Filtros

Diagrama de bode Magnitud

Diagrama de bode Fase

ightharpoonup Ordenada en Grados $\angle G(j\omega)$

Abscisa en escala logaritmica

$$\log \omega_2 - \log \omega_1 = \log \frac{\omega_2}{\omega_1}$$

Diagrama de bode

$$V_{IN} = \frac{1}{\frac{1}{C.s}} = \frac{1}{1 + R.C.s} = \frac{1}{1 + r.s}$$

Donde
$$s=j\omega$$
 , $j=\sqrt{-1}$ y $R.C= au$

El módulo de la función de transferencia es:
$$\left|V_{OUT}/V_{IN}\right| = \frac{1}{\sqrt{1^2 + (\tau \cdot \omega)^2}}$$

Diagrama de bode

Donde
$$s = j\omega$$
, $j = \sqrt{-1}$ y $R.C = \tau$

El módulo de la función de transferencia es:
$$\left|V_{OUT}/V_{IN}\right| = \frac{1}{\sqrt{1^2 + (\tau \cdot \omega)^2}}$$

El módulo $\left|V_{\scriptscriptstyle OUT}/V_{\scriptscriptstyle IN}\right|\cong 1$ cuando $\omega=0.1/\tau$, es igual a 0,707 cuando $\omega=1/\tau$ y es aproximadamente igual a 0,1 cuando $\omega=10/\tau$. Estos puntos son utilizados en la gráfica de la figura para realizar una aproximación asintótica del diagrama.

El diagrama de fase para el filtro pasa bajo o cualquier otra función de transferencia es calculado según la siguiente ecuación:

$$\phi = tg^{-1} \left(\frac{\text{Re}}{\text{Im}} \right) = -tg^{-1} \left(\frac{\omega \cdot \tau}{1} \right)$$

Diagrama de bode del filtro pasa bajos pasivo

Tipos de filtros

$$v_{ent}(t) = \cos \omega_1 \cdot t + \cos \omega_2 \cdot t + \cos \omega_3 \cdot t$$

$$v_{\text{ent}}(t) = \cos \omega_1 t$$
 $+ \cos \omega_2 t$
 $+ \cos \omega_3 t$
 $+ \cos \omega_3 t$
 $+ \cos \omega_3 t$

Tipos de filtros pasivos y activos

Filtro pasa bajo de segundo orden pasivo y activo.

Respuesta del filtro según el orden

Filtros Predefinidos

FILTRO PASA BAJO DE BUTTERWORTH

Respuesta amplitud-frecuencia de un filtro pasa bajo de Butterworth.

Respuesta amplitud-frecuencia de un filtro pasa bajo de Chebyshev.

Diferencias en diagramas de magnitud y fase

Funciones transferencias

La función de transferencia de un filtro pasa bajo tiene la forma general:

$$A(s) = \frac{A_0}{(1 + a_1 s + b_1 s^2).(1 + a_2 s + b_2 s^2)...(1 + a_n s + b_n s^2)}$$

Donde a_n y b_n son reales y positivos. Para n de orden impar, el coeficiente b_1 es cero.

Como ya se había mencionada anteriormente, en un filtro de 1° orden el coeficiente *b* siempre es cero, por lo que la ecuación anterior la podemos reescribir de la siguiente forma:

$$A(s) = \frac{A_0}{1 + a_1 s}$$

Tablas

n	i	aį	bi	k _i = f _{Ci} / f _C	Qi
1	1	1.0000	0.0000	1.000	_
2	1	1.4142	1.0000	1.000	0.71
3	1	1.0000	0.0000	1.000	_
	2	1.0000	1.0000	1.272	1.00
4	1	1.8478	1.0000	0.719	0.54
	2	0.7654	1.0000	1.390	1.3
5	1	1.0000	0.0000	1.000	_
	2	1.6180	1.0000	0.859	0.62
	3	0.6180	1.0000	1.448	1.62
6	1	1.9319	1.0000	0.676	0.52
	2	1.4142	1.0000	1.000	0.7
	3	0.5176	1.0000	1.479	1.93
7	1	1.0000	0.0000	1.000	_
	2	1.8019	1.0000	0.745	0.55
	3	1.2470	1.0000	1.117	0.80
	4	0.4450	1.0000	1.499	2.2
8	1	1.9616	1.0000	0.661	0.51
	2	1.6629	1.0000	0.829	0.60
	3	1.1111	1.0000	1.206	0.90
	4	0.3902	1.0000	1.512	2.56
9	1	1.0000	0.0000	1.000	_
	2	1.8794	1.0000	0.703	0.53
	3	1.5321	1.0000	0.917	0.65
	4	1.0000	1.0000	1.272	1.00
	5	0.3473	1.0000	1.521	2.88
10	1	1.9754	1.0000	0.655	0.51
	2	1.7820	1.0000	0.756	0.56
	3	1.4142	1.0000	1.000	0.71
	4	0.9080	1.0000	1.322	1.10
	5	0.3129	1.0000	1.527	3.20

· Coeficientes de Butterworth.

Filtro pasa bajo de 1° orden en configuración no inversora.

Filtro pasa bajo de 1° orden en configuración inversora.

La función de transferencia de estos circuitos es:

$$A(s) = \frac{1 + \frac{R_2}{R_3}}{1 + \omega_c . R_1 . C_1 . s}$$
 y
$$A(s) = \frac{-\frac{R_2}{R_1}}{1 + \omega_c . R_2 . C_1 . s}$$

El signo negativo indica que le amplificador inversor produce un cambio de fase de 180° en la señal de entrada. Es decir que a la salida obtendremos la señal de entrada invertida.

