

Aufgabensammlung Mathematik III/B

für WI/ET

Prof. Dr. Thomas Carraro Frühjahrstrimester 2025

Inhaltsverzeichnis

Gewöhnliche Differentialgleichungen	1	
Laplace-Transformation	7	
Lineare Systeme von Differentialgleichungen	12	

Gewöhnliche Differentialgleichungen

Aufgabe 1: Bernoulli'sche Differentialgleichung

Eine Differentialgleichung der Form

$$u'(x) = f(x) \cdot u(x) + g(x) \cdot \left(u(x)\right)^n$$

heißt **Bernoulli'sche Differentialgleichung**. Sie läßt sich mit Hilfe der Substitution

$$z(x) = \left(u(x)\right)^{1-n}$$

in eine lineare Differentialgleichung für z(x) überführen.

Bestimmen Sie die allgemeine Lösung der Differentialgleichung für y(x)

$$y' = \frac{-2}{x} \cdot y + x^2 \cdot y^2 \ .$$

Aufgabe 2: Definitionsbereich der Lösung einer Dgl.

a) Bestimmen Sie die allgemeine Lösung der Differentialgleichung

$$y'(x) = 2xy^2$$

und die spezielle Lösung für den Anfangswert y(0) = 4.

Wie groß ist der maximale Definitionsbereich dieser Lösung?

b) Bestimmen Sie die allgemeine Lösung der Differentialgleichung

$$\cos(x) \cdot y'(x) = \sin(x) \cdot y(x).$$

Aufgabe 3: Differentialgleichungen 1. Ordnung

Bestimmen Sie die allgemeine Lösung folgender Differentialgleichungen:

i)
$$y'(x) = (2x + 3y + 4)^{-4} - \frac{2}{3}$$

$$\mathbf{ii}) \qquad \qquad u'(t) = \sqrt{\frac{t}{u}} + \frac{u}{t} \;, \;\; t > 0 \;.$$

iii)
$$w'(s) = \frac{2}{s}w + 15 s^4 .$$

Hinweis:

Zu i) Nutzen Sie die Substitution z = ax + by + c.

Zu ii) Nutzen Sie die Substitution $z = \frac{u}{t}$.

Zu iii) ist ein lineare Differentialgleichung. Lösen Sie zuerst die homogene Differentialgleichung. Bestimmen Sie anschließend die partikuläre Lösung.

Aufgabe 4: Trennung der Veränderlichen und Anfangswertproblem

Klassifizeren die folgende Differentialgleichung und bestimmen Sie die Lösung des Anfangswertproblems mit y(0) = 0 und y'(0) = 6:

$$y''(x) - 2y'(x) - 3y(x) = 0.$$

Aufgabe 5: Homogene lineare Differentialgleichungen

Bestimmen Sie die allgemeinen reellen Lösungen folgender homogener linearer Differentialgleichungen mit konstanten Koeffizienten mit Hilfe geeigneter Ansätze für u(t):

i)
$$u'' - 7u' + 10u = 0$$
. ii) $7u'' + 28u' + 91u = 0$.

iii)
$$u''' - 3u'' = 0$$
. iv) $u'''' + 8u'' + 16u = 0$.

Aufgabe 6: Inhomogene lineare Differentialgleichungen

Bestimmen Sie von folgenden inhomogenen linearen Differentialgleichungen mit konstanten Koeffizienten jeweils die allgemeine reelle Lösung, indem Sie zunächst die zugehörige homogene lineare Differentialgleichung allgemein lösen und eine spezielle (partikuläre) Lösung der inhomogenen linearen Differentialgleichung mit Hilfe von geeigneten Ansätzen bestimmen.

a)
$$y''(x) - 5y'(x) + 6y(x) = r_k(x)$$
 mit

i)
$$r_1 = 108 x^2$$
, ii) $r_2 = 7 e^{3x}$, iii) $r_3 = 18 + 14 e^{3x}$.

b)
$$y'''(x) + 25y'(x) = s_k(x)$$
 mit

i)
$$s_1 = 150 x$$
, ii) $s_2 = \sin(x)$,

iii)
$$s_3 = \sin(5x) - 200 x$$
, iv) $s_4 = 6 \sin(3x) \cos(2x)$.

Hinweis: Für $\alpha, \beta \in \mathbb{R}$ gilt $\sin(\alpha + \beta) + \sin(\alpha - \beta) = 2\sin\alpha\cos\beta$.

c)
$$y''(x) - 2y'(x) = t_k(x)$$
 mit

i)
$$t_1 = 4 e^{2x}$$
, ii) $t_2 = \cosh(2x)$.

Aufgabe 7: Differentialgleichungen erster Ordnung

a) Klassifizieren Sie die Differentialgleichung 1. Ordnung

$$u'(t) = \frac{-2u(t)}{t} + 5t^2, \quad t > 0,$$

und bestimmen Sie dann alle Lösungen der Differentialgleichung.

b) Lösen Sie das Anfangswertproblem für t > 0

$$u'(t) = \left(\frac{2u(t)}{t}\right)^2 + \frac{u(t)}{t}, \quad u(1) = -2.$$

Aufgabe 8: Lineare Differentialgleichungen n-ter Ordnung

Bestimmen Sie die allgemeinen Lösungen der folgenden Differentialgleichungen:

a)
$$y^{(4)} + 2y''' + y'' = 12x$$
,

b)
$$y'' + 4y' + 5y = 8\sin t$$
,

c)
$$y'' - 4y' + 4y = e^{2x}$$
.

