

Multilabel classification through structured output learning

Hongyu Su

Department of Computer Science School of Science, Aalto University hongyu.su@aalto.fi

March 24, 2015

Example: dog vs. cat?

▶ We have 5000 pictures of dog and 5000 pictures of cat.

- ▶ Computer digitalize each picture into 100×100 pixels.
- Given a new picture, we want to answer: is it a dog or a cat?
- Simple task for human, dog, or cat.
- ▶ ? claimed this is a difficult task for machines with only 82.7% accuracy.
- ► In 2013, 98.5% accuracy was reported in a Kaggle competition (https://www.kaggle.com/c/dogs-vs-cats).

In human verification system

- ► Human verification system is a program that protects website from robots by generating and grading test that human can pass but machine cannot.
- ► CAPTCHA system (?) uses distorted text.

ASIRRA system (?) uses images.

- ▶ To test if the ASIRRA system is safe from machine learning attack.
 - ▶ One should get all 12 pictures right!
 - Accuracy for machine is $(98.5\%)^{12} \approx 83.4\%$.

In search engine

- If machine can assign cat/dog to all pictures correctly, we can search pictures with keywords.
- Search all cat pictures.

In search engine

- If machine can assign cat/dog to all pictures correctly, we can search pictures with keywords.
- Search all dog pictures.

Single label classification

- ► The mathematical problem behind is known as *single label classification*.
 - ▶ *Input* is an object, e.g., an image, a video, a sound clip.
 - Output is an attribute of the object called label, e.g., dog or cat?
 - ► Explore a set of object and label pairs {(image#1, dog), ···, (image#m, cat))}.
 - Learn a mapping function that predict the label of a unknown object.

Future work

To get benefit?

- ► Fingerprint identification
- Voice recognition
- ▶ Information assistant

To contribute?

- ► SETI@home
- ► Rosetta@home
- ► Foldit

Bibliography

- Ahn, L. V., Blum, M., Hopper, N. J., and Langford, J. (2003). Captcha: Using hard ai problems for security. In *Proceedings of the 22Nd International Conference on Theory and Applications of Cryptographic Techniques*, EUROCRYPT'03, pages 294–311, Berlin, Heidelberg. Springer-Verlag.
- Elson, J., Douceur, J. R., Howell, J., and Saul, J. (2007). Asirra: A captcha that exploits interest-aligned manual image categorization. In *Proceedings of 14th ACM Conference on Computer and Communications Security (CCS)*. Association for Computing Machinery, Inc.
- Golle, P. (2008). Machine learning attacks against the asirra captcha. In *Proceedings of the 15th ACM Conference on Computer and Communications Security*, CCS '08, pages 535–542, New York, NY, USA. ACM.