Math Refresher for DS

Lecture 2

Last Time

- Vector spaces
- Euclidian spaces (= vector spaces + dot product)
- Length of a vector
- Distances and angles between the vectors
- Orthogonality
- Orthogonal projections

Today

- Back to vector spaces
 - Linear independence
 - Basis
- Basic operations with matrices.

Back to Vector Spaces

(Reminder) Vector Space: Definition

• A real-valued vector space $(V, +, \cdot)$ is a set of vectors V with two operations

$$(1) +: V \times V \to V, \qquad (2) \cdot: \mathbb{R} \times V \to V$$

that satisfy the following properties (axioms):

	Property	Meaning
1.	Associativity of addition	x + (y + z) = (x + y) + z
2.	Commutativity of addition	x + y = y + x
3.	Identity element of addition	$\exists 0 \in V \colon \ \forall x \in V 0 + x = x$
4.	Identity element of scalar multiplication	$\forall x \in V 1 \cdot x = x$
5.	Inverse element of addition	$\forall x \in V \ \exists -x \in V \colon \ x + (-x) = 0$
6.	Compatibility of scalar multiplication	$\alpha(\beta x) = (\alpha \beta) x$
7.	Distributivity	$(\alpha + \beta)x = \alpha x + \beta x$
8.		$\alpha(x+y) = \alpha x + \alpha y$

(Reminder) Examples of Vector Spaces

• \mathbb{R}^n - a set of vectors with n real entries. $(\mathbb{R}^n, +, \cdot)$ is a vector space.

(Reminder) Examples of Vector Spaces

- \mathbb{R}^n a set of vectors with n real entries. $(\mathbb{R}^n, +, \cdot)$ is a vector space.
- \mathbb{P}^n a set of polynomials of degree $\leq n$ with real coefficients

 $(\mathbb{P}^n, +, \cdot)$ is also a vector space!

"Vectors" here are polynomials.

• $V = (\mathbb{V}, +, \cdot)$ - a vector space.

• $V = (\mathbb{V}, +, \cdot)$ - a vector space.

• Consider $\mathbb{U} \neq \emptyset$ – a subset of \mathbb{V} ($\mathbb{U} \subseteq \mathbb{V}$).

• $V = (\mathbb{V}, +, \cdot)$ - a vector space.

• Consider $\mathbb{U} \neq \emptyset$ – a subset of \mathbb{V} ($\mathbb{U} \subseteq \mathbb{V}$).

- $U = (\mathbb{U}, +, \cdot)$ a vector subspace $(U \subseteq V)$ if U is a vector space with operations
 - $_{\circ}$ +: $\mathbb{U}\times\mathbb{U}\to\mathbb{U}$
 - $_{\circ}$ \cdot : $\mathbb{R} \times \mathbb{U} \to \mathbb{U}$

• How do we check if $U = (\mathbb{U}, +, \cdot)$ is a vector space?

- How do we check if $U = (\mathbb{U}, +, \cdot)$ is a vector space?
- Since $\mathbb{U} \subseteq \mathbb{V}$ and $V = (\mathbb{V}, +, \cdot)$ is a vector space, many properties of + and \cdot hold automatically.

- How do we check if $U = (\mathbb{U}, +, \cdot)$ is a vector space?
- Since $\mathbb{U} \subseteq \mathbb{V}$ and $V = (\mathbb{V}, +, \cdot)$ is a vector space, many properties of + and \cdot hold automatically.
- In fact, we only need to check:
 - 1. that $0 \in \mathbb{U}$

- How do we check if $U = (\mathbb{U}, +, \cdot)$ is a vector space?
- Since $\mathbb{U} \subseteq \mathbb{V}$ and $V = (\mathbb{V}, +, \cdot)$ is a vector space, many properties of + and \cdot hold automatically.
- In fact, we only need to check:
 - 1. that $0 \in \mathbb{U}$
 - 2. closure of + and ·:
 - $\forall x, y \in \mathbb{U} \ x + y \in \mathbb{U}$
 - $\forall x \in \mathbb{U}, \ \lambda \in \mathbb{R} \ \lambda x \in \mathbb{U}$

- Consider \mathbb{R}^2 .
- Is A a vector subspace?

