PROBABILIDDE E PROCESSOS ESTOCÁSTICOS (CKP7366)

Prof. João Paulo Pordeus Gomes

Modelo Probabilístico e axiomas

- Definição
 - Descrição quantitativa de um fenômeno cujo resultado é incerto
- Dois principais passos
 - Descrever todas as possíveis saídas (espaço amostral)
 - Definir uma lei de probabilidade
 - Axiomas
 - Propriedades dos axiomas

Espaço amostral

- Lista (conjunto) de possíveis saídas
- Elementos devem ser:
 - Mutuamente exclusivos
 - Conjuntamente devem exaurir todas as possibilidades
 - Descrever o experimento de acordo com o nível de detalhes necessário

Espaço amostral discreto e finito

Dois lançamentos de uma moeda

Espaço amostral contínuo e infinito

Axiomas de probabilidade

- Evento
 - Sub-conjunto do espaço amostral
 - Probabilidade é atribuída a eventos

Axiomas de probabilidade

- Evento
 - Sub-conjunto do espaço amostral
 - Probabilidade é atribuída a eventos
- Axiomas
 - $P(E) \ge 0$
 - $P(\Omega) = 1$
 - $P(E_1 \cup E_2 \cup E_2 ...) = \sum_{i=1}^{\infty} P(E_i)$
 - (se eventos n\u00e3o possuem interse\u00e7\u00e3o)

Axiomas de probabilidade

Evento

- Sub-conjunto do espaço amostral
- Probabilidade é atribuída a eventos

Axiomas

- $P(E) \geq 0$
- $P(\Omega) = 1$
- $P(E_1 \cup E_2 \cup E_2 ...) = \sum_{i=1}^{\infty} P(E_i)$
 - (se eventos n\u00e3o possuem interse\u00e7\u00e3o)

- $P(E) \leq 1$
- $P(\emptyset) = 0$
- $P(E) + P(\neg E) = 1$

• $P(E) + P(\neg E) = 1$

- $P(E) + P(\neg E) = 1$
 - $P(E \cup \neg E) = P(E) + P(\neg E)$
 - $P(\Omega) = P(E) + P(\neg E)$
 - $P(E) + P(\neg E) = 1$

- $P(E) + P(\neg E) = 1$
 - $P(E \cup \neg E) = P(E) + P(\neg E)$
 - $P(\Omega) = P(E) + P(\neg E)$
 - $P(E) + P(\neg E) = 1$
- $P(E) \leq 1$

- $P(E) + P(\neg E) = 1$
 - $P(E \cup \neg E) = P(E) + P(\neg E)$
 - $P(\Omega) = P(E) + P(\neg E)$
 - $P(E) + P(\neg E) = 1$
- $P(E) \leq 1$
 - $P(E) + P(\neg E) = 1$
 - $P(E) = 1 P(\neg E)$

- $P(E) + P(\neg E) = 1$
 - $P(E \cup \neg E) = P(E) + P(\neg E)$
 - $P(\Omega) = P(E) + P(\neg E)$
 - $P(E) + P(\neg E) = 1$
- $P(E) \leq 1$
 - $P(E) + P(\neg E) = 1$
 - $P(E) = 1 P(\neg E)$
- $P(\emptyset) = 0$

- $P(E) + P(\neg E) = 1$
 - $P(E \cup \neg E) = P(E) + P(\neg E)$
 - $P(\Omega) = P(E) + P(\neg E)$
 - $P(E) + P(\neg E) = 1$
- $P(E) \le 1$
 - $P(E) + P(\neg E) = 1$
 - $P(E) = 1 P(\neg E)$
- $P(\emptyset) = 0$
 - $P(\Omega) + P(\neg \Omega) = 1$
 - $P(\neg\Omega) = 1 P(\Omega)$
 - $P(\emptyset) = 1 P(\Omega)$

Exercícios

- Se A, B e C são três subconjuntos do espaço amostral, mostre que:
- $P(A) + P(B) \le 1$
- $P(A \cup B \cup C) = P(A \cup B)$

