullet \ w^{-1} = -Q - P - i - j - y_i - \text{ and } (wt)^{-1} = -Q - P - j - i - y_i -.$$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(i, j), (y_j, y_j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(\mathbf{Z}\mathbf{1})\Leftrightarrow (wt)^{-1}=-Q-P-\text{ and }(wt)^{-1}=-j-i-.$$

- $(Z2) \Leftrightarrow (no condition).$
- $(Z3) \Leftrightarrow (wt)^{-1} = -P j \text{and } (wt)^{-1} = -P y_i .$
- 6. Suppose $i < P < y_i < j < Q$.
 - (a) If $w^{-1} = -Q i P j y_j$ then (T) fails.
 - (b) If $w^{-1} = -i Q P j y_j$ then (T) fails.
 - (c) If $w^{-1} = -i j Q y_j P$ then (Y2) fails for (a, b) = (P, Q) and $(a', b') = (y_j, j)$.
 - (d) If $w^{-1} = -i Q j P y_j$ then (Y2) fails for (a,b) = (P,Q) and $(a',b') = (y_j,j)$.
 - (e) If $w^{-1} = -i Q j y_j P$ then (Y2) fails for (a, b) = (P, Q) and $(a', b') = (y_j, j)$.
 - (f) If $w^{-1} = -Q i j P y_j$ then (Y2) fails for (a,b) = (P,Q) and $(a',b') = (y_j,j)$
 - (g) If $w^{-1} = -Q i j y_j P$ then (Y2) fails for (a,b) = (P,Q) and $(a',b') = (y_j,j)$.
 - (h) If $w^{-1} = -Q P i j y_i$ then (Y3) fails for (a, b) = (i, i) and (a', b') = (P, Q).

Thus if $i < P < y_j < j < Q$ then one of the following holds:

•
$$w^{-1} = -i - j - y_i - Q - P - \text{ and } (wt)^{-1} = -j - i - y_i - Q - P - .$$

•
$$w^{-1} = -i - j - Q - P - y_i$$
 and $(wt)^{-1} = -j - i - Q - P - y_i$.

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(i, j), (y_j, y_j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -i - i - i$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -Q-y_i-P-.$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -i - Q - .$$

- 7. Suppose $P < i < y_i < j < Q$.
 - (a) If $w^{-1} = -Q i P j y_j$ then (Y2) fails for (a,b) = (P,Q) and (a',b') = (i,i).
 - (b) If $w^{-1}=-i-j-Q-y_j-P$ then (Y2) fails for (a,b)=(P,Q) and $(a',b')=(y_j,j)$.
 - (c) If $w^{-1} = -i Q j P y_i$ then (Y2) fails for (a,b) = (P,Q) and $(a',b') = (y_j,j)$.
 - (d) If $w^{-1} = -i Q j y_i P$ then (Y2) fails for (a, b) = (P, Q) and $(a', b') = (y_j, j)$.
 - (e) If $w^{-1} = -Q i j P y_i$ then (Y2) fails for (a,b) = (P,Q) and $(a',b') = (y_j,j)$.
 - (f) If $w^{-1} = -Q i j y_i P$ then (Y2) fails for (a, b) = (P, Q) and $(a', b') = (y_j, j)$.

Thus if $P < i < y_i < j < Q$ then one of the following holds:

•
$$w^{-1} = -i - j - y_i - Q - P - \text{ and } (wt)^{-1} = -j - i - y_i - Q - P - .$$

•
$$w^{-1} = -i - j - Q - P - y_i$$
 and $(wt)^{-1} = -j - i - Q - P - y_i$.

•
$$w^{-1} = -i - Q - P - j - y_i$$
 and $(wt)^{-1} = -j - Q - P - i - y_i$.

•
$$w^{-1} = -Q - P - i - j - y_i$$
 and $(wt)^{-1} = -Q - P - j - i - y_i$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(i, j), (y_j, y_j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(\mathbf{Z}\mathbf{1}) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -j - i -.$$

$$(\mathbf{Z2}) \Leftrightarrow \begin{cases} (wt)^{-1} \neq -Q - i - P - \text{ and } (wt)^{-1} \neq -Q - j - P - \text{ and } (wt)^{-1} \neq -Q - j - P - \text{ and } (wt)^{-1} \neq -Q - y_j - P - . \end{cases}$$

- $(Z3) \Leftrightarrow (no condition)$
- 8. Suppose $i < y_j < P < Q < j$.

(a) If
$$w^{-1} = -Q - i - P - j - y_j$$
 — then (T) fails.

(b) If
$$w^{-1} = -i - Q - j - P - y_j$$
 — then (T) fails.

(c) If
$$w^{-1} = -i - Q - P - j - y_j$$
 — then (T) fails.

(d) If
$$w^{-1} = -i - Q - j - y_j - P$$
— then (T) fails.

(e) If
$$w^{-1} = -i - j - Q - y_j - P$$
— then (Y2) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

(f) If
$$w^{-1} = -i - j - Q - P - y_j$$
 — then (Y2) fails for $(a,b) = (y_j,j)$ and $(a',b') = (P,Q)$.

(g) If
$$w^{-1} = -Q - i - j - P - y_j$$
 then (Y2) fails for $(a,b) = (y_j,j)$ and $(a',b') = (P,Q)$.

(h) If
$$w^{-1} = -Q - P - i - j - y_j$$
 then (Y3) fails for $(a, b) = (i, i)$ and $(a', b') = (P, Q)$.

(i) If
$$w^{-1} = -Q - i - j - y_j - P$$
— then (Y3) fails for $(a,b) = (i,i)$ and $(a',b') = (P,Q)$.

Thus if $i < y_j < P < Q < j$ then one of the following holds:

•
$$w^{-1} = -i - j - y_j - Q - P - \text{ and } (wt)^{-1} = -j - i - y_j - Q - P - .$$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(i, j), (y_j, y_j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -i - i - i$$

$$(\mathbf{Z2}) \Leftrightarrow (wt)^{-1} \neq -j - P - i - \text{ and } (wt)^{-1} \neq -j - Q - i -.$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -y_j - Q - .$$

9. It cannot happen that $i < P < y_i < Q < j$ since:

(a) If
$$w^{-1} = -Q - i - P - j - y_i$$
 then (T) fails.

(b) If
$$w^{-1} = -i - Q - j - P - y_j$$
 — then (T) fails.

(c) If
$$w^{-1} = -i - Q - P - j - y_i$$
 then (T) fails.

(d) If
$$w^{-1} = -i - Q - j - y_i - P$$
 then (T) fails.

(e) If
$$w^{-1} = -i - j - y_j - Q - P$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

(f) If
$$w^{-1} = -i - j - Q - y_j - P$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

(g) If
$$w^{-1} = -i - j - Q - P - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

(h) If
$$w^{-1} = -Q - i - j - P - y_j$$
 then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_j,j)$.

(i) If
$$w^{-1} = -Q - i - j - y_j - P$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_j,j)$.

(j) If
$$w^{-1} = -Q - P - i - j - y_j$$
 — then (Y3) fails for $(a,b) = (i,i)$ and $(a',b') = (P,Q)$.

10. It cannot happen that $i < P < Q < y_i < j$ since:

(a) If
$$w^{-1} = -Q - i - P - j - y_i$$
 then (T) fails.

(b) If
$$w^{-1} = -i - Q - j - P - y_i$$
 then (T) fails.

(c) If
$$w^{-1} = -i - Q - P - j - y_j$$
 then (T) fails.

- (d) If $w^{-1} = -i Q j y_j P$ then (T) fails.
- (e) If $w^{-1} = -i j y_j Q P$ then (Y3) fails for (a,b) = (P,Q) and $(a',b') = (y_j,j)$.
- (f) If $w^{-1} = -i j Q y_j P$ then (Y3) fails for (a,b) = (P,Q) and $(a',b') = (y_j,j)$.
- (g) If $w^{-1} = -i j Q P y_j$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_j, j)$.
- (h) If $w^{-1} = -Q i j P y_j$ then (Y3) fails for (a,b) = (P,Q) and $(a',b') = (y_j,j)$.
- (i) If $w^{-1} = -Q i j y_j P$ then (Y3) fails for (a,b) = (P,Q) and $(a',b') = (y_j,j)$
- (j) If $w^{-1} = -Q P i j y_j$ then (Y3) fails for (a,b) = (i,i) and (a',b') = (P,Q).

We conclude that properties (Z1)-(Z3) hold whenever (a, b), (a', b') are as in cases (i) or (ii) and $y_i = i < y_j < j$.

4.3 Subcase (iii)

Suppose i' and j' are integers such that $0 \neq i - i' = j - j' \in n\mathbb{Z}$, so that w(i) - w(i') = w(j) - w(j') = i - i'.

- 1. Suppose $i' < y_{i'} < i < y_i < j' < j$.
 - (a) If $w^{-1} = -i' i j' y_{j'} j y_j$ then (T) fails.
 - (b) If $w^{-1} = -i' i j' j y_{j'} y_j -$ then (T) fails.
 - (c) If $w^{-1} = -i' j' i y_{j'} j y_j$ then (Y2) fails for $(a, b) = (y_{j'}, j')$ and (a', b') = (i, i).
 - (d) If $w^{-1} = -i' j' i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_j, j)$.

Thus if $i' < y_{i'} < i < y_i < j' < j$ then one of the following holds:

•
$$w^{-1} = -i' - j' - y_{i'} - i - j - y_i$$
 and $(wt)^{-1} = -j' - i' - y_{i'} - j - i - y_i$.

When $(a,b) \in \operatorname{Cyc}^1(z) = \{(i,j), (y_j,y_j)\}$ and $(a',b') \in \{(i',j'), (y_{j'},y_{j'})\}$, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -i - i - \text{ and } (wt)^{-1} = -i' - i' - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -i' - u_i - i' - ...$$

(Z3)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -i' - j - \text{ and } \\ (wt)^{-1} = -y_{j'} - j - \text{ and } \\ (wt)^{-1} = -y_{j'} - y_j - . \end{cases}$$

- 2. Suppose $i' < y_{i'} < j' < i < y_i < j$.
 - (a) If $w^{-1} = -i' i j' y_{j'} j y_{j}$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and (a', b') = (i, i).
 - (b) If $w^{-1} = -i' j' i y_{j'} j y_{j}$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and (a', b') = (i, i).
 - (c) If $w^{-1} = -i' j' i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_j, j)$.
 - (d) If $w^{-1} = -i' i j' j y_{j'} y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_j, j)$.

Thus if $i' < y_{i'} < j' < i < y_i < j$ then one of the following holds:

•
$$w^{-1} = -i' - j' - y_{i'} - i - j - y_{i}$$
 and $(wt)^{-1} = -j' - i' - y_{i'} - j - i - y_{i}$.

When $(a, b) \in \operatorname{Cyc}^1(z) = \{(i, j), (y_j, y_j)\}$ and $(a', b') \in \{(i', j'), (y_{j'}, y_{j'})\}$, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -i - i - i \text{ and } (wt)^{-1} = -i' - i' - i'$$

 $(Z2) \Leftrightarrow (no condition).$

(Z3)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -i' - j - \text{ and } \\ (wt)^{-1} = -i' - y_j - \text{ and } \\ (wt)^{-1} = -y_{j'} - j - \text{ and } \\ (wt)^{-1} = -y_{j'} - y_j - . \end{cases}$$

3. Suppose $i' < y_{j'} < i < j' < y_j < j$.

- (a) If $w^{-1} = -i' i j' y_{j'} j y_j$ then (T) fails.
- (b) If $w^{-1} = -i' i j' j y_{j'} y_j$ then (T) fails.
- (c) If $w^{-1} = -i' j' i y_{j'} j y_j$ then (Y2) fails for $(a, b) = (y_{j'}, j')$ and (a', b') = (i, i).
- (d) If $w^{-1} = -i' j' i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_j, j)$.

Thus if $i' < y_{j'} < i < j' < y_j < j$ then one of the following holds:

$$\bullet \ w^{-1} = -i' - j' - y_{j'} - i - j - y_j - \text{ and } (wt)^{-1} = -j' - i' - y_{j'} - j - i - y_j -.$$

When $(a, b) \in \operatorname{Cyc}^1(z) = \{(i, j), (y_j, y_j)\}$ and $(a', b') \in \{(i', j'), (y_{j'}, y_{j'})\}$, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -j - i - \text{ and } (wt)^{-1} = -j' - i' - .$$

 $(Z2) \Leftrightarrow (\text{no condition}).$

(Z3)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -i' - j - \text{ and } \\ (wt)^{-1} = -i' - y_j - \text{ and } \\ (wt)^{-1} = -y_{j'} - j - \text{ and } \\ (wt)^{-1} = -y_{j'} - y_j - . \end{cases}$$

- 4. It cannot happen that $i' < i < y_{j'} < j' < y_j < j$ since:
 - (a) If $w^{-1} = -i' i j' y_{j'} j y_j$ then (T) fails.
 - (b) If $w^{-1} = -i' i j' j y_{j'} y_j$ then (T) fails.
 - (c) If $w^{-1} = -i' j' i y_{j'} j y_j$ then (T) fails.
 - (d) If $w^{-1} = -i' j' y_{j'} i j y_j$ then (Y3) fails for (a, b) = (i, i) and $(a', b') = (y_{j'}, j')$.
 - (e) If $w^{-1} = -i' j' i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_j, j)$.
- 5. It cannot happen that $i' < i < y_{j'} < y_j < j' < j$ since:
 - (a) If $w^{-1} = -i' i j' y_{j'} j y_j$ then (T) fails.
 - (b) If $w^{-1} = -i' i j' j y_{i'} y_i$ then (T) fails.
 - (c) If $w^{-1} = -i' j' i y_{i'} j y_i$ then (T) fails.
 - $\text{(d) If } w^{-1} = -i' j' y_{j'} i j y_j \text{ then (Y3) fails for } (a,b) = (i,i) \text{ and } (a',b') = (y_{j'},j').$
 - (e) If $w^{-1} = -i' j' i j y_{j'} y_j$ then (Y3) fails for $(a,b) = (y_{j'},j')$ and $(a',b') = (y_j,j)$.

We conclude that properties (Z1)-(Z3) hold for all $(a, b), (a', b') \in \text{Cyc}(z)$ when $y_i = i < y_j < j$.

5 Case: $i < y_i < j = y_i$

Suppose y is such that $i < y_i < j = y_j$. Then $z = \tau_{ij}^n(y)$ has $\operatorname{Cyc}^1(z) = \{(i, j), (y_i, y_i)\}$.

5.1 Subcase (i)

We must have $w^{-1} = -y_i - i - j$ — since no other ordering is possible:

- 1. If $w^{-1} = -i y_i j$ then (T) fails.
- 2. If $w^{-1} = -y_i j i$ then (T) fails.
- 3. If $w^{-1} = -j i y_i$ then (T) fails.
- 4. If $w^{-1} = -j y_i i$ then (T) fails.
- 5. If $w^{-1} = -i j y_i$ then (Y1) fails for $(a, b) = (i, y_i)$.

Hence if $i < y_i < j = y_i$ then

$$(wt)^{-1} = -y_i - j - i - .$$

When $(a, b), (a', b') \in \operatorname{Cyc}^1(z) = \{(i, j), (y_i, y_i)\}$, properties (Z1)-(Z3) are equivalent to the following conditions which all hold in this case:

$$(Z1) \Leftrightarrow (wt)^{-1} = -j - i - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -j-y_i-i-.$$

$$(Z3) \Leftrightarrow (no condition).$$

Thus properties (Z1)-(Z3) hold whenever (a, b), (a', b') are as in case (i) and $i < y_i < j = y_j$.

5.2 Subcase (ii)

Suppose R is an integer such that $(R,R) \in \operatorname{Cyc}^2(z) \subset \operatorname{Cyc}(y)$, so that $R = y_R = z_R \notin \{i,j,y_i\} + n\mathbb{Z}$.

- 1. Suppose $i < y_i < j < R$
 - (a) If $w^{-1} = -y_i R i j$ then (Y3) fails for (a, b) = (j, j) and (a', b') = (R, R).
 - (b) If $w^{-1} = -R y_i i j$ then (Y3) fails for (a, b) = (j, j) and (a', b') = (R, R).
 - (c) If $w^{-1} = -y_i i R j$ then (Y3) fails for (a, b) = (j, j) and (a', b') = (R, R).

Thus if $i < y_i < j < R$ then one of the following holds:

•
$$w^{-1} = -y_i - i - j - R$$
 and $(wt)^{-1} = -y_i - j - i - R$.

When (a, b) = (R, R) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(i, j), (y_i, y_i)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(\mathbf{Z}1) \Leftrightarrow (wt)^{-1} = -j - i - .$$

- $(Z2) \Leftrightarrow (no condition).$
- $(Z3) \Leftrightarrow (wt)^{-1} = -i R \text{ and } (wt)^{-1} = -y_i R .$
- 2. Suppose $i < R < y_i < j$.
 - (a) If $w^{-1} = -y_i i R j$ then (T) fails.
 - (b) If $w^{-1} = -y_i R i j$ then (Y2) fails for $(a, b) = (i, y_i)$ and (a', b') = (R, R).
 - (c) If $w^{-1} = -y_i i j R$ then (Y3) fails for (a, b) = (R, R) and (a', b') = (j, j).

Thus if $i < R < y_i < j$ then one of the following holds:

•
$$w^{-1} = -R - y_i - i - j$$
 and $(wt)^{-1} = -R - y_i - j - i$.

When (a, b) = (R, R) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(i, j), (y_i, y_i)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -i - i - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -j - R - i - .$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -R - y_i - .$$

- 3. Suppose $R < i < y_i < j$.
 - (a) If $w^{-1} = -y_i R i j$ then (Y3) fails for (a, b) = (R, R) and $(a', b') = (i, y_i)$.
 - (b) If $w^{-1} = -y_i i R j$ then (Y3) fails for (a, b) = (R, R) and $(a', b') = (i, y_i)$.
 - (c) If $w^{-1} = -y_i i j R$ then (Y3) fails for (a, b) = (R, R) and (a', b') = (j, j).

Thus if $R < i < y_i < j$ then one of the following holds:

•
$$w^{-1} = -R - y_i - i - j$$
 and $(wt)^{-1} = -R - y_i - j - i$.

When (a, b) = (R, R) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(i, j), (y_i, y_i)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

- $(Z1) \Leftrightarrow (wt)^{-1} = -i i .$
- $(Z2) \Leftrightarrow (no condition).$

$$(Z3) \Leftrightarrow (wt)^{-1} = -R - j - \text{and } (wt)^{-1} = -R - y_i - .$$

- 4. It cannot happen that $i < y_i < R < j$ since:
 - (a) If $w^{-1} = -y_i i R j$ then (T) fails.
 - (b) If $w^{-1} = -y_i i j R$ then (Y3) fails for (a,b) = (R,R) and (a',b') = (j,j).
 - (c) If $w^{-1} = -y_i R i j$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (R, R).
 - (d) If $w^{-1} = -R y_i i j$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (R, R).

Next suppose P < Q are integers with $(P,Q) \in \operatorname{Cyc}^2(z) \subset \operatorname{Cyc}(y)$, so that $Q = y_P = z_P$ and $P,Q \notin \{i,j,y_i\} + n\mathbb{Z}$.

- 1. Suppose $P < i < y_i < Q < j$.
 - (a) If $w^{-1} = -y_i i Q P j$ then (T) fails.
 - (b) If $w^{-1} = -y_i i Q j P$ then (T) fails.
 - (c) If $w^{-1} = -y_i Q i P j$ then (Y2) fails for (a, b) = (P, Q) and $(a', b') = (i, y_i)$.
 - (d) If $w^{-1} = -y_i Q i j P$ then (Y2) fails for (a, b) = (P, Q) and $(a', b') = (i, y_i)$.
 - (e) If $w^{-1} = -Q y_i i P j$ then (Y2) fails for (a, b) = (P, Q) and $(a', b') = (i, y_i)$.
 - (f) If $w^{-1} = -Q y_i P i j$ then (Y2) fails for (a, b) = (P, Q) and $(a', b') = (i, y_i)$.
 - (g) If $w^{-1} = -Q y_i i j P$ then (Y2) fails for (a, b) = (P, Q) and $(a', b') = (i, y_i)$.
 - (h) If $w^{-1} = -y_i i j Q P$ then (Y3) fails for (a, b) = (P, Q) and (a', b') = (j, j).

Thus if $P < i < y_i < Q < j$ then one of the following holds:

- $w^{-1} = -y_i Q P i j$ and $(wt)^{-1} = -y_i Q P j i$.
- $w^{-1} = -Q P y_i i j$ and $(wt)^{-1} = -Q P y_i j i$.

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(i, j), (y_i, y_i)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

- $(Z1) \Leftrightarrow (wt)^{-1} = -Q P \text{ and } (wt)^{-1} = -i i i$
- $(Z2) \Leftrightarrow (wt)^{-1} \neq -Q-y_i-P-.$
- $(\mathbf{Z3}) \Leftrightarrow (wt)^{-1} = -P j -.$
- 2. Suppose $P < i < Q < y_i < j$.
 - (a) If $w^{-1} = -y_i i Q P j$ then (T) fails.
 - (b) If $w^{-1} = -y_i i Q j P$ then (T) fails.
 - (c) If $w^{-1} = -y_i Q i P j$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (i, y_i)$.
 - (d) If $w^{-1} = -y_i Q P i j$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (i, y_i)$.
 - (e) If $w^{-1} = -y_i i j Q P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (i, y_i)$.
 - (f) If $w^{-1} = -y_i Q i j P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (i, y_i)$.
 - (g) If $w^{-1} = -Q y_i i P j$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (i, y_i)$.
 - (h) If $w^{-1} = -Q y_i P i j$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (i, y_i)$.
 - (i) If $w^{-1} = -Q y_i i j P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (i, y_i)$.

Thus if $P < i < Q < y_i < j$ then one of the following holds:

•
$$w^{-1} = -Q - P - y_i - i - j$$
 and $(wt)^{-1} = -Q - P - y_i - j - i$.

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(i, j), (y_i, y_i)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -j - i - .$$

 $(Z2) \Leftrightarrow (no condition).$

$$(Z3) \Leftrightarrow (wt)^{-1} = -P - j - \text{ and } (wt)^{-1} = -P - y_i - .$$

3. Suppose $i < y_i < j < P < Q$.

(a) If
$$w^{-1} = -y_i - Q - i - P - j$$
 then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(b) If
$$w^{-1} = -y_i - Q - P - i - j$$
 then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(c) If
$$w^{-1} = -y_i - Q - i - j - P$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(d) If
$$w^{-1} = -Q - y_i - i - P - j$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(e) If
$$w^{-1} = -Q - y_i - P - i - j$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(f) If
$$w^{-1} = -Q - P - y_i - i - j$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(g) If
$$w^{-1} = -Q - y_i - i - j - P$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(h) If
$$w^{-1} = -y_i - i - Q - P - j$$
— then (Y3) fails for $(a,b) = (j,j)$ and $(a',b') = (P,Q)$.

(i) If
$$w^{-1} = -y_i - i - Q - j - P$$
— then (Y3) fails for $(a, b) = (j, j)$ and $(a', b') = (P, Q)$.

Thus if $i < y_i < j < P < Q$ then one of the following holds:

•
$$w^{-1} = -y_i - i - j - Q - P - \text{ and } (wt)^{-1} = -y_i - j - i - Q - P - .$$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(i, j), (y_i, y_i)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -j - i - .$$

 $(Z2) \Leftrightarrow (\text{no condition}).$

$$(Z3) \Leftrightarrow (wt)^{-1} = -i - Q - \text{ and } (wt)^{-1} = -y_i - Q - .$$

4. Suppose $i < y_i < P < j < Q$.

(a) If
$$w^{-1} = -y_i - i - Q - P - j$$
 then (T) fails.

(b) If
$$w^{-1} = -y_i - Q - i - P - j$$
 then (T) fails.

(c) If
$$w^{-1} = -Q - y_i - i - P - j$$
 then (T) fails.

(d) If
$$w^{-1} = -y_i - i - Q - j - P$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, j)$.

(e) If
$$w^{-1} = -y_i - Q - P - i - j$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(f) If
$$w^{-1} = -y_i - Q - i - j - P$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(g) If
$$w^{-1} = -Q - y_i - P - i - j$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(h) If
$$w^{-1} = -Q - P - y_i - i - j$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(i) If
$$w^{-1} = -Q - y_i - i - j - P$$
 then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

Thus if $i < y_i < P < j < Q$ then one of the following holds:

•
$$w^{-1} = -y_i - i - j - Q - P - \text{ and } (wt)^{-1} = -y_i - j - i - Q - P - .$$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(i, j), (y_i, y_i)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -i - i - i$$

 $(Z2) \Leftrightarrow (no condition).$

$$(Z3) \Leftrightarrow (wt)^{-1} = -i - Q - \text{ and } (wt)^{-1} = -y_i - Q - .$$

5. Suppose $i < P < Q < y_i < j$.

(a) If
$$w^{-1} = -y_i - i - Q - P - j$$
 then (T) fails.

- (b) If $w^{-1} = -y_i Q i P j$ then (T) fails.
- (c) If $w^{-1} = -Q y_i i P j$ then (T) fails.
- (d) If $w^{-1} = -y_i i Q j P$ then (T) fails.
- (e) If $w^{-1} = -y_i Q P i j$ then (Y2) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
- (f) If $w^{-1} = -y_i Q i j P$ then (Y2) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
- (g) If $w^{-1} = -Q y_i P i j$ then (Y2) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
- (h) If $w^{-1} = -y_i i j Q P$ then (Y3) fails for (a, b) = (P, Q) and (a', b') = (j, j).
- (i) If $w^{-1} = -Q y_i i j P$ then (Y3) fails for (a, b) = (P, Q) and (a', b') = (j, j).

Thus if $i < P < Q < y_i < j$ then one of the following holds:

•
$$w^{-1} = -Q - P - y_i - i - j$$
 and $(wt)^{-1} = -Q - P - y_i - j - i$.

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(i, j), (y_i, y_i)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -i - i - i$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -i - P - i - \text{ and } (wt)^{-1} \neq -i - Q - i - i$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -P - y_i - .$$

6. Suppose $P < Q < i < y_i < j$.

(a) If
$$w^{-1} = -y_i - i - Q - P - j$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(b) If
$$w^{-1} = -y_i - Q - i - P - j$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(c) If
$$w^{-1} = -y_i - Q - P - i - j$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(d) If
$$w^{-1} = -y_i - i - j - Q - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(e) If
$$w^{-1} = -y_i - Q - i - j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(f) If
$$w^{-1} = -Q - y_i - i - P - j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(g) If
$$w^{-1} = -Q - y_i - P - i - j$$
 — then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(h) If
$$w^{-1} = -y_i - i - Q - j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(i) If
$$w^{-1} = -Q - y_i - i - j - P$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

Thus if $P < Q < i < y_i < j$ then one of the following holds:

•
$$w^{-1} = -Q - P - y_i - i - j$$
 and $(wt)^{-1} = -Q - P - y_i - j - i$.

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(i, j), (y_i, y_i)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -i - i - i$$

 $(Z2) \Leftrightarrow (no condition).$

$$(Z3) \Leftrightarrow (wt)^{-1} = -P - j - \text{ and } (wt)^{-1} = -P - y_i - .$$

7. Suppose $i < P < y_i < j < Q$.

(a) If
$$w^{-1} = -y_i - i - Q - P - j$$
— then (T) fails.

(b) If
$$w^{-1} = -y_i - Q - i - P - j$$
 — then (T) fails.

(c) If
$$w^{-1} = -Q - y_i - i - P - j$$
— then (T) fails.

(d) If
$$w^{-1} = -y_i - i - Q - j - P$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, j)$.

(e) If
$$w^{-1} = -y_i - Q - P - i - j$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(f) If
$$w^{-1} = -y_i - Q - i - j - P$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(g) If
$$w^{-1} = -Q - y_i - P - i - j$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

$$\text{(h) If } w^{-1} = -Q - P - y_i - i - j - \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$$

(i) If
$$w^{-1} = -Q - y_i - i - j - P$$
 then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

Thus if $i < P < y_i < j < Q$ then one of the following holds:

•
$$w^{-1} = -y_i - i - j - Q - P - \text{ and } (wt)^{-1} = -y_i - j - i - Q - P - .$$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(i, j), (y_i, y_i)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -i - i - i$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -Q-y_i-P-.$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -i - Q - .$$

8. Suppose $P < i < y_i < j < Q$.

(a) If
$$w^{-1} = -y_i - Q - i - P - j$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(b) If
$$w^{-1} = -y_i - Q - i - j - P$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(c) If
$$w^{-1} = -Q - y_i - i - P - j$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(d) If
$$w^{-1} = -Q - y_i - P - i - j$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(e) If
$$w^{-1} = -Q - y_i - i - j - P$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(f) If
$$w^{-1} = -y_i - i - Q - j - P$$
— then (Y2) fails for $(a,b) = (P,Q)$ and $(a',b') = (j,j)$.

Thus if $P < i < y_i < j < Q$ then one of the following holds:

$$\bullet \ w^{-1} = -y_i - i - Q - P - j - \ \text{and} \ (wt)^{-1} = -y_i - j - Q - P - i -.$$

•
$$w^{-1} = -y_i - Q - P - i - j$$
 and $(wt)^{-1} = -y_i - Q - P - j - i$.

•
$$w^{-1} = -Q - P - y_i - i - j$$
 and $(wt)^{-1} = -Q - P - y_i - j - i$.

•
$$w^{-1} = -y_i - i - j - Q - P - \text{ and } (wt)^{-1} = -y_i - j - i - Q - P - .$$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(i, j), (y_i, y_i)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -i - i - i$$

$$(Z3) \Leftrightarrow (no condition)$$

9. It cannot happen that $i < P < y_i < Q < j$ since:

(a) If
$$w^{-1} = -y_i - i - Q - P - j$$
 then (T) fails.

(b) If
$$w^{-1} = -y_i - Q - i - P - j$$
 then (T) fails.

(c) If
$$w^{-1} = -Q - y_i - i - P - j$$
 then (T) fails.

(d) If
$$w^{-1} = -y_i - i - Q - j - P$$
— then (T) fails.

(e) If
$$w^{-1} = -y_i - i - j - Q - P$$
 — then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, j)$.

(f) If
$$w^{-1} = -y_i - Q - P - i - j$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(g) If
$$w^{-1} = -y_i - Q - i - j - P$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

$$\text{(h) If } w^{-1} = - Q - y_i - P - i - j - \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$$

(i) If
$$w^{-1} = -Q - P - y_i - i - j$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(j) If
$$w^{-1} = -Q - y_i - i - j - P$$
 then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

10. It cannot happen that $i < y_i < P < Q < j$ since:

(a) If
$$w^{-1} = -y_i - i - Q - P - j$$
 — then (T) fails.

(b) If
$$w^{-1} = -y_i - Q - i - P - j$$
 — then (T) fails.

- (c) If $w^{-1} = -Q y_i i P j$ then (T) fails.
- (d) If $w^{-1} = -y_i i Q j P$ then (T) fails.
- (e) If $w^{-1} = -y_i i j Q P$ then (Y3) fails for (a, b) = (P, Q) and (a', b') = (j, j).
- (f) If $w^{-1} = -y_i Q P i j$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
- (g) If $w^{-1} = -y_i Q i j P$ then (Y3) fails for $(a,b) = (i,y_i)$ and (a',b') = (P,Q).
- (h) If $w^{-1} = -Q y_i P i j$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
- (i) If $w^{-1} = -Q P y_i i j$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
- (j) If $w^{-1} = -Q y_i i j P$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).

We conclude that properties (Z1)-(Z3) hold whenever (a, b), (a', b') are as in cases (i) or (ii) and $i < y_i < j = y_j$.

5.3 Subcase (iii)

Suppose i' and j' are integers such that $0 \neq i - i' = j - j' \in n\mathbb{Z}$, so that w(i) - w(i') = w(j) - w(j') = i - i'.

- 1. Suppose $i' < y_{i'} < j' < i < y_i < j$.
 - (a) If $w^{-1} = -y_{i'} y_i i' j' i j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (b) If $w^{-1} = -y_{i'} y_i i' i j' j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (c) If $w^{-1} = -y_{i'} i' y_i j' i j$ then (Y3) fails for (a, b) = (j', j') and $(a', b') = (i, y_i)$.
 - (d) If $w^{-1} = -y_{i'} i' y_i i j' j$ then (Y3) fails for (a, b) = (j', j') and $(a', b') = (i, y_i)$.

Thus if $i' < y_{i'} < j' < i < y_i < j$ then one of the following holds:

•
$$w^{-1} = -y_{i'} - i' - j' - y_i - i - j$$
 and $(wt)^{-1} = -y_{i'} - j' - i' - y_i - j - i$.

When $(a, b) \in \operatorname{Cyc}^1(z) = \{(i, j), (y_i, y_i)\}$ and $(a', b') \in \{(i', j'), (y_{i'}, y_{i'})\}$, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -j - i - \text{ and } (wt)^{-1} = -j' - i' - .$$

 $(Z2) \Leftrightarrow (no condition).$

(Z3)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -i' - j - \text{ and } \\ (wt)^{-1} = -i' - y_i - \text{ and } \\ (wt)^{-1} = -y_{i'} - j - \text{ and } \\ (wt)^{-1} = -y_{i'} - y_i - . \end{cases}$$

- 2. Suppose $i' < i < y_{i'} < j' < y_i < j$.
 - (a) If $w^{-1} = -y_{i'} y_i i' i j' j$ then (T) fails.
 - (b) If $w^{-1} = -y_{i'} i' y_i i j' j$ then (T) fails.
 - (c) If $w^{-1} = -y_{i'} i' y_i j' i j$ then (Y2) fails for $(a, b) = (i, y_i)$ and (a', b') = (j', j').
 - (d) If $w^{-1} = -y_{i'} y_i i' j' i j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

Thus if $i' < i < y_{i'} < j' < y_i < j$ then one of the following holds:

•
$$w^{-1} = -y_{i'} - i' - j' - y_i - i - j$$
 and $(wt)^{-1} = -y_{i'} - j' - i' - y_i - j - i$.

When $(a,b) \in \operatorname{Cyc}^1(z) = \{(i,j), (y_i,y_i)\}$ and $(a',b') \in \{(i',j'), (y_{i'},y_{i'})\}$, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(\mathbf{Z}\mathbf{1}) \Leftrightarrow (wt)^{-1} = -j - i - \text{ and } (wt)^{-1} = -j' - i' - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -j - y_{i'} - i - i$$

$$({\rm Z3}) \Leftrightarrow \begin{cases} (wt)^{-1} = -i' - j - \text{ and } \\ (wt)^{-1} = -i' - y_i - \text{ and } \\ (wt)^{-1} = -y_{i'} - y_i - . \end{cases}$$

- 3. Suppose $i' < y_{i'} < i < j' < y_i < j$.
 - (a) If $w^{-1} = -y_{i'} y_i i' i j' j$ then (T) fails.
 - (b) If $w^{-1} = -y_{i'} i' y_i i j' j$ then (T) fails.
 - (c) If $w^{-1} = -y_{i'} i' y_i j' i j$ then (Y2) fails for $(a, b) = (i, y_i)$ and (a', b') = (j', j').
 - (d) If $w^{-1} = -y_{i'} y_i i' j' i j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

Thus if $i' < y_{i'} < i < j' < y_i < j$ then one of the following holds:

•
$$w^{-1} = -y_{i'} - i' - j' - y_i - i - j$$
 and $(wt)^{-1} = -y_{i'} - j' - i' - y_i - j - i$.

When $(a, b) \in \operatorname{Cyc}^1(z) = \{(i, j), (y_i, y_i)\}$ and $(a', b') \in \{(i', j'), (y_{i'}, y_{i'})\}$, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -i - i - \text{ and } (wt)^{-1} = -i' - i' - i'$$

 $(Z2) \Leftrightarrow (no condition).$

(Z3)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -i' - j - \text{ and } \\ (wt)^{-1} = -i' - y_i - \text{ and } \\ (wt)^{-1} = -y_{i'} - j - \text{ and } \\ (wt)^{-1} = -y_{i'} - y_i - . \end{cases}$$

- 4. It cannot happen that $i' < y_{i'} < i < y_i < j' < j$ since:
 - (a) If $w^{-1} = -y_{i'} y_i i' i j' j$ then (T) fails.
 - (b) If $w^{-1} = -y_{i'} i' y_i i j' j$ then (T) fails.
 - (c) If $w^{-1} = -y_{i'} i' y_i j' i j$ then (U) fails.
 - (d) If $w^{-1} = -y_{i'} y_i i' j' i j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (e) If $w^{-1} = -y_{i'} i' j' y_i i j$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (j', j').
- 5. It cannot happen that $i' < i < y_{i'} < y_i < j' < j$ since:
 - (a) If $w^{-1} = -y_{i'} y_i i' i j' j$ then (T) fails.
 - (b) If $w^{-1} = -y_{i'} i' y_i i j' j$ then (T) fails.
 - (c) If $w^{-1} = -y_{i'} i' y_i j' i j$ then (U) fails.
 - (d) If $w^{-1} = -y_{i'} y_i i' j' i j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (e) If $w^{-1} = -y_{i'} i' j' y_i i j$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (j', j').

We conclude that properties (Z1)-(Z3) hold for all $(a, b), (a', b') \in \text{Cyc}(z)$ when $i < y_i < j = y_i$.

6 Case: $y_i < i < j = y_j$

Suppose y is such that $y_i < i < j = y_j$. Then $z = \tau_{ij}^n(y)$ has $\operatorname{Cyc}^1(z) = \{(y_i, j), (i, i)\}$.

6.1 Subcase (i)

We must have $w^{-1} = -i - y_i - j$ — since no other ordering is possible:

- 1. If $w^{-1} = -y_i j i$ then (T) fails.
- 2. If $w^{-1} = -j y_i i$ then (T) fails.
- 3. If $w^{-1} = -i i y_i$ then (T) fails.
- 4. If $w^{-1} = -y_i i j$ then (Y1) fails for $(a, b) = (y_i, i)$.
- 5. If $w^{-1} = -i j y_i$ then (Y3) fails for $(a, b) = (y_i, i)$ and (a', b') = (j, j).

Hence if $y_i < i < j = y_j$ then

$$(wt)^{-1} = -j - y_i - i - .$$

When $(a, b), (a', b') \in \operatorname{Cyc}^1(z) = \{(y_i, j), (i, i)\}$, properties (Z1)-(Z3) are equivalent to the following conditions which all hold in this case:

$$(\mathbf{Z}1) \Leftrightarrow (wt)^{-1} = -j - y_i - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -j-i-y_i-.$$

$$(Z3) \Leftrightarrow (no condition).$$

Thus properties (Z1)-(Z3) hold whenever (a, b), (a', b') are as in case (i) and $y_i < i < j = y_j$.

6.2 Subcase (ii)

Suppose R is an integer such that $(R,R) \in \operatorname{Cyc}^2(z) \subset \operatorname{Cyc}(y)$, so that $R = y_R = z_R \notin \{i,j,y_i\} + n\mathbb{Z}$.

- 1. Suppose $y_i < i < j < R$.
 - (a) If $w^{-1} = -i R y_i j$ then (Y3) fails for (a,b) = (j,j) and (a',b') = (R,R).
 - (b) If $w^{-1} = -R i y_i j$ then (Y3) fails for (a,b) = (j,j) and (a',b') = (R,R).
 - (c) If $w^{-1} = -i y_i R j$ then (Y3) fails for (a, b) = (j, j) and (a', b') = (R, R).

Thus if $y_i < i < j < R$ then one of the following holds:

•
$$w^{-1} = -i - y_i - j - R$$
 and $(wt)^{-1} = -j - y_i - i - R$.

When (a, b) = (R, R) and $(a', b') \in \text{Cyc}^1(z) = \{(y_i, j), (i, i)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -j - y_i - .$$

 $(Z2) \Leftrightarrow (no condition).$

$$(Z3) \Leftrightarrow (wt)^{-1} = -i - R - \text{ and } (wt)^{-1} = -y_i - R - .$$

- 2. Suppose $y_i < R < i < j$.
 - (a) If $w^{-1} = -i R y_i j$ then (Y2) fails for $(a, b) = (y_i, i)$ and (a', b') = (R, R).
 - (b) If $w^{-1} = -i y_i j R$ then (Y3) fails for (a, b) = (R, R) and (a', b') = (j, j).

Thus if $y_i < R < i < j$ then one of the following holds:

•
$$w^{-1} = -R - i - y_i - j$$
 and $(wt)^{-1} = -R - j - y_i - i$.

•
$$w^{-1} = -i - y_i - R - j$$
 and $(wt)^{-1} = -j - y_i - R - i$.

When (a, b) = (R, R) and $(a', b') \in \text{Cyc}^1(z) = \{(y_i, j), (i, i)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -j - y_i - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -j - R - y_i - .$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -R-i-.$$

- 3. Suppose $R < y_i < i < j$.
 - (a) If $w^{-1} = -i y_i j R$ then (Y3) fails for (a, b) = (R, R) and (a', b') = (j, j).
 - (b) If $w^{-1} = -i R y_i j$ then (Y3) fails for (a, b) = (R, R) and $(a', b') = (y_i, i)$.
 - (c) If $w^{-1} = -i y_i R j$ then (Y3) fails for (a, b) = (R, R) and $(a', b') = (y_i, i)$.

Thus if $R < y_i < i < j$ then one of the following holds:

•
$$w^{-1} = -R - i - y_i - j$$
 and $(wt)^{-1} = -R - j - y_i - i$.

When (a, b) = (R, R) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(y_i, j), (i, i)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -j - y_i - .$$

$$(Z2) \Leftrightarrow (no condition).$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -R - i - \text{ and } (wt)^{-1} = -R - j - .$$

- 4. It cannot happen that $y_i < i < R < j$ since:
 - (a) If $w^{-1} = -i R y_i j$ then (T) fails.
 - (b) If $w^{-1} = -i y_i R j$ then (T) fails.
 - (c) If $w^{-1} = -i y_i j R$ then (Y3) fails for (a, b) = (R, R) and (a', b') = (j, j).
 - (d) If $w^{-1} = -R i y_i j$ then (Y3) fails for $(a,b) = (y_i,i)$ and (a',b') = (R,R).

Next suppose P < Q are integers with $(P,Q) \in \operatorname{Cyc}^2(z) \subset \operatorname{Cyc}(y)$, so that $Q = y_P = z_P$ and $P,Q \notin \{i,j,y_i\} + n\mathbb{Z}$.

- 1. Suppose $P < y_i < i < Q < j$.
 - (a) If $w^{-1} = -i y_i Q P j$ then (T) fails.
 - (b) If $w^{-1} = -i Q y_i P j$ then (T) fails.
 - (c) If $w^{-1} = -i Q P y_i j$ then (T) fails.
 - (d) If $w^{-1} = -i Q y_i j P$ then (T) fails.
 - (e) If $w^{-1} = -i y_i Q j P$ then (T) fails.
 - (f) If $w^{-1} = -Q i y_i P j$ then (Y2) fails for (a, b) = (P, Q) and $(a', b') = (y_i, i)$.
 - (g) If $w^{-1} = -Q i P y_i j$ then (Y2) fails for (a, b) = (P, Q) and $(a', b') = (y_i, i)$.
 - (h) If $w^{-1} = -Q i y_i j P$ then (Y2) fails for (a, b) = (P, Q) and $(a', b') = (y_i, i)$.
 - (i) If $w^{-1} = -i y_i j Q P$ then (Y3) fails for (a, b) = (P, Q) and (a', b') = (j, j).

Thus if $P < y_i < i < Q < j$ then one of the following holds:

•
$$w^{-1} = -Q - P - i - y_i - j$$
 and $(wt)^{-1} = -Q - P - j - y_i - i$.

When (a, b) = (P, Q) and $(a', b') \in \text{Cyc}^1(z) = \{(y_i, j), (i, i)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -j - y_i - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -Q-i-P-.$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -P - j - .$$

- 2. Suppose $P < y_i < Q < i < j$.
 - (a) If $w^{-1} = -i y_i Q P j$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_i, i)$.
 - (b) If $w^{-1} = -i Q y_i P j$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_i, i)$.
 - (c) If $w^{-1} = -i Q P y_i j$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_i, i)$.
 - (d) If $w^{-1} = -i y_i j Q P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_i, i)$.
 - (e) If $w^{-1} = -i Q y_i j P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_i, i)$.
 - (f) If $w^{-1} = -Q i y_i P j$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_i, i)$.
 - (g) If $w^{-1} = -Q i P y_i j$ then (Y3) fails for (a,b) = (P,Q) and $(a',b') = (y_i,i)$.
 - (h) If $w^{-1} = -i y_i Q j P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_i, i)$.
 - (i) If $w^{-1} = -Q i y_i j P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_i, i)$.

Thus if $P < y_i < Q < i < j$ then one of the following holds:

•
$$w^{-1} = -Q - P - i - y_i - j$$
 and $(wt)^{-1} = -Q - P - j - y_i - i$.

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(y_i, j), (i, i)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -j - y_i - .$$

 $(Z2) \Leftrightarrow (no condition).$

$$(Z3) \Leftrightarrow (wt)^{-1} = -P - i - \text{ and } (wt)^{-1} = -P - j - .$$

3. Suppose $y_i < i < j < P < Q$.

(a) If
$$w^{-1} = -i - y_i - Q - P - j$$
 then (Y3) fails for $(a, b) = (j, j)$ and $(a', b') = (P, Q)$.

(b) If
$$w^{-1} = -i - y_i - Q - j - P$$
— then (Y3) fails for $(a, b) = (j, j)$ and $(a', b') = (P, Q)$.

(c) If
$$w^{-1} = -i - Q - y_i - P - j$$
— then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (P, Q)$.

(d) If
$$w^{-1} = -i - Q - P - y_i - j$$
— then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (P, Q)$.

(e) If
$$w^{-1} = -i - Q - y_i - j - P$$
— then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (P, Q)$.

(f) If
$$w^{-1} = -Q - i - y_i - P - j$$
— then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (P, Q)$.

(g) If
$$w^{-1} = -Q - i - P - y_i - j$$
— then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (P, Q)$.

(h) If
$$w^{-1} = -Q - P - i - y_i - j$$
— then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (P, Q)$.

(i) If
$$w^{-1} = -Q - i - y_i - j - P$$
— then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (P, Q)$.

Thus if $y_i < i < j < P < Q$ then one of the following holds:

•
$$w^{-1} = -i - y_i - j - Q - P - \text{ and } (wt)^{-1} = -j - y_i - i - Q - P - .$$

When (a, b) = (P, Q) and $(a', b') \in \text{Cyc}^1(z) = \{(y_i, j), (i, i)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -j - y_i - .$$

 $(Z2) \Leftrightarrow (\text{no condition}).$

$$(Z3) \Leftrightarrow (wt)^{-1} = -i - Q - \text{ and } (wt)^{-1} = -y_i - Q - .$$

4. Suppose $y_i < i < P < j < Q$.

(a) If
$$w^{-1} = -i - y_i - Q - P - j$$
 then (T) fails.

(b) If
$$w^{-1} = -i - Q - y_i - P - j$$
 then (T) fails.

(c) If
$$w^{-1} = -i - Q - P - y_i - j$$
 then (T) fails.

(d) If
$$w^{-1} = -Q - i - y_i - P - j$$
 then (T) fails.

(e) If
$$w^{-1} = -Q - i - P - y_i - j$$
 then (T) fails.

(f) If
$$w^{-1} = -i - y_i - Q - j - P$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, j)$.

(g) If
$$w^{-1} = -i - Q - y_i - j - P$$
 then (Y3) fails for $(a,b) = (y_i,i)$ and $(a',b') = (P,Q)$.

(h) If
$$w^{-1} = -Q - P - i - y_i - j$$
— then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (P, Q)$.

(i) If
$$w^{-1} = -Q - i - y_i - j - P$$
 then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (P, Q)$.

Thus if $y_i < i < P < j < Q$ then one of the following holds:

•
$$w^{-1} = -i - y_i - j - Q - P - \text{ and } (wt)^{-1} = -j - y_i - i - Q - P - .$$

When (a, b) = (P, Q) and $(a', b') \in \text{Cyc}^1(z) = \{(y_i, j), (i, i)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -j - y_i - .$$

 $(Z2) \Leftrightarrow (no condition).$

$$(\mathbf{Z3}) \Leftrightarrow (wt)^{-1} = -i - Q - \text{ and } (wt)^{-1} = -y_i - Q -.$$

5. Suppose $y_i < P < Q < i < j$.

(a) If
$$w^{-1} = -i - Q - y_i - P - j$$
— then (Y2) fails for $(a, b) = (y_i, i)$ and $(a', b') = (P, Q)$.

- (b) If $w^{-1} = -i Q P y_i j$ then (Y2) fails for $(a, b) = (y_i, i)$ and (a', b') = (P, Q).
- (c) If $w^{-1} = -i Q y_i j P$ then (Y2) fails for $(a, b) = (y_i, i)$ and (a', b') = (P, Q).
- $\text{(d) If } w^{-1} = -Q i P y_i j \text{ then (Y2) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$
- (e) If $w^{-1}=-i-y_i-j-Q-P$ then (Y3) fails for (a,b)=(P,Q) and (a',b')=(j,j).
- (f) If $w^{-1} = -i y_i Q j P$ then (Y3) fails for (a,b) = (P,Q) and (a',b') = (j,j).
- (g) If $w^{-1} = -Q i y_i j P$ then (Y3) fails for (a, b) = (P, Q) and (a', b') = (j, j).

Thus if $y_i < P < Q < i < j$ then one of the following holds:

•
$$w^{-1} = -i - y_i - Q - P - j$$
 and $(wt)^{-1} = -j - y_i - Q - P - i$.

•
$$w^{-1} = -Q - i - y_i - P - j$$
 and $(wt)^{-1} = -Q - j - y_i - P - i$.

•
$$w^{-1} = -Q - P - i - y_i - j$$
 and $(wt)^{-1} = -Q - P - j - y_i - i$.

When (a, b) = (P, Q) and $(a', b') \in \text{Cyc}^1(z) = \{(y_i, j), (i, i)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -j - y_i - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -j - P - y_i - \text{ and } (wt)^{-1} \neq -j - Q - y_i - .$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -P - i - .$$

6. Suppose $P < Q < y_i < i < j$.

(a) If
$$w^{-1} = -i - y_i - Q - P - j$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(b) If
$$w^{-1} = -i - Q - y_i - P - j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(c) If
$$w^{-1} = -i - Q - P - y_i - j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(d) If
$$w^{-1} = -i - y_i - j - Q - P$$
 — then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(e) If
$$w^{-1} = -i - Q - y_i - j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(f) If
$$w^{-1} = -Q - i - y_i - P - j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(g) If
$$w^{-1} = -Q - i - P - y_i - j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(h) If
$$w^{-1} = -i - y_i - Q - j - P$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(i) If
$$w^{-1} = -Q - i - y_i - j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

Thus if $P < Q < y_i < i < j$ then one of the following holds:

•
$$w^{-1} = -Q - P - i - y_i - j$$
 and $(wt)^{-1} = -Q - P - j - y_i - i$.

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(y_i, j), (i, i)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -j - y_i - .$$

 $(Z2) \Leftrightarrow (no condition).$

$$(Z3) \Leftrightarrow (wt)^{-1} = -P - i - \text{ and } (wt)^{-1} = -P - j - .$$

7. Suppose $y_i < P < i < j < Q$.

(a) If
$$w^{-1} = -i - y_i - Q - j - P$$
— then (Y2) fails for $(a,b) = (P,Q)$ and $(a',b') = (j,j)$.

(b) If
$$w^{-1}=-i-Q-y_i-P-j$$
— then (Y3) fails for $(a,b)=(y_i,i)$ and $(a',b')=(P,Q)$.

(c) If
$$w^{-1} = -i - Q - P - y_i - j$$
 then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (P, Q)$.

(d) If
$$w^{-1} = -i - Q - y_i - j - P$$
— then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (P, Q)$.

(e) If
$$w^{-1} = -Q - i - y_i - P - j$$
— then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (P, Q)$.

(f) If
$$w^{-1} = -Q - i - P - y_i - j$$
 then (Y3) fails for $(a,b) = (y_i,i)$ and $(a',b') = (P,Q)$.

(g) If
$$w^{-1} = -Q - P - i - y_i - j$$
— then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (P, Q)$.

$$\text{(h) If } w^{-1} = -Q - i - y_i - j - P - \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$$

Thus if $y_i < P < i < j < Q$ then one of the following holds:

•
$$w^{-1} = -i - y_i - Q - P - j$$
 and $(wt)^{-1} = -j - y_i - Q - P - i$.

•
$$w^{-1} = -i - y_i - j - Q - P - \text{ and } (wt)^{-1} = -j - y_i - i - Q - P - .$$

When (a, b) = (P, Q) and $(a', b') \in \text{Cyc}^1(z) = \{(y_i, j), (i, i)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -j - y_i - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -Q-i-P-.$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -y_i - Q - .$$

8. Suppose $P < y_i < i < j < Q$.

(a) If
$$w^{-1} = -i - y_i - Q - j - P$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, j)$.

(b) If
$$w^{-1} = -i - Q - y_i - P - j$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(c) If
$$w^{-1} = -i - Q - y_i - j - P$$
 then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(d) If
$$w^{-1} = -Q - i - y_i - P - j$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(e) If
$$w^{-1} = -Q - i - P - y_i - j$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(f) If
$$w^{-1} = -Q - i - y_i - j - P$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

Thus if $P < y_i < i < j < Q$ then one of the following holds:

•
$$w^{-1} = -i - y_i - Q - P - j$$
 and $(wt)^{-1} = -j - y_i - Q - P - i$.

•
$$w^{-1} = -i - Q - P - u_i - j$$
 and $(wt)^{-1} = -i - Q - P - u_i - i$.

•
$$w^{-1} = -Q - P - i - y_i - j$$
 and $(wt)^{-1} = -Q - P - j - y_i - i$.

•
$$w^{-1} = -i - y_i - j - Q - P - \text{ and } (wt)^{-1} = -j - y_i - i - Q - P - .$$

When (a, b) = (P, Q) and $(a', b') \in \text{Cyc}^1(z) = \{(y_i, j), (i, i)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -Q - P - \text{and } (wt)^{-1} = -j - y_i - .$$

$$(Z2) \Leftrightarrow \begin{cases} (wt)^{-1} \neq -Q - i - P - \text{ and } \\ (wt)^{-1} \neq -Q - y_i - P - \text{ and } (wt)^{-1} \neq -Q - j - P - . \end{cases}$$

 $(Z3) \Leftrightarrow (no condition).$

9. It cannot happen that $y_i < P < i < Q < j$ since:

(a) If
$$w^{-1} = -i - y_i - Q - P - j$$
 then (T) fails.

(b) If
$$w^{-1} = -i - Q - y_i - P - j$$
 then (T) fails.

(c) If
$$w^{-1} = -i - Q - P - y_i - j$$
 then (T) fails.

(d) If
$$w^{-1} = -i - Q - y_i - j - P$$
 then (T) fails.

(e) If
$$w^{-1} = -i - y_i - Q - j - P$$
 then (T) fails.

(f) If
$$w^{-1} = -i - y_i - j - Q - P$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, j)$.

(g) If
$$w^{-1} = -Q - i - y_i - P - j$$
 then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (P, Q)$.

(h) If
$$w^{-1} = -Q - i - P - y_i - j$$
— then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (P, Q)$.

(i) If
$$w^{-1} = -Q - P - i - y_i - j$$
 then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (P, Q)$.

(j) If
$$w^{-1} = -Q - i - y_i - j - P$$
 then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (P, Q)$.

10. It cannot happen that $y_i < i < P < Q < j$ since:

(a) If
$$w^{-1} = -i - y_i - Q - P - j$$
 then (T) fails.

(b) If
$$w^{-1} = -i - Q - y_i - P - j$$
 then (T) fails.

(c) If
$$w^{-1} = -i - Q - P - y_i - j$$
— then (T) fails.

- (d) If $w^{-1} = -i Q y_i j P$ then (T) fails.
- (e) If $w^{-1} = -Q i y_i P j$ then (T) fails.
- (f) If $w^{-1} = -Q i P y_i j$ then (T) fails.
- (g) If $w^{-1} = -i y_i Q j P$ then (T) fails.
- (h) If $w^{-1} = -i y_i j Q P$ then (Y3) fails for (a, b) = (P, Q) and (a', b') = (j, j).
- (i) If $w^{-1} = -Q P i y_i j$ then (Y3) fails for $(a, b) = (y_i, i)$ and (a', b') = (P, Q).
- (j) If $w^{-1} = -Q i y_i j P$ then (Y3) fails for $(a,b) = (y_i,i)$ and (a',b') = (P,Q).

We conclude that properties (Z1)-(Z3) hold whenever (a, b), (a', b') are as in cases (i) or (ii) and $y_i < i < j = y_j$.

6.3 Subcase (iii)

Suppose i' and j' are integers such that $0 \neq i - i' = j - j' \in n\mathbb{Z}$, so that w(i) - w(i') = w(j) - w(j') = i - i'.

- 1. Suppose $y_{i'} < i' < j' < y_i < i < j$.
 - (a) If $w^{-1} = -i' y_{i'} i j' y_i j$ then (Y3) fails for (a, b) = (j', j') and $(a', b') = (y_i, i)$.
 - (b) If $w^{-1} = -i' y_{i'} i y_i j' j$ then (Y3) fails for (a, b) = (j', j') and $(a', b') = (y_i, i)$.
 - (c) If $w^{-1} = -i' i y_{i'} j' y_i j$ then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.
 - (d) If $w^{-1} = -i' i y_{i'} y_i j' j$ then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.

Thus if $y_{i'} < i' < j' < y_i < i < j$ then one of the following holds:

•
$$w^{-1} = -i' - y_{i'} - j' - i - y_i - j$$
 and $(wt)^{-1} = -j' - y_{i'} - i' - j - y_i - i$.

When $(a,b) \in \operatorname{Cyc}^1(z) = \{(y_i,j),(i,i)\}$ and $(a',b') \in \{(y_{i'},j'),(i',i')\}$, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -j - y_i - and (wt)^{-1} = -j' - y_{i'} - .$$

 $(Z2) \Leftrightarrow (\text{no condition}).$

(Z3)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -i' - i - \text{ and } \\ (wt)^{-1} = -i' - j - \text{ and } \\ (wt)^{-1} = -y_{i'} - i - \text{ and } \\ (wt)^{-1} = -y_{i'} - j - . \end{cases}$$

- 2. Suppose $y_{i'} < y_i < i' < j' < i < j$.
 - (a) If $w^{-1} = -i' y_{i'} i j' y_i j$ then (Y2) fails for $(a, b) = (y_i, i)$ and (a', b') = (j', j').
 - (b) If $w^{-1} = -i' i y_{i'} j' y_i j$ then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.
 - (c) If $w^{-1} = -i' i y_{i'} y_i j' j$ then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.

Thus if $y_{i'} < y_i < i' < j' < i < j$ then one of the following holds:

- $w^{-1} = -i' y_{i'} j' i y_i j$ and $(wt)^{-1} = -j' y_{i'} i' j y_i i$.
- $w^{-1} = -i' u_{i'} i u_i i' i$ and $(wt)^{-1} = -i' u_{i'} i u_i i' i$.

When $(a, b) \in \operatorname{Cyc}^1(z) = \{(y_i, j), (i, i)\}$ and $(a', b') \in \{(y_{i'}, j'), (i', i')\}$, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -j - y_i - \text{ and } (wt)^{-1} = -j' - y_{i'} - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -j-i'-y_i-$$

(Z3)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -i' - i - \text{ and } \\ (wt)^{-1} = -y_{i'} - i - \text{ and } \\ (wt)^{-1} = -y_{i'} - j - . \end{cases}$$

3. Suppose $y_{i'} < i' < y_i < j' < i < j$.

- (a) If $w^{-1} = -i' i y_{i'} y_i j' j$ then (U) fails.
- (b) If $w^{-1} = -i' y_{i'} i y_i j' j$ then (U) fails.
- (c) If $w^{-1} = -i' y_{i'} i j' y_i j$ then (Y2) fails for $(a, b) = (y_i, i)$ and (a', b') = (j', j').
- (d) If $w^{-1} = -i' i y_{i'} j' y_i j$ then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.

Thus if $y_{i'} < i' < y_i < j' < i < j$ then one of the following holds:

•
$$w^{-1} = -i' - y_{i'} - j' - i - y_i - j$$
 and $(wt)^{-1} = -j' - y_{i'} - i' - j - y_i - i$.

When $(a, b) \in \operatorname{Cyc}^1(z) = \{(y_i, j), (i, i)\}$ and $(a', b') \in \{(y_{i'}, j'), (i', i')\}$, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -j - y_i - \text{ and } (wt)^{-1} = -j' - y_{i'} - .$$

 $(Z2) \Leftrightarrow (no condition).$

(Z3)
$$\Leftrightarrow$$

$$\begin{cases}
(wt)^{-1} = -i' - i - \text{ and} \\
(wt)^{-1} = -i' - j - \text{ and} \\
(wt)^{-1} = -y_{i'} - i - \text{ and} \\
(wt)^{-1} = -y_{i'} - j - .
\end{cases}$$

4. It cannot happen that $y_{i'} < i' < y_i < i < j' < j$ since:

- (a) If $w^{-1} = -i' y_{i'} i j' y_i j$ then (T) fails.
- (b) If $w^{-1} = -i' i y_{i'} j' y_i j$ then (T) fails.
- (c) If $w^{-1} = -i' i y_{i'} y_i j' j$ then (T) fails.
- (d) If $w^{-1} = -i' y_{i'} i y_i j' j$ then (T) fails.
- $\text{(e) If } w^{-1} = -i' y_{i'} j' i y_i j \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (j',j').$
- 5. It cannot happen that $y_{i'} < y_i < i' < i < j' < j$ since:
 - (a) If $w^{-1} = -i' y_{i'} i j' y_i j$ then (T) fails.
 - (b) If $w^{-1} = -i' i y_{i'} j' y_i j$ then (T) fails.
 - (c) If $w^{-1} = -i' i y_{i'} y_i j' j$ then (T) fails.
 - (d) If $w^{-1} = -i' y_{i'} i y_i j' j$ then (T) fails.
 - (e) If $w^{-1} = -i' y_{i'} j' i y_i j$ then (Y3) fails for $(a, b) = (y_i, i)$ and (a', b') = (j', j').

We conclude that properties (Z1)-(Z3) hold for all $(a,b), (a',b') \in \text{Cyc}(z)$ when $y_i < i < j = y_j$.

7 Case: $i < y_i < j < y_i$

Suppose y is such that $i < y_i < j < y_j$. Then $z = \tau_{ij}^n(y)$ has $\operatorname{Cyc}^1(z) = \{(j, j), (i, y_j), (y_i, y_i)\}$.

7.1 Subcase (i)

We must have $w^{-1} = -y_i - i - y_j - j$ — since no other ordering is possible:

- 1. If $w^{-1} = -i y_i j y_j$ then (T) fails.
- 2. If $w^{-1} = -i y_i y_j j$ then (T) fails.
- 3. If $w^{-1} = -i y_i y_i j$ then (T) fails.
- 4. If $w^{-1} = -y_i j i y_j$ then (T) fails.
- 5. If $w^{-1} = -y_i j y_j i$ then (T) fails.
- 6. If $w^{-1} = -y_i y_j j i$ then (T) fails.

7. If
$$w^{-1} = -j - i - y_i - y_j$$
 then (T) fails.

8. If
$$w^{-1} = -j - i - y_j - y_i$$
 then (T) fails.

9. If
$$w^{-1} = -j - y_i - i - y_j$$
 — then (T) fails.

10. If
$$w^{-1} = -j - y_i - y_j - i$$
— then (T) fails.

11. If
$$w^{-1} = -j - y_i - i - y_i$$
 then (T) fails.

12. If
$$w^{-1} = -j - y_i - y_i - i$$
— then (T) fails.

13. If
$$w^{-1} = -y_i - i - y_i - j$$
 then (T) fails.

14. If
$$w^{-1} = -y_i - y_i - j - i$$
 then (T) fails.

15. If
$$w^{-1} = -y_i - j - i - y_i$$
 then (T) fails.

16. If
$$w^{-1} = -y_i - j - y_i - i$$
 then (T) fails.

17. If
$$w^{-1} = -i - j - y_i - y_j$$
 then (Y1) fails for $(a, b) = (i, y_i)$.

18. If
$$w^{-1} = -i - j - y_i - y_i$$
 then (Y1) fails for $(a, b) = (i, y_i)$.

19. If
$$w^{-1} = -i - y_j - j - y_i$$
 then (Y1) fails for $(a, b) = (i, y_i)$.

20. If
$$w^{-1} = -y_j - i - j - y_i$$
 then (Y1) fails for $(a, b) = (i, y_i)$.

21. If
$$w^{-1} = -y_i - i - j - y_j$$
 then (Y1) fails for $(a, b) = (j, y_j)$.

22. If
$$w^{-1} = -y_i - y_j - i - j$$
 then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (j, y_j)$.

23. If
$$w^{-1} = -y_j - y_i - i - j$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (j, y_j)$.

Hence if $i < y_i < j < y_j$ then

$$(wt)^{-1} = -y_i - j - y_j - i - .$$

When $(a, b), (a', b') \in \text{Cyc}^1(z) = \{(j, j), (i, y_j), (y_i, y_i)\}$, properties (Z1)-(Z3) are equivalent to the following conditions which all hold in this case:

$$(Z1) \Leftrightarrow (wt)^{-1} = -y_i - i - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -y_i - j - i - \text{ and } (wt)^{-1} \neq -y_i - y_i - i - .$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -y_i - j - .$$

Thus properties (Z1)-(Z3) hold whenever (a,b), (a',b') are as in case (i) and $i < y_i < j < y_j$.

7.2 Subcase (ii)

Suppose R is an integer such that $(R,R) \in \operatorname{Cyc}^2(z) \subset \operatorname{Cyc}(y)$, so that $R = y_R = z_R \notin \{i,j,y_i,y_j\} + n\mathbb{Z}$.

1. Suppose $i < y_i < j < y_j < R$.

(a) If
$$w^{-1} = -R - y_i - i - y_j - j$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (R, R)$.

(b) If
$$w^{-1} = -y_i - R - i - y_j - j$$
 then (Y3) fails for $(a,b) = (i,y_i)$ and $(a',b') = (R,R)$.

(c) If
$$w^{-1} = -y_i - i - y_j - R - j$$
 then (Y3) fails for $(a, b) = (j, y_j)$ and $(a', b') = (R, R)$.

(d) If
$$w^{-1} = -y_i - i - R - y_j - j$$
— then (Y3) fails for $(a, b) = (j, y_j)$ and $(a', b') = (R, R)$.

Thus if $i < y_i < j < y_j < R$ then one of the following holds:

•
$$w^{-1} = -y_i - i - y_j - j - R$$
 and $(wt)^{-1} = -y_i - j - y_j - i - R$.

When (a, b) = (R, R) and $(a', b') \in \text{Cyc}^1(z) = \{(j, j), (i, y_j), (y_i, y_i)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(\mathbf{Z}1) \Leftrightarrow (wt)^{-1} = -y_j - i - .$$

 $(Z2) \Leftrightarrow (no condition).$

$$({\rm Z3}) \Leftrightarrow \begin{cases} (wt)^{-1} = -i - R - \text{ and } \\ (wt)^{-1} = -j - R - \text{ and } \\ (wt)^{-1} = -y_i - R - . \end{cases}$$

2. Suppose $i < y_i < j < R < y_i$.

(a) If
$$w^{-1} = -y_i - i - y_j - R - j$$
 then (Y2) fails for $(a,b) = (j,y_j)$ and $(a',b') = (R,R)$.

(b) If
$$w^{-1} = -R - y_i - i - y_j - j$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (R, R)$.

(c) If
$$w^{-1} = -y_i - R - i - y_j - j$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (R, R)$.

Thus if $i < y_i < j < R < y_j$ then one of the following holds:

•
$$w^{-1} = -y_i - i - y_j - j - R$$
 and $(wt)^{-1} = -y_i - j - y_j - i - R$.

•
$$w^{-1} = -y_i - i - R - y_j - j$$
 and $(wt)^{-1} = -y_i - j - R - y_j - i$.

When (a, b) = (R, R) and $(a', b') \in \text{Cyc}^1(z) = \{(j, j), (i, y_j), (y_i, y_i)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -y_i - i - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -y_i - R - i - .$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -j - R - \text{ and } (wt)^{-1} = -y_i - R - .$$

3. Suppose $i < R < y_i < j < y_j$.

(a) If
$$w^{-1} = -y_i - i - y_j - R - j$$
— then (T) fails.

(b) If
$$w^{-1} = -y_i - i - R - y_j - j$$
 then (T) fails.

(c) If
$$w^{-1} = -y_i - R - i - y_j - j$$
— then (Y2) fails for $(a, b) = (i, y_i)$ and $(a', b') = (R, R)$.

(d) If
$$w^{-1} = -y_i - i - y_j - j - R$$
— then (Y3) fails for $(a, b) = (R, R)$ and $(a', b') = (j, y_j)$.

Thus if $i < R < y_i < j < y_j$ then one of the following holds:

•
$$w^{-1} = -R - y_i - i - y_j - j$$
 and $(wt)^{-1} = -R - y_i - j - y_j - i$.

When (a,b)=(R,R) and $(a',b')\in \operatorname{Cyc}^1(z)=\{(j,j),(i,y_j),(y_i,y_i)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -y_i - i - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -y_i - R - i - .$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -R - j - \text{ and } (wt)^{-1} = -R - y_i - .$$

4. Suppose $R < i < y_i < j < y_j$.

(a) If
$$w^{-1} = -y_i - i - y_j - j - R$$
— then (Y3) fails for $(a, b) = (R, R)$ and $(a', b') = (i, y_i)$.

(b) If
$$w^{-1} = -y_i - i - y_j - R - j$$
— then (Y3) fails for $(a, b) = (R, R)$ and $(a', b') = (i, y_i)$.

(c) If
$$w^{-1} = -y_i - i - R - y_j - j$$
— then (Y3) fails for $(a, b) = (R, R)$ and $(a', b') = (i, y_i)$.

(d) If
$$w^{-1} = -y_i - R - i - y_j - j$$
— then (Y3) fails for $(a, b) = (R, R)$ and $(a', b') = (i, y_i)$.

Thus if $R < i < y_i < j < y_j$ then one of the following holds:

•
$$w^{-1} = -R - y_i - i - y_j - j$$
 and $(wt)^{-1} = -R - y_i - j - y_j - i$.

When (a, b) = (R, R) and $(a', b') \in \text{Cyc}^1(z) = \{(j, j), (i, y_j), (y_i, y_i)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -y_i - i - .$$

$$(Z2) \Leftrightarrow (no condition).$$

$$(Z3) \Leftrightarrow \begin{cases} (wt)^{-1} = -R - j - \text{ and } \\ (wt)^{-1} = -R - y_i - \text{ and } \\ (wt)^{-1} = -R - y_j - . \end{cases}$$

5. It cannot happen that $i < y_i < R < j < y_j$ since:

(a) If
$$w^{-1} = -y_i - i - y_j - R - j$$
— then (T) fails.

(b) If
$$w^{-1} = -y_i - i - R - y_i - j$$
— then (T) fails.

(c) If
$$w^{-1} = -y_i - i - y_j - j - R$$
— then (Y3) fails for $(a, b) = (R, R)$ and $(a', b') = (j, y_j)$.

(d) If
$$w^{-1} = -R - y_i - i - y_j - j$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (R, R)$.

(e) If
$$w^{-1} = -y_i - R - i - y_j - j$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (R, R)$.

Next suppose P < Q are integers with $(P,Q) \in \text{Cyc}^2(z) \subset \text{Cyc}(y)$, so that $Q = y_P = z_P$ and $P,Q \notin \{i,j,y_i,y_i\} + n\mathbb{Z}$.

1. Suppose $P < i < y_i < Q < j < y_j$.

(a) If
$$w^{-1} = -y_i - i - Q - P - y_i - j$$
 then (T) fails.

(b) If
$$w^{-1} = -y_i - i - Q - y_j - j - P$$
— then (T) fails.

(c) If
$$w^{-1} = -y_i - i - y_j - Q - j - P$$
— then (T) fails.

(d) If
$$w^{-1} = -y_i - i - y_j - Q - P - j$$
 then (T) fails.

(e) If
$$w^{-1} = -y_i - i - Q - y_j - P - j$$
 — then (T) fails.

(f) If
$$w^{-1} = -Q - y_i - i - P - y_j - j$$
 then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(g) If
$$w^{-1} = -y_i - Q - i - P - y_j - j$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

$$\text{(h) If } w^{-1} = -Q - y_i - P - i - y_j - j - \text{ then (Y2) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (i,y_i).$$

(i) If
$$w^{-1} = -Q - y_i - i - y_j - j - P$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

(j) If
$$w^{-1} = -Q - y_i - i - y_j - P - j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

(k) If
$$w^{-1} = -y_i - i - y_j - j - Q - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

(l) If
$$w^{-1} = -y_i - Q - i - y_j - j - P$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

(m) If
$$w^{-1} = -y_i - Q - i - y_j - P - j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

Thus if $P < i < y_i < Q < j < y_i$ then one of the following holds:

•
$$w^{-1} = -Q - P - y_i - i - y_j - j$$
 and $(wt)^{-1} = -Q - P - y_i - j - y_j - i$.

•
$$w^{-1} = -y_i - Q - P - i - y_j - j$$
 and $(wt)^{-1} = -y_i - Q - P - j - y_j - i$.

When (a,b) = (P,Q) and $(a',b') \in \operatorname{Cyc}^1(z) = \{(j,j),(i,y_j),(y_i,y_i)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -y_i - i - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -Q-y_i-P-.$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -P - j - \text{ and } (wt)^{-1} = -P - y_i - .$$

2. Suppose $P < i < Q < y_i < j < y_j$.

(a) If
$$w^{-1} = -y_i - i - Q - P - y_j - j$$
 then (T) fails.

(b) If
$$w^{-1} = -y_i - i - Q - y_j - j - P$$
 then (T) fails.

(c) If
$$w^{-1} = -y_i - i - y_j - Q - j - P$$
— then (T) fails.

(d) If
$$w^{-1} = -y_i - i - y_j - Q - P - j$$
 then (T) fails.

(e) If
$$w^{-1} = -y_i - i - Q - y_j - P - j$$
 then (T) fails.

(f) If
$$w^{-1} = -Q - y_i - i - y_j - j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(g) If
$$w^{-1} = -y_i - Q - P - i - y_j - j$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

$$\text{(h) If } w^{-1} = -Q - y_i - i - y_j - P - j - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (i,y_i).$$

(i) If
$$w^{-1} = -Q - y_i - i - P - y_j - j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(j) If
$$w^{-1} = -y_i - Q - i - P - y_j - j$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(k) If
$$w^{-1} = -y_i - i - y_j - j - Q - P$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(l) If
$$w^{-1} = -y_i - Q - i - y_j - j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(m) If
$$w^{-1} = -Q - y_i - P - i - y_j - j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(n) If
$$w^{-1} = -y_i - Q - i - y_j - P - j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

Thus if $P < i < Q < y_i < j < y_j$ then one of the following holds:

•
$$w^{-1} = -Q - P - y_i - i - y_j - j$$
 and $(wt)^{-1} = -Q - P - y_i - j - y_j - i$.

When (a,b) = (P,Q) and $(a',b') \in \operatorname{Cyc}^1(z) = \{(j,j),(i,y_j),(y_i,y_i)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(\mathbf{Z}\mathbf{1}) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -y_i - i -.$$

 $(Z2) \Leftrightarrow (no condition).$

(Z3)
$$\Leftrightarrow \begin{cases} (wt)^{-1} = -P - j - \text{ and } \\ (wt)^{-1} = -P - y_i - \text{ and } \\ (wt)^{-1} = -P - y_j - . \end{cases}$$

3. Suppose $i < y_i < j < P < y_i < Q$.

(a) If
$$w^{-1} = -Q - y_i - i - y_j - j - P$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(b) If
$$w^{-1} = -y_i - Q - P - i - y_j - j$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(c) If
$$w^{-1} = -Q - y_i - i - y_j - P - j$$
— then (Y3) fails for $(a,b) = (i,y_i)$ and $(a',b') = (P,Q)$.

