Zadanie. Naszyjnik

W oryginalnym zadaniu był tu literacki wstęp o gwieździe (sceny), która uwielbiała naszyjniki i zamówiła u swojego "Inspector of Bead Makers" naszyjnik spełniający wyśrubowane kryteria. Pomińmy tę część i przejdźmy do konkretów. Opisem naszyjnika jest łańcuch małych znaków alfabetu łacińskiego $A = a_1 a_2 ... a_m$, gdzie kolejne znaki odpowiadają wielkości kolejnego koralika, a znak (koralik) a_m poprzedza oczywiście, ostatecznie to zamknięty naszyjnik, znak a_1 . Problem z takim naszyjnikiem polega na tym, że może on ulec przerwaniu, a miejscem najsłabszym jest to, w którym zaczynający się łańcuch znaków jest leksykograficznie najmniejszy. Przypomnijmy, że łańcuch $a_1 a_2 ... a_n$ jest leksykograficznie mniejszy od łańcucha $b_1 b_2 ... b_n$ wtedy i tylko wtedy, gdy $\exists_{1 \le i \le n} \forall_{j \le i} a_j = b_j, a_i < b_i$. Należy oczywiście znaleźć pozycję, na której połączenie jest najsłabsze.

Wejście

Pierwsza linia wejścia zawiera liczbę zestawów danych N. Kolejne N linii zawiera opisy naszyjników, składające się z co najwyżej 10000 znaków – małych liter alfabetu łacińskiego.

Wyjście

Dla każdego zestawu powinna zostać wypisana, w osobnej linii, pozycja najsłabszego połączenia. Przypominam, indeksacja zaczyna się od 1.

Przykład

Dla danych wejściowych:	Poprawną odpowiedzią jest:
4 helloworld amandamanda dontcallmebfu aaabaaa	10 11 6 5

Plik zawierający rozwiązanie powinien nosić nazwę utworzoną według schematu: ASD2_[NazwiskoI]_naszyjnik.cpp (lub ASD2z_[NazwiskoI]_naszyjnik.cpp)