

This Week in Al

Image from nvidia

Topics

Optimization revisited

- ► Gradient descent improvements
- ► Learning rate scheduling

Normalization layers

► Batch & layer normalization

Optimization vs. machine learning

- ► Underfitting & overfitting
- ► Data augmentation

We already know how to train CNNs (for classification)

- ightharpoonup Calculate (cross-entropy) loss $L(\theta)$ on training data
- lacktriangle Compute $abla L(oldsymbol{ heta})$ using backpropagation
- ightharpoonup Use gradient descent to update heta

Need some tweaks to make this pipeline practicable

Gradient Descent

Gradient descent update rule is $\theta = \theta - \alpha \nabla L(\theta)$

- ▶ Algorithm stops if $\nabla L(\theta) = \mathbf{0}$ (at critical points)
- ▶ But should only stop at global minimum ...

Gradient Descent

... or a "good" local minimum

Luckily studies show that in deep learning

- ► There are few (if any) local minima
- ► Local minima are "good" in above sense

Simple gradient descent thus works in theory but is

- ► Too expensive to compute with large datasets
- Too slow around critical points

Recall that $L(\theta)$ is average over S training samples

- ightharpoonup Time complexity per iteration increases linearly with S
- ▶ Problem with large datasets (need many iterations)

To solve this problem we process the training set

- ightharpoonup In minibatches of size S (one per iteration)
- Using minibatch loss and gradient as estimators

One full run through training set is called an epoch

► Training usually takes many epochs

Time complexity for single iteration independent of dataset size

Resulting algorithm called minibatch gradient descent

► Or stochastic gradient descent (SGD)

 ${\cal S}$ varies between 1 and a few hundred samples

- ▶ Usually $S = 2^n$, e.g. 32, 64, 128, 256
- ▶ Powers of 2 for efficiency

Decreasing S also decreases

- Computation time per iteration
- ► Memory required on GPU (minibatch processed as whole)
- Accuracy of gradient estimate

Minibatch gradients are noisy estimates

- Gives gradient descent ability to escape critical points
- Can improve generalization
- ► Makes gradient descent non-deterministic

Important to sample minibatches randomly

► To break (possible) ordering in training set

Standard approach in practice

- Shuffle training set before every epoch
- Process sequentially in minibatches

Always use minibatch gradient descent

Gradient descent ignores information from previous iterations

► Slows down convergence

Image from [1]

Use exponential moving average of gradients for direction ${\bf v}$

► Influence of older gradients decays exponentially

Improves speed of convergence by

- Dampening oscillations (previous slide)
- Increasing step size dynamically

Iteration of gradient descent with momentum

- Update velocity $\mathbf{v} = \beta \mathbf{v} \alpha \nabla L(\boldsymbol{\theta})$
- ▶ Update parameters $\theta = \theta + \mathbf{v}$

Hyperparameter $\beta \in [0,1)$ called momentum

▶ Defines decay speed and maximum step size

Maximum speedup at constant gradient is $1/(1-\beta)$

Momentum dampens oscillations

Nesterov Momentum

Evaluate gradient at $heta+{f v}$ instead of heta

Iteration of gradient descent with Nesterov momentum

- ▶ Update velocity $\mathbf{v} = \beta \mathbf{v} \alpha \nabla L(\boldsymbol{\theta} + \mathbf{v})$
- ▶ Update parameters $\theta = \theta + \mathbf{v}$

Performance often slightly better than momentum

- Usually good idea to use this variant
- ▶ Setting $\beta = 0.9$ is usually fine

Optimization Revisited Remaining Limitations

Gradient descent step size depends on gradient magnitude

- ► Small gradients, small parameter adjustments
- Problem if gradient magnitudes vary significantly

Makes it impossible to chose α such that

- ▶ We make progress in all directions
- Optimization remains stable

Optimization Revisited Remaining Limitations

Optimization Revisited RMSProp

RMSProp aims to address this limitation

- ► Adapt learning rate for each parameter
- Based on its variance

Update step (initially $\mathbf{n}=\mathbf{0}$)

$$\mathbf{n} = \beta_2 \mathbf{n} + (1 - \beta_2) \nabla^2 L(\boldsymbol{\theta})$$

Adam combines momentum and RMSProp

Update step (initially $\mathbf{m}=\mathbf{n}=\mathbf{0})$

$$\mathbf{m} = \beta_1 \mathbf{m} + (1 - \beta_1) \nabla L(\boldsymbol{\theta})$$

$$\mathbf{n} = \beta_2 \mathbf{n} + (1 - \beta_2) \nabla^2 L(\boldsymbol{\theta})$$

$$\mathbf{m} = \mathbf{m}/(1 - \beta_1^t)$$

$$\mathbf{n} = \mathbf{n}/(1 - \beta_2^t)$$

$$\theta = \theta - \alpha \mathbf{m} / (\sqrt{\mathbf{n}} + \epsilon)$$

Adam works well in many scenarios

- ► Use as default optimizer
- ▶ Defaults for β_1 and β_2 are usually fine
- ▶ Tune α if feasible, or if not ... \odot

3e-4 is the best learning rate for Adam, hands down.

4:01 AM · Nov 24, 2016

Alternatives

Path finding comparison on challenging f

▶ Different learning rates, so speed not comparable

Learning rate α is important with any optimizer

▶ Influences training time & quality of optimization

Studies show α should be varied during training

► To achieve both high speed and quality

Different strategies (schedulers) exist

▶ PyTorch: torch.optim.lr_scheduler module

A simple strategy is to

- ightharpoonup Start with some base learning rate α
- ▶ Set $\alpha = \alpha/n$ if loss no longer decreases significantly
- torch.optim.lr_scheduler.ReduceLROnPlateau
- ightharpoonup Common values for n are 2, 5, 10

Idea is to

- Make fast progress initially (large α)
- ightharpoonup Be more careful later (smaller α)

Most schedulers adapt α based on current epoch count

A popular variant is cosine decay

- lacktriangle Ensures lpha does not decrease too fast initially
- torch.optim.lr_scheduler.CosineAnnealingLR

Warmup can be helpful in combination (e.g. Transformers)

- \triangleright Start with small α
- ► Increase (e.g. linearly) for a few epochs
- ► Then decrease again (e.g. via cosine scheduling)

Cyclic variants also exist

► Repeat above pattern multiple times

Image from github.com/katsura-jp

Always use learning rate scheduling

The ReduceLROnPlateau strategy is a solid default

- ► More intuitive than other variants
- ▶ No knowledge of sensible total epoch count needed

Other strategies may or may not work better

Depends on network architecture, optimizer, data, etc.

Normalization Layers Motivation

Recall that deep networks are prone to vanishing/exploding signals

► Chained multiplications

Normalization Layers

To avoid this we

- Initialize parameters carefully (previous lecture)
- ► Normalize input images

Standard image normalization method

- ► Subtract per-channel mean of training set
- Divide by per-channel standard deviation

This ensures a stable signal only initially though

► Weights change during training

Normalization Layers Motivation

We want normalization built into our networks

- ► By adding normalization layers
- ▶ Batch normalization is most popular method for CNNs

Batch normalization [4] normalizes minibatch statistics

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ , β Output: $\{y_i = \mathrm{BN}_{\gamma,\beta}(x_i)\}$ $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \qquad \text{// mini-batch mean}$ $\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \qquad \text{// mini-batch variance}$ $\hat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \qquad \text{// normalize}$ $y_i \leftarrow \gamma \hat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i) \qquad \text{// scale and shift}$

Normalization Layers

Batch Normalization

Steps (variant for conv layers)

- lacktriangle Estimate per-channel means μ_c and variances σ_c^2
- Using current minibatch to approximate training set
- Normalize each channel as in previous slide
- Multiply channels by γ_c , add β_c

Last step ensures normalization can be skipped if sensible

▶ Identity function if $\gamma_c = \sigma_c$ and $\beta_c = \mu_c$

Normalization Layers

Batch Normalization

Advantages

- ► Well-behaved signals (enables deeper networks)
- ► Smoother loss functions (allows higher learning rates)
- ► Has regularizing effect due to noisy minibatch statistics

Add after every conv and linear hidden layer

- ► Usually before the activation function
- PyTorch: torch.nn.BatchNorm2d (conv version)
- Shuffle training set before every epoch (regularization)

Normalization Layers

Batch Normalization

What about after training?

- ► Inference usually done on single samples
- ▶ Not possible to compute minibatch statistics

Thus these statistics are

- Aggregated during training (moving averages)
- Used after training for normalization

Normalization Layers Layer Normalization

Layer normalization [6] is also popular

- ▶ Normalization done per-sample instead of per-channel
- ► Works with single samples (no moving averages needed)
- Used in Transformers (later) and some modern CNNs

Stick with batch normalization for CNNs though

Layer normalization often performs worse

Normalization Layers Differences (2D Case)

Image from pinecone.io

Normalization Layers

Differences (2D Case)

Image from pinecone.io

We covered training from an optimization perspective

- ► Find parameters that minimize training loss
- ► Known as empirical risk minimization

Prone to overfitting

- Training data must capture underlying distribution well
- Usually not the case in image analysis

Typical example of overfitting

- Training loss decreases steadily
- ► Validation loss remains high (gets worse)

So optimization was successful (loss ≈ 0)

- But disappointing validation/test performance
- Due to ability to generalize well to unseen data

In machine learning our actual goals are

- ► Low training loss (avoid underfitting)
- ► Small gap to validation loss (avoid overfitting)

To (hopefully) achieve this we

- ► Minimize the training loss (we have to)
- ▶ While monitoring training & validation performance
- And combat overfitting

Monitoring losses can be unintuitive

- ► Can be hard to interpret (e.g. cross-entropy loss)
- Training loss can be affected by regularization (next lecture)
- Use suitable performance measures instead (e.g. accuracy)

Best way to improve generalization: more training data

▶ But in practice data are limited

Create meaningful fake training data (training data augmentation)

- ► Apply transformations to training samples
- ► That have no effect on output (e.g. class label)

mage adapted from youtube

Can be done online, no need to store transformed samples

► Apply transformations during minibatch generation

Common transformations

- ► Random cropping
- ightharpoonup Horizontal mirroring with probability 0.5
- Random similarity or affine transforms
- Random contrast, brightness, sharpness changes

PyTorch: torchvision.transforms

Mixup is a powerful extension

► Randomly mix two training images and their labels

Image adapted from towardsdatascience.com

Optimization vs. Machine Learning Regularization

To avoid overfitting we have two options

- ▶ Use a network with just enough capacity not to overfit
- Prevent a network with more capacity from overfitting

Option 2 is always preferred in practice

- Leads to better performance
- ▶ We will see how to implement this in next lecture

Bibliography

- [1] Goodfellow et al. Deep Learning. 2016
- [2] Prince. Understanding Deep Learning. 2023
- [3] Wu & He. Group Normalization. 2022
- [4] loffe & Szegedy. Batch Normalization. 2015
- [5] Srivastava et al. Dropout. 2014
- [6] Lei Ba et al. Layer Normalization. 2016

