集積回路設計 (INTEGRATED CIRCUIT DESIGN) 第9回

音声が途切れることがあったら、終わるまで そのままにせずに直ちに教えてください

順序回路

- □メモリを使って順序回 路を実現
 - D-FF:与えられた入力 を1周期遅らせて出力 から出す

順序回路

順序回路

□ 2相クロック方式

- ■計算の前半と後半を ラッチで挟む
- □ データが突き抜けないように設計

- ■両方のラッチがオフ する期間を作る
 - このようなクロック 分配は設計困難
 - ■小規模回路なら可能

- □ 広義のPLD (Programmable Logic Device)
 - □ 設計者が自由に機能を変更できるLSIの総称⇔ ASIC (Application Specific IC)
 - □ Mask Programmable Device (MPD):製造時に
 - □ Field Programmable Device (FPD): その場で
 - □狭義のPLD
 - □ Programmable Array Logic (PAL)とGeneric Array Logic (GAL)の総称
 - PAL/PLA: ANDアレイ・ORアレイが書き換え可能
 - GAL/PLD: ANDアレイは書き換え可能, ORアレイは固定
 - ここでのPLDは製品名
 - ORアレイの出力をANDアレイに入力可

PLD

□ PLA, PAL:組合せ論理回路のみ

□ GAL, PLD:順序論理回路

□制御回路、カウンタなど

PLA, PAL

GAL, PLD

PLA (Programmable Logic Array)

- □ 論理を組む部品(プログラム可能)が配列上に配置
 - ROMの一種
 - □面積:横の配線(積項数)に依存
 - □歩留まり:トランジスタ数(主項の大きさ)に依存

縦の配線:入出力で決定

トランジスタ: ON/OFFを制御 (製造時に決定)

横の配線: 積項数で決定

$$y_1 = x_1 x_3 + x_2 x_4$$

 $y_2 = x_1 x_3 x_4$
 $y_3 = x_1 x_3 + x_4$

PLA (Programmable Logic Array)

PLA (Programmable Logic Array)

カルノ一図を用いた論理式の簡単化

- - 2のべき乗のサイズの枠で囲う

- □できるだけ少数個の領域で
- □ 1は全て含み、0は全て排除
- ■*は囲みを大きくするために 都合の良いものだけ含める
 - ■1や*のマス目をできるだけ大きく
 - ■領域が重なってもOK

4 変数の場合

x_2x_1 x_4x_3	00	01	11	10				
00	F			F				
01	D	E	,,					
11		ļ						
10	F			(F				

5 変数の場合

□ 定まった囲みに対応する NOT-AND項をORで繋ぐ

$x_3x_2x_1 \\ x_5x_4$	000	001	011	010	110	111	101	100
00		I	,		J		*	J
01	G	H), 		,	Н		
11			···.					
10	Ţ,	í I	```		(K)

クワイン-マクラスキー法

- *を1と解釈
- □ F=1となる入力変数の値の組 に対応する極小項を肯定型変 数の数で

□ p=含ま

3 1–			•	- •		Mr. II			- Marie		
ごグル	<i>,</i> —		94	-1-	+	0	0	0	1	*	
						0	0	1	0	1	
まれる	肯	定	型	変	数の数/	0	0	1	1	*	
						0	1	0	0	0	
p = 1	0	0	0	1		0	1	0	1	1	
	0	0	1	0		0	1	1	0	0	SHINE!
	1	0	0	0		0	1	1	1	0	
p=2	0	0	1	1		1	0	0	0	1	
	0	1	0	1		1	0	0	1	*	
	1	0	0	1		1	0	1	0	1	
	1	0	1	0		1	0	1	1	0	
	1	U	1	15		1	1	0	0	*	
	1	1	0	0		1	1	0	1	*	
p=3	1	1	0	1		1	1	1	0	0	
p=4		111	1:	肯定	三型変数4個	1	1	1	1	1	
Superior and a											

24

0001:肯定型変数1個

 $F(x_4, x_3, x_2, x_1)$

クワイン-マクラスキー法

□ グループpに属する極小項xAに対して、 グループp+1に属する極小項xAを見つけて統合 □ p=0から始める($\leftarrow 0000$ しか属さない)

p=1	0	0	-	1
	0	-	0	1
	-	0	0	1
	0	0	1	-
	-	0	1	0
	1	0	0	-
	1	0	-	0
	1	-	0	0
p = 2	-	1	0	1
	1	-	0	1
	1	1	0	-
p=3	1	1	-	1

クワイン-マクラスキー法

□統合できなくなるまで繰り返す

チェックが入っている項 =他のNOT-AND項で表 現されている

チェックが入っていない NOT-AND項=主項

包含図

- □*を0と解釈して包含図を構成
 - □包含関係の意味で、できるだけ大きな主項
 - □できるだけ少ない数の主項

 $ar{x}_4ar{x}_3x_2ar{x}_1$ $\overline{x}_4 x_3 \overline{x}_2 x_1 + \overline{x}_4 \overline{x}_3 \overline{x}_2 \overline{x}_1$ $x_4\overline{x}_3x_2\overline{x}_1$ $x_4\overline{x}_3\overline{x}_1$ $\overline{x}_3x_2\overline{x}_1$ $\overline{x}_4\overline{x}_3x_2$ 不要 $\bar{x}_4\bar{x}_3x_1$ $x_4 x_3 x_1$ 基本主項 =必ず使用

これらの極小項を 包含する主項は それぞれ1つだけ

包含図

□ 包含図を小さくして繰り返す

□ 総当たり(全数探索)

- □確実だが計算量は膨大
- ヒューリスティック
 - Minimum Cover Problem → 二分グラフ

使用が確定 した主項

- ② ある主項Aが包含する極小項が、全て別の主項Bでも包含
- = BがAを代行
- →Aを包含図から除外 (=Bを選択)

すべての極小項をカバーする 最少・より上位の主項を選択

主項 極小項 X₄X₃X₁ X₄X₃X₂X₁ X₄X₃X₂X₁

複数出力の論理回路

複数論理関数の同時 簡単化=PLA設計

□ 各出力について簡単化するより、 共通部分を使って簡単化した方が 論理素子数を減らすチャンス大

■共用できる極小項のみ

x_2x_1	00	01	11	10
0			1	
1		1	*	

$$\rightarrow x_3x_1, x_2x_1$$

□共用できない極小項を補足

 $\rightarrow x'_{3}x'_{1}, x'_{3}x_{2}, x_{3}x_{1}, x_{2}x_{1} \rightarrow x_{3}, x_{2}x_{1}$

x_3	x_2	x_1	y_1	y_2
0	0	0	1	0
0	0	1	0	0
0	1	0	*	0
0	1	1	1	1
1	0	0	0	*
1	0	1	1	*
1	1	0	0	1
1	1	1	*	*

単一出力と同様に ドントケアは1と して極小項を抽出

複数出力の論理回路

- □包含図を用いて主項を選択
 - □ y₁用とy₂用を混同しないように
 - □ 共用の主項を無理に使う必要はない