Aufgabe 9: Lineare Differentialgleichungen n-ter Ordnung

Bestimmen Sie die allgemeinen Lösungen der folgenden Differentialgleichungen:

$$a) \quad y^{(4)} + 4y = 0,$$

$$\mathbf{b)} \quad y^{(4)} - 18y'' + 81y = 0.$$

Aufgabe 10: Komplexe Nullstellen des charakteristischen Problems

Bestimmen Sie die Lösung der folgenden Differentialgleichung:

$$y'' + 4y' + 5y = 0$$

Aufgabe 11: Lineare Differentialgleichungen n-ter Ordnung

Bestimmen Sie die allgemeinen Lösungen der folgenden Differentialgleichungen. Falls Anfangswerte gegeben sind, ermitteln Sie auch die Lösung des Anfangswertproblems.

- $a) \quad y'' + 6y' + 8y = 0,$
- b) $y'' + 2y' + 5y = 17 \sin(2x)$.
- c) $y''(x) 2y'(x) 3y(x) = 4e^x$, y(0) = 0, y'(0) = 6,
- $\mathbf{d}) \quad y''(x) + 5y'(x) + 6y(t) = 3e^{3x},$
- e) $y''(x) y'(x) 2y(x) = 4xe^x$.
- $\mathbf{f}) \quad y''' + y'' y' y = 3e^{-2x},$

Aufgabe 12: LR-Kreis

Ein Stromkreis habe einen Widerstand von R=0.8 Ohm und eine Selbstinduktion von L=4 Henry. Bis zur Zeit $t_0=0$ fließe kein Strom. Dann wird eine Spannung von U=5 Volt angelegt. Nach 5 Sekunden wird die Spannung abgeschaltet. Berechnen Sie den Stromverlauf I(t) für $0 \le t \le 5$ und t > 5.

Hinweis: In diesem Stromkreis gilt $L\dot{I}(t) + RI(t) = U(t)$

Aufgabe 13: Logistisches Wachstum

Bestimmen Sie die allgemeine Lösung des Anfangswertproblems

$$y'(t) = \lambda(k - y(t))y(t) \quad , \quad y(0) = y_0$$

wobei $k, \lambda \in \mathbb{R}$.

Aufgabe 14: Differentialgleichungen erster Ordnung

- 1) Klassifizieren Sie die follgenden gewöhnlichen Differentialgleichungen erster Ordnung als
 - a) Linear oder nicht-linear.
 - b) In dem Fall einer linearen Differentialgleichung klassifizieren Sie die Gleichung zusätzlich als
 - homogen oder inhomogen.
 - Differentialgleichung mit konstanten oder nicht-konstanten Koeffizienten.

- c) Nutzen Sie die Vorlesungsunterlagen, um die Differentialgleichung als einen der folgenden Typen zu klassifizieren:
 - (a) $y' = f(x) \cdot g(y)$, zu lösen mittels Trennung der Variablen,
 - (b) y' = g(y/x), homogen, zu lösen mittels Substitution mit u = y/x,
 - (c) y' = f(ax + by + c), rechte Seite mit bilinearen Argumenten, zu lösen mit der Substitution u = ax + by + c,
 - (d) $y' + p(x) \cdot y = q(x)$, lineare Differentialgleichung.
- i) y' + 2y = 3x.

 $\mathbf{v}) \quad x^2y' = xy + 2y^2.$

ii) y'y + x = 0.

vi) $y' = \frac{y(x-y)}{x^2}$.

 $\mathbf{iii}) \quad y' = \frac{x^2 + y^2}{xy}.$

- $\mathbf{vii}) \quad y' = \frac{x-y}{x+y}.$
- iv) $y' = (x + y + 1)^2$.
- **viii**) $y' = \ln(y + 2x + 1)^2$.
- 2) Berechnen Sie die allgemeine Lösung der Gleichungen i) bis iv).

Aufgabe 15: Differentialgleichungen erster Ordnung

Klassifizieren Sie die folgenden Differentialgleichungen erster Ordnung:

1.
$$x^2y' = 2y + 1$$
.

4.
$$y' = \sin(y+1)$$
.

$$2. \ y' = \cos(x)y.$$

5.
$$y' = (4x - y + 1)^2$$
.

3.
$$x^2y' + y^2 = xy$$
.

6.
$$y' + 3y + 2 = e^{2x}$$
.

- a) Klassifizieren Sie diese als linear oder nicht linear. In dem Fall einer linearen Differentialgleichung klassifizieren Sie die zusätzlich als
 - i) homogen oder inhomogen.
 - ii) mit konstanten oder nicht-konstanten Koeffizienten.
- b) Klassifizieren Sie die Differentialgleichung als einen der folgenden Typen:
 - i) $y' = f(x) \cdot g(y)$ zu Lösen mit Trennung der Variablen.
 - ii) y' = g(y/x) zu Lösen mit der Substitution u = y/x.
 - iii) y' = f(ax + by + c) zu Lösen mit der Substitution u = ax + by + c.

- $iv) \quad y' + p(x) \cdot y = q(x).$
- c) Berechnen Sie die allgemeine Lösung aller Differentialgleichungen.

