Факультет безопасности информационных технологий Университет ИТМО

Группа	ФИЗ-1 Э БИТ 1.2.1	К работе допущены	
Студенты	Бардышев Артём		
	Суханкулиев Мухаммет	Работа выполнена	
	Сухоруков Пётр	_	
Преподава	тель	Отчет принят	

Рабочий протокол и отчет по лабораторной работе №2.01

Изучение законов идеального газа на примере воздуха. Определение температуры абсолютного нуля

1. Цели работы.

- 1. Экспериментальная проверка уравнения состояния идеального газа.
- 2. Определение температуры абсолютного нуля по шкале Цельсия.

2. Задачи, решаемые при выполнении работы.

- 1. Получить зависимости давления $p(V_{\text{II}})$ при различных температурах t.
- 2. Построить графики зависимости $V_{\rm II}(1/p)$ при различных температурах и p(T) при разных значениях $V_{\rm II}$.

3. Объект исследования.

Идеальный газ (на примере воздуха).

4. Метод экспериментального исследования.

Серия измерений давления и объема идеального газа при различных температурах и анализ полученных данных.

5. Рабочие формулы.

$$K = \frac{1}{D} \sum_{i=1}^{8} (\frac{1}{p_i} - \frac{\widetilde{1}}{p}) V_i$$
, где $\frac{\widetilde{1}}{p} = \sum_{i=1}^{8} (\frac{1}{p_i} - \frac{\widetilde{1}}{p})^2$

Если
$$Y(X) = AX + C$$
, где $Y = K$, $X = t$, то:
$$A = \frac{1}{D} \sum_{i=1}^{N} (X_i - \overline{X}) Y_i, \ C = \overline{Y} - A \overline{X}, \ \overline{X} = \frac{1}{N} \sum_{i=1}^{N} X_i, \ \overline{Y} = \frac{1}{N} \sum_{i=1}^{N} Y_i,$$

$$D = \sum_{i=1}^{N} (X_i - \overline{X})^2$$

Расчёт погрешностей:

$$E = \frac{1}{N-2} \sum_{i=1}^{N} (Y_i - AX_i - C)^2, \Delta A = \sqrt{\frac{E}{D}}, \Delta C = \sqrt{\left(\frac{1}{N} + \frac{\overline{X}^2}{D}\right)} E,$$

$$\Delta t_* = t_* \sqrt{\left(\frac{\Delta A}{A}\right)^2 + \left(\frac{\Delta C}{C}\right)^2}$$

6. Измерительные приборы.

№ n/n	Наименование	Приборные погрешности	Используемый диапазон
1	Барометр	$\Delta p = 0,1$ кПа	100–105 кПа
2	Термометр	$\Delta t = 0.1 ^{\circ}\text{C}$	20–60 °C
3	ПКЦ-3	$\Delta p = 0,1$ кПа	-50–50 кПа
4	Цилиндр с поршнем	$\Delta V = 1$ мл	50–120 мл

7. Схема установки.

Состав лабораторной установки

- 1. Цилиндр с поршнем
- 2. Опорная площадка цилиндра
- 3. Термостат
- 4. Щуп с датчиком температуры
- 5. Манометрический датчик
- 6. Стенд
- 7. Преобразователь сигналов
- 8. Измерительный прибор ПКЦ-3
- 9. Кружка
- 10. Поддон
- 11. Лопатка

8. Результаты прямых измерений и их обработки.

 $p_0 = 102.6 \ к\Pi a.$

Таблица 1.1: Зависимость давления от объема при температуре $t_1 = 21,3$ °C.

№, n.n.	$V_{\mathfrak{U}}$, мл	Δp_1 , к Π а	∆р2, кПа	<i>p</i> , кПа	1/p, кПа
1	50	30,4	30,4	133,00	0,00752
2	60	9,3	9,4	111,95	0,00893
3	70	-6,5	-7,6	95,55	0,01047
4	80	-18,7	-18,9	83,80	0,01193
5	90	-28,5	-28,6	74,05	0,01350
6	100	-36,2	-36,2	66,40	0,01506
7	110	-42,3	-42,5	60,20	0,01661
8	120	-47,9	-47,9	54,70	0,01828

Таблица 1.2: Зависимость давления от объема при температуре $t_2 = 32.8$ °C.

<i>№, п.п.</i>	$V_{\mathfrak{U}}$, мл	Δp_1 , к Πa	Δp2, кПа	<i>p</i> , кПа	1/p, кПа
1	50	33,1	33,1	135,70	0,00737
2	60	11,1	10,1	113,20	0,00883
3	70	-5,2	-4,6	97,70	0,01024
4	80	-17,3	-17,3	85,30	0,01172
5	90	-26,3	-26,7	76,10	0,01314
6	100	-34,8	-34,4	68,00	0,01471
7	110	-40,8	-40,9	61,75	0,01619
8	120	-46,3	-46,3	56,30	0,01776

Таблица 1.3: Зависимость давления от объема при температуре $t_3 = 41.9$ °C.

