Appunti di Probabilità e Statistica

Lorenzo Prosseda

a.a. 2018–2019

Copyright © 2019 Lorenzo Prosseda. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the file called "LICENSE".

Indice

Teoria della Probabilità

1.1. Spazio dei campioni

DEFINIZIONE 1.1.1. Sia dato un esperimento aleatorio (impossibile prevederne risultato), i cui risultati siano rappresentati da $\omega \in \Omega$; chiamiamo l'insieme Ω :

- spazio campionario;
- spazio dei campioni;
- spazio degli eventi <u>elementari;</u>
- spazio degli esiti;

diciamo inoltre che Ω è relativo all'esperimento effettuato, e chiamiamo i suoi elementi ω eventi elementari.

1.2. Eventi

DEFINIZIONE 1.2.1. I sotto-insiemi dello spazio campionario e le loro combinazioni (in termini di eventi elementari) tramite operatori logici di unione (\cup), intersezione (\cap) e negazione (\cap) sono chiamati *eventi* (non sono più elementari).

OSSERVAZIONE 1.2.2. Gli eventi elementari sono rappresentati da sottoinsiemi di Ω di cardinalità 1: un evento elementare E è definito come $\{\omega_E\} \in \Omega \land |\{\omega_E\}| = 1$.

DEFINIZIONE 1.2.3. Gli eventi E_i possono essere rappresentati con sottoinsiemi dello spazio campionario Ω , dunque essi formano una famiglia o collezione di sottoinsiemi di Ω , che indichiamo con \mathscr{F} .

Questo implica che un evento che faccia parte di questa famiglia di sottoinsiemi contenga lo spazio campionario $(E \in \mathscr{F} \implies E \subset \Omega)$.

Diremo che si è *verificato* un evento E nel contesto di un esperimento aleatorio, se almeno uno degli esiti è contenuto in esso ($\omega \in E$).

DEFINIZIONE 1.2.4. Dati due eventi E ed F, sono definite le operazioni di unione $E \cup F$ (gli eventi elementari in E o in F) e intersezione $E \cap F$ (gli eventi elementari presenti sia in E che in F).

- Gli eventi che non contengono alcun evento elementare sono chiamati eventi vuoti e si indicano con \emptyset . Se due eventi non hanno eventi elementari in comune $(E \cap F = \emptyset)$, essi si dicono disqiunti.
- Per ogni evento $E \in \mathscr{F}$ è definito il complementare $E^{\mathbb{C}}$ come l'insieme degli eventi elementari di \mathscr{F} che non stanno in E.
- Se tutti gli eventi elementari di un evento E sono anche in un evento F, diremo che E è contenuto in F ($E \subset F$); se vale anche l'inverso $E \supset F$ allora diremo che i due eventi sono uguali ($E \equiv F$).

Indichiamo l'unione di n eventi con $\bigcup_{k=1}^n E_k$ e l'intersezione di n eventi con $\bigcap_{k=1}^n E_k$.

DEFINIZIONE 1.2.5. Sia Ω uno spazio campionario e \mathscr{F} una famiglia di sottoinsiemi di Ω ; diremo che \mathscr{F} è un'algebra di sottoinsiemi di Ω se soddisfa le seguenti proprietà:

- (1) $\Omega \in \mathscr{F}$;
- (2) $E \in \mathscr{F} \implies E^{\mathcal{C}} := \Omega \backslash E \in \mathscr{F};$
- (3) $E, F \in \mathscr{F} \implies \{E \cup F\} \in \mathscr{F}.$

Definizione 1.2.6. Sia Ω uno spazio campionario e \mathscr{F} una famiglia di sottoinsiemi di Ω ; diremo che \mathscr{F} è una σ -algebra di sottoinsiemi di Ω se soddisfa le seguenti proprietà:

- (1) $\Omega \in \mathscr{F}$;
- $(2) \ E \in \mathscr{F} \implies E^{\mathcal{C}} := \Omega \backslash E \in \mathscr{F};$ $(3) \ E_1, E_2, \ldots \in \mathscr{F} \implies \bigcup_{k=1}^{+\infty} E_k \in \mathscr{F}.$

Definizione 1.2.7. La coppia di spazio campionario e famiglia di suoi sottoinsiemi (σ -algebra) (Ω, \mathcal{F}) è chiamata spazio probabilizzabile.

