

Barramentos

Gustavo Girão

Barramentos

 Barramento é o meio de comunicação compartilhado por vários dispositivos, constituído por sinais de dados, endereços e controle.

Barramento de controle

Estrutura do barramento

- Um barramento do sistema, possui várias linhas de transmissão
 - Cada linha transmite sinais representando o valor binário 1 ou 0
 - Uma sequência de dígitos podem ser transmitidos ou várias linhas com transmissão em paralelo e simultânea podem formar códigos binários
- Cada linha possui uma função e um significado
- Essas linhas podem ser classificadas em 3 grupos funcionais:
 - Linhas de Dados
 - Linhas de Endereço
 - Linhas de Controle

Barramentos

Barramento de dados

- Transporta informações (dados ou instruções)
- Bidirecional.

Barramento de endereços

- Utilizado pelo processador para enviar endereços de memória ou dos dispositivos de E/S.
- Largura depende do número de locais de memória que se pretende acessar.
- Unidirecional

Barramento de controle

- Utilizado para sinalizar solicitações e confirmações.
- Bidirecional.
- <u>Exemplos:</u> clock; reset; memory read/write; I/O read/write; bus request/grant; interrupt request/acknowledgement

Vantagens e Desvantagens do uso de Barramentos

Vantagens

- versatilidade o uso de um único esquema de ligação permite adicionar mais periféricos e mover periféricos entre diferentes computadores que usem o mesmo tipo de barramento;
- <u>baixo custo</u> um único conjunto de ligações é partilhado por vários dispositivos;

Desvantagens

- disputa compartilhado por vários dispositivos, o barramento pode representar um gargalo de velocidade de comunicação
- limitação na velocidade a velocidade máxima de transmissão de dados é limitada pelo comprimento e o número de dispositivos ligados.

Barramentos

- Largura
- Tipo
- Arbitragem
- ▶ Temporização
- Hierarquia

Barramentos - Largura

Largura

Tipo

Temporização

Arbitragem

Hierarquia

- A largura de barramento é o número de caminhos elétricos (linhas) que o compõem.
- Quanto mais linhas um barramento possui:
 - Barramento de endereços: mais endereços de memória
 - Barramento de dados: mais bits podem
 - ► Exemplo: 32 bits -> 64 bits
 - Mais hardware -> maior custo

Barramentos - Tipo

Largura

Tipo

Temporização

Arbitragem

Hierarquia

Barramento Dedicado

- •Barramentos distintos carregam informações de dados e de endereços
- Alto desempenho
- Alto custo

Barramento Multiplexado

- •Informações de dados e de endereços são multiplexadas em um barramento compartilhado
- •Redução de custos
- Sistema mais lento

Barramentos - Temporização Síncrona

Largura

Tipo

Temporização

Arbitragem

Hierarquia

▶ Barramentos Síncronos

- ▶ São barramentos que incluem um sinal de clock nas linhas de controle e um protocolo fixo para comunicação, que é relativo ao clock.
- Aplicação: barramentos processador-memória.

Vantagens

- <u>simplicidade</u> fácil de implementar.
- velocidade o barramento pode funcionar com clocks de alta frequência.

Desvantagens

 <u>homogeneidade</u> – todos os componentes têm de se comunicar à mesma velocidade.

Barramentos - Temporização Assíncrona

Largura

Tipo

Temporização

Arbitragem

Hierarquia

Barramentos Assíncronos

- ▶ Não há sinal de clock
- ▶ Utilizam um protocolo de *handshaking* para coordenar o uso do barramento.
- ▶ Exemplo básico de uma sequência de *handshaking*:

Largura

Tipo

Temporização

Arbitragem

Hierarquia

Vantagens:

- <u>Heterogeneidade</u> os dispositivos podem comunicar a diferentes velocidades.
- Comprimento o barramento pode ser mais longo do que os síncronos, pois não existem problemas de desvio de clock.

Desvantagens:

• <u>Complexidade</u> – implementação complexa.

Barramentos - Arbitragem

Largura

Tipo

Temporização

Arbitragem

Hierarquia

▶ Uma disputa acontece quando dois ou mais dispositivos E/S tentam acessar ao mesmo tempo o barramento comum:

- ▶ Para evitar disputa e disciplinar o acesso dos dispositivos E/S, utiliza-se um arranjo master-slave:
 - ▶ Somente o mestre do barramento (bus master) pode controlar o acesso ao barramento.
 - ▶ Ele inicia e controla todas as requisições do barramento.
 - Um bus slave responde às requisições.

Barramentos - Arbitragem - Taxonomia

MD0041

Arbitragem Estática x Dinâmica

Largura

Tipo

Temporização

Arbitragem

Hierarquia

Arbitragem estática

- O controle do barramento é compartilhado de forma pré-determinada.
- Implementação fácil.
- Não leva em consideração necessidades dos dispositivos.
- Utilização ineficiente: o barramento é alocado mesmo quando não é preciso.

Arbitragem dinâmica

- Barramento somente é alocado em resposta a uma requisição.
- Duas linhas:
 - O mestre usa a linha de bus request para solicitar uso do barramento.
 - Antes de usar o barramento, o mestre deve receber permissão pela linha bus grant.

Arbitragem Estática x Dinâmica

Largura

Tipo

Temporização

Arbitragem

Hierarquia

Arbitragem estática

- O controle do barramento é compartilhado de forma pré-determinada.
- Implementação fácil.
- Não leva em consideração necessidades dos dispositivos.
- Utilização ineficiente: o barramento é alocado mesmo quando não é preciso.

Arbitragem dinâmica

- Barramento somente é alocado em resposta a uma requisição.
- Duas linhas:
 - O mestre usa a linha de bus request para solicitar uso do barramento.
 - Antes de usar o barramento, o mestre deve receber permissão pela linha bus grant.

Arbitragem - Políticas de alocação

Largura

Tipo

Temporização

Arbitragem

Hierarquia

Prioridade

 O árbitro decide qual dispositivo terá uso do barramento a partir da sua prioridade.

Justiça

 O árbitro cede o barramento por um tempo determinado e igual para todos os dispositivos, sem prioridade.

•Híbrida:

Justiça + Prioridade

Arbitragem - Políticas de alocação

Largura

Exemplos de Prioridade

Tipo

Tempori-

zação

0 - Sinal de clock da placa mãe

1 - Teclado

2 - Livre

3 - COM 2

4 - COM 1

5 - Disco Rígido

6 - Drive de disquetes

7 - Porta paralela

Arbitragem

Hierarquia

Arbitragem - Daisy Chaining

Largura

Tipo

Temporização

Arbitragem

Hierarquia

- Quando o árbitro vê uma requisição de barramento, envia uma confirmação através da linha bus grant.
- O dispositivo mais próximo ao árbitro, verifica se foi ele quem pediu acesso.
 - Caso positivo, ele toma controle do barramento, sem propagar o sinal de grant.
 - ▶ Caso negativo, repassa o sinal de grant para frente

IMID004

Arbitragem - Requisições independentes

Largura

Tipo

Temporização

Arbitragem

Hierarquia

- Cada dispositivo mestre é conectado ao árbitro central por linhas de grant e request separadas.
- Árbitro central pode utilizar diversas políticas de alocação para definir quem deve ter acesso ao barramento.
- Desvantagem: implementação complexa.

Largura

Tipo

Temporização

Arbitragem

Hierarquia

- Dispositivos mestre com prioridades semelhantes são divididos em classes.
- Cada classe possui suas próprias linhas de request e grant.
- ▶ Dentro de cada classe, o barramento é conectado usando daisy-chaining.

IMD0041

Arbitragem Distribuída

Largura

Os próprios dispositivos mestres determinam quem deve acessar o barramento no próximo ciclo de transações.

Tipo

▶ Podemos ter versões distribuídas dos esquemas de daisy-chaining e de requisições independentes.

Temporização

Arbitragem

Hierarquia

22

Hierarquia

Largura

Tipo

Temporização

Arbitragem

Hierarquia

 Um grande número de dispositivos conectados a um barramento pode prejudicar o desempenho do sistema

- As principais causas são:
 - Quanto maior o número de dispositivos conectados, maior é o comprimento de um barramento, e assim, maior o atraso na propagação de sinais.
 - O barramento pode se tornar um gargalo do sistema quando a demanda agregada por transferência de dados se aproxima da capacidade do barramento.

Hierarquia

Memória Principal

Hierarquia

Barramento de alta velocidade

Para saber mais ...

- William Stallings, Arquitetura e Organização de Computadores,
 8a ed., 2010
 - o Capítulo 3:
 - ♦ 3.3 Estruturas de Interconexão
 - ♦ 3.4 Interconexão de Barramento
 - Capítulo 7: Entrada/Saída