<i>№, п.п.</i>	$V_{\mathfrak{U}}$, мл	Δp_1 , к Π а	∆р2, кПа	<i>p</i> , кПа	1/p, кПа
1	50	14,2	11,9	139,70	0,00716
2	60	-2,0	-2,6	115,65	0,00865
3	70	-14,5	-15,2	100,30	0,00997
4	80	-24,4	-24,8	87,75	0,01140
5	90	-32,3	-32,8	78,00	0,01282
6	100	-39,4	-39,5	70,05	0,01428
7	110	-45,0	-45,0	63,15	0,01584
8	120	14,2	11,9	57,60	0,01736

Таблица 1.4: Зависимость давления от объема при температуре $t_4 = 48.2$ °C.

<i>№, п.п.</i>	$V_{\mathfrak{U}}$, мл	Δp1, кПа	∆р2, кПа	<i>p</i> , кПа	1/p, кПа
1	50	37,3	37,3	139,90	0,00715
2	60	15,8	14,0	117,50	0,00851
3	70	-0,8	-1,2	101,60	0,00984
4	80	-13,1	-13,7	89,20	0,01121
5	90	-23,6	-23,5	79,05	0,01265
6	100	-32,2	-31,3	70,85	0,01411
7	110	-38,3	-38,2	64,35	0,01554
8	120	-43,8	-43,8	58,80	0,01701

Таблица 1.5: Зависимость давления от объема при температуре $t_5 = 53.3$ °C.

<i>№, n.n.</i>	$V_{\mathfrak{U}},$ мл	Δp_1 , к Πa	Δp_2 , кПа	<i>p</i> , кПа	1/р, кПа
1	50	40,5	40,5	143,10	0,00699
2	60	18,2	17,0	120,20	0,00832
3	70	-0,3	0,3	102,60	0,00975
4	80	-11,8	-12,4	90,50	0,01105
5	90	-22,2	-22,4	80,30	0,01245
6	100	-30,7	-30,3	72,10	0,01387
7	110	-36,9	-37,0	65,65	0,01523
8	120	-42,7	-42,7	59,90	0,01669

9. Расчет результатов косвенных измерений.

Используя значения $V_{\rm II}$ и 1/p и применяя метод наименьших квадратов, найдём K по формуле.

Таблица 2: Зависимость углового коэффициента графика $V_{\rm II}(1/p)$ от температуры газа.

№, n.n.	t,°C	К, Дж
1	21,3	6505
2	32,8	6752
3	41,9	6899
4	48,2	7092
5	53,3	7223

Получили экспериментальные точки для зависимости K(t).

Предполагается, что данная зависимость линейная, значит она выражается как: V(Y) = AY + C, гла Y = V, Y = t

$$Y(X) = AX + C$$
, где $Y = K$, $X = t$

Необходимо найти угловой коэффициент А и свободное слагаемое С:

$$A \approx 22.07$$

$$C \approx 6022,18$$

$$t_* = -\frac{C}{A} = \frac{6022,18}{22,07} \approx -272,79 \,^{\circ}C$$

Рассчитаем погрешности:

$$E \approx 1042,9$$

$$\Delta A \approx 1.27$$

$$\Delta C \approx 53.47$$

$$\Delta t_* \approx -15,86$$

$$t_* \approx -272,79 \pm 15,84 \,^{\circ}C$$

Таблица 3: Зависимость давления газа от температуры при разных значениях объема.

$V_{\mathfrak{U}},$ мл	50	60	70	80	90	100	110	120
t, °C	р, кПа							
21,3	133,00	111,95	95,55	83,80	74,05	66,40	60,20	54,70
32,8	135,70	113,20	97,70	85,30	76,10	68,00	61,75	56,30
41,9	139,70	115,65	100,30	87,75	78,00	70,05	63,15	57,60
48,2	139,90	117,50	101,60	89,20	79,05	70,85	64,35	58,80
53,3	143,10	120,20	102,60	90,50	80,30	72,10	65,65	59,90
$1/V_{\mathrm{II}}$, мл ⁻¹	0,020	0,017	0,014	0,013	0,011	0,010	0,009	0,008
$\tilde{\boldsymbol{t}}_*$, °C	-414,44	-421,49	-399,59	-367,92	-360,69	-350,61	-338,60	-319,67

Значения $\tilde{\boldsymbol{t}}_*$ считаем как температуру абсолютного нуля для каждого столбца зависимости p(t) также применяя метод наименьших квадратов.

Найденные значения для этой зависимости:

Для V = 50 мл:
$$A_{50} = 0.3$$
; $C_{50} = 126.25$

Для V = 90 мл:
$$A_{90} = 0.19$$
; $C_{90} = 69.85$

Для V = 120 мл:
$$A_{120} = 0.16$$
; $C_{120} = 51.14$

где A_i – угловой коэффициент каждой зависимости, а \mathcal{C}_i – свободное слагаемое

5

Далее исследуем зависимость $\widetilde{t_*}\left(\frac{1}{V_{\text{II}}}\right)$ в данной таблице:

$$A' \approx -8401,36$$

$$C' \approx -264,51$$

$$\Delta\,A'\approx1199{,}95$$

$$\Delta C' \approx 45,53$$

$$t_* \approx -0.03\,^{\circ}C$$

Рассчитанная погрешность: $\Delta t_* \approx -0.007$ °C

10. Графики.

