

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁵ : C12N 1/11, 1/15, 5/10, 15/12		A1	(11) International Publication Number: WO 94/25565 (43) International Publication Date: 10 November 1994 (10.11.94)
(21) International Application Number: PCT/US94/04540		(81) Designated States: CA, JP, US, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).	
(22) International Filing Date: 25 April 1994 (25.04.94)		Published <i>With international search report.</i>	
(30) Priority Data: 08/052,560 23 April 1993 (23.04.93) US			
(71) Applicant (for all designated States except US): ARIAD PHARMACEUTICALS, INC. [US/US]; 26 Landsdowne Street, Cambridge, MA 02139 (US).			
(72) Inventors; and			
(75) Inventors/Applicants (for US only): BRUGGE, Joan [US/US]; 50 Sarah Way, Concord, MA 01742 (US). MORGANSTERN, Jay [US/US]; 322 Marlborough Street, Boston, MA 02116 (US). SHIUE, Lily [US/US]; 9 Laurel Street, Cambridge, MA 02139 (US). ZYDOWSKY, Lynne [US/US]; Apartment #410, 10 Rogers Street, Cambridge, MA 02142 (US). ZOLLER, Mark [US/US]; 7 Sutton Place, Weston, MA 02193 (US). PAWSON, Anthony [CA/CA]; 34 Glenwood Avenue, Toronto, Ontario M6P 3C6 (CA).			
(74) Common Representative: BERSTEIN, David, L.; Ariad Pharmaceuticals, Inc., 26 Landsdowne Street, Cambridge, MA 02139 (US).			

(54) Title: HUMAN SYK

(57) Abstract

The molecular cloning of human syk DNA, compositions containing same and uses thereof are disclosed.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	IT	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgyzstan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic of Korea	SD	Sudan
CG	Congo	KR	Republic of Korea	SE	Sweden
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LU	Luxembourg	TD	Chad
CS	Czechoslovakia	LV	Latvia	TG	Togo
CZ	Czech Republic	MC	Monaco	TJ	Tajikistan
DE	Germany	MD	Republic of Moldova	TT	Trinidad and Tobago
DK	Denmark	MG	Madagascar	UA	Ukraine
ES	Spain	ML	Mali	US	United States of America
FI	Finland	MN	Mongolia	UZ	Uzbekistan
FR	France			VN	Viet Nam
GA	Gabon				

Human syk**Background of the Invention**

5

Hypersensitivity is the term applied when an adaptive immune response occurs in an inappropriate or exaggerated form causing tissue damage. Specifically, Type I, or immediate hypersensitivity occurs when the immune response is directed against antigens, such as pollen or house dust mite fecal particles. This Type I response is mediated through immunoglobulin E (IgE) interaction with mast cells and basophils. (IMMUNOLOGY, Roitt, I. M., *et al.*, (eds.) C. V. Mosby Co., St. Louis, MO, pp. 19.1-19.20 (1989)).

Mast cells and basophils express the high affinity Fc receptor for IgE, designated polyvalent Fc ϵ RI. Once IgE binds to the Fc ϵ , subsequent binding of allergen to the IgE molecules causes the receptors to cross-link, triggering the release of cytoplasmic secretory granules containing histamine, and other pharmacological mediators which produce an acute immune reaction (e.g., asthma, dermatitis or rhinitis).

The Fc ϵ RI receptor is a complex of three protein subunits, the α , β and γ subunits. The β and γ subunits have an intracellular domain termed a "tyrosine activation motif" or TAM. TAM motifs and related tyrosine-containing motifs are found on a number of growth factor and primary immune response receptors. Phosphorylation of these motifs by protein tyrosine kinases is thought to play an integral role in receptor activation and cellular signal transduction. (Reth, M., *Nature* 338:383-384 (1989); Koch, C. A., *et al.*, *Science* 252:668-674 (1991); Samuelson, L.E., and Klausner, R.D., *J. Biol. Chem.* 267:24913-24916 (1992)). It has also been shown that a second group of intracellular tyrosine kinases become physically associated with the activated (phosphorylated) receptors and are likely targets of receptor activity (i.e., phosphorylation by the receptor). Phosphorylation of these "second group" proteins initiates additional intracellular signal transduction events which activate biochemical processes within the cell. (Chan, A.C., *et al.*, *Cell* 71:649-662 (1992); Chan, A.C., *et al.*, *Curr. Opin. Immunol.* 4:246-251 (1992); Courtneid, S.A., *et al.*, *Cell Growth Differentiation* 2:483-486 (1991)).

Thus, the protein-protein interaction of activated receptor protein and intracellular kinase protein plays a critical role in intracellular signal pathways. When these pathways are activated inappropriately, such as when the immune system responds to pollens and other allergens, upper respiratory symptoms of allergic

rhinitis, wheezing and respiratory distress result. In a severe allergic reaction, life-threatening anaphylaxis can occur.

Currently, treatment of allergies includes avoidance of the allergen, such as the removal of pets from the home or the installation of elaborate air filtration systems to minimize airborne allergens. However, complete removal may be difficult such as when the allergen is ubiquitous as in the case of pollen and dust mites.

Pharmacological agents, such as anti-histamines and steroids may also be used in treatment. However, these drugs often produce unwanted side effects, such as drowsiness and gastrointestinal distress. When complete removal of the allergen is impossible, and the allergy cannot be managed with drugs, hyposensitization therapy may be tried. Hyposensitization consists of repeated subcutaneous injections of gradually increasing doses of the responsible allergen. However, hyposensitization therapy is a painful and time-consuming process with unpredictable results.

(HARRISON'S PRINCIPLES OF INTERNAL MEDICINE, 12th ed., Wilson, J. D., et al., eds., McGraw-Hill, Inc., New York, NY, pp. 1422-1428 (1991)). A significant need exists for materials useful in the design, screening and/or evaluation of effective therapeutic or preventive agents and methods for inhibiting inappropriate or exaggerated response of the immune system to allergens.

20 Summary of the Invention

This invention relates to DNA encoding the human form of the protein tyrosine kinase SYK.

In our model, human Syk protein (p72^{syk}, hereinafter "Syk") binds to an IgE receptor protein via one or both of the Syk SH2 domains, and thus plays a key role in a signal transduction pathway resulting in mast cell and basophil degranulation and related events. Mast cell and basophil degranulation leads to the release of histamine and other mediators leading to inappropriate or exaggerated immune responses, such as allergic responses, inflammatory responses and asthma.

Our invention encompasses an isolated DNA molecule encoding part or all of the N-terminal portion of human Syk spanning Met-1 up to Gly-180 of SEQ ID NO:2 and allelic variants thereof. ("Isolated" as the term is used herein means removed or separated from materials with which it is normally associated in nature. An isolated DNA molecule thus comprises a cloned DNA sequence separated from other sequences with which it is normally associated, e.g. in a genome or genetic library.) Such isolated DNA molecules of this invention include molecules comprising part or all of the human *syk* nucleotide sequence spanning A-1 through A-540 of SEQ ID NO:1, or allelic variants thereof.

The isolated DNA molecules of this invention may extend beyond A-540, and include by way of example, DNA molecules comprising the human *syk* nucleotide sequence of SEQ ID NO:1 and allelic variants thereof.

- 5 A DNA molecule containing the nucleotide sequence of SEQ ID NO:1 or an allelic variant thereof may be cloned as described herein, cloned by other methods using the information disclosed herein, synthesized (e.g. by ligation of overlapping synthetic oligonucleotides), excised from our vector pBS (ATCC Accession No.), or combinations of the foregoing.

10 The DNA sequence depicted in SEQ ID NO:1 was isolated by the mixed oligonucleotide primed amplification of cDNA method (MOPAC). The procedure was carried out in two steps. The first MOPAC step was carried out on a cDNA library obtained from human Daudi cells with degenerate oligonucleotide primers derived from the DNA sequence of the porcine Syk protein described in Taniguchi, T. et al., *J. Biol. Chem.*, 266:15790-15796 (1991). This step resulted in the isolation of a 15 cDNA clone with a cDNA insert containing partial human *syk* cDNA sequence.

20 The second MOPAC step was carried out on human basophil cDNA using oligonucleotides derived from both the porcine *syk* and the human *syk* partial cDNA sequences. This step also resulted in a partial cDNA sequence. A contiguous human *syk* cDNA sequence was assembled and cloned resulting in a cDNA insert of 1893 base pairs (SEQ ID NO:1).

In addition to the sequence of SEQ ID NO:1 we have also identified a number of allelic variants containing the following nucleotide substitutions: T-6, C-15, C-18, C-22, C-1050, G-1287 and G-1323. These and other allelic variants of the nucleotide sequence of our SEQ ID NO:1 are encompassed by this invention.

25 Our invention further includes recombinant DNA constructs consisting of DNA molecules containing the DNA sequence of one of our human *syk* DNA molecules mentioned above and heterologous DNA. "Heterologous" as the term is used herein means DNA (or amino acid) sequence from a different source or origin relative to the sequence in question. Heterologous sequence may thus originate from a 30 non-human source or from human DNA or human peptide sequence not normally or naturally associated with the sequence in question. The heterologous DNA may be directly linked to a human *syk* DNA sequence of this invention to encode a fusion protein or peptide (the terms "protein" and "peptide" are used interchangeably herein) containing human Syk peptide sequence linked via peptide bond to 35 heterologous peptide sequence.

Illustrative vectors and associated methodologies useful for making and using fusion proteins which are suitable for use with the human *syk* DNA molecules of this

invention include the well known pGEX vectors for GST fusion proteins (see Smith and Johnson, 1988, Gene 67: 31-41), the pRIT2T Protein A Gene Fusion Vector (Nilsson et al, 1985, EMBO J. 4: 1075), the pEZ2 18 Protein A Gene Fusion Vector (Löwenadler et al, 1987, Gene 58:87; Nilsson et al, 1987, Prot Engineering 1:107; 5 Nilsson et al, 1991, Methods Enzymol 198:3) and teh pMC1871 bbeta-galactosidase Fusion Vector (See e.g., Shapiro et al, 1983, Gene 25:71 and Casabandan et al, 1983, Methods Enzymol 100:293).

Recombinant DNA constructs also include, among others, DNA cloning and expression vectors containing a human *syk* DNA molecule of this invention and 10 heterologous DNA. The heterologous DNA may include one or more DNA sequences encoding selectable or amplifiable markers, origins of replication, transcriptional control elements (promoter and enhancer sequences) and/or other conventional vector elements. Numerous examples of expression vectors for corresponding host cell types (bacterial, yeast, mammalian, insect, etc.) are well known in the art and have been 15 commercially available for several years. Such vectors containing human *syk* DNA of this invention may be transfected into host cells using known methods. Transfectants may be selected and may be cultured in order to produce the protein encoded by the human *syk* DNA or construct of this invention.

The human Syk protein so obtained (or truncated or fusion proteins containing 20 part or all of the human Syk peptide sequence) may be structurally characterized and so used in the design of compounds capable of inhibiting its signal transducing function. Such materials may also be used in binding assays to identify compounds 25 capable of binding to Syk and thereby interfering with the normal interactions of Syk with other proteins with which Syk can become associated. Human Syk, a potent tyrosine kinase, may also be used as an enzymatic reagent to catalyze the phosphorylation of tyrosine-containing peptides or proteins. In addition, oligonucleotide primers based on the nucleotide sequence of our SEQ ID NO:1 of may be used in diagnostic PCR procedures to identify cells which are expressing Syk or to 30 identify mutations in Syk, e.g. in biopsy or pathology samples.

The present invention also relates to the recombinantly produced protein 35 encoded by the human *syk* cDNA sequence. The cDNA insert of the clone described above was sequenced to confirm the open reading frame and the amino acid sequence was deduced. The deduced protein has a sequence of 630 amino acids (SEQ ID NO:2) and a calculated M_r of 72,000. The protein encoded by the human *syk* cDNA sequence contains two src homology region 2 domains (hereinafter SH2 domains) and one tyrosine kinase domain.

The invention also relates to the use of the recombinantly produced Syk protein, or Syk SH2 domain sequences, or fusion proteins, as research reagents to be used in structure-based drug design to develop TAM mimics or other phosphopeptides or other substances which can interfere with the signal transduction cascade of events leading to allergic responses. The Syk protein, or its SH2 domains, can also be used to develop *in vitro* binding assays to test the TAM mimics, or other peptides, for activity for subsequent use in the methods described herein.

Brief Description of the Drawings

10 Figure 1A and 1B shows the oligonucleotide sequences used in the isolation and cloning of the human *syk* cDNA.

Figure 2 is a schematic representation of the three-part ligation used to assemble the full-length human *syk* cDNA.

15 Detailed Description of the Invention

Human *syk* DNA was isolated and cloned as described in detail in Example 1. The mixed oligonucleotide primed amplification of cDNA (MOPAC) PCR method of Lee, C. C., et al. (*Science*, 1288-1291 (1988)) is the method described herein. However, other standard methods of molecular cloning can also be used.

20 The MOPAC PCR method of cloning the human *syk* cDNA was performed in two steps. The first step was carried out on a cDNA library obtained from commercially available human Daudi cells (Burkitt's lymphoma cells). Degenerate oligonucleotide primers for the PCR reactions of the first step were derived from the cDNA sequence of the porcine Syk protein described in Taniguchi, T. et al., *J. Biol. Chem.*, 266:15790-15796 (1991). As described in detail in Example 1, this first step resulted in the isolation of a *syk* cDNA clone with an insert containing a partial sequence of human *syk*.

When it became apparent that the Daudi cell library did not contain a full length *syk* cDNA clone, PCR was performed using a human basophil cDNA as a template in a second series of PCR reactions, also described in detail in Example 1. A contiguous human *syk* cDNA was assembled via a three-part ligation and transformed into competent bacteria, as described in Example 1 and depicted in Figure 2. A plasmid, pBS SK(-) hu *syk*, was subjected to DNA sequencing analysis to confirm that the correct open reading frame of 630 codons for human Syk was present. The nucleotide sequence of the cDNA, 1893 base pairs, is identified in SEQ ID NO:1. The deduced amino acid sequence of human Syk is also shown in SEQ ID NO:2. The sequence has 630 amino acids with an M_r of approximately 72,000.