1.3. Spazio di probabilità

DEFINIZIONE 1.3.1. Sia dato uno spazio probabilizabile (Ω, \mathscr{F}) ; chiamiamo probabilità su (Ω, \mathscr{F}) una funzione P su \mathscr{F} tale che:

- (1) $\forall E \in \mathscr{F} : P(E) > 0$:
- (2) $P(\Omega) = 1$;
- (3) $\forall h, k : h \neq k \implies \forall E \in \mathscr{F} : E_h \cap E_k = 0 \text{ (σ-additività o additività completa)}.$

La terna (Ω, \mathcal{F}, P) si chiama spazio di probabilità (impostazione assiomatica).

Proprietà 1.3.2. Sia (Ω, \mathcal{F}, P) uno spazio di probabilità; allora vale:

- (1) $P(\emptyset) = 0$ (evento impossibile);
- $(2) \ \forall h, k : h \neq k \implies \forall E \in \mathscr{F} : E_h \cap E_k = \emptyset \implies P(\bigcup_{k=1}^n E_k) = \sum_{k=1}^n P(E_k)$ (additività finita).

DIMOSTRAZIONE.

(1) $\forall k \in [1, n] : E_k := \emptyset \implies \bigcup_{k=1}^{+\infty} E_k = \emptyset$, inoltre E_1, \ldots, E_n è una successione di eventi disgiunti a coppie; per l'assioma (3) della Definizione ?? vale inoltre:

$$P(\emptyset) = P\left(\bigcup_{k=1}^{+\infty} E_k\right) = \sum_{k=1}^{+\infty} P(\emptyset).$$

(2) Se $\forall k \in [n+1, \infty)$: $E_k = \emptyset$, allora E_1, E_2, \ldots è una successione di eventi disgiunti a coppie, e vale $\bigcup_{k=1}^{+\infty} E_k = \bigcup_{k=1}^n E_k$; per l'assioma (3) della Definizione ?? vale inoltre:

$$P(\bigcup_{k=1}^{n} E_k) = (\bigcup_{k=1}^{+\infty} E_k) = \sum_{k=1}^{n} E_k + \underbrace{\sum_{k=n+1}^{+\infty} E_k}_{E_k = \emptyset} = \sum_{k=1}^{n} E_k.$$

1.4. Definizione assiomatica di Probabilità

DEFINIZIONE 1.4.1. Se assegnamo a ogni evento in uno spazio di probabilità $E_k \in (\Omega, \mathcal{F}, P)$ un valore $x = P(E_k)$, chiamiamo probabilità dell'evento E; esso deve rispettare i seguenti assiomi, dedotti dalla Definizione ??:

- I) $0 \le P(E_k) \le 1$;
- II) $P(\Omega) = 1$;
- III) se gli eventi dello spazio di probabilità sono disgiunti a coppie otteniamo:

$$\forall n \in [1, \infty) : P(\bigcup_{k=1}^{n} E_k) = \sum_{k=1}^{n} P(E_k).$$

1.5. Proprietà della funzione Probabilità

Proprietà 1.5.1. Sia (Ω, \mathcal{F}, P) uno spazio di probabilità; su di esso possiamo osservare le seguenti proprietà:

- (1) $E \in \mathscr{F} \implies P(E^{C}) = 1 P(E)$ (probabilità del complementare);
- (2) $E \in \mathscr{F} \implies P(E) < 1$;
- (3) $E, F \in \mathscr{F} \land F \subset E \implies P(E \backslash F) = P(E) P(F);$
- (4) $E, F \in \mathscr{F} \land F \subset E \implies P(F) \leq P(E) \ (monotonia);$

(5)
$$E, F \in \mathscr{F} \implies P(E \cup F) = P(E) + P(F) - P(E \cap F)$$
 (probabilità dell'unione).

