24. 气体动理论

班级	学号	姓名	成绩

- 1. 关于温度的意义,有下列几种说法:
 - (1) 气体的温度是分子平均平动动能的量度
 - (2) 气体的温度是大量气体分子热运动的集体表现,具有统计意义
 - (3) 温度的高低反映物质内部分子运动剧烈程度的不同
 - (4) 从微观上看,气体的温度表示每个气体分子的冷热程度

上述说法中正确的是

(A) (1), (2), (4)

(B) (1) (2) (3)

(C) (2), (3), (4)

(D) (1) (3) (4)

2. 一定量的理想气体贮于某一容器中,温度为T,气体分子的质量为m。根据理想气体的分子 模型和统计假设,分子速度在x方向的分量平方的平均值为

$$(A) \quad \overline{v}_x^2 = \sqrt{\frac{3kT}{m}}$$

$$(B) \quad \overline{v_x^2} = \frac{1}{3} \sqrt{\frac{3kT}{m}}$$

(C)
$$\overline{v_x^2} = 3kT/m$$

(D)
$$\overline{v_x^2} = kT/m$$

3. 两容积不等的容器内分别盛有可视为理想气体的氦气和氦气,如果我们的温度和压强相同, 则两气体

- (A) 单位体积内的分子数必须相同
- (B) 单位体积内的质量必相同
- (C) 单位体积内分子的平均动能必相同 (D) 单位体积内气体的内能必相同

4. 汽缸内盛有一定量的氢气(可视作理想气体), 当温度不变而压强增大一倍时, 氢气分子的 平均碰撞频率 Ζ 和平均自由程 λ 的变化情况是

- (A) Z 和 λ 都增大一倍
- (B) Z 和 λ 都减为原来的一半
- (C) Z 增大一倍而 λ 减为原来的一半
- (D) Z 减为原来的一半而 λ 增大一倍

5. 现有两条气体分子速率分布曲线(1)和(2),如图 所示。若两条曲线分别表示同一种气体处于不同 温度下的速率分布,则曲线 表示气体的 温度较高; 若两条曲线分别表示同一种温度下氢

气和氧气的速率分布。	,则曲线	表示的是氧气的速率分布。
------------	------	--------------

- 6. 2. 0 g 氢气与 2. 0 g 氦气分别装在两个容积相同的封闭容器内,温度也相同(氢气分子视为刚性双原子分子),则氢气分子与氦气分子的平均平动动能之比 $\varepsilon_{\rm kH_2}/\varepsilon_{\rm kHe}=$ _________;压强之比 $p_{\rm H_2}/p_{\rm He}=$ ________;内能之比 $E_{\rm H_2}/E_{\rm He}=$ _______。
- 7. 一容器内贮有氧气,其压强为 $p = 2.0 \times 10^5 Pa$,温度为 27 ℃,求:(1)气体分子的数密度;(2)氧气的密度;(3)分子的平均平动动能;(4)分子间的平均距离。

8. 封闭容器中装有 2 g 氢气, 其温度为 127 ℃, 试求: (1) 气体分子的平均平动动能; (2) 气体分子的平均动能; (3) 气体的内能。

9. 体积为 2×10^{-3} m³ 刚性双厚子分子理想气体,其内能为 6.75×10^2 J。(1) 试求气体的压强; (2) 设分子总数为 5.4×10^{22} 个,求分子的平均平动动能及气体的温度。

*10. 一密封房间的体积为 5 × 3 × 3 m³, 室温为 20 ℃, (1) 室内空气分子(可视为刚性双原子分子)热运动的平均平动动能的总和是多少? (2) 如果气体的温度升高 1.0 K, 而体积不变,则气体的内能变化多少? (3) 气体分子的方均根速率增加多少?