Красная: по таблице 1.1

Синяя: по таблице 1.2

Зелёная: по таблице 1.3

Жёлтая: по таблице 1.4

Розовая: по таблице 1.5

Красная: V = 50 мл

Жёлтая: V = 90 мл

Розовая: V = 120 мл

11. Окончательные результаты.

Экспериментально было проверено уравнение состояния идеального газа. Так же были получены зависимости давления от объема при различных температурах и были построены соответствующие графики.

Определена температура абсолютного нуля по шкале Цельсия: $t_* \approx -272{,}79 \pm 15{,}84\,^{\circ}\mathit{C}$

Выводы и анализ результатов работы.

Зависимости давления от объема при различных температурах соответствуют ожидаемым. Определенная в ходе эксперимента температура абсолютного нуля близка к теоретическому значению в -273,15 °C.

Результаты работы подтверждают важность экспериментальной проверки теоретических знаний и законов физики на практике. Это позволяет не только лучше понять и запомнить материал, но и увидеть возможные отклонения и погрешности, которые всегда присутствуют при реальных измерениях.

12. Дополнительные задания.

Контрольные вопросы

- 1. Идеальный газ. Уравнение состояния.
- 2. Макроскопическое состояние. Термодинамический процесс.
- 3. Атомная масса химического элемента, молекулярная масса вещества. Атомная единица массы. Число Авогадро. Молярная масса вещества.
- 4. Как определяется молярная масса смеси газов, например, воздуха?
- 5. Изохорный процесс. Уравнения, его описывающие, и графики процесса в различных координатах (p-V, p-T, V-T).
- 6. Изотермический процесс. Уравнения, его описывающие, и графики процесса в различных координатах (p-V, p-T, V-T).
- 7. Изобарный процесс. Уравнения, его описывающие, и графики процесса в различных координатах (p-V, p-T, V-T).
- 8. Дайте определение температуры: идеальногазовой; газокинетической; термодинамической.
- 9. Дайте определение температуры с точки зрения статистической физики.
- 10. Как ведет себя макроскопическая система при приближении к абсолютному нулю температуры?

13. Выполнение дополнительных заданий.

1. Идеальный газ — это гипотетический газ, частицы которого не взаимодействуют друг с другом, кроме столкновений. Уравнение состояния идеального газа — это

PV=nRT,

- где P давление, V объем, n количество вещества, R универсальная газовая постоянная, T температура.
- 2. Макроскопическое состояние это состояние системы, описываемое макроскопическими параметрами (P, V, T). Термодинамический процесс это процесс, в ходе которого одно или несколько термодинамических параметров системы изменяются.
- 3. Атомная масса это масса отдельного атома, обычно выраженная в атомных единицах массы. Молекулярная масса это сумма атомных масс всех атомов в молекуле. Число Авогадро (6.02214076×10²³) это количество частиц в одном моле вещества. Молярная масса это масса одного моля вещества, выраженная в г/моль.
- 4. Молярная масса смеси газов определяется как средневзвешенная молярная масса компонентов смеси, где весовые коэффициенты это мольные доли компонентов.
- 5. Изохорный процесс это процесс, в котором объем системы остается постоянным. В координатах (p-V, p-T, V-T) график изохорного процесса будет вертикальной линией.
- 6. Изотермический процесс это процесс, в котором температура системы остается постоянной. В координатах (p-V, p-T, V-T) график изотермического процесса будет горизонтальной линией.
- 7. Изобарный процесс это процесс, в котором давление системы остается постоянным. В координатах (p-V, p-T, V-T) график изобарного процесса будет горизонтальной линией.
- 8. Идеальногазовая температура это температура, определенная через уравнение состояния идеального газа. Газокинетическая температура это мера средней кинетической энергии частиц газа. Термодинамическая температура это температура, определенная через первое начало термодинамики.
- 9. Температура с точки зрения статистической физики это мера средней кинетической энергии частиц в системе, определенная через распределение Больцмана.
- 10. При приближении к абсолютному нулю температуры макроскопическая система стремится к состоянию с минимальной энергией (основному состоянию). В этом состоянии все термодинамические процессы останавливаются.

Список использованных источников

- 1. Савельев И.В. Курс физики (в трех томах), т. 1,-М. Наука, 1990.
- 2. Детлаф А.А., Яворский Б.М. Курс физики, М. Высшая школа, 2000.
- 3. Трофимова Т.И. Курс физики: Учеб. Пособие для вузов.-М.: Академия, 2005. 542 с.
- 4. Курепин В.В., Баранов И.В. Обработка экспериментальных данных: Метод. Указания к лабораторным работам для студентов всех спец. Под ред. В.А. Самолетова. СПб.: СПбГУНиПТ, 2003. 57 с.