Discrete Mathematics: Lecture 18

logically equivalent, rule of replacement, tautological implications

Xuming He
Associate Professor

School of Information Science and Technology
ShanghaiTech University

Spring Semester, 2022

Logically Equivalent

DEFINITION: Let A and B be WFFs in propositional variables p_1, \dots, p_n .

- A and B are **logically equivalent** (%) if they always have the same truth value for every truth assignment (of $p_1, ..., p_n$)
 - Notation: $A \equiv B$

THEOREM: $A \equiv B$ if and only if $A \leftrightarrow B$ is a tautology.

- \bullet $A \equiv B$
- iff for any truth assignment, A, B take the same truth values
- iff for any truth assignment, $A \leftrightarrow B$ is true
- iff $A \leftrightarrow B$ is a tautology

THEOREM: $A \equiv A$; If $A \equiv B$, then $B \equiv A$; If $A \equiv B$, $B \equiv C$, then $A \equiv C$

QUESTION: How to prove $A \equiv B$?

EXAMPLE: $P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R)$ //distributive law

Idea: Show that A, B have the same truth table.

P	Q	R	$Q \vee R$	$P \wedge (Q \vee R)$	$P \wedge Q$	$P \wedge R$	$(P \wedge Q) \vee (P \wedge R)$
Т	Т	Т	Т	Т	T	Т	Т
Т	Т	F	Т	Т	Т	F	Т
Т	F	Т	Т	Т	F	Т	Т
Т	F	F	F	F	F	F	F
F	Т	Т	Т	F	F	F	F
F	Т	F	Т	F	F	F	F
F	F	Т	Т	F	F	F	F
F	F	F	F	F	F	F	F

REMARK: $P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$ can be shown similarly.

Logical Equivalences

Name	Logical Equivalences	NO.
Double Negation Law 双重否定律	$\neg(\neg P) \equiv P$	1
Identity Laws	$P \wedge \mathbf{T} \equiv P$	2
同一律「	$P \vee \mathbf{F} \equiv P$	3
Idempotent Laws	$P \lor P \equiv P$	4
等幂律	$P \wedge P \equiv P$	5
Domination Laws	$P \lor \mathbf{T} \equiv \mathbf{T}$	6
零律	$P \wedge \mathbf{F} \equiv \mathbf{F}$	7
Negation Laws	$P \vee \neg P \equiv \mathbf{T}$	8
补余律	$P \wedge \neg P \equiv \mathbf{F}$	9

Logical Equivalences

Name	Logical Equivalences	NO.
Commutative Laws	$P \vee Q \equiv Q \vee P$	10
交换律	$P \wedge Q \equiv Q \wedge P$	11
Associative Laws	$P \vee (Q \vee R) \equiv (P \vee Q) \vee R$	12
结合律	$P \wedge (Q \wedge R) \equiv (P \wedge Q) \wedge R$	13
Distributive Laws	$P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \wedge R)$	14
分配律	$P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$	15
De Morgan's Laws	$\neg (P \land Q) \equiv (\neg P) \lor (\neg Q)$	16
摩根律	$\neg (P \lor Q) \equiv (\neg P) \land (\neg Q)$	17
Absorption Laws	$P \vee (P \wedge Q) \equiv P$	18
吸收律	$P \wedge (P \vee Q) \equiv P$	19

Logical Equivalences

Name	Logical Equivalences	NO.
Laws Involving	$P \to Q \equiv \neg P \lor Q$	20
Implication	$P \to Q \equiv \neg Q \to \neg P$	21
\rightarrow	$(P \to R) \land (Q \to R) \equiv (P \lor Q) \to R$	22
	$P \to (Q \to R) \equiv (P \land Q) \to R$	23
	$P \to (Q \to R) \equiv Q \to (P \to R)$	24
Laws Involving	$P \leftrightarrow Q \equiv (P \to Q) \land (Q \to P) \not \not \sim \bot$	25
Bi-Implication	$P \leftrightarrow Q \equiv (\neg P \lor Q) \land (P \lor \neg Q)$	26
\leftrightarrow	$P \leftrightarrow Q \equiv (P \land Q) \lor (\neg P \land \neg Q)$	27
	$P \leftrightarrow Q \equiv \neg P \leftrightarrow \neg Q$	28

Rule of Replacement: (#AMM) Replacing a sub-formula in a formula F with a logically equivalent sub-formula gives a formula logically equivalent to the formula F.