Aufgabe 16: Nichtlineare Differentialgleichung erster Ordnung

- 1) Klassifizieren Sie die folgenden Differentialgleichungen erster Ordnung als
 - 1. Homogene Differentialgleichung: y' = g(y/x) mit Substitution u = y/x.
 - 2. Differentialgleichung mit bilinearen Argumenten: y' = f(ax + by + c) mit Substitution u = ax + by + c.

a)
$$y'(x^2 + xy) = y^2 - xy$$
,

d)
$$y' = -\sin^2(x+y+1)$$
,

b)
$$y' = \frac{x^2y}{x^3 + y^3}$$
,

e)
$$x^2y' = y^2 + xy - x^2$$
,

$$c) \quad y' = \frac{1}{x+y},$$

$$f) \quad y' = \frac{y + e^{-\frac{y}{x}}}{x}$$

2) Verwenden Sie eine angemessene Substitution und formulieren Sie die Gleichungen in Termen von u und u' um ohne sie zu lösen.

Aufgabe 17: Trennung der Variablen

Lösen die folgenden Anfangswertprobleme und bestimmen Sie den maximalen Definitionsbereich der Lösung

a)
$$y'(x) = 6y^2(x)x$$
, $y(1) = \frac{1}{6}$.

b)
$$y'(x) = \frac{3x^2 + 4x - 4}{2y(x) - 4}, \quad y(1) = 3.$$

c)
$$y'(x) = e^{-y(x)} (2x - 4), \quad y(5) = 0.$$

d)
$$y'(x) = \frac{1}{x^2}$$
, $y(x_0) = 0$.

e)
$$y'(x) = x^2$$
, $y(0) = y_0$.

Aufgabe 18: Anfangswertproblem

Gegeben sei das Anfangswertproblem:

$$y' = \sqrt{y}, \quad y(0) = 0.$$

- i) Bestimmen sie eine Lösung des gegebenen Anfangswertproblems.
- ii) Hat das Anfangswertproblem eine eindeutige Lösung?

Aufgabe 19: Substitution: Homogene Differentilagleichung erster Ordnung

Berechnen Sie die Lösung des folgenden Anfangswertproblems

a)
$$xyy' + 4x^2 + y^2 = 0$$
, $y(2) = 0$, $x > 0$.

b)
$$xy' = y(\ln x - \ln y), \quad y(1) = 4, \quad x > 0.$$

Laplace-Transformation

Aufgabe 20:

Gegeben sei das Anfangswertproblem

$$u''(t) - 2u'(t) + u(t) = \cos(t) \cdot h(t - \pi)$$

mit u(0) = 0 und u'(0) = 0. Dabei ist h(t) die Heaviside-Funktion.

a) Zeigen Sie, dass die Lösung des Anfangswertproblems im Bildbereich der Laplace-Transformation die folgende Gestalt hat:

$$U(s) = -\frac{s e^{-s\pi}}{(1+s^2)(s-1)^2}$$

b) Bestimmen Sie die Lösung der Differentialgleichung u(t) im Urbildbereich.

Aufgabe 21: Anfangswertprobleme zu linearen Differentialgleichungen nter Ordnung

Gegeben seien die folgenden Anfangswertprobleme:

a)
$$y''(t) - 2y'(t) - 3y(t) = 4e^t$$
, $y(0) = 0$, $y'(0) = 6$,

b)
$$y''(t) + 4y'(t) + 4y(t) = 4e^{-2t}, \quad y(0) = 1, \quad y'(0) = 0.$$

Bestimmen Sie die Lösungen jeweils mit Hilfe des Exponentialansatzes **und** zusätzlich mit Hilfe der Laplace-Transformation.

Aufgabe 22: Anfangswertprobleme zu linearen Differentialgleichungen nter Ordnung

Gegeben seien die folgenden Anfangswertprobleme:

a)
$$y''(t) - 2y'(t) - 3y(t) = 4e^t$$
, $y(0) = 0$, $y'(0) = 6$,

b)
$$y''(t) + 4y'(t) + 4y(t) = 4e^{-2t}, \quad y(0) = 1, \quad y'(0) = 0.$$

Bestimmen Sie die Lösungen jeweils mit Hilfe des Exponentialansatzes **und** zusätzlich mit Hilfe der Laplace-Transformation.

Aufgabe 23: Balkenbiegung

Ein homogener Balken (E, J konstant) der Länge L = 3 möge an beiden Enden gelenkig gelagert sein. Bei 2/3 der Länge greife eine punktförmige Last F an. Berechnen Sie die Lage des tiefsten Punktes des Balkens, wobei sein Eigengewicht vernachlässigt werden darf.

Das Materialgesetz des Balkens wird als

$$EJ \cdot w''''(x) = -F \cdot \delta(x - l)$$
 (mit $l = \frac{2}{3}L$)

angenommen.

Hinweise: EJ bezeichnet die Biegesteifigkeit des Balkens. Zur Vereinfachung können Sie annehmen EJ = 1.

Ebenson können Sie F = 1 setzen. Gehen Sie in den folgenden Schritten vor:

- a) Ermitteln Sie die Lösung $w_H(x)$ der homogenen Differentialgleichung.
- b) Bestimmen Sie eine spezielle Lösung $w_P(x)$ (bzw. $W_P(s)$) der inhomogenen Differentialgleichung, indem Sie die Laplace-Transformation nutzen, wobei Sie von homogenen Anfangswerten ausgehen können.
- c) Bestimmen Sie die Integrationskonstanten der allgemeinen Lösung der inhomogenen Gleichung $w(x) = w_H(x) + w_P(x)$ aus den Randbedingungen

$$w(0) = w(L) = 0$$
 und $w''(0) = w''(L) = 0$.

d) Berechnen Sie den Extremwert der so erhaltenen Funktion.

