Esercizio Statistica: 09/05/2019

Sia data la seguente variabile aleatoria bivariata discreta:

	-3.35	-0.51	0.37	4.32	
-2.68	9K	12K	5K	3K	29K
3 56	ZK	10 K	7K	8K	27K
3.88	11K	6 K	4K	11	22K
	ZZK	Z8K	16K	12K	78K

Dove sulle vighe abbienso la variabile X e sulle colonne la variabile Y

1-Calcolare la costante K che deue essere utilizzata per vendere la tabella una funzione di probabilità congiuntà.

La somma per righe e colonne della tabella deve essere 1

Dunque: 9K + 12K + 5K + 3K + 2K + 10K + 7K + 8K + 11K + 6K + 4K + 1K = 1

Equivalentemente la somma delle probabilità marainali deve fare 1:

	-3.35	-0.51	0.37	1.32	
-7.68	4178	12/78	5/78	3/78	29/78
3.56	2/78	10178	7/78	8618	27/78
3.88	11/78	6/78	4/78	1/78	22/78
	22/78	28/78	16/78	17/78	1

Z-Calcolare la distribuzione di probabilità marginale di X. Determinare Pr (X = -2.68)

$$P_{V}(X \le -2.68) = P_{V}(X = -2.68) = 9K + 12K + 5K + 3K$$

= 29 K = $\frac{29}{78} \approx 0.3717948748$

Acclare la distribuzione di probabilità marginale di Y. Determinare P(Y > -3.35) $P_Y(Y > -3.35) = P_Y(Y = -0.51) + P_Y(Y = 0.37) + P_Y(Y = 1.32)$ $\frac{28}{78} + \frac{16}{78} + \frac{12}{78} = \frac{56}{78} = \frac{28}{39} \simeq 0.7179487179$ $= 1 - P_Y(Y = -3.35) = 1 - \frac{22}{78} = \frac{56}{78}$

4 - Calcolore il valore atteso condizionato IE(X/Y = -0.51)

	15				
		-3.35	-0.51	0.37	1.32
8 2	- 2.68	9/22	17/28	5/16	3/12
	3.56	2/22	10/28	7/16	8/12
55	3.88	11/22	6/28	4/16	1/12
		1	1	1	1

$$\mathbb{E}(X|Y=0.51) = \sum_{x \in Rx} x \cdot Pxiy(x|y) = \sum_{x \in Rx} x \cdot \frac{Pxiy(xiy)}{Py(y)}$$

$$= \left(-2.68 \cdot \frac{12}{28}\right) + \left(3.56 \cdot \frac{10}{28}\right) + \left(3.88 \cdot \frac{6}{28}\right)$$

$$= \left(-\frac{268}{400} \cdot \frac{12}{28}\right) + \left(\frac{356}{100} \cdot \frac{10}{28}\right) + \left(\frac{388}{400} \cdot \frac{6}{28}\right)$$

$$= -\frac{3216}{2800} + \frac{3560}{2800} + \frac{2328}{2800} = \frac{2672}{2800} = \frac{167}{175} \approx 0.454285744$$

5-Determinare la vanianza con dizionata War (YIX = -2.68)

	- 3.35	-0.51	O.37	1.32		e e
- 2.68	9/29	12/29	5/29	3/24	1	PYIX (YIX)
3.56	7127	10127	7/27	8/27	1	
3.88	11/22	6/22	4/22	1122	1	
h						+

 $Vor(Y|X = -2.68) = E(Y^2|X = -2.68) - E[(Y|X = -2.68)^2]$

$$|X| = -2.68 = \sum_{y \in R_1} y \cdot p_{y|x}(y|x) \longrightarrow \sum_{y \in R_2} y \cdot \frac{p_{x,y}(x,y)}{p_{x}(x)}$$

$$= (-3.35) \cdot \frac{q}{2q} + (-5.6) \cdot \frac{12}{2q} + (3.36) \cdot \frac{5}{2q} + (4.32) \cdot \frac{3}{2q}$$

$$= (-3.35) \cdot \frac{q}{2} + (-5.6) \cdot \frac{12}{2q} + (3.36) \cdot \frac{5}{2q} + (4.32) \cdot \frac{3}{2q}$$

$$= \frac{.3045}{2400} - \frac{642}{2400} + \frac{185}{2900} + \frac{396}{2900}$$

$$= -\frac{3046}{2900} = -\frac{4523}{1460} \simeq -1.050344827$$

$$= (-3.35) \cdot \frac{q}{2q} + (-5.1)^2 \cdot \frac{12}{2q} + (3.37)^2 \cdot \frac{5}{2q} + (4.32)^2 \cdot \frac{3}{2q}$$

$$= (-3.35) \cdot \frac{q}{2} + (-5.1)^2 \cdot \frac{12}{2q} + (3.37)^2 \cdot \frac{5}{2q} + (4.32)^2 \cdot \frac{3}{2q}$$

$$= (-3.35) \cdot \frac{q}{2} + (-5.1)^2 \cdot \frac{12}{2q} +$$

$$V_{X}(Y|X=-2.68) = \frac{100354}{290000} + \frac{31212}{290000} + \frac{6845}{290000} + \frac{52272}{290000}$$

$$= \frac{1100354}{290000} = \frac{550177}{145000} \approx 3.7945241379$$

$$= \frac{1100354}{290000} - \left(\frac{-3046}{29000}\right)^{2}$$

$$= \frac{1100354}{290000} - \frac{9278416}{8410000}$$

$$= \frac{31910266 - 9278416}{8410000} = \frac{22632150}{8410000} = \frac{452643}{168200} \approx 2.694099$$