MIMA Group

Outline

- Introduction
- linear regression model
 - linear model
 - least square method --> basic linear regression
 - ridge regression(岭回归)
 - lasso regression

Regression

- The output value of a classification model is discrete.
- The output value of a regression model is continuous.

Regression

- Regression estimates the relationship between input values and output values, and establishes a mathematical model in order to accurately predict the output value of new sample.
- Regression is a supervised learning question.

Regression

Linear Regression Model

Linear Regression Model

Linear Regression Model

general model:

$$f(x) = w_1 x_1 + w_2 x_2 + \ldots + w_d x_d + b$$

 $x_1, x_2, ..., x_d$: the feature of sample

 $w_1, w_2, ..., w_d$: weight, represent the importance of corresponding feature

$$f_{\text{BM}}(x) = 0.2 \cdot x_{\text{WE}} + 0.5 \cdot x_{\text{bb}} + 0.3 \cdot x_{\text{max}} + 1$$

importance: $x_{\text{th}} > x_{\text{tit}} > x_{\text{deg}}$

Linear Model's Vector Representation

general model: $f(x) = w_1x_1 + w_2x_2 + ... + w_dx_d + b$

vector formal:

$$f(\boldsymbol{x}) = \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} + b$$
 $\boldsymbol{w} = (w_1; w_2; \dots; w_d)$ $\boldsymbol{x} = (x_1; x_2; \dots; x_d)$

Linear Model's Vector Representation

training set:

S1: 楼层=6, 地段=5, 面积=120。房价=100 S2: 楼层=3, 地段=1, 面积=100。房价=200 S3: 楼层=16, 地段=8, 面积=200。房价=120

$$\begin{cases} 6\omega_{1} + 5\omega_{2} + 120\omega_{3} = 100 \\ 3\omega_{1} + \omega_{2} + 100\omega_{3} = 200 \end{cases} \qquad \omega_{1} = a \\ \omega_{2} = b \\ 16\omega_{1} + 8\omega_{2} + 200\omega_{3} = 120 \qquad \omega_{3} = c$$

$$f_{\text{gh}}(x) = a \cdot x_{\text{deg}} + b \cdot x_{\text{hh}} + c \cdot x_{\text{mag}}$$

Solve weigt vector w according to training set.

Which model is better?

$$f_{\text{BM}}(x) = 0.2 \cdot x_{\text{WB}} + 0.5 \cdot x_{\text{bB}} + 0.3 \cdot x_{\text{mB}} + 1$$

$$g_{\text{gh}}(x) = 0.1 \cdot x_{\text{WE}} + 0.4 \cdot x_{\text{hb}} + 0.5 \cdot x_{\text{mat}} + 3$$

a known data:楼层=6, 地段=5, 面积=120, 房价=100 model f predictive value: 0.2*6+0.5*5+0.3*120+1=40.7 model g predictive value: 0.1*6+0.4*5+0.5*120+3=65.6

model f error: 100-40.7=59.3 model g error: 100-65.6=34.4 34.4<59.3 model g is better

•the model which can minimize error between model predictive value and true value.

Least Square Method

In regression task, the least square method is often used measuring error between model predictive value and true value.

•solve w and b

single linear regression:

model:
$$f(x_i) = wx_i + b$$

$$E_{(w,b)} = \sum_{i=1}^{m} (f(x_i) - y_i)^2$$

$$=\sum_{i=1}^{m}(y_i-wx_i-b)^2$$

min $E_{(w,b)}$

•solve w and b

single linear regression:

$$E_{(w,b)} = \sum_{i=1}^{m} (y_i - wx_i - b)^2$$

$$\frac{\partial E_{(w,b)}}{\partial w} = 2\left(w\sum_{i=1}^{m} x_i^2 - \sum_{i=1}^{m} (y_i - b)x_i\right) = 0$$
$$\frac{\partial E_{(w,b)}}{\partial b} = 2\left(mb - \sum_{i=1}^{m} (y_i - wx_i)\right) = 0$$

