目录

第1章	张量	1
1.1	多线性代数	1
	1.1.1 多线性映射	1
	1.1.2 线性空间的抽象张量积	3
	1.1.3 线性空间上的共变和反变张量	6
1.2	对称张量和交错张量	8
	1.2.1 对称张量	8
	1.2.2 交错张量	10
1.3	流形上的张量和张量场	10
	1.3.1 张量场的拉回	13

第1章 张量

1.1 多线性代数

1.1.1 多线性映射

定义 1.1 (多线性映射)

设 V_1, \dots, V_k , W 是线性空间。映射 $F: V_1 \times \dots \times V_k \to W$ 被称为是多线性的,若对于每个 i

$$F\left(v_1,\dots,av_i+a'v_i',\dots,v_k\right)=aF\left(v_1,\dots,v_i,\dots,v_k\right)+a'F\left(v_1,\dots,v_i,\dots,v_k\right)$$

记全体 $V_1 \times \cdots \times V_k$ 到 W 的多线性映射为 $L(V_1, \cdots, V_k; W)$

Remark $L(V_1, \dots, V_k; W)$ 在逐点加法和标量乘法下构成线性空间。

Example 1.1 一些多线性映射

- 1. \mathbb{R}^n 上的标准内积是双线性映射。
- 2. \mathbb{R}^3 上的叉乘是双线性映射。
- 3. \mathbb{R}^n 上 n 个向量的行列式。

Example 1.2 余向量场的张量积

设 V 是向量空间, $\omega,\eta\in V^*$ 。定义函数 $\omega\otimes\eta:V\times V\to\mathbb{R}$

$$\omega \otimes \eta \left(v_1, v_2 \right) := \omega \left(v_1 \right) \eta \left(v_2 \right)$$

Example 1.3 多线性映射的张量积

令 V_1,\cdots,V_k , W_1,\cdots,W_l 是向量空间,设 $F\in L(V_1,\cdots,V_k,\mathbb{R})$, $G\in L(W_1,\cdots,W_l,\mathbb{R})$, 定义函数

$$F \otimes G : V_1 \times \cdots \times V_k \times W_1 \times \cdots \times W_l \to \mathbb{R}$$

通过

$$F \otimes G(v_1, \dots, v_k, w_1, \dots, w_l) := F(v_1, \dots, v_k) G(w_1, \dots, w_l)$$

它是 $L(V_1, \dots, V_k, W_1, \dots, W_l; \mathbb{R})$ 中的元素,称为是 F 和 G 的张量积。

Remark

- 1. 张量积运算⊗是双线性的,且满足结合律。
- 2. 由结合律,可以无歧义地定义多个多线性映射的张量积。

命题 1.1 (多线映射空间的基)

设 V_1, \dots, V_k 是微分分别为 n_1, \dots, n_k 的实向量空间。对于每个 $j \in \{1, \dots, k\}$,设 $\left(E_1^{(j)}, \dots, E_{n_j}^{(j)}\right)$ 是 V_j 的一组基,令 $\left(\varepsilon_{(j)}^1, \dots, \varepsilon_{(j)}^{n_j}\right)$ 是 V_j^* 上的对偶基。那么集合

$$\mathscr{B} := \{ \varepsilon_{(1)}^{i_1} \otimes \cdots \otimes \varepsilon_{(k)}^{i_k} : 1 \leqslant i_1 \leqslant n_1, \cdots, 1 \leqslant i_k \leqslant n_k \}$$

是 $L(V_1, \dots, V_k, \mathbb{R})$ 的一组基, 进而空间的维数为 $n_1 \dots n_k$

Proof 任取 $F \in L(V_1, \dots, V_k; \mathbb{R})$, 对于每一组 (i_1, \dots, i_k) , 定义一个实数

$$F_{i_1\cdots i_k} := F\left(E_{i_1}^{(1)}, \cdots, E_{i_k}^{(k)}\right)$$

接下来说明

$$F = F_{i_1 \cdots i_k} \varepsilon_{(1)}^{i_1} \otimes \cdots \otimes \varepsilon_{(k)}^{i_k}$$

为此, 任取 $(v_1,\cdots,v_k)\in V_1\times\cdots\times V_k$, 设 $v_1=v_1^{i_1}E_{i_1}^{(1)},\cdots,v_k=v_k^{i_k}E_{i_k}^{(k)}$, 那么

$$F(v_1, \dots, v_k) = F\left(v_1^{i_1} E_{i_1}^{(1)}, \dots, v_k^{i_k} E_{i_k}^{(k)}\right)$$

$$= v_1^{i_1} \dots v_k^{i_k} F\left(E_{i_1}^{(1)}, \dots, E_{i_k}^{(k)}\right)$$

$$= v_1^{i_1} \dots v_k^{i_k} F_{i_1 \dots i_k}, \quad i \text{ as a sum}$$

另一方面

$$\begin{split} & \left(F_{i_1\cdots i_k}\varepsilon_{(1)}^{i_1}\otimes\cdots\otimes\varepsilon_{(k)}^{i_k}\right)(v_1,\cdots,v_k) \\ & = F_{i_1\cdots i_k}\left(\varepsilon_{(1)}^{i_1}\otimes\cdots\otimes\varepsilon_{(k)}^{i_k}\right)(v_1,\cdots,v_k)\,, \quad i \text{ as a sum} \end{split}$$

