Regularization with Lipschitz Loss

Pierre Alquier

Sequential, structured, and/or statistical learning IHES - May 17, 2017

Motivation : user ratings

	CHTI	GUINNESS	Pa	- Kati		3.00 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	nes Kima		MORE
Stan			7		3		8		
Pierre	8	10	9	10	9	10	10	10	8
Zoe	8	3					7		
Bob			6	4				2	
Oscar				6		10		7	
Léa		8	4		9				
Tony			9	3				4	8

Motivation: user ratings

	CHTI	GUINNESS	Pa	- Kadi		10000 0000 00000 00000	ne Kone		MORNING.
Stan			7		3		8		
Pierre	8	10	9	10	9	10	10	10	8
Zoe	8	3					7		
Bob			6	4				2	???
Oscar				6		10		7	
Léa		8	4		9				
Tony			9	3				4	8

Motivation: user ratings

	CHTI	GUINNESS	Pa	- Ksdri		55° C C C C C C C C C C C C C C C C C C	INTERNAL PROPERTY OF THE PROPE	A SERIES	MORE
Stan			7		3		8		
Pierre	8	10	9	10	9	10	10	10	8
Zoe	8	3					7		
Bob			6	4				2	7
Oscar				6		10		7	
Léa		8	4		9				
Tony			9	3				4	8

A possible model

Notation : $\langle A, B \rangle_F = \text{Tr}(A^T B)$. Let $E_{j,k}$ be the matrix with zeros everywhere except the (j,k)-th entry equal to 1.

A possible model

Notation : $\langle A, B \rangle_F = \text{Tr}(A^T B)$. Let $E_{j,k}$ be the matrix with zeros everywhere except the (j,k)-th entry equal to 1.

Observations:

$$Y_i = \langle M^*, X_i \rangle_F + \varepsilon_i, \quad \mathbb{E}(\varepsilon_i) = 0$$

 X_i takes values in the set of matrices $\{E_{i,k}\}$.

A possible model

Notation : $\langle A, B \rangle_F = \text{Tr}(A^T B)$. Let $E_{j,k}$ be the matrix with zeros everywhere except the (j,k)-th entry equal to 1.

Observations:

$$Y_i = \langle M^*, X_i \rangle_F + \varepsilon_i, \quad \mathbb{E}(\varepsilon_i) = 0$$

 X_i takes values in the set of matrices $\{E_{j,k}\}$.

Idea : M^* is (approximately) low-rank.

E. Candès & T. Tao (2009). The power of convex relaxation : Near-optimal matrix completion. *IEEE Trans. Info. Theory.*

E. Candès & Y. Plan (2010). Matrix completion with noise. Proceedings of the IEEE.

Penalized ERM

First idea:

$$\hat{M} \in \operatorname{arg\,min} \left\{ \frac{1}{N} \sum_{i=1}^{N} (Y_i - \langle M, X_i \rangle_F)^2 + \lambda.\operatorname{rank}(M) \right\}$$

but the rank is not convex...

Penalized ERM

First idea:

$$\hat{M} \in \operatorname{arg\,min} \left\{ \frac{1}{N} \sum_{i=1}^{N} (Y_i - \langle M, X_i \rangle_F)^2 + \lambda.\operatorname{rank}(M) \right\}$$

but the rank is not convex...

$$\hat{M} \in \operatorname{arg\,min} \left\{ \frac{1}{N} \sum_{i=1}^{N} (Y_i - \langle M, X_i \rangle_F)^2 + \lambda \|M\|_* \right\}$$

Minimax rates of convergence derived in

V. Koltchinskii, K. Lounici, & A. Tsybakov (2011) Nuclear-norm penalization and optimal rates for noisy low-rank matrix completion. *Annals of Statistics*.

O. Klopp (2014). Noisy low-rank matrix completion with general sampling distribution. Bernoulli.

Is the quadratic loss always a good idea?

	CHTI	GUINNESS	Pa	- Kati		3.00 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	nes Kima		MORE
Stan			7		3		8		
Pierre	8	10	9	10	9	10	10	10	8
Zoe	8	3					7		
Bob			6	4				2	
Oscar				6		10		7	
Léa		8	4		9				
Tony			9	3				4	8

Is the quadratic loss always a good idea?

	CHTI	GUINNESS	Pa	- Kati		3	nes Kima		MORE
Stan			7		3		8		
Pierre	8	10	9	10	9	10	10	10	8
Zoe	8	3					7		
Bob			6	4				2	???
Oscar				6		10		7	
Léa		8	4		9				
Tony			9	3				4	8

Is the quadratic loss always a good idea?

