

UNIVERZITET U SARAJEVU ELEKTROTEHNIČKI FAKULTET ODSJEK ZA RAČUNARSTVO I INFORMATIKU UGRADBENI SISTEMI

Sistem za ventilaciju – Propuh Pro

PROJEKTNI ZADATAK

Studenti:

Merjem Gutošić Kanita Kadušić Mirza Mahmutović Haris Mališević

Nastavni ansambl:

Red. prof. dr. Samim Konjicija, dipl. ing. el. Selmir Gajip, mr. el. - dipl. ing. el.

Sadržaj

1	Specifi	kacija projekta	1		
	1.1 Fu	nkcionalnosti sistema	1		
	1.1.1	Postavljanje željene i kritične temperature i režima rada ventilatora	1		
	1.1.2	Praćenje visine temperature, režima i jačine puhanja ventilatora	2		
	1.1.3	Mijenjanje prikaza displeja	2		
	1.1.4	Upozorenje pri dostizanju kritične temperature	2		
	1.1.5	Mijenjanje režima rada ventilatora putem mobilnog uređaja			
1.2 Hardverski resursi					
	1.2.1	PicoETF – kontrolni podsistem	3		
	1.2.2	Pico – terenski podsistem	3		
	1.2.3	Dodatna oprema			
2	Zaključ	eak			
	J				

1 Specifikacija projekta

Cilj ovog projekta je napraviti funkcionalno *smart home* rješenje, koje se sastoji od više distribuiranih komponenti koje međusobno komuniciraju. Imajući u vidu dostupne resurse i realnu primjenu u praksi, tema projekta je uspostavljanje sistema za ventilaciju.

Sistem se sastoji iz dva dijela – kontrolnog i terenskog podsistema. Terenski dio realizira ventilaciju dok kontrolni dio sistema omogućava korisniku uvid u rad terenskog podsistema i upravljanje njime.

Sistem primjenu može naći kako u stambenim i ugostiteljskim objektima u vidu ventilacije prostora boravka, tako i u industrijskim okruženjima gdje je potrebno nadzirati temperaturu prostora ili uređaja koji nije neposredno dostupan.

Pored kontrolnog uređaja, sistemom je moguće upravljati i nadzirati ga i putem mobilne aplikacije.

1.1 Funkcionalnosti sistema

1.1.1 Postavljanje željene i kritične temperature i režima rada ventilatora

U sklopu kontrolnog dijela sistema, korisnik ima mogućnost podešavanja željene i kritične temperature koristeći dva tastera (jedan za povećavanje, drugi za smanjivanje temperature). Također, korisnik može odabrati i željeni način rada ventilatora. O čemu se radi? Naime, ventilator ima četiri moguća režima:

- ✓ slabi ventilator puše malom snagom
- ✓ srednji ventilator puše srednjom snagom
- ✓ jaki ventilator puše velikom snagom
- ✓ automatski sistem, na osnovu odnosa trenutne, željene i kritične temperature, određuje optimalnu snagu ventilatora, u cilju postizanja željene temperature

Definisana željena temperatura figurira samo ukoliko se ventilator nalazi u automatskom režimu rada. Slabi, srednji i jaki režim rada podrazumijevaju da ventilator rashlađuje odgovarajućom snagom sve dok korisnik ne bude zahtijevao drugačije.

1.1.2 Praćenje visine temperature, režima i jačine puhanja ventilatora

Kontrolni podsistem daje uvid u kompletan rad sistema. Putem displeja se prikazuje trenutna temperatura, koja dolazi od strane terenskog podsistema, te režim rada ventilatora i jačina puhanja istog (displej, prikazom odgovarajućih znakova, realizira varijantu *VU metra*).

Jačina puhanja ventilatora u sklopu terenskog dijela sistema se prikazuje realizirajući *VU metar* uz pomoć LED dioda.

1.1.3 Mijenjanje prikaza displeja

Kontrolni podsistem daje mogućnost da se, pritiskom na odgovarajuće tastere, mijenja prikaz displeja. Dva prikaza podrazumijevaju podešavanje željene i kritične temperature (naravno, sistem vodi računa o validnosti unosa). Sljedeći prikaz omogućava kako podešavanje režima rada ventilatora, tako i praćenje njegove jačine puhanja (s obzirom da automatski režim sam pronalazi optimalanu jačinu puhanja). Četvrti, ujedno i posljednji prikaz, podrazumijeva ispis trenutne temperature koju dobija od strane terenskog podsistema.

1.1.4 Upozorenje pri dostizanju kritične temperature

Kako je već rečeno, korisnik definiše željenu i kritičnu temperaturu. Ukoliko terenski podsistem izmjeri temperaturu koja prelazi granicu definisanu kritičnom temperaturom, korisnik biva obaviješten slanjem upozorenja.

Upozorenje se realizira na dva načina. Prvi podrazumijeva prikaz upozorenja putem displeja u sklopu kontrolog podsistema, dok drugi podrazumijeva zvučno oglašavanje u sklopu terenskog podsistema. Osim alarma, koji se može ugasiti pritiskom na taster, odgovarajuća LED dioda blinka dok se situacija ne normalizuje i sistem ne resetuje.

1.1.5 Mijenjanje režima rada ventilatora putem mobilnog uređaja

Koristeći *IoT MQTT Panel* aplikaciju, korisnik ima mogućnost mijenjati režim rada ventilatora, neovisno od lokacije na kojoj se nalazi.

1.2 Hardverski resursi

1.2.1 PicoETF – kontrolni podsistem

	Komponenta	Opis	Količina
1	taster	digitalni ulaz	4
2	LCD displej	izlazna komponenta	1

1.2.2 Pico – terenski podsistem

	Komponenta	Opis	Količina
1	LM35 temperaturni senzor	analogni ulaz	1
2	DC motor	PWM izlaz	1
3	LED dioda	digitalni izlaz	7
4	piezo (zvučnik/buzzer)	PWM izlaz	1

1.2.3 Dodatna oprema

Od dodatne opreme, koristit će se i ventilator, mobilni uređaj, baterija 9 V, otpornici, konektori, tranzistor, sigurnosna dioda i *breadboard*-i.

2 Zaključak

Što se tiče mogućih proširenja projekta, njih je moguće razmatrati u dva smjera. Sistem za ventilaciju je moguće nadograditi dodavanjem pomoćnih ventilatora. Na primjer, u automatskom režimu rada, pomoćni ventilator bi se uključivao kada sistem procijeni da nije u mogućnosti postići željenu temperaturu s jednim ventilatorom ili ukoliko sistem zaključi da bi rashlađivanje pomoću jednog ventilatora bilo isuviše sporo. S druge strane, u sistem bi se mogli dodati novi senzori, kao što su senzor dima i vlažnosti, čime bi se uvele nove funkcionalnosti kojima korisnik raspolaže.