For office use only	Team Control Number	For office use only					
T1	55280	F1					
T2		F2					
T3	Problem Chosen	F3					
T4	Δ	F4					

2019 MCM/ICM Summary Sheet

title

Summary

ABSTRACT

Keywords:

KEYWORD

Team # 55280 Page 1 of 6

title

January 22, 2019

Contents

1	Intr	roduction										2
	1.1	Problem Background							 	 		2
	1.2	Our Work							 	 		2
2	Ass	sumptions										2
3	Nor	omenclature										2
4	4 Statement of our Model								2			
	4.1	part1							 	 		2
	4.2	part2							 	 		2
	4.3	part3							 	 		2
5	Imp	plementation										2
6	Stra	rategies										3
7	Mod	odel Analysis										3
	7.1	Sensitivity Analysis							 	 		3
	7.2	Strengths and Weaknesses							 	 		3
		7.2.1 Strengths							 	 		3
		7.2.2 Weaknesses							 	 		3
8	Con	nclusion										3
M	EMC	ORANDUM										4
	Opt	tion 1:							 	 		4
	Opt	tion 2:							 	 		4
Aj	pen	ndices										6
Aj	ppen	ndix A Implemented Genetic Algorith	m									6
Aj	pen	ndix B Fitness Function										6

Team # 55280 Page 2 of 6

1 Introduction

1.1 Problem Background

BACKGROUND

1.2 Our Work

OURWORK

2 Assumptions

First and foremost, we make some basic assumptions and explain their rationales.

- 1. ASSUMPTION 1
- 2. ASSUMPTION 2
- 3. ASSUMPTION 3

3 Nomenclature

In this paper we use the nomenclature in Table 1 to descibe our model. Other symbols that are used only once will be described later.

4 Statement of our Model

In this section, we will discuss all details about our model. This model takes several fields into consideration, ranging from liquid flow theory to economy. To begin with, we first investigate the behavior of water flow. Then we provide our integrated model of dams in series. This model makes a great balance between safety and costs.

- 4.1 part1
- 4.2 part2
- 4.3 part3

5 Implementation

IMPLEMENTATION

Table 1: Nomenclature

Symbol	Definition
$\overline{}$	the <i>i</i> th dam in a series of small dams
X_i	Distance from the river's beginning to dam i
Series(X)	Value of safety evaluation under a series of dams

Team # 55280 Page 3 of 6

6 Strategies

7 Model Analysis

7.1 Sensitivity Analysis

7.2 Strengths and Weaknesses

7.2.1 Strengths

- 1. advantage1
- 2. advantage2
- 3. advantage3

7.2.2 Weaknesses

- 1. weakness1
- 2. weakness2
- 3. weakness3

8 Conclusion

Team # 55280 Page 4 of 6

MEMORANDUM

Option 1	:
----------	---

one

two

three

Option 2:

one

two

three

References

- [1] "Kariba dam," Wikipedia. [Online]. Available: https://en.wikipedia.org/wiki/Kariba_Dam
- [2] "Kariba dam-case study," World Commission on Dams, 2010. [Online]. Available: http://202.120.0.1/cache/1/03/nanjing-school.com/897d9a2a02069bb2075b729dd8c33afb/World_Commission_on_Dams_2000_Case_Study_Kariba_Dam_Final_Report_November_2000-2etc5lv.pdf
- [3] "Manning formula," Wikipedia. [Online]. Available: https://en.wikipedia.org/wiki/Manning_formula
- [4] "Determination of reservoir storage capacity," Education. [Online]. Available: http://www.slideshare.net/chingtonymbuma/determination-of-reservoir-storage-capacity
- [5] Z. W.-y. YANG Qiang, WU Hao, "Stress evaluation in finite element analysis of dams," *Engineering Mechanics(In Chinese)*, vol. 23(1), pp. 69–73, 2006.
- [6] "Hydropower," Wikipedia. [Online]. Available: https://en.wikipedia.org/wiki/Hydropower
- [7] "The zambezi river basin : A multi-sector investment opportunities analysis basin development scenarios," World Bank, 2010. [Online]. Available: https://openknowledge.worldbank.org/handle/10986/2959
- [8] J. G. Jay R. Lund, "Some derived operating rules for reservoirs in series or in parallel," *Journal of Water Resources Planning and Management*, vol. 125(3), pp. 143–153, 1999.
- [9] J.Kelman and J.P.DAMAZIO, "The determination of flood control volumes in a multireservoir system," *Journal of Water Resources Planning and Management*, vol. 25(3), pp. 337–344, 1989.
- [10] J. Vail, F. Ferrante, and J. Mitman, "Generic failure rate evaluation for jocassee dam," UNITED STATES NUCLEAR REGULATORY COMMISSION, 2010. [Online]. Available: https://www.nrc.gov/docs/ML1303/ML13039A084.pdf

Team # 55280 Page 5 of 6

[11] "Bathtub curve," Wikipedia. [Online]. Available: https://en.wikipedia.org/wiki/Bathtub_curve

- [12] J. Leslie, "One of africa's biggest dams is falling apart," The New 2016. Yorker, [Online]. Available: http://www.newyorker.com/tech/elements/ one-of-africas-biggest-dams-is-falling-apart
- [13] "Zambia, zimbabwe to start kariba dam repairs in early 2017," REUTERS AFRICA, 2016. [Online]. Available: http://af.reuters.com/article/zambiaNews/idAFL5N17T1OI
- [14] N. G. Mankiw, *Principles of macroeconomics*. Cengage Learning, 2014.

Team # 55280 Page 6 of 6

Appendices

Appendix A Implemented Genetic Algorithm

Appendix B Fitness Function

```
function[sol,eval] = fitness(sol,~)
n=13;
x=sol(1,1:n+1);
xx=sort(x(1:n));
x = [xx, x(n+1)];

p1=0;
p2=0;
cc=0;
N=50;
Ca=300;
BB=6000;
aa1=400;
rr=0.8;
pp=1005;
yy=0.5;
1=200;
Cmin=2e6;
Pm=1e8;
% above are the constant parameter setting wei=[0.12,0.54,0.34];
% wei means the weight of three key function \mathbf{for}\ i=1:n
     p1=p1+Power;
p2=p2+C+R;
end
p1=p1/Pm
p2=Cmin/p2
for j=1:n-1
      cc=cc+((x(n)-x(1))/(n-1)-(x(j+1)-x(j)))^2;
      Sa=((x(n)-x(1))/exp(cc/((x(n)-x(1))/(n-1))^2))/2100 eval=p1*wei(1)+Sa*wei(3)+p2*wei(2)
end
```