Heimadæmi 4

${ m sbb51@hi.is}$

September 2022

Dæmi 1

```
int x = 3, y; \Rightarrow x=3
x += y = 5; \Rightarrow x=3+5=8
x == (y = 3); \Rightarrow x=8, ennþá sama og í línunni fyrir ofan
x = y == 2; \Rightarrow x=0, afþví y=3
x = y == 2? y « 1 : y » 1; \Rightarrow x=1, því x=y==2 er false
```

Dæmi 2

Reiknisegð	Tugatala (decimal)	Tvíundartala (binary)
ux	62	11_1110
x-(sx<<1)	-10	11_0110
x >>3	-2	11_1110
(x+ux) <0	0	00_0000
ux + sx	60	11_1100

Dæmi 3

Ef k er jákvæð tala þá á hliðrar (k » 31) fyrstu 31 bitanum í k með 0-bitum og fáum út 0. Síðan skoðum við \sim sem merkir Bitwise complement sem flippar öllum bitunum, þ.e. 0 fyrir 1 og 1 fyrir 0 að ég hélt, en þegar ég keyri þetta skref fyrir skref þá fæ ég -1 út úr þessu, skil ekki alveg afhverju, en erum þá komin með nýtt gildi á k, k = -1. Síðan skoðum við merkið sem merkir Bitwise AND og ber það saman hvort báðir bitarnir eru 1 eða ekki og skilar 0 eða 1. Sem veldur því að a verður jafnt og upprunalega gildið sem við settum inn fyrir k.

Ef k er neikvæð tala, eða 0 þá á hliðrar (k » 31) fyrstu 31 bitanum í k með 1-bitum og fáum út -1. Síðan skoðum við \sim sem gefur okkur k = 0. Síðan skoðum við merkið sem merkir Bitwise AND og ber það saman hvort báðir bitarnir eru 1 eða ekki og skilar 0 eða 1. Sem veldur því að a = 0.

Pannig ef k er jákvæð tala þá skilar kóðinn a=k og ef k er neikvæð tala eða 0 þá skilar kóðinn a=0.

Dæmi 4

(a)

i)

tugaform: -16 + 12 = -4

 $tv\'{i}undar form:$

$$\begin{array}{rrr} & 11_0000 \\ + & 00_1100 \\ = & 11_1100 & = -4 \end{array}$$

Það er rétt útkoma í bæði tugaformi og tvíundarformi.

ii)

tugaform:

$$-21 + -14 = -35$$

 $tv\'{i}undar form:$

$$\begin{array}{rrr} & 10_1001 \\ + & 11_0010 \\ = & 01_1011 & = 27 \end{array}$$

Það er einungis rétt útkoma í tugaformi og það er yfirflæði í tvíundarformi.

iii)

tugaform:

$$17 + 15 = 32$$

tvíundarform:

$$\begin{array}{rrr} & 01_0001 \\ + & 00_1111 \\ = & 10 & 0000 & = 32 \end{array}$$

Það er rétt útkoma í bæði tugaformi og tvíundarformi.

(b)

i)

Hliðrum um 3 sæti til hægri:
$$1110_0011 \times 3 = 1111_1100 = -3$$

Sem gefur okkur ranga lausn

$$-29/8 = -29/2^3$$
 Við byrjum á að samlagningu:

tugaform:

$$-29 + 2^3 = -29 + 8 = -21$$

$$\begin{array}{c} {\rm tv\'iundarform:} \\ {1110_0011} \\ {+} & 0000_1000 \\ \end{array}$$

$$= 1110_{1011}$$

Svo hliðrum við:

$$1110_1011 \gg 3 = 1111_1101 = -3$$

Dæmi 5

a)

$$\begin{array}{rrr} & 00_0111 = 7 \\ + & 00_1101 = 13 \\ = & 01_0100 = 20 \end{array}$$

b)

$$\begin{array}{rl} & 10_1000 = -8 \\ + & 10_1100 = -12 \\ = & 01_0100 = 20 \end{array}$$

Það er yfirflæði

c)

$$\begin{array}{rl} & 00_0101 = 5 \\ + & 10_1001 = -9 \\ = & 10_1110 = -14 \end{array}$$

Við fáum ekki rétta niðurstöðu þar sem formerkin eru mismunandi, þessi aðferð gerir ráð fyrir að tölurnar séu báðar jákvæðar.

d)

$$\begin{array}{rl} & 00_0101 = 5 \\ + & 11_0111 = -9 \\ = & 11_1110 = -4 \end{array}$$

Þetta gengur upp þar sem tvíandhverfukerfið gerir ráð fyrir mismunandi formerkjum.