CLAIMS

What is claimed is:

5

10

15

25

- 1. An organophotoreceptor comprising an electrically conductive substrate and a photoconductive element on the electrically conductive substrate, the photoconductive element comprising:
 - (a) a charge transport material having the formula

$$\begin{array}{c|c} R_2 & R_1 \\ \hline -Y - C = N - N - X \\ \hline & n \end{array}$$

where X is a linking group having the formula - $(CH_2)_{m^-}$, branched or linear, where m is an integer between 0 and 20, inclusive, and one or more of the methylene groups is optionally replaced by O, S, C=O, O=S=O, a heterocyclic group, an aromatic group, urethane, urea, an ester group, a NR₃ group, a CHR₄ group, or a CR₅R₆ group where R₃, R₄, R₅, and R₆ are, independently, H, hydroxyl group, thiol group, an alkyl group, an alkyl group, an alkaryl group, a heterocyclic group, or an aryl group;

R₁ and R₂ are independently a hydrogen, a halogen, an alkyl group, an aryl group, an alkaryl group, an aromatic group or a heterocyclic group;

Y is an aromatic group; and

n is a distribution of integer values greater than 2; and

- (b) a charge generating compound.
- 20 2. An organophotoreceptor according to claim 1 wherein the photoconductive element further comprises an electron transport compound.
 - 3. An organophotoreceptor according to claim 1 wherein Y comprises an N,N-disubstituted arylamine.
 - 4. An organophotoreceptor according to claim 3 wherein the (N,N-disubstituted)arylamine group is a p-(N,N-disubstituted)arylamine group.

10

- 5. An organophotoreceptor according to claim 3 wherein the (N,N-disubstituted)arylamine group comprises a triphenyl amine group, a carbazole group or a julolidine group.
- 6. An organophotoreceptor according to claim 1 wherein the photoconductive element further comprises a polymer binder.
 - 7. An organophotoreceptor according to claim 6 wherein the polymer binder is crosslinked with the charge transport material.
 - 8. An organophotoreceptor according to claim 7 wherein the polymer binder and charge transport compound are crosslinked through a crosslinking agent.
- 9. An organophotoreceptor according to claim 1 wherein the charge transport material comprises an epoxy linkage.
 - 10. An organophotoreceptor according to claim 9 wherein a crosslinking agent is bonded between the epoxy linkage and the polymer binder.
- 20 11. An organophotoreceptor according to claim 1 wherein the R₁ group is a phenyl group and R₂ is a hydrogen.
 - 12. An electrophotographic imaging apparatus comprising:
 - (a) a light imaging component; and
- 25 (b) an organophotoreceptor oriented to receive light from the light imaging component, the organophotoreceptor comprising an electrically conductive substrate and a photoconductive element on the electrically conductive substrate, the photoconductive element comprising:
 - (i) a charge transport compound having the formula

$$\begin{array}{c|c} R_2 & R_1 \\ \hline -Y-C=N-N-X-n \end{array}$$

where X is a linking group having the formula - $(CH_2)_m$ -, branched or linear, where m is an integer between 0 and 20, inclusive, and one or more of the methylene groups is optionally replaced by O, S, C=O, O=S=O, a heterocyclic group, an aromatic group, urethane, urea, an ester group, a NR₃ group, a CHR₄ group, or a CR₅R₆ group where R₃, R₄, R₅, and R₆ are, independently, H, hydroxyl group, thiol group, an alkyl group, an alkaryl group, a heterocyclic group, or an aryl group;

 R_1 and R_2 are independently a hydrogen, a halogen, an alkyl group, an aryl group, an alkaryl group, an aromatic group or a heterocyclic group;

Y is an aromatic group; and

5

10

20

25

n is a distribution of integer values greater than 2; and

- (ii) a charge generating compound.
- 13. An electrophotographic imaging apparatus according to claim 12 wherein Y15 comprises an N,N-disubstituted arylamine.
 - 14. An electrophotographic imaging apparatus according to claim 13 wherein the (N,N-disubstituted)arylamine group comprises a triphenyl amine group, a carbazole group or a julolidine group.

15. An electrophotographic imaging apparatus according to claim 12 wherein the photoconductive element further comprises an electron transport compound.

- 16. An electrophotographic imaging apparatus according to claim 12 wherein the photoconductive element further comprises a binder.
- 17. An electrophotographic imaging apparatus according to claim 12 wherein the binder is crosslinked with the charge transport material.

5

10

15

20

- 18. An electrophotographic imaging apparatus according to claim 17 wherein a crosslinking agent forms chemical crosslinks between the charge transport material and the binder.
- 19. An electrophotographic imaging apparatus according to claim 12 further comprising a liquid toner dispenser.
 - 20. An electrophotographic imaging process comprising:
- (a) applying an electrical charge to a surface of an organophotoreceptor comprising an electrically conductive substrate and a photoconductive element on the electrically conductive substrate, the photoconductive element comprising:
 - (i) a charge transport compound having the formula

$$\begin{array}{c|c} R_2 & R_1 \\ \hline -Y - C = N - N - X \\ \hline & n \end{array}$$

where X is a linking group having the formula -(CH₂)_m-, branched or linear, where m is an integer between 0 and 20, inclusive, and one or more of the methylene groups is optionally replaced by O, S, C=O, O=S=O, a heterocyclic group, an aromatic group, urethane, urea, an ester group, a NR₃ group, a CHR₄ group, or a CR₅R₆ group where R₃, R₄, R₅, and R₆ are, independently, H, hydroxyl group, thiol group, an alkyl group, an alkyl group, a heterocyclic group, or an aryl group;

 R_1 and R_2 are independently a hydrogen, a halogen, an alkyl group, an aryl group, an alkaryl group, an aromatic group or a heterocyclic group;

Y is an aromatic group; and

n is a distribution of integer values greater than 2; and

- (ii) a charge generating compound;
- 25 (b) imagewise exposing the surface of the organophotoreceptor to radiation to dissipate charge in selected areas and thereby form a pattern of charged and uncharged areas on the surface;
 - (c) contacting the surface with a toner to create a toned image; and
 - (d) transferring the toned image to a substrate.