new sample

$$w = \frac{\sum_{i=1}^{m} y_i (x_i - \bar{x})}{\sum_{i=1}^{m} x_i^2 - \frac{1}{m} \left(\sum_{i=1}^{m} x_i\right)^2}$$

$$b = \frac{1}{m} \sum_{i=1}^{m} (y_i - wx_i) \quad \bar{x} = \frac{1}{m} \sum_{i=1}^{m} x_i$$

model: $f(x_i) = wx_i + b$

dataset: $D = \{(x_i, y_i)\}_{i=1}^m$

multiple linear regression:

model
$$f(\boldsymbol{x}_i) = w_1 x_{i1} + w_2 x_{i2} + ... + w_d x_{id} + b$$

vector $f(\boldsymbol{x}_i) = \boldsymbol{w}^T \boldsymbol{x}_i + b$
model: $\boldsymbol{\uparrow} * m$
 $f(\boldsymbol{x}) = \mathbf{X} \hat{\boldsymbol{w}}$

$$\hat{\boldsymbol{w}} = (\boldsymbol{w}; b) \ (d+1)$$
 column vector

$$\mathbf{X} = egin{pmatrix} x_{11} & x_{12} & \dots & x_{1d} & 1 \ x_{21} & x_{22} & \dots & x_{2d} & 1 \ dots & dots & \ddots & dots & dots \ x_{m1} & x_{m2} & \dots & x_{md} & 1 \end{pmatrix} = egin{pmatrix} oldsymbol{x}_1^\mathrm{T} & 1 \ oldsymbol{x}_2^\mathrm{T} & 1 \ dots & dots \ oldsymbol{x}_m^\mathrm{T} & 1 \end{pmatrix} \quad oldsymbol{m} imes (d+1) \ ext{matrix}$$

 $y = (y_1; y_2; ...; y_m)$ m column vector, true values of samples

•solve $\hat{\boldsymbol{w}}$

multiple linear regression:

model:
$$f(m{x}) = \mathbf{X}\hat{m{w}}$$
 least square method loss function: $E_{\hat{m{w}}} = (m{y} - \mathbf{X}\hat{m{w}})^{\mathrm{T}}(m{y} - \mathbf{X}\hat{m{w}})$

$$\hat{\boldsymbol{w}} = (\boldsymbol{w}; b)$$

$$\mathbf{X} = \begin{pmatrix} x_{11} & x_{12} & \dots & x_{1d} & 1 \\ x_{21} & x_{22} & \dots & x_{2d} & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ x_{m1} & x_{m2} & \dots & x_{md} & 1 \end{pmatrix} = \begin{pmatrix} \mathbf{x}_{1}^{\mathrm{T}} & 1 \\ \mathbf{x}_{2}^{\mathrm{T}} & 1 \\ \vdots & \vdots \\ \mathbf{x}_{m}^{\mathrm{T}} & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix} = 1^{2} + 2^{2} + 3^{2} + 4^{2}$$

$$\begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix} = 1^2 + 2^2 + 3^2 + 4^2$$

$$\boldsymbol{y}=(y_1;y_2;\ldots;y_m)$$

•solve $\hat{\boldsymbol{w}}$

multiple linear regression:

loss function:

$$E_{\hat{oldsymbol{w}}} = (oldsymbol{y} - \mathbf{X}\hat{oldsymbol{w}})^{\mathrm{T}} (oldsymbol{y} - \mathbf{X}\hat{oldsymbol{w}})^{\mathrm{T}}$$

向量求导公式

$$\frac{\partial (X\theta)}{\partial \theta} = X^T$$

$$\frac{\partial(\theta^T X)}{\partial \theta} = X$$

$$\frac{\partial(\theta^T X \theta)}{\partial \theta} = (X^T + X)\theta$$

$$= y^T y - y^T X \hat{w} - \hat{w}^T X^T y + \hat{w}^T X^T X \hat{w}$$
$$-2X^T y + 2X^T X \hat{w}$$

