DS4400: Machine Learning and Data Mining I

Spring 2021

Project Report

Project Title: Categorizing Unscripted Conversations

TA: Saurabh Parkar

Team Members: Matthew Hosking

Problem Description

For our project we will be delving into the world of unscripted conversation categorization. We are looking to create a model that can accurately categorize different snippets of a conversation into a selection of categories: conversations, interviews, meetings, panels, press conferences, question and answer sessions, seminar discussions, service encounters, working group discussions, and workshop discussions. The categories are based on the categories found in the Vienna Oxford International Corpus of English. This work could be a potential foundation for further exploration into conversational agents that could properly converse in certain genres of dialogue. Agents that can fit into certain kinds of conversational genres will be far easier to work with as teammates in those settings. An agent that speaks appropriately to a press conference is not necessarily applicable to a working group discussion. Our work is intended to help differentiate more specifically between these different categories in order to provide a basis for novel conversational agents.

We are looking to use the Vienna Oxford International Corpus of English (VOICE) which contains over a million words and many individual sessions of conversations. The transcriptions and recordings are already categorized and labelled into categories so we will only have to extract features and train the model. The feature dimensionality is more complex since we are looking at training a language model. We will examine word groupings, specific vocabulary, and overall word importance. Based on recommendations in the Natural Language Processing space, we will examine both a bag of words feature set and a TF-IDF word importance feature set.

References

(1) VOICE. 2013. The Vienna-Oxford International Corpus of English (version 2.0 XML). Director: Barbara Seidlhofer; Researchers: Angelika Breiteneder, Theresa Klimpfinger, Stefan Majewski, Ruth Osimk-Teasdale, Marie-Luise Pitzl, Michael Radeka.

Dataset and Exploratory Data Analysis

The Vienna-Oxford International Corpus of English is a collection of recorded and transcribed unscripted conversations across 49 different first language backgrounds. All conversations take place in English and were recorded over six years between July 2001 and November 2007. The conversations were transcribed so as to be as truthful to the recordings as possible and readable by computers. As a result the dataset features numerous vocal artifacts and tics such as "er," "um," and "mhm." There are two versions of the transcriptions provided in the dataset: XML and txt. The XML transcriptions feature transcribed non-vocal events such as pauses alongside indications of intonation, emphasis, and lengthening. The txt transcriptions only contain the spoken elements of the conversations. For this project, we used the txt transcriptions to focus on highlighting the unique vocabulary and formality of individual categories of conversation and interaction.

The 151 transcriptions are divided into ten categories of speech event types: conversations, interviews, meetings, panels, press conferences, question and answer sessions, seminar discussions, service encounters, working group discussions, and workshop discussions with a distribution that can be seen in table 1.

Category	Transcriptions	Words
con (conversation)	36	158075
int (interview)	16	36362
mtg (meeting)	20	273458
pan (panel)	10	92719
prc (press conference)	5	17588
qas (question-answer session)	10	27541
sed (seminar discussion)	6	63625
sve (service encounter)	11	14894
wgd (working group discussion)	19	181055
wsd (workshop discussion)	18	157870

Table 1: Speech Event Categorical Breakdown

In order to train and test on snippets of these transcribed speech events, we need to deconstruct each transcription into similarly sized collections. We separated sections every forty lines so that we maintain a rich set of information in each section. In figure 1 can be seen the entry breakdown for each category of speech event.

Fig. 1: Categorical Distribution Across Transcriptions

As can be seen, there remains a significant underrepresentation of press conferences, question-answer sessions, and panels. There is an overrepresentation of meetings, conversations, and discussions. Ideally, the vocabulary and relevant features are unique enough to each category and classification will be accurate.

Approach and Methodology

For feature selection, we examined two commonly used NLP approaches: bag of words and TF-IDF (term frequency-inverse document frequency) but settled on TF-IDF as our central feature selection methodology. We tokenized the dataset and cleaned it by removing stop words and replacing incomplete words (tokens like "approchi-" or "-uable") that signified interruptions with a universal token. From those tokens we calculated the most common tokens, compiled word counts for each token, and evaluated the TF-IDF score for each token.

With TF-IDF scores for each token in the dataset, we began training and evaluating different machine learning models. The models we looked at were Multinomial Naïve Bayes, Logistic Regression, Support Vector Machines (Linear and Sigmoid), Random Forest Classification, and AdaBoost.

