PRIMEIRA PROVA DE TERMODINÂMICA E MÁQUINAS TÉRMICAS (EQE-363) Prof. Frederico W. Tavares

1) (40 Ptos) A figura a seguir mostra o processo de produção de hexano gasoso a partir de hexano líquido saturado a 3 atm. No processo, 300 cm³/min de hexano são produzidos a 10 atm e temperatura T₃. Calcule as taxas de calor e trabalho envolvidas no processo.

Dados: Corrente 2: vapor saturado

i- Equação de estado :
$$Z = 1 + BP/(RT)$$
, onde $BP_C/(RT_C) = 0.08 - 0.4(T_C/T)$

ii-
$$C_P(T,10atm) = 10cal/(gmolK)$$
 e $P^{SAT} = P_C \exp[5,4(w+1)(1-T_C/T)]$

$$iii - \Delta S_{n}^{VAP} = 8,0 + 1,897 \, ln(T_{n}) \qquad e \qquad \frac{\Delta H_{2}^{VAP}}{\Delta H_{1}^{VAP}} = \left(\frac{T_{2} - T_{C}}{T_{1} - T_{C}}\right)^{0.38}$$

iv-
$$T_C = 507K$$
, $P_C = 29.3atm$, $w = 0.296$

v-
$$R = 1,987 \text{cal/(gmol K)} = 82,05(\text{atmcm}^3)/(\text{gmol K})$$

$$vi-\ dH=C_{P}dT+[V-T\bigg(\frac{\partial V}{\partial T}\bigg)_{P}]dP \qquad e \qquad dS=C_{P}d\ln T-\bigg(\frac{\partial V}{\partial T}\bigg)_{P}dP$$

2) (40 Ptos) Um ciclo de refrigeração é utilizado para produção de uma corrente de refrigeração industrial. Dados: i- o compressor trabalha com 80% de eficiência. ii- a corrente 1 é vapor saturado.

iii- o ciclo trabalha com amônia. Iv – a corrente 3 é a saída do condensador

CORRENTES	1	2'	2	3	4
$T(^{0}F)$	-30			60	
P (Psia)			120		
H (Btu/lbm)					
S (Btu/lbm ⁰ F)					

- a) Calcule as propriedades P, T, H e S das correntes.
- b) Calcule a potência elétrica consumida para uma produção de 50000 Btu/min de refrigeração.
- 3) (20 Ptos) Duas correntes de água, corrente 1 (15 lbm/s de líquido 14,7 psia e 162 ⁰F) e corrente 2 (10 lbm/s nas condições de 14,7 psia e 800 ⁰F), são misturadas em um trocador de calor de contato direto, produzindo uma corrente 3. Encontre as propriedades termodinâmicas (T, P, H e S) da corrente 3.

SEGUNDA PROVA DE TERMODINÂMICA E MÁQUINAS TÉRMICAS (EQE-363) Prof. Frederico W. Tavares

- 1) Quantidades equimolares de A e B são alimentadas num tanque a 25 0 C. Sabendo-se que as pressões de vapor dos componentes puros a 25 0 C são iguais a $P_{A}^{sat}(bar) = 1$ e $P_{B}^{sat}(bar) = 3$, que a fase gasosa se comporta como gás ideal e que a fase líquida forma uma mistura **não ideal**, descrita através do modelo de Margules ($\ln \gamma_{A} = 4x_{B}^{2}$ e $\ln \gamma_{B} = 4x_{A}^{2}$), calcule a pressão de ponto de bolha desta mistura.
- 2) Utilizando as informações correspondentes à Questão 1, mostre como se calcularia as composições das fases correspondentes para que o sistema apresente 50% de vapor no interior do tanque.
- 3) Quantidades equimolares de A e B são alimentadas num tanque a 25 0 C. Sabendo-se que as pressões de vapor dos componentes puros a 25 0 C são iguais a $P_{A}^{sat}(bar) = 1$ e $P_{B}^{sat}(bar) = 2$, que a fase gasosa se comporta como gás ideal e que os componentes são imiscíveis na fase líquida, calcule a pressão e as composições de equilíbrio.
- 4) Uma corrente contendo 1 mol de A e 1 mol de inerte (I) entra num reator catalítico de leito fixo para formar B através da seguinte reação: A(g) \Leftrightarrow B(g), onde $\Delta G_{298K} = 600cal / mol$ e $\Delta H_{298K} \cong \Delta H_{596K} = 1200cal / mol$. Considerando o comportamento de gás ideal, onde a constante universal dos gáses é R = 2cal / gmol K, calcule as composições de A e B (y_A e y_B) em equilíbrio quando o reator opera a 596K e 2 bar.
- 5) Sabendo-se que os componentes A e B formam uma mistura ideal com composição equimolar, calcule o calor molar de mistura (ΔH), o volume molar de mistura (ΔV), a entropia molar de mistura (ΔS) e a energia livre de Gibbs molar de mistura (ΔG).