	CHTI	GUINNESS	Pa	- Kadi		35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	MATERIAL STATES		MORE
Stan			7		3		8		
Pierre	8	10	9	10	9	10	10	10	8
Zoe	8	3					7		
Bob			6	4				2	[6,8]
Oscar				6		10		7	
Léa		8	4		9				
Tony			9	3				4	8

The quantile loss

... suggests to replace the quadratic loss by the quantile loss

$$\ell_{\tau}(f(x), y) = (y - f(x))[\tau - \mathbf{1}(y - f(x) \le 0)].$$

The quantile loss

... suggests to replace the quadratic loss by the quantile loss $\ell_{\tau}(f(x), y) = (y - f(x))[\tau - \mathbf{1}(y - f(x) < 0)].$

$$\hat{M} \in \operatorname{arg\,min} \left\{ \frac{1}{N} \sum_{i=1}^{N} \ell_{\tau}(\langle M, X_i \rangle_F, Y_i) + \lambda \|M\|_* \right\}$$

Source: http://www.lokad.com/

	CHTI	GUINNESS	Pa	Asahi ve		3.00°. • • • • • • • • • • • • • • • • • • •	ne Kone	A Section of the sect	MORE
Stan					7'				
Pierre									
Zoe		? '							
Bob				? "				? "	
Oscar									
Léa			? '						
Tony				? '				? '	

	CHTI	GUINNESS	Pa	- Kadi		10000 0000 00000 00000	ne Kone		MORNING.
Stan					7'				
Pierre									
Zoe		? '							
Bob				? '				? "	???
Oscar									
Léa			7'						
Tony				? '				? "	

	CHTI	GUINNESS		Asahi	Shorto	3 000000000000000000000000000000000000	may Khama		MORT
Stan					?"				
Pierre									
Zoe		? '							
Bob				? "				? "	
Oscar									
Léa			? '						
Tony				? "				? "	

$$\hat{M} \in \operatorname{arg\,min} \left\{ \frac{1}{N} \sum_{i=1}^{N} \mathbf{1} (\operatorname{sign}(\langle M, X_i \rangle_F) \neq Y_i) + \lambda \|M\|_* \right\}$$

$$\hat{M} \in \arg\min\left\{\frac{1}{N}\sum_{i=1}^{N}\mathbf{1}(\operatorname{sign}(\langle M, X_i\rangle_F) \neq Y_i) + \lambda \|M\|_*\right\}$$

Problem: the indicator function is not convex.

$$\hat{M} \in \operatorname{arg\,min} \left\{ \frac{1}{N} \sum_{i=1}^{N} \mathbf{1} (\operatorname{sign}(\langle M, X_i \rangle_F) \neq Y_i) + \lambda \|M\|_* \right\}$$

Problem: the indicator function is not convex.

$$\hat{M} \in \arg\min\left\{\frac{1}{N}\sum_{i=1}^{N}\ell(\langle M, X_i\rangle_F, Y_i) + \lambda \|M\|_*\right\}$$

- logistic loss $\ell(y', y) = \log(1 + \exp(-y'y))$
 - J. Laffond, O. Klopp, E. Moulines & J. Salmon (2014). Probabilistic low-rank matrix completion on finite alphabets. *NIPS*.

$$\hat{M} \in \operatorname{arg\,min} \left\{ \frac{1}{N} \sum_{i=1}^{N} \mathbf{1} (\operatorname{sign}(\langle M, X_i \rangle_F) \neq Y_i) + \lambda \|M\|_* \right\}$$

Problem: the indicator function is not convex.

$$\hat{M} \in \arg\min\left\{\frac{1}{N}\sum_{i=1}^{N}\ell(\langle M, X_i\rangle_F, Y_i) + \lambda \|M\|_*\right\}$$

- logistic loss $\ell(y', y) = \log(1 + \exp(-y'y))$
 - J. Laffond, O. Klopp, E. Moulines & J. Salmon (2014). Probabilistic low-rank matrix completion on finite alphabets. *NIPS*.
- hinge loss $\ell(y', y) = (1 y'y)_+$ etc.

Lipschitz losses

All the aforementionned losses:

- hinge,
- logistic,
- quantile

are Lipschitz. And so are other popular losses:

- Huber,
- ..

Outline of the talk

- Motivation
 - Matrix completion : the L₂ point of view
 - Matrix completion : Lipschitz losses?
- Oracle inequalities
 - Notations and overview
 - The main ingredients
 - Sharp oracle inequality
- 3 Applications
 - Logistic LASSO
 - Logistic SLOPE
 - Matrix completion with hinge loss

Outline of the talk

- Motivation
 - Matrix completion : the L_2 point of view
 - Matrix completion : Lipschitz losses?
- Oracle inequalities
 - Notations and overview
 - The main ingredients
 - Sharp oracle inequality
- Applications
 - Logistic LASSO
 - Logistic SLOPE
 - Matrix completion with hinge loss

• Pairs $(X_1, Y_1), \ldots, (X_N, Y_N)$ in $\mathcal{X} \times \mathbb{R}$ i.i.d from P.

