

Gerold Hölzl, University of Passau

EMERGING ARCHITECTURES SEMINAR- INTRODUCTION OF TOPICS

Purpose of the Seminar

- To learn how to establish an understanding of a scientific topic based on one or several research publications
- To communicate this understanding to others in oral and in written form while adhering to time and space limits.
- To conduct a scientific discussion on the topic you presented and on topics presented by others.
- This presentation: brief (!) overview of seminar requirements and of the 20 available topics.
- See the seminar description (PDF document available in Stud.IP) for exact requirements and numerous hints.

Seminar Requirements & Deadlines

- 1. Assignment of topics at first Meeting (see StudIP)
- 2. An oral presentation of 20 minutes duration about your topic followed by a discussion.
 - → Block seminar at the end of semester, dates TBD.
- 3. A set of slides for your presentation.
 - → Due one week before presentation by email.
- 4. An 8-page (hard limit) written report on your topic.
 - → Due on July 2nd 08:00. by email.
- Attendance at presentations by others and participation in discussion.
- Optional feedback on documents sent one week in advance.
- See PDF document for precise grading criteria.

Scientific Context

- Small embedded systems and ever higher density of transistors call for increased energy efficiency and smaller circuits.
- Computationally complex tasks such as machine learning call for accelerated processing.
- Big Data calls for new methods for data storage.
- This seminar covers emerging architectures that tackle these problems (among others).

Examples of Emerging Architectures Applications

- Neuromorphic Computing and Realtime Processing
 - Image Processing, Speech Recognition
- Self-adaptive Computing
 - Slower Component Aging, Voltage Scaling (Energy Saving)
- Blockchain
 - Cryptocurrencies, Decentralized Libraries
- Side Channel Attacks and Protection
 - Hardware Trojans, Cache Protection
- Bio-Computing
 - Biomedical Applications, Data Storage

Neuromorphic Computing

Neural Networks can perform complex tasks such as image and speech recognition and text analysis.

Problems occurring in these networks are:

- Large amounts of data need to be processed.
- Networks may take a long time for training.

New architectures emerge in order to solve these problems.

Realtime Processing

Sensors record data that needs to be processed in realtime:

- Video Object Tracking
- Image Processing (e.g. edge detection)
- Signal Filtering (e.g. lowpass/highpass filters)

Amount of data increases, new architectures needed to satisfy realtime requirement.

Topics on Neuromorphic Computing and Realtime Processing

No	Topic, study program, literature, prerequisites
1	Image Processing with Stochastic Computing (Bachelor) Literature: http://ieeexplore.ieee.org/abstract/document/6560729/ Prerequisites: stochastics +, image processing +, circuit design +
2	Hardware-Software Co-design of Automatic Speech Recognition System (Master) Literature: http://ieeexplore.ieee.org/abstract/document/4926174/ Prerequisites: computer architecture ++, circuit design ++
3	FAWN: A Fast Array of wimpy Nodes (Bachelor) Literature: https://dl.acm.org/citation.cfm?id=1629577 Prerequisites: network design ++
4	Memristor Crossbar-Based Neuromorphic Computing System (Master) Literature: http://ieeexplore.ieee.org/abstract/document/6709674/ Prerequisites: linear algebra ++, neural networks +

Topics on Neuromorphic Computing and Realtime Processing

No	Topic, study program, literature, prerequisites
5	Nanoscale Devices and Circuits for Neuromorphic
	Computational Systems (Bachelor)
	Literature: http://ieeexplore.ieee.org/abstract/document/6374663/
	Prerequisites: circuit design ++, neural networks +

Self-Adaptive Computing

Systems are aware of, monitor and manage themselves.

- Dynamic Voltage Scaling
- Voltage-Reliability trade-offs
- Increased energy efficiency due to lowest possible operating voltage.
- Temporarily unneeded system parts can be switched off.