(d) If
$$w^{-1} = -Q - y_i - i - P - y_j - j$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(e) If
$$w^{-1} = -y_i - Q - i - P - y_j - j$$
 then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(f) If
$$w^{-1} = -Q - P - y_i - i - y_j - j$$
 then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(g) If
$$w^{-1} = -y_i - Q - i - y_j - j - P$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(h) If
$$w^{-1} = -Q - y_i - P - i - y_j - j$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(i) If
$$w^{-1} = -y_i - Q - i - y_j - P - j$$
 then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(j) If
$$w^{-1} = -y_i - i - Q - P - y_j - j$$
 then (Y3) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

$$\text{(k) If } w^{-1} = -y_i - i - Q - y_j - j - P - \text{ then (Y3) fails for } (a,b) = (j,y_j) \text{ and } (a',b') = (P,Q).$$

(1) If
$$w^{-1} = -y_i - i - y_j - Q - j - P$$
 then (Y3) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

(m) If
$$w^{-1} = -y_i - i - y_j - Q - P - j$$
 then (Y3) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

$$\text{(n) If } w^{-1}=-y_i-i-Q-y_j-P-j-\text{ then (Y3) fails for } (a,b)=(j,y_j) \text{ and } (a',b')=(P,Q).$$

Thus if $i < y_i < j < P < y_i < Q$ then one of the following holds:

$$\bullet \ w^{-1} = -y_i - i - y_j - j - Q - P - \ \text{and} \ (wt)^{-1} = -y_i - j - y_j - i - Q - P -.$$

When (a,b) = (P,Q) and $(a',b') \in \operatorname{Cyc}^1(z) = \{(j,j),(i,y_j),(y_i,y_i)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -y_i - i - .$$

 $(Z2) \Leftrightarrow (no condition).$

$$({\rm Z3}) \Leftrightarrow \begin{cases} (wt)^{-1} = -i - Q - \text{ and } \\ (wt)^{-1} = -j - Q - \text{ and } \\ (wt)^{-1} = -y_i - Q - . \end{cases}$$

4. Suppose $P < i < y_i < j < Q < y_j$.

(a) If
$$w^{-1} = -Q - y_i - i - P - y_j - j$$
 then (Y2) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,y_i)$.

```
(b) If w^{-1} = -y_i - Q - i - P - y_j - j— then (Y2) fails for (a, b) = (P, Q) and (a', b') = (i, y_i).
```

(c) If
$$w^{-1} = -Q - y_i - P - i - y_j - j$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(d) If
$$w^{-1} = -Q - y_i - i - y_j - j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

(e) If
$$w^{-1} = -y_i - i - Q - y_j - j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

(f) If
$$w^{-1} = -y_i - i - y_j - Q - j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

(g) If
$$w^{-1} = -y_i - i - y_j - Q - P - j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

$$\text{(h) If } w^{-1} = -Q - y_i - i - y_j - P - j - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (j,y_j).$$

(i) If
$$w^{-1} = -y_i - i - y_j - j - Q - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

(j) If
$$w^{-1} = -y_i - Q - i - y_j - j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

(k) If
$$w^{-1} = -y_i - Q - i - y_j - P - j$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

(l) If
$$w^{-1} = -y_i - i - Q - y_j - P - j$$
 then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (j,y_j)$.

Thus if $P < i < y_i < j < Q < y_i$ then one of the following holds:

•
$$w^{-1} = -Q - P - y_i - i - y_j - j$$
 and $(wt)^{-1} = -Q - P - y_i - j - y_j - i$.

•
$$w^{-1} = -y_i - Q - P - i - y_j - j$$
 and $(wt)^{-1} = -y_i - Q - P - j - y_j - i$.

When (a,b) = (P,Q) and $(a',b') \in \operatorname{Cyc}^1(z) = \{(j,j),(i,y_j),(y_i,y_i)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -y_j - i - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -Q - j - P - \text{ and } (wt)^{-1} \neq -Q - y_i - P - .$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -P - y_j - .$$

5. Suppose $P < Q < i < y_i < j < y_j$.

(a) If
$$w^{-1} = -Q - y_i - i - y_j - j - P$$
— then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,y_i)$.

(b) If
$$w^{-1} = -y_i - i - Q - P - y_j - j$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(c) If
$$w^{-1} = -y_i - i - Q - y_j - j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(d) If
$$w^{-1} = -y_i - i - y_j - Q - j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(e) If
$$w^{-1} = -y_i - Q - P - i - y_j - j$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(f) If
$$w^{-1} = -y_i - i - y_j - Q - P - j$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(g) If
$$w^{-1} = -Q - y_i - i - y_j - P - j$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,y_i)$.

(h) If
$$w^{-1} = -Q - y_i - i - P - y_j - j$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(i) If
$$w^{-1} = -y_i - Q - i - P - y_j - j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(j) If
$$w^{-1} = -y_i - i - y_j - j - Q - P$$
 — then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(k) If
$$w^{-1} = -y_i - Q - i - y_j - j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(l) If
$$w^{-1} = -Q - y_i - P - i - y_j - j$$
 then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,y_i)$.

$$\text{(m) If } w^{-1} = -y_i - Q - i - y_j - P - j - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (i,y_i).$$

(n) If
$$w^{-1} = -y_i - i - Q - y_j - P - j$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

Thus if $P < Q < i < y_i < j < y_j$ then one of the following holds:

•
$$w^{-1} = -Q - P - y_i - i - y_j - j$$
 and $(wt)^{-1} = -Q - P - y_i - j - y_j - i$.

When (a, b) = (P, Q) and $(a', b') \in \text{Cyc}^1(z) = \{(j, j), (i, y_j), (y_i, y_i)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -y_j - i - .$$

 $(Z2) \Leftrightarrow (no condition).$

$$(\mathrm{Z3}) \Leftrightarrow \begin{cases} (wt)^{-1} = -P - j - \text{ and} \\ (wt)^{-1} = -P - y_i - \text{ and} \\ (wt)^{-1} = -P - y_j - . \end{cases}$$

6. Suppose $i < y_i < j < P < Q < y_j$.

(a) If
$$w^{-1} = -y_i - i - y_j - Q - j - P$$
— then (Y2) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

(b) If
$$w^{-1} = -y_i - i - y_j - Q - P - j$$
— then (Y2) fails for $(a,b) = (j,y_j)$ and $(a',b') = (P,Q)$.

$$\text{(c) If } w^{-1}=-y_i-i-Q-y_j-P-j-\text{ then (Y2) fails for } (a,b)=(j,y_j) \text{ and } (a',b')=(P,Q).$$

$$\text{(d) If } w^{-1} = -Q - y_i - i - y_j - j - P - \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$$

(e) If
$$w^{-1} = -y_i - Q - P - i - y_j - j$$
— then (Y3) fails for $(a,b) = (i,y_i)$ and $(a',b') = (P,Q)$.

$$\text{(f) If } w^{-1} = - Q - y_i - i - y_j - P - j - \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$$

$$\text{(g) If } w^{-1} = - Q - y_i - i - P - y_j - j - \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$$

$$\text{(h) If } w^{-1}=-y_i-Q-i-P-y_j-j-\text{ then (Y3) fails for } (a,b)=(i,y_i) \text{ and } (a',b')=(P,Q).$$

$$\text{(i) If } w^{-1} = \cdots Q \cdots P \cdots y_i \cdots i \cdots y_j \cdots j \cdots \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$$

(j) If
$$w^{-1} = -y_i - Q - i - y_j - j - P$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

$$\text{(k) If } w^{-1} = -Q - y_i - P - i - y_j - j - \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$$

(l) If
$$w^{-1} = -y_i - Q - i - y_j - P - j$$
 then (Y3) fails for $(a,b) = (i,y_i)$ and $(a',b') = (P,Q)$.

Thus if $i < y_i < j < P < Q < y_j$ then one of the following holds:

•
$$w^{-1} = -y_i - i - Q - y_j - j - P - \text{ and } (wt)^{-1} = -y_i - j - Q - y_j - i - P - .$$

•
$$w^{-1} = -y_i - i - y_j - j - Q - P$$
 and $(wt)^{-1} = -y_i - j - y_j - i - Q - P$.

•
$$w^{-1} = -y_i - i - Q - P - y_i - j$$
 and $(wt)^{-1} = -y_i - j - Q - P - y_i - i$.

When (a, b) = (P, Q) and $(a', b') \in \text{Cyc}^1(z) = \{(j, j), (i, y_j), (y_i, y_i)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -y_i - i - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -y_j - P - i - \text{ and } (wt)^{-1} \neq -y_j - Q - i - .$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -i - Q - \text{ and } (wt)^{-1} = -y_i - Q - .$$

7. Suppose $i < y_i < P < j < y_i < Q$.

(a) If
$$w^{-1} = -y_i - i - Q - P - y_i - j$$
 then (T) fails.

(b) If
$$w^{-1} = -y_i - i - y_i - Q - P - j$$
 then (T) fails.

(c) If
$$w^{-1} = -Q - y_i - i - y_j - P - j$$
 then (T) fails.

(d) If
$$w^{-1} = -Q - y_i - i - P - y_i - j$$
 then (T) fails.

(e) If
$$w^{-1} = -y_i - Q - i - P - y_j - j$$
— then (T) fails.

(f) If
$$w^{-1} = -y_i - Q - i - y_j - P - j$$
 then (T) fails.

(g) If
$$w^{-1} = -y_i - i - Q - y_j - P - j$$
 then (T) fails.

$$\text{(h) If } w^{-1} = -y_i - i - Q - y_j - j - P - \text{ then (Y2) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (j,y_j).$$

(i) If
$$w^{-1} = -y_i - i - y_j - Q - j - P$$
 — then (Y2) fails for $(a,b) = (P,Q)$ and $(a',b') = (j,y_j)$.

(j) If
$$w^{-1} = -Q - y_i - i - y_j - j - P$$
 then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

$$\text{(k) If } w^{-1} = -y_i - Q - P - i - y_j - j - \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$$

(l) If
$$w^{-1} = -Q - P - y_i - i - y_j - j$$
 then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(m) If
$$w^{-1} = -y_i - Q - i - y_j - j - P$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

$$\text{(n) If } w^{-1} = -Q - y_i - P - i - y_j - j - \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$$

Thus if $i < y_i < P < j < y_j < Q$ then one of the following holds:

•
$$w^{-1} = -y_i - i - y_j - j - Q - P - \text{ and } (wt)^{-1} = -y_i - j - y_j - i - Q - P - .$$

When (a, b) = (P, Q) and $(a', b') \in \text{Cyc}^1(z) = \{(j, j), (i, y_j), (y_i, y_i)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -y_i - i - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -Q-j-P-.$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -i - Q - \text{ and } (wt)^{-1} = -y_i - Q - .$$

8. Suppose $i < P < y_i < j < y_j < Q$.

(a) If
$$w^{-1} = -y_i - i - Q - P - y_j - j$$
— then (T) fails.

(b) If
$$w^{-1} = -y_i - i - y_j - Q - P - j$$
 then (T) fails.

(c) If
$$w^{-1} = -Q - y_i - i - y_j - P - j$$
 then (T) fails.

(d) If
$$w^{-1} = -Q - y_i - i - P - y_j - j$$
— then (T) fails.

(e) If
$$w^{-1} = -y_i - Q - i - P - y_j - j$$
 then (T) fails.

(f) If
$$w^{-1} = -y_i - Q - i - y_j - P - j$$
 then (T) fails.

(g) If
$$w^{-1} = -y_i - i - Q - y_j - P - j$$
 then (T) fails.

(h) If
$$w^{-1} = -y_i - i - Q - y_j - j - P$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

(i) If
$$w^{-1} = -y_i - i - y_j - Q - j - P$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

(j) If
$$w^{-1} = -Q - y_i - i - y_j - j - P$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

$$\text{(k) If } w^{-1} = -y_i - Q - P - i - y_j - j - \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$$

(l) If
$$w^{-1} = -Q - P - y_i - i - y_j - j$$
 then (Y3) fails for $(a,b) = (i,y_i)$ and $(a',b') = (P,Q)$.

$$\text{(m) If } w^{-1} = -y_i - Q - i - y_j - j - P - \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$$

(n) If
$$w^{-1} = -Q - y_i - P - i - y_j - j$$
 then (Y3) fails for $(a,b) = (i,y_i)$ and $(a',b') = (P,Q)$.

Thus if $i < P < y_i < j < y_j < Q$ then one of the following holds:

•
$$w^{-1} = -y_i - i - y_j - j - Q - P - \text{ and } (wt)^{-1} = -y_i - j - y_j - i - Q - P - .$$

When (a, b) = (P, Q) and $(a', b') \in \text{Cyc}^1(z) = \{(j, j), (i, y_j), (y_i, y_i)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -y_i - i - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -Q - i - P - \text{ and } (wt)^{-1} \neq -Q - y_i - P - .$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -i - Q - .$$

9. Suppose $i < y_i < j < y_i < P < Q$.

(a) If
$$w^{-1} = -Q - y_i - i - y_j - j - P$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(b) If
$$w^{-1} = -y_i - Q - P - i - y_j - j$$
 then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(c) If
$$w^{-1} = -Q - y_i - i - y_j - P - j$$
 then (Y3) fails for $(a,b) = (i,y_i)$ and $(a',b') = (P,Q)$.

$$\text{(d) If } w^{-1} = -Q - y_i - i - P - y_j - j - \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$$

(e) If
$$w^{-1} = -y_i - Q - i - P - y_j - j$$
— then (Y3) fails for $(a,b) = (i,y_i)$ and $(a',b') = (P,Q)$.

$$\text{(f) If } w^{-1} = -Q - P - y_i - i - y_j - j - \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$$

(g) If
$$w^{-1} = -y_i - Q - i - y_j - j - P$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(h) If
$$w^{-1} = -Q - y_i - P - i - y_j - j$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(i) If
$$w^{-1} = -y_i - Q - i - y_j - P - j$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(j) If
$$w^{-1} = -y_i - i - Q - P - y_j - j$$
— then (Y3) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

$$\text{(k) If } w^{-1} = -y_i - i - Q - y_j - j - P - \text{ then (Y3) fails for } (a,b) = (j,y_j) \text{ and } (a',b') = (P,Q).$$

(l) If
$$w^{-1} = -y_i - i - y_j - Q - j - P$$
 then (Y3) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

(m) If
$$w^{-1} = -y_i - i - y_j - Q - P - j$$
 — then (Y3) fails for $(a,b) = (j,y_j)$ and $(a',b') = (P,Q)$.

$$\text{(n) If } w^{-1} = -y_i - i - Q - y_j - P - j - \text{ then (Y3) fails for } (a,b) = (j,y_j) \text{ and } (a',b') = (P,Q).$$

Thus if $i < y_i < j < y_j < P < Q$ then one of the following holds:

•
$$w^{-1} = -y_i - i - y_j - j - Q - P - \text{ and } (wt)^{-1} = -y_i - j - y_j - i - Q - P - .$$

When (a,b)=(P,Q) and $(a',b')\in \operatorname{Cyc}^1(z)=\{(j,j),(i,y_i),(y_i,y_i)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -y_i - i - .$$

 $(Z2) \Leftrightarrow (\text{no condition}).$

(Z3)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -i - Q - \text{ and } \\ (wt)^{-1} = -j - Q - \text{ and } \\ (wt)^{-1} = -y_i - Q - . \end{cases}$$

10. Suppose $P < i < y_i < j < y_j < Q$

(a) If
$$w^{-1} = -Q - y_i - i - y_j - j - P$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(b) If
$$w^{-1} = -Q - y_i - i - y_j - P - j$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(c) If
$$w^{-1} = -Q - y_i - i - P - y_j - j$$
 then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(d) If
$$w^{-1} = -y_i - Q - i - P - y_j - j$$
 then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(e) If
$$w^{-1}=-y_i-Q-i-y_j-j-P$$
— then (Y2) fails for $(a,b)=(P,Q)$ and $(a',b')=(i,y_i)$.

(f) If
$$w^{-1} = -Q - y_i - P - i - y_j - j$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(g) If
$$w^{-1} = -y_i - Q - i - y_j - P - j$$
 — then (Y2) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,y_i)$.

(h) If
$$w^{-1} = -y_i - i - Q - y_j - j - P$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

(i) If
$$w^{-1} = -y_i - i - y_j - Q - j - P$$
 then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

(j) If
$$w^{-1} = -y_i - i - Q - y_j - P - j$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

Thus if $P < i < y_i < j < y_j < Q$ then one of the following holds:

•
$$w^{-1} = -y_i - Q - P - i - y_j - j$$
 and $(wt)^{-1} = -y_i - Q - P - j - y_j - i$.

•
$$w^{-1} = -y_i - i - y_j - Q - P - j$$
 and $(wt)^{-1} = -y_i - j - y_j - Q - P - i$.

$$\bullet \ w^{-1} = -y_i - i - Q - P - y_j - j - \ \text{and} \ (wt)^{-1} = -y_i - j - Q - P - y_j - i - .$$

When (a,b)=(P,Q) and $(a',b')\in \operatorname{Cyc}^1(z)=\{(j,j),(i,y_j),(y_i,y_i)\}$ or vice versa, properties (Z1)-(Z3) corresponds to the context of th spond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -y_j - i - .$$

(Z1)
$$\Leftrightarrow$$
 $(wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -y_j - i - .$
(Z2) \Leftrightarrow
$$\begin{cases} (wt)^{-1} \neq -Q - i - P - \text{ and } (wt)^{-1} \neq -Q - y_j - P - \text{ and } \\ (wt)^{-1} \neq -Q - j - P - \text{ and } \\ (wt)^{-1} \neq -Q - y_i - P - . \end{cases}$$

 $(Z3) \Leftrightarrow (no condition).$

11. Suppose $i < P < Q < y_i < j < y_i$.

(a) If
$$w^{-1} = -y_i - i - Q - P - y_j - j$$
 then (T) fails.

(b) If
$$w^{-1} = -y_i - i - Q - y_i - j - P$$
 then (T) fails.

(c) If
$$w^{-1} = -y_i - i - y_i - Q - j - P$$
— then (T) fails.

(d) If
$$w^{-1} = -y_i - i - y_i - Q - P - j$$
 then (T) fails.

(e) If
$$w^{-1} = -Q - y_i - i - y_j - P - j$$
— then (T) fails.

(f) If
$$w^{-1} = -Q - y_i - i - P - y_j - j$$
 then (T) fails.

(g) If
$$w^{-1} = -y_i - Q - i - P - y_j - j$$
 then (T) fails.

- (h) If $w^{-1} = -y_i Q i y_j P j$ then (T) fails.
- (i) If $w^{-1} = -y_i i Q y_j P j$ then (T) fails.
- (j) If $w^{-1} = -y_i Q P i y_j j$ then (Y2) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
- (k) If $w^{-1} = -Q y_i P i y_j j$ then (Y2) fails for $(a,b) = (i,y_i)$ and (a',b') = (P,Q).
- (l) If $w^{-1} = -Q y_i i y_j j P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (j, y_j)$.
- (m) If $w^{-1} = -y_i i y_j j Q P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (j, y_j)$.
- (n) If $w^{-1} = -y_i Q i y_j j P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (j, y_j)$.

Thus if $i < P < Q < y_i < j < y_j$ then one of the following holds:

•
$$w^{-1} = -Q - P - y_i - i - y_j - j$$
 and $(wt)^{-1} = -Q - P - y_i - j - y_j - i$.

When (a,b) = (P,Q) and $(a',b') \in \operatorname{Cyc}^1(z) = \{(j,j),(i,y_j),(y_i,y_i)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -y_i - i - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -y_i - P - i - \text{ and } (wt)^{-1} \neq -y_i - Q - i - .$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -P - j - \text{ and } (wt)^{-1} = -P - y_i - .$$

- 12. It cannot happen that $i < y_i < P < j < Q < y_i$ since:
 - (a) If $w^{-1} = -y_i i Q P y_j j$ then (T) fails.
 - (b) If $w^{-1} = -y_i i y_j Q P j$ then (T) fails.
 - (c) If $w^{-1} = -Q y_i i y_j P j$ then (T) fails.
 - (d) If $w^{-1} = -Q y_i i P y_i j$ then (T) fails.
 - (e) If $w^{-1} = -y_i Q i P y_i j$ then (T) fails.
 - (f) If $w^{-1} = -y_i Q i y_j P j$ then (T) fails.
 - (g) If $w^{-1} = -y_i i Q y_j P j$ then (T) fails.
 - (h) If $w^{-1} = -y_i i Q y_i j P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (j, y_j)$.
 - (i) If $w^{-1} = -y_i i y_j Q j P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (j, y_j)$.
 - (j) If $w^{-1} = -y_i i y_j j Q P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (j, y_j)$.
 - (k) If $w^{-1} = -Q y_i i y_j j P$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
 - (l) If $w^{-1} = -y_i Q P i y_j j$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
 - (m) If $w^{-1} = -Q P y_i i y_j j$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
 - (n) If $w^{-1} = -y_i Q i y_j j P$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
 - (o) If $w^{-1} = -Q y_i P i y_i j$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
- 13. It cannot happen that $i < P < y_i < j < Q < y_i$ since:
 - (a) If $w^{-1} = -y_i i Q P y_j j$ then (T) fails.
 - (b) If $w^{-1} = -y_i i y_i Q P j$ then (T) fails.
 - (c) If $w^{-1} = -Q y_i i y_j P j$ then (T) fails.
 - (d) If $w^{-1} = -Q y_i i P y_i j$ then (T) fails.
 - (e) If $w^{-1} = -y_i Q i P y_j j$ then (T) fails.
 - (f) If $w^{-1} = -y_i Q i y_j P j$ then (T) fails.
 - (g) If $w^{-1} = -y_i i Q y_j P j$ then (T) fails.
 - $\text{(h) If } w^{-1} = -y_i i Q y_j j P \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (j,y_j).$
 - (i) If $w^{-1} = -y_i i y_j Q j P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (j, y_j)$.
 - (j) If $w^{-1} = -y_i i y_j j Q P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (j, y_j)$.
 - $\text{(k) If } w^{-1} = Q y_i i y_j j P \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$

- (l) If $w^{-1} = -y_i Q P i y_j j$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
- $\text{(m) If } w^{-1} = Q P y_i i y_j j \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$
- (n) If $w^{-1} = -y_i Q i y_j j P$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
- $\text{(o) If } w^{-1} = Q y_i P i y_j j \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$

14. It cannot happen that $i < y_i < P < Q < j < y_j$ since:

- (a) If $w^{-1} = -y_i i Q P y_j j$ then (T) fails.
- (b) If $w^{-1} = -y_i i Q y_j j P$ then (T) fails.
- (c) If $w^{-1} = -y_i i y_j Q j P$ then (T) fails.
- (d) If $w^{-1} = -y_i i y_j Q P j$ then (T) fails.
- (e) If $w^{-1} = -Q y_i i y_j P j$ then (T) fails.
- (f) If $w^{-1} = -Q y_i i P y_i j$ then (T) fails.
- (g) If $w^{-1} = -y_i Q i P y_i j$ then (T) fails.
- (h) If $w^{-1} = -y_i Q i y_j P j$ then (T) fails.
- (i) If $w^{-1} = -y_i i Q y_j P j$ then (T) fails.
- (j) If $w^{-1} = -y_i i y_j j Q P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (j, y_j)$.
- (k) If $w^{-1} = -Q y_i i y_j j P$ then (Y3) fails for $(a,b) = (i,y_i)$ and (a',b') = (P,Q).
- (l) If $w^{-1} = -y_i Q P i y_j j$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
- $\text{(m) If } w^{-1} = -Q P y_i i y_j j \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$
- (n) If $w^{-1} = -y_i Q i y_j j P$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
- (o) If $w^{-1} = -Q y_i P i y_j j$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).

15. It cannot happen that $i < P < y_i < Q < j < y_j$ since:

- (a) If $w^{-1} = -y_i i Q P y_j j$ then (T) fails.
- (b) If $w^{-1} = -y_i i Q y_j j P$ then (T) fails.
- (c) If $w^{-1} = -y_i i y_j Q j P$ then (T) fails.
- (d) If $w^{-1} = -y_i i y_j Q P j$ then (T) fails.
- (e) If $w^{-1} = -Q y_i i y_j P j$ then (T) fails.
- (f) If $w^{-1} = -Q y_i i P y_j j$ then (T) fails.
- (g) If $w^{-1} = -y_i Q i P y_i j$ then (T) fails.
- (h) If $w^{-1} = -y_i Q i y_j P j$ then (T) fails.
- (i) If $w^{-1} = -y_i i Q y_j P j$ then (T) fails.
- (j) If $w^{-1} = -y_i i y_j j Q P$ then (Y3) fails for (a,b) = (P,Q) and $(a',b') = (j,y_j)$.
- $\text{(k) If } w^{-1} = Q y_i i y_j j P \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$
- (l) If $w^{-1} = -y_i Q P i y_j j$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
- $\text{(m) If } w^{-1} = -Q P y_i i y_j j \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$
- (n) If $w^{-1} = -y_i Q i y_j j P$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
- $\text{(o) If } w^{-1} = Q y_i P i y_j j \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$

We conclude that properties (Z1)-(Z3) hold whenever (a, b), (a', b') are as in cases (i) or (ii) and $i < y_i < j < y_j$.

7.3 Subcase (iii)

Suppose i' and j' are integers such that $0 \neq i - i' = j - j' \in n\mathbb{Z}$, so that w(i) - w(i') = w(j) - w(j') = i - i'.

- 1. Suppose $i' < y_{i'} < j' < i < y_{j'} < y_i < j < y_j$.
 - (a) If $w^{-1} = -y_{i'} y_i i' i y_{j'} y_j j' j$ then (T) fails.
 - (b) If $w^{-1} = -y_{i'} i' y_i i y_{j'} y_j j' j$ then (T) fails.
 - (c) If $w^{-1} = -y_{i'} y_i i' i y_{j'} j' y_j j$ then (T) fails.
 - (d) If $w^{-1} = -y_{i'} i' y_i i y_{i'} j' y_i j$ then (T) fails.
 - (e) If $w^{-1} = -y_{i'} y_i i' y_{j'} i y_j j' j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (f) If $w^{-1} = -y_{i'} y_i i' y_{i'} i j' y_i j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (g) If $w^{-1} = -y_{i'} y_i i' y_{j'} j' i y_j j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (h) If $w^{-1} = -y_{i'} i' y_{j'} y_i i y_j j' j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.
 - (i) If $w^{-1} = -y_{i'} i' y_i y_{j'} i y_j j' j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.
 - (j) If $w^{-1} = -y_{i'} i' y_i y_{j'} i j' y_j j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.
 - $\text{(k) If } w^{-1} = -y_{i'} i' y_i y_{j'} j' i y_j j \text{ then (Y3) fails for } (a,b) = (j',y_{j'}) \text{ and } (a',b') = (i,y_i).$
 - (1) If $w^{-1} = -y_{i'} i' y_{j'} y_i i j' y_j j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.
 - (m) If $w^{-1} = -y_{i'} i' y_{j'} y_i j' i y_j j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.

Thus if $i' < y_{i'} < j' < i < y_{j'} < y_i < j < y_j$ then one of the following holds:

$$\bullet \ w^{-1} = -y_{i'} - i' - y_{j'} - j' - y_i - i - y_j - j - \text{ and } (wt)^{-1} = -y_{i'} - j' - y_{j'} - i' - y_i - j - y_j - i - .$$

When $(a,b) \in \operatorname{Cyc}^1(z) = \{(j,j), (i,y_j), (y_i,y_i)\}$ and $(a',b') \in \{(j',j'), (i',y_{j'}), (y_{i'},y_{i'})\}$, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(\mathbf{Z}\mathbf{1}) \Leftrightarrow (wt)^{-1} = -y_j - i - \text{ and } (wt)^{-1} = -y_{j'} - i' -.$$

 $(Z2) \Leftrightarrow (no condition).$

(Z3)
$$\Leftrightarrow$$

$$\begin{cases}
(wt)^{-1} = -i' - j - \text{ and} \\
(wt)^{-1} = -i' - y_i - \text{ and} \\
(wt)^{-1} = -i' - y_j - \text{ and} \\
(wt)^{-1} = -j' - j - \text{ and} \\
(wt)^{-1} = -j' - y_i - \text{ and} \\
(wt)^{-1} = -j' - y_j - \text{ and} \\
(wt)^{-1} = -j' - y_j - \text{ and} \\
(wt)^{-1} = -j' - y_i - \text{ and} \\
(wt)^{-1} = -j' - y_i - y_i - \text{ and} \\
(wt)^{-1} = -j' - y_i - y_i - \text{ and} \\
(wt)^{-1} = -j' - y_i -$$

- 2. Suppose $i' < y_{i'} < j' < y_{j'} < i < y_i < j < y_j$.
 - (a) If $w^{-1} = -y_{i'} y_i i' i y_{j'} y_i j' j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (b) If $w^{-1} = -y_{i'} y_i i' y_{j'} i y_j j' j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (c) If $w^{-1} = -y_{i'} y_i i' y_{j'} i j' y_j j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (d) If $w^{-1} = -y_{i'} y_i i' y_{j'} j' i y_j j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (e) If $w^{-1} = -y_{i'} y_i i' i y_{i'} j' y_i j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (f) If $w^{-1} = -y_{i'} i' y_i i y_{j'} j j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.
 - (g) If $w^{-1} = -y_{i'} i' y_{j'} y_i i y_j j' j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.
 - (h) If $w^{-1} = -y_{i'} i' y_i y_{j'} i y_j j' j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.
 - $\text{(i) If } w^{-1} = y_{i'} i' y_i i y_{j'} j' y_j j \text{ then (Y3) fails for } (a,b) = (j',y_{j'}) \text{ and } (a',b') = (i,y_i).$
 - (j) If $w^{-1} = -y_{i'} i' y_i y_{j'} i j' y_j j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.

- $\text{(k) If } w^{-1} = y_{i'} i' y_i y_{i'} j' i y_j j \text{ then (Y3) fails for } (a,b) = (j',y_{j'}) \text{ and } (a',b') = (i,y_i).$
- (l) If $w^{-1} = -y_{i'} i' y_{j'} y_i i j' y_j j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.
- $\text{(m) If } w^{-1} = -y_{i'} i' y_{j'} y_i j' i y_j j \text{ then (Y3) fails for } (a,b) = (j',y_{j'}) \text{ and } (a',b') = (i,y_i).$

Thus if $i' < y_{i'} < j' < y_{j'} < i < y_i < j < y_j$ then one of the following holds:

•
$$w^{-1} = -y_{i'} - i' - y_{j'} - j' - y_i - i - y_j - j$$
 and $(wt)^{-1} = -y_{i'} - j' - y_{j'} - i' - y_i - j - y_j - i$.

When $(a, b) \in \operatorname{Cyc}^1(z) = \{(j, j), (i, y_j), (y_i, y_i)\}$ and $(a', b') \in \{(j', j'), (i', y_{j'}), (y_{i'}, y_{i'})\}$, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -y_j - i - \text{ and } (wt)^{-1} = -y_{j'} - i' - .$$

 $(Z2) \Leftrightarrow (no condition).$

$$(Z3) \Leftrightarrow \begin{cases} (wt)^{-1} = -i' - j - \text{ and } \\ (wt)^{-1} = -i' - y_i - \text{ and } \\ (wt)^{-1} = -i' - y_j - \text{ and } \\ (wt)^{-1} = -j' - j - \text{ and } \\ (wt)^{-1} = -j' - y_i - \text{ and } \\ (wt)^{-1} = -j' - y_j - \text{ and } \\ (wt)^{-1} = -y_{i'} - j - \text{ and } \\ (wt)^{-1} = -y_{i'} - y_i - \text{ and } \\ (wt)^{-1} = -y_{i'} - y_i - \text{ and } \\ (wt)^{-1} = -y_{i'} - y_j - . \end{cases}$$

3. Suppose $i' < y_{i'} < j' < i < y_i < j < y_{j'} < y_i$.

- (a) If $w^{-1} = -y_{i'} i' y_i y_{j'} i j' y_i j$ then (Y2) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.
- (b) If $w^{-1} = -y_{i'} i' y_{j'} y_i i j' y_j j$ then (Y2) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.
- (c) If $w^{-1} = -y_{i'} i' y_{j'} y_i j' i y_j j$ then (Y2) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.
- (d) If $w^{-1} = -y_{i'} y_i i' i y_{j'} y_j j' j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
- (e) If $w^{-1} = -y_{i'} y_i i' y_{j'} i y_j j' j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
- (f) If $w^{-1} = -y_{i'} y_i i' y_{j'} i j' y_j j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
- (g) If $w^{-1} = -y_{i'} y_i i' y_{j'} j' i y_j j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
- (h) If $w^{-1} = -y_{i'} y_i i' i y_{j'} j' y_j j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
- (i) If $w^{-1} = -y_{i'} i' y_i i y_{j'} y_j j' j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (j, y_j)$.
- (j) If $w^{-1} = -y_{i'} i' y_{j'} y_i i y_j j' j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (j, y_j)$.
- (k) If $w^{-1} = -y_{i'} i' y_i y_{i'} i y_j j' j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (j, y_j)$.

Thus if $i' < y_{i'} < j' < i < y_i < j < y_{j'} < y_j$ then one of the following holds:

- $w^{-1} = -y_{i'} i' y_{j'} j' y_i i y_j j$ and $(wt)^{-1} = -y_{i'} j' y_{j'} i' y_i j y_j i$.
- $w^{-1} = -y_{i'} i' y_i y_{j'} j' i y_j j$ and $(wt)^{-1} = -y_{i'} j' y_i y_{j'} i' j y_j i$.
- $w^{-1} = -y_{i'} i' y_i i y_{j'} j' y_j j$ and $(wt)^{-1} = -y_{i'} j' y_i j y_{j'} i' y_j i$.

When $(a, b) \in \operatorname{Cyc}^1(z) = \{(j, j), (i, y_j), (y_i, y_i)\}$ and $(a', b') \in \{(j', j'), (i', y_{j'}), (y_{i'}, y_{i'})\}$, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -y_i - i - \text{ and } (wt)^{-1} = -y_{i'} - i' - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -y_{j'} - j - i' - \text{ and } (wt)^{-1} \neq -y_{j'} - y_i - i' - .$$

(Z3)
$$\Leftrightarrow$$

$$\begin{cases}
(wt)^{-1} = -i' - y_j - \text{and} \\
(wt)^{-1} = -j' - j - \text{and} \\
(wt)^{-1} = -j' - y_i - \text{and} \\
(wt)^{-1} = -j' - y_j - \text{and} \\
(wt)^{-1} = -y_{i'} - j - \text{and} \\
(wt)^{-1} = -y_{i'} - y_i - \text{and} \\
(wt)^{-1} = -y_{i'} - y_i - \text{and} \\
(wt)^{-1} = -y_{i'} - y_j - .
\end{cases}$$

- 4. Suppose $i' < y_{i'} < j' < i < y_i < y_{j'} < j < y_j$.
 - (a) If $w^{-1} = -y_{i'} y_i i' i y_{i'} y_i j' j$ then (T) fails.
 - (b) If $w^{-1} = -y_{i'} i' y_i i y_{i'} y_i j' j$ then (T) fails.
 - (c) If $w^{-1} = -y_{i'} y_i i' i y_{j'} j' y_j j$ then (T) fails.
 - (d) If $w^{-1} = -y_{i'} i' y_i i y_{j'} j' y_j j$ then (T) fails.
 - (e) If $w^{-1} = -y_{i'} i' y_i y_{j'} i j' y_j j$ then (Y2) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.
 - (f) If $w^{-1} = -y_{i'} i' y_{j'} y_i i j' y_j j$ then (Y2) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.
 - (g) If $w^{-1} = -y_{i'} i' y_{j'} y_i j' i y_j j$ then (Y2) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.
 - (h) If $w^{-1} = -y_{i'} y_i i' y_{j'} i y_j j' j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (i) If $w^{-1} = -y_{i'} y_i i' y_{j'} i j' y_i j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (j) If $w^{-1} = -y_{i'} y_i i' y_{j'} j' i y_j j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (k) If $w^{-1} = -y_{i'} i' y_{j'} y_i i y_j j' j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (j, y_j)$.
 - (l) If $w^{-1} = -y_{i'} i' y_i j' i y_j j' j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (j, y_j)$.

Thus if $i' < y_{i'} < j' < i < y_i < y_{j'} < j < y_j$ then one of the following holds:

- $w^{-1} = -y_{i'} i' y_i y_{i'} j' i y_j j$ and $(wt)^{-1} = -y_{i'} j' y_i y_{i'} i' j y_j i$.
- $w^{-1} = -y_{i'} i' y_{i'} j' y_i i y_j j$ and $(wt)^{-1} = -y_{i'} j' y_{j'} i' y_i j y_j i$.

When $(a, b) \in \operatorname{Cyc}^1(z) = \{(j, j), (i, y_j), (y_i, y_i)\}$ and $(a', b') \in \{(j', j'), (i', y_{j'}), (y_{i'}, y_{i'})\}$, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -y_i - i - \text{ and } (wt)^{-1} = -y_{i'} - i' - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -y_{i'} - y_i - i' - .$$

(Z3)
$$\Leftrightarrow$$
 $(wt)^{-1} = -i' - j - \text{ and }$

$$(wt)^{-1} = -i' - j - \text{ and }$$

$$(wt)^{-1} = -j' - j - \text{ and }$$

$$(wt)^{-1} = -j' - j - \text{ and }$$

$$(wt)^{-1} = -j' - y_i - \text{ and }$$

$$(wt)^{-1} = -j' - y_j - \text{ and }$$

$$(wt)^{-1} = -y_{i'} - j - \text{ and }$$

$$(wt)^{-1} = -y_{i'} - y_i - \text{ and }$$

$$(wt)^{-1} = -y_{i'} - y_i - \text{ and }$$

$$(wt)^{-1} = -y_{i'} - y_i - .$$

- 5. Suppose $i' < i < y_{i'} < j' < y_{j'} < y_i < j < y_j$.
 - (a) If $w^{-1} = -y_{i'} y_i i' i y_{j'} y_j j' j$ then (T) fails.
 - (b) If $w^{-1} = -y_{i'} i' y_i i y_{j'} y_j j' j$ then (T) fails.
 - (c) If $w^{-1} = -y_{i'} i' y_{j'} y_i i y_j j' j$ then (T) fails.
 - (d) If $w^{-1} = -y_{i'} y_i i' y_{j'} i y_j j' j$ then (T) fails.
 - (e) If $w^{-1} = -y_{i'} i' y_i y_{j'} i y_j j' j$ then (T) fails.
 - (f) If $w^{-1} = -y_{i'} y_i i' y_{j'} i j' y_i j$ then (T) fails.
 - (g) If $w^{-1} = -y_{i'} y_i i' i y_{i'} j' y_i j$ then (T) fails.
 - (h) If $w^{-1} = -y_{i'} i' y_i i y_{j'} j' y_i j$ then (T) fails.
 - (i) If $w^{-1} = -y_{i'} i' y_i y_{j'} i j' y_j j$ then (T) fails.
 - (i) If $w^{-1} = -y_{i'} i' y_{j'} y_i i j' y_j j$ then (T) fails.
 - (k) If $w^{-1} = -y_{i'} i' y_i y_{i'} j' i y_j j$ then (Y2) fails for $(a, b) = (i, y_i)$ and $(a', b') = (j', y_{j'})$.
 - (l) If $w^{-1} = -y_{i'} i' y_{j'} y_i j' i y_j j$ then (Y2) fails for $(a, b) = (i, y_i)$ and $(a', b') = (j', y_{j'})$.
 - (m) If $w^{-1} = -y_{i'} y_i i' y_{j'} j' i y_j j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

Thus if $i' < i < y_{i'} < j' < y_{j'} < y_i < j < y_j$ then one of the following holds:

•
$$w^{-1} = -y_{i'} - i' - y_{j'} - j' - y_i - i - y_j - j$$
 and $(wt)^{-1} = -y_{i'} - j' - y_{j'} - i' - y_i - j - y_j - i$.

When $(a, b) \in \operatorname{Cyc}^1(z) = \{(j, j), (i, y_j), (y_i, y_i)\}$ and $(a', b') \in \{(j', j'), (i', y_{j'}), (y_{i'}, y_{i'})\}$, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -y_i - i - \text{ and } (wt)^{-1} = -y_{i'} - i' - .$$

$$(\mathbf{Z2}) \Leftrightarrow (wt)^{-1} \neq \cdots y_j \cdots j' \cdots i - \text{and } (wt)^{-1} \neq \cdots y_j \cdots y_{i'} \cdots i \cdots.$$

(Z3)
$$\Leftrightarrow$$
 $\begin{cases} (wt)^{-1} = -i' - j - \text{ and } \\ (wt)^{-1} = -i' - y_i - \text{ and } \\ (wt)^{-1} = -i' - y_j - \text{ and } \\ (wt)^{-1} = -j' - j - \text{ and } \\ (wt)^{-1} = -j' - j - \text{ and } \\ (wt)^{-1} = -y_{i'} - j - \text{ and } \\ (wt)^{-1} = -y_{i'} - j - \text{ and } \\ (wt)^{-1} = -y_{i'} - y_i - . \end{cases}$

6. Suppose $i' < y_{i'} < i < j' < y_{j'} < y_i < j < y_j$.

(a) If
$$w^{-1} = -y_{i'} - y_i - i' - i - y_{j'} - y_j - j' - j$$
— then (T) fails.

(b) If
$$w^{-1} = -y_{i'} - i' - y_i - i - y_{j'} - y_j - j' - j$$
— then (T) fails.

(c) If
$$w^{-1} = -y_{i'} - i' - y_{j'} - y_i - i - y_j - j' - j$$
— then (T) fails.

(d) If
$$w^{-1} = -y_{i'} - y_i - i' - y_{j'} - i - y_j - j' - j$$
— then (T) fails.

(e) If
$$w^{-1} = -y_{i'} - i' - y_i - y_{i'} - i - y_i - j' - j$$
 then (T) fails.

(f) If
$$w^{-1} = -y_{i'} - y_i - i' - y_{j'} - i - j' - y_i - j$$
— then (T) fails.

(g) If
$$w^{-1} = -y_{i'} - y_i - i' - i - y_{j'} - j' - y_j - j$$
— then (T) fails.

(h) If
$$w^{-1} = -y_{i'} - i' - y_i - i - y_{i'} - j' - y_i - j$$
— then (T) fails.

(i) If
$$w^{-1} = -y_{i'} - i' - y_i - y_{j'} - i - j' - y_i - j$$
— then (T) fails.

(j) If
$$w^{-1} = -y_{i'} - i' - y_{j'} - y_i - i - j' - y_j - j$$
— then (T) fails.

(k) If
$$w^{-1} = -y_{i'} - i' - y_i - y_{j'} - j' - i - y_j - j$$
 then (Y2) fails for $(a, b) = (i, y_i)$ and $(a', b') = (j', y_{j'})$.

(l) If
$$w^{-1} = -y_{i'} - i' - y_{j'} - y_i - j' - i - y_j - j$$
 then (Y2) fails for $(a, b) = (i, y_i)$ and $(a', b') = (j', y_{j'})$.

(m) If
$$w^{-1} = -y_{i'} - y_i - i' - y_{j'} - j' - i - y_j - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

Thus if $i' < y_{i'} < i < j' < y_{i'} < y_i < j < y_j$ then one of the following holds:

•
$$w^{-1} = -y_{i'} - i' - y_{j'} - j' - y_i - i - y_j - j$$
 and $(wt)^{-1} = -y_{i'} - j' - y_{j'} - i' - y_i - j - y_j - i$.

When $(a,b) \in \operatorname{Cyc}^1(z) = \{(j,j), (i,y_j), (y_i,y_i)\}$ and $(a',b') \in \{(j',j'), (i',y_{j'}), (y_{i'},y_{i'})\}$, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -y_i - i - \text{ and } (wt)^{-1} = -y_{i'} - i' - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -y_i - j' - i - .$$

(Z3)
$$\Leftrightarrow$$
 $(wt)^{-1} = -i' - j - \text{and}$
 $(wt)^{-1} = -i' - y_i - \text{and}$
 $(wt)^{-1} = -i' - y_j - \text{and}$
 $(wt)^{-1} = -i' - y_j - \text{and}$
 $(wt)^{-1} = -j' - j - \text{and}$
 $(wt)^{-1} = -j' - y_i - \text{and}$
 $(wt)^{-1} = -y_{i'} - j - \text{and}$
 $(wt)^{-1} = -y_{i'} - y_i - \text{and}$
 $(wt)^{-1} = -y_{i'} - y_i - \text{and}$
 $(wt)^{-1} = -y_{i'} - y_i - \text{and}$

7. It cannot happen that $i' < i < y_{i'} < y_i < j' < j < y_{j'} < y_i$ since:

```
(a) If w^{-1} = -y_{i'} - y_i - i' - i - y_{j'} - y_j - j' - j then (T) fails.
```

(b) If
$$w^{-1} = -y_{i'} - i' - y_i - i - y_{j'} - y_j - j' - j$$
— then (T) fails.

(c) If
$$w^{-1} = -y_{i'} - i' - y_{j'} - y_i - i - y_j - j' - j$$
 then (T) fails.

(d) If
$$w^{-1} = -y_{i'} - y_i - i' - y_{j'} - i - y_j - j' - j$$
— then (T) fails.

(e) If
$$w^{-1} = -y_{i'} - i' - y_i - y_{j'} - i - y_j - j' - j$$
— then (T) fails.

(f) If
$$w^{-1} = -y_{i'} - y_i - i' - y_{j'} - i - j' - y_j - j$$
— then (T) fails.

(g) If
$$w^{-1} = -y_{i'} - y_i - i' - i - y_{j'} - j' - y_j - j$$
— then (T) fails.

(h) If
$$w^{-1} = -y_{i'} - i' - y_i - i - y_{j'} - j' - y_j - j$$
— then (T) fails.

(i) If
$$w^{-1} = -y_{i'} - i' - y_i - y_{j'} - i - j' - y_j - j$$
— then (T) fails.

(j) If
$$w^{-1} = -y_{i'} - i' - y_{j'} - y_i - i - j' - y_j - j$$
— then (T) fails.

(k) If
$$w^{-1} = -y_{i'} - i' - y_i - y_{j'} - j' - i - y_j - j$$
— then (U) fails.

(l) If
$$w^{-1} = -y_{i'} - i' - y_{j'} - y_i - j' - i - y_j - j$$
— then (U) fails.

(m) If
$$w^{-1} = -y_{i'} - y_i - i' - y_{j'} - j' - i - y_j - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(n) If
$$w^{-1} = -y_{i'} - i' - y_{j'} - j' - y_i - i - y_j - j$$
 then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (j', y_{j'})$.

8. It cannot happen that $i' < y_{i'} < i < j' < y_i < j < y_{j'} < y_j$ since:

(a) If
$$w^{-1} = -y_{i'} - y_i - i' - i - y_{j'} - y_j - j' - j$$
— then (T) fails.

(b) If
$$w^{-1} = -y_{i'} - i' - y_i - i - y_{j'} - y_j - j' - j$$
 then (T) fails.

(c) If
$$w^{-1} = -y_{i'} - i' - y_{i'} - y_i - i - y_j - j' - j$$
— then (T) fails.

(d) If
$$w^{-1} = -y_{i'} - y_i - i' - y_{i'} - i - y_i - j' - j$$
— then (T) fails.

(e) If
$$w^{-1} = -y_{i'} - i' - y_i - y_{i'} - i - y_j - j' - j$$
 then (T) fails.

(f) If
$$w^{-1} = -y_{i'} - y_i - i' - y_{i'} - i - j' - y_i - j$$
 then (T) fails.

(g) If
$$w^{-1} = -y_{i'} - y_i - i' - i - y_{j'} - j' - y_j - j$$
— then (T) fails.

(h) If
$$w^{-1} = -y_{i'} - i' - y_i - i - y_{j'} - j' - y_j - j$$
— then (T) fails.

(i) If
$$w^{-1} = -y_{i'} - i' - y_i - y_{j'} - i - j' - y_i - j$$
— then (T) fails.

(j) If
$$w^{-1} = -y_{i'} - i' - y_{j'} - y_i - i - j' - y_j - j$$
— then (T) fails.

(k) If
$$w^{-1} = -y_{i'} - y_i - i' - y_{j'} - j' - i - y_j - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(1) If
$$w^{-1} = -y_{i'} - i' - y_i - j' - i - y_j - j$$
 then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (j', y_{i'})$.

(m) If
$$w^{-1} = -y_{i'} - i' - y_{i'} - j' - y_i - i - y_j - j$$
 then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (j', y_{i'})$.

(n) If
$$w^{-1} = -y_{i'} - i' - y_{j'} - y_i - j' - i - y_j - j$$
 then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (j', y_{j'})$.

9. It cannot happen that $i' < i < y_{i'} < y_i < j' < y_{j'} < j < y_j$ since:

(a) If
$$w^{-1} = -y_{i'} - y_i - i' - i - y_{i'} - y_i - j' - j$$
 then (T) fails.

(b) If
$$w^{-1} = -y_{i'} - i' - y_i - i - y_{j'} - y_j - j' - j$$
— then (T) fails.

(c) If
$$w^{-1} = -y_{i'} - i' - y_{j'} - y_i - i - y_j - j' - j$$
 then (T) fails.

(d) If
$$w^{-1} = -y_{i'} - y_i - i' - y_{j'} - i - y_j - j' - j$$
 then (T) fails.

(e) If
$$w^{-1} = -y_{i'} - i' - y_i - y_{i'} - i - y_i - j' - j$$
 then (T) fails.

(f) If
$$w^{-1} = -y_{i'} - y_i - i' - y_{j'} - i - j' - y_j - j$$
 then (T) fails.

(g) If
$$w^{-1} = -y_{i'} - y_i - i' - i - y_{j'} - j' - y_j - j$$
— then (T) fails.

(h) If
$$w^{-1} = -y_{i'} - i' - y_i - i - y_{j'} - j' - y_j - j$$
— then (T) fails.

(i) If
$$w^{-1} = -y_{i'} - i' - y_i - y_{j'} - i - j' - y_j - j$$
— then (T) fails.
(j) If $w^{-1} = -y_{i'} - i' - y_{i'} - y_i - i - j' - y_i - j$ — then (T) fails.

(k) If
$$w^{-1} = -y_{i'} - i' - y_i - y_{i'} - j' - i - y_i - j$$
— then (U) fails.

(l) If
$$w^{-1} = -y_{i'} - i' - y_{j'} - y_i - j' - i - y_j - j$$
— then (U) fails.

(m) If
$$w^{-1} = -y_{i'} - y_i - i' - y_{j'} - j' - i - y_j - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

```
(n) If w^{-1} = -y_{i'} - i' - y_{j'} - j' - y_i - i - y_j - j then (Y3) fails for (a, b) = (i, y_i) and (a', b') = (j', y_{j'}).
```

10. It cannot happen that $i' < y_{i'} < i < j' < y_i < y_{j'} < j < y_j$ since:

```
(a) If w^{-1} = -y_{i'} - y_i - i' - i - y_{j'} - y_j - j' - j— then (T) fails.
```

(b) If
$$w^{-1} = -y_{i'} - i' - y_i - i - y_{j'} - y_j - j' - j$$
— then (T) fails.

(c) If
$$w^{-1} = -y_{i'} - i' - y_{j'} - y_i - i - y_j - j' - j$$
 then (T) fails.

(d) If
$$w^{-1} = -y_{i'} - y_i - i' - y_{j'} - i - y_j - j' - j$$
— then (T) fails.

(e) If
$$w^{-1} = -y_{i'} - i' - y_i - y_{j'} - i - y_j - j' - j$$
— then (T) fails.

(f) If
$$w^{-1} = -y_{i'} - y_i - i' - y_{j'} - i - j' - y_i - j$$
— then (T) fails.

(g) If
$$w^{-1} = -y_{i'} - y_i - i' - i - y_{j'} - j' - y_j - j$$
— then (T) fails.

(h) If
$$w^{-1} = -y_{i'} - i' - y_i - i - y_{j'} - j' - y_j - j$$
— then (T) fails.

(i) If
$$w^{-1} = -y_{i'} - i' - y_i - y_{j'} - i - j' - y_j - j$$
— then (T) fails.

(j) If
$$w^{-1} = -y_{i'} - i' - y_{j'} - y_i - i - j' - y_j - j$$
— then (T) fails.

$$\text{(k) If } w^{-1} = - y_{i'} - y_i - i' - y_{j'} - j' - i - y_j - j - \text{ then (Y3) fails for } (a,b) = (i',y_{i'}) \text{ and } (a',b') = (i,y_i).$$

(l) If
$$w^{-1} = -y_{i'} - i' - y_i - y_{j'} - j' - i - y_j - j$$
 then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (j', y_{j'})$.

$$\text{(m) If } w^{-1} = -y_{i'} - i' - y_{j'} - j' - y_i - i - y_j - j - \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (j',y_{j'}).$$

(n) If
$$w^{-1} = -y_{i'} - i' - y_{j'} - y_i - j' - i - y_j - j$$
 then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (j', y_{j'})$.

11. It cannot happen that $i' < i < y_{i'} < j' < y_i < j < y_{j'} < y_i$ since:

(a) If
$$w^{-1} = -y_{i'} - y_i - i' - i - y_{j'} - y_j - j' - j$$
 then (T) fails.

(b) If
$$w^{-1} = -y_{i'} - i' - y_i - i - y_{j'} - y_j - j' - j$$
— then (T) fails.

(c) If
$$w^{-1} = -y_{i'} - i' - y_{i'} - y_i - i - y_j - j' - j$$
 then (T) fails.

(d) If
$$w^{-1} = -y_{i'} - y_i - i' - y_{j'} - i - y_j - j' - j$$
— then (T) fails.

(e) If
$$w^{-1} = -y_{i'} - i' - y_i - y_{i'} - i - y_i - j' - j$$
 then (T) fails.

(f) If
$$w^{-1} = -y_{i'} - y_i - i' - y_{i'} - i - j' - y_i - j$$
 then (T) fails.

(g) If
$$w^{-1} = -u_{i'} - u_i - i' - i - u_{i'} - j' - u_i - j -$$
then (T) fails.

(h) If
$$w^{-1} = -y_{i'} - i' - y_i - i - y_{j'} - j' - y_j - j$$
— then (T) fails.

(i) If
$$w^{-1} = -y_{i'} - i' - y_i - y_{j'} - i - j' - y_i - j$$
— then (T) fails.

(j) If
$$w^{-1} = -y_{i'} - i' - y_{i'} - y_i - i - j' - y_i - j$$
 then (T) fails.

(k) If
$$w^{-1} = -y_{i'} - y_i - i' - y_{i'} - j' - i - y_i - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(l) If
$$w^{-1} = -y_{i'} - i' - y_i - y_{j'} - j' - i - y_j - j$$
 then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (j', y_{j'})$.

$$\text{(m) If } w^{-1} = -y_{i'} - i' - y_{j'} - j' - y_i - i - y_j - j - \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (j',y_{j'}).$$

(n) If
$$w^{-1} = -y_{i'} - i' - y_{j'} - y_i - j' - i - y_j - j$$
 then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (j', y_{j'})$.

12. It cannot happen that $i' < y_{i'} < i < y_i < j' < j < y_{i'} < y_i$ since:

(a) If
$$w^{-1} = -y_{i'} - y_i - i' - i - y_{j'} - y_j - j' - j$$
— then (T) fails.

(b) If
$$w^{-1} = -y_{i'} - i' - y_i - i - y_{j'} - y_j - j' - j$$
— then (T) fails.

(c) If
$$w^{-1} = -y_{i'} - i' - y_{j'} - y_i - i - y_j - j' - j$$
— then (T) fails.

(d) If
$$w^{-1} = -y_{i'} - y_i - i' - y_{j'} - i - y_j - j' - j$$
— then (T) fails.

(e) If
$$w^{-1} = -y_{i'} - i' - y_i - y_{j'} - i - y_j - j' - j$$
— then (T) fails.

(f) If
$$w^{-1} = -y_{i'} - y_i - i' - y_{i'} - i - j' - y_i - j$$
 then (T) fails.

(g) If
$$w^{-1} = -y_{i'} - y_i - i' - i - y_{j'} - j' - y_i - j$$
 then (T) fails.

(h) If
$$w^{-1} = -y_{i'} - i' - y_i - i - y_{j'} - j' - y_j - j$$
— then (T) fails.

(i) If
$$w^{-1} = -y_{i'} - i' - y_i - y_{j'} - i - j' - y_i - j$$
— then (T) fails.

(j) If
$$w^{-1} = -y_{i'} - i' - y_{j'} - y_i - i - j' - y_j - j$$
— then (T) fails.

- (k) If $w^{-1} = -y_{i'} i' y_i y_{i'} j' i y_i j$ then (U) fails.
- (l) If $w^{-1} = -y_{i'} i' y_{j'} y_i j' i y_j j$ then (U) fails.
- (m) If $w^{-1} = -y_{i'} y_i i' y_{i'} j' i y_j j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
- (n) If $w^{-1} = -y_{i'} i' y_{j'} j' y_i i y_j j$ then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (j', y_{j'})$.
- 13. It cannot happen that $i' < y_{i'} < i < y_i < j' < y_{j'} < j < y_i$ since:
 - (a) If $w^{-1} = -y_{i'} y_i i' i y_{j'} y_j j' j$ then (T) fails.
 - (b) If $w^{-1} = -y_{i'} i' y_i i y_{j'} y_j j' j$ then (T) fails.
 - (c) If $w^{-1} = -y_{i'} i' y_{j'} y_i i y_j j' j$ then (T) fails.
 - (d) If $w^{-1} = -y_{i'} y_i i' y_{j'} i y_j j' j$ then (T) fails.
 - (e) If $w^{-1} = -y_{i'} i' y_i y_{j'} i y_j j' j$ then (T) fails.
 - (f) If $w^{-1} = -y_{i'} y_i i' y_{j'} i j' y_i j$ then (T) fails.
 - (g) If $w^{-1} = -y_{i'} y_i i' i y_{i'} j' y_i j$ then (T) fails.
 - (h) If $w^{-1} = -y_{i'} i' y_i i y_{j'} j' y_i j$ then (T) fails.
 - (i) If $w^{-1} = -y_{i'} i' y_i y_{j'} i j' y_i j$ then (T) fails.
 - (j) If $w^{-1} = -y_{i'} i' y_{i'} y_i i j' y_i j$ then (T) fails.
 - (k) If $w^{-1} = -y_{i'} i' y_i y_{i'} j' i y_i j$ then (U) fails.
 - (1) If $w^{-1} = -y_{i'} i' y_{i'} y_i j' i y_j j$ then (U) fails.
 - (m) If $w^{-1} = -y_{i'} y_i i' y_{j'} j' i y_j j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (n) If $w^{-1} = -y_{i'} i' y_{j'} j' y_i i y_j j$ then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (j', y_{j'})$.
- 14. It cannot happen that $i' < i < y_{i'} < j' < y_i < y_{j'} < j < y_j$ since:
 - (a) If $w^{-1} = -y_{i'} y_i i' i y_{i'} y_i j' j$ then (T) fails.
 - (b) If $w^{-1} = -y_{i'} i' y_i i y_{j'} y_j j' j$ then (T) fails.
 - (c) If $w^{-1} = -y_{i'} i' y_{j'} y_i i y_j j' j$ then (T) fails.
 - (d) If $w^{-1} = -y_{i'} y_i i' y_{j'} i y_j j' j$ then (T) fails.
 - (e) If $w^{-1} = -y_{i'} i' y_i y_{j'} i y_j j' j$ then (T) fails.
 - (f) If $w^{-1} = -y_{i'} y_i i' y_{i'} i j' y_i j$ then (T) fails.
 - (g) If $w^{-1} = -y_{i'} y_i i' i y_{j'} j' y_j j$ then (T) fails.
 - (h) If $w^{-1} = -y_{i'} i' y_i i y_{i'} j' y_j j$ then (T) fails.
 - (i) If $w^{-1} = -y_{i'} i' y_i y_{j'} i j' y_j j$ then (T) fails.
 - (j) If $w^{-1} = -y_{i'} i' y_{i'} y_i i j' y_j j$ then (T) fails.
 - (k) If $w^{-1} = -y_{i'} y_i i' y_{j'} j' i y_j j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (1) If $w^{-1} = -y_{i'} i' y_i j' i y_j j$ then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (j', y_{j'})$.
 - (m) If $w^{-1} = -y_{i'} i' y_{j'} j' y_i i y_j j$ then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (j', y_{j'})$.
 - (n) If $w^{-1} = -y_{i'} i' y_{j'} y_i j' i y_j j$ then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (j', y_{j'})$.

We conclude that properties (Z1)-(Z3) hold for all $(a,b), (a',b') \in \text{Cyc}(z)$ when $i < y_i < j < y_j$.

8 Case: $i < y_i < y_i < j$

Suppose y is such that $i < y_i < j$. Then $z = \tau_{ij}^n(y)$ has $Cyc^1(z) = \{(y_j, y_j), (i, j), (y_i, y_i)\}.$

8.1 Subcase (i)

We must have $w^{-1} = -y_i - i - j - y_j$ — since no other ordering is possible:

- 1. If $w^{-1} = -i y_i y_j j$ then (T) fails.
- 2. If $w^{-1} = -i y_i j y_j$ then (T) fails.
- 3. If $w^{-1} = -i y_j y_i j$ then (T) fails.
- 4. If $w^{-1} = -i y_i j y_i$ then (T) fails.
- 5. If $w^{-1} = -y_i i y_j j$ then (T) fails.
- 6. If $w^{-1} = -y_i y_j j i$ then (T) fails.
- 7. If $w^{-1} = -y_i j i y_j$ then (T) fails.
- 8. If $w^{-1} = -y_i j y_j i$ then (T) fails.
- 9. If $w^{-1} = -y_i i y_i j$ then (T) fails.
- 10. If $w^{-1} = -y_i y_i j i$ then (T) fails.
- 11. If $w^{-1} = -y_i j i y_i$ then (T) fails.
- 12. If $w^{-1} = -y_i j y_i i$ then (T) fails.
- 13. If $w^{-1} = -i i y_i y_i$ then (T) fails.
- 14. If $w^{-1} = -j i y_i y_i$ then (T) fails.
- 15. If $w^{-1} = -j y_i i y_j$ then (T) fails.
- 16. If $w^{-1} = -i y_i y_i i$ then (T) fails.
- 17. If $w^{-1} = -j y_i i y_i$ then (T) fails.
- 18. If $w^{-1} = -j y_i y_i i$ then (T) fails.
- 19. If $w^{-1} = -i j y_i y_j$ then (Y1) fails for $(a,b) = (i,y_i)$.
- 20. If $w^{-1} = -i j y_j y_i$ then (Y1) fails for $(a, b) = (i, y_i)$.
- 21. If $w^{-1} = -y_i y_j i j$ then (Y1) fails for $(a, b) = (y_j, j)$.
- 22. If $w^{-1} = -y_j i j y_i$ then (Y1) fails for $(a, b) = (y_j, j)$.
- 23. If $w^{-1} = -y_j y_i i j$ then (Y1) fails for $(a, b) = (y_j, j)$.

Hence if $i < y_i < y_j < j$ then

$$(wt)^{-1} = -y_i - j - i - y_j - .$$

When $(a, b), (a', b') \in \text{Cyc}^1(z) = \{(y_j, y_j), (i, j), (y_i, y_i)\}$, properties (Z1)-(Z3) are equivalent to the following conditions which all hold in this case:

- $(Z1) \Leftrightarrow (wt)^{-1} = -i i i$
- $(Z2) \Leftrightarrow (wt)^{-1} \neq -j-y_i-i$ and $(wt)^{-1} \neq -j-y_i-i$.
- $(Z3) \Leftrightarrow (wt)^{-1} = -y_i y_j .$

Thus properties (Z1)-(Z3) hold whenever (a, b), (a', b') are as in case (i) and $i < y_i < j$.

8.2 Subcase (ii)

Suppose R is an integer such that $(R,R) \in \operatorname{Cyc}^2(z) \subset \operatorname{Cyc}(y)$, so that $R = y_R = z_R \notin \{i,j,y_i,y_j\} + n\mathbb{Z}$.

- 1. Suppose $i < y_i < y_j < j < R$.
 - (a) If $w^{-1} = -R y_i i j y_j$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (R, R).
 - (b) If $w^{-1} = -y_i R i j y_j$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (R, R).
 - (c) If $w^{-1} = -y_i i j R y_j$ then (Y3) fails for $(a,b) = (y_j,j)$ and (a',b') = (R,R).
 - (d) If $w^{-1} = -y_i i R j y_j$ then (Y3) fails for $(a, b) = (y_j, j)$ and (a', b') = (R, R).

Thus if $i < y_i < y_i < j < R$ then one of the following holds:

•
$$w^{-1} = -y_i - i - j - y_i - R$$
 and $(wt)^{-1} = -y_i - j - i - y_i - R$.

When (a,b) = (R,R) and $(a',b') \in \operatorname{Cyc}^1(z) = \{(y_j,y_j),(i,j),(y_i,y_i)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

- $(Z1) \Leftrightarrow (wt)^{-1} = -j i .$
- $(Z2) \Leftrightarrow (no condition).$

(Z3)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -i - R - \text{ and } \\ (wt)^{-1} = -y_i - R - \text{ and } \\ (wt)^{-1} = -y_j - R - . \end{cases}$$

- 2. Suppose $i < y_i < y_j < R < j$.
 - (a) If $w^{-1} = -y_i i R j y_i$ then (T) fails.
 - (b) If $w^{-1} = -y_i i j R y_j$ then (Y2) fails for $(a, b) = (y_j, j)$ and (a', b') = (R, R).
 - (c) If $w^{-1} = -R y_i i j y_j$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (R, R).
 - (d) If $w^{-1} = -y_i R i j y_j$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (R, R).

Thus if $i < y_i < y_j < R < j$ then one of the following holds:

•
$$w^{-1} = -y_i - i - j - y_j - R$$
 and $(wt)^{-1} = -y_i - j - i - y_j - R$.

When (a,b) = (R,R) and $(a',b') \in \operatorname{Cyc}^1(z) = \{(y_j,y_j),(i,j),(y_i,y_i)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

- $(Z1) \Leftrightarrow (wt)^{-1} = -j i .$
- $(Z2) \Leftrightarrow (wt)^{-1} \neq -j R i .$
- $(Z3) \Leftrightarrow (wt)^{-1} = -y_i R \text{ and } (wt)^{-1} = -y_i R .$
- 3. Suppose $i < R < y_i < y_i < j$.
 - (a) If $w^{-1} = -y_i i R j y_j$ then (T) fails.
 - (b) If $w^{-1} = -y_i R i j y_j$ then (Y2) fails for $(a,b) = (i,y_i)$ and (a',b') = (R,R).
 - (c) If $w^{-1} = -y_i i j y_j R$ then (Y3) fails for (a, b) = (R, R) and $(a', b') = (y_j, j)$.
 - (d) If $w^{-1} = -y_i i j R y_j$ then (Y3) fails for (a, b) = (R, R) and $(a', b') = (y_j, j)$.

Thus if $i < R < y_i < y_j < j$ then one of the following holds:

•
$$w^{-1} = -R - y_i - i - j - y_j - \text{ and } (wt)^{-1} = -R - y_i - j - i - y_j - .$$

When (a,b) = (R,R) and $(a',b') \in \operatorname{Cyc}^1(z) = \{(y_j,y_j),(i,j),(y_i,y_i)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

- $(Z1) \Leftrightarrow (wt)^{-1} = -i i .$
- $(Z2) \Leftrightarrow (wt)^{-1} \neq -i R i .$
- $(Z3) \Leftrightarrow (wt)^{-1} = -R y_i \text{ and } (wt)^{-1} = -R y_i .$

- 4. Suppose $R < i < y_i < y_j < j$.
 - (a) If $w^{-1} = -y_i i j y_j R$ then (Y3) fails for (a, b) = (R, R) and $(a', b') = (i, y_i)$.
 - (b) If $w^{-1} = -y_i i j R y_j$ then (Y3) fails for (a, b) = (R, R) and $(a', b') = (i, y_i)$.
 - (c) If $w^{-1} = -y_i i R j y_j$ then (Y3) fails for (a,b) = (R,R) and $(a',b') = (i,y_i)$.
 - (d) If $w^{-1} = -y_i R i j y_j$ then (Y3) fails for (a,b) = (R,R) and $(a',b') = (i,y_i)$.

Thus if $R < i < y_i < y_j < j$ then one of the following holds:

•
$$w^{-1} = -R - y_i - i - j - y_j - \text{ and } (wt)^{-1} = -R - y_i - j - i - y_j - .$$

When (a,b) = (R,R) and $(a',b') \in \operatorname{Cyc}^1(z) = \{(y_j,y_j),(i,j),(y_i,y_i)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

- $(\mathbf{Z}1) \Leftrightarrow (wt)^{-1} = -j i .$
- $(Z2) \Leftrightarrow (\text{no condition}).$

(Z3)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -R - j - \text{ and } \\ (wt)^{-1} = -R - y_i - \text{ and } \\ (wt)^{-1} = -R - y_j - . \end{cases}$$

- 5. It cannot happen that $i < y_i < R < y_j < j$ since:
 - (a) If $w^{-1} = -y_i i R j y_j$ then (T) fails.
 - (b) If $w^{-1} = -y_i i j y_j R$ then (Y3) fails for (a,b) = (R,R) and $(a',b') = (y_j,j)$.
 - (c) If $w^{-1} = -y_i i j R y_j$ then (Y3) fails for (a, b) = (R, R) and $(a', b') = (y_j, j)$.
 - (d) If $w^{-1} = -R y_i i j y_j$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (R, R).
 - (e) If $w^{-1} = -y_i R i j y_j$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (R, R).

Next suppose P < Q are integers with $(P,Q) \in \text{Cyc}^2(z) \subset \text{Cyc}(y)$, so that $Q = y_P = z_P$ and $P,Q \notin \{i,j,y_i,y_j\} + n\mathbb{Z}$.

- 1. Suppose $P < i < y_i < Q < y_i < j$.
 - (a) If $w^{-1} = -y_i i Q P j y_i$ then (T) fails.
 - (b) If $w^{-1} = -y_i i Q j y_j P$ then (T) fails.
 - (c) If $w^{-1} = -y_i i Q j P y_i$ then (T) fails.
 - (d) If $w^{-1} = -Q y_i i P j y_j$ then (Y2) fails for (a, b) = (P, Q) and $(a', b') = (i, y_i)$.
 - (e) If $w^{-1} = -y_i Q i P j y_j$ then (Y2) fails for (a, b) = (P, Q) and $(a', b') = (i, y_i)$.
 - (f) If $w^{-1} = -Q y_i P i j y_j$ then (Y2) fails for (a, b) = (P, Q) and $(a', b') = (i, y_i)$.
 - (g) If $w^{-1} = -Q y_i i j y_j P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_j, j)$.
 - (h) If $w^{-1} = -y_i i j Q y_j P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_j, j)$.
 - (i) If $w^{-1} = -y_i i j Q P y_j$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_j, j)$.
 - (j) If $w^{-1} = -Q y_i i j P y_j$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_j, j)$.
 - (k) If $w^{-1} = -y_i i j y_i Q P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_j, j)$.
 - (1) If $w^{-1} = -y_i Q i j y_j P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_i, j)$.
 - (m) If $w^{-1} = -y_i Q i j P y_j$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_j, j)$.

Thus if $P < i < y_i < Q < y_j < j$ then one of the following holds:

- $w^{-1} = -Q P y_i i j y_j$ and $(wt)^{-1} = -Q P y_i j i y_j$.
- $w^{-1} = -y_i Q P i j y_i$ and $(wt)^{-1} = -y_i Q P j i y_i$.

When (a,b) = (P,Q) and $(a',b') \in \operatorname{Cyc}^1(z) = \{(y_j,y_j),(i,j),(y_i,y_i)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -j - i - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -Q - y_i - P - .$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -P - j - \text{and } (wt)^{-1} = -P - y_i - .$$

2. Suppose $P < i < Q < y_i < y_j < j$.

(a) If
$$w^{-1} = -y_i - i - Q - P - j - y_j$$
 — then (T) fails.

(b) If
$$w^{-1} = -y_i - i - Q - j - y_j - P$$
 then (T) fails.

(c) If
$$w^{-1} = -y_i - i - Q - j - P - y_j$$
 then (T) fails.

(d) If
$$w^{-1} = -Q - y_i - i - j - y_j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(e) If
$$w^{-1} = -y_i - i - j - Q - y_i - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(f) If
$$w^{-1} = -y_i - Q - P - i - j - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(g) If
$$w^{-1} = -y_i - i - j - Q - P - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(h) If
$$w^{-1} = -Q - y_i - i - j - P - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(i) If
$$w^{-1} = -Q - y_i - i - P - j - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(j) If
$$w^{-1} = -y_i - Q - i - P - j - y_j$$
 then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,y_i)$.

(k) If
$$w^{-1} = -y_i - i - j - y_j - Q - P$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,y_i)$.

(l) If
$$w^{-1} = -y_i - Q - i - j - y_j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(m) If
$$w^{-1} = -Q - y_i - P - i - j - y_i$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(n) If
$$w^{-1} = -y_i - Q - i - j - P - y_j$$
 — then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

Thus if $P < i < Q < y_i < y_j < j$ then one of the following holds:

•
$$w^{-1} = -Q - P - y_i - i - j - y_i - \text{ and } (wt)^{-1} = -Q - P - y_i - j - i - y_i - .$$

When (a,b) = (P,Q) and $(a',b') \in \operatorname{Cyc}^1(z) = \{(y_j,y_j),(i,j),(y_i,y_i)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -j - i - i$$

 $(Z2) \Leftrightarrow (\text{no condition}).$

(Z3)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -P - j - \text{ and } \\ (wt)^{-1} = -P - y_i - \text{ and } \\ (wt)^{-1} = -P - y_j - . \end{cases}$$

3. Suppose $i < y_i < y_j < P < j < Q$.

(a) If
$$w^{-1} = -y_i - i - Q - P - j - y_j$$
 then (T) fails.

(b) If
$$w^{-1} = -Q - y_i - i - P - j - y_i$$
 then (T) fails.

(c) If
$$w^{-1} = -y_i - Q - i - P - j - y_j$$
 then (T) fails.

(d) If
$$w^{-1} = -Q - y_i - i - j - y_j - P$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(e) If
$$w^{-1} = -y_i - Q - P - i - j - y_j$$
 then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(f) If
$$w^{-1} = -Q - y_i - i - j - P - y_j$$
 then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(g) If
$$w^{-1} = -Q - P - y_i - i - j - y_j$$
 then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(h) If
$$w^{-1} = -y_i - Q - i - j - y_j - P$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(i) If
$$w^{-1} = -Q - y_i - P - i - j - y_j$$
 then (Y3) fails for $(a,b) = (i,y_i)$ and $(a',b') = (P,Q)$.

(j) If
$$w^{-1} = -y_i - Q - i - j - P - y_j$$
 then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

$$\text{(k) If } w^{-1} = -y_i - i - Q - j - y_j - P - \text{ then (Y3) fails for } (a,b) = (y_j,j) \text{ and } (a',b') = (P,Q).$$

(l) If
$$w^{-1} = -y_i - i - j - Q - y_j - P$$
— then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

$$\text{(m) If } w^{-1}=-y_i-i-j-Q-P-y_j-\text{ then (Y3) fails for } (a,b)=(y_j,j) \text{ and } (a',b')=(P,Q).$$

(n) If
$$w^{-1} = -y_i - i - Q - j - P - y_j$$
 then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

Thus if $i < y_i < y_j < P < j < Q$ then one of the following holds:

•
$$w^{-1} = -y_i - i - j - y_i - Q - P - \text{ and } (wt)^{-1} = -y_i - j - i - y_i - Q - P - .$$

When (a,b) = (P,Q) and $(a',b') \in \operatorname{Cyc}^1(z) = \{(y_j,y_j),(i,j),(y_i,y_i)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(\mathbf{Z}\mathbf{1}) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -j - i -.$$

 $(Z2) \Leftrightarrow (no condition).$

(Z3)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -i - Q - \text{ and } \\ (wt)^{-1} = -y_i - Q - \text{ and } \\ (wt)^{-1} = -y_j - Q - . \end{cases}$$

4. Suppose $P < i < y_i < y_j < Q < j$.

(a) If
$$w^{-1} = -y_i - i - Q - P - j - y_j$$
 then (T) fails.

(b) If
$$w^{-1} = -y_i - i - Q - j - y_j - P$$
— then (T) fails.

(c) If
$$w^{-1} = -y_i - i - Q - j - P - y_i$$
 then (T) fails.

$$\text{(d) If } w^{-1} = -Q - y_i - i - P - j - y_j - \text{ then (Y2) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (i,y_i).$$

(e) If
$$w^{-1} = -y_i - Q - i - P - j - y_j$$
 then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(f) If
$$w^{-1} = -Q - y_i - P - i - j - y_j$$
 then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(g) If
$$w^{-1} = -Q - y_i - i - j - y_j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

$$\text{(h) If } w^{-1}=-y_i-i-j-Q-y_j-P- \text{ then (Y3) fails for } (a,b)=(P,Q) \text{ and } (a',b')=(y_j,j).$$

(i) If
$$w^{-1} = -y_i - i - j - Q - P - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

(j) If
$$w^{-1} = -Q - y_i - i - j - P - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

(k) If
$$w^{-1} = -y_i - i - j - y_j - Q - P$$
 then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_j,j)$.

(1) If
$$w^{-1} = -y_i - Q - i - j - y_j - P$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

(m) If
$$w^{-1} = -y_i - Q - i - j - P - y_j$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_j,j)$.

