Written Exercises

Write the name or statement of the definition, postulate, property, or theorem that justifies the statement about the diagram.

- 1. AD + DB = AB
- 2. $m \angle 1 + m \angle 2 = m \angle CDB$
- 3. ∠2 ≅ ∠6 year rest to 12.2 €
- **4.** If D is the midpoint of \overline{AB} , then $AD = \frac{1}{2}AB$.
- **6.** $m \angle ADF + m \angle FDB = 180$
- 7. If $\overline{CD} \perp \overline{AB}$, then $m \angle CDB = 90$.
- 8. If $\angle 4 \cong \angle 3$, then \overrightarrow{DG} bisects $\angle BDE$.

- 11. If $\overline{AB} \perp \overline{CE}$, then $\angle ADC \cong \angle ADE$.
- 12. If $\angle 4$ is complementary to $\angle 5$ and $\angle 6$ is complementary to $\angle 5$, then $\angle 4 \cong \angle 6$.
- 13. If $\angle FDG$ is a right angle, then $\overrightarrow{DF} \perp \overrightarrow{DG}$.
- 14. If $\angle FDG \cong \angle GDH$, then $\overrightarrow{DG} \perp \overrightarrow{HF}$.
- 15. Copy everything shown and complete the proof of Theorem 2-7 for the case where two angles are supplements of the same angle.

Given: $\angle 1$ and $\angle 5$ are supplementary: $\angle 3$ and $\angle 5$ are supplementary.

Prove: $\angle 1 \cong \angle 3$

Exs. 1-14

Proof:

Statements

- 1. $\angle 1$ and $\angle 5$ are supplementary; $\angle 3$ and $\frac{?}{}$.
- 2. $m \angle 1 + m \angle 5 = 180$; $m \angle 3 + m \angle 5 = 180$
- 3. $m \angle 1 + m \angle 5 = m \angle 3 + m \angle 5$
- 4. $m \angle 5 = m \angle 5$
- 5. $m \angle 1 = m \angle 3$, or $\angle 1 \cong \angle 3$

Reasons

- 1. _? = 020
- 2. ? A softo an
- 3. ? sub-theatres
- 4. Reflexive Prop.
- 5. ? sublination prop of =

