Higher Linear Algebra MATH2621 UNSW

Jeremy Le *

2023T2

Contents

1	Assumed Knowledge
2	Inequalities and Sets of Complex Numbers
	2.1 Equalities and Inequalities
	2.2 Properties of Sets
	2.3 Arcs
3	Functions of a Complex Variable
	3.1 The function $w = 1/z$
	3.2 Fractional Linear Transformations

^{*}With some inspiration from Hussain Nawaz's Notes

1 Assumed Knowledge

- the definition of complex numbers,
- their arithmetic,
- Cartesian and polar representations,
- the Argand diagram,
- de Moivre's theorem, and
- extracting nth roots of complex numbers.

2 Inequalities and Sets of Complex Numbers

2.1 Equalities and Inequalities

Modulus Squared of a Sum For all complex numbers w and z,

$$|w + z|^2 = |w|^2 + 2\operatorname{Re}(w\bar{z}) + |z|^2.$$

Triangle Inequality For all complex numbers w and z,

$$|w+z| \le |w| + |z| \qquad \forall w, z, \in \mathbb{C}.$$

Circle Inequality For all complex numbers w and z,

$$||w| - |z|| \le |w - z|.$$

Modulus of e^z If $z \in \mathbb{C}$, then

$$|e^z| = e^{\operatorname{Re}(z)}.$$

Modolus of $e^z - 1$ inequality For all real numbers θ ,

$$|e^{i\theta} - 1| \le |\theta|.$$

2.2 Properties of Sets

Open Ball The open ball with centre z_0 and radius ϵ , written $B(z_0, \epsilon)$, is the set $\{z \in \mathbb{C} : |z - z_0| < \epsilon\}$.

Punctured Open Ball The punctured open ball with centre z_0 and radius ϵ , written $B^{\circ}(z_0, \epsilon)$, is the set $\{z \in \mathbb{C} : 0 < |z - z_0| < \epsilon\}$.

Interior, Exterior and Boundary Points Suppose that $S \subseteq \mathbb{C}$. For any point z_0 in \mathbb{C} , there are three mutually exclusive and exhaustive possibilities:

- (1) When the positive real number ϵ is sufficiently small, $B(z_0, \epsilon)$ is a subset of S, that is, $B(z_0, \epsilon) \cap S = B(z_0, \epsilon)$. In this case, z_0 is an interior point of S.
- (2) When the positive real number *epsilon* is sufficiently small, $B(z_0, \epsilon)$ does not meet S, that is, $B(z_0, \epsilon)$ $cap S = \emptyset$. In this case, z_0 is an exterior point of S.
- (3) No matter how small the positive real number ϵ is, neither of the above holds, that is, $\emptyset \subset B(z_0, \epsilon) \cap S \subset B(z_0, \epsilon)$. In this case, z_0 is a boundary point of S.

Open, Closed, Closure, Bounded, Compact, Region Sets Suppose that $S \subseteq \mathbb{C}$.

- (1) The set S is open if all its points are interior points.
- (2) The set S is closed if it contains all of its boundary points, or equivalently, if its complement $\mathbb{C} \setminus S$ is open.
- (3) The closure of the set S is the set consisting of the points of S together with the boundary points of S.
- (4) The set is bounded if $S \subseteq B(0, R)$ for some $R \in \mathbb{R}^+$
- (5) The set S is compact if it is both closed and bounded.
- (6) The set S is a region if it is an open set together with none, some, or all of its boundary points.

2.3 Arcs

Polygonal Arc A polygonal arc is a finite sequence of finite directed line segments, where the end point of one line segment is the initial point of the next one.

Simple Closed Polygonal Arc A simple closed polygonal arc is a polygonal arc that does not cross itself, but the final point of the last segment is the initial point of the first segment.

Interior and Exterior Arc The complement of a simple closed polygonal arc is made up of two pieces: one, the interior of the arc, is bounded, and the other, exterior is not.

Polygonally Path-connectedness Let $X \subseteq \mathbb{C}$ be a subset of the complex plane.

- (1) The set X is polygonally path-connected if any two points of X can be joined by a polygonal arc lying inside X.
- (2) The set X is simply polygonally connected if it is polygonally path-connected and if the interior of every simple closed polygonal arc in X lies in X, that is, if "X has no holes".
- (3) The set X is a domain if it is open and polygonally path-connected.

3 Functions of a Complex Variable

Complex Function A complex function is one whose domain, or whose range, or both, is a subset of the complex plane \mathbb{C} that is not a subset of the real line \mathbb{R} .

Complex Polynomial A complex polynomial is a function $p: \mathbb{C} \to \mathbb{C}$ of the form

$$p(z) = a_d z^d + \dots + a_1 z + a_0,$$

where $a_d, \ldots, a_1, a_0 \in \mathbb{C}$. If $a_d \neq 0$, we say that p is of degree d. A rational function is a quotient of polynomials.

The Fundamental Theorem of Algebra Every nonconstant complex polynomial p of degree d factorizes: there exists $\alpha_1, \alpha_2, \ldots, \alpha_d$ and c in \mathbb{C} such that

$$p(z) = c \prod_{j=1}^{d} (z - a_j).$$

Polynomial Division and Partial Fractions Suppose that p and q are polynomials. Then

$$\frac{p(z)}{q(z)} = s(z) + \frac{r(z)}{q(z)},$$

where r and s are polynomials, and the degree of r is strictly less than the degree of q. Further, if

$$q(z) = c \prod_{j=1}^{e} (z - \beta_j)^{m_j},$$

then we may decompose the term r/q into partial fractions:

$$\frac{r(z)}{q(z)} = \sum_{j=1}^{e} \sum_{k=1}^{m_j} \frac{a_{jk}}{(z - \beta_j)^k}.$$

Real and Imaginary Parts To a function $f: S \to \mathbb{C}$, where $S \subseteq \mathbb{C}$, we associate two real-valued functions u and v of two real variables:

$$f(x+iy) = u(x,y) + iv(x,y).$$

Then $u(x,y) = \operatorname{Re} f(x+iy)$ and $v(x,y) = \operatorname{Im} f(x+iy)$.

3.1 The function w = 1/z

Consider the mapping w = 1/z.

(1) The image of a line through 0 (with the origin removed) is a line through 0 (with the origin removed).

- (2) The image of a line that does not pass through 0 is a circle (with the origin removed). If p is the closest point on the line to 0, then the line segment between 0 and 1/p is a diameter of the circle.
- (3) The image of a circle that passes through 0 is a line. If q is the furthest point on the circle from 0, then the closest point on the line to 0 is 1/q.
- (4) The image of a circle that does not pass through 0 is a circle. If p and q are the closest and furthest point on the circle from 0, then the closest and furthest point on the image circle to 0 are 1/q and 1/p.

3.2 Fractional Linear Transformations

Factorising Matrices Every 2×2 complex matrix with determinant 1 may be written as a product f at most three matrices of the following special types:

$$\begin{pmatrix} a & b \\ 0 & d \end{pmatrix}$$
 and $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$.