FCC 47 CFR MPE REPORT

INMUSIC BRANDS INC

INTERNET RADIO PLAYER

Model Number: DN-350UI; DP28

FCC ID: Y4O-DP28

Prepared for:	INMUSIC BRANDS INC			
	200 SCENIC VIEW DRIVE, SUITE 201, CUMBERLAND,RI			
	02864,U.S.A.			
Prepared By:	EST Technology Co., Ltd.			
	San Tun Management Zone, Houjie District, Dongguan, China			
Tel: 86-769-83081888-808				

Report Number:	ESTE-R1708063		
Date of Test:	May 10 ~ June 30, 2017		
Date of Report:	July 03, 2017		

EST Technology Co. ,Ltd Report No. ESTE-R1708063

Maximum Permissible Exposure

1. Applicable Standard

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2m normally can be maintained between the user and the device.

(a) Limits for Occupational / Controlled Exposure

Frequency	Electric Field	Magnetic	Power	Averaging
Range (MHz)	Strength E)	Field Strength	Density (S)	Times E
	(V/m)	(H) (A/m)	(mW/cm2)	2 , H 2 or
				S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842/f	4.89/f	(900/f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-10000			5	6

(b). Limits for General Population / Uncontrolled Exposure

Frequency	Electric Field	Magnetic	Power	Averaging
Range (MHz)	Strength E)	Field Strength	Density (S)	Times E
	(V/m)	(H) (A/m)	(mW/cm2)	2, H 2 or
				S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-10000			1.0	30

Note: f=frequency in MHz; *Plane-wave equivalent power density

2. MPE Calculation Method

E (V/m) = (30*P*G) 0.5/d Power Density: Pd (W/m2) = E2/377

E = Electric Field (V/m)

P = Peak RF output Power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

Pd = (30*P*G) / (377*d2)

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained

EST Technology Co. ,Ltd Report No. ESTE-R1708063 Page 2 of 5

3. Conducted Power Result

	Engage	D. I	Dools output a organ	Target	Antenna gain	
Mode	Frequency Peak output power (MHz) (dBm) Peak output (mW)		(mW)	it power power		(Linear)
	2402	2.78	1.897	2 ± 2	-0.5	0.891
GFSK	2441	2.33	1.710	2 ± 2	-0.5	0.891
	2480	0.02	1.005	0 ± 2	-0.5	0.891
	2402	4.74	2.979	4 ± 2	-0.5	0.891
8-DPSK	2441	4.10	2.570	4 ± 2	-0.5	0.891
	2480	1.85	1.531	1 ± 2	-0.5	0.891
	2402	3.05	2.018	3±2	-0.5	0.891
BLE	2440	2.11	1.626	2±2	-0.5	0.891
	2480	-0.12	0.973	0±2	-0.5	0.891
IEEE	2412	10.81	12.050	10±2	4.0	2.512
IEEE	2437	10.43	11.041	10±2	4.0	2.512
802.11b	2462	10.00	10.000	10±2	4.0	2.512
IEEE	2412	10.94	12.417	10±2	4.0	2.512
IEEE	2437	10.65	11.614	10±2	4.0	2.512
802.11g	2462	9.32	8.551	9±2	4.0	2.512
IEEE	2412	11.01	12.618	11±2	4.0	2.512
802.11n	2437	10.97	12.503	10±2	4.0	2.512
HT20	2462	9.49	8.892	9±2	4.0	2.512
IEEE	2422	9.98	9.954	9±2	4.0	2.512
802.11n	2437	9.51	8.933	9±2	4.0	2.512
HT40	2452	8.64	7.311	8±2	4.0	2.512
	5180	13.56	22.699	13±2	5.5	3.548
	5200	13.53	22.542	13±2	5.5	3.548
	5240	13.48	22.284	13±2	5.5	3.548
	5260	13.78	23.878	13±2	5.5	3.548
	5300	13.82	24.099	13±2	5.5	3.548
IEEE	5320	13.16	20.701	13±2	5.5	3.548
802.11a	5500	13.47	22.233	13±2	5.5	3.548
	5580	13.53	22.542	13±2	5.5	3.548
	5700	13.55	22.646	13±2	5.5	3.548
	5745	13.90	24.547	13±2	5.5	3.548
	5785	13.86	24.322	13±2	5.5	3.548
	5825	13.18	20.797	13±2	5.5	3.548

	_		-	Target	Antenna gain	
Mode	Frequency (MHz)	Peak output power (dBm)	Peak output power (mW)	power (dBm)	(dBi)	(Linear)
	5180	13.35	21.627	13±2	5.5	3.548
	5200	13.33	21.528	13±2	5.5	3.548
	5240	13.31	21.429	13±2	5.5	3.548
	5260	13.48	22.284	13 ± 2	5.5	3.548
IEEE	5300	13.12	20.512	13 ± 2	5.5	3.548
802.11n	5320	13.32	21.478	13 ± 2	5.5	3.548
HT20	5500	13.70	23.442	13 ± 2	5.5	3.548
11120	5580	13.76	23.768	13 ± 2	5.5	3.548
	5700	13.75	23.714	13 ± 2	5.5	3.548
	5745	13.52	22.491	13 ± 2	5.5	3.548
	5785	13.10	20.417	13 ± 2	5.5	3.548
	5825	13.57	22.751	13 ± 2	5.5	3.548
	5190	13.40	21.878	13 ± 2	5.5	3.548
	5230	13.39	21.827	13 ± 2	5.5	3.548
IEEE	5270	14.17	26.122	14 ± 2	5.5	3.548
802.11n	5310	14.80	30.200	14±2	5.5	3.548
802.11n HT40	5510	13.91	24.604	13±2	5.5	3.548
	5670	14.11	25.763	14 ± 2	5.5	3.548
	5755	12.99	19.907	12±2	5.5	3.548
	5795	12.87	19.364	12±2	5.5	3.548

4. Calculated Result and Limit

		Ante	nna gain		Limited		
				Power	of		
	Target power			Density	Power	Test	
Mode		(dBi)	(Linear)	(S)	Density	Result	
	(dBm)			(mW	(S)	Result	
				/cm2)	(mW		
					/cm2)		
		2.4G	Band				
GFSK	4	-0.5	0.891	0.00045	1	Compiles	
8-DPSK	6	-0.5	0.891	0.00071	1	Compiles	
BLE	5	-0.5	0.891	0.00056	1	Compiles	
IEEE 802.11b	12	4.0	2.512	0.00792	1	Compiles	
IEEE 802.11g	12	4.0	2.512	0.00792	1	Compiles	
IEEE 802.11n HT20	13	4.0	2.512	0.00997	1	Compiles	
IEEE 802.11n HT40	11	4.0	2.512	0.00629	1	Compiles	
5G Band							
IEEE 802.11a	15	5.5	3.548	0.02232	1	Compiles	
IEEE 802.11n HT20	15	5.5	3.548	0.02232	1	Compiles	
IEEE 802.11n HT40	16	5.5	3.548	0.02810	1	Compiles	

Note: 2.4 and 5GHz bands are share an antenna, Cann't both the 2.4 and 5 GHz bands operate simultaneously.

EST Technology Co. ,Ltd

Report No. ESTE-R1708063