Chapter 2: Propositional Logic

- 2.1 Basic Concepts of Propositional Logic
- 2.2 Equivalence Calculus of Propositional Logic
- 2.3 Normal Forms

2.3 Normal Forms

- 2.3.1 Disjunctive Normal Form (DNF) and Conjunctive Normal Form (CNF)
 - Simple Disjunctive Form and Simple Conjunctive Form
 - Disjunctive Normal Form and Conjunctive Normal Form
- 2.3.2 Principal Disjunctive Normal Form (PDNF) and Principal Conjunctive Normal Form (PCNF)
 - Minterms and Maxterms
 - Principal Disjunctive Normal Form and Principal Conjunctive Normal Form
 - Applications of Principal Normal Form

2.3.1 Disjunctive Normal Form (DNF) and Conjunctive Normal Form (CNF) Simple Disjunctive Form and Simple Conjunctive Form

- **Literal**: A general term for a propositional variable and its negation.
- **Simple Disjunctive Form:** A disjunctive formula composed of a finite number of literals.

```
such as: p, \neg q, p \lor \neg q, p \lor q \lor r, ...
```

Simple Conjunctive Form: A conjunctive formula composed of a finite number of literals.

```
such as : p, \neg q, p \land \neg q, p \land q \land r, ...
```

- Theorem 2.3:
- (1) A simple disjunctive form is a tautology if and only if it contains both a propositional variable and its negation(e.g. $p \lor \neg q$).
- (2) A simple conjunctive form is a contradiction if and only if it contains both a propositional variable and its negation (e.g. $p \land \neg q$).

同济经管 TONGJI SEM

Disjunctive Form and Conjunctive Form

Disjunctive Normal Form (DNF): A disjunction composed of a finite number of simple conjunctive forms.

 $A_1 \lor A_2 \lor ... \lor A_r$, where $A_1, A_2, ..., A_r$ are simple conjunctive forms.

Examples:
$$p \lor q \lor \neg r$$

$$\neg p \land \neg q \land \neg r$$

$$(p_1 \land \neg p_2 \land p_3) \lor (\neg p_1 \land p_2 \land p_3) \lor (p_1 \land p_2 \land \neg p_3)$$

Conjunctive Normal Form (CNF): A conjunction composed of a finite number of simple disjunctive forms.

 $A_1 \wedge A_2 \wedge ... \wedge A_r$, where $A_1, A_2, ..., A_r$ are simple disjunctive forms.

Examples:
$$p \lor q \lor \neg r$$

$$\neg p \land \neg q \land r$$

$$(p_1 \lor \neg p_2 \lor \neg p_3) \land (\neg p_1 \lor p_2 \lor p_3) \land (p_1 \lor \neg p_3)$$

4 Normal Form

- Normal Form: A general term referring to both disjunctive normal form (DNF) and conjunctive normal form (CNF).
- Theorem 2.4:
 - (1) A *disjunctive normal form* (DNF) is a contradiction if and only if each of its simple conjunctive forms is a contradiction

•

(2) A conjunctive normal form (CNF) is a tautology if and only if each of its simple disjunctive forms is a tautology.

▶ Normal Form Existence Theorem

- Theorem 2.5: **Normal Form Existence Theorem**.
 - Every propositional formula has an equivalent disjunctive normal form (DNF) and conjunctive normal form (CNF).
- Proof: The three important steps for obtaining the normal form of a formula A
 - (1) Eliminate \rightarrow , \leftrightarrow at A

$$A \rightarrow B \Leftrightarrow \neg A \lor B$$

$$A \leftrightarrow B \Leftrightarrow (\neg A \lor B) \land (A \lor \neg B)$$

(2) Move negation (7) inward or eliminate it:

$$\neg \neg A \Leftrightarrow A$$

$$\neg (A \lor B) \Leftrightarrow \neg A \land \neg B$$

 $\neg (A \land B) \Leftrightarrow \neg A \lor \neg B$

$$\neg (A \land B) \Leftrightarrow \neg A \lor \neg B$$

• Obtaining the normal form

(3) Using the Distributive Law

$$A \lor (B \land C) \Leftrightarrow (A \lor B) \land (A \lor C)$$
 For finding CNF
 $A \land (B \lor C) \Leftrightarrow (A \land B) \lor (A \land C)$ For finding DNF

Example: Find
$$\neg (p \rightarrow q) \lor \neg r$$
 DNF and CNF Solution: $\neg (p \rightarrow q) \lor \neg r$ $\Leftrightarrow \neg (\neg p \lor q) \lor \neg r$ $\Leftrightarrow (p \land \neg q) \lor \neg r$ DNF $\Leftrightarrow (p \lor \neg r) \land (\neg q \lor \neg r)$ CNF

Note: The DNF and CNF of a formula are not unique.

2.3.2 Principal Disjunctive Normal Form and Principal Conjunctive Normal Form 同侪经管TONGLISEN

In a simple conjunctive form (or simple disjunctive form) containing *n* propositional variables, if each propositional variable appears exactly once in the form of a literal and the *i-th literal* (arranged in subscript or alphabetical order) appears in the *i-th position* from the left, such a simple conjunctive form (or simple disjunctive form) is called a *minterm* (or *maxterm*).

Examples:
$$\neg p \land \neg q , \neg p \land \neg q \land r$$
 are minterms. $\neg p \lor \neg q , \neg p \lor \neg q \lor r$ are maxterms.

2.3.2 Principal Disjunctive Normal Form and Principal Conjunctive Normal Form 同济经管 Normal Form 同济经管 TONGJI SEM

Explanation:

- (1) Propositional variables serve as placeholders in propositional logic. They do not inherently have truth values but can be replaced by specific propositions with definite truth values (1 or 0).
- (2) A propositional variable can either be a simple proposition or a logical combination involving other variables.
- (3) A truth table with n propositional variables, ranging from all "0" to all "1," consists of 2ⁿ rows, corresponding to 2ⁿ minterms and 2ⁿ maxterms.

2.3.2 Principal Disjunctive Normal Form and Principal Conjunctive Normal Form 同侪经管 ONGLISEM

Explanation:

- (4) The 2ⁿ minterms (or maxterms) are all distinct from each other in terms of logical equivalence.
- (5) Let m_i denote the *i*-th minterm, where *i* is the decimal representation of the truth assignment that makes the minterm true. Let M_i denote the i-th maxterm, where i is the decimal representation of the truth assignment that makes the maxterm false. m_i (or M_i) is called the name of the minterm (or maxterm).

2.3.2 Principal Disjunctive Normal Form and Principal Conjunctive Normal Form 同济经管 Normal Form 可济经管 TONGJI SEM

Minterms and Maxterms Formed by p,q

Minterm			Maxterm		
Formula	Ture	Name	Formula	False	Name
$\neg p \land \neg q$	0 0	m_0	$p \lor q$	0 0	M_0
$\neg p \land q$	0 1	m_1	$p \lor \neg q$	0 1	M_1
$p \land \neg q$	1 0	m_2	$\neg p \lor q$	1 0	M_2
$p \land q$	1 1	m_3	$\neg p \lor \neg q$	1 1	M_3

• Theorem 2.6: Let m_i M_i be the minterm and maxterm formed by the same set of propositional variables. Then:

$$\neg m_i \Leftrightarrow M_i, \neg M_i \Leftrightarrow m_i$$

2.3.2 Principal Disjunctive Normal Form and Principal Conjunctive Normal Form 同济经管 FONGLISEM

- Principal Disjunctive Normal Form (PDNF): A disjunctive normal form composed of minterms.
- Principal Conjunctive Normal Form (PCNF): A conjunctive normal form composed of maxterms.
 - Example: n=3, propositional variables p, q, r, $(\neg p \land \neg q \land r) \lor (\neg p \land q \land r) \Leftrightarrow m_1 \lor m_3$ (PDNF) $(p \lor q \lor \neg r) \land (\neg p \lor q \lor \neg r) \Leftrightarrow M_1 \land M_5$ (PCNF)
- **Theorem 2.7:** Every propositional formula has an equivalent PDNF and PCNF, and these forms are **unique**.

2.3.2 Principal Disjunctive Normal Form and Principal Conjunctive Normal Form 同济经管 Find PDNF

- Let formula A contain propositional variables $p_1, p_2, ..., p_n$, find the principal disjunctive normal form (PDNF) of A.
- (1) Find a Disjunctive Normal Form (DNF): $A'=B_1 \lor B_2 \lor ... \lor B_s$, where each B_i is a simple conjunction , j=1,2,..., s.
- (2) If a term B_j lacks either p_i , or $\neg p_i$, B_j expand it using $B_j \Leftrightarrow B_j \land (p_i \lor \neg p_i) \Leftrightarrow (B_j \land p_i) \lor (B_j \land \neg p_i)$ Repeat until every conjunction becomes a **minterm** (length n).
- (3) Remove Duplicate Minterms: Replace repeated minterms $m_i \lor m_i$ with m_i .
- (4) Order Minterms: Arrange the minterms in ascending order of their indices.

2.3.2 Principal Disjunctive Normal Form and Principal Conjunctive Normal Form 同济经管 Find PCNF

- Let formula A contain propositional variables $p_1,p_2,...,p_n$, find the principal Conjunctive normal form (PCNF) of A.
- (1) Find a Conjunctive Normal Form (CNF) $A'=B_1 \wedge B_2 \wedge ... \wedge B_s$, where each B_j is a simple disjunction, j=1,2,...,s.
- (2) If a term B_j lacks either p_i or $\neg p_i$ for some variable p_i , expand it using: $B_j \Leftrightarrow B_j \lor (p_i \land \neg p_i) \Leftrightarrow (B_j \lor p_i) \land (B_j \lor \neg p_i)$ Repeat until every disjunction becomes a **maxterm** (length n).
- (3) Replace repeated maxterms (e.g., $M_i \wedge M_i$) with a single M_i .
- (4) Arrange the maxterms in ascending order of their indices (e.g., M_0 , M_1 , M_2 , ...).

2.3.2 Principal Disjunctive Normal Form and Principal Conjunctive Normal Form 同济经管 Find PDNF and PCNF (e.g.)

- Example: Find the PDNF and PCNF of $\neg (p \rightarrow q) \lor \neg r$
- Step 1: Find PDNF (Minterms)

$$\neg (p \rightarrow q) \lor \neg r \Leftrightarrow (p \land \neg q) \lor \neg r \text{ (Implication equivalence, De Morgan)}$$

$$p \land \neg q \Leftrightarrow (p \land \neg q) \land 1$$

$$\Leftrightarrow (p \land \neg q) \land (\neg r \lor r)$$

$$\Leftrightarrow (p \land \neg q \land \neg r) \lor (p \land \neg q \land r)$$

$$\Leftrightarrow m_4 \lor m_5$$

$$\neg r \Leftrightarrow (\neg p \lor p) \land (\neg q \lor q) \land \neg r$$

$$\Leftrightarrow (\neg p \land \neg q \land \neg r) \lor (\neg p \land q \land \neg r) \lor (p \land \neg q \land \neg r) \lor (p \land q \land \neg r)$$

$$\Leftrightarrow m_0 \lor m_2 \lor m_4 \lor m_6$$

$$\neg (p \rightarrow q) \lor \neg r \Leftrightarrow m_0 \lor m_2 \lor m_4 \lor m_5 \lor m_6$$

$$\Leftrightarrow \Sigma(0, 2, 4, 5, 6)$$

2.3.2 Principal Disjunctive Normal Form and Principal Conjunctive Normal Form

Find PDNF and PCNF (e.g.)

Step 2: Find PCNF (Maxterms)

$$\neg (p \rightarrow q) \lor \neg r \Leftrightarrow (p \lor \neg r) \land (\neg q \lor \neg r)$$

$$p \lor \neg r \Leftrightarrow p \lor 0 \lor \neg r$$

$$\Leftrightarrow p \lor (q \land \neg q) \lor \neg r$$

$$\Leftrightarrow (p \lor q \lor \neg r) \land (p \lor \neg q \lor \neg r)$$

$$\Leftrightarrow M_{1} \land M_{3}$$

$$\neg q \lor \neg r \Leftrightarrow (p \land \neg p) \lor \neg q \lor \neg r$$

$$\Leftrightarrow (p \lor \neg q \lor \neg r) \land (\neg p \lor \neg q \lor \neg r)$$

$$\Leftrightarrow M_{3} \land M_{7}$$

$$\neg (p \rightarrow q) \lor \neg r \Leftrightarrow M_{1} \land M_{3} \land M_{7}$$

$$\Leftrightarrow \Pi(1,3,7)$$

2.3.2 Principal Disjunctive Normal Form and Principal Conjunctive Normal Form 同侪经管 TONGJISEN

- A quick way to obtain the PDNF (or PCNF) of a formula A with n propositional variables is to complete the missing variables to form all possible minterms (or maxterms).
- A conjunctive clause (simple AND term) of length k can be expanded into 2^{n-k} minterms.

Such as: Formulation
$$p,q,r$$

 $q \Leftrightarrow (\neg p \lor q \lor \neg r) \land (\neg p \lor q \lor r) \land (p \lor q \lor \neg r) \land (p \lor q \lor r)$
 $\Leftrightarrow m_2 \lor m_3 \lor m_6 \lor m_7$

- **A disjunctive clause** (simple OR term) of length k can be expanded into 2^{n-k} maxterms.
- Such as: $p \lor \neg r \Leftrightarrow (p \lor q \lor \neg r) \land (p \lor \neg q \lor \neg r)$ $\Leftrightarrow M_1 \land M_3$

2.3.2 Principal Disjunctive Normal Form and Principal Conjunctive Normal Form 同济经

↓ Find PDNF (e.g.)

Example: Find the PDNF (Principal Disjunctive Normal Form)

$$A \Leftrightarrow (\neg p \land q) \lor (\neg p \land \neg q \land r) \lor r$$

Solution (Quick Method):

$$\neg p \land q \Leftrightarrow (\neg p \land q \land \neg r) \lor (\neg p \land q \land r) \Leftrightarrow m_2 \lor m_3$$

$$\neg p \land \neg q \land r \Leftrightarrow m_1$$

$$r \Leftrightarrow (\neg p \land \neg q \land r) \lor (\neg p \land q \land r) \lor (p \land \neg q \land r) \lor (p \land q \land r)$$

$$\Leftrightarrow m_1 \lor m_3 \lor m_5 \lor m_7$$

$$A \Leftrightarrow m_1 \lor m_2 \lor m_3 \lor m_5 \lor m_7 \Leftrightarrow \Sigma(1,2,3,5,7)$$

2.3.2 Principal Disjunctive Normal Form and Principal Conjunctive Normal Form 同侪经管TONGJISEN

Example: Find the PCNF (Principal Conjunctive Normal Form) $B \Leftrightarrow \neg p \land (p \lor q \lor \neg r)$

Solution (Quick Method):

$$\neg p \Leftrightarrow (\neg p \lor q \lor r) \land (\neg p \lor q \lor \neg r) \land (\neg p \lor \neg q \lor r) \land (\neg p \lor \neg q \lor \neg r)$$

$$\Leftrightarrow M_4 \land M_5 \land M_6 \land M_7$$

$$p \lor q \lor \neg r \Leftrightarrow M_1$$
Get $B \Leftrightarrow M_1 \land M_4 \land M_5 \land M_6 \land M_7 \Leftrightarrow \Pi(1,4,5,6,7)$

2.3.2 Principal Disjunctive Normal Form and Principal Conjunctive Normal Form

- Use PDNF to Determine the *True Assignments* and *False Assignments* of a Formula.
- Let formula *A* contain *n* propositional variables. If the PDNF (Principal Disjunctive Normal Form) of *A* has *s* minterms, then:
 - True Assignments: s assignments corresponding to the binary representations of the minterm indices.
 - False Assignments: 2^{n-s} assignments not covered by the minterms.
- Example: $\neg (p \rightarrow q) \lor \neg r \Leftrightarrow m_0 \lor m_2 \lor m_4 \lor m_5 \lor m_6$

True Assignments: 000,010,100,101,110;

False Assignments: 001,011,111

2.3.2 Principal Disjunctive Normal Form and Principal Conjunctive Normal Form 同侪经管 Use PDNF to determine the type a Formula

- Use PDNF to Determine the type of a Formula.
- Let A be a formula with n propositional variables.
 - A is a tautology if and only if its PDNF (Principal Disjunctive Normal Form) contains all 2ⁿ minterms.
 - A is a contradiction if and only if its PDNF contains no minterms (denoted as 0).
 - A is satisfiable if and only if its PDNF contains at least one minterm.

2.3.2 Principal Disjunctive Normal Form and Principal Conjunctive Normal Form 同济经管 Use PDNF to determine the type a Formula (e.g.)

- ******Example: Determining formula types using principal disjunctive normal form (PDNF).
 - Problem: Classify the following formulas:

(1)
$$A \Leftrightarrow \neg (p \rightarrow q) \land q$$
 (2) $B \Leftrightarrow p \rightarrow (p \lor q)$ (3) $C \Leftrightarrow (p \lor q) \rightarrow r$

Solution:

(1)
$$A \Leftrightarrow \neg(\neg p \lor q) \land q \Leftrightarrow (p \land \neg q) \land q \Leftrightarrow 0$$
 contradiction

(2)
$$B \Leftrightarrow \neg p \lor (p \lor q) \Leftrightarrow 1 \Leftrightarrow m_0 \lor m_1 \lor m_2 \lor m_3$$
 tautology

(3)
$$C \Leftrightarrow \neg (p \lor q) \lor r \Leftrightarrow (\neg p \land \neg q) \lor r$$

 $\Leftrightarrow (\neg p \land \neg q \land r) \lor (\neg p \land \neg q \land \neg r) \lor (\neg p \land \neg q \land r)$

$$\vee (\neg p \land q \land r) \vee (p \land \neg q \land r) \vee (p \land q \land r)$$

$$\Leftrightarrow m_0 \lor m_1 \lor m_3 \lor m_5 \lor m_7$$
 Non-tautological satisfiable formula

2.3.2 Principal Disjunctive Normal Form and Principal Conjunctive Normal Form 同侪经管

- Use PDNF to determine formulas are logically equivalent
- Use PDNF to determine whether two formulas are logically equivalent.
- **Example:** Use principal disjunctive normal form (PDNF) to determine if the following pair of formulas are equivalent:

(1)
$$p$$
 and $(\neg p \lor q) \to (p \land q)$
Solve: $p \Leftrightarrow p \land (\neg q \lor q) \Leftrightarrow (p \land \neg q) \lor (p \land q) \Leftrightarrow m_2 \lor m_3$
 $(\neg p \lor q) \to (p \land q) \Leftrightarrow \neg (\neg p \lor q) \lor (p \land q)$
 $\Leftrightarrow (p \land \neg q) \lor (p \land q) \Leftrightarrow m_2 \lor m_3$
Then: $p \Leftrightarrow (\neg p \lor q) \to (p \land q)$

2.3.2 Principal Disjunctive Normal Form and Principal Conjunctive Normal Form

- Use PDNF to determine formulas are logically equivalent
- *****Example: Use principal disjunctive normal form (PDNF) to determine if the following pair of formulas are equivalent:
 - (2) $(p \land q) \lor r$ and $p \land (q \lor r)$ Solve: $(p \land q) \lor r \Leftrightarrow (p \land q \land \neg r) \lor (p \land q \land r)$ $\vee (\neg p \land \neg q \land r) \lor (\neg p \land q \land r) \lor (p \land \neg q \land r) \lor (p \land q \land r)$ $\Leftrightarrow m_1 \lor m_3 \lor m_5 \lor m_6 \lor m_7$ $p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$ $\Leftrightarrow (p \land q \land \neg r) \lor (p \land q \land r) \lor (p \land \neg q \land r) \lor (p \land q \land r)$ $\Leftrightarrow m_5 \lor m_6 \lor m_7$

Then: $(p \land q) \lor r$ is not equal to $p \land (q \lor r)$

2.3.2 Principal Disjunctive Normal Form and Principal Conjunctive Normal Form 同侪经管

Use PDNF to designate the personnel selection plan

Example: A company needs to select personnel from A, B, and C for an overseas assignment, subject to the following conditions: (1) If A goes, then C must go; (2) If B goes, then C cannot go; (3) Exactly one of A or B must go.

- Question: How many possible selection plans are there?
- Solution:
 - Define propositions: p: Send A; q: Send B; r: Send C (1) $p \rightarrow r$, (2) $q \rightarrow \neg r$, (3) $(p \land \neg q) \lor (\neg p \land q)$
 - Combine into a logical formula:

$$C = (p \rightarrow r) \land (q \rightarrow \neg r) \land ((p \land \neg q) \lor (\neg p \land q))$$

2.3.2 Principal Disjunctive Normal Form and Principal Conjunctive Normal Form

- Use PDNF to designate the personnel selection plan(cont.)
 - Find principal disjunctive normal form of *C*

$$C = (p \rightarrow r) \land (q \rightarrow \neg r) \land ((p \land \neg q) \lor (\neg p \land q))$$

$$\Leftrightarrow (\neg p \lor r) \land (\neg q \lor \neg r) \land ((p \land \neg q) \lor (\neg p \land q))$$

$$\Leftrightarrow ((\neg p \land \neg q) \lor (\neg p \land \neg r) \lor (r \land \neg q) \lor (r \land \neg r))$$

$$\land ((p \land \neg q) \lor (\neg p \land q))$$

$$\Leftrightarrow ((\neg p \land \neg q) \land (p \land \neg q)) \lor ((\neg p \land \neg r) \land (p \land \neg q))$$

$$\lor ((r \land \neg q) \land (p \land \neg q)) \lor ((r \land \neg q) \land (\neg p \land q))$$

$$\lor ((\neg p \land \neg r) \land (\neg p \land q)) \lor ((r \land \neg q) \land (\neg p \land q))$$

$$\Leftrightarrow (p \land \neg q \land r) \lor (\neg p \land q \land \neg r)$$

- True Assignment:101,010
 - Plan 1: Send A and C
 - Plan 2: Send B

2.3.2 Principal Disjunctive Normal Form and Principal Conjunctive Normal Form 同侪经

Use PDNF to design a control circuit

**>>> Example: A lamp is controlled by two switches. Pressing either switch can turn the lamp on or off. Use the gate circuits in the diagram to design the control circuit.

Solution:

- Let x and y represent the states of the two switches (0 = off, 1 = on).
- Let *F* represent the lamp's state (1 = on, 0 = off).
- Assume the lamp is initially on (F=1) when x=y=0.
- Canonical DNF (Principal Disjunctive Normal Form) of F

$$F=m_0 \wedge m_3$$

$$= (\neg x \wedge \neg y) \vee (x \wedge y)$$

x	y	$oldsymbol{F}$
0	0	1
0	1	0
1	0	0
1	1	1

2.3.2 Principal Disjunctive Normal Form and Principal Conjunctive Normal Form 同济经管

If the initial condition is set such that the light turns on (F=1) only when exactly one of x or y is '1', how would the circuit behave?

2.3.2 Principal Disjunctive Normal Form and Principal Conjunctive Normal Form

┕ Convert PDNF to PCNF

Let:
$$A \Leftrightarrow m_{i_1} \vee m_{i_2} \vee \cdots \vee m_{i_s}$$

Non exited Minterm is $m_{j_1}, m_{j_2}, \cdots, m_{j_t}$, So $t=2^{n-s}$,

Thus:

$$\neg A \Leftrightarrow m_{j_1} \vee m_{j_2} \vee \cdots \vee m_{j_t}$$

$$A \Leftrightarrow \neg (m_{j_1} \vee m_{j_2} \vee \cdots \vee m_{j_t})$$

$$\Leftrightarrow \neg m_{j_1} \wedge \neg m_{j_2} \wedge \cdots \wedge \neg m_{j_t}$$

$$\Leftrightarrow M_{j_1} \wedge M_{j_2} \wedge \cdots \wedge M_{j_t}$$

2.3 Normal Forms • Brief summary

Objective:

Key Concepts:

