Sequences and Recurrence Relations

Srinivasan Amrita Vishwa Vidyapeetham

Sequences

- ✓ Sequences are ordered lists of elements
- ✓ The terms of a sequence can be specified by providing a formula for each term of the sequence.
- ✓ To specify the terms of a sequence using a recurrence relation, which expresses each term as a combination of the previous terms.

Sequences

A sequence is a discrete structure used to represent an ordered list. For example, 1, 2, 3, 5, 8 is a sequence with five terms and 1, 3, 9, 27, 81, ..., 3^n , ... is an infinite sequence.

We use the notation $\{a_n\}$ to describe the sequence. (Note that a_n represents an individual term of the sequence $\{a_n\}$. Be aware that the notation $\{a_n\}$ for a sequence conflicts with the notation for a set. However, the context in which we use this notation will always make it clear

EXAMPLE 1 Consider the sequence $\{a_n\}$, where

$$a_n = \frac{1}{n}.$$

The list of the terms of this sequence, beginning with a_1 , namely,

$$a_1, a_2, a_3, a_4, \ldots,$$

starts with

$$1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots$$

A geometric progression is a sequence of the form

$$a, ar, ar^2, \ldots, ar^n, \ldots$$

where the *initial term a* and the *common ratio r* are real numbers.

EXAMPLE

The sequences $\{b_n\}$ with $b_n = (-1)^n$, $\{c_n\}$ with $c_n = 2 \cdot 5^n$, and $\{d_n\}$ with $d_n = 6 \cdot (1/3)^n$ are geometric progressions with initial term and common ratio equal to 1 and -1; 2 and 5; and 6 and 1/3, respectively, if we start at n = 0. The list of terms $b_0, b_1, b_2, b_3, b_4, \ldots$ begins with

Arithmetic Progression

An arithmetic progression is a sequence of the form

$$a, a+d, a+2d, \ldots, a+nd, \ldots$$

where the *initial term a* and the *common difference d* are real numbers.

EXAMPLE

The sequences $\{s_n\}$ with $s_n = -1 + 4n$ and $\{t_n\}$ with $t_n = 7 - 3n$ are both arithmetic progressions with initial terms and common differences equal to -1 and 4, and 7 and -3, respectively, if we start at n = 0. The list of terms $s_0, s_1, s_2, s_3, \ldots$ begins with

$$-1, 3, 7, 11, \ldots,$$

and the list of terms $t_0, t_1, t_2, t_3, \ldots$ begins with

$$7, 4, 1, -2, \ldots$$

Recurrence Relations

A recurrence relation for the sequence $\{a_n\}$ is an equation that expresses a_n in terms of one or more of the previous terms of the sequence, namely, $a_0, a_1, \ldots, a_{n-1}$, for all integers n with $n \ge n_0$, where n_0 is a nonnegative integer. A sequence is called a *solution* of a recurrence relation if its terms satisfy the recurrence relation. (A recurrence relation is said to recursively define a sequence. We will explain this alternative terminology in Circum. 5)

EXAMPLE

Let $\{a_n\}$ be a sequence that satisfies the recurrence relation $a_n = a_{n-1} + 3$ for n = 1, 2, 3, ..., and suppose that $a_0 = 2$. What are a_1, a_2 , and a_3 ?

Let $\{a_n\}$ be a sequence that satisfies the recurrence relation $a_n = a_{n-1} - a_{n-2}$ for $n = 2, 3, 4, \ldots$, and suppose that $a_0 = 3$ and $a_1 = 5$. What are a_2 and a_3 ?

Fibonacci sequence

The *Fibonacci sequence*, f_0 , f_1 , f_2 , ..., is defined by the initial conditions $f_0 = 0$, $f_1 = 1$, and the recurrence relation

$$f_n = f_{n-1} + f_{n-2}$$

for $n = 2, 3, 4, \dots$

Suppose that $\{a_n\}$ is the sequence of integers defined by $a_n = n!$, the value of the factorial function at the integer n, where $n = 1, 2, 3, \ldots$ Because $n! = n((n-1)(n-2)\ldots 2\cdot 1) = n(n-1)! = na_{n-1}$, we see that the sequence of factorials satisfies the recurrence relation $a_n = na_{n-1}$, together with the initial condition $a_1 = 1$.

Determine whether the sequence $\{a_n\}$, where $a_n = 3n$ for every nonnegative integer n, is a solution of the recurrence relation $a_n = 2a_{n-1} - a_{n-2}$ for $n = 2, 3, 4, \ldots$. Answer the same question where $a_n = 2^n$ and where $a_n = 5$.

Solution: Suppose that $a_n = 3n$ for every nonnegative integer n. Then, for $n \ge 2$, we see that $2a_{n-1} - a_{n-2} = 2(3(n-1)) - 3(n-2) = 3n = a_n$. Therefore, $\{a_n\}$, where $a_n = 3n$, is a solution of the recurrence relation.

Suppose that $a_n = 2^n$ for every nonnegative integer n. Note that $a_0 = 1$, $a_1 = 2$, and $a_2 = 4$. Because $2a_1 - a_0 = 2 \cdot 2 - 1 = 3 \neq a_2$, we see that $\{a_n\}$, where $a_n = 2^n$, is not a solution of the recurrence relation.