Multinomial Naïve Bayes

For Multinomial Naïve Bayes we used the word counts as our feature set since it was most applicable to the Bayesian model. This model served as a baseline for the overall classification task as it is a relatively simple model without much room for tuning. Results and confusion matrices can be found below.

pan -	149 34 206 10 2 6
int	34 206 10 2 6
Naive Bayes - Training Data Naive Bayes - Testing Data	20 145 90 678 678 678
int 3 110 1 0 0 0 0 0 0 0 2 0 mtg 5 29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0/8
mtg - 10 0 0 505 0 0 0 0 1 51 2 mtg - 0 0 188 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 3
pan -	0 0
prc - 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0
sed -	0 0
	1 0
sve -	0 0
0 0 2 0 0 0 0 43 0 0 0 0 5 0 0 0 0 15 wgd -	0 0
13 3 2 0 0 0 0 0 351 19 5 0 1 0 0 0 0 0 1 wsd - 2 0 2 0 0 0 0 0 0 3 300 0 1 0 0 0 0 0	
Q. 4, 40 42, 4, 45, 45, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46	34 5 0 89

As can be seen, the Naïve Bayes model struggles with the underrepresented categories but overall manages a respectable overall accuracy of 0.919 across both training and testing data. There is evidence of overfitting in the underrepresented categories since the metrics between training and testing for press conferences and question-answer sessions greatly vary.

Logistic Regression

For Logistic Regression, we used the TF-IDF feature set on a standard SKLearn logistic regression algorithm. The model provided excellent first results and further tuning proved unnecessary. Results and confusion matrices can be seen below.

					T :	: r	-										т		D-4-				
					Train	iing i	Jata										res	sting	Data	1			
			р	recis	ion	re	call	f1-9	core	su	pport					preci	sion	re	ecall	f1-	score	su	pport
		C	on	0.	943	0	.976	6	9.959		456				con	9	.918	(9.980		0.948		149
		i	nt	0.	973	0	.940	6	9.956		116				int		.000		3.824		0.903		34
		m	tg	0.	961	0	.984	6	9.972		569				mtg		.949		1.000		0.974		206
		p	an	0.	867	0	.788	6	825		33				pan	_	.889		3.800		0.842		10
		р	rc	0.	000	0	.000	6	0.000		7				prc		.000		0.000		0.000		2
		q	as	1.	000	0	.273	6	3.429		22				qas		.000		3.167		2.286		6
		S	ed	0.	955	0	.955	6	9.955		88				sed		.941		1.000		0.970		16
		S	ve	1.	000	0	.933	6	9.966		45				sve		.000		3.800		3.889		20
		W	gd	0.	979	0	.985	6	9.982		388				wgd		.986		3.979		0.983		145
		W.	sd	0.	971	0	.974	6	9.972		307				wsd		.977		9.944		0.960		90
																					0.500		30
	ac	cura	су					6	9.962		2031		a	ccur	acv					(0.956		678
1	nacı	ro a	vg	0.	865	0	.781	6	802		2031			cro		a	.866	6	3.749		0.775		678
weig	ghte	ed a	vg	0.	959	0	.962	6	9.958		2031	1416		ted	_		.955		9.956		0.951		678
												100	5"	ceu	avs		. 555	,	0.550		0.951		0/0
							_												_		_		
c	on $_{\sf T}$			Logis	stic Re	gressi	on - Tr	aining	Data				con ¬			Logi	stic Re	gress	ion - Te	esting	Data		
		445	2	9	0	0	0	0	0	0	0			146	0	3	0	0	0	0	0	0	0
	int -												int -		_								
		5	109	1	0	0	0	0	0	1	0			5	28	1	0	0	0	0	0	0	0
	ntg -	-		-						-			mtg -				. *						_
"	LG 1	7	0	560	0	0	0	0	0	0	2		mrg	0	0	206	0	0	0	0	0	0	0
		′	v	300	v	v	U	V	v	U	2			U	v	200	v	v	v	U	v	v	v
p	an -												pan -										
		1	0	4	26	0	0	0	0	2	0			1	0	1	8	0	0	0	0	0	0
ţ	rc -												prc -										
=		0	0	4	0	0	0	3	0	0	0	=		0	0	1	1	0	0	0	0	0	0
Actual	as -											Actual	qas -										
∢		3	0	2	3	0	6	1	0	0	7	∢		1	0	1	0	0	1	1	0	0	2
s	ed -												sed -										
		3	0	0	0	0	0	84	0	1	0			0	0	0	0	0	0	16	0	0	0
s	ve -												sve -										
		2	0	0	0	0	0	0	42	1	0			1	0	3	0	0	0	0	16	0	0
w	gd -									_		١,	wad -									_	
	9	2	1	2	1	0	0	0	0	382	0	l '	gu	3	0	0	0	0	0	0	0	142	0
140	sd -	, i		-	•	Ť	Ť	Ť	Ť	302		١.	wsd -		Ĭ.	Ť	Ť	Ť	Ť	Ť	Ť		
W	Su 1	4	0	1	0	0	0	0	0	3	299		wsu -	2	0	1	0	0	0	0	0	2	85
		7	U	-	U	U	U	U	U	,	299			2	v		U	U	U	U	U	- 2	65
		On	int	NEG.	Ør.	4c	والم	gd.	sve	und.	vEd.	-	-	On	int	nk0	Ør.	4c	Se,	320	sve	und	vEd.