Thus if $P < i < y_i < y_j < Q < j$ then one of the following holds:

$$\bullet \ w^{-1} = -Q - P - y_i - i - j - y_j - \text{ and } (wt)^{-1} = -Q - P - y_i - j - i - y_j - y_j - i - y_j -$$

•
$$w^{-1} = -y_i - Q - P - i - j - y_i$$
 and $(wt)^{-1} = -y_i - Q - P - j - i - y_i$.

When (a,b) = (P,Q) and $(a',b') \in \operatorname{Cyc}^1(z) = \{(y_j,y_j),(i,j),(y_i,y_i)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(\mathbf{Z}\mathbf{1}) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -j - i -.$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -Q - y_i - P - \text{ and } (wt)^{-1} \neq -Q - y_j - P - .$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -P - j - .$$

5. Suppose $P < Q < i < y_i < y_j < j$.

(a) If
$$w^{-1} = -Q - y_i - i - j - y_j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(b) If
$$w^{-1} = -y_i - i - Q - P - j - y_j$$
 then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,y_i)$.

(c) If
$$w^{-1} = -y_i - i - Q - j - y_j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(d) If
$$w^{-1} = -y_i - i - j - Q - y_j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(e) If
$$w^{-1} = -y_i - Q - P - i - j - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(f) If
$$w^{-1} = -y_i - i - j - Q - P - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(g) If
$$w^{-1} = -Q - y_i - i - j - P - y_j$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,y_i)$.

$$\text{(h) If } w^{-1} = -Q - y_i - i - P - j - y_j - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (i,y_i).$$

(i) If
$$w^{-1} = -y_i - Q - i - P - j - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(j) If
$$w^{-1} = -y_i - i - j - y_j - Q - P$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

$$\text{(k) If } w^{-1} = - y_i - Q - i - j - y_j - P - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (i,y_i).$$

(l) If
$$w^{-1} = -Q - y_i - P - i - j - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(m) If
$$w^{-1} = -y_i - Q - i - j - P - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

$$\text{(n) If } w^{-1} = -y_i - i - Q - j - P - y_j - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (i,y_i).$$

Thus if $P < Q < i < y_i < y_i < j$ then one of the following holds:

$$\bullet \ w^{-1} = -Q - P - y_i - i - j - y_j - \text{ and } (wt)^{-1} = -Q - P - y_i - j - i - y_j - i - y_j - i - y_j - i - y_j - y_$$

When (a,b) = (P,Q) and $(a',b') \in \operatorname{Cyc}^1(z) = \{(y_j,y_j),(i,j),(y_i,y_i)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -Q - P - \text{and } (wt)^{-1} = -j - i - .$$

 $(Z2) \Leftrightarrow (no condition).$

$$(Z3) \Leftrightarrow \begin{cases} (wt)^{-1} = -P - j - \text{ and} \\ (wt)^{-1} = -P - y_i - \text{ and} \\ (wt)^{-1} = -P - y_j - . \end{cases}$$

6. Suppose $i < y_i < y_j < P < Q < j$.

(a) If
$$w^{-1} = -y_i - i - Q - P - j - y_j$$
 — then (T) fails.

(b) If
$$w^{-1} = -y_i - i - Q - j - y_j - P$$
— then (T) fails.

(c) If
$$w^{-1} = -Q - y_i - i - P - j - y_j$$
 then (T) fails.

(d) If
$$w^{-1} = -y_i - Q - i - P - j - y_j$$
 then (T) fails.

(e) If
$$w^{-1} = -y_i - i - Q - j - P - y_j$$
 then (T) fails.

$$\text{(f) If } w^{-1}=-y_i-i-j-Q-y_j-P- \text{ then (Y2) fails for } (a,b)=(y_j,j) \text{ and } (a',b')=(P,Q).$$

(g) If
$$w^{-1} = -y_i - i - j - Q - P - y_j$$
 then (Y2) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

(h) If
$$w^{-1} = -Q - y_i - i - j - y_j - P$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(i) If
$$w^{-1} = -y_i - Q - P - i - j - y_j$$
 then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(j) If
$$w^{-1} = -Q - y_i - i - j - P - y_j$$
 then (Y3) fails for $(a,b) = (i,y_i)$ and $(a',b') = (P,Q)$.

$$\text{(k) If } w^{-1} = - Q - P - y_i - i - j - y_j - \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$$

(l) If
$$w^{-1} = -y_i - Q - i - j - y_j - P$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

$$\text{(m) If } w^{-1} = \cdots Q \cdots y_i \cdots P \cdots i \cdots j \cdots y_j \cdots \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$$

(n) If
$$w^{-1} = -y_i - Q - i - j - P - y_j$$
 — then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

Thus if $i < y_i < y_j < P < Q < j$ then one of the following holds:

$$\bullet \ w^{-1} = -y_i - i - j - y_j - Q - P - \ \text{and} \ (wt)^{-1} = -y_i - j - i - y_j - Q - P -.$$

When (a,b) = (P,Q) and $(a',b') \in \operatorname{Cyc}^1(z) = \{(y_j,y_j),(i,j),(y_i,y_i)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -j - i - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -i - P - i - \text{ and } (wt)^{-1} \neq -i - Q - i - .$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -y_i - Q - \text{ and } (wt)^{-1} = -y_i - Q - .$$

7. Suppose $i < y_i < P < y_j < j < Q$.

(a) If
$$w^{-1} = -y_i - i - Q - P - j - y_i$$
 then (T) fails.

(b) If
$$w^{-1} = -Q - y_i - i - P - j - y_j$$
 then (T) fails.

(c) If
$$w^{-1} = -y_i - Q - i - P - j - y_j$$
 then (T) fails.

(d) If
$$w^{-1} = -y_i - i - Q - j - y_j - P$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

(e) If
$$w^{-1} = -y_i - i - j - Q - y_j - P$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

$$\text{(f) If } w^{-1} = - y_i - i - Q - j - P - y_j - \text{ then (Y2) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_j,j).$$

- (g) If $w^{-1} = -Q y_i i j y_j P$ then (Y3) fails for $(a,b) = (i,y_i)$ and (a',b') = (P,Q).
- $\text{(h) If } w^{-1}=-y_i-Q-P-i-j-y_j-\text{ then (Y3) fails for } (a,b)=(i,y_i) \text{ and } (a',b')=(P,Q).$
- (i) If $w^{-1} = -Q y_i i j P y_j$ then (Y3) fails for $(a,b) = (i,y_i)$ and (a',b') = (P,Q).
- $(j) \ \ \text{If} \ w^{-1} = Q P y_i i j y_j \ \ \text{then (Y3) fails for } (a,b) = (i,y_i) \ \ \text{and} \ \ (a',b') = (P,Q).$
- $\text{(k) If } w^{-1} = -y_i Q i j y_j P \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$
- (l) If $w^{-1} = -Q y_i P i j y_j$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
- $\text{(m) If } w^{-1}=-y_i-Q-i-j-P-y_j-\text{ then (Y3) fails for } (a,b)=(i,y_i) \text{ and } (a',b')=(P,Q).$

Thus if $i < y_i < P < y_j < j < Q$ then one of the following holds:

•
$$w^{-1} = -y_i - i - j - y_j - Q - P - \text{ and } (wt)^{-1} = -y_i - j - i - y_j - Q - P - .$$

When (a,b) = (P,Q) and $(a',b') \in \operatorname{Cyc}^1(z) = \{(y_j,y_j),(i,j),(y_i,y_i)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -i - i - i$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -Q-y_i-P-.$$

(Z3)
$$\Leftrightarrow$$
 $(wt)^{-1} = -i - Q - \text{and } (wt)^{-1} = -y_i - Q - .$

- 8. Suppose $i < P < y_i < y_i < j < Q$.
 - (a) If $w^{-1} = -y_i i Q P j y_j$ then (T) fails.
 - (b) If $w^{-1} = -Q y_i i P j y_i$ then (T) fails.
 - (c) If $w^{-1} = -y_i Q i P j y_j$ then (T) fails.
 - (d) If $w^{-1} = -y_i i Q j y_j P$ then (Y2) fails for (a, b) = (P, Q) and $(a', b') = (y_j, j)$.
 - (e) If $w^{-1} = -y_i i j Q y_j P$ then (Y2) fails for (a,b) = (P,Q) and $(a',b') = (y_j,j)$.
 - (f) If $w^{-1} = -y_i i Q j P y_i$ then (Y2) fails for (a, b) = (P, Q) and $(a', b') = (y_j, j)$.
 - (g) If $w^{-1} = -Q y_i i j y_j P$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
 - (h) If $w^{-1} = -y_i Q P i j y_j$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
 - $\text{(i) If } w^{-1} = Q y_i i j P y_j \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$
 - (i) If $w^{-1} = -Q P y_i i j y_j$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
 - $\text{(k) If } w^{-1} = -y_i Q i j y_i P \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$
 - (l) If $w^{-1} = -Q y_i P i j y_j$ then (Y3) fails for $(a,b) = (i,y_i)$ and (a',b') = (P,Q).
 - (m) If $w^{-1} = -y_i Q i j P y_j$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).

Thus if $i < P < y_i < y_i < j < Q$ then one of the following holds:

- $w^{-1} = -y_i i j y_i Q P \text{ and } (wt)^{-1} = -y_i j i y_i Q P .$
- $w^{-1} = -y_i i j Q P y_j$ and $(wt)^{-1} = -y_i j i Q P y_j$.

When (a,b) = (P,Q) and $(a',b') \in \operatorname{Cyc}^1(z) = \{(y_j,y_j),(i,j),(y_i,y_i)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -i - i - i$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -Q - y_i - P - \text{ and } (wt)^{-1} \neq -Q - y_i - P - .$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -i - Q - .$$

- 9. Suppose $i < y_i < y_i < j < P < Q$.
 - (a) If $w^{-1} = -Q y_i i j y_j P$ then (Y3) fails for $(a,b) = (i,y_i)$ and (a',b') = (P,Q).
 - (b) If $w^{-1} = -y_i Q P i j y_i$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
 - $\text{(c) If } w^{-1} = Q y_i i j P y_j \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$

(d) If
$$w^{-1} = -Q - y_i - i - P - j - y_j$$
 then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(e) If
$$w^{-1} = -y_i - Q - i - P - j - y_j$$
 — then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(f) If
$$w^{-1} = -Q - P - y_i - i - j - y_j$$
 then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(g) If
$$w^{-1} = -y_i - Q - i - j - y_j - P$$
— then (Y3) fails for $(a,b) = (i,y_i)$ and $(a',b') = (P,Q)$.

(h) If
$$w^{-1} = -Q - y_i - P - i - j - y_j$$
 — then (Y3) fails for $(a,b) = (i,y_i)$ and $(a',b') = (P,Q)$.

(i) If
$$w^{-1} = -y_i - Q - i - j - P - y_j$$
 — then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(j) If
$$w^{-1} = -y_i - i - Q - P - j - y_j$$
 then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

$$\text{(k) If } w^{-1} = - y_i - i - Q - j - y_j - P - \text{ then (Y3) fails for } (a,b) = (y_j,j) \text{ and } (a',b') = (P,Q).$$

(l) If
$$w^{-1} = -y_i - i - j - Q - y_j - P$$
— then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

$$\text{(m) If } w^{-1}=-y_i-i-j-Q-P-y_j-\text{ then (Y3) fails for } (a,b)=(y_j,j) \text{ and } (a',b')=(P,Q).$$

(n) If
$$w^{-1} = -y_i - i - Q - j - P - y_j$$
 then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

Thus if $i < y_i < j < P < Q$ then one of the following holds:

•
$$w^{-1} = -y_i - i - j - y_j - Q - P$$
 and $(wt)^{-1} = -y_i - j - i - y_j - Q - P$.

When (a,b) = (P,Q) and $(a',b') \in \operatorname{Cyc}^1(z) = \{(y_j,y_j),(i,j),(y_i,y_i)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -j - i - .$$

 $(Z2) \Leftrightarrow (\text{no condition}).$

(Z3)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -i - Q - \text{ and } \\ (wt)^{-1} = -y_i - Q - \text{ and } \\ (wt)^{-1} = -y_j - Q - . \end{cases}$$

10. Suppose $P < i < y_i < y_j < j < Q$.

(a) If
$$w^{-1} = -Q - y_i - i - j - y_j - P$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(b) If
$$w^{-1} = -Q - y_i - i - j - P - y_j$$
 then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(c) If
$$w^{-1} = -Q - y_i - i - P - j - y_j$$
 — then (Y2) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,y_i)$.

(d) If
$$w^{-1} = -y_i - Q - i - P - j - y_j$$
 then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(e) If
$$w^{-1} = -y_i - Q - i - j - y_j - P$$
 then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(f) If
$$w^{-1} = -Q - y_i - P - i - j - y_j$$
 then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(g) If
$$w^{-1} = -y_i - Q - i - j - P - y_j$$
 — then (Y2) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,y_i)$.

(h) If
$$w^{-1} = -y_i - i - Q - j - y_j - P$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

(i) If
$$w^{-1} = -y_i - i - j - Q - y_j - P$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

(j) If
$$w^{-1} = -y_i - i - Q - j - P - y_j$$
 — then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

Thus if $P < i < y_i < j < Q$ then one of the following holds:

•
$$w^{-1} = -y_i - i - j - y_i - Q - P - \text{ and } (wt)^{-1} = -y_i - j - i - y_i - Q - P - .$$

•
$$w^{-1} = -y_i - Q - P - i - j - y_i$$
 and $(wt)^{-1} = -y_i - Q - P - j - i - y_i$.

•
$$w^{-1} = -y_i - i - j - Q - P - y_j$$
 and $(wt)^{-1} = -y_i - j - i - Q - P - y_j$.

•
$$w^{-1} = -Q - P - y_i - i - j - y_j$$
 and $(wt)^{-1} = -Q - P - y_i - j - i - y_j$.

•
$$w^{-1} = -y_i - i - Q - P - j - y_j$$
 and $(wt)^{-1} = -y_i - j - Q - P - i - y_j$.

When (a,b) = (P,Q) and $(a',b') \in \operatorname{Cyc}^1(z) = \{(y_j,y_j),(i,j),(y_i,y_i)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -i - i - i$$

$$(\mathrm{Z2}) \Leftrightarrow \begin{cases} (wt)^{-1} \neq -Q - i - P - \text{ and } (wt)^{-1} \neq -Q - j - P - \text{ and } \\ (wt)^{-1} \neq -Q - y_i - P - \text{ and } \\ (wt)^{-1} \neq -Q - y_j - P - . \end{cases}$$

 $(Z3) \Leftrightarrow (no condition).$

11. Suppose $i < P < Q < y_i < y_i < j$.

(a) If
$$w^{-1} = -y_i - i - Q - P - j - y_j$$
 then (T) fails.

(b) If
$$w^{-1} = -y_i - i - Q - j - y_j - P$$
 then (T) fails.

(c) If
$$w^{-1} = -Q - y_i - i - P - j - y_j$$
 then (T) fails.

(d) If
$$w^{-1} = -y_i - Q - i - P - j - y_j$$
 then (T) fails.

(e) If
$$w^{-1} = -y_i - i - Q - j - P - y_j$$
 then (T) fails.

$$\text{(f) If } w^{-1} = - y_i - Q - P - i - j - y_j - \text{ then (Y2) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$$

(g) If
$$w^{-1} = -Q - y_i - P - i - j - y_j$$
 then (Y2) fails for $(a,b) = (i,y_i)$ and $(a',b') = (P,Q)$.

$$\text{(h) If } w^{-1} = -Q - y_i - i - j - y_j - P - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_j,j).$$

(i) If
$$w^{-1} = -y_i - i - j - Q - y_j - P$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_j,j)$.

(j) If
$$w^{-1} = -y_i - i - j - Q - P - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

$$\text{(k) If } w^{-1} = -Q - y_i - i - j - P - y_j - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_j,j).$$

$$\text{(l) If } w^{-1} = - y_i - i - j - y_j - Q - P - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_j,j).$$

(m) If
$$w^{-1} = -y_i - Q - i - j - y_j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

(n) If
$$w^{-1} = -y_i - Q - i - j - P - y_j$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_j,j)$.

Thus if $i < P < Q < y_i < y_j < j$ then one of the following holds:

•
$$w^{-1} = -Q - P - y_i - i - j - y_j - \text{ and } (wt)^{-1} = -Q - P - y_i - j - i - y_j - .$$

When (a,b) = (P,Q) and $(a',b') \in \operatorname{Cyc}^1(z) = \{(y_j,y_j),(i,j),(y_i,y_i)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -i - i - i$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -i - P - i - \text{ and } (wt)^{-1} \neq -i - Q - i - .$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -P - y_i - \text{ and } (wt)^{-1} = -P - y_i - .$$

12. It cannot happen that $i < y_i < P < y_j < Q < j$ since:

(a) If
$$w^{-1} = -y_i - i - Q - P - j - y_i$$
 then (T) fails.

(b) If
$$w^{-1} = -y_i - i - Q - j - y_i - P$$
 then (T) fails.

(c) If
$$w^{-1} = -Q - y_i - i - P - j - y_j$$
 then (T) fails.

(d) If
$$w^{-1} = -y_i - Q - i - P - j - y_j$$
 then (T) fails.

(e) If
$$w^{-1} = -y_i - i - Q - j - P - y_j$$
 then (T) fails.

(f) If
$$w^{-1} = -y_i - i - j - Q - y_j - P$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

(g) If
$$w^{-1} = -y_i - i - j - Q - P - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

$$\text{(h) If } w^{-1} = -y_i - i - j - y_j - Q - P - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_j,j).$$

(i) If
$$w^{-1} = -Q - y_i - i - j - y_j - P$$
 then (Y3) fails for $(a,b) = (i,y_i)$ and $(a',b') = (P,Q)$.

(j) If
$$w^{-1} = -y_i - Q - P - i - j - y_j$$
 — then (Y3) fails for $(a,b) = (i,y_i)$ and $(a',b') = (P,Q)$.

$$\text{(k) If } w^{-1} = - Q - y_i - i - j - P - y_j - \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$$

(l) If
$$w^{-1} = -Q - P - y_i - i - j - y_j$$
 then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(m) If
$$w^{-1} = -y_i - Q - i - j - y_j - P$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

$$\text{(n) If } w^{-1} = - Q - y_i - P - i - j - y_j - \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$$

$$\text{(o) If } w^{-1} = -y_i - Q - i - j - P - y_j - \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$$

- 13. It cannot happen that $i < P < y_i < y_j < Q < j$ since:
 - (a) If $w^{-1} = -y_i i Q P j y_i$ then (T) fails.
 - (b) If $w^{-1} = -y_i i Q j y_j P$ then (T) fails.
 - (c) If $w^{-1} = -Q y_i i P j y_j$ then (T) fails.
 - (d) If $w^{-1} = -y_i Q i P j y_j$ then (T) fails.
 - (e) If $w^{-1} = -y_i i Q j P y_j$ then (T) fails.
 - $\text{(f) If } w^{-1}=-y_i-i-j-Q-y_j-P-\text{ then (Y3) fails for } (a,b)=(P,Q) \text{ and } (a',b')=(y_j,j).$
 - (g) If $w^{-1} = -y_i i j Q P y_j$ then (Y3) fails for (a,b) = (P,Q) and $(a',b') = (y_j,j)$.
 - $\text{(h) If } w^{-1} = -y_i i j y_j Q P \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_j,j).$
 - (i) If $w^{-1} = -Q y_i i j y_j P$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
 - (j) If $w^{-1} = -y_i Q P i j y_j$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
 - (k) If $w^{-1} = -Q y_i i j P y_j$ then (Y3) fails for $(a,b) = (i,y_i)$ and (a',b') = (P,Q).
 - $\text{(l) If } w^{-1} = Q P y_i i j y_j \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$
 - (m) If $w^{-1} = -y_i Q i j y_j P$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
 - $\text{(n) If } w^{-1} = Q y_i P i j y_j \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$
 - $\text{(o) If } w^{-1} = -y_i Q i j P y_j \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$
- 14. It cannot happen that $i < y_i < P < Q < y_j < j$ since:
 - (a) If $w^{-1} = -y_i i Q P j y_j$ then (T) fails.
 - (b) If $w^{-1} = -y_i i Q j y_i P$ then (T) fails.
 - (c) If $w^{-1} = -Q y_i i P j y_i$ then (T) fails.
 - (d) If $w^{-1} = -y_i Q i P j y_i$ then (T) fails.
 - (e) If $w^{-1} = -y_i i Q j P y_j$ then (T) fails.
 - (f) If $w^{-1} = -y_i i j Q y_j P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_j, j)$.
 - (g) If $w^{-1} = -y_i i j Q P y_j$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_j, j)$.
 - (h) If $w^{-1} = -y_i i j y_j Q P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_j, j)$.
 - (i) If $w^{-1} = -Q y_i i j y_i P$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
 - (j) If $w^{-1} = -y_i Q P i j y_j$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
 - $\text{(k) If } w^{-1} = Q y_i i j P y_j \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$
 - (l) If $w^{-1} = -Q P y_i i j y_j$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
 - (m) If $w^{-1} = -y_i Q i j y_j P$ then (Y3) fails for $(a,b) = (i,y_i)$ and (a',b') = (P,Q).
 - $\text{(n) If } w^{-1} = Q y_i P i j y_j \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$
 - $\text{(o) If } w^{-1} = -y_i Q i j P y_i \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$
- 15. It cannot happen that $i < P < y_i < Q < y_j < j$ since:
 - (a) If $w^{-1} = -y_i i Q P j y_i$ then (T) fails.
 - (b) If $w^{-1} = -y_i i Q j y_j P$ then (T) fails.
 - (c) If $w^{-1} = -Q y_i i P j y_j$ then (T) fails.
 - (d) If $w^{-1} = -y_i Q i P j y_j$ then (T) fails.
 - (e) If $w^{-1} = -y_i i Q j P y_j$ then (T) fails.
 - $\text{(f) If } w^{-1} = -y_i i j Q y_j P \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_j,j).$
 - (g) If $w^{-1} = -y_i i j Q P y_j$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_j, j)$.
 - $\text{(h) If } w^{-1} = -y_i i j y_j Q P \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_j,j).$
 - $\text{(i) If } w^{-1} = Q y_i i j y_j P \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$

- (j) If $w^{-1} = -y_i Q P i j y_j$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
- $\text{(k) If } w^{-1} = Q y_i i j P y_j \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$
- (l) If $w^{-1} = -Q P y_i i j y_j$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
- (m) If $w^{-1} = -y_i Q i j y_j P$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
- (n) If $w^{-1} = -Q y_i P i j y_j$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
- $\text{(o) If } w^{-1} = -y_i Q i j P y_j \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$

We conclude that properties (Z1)-(Z3) hold whenever (a,b), (a',b') are as in cases (i) or (ii) and $i < y_i < y_i < j$.

8.3 Subcase (iii)

Suppose i' and j' are integers such that $0 \neq i - i' = j - j' \in n\mathbb{Z}$, so that w(i) - w(i') = w(j) - w(j') = i - i'.

- 1. Suppose $i' < y_{i'} < y_{j'} < i < j' < y_i < y_j < j$.
 - (a) If $w^{-1} = -y_{i'} y_i i' i j' j y_{j'} y_j$ then (T) fails.
 - (b) If $w^{-1} = -y_{i'} i' y_i i j' j y_{j'} y_j$ then (T) fails.
 - (c) If $w^{-1} = -y_{i'} y_i i' i j' y_{j'} j y_j$ then (T) fails.
 - (d) If $w^{-1} = -y_{i'} i' y_i i j' y_{j'} j y_j$ then (T) fails.
 - (e) If $w^{-1} = -y_{i'} y_i i' j' i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (f) If $w^{-1} = -y_{i'} y_i i' j' i y_{j'} j y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (g) If $w^{-1} = -y_{i'} y_i i' j' y_{j'} i j y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (h) If $w^{-1} = -y_{i'} i' j' y_i i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
 - (i) If $w^{-1} = -y_{i'} i' y_i j' i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
 - (j) If $w^{-1} = -y_{i'} i' y_i j' i y_{j'} j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
 - (k) If $w^{-1} = -y_{i'} i' y_i j' y_{j'} i j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
 - (l) If $w^{-1} = -y_{i'} i' j' y_i i y_{j'} j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
 - (m) If $w^{-1} = -y_{i'} i' j' y_i y_{j'} i j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.

Thus if $i' < y_{i'} < y_{j'} < i < j' < y_i < y_j < j$ then one of the following holds:

•
$$w^{-1} = -y_{i'} - i' - j' - y_{j'} - y_i - i - j - y_j$$
 and $(wt)^{-1} = -y_{i'} - j' - i' - y_{j'} - y_i - j - i - y_j$.

When $(a, b) \in \text{Cyc}^1(z) = \{(y_j, y_j), (i, j), (y_i, y_i)\}$ and $(a', b') \in \{(y_{j'}, y_{j'}), (i', j'), (y_{i'}, y_{i'})\}$, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

- $(Z1) \Leftrightarrow (wt)^{-1} = -i i \text{ and } (wt)^{-1} = -i' i' i$
- $(Z2) \Leftrightarrow (no condition).$

$$(Z3) \Leftrightarrow \begin{cases} (wt)^{-1} = -i' - j - \text{ and } \\ (wt)^{-1} = -i' - y_i - \text{ and } \\ (wt)^{-1} = -i' - y_j - \text{ and } \\ (wt)^{-1} = -y_{i'} - j - \text{ and } \\ (wt)^{-1} = -y_{i'} - y_i - \text{ and } \\ (wt)^{-1} = -y_{i'} - y_j - \text{ and } \\ (wt)^{-1} = -y_{j'} - j - \text{ and } \\ (wt)^{-1} = -y_{j'} - y_i - \text{ and } \\ (wt)^{-1} = -y_{j'} - y_i - \text{ and } \\ (wt)^{-1} = -y_{j'} - y_i - . \end{cases}$$

- 2. Suppose $i' < y_{i'} < y_{j'} < j' < i < y_i < y_j < j$.
 - (a) If $w^{-1} = -y_{i'} y_i i' i j' j y_{i'} y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (b) If $w^{-1} = -y_{i'} y_i i' j' i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

- (c) If $w^{-1} = -y_{i'} y_i i' j' i y_{j'} j y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
- (d) If $w^{-1} = -y_{i'} y_i i' j' y_{j'} i j y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
- (e) If $w^{-1} = -y_{i'} y_i i' i j' y_{j'} j y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
- $\text{(f) If } w^{-1} = -y_{i'} i' y_i i j' j y_{j'} y_j \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (i,y_i).$
- (g) If $w^{-1} = -y_{i'} i' j' y_i i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
- (h) If $w^{-1} = -y_{i'} i' y_i j' i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
- (i) If $w^{-1} = -y_{i'} i' y_i i j' y_{i'} j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
- (j) If $w^{-1} = -y_{i'} i' y_i j' i y_{j'} j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
- (k) If $w^{-1} = -y_{i'} i' y_i j' y_{i'} i j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
- (l) If $w^{-1} = -y_{i'} i' j' y_i i y_{j'} j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
- (m) If $w^{-1} = -y_{i'} i' j' y_i y_{j'} i j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.

Thus if $i' < y_{i'} < y_{j'} < j' < i < y_i < j$ then one of the following holds:

$$\bullet \ w^{-1} = -y_{i'} - i' - j' - y_{j'} - y_i - i - j - y_j - \text{ and } (wt)^{-1} = -y_{i'} - j' - i' - y_{j'} - y_i - j - i - y_j - .$$

When $(a, b) \in \operatorname{Cyc}^1(z) = \{(y_j, y_j), (i, j), (y_i, y_i)\}$ and $(a', b') \in \{(y_{j'}, y_{j'}), (i', j'), (y_{i'}, y_{i'})\}$, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -j - i - \text{ and } (wt)^{-1} = -j' - i' - .$$

 $(Z2) \Leftrightarrow (no condition).$

$$(Z3) \Leftrightarrow \begin{cases} (wt)^{-1} = -i' - j - \text{ and } \\ (wt)^{-1} = -i' - y_i - \text{ and } \\ (wt)^{-1} = -i' - y_j - \text{ and } \\ (wt)^{-1} = -y_{i'} - j - \text{ and } \\ (wt)^{-1} = -y_{i'} - y_i - \text{ and } \\ (wt)^{-1} = -y_{i'} - y_j - \text{ and } \\ (wt)^{-1} = -y_{j'} - j - \text{ and } \\ (wt)^{-1} = -y_{j'} - y_i - \text{ and } \\ (wt)^{-1} = -y_{j'} - y_i - \text{ and } \\ (wt)^{-1} = -y_{j'} - y_j - . \end{cases}$$

3. Suppose $i' < y_{i'} < y_{i'} < i < y_i < y_i < j' < j$.

- (a) If $w^{-1} = -y_{i'} y_i i' i j' j y_{i'} y_j$ then (T) fails.
- (b) If $w^{-1} = -y_{i'} i' y_i i j' j y_{i'} y_i$ then (T) fails.
- (c) If $w^{-1} = -y_{i'} y_i i' i j' y_{j'} j y_j$ then (T) fails.
- (d) If $w^{-1} = -y_{i'} i' y_i i j' y_{j'} j y_j$ then (T) fails.
- (e) If $w^{-1} = -y_{i'} i' y_i j' i j y_{j'} y_j$ then (U) fails.
- (f) If $w^{-1} = -y_{i'} i' y_i j' i y_{j'} j y_j$ then (U) fails.
- (g) If $w^{-1} = -y_{i'} i' y_i j' y_{j'} i j y_j$ then (U) fails.
- (h) If $w^{-1} = -y_{i'} i' j' y_i i y_{j'} j y_j$ then (Y2) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
- (i) If $w^{-1} = -y_{i'} i' j' y_i y_{j'} i j y_j$ then (Y2) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
- (j) If $w^{-1} = -y_{i'} y_i i' j' i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
- (k) If $w^{-1} = -y_{i'} y_i i' j' i y_{j'} j y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
- $\text{(l) If } w^{-1} = -y_{i'} y_i i' j' y_{j'} i j y_j \text{ then (Y3) fails for } (a,b) = (i',y_{i'}) \text{ and } (a',b') = (i,y_i).$
- $\text{(m) If } w^{-1} = y_{i'} i' j' y_i i j y_{j'} y_j \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_j,j).$

Thus if $i' < y_{i'} < y_{j'} < i < y_i < y_j < j' < j$ then one of the following holds:

•
$$w^{-1} = -y_{i'} - i' - j' - y_{j'} - y_i - i - j - y_j$$
 and $(wt)^{-1} = -y_{i'} - j' - i' - y_{j'} - y_i - j - i - y_j$.

When $(a, b) \in \operatorname{Cyc}^1(z) = \{(y_j, y_j), (i, j), (y_i, y_i)\}$ and $(a', b') \in \{(y_{j'}, y_{j'}), (i', j'), (y_{i'}, y_{i'})\}$, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -j - i - and (wt)^{-1} = -j' - i' - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -j' - y_i - i' - \text{ and } (wt)^{-1} \neq -j' - y_j - i' - .$$

(Z2)
$$\Leftrightarrow$$
 $(wt)^{-1} \neq -j' - y_i - i' - \text{and}$

$$(wt)^{-1} = -i' - j - \text{and}$$

$$(wt)^{-1} = -y_{i'} - j - \text{and}$$

$$(wt)^{-1} = -y_{i'} - y_i - \text{and}$$

$$(wt)^{-1} = -y_{i'} - y_j - \text{and}$$

$$(wt)^{-1} = -y_{j'} - j - \text{and}$$

$$(wt)^{-1} = -y_{j'} - y_i - \text{and}$$

$$(wt)^{-1} = -y_{j'} - y_i - \text{and}$$

$$(wt)^{-1} = -y_{j'} - y_j - .$$

4. Suppose $i' < y_{i'} < y_{j'} < i < y_i < j' < y_j < j$.

(a) If
$$w^{-1} = -y_{i'} - y_i - i' - i - j' - j - y_{j'} - y_j$$
 then (T) fails.

(b) If
$$w^{-1} = -y_{i'} - i' - y_i - i - j' - j - y_{j'} - y_j$$
 then (T) fails.

(c) If
$$w^{-1} = -y_{i'} - y_i - i' - i - j' - y_{j'} - j - y_j$$
 then (T) fails.

(d) If
$$w^{-1} = -y_{i'} - i' - y_i - i - j' - y_{j'} - j - y_j$$
 then (T) fails.

(e) If
$$w^{-1} = -y_{i'} - i' - y_i - j' - i - j - y_{j'} - y_j$$
 then (U) fails.

(f) If
$$w^{-1} = -y_{i'} - i' - y_i - j' - i - y_{j'} - j - y_j$$
 then (U) fails.

(g) If
$$w^{-1} = -y_{i'} - i' - y_i - j' - y_{i'} - i - j - y_i$$
 then (U) fails.

(h) If
$$w^{-1} = -y_{i'} - i' - j' - y_i - i - y_{j'} - j - y_j$$
 then (Y2) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.

(i) If
$$w^{-1} = -y_{i'} - i' - j' - y_i - y_{j'} - i - j - y_j$$
 then (Y2) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.

(j) If
$$w^{-1} = -y_{i'} - y_i - i' - j' - i - j - y_{j'} - y_j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(k) If
$$w^{-1} = -y_{i'} - y_i - i' - j' - i - y_{j'} - j - y_j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(1) If
$$w^{-1} = -y_{i'} - y_i - i' - j' - y_{j'} - i - j - y_j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(m) If
$$w^{-1} = -y_{i'} - i' - j' - y_i - i - j - y_{j'} - y_j$$
 — then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_j, j)$.

Thus if $i' < y_{i'} < y_{i'} < i < y_i < j' < y_j < j$ then one of the following holds:

$$\bullet \ w^{-1} = -y_{i'} - i' - j' - y_{j'} - y_i - i - j - y_j - \text{ and } (wt)^{-1} = -y_{i'} - j' - i' - y_{j'} - y_i - j - i - y_j - .$$

When $(a, b) \in \operatorname{Cyc}^1(z) = \{(y_j, y_j), (i, j), (y_i, y_i)\}$ and $(a', b') \in \{(y_{j'}, y_{j'}), (i', j'), (y_{i'}, y_{i'})\}$, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -i - i - and (wt)^{-1} = -i' - i' - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -j'-y_i-i'-.$$

$$(Z3) \Leftrightarrow \begin{cases} (wt)^{-1} = -i' - j - \text{ and } \\ (wt)^{-1} = -i' - y_j - \text{ and } \\ (wt)^{-1} = -y_{i'} - j - \text{ and } \\ (wt)^{-1} = -y_{i'} - y_i - \text{ and } \\ (wt)^{-1} = -y_{i'} - y_j - \text{ and } \\ (wt)^{-1} = -y_{j'} - j - \text{ and } \\ (wt)^{-1} = -y_{j'} - j - \text{ and } \\ (wt)^{-1} = -y_{j'} - y_i - \text{ and } \\ (wt)^{-1} = -y_{j'} - y_j - . \end{cases}$$

5. Suppose $i' < i < y_{i'} < y_{i'} < j' < y_i < y_i < j$.

(a) If
$$w^{-1} = -y_{i'} - y_i - i' - i - j' - j - y_{j'} - y_j$$
 then (T) fails.

(b) If
$$w^{-1} = -y_{i'} - i' - y_i - i - j' - j - y_{i'} - y_i$$
 then (T) fails.

(c) If
$$w^{-1} = -y_{i'} - y_i - i' - j' - i - y_{j'} - j - y_j$$
 then (T) fails.

- (d) If $w^{-1} = -y_{i'} y_i i' i j' y_{i'} j y_i$ then (T) fails.
- (e) If $w^{-1} = -y_{i'} i' y_i i j' y_{j'} j y_j$ then (T) fails.
- (f) If $w^{-1} = -y_{i'} i' y_i j' i y_{j'} j y_i$ then (T) fails.
- (g) If $w^{-1} = -y_{i'} i' j' y_i i y_{j'} j y_j$ then (T) fails.
- (h) If $w^{-1} = -y_{i'} i' y_i j' y_{j'} i j y_j$ then (Y2) fails for $(a, b) = (i, y_i)$ and $(a', b') = (y_{j'}, j')$.
- (i) If $w^{-1} = -y_{i'} i' j' y_i y_{j'} i j y_j$ then (Y2) fails for $(a, b) = (i, y_i)$ and $(a', b') = (y_{j'}, j')$.
- (j) If $w^{-1} = -y_{i'} y_i i' j' i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
- (k) If $w^{-1} = -y_{i'} y_i i' j' y_{j'} i j y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
- $\text{(l) If } w^{-1} = y_{i'} i' j' y_i i j y_{j'} y_j \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_j,j).$
- (m) If $w^{-1} = -y_{i'} i' y_i j' i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_j, j)$.

Thus if $i' < i < y_{i'} < j' < y_i < j' < y_i < j$ then one of the following holds:

•
$$w^{-1} = -y_{i'} - i' - j' - y_{i'} - y_i - i - j - y_j$$
 and $(wt)^{-1} = -y_{i'} - j' - i' - y_{i'} - y_i - j - i - y_j$.

When $(a, b) \in \operatorname{Cyc}^1(z) = \{(y_j, y_j), (i, j), (y_i, y_i)\}$ and $(a', b') \in \{(y_{j'}, y_{j'}), (i', j'), (y_{i'}, y_{i'})\}$, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -i - i - \text{ and } (wt)^{-1} = -i' - i' - i$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -j - y_{i'} - i - \text{ and } (wt)^{-1} \neq -j - y_{j'} - i - i$$

(Z3)
$$\Leftrightarrow$$

$$\begin{cases}
(wt)^{-1} = -i' - j - \text{ and } \\
(wt)^{-1} = -i' - y_i - \text{ and } \\
(wt)^{-1} = -i' - y_j - \text{ and } \\
(wt)^{-1} = -y_{i'} - y_i - \text{ and } \\
(wt)^{-1} = -y_{i'} - y_j - \text{ and } \\
(wt)^{-1} = -y_{j'} - y_i - \text{ and } \\
(wt)^{-1} = -y_{j'} - y_i - \text{ and } \\
(wt)^{-1} = -y_{j'} - y_j - .
\end{cases}$$

6. Suppose $i' < y_{i'} < i < y_{j'} < j' < y_i < y_i < j$.

- (a) If $w^{-1} = -y_{i'} y_i i' i j' j y_{i'} y_i$ then (T) fails.
- (b) If $w^{-1} = -y_{i'} i' y_i i j' j y_{i'} y_i$ then (T) fails.
- (c) If $w^{-1} = -y_{i'} y_i i' j' i y_{i'} j y_j$ then (T) fails.
- (d) If $w^{-1} = -y_{i'} y_i i' i j' y_{j'} j y_i$ then (T) fails.
- (e) If $w^{-1} = -y_{i'} i' y_i i j' y_{j'} j y_j$ then (T) fails.
- (f) If $w^{-1} = -y_{i'} i' y_i j' i y_{j'} j y_j$ then (T) fails.
- (g) If $w^{-1} = -y_{i'} i' j' y_i i y_{j'} j y_j$ then (T) fails.
- (h) If $w^{-1} = -y_{i'} i' y_i j' y_{j'} i j y_j$ then (Y2) fails for $(a, b) = (i, y_i)$ and $(a', b') = (y_{j'}, j')$.
- (i) If $w^{-1} = -y_{i'} i' j' y_i y_{j'} i j y_j$ then (Y2) fails for $(a, b) = (i, y_i)$ and $(a', b') = (y_{j'}, j')$.
- (j) If $w^{-1} = -y_{i'} y_i i' j' i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
- (k) If $w^{-1} = -y_{i'} y_i i' j' y_{i'} i j y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
- (l) If $w^{-1} = -y_{i'} i' j' y_i i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_j, j)$.
- $\text{(m) If } w^{-1} = y_{i'} i' y_i j' i j y_{j'} y_j \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_j,j).$

Thus if $i' < y_{i'} < i < y_{i'} < j' < y_i < j$ then one of the following holds:

•
$$w^{-1} = -y_{i'} - i' - j' - y_{i'} - y_i - i - j - y_j$$
 and $(wt)^{-1} = -y_{i'} - j' - i' - y_{i'} - y_i - j - i - y_j$.

When $(a, b) \in \operatorname{Cyc}^1(z) = \{(y_j, y_j), (i, j), (y_i, y_i)\}$ and $(a', b') \in \{(y_{j'}, y_{j'}), (i', j'), (y_{i'}, y_{i'})\}$, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -i - i - i - and (wt)^{-1} = -i' - i' - i'$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -j - y_{j'} - i -.$$

$$(xt)^{-1} = -i' - j - \text{ and }$$

$$(wt)^{-1} = -i' - y_{i} - \text{ and }$$

$$(wt)^{-1} = -i' - y_{j} - \text{ and }$$

$$(wt)^{-1} = -y_{i'} - j - \text{ and }$$

$$(wt)^{-1} = -y_{i'} - y_{i} - \text{ and }$$

$$(wt)^{-1} = -y_{i'} - y_{j} - \text{ and }$$

$$(wt)^{-1} = -y_{j'} - y_{j} - \text{ and }$$

$$(wt)^{-1} = -y_{j'} - y_{j} - \text{ and }$$

$$(wt)^{-1} = -y_{j'} - y_{j} - \text{ and }$$

- 7. It cannot happen that $i' < i < y_{i'} < y_i < y_{j'} < y_j < j' < j$ since:
 - (a) If $w^{-1} = -y_{i'} y_i i' i j' j y_{i'} y_i$ then (T) fails.
 - (b) If $w^{-1} = -y_{i'} i' y_i i j' j y_{i'} y_i$ then (T) fails.
 - (c) If $w^{-1} = -y_{i'} y_i i' j' i y_{j'} j y_j$ then (T) fails.
 - (d) If $w^{-1} = -y_{i'} y_i i' i j' y_{j'} j y_j$ then (T) fails.
 - (e) If $w^{-1} = -y_{i'} i' y_i i j' y_{i'} j y_j$ then (T) fails.
 - (f) If $w^{-1} = -y_{i'} i' y_i j' i y_{j'} j y_j$ then (T) fails.
 - (g) If $w^{-1} = -y_{i'} i' j' y_i i y_{i'} j y_i$ then (T) fails.
 - (h) If $w^{-1} = -y_{i'} i' y_i j' i j y_{i'} y_j$ then (U) fails.
 - (i) If $w^{-1} = -y_{i'} i' y_i j' y_{j'} i j y_j$ then (U) fails.
 - (j) If $w^{-1} = -y_{i'} y_i i' j' i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (k) If $w^{-1} = -y_{i'} y_i i' j' y_{j'} i j y_j$ then (Y3) fails for $(a,b) = (i',y_{i'})$ and $(a',b') = (i,y_i)$.
 - (l) If $w^{-1} = -y_{i'} i' j' y_i i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (y_{j'}, j')$.
 - $\text{(m) If } w^{-1} = y_{i'} i' j' y_{j'} y_i i j y_j \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (y_{j'},j').$
 - (n) If $w^{-1} = -y_{i'} i' j' y_i y_{j'} i j y_j$ then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (y_{j'}, j')$.
- 8. It cannot happen that $i' < y_{i'} < i < y_{j'} < y_i < y_j < j' < j$ since:
 - (a) If $w^{-1} = -y_{i'} y_i i' i j' j y_{i'} y_i$ then (T) fails.
 - (b) If $w^{-1} = -y_{i'} i' y_i i j' j y_{j'} y_j$ then (T) fails.
 - (c) If $w^{-1} = -y_{i'} y_i i' j' i y_{i'} j y_i$ then (T) fails.
 - (d) If $w^{-1} = -y_{i'} y_i i' i j' y_{i'} j y_j$ then (T) fails.
 - (e) If $w^{-1} = -y_{i'} i' y_i i j' y_{j'} j y_j$ then (T) fails.
 - (f) If $w^{-1} = -y_{i'} i' y_i j' i y_{j'} j y_j$ then (T) fails.
 - (g) If $w^{-1} = -y_{i'} i' j' y_i i y_{j'} j y_j$ then (T) fails.
 - (h) If $w^{-1} = -y_{i'} i' y_i j' i j y_{j'} y_j$ then (U) fails.
 - (i) If $w^{-1} = -y_{i'} i' y_i j' y_{j'} i j y_j$ then (U) fails.
 - (j) If $w^{-1} = -y_{i'} y_i i' j' i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (k) If $w^{-1} = -y_{i'} y_i i' j' y_{j'} i j y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (l) If $w^{-1} = -y_{i'} i' j' y_i i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (y_{j'}, j')$.
 - $\text{(m) If } w^{-1} = y_{i'} i' j' y_{j'} y_i i j y_j \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (y_{j'},j').$
 - (n) If $w^{-1} = -y_{i'} i' j' y_i y_{j'} i j y_j$ then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (y_{j'}, j')$.
- 9. It cannot happen that $i' < i < y_{i'} < y_i < y_{i'} < j' < y_i < j$ since:
 - (a) If $w^{-1} = -y_{i'} y_i i' i j' j y_{j'} y_j$ then (T) fails.
 - (b) If $w^{-1} = -y_{i'} i' y_i i j' j y_{j'} y_j$ then (T) fails.
 - (c) If $w^{-1} = -y_{i'} y_i i' j' i y_{j'} j y_j$ then (T) fails.

- (d) If $w^{-1} = -y_{i'} y_i i' i j' y_{i'} j y_i$ then (T) fails.
- (e) If $w^{-1} = -y_{i'} i' y_i i j' y_{j'} j y_j$ then (T) fails.
- (f) If $w^{-1} = -y_{i'} i' y_i j' i y_{j'} j y_j$ then (T) fails.
- (g) If $w^{-1} = -y_{i'} i' j' y_i i y_{j'} j y_j$ then (T) fails.
- (h) If $w^{-1} = -y_{i'} i' y_i j' i j y_{j'} y_j$ then (U) fails.
- (i) If $w^{-1} = -y_{i'} i' y_i j' y_{j'} i j y_j$ then (U) fails.
- (j) If $w^{-1} = -y_{i'} y_i i' j' i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
- (k) If $w^{-1} = -y_{i'} y_i i' j' y_{j'} i j y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
- (l) If $w^{-1} = -y_{i'} i' j' y_i i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (y_{j'}, j')$.
- $\text{(m) If } w^{-1} = y_{i'} i' j' y_{j'} y_i i j y_j \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (y_{j'},j').$
- (n) If $w^{-1} = -y_{i'} i' j' y_i y_{j'} i j y_j$ then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (y_{j'}, j')$.
- 10. It cannot happen that $i' < y_{i'} < i < y_{j'} < y_i < j' < y_j < j$ since:
 - (a) If $w^{-1} = -y_{i'} y_i i' i j' j y_{j'} y_j$ then (T) fails.
 - (b) If $w^{-1} = -y_{i'} i' y_i i j' j y_{i'} y_i$ then (T) fails.
 - (c) If $w^{-1} = -y_{i'} y_i i' j' i y_{j'} j y_j$ then (T) fails.
 - (d) If $w^{-1} = -y_{i'} y_i i' i j' y_{i'} j y_i$ then (T) fails.
 - (e) If $w^{-1} = -y_{i'} i' y_i i j' y_{i'} j y_i$ then (T) fails.
 - (f) If $w^{-1} = -y_{i'} i' y_i j' i y_{i'} j y_j$ then (T) fails.
 - (g) If $w^{-1} = -y_{i'} i' j' y_i i y_{i'} j y_j$ then (T) fails.
 - (h) If $w^{-1} = -y_{i'} i' y_i j' i j y_{j'} y_j$ then (U) fails.
 - (i) If $w^{-1} = -y_{i'} i' y_i j' y_{i'} i j y_i$ then (U) fails.
 - (j) If $w^{-1} = -y_{i'} y_i i' j' i j y_{i'} y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (k) If $w^{-1} = -y_{i'} y_i i' j' y_{j'} i j y_i$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (l) If $w^{-1} = -y_{i'} i' j' y_i i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (y_{j'}, j')$.
 - (m) If $w^{-1} = -y_{i'} i' j' y_{j'} y_i i j y_j$ then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (y_{j'}, j')$.
 - (n) If $w^{-1} = -y_{i'} i' j' y_i y_{j'} i j y_j$ then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (y_{j'}, j')$.
- 11. It cannot happen that $i' < i < y_{i'} < y_{i'} < y_i < y_i < j' < j$ since:
 - (a) If $w^{-1} = -y_{i'} y_i i' i j' j y_{j'} y_j$ then (T) fails.
 - (b) If $w^{-1} = -y_{i'} i' y_i i j' j y_{i'} y_i$ then (T) fails.
 - (c) If $w^{-1} = -y_{i'} y_i i' j' i y_{i'} j y_j$ then (T) fails.
 - (d) If $w^{-1} = -y_{i'} y_i i' i j' y_{j'} j y_j$ then (T) fails.
 - (e) If $w^{-1} = -y_{i'} i' y_i i j' y_{j'} j y_j$ then (T) fails.
 - (f) If $w^{-1} = -y_{i'} i' y_i j' i y_{j'} j y_j$ then (T) fails.
 - (g) If $w^{-1} = -y_{i'} i' j' y_i i y_{j'} j y_j$ then (T) fails.
 - (h) If $w^{-1} = -y_{i'} i' y_i j' i j y_{j'} y_j$ then (U) fails.
 - (i) If $w^{-1} = -y_{i'} i' y_i j' y_{i'} i j y_i$ then (U) fails.
 - (j) If $w^{-1} = -y_{i'} y_i i' j' i j y_{j'} y_j$ then (Y3) fails for $(a,b) = (i',y_{i'})$ and $(a',b') = (i,y_i)$.
 - (k) If $w^{-1} = -y_{i'} y_i i' j' y_{j'} i j y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (l) If $w^{-1} = -y_{i'} i' j' y_i i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (y_{j'}, j')$.
 - $\text{(m) If } w^{-1} = -y_{i'} i' j' y_{j'} y_i i j y_j \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (y_{j'},j') y_i -$
 - $\text{(n) If } w^{-1} = -y_{i'} i' j' y_i y_{j'} i j y_j \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (y_{j'},j').$
- 12. It cannot happen that $i' < y_{i'} < i < y_i < y_{j'} < y_i < j' < j$ since:

```
(a) If w^{-1} = -y_{i'} - y_i - i' - i - j' - j - y_{j'} - y_j then (T) fails.
```

(b) If
$$w^{-1} = -y_{i'} - i' - y_i - i - j' - j - y_{j'} - y_j$$
 then (T) fails.

(c) If
$$w^{-1} = -y_{i'} - y_i - i' - j' - i - y_{j'} - j - y_j$$
 then (T) fails.

(d) If
$$w^{-1} = -y_{i'} - y_i - i' - i - j' - y_{j'} - j - y_j$$
 — then (T) fails.

(e) If
$$w^{-1} = -y_{i'} - i' - y_i - i - j' - y_{j'} - j - y_j$$
— then (T) fails.

(f) If
$$w^{-1} = -y_{i'} - i' - y_i - j' - i - y_{j'} - j - y_j$$
 — then (T) fails.

(g) If
$$w^{-1} = -y_{i'} - i' - j' - y_i - i - y_{j'} - j - y_j$$
 then (T) fails.

(h) If
$$w^{-1} = -y_{i'} - i' - y_i - j' - i - j - y_{i'} - y_i$$
 then (U) fails.

(i) If
$$w^{-1} = -y_{i'} - i' - y_i - j' - y_{j'} - i - j - y_j$$
 then (U) fails.

(j) If
$$w^{-1} = -y_{i'} - y_i - i' - j' - i - j - y_{j'} - y_j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(k) If
$$w^{-1} = -y_{i'} - y_i - i' - j' - y_{j'} - i - j - y_j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(l) If
$$w^{-1} = -y_{i'} - i' - j' - y_i - i - j - y_{j'} - y_j$$
 — then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (y_{j'}, j')$.

$$\text{(m) If } w^{-1} = -y_{i'} - i' - j' - y_{j'} - y_i - i - j - y_j - \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (y_{j'},j').$$

(n) If
$$w^{-1} = -y_{i'} - i' - j' - y_i - y_{j'} - i - j - y_j$$
 then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (y_{j'}, j')$.

13. It cannot happen that $i' < y_{i'} < i < y_i < y_{j'} < j' < y_j < j$ since:

```
(a) If w^{-1} = -y_{i'} - y_i - i' - i - j' - j - y_{j'} - y_j then (T) fails.
```

(b) If
$$w^{-1} = -y_{i'} - i' - y_i - i - j' - j - y_{j'} - y_j$$
 then (T) fails.

(c) If
$$w^{-1} = -y_{i'} - y_i - i' - j' - i - y_{j'} - j - y_j$$
 then (T) fails.

(d) If
$$w^{-1} = -y_{i'} - y_i - i' - i - j' - y_{j'} - j - y_j$$
 then (T) fails.

(e) If
$$w^{-1} = -y_{i'} - i' - y_i - i - j' - y_{j'} - j - y_j$$
 then (T) fails.

(f) If
$$w^{-1} = -y_{i'} - i' - y_i - j' - i - y_{j'} - j - y_j$$
 then (T) fails.

(g) If
$$w^{-1} = -y_{i'} - i' - j' - y_i - i - y_{j'} - j - y_j$$
 then (T) fails.

(h) If
$$w^{-1} = -y_{i'} - i' - y_i - j' - i - j - y_{j'} - y_j$$
 then (U) fails.

(i) If
$$w^{-1} = -y_{i'} - i' - y_i - j' - y_{j'} - i - j - y_j$$
 then (U) fails.

(j) If
$$w^{-1} = -y_{i'} - y_i - i' - j' - i - j - y_{j'} - y_j$$
 — then (Y3) fails for $(a,b) = (i',y_{i'})$ and $(a',b') = (i,y_i)$.

(k) If
$$w^{-1} = -y_{i'} - y_i - i' - j' - y_{j'} - i - j - y_j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(l) If
$$w^{-1} = -y_{i'} - i' - j' - y_i - i - j - y_{j'} - y_j$$
 then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (y_{j'}, j')$.

$$\text{(m) If } w^{-1} = -y_{i'} - i' - j' - y_{j'} - y_i - i - j - y_j - \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (y_{j'},j').$$

(n) If
$$w^{-1} = -y_{i'} - i' - j' - y_i - y_{j'} - i - j - y_j$$
 then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (y_{j'}, j')$.

14. It cannot happen that $i' < i < y_{i'} < y_{i'} < y_i < j' < y_i < j \text{ since:}$

```
(a) If w^{-1} = -y_{i'} - y_i - i' - i - j' - j - y_{j'} - y_j then (T) fails.
```

(b) If
$$w^{-1} = -y_{i'} - i' - y_i - i - j' - j - y_{j'} - y_j$$
 then (T) fails.

(c) If
$$w^{-1} = -y_{i'} - y_i - i' - j' - i - y_{j'} - j - y_j$$
 then (T) fails.

(d) If
$$w^{-1} = -y_{i'} - y_i - i' - i - j' - y_{j'} - j - y_j$$
 then (T) fails.

(e) If
$$w^{-1} = -y_{i'} - i' - y_i - i - j' - y_{j'} - j - y_j$$
 then (T) fails.
(f) If $w^{-1} = -y_{i'} - i' - y_i - j' - i - y_{j'} - j - y_j$ then (T) fails.

$$(1) \text{ if } w = g_i \quad v \quad g_i \quad J \quad v \quad g_j \quad J \quad g_j \quad \text{other } (1) \text{ tails}.$$

(g) If
$$w^{-1} = -y_{i'} - i' - j' - y_i - i - y_{j'} - j - y_j$$
 — then (T) fails.

(h) If
$$w^{-1} = -y_{i'} - i' - y_i - j' - i - j - y_{j'} - y_j$$
 then (U) fails.

(i) If
$$w^{-1} = -y_{i'} - i' - y_i - j' - y_{j'} - i - j - y_j$$
 then (U) fails.

(j) If
$$w^{-1} = -y_{i'} - y_i - i' - j' - i - j - y_{j'} - y_j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(k) If
$$w^{-1} = -y_{i'} - y_i - i' - j' - y_{j'} - i - j - y_j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(l) If
$$w^{-1} = -y_{i'} - i' - j' - y_i - i - j - y_{j'} - y_j$$
 then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (y_{j'}, j')$.

$$\text{(m) If } w^{-1} = -y_{i'} - i' - j' - y_{j'} - y_i - i - j - y_j - \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (y_{j'},j').$$

(n) If
$$w^{-1} = -y_{i'} - i' - j' - y_i - y_{j'} - i - j - y_j$$
 then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (y_{j'}, j')$.

We conclude that properties (Z1)-(Z3) hold for all $(a, b), (a', b') \in \text{Cyc}(z)$ when $i < y_i < j$.

9 Case: $y_i < i < j < y_j$

Suppose y is such that $y_i < i < j < y_j$. Then $z = \tau_{ij}^n(y)$ has $\operatorname{Cyc}^1(z) = \{(y_i, j), (i, y_j)\}$.

9.1 Subcase (i)

We must have $w^{-1} = -i - y_i - y_j - j$ — since no other ordering is possible:

- 1. If $w^{-1} = -y_i j i y_j$ then (T) fails.
- 2. If $w^{-1} = -y_i j y_j i$ then (T) fails.
- 3. If $w^{-1} = -y_i y_j j i$ then (T) fails.
- 4. If $w^{-1} = -j y_i i y_j$ then (T) fails.
- 5. If $w^{-1} = -j y_i y_i i$ then (T) fails.
- 6. If $w^{-1} = -j i y_i y_j$ then (T) fails.
- 7. If $w^{-1} = -j i y_i y_i$ then (T) fails.
- 8. If $w^{-1} = -j y_i y_i i$ then (T) fails.
- 9. If $w^{-1} = -j y_i i y_i$ then (T) fails.
- 10. If $w^{-1} = -y_i y_i j i$ then (T) fails.
- 11. If $w^{-1} = -y_i j y_i i$ then (T) fails.
- 12. If $w^{-1} = -y_i j i y_i$ then (T) fails.
- 13. If $w^{-1} = -i y_i j y_j$ then (Y1) fails for $(a, b) = (j, y_j)$.
- 14. If $w^{-1} = -i j y_i y_j$ then (Y1) fails for $(a,b) = (j,y_j)$.
- 15. If $w^{-1} = -i j y_j y_i$ then (Y1) fails for $(a, b) = (j, y_j)$.
- 16. If $w^{-1} = -y_i i j y_j$ then (Y1) fails for $(a, b) = (y_i, i)$.
- 17. If $w^{-1} = -y_i i y_j j$ then (Y1) fails for $(a, b) = (y_i, i)$.
- 18. If $w^{-1} = -y_i y_j i j$ then (Y1) fails for $(a, b) = (y_i, i)$.
- 19. If $w^{-1} = -y_j y_i i j$ then (Y1) fails for $(a,b) = (y_i,i)$.
- 20. If $w^{-1} = -i y_i y_i j$ then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (j, y_j)$.
- 21. If $w^{-1} = -i y_j j y_i$ then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (j, y_j)$.
- 22. If $w^{-1} = -y_j i y_i j$ then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (j, y_j)$.
- 23. If $w^{-1} = -y_j i j y_i$ then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (j, y_j)$.

Hence if $y_i < i < j < y_j$ then

$$(wt)^{-1} = -j - y_i - y_j - i - .$$

When $(a, b), (a', b') \in \operatorname{Cyc}^1(z) = \{(y_i, j), (i, y_j)\}$, properties (Z1)-(Z3) are equivalent to the following conditions which all hold in this case:

- $(Z1) \Leftrightarrow (wt)^{-1} = -i y_i \text{ and } (wt)^{-1} = -y_i i .$
- $(Z2) \Leftrightarrow (\text{no condition}).$
- $(Z3) \Leftrightarrow (wt)^{-1} = -y_i y_j .$

Thus properties (Z1)-(Z3) hold whenever (a, b), (a', b') are as in case (i) and $y_i < i < j < y_j$.

9.2 Subcase (ii)

Suppose R is an integer such that $(R,R) \in \operatorname{Cyc}^2(z) \subset \operatorname{Cyc}(y)$, so that $R = y_R = z_R \notin \{i,j,y_i,y_j\} + n\mathbb{Z}$.

- 1. Suppose $y_i < i < j < y_i < R$.
 - (a) If $w^{-1} = -i y_i y_j R j$ then (Y3) fails for $(a,b) = (j,y_j)$ and (a',b') = (R,R).
 - (b) If $w^{-1} = -i y_i R y_j j$ then (Y3) fails for $(a, b) = (j, y_j)$ and (a', b') = (R, R).
 - (c) If $w^{-1} = -R i y_i y_j j$ then (Y3) fails for $(a,b) = (y_i,i)$ and (a',b') = (R,R).
 - $\text{(d) If } w^{-1} = -i R y_i y_j j \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (R,R).$

Thus if $y_i < i < j < y_j < R$ then one of the following holds:

•
$$w^{-1} = -i - y_i - y_j - j - R$$
 and $(wt)^{-1} = -j - y_i - y_j - i - R$.

When (a, b) = (R, R) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(y_i, j), (i, y_j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -j - y_i - \text{ and } (wt)^{-1} = -y_i - i - .$$

 $(Z2) \Leftrightarrow (no condition).$

$$(Z3) \Leftrightarrow (wt)^{-1} = -i - R - and (wt)^{-1} = -y_i - R - .$$

- 2. Suppose $y_i < i < j < R < y_i$.
 - (a) If $w^{-1} = -i y_i y_j R j$ then (Y2) fails for $(a, b) = (j, y_j)$ and (a', b') = (R, R).
 - (b) If $w^{-1} = -R i y_i y_j j$ then (Y3) fails for $(a, b) = (y_i, i)$ and (a', b') = (R, R).
 - (c) If $w^{-1} = -i R y_i y_j j$ then (Y3) fails for $(a, b) = (y_i, i)$ and (a', b') = (R, R).

Thus if $y_i < i < j < R < y_j$ then one of the following holds:

•
$$w^{-1} = -i - y_i - y_j - j - R$$
 and $(wt)^{-1} = -j - y_i - y_j - i - R$.

•
$$w^{-1} = -i - y_i - R - y_j - j$$
 and $(wt)^{-1} = -j - y_i - R - y_j - i$.

When (a, b) = (R, R) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(y_i, j), (i, y_j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -j - y_i - \text{ and } (wt)^{-1} = -y_i - i - .$$

$$(\mathbf{Z2}) \Leftrightarrow (wt)^{-1} \neq -y_j - R - i - .$$

$$(\mathbf{Z3}) \Leftrightarrow (wt)^{-1} = -y_i - R - .$$

- 3. Suppose $y_i < R < i < j < y_j$.
 - (a) If $w^{-1}=-i-R-y_i-y_j-j$ then (Y2) fails for $(a,b)=(y_i,i)$ and (a',b')=(R,R).
 - (b) If $w^{-1} = -i y_i y_j j R$ then (Y3) fails for (a,b) = (R,R) and $(a',b') = (j,y_j)$.
 - (c) If $w^{-1} = -i y_i y_j R j$ then (Y3) fails for (a,b) = (R,R) and $(a',b') = (j,y_j)$.

Thus if $y_i < R < i < j < y_j$ then one of the following holds:

$$\bullet \ w^{-1} = -i - y_i - R - y_j - j - \text{ and } (wt)^{-1} = -j - y_i - R - y_j - i - .$$

$$\bullet \ w^{-1} = -R - i - y_i - y_j - j - \ \text{and} \ (wt)^{-1} = -R - j - y_i - y_j - i - .$$

When (a, b) = (R, R) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(y_i, j), (i, y_j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(\mathbf{Z}\mathbf{1}) \Leftrightarrow (wt)^{-1} = -j - y_i - \text{ and } (wt)^{-1} = -y_j - i -.$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -j - R - y_i - .$$

$$({\bf Z3}) \Leftrightarrow (wt)^{-1} = -R - y_j - .$$

4. Suppose $R < y_i < i < j < y_j$.

(a) If
$$w^{-1} = -i - y_i - y_j - j - R$$
— then (Y3) fails for $(a, b) = (R, R)$ and $(a', b') = (y_i, i)$.

(b) If
$$w^{-1} = -i - y_i - y_j - R - j$$
 then (Y3) fails for $(a, b) = (R, R)$ and $(a', b') = (y_i, i)$.

(c) If
$$w^{-1} = -i - y_i - R - y_j - j$$
— then (Y3) fails for $(a, b) = (R, R)$ and $(a', b') = (y_i, i)$.

(d) If
$$w^{-1} = -i - R - y_i - y_j - j$$
 — then (Y3) fails for $(a,b) = (R,R)$ and $(a',b') = (y_i,i)$.

Thus if $R < y_i < i < j < y_j$ then one of the following holds:

•
$$w^{-1} = -R - i - y_i - y_j - j$$
 and $(wt)^{-1} = -R - j - y_i - y_j - i$.

When (a, b) = (R, R) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(y_i, j), (i, y_j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -j - y_i - \text{ and } (wt)^{-1} = -y_i - i - .$$

 $(Z2) \Leftrightarrow (no condition).$

$$(Z3) \Leftrightarrow (wt)^{-1} = -R - j - \text{and } (wt)^{-1} = -R - y_j - .$$

5. It cannot happen that $y_i < i < R < j < y_i$ since:

(a) If
$$w^{-1} = -i - y_i - y_j - R - j$$
— then (T) fails.

(b) If
$$w^{-1} = -i - y_i - R - y_j - j$$
— then (T) fails.

(c) If
$$w^{-1} = -i - R - y_i - y_j - j$$
— then (T) fails.

(d) If
$$w^{-1} = -i - y_i - y_j - j - R$$
— then (Y3) fails for $(a, b) = (R, R)$ and $(a', b') = (j, y_j)$.

(e) If
$$w^{-1} = -R - i - y_i - y_j - j$$
— then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (R, R)$.

Next suppose P < Q are integers with $(P,Q) \in \operatorname{Cyc}^2(z) \subset \operatorname{Cyc}(y)$, so that $Q = y_P = z_P$ and $P,Q \notin \{i,j,y_i,y_j\} + n\mathbb{Z}$.

1. Suppose $P < y_i < i < Q < j < y_j$.

(a) If
$$w^{-1} = -i - y_i - Q - P - y_j - j$$
 then (T) fails.

(b) If
$$w^{-1} = -i - y_i - Q - y_j - j - P$$
— then (T) fails.

(c) If
$$w^{-1}=-i-y_i-y_j-Q-j-P-$$
 then (T) fails.

(d) If
$$w^{-1} = -i - Q - P - y_i - y_j - j$$
 then (T) fails.

(e) If
$$w^{-1} = -i - y_i - y_j - Q - P - j$$
 then (T) fails.

(f) If
$$w^{-1} = -i - Q - y_i - P - y_j - j$$
— then (T) fails.
(g) If $w^{-1} = -i - Q - y_i - y_j - j - P$ — then (T) fails.

(g) If
$$w^{-1} = -i - Q - y_i - y_j - j - P$$
— then (T) fails.

(h) If
$$w^{-1} = -i - Q - y_i - y_j - P - j$$
 then (T) fails.

(i) If
$$w^{-1} = -i - y_i - Q - y_j - P - j$$
 then (T) fails.

(j) If
$$w^{-1} = -Q - i - y_i - P - y_j - j$$
 — then (Y2) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_i,i)$.

$$\text{(k) If } w^{-1} = -Q - i - P - y_i - y_j - j - \text{ then (Y2) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_i,i).$$

$$\text{(l) If } w^{-1} = \cdots Q \cdots i \cdots y_i \cdots y_j \cdots j \cdots P \cdots \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (j,y_j).$$

(m) If
$$w^{-1} = -Q - i - y_i - y_j - P - j$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (j,y_j)$.

(n) If
$$w^{-1} = -i - y_i - y_j - j - Q - P$$
 then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (j,y_j)$.

Thus if $P < y_i < i < Q < j < y_j$ then one of the following holds:

$$\bullet \ w^{-1} = - Q - P - i - y_i - y_j - j - \ \text{and} \ (wt)^{-1} = - Q - P - j - y_i - y_j - i - .$$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(y_i, j), (i, y_j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(\mathrm{Z1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and} \\ (wt)^{-1} = -j - y_i - \text{ and} \\ (wt)^{-1} = -y_j - i - . \end{cases}$$

 $(Z2) \Leftrightarrow (\text{no condition}).$

$$(Z3) \Leftrightarrow (wt)^{-1} = -P - j - \text{ and } (wt)^{-1} = -P - y_i - .$$

2. Suppose $P < y_i < Q < i < j < y_i$.

(a) If
$$w^{-1} = -Q - i - y_i - y_j - j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(b) If
$$w^{-1}=-i-y_i-Q-P-y_j-j$$
— then (Y3) fails for $(a,b)=(P,Q)$ and $(a',b')=(y_i,i)$.

(c) If
$$w^{-1} = -i - y_i - Q - y_j - j - P$$
— then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_i,i)$.

(d) If
$$w^{-1} = -i - y_i - y_j - Q - j - P$$
— then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_i,i)$.

(e) If
$$w^{-1} = -i - Q - P - y_i - y_j - j$$
— then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_i,i)$.

(f) If
$$w^{-1} = -i - y_i - y_j - Q - P - j$$
 then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_i,i)$.

(g) If
$$w^{-1} = -Q - i - y_i - y_j - P - j$$
 then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_i,i)$.

$$\text{(h) If } w^{-1} = -Q - i - y_i - P - y_j - j - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_i,i).$$

(i) If
$$w^{-1} = -i - Q - y_i - P - y_j - j$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(j) If
$$w^{-1} = -i - y_i - y_j - j - Q - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(k) If
$$w^{-1} = -i - Q - y_i - y_j - j - P$$
— then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_i,i)$.

(l) If
$$w^{-1} = -Q - i - P - y_i - y_j - j$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(m) If
$$w^{-1} = -i - Q - y_i - y_j - P - j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(n) If
$$w^{-1} = -i - y_i - Q - y_j - P - j$$
 then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_i,i)$.

Thus if $P < y_i < Q < i < j < y_i$ then one of the following holds:

•
$$w^{-1} = -Q - P - i - y_i - y_j - j$$
 and $(wt)^{-1} = -Q - P - j - y_i - y_j - i$.

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(y_i, j), (i, y_j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

(Z1)
$$\Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -j - y_i - \text{ and } \\ (wt)^{-1} = -y_j - i - . \end{cases}$$

 $(Z2) \Leftrightarrow (no condition).$

$$(Z3) \Leftrightarrow (wt)^{-1} = -P - j - \text{ and } (wt)^{-1} = -P - y_i - .$$

3. Suppose $y_i < i < j < P < y_i < Q$.

(a) If
$$w^{-1} = -i - y_i - Q - P - y_j - j$$
 then (Y3) fails for $(a,b) = (j,y_j)$ and $(a',b') = (P,Q)$.

(b) If
$$w^{-1} = -i - y_i - Q - y_j - j - P$$
— then (Y3) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

(c) If
$$w^{-1} = -i - y_i - y_j - Q - j - P$$
— then (Y3) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

(d) If
$$w^{-1} = -i - y_i - y_j - Q - P - j$$
 then (Y3) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

(e) If
$$w^{-1} = -i - y_i - Q - y_j - P - j$$
 then (Y3) fails for $(a,b) = (j,y_j)$ and $(a',b') = (P,Q)$.

$$\text{(f) If } w^{-1} = -Q - i - y_i - y_j - j - P - \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$$

(g) If
$$w^{-1} = -i - Q - P - y_i - y_j - j$$
 then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (P, Q)$.

$$\text{(h) If } w^{-1} = - Q - i - y_i - y_j - P - j - \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$$

$$\text{(i) If } w^{-1} = -Q - i - y_i - P - y_j - j - \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$$

$$\text{(j) If } w^{-1} = -i - Q - y_i - P - y_j - j - \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$$

(k) If
$$w^{-1} = -Q - P - i - y_i - y_j - j$$
 then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (P, Q)$.

(1) If
$$w^{-1} = -i - Q - y_i - y_j - j - P$$
— then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (P, Q)$.

$$\text{(m) If } w^{-1} = -Q - i - P - y_i - y_j - j - \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$$

(n) If
$$w^{-1} = -i - Q - y_i - y_j - P - j$$
 then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (P, Q)$.

Thus if $y_i < i < j < P < y_j < Q$ then one of the following holds:

•
$$w^{-1} = -i - y_i - y_j - j - Q - P - \text{ and } (wt)^{-1} = -j - y_i - y_j - i - Q - P - .$$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(y_i, j), (i, y_j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(\mathrm{Z1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -j - y_i - \text{ and } \\ (wt)^{-1} = -y_j - i - . \end{cases}$$

 $(Z2) \Leftrightarrow (no condition).$

(Z3)
$$\Leftrightarrow$$
 $(wt)^{-1} = -i - Q - \text{and } (wt)^{-1} = -y_i - Q - .$

4. Suppose $P < y_i < i < j < Q < y_i$.

(a) If
$$w^{-1} = -Q - i - y_i - P - y_j - j$$
 then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(b) If
$$w^{-1} = -i - Q - y_i - P - y_j - j$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(c) If
$$w^{-1} = -Q - i - P - y_i - y_j - j$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

$$\text{(d) If } w^{-1} = -Q - i - y_i - y_j - j - P - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (j,y_j).$$

(e) If
$$w^{-1}=-i-y_i-Q-y_j-j-P$$
— then (Y3) fails for $(a,b)=(P,Q)$ and $(a',b')=(j,y_j)$.

(f) If
$$w^{-1} = -i - y_i - y_j - Q - j - P$$
 — then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

(g) If
$$w^{-1} = -i - y_i - y_j - Q - P - j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

(h) If
$$w^{-1} = -Q - i - y_i - y_j - P - j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

(i) If
$$w^{-1} = -i - y_i - y_j - j - Q - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

(j) If
$$w^{-1} = -i - Q - y_i - y_j - j - P$$
— then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (j,y_j)$.

(k) If
$$w^{-1} = -i - Q - y_i - y_j - P - j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

$$\text{(l) If } w^{-1} = -i - y_i - Q - y_j - P - j - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (j,y_j).$$

Thus if $P < y_i < i < j < Q < y_j$ then one of the following holds:

•
$$w^{-1} = -Q - P - i - y_i - y_j - j$$
 and $(wt)^{-1} = -Q - P - j - y_i - y_j - i$.

•
$$w^{-1} = -i - Q - P - y_i - y_j - j$$
 and $(wt)^{-1} = -j - Q - P - y_i - y_j - i$.

•
$$w^{-1} = -i - y_i - Q - P - y_j - j$$
 and $(wt)^{-1} = -j - y_i - Q - P - y_j - i$.

When (a,b) = (P,Q) and $(a',b') \in \operatorname{Cyc}^1(z) = \{(y_i,j),(i,y_j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(\mathrm{Z1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and} \\ (wt)^{-1} = -j - y_i - \text{ and} \\ (wt)^{-1} = -y_j - i - . \end{cases}$$

$$(\mathbf{Z2}) \Leftrightarrow (wt)^{-1} \neq -Q - y_i - P - \text{ and } (wt)^{-1} \neq -Q - j - P -.$$

$$(\mathbf{Z3}) \Leftrightarrow (wt)^{-1} = -P - y_j - .$$

5. Suppose $y_i < P < i < j < Q < y_i$.

(a) If
$$w^{-1} = -i - y_i - Q - y_j - j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

(b) If
$$w^{-1} = -i - y_i - y_j - Q - j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

(c) If
$$w^{-1} = -i - y_i - y_j - Q - P - j$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

(d) If
$$w^{-1} = -i - y_i - y_j - j - Q - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

(e) If
$$w^{-1} = -i - y_i - Q - y_j - P - j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

(f) If
$$w^{-1} = -Q - i - y_i - y_j - j - P$$
— then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (P, Q)$.

(g) If
$$w^{-1} = -i - Q - P - y_i - y_j - j$$
— then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (P, Q)$.

$$\text{(h) If } w^{-1} = -Q - i - y_i - y_j - P - j - \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$$

$$\text{(i) If } w^{-1} = \cdots Q \cdots i \cdots y_i \cdots P \cdots y_j \cdots j \cdots \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$$

- (j) If $w^{-1} = -i Q y_i P y_j j$ then (Y3) fails for $(a, b) = (y_i, i)$ and (a', b') = (P, Q).
- $\text{(k) If } w^{-1} = -Q P i y_i y_j j \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$
- $\text{(l) If } w^{-1} = -i Q y_i y_j j P \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$
- $\text{(m) If } w^{-1} = Q i P y_i y_j j \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$
- $\text{(n) If } w^{-1} = -i Q y_i y_j P j \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$

Thus if $y_i < P < i < j < Q < y_j$ then one of the following holds:

•
$$w^{-1} = -i - y_i - Q - P - y_j - j$$
 and $(wt)^{-1} = -j - y_i - Q - P - y_j - i$.

