

Course > Week 2 > Proble... > Linear ...

Linear Optimal Control

Linear Optimal Control

0.0/25.0 points (graded)
Consider the scalar equation

$$\dot{x} = -4x + 2u,$$

and the infinite horizon cost function

$$J=\int_0^\infty \left[32x^2+u^2
ight]dt.$$

(a) Assume that the optimal cost-to-go function is of the form $J^\star=px^2$. What value of p satisfies the Hamilton-Jacobi-Bellman conditions for optimality?

Answer: 2.0

Explanation

Given the equation of motion

$$\dot{x} = -4x + 2u,$$

the infinite horizon cost function, $J=\int_0^\infty \left[32x^2+u^2\right]dt$ and the form of the cost-to-go ($J^*\left(x\right)=px^2$), we can substitute into the Hamilton-Jacobi-Bellman equation as follows. We know:

$$0 = \min_{u} \left\{ g\left(\mathbf{x}, \mathbf{u}
ight) + rac{\partial J^{*}}{\partial x} \mathbf{f}\left(\mathbf{x}, \mathbf{u}
ight)
ight\}$$

We also know that

$$egin{aligned} g\left(\mathbf{x},\mathbf{u}
ight) &= 32x^2 + u^2 \ \mathbf{f}\left(\mathbf{x},\mathbf{u}
ight) &= -4x + 2u \ rac{\partial J^*}{\partial x} &= 2px \ rac{\partial J^*}{\partial t} &= 0 \end{aligned}$$

Substituting in we get:

$$0 = \min_{u} \left\{ 32x^2 + u^2 + (2px)\left(-4x + 2u\right)
ight\} \quad (Eq. \, 1)$$

Now, let

$$\mathcal{H} = 32x^2 + u^2 + (2px)(-4x + 2u)$$

We know that for u to minimize \mathcal{H} , we must have $\frac{\partial \mathcal{H}}{\partial u} = 0$.

$$rac{\partial \mathcal{H}}{\partial u} = 2u + (2px)(2)$$

We can now see that the optimal u, u^* , is -2px. Plugging back in to Eq. 1, we get

$$0=\left\{ 32x^{2}+\left(-2px
ight) ^{2}+\left(2px
ight) \left(-4x+2\left(-2px
ight)
ight)
ight\}$$

Which simplifies to:

$$0 = 32x^2 - 4p^2x^2 - 8px^2$$

Because this must be true for all \boldsymbol{x} , this reduces to following quadratic form:

$$0 = -4p^2 - 8p + 32$$

From this we know that $p=\{2,-4\}$. Because J^* should be positive definite we choose p=2.

(b) Given that the optimal feedback controller associated with J^\star is $u^\star = -Kx$, what is the value of K?

Explanation

Once we have solved for p as in part (a), we can easily find u^\star . From before we know that $u^\star=-2px$, so $u^\star=-Kx$ where K=4.

(c) Suppose we change our cost to the following:

$$J = \int_0^\infty \left[96 x^2 + 3 u^2
ight] dt.$$

Which of the following statements is true? (Select all that apply)

- The optimal controller (K) gets multiplied by 3
- ☐ The optimal controller (K) gets divided by 3
- lacksquare The optimal cost-to-go gets multiplied by 3 🗸
- The optimal cost-to-go gets divided by 3
- None of the above

Explanation

The optimal cost-to-go gets multiplied by 3, but the controller does not change. This can be easily verified by going through the same calculations as in part (a) and (b). This is a feature of LQR (Linear Quadratic Regulator) problems in general. Scaling both the cost on state and action does not change the controller (but only changes the optimal cost-to-go).

Submit

You have used 0 of 2 attempts

1 Answers are displayed within the problem

© All Rights Reserved