Appendix F **ICSI Classification for Seasonal Snow on the Ground**

	Morphological clas	sification		Additional information on physical processes and strength				
Basic classification	Subclass	Shape	Code	Place of formation	Physical process	Dependence on most important parameters	Common effect on strength	
Precipitation Particles			PP			p. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	3. J	
+	Columns	Prismatic crystal, solid or hollow	PPco	Cloud; temperature inversion layer (clear sky)	Growth from water vapour at −3 to −8 °C and below−30 °C			
	Needles ↔	Needle-like, approximately	PPnd	Cloud	Growth from water vapour at high supersaturation at –3 to –5 ° C and below –60 °C			
	Plates ②	cylindrical Plate-like, mostly hexagonal	PPpl	Cloud; temperature inversion layer (clear sky)	Growth from water vapour at 0 to -3 °C and -8 to -70 °C			
	Stellars, Dendrites	Six-fold star-like, planar or spatial	PPsd	Cloud; temperature inversion layer (clear sky)	Growth from water vapour at high supersaturation at 0 to -3 ° C and at -12 to -16 °C			
	Irregular crystals	Clusters of very small crystals	PPir	Cloud	Polycrystals growing in varying environmental conditions			
	Graupel	Heavily rimed particles, spherical, conical, hexagonal, or irregular in shape	PPgp	Cloud	Heavy riming of particles by accretion of supercooled water droplets Size: ≤ 5 mm			
	Hail A	Laminar internal structure, translucent or milky glazed surface	PPhI	Cloud	Growth by accretion of supercooled water Size: > 5 mm			
	Ice pellets	Transparent, mostly small spheroids	PPip	Cloud	Freezing of raindrops or refreezing of largely melted snow crystals or snowflakes (sleet) Graupel or snow pellets encased in thin ice layer (small hail) Size: both ≤ 5 mm			
	Rime ∀	Irregular deposits or longer cones and needles pointing into the wind	PPrm	Onto surface as well as on freely exposed objects	Accretion of small, supercooled fog droplets frozen in place. Thin breakable crust forms on snow surface if process continues long enough	Increase with fog density and exposure to wind		

Notes: Diamond dust is a further type of precipitation often observed in polar regions (see Appendix E).

Hard rime is more compact and amorphous than soft rime and may build out as glazed cones or ice feathers (AMS, 2000).

The above subclasses do not cover all types of particles and crystals one may observe in the atmosphere. See the references below for a more comprehensive coverage. References: Magono & Lee, 1966; Bailey & Hallett, 2004; Dovgaluk & Pershina. 2005; Libbrecht, 2005

decomposition process Quick sintering results in rapid strength increase	Fragmentation and packing increase with wind speed	Saltation particles are fragmented and packed by wind, often closely; fragmentation often followed by rounding	Surface layer, mostly recently deposited snow	DEPK	Shards or fragments of precipitation particles	Wind-broken particles	
Regains cohesion by sintering after initial strength decreased due to	Speed of decomposition decreases with decreasing snow temperatures and decreasing temperature gradients	Decrease of surface area to reduce surface free energy; also fragmentation due to light winds lead to initial break up	Within the snowpack; near the surface, usually deposited snow dry	DEqc	Characteristic shapes of precipitation particles still recognizable; often partly rounded.	Partly decomposed	/
				DE			Decomposing and Fragmented precipitation particles
						2002	References: Fauve et al., 2
	All weather safe	Machined ice, i.e., production of flake ice, subsequent crushing, and pneumatic distribution	lce generators	MMci	Ice plates, shard-like	Crushed ice particles	
In dry conditions, quick sinfering results in rapid strength increase	Liquid water content depends mainly on air temperature and humidity but also on snow density and grain size	Machined snow, i.e., freezing of very small water droplets from the surface inward	Atmosphere, near surface	MMrp	Small spherical particles, often showing protrusions, a result of the freezing process; may be partially hollow	Round polycrystalline	©
				MM			Machine Made wons
Common effect on strength	Dependence on most important parameters	Physical process	Place of formation	əboƏ	Shape	Subclass	Basic classification
Additional information on physical processes and strength					fication	Morphological classi	