- Consider \mathbb{R}^2 .
- Is **A** a vector subspace?

- Consider \mathbb{R}^2 .
- Is A a vector subspace?

- Consider \mathbb{R}^2 .
- Is *A* a vector subspace?
- No!

 $x \in A$ but $2x \notin A \rightarrow$

· operation isn't closed.

- Consider \mathbb{R}^2 .
- Is **B** a vector subspace?

- Consider \mathbb{R}^2 .
- Is **B** a vector subspace?
- No!

 $0 \notin B$

- Consider \mathbb{R}^2 .
- Is **D** a vector subspace?

- Consider \mathbb{R}^2 .
- Is **D** a vector subspace?
- Yes!

- Consider \mathbb{R}^2 .
- Is **D** a vector subspace?
- Yes!

{0,+,·} is a trivial vector subspace of any vector space

• Consider $P^n = (\mathbb{P}^n, +, \cdot)$ - a vector space.

- Consider $P^n = (\mathbb{P}^n, +, \cdot)$ a vector space.
- $\forall m \leq n \ P^m = (\mathbb{P}^m, +, \cdot) \subseteq P^n$ a vector subspace:

- Consider $P^n = (\mathbb{P}^n, +, \cdot)$ a vector space.
- $\forall m \leq n \ P^m = (\mathbb{P}^m, +, \cdot) \subseteq P^n$ a vector subspace:
 - $\rightarrow 0 \in \mathbb{P}^m$

- Consider $P^n = (\mathbb{P}^n, +, \cdot)$ a vector space.
- $\forall m \leq n \ P^m = (\mathbb{P}^m, +, \cdot) \subseteq P^n$ a vector subspace:
 - $\rightarrow 0 \in \mathbb{P}^m$
 - Closure: when we add up polynomials of degree $m \le n$ or multiply them by a scalar, we always get a polynomial of of degree $m \le n$.

We can add vectors together and multiply them by scalars.
 Let's combine these two operations!

- We can add vectors together and multiply them by scalars.
 Let's combine these two operations!
- V a vector space.

- We can add vectors together and multiply them by scalars.
 Let's combine these two operations!
- V a vector space.
- $x_1, x_2, ..., x_k \in V$ some vectors.

- We can add vectors together and multiply them by scalars.
 Let's combine these two operations!
- V a vector space.
- $x_1, x_2, ..., x_k \in V$ some vectors.
- $\lambda_1, \lambda_2, ..., \lambda_k \in \mathbb{R}$ some scalars.

- We can add vectors together and multiply them by scalars.
 Let's combine these two operations!
- V a vector space.
- $x_1, x_2, ..., x_k \in V$ some vectors.
- $\lambda_1, \lambda_2, ..., \lambda_k \in \mathbb{R}$ some scalars.

$$v = \lambda_1 x_1 + \lambda_2 x_2 + \dots + \lambda_k x_k = \sum_{i=1}^k \lambda_i x_i \in V -$$

a linear combination of x_1, x_2, \dots, x_k .

Linear Combinations: Examples

• In
$$(\mathbb{R}^2, +, \cdot)$$
, consider vectors $e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

Linear Combinations: Examples

• In $(\mathbb{R}^2, +, \cdot)$, consider vectors $e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

$$u=2e_1-e_2=\left[egin{array}{c} 2 \\ -1 \end{array}
ight]$$
 is a linear combination of e_1 and e_2 .

Linear Combinations: Examples

• In $(\mathbb{R}^2, +, \cdot)$, consider vectors $e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

$$u=2e_1-e_2=\left[egin{array}{c} 2 \\ -1 \end{array}
ight]$$
 is a linear combination of e_1 and e_2 .

• In $(\mathbb{P}^2, +, \cdot)$, consider vectors $e_0 = 1, e_1 = t, e_2 = t^2$.

Linear Combinations: Examples

• In $(\mathbb{R}^2, +, \cdot)$, consider vectors $e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

$$u=2e_1-e_2=\left[egin{array}{c} 2 \\ -1 \end{array}
ight]$$
 is a linear combination of e_1 and e_2 .