EXAMPLE:
$$P o Q \equiv \neg Q o \neg P$$

 $P o Q \equiv \neg P \lor Q \equiv Q \lor \neg P \equiv \neg (\neg Q) \lor \neg P \equiv \neg Q o \neg P$
EXAMPLE: $P o Q \equiv (\neg P \lor Q) \land (P \lor \neg Q)$
 $P o Q \equiv (P o Q) \land (Q o P) \equiv (\neg P \lor Q) \land (\neg Q \lor P)$
 $\equiv (\neg P \lor Q) \land (P \lor \neg Q)$
EXAMPLE: $P o (Q o R) \equiv (P \land Q) o R$
 $P o (Q o R) \equiv \neg P \lor (\neg Q \lor R) \equiv (\neg P \lor \neg Q) \lor R \equiv \neg (P \land Q) \lor R$
 $\equiv (P \land Q) \to R$

Logically Equivalent

THEOREM: Let $A^{-1}(\mathbf{T})$ be the set of truth assignments such that A is true. Then $A \equiv B$ if and only if $A^{-1}(\mathbf{T}) = B^{-1}(\mathbf{T})$.

• $A \equiv B$ if and only if $A^{-1}(\mathbf{F}) = B^{-1}(\mathbf{F})$

EXAMPLE: $P \wedge Q \equiv Q \wedge P$

//commutative law

- Idea: Show that $A^{-1}(T) = B^{-1}(T)$.
- $A = P \wedge Q$; $B = Q \wedge P$
 - $A = \mathbf{T}$ if and only if $(P, Q) = (\mathbf{T}, \mathbf{T})$
 - $A^{-1}(\mathbf{T}) = \{(\mathbf{T}, \mathbf{T})\}$
 - $B = \mathbf{T}$ if and only if $(Q, P) = (\mathbf{T}, \mathbf{T})$
 - $B^{-1}(\mathbf{T}) = \{(\mathbf{T}, \mathbf{T})\}\$
- $A^{-1}(\mathbf{T}) = B^{-1}(\mathbf{T})$
- $A \equiv B$

REMARK: $P \land (Q \land R) \equiv (P \land Q) \land R$ can be shown similarly.

Associative law

EXAMPLE: $P \lor Q \equiv Q \lor P$

//commutative law

- Idea: Show that $A^{-1}(\mathbf{F}) = B^{-1}(\mathbf{F})$.
- $A = P \lor Q; B = Q \lor P$
 - $A = \mathbf{F}$ if and only if $(P, Q) = (\mathbf{F}, \mathbf{F})$
 - $A^{-1}(\mathbf{F}) = \{ (\mathbf{F}, \mathbf{F}) \}$
 - $B = \mathbf{F}$ if and only if $(Q, P) = (\mathbf{F}, \mathbf{F})$
 - $B^{-1}(\mathbf{F}) = \{ (\mathbf{F}, \mathbf{F}) \}$
- $A^{-1}(\mathbf{F}) = B^{-1}(\mathbf{F})$
- $A \equiv B$

REMARK: $P \lor (Q \lor R) \equiv (P \lor Q) \lor R$ can be shown similarly.

Associative law

Tautological Implications

DEFINITION: Let A and B be WFFs in propositional variables $p_1, ..., p_n$.

- A tautologically implies ($\mathbb{Z} = \mathbb{Z} = \mathbb{Z}$
 - Notation: $A \Rightarrow B$, called a **tautological implication**
 - $A^{-1}(\mathbf{T}) \subseteq B^{-1}(\mathbf{T}); B^{-1}(\mathbf{F}) \subseteq A^{-1}(\mathbf{F})$

THEOREM: $A \Rightarrow B$ iff $A \rightarrow B$ is a tautology.

• $A \Rightarrow B \text{ iff } A^{-1}(\mathbf{T}) \subseteq B^{-1}(\mathbf{T}) \text{ iff } A \to B \text{ is a tautology}$

THEOREM: $A \Rightarrow B$ iff $A \land \neg B$ is a contradiction.

• $A \rightarrow B \equiv \neg A \lor B \equiv \neg (A \land \neg B)$

Proving $A \Rightarrow B$: (1) $A^{-1}(\mathbf{T}) \subseteq B^{-1}(\mathbf{T})$; (2) $B^{-1}(\mathbf{F}) \subseteq A^{-1}(\mathbf{F})$;

(3) $A \rightarrow B$ is a tautology; (4) $A \land \neg B$ is a contradiction

Proving $A \Rightarrow B$

EXAMPLE: Show the tautological implication " $p \land (p \rightarrow q) \Rightarrow q$ ".