令
$$E_{\hat{\boldsymbol{w}}} = (\boldsymbol{y} - \mathbf{X}\hat{\boldsymbol{w}})^{\mathrm{T}} (\boldsymbol{y} - \mathbf{X}\hat{\boldsymbol{w}}),$$
对 $\hat{\boldsymbol{w}}$ 求导得到

$$\frac{\partial E_{\hat{\boldsymbol{w}}}}{\partial \hat{\boldsymbol{w}}} = 2 \mathbf{X}^{\mathrm{T}} (\mathbf{X} \hat{\boldsymbol{w}} - \boldsymbol{y}) = 0$$

$$\hat{\boldsymbol{w}} = (\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}}\boldsymbol{y}$$

analytical solution: 解析解

multiple linear regression:

Least square method's drawback

- 最小二乘法的损失函数有可能会造成模型过拟合。
- 解析解中 X^TX 有可能不是满秩矩阵, 逆矩阵不存在
- 样本的特征数远远超过样本数, 这样, û 会有多个解。

ridge regression & lasso regression

model:
$$f(\mathbf{x}_i) = w_1 x_{i1} + w_2 x_{i2} + ... + w_d x_{id} + b$$

vector model: $f(x_i) = w^T x_i + b$

 $f(\boldsymbol{x}) = \mathbf{X}\hat{\boldsymbol{w}}$

loss function:

basic linear regression: $E_{\hat{\boldsymbol{w}}} = (\boldsymbol{y} - \mathbf{X}\hat{\boldsymbol{w}})^{\mathrm{T}} (\boldsymbol{y} - \mathbf{X}\hat{\boldsymbol{w}})$

ridge regression: $E_{\hat{\boldsymbol{w}}} = (\boldsymbol{y} - \mathbf{X}\hat{\boldsymbol{w}})^{\mathrm{T}} (\boldsymbol{y} - \mathbf{X}\hat{\boldsymbol{w}}) + \lambda \|\hat{\boldsymbol{w}}\|_{2}^{2} \lambda > 0$

lasso regression: $E_{\hat{\boldsymbol{w}}} = (\boldsymbol{y} - \mathbf{X}\hat{\boldsymbol{w}})^{\mathrm{T}} (\boldsymbol{y} - \mathbf{X}\hat{\boldsymbol{w}}) + \lambda \|\hat{\boldsymbol{w}}\|_1 \quad \lambda > 0$

ridge 回归和lasso回归可以防止模型过拟合,也可以解决样本的特征数远超 过样本数的问题。

Norm

- •to measure the size of vector and matrix
- Norm is a value.

Vector Norm

$oldsymbol{w} \epsilon oldsymbol{R}^d$

L₀-norm: the number of non-zero elements in the vector

L₁-norm:
$$\|\boldsymbol{w}\|_1 = |w_1| + |w_2| + ... + |w_d| = \sum_{i=1}^{a} |w_i|$$

L₂-norm:
$$\|\boldsymbol{w}\|_2 = \sqrt{w_1^2 + w_2^2 + ... + w_d^2} = (\sum_{i=1}^d w_i^2)^{\frac{1}{2}}$$

$$\|\boldsymbol{w}\|_{\infty} = \max\{|w_1|, |w_2|, ..., |w_d|\} = \max_{1 \leq i \leq d}\{|w_i|\}$$

$$\boldsymbol{w} = \begin{bmatrix} 1 & 2 & -2 \end{bmatrix}$$

$$||\boldsymbol{w}||_0 = 3 \quad ||\boldsymbol{w}||_1 = 5$$

$$||\boldsymbol{w}||_2 = 3 \quad ||\boldsymbol{w}||_{\infty} = 2$$

ridge regression

$$\begin{array}{c} \mathsf{model}\ f(\boldsymbol{x}_i) = w_1 x_{i1} + w_2 x_{i2} + ... + w_d x_{id} + b \\ \vdots \\ f(\boldsymbol{x}_i) = \boldsymbol{w}^\mathrm{T} \boldsymbol{x}_i + b \end{array}$$

loss function:

$$E_{\hat{\boldsymbol{w}}} = (\boldsymbol{y} - \mathbf{X}\hat{\boldsymbol{w}})^{\mathrm{T}} (\boldsymbol{y} - \mathbf{X}\hat{\boldsymbol{w}}) + \lambda \|\hat{\boldsymbol{w}}\|_{2}^{2} \ \lambda > 0$$