	Morphologi	ical classification		Additional information on physical processes and strength				
Basic classification	Subclass	Shape	Code	Place of formation	Physical process	Dependence on most important parameters	Common effect on strength	
Rounded Grains			RG					
•	Small rounded particles	Rounded, usually elongated particles of size < 0.25 mm; highly sintered	RGsr	Within the snowpack; dry snow	Decrease of specific surface area by slow decrease of number of grains and increase of mean grain diameter. Small equilibrium growth form	Growth rate increases with increasing temperature; growth slower in high density snow with smaller pores	Strength due to sintering of the snow grains [1]. Strength increases with time, settlement and decreasing grain size	
	Large rounded particles	Rounded, usually elongated particles of size ≥ 0.25 mm; well sintered	RGIr	Within the snowpack; dry snow	Grain-to-grain vapour diffusion due to low temperature gradients, i.e., mean excess vapour density remains below critical value for kinetic growth. Large equilibrium growth form	Same as above	Same as above	
	Wind packed	Small, broken or abraded, closely- packed particles; well sintered	RGwp	Surface layer; dry snow	Packing and fragmentation of wind transported snow particles that round off by interaction with each other in the saltation layer. Evolves into either a hard but usually breakable wind crust or a thicker wind slab. (see notes)	Hardness increases with wind speed, decreasing particle size and moderate temperature	High number of contact points and small size causes rapid strength increase through sintering	
	Faceted rounded particles	Rounded, usually elongated particles with developing facets	RGxf	Within the snowpack; dry snow	Growth regime changes if mean excess vapour density is larger than critical value for kinetic growth. Accordingly, this transitional form	Grains are changing in response to an increasing temperature gradient	Reduction in number of bonds may decrease strength	

Notes: Both wind crusts and wind slabs are layers of small, broken or abraded, closely packed and well-sintered particles. The former are thin irregular layers whereas the latter are thicker, often dense layers, usually found on lee slopes. Both types of layers can be represented either as sub-class RGwp or as RGsr along with proper grain size, hardness and/or density. If the grains are smaller than about 1 mm, an observer will need to consider the process at work to differentiate RGxf from FCxr.

this transitional form develops facets as temperature gradient

increases

References: [1] Birkeland, 1998

.jx9A mo	work to differentiate FCxr fr	ed to consider the process at			FCso unless the observer is familia		
	Grains are rounding off in response to a decreasing temperature gradient	Trend to a transitional form reducing its specific surface area; corners and edges of the crystals are rounding off	Within the snowpack;	FCxr	Faceted crystals with rounding facets and corners	Rounding faceted particles	
		Solid kinetic growth form (see FCso form) stage					
wons figneris wod	Temperature gradient may periodically change sign but remains at a high absolute value	May develop directly from Precipitation Particles (PP) or Decomposing and Fragmented particles (DFdc) due to large, near-surface temperature gradients [1]	Within the snowpack but right beneath the surface; dry snow	FCsf	Faceted crystals in surface layer	Near surface faceted particles	
Strength decreases with increasing growth rate and grain size	Growth rate increases with temperature, increasing temperature gradient, and decreasing density; may not grow to larger grains in high density snow because density snow because of small pores	Solid kinetic growth form, i.e., a solid crystal with sharp edges and corners as well as glassy, smooth faces	Within the snowpack;	FCso	Solid faceted crystals; prisms prisms	Solid faceted particles	
		Grain-fo-grain vapour diffusion driven by large enough temperature gradient, i.e., excess vapour density is above critical value for kinetic growth		EC			Faceted Crystals
Common effect on strength	Dependence on most important parameters	Physical process	Place of formation	əboƏ	Shape	Subclass	Basic classification