• se $A \subset B$, então $P(A) \leq P(B)$

- se $A \subset B$, então $P(A) \leq P(B)$
 - $B = A + (B \cap \neg A)$
 - $P(B) = P(A) + P(B \cap \neg A)$
 - $P(B) = P(A) + P(B \cap \neg A) \ge P(A)$

- se $A \subset B$, então $P(A) \leq P(B)$
 - $B = A + (B \cap \neg A)$
 - $P(B) = P(A) + P(B \cap \neg A)$
 - $P(B) = P(A) + P(B \cap \neg A) \ge P(A)$
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$

- se $A \subset B$, então $P(A) \leq P(B)$
 - $B = A + (B \cap \neg A)$
 - $P(B) = P(A) + P(B \cap \neg A)$
 - $P(B) = P(A) + P(B \cap \neg A) \ge P(A)$
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$
 - $a = P(A \cap \neg B)$ $b = P(A \cap B)$ $c = P(\neg A \cap B)$
 - $P(A \cup B) = a + b + c$
 - $P(A) + P(B) P(A \cap B) = a + b + b + c b = a + b + c$

- se $A \subset B$, então $P(A) \leq P(B)$
 - $B = A + (B \cap \neg A)$
 - $P(B) = P(A) + P(B \cap \neg A)$
 - $P(B) = P(A) + P(B \cap \neg A) \ge P(A)$
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$
 - $a = P(A \cap \neg B)$ $b = P(A \cap B)$ $c = P(\neg A \cap B)$
 - $P(A \cup B) = a + b + c$
 - $P(A) + P(B) P(A \cap B) = a + b + b + c b = a + b + c$
- $P(A \cup B) \le P(A) + P(B)$

- se $A \subset B$, então $P(A) \leq P(B)$
 - $B = A + (B \cap \neg A)$
 - $P(B) = P(A) + P(B \cap \neg A)$
 - $P(B) = P(A) + P(B \cap \neg A) \ge P(A)$
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$
 - $a = P(A \cap \neg B)$ $b = P(A \cap B)$ $c = P(\neg A \cap B)$
 - $P(A \cup B) = a + b + c$
 - $P(A) + P(B) P(A \cap B) = a + b + b + c b = a + b + c$
- $P(A \cup B) \le P(A) + P(B)$
 - "union bound"

• $P(A \cup B \cup C) = P(A) + P(\neg A \cap B) + P(\neg A \cap \neg B \cap C)$

- $P(A \cup B \cup C) = P(A) + P(\neg A \cap B) + P(\neg A \cap \neg B \cap C)$
 - $A \cup B \cup C = A \cup (\neg A \cap B) \cup (\neg A \cap \neg B \cap C)$

Exercício

- Mostre que:
 - $P((A \cap B) \cup (C \cap \neg A)) \le P(A \cup B \cup C)$

Exemplo

•
$$P(X = 2)$$

• $P(Z = 2)$
• $Z = \min(X, Y)$
• $P(W = 1)$
• $W = 1$ se $X > Y$

Exemplo

•
$$P(X = 2)$$

• $P(Z = 2)$
• $Z = \min(X, Y)$
• $P(W = 1)$
• $W = 1$ se $X > Y$

Distribuição uniforme discreta

- Distribuição uniforme
 - Probabilidade = ?

- Distribuição uniforme
 - Probabilidade = Área

• (x, y) dado que $0 \le x, y \le 1$

• $P(\{(x,y)|x+y \le 1/2\}) =$

•
$$P(\{(x,y)|x+y \le 1/2\}) = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{8}$$

Exercício

• (x,y) dado que $0 \le x \le 1$ e $0 \le y \le 2$

•
$$P(x \ge y) =$$

•
$$P(x^2 \ge y) =$$

Interpretação de probabilidade

- Frequência de eventos
- Incerteza

DÚVIDAS?