PEERAPAT TANCHAROEN

Data scientist (Manager) at Kasikorn Asset Management

peerapat-t · GitHub Peerapat Tancharoen | LinkedIn

peerapt.tcr@gmail.com

- Data analyst (Manager) Kasikorn Asset Management (3M, 9Y) Skill: SQL, Python, Dashboard, Machine learning, Git
- Researcher (Public transportation policy) Thailand development and research institute (TDRI) (1Y, 6M) Skill: Spatial data, Research methodology, Econometrics

Education background

- Master's degree in Theoretical Economics from Thammasat University with a GPA of 3.97. Thesis titled 'Developing a Taxation System for Controlling Air Pollution from Automobile Use: A Case Study of the Bangkok Metropolitan Ārea', focusing on tax optimization using GAMS language, presented at the SSRU National Conference.
- Bachelor's degree in Economics from Srinakharinwirot University with GPA of 3.65 (1st Honors). Activity: Qualified as a top 10 team in "Economics Phetyot Mongkut" National competition.

Interest

I am focused on leveraging data science in business contexts, particularly through developing propensity models, churn predictions, and recommendation systems to boost revenue and customer engagement.

PROJECT AT KASIKORN ASSET MANAGEMENT

Mutual funds churn prediction model

Description: Develop a predictive model to identify at-risk customers, allowing for proactive engagement and retention strategies.

Tools: Python, SQL, Feature Engineering, Boosting, SMOTE, Threshold Tuning, SHAP

Mutual funds customer segmentation

Description: Develop a clustering model to group investors based on behavior, enabling targeted communications and personalized product offerings.

Tools: Python, SQL, Feature Engineering, K-Means, PCA

Al Marketing content creator

Description: Develop Al to compelling marketing content, improving campaign effectiveness, and driving customer engagement through personalized messaging.

Tools: Python, OpenAl API, Langchain, Streamlit

PROJECT ON MY GITHUB

+

0

Telco churn prediction model

Tools: Python, Boosting, Random Undersampling, Threshold Tuning, SHAP

Banking customer segmentation

Tools: Python, SQL, Feature Engineering, K-Means, PCA

Hourly Energy consumption prediction

Tools: Python, Time Series Feature Engineering, Random Forest, Recursive Forecasting

False signal detection trading system

Tools: Python, Financial Indicator, Trading Signal Detection

Market basket analysis

Tools: Python, Apriori (from scratch)

Collaborative filtering recommendation system

Tools: Python, Hybrid Collaborative filtering

Thai news tag prediction

Tools: Python, TF-IDF, Multi-label classification, Streamlit

Document summarizer

Tools: Python, OpenAl API, Langchain, Few-shot prompting, Streamlit

Dynamic pricing

Tools: Python, Pricing Elasticity of Demand (PED), Regression tree

- Develop a predictive pricing model that uses regression, first-degree price discrimination theory, and optimization to individually tailor prices based on consumer willingness to pay.
- Utilize regression techniques such as linear regression, regression trees, or boosting algorithms to predict price elasticity and cross elasticity, represented by the equation:

%Change in Q = %Change in P + X

(price elasticity) (cross elasticity)

 Maximize profit by using an optimization technique that uses predicted elasticity and includes contracts such as the cost of products

Pricing on Point: The Art and Science of Dynamic Pricing | by Joan Ngugi | Medium

Dynamic Pricing Implementation through Data Science: Price Optimization Strategies | by Joan Ngugi | Medium

Calculating Individual Price Elasticity for Products | by Arthur Mello | Level Up Coding (gitconnected.com)

Flight Fare Prediction - 0.96 R2 score (kaggle.com)

2. Pricing Elasticity of Demand Modeling — Data Science Topics 0.0.1 documentation (oneoffcoder.com)

1. Transaction data

4. Profit optimization

2. Features/target extraction

5. Deploy

3. Price elasticity prediction

6. Data draft monitoring

C

A & **D**