

SEQUENCE LISTING

<110> Cahoon, Rebecca E.
Fang, Yiwen
Odell, Joan
Weng, Zude

<120> Plant Myb Transcription Factor Homologs

<130> BB1294 US NA

<140>

<141>

<150> 60/110,609
<151> 1998-December-02

<160> 63

<170> Microsoft Office 97

<210> 1
<211> 771
<212> DNA
<213> Zea mays

<220>
<221> unsure
<222> (4)

<220>
<221> unsure
<222> (99)

<220>
<221> unsure
<222> (396)

<220>
<221> unsure
<222> (470)

<220>
<221> unsure
<222> (486)

<220>
<221> unsure
<222> (586)

<220>
<221> unsure
<222> (600)

<220>
<221> unsure
<222> (612)

<220>
 <221> unsure
 <222> (615)

<220>
 <221> unsure
 <222> (627)

<220>
 <221> unsure
 <222> (632)

<220>
 <221> unsure
 <222> (658)

<220>
 <221> unsure
 <222> (690)

<220>
 <221> unsure
 <222> (716)

<220>
 <221> unsure
 <222> (724)

<220>
 <221> unsure
 <222> (736)

<220>
 <221> unsure
 <222> (752)

<220>
 <221> unsure
 <222> (758)

<400> 1
 caancgcggg attgttcaat ccgttcgaca tcacaaaatc cacgcacaaa gaagcgacag 60
 atgactacga gcagggtggc caggtcgtgc ggccgcgna ggcgacatga gccggcggtg 120
 cgcaaggggc cgtggacgct ggaggaggac ctcatcctcg tcaactatctat ctcccagcac 180
 ggggaggggct cctgggacaa cctcgcgegc gcagctggac tgaaccgcaa cggcaagagc 240
 tgcaggctgc ggtggctcaa ctacctgagg ccgggggtgc ggcgcggcag catcacggcg 300
 ggggaggaga cggtcatccg ggagctccac ggcgaggtgg ggaacaagtgt gtccaagatc 360
 tccaagcacc tccccggccg aaccgacaaac gagatnaaga actactggag gaccaggatc 420
 caacaagaag aacagcaagg agccaagacg acgcaacaac gggaccgtcn acgaccgcca 480
 actccnnggc cggggacga ctactgggtg cacaacccga ccccgacaac aagccatact 540
 gcctgaaaa accccatgca actgcacgcg acaacaaccc gtctcntaac aacaagacan 600
 ccccttcggg gnctnacaac cagaaanccc cnccggcggtt gaatggtaat cacaacanaa 660
 attgtaccct ctgtccaact aactttcccn cggcacataa acgtcggctg accttnacaa 720
 tcantttctt ccactnatgc acttgcaac gngtgtantt tgataaacct t' 771

<210> 2
 <211> 157
 <212> PRT
 <213> Zea mays

<220>
<221> UNSURE
<222> (111)

<220>
<221> UNSURE
<222> (136)

<400> 2
Thr Thr Ser Arg Val Ala Arg Ser Cys Gly Arg Gly Ser Asp Asp Glu
1 5 10 15

Pro Ala Val Arg Lys Gly Pro Trp Thr Leu Glu Glu Asp Leu Ile Leu
20 25 30

Val Ser Tyr Ile Ser Gln His Gly Glu Gly Ser Trp Asp Asn Leu Ala
35 40 45

Arg Ala Ala Gly Leu Asn Arg Asn Gly Lys Ser Cys Arg Leu Arg Trp
50 55 60

Leu Asn Tyr Leu Arg Pro Gly Val Arg Arg Gly Ser Ile Thr Ala Gly
65 70 75 80

Glu Asp Thr Val Ile Arg Glu Leu His Ala Arg Trp Gly Asn Lys Trp
85 90 95

Ser Lys Ile Ser Lys His Leu Pro Gly Arg Thr Asp Asn Glu Xaa Lys
100 105 110

Asn Tyr Trp Arg Thr Arg Ile Gln Gln Glu Glu Gln Gln Gly Ala Lys
115 120 125

Thr Thr Gln Gln Arg Asp Arg Xaa Arg Pro Pro Thr Pro Gly Pro Gly
130 135 140

Asp Asp Tyr Trp Val His Asn Pro Thr Pro Thr Thr Ser
145 150 155

<210> 3
<211> 782
<212> DNA
<213> Zea mays

<220>
<221> unsure
<222> (3)

<400> 3
acngtctgct gcaggtacgg gccgtaatcc gggtcgacca cgcgtcccga caaagtggca 60
tactttctc tgtactagct ttcttcttcc ttcctcttc ctcacaaaaca gactggattt 120
caacaagata atcctgaaac tggagccaac aagcacacag agaaaagaaga gcaagaagac 180
cggctcccag ccgataacaag gtaggagtga gcagcgtag tttcatcata tcgcataaggc 240
gatatggtga cagtggagaga ggagactcgc aaggggccat ggacagagca ggaggacctg 300
caactggtat gcaactgtccg tctgttcggt gaacgtcggt gggatttcat tgccaaagta 360
tcaggactca accggacacgg caagagctgc cggctgcgggt gggtaacta cctccaccct 420
ggcctcaagg gtggggcgcat gtctccccat gaagagcgc tcatccttga gtcgcacgct 480
cggtggggaa acagggtggtc caggatagca cggcgcttgc cagggcgcac tgacaatgag 540
atcaagaact actggaggac acacatgagg aagaaagcac aggagaggaa gaggaacatg 600
tctccatcat catcctcata ttcactgagt taccagtca gctacccaga tactccatca 660

atcattggag ttaaggaca ggagcttcat ggtggcagt gctgcacac aagcatcctg 720
aaggcaccc atccggacat ggatggctat cccatggacc agatatggat ggaattgaag 780
gg 782

<210> 4
<211> 179
<212> PRT
<213> Zea mays

<400> 4
Met Val Thr Val Arg Glu Glu Thr Arg Lys Gly Pro Trp Thr Glu Gln
1 5 10 15

Glu Asp Leu Gln Leu Val Cys Thr Val Arg Leu Phe Gly Glu Arg Arg
20 25 30

Trp Asp Phe Ile Ala Lys Val Ser Gly Leu Asn Arg Thr Gly Lys Ser
35 40 45

Cys Arg Leu Arg Trp Val Asn Tyr Leu His Pro Gly Leu Lys Arg Gly
50 55 60

Arg Met Ser Pro His Glu Glu Arg Leu Ile Leu Glu Leu His Ala Arg
65 70 75 80

Trp Gly Asn Arg Trp Ser Arg Ile Ala Arg Arg Leu Pro Gly Arg Thr
85 90 95

Asp Asn Glu Ile Lys Asn Tyr Trp Arg Thr His Met Arg Lys Lys Ala
100 105 110

Gln Glu Arg Lys Arg Asn Met Ser Pro Ser Ser Ser Ser Ser Leu
115 120 125

Ser Tyr Gln Ser Gly Tyr Pro Asp Thr Pro Ser Ile Ile Gly Val Lys
130 135 140

Gly Gln Glu Leu His Gly Gly Ser Gly Cys Ile Thr Ser Ile Leu Lys
145 150 155 160

Gly Thr His Pro Asp Met Asp Gly Tyr Pro Met Asp Gln Ile Trp Met
165 170 175

Glu Leu Lys

<210> 5
<211> 601
<212> DNA
<213> Zea mays

<220>
<221> unsure
<222> (451)

<220>
<221> unsure
<222> (456)

<220>
<221> unsure
<222> (478)

<220>
<221> unsure
<222> (480)

<220>
<221> unsure
<222> (490)

<220>
<221> unsure
<222> (510)

<220>
<221> unsure
<222> (542)

<220>
<221> unsure
<222> (549)

<220>
<221> unsure
<222> (552)

<220>
<221> unsure
<222> (554)

<220>
<221> unsure
<222> (572)

<220>
<221> unsure
<222> (578)

<220>
<221> unsure
<222> (583)

<220>
<221> unsure
<222> (588)

<220>
<221> unsure
<222> (595)

<220>
<221> unsure
<222> (601)

<400> 5
aaccggcgat catcggttat acctaccagc tcgctgttct tgctgaagcc ctggagctat 60
atagttcga tctgcgcagc acaggttgtc tgtcgactag tgatttagtga agaagatggc 120
ggcgctgtgac caccgagagc tgagcggcga cgaggactcc gtggtggcgg ccggagacct 180

ccgcccggg ccgtggacgg tggaggagga catgctcctc gtcaactacg tcgccgcga 240
cggcgaggc cgctggAACG cgctggcacg atgcgcaggg ctccggcggA cgggaaAGAG 300
ctgcccctg cggtggtca actacctgcg gccggacctg cggcggggca acatcacggc 360
gcaagagcaa ctgctcatcc tggagctgca ctcccgtgg ggcaaccgct ggtcaagatc 420
gcgcagcacc tccaagggca acgacaacga natcanaact actggcgcac cggttcanan 480
caccagcan ctcaatgcaa ctcaaagcan cgctcaagga ctcagcgcta atctggatgc 540
ngngtcccna angnaccgtc gacatccggg angggctnct ttngagcnca cccancaaac 600
n 601

<210> 6
<211> 120
<212> PRT
<213> Zea mays

<220>
<221> UNSURE
<222> (101)

<220>
<221> UNSURE
<222> (113)..(114)

<400> 6
Met Ala Ala Arg Asp His Arg Glu Leu Ser Gly Asp Glu Asp Ser Val
1 5 10 15

Val Ala Ala Gly Asp Leu Arg Arg Gly Pro Trp Thr Val Glu Glu Asp
20 25 30

Met Leu Leu Val Asn Tyr Val Ala Ala His Gly Glu Gly Arg Trp Asn
35 40 45

Ala Leu Ala Arg Cys Ala Gly Leu Arg Arg Thr Gly Lys Ser Cys Arg
50 55 60

Leu Arg Trp Leu Asn Tyr Leu Arg Pro Asp Leu Arg Arg Gly Asn Ile
65 70 75 80

Thr Ala Gln Glu Gln Leu Leu Ile Leu Glu Leu His Ser Arg Trp Gly
85 90 95

Asn Arg Trp Ser Xaa Ile Ala Gln His Leu Gln Gly Gln Arg Gln Arg
100 105 110

Xaa Xaa Asn Tyr Trp Arg Thr Gly
115 120

<210> 7
<211> 547
<212> DNA
<213> Zea mays

<220>
<221> unsure
<222> (356)

<220>
<221> unsure
<222> (374)

```

<220>
<221> unsure
<222> (479)

<220>
<221> unsure
<222> (508)

<220>
<221> unsure
<222> (532)

<400> 7
ccgataccgg cctcaacgcc ctcttttcc cagcctcaca accaattcct gtttcagtcg 60
atcgcatgtt gcatggccac gacacagagc tgcagagca ggagcagcgc ctgcagcaag 120
gctgctgctt gcttcccggc cgccgtacgc gtcgacgagg agcacggcca ccacagccac 180
cagctgaagg gaggagcgcgaa ggaggaggct gagaacgaca ataataagcc ggagctccgg 240
cgtggccctt ggacggtaga cgaggacctc accctcgta actacatcgc cgacaacggc 300
gagggtccctt ggaacaacctt cgcccgccgccc gcccggctga agccgacggg caaganctgc 360
cggtcgccgtt ggcnaacta cctccggccc gacgtgaagc gtggaaactt cagcgccgac 420
gagcagctgc tcatactcgac ctcacaccgc tggggcaacc gatgtcgaag atagcgcanc 480
acctggccggg aaggacggca acgagatnaa gaactactgg aggaccgggt gnataacacg 540
caagatc 547

<210> 8
<211> 72
<212> PRT
<213> Zea mays

<220>
<221> UNSURE
<222> (42)

<220>
<221> UNSURE
<222> (48)

<400> 8
Glu Leu Arg Arg Gly Pro Trp Thr Val Asp Glu Asp Leu Thr Leu Val
1 5 10 15
Asn Tyr Ile Ala Asp Asn Gly Glu Gly Pro Trp Asn Asn Leu Ala Arg
20 25 30
Ala Ala Gly Leu Lys Arg Thr Gly Lys Xaa Cys Arg Leu Arg Trp Xaa
35 40 45
Asn Tyr Leu Arg Pro Asp Val Lys Arg Gly Asn Phe Ser Ala Asp Glu
50 55 60
Gln Leu Leu Ile Ser Thr Ser His
65 70

<210> 9
<211> 1317
<212> DNA
<213> Zea mays