The deduced human Syk protein sequence exhibits homology with the porcine Syk protein sequence described in Taniguchi, T. et al., J. Biol. Chem., 266:15790-15796 (1991). Neither deduced amino acid sequence contains a ligand binding or membrane-spanning region, suggesting that the Syk protein is not associated with the cell
5 membrane (i.e., a non-receptor protein). However, both human and porcine Syk contain two src homology region 2 domains (SH2 domains), one at the N-terminal (SH2_N) and one at the C-terminal (SH2_C) and one protein tyrosine kinase domain.

Src homology region 2 (SH2) domains are noncatalytic domains that are conserved among a series of cytoplasmic signaling proteins regulated by receptor
10 protein tyrosine kinases (Koch, C.A., et al. Science 252:668-674 (1991)). The SH2 domain contains approximately 100 amino acids and was first shown to be a nonkinase domain conserved between the src and fps gene products. (Songyang, Z., et al., Cell 72:767-778 (1993)). Now, more than 20 cytosolic proteins likely to be involved in signaling events have been shown to contain SH2 domains. (Songyang, Z.,
15 et al., Cell 72:767-778 (1993)). The SH2 domains of these signaling proteins bind tyrosine phosphorylated polypeptides in a sequence specific manner.

Tyrosine phosphorylation of a receptor, (i.e., activation of a receptor) acts as a switch to induce the binding of these signaling protein kinases via their SH2 domains, thereby mediating the formation of heteromeric protein complexes at, or near, the
20 plasma membrane. The formation of these complexes is thought to control the activation of intracellular signal transduction pathways. (Koch, C.A., et al. Science 252:668-674 (1991)).

A number of primary immune response receptors on T cells and B cells, and the IgE receptor on mast cells and basophils share a common amino acid motif present
25 in their cytoplasmic tail. (Samuelson, L.E. and Klausner, R.D., J. Biol. Chem. 267:24913-24916 (1992); Reth, M., Nature 338:383-384 (1989)). This common motif, 18-27 amino acids long, has been termed the "tyrosine activation motif" or TAM.

The function of the TAM motif has been studied for the T cell receptor (TCR). (Romeo, C. et al., Cell 68:889-897 (1992)). Activation of the TCR by antigen results in
30 crosslinking of TCR ζ subunits, leading to phosphorylation of a TAM in the TCR by a protein kinase. The phosphorylation of TAM motifs is believed to be critical for TCR activation because of evidence that the substitution of a phenylalanine residue for either tyrosine residue in the TAM motif of the ζ subunit of the TCR blocked T cell activation of IL-2 production. (Letourneur, F. and Klausner, R.D., Science 255:79-82
35 (1992)).

After phosphorylation, the activated TCR has been shown to be associated with a 70 kD protein tyrosine kinase, termed ZAP-70, which also undergoes

subsequent phosphorylation. (Chan, A. C., *et al.*, *Cell* 71:649-662 (1992). It is believed that assembly of the ZAP-70 protein-TCR complex, via the ZAP-70 SH2 domains interaction with phosphorylated TCR TAM motifs, results in additional levels of regulation of TCR signaling. (Chan, A. C., *et al.*, *Cell* 71:649-662 (1992).

5 It has also been shown that activation of rat basophil leukemia cells (RBL cells) by antigen cross-linking of IgE molecules bound to the IgE receptor (Fc ϵ RI) results in rapid and sustained activation of tyrosine phosphorylation of multiple RBL proteins. (Benhamou, M.V., *et al.*, *J. Biol. Chem.* 267:7310-7314 (1992); Li, W., *et al.*, *Mol. Cell Biol.* 12:3176-3182 (1992)). Two protein tyrosine kinases have been
10 implicated in these phosphorylation events. The first kinase, lyn, is a protein tyrosine kinase belonging to the family of src protein kinases. (Wiseman, E., and Bolen, J.B., *Nature* 355:78-80 (1992); Seidel-Dugan, C., *et al.*, *Mol. Cell Biol.* 12:1835-1845 (1992)). Lyn is activated (phosphorylated) transiently (1-5 min) following antigen incubation and appears to co-precipitate with the IgE receptor in immunoprecipitation
15 experiments.

A second protein tyrosine kinase, Syk, has been shown to be activated after IgE receptor crosslinking with antigen and is associated in a complex with the IgE receptor (Hutchcroft, J.E., *et al.*, *Proc. Natl. Acad. Sci. USA* 89:9107-9111 (1992)). In our model, Syk binding to the IgE receptor is mediated by binding to phosphorylated
20 TAM motifs in the β or γ subunit of the IgE receptor. Assembly of this human Syk protein-IgE receptor complex results in regulation of IgE receptor signaling, such as mast cell degranulation.

In our model, lyn phosphorylates the tyrosine residues of the TAM motifs of the β and γ subunits of the IgE receptor. Syk then binds to the phosphorylated TAM motifs through its SH2 domains. Activation (i.e., phosphorylation) of Syk can be mediated by this binding, by lyn phosphorylation, or another mechanism. In any event, the assembly of a Syk protein-IgE receptor complex, via the syk SH2 domains interaction with the IgE receptor TAM, results in additional levels of regulation of IgE receptor signaling.
25

30 Inhibition of the interaction of Syk and the IgE receptor, e.g. via the Syk SH2 domains and the receptor phosphorylated TAM motif, interrupts the cascade of signaling events leading to mast cell or basophil degranulation, allergic responses, inflammatory responses or any other inappropriate or exaggerated immune response.

For example, molecules that specifically interfere with the interaction of the
35 syk SH2 domain and the TAM motif would mimic the structure of the TAM binding site (peptide mimics), and bind to the SH2 domain of Syk, thereby preventing Syk

from binding to TAM on the receptor and, thus, preventing, reducing, or completely eliminating the response of the receptor to the stimuli.

TAM motifs from different receptor subunits appear to specifically activate distinct biological responses in different cell types. Therefore, TAM mimics are designed to mimic the TAM motifs of specific receptors. For example, the TAM motif of the ζ subunit on the T cell receptor is different from the TAM motif on the β and γ subunits on the IgE receptor of mast cells. Thus, a TAM mimic for the TCR TAM would not be as effective in inhibiting the binding of Syk to the IgE receptor.

In one embodiment, the activation of mast cells and basophils leading to degranulation, is inhibited with a peptide which mimics a phosphorylated TAM of the β or γ subunit of the IgE receptor. Such TAM mimics can be synthesized according to the methods disclosed in U.S.S.N. 08/013,414, the teachings of which are incorporated herein by reference.

The TAM mimics can inhibit the activation of mast cells and basophils by blocking the association of the Syk protein with the activated IgE receptor. They mimic the phosphorylated TAM on the IgE receptor and bind directly to the SH2 domain of the Syk protein. Thus, the TAM mimics act as competitive antagonists.

The TAM mimics used in the methods described herein can be peptides (comprised of natural and non-natural amino acids) or can be peptide analogs (comprised of peptide and non-peptide portions). All TAM mimics used in these methods have specific characteristics pertaining to biological activity. These characteristics include the ability of the phosphotyrosine residues, to bind to the SH2 domain of Syk, and retention of a biologically active conformation.

The TAM mimics used in the methods described herein include at least five amino acid residues and generally have a sequence in the range of 15-39 amino acid residues. However, longer mimics can be used (e.g., up to the total length of an SH2 domain which is characteristically approximately 100 amino acid residues) if they have the desired characteristics described above. Shorter mimic sequences would have the distinct advantage that they exhibit lesser charge than longer sequences which would facilitate membrane penetration and cell entry. Shorter mimics would also be less susceptible to enzymatic degradation and less subject to the conformational constraints required for biological activity.

Although the methods described herein preferably use TAM mimics, peptide and peptide analog mimics of the SH2 domains of the Syk protein can also be used in the methods described herein. The SH2 mimic would also block the association of the Syk protein with the activated IgE receptor as a competitive antagonist, thus,

inhibiting mast cell degranulation or other inappropriate or exaggerated immune responses.

TAM mimics and SH2 mimics can be screened for biological activity (i.e., the ability to block the association of syk with the activated receptor) using art-
5 recognized in vitro assays. For example, peptide capture assays can be used in which recombinant SH2 domains (for TAM mimic screening) or TAM sequences (for SH2 screening) are immobilized in plastic microtiter wells. Labeled non-phosphorylated or phosphorylated peptides are then added to these wells, and incubated under conditions sufficient for binding to take place. Unbound labeled peptide is then
10 removed and the amount of bound peptide is determined. The TAM or SH2 mimics exhibiting the highest per cent binding to bound peptide have the greatest potential for use in the methods described herein.

Biospecific Interaction Analysis (BIA) in real time can also be performed to evaluate biological activity. Surface plasmon resonance (SPR), which is the basis for
15 BIA measurements, is an optical phenomenon arising in metal films under conditions of total internal reflection. The phenomenon produces a sharp dip in the intensity of reflected light at a specific angle. The position of this resonance angle depends on several factors, including the refractive index of the medium close to the non-illuminated side of the metal film. Refractive index is directly related to the
20 concentration of dissolved material in the medium. By keeping other factors constant, SPR is used to measure changes in the concentration of macromolecules in a surface layer of solution in contact with a dextran-coated gold film. As described in detail in Example 2, using the BIACore™ instrument from Pharmacia Biosensor AB, the association and dissociation rate constants for a peptide binding to the SH2 domain
25 of a protein kinase, PI3K, have been measured. The association and dissociation rate constants for peptide mimics binding to SH2 domains of Syk can also be measured under similar conditions. Peptide mimics exhibiting higher association constants (K_a) have the greatest potential for use in the methods described herein.

In particular, mast cell or basophil degranulation assays can be used to
30 measure in vitro activity of TAM or SH2 mimics. The release of histamine, the release of beta-hexosaminidase, the release of cytokines and/or increased phosphatidylinositol hydrolysis or tyrosine phosphorylation can be detected in in vitro assays as an indication of biological activity. (Stephan, V.M., et al., J. Biol. Chem. 267:5434-5441 (1992)). For example, histamine release can be measured by
35 radioimmunoassay using a kit available from AMAC Inc. (Westbrook, ME).

A known mast cell/basophil degranulation assay is described in detail in Example 3. Briefly, mast cells and basophils express the FcεRI receptor on their cell

surface. This receptor binds the Fc portion of IgE antibody with high affinity. Binding of multivalent antigens activates the process that leads to degranulation (the release of preformed secretory granules) and the stimulation of the production of a number of cytokines. The assay has two variations: an intact cell assay and a permeabilized cell
5 assay. For testing peptides and small molecules where membrane permeability is questionable, the cells are permeabilized using streptolysin O. Tyrosine kinase inhibitors, such as leflunomide and its active metabolite, A771726, vanadate and genistein, are used as controls to establish whether known inhibitors of mast cell degranulation show inhibitory activity. Thus, if a TAM mimic interferes with
10 degranulation, it has the greatest potential for use in the methods described herein.

TAM mimics can also be evaluated for biological activity using immunoprecipitation assays or receptor association assays such as described in Matsuda, M., et al., *J. Biol. Chem.* 268:4441-4446 (1993) and Escobedo, J. A., et al., *Mol. Cell. Biol.* 11:1125-1132 (1991). The basic protocol is to lyse the cells of interest
15 in a gentle buffer with detergent that would preserve natural *in vivo* protein-protein interactions, creating a detergent solubilized cytoplasmic lysate, and a particulate/detergent insoluble fraction. The detergent soluble lysate is then added to a quantity of human Syk SH2 domain fusion protein and mixed gently for a period of time sufficient to allow relatively high affinity interactions to form between the introduced
20 fusion protein and any cellular proteins. The fusion proteins are purified by centrifugation from the lysate, and washed several times with lysate buffer to remove any non-specific or low affinity interactions. The proteins that remain associated with the fusion protein are then dissociated from the fusion protein, and analyzed by denaturing gel electrophoresis. The eluted proteins are then visualized by any number
25 of methods. For example, a western blot of the SDS gel, probed with anti-phosphotyrosine antibody, can be used to visualize phosphotyrosine containing proteins.

The cells can also be metabolically labeled (that is, "fed" label in culture) so as to label either all proteins (with 35 S labeled methionine and cysteine) or to label
30 phosphoproteins (with 32 P orthophosphate). After the denaturing gel electrophoresis, the proteins are visualized by autoradiography.

Antibodies specific for various components of the mast cell IgE receptor complex can be used to directly determine, either by immunoprecipitation or western blot, whether those specific components are interacting with the SH2 fusion proteins
35 in extracts of either resting or activated RBL cells by addition of IgE and hapten. Differences in the proteins associated with the SH2 fusion proteins should be observed between resting and activated cells, reflecting the changing interactions of

human Syk upon mast cell activation. By identifying those proteins that associate, or disassociate, upon activation, one may identify cellular proteins that directly interact with human Syk during mast cell activation.

Moreover, antibodies, either polyclonal or monoclonal, can be produced that 5 are immunoreactive with one or both of the SH2 domains of the Syk protein. Such antibodies can be made by standard laboratory techniques. By screening the SH2 antibodies, one may obtain specific antibodies which also block the association of the Syk protein with the activated IgE receptor thus, inhibiting mast cell degranulation or other inappropriate or exaggerated immune responses.

10 Anti-Syk SH2 domain antibodies can be evaluated for biological activity using standard laboratory techniques such as radioimmunoassay or ELISA. Immunoprecipitation assays, or receptor association assays, such as those described above, can also be used.

15 TAM mimics, SH2 mimics, and antibodies demonstrating the desired activity in vitro can be tested in vivo for inhibitory activity. For example, TAM mimics can be tested in suitable animal model systems including rats, mice, or horses. There are numerous animal models of asthma that have been developed and can be used (for reviews, see Larson, "Experimental Models of Reversible Airway Obstruction", in THE LUNG, Scientific Foundations, Crystal, West *et al.* (eds.), Raven Press, New York, pp. 20 953-965 (1991); Warner *et al.*, 1990, *Am. Rev. Respir. Dis.* 141:253-257). Species used as animal models for asthma include mice, rats, guinea pigs, rabbits, ponies, dogs, sheep and primates. Other in vivo models available are described in Cross *et al.*, *Lab Invest.* 63:162-170 (1990)); and Koh, *et al.*, *Science*, 256:1210-1213 (1992)).

