Physical Chemistry (Chem 132A)

Lecture 21 Monday, November 27

Midterm 2

Schedule:

Week	Dates	Topics	Readings				
0	Before Sept 28 The Properties of Gases		Chapter 1 A, B, C				
1	October 1-7	The First Law of Thermodynamics	Chapter 2				
2	October 8-14	The First and Second Laws	Chapter 2, 3				
3	Oct 15-Oct 21	Third Law; Physical Transformations	Chapter 3, 4				
4	4 October 22-28 Physical Transformations; Mixtures		Chapter 4, 5				
	Midterm 1 (Chapters 1-4, 5A), Wednesday, October 25						
5	Oct. 29-Nov. 4	Mixtures; Chemical Equilibrium	Chapter 5, 6				
6	Nov. 5-11	Chemical Equilibrium	Chapter 6				
7	Nov. 12-18	Molecular Motion	Chapter 19				
8	8 Nov. 19-25 Molecular Motion		Chapter 19				
	Midterm 2 (Chapters 1-6, 19), November 22						
9	Nov. 26-Dec. 2	Chemical Kinetics	Chapter 20				
10	Dec. 3-Dec. 9	Chemical Kinetics, Collision Theory	Chapter 20, 21A				
Final Exam (Chapters 1-6, 19, 20, 21A), Friday, Dec. 15, 8:00Am-10:00Am							

New Homework (WebAssign) available tonight. Due Sat. Dec 2 We will probably cover through Chapter 21C

Reaction Kinetics (rates) How do we visualize reactions

$$A_2 + B \longrightarrow AB + A$$

Collisions
Concentrations
Speed
Is every collision effective???
orientation
speed---energy requirement

REACTION RATES

What do we mean by "rate" of a reaction

$$H_2 + I_2 \longrightarrow 2HI$$

Chemical reaction rate: definition

Can we provide a definition for the reaction rates?

Reaction rate is the number (mol) of chemical reactions occurring in the system per reaction volume (L) per time (s)

Reaction rate is usually measured in mol L⁻¹ s⁻¹

$$A \longrightarrow B$$

Reaction rate is the number of mol/L of A that are converted into B every second (A POSITIVE NUMBER)

$$rate = - \frac{d[A]}{dt}$$

d[A] = change in concentration of A over time period dt

$$rate = + \frac{d[B]}{dt}$$

d[B] = change in concentration of B over time period dt

Because [A] decreases with time, d[A] is negative.

STOICHIOMETRY AND RATES

IN GENERAL

$$a A + b B \longrightarrow c C + d D$$

rate =
$$-\frac{1}{a} \frac{d[A]}{dt} = -\frac{1}{b} \frac{d[B]}{dt} = +\frac{1}{c} \frac{d[C]}{dt} = +\frac{1}{d} \frac{d[D]}{dt}$$

RATES CHANGE WITH TIME—WHY??

$$Br_2(aq) + HCOOH(aq) \longrightarrow 2Br^-(aq) + 2H^+(aq) + CO_2(g)$$

Time (s)		[Br ₂] (M)		
	0.0	0.0120		
	50.0	0.0101		
	100.0	0.00846		
	150.0	0.00710		
	200.0	0.00596		
	250.0	0.00500		
	300.0	0.00420		
	350.0	0.00353		
	400.0	0.00296		

average rate = -
$$\frac{\Delta[Br_2]}{\Delta t}$$
= -
$$\frac{[Br_2]_{final} - [Br_2]_{initial}}{t_{final} - t_{initial}}$$

instantaneous rate =
$$-\frac{d[Br_2]}{dt}$$

$$\Delta t \longrightarrow 0$$

THE RATE DEPENDS ON CONCENTRATION!

RATE LAWS (tells how the rate depends on concentrations)

Discuss "elementary steps" first

$$A + B \longrightarrow C$$
 ???

$$RATE \sim [A][B] = k[A][B]$$

WHAT ABOUT

 $2D + E \longrightarrow F$??? Unlikely to be an elementary step

HOW ABOUT

$$H_2O_{2(aq)} + 3I_{(aq)}^- + 2H_{(aq)}^+ \rightarrow I_{3(aq)}^- + 2H_2O_{(l)}$$
 ????

