IS422P - DATA MINING CLUSTERING-PART2

AGENDA

Basics

What is Cluster Analysis? Requirements

for Cluster Analysis

Overview of methods

-Means

Partitioning Methods

Agglomerative vs. Divisive

Distance Measures Hierarchical Methods

DBSCAN

Assessing Clustering **Tendency**

Measuring Clustering Quality

Evaluation of

Density-Based Methods

DENSITY-BASED METHODS DBSCAN: DENSITY-BASED SPATIAL CLUSTERING OF APPLICATIONS WITH NOISE

- Find <u>core object</u>s (with dense neighborhoods)
- Connect core objects to form dense clusters
- User provides:
 - ϵ -neighborhood of object $o \rightarrow$ space within a radius ϵ centered at o
 - Neighborhood density → # objects in that neighborhood
 - MinPts → density threshold for a neighborhood
- Core object → object whose ε-neighborhood contains at least MinPts
 objects

DENSITY-BASED METHODS DBSCAN

Given $\epsilon = 4$ and MinPts = 5

an object p is directly **density-reachable** from another object q if and only if q is a core object and p is in the ϵ -neighborhood of q

DENSITY-BASED METHODS DBSCAN

Given $\epsilon = 4$ and MinPts = 5

an object p is directly **density-reachable** from another object q if and only if q is a core object and p is in the -neighborhood of q

objects q & m are **density-connected** if there is an object o such that q & m are both **density-reachable** from o

Algorithm: DBSCAN: a density-based clustering algorithm.

Input:

- D: a data set containing n objects,
- ϵ : the radius parameter, and
- *MinPts*: the neighborhood density threshold.

Output: A set of density-based clusters.

(16) until no object is unvisited;

Method:

mark all objects as unvisited;
do
randomly select an unvisited object p;
mark p as visited;
if the ϵ -neighborhood of p has at least $MinPts$ objects
create a new cluster C , and add p to C ;
let N be the set of objects in the ϵ -neighborhood of p ;
for each point p' in N
if p' is unvisited
mark p' as visited;
if the ϵ -neighborhood of p' has at least $MinPts$ points,
add those points to N ;
if p' is not yet a member of any cluster, add p' to C ;
end for
output C;
else mark p as noise;

DENSITY-**BASED METHODS DBSCAN**

AGENDA

Basics

What is Cluster Analysis?

Requirements for Cluster Analysis

Overview of methods

-Means

Partitioning Methods

Agglomerative vs. Divisive

Distance Measures Hierarchical Methods

DBSCAN

Assessing Clustering Tendency

Evaluation of Clustering Clustering Quality

EVALUATION OF CLUSTERING ASSESSING CLUSTERING TENDENCY

- Determines whether a given data set has a non-random structure
- Hopkins Statistic -> Statistical tests for spatial randomness
 - Sample n points, p_1, \ldots, p_n uniformly from D
 - For each point, p_i find its nearest neighbor in D $distance \ x_i = \min_{v \in D} \{dist(p_i, v)\}$
 - Sample n points, q_1, \ldots, q_n uniformly from D
 - For each q_i find its nearest neighbor of q_i in D- $\{q_i\}$ $distance \ y_i = \min_{v \in D, v \neq q_i} \{dist(q_i, v)\}$
 - Calculate the <u>Hopkins Statistic</u> <u>H</u>:

$$H = \frac{\sum_{i=1}^{n} y_i}{\sum_{i=1}^{n} x_i + \sum_{i=1}^{n} y_i}$$

EVALUATION OF CLUSTERING MEASURING CLUSTERING QUALITY – EXTRINSIC METHODS

Extrinsic methods → compare clustering against ground truth (supervision)

- Assign a score $Q(C, C_g)$ to capture:
 - Cluster homogeneity → the purer the better clusters represent separate class labels
 - Cluster completeness → an object with a class label belongs to the cluster representing that class label
 - Rag bag → objects that can't be merged into clusters belong to a rag bag penalize a misc. object when put in a pure cluster more than in a rag bag
 - Small cluster preservation → splitting a small category is *more harmful* than splitting a large category
- Ex. BCubed precision and recall of every object in dataset:
 - Precision → how many objects in the same cluster ∈ the same category as the object
 - Recall → how many objects of the same category are assigned to the same cluster

EVALUATION OF CLUSTERING MEASURING CLUSTERING QUALITY – INTRINSIC METHODS

- Intrinsic methods → measure how well the clusters are separated
- Ex. The silhouette coefficient → difference between:
 - average distance between object o and all other objects in the cluster to which o belongs (captures cluster correctness) smaller is better (more compact)
 - minimum average distance from o to all clusters to which o does not belong (captures degree of separation from other clusters) – larger is better
- Compute average silhouette coefficient for all objects in a cluster or over all of the dataset
 - +ve → clustering is good
 - -ve → clustering is bad

EVALUATION OF CLUSTERING MEASURING CLUSTERING QUALITY – INTRINSIC METHODS

•Compute the silhouette coefficient for object x1.

What is the meaning of the computed value?

C1= {x1,x4,x8}={(2,10), (5,8), (4,9)} Mean of C1=
$$(2\frac{2}{3},9)$$

C2= {x3,x5,x6}={(8,4), (7,5), (6,4)} Mean of C2 = $(7, 4\frac{1}{3})$
C3= {x2,x7}={(2,5), (1,2)} Mean of C3 = $(1\frac{1}{2}, 3\frac{1}{2})$

$$o \ a(o) = \frac{\sum o' \in c_i dis(O,O')}{|c_i| - 1} = \frac{5 + 3}{2} = 4$$

o b(o) = min
$$\left\{\frac{\sum o' \in c_j dis(o,o')}{|c_j|}\right\} = min\left\{\frac{12+10+10}{3}, \frac{5+9}{2}\right\} = 7$$

o S(o) = $\frac{b(o)-a(o)}{\max\{a(o),b(o)\}} = \frac{7-4}{7} \implies +ve$

o S(o)=
$$\frac{b(o)-a(o)}{\max\{a(o),b(o)\}} = \frac{7-4}{7}$$
 → +ve

This mean the cluster containing o is compact and o is far from other cluster

QUESTION?

NEXT