其中

$$\begin{split} &\left(\varepsilon_{(1)}^{i_1}\otimes\cdots\otimes\varepsilon_{(k)}^{i_k}\right)\left(v_1,\cdots,v_k\right)\\ &=\left(\varepsilon_{(1)}^{i_1}\otimes\cdots\otimes\varepsilon_{(k)}^{i_k}\right)\left(v_1^{j_1}E_{j_1}^{(1)},\cdots,v_k^{j_k}E_{j_k}^{(k)}\right),\quad \text{j as a sum, i is not}\\ &=v_1^{j_1}\cdots v_k^{j_k}\left(\varepsilon_{(1)}^{i_1}\otimes\cdots\otimes\varepsilon_{(k)}^{i_k}\right)\left(E_{j_1}^{(1)},\cdots,E_{j_k}^{(k)}\right),\quad \text{j as a sum, i is not}\\ &=v_1^{i_1}\cdots v_k^{i_k} \end{split}$$

于是 $\left(F_{i_1\cdots i_k}\varepsilon_{(1)}^{i_1}\otimes\cdots\otimes\varepsilon_{(k)}^{i_k}\right)(v_1,\cdots,v_k)=v_1^{i_1}\cdots v_k^{i_k}F_{i_1\cdots i_k}, \text{ i as a sum 这就说明了}$ $F=F_{i_1\cdots i_k}\varepsilon_{(1)}^{i_1}\otimes\cdots\otimes\varepsilon_{(k)}^{i_k}$

为了说明 88 是线性无关的,设一个线性组合为零

$$F_{i_1\cdots i_k}\varepsilon_{(1)}^{i_1}\otimes\cdots\otimes\varepsilon_{(k)}^{i_k}=0$$

分别作用在每一组 $\left(E_{i_1}^{(1)},\cdots,E_{i_k}^{(k)}\right)$,得到 $F_{i_1\cdots i_k}=0$,这就说明了线性无关性。

1.1.2 线性空间的抽象张量积

定义 1.2 (形式线性组合)

S 中元素的一个形式线性组合,是指一个实值函数 $f \in \mathbb{R}^S$,使得 f(s) = 0 对于有限个 $s \in S$ 以外成立。

Remark

1. 对于每个 $x \in S$,存在唯一的 $\delta_x \in \mathcal{F}(S)$,使得 $\delta_x(x) = 1$, $\delta_x^{-1}(0) = S \setminus \{x\}$ 。通常将 δ_x 与 x 等同。

定义 1.3 (自由线性空间)

S上的自由(实)线性空间,记作 $\mathcal{F}(S)$,是指S上全体形式线性组合构成的空间。

*

Remark

- 1. 线性结构:在逐点加法和标量乘法下, $\mathscr{F}(S)$ 构成一个 \mathbb{R} -线性空间。
- 2. 基: $f \in \mathcal{F}(S)$ 唯一地写作 $f = \sum_{i=1}^{m} a_i x_i$ 。其中 $\{x_1, \dots, x_m\} = [f \neq 0]$, $a_i = f(x_i)$ 。因此 $S \in \mathcal{F}(S)$ 的一组基, $\mathcal{F}(S)$ 是有限维线性空间当且仅当 S 是有限集合。
- 3. 泛性质: 对于每个集合 S 和任意向量空间 W,每个映射 $A:S\to W$ 有唯一的到线性映射 $\overline{A}:\mathscr{F}(S)\to W$ 的延拓。

Proof 对于 $f = \sum_{i=1}^{m} a_i x_i$, $\overline{A}(f)$ 唯一的取法是

$$\overline{A}(f) = \sum_{i=1}^{m} a_i \overline{A}(x_i) = \sum_{i=1}^{m} a_i A(x_i)$$

定义 1.4 (抽象张量积)

设 V_1, V_2, \dots, V_k 是使线性空间。令 \mathcal{R} 为 $\mathcal{F}(V_1 \times \dots V_k)$ 中全体形如以下元素张成的空间:

$$(v_1, \dots, av_i, \dots, v_k) - a(v_1, \dots, v_i, \dots, v_k),$$
$$(v_1, \dots, v_i + v_i', \dots, v_k) - (v_1, \dots, v_i, v_k) - (v_1, \dots, v_i', \dots, v_k)$$

其中 $v_j, v_j' \in V_j, i \in \{1, 2, \dots, k\}, a \in \mathbb{R}$ 。

定义 V_1, V_2, \dots, V_k 的张量积空间,记作 $V_1 \otimes \dots \otimes V_k$,为下面的商空间

$$V_1 \otimes \cdots \otimes V_k := \mathscr{F}(V_1 \times \cdots \times V_k) \setminus \mathscr{R}$$

 $\Diamond \Pi: \mathscr{F}(V_1 \times \cdots \times V_k) \to V_1 \otimes \cdots \otimes V_k$ 为自然投影。元素 (v_1, v_2, \cdots, v_k) 在 $V_1 \otimes \cdots \otimes V_k$ 的等价类记作

$$v_1 \otimes \cdots \otimes v_k := \Pi(v_1, v_2, \cdots, v_k).$$

称为 v_1, v_2, \cdots, v_k 的抽象张量积。

Remark

1. 线性: 显然

$$v_1 \otimes \cdots \otimes av_i \otimes \cdots \otimes v_k = a (v_1 \otimes \cdots \otimes v_i \otimes \cdots \otimes v_k)$$

$$v_1 \otimes \cdots \otimes (v_i + v_i') \otimes \cdots \otimes v_k = (v_1 \otimes \cdots \otimes v_i \otimes \cdots \otimes v_k)$$

$$+ (v_1 \otimes \cdots \otimes v_i' \otimes \cdots \otimes v_k)$$

2. 每个 $V_1 \otimes \cdots \otimes V_k$ 中的元素写作 $v_1 \otimes \cdots \otimes v_k$ 的线性组合,但不一定能写作单个的 $v_1 \otimes \cdots \otimes v_k$

命题 1.2 (张量积的泛性质)