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(y_i, j), (i, y_j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(\mathrm{Z1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -j - y_i - \text{ and } \\ (wt)^{-1} = -y_j - i - . \end{cases}$$

- $(Z2) \Leftrightarrow (no condition).$
- $(Z3) \Leftrightarrow (wt)^{-1} = -P y_i \text{ and } (wt)^{-1} = -y_i Q .$
- 6. Suppose $P < Q < y_i < i < j < y_j$.
 - (a) If $w^{-1} = -Q i y_i y_j j P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_i, i)$.
 - (b) If $w^{-1} = -i y_i Q P y_j j$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_i, i)$.
 - (c) If $w^{-1} = -i y_i Q y_j j P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_i, i)$.
 - (d) If $w^{-1} = -i y_i y_j Q j P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_i, i)$.
 - (e) If $w^{-1} = -i Q P y_i y_j j$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_i, i)$.
 - (f) If $w^{-1} = -i y_i y_j Q P j$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_i, i)$.
 - (g) If $w^{-1} = -Q i y_i y_j P j$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_i, i)$.
 - (h) If $w^{-1} = -Q i y_i P y_j j$ then (Y3) fails for (a,b) = (P,Q) and $(a',b') = (y_i,i)$.
 - (i) If $w^{-1} = -i Q y_i P y_j j$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_i, i)$.
 - (j) If $w^{-1} = -i y_i y_j j Q P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_i, i)$.
 - (k) If $w^{-1} = -i Q y_i y_j j P$ then (Y3) fails for (a,b) = (P,Q) and $(a',b') = (y_i,i)$.
 - (l) If $w^{-1} = -Q i P y_i y_j j$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_i, i)$.
 - (m) If $w^{-1} = -i Q y_i y_j P j$ then (Y3) fails for (a,b) = (P,Q) and $(a',b') = (y_i,i)$.
 - (n) If $w^{-1} = -i y_i Q y_i P j$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_i, i)$.

Thus if $P < Q < y_i < i < j < y_i$ then one of the following holds:

•
$$w^{-1} = -Q - P - i - y_i - y_j - j$$
 and $(wt)^{-1} = -Q - P - j - y_i - y_j - i$.

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(y_i, j), (i, y_j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -j - y_i - \text{ and } \\ (wt)^{-1} = -y_j - i - . \end{cases}$$

- $(Z2) \Leftrightarrow (no condition).$
- $(Z3) \Leftrightarrow (wt)^{-1} = -P i \text{ and } (wt)^{-1} = -P y_i .$
- 7. Suppose $y_i < i < j < P < Q < y_i$.
 - (a) If $w^{-1} = -i y_i y_j Q j P$ then (Y2) fails for $(a, b) = (j, y_j)$ and (a', b') = (P, Q).
 - (b) If $w^{-1} = -i y_i y_j Q P j$ then (Y2) fails for $(a, b) = (j, y_j)$ and (a', b') = (P, Q).

(c) If
$$w^{-1} = -i - y_i - Q - y_j - P - j$$
 then (Y2) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

$$\text{(d) If } w^{-1} = -Q - i - y_i - y_j - j - P - \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$$

(e) If
$$w^{-1} = -i - Q - P - y_i - y_j - j$$
— then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (P, Q)$.

(f) If
$$w^{-1} = -Q - i - y_i - y_j - P - j$$
 then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (P, Q)$.

(g) If
$$w^{-1} = -Q - i - y_i - P - y_j - j$$
— then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (P, Q)$.

$$\text{(h) If } w^{-1}=-i-Q-y_i-P-y_j-j-\text{ then (Y3) fails for } (a,b)=(y_i,i) \text{ and } (a',b')=(P,Q).$$

(i) If
$$w^{-1} = -Q - P - i - y_i - y_j - j$$
 then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (P, Q)$.

(j) If
$$w^{-1} = -i - Q - y_i - y_j - j - P$$
— then (Y3) fails for $(a,b) = (y_i,i)$ and $(a',b') = (P,Q)$.

$$\text{(k) If } w^{-1} = -Q - i - P - y_i - y_j - j - \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$$

(l) If
$$w^{-1} = -i - Q - y_i - y_j - P - j$$
— then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (P, Q)$.

Thus if $y_i < i < j < P < Q < y_i$ then one of the following holds:

•
$$w^{-1} = -i - y_i - Q - y_j - j - P - \text{ and } (wt)^{-1} = -j - y_i - Q - y_j - i - P - .$$

•
$$w^{-1} = -i - y_i - y_j - j - Q - P - \text{ and } (wt)^{-1} = -j - y_i - y_j - i - Q - P - .$$

•
$$w^{-1} = -i - y_i - Q - P - y_j - j$$
 and $(wt)^{-1} = -j - y_i - Q - P - y_j - i$.

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(y_i, j), (i, y_j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

(Z1)
$$\Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -j - y_i - \text{ and } \\ (wt)^{-1} = -y_j - i - . \end{cases}$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -y_i - P - i - \text{ and } (wt)^{-1} \neq -y_i - Q - i - .$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -y_i - Q - .$$

8. Suppose $y_i < i < P < j < y_i < Q$.

(a) If
$$w^{-1} = -i - y_i - Q - P - y_j - j$$
 then (T) fails.

(b) If
$$w^{-1} = -i - Q - P - y_i - y_j - j$$
 then (T) fails.

(c) If
$$w^{-1} = -i - y_i - y_j - Q - P - j$$
 then (T) fails.

(d) If
$$w^{-1} = -Q - i - y_i - y_j - P - j$$
 then (T) fails.

(e) If
$$w^{-1} = -Q - i - y_i - P - y_j - j$$
 then (T) fails.

(f) If
$$w^{-1} = -i - Q - y_i - P - y_i - j$$
— then (T) fails.

(g) If
$$w^{-1} = -Q - i - P - y_i - y_j - j$$
 then (T) fails.

(h) If
$$w^{-1} = -i - Q - y_i - y_j - P - j$$
 then (T) fails.

(i) If
$$w^{-1} = -i - y_i - Q - y_j - P - j$$
 then (T) fails.

(j) If
$$w^{-1} = -i - y_i - Q - y_j - j - P$$
 then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

(k) If
$$w^{-1} = -i - y_i - y_j - Q - j - P$$
 then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

(l) If
$$w^{-1} = -Q - i - y_i - y_j - j - P$$
— then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (P, Q)$.

(m) If
$$w^{-1} = -Q - P - i - y_i - j$$
 then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (P, Q)$.

(n) If
$$w^{-1} = -i - Q - y_i - y_j - j - P$$
— then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (P, Q)$.

Thus if $y_i < i < P < j < y_j < Q$ then one of the following holds:

•
$$w^{-1} = -i - y_i - y_j - j - Q - P - \text{ and } (wt)^{-1} = -j - y_i - y_j - i - Q - P - .$$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(y_i, j), (i, y_j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -j - y_i - \text{ and } \\ (wt)^{-1} = -y_i - i - . \end{cases}$$

 $(Z2) \Leftrightarrow (no condition).$

$$(Z3) \Leftrightarrow (wt)^{-1} = -i - Q - \text{ and } (wt)^{-1} = -y_i - Q - .$$

9. Suppose $y_i < P < i < j < y_i < Q$.

(a) If
$$w^{-1} = -i - y_i - Q - y_j - j - P$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

(b) If
$$w^{-1} = -i - y_i - y_j - Q - j - P$$
 then (Y2) fails for $(a,b) = (P,Q)$ and $(a',b') = (j,y_j)$.

(c) If
$$w^{-1} = -i - y_i - Q - y_j - P - j$$
 then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

$$\text{(d) If } w^{-1} = -Q - i - y_i - y_j - j - P - \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$$

(e) If
$$w^{-1} = -i - Q - P - y_i - y_j - j$$
— then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (P, Q)$.

$$\text{(f) If } w^{-1} = -Q - i - y_i - y_j - P - j - \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$$

(g) If
$$w^{-1} = -Q - i - y_i - P - y_j - j$$
— then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (P, Q)$.

$$\text{(h) If } w^{-1}=-i-Q-y_i-P-y_j-j-\text{ then (Y3) fails for } (a,b)=(y_i,i) \text{ and } (a',b')=(P,Q).$$

(i) If
$$w^{-1} = -Q - P - i - y_i - y_j - j$$
 then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (P, Q)$.

(j) If
$$w^{-1} = -i - Q - y_i - y_j - j - P$$
— then (Y3) fails for $(a,b) = (y_i,i)$ and $(a',b') = (P,Q)$.

$$\text{(k) If } w^{-1} = - Q - i - P - y_i - y_j - j - \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$$

$$\text{(l) If } w^{-1} = -i - Q - y_i - y_j - P - j - \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$$

Thus if $y_i < P < i < j < y_j < Q$ then one of the following holds:

•
$$w^{-1} = -i - y_i - y_j - Q - P - j$$
 and $(wt)^{-1} = -j - y_i - y_j - Q - P - i$.

•
$$w^{-1} = -i - y_i - y_j - j - Q - P - \text{ and } (wt)^{-1} = -j - y_i - y_j - i - Q - P - .$$

•
$$w^{-1} = -i - y_i - Q - P - y_j - j$$
 and $(wt)^{-1} = -j - y_i - Q - P - y_j - i$.

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(y_i, j), (i, y_j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -j - y_i - \text{ and } \\ (wt)^{-1} = -y_j - i - . \end{cases}$$

$$(\mathbf{Z2}) \Leftrightarrow (wt)^{-1} \neq \cdots Q - i - P - \text{ and } (wt)^{-1} \neq \cdots Q - y_j - P - .$$

$$(\mathbf{Z3}) \Leftrightarrow (wt)^{-1} = - y_i - Q -.$$

10. Suppose $y_i < i < j < y_j < P < Q$.

$$\text{(a) If } w^{-1}=-i-y_i-Q-P-y_j-j-\text{ then (Y3) fails for } (a,b)=(j,y_j) \text{ and } (a',b')=(P,Q).$$

$$\text{(b) If } w^{-1}=-i-y_i-Q-y_j-j-P- \text{ then (Y3) fails for } (a,b)=(j,y_j) \text{ and } (a',b')=(P,Q).$$

(c) If
$$w^{-1} = -i - y_i - y_j - Q - j - P$$
— then (Y3) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

(d) If
$$w^{-1} = -i - y_i - y_j - Q - P - j$$
 then (Y3) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

$$\text{(e) If } w^{-1}=-i-y_i-Q-y_j-P-j-\text{ then (Y3) fails for } (a,b)=(j,y_j) \text{ and } (a',b')=(P,Q).$$

(f) If
$$w^{-1} = -Q - i - y_i - y_j - j - P$$
— then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (P, Q)$.

(g) If
$$w^{-1} = -i - Q - P - y_i - y_j - j$$
— then (Y3) fails for $(a,b) = (y_i,i)$ and $(a',b') = (P,Q)$.

$$\text{(h) If } w^{-1} = - Q - i - y_i - y_j - P - j - \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$$

(i) If
$$w^{-1} = -Q - i - y_i - P - y_j - j$$
 then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (P, Q)$.

$$(\mathbf{j}) \ \text{ If } w^{-1} = --i - Q - y_i - P - y_j - j - \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$$

$$\text{(k) If } w^{-1} = - Q - P - i - y_i - y_j - j - \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$$

$$\text{(l) If } w^{-1} = -i - Q - y_i - y_j - j - P - \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$$

(m) If
$$w^{-1} = -Q - i - P - y_i - y_j - j$$
 then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (P, Q)$.

(n) If
$$w^{-1} = -i - Q - y_i - y_j - P - j$$
 then (Y3) fails for $(a,b) = (y_i,i)$ and $(a',b') = (P,Q)$.

Thus if $y_i < i < j < y_j < P < Q$ then one of the following holds:

$$\bullet \ w^{-1} = -i - y_i - y_j - j - Q - P - \ \text{and} \ (wt)^{-1} = -j - y_i - y_j - i - Q - P -.$$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(y_i, j), (i, y_j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(\mathrm{Z1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -j - y_i - \text{ and } \\ (wt)^{-1} = -y_j - i - . \end{cases}$$

 $(Z2) \Leftrightarrow (\text{no condition}).$

$$(Z3) \Leftrightarrow (wt)^{-1} = -i - Q - \text{ and } (wt)^{-1} = -y_i - Q - .$$

11. Suppose $P < y_i < i < j < y_j < Q$.

(a) If
$$w^{-1} = -i - y_i - Q - y_j - j - P$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

(b) If
$$w^{-1} = -i - y_i - y_j - Q - j - P$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

(c) If
$$w^{-1} = -i - y_i - Q - y_j - P - j$$
 then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

(d) If
$$w^{-1} = -Q - i - y_i - y_j - j - P$$
— then (Y2) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_i,i)$.

$$\text{(e) If } w^{-1} = -Q - i - y_i - y_j - P - j - \text{ then (Y2) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_i,i).$$

(f) If
$$w^{-1} = -Q - i - y_i - P - y_j - j$$
 then (Y2) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_i,i)$.

(g) If
$$w^{-1} = -i - Q - y_i - P - y_j - j$$
 then (Y2) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_i,i)$.

(h) If
$$w^{-1} = -i - Q - y_i - y_j - j - P$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(i) If
$$w^{-1} = -Q - i - P - y_i - y_j - j$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(j) If
$$w^{-1} = -i - Q - y_i - y_j - P - j$$
— then (Y2) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_i,i)$.

Thus if $P < y_i < i < j < y_j < Q$ then one of the following holds:

•
$$w^{-1} = -i - y_i - y_j - j - Q - P - \text{ and } (wt)^{-1} = -j - y_i - y_j - i - Q - P - .$$

•
$$w^{-1} = -i - Q - P - y_i - y_j - j$$
 and $(wt)^{-1} = -j - Q - P - y_i - y_j - i$.

•
$$w^{-1} = -i - y_i - y_j - Q - P - j$$
 and $(wt)^{-1} = -j - y_i - y_j - Q - P - i$

•
$$w^{-1} = -Q - P - i - y_i - y_i - j$$
 and $(wt)^{-1} = -Q - P - j - y_i - y_i - i$.

$$\bullet \ w^{-1} = -i - y_i - Q - P - y_j - j - \ \text{and} \ (wt)^{-1} = -j - y_i - Q - P - y_j - i - .$$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(y_i, j), (i, y_j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(\mathrm{Z1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -j - y_i - \text{ and } \\ (wt)^{-1} = -y_j - i - . \end{cases}$$

$$(wt)^{-1} = -y_j - i - .$$

$$(Z2) \Leftrightarrow \begin{cases} (wt)^{-1} \neq -Q - i - P - \text{ and } (wt)^{-1} \neq -Q - y_j - P - \text{ and } \\ (wt)^{-1} \neq -Q - y_i - P - \text{ and } (wt)^{-1} \neq -Q - j - P - . \end{cases}$$

 $(Z3) \Leftrightarrow (no condition).$

12. Suppose $y_i < P < Q < i < j < y_i$.

(a) If
$$w^{-1} = -i - Q - P - y_i - y_j - j$$
 then (Y2) fails for $(a,b) = (y_i,i)$ and $(a',b') = (P,Q)$.

$$\text{(b) If } w^{-1}=-i-Q-y_i-P-y_j-j-\text{ then (Y2) fails for } (a,b)=(y_i,i) \text{ and } (a',b')=(P,Q).$$

$$\text{(c) If } w^{-1} = -Q - i - P - y_i - y_j - j - \text{ then (Y2) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$$

$$\text{(d) If } w^{-1} = -Q - i - y_i - y_j - j - P - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (j,y_j).$$

- (e) If $w^{-1} = -i y_i Q y_i j P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (j, y_j)$.
- $\text{(f) If } w^{-1} = -i y_i y_j Q j P \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (j,y_j).$
- (g) If $w^{-1} = -i y_i y_j Q P j$ then (Y3) fails for (a,b) = (P,Q) and $(a',b') = (j,y_j)$.
- (h) If $w^{-1} = -Q i y_i y_j P j$ then (Y3) fails for (a,b) = (P,Q) and $(a',b') = (j,y_j)$.
- (i) If $w^{-1} = -i y_i y_j j Q P$ then (Y3) fails for (a,b) = (P,Q) and $(a',b') = (j,y_j)$.
- (j) If $w^{-1} = -i Q y_i y_j j P$ then (Y3) fails for (a,b) = (P,Q) and $(a',b') = (j,y_j)$.
- (k) If $w^{-1} = -i Q y_i y_j P j$ then (Y3) fails for (a,b) = (P,Q) and $(a',b') = (j,y_j)$.
- (l) If $w^{-1} = -i y_i Q y_j P j$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (j, y_j)$.

Thus if $y_i < P < Q < i < j < y_i$ then one of the following holds:

- $w^{-1} = -Q P i y_i y_j j$ and $(wt)^{-1} = -Q P j y_i y_j i$.
- $\bullet \ w^{-1} = -Q i y_i P y_j j \text{ and } (wt)^{-1} = -Q j y_i P y_j i .$
- $\bullet \ \ w^{-1} = -i y_i Q P y_j j \ \ \text{and} \ \ (wt)^{-1} = -j y_i Q P y_j i .$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(y_i, j), (i, y_j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(\mathrm{Z1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -j - y_i - \text{ and } \\ (wt)^{-1} = -y_j - i - . \end{cases}$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -j - P - y_i - \text{ and } (wt)^{-1} \neq -j - Q - y_i - .$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -P - y_i - .$$

- 13. It cannot happen that $y_i < i < P < j < Q < y_i$ since:
 - (a) If $w^{-1} = -i y_i Q P y_j j$ then (T) fails.
 - (b) If $w^{-1} = -i Q P y_i y_j j$ then (T) fails.
 - (c) If $w^{-1} = -i y_i y_j Q P j$ then (T) fails.
 - (d) If $w^{-1} = -Q i y_i y_j P j$ then (T) fails.
 - (e) If $w^{-1} = -Q i y_i P y_j j$ then (T) fails.
 - (f) If $w^{-1} = -i Q y_i P y_j j$ then (T) fails.
 - (g) If $w^{-1} = -Q i P y_i y_j j$ then (T) fails.
 - (h) If $w^{-1} = -i Q y_i y_j P j$ then (T) fails.
 - (i) If $w^{-1} = -i y_i Q y_j P j$ then (T) fails.
 - (j) If $w^{-1} = -i y_i Q y_j j P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (j, y_j)$.
 - (k) If $w^{-1} = -i y_i y_j Q j P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (j, y_j)$.
 - (1) If $w^{-1} = -i y_i y_i j Q P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (j, y_j)$.
 - (m) If $w^{-1} = -Q i y_i y_j j P$ then (Y3) fails for $(a, b) = (y_i, i)$ and (a', b') = (P, Q).
 - (n) If $w^{-1} = -Q P i y_i y_j j$ then (Y3) fails for $(a, b) = (y_i, i)$ and (a', b') = (P, Q).
 - $\text{(o) If } w^{-1}=-i-Q-y_i-y_j-j-P-\text{ then (Y3) fails for } (a,b)=(y_i,i) \text{ and } (a',b')=(P,Q).$
- 14. It cannot happen that $y_i < i < P < Q < j < y_j$ since:
 - (a) If $w^{-1} = -i y_i Q P y_i j$ then (T) fails.
 - (b) If $w^{-1} = -i y_i Q y_j j P$ then (T) fails.
 - (c) If $w^{-1} = -i y_i y_j Q j P$ then (T) fails.
 - (d) If $w^{-1} = -i Q P y_i y_j j$ then (T) fails.
 - (e) If $w^{-1} = -i y_i y_j Q P j$ then (T) fails.
 - (f) If $w^{-1} = -Q i y_i y_j P j$ then (T) fails.

- (g) If $w^{-1} = -Q i y_i P y_j j$ then (T) fails.
- (h) If $w^{-1} = -i Q y_i P y_j j$ then (T) fails.
- (i) If $w^{-1} = -i Q y_i y_j j P$ then (T) fails.
- (j) If $w^{-1} = -Q i P y_i y_j j$ then (T) fails.
- (k) If $w^{-1} = -i Q y_i y_j P j$ then (T) fails.
- (1) If $w^{-1} = -i y_i Q y_j P j$ then (T) fails.
- (m) If $w^{-1} = -i y_i y_i j Q P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (j, y_j)$.
- (n) If $w^{-1} = -Q i y_i y_j j P$ then (Y3) fails for $(a, b) = (y_i, i)$ and (a', b') = (P, Q).
- (o) If $w^{-1} = -Q P i y_i y_j j$ then (Y3) fails for $(a, b) = (y_i, i)$ and (a', b') = (P, Q).
- 15. It cannot happen that $y_i < P < i < Q < j < y_j$ since:
 - (a) If $w^{-1} = -i y_i Q P y_i j$ then (T) fails.
 - (b) If $w^{-1} = -i y_i Q y_j j P$ then (T) fails.
 - (c) If $w^{-1} = -i y_i y_j Q j P$ then (T) fails.
 - (d) If $w^{-1} = -i Q P y_i y_j j$ then (T) fails.
 - (e) If $w^{-1} = -i y_i y_j Q P j$ then (T) fails.
 - (f) If $w^{-1} = -i Q y_i P y_j j$ then (T) fails.
 - (g) If $w^{-1} = -i Q y_i y_j j P$ then (T) fails.
 - (h) If $w^{-1} = -i Q y_i y_j P j$ then (T) fails.
 - (i) If $w^{-1} = -i y_i Q y_j P j$ then (T) fails.
 - (j) If $w^{-1} = -i y_i y_j j Q P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (j, y_j)$.
 - (k) If $w^{-1} = -Q i y_i y_i j P$ then (Y3) fails for $(a,b) = (y_i,i)$ and (a',b') = (P,Q).
 - $\text{(l) If } w^{-1} = Q i y_i y_j P j \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$
 - (m) If $w^{-1} = -Q i y_i P y_i j$ then (Y3) fails for $(a, b) = (y_i, i)$ and (a', b') = (P, Q).
 - $\text{(n) If } w^{-1} = Q P i y_i y_j j \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$
 - $\text{(o) If } w^{-1} = Q i P y_i y_j j \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$

We conclude that properties (Z1)-(Z3) hold whenever (a, b), (a', b') are as in cases (i) or (ii) and $y_i < i < j < y_j$.

Subcase (iii) 9.3

Suppose i' and j' are integers such that $0 \neq i - i' = j - j' \in n\mathbb{Z}$, so that w(i) - w(i') = w(j) - w(j') = i - i'.

- 1. Suppose $y_{i'} < i' < j' < y_i < y_{j'} < i < j < y_j$.
 - (a) If $w^{-1} = -i' y_{i'} i y_i y_{j'} y_i j' j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (y_i, i)$.
 - (b) If $w^{-1} = -i' y_{i'} y_{j'} i y_i y_j j' j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (y_i, i)$.
 - (c) If $w^{-1} = -i' y_{i'} i y_{j'} y_i y_j j' j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (y_i, i)$.
 - (d) If $w^{-1} = -i' y_{i'} i y_i y_{j'} j' y_j j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (y_i, i)$.
 - (e) If $w^{-1} = -i' y_{i'} i y_{i'} y_i j' y_i j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (y_i, i)$.
 - (f) If $w^{-1} = -i' y_{i'} i y_{j'} j' y_i j then$ (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (y_i, i)$.
 - (g) If $w^{-1} = -i' y_{i'} y_{j'} i y_i j' y_j j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (y_i, i)$.
 - (h) If $w^{-1} = -i' y_{i'} y_{j'} i j' y_i y_j j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (y_i, i)$.
 - (i) If $w^{-1} = -i' i y_{i'} y_i y_{j'} y_j j' j$ then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.
 - (j) If $w^{-1} = -i' i y_{i'} y_{i'} y_i y_j j' j$ then (Y3) fails for $(a,b) = (y_{i'},i')$ and $(a',b') = (y_i,i)$. (k) If $w^{-1} = -i' - i - y_{i'} - y_{i'} - y_i - j' - y_j - j$ then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.

 - $\text{(1) If } w^{-1} = -i' i y_{i'} y_{i'} j' y_i j \text{then (Y3) fails for } (a,b) = (y_{i'},i') \text{ and } (a',b') = (y_i,i).$

(m) If $w^{-1} = -i' - i - y_{i'} - y_i - y_{j'} - j' - y_j - j$ — then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.

Thus if $y_{i'} < i' < j' < y_i < y_{j'} < i < j < y_j$ then one of the following holds:

•
$$w^{-1} = -i' - y_{i'} - y_{j'} - j' - i - y_i - y_j - j$$
 and $(wt)^{-1} = -j' - y_{i'} - y_{j'} - i' - j - y_i - y_j - i$.

When $(a, b) \in \operatorname{Cyc}^1(z) = \{(y_i, j), (i, y_j)\}$ and $(a', b') \in \{(y_{i'}, j'), (i', y_{j'})\}$, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -j - y_i - \text{ and } \\ (wt)^{-1} = -j' - y_{i'} - \text{ and } \\ (wt)^{-1} = -y_j - i - \text{ and } \\ (wt)^{-1} = -y_{j'} - i' - . \end{cases}$$

 $(Z2) \Leftrightarrow (\text{no condition}).$

(Z3)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -i' - j - \text{ and } \\ (wt)^{-1} = -i' - y_j - \text{ and } \\ (wt)^{-1} = -y_{i'} - j - \text{ and } \\ (wt)^{-1} = -y_{i'} - y_j - . \end{cases}$$

2. Suppose $y_{i'} < y_i < i' < j' < i < j < y_{j'} < y_j$.

$$\text{(a) If } w^{-1} = -i' - y_{i'} - i - y_i - y_{j'} - y_j - j' - j - \text{ then (Y3) fails for } (a,b) = (j',y_{j'}) \text{ and } (a',b') = (j,y_j).$$

(b) If
$$w^{-1} = -i' - y_{i'} - y_{j'} - i - y_i - y_j - j' - j$$
 then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (j', y_{j'})$.

(c) If
$$w^{-1} = -i' - y_{i'} - i - y_{j'} - y_i - y_j - j' - j$$
 then (Y3) fails for $(a,b) = (y_i,i)$ and $(a',b') = (j',y_{j'})$.

(d) If
$$w^{-1} = -i' - y_{i'} - i - y_{j'} - y_i - j' - y_j - j$$
— then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (j', y_{j'})$.

(e) If
$$w^{-1} = -i' - y_{i'} - i - y_{j'} - j' - y_i - y_j - j$$
 then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (j', y_{j'})$.

(f) If
$$w^{-1} = -i' - y_{i'} - y_{j'} - i - y_i - j' - y_j - j$$
 then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (j', y_{j'})$.

(g) If
$$w^{-1} = -i' - y_{i'} - y_{j'} - j' - i - y_i - y_j - j$$
 then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (j', y_{j'})$.

(h) If
$$w^{-1} = -i' - y_{i'} - y_{j'} - i - j' - y_i - y_j - j$$
 then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (j', y_{j'})$.

(i) If
$$w^{-1} = -i' - i - y_{i'} - y_i - y_{j'} - y_j - j' - j$$
 then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.

(j) If
$$w^{-1} = -i' - i - y_{i'} - y_{j'} - y_i - y_j - j' - j$$
 then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.

(k) If
$$w^{-1} = -i' - i - y_{i'} - y_{j'} - y_i - j' - y_j - j$$
 then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.

(l) If
$$w^{-1} = -i' - i - y_{i'} - y_{j'} - j' - y_i - y_j - j$$
— then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.

$$\text{(m) If } w^{-1} = -i' - i - y_{i'} - y_i - y_{j'} - j' - y_j - j - \text{ then (Y3) fails for } (a,b) = (y_{i'},i') \text{ and } (a',b') = (y_i,i).$$

Thus if $y_{i'} < y_i < i' < j' < i < j < y_{j'} < y_j$ then one of the following holds:

$$\bullet \ w^{-1} = -i' - y_{i'} - i - y_i - y_{j'} - j' - y_j - j - \text{ and } (wt)^{-1} = -j' - y_{i'} - j - y_i - y_{j'} - i' - y_j - i - .$$

When $(a, b) \in \operatorname{Cyc}^1(z) = \{(y_i, j), (i, y_j)\}$ and $(a', b') \in \{(y_{i'}, j'), (i', y_{j'})\}$, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases}
(wt)^{-1} = -j - y_i - \text{ and} \\
(wt)^{-1} = -j' - y_{i'} - \text{ and} \\
(wt)^{-1} = -y_j - i - \text{ and} \\
(wt)^{-1} = -y_{j'} - i' - .
\end{cases}$$

 $(Z2) \Leftrightarrow (no condition).$

(Z3)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -i' - y_j - \text{ and } \\ (wt)^{-1} = -y_i - y_{j'} - \text{ and } \\ (wt)^{-1} = -y_{i'} - j - \text{ and } \\ (wt)^{-1} = -y_{i'} - y_j - . \end{cases}$$

3. Suppose $y_{i'} < i' < j' < y_{j'} < y_i < i < j < y_j$.

```
(a) If w^{-1} = -i' - y_{i'} - i - y_i - y_{j'} - y_j - j' - j then (Y3) fails for (a, b) = (j', y_{j'}) and (a', b') = (y_i, i).
```

(b) If
$$w^{-1} = -i' - y_{i'} - y_{j'} - i - y_i - y_j - j' - j$$
 then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (y_i, i)$.

(c) If
$$w^{-1} = -i' - y_{i'} - i - y_{j'} - y_i - y_j - j' - j$$
 then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (y_i, i)$.

(d) If
$$w^{-1} = -i' - y_{i'} - i - y_i - y_{j'} - j' - y_j - j$$
 then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (y_i, i)$.

(e) If
$$w^{-1} = -i' - y_{i'} - i - y_{j'} - y_i - j' - y_j - j$$
— then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (y_i, i)$.

$$\text{(f) If } w^{-1} = -i' - y_{i'} - i - y_{j'} - j' - y_i - y_j - j - \text{ then (Y3) fails for } (a,b) = (j',y_{j'}) \text{ and } (a',b') = (y_i,i).$$

(g) If
$$w^{-1} = -i' - y_{i'} - y_{j'} - i - y_i - j' - y_j - j$$
 then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (y_i, i)$.

$$\text{(h) If } w^{-1} = -i' - y_{i'} - y_{j'} - i - j' - y_i - y_j - j - \text{ then (Y3) fails for } (a,b) = (j',y_{j'}) \text{ and } (a',b') = (y_i,i).$$

(i) If
$$w^{-1} = -i' - i - y_{i'} - y_i - y_{j'} - y_j - j' - j$$
 then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.

(j) If
$$w^{-1} = -i' - i - y_{i'} - y_{j'} - y_i - y_j - j' - j$$
 then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.

(k) If
$$w^{-1} = -i' - i - y_{i'} - y_{j'} - y_i - j' - y_j - j$$
 then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.

(l) If
$$w^{-1} = -i' - i - y_{i'} - y_{j'} - j' - y_i - y_j - j$$
— then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.

(m) If
$$w^{-1} = -i' - i - y_{i'} - y_i - y_{j'} - j' - y_j - j$$
 then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.

Thus if $y_{i'} < i' < j' < y_{i'} < y_i < i < j < y_j$ then one of the following holds:

•
$$w^{-1} = -i' - y_{i'} - y_{j'} - j' - i - y_i - y_j - j$$
 and $(wt)^{-1} = -j' - y_{i'} - y_{j'} - i' - j - y_i - y_j - i$.

When $(a, b) \in \operatorname{Cyc}^1(z) = \{(y_i, j), (i, y_j)\}$ and $(a', b') \in \{(y_{i'}, j'), (i', y_{j'})\}$, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -j - y_i - \text{ and } \\ (wt)^{-1} = -j' - y_{i'} - \text{ and } \\ (wt)^{-1} = -y_j - i - \text{ and } \\ (wt)^{-1} = -y_{j'} - i' - . \end{cases}$$

 $(Z2) \Leftrightarrow (\text{no condition}).$

(Z3)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -i' - j - \text{ and } \\ (wt)^{-1} = -i' - y_j - \text{ and } \\ (wt)^{-1} = -y_{i'} - j - \text{ and } \\ (wt)^{-1} = -y_{i'} - y_j - . \end{cases}$$

4. Suppose $y_{i'} < i' < j' < y_i < i < j < y_{j'} < y_j$.

(a) If
$$w^{-1} = -i' - y_{i'} - i - y_{j'} - y_i - j' - y_j - j$$
— then (Y2) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (y_i, i)$.

(b) If
$$w^{-1} = -i' - y_{i'} - y_{j'} - i - y_i - j' - y_j - j$$
 then (Y2) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (y_i, i)$.

(c) If
$$w^{-1} = -i' - y_{i'} - y_{j'} - i - j' - y_i - j$$
 then (Y2) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (y_i, i)$.

(d) If
$$w^{-1} = -i' - y_{i'} - i - y_i - y_{j'} - y_j - j' - j$$
 then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (j, y_j)$.

(e) If
$$w^{-1} = -i' - y_{i'} - y_{j'} - i - y_i - y_j - j' - j$$
 then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (j, y_j)$.

(f) If
$$w^{-1} = -i' - y_{i'} - i - y_{j'} - y_i - y_j - j' - j$$
 then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (j, y_j)$.

(g) If
$$w^{-1} = -i' - i - y_{i'} - y_i - y_{j'} - y_j - j' - j$$
 then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.

(h) If
$$w^{-1} = -i' - i - y_{i'} - y_{j'} - y_i - y_j - j' - j$$
 then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.

(i) If
$$w^{-1} = -i' - i - y_{i'} - y_{j'} - y_i - j' - y_j - j$$
 then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.

(j) If
$$w^{-1} = -i' - i - y_{i'} - y_{j'} - j' - y_i - y_j - j$$
— then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.

$$\text{(k) If } w^{-1} = -i' - i - y_{i'} - y_i - y_{j'} - j' - y_j - j - \text{ then (Y3) fails for } (a,b) = (y_{i'},i') \text{ and } (a',b') = (y_i,i).$$

Thus if $y_{i'} < i' < j' < y_i < i < j < y_{i'} < y_i$ then one of the following holds:

$$\bullet \ w^{-1} = -i' - y_{i'} - y_{i'} - j' - i - y_i - y_j - j - \text{ and } (wt)^{-1} = -j' - y_{i'} - y_{j'} - i' - j - y_i - y_j - i - .$$

•
$$w^{-1} = -i' - y_{i'} - i - y_{j'} - j' - y_i - y_j - j$$
 and $(wt)^{-1} = -j' - y_{i'} - j - y_{j'} - i' - y_i - y_j - i$.

•
$$w^{-1} = -i' - y_{i'} - i - y_i - y_{j'} - j' - y_j - j$$
 and $(wt)^{-1} = -j' - y_{i'} - j - y_i - y_{j'} - i' - y_j - i$.

When $(a, b) \in \operatorname{Cyc}^1(z) = \{(y_i, j), (i, y_j)\}$ and $(a', b') \in \{(y_{i'}, j'), (i', y_{j'})\}$, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -j - y_i - \text{ and } \\ (wt)^{-1} = -j' - y_{i'} - \text{ and } \\ (wt)^{-1} = -y_j - i - \text{ and } \\ (wt)^{-1} = -y_{j'} - i' - . \end{cases}$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -y_{j'} - y_i - i' - \text{ and } (wt)^{-1} \neq -y_{j'} - j - i' - .$$

$$(\text{Z3}) \Leftrightarrow \begin{cases} (wt)^{-1} = -i' - y_j - \text{ and } \\ (wt)^{-1} = -y_{i'} - j - \text{ and } \\ (wt)^{-1} = -y_{i'} - y_j - . \end{cases}$$

5. Suppose $y_{i'} < i' < j' < y_i < i < y_{j'} < j < y_j$.

(a) If
$$w^{-1} = -i' - i - y_{i'} - y_i - y_{j'} - y_j - j' - j$$
— then (T) fails.

(b) If
$$w^{-1} = -i' - y_{i'} - i - y_i - y_{j'} - y_j - j' - j$$
— then (T) fails.

(c) If
$$w^{-1} = -i' - i - y_{i'} - y_{i'} - y_i - y_j - j' - j$$
 then (T) fails.

(d) If
$$w^{-1} = -i' - y_{i'} - i - y_{j'} - y_i - y_j - j' - j$$
— then (T) fails.

(e) If
$$w^{-1} = -i' - i - y_{i'} - y_{j'} - y_i - j' - y_j - j$$
— then (T) fails.

(f) If
$$w^{-1} = -i' - i - y_{i'} - y_{j'} - j' - y_i - y_j - j$$
— then (T) fails.

(g) If
$$w^{-1} = -i' - i - y_{i'} - y_i - y_{i'} - j' - y_i - j$$
 then (T) fails.

(h) If
$$w^{-1} = -i' - y_{i'} - i - y_i - y_{i'} - j' - y_i - j$$
 then (T) fails.

(i) If
$$w^{-1} = -i' - y_{i'} - i - y_{i'} - y_i - j' - y_i - j$$
 then (T) fails.

(j) If
$$w^{-1} = -i' - y_{i'} - i - y_{j'} - j' - y_i - y_j - j$$
— then (T) fails.

(k) If
$$w^{-1} = -i' - y_{i'} - y_{j'} - i - y_i - j' - y_j - j$$
 then (Y2) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (y_i, i)$.

(l) If
$$w^{-1} = -i' - y_{i'} - y_{j'} - i - j' - y_i - y_j - j$$
 then (Y2) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (y_i, i)$.

(m) If
$$w^{-1} = -i' - y_{i'} - y_{j'} - i - y_i - j' - j$$
 then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (j, y_j)$.

Thus if $y_{i'} < i' < j' < y_i < i < y_{i'} < j < y_i$ then one of the following holds:

•
$$w^{-1} = -i' - y_{i'} - y_{i'} - j' - i - y_i - y_i - j$$
 and $(wt)^{-1} = -j' - y_{i'} - y_{i'} - i' - j - y_i - y_i - i$.

When $(a,b) \in \operatorname{Cyc}^1(z) = \{(y_i,j),(i,y_j)\}$ and $(a',b') \in \{(y_{i'},j'),(i',y_{j'})\}$, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -j - y_i - \text{and} \\ (wt)^{-1} = -j' - y_{i'} - \text{and} \\ (wt)^{-1} = -y_j - i - \text{and} \\ (wt)^{-1} = -y_{j'} - i' - . \end{cases}$$

 $(Z2) \Leftrightarrow (no condition).$

(Z3)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -i' - j - \text{ and } \\ (wt)^{-1} = -i' - y_j - \text{ and } \\ (wt)^{-1} = -y_{i'} - j - \text{ and } \\ (wt)^{-1} = -y_{i'} - y_j - . \end{cases}$$

6. Suppose $y_{i'} < y_i < i' < j' < y_{i'} < i < j < y_i$.

(a) If
$$w^{-1} = -i' - y_{i'} - i - y_{j'} - y_i - j' - y_j - j$$
 then (Y2) fails for $(a, b) = (y_i, i)$ and $(a', b') = (j', y_{j'})$.

(b) If
$$w^{-1} = -i' - y_{i'} - i - y_{j'} - j' - y_i - y_j - j$$
 then (Y2) fails for $(a, b) = (y_i, i)$ and $(a', b') = (j', y_{j'})$.

(c) If
$$w^{-1} = -i' - y_{i'} - y_{j'} - i - j' - y_i - y_j - j$$
 then (Y2) fails for $(a, b) = (y_i, i)$ and $(a', b') = (j', y_{j'})$.

$$\text{(d) If } w^{-1} = -i' - y_{i'} - i - y_i - y_{j'} - y_j - j' - j - \text{ then (Y3) fails for } (a,b) = (j',y_{j'}) \text{ and } (a',b') = (j,y_j).$$

(e) If
$$w^{-1} = -i' - y_{i'} - y_{j'} - i - y_i - y_j - j' - j$$
 then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (j, y_j)$.

(f) If
$$w^{-1} = -i' - y_{i'} - i - y_{j'} - y_i - y_j - j' - j$$
 then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (j, y_j)$.

(g) If
$$w^{-1} = -i' - i - y_{i'} - y_i - y_{j'} - y_j - j' - j$$
 then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.

(h) If
$$w^{-1} = -i' - i - y_{i'} - y_{i'} - y_i - y_i - j' - j$$
 then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.

(i) If
$$w^{-1} = -i' - i - y_{i'} - y_{j'} - y_i - j' - y_j - j$$
— then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.

(j) If
$$w^{-1} = -i' - i - y_{i'} - y_{j'} - j' - y_i - y_j - j$$
— then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.

$$\text{(k) If } w^{-1} = -i' - i - y_{i'} - y_i - y_{j'} - j' - y_j - j - \text{ then (Y3) fails for } (a,b) = (y_{i'},i') \text{ and } (a',b') = (y_i,i).$$

Thus if $y_{i'} < y_i < i' < j' < y_{i'} < i < j < y_i$ then one of the following holds:

$$\bullet \ w^{-1} = -i' - y_{i'} - y_{j'} - j' - i - y_i - y_j - j - \text{ and } (wt)^{-1} = -j' - y_{i'} - y_{j'} - i' - j - y_i - y_j - i - .$$

•
$$w^{-1} = -i' - y_{i'} - y_{j'} - i - y_i - j' - y_j - j$$
 and $(wt)^{-1} = -j' - y_{i'} - y_{j'} - j - y_i - i' - y_j - i$.

$$\bullet \ w^{-1} = -i' - y_{i'} - i - y_i - y_{j'} - j' - y_j - j - \text{ and } (wt)^{-1} = -j' - y_{i'} - j - y_i - y_{j'} - i' - y_j - i - .$$

When $(a, b) \in \operatorname{Cyc}^1(z) = \{(y_i, j), (i, y_j)\}$ and $(a', b') \in \{(y_{i'}, j'), (i', y_{j'})\}$, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$({\rm Z1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -j - y_i - \text{ and } \\ (wt)^{-1} = -j' - y_{i'} - \text{ and } \\ (wt)^{-1} = -y_j - i - \text{ and } \\ (wt)^{-1} = -y_{j'} - i' - . \end{cases}$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -j-i'-y_i$$
 and $(wt)^{-1} \neq -j-y_{j'}-y_i$.

$$(\text{Z3}) \Leftrightarrow \begin{cases} (wt)^{-1} = -i' - y_j - \text{ and } \\ (wt)^{-1} = -y_{i'} - j - \text{ and } \\ (wt)^{-1} = -y_{i'} - y_j - . \end{cases}$$

7. Suppose $y_{i'} < i' < y_i < j' < y_{j'} < i < j < y_i$.

(a) If
$$w^{-1} = -i' - i - y_{i'} - y_i - y_{j'} - y_j - j' - j$$
 then (U) fails.

(b) If
$$w^{-1} = -i' - y_{i'} - i - y_i - y_{j'} - y_j - j' - j$$
— then (U) fails.

(c) If
$$w^{-1} = -i' - y_{i'} - y_{j'} - i - y_i - y_j - j' - j$$
— then (U) fails.

(d) If
$$w^{-1} = -i' - i - y_{i'} - y_{j'} - y_i - y_j - j' - j$$
— then (U) fails.

(e) If
$$w^{-1} = -i' - y_{i'} - i - y_{j'} - y_i - y_j - j' - j$$
— then (U) fails.

(f) If
$$w^{-1} = -i' - i - y_{i'} - y_{j'} - y_i - j' - y_j - j$$
— then (U) fails.

(g) If
$$w^{-1} = -i' - i - y_{i'} - y_i - y_{j'} - j' - y_j - j$$
— then (U) fails.

(h) If
$$w^{-1} = -i' - y_{i'} - i - y_i - y_{i'} - j' - y_i - j$$
— then (U) fails.

(i) If
$$w^{-1} = -i' - y_{i'} - i - y_{j'} - y_i - j' - y_j - j$$
 then (U) fails.

(j) If
$$w^{-1} = -i' - y_{i'} - y_{j'} - i - y_i - j' - y_j - j$$
— then (U) fails.

(k) If
$$w^{-1} = -i' - y_{i'} - i - y_{j'} - j' - y_i - y_j - j$$
 then (Y2) fails for $(a, b) = (y_i, i)$ and $(a', b') = (j', y_{j'})$.

(l) If
$$w^{-1} = -i' - y_{i'} - y_{j'} - i - j' - y_i - y_j - j$$
 then (Y2) fails for $(a, b) = (y_i, i)$ and $(a', b') = (j', y_{j'})$.

$$\text{(m) If } w^{-1} = -i' - i - y_{i'} - y_{j'} - j' - y_i - y_j - j - \text{ then (Y3) fails for } (a,b) = (y_{i'},i') \text{ and } (a',b') = (y_i,i).$$

Thus if $y_{i'} < i' < y_i < j' < y_{i'} < i < j < y_j$ then one of the following holds:

•
$$w^{-1} = -i' - y_{i'} - y_{i'} - j' - i - y_i - j - \text{ and } (wt)^{-1} = -j' - y_{i'} - y_{i'} - i' - j - y_i - y_i - i - .$$

When $(a,b) \in \operatorname{Cyc}^1(z) = \{(y_i,j),(i,y_j)\}$ and $(a',b') \in \{(y_{i'},j'),(i',y_{j'})\}$, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -j - y_i - \text{ and } \\ (wt)^{-1} = -j' - y_{i'} - \text{ and } \\ (wt)^{-1} = -y_j - i - \text{ and } \\ (wt)^{-1} = -y_{j'} - i' - . \end{cases}$$

 $(Z2) \Leftrightarrow (\text{no condition}).$

(Z3)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -i' - j - \text{ and } \\ (wt)^{-1} = -i' - y_j - \text{ and } \\ (wt)^{-1} = -y_{i'} - j - \text{ and } \\ (wt)^{-1} = -y_{i'} - y_j - . \end{cases}$$

8. It cannot happen that $y_{i'} < y_i < i' < i < j' < j < y_{j'} < y_j$ since:

- (a) If $w^{-1} = -i' i y_{i'} y_i y_{j'} y_j j' j$ then (T) fails.
- (b) If $w^{-1} = -i' y_{i'} i y_i y_{j'} y_j j' j$ then (T) fails.
- (c) If $w^{-1} = -i' y_{i'} y_{j'} i y_i y_j j' j$ then (T) fails.
- (d) If $w^{-1} = -i' i y_{i'} y_{i'} y_i y_j j' j$ then (T) fails.
- (e) If $w^{-1} = -i' y_{i'} i y_{i'} y_i y_j j' j$ then (T) fails.
- (f) If $w^{-1} = -i' i y_{i'} y_{i'} y_i j' y_j j$ then (T) fails.
- (g) If $w^{-1} = -i' i y_{i'} y_{j'} j' y_i y_j j$ then (T) fails.
- (h) If $w^{-1} = -i' i y_{i'} y_i y_{j'} j' y_j j$ then (T) fails.
- (i) If $w^{-1} = -i' y_{i'} i y_i y_{j'} j' y_j j$ then (T) fails.
- (j) If $w^{-1} = -i' y_{i'} i y_{j'} y_i j' y_j j$ then (T) fails.
- (k) If $w^{-1} = -i' y_{i'} i y_{j'} j' y_i y_j j$ then (T) fails.
- (l) If $w^{-1} = -i' y_{i'} y_{j'} i y_i j' y_j j$ then (T) fails.
- (m) If $w^{-1} = -i' y_{i'} y_{j'} i j' y_i y_j j$ then (T) fails.
- (n) If $w^{-1} = -i' y_{i'} y_{j'} j' i y_i j$ then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (j', y_{j'})$.

9. It cannot happen that $y_{i'} < i' < y_i < j' < i < j < y_{i'} < y_i$ since:

- (a) If $w^{-1} = -i' i y_{i'} y_i y_{j'} y_j j' j$ then (U) fails.
- (b) If $w^{-1} = -i' y_{i'} i y_i y_{j'} y_j j' j$ then (U) fails.
- (c) If $w^{-1} = -i' y_{i'} y_{j'} i y_i y_j j' j$ then (U) fails.
- (d) If $w^{-1} = -i' i y_{i'} y_{i'} y_i y_i j' j$ then (U) fails.
- (e) If $w^{-1} = -i' y_{i'} i y_{j'} y_i y_j j' j$ then (U) fails.
- (f) If $w^{-1} = -i' i y_{i'} y_{j'} y_i j' y_j j$ then (U) fails.
- (g) If $w^{-1} = -i' i y_{i'} y_i y_{j'} j' y_j j$ then (U) fails.
- (h) If $w^{-1} = -i' y_{i'} i y_i y_{i'} j' y_i j$ then (U) fails.
- (i) If $w^{-1} = -i' y_{i'} i y_{i'} y_i j' y_i j$ then (U) fails.
- (i) If $w^{-1} = -i' y_{i'} y_{i'} i y_i j' y_i j$ then (U) fails.
- (k) If $w^{-1} = -i' y_{i'} i y_{j'} j' y_i y_j j$ then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (j', y_{j'})$.
- (1) If $w^{-1} = -i' y_{i'} y_{j'} j' i y_i j$ then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (j', y_{j'})$.
- $\text{(m) If } w^{-1} = -i' y_{i'} y_{j'} i j' y_i y_j j \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (j',y_{j'}).$
- $\text{(n) If } w^{-1} = -i' i y_{i'} y_{j'} j' y_i y_j j \text{ then (Y3) fails for } (a,b) = (y_{i'},i') \text{ and } (a',b') = (y_i,i).$

10. It cannot happen that $y_{i'} < y_i < i' < i < j' < y_{i'} < j < y_i$ since:

- (a) If $w^{-1} = -i' i y_{i'} y_i y_{j'} y_j j' j$ then (T) fails.
- (b) If $w^{-1} = -i' y_{i'} i y_i y_{j'} y_j j' j$ then (T) fails.
- (c) If $w^{-1} = -i' y_{i'} y_{i'} i y_i y_j j' j$ then (T) fails.
- (d) If $w^{-1} = -i' i y_{i'} y_{j'} y_i y_j j' j$ then (T) fails.
- (e) If $w^{-1} = -i' y_{i'} i y_{j'} y_i y_j j' j$ then (T) fails.
- (f) If $w^{-1} = -i' i y_{i'} y_{j'} y_i j' y_j j$ then (T) fails.

- (g) If $w^{-1} = -i' i y_{i'} y_{j'} j' y_i y_j j$ then (T) fails.
- (h) If $w^{-1} = -i' i y_{i'} y_i y_{j'} j' y_j j$ then (T) fails.
- (i) If $w^{-1} = -i' y_{i'} i y_i y_{j'} j' y_j j$ then (T) fails.
- (j) If $w^{-1} = -i' y_{i'} i y_{j'} y_i j' y_j j$ then (T) fails.
- (k) If $w^{-1} = -i' y_{i'} i y_{j'} j' y_i y_j j$ then (T) fails.
- (l) If $w^{-1} = -i' y_{i'} y_{j'} i y_i j' y_j j$ then (T) fails.
- (m) If $w^{-1} = -i' y_{i'} y_{i'} i j' y_i y_i j$ then (T) fails.
- $\text{(n) If } w^{-1} = -i' y_{i'} y_{j'} j' i y_i y_j j \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (j',y_{j'}).$
- 11. It cannot happen that $y_{i'} < i' < y_i < j' < i < y_{j'} < j < y_j$ since:
 - (a) If $w^{-1} = -i' i y_{i'} y_i y_{j'} y_j j' j$ then (T) fails.
 - (b) If $w^{-1} = -i' y_{i'} i y_i y_{j'} y_j j' j$ then (T) fails.
 - (c) If $w^{-1} = -i' i y_{i'} y_{j'} y_i y_j j' j$ then (T) fails.
 - (d) If $w^{-1} = -i' y_{i'} i y_{j'} y_i y_j j' j$ then (T) fails.
 - (e) If $w^{-1} = -i' i y_{i'} y_{i'} y_i j' y_i j$ then (T) fails.
 - (f) If $w^{-1} = -i' i y_{i'} y_{i'} j' y_i y_j j$ then (T) fails.
 - (g) If $w^{-1} = -i' i y_{i'} y_i y_{i'} j' y_i j$ then (T) fails.
 - (h) If $w^{-1} = -i' y_{i'} i y_i y_{j'} j' y_j j$ then (T) fails.
 - (i) If $w^{-1} = -i' y_{i'} i y_{i'} y_i j' y_i j$ then (T) fails.
 - (j) If $w^{-1} = -i' y_{i'} i y_{j'} j' y_i y_j j$ then (T) fails.
 - (k) If $w^{-1} = -i' y_{i'} y_{i'} i y_i y_j j' j$ then (U) fails.
 - (l) If $w^{-1} = -i' y_{i'} y_{j'} i y_i j' y_j j$ then (U) fails.
 - (m) If $w^{-1} = -i' y_{i'} y_{j'} j' i y_i y_j j$ then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (j', y_{j'})$.
 - (n) If $w^{-1} = -i' y_{i'} y_{j'} i j' y_i y_j j$ then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (j', y_{j'})$.
- 12. It cannot happen that $y_{i'} < i' < y_i < i < j' < j < y_{j'} < y_j$ since:
 - (a) If $w^{-1} = -i' i y_{i'} y_i y_{j'} y_j j' j$ then (T) fails.
 - (b) If $w^{-1} = -i' y_{i'} i y_i y_{j'} y_j j' j$ then (T) fails.
 - (c) If $w^{-1} = -i' y_{i'} y_{j'} i y_i y_j j' j$ then (T) fails.
 - (d) If $w^{-1} = -i' i y_{i'} y_{i'} y_i y_j j' j$ then (T) fails.
 - (e) If $w^{-1} = -i' y_{i'} i y_{j'} y_i y_j j' j$ then (T) fails.
 - (f) If $w^{-1} = -i' i y_{i'} y_{j'} y_i j' y_j j$ then (T) fails.
 - (g) If $w^{-1} = -i' i y_{i'} y_{j'} j' y_i y_j j$ then (T) fails.
 - (h) If $w^{-1} = -i' i y_{i'} y_i y_{j'} j' y_j j$ then (T) fails.
 - (i) If $w^{-1} = -i' y_{i'} i y_i y_{j'} j' y_j j$ then (T) fails.
 - (j) If $w^{-1} = -i' y_{i'} i y_{j'} y_i j' y_j j$ then (T) fails.
 - (k) If $w^{-1} = -i' y_{i'} i y_{i'} j' y_i y_j j$ then (T) fails.
 - (1) If $w^{-1} = -i' y_{i'} y_{j'} i y_i j' y_i j$ then (T) fails.
 - (m) If $w^{-1} = -i' y_{i'} y_{i'} i j' y_i y_j j$ then (T) fails.
 - (n) If $w^{-1} = -i' y_{i'} y_{i'} j' i y_i j$ then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (j', y_{j'})$.
- 13. It cannot happen that $y_{i'} < i' < y_i < i < j' < y_{i'} < j < y_i$ since:
 - (a) If $w^{-1} = -i' i y_{i'} y_i y_{j'} y_j j' j$ then (T) fails.
 - (b) If $w^{-1} = -i' y_{i'} i y_i y_{j'} y_j j' j$ then (T) fails.
 - (c) If $w^{-1} = -i' y_{i'} y_{j'} i y_i y_j j' j$ then (T) fails.

- (d) If $w^{-1} = -i' i y_{i'} y_{i'} y_i y_j j' j$ then (T) fails.
- (e) If $w^{-1} = -i' y_{i'} i y_{j'} y_i y_j j' j$ then (T) fails.
- (f) If $w^{-1} = -i' i y_{i'} y_{i'} y_i j' y_i j$ then (T) fails.
- (g) If $w^{-1} = -i' i y_{i'} y_{j'} j' y_i y_j j$ then (T) fails.
- (h) If $w^{-1} = -i' i y_{i'} y_i y_{j'} j' y_j j$ then (T) fails.
- (i) If $w^{-1} = -i' y_{i'} i y_i y_{j'} j' y_j j$ then (T) fails.
- (j) If $w^{-1} = -i' y_{i'} i y_{j'} y_i j' y_j j$ then (T) fails.
- (k) If $w^{-1} = -i' y_{i'} i y_{j'} j' y_i y_j j$ then (T) fails.
- (l) If $w^{-1} = -i' y_{i'} y_{j'} i y_i j' y_j j$ then (T) fails.
- (m) If $w^{-1} = -i' y_{i'} y_{i'} i j' y_i y_j j$ then (T) fails.
- $\text{(n) If } w^{-1} = -i' y_{i'} y_{j'} j' i y_i y_j j \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (j',y_{j'}).$
- 14. It cannot happen that $y_{i'} < y_i < i' < j' < i < y_{j'} < j < y_j$ since:
 - (a) If $w^{-1} = -i' i y_{i'} y_i y_{j'} y_j j' j$ then (T) fails.
 - (b) If $w^{-1} = -i' y_{i'} i y_i y_{j'} y_j j' j$ then (T) fails.
 - (c) If $w^{-1} = -i' i y_{i'} y_{j'} y_i y_j j' j$ then (T) fails.
 - (d) If $w^{-1} = -i' y_{i'} i y_{j'} y_i y_j j' j$ then (T) fails.
 - (e) If $w^{-1} = -i' i y_{i'} y_{i'} y_i j' y_j j$ then (T) fails.
 - (f) If $w^{-1} = -i' i y_{i'} y_{i'} j' y_i y_i j$ then (T) fails.
 - (g) If $w^{-1} = -i' i y_{i'} y_i y_{j'} j' y_j j$ then (T) fails.
 - (h) If $w^{-1} = -i' y_{i'} i y_i y_{i'} j' y_j j$ then (T) fails.
 - (i) If $w^{-1} = -i' y_{i'} i y_{i'} y_i j' y_i j$ then (T) fails.
 - (j) If $w^{-1} = -i' y_{i'} i y_{j'} j' y_i y_j j$ then (T) fails.
 - (k) If $w^{-1} = -i' y_{i'} y_{i'} i y_i j' j$ then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (j', y_{j'})$.
 - $\text{(1) If } w^{-1} = -i' y_{i'} y_{j'} i y_i j' y_j j \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (j',y_{j'}).$
 - (m) If $w^{-1} = -i' y_{i'} y_{j'} j' i y_i y_j j$ then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (j', y_{j'})$.
 - $\text{(n) If } w^{-1} = -i' y_{i'} y_{j'} i j' y_i y_j j \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (j',y_{j'}).$

We conclude that properties (Z1)-(Z3) hold for all $(a, b), (a', b') \in \text{Cyc}(z)$ when $y_i < i < j < y_j$.

10 Case: $y_i < i < y_j < j$

Suppose y is such that $y_i < i < y_j < j$. Then $z = \tau_{ij}^n(y)$ has $\operatorname{Cyc}^1(z) = \{(y_j, y_j), (y_i, j), (i, i)\}$.

10.1 Subcase (i)

We must have $w^{-1} = -i - y_i - j - y_j$ since no other ordering is possible:

- 1. If $w^{-1} = -y_i i y_j j$ then (T) fails.
- 2. If $w^{-1} = -y_i y_j j i$ then (T) fails.
- 3. If $w^{-1} = -y_i j i y_j$ then (T) fails.
- 4. If $w^{-1} = -y_i j y_j i$ then (T) fails.
- 5. If $w^{-1} = -i y_i y_j j$ then (T) fails.
- 6. If $w^{-1} = -i y_j y_i j$ then (T) fails.
- 7. If $w^{-1} = -i y_j j y_i$ then (T) fails.

8. If
$$w^{-1} = -y_i - y_i - j - i$$
 then (T) fails.

9. If
$$w^{-1} = -y_j - j - y_i - i$$
— then (T) fails.

10. If
$$w^{-1} = -y_j - j - i - y_i$$
 then (T) fails.

11. If
$$w^{-1} = -j - y_i - i - y_j$$
— then (T) fails.

12. If
$$w^{-1} = -j - y_i - y_i - i$$
— then (T) fails.

13. If
$$w^{-1} = -j - i - y_i - y_j$$
 then (T) fails.

14. If
$$w^{-1} = -j - i - y_i - y_i$$
 then (T) fails.

15. If
$$w^{-1} = -i - y_i - y_i - i$$
 then (T) fails.

16. If
$$w^{-1} = -j - y_i - i - y_i$$
 then (T) fails.

17. If
$$w^{-1} = -y_i - i - j - y_j$$
 then (Y1) fails for $(a, b) = (y_i, i)$.

18. If
$$w^{-1} = -y_i - y_j - i - j$$
 then (Y1) fails for $(a, b) = (y_i, i)$.

19. If
$$w^{-1} = -y_j - y_i - i - j$$
— then (Y1) fails for $(a, b) = (y_j, j)$.

20. If
$$w^{-1} = -y_j - i - y_i - j$$
— then (Y1) fails for $(a, b) = (y_j, j)$.

21. If
$$w^{-1} = -y_i - i - j - y_i$$
 then (Y1) fails for $(a, b) = (y_i, j)$.

22. If
$$w^{-1} = -i - j - y_i - y_j$$
 — then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (y_j, j)$.

23. If
$$w^{-1} = -i - j - y_j - y_i$$
 then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (y_j, j)$.

Hence if $y_i < i < y_j < j$ then

$$(wt)^{-1} = -i - y_i - i - y_i - .$$

When $(a, b), (a', b') \in \operatorname{Cyc}^1(z) = \{(y_j, y_j), (y_i, j), (i, i)\}$, properties (Z1)-(Z3) are equivalent to the following conditions which all hold in this case:

$$(\mathbf{Z}1) \Leftrightarrow (wt)^{-1} = -j - y_i - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -j-i-y_i$$
 and $(wt)^{-1} \neq -j-y_i-y_i$.

$$(Z3) \Leftrightarrow (wt)^{-1} = -i - y_i - .$$

Thus properties (Z1)-(Z3) hold whenever (a, b), (a', b') are as in case (i) and $y_i < i < y_j < j$.

10.2 Subcase (ii)

Suppose R is an integer such that $(R, R) \in \text{Cyc}^2(z) \subset \text{Cyc}(y)$, so that $R = y_R = z_R \notin \{i, j, y_i, y_j\} + n\mathbb{Z}$.

1. Suppose $y_i < i < y_j < j < R$.

(a) If
$$w^{-1} = -R - i - y_i - j - y_j$$
 then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (R, R)$.

(b) If
$$w^{-1} = -i - R - y_i - j - y_j$$
 then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (R, R)$.

(c) If
$$w^{-1} = -i - y_i - j - R - y_j$$
 — then (Y3) fails for $(a,b) = (y_j,j)$ and $(a',b') = (R,R)$.

(d) If
$$w^{-1} = -i - y_i - R - j - y_j$$
 then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (R, R)$.

Thus if $y_i < i < y_i < j < R$ then one of the following holds:

•
$$w^{-1} = -i - y_i - j - y_j - R$$
 and $(wt)^{-1} = -j - y_i - i - y_j - R$.

When (a,b) = (R,R) and $(a',b') \in \operatorname{Cyc}^1(z) = \{(y_j,y_j),(y_i,j),(i,i)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -j - y_i - .$$

 $(Z2) \Leftrightarrow (\text{no condition}).$

$$(\mathrm{Z3}) \Leftrightarrow \begin{cases} (wt)^{-1} = -i - R - \text{ and} \\ (wt)^{-1} = -y_i - R - \text{ and} \\ (wt)^{-1} = -y_j - R - . \end{cases}$$

2. Suppose $y_i < i < y_j < R < j$.

(a) If
$$w^{-1} = -i - y_i - R - j - y_j$$
 — then (T) fails.

(b) If
$$w^{-1} = -i - R - y_i - j - y_j$$
 then (T) fails.

(c) If
$$w^{-1} = -i - y_i - j - R - y_j$$
 then (Y2) fails for $(a, b) = (y_j, j)$ and $(a', b') = (R, R)$.

(d) If
$$w^{-1} = -R - i - y_i - j - y_j$$
 then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (R, R)$.

Thus if $y_i < i < y_j < R < j$ then one of the following holds:

•
$$w^{-1} = -i - y_i - j - y_j - R$$
 and $(wt)^{-1} = -j - y_i - i - y_j - R$.

When (a, b) = (R, R) and $(a', b') \in \text{Cyc}^1(z) = \{(y_j, y_j), (y_i, j), (i, i)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -j - y_i - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -j - R - y_i - .$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -i - R - and (wt)^{-1} = -y_i - R - .$$

3. Suppose $y_i < R < i < y_j < j$.

(a) If
$$w^{-1} = -i - R - y_i - j - y_j$$
 then (Y2) fails for $(a,b) = (y_i,i)$ and $(a',b') = (R,R)$.

(b) If
$$w^{-1}=-i-y_i-j-y_j-R$$
— then (Y3) fails for $(a,b)=(R,R)$ and $(a',b')=(y_j,j)$.

(c) If
$$w^{-1} = -i - y_i - j - R - y_j$$
 then (Y3) fails for $(a, b) = (R, R)$ and $(a', b') = (y_j, j)$.

Thus if $y_i < R < i < y_i < j$ then one of the following holds:

•
$$w^{-1} = -i - y_i - R - j - y_j$$
 and $(wt)^{-1} = -j - y_i - R - i - y_j$.

•
$$w^{-1} = -R - i - y_i - j - y_j - \text{ and } (wt)^{-1} = -R - j - y_i - i - y_j - .$$

When (a, b) = (R, R) and $(a', b') \in \text{Cyc}^1(z) = \{(y_j, y_j), (y_i, j), (i, i)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(\mathbf{Z}1) \Leftrightarrow (wt)^{-1} = -j - y_i - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -j - R - y_i - .$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -R - i - \text{ and } (wt)^{-1} = -R - y_i - .$$

4. Suppose $R < y_i < i < y_j < j$.

(a) If
$$w^{-1} = -i - y_i - j - y_j - R$$
— then (Y3) fails for $(a, b) = (R, R)$ and $(a', b') = (y_i, i)$.

(b) If
$$w^{-1} = -i - y_i - j - R - y_j$$
 then (Y3) fails for $(a, b) = (R, R)$ and $(a', b') = (y_i, i)$.

(c) If
$$w^{-1} = -i - y_i - R - j - y_j$$
 then (Y3) fails for $(a, b) = (R, R)$ and $(a', b') = (y_i, i)$.

(d) If
$$w^{-1} = -i - R - y_i - j - y_j$$
 then (Y3) fails for $(a, b) = (R, R)$ and $(a', b') = (y_i, i)$.

Thus if $R < y_i < i < y_j < j$ then one of the following holds:

•
$$w^{-1} = -R - i - y_i - j - y_j - \text{ and } (wt)^{-1} = -R - j - y_i - i - y_j - .$$

When (a, b) = (R, R) and $(a', b') \in \text{Cyc}^1(z) = \{(y_j, y_j), (y_i, j), (i, i)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -j - y_i - .$$

$$(Z2) \Leftrightarrow (\text{no condition}).$$

$$(\text{Z3}) \Leftrightarrow \begin{cases} (wt)^{-1} = -R - i - \text{ and} \\ (wt)^{-1} = -R - j - \text{ and} \\ (wt)^{-1} = -R - y_j - . \end{cases}$$

5. It cannot happen that $y_i < i < R < y_j < j$ since:

(a) If
$$w^{-1} = -i - y_i - R - j - y_j$$
 — then (T) fails.

(b) If
$$w^{-1} = -i - R - y_i - j - y_j$$
 then (T) fails.

(c) If
$$w^{-1} = -i - y_i - j - y_j - R$$
— then (Y3) fails for $(a,b) = (R,R)$ and $(a',b') = (y_j,j)$.

(d) If
$$w^{-1} = -i - y_i - j - R - y_j$$
 then (Y3) fails for $(a, b) = (R, R)$ and $(a', b') = (y_j, j)$.

(e) If
$$w^{-1}=-R-i-y_i-j-y_j$$
— then (Y3) fails for $(a,b)=(y_i,i)$ and $(a',b')=(R,R)$.

Next suppose P < Q are integers with $(P,Q) \in \text{Cyc}^2(z) \subset \text{Cyc}(y)$, so that $Q = y_P = z_P$ and $P,Q \notin \{i,j,y_i,y_i\} + n\mathbb{Z}$.

1. Suppose $P < y_i < i < Q < y_j < j$.

(a) If
$$w^{-1} = -i - y_i - Q - P - j - y_i$$
 then (T) fails.

(b) If
$$w^{-1} = -i - y_i - Q - j - y_j - P$$
— then (T) fails.

(c) If
$$w^{-1} = -i - Q - P - y_i - j - y_j$$
 then (T) fails.

(d) If
$$w^{-1} = -i - Q - y_i - P - j - y_j$$
 then (T) fails.

(e) If
$$w^{-1} = -i - Q - y_i - j - y_j - P$$
— then (T) fails.

(f) If
$$w^{-1} = -i - Q - y_i - j - P - y_j$$
 then (T) fails.

(g) If
$$w^{-1} = -i - y_i - Q - j - P - y_j$$
 then (T) fails.

(h) If
$$w^{-1} = -Q - i - y_i - P - j - y_j$$
 then (Y2) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_i,i)$.

(i) If
$$w^{-1} = -Q - i - P - y_i - j - y_j$$
 then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(j) If
$$w^{-1} = -Q - i - y_i - j - y_j - P$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_j,j)$.

(k) If
$$w^{-1} = -i - y_i - j - Q - y_j - P$$
— then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_j,j)$.

(l) If
$$w^{-1} = -i - y_i - j - Q - P - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

(m) If
$$w^{-1} = -Q - i - y_i - j - P - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

$$\text{(n) If } w^{-1} = -i - y_i - j - y_j - Q - P - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_j,j).$$

Thus if $P < y_i < i < Q < y_j < j$ then one of the following holds:

•
$$w^{-1} = -Q - P - i - y_i - j - y_j$$
 and $(wt)^{-1} = -Q - P - j - y_i - i - y_j$.

When (a,b)=(P,Q) and $(a',b')\in \operatorname{Cyc}^1(z)=\{(y_j,y_j),(y_i,j),(i,i)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -j - y_i - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -Q-i-P-.$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -P - j - \text{and } (wt)^{-1} = -P - y_j - .$$

2. Suppose $P < y_i < Q < i < y_i < j$.

(a) If
$$w^{-1} = -Q - i - y_i - j - y_j - P$$
— then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_i,i)$.

(b) If
$$w^{-1} = -i - y_i - Q - P - j - y_j$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_i,i)$.

(c) If
$$w^{-1} = -i - y_i - Q - j - y_j - P$$
— then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_i,i)$.

$$\text{(d) If } w^{-1} = -i - y_i - j - Q - y_j - P - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_i,i).$$

(e) If
$$w^{-1} = -i - Q - P - y_i - j - y_j$$
 then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_i,i)$.

$$\text{(f) If } w^{-1} = -i - y_i - j - Q - P - y_j - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_i,i).$$

(g) If
$$w^{-1} = -Q - i - y_i - j - P - y_j$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_i,i)$.

$$\text{(h) If } w^{-1} = - Q - i - y_i - P - j - y_j - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_i,i).$$

(i) If
$$w^{-1} = -i - Q - y_i - P - j - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(j) If
$$w^{-1} = -i - y_i - j - y_j - Q - P$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_i,i)$.

(k) If
$$w^{-1} = -i - Q - y_i - j - y_j - P$$
— then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_i,i)$.

(l) If
$$w^{-1} = -Q - i - P - y_i - j - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(m) If
$$w^{-1} = -i - Q - y_i - j - P - y_j$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_i,i)$.

(n) If
$$w^{-1} = -i - y_i - Q - j - P - y_j$$
 then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_i,i)$.

Thus if $P < y_i < Q < i < y_j < j$ then one of the following holds:

•
$$w^{-1} = -Q - P - i - y_i - j - y_j - \text{ and } (wt)^{-1} = -Q - P - j - y_i - i - y_j - .$$

When (a, b) = (P, Q) and $(a', b') \in \text{Cyc}^1(z) = \{(y_j, y_j), (y_i, j), (i, i)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -j - y_i - .$$

 $(Z2) \Leftrightarrow (no condition).$

(Z3)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -P - i - \text{ and } \\ (wt)^{-1} = -P - j - \text{ and } \\ (wt)^{-1} = -P - y_j - . \end{cases}$$

3. Suppose $y_i < i < y_j < P < j < Q$.

(a) If
$$w^{-1} = -i - y_i - Q - P - j - y_j$$
 — then (T) fails.

(b) If
$$w^{-1} = -i - Q - P - y_i - j - y_j$$
 then (T) fails.

(c) If
$$w^{-1} = -Q - i - y_i - P - j - y_j$$
 — then (T) fails.

(d) If
$$w^{-1} = -i - Q - y_i - P - j - y_j$$
 then (T) fails.

(e) If
$$w^{-1} = -Q - i - P - y_i - j - y_j$$
 then (T) fails.

$$\text{(f) If } w^{-1} = -Q - i - y_i - j - y_j - P - \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$$

(g) If
$$w^{-1} = -Q - i - y_i - j - P - y_j$$
 then (Y3) fails for $(a,b) = (y_i,i)$ and $(a',b') = (P,Q)$.

(h) If
$$w^{-1} = -Q - P - i - y_i - j - y_j$$
 then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (P, Q)$.

$$\text{(i) If } w^{-1} = -i - Q - y_i - j - y_j - P - \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$$

(j) If
$$w^{-1} = -i - Q - y_i - j - P - y_j$$
 then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (P, Q)$.

(k) If
$$w^{-1} = -i - y_i - Q - j - y_j - P$$
— then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

(l) If
$$w^{-1} = -i - y_i - j - Q - y_j - P$$
— then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

$$\text{(m) If } w^{-1} = -i - y_i - j - Q - P - y_j - \text{ then (Y3) fails for } (a,b) = (y_j,j) \text{ and } (a',b') = (P,Q).$$

$$\text{(n) If } w^{-1} = -i - y_i - Q - j - P - y_j - \text{ then (Y3) fails for } (a,b) = (y_j,j) \text{ and } (a',b') = (P,Q).$$

Thus if $y_i < i < y_j < P < j < Q$ then one of the following holds:

•
$$w^{-1} = -i - y_i - j - y_j - Q - P$$
 and $(wt)^{-1} = -j - y_i - i - y_j - Q - P$.

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(y_j, y_j), (y_i, j), (i, i)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -j - y_i - .$$

 $(Z2) \Leftrightarrow (no condition).$

$$({\rm Z3}) \Leftrightarrow \begin{cases} (wt)^{-1} = -i - Q - \text{ and } \\ (wt)^{-1} = -y_i - Q - \text{ and } \\ (wt)^{-1} = -y_j - Q - . \end{cases}$$

4. Suppose $P < y_i < i < y_j < Q < j$.

(a) If
$$w^{-1} = -i - y_i - Q - P - j - y_j$$
 then (T) fails.

- (b) If $w^{-1} = -i y_i Q j y_j P$ then (T) fails.
- (c) If $w^{-1} = -i Q P y_i j y_j$ then (T) fails.
- (d) If $w^{-1} = -i Q y_i P j y_j$ then (T) fails.
- (e) If $w^{-1} = -i Q y_i j y_j P$ then (T) fails.
- (f) If $w^{-1} = -i Q y_i j P y_j$ then (T) fails.
- (g) If $w^{-1} = -i y_i Q j P y_j$ then (T) fails.
- $\text{(h) If } w^{-1} = Q i y_i P j y_j \text{ then (Y2) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_i,i).$
- $\text{(i) If } w^{-1} = \cdots Q \cdots i \cdots P \cdots y_i \cdots j \cdots y_j \cdots \text{ then (Y2) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_i,i).$
- (j) If $w^{-1} = -Q i y_i j y_j P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_j, j)$.
- $\text{(k) If } w^{-1} = -i y_i j Q y_j P \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_j,j).$
- (l) If $w^{-1} = -i y_i j Q P y_j$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_j, j)$.
- $\text{(m) If } w^{-1} = \cdots Q \cdots i \cdots y_i \cdots j \cdots P \cdots y_j \cdots \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_j,j).$
- (n) If $w^{-1} = -i y_i j y_j Q P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_j, j)$.

Thus if $P < y_i < i < y_j < Q < j$ then one of the following holds:

•
$$w^{-1} = -Q - P - i - y_i - j - y_j$$
 and $(wt)^{-1} = -Q - P - j - y_i - i - y_j$.

When (a,b) = (P,Q) and $(a',b') \in \operatorname{Cyc}^1(z) = \{(y_j,y_j),(y_i,j),(i,i)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -j - y_i - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -Q - i - P - \text{ and } (wt)^{-1} \neq -Q - y_i - P - .$$

$$(\mathbf{Z3}) \Leftrightarrow (wt)^{-1} = -P - j -.$$

5. Suppose $P < Q < y_i < i < y_i < j$.

- (a) If $w^{-1} = -Q i y_i j y_j P$ then (Y3) fails for (a,b) = (P,Q) and $(a',b') = (y_i,i)$.
- (b) If $w^{-1} = -i y_i Q P j y_j$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_i, i)$.
- (c) If $w^{-1} = -i y_i Q j y_j P$ then (Y3) fails for (a,b) = (P,Q) and $(a',b') = (y_i,i)$.
- $\text{(d) If } w^{-1} = -i y_i j Q y_j P \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_i,i).$
- (e) If $w^{-1} = -i Q P y_i j y_j$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_i, i)$.
- (f) If $w^{-1} = -i y_i j Q P y_j$ then (Y3) fails for (a,b) = (P,Q) and $(a',b') = (y_i,i)$.
- (g) If $w^{-1} = -Q i y_i j P y_j$ then (Y3) fails for (a,b) = (P,Q) and $(a',b') = (y_i,i)$.
- $\text{(h) If } w^{-1} = -Q i y_i P j y_i \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_i,i).$
- (i) If $w^{-1} = -i Q y_i P j y_j$ then (Y3) fails for (a,b) = (P,Q) and $(a',b') = (y_i,i)$.
- (j) If $w^{-1} = -i y_i j y_j Q P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_i, i)$.
- (k) If $w^{-1} = -i Q y_i j y_j P$ then (Y3) fails for (a,b) = (P,Q) and $(a',b') = (y_i,i)$.
- (l) If $w^{-1} = -Q i P y_i j y_j$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_i, i)$.
- (m) If $w^{-1} = -i Q y_i j P y_j$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_i, i)$.
- (n) If $w^{-1} = -i y_i Q j P y_j$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_i, i)$.