DIMOSTRAZIONE.

(1) Osserviamo che, per l'assioma (2) della Definizione ??, vale $\Omega = E \cup E^{\mathbb{C}}$ e sapendo che un evento e il suo complementare sono disgiunti:

$$1 = P(\Omega) = P(E) + P(E^{C}) \implies P(E^{C}) = 1 - P(E).$$

- (2) Dalla precedente considerazione sappiamo che $P(E) = 1 P(E^{C})$; aggiungendo l'assioma (1) della Definizione ?? $(P(E^{C}) \ge 0)$ segue che deve valere $P(E) \le 1$.
- (3) Vale $F \subset E \implies E = (E \backslash F) \cup F$ da cui deduciamo, per l'assioma (2) della Proprietà ??, la seguente scrittura:

$$P(E) = P(E \backslash F) + P(F) \implies P(E \backslash F) = P(E) - P(F).$$

- (4) Dalla precedente ricaviamo immediatamente $P(E) = P(E \setminus F) + P(F)$ e $P(F) = P(E) P(E \setminus F)$; sapendo dall'assioma (1) della Definizione ?? che tutti e tre i termini dell'uguaglianza sono positivi o al più nulli, abbiamo necessariamente P(F) < P(E).
- (5) Scriviamo l'unione disgiunta dei due eventi E ed F nel modo seguente:

$$E \cup F = (E \cap F^{C}) \cup (E \cap F) \cup (E^{C} \cap F).$$

Per il punto (2) della Proprietà ?? la probabilità dell'unione vale:

$$P(E \cup F) = P(E \cap F^{C}) + P(E \cap F) + P(E^{C} \cap F).$$

Riscriviamo la precedente come:

$$P(E \cup F) + P(E \cap F) = P(E \cap F^{C}) + P(E \cup F) + P(E \cup F) + P(E^{C} \cap F)$$
$$= P(E) + P(F).$$

Per ottenere le semplificazioni evidenziate con le graffe abbiamo usato le proprietà delle operazioni tra eventi (\S ??).

1.6. Spazi finiti e numerabili

PROPRIETÀ 1.6.1. Sia Ω uno spazio campionario <u>numerabile</u> e $\{\omega_1, \omega_2, \ldots\}$ una numerazione dei suoi punti (eventi elementari); scegliamo come σ -algebra \mathscr{F} l'insieme di tutti i sottoinsiemi (*insieme delle parti*) dello spazio campionario $\mathscr{P}(\Omega)$; si ha che:

- (1) Ogni probabilità $P(\omega_k)$ di un evento $E_k = \{\omega_k\} \in \mathscr{F}$ su uno spazio probabilizzabile (Ω, \mathscr{F}) individua una successione di numeri reali p_1, p_2, \ldots che soddisfano la Proprietà ?? se scriviamo che $\forall k \in [1, \infty)$ $P(\omega_k) = p_k$;
- (2) Data una successione p_1, p_2, \ldots che soddisfa la Proprietà ?? esiste un'unica probabilità su (Ω, \mathscr{F}) tale che $P(\omega_k) = p_k$ per ogni k; essa è data da:

$$\forall E \subset \Omega : P(E) = \sum_{k: \omega_k \in E} p_k.$$

OSSERVAZIONE 1.6.2. Nel caso di Ω spazio campionario <u>finito</u> e numerabile, la Proprietà ?? continua a valere, rispetto alla cardinalità di Ω .