- Pairs $(X_1, Y_1), \ldots, (X_N, Y_N)$ in $\mathcal{X} \times \mathbb{R}$ i.i.d from P.
- A space $E \subseteq L_2(P)$ of functions $f: \mathcal{X} \to \mathbb{R}$ equipped with a norm $\|\cdot\|$, generally different from $\|\cdot\|_{L_2}$. A convex $F \subseteq E$.

- Pairs $(X_1, Y_1), \ldots, (X_N, Y_N)$ in $\mathcal{X} \times \mathbb{R}$ i.i.d from P.
- $F \subseteq E \subseteq L_2(P)$, $(E, \|\cdot\|)$.
- ullet A loss function ℓ that is 1-Lipschitz :

$$|\ell(f_1(x),y)-\ell(f_2(x),y)| \leq |f_1(x)-f_2(x)|.$$

- Pairs $(X_1, Y_1), \ldots, (X_N, Y_N)$ in $\mathcal{X} \times \mathbb{R}$ i.i.d from P.
- $F \subseteq E \subseteq L_2(P)$, $(E, \|\cdot\|)$.
- A loss function \(\ell \)
- oracle

$$f^* \in \arg\min_{f \in F} \underbrace{\mathbb{E}_P[\ell(f(X), Y)]}_{=R(f)}.$$

- Pairs $(X_1, Y_1), \ldots, (X_N, Y_N)$ in $\mathcal{X} \times \mathbb{R}$ i.i.d from P.
- $F \subseteq E \subseteq L_2(P)$, $(E, \|\cdot\|)$.
- ullet A loss function ℓ
- oracle $f^* \in \arg\min_{f \in F} R(f)$.
- estimator :

Penalized ERM

$$\hat{f} \in \arg\min_{f \in F} \left[\frac{1}{N} \sum_{i=1}^{N} \ell(f(X_i), Y_i) + \lambda \|f\| \right].$$

Three main ingredients to study \hat{f}

• The Bernstein condition with parameters A and κ quantifies the "identifiability" of f^* .

Three main ingredients to study \hat{f}

- ullet The Bernstein condition with parameters A and κ .
- The complexity parameter comp(B) measures the "size" or "complexity" of (the unit ball B of) E. Allows to define the complexity function

$$r(\rho) = \left[\frac{\rho A \operatorname{comp}(B)}{\sqrt{N}}\right]^{\frac{1}{2\kappa}}.$$

- The Bernstein condition with parameters A and κ .
- The complexity function

$$r(\rho) = \left[\frac{\rho A \operatorname{comp}(B)}{\sqrt{N}}\right]^{\frac{1}{2\kappa}}.$$

• The sparsity function $\Delta(\cdot)$ measures the size of the sub-differential of $\|\cdot\|$ in a ρ -neighborhood of f^* . Find a solution ρ^* to the sparsity equation

$$\Delta(\rho^*) \geq (4/5)\rho^*.$$

Three main ingredients to study \hat{f}

- ullet The Bernstein condition with parameters A and κ .
- The complexity function

$$r(\rho) = \left[\frac{\rho A \operatorname{comp}(B)}{\sqrt{N}}\right]^{\frac{1}{2\kappa}}.$$

• Find a solution ρ^* to the sparsity equation

$$\Delta(\rho^*) \geq (4/5)\rho^*.$$

Then with high probability,

$$\|\hat{f} - f^*\| \le \rho^*, \|\hat{f} - f^*\|_{L_2} \le r(2\rho^*),$$

$$R(\hat{f}) - R(f^*) \lesssim [r(2\rho^*)]^{2\kappa}.$$

The Bernstein condition

The Bernstein condition

There is $\kappa > 1$ and A > 0 such that

$$\forall f \in F$$
, $\|f - f^*\|_{L_2}^{2\kappa} \leq A[R(f) - R(f^*)].$

The Bernstein condition and strongly convex losses

$$\forall f \in F, \quad \|f - f^*\|_{L_2}^{2\kappa} \le A[R(f) - R(f^*)].$$

The Bernstein condition and strongly convex losses

$$\forall f \in F, \quad \|f - f^*\|_{L_2}^{2\kappa} \le A[R(f) - R(f^*)].$$

P. Bartlett, M. Jordan & J. McAuliffe (2006). Convexity, classification and risk bounds. JASA.

Theorem

 ℓ is strongly convex \Rightarrow condition satisfied with $\kappa = 1$.

$$\forall f \in F, \quad \|f - f^*\|_{L_2}^{2\kappa} \le A[R(f) - R(f^*)].$$

P. Bartlett, M. Jordan & J. McAuliffe (2006). Convexity, classification and risk bounds. JASA.

Theorem

 ℓ is strongly convex \Rightarrow condition satisfied with $\kappa = 1$.

$$\forall f \in F, \quad \|f - f^*\|_{L_2}^{2\kappa} \le A[R(f) - R(f^*)].$$

P. Bartlett, M. Jordan & J. McAuliffe (2006). Convexity, classification and risk bounds. JASA.

Theorem

 ℓ is strongly convex \Rightarrow condition satisfied with $\kappa = 1$.