令 V_1, V_2, \cdots, V_k 是有限维线性空间, $A: V_1 \times \cdots V_k \to X$ 是多线性映射,那么存在唯一 的线性映射 $\tilde{A}: V_1 \otimes \cdots \otimes V_k \to X$, 使得下图交换

其中 π 是映射 $\pi(v_1,\dots,v_k)=v_1\otimes\dots\otimes v_k$

Proof 每个映射 $A: V_1 \times \cdots \times V_k \to X$ 唯一地延拓到线性映射 $\overline{A}: \mathscr{F}(V_1 \times \cdots \times V_k) \to X$ 。A 是多线性映射, 无非是 $\mathscr{R} \subseteq \ker \overline{A}$ 。因此 \overline{A} 诱导出线性映射 $\tilde{A}: \mathscr{F}(V_1 \times \cdots \times V_k) \setminus \mathscr{R} =$ $V_1 \otimes \cdots \otimes V_k \to X$, 使得 $\overline{A} = \tilde{A} \circ \Pi$, 又 $\pi = \Pi \circ i$, 其中 $i: V_1 \times \cdots \times V_k \hookrightarrow V_1 \otimes \cdots \otimes V_k$ 是 含入映射, $\overline{A} \circ i = A$ 故 $A = \tilde{A} \circ \pi$ 。

接下来考虑唯一性,注意到形如 $v_1 \otimes \cdots \otimes v_k$ 的向量都有唯一的映法 $\tilde{A}(v_1 \otimes \cdots \otimes v_k) = A(v_1, \cdots, v_k)$,而 $V_1 \otimes \cdots \otimes V_k$ 上的元素写作 $v_1 \otimes \cdots \otimes v_k$ 的线性组合, \tilde{A} 的线性保证了映法的唯一性。

可以用下图概括上述论证

命题 1.3 (张量积空间的基)

设 V_1, V_2, \cdots, V_k 是维数分别为 n_1, n_2, \cdots, n_k 的实线性空间。对于每个 $j = 1, 2, \cdots, k$, 设 $\left(E_1^{(j)},\cdots,E_{n_j}^{(j)}\right)$ 是 V_j 的一组基,则集合

$$\mathscr{C} = \left\{ E_{i_1}^{(1)} \otimes \cdots \otimes E_{i_k}^{(k)} : 1 \le i_1 \le n_1, \cdots, 1 \le i_k \le n_k \right\}$$

是 $V_1 \otimes \cdots \otimes V_k$ 的一组基,它的维数等于 $n_1 \cdots n_k$ 。

Proof

- 1. 根据定义,全体 $v_1 \otimes \cdots \otimes v_k$ 张成了空间 $V_1 \otimes \cdots \otimes V_k$,而每个 $v_1 \times \cdots v_k$ 写作 $E_{i_1}^{(1)} \times \cdots \times E_{i_r}^{(k)}$ 的线性组合,且投影映射 π 保持线性,故 \mathcal{C} 张成了 $V_1 \otimes \cdots \otimes V_k$ 。
- 2. 为了说明线性无关系,设以下线性组合为0

$$a^{i_1, i_2, \cdots, i_k} E_{i_1}^{(1)} \otimes \cdots \otimes E_{i_k}^{(k)} = 0$$

对每个 (m_1, m_2, \cdots, m_k) , 定义

$$\tau^{m_1, m_2, \cdots, m_k} \left(v_1, \cdots, v_k \right) := \varepsilon_{(1)}^{m_1} \left(v_1 \right) \cdots \varepsilon_{(k)}^{m_k} \left(v_k \right)$$

由泛性质1.2, 它延拓到线性映射 $\tilde{\tau}^{m_1,\cdots,m_k}:V_1\otimes\cdots\otimes V_k\to\mathbb{R}$,作用在上述线性组合上的 两边,得到

$$a^{m_1,\cdots,m_k}=0$$

故线性无关性成立。

命题 1.4 (张量积空间的结合律)

设 V_1, V_2, V_3 是有限维实线性空间,那么存在唯一的同构

$$V_1 \otimes (V_2 \otimes V_3) \simeq V_1 \otimes V_2 \otimes V_3 \simeq (V_1 \otimes V_2) \otimes V_3$$

使得 $v_1 \otimes (v_2 \otimes v_3)$, $v_1 \otimes v_2 \otimes v_3$ 和 $(v_1 \otimes v_2) \otimes v_3$ 对应。

Proof 只说明第一个同构,第二个同构完全类似。定义映射

$$\alpha: V_1 \times V_2 \times V_3 \to (V_1 \otimes V_2) \otimes V_3$$

$$(v_1, v_2, v_3) \mapsto (v_1 \otimes v_2) \otimes v_3$$

显然它是多线性的,由泛性质1.2,它唯一地延拓到线性映射 $\tilde{\alpha}: V_1 \otimes V_2 \otimes V_3 \rightarrow (v_1 \otimes v_2) \otimes V_3$, 使得 $\tilde{\alpha}(v_1 \otimes v_2 \otimes v_3) = \alpha(v_1 \otimes v_2) \otimes v_3$ 。 $(V_1 \otimes V_2) \otimes V_3$ 由形如 $(v_1 \otimes v_2) \otimes v_3$ 的元素张成,故 α 是满射, 从而 $\tilde{\alpha} = \alpha \circ \pi$ 亦然, 又由维数关系, 它是同构。故 $V_1 \otimes (V_2 \otimes V_3) \simeq V_1 \otimes V_2 \otimes V_3$ 。又任意满足性质的其他映射均在每个 $v_1 \otimes v_2 \otimes v_3$ 上与 $\tilde{\alpha}$ 一致,进而在 $V_1 \otimes V_2 \otimes V_3$ 上一致, 即唯一性成立。

命题 1.5 (抽象张量积与具体张量积)