While the overall accuracy scores outperformed the Multinomial Naïve Bayes model, there is a clear flaw in the Logistic Regression model. It completely fails to categorize the press conference entries correctly and as a result the macro average metrics suffer. It does manage to provide similar metrics across testing and training data so it's clear that overfitting is not the issue in this case. Obviously in a high risk situation of categorization it would not be advisable to use this model as there is a significant blind spot.

Linear SVM

For the linear SVM model, we used the TF-IDF feature set and the default SKLearn settings. These results proved to be incredibly impressive and no further tuning was required. Results and confusion matrices can be found below.

As can be seen, the accuracy metrics across all categories outperform all prior models and the underepresented categories are categorized consistently. There is some miscategorization that leans toward the overrepresented categories of conversations and the two types of discussions. A difference here, however, is that the meeting category is just about perfect in comparison to the prior two models.

Sigmoid SVM

The sigmoid SVM was chosen as the kernel representative after some preliminary tests of each kernel SVM provided in the SKLearn SVM implementation. Results and confusion matrices for the sigmoid model can be found below.

Precision Prec					Train	ing [Data																
int 1.000 0.983 0.991 116 int 1.000 0.912 0.954 34 mtg 1.000 0.993 0.996 569 mtg 1.000 1.000 1.000 1.000 206 pan 1.000 0.879 0.935 33 pan 1.000 1.000 1.000 1.000 10 prc 1.000 1.000 1.000 1.000 7 prc 1.000 1.000 0.992 0.952 22 qas 1.000 0.833 0.909 6 sed 1.000 0.982 0.993 88 sed 1.000 0.883 0.909 6 sed 1.000 0.889 0.941 45 sve 1.000 0.883 0.909 6 sed 1.000 0.889 0.991 388 wgd 0.893 0.986 145 wgd 1.000 0.982 0.991 388 wgd 0.893 0.986 145 wgd 1.000 0.992 0.995 307 wsd 1.000 0.978 0.989 90 accuracy 0.985 0.985 2031 accuracy 0.982 678 weighted avg 0.986 0.985 0.985 2031 macro avg 0.992 0.994 0.959 0.975 2031 macro avg 0.992 0.992 0.982 678 sed 1.000 0.955 0.0000 0.0000 0.00000 0.000000				preci	sion	re	call	f1-	score	su	pport					prec:	ision	r	ecall	f1	-score	SI	upport
int 1.000 0.983 0.991 116 int 1.000 0.912 0.954 34 mtg 1.000 0.993 0.996 569 mtg 1.000 1.000 1.000 1.000 206 pan 1.000 0.879 0.935 33 pan 1.000 1.000 1.000 1.000 1.000 1.000 1.000 prc 1.0000 1.0000 1.			con	0	.938	1	.000	(9.968		456				con	(0.943		1.000		0.971		149
mtg																							
pan 1.000 0.879 0.935 33 pan 1.000 1.000 1.000 10 pro 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0																							
Prc 1.000 1.000 1.000 1.000 2 2 2 2 3 3 1.000			_																				
Qas																							
Sed 1.000 0.966 0.983 88 Sed 1.000 1.000 1.000 16			•																				
Signoid Kernel SVM - Training Data Signoid Kernel SVM - Testing Data			•																				
Wgd 1.000 0.982 0.991 388																							
Accuracy																							
accuracy macro avg weighted avg 0.994 0.995 0.975 2031 accuracy macro avg weighted avg 0.986 0.985 0.985 2031 weighted avg 0.992 0.986 0.985 0.985 2031 weighted avg 0.992 0.982 678 Sigmoid Kernel SVM - Training Data Con			_												_								
Macro avg 0.994 0.959 0.975 2031 macro avg 0.992 0.947 0.967 678			wsu	1	.000		.990	,	0.995		507						1.000		0.570		0.505		50
Macro avg 0.994 0.959 0.975 2031 macro avg 0.992 0.947 0.967 678		accur	acv					(9.985		2031			accur	acy						0.982		678
Sigmoid Kernel SVM - Training Data Sigmoid Kernel SVM - Testing Data Sigmoid Kernel SVM - Tes				0	.994	0	.959						m	acro	avg	(0.992		0.947		0.967		678
Sigmoid Kernel SVM - Training Data Sigmoid Kernel SVM - Training Data Sigmoid Kernel SVM - Testing Data Sigmoid Kernel			_										weig	hted	avg	(0.983		0.982		0.982		678
The color of the	co	n		Sigm	oid Ke	rnel S	VM - Tı	raining	Data			ı	con ·			Sigm	oid Ke	rnel S	VM - Te	sting	Data		
mtg 4 0 565 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		456	0	0	0	0	0	0	0	0	0				0	0	0	0	0	0	0	0	0
mtg	ir	nt -	•										int ·		_								
PART A CO Sees O CO C		2	114	0	0		0	0	0	0	0			3	31	0	0	0	0	0	0	0	0
PART A CO Sees O CO C	mt	a -		_									mta -			_							
pan		-	0	565	0	0	0	0	0	0	0			0	0	206	0	0	0	0	0	0	0
Proceedings of the process of the pr	na												nan -			-							
prc - 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0	pu		0		20	0	0	^	0	0	0		pan	_	0	0	10	0	0	0	0	0	0
The part of the			v	v	25	٧	v	٠	v	v	v			v	٠	·	10	v	·	٠	٠	٧	·
sed - 3 0 </td <td>pr</td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>prc ·</td> <td></td>	pr					_							prc ·										
sed - 3 0 </td <td><u></u></td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>7</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td><u>_</u></td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>2</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>	<u></u>	0	0	0	0	7	0	0	0	0	0	<u>_</u>		0	0	0	0	2	0	0	0	0	0
sed - 3 0 </td <td>g da</td> <td></td> <td>ţ.</td> <td>qas ·</td> <td></td>	g da											ţ.	qas ·										
3 0 0 0 0 0 85 0 0 0 0 0 Sve 3 0 0 0 0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4	2	0	0	0	0	20	0		0	0	⋖		0	0	0	0	0	5	0	0	1	0
sve - 5 0 </td <td>se</td> <td>d -</td> <td></td> <td>sed -</td> <td></td>	se	d -											sed -										
5 0		3	0	0	0	0	0	85	0		0			0	0	0	0	0	0	16	0	0	0
5 0	sv	e -											sve ·										
wgd - 7 0 <t< td=""><td></td><td></td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>40</td><td>0</td><td>0</td><td></td><td></td><td>3</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>15</td><td>2</td><td>0</td></t<>			0	0	0	0	0	0	40	0	0			3	0	0	0	0	0	0	15	2	0
7 0 0 0 0 0 0 0 0 0 144 0 wsd 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1447									عنسا			wad .										
wsd - 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	wg									201	,		wgu					•	•		,	244	
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 88 dr. r. r		-	U	U	U	U	U	U	U	301	U			1	U	U	U	U	U	U	۰	144	U
ET 15 15 15 15 15 15 15 15 15 15 15 15 15	WS												wsd ·								,		
		3	0	0	0	0	0	0	0	0	304			2	0	0	0	0	0	0	0	0	88
		-	X-		-	4.	-6	'n	.2.	۵.	. 6	•		-	X.		-	4.	-6	7	·e.	8.	.8
		O,	10.	The	\$	Pres	€P. licted	9	91	10.	NP.			Q,	10.	Life	\$	Pres		3	94	10.	Ap.

As can be seen, there is a similar level of success to the linear SVM results. The precision is better but recall and accuracy suffer in comparison to the linear results. However, the model does outperform both the Logistic Regression and Naïve Bayes results with a consistent categorization across all categories.

Random Forest

For the Random Forest classifier, the number of estimators was set to 100 and the feature set used was the TF-IDF values. Results did not change as the estimator number was changed so 100 was settled upon. The results and confusion matrices can be seen below.