- 21. An electrophotographic imaging process according to claim 20 wherein Y comprises an N,N-disubstituted arylamine.
- 22. An electrophotographic imaging process according to claim 20 wherein the photoconductive element further comprises an electron transport compound.
 - 23. An electrophotographic imaging process according to claim 20 wherein the photoconductive element further comprises a polymer binder.
 - 24. An electrophotographic imaging process according to claim 23 wherein the binder is crosslinked with the charge transport material.
- 25. An electrophotographic imaging process according to claim 24 wherein a crosslinking agent links the polymer binder and the charge transport material.
 - 26. An electrophotographic imaging process according to claim 20 wherein the toner comprises a liquid toner comprising a dispersion of colorant particles in an organic liquid.
 - 27. A charge transport material having the formula:

$$\begin{array}{c|c} R_2 & R_1 \\ \hline -Y - C = N - N - X - \\ \hline & n \end{array}$$

where X is a linking group having the formula -(CH₂)_m-, branched or linear, where m is an integer between 0 and 20, inclusive, and one or more of the methylene groups is optionally replaced by O, S, C=O, O=S=O, a heterocyclic group, an aromatic group, urethane, urea, an ester group, a NR₃ group, a CHR₄ group, or a CR₅R₆ group where R₃, R₄, R₅, and R₆ are, independently, H, hydroxyl group, thiol group, an alkyl group, an alkyl group, a heterocyclic group, or an aryl group;

20

25

 R_1 and R_2 are independently a hydrogen, a halogen, an alkyl group, an aryl group, an alkaryl group, an aromatic group or a heterocyclic group;

Y is an aromatic group; and

n is a distribution of integer values greater than 2.

5

- 28. A charge transport compound according to claim 27 wherein Y comprises an N,N-disubstituted arylamine.
- 29. A method for forming a polymer charge transport material, the method comprising polymerizing a monomer with the formula:

$$Z-Y$$
 R_2
 X'
 R_1

where X' is a linking group having the formula $-(CH_2)_{m}$, branched or linear, where m is an integer between 0 and 20, inclusive, and one or more of the methylene groups is optionally replaced by O, S, C=O, O=S=O, a heterocyclic group, an aromatic group, urethane, urea, an ester group, a NR₃ group, a CHR₄ group, or a CR₅R₆ group where R₃, R₄, R₅, and R₆ are, independently, H, hydroxyl group, thiol group, an alkyl group, an alkaryl group, a heterocyclic group, or an aryl group;

 R_1 and R_2 are independently a hydrogen, a halogen, an alkyl group, an aryl group, an alkaryl group, an aromatic group or a heterocyclic group;

Y' is an aromatic group;

Z is a first reactive functional group; and

E is a second reactive functional group that can covalently bond with the reactive functional group Z under appropriate reaction conditions.

25

15

20

30. A method according to claim 29 wherein Y' comprises an N,N-disubstituted arylamine.

5

15

25

- 31. A method according to claim 29 wherein E comprises an epoxy group.
- 32. A method according to claim 31 wherein Z is selected from the group consisting of hydroxyl, thiol, amino (primary amino or secondary amino), a carboxyl group and a combination thereof.
- 33. A method according to claim 29 further comprising crosslinking the polymer with a polymer binder.
- 34. A method according to claim 33 wherein the crosslinking is performed with a crosslinking agent.
 - 35. A method according to claim 29 wherein the polymerization is performed in solution with a polymer binder.
 - 36. A method according to claim 35 wherein the polymer binder comprises a functional group that bonds with E or Z.
- 37. A method according to claim 35 wherein the solution further comprises a crosslinking agent that bonds with the monomer and with the polymer binder.
 - 38. A method according to claim 29 wherein polymerization is initiated by the adjustment of the pH, the temperature, the concentration or a combination thereof.
 - 39. A polyfunctional compound having the formula:

$$Z-Y$$
 R_2
 X
 R_1

where X' is a linking group having the formula -(CH₂)_m-, branched or linear, where m is an integer between 0 and 20, inclusive, and one or more of the methylene groups is

Attorney Docket No.:3216.28US01 (SIL-03-143)

optionally replaced by O, S, C=O, O=S=O, a heterocyclic group, an aromatic group, urethane, urea, an ester group, a NR_3 group, a CHR_4 group, or a CR_5R_6 group where R_3 , R_4 , R_5 , and R_6 are, independently, H, hydroxyl group, thiol group, an alkyl group, an alkaryl group, a heterocyclic group, or an aryl group;

 R_1 and R_2 are independently a hydrogen, a halogen, an alkyl group, an aryl group, an alkaryl group, an aromatic group or a heterocyclic group;

Y' is an aromatic group;

Z is a first reactive functional group; and

E is a second reactive functional group that can covalently bond with the reactive functional group Z under appropriate reaction conditions.

40. A compound according to claim 39 wherein Y' comprises an N,N-disubstituted arylamine.

15

5