Chapter 1

Functions and their Limits

1.1 Introduction

This chapter begins with a short review on functions. Students need to be familiar with functions and their notations and operations as these will be needed to better understand the concepts of Calculus.

After a brief review on functions, limits of a function will then be discussed. At the end of this chapter, students are expected to:

- 1. understand the intuitive concept of limit of a function;
- 2. have a grasp of the $\epsilon \delta$ definition of a limit of a function;
- 3. demonstrate, describe, and recognize ways in which limits do not exist
- 4. evaluate limits of a function by applying the various theorems on limits; and
- 5. identify applications of limits in the real world.

Definition 1.1. Let A and B be two nonempty sets. The **cross product** of A and B, denoted by $A \times B$, is given as

$$A \times B = \{(x, y) : x \in A \land y \in B\}.$$

Definition 1.2. A **relation**, say r, from A to B, is any nonempty subset of the cross product $A \times B$. Symbolically,

$$r \subseteq A \times B \land r \neq \emptyset$$
.

Definition 1.3. Suppose r is a relation from set A to set B. Then

domain of
$$r$$
: dom $r = \{x : (x, y) \in r\}$
range of r : rng $r = \{y : (x, y) \in r\}$
field of r : fld $r = \text{dom} r \cup \text{rng} r$

Definition 1.4. Let A and B be nonempty sets.

A function f from A to B is a relation from A to B such that the following conditions hold:

- i. dom f = A
- ii. no two ordered pairs in f must have the same first components

If to each element in A there is assigned a unique element in B, then such assignment is called a **function** on A to B, denoted by $f: A \to B$.

Definition 1.5. Let $f: A \to B$ be a function. Then

- i. A is called the **domain** of f and B is called the **codomain** of f.
- ii. If $a \in A$ is assigned to $b \in B$, then b is called the **image** of a under f, denoted by f(a) = b.

The range of f, denoted by f(A) or rngf, is the set

$$f(A) = \{ f(x) : x \in A \}.$$

Definition 1.6. A function is a set of ordered pairs of numbers (x, y) in which no two distinct ordered pairs have the same first number.

Definition 1.7. Let $f: A \to B$ be a function. Then

- i. A is called the **domain** of f and B is called the **codomain** of f.
- ii. If $a \in A$ is assigned to $b \in B$, then b is called the **image** of a under f, denoted by f(a) = b.

The range of f, denoted by f(A) or rngf, is the set

$$f(A) = \{ f(x) : x \in A \}.$$

The set of all admissible values of x is called the **domain** of the function and the set of all resulting values of y is called the **range** of the function.

Example 1.1. Verify if the following are functions.

1.
$$f: \mathbb{R} \to \mathbb{R}, f(x) = x^2$$

2.
$$g: \mathbb{R} \to \mathbb{R}, g(x) = 3x^2 - 5x + 2$$

3.
$$h: \mathbb{R} \to \mathbb{R}, h(x) = |x|$$

Definition 1.8. A function $f: A \rightarrow B$ is called **one-to-one** (1-1) (or **injective**) if

$$f(x) = f(y) \Rightarrow x = y;$$

or equivalently,

$$x \neq y \Rightarrow f(x) \neq f(y)$$
.

The function f is called **onto** (or **surjective**) if and only if the range of f is B.

If the function f is both one-to-one and onto, then f is said to be **bijective**.

Definition 1.9. The identity function $I_A : A \to A$ on a set A is defined by

$$I_A(x) = x$$
.

Definition 1.10. Let $f: A \to B$ and $g: B \to C$ be functions. Then f is **equal** to g, written f = g, if

$$f(x) = g(x), \quad \forall x \in A.$$

Definition 1.11. Let $f: A \to B$ and $b \in B$.

The inverse of b under f, denoted by $f^{-1}(b)$, is the set

$$f^{-1}(b) = \{ x \in A : f(x) \in D \}.$$

If $D \subseteq B$, then

$$f^{-1}(D) = \{ x \in A : f(x) \in D \}.$$

Remark. Let $f: A \to B$. Then

i.
$$f^{-1}(B) = A$$

ii.
$$f^{-1}[f(A)] = A$$

Theorem 1.1. If $f: A \to B$ is 1-1 and onto, then f^{-1} is a function. $f^{-1}: B \to A$ is called the **inverse function** of f.

1.2 Operations on Functions

Definition 1.12. (The Four Basic Operations on Functions) Let $f: A \to B$ and $g: C \to D$. Then

i.
$$(f+g)(x) = f(x) + g(x)$$

ii.
$$(f-g)(x) = f(x) - g(x)$$

$$iii. (fg)(x) = f(x)g(x)$$

iv.
$$\frac{f}{g}(x) = \frac{f(x)}{g(x)}$$
, provided $g(x) \neq 0$

The domain of (i)- (iii) is $A \cap C$ while the domain of (iv) is $A \cap C - \{x : g(x) = 0\}$.

Definition 1.13. Let $f: A \to B$ and $g: B \to C$ be functions. The **composition function** of f and g, denoted by

$$g \circ f : A \to C$$
,

is defined by

$$(g \circ f)(x) = g[f(x)]$$

where x is any element in the domain of f.

The domain of $g \circ f$ is the set of all values of x in the domain of f such that f(x) is in the domain of g.

Note.

$$rng \ f \subseteq B = dom \ g$$

 $dom(g \circ f) = dom \ f$

Theorem 1.2. Given that f and g are both functions such that $f: A \to B$ and $g: B \to A$, if one is the other's inverse, then

$$f \circ g = I_B$$

and

$$g \circ f = I_A$$

where I_A and I_B are identity functions on sets A and B, respectively.

1.3 Introduction to Limits of a Function

Consider the function defined by $f(x) = \frac{2-2x^2}{x-1}$. Note that f(x) is undefined when x = 1.

Now, let's pick some values of x and see what happens to the value of f(x) as these values get closer and closer to 1.

x	f(x)	x	f(x)
2	-6	0	-2
1.5	-5	0.5	-3
1.1	-4.2	0.9	-3.8
1.01	-4.02	0.99	-3.98
1.001	-4.002	0.999	-3.998
1.0001	-4.0002	0.9999	-3.9998

Sketch the graph of the function above.

What do you observe?

Try this. Let f(x) = 2x + 2. Compute f(x) as x takes values closer to 1. Hint: First consider values of x approaching 1 from the left (x < 1). Then consider values of x approaching 1 from the right.

Definition 1.14. Let f be a function that is defined at every number in some open interval containing a, except possibly at the number a itself. The **limit** of f(x) as x approaches a is L, written

$$\lim_{x \to a} f(x) = L$$

if the following statement is true:

If
$$0 < |x - a| < \delta$$
, then $|f(x) - L| < \epsilon|$.

Example 1.2. Show that the limits of the given functions are as shown using the $\epsilon - \delta$ definition.

1.
$$\lim_{x\to 4}(2x-5)=3$$

2.
$$\lim_{x\to -1}(5x+8)=3$$