若 V_1, \dots, V_k 是有限维线性空间,存在标准同构

$$V_1^* \otimes \cdots \otimes V_k^* \simeq L(V_1, \cdots, V_k; \mathbb{R}),$$

Remark

1. 考虑 V_i 与第二对偶空间的同构 V_i^{**} ,我们有另外的同构

$$V_1 \otimes \cdots \otimes V_k \simeq V_1^{**} \otimes \cdots \otimes V_k^{**} \simeq L(V_1^*, \cdots, V_k^*; \mathbb{R})$$

Proof 定义

$$\Phi: V_1^* \times \cdots V_k^* \to L\left(V_1, V_2, \cdots, V_k; \mathbb{R}\right)$$

$$\Phi(\omega_1, \cdots, \omega_k)(v_1, \cdots, v_k) := \omega_1(v_1) \cdots \omega_k(v_k)$$

那么显然 Φ 是多线性的, 由泛性质1.2 ,它诱导出映射 $\tilde{\Phi}$ 。此外 Φ 映由1.3给出的 $V_1^* \otimes \cdots \otimes V_k^*$ 的基为 $L(V_1, \cdots, V_k; \mathbb{R})$ 的基,因此 $\tilde{\Phi}$ 是同构。

1.1.3 线性空间上的共变和反变张量

定义 1.5 (共变张量)

设 V 是有限维线性空间,k 是正整数。V 上的一个共变 k-张量是指,k-折张量积空间 $V^* \otimes \cdots \otimes V^*$ 上的一个元素。通过命题1.5,通常视为一个 V 上的 k-线性映射

$$\alpha: \underbrace{V \times \cdots \times V}_{k \uparrow r} \to \mathbb{R}.$$

数字 k 被称为是 α 的 rank。

Remark

- 1. 0-tensor: 约定 0-tensor 为一个实数。
- 2. 简记 k-折张量积空间空间为

$$T^{k}\left(V^{*}\right):=V^{*}\otimes\cdots\otimes V^{*}$$

Example 1.4 一些共变张量

- 1. 每个线性映射 $\omega: V \to \mathbb{R}$ 都是一个多线性映射,共变 1-向量就是余向量。因此 $T^1(V^*)$ 就 是 V^* 。
- 2. 每个内积都是一个 2-tensor, 也就是双线线型。
- 3. 行列式函数视为 n 个向量的函数,是 \mathbb{R}^n 上的一个 k -tensor。

定义 1.6 (反变张量)

类似地,设V是有限维线性空间,反变张量是指

$$T^{k}\left(V\right) = V \otimes \cdots \otimes V$$

中的一个元素。

Remark

1. 由 T 是有限维空间,

$$T^{k}(V) \simeq \{\alpha : V^{*} \times \cdots \times V^{*} \to \mathbb{R}\}$$

Proof 考虑 $\Phi: T^k(V) \to \{\alpha: V^* \times \cdots \times V^* \to \mathbb{R}\}$

$$\Phi(v_1, \dots, v_k)(w_1, \dots, w_k) := w_1(v_1) w_2(v_2) \dots w_k(v_k)$$

其中 $(v_1, \dots, v_k) \in V \otimes \dots \otimes V$, $(w_1, \dots, w_k) \in V^* \times \dots \times V^*$ 易见 Φ 是良定义的。 \square

定义 1.7 (混合张量积)

对于非负整数 k, l, 定义 V 上的 (k, l) 型混合张量积空间为

$$T^{(k,l)}\left(V\right) := \underbrace{V \otimes \cdots \otimes V}_{k \uparrow} \otimes \underbrace{V^* \otimes \cdots \otimes V^*}_{l \uparrow}$$

Remark

$$T^{(0,0)}(V) = T^{0}(V^{*}) = T^{0}(V) = \mathbb{R},$$

$$T^{(0,1)}(V) = T^{1}(V^{*}) = V^{*},$$

$$T^{(1,0)}(V) = T^{1}(V) = V,$$

$$T^{(0,k)}(V) = T^{k}(V^{*}),$$

$$T^{(k,0)}(V) = T^{k}(V).$$

定义 1.8 (混合张量积空间的基)

设 V 是有限维实线性空间。设 (E_i) 是 V 的一组基, (ε^j) 是相应的 V^* 的对偶基。那么 $\left\{ \varepsilon^{i_1} \otimes \cdots \otimes \varepsilon^{i_k} : 1 \leq i_1, \cdots, i_k, \leq n \right\} \mathcal{L}^k(V^*)$ 的一组基 $\left\{ E_{i_1} \otimes \cdots \otimes E_{i_l} : 1 \leq i_1, i_2, \cdots, i_k \leq n \right\} \mathcal{L}^k(V)$ 的一组基 $\left\{ E_{i_1} \otimes \cdots \otimes E_{i_k} \otimes \varepsilon^{j_1} \otimes \cdots \otimes \varepsilon^{j_\ell} : 1 \leq i_1, \cdots, i_k \leq n, j_1, \cdots j_l \leq n \right\} \mathcal{L}^{(k,l)}(V)$ 的一组基

Proof 这是命题1.3的一个特殊情况。

命题 1.6

令 V 是有限维线性空间。存在自然的(与基无关的) $T^{(k+1,l)}(V)$ 和以下多线性映射空间的同构

$$\underbrace{V^* \times \cdots \times V^*}_{k \uparrow} \times \underbrace{V \times \cdots \times V}_{l \uparrow} \to V$$