25 TAM mimics, SH2 mimics and antibodies which inhibit degranulation of mast cells and basophils are preferred for treatment or prevention of type I allergic (IgE-mediated) reactions such as asthma and allergic rhinitis, diseases and disorders associated with an inappropriate or exaggerated immune system response, or inflammation. The preferred method of treatment, or prevention, is by administrating to a mammal an effective amount of a peptide, or peptide analog which mimics a 30 phosphorylated TAM which blocks the association of the Syk SH2 domain with the activated IgE receptor.

Diseases and disorders which can be treated by administration of an effective 35 amount of a TAM mimic, SH2 mimic, or antibody which inhibits inappropriate or exaggerated inflammatory/immune responses include inflammatory arthritis (e.g., rheumatoid arthritis, seronegative spondyloarthritides (Behcets disease, Reiter's syndrome, etc.), juvenile rheumatoid arthritis, vasculitis, psoriatic arthritis, polydermatomyositis); systemic lupus erythematosus (SLE); asthma; inflammatory

dermatoses (e.g., psoriasis, dermatitis herpetiformis, eczema, necrotizing and cutaneous vasculitis, bullous diseases); inflammatory bowel disease (e.g., Crohn's disease and ulcerative colitis); tissue damage relating to tissue transplantation; and other autoimmune disorders.

5 Additional disorders such as glomerulonephritis, juvenile onset diabetes, multiple sclerosis, allergic conditions, autoimmune thyroiditis, allograft rejection (e.g., rejection of transplanted organs such as kidney, heart, pancreas, bowel or liver), and graft-versus-host disease can also be treated.

Furthermore, in a preferred aspect of the invention, a TAM mimic which
10 inhibits mast cell and basophil degranulation is administered to treat, or prevent, a type I allergic reaction such as one or more of the following: atopic diseases (e.g., allergic rhinitis, commonly known as hayfever, due to pollens, fungal spores, dust, animal dander, asthma, atopic dermatitis, and allergic gastroenteropathy due to ingested food); anaphylaxis (a systemic immediate hypersensitivity affecting multiple
15 organs, due to, for example, drugs, proteins such as in vaccines, and nonproteins such as antibiotics, anesthetics, salicylates, foods, venom of stinging insects); and urticaria or angioedema (increased cutaneous vascular permeability). Mammals include horses, cattle, dogs, cats and humans.

Various delivery systems are known and can be used to administer a TAM
20 mimic. For example, encapsulation in liposomes, microparticles, microcapsules, expression by recombinant cells, receptor-mediated endocytosis, construction of a TAM mimic-encoding nucleic acid as part of a retroviral or other vector can be used. Methods of introduction for both peptide mimics and antibodies include, for example, intradermal, intramuscular, intraperitoneal, intravenous, subcutaneous, intranasal,
25 epidural, and oral routes. Any other convenient route of administration can be used, for example, by infusion or bolus injection, by absorption through epithelial or mucocutaneous linings (e.g., oral mucosa, rectal and intestinal mucosa, etc.) and the TAM mimic may be administered together with other biologically active agents. Administration can be systemic or local.

30 For TAM mimics which are used for inhibition of mast cell activation, e.g., for therapy of asthma or allergy, the preferred route of administration is nasal or via a bronchial aerosol. In particular, a bronchial aerosol is employed. Pulmonary administration can be accomplished, for example, using any of various delivery devices known in the art (Newman, S.P., AEROSOLS AND THE LUNG, Clarke and
35 Davia (eds., Butterworths, London, England, pp. 197-224 (1984); PCT Publication No. WO 92/16192, PCT Publication No. WO 91/08760. Delivery devices include, for example, nebulizers, metered dose inhalers, and powder inhalers. Various delivery

devices are commercially available and can be employed, e.g., Ultravent nebulizer (Mallinckrodt, Inc., St. Louis, Missouri); Acorn II nebulizer (Marquest Medical Products, Englewood, Colorado), Ventolin metered dose inhaler (Glaxo Inc., Research Triangle park, North Carolina); Spinhaler powder inhaler (Fisons Corp., Bedford, Massachusetts). Such devices typically entail the use of formulations suitable for dispensing from such a device, in which a propellant material may be present.

A nebulizer may be used to produce aerosol particles, or any of various physiologically acceptable inert gases may be used as an aerosolizing agent. Other components such as physiologically acceptable surfactants (e.g., glycerides), excipients (e.g., lactose), carriers, and diluents may also be included.

In another embodiment, it may be desirable to administer the peptide mimics or antibodies of the invention locally to the area in need of treatment. This may be achieved by, for example, local infusion during surgery, topical application (e.g., for skin conditions such as psoriasis), by injection, by means of a catheter, by means of a suppository, or by means of an implant, said implant being of a porous, non-porous, or gelatinous material, including membranes, such as sialastic membranes, or fibers.

The invention also relates to the purified recombinantly produced intact Syk protein and purified recombinantly produced SH2 domains. Expression vectors can be constructed using routine laboratory methods to express the intact human Syk protein, or any of its various peptide domains, especially the SH2 domains. Proteins and peptides can be expressed as a component of a fusion protein, such as a protein in which the other component is a "tag" such as with a glutathione-S-transferase (GST) enzyme tag or a polyhistidine tag, to facilitate purification. Alternatively, the proteins can be expressed alone, (i.e., not as a member of a fusion protein). Proteins expressed as fusion proteins or alone, can be purified by standard laboratory methods, such as column chromatography or electrophoretic techniques.

A fusion protein in which the C-terminal SH2 domain of human Syk is linked to GST has been produced as described in Example 4. In this embodiment, the C-terminal SH2 domain was cloned into the pGex fusion vector system. This vector provides a fusion site with GST at the N-terminus, followed by a protease cleavage site directly preceding the protein to be fused. The fusion proteins are generated in *E. coli*, and purified by absorption to agarose beads containing glutathione.

The SH2 domain constructs can be assayed for their activity using the *in vitro* transcription/translation assay as described in Example 5. The purpose of this assay is to determine if the SH2 domains are functional via binding to phosphotyrosine and to develop additional assays to screen and identify peptides and peptide mimics which bind to these SH2 domains.

The purified recombinant Syk protein and Syk SH2 domains can be used to determine the affinity of the two Syk SH2 domains for binding to the TAM motifs from the β and γ subunits of the IgE receptor and to determine the minimal region of the TAM motif that can bind to the Syk SH2 domain. This information can be used 5 for the design of inhibitors that block IgE receptor activation.

The recombinant Syk protein and Syk SH2 domains can also be used to determine the structure of the phosphorylated TAM motif when bound to the Syk SH2 domains. For example, in order to design small molecules that mimic the structure of the phosphorylated TAM motif, it is helpful to know the structure of the TAM 10 peptide sequence when bound to the Syk SH2 domain. Since short peptide sequences like the TAM motif have flexible structures in solution, it is useful to examine their structure when bound to their binding partner in order to design molecules that mimic their structure. The structure of the phosphorylated TAM motif bound to Syk SH2 domains can be derived using X-ray crystallography and NMR spectroscopy. This 15 structural information can be used to design additional TAM mimics. Once these mimics are synthesized, their structure can be examined when bound to Syk SH2 domains in order to further optimize the design of molecules that "best fit" in Syk.

The recombinant Syk protein and Syk SH2 domains can further be used to derive assays that determine the binding affinity of the TAM mimetic compounds for 20 Syk SH2 domains. These assays can be used to determine whether candidate inhibitory molecules interfere with the binding of Syk SH2 domains to phosphoTAM motifs from the β and γ TAM motifs.

Moreover, variant recombinant sequences of the Syk protein and SH2 domains 25 can be constructed for use in dominant negative expression studies in which mutant forms of the Syk protein, or Syk SH2 domains, are expressed that dominantly interfere with the binding of wild type Syk protein with the activated IgE receptor. Studies such as these can lead to further elucidation of the signal transduction cascade of events.

The present invention will now be illustrated by the following examples which 30 further and more specifically illustrate the invention.

Example 1: Isolation and Cloning of a Human syk

A λ gt10 cDNA library derived from Human Daudi cells' (Burkitt's Lymphoma, ATCC# CCL 213) mRNA was purchased from a commercial source 35 (Clontech Laboratories Inc., Catalog #HL 1117a, random + oligo dT primed). Phage from the bacterial lysate were used as a template to amplify the library in the MOPAC PCR reaction described by Lee, C.C. et al., *Science* 239:1288-1291 (1988).

Primers for the aforementioned PCR reactions were derived from the DNA sequence of the porcine pp72 *syk* protein described by Taniguchi, T. et al., *J. Biol. Chem.* 266:15790-15796 (1991).

Two pairs of degenerate primers were synthesized based on relatively non-degenerate regions of the porcine *syk* cDNA: 1) the 5' end of the NH₂ terminal SH2 domain (sense primer) and the 5' end of the COOH terminal SH2 domain (antisense primer) and 2) a portion of the kinase domain spanning about 200 amino acids. These primers labeled S1, AS2 and S3, AS4 respectively, (SEQ ID NOS: 3-11), are depicted in Figure 1A and 1B. To reduce the degeneracy of these oligo primer pairs, multiple 5 versions of each oligo were synthesized and used in multiple combinations in MOPAC PCR so that at least the last five 3' bases would exactly match the *syk* cDNA in at 10 least one reaction. Hence the oligonucleotide primers listed in Figure 1A and 1B are S1A, S1B, S1C, (SEQ ID NOS: 3, 4, 5) and AS2A, AS2B (SEQ ID NOS: 6, 7), etc.

All reactions were performed in duplicate in an MJ Research Minicycler using 15 the following cycling program at two different annealing temperatures (55°C or 60°C) under these ionic conditions:

50 mM KCl		95°C 5 min., add 2.5 units Taq. pol.	
10 mM Tris-HCl pH 8.3	/	93°C 40 seconds	-denaturation
20 1.5 mM MgCl ₂	40x 1	55°C or 60°C 40 secs.	-annealing
0.001 (wt./vol.) gelatin	\	<u>75°C 40 seconds</u>	-polymerization
200 μM each dNTP		75°C 2 minutes	
1 μM sense primer		4°C hold indefinitely	
1 μM antisense primer			
25 1 μl λ phage library			
100 μl total reaction volume			

10 μl aliquots of each reaction were analyzed by agarose gel electrophoresis for amplification of DNA fragments of the predicted size. No amplifications products 30 were observed in reactions using the any of the S1 (SEQ ID NOS: 3-5) and AS2 (SEQ ID NOS: 6 and 7) primer pairs based on the SH2 region of Syk. However, DNA fragments approximately 600 base pairs in length, sufficient to encode approximately 200 amino acids of the kinase domain of Syk, resulted from amplifications employing the S3B (SEQ ID NOS: 8 and 9) and AS4A (SEQ ID NOS: 10 and 11) primer pairs.

The remaining 90 μl of the S3B/AS4A reaction were phenol-chloroform 35 extracted, ethanol precipitated and digested with the restriction endonucleases Xho I and Cla I which had been included at the 5' ends of the sense and antisense

oligonucleotide primers, respectively. Simultaneously, the vector Bluescript KS+ was digested with Xho I and Cla I. DNA fragments from both reactions were resolved on a 0.5% (wt./vol.) low-melt agarose (NuSieve GTG or SeaPlaque GTG, FMC Corp.) gel, excised, melted at 70°C, and ligated for one hour at room temperature with T4 DNA 5 ligase (Pharmacia). The ligations were melted at 70°C and transformed into competent DH5a bacteria (Gibco-BRL) according to the manufacturer's instructions, the bacteria spread onto BHI (Difco) agar plates supplemented with 200 µg/ml ampicillin (Sigma Corp.), and the plates incubated overnight at 37°C. Six colonies 10 were inoculated into 4 ml BHI cultures supplemented with 200 µg/ml ampicillin, and the 4 ml cultures were shaken overnight at 37°C. Plasmid DNA was prepared using a mini-prep kit (Qiagen Corp.), subjected to digestion with Xho I and Cla I, and analyzed by agarose gel electrophoresis. Plasmid from three of the colonies were positive for an Xho I/Cla I fragment roughly 620 bp in length, and were subsequently subjected to double stranded DNA dideoxy sequence analysis (Sequenase 2.0, U.S. 15 Biochemicals). The DNA sequence of the 5' ends of the inserts within the three plasmids was identical. Translation of the DNA sequence revealed extensive homology with the porcine Syk protein sequence. Within the first 47 amino acids of the human *syk* partial cDNA clones, the only difference detected with porcine *syk* was position 481 with a substitution of serine for cysteine.

20 In an attempt to clone the 5' end of the human *syk* cDNA, nested antisense nondegenerate oligonucleotide primers derived from the 5' end of the aforementioned human *syk* partial cDNA clone were synthesized (ASA (SEQ ID NO: 13) and ASB (SEQ ID NO: 14), Figure 1A and 1B). These were to be used in conjunction with λ left or λ right arm primers (from the region bounding the Eco RI cloning site in λ gt10) to 25 amplify the 5' end of the insert in phage harboring human *syk* cDNA from the Daudi λ gt10 library. To verify the authenticity of PCR products as *syk* cDNAs, another oligonucleotide, probe Z (SEQ ID NO: 12), was synthesized for use in Southern and colony hybridization analysis.

30 Primary PCR reactions were carried out using either the λ for 1°/ASB (SEQ ID NOS: 15 and 14 respectively) or λ rev 1°/ASB (SEQ ID NOS: 17 and 14 respectively) primer pair with the program described above, with the exception that the annealing temperature was either 60°C or 65°C and polymerization was allowed to proceed for 2 minutes 30 seconds. A secondary reaction ensued, using 1 µl of the primary reaction as template, with either the λ for 2°/ASA (SEQ ID NOS: 16 and 13 respectively) or λ 35 rev 2°/ASA (SEQ ID NOS: 18 and 13 respectively) primer pair, and the same annealing temperature used in the primary amplification. Agarose gel electrophoretic analysis of the secondary PCR products revealed a smear from approximately 2 kb to

the bottom of the gel, with discrete bands scattered throughout the smear in the λ rev 2°/ASB reaction. An alkali transfer of the gel was made onto charged nylon membrane (Qiabrate Plus, Qiagen Inc.) using a BioRad 785 Vacuum Blotter according to the manufacturer's protocol. After neutralization the blot was placed in
5 oligohyb mix (6 X SSC, 5 X Denhardt's solution, 1% SDS, 10 mM NaPO₄, 200 µg/ml denatured salmon sperm DNA) and allowed to prehybridize for one hour at 50°C. Z probe was labeled with ³³P-γ-ATP using T4 polynucleotide kinase (Pharmacia) under standard conditions (Sambrook, et al., Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Lab., Cold Spring Harbor, NY) (1989)). The probe was purified
10 from unincorporated ³³P using a spin column made with Sephadex G-25 (Pharmacia), and added to the blot. Hybridization at 50°C proceeded overnight, after which the blot was washed 3 X 20 minutes at 55°C in 2 X SSC/1% SDS and subjected to autoradiography. Probe hybridized to the blot in a pattern that mirrored the smear with discrete bands visualized by ethidium bromide staining of the gel, indicating that
15 the amplified DNA products were derived from human syk cDNA.