• In $(\mathbb{P}^2, +, \cdot)$, consider vectors $e_0 = 1, e_1 = t, \ e_2 = t^2$.

$$u=2t^2-t+1=2e_2-e_1+e_0$$
 is a linear combination of e_0,e_1 and e_2 .

Linear Combinations: Examples

• In $(\mathbb{R}^2, +, \cdot)$, consider vectors $e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

$$u=2e_1-e_2=\left[egin{array}{c} 2 \\ -1 \end{array}
ight]$$
 is a linear combination of e_1 and e_2 .

• In $(\mathbb{P}^2, +, \cdot)$, consider vectors $e_0 = 1, e_1 = t, \ e_2 = t^2$.

$$u=2t^2-t+1=2e_2-e_1+e_0$$
 is a linear combination of e_0,e_1 and e_2 .

$$v=3t+3=3e_1+3e_0$$
 is a linear combination of e_0 and e_1 .

• V - a vector space, $\mathbb{A} = \{x_1, x_2, \dots, x_k\} \subseteq V$ - a set of vectors.

- V a vector space, $\mathbb{A} = \{x_1, x_2, ..., x_k\} \subseteq V$ a set of vectors.
- A set of all linear combinations of vectors in A is called a *span* of A:

- V a vector space, $\mathbb{A} = \{x_1, x_2, ..., x_k\} \subseteq V$ a set of vectors.
- A set of all linear combinations of vectors in A is called a *span* of A:

$$span[x_1,...,x_n] = \{\lambda_1 x_1 + \cdots + \lambda_n x_n | \lambda_1,...\lambda_n \in \mathbb{R} \}$$

- V a vector space, $\mathbb{A} = \{x_1, x_2, ..., x_k\} \subseteq V$ a set of vectors.
- A set of all linear combinations of vectors in A is called a span of A:

$$span[x_1, ..., x_n] = \{\lambda_1 x_1 + \dots + \lambda_n x_n | \lambda_1, ..., \lambda_n \in \mathbb{R} \}$$

• If \mathbb{A} spans vector space V, we write

$$V = span[\mathbb{A}] \text{ or } V = span[x_1, ..., x_n].$$

• Consider \mathbb{R}^2 .

- Consider \mathbb{R}^2 .
- $e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

- Consider \mathbb{R}^2 .
- $e_1=\begin{bmatrix}1\\0\end{bmatrix}$ $span[e_1]=\left\{\begin{bmatrix}\lambda\\0\end{bmatrix}\mid\lambda\in\mathbb{R}\right\}\text{- only}$ vectors parallel to the first axis.

- Consider \mathbb{R}^2 .
- $e_1=\begin{bmatrix}1\\0\end{bmatrix}$ $span[e_1]=\left\{\begin{bmatrix}\lambda\\0\end{bmatrix}\mid\lambda\in\mathbb{R}\right\}\text{- only}$ vectors parallel to the first axis.

•
$$e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
, $e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

- Consider \mathbb{R}^2 .
- $e_1=\begin{bmatrix}1\\0\end{bmatrix}$ $span[e_1]=\left\{\begin{bmatrix}\lambda\\0\end{bmatrix}\mid\lambda\in\mathbb{R}\right\}\text{- only}$ vectors parallel to the first axis.
- $e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ $span[e_1] = \left\{ \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix} \mid \lambda_{1,2} \in \mathbb{R} \right\} = \mathbb{R}^2.$

•
$$e_0 = 1$$
, $e_1 = t$, $e_2 = t^2$

$$span[e_0, ..., e_2] =$$

•
$$e_0 = 1$$
, $e_1 = t$, $e_2 = t^2$

$$span[e_0, ..., e_2] = \{at^2 + bt + c \mid a, b, c \in \mathbb{R}\} = P^2$$

•
$$e_0 = 1$$
, $e_1 = t$, $e_2 = t^2$

$$span[e_0, ..., e_2] = \{at^2 + bt + c \mid a, b, c \in \mathbb{R}\} = P^2 \subseteq P^3$$

- Consider $P^3 = (\mathbb{P}^3, +, \cdot)$.
- $e_0 = 1$, $e_1 = t$, $e_2 = t^2$

$$span[e_0, ..., e_2] = \{at^2 + bt + c \mid a, b, c \in \mathbb{R}\} = P^2 \subseteq P^3$$

