PROBLEMS

In each of Problems 1 through 6:

- (a) Express the general solution of the given system of equations in terms of real-valued
- (b) Also draw a direction field, sketch a few of the trajectories, and describe the behavior of the solutions as $t \to \infty$.

$$1. \mathbf{x}' = \begin{pmatrix} 3 & -2 \\ 4 & -1 \end{pmatrix} \mathbf{x}$$

$$2. \mathbf{x}' = \begin{pmatrix} -1 & -4 \\ 1 & -1 \end{pmatrix} \mathbf{x}$$

$$3. \mathbf{x}' = \begin{pmatrix} 2 & -5 \\ 1 & -2 \end{pmatrix} \mathbf{x}$$

$$4. \mathbf{x}' = \begin{pmatrix} 2 & -\frac{5}{2} \\ \frac{9}{5} & -1 \end{pmatrix} \mathbf{x}$$

$$5. \mathbf{x}' = \begin{pmatrix} 1 & -1 \\ 5 & -3 \end{pmatrix} \mathbf{x}$$

$$6. \mathbf{x}' = \begin{pmatrix} 1 & 2 \\ -5 & -1 \end{pmatrix} \mathbf{x}$$

In each of Problems 7 and 8, express the general solution of the given system of equations in terms of real-valued functions.

7.
$$\mathbf{x}' = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & -2 \\ 3 & 2 & 1 \end{pmatrix} \mathbf{x}$$

8.
$$\mathbf{x}' = \begin{pmatrix} -3 & 0 & 2 \\ 1 & -1 & 0 \\ -2 & -1 & 0 \end{pmatrix} \mathbf{x}$$

In each of Problems 9 and 10, find the solution of the given initial value problem. Describe the behavior of the solution as $t \to \infty$.

9.
$$\mathbf{x}' = \begin{pmatrix} 1 & -5 \\ 1 & -3 \end{pmatrix} \mathbf{x}, \quad \mathbf{x}(0) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

9.
$$\mathbf{x}' = \begin{pmatrix} 1 & -5 \\ 1 & -3 \end{pmatrix} \mathbf{x}$$
, $\mathbf{x}(0) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ 10. $\mathbf{x}' = \begin{pmatrix} -3 & 2 \\ -1 & -1 \end{pmatrix} \mathbf{x}$, $\mathbf{x}(0) = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$

In each of Problems 11 and 12:

- (a) Find the eigenvalues of the given system.
- (b) Choose an initial point (other than the origin) and draw the corresponding trajectory in
- (c) For your trajectory in part (b), draw the graphs of x_1 versus t and of x_2 versus t.
- (d) For your trajectory in part (b), draw the corresponding graph in three-dimensional tx_1x_2 -space.

11.
$$\mathbf{x}' = \begin{pmatrix} \frac{3}{4} & -2 \\ 1 & -\frac{5}{4} \end{pmatrix} \mathbf{x}$$

12.
$$\mathbf{x}' = \begin{pmatrix} -\frac{4}{5} & 2\\ -1 & \frac{6}{5} \end{pmatrix} \mathbf{x}$$

In each of Problems 13 through 20, the coefficient matrix contains a parameter α . In each of these problems:

- (a) Determine the eigenvalues in terms of α .
- (b) Find the critical value or values of α where the qualitative nature of the phase portrait for the system changes.
- (c) Draw a phase portrait for a value of α slightly below, and for another value slightly above, each critical value.

$$14. \mathbf{x}' = \begin{pmatrix} 0 & -5 \\ 1 & \alpha \end{pmatrix} \mathbf{x}$$

$$15. \mathbf{x}' = \begin{pmatrix} 2 & -5 \\ \alpha & -2 \end{pmatrix} \mathbf{x}$$

17.
$$\mathbf{x}' = \begin{pmatrix} -1 & \alpha \\ -1 & -1 \end{pmatrix} \mathbf{x}$$
18. $\mathbf{x}' = \begin{pmatrix} 3 & \alpha \\ -6 & -4 \end{pmatrix} \mathbf{x}$
19. $\mathbf{x}' = \begin{pmatrix} \alpha & 10 \\ -1 & -4 \end{pmatrix} \mathbf{x}$
20. $\mathbf{x}' = \begin{pmatrix} 4 & \alpha \\ 8 & -6 \end{pmatrix} \mathbf{x}$

In each of Problems 21 and 22, solve the given system of equations by the method of Problem 19 of Section 7.5. Assume that t > 0.

