## (19) World Intellectual Property Organization

International Bureau





(43) International Publication Date 29 December 2004 (29.12.2004)

PCT

## (10) International Publication Number WO 2004/112728 A2

(51) International Patent Classification7:

**A61K** 

(21) International Application Number:

PCT/US2004/019934

(22) International Filing Date: 21 June 2004 (21.06.2004)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/480,092 60/544,798

19 June 2003 (19.06.2003) US 13 February 2004 (13.02.2004) US

- (71) Applicant (for all designated States except US): MOUNT SINAI SCHOOL OF MEDICINE OF NEW YORK UNIVERSITY [US/US]; One Gustave L. Levy Place, New York, NY 10029 (US).
- (71) Applicants and
- (72) Inventors: FELSENFELD, Dan, P. [US/US]; 158 W. 88th Street, #2, New York, NY 10024 (US). DI-VERSE-PIERLUISSI, Maria, A. [US/US]; 215 E. 95th Street, #26L, New York, NY 10128 (US).
- (74) Agents: LUDWIG, S., Peter et al.; Darby & Darby P.C., P.O. Box 5257, New York, NY 10150-5257 (US).

- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

## Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: METHODS AND AGENTS FOR TREATING AXONAL DAMAGE, INHIBITION OF NEUROTRANSMITTER RE-LEASE AND PAIN TRANSMISSION, AND BLOCKING CALCIUM INFLUX IN NEURONS



(57) Abstract: The present invention pertains to methods to promote outgrowth of, or extension across a substrate of, neuronal cells by inhibiting the interaction between the cytoplasmic tail of the L1-CAM cell surface adhesion molecule and the cytoskeletal protein ankyrin. The invention also pertains to a method to treat diseases characterized by axonal damage such as spinal cord injury, traumatic brain injury, stroke, and neurodegenerative disease by administration of novel peptides that inhibit the binding of the L1-CAM cytoplasmic tail to ankyrin, and to pharmaceutical compositions comprising such peptides. The present invention pertains to the regulation of neuronal signal propagation. Addition of the peptide of the invention disrupts the interaction between the cytoplasmic tail of the cell surface adhesion molecule L1-CAM, the cytoskeletal protein ankyrin, and voltage-gated calcium channels at the presynaptic surface of a neuron leading to a transient redistribution of the calcium channels to cytoplasmic vesicles. This redistribution blocks signal propagation as demonstrated by the inhibition of voltage gated calcium current and a decreased secretion of Substance P, which mediates pain signaling. Furthermore, the invention pertains to a method of blocking calcium flux to protect against neural cell death following stroke or traumatic head injury.



70 2004/112728