25. 热力学基础(一)

班级_		学号	姓名	成绩_		
		.体,经历某过程后 .体系统在此过程中	,它的温度升高了, 做了功	则根据热力学定律	———— 可以断定:	
•		是占外界对该理想气				
(3)该理想与	《体系统的内能增加	了			
(4)在此过程	是中理想气体系统既	从外界吸了热,又对			
以	上正确的是	:				
(A	(1) (3	3)	(B)	(2)、(3)		
(C	(3)		(D)	(3), (4)		
(E	(4)					
•	, , ,					[
2. 下	列结论哪个	·是正确的:				
(A	.) 等温过和	呈,系统与外界不交	换能量			
0.500		呈,系统内能保持不				
2.5			·等温线上,则此过程	异的内能增量—定为	零	
		第一定律只适用于理		2H411H0 HI /C/4		
(1	() V(()1 <u>1</u>)	14 龙件八边/1113	משנים עדו			Γ
3 4	工会泪下台	双原乙公乙畑相气	体,在等压膨胀的情	专况下 医统对外的	a a a b b b b b b c l c l c l c l c l c l c l	5
			件,在牙压膨胀的	auli, Ralmini	I III III 70 70 70	(/1 51 %
		ζ W/Q 等于 (P) 1/	(0)	2 /5	D) 2/7	
(A	1) 1/3	(B) 1/4	• (C)	2/5 (D) 2/1	г
	/ 1. mares 4 m. / . / /	To the the comment of the	Name I II -ta VI II D	V 14. 1 4.		L
4. 总	结理想气体	各等值过程,绝热:	过程中的有关公式,	并填入下表:		
〕	t 程	过程方程	吸收热量 Q	対外做功 ₩	内能的增	量 ΔE

过 程	过程方程	吸收热量 Q	对外做功 ₩	内能的增量 ΔE
等体				
等压				
等温				
绝热				

5. 一定量的理想气体从同一初态 A 出发,分别经历等压、等温、绝热三种过程由体积 V_1 膨胀

到 V_2 。在上述三种过程中,______过程对外做功最多,______过程对外做功最少; 过程内能增加; 过程内能减少; 过程吸热最多。

- 6. 如图所示, 1 mol 的单原子分子理想气体从初态 $A(p_1,V_1)$ 开始 p_1 沿如图直线变到末态 $B(p_2, V_2)$ 时, 对外界做功为_____, 其内能的改变量为_____,从外界吸收热量为____。
- 7. 1.0 mol 氢气, 在温度为 20 ℃时, 体积为 V₀。现使氢气分别 经如下过程到达同一末态。(1) 先保持体积不变, 加热使其 温度升高到80℃,然后令其等温膨胀,直至体积变为原体积 的两倍; (2) 先使其等温膨胀体积为原体积的两倍, 然后保 持体积不变,加热到80℃。试分别求出上述两个过程气体做 功、吸热和内能变化量。

8. 一定量单原子分子理想气体,从 A 态出发经过等压过程膨胀到 B 态,又经过绝热过程膨胀 到 C 态,如图所示,试求这全过程中,该气体对外所做的 p/atm功,内能的增量以及吸收的热量。

图 25-2

9. 如图所示, 1.0 mol 氧气(视为理想气体),初态 A 体积 $V_0 = 22.4 \times 10^{-3} \text{ m}^3$,压强 $p_0 = 2 \times 10^5 \text{ Pa}$;末态 B 体积 $V_2 = 2V_0$,压强 $p = p_0/2$ 。分别经历下列两个过程: (1) 等温过程; (2) 先等体冷却到压强 $p = \frac{p_0}{2}$,再等压膨胀到 $V = 2V_0$ 。求此两过程中系统吸收的热量和对外做的功。

*10. 3.0 mol 温度为 T_0 = 273 K 的理想气体,先经等温过程体积膨胀到原来的 5 倍,然后等体加热,使其末态的压强刚好等于初始压强,整个过程传给气体的热量为 $Q=8\times10^4$ J。试画出此过程的 p-V 图,并求这种气体的摩尔热容比 $\gamma=C_{p,m}/C_{V,m}$ 。

