365 V DataScience

Customer Analytics in Python

Course Notes

Words of welcome

You are here because you want to learn the fundamentals of Customer analytics. The course provides insight into the fundamental marketing modeling theory: segmentation, targeting, positioning, marketing mix, price elasticity, and neural networks.

Customer Analytics: The first part of the course focuses on how to perform customer segmentation, using a hands-on approach. It involves the application of hierarchical and flat clustering techniques for dividing customers into groups. It also features applying the Principal Components Analysis (PCA) to reduce the dimensionality of the problem, as well as combining PCA and K-means for an even more professional customer segmentation.

Purchase Analytics: The second part of the course explores both the descriptive and predictive analysis of the purchase behaviour of customers, including models for purchase incidence, brand choice, and purchase quantity. Not only that, but it also covers the application of state-of-the-art deep learning techniques to make predictions using real-world data.

Targeting

Positioning

STP is a fundamental marketing framework. It can be applied to all areas of business and marketing activities.

B2C

(business-to-customer)

The clients of our business are individuals rather than organizations.

The advantage of a B2C model in terms of data science is that we have much more data points.

Segmentation

The process of dividing a population of customers into groups that share similar characteristics.

Observations within the same group would have comparable purchasing behavior.

Observations within the same group would respond similarly to different marketing activities.

Targeting

Selecting ways to promote your products. You can *target* one segment on TV and another online.

Examining customers' perception. (Involves psychology and usually budget constraints).

Positioning

Marketing Mix What product characteristics do the customers from a certain segment need?

Shows how a product should be **presented** to the customers and through what **channel**.

In fact, this process is so important, that it has a framework of its own called:

Marketing Mix.

Marketing Mix

Develop the *best* product or service and offer it at the *right price* through the *right channels*.

Marketing Mix

Product

Product features; Branding; Packaging

Price

Product cost; Long term price changes

Promotion

Price reduction, display and feature

Place

Distribution: intensive, selective, exclusive

Physical and Online Retailers

Retailers Characteristics	Physical	Online
Location	Many locations, returning customers.	One location, many customers.
Data	Fewer customers at a particular store, due to the physical restriction.	++ More data points and more diverse customer information.
Returns	++ In physical stores, customers can see the product itself. Returns are less likely.	Products are returned more often, as customers cannot see and test an item.
Purchase history	Gather information through loyalty cards.	Database with all past purchases of customers.
Brand choice	Unavailable in physical stores. We assume the customer has considered all competitor brands.	++ We may have data for all products that the customer has looked at and which competing products a customer has considered.
Ratings and reviews	Unavailable in physical stores.	++ Different items could be reviewed and rated (significant features for predictive modeling).

Price Elasticity

Price elasticity measures how a variable of interest changes when the price changes.

Price Elasticity

$$E = \frac{\frac{\Delta Y}{Y}}{\frac{\Delta P}{P}}$$

Y: economic variable of interest P: price

Supply and Demand

*The cheaper the product the higher the demand

$$Revenue_i = P_i * Q_i$$

Q: quantity P: price

Own Price Elasticity

Price elasticity with respect to the same product

Cross Price Elasticity

Price elasticity with respect to another product

K-means Clustering

- Choose the number of clusters
- Openity cluster seeds
- (geometrical center)
- Repeat until the centroids stop changing

Principal Components Analysis - PCA

The goal of PCA is to find the best possible subspace which explain most of the variance. Most commonly it is used to reduce the dimensionality (number of features) of a problem.

Dimensionality reduction technique

2D Plane

K-means with PCA

- **1** Reduce Dimensionality with PCA
- Perform K-means with PCA scores as features
- 03 Visualize and interpret clusters

Price Elasticity of Purchase Probability

Quantifies the change in probability of purchase of a product with a given change in its price

Own-price elasticity of purchase probability

$$E = beta * price * (1 - Pr(purchase))$$

Price Elasticity of Brand Choice Probability

Quantifies the change in probability of purchase of a product with a given change in a competitor brand's price

Cross-price elasticity of brand choice

$$E = -beta(own \ price) * price(cross \ brand) * Pr(cross \ brand)$$

Price Elasticity of Purchase Quantity

Quantifies the change in purchase quantity of a product with a given change in its price

Price elasticity of purchase quantity

*Closest to price elasticity of demand

$$E = beta * \frac{Price}{Quantity(purchase)}$$

A Deep Neural Network

This is a deep neural network (deep net) with 5 layers.

A Deep Neural Network

The **width** of a layer is the number of units in that layer.

The **width** of the net is the number of units of the biggest layer.

The **depth** of the net is equal to the number of layers or the number of hidden layers. The term has different definitions. More often than not, we are interested in the number of hidden layers (as there are always input and output layers).

The width and the depth of the net are called **hyperparameters.** They are values we manually chose when creating the net.

The Business Case Deep Neural Net

Our neural network has 10 features; therefore the input layer size is 10.

The hidden layer size is a hyperparameter. We can adjust it during the learning process. In the lectures we start from 50 nodes, but its size could be any integer number.

The output layer contains the two possibilities for the targets (0 and 1), therefore it has a size of 2.

How to approach similar problems?

- Preprocess the data
 - Balance the dataset
 - b. Create train, validation and test sets
 - c. Save the data in a tensor-friendly format
- 2. Train the model
 - a. Outline the model (create or envision a diagram like the one on the right)
 - b. Create the actual network and choose appropriate starting hyperparameters
 - c. Optimize the model by fiddling with the hyperparameters
 - d. Test the model
- 3. Save the model and deploy it where needed