Comparando los coeficientes de de ambas funciones de transferencia obtenemos:

$$A_0=1+\frac{R_2}{R_3} \qquad \qquad \text{y} \qquad \qquad A_0=-\frac{R_2}{R_1}$$

$$a_1=\omega_c.R_1.C_1 \qquad \qquad \text{y} \qquad \qquad a_1=\omega_c.R_2.C_1$$

Para el diseño del circuito, tendremos como dato la frecuencia de corte (f_c) , la ganancia del circuito (A_0) y el valor de C_1 que será definido de antemano. Con estos datos solo nos resta calcular R_1 y R_2 .

$$R_1 = \frac{a_1}{2.\pi.f_c.C_1} \qquad \qquad y \qquad \qquad R_2 = \frac{a_1}{2.\pi.f_c.C_1}$$

$$R_2 = R_3.(A_0 - 1) \qquad \qquad y \qquad \qquad R_1 = -\frac{R_2}{A_0}$$

El coeficiente a₁ se obtiene por tabla (ver apartado 10). Para los filtros de 1° orden de todos los tipos, este coeficiente toma el valor 1, sin embargo, para filtros de un orden superior este coeficiente toma valores diferentes a 1.

Diseño de un filtro pasa bajo de 1°orden con ganancia unitaria.

Diseñar un filtro pasa bajo de 1° orden con una frecuencia de corte f c = 1 kHz y C1 = 47 nF.

$$R_1 = \frac{a_1}{2.\pi \cdot f_c \cdot C_1} = \frac{1}{2.\pi \cdot 1.10^3 \, Hz.47 \cdot 10^{-9} \, F} = 3,38k\Omega$$

V_{IN} V_{OUT} V_{OUT}

Transformadas conformes

Relación entre TZ y TL...

Plano S Plano Z

- La TZ, X(z), de una secuencia x(nT) no es otra cosa que la TL de la señal muestreada $x^*(t)$ con e^{sT} sustituida por la variable z.
- Esto define un mapeo entre el plano S y el plano Z denominado mapeo ideal:

$$s = \ln(z/T)$$

Transformadas conformes

Transformaciones Conformes

Transformadas conformes

Transformación "ideal"

Transformación de Euler

Transformación Bilineal

Transformación de Euler

 La transformación de Euler aproxima la derivada de una función continua dy/dt por un cociente incremental:

$$\left\lceil \frac{dy}{dt} \right\rceil = \left\lceil \frac{y[n] - y[n-1]}{T} \right\rceil$$

T: período de muestreo

De modo que:

$$L\left[\frac{dy}{dt}\right] = sY(s)$$

se transforma en:

$$Z\left[\frac{dy}{dt}\right] = Z\left[\frac{y[n] - y[n-1]}{T}\right] = \frac{\left(1 - z^{-1}\right)Y[z]}{T}$$

De lo anterior se deduce que el mapeo entre el $_$ plano S y el plano Z queda definido por:

$$s = \frac{\left(1 - z^{-1}\right)}{T}$$

Transformación de Euler

Plano S Plano Z

• Esta transformación puede ser utilizada únicamente en el mapeo de sistemas tipo pasa bajo, con frecuencias de corte bajas, ya que no cumple con todas las condiciones de mapeo.

Transformación de Bilineal

Plano S

Plano Z

Evaluar z sobre el círculo unitario $(z = e^{j\omega})$ es equivalente a evaluar s en el eje imaginario $j\Omega$, esto es:

$$j\Omega = \frac{2}{T} \left(\frac{1 - e^{-j\omega}}{1 + e^{-j\omega}} \right) = \frac{2}{T} \left(\frac{e^{-j\omega/2} \left(e^{j\omega/2} - e^{-j\omega/2} \right) \left(\frac{2j}{2j} \right)}{e^{-j\omega/2} \left(e^{j\omega/2} + e^{-j\omega/2} \right) \left(\frac{2}{2} \right)} \right) = j \frac{2}{T} \left(\frac{\sin(\omega/2)}{\cos(\omega/2)} \right)$$

$$\Omega = \frac{2}{T} \tan \left(\frac{\omega}{2} \right)$$

$$\omega = 2 \arctan \left(\frac{\Omega T}{2} \right)$$

Transformación de Bilineal

$$H(s) = \frac{1+0.1s}{s^2+0.2s+9.01}$$

 $f_m = 5 Hz$

Respuesta en frecuencia del sistema discreto (Azul: Euler, Rojo: Bilineal)

 $f_m = 100 Hz$

 $f_m = 100 Hz$

 $f_m = 5 Hz$

Euler

Bilineal

Conclusión

La transformación de Euler puede ser utilizada sin problemas únicamente en el mapeo de sistemas del tipo pasabajos y pasabanda, ya que no cumple perfectamente con las dos condiciones de mapeo mencionadas. Plano z

La condición de que el eje imaginario del plano s se mapee en el circulo unitario, se aproxima aceptablemente hasta $\theta < \pi/6$ radianes. Supongamos que se dispone de una secuencia x[n], con un periodo de muestreo T = 1/fm.

Por el teorema del muestreo, se tiene que fm > 2fM, con fM la frecuencia máxima presente en x[n]. Además, como θ = 2 π f, y teniendo en cuenta la restricción θ < π /6 rad., se tendrá que fM < fm/12 para así cumplir con la condición que el eje imaginario del plano s se mapee aproximadamente sobre la circunferencia unidad en el plano z.