Structured Coalescent

Phylogeographic Inference using the Structured Coalescent

Tim Vaughan

Taming the BEAST Online 2021

Background

Phylogeographic models

Multi-type Wright-Fisher Models

Coalescent Inference

Structured

Implementations

Tutorial

What is a structured population?

A structured population is able to be partitioned into groups (subpopulations) between which gene flow is limited.

- ► Population structure can dramatically influence the shape of the tree.
- ► Structure can be produced by
 - Geographic segregation with slow migration (cf. phylogeography),
 - Distinct phases of an infection which during which a pathogen is more or less contagious,
 - et cetera!

Background

Phylogeographic models

Multi-type Wright-Fisher Models

Coalescent Inference

Implementations

Tutorial

Generalized island models and demes

The island model is a common discrete model of spatial structure:

Locations are sometimes referred to as demes.

Background

Phylogeographic models

Multi-type Wright-Fisher Models

Structured

Coalescent Inference

Implementations

Tutorial

Effect of population structure on trees

Population structure can have a very strong effect on the shape of the trees sampled from that population:

Background

Phylogeographic models

Multi-type Wright-Fisher Models

Structured Coalescent Inference

Implementations

Tutorial

Sample	Sequence	Location	Age/Time
1	AAGCTTCA	Place A	0
2	AAGCTTTA	Place B	2
3	AAGTTTCA	Place B	3
4	AAGCTTCA	Place C	3

Background

Phylogeographic models

Multi-type Wright-Fisher Models

Structured

Coalescent Inference Implementations

Tutorial

Common questions include:

Background

Phylogeographic models

Multi-type Wright-Fisher Models

Coalescent Inference

Implementations

Tutorial

Structured

Common questions include:

Background

Phylogeographic models

Multi-type Wright-Fisher Models

Structured

Coalescent Inference

Implementations

Tutorial

Common questions include:

Background

Phylogeographic models

Multi-type Wright-Fisher Models

Coalescent Inference

Implementations

Tutorial

Structured

Common questions include:

Background

Phylogeographic models

Multi-type Wright-Fisher Models

Coalescent Inference

Structured

Implementations

Tutorial

Common questions include:

Background

Phylogeographic models

Multi-type Wright-Fisher Models

Coalescent Inference

Implementations

Tutorial

Structured

Currently there are two main classes of structured models used in phylogenetic inference:

Background

Phylogeographic models

Multi-type Wright-Fisher Models

Structured

Coalescent Inference

Implementations

Tutorial

Models for Phylogeographic inference

Currently there are two main classes of structured models used in phylogenetic inference:

- ► Mugration models (also Discrete Trait Analysis):
 - Given tree and root location, what is the probability of sample locations?
 - Exist in continuous and discrete forms.
 - ► Developed by Phillipe Lemey et al. (Lemey et al., 2009, 2010).

Background

Phylogeographic models

Multi-type Wright-Fisher Models

Coalescent Inference

Structured

Implementations

Tutorial

Models for Phylogeographic inference

Currently there are two main classes of structured models used in phylogenetic inference:

Mugration models (also Discrete Trait Analysis):

- Given tree and root location, what is the probability of sample locations?
- Exist in continuous and discrete forms.
- Developed by Phillipe Lemey et al. (Lemey et al., 2009, 2010).

Structured population models:

- ► Given sequences and locations, what is the probability of the tree?
- Currently mostly discrete.
- ► Many extend the structured coalescent framework of Hudson (1990) and Notohara (1990).
- Others extend the birth-death-sampling framekwork of Stadler (2010).

Background

Phylogeographic models

Multi-type Wright-Fisher Models

Structured Coalescent Inference

Implementations

Tutorial

Wright-Fisher model

Structured Coalescent

Background

Phylogeographic models

Multi-type Wright-Fisher Models

Coalescent Inference

Implementations

Tutorial

Structured

Background

Phylogeographic models

Multi-type Wright-Fisher Models

Coalescent Inference

Implementations

Tutorial

Structured

Wright-Fisher model

```
Structured
```

Background

Phylogeographic models

Multi-type Wright-Fisher Models

Coalescent Inference

Implementations

Tutorial

Structured

Background

Phylogeographic models

Multi-type Wright-Fisher Models

Coalescent Inference

Implementations

Tutorial

Structured

Probability of coalescence per generation:

$$\sim \binom{k}{2} \frac{1}{N}$$

Background

Phylogeographic models

Multi-type Wright-Fisher Models

Structured

Coalescent Inference

Implementations

Tutorial

Partitioned Wright-Fisher model

Background

Phylogeographic models

Multi-type Wright-Fisher Models

Coalescent Inference

Implementations

Tutorial

Structured

Partitioned Wright-Fisher model

Background

Phylogeographic models

Multi-type Wright-Fisher Models

Coalescent Inference

Implementations

Tutorial

Structured

Partitioned Wright-Fisher model

Background

Phylogeographic models

Multi-type Wright-Fisher Models

Coalescent Inference

Implementations

Tutorial

Structured

Probability of coalescence per generation in A:

