phénomène de mutuelle induction en régime	forcé en s'appuyant sur des schémas électriques équivalents.
sinusoïdal forcé.	Connaître des applications dans le domaine de l'industrie ou de la vie courante.

Le bloc 5. « Circuit mobile dans un champ magnétique stationnaire » est centré sur la conversion de puissance. Des situations géométriques simples permettent de dégager les paramètres physiques pertinents afin de modéliser le principe d'un dispositif de freinage, puis par adjonction d'une force de rappel un haut-parleur électrodynamique.

Notions et contenus	Capacités exigibles
5. Circuit mobile dans un champ magnétique	
stationnaire	
Conversion de puissance mécanique en puissance	
<u>électrique.</u>	
Rail de Laplace. Spire rectangulaire soumise à un champ magnétique extérieur uniforme et en rotation uniforme autour d'un axe fixe orthogonal au champ magnétique.	Interpréter qualitativement les phénomènes observés.
	Écrire les équations électrique et mécanique en précisant les conventions de signe.
	Effectuer un bilan énergétique.
	Connaître des applications dans le domaine de l'industrie ou de la vie courante.
Freinage par induction.	Expliquer l'origine des courants de Foucault et en connaître des exemples d'utilisation.
	Mettre en évidence qualitativement les courants de Foucault.
Conversion de puissance électrique en puissance mécanique.	
Haut-parleur électrodynamique.	Expliquer le principe de fonctionnement d'un haut- parleur électrodynamique dans la configuration simplifiée des rails de Laplace.
	Effectuer un bilan énergétique.

8. Architecture de la matière condensée : solides cristallins

L'existence des états cristallins et amorphes ainsi que la notion de transition allotropique, présentées au premier semestre dans la partie « Transformations de la matière », vont être réinvesties et approfondies dans cette partie.

Les éléments de description microscopique relatifs au « modèle du cristal parfait » sont introduits lors de l'étude des solides sur l'exemple de la maille cubique faces centrées (CFC), seule maille dont la connaissance est exigible. Cet ensemble d'outils descriptifs sera réinvesti pour étudier d'autres structures cristallines dont la constitution sera alors fournie à l'étudiant.

Aucune connaissance de mode de cristallisation pour une espèce donnée n'est exigible ; le professeur est libre de choisir les exemples de solides pertinents pour présenter les différents types de cristaux et montrer leur adéquation, plus ou moins bonne, avec le modèle utilisé.

En effet, l'objectif principal de l'étude des cristaux métalliques, covalents et ioniques est d'aborder une nouvelle fois la notion de modèle : les allers-retours entre le niveau macroscopique (solides de différentes natures) et la modélisation microscopique (cristal parfait) permettent de montrer les limites du modèle du cristal parfait et de confronter les prédictions faites avec ce modèle aux valeurs expérimentales mesurées sur le solide réel (rayons ioniques, masse volumique). Cette partie constitue une occasion de revenir sur les positions relatives des éléments dans la classification périodique, en lien avec la nature des interactions assurant la cohésion des édifices présentés, ainsi que sur les interactions intermoléculaires et la notion de solubilisation pour les solides ioniques et moléculaires.

À travers les contenus et les capacités exigibles, sont développées des compétences qui pourront être, par la suite, valorisées, consolidées ou réinvesties, parmi lesquelles :

- Relier la position d'un élément dans le tableau périodique et la nature des interactions des entités correspondantes dans un solide ;
- Effectuer des liens entre différents champs de connaissance ;
- Appréhender la notion de limite d'un modèle.

