Introduction to Data Analytics

Xin Gao
Xin.gao@kaust.edu.sa
July 29, 2022
SDU

Neurons

- A neuron is an electrically excitable cell (threshold switching unit) that processes and transmits information by electrical and chemical signaling
 - Dendrites, axon, synapses
- The cell body of a neuron frequently gives rise to multiple dendrites, but never to more than one axon, although the axon may branch hundreds of times before it terminates

Neurons

- Dendrites: filaments that arise from the cell body, often extending for hundreds of micrometers and branching multiple times, giving rise to a complex "dendritic tree"
- Axon: a special cellular filament that arises from the cell body at a site called the axon hillock and travels for a distance, as far as 1m in humans or even more in other species
- Synapses: send signals from the axon of one neuron to a dendrite of another

Neurons

- We are born with about 100 billion neurons
- Computers are at least 10⁶ times faster in raw switching speed
- But the brain is faster and reliable at computationally intensive tasks, such as computer vision, speech recognition, etc
- The brain is also fault-tolerant, and exhibits graceful degradation with damage
 - A neuron may connect to as many as 100,000 other neurons
 - Even if you break 50% of the connections, the brain can still function properly
 - Very strong and robust connection construction

Artificial Neurons

Artificial Neural Networks

- f might be non-linear function
- X (vector of) continuous and/or discrete variables
- Y (vector of) continuous and/or discrete variables
- Represent f by network of logistic units
- Each unit is a logistic function

unit output =
$$\frac{1}{1 + \exp(w_0 + \sum_i w_i x_i)}$$

 Goal: train weights of all units to minimize the errors of predicted network outputs

Artificial Neural Networks

 ALVINN: an autonomous land vehicle in a neural network – Pomerleau 1993

Connection Models

Humans

- Neuron switching time ~ 0.001 second
- Number of neurons $\sim 10^{11}$
- Connections per neuron ~ 10⁵
- Scene recognition time ~ 0.1 second
- 100 inference steps doesn't seem enough
- > much parallel computation
- Properties of artificial neural networks (ANN's)
 - Many neuron-like threshold witching units
 - Many weighted interconnections among units
 - Highly parallel, distributed process

Artificial Neural Networks

 All nodes are involved in computation except for the input nodes, which simply send the input values to all nodes in the next layer

Artificial Neural Networks

Node y_i

- $s_j = \sum_{i=0}^n w_j^i x_i^i = w_j^0 x_0^i + w_j^1 x_1^i + \dots + w_j^n x_n^i$
- $x_0 = 1$, which is called "bias"
- $\sigma(s)$ is called the transfer function. There are various possibilities for $\sigma(s)$

Transfer Function

- Linear function
 - $-\sigma(s) = ks$, where k is a real number

y_j is simply a linear function of the input x_i

A form of linear regression

Transfer Function

Step function (threshold function)

$$-\sigma(s) = \{ 1, s > 0 \\ -1, s \le 0 \}$$

$$-\sigma(s) = \begin{cases} 1, & s > 0 \\ 0, & s \le 0 \end{cases}$$

Transfer Function

Sigmoid function

$$-\sigma(s) = \frac{1}{1 + e^{-s}}$$

- Properties
 - Differentiable function: a function whose derivative exists at each point in its domain

•
$$\sigma'^{(s)} = \frac{d\sigma}{ds} = \frac{e^{-s}}{(1+e^{-s})^2} =$$
$$\sigma(s)(1-\sigma(s))$$

Training ANN

• Training involves a "training set", each member of the training set is a vector $\{x_i\}_{i=0}^n$ and an output $\{C_i^-\}_{i=1}^p$

Testing ANN

- Training involves a "test set", each member of the test set is a vector $\{x_i\}_{i=0}^n$
- Training data and test data are separate data sets.
 However, they should be drawn from the same distribution

Training ANN

- We want to minimize the error
 - Least square error: $E = \frac{1}{2} \sum_{k=1}^{p} (y_k C_k)^2$
- So E has to be minimized with respect to the weights $\{w_i^i\}$
- We need $\frac{\partial E}{\partial w^i_j}$ to discover how the error E depends on the $\{w^i_j\}$

Back-propagation Algorithm

- Gradient descent over entire network weight vector
- Will find a local, not necessarily global error minimum
 - In practice, often works well (can run multiple times)
- Minimizes error over training examples
 - Will it generalize well to subsequent examples?
- Training can take thousands of iterations. Slow!
- Using network after training is fast

