Linear and Polynomial Regression

By Vipul Goyal

This Lecture

Last lecture: we can already implement basic learning algorithms for linear regression with 1 variable. Write code.

This Lecture:

- Gradient Descent for multiple features
- Feature Scaling
- Polynomial regression: Handling higher order dependencies
- Another method for linear/polynomial regression

House Price given Area and Lot size

Task: find a function that maps

 \mathbb{R} = set of real numbers

(size, lot size)
$$\rightarrow$$
 price features/input label/output $x \in \mathbb{R}^2$ $y \in \mathbb{R}$

> Dataset: $(x^{(1)}, y^{(1)}), ..., (x^{(m)}, y^{(m)})$ where $x^{(i)} = (x_1^{(i)}, x_2^{(i)})$

High-dimensional (Multiple) Features

$$\triangleright x \in \mathbb{R}^n$$
 for large n

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix}$$
 --- living size --- lot size --- house age --- condition --- zip code : : : :

Multiple Features: Some Notation

Multiple features (variables)

Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
X ₁	X_2	X ₃	X_4	У
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178
•••				

Notation:

n = number of features (n = 4 here) $x^{(i)} = input (features) of i-th training set$

$$\mathbf{x}^{(1)} = \begin{bmatrix} 2104 \\ 5 \\ 1 \\ 45 \end{bmatrix}$$

 $x_j^{(i)}$ = value of feature j in i-th training set

Hypothesis Representation

Previously:
$$h_{\theta}(x) = \theta_0 + \theta_1 \cdot x$$

Now:
$$h_{\theta}(x) = \theta_0 + \theta_1 \cdot x_1 + \theta_2 \cdot x_2 + + \theta_n \cdot x_n$$

where
$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ \vdots \\ x_n \end{bmatrix}$$

If we need to refer to a specific (say i-th) training set, we write $x^{(i)}$. Else simply x.

Notational Change

$$h_{\theta}(x) = \theta_0 + \theta_1 \cdot x_1 + \theta_2 \cdot x_2 + \dots + \theta_n \cdot x_n$$

To make notation simpler, define $x_0 = 1$. Equation becomes:

$$h_{\theta}(x) = \theta_0 \cdot x_0 + \theta_1 \cdot x_1 + \theta_2 \cdot x_2 + \dots + \theta_n \cdot x_n$$

Writing as per Matrices:

$$\mathbf{x} = \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ \vdots \\ x_n \end{bmatrix} \qquad \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \vdots \\ \theta_n \end{bmatrix}$$

Now: $h_{\theta}(x) = \theta^{\mathsf{T}}$. x

Matrix Notation

Compute: $h_{\theta}(x) = \theta^{\mathsf{T}} \cdot x$

$$= \left[\theta_0 \; \theta_1 \ldots \theta_n\right] \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ \vdots \\ x_n \end{bmatrix}$$

$$= \theta_0 \cdot x_0 + \theta_1 \cdot x_1 + \theta_2 \cdot x_2 + \dots + \theta_n \cdot x_n$$

Defining the Cost Function

Hypothesis:
$$h_{\theta}(x) = \theta^T x = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 \dots + \theta_n x_n$$

Parameters: θ_0 , θ_1 θ_n

Cost function:
$$J(\theta_0, \theta_1, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

 $\theta_0, \theta_1, \dots, \theta_n$ will simply be denoted by θ

How do we minimize this cost function?

Gradient Descent for Multiple Variables

Hypothesis: $h_{\theta}(x) = \theta^T x = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 \dots + \theta_n x_n$

Parameters: θ_0 , θ_1 , ... θ_n

Cost function:

$$J(\theta_0, \theta_1...\theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2$$

Gradient descent:

Repeat
$$\{ \theta_j \coloneqq \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, ..., \theta_n) \}$$

(simultaneously update for every $j = 0, \dots, n$)

GD for One Variables: Notation Change

$$-h_{\theta}(x) = \theta_0 + \theta_1 \cdot x$$

$$h_{\theta}(x) = \theta_0 \cdot x_0 + \theta_1 \cdot x_1$$
with $x_0 = 1$

Gradient descent algorithm repeat until convergence

$$\left\{\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)\right\}$$

(for
$$j = 1$$
 and $j = 0$)

$$\frac{d}{d\theta_0} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

$$\frac{d}{d\theta_1} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_1^{(i)}$$

$$\frac{d}{d\theta_1}J(\theta_0, \theta_1) = \frac{1}{m}\sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_1^{(i)}$$

