Math 416 Lecture Note: Week 13

Daesung Kim

1 The adjoint of a linear operator

Theorem 1.1. Let V be a finite dimensional inner product space over F, and $T:V\to V$ linear. Then, there exists a unique linear transform $T^*:V\to V$ such that $\langle T(x),y\rangle=\langle x,T^*(y)\rangle$ for all $x,y\in V$.

Definition 1.2. Let V be a finite dimensional inner product space over F, and $T:V\to V$ linear. The adjoint of T is the unique linear transformation $T^*:V\to V$ satisfying $\langle T(x),y\rangle=\langle x,T^*(y)\rangle$ for all $x,y\in V$.

Lemma 1.3. Let V be a finite dimensional inner product space over F and $\varphi: V \to F$ be linear. Then, there exists a unique vector $y \in V$ such that $\varphi(x) = \langle x, y \rangle$.

Proof. Let $\beta = \{v_1, \dots, v_n\}$ be an orthonormal basis for V and

$$y = \sum_{i=1}^{n} a_i v_i$$

for some $a_i \in F$ which will be determined later. If $\varphi(x) = \langle x, y \rangle$ holds for all $x \in V$, then in particular, we have

$$\varphi(v_j) = \langle v_j, y \rangle = \sum_{i=1}^n \overline{a_i} \langle v_j, v_i \rangle = \overline{a_j}.$$

Let $a_j = \overline{\varphi(v_j)}$. For any $x = \sum_{i=1}^n b_i v_i$, it then follows that

$$\langle x, y \rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} b_i \varphi(v_j) \langle v_i, v_j \rangle = \sum_{i=1}^{n} b_i \varphi(v_i) = \varphi(x).$$

Suppose there are two vectors $y, z \in V$ such that $\langle x, y \rangle = \varphi(x) = \langle x, z \rangle$ for all $x \in V$. Then,

$$\langle x, y - z \rangle = 0$$

for all $x \in V$. In particular, if x = y - z, then ||y - z|| = 0 which implies that y = z.

Proof of Theorem 1.1. (i) For fixed $y \in V$, we define a map $\varphi(x) : V \to F$ by $\varphi(x) = \langle T(x), y \rangle$. One can see that this is linear (HW).

- (ii) By the previous lemma, for each $y \in V$, there exists a unique vector $y' \in V$ such that $\varphi(x) = \langle T(x), y \rangle = \langle x, y' \rangle$. This enables us to define a map $T^* : V \to V$ by $T^*(y) = y'$. This map is well-defined because such a vector y' is unique for each $y \in V$.
- (iii) To show T^* is linear, let $x, y \in V$ and $c \in F$. Then,

$$\begin{split} \langle z, T^*(cx+y) \rangle &= \langle T(z), cx+y \rangle \\ &= \overline{c} \, \langle T(z), x \rangle + \langle T(z), y \rangle \\ &= \overline{c} \, \langle z, T^*(x) \rangle + \langle z, T^*(y) \rangle \\ &= \langle z, cT^*(x) + T^*(y) \rangle \end{split}$$

for all $z \in V$. Thus, $T^*(cx + y) = cT^*(x) + T^*(y)$.

(iv) Let $S: V \to V$ be a linear transformation such that $\langle T(x), y \rangle = \langle x, S(y) \rangle$ for all $x, y \in V$. Then, $\langle T(x), y \rangle = \langle x, S(y) \rangle = \langle x, T^*(y) \rangle$ and so

$$\langle x, S(y) - T^*(y) \rangle = 0$$

for all x. Thus, $S(y) = T^*(y)$ for all $y \in V$ as desired.

Proposition 1.4. Let $A \in \mathcal{M}_{n \times n}(\mathbb{C})$ and $T = L_A$, then $T^* = L_{A^*}$.

Proof. It suffices to show that

$$\langle Ax, y \rangle = \langle x, A^*y \rangle$$

for all $x, y \in \mathbb{C}^n$ where $\langle \cdot, \cdot \rangle$ is the dot product. (HW)

Proposition 1.5. Let V be a finite dimensional inner product space over F, $T: V \to V$ linear, and β an orthonormal basis for V. Then,

$$[T^*]_{\beta} = ([T]_{\beta})^*.$$

Proof. Let $\beta = \{v_1, \dots, v_n\}$. Let $[T]_{\beta} = A = (A_{ij})$ and $[T^*]_{\beta} = B = (B_{ij})$. Then, $\langle T(v_j), v_i \rangle = \langle v_j, T^*(v_i) \rangle$,

$$\langle T(v_j), v_i \rangle = \left\langle \sum_{k=1}^n A_{kj} v_k, v_i \right\rangle = A_{ij},$$

and

$$\langle v_j, T^*(v_i) \rangle = \left\langle v_j, \sum_{k=1}^n B_{kj} v_k \right\rangle = \overline{B_{ji}} = (B^*)_{ij},$$

which yields $A = B^*$.

Remark 1.6. Let V be an inner product space over F and $S, T : V \to V$ linear. One can see the following properties (HW).

- (i) $(cS + T)^* = \overline{c}S^* + T^*$.
- (ii) $(ST)^* = T^*S^*$.
- (iii) $(T^*)^* = T$ and $I^* = I$.

References

- [FIS] Freidberg, Insel, and Spence, Linear Algebra, 4th edition, 2002.
- [Bee] Beezer, A First Course in Linear Algebra, Version 3.5, 2015.

Department of Mathematics, University of Illinois at Urbana-Champaign $E\text{-}mail\ address{:} \texttt{daesungk@illinois.edu}$