

Institut für Nachrichtentechnik

Abteilung Informationstheorie und Kommunikationssyteme

Prof. Eduard A. Jorswieck, Martin Le, Karl-Ludwig Besser

14. März 2022

Klausur - Signale und Systeme

Name: ______ Note: _____ Note: ____

Aufgabe	1	2	3	4	5	6	Summe
Punkte	7	6	6	10	12	7	48
Erreicht							

Hinweis: Bitte geben Sie bei allen Rechnungen den ausführlichen Rechenweg an.

Aufgabe 1. (7 Punkte)

- a) Geben Sie x(t) des im nebenstehenden Bild dargestellten periodischen zeitkontinuierlichen Signals x an!
- b) Geben Sie die komplexe Fourier-Reihe von x(t) an.

Aufgabe 2. (6 Punkte)

a) Füllen Sie den folgenden Lückentext aus:

Ein analoges System, dessen Ausgabe y(t) zum Zeitpunkt t nur von der Eingabe x(t) zum selben Zeitpunkt hängt, nennt man ein System. Ansonsten handelt es sich um ein System.

- b) Was ist die Beziehung zwischen dem Frequenzgang und dem Amplitudenfrequenzgang?
- c) Entscheiden Sie für jede der folgenden Aussagen, ob sie richtig oder falsch ist. Begründen Sie Ihre Antworten!
 - a) Ist das Hurwitz-Kriterium nicht erfüllt, so ist das System nicht stabil.
 - b) Die Faltung zweier Dreiecksignale mit Dauer T ergibt ein Dreiecksignal mit Dauer 2T.

- c) Die Laplace-Transformation existiert für alle stückweise glatten Funktionen.
- d) Die Fourier-Transformation existiert nur für periodische Signale.
- d) Was ist die Beziehung zwischen einer Impulsantwort und der dazugehörigen Übertragungsfunktion?
- e) Geben Sie die Übertragungsfunktion zu dem folgenden Pol-Nullstellen Plan an!

Aufgabe 3. (6 Punkte)

- a) Geben Sie x(t) und die Laplace-Transformierte des im nebenstehenden Bild dargestellten zeitkontinuierlichen Signals x an! $(\tau > 0)$
- b) Wie lautet die Laplace-Transformierte des Signals y = x * x? (x aus Teilaufgabe a) und * bezeichnet die Faltung)
- c) Wie lautet die Laplace-Transformierte des durch $z(t) = \int_0^t x(\tau) d\tau$ gegebenen Signals z? (x aus Teilaufgabe a))

Aufgabe 4. (10 Punkte)

Für die im Bild dargestellte Schaltung im Nullzustand berechne und skizziere man $u_2(t)$ für den Fall, dass $u_1(t)$ durch den im Bild gegebenen Zeitverlauf gegeben ist.

Abbildung 1: Schaltung im Nullzustand

Abbildung 2: Zeitverlauf $u_1(t)$

Aufgabe 5. (12 Punkte)

Von einem linearen zeitkontinuierlichen System im Nullzustand ist die Differentialgleichung

$$\ddot{y}(t) + 2\dot{y}(t) + 2y(t) = \ddot{x}(t) + 4\dot{x}(t) - 5x(t)$$

gegeben.

- a) Bestimmen Sie die Übertragungsfunktion dieses Systems und zeichnen Sie deren Pol-Nullstellen-Plan!
- b) Ist das System stabil? (Begründung!)
- c) Berechnen Sie den Amplitudenfrequenzgang dieses Systems, skizzieren Sie diesen mittels Bode-Diagramm und klassifizieren Sie das System! (Tiefpass, Hochpass, Bandpass usw.)
- d) Geben Sie eine aus Integriergliedern, Verstärkern und Addiergliedern bestehende Schaltung für dieses System an!

Aufgabe 6. (7 Punkte)

Gegeben ist die folgende Übertragungsfunktion G(s):

$$G(s) = \frac{(s-1)(s^2+s-6)}{(s^2+6s+4)(s+4)} = G_A(s)G_M(s)$$

- a) Zerlegen Sie die Übertragungsfunktion G(s) so in zwei Faktoren, dass $G_A(s)$ die Übertragungsfunktion eines Allpasses und $G_M(s)$ die Übertragungsfunktion eines Mindestphasensystems ist.
- b) Zeichnen Sie den dazugehörigen Pol-Nullstellen Plan!
- c) Ist das System stabil? Begründen Sie Ihre Antwort!