向量求导公式

$$\frac{\partial (X\theta)}{\partial \theta} = X^{T}$$
$$\partial (\theta^{T}X)_{-X}$$

$$\frac{\partial(\theta^T X)}{\partial \theta} = X$$

$$\frac{\partial(\theta^T X \theta)}{\partial \theta} = (X^T + X)\theta$$

$$= (\boldsymbol{y} - \mathbf{X}\hat{\boldsymbol{w}})^{\mathrm{T}} (\boldsymbol{y} - \mathbf{X}\hat{\boldsymbol{w}}) + \lambda \hat{\boldsymbol{w}}^{\mathrm{T}}\hat{\boldsymbol{w}}$$

$$= (\boldsymbol{y} - \mathbf{X}\hat{\boldsymbol{w}})^{\mathrm{T}} (\boldsymbol{y} - \mathbf{X}\hat{\boldsymbol{w}}) + \lambda \hat{\boldsymbol{w}}^{\mathrm{T}} \boldsymbol{I} \hat{\boldsymbol{w}}$$

I:identity matrix

$$\frac{\frac{\partial (\boldsymbol{\theta} \cdot \boldsymbol{X})}{\partial \boldsymbol{\theta}} = X}{\frac{\partial (\boldsymbol{\theta}^T X \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = (X^T + X) \boldsymbol{\theta}} \quad \frac{\partial E_{\hat{\boldsymbol{w}}}}{\partial \hat{\boldsymbol{w}}} = 2 \, \mathbf{X}^T \, (\mathbf{X} \hat{\boldsymbol{w}} - \boldsymbol{y}) + \lambda \, \boldsymbol{I} \hat{\boldsymbol{w}} = \boldsymbol{0}$$

analytical solution:
$$\hat{m{w}} = (m{X}^Tm{X} + \lambda m{I})^{-1}m{X}^Tm{y}$$

ridge regression

basic linear regression:

loss function:
$$E_{\hat{m{w}}} = (m{y} - \mathbf{X}\hat{m{w}})^{\mathrm{T}} (m{y} - \mathbf{X}\hat{m{w}})$$

analytical solution:

$$\hat{\boldsymbol{w}} = \left(\mathbf{X}^{\mathrm{T}}\mathbf{X}\right)^{-1}\mathbf{X}^{\mathrm{T}}\boldsymbol{y}$$

ridge regression:

loss function:
$$E_{\hat{\boldsymbol{w}}} = (\boldsymbol{y} - \mathbf{X}\hat{\boldsymbol{w}})^{\mathrm{T}} (\boldsymbol{y} - \mathbf{X}\hat{\boldsymbol{w}}) + \lambda \|\hat{\boldsymbol{w}}\|_2^2 \ \lambda > 0$$

analytical solution:

$$\hat{\boldsymbol{w}} = (\boldsymbol{X}^T \boldsymbol{X} + \lambda \boldsymbol{I})^{-1} \boldsymbol{X}^T \boldsymbol{y}$$

 $({m X}^T{m X} + \lambda {m I})$ is full rank matrix, $\hat{m w}$ can get analytical solution.