$$\frac{\ell(f(X),Y)+\ell(f^*(X),Y)}{2}-\ell\left(\frac{f(X)+f^*(X)}{2},Y\right)\geq \alpha[f(X)-f^*(X)]^2.$$

$$\forall f \in F, \quad \|f - f^*\|_{L_2}^{2\kappa} \le A[R(f) - R(f^*)].$$

P. Bartlett, M. Jordan & J. McAuliffe (2006). Convexity, classification and risk bounds. JASA.

Theorem

 ℓ is strongly convex \Rightarrow condition satisfied with $\kappa=1$.

$$\frac{\ell(f(X), Y) + \ell(f^*(X), Y)}{2} - \ell\left(\frac{f(X) + f^*(X)}{2}, Y\right) \ge \alpha[f(X) - f^*(X)]^2.$$

$$\frac{R(f) + R(f^*)}{2} - \underbrace{R\left(\frac{f + f^*}{2}\right)} \ge \alpha \|f - f^*\|_{L_2}^2.$$

$$\forall f \in F, \quad \|f - f^*\|_{L_2}^{2\kappa} \le A[R(f) - R(f^*)].$$

P. Bartlett, M. Jordan & J. McAuliffe (2006). Convexity, classification and risk bounds. JASA.

Theorem

 ℓ is strongly convex \Rightarrow condition satisfied with $\kappa = 1$.

$$\begin{split} \frac{\ell(f(X),Y) + \ell(f^*(X),Y)}{2} - \ell\left(\frac{f(X) + f^*(X)}{2},Y\right) &\geq \alpha [f(X) - f^*(X)]^2.\\ \frac{R(f) + R(f^*)}{2} - \underbrace{R\left(\frac{f + f^*}{2}\right)}_{\geq R(f^*)} &\geq \alpha \|f - f^*\|_{L_2}^2. \end{split}$$

$$\forall f \in F, \quad \|f - f^*\|_{L_2}^{2\kappa} \le A[R(f) - R(f^*)].$$

P. Bartlett, M. Jordan & J. McAuliffe (2006). Convexity, classification and risk bounds. JASA.

Theorem

 ℓ is strongly convex \Rightarrow condition satisfied with $\kappa = 1$.

$$\frac{\ell(f(X), Y) + \ell(f^*(X), Y)}{2} - \ell\left(\frac{f(X) + f^*(X)}{2}, Y\right) \ge \alpha[f(X) - f^*(X)]^2.$$

$$\frac{R(f) + R(f^*)}{2} - \underbrace{R\left(\frac{f + f^*}{2}\right)}_{\ge R(f^*)} \ge \alpha \|f - f^*\|_{L_2}^2.$$

$$R(f) - R(f^*) \ge 2\alpha \|f - f^*\|_{L_2}^2.$$

The Bernstein condition and the hinge loss

$$\forall f \in F, \quad \|f - f^*\|_{L_2}^{2\kappa} \le A[R(f) - R(f^*)].$$

The Bernstein condition and the hinge loss

$$\forall f \in F, \quad \|f - f^*\|_{L_2}^{2\kappa} \le A[R(f) - R(f^*)].$$

G. Lecué (2006). Optimal Rates of Aggregation in Classification Under Low Noise Assumption. *PhD Thesis*.

$\mathsf{Theorem}$

$$Y \in \{-1, 1\}, \ \eta(x) := \mathbb{E}(Y|X = x) \ \text{and} \ f^*(x) = \text{sign}(\eta(x)).$$

• $|\eta(X)| \ge \tau > 0$ a.s. \Rightarrow Bernstein condition with $\kappa \ge 1$.

The Bernstein condition and the hinge loss

$$\forall f \in F, \quad \|f - f^*\|_{L_2}^{2\kappa} \le A[R(f) - R(f^*)].$$

G. Lecué (2006). Optimal Rates of Aggregation in Classification Under Low Noise Assumption. PhD Thesis.

$\mathsf{Theorem}$

$$Y \in \{-1, 1\}, \ \eta(x) := \mathbb{E}(Y|X = x) \ \text{and} \ f^*(x) = \text{sign}(\eta(x)).$$

- $|\eta(X)| \ge \tau > 0$ a.s. \Rightarrow Bernstein condition with $\kappa \ge 1$.
- $\mathbb{P}(|\eta(X)| \le t) \le ct^{\frac{1}{\kappa-1}}$ with $\kappa > 1 \Rightarrow$ Bernstein.

The complexity parameter 1 - the bounded case

Let us assume that $\sup_{f \in F} \|f\|_{\infty} \leq b$.

The complexity parameter 1 - the bounded case

Let us assume that $\sup_{f \in F} ||f||_{\infty} \leq b$.