Proof 由命题1.5,

$$T^{(k+1,l)}\left(V\right) \simeq L\left(\underbrace{V^*,\cdots,V^*}_{k+1},\underbrace{V,\cdots,V}_{l^{\uparrow}};\mathbb{R}\right)$$

$$\mathbb{E} \times \Phi : T^{(k+1,l)}(V) \simeq L\left(\underbrace{V^*, \cdots, V^*}_{k\uparrow}, \underbrace{V, \cdots, V}_{l\uparrow}; V\right) \to T^{(k+1,l)}(V) \simeq L\left(\underbrace{V^*, \cdots, V^*}_{k+1\uparrow}, \underbrace{V, \cdots, V}_{l\uparrow}; \mathbb{R}\right)$$

$$\Phi(A) (w_1, \cdots, w_{k+1}, v_1, \cdots, v_l) := w_{k+1} (A(w_1, \cdots, w_k, v_1, \cdots, v_l))$$

易见 Φ 是线性同构。

定义 1.9 (缩并)

由上面的命题, $T^{(1,1)}(V)$ 可视为 V 的自同态空间,可以在其上定义出自然的算子 $\mathrm{tr}: T^{(1,1)}(V) \to \mathbb{R}$ 为 V 的自同态的迹,即任意一组基下的表示矩阵的对角和。更一般地,我们定义 $\mathrm{tr}: T^{(k+1,l+1)} \to T^{(k,l)}(V)$,通过令 $(\mathrm{tr}\, F)\left(\omega^1, \cdots, \omega^k, v_1, \cdots, v_l\right)$ 为以下 (1,1)-张量的迹

$$F\left(\omega^{1}, \cdots, \omega^{k}, \cdot, v_{1}, \cdots, v_{l}, \cdot\right) \in T^{(1,1)}\left(V\right)$$

此算子称为迹或缩并。

命题 1.7

在一组基下, $\operatorname{tr} F$ 的分量为

$$(\operatorname{tr} F)^{i_1, \dots, i_k}_{j_1, \dots, j_l} = \sum_m F^{i_1, \dots, i_k, m}_{j_1, \dots, j_l, m}$$

S I

Idea 因此 tr 无非就是令最后一个上下指标相等并求和。

Remark 更一般地,我们可以让张量在任意一对指标上做缩并,只要这对指标一个是共变的,一个是反变的。这样的算子没有各自的记号,我们需要时单独提及。

1.2 对称张量和交错张量

1.2.1 对称张量

定义 1.10

设V是有限维线性空间。V上的一个共变k-张量 α 被称为是对称的,若对于每个 $1 \le i < j \le k$,

$$\alpha(v_1, \dots, v_i, \dots, v_j, \dots, v_k) = \alpha(v_1, \dots, v_j, \dots, v_i, \dots, v_k)$$

显然对称张量空间是线性的,记作 $\Sigma^k(V^*)$ 。

Remark

对于共变 k-张量 α , 以下三条等价

- 1. α 是对称的;
- 2. 对于每组 $v_1, \dots, v_k \in V$,和置换 $\tau \in S_k$,

$$\alpha\left(v_{1},\cdots,v_{k}\right)=\alpha\left(v_{\tau\left(1\right)},\cdots,v_{\tau\left(k\right)}\right)$$

3. α 关于任意组基的函数 $\alpha_{i_1\cdots i_k}$ 是在指标置换下不变。

Proof 每个置换写作对换的积,故前两条等价。设 $(\varepsilon_{i_1}, \dots, \varepsilon_{i_t})$ 是一组基,那么

$$\alpha = \alpha_{i_1 \cdots i_k} \varepsilon_{i_1} \otimes \cdots \otimes \varepsilon_{i_k}$$

任取 $\tau \in S_k$, 由对称性

$$a_{i_1\cdots i_k} = \alpha(E_{i_1}, \cdots, E_{i_k}) = \alpha(E_{i_{\tau(1)}}, \cdots, E_{i_{\tau(k)}}) = a_{i_{\tau(1)}} \cdots a_{i_{\tau(k)}}$$

故 1. \Longrightarrow 3. 成立。对于 3. \Longrightarrow 1.,只需要取定一组基,将每个 v_i 写作基表示,并利用多线性将求和符号提出。此时发现条件 3. 保证了调换 v_1, \dots, v_k 的顺序只是求和顺序的一个调换。

定义 1.11 (对称子)

 $T^{k}(V^{*})$ 到 $\Sigma^{k}(V^{*})$ 存在自然的投影 Sym , 按以下方式定义

$$\operatorname{Sym} \alpha := \frac{1}{k!} \sum_{\sigma \in S_k} \sigma \alpha$$

其中 σα 按以下方式定义

$$\sigma \alpha (v_1, \cdots, v_k) := \alpha (v_{\sigma(1)}, \cdots, v_{\sigma(k)})$$

命题 1.8 (对称子的性质)

设α是有限维线性空间上的共变张量,那么

- Sym α 是对称的;
- 2. $Sym \alpha = \alpha$ 当且仅当 α 是对称的。

即便 α 和 β 都是 V 上的对称张量,但是 $\alpha \otimes \beta$ 不一定对称。不过利用对称子,可以定义出一种新的乘积运算,使得运算结果仍为对称张量。

定义 1.12 (对称积)

设 $\alpha \in \Sigma^k(V^*)$, $\beta \in \Sigma^l(V^*)$, 定义对称积 $\alpha\beta$ 为下述的 $(k+\ell)$ -张量

$$\alpha\beta := \operatorname{Sym} (\alpha \otimes \beta)$$

具体地,

$$\alpha\beta\left(v_{1}, \cdots, v_{k+l}\right) = \frac{1}{(k+l)!} \sum_{\sigma \in S_{k+l}} \alpha\left(v_{\sigma(1)}, \cdots, v_{\sigma(k)}\right) \beta\left(v_{\sigma(k+1)}, \cdots, v_{\sigma(k+l)}\right)$$

命题 1.9 (对称积的性质)