Thus if $P < Q < y_i < i < y_j < j$ then one of the following holds:

•
$$w^{-1} = -Q - P - i - y_i - j - y_i$$
 and $(wt)^{-1} = -Q - P - j - y_i - i - y_i$.

When (a, b) = (P, Q) and $(a', b') \in \text{Cyc}^1(z) = \{(y_j, y_j), (y_i, j), (i, i)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -j - y_i - .$$

 $(Z2) \Leftrightarrow (\text{no condition}).$

$$({\bf Z3}) \Leftrightarrow \begin{cases} (wt)^{-1} = -P - i - \text{ and } \\ (wt)^{-1} = -P - j - \text{ and } \\ (wt)^{-1} = -P - y_j - . \end{cases}$$

6. Suppose $y_i < i < y_j < P < Q < j$.

(a) If
$$w^{-1} = -i - y_i - Q - P - j - y_j$$
 then (T) fails.

(b) If
$$w^{-1} = -i - y_i - Q - j - y_j - P$$
— then (T) fails.

(c) If
$$w^{-1} = -i - Q - P - y_i - j - y_j$$
 then (T) fails.

(d) If
$$w^{-1} = -Q - i - y_i - P - j - y_j$$
 then (T) fails.

(e) If
$$w^{-1} = -i - Q - y_i - P - j - y_j$$
 then (T) fails.

(f) If
$$w^{-1} = -i - Q - y_i - j - y_j - P$$
— then (T) fails.

(g) If
$$w^{-1} = -Q - i - P - y_i - j - y_j$$
 then (T) fails.

(h) If
$$w^{-1} = -i - Q - y_i - j - P - y_i$$
 then (T) fails.

(i) If
$$w^{-1} = -i - y_i - Q - j - P - y_i$$
 then (T) fails.

$$\text{(j) If } w^{-1}=-i-y_i-j-Q-y_j-P-\text{ then (Y2) fails for } (a,b)=(y_j,j) \text{ and } (a',b')=(P,Q).$$

$$\text{(k) If } w^{-1} = -i - y_i - j - Q - P - y_j - \text{ then (Y2) fails for } (a,b) = (y_j,j) \text{ and } (a',b') = (P,Q).$$

$$\text{(l) If } w^{-1} = - Q - i - y_i - j - y_j - P - \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$$

(m) If
$$w^{-1} = -Q - i - y_i - j - P - y_j$$
 then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (P, Q)$.

$$\text{(n) If } w^{-1} = - Q - P - i - y_i - j - y_j - \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$$

Thus if $y_i < i < y_j < P < Q < j$ then one of the following holds:

•
$$w^{-1} = -i - y_i - j - y_i - Q - P - \text{ and } (wt)^{-1} = -j - y_i - i - y_i - Q - P - .$$

When (a, b) = (P, Q) and $(a', b') \in \text{Cyc}^1(z) = \{(y_j, y_j), (y_i, j), (i, i)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -j - y_i - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -i - P - y_i - \text{ and } (wt)^{-1} \neq -i - Q - y_i - .$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -i - Q - \text{ and } (wt)^{-1} = -y_i - Q - .$$

7. Suppose $y_i < i < P < y_j < j < Q$.

(a) If
$$w^{-1} = -i - y_i - Q - P - j - y_i$$
 then (T) fails.

(b) If
$$w^{-1} = -i - Q - P - y_i - j - y_j$$
 then (T) fails.

(c) If
$$w^{-1} = -Q - i - y_i - P - j - y_i$$
 then (T) fails.

(d) If
$$w^{-1} = -i - Q - y_i - P - j - y_j$$
 then (T) fails.

(e) If
$$w^{-1} = -Q - i - P - y_i - j - y_j$$
 then (T) fails.

(f) If
$$w^{-1} = -i - y_i - Q - j - y_j - P$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

(g) If
$$w^{-1} = -i - y_i - j - Q - y_j - P$$
 — then (Y2) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_j,j)$.

$$\text{(h) If } w^{-1}=-i-y_i-Q-j-P-y_j-\text{ then (Y2) fails for } (a,b)=(P,Q) \text{ and } (a',b')=(y_j,j).$$

$$\text{(i) If } w^{-1} = -Q - i - y_i - j - y_j - P - \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$$

(j) If
$$w^{-1} = -Q - i - y_i - j - P - y_j$$
 then (Y3) fails for $(a,b) = (y_i,i)$ and $(a',b') = (P,Q)$.

$$\text{(k) If } w^{-1} = - Q - P - i - y_i - j - y_j - \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$$

$$\text{(l) If } w^{-1} = -i - Q - y_i - j - y_j - P - \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$$

$$\text{(m) If } w^{-1}=-i-Q-y_i-j-P-y_j-\text{ then (Y3) fails for } (a,b)=(y_i,i) \text{ and } (a',b')=(P,Q).$$

Thus if $y_i < i < P < y_i < j < Q$ then one of the following holds:

•
$$w^{-1} = -i - y_i - j - y_j - Q - P - \text{ and } (wt)^{-1} = -j - y_i - i - y_j - Q - P - .$$

•
$$w^{-1} = -i - y_i - j - Q - P - y_j$$
 and $(wt)^{-1} = -j - y_i - i - Q - P - y_j$.

When (a, b) = (P, Q) and $(a', b') \in \text{Cyc}^1(z) = \{(y_j, y_j), (y_i, j), (i, i)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -j - y_i - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -Q - y_j - P - .$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -i - Q - \text{ and } (wt)^{-1} = -y_i - Q - .$$

8. Suppose $y_i < P < i < y_j < j < Q$.

(a) If
$$w^{-1} = -i - y_i - Q - j - y_j - P$$
 — then (Y2) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_j,j)$.

(b) If
$$w^{-1} = -i - y_i - j - Q - y_j - P$$
 then (Y2) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_j,j)$.

(c) If
$$w^{-1} = -i - y_i - Q - j - P - y_j$$
 then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

$$\text{(d) If } w^{-1} = - Q - i - y_i - j - y_j - P - \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$$

(e) If
$$w^{-1}=-i-Q-P-y_i-j-y_j$$
— then (Y3) fails for $(a,b)=(y_i,i)$ and $(a',b')=(P,Q)$.

$$\text{(f) If } w^{-1} = - Q - i - y_i - j - P - y_j - \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$$

(g) If
$$w^{-1} = -Q - i - y_i - P - j - y_j$$
 then (Y3) fails for $(a,b) = (y_i,i)$ and $(a',b') = (P,Q)$.

$$\text{(h) If } w^{-1}=-i-Q-y_i-P-j-y_j-\text{ then (Y3) fails for } (a,b)=(y_i,i) \text{ and } (a',b')=(P,Q).$$

$$\text{(i) If } w^{-1} = - Q - P - i - y_i - j - y_j - \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$$

$$(\mathbf{j}) \ \text{ If } w^{-1} = -i - Q - y_i - j - y_j - P - \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$$

$$\text{(k) If } w^{-1} = - Q - i - P - y_i - j - y_j - \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$$

(l) If
$$w^{-1} = -i - Q - y_i - j - P - y_j$$
 then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (P, Q)$.

Thus if $y_i < P < i < y_j < j < Q$ then one of the following holds:

•
$$w^{-1} = -i - y_i - j - Q - P - y_i$$
 and $(wt)^{-1} = -j - y_i - i - Q - P - y_i$.

•
$$w^{-1} = -i - y_i - j - y_j - Q - P$$
 and $(wt)^{-1} = -j - y_i - i - y_j - Q - P$.

•
$$w^{-1} = -i - y_i - Q - P - j - y_j - \text{and } (wt)^{-1} = -j - y_i - Q - P - i - y_j - .$$

When (a, b) = (P, Q) and $(a', b') \in \text{Cyc}^1(z) = \{(y_j, y_j), (y_i, j), (i, i)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -j - y_i - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -Q - i - P - \text{ and } (wt)^{-1} \neq -Q - y_i - P - .$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -y_i - Q - .$$

9. Suppose $y_i < i < y_j < j < P < Q$.

(a) If
$$w^{-1} = -Q - i - y_i - j - y_j - P$$
— then (Y3) fails for $(a,b) = (y_i,i)$ and $(a',b') = (P,Q)$.

$$\text{(b) If } w^{-1}=-i-Q-P-y_i-j-y_j-\text{ then (Y3) fails for } (a,b)=(y_i,i) \text{ and } (a',b')=(P,Q).$$

$$\text{(c) If } w^{-1} = - Q - i - y_i - j - P - y_j - \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$$

$$\text{(d) If } w^{-1} = -Q - i - y_i - P - j - y_j - \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$$

$$\text{(e) If } w^{-1}=-i-Q-y_i-P-j-y_j-\text{ then (Y3) fails for } (a,b)=(y_i,i) \text{ and } (a',b')=(P,Q).$$

$$\text{(f) If } w^{-1} = -Q - P - i - y_i - j - y_j - \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$$

(g) If
$$w^{-1} = -i - Q - y_i - j - y_j - P$$
— then (Y3) fails for $(a,b) = (y_i,i)$ and $(a',b') = (P,Q)$.

$$\text{(h) If } w^{-1} = - Q - i - P - y_i - j - y_j - \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$$

$$\text{(i) If } w^{-1} = -i - Q - y_i - j - P - y_j - \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$$

$$(\mathbf{j}) \ \text{ If } w^{-1} = -i - y_i - Q - P - j - y_j - \text{ then } (\mathbf{Y3}) \text{ fails for } (a,b) = (y_j,j) \text{ and } (a',b') = (P,Q).$$

$$\text{(k) If } w^{-1} = -i - y_i - Q - j - y_j - P - \text{ then (Y3) fails for } (a,b) = (y_j,j) \text{ and } (a',b') = (P,Q).$$

$$\text{(l) If } w^{-1} = -i - y_i - j - Q - y_j - P - \text{ then (Y3) fails for } (a,b) = (y_j,j) \text{ and } (a',b') = (P,Q).$$

$$\text{(m) If } w^{-1}=-i-y_i-j-Q-P-y_j-\text{ then (Y3) fails for } (a,b)=(y_j,j) \text{ and } (a',b')=(P,Q).$$

$$\text{(n) If } w^{-1}=-i-y_i-Q-j-P-y_j-\text{ then (Y3) fails for } (a,b)=(y_j,j) \text{ and } (a',b')=(P,Q).$$

Thus if $y_i < i < y_j < j < P < Q$ then one of the following holds:

•
$$w^{-1} = -i - y_i - j - y_j - Q - P - \text{ and } (wt)^{-1} = -j - y_i - i - y_j - Q - P - .$$

When (a,b) = (P,Q) and $(a',b') \in \operatorname{Cyc}^1(z) = \{(y_j,y_j),(y_i,j),(i,i)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -j - y_i - .$$

 $(Z2) \Leftrightarrow (\text{no condition}).$

(Z3)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -i - Q - \text{ and } \\ (wt)^{-1} = -y_i - Q - \text{ and } \\ (wt)^{-1} = -y_j - Q - . \end{cases}$$

10. Suppose $P < y_i < i < y_j < j < Q$

(a) If
$$w^{-1} = -Q - i - y_i - j - y_j - P$$
— then (Y2) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_i,i)$.

(b) If
$$w^{-1} = -Q - i - y_i - j - P - y_j$$
 then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(c) If
$$w^{-1} = -Q - i - y_i - P - j - y_j$$
 — then (Y2) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_i,i)$.

(d) If
$$w^{-1} = -i - Q - y_i - P - j - y_j$$
 then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(e) If
$$w^{-1} = -i - Q - y_i - j - y_j - P$$
— then (Y2) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_i,i)$.

$$\text{(f) If } w^{-1} = -Q - i - P - y_i - j - y_j - \text{ then (Y2) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_i,i).$$

(g) If
$$w^{-1} = -i - Q - y_i - j - P - y_j$$
 — then (Y2) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_i,i)$.

(h) If
$$w^{-1} = -i - y_i - Q - j - y_j - P$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

(i) If
$$w^{-1} = -i - y_i - j - Q - y_j - P$$
 then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

(j) If
$$w^{-1} = -i - y_i - Q - j - P - y_j$$
 then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

Thus if $P < y_i < i < y_j < j < Q$ then one of the following holds:

•
$$w^{-1} = -i - y_i - j - y_j - Q - P - \text{ and } (wt)^{-1} = -j - y_i - i - y_j - Q - P - .$$

•
$$w^{-1} = -i - Q - P - y_i - j - y_j$$
 and $(wt)^{-1} = -j - Q - P - y_i - i - y_j$.

•
$$w^{-1} = -i - y_i - j - Q - P - y_j$$
 and $(wt)^{-1} = -j - y_i - i - Q - P - y_j$.

•
$$w^{-1} = -Q - P - i - y_i - j - y_j$$
 and $(wt)^{-1} = -Q - P - j - y_i - i - y_j$.

•
$$w^{-1} = -i - y_i - Q - P - j - y_j$$
 and $(wt)^{-1} = -j - y_i - Q - P - i - y_j$.

When (a,b) = (P,Q) and $(a',b') \in \operatorname{Cyc}^1(z) = \{(y_j,y_j),(y_i,j),(i,i)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -j - y_i - .$$

$$(\mathrm{Z2}) \Leftrightarrow \begin{cases} (wt)^{-1} \neq -Q - i - P - \text{ and } \\ (wt)^{-1} \neq -Q - y_i - P - \text{ and } (wt)^{-1} \neq -Q - j - P - \text{ and } \\ (wt)^{-1} \neq -Q - y_j - P - . \end{cases}$$

 $(Z3) \Leftrightarrow (no condition).$

11. Suppose $y_i < P < Q < i < y_j < j$.

(a) If
$$w^{-1} = -i - Q - P - y_i - j - y_j$$
 then (Y2) fails for $(a, b) = (y_i, i)$ and $(a', b') = (P, Q)$.

(b) If
$$w^{-1} = -i - Q - y_i - P - j - y_j$$
 then (Y2) fails for $(a,b) = (y_i,i)$ and $(a',b') = (P,Q)$.

$$\text{(c) If } w^{-1} = -Q - i - P - y_i - j - y_j - \text{ then (Y2) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$$

$$\text{(d) If } w^{-1} = -Q - i - y_i - j - y_j - P - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_j,j).$$

(e) If
$$w^{-1}=-i-y_i-Q-j-y_j-P$$
— then (Y3) fails for $(a,b)=(P,Q)$ and $(a',b')=(y_j,j)$.

(f) If
$$w^{-1} = -i - y_i - j - Q - y_j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, j)$.

(g) If
$$w^{-1} = -i - y_i - j - Q - P - y_j$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_j,j)$.

- (h) If $w^{-1} = -Q i y_i j P y_j$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_j, j)$.
- $\text{(i) If } w^{-1} = -i y_i j y_j Q P \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_j,j).$
- (j) If $w^{-1} = -i Q y_i j y_j P$ then (Y3) fails for (a,b) = (P,Q) and $(a',b') = (y_j,j)$.
- $\text{(k) If } w^{-1} = -i Q y_i j P y_j \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_j,j).$
- (l) If $w^{-1} = -i y_i Q j P y_j$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_j, j)$.

Thus if $y_i < P < Q < i < y_j < j$ then one of the following holds:

- $w^{-1} = -Q P i y_i j y_j$ and $(wt)^{-1} = -Q P j y_i i y_j$.
- $w^{-1} = -Q i y_i P j y_j$ and $(wt)^{-1} = -Q j y_i P i y_j$.
- $w^{-1} = -i y_i Q P j y_j$ and $(wt)^{-1} = -j y_i Q P i y_j$.

When (a,b)=(P,Q) and $(a',b')\in \operatorname{Cyc}^1(z)=\{(y_j,y_j),(y_i,j),(i,i)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -j - y_i - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -j - P - y_i - \text{ and } (wt)^{-1} \neq -j - Q - y_i - .$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -P - i - \text{ and } (wt)^{-1} = -P - y_i - .$$

- 12. It cannot happen that $y_i < i < P < y_j < Q < j$ since:
 - (a) If $w^{-1} = -i y_i Q P j y_j$ then (T) fails.
 - (b) If $w^{-1} = -i y_i Q j y_j P$ then (T) fails.
 - (c) If $w^{-1} = -i Q P y_i j y_j$ then (T) fails.
 - (d) If $w^{-1} = -Q i y_i P j y_j$ then (T) fails.
 - (e) If $w^{-1} = -i Q y_i P j y_j$ then (T) fails.
 - (f) If $w^{-1} = -i Q y_i j y_j P$ then (T) fails.
 - (g) If $w^{-1} = -Q i P y_i j y_j$ then (T) fails.
 - (h) If $w^{-1} = -i Q y_i j P y_j$ then (T) fails.
 - (i) If $w^{-1} = -i y_i Q j P y_i$ then (T) fails.
 - (j) If $w^{-1} = -i y_i j Q y_j P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_j, j)$.
 - (k) If $w^{-1} = -i y_i j Q P y_j$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_j, j)$.
 - (l) If $w^{-1} = -i y_i j y_j Q P$ then (Y3) fails for (a,b) = (P,Q) and $(a',b') = (y_j,j)$.
 - $\text{(m) If } w^{-1} = -Q i y_i j y_j P \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$
 - (n) If $w^{-1} = -Q i y_i j P y_j$ then (Y3) fails for $(a,b) = (y_i,i)$ and (a',b') = (P,Q).
 - (o) If $w^{-1} = -Q P i y_i j y_j$ then (Y3) fails for $(a, b) = (y_i, i)$ and (a', b') = (P, Q).
- 13. It cannot happen that $y_i < P < i < y_i < Q < j$ since:
 - (a) If $w^{-1} = -i y_i Q P j y_j$ then (T) fails.
 - (b) If $w^{-1} = -i y_i Q j y_j P$ then (T) fails.
 - (c) If $w^{-1} = -i Q P y_i j y_j$ then (T) fails.
 - (d) If $w^{-1} = -i Q y_i P j y_j$ then (T) fails.
 - (e) If $w^{-1} = -i Q y_i j y_j P$ then (T) fails.
 - (f) If $w^{-1} = -i Q y_i j P y_i$ then (T) fails.
 - (g) If $w^{-1} = -i y_i Q j P y_j$ then (T) fails.
 - $\text{(h) If } w^{-1}=-i-y_i-j-Q-y_i-P- \text{ then (Y3) fails for } (a,b)=(P,Q) \text{ and } (a',b')=(y_j,j).$
 - $\text{(i) If } w^{-1} = -i y_i j Q P y_j \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_j,j).$
 - (j) If $w^{-1} = -i y_i j y_j Q P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_j, j)$.
 - $\text{(k) If } w^{-1} = Q i y_i j y_j P \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$

- (l) If $w^{-1} = -Q i y_i j P y_j$ then (Y3) fails for $(a, b) = (y_i, i)$ and (a', b') = (P, Q).
- (m) If $w^{-1} = -Q i y_i P j y_j$ then (Y3) fails for $(a, b) = (y_i, i)$ and (a', b') = (P, Q).
- $\text{(n) If } w^{-1} = Q P i y_i j y_j \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$
- $\text{(o) If } w^{-1} = Q i P y_i j y_j \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$
- 14. It cannot happen that $y_i < i < P < Q < y_i < j$ since:
 - (a) If $w^{-1} = -i y_i Q P j y_j$ then (T) fails.
 - (b) If $w^{-1} = -i y_i Q j y_j P$ then (T) fails.
 - (c) If $w^{-1} = -i Q P y_i j y_j$ then (T) fails.
 - (d) If $w^{-1} = -Q i y_i P j y_j$ then (T) fails.
 - (e) If $w^{-1} = -i Q y_i P j y_i$ then (T) fails.
 - (f) If $w^{-1} = -i Q y_i j y_j P$ then (T) fails.
 - (g) If $w^{-1} = -Q i P y_i j y_j$ then (T) fails.
 - (h) If $w^{-1} = -i Q y_i j P y_j$ then (T) fails.
 - (i) If $w^{-1} = -i y_i Q j P y_j$ then (T) fails.
 - (j) If $w^{-1} = -i y_i j Q y_i P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_j, j)$.
 - (k) If $w^{-1} = -i y_i j Q P y_j$ then (Y3) fails for (a,b) = (P,Q) and $(a',b') = (y_j,j)$.
 - (l) If $w^{-1} = -i y_i j y_j Q P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_j, j)$.
 - (m) If $w^{-1} = -Q i y_i j y_j P$ then (Y3) fails for $(a,b) = (y_i,i)$ and (a',b') = (P,Q).
 - (n) If $w^{-1} = -Q i y_i j P y_j$ then (Y3) fails for $(a,b) = (y_i,i)$ and (a',b') = (P,Q).
 - (o) If $w^{-1} = -Q P i y_i j y_j$ then (Y3) fails for $(a, b) = (y_i, i)$ and (a', b') = (P, Q).
- 15. It cannot happen that $y_i < P < i < Q < y_j < j$ since:
 - (a) If $w^{-1} = -i y_i Q P j y_j$ then (T) fails.
 - (b) If $w^{-1} = -i y_i Q j y_j P$ then (T) fails.
 - (c) If $w^{-1} = -i Q P y_i j y_j$ then (T) fails.
 - (d) If $w^{-1} = -i Q y_i P j y_j$ then (T) fails.
 - (e) If $w^{-1} = -i Q y_i j y_j P$ then (T) fails.
 - (f) If $w^{-1} = -i Q y_i j P y_j$ then (T) fails.
 - (g) If $w^{-1} = -i y_i Q j P y_j$ then (T) fails.
 - $\text{(h) If } w^{-1}=-i-y_i-j-Q-y_j-P- \text{ then (Y3) fails for } (a,b)=(P,Q) \text{ and } (a',b')=(y_j,j).$
 - (i) If $w^{-1} = -i y_i j Q P y_j$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_j, j)$.
 - $(\mathbf{j}) \ \text{ If } w^{-1} = -i y_i j y_j Q P \text{ then } (\mathbf{Y3}) \text{ fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_j,j).$
 - $\text{(k) If } w^{-1} = -Q i y_i j y_j P \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$
 - (l) If $w^{-1} = -Q i y_i j P y_j$ then (Y3) fails for $(a, b) = (y_i, i)$ and (a', b') = (P, Q).
 - $\text{(m) If } w^{-1} = \cdots Q \cdots i \cdots y_i \cdots P \cdots j \cdots y_j \cdots \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$
 - $\text{(n) If } w^{-1} = Q P i y_i j y_j \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$
 - $\text{(o) If } w^{-1} = Q i P y_i j y_j \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$

We conclude that properties (Z1)-(Z3) hold whenever (a, b), (a', b') are as in cases (i) or (ii) and $y_i < i < y_j < j$.

10.3 Subcase (iii)

Suppose i' and j' are integers such that $0 \neq i - i' = j - j' \in n\mathbb{Z}$, so that w(i) - w(i') = w(j) - w(j') = i - i'.

- 1. Suppose $y_{i'} < i' < y_{j'} < y_i < j' < i < y_j < j$.
 - (a) If $w^{-1} = -i' i y_{i'} y_i j' j y_{j'} y_j$ then (U) fails.
 - (b) If $w^{-1} = -i' y_{i'} i y_i j' j y_{j'} y_j$ then (U) fails.
 - (c) If $w^{-1} = -i' i y_{i'} y_i j' y_{j'} j y_j$ then (U) fails.
 - (d) If $w^{-1} = -i' y_{i'} i y_i j' y_{j'} j y_j$ then (U) fails.
 - (e) If $w^{-1} = -i' i y_{i'} j' y_i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.
 - $\text{(f) If } w^{-1} = -i' i y_{i'} j' y_i y_{i'} j y_j \text{ then (Y3) fails for } (a,b) = (y_{i'},i') \text{ and } (a',b') = (y_i,i).$
 - (g) If $w^{-1} = -i' i y_{i'} j' y_{j'} y_i j y_j$ then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.
 - $\text{(h) If } w^{-1} = -i' y_{i'} j' i y_i j y_{j'} y_j \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_i,i).$
 - (i) If $w^{-1} = -i' y_{i'} i j' y_i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.
 - (j) If $w^{-1} = -i' y_{i'} i j' y_i y_{j'} j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.
 - (k) If $w^{-1} = -i' y_{i'} i j' y_{j'} y_i j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.
 - (l) If $w^{-1} = -i' y_{i'} j' i y_i y_{j'} j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.
 - (m) If $w^{-1} = -i' y_{i'} j' i y_{j'} y_i j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

Thus if $y_{i'} < i' < y_{i'} < y_i < j' < i < y_j < j$ then one of the following holds:

$$\bullet \ w^{-1} = -i' - y_{i'} - j' - y_{j'} - i - y_i - j - y_j - \text{ and } (wt)^{-1} = -j' - y_{i'} - i' - y_{j'} - j - y_i - i - y_j - .$$

When $(a, b) \in \operatorname{Cyc}^1(z) = \{(y_j, y_j), (y_i, j), (i, i)\}$ and $(a', b') \in \{(y_{j'}, y_{j'}), (y_{i'}, j'), (i', i')\}$, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -j - y_i - and (wt)^{-1} = -j' - y_{i'} - .$$

 $(Z2) \Leftrightarrow (no condition).$

(Z3)
$$\Leftrightarrow$$

$$\begin{cases}
(wt)^{-1} = -i' - i - \text{ and } \\
(wt)^{-1} = -i' - j - \text{ and } \\
(wt)^{-1} = -i' - y_j - \text{ and } \\
(wt)^{-1} = -y_{i'} - i - \text{ and } \\
(wt)^{-1} = -y_{i'} - j - \text{ and } \\
(wt)^{-1} = -y_{i'} - y_j - \text{ and } \\
(wt)^{-1} = -y_{j'} - i - \text{ and } \\
(wt)^{-1} = -y_{j'} - j - \text{ and } \\
(wt)^{-1} = -y_{j'} - y_j - .
\end{cases}$$

- 2. Suppose $y_{i'} < i' < y_{j'} < j' < y_i < i < y_j < j$.
 - (a) If $w^{-1} = -i' i y_{i'} y_i j' j y_{j'} y_j$ then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.
 - (b) If $w^{-1} = -i' i y_{i'} j' y_i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.
 - (c) If $w^{-1} = -i' i y_{i'} j' y_i y_{j'} j y_j$ then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.
 - (d) If $w^{-1} = -i' i y_{i'} j' y_{j'} y_i j y_j$ then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.
 - (e) If $w^{-1} = -i' i y_{i'} y_i j' y_{j'} j y_j$ then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.
 - $\text{(f) If } w^{-1} = -i' y_{i'} i y_i j' j y_{j'} y_j \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_i,i).$
 - $\text{(g) If } w^{-1} = --i' -y_{i'} -j' i -y_i -j -y_{j'} -y_j - \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_i,i).$
 - $\text{(h) If } w^{-1} = -i' y_{i'} i j' y_i j y_{j'} y_j \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_i,i).$
 - $\text{(i) If } w^{-1} = -i' y_{i'} i y_i j' y_{j'} j y_j \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_i,i).$
 - $\text{(j) If } w^{-1} = -i' y_{i'} i j' y_i y_{j'} j y_j \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_i,i).$

$$\text{(k) If } w^{-1} = -i' - y_{i'} - i - j' - y_{j'} - y_i - j - y_j - \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_i,i).$$

(l) If
$$w^{-1} = -i' - y_{i'} - j' - i - y_i - y_{j'} - j - y_j$$
 — then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

$$\text{(m) If } w^{-1} = -i' - y_{i'} - j' - i - y_{j'} - y_i - j - y_j - \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_i,i).$$

Thus if $y_{i'} < i' < y_{j'} < j' < y_i < i < y_j < j$ then one of the following holds:

•
$$w^{-1} = -i' - y_{i'} - j' - y_{j'} - i - y_i - j - y_j$$
 and $(wt)^{-1} = -j' - y_{i'} - i' - y_{j'} - j - y_i - i - y_j$.

When $(a, b) \in \operatorname{Cyc}^1(z) = \{(y_j, y_j), (y_i, j), (i, i)\}$ and $(a', b') \in \{(y_{j'}, y_{j'}), (y_{i'}, j'), (i', i')\}$, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -j - y_i - \text{ and } (wt)^{-1} = -j' - y_{i'} - .$$

 $(Z2) \Leftrightarrow (no condition).$

$$(Z3) \Leftrightarrow \begin{cases} (wt)^{-1} = -i' - i - \text{ and } \\ (wt)^{-1} = -i' - j - \text{ and } \\ (wt)^{-1} = -i' - y_j - \text{ and } \\ (wt)^{-1} = -y_{i'} - i - \text{ and } \\ (wt)^{-1} = -y_{i'} - j - \text{ and } \\ (wt)^{-1} = -y_{i'} - y_j - \text{ and } \\ (wt)^{-1} = -y_{j'} - i - \text{ and } \\ (wt)^{-1} = -y_{j'} - j - \text{ and } \\ (wt)^{-1} = -y_{j'} - j - \text{ and } \\ (wt)^{-1} = -y_{j'} - y_j - . \end{cases}$$

3. Suppose $y_{i'} < i' < y_{j'} < y_i < i < y_j < j' < j$.

(a) If
$$w^{-1} = -i' - i - y_{i'} - y_i - j' - j - y_{j'} - y_j$$
 then (T) fails.

(b) If
$$w^{-1} = -i' - y_{i'} - i - y_i - j' - j - y_{j'} - y_j$$
 then (T) fails.

(c) If
$$w^{-1} = -i' - i - y_{i'} - j' - y_i - j - y_{i'} - y_i$$
 then (T) fails.

(d) If
$$w^{-1} = -i' - y_{i'} - i - j' - y_i - j - y_{j'} - y_j$$
 then (T) fails.

(e) If
$$w^{-1} = -i' - i - y_{i'} - j' - y_i - y_{j'} - j - y_j$$
— then (T) fails.

(f) If
$$w^{-1} = -i' - i - y_{i'} - j' - y_{j'} - y_i - j - y_j$$
 — then (T) fails.

(g) If
$$w^{-1} = -i' - i - y_{i'} - y_i - j' - y_{j'} - j - y_j$$
 then (T) fails.

(h) If
$$w^{-1} = -i' - y_{i'} - i - y_i - j' - y_{j'} - j - y_i$$
 then (T) fails.

(i) If
$$w^{-1} = -i' - y_{i'} - i - j' - y_i - y_{j'} - j - y_j$$
 then (T) fails.

(j) If
$$w^{-1} = -i' - y_{i'} - i - j' - y_{j'} - y_i - j - y_j$$
 then (T) fails.

(k) If
$$w^{-1} = -i' - y_{i'} - j' - i - y_i - y_{j'} - j - y_j$$
 then (Y2) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

$$\text{(l) If } w^{-1} = -i' - y_{i'} - j' - i - y_{j'} - y_i - j - y_j - \text{ then (Y2) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_i,i).$$

$$\text{(m) If } w^{-1} = -i' - y_{i'} - j' - i - y_i - j - y_{j'} - y_j - \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_j,j).$$

Thus if $y_{i'} < i' < y_{i'} < y_i < i < y_j < j' < j$ then one of the following holds:

•
$$w^{-1} = -i' - y_{i'} - j' - y_{i'} - i - y_i - j - y_i$$
 and $(wt)^{-1} = -j' - y_{i'} - i' - y_{i'} - j - y_i - i - y_i$.

When $(a, b) \in \operatorname{Cyc}^1(z) = \{(y_j, y_j), (y_i, j), (i, i)\}$ and $(a', b') \in \{(y_{j'}, y_{j'}), (y_{i'}, j'), (i', i')\}$, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -j - y_i - \text{ and } (wt)^{-1} = -j' - y_{i'} - .$$

$$(22) \Leftrightarrow (wt)^{-1} \neq -j' - i - y_{i'} - \text{ and } (wt)^{-1} \neq -j' - y_j - y_{i'} - .$$

$$(Z3) \Leftrightarrow \begin{cases} (wt)^{-1} = -i' - i - \text{ and } \\ (wt)^{-1} = -i' - j - \text{ and } \\ (wt)^{-1} = -i' - y_j - \text{ and } \\ (wt)^{-1} = -y_{i'} - j - \text{ and } \\ (wt)^{-1} = -y_{j'} - i - \text{ and } \\ (wt)^{-1} = -y_{j'} - j - \text{ and } \\ (wt)^{-1} = -y_{j'} - y_j - . \end{cases}$$

- 4. Suppose $y_{i'} < i' < y_{j'} < y_i < i < j' < y_j < j$.
 - (a) If $w^{-1} = -i' i y_{i'} y_i j' j y_{j'} y_j$ then (T) fails.
 - (b) If $w^{-1} = -i' y_{i'} i y_i j' j y_{j'} y_j$ then (T) fails.
 - (c) If $w^{-1} = -i' i y_{i'} j' y_i j y_{j'} y_j$ then (T) fails.
 - (d) If $w^{-1} = -i' y_{i'} i j' y_i j y_{j'} y_j$ then (T) fails.
 - (e) If $w^{-1} = -i' i y_{i'} j' y_i y_{j'} j y_j$ then (T) fails.
 - (f) If $w^{-1} = -i' i y_{i'} j' y_{j'} y_i j y_j$ then (T) fails.
 - (g) If $w^{-1} = -i' i y_{i'} y_i j' y_{j'} j y_j$ then (T) fails.
 - (h) If $w^{-1} = -i' y_{i'} i y_i j' y_{j'} j y_j$ then (T) fails.
 - (i) If $w^{-1} = -i' y_{i'} i j' y_i y_{j'} j y_j$ then (T) fails.
 - (j) If $w^{-1} = -i' y_{i'} i j' y_{j'} y_i j y_j$ then (T) fails.
 - (k) If $w^{-1} = -i' y_{i'} j' i y_i y_{j'} j y_j$ then (Y2) fails for $(a,b) = (y_{j'},j')$ and $(a',b') = (y_i,i)$.
 - (l) If $w^{-1} = -i' y_{i'} j' i y_{j'} y_i j y_j$ then (Y2) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.
 - $\text{(m) If } w^{-1} = -i' y_{i'} j' i y_i j y_{j'} y_j \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_j,j).$

Thus if $y_{i'} < i' < y_{j'} < y_i < i < j' < y_j < j$ then one of the following holds:

•
$$w^{-1} = -i' - y_{i'} - j' - y_{j'} - i - y_i - j - y_j - \text{ and } (wt)^{-1} = -j' - y_{i'} - i' - y_{j'} - j - y_i - i - y_j - .$$

When $(a, b) \in \operatorname{Cyc}^1(z) = \{(y_j, y_j), (y_i, j), (i, i)\}$ and $(a', b') \in \{(y_{j'}, y_{j'}), (y_{i'}, j'), (i', i')\}$, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -j - y_i - \text{ and } (wt)^{-1} = -j' - y_{i'} - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -j'-i-y_{i'}-.$$

(Z3)
$$\Leftrightarrow$$

$$\begin{cases}
(wt)^{-1} = -i' - i - \text{ and } \\
(wt)^{-1} = -i' - j - \text{ and } \\
(wt)^{-1} = -i' - y_{j} - \text{ and } \\
(wt)^{-1} = -y_{i'} - j - \text{ and } \\
(wt)^{-1} = -y_{i'} - j - \text{ and } \\
(wt)^{-1} = -y_{j'} - i - \text{ and } \\
(wt)^{-1} = -y_{j'} - j - \text{ and } \\
(wt)^{-1} = -y_{j'} - j - \text{ and } \\
(wt)^{-1} = -y_{j'} - y_{j} - .
\end{cases}$$

5. Suppose $y_{i'} < y_i < i' < y_{j'} < j' < i < y_i < j$.

$$\text{(a) If } w^{-1} = -i' - y_{i'} - i - j' - y_i - y_{j'} - j - y_j - \text{ then (Y2) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (y_{j'},j').$$

$$\text{(b) If } w^{-1} = -i' - y_{i'} - i - j' - y_{j'} - y_i - j - y_j - \text{ then (Y2) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (y_{j'},j').$$

(c) If
$$w^{-1} = -i' - y_{i'} - j' - i - y_{j'} - y_i - j - y_j$$
 — then (Y2) fails for $(a,b) = (y_i,i)$ and $(a',b') = (y_{j'},j')$.

$$\text{(d) If } w^{-1} = -i' - i - y_{i'} - y_i - j' - j - y_{j'} - y_j - \text{ then (Y3) fails for } (a,b) = (y_{i'},i') \text{ and } (a',b') = (y_i,i).$$

(e) If
$$w^{-1} = -i' - i - y_{i'} - j' - y_i - j - y_{j'} - y_j$$
 then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.

$$\text{(f) If } w^{-1} = -i' - i - y_{i'} - j' - y_i - y_{j'} - j - y_j - \text{ then (Y3) fails for } (a,b) = (y_{i'},i') \text{ and } (a',b') = (y_i,i).$$

(g) If
$$w^{-1} = -i' - i - y_{i'} - j' - y_{j'} - y_i - j - y_j$$
 then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.

$$\text{(h) If } w^{-1} = -i' - i - y_{i'} - y_i - j' - y_{j'} - j - y_j - \text{ then (Y3) fails for } (a,b) = (y_{i'},i') \text{ and } (a',b') = (y_i,i).$$

$$\text{(i) If } w^{-1} = -i' - y_{i'} - i - y_i - j' - j - y_{j'} - y_j - \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_j,j).$$

$$\text{(j) If } w^{-1} = -i' - y_{i'} - j' - i - y_i - j - y_{j'} - y_j - \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_j,j).$$

$$\text{(k) If } w^{-1} = -i' - y_{i'} - i - j' - y_i - j - y_{j'} - y_j - \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_j,j).$$

Thus if $y_{i'} < y_i < i' < y_{j'} < j' < i < y_j < j$ then one of the following holds:

•
$$w^{-1} = -i' - y_{i'} - j' - y_{j'} - i - y_i - j - y_j$$
 and $(wt)^{-1} = -j' - y_{i'} - i' - y_{j'} - j - y_i - i - y_j$.

•
$$w^{-1} = -i' - y_{i'} - j' - i - y_i - y_{j'} - j - y_j$$
 and $(wt)^{-1} = -j' - y_{i'} - i' - j - y_i - y_{j'} - i - y_j$.

•
$$w^{-1} = -i' - y_{i'} - i - y_i - j' - y_{j'} - j - y_j$$
 and $(wt)^{-1} = -j' - y_{i'} - j - y_i - i' - y_{j'} - i - y_j$.

When $(a, b) \in \operatorname{Cyc}^1(z) = \{(y_j, y_j), (y_i, j), (i, i)\}$ and $(a', b') \in \{(y_{j'}, y_{j'}), (y_{i'}, j'), (i', i')\}$, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -j - y_i - \text{ and } (wt)^{-1} = -j' - y_{i'} - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -j-i'-y_i$$
 and $(wt)^{-1} \neq -j-y_{i'}-y_i$.

(Z3)
$$\Leftrightarrow$$

$$\begin{cases}
(wt)^{-1} = -i' - i - \text{ and} \\
(wt)^{-1} = -i' - y_j - \text{ and} \\
(wt)^{-1} = -y_{i'} - i - \text{ and} \\
(wt)^{-1} = -y_{i'} - j - \text{ and} \\
(wt)^{-1} = -y_{i'} - y_j - \text{ and} \\
(wt)^{-1} = -y_{j'} - i - \text{ and} \\
(wt)^{-1} = -y_{j'} - y_j - .
\end{cases}$$

6. Suppose $y_{i'} < i' < y_i < y_{j'} < j' < i < y_j < j$.

(a) If
$$w^{-1} = -i' - i - y_{i'} - y_i - j' - j - y_{j'} - y_j$$
 then (U) fails.

(b) If
$$w^{-1} = -i' - y_{i'} - i - y_i - j' - j - y_{j'} - y_j$$
 then (U) fails.

(c) If
$$w^{-1} = -i' - i - y_{i'} - y_i - j' - y_{j'} - j - y_j$$
 then (U) fails.

(d) If
$$w^{-1} = -i' - y_{i'} - i - y_i - j' - y_{j'} - j - y_j$$
 then (U) fails.

(e) If
$$w^{-1} = -i' - y_{i'} - i - j' - y_i - y_{j'} - j - y_j$$
 then (Y2) fails for $(a, b) = (y_i, i)$ and $(a', b') = (y_{j'}, j')$.

(f) If
$$w^{-1} = -i' - y_{i'} - i - j' - y_{j'} - y_i - j - y_j$$
 then (Y2) fails for $(a, b) = (y_i, i)$ and $(a', b') = (y_{j'}, j')$.

(g) If
$$w^{-1} = -i' - y_{i'} - j' - i - y_{j'} - y_i - j - y_j$$
 then (Y2) fails for $(a, b) = (y_i, i)$ and $(a', b') = (y_{j'}, j')$.

(h) If
$$w^{-1} = -i' - i - y_{i'} - j' - y_i - j - y_{j'} - y_j$$
 then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.

(i) If
$$w^{-1} = -i' - i - y_{i'} - j' - y_i - y_{j'} - j - y_j$$
 then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.

(j) If
$$w^{-1} = -i' - i - y_{i'} - j' - y_{j'} - y_i - j - y_j$$
 then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.

(k) If
$$w^{-1} = -i' - y_{i'} - j' - i - y_i - j - y_{j'} - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_j, j)$.

(l) If
$$w^{-1} = -i' - y_{i'} - i - j' - y_i - j - y_{j'} - y_j$$
 — then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_j, j)$.

Thus if $y_{i'} < i' < y_i < y_{j'} < j' < i < y_j < j$ then one of the following holds:

$$\bullet \ w^{-1} = -i' - y_{i'} - j' - i - y_i - y_{j'} - j - y_j - \text{ and } (wt)^{-1} = -j' - y_{i'} - i' - j - y_i - y_{j'} - i - y_j - .$$

•
$$w^{-1} = -i' - y_{i'} - j' - y_{j'} - i - y_i - j - y_j$$
 and $(wt)^{-1} = -j' - y_{i'} - i' - y_{j'} - j - y_i - i - y_j$.

When $(a,b) \in \operatorname{Cyc}^1(z) = \{(y_j,y_j),(y_i,j),(i,i)\}$ and $(a',b') \in \{(y_{j'},y_{j'}),(y_{i'},j'),(i',i')\}$, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -j - y_i - \text{ and } (wt)^{-1} = -j' - y_{i'} - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -j-y_{i'}-y_i-.$$

$$(Z3) \Leftrightarrow \begin{cases} (wt)^{-1} = -i' - i - \text{ and } \\ (wt)^{-1} = -i' - j - \text{ and } \\ (wt)^{-1} = -i' - y_j - \text{ and } \\ (wt)^{-1} = -y_{i'} - i - \text{ and } \\ (wt)^{-1} = -y_{i'} - j - \text{ and } \\ (wt)^{-1} = -y_{i'} - j - \text{ and } \\ (wt)^{-1} = -y_{i'} - y_j - \text{ and } \\ (wt)^{-1} = -y_{j'} - i - \text{ and } \\ (wt)^{-1} = -y_{j'} - y_j - . \end{cases}$$

7. It cannot happen that $y_{i'} < y_i < i' < i < y_{j'} < y_i < j' < j$ since:

```
(a) If w^{-1} = -i' - i - y_{i'} - y_i - j' - j - y_{j'} - y_j— then (T) fails.
```

(b) If
$$w^{-1} = -i' - y_{i'} - i - y_i - j' - j - y_{j'} - y_j$$
 then (T) fails.

(c) If
$$w^{-1} = -i' - i - y_{i'} - j' - y_i - j - y_{i'} - y_i$$
 then (T) fails.

(d) If
$$w^{-1} = -i' - y_{i'} - i - j' - y_i - j - y_{j'} - y_j$$
 then (T) fails.

(e) If
$$w^{-1} = -i' - i - y_{i'} - j' - y_i - y_{j'} - j - y_j$$
 then (T) fails.

(f) If
$$w^{-1} = -i' - i - y_{i'} - j' - y_{j'} - y_i - j - y_j$$
— then (T) fails.

(g) If
$$w^{-1} = -i' - i - y_{i'} - y_i - j' - y_{j'} - j - y_j$$
 then (T) fails.

(h) If
$$w^{-1} = -i' - y_{i'} - i - y_i - j' - y_{j'} - j - y_i$$
 then (T) fails.

(i) If
$$w^{-1} = -i' - y_{i'} - i - j' - y_i - y_{j'} - j - y_j$$
 then (T) fails.

(j) If
$$w^{-1} = -i' - y_{i'} - i - j' - y_{j'} - y_i - j - y_j$$
 then (T) fails.

(k) If
$$w^{-1} = -i' - y_{i'} - j' - i - y_i - y_{i'} - j - y_j$$
 then (T) fails.

(l) If
$$w^{-1} = -i' - y_{i'} - j' - i - y_{j'} - y_i - j - y_j$$
 then (T) fails.

$$\text{(m) If } w^{-1} = -i' - y_{i'} - j' - i - y_i - j - y_{j'} - y_j - \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (y_{j'},j').$$

(n) If
$$w^{-1} = -i' - y_{i'} - j' - y_{j'} - i - y_i - j - y_j$$
 then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (y_{j'}, j')$.

8. It cannot happen that $y_{i'} < i' < y_i < y_{j'} < i < y_j < j' < j$ since:

(a) If
$$w^{-1} = -i' - i - y_{i'} - y_i - j' - j - y_{j'} - y_j$$
 then (T) fails.

(b) If
$$w^{-1} = -i' - y_{i'} - i - y_i - j' - j - y_{j'} - y_j$$
 then (T) fails.

(c) If
$$w^{-1} = -i' - i - y_{i'} - j' - y_i - j - y_{i'} - y_i$$
 then (T) fails.

(d) If
$$w^{-1} = -i' - y_{i'} - i - j' - y_i - j - y_{j'} - y_j$$
 then (T) fails.

(e) If
$$w^{-1} = -i' - i - y_{i'} - j' - y_i - y_{j'} - j - y_j$$
 then (T) fails.

(f) If
$$w^{-1} = -i' - i - y_{i'} - j' - y_{i'} - y_i - j - y_j$$
 then (T) fails.

(g) If
$$w^{-1} = -i' - i - y_{i'} - y_i - j' - y_{i'} - j - y_i$$
 then (T) fails.

(h) If
$$w^{-1} = -i' - y_{i'} - i - y_i - j' - y_{j'} - j - y_j$$
 then (T) fails.

(i) If
$$w^{-1} = -i' - y_{i'} - i - j' - y_i - y_{j'} - j - y_j$$
 then (T) fails.

(j) If
$$w^{-1} = -i' - y_{i'} - i - j' - y_{j'} - y_i - j - y_j$$
— then (T) fails.

$$\text{(k) If } w^{-1} = -i' - y_{i'} - j' - i - y_i - j - y_{j'} - y_j - \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (y_{j'},j').$$

(l) If
$$w^{-1} = -i' - y_{i'} - j' - i - y_i - y_{j'} - j - y_j$$
 then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (y_{j'}, j')$.

$$\text{(m) If } w^{-1} = -i' - y_{i'} - j' - y_{j'} - i - y_i - j - y_j - \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (y_{j'},j').$$

(n) If
$$w^{-1} = -i' - y_{i'} - j' - i - y_{j'} - y_i - j - y_j$$
 then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (y_{j'}, j')$.

9. It cannot happen that $y_{i'} < y_i < i' < i < y_{j'} < j' < y_j < j$ since:

(a) If
$$w^{-1} = -i' - i - y_{i'} - y_i - j' - j - y_{j'} - y_j$$
— then (T) fails.

(b) If
$$w^{-1} = -i' - y_{i'} - i - y_i - j' - j - y_{j'} - y_j$$
 then (T) fails.

(c) If
$$w^{-1} = -i' - i - y_{i'} - j' - y_i - j - y_{j'} - y_j$$
 then (T) fails.

(d) If
$$w^{-1} = -i' - y_{i'} - i - j' - y_i - j - y_{j'} - y_j$$
 then (T) fails.

(e) If
$$w^{-1} = -i' - i - y_{i'} - j' - y_i - y_{j'} - j - y_j$$
 then (T) fails.

(f) If
$$w^{-1} = -i' - i - y_{i'} - j' - y_{j'} - y_i - j - y_j$$
 then (T) fails.

(g) If
$$w^{-1} = -i' - i - y_{i'} - y_i - j' - y_{j'} - j - y_j$$
 — then (T) fails.

(h) If
$$w^{-1} = -i' - y_{i'} - i - y_i - j' - y_{j'} - j - y_j$$
— then (T) fails.
(i) If $w^{-1} = -i' - y_{i'} - i - j' - y_i - y_{i'} - j - y_j$ — then (T) fails.

(j) If
$$w^{-1} = -i' - y_{i'} - i - j' - y_{i'} - y_i - j - y_i$$
 then (T) fails.

(k) If
$$w^{-1} = -i' - y_{i'} - j' - i - y_i - y_{j'} - j - y_j$$
— then (T) fails.

(l) If
$$w^{-1} = -i' - y_{i'} - j' - i - y_{j'} - y_i - j - y_j$$
 then (T) fails.

$$\text{(m) If } w^{-1} = -i' - y_{i'} - j' - i - y_i - j - y_{j'} - y_j - \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (y_{j'},j').$$

```
(n) If w^{-1} = -i' - y_{i'} - j' - y_{j'} - i - y_i - j - y_j then (Y3) fails for (a, b) = (y_i, i) and (a', b') = (y_{j'}, j').
```

- 10. It cannot happen that $y_{i'} < i' < y_i < y_{j'} < i < j' < y_i < j$ since:
 - (a) If $w^{-1} = -i' i y_{i'} y_i j' j y_{j'} y_j$ then (T) fails.
 - (b) If $w^{-1} = -i' y_{i'} i y_i j' j y_{j'} y_j$ then (T) fails.
 - (c) If $w^{-1} = -i' i y_{i'} j' y_i j y_{j'} y_j$ then (T) fails.
 - (d) If $w^{-1} = -i' y_{i'} i j' y_i j y_{j'} y_j$ then (T) fails.
 - (e) If $w^{-1} = -i' i y_{i'} j' y_i y_{j'} j y_j$ then (T) fails.
 - (f) If $w^{-1} = -i' i y_{i'} j' y_{j'} y_i j y_j$ then (T) fails.
 - (g) If $w^{-1} = -i' i y_{i'} y_i j' y_{j'} j y_j$ then (T) fails.
 - (h) If $w^{-1} = -i' y_{i'} i y_i j' y_{j'} j y_j$ then (T) fails.
 - (i) If $w^{-1} = -i' y_{i'} i j' y_i y_{j'} j y_j$ then (T) fails.
 - (i) If $w^{-1} = -i' y_{i'} i j' y_{i'} y_i j y_j$ then (T) fails.
 - $\text{(k) If } w^{-1} = -i' y_{i'} j' i y_i j y_{j'} y_j \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (y_{j'},j').$
 - (l) If $w^{-1} = -i' y_{i'} j' i y_i y_{j'} j y_j$ then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (y_{j'}, j')$.
 - (m) If $w^{-1} = -i' y_{i'} j' y_{j'} i y_i j y_j$ then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (y_{j'}, j')$.
 - (n) If $w^{-1} = -i' y_{i'} j' i y_{j'} y_i j y_j$ then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (y_{j'}, j')$.
- 11. It cannot happen that $y_{i'} < y_i < i' < y_{j'} < i < y_j < j' < j$ since:
 - (a) If $w^{-1} = -i' i y_{i'} y_i j' j y_{j'} y_j$ then (T) fails.
 - (b) If $w^{-1} = -i' y_{i'} i y_i j' j y_{j'} y_j$ then (T) fails.
 - (c) If $w^{-1} = -i' i y_{i'} j' y_i j y_{i'} y_i$ then (T) fails.
 - (d) If $w^{-1} = -i' y_{i'} i j' y_i j y_{j'} y_j$ then (T) fails.
 - (e) If $w^{-1} = -i' i y_{i'} j' y_i y_{j'} j y_j$ then (T) fails.
 - (f) If $w^{-1} = -i' i y_{i'} j' y_{j'} y_i j y_j$ then (T) fails.
 - (g) If $w^{-1} = -i' i y_{i'} y_i j' y_{j'} j y_j$ then (T) fails.
 - (h) If $w^{-1} = -i' y_{i'} i y_i j' y_{j'} j y_i$ then (T) fails.
 - (i) If $w^{-1} = -i' y_{i'} i j' y_i y_{j'} j y_j$ then (T) fails.
 - (j) If $w^{-1} = -i' y_{i'} i j' y_{i'} y_i j y_j$ then (T) fails.
 - (k) If $w^{-1} = -i' y_{i'} j' i y_i j y_{i'} y_i$ then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (y_{j'}, j')$.
 - (1) If $w^{-1} = -i' y_{i'} j' i y_i y_{i'} j y_i$ then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (y_{j'}, j')$.
 - $\text{(m) If } w^{-1} = -i' y_{i'} j' y_{j'} i y_i j y_j \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (y_{j'},j').$
 - (n) If $w^{-1} = -i' y_{i'} j' i y_{i'} y_i j y_i$ then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (y_{j'}, j')$.
- 12. It cannot happen that $y_{i'} < i' < y_i < i < y_{j'} < y_i < j' < j$ since:
 - (a) If $w^{-1} = -i' i y_{i'} y_i j' j y_{j'} y_j$ then (T) fails.
 - (b) If $w^{-1} = -i' y_{i'} i y_i j' j y_{j'} y_j$ then (T) fails.
 - (c) If $w^{-1} = -i' i y_{i'} j' y_i j y_{j'} y_j$ then (T) fails.
 - (d) If $w^{-1} = -i' y_{i'} i j' y_i j y_{j'} y_j$ then (T) fails.
 - (e) If $w^{-1} = -i' i y_{i'} j' y_i y_{j'} j y_j$ then (T) fails.
 - (f) If $w^{-1} = -i' i y_{i'} j' y_{j'} y_i j y_j$ then (T) fails.
 - (g) If $w^{-1} = -i' i y_{i'} y_i j' y_{j'} j y_j$ then (T) fails.
 - (h) If $w^{-1} = -i' y_{i'} i y_i j' y_{j'} j y_j$ then (T) fails.
 - (i) If $w^{-1} = -i' y_{i'} i j' y_i y_{j'} j y_j$ then (T) fails.
 - (j) If $w^{-1} = -i' y_{i'} i j' y_{j'} y_i j y_j$ then (T) fails.

- (k) If $w^{-1} = -i' y_{i'} j' i y_i y_{j'} j y_j$ then (T) fails.
- (l) If $w^{-1} = -i' y_{i'} j' i y_{j'} y_i j y_j$ then (T) fails.
- (m) If $w^{-1} = -i' y_{i'} j' i y_i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (y_{j'}, j')$.
- $\text{(n) If } w^{-1} = -i' y_{i'} j' y_{j'} i y_i j y_j \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (y_{j'},j').$
- 13. It cannot happen that $y_{i'} < i' < y_i < i < y_{j'} < j' < y_i < j$ since:
 - (a) If $w^{-1} = -i' i y_{i'} y_i j' j y_{j'} y_j$ then (T) fails.
 - (b) If $w^{-1} = -i' y_{i'} i y_i j' j y_{j'} y_j$ then (T) fails.
 - (c) If $w^{-1} = -i' i y_{i'} j' y_i j y_{j'} y_j$ then (T) fails.
 - (d) If $w^{-1} = -i' y_{i'} i j' y_i j y_{i'} y_i$ then (T) fails.
 - (e) If $w^{-1} = -i' i y_{i'} j' y_i y_{j'} j y_j$ then (T) fails.
 - (f) If $w^{-1} = -i' i y_{i'} j' y_{i'} y_i j y_j$ then (T) fails.
 - (g) If $w^{-1} = -i' i y_{i'} y_i j' y_{j'} j y_j$ then (T) fails.
 - (h) If $w^{-1} = -i' y_{i'} i y_i j' y_{j'} j y_i$ then (T) fails.
 - (i) If $w^{-1} = -i' y_{i'} i j' y_i y_{i'} j y_i$ then (T) fails.
 - (j) If $w^{-1} = -i' y_{i'} i j' y_{j'} y_i j y_j$ then (T) fails.
 - (k) If $w^{-1} = -i' y_{i'} j' i y_i y_{j'} j y_j$ then (T) fails.
 - (1) If $w^{-1} = -i' y_{i'} j' i y_{j'} y_i j y_j$ then (T) fails.
 - (m) If $w^{-1} = -i' y_{i'} j' i y_i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (y_{j'}, j')$.
 - (n) If $w^{-1} = -i' y_{i'} j' y_{j'} i y_i j y_j$ then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (y_{j'}, j')$.
- 14. It cannot happen that $y_{i'} < y_i < i' < y_{j'} < i < j' < y_j < j$ since:
 - (a) If $w^{-1} = -i' i y_{i'} y_i j' j y_{j'} y_j$ then (T) fails.
 - (b) If $w^{-1} = -i' y_{i'} i y_i j' j y_{j'} y_j$ then (T) fails.
 - (c) If $w^{-1} = -i' i y_{i'} j' y_i j y_{j'} y_j$ then (T) fails.
 - (d) If $w^{-1} = -i' y_{i'} i j' y_i j y_{j'} y_j$ then (T) fails.
 - (e) If $w^{-1} = -i' i y_{i'} j' y_i y_{j'} j y_j$ then (T) fails.
 - (f) If $w^{-1} = -i' i y_{i'} j' y_{i'} y_i j y_j$ then (T) fails.
 - (g) If $w^{-1} = -i' i y_{i'} y_i j' y_{j'} j y_j$ then (T) fails.
 - (h) If $w^{-1} = -i' y_{i'} i y_i j' y_{i'} j y_i$ then (T) fails.
 - (i) If $w^{-1} = -i' y_{i'} i j' y_i y_{j'} j y_j$ then (T) fails.
 - (j) If $w^{-1} = -i' y_{i'} i j' y_{i'} y_i j y_j$ then (T) fails.
 - $\text{(k) If } w^{-1} = -i' y_{i'} j' i y_i j y_{j'} y_j \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (y_{j'},j').$
 - (1) If $w^{-1} = -i' y_{i'} j' i y_i y_{j'} j y_j$ then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (y_{j'}, j')$.
 - $\text{(m) If } w^{-1} = -i' y_{i'} j' y_{j'} i y_i j y_j \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (y_{j'},j').$
 - $\text{(n) If } w^{-1} = -i' y_{i'} j' i y_{j'} y_i j y_j \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (y_{j'},j').$

We conclude that properties (Z1)-(Z3) hold for all $(a, b), (a', b') \in \text{Cyc}(z)$ when $y_i < i < y_j < j$.

11 Case: $i < j < y_i < y_j$

Suppose y is such that $i < j < y_i < y_j$. Then $z = \tau_{ij}^n(y)$ has $\operatorname{Cyc}^1(z) = \{(j, y_i), (i, y_j)\}$.

11.1 Subcase (i)

We must have $w^{-1} = -y_i - i - y_j - j$ — since no other ordering is possible:

1. If
$$w^{-1} = -j - i - y_i - y_j$$
 then (T) fails.

2. If
$$w^{-1} = -j - i - y_j - y_i$$
 then (T) fails.

3. If
$$w^{-1} = -j - y_i - i - y_j$$
— then (T) fails.

4. If
$$w^{-1} = -j - y_i - y_j - i$$
 then (T) fails.

5. If
$$w^{-1} = -j - y_i - i - y_i$$
 then (T) fails.

6. If
$$w^{-1} = -j - y_i - y_i - i$$
 then (T) fails.

7. If
$$w^{-1} = -y_i - j - i - y_j$$
 then (T) fails.

8. If
$$w^{-1} = -y_i - j - y_j - i$$
 then (T) fails.

9. If
$$w^{-1} = -y_i - y_j - j - i$$
 then (T) fails.

10. If
$$w^{-1} = -y_i - j - i - y_i$$
 then (T) fails.

11. If
$$w^{-1} = -y_i - j - y_i - i$$
 then (T) fails.

12. If
$$w^{-1} = -y_i - y_i - j - i$$
 then (T) fails.

13. If
$$w^{-1} = -i - j - y_i - y_j$$
— then (Y1) fails for $(a, b) = (i, y_i)$.

14. If
$$w^{-1} = -i - j - y_j - y_i$$
 then (Y1) fails for $(a, b) = (i, y_i)$.

15. If
$$w^{-1} = -i - y_i - j - y_j$$
 then (Y1) fails for $(a, b) = (i, y_i)$.

16. If
$$w^{-1} = -i - y_i - y_j - j$$
— then (Y1) fails for $(a, b) = (i, y_i)$.

17. If
$$w^{-1} = -i - y_j - j - y_i$$
 then (Y1) fails for $(a, b) = (i, y_i)$.

18. If
$$w^{-1} = -i - y_j - y_i - j$$
 then (Y1) fails for $(a, b) = (i, y_i)$.

19. If
$$w^{-1} = -y_j - i - j - y_i$$
 then (Y1) fails for $(a, b) = (i, y_i)$.

20. If
$$w^{-1} = -y_j - i - y_i - j$$
 then (Y1) fails for $(a, b) = (i, y_i)$.

21. If
$$w^{-1} = -y_i - i - j - y_j$$
 — then (Y1) fails for $(a,b) = (j,y_j)$.

22. If
$$w^{-1} = -y_i - y_j - i - j$$
 then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (j, y_j)$.

23. If
$$w^{-1} = -y_j - y_i - i - j$$
 then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (j, y_j)$.

Hence if $i < j < y_i < y_j$ then

$$(wt)^{-1} = -y_i - j - y_j - i - .$$

When $(a, b), (a', b') \in \text{Cyc}^1(z) = \{(j, y_i), (i, y_j)\}$, properties (Z1)-(Z3) are equivalent to the following conditions which all hold in this case:

$$(Z1) \Leftrightarrow (wt)^{-1} = -y_i - j - \text{ and } (wt)^{-1} = -y_i - i - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -y_i - j - i - \text{ and } (wt)^{-1} \neq -y_i - y_i - i - .$$

 $(Z3) \Leftrightarrow (no condition).$

Thus properties (Z1)-(Z3) hold whenever (a, b), (a', b') are as in case (i) and $i < j < y_i < y_j$.

11.2 Subcase (ii)

Suppose R is an integer such that $(R,R) \in \operatorname{Cyc}^2(z) \subset \operatorname{Cyc}(y)$, so that $R = y_R = z_R \notin \{i,j,y_i,y_j\} + n\mathbb{Z}$.

- 1. Suppose $i < j < y_i < y_i < R$.
 - (a) If $w^{-1} = -y_i R i y_j j$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (R, R).
 - (b) If $w^{-1} = -R y_i i y_j j$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (R, R).
 - (c) If $w^{-1} = -y_i i R y_j j$ then (Y3) fails for $(a,b) = (j,y_j)$ and (a',b') = (R,R).
 - (d) If $w^{-1} = -y_i i y_j R j$ then (Y3) fails for $(a, b) = (j, y_j)$ and (a', b') = (R, R).

Thus if $i < j < y_i < y_j < R$ then one of the following holds:

•
$$w^{-1} = -y_i - i - y_j - j - R$$
 and $(wt)^{-1} = -y_i - j - y_j - i - R$.

When (a, b) = (R, R) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(j, y_i), (i, y_j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -y_i - j$$
 and $(wt)^{-1} = -y_j - i$.

- $(Z2) \Leftrightarrow (no condition).$
- $(Z3) \Leftrightarrow (wt)^{-1} = -i R and (wt)^{-1} = -j R .$
- 2. Suppose $i < j < y_i < R < y_i$.
 - (a) If $w^{-1} = -y_i i y_j R j$ then (Y2) fails for $(a,b) = (j,y_j)$ and (a',b') = (R,R).
 - (b) If $w^{-1} = -y_i R i y_j j$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (R, R).
 - (c) If $w^{-1} = -R y_i i y_j j$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (R, R).

Thus if $i < j < y_i < R < y_j$ then one of the following holds:

- $\bullet \ w^{-1} = -y_i i R y_j j \text{ and } (wt)^{-1} = -y_i j R y_j i -.$
- $w^{-1} = -y_i i y_j j R$ and $(wt)^{-1} = -y_i j y_j i R$.

When (a, b) = (R, R) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(j, y_i), (i, y_j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -y_i - j - \text{ and } (wt)^{-1} = -y_j - i - .$$

$$(\mathbf{Z2}) \Leftrightarrow (wt)^{-1} \neq -y_j - R - i - .$$

$$({\rm Z3}) \Leftrightarrow (wt)^{-1} = -j - R -.$$

- 3. Suppose $i < j < R < y_i < y_j$.
 - (a) If $w^{-1} = -y_i R i y_j j$ then (Y2) fails for $(a,b) = (i,y_i)$ and (a',b') = (R,R).
 - (b) If $w^{-1} = -y_i i y_j R j$ then (Y2) fails for $(a,b) = (j,y_j)$ and (a',b') = (R,R).

Thus if $i < j < R < y_i < y_j$ then one of the following holds:

$$\bullet \ w^{-1} = -y_i - i - R - y_j - j - \ \text{and} \ (wt)^{-1} = -y_i - j - R - y_j - i -.$$

•
$$w^{-1} = -R - y_i - i - y_j - j$$
 and $(wt)^{-1} = -R - y_i - j - y_j - i$.

$$\bullet \ w^{-1} = -y_i - i - y_j - j - R - \ \text{and} \ (wt)^{-1} = -y_i - j - y_j - i - R -.$$

When (a, b) = (R, R) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(j, y_i), (i, y_j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(\mathbf{Z}\mathbf{1}) \Leftrightarrow (wt)^{-1} = -y_i - j - \text{ and } (wt)^{-1} = -y_j - i -.$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -y_i - R - j - \text{ and } (wt)^{-1} \neq -y_j - R - i - .$$

- $(Z3) \Leftrightarrow (no condition).$
- 4. Suppose $i < R < j < y_i < y_j$.

- (a) If $w^{-1} = -y_i i R y_j j$ then (T) fails.
- (b) If $w^{-1} = -y_i i y_j R j$ then (T) fails.
- (c) If $w^{-1} = -y_i R i y_j j$ then (Y2) fails for $(a,b) = (i,y_i)$ and (a',b') = (R,R).
- (d) If $w^{-1} = -y_i i y_j j R$ then (Y3) fails for (a, b) = (R, R) and $(a', b') = (j, y_j)$.

Thus if $i < R < j < y_i < y_j$ then one of the following holds:

•
$$w^{-1} = -R - y_i - i - y_j - j$$
 and $(wt)^{-1} = -R - y_i - j - y_j - i$.

When (a, b) = (R, R) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(j, y_i), (i, y_j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -y_i - j$$
 and $(wt)^{-1} = -y_j - i$.

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -y_i - R - i - .$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -R - y_i - .$$

5. Suppose $R < i < j < y_i < y_j$.

(a) If
$$w^{-1} = -y_i - i - y_j - j - R$$
— then (Y3) fails for $(a, b) = (R, R)$ and $(a', b') = (i, y_i)$.

(b) If
$$w^{-1} = -y_i - i - R - y_j - j$$
— then (Y3) fails for $(a, b) = (R, R)$ and $(a', b') = (i, y_i)$.

(c) If
$$w^{-1} = -y_i - i - y_j - R - j$$
— then (Y3) fails for $(a, b) = (R, R)$ and $(a', b') = (i, y_i)$.

(d) If
$$w^{-1} = -y_i - R - i - y_j - j$$
— then (Y3) fails for $(a, b) = (R, R)$ and $(a', b') = (i, y_i)$.

Thus if $R < i < j < y_i < y_j$ then one of the following holds:

•
$$w^{-1} = -R - y_i - i - y_j - j$$
 and $(wt)^{-1} = -R - y_i - j - y_j - i$.

When (a, b) = (R, R) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(j, y_i), (i, y_j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -y_i - j$$
 and $(wt)^{-1} = -y_j - i$.

 $(Z2) \Leftrightarrow (no condition).$

$$(Z3) \Leftrightarrow (wt)^{-1} = -R - y_i - \text{ and } (wt)^{-1} = -R - y_i - .$$

Next suppose P < Q are integers with $(P,Q) \in \text{Cyc}^2(z) \subset \text{Cyc}(y)$, so that $Q = y_P = z_P$ and $P,Q \notin \{i,j,y_i,y_i\} + n\mathbb{Z}$.

1. Suppose $P < i < j < Q < y_i < y_i$.

(a) If
$$w^{-1} = -Q - y_i - P - i - y_j - j$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(b) If
$$w^{-1} = -y_i - i - Q - P - y_j - j$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(c) If
$$w^{-1} = -Q - y_i - i - y_j - j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(d) If
$$w^{-1} = -y_i - i - y_j - j - Q - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(e) If
$$w^{-1} = -y_i - i - Q - y_j - P - j$$
— then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,y_i)$.

(f) If
$$w^{-1} = -y_i - Q - i - P - y_j - j$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(g) If
$$w^{-1} = -Q - y_i - i - P - y_j - j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

$$\text{(h) If } w^{-1} = -y_i - Q - P - i - y_j - j - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (i,y_i).$$

(i) If
$$w^{-1} = -y_i - i - y_j - Q - j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(j) If
$$w^{-1} = -Q - y_i - i - y_j - P - j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(k) If
$$w^{-1} = -y_i - i - Q - y_j - j - P$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,y_i)$.

(l) If
$$w^{-1} = -y_i - Q - i - y_j - j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(m) If
$$w^{-1} = -y_i - Q - i - y_j - P - j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(n) If
$$w^{-1} = -y_i - i - y_j - Q - P - j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

Thus if $P < i < j < Q < y_i < y_j$ then one of the following holds:

•
$$w^{-1} = -Q - P - y_i - i - y_j - j$$
 and $(wt)^{-1} = -Q - P - y_i - j - y_j - i$.

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(j, y_i), (i, y_j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(\mathrm{Z1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -y_i - j - \text{ and } \\ (wt)^{-1} = -y_j - i - . \end{cases}$$

 $(Z2) \Leftrightarrow (no condition).$

$$(\mathbf{Z3}) \Leftrightarrow (wt)^{-1} = -P - y_i - \text{ and } (wt)^{-1} = -P - y_j -.$$

2. Suppose $P < i < Q < j < y_i < y_j$.

(a) If
$$w^{-1} = -y_i - i - Q - P - y_j - j$$
— then (T) fails.

(b) If
$$w^{-1} = -y_i - i - Q - y_j - P - j$$
— then (T) fails.

(c) If
$$w^{-1} = -y_i - i - y_j - Q - j - P$$
— then (T) fails.

(d) If
$$w^{-1} = -y_i - i - Q - y_j - j - P$$
— then (T) fails.

(e) If
$$w^{-1} = -y_i - i - y_j - Q - P - j$$
 then (T) fails.

(f) If
$$w^{-1} = -Q - y_i - P - i - y_j - j$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(g) If
$$w^{-1} = -Q - y_i - i - y_j - j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(h) If
$$w^{-1} = -y_i - i - y_j - j - Q - P$$
— then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,y_i)$.

(i) If
$$w^{-1} = -y_i - Q - i - P - y_j - j$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(j) If
$$w^{-1} = -Q - y_i - i - P - y_j - j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(k) If
$$w^{-1} = -y_i - Q - P - i - y_j - j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(l) If
$$w^{-1} = -Q - y_i - i - y_j - P - j$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(m) If
$$w^{-1} = -y_i - Q - i - y_j - j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(n) If
$$w^{-1} = -y_i - Q - i - y_j - P - j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

Thus if $P < i < Q < j < y_i < y_j$ then one of the following holds:

$$\bullet \ w^{-1} = -Q - P - y_i - i - y_j - j - \text{ and } (wt)^{-1} = -Q - P - y_i - j - y_j - i -.$$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(j, y_i), (i, y_j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(\mathrm{Z1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -y_i - j - \text{ and } \\ (wt)^{-1} = -y_j - i - . \end{cases}$$

 $(Z2) \Leftrightarrow (no condition).$

$$(\mathbf{Z3}) \Leftrightarrow (wt)^{-1} = -P - y_i - \text{ and } (wt)^{-1} = -P - y_j -.$$

3. Suppose $i < j < y_i < P < y_i < Q$.

(a) If
$$w^{-1} = -Q - y_i - P - i - y_j - j$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(b) If
$$w^{-1} = -Q - y_i - i - y_j - j - P$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(c) If
$$w^{-1} = -y_i - Q - i - P - y_j - j$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(d) If
$$w^{-1} = -Q - y_i - i - P - y_j - j$$
 then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(e) If
$$w^{-1} = -y_i - Q - P - i - y_j - j$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

$$\text{(f) If } w^{-1} = - Q - P - y_i - i - y_j - j - \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$$

(g) If
$$w^{-1} = -Q - y_i - i - y_j - P - j$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(h) If
$$w^{-1} = -y_i - Q - i - y_j - j - P$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(i) If
$$w^{-1} = -y_i - Q - i - y_j - P - j$$
 then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

- (j) If $w^{-1} = -y_i i Q P y_j j$ then (Y3) fails for $(a,b) = (j,y_j)$ and (a',b') = (P,Q).
- $\text{(k) If } w^{-1} = -y_i i Q y_j P j \text{ then (Y3) fails for } (a,b) = (j,y_j) \text{ and } (a',b') = (P,Q).$
- $\text{(l) If } w^{-1} = -y_i i y_i Q j P \text{ then (Y3) fails for } (a,b) = (j,y_j) \text{ and } (a',b') = (P,Q).$
- $\text{(m) If } w^{-1} = -y_i i Q y_j j P \text{ then (Y3) fails for } (a,b) = (j,y_j) \text{ and } (a',b') = (P,Q).$
- (n) If $w^{-1} = -y_i i y_j Q P j$ then (Y3) fails for $(a, b) = (j, y_j)$ and (a', b') = (P, Q).

Thus if $i < j < y_i < P < y_j < Q$ then one of the following holds:

•
$$w^{-1} = -y_i - i - y_j - j - Q - P - \text{ and } (wt)^{-1} = -y_i - j - y_j - i - Q - P - .$$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(j, y_i), (i, y_j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -y_i - j - \text{ and } \\ (wt)^{-1} = -y_j - i - . \end{cases}$$

- $(Z2) \Leftrightarrow (no condition).$
- $(Z3) \Leftrightarrow (wt)^{-1} = -i Q \text{ and } (wt)^{-1} = -j Q .$
- 4. Suppose $P < i < j < y_i < Q < y_i$.

(a) If
$$w^{-1} = -Q - y_i - P - i - y_j - j$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(b) If
$$w^{-1} = -y_i - Q - i - P - y_j - j$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(c) If
$$w^{-1} = -Q - y_i - i - P - y_j - j$$
 then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(d) If
$$w^{-1} = -Q - y_i - i - y_j - j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

(e) If
$$w^{-1} = -y_i - i - y_j - j - Q - P$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

(f) If
$$w^{-1} = -y_i - i - Q - y_j - P - j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

(g) If
$$w^{-1} = -y_i - i - y_j - Q - j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

$$\text{(h) If } w^{-1} = -Q - y_i - i - y_j - P - j - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (j,y_j).$$

(i) If
$$w^{-1} = -y_i - i - Q - y_j - j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

(j) If
$$w^{-1} = -y_i - Q - i - y_j - j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

(k) If
$$w^{-1} = -y_i - Q - i - y_j - P - j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

(l) If
$$w^{-1} = -y_i - i - y_j - Q - P - j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

Thus if $P < i < j < y_i < Q < y_i$ then one of the following holds:

•
$$w^{-1} = -y_i - i - Q - P - y_j - j - \text{ and } (wt)^{-1} = -y_i - j - Q - P - y_j - i - .$$

•
$$w^{-1} = -y_i - Q - P - i - y_i - j$$
 and $(wt)^{-1} = -y_i - Q - P - j - y_i - i$.

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(j, y_i), (i, y_j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -y_i - j - \text{ and } \\ (wt)^{-1} = -y_j - i - . \end{cases}$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -Q - i - P - \text{ and } (wt)^{-1} \neq -Q - y_i - P - .$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -P - y_i - .$$

- 5. Suppose $i < j < P < y_i < Q < y_i$.
 - (a) If $w^{-1} = -y_i i Q y_j P j$ then (Y2) fails for $(a, b) = (j, y_j)$ and (a', b') = (P, Q).