Ex : matrix completion case, $X_i \in \{E_{j,k}\}$ and

$$F = \left\{ \langle M, \cdot \rangle_F, \sup_{i,j} |M_{i,j}| \leq b \right\}.$$

The complexity parameter 1 - the bounded case

Let us assume that $\sup_{f \in F} ||f||_{\infty} \leq b$.

Ex : matrix completion case, $X_i \in \{E_{i,k}\}$ and

$$F = \left\{ \langle M, \cdot \rangle_F, \sup_{i,j} |M_{i,j}| \leq b \right\}.$$

Rademacher complexity

In this case we define, for B the unit ball in E,

$$comp(B) = \mathbb{E} \sup_{f \in B} \left| \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \epsilon_i f(X_i) \right|$$
, (ϵ_i) i.i.d Rademacher.

The complexity parameter 2 - subgaussian case

Put
$$H=\{f-g,(f,g)\in F^2\}$$
. Assume that $\forall h\in H,\ \forall \lambda,$
$$\mathbb{E}\exp\left(\lambda\frac{|h(X)|}{\|h\|_{L_2}}\right)\leq \exp\left(\lambda^2L^2\right).$$

The complexity parameter 2 - subgaussian case

Put
$$H=\{f-g,(f,g)\in F^2\}$$
. Assume that $\forall h\in H,\ \forall \lambda,$
$$\mathbb{E}\exp\left(\lambda\frac{|h(X)|}{\|h\|_{L_2}}\right)\leq \exp\left(\lambda^2L^2\right).$$

Ex: X is Gaussian and

$$F = \{\langle t, \cdot \rangle, t \in \mathbb{R}^p\}$$
.

The complexity parameter 2 - subgaussian case

Put
$$H = \{f - g, (f, g) \in F^2\}$$
. Assume that $\forall h \in H, \forall \lambda$,

$$\mathbb{E} \exp \left(\lambda \frac{|h(X)|}{\|h\|_{L_2}} \right) \le \exp \left(\lambda^2 L^2 \right).$$

Ex: X is Gaussian and

$$F = \{\langle t, \cdot \rangle, t \in \mathbb{R}^p\}.$$

Gaussian mean width

 $(G_h)_{h \in E}$ canonical Gaussian process,

$$comp(B) = \mathbb{E} \sup_{h \in B} G_h.$$

The complexity function

The complexity function

$$r(\rho) := \left\lceil \frac{A \rho \text{comp}(B)}{\sqrt{N}} \right\rceil^{\frac{1}{2\kappa}}.$$

The sparsity equation

Example : the $\|\cdot\|_1$ penalty.

Idea : t^* sparse (easier to estimate) $\leftrightarrow \partial \|\cdot\|(t^*)$ is a large set.

The sparsity equation

The sparsity parameter

$$\Delta(\rho) := \inf_{h \in \rho S \cap r(2\rho) B_{L_2}} \sup_{f \in \partial \|\cdot\|(f^*)} \langle h, f \rangle$$

where B_{L_2} is the unit ball in L_2 and S is the unit sphere in E.

The sparsity equation

The sparsity parameter

$$\Delta(\rho) := \inf_{h \in \rho S \cap r(2\rho)B_{L_2}} \sup_{f \in \partial \|\cdot\|(f^*)} \langle h, f \rangle$$

where B_{L_2} is the unit ball in L_2 and S is the unit sphere in E.

The sparsity equation

Find (the smallest possible) ρ^* such that

$$\Delta(\rho^*) \geq (4/5)\rho^*$$

Sharp oracle inequality

C stands for a constant that depends on A, κ , ... and may change from line to line.

Theorem

Take $\lambda = 720 \text{comp}(B)/(7\sqrt{N})$. Then with probability at least

$$1 - C \exp \left[-CN^{\frac{1}{2\kappa}} \left(\rho^* \operatorname{comp}(B) \right)^{\frac{2\kappa - 1}{\kappa}} \right]$$

we have simultaneously

$$\|\hat{f} - f^*\| \le \rho^*, \|\hat{f} - f^*\|_{L_2} \le r(2\rho^*),$$

$$R(\hat{f}) - R(f^*) < C[r(2\rho^*)]^{2\kappa}.$$

Outline of the talk

- Motivation
 - Matrix completion : the L₂ point of view
 - Matrix completion : Lipschitz losses?
- Oracle inequalities
 - Notations and overview
 - The main ingredients
 - Sharp oracle inequality
- 3 Applications
 - Logistic LASSO
 - Logistic SLOPE
 - Matrix completion with hinge loss

Outline of the talk

- Motivation
 - Matrix completion : the L_2 point of view
 - Matrix completion : Lipschitz losses?
- Oracle inequalities
 - Notations and overview
 - The main ingredients
 - Sharp oracle inequality
- 3 Applications
 - Logistic LASSO
 - Logistic SLOPE
 - Matrix completion with hinge loss

Logistic LASSO: context

$$E = F = \{\langle t, \cdot \rangle, t \in \mathbb{R}^p\}$$
 equipped with $\|\cdot\| = \|\cdot\|_1$.

