MRP is a tuple \((S, P, R, \gamma)\), where \(S\) is the set of states \(P\) is 2-dimensional transition matrix \(R\) is a reward function defined as \(R=E[r_{t+1}|S_t=s]\), that is collected upon leaving a the state \(s\), i.e. at time step \(t+1\) \(\gamma\) is the discount factor ## Return - Total discounted reward at from time step \(t\)

Value

The aggregated return for a given state can be thought of as its 'value'

(v(s)=E[R t|S t=s])

Bellman Equation for MRP

 $$$ \left[\left| a \right| \right] \le E[r_{t+1} + \gamma r_{t+2} + \gamma r_{t+3} + cdots | S_t = S \right] \le E[r_{t+1} + \gamma r_{t+2} + \gamma r_{t+3} + cdots | S_t = S \right] \le E[r_{t+1} + \gamma r_{t+3} + cdots | S_t = S \right]$

The transition from (1) to (2) uses the Tower rule and in essence the conditional in the inner expected value will be averaged out/canceled out so it's value does not matter. Therefore it is more useful to use the value of the next state $\$ (s $\{t+1\}\$)

See proof: https://chat.openai.com/share/77adb96c-1d17-4fca-8d88-91792567c997

Different Notation

Sum notation (written out)

 $[v(s)=R s+\gamma] = s+\gamma v(s')$

This can be analytically solved: $\$ [\begin{align*} v&=R+\gamma Pv\ v-\gamma Pv &= R\\ v(\mathbb{1}-\gamma P) &= R\\\ v&=(\mathbb{1}-\gamma P)^{-1}R \end{align*}\] \$\$ Matrix inversion however has a complexity of \(O(n^3)\) and therefore works only for small MRPs

Policy (π)

MRP helps us observe the state space and figure out the value of each state. In order to actually influence the environment and take actions a policy π is introduced.

A policy could either be deterministic and non-deterministic.