(b) If
$$w^{-1} = -y_i - i - y_j - Q - j - P$$
— then (Y2) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

(c) If
$$w^{-1} = -y_i - i - y_j - Q - P - j$$
 then (Y2) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

(d) If
$$w^{-1} = -Q - y_i - P - i - y_j - j$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(e) If
$$w^{-1} = -Q - y_i - i - y_j - j - P$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

$$\text{(f) If } w^{-1} = -y_i - Q - i - P - y_j - j - \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$$

(g) If
$$w^{-1} = -Q - y_i - i - P - y_j - j$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(h) If
$$w^{-1} = -y_i - Q - P - i - y_j - j$$
 then (Y3) fails for $(a,b) = (i,y_i)$ and $(a',b') = (P,Q)$.

(i) If
$$w^{-1} = -Q - P - y_i - i - y_j - j$$
 then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(j) If
$$w^{-1} = -Q - y_i - i - y_j - P - j$$
 then (Y3) fails for $(a,b) = (i,y_i)$ and $(a',b') = (P,Q)$.

(k) If
$$w^{-1} = -y_i - Q - i - y_j - j - P$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(l) If
$$w^{-1} = -y_i - Q - i - y_j - P - j$$
 then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

Thus if $i < j < P < y_i < Q < y_j$ then one of the following holds:

•
$$w^{-1} = -y_i - i - Q - P - y_j - j$$
 and $(wt)^{-1} = -y_i - j - Q - P - y_j - i$.

•
$$w^{-1} = -y_i - i - Q - y_j - j - P - \text{ and } (wt)^{-1} = -y_i - j - Q - y_j - i - P - i$$

•
$$w^{-1} = -y_i - i - y_j - j - Q - P - \text{ and } (wt)^{-1} = -y_i - j - y_j - i - Q - P - i$$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(j, y_i), (i, y_j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(\mathrm{Z1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -y_i - j - \text{ and } \\ (wt)^{-1} = -y_j - i - . \end{cases}$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -y_j - P - i - \text{ and } (wt)^{-1} \neq -y_j - Q - i - .$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -j - Q - .$$

6. Suppose $P < Q < i < j < y_i < y_j$.

(a) If
$$w^{-1} = -Q - y_i - P - i - y_j - j$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(b) If
$$w^{-1} = -y_i - i - Q - P - y_j - j$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(c) If
$$w^{-1} = -Q - y_i - i - y_j - j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(d) If
$$w^{-1} = -y_i - i - y_j - j - Q - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(e) If
$$w^{-1} = -y_i - i - Q - y_j - P - j$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(f) If
$$w^{-1} = -y_i - Q - i - P - y_j - j$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(g) If
$$w^{-1} = -Q - y_i - i - P - y_j - j$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(h) If
$$w^{-1} = -y_i - Q - P - i - y_j - j$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(i) If
$$w^{-1} = -y_i - i - y_j - Q - j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(j) If
$$w^{-1} = -Q - y_i - i - y_j - P - j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

$$\text{(k) If } w^{-1} = - y_i - i - Q - y_j - j - P - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (i,y_i).$$

(l) If
$$w^{-1} = -y_i - Q - i - y_j - j - P$$
 — then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(m) If
$$w^{-1} = -y_i - Q - i - y_j - P - j$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,y_i)$.

(n) If
$$w^{-1} = -y_i - i - y_j - Q - P - j$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

Thus if $P < Q < i < j < y_i < y_j$ then one of the following holds:

•
$$w^{-1} = -Q - P - y_i - i - y_j - j$$
 and $(wt)^{-1} = -Q - P - y_i - j - y_j - i$.

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(j, y_i), (i, y_j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(\mathrm{Z1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -y_i - j - \text{ and } \\ (wt)^{-1} = -y_i - i - . \end{cases}$$

 $(Z2) \Leftrightarrow (\text{no condition}).$

$$(Z3) \Leftrightarrow (wt)^{-1} = -P - y_i - \text{and } (wt)^{-1} = -P - y_i - .$$

7. Suppose $i < j < y_i < P < Q < y_i$.

(a) If
$$w^{-1} = -y_i - i - Q - y_j - P - j$$
 then (Y2) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

(b) If
$$w^{-1} = -y_i - i - y_j - Q - j - P$$
 then (Y2) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

(c) If
$$w^{-1} = -y_i - i - y_j - Q - P - j$$
 then (Y2) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

$$\text{(d) If } w^{-1} = -Q - y_i - P - i - y_j - j - \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$$

(e) If
$$w^{-1} = -Q - y_i - i - y_j - j - P$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

$$\text{(f) If } w^{-1} = -y_i - Q - i - P - y_j - j - \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$$

(g) If
$$w^{-1} = -Q - y_i - i - P - y_j - j$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

$$\text{(h) If } w^{-1}=-y_i-Q-P-i-y_j-j-\text{ then (Y3) fails for } (a,b)=(i,y_i) \text{ and } (a',b')=(P,Q).$$

$$\text{(i) If } w^{-1} = - Q - P - y_i - i - y_j - j - \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$$

(j) If
$$w^{-1} = -Q - y_i - i - y_j - P - j$$
 then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

$$\text{(k) If } w^{-1} = -y_i - Q - i - y_j - j - P - \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$$

(l) If
$$w^{-1} = -y_i - Q - i - y_j - P - j$$
 then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

Thus if $i < j < y_i < P < Q < y_i$ then one of the following holds:

•
$$w^{-1} = -y_i - i - Q - P - y_j - j$$
 and $(wt)^{-1} = -y_i - j - Q - P - y_j - i$.

•
$$w^{-1} = -y_i - i - Q - y_i - j - P - \text{ and } (wt)^{-1} = -y_i - j - Q - y_i - i - P - .$$

•
$$w^{-1} = -y_i - i - y_j - j - Q - P - \text{ and } (wt)^{-1} = -y_i - j - y_j - i - Q - P - .$$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(j, y_i), (i, y_j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -y_i - j - \text{ and } \\ (wt)^{-1} = -y_j - i - . \end{cases}$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -y_j - P - i - \text{ and } (wt)^{-1} \neq -y_j - Q - i - .$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -j - Q - .$$

8. Suppose $i < j < P < y_i < y_j < Q$.

(a) If
$$w^{-1} = -Q - y_i - P - i - y_j - j$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(b) If
$$w^{-1} = -Q - y_i - i - y_j - j - P$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(c) If
$$w^{-1} = -y_i - Q - i - P - y_j - j$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

$$\text{(d) If } w^{-1} = -Q - y_i - i - P - y_j - j - \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$$

(e) If
$$w^{-1}=-y_i-Q-P-i-y_j-j$$
— then (Y3) fails for $(a,b)=(i,y_i)$ and $(a',b')=(P,Q)$.

$$\text{(f) If } w^{-1}= -Q-P-y_i-i-y_j-j-\text{ then (Y3) fails for } (a,b)=(i,y_i) \text{ and } (a',b')=(P,Q).$$

(g) If
$$w^{-1} = -Q - y_i - i - y_j - P - j$$
 then (Y3) fails for $(a,b) = (i,y_i)$ and $(a',b') = (P,Q)$.

(h) If
$$w^{-1} = -y_i - Q - i - y_j - j - P$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(i) If
$$w^{-1} = -y_i - Q - i - y_j - P - j$$
 then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(j) If
$$w^{-1} = -y_i - i - Q - P - y_j - j$$
 then (Y3) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

$$\text{(k) If } w^{-1} = -y_i - i - Q - y_j - P - j - \text{ then (Y3) fails for } (a,b) = (j,y_j) \text{ and } (a',b') = (P,Q).$$

(1) If
$$w^{-1} = -y_i - i - y_j - Q - j - P$$
 then (Y3) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

$$\text{(m) If } w^{-1}=-y_i-i-Q-y_j-j-P-\text{ then (Y3) fails for } (a,b)=(j,y_j) \text{ and } (a',b')=(P,Q).$$

(n) If
$$w^{-1} = -y_i - i - y_j - Q - P - j$$
 then (Y3) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

Thus if $i < j < P < y_i < y_j < Q$ then one of the following holds:

•
$$w^{-1} = -y_i - i - y_j - j - Q - P - \text{ and } (wt)^{-1} = -y_i - j - y_j - i - Q - P - .$$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(j, y_i), (i, y_j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(\mathrm{Z1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -y_i - j - \text{ and } \\ (wt)^{-1} = -y_j - i - . \end{cases}$$

 $(Z2) \Leftrightarrow (\text{no condition}).$

$$(\mathbf{Z3}) \Leftrightarrow (wt)^{-1} = -i - Q - \text{ and } (wt)^{-1} = -j - Q - .$$

9. Suppose $i < P < j < y_i < y_j < Q$.

(a) If
$$w^{-1} = -y_i - i - Q - P - y_i - j$$
 then (T) fails.

(b) If
$$w^{-1} = -y_i - i - Q - y_j - P - j$$
 then (T) fails.

(c) If
$$w^{-1} = -y_i - Q - i - P - y_j - j$$
 then (T) fails.

(d) If
$$w^{-1} = -Q - y_i - i - P - y_j - j$$
 then (T) fails.

(e) If
$$w^{-1} = -Q - y_i - i - y_j - P - j$$
 then (T) fails.

(f) If
$$w^{-1} = -y_i - Q - i - y_j - P - j$$
 then (T) fails.

(g) If
$$w^{-1} = -y_i - i - y_j - Q - P - j$$
 then (T) fails.

(h) If
$$w^{-1} = -y_i - i - y_j - Q - j - P$$
— then (Y2) fails for $(a,b) = (P,Q)$ and $(a',b') = (j,y_j)$.

(i) If
$$w^{-1} = -y_i - i - Q - y_j - j - P$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

(j) If
$$w^{-1} = -Q - y_i - P - i - y_j - j$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(k) If
$$w^{-1} = -Q - y_i - i - y_j - j - P$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(l) If
$$w^{-1} = -y_i - Q - P - i - y_j - j$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(m) If
$$w^{-1} = -Q - P - y_i - i - y_j - j$$
 then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(n) If
$$w^{-1} = -y_i - Q - i - y_j - j - P$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

Thus if $i < P < j < y_i < y_j < Q$ then one of the following holds:

$$\bullet \ w^{-1} = -y_i - i - y_j - j - Q - P - \ \text{and} \ (wt)^{-1} = -y_i - j - y_j - i - Q - P -.$$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(j, y_i), (i, y_j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(\mathrm{Z1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and} \\ (wt)^{-1} = -y_i - j - \text{ and} \\ (wt)^{-1} = -y_j - i - . \end{cases}$$

$$(\mathbf{Z2}) \Leftrightarrow (wt)^{-1} \neq \cdots Q - j - P - \text{ and } (wt)^{-1} \neq \cdots Q - y_i - P - .$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -i - Q - .$$

10. Suppose $i < j < P < Q < y_i < y_i$.

(a) If
$$w^{-1} = -Q - y_i - P - i - y_j - j$$
 then (Y2) fails for $(a,b) = (i,y_i)$ and $(a',b') = (P,Q)$.

(b) If
$$w^{-1} = -y_i - Q - i - P - y_j - j$$
 then (Y2) fails for $(a,b) = (i,y_i)$ and $(a',b') = (P,Q)$.

(c) If
$$w^{-1} = -y_i - Q - P - i - y_j - j$$
— then (Y2) fails for $(a,b) = (i,y_i)$ and $(a',b') = (P,Q)$.

(d) If
$$w^{-1} = -y_i - Q - i - y_j - j - P$$
— then (Y2) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(e) If
$$w^{-1} = -y_i - i - Q - y_j - P - j$$
 then (Y2) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

(f) If
$$w^{-1} = -y_i - i - y_j - Q - j - P$$
— then (Y2) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

(g) If
$$w^{-1} = -Q - y_i - i - y_j - P - j$$
— then (Y2) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

(h) If
$$w^{-1} = -y_i - Q - i - y_j - P - j$$
— then (Y2) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

(i) If
$$w^{-1} = -y_i - i - y_j - Q - P - j$$
 then (Y2) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

Thus if $i < j < P < Q < y_i < y_j$ then one of the following holds:

•
$$w^{-1} = -y_i - i - Q - P - y_j - j$$
 and $(wt)^{-1} = -y_i - j - Q - P - y_j - i$.

•
$$w^{-1} = -y_i - i - Q - y_j - j - P$$
 and $(wt)^{-1} = -y_i - j - Q - y_j - i - P$.

•
$$w^{-1} = -Q - y_i - i - P - y_j - j$$
 and $(wt)^{-1} = -Q - y_i - j - P - y_j - i$.

•
$$w^{-1} = -Q - y_i - i - y_j - j - P$$
 and $(wt)^{-1} = -Q - y_i - j - y_j - i - P$.

•
$$w^{-1} = -y_i - i - y_j - j - Q - P$$
 and $(wt)^{-1} = -y_i - j - y_j - i - Q - P$.

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(j, y_i), (i, y_j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -y_i - j - \text{ and } \\ (wt)^{-1} = -y_j - i - . \end{cases}$$

(Z2)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} \neq -y_i - P - j - \text{ and } (wt)^{-1} \neq -y_i - Q - j - \text{ and } (wt)^{-1} \neq -y_j - Q - i - \text{ and } (wt)^{-1} \neq -y_j - Q - i - . \end{cases}$$

 $(Z3) \Leftrightarrow (no condition)$

11. Suppose $i < P < j < Q < y_i < y_j$.

(a) If
$$w^{-1} = -y_i - i - Q - P - y_i - j$$
 then (T) fails.

(b) If
$$w^{-1} = -y_i - i - Q - y_j - P - j$$
 then (T) fails.

(c) If
$$w^{-1} = -y_i - Q - i - P - y_i - j$$
 then (T) fails.

(d) If
$$w^{-1} = -Q - y_i - i - P - y_j - j$$
— then (T) fails.

(e) If
$$w^{-1} = -Q - y_i - i - y_i - P - j$$
 then (T) fails.

(f) If
$$w^{-1} = -y_i - Q - i - y_j - P - j$$
 then (T) fails.

(g) If
$$w^{-1} = -y_i - i - y_j - Q - P - j$$
 then (T) fails.

(h) If
$$w^{-1} = -Q - y_i - P - i - y_j - j$$
— then (Y2) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(i) If
$$w^{-1} = -y_i - Q - P - i - y_j - j$$
— then (Y2) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(j) If
$$w^{-1} = -Q - y_i - i - y_j - j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

$$\text{(k) If } w^{-1} = -y_i - i - y_j - j - Q - P - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (j,y_j).$$

(l) If
$$w^{-1} = -y_i - i - y_j - Q - j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

(m) If
$$w^{-1} = -y_i - i - Q - y_j - j - P$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

(n) If
$$w^{-1} = -y_i - Q - i - y_j - j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

Thus if $i < P < j < Q < y_i < y_j$ then one of the following holds:

•
$$w^{-1} = -Q - P - y_i - i - y_j - j$$
 and $(wt)^{-1} = -Q - P - y_i - j - y_j - i$.

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(j, y_i), (i, y_j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -y_i - j - \text{ and } \\ (wt)^{-1} = -y_j - i - . \end{cases}$$

$$(\mathbf{Z2}) \Leftrightarrow (wt)^{-1} \neq -y_j - P - i - \text{ and } (wt)^{-1} \neq -y_j - Q - i -.$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -P - y_i - .$$

12. Suppose $i < j < y_i < y_j < P < Q$.

(a) If
$$w^{-1} = -Q - y_i - P - i - y_j - j$$
 then (Y3) fails for $(a,b) = (i,y_i)$ and $(a',b') = (P,Q)$.

(b) If
$$w^{-1} = -Q - y_i - i - y_j - j - P$$
— then (Y3) fails for $(a,b) = (i,y_i)$ and $(a',b') = (P,Q)$.

(c) If
$$w^{-1} = -y_i - Q - i - P - y_j - j$$
 then (Y3) fails for $(a,b) = (i,y_i)$ and $(a',b') = (P,Q)$.

$$\text{(d) If } w^{-1} = -Q - y_i - i - P - y_j - j - \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$$

(e) If
$$w^{-1} = -y_i - Q - P - i - y_j - j$$
 then (Y3) fails for $(a,b) = (i,y_i)$ and $(a',b') = (P,Q)$.

$$\text{(f) If } w^{-1} = \cdots Q \cdots P \cdots y_i \cdots i \cdots y_j \cdots j \cdots \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$$

(g) If
$$w^{-1} = -Q - y_i - i - y_j - P - j$$
 then (Y3) fails for $(a,b) = (i,y_i)$ and $(a',b') = (P,Q)$.

(h) If
$$w^{-1} = -y_i - Q - i - y_j - j - P$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(i) If
$$w^{-1} = -y_i - Q - i - y_j - P - j$$
 then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(j) If
$$w^{-1} = -y_i - i - Q - P - y_j - j$$
 then (Y3) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

(k) If
$$w^{-1} = -y_i - i - Q - y_j - P - j$$
 then (Y3) fails for $(a,b) = (j,y_j)$ and $(a',b') = (P,Q)$.

(l) If
$$w^{-1} = -y_i - i - y_j - Q - j - P$$
— then (Y3) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

(m) If
$$w^{-1} = -y_i - i - Q - y_j - j - P$$
 then (Y3) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

$$\text{(n) If } w^{-1} = -y_i - i - y_j - Q - P - j - \text{ then (Y3) fails for } (a,b) = (j,y_j) \text{ and } (a',b') = (P,Q).$$

Thus if $i < j < y_i < y_j < P < Q$ then one of the following holds:

•
$$w^{-1} = -y_i - i - y_j - j - Q - P - \text{ and } (wt)^{-1} = -y_i - j - y_j - i - Q - P - .$$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(j, y_i), (i, y_j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(\mathrm{Z1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -y_i - j - \text{ and } \\ (wt)^{-1} = -y_j - i - . \end{cases}$$

 $(Z2) \Leftrightarrow (no condition).$

$$(Z3) \Leftrightarrow (wt)^{-1} = -i - Q - \text{ and } (wt)^{-1} = -j - Q - .$$

13. Suppose $P < i < j < y_i < y_i < Q$.

(a) If
$$w^{-1} = -Q - y_i - P - i - y_j - j$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(b) If
$$w^{-1} = -Q - y_i - i - y_j - j - P$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(c) If
$$w^{-1} = -y_i - Q - i - P - y_j - j$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(d) If
$$w^{-1} = -Q - y_i - i - P - y_j - j$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(e) If
$$w^{-1} = -Q - y_i - i - y_j - P - j$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(f) If
$$w^{-1} = -y_i - Q - i - y_j - j - P$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(g) If
$$w^{-1} = -y_i - Q - i - y_j - P - j$$
 then (Y2) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,y_i)$.

(h) If
$$w^{-1} = -y_i - i - Q - y_j - P - j$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

(i) If
$$w^{-1} = -y_i - i - y_j - Q - j - P$$
 then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

(j) If
$$w^{-1} = -y_i - i - Q - y_j - j - P$$
 then (Y2) fails for $(a,b) = (P,Q)$ and $(a',b') = (j,y_j)$.

Thus if $P < i < j < y_i < y_i < Q$ then one of the following holds:

•
$$w^{-1} = -y_i - i - Q - P - y_i - j$$
 and $(wt)^{-1} = -y_i - j - Q - P - y_i - i$.

•
$$w^{-1} = -y_i - Q - P - i - y_i - j$$
 and $(wt)^{-1} = -y_i - Q - P - j - y_i - i$.

•
$$w^{-1} = -y_i - i - y_j - Q - P - j$$
 and $(wt)^{-1} = -y_i - j - y_j - Q - P - i$.

•
$$w^{-1} = -y_i - i - y_j - j - Q - P - \text{ and } (wt)^{-1} = -y_i - j - y_j - i - Q - P - .$$

•
$$w^{-1} = -Q - P - y_i - i - y_j - j$$
 and $(wt)^{-1} = -Q - P - y_i - j - y_j - i$.

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(j, y_i), (i, y_j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(\mathrm{Z1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -y_i - j - \text{ and } \\ (wt)^{-1} = -y_j - i - . \end{cases}$$

$$\begin{cases} (wt)^{-1} = -y_j - i - . \\ (Z2) \Leftrightarrow \begin{cases} (wt)^{-1} \neq -Q - i - P - \text{ and } (wt)^{-1} \neq -Q - y_j - P - \text{ and } \\ (wt)^{-1} \neq -Q - j - P - \text{ and } (wt)^{-1} \neq -Q - y_i - P - . \end{cases}$$

- $(Z3) \Leftrightarrow (no condition)$
- 14. Suppose $i < P < Q < j < y_i < y_j$.

(a) If
$$w^{-1} = -y_i - i - Q - P - y_j - j$$
 then (T) fails.

(b) If
$$w^{-1} = -y_i - i - Q - y_j - P - j$$
 then (T) fails.

(c) If
$$w^{-1} = -y_i - Q - i - P - y_j - j$$
 then (T) fails.

(d) If
$$w^{-1} = -Q - y_i - i - P - y_j - j$$
— then (T) fails.

(e) If
$$w^{-1} = -y_i - i - y_i - Q - j - P$$
 then (T) fails.

(f) If
$$w^{-1} = -Q - y_i - i - y_j - P - j$$
 then (T) fails.

(g) If
$$w^{-1} = -y_i - i - Q - y_j - j - P$$
 then (T) fails.

(h) If
$$w^{-1} = -y_i - Q - i - y_j - P - j$$
 then (T) fails.

(i) If
$$w^{-1} = -y_i - i - y_i - Q - P - j$$
 then (T) fails.

(j) If
$$w^{-1} = -Q - y_i - P - i - y_j - j$$
— then (Y2) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

$$\text{(k) If } w^{-1} = -y_i - Q - P - i - y_j - j - \text{ then (Y2) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$$

(l) If
$$w^{-1} = -Q - y_i - i - y_j - j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

(m) If
$$w^{-1} = -y_i - i - y_j - j - Q - P$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

(n) If
$$w^{-1} = -y_i - Q - i - y_j - j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

Thus if $i < P < Q < j < y_i < y_j$ then one of the following holds:

•
$$w^{-1} = -Q - P - y_i - i - y_j - j$$
 and $(wt)^{-1} = -Q - P - y_i - j - y_j - i$.

When (a, b) = (P, Q) and $(a', b') \in \text{Cyc}^1(z) = \{(j, y_i), (i, y_j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -y_i - j - \text{ and } \\ (wt)^{-1} = -y_j - i - . \end{cases}$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -y_j - P - i - \text{ and } (wt)^{-1} \neq -y_j - Q - i - .$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -P - y_i - .$$

15. It cannot happen that $i < P < j < y_i < Q < y_i$ since:

(a) If
$$w^{-1} = -y_i - i - Q - P - y_j - j$$
 then (T) fails.

(b) If
$$w^{-1} = -y_i - i - Q - y_j - P - j$$
 — then (T) fails.

(c) If
$$w^{-1} = -y_i - Q - i - P - y_j - j$$
 — then (T) fails.

(d) If
$$w^{-1} = -Q - y_i - i - P - y_j - j$$
 — then (T) fails.

(e) If
$$w^{-1} = -Q - y_i - i - y_j - P - j$$
 then (T) fails.

(f) If
$$w^{-1} = -y_i - Q - i - y_j - P - j$$
 — then (T) fails.

- (g) If $w^{-1} = -y_i i y_i Q P j$ then (T) fails.
- (h) If $w^{-1} = -y_i i y_j j Q P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (j, y_j)$.
- (i) If $w^{-1} = -y_i i y_j Q j P$ then (Y3) fails for (a,b) = (P,Q) and $(a',b') = (j,y_j)$.
- (j) If $w^{-1} = -y_i i Q y_j j P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (j, y_j)$.
- (k) If $w^{-1} = -Q y_i P i y_j j$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
- (l) If $w^{-1} = -Q y_i i y_j j P$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
- $\text{(m) If } w^{-1} = -y_i Q P i y_j j \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$
- $\text{(n) If } w^{-1} = Q P y_i i y_j j \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$
- (o) If $w^{-1} = -y_i Q i y_j j P$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).

We conclude that properties (Z1)-(Z3) hold whenever (a, b), (a', b') are as in cases (i) or (ii) and $i < j < y_i < y_j$.

11.3 Subcase (iii)

Suppose i' and j' are integers such that $0 \neq i - i' = j - j' \in n\mathbb{Z}$, so that w(i) - w(i') = w(j) - w(j') = i - i'.

- 1. Suppose $i' < j' < i < y_{i'} < j < y_i < y_{j'} < y_j$.
 - (a) If $w^{-1} = -y_{i'} i' y_i y_{j'} i j' y_j j$ then (Y2) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.
 - (b) If $w^{-1} = -y_{i'} i' y_{j'} y_i i j' y_j j$ then (Y2) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.
 - (c) If $w^{-1} = -y_{i'} i' y_{j'} y_i j' i y_j j$ then (Y2) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.
 - (d) If $w^{-1} = -y_{i'} y_i i' y_{j'} j' i y_j j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (e) If $w^{-1} = -y_{i'} y_i i' i y_{j'} j' y_j j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (f) If $w^{-1} = -y_{i'} y_i i' y_{j'} i j' y_j j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (g) If $w^{-1} = -y_{i'} y_i i' i y_{j'} y_j j' j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (h) If $w^{-1} = -y_{i'} y_i i' y_{j'} i y_j j' j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - $\text{(i) If } w^{-1} = y_{i'} i' y_{j'} y_i i y_j j' j \text{ then (Y3) fails for } (a,b) = (j',y_{j'}) \text{ and } (a',b') = (j,y_j).$
 - $\text{(j) If } w^{-1} = y_{i'} i' y_i i y_{j'} y_j j' j \text{ then (Y3) fails for } (a,b) = (j',y_{j'}) \text{ and } (a',b') = (j,y_j).$
 - (k) If $w^{-1} = -y_{i'} i' y_i y_{j'} i y_j j' j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (j, y_j)$.

Thus if $i' < j' < i < y_{i'} < j < y_i < y_{j'} < y_j$ then one of the following holds:

- $w^{-1} = -y_{i'} i' y_i y_{j'} j' i y_j j$ and $(wt)^{-1} = -y_{i'} j' y_i y_{j'} i' j y_j i$.
- $w^{-1} = -y_{i'} i' y_{i'} j' y_i i y_i j$ and $(wt)^{-1} = -y_{i'} j' y_{i'} i' y_i j y_i i$.
- $w^{-1} = -y_{i'} i' y_i i y_{j'} j' y_j j$ and $(wt)^{-1} = -y_{i'} j' y_i j y_{i'} i' y_i i$

When $(a, b) \in \text{Cyc}^1(z) = \{(j, y_i), (i, y_j)\}$ and $(a', b') \in \{(j', y_{i'}), (i', y_{j'})\}$, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -y_i - j - \text{ and } \\ (wt)^{-1} = -y_j - i - \text{ and } \\ (wt)^{-1} = -y_{i'} - j' - \text{ and } \\ (wt)^{-1} = -y_{j'} - i' - . \end{cases}$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -y_{j'} - j - i' - \text{ and } (wt)^{-1} \neq -y_{j'} - y_i - i' - .$$

(Z3)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -i' - y_j - \text{ and } \\ (wt)^{-1} = -j' - y_i - \text{ and } \\ (wt)^{-1} = -j' - y_j - . \end{cases}$$

- 2. Suppose $i' < j' < y_{i'} < i < y_{i'} < j < y_i < y_j$.
 - (a) If $w^{-1} = -y_{i'} i' y_i i y_{j'} j' y_j j$ then (T) fails.
 - (b) If $w^{-1} = -y_{i'} y_i i' i y_{j'} j' y_i j$ then (T) fails.

- (c) If $w^{-1} = -y_{i'} i' y_i i y_{i'} y_i j' j$ then (T) fails.
- (d) If $w^{-1} = -y_{i'} y_i i' i y_{j'} y_j j' j$ then (T) fails.
- (e) If $w^{-1} = -y_{i'} y_i i' y_{j'} j' i y_j j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
- (f) If $w^{-1} = -y_{i'} y_i i' y_{j'} i j' y_j j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
- (g) If $w^{-1} = -y_{i'} y_i i' y_{j'} i y_j j' j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
- (h) If $w^{-1} = -y_{i'} i' y_i y_{j'} i j' y_j j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.
- (i) If $w^{-1} = -y_{i'} i' y_{j'} y_i i y_j j' j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.
- (j) If $w^{-1} = -y_{i'} i' y_i y_{j'} i y_j j' j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.
- (k) If $w^{-1} = -y_{i'} i' y_{j'} y_i i j' y_j j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.
- (1) If $w^{-1} = -y_{i'} i' y_{j'} y_i j' i y_j j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.
- (m) If $w^{-1} = -y_{i'} i' y_i j' i y_j j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.

Thus if $i' < j' < y_{i'} < i < y_{i'} < j < y_i$ then one of the following holds:

•
$$w^{-1} = -y_{i'} - i' - y_{j'} - j' - y_i - i - y_j - j$$
 and $(wt)^{-1} = -y_{i'} - j' - y_{j'} - i' - y_i - j - y_j - i$.

When $(a, b) \in \operatorname{Cyc}^1(z) = \{(j, y_i), (i, y_j)\}$ and $(a', b') \in \{(j', y_{i'}), (i', y_{j'})\}$, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -y_i - j - \text{ and } \\ (wt)^{-1} = -y_j - i - \text{ and } \\ (wt)^{-1} = -y_{i'} - j' - \text{ and } \\ (wt)^{-1} = -y_{j'} - i' - . \end{cases}$$

 $(Z2) \Leftrightarrow (no condition).$

(Z3)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -i' - y_i - \text{ and } \\ (wt)^{-1} = -i' - y_j - \text{ and } \\ (wt)^{-1} = -j' - y_i - \text{ and } \\ (wt)^{-1} = -j' - y_j - . \end{cases}$$

- 3. Suppose $i' < i < j' < j < y_{i'} < y_{i'} < y_i < y_i$.
 - (a) If $w^{-1} = -y_{i'} i' y_i i y_{j'} j' y_j j$ then (T) fails.
 - (b) If $w^{-1} = -y_{i'} i' y_i y_{i'} i j' y_i j$ then (T) fails.
 - (c) If $w^{-1} = -y_{i'} i' y_{i'} y_i i y_j j' j$ then (T) fails.
 - (d) If $w^{-1} = -y_{i'} y_i i' i y_{j'} j' y_i j$ then (T) fails.
 - (e) If $w^{-1} = -y_{i'} i' y_i i y_{j'} y_j j' j$ then (T) fails.
 - (f) If $w^{-1} = -y_{i'} y_i i' y_{j'} i j' y_j j$ then (T) fails.
 - (g) If $w^{-1} = -y_{i'} i' y_i y_{j'} i y_j j' j$ then (T) fails.
 - (h) If $w^{-1} = -y_{i'} i' y_{j'} y_i i j' y_j j$ then (T) fails. (i) If $w^{-1} = -y_{i'} - y_i - i' - i - y_{i'} - y_i - j' - j$ — then (T) fails.
 - (i) If $w^{-1} = -y_{i'} y_i i' y_{i'} i y_i j' j$ then (T) fails.
 - $(j) \text{ if } w = g_i \quad g_j \quad i \quad g_j \quad j \quad \text{ from (1) terms.}$
 - (k) If $w^{-1} = -y_{i'} i' y_{i'} j' i y_i j'$ then (Y2) fails for $(a, b) = (i, y_i)$ and $(a', b') = (j', y_{i'})$.
 - (l) If $w^{-1} = -y_{i'} i' y_i y_{j'} j' i y_j j$ then (Y2) fails for $(a, b) = (i, y_i)$ and $(a', b') = (j', y_{j'})$.
 - (m) If $w^{-1} = -y_{i'} y_i i' y_{j'} j' i y_j j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

Thus if $i' < i < j' < j < y_{i'} < y_{j'} < y_i < y_j$ then one of the following holds:

$$\bullet \ w^{-1} = -y_{i'} - i' - y_{j'} - j' - y_i - i - y_j - j - \text{ and } (wt)^{-1} = -y_{i'} - j' - y_{j'} - i' - y_i - j - y_j - i - .$$

When $(a, b) \in \operatorname{Cyc}^1(z) = \{(j, y_i), (i, y_j)\}$ and $(a', b') \in \{(j', y_{i'}), (i', y_{j'})\}$, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(\mathrm{Z1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -y_i - j - \text{ and } \\ (wt)^{-1} = -y_j - i - \text{ and } \\ (wt)^{-1} = -y_{i'} - j' - \text{ and } \\ (wt)^{-1} = -y_{j'} - i' - . \end{cases}$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -y_j - j' - i - \text{ and } (wt)^{-1} \neq -y_j - y_{i'} - i - .$$

(Z3)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -i' - y_i - \text{ and } \\ (wt)^{-1} = -i' - y_j - \text{ and } \\ (wt)^{-1} = -j' - y_i - . \end{cases}$$

4. Suppose $i' < j' < i < y_{i'} < j < y_{j'} < y_i < y_j$.

(a) If
$$w^{-1} = -y_{i'} - y_i - i' - y_{j'} - j' - i - y_j - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(b) If
$$w^{-1} = -y_{i'} - y_i - i' - i - y_{j'} - j' - y_j - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(c) If
$$w^{-1} = -y_{i'} - y_i - i' - y_{j'} - i - j' - y_j - j$$
— then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(d) If
$$w^{-1} = -y_{i'} - y_i - i' - i - y_{j'} - y_j - j' - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(e) If
$$w^{-1} = -y_{i'} - y_i - i' - y_{j'} - i - y_j - j' - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(f) If
$$w^{-1} = -y_{i'} - i' - y_i - i - y_{j'} - j' - y_j - j$$
— then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.

(g) If
$$w^{-1} = -y_{i'} - i' - y_i - y_{j'} - i - j' - y_j - j$$
 then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.

(h) If
$$w^{-1} = -y_{i'} - i' - y_{j'} - y_i - i - y_j - j' - j$$
 then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.

(i) If
$$w^{-1} = -y_{i'} - i' - y_i - i - y_{j'} - y_i - j' - j$$
 then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.

(j) If
$$w^{-1} = -y_{i'} - i' - y_i - y_{j'} - i - y_j - j' - j$$
 then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.

(k) If
$$w^{-1} = -y_{i'} - i' - y_{j'} - y_i - i - j' - y_j - j$$
 then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.

(1) If
$$w^{-1} = -y_{i'} - i' - y_{i'} - y_i - j' - i - y_j - j$$
 then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.

$$\text{(m) If } w^{-1} = -y_{i'} - i' - y_i - y_{j'} - j' - i - y_j - j - \text{ then (Y3) fails for } (a,b) = (j',y_{j'}) \text{ and } (a',b') = (i,y_i).$$

Thus if $i' < j' < i < y_{i'} < j < y_{j'} < y_i < y_j$ then one of the following holds:

•
$$w^{-1} = -y_{i'} - i' - y_{j'} - j' - y_i - i - y_j - j$$
 and $(wt)^{-1} = -y_{i'} - j' - y_{i'} - i' - y_i - j - y_i - i$.

When $(a, b) \in \operatorname{Cyc}^1(z) = \{(j, y_i), (i, y_j)\}$ and $(a', b') \in \{(j', y_{i'}), (i', y_{j'})\}$, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -y_i - j - \text{ and } \\ (wt)^{-1} = -y_j - i - \text{ and } \\ (wt)^{-1} = -y_{i'} - j' - \text{ and } \\ (wt)^{-1} = -y_{j'} - i' - . \end{cases}$$

 $(Z2) \Leftrightarrow (no condition).$

(Z3)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -i' - y_i - \text{ and } \\ (wt)^{-1} = -i' - y_j - \text{ and } \\ (wt)^{-1} = -j' - y_i - \text{ and } \\ (wt)^{-1} = -j' - y_j - . \end{cases}$$

5. Suppose $i' < j' < i < j < y_{i'} < y_i < y_{j'} < y_i$.

(a) If
$$w^{-1} = -y_{i'} - i' - y_i - y_{j'} - i - j' - y_j - j$$
— then (Y2) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.

(b) If
$$w^{-1} = -y_{i'} - i' - y_{j'} - y_i - i - j' - y_j - j$$
 then (Y2) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.

(c) If
$$w^{-1} = -y_{i'} - i' - y_{j'} - y_i - j' - i - y_j - j$$
 then (Y2) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.

(d) If
$$w^{-1} = -y_{i'} - y_i - i' - y_{j'} - j' - i - y_j - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(e) If
$$w^{-1} = -y_{i'} - y_i - i' - i - y_{j'} - j' - y_j - j$$
— then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

$$\text{(f) If } w^{-1} = -y_{i'} - y_i - i' - y_{j'} - i - j' - y_j - j - \text{ then (Y3) fails for } (a,b) = (i',y_{i'}) \text{ and } (a',b') = (i,y_i).$$

- (g) If $w^{-1} = -y_{i'} y_i i' i y_{j'} y_j j' j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
- (h) If $w^{-1} = -y_{i'} y_i i' y_{j'} i y_j j' j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
- (i) If $w^{-1} = -y_{i'} i' y_{j'} y_i i y_j j' j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (j, y_j)$.
- $\text{(j) If } w^{-1} = -y_{i'} i' y_i i y_{j'} y_j j' j \text{ then (Y3) fails for } (a,b) = (j',y_{j'}) \text{ and } (a',b') = (j,y_j).$
- (k) If $w^{-1} = -y_{i'} i' y_i y_{j'} i y_j j' j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (j, y_j)$.

Thus if $i' < j' < i < j < y_{i'} < y_i < y_{j'} < y_j$ then one of the following holds:

•
$$w^{-1} = -y_{i'} - i' - y_i - y_{i'} - j' - i - y_j - j$$
 and $(wt)^{-1} = -y_{i'} - j' - y_i - y_{i'} - i' - j - y_j - i$.

•
$$w^{-1} = -y_{i'} - i' - y_{j'} - j' - y_i - i - y_j - j$$
 and $(wt)^{-1} = -y_{i'} - j' - y_{j'} - i' - y_i - j - y_j - i$.

•
$$w^{-1} = -y_{i'} - i' - y_i - i - y_{j'} - j' - y_i - j$$
 and $(wt)^{-1} = -y_{i'} - j' - y_i - j - y_{j'} - i' - y_i - i$.

When $(a, b) \in \operatorname{Cyc}^1(z) = \{(j, y_i), (i, y_j)\}$ and $(a', b') \in \{(j', y_{i'}), (i', y_{j'})\}$, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -y_i - j - \text{ and } \\ (wt)^{-1} = -y_j - i - \text{ and } \\ (wt)^{-1} = -y_{i'} - j' - \text{ and } \\ (wt)^{-1} = -y_{j'} - i' - . \end{cases}$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -y_{i'} - j - i' - \text{ and } (wt)^{-1} \neq -y_{i'} - y_i - i' - .$$

$$({\rm Z3}) \Leftrightarrow \begin{cases} (wt)^{-1} = -i' - y_j - \text{ and } \\ (wt)^{-1} = -j' - y_i - \text{ and } \\ (wt)^{-1} = -j' - y_j - . \end{cases}$$

6. Suppose $i' < j' < y_{i'} < y_{j'} < i < j < y_i < y_j$.

(a) If
$$w^{-1} = -y_{i'} - y_i - i' - y_{j'} - j' - i - y_j - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(b) If
$$w^{-1} = -y_{i'} - y_i - i' - i - y_{j'} - j' - y_j - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(c) If
$$w^{-1} = -y_{i'} - y_i - i' - y_{j'} - i - j' - y_j - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(d) If
$$w^{-1} = -y_{i'} - y_i - i' - i - y_{j'} - y_j - j' - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(e) If
$$w^{-1} = -y_{i'} - y_i - i' - y_{j'} - i - y_j - j' - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(f) If
$$w^{-1} = -y_{i'} - i' - y_i - i - y_{i'} - j' - y_j - j$$
 then (Y3) fails for $(a, b) = (j', y_{i'})$ and $(a', b') = (i, y_i)$.

(g) If
$$w^{-1} = -y_{i'} - i' - y_i - y_{j'} - i - j' - y_j - j$$
— then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.

(h) If
$$w^{-1} = -y_{i'} - i' - y_{j'} - y_i - i - y_j - j' - j$$
 then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.

(i) If
$$w^{-1} = -y_{i'} - i' - y_i - i - y_{j'} - y_j - j' - j$$
 then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.

(j) If
$$w^{-1} = -y_{i'} - i' - y_i - y_{j'} - i - y_j - j' - j$$
 then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.

(k) If
$$w^{-1} = -y_{i'} - i' - y_{j'} - y_i - i - j' - y_j - j$$
 then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.

(l) If
$$w^{-1} = -y_{i'} - i' - y_{j'} - y_i - j' - i - y_j - j$$
 then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.

(m) If
$$w^{-1} = -y_{i'} - i' - y_i - y_{j'} - j' - i - y_j - j$$
 then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.

Thus if $i' < j' < y_{i'} < y_{j'} < i < j < y_i$ then one of the following holds:

•
$$w^{-1} = -y_{i'} - i' - y_{j'} - j' - y_i - i - y_j - j$$
 and $(wt)^{-1} = -y_{i'} - j' - y_{j'} - i' - y_j - j - i$.

When $(a,b) \in \operatorname{Cyc}^1(z) = \{(j,y_i),(i,y_j)\}$ and $(a',b') \in \{(j',y_{i'}),(i',y_{j'})\}$, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -y_i - j - \text{ and } \\ (wt)^{-1} = -y_j - i - \text{ and } \\ (wt)^{-1} = -y_{i'} - j' - \text{ and } \\ (wt)^{-1} = -y_{j'} - i' - . \end{cases}$$

 $(Z2) \Leftrightarrow (no condition).$

$$(Z3) \Leftrightarrow \begin{cases} (wt)^{-1} = -i' - y_i - \text{ and } \\ (wt)^{-1} = -i' - y_j - \text{ and } \\ (wt)^{-1} = -j' - y_i - \text{ and } \\ (wt)^{-1} = -j' - y_j - . \end{cases}$$

7. Suppose $i' < j' < y_{i'} < i < j < y_i < y_{j'} < y_j$.

(a) If
$$w^{-1} = -y_{i'} - i' - y_i - y_{j'} - i - j' - y_j - j$$
 then (Y2) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.

(b) If
$$w^{-1} = -y_{i'} - i' - y_{j'} - y_i - i - j' - y_j - j$$
 then (Y2) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.

(c) If
$$w^{-1} = -y_{i'} - i' - y_{j'} - y_i - j' - i - y_j - j$$
 then (Y2) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.

(d) If
$$w^{-1} = -y_{i'} - y_i - i' - y_{j'} - j' - i - y_j - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(e) If
$$w^{-1} = -y_{i'} - y_i - i' - i - y_{j'} - j' - y_j - j$$
— then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(f) If
$$w^{-1} = -y_{i'} - y_i - i' - y_{j'} - i - j' - y_j - j$$
— then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(g) If
$$w^{-1} = -y_{i'} - y_i - i' - i - y_{j'} - y_j - j' - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(h) If
$$w^{-1} = -y_{i'} - y_i - i' - y_{j'} - i - y_j - j' - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(i) If
$$w^{-1} = -y_{i'} - i' - y_{j'} - y_i - i - y_j - j' - j$$
 then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (j, y_j)$.

(j) If
$$w^{-1} = -y_{i'} - i' - y_i - i - y_{j'} - y_j - j' - j$$
 then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (j, y_j)$.

(k) If
$$w^{-1} = -y_{i'} - i' - y_i - y_{j'} - i - y_j - j' - j$$
 then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (j, y_j)$.

Thus if $i' < j' < y_{i'} < i < j < y_i < y_{j'} < y_j$ then one of the following holds:

•
$$w^{-1} = -y_{i'} - i' - y_i - y_{i'} - j' - i - y_j - j$$
 and $(wt)^{-1} = -y_{i'} - j' - y_i - y_{i'} - i' - j - y_i - i$.

•
$$w^{-1} = -y_{i'} - i' - y_{j'} - j' - y_i - i - y_j - j$$
 and $(wt)^{-1} = -y_{i'} - j' - y_{j'} - i' - y_i - j - y_j - i$.

•
$$w^{-1} = -y_{i'} - i' - y_i - i - y_{j'} - j' - y_i - j$$
 and $(wt)^{-1} = -y_{i'} - j' - y_i - j - y_{j'} - i' - y_i - i$.

When $(a, b) \in \operatorname{Cyc}^1(z) = \{(j, y_i), (i, y_j)\}$ and $(a', b') \in \{(j', y_{i'}), (i', y_{j'})\}$, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -y_i - j - \text{ and } \\ (wt)^{-1} = -y_j - i - \text{ and } \\ (wt)^{-1} = -y_{i'} - j' - \text{ and } \\ (wt)^{-1} = -y_{j'} - i' - . \end{cases}$$

$$(\mathbf{Z2}) \Leftrightarrow (wt)^{-1} \neq \cdots y_{j'} \cdots j \cdots i' \cdots \text{ and } (wt)^{-1} \neq \cdots y_{j'} \cdots y_i \cdots i' \cdots.$$

(Z3)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -i' - y_j - \text{ and } \\ (wt)^{-1} = -j' - y_i - \text{ and } \\ (wt)^{-1} = -j' - y_j - . \end{cases}$$

8. Suppose $i' < j' < i < j < y_{i'} < y_{j'} < y_i < y_j$.

(a) If
$$w^{-1} = -y_{i'} - y_i - i' - y_{j'} - j' - i - y_j - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(b) If
$$w^{-1} = -y_{i'} - y_i - i' - i - y_{j'} - j' - y_j - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(c) If
$$w^{-1} = -y_{i'} - y_i - i' - y_{j'} - i - j' - y_j - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(d) If
$$w^{-1} = -y_{i'} - y_i - i' - i - y_{j'} - y_j - j' - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(e) If
$$w^{-1} = -y_{i'} - y_i - i' - y_{j'} - i - y_j - j' - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

$$\text{(f) If } w^{-1} = -y_{i'} - i' - y_i - i - y_{j'} - j' - y_j - j - \text{ then (Y3) fails for } (a,b) = (j',y_{j'}) \text{ and } (a',b') = (i,y_i).$$

(g) If
$$w^{-1} = -y_{i'} - i' - y_i - y_{j'} - i - j' - y_j - j$$
 then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.

(h) If
$$w^{-1} = -y_{i'} - i' - y_{j'} - y_i - i - y_j - j' - j$$
 then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.

(i) If
$$w^{-1} = -y_{i'} - i' - y_i - i - y_{j'} - y_j - j' - j$$
 then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.
(j) If $w^{-1} = -y_{i'} - i' - y_i - y_{j'} - i - y_j - j' - j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.

(k) If
$$w^{-1} = -y_{i'} - i' - y_{j'} - y_i - i - j' - y_j - j$$
 then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.

(1) If
$$w^{-1} = -y_{i'} - i' - y_{i'} - y_i - j' - i - y_j - j$$
 then (Y3) fails for $(a, b) = (j', y_{i'})$ and $(a', b') = (i, y_i)$.

$$\text{(m) If } w^{-1} = -y_{i'} - i' - y_i - y_{j'} - j' - i - y_j - j - \text{ then (Y3) fails for } (a,b) = (j',y_{j'}) \text{ and } (a',b') = (i,y_i).$$

Thus if $i' < j' < i < j < y_{i'} < y_{j'} < y_i < y_j$ then one of the following holds:

$$\bullet \ w^{-1} = -y_{i'} - i' - y_{j'} - j' - y_i - i - y_j - j - \text{ and } (wt)^{-1} = -y_{i'} - j' - y_{j'} - i' - y_i - j - y_j - i - .$$

When $(a,b) \in \text{Cyc}^1(z) = \{(j,y_i),(i,y_j)\}$ and $(a',b') \in \{(j',y_{i'}),(i',y_{j'})\}$, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(\text{Z1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -y_i - j - \text{ and } \\ (wt)^{-1} = -y_j - i - \text{ and } \\ (wt)^{-1} = -y_{i'} - j' - \text{ and } \\ (wt)^{-1} = -y_{j'} - i' - . \end{cases}$$

 $(Z2) \Leftrightarrow (no condition).$

(Z3)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -i' - y_i - \text{ and } \\ (wt)^{-1} = -i' - y_j - \text{ and } \\ (wt)^{-1} = -j' - y_i - \text{ and } \\ (wt)^{-1} = -j' - y_j - . \end{cases}$$

9. Suppose $i' < j' < y_{i'} < i < j < y_{j'} < y_i < y_j$.

(a) If
$$w^{-1} = -y_{i'} - y_i - i' - y_{j'} - j' - i - y_j - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(b) If
$$w^{-1} = -y_{i'} - y_i - i' - i - y_{j'} - j' - y_j - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(c) If
$$w^{-1} = -y_{i'} - y_i - i' - y_{j'} - i - j' - y_j - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(d) If
$$w^{-1} = -y_{i'} - y_i - i' - i - y_{j'} - y_j - j' - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(e) If
$$w^{-1} = -y_{i'} - y_i - i' - y_{j'} - i - y_j - j' - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(f) If
$$w^{-1} = -y_{i'} - i' - y_i - i - y_{j'} - j' - y_j - j$$
 then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.

(g) If
$$w^{-1} = -y_{i'} - i' - y_i - y_{j'} - i - j' - y_j - j$$
 then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.

(h) If
$$w^{-1} = -y_{i'} - i' - y_{j'} - y_i - i - y_j - j' - j$$
 then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.

(i) If
$$w^{-1} = -y_{i'} - i' - y_i - i - y_{j'} - y_j - j' - j$$
 then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.

(j) If
$$w^{-1} = -y_{i'} - i' - y_i - y_{j'} - i - y_j - j' - j$$
 then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.

(k) If
$$w^{-1} = -y_{i'} - i' - y_{j'} - y_i - i - j' - y_j - j$$
 then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.

(l) If
$$w^{-1} = -y_{i'} - i' - y_{j'} - y_i - j' - i - y_j - j$$
 then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.

(m) If
$$w^{-1} = -y_{i'} - i' - y_i - j' - i - y_j - j$$
 then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.

Thus if $i' < j' < y_{i'} < i < j < y_{j'} < y_i < y_j$ then one of the following holds:

•
$$w^{-1} = -y_{i'} - i' - y_{j'} - j' - y_i - i - y_j - j$$
 and $(wt)^{-1} = -y_{i'} - j' - y_{j'} - i' - y_i - j - y_j - i$.

When $(a,b) \in \operatorname{Cyc}^1(z) = \{(j,y_i),(i,y_j)\}$ and $(a',b') \in \{(j',y_{i'}),(i',y_{j'})\}$, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases}
(wt)^{-1} = -y_i - j - \text{ and} \\
(wt)^{-1} = -y_j - i - \text{ and} \\
(wt)^{-1} = -y_{i'} - j' - \text{ and} \\
(wt)^{-1} = -y_{j'} - i' - .
\end{cases}$$

 $(Z2) \Leftrightarrow (no condition).$

(Z3)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -i' - y_i - \text{ and } \\ (wt)^{-1} = -i' - y_j - \text{ and } \\ (wt)^{-1} = -j' - y_i - \text{ and } \\ (wt)^{-1} = -j' - y_j - . \end{cases}$$

- 10. Suppose $i' < i < j' < y_{i'} < y_{j'} < j < y_i < y_j$.
 - (a) If $w^{-1} = -y_{i'} i' y_i i y_{j'} j' y_j j$ then (T) fails.
 - (b) If $w^{-1} = -y_{i'} i' y_i y_{j'} i j' y_j j$ then (T) fails.
 - (c) If $w^{-1} = -y_{i'} i' y_{j'} y_i i y_j j' j$ then (T) fails.
 - (d) If $w^{-1} = -y_{i'} y_i i' i y_{j'} j' y_j j$ then (T) fails.
 - (e) If $w^{-1} = -y_{i'} i' y_i i y_{j'} y_j j' j$ then (T) fails.
 - (f) If $w^{-1} = -y_{i'} y_i i' y_{j'} i j' y_j j$ then (T) fails.
 - (g) If $w^{-1} = -y_{i'} i' y_i y_{j'} i y_j j' j$ then (T) fails.
 - (h) If $w^{-1} = -y_{i'} i' y_{j'} y_i i j' y_j j$ then (T) fails.
 - (i) If $w^{-1} = -y_{i'} y_i i' i y_{j'} y_j j' j$ then (T) fails.
 - (i) If $w^{-1} = -y_{i'} y_i i' y_{j'} i y_i j' j$ then (T) fails.
 - (k) If $w^{-1} = -y_{i'} i' y_{j'} y_i j' i y_j j$ then (Y2) fails for $(a, b) = (i, y_i)$ and $(a', b') = (j', y_{j'})$.
 - (l) If $w^{-1} = -y_{i'} i' y_i j' i y_j j$ then (Y2) fails for $(a, b) = (i, y_i)$ and $(a', b') = (j', y_{j'})$.
 - (m) If $w^{-1} = -y_{i'} y_i i' y_{j'} j' i y_j j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

Thus if $i' < i < j' < y_{i'} < y_{i'} < j < y_i$ then one of the following holds:

$$\bullet \ w^{-1} = -y_{i'} - i' - y_{j'} - j' - y_i - i - y_j - j - \ \text{and} \ (wt)^{-1} = -y_{i'} - j' - y_{j'} - i' - y_i - j - y_j - i - .$$

When $(a, b) \in \operatorname{Cyc}^1(z) = \{(j, y_i), (i, y_j)\}$ and $(a', b') \in \{(j', y_{i'}), (i', y_{j'})\}$, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -y_i - j - \text{ and } \\ (wt)^{-1} = -y_j - i - \text{ and } \\ (wt)^{-1} = -y_{i'} - j' - \text{ and } \\ (wt)^{-1} = -y_{j'} - i' - . \end{cases}$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -y_j - j' - i - \text{ and } (wt)^{-1} \neq -y_j - y_{i'} - i - i$$

(Z3)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -i' - y_i - \text{ and } \\ (wt)^{-1} = -i' - y_j - \text{ and } \\ (wt)^{-1} = -j' - y_i - . \end{cases}$$

- 11. Suppose $i' < j' < i < y_{i'} < y_{j'} < j < y_i < y_j$.
 - (a) If $w^{-1} = -y_{i'} i' y_i i y_{j'} j' y_i j$ then (T) fails.
 - (b) If $w^{-1} = -y_{i'} y_i i' i y_{j'} j' y_j j$ then (T) fails.
 - (c) If $w^{-1} = -y_{i'} i' y_i i y_{i'} y_j j' j$ then (T) fails.
 - (d) If $w^{-1} = -y_{i'} y_i i' i y_{j'} y_j j' j$ then (T) fails.
 - (e) If $w^{-1} = -y_{i'} y_i i' y_{j'} j' i y_j j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (f) If $w^{-1} = -y_{i'} y_i i' y_{j'} i j' y_j j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (g) If $w^{-1} = -y_{i'} y_i i' y_{j'} i y_j j' j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (h) If $w^{-1} = -y_{i'} i' y_i y_{j'} i j' y_j j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.
 - (i) If $w^{-1} = -y_{i'} i' y_{i'} y_i i y_j j' j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.
 - (i) If $w^{-1} = -y_{i'} i' y_i y_{i'} i y_j j' j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.
 - (k) If $w^{-1} = -y_{i'} i' y_{j'} y_i i j' y_j j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.
 - $\text{(l) If } w^{-1} = -y_{i'} i' y_{j'} y_i j' i y_j j \text{ then (Y3) fails for } (a,b) = (j',y_{j'}) \text{ and } (a',b') = (i,y_i).$
 - $\text{(m) If } w^{-1} = -y_{i'} i' y_i y_{j'} j' i y_j j \text{ then (Y3) fails for } (a,b) = (j',y_{j'}) \text{ and } (a',b') = (i,y_i).$

Thus if $i' < j' < i < y_{i'} < y_{j'} < j < y_i$ then one of the following holds:

•
$$w^{-1} = -y_{i'} - i' - y_{i'} - j' - y_i - i - y_i - j$$
 and $(wt)^{-1} = -y_{i'} - j' - y_{i'} - i' - y_i - j - y_i - i$.

When $(a, b) \in \operatorname{Cyc}^1(z) = \{(j, y_i), (i, y_j)\}$ and $(a', b') \in \{(j', y_{i'}), (i', y_{j'})\}$, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow \begin{cases} (wt)^{-1} = -y_i - j - \text{ and } \\ (wt)^{-1} = -y_j - i - \text{ and } \\ (wt)^{-1} = -y_{i'} - j' - \text{ and } \\ (wt)^{-1} = -y_{j'} - i' - . \end{cases}$$

 $(Z2) \Leftrightarrow (no condition).$

(Z3)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -i' - y_i - \text{and} \\ (wt)^{-1} = -i' - y_j - \text{and} \\ (wt)^{-1} = -j' - y_i - \text{and} \\ (wt)^{-1} = -j' - y_j - . \end{cases}$$

- 12. Suppose $i' < i < j' < y_{i'} < j < y_{j'} < y_i < y_j$
 - (a) If $w^{-1} = -y_{i'} i' y_i i y_{j'} j' y_j j$ then (T) fails.
 - (b) If $w^{-1} = -y_{i'} i' y_i y_{j'} i j' y_j j$ then (T) fails.
 - (c) If $w^{-1} = -y_{i'} i' y_{j'} y_i i y_j j' j$ then (T) fails.
 - (d) If $w^{-1} = -y_{i'} y_i i' i y_{j'} j' y_i j$ then (T) fails.
 - (e) If $w^{-1} = -y_{i'} i' y_i i y_{i'} y_i j' j$ then (T) fails.
 - (f) If $w^{-1} = -y_{i'} y_i i' y_{j'} i j' y_j j$ then (T) fails.
 - (g) If $w^{-1} = -y_{i'} i' y_i y_{j'} i y_j j' j$ then (T) fails.
 - (h) If $w^{-1} = -y_{i'} i' y_{j'} y_i i j' y_i j$ then (T) fails.
 - (i) If $w^{-1} = -y_{i'} y_i i' i y_{i'} y_i j' j$ then (T) fails.
 - (i) If $w^{-1} = -y_{i'} y_i i' y_{j'} i y_i j' j$ then (T) fails.
 - (k) If $w^{-1} = -y_{i'} i' y_{j'} y_i j' i y_j j$ then (Y2) fails for $(a, b) = (i, y_i)$ and $(a', b') = (j', y_{j'})$.
 - (1) If $w^{-1} = -y_{i'} i' y_i j' i y_j j$ then (Y2) fails for $(a, b) = (i, y_i)$ and $(a', b') = (j', y_{j'})$.
 - (m) If $w^{-1} = -y_{i'} y_i i' y_{j'} j' i y_j j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$

Thus if $i' < i < j' < y_{i'} < j < y_{j'} < y_i < y_j$ then one of the following holds:

$$\bullet \ w^{-1} = -y_{i'} - i' - y_{j'} - j' - y_i - i - y_j - j - \text{ and } (wt)^{-1} = -y_{i'} - j' - y_{j'} - i' - y_i - j - y_j - i -.$$

When $(a, b) \in \operatorname{Cyc}^1(z) = \{(j, y_i), (i, y_j)\}$ and $(a', b') \in \{(j', y_{i'}), (i', y_{j'})\}$, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -y_i - j - \text{ and } \\ (wt)^{-1} = -y_j - i - \text{ and } \\ (wt)^{-1} = -y_{i'} - j' - \text{ and } \\ (wt)^{-1} = -y_{j'} - i' - . \end{cases}$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -y_i - j' - i - \text{ and } (wt)^{-1} \neq -y_i - y_{i'} - i - .$$

(Z3)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -i' - y_i - \text{ and } \\ (wt)^{-1} = -i' - y_j - \text{ and } \\ (wt)^{-1} = -j' - y_i - . \end{cases}$$

- 13. It cannot happen that $i' < i < j' < j < y_{i'} < y_i < y_{i'} < y_i$ since:
 - (a) If $w^{-1} = -y_{i'} i' y_i i y_{j'} j' y_i j$ then (T) fails.
 - (b) If $w^{-1} = -y_{i'} i' y_i y_{j'} i j' y_j j$ then (T) fails.
 - (c) If $w^{-1} = -y_{i'} i' y_{i'} y_i i y_j j' j$ then (T) fails.
 - (d) If $w^{-1} = -y_{i'} y_i i' i y_{j'} j' y_i j$ then (T) fails.

- (e) If $w^{-1} = -y_{i'} i' y_i i y_{j'} y_j j' j$ then (T) fails.
- (f) If $w^{-1} = -y_{i'} y_i i' y_{j'} i j' y_j j$ then (T) fails.
- (g) If $w^{-1} = -y_{i'} i' y_i y_{j'} i y_j j' j$ then (T) fails.
- (h) If $w^{-1} = -y_{i'} i' y_{j'} y_i i j' y_j j$ then (T) fails.
- (i) If $w^{-1} = -y_{i'} y_i i' i y_{j'} y_j j' j$ then (T) fails.
- (j) If $w^{-1} = -y_{i'} y_i i' y_{j'} i y_i j' j$ then (T) fails.
- (k) If $w^{-1} = -y_{i'} y_i i' y_{j'} j' i y_j j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
- (l) If $w^{-1} = -y_{i'} i' y_{j'} j' y_i i y_j j$ then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (j', y_{j'})$.
- $\text{(m) If } w^{-1} = -y_{i'} i' y_{j'} y_i j' i y_j j \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (j',y_{j'}).$
- $\text{(n) If } w^{-1} = -y_{i'} i' y_i y_{j'} j' i y_j j \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (j',y_{j'}).$
- 14. It cannot happen that $i' < i < j' < y_{i'} < j < y_i < y_{j'} < y_j$ since:
 - (a) If $w^{-1} = -y_{i'} i' y_i i y_{j'} j' y_j j$ then (T) fails.
 - (b) If $w^{-1} = -y_{i'} i' y_i y_{j'} i j' y_j j$ then (T) fails.
 - (c) If $w^{-1} = -y_{i'} i' y_{j'} y_i i y_j j' j$ then (T) fails.
 - (d) If $w^{-1} = -y_{i'} y_i i' i y_{j'} j' y_i j$ then (T) fails.
 - (e) If $w^{-1} = -y_{i'} i' y_i i y_{i'} y_i j' j$ then (T) fails.
 - (f) If $w^{-1} = -y_{i'} y_i i' y_{i'} i j' y_i j$ then (T) fails.
 - (g) If $w^{-1} = -y_{i'} i' y_i y_{j'} i y_j j' j$ then (T) fails.
 - (h) If $w^{-1} = -y_{i'} i' y_{i'} y_i i j' y_j j$ then (T) fails.
 - (i) If $w^{-1} = -y_{i'} y_i i' i y_{i'} y_i j' j$ then (T) fails.
 - (j) If $w^{-1} = -y_{i'} y_i i' y_{j'} i y_j j' j$ then (T) fails.
 - (k) If $w^{-1} = -y_{i'} y_i i' y_{j'} j' i y_j j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (1) If $w^{-1} = -y_{i'} i' y_{i'} j' y_i i y_j j$ then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (j', y_{j'})$.
 - $\text{(m) If } w^{-1} = -y_{i'} i' y_{j'} y_i j' i y_j j \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (j',y_{j'}).$
 - (n) If $w^{-1} = -y_{i'} i' y_i j' i y_j j$ then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (j', y_{j'})$.

We conclude that properties (Z1)-(Z3) hold for all $(a,b), (a',b') \in \text{Cyc}(z)$ when $i < j < y_i < y_j$.

12 Case: $i < y_i < y_i < j$

Suppose y is such that $i < y_j < y_i < j$. Then $z = \tau_{ij}^n(y)$ has $\operatorname{Cyc}^1(z) = \{(y_j, y_i), (i, j)\}$.

12.1 Subcase (i)

We must have $w^{-1} = -y_i - i - j - y_j$ — since no other ordering is possible:

- 1. If $w^{-1} = -i y_j y_i j$ then (T) fails.
- 2. If $w^{-1} = -i y_j j y_i$ then (T) fails.
- 3. If $w^{-1}=-i-y_i-y_j-j-$ then (T) fails.
- 4. If $w^{-1} = -i y_i j y_j$ then (T) fails.
- 5. If $w^{-1} = -y_j i y_i j$ then (T) fails.
- 6. If $w^{-1} = -y_j y_i j i$ then (T) fails.
- 7. If $w^{-1} = -y_j j i y_i$ then (T) fails.
- 8. If $w^{-1} = -y_j j y_i i$ then (T) fails.

9. If
$$w^{-1} = -y_i - i - y_j - j$$
 then (T) fails.

10. If
$$w^{-1} = -y_i - y_j - j - i$$
— then (T) fails.

11. If
$$w^{-1} = -y_i - j - i - y_j$$
 then (T) fails.

12. If
$$w^{-1} = -y_i - j - y_j - i$$
— then (T) fails.

13. If
$$w^{-1} = -j - i - y_i - y_i$$
 then (T) fails.

14. If
$$w^{-1} = -j - i - y_i - y_j$$
 then (T) fails.

15. If
$$w^{-1} = -j - y_i - i - y_i$$
 then (T) fails.

16. If
$$w^{-1} = -j - y_i - y_i - i$$
 then (T) fails.

17. If
$$w^{-1} = -j - y_i - i - y_j$$
 then (T) fails.

18. If
$$w^{-1} = -j - y_i - y_i - i$$
— then (T) fails.

19. If
$$w^{-1} = -i - j - y_j - y_i$$
 then (Y1) fails for $(a, b) = (i, y_i)$.

20. If
$$w^{-1} = -i - j - y_i - y_j$$
 then (Y1) fails for $(a, b) = (i, y_i)$.

21. If
$$w^{-1} = -y_j - i - j - y_i$$
 then (Y1) fails for $(a, b) = (y_j, j)$.

22. If
$$w^{-1} = -y_j - y_i - i - j$$
 — then (Y1) fails for $(a, b) = (y_j, j)$.

23. If
$$w^{-1} = -y_i - y_j - i - j$$
 then (Y1) fails for $(a, b) = (y_j, j)$.

Hence if $i < y_i < y_i < j$ then

$$(wt)^{-1} = -y_i - j - i - y_j - .$$

When $(a, b), (a', b') \in \operatorname{Cyc}^1(z) = \{(y_j, y_i), (i, j)\}$, properties (Z1)-(Z3) are equivalent to the following conditions which all hold in this case:

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -i - y_i - i - \text{ and } (wt)^{-1} \neq -i - y_i - i - .$$

 $(Z3) \Leftrightarrow (no condition).$

Thus properties (Z1)-(Z3) hold whenever (a, b), (a', b') are as in case (i) and $i < y_i < j$.

12.2 Subcase (ii)

Suppose R is an integer such that $(R,R) \in \operatorname{Cyc}^2(z) \subset \operatorname{Cyc}(y)$, so that $R = y_R = z_R \notin \{i,j,y_i,y_j\} + n\mathbb{Z}$.

1. Suppose $i < y_i < y_i < j < R$.

(a) If
$$w^{-1} = -y_i - R - i - j - y_j$$
 then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (R, R)$.

(b) If
$$w^{-1} = -R - y_i - i - j - y_j$$
 — then (Y3) fails for $(a,b) = (i,y_i)$ and $(a',b') = (R,R)$.

(c) If
$$w^{-1} = -y_i - i - R - j - y_j$$
 then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (R, R)$.

(d) If
$$w^{-1} = -y_i - i - j - R - y_j$$
 then (Y3) fails for $(a,b) = (y_j,j)$ and $(a',b') = (R,R)$.

Thus if $i < y_i < y_i < j < R$ then one of the following holds:

•
$$w^{-1} = -y_i - i - j - y_j - R$$
 and $(wt)^{-1} = -y_i - j - i - y_j - R$.

When (a, b) = (R, R) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(y_j, y_i), (i, j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -j - i - \text{ and } (wt)^{-1} = -y_i - y_j - .$$

 $(Z2) \Leftrightarrow (no condition).$

$$(Z3) \Leftrightarrow (wt)^{-1} = -i - R - \text{ and } (wt)^{-1} = -y_i - R - .$$

- 2. Suppose $i < y_i < y_i < R < j$.
 - (a) If $w^{-1} = -y_i i R j y_j$ then (T) fails.
 - (b) If $w^{-1} = -y_i i j R y_j$ then (Y2) fails for $(a, b) = (y_j, j)$ and (a', b') = (R, R).
 - (c) If $w^{-1} = -y_i R i j y_j$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (R, R).
 - (d) If $w^{-1} = -R y_i i j y_j$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (R, R).

Thus if $i < y_i < y_i < R < j$ then one of the following holds:

•
$$w^{-1} = -y_i - i - j - y_i - R - \text{ and } (wt)^{-1} = -y_i - j - i - y_i - R - .$$

When (a,b) = (R,R) and $(a',b') \in \operatorname{Cyc}^1(z) = \{(y_j,y_i),(i,j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -j - i - \text{ and } (wt)^{-1} = -y_i - y_j - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -j-R-i-.$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -y_i - R - .$$

- 3. Suppose $i < y_j < R < y_i < j$.
 - (a) If $w^{-1} = -y_i i R j y_j$ then (T) fails.
 - (b) If $w^{-1} = -y_i R i j y_j$ then (Y2) fails for $(a, b) = (i, y_i)$ and (a', b') = (R, R).
 - (c) If $w^{-1} = -y_i i j R y_j$ then (Y2) fails for $(a, b) = (y_j, j)$ and (a', b') = (R, R).

Thus if $i < y_i < R < y_i < j$ then one of the following holds:

$$\bullet \ w^{-1} = -R - y_i - i - j - y_j - \text{ and } (wt)^{-1} = -R - y_i - j - i - y_j - .$$

•
$$w^{-1} = -y_i - i - j - y_j - R$$
 and $(wt)^{-1} = -y_i - j - i - y_j - R$.

When (a, b) = (R, R) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(y_j, y_i), (i, j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -j - i - \text{ and } (wt)^{-1} = -y_i - y_j - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -j - R - i - \text{ and } (wt)^{-1} \neq -y_i - R - y_i - .$$

- $(Z3) \Leftrightarrow (no condition).$
- 4. Suppose $i < R < y_j < y_i < j$.

(a) If
$$w^{-1} = -y_i - i - R - j - y_j$$
 — then (T) fails.

(b) If
$$w^{-1} = -y_i - R - i - j - y_j$$
 then (Y2) fails for $(a, b) = (i, y_i)$ and $(a', b') = (R, R)$.

(c) If
$$w^{-1} = -y_i - i - j - y_j - R$$
— then (Y3) fails for $(a, b) = (R, R)$ and $(a', b') = (y_j, j)$.

(d) If
$$w^{-1} = -y_i - i - j - R - y_j$$
 then (Y3) fails for $(a, b) = (R, R)$ and $(a', b') = (y_j, j)$.

Thus if $i < R < y_i < y_i < j$ then one of the following holds:

•
$$w^{-1} = -R - y_i - i - j - y_j - \text{ and } (wt)^{-1} = -R - y_i - j - i - y_j - .$$

When (a, b) = (R, R) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(y_j, y_i), (i, j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -j - i - \text{ and } (wt)^{-1} = -y_i - y_j - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -i - R - i - .$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -R - y_i - .$$

- 5. Suppose $R < i < y_j < y_i < j$.
 - (a) If $w^{-1} = -y_i i j y_j R$ then (Y3) fails for (a,b) = (R,R) and $(a',b') = (i,y_i)$.

- (b) If $w^{-1} = -y_i i R j y_j$ then (Y3) fails for (a, b) = (R, R) and $(a', b') = (i, y_i)$.
- (c) If $w^{-1} = -y_i i j R y_j$ then (Y3) fails for (a, b) = (R, R) and $(a', b') = (i, y_i)$.
- (d) If $w^{-1} = -y_i R i j y_j$ then (Y3) fails for (a, b) = (R, R) and $(a', b') = (i, y_i)$.

Thus if $R < i < y_i < y_i < j$ then one of the following holds:

•
$$w^{-1} = -R - y_i - i - j - y_j - \text{ and } (wt)^{-1} = -R - y_i - j - i - y_j - .$$

When (a, b) = (R, R) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(y_j, y_i), (i, j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

- $(Z1) \Leftrightarrow (wt)^{-1} = -j i \text{ and } (wt)^{-1} = -y_i y_j .$
- $(Z2) \Leftrightarrow (\text{no condition}).$
- $(Z3) \Leftrightarrow (wt)^{-1} = -R j \text{ and } (wt)^{-1} = -R y_i .$

Next suppose P < Q are integers with $(P,Q) \in \text{Cyc}^2(z) \subset \text{Cyc}(y)$, so that $Q = y_P = z_P$ and $P,Q \notin \{i,j,y_i,y_j\} + n\mathbb{Z}$.

- 1. Suppose $P < i < y_j < Q < y_i < j$.
 - (a) If $w^{-1} = -y_i i Q P j y_j$ then (T) fails.
 - (b) If $w^{-1} = -y_i i Q j P y_i$ then (T) fails.
 - (c) If $w^{-1} = -y_i i Q j y_j P$ then (T) fails.
 - (d) If $w^{-1} = -Q y_i P i j y_j$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (i, y_i)$.
 - (e) If $w^{-1} = -Q y_i i j y_j P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (i, y_i)$.
 - (f) If $w^{-1} = -y_i i j y_i Q P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (i, y_i)$.
 - (g) If $w^{-1} = -y_i Q i P j y_j$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (i, y_i)$.
 - $\text{(h) If } w^{-1} = Q y_i i P j y_j \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (i,y_i).$
 - (i) If $w^{-1} = -y_i Q P i j y_j$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (i, y_i)$.
 - (j) If $w^{-1} = -y_i i j Q y_i P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (i, y_i)$.
 - (k) If $w^{-1} = -Q y_i i j P y_j$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (i, y_i)$.
 - (1) If $w^{-1} = -y_i Q i j y_j P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (i, y_i)$.
 - (m) If $w^{-1} = -y_i Q i j P y_i$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (i, y_i)$.
 - (n) If $w^{-1} = -y_i i j Q P y_i$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (i, y_i)$.

Thus if $P < i < y_i < Q < y_i < j$ then one of the following holds:

$$\bullet \ w^{-1} = -Q - P - y_i - i - j - y_j - \text{ and } (wt)^{-1} = -Q - P - y_i - j - i - y_j -.$$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(y_j, y_i), (i, j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -j - i - \text{ and } \\ (wt)^{-1} = -y_i - y_j - . \end{cases}$$

- $(Z2) \Leftrightarrow (no condition).$
- $(Z3) \Leftrightarrow (wt)^{-1} = -P j \text{ and } (wt)^{-1} = -P y_i .$
- 2. Suppose $P < i < Q < y_i < y_i < j$.
 - (a) If $w^{-1} = -y_i i Q P j y_j$ then (T) fails.
 - (b) If $w^{-1} = -y_i i Q j P y_i$ then (T) fails.
 - (c) If $w^{-1} = -y_i i Q j y_j P$ then (T) fails.
 - (d) If $w^{-1} = -Q y_i P i j y_j$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (i, y_i)$.
 - (e) If $w^{-1} = -Q y_i i j y_j P$ then (Y3) fails for (a,b) = (P,Q) and $(a',b') = (i,y_i)$.

(f) If
$$w^{-1} = -y_i - i - j - y_j - Q - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(g) If
$$w^{-1} = -y_i - Q - i - P - j - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

$$\text{(h) If } w^{-1} = -Q - y_i - i - P - j - y_j - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (i,y_i).$$

(i) If
$$w^{-1} = -y_i - Q - P - i - j - y_j$$
 — then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(j) If
$$w^{-1} = -y_i - i - j - Q - y_j - P$$
 — then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(k) If
$$w^{-1} = -Q - y_i - i - j - P - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(l) If
$$w^{-1} = -y_i - Q - i - j - y_j - P$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,y_i)$.

(m) If
$$w^{-1} = -y_i - Q - i - j - P - y_j$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,y_i)$.

(n) If
$$w^{-1} = -y_i - i - j - Q - P - y_j$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,y_i)$.

Thus if $P < i < Q < y_i < y_i < j$ then one of the following holds:

$$\bullet \ \ w^{-1} = -Q - P - y_i - i - j - y_j - \ \ \text{and} \ \ (wt)^{-1} = -Q - P - y_i - j - i - y_j -.$$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(y_j, y_i), (i, j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -j - i - \text{ and } \\ (wt)^{-1} = -y_i - y_j - . \end{cases}$$

 $(Z2) \Leftrightarrow (\text{no condition}).$

$$(Z3) \Leftrightarrow (wt)^{-1} = -P - j - \text{and } (wt)^{-1} = -P - y_i - .$$

3. Suppose $i < y_j < y_i < P < j < Q$.

(a) If
$$w^{-1} = -y_i - i - Q - P - j - y_j$$
 then (T) fails.

(b) If
$$w^{-1} = -y_i - Q - i - P - j - y_j$$
 then (T) fails.

(c) If
$$w^{-1} = -Q - y_i - i - P - j - y_j$$
 then (T) fails.