Logistic LASSO

$$\hat{f} \in \arg\min_{f \in F} \left[\frac{1}{N} \sum_{i=1}^{N} \log(1 - \exp(-Y_i f(X_i))) + \lambda \|f\|_1 \right].$$

Assume that $X \sim \mathcal{N}(0, I_p)$.

Assume that $X \sim \mathcal{N}(0, I_p)$.

Bernstein condition satisfied with $\kappa = 1$.

Assume that $X \sim \mathcal{N}(0, I_p)$.

Bernstein condition satisfied with $\kappa = 1$.

$$\operatorname{comp}(B) = \mathbb{E} \sup_{\|t\|_1 < 1} \langle t, X \rangle = \mathbb{E} \|X\|_{\infty} \sim \sqrt{\log(p)}.$$

Assume that $X \sim \mathcal{N}(0, I_p)$.

Bernstein condition satisfied with $\kappa = 1$.

$$\operatorname{comp}(B) = \mathbb{E} \sup_{\|t\|_1 \le 1} \langle t, X \rangle = \mathbb{E} \|X\|_{\infty} \sim \sqrt{\log(p)}.$$

$$r(
ho) = \left[\frac{
ho A \mathrm{comp}(B)}{\sqrt{N}}\right]^{\frac{1}{2\kappa}} \sim \left(\frac{
ho \sqrt{\log(p)}}{\sqrt{N}}\right)^{\frac{1}{2}}.$$

Logistic LASSO : sparsity

Sparsity parameter

$$\Delta(\rho) = \inf_{h \in \rho S \cap r(2\rho)B_{L_2}} \sup_{f \in \partial \|\cdot\|_1(f^*)} \langle h, f \rangle$$

Logistic LASSO : sparsity

Sparsity parameter

$$\Delta(\rho) = \inf_{h \in \rho S \cap r(2\rho)B_{L_2}} \sup_{f \in \partial \|\cdot\|_1(f^*)} \langle h, f \rangle$$

$$f \in \partial \|\cdot\|_{\mathbf{1}}(f^*) \Leftrightarrow \left\{ egin{array}{l} f_j = +1 ext{ when } f_j^* > 0, \ f_j = -1 ext{ when } f_j^* < 0, \ f_j \in [-1, +1] ext{ when } f_j^* = 0. \end{array}
ight.$$

Logistic LASSO : sparsity

Sparsity parameter

$$\Delta(\rho) = \inf_{h \in \rho S \cap r(2\rho)B_{L_2}} \sup_{f \in \partial \|\cdot\|_1(f^*)} \langle h, f \rangle$$

$$f \in \partial \|\cdot\|_{\mathbf{1}}(f^*) \Leftrightarrow \left\{ egin{array}{ll} f_j = +1 ext{ when } f_j^* > 0, \ f_j = -1 ext{ when } f_j^* < 0, \ f_j \in [-1, +1] ext{ when } f_j^* = 0. \end{array}
ight.$$

Choose h and define P as the projector on the sparsity pattern of f^* . Let s denote the sparsity of f^* .

$$\langle h, f \rangle = \langle (I - P)h, f \rangle + \langle Ph, f \rangle \underbrace{\geq \|(I - P)h\|_{\mathbf{1}} - \|Ph\|_{\mathbf{1}}}_{f : \text{uniform}} = \|h\|_{\mathbf{1}} - 2\|Ph\|_{\mathbf{1}} = \rho - 2\|Ph\|_{\mathbf{1}}$$

Logistic LASSO: sparsity

Sparsity parameter

$$\Delta(\rho) = \inf_{h \in \rho S \cap r(2\rho)B_{L_2}} \sup_{f \in \partial \|\cdot\|_1(f^*)} \langle h, f \rangle$$

$$f \in \partial \|\cdot\|_{\mathbf{1}}(f^*) \Leftrightarrow \left\{ egin{array}{l} f_j = +1 \; \mathsf{when} \; f_j^* > 0, \ f_j = -1 \; \mathsf{when} \; f_j^* < 0, \ f_j \in [-1, +1] \; \mathsf{when} \; f_j^* = 0. \end{array}
ight.$$

Choose h and define P as the projector on the sparsity pattern of f^* . Let s denote the sparsity of f^* .