1.7. Probabilità condizionata

DEFINIZIONE 1.7.1. Sia dato uno spazio di probabilità (Ω, \mathscr{F}, P) e un evento $F \in \mathscr{F}$ tale che P(F) > 0; preso un qualsiasi altro evento $E \in \mathscr{F}$, si chiama probabilità condizionata dell'evento E dato il verificarsi di F:

$$(1.7.1) P(E|F) = \frac{P(E \cap F)}{P(F)}.$$

1.8. Formula delle probabilità totali

DEFINIZIONE 1.8.1. Consideriamo uno spazio di probabilità (Ω, \mathscr{F}, P) e una partizione finita $F_1, \ldots, F_n \in \mathscr{F}$ di Ω ; valga inoltre $\bigcup_{k=1}^n F_k = \Omega$ e infine $\forall h, k \in [1, n] : F_h \cap F_k = \emptyset \land P(F_k) > 0$. Allora per qualunque evento $E \in \mathscr{F}$ la sua probabilità è definita come:

(1.8.1)
$$P(E) = \sum_{k=1}^{n} P(E|F_k) \cdot P(F_k).$$

DIMOSTRAZIONE. Prendiamo l'evento $E \in \mathscr{F}$; dalle considerazioni fatte sopra abbiamo la seguente implicazione:

$$\Omega = \bigcup_{k=1}^{n} F_k \wedge E \subset \Omega \implies E = E \cap \Omega = \bigcup_{k=1}^{n} (E \cap F_k).$$

Inoltre, poiché gli eventi F_1, \ldots, F_n sono disgiunti a coppie, la precedente $\bigcup_{k=1}^n (E \cap F_k)$ è un'unione disgiunta e applicando il punto (2) della Proprietà ?? otteniamo:

$$P(E) = \sum_{k=1}^{n} P(E \cap F_k) = \sum_{k=1}^{n} P(E|F_k) \cdot P(F_k).$$

Abbiamo così ottenuto la formula (??).

OSSERVAZIONE 1.8.2. La formula delle probabilità totali è utile quando le condizioni di preparazione di un esperimento aleatorio sono anch'esse casuali, e determinano una partizione dello spazio di probabilità dell'esperimento.

1.9. Formula di Bayes

DEFINIZIONE 1.9.1. Consideriamo uno spazio di probabilità (Ω, \mathcal{F}, P) e una partizione finita $F_1, \ldots, F_n \in \mathcal{F}$ di Ω tale che $\forall k \in [1, n] : P(F_k) > 0$; se abbiamo un evento $E \in \mathcal{F}$ per il quale P(E) > 0 allora otteniamo:

(1.9.1)
$$P(F_h|E) = \frac{P(E|F_h) \cdot P(F_h)}{\sum_{k=1}^{n} P(E|F_k) \cdot P(F_k)} \qquad h = 1, \dots, n.$$

DIMOSTRAZIONE. Usando (??) possiamo scrivere:

$$P(F_h|E) = \frac{P(F_h \cap E)}{P(E)} = \frac{P(E|F_h) \cdot P(F_h)}{P(E)}.$$

Applicando al denominatore (??) otteniamo proprio la scrittura (??).

Osservazione 1.9.2. La formula di Bayes è utile quando possediamo informazioni a posteriori su un esperimento aleatorio e vogliamo determinare le condizioni entro le quali si sia verificato un certo evento.

1.10. Formula di moltiplicazione

DEFINIZIONE 1.10.1. Consideriamo uno spazio di probabilità (Ω, \mathscr{F}, P) e una successione di eventi al suo interno $E_1, \ldots, E_n \in \mathscr{F}$, per i quali valga $P(\bigcap_{k=1}^{n-1} E_k) > 0$; allora possiamo scrivere:

$$(1.10.1) \quad P(E_1 \cap \dots \cap E_n) = P(E_1) \cdot P(E_2 | E_1) \cdot P(E_3 | E_2 \cap E_1) \cdot \dots \cdot P(E_n | E_1 \cap \dots \cap E_{n-1}).$$

DIMOSTRAZIONE. Dato che $(E_1 \cap \cdots \cap E_{n-1}) \subset (E_1 \cap \cdots \cap E_{n-2}) \subset \cdots \subset E_1$ usando il punto (4) della Proprietà ?? vale:

$$0 < P(E_1 \cap \cdots \cap E_{n-1}) \le P(E_1 \cap \cdots \cap E_{n-2}) \le \cdots \le P(E_1).$$

