Week 7: CVaR in Reinforcement Learning (Formulasi Rockafellar–Uryasev)

Aprida Siska Lestia

September 30, 2025

Agenda Sesi

- Motivasi
- Monsep VaR dan CVaR
- CVaR dalam RL
- Policy Gradient untuk CVaR
- Demo dan Implementasi
- 6 Analisis Trade-off
- Referensi

Motivasi: Mengelola Tail Risk

- Minggu 6 : Distributional RL (QR-DQN) ⇒ melihat sebaran return, bukan hanya rata-rata.
- Pertanyaan: bagaimana jika agent ingin **menghindari kerugian ekstrem**, bukan sekadar memaksimalkan $\mathbb{E}[R]$?
- Aplikasi: asuransi (klaim catastropic), portofolio (crash pasar), operasi (rare failures).
- Solusi: gunakan ukuran risiko koheren
- Fokus sesi ini: CVaR.

Recall: VaR dan Keterbatasannya

Value at Risk (quantile)

$$\operatorname{VaR}_{\alpha}(X) = \inf\{x \in \mathbb{R} \mid \Pr(X \le x) \ge \alpha\}$$

- ullet Intuisi: kerugian ambang pada tingkat kepercayaan lpha.
- Keterbatasan: tidak selalu *subadditive* \Rightarrow *tidak koheren*.

Conditional Value at Risk (CVaR)

Definisi CVaR

$$\mathrm{CVaR}_{\alpha}(X) = \mathbb{E}[X \mid X \geq \mathrm{VaR}_{\alpha}(X)].$$

- Artinya: rata-rata kerugian di atas ambang (VaR).
- CVaR lebih informatif daripada VaR karena melihat seluruh ekor.
- Cocok untuk mengukur risiko katastrofik.

Formulasi Rockafellar-Uryasev (2000)

Representasi Optimisasi

$$\operatorname{CVaR}_{\alpha}(X) = \min_{\eta \in \mathbb{R}} \left\{ \eta + \frac{1}{1-\alpha} \operatorname{\mathbb{E}}[(X-\eta)^{+}] \right\}, \qquad (z)^{+} = \max(z,0).$$

- η berperan sebagai ambang (threshold).
- Fungsi $(X \eta)^+$ hanya menghitung **bagian ekor** di atas η .
- Minimum terjadi saat $\eta = VaR_{\alpha}(X)$.

Intuisi Visual CVaR

- VaR_{α} : batas kuantil α (misalnya 95%).
- ullet CVaR_{lpha} : rata-rata kerugian di area merah (ekor distribusi).
- Intuisi: CVaR melihat **seberapa parah kerugian** ketika sudah melewati VaR.

Mengubah Objective di RL

Risk-neutral RL

$$\max_{\pi_{ heta}} J(heta) = \mathbb{E}_{\pi_{ heta}}[R]$$

- Agent memilih kebijakan π_{θ} untuk memaksimalkan rata-rata return.
- Semua hasil (baik atau buruk) hanya dihitung melalui nilai ekspektasi.
- Akibatnya: agent bisa memilih strategi yang memberikan rata-rata tinggi, meskipun ada kemungkinan kerugian besar (tail risk).
- Contoh: Dalam investasi, memilih saham yang rata-rata return-nya tinggi, meskipun sesekali bisa anjlok drastis.

CVaR-RL

$$\max_{\pi_{ heta}} J_{lpha}(heta) = \mathrm{CVaR}_{lpha}(R)$$

- Agent memilih kebijakan π_{θ} untuk memaksimalkan CVaR dari return R.
- Artinya, agent fokus pada rata-rata hasil di bagian ekor terburuk (misalnya 5% skenario terburuk).
- Dengan demikian, strategi yang dipilih lebih konservatif dan stabil, karena meminimalkan risiko kerugian besar.
- Contoh: Dalam asuransi, perusahaan lebih peduli terhadap klaim katastrofik → sehingga premi ditentukan berdasarkan CVaR, bukan sekadar expected loss.