•
$$e_0 = 1$$
, $e_1 = t$, $e_2 = t^2$, $e_3 = t^3$

$$span[e_0, ..., e_3] =$$

- Consider $P^3 = (\mathbb{P}^3, +, \cdot)$.
- $e_0 = 1$, $e_1 = t$, $e_2 = t^2$

$$span[e_0, ..., e_2] = \{at^2 + bt + c \mid a, b, c \in \mathbb{R}\} = P^2 \subseteq P^3$$

• $e_0 = 1$, $e_1 = t$, $e_2 = t^2$, $e_3 = t^3$

$$span[e_0, ..., e_3] = \{at^3 + bt^2 + ct + d \mid a, b, c, d \in \mathbb{R}\} = P^3$$

Generating Set

- V a vector space.
- $\mathbb{A} = \{x_1, x_2, \dots, x_k\} \subseteq V$ a set of vectors.

Generating Set

- V a vector space.
- $\mathbb{A} = \{x_1, x_2, \dots, x_k\} \subseteq V$ a set of vectors.
- If every vector $v \in V$ can be expressed as a linear combination of $x_1, x_2, ..., x_k$, \mathbb{A} is called a *generating set* for V.

Linear independence

Linear Combinations

• A zero vector can always be represented as a trivial linear combination of $x_1, x_2, ..., x_k$:

$$0 = \sum_{i=1}^{k} 0 \cdot x_i$$

Linear Combinations

• A zero vector can always be represented as a trivial linear combination of $x_1, x_2, ..., x_k$:

$$0 = \sum_{i=1}^{k} 0 \cdot x_i$$

• We are mostly interested in *non-trivial linear combinations* of $x_1, x_2, ..., x_k$ where not all λ_i are 0.

- Consider a vector space V.
- $x_1, x_2, \dots, x_k \in V$ some vectors.

- Consider a vector space V.
- $x_1, x_2, ..., x_k \in V$ some vectors.
- If there is a <u>non-trivial</u> linear combination of $x_1, x_2, ..., x_k$ such that $\sum_{i=1}^k \lambda_i x_i = 0$ with at least one $\lambda_i \neq 0$, vectors $x_1, x_2, ..., x_k$ are *linearly dependent*.

- Consider a vector space V.
- $x_1, x_2, ..., x_k \in V$ some vectors.
- If there is a <u>non-trivial</u> linear combination of $x_1, x_2, ..., x_k$ such that $\sum_{i=1}^k \lambda_i x_i = 0$ with at least one $\lambda_i \neq 0$, vectors $x_1, x_2, ..., x_k$ are *linearly dependent*.
- If only trivial solution exists, vectors $x_1, x_2, ..., x_k$ are linearly independent.

• If there is a <u>non-trivial</u> linear combination of $x_1, x_2, ..., x_k$ such that $\sum_{i=1}^k \lambda_i x_i = 0$ with at least one $\lambda_i \neq 0$, vectors $x_1, x_2, ..., x_k$ are *linearly dependent*.

• If there is a <u>non-trivial</u> linear combination of $x_1, x_2, ..., x_k$ such that $\sum_{i=1}^k \lambda_i x_i = 0$ with at least one $\lambda_i \neq 0$, vectors $x_1, x_2, ..., x_k$ are *linearly dependent*.

 \leftrightarrow

• A set of vectors $x_1, x_2, ..., x_k$ is linearly dependent if and only if (at least) one of the vectors is a linear combination of the others

$$x_i = \alpha_1 x_1 + \dots + \alpha_k x_k$$

• If there is a <u>non-trivial</u> linear combination of $x_1, x_2, ..., x_k$ such that $\sum_{i=1}^k \lambda_i x_i = 0$ with at least one $\lambda_i \neq 0$, vectors $x_1, x_2, ..., x_k$ are *linearly dependent*.

 \leftrightarrow

• A set of vectors $x_1, x_2, ..., x_k$ is linearly dependent if and only if (at least) one of the vectors is a linear combination of the others

$$x_i = \alpha_1 x_1 + \dots + \alpha_k x_k$$

Why is this so? Try to prove this yourself.

