मानियम 2017-18538 केसल Homework 2 1 Image Filters

operator ? = Olch

OIE NYTHAN FINITE difference operatoroll shyster 1212 horizontal edge detect = fitter

2 Edge Detection 1. zero-crossing of the equation 로 image I(기, 님) 내의 임의의 각에서의 edge 예 해당한다.

따라서 Laplacian of Gaussian은 방향에 구애받지 않는 edge detector의 역할을 수행한다 2 ए े स्वियं जा क्या देश image on that defect केर edges अर्थ प्रस्था ए हैं increase किय h(1,4)=0인 points (1,4)가 클어들고, 따라서 obstect 되는 edge가 클어든다.

3 Hough Transform Line Parameterization

1. e = 2 sind+4cosb

= rcosd sino traindoso (x= rcosd, x= rsino) $=rsin(d+\theta)$

EXECUTED (at a) old.

ココピュ キ image point (ス、な)는 (P, 日) Hough space의 sinusoid 3 刊を記す

r=1x2y2, d=(05)(x) 3 EDECT open re amplitude, at phase old

2.

P=rsin(d+D)의 구가는 2TT2 (HOLD3, image point (7.4)가 바뀌어도 불변하다

4. Hough Transform for Line Detection

2. Edge Detection

non maximal suppression은 아래 그림과 같은 원리를 적용하였다.

Gradient intensity matrix의 intensity pixel에서, edge direction에 따라 이웃한 두 pixel의 값을 확인한다. 만약 두 pixel 중 하나라도 현재 pixel보다 크면 0으로 suppress한다.

double thresholding의 high/low threshold 값에 따른 edge magnitude image 결과는 다음과 같이 나타난다.

In case high threshold=0.5, low threshold=0.5:

[image 1]

[image 2]

[image 3]

[image 4]

In case high threshold=0.3, low threshold=0.7:

[image 1]

[image 2]

[image 3]

[image 4]

3. attach Im, H image

[image 1 - H]

[image 1 - Im]

[image 2 - H]

[image 2 - Im]

[image 3 - H]

[image 3 - Im]

[image 4 - Im]

4. non maximum suppression source: https://newbedev.com/choosing-lines-from-hough-lines