Morphological classification

Additional information on physical processes and strength

Morphological classification

Additional information on physical processes and strength

Basic classification	Subclass	Shape	Code	Place of formation	Physical process	Dependence on most important parameters	Common effect on strength
Depth Hoar			DH		Grain-to-grain vapour diffusion driven by large temperature gradient, i.e., excess vapour density is well above critical value for kinetic growth.		
٨	Hollow cups	Striated, hollow skeleton type crystals; usually cup-shaped	DHcp	Within the snowpack; dry snow	Formation of hollow or partly solid cup-shaped kinetic growth crystals [1]	See FCso.	Usually fragile but strength increases with density
	Hollow prisms	Prismatic, hollow skeleton type crystals with glassy faces but few striations	DHpr	Within the snowpack; dry snow	Snow has completely recrystallized; high temperature gradient in low density snow, most often prolonged [2]	High recrystallization rate for long period and low density snow facilitates formation	May be very poorly bonded
	Chains of depth hoar	Hollow skeleton type crystals arranged in chains	DHch	Within the snowpack; dry snow	Snow has completely recrystallized; intergranular arrangement in chains; most of the lateral bonds between columns have disappeared during crystal growth	High recrystallization rate for long period and low density snow facilitates formation	Very fragile snow
	Large striated crystals	Large, heavily striated crystals; either solid or skeleton type	DHla	Within the snowpack; dry snow	Evolves from earlier stages described above; some bonding occurs as new crystals are initiated [2]	Longer time required than for any other snow crystal; long periods of large temperature gradient in low density snow are needed	Regains strength
	Rounding depth hoar	Hollow skeleton type crystals with rounding of sharp edges, corners, and striations	DHxr	Within the snowpack; dry snow	Trend to a form reducing its specific surface area; corners and edges of the crystals are rounding off; faces may lose their relief, i.e., striations and steps disappear slowly. This process affects all subclasses of depth hoar	Grains are rounding off in response to a decreasing temperature gradient	May regain strength

Notes: – DH and FC crystals may also grow in snow with density larger than about 300 kg m³ such as found in polar snowpacks or wind slabs. These may then be termed 'hard' or 'indurated' depth hoar [3]. References: [1] Akitaya, 1974; Marbouty, 1980; Fukuzawa & Akitaya, 1993; Baunach *et al.*, 2001; Sokratov, 2001; [2] Sturm & Benson, 1997; [3] Akitaya, 1974; Benson & Sturm, 1993

Additional information on physical processes and streng	Morphological classification
---	------------------------------

May regain strength	Grains are rounding off in response to a decreasing temperature gradient	Trend to a form reducing its specific surface area; corners and edges of the crystals are rounding off; faces may loose their relief, i.e., striations and steps disappear slowly	Within the snowpack; dry snow	JxHS	Surface hoar crystal with rounding of sharp edges, comers and striations	Rounding surface	
		Kinetic growth of crystals forming anywhere a anywhere where a covoled space, is formed or present in which water vapour can be deposited under calm, still conditions [2]	Cavity hoar is found in large voids in the snow, e.g., in the vicinity of tree trunks, buried bushes [1] Crevasse hoar is found in any large cooled space such as crevasses, cold storage rooms, atorage rooms,	voHS	Striated, planar or hollow skeleton type crystals grown in cavities; orientation often random	Cavity or crevasse	
Fragile, extremely low shear strength; strength may remain low for extended periods when buried in cold dry snow	Both increased cooling of the snow surface below air temperature as well as increasing relative thingh water vapour in high water vapour gradient fields, e.g., practiceste, large stathery crystals may develop	Rapid kinetic growth of crystals at the snow surface by rapid transfer of water wapour from the anow surface; snow surface cooled for below ambient to below ambient transfer of the snow surface or snow surface or snow surface or snow surface or snow surface; snow surface to below ambient femperature by	Usually on cold snow surface relative to air temperature; sometimes on freely exposed objects above the surface (see notes)	nsHS	Striated, usually flat crystals; sometimes needle-like	Surface hoar	Surface Hoar
etrength	important parameters			HS			Surface Hoar
Common effect on	Dependence on most important parameters	Physical process	Place of formation	əboƏ	Shape	Subclass	Basic classification
ч з6и	sical processes and stre	itional information on phy	bbA		al classification	Morphologic	

Notes: It may be of interest to note more precisely the shape of hoar crystals, namely plates, cups, scrolls, needles and columns, dendrites, or composite forms [3]. Multi-day growth may also be specified.

Surface hoar may form by advection of nearly saturated air on both freely exposed objects and the snow surface at subfreezing temperatures. This type of hoarfrost deposit makes up a substantial part of accumulation in the inland of Antarctics. It has been termed 'air hoar' (see [2] and AMS, 2000).

Crevasse hoar crystals are very similar to depth hoar.