(d) If
$$w^{-1} = -Q - y_i - P - i - j - y_j$$
 then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(e) If
$$w^{-1} = -Q - y_i - i - j - y_i - P$$
 then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(f) If
$$w^{-1} = -y_i - Q - P - i - j - y_j$$
 then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(g) If
$$w^{-1} = -Q - P - y_i - i - j - y_j$$
 — then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

$$\text{(h) If } w^{-1} = -Q - y_i - i - j - P - y_j - \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$$

$$\text{(i) If } w^{-1} = - y_i - Q - i - j - y_j - P - \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$$

(j) If
$$w^{-1} = -y_i - Q - i - j - P - y_j$$
 — then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

$$\text{(k) If } w^{-1} = -y_i - i - Q - j - P - y_j - \text{ then (Y3) fails for } (a,b) = (y_j,j) \text{ and } (a',b') = (P,Q).$$

$$\text{(l) If } w^{-1} = - y_i - i - j - Q - y_j - P - \text{ then (Y3) fails for } (a,b) = (y_j,j) \text{ and } (a',b') = (P,Q).$$

(m) If
$$w^{-1} = -y_i - i - Q - j - y_j - P$$
 — then (Y3) fails for $(a,b) = (y_j,j)$ and $(a',b') = (P,Q)$.

(n) If
$$w^{-1} = -y_i - i - j - Q - P - y_j$$
 then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

Thus if $i < y_i < y_i < P < j < Q$ then one of the following holds:

$$\bullet \ \ w^{-1} = - \cdot y_i - i - j - y_j - Q - P - \ \ \text{and} \ \ (wt)^{-1} = - \cdot y_i - j - i - y_j - Q - P - .$$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(y_j, y_i), (i, j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -j - i - \text{ and } \\ (wt)^{-1} = -y_i - y_j - . \end{cases}$$

 $(Z2) \Leftrightarrow (no condition).$

$$(Z3) \Leftrightarrow (wt)^{-1} = -i - Q - \text{ and } (wt)^{-1} = -y_i - Q - .$$

- 4. Suppose $P < i < y_j < y_i < Q < j$.
 - (a) If $w^{-1} = -y_i i Q P j y_j$ then (T) fails.
 - (b) If $w^{-1} = -y_i i Q j P y_j$ then (T) fails.
 - (c) If $w^{-1} = -y_i i Q j y_j P$ then (T) fails.
 - $\text{(d) If } w^{-1} = -Q y_i P i j y_j \text{ then (Y2) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (i,y_i).$
 - (e) If $w^{-1} = -y_i Q i P j y_j$ then (Y2) fails for (a, b) = (P, Q) and $(a', b') = (i, y_i)$.
 - (f) If $w^{-1} = -Q y_i i P j y_j$ then (Y2) fails for (a, b) = (P, Q) and $(a', b') = (i, y_i)$.
 - (g) If $w^{-1} = -Q y_i i j y_j P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_j, j)$.
 - $\text{(h) If } w^{-1} = -y_i i j y_j Q P \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_j,j).$
 - (i) If $w^{-1} = -y_i i j Q y_j P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_j, j)$.
 - (j) If $w^{-1} = -Q y_i i j P y_j$ then (Y3) fails for (a,b) = (P,Q) and $(a',b') = (y_j,j)$.
 - (k) If $w^{-1} = -y_i Q i j y_j P$ then (Y3) fails for (a,b) = (P,Q) and $(a',b') = (y_j,j)$.
 - (l) If $w^{-1} = -y_i Q i j P y_j$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_j, j)$.
 - (m) If $w^{-1} = -y_i i j Q P y_j$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_j, j)$.

Thus if $P < i < y_j < y_i < Q < j$ then one of the following holds:

•
$$w^{-1} = -y_i - Q - P - i - j - y_j$$
 and $(wt)^{-1} = -y_i - Q - P - j - i - y_j$.

•
$$w^{-1} = -Q - P - y_i - i - j - y_i$$
 and $(wt)^{-1} = -Q - P - y_i - j - i - y_i$.

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(y_j, y_i), (i, j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -j - i - \text{ and } \\ (wt)^{-1} = -y_i - y_j - . \end{cases}$$

$$(\mathbf{Z2}) \Leftrightarrow (wt)^{-1} \neq -Q - y_i - P - \text{ and } (wt)^{-1} \neq -Q - y_i - P -.$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -P - j - .$$

- 5. Suppose $i < y_j < P < y_i < Q < j$.
 - (a) If $w^{-1} = -y_i i Q P j y_j$ then (T) fails.
 - (b) If $w^{-1} = -y_i i Q j P y_j$ then (T) fails.
 - (c) If $w^{-1} = -y_i Q i P j y_j$ then (T) fails.
 - (d) If $w^{-1} = -Q y_i i P j y_j$ then (T) fails.
 - (e) If $w^{-1} = -y_i i Q j y_i P$ then (T) fails.
 - (f) If $w^{-1} = -y_i i j Q y_j P$ then (Y2) fails for $(a, b) = (y_j, j)$ and (a', b') = (P, Q).
 - (g) If $w^{-1} = -y_i i j Q P y_j$ then (Y2) fails for $(a,b) = (y_j,j)$ and (a',b') = (P,Q).
 - $\text{(h) If } w^{-1}= -Q-y_i-P-i-j-y_j- \text{ then (Y3) fails for } (a,b)=(i,y_i) \text{ and } (a',b')=(P,Q).$
 - $\text{(i) If } w^{-1} = Q y_i i j y_j P \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$
 - (j) If $w^{-1} = -y_i Q P i j y_j$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
 - $\text{(k) If } w^{-1} = -Q P y_i i j y_j \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$
 - (l) If $w^{-1} = -Q y_i i j P y_j$ then (Y3) fails for $(a,b) = (i,y_i)$ and (a',b') = (P,Q).
 - $\text{(m) If } w^{-1} = -y_i Q i j y_j P \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$
 - $\text{(n) If } w^{-1} = -y_i Q i j P y_j \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$

Thus if $i < y_i < P < y_i < Q < j$ then one of the following holds:

•
$$w^{-1} = -y_i - i - j - y_j - Q - P - \text{ and } (wt)^{-1} = -y_i - j - i - y_j - Q - P - .$$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(y_j, y_i), (i, j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(\mathrm{Z1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and} \\ (wt)^{-1} = -j - i - \text{ and} \\ (wt)^{-1} = -y_i - y_j - . \end{cases}$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -j - P - i - \text{ and } (wt)^{-1} \neq -j - Q - i - .$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -y_i - Q - .$$

6. Suppose $P < Q < i < y_i < y_i < j$.

(a) If
$$w^{-1} = -Q - y_i - P - i - j - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(b) If
$$w^{-1} = -y_i - i - Q - P - j - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(c) If
$$w^{-1} = -Q - y_i - i - j - y_j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(d) If
$$w^{-1} = -y_i - i - j - y_j - Q - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(e) If
$$w^{-1} = -y_i - i - Q - j - P - y_j$$
 then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,y_i)$.

$$\text{(f) If } w^{-1} = - y_i - Q - i - P - j - y_j - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (i,y_i).$$

(g) If
$$w^{-1} = -Q - y_i - i - P - j - y_j$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,y_i)$.

(h) If
$$w^{-1} = -y_i - Q - P - i - j - y_j$$
 — then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

$$\text{(i) If } w^{-1} = - y_i - i - j - Q - y_j - P - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (i,y_i).$$

(j) If
$$w^{-1} = -Q - y_i - i - j - P - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(k) If
$$w^{-1} = -y_i - i - Q - j - y_j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(l) If
$$w^{-1} = -y_i - Q - i - j - y_j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(m) If
$$w^{-1} = -y_i - Q - i - j - P - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(n) If
$$w^{-1} = -y_i - i - j - Q - P - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

Thus if $P < Q < i < y_j < y_i < j$ then one of the following holds:

•
$$w^{-1} = -Q - P - y_i - i - j - y_j$$
 and $(wt)^{-1} = -Q - P - y_i - j - i - y_j$.

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(y_j, y_i), (i, j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -j - i - \text{ and } \\ (wt)^{-1} = -y_i - y_j - . \end{cases}$$

 $(Z2) \Leftrightarrow (\text{no condition}).$

$$(Z3) \Leftrightarrow (wt)^{-1} = -P - j - \text{and } (wt)^{-1} = -P - y_i - .$$

7. Suppose $i < y_i < y_i < P < Q < j$.

(a) If
$$w^{-1} = -y_i - i - Q - P - j - y_i$$
 then (T) fails.

(b) If
$$w^{-1} = -y_i - i - Q - j - P - y_j$$
 then (T) fails.

(c) If
$$w^{-1} = -y_i - Q - i - P - j - y_i$$
 then (T) fails.

(d) If
$$w^{-1} = -Q - y_i - i - P - j - y_j$$
 then (T) fails.

(e) If
$$w^{-1} = -y_i - i - Q - j - y_j - P$$
— then (T) fails.

$$\text{(f) If } w^{-1} = -y_i - i - j - Q - y_j - P - \text{ then (Y2) fails for } (a,b) = (y_j,j) \text{ and } (a',b') = (P,Q).$$

(g) If
$$w^{-1} = -y_i - i - j - Q - P - y_j$$
 then (Y2) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

$$\text{(h) If } w^{-1} = - Q - y_i - P - i - j - y_j - \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$$

$$\text{(i) If } w^{-1} = \cdots Q \cdots y_i \cdots i \cdots j \cdots y_j \cdots P \cdots \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$$

$$(\mathbf{j}) \ \text{ If } w^{-1} = - y_i - Q - P - i - j - y_j - \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$$

$$\text{(k) If } w^{-1} = - Q - P - y_i - i - j - y_j - \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$$

$$\text{(l) If } w^{-1} = - Q - y_i - i - j - P - y_j - \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$$

(m) If
$$w^{-1} = -y_i - Q - i - j - y_j - P$$
 — then (Y3) fails for $(a,b) = (i,y_i)$ and $(a',b') = (P,Q)$.

(n) If
$$w^{-1} = -y_i - Q - i - j - P - y_j$$
 — then (Y3) fails for $(a,b) = (i,y_i)$ and $(a',b') = (P,Q)$.

Thus if $i < y_i < y_i < P < Q < j$ then one of the following holds:

•
$$w^{-1} = -y_i - i - j - y_i - Q - P - \text{ and } (wt)^{-1} = -y_i - j - i - y_i - Q - P - .$$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(y_j, y_i), (i, j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -j - i - \text{ and } \\ (wt)^{-1} = -y_i - y_j - . \end{cases}$$

$$(\mathbf{Z2}) \Leftrightarrow (wt)^{-1} \neq -j - P - i - \text{ and } (wt)^{-1} \neq -j - Q - i - .$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -y_j - Q - .$$

8. Suppose $i < y_i < P < y_i < j < Q$.

(a) If
$$w^{-1} = -y_i - i - Q - P - j - y_j$$
 then (T) fails.

(b) If
$$w^{-1} = -y_i - Q - i - P - j - y_j$$
 then (T) fails.

(c) If
$$w^{-1} = -Q - y_i - i - P - j - y_i$$
 then (T) fails.

(d) If
$$w^{-1} = -Q - y_i - P - i - j - y_j$$
 then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(e) If
$$w^{-1} = -Q - y_i - i - j - y_j - P$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(f) If
$$w^{-1} = -y_i - Q - P - i - j - y_j$$
 then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(g) If
$$w^{-1} = -Q - P - y_i - i - j - y_j$$
 then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(h) If
$$w^{-1} = -Q - y_i - i - j - P - y_j$$
 then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(i) If
$$w^{-1} = -y_i - Q - i - j - y_j - P$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(j) If
$$w^{-1} = -y_i - Q - i - j - P - y_j$$
 then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(k) If
$$w^{-1} = -y_i - i - Q - j - P - y_j$$
 then (Y3) fails for $(a,b) = (y_j,j)$ and $(a',b') = (P,Q)$.

(l) If
$$w^{-1} = -y_i - i - j - Q - y_j - P$$
— then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

$$\text{(m) If } w^{-1} = -y_i - i - Q - j - y_j - P - \text{ then (Y3) fails for } (a,b) = (y_j,j) \text{ and } (a',b') = (P,Q).$$

(n) If
$$w^{-1} = -y_i - i - j - Q - P - y_j$$
 then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

Thus if $i < y_i < P < y_i < j < Q$ then one of the following holds:

•
$$w^{-1} = -y_i - i - j - y_j - Q - P - \text{ and } (wt)^{-1} = -y_i - j - i - y_j - Q - P - .$$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(y_j, y_i), (i, j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -j - i - \text{ and } \\ (wt)^{-1} = -y_i - y_j - . \end{cases}$$

 $(Z2) \Leftrightarrow (no condition).$

$$(Z3) \Leftrightarrow (wt)^{-1} = -i - Q - \text{ and } (wt)^{-1} = -y_i - Q - .$$

9. Suppose $i < P < y_i < y_i < j < Q$.

(a) If
$$w^{-1} = -y_i - i - Q - P - j - y_j$$
 then (T) fails.

(b) If
$$w^{-1} = -y_i - Q - i - P - j - y_i$$
 then (T) fails.

(c) If
$$w^{-1} = -Q - y_i - i - P - j - y_j$$
 then (T) fails.

(d) If
$$w^{-1} = -y_i - i - Q - j - P - y_j$$
 then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

(e) If
$$w^{-1}=-y_i-i-j-Q-y_j-P$$
— then (Y2) fails for $(a,b)=(P,Q)$ and $(a',b')=(y_j,j)$.

$$\text{(f) If } w^{-1}=-y_i-i-Q-j-y_j-P-\text{ then (Y2) fails for } (a,b)=(P,Q) \text{ and } (a',b')=(y_j,j).$$

(g) If
$$w^{-1} = -Q - y_i - P - i - j - y_j$$
 then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(h) If
$$w^{-1} = -Q - y_i - i - j - y_j - P$$
— then (Y3) fails for $(a,b) = (i,y_i)$ and $(a',b') = (P,Q)$.

(i) If
$$w^{-1} = -y_i - Q - P - i - j - y_j$$
 — then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

$$(\mathbf{j}) \ \text{ If } w^{-1} = \cdots Q \cdots P \cdots y_i \cdots i \cdots j \cdots y_j \cdots \text{ then } (\mathbf{Y3}) \text{ fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$$

(k) If
$$w^{-1} = -Q - y_i - i - j - P - y_j$$
 then (Y3) fails for $(a,b) = (i,y_i)$ and $(a',b') = (P,Q)$.

(l) If
$$w^{-1} = -y_i - Q - i - j - y_j - P$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(m) If
$$w^{-1} = -y_i - Q - i - j - P - y_j$$
 then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

Thus if $i < P < y_j < y_i < j < Q$ then one of the following holds:

•
$$w^{-1} = -y_i - i - j - Q - P - y_j - \text{ and } (wt)^{-1} = -y_i - j - i - Q - P - y_j - .$$

•
$$w^{-1} = -y_i - i - j - y_j - Q - P$$
 and $(wt)^{-1} = -y_i - j - i - y_j - Q - P$.

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(y_j, y_i), (i, j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -j - i - \text{ and } \\ (wt)^{-1} = -y_i - y_j - . \end{cases}$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -Q - y_j - P - \text{ and } (wt)^{-1} \neq -Q - y_i - P - .$$

$$({\bf Z3}) \Leftrightarrow (wt)^{-1} = -i - Q -.$$

10. Suppose $i < y_j < P < Q < y_i < j$.

(a) If
$$w^{-1} = -y_i - i - Q - P - j - y_j$$
 — then (T) fails.

(b) If
$$w^{-1} = -y_i - i - Q - j - P - y_j$$
 then (T) fails.

(c) If
$$w^{-1} = -y_i - Q - i - P - j - y_j$$
 then (T) fails.

(d) If
$$w^{-1} = -Q - y_i - i - P - j - y_i$$
 then (T) fails.

(e) If
$$w^{-1} = -y_i - i - Q - j - y_j - P$$
— then (T) fails.

(f) If
$$w^{-1} = -Q - y_i - P - i - j - y_j$$
 then (Y2) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(g) If
$$w^{-1} = -y_i - Q - P - i - j - y_j$$
 then (Y2) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(h) If
$$w^{-1} = -y_i - Q - i - j - y_j - P$$
— then (Y2) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(i) If
$$w^{-1} = -y_i - i - j - Q - y_j - P$$
— then (Y2) fails for $(a,b) = (y_j,j)$ and $(a',b') = (P,Q)$.

$$\text{(j) If } w^{-1} = - Q - y_i - i - j - P - y_j - \text{ then (Y2) fails for } (a,b) = (y_j,j) \text{ and } (a',b') = (P,Q).$$

$$\text{(k) If } w^{-1} = - y_i - Q - i - j - P - y_j - \text{ then (Y2) fails for } (a,b) = (y_j,j) \text{ and } (a',b') = (P,Q).$$

(l) If
$$w^{-1} = -y_i - i - j - Q - P - y_j$$
 then (Y2) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

Thus if $i < y_i < P < Q < y_i < j$ then one of the following holds:

•
$$w^{-1} = -Q - y_i - i - j - y_i - P - \text{ and } (wt)^{-1} = -Q - y_i - j - i - y_i - P - ...$$

•
$$w^{-1} = -y_i - i - j - y_i - Q - P$$
 and $(wt)^{-1} = -y_i - j - i - y_i - Q - P$.

•
$$w^{-1} = -Q - P - y_i - i - j - y_i$$
 and $(wt)^{-1} = -Q - P - y_i - j - i - y_i$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(y_j, y_i), (i, j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -j - i - \text{ and } \\ (wt)^{-1} = -y_i - y_j - . \end{cases}$$

$$(\mathbf{Z2}) \Leftrightarrow \begin{cases} (wt)^{-1} \neq -j - P - i - \text{ and } (wt)^{-1} \neq -j - Q - i - \text{ and } \\ (wt)^{-1} \neq -y_i - P - y_j - \text{ and } (wt)^{-1} \neq -y_i - Q - y_j - . \end{cases}$$

 $(Z3) \Leftrightarrow (no condition).$

11. Suppose $i < P < y_j < Q < y_i < j$.

(a) If
$$w^{-1} = -y_i - i - Q - P - j - y_j$$
 — then (T) fails.

(b) If
$$w^{-1} = -y_i - i - Q - j - P - y_j$$
 — then (T) fails.

(c) If
$$w^{-1} = -y_i - Q - i - P - j - y_j$$
 then (T) fails.

(d) If
$$w^{-1} = -Q - y_i - i - P - j - y_j$$
 then (T) fails.

(e) If
$$w^{-1} = -y_i - i - Q - j - y_j - P$$
 then (T) fails.

$$\text{(f) If } w^{-1} = - Q - y_i - P - i - j - y_j - \text{ then (Y2) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$$

(g) If
$$w^{-1} = -y_i - Q - P - i - j - y_j$$
 — then (Y2) fails for $(a,b) = (i,y_i)$ and $(a',b') = (P,Q)$.

(h) If
$$w^{-1} = -Q - y_i - i - j - y_j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

(i) If
$$w^{-1} = -y_i - i - j - y_j - Q - P$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

(j) If
$$w^{-1} = -y_i - i - j - Q - y_j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

(k) If
$$w^{-1} = -Q - y_i - i - j - P - y_j$$
 — then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

(l) If
$$w^{-1} = -y_i - Q - i - j - y_j - P$$
 — then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

(m) If
$$w^{-1} = -y_i - Q - i - j - P - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

(n) If
$$w^{-1} = -y_i - i - j - Q - P - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

Thus if $i < P < y_j < Q < y_i < j$ then one of the following holds:

•
$$w^{-1} = -Q - P - y_i - i - j - y_j - \text{ and } (wt)^{-1} = -Q - P - y_i - j - i - y_j - .$$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(y_j, y_i), (i, j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -j - i - \text{ and } \\ (wt)^{-1} = -y_i - y_j - . \end{cases}$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -i - P - i - \text{ and } (wt)^{-1} \neq -i - Q - i - .$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -P - y_i - .$$

12. Suppose $i < y_i < y_i < j < P < Q$.

(a) If
$$w^{-1} = -Q - y_i - P - i - j - y_j$$
 then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(b) If
$$w^{-1} = -Q - y_i - i - j - y_j - P$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(c) If
$$w^{-1} = -y_i - Q - i - P - j - y_j$$
 then (Y3) fails for $(a,b) = (i,y_i)$ and $(a',b') = (P,Q)$.

(d) If
$$w^{-1} = -Q - y_i - i - P - j - y_j$$
 — then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

$$\text{(e) If } w^{-1} = - y_i - Q - P - i - j - y_j - \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$$

$$\text{(f) If } w^{-1} = -Q - P - y_i - i - j - y_j - \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$$

(g) If
$$w^{-1} = -Q - y_i - i - j - P - y_j$$
 then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

$$\text{(h) If } w^{-1} = -y_i - Q - i - j - y_j - P - \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$$

$$\text{(i) If } w^{-1} = \cdots y_i \cdots Q \cdots i \cdots j \cdots P \cdots y_j \cdots \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$$

$$\text{(j) If } w^{-1} = - y_i - i - Q - P - j - y_j - \text{ then (Y3) fails for } (a,b) = (y_j,j) \text{ and } (a',b') = (P,Q).$$

$$\text{(k) If } w^{-1} = -y_i - i - Q - j - P - y_j - \text{ then (Y3) fails for } (a,b) = (y_j,j) \text{ and } (a',b') = (P,Q).$$

(1) If
$$w^{-1} = -y_i - i - j - Q - y_j - P$$
— then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

(m) If
$$w^{-1} = -y_i - i - Q - j - y_j - P$$
 — then (Y3) fails for $(a,b) = (y_j,j)$ and $(a',b') = (P,Q)$.

$$\text{(n) If } w^{-1} = - y_i - i - j - Q - P - y_j - \text{ then (Y3) fails for } (a,b) = (y_j,j) \text{ and } (a',b') = (P,Q).$$

Thus if $i < y_i < y_i < j < P < Q$ then one of the following holds:

•
$$w^{-1} = -y_i - i - j - y_j - Q - P - \text{ and } (wt)^{-1} = -y_i - j - i - y_j - Q - P - .$$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(y_j, y_i), (i, j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -j - i - \text{ and } \\ (wt)^{-1} = -y_i - y_j - . \end{cases}$$

 $(Z2) \Leftrightarrow (no condition).$

(Z3)
$$\Leftrightarrow$$
 $(wt)^{-1} = -i - Q - \text{and } (wt)^{-1} = -y_j - Q - .$

13. Suppose $P < i < y_i < y_i < j < Q$.

(a) If
$$w^{-1} = -Q - y_i - P - i - j - y_j$$
 then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(b) If
$$w^{-1} = -Q - y_i - i - j - y_j - P$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(c) If
$$w^{-1} = -y_i - Q - i - P - j - y_j$$
 then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(d) If
$$w^{-1} = -Q - y_i - i - P - j - y_j$$
 then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(e) If
$$w^{-1} = -Q - y_i - i - j - P - y_j$$
 then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(f) If
$$w^{-1} = -y_i - Q - i - j - y_j - P$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(g) If
$$w^{-1} = -y_i - Q - i - j - P - y_j$$
 — then (Y2) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,y_i)$.

(h) If
$$w^{-1} = -y_i - i - Q - j - P - y_j$$
 then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

(i) If
$$w^{-1} = -y_i - i - j - Q - y_j - P$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

(j) If
$$w^{-1} = -y_i - i - Q - j - y_j - P$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

Thus if $P < i < y_i < y_i < j < Q$ then one of the following holds:

•
$$w^{-1} = -y_i - i - Q - P - j - y_j$$
 and $(wt)^{-1} = -y_i - j - Q - P - i - y_j$.

•
$$w^{-1} = -y_i - Q - P - i - j - y_j$$
 and $(wt)^{-1} = -y_i - Q - P - j - i - y_j$.

•
$$w^{-1} = -y_i - i - j - Q - P - y_i$$
 and $(wt)^{-1} = -y_i - j - i - Q - P - y_i$.

•
$$w^{-1} = -y_i - i - j - y_j - Q - P$$
 and $(wt)^{-1} = -y_i - j - i - y_j - Q - P$.

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(y_j, y_i), (i, j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(\mathrm{Z1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and} \\ (wt)^{-1} = -j - i - \text{ and} \\ (wt)^{-1} = -y_i - y_j - . \end{cases}$$

$$(Z2) \Leftrightarrow \begin{cases} (wt)^{-1} \neq -Q - i - P - \text{ and } (wt)^{-1} \neq -Q - j - P - \text{ and } \\ (wt)^{-1} \neq -Q - y_j - P - \text{ and } (wt)^{-1} \neq -Q - y_i - P - . \end{cases}$$

 $(Z3) \Leftrightarrow (no condition).$

14. Suppose $i < P < Q < y_i < y_i < j$.

(a) If
$$w^{-1} = -y_i - i - Q - P - j - y_j$$
 then (T) fails.

(b) If
$$w^{-1} = -y_i - i - Q - j - P - y_j$$
 then (T) fails.

(c) If
$$w^{-1} = -y_i - Q - i - P - j - y_j$$
 then (T) fails.

(d) If
$$w^{-1} = -Q - y_i - i - P - j - y_i$$
 then (T) fails.

(e) If
$$w^{-1} = -y_i - i - Q - j - y_j - P$$
— then (T) fails.

$$\text{(f) If } w^{-1} = -Q - y_i - P - i - j - y_j - \text{ then (Y2) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$$

- (g) If $w^{-1} = -y_i Q P i j y_j$ then (Y2) fails for $(a,b) = (i,y_i)$ and (a',b') = (P,Q).
- $\text{(h) If } w^{-1} = \cdots Q \cdots y_i \cdots i \cdots j \cdots y_j \cdots P \cdots \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_j,j).$
- $\text{(i) If } w^{-1}=-y_i-i-j-y_j-Q-P-\text{ then (Y3) fails for } (a,b)=(P,Q) \text{ and } (a',b')=(y_j,j).$
- (j) If $w^{-1} = -y_i i j Q y_j P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_j, j)$.
- (k) If $w^{-1} = -Q y_i i j P y_j$ then (Y3) fails for (a,b) = (P,Q) and $(a',b') = (y_j,j)$.
- (l) If $w^{-1} = -y_i Q i j y_j P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_j, j)$.
- (m) If $w^{-1} = -y_i Q i j P y_j$ then (Y3) fails for (a,b) = (P,Q) and $(a',b') = (y_j,j)$.
- (n) If $w^{-1} = -y_i i j Q P y_j$ then (Y3) fails for (a,b) = (P,Q) and $(a',b') = (y_j,j)$.

Thus if $i < P < Q < y_j < y_i < j$ then one of the following holds:

•
$$w^{-1} = -Q - P - y_i - i - j - y_j$$
 and $(wt)^{-1} = -Q - P - y_i - j - i - y_j$.

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(y_j, y_i), (i, j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(\mathrm{Z1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -j - i - \text{ and } \\ (wt)^{-1} = -y_i - y_j - . \end{cases}$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -i - P - i - \text{ and } (wt)^{-1} \neq -i - Q - i - .$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -P - y_i - .$$

15. It cannot happen that $i < P < y_i < y_i < Q < j$ since:

- (a) If $w^{-1} = -y_i i Q P j y_j$ then (T) fails.
- (b) If $w^{-1} = -y_i i Q j P y_i$ then (T) fails.
- (c) If $w^{-1} = -y_i Q i P j y_i$ then (T) fails.
- (d) If $w^{-1} = -Q y_i i P j y_i$ then (T) fails.
- (e) If $w^{-1} = -y_i i Q j y_i P$ then (T) fails.
- (f) If $w^{-1} = -y_i i j y_i Q P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_j, j)$.
- (g) If $w^{-1} = -y_i i j Q y_j P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_j, j)$.
- (h) If $w^{-1} = -y_i i j Q P y_i$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_j, j)$.
- (i) If $w^{-1} = -Q y_i P i j y_j$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
- $(j) \ \ \text{If} \ w^{-1} = Q y_i i j y_j P \ \ \text{then (Y3) fails for } (a,b) = (i,y_i) \ \ \text{and} \ \ (a',b') = (P,Q).$
- (k) If $w^{-1} = -y_i Q P i j y_j$ then (Y3) fails for $(a,b) = (i,y_i)$ and (a',b') = (P,Q).
- (l) If $w^{-1} = -Q P y_i i j y_j$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
- (m) If $w^{-1} = -Q y_i i j P y_j$ then (Y3) fails for $(a,b) = (i,y_i)$ and (a',b') = (P,Q).
- (n) If $w^{-1} = -y_i Q i j y_j P$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
- (o) If $w^{-1} = -y_i Q i j P y_j$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).

We conclude that properties (Z1)-(Z3) hold whenever (a,b), (a',b') are as in cases (i) or (ii) and $i < y_i < y_i < j$.

12.3 Subcase (iii)

Suppose i' and j' are integers such that $0 \neq i - i' = j - j' \in n\mathbb{Z}$, so that w(i) - w(i') = w(j) - w(j') = i - i'.

- 1. Suppose $i' < y_{i'} < i < y_{i'} < y_i < y_i < j' < j$.
 - (a) If $w^{-1} = -y_{i'} i' y_i i j' y_{i'} j y_i$ then (T) fails.
 - (b) If $w^{-1} = -y_{i'} y_i i' i j' y_{i'} j y_j$ then (T) fails.
 - (c) If $w^{-1} = -y_{i'} i' y_i i j' j y_{j'} y_j$ then (T) fails.
 - (d) If $w^{-1} = -y_{i'} y_i i' i j' j y_{i'} y_i$ then (T) fails.

- (e) If $w^{-1} = -y_{i'} i' y_i j' i y_{j'} j y_j$ then (U) fails.
- (f) If $w^{-1} = -y_{i'} i' y_i j' i j y_{i'} y_i$ then (U) fails.
- (g) If $w^{-1} = -y_{i'} i' y_i j' y_{j'} i j y_j$ then (U) fails.
- (h) If $w^{-1} = -y_{i'} i' j' y_i i y_{j'} j y_j$ then (Y2) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
- (i) If $w^{-1} = -y_{i'} i' j' y_i y_{j'} i j y_j$ then (Y2) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
- (j) If $w^{-1} = -y_{i'} y_i i' j' y_{j'} i j y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
- (k) If $w^{-1} = -y_{i'} y_i i' j' i y_{j'} j y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
- $\text{(l) If } w^{-1} = y_{i'} y_i i' j' i j y_{j'} y_j \text{ then (Y3) fails for } (a,b) = (i',y_{i'}) \text{ and } (a',b') = (i,y_i).$
- $\text{(m) If } w^{-1} = y_{i'} i' j' y_i i j y_{j'} y_j \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_j,j).$

Thus if $i' < y_{j'} < i < y_{i'} < y_j < y_i < j' < j$ then one of the following holds:

•
$$w^{-1} = -y_{i'} - i' - j' - y_{j'} - y_i - i - j - y_j$$
 and $(wt)^{-1} = -y_{i'} - j' - i' - y_{j'} - y_i - j - i - y_j$.

When $(a,b) \in \operatorname{Cyc}^1(z) = \{(y_j,y_i),(i,j)\}$ and $(a',b') \in \{(y_{j'},y_{i'}),(i',j')\}$, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(\text{Z1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -j - i - \text{ and } \\ (wt)^{-1} = -j' - i' - \text{ and } \\ (wt)^{-1} = -y_i - y_j - \text{ and } \\ (wt)^{-1} = -y_{i'} - y_{j'} - . \end{cases}$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -j'-y_j-i'$$
 and $(wt)^{-1} \neq -j'-y_i-i'$.

(Z3)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -i' - j - \text{ and } \\ (wt)^{-1} = -y_{j'} - j - \text{ and } \\ (wt)^{-1} = -y_{j'} - y_i - . \end{cases}$$

- 2. Suppose $i' < y_{j'} < y_{i'} < i < j' < y_j < y_i < j$.
 - (a) If $w^{-1} = -y_{i'} i' y_i i j' y_{j'} j y_j$ then (T) fails.
 - (b) If $w^{-1} = -y_{i'} y_i i' i j' y_{i'} j y_j$ then (T) fails.
 - (c) If $w^{-1} = -y_{i'} i' y_i i j' j y_{i'} y_i$ then (T) fails.
 - (d) If $w^{-1} = -y_{i'} y_i i' i j' j y_{j'} y_j$ then (T) fails.
 - (e) If $w^{-1} = -y_{i'} y_i i' j' y_{j'} i j y_i$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (f) If $w^{-1} = -y_{i'} y_i i' j' i y_{j'} j y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (g) If $w^{-1} = -y_{i'} y_i i' j' i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (h) If $w^{-1} = -y_{i'} i' y_i j' i y_{j'} j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
 - (i) If $w^{-1} = -y_{i'} i' j' y_i i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
 - (j) If $w^{-1} = -y_{i'} i' y_i j' i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
 - (k) If $w^{-1} = -y_{i'} i' j' y_i i y_{j'} j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
 - (l) If $w^{-1} = -y_{i'} i' j' y_i y_{i'} i j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
 - (m) If $w^{-1} = -y_{i'} i' y_i j' y_{j'} i j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.

Thus if $i' < y_{i'} < y_{i'} < i < j' < y_i < j$ then one of the following holds:

•
$$w^{-1} = -y_{i'} - i' - j' - y_{j'} - y_i - i - j - y_j$$
 and $(wt)^{-1} = -y_{i'} - j' - i' - y_{j'} - y_i - j - i - y_j$.

When $(a,b) \in \operatorname{Cyc}^1(z) = \{(y_j,y_i),(i,j)\}$ and $(a',b') \in \{(y_{j'},y_{i'}),(i',j')\}$, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -j - i - \text{ and} \\ (wt)^{-1} = -j' - i' - \text{ and} \\ (wt)^{-1} = -y_i - y_j - \text{ and} \\ (wt)^{-1} = -y_{i'} - y_{j'} - . \end{cases}$$

 $(Z2) \Leftrightarrow (no condition)$

$$(\text{Z3}) \Leftrightarrow \begin{cases} (wt)^{-1} = -i' - j - \text{ and } \\ (wt)^{-1} = -i' - y_i - \text{ and } \\ (wt)^{-1} = -y_{j'} - j - \text{ and } \\ (wt)^{-1} = -y_{j'} - y_i - . \end{cases}$$

3. Suppose $i' < i < y_{j'} < y_i < y_{i'} < j' < y_i < j$.

(a) If
$$w^{-1} = -y_{i'} - i' - y_i - i - j' - y_{j'} - j - y_j$$
 then (T) fails.

(b) If
$$w^{-1} = -y_{i'} - i' - y_i - j' - i - y_{j'} - j - y_j$$
 then (T) fails.

(c) If
$$w^{-1} = -y_{i'} - y_i - i' - i - j' - y_{j'} - j - y_j$$
 then (T) fails.

(d) If
$$w^{-1} = -y_{i'} - i' - y_i - i - j' - j - y_{j'} - y_i$$
 then (T) fails.

(e) If
$$w^{-1} = -y_{i'} - y_i - i' - j' - i - y_{j'} - j - y_j$$
 then (T) fails.

(f) If
$$w^{-1} = -y_{i'} - i' - j' - y_i - i - y_{j'} - j - y_j$$
 then (T) fails.

(g) If
$$w^{-1} = -y_{i'} - y_i - i' - i - j' - j - y_{j'} - y_j$$
 then (T) fails.

(h) If
$$w^{-1} = -y_{i'} - i' - j' - y_i - y_{j'} - i - j - y_j$$
 then (Y2) fails for $(a, b) = (i, y_i)$ and $(a', b') = (y_{j'}, j')$.

(i) If
$$w^{-1} = -y_{i'} - i' - y_i - j' - y_{j'} - i - j - y_j$$
 then (Y2) fails for $(a, b) = (i, y_i)$ and $(a', b') = (y_{j'}, j')$.

(j) If
$$w^{-1} = -y_{i'} - y_i - i' - j' - y_{j'} - i - j - y_i$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(k) If
$$w^{-1} = -y_{i'} - y_i - i' - j' - i - j - y_{j'} - y_j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

$$\text{(l) If } w^{-1} = - y_{i'} - i' - j' - y_i - i - j - y_{j'} - y_j - \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_j,j).$$

(m) If
$$w^{-1} = -y_{i'} - i' - y_i - j' - i - j - y_{j'} - y_j$$
 — then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_j, j)$.

Thus if $i' < i < y_{i'} < y_i < y_{i'} < j' < y_i < j$ then one of the following holds:

$$\bullet \ w^{-1} = - y_{i'} - i' - j' - y_{j'} - y_i - i - j - y_j - \text{ and } (wt)^{-1} = - y_{i'} - j' - i' - y_{j'} - y_i - j - i - y_j - .$$

When $(a,b) \in \operatorname{Cyc}^1(z) = \{(y_j,y_i),(i,j)\}$ and $(a',b') \in \{(y_{j'},y_{i'}),(i',j')\}$, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -j - i - \text{ and } \\ (wt)^{-1} = -j' - i' - \text{ and } \\ (wt)^{-1} = -y_i - y_j - \text{ and } \\ (wt)^{-1} = -y_{i'} - y_{j'} - . \end{cases}$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -j - y_{j'} - i - \text{ and } (wt)^{-1} \neq -j - y_{i'} - i - .$$

$$(\mathrm{Z3}) \Leftrightarrow \begin{cases} (wt)^{-1} = -i' - j - \text{ and} \\ (wt)^{-1} = -i' - y_i - \text{ and} \\ (wt)^{-1} = -y_{j'} - y_i - . \end{cases}$$

4. Suppose $i' < y_{j'} < i < y_{i'} < j' < j' < j_i < j$.

(a) If
$$w^{-1} = -y_{i'} - i' - y_i - i - j' - y_{j'} - j - y_j$$
 then (T) fails.

(b) If
$$w^{-1} = -y_{i'} - y_i - i' - i - j' - y_{i'} - j - y_i$$
 then (T) fails.

(c) If
$$w^{-1} = -y_{i'} - i' - y_i - i - j' - j - y_{j'} - y_j$$
 then (T) fails.

(d) If
$$w^{-1} = -y_{i'} - y_i - i' - i - j' - j - y_{j'} - y_j$$
 then (T) fails.

(e) If
$$w^{-1} = -y_{i'} - y_i - i' - j' - y_{j'} - i - j - y_j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(f) If
$$w^{-1} = -y_{i'} - y_i - i' - j' - i - y_{j'} - j - y_j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(g) If
$$w^{-1} = -y_{i'} - y_i - i' - j' - i - j - y_{j'} - y_j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

$$\text{(h) If } w^{-1} = - y_{i'} - i' - y_i - j' - i - y_{j'} - j - y_j - \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (i,y_i).$$

(i) If
$$w^{-1} = -y_{i'} - i' - j' - y_i - i - j - y_{j'} - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.

(j) If
$$w^{-1} = -y_{i'} - i' - y_i - j' - i - j - y_{j'} - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.

(k) If
$$w^{-1} = -y_{i'} - i' - j' - y_i - i - y_{j'} - j - y_j$$
 then (Y3) fails for $(a, b) = (y_{i'}, j')$ and $(a', b') = (i, y_i)$.

(l) If
$$w^{-1} = -y_{i'} - i' - j' - y_i - y_{j'} - i - j - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.

$$\text{(m) If } w^{-1} = -y_{i'} - i' - y_i - j' - y_{j'} - i - j - y_j - \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (i,y_i).$$

Thus if $i' < y_{j'} < i < y_{i'} < j' < y_i < j'$ then one of the following holds:

$$\bullet \ w^{-1} = -y_{i'} - i' - j' - y_{j'} - y_i - i - j - y_j - \text{ and } (wt)^{-1} = -y_{i'} - j' - i' - y_{j'} - y_i - j - i - y_j - .$$

When $(a,b) \in \operatorname{Cyc}^1(z) = \{(y_j,y_i),(i,j)\}$ and $(a',b') \in \{(y_{j'},y_{i'}),(i',j')\}$, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -j - i - \text{ and } \\ (wt)^{-1} = -j' - i' - \text{ and } \\ (wt)^{-1} = -y_i - y_j - \text{ and } \\ (wt)^{-1} = -y_{i'} - y_{j'} - . \end{cases}$$

 $(Z2) \Leftrightarrow (no condition).$

(Z3)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -i' - j - \text{ and } \\ (wt)^{-1} = -i' - y_i - \text{ and } \\ (wt)^{-1} = -y_{j'} - j - \text{ and } \\ (wt)^{-1} = -y_{j'} - y_i - . \end{cases}$$

5. Suppose $i' < y_{j'} < i < y_j < y_{i'} < y_i < j' < j$.

(a) If
$$w^{-1} = -y_{i'} - i' - y_i - i - j' - y_{j'} - j - y_j$$
 then (T) fails.

(b) If
$$w^{-1} = -y_{i'} - y_i - i' - i - j' - y_{j'} - j - y_j$$
 then (T) fails.

(c) If
$$w^{-1} = -y_{i'} - i' - y_i - i - j' - j - y_{i'} - y_i$$
 then (T) fails.

(d) If
$$w^{-1} = -y_{i'} - y_i - i' - i - j' - j - y_{i'} - y_i$$
— then (T) fails.

(e) If
$$w^{-1} = -y_{i'} - i' - y_i - j' - i - y_{j'} - j - y_j$$
 then (U) fails.

(f) If
$$w^{-1} = -y_{i'} - i' - y_i - j' - i - j - y_{i'} - y_i$$
 then (U) fails.

(g) If
$$w^{-1} = -y_{i'} - i' - y_i - j' - y_{i'} - i - j - y_i$$
 then (U) fails.

(h) If
$$w^{-1} = -y_{i'} - i' - j' - y_i - i - y_{j'} - j - y_j$$
 then (Y2) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.

(i) If
$$w^{-1} = -y_{i'} - i' - j' - y_i - y_{j'} - i - j - y_j$$
 then (Y2) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.

(j) If
$$w^{-1} = -y_{i'} - y_i - i' - j' - y_{j'} - i - j - y_j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(k) If
$$w^{-1} = -y_{i'} - y_i - i' - j' - i - y_{j'} - j - y_j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(l) If
$$w^{-1} = -y_{i'} - y_i - i' - j' - i - j - y_{j'} - y_j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(m) If
$$w^{-1} = -y_{i'} - i' - j' - y_i - i - j - y_{j'} - y_j$$
 — then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_j, j)$.

Thus if $i' < y_{j'} < i < y_i < y_{i'} < y_i < j' < j$ then one of the following holds:

$$\bullet \ w^{-1} = -y_{i'} - i' - j' - y_{j'} - y_i - i - j - y_j - \text{ and } (wt)^{-1} = -y_{i'} - j' - i' - y_{j'} - y_i - j - i - y_j - .$$

When $(a,b) \in \operatorname{Cyc}^1(z) = \{(y_j,y_i),(i,j)\}$ and $(a',b') \in \{(y_{j'},y_{i'}),(i',j')\}$, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases}
(wt)^{-1} = -j - i - \text{ and} \\
(wt)^{-1} = -j' - i' - \text{ and} \\
(wt)^{-1} = -y_i - y_j - \text{ and} \\
(wt)^{-1} = -y_{i'} - y_{j'} - .
\end{cases}$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -j' - y_i - i' - \text{ and } (wt)^{-1} \neq -j' - y_i - i' - .$$

$$(\mathrm{Z3}) \Leftrightarrow \begin{cases} (wt)^{-1} = -i' - j - \text{ and } \\ (wt)^{-1} = -y_{j'} - j - \text{ and } \\ (wt)^{-1} = -y_{j'} - y_i - . \end{cases}$$

6. Suppose $i' < y_{i'} < y_{i'} < j' < i < y_i < j$.

(a) If
$$w^{-1} = -y_{i'} - y_i - i' - j' - y_{j'} - i - j - y_j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(b) If
$$w^{-1} = -y_{i'} - y_i - i' - i - j' - y_{j'} - j - y_j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(c) If
$$w^{-1} = -y_{i'} - y_i - i' - j' - i - y_{j'} - j - y_j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(d) If
$$w^{-1} = -y_{i'} - y_i - i' - i - j' - j - y_{j'} - y_j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(e) If
$$w^{-1} = -y_{i'} - y_i - i' - j' - i - j - y_{j'} - y_j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

$$\text{(f) If } w^{-1} = -y_{i'} - i' - y_i - i - j' - y_{j'} - j - y_j - \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (i,y_i).$$

(g) If
$$w^{-1} = -y_{i'} - i' - y_i - j' - i - y_{j'} - j - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.

(h) If
$$w^{-1} = -y_{i'} - i' - j' - y_i - i - j - y_{j'} - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.

(ii) If
$$w = -y_{i'} - i - j - y_i - i - j - y_{j'} - y_j$$
 then (13) rans for $(u, v) = (y_{j'}, j)$ and $(u, v) = (i, y_i)$.

(i) If
$$w^{-1} = -y_{i'} - i' - y_i - i - j' - j - y_{j'} - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
(j) If $w^{-1} = -y_{i'} - i' - y_i - j' - i - j - y_{j'} - y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.

(k) If
$$w^{-1} = -y_{i'} - i' - j' - y_i - i - y_{j'} - j - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.

(a) If
$$w = g_{i'}$$
 if $f = g_i$ if g_j if then (13) rans for $(u, v) = (g_{j'}, f)$ and $(u, v) = (v, g_i)$.

(l) If
$$w^{-1} = -y_{i'} - i' - j' - y_i - y_{j'} - i - j - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.

$$\text{(m) If } w^{-1} = -y_{i'} - i' - y_i - j' - y_{j'} - i - j - y_j - \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (i,y_i).$$

Thus if $i' < y_{i'} < y_{i'} < j' < i < y_i < j$ then one of the following holds:

•
$$w^{-1} = -y_{i'} - i' - j' - y_{j'} - y_i - i - j - y_j$$
 and $(wt)^{-1} = -y_{i'} - j' - i' - y_{j'} - y_i - j - i - y_j$.

When $(a,b) \in \operatorname{Cyc}^1(z) = \{(y_j,y_i),(i,j)\}$ and $(a',b') \in \{(y_{j'},y_{i'}),(i',j')\}$, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -j - i - \text{ and } \\ (wt)^{-1} = -j' - i' - \text{ and } \\ (wt)^{-1} = -y_i - y_j - \text{ and } \\ (wt)^{-1} = -y_{i'} - y_{j'} - . \end{cases}$$

 $(Z2) \Leftrightarrow (no condition).$

$$(\text{Z3}) \Leftrightarrow \begin{cases} (wt)^{-1} = -i' - j - \text{ and } \\ (wt)^{-1} = -i' - y_i - \text{ and } \\ (wt)^{-1} = -y_{j'} - j - \text{ and } \\ (wt)^{-1} = -y_{j'} - y_i - . \end{cases}$$

7. Suppose $i' < y_{i'} < y_{i'} < i < y_i < j' < j$.

(a) If
$$w^{-1} = -y_{i'} - i' - y_i - i - j' - y_{j'} - j - y_j$$
 then (T) fails.

(b) If
$$w^{-1} = -y_{i'} - y_i - i' - i - j' - y_{j'} - j - y_j$$
 then (T) fails.

(c) If
$$w^{-1} = -y_{i'} - i' - y_i - i - j' - j - y_{i'} - y_i$$
 then (T) fails.

(d) If
$$w^{-1} = -y_{i'} - y_i - i' - i - j' - j - y_{j'} - y_j$$
 then (T) fails.

(e) If
$$w^{-1} = -y_{i'} - i' - y_i - j' - i - y_{j'} - j - y_j$$
 then (U) fails.

(f) If
$$w^{-1} = -y_{i'} - i' - y_i - j' - i - j - y_{j'} - y_j$$
 then (U) fails.

(g) If
$$w^{-1} = -y_{i'} - i' - y_i - j' - y_{i'} - i - j - y_i$$
 then (U) fails.

(h) If
$$w^{-1} = -y_{i'} - i' - j' - y_i - i - y_{j'} - j - y_j$$
 then (Y2) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.

(i) If
$$w^{-1} = -y_{i'} - i' - j' - y_i - y_{j'} - i - j - y_j$$
 then (Y2) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.

(j) If
$$w^{-1} = -y_{i'} - y_i - i' - j' - y_{j'} - i - j - y_j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

$$\text{(k) If } w^{-1} = - y_{i'} - y_i - i' - j' - i - y_{j'} - j - y_j - \text{ then (Y3) fails for } (a,b) = (i',y_{i'}) \text{ and } (a',b') = (i,y_i).$$

$$\text{(l) If } w^{-1} = -y_{i'} - y_i - i' - j' - i - j - y_{j'} - y_j - \text{ then (Y3) fails for } (a,b) = (i',y_{i'}) \text{ and } (a',b') = (i,y_i).$$

(m) If
$$w^{-1} = -y_{i'} - i' - j' - y_i - i - j - y_{j'} - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_j, j)$.

Thus if $i' < y_{j'} < y_{i'} < i < y_j < y_i < j' < j$ then one of the following holds:

•
$$w^{-1} = -y_{i'} - i' - j' - y_{i'} - y_i - i - j - y_j$$
 and $(wt)^{-1} = -y_{i'} - j' - i' - y_{i'} - y_i - j - i - y_j$.

When $(a, b) \in \operatorname{Cyc}^1(z) = \{(y_j, y_i), (i, j)\}$ and $(a', b') \in \{(y_{j'}, y_{i'}), (i', j')\}$, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -j - i - \text{ and } \\ (wt)^{-1} = -j' - i' - \text{ and } \\ (wt)^{-1} = -y_i - y_j - \text{ and } \\ (wt)^{-1} = -y_{i'} - y_{j'} - . \end{cases}$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -j'-y_j-i'$$
 and $(wt)^{-1} \neq -j'-y_i-i'-i'$

$$({\rm Z3}) \Leftrightarrow \begin{cases} (wt)^{-1} = -i' - j - \text{ and } \\ (wt)^{-1} = -y_{j'} - j - \text{ and } \\ (wt)^{-1} = -y_{j'} - y_i - . \end{cases}$$

8. Suppose $i' < y_{j'} < i < y_j < y_{i'} < j' < y_i < j$.

(a) If
$$w^{-1} = -y_{i'} - i' - y_i - i - j' - y_{j'} - j - y_j$$
 then (T) fails.

(b) If
$$w^{-1} = -y_{i'} - y_i - i' - i - j' - y_{j'} - j - y_j$$
 then (T) fails.

(c) If
$$w^{-1} = -y_{i'} - i' - y_i - i - j' - j - y_{j'} - y_j$$
 then (T) fails.

(d) If
$$w^{-1} = -y_{i'} - y_i - i' - i - j' - j - y_{i'} - y_i$$
 then (T) fails.

(e) If
$$w^{-1} = -y_{i'} - y_i - i' - j' - y_{j'} - i - j - y_j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(f) If
$$w^{-1} = -y_{i'} - y_i - i' - j' - i - y_{j'} - j - y_j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(g) If
$$w^{-1} = -y_{i'} - y_i - i' - j' - i - j - y_{j'} - y_j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(h) If
$$w^{-1} = -y_{i'} - i' - y_i - j' - i - y_{j'} - j - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.

(i) If
$$w^{-1} = -y_{i'} - i' - j' - y_i - i - j - y_{j'} - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.

(j) If
$$w^{-1} = -y_{i'} - i' - y_i - j' - i - j - y_{j'} - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.

$$\text{(k) If } w^{-1} = -y_{i'} - i' - j' - y_i - i - y_{j'} - j - y_j - \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (i,y_i).$$

(l) If
$$w^{-1} = -y_{i'} - i' - j' - y_i - y_{j'} - i - j - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.

(m) If
$$w^{-1} = -y_{i'} - i' - y_i - j' - y_{j'} - i - j - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.

Thus if $i' < y_{i'} < i < y_i < j' < j' < y_i < j$ then one of the following holds:

•
$$w^{-1} = -y_{i'} - i' - j' - y_{i'} - y_i - i - j - y_i$$
 and $(wt)^{-1} = -y_{i'} - j' - i' - y_{i'} - y_i - j - i - y_i$.

When $(a,b) \in \operatorname{Cyc}^1(z) = \{(y_j,y_i),(i,j)\}$ and $(a',b') \in \{(y_{j'},y_{i'}),(i',j')\}$, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(\text{Z1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -j - i - \text{ and } \\ (wt)^{-1} = -j' - i' - \text{ and } \\ (wt)^{-1} = -y_i - y_j - \text{ and } \\ (wt)^{-1} = -y_{i'} - y_{j'} - . \end{cases}$$

 $(Z2) \Leftrightarrow (no condition).$

(Z3)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -i' - j - \text{ and } \\ (wt)^{-1} = -i' - y_i - \text{ and } \\ (wt)^{-1} = -y_{j'} - j - \text{ and } \\ (wt)^{-1} = -y_{j'} - y_i - . \end{cases}$$

9. Suppose $i' < y_{i'} < y_{i'} < i < y_i < j' < y_i < j$.

(a) If
$$w^{-1} = -y_{i'} - i' - y_i - i - j' - y_{j'} - j - y_j$$
 then (T) fails.

(b) If
$$w^{-1} = -y_{i'} - y_i - i' - i - j' - y_{j'} - j - y_j$$
 then (T) fails.

(c) If
$$w^{-1} = -y_{i'} - i' - y_i - i - j' - j - y_{j'} - y_j$$
 then (T) fails.

- (d) If $w^{-1} = -y_{i'} y_i i' i j' j y_{j'} y_j$ then (T) fails.
- (e) If $w^{-1} = -y_{i'} y_i i' j' y_{j'} i j y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
- (f) If $w^{-1} = -y_{i'} y_i i' j' i y_{j'} j y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
- (g) If $w^{-1} = -y_{i'} y_i i' j' i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
- (h) If $w^{-1} = -y_{i'} i' y_i j' i y_{j'} j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
- $\text{(i) If } w^{-1} = -y_{i'} i' j' y_i i j y_{j'} y_j \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (i,y_i).$
- (j) If $w^{-1} = -y_{i'} i' y_i j' i j y_{i'} y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
- (k) If $w^{-1} = -y_{i'} i' j' y_i i y_{i'} j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
- $\text{(1) If } w^{-1} = -y_{i'} i' j' y_i y_{j'} i j y_j \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (i,y_i).$
- $\text{(m) If } w^{-1} = -y_{i'} i' y_i j' y_{j'} i j y_j \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (i,y_i).$

Thus if $i' < y_{i'} < y_{i'} < i < y_i < j' < y_i < j$ then one of the following holds:

$$\bullet \ w^{-1} = -y_{i'} - i' - j' - y_{j'} - y_i - i - j - y_j - \text{ and } (wt)^{-1} = -y_{i'} - j' - i' - y_{j'} - y_i - j - i - y_j - .$$

When $(a,b) \in \operatorname{Cyc}^1(z) = \{(y_j,y_i),(i,j)\}$ and $(a',b') \in \{(y_{j'},y_{i'}),(i',j')\}$, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -j - i - \text{ and } \\ (wt)^{-1} = -j' - i' - \text{ and } \\ (wt)^{-1} = -y_i - y_j - \text{ and } \\ (wt)^{-1} = -y_{i'} - y_{i'} - . \end{cases}$$

 $(Z2) \Leftrightarrow (no condition).$

$$(\text{Z3}) \Leftrightarrow \begin{cases} (wt)^{-1} = -i' - j - \text{ and } \\ (wt)^{-1} = -i' - y_i - \text{ and } \\ (wt)^{-1} = -y_{j'} - j - \text{ and } \\ (wt)^{-1} = -y_{j'} - y_i - . \end{cases}$$

- 10. Suppose $i' < i < y_{j'} < y_{i'} < j' < y_i < y_i < j$.
 - (a) If $w^{-1} = -y_{i'} i' y_i i j' y_{i'} j y_j$ then (T) fails.
 - (b) If $w^{-1} = -y_{i'} i' y_i j' i y_{j'} j y_j$ then (T) fails.
 - (c) If $w^{-1} = -y_{i'} y_i i' i j' y_{j'} j y_j$ then (T) fails.
 - (d) If $w^{-1} = -y_{i'} i' y_i i j' j y_{j'} y_j$ then (T) fails.
 - (e) If $w^{-1} = -y_{i'} y_i i' j' i y_{j'} j y_j$ then (T) fails.
 - (f) If $w^{-1} = -y_{i'} i' j' y_i i y_{j'} j y_j$ then (T) fails.
 - (g) If $w^{-1} = -y_{i'} y_i i' i j' j y_{j'} y_j$ then (T) fails.
 - (h) If $w^{-1} = -y_{i'} i' j' y_i y_{i'} i j y_j$ then (Y2) fails for $(a, b) = (i, y_i)$ and $(a', b') = (y_{j'}, j')$.
 - (i) If $w^{-1} = -y_{i'} i' y_i j' y_{j'} i j y_j$ then (Y2) fails for $(a, b) = (i, y_i)$ and $(a', b') = (y_{j'}, j')$.
 - (j) If $w^{-1} = -y_{i'} y_i i' j' y_{i'} i j y_i$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (k) If $w^{-1} = -y_{i'} y_i i' j' i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (l) If $w^{-1} = -y_{i'} i' j' y_i i j y_{j'} y_i$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, j)$.
 - (m) If $w^{-1} = -y_{i'} i' y_i j' i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_j, j)$.

Thus if $i' < i < y_{i'} < y_{i'} < j' < y_i < j$ then one of the following holds:

•
$$w^{-1} = -y_{i'} - i' - j' - y_{j'} - y_i - i - j - y_j$$
 and $(wt)^{-1} = -y_{i'} - j' - i' - y_{j'} - y_i - j - i - y_j$.

When $(a, b) \in \operatorname{Cyc}^1(z) = \{(y_j, y_i), (i, j)\}$ and $(a', b') \in \{(y_{j'}, y_{i'}), (i', j')\}$, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(\text{Z1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -j - i - \text{ and } \\ (wt)^{-1} = -j' - i' - \text{ and } \\ (wt)^{-1} = -y_i - y_j - \text{ and } \\ (wt)^{-1} = -y_{i'} - y_{j'} - . \end{cases}$$

$$(\mathbf{Z2}) \Leftrightarrow (wt)^{-1} \neq -j - y_{j'} - i \quad \text{ and } (wt)^{-1} \neq -j - y_{i'} - i -.$$

$$(\text{Z3}) \Leftrightarrow \begin{cases} (wt)^{-1} = -i' - j - \text{ and } \\ (wt)^{-1} = -i' - y_i - \text{ and } \\ (wt)^{-1} = -y_{j'} - y_i - . \end{cases}$$

11. Suppose $i' < y_{j'} < i < y_{i'} < j' < y_j < y_i < j$

(a) If
$$w^{-1} = -y_{i'} - i' - y_i - i - j' - y_{j'} - j - y_j$$
 then (T) fails.

(b) If
$$w^{-1} = -y_{i'} - y_i - i' - i - j' - y_{j'} - j - y_j$$
 then (T) fails.

(c) If
$$w^{-1} = -y_{i'} - i' - y_i - i - j' - j - y_{i'} - y_j$$
 then (T) fails.

(d) If
$$w^{-1} = -y_{i'} - y_i - i' - i - j' - j - y_{j'} - y_j$$
 then (T) fails.

(e) If
$$w^{-1} = -y_{i'} - y_i - i' - j' - y_{j'} - i - j - y_j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(f) If
$$w^{-1} = -y_{i'} - y_i - i' - j' - i - y_{j'} - j - y_j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(g) If
$$w^{-1} = -y_{i'} - y_i - i' - j' - i - j - y_{j'} - y_j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(h) If
$$w^{-1} = -y_{i'} - i' - y_i - j' - i - y_{j'} - j - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.

(i) If
$$w^{-1} = -y_{i'} - i' - j' - y_i - i - j - y_{j'} - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.

(j) If
$$w^{-1} = -y_{i'} - i' - y_i - j' - i - j - y_{j'} - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.

(k) If
$$w^{-1} = -y_{i'} - i' - j' - y_i - i - y_{j'} - j - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.

(l) If
$$w^{-1} = -y_{i'} - i' - j' - y_i - y_{j'} - i - j - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.

(m) If
$$w^{-1} = -y_{i'} - i' - y_i - j' - y_{j'} - i - j - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.

Thus if $i' < y_{j'} < i < y_{i'} < j' < y_j < y_i < j$ then one of the following holds:

•
$$w^{-1} = -y_{i'} - i' - j' - y_{j'} - y_i - i - j - y_j$$
 and $(wt)^{-1} = -y_{i'} - j' - i' - y_{j'} - y_i - j - i - y_j$.

When $(a, b) \in \operatorname{Cyc}^1(z) = \{(y_j, y_i), (i, j)\}$ and $(a', b') \in \{(y_{j'}, y_{i'}), (i', j')\}$, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -j - i - \text{ and } \\ (wt)^{-1} = -j' - i' - \text{ and } \\ (wt)^{-1} = -y_i - y_j - \text{ and } \\ (wt)^{-1} = -y_{i'} - y_{j'} - . \end{cases}$$

 $(Z2) \Leftrightarrow (no condition).$

(Z3)
$$\Leftrightarrow$$

$$\begin{cases}
(wt)^{-1} = -i' - j - \text{ and} \\
(wt)^{-1} = -i' - y_i - \text{ and} \\
(wt)^{-1} = -y_{j'} - j - \text{ and} \\
(wt)^{-1} = -y_{j'} - y_i - .
\end{cases}$$

12. Suppose $i' < i < y_{j'} < y_{i'} < y_j < j' < y_i < j$.

(a) If
$$w^{-1} = -y_{i'} - i' - y_i - i - j' - y_{j'} - j - y_j$$
 then (T) fails.

(b) If
$$w^{-1} = -y_{i'} - i' - y_i - j' - i - y_{i'} - j - y_i$$
 then (T) fails.

(c) If
$$w^{-1} = -y_{i'} - y_i - i' - i - j' - y_{j'} - j - y_i$$
 then (T) fails.

(d) If
$$w^{-1} = -y_{i'} - i' - y_i - i - j' - j - y_{j'} - y_j$$
 then (T) fails.

(e) If
$$w^{-1} = -y_{i'} - y_i - i' - j' - i - y_{j'} - j - y_j$$
 then (T) fails.

(f) If
$$w^{-1} = -y_{i'} - i' - j' - y_i - i - y_{j'} - j - y_j$$
 then (T) fails.

- (g) If $w^{-1} = -y_{i'} y_i i' i j' j y_{j'} y_j$ then (T) fails.
- (h) If $w^{-1} = -y_{i'} i' j' y_i y_{j'} i j y_j$ then (Y2) fails for $(a, b) = (i, y_i)$ and $(a', b') = (y_{j'}, j')$.
- (i) If $w^{-1} = -y_{i'} i' y_i j' y_{j'} i j y_j$ then (Y2) fails for $(a, b) = (i, y_i)$ and $(a', b') = (y_{j'}, j')$.
- (j) If $w^{-1} = -y_{i'} y_i i' j' y_{j'} i j y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
- (k) If $w^{-1} = -y_{i'} y_i i' j' i j y_{j'} y_j$ then (Y3) fails for $(a,b) = (i',y_{i'})$ and $(a',b') = (i,y_i)$.
- $\text{(l) If } w^{-1} = y_{i'} i' j' y_i i j y_{j'} y_j \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_j,j).$
- $\text{(m) If } w^{-1} = y_{i'} i' y_i j' i j y_{j'} y_j \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_j,j) y_j y_j$

Thus if $i' < i < y_{i'} < y_{i'} < y_i < j' < y_i < j$ then one of the following holds:

•
$$w^{-1} = -y_{i'} - i' - j' - y_{i'} - y_i - i - j - y_j$$
 and $(wt)^{-1} = -y_{i'} - j' - i' - y_{i'} - y_i - j - i - y_j$.

When $(a, b) \in \operatorname{Cyc}^1(z) = \{(y_j, y_i), (i, j)\}$ and $(a', b') \in \{(y_{j'}, y_{i'}), (i', j')\}$, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -j - i - \text{ and } \\ (wt)^{-1} = -j' - i' - \text{ and } \\ (wt)^{-1} = -y_i - y_j - \text{ and } \\ (wt)^{-1} = -y_{i'} - y_{j'} - . \end{cases}$$

$$({\rm Z3}) \Leftrightarrow \begin{cases} (wt)^{-1} = -i' - j - \text{ and } \\ (wt)^{-1} = -i' - y_i - \text{ and } \\ (wt)^{-1} = -y_{j'} - y_i - . \end{cases}$$

- 13. It cannot happen that $i' < i < y_{j'} < y_j < y_{i'} < y_i < j' < j$ since:
 - (a) If $w^{-1} = -y_{i'} i' y_i i j' y_{j'} j y_j$ then (T) fails.
 - (b) If $w^{-1} = -y_{i'} i' y_i j' i y_{j'} j y_j$ then (T) fails.
 - (c) If $w^{-1} = -y_{i'} y_i i' i j' y_{i'} j y_i$ then (T) fails.
 - (d) If $w^{-1} = -y_{i'} i' y_i i j' j y_{i'} y_i$ then (T) fails.
 - (e) If $w^{-1} = -y_{i'} y_i i' j' i y_{i'} j y_i$ then (T) fails.
 - (f) If $w^{-1} = -y_{i'} i' j' y_i i y_{j'} j y_j$ then (T) fails.
 - (g) If $w^{-1} = -y_{i'} y_i i' i j' j y_{i'} y_i$ then (T) fails.
 - (h) If $w^{-1} = -y_{i'} i' y_i j' i j y_{j'} y_j$ then (U) fails.
 - (i) If $w^{-1} = -y_{i'} i' y_i j' y_{i'} i j y_i$ then (U) fails.
 - (j) If $w^{-1} = -y_{i'} y_i i' j' y_{j'} i j y_i$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (k) If $w^{-1} = -y_{i'} y_i i' j' i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (l) If $w^{-1} = -y_{i'} i' j' y_i i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (y_{j'}, j')$.
 - $\text{(m) If } w^{-1} = -y_{i'} i' j' y_{i'} y_i i j y_j \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (y_{j'},j').$
 - (n) If $w^{-1} = -y_{i'} i' j' y_i y_{i'} i j y_j$ then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (y_{j'}, j')$.
- 14. It cannot happen that $i' < i < y_{j'} < y_{i'} < y_j < y_i < j' < j$ since:
 - (a) If $w^{-1} = -y_{i'} i' y_i i j' y_{j'} j y_j$ then (T) fails.
 - (b) If $w^{-1} = -y_{i'} i' y_i j' i y_{j'} j y_j$ then (T) fails.
 - (c) If $w^{-1} = -y_{i'} y_i i' i j' y_{j'} j y_j$ then (T) fails.
 - (d) If $w^{-1} = -y_{i'} i' y_i i j' j y_{i'} y_j$ then (T) fails.
 - (e) If $w^{-1} = -y_{i'} y_i i' j' i y_{j'} j y_j$ then (T) fails.
 - (f) If $w^{-1} = -y_{i'} i' j' y_i i y_{j'} j y_j$ then (T) fails.
 - (g) If $w^{-1} = -y_{i'} y_i i' i j' j y_{j'} y_j$ then (T) fails.

- (h) If $w^{-1} = -y_{i'} i' y_i j' i j y_{j'} y_j$ then (U) fails.
- (i) If $w^{-1} = -y_{i'} i' y_i j' y_{j'} i j y_j$ then (U) fails.
- (j) If $w^{-1} = -y_{i'} y_i i' j' y_{j'} i j y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
- $\text{(k) If } w^{-1} = y_{i'} y_i i' j' i j y_{j'} y_j \text{ then (Y3) fails for } (a,b) = (i',y_{i'}) \text{ and } (a',b') = (i,y_i) (i',y_i) (i',y_i)$
- $\text{(l) If } w^{-1} = y_{i'} i' j' y_i i j y_{j'} y_j \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (y_{j'},j').$
- $\text{(m) If } w^{-1} = y_{i'} i' j' y_{j'} y_i i j y_j \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (y_{j'},j').$
- $\text{(n) If } w^{-1} = y_{i'} i' j' y_i y_{j'} i j y_j \text{then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (y_{j'},j').$

We conclude that properties (Z1)-(Z3) hold for all $(a,b), (a',b') \in \text{Cyc}(z)$ when $i < y_i < j$.

13 Case: $y_i < y_j < i < j$

Suppose y is such that $y_i < y_j < i < j$. Then $z = \tau_{ij}^n(y)$ has $\operatorname{Cyc}^1(z) = \{(y_j, i), (y_i, j)\}$.

13.1 Subcase (i)

We must have $w^{-1} = -i - y_i - j - y_j$ — since no other ordering is possible:

- 1. If $w^{-1} = -y_i y_j j i$ then (T) fails.
- 2. If $w^{-1} = -y_i j y_j i$ then (T) fails.
- 3. If $w^{-1} = -y_i j i y_j$ then (T) fails.
- 4. If $w^{-1} = -y_i y_i j i$ then (T) fails.
- 5. If $w^{-1} = -y_i j y_i i$ then (T) fails.
- 6. If $w^{-1} = -y_i j i y_i$ then (T) fails.
- 7. If $w^{-1} = -i y_i y_i i$ then (T) fails.
- 8. If $w^{-1} = -j y_i i y_j$ then (T) fails.
- 9. If $w^{-1} = -j y_i y_i i$ then (T) fails.
- 10. If $w^{-1} = -j y_i i y_i$ then (T) fails.
- 11. If $w^{-1} = -j i y_i y_j$ then (T) fails.
- 12. If $w^{-1} = -j i y_i y_i$ then (T) fails.
- 13. If $w^{-1} = -y_i y_j i j$ then (Y1) fails for $(a, b) = (y_i, i)$.
- 14. If $w^{-1} = -y_i i y_j j$ then (Y1) fails for $(a, b) = (y_i, i)$.
- 15. If $w^{-1} = -y_i i j y_j$ then (Y1) fails for $(a, b) = (y_i, i)$.
- 16. If $w^{-1} = -y_j y_i i j$ then (Y1) fails for $(a, b) = (y_j, j)$.
- 17. If $w^{-1} = -y_j i y_i j$ then (Y1) fails for $(a, b) = (y_j, j)$.
- 18. If $w^{-1} = -y_j i j y_i$ then (Y1) fails for $(a, b) = (y_j, j)$.
- 19. If $w^{-1} = -i y_i y_j j$ then (Y1) fails for $(a, b) = (y_j, j)$.
- 20. If $w^{-1} = -i y_i y_i j$ then (Y1) fails for $(a, b) = (y_j, j)$.
- 21. If $w^{-1} = -i y_j j y_i$ then (Y1) fails for $(a, b) = (y_j, j)$.
- 22. If $w^{-1} = -i j y_i y_j$ then (Y3) fails for $(a,b) = (y_i,i)$ and $(a',b') = (y_j,j)$.
- 23. If $w^{-1} = -i j y_j y_i$ then (Y3) fails for $(a,b) = (y_i,i)$ and $(a',b') = (y_j,j)$.

Hence if $y_i < y_j < i < j$ then

$$(wt)^{-1} = -j - y_i - i - y_j - .$$

When $(a, b), (a', b') \in \operatorname{Cyc}^1(z) = \{(y_j, i), (y_i, j)\}$, properties (Z1)-(Z3) are equivalent to the following conditions which all hold in this case:

$$(Z1) \Leftrightarrow (wt)^{-1} = -i - y_j - \text{ and } (wt)^{-1} = -j - y_i - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -j - y_i - y_i - \text{ and } (wt)^{-1} \neq -j - i - y_i - .$$

$$(Z3) \Leftrightarrow (no condition).$$

Thus properties (Z1)-(Z3) hold whenever (a, b), (a', b') are as in case (i) and $y_i < y_j < i < j$.

13.2 Subcase (ii)

Suppose R is an integer such that $(R,R) \in \operatorname{Cyc}^2(z) \subset \operatorname{Cyc}(y)$, so that $R = y_R = z_R \notin \{i,j,y_i,y_j\} + n\mathbb{Z}$.

- 1. Suppose $y_i < y_j < i < j < R$.
 - (a) If $w^{-1} = -i R y_i j y_j$ then (Y3) fails for $(a, b) = (y_i, i)$ and (a', b') = (R, R).
 - (b) If $w^{-1} = -R i y_i j y_j$ then (Y3) fails for $(a, b) = (y_i, i)$ and (a', b') = (R, R).
 - (c) If $w^{-1} = -i y_i R j y_j$ then (Y3) fails for $(a, b) = (y_j, j)$ and (a', b') = (R, R).
 - (d) If $w^{-1} = -i y_i j R y_j$ then (Y3) fails for $(a, b) = (y_j, j)$ and (a', b') = (R, R).

Thus if $y_i < y_i < i < j < R$ then one of the following holds:

$$\bullet \ w^{-1} = -i - y_i - j - y_j - R - \ \text{and} \ (wt)^{-1} = -j - y_i - i - y_j - R -.$$

When (a, b) = (R, R) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(y_j, i), (y_i, j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -i - y_i - \text{ and } (wt)^{-1} = -j - y_i - .$$

- $(Z2) \Leftrightarrow (\text{no condition}).$
- $(Z3) \Leftrightarrow (wt)^{-1} = -y_i R \text{ and } (wt)^{-1} = -y_i R .$
- 2. Suppose $y_i < y_j < i < R < j$.
 - (a) If $w^{-1} = -i y_i R j y_i$ then (T) fails.
 - (b) If $w^{-1} = -i R y_i j y_j$ then (T) fails.
 - (c) If $w^{-1} = -i y_i j R y_j$ then (Y2) fails for $(a,b) = (y_j,j)$ and (a',b') = (R,R).
 - (d) If $w^{-1} = -R i y_i j y_j$ then (Y3) fails for $(a, b) = (y_i, i)$ and (a', b') = (R, R).

Thus if $y_i < y_j < i < R < j$ then one of the following holds:

•
$$w^{-1} = -i - y_i - j - y_j - R$$
 and $(wt)^{-1} = -j - y_i - i - y_j - R$.

When (a, b) = (R, R) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(y_j, i), (y_i, j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -i - y_i - \text{ and } (wt)^{-1} = -j - y_i - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -j-R-y_i-.$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -y_i - R - .$$

- 3. Suppose $y_i < y_j < R < i < j$.
 - (a) If $w^{-1} = -i R y_i j y_j$ then (Y2) fails for $(a,b) = (y_i,i)$ and (a',b') = (R,R).
 - (b) If $w^{-1} = -i y_i j R y_j$ then (Y2) fails for $(a, b) = (y_i, j)$ and (a', b') = (R, R).

Thus if $y_i < y_j < R < i < j$ then one of the following holds:

- $w^{-1} = -i y_i R j y_j$ and $(wt)^{-1} = -j y_i R i y_j$.
- $w^{-1} = -R i y_i j y_j \text{ and } (wt)^{-1} = -R j y_i i y_j .$
- $w^{-1} = -i y_i j y_j R$ and $(wt)^{-1} = -j y_i i y_j R$.

When (a, b) = (R, R) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(y_j, i), (y_i, j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -i - y_j - \text{ and } (wt)^{-1} = -j - y_i - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -i - R - y_i - \text{ and } (wt)^{-1} \neq -j - R - y_i - .$$

- $(Z3) \Leftrightarrow (no condition).$
- 4. Suppose $y_i < R < y_j < i < j$.

(a) If
$$w^{-1} = -i - R - y_i - j - y_j$$
 then (Y2) fails for $(a, b) = (y_i, i)$ and $(a', b') = (R, R)$.

(b) If
$$w^{-1} = -i - y_i - j - y_j - R$$
— then (Y3) fails for $(a, b) = (R, R)$ and $(a', b') = (y_j, j)$.

(c) If
$$w^{-1} = -i - y_i - j - R - y_j$$
 then (Y3) fails for $(a, b) = (R, R)$ and $(a', b') = (y_j, j)$.

Thus if $y_i < R < y_j < i < j$ then one of the following holds:

•
$$w^{-1} = -i - y_i - R - j - y_i$$
 and $(wt)^{-1} = -j - y_i - R - i - y_i$.

•
$$w^{-1} = -R - i - y_i - j - y_j$$
 and $(wt)^{-1} = -R - j - y_i - i - y_j$.

When (a, b) = (R, R) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(y_j, i), (y_i, j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow (wt)^{-1} = -i - y_j - \text{and } (wt)^{-1} = -j - y_i - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -j-R-y_i-.$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -R - i - .$$

5. Suppose $R < y_i < y_i < i < j$.

(a) If
$$w^{-1} = -i - y_i - j - y_i - R$$
— then (Y3) fails for $(a, b) = (R, R)$ and $(a', b') = (y_i, i)$.

(b) If
$$w^{-1} = -i - y_i - R - j - y_i$$
 then (Y3) fails for $(a, b) = (R, R)$ and $(a', b') = (y_i, i)$.

(c) If
$$w^{-1} = -i - y_i - j - R - y_j$$
 — then (Y3) fails for $(a, b) = (R, R)$ and $(a', b') = (y_i, i)$.

(d) If
$$w^{-1} = -i - R - y_i - j - y_j$$
 then (Y3) fails for $(a, b) = (R, R)$ and $(a', b') = (y_i, i)$.

Thus if $R < y_i < y_i < i < j$ then one of the following holds:

•
$$w^{-1} = -R - i - y_i - j - y_i$$
 and $(wt)^{-1} = -R - j - y_i - i - y_i$.