21.
$$t\mathbf{x}' = \begin{pmatrix} -1 & -1 \\ 2 & -1 \end{pmatrix} \mathbf{x}$$
 22. $t\mathbf{x}' = \begin{pmatrix} 2 & -5 \\ 1 & -2 \end{pmatrix} \mathbf{x}$

In each of Problems 23 and 24:

- (a) Find the eigenvalues of the given system.
- (b) Choose an initial point (other than the origin) and draw the corresponding trajectory in the x_1x_2 -plane. Also draw the trajectories in the x_1x_3 and x_2x_3 -planes.
- (c) For the initial point in part (b), draw the corresponding trajectory in $x_1x_2x_3$ -space.

23.
$$\mathbf{x}' = \begin{pmatrix} -\frac{1}{4} & 1 & 0 \\ -1 & -\frac{1}{4} & 0 \\ 0 & 0 & -\frac{1}{4} \end{pmatrix} \mathbf{x}$$
 24. $\mathbf{x}' = \begin{pmatrix} -\frac{1}{4} & 1 & 0 \\ -1 & -\frac{1}{4} & 0 \\ 0 & 0 & \frac{1}{10} \end{pmatrix} \mathbf{x}$

- 25. Consider the electric circuit shown in Figure 7.6.6. Suppose that $R_1 = R_2 = 4 \Omega$, $C = \frac{1}{2}$ F, and L = 8 H.
 - (a) Show that this circuit is described by the system of differential equations

$$\frac{d}{dt} \begin{pmatrix} I \\ V \end{pmatrix} = \begin{pmatrix} -\frac{1}{2} & -\frac{1}{8} \\ 2 & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} I \\ V \end{pmatrix}, \tag{i}$$

where I is the current through the inductor and V is the voltage drop across the capacitor. *Hint:* See Problem 20 of Section 7.1.

- (b) Find the general solution of Eqs. (i) in terms of real-valued functions.
- (c) Find I(t) and V(t) if I(0) = 2 A and V(0) = 3 V.
- (d) Determine the limiting values of I(t) and V(t) as $t \to \infty$. Do these limiting values depend on the initial conditions?

FIGURE 7.6.6 The circuit in Problem 25.

26. The electric circuit shown in Figure 7.6.7 is described by the system of differential equations

$$\frac{d}{dt} \begin{pmatrix} I \\ V \end{pmatrix} = \begin{pmatrix} 0 & \frac{1}{L} \\ -\frac{1}{C} & -\frac{1}{RC} \end{pmatrix} \begin{pmatrix} I \\ V \end{pmatrix}, \tag{i}$$

where I is the current through the inductor and V is the voltage drop across the capacitor. These differential equations were derived in Problem 19 of Section 7.1.

- (a) Show that the eigenvalues of the coefficient matrix are real and different if $L > 4R^2C$; show that they are complex conjugates if $L < 4R^2C$.
- (b) Suppose that R=1 Ω , $C=\frac{1}{2}$ F, and L=1 H. Find the general solution of the system (i) in this case.
- (c) Find I(t) and V(t) if I(0) = 2 A and V(0) = 1 V.
- (d) For the circuit of part (b) determine the limiting values of I(t) and V(t) as $t \to \infty$. Do these limiting values depend on the initial conditions?

FIGURE 7.6.7 The circuit in Problem 26.

- 27. In this problem we indicate how to show that $\mathbf{u}(t)$ and $\mathbf{v}(t)$, as given by Eqs. (17), are linearly independent. Let $r_1 = \lambda + i\mu$ and $\bar{r}_1 = \lambda i\mu$ be a pair of conjugate eigenvalues of the coefficient matrix \mathbf{A} of Eq. (1); let $\boldsymbol{\xi}^{(1)} = \mathbf{a} + i\mathbf{b}$ and $\bar{\boldsymbol{\xi}}^{(1)} = \mathbf{a} i\mathbf{b}$ be the corresponding eigenvectors. Recall that it was stated in Section 7.3 that two different eigenvalues have linearly independent eigenvectors, so if $r_1 \neq \bar{r}_1$, then $\boldsymbol{\xi}^{(1)}$ and $\bar{\boldsymbol{\xi}}^{(1)}$ are linearly independent.
 - (a) First we show that **a** and **b** are linearly independent. Consider the equation $c_1 \mathbf{a} + c_2 \mathbf{b} = \mathbf{0}$. Express **a** and **b** in terms of $\boldsymbol{\xi}^{(1)}$ and $\bar{\boldsymbol{\xi}}^{(1)}$, and then show that $(c_1 ic_2)\boldsymbol{\xi}^{(1)} + (c_1 + ic_2)\bar{\boldsymbol{\xi}}^{(1)} = \mathbf{0}$.
 - (b) Show that $c_1 ic_2 = 0$ and $c_1 + ic_2 = 0$ and then that $c_1 = 0$ and $c_2 = 0$. Consequently, **a** and **b** are linearly independent.
 - (c) To show that $\mathbf{u}(t)$ and $\mathbf{v}(t)$ are linearly independent, consider the equation $c_1\mathbf{u}(t_0) + c_2\mathbf{v}(t_0) = \mathbf{0}$, where t_0 is an arbitrary point. Rewrite this equation in terms of \mathbf{a} and \mathbf{b} , and then proceed as in part (b) to show that $c_1 = 0$ and $c_2 = 0$. Hence $\mathbf{u}(t)$ and $\mathbf{v}(t)$ are linearly independent at the arbitrary point t_0 . Therefore, they are linearly independent at every point and on every interval.
- 28. A mass m on a spring with constant k satisfies the differential equation (see Section 3.7)

$$mu'' + ku = 0$$
,

where u(t) is the displacement at time t of the mass from its equilibrium position.

