Transformers as Support Vector Machines

Davoud Ataee Tarzanagh¹ Yingcong Li^{2,4} Christos Thrampoulidis³ Samet Oymak⁴ University of Pennsylvania¹ University of California, Riverside² University of British Columbia³ University of Michigan⁴

Question

Can we characterize the optimization landscape and implicit bias of Transformers' attention mechanism?

Optimization Methods

• W-parameterization: Gradient Descent with stepsize $\eta > 0$:

$$\mathbf{W}(k+1) = \mathbf{W}(k) - \eta \nabla_{\mathbf{W}} \mathcal{L}(\mathbf{W}(k)), \qquad (\mathsf{GD-W})$$

 \bullet (K,Q)-parameterization: **Regularization Path** with radius R > 0:

$$(\mathbf{K}_R, \mathbf{Q}_R) = \underset{\|\mathbf{K}\|_F^2 + \|\mathbf{Q}\|_F^2 \le 2R}{\operatorname{arg min}} \mathcal{L}(\mathbf{K}, \mathbf{Q}).$$
 (RP-KQ)

Softmax-Attention

$$f(\mathbf{X}) = h(\mathbf{X}^{\top} \mathbb{S}(\mathbf{X} \mathbf{Q} \mathbf{K}^{\top} \mathbf{X}^{\top}))$$

- $-m{K},m{Q}\in\mathbb{R}^{d imes m},m{W}:=m{K}m{Q}^{ op}$: attention weights,
- $\mathbb{S}(\cdot)$: softmax function, $h(\cdot)$: prediction head.

Problem Description: Given training dataset $(Y_i, X_i, z_i)_{i=1}^n$ where $Y_i \in \{-1,1\}$, $\pmb{X}_i \in \mathbb{R}^{T \times d}$ and $\pmb{z}_i \in \mathbb{R}^d$, we explore the training risk with a loss ℓ as follows:

$$\mathcal{L}(\pmb{K}, \pmb{Q}) = rac{1}{n} \sum_{i=1}^n \ell\left(Y_i \cdot f(\pmb{X}_i)
ight),$$
 (ERM) where $f(\pmb{X}_i) = h(\pmb{X}_i^ op \mathbb{S}(\pmb{X}_i \pmb{K} \pmb{Q}^ op \pmb{z}_i)).$

Motivation

Exploring implicit bias is a key step in unraveling the generalization of the (softmax-)attention mechanism.

Conclusion

Transformers are SVMs!

Attention SVM

For given indices of **selected tokens** $\alpha = (\alpha_i)_{i=1}^n$, define

• SVM for W-parameterization:

$$egin{aligned} oldsymbol{W}^{mm} &= rg \min_{oldsymbol{W}} \|oldsymbol{W}\|_F \ ext{s.t.} & (oldsymbol{x}_{ilpha_i} - oldsymbol{x}_{it})^{ op} oldsymbol{W} oldsymbol{z}_i \geq 1, \ orall i, t \ (t
eq oldsymbol{lpha}_i) \end{aligned}$$

• SVM for (K, Q)-parameterization $(W := KQ^{\top})$:

$$W_{\star}^{mm} \in \arg\min_{\operatorname{rank}(\boldsymbol{W}) \leq m} \|\boldsymbol{W}\|_{\star}$$

$$oldsymbol{W}_{\star}^{mm} \in \arg\min_{\substack{\mathrm{rank}(oldsymbol{W}) \leq m}} \|oldsymbol{W}\|_{\star}$$

s.t. $(oldsymbol{x}_{ioldsymbol{lpha}_i} - oldsymbol{x}_{it})^{ op} oldsymbol{W} oldsymbol{z}_i \geq 1, \ orall i, t \ (t
eq oldsymbol{lpha}_i)$

Convergence of Attention Weights with Linear Head

Assumptions: Over any bounded interval [a,b]:

- $0 \ell : \mathbb{R} \to \mathbb{R}$ is strictly decreasing; and
- ϱ ℓ' is Lipschitz continuous and bounded.

Theorem I: Convergence of Gradient Descent

Under Assumptions 1&2 and $h(\mathbf{x}) = \mathbf{v}^{\top}\mathbf{x}$, GD-W with a fixed η and proper starting point satisfy $\lim_{k\to\infty} \|\boldsymbol{W}(k)\|_F = 1$ ∞ and $\lim_{k\to\infty} \mathbf{W}(k)/\|\mathbf{W}(k)\|_F = \mathbf{W}^{mm}/\|\mathbf{W}^{mm}\|_F$.

• **Regularized path**: Under Assumptions **1**&**2** and $h(\pmb{x}) = \pmb{v}^{ op} \pmb{x}$, RP-KQ satisfies $\lim_{R o \infty} \frac{\pmb{K}_R \pmb{Q}_R^{ op}}{R} = \frac{\pmb{W}_{\star}^{mm}}{\|\pmb{W}^{mm}\|_E}$.

- Arrows: GD trajectories.
- ullet Lines: the SVM directions mapped to z, e.g., Wz.

Implicit Bias of Attention with Nonlinear Head

Q: What is the implicit bias and the form of W(k) when the GD solution is composed by multiple tokens?

General SVM

$$oldsymbol{W}(k) pprox oldsymbol{W}^{ extit{fin}} + \|oldsymbol{W}(k)\|_F \cdot rac{oldsymbol{W}^{ extit{mm}}}{\|oldsymbol{W}^{ extit{mm}}\|_F}$$

Finite component (W^{fin}) :

$$(\boldsymbol{x}_{it} - \boldsymbol{x}_{i\tau})^{\top} \boldsymbol{W}^{fin} \boldsymbol{z}_i = \log(s_{it}/s_{i\tau}) \quad \forall t, \tau \in \mathcal{O}_i, i \in [n].$$

Directional component (W^{mm}) :

$$egin{aligned} m{W}^{mm} &= rg \min_{m{W}} \|m{W}\|_F \ & ext{s.t.} & \begin{cases} orall t \in \mathcal{O}_i, au \in ar{\mathcal{O}}_i: & (m{x}_{it} - m{x}_{i au})^{ op} m{W} m{z}_i \geq 1, \ orall t, au \in \mathcal{O}_i: & (m{x}_{it} - m{x}_{i au})^{ op} m{W} m{z}_i = 0. \end{cases}$$

- $\mathcal{O}_i, i \in [n]$: Sets of relevant tokens.
- $s_{it}, t \in \mathcal{O}_i$: Assigned softmax probabilities.

$$m{W}^{SVMeq} = m{W}^{fin} + C \cdot m{W}^{mm}$$
 where $C = rg \max ig\langle m{W}^{SVMeq}, m{W}^{GD} ig
angle$.