create mode 100644 csse covid 19 data/csse covid 19 daily reports/03-27-2020.csv

```
RAW=struct();
RAW.Confirmed = import_git('time_series_covid19_confirmed_global.csv');
Warning: Column headers from the file were modified to make them valid MATLAB identifiers before creating
variable names for the table. The original column headers are saved in the VariableDescriptions property.
Set 'PreserveVariableNames' to true to use the original column headers as table variable names.
RAW.Deaths = import_git('time_series_covid19_deaths_global.csv');
Warning: Column headers from the file were modified to make them valid MATLAB identifiers before creating
variable names for the table. The original column headers are saved in the VariableDescriptions property.
Set 'PreserveVariableNames' to true to use the original column headers as table variable names.
% RAW.Recovered = import git('time series_covid19_recovered_global.csv');
Categories=fieldnames(RAW);
StartDate = datetime(2020,01,22)
StartDate = datetime
  22-Jan-2020
EndDate = StartDate+days(size(RAW.(Categories{1}),2)-5)
EndDate = datetime
  27-Mar-2020 00:00:00
Selected_Countries=categorical({'US', 'United Kingdom', 'Germany', 'Switzerland', 'Canada', 'France'
     'Singapore','Australia','India','Mauritius',...
     'Saudi Arabia','Korea, South','Italy'});
```

```
gradient_span=5; %days

CountrywiseData=struct();
for category_count=1:size(Categories,1)
    plot_titles=cell(size(Selected_Countries,2),1);
    for country_count=1:size(Selected_Countries,2)
```

```
RAW.(Categories{category_count}).Country_Region=categorical(RAW.(Categories{category_count}).Country_Region==Selected_Countries(country_count);
    temp=RAW.(Categories{category_count}){Idn,(5:end)};
    CountrywiseData.(Categories{category_count})(country_count,:)=sum(temp,1);
    plot_titles{country_count,1}=[char(Categories{category_count}),'_',char(Selected_Countrend)

fig_title=char(Categories{category_count});
    SimpleScatter(StartDate,CountrywiseData.(Categories{category_count}),fig_title,plot_titles,end)
```

Starting parallel pool (parpool) using the 'local' profile ... Connected to the parallel pool (number of workers: 8).

ans =

^{&#}x27;DailyIncrease_Confirmed'

ans =
'Grad of DailyIncrease Confirmed'

ans =
'Confirmed'

ans =
'Log_Confirmed'

ans =
'Gradient_Confirmed'

ans =
'Goodness of Fit_Confirmed'

ans =
'DailyIncrease_Deaths'

ans =
'Grad of DailyIncrease_Deaths'

ans =
'Deaths'

ans =
'Log_Deaths'

ans =
'Gradient_Deaths'

ans =
'Goodness of Fit_Deaths'


```
pause(5)

rep_BaseName=datetime;
rep_BaseName.Format='yyyyMMdd';
rep_BaseName=['report_',char(rep_BaseName),'.pdf'];
matlab.internal.liveeditor.openAndConvert(which('main.mlx'),rep_BaseName);
```