上下文无关文法

- 上下文无关文法
- 语法分析树
 - 形式定义
 - 语法树和派生的等价性
- 文法和语言的歧义性
- 文法的化简与范式

派生或归约的过程可以表示成树形结构.

- 例 2 文法 G_{exp} 中推导算数表达式 a*(a+a) 的过程
- 例 6 中语言 L_{eq} 的文法中推导 0011 的过程

语法分析树的形式定义

定义

CFGG = (V, T, P, S) 的语法分析树 (语法树或派生树) 为:

- 每个内节点标记为 V 中的变元符号;
- ② 每个叶节点标记为 $V \cup T \cup \{\varepsilon\}$ 中的符号;
- ❸ 如果某内节点标记是 A, 其子节点从左至右分别为

$$X_1, X_2, \cdots, X_n$$

那么

$$A \to X_1 X_2 \cdots X_n \in P$$
,

若有 $X_i = \varepsilon$, 则 ε 是 A 唯一子节点, 且 $A \to \varepsilon \in P$.

定义

语法树的全部叶节点从左到右连接起来, 称为该树的产物或结果. 如果树根节点是初始符号 S, 叶节点是终结符或 ε , 那么该树的产物属于 $\mathbf{L}(G)$.

定义

语法树中标记为 A 的内节点及其全部子孙节点构成的子树, 称为 A 子树.

语法分析树和派生的等价性

定理 17

$$CFG\ G = (V, T, P, S)$$
 且 $A \in V$, 那么文法 G 中

$$A \stackrel{*}{\Rightarrow} \alpha$$

当且仅当 G 中存在以 A 为根节点产物为 α 的语法树.

证明: [充分性] 对 $A \rightarrow \alpha$ 的步骤数 i 归纳证明.

归纳基础: j=1 时, $A \Rightarrow \alpha$, 有 $A \rightarrow \alpha \in P$, 可构造 \bigwedge^A .

归纳递推: 假设 i < n 时命题成立. 当 i = n + 1 时, $A \stackrel{n+1}{\Longrightarrow} \alpha$ 的派生过程为

$$A \Rightarrow X_1 \cdots X_m \stackrel{n}{\Rightarrow} \alpha_1 \cdots \alpha_m = \alpha,$$

其中 $A \rightarrow X_1 \cdots X_m \in P$. 而 X_i 若非终结符, 一定有 $X_i \Rightarrow \alpha_i$ 且不超过 n 步, 由归纳假设存在 $\bigwedge_{i=1}^{n}$, 因此可以 构造以 A 为根, 以 X_i 为子树 (或叶子) 的语法树, 其产物 刚好为 α . $\alpha_1 \cdots \alpha_m$

[必要性] 对语法分析树的内节点数 j 归纳证明.

归纳基础: j=1 时, 由 $\stackrel{A}{\curvearrowright}$, 有 $A \rightarrow \alpha \in P$, 那么 $A \stackrel{*}{\Rightarrow} \alpha$.

归纳递推: 假设 $j \leq n$ 时命题成立. 当 j = n+1 时, 根节点 A 的儿子为 X_1, X_2, \ldots, X_m , 则

$$A \to X_1 \cdots X_m \in P$$
, $\mathbb{H} A \Rightarrow X_1 \cdots X_m$.

而 X_i 子树 (或叶子) 内节点数都不超过 n,由归纳假设有

$$X_i \stackrel{*}{\Rightarrow} \alpha_i$$

从左至右连接 α_i , 刚好为树的产物 α , 所以有

$$X_1X_2\cdots X_m \stackrel{*}{\Rightarrow} \alpha_1X_2\cdots X_m \stackrel{*}{\Rightarrow} \cdots \stackrel{*}{\Rightarrow} \alpha_1\alpha_2\cdots \alpha_m = \alpha.$$

因此 $A \Rightarrow \alpha$ 命题成立.

语法树唯一确定最左 (右) 派生

- 每棵语法分析树都有唯一的最左 (右) 派生
- 给定 CFG $G = (V, T, P, S), A \in V$, 以下命题等价:
 - lacktriangle 通过递归推理, 确定串 w 在变元 A 的语言中.
 - ② 存在以 A 为根节点, 产物为 w 的语法分析树.
 - $A \stackrel{*}{\Rightarrow} w.$
 - $A \underset{\text{lm}}{\Longrightarrow} w.$
 - $\bullet A \stackrel{*}{\Longrightarrow} w.$

上下文无关文法

- 上下文无关文法
- 语法分析树
- 文法和语言的歧义性
 - 文法歧义性的消除
 - 语言的固有歧义性
- 文法的化简与范式

文法的歧义性

定义

如果 CFGG 使某些符号串有两棵不同的语法分析树, 则称文法 G 是歧义的.

续例 2. 算数表达式的文法 G_{exp} 中, 对句型 a+a*a 有下面两棵语法分析树:

(1)
$$E \Rightarrow E + E$$
 (2) $E \Rightarrow E * E$
 $\Rightarrow E + E * E$
 $\stackrel{*}{\Rightarrow} a + a * a$ $\stackrel{*}{\Rightarrow} a + a * a$

文法歧义性的消除

有些文法的歧义性, 可以通过重新设计文法来消除. 续例 2. 文法 G_{\exp} 重新设计为文法 G_{\exp} 可消除歧义.

$$E \rightarrow E + T \mid T$$

$$T \rightarrow T * F \mid F$$

$$F \rightarrow (E) \mid I$$

$$I \rightarrow a$$

$$I \rightarrow b$$

$$I \rightarrow Ia$$

$$I \rightarrow Ib$$

$$I \rightarrow Ib$$

$$I \rightarrow I0$$

$$I \rightarrow I1$$

语言的固有歧义性

定义

定义同样的语言可以有多个文法,如果 CFLL 的所有文法都是歧义的,那么称语言 L 是固有歧义的.

• 固有歧义的语言确实存在, 如语言

$$L = \{a^i b^j c^k \mid i = j \text{ or } j = k\}$$

中任何形为 $a^nb^nc^n$ 的串, 总会有两棵语法树.

• "判定任何给定 CFG G 是否歧义"是一个不可判定问题.