可以解决特征数大于样本数的问题

ridge regression

loss function:

$$E_{\hat{\boldsymbol{w}}} = (\boldsymbol{y} - \mathbf{X}\hat{\boldsymbol{w}})^{\mathrm{T}} (\boldsymbol{y} - \mathbf{X}\hat{\boldsymbol{w}}) + \lambda \|\hat{\boldsymbol{w}}\|_{2}^{2} \ \lambda > 0$$

Least Absolute Shrinkage and Selection

Operator,最小绝对收敛算子

model
$$f(\boldsymbol{x}_i) = w_1 x_{i1} + w_2 x_{i2} + ... + w_d x_{id} + b$$
:

vector
$$f(\boldsymbol{x}_i) = \boldsymbol{w}^T \boldsymbol{x}_i + b$$
model:
$$f(\boldsymbol{x}) = \mathbf{X} \hat{\boldsymbol{w}}$$

loss function:
$$E_{\hat{\boldsymbol{w}}} = (\boldsymbol{y} - \mathbf{X}\hat{\boldsymbol{w}})^{\mathrm{T}} (\boldsymbol{y} - \mathbf{X}\hat{\boldsymbol{w}}) + \lambda \|\hat{\boldsymbol{w}}\|_{1} \quad \lambda > 0$$

$$\|\boldsymbol{w}\|_{1} = |w_{1}| + |w_{2}| + ... + |w_{d}| = \sum_{i=1}^{d} |w_{i}|$$

loss function: $E_{\hat{\boldsymbol{w}}} = (\boldsymbol{y} - \mathbf{X}\hat{\boldsymbol{w}})^{\mathrm{T}} (\boldsymbol{y} - \mathbf{X}\hat{\boldsymbol{w}}) + \lambda \|\hat{\boldsymbol{w}}\|_{1} \ \lambda > 0$

- 函数在某点可导条件:
- 1) 函数在该点连续
- 2) 函数在该点左右两侧导数都存在并且相等。

$$y = |\omega|, \omega \in R$$

 $y'(0^{-}) = -1, y'(0^{+}) = 1$

loss function:
$$E_{\hat{\boldsymbol{w}}} = (\boldsymbol{y} - \mathbf{X}\hat{\boldsymbol{w}})^{\mathrm{T}} (\boldsymbol{y} - \mathbf{X}\hat{\boldsymbol{w}}) + \lambda \|\hat{\boldsymbol{w}}\|_{1} \ \lambda > 0$$

Solving loss function

Due to $\|w\|_1$ aving not derivative(导数), we use proximal gradient descent method(近端梯度下降法) to minimize the loss function of lasso regression. analytical solution:

可以解决特征数大于样本数的问题

$$\min_{x} f(x) + \lambda \cdot g(x),$$

根据利普希茨连续性,对于任意 x,y一定存在常数 L使得满足

$$|f'(y) - f'(x)| \le L|y - x|.$$

用 x^{(k)} 来表示x的第 k 次更新后的结果 $\hat{f}(x,x^{(k)})=f(x^{(k)})+\nabla f^T(x^{(k)})(x-x^{(k)})+\frac{L}{2}\left\|x-x^{(k)}\right\|^2$,则对于 x逼近 x^{(k)}时, f(x)近似可以 $=\frac{L}{2}[x-(x^{(k)}-\frac{1}{L}\nabla f(x^{(k)}))]^2+\mathrm{CONST}$ 用 x 和 x^{(k)} 的函数来表示:

$$\begin{split} x^{(k+1)} &= \mathrm{argmin}_x \{ f(x) + \lambda \cdot g(x) \}, \\ x^{(k+1)} &= \mathrm{argmin}_x \{ \hat{f}(x, x^{(k)}) + \lambda \cdot g(x) \} \\ &= \mathrm{argmin}_x \{ \frac{L}{2} [x - (x^{(k)} - \frac{1}{L} \nabla f(x^{(k)}))]^2 + \mathrm{CONST} + \lambda \cdot g(x) \}. \\ &= \mathrm{Given} \ g(x) = \|x\|_1, \ \mathrm{and} \ \mathrm{let} \ z = x^{(k)} - \frac{1}{L} \nabla f(x_k), \ \mathrm{we \ have} \\ &= x^{(k+1)} = \mathrm{argmin}_x \{ \frac{L}{2} \|x - z\|^2 + \lambda \|x\|_1 \}. \\ &= x^{(k+1)} = \mathrm{argmin}_x \{ \frac{L}{2} \|x - z\|^2 + \lambda \|x\|_1 \}. \\ &= x^{(k+1)} = \mathrm{argmin}_x \{ \frac{L}{2} \|x - z\|^2 + \lambda \|x\|_1 \}. \\ &= x^{(k+1)} = \mathrm{argmin}_x \{ \frac{L}{2} \|x - z\|^2 + \lambda \|x\|_1 \}. \\ &= x^{(k+1)} = \mathrm{argmin}_x \{ \frac{L}{2} \|x - z\|^2 + \lambda \|x\|_1 \}. \\ &= x^{(k+1)} = \mathrm{argmin}_x \{ \frac{L}{2} \|x - z\|^2 + \lambda \|x\|_1 \}. \\ &= x^{(k+1)} = \mathrm{argmin}_x \{ \frac{L}{2} \|x - z\|^2 + \lambda \|x\|_1 \}. \\ &= x^{(k+1)} = \mathrm{argmin}_x \{ \frac{L}{2} \|x - z\|^2 + \lambda \|x\|_1 \}. \\ &= x^{(k+1)} = \mathrm{argmin}_x \{ \frac{L}{2} \|x - z\|^2 + \lambda \|x\|_1 \}. \\ &= x^{(k+1)} = \mathrm{argmin}_x \{ \frac{L}{2} \|x - z\|^2 + \lambda \|x\|_1 \}. \\ &= x^{(k+1)} = \mathrm{argmin}_x \{ \frac{L}{2} \|x - z\|^2 + \lambda \|x\|_1 \}. \\ &= x^{(k+1)} = \mathrm{argmin}_x \{ \frac{L}{2} \|x - z\|^2 + \lambda \|x\|_1 \}. \\ &= x^{(k+1)} = \mathrm{argmin}_x \{ \frac{L}{2} \|x - z\|^2 + \lambda \|x\|_1 \}. \\ &= x^{(k+1)} = \mathrm{argmin}_x \{ \frac{L}{2} \|x - z\|^2 + \lambda \|x\|_1 \}. \\ &= x^{(k+1)} = \mathrm{argmin}_x \{ \frac{L}{2} \|x - z\|^2 + \lambda \|x\|_1 \}. \\ &= x^{(k+1)} = \mathrm{argmin}_x \{ \frac{L}{2} \|x - z\|^2 + \lambda \|x\|_1 \}. \\ &= x^{(k+1)} = \mathrm{argmin}_x \{ \frac{L}{2} \|x - z\|^2 + \lambda \|x\|_1 \}. \\ &= x^{(k+1)} = \mathrm{argmin}_x \{ \frac{L}{2} \|x - z\|^2 + \lambda \|x\|_1 \}. \\ &= x^{(k+1)} = \mathrm{argmin}_x \{ \frac{L}{2} \|x - z\|^2 + \lambda \|x\|_1 \}. \\ &= x^{(k+1)} = \mathrm{argmin}_x \{ \frac{L}{2} \|x - z\|^2 + \lambda \|x\|_1 \}. \\ &= x^{(k+1)} = \mathrm{argmin}_x \{ \frac{L}{2} \|x - z\|^2 + \lambda \|x\|_1 \}. \\ &= x^{(k+1)} = \mathrm{argmin}_x \{ \frac{L}{2} \|x - z\|^2 + \lambda \|x\|_1 \}. \\ &= x^{(k+1)} = \mathrm{argmin}_x \{ \frac{L}{2} \|x - z\|^2 + \lambda \|x\|_1 \}. \\ &= x^{(k+1)} = \mathrm{argmin}_x \{ \frac{L}{2} \|x - z\|^2 + \lambda \|x\|_1 \}. \\ &= x^{(k+1)} = \mathrm{argmin}_x \{ \frac{L}{2} \|x - z\|^2 + \lambda \|x\|_1 \}. \\ &= x^{(k+1)} = \mathrm{argmin}_x \{ \frac{L}{2} \|x - z\|^2 + \lambda \|x\|_1 \}. \\ &= x^{(k+1)} = \mathrm{argmin}_x \{ \frac{L}{2} \|x - z\|^2 + \lambda \|x\|_1 \}. \\ &= x^{(k+1)} = \mathrm{argmin}_x \{ \frac{L}{2} \|x - z\|^2 + \lambda \|x\|_1 \}. \\ &= x^{(k+$$