The remainder of the λ rev 2°/ASA (65°C) secondary reaction was phenolchloroform extracted, ethanol precipitated and digested with the restriction endonucleases Xho I and Cla I and resolved on a 0.5% (wt./vol) low-melt agarose gel. A band of approximately 1.2 kb was excised, melted at 70°C, and ligated into Xho
20 I/Cla I digested Bluescript KS+ plasmid. Plasmid prepared from colonies arising from transformation of the ligation was analyzed by agarose gel electrophoresis after digestion with Xho I and Cla I restriction endonucleases. Several of the plasmids contained 1.2 kb inserts whose 5' ends were analyzed by DNA sequence analysis. The amino acid sequence deduced from these partial cDNAs is quite homologous with
25 that of porcine Syk, and extend NH₂ terminal to the serine 79 residue of the protein. Hence the amplified partial cDNA was roughly 240 bp too short to encode the 5' end of the human syk cDNA.

Further attempts made to isolate a partial cDNA with the 5' end of the human syk gene were performed in an analogous manner. Nested antisense nondegenerate
30 oligonucleotide primers derived from the 5' end of the above partial cDNA clone were synthesized (ASX and ASY (SEQ ID NOS: 20 and 21), Figure 1A and 1B) in conjunction with λ left or λ right arm primers. DNA fragments generated using these primer pairs hybridized to Probe W (SEQ ID NO: 19) on Southern blots, proving the fragments were specific for the 5' end of human Syk. However, none of the amplified
35 fragments were greater than 180 bp in length, and were therefore insufficient to encode the initiator codon of human Syk.

Concomitantly, 800,000 plaques of the λ gt10 Daudi cell cDNA library were screened with 32 P nick-translated (Stratagene Prime-It) 0.6 kb fragment from the human *syk* kinase domain (S3B/AS4A). Hybridization and washing of duplicate filters (Hybond N+, Amersham) according to Church and Gilbert protocol buffers, at 5 65°C led to 55 initial positives, 27 of which were positive on secondary plating and hybridization as above.

Eleven of the secondaries were screened for insert size by PCR amplification, using the *syk* kinase domain oligo ASB with the λ for 1° or λ rev 1° primers. Four clones yielding the largest PCR products were chosen for further characterization by 10 subcloning and sequencing. (D1.2, 3.2, 8.2, 10.2) From these λ clones, partial sequence of human *syk* cDNA, from the COOH-terminal SH2 domain to the 3' untranslated region, was determined.

When it became apparent that the Daudi cell λ gt10 library probably did not contain a full length *syk* cDNA clone, PCR was performed using human basophil 15 cDNA as template in order to obtain the gene's 5' end. Basophils were purified from 60 ml of freshly drawn blood using Percoll step gradient according to the protocol of Warner, J.A., *et al.* *J. Immunol. Methods* 105:107-110 (1987). Basophils removed from the gradient's interface were washed 2 X in PBS + 4 mM EDTA, and the cell pellet lysed in guanidine thiocyanate buffer (Chirgwin, J.M., *et al.* *Biochem.*, 18:5294-5299 20 (1979)). RNA was purified by acid phenol extraction. One tenth of the total RNA was reverse transcribed with Superscript reverse transcriptase (Gibco-BRL) according to the manufacturer's instructions.

A pair of "guessmer" oligonucleotides based on the first nine amino acids of porcine Syk with biased codon selection (Syk ATG1 and Syk ATG2, (SEQ ID NOS: 22 25 and 23), Figure 1A and 1B) were synthesized for use as a primers in conjunction with the antisense primers ASX and ASY (SEQ ID NOS: 20 and 21) in PCR amplification of the 5' end of human *syk*. The design of these guessmers was aided by the consideration of nucleotide sequence of the first nine amino acids of the Syk related protein in T cells, ZAP-70 (Chan, A.C., *et al.* *Cell*, 71:649-662 (1992)).

30 A DNA fragment encoding the 5' end of the coding sequence of *syk* was amplified in a series of nested PCR reactions using either Syk ATG 1 or Syk ATG 2 as the sense primer in both reactions, and ASY and ASX in the primary and secondary reactions respectively. A standard cycling protocol was employed, with annealing of the primers at either 60°C or 65°C . A DNA fragment of the expected size (~280 bp) 35 arose from the amplification, and after subcloning (Bluescript KS ATG 2/ASX), DNA sequence analysis confirmed its authenticity as a partial 5' *syk* cDNA.

Because of the high error rate of Taq DNA polymerase, (Keohavong, P. and Thilly, W.G., Proc. Natl. Acad. Sci., USA, 86:9253-9257 (1980)). DNA sequence from the single 5' partial cDNA was not 100% reliable, and direct cycle sequencing of a population of PCR amplified cDNA fragments was carried out. Direct sequencing of 5 a population of PCR products effectively "neutralizes" the effect of Taq DNA polymerase infidelity (Gyllensten, U.B., and Ehrlich, H.A., Proc. Natl. Acad. Sci. USA, 85:7652-7656 (1988)). A DNA fragment encoding the first 140 amino acids of 10 human Syk was amplified from human basophil cDNA (using the Syk ATG2/AS QALE primer pair (SEQ ID NOS: 23 and 24) isolated on a low melt agarose gel and employed as template in cycle sequencing reactions using a kit (Gibco-BRL). Both 15 primers were ³³P end labeled and used to obtain complementary sense and antisense DNA sequence data. This sequence data, in conjunction with that obtained from the λ phage clones, definitively determined the coding sequence for all but the first nine amino acids of the human Syk protein. Anchored PCR was then used to identify these remaining nine codons and any additional 5' untranslated sequence.

Double stranded cDNA was synthesized from total human basophil RNA using a kit (Gibco-BRL) based on the method of Gubler, U., and Hoffman, B.J., Gene, 25:263-269 (1983). After the double stranded cDNA was blunted with T4 DNA polymerase (Pharmacia), an "anchor" (SEQ ID NO: 30, Anchor S and branched 20 Anchor AS, Figure 1A and 1B) was ligated onto its ends using T4 DNA ligase (Pharmacia). The anchor was a variant of that described by Roux, K.H. and Dhanarajan, P., Biotechniques: 8:48-57 (1990), in that it was designed to ligate to blunted ended rather than restriction digested DNA fragments. However, like the anchor of Roux and Dhanarajan, only the 5' end which is a substrate for ligation is 25 phosphorylated, and the other 5' end cannot hybridize to the partner strand of the anchor due to the introduction of a four base pair mismatch. This mismatch minimizes non-specific priming during PCR amplification by preventing the DNA strand covalently linked to the anchor from participating in amplification unless its complementary strand has first been specifically primed by the antisense 30 oligonucleotide in the reaction. The syk-specific antisense primers used in the amplification of the 5' end of the syk gene, ASU and ASV (SEQ ID NOS: 26 and 27, Figure 1A and 1B), were derived from the N terminal SH2 domain sequence determined by the above cycle sequencing. For detection of 5' Syk specific 35 amplification products, Probe T (SEQ ID NO: 25), encoding sequence just 5' of ASU, was also synthesized. Two consecutive PCR amplifications with nested primer pairs (1°: Uni 5'-1/ASV (SEQ ID NOS: 29 and 27 respectively), and 2° Uni 5'-2/ASU (SEQ ID NOS: 28 and 26 respectively) and the "anchored" double stranded human basophil

cDNA template were carried out under standard conditions, with an annealing temperature of 65°C. Very small DNA products (on the order of 100 bp) generated by these reactions were subcloned into Bluescript KS+ as Xho I/Cla I fragments, and sequenced. The sequence of two different inserts confirmed that the first nine amino acids of human Syk are the same as those in porcine Syk. These same nine amino acids are present in the "guessmer", Syk ATG 2, used to determine the sequence of the NH₂ terminal SH2 domain of human Syk. Therefore, the partial 5' cDNA in Bluescript KS ATG 2/ASX possesses an intact open reading frame for the first 93 amino acids of human Syk, even though the sequence of the first nine amino acids was 10 "forced" onto the cDNA during PCR amplification.

In order to generate a cDNA spanning the entire protein coding sequence of the *syk* gene, it was necessary to isolate a λ gt10 phage cDNA clone from the Daudi cell library that contained the most 5' sequence of the gene and link it to the PCR generated *syk* 5' end clone. To find such a cDNA 44 plaques positive for hybridization to the *syk* kinase domain (16 secondary, 28 primaries) were screened further by PCR amplification of phage supernatants with λ left and λ right primers, duplicate southern blotting of resultant products, and probing with either the human *syk* kinase domain probe under conditions described in (Church, G.M. and Gilbert, W., Proc. Natl. Acad. Sci. USA, 81:1991-1995 (1984), or with the Probe T from the N terminal SH2 domain of human Syk (hybridization in oligo hyb mix at 60°C; washing in 2 X SSC/1% SDS at 65°C). Initially a single clone was positive for hybridization with the N terminal oligo probe but upon secondary screening with this probe, two different clones were actually pulled out. The insert that extended most 5 prime, from λ clone D5.1, was subcloned into Bluescript KS+ as an Eco RI fragment and its ends 15 sequenced. From the sequence analysis it was determined that the D5.1 cDNA extended 5' to the G₆₇ residue of the Syk protein. It also became apparent that the D5.1 cDNA had arisen as a consequence of random priming, rather than oligo-dT priming, since the 3' end of the clone terminated at the L₅₆₀ residue. Hence it became necessary to supplement the 3' end of the D5.1 fragment with 3' *syk* sequence form an 20 oligo-dT primed λ clone in addition to the 5' *syk* sequence from the PCR fragment.

A contiguous human *syk* cDNA was assembled into Bluescript SK- via a three-part ligation (Figure 2) using the internal Ban I (nucleotide 198) and Bgl II (nucleotide 1464) sites of *syk* and the flanking (5') Xho I/(3') Eco RI sites from partial cDNAs (Figure 2). The 5' PCR cDNA clone, Bluescript KS ATG2/AS X, was Ban I/BamHI 25 digested, and the 200 bp fragment resolved on a low melt agarose gel. Similarly, the plasmid harboring "middle" *syk* cDNA fragment, D5/1 was Ban I/Bgl II digested, while the 3' end of the *syk* gene from the λ clone T11.1 was linearized with XhoI and 30

Bgl II. All three fragments were mixed in a ligation and transformed into competent bacteria. Analysis of miniprep DNA identified a plasmid with the predicted restriction endonuclease sites. This plasmid, termed pBS-SK(-) hu syk, was subjected to complete DNA sequence analysis to confirm that it had the correct open reading frame of 630 codons for human syk.

5 **Example 2: Biospecific Interaction Analysis (BIA) In Real Time**

Surface plasmon resonance (SPR), which is the basis for measurements with the BIACore instrument (Pharmacia, Biosensor AB), is an optical phenomenon arising 10 in thin metal films under conditions of total internal reflection.

This system provides a reliable and reproducible method for the estimation of kinetic parameters. Binding is measured in real time under accurately controlled 15 conditions, such as temperature and flow rate. Moreover, there is no need for radiolabelling of one of the components and it is not necessary to devise methods for separation of bound from unbound ligand which invariably require a certain amount 20 of time and may thus compromise the accurate measurement of kinetic parameters. One of the interacting molecules is immobilized on a dextran layer, which is in turn mounted on a gold surface. A monochromatic wedge of light is shone on this surface at a particular angle resulting in total deflection. Due to SPR, however, one 25 component of the light, termed the evanescent wave, interacts with the electrons on the gold surface, resulting in a dip in the intensity of the reflected light. The angle at which this dip is observed (resonance angle) changes with the refractive index of the medium, which in turn relates to the mass concentration very close to the gold surface. The resonance angle is measured by the instrument and converted to a plot of 30 resonance units (RU) vs. time. The higher the RU value, the higher the amount of protein at the dextran matrix. This plot is called a sensogram. The presence of compounds different from those of the running buffer results in significant "bulk effects" being measured by the BIACore instrument, which may distort the initial phase 35 of the association and dissociation curves. Therefore, all protein solutions are passed through a desalting column equilibrated in BIACore running buffer in order to achieve buffer exchange.

Estimation of kinetic parameters requires the repetitive injection of a range of protein concentrations over the immobilized capturing molecule. In order to be ready for a subsequent injection, the biosensor surface has to be regenerated at the end of each cycle so that any non-covalently bound protein will be removed. The tyrosine-phosphorylated peptides can be used as capturing molecules, as they are not affected by relatively harsh conditions, such as injection of SDS solutions. However, the direct

covalent coupling of phosphopeptides to the dextran matrix may not be sufficient for accurate results because these small molecules may not be exposed enough to interact with the injected SH2 domains. Therefore, the biotin-avidin interaction principle can be used to place a long "spacer" between the phosphopeptides and the matrix. Avidin
5 can be covalently immobilized on the matrix and then a biotinylated phosphopeptide solution is injected. Biotinylation of the phosphopeptides can be performed using NHS biotin according to standard laboratory techniques, resulting in the covalent attachment of biotin molecules at free amino groups on the peptide. Analysis of the biotinylation mixture can be performed by reverse-phase HPLC to reveal the peaks,
10 representing varying degrees of biotinylation since both amino termini and lysine groups can be labelled. Mass analysis can also be used to identify the number of biotin molecules attached and the peaks corresponding to one biotin per peptide are used for subsequent interactions.

Association and dissociation rate constants can be calculated by repetitive
15 injections of increasing concentrations of protein over immobilized phosphopeptides, as described in the BIACore Methods Manual. The binding of a peptide to an SH2 domain of a protein kinase is described below.