1. 对称积是对称的双线性映射: 对于每个对称张量 α, β, γ 和所有的 $a, b \in \mathbb{R}$,

$$\alpha\beta = \beta\alpha,$$

$$\left(a\alpha+b\beta\right)\gamma=a\alpha\gamma+b\beta\gamma=\gamma\left(a\alpha+b\beta\right)$$

$$\alpha\beta = \frac{1}{2} \left(\alpha \otimes \beta + \beta \otimes \alpha \right)$$

1.2.2 交错张量

定义 1.13 (交错张量)

设V是有限维线性空间, α 是V上的共变k-张量。称 α 是交错的,若任取 $v_1, v_2, \cdots, v_k \in V$,和一对不同的指标i, j,都有

$$\alpha(v_1, \dots, v_i, \dots, v_i, \dots, v_k) = \alpha(v_1, \dots, v_i, \dots, v_i, \dots, v_k)$$

交错 k-张量也被称为是外形式、多余向量、k-余向量。V 上全体交错 k-张量空间记作 $\Lambda^k\left(V^*\right)$,它是 $T^k\left(V^*\right)$ 的线性子空间。

Remark 对于共变 k-张量 $l = \alpha$, 以下几条等价

- $1. \alpha$ 交错;
- 2. 任取向量 v_1, \dots, v_k , 和 $\sigma \in S_k$,

$$\alpha\left(v_{\sigma(1)},\cdots,v_{\sigma(k)}\right) = (\operatorname{sgn}\sigma)\,\alpha\left(v_1,\cdots,v_k\right)$$

3. 在任一组基下, α 对应的分量函数 $\alpha_{i_1\cdots i_k}$ 在指标的对换下变号。

Remark 0-张量和 1-张量均同时是对称的和交错的。2-交错张量是反称双线性型。

命题 1.10

设 β 是一个共变2-张量,那么 β 可以写作对称张量和交错张量的和,具体地

$$\beta(v, w) = \frac{1}{2} (\beta(v, w) + \beta(w, v)) + \frac{1}{2} (\beta(v, w) - \beta(w, v))$$
$$= \alpha(v, w) + \sigma(v, w)$$

其中 $\alpha(v,w) := \frac{1}{2} (\beta(v,w) + \beta(w,v))$ 是对称张量, $\sigma(v,w) := \frac{1}{2} (\beta(v,w) - \beta(w,v))$ 是交错张量。

1.3 流形上的张量和张量场

定义 1.14 (流形上的张量丛)

设 M 是光滑 (带边) 流形。

定义M上的共变k-张量丛为

$$T^{k}T^{*}M = \prod_{p \in M} T^{k} \left(T_{p}^{*}M \right).$$

定义 M 上的反变 k-张量丛为

$$T^{k}TM = \prod_{p \in M} T^{k} \left(T_{p} M \right)$$

定义 M 上的 (k,l)-型混合张量丛为

$$T^{(k,l)}TM = \prod_{p \in M} T^{(k,l)} \left(T_p M \right)$$

Remark 有自然的等同

$$\begin{split} T^{(0,0)}TM &= T^0T^*M = T^0TM = M \times \mathbb{R}, \\ T^{(0,1)}TM &= T^1T^*M = T^*M, \\ T^{(1,0)}TM &= T^1TM = TM, \\ T^{(0,k)}TM &= T^kT^*M, \\ T^{(k,0)}TM &= T^kTM. \end{split}$$

Remark $T^{(k,l)}TM$ 上有自然 rank-(k+l) 的光滑向量丛结构。

定义 1.15 (张量场)

M 上张量丛的一个截面被称为是一个张量场。由于其上定义了光滑结构,可以谈论张量场的光滑性。

Remark 在做自然的等同下,共变 1-张量场等同于余向量场,反变 1-张量场等同于向量场。

命题 1.11 (光滑张量场空间)

全体光滑张量场空间,被分别记作 $\Gamma\left(T^kT^*M\right)$, $\Gamma\left(T^kTM\right)$, $\Gamma\left(T^{(k,l)}TM\right)$ 。它们是 \mathbb{R} 上的 无穷维线性空间,且是环 $C^{\infty}\left(M\right)$ 上的模。在任意光滑坐标 $\left(x^i\right)$ 下,光滑张量场有坐标表示

$$A = \begin{cases} A_{i_{1}\cdots i_{k}} \, \mathrm{d}x^{i_{1}} \otimes \cdots \otimes \, \mathrm{d}x^{i_{k}}, & A \in \Gamma\left(T^{k}T^{*}M\right); \\ A^{i_{1}\cdots i_{k}} \frac{\partial}{\partial x^{i_{1}}} \otimes \cdots \otimes \frac{\partial}{\partial x^{i_{k}}}, & A \in \Gamma\left(T^{k}TM\right); \\ A^{i_{1}\cdots i_{k}}_{j_{1}\cdots j_{l}} \frac{\partial}{\partial x^{i_{1}}} \otimes \cdots \otimes \frac{\partial}{\partial x^{i_{k}}} \otimes \, \mathrm{d}x^{j_{1}} \otimes \cdots \otimes \, \mathrm{d}x^{j_{l}}, & A \in \Gamma\left(T^{(k,l)}TM\right). \end{cases}$$

Remark

- 1. $A_{i_1\cdots i_k}, A^{i_1\cdots i_k}, A^{i_1\cdots i_k}_{i_1\cdots i_l}$ 被称为是分量函数;
- 2. 记光滑共变 k-余向量空间为

$$\mathscr{T}^{k}\left(M\right) := \Gamma\left(T^{k}T^{*}M\right)$$

命题 1.12 (张量场的光滑性判据)

设M是光滑(带边)流形, $A:M\to T^kT^*M$ 是粗截面,那么以下几条等价

- 1. A 是光滑的;
- 2. 在每个光滑坐标卡下, A 的分量函数光滑;