PROVA SUBSTITUTIVA DE TERMODINÂMICA E MÁQUINAS TÉRMICAS (EQE-363) Prof. Frederico W. Tavares

1) (40 pontos) Uma mistura contendo 40%, em mols, de dissulfureto de carbono (1) e o restante de acetona (2) escoa numa tubulação industrial a 35 °C. Calcule a maior pressão de operação para que o sistema apresente apenas fase vapor. Dados:

- O comportamento da mistura é bem descrito pelo modelo de Margules ($\frac{G^E}{RT} = Ax_1x_2$).
- O sistema forma azeótropo a 35 0 C na composição de $y_{1}^{AZ} = 0,67$.
- As pressões de vapor a 35 0 C são: $P_{1}^{SAT} = 0.7$ bar e $P_{2}^{SAT} = 0.5$ bar.
- 2) (30 Ptos) Uma mistura equimolar de A e B entra num reator e os componentes participam das seguintes reações a 450 K e 2 atm: A (g) \Leftrightarrow B (g) e B (g) \Leftrightarrow 2 D (g). Considerando o comportamento de gás ideal e que só existem A, B e D dentro do sistema, calcule a composição de equilíbrio na saída do reator. Dados: Energias livres de Gibbs e calores de formação dos componentes a 400 K e 1 atm no estado de referência de gás ideal.

Compostos	ΔG_f^0 (cal/gmol)	$\Delta H_f^0(cal/gmol)$	
A	20	40000	
В	25	30000	
D	15	50000	

3) (30 Ptos) O esquema abaixo representa o ciclo de Rankine utilizado para produção de energia elétrica de uma fábrica.

Dados: i- Corrente 1: 1000 °F e 1000 Psia; Corrente 2: 20 psia; Corrente 3: 212 °F ii- A turbina trabalha com 80 % de eficiência.

- a) Calcule as propriedades P, T, H e S das correntes.
- b) Calcule a potência elétrica produzida quando são gastos 30000 Btu/min na caldeira.

PROVA FINAL DE TERMODINÂMICA E MÁQUINAS TÉRMICAS (EQE-363)

Prof. Frederico W. Tavares

1) (40 pontos) Uma corrente industrial contem 30 % (em mols) de propano(1), 40 % (em mols) de n-hexano e o restante de um solvente especial (líquido iônico, cuja pressão de vapor pode ser considerada igual a zero) escoa a 300K.

Dados: $P_1^{sat}(300K) = 68 \text{ kPa e } P_2^{sat}(300K) = 45 \text{ kPa e } P_3^{sat}(300K) = 0 \text{ kPa}$

- a) Calcule a menor pressão de operação para que o sistema apresente apenas fase líquida.
- b) Calcule as composições molares das fases para que a corrente apresente 30% de vapor.
- 2) (30 Pontos) Uma mistura de 20% de A, 30% de B e o restante de inerte I entra num reator e os componentes participam das seguintes reações a 500 K e 4 atm:

$$A(g) \Leftrightarrow B(g)$$
 e $B(g) \Leftrightarrow 2D(s)$.

Considerando o comportamento de gás ideal e que D é sólido dentro do sistema, calcule a composição da fase gasosa de equilíbrio na saída do reator.

Dados: Energias livres de Gibbs e calores de formação dos componentes a 400 K e 1 atm no estado de referência de gás ideal para os compostos A e B e no estado de sólido puro para D.

Compostos	ΔG_f^0 (cal/gmol)	$\Delta H_{\rm f}^0({ m cal/gmol})$	
A	200	4000	
В	250	3000	
D	150	2500	

3) (30 Pontos) O esquema abaixo representa o ciclo de refrigeração utilizado para produção de uma corrente de refrigerante.

Dados: i- o compressor trabalha com 80% de eficiência.

ii- a corrente 1 é vapor saturado.

iii- o ciclo trabalha com freon 12.

CORRENTES	1	2'	2	3	4
$T(^{0}F)$	-30			60	
P (Psia)			90,3		
H (Btu/lbm)					
S (Btu/lbm ⁰ F)					

- a) Calcule as propriedades P, T, H e S das correntes.
- b) Calcule a potência elétrica consumida para uma produção de 50000 Btu/min de refrigeração.