Def n-dimensional hypercube is a directed graph with · N = 2" nodes, each indexed by n-Bit integer · containy an edge (Xig) iff X and y different in only one bit. How many edges! Nn. = NlogN Oblivious voutry algorithm. Poth from s to + depends only on s and f. Permutation routing Each node is the source of one packet -destination of - - -Eg. on a complete graph, this problem can be solved in one Hypercube: N nodes, NloyNedges Bit-Fixing Routing Algorithm for Hypercube 1. Let x be the current node, and y be the destination. 2. Find smulest i such that Xi + yi 3. Traverse the edge (X, --)Ch, Xi-Xi-1gixiH-- Zn) Bad example for conjection Transpose permutation

From each X. send a padcet to

(Intl., -- Xn, X1-- Xnz)

Claim Bit-fixing algorithm will take SCTN) steps.
on transpose permutation.

Proof: Consider nodes with $X_1 = 1$ and $X_{n+1} = X_n = 0$

Their packets will use edge $\begin{pmatrix}
0^{n} \rightarrow -\frac{10-10}{2} & \frac{10000}{2}
\end{pmatrix}$ $\begin{array}{c}
5 & \frac{1000}{2} & \frac{1000}{2} & \frac{1000}{2}
\end{array}$ $\begin{array}{c}
1 & \frac{1000}{2} & \frac{1000}{2} & \frac{1000}{2}
\end{array}$ $\begin{array}{c}
1 & \frac{1000}{2} & \frac{1000}{2} & \frac{1000}{2}
\end{array}$ $\begin{array}{c}
1 & \frac{1000}{2} & \frac{1000}{2} & \frac{1000}{2}
\end{array}$ $\begin{array}{c}
1 & \frac{1000}{2} & \frac{1000}{2} & \frac{1000}{2}
\end{array}$ $\begin{array}{c}
1 & \frac{1000}{2} & \frac{1000}{2} & \frac{1000}{2}
\end{array}$

Randomized Routing AlgoWthm (RRA)

a. For each packet going from x to y, pick a uniformly random node z

- 1. Use bit fixing to voute the padcet from X to 2
- 2. Use bit fixing to route from Z to A.Y.

Thin For every permutation RRA, takes O (log N) steps.

Idea.

Pf DANalyze Phase (CPhase 2 is symmetric)

Idea (S) : Each bit In intermediate destination, each bit zi

Idea 3) # step in Phase $1 \le \text{# bits to fix"} + \text{delay (waity times)}$ $\frac{1}{2} \le n \qquad \text{in queues)}$
claim consider each voute in Phase 1. as a directed path
TWIN the Souvice to the destination Ones two Dackers
squiate, they never reunite.
Q: Dees it imply that two packets can not wait
IN move than one guero tracker [1/0]
· Let P; = (P1, Pk) be the path of packet i
Let 5 be the set of packets (other than i) whose
Let She the set of packets (other than i) whose routes path through at least one edge of Pi
indi the help of factor 1 is at most SI
enma Consider any packet i
If fails to reach its destination in Phase 1 #
in (4 log N) steps with prob 5 to 2
Let X be the number of packets other than i that
UCO Dota D.
$X_j = \begin{cases} 1 & \text{if packet } j \text{ uses } P_i \\ > o w \end{cases}$ $X = \begin{cases} X_j & \text{we want } F[X] \end{cases}$ $X = \begin{cases} X_j & \text{we want } F[X] \end{cases}$ $X = \begin{cases} X_j & \text{we want } F[X] \end{cases}$
X = = Xj ne want E[x] analyze.

For any edge e, let e = # routes that pass through edge e. $P_i = (e_1 - ... e_k)$.

Then $X \leq T_{e_1} + T_{e_2} + ... + T_{e_k}$