Adaptasi CVaR pada Berbagai Algoritma RL

Algoritma RL	Risk-neutral Objective	Adaptasi dengan CVaR
Policy Gradient (RE-	$J(heta) = \mathbb{E}_{\pi_{ heta}}[R]$	Ganti dengan $J_{\alpha}(\theta) = \text{CVaR}_{\alpha}(R)$.
INFORCE)		Update gradien pakai surrogate
		Rockafellar-Uryasev.
ActorCritic (A2C,	Actor memaksimalkan $\mathbb{E}[R]$, Critic	Actor memaksimalkan $\mathrm{CVaR}_{\alpha}(R)$.
PPO, SAC)	mengestimasi $V^\pi(s)$	Critic dipakai untuk mengestimasi
		tail expectation.
Value-based (DQN)	$Q^{\pi}(s,a) = \mathbb{E}[R \mid s,a]$	Definisikan $Q^\pi_lpha(s,a) = \mathrm{CVaR}_lpha(R \mid$
		s,a). Update Q berdasarkan tail
		losses.
Distributional RL	Belajar distribusi return $Z^{\pi}(s,a)$	Estimasi quantile untuk level $lpha$, gu-
(C51, QR-DQN)		nakan VaR_lpha dan CVaR_lpha untuk up-
		date/policy.
Model-based RL	Optimisasi $\mathbb{E}[R]$ dari rollout model	Optimisasi $\mathrm{CVaR}_lpha(R)$ dari distribusi
		simulasi masa depan.

Inti: semua algoritma RL bisa dibuat risk-sensitive dengan mengganti objektif $\mathbb{E}[R]$ menjadi ukuran risiko (misal CVaR).

Policy Gradient: Risk-Neutral

Gradien standar

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(a|s) \ R]$$

- Ini adalah policy gradient biasa (REINFORCE).
- ullet Artinya: parameter kebijakan heta diperbarui untuk memaksimalkan expected return.
- ullet Tidak ada kontrol khusus terhadap risiko o bisa pilih strategi dengan return rata-rata tinggi, walaupun punya ekor buruk.

Policy Gradient: CVaR dengan Surrogate Function (Rockafellar-Uryasev)

Definisi Surrogate

$$L_{\alpha}(\theta,\eta) = \eta + \frac{1}{1-\alpha} \mathbb{E}_{\pi_{\theta}}[(R-\eta)^+], \qquad (z)^+ = \max(z,0).$$

- **Surrogate** = fungsi bantu/pendekatan yang lebih mudah dihitung/dioptimasi dibanding definisi asli.
- Definisi CVaR:

$$CVaR_{\alpha}(R) = \min_{\eta} L_{\alpha}(\theta, \eta).$$

- Jadi $L_{\alpha}(\theta, \eta)$ dipakai sebagai **fungsi objektif alternatif** (surrogate objective).
- Optimisasi dilakukan terhadap θ (policy) sekaligus η (estimasi VaR).

Gradien Surrogate

$$abla_{ heta} L_{lpha}(heta, \eta) = rac{1}{1 - lpha} \, \mathbb{E}_{\pi_{ heta}} igl[
abla_{ heta} \log \pi_{ heta}(a|s) \, (R - \eta)^+ igr]$$
 $\Rightarrow \text{ update policy fokus pada reward di ekor}$

$$abla_{\eta} L_{lpha}(heta, \eta) = 1 - rac{1}{1 - lpha} \Pr_{\pi_{ heta}}(R \geq \eta)$$
 $\Rightarrow ext{ update } \eta ext{ agar mendekati } ext{VaR}_{lpha}(R)$

- Peran η :
 - ullet η digeser-geser untuk mencari titik minimum.
 - Kondisi $\nabla_{\eta} L = 0 \Rightarrow \eta^* = \operatorname{VaR}_{\alpha}(R)$.
- Peran θ :
 - Saat $\eta = \eta^*$, nilai $L = \text{CVaR}_{\alpha}(R)$.
 - Gradien $\nabla_{\theta} L_{\alpha}(\theta, \eta^*) = \text{gradien CVaR}_{\alpha}(R)$.
- Intinya:
 - Update $\eta \Rightarrow$ memastikan L benar-benar sama dengan CVaR.
 - Update $\theta \Rightarrow$ memaksimalkan CVaR lewat gradien surrogate.