Otteniamo quindi il seguente prodotto:

$$P(E_1 \cap \dots \cap E_n) = P(E_1) \cdot \frac{P(E_1 \cap E_2)}{P(E_1)} \cdot \frac{P(E_1 \cap E_2 \cap E_3)}{P(E_1 \cap E_2)} \cdot \dots \cdot \frac{P(E_1 \cap \dots \cap E_n)}{P(E_1 \cap \dots \cap E_{n-1})}$$

= $P(E_1) \cdot P(E_2 | E_1) \cdot P(E_3 | E_2 \cap E_1) \cdot \dots \cdot P(E_n | E_1 \cap \dots \cap E_{n-1}).$

Si noti che abbiamo usato (??) per riscrivere il prodotto precedente, ottenendo (??).

1.11. Eventi indipendenti

DEFINIZIONE 1.11.1. Sia (Ω, \mathscr{F}, P) uno spazio di probabilità; gli eventi $E, F \in \mathscr{F}$ sono indipendenti se vale:

$$P(E \cup F) = P(E) \cdot P(F).$$

OSSERVAZIONE 1.11.2. Se due eventi E ed F, presi dallo stesso spazio di probabilità, sono indipendenti allora valgono le seguenti uguaglianze:

- $\bullet \ P(E|F) = P(E);$
- $\bullet P(F|E) = P(F).$

DEFINIZIONE 1.11.3. Sia (Ω, \mathcal{F}, P) uno spazio di probabilità; diciamo che gli eventi E_1, \ldots, E_n sono *indipendenti* se comunque preso un sottoinsieme $\{h_1, \ldots, h_k\} \subset \{1, \ldots, n\}$ con $k \geq 2$ vale la seguente uguaglianza:

$$P(E_{h_1} \cap \cdots \cap E_{h_k}) = P(E_{h_1}) \cdot \cdots \cdot P(E_{h_k}).$$

OSSERVAZIONE 1.11.4. Per testare l'indipendenza di m eventi, sarà necessario provare $2^m - m - 1$ uguaglianze (in dipendenza dalle possibili combinazioni di intersezioni tra gli eventi da testare).

DEFINIZIONE 1.11.5. Preso uno spazio di probabilità e considerata una successione dei suoi eventi, diremo che essa è costituita da eventi indipendenti se, comunque scelto un sottoinsieme finito di eventi dalla successione, esso è costituito da eventi indipendenti.

DEFINIZIONE 1.11.6. Consideriamo uno spazio di probabilità (Ω, \mathcal{F}, P) , una successione di eventi A_1, \ldots, A_n e un evento F tale che P(F) > 0; gli eventi della successione si dicono condizionatamente indipendenti dato F se essi sono indipendenti rispetto alla probabilità P(F).

1.12. Affidabilità dei sistemi

DEFINIZIONE 1.12.1. La probabilità che un componente di un sistema non si guasti durante il periodo di tempo in cui deve operare è detta *affidabilità* del componente; essa viene espressa rispetto all'interazione che i componenti hanno tra loro:

• serie: per garantire il funzionamento del sistema tutti i componenti collegati in serie devono funzionare correttamente; in questo caso vale

$$r = r_1 \cdot \ldots \cdot r_k$$

per un sistema con k componenti in serie;

• parallelo: per garantire il funzionamento del sistema basta che almeno un componente funzioni correttamente; in questo caso vale

$$r = 1 - (1 - r_1) \cdot \ldots \cdot (1 - r_k),$$

per un sistema con k componenti in parallelo.

In entrambi i casi appena mostrati, r_i rappresenta l'affidabilità dell'*i*-esimo componente del sistema.

Osservazione 1.12.2. Per analizzare problemi sull'affidabilità è conveniente scomporre un sistema complesso in sottosistemi che abbiano solo componenti in serie o solo in parallelo.