General Partial Derivative Equation

$$\frac{d}{d\theta_0}J(\theta) = \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

. . .

$$\frac{d}{d\theta_n}J(\theta) = \frac{1}{m}\sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_n^{(i)}$$

Gradient descent:

$$\operatorname{Repeat} \left\{ \ \theta_j \coloneqq \theta_j \ - \ \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \dots, \theta_n) \right\}$$

(simultaneously update for every $j = 0, \dots, n$)

Gradient Descent for Multiple Variables

New algorithm $(n \ge 1)$:

Repeat
$$\{\theta_j \coloneqq \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}\}$$

(simultaneously update θ_j for j = 0, ..., n)

$$\theta_{0} \coloneqq \theta_{0} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{0}^{(i)}$$

$$\theta_{1} \coloneqq \theta_{1} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{1}^{(i)}$$

$$\theta_{2} \coloneqq \theta_{2} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{2}^{(i)}$$

. . .

Summary

- Linear Regression to multiple variables can be solved by generalizing gradient descent
- More realistic to have multiple variables rather than 1.
 Typically, what you are trying to predict is complex and depends on many factors.

It have wide number of applications (stocks,...)

Polynomial Regression

Choice of Features Matter!

Housing prices prediction?

$$h_{\theta}(x) = \theta_0 + \theta_1 \cdot frontage + \theta_2 \cdot depth$$

Frontage (feet)	Depth (feet)	Price (\$1000)	
X ₁	X_2	у	
30	15	460	
24	18	500	
25	19	515	
28	20	578	

We will never get the right prediction with linear regression!

Idea: Add an Extra Feature

Add another column to the table

$$h_{\theta}(x) = \theta_0 + \theta_1 \cdot frontage + \theta_2 \cdot depth$$

 $+\theta_3(area)$

Frontage	Depth	Area	Price
X_1	X_2	$X_1 \cdot X_2$	Y
30	15	450	460
24	18	432	232
25	19	475	315
28	20	560	178
•••	•••		

Polynomial Regression

$$h_{\theta}(x) = \theta_0 + \theta_1(area) - \theta_2(age)$$

 $h_{\theta}(x) = \theta_0 + \theta_1(area) - \theta_2\sqrt{age}$
(Add another column for \sqrt{age})

Feature Scaling

Features can have Different Ranges

$$h_{\theta}(x) = \theta_0 \cdot x_0 + \theta_1 \cdot x_1 + \theta_2 \cdot x_2 + \dots + \theta_n \cdot x_n$$

$$x = \begin{bmatrix} 3000 \\ 4 \\ \vdots \\ \vdots \\ \vdots \end{bmatrix}$$
 --- area (0-4000 sq feet)
--- number of bedrooms (1-5)
:

Typically: change of 1 in bedroom more "significant" to price than change of 1 in area

Car Prices

Again: change of 1 in age more "significant" to price than change of 1 in miles

Hence: θ_2 needs to be much larger than θ_1

More work for Gradient Descent: need to search a variety of ranges for each θ_i . Can we do better?

Feature Scaling

Feature Scaling

Get every feature into approximately a $-1 \le x_i \le 1$ range.

$$x_0 = 1$$
 $0 \le x_1 \le 3$
 $-2 \le x_2 \le 0.5$
 $-100 \le x_3 \ 100$
 $-0.001 \le x_4 \le 0.001$

How to Scale?

Step 1: Replace x_i with x_i - μ_i to make sure features have approximately zero mean (exclude x_0)

$$x_1 = \text{size} - 1500$$
 (if average size = 1500)
 $x_1 = \text{age} - 5$ (if average age of car = 5)

Step 2: Divide by an appropriate number to make sure range is roughly from -1 to 1 (roughly max – min)

$$x_1 = \frac{\text{size} - 1500}{2000}$$
 (if max size = 3500)

$$x_1 = \frac{\text{age} - 5}{10} \text{ (if max age of car = 15)}$$

Note: doesn't have to be exact, remember its only an optimization

Feature Scaling Observations

- Why -1 to 1 range for x_i ? Choice somewhat arbitrary.
- Based on the assumption that if ranges for x_i are similar, ranges for optimal θ_i will also be similar.
- In general: quickest convergence if the optimal values for θ_i all in a similar range (because gradient descent will start with similar values for all θ_i)
- Don't need to search widely different values for different θ_i

Running Gradient Descent Correctly

Gradient descent

$$\theta_{j} \coloneqq \theta_{j} - \alpha \frac{\partial}{\partial \theta_{j}} J(\theta)$$

- "Debugging": How to make sure gradient descent is working correctly.
- How to choose learning rate α .