$$\langle h, f \rangle = \langle (I - P)h, f \rangle + \langle Ph, f \rangle \underbrace{\geq \|(I - P)h\|_{\mathbf{1}} - \|Ph\|_{\mathbf{1}}}_{\text{f well chosen}} = \|h\|_{\mathbf{1}} - 2\|Ph\|_{\mathbf{1}} = \rho - 2\|Ph\|_{\mathbf{1}}$$

$$||Ph||_1 \le \sqrt{s}||Ph||_2 \le \sqrt{s}||h||_2 \le \sqrt{s}r(2\rho)$$

Logistic LASSO: sparsity

Sparsity parameter

$$\Delta(\rho) = \inf_{h \in \rho S \cap r(2\rho)B_{L_2}} \sup_{f \in \partial \|\cdot\|_1(f^*)} \langle h, f \rangle$$

$$f \in \partial \|\cdot\|_{\mathbf{1}}(f^*) \Leftrightarrow \left\{ egin{array}{l} f_j = +1 ext{ when } f_j^* > 0, \ f_j = -1 ext{ when } f_j^* < 0, \ f_j \in [-1, +1] ext{ when } f_i^* = 0. \end{array}
ight.$$

Choose h and define P as the projector on the sparsity pattern of f^* . Let s denote the sparsity of f^* .

$$\langle h,f\rangle = \langle (I-P)h,f\rangle + \langle Ph,f\rangle \underbrace{\geq \|(I-P)h\|_{\mathbf{1}} - \|Ph\|_{\mathbf{1}}}_{\text{f well chosen}} = \|h\|_{\mathbf{1}} - 2\|Ph\|_{\mathbf{1}} = \rho - 2\|Ph\|_{\mathbf{1}}$$

$$||Ph||_1 \le \sqrt{s}||Ph||_2 \le \sqrt{s}||h||_2 \le \sqrt{s}r(2\rho)$$

Sparsity equation

$$\Delta(\rho) \geq (4/5)\rho \Leftrightarrow \rho \text{ such that } \frac{\rho}{r(2\rho)} \geq C\sqrt{s}.$$

Logistic LASSO: solving the sparsity equation

$$r(
ho) \sim \left(\frac{
ho\sqrt{\log(p)}}{\sqrt{N}}\right)^{\frac{1}{2}}.$$
 $C\sqrt{s} \leq \frac{
ho}{r(2
ho)} \sim \left(\frac{
ho\sqrt{N}}{\sqrt{\log(p)}}\right).$

Logistic LASSO: solving the sparsity equation

$$r(
ho) \sim \left(rac{
ho\sqrt{\log(
ho)}}{\sqrt{N}}
ight)^{rac{\hat{z}}{2}}.$$
 $C\sqrt{s} \leq rac{
ho}{r(2
ho)} \sim \left(rac{
ho\sqrt{N}}{\sqrt{\log(
ho)}}
ight).$
 $ho^* \sim s\sqrt{rac{\log(
ho)}{N}}.$

Logistic LASSO: solving the sparsity equation

$$r(
ho) \sim \left(rac{
ho\sqrt{\log(p)}}{\sqrt{N}}
ight)^{rac{1}{2}}.$$
 $C\sqrt{s} \leq rac{
ho}{r(2
ho)} \sim \left(rac{
ho\sqrt{N}}{\sqrt{\log(p)}}
ight).$
 $ho^* \sim s\sqrt{rac{\log(p)}{N}}.$
 $r(
ho^*) \sim \sqrt{rac{s\log(p)}{N}}.$

Logistic LASSO: conclusion

Theorem

Take $\lambda \sim \sqrt{\log(p)/N}$. Then with probability at least

$$1 - C \exp\left[-Cs\log(p)\right]$$

we have simultaneously

$$\|\hat{f} - f^*\|_1 \le C s \sqrt{\frac{\log(p)}{N}},$$

$$\|\hat{f} - f^*\|_2 \le C\sqrt{\frac{s\log(p)}{N}},$$

$$R(\hat{f}) - R(f^*) \le C \frac{s \log(p)}{N}.$$

The SLOPE penalty

$$\begin{array}{c|cccc} & LASSO & SLOPE \\ \hline \|t\| & \sum_{i=1}^{p} |t_i| & \sum_{i=1}^{p} \sqrt{\log\left(\frac{\mathrm{e}p}{i}\right)} |t_{(i)}| \\ \mathrm{comp}(B) & \sqrt{\log p} & 1 \\ \hline \rho^* & \frac{s}{\sqrt{N}} \sqrt{\log p} & \frac{s}{\sqrt{N}} \log\frac{\mathrm{e}p}{s} \\ \hline r(\rho^*) & \frac{s}{N} \log p & \frac{s}{N} \log\frac{\mathrm{e}p}{s} \\ \hline \end{array}$$

where
$$|t_{(1)}| \ge \cdots \ge |t_{(p)}|$$
.