1.13. Prove di Bernoulli

DEFINIZIONE 1.13.1. Siano $n \in \mathbb{N}$ e $p \in (0, 1)$; consideriamo il seguente spazio campionario:

$$\Omega := \{(a_1, \ldots, a_n) : a_k \in \{0, 1\}, k \in [1, n]\},\$$

la σ -algebra $\mathscr{F} = \mathscr{P}(\Omega)$ e la funzione di probabilità:

$$\forall (a_1, \ldots, a_n) \in \Omega : P(\{a_1, \ldots, a_n\}) = p^{\left[\sum_{k=1}^n a_k\right]} \cdot (1-p)^{\left[n-\sum_{k=1}^n a_k\right]};$$

la terna (Ω, \mathcal{F}, P) si chiama spazio di probabilità di Bernoulli oppure spazio di probabilità di n prove di Bernoulli.

PROPRIETÀ 1.13.2. Consideriamo uno spazio di probabilità di Bernoulli nel quale la probabilità di successo della singola prova è $p \in (0, 1)$; la probabilità di osservare $k \leq n$ successi in una sequenza di $n \geq 1$ prove di Bernoulli in questo spazio è data da:

$$\binom{n}{k} \cdot p^k \cdot (1-p)^{n-k}.$$

DIMOSTRAZIONE. Sia (Ω, \mathscr{F}, P) uno spazio di probabilità di n prove Bernoulli e $B_k \in \mathscr{F}$ l'evento 'osserviamo k successi in n prove', ovvero:

$$B_k = \left\{ (a_1, \ldots, a_n) \in \Omega : \sum_{h=1}^n a_h = k \right\};$$

la probabilità di questo evento è definita come:

$$P(B_k) = \sum_{\omega \in B_k} P(\{\omega\}) = \sum_{\omega \in B_k} p^k (1-p)^{n-k} = |B_k| p^k (1-p)^{n-k}.$$

Osservando che $|B_k| = \binom{n}{k}$ (tutte le stringhe di n bit contenenti k zeri e n-k uni) otteniamo l'equazione (??)

OSSERVAZIONE 1.13.3. Gli eventi B_k che fissano k successi in n prove di Bernoulli hanno delle probabilità che corrispondono al modello binomiale p_k ; possiamo affermare che, preso lo spazio campionario $\hat{\Omega} = \{0, \ldots, n\}$ dell'esperimento che considera k successi in n prove, lo spazio di probabilità di Bernoulli induce su $\hat{\Omega}$ un modello binomiale di parametri n e p.

1.14. Serie geometrica

DEFINIZIONE 1.14.1 (Serie). Data una successione $\{a_n\}$, se sommiamo gli infiniti termini otteniamo una serie, definita come $\sum_{n=0}^{\infty} a_n$ (serie di a con n da 0 a infinito).

Si dice somma parziale n-esima di una serie $s_n = \sum_{i=0}^{\infty} a_i \, n \in \mathbb{N}$ (la serie $\sum_{i=0}^{\infty} a_i$ converge, diverge o è irregolare se la successione delle sue somme parziali converge, diverge o è irregolare).

Si dice somma di una serie il limite, se esiste finito, della successione delle sue somme parziali: $\lim_{n\to\infty} s_n = s$

Condizione <u>necessaria</u> (non sufficiente) affinché una serie converga è che il suo termine generale (a_n) tenda a 0

DEFINIZIONE 1.14.2 (Serie geometrica). Chiamiamo *geometrica* la serie col seguente termine generale:

$$\sum_{i=0}^{n} q^{i} \cdot \frac{1 - q^{n+1}}{1 - q} \qquad q \neq 1.$$

La somma della serie con ragione $q \in (0, 1)$ vale:

$$\sum_{i=0}^{n} q^{i} = \begin{cases} \frac{1}{1-q} & \text{se } |q| < 1; \\ +\infty & \text{se } q \ge 1; \\ \text{indeterminata} & \text{altrimenti.} \end{cases}$$

Variabili Aleatorie

Vettori Aleatori

Distribuzioni notevoli