Binding of the N-SH2 peptide of PI3K p85 to pY.V.P.M.L. a PI3K ligand (SEQ ID NO: 31) was synthesized as part of a larger peptide (SEQ ID NO: 32) and
20 immobilized to the biosensor surface via the C-terminal lysine using standard EDC/NHS chemistry. To determine the binding affinity (K_a) of the N-terminal SH2 peptide of the PI3K p85 for the immobilized phosphopeptide, the on rates, off rates and steady state binding characteristics for several different concentrations of SH2 peptide (0.5, 0.67, 1.0, 2.0 and 4.0 uM) were measured from changes in the surface
25 plasmon resonance elicited by ligand / protein interaction. The K_a for the above interaction was determined to be 160 nM.

Example 3: Mast Cell/Basophil Degranulation Assays

30 A. Intact Cell Assays

The release of β -hexosaminidase from basophils is measured as an in vitro assay of basophil activation. A cell line, RBL-2H3 (from the laboratory of Dr. Siraganian, National Institutes of Health), of rat basophil leukemia (RBL) cells is used in such an in vitro assay, according to the protocol described below (Barsumian *et al.*,
35 *Eur. J. Immunol.* 11:317-323 (1981)). The percentage of β -hexosaminidase in cells that is released into the cell medium is determined, and is a measure of the activation of the RBL-2H3 cells.

ACTIVATION OF 2BL-2H3 CELLSMATERIALS

°RBL medium containing 2% fetal bovine serum (FBS)

5 100 ml E-MEM

 2 ml FBS

 1 ml FBS

 1.2 ml penicillin-streptomycin

filter sterilize into sterile bottles or tissue culture flasks and store at 4°C

10

°10 X PIPES buffer

 75.6 g PIPES (0.25 M)

 69.2 g NaCl (1.2 M)

 3.72 g KCl (0.05 M)

15 43 ml of 10 N NaOH (0.4 M)

 Add water to 1000 ml

filter sterilize into sterile bottles or tissue culture flasks and store at 4°C

20 °100 x calcium chloride

 1.47 g CaCl₂-2H₂O (100 mM)

 Add water to 100 ml

filter sterilize into sterile bottles or tissue culture flasks and store at 4°C

25 °2x-IgE (anti DNP-IgE mouse monoclonal antibody; Zymed) in regular RBL medium
containing 15% FBS

Need 0.5 ml at 2-times an appropriate final dilution for each 16 mm well to be seeded
with cells

30

°1x PIPES+glucose+calcium (prepare fresh on second day of assay)

 10 ml of 10X PIPES

 0.1 g glucose (dextrose) (5.6 Mm)

 0.1 g bovine serum albumin (BSA)

35 1 ml of 100x calcium chloride

Add water to 90 ml; pH to 7.4; milli-Q water to 100 ml

METHOD

- ° Remove RBL cells from flasks by trypsin-EDTA treatment (see protocol infra). Plan to use 1×10^5 cells/16 mm well to be seeded; harvest extra cells to allow for losses
- 5 during centrifugation.
- ° Centrifuge the RBL cells and resuspend in 5 ml of regular RBL medium containing 15% FBS. Count the cells and dilute them to 2×10^5 cells/ml in the same medium.
- 10 ° For each well to be seeded, mix 0.5 ml of cells with 0.5 ml of 2x-IgE.
- ° Seed 1 ml of IgE-RBL per 16 mm well.
- ° Incubate plate(s) overnight at 37°C/5% CO₂.
- 15 ° Next day, dilute the DNP-HSA (dinitrophenol-human serum albumin; Calbiochem) to an appropriate dilution in 1x PIPES+glucose+calcium; 0.5 ml will be needed for each well.
- 20 ° Remove the plate(s) from the incubator and aspirate the media from the wells.
- ° Add 2 ml of 1X PIPES+glucose+calcium to each well and aspirate again.
- ° Repeat the last step.
- 25 ° Add the 0.5 ml of diluted DNP-BSA (or 1x PIPES+glucose+calcium alone as the negative control in triplicate) to wells.
- ° Incubate 40 min at 37°C/5% CO₂.
- 30 ° Meanwhile, label 12 x 75 tubes (round or conical bottom) to receive each supernatant and the cells themselves from the triplicate negative controls; also label 12 x 75 tubes for the beta-hexosaminidase assay.
- ° After the incubation, carefully transfer each supernatant from the 16 mm wells
- 35 to appropriate tubes on ice.

- °Add 250 µl of enzyme-free cell dissociation solution (Enzyme Free Cell Dissociation Solution Hank's Balanced Salts Based Formulation, Specialty Media Inc., Lavallette, NJ) to each of the triplicate negative control wells and incubate 5 min at 37°C.
- 5 °Transfer the 250 µl aliquots to conical bottom centrifuge tubes. Add 250 µl of PIPES+glucose+calcium to rinse each well and transfer to the appropriate tubes.
- °Spin tubes 5 min at 1000 rpm and remove supernatants. Resuspend each in 500 µl of PIPES+glucose+calcium.
- 10 °Sonicate cell suspensions on ice (5 pulses); if no probe sonifier is available, freeze thaw cells 3x using a methanol or ethanol-dry ice bath and a 37°C water bath.
- °Transfer 100 µl of each supernatant or cell lysate to a 12 x 75 tube and proceed with the beta-hexosaminidase ("beta-hex") assay protocol.
- Protocol for Removing RBL Cells from Flasks
- °Prepare trypsin/EDTA by diluting stock 1:10 in HBSS--; filter sterilize.
- 20 °Aspirate the medium from a flask of cells.
- °Add 10 ml of HBSS-- and gently rinse the flask.
- 25 °Aspirate the HBSS--.
- °Add 3 ml of trypsin/EDTA and incubate 5 min at 37°C.
- °Rap the flask several times to loosen the cells.
- 30 °Transfer the 3 ml to a tube.
- °Rinse flask with 10 ml of the above medium and pool to the tube.

BETA-HEXOSAMINIDASE ASSAYMATERIALS

1. Beta-hex buffer
- 5 Solution 1: 0.2 M Na₂PO₄ (sodium phosphate dibasic ANHYDROUS) - 14.2 g/500 ml distilled H₂O

NOTE: If there is no anhydrous, use the sodium phosphate dibasic HEPTAHYDRATE (7H₂O), but use 26.7 grams.

10

Solution 2: 0.4 M citric acid monohydrate - 42.1 g/500 ml distilled H₂O

Mix approximately 70 ml of solution with approximately 20 ml solution 2 until the pH is 4.5 (use solution 1 to raise the pH and solution 2 to lower it)

15

2. Beta-hex cocktail

Beta-hex buffer (from above): 90 ml

20

Distilled H₂O: 135 ml

p-nitrophenyl-N-acetyl-beta-D-glucosaminide (p-nitrophenyl-beta-D-2-acetamide-2-deoxy-beta-D-glucopyranoside) (Sigma N-9376): 300 mg
(0.30 g); stored at -20°C

25

Mix until dissolved

Aliquot in 15 ml tubes, label, date, and freeze at -20°C.

30

3. Beta-hex STOP solution

glycine: 15.0 g/liter

bring to pH 10.7 with N NaOH (will need to add ~30 ml of NaOH)

35

METHOD

1. Place 100 μ l of sample in each 12 x 75 polystyrene round-bottom tube.
- 5 2. Add 40 μ l of beta-hex cocktail to each tube.
3. Cover with tin foil and incubate tubes 30 min at 37°C.
4. Add 1.5 ml of beta-hex stop to each tube.
- 10 5. Turn on the spectrophotometer and allow it to warm up 10 minutes.
6. Turn on the vacuum pump attached to the spectrophotometer.
- 15 7. Set the wavelength for 410 nm.
8. Aspirate any liquid in the spectrophotometer tubing.
9. Zero the spectrophotometer using beta-hex stop solution.
- 20 10. Aspirate liquid from the tubing; double check reading with more beta-hex stop.
11. Aspirate the liquid from the tubing; read the absorbance at 410 nm (A410) of each sample within one hour, remembering to aspirate the sample from the tubing between each one.
- 25

CALCULATION OF RESULTS

Determine the total beta-hex present in the RBL cells by adding the supernatant (S) and cell lysate (C) values for each of the triplicate negative controls and determine the mean [S+C].

30 Determine the % release for each supernatant by taking the beta-hex value and dividing by (S+C) x 100.

Determine the net % release by subtracting the % release value for the control from each % release value where DNP-BSA was added.

B. PERMEABILIZED CELL ASSAYS

The mast cell/basophil degranulation assay can also be performed using permeabilized cells, according to the protocol described below (Cunha-Melo *et al.*, *J. Immunol.* 143:2617-2625 (1989); Ali *et al.*, *J. Immunol.* 143:2626-2633 (1989); Ali *et al.*, *Biochim. Biophys. Acta* 1010:88-99 (1989)).

PROTOCOL FOR PERMEABILIZATION OF RBL-2H3 CELLS WITH STREPTOLYSIN O

10

(1) BUFFER:

Potassium glutamate	138.7 mM
Glucose	5 mM
Potassium salt of PIPES	20 mM
Magnesium Acetate	7 mM

Make 1 litre of the above buffer, do not adjust pH, sterile filter and store at 4° until use.

20

At the time of use, remove appropriate volume and add the following:

1 M EGTA to give final concentration of 1 mM.

ATP (Sigma #A2383) to a final concentration of 5 mM.

Add CaCl₂ (1 M) to a final concentration of 0.213 mM.

25

In the presence of 1 mM EGTA the free [Ca²⁺] is 100 nM.

Adjust pH to 7.0.

BSA (1 mg/ml) optional.

LiCl (10 to 20 nM) for phosphoinositide hydrolysis experiments.

30

(2) Streptolysin O

Streptolysin O reduced (Burrough's Wellcome; catalog #MR 16).

Add 4 ml H₂O to 40 I.U. of streptolysin O. (10 units/ml). Make aliquots and freeze immediately.

35

(3) Permeabilization

RBL-2H3 cells (0.3×10^6 /well, in growth medium) are plated in 24 well tissue culture plate and incubated overnight.

- 5 The following day, cells are washed twice with potassium glutamate (KG) buffer (500 μ l).

The cells are permeabilized by exposure to streptolysin O (0.1 to 0.3 units/ml, 200-500 μ l/well) for 5 to 10 min. The concentration of streptolysin O and the time

- 10 required for permeabilization depends on the number of passages the cells have been cultured for and may vary with batch of streptolysin O. A useful starting point is to permeabilize cells with 0.25 I.U./ml streptolysin for 10 min.

- 15 Streptolysin O solution is prepared just before permeabilization by dilution of the stock solution (10 I.U./ml) into prewarmed KG buffer.

After the cells are permeabilized, remove buffer by aspiration, add fresh buffer (without toxin) and perform experiment as desired to measure cell activation (e.g., measure phosphoinositide hydrolysis, or β -hexosaminidase or histamine release).

- 20 Modifications of the permeabilization procedure can be made for measuring degranulation.

Example 4: Overexpression and Purification of the C-terminal SH2 domain of human Syk

- 25 The sequence encoding the amino acids 163 to 265 (SEQ ID NO: 33) was amplified by the polymerase chain reaction using Taq polymerase (BMB) and oligonucleotide primers (SEQ ID NOS: 34 and 35) from the plasmid termed pBS-SK(-) hu syk. After digestion with the restriction endonucleases BamH1 (5') and EcoR1 (3'), the gel purified fragment was subcloned into the expression vector pGEX2TK using T4 ligase (BMB) to produce the plasmid pGEX2TKCSyk(+11). The sequence of the C-terminal SH2 was determined using the chain-termination methods as described in the Sequenase (US Biochemical) protocols.

- A 2 liter culture (LB medium, 100 ug/ml ampicillin) of pGEXCSyk(+11) in transformed E. coli BL21(DE3) (Novagen) was grown at 37°C to an OD₅₉₅ of 0.432, 30 induced with 1 mM isopropyl b-D-thiogalactopyranoside (IPTG), shifted to 25 °C and harvested 12 hours later. After resuspension in phosphate buffered saline (PBS)/0.5% Triton X-100, the cells were lysed by two passes in a French Pressure Cell

at 16,000 psi. After centrifugation at 7000 x g for 20 minutes, the supernatant was purified by affinity chromatography with glutathione resin followed by elution with 20 mM glutathione in 100 mM Tris pH 8.0/100 mM NaCl. This procedure yielded 25 mg/L purified fusion protein as determined by SDS-polyacrylamide gel electrophoresis.

Example 5: In Vitro Transcription/Translation Assay

OBJECTIVE

10 The purpose of this assay is two fold, to determine if the following SH2 domains are functional via binding to phosphotyrosine and to develop an assay to screen and identify ligand targets (peptide or mimetics) which bind to these SH2 domains.

15 PROTOCOL

1. The SH2 domain constructs can be subcloned into pCITE (Novagen) which has a cap-independent translation enhancer and the His-tag sequence as a C-terminal fusion allowing for the purification of the full translation product if needed. This vector has been designed for increased translation (use of 110 mM KCl during translation increases the translation yield 10 fold over uncapped transcripts).

20 2. The in vitro transcription can be done on each construct. The RNA is prepared using the in vitro transcription kit from Novagen. .

25 3. The in vitro translation can be carried out using the Red Nova lysate (Novagen) using the minus leucine or minus methionine Red Nova lysate kit (for the domains that have very few to no methionines the translation can be done using H-3 leucine).

30 4. Aliquots of the translation products can be analyzed by autoradiography on an 15-20% SDS-PAGE gel. Protein concentration can be determined using routine laboratory methods.

35 5. The full translation product can be purified using His-tag/Ni resin if there is a mixture of products as determined by the autoradiograph. The protein can be eluted with imidazole.

6. The labeled (H^3 Leu or ^{35}S Met) SH2 translation product can be incubated with the phosphotyrosine-sepharose beads (Sigma) for 30 minutes. The protein-bound beads are then washed (3 times) and an aliquot counted. The protein bound to the phosphotyrosine can either be used in competition assays or eluted with phenyl phosphate for direct binding assays as described below.