A "Good" Execution

Cost J must keep going down with number of iterations

No. of iterations

Example automatic convergence test:

Declare convergence if $J(\theta)$ decreases by less than 10^{-3} in one iteration.

A "Bad" Execution

- For sufficiently small α , $J\left(\theta\right)$ should decrease on every iteration.
- But if α is too small, gradient descent can be slow to converge.

Choosing the Learning Rate

Summary:

- If α is too small: slow convergence.
- If α is too large: $J(\theta)$ may not decrease on every iteration; may not converge.

To choose α , try

$$\dots, 0.001,$$

$$, 0.01, , 0.1, , 1, \dots$$

$$,1,\dots$$

Another Idea

- Store the current cost function value $J(\theta)$
- Run the next step of gradient descent
- Compute the new cost function value $J(\theta)$ with the new values of θ
- If cost function went down, proceed as usual
- Otherwise, go back to older values of θ , reduce learning rate and try again
 - Good heuristic: divide lpha by 2 or 10

Solving Linear Regression

Gradient Descent

Normal equation: Method to solve for θ directly

Key Idea of Normal Equation Method

Derivative is 0 at local minima and maxima. Why?

 The function changes direction: first it was reducing, then increasing (or vice versa)

Multidimensional Cost Function

ALL Derivative 0 at lowest (and highest) points

Normal Equation Method

Mathematically compute points where all derivatives are 0

$$\frac{d}{d\theta_0}J(\theta) = \frac{1}{m}\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_0^{(i)} = 0$$

$$\frac{d}{d\theta_1}J(\theta) = \frac{1}{m}\sum_{i=1}^{m}(h_{\theta}(x^{(i)}) - y^{(i)})x_1^{(i)} = 0$$

. . .

$$\frac{d}{d\theta_n} J(\theta) = \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_n^{(i)} = 0$$

So we have n+1 variables θ_0 , θ_1 ... θ_n (x, y known) and n+1 equations!

Simplifying Further

Remember:
$$h_{\theta}(x) = \theta^{\mathsf{T}} \cdot x$$

$$\frac{1}{m} \sum_{i=1}^{m} (\theta^{\mathsf{T}} \cdot \mathbf{x}^{(i)} - \mathbf{y}^{(i)}) \, \mathbf{x}_0^{(i)} = 0$$

. . .

$$\theta = \left(X^T X\right)^{-1} X^T y$$

X= training example matrix (with m rows and n+1 columns)

 $(X^TX)^{-1}$ is inverse of matrix X^TX

An Example

Examples: m = 5.

	Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
x_0	x_1	x_2	x_3	x_4	y
1	2104	5	1	45	460
1	1416	3	2	40	232
1	1534	3	2	30	315
1	852	2	1	36	178
1	3000	4	1	38	540

$$X = \begin{bmatrix} 1 & 2104 & 5 & 1 & 45 \\ 1 & 1416 & 3 & 2 & 40 \\ 1 & 1534 & 3 & 2 & 30 \\ 1 & 852 & 2 & 1 & 36 \\ 1 & 3000 & 4 & 1 & 38 \end{bmatrix}$$

$$y = \begin{vmatrix} 460 \\ 232 \\ 315 \\ 178 \\ 540 \end{vmatrix}$$

$$\theta = \left(X^T X\right)^{-1} X^T y$$

Computing The Solution(s)

$$\theta = (X^T X)^{-1} X^T y$$
Sanity check: X is mxn' where $n' = n+1$

$$n'x1 = (n'xm) (mxn') (n'xm) (mx1)$$

$$n'x1 = (n'xn') (n'x1)$$

$$n'x1 = n'x1$$

Keep in mind:

 Computing matrix multiplication matrix inverse can be expensive

A Comparison

m training examples, *n* features.

Gradient Descent

- Need to choose α
- Needs many iterations
- Works well even when n is large
- May not give the absolute best result

Normal Equation

- No need to choose α
- Don't need to iterate
- Need to compute $(X^TX)^{-1}$
- Slow if *n* is very large
- Might give best possible result

If working with big datasets, gradient descent might be a better choice