Aufgabe 24: δ -Distribution

Bestimmen Sie die folgenden Integrale:

i)
$$\int_{-\infty}^{\infty} \frac{\cos(x)}{1+x^2} \cdot \delta(x-\pi) \, dx. \qquad ii) \qquad \int_{-\pi/2}^{\pi/2} \cos(x) \cdot \delta(x-\pi) \, dx.$$

Aufgabe 25: AWP und δ -Distribution

Ein mechanisches Pendel werde durch das folgende Anfangswertproblem beschrieben

$$u''(t) + 2u'(t) + 5u(t) = f(t)$$
, $u(0) = 2$, $u'(0) = -2$.

u''(t) steht nach dem zweiten Newtonschen Gesetz für die Beschleunigung einer Masse. Der Term 5u(t) modelliert ein repulsives Potential (Federkraft) und der Term 2u'(t) die Dämpfung des Systems. Das Pendel befindet sich zum Zeitpunkt t=0 am Ort u(0)=2 und hat die Geschwindigkeit u'(0)=-2.

- a) Bestimmen Sie mit Hilfe der Laplace-Transformation die Lösung des AWPs für f(t) = 0, t > 0. (Es wirken keine äußeren Kräfte.)
- b) Bestimmen Sie den Zeitpunkt t_0 des ersten Nulldurchgangs, d.h. $u(t_0) = 0$, der Lösung aus Teil a).
- c) Zum Zeitpunkt t_0 aus Teil b) wird ein δ -Impuls $f(t) = \alpha \cdot \delta(t t_0)$ so auf das System ausgeübt, dass das System anschließend in Ruhe ist. Dies modelliert ein starres Hindernis, auf welches das Pendel (nicht elastisch) aufprallt, so dass die Bewegung sofort endet. Wie groß muss die Impulsstärke α sein?

Aufgabe 26: Integralgleichungen mit Laplace-Transformation

Bestimmen Sie die Lösung y(t) (mit $t \ge 0$) der Integralgleichung

$$y(t) = t^2 + \int_0^t y(\tau) \sin(t - \tau) d\tau.$$

Aufgabe 27: Lineare Differentialgleichung

Gegeben sei das Anfangswertproblem für u(t)

$$u'' + 4u' + 3u = 12 \cdot (1 - h(t - 2)), \quad u(0) = u'(0) = 0$$

wobei h(t) die Heaviside-Funktion ist.

- a) Bestimmen Sie die Lösung mit Hilfe der Laplace-Transformation.
- b) Geben Sie die Lösung in den Bereichen $0 \le t < 2$ und $2 \le t$ ohne Verwendung der Heaviside-Funktion an und fassen Sie die Terme sinnvoll zusammen.

Aufgabe 28: Laplace-Transformierte

Berechnen Sie die Laplace-Transformierte von $f(t) = \sqrt{t}$:

$$F(s) := \int_{0}^{\infty} e^{-st} \cdot \sqrt{t} dt.$$

Hinweise:

- Substituieren Sie $u = \sqrt{t}$.
- Spalten Sie u^2 in $u \cdot u$ auf und integrieren Sie partiell.
- Das Quadrat des verbleibenden Integrals können Sie lösen, indem Sie Polarkoordinaten einführen.

Aufgabe 29: Laplace-Transformierte

Bestimmen Sie unter Verwendung von $\mathcal{L}\left\{\sin(t)\right\} = \frac{1}{s^2+1}$ und geeigneten Rechenregeln folgende Ausdrücke

a)
$$\mathcal{L}\left\{\frac{\sin(t)}{t}\right\}$$
, b) $\mathcal{L}\left\{\int_{0}^{t}\frac{\sin(\tau)}{\tau} d\tau\right\}$, c) $\int_{0}^{\infty}\frac{\sin(t)}{t} dt$, d) $\mathcal{L}\left\{e^{-t}\frac{\sin(t)}{t}\right\}$.

Hinweis: Nutzen Sie die Transformationsformel, die Sie im Vorlesunngsskript auf Seite 87-88 finden.

10

Aufgabe 30: Laplace-Transformierte

Berechnen Sie die Laplace-Transformierte der folgenden Funktionen:

a)
$$f_1(t) = \begin{cases} A & \text{für } 0 \le t \le t_0 \\ Ae^{-2(t-t_0)} & \text{sonst} \end{cases}$$
 mit festem $A \in \mathbb{R}$.

$$\mathbf{b}) \quad f_2(t) = \begin{cases} 0 & \text{für } 0 \le t < a \\ A & \text{für } a \le t < b \text{ mit festen } 0 < a < b \text{ und } A \in \mathbb{R}. \\ 0 & \text{sonst} \end{cases}$$

$$\mathbf{c}) \quad f_3(t) = \begin{cases} t & \text{für } 0 \le t \le 3\\ 3 & \text{für } t > 3 \end{cases}$$

$$\mathbf{d}) \quad f_4(t) = \begin{cases} \sin t & \text{für } t \le \pi \\ 0 & \text{für } t > \pi \end{cases}.$$

Aufgabe 31: Laplace-Transformierte

a) Berechnen Sie die Laplace-Transformierte

$$\mathcal{L}{f(t)} = F(s) = \int_{t=0}^{\infty} e^{-st} \cdot f(t) dt$$

der folgenden Funktionen:

$$f(t) = 1,$$

$$\mathbf{vi}) \quad f(t) = e^{-at} \cdot t,$$

ii)
$$f(t) = t$$
,
iii) $f(t) = t^2$,

vii) $\mathcal{L}\{g'(t)\}$, für eine allgemeine (gegebene) Funktion g(t),

$$\mathbf{iv}) \quad f(t) = t^3,$$

viii) $\mathcal{L}\{g''(t)\}$, für eine allgemeine (gege-

$$\mathbf{v}$$
) $f(t) = e^{-at}$,

bene) Funktion g(t).