Logistic SLOPE: conclusion

Theorem

Take $\lambda \sim 1/\sqrt{N}$. Then with probability at least

$$1 - C \exp\left[-Cs\log(\mathrm{e}\rho/s)\right]$$

we have simultaneously

$$\|\hat{f} - f^*\|_1 \le Cs\sqrt{\frac{\log(\mathrm{e}p/s)}{N}},$$

$$\|\hat{f} - f^*\|_2 \le C\sqrt{\frac{s\log(\mathrm{e}p/s)}{N}},$$

$$R(\hat{f}) - R(f^*) \le C \frac{s \log(ep/s)}{N}.$$

Matrix completion: context

$$E = F = \{\langle M, \cdot \rangle_F, M \in [-1, +1]^{m \times p}\} \text{ with } \|\cdot\| = \|\cdot\|_*.$$

Matrix completion via hinge loss + nuclear norm

$$\hat{f} \in \arg\min_{f \in F} \left[\frac{1}{N} \sum_{i=1}^{N} (1 - Y_i f(X_i))_+ + \lambda \|f\|_* \right].$$

Matrix completion: context

$$E = F = \{\langle M, \cdot \rangle_F, M \in [-1, +1]^{m \times p}\} \text{ with } \| \cdot \| = \| \cdot \|_*.$$

Matrix completion via hinge loss + nuclear norm

$$\hat{f} \in \arg\min_{f \in F} \left[\frac{1}{N} \sum_{i=1}^{N} (1 - Y_i f(X_i))_+ + \lambda \|f\|_* \right].$$

Assume that X is uniformly distributed on $\{E_{i,k}\}$.

Matrix completion: Bernstein and complexity

Obvious that $f^*(E_{j,k}) = \operatorname{sign}(\langle E_{j,k}, M^* \rangle) = \operatorname{sign}(\eta(E_{j,k}))$. As soon as $|\eta(E_{j,k})| \ge \beta > 0$ then Bernstein satisfied with $\kappa = 1$.

Matrix completion: Bernstein and complexity

Obvious that $f^*(E_{j,k}) = \operatorname{sign}(\langle E_{j,k}, M^* \rangle) = \operatorname{sign}(\eta(E_{j,k}))$. As soon as $|\eta(E_{j,k})| \ge \beta > 0$ then Bernstein satisfied with $\kappa = 1$.

$$comp(B) = \mathbb{E} \sup_{\|\boldsymbol{M}\|_{*} \leq \mathbf{1}} \left| \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \epsilon_{i} \langle M, X_{i} \rangle \right| = \mathbb{E} \sup_{\|\boldsymbol{M}\|_{*} \leq \mathbf{1}} \left| \left\langle M, \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \epsilon_{i} X_{i} \right\rangle \right|$$
$$= \mathbb{E} \left\| \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \epsilon_{i} X_{i} \right\|_{op} \sim \sqrt{\frac{\log(m+p)}{\min(m,p)}}$$

thanks to "matrix Bernstein" inequality.

Matrix completion: Bernstein and complexity

Obvious that $f^*(E_{j,k}) = \operatorname{sign}(\langle E_{j,k}, M^* \rangle) = \operatorname{sign}(\eta(E_{j,k}))$. As soon as $|\eta(E_{j,k})| \ge \beta > 0$ then Bernstein satisfied with $\kappa = 1$.

$$comp(B) = \mathbb{E} \sup_{\|\boldsymbol{M}\|_{*} \leq \mathbf{1}} \left| \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \epsilon_{i} \langle M, X_{i} \rangle \right| = \mathbb{E} \sup_{\|\boldsymbol{M}\|_{*} \leq \mathbf{1}} \left| \left\langle M, \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \epsilon_{i} X_{i} \right\rangle \right|$$
$$= \mathbb{E} \left\| \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \epsilon_{i} X_{i} \right\|_{op} \sim \sqrt{\frac{\log(m+p)}{\min(m,p)}}$$

thanks to "matrix Bernstein" inequality.

$$r(
ho) \sim \left(
ho \sqrt{rac{\log(m+p)}{N \min(m,p)}}
ight)^{1/2}.$$

Matrix completion : sparsity

Sparsity equation

$$\Delta(
ho) \geq (4/5)
ho \Leftrightarrow
ho ext{ such that } rac{
ho}{r(2
ho)} \geq C \sqrt{\mathrm{rank}(\emph{M}^*)\emph{mp}}.$$

Put
$$r = \operatorname{rank}(M^*)$$
.

Matrix completion: conclusion

Theorem

Take $\lambda \sim \sqrt{\log(m+p)/[N\min(m,p)]}$. Then with probability at least

$$1 - C \exp\left[-Cr(m+p)\log(m+p)\right]$$

we have simultaneously

$$\|\hat{f} - f^*\|_* \le Cr\sqrt{\frac{\log(m+p)}{N\min(m,p)}},$$

$$\|\hat{f} - f^*\|_F \leq C\sqrt{\frac{r \max(m, p) \log(m + p)}{N}},$$

$$R(\hat{f}) - R(f^*) \le C \frac{r \max(m, p) \log(m + p)}{N}.$$

P. Alquier, V. Cottet & G. Lecué (2017). Estimation Bounds and Sharp Oracle Inequalities of Regularized Procedures with Lipschitz Loss Functions. *Preprint arxiv*:1702.01402.

Jupyter notebooks:

https://sites.google.com/site/vincentcottet/code

Thank you!