

Stratified Domain Adaptation: A Progressive Self-Training Approach for

Scene Text Recognition

Kha Nhat Le, Hoang-Tuan Nguyen, Hung Tien Tran, Thanh Duc Ngo

{20520208, 20520344, 19521587}@gm.uit.edu.vn, thanhnd@uit.edu.vn

- Stratified Domain Adaptation (StrDA): A two-stage framework utilizing domain stratification by analyzing the gradual escalation of domain gaps, and progressive self-training, adaptable beyond Scene Text Recognition (STR) tasks.
- Demonstrates significant improvements across various existing STR models through extensive experiments.
- Offers a cost-effective approach to text recognition, particularly in cases where labeled real data is limited.

Motivation:

- Data Issue in STR: The scarcity of labeled real-world data, which is costly and time-intensive to collect.
- Domain Gap: STR learning models trained on synthetic datasets achieve notable success; however, their performance often deteriorates when applied to real-world data
- Limitations of Previous Methods: Direct unsupervised domain adaptation (UDA) often fail in bridging significant domain gaps.

Overall framework of our proposed StrDA for STR

Harmonic Domain Gap Estimator (HDGE):

are trained under the adversarial manner

Generators $G_T: S \to T$, $G_S: T \to S$; Discriminators D_S , D_T

$$d_{i} = \frac{(1+\beta^{2}).d_{S}(x_{i}^{T}).d_{T}(x_{i}^{T})}{\beta^{2}.d_{S}(x_{i}^{T}) + d_{T}(x_{i}^{T})}$$
(2)

 $d_S(x_i^T)$ and $d_T(x_i^T)$ represent out-of-distribution (OOD) level of x_i^T with respect to source domain and target domain, respectively

Duantitative Results

Table 1. Word accuracy on six scene-text benchmarks and five additional datasets. "ST" refers to traditional unsupervised domain adaptation (vanilla self-training)

				_			_	`			.		
Type	Method	Common Benchmarks						Additional Datasets					
		IIIT	SVT	IC13	IC15	SVTP	CUTE	Avia	COCO	Uber	ArT	ReCTS	Union14M
		3,000	647	857	1,811	645	288	Avg.	9,825	80,418	35,149	2,592	403,379
	CRNN (baseline)	92.5	86.4	92.0	71.3	75.2	83.3	84.4	49.5	34.6	59.5	77.1	43.3
CTC	+ ST	93.7	87.6	92.2	72.9	75.5	84.7	85.5	51.4	35.9	60.7	79.8	46.2
	Δ	+1.2	+1.2	+0.2	+1.6	+0.3	+1.4	+1.1	+1.9	+1.3	+1.2	+2.7	+2.9
	+ $StrDA_{HDGE}$	93.4	89.0	93.1	74.0	<u>77.1</u>	84.4	86.0	<u>53.0</u>	36.8	60.9	81.0	<u>47.8</u>
	Δ	+0.9	+2.6	+1.1	+2.7	+1.9	+1.1	+1.6	+3.5	+2.2	+1.4	+3.9	+4.5
Attention	TRBA (baseline)	96.2	93.7	95.8	81.9	86.1	91.0	91.0	62.5	39.0	69.0	82.8	56.6
	+ ST	97.1	94.0	96.1	82.5	90.1	92.4	92.0	65.5	40.9	70.9	84.8	60.4
	Δ	+0.9	+0.3	+0.3	+0.6	+4.0	+1.4	+1.0	+3.0	+1.9	+1.9	+2.0	+3.8
	+ $StrDA_{HDGE}$	97.2	95.2	<u>96.5</u>	84.5	90.7	<u>94.4</u>	92.8	<u>68.6</u>	<u>42.7</u>	<u>72.2</u>	<u>85.8</u>	<u>64.2</u>
	Δ	+1.0	+1.5	+0.7	+2.6	+4.6	+3.4	+1.8	+6.1	+3.7	+3.2	+3.0	+7.6
	ABINet (baseline)	97.0	95.2	95.6	82.3	89.5	90.3	91.8	63.2	39.5	68.9	82.6	55.7
	+ ST	97.4	96.3	<u>96.4</u>	83.9	<u>91.0</u>	92.0	92.8	68.7	42.3	71.2	84.7	61.4
LM	Δ	+0.4	+1.1	+0.8	+1.6	+1.5	+1.7	+1.0	+5.5	+2.8	+2.3	+2.1	+5.7
	+ $StrDA_{HDGE}$	<u>97.8</u>	<u>96.9</u>	96.0	84.4	<u>91.0</u>	<u>94.4</u>	93.2	<u>69.7</u>	44.2	<u>71.6</u>	<u>85.0</u>	<u>62.9</u>
	Δ	+0.8	+1.7	+0.4	+2.1	+1.5	+4.1	+1.4	+6.5	+4.7	+2.7	+2.4	+7.2

Table 2. Comparison with other domain adaptation methods in the STR task. Our method significantly enhances the performance of the STR models, surpassing other existing approaches. Additionally, it can be integrated with other methods to achieve even greater efficacy

	Method	Labeled Dataset	Unlabeled Dataset	Regular Text				Irregular Text				
	Method	Labeled Dataset		IIIT	SVT	IC13		IC15		SVTP	CUTE	
				3000	647	857	1015	1811	2077	645	288	
Published Results	TRBA-FEDS [41]	BA-FEDS [41] MJ+ST		92.2	92.1	96.5	95.3	83.8	80.9	84.0	79.0	
	TRBA-Seq-UPS [40]	MJ+ST	276K RU	92.7	88.6	_	92.2	-	76.9	78.0	84.4	
	TRBA-cr [71]	MJ+ST	10.6M RU	96.5	96.3	98.3	_	89.3	_	93.3	93.4	
	ABINet-st [16]	ABINet-st [16] MJ+ST		96.8	94.9	97.3	_	87.4	-	90.1	93.4	
	ABINet-est [16]	INet-est [16] MJ+ST		97.2	95.5	97.7	-	86.9	-	89.9	94.1	
lts	TRBA-cr (reproduce)	MJ+ST	2M RU	97.3	95.1	97.2	96.2	88.1	84.0	90.5	93.8	
Our Results	TRBA-StrDA _{HDGE}	MJ+ST	2M RU	97.2	95.2	97.4	96.5	88.4	84.5	90.7	94.4	
	TRBA-StrDA _{HDGE} w/ cr	MJ+ST	2M RU	97.3	96.1	97.6	96.7	88.7	84.5	90.9	94.4	
	ABINet-StrDA _{HDGE}	MJ+ST	2M RU	97.8	96.9	97.0	96.0	88.6	84.4	91.0	94.4	

Qualitative Results-

Figure 1. Predictions of TRBA-StrDA model on some cases from **Figure 2.** StrDA partitions the data from the target domain into five distinct subsets, with the the benchmark dataset after each round of self-training disparity across domains gradually increasing, as shown in the image