```

<400> 9
 gcacgagccg ataccggcct caacgccctc ttttcccag cctcacaacc aattcctgtt 60
 tcagtgcata gcaaggtagca tggccacgac acagagctgt cagagcagga gcagcgccctg 120
 cagcaaggct gctgcttgc tccccggccgc cgtagcggtc gacgaggaggc acggccacca 180
 cagccaccag ctgaagggag gagcgcagga ggaggctgag aacgacaata ataagccgga 240
 gctccggcgt ggccccttggc cggttagacga ggaccccttacc ctcgtcaact acatcgccga 300
 caacggcgag ggtcgcttggc acaacctcgc ccgcgcgcgc gggctgaagc ggacggccaa 360
 gagctgccgg ctgcgggtggc tcaactaccc ctggcccgac gtgaagcggt gcaacttcag 420
 cgccgacgag cagctgctca tcctcgaccc ccacaccgc tggggcaacc gatggtcgaa 480
 gatagcgcag cacctgcggg gaaggacgga caacgagatc aagaactact ggaggacccg 540
 ggtgcagaag cacgccaagc agctaactg cgacgccaac agcaagcgct tcaaggacgc 600
 catgcctac ctctggatgc cgacacccgc cgacgacgtc gataccatcg ctgcggccaa 660
 cgacgacgac gaagaccacc accacaacct acgcctcctc gtcctgcacc accaccaggc 720
 ccagcacctg cagcaagctg ctgcgcggc cggcggcgct gccaacgacc ttgctgcggg 780
 cgccctacgac gtccgcgcgc tgacacgcgt gccgtcgct ggcacatggcgg cgacgtcgctc 840
 gtccgactcg ctgcgtcg agtctacga tgacggaggc ctgtttcg cgaacttgcg 900
 cgccggcgag atgctgtatgg acggcggaga ttggcggcg cagcaggagg ccgaccaagg 960
 gctgtggccg cccggccgc cggccgcgtc tgatcttgat cagtcgggtt tgcaggctgc 1020
 tggtgccgcgcttggccagt ttcaaggacat ggagctcagt ggtgggtgc aaggcttc 1080
 cgagagcatt acagataact ttggccctt ggagaaatt tggaaatgc aatgagcgg 1140
 caattttaca ttttacatccatccat taaagacaac atagatacac atatacatat 1200
 catatattct aacaacaggt gccatatacg atatacatac acaagttgtt gtatagttgt 1260
 attccgctta tatatatattttttgcct ctcaaaaaaaaaaaaaaaa 1317

<210> 10
 <211> 351
 <212> PRT
 <213> Zea mays

<400> 10
 Met Ala Thr Thr Gln Ser Cys Gln Ser Arg Ser Ser Ala Cys Ser Lys
 1 5 10 15

Ala	Ala	Ala	Cys	Phe	Pro	Ala	Ala	Val	Ala	Val	Asp	Glu	Glu	His	Gly
20								25						30	

His	His	Ser	His	Gln	Leu	Lys	Gly	Gly	Ala	Gln	Glu	Glu	Ala	Glu	Asn
35							40						45		

Asp	Asn	Asn	Lys	Pro	Glu	Leu	Arg	Arg	Gly	Pro	Trp	Thr	Val	Asp	Glu
50						55						60			

Asp	Leu	Thr	Leu	Val	Asn	Tyr	Ile	Ala	Asp	Asn	Gly	Glu	Gly	Arg	Trp
65						70					75				80

Asn	Asn	Leu	Ala	Arg	Ala	Ala	Gly	Leu	Lys	Arg	Thr	Gly	Lys	Ser	Cys
85									90					95	

Arg	Leu	Arg	Trp	Leu	Asn	Tyr	Leu	Arg	Pro	Asp	Val	Lys	Arg	Gly	Asn
100								105					110		

Phe	Ser	Ala	Asp	Glu	Gln	Leu	Leu	Ile	Leu	Asp	Leu	His	Thr	Arg	Trp
115								120					125		

Gly	Asn	Arg	Trp	Ser	Lys	Ile	Ala	Gln	His	Leu	Pro	Gly	Arg	Thr	Asp
130								135					140		

Asn	Glu	Ile	Lys	Asn	Tyr	Trp	Arg	Thr	Arg	Val	Gln	Lys	His	Ala	Lys
145								150			155			160	

Gln Leu Asn Cys Asp Ala Asn Ser Lys Arg Phe Lys Asp Ala Met Arg
165 170 175

Tyr Leu Trp Met Pro His Leu Ala Asp Asp Val Asp Thr Ile Ala Ala
180 185 190

Ala Asn Asp Asp Asp Glu Asp His His His Asn Leu Arg Leu Leu Val
195 200 205

Leu His His His Gln Ala Gln His Leu Gln Gln Ala Ala Ala Ala Ala
210 215 220

Gly Gly Ala Ala Asn Asp Leu Ala Ala Gly Ala Tyr Asp Val Arg Gln
225 230 235 240

Leu His Ala Leu Pro Ser Ser Gly Met Ala Ala Thr Ser Ser Ser Asp
245 250 255

Ser Leu Ala Ser Glu Ser Tyr Asp Asp Gly Gly Leu Leu Phe Ala Asn
260 265 270

Leu Arg Ala Gly Glu Met Leu Met Asp Gly Gly Asp Trp Ala Ala Gln
275 280 285

Gln Glu Ala Asp Gln Gly Leu Trp Pro Pro Pro Pro Pro Pro Ser
290 295 300

Asp Leu Asp Gln Ser Val Val Gln Ala Ala Gly Ala Gly Ala Gly Gln
305 310 315 320

Phe Gln Asp Met Glu Leu Ser Gly Trp Val Gln Gly Phe Ser Glu Ser
325 330 335

Ile Thr Asp Asn Phe Trp Ala Leu Glu Glu Ile Trp Lys Met Gln
340 345 350

<210> 11

<211> 488

<212> DNA

<213> Oryza sativa

<400> 11

ggttcgtgcg gctgctggc gaacggcggt gggatttctt agcaaagggtg tcaggtttgc 60
gcggccggcg gtatgagca tatgcgtgcg tgcataat ctatcgatta attgttgatg 120
atgtcgatca gatggatgga tgcata tgcgtacat agtagattt atgatagtaa 180
ctgacataaa tataatgtat gcgtgcgatc aacgctgggtt gttggatcgt ccgtcggtg 240
tatgggtgggt gtgtggctga tgcagggtt cagcgcagcg ggaagagctg ccgtctccgg 300
tgggtgaact acctgcatcc agggctgaag cgagggagga tgagccccga ggaggagagg 360
atggtggtgc agctccacgc caagctcgcc aacagggttgtt ctcgcatcgc caagagcatt 420
cctggccgca ccgacaacga gatcaagaac tactggcgca cccacctgcg caagctcaag 480
ctcaaaca 488

<210> 12

<211> 71

<212> PRT

<213> Oryza sativa

<400> 12

Val Tyr Gly Trp Cys Val Ala Asp Ala Gly Leu Gln Arg Ser Gly Lys
1 5 10 15

Ser Cys Arg Leu Arg Trp Val Asn Tyr Leu His Pro Gly Leu Lys Arg
20 25 30

Gly Arg Met Ser Pro Glu Glu Arg Met Val Val Gln Leu His Ala
35 40 45

Lys Leu Gly Asn Arg Trp Ser Arg Ile Ala Lys Ser Ile Pro Gly Arg
50 55 60

Thr Asp Asn Glu Ile Lys Asn
65 70

<210> 13

<211> 1123

<212> DNA

<213> Oryza sativa

<400> 13

gcattcttt tctgcatcat catcgtcgtc ttctgttct tcttggttagtgcagct 60
gggtcatcat cagcgcccac agggtgagga ccctctcatc ggcataaag cagcagcagc 120
aggaggagga ggaataatga gaaaggccc gtggacggag cagaggacg tgcaagtgg 180
ttggttcggt cggtctgtgg gcgaacggcg gtgggatttc ttagcaaagg tgcagggttt 240
gcagcgcagc gggaaagagct gccgtctccg gtgggtgaac tacctgcattc cagggtgaa 300
gcgagggagg atgagccccg aggaggagag gatgggtgtg cagctccacg ccaagctcgg 360
caacagggtgg tctcgatcg ccaagagcat tcctggccgc accgacaacg agatcaagaa 420
ctactggcgc acccacctgc gcaagctcaa gctcaaacag caaaagcagc agcagtcgg 480
cgaccaccac aacgacaacg acgacgacga cgaccgcaac tcctcctcct ctgcgtcctc 540
ctccaacacgc aacagcaacc tgcagcagca gccgcagcca gagatgagt cgtcggccag 600
tggcagcctg caggcccaac atcatgagga ccagcacaa ctgttccttc atcctctctg 660
gaacgacgac atcatcgatc acgtcgactg ctggagcagc agcacaacg tcgtcgctcc 720
gccgcccattt cccgcctcgc cgctctggta tatcgatgac gccttcttgc gtcggatta 780
ttcgctacct ctctggggat agtatataatc atccatcagc cgccaagacg atgacgacta 840
catcaactcg atcgatcgat gcctcctaatt catgtggag tactcagctc atctcaattt 900
ttacatcctt gctacagctg ctaattactg taattactag cttgcataata gggatcgacg 960
gaggaattaa tatatacatg ttagtaactc gttctatagc gcaacttgca gttgcatactc 1020
aatctctgat cagtaactata taaatatata tatatatata acagctgcta gctatacgta 1080
gctgcgtaca catccatatg aatgtgtgtg tgttcatgct aaa 1123

<210> 14

<211> 221

<212> PRT

<213> Oryza sativa

<400> 14

Met Arg Lys Gly Pro Trp Thr Glu Gln Glu Asp Val Gln Leu Val Trp
1 5 10 15

Phe Val Arg Leu Leu Gly Glu Arg Arg Trp Asp Phe Leu Ala Lys Val
20 25 30

Ser Gly Leu Gln Arg Ser Gly Lys Ser Cys Arg Leu Arg Trp Val Asn
35 40 45

Tyr Leu His Pro Gly Leu Lys Arg Gly Arg Met Ser Pro Glu Glu Glu
50 55 60

Arg Met Val Val Gln Leu His Ala Lys Leu Gly Asn Arg Trp Ser Arg
65 70 75 80

Ile Ala Lys Ser Ile Pro Gly Arg Thr Asp Asn Glu Ile Lys Asn Tyr
85 90 95

Trp Arg Thr His Leu Arg Lys Leu Lys Leu Lys Gln Gln Lys Gln Gln
100 105 110

Gln Ser Asp Asp His His Asn Asp Asn Asp Asp Asp Asp Asp Arg Asn
115 120 125

Ser Ser Ser Ser Ser Ser Asn Ser Asn Ser Asn Leu Gln Gln
130 135 140

Gln Pro Gln Pro Glu Asp Glu Ser Ser Ala Ser Gly Ser Leu Gln Ala
145 150 155 160

Gln His His Glu Asp Gln His Gln Leu Phe Leu His Pro Leu Trp Asn
165 170 175

Asp Asp Ile Ile Val Asp Val Asp Cys Trp Ser Ser Ser Thr Asn Val
180 185 190

Val Ala Pro Pro Pro Met Pro Ala Ser Pro Leu Trp Asp Ile Asp Asp
195 200 205

Ala Phe Phe Cys Ser Asp Tyr Ser Leu Pro Leu Trp Gly
210 215 220

<210> 15

<211> 336

<212> DNA

<213> Oryza sativa

<220>

<221> unsure

<222> (308)

<400> 15

tctggagttg atcaaggctc taaacgtcaa gctggagcca acaaactcaa agaggaagaa 60
gaacacggag agtggctccc atcctatcca aggttaagaag tgaacaacgt tagcattgca 120
acatcccaag ccccaatatg gtgacagtga gagaggagat gcgcaggaga ccatggacag 180
agcaggagga cctgcaactg gtatgcactg tccgcctgtt cggtgaccgc cgttgggatt 240
tcgttgccaa agtatacggt ttgagggggc tcaatagagac aggcaagagc tgccgcctcc 300
gttgggttnaa ctaactccaa ccctggcct caagca 336

<210> 16

<211> 62

<212> PRT

<213> Oryza sativa

<220>

<221> UNSURE

<222> (59)

<400> 16

Met Val Thr Val Arg Glu Glu Met Arg Lys Gly Pro Trp Thr Glu Gln
1 5 10 15

Glu Asp Leu Gln Leu Val Cys Thr Val Arg Leu Phe Gly Asp Arg Arg
20 25 30

Trp Asp Phe Val Ala Lys Val Ser Gly Leu Arg Gly Leu Asn Arg Thr
 35 40 45

Gly Lys Ser Cys Arg Leu Arg Trp Val Asn Xaa Leu Gln Pro
 50 55 60

<210> 17
 <211> 587
 <212> DNA
 <213> Oryza sativa

<220>
 <221> unsure
 <222> (577)

<220>
 <221> unsure
 <222> (582)..(583)

<220>
 <221> unsure
 <222> (587)

<400> 17
 ctctactaca cacttgctct gcccgtat gatggcgccga gaggtgagca gcgaggagga 60
 ggctggcgcc ggcgacgagc tccggcgagg gccgtggacg gtggaggagg acctgctcct 120
 cgtcaactac atcggccgccc atggcgaggg ccgcttggaaac gcgcgtcgccg cgtgcgccgg 180
 gctgaagcgcc acggggaaaga gctggccgct gcgggtggctg aactacctga ggcggacgt 240
 gaggagggggg aacatgacgg cgaggagca gctgtgtata ctggagctcc atggggcggtg 300
 ggggaatcggt tggagcaaga tcgcgcagca tctccccggc cgcaccgaca acgagatcaa 360
 gaactactgg cgcaccccgcc tccagaagca cggcaagcac ctcaactgctg acgtcaactc 420
 ccagcagttc aaggacactca tgcgtctaccc ctggatggcc gcctcctcgaa acgcataaac 480
 gctcctccca atccaatcca cgacccgacg acccgactct cgtctccgccc gcacactgtat 540
 cactcgactc tctcacgcca taacgcccgt cgcatgnnga annacan 587

<210> 18
 <211> 145
 <212> PRT
 <213> Oryza sativa

<400> 18
 Met Met Met Ala Arg Glu Val Ser Ser Glu Glu Glu Ala Gly Gly Gly
 1 5 10 15