Identitas dasar

$$\text{CVaR}_{\alpha}(R) = \min_{\eta \in \mathbb{R}} L_{\alpha}(\theta, \eta), \qquad L_{\alpha}(\theta, \eta) = \eta + \frac{1}{1 - \alpha} \mathbb{E}[(R - \eta)^{+}].$$

Pengaruh Parameter Policy (θ) terhadap $L_{\alpha}(\eta)$

- Optimisasi **terhadap** η : menemukan VaR untuk policy tertentu.
- ullet Optimisasi **terhadap** θ : mengubah distribusi \Rightarrow menggeser kurva agar CVaR lebih besar.

Mini-Project: CliffWalking (Tail Risk)

- Bandingkan dua agent: REINFORCE (risk-neutral) vs CVaR-Policy-Gradient (risk-averse).
- Lingkungan: CliffWalking tabular (softmax policy; update episodik).
- Metrik evaluasi:
 - Mean return per episode,
 - lower-tail $VaR_{0.05}$ dan $CVaR_{0.05}$ (untuk return buruk),
 - frekuensi jatuh ke jurang.
- Ekspektasi hasil: **CVaR-PG** memilih rute lebih aman (rata-rata return sedikit lebih rendah, namun **tail risk lebih kecil** & jarang jatuh).

Studi Data: Insurance Pricing (Tail Risk in Industry)

- Data klaim: simulasi Lognormal + Pareto mixture (atau ganti dengan Danish Fire/CAS Auto Claims).
- Estimasi ukuran risiko pada level $\alpha \in \{0.95, 0.99\}$: VaR_{α} dan $CVaR_{\alpha}$.
- Bandingkan premi:
 - Expected-Loss Premium = $\mathbb{E}[loss]$,
 - CVaR-based Premium = $\text{CVaR}_{\alpha}(\text{loss})$ (lebih konservatif terhadap klaim ekstrem).
- Visualisasi: histogram losses + garis VaR_{α} dan $CVaR_{\alpha}$ (skala-y log untuk ekor).
- Diskusi: dampak pada kestabilan modal dan proteksi katastrofik.

Catatan implementasi

Jika memakai data asli, ganti bagian simulasi dengan pd.read_csv(...); opsional: tail modeling (mis. GPD) untuk estimasi ekor.

Trade-off: Expected Gain vs Stability

- Risk-neutral: gain rata-rata tinggi, tail risk tinggi.
- Sensitif parameterisasi α (semakin dekat 1
 ⇒ makin konservatif).
- CVaR-RL: gain rata-rata sedikit turun, stabilitas meningkat.
- Cocok untuk asuransi & investor konservatif.

Diskusi kelas

Kapan organisasi sebaiknya memilih **CVaR** alih-alih risk-neutral? Kaitkan dengan regulasi (modal berbasis risiko).

Panduan Diskusi Kelas

CliffWalking (RL simulasi):

- Apa perbedaan perilaku agent REINFORCE dan CVaR-PG?
- Mengapa CVaR-PG lebih aman meski return rata-rata turun?
- Dalam konteks nyata (robotika, operasi industri), kapan strategi konservatif ini lebih diinginkan?

Insurance Pricing (data klaim):

- Apa implikasi perbedaan premi antara expected-loss vs CVaR-based?
- Bagaimana sensitivitas hasil terhadap level α (95% vs 99%)?
- Mengapa perusahaan asuransi cenderung memilih pendekatan CVaR dalam pricing atau modal cadangan?

Jembatan RL ↔ Industri:

- Apa benang merah antara CliffWalking dan Insurance Pricing?
- Apakah trade-off expected gain vs stability muncul di kedua domain ini?
- Bagaimana konsep tail risk di RL bisa diterjemahkan ke risiko katastrofik di asuransi?

Referensi Singkat

Journal of Risk.

• Rockafellar, R. T., & Uryasev, S. (2000). Optimization of Conditional Value-at-Risk.

- Tamar, A., Glassner, Y., & Mannor, S. (2015). Optimizing the CVaR via Sampling. AAAI.
- Chow, Y., et al. (2015–2017). Risk-Sensitive and CVaR MDPs.