• Consider \mathbb{R}^2 .

• Consider \mathbb{R}^2 .

• Vectors
$$u = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$$
 and $v = \begin{bmatrix} -1 \\ -2 \end{bmatrix}$ are not linearly independent: $u = -2v$.

- Consider \mathbb{R}^2 .
- Vectors $u = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$ and $v = \begin{bmatrix} -1 \\ -2 \end{bmatrix}$ are not linearly independent: u = -2v.
- Vectors $e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ are linearly independent: there are no $\lambda_1, \lambda_2 \in \mathbb{R}$ with at least one $\lambda_i \neq 0$ such that $\lambda_1 e_1 + \lambda_2 e_2 = \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$.

- Consider \mathbb{R}^2 .
- Vectors $u = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$ and $v = \begin{bmatrix} -1 \\ -2 \end{bmatrix}$ are not linearly independent: u = -2v.
- Vectors $e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ are linearly independent: there are no $\lambda_1, \lambda_2 \in \mathbb{R}$ with at least one $\lambda_i \neq 0$ such that $\lambda_1 e_1 + \lambda_2 e_2 = \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$.

(Or: you cannot represent e_1 as λe_2 or vice versa).

- Consider $P = (\mathbb{P}^3, +, \cdot)$.
- 1, t, $t^2 \in P$ vectors. Are they linearly independent?

- Consider $P = (\mathbb{P}^3, +, \cdot)$.
- 1, t, $t^2 \in P$ vectors. Are they linearly independent?
- Yes!

There is no way we can represent one of those vectors as a linear combination of the others.

• Are the following vectors in \mathbb{R}^4 linearly independent?

$$x_1 = \begin{bmatrix} 1 \\ 2 \\ -3 \\ 4 \end{bmatrix}, \qquad x_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 2 \end{bmatrix}, \qquad x_3 = \begin{bmatrix} -1 \\ -2 \\ 1 \\ 1 \end{bmatrix}$$

• Are the following vectors in \mathbb{R}^4 linearly independent?

$$x_1 = \begin{bmatrix} 1 \\ 2 \\ -3 \\ 4 \end{bmatrix}, \qquad x_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 2 \end{bmatrix}, \qquad x_3 = \begin{bmatrix} -1 \\ -2 \\ 1 \\ 1 \end{bmatrix}$$

$$\lambda_1 x_1 + \lambda_2 x_2 + \lambda_3 x_3 = 0$$

• Are the following vectors in \mathbb{R}^4 linearly independent?

$$x_1 = \begin{bmatrix} 1 \\ 2 \\ -3 \\ 4 \end{bmatrix}, \qquad x_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 2 \end{bmatrix}, \qquad x_3 = \begin{bmatrix} -1 \\ -2 \\ 1 \\ 1 \end{bmatrix}$$

$$\lambda_1 x_1 + \lambda_2 x_2 + \lambda_3 x_3 = 0 \leftrightarrow$$

$$\lambda_{1} \begin{bmatrix} 1 \\ 2 \\ -3 \\ 4 \end{bmatrix} + \lambda_{2} \begin{bmatrix} 1 \\ 1 \\ 0 \\ 2 \end{bmatrix} + \lambda_{3} \begin{bmatrix} -1 \\ -2 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} \lambda_{1} + \lambda_{2} - \lambda_{3} \\ 2\lambda_{1} + \lambda_{2} - 2\lambda_{3} \\ -3\lambda_{1} + \lambda_{3} \\ 4\lambda_{1} + 2\lambda_{2} + \lambda_{3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} \lambda_1 + \lambda_2 - \lambda_3 = 0 \\ 2\lambda_1 + \lambda_2 - 2\lambda_3 = 0 \\ -3\lambda_1 + \lambda_3 = 0 \\ 4\lambda_1 + 2\lambda_2 + \lambda_3 = 0 \end{cases}$$

$$\begin{cases} \lambda_1 + \lambda_2 - \lambda_3 = 0 \\ 2\lambda_1 + \lambda_2 - 2\lambda_3 = 0 \\ -3\lambda_1 + \lambda_3 = 0 \\ 4\lambda_1 + 2\lambda_2 + \lambda_3 = 0 \end{cases} \Leftrightarrow \begin{cases} \lambda_3 = 3\lambda_1 \end{cases}$$