Overfitting

- ANNs are supervised learning
 - Every supervised learning has risks of overfitting

- Training involves iterative weight updating. The number of iterations, n, is important
 - How do we choose n to minimize the error rate over future data?
 - We use cross validation

Expressive Capability of ANNs

Boolean functions

- Every boolean function can be represented by network with single hidden layer
- But might require exponential (in number of inputs) hidden nodes

Continuous functions

- Every bounded continuous function can be approximated with arbitrarily small error, by network with one hidden layer [Cybenko 1989, Hornik et al. 1989]
- Any function can be approximated to arbitrary accuracy by a network with two hidden layers [Cybenko 1988]

Input		Output
10000000	\rightarrow	10000000
01000000	\rightarrow	01000000
00100000	\rightarrow	00100000
00010000	\rightarrow	00010000
00001000	\rightarrow	00001000
00000100	\rightarrow	00000100
00000010	\rightarrow	00000010
00000001	\rightarrow	00000001

Can this be learned?

Learned hidden layer representation

Input		Hidden				Output		
Values								
10000000	\rightarrow	.89	.04	.08	\rightarrow	10000000		
01000000	\rightarrow	.01	.11	.88	\rightarrow	01000000		
00100000	\rightarrow	.01	.97	.27	\rightarrow	00100000		
00010000	\rightarrow	.99	.97	.71	\rightarrow	00010000		
00001000	\rightarrow	.03	.05	.02	\rightarrow	00001000		
00000100	\rightarrow	.22	.99	.99	\rightarrow	00000100		
00000010	\rightarrow	.80	.01	.98	\rightarrow	00000010		
00000001	\rightarrow	.60	.94	.01	\rightarrow	00000001		

Another Example

Neural network based face recognition

Typical input images

Another Example

Typical input images

Detour to Deep Neural Network

Deep neural network

What's the Problem?

¥509.00

语图马牌(Continental)轮验/汽车 幹部 205/55R16 91V CC6 本田 FI-500+45360

德国马牌轮胎东东台曾摄取店 卿 10 個書 第2390 金0

#539.00 ¥519... ¥579.00

知模器 [Dunlop] 轮胎/汽车轮指 未属林(Michelin)能船/汽车轮船 225/65R37 102T ST30 CRVIPIE 205/60R16 92V PRIMACY LC DT □ #2200+常母的

ポ东配送寺区 (#

月前2500+条甲价 **多数林白鹭专区 @**

¥529.00

苗利可通 (Bndgestone) 轮胎/汽 苗利可通 (Bndgestone) 轮胎/汽 车轮階 205/55R16 91V ER300 門型2000+形成的

非东配送专区 柳

¥529.00

车轮部 215/60R16 95V ER33UZ F#1200+無理的 郊东阳送专区 課

AX 科室 | 存2399-80

天 30 加入期前

¥569.00

音利可遵 (Bridgestone) 轮胎/尺 米林林(Michelin)知能/汽车轮柱 车到船 225/55R17.97W Y001 河南80+公司位 音利可通轮影響东自营专区 @

ID DE CERSONALES

□ 好 □ 元 34 加入粉件

¥618.00

215/60R16 99V PRIMACY3 ST 四百1.6万十年活动 米其林白皙专区 傳

D 61 7209-00

DE EN SERVICE 河 关 34加入购物 □ 対 (C 关 [W加入即物

£299.00

信順(Giti)製品/汽车轮至 205/55R16 91V 228 開始的評算 円率4000+SF67 已度200+65PIII

¥499.00

对 美 M 加入和他

¥439.00

通图马牌(Continental)轮胎/汽车 米爾林(Michelin)能能/汽车轮胎 前院 205/55R16 91V UC6 新年 195/65R15 91V PRIMACY3 ST 円率1.6万+公司市

What's the Problem?