Asp Glu Leu Arg Arg Gly Pro Trp Thr Val Glu Glu Asp Leu Leu Leu
 20 25 30

Val Asn Tyr Ile Ala Ala His Gly Glu Gly Arg Trp Asn Ala Leu Ala
 35 40 45

Arg Cys Ala Gly Leu Lys Arg Thr Gly Lys Ser Cys Arg Leu Arg Trp
 50 55 60

Leu Asn Tyr Leu Arg Pro Asp Val Arg Arg Gly Asn Met Thr Ala Glu
 65 70 75 80

Glu Gln Leu Leu Ile Leu Glu Leu His Gly Arg Trp Gly Asn Arg Trp
 85 90 95

Ser Lys Ile Ala Gln His Leu Pro Gly Arg Thr Asp Asn Glu Ile Lys
 100 105 110

 Asn Tyr Trp Arg Thr Arg Val Gln Lys His Ala Lys His Leu Asn Cys
 115 120 125

 Asp Val Asn Ser Gln Gln Phe Lys Asp Leu Met Arg Tyr Leu Trp Met
 130 135 140

 Pro
 145

 <210> 19
 <211> 440
 <212> DNA
 <213> Oryza sativa

 <400> 19
 gccgccccgtc tgaagaggac tggaaagagc tgccggctcc ggtggctgaa cttatctccgg 60
 ccggatgtga agcgccgcaa cttcacccgc gaggagcagc tgctcatcct cgacacctccac 120
 tcccgtggg gcaaccgatg gtccaaagata gcacaacatt tgcttggag gaccgacgac 180
 gagatcaaga actactggag gaccagagtg caaaagcatg ccaagcaact caatttgtat 240
 gtcaacagca agaggttcaa ggatgccatg aagtacctat ggatgcctcg ctttgccgag 300
 cgcatccatg ccagggtctgg cgctgttat gatacgccag actacagcaa caacgactta 360
 tcatgtgtat ctggtgtaac aatgccact gttgctaatt gtttgtatgg ctctccgagc 420
 atggtgacta gtcacatcctc 440

 <210> 20
 <211> 146
 <212> PRT
 <213> Oryza sativa

 <400> 20
 Ala Ala Gly Leu Lys Arg Thr Gly Lys Ser Cys Arg Leu Arg Trp Leu
 1 5 10 15

 Asn Tyr Leu Arg Pro Asp Val Lys Arg Gly Asn Phe Thr Ala Glu Glu
 20 25 30

 Gln Leu Leu Ile Leu Asp Leu His Ser Arg Trp Gly Asn Arg Trp Ser
 35 40 45

 Lys Ile Ala Gln His Leu Pro Gly Arg Thr Asp Asp Glu Ile Lys Asn
 50 55 60

 Tyr Trp Arg Thr Arg Val Gln Lys His Ala Lys Gln Leu Asn Cys Asp
 65 70 75 80

 Val Asn Ser Lys Arg Phe Lys Asp Ala Met Lys Tyr Leu Trp Met Pro
 85 90 95

 Arg Leu Ala Glu Arg Ile His Ala Arg Ala Gly Ala Val Asp Asp Ser
 100 105 110

 Gly Asp Tyr Ser Asn Asn Asp Leu Ser Cys Val Ser Gly Val Thr Met
 115 120 125

 Ala Thr Val Ala Asn Cys Phe Asp Gly Ser Pro Ser Met Val Thr Ser
 130 135 140

Ser Ser
145

<210> 21
<211> 640
<212> DNA
<213> Oryza sativa

<220>
<221> unsure
<222> (355)

<220>
<221> unsure
<222> (498)

<220>
<221> unsure
<222> (534)

<220>
<221> unsure
<222> (543)

<220>
<221> unsure
<222> (582)

<220>
<221> unsure
<222> (597)

<220>
<221> unsure
<222> (606)

<220>
<221> unsure
<222> (619)

<220>
<221> unsure
<222> (634)

<400> 21
ggcgtacatc catccatcca tccatctatc cagagagcac agcaacggcg catatatagt 60
accctctac caaaggcaca caaccagaat ctccctgagct cgatctagct actagcttga 120
tctatccat caatcgactg gccccgcgagg atcgatcgag actcgaaagg gagggatttt 180
gatccgatc ggtcgacgat ggacatggcg cacgagaggg acgcgagcag cgaggaggag 240
gtgtatggcg gcgacctgcg tcgcgggccc tggacggtg aggaggacct cctgctcgtc 300
aactacatcg ccgcgcacgg cgagggccgc tggactcgc tcgccccatc agcanggctg 360
aaacgcacag gcaagagctg ccggctccgg tggctgaact acctccgccc cgacctccgg 420
cgaggcaaca tcaacgcccga agagcagctg ctcatcctgg agctgcactc gcgggtggga 480
aaccgcttgtt ccaagatngc gcagcacctc ccgggaagca ccgacaacga gatnaagaat 540
acnggcgcac gcgggtgcaga agcacccaag cagtcaagtg cnactcaaca gcaacantta 600
aggacncatg cgctactcng gatgccgct ctttagggat 640

<210> 22
<211> 115

<212> PRT
 <213> Oryza sativa

<220>
 <221> UNSURE
 <222> (53)

<220>
 <221> UNSURE
 <222> (100)

<220>
 <221> UNSURE
 <222> (112)

<400> 22
 Met Asp Met Ala His Glu Arg Asp Ala Ser Ser Glu Glu Glu Val Met
 1 5 10 15

Gly Gly Asp Leu Arg Arg Gly Pro Trp Thr Val Glu Glu Asp Leu Leu
 20 25 30

Leu Val Asn Tyr Ile Ala Ala His Gly Glu Gly Arg Trp Asn Ser Leu
 35 40 45

Ala Arg Ser Ala Xaa Leu Lys Arg Thr Gly Lys Ser Cys Arg Leu Arg
 50 55 60

Trp Leu Asn Tyr Leu Arg Pro Asp Leu Arg Arg Gly Asn Ile Thr Pro
 65 70 75 80

Gln Glu Gln Leu Leu Ile Leu Glu Leu His Ser Arg Trp Gly Asn Arg
 85 90 95

Trp Ser Lys Xaa Ala Gln His Leu Pro Gly Ser Thr Asp Asn Glu Xaa
 100 105 110

Lys Asn Thr
 115

<210> 23
 <211> 484
 <212> DNA
 <213> Oryza sativa

<220>
 <221> unsure
 <222> (118)

<220>
 <221> unsure
 <222> (298)

<220>
 <221> unsure
 <222> (355)..(356)

<220>
 <221> unsure
 <222> (374)

<220>
 <221> unsure
 <222> (376)

<220>
 <221> unsure
 <222> (381)

<220>
 <221> unsure
 <222> (386)

<220>
 <221> unsure
 <222> (393)

<220>
 <221> unsure
 <222> (408)...(409)

<220>
 <221> unsure
 <222> (417)

<220>
 <221> unsure
 <222> (432)

<220>
 <221> unsure
 <222> (453)

<220>
 <221> unsure
 <222> (466)

<220>
 <221> unsure
 <222> (469)

<220>
 <221> unsure
 <222> (476)...(477)

<400> 23
 cttacacctg atcgagatcg agtagtagtg acacgcatac accaccaacc accgccgccc 60
 gccgcggcg agctgcagga tgggaggcc gccgtgctgc gacaaggtcg gggtgaanaa 120
 ggggcattgg acgcccggagg aggacctgat gctggtctcc tacatccagg agcacggcgc 180
 cggcaactgg cgccgcgtgc cgacgaacac cgggctgatg cgttgcagca agagctgccc 240
 gctccgtgg acgaactacc tcagggccgg gatcaagcgg gggacttca ccgagcanga 300
 ggagaagctc atcgccacc tccaggctct cctcggcaac cggggcaac cgatnnctc 360
 gtactgccc ganangacg ncaacnacat cangaatact gggAACANNc acctcangaa 420
 gaactcaaga anatgcaagc caccggaggt gngaaaaca ggcgcgnnc tcgganngtt 480
 gcgg 484

<210> 24
 <211> 126
 <212> PRT
 <213> Oryza sativa

<220>
 <221> UNSURE
 <222> (13)

<220>
 <221> UNSURE
 <222> (73)

<220>
 <221> UNSURE
 <222> (92) .. (93)

<220>
 <221> UNSURE
 <222> (99)

<220>
 <221> UNSURE
 <222> (101)

<220>
 <221> UNSURE
 <222> (103)

<220>
 <221> UNSURE
 <222> (105)

<220>
 <221> UNSURE
 <222> (110)

<220>
 <221> UNSURE
 <222> (113)

<220>
 <221> UNSURE
 <222> (118)

<220>
 <221> UNSURE
 <222> (125)

<400> 24
 Met Gly Arg Pro Pro Cys Cys Asp Lys Val Gly Val Xaa Lys Gly Pro
 1 5 10 15

Trp Thr Pro Glu Glu Asp Leu Met Leu Val Ser Tyr Ile Gln Glu His
 20 25 30

Gly Ala Gly Asn Trp Arg Ala Val Pro Thr Asn Thr Gly Leu Met Arg
 35 40 45

Cys Ser Lys Ser Cys Arg Leu Arg Trp Thr Asn Tyr Leu Arg Pro Gly
 50 55 60

Ile Lys Arg Gly Asn Phe Thr Glu Xaa Glu Glu Lys Leu Ile Val His
 65 70 75 80

Leu Gln Ala Leu Leu Gly Asn Arg Trp Ala Thr Xaa Xaa Ser Tyr Leu
85 90 95

Pro Gly Xaa Asp Xaa Asn Xaa Ile Xaa Asn Thr Gly Asn Xaa His Leu
100 105 110

Xaa Lys Asn Ser Arg Xaa Cys Lys Pro Pro Glu Val Xaa Lys
115 120 125

<210> 25

<211> 1427

<212> DNA

<213> Oryza sativa

<400> 25

gcacgagctt acacctgatc gagatcgagt agtagtgaca cgcatacacc accaaccacc 60
gccggccccc gcccggcggc tgcaggatgg ggaggccccc gtgtcgac aaggtcgcccc 120
tgaagaaggg gccatggacg ccggaggagg acctgatgt ggtctcctac atccaggagc 180
acggcgccgg caactggcgc gccgtgccga cgaacacccgg gctgatgcgt tgcagcaaga 240
gctgccggctt ccgggtggacq aactaccta gggcggggat caagcggggg aacttcaccg 300
agcaggagga gaagctcatc gtccacctcc aggctcttcc cgccaaccgg tgggcagcga 360
tagcgtcgta cttggccggag aggacggaca acgacatcaa gaactactgg aacacgcacc 420
tcaagaagaa gctcaagaag atgcaggccg ccggaggtgg ggaagacagc ggccgcgcct 480
cgaggagggtgg cggcgccgc qgqgacggcg acggcgccgg gaaaagcgtg aaggccgcgg 540
cacctaaggg gcagtgggag cggcgctgc agacggacat ccacacggcg cggcaggcgc 600
tgcgcgacgc gctctcgctc gaccaccccg acccgctgcc ggcgacggcg gggcgccgg 660
cgacgcgcagc ggggtcgctg qgqgctgcgtc cggtcgacgc ggacaacatc ggcgcccgtc 720
tgcagggtctg qatgcgcccc ggcggcgccg ggcggccggaa cggcaaggggc cccgaggcgt 780
cggggtcgac ctccacgacg qgqgacgc acgacggaccc gcaatgtctcc ggcgaggccg 840
cgccatccgc gtcccgctcg qgqgacgc ggcggccgc cggcgccgg actgcccaga 900
cgccggagtg ctgcacggag acgagcaaga tggccacccgg cggcgccgc ggcggccccc 960
cgccggcggtt ctgcgtgctg gagagctggc tgctcgacga cggcgcatg gggctcatgg 1020
acgtgggcc attggggac cccagtggat tcttttaagt gtagtacaac caaaattaaa 1080
ttaatcaagt agacagcaag aacaaaaaaa aataatggaa agttgcccgg ttaattaatc 1140
aagatgcaac taatcaaagc taattaaaag ggcttcgagt taattctcg tgatttaat 1200
cgagttgca ggtgttgc tagcttggat aattaatcc ttctttgtt ggttttagt 1260
taatttagtct ctctgtatgat gctagggtt ggaactgatc atatgttaatgtaat 1320
taatggtagg cctgtgactt gtgatttagt agtcctgagt ggataaataa agacataaaat 1380
gtacatctt ttaaaagata aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1427

<210> 26

<211> 323

<212> PRT

<213> Oryza sativa

<400> 26

Met Gly Arg Pro Pro Cys Cys Asp Lys Val Gly Val Lys Lys Gly Pro
1 5 10 15

Trp Thr Pro Glu Glu Asp Leu Met Leu Val Ser Tyr Ile Gln Glu His
20 25 30

Gly Ala Gly Asn Trp Arg Ala Val Pro Thr Asn Thr Gly Leu Met Arg
35 40 45

Cys Ser Lys Ser Cys Arg Leu Arg Trp Thr Asn Tyr Leu Arg Pro Gly
50 55 60

Ile Lys Arg Gly Asn Phe Thr Glu Gln Glu Glu Lys Leu Ile Val His
 65 70 75 80
 Leu Gln Ala Leu Leu Gly Asn Arg Trp Ala Ala Ile Ala Ser Tyr Leu
 85 90 95
 Pro Glu Arg Thr Asp Asn Asp Ile Lys Asn Tyr Trp Asn Thr His Leu
 100 105 110
 Lys Lys Lys Leu Lys Lys Met Gln Ala Ala Gly Gly Glu Asp Ser
 115 120 125
 Gly Ala Ala Ser Glu Gly Gly Arg Gly Asp Gly Asp Gly Gly
 130 135 140
 Gly Lys Ser Val Lys Ala Ala Ala Pro Lys Gly Gln Trp Glu Arg Arg
 145 150 155 160
 Leu Gln Thr Asp Ile His Thr Ala Arg Gln Ala Leu Arg Asp Ala Leu
 165 170 175
 Ser Leu Asp His Pro Asp Pro Ser Pro Ala Thr Ala Ala Ala Ala
 180 185 190
 Thr Pro Ala Gly Ser Ser Ala Ala Tyr Ala Ser Ser Ala Asp Asn Ile
 195 200 205
 Ala Arg Leu Leu Gln Gly Trp Met Arg Pro Gly Gly Gly Gly
 210 215 220
 Asn Gly Lys Gly Pro Glu Ala Ser Gly Ser Thr Ser Thr Thr Ala Thr
 225 230 235 240
 Thr Gln Gln Gln Pro Gln Cys Ser Gly Glu Gly Ala Ala Ser Ala Ser
 245 250 255
 Ala Ser Ala Ser Gln Ser Gly Ala Ala Ala Ala Ala Thr Ala Gln Thr
 260 265 270
 Pro Glu Cys Ser Thr Glu Thr Ser Lys Met Ala Thr Gly Gly Ala
 275 280 285
 Gly Gly Pro Ala Pro Ala Phe Ser Met Leu Glu Ser Trp Leu Leu Asp
 290 295 300
 Asp Gly Gly Met Gly Leu Met Asp Val Val Pro Leu Gly Asp Pro Ser
 305 310 315 320
 Glu Phe Phe