$$\begin{cases} \lambda_1 + \lambda_2 - \lambda_3 = 0 \\ 2\lambda_1 + \lambda_2 - 2\lambda_3 = 0 \\ -3\lambda_1 + \lambda_3 = 0 \\ 4\lambda_1 + 2\lambda_2 + \lambda_3 = 0 \end{cases} \Leftrightarrow \begin{cases} -2\lambda_1 + \lambda_2 = 0 \\ -4\lambda_1 + \lambda_2 = 0 \\ \lambda_3 = 3\lambda_1 \\ 7\lambda_1 + 2\lambda_2 = 0 \end{cases}$$

$$\begin{cases} \lambda_1 + \lambda_2 - \lambda_3 = 0 \\ 2\lambda_1 + \lambda_2 - 2\lambda_3 = 0 \\ -3\lambda_1 + \lambda_3 = 0 \\ 4\lambda_1 + 2\lambda_2 + \lambda_3 = 0 \end{cases} \Leftrightarrow \begin{cases} -2\lambda_1 + \lambda_2 = 0 \\ -4\lambda_1 + \lambda_2 = 0 \\ \lambda_3 = 3\lambda_1 \\ 7\lambda_1 + 2\lambda_2 = 0 \end{cases} \Leftrightarrow \begin{cases} \lambda_2 = 2\lambda_1 \\ \lambda_3 = 3\lambda_1 \\ 7\lambda_1 + 2\lambda_2 = 0 \end{cases}$$

$$\begin{cases} \lambda_{1} + \lambda_{2} - \lambda_{3} = 0 \\ 2\lambda_{1} + \lambda_{2} - 2\lambda_{3} = 0 \\ -3\lambda_{1} + \lambda_{3} = 0 \\ 4\lambda_{1} + 2\lambda_{2} + \lambda_{3} = 0 \end{cases} \Leftrightarrow \begin{cases} -2\lambda_{1} + \lambda_{2} = 0 \\ -4\lambda_{1} + \lambda_{2} = 0 \\ \lambda_{3} = 3\lambda_{1} \\ 7\lambda_{1} + 2\lambda_{2} = 0 \end{cases} \Leftrightarrow \begin{cases} \lambda_{2} = 2\lambda_{1} \\ -2\lambda_{1} = 0 \\ \lambda_{3} = 3\lambda_{1} \\ 11\lambda_{1} = 0 \end{cases}$$

$$\begin{cases} \lambda_{1} + \lambda_{2} - \lambda_{3} = 0 \\ 2\lambda_{1} + \lambda_{2} - 2\lambda_{3} = 0 \\ -3\lambda_{1} + \lambda_{3} = 0 \\ 4\lambda_{1} + 2\lambda_{2} + \lambda_{3} = 0 \end{cases} \Leftrightarrow \begin{cases} -2\lambda_{1} + \lambda_{2} = 0 \\ -4\lambda_{1} + \lambda_{2} = 0 \\ \lambda_{3} = 3\lambda_{1} \\ 7\lambda_{1} + 2\lambda_{2} = 0 \end{cases} \Leftrightarrow \begin{cases} \lambda_{2} = 2\lambda_{1} \\ -2\lambda_{1} = 0 \\ \lambda_{3} = 3\lambda_{1} \\ 11\lambda_{1} = 0 \end{cases} \Leftrightarrow \lambda_{1,2,3} = 0$$

• Are there $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$ with at least one $\lambda_i \neq 0$ such that

$$\begin{cases} \lambda_{1} + \lambda_{2} - \lambda_{3} = 0 \\ 2\lambda_{1} + \lambda_{2} - 2\lambda_{3} = 0 \\ -3\lambda_{1} + \lambda_{3} = 0 \\ 4\lambda_{1} + 2\lambda_{2} + \lambda_{3} = 0 \end{cases} \Leftrightarrow \begin{cases} -2\lambda_{1} + \lambda_{2} = 0 \\ -4\lambda_{1} + \lambda_{2} = 0 \\ \lambda_{3} = 3\lambda_{1} \\ 7\lambda_{1} + 2\lambda_{2} = 0 \end{cases} \Leftrightarrow \begin{cases} \lambda_{2} = 2\lambda_{1} \\ -2\lambda_{1} = 0 \\ \lambda_{3} = 3\lambda_{1} \\ 11\lambda_{1} = 0 \end{cases} \Leftrightarrow \lambda_{1,2,3} = 0$$

• Only a trivial linear combination of x_1, x_2 and x_3 gives a zero vector.

