(12) INTERNATIONAL PLICATION PUBLISHED UNDER THE PATENT PERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 22 January 2004 (22.01.2004)

PCT

(10) International Publication Number WO 2004/008437 A2

(51) International Patent Classification⁷:

G10L 19/06

(21) International Application Number:

PCT/IB2003/003152

(22) International Filing Date:

11 July 2003 (11.07.2003)

(25) Filing Language:

7

English

(26) Publication Language:

English

(30) Priority Data: 02077870.0

16 July 2002 (16.07.2002) EP

(71) Applicant (for all designated States except US): KONIN-KLIJKE PHILIPS ELECTRONICS N.V. [NL/NL]; Groenewoudseweg 1, NL-5621 BA Eindhoven (NL).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): SCHULJERS, Erik, G., P. [NL/NL]; Prof. Holstlaan 6, NL-5656 AA Eindhoven (NL). RLJNBERG, Adriaan, J. [NL/NL]; Prof. Holstlaan 6, NL-5656 AA Eindhoven (NL). TOPALOVIC, Natasa/[YU/NL]; Prof. Holstlaan 6, NL-5656 AA Eindhoven (NL).
- (74) Agent: GROENENDAAL, Antonius, W., M.; Philips Intellectual Property & Standards, Prof. Holstlaan 6, NL-5656 AA Eindhoven (NL).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,

MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declaration under Rule 4.17:

as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii)) for the following designations AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM, ZW, ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG)

Published:

without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: AUDIO CODING

(57) Abstract: According to a first aspect of the invention, at least part of an audio signal is coded in order to obtain an encoded signal, the coding comprising predictive coding the at least part of the audio signal in order to obtain prediction coefficients which represent temporal properties, such as a temporal envelope, of the at least part of the audio signal, transforming the prediction coefficients into a set of times representing the prediction coefficients, and including the set of times in the encoded signal. Especially the use of a time domain derivative or equivalent of the Line Spectral Representation is advantageous in coding such prediction coefficients, because with this technique times or time instants are well defined which makes them more suitable for further encoding. For overlapping frame analysis/synthesis for the temporal envelope, redundancy in the Line Spectral Representation at the overlap can be exploited. Embodiments of the invention exploit this redundancy in an advantageous manner.