$$\binom{k_A}{2} \frac{1}{N_A}$$

Probability of coalescence per generation in B:

$$\binom{k_B}{2} \frac{1}{N_B}$$

Phylogeographic

Multi-type Wright-Fisher Models

Coalescent Inference

Implementations

Tutorial

Structured

Structured Wright-Fisher model

Background

Phylogeographic models

Multi-type Wright-Fisher Models

Coalescent Inference

Implementations

Tutorial

Structured

Structured Wright-Fisher model

Background

Phylogeographic models

Multi-type Wright-Fisher Models

Coalescent Inference

Implementations

Tutorial

Structured

Structured Wright-Fisher model

Probability of migration from $A \to B$ per individual in A:

 q_{AB}

Probability of single lineage migration from $B \rightarrow A$ (backward time):

$$m_{BA} = q_{AB} \frac{N_A}{N_B}$$

Background

Phylogeographic models

Multi-type Wright-Fisher Models

Structured Coalescent Inference

Implementations

Tutorial

(Hudson, 1990; Notohara, 1990)

Backwards-in-time Markov process that generates both the sampled tree and ancestral locations.

Background

Phylogeographic models

Multi-type Wright-Fisher Models

Structured

Coalescent Inference

Implementations

Tutorial

Structured Coalescent

Structured Coalescent

Backwards-in-time Markov process that generates both the sampled tree and ancestral locations.

(Hudson, 1990; Notohara, 1990)

Background

Phylogeographic models

Multi-type Wright-Fisher Models

Structured

Coalescent Inference

Implementations

Tutorial

Structured Coalescent

Structured Coalescent

Backwards-in-time Markov process that generates both the sampled tree and ancestral locations.

(Hudson, 1990; Notohara, 1990)

Background

Phylogeographic models

Multi-type Wright-Fisher Models

Inference Implementations

Tutorial

. .

References

Structured Coalescent

(Hudson, 1990; Notohara, 1990)

Background

Phylogeographic models

Multi-type Wright-Fisher Models

Inference
Implementations

Tutorial

Structured Coalescent

(Hudson, 1990; Notohara, 1990)

Background

Phylogeographic models

Multi-type Wright-Fisher Models

Coalescent Inference

Tutorial

Structured

(Hudson, 1990; Notohara, 1990)

Background

Phylogeographic models

Multi-type Wright-Fisher Models

Coalescent Inference

Tutorial

Structured

(Hudson, 1990; Notohara, 1990)

Background

Phylogeographic models

Multi-type Wright-Fisher Models

Structured

Coalescent Inference

Implementations

Tutorial References

(Hudson, 1990; Notohara, 1990)

Background

Phylogeographic models

Multi-type Wright-Fisher Models

Structured

Coalescent Inference

Implementations

Tutorial

(Hudson, 1990; Notohara, 1990)

Background

Phylogeographic models

Multi-type Wright-Fisher Models

Structured

Coalescent Inference

Implementations

Tutorial References

(Hudson, 1990; Notohara, 1990)

Background

Phylogeographic models

Multi-type Wright-Fisher Models

Structured

Coalescent Inference

Implementations

Tutorial References

(Hudson, 1990; Notohara, 1990)

Background

Phylogeographic models

Multi-type Wright-Fisher Models

Structured

Coalescent Inference

Implementations

Tutorial

Structured Coalescent

Backwards-in-time Markov process that generates both the sampled tree and ancestral locations.

(Hudson, 1990; Notohara, 1990)

Background

Phylogeographic models

Multi-type Wright-Fisher Models

Structured

Coalescent Inference

Implementations

Tutorial

SC Inference: Modified tree prior

The standard phylogenetic posterior is modified:

$$\begin{split} P(\mathsf{T},\mathsf{C},\mu,\theta,\bar{\mathsf{M}},\bar{\mathsf{N}}|A,\mathsf{L}) &= \frac{1}{P(A|\mathsf{L})} P(A|\mathsf{T},\mu) \\ &\times P(\mathsf{T},\mathsf{C}|\bar{\mathsf{N}},\bar{\mathsf{M}},\mathsf{L}) \\ &\times P(\mu) P(\theta) P(\bar{\mathsf{M}}) P(\bar{\mathsf{N}}) \end{split}$$

where

 \vec{N} are the sampled locations, \vec{N} are the deme-specific population sizes,

 \bar{M} is the backward-time migration rate matrix, and

C are the ancestral locations on the tree.

The sample locations and SC model affect the **tree prior**.

The *shape* of the tree is affected by structure.

Background

Phylogeographic models

Multi-type Wright-Fisher Models

Coalescent Inference

Structured

Implementations

Tutorial

- ► The coalescent tree prior is explicitly conditioned on the sample times.
- ► Similarly, the structured coalescent tree prior is conditioned on sample locations.