ASSAYS

Competition for the phosphotyrosine binding:

- 10 Competition experiments can also be performed using nonbiotinylated peptides or peptide mimetics to compete off the phosphotyrosine (determine IC₅₀ for the peptide). The affinity purified (via phosphotyrosine) S-35 or H-3 labeled SH2 domains which are still bound to phosphotyrosine beads are incubated with the peptide (PDGF-R, TAM, etc.) or peptide mimetic. The sample is washed (3X), and 15 counted. The IC₅₀ for different peptides (i.e., the concentration of peptide that elutes 50% of the labeled SH2 domain) is then determined.

Direct Binding:

- 20 The affinity purified (via phosphotyrosine) ^{35}S or H-3 labeled SH2 domains (eluted from the phosphotyrosine beads) are incubated with a peptide (e.g., TAM) and then precipitated with streptavidin-agarose beads (Pierce), washed (3X) and counted. This direct binding interaction can be quantitated by counting the ligand bound ^{35}S or H-3 labeled protein.

25 Model System

- The model system for the *in vitro* transcription/ translation assay will be the lyn SH2 with the peptide KGGQY^PEEIPI and the N-terminal domain of PI3K with the NAcY^PVPMLGGK. Both protein SH2 domains can be ligated easily into the vector at the Ndel-5'/BamHI-3' sites. The peptide Y^PVPMLGGK (without the N-Ac) has been 30 biotinylated and purified. Variations of this peptide as well as variations of the PDGF-R have been made available to me (J. Green) for competition studies.

- These constructs will be used as the model system to develop the assay. The following nonfusion SH2 domain constructs are being subcloned into pCITE using the Ndel (5') and BamHI (3') restriction sites: lyn (U+SH3+SH2), lyn SH2 (+5 AA), PI3K 35 NSH2.

The following N-terminal and C-terminal SH2 domains of Syk will also be cloned into the Ndel (5') and BamHI (3') using the restriction sites [NSyk M(+9) & G

(+5) will be subcloned via the BamHI (5') and EcoR1 (3')] and tested with the phosphorylated FceRI-_ peptides. These phosphorylated peptides have been made available to me (Y. Green). These experiments can be performed as competition experiments, by competing for the phosphotyrosine-protein interaction or biotinylated
5 and done as a direct binding assay using the streptavidin beads.

NSyk (F, N-terminus)

NSyk (+9 AA & + 5 AA, M on the N-terminus and G on the C-terminus)

CSyk (+5 AA, H on the N-terminus)

CSyk (+5 AA & +12 AA, H on the N-terminus and G on the C-terminus)

10

EQUIVALENTS

Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to be specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the
15 following claims.

SEQUENCE LISTING

(1) GENERAL INFORMATION:

(i) APPLICANT: Brugge, Joan
Morgenstern, Jay
Shiue, Lily
Zydowsky, Lynne
Zoller, Mark
Pawson, Anthony

(ii) TITLE OF INVENTION: Human SYK

(iii) NUMBER OF SEQUENCES: 33

(iv) CORRESPONDENCE ADDRESS:

(A) ADDRESSEE: ARIAD Pharmaceuticals, Inc.
(B) STREET: 26 Lansdowne Street
(C) CITY: Cambridge
(D) STATE: MA
(E) COUNTRY: USA
(F) ZIP: 02139

(v) COMPUTER READABLE FORM:

(A) MEDIUM TYPE: Floppy disk
(B) COMPUTER: IBM PC compatible
(C) OPERATING SYSTEM: PC-DOS/MS-DOS
(D) SOFTWARE: PatentIn Release #1.0, Version #1.25

(vi) CURRENT APPLICATION DATA:

(A) APPLICATION NUMBER:
(B) FILING DATE: Filed Herewith
(C) CLASSIFICATION:

(viii) ATTORNEY/AGENT INFORMATION:

- (A) NAME: Bernstein, David L.
- (B) REGISTRATION NUMBER: 31,235
- (C) REFERENCE/DOCKET NUMBER: ARIAD 305A

(ix) TELECOMMUNICATION INFORMATION:

- (A) TELEPHONE: (617) 494-0400
- (B) TELEFAX: (617) 494-8144

(2) INFORMATION FOR SEQ ID NO:1:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1893 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(ix) FEATURE:

- (A) NAME/KEY: CDS
- (B) LOCATION: 1..1890

(ix) FEATURE:

- (A) NAME/KEY: N-SH2 DOMAIN
- (B) LOCATION: 28-306

(ix) FEATURE:

- (A) NAME/KEY: C-SH2 DOMAIN
- (B) LOCATION: 487-762

(ix) FEATURE:

- (A) NAME/KEY: KINASE DOMAIN
- (B) LOCATION: 1096-1893

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

ATG GCA GAC AGC GCG AAC CAC TTG CCC TTC TTT TTC GGC AAC ATC ACC Met Ala Asp Ser Ala Asn His Leu Pro Phe Phe Phe Gly Asn Ile Thr	48
1 5 10 15	
 CGG GAG GAG GCA GAA GAT TAC CTG GTC CAG GGG GGC ATG AGT GAT GGG Arg Glu Glu Ala Glu Asp Tyr Leu Val Gln Gly Gly Met Ser Asp Gly	96
20 25 30	
 CTT TAT TTG CTG CGC CAG AGC CGC AAC TAC CTG GGT GGC TTC GCC CTG Leu Tyr Leu Leu Arg Gln Ser Arg Asn Tyr Leu Gly Gly Phe Ala Leu	144
35 40 45	
 TCC GTG GCC CAC GGG AGG AAG GCA CAC CAC TAC ACC ATC GAG CGG GAG Ser Val Ala His Gly Arg Lys Ala His His Tyr Thr Ile Glu Arg Glu	192
50 55 60	
 CTG AAT GGC ACC TAC GCC ATC GCC GGT GGC AGG ACC CAT GCC AGC CCC Leu Asn Gly Thr Tyr Ala Ile Ala Gly Gly Arg Thr His Ala Ser Pro	240
65 70 75 80	
 GCC GAC CTC TGC CAC TAC CAC TCC CAG GAG TCT GAT GGC CTG GTC TGC Ala Asp Leu Cys His Tyr His Ser Gln Glu Ser Asp Gly Leu Val Cys	288
85 90 95	
 CTC CTC AAG AAG CCC TTC AAC CGG CCC AAG GGG TGC AGC CCG AAG ACT Leu Leu Lys Lys Pro Phe Asn Arg Pro Lys Gly Cys Ser Pro Lys Thr	336
100 105 110	
 GGG CCC TTT GAG GAT TTG AAG GAA AAC CTC ATC AGG GAA TAT GTG AAG Gly Pro Phe Glu Asp Leu Lys Glu Asn Leu Ile Arg Glu Tyr Val Lys	384
115 120 125	
 CAG ACA TGG AAC CTG CAG GGT CAG GCT CTG GAG CAG GCC ATC ATC AGT Gln Thr Trp Asn Leu Gln Gly Gln Ala Leu Glu Gln Ala Ile Ile Ser	432
130 135 140	

CAG AAG CCT CAG CTG GAG AAG CTG ATC GCT ACC ACA GCC CAT GAA AAA			480
Gln Lys Pro Gln Leu Glu Lys Leu Ile Ala Thr Thr Ala His Glu Lys			
145	150	155	160
ATG CCT TGG TTC CAT GGA AAA ATC TCT CGG GAA GAA TCT GAG CAA ATT			528
Met Pro Trp Phe His Gly Lys Ile Ser Arg Glu Glu Ser Glu Gln Ile			
165	170	175	
GTC CTG ATA GGA TCA AAG ACA AAT GGA AAG TTC CTG ATC CGA GCC AGA			576
Val Leu Ile Gly Ser Lys Thr Asn Gly Lys Phe Leu Ile Arg Ala Arg			
180	185	190	
GAC AAC AAC GGC TCC TAC GCC CTG TGC CTG CTG CAC GAA GGG AAG GTG			624
Asp Asn Asn Gly Ser Tyr Ala Leu Cys Leu Leu His Glu Gly Lys Val			
195	200	205	
CTG CAC TAT CGC ATC GAC AAA GAC AAG ACA GGG AAG CTC TCC ATC CCC			672
Leu His Tyr Arg Ile Asp Lys Asp Lys Thr Gly Lys Leu Ser Ile Pro			
210	215	220	
GAG GGA AAG AAG TTC GAC ACG CTC TGG CAG CTA GTC GAG CAT TAT TCT			720
Glu Gly Lys Lys Phe Asp Thr Leu Trp Gln Leu Val Glu His Tyr Ser			
225	230	235	240
TAT AAA GCA GAT GGT TTG TTA AGA GTT CTT ACT GTC CCA TGT CAA AAA			768
Tyr Lys Ala Asp Gly Leu Leu Arg Val Leu Thr Val Pro Cys Gln Lys			
245	250	255	
ATC GGC ACA CAG GGA AAT GTT AAT TTT GGA GGC CGT CCA CAA CTT CCA			816
Ile Gly Thr Gln Gly Asn Val Asn Phe Gly Gly Arg Pro Gln Leu Pro			
260	265	270	
GGT TCC CAT CCT GCG ACT TGG TCA GCG GGT GGA ATA ATC TCA AGA ATC			864
Gly Ser His Pro Ala Thr Trp Ser Ala Gly Gly Ile Ile Ser Arg Ile			
275	280	285	

AAA TCA TAC TCC TTC CCA AAG CCT GGC CAC AGA AAG TCC TCC CCT GCC Lys Ser Tyr Ser Phe Pro Lys Pro Gly His Arg Lys Ser Ser Pro Ala	912
290 295 300	
 CAA GGG AAC CGG CAA GAG AGT ACT GTG TCA TTC AAT CCG TAT GAG CCA Gln Gly Asn Arg Gln Glu Ser Thr Val Ser Phe Asn Pro Tyr Glu Pro	960
305 310 315 320	
 GAA CTT GCA CCC TGG GCT GCA GAC AAA GGC CCC CAG AGA GAA GCC CTA Glu Leu Ala Pro Trp Ala Ala Asp Lys Gly Pro Gln Arg Glu Ala Leu	1008
325 330 335	
 CCC ATG GAC ACA GAG GTG TAC GAG AGC CCC TAC GCG GAC CYC GAG GAG Pro Met Asp Thr Glu Val Tyr Glu Ser Pro Tyr Ala Asp Pro Glu Glu	1056
340 345 350	
 ATC AGG CCC AAG GAG GTT TAC CTG GAC CGA AAG CTG CTG ACG CTG GAA Ile Arg Pro Lys Glu Val Tyr Leu Asp Arg Lys Leu Leu Thr Leu Glu	1104
355 360 365	
 GAC AAA GAA CTG GGC TCT GGT AAT TTT GGA ACT GTG AAA AAG GGC TAC Asp Lys Glu Leu Gly Ser Gly Asn Phe Gly Thr Val Lys Lys Gly Tyr	1152
370 375 380	
 TAC CAA ATG AAA AAA GTT GTG AAA ACC GTG GCT GTG AAA ATA CTG AAA Tyr Gln Met Lys Lys Val Val Lys Thr Val Ala Val Lys Ile Leu Lys	1200
385 390 395 400	
 AAC GAG GCC AAT GAC CCC GCT CTT AAA GAT GAG TTA TTA GCA GAA GCA Asn Glu Ala Asn Asp Pro Ala Leu Lys Asp Glu Leu Leu Ala Glu Ala	1248
405 410 415	
 AAT GTC ATG CAG CAG CTG GAC AAC CCG TAC ATC GTG CGR ATG ATC GGG Asn Val Met Gln Gln Leu Asp Asn Pro Tyr Ile Val Arg Met Ile Gly	1296
420 425 430	

ATA TGC GAG GCC GAG TCC TGG ATG CTR GTT ATG GAG ATG GCA GAA CTT Ile Cys Glu Ala Glu Ser Trp Met Leu Val Met Glu Met Ala Glu Leu	1344
435 440 445	
 GGT CCC CTC AAT AAG TAT TTG CAG CAG AAC AGA CAT GTC AAG GAT AAG Gly Pro Leu Asn Lys Tyr Leu Gln Gln Asn Arg His Val Lys Asp Lys	1392
450 455 460	
 AAC ATC ATA GAA CTG GTT CAT CAG GTT TCC ATG GGC ATG AAG TAC TTG Asn Ile Ile Glu Leu Val His Gln Val Ser Met Gly Met Lys Tyr Leu	1440
465 470 475 480	
 GAG GAG AGC AAT TTT GTG CAC AGA GAT CTG GCT GCA AGA AAT GTG TTG Glu Glu Ser Asn Phe Val His Arg Asp Leu Ala Ala Arg Asn Val Leu	1488
485 490 495	
 CTA GTT ACC CAA CAT TAC GCC AAG ATC AGT GAT TTC GGA CTT TCC AAA Leu Val Thr Gln His Tyr Ala Lys Ile Ser Asp Phe Gly Leu Ser Lys	1536
500 505 510	
 GCA CTG CGT GCT GAT GAA AAC TAC TAC AAG GCC CAG ACC CAT GGA AAG Ala Leu Arg Ala Asp Glu Asn Tyr Tyr Lys Ala Gln Thr His Gly Lys	1584
515 520 525	
 TGG CCT GTC AAG TGG TAC GCT CCG GAA TGC ATC AAC TAC TAC AAG TTC Trp Pro Val Lys Trp Tyr Ala Pro Glu Cys Ile Asn Tyr Tyr Lys Phe	1632
530 535 540	
 TCC AGC AAA AGC GAT GTC TGG AGC TTT GGA GTG TTG ATG TGG GAA GCA Ser Ser Lys Ser Asp Val Trp Ser Phe Gly Val Leu Met Trp Glu Ala	1680
545 550 555 560	
 TTC TCC TAT GGG CAG AAG CCA TAT CGA GGG ATG AAA GGA AGT GAA GTC Phe Ser Tyr Gly Gln Lys Pro Tyr Arg Gly Met Lys Gly Ser Glu Val	1728
565 570 575	

ACC GCT ATG TTA GAG AAA GGA GAG CGG ATG GGG TGC CCT GCA GGG TGT
 Thr Ala Met Leu Glu Lys Gly Glu Arg Met Gly Cys Pro Ala Gly Cys
 580 585 590

CCA AGA GAG ATG TAC GAT CTC ATG AAT CTG TGC TGG ACA TAC GAT GTG
 Pro Arg Glu Met Tyr Asp Leu Met Asn Leu Cys Trp Thr Tyr Asp Val
 595 600 605