		Testing Data																			
	precision recall f1-score support										precision recall f1-score									su	port
	con 0.987 1.000 0.993 456										C	on	0.873			0.973 0.923			1 149		
	int 1.000 0.991 0.996 116										i	nt	1.	000	0	.853	0	.921		34	
	_	tg		000		998		999		569		m	tg	0.	932	0	.990	0	.960		206
		an		000		000		.000		33			an	0.	800	0	.400	0	.533		10
		rc		000		000		.000		7		•	rc	0.	000	0	.000	0	.000		2
		as		999		999		.000		22		q	as	1.	000	0	.167	0	.286		6
		ed		999		989		994		88			ed		938	0	.938	0	.938		16
		ve		999		978		989		45		S	ve	1.	000	0	.700	0	.824		20
		gd		000		997		999		388			gd		945		.945		.945		145
		sd		000		997		998		307			sd		952		.878		.913		90
		Ju		000	٠.	557				507											
a	ccura	су					0.	997		2031	ac	cura	су					0	.926		678
mad	cro a	vg	0.	999	0.	995	0.	997		2031	mad	ro a	vg	0.	844	0	.684	0	.724		678
weight	ted a	vg	0.	997	0.	997	0.	997		2031	weight	ed a	vg	0.	926	0	.926	0	.920		678
			Ra	ndom	Forest	- Trai	ining D	ata						Ra	ndom	Forest	- Tes	ting Da	ata		
con ·	200,000		100	-	GE.	14	700.0		- 2		con -			-	100	- 4	ou.	V	la s	T ₆₀	- W
	456	0	0	0	0	0	0	0	0	0		145	0	3	0	0	0	0	0	1	0
int ·											int -										
	2	114	0	0	0	0	0	0	0	0		3	29	1	0	0	0	0	0	1	0
mtg ·			_	1							mtg -			_							
	1	0	568	0	0	0	0	0	0	0		1	0	204	0	0	0	0	0	0	1
pan -											pan -										
	0	0	0	33	0	0	0	0	0	0	1.5	5	0	0	4	0	0	0	0	0	1
prc ·											prc -										
p	0	0	0	0	7	0	0	0	0	0	μ. σ	0	0	0	0	0	0	1	0	1	0
das das											Actual as										~ ~
A day	0	0	0	0	0	22	0	0	0	0	A das .	2	0	1	0	0	1	0	0	1	1
	U	U	U	U	U	22	U	U	U,	U		2	U	1	U	U	1	U	U	1	1
sed -											sed -										I
	1	0	0	0	0	0	87	0	0	0		0	0	1	0	0	0	15	0	0	0
sve ·											sve -										
	2	0	0	0	0	0	0	43	0	0		3	0	2	0	0	0	0	14	0	1
wgd ·	-								_	r i	wgd -										
	1	0	0	0	0	0	0	0	387	0		3	0	4	1	0	0	0	0	137	0
wsd -											wsd -										
	2	0	0	0	0	0	0	0	0	305		4	0	3	0	0	0	0	0	4	79
	—	-	-	-			Ţ	-		Ţ	١.	7	-	-	_	-	-			Ţ	Ţ
	On	int	MEG	Bur	∳ ^C Pred	و icted	gd.	gie	und.	ved.		On	int	rik.d	A.C.	Pred	త్తో icted	gd.	gie	and	ved.

Similar to the first two models, the random forest classifier failed to maintain a high level of recall across all categories and struggled with the underrepresented ones. Accuracy was high but it's clear that was only due to the high support of the larger categories.

AdaBoost

The AdaBoost ensemble learning model was trained with 50 estimators using a base estimator of a decision tree with depth 10. Due to time constraints, further testing of base estimator configurations could not be completed and depth 10 was selected as the best performing model. The results can be seen below along with confusion matrices.