Background

Phylogeographic models

Multi-type Wright-Fisher Models

Structured

Coalescent Inference

Implementations

Tutorial

- ► The coalescent tree prior is explicitly conditioned on the sample times.
- ► Similarly, the structured coalescent tree prior is conditioned on sample locations.

The strucured coalescent makes no assumption about the manner in which samples are collected with respect to location.

Background

Phylogeographic models

Multi-type Wright-Fisher Models

Structured

Coalescent Inference

Implementations

Tutorial References

- ► The coalescent tree prior is explicitly conditioned on the sample times.
- ► Similarly, the structured coalescent tree prior is conditioned on sample locations.

The strucured coalescent makes no assumption about the manner in which samples are collected with respect to location.

- Sample distribution not used as data.
- ► Uneven sampling can reduce inference power, but won't bias results!

Background

Phylogeographic models

Multi-type Wright-Fisher Models

Structured

Coalescent Inference

Implementations

Tutorial

Phylogeographic models

Multi-type Wright-Fisher Models

Structured

Coalescent Inference

Implementations

Tutorial

References

Prior distibution

Posterior distribution, uneven sampling (10-190)

Figure 2, De Maio et al. (2015)

Inference of H3N2 movement using SC, Vaughan et al. (2014)

Structured Coalescent

Background

Phylogeographic models

Multi-type Wright-Fisher Models

Structured Coalescent Inference

Implementations

Tutorial

Inference of geographical spread of Ebola virus during 2014-2015 West-African epidemic, Müller et al. (2019)

Structured Coalescent

Background

Phylogeographic models

Multi-type Wright-Fisher Models

Structured

Coalescent Inference

Implementations

Tutorial

The Structured Coalescent in BEAST 2

MultiTypeTree Exact inference under the model.

(Vaughan et al., 2014)

- ▶ Pro: exact, entire history is sampled.
- ► Con: restricted to ≤ 4 demes.

BASTA Faster approach which approximately includes all migration histories in each MCMC step.

(De Maio et al., 2015)

- ▶ Pro: more efficient (handles more demes) than MTT.
- ► Con: no BEAUti integration, awkward to set up analyses.

MASCOT A more recent approximation more accurate than BASTA. (Müller et al., 2017, 2018)

- Pro: more efficient than MTT, modern GLM approaches supported, BEAUti interface.
- ► Con: full histories not yet accessible.

Background

Phylogeographic models

Multi-type Wright-Fisher Models

Coalescent Inference

Implementations

Tutorial References

Tutorial

Structured Coalescent

Structured coalescent

Population structure using MultiTypeTree by Nicola F. Müller and Tim Vaughan

Tutorial location: https://taming-the-beast.org/

tutorials/Structured-coalescent/

Tutorial Slack channel: #t-struct-coal

Wrap-up time: 15:35

Background

Phylogeographic models

Multi-type Wright-Fisher Models

Coalescent Inference

Implementations

Tutorial

References

- De Maio, N., Wu, C.-H., O'Reilly, K. M., and Wilson, D. (2015). New routes to phylogeography: A bayesian structured coalescent approximation. PLoS Genet, 11(8):e1005421.
- Hudson, R. R. (1990). Gene genealogies and the coalescent process. *Oxford Surveys in Evolutionary Biology*, 7:1.
- Lemey, P., Rambaut, A., Drummond, A. J., and Suchard, M. A. (2009). Bayesian phylogeography finds its roots. *PLoS Comput Biol*, 5(9):e1000520.
- Lemey, P., Rambaut, A., Welch, J. J., and Suchard, M. A. (2010). Phylogeography takes a relaxed random walk in continuous space and time. *Mol Biol Evol*, 27:1877–1885.
- Müller, N. F., Dudas, G., and Stadler, T. (2019). Inferring time-dependent migration and coalescence patterns from genetic sequence and predictor data in structured populations. *Virus Evolution*, 5(2).
- Müller, N. F., Rasmussen, D., and Stadler, T. (2018). MASCOT: parameter and state inference under the marginal structured coalescent approximation. *Bioinformatics*, 34(22):3843–3848.
- Müller, N. F., Rasmussen, D. A., and Stadler, T. (2017). The structured coalescent and its approximations. *Molecular biology and evolution*.
- Notohara, M. (1990). The coalescent and the genealogical process in geographically structured population. J Math Biol, 29(1):59–75.
- Stadler, T. (2010). Sampling-through-time in birth-death trees. J Theor Biol, 267(3):396-404.
- Vaughan, T. G., Kühnert, D., Popinga, A., Welch, D., and Drummond, A. J. (2014). Efficient bayesian inference under the structured coalescent. *Bioinformatics*, 30(16):2272–2279.

Background

Phylogeographic models

Multi-type Wright-Fisher Models Structured

Coalescent

Inference

Implementations

Tutorial