Notions et contenus	Capacités exigibles
Modèle du cristal parfait	
Description du cristal parfait ; population, coordinence, compacité, masse volumique.	Décrire un cristal parfait comme un assemblage de mailles parallélépipédiques. Déterminer la population, la coordinence et la compacité pour une structure fournie. Déterminer la valeur de la masse volumique d'un matériau cristallisé selon une structure cristalline fournie. Relier le rayon métallique, covalent, de van der Waals ou ionique, selon le cas, aux paramètres d'une maille donnée. Utiliser un logiciel ou des modèles cristallins pour visualiser des mailles et des sites interstitiels et pour déterminer des paramètres géométriques.
Limites du modèle du cristal parfait.	Confronter des données expérimentales aux prévisions du modèle.
Métaux et cristaux métalliques Description des modèles d'empilement compact de sphères identiques.	Relier les caractéristiques de la liaison métallique (ordre de grandeur énergétique, non directionnalité) aux propriétés macroscopiques des métaux.
Maille conventionnelle cubique à faces centrées (CFC)	Localiser, dénombrer les sites tétraédriques et octaédriques d'une maille CFC et déterminer leur habitabilité. Approche documentaire : à partir de documents, découvrir quelques alliages, leurs propriétés et leurs utilisations.
Solides covalents et moléculaires	Relier les caractéristiques des liaisons covalentes, des interactions de van der Waals et des liaisons

	hydrogène (directionnalité ou non, ordre de grandeur des énergies mises en jeu) et les propriétés macroscopiques des solides correspondants.
Solides ioniques	Relier les caractéristiques de l'interaction ionique dans le cadre du modèle ionique parfait (ordre de grandeur de l'énergie d'interaction, non directionnalité, charge localisée) avec les propriétés macroscopiques des solides ioniques.

9. Transformations chimiques en solution aqueuse

Les transformations chimiques en solution aqueuse jouent un rôle essentiel en chimie, en biochimie et dans les processus environnementaux.

Un nombre considérable de développements technologiques (générateurs électrochimiques, lutte contre la corrosion, traitement des eaux, méthodes d'analyse...) repose sur des phénomènes d'oxydo-réduction en solution aqueuse. L'influence du milieu (pH, possibilité de formation de composés insolubles...) est primordiale dans la compréhension et la prévision des phénomènes mis en jeu.

L'objectif de cette partie est donc de présenter les différents types de réactions susceptibles d'intervenir en solution aqueuse, d'en déduire des diagrammes de prédominance ou d'existence d'espèces chimiques, notamment des diagrammes potentiel-pH et de les utiliser comme outil de prévision et d'interprétation des transformations chimiques quel que soit le milieu donné. Les conventions de tracé seront toujours précisées.

S'appuyant sur les notions de couple redox et de pile rencontrées au lycée, l'étude des phénomènes d'oxydo-réduction en solution aqueuse est complétée par l'utilisation de la relation de Nernst (admise en première année) et de la relation entre la constante thermodynamique d'équilibre d'une réaction d'oxydo-réduction et les potentiels standard.

Afin de pouvoir étudier l'influence du milieu sur les espèces oxydantes ou réductrices effectivement présentes, les connaissances sur les réactions acido-basiques en solution aqueuse acquises au lycée sont réinvesties et complétées. Compte tenu des différentes conventions existantes, l'équation de la réaction correspondante est donnée dans chaque cas. Enfin, les phénomènes de précipitation et de dissolution, ainsi que la condition de saturation d'une solution aqueuse sont présentés.

Ces différentes transformations en solution aqueuse sont abordées en montrant bien qu'elles constituent des illustrations de l'évolution des systèmes chimiques introduites au premier semestre, les étudiants étant amenés à déterminer l'état final d'un système en transformation chimique modélisée par une seule réaction chimique. On montrera qu'il est ainsi possible d'analyser et de simplifier une situation complexe pour parvenir à la décrire rigoureusement et quantitativement, en l'occurrence dans le cas des solutions aqueuses par une réaction prépondérante. Il est cependant important de noter qu'on évite tout calcul inutile de concentration, en privilégiant l'utilisation des diagrammes pour valider le choix de la réaction mise en jeu. Dans ce cadre, aucune formule de calcul de pH n'est exigible.

Enfin, les diagrammes potentiel-pH sont présentés, puis superposés pour prévoir ou interpréter des transformations chimiques.

Les choix pédagogiques relatifs au contenu des séances de travail expérimental permettront de contextualiser ces enseignements.

Les dosages par titrage sont étudiés exclusivement en travaux pratiques. L'analyse des conditions choisies ou la réflexion conduisant à une proposition de protocole expérimental pour atteindre un objectif donné constituent des mises en situation des enseignements évoqués précédemment. La compréhension