Hinweis: Für die letzten beiden Aufgaben kann die Laplacetransformierte $G(s) = \mathcal{L}\{g(t)\}$ der Funktion g(t) als bekannt vorausgesetzt werden.

b) Berechnen Sie die Laplace-Transformierte von $f(t) = \sqrt{t}$.

Hinweise:

- Substituieren Sie $u = \sqrt{t}$.
- Spalten Sie u^2 in $u \cdot u$ auf und integrieren Sie partiell.
- Das Quadrat des verbleibenden Integrals können Sie lösen, indem Sie Polar-koordinaten einführen.

Aufgabe 32: Laplace—Transformierte

Bestimmen Sie unter Verwendung von $\mathcal{L}\left\{\sin(t)\right\} = \frac{1}{s^2+1}$ und geeigneten Rechenregeln folgende Ausdrücke

a)
$$\mathcal{L}\left\{\frac{\sin(t)}{t}\right\}$$
, b) $\mathcal{L}\left\{\int_{0}^{t}\frac{\sin(\tau)}{\tau} d\tau\right\}$, c) $\int_{0}^{\infty}\frac{\sin(t)}{t} dt$, d) $\mathcal{L}\left\{e^{-t}\frac{\sin(t)}{t}\right\}$.

Aufgabe 33: Heaviside-Funktion

Gesucht ist die Laplace-Transformierte von

$$f(t) := h(t-2) \cdot t^2 ,$$

wobei h die Heaviside-Funktion ist.

- a) Mit Hilfe der Integraldarstellung der Definition.
- b) Mit Hilfe des Verschiebungssatzes und der Tabelle der Laplace-Transformierten.

Lineare Systeme von Differentialgleichungen

Aufgabe 34: Differentialgleichungen und Systeme (Hauptvektoren)

Gegeben sei die lineare Differentialgleichung

$$u'''(t) - 4u''(t) + 4u'(t) = 9e^{-t}.$$
(0.1)

a) Verwandeln Sie die Differentialgleichung (0.1) in ein System erster Ordnung

$$\dot{\boldsymbol{x}}(t) = \boldsymbol{A}\boldsymbol{x}(t) + \boldsymbol{f}(t) .$$

- b) Bestimmen Sie die allgemeine Lösung des homogenen Systems $\dot{\boldsymbol{x}}(t) = \boldsymbol{A}\boldsymbol{x}(t)$ aus Teil a).
- c) Bestimmen Sie die allgemeine Lösung des Systems aus Teil a).

Hinweis: Eine spezielle Lösung des Systems aus Teil a) kann mit dem Ansatz $\boldsymbol{x}_{\mathrm{p}}(t) = (\alpha, \beta, \gamma)^{\top} \cdot \mathrm{e}^{-t}$, mit $\alpha, \beta, \gamma \in \mathbb{R}$, bestimmt werden.

Aufgabe 35:

a) Gegeben sei das Anfangswertproblem

$$u''(x) - 16u(x) = 16x$$
 mit $u(0) = 1, u'(0) = 4.$

i) Überführen Sie diese gewöhnliche Differentialgleichung zweiter Ordnung in ein System aus zwei Differentialgleichungen erster Ordnung,

$$\mathbf{y}'(x) = \mathbf{A}\mathbf{y}(x) + \mathbf{g}(x), \quad \text{mit} \quad \mathbf{y}(x) = \begin{pmatrix} y_1(x) \\ y_2(x) \end{pmatrix}.$$

Geben Sie hierfür auch die Anfangsbedingung an.

- ii) Bestimmen Sie die Lösung y(x) dieses Anfangswertproblems.
- iii) Bestimmen Sie daraus die Lösung u(x) der ursprünglichen Anfangswertaufgabe.

b) Gegeben sei das Differentialgleichungssystem

$$\mathbf{y}'(x) = \mathbf{A}\mathbf{y}(x) + \mathbf{b}$$
, mit $\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 3 & 1 & -2 \\ 2 & 2 & 1 \end{pmatrix}$ und $\mathbf{b} = \begin{pmatrix} 4 \\ -4 \\ 6 \end{pmatrix}$.

