WIFI FINGERPRINTING

Maja Jurcan

17.12.2018.

Overview

- Indoor positioning system?
- Feasibility of using "Wifi fingerprinting" to determine a person's location in indoor spaces
- Wifi fingerprinting uses the signals from multiple wifi hotspots within the building to determine location, analog to how GPS uses satellite signals
- WLAN fingerprint based indoor localization method based on RSSI values
- RSSI (dBm) received signal strength indicator measurement of the power present in the received radio signal
- Large database of wifi fingerprints for a multi-building campus with a location (building, floor, and location ID) associated with each fingerprint

Data

- Collected on univerity campus 3 differently shaped buildings with 4 or 5 floors
- 933 refrence points and 520 WAPs with RSSI values from 0 to -104 and no signal values as 100 dBm
- Almost 20 users and 25 different phones
- 19938 training set captures and 1111 testing set captures
- Training and testing sets collected 4 months apart
- Capture Loc app info from app about the location sent to the server
 - process repeated 10 times for each location
- Validate Loc app only WAPs and RSSI levels are sent to the server
 - app gets location (longitude, latitude and floor) from the server
 - accuracy is checked by asking the user if innacurate user sets right location

Exploratory Analysis and Data Pre-processing

- Data was converted to appropriate type
- Data was cleaned (duplicates, missing values, etc.)
- Undetected WAPs and observations with undetected WAPs removed (zero variance)
- Undetected RSSI value changed from 100 to -105
- Columns summarized by mean for same location and user (only ~10% of the data kept)
- Normalization by rows
- RSSI values below -90 dBm considered as no signal

Modelling and Results

- Algorithms used for modelling:
 - Random forest
 - SVM
 - KNN

• Classification and regression problem

Error evaluation

- Random forest has too high computational costsResponse time is valued

BUILDING PREDICTION MODEL	ALGORITHM	PREDICTORS	TUNING	PERFORMANCE
	RANDOM FOREST	WAPs	Mtry = 2	Accuracy : 100% Kappa : 1
	SVM	WAPs	C = 1	Accuracy : 99% Kappa : 0.99
	KNN	WAPs	k = 1	Accuracy : 100% Kappa : 1

	ALGORITHM	PREDICTORS	TUNING	PERFORMANCE
FLOOR PREDICTION MODEL	RANDOM FOREST	WAPs	Mtry = 152	Accuracy :92.2% Kappa : 0.89
	RANDOM FOREST	WAPs + BUILDING	Mtry = 152	Accuracy :92.1% Kappa : 0.89
	SVM	WAPs	C = 1	Accuracy :90.5% Kappa : 0.87
	SVM	WAPs + BUILDING	C = 1	Accuracy :90.5% Kappa : 0.86
	KNN	WAPs	k = 1	Accuracy :92.1% Kappa : 0.89
	KNN	WAPs + BUILDING	k = 1	Accuracy :92.1% Kappa : 0.89

	ALGORITHM		PREDICTORS			PERFORMANCE	
BUILDING AND FLOOR PREDICTION MODEL		KNN SVM RF		WAPs		Accuracy: ~91.6% Kappa: ~0.906	
	ALGORITHM	PREDI	CTORS	TUNING	ı	PERFORMANCE	
LONGITUDE PREDICTION MODEL	KNN	WAPs		K = 5		RMSE: 7.21 R^2: 0.98 MAE: 5.03	
	ALGORITHM	PREDI	CTORS	TUNING	l	PERFORMANCE	
LATITUDE PREDICTION MODEL	KNN	W	APs	K = 5		RMSE: 8.05 R^2: 0.99 MAE: 5.35	

Key insights

- Observed building issues:
 - Building o 2 users 4000 captures good prediction
 - Building 1 12 users 3000 captures bad RSSI values bad predictions
 - Building 2 16 different users 6000 captures predictions vary by floor
- Main factors that affect the number of scanned WAPs:
 - location (Wifi coverage)
 - mobile phone (Android version and hardware)
 - Position of the device
- Error range for GPS goes from 3 to 17 m and for WiFi from 5 to 15 m

Future actions

- Improvement of models through different approaches and different data preprocesing – PCA, separate models for buildings, converting RSSI values from logarithmic scale to linear, using only highest RSSI value of WAPs
- Investigation of bad service areas
- Detection of redundant WAPs
- Study of anomalies for RSSI value detection
- Analysis of device accuracy
- Other indoor locationing technologies (phone based) bluetooth, sensors (altimeter, magnetometer, accelerometer)