¥509.00

语图马牌(Continental)轮验/汽车 新船 205/55R16 91V CC6 本田 FI-500+45360

德国马牌轮胎东东台管摄影店 卿 然东配进专区 卿

10個書 概念990元0

±539.00

□ #2200+常母的

¥519... 1203 ¥579.00

知得昔 (Dunlop) 职程/汽车轮程 未無林(Michelin)前程/汽车联股 225/65R17 102T ST30 CRVIPEE 205/60R16 92V PRIMACY LC DT **月前2500+**条甲价 **多数林白鹭专区 @**

¥529.00

车轮階 205/55R16 91V ER300 F#2000+#UE

非东配送专区 柳

¥529.00

苗利可通 (Bndgestone) 轮胎/汽 苗利可通 (Bndgestone) 轮胎/汽 车卸船 215/60R16 95V ER33UZ 円部1200+電源的 京东配送专区 徘

天 34加入期前

¥569.00

音利可遵 (Bridgestone) 轮胎/尺 米林林(Michelin)知能/汽车轮柱 车到船 225/55R17.97W Y001 河南80+公司位 音利可通轮影響东自营专区 @

ID DE CERSONALES

□ 好 □ 元 34 加入粉件

¥618.00

215/60R16 99V PRIMACY3 ST

£299.00 信順(Giti)結結/汽车轮至 205/55R16 91V 228 開始的評算 門馬4000+等層位

¥499.00

德国马牌(Continental)轮引/汽车 前院 205/55R16 91V UC6 新年 195/65R15 91V PRIMACY3 ST **日本200+**年期 德国马牌轮胎亦东日营旗积店 @

¥439.00

果屬林(Michelin)能验/汽车轮胎 PR1,6万+各部市

Two Approaches in Supervised Learning

- Do we use the prediction performance to guide the search?
 - NO → Filter
 - Yes → Wrapper

Deep Learning – Convolutional Neural Network

LeNet-5

Convolution

Pooling

activation map

Convolutional Neural Network

Convolutional Neural Network

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Leaky ReLU max(0.1x, x)

tanh

tanh(x)

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ReLU

 $\max(0, x)$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Sigmoid

$$\sigma(x)=1/(1+e^{-x})$$

- Squashes numbers to range [0,1]
- Historically popular since they have nice interpretation as a saturating "firing rate" of a neuron

3 problems:

- Saturated neurons "kill" the gradients
- Sigmoid outputs are not zero-centered
- 3. exp() is a bit compute expensive

- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than sigmoid/tanh in practice (e.g. 6x)

ReLU (Rectified Linear Unit)

Not zero-centered output

- Does not saturate
- Computationally efficient
- Converges much faster than sigmoid/tanh in practice! (e.g. 6x)
- will not "die".

Leaky ReLU

$$f(x) = \max(0.01x, x)$$

Pooling

Average Pooling

Max Pooling

Batch Normalization

X

1. compute the empirical mean and variance independently for each dimension.

2. Normalize

$$\widehat{x}^{(k)} = \frac{x^{(k)} - E[x^{(k)}]}{\sqrt{Var[x^{(k)}]}}$$

Softmax

Loss Function – Cross-entropy Loss

$$C = -rac{1}{n} \sum_x \left[y \ln a + (1-y) \ln (1-a)
ight]$$

Cross entropy is always larger than entropy; encoding symbols according to the wrong distribution will always make us use more bits.

Regularization - Dropout

In each forward pass, randomly set some neurons to zero Probability of dropping is a hyperparameter; 0.5 is common

Regularization - Dropout

How can this possibly be a good idea?

Forces the network to have a redundant representation; Prevents co-adaptation of features

Regularization – Data Augmentation

Regularization – Data Augmentation

Transform image

Regularization – Data Augmentation

Horizontal flips

Simple: Randomize contrast and brightness

Color jitter

Random crops and scale

Random mix/combinations of:

- translation
- rotation
- stretching
- shearing,
 - lens distortions, ... (go crazy)

Stochastic Gradient Descent

In stochastic (or "on-line") gradient descent, the true gradient is approximated by a gradient at a single example.

- Choose an initial vector of parameters w and learning rate η.
- Repeat until an approximate minimum is obtained:
 - · Randomly shuffle examples in the training set.
 - For $i=1,2,\ldots,n$, do:
 - $w := w \eta \nabla Q_i(w)$.

Gradient descent: use all examples in each iteration Stochastic gradient descent: use 1 example in each iteration Mini-batch gradient descent: use b examples in each iteration

Representative CNN Networks

- LeNet-5
- AlexNet
- VGG
- Autoencoder
- ResNet
- GAN

LeNet-5

LeNet-5

Convolution

AlexNet and VGG

AlexNet (Krizhevsky et al. 2012)

The class with the highest likelihood is the one the DNN selects

When AlexNet is processing an image, this is what is happening at each layer.

