Computational Statistics HW3

Liam Carpenter

November 2021

Problem 1

```
def horners(coef, x, r, t, s):
#Polynomial evaluation through horner method
#Input: Polynomial coefficients, evaluation point
#Output: Approximation of function at evaluation point

deg = coef.shape[0]
  f_k2 = coef[-1]
  f_k1 = coef[-2] + f_k2*(r*x-s)
  for k in range(deg-2, 0, -1):
    f_k = coef[k] + f_k1*(r*x-s) - f_k2*t
    f_k2 = f_k1
    f_k1 = f_k
    p_0 = coef[0] + f_k1*x - f_k2
    return p_0
```

Evaluation of Horners Method on e^t Error at x=0: 0.00050, integrate square error: 0.00002

Problem 2

Legendre Approximation v. Chebyshev Interpolation, degree 1

Legendre Approximation v. Chebyshev Interpolation, degree 16

Degree	L2 Error Cheb	L2 Error Leg
1	.151327	.159623
2	.151327	.174876
4	.005009	.005659
8	.000001	.000001
16	.000000	.000000

Problem 3

X	value	quadrature nodes
1	0.765198	13.0
2	0.223891	17.0
4	-0.397150	21.0
8	0.171651	29.0
16	-0.174899	41.0
32	0.138079	63.0
64	0.092590	103.0
128	0.001472	175.0
256	-0.036653	315.0

Problem 4

The value of F(.25, 3, 3) is 0.10351562500000008 The value of F(.5, 4, 5) is 0.6367187500000001