Training Data														Testing Data												
	precision recall f1-score support												precision recall f1-score									port				
			0	985	1	999	0	992		456			CO	n	0.	874	0.	980	0.	924		149				
		nt		985		991		992		116			in	it	0.9	963	0.	765	0.	852		34				
		itg		000		998		999		569			mt	g	0.9	915	0.	990	0.	951		206				
		an		000		000		000		33			pa		1.0	999	0.	600	0.	750		10				
	•	rc		000		000		000		7			pr		0.0	999	0.	999	0.	000		2				
		as		000		999		000		22			qa	15	1.0	999	0.	333	0.	500		6				
		ed		000		989		994		88			se		1.0	999	1.	000	1.	000		16				
		ve		000		978		989		45			S۷	e	1.0	999	0.	650	0.	788		20				
		ıgd		000		995		997		388			wg	d		971	0.	917	0.	943		145				
		isd		000		997		998		307			WS			954		922		938		90				
		isu	1.	000	0.	337	0.	330		507			65.0													
	accura	CV					9	997	,	2031		ac	curac	V					0.	928		678				
	acro a	-	9	998	9	995		997		2031			ro av	-	0.	868	0.	716		765		678				
	nted a	_		997		997		997		2031	we		ed av			929		928		923		678				
			٠.		٠.		٠.					-6		0												
							_																			
con	_			AdaBo	oost -	ıraınır	ng Data	3				con -				AdaBo	oost -	Testin	g Data							
	456	0	0	0	0	0	0	0	0	0			146	0	2	0	0	0	0	0	0	1				
int												int -	202													
1110	1	115	0	0	0	0	0	0	0	0		IIIC	4	26	3	0	0	0	0	0	1	0				
		113	v	·	v	v	v	v	v	٠			7	20	,	٠	v	٠	v	v	-	U				
mtg												mtg -										_				
	1	0	568	0	0	0	0	0	0	0			2	0	204	0	0	0	0	0	0	0				
pan			-									pan -			-											
	0	0	0	33	0	0	0	0	0	0			3	0	1	6	0	0	0	0	0	0				
pro	-											prc -														
	0	0	0	0	7	0	0	0	0	0			1	0	1	0	0	0	0	0	0	0				
Actual as											Actual	qas -														
Ą.,	0	0	0	0	0	22	0	0	0	0	Ą	,	1	0	2	0	0	2	0	0	0	1				
sed												sed -	-													
seu	1	0	0	0	0	0	87	0	0	0		scu -	0	0	0	0	0	0	16	0	0	0				
		v	v	v	v	v	6/	ľ	v	v			v	v	U	v	v	v	10	٧	v	U				
sve							-					sve -		-	-				-							
	1	0	0	0	0	0	0	44	0	0			3	0	0	0	0	0	0	13	2	2				
wgd												wgd -										l l				
	2	0	0	0	0	0	0	0	386	0			4	1	7	0	0	0	0	0	133	0				
wsd	-											wsd -														
	1	0	0	0	0	0	0	0	0	306			3	0	3	0	0	0	0	0	1	83				
							7	Α,	7	•	I		—			-			7		7	Ţ				
	On	int	MEG	BIL	4c	de	ged.	gie	and low	VED			On	int	NEG	Br	4c	des	2d	gie	Mod	vEd.				

Like the other ensemble learning method, the Random Forest model, the AdaBoost model struggled with recall and performed moderately well in accuracy in comparison with the other models used in this categorization problem. The press conferences once again proved too difficult for the model to successfully categorize correctly.

Predicted

Predicted

Conclusion

Overall each model managed excellent categorization results, with overall accuracy scores never dipping below 0.919. Of course these scores were supported by the overrepresentation of certain categories and the resulting ease of categorization for those categories, but in a low-stakes categorization situation such as this, these scores are excellent. A grouping of average accuracy scores across each model can be found in the figure 2.

Fig 2: Average Accuracy Scores for Training and Testing Data Across All Models

For this exact problem, the linear SVM model proved most accurate, and its other metrics signal its overall better performance as well. The overrepresentation and underrepresentation of certain categories proved to be an issue and future research into this categorization problem would involve a deeper effort into balancing the representation of each category. Perhaps under sampling could have been used to help mitigate some of these issues. A key takeaway however, despite the flaws with the overall investigation, is that the SVM models perform the best when there is an imbalanced representation of categories. For NLP categorization problems with imbalanced representation, we would recommend using SVM models as a first effort before balancing.

If this project were to be continued, we would want to examine the XML versions of the transcriptions. There is a lot of a rich information in those versions that might be indicative of certain categories of conversation. Perhaps where people emphasize or put pauses in certain words might be useful signals of formality or of setting. Beyond that research, we believe there is a lot of room for investigation of imperfect speaker models, namely generative language models that output text that would fit into live,

unscripted conversations. If artificial agents want to enter conversational spaces, it might be useful if they speak like we do, imperfectly and emotionally.

Team member contribution

Matthew Hosking – Entire Project

Code and Presentation Links

Slides link: https://drive.google.com/file/d/1Plrwdy4sSixwKhGpQnW2U3vtQedfrfJP/view?usp=sharing

Code link: https://drive.google.com/drive/folders/1P_-tozCAm-5Ze6upbZLd5qHA91mr9ilW?usp=sharing

All code and accompanying files can be found in the provided google drive folder. The entire codebase is found in the working notebook file.