C2W2-Quiz-Optimization-Algorithms

1.		ich notation would you use to denote the 3rd layer's activations when the ut is the 7th example from the 8th minibatch?
		a[8]{3}(7)
		a[8]{7}(3)
	~	a[3]{8}(7)
		a[3]{7}(8)
2.	Wh with	ich of these statements about mini-batch gradient descent do you agree n?
		Training one epoch (one pass through the training set) using minibatch gradient descent is faster than training one epoch using batch gradient descent.
	~	One iteration of mini-batch gradient descent (computing on a single mini-batch) is faster than one iteration of batch gradient descent.
		You should implement mini-batch gradient descent without an explicit for-loop over different mini-batches, so that the algorithm processes all mini-batches at the same time (vectorization).
3.		y is the best mini-batch size usually not 1 and not m, but instead something between?
	~	If the mini-batch size is 1, you lose the benefits of vectorization across examples in the mini-batch.
		If the mini-batch size is m, you end up with stochastic gradient descent, which is usually slower than mini-batch gradient descent.
		If the mini-batch size is 1, you end up having to process the entire training set before making any progress.
	~	If the mini-batch size is m, you end up with batch gradient descent, which has to process the whole training set before making progress.

4. Suppose your learning algorithm's cost J, plotted as a function of the number of iterations, looks like this:

Which of the following do you agree with?

- Whether you're using batch gradient descent or mini-batch gradient descent, something is wrong.
- ☐ Whether you're using batch gradient descent or mini-batch gradient descent, this looks acceptable.
- If you're using mini-batch gradient descent, this looks acceptable. But if you're using batch gradient descent, something is wrong.
- If you're using mini-batch gradient descent, something is wrong. But if you're using batch gradient descent, this looks acceptable.
- 5. Suppose the temperature in Casablanca over the first two days of January are the same:

Jan 1st: θ 1 = 10oC

Jan 2nd: θ 2 = 10oC

(We used Fahrenheit in lecture, so will use Celsius here in honor of the metric world.)

Say you use an exponentially weighted average with β =0.5 to track the temperature: v0=0, vt= βvt -1+(1- β) θt . If v2 is the value computed after day 2

without bias correction, and *v2corrected* is the value you compute with bias correction. What are these values? (You might be able to do this without a calculator, but you don't actually need one. Remember what bias correction is doing.)

□ *v*2=10, *v*2*corrected*=7.5

√2=7.5, √2corrected=10

6. Which of these is NOT a good learning rate decay scheme? Here, t is the epoch number.

α=(e^t)αθ

 $\alpha = \alpha 0*(t)^{(1/2)}$

 $\alpha = \alpha 0*1/(1+2*t)$

 \square α =(0.95^t) α 0

7. You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature: $vt=\beta vt-1+(1-\beta)\theta t$. The red line below was computed using β =0.9. What would happen to your red curve as you vary β ? (Check the two that apply)

 \square Decreasing β will shift the red line slightly to the right.

 \checkmark Increasing β will shift the red line slightly to the right.

- True, remember that the red line corresponds to β =0.9. In lecture we had a green line \$\$\beta = 0.98\) that is slightly shifted to the right.
- ✓ Decreasing \betaβ will create more oscillation within the red line.
- True, remember that the red line corresponds to β =0.9. In lecture we had a yellow line \$\$\beta = 0.98 that had a lot of oscillations.
- \square Increasing β will create more oscillations within the red line.
- 8. Consider this figure:

These plots were generated with gradient descent; with gradient descent with momentum (β = 0.5) and gradient descent with momentum (β = 0.9). Which curve corresponds to which algorithm?

- (1) is gradient descent. (2) is gradient descent with momentum (large β). (3) is gradient descent with momentum (small β)
- (1) is gradient descent with momentum (small β), (2) is gradient descent with momentum (small β), (3) is gradient descent
- (1) is gradient descent. (2) is gradient descent with momentum (small β). (3) is gradient descent with momentum (large β)
- \square (1) is gradient descent with momentum (small β). (2) is gradient descent. (3) is gradient descent with momentum (large β)
- 9. Suppose batch gradient descent in a deep network is taking excessively long to find a value of the parameters that achieves a small value for the cost function

`	ttain a small value for J? (Check all that apply)		
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	he weights to zero		
▼ Try using Adam			
Try tuning the lear	ning rate \alphaα		
✓ Try mini-batch gra	dient descent		
Try better random	initialization for the weights		
10. Which of the following s	Which of the following statements about Adam is False?		
☐ We usually use "d Adam (β 1=0.9, β 2=	efault" values for the hyperparameters β 1, β 2 and ϵ in =0.999, ϵ =10^-8)		
☐ Adam combines th	ne advantages of RMSProp and momentum		
Adam should be u batches.	sed with batch gradient computations, not with mini-		
\square The learning rate \mathbb{I}	hyperparameter $lpha$ in Adam usually needs to be tuned.		