<210> 27
 <211> 557
 <212> DNA
 <213> Glycine max

 <220>
 <221> unsure
 <222> (136)

```

<220>
<221> unsure
<222> (229)

<220>
<221> unsure
<222> (271)

<220>
<221> unsure
<222> (373)

<220>
<221> unsure
<222> (382)

<220>
<221> unsure
<222> (386)

<220>
<221> unsure
<222> (424)

<220>
<221> unsure
<222> (475)

<220>
<221> unsure
<222> (493)..(494)

<220>
<221> unsure
<222> (511)

<220>
<221> unsure
<222> (520)

<220>
<221> unsure
<222> (522)

<220>
<221> unsure
<222> (531)

<220>
<221> unsure
<222> (536)

<220>
<221> unsure
<222> (552)..(553)

<400> 27
tctctctccc ctcttcccca cccaaccttc tctctatcac acacacaaaa caatggataa 60
aaaacaactg tgcaacacgt ctcaagatcc tgaagtgaga aaaggactt ggacgatgga 120
agaagacttg atcttngatc aactatatgg caaatcatgg ggaagggtgtt tggaaattctt 180

```

tggccaaaag ctgctggtct caaacgtacc ggaaagattg ccggctaang tggctaaact 240
acctccgtcc tgatgttaga agagggata ntacaccga aggaacaact ttgatcatgg 300
agcttcacgc aaagtgggaa aacaggttgt cccaaatgc caagcatcta cctggtagga 360
cagtaatgag atnaagaact antggngac aaggatcaga agcacatcaa gcaactgaga 420
attnagaac aatcacataa ctctgagata atgttacaag ctagatacca agttntacaa 480
ggtgaaccat gggnactatc ccaaccttt naaggaagtn angcatttct naatcnntcc 540
ccaaataacc gnntatc 557

<210> 28
<211> 94
<212> PRT
<213> Glycine max

<220>
<221> UNSURE
<222> (19)..(20)

<220>
<221> UNSURE
<222> (51)

<220>
<221> UNSURE
<222> (65)

<400> 28
Ser Gln Asp Pro Glu Val Arg Lys Gly Pro Trp Thr Met Glu Glu Asp
1 5 10 15

Leu Ile Xaa Xaa Ile Asn Tyr Ile Ala Asn His Gly Glu Gly Val Trp
20 25 30

Asn Ser Leu Ala Lys Ser Cys Trp Ser Gln Thr Tyr Arg Lys Asp Cys
35 40 45

Arg Leu Xaa Trp Leu Asn Tyr Leu Arg Pro Asp Val Arg Arg Gly Asn
50 55 60

Xaa Thr Pro Glu Gly Thr Thr Leu Ile Met Glu Leu His Ala Lys Trp
65 70 75 80

Asn Arg Trp Ser Lys Ile Ala Lys His Leu Pro Gly Arg Thr
85 90

<210> 29
<211> 988
<212> DNA
<213> Glycine max

<400> 29
cgcacagatc tctctcccacc caaccttctc tctatcacac acacaaaaca 60
atggataaaa aacaactgtg caacacgtct caagatcctg aagtgagaaa aggaccttgg 120
acgatggaaag aagacttgat cttgatcaac tatattgcaaa atcatgggaa aggtgtttgg 180
aattcttgg ccaaagctgc tggctctaaa cgtaccggaa agagttgccg gctaagggtgg 240
ctaaactacc tccgtcctga tggtagaaga gggaatatta caccggagga acaacttttgg 300
atcatggagc ttcacgcaaa gtggggaaac aggtggtcca aaattgccaa gcatctacct 360
ggtaggacag ataatgagat caagaactat tggaggacca ggatccagaa gcacatcaag 420
caagctgaga actttcagca acaaatcagc aataactctg agataaatga tcaccaagct 480
agcaactagcc atgtttctac catgctgaa cccatggaga cctattctcc acccttttat 540
caaggaatgt tagagccatt ttcttcaatt cagttccccca caattaatcc tgatcaatcc 600

agttgttgta ccaatgacaa caacaacagc attaactatt ggagcatgga ggatatctgg 660
tcaatgcagt tactgaacgg ggattaaata ttgatatatc aagataaacc taaattcttg 720
tataaggcc ataaaacact ggaatgtctc tggctaaaa catattatta ttaggttgt 780
ttatataagt agttggatat gtttgggttt gcgtaccatt attagcatat atatatatat 840
ttcaaatgag atgctatgtg cattgtaaaa gatatggta agaaccacat agttcaaaa 900
ctcttaata taattccagt cacttattat aggaagtcta ttatataattt tctccaagat 960
gtttgcttaa aaaaaaaaaa aaaaaaaaa 988

<210> 30
<211> 208
<212> PRT
<213> Glycine max

<400> 30
Met Asp Lys Lys Gln Leu Cys Asn Thr Ser Gln Asp Pro Glu Val Arg
1 5 10 15

Lys Gly Pro Trp Thr Met Glu Glu Asp Leu Ile Leu Ile Asn Tyr Ile
20 25 30

Ala Asn His Gly Glu Gly Val Trp Asn Ser Leu Ala Lys Ala Ala Gly
35 40 45

Leu Lys Arg Thr Gly Lys Ser Cys Arg Leu Arg Trp Leu Asn Tyr Leu
50 55 60

Arg Pro Asp Val Arg Arg Gly Asn Ile Thr Pro Glu Glu Gln Leu Leu
65 70 75 80

Ile Met Glu Leu His Ala Lys Trp Gly Asn Arg Trp Ser Lys Ile Ala
85 90 95

Lys His Leu Pro Gly Arg Thr Asp Asn Glu Ile Lys Asn Tyr Trp Arg
100 105 110

Thr Arg Ile Gln Lys His Ile Lys Gln Ala Glu Asn Phe Gln Gln Gln
115 120 125

Ile Ser Asn Asn Ser Glu Ile Asn Asp His Gln Ala Ser Thr Ser His
130 135 140

Val Ser Thr Met Ala Glu Pro Met Glu Thr Tyr Ser Pro Pro Phe Tyr
145 150 155 160

Gln Gly Met Leu Glu Pro Phe Ser Ser Ile Gln Phe Pro Thr Ile Asn
165 170 175

Pro Asp Gln Ser Ser Cys Cys Thr Asn Asp Asn Asn Ser Ile Asn
180 185 190

Tyr Trp Ser Met Glu Asp Ile Trp Ser Met Gln Leu Leu Asn Gly Asp
195 200 205

<210> 31
<211> 530
<212> DNA
<213> Glycine max

```

<220>
<221> unsure
<222> (301)

<220>
<221> unsure
<222> (356)

<220>
<221> unsure
<222> (388)

<220>
<221> unsure
<222> (393)

<220>
<221> unsure
<222> (470)

<220>
<221> unsure
<222> (485)

<220>
<221> unsure
<222> (495)

<220>
<221> unsure
<222> (513)

<220>
<221> unsure
<222> (517)

<220>
<221> unsure
<222> (522)

<400> 31
aaaataatgg acaagaagct tggcaacacg tctcatgatc ctgaagttag aaaggggcca 60
tggacaatgg aagaagactt aatcttgc accttatattt ccaatcacgg ggaaggggtt 120
tggaaactctt tggccaaaggc tgctggactt aaacgtaccg gaaagagttg ccggctccgg 180
tggctaaact acctccgtcc tgatgttaga agagggata ttacacccga ggaacagctt 240
ttgatcatgg aacttcatgc aaagtggga aacaggttgtt cccaaattgc caagcatcta 300
nccggaaagga ctgataatga gattaagaac tactggagga caaggatcaa gaacanctca 360
agcaaggcattt caacaacttc aacaacanag tantaattct gagataattt acatccaaag 420
cttgcacaaac caattgtcaa caatggcaaa cccaaaaaaaaa ctaatctcan caatttcaag 480
gaagnttattt cattnaatca attccaaaaa ccncacntct antgtttcaa 530

<210> 32
<211> 204
<212> PRT
<213> Glycine max

<400> 32
Met Asp Lys Lys Leu Gly Asn Thr Ser His Asp Pro Glu Val Arg Lys
    1           5           10          15

```

Gly Pro Trp Thr Met Glu Glu Asp Leu Ile Leu Ile Thr Tyr Ile Ala
 20 25 30

Asn His Gly Glu Gly Val Trp Asn Ser Leu Ala Lys Ala Ala Gly Leu
 35 40 45

Lys Arg Thr Gly Lys Ser Cys Arg Leu Arg Trp Leu Asn Tyr Leu Arg
 50 55 60

Pro Asp Val Arg Arg Gly Asn Ile Thr Pro Glu Glu Gln Leu Leu Ile
 65 70 75 80

Met Glu Leu His Ala Lys Trp Gly Asn Arg Trp Ser Lys Ile Ala Lys
 85 90 95

His Leu Pro Gly Arg Thr Asp Asn Glu Ile Lys Asn Tyr Trp Arg Thr
 100 105 110

Arg Ile Gln Lys His Leu Lys Gln Ala Ser Ser Ser Phe Gln Gln Gln
 115 120 125

Ser Ser Asn Ser Glu Ile Ile Tyr His Pro Gln Ala Cys Thr Ser Gln
 130 135 140

Val Ser Thr Met Ala Gln Pro Ile Glu Thr Tyr Ser Pro Pro Ser Tyr
 145 150 155 160

Gln Gly Met Leu Asp Pro Phe Ser Ile Gln Phe Pro Thr Asn Pro His
 165 170 175

His Ser Ser Cys Cys Thr Asn Asp Asp Asp Asn Asn Asn Tyr Trp Ser
 180 185 190

Met Glu Asp Ile Trp Ser Met Gln Leu Ala Asn Tyr
 195 200

<210> 33
 <211> 910
 <212> DNA
 <213> Glycine max

<220>
 <221> unsure
 <222> (798)

<220>
 <221> unsure
 <222> (807)

<220>
 <221> unsure
 <222> (814)

<400> 33
 tctctctctc tctctctcta gcgtgcacac aaaataatgg aaaaaaaaaacc atgcgactca 60
 tctcatgatc cagaagttag aaagggacca tggatcatgg aagaagactt gatcttgata 120
 aactatattg caaatcacgg tgaagggttt tggaaattctt tagccaaagc ttctggctt 180
 aaacgaacgg gaaagagttg tcgactccgt tggctaaact accttcgtcc tggatgtt 240
 agagggaaaca ttacacccga agaacagtt ttgatcatag aacttcatgc aaagtggggc 300
 aataggttgtt cccaaaattgc aaagcatctt ccaggaagaa ctgacaatga gattaagaac 360

ttctggagaa ctaggatcca gaagcacatt aagcaagctg agacttcaca acaacatgg 420
aattcatcag agaatagtaa taatgatcat caagcaagca atagcactag caaggtgtcc 480
accatggcac atccaaatga gacttctct tcaccctcat accaagcaac ttttgagcca 540
tttcaacctc aattcctaca atcaatgatc aatcaagttg ttgtaccagc aacaacaact 600
attggagcat cgaggatatac tggtcgctca tgcaattact caatggagat waattaaatc 660
tagctatatg catgcttata taaatcatat atgtgatgat atataaacct aagctcttat 720
tgagtgttgtt caggcttaat aacatcatta ggtctggat atatgagtag gttaagattg 780
gtgtgcattgc ctaaatgnag tattgcntt ttgnagtaag aataactagt tatggatgcc 840
tttaaaaaaaa agttagttt gaattgaaat atatagtAAC ttatatacta aaaaaaaaaa 900
aaaaaaaaaa 910

<210> 34
<211> 206
<212> PRT
<213> Glycine max

<400> 34

Met Asp Lys Lys Pro Cys Asp Ser Ser His Asp Pro Glu Val Arg Lys
1 5 10 15

Gly Pro Trp Ile Met Glu Glu Asp Leu Ile Leu Ile Asn Tyr Ile Ala
20 25 30

Asn His Gly Glu Gly Val Trp Asn Ser Leu Ala Lys Ala Ser Gly Leu
35 40 45

Lys Arg Thr Gly Lys Ser Cys Arg Leu Arg Trp Leu Asn Tyr Leu Arg
50 55 60

Pro Asp Val Arg Arg Gly Asn Ile Thr Pro Glu Glu Gln Leu Leu Ile
65 70 75 80

Ile Glu Leu His Ala Lys Trp Gly Asn Arg Trp Ser Lys Ile Ala Lys
85 90 95

His Leu Pro Gly Arg Thr Asp Asn Glu Ile Lys Asn Phe Trp Arg Thr
100 105 110

Arg Ile Gln Lys His Ile Lys Gln Ala Glu Thr Ser Gln Gln His Gly
115 120 125

Asn Ser Ser Glu Asn Ser Asn Asn Asp His Gln Ala Ser Asn Ser Thr
130 135 140

Ser Lys Val Ser Thr Met Ala His Pro Asn Glu Thr Phe Ser Ser Pro
145 150 155 160

Ser Tyr Gln Ala Thr Phe Glu Pro Phe Gln Pro Gln Phe Leu Gln Ser
165 170 175

Met Ile Asn Gln Val Val Val Pro Ala Thr Thr Thr Ile Gly Ala Ser
180 185 190

Arg Ile Ser Gly Arg Leu Cys Asn Tyr Ser Met Glu Ile Asn
195 200 205

<210> 35
<211> 863
<212> DNA
<213> Glycine max

<400> 35
gcacgagctc tatacacac acaagtcaat ggataaaaaa caacagtgt aagacgtctca 60
agatccctgaa gtgagaaaag ggccttggac aatggaaagaa gacttgatct tgatgaacta 120
tattgcaaat catggggaaag gtgttggaa ctctttggcc aaagctgctg gtctcaaaccg 180
taacggaaag agttgccggc taagggtggct aaattaccc cgtcctgatg ttagaagagg 240
gaatattaca cccgaggaac aacttttgat tatggagactc cacgcaaagt ggggaaacag 300
gtggtccaaa attgccaagc atctacctgg aaggactgtat aatgagatca agaactattg 360
gaggacaagg atccagaagc acatcaagca agctgagaac tttcagcaac agagtagtaa 420
taattctgag ataaaatgatc accaagctag cactagccat gttccacca tggctgagcc 480
catggagatg tattctccac cctgttatca aggaatgtt gagccatccc caactcagtt 540
ccctacaatt aatcctgatc aatccagttt ttgtaccaat gacaacaaca acattaacta 600
ttggagcatg gaggatagct ggtcaatgca attactgaac ggtgattaaa tattatcaag 660
ataaaaaccta agttypgaag ttccataagg ctggaatgtc tytggattaa aacatattat 720
tgggttgtt tatataagta gttggatgtt tggtttgcg taccatttt agctatgtgc 780
tctaataat acgagatyyt atattaaact atatctgat gctttatata taaaaaaaaa 840
aaaaaaaaaa aaaaaaaaaaa aaa 863

<210> 36
<211> 206
<212> PRT
<213> Glycine max

<400> 36
Met Asp Lys Lys Gln Gln Cys Lys Thr Ser Gln Asp Pro Glu Val Arg
1 5 10 15
Lys Gly Pro Trp Thr Met Glu Glu Asp Leu Ile Leu Met Asn Tyr Ile
20 25 30
Ala Asn His Gly Glu Gly Val Trp Asn Ser Leu Ala Lys Ala Ala Gly
35 40 45
Leu Lys Arg Asn Gly Lys Ser Cys Arg Leu Arg Trp Leu Asn Tyr Leu
50 55 60
Arg Pro Asp Val Arg Arg Gly Asn Ile Thr Pro Glu Glu Gln Leu Leu
65 70 75 80
Ile Met Glu Leu His Ala Lys Trp Gly Asn Arg Trp Ser Lys Ile Ala
85 90 95
Lys His Leu Pro Gly Arg Thr Asp Asn Glu Ile Lys Asn Tyr Trp Arg
100 105 110
Thr Arg Ile Gln Lys His Ile Lys Gln Ala Glu Asn Phe Gln Gln Gln
115 120 125
Ser Ser Asn Asn Ser Glu Ile Asn Asp His Gln Ala Ser Thr Ser His
130 135 140
Val Ser Thr Met Ala Glu Pro Met Glu Met Tyr Ser Pro Pro Cys Tyr
145 150 155 160
Gln Gly Met Leu Glu Pro Phe Ser Thr Gln Phe Pro Thr Ile Asn Pro
165 170 175
Asp Gln Ser Ser Cys Cys Thr Asn Asp Asn Asn Ile Asn Tyr Trp
180 185 190

Ser	Met	Glu	Asp	Ser	Trp	Ser	Met	Gln	Leu	Leu	Asn	Gly	Asp		
	195				200						205				
<210> 37															
<211> 805															
<212> DNA															
<213> Glycine max															
<400> 37															
aaaaaaaccat	gcaactcatc	atctcatgat	cctgaagtga	gaaaggacc	atggaccatg	60									
gaagaagact	tgtatcttgc	aaacttatatt	gcaaatacg	gtgaaggtgt	ttggactcc	120									
ttagccaaag	cttctggctc	caaacaacg	ggaaagagtt	gtcgactccg	ttggctaaac	180									
taccttcgtc	ctgtatgttag	aagaggaaac	attacacccg	aggaacagct	tttgatcata	240									
gaacttcatg	caaagtgggg	caataggtgg	tccaaaattt	caaagcatct	tccaggaaga	300									
actgacaatg	agattaagaa	cttctggaga	acaaggatcc	aaaagcacat	taagcaagct	360									
gagacttcac	aacaacatgg	taattcagag	aataatgatc	atcaagcaag	cactagact	420									
agcaaagtgt	ccaccatggc	acatccaaat	gagactttct	ctccaccctc	ataccaagga	480									
acttttggc	cattccaacc	tcaattccct	acaatcactg	atcaatcaag	ttgttgtacc	540									
accaccaacg	acaacaacaa	ctattggagc	atcgaggata	tctggcgtc	tatgcaatta	600									
ctcaatggag	attaaaccta	gctatatgca	tgcctatata	aatcatatat	atgatgatat	660									
ataaacctaa	gctcttgttag	agtgtgttca	ggcttaataa	catcattagg	tctgttata	720									
tgagtagtct	aagtttggtg	tttgtaatgc	atgatgtgag	ttaagaatta	atttagttat	780									
ggttggaaaa	aaaaaaaaaa	aaaaaa				805									
<210> 38															
<211> 204															
<212> PRT															
<213> Glycine max															
<400> 38															
Lys	Lys	Pro	Cys	Asn	Ser	Ser	Ser	His	Asp	Pro	Glu	Val	Arg	Lys	Gly
1								10						15	
Pro	Trp	Thr	Met	Glu	Glu	Asp	Leu	Ile	Leu	Ile	Asn	Tyr	Ile	Ala	Asn
			20					25				30			
His	Gly	Gly	Val	Trp	Asn	Ser	Leu	Ala	Lys	Ala	Ser	Gly	Leu	Lys	
			35				40				45				
Arg	Thr	Gly	Lys	Ser	Cys	Arg	Leu	Arg	Trp	Leu	Asn	Tyr	Ile	Arg	Pro
			50			55				60					
Asp	Val	Arg	Arg	Gly	Asn	Ile	Thr	Pro	Glu	Glu	Gln	Leu	Leu	Ile	Ile
			65			70			75				80		
Glu	Leu	His	Ala	Lys	Trp	Gly	Asn	Arg	Trp	Ser	Lys	Ile	Ala	Lys	His
			85				90				95				
Leu	Pro	Gly	Arg	Thr	Asp	Asn	Glu	Ile	Lys	Asn	Phe	Trp	Arg	Thr	Arg
			100				105				110				
Ile	Gln	Lys	His	Ile	Lys	Gln	Ala	Glu	Thr	Ser	Gln	Gln	His	Gly	Asn
			115				120				125				
Ser	Glu	Asn	Asn	Asp	His	Gln	Ala	Ser	Thr	Ser	Thr	Ser	Lys	Val	Ser
			130				135				140				
Thr	Met	Ala	His	Pro	Asn	Glu	Thr	Phe	Ser	Pro	Pro	Ser	Tyr	Gln	Gly
			145				150			155			160		

Thr	Phe	Glu	Pro	Phe	Gln	Pro	Gln	Phe	Pro	Thr	Ile	Thr	Asp	Gln	Ser				
														165	170	175			
Ser	Cys	Cys	Thr	Thr	Thr	Asn	Asp	Asn	Asn	Asn	Tyr	Trp	Ser	Ile	Glu				
														180	185	190			
Asp	Ile	Trp	Ser	Ser	Met	Gln	Leu	Leu	Asn	Gly	Asp								
															195	200			
<210>	39																		
<211>	751																		
<212>	DNA																		
<213>	Glycine max																		
<400>	39																		
tggatgttaa	gaaagggtggg	tctgttagtac	aagcacaagt	gaagttgcag	aagcataacg	60													
aaaaggagat	gggcattgaga	aaaggtccat	gggcgggtga	ggaggacacc	attctggtca	120													
attacatcg	cacacacgt	gaaggccact	ggaattccgt	ggcacatgt	gcaggtctaa	180													
ggaggagg	ttggatgttc	agattaaggt	ggctaaacta	cttgcgc	gacgtgcggc	240													
gtggaaat	atcacactcaa	gaacaaat	taattctcga	ccttcactct	cgctggggca	300													
acagggtgg	aaagattgt	caacagctgc	caggaagaac	agacaacgaa	ataaagaact	360													
attggagg	acaggtgata	aaacaagcga	agcagctaaa	gtgcgatgt	aatagcaaac	420													
agttcagaga	cacgttg	tacgttg	tgccgcgtt	gctggagcgg	cttcagccc	480													
catcacaag	actggagcca	aaccaaagt	gacttgtt	acacgcttca	tcatca	540													
ttccttcgaa	ttccgaccat	agtattgaaa	gggggtcgg	tctgtggcc	ggtttcaata	600													
accaaatgtt	gttggAACAG	gggagtggcg	gtgacttgtt	ggaaagttt	tggatgacg	660													
acaatatgt	cttttgcaa	cagcttctt	atgacctcca	aatgaaataa	aatacaattc	720													
ccttcgtca	cgcaaaaaaaa	aaaaaaaaaa	a			751													
<210>	40																		
<211>	235																		
<212>	PRT																		
<213>	Glycine max																		
<400>	40																		
Asp	Val	Lys	Lys	Gly	Gly	Ser	Val	Val	Gln	Ala	Gln	Val	Lys	Leu	Gln				
																1	5	10	15
Lys	His	Asn	Glu	Lys	Glu	Met	Gly	Met	Arg	Lys	Gly	Pro	Trp	Ala	Val				
																20	25	30	
Glu	Glu	Asp	Thr	Ile	Leu	Val	Asn	Tyr	Ile	Ala	Thr	His	Gly	Glu	Gly				
																35	40	45	
His	Trp	Asn	Ser	Val	Ala	Arg	Cys	Ala	Gly	Leu	Arg	Arg	Ser	Gly	Lys				
																50	55	60	
Ser	Cys	Arg	Leu	Arg	Trp	Leu	Asn	Tyr	Leu	Arg	Pro	Asp	Val	Arg	Arg				
																65	70	75	80
Gly	Asn	Ile	Thr	Leu	Gln	Glu	Gln	Ile	Leu	Ile	Leu	Asp	Leu	His	Ser				
																85	90	95	
Arg	Trp	Gly	Asn	Arg	Trp	Ser	Lys	Ile	Ala	Gln	Gln	Leu	Pro	Gly	Arg				
																100	105	110	
Thr	Asp	Asn	Glu	Ile	Lys	Asn	Tyr	Trp	Arg	Thr	Arg	Val	Ile	Lys	Gln				
																115	120	125	

Ala Lys Gln Leu Lys Cys Asp Val Asn Ser Lys Gln Phe Arg Asp Thr
 130 135 140

Leu Arg Tyr Val Trp Met Pro Arg Leu Leu Glu Arg Leu Gln Pro Thr
 145 150 155 160

Ser Gln Ala Leu Glu Pro Asn Gln Ser Gly Leu Val Leu His Ala Ser
 165 170 175

Ser Ser Leu Leu Pro Ser Asn Ser Asp His Ser Ile Glu Arg Gly Ser
 180 185 190

Asp Leu Trp Pro Gly Phe Asn Asn Gln Met Leu Leu Glu Gln Gly Ser
 195 200 205

Gly Gly Asp Leu Leu Glu Ser Leu Trp Asp Asp Asp Asn Met Cys Phe
 210 215 220

Leu Gln Gln Leu Ser Tyr Asp Leu Gln Met Lys
 225 230 235

<210> 41
 <211> 500
 <212> DNA
 <213> Glycine max

<400> 41
 catttcaat tggctgatc catatatatc atactttctt tgtaataact taaagaaccc 60
 cacaaaaaca ccaaccatgt ccacaattgc aaagagagat tttagttcta atgaagaaga 120
 gagtgagctg agaagaggc cttggactct tgaagaagac agcttactca tacactatat 180
 tgctcgcat ggtgaaggcc gttgaaatat gttagccaaa agtgcaggat tgaagaggac 240
 tggaaaaagt tgcagactta gatggctgaa ttatggaaa ccagacatta agagaggaa 300
 cctcaactcca caggagcaac tcttgatcct tgaactccat tccaaatgggg gtaacagg 360
 gtcaaaaatt gtcagcattc tgccaggaag aacagacaat gagatcaaga actattggag 420
 aacaaggata cagaaacagg gcacgccaac ttaacattga atctggtagc aagagattca 480
 ttgatgctgt cagtgttttt 500

<210> 42
 <211> 229
 <212> PRT
 <213> Glycine max

<220>
 <221> UNSURE
 <222> (138)

<400> 42
 Met Ser Thr Ile Ala Lys Arg Asp Leu Ser Ser Asn Glu Glu Glu Ser
 1 5 10 15

Glu Leu Arg Arg Gly Pro Trp Thr Leu Glu Glu Asp Ser Leu Leu Ile
 20 25 30

His Tyr Ile Ala Arg His Gly Glu Gly Arg Trp Asn Met Leu Ala Lys
 35 40 45

Ser Ala Gly Leu Lys Arg Thr Gly Lys Ser Cys Arg Leu Arg Trp Leu
 50 55 60

Asn	Tyr	Leu	Lys	Pro	Asp	Ile	Lys	Arg	Gly	Asn	Leu	Thr	Pro	Gln	Glu
65						70					75				80
Gln	Leu	Leu	Ile	Leu	Glu	Leu	His	Ser	Lys	Trp	Gly	Asn	Arg	Trp	Ser
					85				90					95	
Lys	Ile	Ala	Gln	His	Leu	Pro	Gly	Arg	Thr	Asp	Asn	Glu	Ile	Lys	Asn
					100			105					110		
Tyr	Trp	Arg	Thr	Arg	Ile	Gln	Lys	Gln	Ala	Arg	Gln	Leu	Asn	Ile	Glu
					115			120				125			
Ser	Gly	Ser	Lys	Arg	Phe	Ile	Asp	Ala	Xaa	Lys	Cys	Phe	Trp	Met	Pro
					130		135				140				
Arg	Leu	Leu	Gln	Lys	Met	Glu	Gln	Ser	Asn	Ser	Pro	Ser	Pro	His	His
					145		150			155				160	
Ser	Ser	Met	Thr	Asn	Met	Met	Asn	Leu	Gly	Asn	Ser	Gly	Glu	Ala	Ser
					165			170					175		
Met	Ser	Ser	Met	Ser	Ser	Phe	Asn	Ile	Asn	Pro	Ser	Met	Ser	Ser	
					180			185				190			
Ser	Ser	Ser	Pro	Pro	Lys	Gly	Asn	Leu	Leu	Trp	Met	Met	Pro	Asn	His
					195			200				205			
Phe	Lys	Tyr	Tyr	Val	Gln	Pro	His	Gln	Ser	Ile	Pro	Arg	Phe	Leu	Pro
					210			215				220			
Ile	Phe	Thr	Ala	Thr											
					225										
<210>	43														
<211>	1348														
<212>	DNA														
<213>	Glycine max														
<400>	43														
tacctctcca	accaagacca	atttgaaaac	ctcttcaatc	caacaaacaa	acgttctccc									60	
ttttgttctg	agagaatcaa	tggatggaaa	aggagcaaga	agtagcaaca	cccttttaag									120	
tagtgaggac	gagatggacc	ttcgaagagg	cccttggacc	gtcgatgaag	acctcactct									180	
tatcaattac	gttgcactc	atggcgaagg	tcgctgaaat	accctcgccc	tctctgctgg									240	
gctgaaacga	acgggaaaga	gttgcagatt	gaggtggctg	aattatctgc	gtcctgtatgt									300	
tcgacgtgga	aacatcacgc	ttgaagaaca	actttgtatt	ctggagctcc	attctcgctg									360	
gggaaaccga	tggtcgaaaa	ttgctcaata	tttgcttgggt	agaaccgaca	atgagataaa									420	
gaactattgg	agaaccgcgt	tccaaaagca	tgccaagaa	ctcaaatgcg	acgtgaataag									480	
caagcaattc	aaggacacca	tgcgttacat	ttggatgccaa	aggctcggtgg	aacgcattca									540	
agccaccgct	ggcgctccg	caccacaacc	cgttaccgta	ccaccgcgac	caacaatgca									600	
tacacctacg	gaagcaacct	taataacaac	aaattcgagg	ttcacgatca	caaggggcaaa									660	
atgggtttaa	ccgatccttc	agttatgaac	aatgacttaa	tgggttcaca	tgtcacgcaa									720	
agttacaccc	ctgagaatag	tagcaccggt	gchgcatcat	cagactcggtt	tgggactcaa									780	
gtctcagcaa	tttctgattt	gactgaatat	tacactgtca	ctggtagtgg	taacaataac									840	
aatactaatt	ctgcggatta	ttatcaaccc	tctcaaattt	gttactcgga	tagttgcattc									900	
acaagcccat	ctgggttgg	ccctcaaggg	ctagattttc	aatccatggaa	tccaaacacc									960	
ccgtgaaaca	tgcaaagtgg	ggactcctct	gacagtttt	ggaacgttga	aagcatgttg									1020	
ttcttagagc	agcaactcat	gaatgacaac	atgtgaaaac	attgggaaata	ggaaaataag									1080	
acttagatac	ggttcttctt	agtattgtgt	tttaattaaa	gttaaaagttt	acacaagttt									1140	
ttgaagtcaa	acttaattt	taattgaata	ataatactga	aaacaagagt	tgtatttaag									1200	
ttttattctt	ttatgaattt	tgaatttagat	tgacagaagg	ggttgtttgt	gaaatataca									1260	

ggtgaaagta tagaaagtag caacattaat aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1320
aaaaaaaaaa aaaaaaaaaa aaaaaaaaa 1348

<210> 44
<211> 196
<212> PRT
<213> Glycine max

<400> 44
Met Asp Gly Lys Gly Ala Arg Ser Ser Asn Thr Leu Leu Ser Ser Glu
1 5 10 15

Asp Glu Met Asp Leu Arg Arg Gly Pro Trp Thr Val Asp Glu Asp Leu
20 25 30

Thr Leu Ile Asn Tyr Val Ala Thr His Gly Glu Gly Arg Trp Asn Thr
35 40 45

Leu Ala Leu Ser Ala Gly Leu Lys Arg Thr Gly Lys Ser Cys Arg Leu
50 55 60

Arg Trp Leu Asn Tyr Leu Arg Pro Asp Val Arg Arg Gly Asn Ile Thr
65 70 75 80

Leu Glu Glu Gln Leu Leu Ile Leu Glu Leu His Ser Arg Trp Gly Asn
85 90 95

Arg Trp Ser Lys Ile Ala Gln Tyr Leu Pro Gly Arg Thr Asp Asn Glu
100 105 110

Ile Lys Asn Tyr Trp Arg Thr Arg Val Gln Lys His Ala Lys Gln Leu
115 120 125

Lys Cys Asp Val Asn Ser Lys Gln Phe Lys Asp Thr Met Arg Tyr Ile
130 135 140

Trp Met Pro Arg Leu Val Glu Arg Ile Gln Ala Thr Ala Ala Ser
145 150 155 160

Ala Pro Gln Pro Val Thr Val Pro Pro Arg Pro Thr Met His Thr Pro
165 170 175

Thr Glu Ala Thr Leu Ile Thr Thr Asn Ser Arg Phe Thr Ile Thr Arg
180 185 190

Ala Lys Trp Gly
195

<210> 45
<211> 1236
<212> DNA
<213> Glycine max

<220>
<221> unsure
<222> (519)

<220>
<221> unsure
<222> (521)

```

<220>
<221> unsure
<222> (530)..(531)

<220>
<221> unsure
<222> (534)

<220>
<221> unsure
<222> (800)

<220>
<221> unsure
<222> (1124)

<220>
<221> unsure
<222> (1151)

<400> 45
aacaatccaa ctctctttct ccctatccca acaatctcac tcatacctct tcaatctaac 60
aaacttaatt tctttgttt tgagtttctt agagaatgga taaaaaagga gcaagaagta 120
gcaacaccct ttaagttgt gaggacgaga tggaccttcg aagaggccct tggaccgtcg 180
atgaagacct cactcttatac aattacattt ccactcatgg cgaaggtcgc tggacacacgc 240
tcgcctctc tgctgggctg aaacgaacgg ggaagagttg cagattgagg tggctgaatt 300
atctgcgtcc ttagtggtcga cgtggaaaca tcacacttga agaacaactt ttgattctgg 360
agtttcatcc tcgctgggaa aaccgttggt cggaaaattgc tcaatatttgc cctggtagaa 420
ccgacaacga gataaagaac tattggagaa cccgtgtcca aaagcatgcc aagcaactca 480
aatgtgacgt gaatagcaag caattcaagg acaccatng ntacctttgn natnccaagg 540
ctcgtgaaac gcattcaagc agcggcgacg gccccctgaa ccaccaccgt aactgcggcc 600
gccaccaaca atgcattcac ctacggAAC aaccttatac caccaaaatttcc gaggttctga 660
atcacaaggc cagaatgggg ttaaccgatc cttcagtgc gaacaatgac tttgtgggtt 720
cacatgtcac gcaaaggatc cctactcctg agaatagtag cacgggtcg tcatcatcag 780
actcgttgg gactcaagtn tcaacaattt ctgatttgc taaaaattcc agtgtccctg 840
aaaataactaa ttctgcggat tattatcaac cctctcaaat tagtaatttac tcggataatt 900
gcacatcacaag cccatctggg ttcttggcc ctcaaggact agatcttcaa tccatggatc 960
caaacacacc gtggAACatg caaagtgggg actcctctga caattttgg gacgttggaa 1020
gcacatgttatt cttagagcag caactcatga atgacaacat gtggaaacatt gggaaatagga 1080
aaataaagact tagatacggt tcttctaata ttttttagtg ktngttta attaaagtttta 1140
aagttaaacac nagttattga agtggaaactt taattttaa taaataataa tcctgaaaaaa 1200
aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaa 1236

<210> 46
<211> 322
<212> PRT
<213> Glycine max

<220>
<221> UNSURE
<222> (142)

<220>
<221> UNSURE
<222> (145)..(146)..(147)

<220>
<221> UNSURE
<222> (178)

```

<400> 46
 Met Asp Glu Lys Gly Ala Arg Ser Ser Asn Thr Leu Leu Ser Cys Glu
 1 5 10 15
 Asp Glu Met Asp Leu Arg Arg Gly Pro Trp Thr Val Asp Glu Asp Leu
 20 25 30
 Thr Leu Ile Asn Tyr Ile Ala Thr His Gly Glu Gly Arg Trp Asn Thr
 35 40 45
 Leu Ala Leu Ser Ala Gly Leu Lys Arg Thr Gly Lys Ser Cys Arg Leu
 50 55 60
 Arg Trp Leu Asn Tyr Leu Arg Pro Asp Val Arg Arg Gly Asn Ile Thr
 65 70 75 80
 Leu Glu Glu Gln Leu Leu Ile Leu Glu Leu His Ser Arg Trp Gly Asn
 85 90 95
 Arg Trp Ser Lys Ile Ala Gln Tyr Leu Pro Gly Arg Thr Asp Asn Glu
 100 105 110
 Ile Lys Asn Tyr Trp Arg Thr Arg Val Gln Lys His Ala Lys Gln Leu
 115 120 125
 Lys Cys Asp Val Asn Ser Lys Gln Phe Lys Asp Thr Met Xaa Tyr Leu
 130 135 140
 Xaa Xaa Xaa Lys Ala Arg Gly Thr His Ser Ser Ser Gly Asp Gly Pro
 145 150 155 160
 Arg Asn His His Arg Asn Cys Gly Arg His Gln Gln Cys Ile His Leu
 165 170 175
 Arg Xaa Gln Pro Tyr Thr Thr Lys Phe Glu Val Leu Asn His Lys Gly
 180 185 190
 Arg Met Gly Leu Thr Asp Pro Ser Val Ala Asn Asn Asp Phe Val Gly
 195 200 205
 Ser His Val Thr Gln Arg Tyr Pro Thr Pro Glu Asn Ser Ser Thr Gly
 210 215 220
 Ala Ser Ser Ser Asp Ser Phe Gly Thr Gln Val Ser Thr Ile Ser Asp
 225 230 235 240
 Leu Thr Glu Asn Ser Ser Val Pro Glu Asn Thr Asn Ser Ala Asp Tyr
 245 250 255
 Tyr Gln Pro Ser Gln Ile Ser Asn Tyr Ser Asp Asn Cys Ile Thr Ser
 260 265 270
 Pro Ser Gly Phe Leu Phe Pro Gln Gly Leu Asp Leu Gln Ser Met Asp
 275 280 285
 Pro Asn Thr Pro Trp Asn Met Gln Ser Gly Asp Ser Ser Asp Asn Phe
 290 295 300

Trp Asp Val Glu Ser Met Leu Phe Leu Glu Gln Gln Leu Met Asn Asp
305 310 315 320

Asn Met

<210> 47
<211> 1181
<212> DNA
<213> Glycine max

<400> 47
tttcagttag tgagaatagc catgtctact tcaaagagcg tcagcagttc tagtgaagat 60
gacaatgaac tttagaagagg gccttgact ctggaaaggagg ataaacttgct ctcccaatat 120
attttaatc atggggagg gcgatggaa ttgctggcta aacgttcagg attaaagaga 180
actggggaaaa gttgcagatt aaggtggcta aattatctaa agccagatgt aaaacgggga 240
aatttaaccc cacaagagca acttataatt ctgtacttcc actcaaagtg gggaaacagg 300
tggtaaaaaa ttgcacaaca ttgccaggc agaacagaca atgaaaatcaa gaactattgg 360
agaacttagga ttcatggaaaca agcaagacat ttgaaaatcc acactgacag cagagagttt 420
caagaacttg tttaggcgtt ctggatgcct agattgcctc agaaagcaaa agaatcatct 480
tcttcaaaaaa tgtcaattca aaaccaggca attcctatgc ctttgattt tgtttctcag 540
catattaactg ttgggaccat acctccttgg cagggacctt gtatgaatga agctggccc 600
acttacatgg accaacatga gcagactcag actcggaca ccaacaatgg ttcatgcattc 660
tccttgcctg agtcagcaaa tattccaaaa gtgcctcagc attttggaca caccaccatc 720
acccaatttc atgccttggaa taccaatgac tttggcacct tcacatatga aggttataat 780
gtaaaacaaca atgtctatga gatggacaac ttcaaaaacga ctactacatg ggtggctgag 840
gatgcgcaat acccaatttg tgattgtcaa atggtagaa gcaattgggt aaacaacgat 900
tttgcattgt acatgtggaa catggatgaa ctgtggcagt ttagcaagtt aaaaaataaa 960
gatttttaggg ttttgcatttt tttggataaa cccaaagtcc aaaactctt ctttgatgac 1020
gttattattt gtttatcatgaa ctgtggatta gctaccgaat taattaatac agatggcgat 1080
tgttttctgt acatctgtct tgtattactc tggtcagata agtactttt gtaatttgtat 1140
tgattgagaa aagtcatcaa ttagtacta gtacaaaaaa a 1181

<210> 48
<211> 312
<212> PRT
<213> Glycine max

<400> 48
Met Ser Thr Ser Lys Ser Val Ser Ser Ser Ser Glu Asp Asp Asn Glu
1 5 10 15

Leu Arg Arg Gly Pro Trp Thr Leu Glu Glu Asp Asn Leu Leu Ser Gln
20 25 30

Tyr Ile Phe Asn His Gly Glu Gly Arg Trp Asn Leu Leu Ala Lys Arg
35 40 45

Ser Gly Leu Lys Arg Thr Gly Lys Ser Cys Arg Leu Arg Trp Leu Asn
50 55 60

Tyr Leu Lys Pro Asp Val Lys Arg Gly Asn Leu Thr Pro Gln Glu Gln
65 70 75 80

Leu Ile Ile Leu Glu Leu His Ser Lys Trp Gly Asn Arg Trp Ser Lys
85 90 95

Ile Ala Gln His Leu Pro Gly Arg Thr Asp Asn Glu Ile Lys Asn Tyr
100 105 110

Trp Arg Thr Arg Ile Gln Lys Gln Ala Arg His Leu Lys Ile Tyr Thr
 115 120 125
 Asp Ser Arg Glu Phe Gln Glu Leu Val Arg Arg Phe Trp Met Pro Arg
 130 135 140
 Leu Leu Gln Lys Ala Lys Glu Ser Ser Ser Asn Met Ser Ile Gln
 145 150 155 160
 Asn Gln Ala Ile Pro Met Pro Phe Asp Tyr Val Ser Gln His Leu Thr
 165 170 175
 Val Gly Thr Ile Pro Pro Trp Gln Gly Pro Cys Met Asn Glu Ala Gly
 180 185 190
 Pro Thr Tyr Met Asp Gln His Glu Gln Thr Gln Thr Arg Asn Thr Asn
 195 200 205
 Asn Gly Ser Cys Ile Ser Leu Ser Glu Ser Ala Asn Ile Pro Lys Val
 210 215 220
 Pro Gln His Phe Gly His Thr Thr Ile Thr Gln Phe His Ala Leu Asn
 225 230 235 240
 Thr Asn Asp Phe Gly Thr Phe Thr Tyr Glu Gly Tyr Asn Val Asn Asn
 245 250 255
 Asn Val Tyr Glu Met Asp Asn Phe Lys Thr Thr Thr Thr Trp Val Ala
 260 265 270
 Glu Asp Ala Gln Tyr Pro Ile Gly Asp Cys Gln Met Val Gly Ser Asn
 275 280 285
 Trp Val Asn Asn Asp Phe Ala Cys Asn Met Trp Asn Met Asp Glu Leu
 290 295 300
 Trp Gln Phe Ser Lys Leu Gln Lys
 305 310

<210> 49
 <211> 1186
 <212> DNA
 <213> Glycine max

<400> 49
 aattcggcac gaggccatgt ctacttcaaa gagcgtcagc agttcttagtg aagatgacaa 60
 tgaacttaga agagggcctt ggactcttga agaggataat ttgctctccc aatataatttc 120
 tagtcatgga gaagggcgat ggaatttgct agctaaacgt tcaggattaa agcgaactgg 180
 gaaaagttgc agattaaggt ggctaaattta tctaaagcca gatgtaaaac ggggaaattt 240
 aaccccacaa gagcaactta taatcctcga actccactca aagtggggaa acagggggc 300
 aaaaattgca caaaatttgc caggcagaac agacaatgaa atcaagaact attggagaac 360
 taggatttcag aaacaagcaa gacattgaa aattgacact gacaccagag agtttcagga 420
 acttgttagg cgtttcttggc tgccctagatg cttcaaaaaag cccaaagaatc atcttcttca 480
 gccatgtcaa ttcaaaacca ggcaactcct atgccttttgc atgggtttc tcagcattca 540
 actgttggga ccataccatc acattcacac accccttggc agggaccttgc tatgaatgaa 600
 gctggtccca cttacatggc ccaacatgag cagaactcag actctgaaca caacaatgg 660
 tcatgcatct ccttgcgttgc gtcagcaaat tttccaaaaag tgccctcagca ttttggacgc 720
 accaccatca cccaaatatca tgcccttgaat aacaatgact ttggcacctt cacatatgac 780
 ggctacaatg taagcaacaa tgtctatgag atggacaact tcaaaaacgcc tactacaagg 840
 gtggctgagg atgcgcaata cccaaactggc gattgtcaaa tggtaggaag caattgggtt 900

aacagcgatt ttgcatgtaa catgtggaac atggatgaat tggcaatt tagcaagtta 960
caaaaataag attttagggt ttgggtttt tggagttacc aagactctat cttgggtat 1020
gttattattg ttatcatgaa ctgttgatta gctactacca aattaattaa tacagatgg 1080
gattgtttc tgtacatctg tttgcatta ctctgtttg caatttgtat tgattgagaa 1140
aagtcatcaa ttagtcacta gttcaaaaaca caaaaaaaaaaaaaaa 1186

<210> 50
<211> 192
<212> PRT
<213> Glycine max

<400> 50
Met Ser Thr Ser Lys Ser Val Ser Ser Ser Glu Asp Asp Asn Glu
1 5 10 15

Leu Arg Arg Gly Pro Trp Thr Leu Glu Glu Asp Asn Leu Leu Ser Gln
20 25 30

Tyr Ile Ser Ser His Gly Glu Gly Arg Trp Asn Leu Leu Ala Lys Arg
35 40 45

Ser Gly Leu Lys Arg Thr Gly Lys Ser Cys Arg Leu Arg Trp Leu Asn
50 55 60

Tyr Leu Lys Pro Asp Val Lys Arg Gly Asn Leu Thr Pro Gln Glu Gln
65 70 75 80

Leu Ile Ile Leu Glu Leu His Ser Lys Trp Gly Asn Arg Trp Ser Lys
85 90 95

Ile Ala Gln Asn Leu Pro Gly Arg Thr Asp Asn Glu Ile Lys Asn Tyr
100 105 110

Trp Arg Thr Arg Ile Gln Lys Gln Ala Arg His Leu Lys Ile Asp Thr
115 120 125

Asp Thr Arg Glu Phe Gln Glu Leu Val Arg Arg Phe Trp Met Pro Arg
130 135 140

Cys Phe Lys Lys Pro Lys Asn His Leu Leu Gln Pro Cys Gln Phe Lys
145 150 155 160

Thr Arg Gln Leu Leu Cys Leu Leu Met Val Phe Leu Ser Ile Gln Leu
165 170 175

Leu Gly Pro Tyr His His Ile His Thr Pro Leu Gly Arg Asp Leu Val
180 185 190

<210> 51
<211> 487
<212> DNA
<213> Glycine max

<220>
<221> unsure
<222> (358)

<220>
<221> unsure
<222> (429)

<400> 51
gagaaataaa aagagaagaa agaaaaacacg atagtatcat catatcacca ccacacacat 60
agatagagag agaaaaacga cctatatttt ttttccttg agagttcag gggcttagaa 120
aattagaagg acagccacaa gtataaaggc ggtgaataa aagagaaaga caagaaggag 180
acatggaaag accaccttg tgtgacaaag aagggtcaa gaaaggcct tggactcctg 240
aagaagacat catattggc tcttatattc aggaacatgg tcctggaaat tggagggcag 300
ttcctgccaa aacagggttgc acaagatgca gcaagagttg cagacttaga tggacgant 360
acctgaggcc aggaatcaag cgtggtaact tcacaagaac aagaggagaa gatgataatc 420
catttcang atcttttagg aaacagatgg ggtgcaatag cttcataacct tccacaaagg 480
acaagg 487

<210> 52
<211> 90
<212> PRT
<213> Glycine max

<220>
<221> UNSURE
<222> (59)

<220>
<221> UNSURE
<222> (72)

<220>
<221> UNSURE
<222> (83)

<400> 52
Met Gly Arg Pro Pro Cys Cys Asp Lys Glu Gly Val Lys Lys Gly Pro
1 5 10 15
Trp Thr Pro Glu Glu Asp Ile Ile Leu Val Ser Tyr Ile Gln Glu His
20 25 30
Gly Pro Gly Asn Trp Arg Ala Val Pro Ala Lys Thr Gly Leu Ser Arg
35 40 45
Cys Ser Lys Ser Cys Arg Leu Arg Trp Thr Xaa Tyr Leu Arg Pro Gly
50 55 60
Ile Lys Arg Gly Asn Phe Thr Xaa Glu Gln Glu Glu Lys Met Ile Ile
65 70 75 80
His Leu Xaa Asp Leu Leu Gly Asn Arg Trp
85 90

<210> 53
<211> 1556
<212> DNA
<213> Glycine max

<400> 53
gcacgaggag aaataaaaag agaagaaaga aaacacgata gtatcatcat atcaccacca 60
cacacataga tagagagagg aaaacgacct atatTTTT tccttgaga gcttcagggg 120
ctaggaaaat tagaaggaca gccacaagttaaaaggcgtt gaaataaaag agaaagacaa 180
gaaggagaca tggaaagacc accttgttgcataaaggaaag gggtcaagaa agggccttgg 240
actcctgaag aagacatcat attgggtgtct tatattcagg aacatggtcc tggaaattgg 300
aggcagttc ctgccccaaac agggttgtca agatgcagca agagttgcag acttagatgg 360

acgaattacc	tgaggccagg	aatcaagcgt	ggttaacttca	cagaacaaga	ggagaagatg	420
ataatccatc	ttaaagatct	tttagaaac	agatgggctg	caatagcttc	ataccttcca	480
caaagaacag	acaatgacat	aaagaactat	tggaataccc	atttgagaaa	gaagctgaag	540
aagatgcaag	caggcggtga	aggtggtagc	tttggagaag	ggtttcagc	ctcaaggcaa	600
atccctagag	gccagtggga	aagaaggctc	caaactgata	tccaaatggc	aaagagagcc	660
ctcagtgaag	ctctttcacc	agagaaaaag	ccatcttgc	tatctgcctc	aaactcaaac	720
ccttcagata	gtagcagctc	cttcttcc	acaaaaaccaa	caacaacaca	atctgtgtc	780
tatgcatcaa	gtgctgacaa	catagctaga	atgctcaagg	gttggatgaa	gaacccacca	840
aagtcccaa	gaaccaactc	gtctatgact	cagaactcat	tcaacaactt	agcaggtgct	900
gatactgctt	gtagtagtgtt	agcaaaggga	ccactaagca	gtgccgaatt	gtctgagaat	960
aattttgaat	ccttgggttga	ttttgatcag	tctttggagt	cttcaaactc	tgtatcaattc	1020
tctcagtccct	tgtctccctga	ggccactgtt	ttgcaagatg	aaagcaagcc	tgatattaat	1080
attgctgcag	aaatttatgcc	cttcttttgc	cttgagaaat	ggctccctga	tgagggcaggt	1140
tgccaaagaga	aatttagttgg	ttgttgtgg	gatgccaagt	ttttctaagt	tgggttcatt	1200
tttgacata	tgagactgtt	ggattttttt	attttatttt	attttatttc	ataagttata	1260
ggtagggcct	catcaattaa	tctcgcttcg	gccttatttag	agagagaagt	tttccagcct	1320
ttgggtctag	acgtgtatat	gttaattatt	attgacat	tgatgattat	tatcatactg	1380
tgttagttgc	catacactgg	caaacttgct	tctttatgt	aaagttgatc	ttgcgacgag	1440
atccctgtttt	atggctttag	gcagcgcgac	cggtcttc	tctttgtgc	gcttgattag	1500
taaaaaaaaa	cgggggggggg	ccgggtccaa	atccccccca	atggggtcct	tttttag	1556

<210> 54

<211> 332

<212> PRT

<213> Glycine max

<400> 54

Met Gly Arg Pro Pro Cys Cys Asp Lys Glu Gly Val Lys Lys Gly Pro
 1 5 10 15

Trp Thr Pro Glu Glu Asp Ile Ile Leu Val Ser Tyr Ile Gln Glu His
20 25 30

Gly Pro Gly Asn Trp Arg Ala Val Pro Ala Lys Thr Gly Leu Ser Arg
 35 40 45

Cys Ser Lys Ser Cys Arg Leu Arg Trp Thr Asn Tyr Leu Arg Pro Gly
50 55 60

Ile Lys Arg Gly Asn Phe Thr Glu Gln Glu Glu Lys Met Ile Ile His
65 70 75 80

Leu Gln Asp Leu Leu Gly Asn Arg Trp Ala Ala Ile Ala Ser Tyr Leu
85 90 95

Pro Gln Arg Thr Asp Asn Asp Ile Lys Asn Tyr Trp Asn Thr His Leu
100 105 110

Arg Lys Lys Leu Lys Lys Met Gln Ala Gly Gly Glu Gly Gly Ser Phe
115 120 125

Gly Glu Gly Phe Ser Ala Ser Arg Gln Ile Pro Arg Gly Gln Trp Glu
130 135 140

Arg Arg Leu Gln Thr Asp Ile Gln Met Ala Lys Arg Ala Leu Ser Glu
145 150 155 160

Ala Leu Ser Pro Glu Lys Lys Pro Ser Cys Leu Ser Ala Ser Asn Ser
165 170 175

Asn Pro Ser Asp Ser Ser Ser Phe Ser Ser Thr Lys Pro Thr Thr
180 185 190

Thr Gln Ser Val Cys Tyr Ala Ser Ser Ala Asp Asn Ile Ala Arg Met
195 200 205

Leu Lys Gly Trp Met Lys Asn Pro Pro Lys Ser Ser Arg Thr Asn Ser
210 215 220

Ser Met Thr Gln Asn Ser Phe Asn Asn Leu Ala Gly Ala Asp Thr Ala
225 230 235 240

Cys Ser Ser Gly Ala Lys Gly Pro Leu Ser Ser Ala Glu Leu Ser Glu
245 250 255

Asn Asn Phe Glu Ser Leu Phe Asp Phe Asp Gln Ser Leu Glu Ser Ser
260 265 270

Asn Ser Asp Gln Phe Ser Gln Ser Leu Ser Pro Glu Ala Thr Val Leu
275 280 285

Gln Asp Glu Ser Lys Pro Asp Ile Asn Ile Ala Ala Glu Ile Met Pro
290 295 300

Phe Ser Leu Leu Glu Lys Trp Leu Leu Asp Glu Ala Gly Cys Gln Glu
305 310 315 320

Lys Leu Val Gly Cys Cys Gly Asp Ala Lys Phe Phe
325 330

<210> 55

<211> 357

<212> DNA

<213> Triticum aestivum

<220>

<221> unsure

<222> (259)

<220>

<221> unsure

<222> (307)

<220>

<221> unsure

<222> (319)

<400> 55

gccaaagtat caggttttag ggggtggggta tccaaaaatt aggtagctat attgaagtat 60
tttgcgcaaa gtcgcaacaa caaatgtcac ctggctaat aactttcttc ttgcttcaac 120
ctctgtatac tccatgcagg cctcaaccgc acaggaaaga gctgtcgct ccgggtgggtt 180
aactacctcc accctgggcc taaagcgtgg ggcgtact ccccatgaaa gaacgcctca 240
tcctccaact ccatgctcng tggggaaaca agtggtccaa ggataaacacg gaactgccaa 300
ggcgtancga caatgaatna aagaactact gggagaacac atttgaggaa aaggaag 357

<210> 56

<211> 54

<212> PRT

<213> Triticum aestivum

<220>
<221> UNSURE
<222> (21)

<220>
<221> UNSURE
<222> (27) .. (28)

<220>
<221> UNSURE
<222> (41)

<400> 56

Ala Gly Leu Asn Arg Thr Gly Lys Ser Cys Arg Leu Arg Trp Val Asn
1 5 10 15

Tyr Leu His Pro Xaa Leu Lys Arg Gly Arg Xaa Xaa Pro Met Lys Glu
20 25 30

Arg Leu Ile Leu Gln Leu His Ala Xaa Trp Gly Asn Lys Trp Ser Lys
35 40 45

Asp Asn Thr Glu Leu Pro
50

<210> 57

<211> 1072

<212> DNA

<213> Triticum aestivum

<400> 57

gcacgaggcc aaagtatcag gtttggggatcc aaaaatttagg tagcttatatt 60
gaagtatccc gcgcaagtc gcaacaacaa atgtcacctt tgctaataac tttcttcttg 120
cttcaaccc tcgtaatctcc atgcaggcct caaccgcaca ggaaagagct gtcgcctccg 180
gtgggttaac tacctccacc ctggcctaaa gcgtgggcgc atgactcccc atgaagaacg 240
cctcatcctc gagctccatg ctcgggtggg aaacaggtgg tccaggatag cacggaagct 300
gccagggcgt accgacaatg agatcaagaa ctactggaga acacatatga ggaagaaacg 360
acaggagagg aagaggagcg tgcaccctc accatctca tcctcagtga cataccaatc 420
cattcagcca cagacgccc catgatcatggg aattggcgag cagaacttc atgggtggcag 480
tagctgcattc acaaggcatat tgaaggcac gcctgctgac atggatggat acctcatgga 540
tcagatatgg atggagattt aggccaccctc tggggtcaac ttccatgacg ggaaggataa 600
ttcatacagc agccctctg gccctctgct gccatcacccg atgtgggatt actacagccc 660
tgaggcaggc tggaaagatgg atgagataaa gatggccca caagttagct acagtaaagg 720
aattggccca agttattgaa gccatatata ttgtatcaga ttactaagtt acttgcaacc 780
tagcagaagt gaaatgcattt tggtaaaaga accattagca tggatctaaa aaatatttat 840
atctatcttag cattccaagt gtgctcatgt tttatgtatc tactatgttag catctagtgt 900
gcaagacatg taatgcaagg acacttccac tttgtattca caataatcag ctatccctg 960
taagactttt ccaatgcaaa catgattagc aggtgtataa tcaacttaaa tgcttgccaa 1020
aaaaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aa 1072

<210> 58

<211> 198

<212> PRT

<213> Triticum aestivum

<400> 58

Ala Gly Leu Asn Arg Thr Gly Lys Ser Cys Arg Leu Arg Trp Val Asn
1 5 10 15

Tyr Leu His Pro Gly Leu Lys Arg Gly Arg Met Thr Pro His Glu Glu
 20 25 30

Arg Leu Ile Leu Glu Leu His Ala Arg Trp Gly Asn Arg Trp Ser Arg
 35 40 45

Ile Ala Arg Lys Leu Pro Gly Arg Thr Asp Asn Glu Ile Lys Asn Tyr
 50 55 60

Trp Arg Thr His Met Arg Lys Lys Ala Gln Glu Arg Lys Arg Ser Val
 65 70 75 80

Ser Pro Ser Pro Ser Ser Ser Val Thr Tyr Gln Ser Ile Gln Pro
 85 90 95

Gln Thr Pro Ser Ile Met Gly Ile Gly Glu Gln Glu Leu His Gly Gly
 100 105 110

Ser Ser Cys Ile Thr Ser Ile Leu Lys Gly Thr Pro Ala Asp Met Asp
 115 120 125

Gly Tyr Leu Met Asp Gln Ile Trp Met Glu Ile Glu Ala Pro Ser Gly
 130 135 140

Val Asn Phe His Asp Gly Lys Asp Asn Ser Tyr Ser Ser Pro Ser Gly
 145 150 155 160

Pro Leu Leu Pro Ser Pro Met Trp Asp Tyr Tyr Ser Pro Glu Ala Gly
 165 170 175

Trp Lys Met Asp Glu Ile Lys Met Ala Pro Gln Val Ser Tyr Ser Lys
 180 185 190

Gly Ile Gly Pro Ser Tyr
 195

<210> 59
 <211> 521
 <212> DNA
 <213> Triticum aestivum

<220>
 <221> unsure
 <222> (108)

<220>
 <221> unsure
 <222> (355)

<220>
 <221> unsure
 <222> (361)

<220>
 <221> unsure
 <222> (392)

<220>
 <221> unsure
 <222> (414)

<220>
 <221> unsure
 <222> (431)

<220>
 <221> unsure
 <222> (434)

<220>
 <221> unsure
 <222> (447)

<220>
 <221> unsure
 <222> (456)

<220>
 <221> unsure
 <222> (459)

<400> 59
 ctggatcct ccactagcta cgtcgccat ggatgtggtg ctgcagagtc gtagcagcaa 60
 cagcatggcg gcggagccgg aggaggaggc ggaccggagg aggaggcngg agctccggcg 120
 agggccgtgg acggtggacg aggaccttac gctgatcaac tacatcgccg accacggcga 180
 gggccgtgg aacgcgtgg cgccggccgc cggcctgagg cgcacgggga agagctgccg 240
 gctgcggctgg ctgaactacc tccgccccga cgtgaagcgc ggcaacttca ccgcccacga 300
 gcagctcctc atcctcgacc tccactctcg ctggggcaac cggtggtcga agatngcgc 360
 ncacctccc ggtcgacgg acaacgaaga taaaagaact actgggagga ccanggtgca 420
 aaaagcacgc naancaactc aactgcnaac tccggnnaanc gcaaccttta aaggatgcc 480
 ataaggatacc tctggatgcc tcgcctctca acgcataaac c 521

<210> 60
 <211> 131
 <212> PRT
 <213> Triticum aestivum

<220>
 <221> UNSURE
 <222> (27)

<220>
 <221> UNSURE
 <222> (109)

<220>
 <221> UNSURE
 <222> (111)

<220>
 <221> UNSURE
 <222> (122)

<220>
 <221> UNSURE
 <222> (129)

<400> 60
 Met Asp Val Val Leu Gln Ser Arg Ser Ser Asn Ser Met Ala Ala Glu
 1 5 10 15

Pro Glu Glu Glu Ala Asp Arg Arg Arg Arg Xaa Glu Leu Arg Arg Gly
20 25 30

Pro Trp Thr Val Asp Glu Asp Leu Thr Leu Ile Asn Tyr Ile Ala Asp
35 40 45

His Gly Glu Gly Arg Trp Asn Ala Leu Ala Arg Ala Ala Gly Leu Arg
50 55 60

Arg Thr Gly Lys Ser Cys Arg Leu Arg Trp Leu Asn Tyr Leu Arg Pro
65 70 75 80

Asp Val Lys Arg Gly Asn Phe Thr Ala Asp Glu Gln Leu Leu Ile Leu
85 90 95

Asp Leu His Ser Arg Trp Gly Asn Arg Trp Ser Lys Xaa Ala Xaa His
100 105 110

Leu Pro Gly Arg Thr Asp Asn Glu Asp Xaa Arg Thr Thr Gly Arg Thr
115 120 125

Xaa Val Gln
130

<210> 61
<211> 464
<212> DNA
<213> Triticum aestivum

<220>
<221> unsure
<222> (435)

<220>
<221> unsure
<222> (442)

<220>
<221> unsure
<222> (450)

<220>
<221> unsure
<222> (457)

<400> 61
acggggcgag acgtgagcat ggggaggccg ccgtgctgcg acaaggaggg cgtcaagaag 60
ggcccttggc cgccggagga ggacctcggt ctcgtctcct acgtccagga gcacggcccc 120
ggcaactggc gcgcgtccc caccaggacc ggcctgtatgc ggtgttagcaa gagctgccgg 180
ctccgttggc ccaactacct gcgcaggagg atcaagcgcg gcaacttcac cgaccaggag 240
gagaagctca tcgtccacct ccaggcgctg ctcggcaaca ggtgggcccgc gatcgctcc 300
tacctccccg agcgcaccca caacgacatc aagaactact ggaacacgca actcaagcgc 360
aagctgcaag cggggggcga cgccgcggc aaaccggcgg cgcaaaggct gctcctcc 420
aaaggcaat ggganaggcg gngcagacgn catcaanatg cgcc 464

<210> 62
<211> 122
<212> PRT
<213> Triticum aestivum

<400> 62

Met Gly Arg Pro Pro Cys Cys Asp Lys Glu Gly Val Lys Lys Gly Pro
1 5 10 15

Trp Thr Pro Glu Glu Asp Leu Val Leu Val Ser Tyr Val Gln Glu His
20 25 30

Gly Pro Gly Asn Trp Arg Ala Val Pro Thr Arg Thr Gly Leu Met Arg
35 40 45

Cys Ser Lys Ser Cys Arg Leu Arg Trp Thr Asn Tyr Leu Arg Pro Gly
50 55 60

Ile Lys Arg Gly Asn Phe Thr Asp Gln Glu Glu Lys Leu Ile Val His
65 70 75 80

Leu Gln Ala Leu Leu Gly Asn Arg Trp Ala Ala Ile Ala Ser Tyr Leu
85 90 95

Pro Glu Arg Thr Asp Asn Asp Ile Lys Asn Tyr Trp Asn Thr Gln Leu
100 105 110

Lys Arg Lys Leu Gln Ala Gly Gly Asp Ala
115 120

<210> 63

<211> 217

<212> PRT

<213> Pisum sativum

<400> 63

Met Asp Lys Lys Pro Cys Asn Ser Ser Gln Asp Pro Glu Val Arg Lys
1 5 10 15

Gly Pro Trp Thr Met Glu Glu Asp Leu Ile Leu Ile Asn Tyr Ile Ala
20 25 30

Asn His Gly Glu Gly Val Trp Asn Ser Leu Ala Lys Ala Ala Gly Leu
35 40 45

Lys Arg Thr Gly Lys Ser Cys Arg Leu Arg Trp Leu Asn Tyr Leu Arg
50 55 60

Pro Asp Val Arg Arg Gly Asn Ile Thr Pro Glu Glu Gln Leu Leu Ile
65 70 75 80

Met Glu Leu His Ser Lys Trp Gly Asn Arg Trp Ser Lys Ile Ala Lys
85 90 95

His Leu Pro Gly Arg Thr Asp Asn Glu Ile Lys Asn Phe Trp Arg Thr
100 105 110

Arg Ile Gln Lys His Ile Lys Gln Val Asp Asn Pro Asn Gln Gln Asn
115 120 125

Phe Gln Gln Lys Met Ser Leu Glu Ile Asn Asp His His His His His
130 135 140

Pro His Gln Pro Ser Ser Ser Gln Val Ser Asn Leu Val Glu Pro Met
145 150 155 160

Glu Thr Tyr Ser Pro Thr Ser Tyr Gln Gly Thr Leu Glu Pro Phe Pro
165 170 175

Thr Gln Phe Pro Thr Ile Asn Asn Asp His His Gln Asn Ser Asn Cys
180 185 190

Cys Ala Asn Asp Asn Asn Asn Asn Tyr Trp Ser Met Glu Asp Ile
195 200 205

Trp Ser Met Gln Leu Leu Asn Gly Asp
210 215