RATE LAW FOR OVERALL REACTION

$$aA + bB \longrightarrow cC + dD$$

Unless you KNOW that the reaction as written is an ELEMENTARY STEP you don't know how to write down the rate law simply from the stoichiometric coefficients.

THE RATE LAW MUST BE DETERMINED EXPERIMENTALLY---BY MEASURING HOW THE RATE CHANGES AS THE CONCENTRATIONS ARE CHANGED.

HOW IS THE RATE LAW DETERMINED?

A → **PRODUCTS** (not an elementary step)

SIMPLE CASES:

Rate = $k [A]^0$ zeroth order rate law

Rate = $k[A]^1$ first order rate law

Rate = $k[A]^2$ second order rate law

$$aA + bB \longrightarrow cC + dD$$

In general:

Rate = $k[A]^m[B]^n$

Determining the Order and Rate Constant of a Reaction

Consider the reaction between nitrogen dioxide and carbon monoxide:

$$NO_2(g) + CO(g) \longrightarrow NO(g) + CO_2(g)$$

The initial rate of the reaction is measured at several Different concentrations of the reactants with the results shown at right. From the data, determine:

- (a) the rate law for the reaction
- **(b)** the rate constant (k) for the reaction

Rate₀ = $k[NO_2]_0^a$ $log(Rate_0) = log k + a log[NO_2]$ <u>Plot log(Rate_0)</u> vs log[NO_2] to get a

Experiment Number	[NO ₂] (M)	[CO] (M)	Initial Rate (M/s)
1	0.10	0.10	0.0021
2	0.20	0.10	0.0082
3	0.20	0.20	0.0083
4	0.40	0.10	0.033

Rate =
$$k[NO_2]^2[CO]^0 = k[NO_2]^2$$

INTEGRATED RATE LAWS

Example: First order reaction

$$\frac{d[A]}{dt} = -k_r[A]$$

$$\frac{d[A]}{dt} = -k_r[A]$$
$$\frac{d[A]}{[A]} = -k_r dt$$

$$\int_{[A]_0}^{[A]} \frac{d[A]}{[A]} = -k_r \int_0^t dt$$

$$\ln \frac{[A]}{[A]_0} = -k_r t$$
$$[A] = [A]_0 e^{-k_r t}$$

$$[A] = [A]_0 e^{-k_r t}$$

INTEGRATED RATE LAWS

SECOND ORDER

$$RATE = k[A]^2$$

$$\frac{1}{[A]_t} = kt + \frac{1}{[A]_0}$$

ZEROTH ORDER

$$RATE = k[A]^0 = k$$

$$[A]_{t} = -kt + [A]_{0}$$

HALF LIFE

Time required for reactant concentration to fall by a factor of 2.

$$\ln \frac{[A]_t}{[A]_0} = -kt$$

FOR SECOND ORDER REACTION??

$$t_{\frac{1}{2}} = \frac{1}{k} \frac{1}{[A]_0}$$

Not as useful because it depends on the starting concentration.