Lasso regression is easier to get sparse solution

sparse solution(稀疏解):

- $\triangleright w$ contains less non-zero elements.
- It can use for feature selection.

 $w_d = 0$ means the feature x_{id} is not important to the task.

model
$$f(\boldsymbol{x}_i) = w_1 x_{i1} + w_2 x_{i2} + ... + w_d x_{id} + b$$

$$f(\boldsymbol{x}_i) = \boldsymbol{w}^T \boldsymbol{x}_i + b$$

loss function:
$$E_{\hat{\boldsymbol{w}}} = (\boldsymbol{y} - \mathbf{X}\hat{\boldsymbol{w}})^{\mathrm{T}} (\boldsymbol{y} - \mathbf{X}\hat{\boldsymbol{w}}) + \lambda \|\hat{\boldsymbol{w}}\|_{1} \quad \lambda > 0$$

$$\|\boldsymbol{w}\|_{1} = |w_{1}| + |w_{2}| + \dots + |w_{d}|$$

basic linear regression: $E_{(w,b)} = \sum_{i=1}^{m} (f(x_i) - y_i)^2$

lasso vs ridge regression

Lasso和岭回归的区别很好理解,在优化过程中,最优解为函数等值线与约束空间的交集,正则项可以看作是约束空间。可以看出二范的约束空间是一个球形,一范的约束空间是一个方形,这也就是二范会得到很多参数接近0的值,而一范会尽可能非零参数最少。

lasso vs ridge regression

- Prevent model overfitting.
- solve the problem that the number of features is larger than the number of samples.

It is easier to get sparse solution.

Summary

- linear regression model
 - linear model

model
$$f(\boldsymbol{x}_i) = w_1 x_{i1} + w_2 x_{i2} + ... + w_d x_{id} + b$$
:

vector
$$f(\boldsymbol{x}_i) = \boldsymbol{w}^T \boldsymbol{x}_i + b$$
model:
$$f(\boldsymbol{x}) = \boldsymbol{X} \hat{\boldsymbol{w}}$$

least square method --> basic linear regression

loss function:
$$E_{\hat{m{w}}} = (m{y} - \mathbf{X}\hat{m{w}})^{\mathrm{T}} (m{y} - \mathbf{X}\hat{m{w}})$$
 analytical solution: $\hat{m{w}} = (\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}}m{y}$

Summary

- linear regression model
 - ridge regression(岭回归)

loss
$$E_{\hat{\boldsymbol{w}}} = (\boldsymbol{y} - \mathbf{X}\hat{\boldsymbol{w}})^{\mathrm{T}}(\boldsymbol{y} - \mathbf{X}\hat{\boldsymbol{w}}) + \lambda \|\hat{\boldsymbol{w}}\|_2^2 \ \lambda > 0$$
 function: analytical solution $\hat{\boldsymbol{w}} = (\boldsymbol{X}^T\boldsymbol{X} + \lambda \boldsymbol{I})^{-1}\boldsymbol{X}^T\boldsymbol{y}$

lasso regression

loss function:
$$E_{\hat{\boldsymbol{w}}} = (\boldsymbol{y} - \mathbf{X}\hat{\boldsymbol{w}})^{\mathrm{T}} (\boldsymbol{y} - \mathbf{X}\hat{\boldsymbol{w}}) + \lambda \|\hat{\boldsymbol{w}}\|_{1} \quad \lambda > 0$$

Lasso regression is easier to get sparse sow tion

.

MIMA Group

Thank You!

Any Question?