REVIEW ARTICLE

The Integrated Nested Laplace Approximation applied to spatial point process models

Kenneth Flagg and Andrew Hoegh

Montana State University, Bozeman, MT

ARTICLE HISTORY

Compiled October 24, 2019

ABSTRACT

This template is for authors who are preparing a manuscript for a Taylor & Francis journal using the LATEX document preparation system and the interact class file, which is available via selected journals' home pages on the Taylor & Francis website.

KEYWORDS

1. Introduction

spatial prediction is a high-dimensional problem many dependent latent variables but joint dist not necessarily needed INLA fast approximation for marginals useful for mapping [2]

2. Log-Gaussian Cox Process

Poisson process intensity $\lambda(\mathbf{s})$ events per unit area

Model $\log \lambda(\mathbf{s}) = Z(\mathbf{s}), Z(\mathbf{s})$ spatial Gaussian process

Random continuous function: $Z(\mathbf{s})$ a Gaussian random variable, Mean μ Matern covariance function

Poisson process log-likelihood: $\ell(\lambda) = C - \int \lambda(\mathbf{s}) d\mathbf{s} + \sum \log(\lambda(\mathbf{s_i}))$ (Need to add covariate to notation)

3. INLA

Integrated Nested Laplace Approximation

Bayesian Hierarchical models, many latent Gaussian variables, few parameters Laplace approximation in general: $\int \exp[h(x)] dx$, Taylor expansion of h(x) Example from @rinla

- $\mathbf{y} = (y_1, \dots, y_n)'$ independent Gaussian observations
- $-y_i \sim N(\theta, \sigma^2)$

 $-\theta \sim N(\mu_0, \sigma_0^2)$

 $-\psi = 1/\sigma^2, \ \psi \sim \text{Gamma}(a,b)$

- The posterior distribution of ψ :

$$p(\psi|\mathbf{y}) \propto \frac{p(\mathbf{y}|\theta, \psi)p(\theta)p(\psi)}{p(\theta|\psi, \mathbf{y})}$$

- Laplace approximation:

$$\tilde{p}(\psi|\mathbf{y}) \propto \frac{p(\mathbf{y}|\theta,\psi)p(\theta)p(\psi)}{\tilde{p}_G(\theta^*|\psi,\mathbf{y})}$$

Repeat for θ , will depend on ψ

Provides marginal posteror for one entry at a time of a vector $\boldsymbol{\theta}$

4. The SPDE Approach

GP has dense covariance matrix

SPDE result approximates GP with CAR and sparse covariance matrix [1]

$$(\kappa^2 - \Delta)^{\alpha/2}(\tau Z(\mathbf{s})) = W(\mathbf{s})$$

Choose nodes \mathbf{s}_i to model $Z(\mathbf{s}_i)$, build a triangular mesh, autoregressive model on the nodes

Change of basis: barycentric coordinates allow sparse matrices and simple linear inerpolation

5. Going Off the Grid

Log-likelihood:

$$\ell(Z) = C - \int \exp[Z(\mathbf{s})] d\mathbf{s} + \sum Z(\mathbf{s_i})$$

[3]:

$$\ell(Z) \approx C - \sum_{i} \tilde{\alpha}_{i} \exp \left[\sum_{j} z_{j} \phi_{j}(\tilde{\mathbf{s}}_{i}) \right] + \sum_{i} \sum_{j} z_{j} \phi_{j}(\mathbf{s}_{i})$$

(Poisson distribution)

6. Variable Sampling Effort

Observed a thinned process

Thinning process can be known or unknown

Scale SPDE node integration weights by thinning probabilities when known Incorporate log-linear model for thinning probability when unknown [4]

7. Illustrations

Examples with data, maybe bei dataset, Victorville, or a simulation study

8. Conclusion

References

- [1] F. Lindgren, H. Rue, and J. Lindström, An explicit link between gaussian fields and gaussian markov random fields: the stochastic partial differential equation approach, Journal of the Royal Statistical Society: Series B (Statistical Methodology) 73 (2011), pp. 423–498.
- [2] H. Rue, S. Martino, and N. Chopin, Approximate bayesian inference for latent gaussian models by using integrated nested laplace approximations, Journal of the royal statistical society: Series b (statistical methodology) 71 (2009), pp. 319–392.
- [3] D. Simpson, J.B. Illian, F. Lindgren, S.H. Sørbye, and H. Rue, Going off grid: Computationally efficient inference for log-gaussian cox processes, Biometrika 103 (2016), pp. 49–70.
- [4] Y. Yuan, F.E. Bachl, F. Lindgren, D.L. Borchers, J.B. Illian, S.T. Buckland, H. Rue, T. Gerrodette, et al., Point process models for spatio-temporal distance sampling data from a large-scale survey of blue whales, The Annals of Applied Statistics 11 (2017), pp. 2270–2297.