

2005: Field technician German National Park Service

2006-2008: UG in (Bio)chemistry/zoology

2008-2009: Master's in Environmental Biology

2009-2013: PhD on pelagic prey fields in the Indian Ocean

2013-2014: Analyst/Software developer at British Antarctic Survey

- Development of analysis algorithms for a penguin weighbridge
- ~200,000,000 row data set
- R package development

Pelagic assemblages are structured by oceanography

Watermasses are volumes w/ relatively homogeneous temperature, salinity Fronts separate them and form biogeographic boundaries

Take home message - Part 1:

Prey aggregations are associated with static (e.g. seamounts) and dynamic (e.g. fronts) ocean features.

Predators adapt their foraging behaviour across space to efficiently exploit these.

The penguin weighbridge

Seasonal movement pattern

Linking post-moult movement to (unobserved) prey

Inference approach: Poisson GLM allowing for errors-in-variables, Bayesian estimation w/ weakly regularizing priors

When pre-moult feeding is good, more birds delay migration for longer

Process model (mostly) unobservable quantities

Data Measured quantities

Fitting can be achieved with the "covariation method", a weighted least-squares approach. We propose a Bayesian approach to better handle uncertainty.

Teixeira et al. 2014, J Sea Res 94:117 Lika et al. 2011 J Sea Res 66:270

Take home message - Part 3:

Mechanistic models can be used to synthesize sparse observations.

And as simulation devices to forecast impacts of climate change and food availability on seabird growth & survivaloesu

- The ocean is big and dynamic
- Ocean wanderers are well adapted to this
- Ocean wanderers are hard to observe
- With technology we can catch glimpses of them & their prey
- With models and stats we can put the pieces together
 - But different species different pieces, e.g.
 - adult mass easier for penguins than albatross, seals
 - chick mass easier for albatross than penguins, seals
 - seals can take larger sensor payloads than seabirds
 - etc.
- So ultimately we need good models and appropriate inference methods for them to make the most out of the data we can get

- · Interdisciplinary work is fun, but also challenging!
- +Many opportunities for collaboration options
- +Diverse systems
 - + Hydrothermal vents, marine microbes, invasive predators on islands, amphibian diseases, soil biogeochemistry
- ±Following multiple bodies of literature
- Navigating subject-specific workflows/publishing/hiring traditions
- Method/software development often seen as service rather than research product; "middle author syndrome"