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv. 256
3x3 conv, 384
Pool
3x3 conv, 384
Pool
5x5 conv, 256
11x11 conv, 96
Input

AlexNet

Softmax	
FC 1000	
FC 4096	
FC 4096	
Pool	
3x3 conv, 512	
3x3 conv, 512	
3x3 conv, 512	
Pool	
3x3 conv, 512	
3x3 conv, 512	
3x3 conv, 512	
Pool	
3x3 conv, 256	
3x3 conv, 256	
Pool	
3x3 conv, 128	
3x3 conv, 128	
Pool	
3x3 conv, 64	
3x3 conv, 64	
Input	

VGG16

Softmax FC 1000 FC 4096 FC 4096 Pool Pool Pool Pool Pool Input

VGG19

Autoencoder

ResNet

Solution: Use network layers to fit a residual mapping instead of directly trying to fit a desired underlying mapping

Generative Adversarial Network

Real faces Discriminator Fake Deep Convolutional Network (DCN) Generator Real Deconvolutional Network (DN) Random noise Generated faces

Fluorescence Microscopy

Overview of DLBI

Li, Xu, Zhang, Xu, Zhang, Fan, Li, Gao, and Han. Bioinformatics, 2018

Performance on Real Data

Runtime

Compared to 3B:

DNN: 1500X speed up

DLBI: 150X speed up

- Large field reconstruction
- Real-time reconstruction

Large-field Reconstruction

Actin in U2OS (249*395)

DLBI: 200 frames (2K*3.2K)

PALM*: 20,000 frames

Backpropagation – Example

Backpropagation: a simple example

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz \qquad \quad rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Backpropagation – Example

- $\frac{\partial E}{\partial w_j^i} = \frac{\partial}{\partial w_j^i} \left[\frac{1}{2} \sum_{k=1}^p \left(y_k C_k \right)^2 \right] = \frac{\partial}{\partial w_j^i} \left[\frac{1}{2} \left(y_j C_j \right)^2 \right]$. That is, only the term where k = j do we have any contribution made by w_j^i
- Recall $y_j = \sigma\left(s_j\right)$ and $s_j = \sum_{i=0}^n w_j^{-1} x_i$, thus $\frac{\partial E}{\partial w_j^i} = \frac{\partial}{\partial w_j^i} \left[\frac{1}{2} \left(y_j C_j \right)^2 \right] = \left(y_j C_j \right) \frac{\partial y_j}{\partial w_j^i}$ $= \left(y_j C_j \right) \frac{\partial y_j}{\partial s_j} \cdot \frac{\partial s_j}{\partial w_j^i} = \left(y_j C_j \right) \frac{\partial y_j}{\partial s_j} \cdot \frac{\partial s_j}{\partial w_j^i}$ $= \left(y_j C_j \right) y_j \ (1 y_j \) x_i$

•
$$\frac{\partial E}{\partial w_j^i} = (y_j - C_j) y_j (1 - y_j) x_i$$

- Define $\delta_j = \left(y_j C_j\right) y_j \ (1 y_j)$
- Thus $\frac{\partial E}{\partial w_i^i} = \delta_j x_i$
- More generally, $\delta_{\rm j} = \left({\rm y_j} {\rm C_j} \right) \sigma'({\rm s_j})$

- Now how do we use $\frac{\partial E}{\partial w_i^i}$?
 - It is the gradient!

$$\frac{\partial \mathbf{E}}{\partial w} = \left[\frac{\partial \mathbf{E}}{\partial \mathbf{w}^0}, \frac{\partial \mathbf{E}}{\partial \mathbf{w}_j^1}, \dots, \frac{\partial \mathbf{E}}{\partial \mathbf{w}_j^n} \right]$$

- Training rule: $\triangle w_i = -\eta \frac{\partial E}{\partial w_i}$
- A small η means slow convergence, a big η means risks of jumping over global minimum
- Why "-"?
 - $-\frac{\partial E}{\partial w_i}$ positive means \triangle w_i should be negative

Back-propagation Algorithm

- Initialize all weights to small random numbers.
- Until satisfied, Do
 - For each training example, Do
 - Input the training example to the network and compute the network outputs
 - For each output unit k: $\delta_k \leftarrow \left(z_k C_k\right) z_k \; (1 z_k)$
 - For each hidden unit h:

$$\delta_h \leftarrow z_h (1 - z_h) \sum_k \delta_k w_k^h$$

• Update each network weight $w^i_j\colon w^i_j \leftarrow w^i_j + \triangle w^i_j$ Where $\triangle w^i_j = -\eta \delta_j \, x_i$