More complicated Integrated Rate Laws

Table 20B.3 Integrated rate laws

Order	Reaction	Rate law*	$t_{1/2}$
0	$A \! \to \! P$	$\nu = k_{\rm r}$	$[A]_0/2k_r$
		$k_t t = x \text{ for } 0 \le x \le [A]_0$	
1	$A \rightarrow P$	$\nu = k_{\rm r}[{ m A}]$	$(\ln 2)/k_{\rm r}$
		$k_{\rm r}t = \ln\frac{[{\rm A}]_0}{[{\rm A}]_0 - x}$	
2	$A \rightarrow P$	$\nu = k_{\rm r}[{\rm A}]^2$	$1/k_{ m r}[{ m A}]_0$
		$k_{\rm r}t = \frac{x}{[{\rm A}]_0([{\rm A}]_0 - x)}$	
	$A + B \rightarrow P$	$\nu = k_{\mathrm{r}}[\mathrm{A}][\mathrm{B}]$	
		$k_{\rm r}t = \frac{1}{[{\rm B}]_0 - [{\rm A}]_0} \ln \frac{[{\rm A}]_0 ([{\rm B}]_0 - x)}{([{\rm A}]_0 - x)[{\rm B}]_0}$	
	$A+2 B \rightarrow P$	$\nu = k_{\mathrm{r}}[\mathrm{A}][\mathrm{B}]$	
		$k_{\rm r}t = \frac{1}{[{\rm B}]_0 - 2[{\rm A}]_0} \ln \frac{[{\rm A}]_0 ([{\rm B}]_0 - 2x)}{([{\rm A}]_0 - x)[{\rm B}]_0}$	
	$A \rightarrow P$ with autocatalysis	$\nu = k_{\mathrm{r}}[\mathrm{A}][\mathrm{P}]$	
		$k_{\rm r}t = \frac{1}{[{\rm A}]_0 + [{\rm P}]_0} \ln \frac{[{\rm A}]_0 ([{\rm P}]_0 + x)}{([{\rm A}]_0 - x)[{\rm P}]_0}$	
3	$A+2 B \rightarrow P$	$\nu = k_{\rm r}[{\rm A}][{\rm B}]^2$	
		$k_{\rm r}t = \frac{2x}{(2[{\rm A}]_0 - [{\rm B}]_0)([{\rm B}]_0 - 2x)[{\rm B}]_0}$	
		$+\frac{1}{(2[A]_0-[B]_0)^2}\ln\frac{[A]_0([B]_0-2x)}{([A]_0-x)[B]_0}$	
<i>n</i> ≥2	$A \! \to \! P$	$\nu = k_r[A]^n$	$\frac{2^{n-1}-1}{(n-1)k_{\mathbf{r}}[\mathbf{A}]_0^{n-1}}$
		$k_{r}t = \frac{1}{n-1} \left\{ \frac{1}{([A]_0 - x)^{n-1}} - \frac{1}{[A]_0^{n-1}} \right\}$	

^{*} x = [P] and v = dx/dt

THINGS THAT EFFECT THE RATE


```
Collisions
Concentrations
Speed
Is every collision effective???
orientation
speed---energy requirement
```

TEMPERATURE DEPENDENCE

EFFECT OF TEMPERATURE ON RATES

Svante Arrhenius

Arrhenius Equation:

$$k = Ae^{\frac{-E_a}{RT}}$$

A = "Arrhenius pre-exponential factor"

 $R = the gas constant = 8.314 J/mol \cdot K$

T=temperature (in Kelvin!!)

ENERGY BARRIER TO REACTION

Activation Energy

$$2 H_2(g) + O_2(g) \rightleftharpoons 2 H_2O(g)$$

Reaction progress

NOVEL APPLICATIONS OF ARRHENIUS EQUATION

Journal of Chemical Education, Vol 49, Number 5, pg 343, 1972

Journal of Chemical Education, Vol 49, Number 5, pg 343, 1972

Thermal Energy Distribution

As temperature increases, the fraction of molecules with enough energy to surmount the activation energy barrier also increases.

THE ARRHENIUS PRE-FACTOR

Orientation factor Collision frequency

Temperature

A Catalyst e.g. Automobile exhaust catalyst how does this work??

Activation Energy

$$2 H_2(g) + O_2(g) \rightleftharpoons 2 H_2O(g)$$

Reaction progress

Catalysis

$$B + C \longrightarrow D$$

Reaction Coordinate

A catalyst can increase the rate by increasing A, or by decreasing E_{act}

An Example: Hydrogenation of Ethylene

$$H_2$$
 + $H_C = C$ H_3 H_3

To minimize the amount of expensive metal (Pt) a catalyst is often Made by dispersing the metal on a high surface area support (e.g. alumina, silica). Surface areas can be as high as 1000 meter²/ gram

SEE YOU WEDNESDAY