- i) Bestimmen Sie ein **reelles** Fundamentalsystem des zugehörigen homogenen Problems.
- ii) Bestimmen Sie die allgemeine Lösung des inhomogenen Differentialgleichungssystems

$$\mathbf{y}'(x) = \mathbf{A}\mathbf{y}(x) + \mathbf{b}.$$

Aufgabe 36:

a) Gegeben sei das Anfangswertproblem

$$u''(x) - 16u(x) = 16x$$
 mit $u(0) = 1, u'(0) = 4.$

i) Überführen Sie diese gewöhnliche Differentialgleichung zweiter Ordnung in ein System aus zwei Differentialgleichungen erster Ordnung,

$$\mathbf{y}'(x) = \mathbf{A}\mathbf{y}(x) + \mathbf{g}(x), \quad \text{mit} \quad \mathbf{y}(x) = \begin{pmatrix} y_1(x) \\ y_2(x) \end{pmatrix}.$$

Geben Sie hierfür auch die Anfangsbedingung an.

- ii) Bestimmen Sie die Lösung y(x) dieses Anfangswertproblems.
- iii) Bestimmen Sie daraus die Lösung u(x) der ursprünglichen Anfangswertaufgabe.

Aufgabe 37:

Gegeben seien

$$\mathbf{A} = \begin{pmatrix} -7 & -5 & 6 \\ 9 & 8 & -9 \\ 0 & 1 & -1 \end{pmatrix}, \quad \mathbf{g}(x) = \begin{pmatrix} x e^{-x} \\ e^{-x} \\ (x+1)e^{-x} \end{pmatrix} \quad \text{und} \quad \mathbf{y}_0 = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}.$$

Zu untersuchen ist das Anfangswertproblem

$$\mathbf{y}'(x) = \mathbf{A}\mathbf{y}(x) + \mathbf{g}(x)$$
 mit $\mathbf{y}(0) = \mathbf{y}_0$.

Hinweis: Ein Eigenwert der Matrix \mathbf{A} ist $\lambda = 2$.

- a) Bestimmen Sie ein Fundamentalsystem des zugehörigen homogenen Problems.
- b) Bestimmen Sie die Lösung des inhomogenen Anfangswertproblems.

Aufgabe 38*: Differentialgleichungssystem

Die Matrix $\boldsymbol{A} \in \mathbb{R}^{(3,3)}$ und die Vektoren $\boldsymbol{v}, \, \boldsymbol{w}, \, \boldsymbol{z} \in \mathbb{R}^3$ seien wie folgt gegeben:

$$oldsymbol{A} = egin{pmatrix} 5 & 1 & -3 \\ 4 & 4 & -4 \\ 1 & 1 & 1 \end{pmatrix}, \quad oldsymbol{v} := egin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \quad oldsymbol{w} := egin{pmatrix} 1/2 \\ 1/2 \\ a \end{pmatrix}, \quad oldsymbol{z} := egin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}.$$

- a) Offenbar gilt Av = 4v. Berechnen Sie
 - (i) $\lambda \in \mathbb{R}$ so, dass $\mathbf{A}\mathbf{z} = \lambda \mathbf{z}$ gilt, (ii) die Spur Sp (\mathbf{A}) von \mathbf{A} .

Bestimmen Sie mit diesen Ergebnissen alle Eigenwerte der Matrix \boldsymbol{A} . (Selbstverständlich sollen Sie **nicht** das charakteristische Polynom bestimmen und lösen!)

- **b**) Berechnen Sie $a \in \mathbb{R}$ so, dass (A 4E)w = v gilt. Bestimmen Sie nun alle Haupt- und Eigenvektoren von A.
- c) Bestimmen Sie die allgemeine Lösung y(t) des DGl-Systems

$$\mathbf{y}'(t) = \mathbf{A}\mathbf{y}(t), \quad t \in \mathbb{R}.$$

Aufgabe 39: Differentialgleichgungssystem, Hauptvektoren

Gegeben sei die Matrix

$$\mathbf{A} = \begin{pmatrix} 4 & 1 & -1 & 2 & 1 \\ 0 & 4 & 1 & 1 & 2 \\ 0 & 0 & 3 & 0 & -1 \\ 0 & 0 & 0 & 4 & 1 \\ 0 & 0 & -1 & 0 & 3 \end{pmatrix}$$

sowie die Vektoren

$$\mathbf{u}_{1} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \ \mathbf{u}_{2} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \ \mathbf{u}_{3} = \begin{pmatrix} 0 \\ -2 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \ \mathbf{u}_{4} = \begin{pmatrix} 0 \\ 4 \\ -1 \\ -3 \\ 1 \end{pmatrix} \text{ und } \mathbf{u}_{5} = \begin{pmatrix} 9 \\ -10 \\ 8 \\ -4 \\ 8 \end{pmatrix}.$$

- a) Berechnen Sie die Matrix-Vektor-Produkte Au_j , j = 1, 2, 3, 4, 5. Welche Eigenwerte und Hauptvektoren hat A?
- b) Lösen Sie das Differentialgleichungssystem

$$\mathbf{y}'(x) = \mathbf{A}\mathbf{y}(x).$$

c) Lösen Sie das zugehörige Anfangswertproblem mit den Anfangswerten

$$\mathbf{y}(0) = \mathbf{y}_0 = (0, 9, -8, 5, -8)^{\mathsf{T}}.$$

Aufgabe 40: Inhomogene lineare Systeme (Hauptvektoren)

Gegeben sei das Differentialgleichungssystem

$$oldsymbol{y}'(t) = egin{pmatrix} 0 & 1 & -1 \ -2 & 3 & -1 \ -1 & 1 & 1 \end{pmatrix} oldsymbol{y}(t) + egin{pmatrix} -1 \ 2 \ 1 \end{pmatrix} \mathrm{e}^{5t}$$

mit den Anfangswerten $\mathbf{y}(0) = (0, 1, 2)^{\mathsf{T}}$.