- Let $A = p \land (p \rightarrow q)$; B = q. Need to show that " $A \Rightarrow B$ "
- $A^{-1}(\mathbf{T}) = \{(\mathbf{T}, \mathbf{T})\}; B^{-1}(\mathbf{T}) = \{(\mathbf{T}, \mathbf{T}), (\mathbf{F}, \mathbf{T})\}; A^{-1}(\mathbf{T}) \subseteq B^{-1}(\mathbf{T}).$

p	q	$p \rightarrow q$	A	В
Т	Т	Т	Ī	Ī
Т	F	F	F	F
F	Т	Т	F	Т
F	F	Т	F	F

•
$$A \to B \equiv \neg (p \land (p \to q)) \lor q$$
 • $A \land \neg B \equiv (p \land (p \to q)) \land \neg q$
 $\equiv (\neg p \lor \neg (p \to q)) \lor q$ $\equiv (\neg q \land p) \land (p \to q)$
 $\equiv (\neg p \lor q) \lor \neg (p \to q)$ $\equiv \neg (p \to q) \land (p \to q)$
 $\equiv (p \to q) \lor \neg (p \to q)$ $\equiv \mathbf{F}$
 $\equiv \mathbf{T}$

Tautological Implications

Name	Tautological Implication	NO.
Conjunction(合取)	$(P) \land (Q) \Rightarrow P \land Q$	1
Simplification(化简)	$P \wedge Q \Rightarrow P$	2
Addition(附加)	$P \Rightarrow P \lor Q$	3
Modus ponens(假言推理)	$P \wedge (P \rightarrow Q) \Rightarrow Q$	4
Modus tollens(拒取)	$\neg Q \land (P \to Q) \Rightarrow \neg P$	5
Disjunctive syllogism(析取三段论)	$\neg P \land (P \lor Q) \Rightarrow Q$	6
Hypothetical syllogism(假言三段论)	$(P \to Q) \land (Q \to R) \Rightarrow (P \to R)$	7
Resolution (归结)	$(P \lor Q) \land (\neg P \lor R) \Rightarrow Q \lor R$	8

Proofs for 5 and 6

```
EXAMPLE: \neg Q \land (P \rightarrow Q) \Rightarrow \neg P
```

- $A = \neg Q \land (P \rightarrow Q), B = \neg P.$
- $A \to B \equiv \neg (\neg Q \land (P \to Q)) \lor \neg P$ $\equiv (Q \lor \neg (P \to Q)) \lor \neg P$ $\equiv (\neg P \lor Q) \lor \neg (P \to Q)$ $\equiv \mathbf{T}$

EXAMPLE: $\neg P \land (P \lor Q) \Rightarrow Q$

- $A = \neg P \land (P \lor Q), B = Q.$
- $A \to B \equiv \neg(\neg P \land (P \lor Q)) \lor Q$ $\equiv (P \lor \neg(P \lor Q)) \lor Q$ $\equiv (\neg(P \lor Q) \lor P) \lor Q$ $\equiv \neg(P \lor Q) \lor (P \lor Q)$ $\equiv \mathbf{T}$

Proofs for 7 and 8

```
EXAMPLE: (P \rightarrow Q) \land (Q \rightarrow R) \Rightarrow P \rightarrow R
       • A = (P \rightarrow Q) \land (Q \rightarrow R); B = (P \rightarrow R).
       • A \wedge \neg B \equiv (\neg P \vee Q) \wedge (\neg Q \vee R) \wedge (P \wedge \neg R)
                           \equiv ((\neg P \lor Q) \land P) \land ((\neg Q \lor R) \land \neg R)
                           \equiv ((\neg P \land P) \lor (Q \land P)) \land ((\neg Q \land \neg R) \lor (R \land \neg R))
                           \equiv (Q \land P) \land (\neg Q \land \neg R)
                           \equiv F
EXAMPLE: (P \lor Q) \land (\neg P \lor R) \Rightarrow Q \lor R
       • A = (P \vee Q) \wedge (\neg P \vee R); B = (Q \vee R).
            A \wedge \neg B \equiv (P \vee Q) \wedge (\neg P \vee R) \wedge (\neg Q \wedge \neg R)
                           \equiv ((P \lor Q) \land \neg Q) \land ((\neg P \lor R) \land \neg R)
                           \equiv (P \land \neg Q) \land (\neg P \land \neg R)
                           \equiv \mathbf{F}
```