- 3. M 上的每一个点都含于某个光滑坐标卡,使得 A 在其上有光滑的分量函数。
- 4. 若 $X_1, X_2, \cdots, X_k \in \mathfrak{X}(M)$,那么函数 $A(X_1, \cdots, X_k) : M \to \mathbb{R}$,

$$A(X_1, X_2, \cdots, X_k)(p) = A_p(X_1|_p, \cdots, X_k|_p)$$

光滑。

5. 任取定义在某个开子集 $U\subseteq M$ 上的光滑向量场 $X_1,X_2,\cdots,X_k,$ $A(X_1,X_2,\cdots,X_k)$ 在U上光滑。

Remark 对于混合张量场有类似的命题。

Proof A 光滑, 当且仅当在每个(任一点都有某个)光滑坐标卡下, A 的坐标表示光滑。任取 M 的光滑坐标卡 $(U,(x^i))$,它给出 T^kT^*M 上的自然坐标。A 在其上的坐标表示为

$$p\mapsto\left(\left(A_{j_{1}\cdots j_{l}}^{i_{1}\cdots i_{k}}\left(p\right)\right),\left(x^{i}\left(p\right)\right)\right)$$

易见上面的函数光滑,当且仅当 $A_{i_1\cdots i_k}$ 光滑。

因此 1. 和 2. 等价, 1. 和 3. 等价, 故 1.2.3. 等价。

设在某个坐标上

$$A = A_{i_1 \cdots i_k} \, \mathrm{d} x^{i_1} \otimes \cdots \otimes \, \mathrm{d} x^{i_k}$$
$$X_j = X_j^m \frac{\partial}{\partial x^m}, \quad j = 1, \cdots, k$$

那么

$$A(X_1, \cdots, X_k) = A_{i_1 \cdots i_k} X_1^{i_1} \cdots X_k^{i_k}$$

因此得 $3. \Longrightarrow 4.$

对每一组 i_1, \dots, i_k 我们有

$$A\left(\frac{\partial}{\partial x^{i_1}}, \cdots, \frac{\partial}{\partial x^{i_k}}\right) = A_{i_1 \cdots i_k}$$

由此得 5. ⇒ 2.

对于开子集 $U \subseteq M$,以及 $p \in U$,设 ψ 是 p 的支撑在 U 的光滑 bump 函数,定义 $\tilde{X}_j := \psi X$,并在 $M \setminus U$ 上补充定义为 0,得到 \tilde{X}_j 是在 p 附近与 X_j 一致的光滑向量场。4. 的条件给出 $A\left(\tilde{X}_1, \cdots, \tilde{X}_k\right)$ 在 p 处光滑。故 4. \Longrightarrow 5. 成立。

5. \Longrightarrow 4. 只需要将全局向量场限制在任一点 p 的某个邻域上即可。

命题 1.13 (数乘与张量积的分量)

设 M 是光滑 (带边) 流形, $A \in \mathcal{I}^k(M)$, $B \in \mathcal{I}^l(M)$, $f \in C^\infty(M)$ 。那么 fA 和 $A \otimes B$ 也是光滑张量场,且在任意坐标上,有分量函数的关系

$$(fA)_{i_1\cdots i_k} = fA_{i_1\cdots i_k}$$
$$(A\otimes B)_{i_1\cdots i_{k+1}} = A_{i_1\cdots i_k}B_{i_{k+1}\cdots B_{i_{k+1}}}$$

Proof 若在某个坐标上

$$A = A_{i_1 \cdots i_k} dx^{i_1} \otimes \cdots \otimes dx^{i_k}$$

$$B = B_{j_1 \cdots j_l} \, \mathrm{d} x^{j_1} \otimes \cdots \otimes \, \mathrm{d} x^{j_l}$$

那么

$$fA = fA_{i_1\cdots i_k} \, \mathrm{d}x^{i_1} \cdots \, \mathrm{d}x^{i_k}$$

$$A \otimes B = (A_{i_1 \cdots i_k} \, \mathrm{d}x^{i_1} \otimes \cdots \otimes \mathrm{d}x^{i_k}) (B_{i_{k+1} \cdots i_{k+l}} \, \mathrm{d}x^{i_{k+1}} \otimes \cdots \otimes \mathrm{d}x^{i_{k+l}})$$
$$= A_{i_1 \cdots i_k} B_{i_{k+1} \cdots i_{k+l}} dx^{i_1} \otimes \cdots \otimes \mathrm{d}x^{i_{k+l}}$$

定义 1.16 (诱导)

设 $A \neq M$ 上的光滑共变k-张量,它诱导出映射

$$\mathfrak{X}(M) \times \cdots \times \mathfrak{X}(M) \to C^{\infty}(M)$$

Remark

1. 映射是 $C^{\infty}(M)$ 上的多线性映射,即对于 $f, f' \in C^{\infty}(M)$,和 $X_i, X_i' \in \mathfrak{X}(M)$,

$$A(X_1, \dots, fX_i + f'X_i', \dots, X_k)$$

= $fA(X_1, \dots, X_i, \dots, X_k) + f'A(X_1, \dots, X_i', \dots, X_k)$

Proof 固定其他分量, A 可视为 1-张量, 等同于光滑向量场, 而光滑余向量场具有 C^{∞} (M) 上的线性。

引理 1.1 (张量场的刻画引理)

一个映射

$$\mathscr{A}: \mathfrak{X}(M) \times \cdots \times \mathfrak{X}(M) \to C^{\infty}(M)$$