GAA AAC AGG CCC GGA TTC GCA GCA GTG GAA CTG CGG CTG CGC AAT TAC 1872
 Glu Asn Arg Pro Gly Phe Ala Ala Val Glu Leu Arg Leu Arg Asn Tyr
 610 615 620

TAC TAT GAC GTG GTG AAC TAA
Tyr Tyr Asp Val Val Asn
625 630

(2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 630 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Arg Glu Glu Ala Glu Asp Tyr Leu Val Gln Gly Gly Met Ser Asp Gly
20 25 30

Ser Val Ala His Gly Arg Lys Ala His His Tyr Thr Ile Glu Arg Glu
50 55 60

Leu Asn Gly Thr Tyr Ala Ile Ala Gly Gly Arg Thr His Ala Ser Pro
65 70 75 80

Ala Asp Leu Cys His Tyr His Ser Gln Glu Ser Asp Gly Leu Val Cys
85 90 95

Leu Leu Lys Lys Pro Phe Asn Arg Pro Lys Gly Cys Ser Pro Lys Thr
100 105 110

Gly Pro Phe Glu Asp Leu Lys Glu Asn Leu Ile Arg Glu Tyr Val Lys
115 120 125

Gln Thr Trp Asn Leu Gln Gly Gln Ala Leu Glu Gln Ala Ile Ile Ser
130 135 140

Gln Lys Pro Gln Leu Glu Lys Leu Ile Ala Thr Thr Ala His Glu Lys
145 150 155 160

Met Pro Trp Phe His Gly Lys Ile Ser Arg Glu Glu Ser Glu Gln Ile
165 170 175

Val Leu Ile Gly Ser Lys Thr Asn Gly Lys Phe Leu Ile Arg Ala Arg
180 185 190

Asp Asn Asn Gly Ser Tyr Ala Leu Cys Leu Leu His Glu Gly Lys Val
195 200 205

Leu His Tyr Arg Ile Asp Lys Asp Lys Thr Gly Lys Leu Ser Ile Pro
210 215 220

Glu Gly Lys Lys Phe Asp Thr Leu Trp Gln Leu Val Glu His Tyr Ser
225 230 235 240

Tyr Lys Ala Asp Gly Leu Leu Arg Val Leu Thr Val Pro Cys Gln Lys
245 250 255

Ile Gly Thr Gln Gly Asn Val Asn Phe Gly Gly Arg Pro Gln Leu Pro
260 265 270

Gly Ser His Pro Ala Thr Trp Ser Ala Gly Gly Ile Ile Ser Arg Ile
275 280 285

Lys Ser Tyr Ser Phe Pro Lys Pro Gly His Arg Lys Ser Ser Pro Ala
290 295 300

Gln Gly Asn Arg Gln Glu Ser Thr Val Ser Phe Asn Pro Tyr Glu Pro
305 310 315 320

Glu Leu Ala Pro Trp Ala Ala Asp Lys Gly Pro Gln Arg Glu Ala Leu
325 330 335

Pro Met Asp Thr Glu Val Tyr Glu Ser Pro Tyr Ala Asp Pro Glu Glu
340 345 350

Ile Arg Pro Lys Glu Val Tyr Leu Asp Arg Lys Leu Leu Thr Leu Glu
355 360 365

Asp Lys Glu Leu Gly Ser Gly Asn Phe Gly Thr Val Lys Lys Gly Tyr
370 375 380

Tyr Gln Met Lys Lys Val Val Lys Thr Val Ala Val Lys Ile Leu Lys
385 390 395 400

Asn Glu Ala Asn Asp Pro Ala Leu Lys Asp Glu Leu Leu Ala Glu Ala
405 410 415

Asn Val Met Gln Gln Leu Asp Asn Pro Tyr Ile Val Arg Met Ile Gly
420 425 430

Ile Cys Glu Ala Glu Ser Trp Met Leu Val Met Glu Met Ala Glu Leu
435 440 445

Gly Pro Leu Asn Lys Tyr Leu Gln Gln Asn Arg His Val Lys Asp Lys
450 455 460

Asn Ile Ile Glu Leu Val His Gln Val Ser Met Gly Met Lys Tyr Leu
465 470 475 480

Glu Glu Ser Asn Phe Val His Arg Asp Leu Ala Ala Arg Asn Val Leu
485 490 495

Leu Val Thr Gln His Tyr Ala Lys Ile Ser Asp Phe Gly Leu Ser Lys
500 505 510

Ala Leu Arg Ala Asp Glu Asn Tyr Tyr Lys Ala Gln Thr His Gly Lys
515 520 525

Trp Pro Val Lys Trp Tyr Ala Pro Glu Cys Ile Asn Tyr Tyr Lys Phe
530 535 540

Ser Ser Lys Ser Asp Val Trp Ser Phe Gly Val Leu Met Trp Glu Ala
545 550 555 560

Phe Ser Tyr Gly Gln Lys Pro Tyr Arg Gly Met Lys Gly Ser Glu Val
565 570 575

Thr Ala Met Leu Glu Lys Gly Glu Arg Met Gly Cys Pro Ala Gly Cys
580 585 590

Pro Arg Glu Met Tyr Asp Leu Met Asn Leu Cys Trp Thr Tyr Asp Val
595 600 605

Glu Asn Arg Pro Gly Phe Ala Ala Val Glu Leu Arg Leu Arg Asn Tyr
610 615 620

Tyr Tyr Asp Val Val Asn
625 630

(2) INFORMATION FOR SEQ ID NO:3:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 28 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

GGCTCGAGTT YTTYTTYGGN CARATTAC

28

(2) INFORMATION FOR SEQ ID NO:4:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 28 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

GGCTCGAGTT YTTYTTYGGN CARATAAC

28

(2) INFORMATION FOR SEQ ID NO:5:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 28 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

GGCTCGAGTT YTTYTTYGGN CARATCAC

28

(2) INFORMATION FOR SEQ ID NO:6:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 32 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

CCCATCGATC CRTGRAACCA NGGCATYTTT TC

32

(2) INFORMATION FOR SEQ ID NO:7:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 32 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

CCCATCGATC CRTGRAACCA NGGCATYTTC TC

32

(2) INFORMATION FOR SEQ ID NO:8:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 31 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

GGCTCGAGTG GATGCTDGTN ATGGAAATGG C

31

(2) INFORMATION FOR SEQ ID NO:9:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 31 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

GGCTCGAGTG GATGCTDGTN ATGGAGATGG C

31

(2) INFORMATION FOR SEQ ID NO:10:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 34 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

CCCATCGATA RTCHACHACR TCRTARTART AGTT

34

(2) INFORMATION FOR SEQ ID NO:11:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 33 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

CCCATCGATA RTCHACHACR TCRTADARTA ATT

33

(2) INFORMATION FOR SEQ ID NO:12:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 21 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

AGTATTTGCA GCAGAACCGAG A

21

(2) INFORMATION FOR SEQ ID NO:13:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 32 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

CCCATCGATA TGATGTTCTT ATCCTTGACA TG

32

(2) INFORMATION FOR SEQ ID NO:14:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 24 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

CATGGAAACC TGATGAACCA GTTC

24

(2) INFORMATION FOR SEQ ID NO:15:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 25 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

GACTGCTGGG TAGTCCCCAC CTTTT

25

(2) INFORMATION FOR SEQ ID NO:16:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 25 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

GAGCAAGTTC AGCCTGGTTA AGTCC

25

(2) INFORMATION FOR SEQ ID NO:17:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 26 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

GGGGTAAAT AACAGAGGTG GCTTAT

26

(2) INFORMATION FOR SEQ ID NO:18:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 25 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

GAGTATTCT TCCAGGGTAA AAAGC

25

(2) INFORMATION FOR SEQ ID NO:19:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 21 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

CAGCCCCGCC GACCTCTGCC A

21

(2) INFORMATION FOR SEQ ID NO:20:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 33 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

CCCATCGATC CATCAGACTC CTGGGAGTGG TAG

33

(2) INFORMATION FOR SEQ ID NO:21:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 24 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

GGCTTCTTGA GGAGGCAGAC CAGG

24

(2) INFORMATION FOR SEQ ID NO:22:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 34 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

GGCTCGAGAT GGCAGACAGY GCSAAYCACC TGCC

34

(2) INFORMATION FOR SEQ ID NO:23:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 34 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

GGCTCGAGAT GGCAGACAGY GCSAAYCACT TGCC

34

(2) INFORMATION FOR SEQ ID NO:24:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 24 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

ATGATGGCCT GCTCCAGAGC CTGA

24

(2) INFORMATION FOR SEQ ID NO:25:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 23 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

ATCACCCGGG AGGAGGCWGA AGA

23

(2) INFORMATION FOR SEQ ID NO:26:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 33 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:

CCCATCGATG CCACCCAGGT AGTTGCGGCT CTG

33

(2) INFORMATION FOR SEQ ID NO:27:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 24 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:

CTCCTGGGAG TGGTAGTGGC AGAG

24

(2) INFORMATION FOR SEQ ID NO:28:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 25 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:

CAATTAACCC CTCGAGAATT CCCAA

25

(2) INFORMATION FOR SEQ ID NO:29:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 25 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:

TCAATGAACG ATCATGTAGC AATGC

25

(2) INFORMATION FOR SEQ ID NO:30:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 50 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:

TCAATGAACG ATCATGTAGC AATGCCAATT AACCCCTCGA GAATTCCCAA

50

(2) INFORMATION FOR SEQ ID NO:31:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 103 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:

Trp	Phe	His	Gly	Lys	Ile	Ser	Arg	Glu	Glu	Ser	Glu	Gln	Ile	Val	Leu
1					5					10			15		
Ile	Gly	Ser	Lys	Thr	Asn	Gly	Lys	Phe	Leu	Ile	Arg	Ala	Arg	Asp	Asn
				20					25			30			
Asn	Gly	Ser	Tyr	Ala	Leu	Cys	Leu	Leu	His	Glu	Gly	Lys	Val	Leu	His
				35				40				45			
Tyr	Arg	Ile	Asp	Lys	Asp	Lys	Thr	Gly	Lys	Ile	Ser	Ile	Pro	Glu	Gly
		50				55				60					
Lys	Lys	Phe	Asp	Thr	Leu	Trp	Gln	Leu	Val	Glu	His	Tyr	Ser	Tyr	Lys
	65				70				75			80			
Ala	Asp	Gly	Leu	Leu	Arg	Val	Leu	Thr	Val	Pro	Cys	Gln	Lys	Ile	Gly
					85				90			95			
Thr	Gln	Gly	Asn	Val	Asn	Phe									
				100											

(2) INFORMATION FOR SEQ ID NO:32:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 42 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Synthetic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:

CGCGCGAAGC TTGGATCCTG GTTCCATGGA AAAATCTCTC GG

42

(2) INFORMATION FOR SEQ ID NO:33:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 35 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Synthetic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:

GCGAATTCTC AAAAATTAAC ATTTCCCTGT GTGCC

35

CLAIMS

The invention claimed is:

1. An isolated DNA molecule comprising a DNA sequence encoding part or all of the amino acid sequence spanning positions Met-1 through Gly-180 of SEQ ID NO:2, or allelic variants thereof.
2. An isolated DNA molecule comprising part or all of the nucleotide sequence spanning positions A-1 through A-540 of SEQ ID NO:1, or allelic variants thereof.
3. An isolated DNA molecule comprising the nucleotide sequence spanning positions A-1 through C-1890 of SEQ ID NO:1, or allelic variants thereof.
4. A recombinant DNA construct comprising a DNA molecule of claims 1, 2 or 3, and heterologous DNA.
5. A genetically engineered host cell containing a recombinant DNA construct of claim 4.

ggctcgaa tt(tc) tt(tc) tt(tc) gg(gtac) ca(ag) att ac syk S1A
 ggctcgaa tt(tc) tt(tc) tt(tc) gg(gtac) ca(ag) ata ac syk S1B
 ggctcgaa tt(tc) tt(tc) tt(tc) gg(gtac) ca(ag) atc ac syk S1C
Xba I **F** **F** **G** **Q** **I** **T**

cccatcgat cc (ag)tg (ag)aa cca (gtac)gg cat (tc)tt ttc syk AS2A
 cccatcgat cc (ag)tg (ag)aa cca (gtac)gg cat (tc)tt ctc syk AS2B
Cla I **G** **H** **F** **W** **P** **M** **K** **E**

ggctcgaa tgg atg ct(gat) gt(gtac) atg gaa atg gc syk S3A
 ggctcgaa tgg atg ct(gat) gt(gtac) atg gag atg gc syk S3B
Xba I **W** **M** **L** **V** **M** **E** **M** **A**

cccatcgat a (ag)tc (atc)ac (ag)tc (ag)ta (ag)ta (ag)ta gtt syk AS4A
 cccatcgat a (ag)tc (atc)ac (ag)tc (ag)ta (agt)a (ag)ta att syk AS4B
Cla I **N** **V** **V** **D** **Y** **Y** **Y** **N**

agt att tgc agc aga acc aga

syk Probe Z

Figure 1A / 2

syk ASA

cccatcgat at gat gtt ctt atc ctt gac atg
Cla I **L** **I** **N** **K** **D** **K** **V** **H**

syk ASB

cat gga aac ctg atg aac cag ttc
M **S** **V** **Q** **H** **V** **L** **E**

gactgctggtagtccaccttt
gagcaaggtcagcctggtaagtcc
gggtaaaataacagagggtggcttat
gagttttctccaggtaaaaaggc