- a) Ermitteln Sie die Fundamentalmatrix Y(t) (des homogenen Systems).
- b) Berechnen Sie die Lösung des Anfangswertproblemes, indem Sie die Schritte der Variation der Konstanten explizit ausführen.
- c) Berechnen Sie zusätzlich die Lösung des Anfangswertproblemes unter Nutzung der entsprechenden Formel aus der Vorlesung.

Aufgabe 41: Systeme homogener linearer Differentialgleichungen

Bestimmen Sie die allgemeinen reellen Lösungen und gegebenenfalls auch die Lösungen des Anfangswertproblems der folgenden Systeme von homogenen linearen Differentialgleichungen mit konstanten Koeffizienten. Benutzen Sie dazu die Matrizenschreibweise.

i)
$$\begin{cases} x'(t) = 4x(t) + 5y(t), & x(0) = 3, \\ y'(t) = -x(t) - 2y(t), & y(0) = 1 \end{cases}$$

ii)
$$\begin{cases} x'(t) = 3x(t) - 5y(t) , & x(0) = -20, \\ y'(t) = 5x(t) - 3y(t) , & y(0) = -24 \end{cases}$$

iii)
$$\begin{cases} x'(t) = 2x(t) - 5y(t), \\ y'(t) = x(t) + 4y(t). \end{cases}$$

Aufgabe 42: Lineare DGl-Systeme 1. Ordnung

Die symmetrische Matrix $\boldsymbol{A} \in \mathbb{R}^{3,3}$ erfülle $\boldsymbol{A}\boldsymbol{v}_1 = 3\boldsymbol{v}_1$, $\boldsymbol{A}\boldsymbol{v}_2 = \boldsymbol{v}_2$, det $\boldsymbol{A} = 6$ mit $\boldsymbol{v}_1 = (1,0,1)^{\top}$, $\boldsymbol{v}_2 = (-1,0,1)^{\top}$.

a) Zeigen Sie, dass $\lambda = 2$ ein Eigenwert von \boldsymbol{A} und $\boldsymbol{v}_3 = (0,1,0)^{\top}$ ein zugehöriger Eigenvektor ist. Geben Sie alle Eigenwerte und Eigenvektoren von \boldsymbol{A} an.

Hinweis: Für eine symmetrische Matrix sind die Eigenvektoren orthogonal zueinander.

b) Lösen Sie das Anfangswertproblem

$$\dot{\boldsymbol{x}}(t) = \boldsymbol{A}\boldsymbol{x}(t), \quad \boldsymbol{x}(0) = (1, 1, 1)^{\top}.$$

Aufgabe 43: Systeme linearer Differentialgleichungen

Bestimmen Sie die allgemeine Lösung des Systems von Differentialgleichungen

$$\mathbf{y}'(x) = \begin{pmatrix} -1 & -1 & 3 \\ -3 & 5 & 1 \\ -10 & -2 & 10 \end{pmatrix} \mathbf{y}(x).$$

Ergebnisse

Ergebnisse zu Aufgabe 1:

Es gilt
$$(1-n)u'(x) = u(x)^n \cdot z'(x)$$
.

Ergebnisse zu Aufgabe 2:

a)
$$y_{AWP}(x) = \frac{-1}{x^2 - \frac{1}{4}}$$
, b) $y(x) = \frac{C}{\cos(x)}$

Ergebnisse zu Aufgabe 3:

$$i$$
) $\frac{(15x+C)^{1/5}-2x-4}{3}$

ii)
$$\left(\frac{3 \ln |t|}{2} + C\right)^{2/3} \Rightarrow u(t) = t \cdot \left(\frac{3 \ln(t)}{2} + C\right)^{2/3}$$

iii)
$$C s^2 + 5 s^5$$

Ergebnisse zu Aufgabe 6:

Lösungen der homogenen Gleichungen: a) $ae^{2x} + be^{3x}$, b) $a\cos(5x) + b\sin(5x) + c$, c) $a + be^{2x}$.

Ergebnisse zu Aufgabe 7:

a)
$$u(t) = t^3 + \frac{C}{t^2}$$
, b) $u(t) = \frac{-t}{4 \ln(t) + C}$

Ergebnisse zu Aufgabe 8:

Partikuläre Lösungen: a) 0, b) $-12x^2 + 2x^3$, c) $\sin t - \cos t$, d) $\frac{1}{2}x^2e^{2x}$

Ergebnisse zu Aufgabe 10:

a)
$$y(x) = c_1 e^{2x} + c_2 e^{-x}$$

Ergebnisse zu Aufgabe 11:

b)
$$y(x) = \sin(2x) - 4\cos(2x) + c_1e^{-x}\cos(2x) + c_2e^{-x}\sin(2x)$$
 c) $y_{AWP}(x) = -e^x - e^{-x} + 2e^{3x}$

d)
$$y(x) = c_1 e^{-2x} + c_2 e^{-3x} + \frac{1}{10} e^{3x}$$
 e) $y(x) = c_1 e^{2x} + c_2 e^{-x} - (2x+1)e^x$ f) $y(x) = -e^{-2x} + c_1 e^x + c_2 e^{-x} + c_3 x e^{-x}$