(a) Let $x_1 = u, x_2 = u'$, and show that the resulting system is

$$\mathbf{x}' = \begin{pmatrix} 0 & 1 \\ -k/m & 0 \end{pmatrix} \mathbf{x}.$$

- (b) Find the eigenvalues of the matrix for the system in part (a).
- (c) Sketch several trajectories of the system. Choose one of your trajectories, and sketch the corresponding graphs of x_1 versus t and x_2 versus t. Sketch both graphs on one set of axes.
- (d) What is the relation between the eigenvalues of the coefficient matrix and the natural frequency of the spring–mass system?

- 29. Consider the two-mass, three-spring system of Example 3 in the text. Instead of converting the problem into a system of four first order equations, we indicate here how to proceed directly from Eqs. (22).
 - (a) Show that Eqs. (22) can be written in the form

$$\mathbf{x}'' = \begin{pmatrix} -2 & \frac{3}{2} \\ \frac{4}{3} & -3 \end{pmatrix} \mathbf{x} = \mathbf{A}\mathbf{x}.$$
 (i)

(b) Assume that $\mathbf{x} = \boldsymbol{\xi} e^{rt}$ and show that

$$(\mathbf{A} - r^2 \mathbf{I})\boldsymbol{\xi} = \mathbf{0}.$$

Note that r^2 (rather than r) is an eigenvalue of **A** corresponding to an eigenvector ξ .

- (c) Find the eigenvalues and eigenvectors of A.
- (d) Write down expressions for x_1 and x_2 . There should be four arbitrary constants in these expressions.
- (e) By differentiating the results from part (d), write down expressions for x'_1 and x'_2 . Your results from parts (d) and (e) should agree with Eq. (31) in the text.
- 30. Consider the two-mass, three-spring system whose equations of motion are Eqs. (22) in the text. Let $m_1 = 1$, $m_2 = 4/3$, $k_1 = 1$, $k_2 = 3$, and $k_3 = 4/3$.
 - (a) As in the text, convert the system to four first order equations of the form $\mathbf{y}' = \mathbf{A}\mathbf{y}$. Determine the coefficient matrix \mathbf{A} .
 - (b) Find the eigenvalues and eigenvectors of **A**.
 - (c) Write down the general solution of the system.
 - (d) Describe the fundamental modes of vibration. For each fundamental mode draw graphs of y_1 versus t and y_2 versus t. Also draw the corresponding trajectories in the y_1y_3 -and y_2y_4 -planes.
 - (e) Consider the initial conditions $\mathbf{y}(0) = (2, 1, 0, 0)^T$. Evaluate the arbitrary constants in the general solution in part (c). What is the period of the motion in this case? Plot graphs of y_1 versus t and y_2 versus t. Also plot the corresponding trajectories in the y_1y_3 and y_2y_4 -planes. Be sure you understand how the trajectories are traversed for a full period.
 - (f) Consider other initial conditions of your own choice, and plot graphs similar to those requested in part (e).
- 31. Consider the two-mass, three-spring system whose equations of motion are Eqs. (22) in the text. Let $m_1 = m_2 = 1$ and $k_1 = k_2 = k_3 = 1$.
 - (a) As in the text, convert the system to four first order equations of the form $\mathbf{y}' = \mathbf{A}\mathbf{y}$. Determine the coefficient matrix \mathbf{A} .
 - (b) Find the eigenvalues and eigenvectors of **A**.
 - (c) Write down the general solution of the system.
 - (d) Describe the fundamental modes of vibration. For each fundamental mode draw graphs of y_1 versus t and y_2 versus t. Also draw the corresponding trajectories in the y_1y_3 -and y_2y_4 -planes.
 - (e) Consider the initial conditions $\mathbf{y}(0) = (-1, 3, 0, 0)^T$. Evaluate the arbitrary constants in the general solution in part (c). Plot y_1 versus t and y_2 versus t. Do you think the solution is periodic? Also draw the trajectories in the y_1y_3 and y_2y_4 -planes.
 - (f) Consider other initial conditions of your own choice, and plot graphs similar to those requested in part (e).