When (a, b) = (R, R) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(y_j, i), (y_i, j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(\mathbf{Z}\mathbf{1}) \Leftrightarrow (wt)^{-1} = -i - y_j - \text{ and } (wt)^{-1} = -j - y_i -.$$

 $(Z2) \Leftrightarrow (no condition).$

$$({\bf Z3}) \Leftrightarrow (wt)^{-1} = -R - i - \text{ and } (wt)^{-1} = -R - j - .$$

Next suppose P < Q are integers with $(P,Q) \in \text{Cyc}^2(z) \subset \text{Cyc}(y)$, so that $Q = y_P = z_P$ and $P,Q \notin \{i,j,y_i,y_j\} + n\mathbb{Z}$.

- 1. Suppose $P < y_i < y_j < Q < i < j$.
 - (a) If $w^{-1} = -Q i P y_i j y_j$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_i, i)$.
 - (b) If $w^{-1} = -i y_i Q P j y_j$ then (Y3) fails for (a,b) = (P,Q) and $(a',b') = (y_i,i)$.
 - (c) If $w^{-1} = -Q i y_i j y_j P$ then (Y3) fails for (a,b) = (P,Q) and $(a',b') = (y_i,i)$.
 - $\text{(d) If } w^{-1} = -i y_i j y_j Q P \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_i,i).$
 - (e) If $w^{-1} = -i y_i Q j P y_j$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_i, i)$.
 - $\text{(f) If } w^{-1} = -i Q y_i P j y_j \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_i,i).$

(g) If
$$w^{-1} = -Q - i - y_i - P - j - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

$$\text{(h) If } w^{-1} = -i - Q - P - y_i - j - y_j - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_i,i).$$

(i) If
$$w^{-1} = -i - y_i - j - Q - y_j - P$$
 then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_i,i)$.

(j) If
$$w^{-1} = -Q - i - y_i - j - P - y_j$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_i,i)$.

(k) If
$$w^{-1} = -i - y_i - Q - j - y_j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(l) If
$$w^{-1} = -i - Q - y_i - j - y_j - P$$
— then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_i,i)$.

(m) If
$$w^{-1} = -i - Q - y_i - j - P - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(n) If
$$w^{-1} = -i - y_i - j - Q - P - y_j$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_i,i)$.

Thus if $P < y_i < y_j < Q < i < j$ then one of the following holds:

•
$$w^{-1} = -Q - P - i - y_i - j - y_j$$
 and $(wt)^{-1} = -Q - P - j - y_i - i - y_j$.

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(y_j, i), (y_i, j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(\mathrm{Z1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -i - y_j - \text{ and } \\ (wt)^{-1} = -j - y_i - . \end{cases}$$

 $(Z2) \Leftrightarrow (no condition).$

$$(Z3) \Leftrightarrow (wt)^{-1} = -P - i - \text{ and } (wt)^{-1} = -P - j - i$$

2. Suppose $P < y_i < Q < y_j < i < j$.

(a) If
$$w^{-1} = -Q - i - P - y_i - j - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(b) If
$$w^{-1} = -i - y_i - Q - P - j - y_j$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_i,i)$.

(c) If
$$w^{-1} = -Q - i - y_i - j - y_j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(d) If
$$w^{-1} = -i - y_i - j - y_j - Q - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(e) If
$$w^{-1}=-i-y_i-Q-j-P-y_j$$
— then (Y3) fails for $(a,b)=(P,Q)$ and $(a',b')=(y_i,i)$.

(f) If
$$w^{-1} = -i - Q - y_i - P - j - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(g) If
$$w^{-1} = -Q - i - y_i - P - j - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

$$\text{(h) If } w^{-1} = -i - Q - P - y_i - j - y_j - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_i,i).$$

(i) If
$$w^{-1} = -i - y_i - j - Q - y_j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(j) If
$$w^{-1} = -Q - i - y_i - j - P - y_j$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_i,i)$.

(k) If
$$w^{-1} = -i - y_i - Q - j - y_j - P$$
— then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_i,i)$.

(l) If
$$w^{-1} = -i - Q - y_i - j - y_j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(m) If
$$w^{-1} = -i - Q - y_i - j - P - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(n) If
$$w^{-1} = -i - y_i - j - Q - P - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

Thus if $P < y_i < Q < y_j < i < j$ then one of the following holds:

•
$$w^{-1} = -Q - P - i - y_i - j - y_j - \text{ and } (wt)^{-1} = -Q - P - j - y_i - i - y_j - y_j$$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(y_j, i), (y_i, j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(\mathrm{Z1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -i - y_j - \text{ and } \\ (wt)^{-1} = -j - y_i - . \end{cases}$$

 $(Z2) \Leftrightarrow (no condition).$

$$(Z3) \Leftrightarrow (wt)^{-1} = -P - i - \text{ and } (wt)^{-1} = -P - j - .$$

- 3. Suppose $y_i < y_j < i < P < j < Q$.
 - (a) If $w^{-1} = -Q i P y_i j y_j$ then (T) fails.
 - (b) If $w^{-1} = -i y_i Q P j y_i$ then (T) fails.
 - (c) If $w^{-1} = -i Q y_i P j y_j$ then (T) fails.
 - (d) If $w^{-1} = -Q i y_i P j y_j$ then (T) fails.
 - (e) If $w^{-1} = -i Q P y_i j y_j$ then (T) fails.
 - $\text{(f) If } w^{-1} = Q i y_i j y_j P \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$
 - (g) If $w^{-1} = -Q P i y_i j y_j$ then (Y3) fails for $(a, b) = (y_i, i)$ and (a', b') = (P, Q).
 - $\text{(h) If } w^{-1} = Q i y_i j P y_j \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$
 - $\text{(i) If } w^{-1} = -i Q y_i j y_j P \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$
 - $(\mathbf{j}) \ \text{ If } w^{-1} = -i Q y_i j P y_j \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$
 - $\text{(k) If } w^{-1} = -i y_i Q j P y_j \text{ then (Y3) fails for } (a,b) = (y_j,j) \text{ and } (a',b') = (P,Q).$
 - (l) If $w^{-1} = -i y_i j Q y_j P$ then (Y3) fails for $(a, b) = (y_j, j)$ and (a', b') = (P, Q).
 - (m) If $w^{-1} = -i y_i Q j y_j P$ then (Y3) fails for $(a,b) = (y_j,j)$ and (a',b') = (P,Q).
 - $\text{(n) If } w^{-1} = -i y_i j Q P y_j \text{ then (Y3) fails for } (a,b) = (y_j,j) \text{ and } (a',b') = (P,Q).$

Thus if $y_i < y_j < i < P < j < Q$ then one of the following holds:

•
$$w^{-1} = -i - y_i - j - y_i - Q - P - \text{ and } (wt)^{-1} = -j - y_i - i - y_i - Q - P - .$$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(y_j, i), (y_i, j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(\mathrm{Z1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -i - y_j - \text{ and } \\ (wt)^{-1} = -j - y_i - . \end{cases}$$

- $(Z2) \Leftrightarrow (no condition).$
- $(Z3) \Leftrightarrow (wt)^{-1} = -y_i Q \text{ and } (wt)^{-1} = -y_j Q .$
- 4. Suppose $P < y_i < y_j < i < Q < j$.
 - (a) If $w^{-1} = -i y_i Q P j y_j$ then (T) fails.
 - (b) If $w^{-1} = -i y_i Q j P y_j$ then (T) fails.
 - (c) If $w^{-1} = -i Q y_i P j y_j$ then (T) fails.
 - (d) If $w^{-1} = -i Q P y_i j y_j$ then (T) fails.
 - (e) If $w^{-1} = -i y_i Q j y_j P$ then (T) fails.
 - (f) If $w^{-1} = -i Q y_i j y_j P$ then (T) fails.
 - (g) If $w^{-1} = -i Q y_i j P y_j$ then (T) fails.
 - $\text{(h) If } w^{-1} = -Q i P y_i j y_j \text{ then (Y2) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_i,i).$
 - (i) If $w^{-1} = -Q i y_i P j y_j$ then (Y2) fails for (a, b) = (P, Q) and $(a', b') = (y_i, i)$.
 - (j) If $w^{-1} = -Q i y_i j y_j P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_j, j)$.
 - (k) If $w^{-1} = -i y_i j y_j Q P$ then (Y3) fails for (a,b) = (P,Q) and $(a',b') = (y_j,j)$.
 - (l) If $w^{-1} = -i y_i j Q y_j P$ then (Y3) fails for (a,b) = (P,Q) and $(a',b') = (y_j,j)$.
 - $\text{(m) If } w^{-1} = -Q i y_i j P y_j \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_j,j).$
 - (n) If $w^{-1} = -i y_i j Q P y_j$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_j, j)$.

Thus if $P < y_i < y_j < i < Q < j$ then one of the following holds:

•
$$w^{-1} = -Q - P - i - y_i - j - y_j$$
 and $(wt)^{-1} = -Q - P - j - y_i - i - y_j$.

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(y_j, i), (y_i, j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(\mathrm{Z1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -i - y_j - \text{ and } \\ (wt)^{-1} = -j - y_i - . \end{cases}$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -Q - y_j - P - \text{ and } (wt)^{-1} \neq -Q - i - P - i$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -P - j - .$$

- 5. Suppose $y_i < y_j < P < i < Q < j$.
 - (a) If $w^{-1} = -i y_i Q P j y_j$ then (T) fails.
 - (b) If $w^{-1} = -i y_i Q j P y_j$ then (T) fails.
 - (c) If $w^{-1} = -i Q y_i P j y_j$ then (T) fails.
 - (d) If $w^{-1} = -i Q P y_i j y_j$ then (T) fails.
 - (e) If $w^{-1} = -i y_i Q j y_j P$ then (T) fails.
 - (f) If $w^{-1} = -i Q y_i j y_j P$ then (T) fails.
 - (g) If $w^{-1} = -i Q y_i j P y_j$ then (T) fails.
 - $\text{(h) If } w^{-1}=-i-y_i-j-Q-y_j-P-\text{ then (Y2) fails for } (a,b)=(y_j,j) \text{ and } (a',b')=(P,Q).$
 - (i) If $w^{-1} = -i y_i j Q P y_j$ then (Y2) fails for $(a, b) = (y_j, j)$ and (a', b') = (P, Q).
 - (j) If $w^{-1} = -Q i P y_i j y_j$ then (Y3) fails for $(a, b) = (y_i, i)$ and (a', b') = (P, Q).
 - $\text{(k) If } w^{-1} = -Q i y_i j y_i P \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$
 - (l) If $w^{-1} = -Q i y_i P j y_j$ then (Y3) fails for $(a, b) = (y_i, i)$ and (a', b') = (P, Q).
 - (m) If $w^{-1} = -Q P i y_i j y_j$ then (Y3) fails for $(a,b) = (y_i,i)$ and (a',b') = (P,Q).
 - (n) If $w^{-1} = -Q i y_i j P y_j$ then (Y3) fails for $(a, b) = (y_i, i)$ and (a', b') = (P, Q).

Thus if $y_i < y_j < P < i < Q < j$ then one of the following holds:

•
$$w^{-1} = -i - y_i - j - y_j - Q - P - \text{ and } (wt)^{-1} = -j - y_i - i - y_j - Q - P - .$$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(y_j, i), (y_i, j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(\mathrm{Z1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and} \\ (wt)^{-1} = -i - y_j - \text{ and} \\ (wt)^{-1} = -j - y_i - . \end{cases}$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -j - P - y_i - \text{ and } (wt)^{-1} \neq -j - Q - y_i - .$$

$$(\mathbf{Z3}) \Leftrightarrow (wt)^{-1} = -y_j - Q -.$$

- 6. Suppose $P < Q < y_i < y_j < i < j$.
 - (a) If $w^{-1} = -Q i P y_i j y_j$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_i, i)$.
 - (b) If $w^{-1} = -i y_i Q P j y_j$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_i, i)$.
 - (c) If $w^{-1} = -Q i y_i j y_j P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_i, i)$.
 - (d) If $w^{-1} = -i y_i j y_j Q P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_i, i)$.
 - (e) If $w^{-1} = -i y_i Q j P y_j$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_i, i)$.
 - $\text{(f) If } w^{-1} = -i Q y_i P j y_j \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_i,i).$
 - (g) If $w^{-1} = -Q i y_i P j y_j$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_i, i)$.
 - $\text{(h) If } w^{-1} = -i Q P y_i j y_j \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_i,i).$
 - $\text{(i) If } w^{-1} = -i y_i j Q y_j P \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_i,i).$
 - (j) If $w^{-1} = -Q i y_i j P y_j$ then (Y3) fails for (a,b) = (P,Q) and $(a',b') = (y_i,i)$.

(k) If
$$w^{-1} = -i - y_i - Q - j - y_j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(l) If
$$w^{-1} = -i - Q - y_i - j - y_j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(m) If
$$w^{-1} = -i - Q - y_i - j - P - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(n) If
$$w^{-1} = -i - y_i - j - Q - P - y_j$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_i,i)$.

Thus if $P < Q < y_i < y_j < i < j$ then one of the following holds:

•
$$w^{-1} = -Q - P - i - y_i - j - y_j - \text{ and } (wt)^{-1} = -Q - P - j - y_i - i - y_j -$$

When (a,b) = (P,Q) and $(a',b') \in \operatorname{Cyc}^1(z) = \{(y_j,i),(y_i,j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(\mathrm{Z1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -i - y_j - \text{ and } \\ (wt)^{-1} = -j - y_i - . \end{cases}$$

 $(Z2) \Leftrightarrow (no condition).$

$$(Z3) \Leftrightarrow (wt)^{-1} = -P - i - \text{ and } (wt)^{-1} = -P - j - i$$

7. Suppose $y_i < y_i < i < P < Q < j$.

(a) If
$$w^{-1} = -Q - i - P - y_i - j - y_j$$
 then (T) fails.

(b) If
$$w^{-1} = -i - y_i - Q - P - j - y_j$$
 then (T) fails.

(c) If
$$w^{-1} = -i - y_i - Q - j - P - y_i$$
 then (T) fails.

(d) If
$$w^{-1} = -i - Q - y_i - P - j - y_j$$
 then (T) fails.

(e) If
$$w^{-1} = -Q - i - y_i - P - j - y_j$$
 then (T) fails.

(f) If
$$w^{-1} = -i - Q - P - y_i - j - y_j$$
 then (T) fails.

(g) If
$$w^{-1} = -i - y_i - Q - j - y_i - P$$
— then (T) fails.

(h) If
$$w^{-1} = -i - Q - y_i - j - y_j - P$$
— then (T) fails.

(i) If
$$w^{-1} = -i - Q - y_i - j - P - y_j$$
 then (T) fails.

(j) If
$$w^{-1} = -i - y_i - j - Q - y_j - P$$
— then (Y2) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

(k) If
$$w^{-1} = -i - y_i - j - Q - P - y_j$$
 then (Y2) fails for $(a,b) = (y_j,j)$ and $(a',b') = (P,Q)$.

(l) If
$$w^{-1} = -Q - i - y_i - j - y_j - P$$
— then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (P, Q)$.

$$\text{(m) If } w^{-1} = -Q - P - i - y_i - j - y_j - \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$$

$$\text{(n) If } w^{-1} = - Q - i - y_i - j - P - y_j - \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$$

Thus if $y_i < y_j < i < P < Q < j$ then one of the following holds:

•
$$w^{-1} = -i - y_i - j - y_j - Q - P - \text{ and } (wt)^{-1} = -j - y_i - i - y_j - Q - P - .$$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(y_j, i), (y_i, j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(\mathrm{Z1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -i - y_j - \text{ and } \\ (wt)^{-1} = -j - y_i - . \end{cases}$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -j - P - y_i - \text{ and } (wt)^{-1} \neq -j - Q - y_i - .$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -y_i - Q - .$$

8. Suppose $y_i < y_j < P < i < j < Q$.

(a) If
$$w^{-1} = -Q - i - P - y_i - j - y_j$$
 then (Y3) fails for $(a,b) = (y_i,i)$ and $(a',b') = (P,Q)$.

$$\text{(b) If } w^{-1} = - Q - i - y_i - j - y_j - P - \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$$

$$\text{(c) If } w^{-1}=-i-Q-y_i-P-j-y_j-\text{ then (Y3) fails for } (a,b)=(y_i,i) \text{ and } (a',b')=(P,Q).$$

(d) If
$$w^{-1} = -Q - i - y_i - P - j - y_j$$
 then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (P, Q)$.

(e) If
$$w^{-1} = -i - Q - P - y_i - j - y_j$$
 then (Y3) fails for $(a,b) = (y_i,i)$ and $(a',b') = (P,Q)$.

$$\text{(f) If } w^{-1} = - Q - P - i - y_i - j - y_j - \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$$

(g) If
$$w^{-1} = -Q - i - y_i - j - P - y_j$$
 then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (P, Q)$.

$$\text{(h) If } w^{-1}=-i-Q-y_i-j-y_j-P- \text{ then (Y3) fails for } (a,b)=(y_i,i) \text{ and } (a',b')=(P,Q).$$

$$\text{(i) If } w^{-1}=-i-Q-y_i-j-P-y_j-\text{ then (Y3) fails for } (a,b)=(y_i,i) \text{ and } (a',b')=(P,Q).$$

(j) If
$$w^{-1} = -i - y_i - Q - P - j - y_j$$
 — then (Y3) fails for $(a,b) = (y_j,j)$ and $(a',b') = (P,Q)$.

$$\text{(k) If } w^{-1} = -i - y_i - Q - j - P - y_j - \text{ then (Y3) fails for } (a,b) = (y_j,j) \text{ and } (a',b') = (P,Q).$$

(l) If
$$w^{-1} = -i - y_i - j - Q - y_j - P$$
— then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

$$\text{(m) If } w^{-1}=-i-y_i-Q-j-y_j-P-\text{ then (Y3) fails for } (a,b)=(y_j,j) \text{ and } (a',b')=(P,Q).$$

(n) If
$$w^{-1} = -i - y_i - j - Q - P - y_j$$
 then (Y3) fails for $(a,b) = (y_j,j)$ and $(a',b') = (P,Q)$.

Thus if $y_i < y_j < P < i < j < Q$ then one of the following holds:

•
$$w^{-1} = -i - y_i - j - y_j - Q - P$$
 and $(wt)^{-1} = -j - y_i - i - y_j - Q - P$.

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(y_j, i), (y_i, j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -i - y_j - \text{ and } \\ (wt)^{-1} = -j - y_i - . \end{cases}$$

 $(Z2) \Leftrightarrow (no condition).$

$$(Z3) \Leftrightarrow (wt)^{-1} = -y_i - Q - \text{ and } (wt)^{-1} = -y_i - Q - .$$

9. Suppose $y_i < P < y_j < i < j < Q$.

(a) If
$$w^{-1} = -i - y_i - Q - j - P - y_j$$
 then (Y2) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_j,j)$.

(b) If
$$w^{-1} = -i - y_i - j - Q - y_j - P$$
 then (Y2) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_j,j)$.

(c) If
$$w^{-1} = -i - y_i - Q - j - y_j - P$$
— then (Y2) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_j,j)$.

(d) If
$$w^{-1} = -Q - i - P - y_i - j - y_j$$
 then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (P, Q)$.

(e) If
$$w^{-1} = -Q - i - y_i - j - y_j - P$$
— then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (P, Q)$.

$$\text{(f) If } w^{-1}=-i-Q-y_i-P-j-y_j-\text{ then (Y3) fails for } (a,b)=(y_i,i) \text{ and } (a',b')=(P,Q).$$

(g) If
$$w^{-1} = -Q - i - y_i - P - j - y_j$$
 then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (P, Q)$.

$$\text{(h) If } w^{-1}=-i-Q-P-y_i-j-y_j-\text{ then (Y3) fails for } (a,b)=(y_i,i) \text{ and } (a',b')=(P,Q).$$

(i) If
$$w^{-1} = -Q - P - i - y_i - j - y_j$$
 then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (P, Q)$.

(j) If
$$w^{-1} = -Q - i - y_i - j - P - y_j$$
 then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (P, Q)$.

$$\text{(k) If } w^{-1} = -i - Q - y_i - j - y_j - P - \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$$

(l) If
$$w^{-1} = -i - Q - y_i - j - P - y_j$$
 then (Y3) fails for $(a,b) = (y_i,i)$ and $(a',b') = (P,Q)$.

Thus if $y_i < P < y_j < i < j < Q$ then one of the following holds:

•
$$w^{-1} = -i - y_i - Q - P - j - y_j$$
 and $(wt)^{-1} = -j - y_i - Q - P - i - y_j$.

•
$$w^{-1} = -i - y_i - j - Q - P - y_j - \text{ and } (wt)^{-1} = -j - y_i - i - Q - P - y_j - .$$

When (a,b) = (P,Q) and $(a',b') \in \operatorname{Cyc}^1(z) = \{(y_j,i),(y_i,j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -i - y_j - \text{ and } \\ (wt)^{-1} = -j - y_i - . \end{cases}$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -Q - y_j - P - \text{ and } (wt)^{-1} \neq -Q - i - P - .$$

$$(\mathbf{Z3}) \Leftrightarrow (wt)^{-1} = -y_i - Q - .$$

10. Suppose $y_i < y_j < P < Q < i < j$.

(a) If
$$w^{-1} = -Q - i - P - y_i - j - y_j$$
 — then (Y2) fails for $(a,b) = (y_i,i)$ and $(a',b') = (P,Q)$.

(b) If
$$w^{-1} = -i - Q - y_i - P - j - y_j$$
 then (Y2) fails for $(a, b) = (y_i, i)$ and $(a', b') = (P, Q)$.

(c) If
$$w^{-1} = -i - Q - P - y_i - j - y_j$$
 then (Y2) fails for $(a,b) = (y_i,i)$ and $(a',b') = (P,Q)$.

$$\text{(d) If } w^{-1} = -i - Q - y_i - j - y_j - P - \text{ then (Y2) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$$

(e) If
$$w^{-1} = -i - y_i - Q - j - P - y_j$$
 then (Y2) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

$$\text{(f) If } w^{-1}=-i-y_i-j-Q-y_j-P- \text{ then (Y2) fails for } (a,b)=(y_j,j) \text{ and } (a',b')=(P,Q).$$

(g) If
$$w^{-1} = -Q - i - y_i - j - P - y_j$$
 — then (Y2) fails for $(a,b) = (y_j,j)$ and $(a',b') = (P,Q)$.

$$\text{(h) If } w^{-1}=-i-Q-y_i-j-P-y_j-\text{ then (Y2) fails for } (a,b)=(y_j,j) \text{ and } (a',b')=(P,Q).$$

(i) If
$$w^{-1} = -i - y_i - j - Q - P - y_j$$
 then (Y2) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

Thus if $y_i < y_j < P < Q < i < j$ then one of the following holds:

•
$$w^{-1} = -i - y_i - Q - P - j - y_j - \text{ and } (wt)^{-1} = -j - y_i - Q - P - i - y_j - .$$

$$\bullet \ w^{-1} = -i - y_i - Q - j - y_j - P - \ \text{and} \ (wt)^{-1} = -j - y_i - Q - i - y_j - P -.$$

•
$$w^{-1} = -Q - i - y_i - P - j - y_j$$
 and $(wt)^{-1} = -Q - j - y_i - P - i - y_j$.

•
$$w^{-1} = -Q - i - y_i - j - y_j - P$$
 and $(wt)^{-1} = -Q - j - y_i - i - y_j - P$.

$$\bullet \ w^{-1} = -i - y_i - j - y_j - Q - P - \ \text{and} \ (wt)^{-1} = -j - y_i - i - y_j - Q - P -.$$

$$\bullet \ w^{-1} = -Q - P - i - y_i - j - y_j - \text{ and } (wt)^{-1} = -Q - P - j - y_i - i - y_j -.$$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(y_j, i), (y_i, j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(\mathrm{Z1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -i - y_j - \text{ and } \\ (wt)^{-1} = -j - y_i - . \end{cases}$$

$$(Z2) \Leftrightarrow \begin{cases} (wt)^{-1} \neq -i - P - y_j - \text{ and } (wt)^{-1} \neq -i - Q - y_j - \text{ and } \\ (wt)^{-1} \neq -j - P - y_i - \text{ and } (wt)^{-1} \neq -j - Q - y_i - . \end{cases}$$

 $(Z3) \Leftrightarrow (no condition).$

11. Suppose $y_i < P < y_j < Q < i < j$.

(a) If
$$w^{-1} = -Q - i - P - y_i - j - y_j$$
 then (Y2) fails for $(a, b) = (y_i, i)$ and $(a', b') = (P, Q)$.

(b) If
$$w^{-1} = -i - Q - y_i - P - j - y_j$$
 then (Y2) fails for $(a,b) = (y_i,i)$ and $(a',b') = (P,Q)$.

(c) If
$$w^{-1} = -i - Q - P - y_i - j - y_j$$
 then (Y2) fails for $(a, b) = (y_i, i)$ and $(a', b') = (P, Q)$.

(d) If
$$w^{-1} = -Q - i - y_i - j - y_j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

(e) If
$$w^{-1} = -i - y_i - j - y_j - Q - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, j)$.

$$\text{(f) If } w^{-1} = -i - y_i - Q - j - P - y_j - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_j,j).$$

(g) If
$$w^{-1} = -i - y_i - j - Q - y_j - P$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

(h) If
$$w^{-1} = -Q - i - y_i - j - P - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

(i) If
$$w^{-1} = -i - y_i - Q - j - y_j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

(j) If
$$w^{-1} = -i - Q - y_i - j - y_j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

(k) If
$$w^{-1} = -i - Q - y_i - j - P - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

(l) If
$$w^{-1} = -i - y_i - j - Q - P - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

Thus if $y_i < P < y_j < Q < i < j$ then one of the following holds:

•
$$w^{-1} = -i - y_i - Q - P - j - y_j - \text{ and } (wt)^{-1} = -j - y_i - Q - P - i - y_j - y_$$

$$\bullet \ w^{-1} = -Q - P - i - y_i - j - y_j - \text{ and } (wt)^{-1} = -Q - P - j - y_i - i - y_j - y_j - i - y_j - y_j - i - y_j - y_$$

•
$$w^{-1} = -Q - i - y_i - P - j - y_j - \text{ and } (wt)^{-1} = -Q - j - y_i - P - i - y_j - y_$$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(y_j, i), (y_i, j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -i - y_j - \text{ and } \\ (wt)^{-1} = -j - y_i - . \end{cases}$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -j - P - y_i - \text{ and } (wt)^{-1} \neq -j - Q - y_i - .$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -P - i - .$$

12. Suppose $y_i < y_j < i < j < P < Q$.

(a) If
$$w^{-1} = -Q - i - P - y_i - j - y_j$$
 then (Y3) fails for $(a,b) = (y_i,i)$ and $(a',b') = (P,Q)$.

(b) If
$$w^{-1} = -Q - i - y_i - j - y_j - P$$
— then (Y3) fails for $(a,b) = (y_i,i)$ and $(a',b') = (P,Q)$.

$$\text{(c) If } w^{-1}=-i-Q-y_i-P-j-y_j-\text{ then (Y3) fails for } (a,b)=(y_i,i) \text{ and } (a',b')=(P,Q).$$

$$\text{(d) If } w^{-1} = - Q - i - y_i - P - j - y_j - \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$$

(e) If
$$w^{-1} = -i - Q - P - y_i - j - y_j$$
 then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (P, Q)$.

$$\text{(f) If } w^{-1} = - Q - P - i - y_i - j - y_j - \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$$

(g) If
$$w^{-1} = -Q - i - y_i - j - P - y_j$$
 then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (P, Q)$.

$$\text{(h) If } w^{-1} = -i - Q - y_i - j - y_j - P - \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$$

$$\text{(i) If } w^{-1} = -i - Q - y_i - j - P - y_j - \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$$

(j) If
$$w^{-1} = -i - y_i - Q - P - j - y_j$$
 then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

$$\text{(k) If } w^{-1} = -i - y_i - Q - j - P - y_j - \text{ then (Y3) fails for } (a,b) = (y_j,j) \text{ and } (a',b') = (P,Q).$$

$$\text{(l) If } w^{-1} = -i - y_i - j - Q - y_j - P - \text{ then (Y3) fails for } (a,b) = (y_j,j) \text{ and } (a',b') = (P,Q).$$

$$\text{(m) If } w^{-1}=-i-y_i-Q-j-y_j-P- \text{ then (Y3) fails for } (a,b)=(y_j,j) \text{ and } (a',b')=(P,Q).$$

$$\text{(n) If } w^{-1} = -i - y_i - j - Q - P - y_j - \text{ then (Y3) fails for } (a,b) = (y_j,j) \text{ and } (a',b') = (P,Q).$$

Thus if $y_i < y_j < i < j < P < Q$ then one of the following holds:

•
$$w^{-1} = -i - y_i - j - y_i - Q - P - \text{ and } (wt)^{-1} = -j - y_i - i - y_i - Q - P - .$$

When (a,b) = (P,Q) and $(a',b') \in \operatorname{Cyc}^1(z) = \{(y_j,i),(y_i,j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(\mathrm{Z1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -i - y_j - \text{ and } \\ (wt)^{-1} = -j - y_i - . \end{cases}$$

 $(Z2) \Leftrightarrow (no condition).$

$$(Z3) \Leftrightarrow (wt)^{-1} = -y_i - Q - \text{ and } (wt)^{-1} = -y_i - Q - .$$

13. Suppose $P < y_i < y_j < i < j < Q$.

(a) If
$$w^{-1} = -Q - i - P - y_i - j - y_j$$
 then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(b) If
$$w^{-1} = -Q - i - y_i - j - y_j - P$$
— then (Y2) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_i,i)$.

(c) If
$$w^{-1} = -i - Q - y_i - P - j - y_j$$
 then (Y2) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_i,i)$.

(d) If
$$w^{-1} = -Q - i - y_i - P - j - y_j$$
 — then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(e) If
$$w^{-1} = -Q - i - y_i - j - P - y_j$$
 then (Y2) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_i,i)$.

$$\text{(f) If } w^{-1} = -i - Q - y_i - j - y_j - P - \text{ then (Y2) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_i,i).$$

(g) If
$$w^{-1} = -i - Q - y_i - j - P - y_j$$
 — then (Y2) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_i,i)$.

(h) If
$$w^{-1} = -i - y_i - Q - j - P - y_j$$
 then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

(i) If
$$w^{-1} = -i - y_i - j - Q - y_j - P$$
 then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

(j) If
$$w^{-1} = -i - y_i - Q - j - y_j - P$$
 then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

Thus if $P < y_i < y_j < i < j < Q$ then one of the following holds:

•
$$w^{-1} = -i - y_i - Q - P - j - y_j - \text{ and } (wt)^{-1} = -j - y_i - Q - P - i - y_j - y_j - i - y_j - y_j - i - y_j - y_j$$

•
$$w^{-1} = -i - Q - P - y_i - j - y_j - \text{ and } (wt)^{-1} = -j - Q - P - y_i - i - y_j - y_j - i - y_j - y_j - i - y_j - y_j$$

•
$$w^{-1} = -i - y_i - j - Q - P - y_j$$
 and $(wt)^{-1} = -j - y_i - i - Q - P - y_j$.

•
$$w^{-1} = -i - y_i - j - y_i - Q - P - \text{ and } (wt)^{-1} = -j - y_i - i - y_i - Q - P - ...$$

•
$$w^{-1} = -Q - P - i - y_i - j - y_j - \text{ and } (wt)^{-1} = -Q - P - j - y_i - i - y_j - i$$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(y_j, i), (y_i, j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(\mathrm{Z1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -i - y_j - \text{ and } \\ (wt)^{-1} = -j - y_i - . \end{cases}$$

(Z2)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} \neq -Q - y_i - P - \text{ and } (wt)^{-1} \neq -Q - j - P - \text{ and } \\ (wt)^{-1} \neq -Q - y_j - P - \text{ and } (wt)^{-1} \neq -Q - i - P - . \end{cases}$$

 $(Z3) \Leftrightarrow (no condition).$

14. Suppose $y_i < P < Q < y_j < i < j$.

$$\text{(a) If } w^{-1} = -Q - i - P - y_i - j - y_j - \text{ then (Y2) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$$

(b) If
$$w^{-1} = -i - Q - y_i - P - j - y_j$$
 then (Y2) fails for $(a, b) = (y_i, i)$ and $(a', b') = (P, Q)$.

(c) If
$$w^{-1} = -i - Q - P - y_i - j - y_j$$
 then (Y2) fails for $(a, b) = (y_i, i)$ and $(a', b') = (P, Q)$.

$$\text{(d) If } w^{-1} = -Q - i - y_i - j - y_j - P - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_j,j).$$

(e) If
$$w^{-1} = -i - y_i - j - y_j - Q - P$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_j,j)$.

(f) If
$$w^{-1} = -i - y_i - Q - j - P - y_j$$
 — then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

$$\text{(g) If } w^{-1} = --i - y_i - j - Q - y_j - P - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_j,j).$$

$$\text{(h) If } w^{-1} = - Q - i - y_i - j - P - y_j - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_j,j).$$

(i) If
$$w^{-1} = -i - y_i - Q - j - y_j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.
(j) If $w^{-1} = -i - Q - y_i - j - y_j - P$ — then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

(k) If
$$w^{-1} = -i - Q - y_i - j - P - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

(l) If
$$w^{-1} = -i - y_i - j - Q - P - y_j$$
 — then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

Thus if $y_i < P < Q < y_i < i < j$ then one of the following holds:

$$\bullet \ \ w^{-1} = -i - y_i - Q - P - j - y_j - \ \ \text{and} \ \ (wt)^{-1} = -j - y_i - Q - P - i - y_j - .$$

$$\bullet \ w^{-1} = -Q - P - i - y_i - j - y_j - \text{ and } (wt)^{-1} = -Q - P - j - y_i - i - y_j -.$$

•
$$w^{-1} = -Q - i - y_i - P - j - y_j$$
 and $(wt)^{-1} = -Q - j - y_i - P - i - y_j$.

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(z) = \{(y_j, i), (y_i, j)\}$ or vice versa, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(\mathrm{Z1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -i - y_j - \text{ and } \\ (wt)^{-1} = -j - y_i - . \end{cases}$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -j - P - y_i - \text{ and } (wt)^{-1} \neq -j - Q - y_i - .$$

$$(\mathbf{Z3}) \Leftrightarrow (wt)^{-1} = -P - i -.$$

15. It cannot happen that $y_i < P < y_j < i < Q < j$ since:

(a) If
$$w^{-1} = -i - y_i - Q - P - j - y_j$$
 — then (T) fails.

(b) If
$$w^{-1} = -i - y_i - Q - j - P - y_j$$
 then (T) fails.

(c) If
$$w^{-1} = -i - Q - y_i - P - j - y_j$$
 then (T) fails.

(d) If
$$w^{-1} = -i - Q - P - y_i - j - y_j$$
 then (T) fails.

(e) If
$$w^{-1} = -i - y_i - Q - j - y_j - P$$
 — then (T) fails.

(f) If
$$w^{-1} = -i - Q - y_i - j - y_j - P$$
— then (T) fails.

(g) If
$$w^{-1} = -i - Q - y_i - j - P - y_j$$
 then (T) fails.

$$\text{(h) If } w^{-1}=-i-y_i-j-y_j-Q-P- \text{ then (Y3) fails for } (a,b)=(P,Q) \text{ and } (a',b')=(y_j,j).$$

(i) If
$$w^{-1} = -i - y_i - j - Q - y_j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

(j) If
$$w^{-1} = -i - y_i - j - Q - P - y_j$$
 — then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

$$\text{(k) If } w^{-1} = -Q - i - P - y_i - j - y_j - \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$$

(l) If
$$w^{-1} = -Q - i - y_i - j - y_j - P$$
— then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (P, Q)$.

(m) If
$$w^{-1} = -Q - i - y_i - P - j - y_j$$
 then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (P, Q)$.

(n) If
$$w^{-1} = -Q - P - i - y_i - j - y_j$$
 then (Y3) fails for $(a,b) = (y_i,i)$ and $(a',b') = (P,Q)$.

$$\text{(o) If } w^{-1} = - Q - i - y_i - j - P - y_j - \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$$

We conclude that properties (Z1)-(Z3) hold whenever (a, b), (a', b') are as in cases (i) or (ii) and $y_i < y_j < i < j$.

13.3 Subcase (iii)

Suppose i' and j' are integers such that $0 \neq i - i' = j - j' \in n\mathbb{Z}$, so that w(i) - w(i') = w(j) - w(j') = i - i'.

1. Suppose $y_{i'} < y_{j'} < y_i < i' < y_j < i < j' < j$.

(a) If
$$w^{-1} = -i' - i - y_{i'} - j' - y_{i'} - y_i - j - y_i$$
 then (T) fails.

(b) If
$$w^{-1} = -i' - y_{i'} - i - y_i - j' - y_{j'} - j - y_i$$
 then (T) fails.

(c) If
$$w^{-1} = -i' - y_{i'} - i - j' - y_i - y_{j'} - j - y_j$$
 then (T) fails.

(d) If
$$w^{-1} = -i' - i - y_{i'} - y_i - j' - y_{j'} - j - y_j$$
 then (T) fails.

(e) If
$$w^{-1} = -i' - y_{i'} - i - y_i - j' - j - y_{j'} - y_j$$
 — then (T) fails.

(f) If
$$w^{-1} = -i' - i - y_{i'} - j' - y_i - y_{j'} - j - y_j$$
 then (T) fails.

(g) If
$$w^{-1} = -i' - y_{i'} - i - j' - y_i - j - y_{j'} - y_j$$
 then (T) fails.

(h) If
$$w^{-1} = -i' - i - y_{i'} - y_i - j' - j - y_{j'} - y_j$$
 — then (T) fails.

(i) If
$$w^{-1} = -i' - i - y_{i'} - j' - y_i - j - y_{j'} - y_j$$
 then (T) fails.

(j) If
$$w^{-1} = -i' - y_{i'} - i - j' - y_{j'} - y_i - j - y_j$$
 then (T) fails.

(k) If
$$w^{-1} = -i' - y_{i'} - j' - i - y_i - y_{j'} - j - y_j$$
 then (Y2) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

$$\text{(l) If } w^{-1} = -i' - y_{i'} - j' - i - y_{j'} - y_i - j - y_j - \text{ then (Y2) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_i,i).$$

$$\text{(m) If } w^{-1} = -i' - y_{i'} - j' - i - y_i - j - y_{j'} - y_j - \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_j,j).$$

Thus if $y_{i'} < y_{i'} < y_i < i' < y_i < i < j' < j$ then one of the following holds:

•
$$w^{-1} = -i' - y_{i'} - j' - y_{i'} - i - y_i - j - y_i$$
 and $(wt)^{-1} = -j' - y_{i'} - i' - y_{i'} - j - y_i - i - y_i$.

When $(a, b) \in \operatorname{Cyc}^1(z) = \{(y_j, i), (y_i, j)\}$ and $(a', b') \in \{(y_{j'}, i'), (y_{i'}, j')\}$, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -i - y_j - \text{ and } \\ (wt)^{-1} = -i' - y_{j'} - \text{ and } \\ (wt)^{-1} = -j - y_i - \text{ and } \\ (wt)^{-1} = -j' - y_{i'} - . \end{cases}$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -j'-y_i-y_{i'}$$
 and $(wt)^{-1} \neq -j'-i-y_{i'}$.

(Z3)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -y_{i'} - j - \text{ and } \\ (wt)^{-1} = -y_{j'} - i - \text{ and } \\ (wt)^{-1} = -y_{j'} - j - . \end{cases}$$

2. Suppose $y_{i'} < y_{j'} < i' < y_i < j' < y_j < i < j$.

(a) If
$$w^{-1} = -i' - y_{i'} - i - y_i - j' - y_{j'} - j - y_j$$
 then (U) fails.

(b) If
$$w^{-1} = -i' - i - y_{i'} - y_i - j' - y_{j'} - j - y_j$$
 then (U) fails.

(c) If
$$w^{-1} = -i' - y_{i'} - i - y_i - j' - j - y_{j'} - y_j$$
 then (U) fails.

(d) If
$$w^{-1} = -i' - i - y_{i'} - y_i - j' - j - y_{i'} - y_i$$
 then (U) fails.

(e) If
$$w^{-1} = -i' - i - y_{i'} - j' - y_{j'} - y_i - j - y_j$$
 then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.

(f) If
$$w^{-1} = -i' - i - y_{i'} - j' - y_i - y_{j'} - j - y_j$$
— then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.

(g) If
$$w^{-1} = -i' - i - y_{i'} - j' - y_i - j - y_{j'} - y_j$$
 then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.

(h) If
$$w^{-1} = -i' - y_{i'} - i - j' - y_i - y_{j'} - j - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

(i) If
$$w^{-1} = -i' - y_{i'} - j' - i - y_i - j - y_{j'} - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

(j) If
$$w^{-1} = -i' - y_{i'} - i - j' - y_i - j - y_{j'} - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

(k) If
$$w^{-1} = -i' - y_{i'} - j' - i - y_i - y_{j'} - j - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

(l) If
$$w^{-1} = -i' - y_{i'} - j' - i - y_{j'} - y_i - j - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

$$\text{(m) If } w^{-1} = -i' - y_{i'} - i - j' - y_{j'} - y_i - j - y_j - \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_i,i).$$

Thus if $y_{i'} < y_{j'} < i' < y_i < j' < y_j < i < j$ then one of the following holds:

•
$$w^{-1} = -i' - y_{i'} - j' - y_{j'} - i - y_i - j - y_j$$
 and $(wt)^{-1} = -j' - y_{i'} - i' - y_{j'} - j - y_i - i - y_j$.

When $(a, b) \in \operatorname{Cyc}^1(z) = \{(y_j, i), (y_i, j)\}$ and $(a', b') \in \{(y_{j'}, i'), (y_{i'}, j')\}$, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -i - y_j - \text{ and } \\ (wt)^{-1} = -i' - y_{j'} - \text{ and } \\ (wt)^{-1} = -j - y_i - \text{ and } \\ (wt)^{-1} = -j' - y_{i'} - . \end{cases}$$

 $(Z2) \Leftrightarrow (no condition).$

$$(Z3) \Leftrightarrow \begin{cases} (wt)^{-1} = -y_{i'} - i - \text{ and } \\ (wt)^{-1} = -y_{i'} - j - \text{ and } \\ (wt)^{-1} = -y_{j'} - i - \text{ and } \\ (wt)^{-1} = -y_{j'} - j - . \end{cases}$$

3. Suppose $y_{i'} < y_i < y_{i'} < y_j < i' < j' < i < j$.

(a) If
$$w^{-1} = -i' - y_{i'} - i - j' - y_i - y_{j'} - j - y_j$$
 — then (Y2) fails for $(a,b) = (y_i,i)$ and $(a',b') = (y_{j'},j')$.

(b) If
$$w^{-1} = -i' - y_{i'} - j' - i - y_{j'} - y_i - j - y_j$$
 then (Y2) fails for $(a, b) = (y_i, i)$ and $(a', b') = (y_{j'}, j')$.

(c) If
$$w^{-1} = -i' - y_{i'} - i - j' - y_{j'} - y_i - j - y_j$$
 then (Y2) fails for $(a, b) = (y_i, i)$ and $(a', b') = (y_{j'}, j')$.

(d) If
$$w^{-1} = -i' - i - y_{i'} - j' - y_{j'} - y_i - j - y_j$$
 then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.

(e) If
$$w^{-1} = -i' - i - y_{i'} - y_i - j' - y_{j'} - j - y_j$$
 then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.

$$\text{(f) If } w^{-1} = -i' - i - y_{i'} - j' - y_i - y_{j'} - j - y_j - \text{ then (Y3) fails for } (a,b) = (y_{i'},i') \text{ and } (a',b') = (y_i,i).$$

(g) If
$$w^{-1} = -i' - i - y_{i'} - y_i - j' - j - y_{j'} - y_j$$
 then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.

(h) If
$$w^{-1} = -i' - i - y_{i'} - j' - y_i - j - y_{j'} - y_j$$
 then (Y3) fails for $(a,b) = (y_{i'},i')$ and $(a',b') = (y_i,i)$.

(i) If
$$w^{-1} = -i' - y_{i'} - j' - i - y_i - j - y_{j'} - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_j, j)$.

$$\text{(j) If } w^{-1} = -i' - y_{i'} - i - y_i - j' - j - y_{j'} - y_j - \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_j,j).$$

(k) If
$$w^{-1} = -i' - y_{i'} - i - j' - y_i - j - y_{j'} - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_j, j)$.

Thus if $y_{i'} < y_i < y_{j'} < y_i < i' < j' < i < j$ then one of the following holds:

$$\bullet \ \ w^{-1} = -i' - y_{i'} - j' - y_{j'} - i - y_i - j - y_j - \ \ \text{and} \ \ (wt)^{-1} = -j' - y_{i'} - i' - y_{j'} - j - y_i - i - y_j - .$$

•
$$w^{-1} = -i' - y_{i'} - j' - i - y_i - y_{i'} - j - y_i$$
 and $(wt)^{-1} = -j' - y_{i'} - i' - j - y_i - y_{i'} - i - y_i$.

$$\bullet \ w^{-1} = -i' - y_{i'} - i - y_i - j' - y_{j'} - j - y_j - \text{ and } (wt)^{-1} = -j' - y_{i'} - j - y_i - i' - y_{j'} - i - y_j - \dots$$

When $(a, b) \in \operatorname{Cyc}^1(z) = \{(y_j, i), (y_i, j)\}$ and $(a', b') \in \{(y_{j'}, i'), (y_{i'}, j')\}$, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases}
(wt)^{-1} = -i - y_j - \text{ and} \\
(wt)^{-1} = -i' - y_{j'} - \text{ and} \\
(wt)^{-1} = -j - y_i - \text{ and} \\
(wt)^{-1} = -j' - y_{i'} - .
\end{cases}$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -j - y_{j'} - y_i - \text{ and } (wt)^{-1} \neq -j - i' - y_i - .$$

(Z3)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -y_{i'} - i - \text{ and } \\ (wt)^{-1} = -y_{i'} - j - \text{ and } \\ (wt)^{-1} = -y_{j'} - i - . \end{cases}$$

4. Suppose $y_{i'} < y_{i'} < y_i < i' < y_j < j' < i < j$.

$$\text{(a) If } w^{-1} = -i' - i - y_{i'} - j' - y_{j'} - y_i - j - y_j - \text{ then (Y3) fails for } (a,b) = (y_{i'},i') \text{ and } (a',b') = (y_i,i).$$

(b) If
$$w^{-1} = -i' - i - y_{i'} - y_i - j' - y_{j'} - j - y_j$$
 then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.

(c) If
$$w^{-1} = -i' - i - y_{i'} - j' - y_i - y_{j'} - j - y_j$$
 then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.

(d) If
$$w^{-1} = -i' - i - y_{i'} - y_i - j' - j - y_{j'} - y_j$$
 then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.

(e) If
$$w^{-1} = -i' - i - y_{i'} - j' - y_i - j - y_{j'} - y_j$$
 then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.

$$\text{(f) If } w^{-1} = -i' - y_{i'} - i - y_i - j' - y_{j'} - j - y_j - \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_i,i).$$

(g) If
$$w^{-1} = -i' - y_{i'} - i - j' - y_i - y_{j'} - j - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

(h) If
$$w^{-1} = -i' - y_{i'} - j' - i - y_i - j - y_{j'} - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

$$\text{(i) If } w^{-1} = -i' - y_{i'} - i - y_i - j' - j - y_{j'} - y_j - \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_i,i).$$

(j) If
$$w^{-1} = -i' - y_{i'} - i - j' - y_i - j - y_{j'} - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

$$\text{(k) If } w^{-1} = -i' - y_{i'} - j' - i - y_i - y_{j'} - j - y_j - \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_i,i).$$

$$\text{(l) If } w^{-1} = -i' - y_{i'} - j' - i - y_{j'} - y_i - j - y_j - \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_i,i).$$

$$\text{(m) If } w^{-1} = -i' - y_{i'} - i - j' - y_{j'} - y_i - j - y_j - \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_i,i).$$

Thus if $y_{i'} < y_{i'} < y_i < i' < y_i < j' < i < j$ then one of the following holds:

$$\bullet \ w^{-1} = -i' - y_{i'} - j' - y_{j'} - i - y_i - j - y_j - \text{ and } (wt)^{-1} = -j' - y_{i'} - i' - y_{j'} - j - y_i - i - y_j - .$$

When $(a,b) \in \operatorname{Cyc}^1(z) = \{(y_j,i),(y_i,j)\}$ and $(a',b') \in \{(y_{j'},i'),(y_{i'},j')\}$, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases}
(wt)^{-1} = -i - y_j - \text{ and} \\
(wt)^{-1} = -i' - y_{j'} - \text{ and} \\
(wt)^{-1} = -j - y_i - \text{ and} \\
(wt)^{-1} = -j' - y_{i'} - .
\end{cases}$$

 $(Z2) \Leftrightarrow (\text{no condition}).$

(Z3)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -y_{i'} - i - \text{ and } \\ (wt)^{-1} = -y_{j'} - j - \text{ and } \\ (wt)^{-1} = -y_{j'} - i - \text{ and } \\ (wt)^{-1} = -y_{j'} - j - . \end{cases}$$

- 5. Suppose $y_{i'} < y_{j'} < y_i < y_j < i' < i < j' < j$.
 - (a) If $w^{-1} = -i' i y_{i'} j' y_{j'} y_i j y_j$ then (T) fails.
 - (b) If $w^{-1} = -i' y_{i'} i y_i j' y_{j'} j y_j$ then (T) fails.
 - (c) If $w^{-1} = -i' y_{i'} i j' y_i y_{j'} j y_j$ then (T) fails.
 - (d) If $w^{-1} = -i' i y_{i'} y_i j' y_{j'} j y_j$ then (T) fails.
 - (e) If $w^{-1} = -i' y_{i'} i y_i j' j y_{j'} y_j$ then (T) fails.
 - (f) If $w^{-1} = -i' i y_{i'} j' y_i y_{j'} j y_j$ then (T) fails.
 - (g) If $w^{-1} = -i' y_{i'} i j' y_i j y_{j'} y_j$ then (T) fails.
 - (h) If $w^{-1} = -i' i y_{i'} y_i j' j y_{j'} y_j$ then (T) fails.
 - (i) If $w^{-1} = -i' i y_{i'} j' y_i j y_{j'} y_j$ then (T) fails.
 - (j) If $w^{-1} = -i' y_{i'} i j' y_{j'} y_i j y_j$ then (T) fails.
 - $\text{(k) If } w^{-1} = -i' y_{i'} j' i y_i y_{j'} j y_j \text{ then (Y2) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_i,i).$
 - $\text{(l) If } w^{-1} = -i' y_{i'} j' i y_{j'} y_i j y_j \text{ then (Y2) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_i,i).$
 - $\text{(m) If } w^{-1} = -i' y_{i'} j' i y_i j y_{j'} y_j \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_j,j).$

Thus if $y_{i'} < y_{i'} < y_i < y_i < i' < i < j' < j$ then one of the following holds:

$$\bullet \ w^{-1} = -i' - y_{i'} - j' - y_{j'} - i - y_i - j - y_j - \text{ and } (wt)^{-1} = -j' - y_{i'} - i' - y_{j'} - j - y_i - i - y_j - .$$

When $(a, b) \in \operatorname{Cyc}^1(z) = \{(y_j, i), (y_i, j)\}$ and $(a', b') \in \{(y_{j'}, i'), (y_{i'}, j')\}$, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases}
(wt)^{-1} = -i - y_j - \text{ and} \\
(wt)^{-1} = -i' - y_{j'} - \text{ and} \\
(wt)^{-1} = -j - y_i - \text{ and} \\
(wt)^{-1} = -j' - y_{i'} - .
\end{cases}$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -j'-y_j-y_{i'}$$
 and $(wt)^{-1} \neq -j'-i-y_{i'}$.

$$({\rm Z3}) \Leftrightarrow \begin{cases} (wt)^{-1} = -y_{i'} - j - \text{ and } \\ (wt)^{-1} = -y_{j'} - i - \text{ and } \\ (wt)^{-1} = -y_{j'} - j - . \end{cases}$$

- 6. Suppose $y_{i'} < y_{i'} < i' < j' < y_i < y_i < i < j$.
 - (a) If $w^{-1} = -i' i y_{i'} j' y_{j'} y_i j y_j$ then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.
 - (b) If $w^{-1} = -i' i y_{i'} y_i j' y_{j'} j y_j$ then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.
 - (c) If $w^{-1} = -i' i y_{i'} j' y_i y_{j'} j y_j$ then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.
 - $\text{(d) If } w^{-1} = -i' i y_{i'} y_i j' j y_{j'} y_j \text{ then (Y3) fails for } (a,b) = (y_{i'},i') \text{ and } (a',b') = (y_i,i).$
 - (e) If $w^{-1} = -i' i y_{i'} j' y_i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.
 - (f) If $w^{-1} = -i' y_{i'} i y_i j' y_{j'} j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.
 - (g) If $w^{-1} = -i' y_{i'} i j' y_i y_{j'} j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.
 - (h) If $w^{-1} = -i' y_{i'} j' i y_i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.
 - (i) If $w^{-1} = -i' y_{i'} i y_i j' j y_{j'} y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.
 - (j) If $w^{-1} = -i' y_{i'} i j' y_i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.
 - (k) If $w^{-1} = -i' y_{i'} j' i y_i y_{j'} j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.
 - $\text{(l) If } w^{-1} = -i' y_{i'} j' i y_{j'} y_i j y_j \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_i,i).$
 - (m) If $w^{-1} = -i' y_{i'} i j' y_{j'} y_i j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

Thus if $y_{i'} < y_{i'} < i' < j' < y_i < y_i < i < j$ then one of the following holds:

$$\bullet \ w^{-1} = -i' - y_{i'} - j' - y_{j'} - i - y_i - j - y_j - \text{ and } (wt)^{-1} = -j' - y_{i'} - i' - y_{j'} - j - y_i - i - y_j - .$$

When $(a,b) \in \operatorname{Cyc}^1(z) = \{(y_i,i),(y_i,j)\}$ and $(a',b') \in \{(y_{i'},i'),(y_{i'},j')\}$, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -i - y_j - \text{ and } \\ (wt)^{-1} = -i' - y_{j'} - \text{ and } \\ (wt)^{-1} = -j - y_i - \text{ and } \\ (wt)^{-1} = -j' - y_{i'} - . \end{cases}$$

 $(Z2) \Leftrightarrow (no condition).$

$$(\text{Z3}) \Leftrightarrow \begin{cases} (wt)^{-1} = -y_{i'} - i - \text{ and } \\ (wt)^{-1} = -y_{i'} - j - \text{ and } \\ (wt)^{-1} = -y_{j'} - i - \text{ and } \\ (wt)^{-1} = -y_{j'} - j - . \end{cases}$$

- 7. Suppose $y_{i'} < y_{j'} < i' < y_i < y_i < i < j' < j$.
 - (a) If $w^{-1} = -i' i y_{i'} j' y_{j'} y_i j y_j$ then (T) fails.
 - (b) If $w^{-1} = -i' y_{i'} i y_i j' y_{i'} j y_i$ then (T) fails.
 - (c) If $w^{-1} = -i' y_{i'} i j' y_i y_{i'} j y_j$ then (T) fails.
 - (d) If $w^{-1} = -i' i y_{i'} y_i j' y_{j'} j y_j$ then (T) fails.
 - (e) If $w^{-1} = -i' y_{i'} i y_i j' j y_{i'} y_i$ then (T) fails.
 - (f) If $w^{-1} = -i' i y_{i'} j' y_i y_{i'} j y_j$ then (T) fails.
 - (g) If $w^{-1} = -i' y_{i'} i j' y_i j y_{i'} y_i$ then (T) fails.
 - (h) If $w^{-1} = -i' i y_{i'} y_i j' j y_{j'} y_j$ then (T) fails.
 - (i) If $w^{-1} = -i' i y_{i'} j' y_i j y_{j'} y_j$ then (T) fails.
 - (j) If $w^{-1} = -i' y_{i'} i j' y_{i'} y_i j y_i$ then (T) fails.
 - (k) If $w^{-1} = -i' y_{i'} j' i y_i y_{j'} j y_j$ then (Y2) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.
 - (l) If $w^{-1} = -i' y_{i'} j' i y_{j'} y_i j y_j$ then (Y2) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.
 - (m) If $w^{-1} = -i' y_{i'} j' i y_i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_j, j)$

Thus if $y_{i'} < y_{j'} < i' < y_i < y_j < i < j' < j$ then one of the following holds:

$$\bullet \ w^{-1} = -i' - y_{i'} - j' - y_{j'} - i - y_i - j - y_j - \text{ and } (wt)^{-1} = -j' - y_{i'} - i' - y_{j'} - j - y_i - i - y_j - .$$

When $(a,b) \in \text{Cyc}^1(z) = \{(y_j,i),(y_i,j)\}$ and $(a',b') \in \{(y_{j'},i'),(y_{i'},j')\}$, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases}
(wt)^{-1} = -i - y_j - \text{ and} \\
(wt)^{-1} = -i' - y_{j'} - \text{ and} \\
(wt)^{-1} = -j - y_i - \text{ and} \\
(wt)^{-1} = -j' - y_{i'} - .
\end{cases}$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -j' - y_i - y_{i'} - \text{ and } (wt)^{-1} \neq -j' - i - y_{i'} - .$$

- 8. Suppose $y_{i'} < y_{i'} < y_i < y_i < i' < i' < i < i$.
 - (a) If $w^{-1} = -i' i y_{i'} j' y_{i'} y_i j y_j$ then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.
 - (b) If $w^{-1} = -i' i y_{i'} y_i j' y_{j'} j y_j$ then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.
 - (c) If $w^{-1} = -i' i y_{i'} j' y_i y_{j'} j y_j$ then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.
 - $\text{(d) If } w^{-1} = -i' i y_{i'} y_i j' j y_{j'} y_j \text{ then (Y3) fails for } (a,b) = (y_{i'},i') \text{ and } (a',b') = (y_i,i).$

(e) If
$$w^{-1} = -i' - i - y_{i'} - j' - y_i - j - y_{j'} - y_j$$
 then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.

$$\text{(f) If } w^{-1} = -i' - y_{i'} - i - y_i - j' - y_{j'} - j - y_j - \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_i,i).$$

(g) If
$$w^{-1} = -i' - y_{i'} - i - j' - y_i - y_{j'} - j - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

(h) If
$$w^{-1} = -i' - y_{i'} - j' - i - y_i - j - y_{j'} - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

(i) If
$$w^{-1} = -i' - y_{i'} - i - y_i - j' - j - y_{j'} - y_j$$
 — then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

(j) If
$$w^{-1} = -i' - y_{i'} - i - j' - y_i - j - y_{j'} - y_j$$
 — then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

(k) If
$$w^{-1} = -i' - y_{i'} - j' - i - y_i - y_{j'} - j - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

$$\text{(l) If } w^{-1} = -i' - y_{i'} - j' - i - y_{j'} - y_i - j - y_j - \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_i,i).$$

(m) If
$$w^{-1} = -i' - y_{i'} - i - j' - y_{j'} - y_i - j - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

Thus if $y_{i'} < y_{i'} < y_i < y_i < i' < j' < i < j$ then one of the following holds:

•
$$w^{-1} = -i' - y_{i'} - j' - y_{i'} - i - y_i - j - y_j$$
 and $(wt)^{-1} = -j' - y_{i'} - i' - y_{i'} - j - y_i - i - y_j$.

When $(a, b) \in \operatorname{Cyc}^1(z) = \{(y_j, i), (y_i, j)\}$ and $(a', b') \in \{(y_{j'}, i'), (y_{i'}, j')\}$, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -i - y_j - \text{ and } \\ (wt)^{-1} = -i' - y_{j'} - \text{ and } \\ (wt)^{-1} = -j - y_i - \text{ and } \\ (wt)^{-1} = -j' - y_{i'} - . \end{cases}$$

 $(Z2) \Leftrightarrow (\text{no condition}).$

$$(Z3) \Leftrightarrow \begin{cases} (wt)^{-1} = -y_{i'} - i - \text{ and } \\ (wt)^{-1} = -y_{i'} - j - \text{ and } \\ (wt)^{-1} = -y_{j'} - i - \text{ and } \\ (wt)^{-1} = -y_{j'} - j - . \end{cases}$$

9. Suppose $y_{i'} < y_{j'} < i' < y_i < y_i < j' < i < j$.

(a) If
$$w^{-1} = -i' - y_{i'} - i - y_i - j' - y_{j'} - j - y_j$$
 then (U) fails.

(b) If
$$w^{-1} = -i' - i - y_{i'} - y_i - j' - y_{j'} - j - y_j$$
 then (U) fails.

(c) If
$$w^{-1} = -i' - y_{i'} - i - y_i - j' - j - y_{j'} - y_j$$
 then (U) fails.

(d) If
$$w^{-1} = -i' - i - y_{i'} - y_i - j' - j - y_{j'} - y_j$$
 then (U) fails.

(e) If
$$w^{-1} = -i' - i - y_{i'} - j' - y_{j'} - y_i - j - y_j$$
 then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.

(f) If
$$w^{-1} = -i' - i - y_{i'} - j' - y_i - y_{j'} - j - y_j$$
 then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.

(g) If
$$w^{-1} = -i' - i - y_{i'} - j' - y_i - j - y_{j'} - y_j$$
 then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.

$$\text{(h) If } w^{-1} = -i' - y_{i'} - i - j' - y_i - y_{j'} - j - y_j - \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_i,i).$$

(i) If
$$w^{-1} = -i' - y_{i'} - j' - i - y_i - j - y_{j'} - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

(j) If
$$w^{-1} = -i' - y_{i'} - i - j' - y_i - j - y_{j'} - y_j$$
 — then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

(k) If
$$w^{-1} = -i' - y_{i'} - j' - i - y_i - y_{j'} - j - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

(l) If
$$w^{-1} = -i' - y_{i'} - j' - i - y_{j'} - y_i - j - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

(m) If
$$w^{-1} = -i' - y_{i'} - i - j' - y_{j'} - y_i - j - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

Thus if $y_{i'} < y_{i'} < i' < y_i < j' < i < j$ then one of the following holds:

•
$$w^{-1} = -i' - y_{i'} - j' - y_{j'} - i - y_i - j - y_j$$
 and $(wt)^{-1} = -j' - y_{i'} - i' - y_{j'} - j - y_i - i - y_j$.

When $(a, b) \in \operatorname{Cyc}^1(z) = \{(y_j, i), (y_i, j)\}$ and $(a', b') \in \{(y_{j'}, i'), (y_{i'}, j')\}$, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases}
(wt)^{-1} = -i - y_j - \text{ and} \\
(wt)^{-1} = -i' - y_{j'} - \text{ and} \\
(wt)^{-1} = -j - y_i - \text{ and} \\
(wt)^{-1} = -j' - y_{i'} - .
\end{cases}$$

 $(Z2) \Leftrightarrow (no condition).$

(Z3)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -y_{i'} - i - \text{ and } \\ (wt)^{-1} = -y_{i'} - j - \text{ and } \\ (wt)^{-1} = -y_{j'} - i - \text{ and } \\ (wt)^{-1} = -y_{j'} - j - . \end{cases}$$

10. Suppose $y_{i'} < y_i < y_{j'} < i' < j' < y_j < i < j$.

$$\text{(a) If } w^{-1} = -i' - y_{i'} - i - j' - y_i - y_{j'} - j - y_j - \text{ then (Y2) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (y_{j'},j').$$

(b) If
$$w^{-1} = -i' - y_{i'} - j' - i - y_{j'} - y_i - j - y_j$$
 then (Y2) fails for $(a, b) = (y_i, i)$ and $(a', b') = (y_{j'}, j')$.

(c) If
$$w^{-1} = -i' - y_{i'} - i - j' - y_{j'} - y_i - j - y_j$$
 — then (Y2) fails for $(a,b) = (y_i,i)$ and $(a',b') = (y_{j'},j')$.

(d) If
$$w^{-1} = -i' - i - y_{i'} - j' - y_{j'} - y_i - j - y_j$$
 then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.

(e) If
$$w^{-1} = -i' - i - y_{i'} - y_i - j' - y_{j'} - j - y_j$$
 then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.

$$\text{(f) If } w^{-1} = -i' - i - y_{i'} - j' - y_i - y_{j'} - j - y_j - \text{ then (Y3) fails for } (a,b) = (y_{i'},i') \text{ and } (a',b') = (y_i,i).$$

(g) If
$$w^{-1} = -i' - i - y_{i'} - y_i - j' - j - y_{j'} - y_j$$
 then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.

$$\text{(h) If } w^{-1} = -i' - i - y_{i'} - j' - y_i - j - y_{j'} - y_j - \text{ then (Y3) fails for } (a,b) = (y_{i'},i') \text{ and } (a',b') = (y_i,i).$$

$$\text{(i) If } w^{-1} = -i' - y_{i'} - j' - i - y_i - j - y_{j'} - y_j - \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_j,j).$$

$$\text{(j) If } w^{-1} = -i' - y_{i'} - i - y_i - j' - j - y_{j'} - y_j - \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_j,j).$$

$$\text{(k) If } w^{-1} = -i' - y_{i'} - i - j' - y_i - j - y_{j'} - y_j - \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_j,j) - y_j -$$

Thus if $y_{i'} < y_i < y_{j'} < i' < j' < y_i < i < j$ then one of the following holds:

$$\bullet \ \ w^{-1} = -i' - y_{i'} - j' - y_{j'} - i - y_i - j - y_j - \ \ \text{and} \ \ (wt)^{-1} = -j' - y_{i'} - i' - y_{j'} - j - y_i - i - y_j - .$$

•
$$w^{-1} = -i' - y_{i'} - j' - i - y_i - y_{j'} - j - y_j$$
 and $(wt)^{-1} = -j' - y_{i'} - i' - j - y_i - y_{j'} - i - y_j$.

•
$$w^{-1} = -i' - y_{i'} - i - y_i - j' - y_{j'} - j - y_j$$
 and $(wt)^{-1} = -j' - y_{i'} - j - y_i - i' - y_{j'} - i - y_j$.

When $(a,b) \in \operatorname{Cyc}^1(z) = \{(y_j,i),(y_i,j)\}$ and $(a',b') \in \{(y_{j'},i'),(y_{i'},j')\}$, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -i - y_j - \text{ and } \\ (wt)^{-1} = -i' - y_{j'} - \text{ and } \\ (wt)^{-1} = -j - y_i - \text{ and } \\ (wt)^{-1} = -j' - y_{i'} - . \end{cases}$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -j - y_{j'} - y_i - \text{ and } (wt)^{-1} \neq -j - i' - y_i - .$$

(Z3)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -y_{i'} - i - \text{ and } \\ (wt)^{-1} = -y_{i'} - j - \text{ and } \\ (wt)^{-1} = -y_{j'} - i - . \end{cases}$$

11. Suppose $y_{i'} < y_{j'} < y_i < i' < j' < y_j < i < j$.

(a) If
$$w^{-1} = -i' - i - y_{i'} - j' - y_{j'} - y_i - j - y_j$$
 then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.

(b) If
$$w^{-1} = -i' - i - y_{i'} - y_i - j' - y_{j'} - j - y_j$$
 then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.

(c) If
$$w^{-1} = -i' - i - y_{i'} - j' - y_i - y_{j'} - j - y_j$$
 then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.

(d) If
$$w^{-1} = -i' - i - y_{i'} - y_i - j' - j - y_{j'} - y_j$$
 then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.

(e) If
$$w^{-1} = -i' - i - y_{i'} - j' - y_i - j - y_{j'} - y_j$$
 then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.

$$\text{(f) If } w^{-1} = -i' - y_{i'} - i - y_i - j' - y_{j'} - j - y_j - \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_i,i).$$

- (g) If $w^{-1} = -i' y_{i'} i j' y_i y_{j'} j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.
- (h) If $w^{-1} = -i' y_{i'} j' i y_i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.
- (i) If $w^{-1} = -i' y_{i'} i y_i j' j y_{j'} y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.
- (j) If $w^{-1} = -i' y_{i'} i j' y_i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.
- (k) If $w^{-1} = -i' y_{i'} j' i y_i y_{j'} j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.
- (l) If $w^{-1} = -i' y_{i'} j' i y_{j'} y_i j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.
- $\text{(m) If } w^{-1} = -i' y_{i'} i j' y_{j'} y_i j y_j \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_i,i).$

Thus if $y_{i'} < y_{j'} < y_i < i' < j' < y_j < i < j$ then one of the following holds:

$$\bullet \ w^{-1} = -i' - y_{i'} - j' - y_{j'} - i - y_i - j - y_j - \text{ and } (wt)^{-1} = -j' - y_{i'} - i' - y_{j'} - j - y_i - i - y_j - .$$

When $(a,b) \in \operatorname{Cyc}^1(z) = \{(y_j,i),(y_i,j)\}$ and $(a',b') \in \{(y_{j'},i'),(y_{i'},j')\}$, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

$$(Z1) \Leftrightarrow \begin{cases} (wt)^{-1} = -i - y_j - \text{ and } \\ (wt)^{-1} = -i' - y_{j'} - \text{ and } \\ (wt)^{-1} = -j - y_i - \text{ and } \\ (wt)^{-1} = -j' - y_{i'} - . \end{cases}$$

 $(Z2) \Leftrightarrow (no condition).$

(Z3)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -y_{i'} - i - \text{ and } \\ (wt)^{-1} = -y_{i'} - j - \text{ and } \\ (wt)^{-1} = -y_{j'} - i - \text{ and } \\ (wt)^{-1} = -y_{i'} - j - . \end{cases}$$

12. Suppose $y_{i'} < y_i < y_{j'} < i' < y_j < j' < i < j$.

- $\text{(a) If } w^{-1} = -i' y_{i'} i j' y_i y_{j'} j y_j \text{ then (Y2) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (y_{j'},j').$
- (b) If $w^{-1} = -i' y_{i'} j' i y_{j'} y_i j y_j$ then (Y2) fails for $(a, b) = (y_i, i)$ and $(a', b') = (y_{j'}, j')$.
- (c) If $w^{-1} = -i' y_{i'} i j' y_{j'} y_i j y_j$ then (Y2) fails for $(a, b) = (y_i, i)$ and $(a', b') = (y_{j'}, j')$.
- (d) If $w^{-1} = -i' i y_{i'} j' y_{j'} y_i j y_j$ then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.
- (e) If $w^{-1} = -i' i y_{i'} y_i j' y_{j'} j y_j$ then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.
- (f) If $w^{-1} = -i' i y_{i'} j' y_i y_{j'} j y_j$ then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.
- (g) If $w^{-1} = -i' i y_{i'} y_i j' j y_{j'} y_j$ then (Y3) fails for $(a,b) = (y_{i'},i')$ and $(a',b') = (y_i,i)$.
- (h) If $w^{-1} = -i' i y_{i'} j' y_i j y_{i'} y_j$ then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.
- (i) If $w^{-1} = -i' y_{i'} j' i y_i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_j, j)$.
- $\text{(j) If } w^{-1} = -i' y_{i'} i y_i j' j y_{j'} y_j \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_j,j).$
- $\text{(k) If } w^{-1} = -i' y_{i'} i j' y_i j y_{i'} y_j \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_j,j).$

Thus if $y_{i'} < y_i < y_{j'} < i' < y_i < j' < i < j$ then one of the following holds:

- $w^{-1} = -i' y_{i'} j' y_{i'} i y_i j y_j$ and $(wt)^{-1} = -j' y_{i'} i' y_{i'} j y_i i y_j$.
- $\bullet \ w^{-1} = -i' y_{i'} j' i y_i y_{j'} j y_j \text{ and } (wt)^{-1} = -j' y_{i'} i' j y_i y_{j'} i y_j .$
- $w^{-1} = -i' y_{i'} i y_i j' y_{j'} j y_i$ and $(wt)^{-1} = -j' y_{i'} j y_i i' y_{j'} i y_j$.

When $(a,b) \in \operatorname{Cyc}^1(z) = \{(y_j,i),(y_i,j)\}$ and $(a',b') \in \{(y_{j'},i'),(y_{i'},j')\}$, properties (Z1)-(Z3) correspond to the following conditions which hold in each of the available cases for wt:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -i - y_j - \text{ and } \\ (wt)^{-1} = -i' - y_{j'} - \text{ and } \\ (wt)^{-1} = -j - y_i - \text{ and } \\ (wt)^{-1} = -j' - y_{i'} - . \end{cases}$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -j - y_{j'} - y_i - \text{ and } (wt)^{-1} \neq -j - i' - y_i - .$$

$$(Z3) \Leftrightarrow \begin{cases} (wt)^{-1} = -y_{i'} - i - \text{ and } \\ (wt)^{-1} = -y_{i'} - j - \text{ and } \\ (wt)^{-1} = -y_{j'} - i - . \end{cases}$$

- 13. It cannot happen that $y_{i'} < y_i < y_{j'} < y_j < i' < i < j' < j$ since:
 - (a) If $w^{-1} = -i' i y_{i'} j' y_{j'} y_i j y_j$ then (T) fails.
 - (b) If $w^{-1} = -i' y_{i'} i y_i j' y_{j'} j y_j$ then (T) fails.
 - (c) If $w^{-1} = -i' y_{i'} i j' y_i y_{j'} j y_j$ then (T) fails.
 - (d) If $w^{-1} = -i' i y_{i'} y_i j' y_{j'} j y_j$ then (T) fails.
 - (e) If $w^{-1} = -i' y_{i'} i y_i j' j y_{j'} y_j$ then (T) fails.
 - (f) If $w^{-1} = -i' i y_{i'} j' y_i y_{j'} j y_j$ then (T) fails.
 - (g) If $w^{-1} = -i' y_{i'} i j' y_i j y_{j'} y_j$ then (T) fails.
 - (h) If $w^{-1} = -i' i y_{i'} y_i j' j y_{j'} y_j$ then (T) fails.
 - (i) If $w^{-1} = -i' i y_{i'} j' y_i j y_{j'} y_j$ then (T) fails.
 - (j) If $w^{-1} = -i' y_{i'} i j' y_{i'} y_i j y_i$ then (T) fails.
 - (k) If $w^{-1} = -i' y_{i'} j' i y_i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (y_{j'}, j')$.
 - (1) If $w^{-1} = -i' y_{i'} j' i y_i y_{j'} j y_j$ then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (y_{j'}, j')$.
 - (m) If $w^{-1} = -i' y_{i'} j' y_{j'} i y_i j y_j$ then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (y_{j'}, j')$.
 - (n) If $w^{-1} = -i' y_{i'} j' i y_{j'} y_i j y_j$ then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (y_{j'}, j')$.
- 14. It cannot happen that $y_{i'} < y_i < y_{i'} < i' < y_i < i < j' < j$ since:
 - (a) If $w^{-1} = -i' i y_{i'} j' y_{i'} y_i j y_i$ then (T) fails.
 - (b) If $w^{-1} = -i' y_{i'} i y_i j' y_{j'} j y_i$ then (T) fails.
 - (c) If $w^{-1} = -i' y_{i'} i j' y_i y_{j'} j y_j$ then (T) fails.
 - (d) If $w^{-1} = -i' i y_{i'} y_i j' y_{j'} j y_j$ then (T) fails.
 - (e) If $w^{-1} = -i' y_{i'} i y_i j' j y_{j'} y_j$ then (T) fails.
 - (f) If $w^{-1} = -i' i y_{i'} j' y_i y_{j'} j y_j$ then (T) fails.
 - (g) If $w^{-1} = -i' y_{i'} i j' y_i j y_{j'} y_j$ then (T) fails.
 - (h) If $w^{-1} = -i' i y_{i'} y_i j' j y_{j'} y_j$ then (T) fails.
 - (i) If $w^{-1} = -i' i y_{i'} j' y_i j y_{j'} y_j$ then (T) fails.
 - (j) If $w^{-1} = -i' y_{i'} i j' y_{i'} y_i j y_i$ then (T) fails.
 - $\text{(k) If } w^{-1} = -i' y_{i'} j' i y_i j y_{j'} y_j \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (y_{j'},j').$
 - (l) If $w^{-1} = -i' y_{i'} j' i y_i y_{j'} j y_j$ then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (y_{j'}, j')$.
 - (m) If $w^{-1} = -i' y_{i'} j' y_{j'} i y_i j y_j$ then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (y_{i'}, j')$.
 - (n) If $w^{-1} = -i' y_{i'} j' i y_{j'} y_i j y_j$ then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (y_{j'}, j')$.

We conclude that properties (Z1)-(Z3) hold for all $(a, b), (a', b') \in \text{Cyc}(z)$ when $y_i < y_j < i < j$.

14 Conclusion

It follows from this exhaustive case analysis that properties (Z1)-(Z3) hold for all pairs $(a, b), (a', b') \in \text{Cyc}(z)$. We conclude by Lemma 1 that $wt \in \mathcal{A}(z)$. This completes the proof of the theorem.

References

- [1] A. Björner and F. Brenti, *Combinatorics of Coxeter groups*, Graduate Texts in Mathematics 231, Springer, New York, 2005.
- [2] E. Marberg, On some actions of the 0-Hecke monoids of affine symmetric groups, J. Combin. Theory Ser. A 161 (2019), 178–219.