被某个光滑共变 k-张量诱导, 当且仅当 \mathscr{A} 是 $C^{\infty}(M)$ 上的多线性映射。

Proof 必要性在定义1.16的 Remark 中已经说明,接下来考虑充分性。

类似余向量场的刻画引理,依次说明局部性、逐点性,导出在每一点给出诱导的形式的良定义性,最后说明光滑性。

1.3.1 张量场的拉回

定义 1.17 (逐点拉回)

设 $F: M \to N$ 是光滑映射。任取 $p \in M$ 和 k-张量 $\alpha \in T^k\left(T^*_{F(p)N}\right)$,定义 α 通过 F 在 点 p 处的逐点拉回,为一个张量 $dF^*_p\left(\alpha\right) \in T^k\left(T^*_pM\right)$

$$dF_{p}^{*}\left(\alpha\right)\left(v_{1},\cdots,v_{k}\right)=\alpha\left(dF_{p}\left(v_{1}\right),\cdots,dF_{p}\left(v_{k}\right)\right)$$

定义 1.18 (拉回)

若 $A \in N$ 上的共变 k-张量, 定义 A 通过 F 的拉回, 为 M 上的一个粗向量场 F^*A , 按

$$(F^*A)_p := dF_p^* \left(A_{F(p)} \right)$$

它在 $v_1, v_2, \cdots, v_k \in T_pM$ 上的作用为

$$(F^*A)_p(v_1, v_2, \cdots, v_k) = A_{F(p)}(dF_p(v_1), \cdots, dF_p(v_k))$$

命题 1.14

设 $F: M \to N$ 和 $G: N \to P$ 是光滑映射, $A, B \in N$ 上的共变张量场, 且 f 是定义在 N 上的实值函数, 那么

- 1. $F^*(fB) = (f \circ F) F^*B$;
- 2. $F^*(A \otimes B) = F^*A \otimes F^*B$;
- 3. $F^*(A+B) = F^*A + F^*B$;
- 4. F^*B 是 (连续的) 张量场, 并且若 B 光滑, 则 F^*B 光滑;
- 5. $(G \circ F)^* B = F^* (G^*B);$
- 6. $(\mathrm{Id}_N)^* B = B$.

Proof

1.

$$F^* (fB)_F (v_1, \dots, v_k) = (fB)_{F(p)} (dF_p (v_1), \dots, dF_p (v_k))$$
$$= (f \circ F) B_{F(p)} (dF_p (v_1), \dots, dF_p (v_k))$$
$$= (f \circ F) F^* B (v_1, \dots, v_k)$$

因此 $F^*(fB) = (f \circ F) F^*B$

2.

$$F^{*}(A \otimes B)(v_{1}, \dots, v_{k}, v_{k+1}, \dots, v_{k+l}) = F^{*}(A(v_{1}, \dots, v_{k}) B(v_{k+1}, \dots, v_{k+l}))$$

$$= A(dF_{p}(v_{1}), \dots dF_{p}(v_{k}) B(dF_{p}(v_{k+1}), \dots, dF_{p}(v_{k+l})))$$

$$= F^{*}A(v_{1}, \dots, v_{k}) F^{*}B(v_{k+1}, \dots, v_{k+l})$$

$$= (F^{*}A \otimes F^{*}B)(v_{1}, \dots, v_{k+l})$$

因此 $F^*(A \otimes B) = F^*A \otimes F^*B$ 。

- 3. 略
- 4. 选定 N 上的光滑坐标 (y^j) , 设 $B = B_{j_1 \cdots j_l} dy^{j_1} \cdots dy^{j_l}$ 那么

$$F^*B = F^* \left(B_{j_1 \cdots j_l} \, \mathrm{d} y^{j_1} \otimes \cdots \otimes \, \mathrm{d} y^{j_l} \right)$$
$$= B_{j_1 \cdots j_l} \circ F \, \mathrm{d} \left(y^{j_1} \circ F \right) \otimes \cdots \otimes \, \mathrm{d} \left(y^{j_l} \circ F \right)$$

其中 $d(y^{j_k} \circ F), k = 1, \dots, l$ 是光滑的余向量场,由1.13 F^*B 是光滑的。

5. 略

6. 略

推论 1.1 (拉回的坐标表示)

设 $F: M \to N$ 是光滑映射, $B \not\in N$ 上的共变 k-张量。若 $p \in M$, (y^i) 是 N 的在 F(p) 附近的光滑坐标,那么 F^*B 有以下表示

$$F^*B\left(B_{i_1\cdots i_k}\,\mathrm{d} y^{i_1}\otimes\cdots\otimes\,\mathrm{d} y^{i_k}\right)=\left(B_{i_1\cdots i_k}\circ F\right)\,\mathrm{d}\left(y^{i_1}\circ F\right)\otimes\cdots\otimes\,\mathrm{d}\left(y^{i_k}\circ F\right)$$

Example 1.5 令 $M = \left\{ (r,\theta) : r > 0, |\theta| < \frac{\pi}{2} \right\}$ 并且 $N = \left\{ (x,y) : x > 0 \right\}, \ 令 F : M \to \mathbb{R}^2$ 是 光滑映射 $F(r,\theta) = (r\cos\theta, r\sin\theta)$ 。张量场 $A := x^{-2}\,\mathrm{d}y\otimes\mathrm{d}y$ 通过 F 的拉回通过替换 $x = r\cos\theta, y = r\sin\theta$ 得到。

$$F^*A = (r\cos\theta)^{-2}d(r\sin\theta) \otimes d(r\sin\theta)$$
$$= (r\cos\theta)^{-2}(\sin\theta dr + r\cos\theta d\theta) \otimes (\sin\theta dr + r\cos\theta d\theta)$$
$$= r^{-2}\tan^2\theta dr \otimes dr + r^{-1}\tan\theta (d\theta \otimes dr + dr \otimes d\theta) + d\theta \otimes d\theta.$$