Pontificia Universidad Católica de Chile

Facultad de Matemáticas

Profesor: Ricardo Menares

Curso: Teoría de Números Fecha: 24 de octubre de 2025 Ayudante: José Cuevas Barrientos

Sigla: MAT2814

Teorema de números primos

1. La función deeta

1. Pruebe que para todo $n \in \mathbb{N}_{\neq 0}$, se cumple que $\zeta(-2n) = 0$. Más aún, pruebe que si Re $s \notin (0,1)$ y $\zeta(s) = 0$, entonces s = -2n para algún $n \in \mathbb{N}$.

PISTA: Podría necesitar la fórmula que expresa el valor de $\zeta(1-s)$ dada en la ayudantía pasada.

2. Pruebe que si $s \in \mathbb{C}$ es tal que $\zeta(s) = 0$, entonces $\zeta(\overline{s}) = 0$.

2. Aplicaciones del teorema de los números primos

- 3. Sea p_n la sucesión de los números primos en orden creciente. Demuestre que $p_n \sim n \log n$.
- 4. a) Para todo $\epsilon > 0$ existe $x_0 > 0$ tal que para todo $x \ge x_0$ siempre existe un primo p tal que x .
 - b) Deduzca que los puntos límite de $\{p/q: p, q \text{ primos}\}$ es todo el intervalo $[0, \infty)$.
- 5. Para cada natural N existe un primo tal que (en base decimal) sus primeras cifras coinciden con (todas) las de N.
- 6. Definamos

 \odot

$$a(n) := \begin{cases} 0, & n \text{ no es potencia de un primo,} \\ 1/k, & n = p^k. \end{cases}$$

Pruebe que $\sum_{n \le x} a(n) = \pi(x) + O(\sqrt{x} \log \log x)$.

Referencias

- 1. Granville, A. Number Theory Revealed. A Masterclass (American Mathematical Society, 2020).
- 2. Hlawka, E., Schoissengeier, J. y Taschner, R. Geometric and Analytic Number Theory (Springer-Verlag, 1991).

Correo electrónico: josecuevasbtos@uc.cl