26. 热力学基础(二)

班	级			_ 学号	·		姓名				_ 成组	责		_
1.	根据	热力学	第二;	定律										
	(A)	自然界	早中的	一切自	发过程都	是不	可逆的							
	(B)	不可追	单过程	就是不	能向相反	方向	进行的过	程						
	(C)	热量可	了以从	高温物	体传到低	温物	体,但不	能从低	温物	体传	到高温	物体		
	(D)	任何过	1程总	是沿着	熵增加的	方向	进行							
										[] _p	A		
2.	如图	所示,	理想《	气体在	I 、 II 、 I	II , f	的过程中,	应是				I 绝热	九⁄坐	
	(A)	气体人	人外界	净吸热	,内能增	加							11:52	
	(B)	气体人	人外界	净吸热	, 内能减	少						11		ш
	(C)	气体的	可外界	净放热	,内能增	加					C)		$\frac{1}{V}$
	(D)	气体向	可外界	净放热	, 内能减	少					Ü			,
										[]	图 26	- 1	
3.	卡诺	热机的	循环	曲线所位	包围的面积	识从 l	图中 abcde	增大	为 ab	'c'da,	那么	循环 abcd	a 与 al	b'c'd
	所做	的净功	和热	机效率的	的变化情况	兄是					$p \downarrow$			
	(A)	净功均	曾大,	效率提	高						,	<i>b</i> .		
	(B)	净功均	曾大,	效率降	低							17	T_1	
	(C)	净功和	口效率	都不变								d	T_2	
	(D)	净功均	曾大,	效率不	变						o		<i>c</i> ' -	\overline{V}
									[]				15
4.							修斯表述:					图 26 -		
												指出了_		的立
							7							
5.	如图	I 所示,	理想	气体从;	状态 A 出 x		ABCDA 循	环过程	呈, 叵]到初	态 A 点	、则循环	过程中	气体
_				=			\ K \ -				. , , , , , , , ,			
6.	一定	量的理	想气	体作如	图 所 示 的 征	盾环,	, 试填人	表内	谷空	答应有	的数值	自;		
				1		1		1				1		

过 程	Q/J	W/J	Δ <i>E</i> /J	η
AB(等温)	100			/
BC(等压)		- 42	- 84	/
CA(等体)	,			/
ABCA				

图 26-3

图 26-4

7. 一定量某种理想气体吸热 800 J, 对外做功 500 J, 由状态 A 沿过程 1 变化到状态 B, 如图所示。(1) 试问其内能改变了多少?(2) 如气体沿过程 2 从状态 B 回到状态 A 时, 外界对其做功 300 J, 试问气体放出多少热量?(3) 循环 A1B2A 的效率是多少?

图 26-5

8. 如图所示,有一定量的理想气体,从初状态 $a(p_1,V_1)$ 开始,经过一个等体过程达到压强为 $p_1/4$ 的 b 态,再经过一个等压过程达到状态 c,最后经等温过程而完 $p_1/4$ 成一个循环。求该循环过程中系统对外做的功 V 和所吸的热量 Q 。 $p_1/4$

图 26-6

9. 1 mol 理想气体在 400 K 的高温热源与 300 K 的低温热源之间作卡诺热机循环,在 400 K 的等温线上起始体积为 0.001 m³,终止体积为 0.005 m³,试求此气体在一个循环中(1)从高温热源吸取的热量;(2)气体对外做的净功;(3)气体传给低温热源的热量。

*10. 1 mol 单原子分子的理想气体,经历如图所示的可逆循环,连接 ac 两点的曲线 \square 的方程 为 $p = p_0 V^2/V_0^2$,a 点的温度为 T_0 。(1)试以 T_0 、普适气体常量 R p_0 表示 1、2、3 过程中气体吸收的热量。(2)求此循环的效率。 $9p_0$ $-\frac{b}{1}$ $-\frac{c}{1}$ $-\frac{c}{1}$

图 26-7