IA525/EG425 - Otimização Inteira e Combinatória

Atividade 03: Filtragem de Sinais

Prof. Matheus Souza

Instruções Gerais

- Esta atividade deve ser resolvida individualmente.
- Os itens teóricos devem resolvidos de forma organizada, clara e formal.
- A solução encontrada deve ser submetida, em um único arquivo PDF, no moodle. Certifique-se de que todas as resoluções digitalizadas estão legíveis antes de submetê-las.
- Entregas após o prazo estabelecido no moodle serão desconsideradas.

- É permitida a consulta a livros e outros materiais, mas a atividade apenas pode ser discutida com a equipe de ensino.
- Os algoritmos desenvolvidos nos itens práticos devem ser organizados e comentados. Todos os códigos utilizados devem ser submetidos como anexos no moodle.
- Qualquer tentativa de fraude, se detectada, implicará na reprovação (com nota final 0.0) de todos os envolvidos, além das penalidades disciplinares previstas no Regimento Geral da Unicamp (Arts. 226 237).

Apresentação

Uma aplicação clássica de otimização convexa está na recuperação, suavização e filtragem de sinais. Em problemas desta classe, tipicamente temos um sinal amostrado periodicamente, representado por um vetor $x \in \mathbb{R}^n$; cada componente x_i deste sinal representa a sua i-ésima amostra. Em muitas aplicações, os sinais são adequadamente amostrados e são suaves, ou seja, espera-se que $x_i \approx x_{i+1}$ para quase todas as amostras. Este sinal não está, no entanto, perfeitamente disponível: em aplicações típicas, este sinal sofre efeitos de um ruído aditivo, representado por $v \in \mathbb{R}^n$, e apenas a sua versão corrompida

$$x_c = x + v \in \mathbb{R}^n$$

está disponível. A principal pergunta que desejamos responder é a seguinte: como podemos recuperar uma aproximação u para o sinal original, x, a partir de x_c ? Dois exemplos ilustrativos estão representados na Figura 1.

Figura 1: Dois exemplos para o problema de reconstrução e suavização de sinais: recuperação de uma onda senoidal e de uma onda quadrada, ambas corrompidas por um ruído branco.

Como discutido em aula, este procedimento pode ser resolvido por meio de um problema de otimização da forma

$$\min_{\mathbf{u} \in \mathbb{R}^n} \|\mathbf{u} - \mathbf{x}_c\|_2^2 + \delta \phi(\Delta \mathbf{u}), \tag{1}$$

sendo δ um parâmetro de *trade-off* entre as duas parcelas da função objetivo:

- $\|\mathbf{u} \mathbf{x}_{\mathbf{c}}\|_{2}^{2}$ penaliza o erro quadrático entre \mathbf{u} e $\mathbf{x}_{\mathbf{c}}$. Esta parcela busca assegurar que \mathbf{u} aproxime \mathbf{x} , pois esperamos que os efeitos do ruído sobre \mathbf{x} não descaracterizem totalmente as propriedades do sinal original.
- ϕ é uma *função de regularização* que, juntamente com uma matriz de diferenças finitas Δ , penaliza certas escolhas para u. No caso desta aplicação, desejamos penalizar funções não-suaves, para que a escolha trivial $u = x_c$ ou outras escolhas muito ruidosas não sejam interessantes para o problema de otimização.

Para a matriz Δ , usaremos a matriz de diferença centrada (com pontas ajustadas por diferença avançada e atrasada, respectivamente):

Duas escolhas clássicas para a função de regularização φ neste problema são:

- Regularização de Tikhonov: $\phi(D\mathfrak{u}) = \|D\mathfrak{u}\|_2^2$.
- LASSO: $\phi(D\mathfrak{u}) = \|D\mathfrak{u}\|_1$.

Nesta tarefa, exploraremos aspectos qualitativos relacionados a estas funções de regularização.

Questões

- ▶ Questão 1: Mostre que o problema de filtragem com regularização de Tikhonov pode ser formulado como um problema de quadrados mínimos. Mostre que o problema de filtragem com regularização do tipo LASSO pode ser formulado como um problema de otimização quadrática. Conclua que os dois problemas de otimização propostos são convexos.
- ▶ **Questão 2:** Implemente, com a ajuda do cvx, cvxpy ou outro parser/solver, uma função para cada uma das abordagens destacadas acima, fornecendo a solução para x_c e δ dados.
- Questão 3: Use as funções implementadas para recuperar sinais em ao menos dois cenários: onda quadrada e onda senoidal, como sugerido na Figura 1. Se as funções tiverem amplitude unitária, adote um ruído gaussiano de média nula e variância 0.01; escale-o conforme necessário em outros casos. Lembre-se de ajustar δ manualmente em cada cenário e em cada abordagem. Compare as melhores soluções obtidas pelas abordagens para cada cenário.