Suppose that $a_n = 5$ for every nonnegative integer n. Then for $n \ge 2$, we see that $a_n = 2a_{n-1} - a_{n-2} = 2 \cdot 5 - 5 = 5 = a_n$. Therefore, $\{a_n\}$, where $a_n = 5$, is a solution of the recurrence relation.

Find formulae for the sequences with the following first five terms: (a) 1, 1/2, 1/4, 1/8, 1/16 (b) 1, 3, 5, 7, 9 (c) 1, -1, 1, -1, 1.

Solution: (a) We recognize that the denominators are powers of 2. The sequence with $a_n = 1/2^n$, n = 0, 1, 2, ... is a possible match. This proposed sequence is a geometric progression with a = 1 and r = 1/2.

- (b) We note that each term is obtained by adding 2 to the previous term. The sequence with $a_n = 2n + 1$, n = 0, 1, 2, ... is a possible match. This proposed sequence is an arithmetic progression with a = 1 and d = 2.
- (c) The terms alternate between 1 and -1. The sequence with $a_n = (-1)^n$, $n = 0, 1, 2 \dots$ is a possible match. This proposed sequence is a geometric progression with a = 1 and r = -1.

TABLE 1 Some Useful Sequences.

n th Term	First 10 Terms
n^2 n^3 n^4 2^n 3^n $n!$ f_n	1, 4, 9, 16, 25, 36, 49, 64, 81, 100,

Conjecture a simple formula for a_n if the first 10 terms of the sequence $\{a_n\}$ are 1, 7, 25, 79, 241, 727, 2185, 6559, 19681, 59047.

We begin by looking at the difference of consecutive terms, but we do not see a pattern.

When we form the ratio of consecutive terms to see whether each term is a multiple of the previous term, we find that this ratio, although not a constant, is close to 3.

Summations

We begin by describing the notation used to express the sum of the terms from the sequence $\{a_n\}$. We use the notation

$$a_m, a_{m+1}, \ldots, a_n$$

$$\sum_{j=m}^{n} a_j, \qquad \sum_{j=m}^{n} a_j, \qquad \text{or} \qquad \sum_{m \le j \le n} a_j$$

Here, the variable j is called the **index of summation**

$$\sum_{i=m}^{n} a_{i} = \sum_{i=m}^{n} a_{i} = \sum_{k=m}^{n} a_{k}.$$

Here, the index of summation runs through all integers starting with its **lower limit** m and ending with its **upper limit** n. A large uppercase Greek letter sigma, \sum , is used to denote summation.

Use summation notation to express the sum of the first 100 terms of the sequence $\{a_j\}$, where $a_j = 1/j$ for j = 1, 2, 3, ...

$$\sum_{i=1}^{100} \frac{1}{j}$$

What is the value of $\sum_{j=1}^{5} j^2$?

Solution: We have

$$\sum_{j=1}^{5} j^2 = 1^2 + 2^2 + 3^2 + 4^2 + 5^2$$
$$= 1 + 4 + 9 + 16 + 25$$
$$= 55.$$

What is the value of $\sum_{k=4}^{8} (-1)^k$?

Solution: We have

$$\sum_{k=4}^{8} (-1)^k = (-1)^4 + (-1)^5 + (-1)^6 + (-1)^7 + (-1)^8$$
$$= 1 + (-1) + 1 + (-1) + 1$$
$$= 1.$$

Sometimes it is useful to shift the index of summation in a sum

$$\sum_{j=1}^{5} j^2 = \sum_{k=0}^{4} (k+1)^2.$$

It is easily checked that both sums are 1 + 4 + 9 + 16 + 25 = 55.

Formula for the sum of terms of a geometric progression

If a and r are real numbers and $r \neq 0$, then

$$\sum_{j=0}^{n} ar^{j} = \begin{cases} \frac{ar^{n+1} - a}{r - 1} & \text{if } r \neq 1\\ (n+1)a & \text{if } r = 1. \end{cases}$$

Double summations (Analysis of nested loops in computer Programs)

$$\sum_{i=1}^{4} \sum_{j=1}^{3} ij.$$

TABLE Some Useful Summation Formulae.

Sum	Closed Form
$\sum_{k=0}^{n} ar^k \ (r \neq 0)$	$\frac{ar^{n+1} - a}{r - 1}, r \neq 1$
$\sum_{k=1}^{n} k$	$\frac{n(n+1)}{2}$
$\sum_{k=1}^{n} k^2$	$\frac{n(n+1)(2n+1)}{6}$
$\sum_{k=1}^{n} k^3$	$\frac{n^2(n+1)^2}{4}$
$\sum_{k=0}^{\infty} x^k, x < 1$	$\frac{1}{1-x}$
$\sum_{k=1}^{\infty} kx^{k-1}, x < 1$	$\frac{1}{(1-x)^2}$

We can also use summation notation to add all values of a function, or terms of an indexed set

$$\sum_{s \in S} f(s)$$

What is the value of $\sum_{s \in \{0,2,4\}} s$?