Topics on Self-Adaptive Computing

No	Topic, study program, literature, prerequisites
6	SAMR: A Self-Adaptive MapReduce Scheduling Algorithm (Bachelor) Literature: http://ieeexplore.ieee.org/abstract/document/5578538/ Prerequisites: data processing ++
7	A Self-Adaptive System Architecture to Address Transistor Aging (Bachelor) Literature: https://dl.acm.org/citation.cfm?id=1874641 Prerequisites: computer engineering ++
8	A Self-Adaptive Heterogeneous Multi-core Architecture for Embedded Real-time Video Object Tracking (Master) Literature: https://link.springer.com/article/10.1007/s11554-011-0212-y Prerequisites: image (video) processing ++

Blockchains

A Method to manage large, decentralized networks with untrustworthy and potentially malicious members.

Many open questions, e.g.:

- How to handle scaling problems (e.g. Bitcoin blocksize)?
- How to deal with attacks from a subnetwork of malicious members?

Topics on Self-adaptive Computing

No	Topic, study program, literature, prerequisites
9	The Quest for a Scalable Blockchain Fabric (Bachelor) Literature: https://link.springer.com/chapter/10.1007/978-3-319-39028-4_9 Prerequisites: distributed systems ++
10	Subversive Miner Strategies and Block Withholding Attacks in Bitcoin (Master) Literature: https://arxiv.org/abs/1402.1718 Prerequisites: distributed systems ++
11	Security and Performance of Proof of Work Blockchains (Master) Literature: https://dl.acm.org/citation.cfm?id=2978341 Prerequisites: distributed systems ++, calculus +

Topics on Self-adaptive Computing

No	Topic, study program, literature, prerequisites
12	Bitcoin-NG: A Scalable Blockchain Protocol (Bachelor)
	Literature: https://www.usenix.org/system/files/conference/nsdi16/n
	sdi16-paper-eyal.pdf
	Prerequisites: distributed systems ++

Side Channel Attacks

Information about the system can leak through physical effects, e.g.:

- Temperature changes
- Energy consumption

Trojans that measure these effects can be placed during manufacturing.

Topics on Side Channel Attacks

No	Topic, study program, literature, prerequisites
13	New Cache Designs for Thwarting Software Cache-based Side Channel Attacks (Bachelor) Literature: https://dl.acm.org/citation.cfm?id=1250723 Prerequisites: computer architecture ++
14	MUTE-AES: Preventing Side Channel Attacks on AES (Bachelor) Literature: https://dl.acm.org/citation.cfm?id=1509605 Prerequisites: cryptography ++, circuit design +
15	A High Resolution, Low Noise L3 Cache Side-Channel Attack (Bachelor) Literature: https://www.usenix.org/system/files/conference/usenixsecurity14/sec14-paper-yarom.pdf Prerequisites: computer architecture ++

Topics on Side Channel Attacks

No	Topic, study program, literature, prerequisites
16	Stealthy Dopant-Level Hardware Trojans (Master) Literature: https://link.springer.com/chapter/10.1007/978-3-642-40349-1_12 Prerequisites: computer engineering ++, circuit design ++
17	Trojan Side-Channels (Bachelor) Literature: https://link.springer.com/content/pdf/10.1007/978-3-642-04138-9.pdf#page=396 Prerequisites: computer architecture ++, circuit design +

Bio-Computing

- DNA is an extremely dense Data storage method with a lifetime higher than classical storage mediums.
- Logical operations can also be performed with DNA.
- Proposed uses mostly in Biomedical devices.

Topics on Bio-Computing

No	Topic, study program, literature, prerequisites
18	DENA: A Configurable Microarchitecture and Design Flow for Biomedical DNA-Based Logic Design (Bachelor) Literature: http://ieeexplore.ieee.org/abstract/document/7956302/ Prerequisites: computer engineering ++
19	Design of a DNA-based arithmetic and logic unit (Master) Literature: http://digital-library.theiet.org/content/journals/10.1049/iet-nbt.2014.0056 Prerequisites: computer engineering ++, circuit design +
20	Digital biosensors with built-in logic for biomedical applications (Bachelor) Literature: https://link.springer.com/article/10.1007/s00216-010-3746-0 Prerequisites: computer engineering ++