λ for 1
 λ for 2
 λ rev 1
 λ rev 2

syk Probe W

cag ccc cgc cga cct ctg cca
S **P** **A** **D** **L** **C** **H**

λ for 1
 λ for 2
 λ rev 1
 λ rev 2

cccatcgat cca tca gac tcc tgg gag tgg tag
Cla I **G** **D** **S** **E** **Q** **S** **H** **Y**

syk ASX

ggc ttc ttg agg agg cag accc agg
P **K** **K** **L** **L** **C** **V** **L**

syk ASY

ggctcgaa atg gca gac ag(ct) gc(gc) aa(ct) cac ctg cc
ggctcgaa atg gca gac ag(ct) gc(gc) aa(ct) cac ttg cc
Xba I **M** **A** **D** **S** **A** **N** **H** **L** **P**

syk ATG 1
syk ATG 2

Figure 1B / 2

syk AS QALE

I	I	A	Q	E	L	A	Q
atc	acc	cgg	gag	gag	gc(at)	gaa	ga
I	T	R	E	E	A	E	D
<u>cccatcgat</u> gcc acc cag gta gtt gcg gct ctg							
Cla I G G L Y N R S Q							

syk Probe T

syk ASU

syk ASV

ctc ctg gga gtg gta gtg gca gag
5'-tcaatgaacgatcatgttagcaatgc

E **Q** **S** **H** **Y** **H** **C** **L**

Xba I Eco RI

caatttaacccttcgagaattccccaa

tcaatgaacgatcatgttagcaatgc

Uni 5'-2

Uni 5'-1

Anchor S

Anchor AS

3'-a
C
C

Figure 1C / 2

Figure 2 / 2

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US94/04540

A. CLASSIFICATION OF SUBJECT MATTER

IPC(5) :C12N 1/11, 1/15, 5/10, 15/12

US CL :536/23.5; 435/240.1, 252.3, 255, 320.1

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 536/23.5; 435/240.1, 252.3, 255, 320.1

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

DIALOG, APS

search terms: syk, SH2, kinase

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	Cell, Volume 71, issued 13 November 1992, Chan et al., "ZAP-70: a 70 kd protein-tyrosine kinase that associates with the TRC zeta chain", pages 649-662, see whole publication, especially Figure 5, particularly Figure 5 on page 654.	1-5
Y	Science, Volume 239, issued 11 March 1988, Lee et al., "Generation of cDNA probes directed by amino acid sequence: cloning of urate oxidase", pages 1288-1291, see whole publication, especially pages the abstract and pages 1289 and 1291.	1-5

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"A" document defining the general state of the art which is not considered to be of particular relevance	"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"E" earlier document published on or after the international filing date	"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"&"	document member of the same patent family
"O" document referring to an oral disclosure, use, exhibition or other means		
"P" document published prior to the international filing date but later than the priority date claimed		

Date of the actual completion of the international search

04 AUGUST 1994

Date of mailing of the international search report

10 AUG 1994

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No. (703) 305-3230

Authorized officer

KEITH FURMAN, Ph.D.

Telephone No. (703) 308-0196

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US94/04540

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	The Journal of Biological Chemistry, Volum 267, Number 35, issued 15 December 1992, Samelson et al., "Tyrosine kinases and tyrosine based activation motifs", pages 24913-24916, see whole publication.	1-5

syk Probe Z

Xba I	F	F	G	O	I	T
gggttcggat tt(tc) tr(tcc) tr(tcc) gg(gtatc) ca(agg) atc ac	ggcttcggat tt(tc) tt(tcc) tt(tcc) gg(gtatc) ca(agg) ata ac	ggcttcggat tt(tcc) tt(tcc) tt(tcc) gg(gtatc) ca(agg) atc ac	ggcttcggat cc (agg)tg (agg)aa cca (agg)gg cat (tc)ttt ttc	ccccatcat cc (agg)tg (agg)aa cca (gtatc) atg gaa atg gc	ccccatcat a (agg)tc (atc)ac (agg)tc (agg)ta (agg)ta (agg)ttt	ccccatcat a (agg)tc (atc)ac (agg)tc (agg)ta (agg)ta (agg)ttt
Xba I	G	H	F	W	P	M
Clai	W	M	L	V	M	E
	N	V	A	D	Y	N

syk AS2A

syk AS2B

syk S3A

syk S3B

syk AS4A

syk AS4B

syk AS5A

syk AS5B

syk AS6A

syk AS6B

syk AS7A

syk AS7B

syk AS8A

syk AS8B

syk AS9A

syk AS9B

syk AS10A

syk AS10B

syk AS11A

syk AS11B

syk AS12A

syk AS12B

syk AS13A

syk AS13B

syk AS14A

syk AS14B

syk AS15A

syk AS15B

syk AS16A

syk AS16B

syk AS17A

syk AS17B

syk AS18A

syk AS18B

syk AS19A

syk AS19B

syk AS20A

syk AS20B

syk AS21A

syk AS21B

syk AS22A

syk AS22B

syk AS23A

syk AS23B

syk AS24A

syk AS24B

syk AS25A

syk AS25B

syk AS26A

syk AS26B

syk AS27A

syk AS27B

syk AS28A

syk AS28B

syk AS29A

syk AS29B

syk AS30A

syk AS30B

syk AS31A

syk AS31B

syk AS32A

syk AS32B

syk AS33A

syk AS33B

syk AS34A

syk AS34B

syk AS35A

syk AS35B

syk AS36A

syk AS36B

syk AS37A

syk AS37B

syk AS38A

syk AS38B

syk AS39A

syk AS39B

syk AS40A

syk AS40B

syk AS41A

syk AS41B

syk AS42A

syk AS42B

syk AS43A

syk AS43B

syk AS44A

syk AS44B

syk AS45A

syk AS45B

syk AS46A

syk AS46B

syk AS47A

syk AS47B

syk AS48A

syk AS48B

syk AS49A

syk AS49B

syk AS50A

syk AS50B

syk AS51A

syk AS51B

syk AS52A

syk AS52B

syk AS53A

syk AS53B

syk AS54A

syk AS54B

syk AS55A

syk AS55B

syk AS56A

syk AS56B

syk AS57A

syk AS57B

syk AS58A

syk AS58B

syk AS59A

syk AS59B

syk AS60A

syk AS60B

syk AS61A

syk AS61B

syk AS62A

syk AS62B

syk AS63A

syk AS63B

syk AS64A

syk AS64B

syk AS65A

syk AS65B

syk AS66A

syk AS66B

syk AS67A

syk AS67B

syk AS68A

syk AS68B

syk AS69A

syk AS69B

syk AS70A

syk AS70B

syk AS71A

syk AS71B

syk AS72A

syk AS72B

syk AS73A

syk AS73B

syk AS74A

syk AS74B

syk AS75A

syk AS75B

syk AS76A

syk AS76B

syk AS77A

syk AS77B

syk AS78A

syk AS78B

syk AS79A

syk AS79B

syk AS80A

syk AS80B

syk AS81A

syk AS81B

syk AS82A

syk AS82B

syk AS83A

syk AS83B

syk AS84A

syk AS84B

syk AS85A

syk AS85B

syk AS86A

syk AS86B

syk AS87A

syk AS87B

syk AS88A

syk AS88B

syk AS89A

syk AS89B

syk AS90A

syk AS90B

syk AS91A

syk AS91B

syk AS92A

syk AS92B

syk AS93A

syk AS93B

syk AS94A

syk AS94B

syk AS95A

syk AS95B

syk AS96A

syk AS96B

syk AS97A

syk AS97B

syk AS98A

syk AS98B

syk AS99A

syk AS99B

syk AS100A

syk AS100B

syk AS101A

syk AS101B

syk AS102A

syk AS102B

syk AS103A

syk AS103B

syk AS104A

syk AS104B

syk AS105A

syk AS105B

syk AS106A

syk AS106B

syk AS107A

syk AS107B

syk AS108A

syk AS108B

syk AS109A

syk AS109B

syk AS110A

syk AS110B

syk AS111A

syk AS111B

syk AS112A

syk AS112B

syk AS113A

syk AS113B

syk AS114A

syk AS114B

syk AS115A

syk AS115B

syk AS116A

syk AS116B

syk AS117A

syk AS117B

syk AS118A

syk AS118B

syk AS119A

syk AS119B

syk AS120A

syk AS120B

syk AS121A

syk AS121B

syk AS122A

syk AS122B

syk AS123A

syk AS123B

syk AS124A

syk AS124B

syk AS125A

syk AS125B

syk AS126A

syk AS126B

syk AS127A

syk AS127B

syk AS128A

syk AS128B

syk AS129A

syk AS129B

syk AS130A

syk AS130B

syk AS131A

syk AS131B

syk AS132A

syk AS132B

syk AS133A

syk AS133B

syk AS134A

syk AS134B

syk AS135A

syk AS135B

syk AS136A

syk AS136B

syk AS137A

syk AS137B

syk AS138A

syk AS138B

syk AS139A

syk AS139B

syk AS140A

syk AS140B

syk AS141A

syk AS141B

syk AS142A

syk AS142B

syk AS143A

syk AS143B

syk AS144A

syk AS144B

syk AS145A

syk AS145B

syk AS146A

syk AS146B

syk AS147A

syk AS147B

syk AS148A

syk AS148B

syk AS149A

syk AS149B

syk AS150A

syk AS150B

syk AS151A

syk AS151B

syk AS152A

syk AS152B

syk AS153A

syk AS153B

syk AS154A

syk AS154B

syk AS155A

syk AS155B

syk AS156A

syk AS156B

syk AS157A

syk AS157B

syk AS158A

syk AS158B

syk AS159A

syk AS159B

syk AS160A

syk AS160B

syk AS161A

syk AS161B

syk AS162A

syk AS162B

syk AS163A

syk AS163B

syk AS164A

syk AS164B

syk AS165A

syk AS165B

syk AS166A

syk AS166B

syk AS167A

syk AS167B

syk AS168A

syk AS168B

syk AS169A

syk AS169B

syk AS170A

syk AS170B

syk AS171A

syk AS171B

syk AS172A

syk AS172B

syk AS173A

syk AS173B

syk AS174A

syk AS174B

syk AS175A

syk AS175B

syk AS176A

syk AS176B

syk AS177A

syk AS177B

syk AS178A

syk AS178B

syk AS179A

syk AS179B

syk AS180A

syk AS180B

syk AS181A

syk AS181B

syk AS182A

syk AS182B

syk AS183A

syk AS183B

syk AS184A

syk AS184B

syk AS185A

syk AS185B

syk AS186A

syk AS186B

syk AS187A

syk AS187B

syk AS188A

syk AS188B

syk AS189A

syk AS189B

syk AS190A

syk AS190B

syk AS191A

syk AS191B

syk AS192A

syk AS192B

syk AS193A

syk AS193B

syk AS194A

syk AS194B

syk AS195A

syk AS195B

syk AS196A

syk AS196B

syk AS197A

syk AS197B

syk AS198A

syk AS198B

syk AS199A

syk AS199B

syk AS200A

syk AS200B

syk AS201A

syk AS201B

syk AS202A

syk AS202B

syk AS203A

syk AS203B

syk AS204A

syk AS204B

syk AS205A

syk AS205B

syk AS206A

syk AS206B

syk AS207A

syk AS207B

syk AS208A

syk AS208B

syk AS209A

syk AS209B

syk AS210A

syk AS210B

syk AS211A

syk AS211B

syk AS212A

syk AS212B

syk AS213A

syk AS213B

syk AS214A

syk AS214B

syk AS215A

syk AS215B

syk AS216A

syk AS216B

syk AS217A

syk AS217B

syk AS218A

syk AS218B

syk AS219A

syk AS219B

syk AS220A

syk AS220B

syk AS221A

syk AS221B

syk AS222A

syk AS222B

syk AS223A

syk AS223B

syk AS224A

syk AS224B

syk AS225A

syk AS225B

syk AS226A

syk AS226B

syk AS227A

syk AS227B

syk AS228A

syk AS228B

syk AS229A

syk AS229B

syk AS230A

syk AS230B

syk AS231A

syk AS231B

syk AS232A

syk AS232B

syk AS233A

syk AS233B

syk AS234A

syk AS234B

syk AS235A

syk AS235B

syk AS236A

syk AS236B

syk AS237A

syk AS237B

syk AS238A

syk AS238B

syk AS239A

syk AS239B

syk AS240A

syk AS240B

syk AS241A

syk AS241B

syk AS242A

syk AS242B

syk AS243A

syk AS243B

syk AS244A

syk AS244B

syk AS245A

syk AS245B

syk AS246A

syk AS246B

syk AS247A

syk AS247B

syk AS248A

syk AS248B

syk AS249A

syk AS249B

syk AS250A

syk AS250B

syk AS251A

syk AS251B

syk AS252A

syk AS252B

syk AS253A

syk AS253B

syk AS254A

syk AS254B

syk AS255A

syk AS255B

syk AS256A

syk AS256B

syk AS257A

syk AS257B

syk AS258A

syk AS258B

syk AS259A

syk AS259B

syk AS260A

syk AS260B

syk AS261A

syk AS261B

syk AS262A

syk AS262B

syk AS263A

syk AS263B

syk AS264A

syk AS264B

syk AS265A

syk AS265B

syk AS266A

syk AS266B

syk AS267A

syk AS267B

syk AS268A

syk AS268B

syk AS269A

syk AS269B

syk AS270A

syk AS270B

syk AS271A

syk AS271B

syk AS272A

syk AS272B

syk AS273A

syk AS273B

syk AS274A

syk AS274B

syk AS275A

syk AS275B

syk AS276A

syk AS276B

syk AS277A

syk AS277B

syk AS278A

syk AS278B

syk AS279A

syk AS279B

syk AS280A

syk AS280B

syk AS281A

syk AS281B

syk AS282A

syk AS282B

syk AS283A

syk AS283B

syk AS284A

syk AS284B

syk AS285A

syk AS285B

syk AS286A

syk AS286B

syk AS287A

syk AS287B

syk AS288A

syk AS288B

syk AS289A

syk AS289B

syk AS290A

syk AS290B

syk AS291A

syk AS291B

syk AS292A

syk AS292B

syk AS293A

syk AS293B

syk AS294A

syk AS294B

syk AS295A

syk AS295B

syk AS296A

syk AS296B

syk AS297A

syk AS297B

syk AS298A

syk AS298B

syk AS299A

syk AS299B

syk AS300A

syk AS300B

syk AS301A

syk AS301B

syk AS302A

syk AS302B

syk AS303A

syk AS303B

syk AS304A

syk AS304B

syk AS305A

syk AS305B

syk AS306A

<p style

Figure 1B / 2

<pre> at ggc ctg ctc cag agc ctg a A Q E L A Q </pre>	<pre> atc acc cgg gag gag[at] gaa ga T R E E A E D </pre>	<pre> cccatccat gtc acc cag gta gtt gcg gtc ctg G G L Y N R S O </pre>
--	--	--

Figure 1C / 2

Figure 2 / 2