References: [1] Akitaya, 1974; [2] Seligman, 1936; [3] Jamieson & Schweizer, 2000

	classification

Additional information on physical processes and strength

Basic classification	Subclass	Shape	Code	Place of formation	Physical process	Dependence on most important parameters	Common effect on strength
Melt Forms			MF				
0	Clustered rounded grains	Clustered rounded crystals held by large ice-to-ice bonds; water in internal veins among three crystals or two grain boundaries	MFcI	At the surface or within the snowpack; wet snow	Wet snow at low water content (pendular regime), i.e., holding free liquid water; clusters form to minimize surface free energy	Meltwater can drain; too much water leads to MFsl; first freezing leads to MFpc	Ice-to-ice bonds give strength
	Rounded polycrystals	Individual crystals are frozen into a solid polycrystalline particle, either wet or refrozen	MFpc	At the surface or within the snowpack	Melt-freeze cycles form polycrystals when water in veins freezes; either wet at low water content (pendular regime) or refrozen	Particle size increases with number of melt- freeze cycles; radiation penetration may restore MFcl; excess water leads to MFsl	High strength in the frozen state; lower strength in the wet state; strength increases with number of melt-freeze cycles
	Slush	Separated rounded particles completely immersed in water	MFsI	Water saturated, soaked snow; found within the snowpack, on land or ice surfaces, but also as a viscous floating mass in water after heavy snowfall.	Wet snow at high liquid water content (funicular regime); poorly bonded, fully rounded single crystals – and polycrystals – form as ice and water are in thermodynamic equilibrium	Water drainage blocked by capillary barrier, impermeable layer or ground; high energy input to the snowpack by solar radiation, high air temperature or water input (rain)	Little strength due to decaying bonds
	Melt-freeze crust	Crust of recognizable melt-freeze polycrystals	MFcr	At the surface	Crust of melt-freeze polycrystals from a surface layer of wet snow that refroze after having been wetted by melt or rainfall; found either wet or refrozen	Particle size and density increases with number of melt-freeze cycles	Strength increases with number of melt-freeze cycles

Notes: Melt-freeze crusts MFcr form at the surface as layers at most a few centimetres thick, usually on top of a subfreezing snowpack. Rounded polycrystals MFpc will rather form within the snowpack. MFcr usually contain more refrozen water than MFpc and will not return to MFcl.

Both MFcr and MFpc may contain a recognizable minority of other shapes, particularly large kinetic growth form FC and DH. See the guidelines (Appendix C) for examples on the use of the MFcr symbol.

Thin breakable crust	Builds during clear weather, air temperatures below freezing and strong solar radiation; not to be confused with melt	Melt water from a surface snow layer refreezes at the surface due to radiative cooling; decreasing shortwave absorption in the forming glaze enhances dreenbanese affect in the	At the surface	IFsc	Thin, transparent and shiny glaze or clear film of ice on the surface	Sun crust, Firnspiegel —	
Thin breakable crust	Droplets have to be supercooled but coalesce before freezing	Results from freezing rain on snow; forms a thin surface glaze	At the surface	on∃l	Thin, transparent glaze or clear film of ice on the surface	faun crust	
form on top	Formation enhanced if substrate is impermeable and very cold, e.g., permatrost	Melt water ponds above substrate and freezes by heat conduction into cold substrate	Base of snowpack	ΙΕΡί	Basal ice layer	Basal ice	
	Flow fingers more likely to occur if snow is highly stratified; freezing enhanced if anow is very cold	Draining water within flow fingers freezes by heat conduction into surrounding subfreezing snow, i.e., snow at T < 0 °C	Within snowpack layers	iFic	Vertical ice body	lce column	
Ice layers are atrong but strength decays once snow is completely wetted	Depends on timing of percolating water and cycles of melting and tefreezing; more likely to occur if a stratification of fine over coarse-grained layers exists	Rain or meltwater from the surface percolates into cold snow where it refreezes along layer-parallel capillary barriers by heat conduction into surrounding subfreezing snow, i.e., snow at T < 0 °C; ice layers usually retain some degree of permeability	Within the snowpack	IEII	Horizontal ice layer	јсе јауег	
				II.			lce Formations
Common effect on strength	processes and strength Dependence on most important parameters	Additional information on physical p	Place of formation	əpoƏ	cal classification Shape	Morphologi Subclass	Basic classification
	1)	, , , , , , , , , , , , , , , ,					

much a lesser degree than for porous melt forms. Motes: In ice formations, pores usually do not connect and no individual grains or particular when wetted, but to

glaze [1]

vapour may condense below the

greenhouse effect in the

underlying snow; additional water -freeze crust MFcr

be confused with melt

Most often, rain and solar radiation cause the formation of melt-freeze crusts MFcr.

Discontinuous ice bodies such as ice lenses or refrozen flow fingers can be identified by appropriate remarks (see Appendix C.2).

References: [1] Ozeki & Akitaya, 1998