Ergebnisse zu Aufgabe 12:

$$I(t) = \begin{cases} 6.25 \left(1 - e^{-0.2t} \right) & \text{für } 0 < t < 5 \\ 6.25 \left(1 - e^{-1} \right) e^{-0.2(t-5)} & \text{für } t > 5 \end{cases}$$

Ergebnisse zu Aufgabe 22:

a)
$$y(t) = -e^t - e^{-t} + 2e^{3t}$$

b)
$$y(t) = (2t^2 + 2t + 1)e^{-2t}$$

Ergebnisse zu Aufgabe 22:

a)
$$y(t) = -e^t - e^{-t} + 2e^{3t}$$

b)
$$y(t) = (2t^2 + 2t + 1)e^{-2t}$$

Ergebnisse zu Aufgabe 23:

$$w_P(x) = -\frac{F}{6EJ}(x-l)^3 \cdot h(x-l), x_{\min} = \sqrt{\frac{8}{27}}L$$

Ergebnisse zu Aufgabe 1.24:

i)
$$\frac{-1}{1+\pi^2}$$
, ii) 0.

Ergebnisse zu Aufgabe 25:

a)
$$u_{\text{AWP}}(t) = 2 e^{-t} \cdot \cos(2t)$$
, b) $t_0 = \pi/4$, c) $\alpha = 4 e^{-\pi/4}$.

Ergebnisse zu Aufgabe 26:

$$y(t) = t^2 + t^4/12.$$

Ergebnisse zu Aufgabe 27:

$$4 + 2e^{-3t} - 6e^{-t} - h(t-2) \cdot \left(4 + 2e^{-3(t-2)} - 6e^{-(t-2)}\right)$$

Ergebnisse zu Aufgabe 28:

$$F(s) = \sqrt{\frac{\pi}{4s^3}}.$$

Ergebnisse zu Aufgabe 32:

a)
$$\frac{\pi}{2} - \arctan s$$
, b) $\frac{\pi/2 - \arctan s}{s}$, c) $\frac{\pi}{2}$, d) $\frac{\pi}{2} - \arctan(s+1)$,

Ergebnisse zu Aufgabe 30:

a)
$$\frac{A}{s} - \frac{2Ae^{-st_0}}{s^2 + 2s}$$
, b) $\frac{A(e^{-as} - e^{-bs})}{s}$, c) $\frac{1 - e^{-3s}}{s^2}$, d) $\frac{1 + e^{-s\pi}}{1 + s^2}$

Ergebnisse zu Aufgabe 31:

a)

$$\mathbf{i}$$
) $\frac{1}{s}$,

$$\mathbf{iv}) \quad \frac{3!}{t^4},$$

$$\mathbf{vii}) \quad sG(s) - g(0),$$

$$\mathbf{ii}) \quad \frac{1}{s^2},$$

$$\mathbf{v}$$
) $\frac{1}{s+a}$,

iii)
$$\frac{2}{s^3}$$
,

$$\mathbf{v}) \quad \frac{1}{s+a},$$

$$\mathbf{vi}) \quad \frac{1}{(s+a)^2},$$

viii)
$$s^2G(s) - sg(0) - g'(0)$$
.

$$\mathbf{b})F(s) = \sqrt{\frac{\pi}{4s^3}}.$$

Ergebnisse zu Aufgabe 32:

a)
$$\frac{\pi}{2} - \arctan s$$
, b) $\frac{\pi/2 - \arctan s}{s}$, c) $\frac{\pi}{2}$, d) $\frac{\pi}{2} - \arctan(s+1)$

Ergebnisse zu Aufgabe 33:

$$\left(\frac{2}{s^3} + \frac{4}{s^2} + \frac{4}{s}\right) \cdot e^{-2s}$$

Ergebnisse zu Aufgabe 34:

$$\boldsymbol{x}_{\text{hom}}(t) = c_1 \begin{pmatrix} 1\\0\\0 \end{pmatrix} + c_2 \begin{pmatrix} 1\\2\\4 \end{pmatrix} \cdot e^{2t} + c_3 \begin{pmatrix} t\\1+2t\\4+4t \end{pmatrix} \cdot e^{2t}$$

Ergebnisse zu Aufgabe 39:

$$\lambda_1 = 4, \ \lambda_2 = 2$$

Ergebnisse zu Aufgabe 40:

$$\mathbf{Y}(t) = \begin{pmatrix} e^t & e^t t & 0 \\ e^t & e^t t & e^{2t} \\ 0 & -e^t & e^{2t} \end{pmatrix}$$

Ergebnisse zu Aufgabe 41:

$$\mathbf{i)} \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = a \begin{pmatrix} -1 \\ 1 \end{pmatrix} e^{-t} + b \begin{pmatrix} -5 \\ 1 \end{pmatrix} e^{3t}, \mathbf{ii}) \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} 5a \\ 3a - 4b \end{pmatrix} \cos(4t) + \begin{pmatrix} 5b \\ 4a + 3b \end{pmatrix} \sin(4t),$$

$$\mathbf{iii)} \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = e^{3t} \cdot \begin{bmatrix} \begin{pmatrix} -5a \\ a + 2b \end{pmatrix} \cos(2t) + \begin{pmatrix} -5b \\ -2a + b \end{pmatrix} \sin(2t) \end{bmatrix}$$

Ergebnisse zu Aufgabe 42:

b)
$$\mathbf{x} = (e^{3t}, e^{2t}, e^{3t})^{\top}$$

Ergebnisse zu Aufgabe 43: