Lecture 1: Fundamental of Curves and Surface in \mathbb{R}^3

Tianpei Xie

Jun. 1st., 2015

${\bf Contents}$

1	Cur		2
		Regular Curves in \mathbb{R}^3	
	1.2	Vector Product in \mathbb{R}^3	2
	1.3	The Local Theory of Curves Parametrized by Arc Length	4
2	Reg	gular Surfaces	6
	2.1	Surfaces	6
	2.2	Change of Parameters; Differentiable Functions on Surface	8
	2.3	The Tangent Plane and Differential of a Map	9
	2.4	The First Fundamental Form and Area	11
3	Exa		13
	3.1	Curves	13
	3.2	Surfaces	13

1 Curves

1.1 Regular Curves in \mathbb{R}^3

• **Definition** A parameterized differentiable curve [do Carmo Valero, 1976] is a differentiable map $\alpha: I \to \mathbb{R}^3$ of an open interval $I = (a, b) \subset \mathbb{R}$ to \mathbb{R}^3 .

The word differentiable in this definition means that α is a correspondence which maps each $t \in I$ into a point $\alpha(t) = (x(t), y(t), z(t)) \in \mathbb{R}^3$ in such a way that the functions x(t), y(t), z(t) are differentiable. The variable t is called the *parameter of the curve*. The word interval is taken in a generalized sense, so that we do not exclude the cases $a = -\infty, b = +\infty$.

If we denote by x'(t) the first derivative of x at the point t and use similar notations for the functions y and z, the vector $(x'(t), y'(t), z'(t)) = \alpha'(t) \in \mathbb{R}^3$ is called the **tangent vector** (or velocity vector) of the curve α at t. The image set $\alpha(I) \subset \mathbb{R}^3$ is called the trace of α .

- **Definition** A parameterized curve is said to be **regular** if $\alpha'(t) \neq 0$ for all $t \in I$.
- The arc length of a regular parameterized curve $\alpha: I \to \mathbb{R}^3$ from t_0 is defined as

$$s \equiv \int_{t_0}^t \left| \alpha'(t) \right| dt$$

where $|\alpha'(t)| = \sqrt{(x'(t))^2 + (y'(t))^2 + (z'(t))^2}$. Note that a parameterized regular curve can be reparameterized by the arc length as $\alpha(s)$.

• Given the curve α parametrized by arc length $s \in (a, b)$, we may consider the curve β defined in (-b, -a) by $\beta(-s) = \alpha(s)$, which has the same trace as the first one but is described in the opposite direction. We say, then, that these two curves differ by **a change of orientation**.

1.2 Vector Product in \mathbb{R}^3

- Two ordered bases $e = [e_i]$ and $f = [f_i]$, i = 1, ..., n, of an *n*-dimensional vector space V have *the same orientation* if the matrix of change of basis has positive determinant. We denote this relation by $e \sim f$. From elementary properties of determinants, it follows that $e \sim f$ is an *equivalence relation*.
- ullet Each of the equivalence classes determined by the above relation is called an *orientation* of V.
- In the case $V = \mathbb{R}^3$, there exists a natural ordered basis $e_1 = (1,0,0)$, $e_2 = (0,1,0)$, $e_3 = (0,0,1)$, and we shall call the orientation corresponding to this basis the **positive orientation** of \mathbb{R}^3 , the other one being the *negative orientation* (of course, this applies equally well to any \mathbb{R}^n).

We also say that **a** given ordered basis of \mathbb{R}^3 is positive (or negative) if it belongs to the positive (or negative) orientation of \mathbb{R}^3 . Thus, the ordered basis e_1, e_3, e_2 is a negative basis, since the matrix which changes this basis into e_1, e_2, e_3 has determinant equal to -1.

• The **cross product** (vector product) of two vectors u and v under the basis $\{e_1, e_2, e_3\}$ is

Figure 1: The basis of \mathbb{R}^3 formed by $u, v, u \wedge v$ [do Carmo Valero, 1976]

denoted as $u \wedge v$ and computed as

$$\langle u \wedge v, w \rangle = \det \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix} \equiv \det(u, v, w) \tag{1}$$

and

$$u \wedge v \equiv u \times v \equiv \begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix} e_1 - \begin{vmatrix} u_1 & u_3 \\ v_1 & v_3 \end{vmatrix} e_2 + \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix} e_3 \tag{2}$$

- The following **properties** can easily be checked (actually they just express the usual *properties* of **determinants**):
 - 1. (anti-commutativity) $u \wedge v = -v \wedge u$.
 - 2. $u \wedge v$ depends *linearly* on u and v; i.e., for any real numbers a, b, we have $(au+bw)\wedge v = a(u \wedge v) + b(w \wedge v)$.
 - 3. $u \wedge v = 0$ if and only if u and v are *linearly dependent*.
 - 4. $\langle u \wedge v, u \rangle = 0, \langle u \wedge v, v \rangle = 0.$
- We observe that $\langle u \wedge v, u \wedge v \rangle = |u \wedge v|^2 > 0$. This means that the determinant of the vectors $u, v, u \wedge v$ is *positive*; that is, $\{u, v, u \wedge v\}$ is a positive basis (Figure 1).
- The inner product of vector products is

$$\langle u \wedge v \,,\, x \wedge y \rangle = \det \left[\begin{array}{ccc} \langle u \,,\, x \rangle & \langle u \,,\, y \rangle \\ \langle v \,,\, x \rangle & \langle v \,,\, y \rangle \end{array} \right]$$

It follows that

$$\langle u \wedge v, u \wedge v \rangle = |u \wedge v|^2 = \det \begin{bmatrix} \langle u, u \rangle & \langle u, v \rangle \\ \langle v, u \rangle & \langle v, v \rangle \end{bmatrix} = |u|^2 |v|^2 (1 - \cos^2(\theta)) = A^2$$

where θ is the **angle** of u and v, and A is the **area** of the **parallelogram** generated by u and v.

• Note that the vector product is **not associative**. In fact, we have the following identity:

$$(u \wedge v) \wedge w = (\langle u, w \rangle) v - (\langle v, w \rangle) u. \tag{3}$$

• Finally, let $u(t) = (u_1(t), u_2(t), u_3(t))$ and $v(t) = (v_1(t), v_2(t), v_3(t))$ be differentiable maps from the interval (a, b) to \mathbb{R}^3 , $t \in (a, b)$. It follows immediately from Eq. (2) that $u(t) \wedge v(t)$ is also differentiable and that

$$\frac{d}{dt}(u(t) \wedge v(t)) = \frac{du(t)}{dt} \wedge v(t) + u(t) \wedge \frac{dv(t)}{dt}$$

1.3 The Local Theory of Curves Parametrized by Arc Length

- The differential of $\alpha(s)$ as $t(s) \equiv \overrightarrow{t}(s) \equiv \alpha'(s)$ is the **tangent vector** (velocity) of $\alpha(s)$ at s.
- **Definition** The quantity $|\alpha''(s)| \equiv k(s)$ is referred as the *curvature* of $\alpha(s)$ at s. The curvature measures *the rate of change* of *the tangent line* along the curve.

Notice that by a change of orientation, the tangent vector changes its direction; that is, if $\beta(-s) = \alpha(s)$, then

$$\frac{d\beta(-s)}{d(-s)} = -\frac{d\alpha(s)}{ds}$$

Therefore, $\alpha''(s)$ and the curvature remain *invariant* under a change of orientation.

- For any *closed* parameterized *convex* curve, the curvature k(s) is **nonnegative** and has **two** maxima and **two** minima or is constant everywhere.
- Moreover, the acceleration vector $\alpha''(s)$ is **normal** (orthogonal) to $\alpha'(s)$, because by differentiating $\langle \alpha'(s), \alpha'(s) \rangle = 1$ we obtain $\langle \alpha''(s), \alpha'(s) \rangle = 0$.

Let n(s) be the unit vector of $\alpha''(s)$ (i.e. $\alpha''(s) = k(s) n(s)$), then $n(s) \equiv \overrightarrow{n}(s)$ is the **normal vector** and it perpendicular to the tangent vector.

- The plane determined by the unit tangent and normal vectors, $\alpha'(s)$ and n(s), is called the **osculating plane** at s
- We say that $s \in I$ is a singular point of order 1 if $\alpha''(s) = 0$.
- Define the vector $b(s) = t(s) \wedge n(s)$ as the **binormal vector**. It is the normal vector of the t-n plane and it is orthogonal to (t(s), n(s)).
- The differential of binormal vector b'(s) characterize the **strength** of the curve to **pull away from the plane** where it currently lies. Its length |b'(s)| measures the rate of change of the neighboring osculating planes with the osculating plane at s.
- b'(s) is **parallel** to n(s) and is computed as $b'(s) = \tau(s) n(s)$ [do Carmo Valero, 1976]. (Some book use $b'(s) = -\tau(s) n(s)$.)

Definition Let $\alpha: I \to \mathbb{R}^3$ be a curve parametrized by arc length s such that $\alpha''(s) \neq 0$, $s \in I$. The number $\tau(s)$ defined by $b'(s) = \tau(s) \, n(s)$ is called the **torsion** of $\alpha(s)$ at s.

If $\tau \equiv 0$, then the *curve will lies* entirely in a plane and vise versa. Note that $k(s) \neq 0$ is essential for above argument to hold.

In contrast to the curvature, the torsion may be either positive or negative. The **sign** of torsion is related to the *orientation* of the curve relative to the *osculating plane*.

• Both k(s) and $\tau(s)$ are *invariant* to change of orientation.

Figure 2: The osculating plane spanned by tangent vector $t(s) = \alpha'(s)$ and normal vector n(s) with binormal vector b(s) as its normal vector [do Carmo Valero, 1976]

- The three orthonormal vectors (t(s), n(s), b(s)) form a basis that uniquely characterizes the local behavior of a curve, and it is called the **Frenet trihedron** at s. The curvature k and the torsion τ will reveal information of curve α in the neighborhood of s.
- Given $\tau(s)$ and k(s), the curve at s can be reparameterized via the trihedron (t, n, b).
- The plane spanned by (t, n) is called **osculating plane**. The plane spanned by (n, b) is called **normal plane** and the plane spanned by (t, b) is called **rectifying plane**.
- The Frenet trihedron (t, n, b) at s can be computed via the system of differential equations as

$$t' = k n$$

$$n' = -k t - \tau b$$

$$b' = \tau n$$
(4)

called **Frenet formula** [do Carmo Valero, 1976], where k(s) > 0 and $\tau(s)$ are the curvature and torsion of a regular parameterized curve, respectively.

From theorem 1.1, we see that the curvature and torsion function determine a parameterized regular curve **up to a rigid transformation**. It is thus called *the fundamental theorem of the local theory of curves*.

• Theorem 1.1 (The fundamental theorem of the local theory of curves) [do Carmo Valero, 1976]

Given differentiable functions k(s) > 0 and $\tau(s)$ for $s \in I$, there exists a regular parameterized curve $\alpha : I \to \mathbb{R}^3$ such that s is the arc length, k(s) is the curvature and $\tau(s)$ is the torsion. Moreover, any other curve $\hat{\alpha}$ satisfying the conditions above differ from α by a **rigid transformation** as $\hat{\alpha} = \rho \circ \alpha + c$ for ρ an orthogonal transformation and c a translation vector.

Figure 3: The situation avoided in the definition of regularity. (a) When the parameterization is not one-to-one, then the self-intersection of the surfaces will happen; (b) When the differential is not one-to-one at p, thus the tangent plane is not defined uniquely.

2 Regular Surfaces

2.1 Surfaces

- **Definition** A subset $S \subset \mathbb{R}^3$ is a *regular surface* [do Carmo Valero, 1976], if for any $p \in S$, there exists a neighborhood $V \subset \mathbb{R}^3$ and a map $x : U \subset \mathbb{R}^2 \to V \cap S$ of an open subset $U \subset \mathbb{R}^2$ onto $V \cap S \subset \mathbb{R}^3$ such that
 - 1. $x:(u,v)\in U\to (x(u,v),y(u,v),z(u,v))$ has differentials in U with all orders.
 - 2. x is a homemorphism, i.e. x is a continuous bijection with continuous inverse $x^{-1}: W \supset V \cap S \to \mathbb{R}^2$.
 - 3. (The regularity condition.) For any $q \in U$, the differential dx_q is one-to-one, i.e. injective.

Let $q = (u_0, v_0)$. The vector e_1 is tangent to the curve $u \to (u, v_0)$ whose image under \boldsymbol{x} is the curve

$$u \to (x(u, v_0), y(u, v_0), z(u, v_0)).$$

This image curve (called the *coordinate curve* $v = v_0$) lies on S and has at x(q) the tangent vector

$$\frac{\partial \mathbf{x}}{\partial u} = \left(\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}, \frac{\partial z}{\partial u}\right).$$

where the derivatives are computed at (u_0, v_0) and a vector is indicated by its components in the basis $\{f_1, f_2, f_3\}$. By the definition of differential

$$dx_q(e_1)\left(\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}, \frac{\partial z}{\partial u}\right) = \frac{\partial x}{\partial u}$$

Similarly, for coordinate curve $u = u_0$,

$$dx_q(e_2)\left(\frac{\partial x}{\partial v}, \frac{\partial y}{\partial v}, \frac{\partial z}{\partial v}\right) = \frac{\partial x}{\partial v}$$

Figure 4: The local behavior of general regular curve. At the osculating plane, it is like a parabola. At the normal plane, it is like a cubic function.

Thus

$$dx_q \equiv \frac{\partial(x, y, z)}{\partial(u, v)} = \begin{bmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} \end{bmatrix}$$

- . The condition 3 requires that $\frac{\partial(x,y,z)}{\partial(u,v)}$ has full column rank.
- **Definition** The map $x: U \subset \mathbb{R}^2 \to V \cap \mathcal{S}$ is called a *parameterization* of the surface (at p). Its inverse $x^{-1}: W \supset V \cap \mathcal{S} \to U$ is called a *coordinate system*. We may write $x^{-1} = (u, v)$, where u, v are smooth function on W and are called *coordinate functions* (local coordinate of surface at p as p = (u, v)). The neighborhood $V \cap \mathcal{S}$ of p is called the coordinate neighborhood of p in \mathcal{S} .
- Theorem 2.1 If $f: U \subset \mathbb{R}^2 \to \mathbb{R}$ is a differentiable function in an open set U of \mathbb{R}^2 , then the graph of f, (u, v, f(u, v)) is a regular surface in \mathbb{R}^3 for $(u, v) \in U$.
- **Definition** Given a differentiable map $F: U \subset \mathbb{R}^n \to \mathbb{R}^m$, a point $p \in U$ is a *critical point* of F if dF_p is not surjective, i.e. $\frac{\partial F}{\partial(\xi_1,...,\xi_m)} = \mathbf{0}$. The image of critical point is a *critical value*. The value r that is not a critical value is called *regular value* of F. Note $dF_q \neq 0$ for all $q \in F^{-1}(r)$.
- **Definition** For p in a regular surface S and let one associated parameterization x that is smooth with one-to-one differential, then x is a **homeomorphism**.
 - $f: V \subset \mathcal{S} \to \mathbb{R}$ is differentiable at $p \in V \Leftrightarrow f \circ \boldsymbol{x}: U \subset \mathbb{R}^2 \to \mathbb{R}$ is differentiable at $\boldsymbol{x}^{-1}(p)$.
- Theorem 2.2 If $F: U \subset \mathbb{R}^3 \to \mathbb{R}$ is a differentiable function in an open set U of \mathbb{R}^3 , and

 $r \in F(U)$ is a regular value of F, then the pre-image of F at r, $F^{-1}(r)$ is a regular surface in \mathbb{R}^3 .

• **Proposition 2.3** Let $S \subset \mathbb{R}^3$ be a regular surface and $p \in S$. Then there exists a neighborhood V of p in S such that V is the graph of a differentiable function which has one of the following three forms:

$$z = f(x, y), \quad y = g(x, z), \quad x = h(y, z).$$

• A map $\phi: \mathcal{S}_1 \to \mathcal{S}_2$ is a diffeomorphism if ϕ is a smooth map and ϕ^{-1} is smooth as well.

2.2 Change of Parameters; Differentiable Functions on Surface

- Proposition 2.4 (Change of Parameters).
 Let p be a point of a regular surface S, and let x : U ⊂ ℝ² → S, y : V ⊂ ℝ² → S be two parametrizations of S such that p ∈ x(U) ∩ y(V) = W. Then the "change of coordinates" h = x⁻¹ ∘ y : y⁻¹(W) → x⁻¹(W) is a diffeomorphism; that is, h is differentiable and has a differentiable inverse h⁻¹
- ullet In other words, if $oldsymbol{x}$ and $oldsymbol{y}$ are given by

$$x(u, v) = (x(u, v), y(u, v), z(u, v)), \quad (u, v) \in U,$$

 $y(\xi, \eta) = (x(\xi, \eta), y(\xi, \eta), z(\xi, \eta)), \quad (\xi, \eta) \in V,$

then the change of coordinates h, given by

$$u = u(\xi, \eta), v = v(\xi, \eta), \quad (\xi, \eta) \in \mathbf{y}^{-1}(W),$$

has the property that the functions u and v have **continuous** partial derivatives of all orders, and the map h can be *inverted*, yielding

$$\xi = \xi(u, v), \eta = \eta(u, v), (u, v) \in \mathbf{x}^{-1}(W),$$

where the functions ξ and η also have partial derivatives of all orders. Since

$$\frac{\partial(u,v)}{\partial(\xi,\eta)} \frac{\partial(\xi,\eta)}{\partial(u,v)} = 1$$

this implies that the Jacobian determinants of both h and h^{-1} are nonzero everywhere.

- **Definition** Let $f: V \subset S \to \mathbb{R}$ be a function defined in an open subset V of a regular surface S. Then f is said to be **differentiable** at $p \in V$ if, for some **parametrization** $x: U \subset \mathbb{R}^2 \to S$ with $p \in x(U) \subset V$, the composition $f \circ x: U \subset \mathbb{R}^2 \to \mathbb{R}$ is differentiable at $x^{-1}(p)$. f is differentiable in V if it is differentiable at all points of V.
 - It follows immediately from the last proposition that the definition given does not depend on the choice of the parametrization x. In fact, if $y : V \subset \mathbb{R}^2 \to \mathcal{S}$ is another parametrization with $p \in y(V)$, and if $h = x^{-1} \circ y$, then $f \circ y = f \circ x \circ h$ is also differentiable, whence the asserted independence.
- We shall frequently make the notational abuse of indicating f and $f \circ x$ by the same symbol f(u,v), and say that f(u,v) is the expression of f in the system of coordinates x. This is equivalent to identifying x(U) with U and thinking of (u,v), indifferently, as a point of U and as a point of x(U) with coordinates (u,v). From now on, abuses of language of this type will be used without further comment.
- The definition of differentiability can be easily extended to mappings between surfaces.
 - **Definition** A continuous map $\varphi: V_1 \subset \mathcal{S}_1 \to \mathcal{S}_2$ of an open set V_1 of a regular surface \mathcal{S}_1 to a regular surface \mathcal{S}_2 is said to be **differentiable** at $p \in V_1$ if, given parametrizations $\boldsymbol{x}_1: U_1 \subset \mathbb{R}^2 \to \mathcal{S}_1, \ \boldsymbol{x}_2: U_2 \subset \mathbb{R}^2 \to \mathcal{S}_2$, with $p \in \boldsymbol{x}_1(U)$ and $\varphi(\boldsymbol{x}_1(U_1)) \subset \boldsymbol{x}_2(U_2)$, the map $\boldsymbol{x}^{-1} \circ \varphi \circ \boldsymbol{x}_1: U_1 \to U_2$ is differentiable at $q = \boldsymbol{x}^{-1}(p)$.

In other words, φ is differentiable if when expressed in *local coordinates* as $\varphi(u_1, v_1) = (\varphi_1(u_1, v_1), \varphi_2(u_1, v_1))$ the functions φ_1 and φ_2 have *continuous* partial derivatives of all orders.

• We should mention that the natural notion of *equivalence* associated with differentiability is the notion of *diffeomorphism*.

Two regular surfaces S_1 and S_2 are **diffeomorphic** if there exists a **differentiable** map φ : $S_1 \to S_2$ with a **differentiable inverse** $\varphi^{-1}: S_2 \to S_1$. Such a φ is called a **diffeomorphism** from S_1 to S_2 .

• **Definition** A parametrized surface $x: U \subset \mathbb{R}^2 \to \mathbb{R}^3$ is a differentiable map x from an open set $U \subset \mathbb{R}^2$ into \mathbb{R}^3 . The set $x(U) \subset \mathbb{R}^3$ is called the **trace** of x. x is regular if the differential $dx_q: \mathbb{R}^2 \to \mathbb{R}^3$ is **one-to-one** for all $q \in U$ (i.e., the vectors $\frac{\partial x}{\partial u}, \frac{\partial x}{\partial v}$ are linearly independent for all $q \in U$). A point $p \in U$ where dx_p is not one-to-one is called a singular point of x.

2.3 The Tangent Plane and Differential of a Map

- The *tangent vector* to a *regular surface* S at p is the tangent vector $\alpha'(0)$ of a differentiable parameterized curve $\alpha: I = (-\epsilon, \epsilon) \to S$ on S with $\alpha(0) = p$.
- The *tangent plane* to S at p consists of all tangent vector $\alpha'(0)$ for all differentiable parameterized curve α on S that pass through $p \in S$. Denote the tangent space at $p \in S$ as T_pS
- By proposition 2.5, the tangent space at T_pS has basis $(\frac{\partial x}{\partial u}(p), \frac{\partial x}{\partial v}(p)) \equiv (\frac{\partial}{\partial u}(p), \frac{\partial}{\partial v}(p))$ [Amari and Nagaoka, 2007]. The tangent space T_pS does not depend on the parameterization.

Figure 5: The tangent plane as the subspace of tangent vector of embedded curves. Find the coordinate of the tangent vector in tangent space.

- **Definition** The *differential* of a map $\varphi: V \subset \mathcal{S}_1 \to \mathcal{S}_2$ at $p \in \mathcal{S}_1$ is a linear map $d\varphi_p: T_pS_1 \to T_{\varphi(p)}S_2$, where $d\varphi_p(w) = \beta'(0)$ for $w \in T_pS_1$ with the curve on \mathcal{S}_2 as $\beta = \varphi \circ \alpha$ and $\alpha: (-\epsilon, \epsilon) \to V$ is the curve on \mathcal{S}_1 .
- Proposition 2.5 Let $x: U \subset \mathbb{R}^2 \to \mathcal{S}$ be a parameterization of a regular surface \mathcal{S} and let $q \in U$. The tangent plane to \mathcal{S} at x(q) is given as

$$d\boldsymbol{x}_q\left(\mathbb{R}^2\right)\subset\mathbb{R}^3$$

 $as\ a\ 2-dimensional\ linear\ subspace.$

By the above proposition, the plane $d\mathbf{x}_q(\mathbb{R}^2)$, which passes through $\mathbf{x}(q) = p$, does not depend on the parametrization \mathbf{x} .

• (Tangent vector via basis)

For $\alpha'(0) \equiv \boldsymbol{w} \in T_p S$, for some $\alpha = \boldsymbol{x} \circ \beta$, where $\beta : (-\epsilon, \epsilon) \to U$ by $\beta(t) = (u(t), v(t))$, with $\beta(0) = q = \boldsymbol{x}^{-1}(p)$. Then

$$\alpha'(0) = \frac{d}{dt}(\boldsymbol{x} \circ \beta)(0) = \frac{d}{dt}\boldsymbol{x}(u(t), v(t))(0)$$
(5)

$$= \boldsymbol{x}_u u'(0) + \boldsymbol{x}_v v'(0) \tag{6}$$

Thus under the basis $(\boldsymbol{x}_u, \boldsymbol{x}_v)$ of $T_p S$, the coordinate of \boldsymbol{w} in $T_p S$ is (u'(0), v'(0)), and \boldsymbol{w} is the velocity of the curve α is represented as (u(t), v(t)) in parameterization \boldsymbol{x} at t = 0.

• (Differential of map via basis)

If $\mathbf{w} = (u'(0), v'(0))$ in $T_p(S_1)$, and $\varphi(u, v) = (\varphi_1(u, v), \varphi_2(u, v))$, with $\alpha(t) = (u(t), v(t))$, then the tangent of β at $\varphi(p)$ is given via the differential of map of \mathbf{w} at p is given in its own coordinates as

$$\beta'(0) = d\varphi_p(\boldsymbol{w}) = \begin{bmatrix} \frac{\partial \varphi_1}{\partial u} & \frac{\partial \varphi_1}{\partial v} \\ \frac{\partial \varphi_2}{\partial u} & \frac{\partial \varphi_2}{\partial v} \end{bmatrix} \begin{bmatrix} u'(0) \\ v'(0) \end{bmatrix}$$
 (7)

Thus $d\varphi_p$ as a linear mapping under coordinates $(\boldsymbol{x}_u, \boldsymbol{x}_v)$ in T_pS and $(\boldsymbol{x}_{u'}^{'}, \boldsymbol{x}_{v'}^{'})$ in T_pS is given as the matrix $\begin{bmatrix} \frac{\partial \varphi_1}{\partial u} & \frac{\partial \varphi_1}{\partial v} \\ \frac{\partial \varphi_2}{\partial u} & \frac{\partial \varphi_2}{\partial v} \end{bmatrix}$.

- **Definition** A map $\varphi: U \subset \mathcal{S}_1 \to \mathcal{S}_2$ is a **local diffeomorphism** at $p \in U$ if there exists a neighborhood $V \subset U$ of p such that ϕ restricted on V is a diffeomorphism onto an open subset $\varphi(V) \subset \mathcal{S}_2$.
- Theorem 2.6 If S_1 and S_2 are two regular surfaces and $\varphi : U \subset S_1 \to S_2$ is a differentiable mapping of an open subset $U \subset S_1$ such that the differential $d\varphi_p$ of φ at p is an isomorphism, then φ is a **local diffeomorphism** at p.
- **Definition** The (unit) vectors that are normal to the tangent plane at p is called the (unit) **normal vectors** at p, denoted as N(p). It can be defined by the rule

$$N(p) = \frac{\boldsymbol{x}_u \wedge \boldsymbol{x}_v}{|\boldsymbol{x}_u \wedge \boldsymbol{x}_v|}(p)$$

• The angle between two surfaces S_1 and S_2 at the intersecting point p is defined as the angle btw two tangent plane at p or the angle btw the normal vectors at p.

2.4 The First Fundamental Form and Area

- The inner product $\langle \cdot, \cdot \rangle$ on the tangent space T_pS is induced from \mathbb{R}^3 .
- **Definition** The <u>first fundamental form</u> of a regular surface $S \subset \mathbb{R}^3$ at $p \in S$ is defined as a quadratic form, $I_p : T_pS \to \mathbb{R}$ given by

$$I_p(\boldsymbol{w}) = \langle w, w \rangle_p = \|w\|_2^2 \ge 0 \ \boldsymbol{w} \in T_p S.$$
 (8)

- For orthogonal basis $\{x_u, x_v\}$, the first fundamental form is the **Pythagorean theorem** in S.
- (The first fundamental form via basis)

Under the basis $\{x_u, x_v\}$ associated with x(u, v) at p, the first fundamental form can be formulated explicitly. Since $\mathbf{w} = \alpha'(0)$ for $\alpha : (-\epsilon, \epsilon) \to \mathcal{S}$ with $\alpha(t) = (u(t), v(t))$ and $p = \alpha(0) = x(u(0), v(0))$, thus

$$I_{p}(\alpha'(0)) = \langle \boldsymbol{x}_{u}u'(0) + \boldsymbol{x}_{v}v'(0), \, \boldsymbol{x}_{u}u'(0) + \boldsymbol{x}_{v}v'(0) \rangle$$

$$= \langle \boldsymbol{x}_{u}, \, \boldsymbol{x}_{u} \rangle \left(u'(0) \right)^{2} + 2 \langle \boldsymbol{x}_{u}, \, \boldsymbol{x}_{v} \rangle \left(u'(0)v'(0) \right) + \langle \boldsymbol{x}_{v}, \, \boldsymbol{x}_{v} \rangle \left(v'(0) \right)^{2}$$

$$= E \left(u'(0) \right)^{2} + 2 F \left(u'(0)v'(0) \right) + G \left(v'(0) \right)^{2}$$
(9)

and

$$E(u(0), v(0)) = \langle \boldsymbol{x}_u, \boldsymbol{x}_u \rangle_p$$

$$F(u(0), v(0)) = \langle \boldsymbol{x}_u, \boldsymbol{x}_v \rangle_p$$

$$G(u(0), v(0)) = \langle \boldsymbol{x}_v, \boldsymbol{x}_v \rangle_p$$
(10)

are coefficients of the first fundamental form in the basis $\{x_u, x_v\}$. Note that p = x(u, v) runs in the coordinate neighborhood, the quantities E(u, v), F(u, v), G(u, v) are differentiable function on U.

• Also, we can compute the angle btw two parameterized regular curve $\alpha(t)$ and $\beta(t)$ on S that intersects at $t = t_0$ as

$$\cos(\theta) = \frac{\langle \alpha'(t_0), \beta'(t_0) \rangle}{\|\alpha'(t_0)\|_2 \|\beta'(t_0)\|_2}.$$

Then the angle ϕ btw two coordinate curves of a parameterization $\boldsymbol{x}(u,v)$ is given by

$$\cos(\phi) = \frac{\langle \boldsymbol{x}_u , \boldsymbol{x}_v \rangle}{\|\boldsymbol{x}_u\|_2 \|\boldsymbol{x}_v\|_2} = \frac{F}{\sqrt{E G}}.$$
 (11)

It follows that the coordinate curves of a parametrization are *orthogonal* if and only if F(u, v) = 0 for all (u, v). Such a parametrization is called an *orthogonal parametrization*.

• The matrix of first fundamental form is given as

$$\boldsymbol{J} \equiv \begin{bmatrix} \langle \boldsymbol{x}_{u} , \boldsymbol{x}_{u} \rangle_{p} & \langle \boldsymbol{x}_{u} , \boldsymbol{x}_{v} \rangle_{p} \\ \langle \boldsymbol{x}_{v} , \boldsymbol{x}_{u} \rangle_{p} & \langle \boldsymbol{x}_{v} , \boldsymbol{x}_{v} \rangle_{p} \end{bmatrix} = \begin{bmatrix} E & F \\ F & G \end{bmatrix}$$
(12)

and for $\mathbf{w} = \alpha'(0) = (u'(0), v'(0)),$

$$I_p(\boldsymbol{w}) = \boldsymbol{w}^T \boldsymbol{J} \boldsymbol{w}$$

• Given the first fundamental form $I(\alpha'(t))$ on T_pS , we can evaluate the the **arc length** without using its coordinate in \mathbb{R}^3

$$s = \int_{0}^{t} \sqrt{I(\alpha'(t))} dt$$

$$= \int_{0}^{t} \sqrt{E(u'(t))^{2} + 2F(u'(t)v'(t)) + G(v'(t))^{2}} dt$$

$$= \int_{0}^{t} \sqrt{\frac{\partial \boldsymbol{\alpha}^{T}}{\partial t}} J \frac{\partial \boldsymbol{\alpha}}{\partial t} dt$$
(13)

• Another metric question that can be treated by the first fundamental form is the computation (or definition) of the area of a bounded region of a regular surface S.

Definition A *(regular) domain* of S is an *open* and *connected* subset of S such that its *boundary* is the image in S of a circle by a *differentiable homeomorphism* which is regular (that is, its *differential* is nonzero) except at a finite number of points. A *region* of S is the union of a domain with its boundary. A region of $S \subset \mathbb{R}^3$ is *bounded* if it is contained in some ball of \mathbb{R}^3 .

• **Definition** Let $\mathcal{R} \subset \mathcal{S}$ be a bounded region of a regular surface contained in the coordinate neighborhood of the parametrization $\boldsymbol{x}: U \subset \mathbb{R}^2 \to \mathcal{S}$. The positive number

$$\int \int_{Q} |\boldsymbol{x}_{u} \wedge \boldsymbol{x}_{v}| \, du dv, \quad Q = \boldsymbol{x}^{-1}(\mathcal{R})$$
(14)

is called the **area** of \mathcal{R} . Here $|x_u \wedge x_v| = \sqrt{EG - F^2}$.

- 3 Examples and exercises
- 3.1 Curves
- 3.2 Surfaces

References

Shun-ichi Amari and Hiroshi Nagaoka. *Methods of information geometry*, volume 191. American Mathematical Soc., 2007.

 $\begin{tabular}{lll} Manfredo Perdigao do Carmo Valero. & Differential geometry of curves and surfaces, volume 2. \\ Prentice-hall Englewood Cliffs, 1976. \\ \end{tabular}$