More Examples

```
EXAMPLE: (P \leftrightarrow Q) \land (Q \leftrightarrow R) \Rightarrow (P \leftrightarrow R)
```

- $A = (P \leftrightarrow Q) \land (Q \leftrightarrow R); B = (P \leftrightarrow R).$
- $A = \mathbf{T} \text{ iff } (P \leftrightarrow Q) = \mathbf{T} \text{ and } (Q \leftrightarrow R) = \mathbf{T} \text{ iff } P = Q \text{ and } Q = R$
 - $A^{-1}(\mathbf{T}) = \{(\mathbf{T}, \mathbf{T}, \mathbf{T}), (\mathbf{F}, \mathbf{F}, \mathbf{F})\}$
- $B = \mathbf{T} \text{ iff } P = R$
 - $B^{-1}(\mathbf{T}) = \{ (\mathbf{T}, \mathbf{T}, \mathbf{T}), (\mathbf{T}, \mathbf{F}, \mathbf{T}), (\mathbf{F}, \mathbf{T}, \mathbf{F}), (\mathbf{F}, \mathbf{F}, \mathbf{F}) \}$
- $A^{-1}(\mathbf{T}) \subseteq B^{-1}(\mathbf{T})$

EXAMPLE: $(Q \to R) \Rightarrow ((P \lor Q) \to (P \lor R))$

- $A = Q \rightarrow R$; $B = ((P \lor Q) \rightarrow (P \lor R))$.
- $A = \mathbf{F} \text{ iff } (Q, R) = (\mathbf{T}, \mathbf{F})$
 - $A^{-1}(\mathbf{F}) = \{(\mathbf{T}, \mathbf{T}, \mathbf{F}), (\mathbf{F}, \mathbf{T}, \mathbf{F})\}$
- $B = \mathbf{F} \text{ iff } (P \vee Q, P \vee R) = (\mathbf{T}, \mathbf{F}) \text{ iff } (P, Q) \neq (\mathbf{F}, \mathbf{F}) \text{ and } (P, R) = (\mathbf{F}, \mathbf{F})$
 - $B^{-1}(\mathbf{F}) = \{ (\mathbf{F}, \mathbf{T}, \mathbf{F}) \}$
- $A^{-1}(\mathbf{F}) \supseteq B^{-1}(\mathbf{F})$

More Examples

```
EXAMPLE: (P \to R) \land (Q \to S) \land (P \lor Q) \Rightarrow R \lor S
        • A = (P \rightarrow R) \land (Q \rightarrow S) \land (P \lor Q); B = R \lor S
        • A \land \neg B \equiv (P \rightarrow R) \land (Q \rightarrow S) \land (P \lor Q) \land \neg (R \lor S)
                             \equiv (\neg P \lor R) \land (\neg Q \lor S) \land (P \lor Q) \land (\neg R \land \neg S)
                             \equiv ((\neg P \lor R) \land \neg R)) \land ((\neg Q \lor S) \land \neg S) \land (P \lor Q)
                             \equiv ((\neg P \land \neg R) \lor (R \land \neg R)) \land ((\neg Q \land \neg S) \lor (S \land \neg S)) \land (P \lor Q)
                             \equiv ((\neg P \land \neg R) \lor \mathbf{F}) \land ((\neg Q \land \neg S) \lor \mathbf{F}) \land (P \lor Q)
                             \equiv (\neg P \land \neg R) \land (\neg Q \land \neg S) \land (P \lor Q)
                             \equiv \neg R \land (\neg Q \land \neg S) \land (\neg P \land (P \lor Q))
                             \equiv \neg R \land (\neg Q \land \neg S) \land ((\neg P \land P) \lor (\neg P \land Q))
                             \equiv \neg R \land (\neg Q \land \neg S) \land (\mathbf{F} \lor (\neg P \land Q))
                             \equiv \neg R \land (\neg Q \land \neg S) \land (\neg P \land Q)
                             \equiv \neg R \land \neg S \land \neg P \land (\neg Q \land Q)
                             \equiv \neg R \land \neg S \land \neg P \land \mathbf{F}
                             = F
```