## How to Form Bags in Batch Steganography

Eli Dworetzky, Jessica Fridrich

IEEE WIFS 2024



# **Batch steganography**

## Alice / steganographer

- Spreads payload across multiple covers (or bag of images)
- Useful when payload cannot fit within one image

### Warden / Eve

- Inspects the entire bag (pooled steganalysis)
- Applies a single-image detector (SID) to all images
  - E.g. SRNet, rich models, etc.
- "Pools" the SID outputs to decide if the bag is cover or stego

# Practical question: how to form the bag?

Alice has a fixed payload to communicate

- What kind of images should she use?
- 2 How many images should she use?

# Alice uses source biasing

#### Source biasing

- Alice samples covers from the cover source with a bias towards harder-to-steganalyze images
- Alice gains security when biasing optimally
- Warden tests for a deviation in cover source by considering the joint statistical impact of steganography and biasing

E. Dworetzky, E. Kaziakhmedov, J. Fridrich, "Improving Steganographic Security with Source Biasing", 12th IH&MMSec. Workshop, Vigo, Spain, June 24-26, 2024.

- We will utilize the model proposed in this prior work
- Prior work studied fixed rate we now have a fixed payload

# Alice's goal

Given a fixed payload, Alice wants to choose bag size n so that

$$P_{\mathrm{D}} \leq \widetilde{P}_{\mathrm{D}}$$
 and  $n \leq n_{\mathrm{max}}$ 

- ullet  $\widetilde{P}_{
  m D}$  maximal tolerable detectability by Warden's (pooled) detector
- $n_{\rm max}$  bandwidth limit
- ullet Alice's optimal source biasing strength is a function of n

## **Outline**

- Formal setup of batch steganography / pooled steganalysis
- High level overview of the model
- Two benefits of source biasing: Bias gain and bandwidth savings
- Confirmation by experiments on ALASKA II dataset
  - Bias gain and bandwidth savings observed in practice

## Batch stego setup

#### **Alice**

- Payload is  $\alpha C$  bits,  $\alpha > 0$ , where C is capacity of each cover
  - ullet Ternary embedding:  $C = \log_2 3 imes$  number of pixels
- $\bullet$   $[\alpha]$  is the smallest number of images needed to fit the payload
- Independently samples a bag of n covers of fixed size from  $\mathcal{X}$ ,  $\mathbf{X} = (X_1, \dots, X_n), \ n \geq \alpha$
- Embeds  $\alpha_i C$  bits in  $X_i$ ,  $\sum_{i=1}^n \alpha_i = \alpha$ ,  $0 \le \alpha_i \le 1$
- ullet Her spreading strategy determines the  $lpha_i$

#### Warden

- Has a SID  $d: \mathcal{X} \to \mathbb{R}$  and a pooler  $\pi: \mathbb{R}^n \to \mathbb{R}$
- Given a bag of n images  $\mathbf{Y}=(Y_1,\ldots,Y_n)$ , Warden's detection statistic is  $\pi(d(Y_1),\ldots,d(Y_n))$

## **Detector-centric approach**

We model the effect of embedding and model the source itself through soft outputs of the SID  $\it d$ 

- Permits formulating steganalysis and source biasing jointly through a single hypothesis test
  - Closed-form ROC of Warden's optimal pooler (LRT)
- Model parameters can be estimated in practice
- We observe a close match between model and experiments on real datasets

# Source model and biasing

Alice's cover source  ${\mathcal X}$  has only two types of images: Hard & Easy

When sampling from  $\mathcal{X}$  (no bias), for each i

- ullet  $X_i$  is hard with probability p
- ullet  $X_i$  is easy with probability 1-p

#### Alice's bias

ullet Selects hard images with probability  $q \geq p$ 

# Insight from the model: bias gain



# Insight: bandwidth savings



# Biasing and spreading in practice

## Given bag $(X_1, \ldots, X_n)$

 $\bullet$  Alice estimates the difficulty of each image by seeing how her own detector  $d^{\rm (A)}$  reacts to embedding

## Biasing:

- ullet Done by inverse transform sampling modified with a parametric model with parameter q
- $ullet \ q=1$  corresponds to unbiased sampling, q>1 biased

#### Greedy spreader:

- Orders images by difficulty
- Starting with the most difficult, she embeds fully with HILL one by one
- ullet  $\alpha$  images will be embedded,  $n-\alpha$  will be empty

## **Experiments on ALASKA II**

### ALASKA II (75k grayscale images) divided into four subsets

- 23k used for training Alice's detector
- 23k used for training Warden's detector and 10k for pooler
- 19k used for evaluation
- $\bullet$  Both detectors SRNets, JIN pre-trained, refined on HILL with uniform payloads on  $[0,\log_23]$

#### Warden's Pooler

• Trained as random forest on 2n+2 dim. feature extracted from bag  $(X_1,\ldots,X_n)$ 

# **Experiments on ALASKA II**



# **Experiments on ALASKA II**



## **Conclusions**

Selecting covers with an optimal bias, Alice benefits in terms of

- ullet Lower detection probability  $P_{
  m D}$  at the same bag size n
- ullet Smaller bag size n at the same  $P_{
  m D}$

What kind of images should Alice use?

• Difficult cover images...but not a suspiciously high ratio of them

How many images should Alice use? Depending on her preferences

- As many as she can within her bandwidth constraint
- Just enough to achieve a desired detectability if bandwidth is costly
- ...or somewhere in between