

Gravitational wave discovery and characterization of the binary neutron star inspiral GW170817

Tyson B. Littenberg (NASA/MSFC)
for the LIGO Scientific Collaboration and Virgo Collaboration

Advanced LIGO Observing Runs

GW170814 — the 3-detector era begins

LVC, PRL, 119, 141101 (2017)

LIGO/Virgo Compact Binary Analyses

I.Coincident grid search

$$\{m_1, m_2, \text{SNR}\}$$

II.Low latency sky maps based on output from search

$$p(\alpha, \delta, D_L | d)$$

III.Coherent stochastic sampling analysis over N -dimensional parameter space

$$p(m_1, m_2, \vec{S}_1, \vec{S}_2, \alpha, \delta, D_L, \vec{L}, \Lambda_1, \Lambda_2 | d)$$

e.g. GW150914

LIGO/Virgo Compact Binary Analyses

I.Coincident grid search

$$\{m_1, m_2, \text{SNR}\}$$

II.Low latency sky maps based on output from search

$$p(\alpha, \delta, D_L | d)$$

III.Coherent stochastic sampling analysis over N -dimensional parameter space

$$p(m_1, m_2, \vec{S}_1, \vec{S}_2, \alpha, \delta, D_L, \vec{L}, \Lambda_1, \Lambda_2 | d)$$

Dependent on waveform model

e.g. GW150914

The discovery of GW170817

The discovery of GW170817

The discovery of GW170817

GW170817 Data Cleaning

LVC, PRL. 119, 161101 (2017)

GW170817 Data Cleaning

LVC, PRL 119, 161101 (2017)

LVC+, APJL, 848, 2 (2017)

GW170817 Data Cleaning

LVC, PRL. 119, 161101 (2017)

What we know from GW170817

LVC, PRL. 119, 161101 (2017)

What we know from GW170817

LVC, PRL. 119, 161101 (2017)

Credit: LVC

$$\mathcal{M} = \frac{(m_1 m_2)^{3/5}}{(m_1 + m_2)^{1/5}}$$

What we know from GW170817

LVC, PRL. 119, 161101 (2017)

$$\mathcal{M} = \frac{(m_1 m_2)^{3/5}}{(m_1 + m_2)^{1/5}}$$

$$\Lambda = \frac{2}{3} k_2 \left(\frac{R}{m} \right)^5$$

What we know from GW170817

LVC, PRL. 119, 161101 (2017)

LVC+, Nature 551, 85–88 (2017)

$$\mathcal{M} = \frac{(m_1 m_2)^{3/5}}{(m_1 + m_2)^{1/5}}$$

$$\mathcal{A} = \mathcal{A}(\mathcal{M}, f, D_L, \cos(\iota))$$

$$\text{Hubble's Law : } H_0 = \frac{v}{d}$$

And all that is just the beginning...