• Are there $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$ with at least one $\lambda_i \neq 0$ such that

$$\begin{cases} \lambda_{1} + \lambda_{2} - \lambda_{3} = 0 \\ 2\lambda_{1} + \lambda_{2} - 2\lambda_{3} = 0 \\ -3\lambda_{1} + \lambda_{3} = 0 \\ 4\lambda_{1} + 2\lambda_{2} + \lambda_{3} = 0 \end{cases} \Leftrightarrow \begin{cases} -2\lambda_{1} + \lambda_{2} = 0 \\ -4\lambda_{1} + \lambda_{2} = 0 \\ \lambda_{3} = 3\lambda_{1} \\ 7\lambda_{1} + 2\lambda_{2} = 0 \end{cases} \Leftrightarrow \begin{cases} \lambda_{2} = 2\lambda_{1} \\ -2\lambda_{1} = 0 \\ \lambda_{3} = 3\lambda_{1} \\ 11\lambda_{1} = 0 \end{cases} \Leftrightarrow \lambda_{1,2,3} = 0$$

• Only a trivial linear combination of x_1, x_2 and x_3 gives a zero vector.

Therefore, x_1, x_2 and x_3 are linearly independent.

• Are there $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$ with at least one $\lambda_i \neq 0$ such that

$$\begin{cases} \lambda_{1} + \lambda_{2} - \lambda_{3} = 0 \\ 2\lambda_{1} + \lambda_{2} - 2\lambda_{3} = 0 \\ -3\lambda_{1} + \lambda_{3} = 0 \\ 4\lambda_{1} + 2\lambda_{2} + \lambda_{3} = 0 \end{cases} \Leftrightarrow \begin{cases} -2\lambda_{1} + \lambda_{2} = 0 \\ -4\lambda_{1} + \lambda_{2} = 0 \\ \lambda_{3} = 3\lambda_{1} \\ 7\lambda_{1} + 2\lambda_{2} = 0 \end{cases} \Leftrightarrow \begin{cases} \lambda_{2} = 2\lambda_{1} \\ -2\lambda_{1} = 0 \\ \lambda_{3} = 3\lambda_{1} \\ 11\lambda_{1} = 0 \end{cases} \Leftrightarrow \lambda_{1,2,3} = 0$$

• Only a trivial linear combination of x_1, x_2 and x_3 gives a zero vector.

Therefore, x_1, x_2 and x_3 are linearly independent.

Next lecture: a better way to solve such systems of equations

Dimension of a Linear Space

• The linear space V is called n-dimensional if the maximal number of linearly independent vectors in it is equal to n.

Dimension of a Linear Space

• The linear space V is called n-dimensional if the maximal number of linearly independent vectors in it is equal to n.

We denote this as $\dim(V) = n$.

• \mathbb{R}^n is a *n*-dimensional vector space. Why?

- \mathbb{R}^n is a n-dimensional vector space. Why?
- Consider n vectors e_1, \dots, e_n :

$$e_1 = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \qquad e_2 = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}, \qquad \dots, \qquad e_n = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

- \mathbb{R}^n is a n-dimensional vector space. Why?
- Consider n vectors e_1, \dots, e_n :

$$e_1 = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \qquad e_2 = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}, \qquad \dots, \qquad e_n = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

• $e_1, ..., e_n$ are linearly independent $\to \dim(\mathbb{R}^n) \ge n$.

• Can there be more than n linearly independent vectors in \mathbb{R}^n ?

• Can there be more than n linearly independent vectors in \mathbb{R}^n ?

No!

Explanation: next lecture.

• What is the dimensionality of $P^3 = (\mathbb{P}^3, +, \cdot)$?

- What is the dimensionality of $P^3 = (\mathbb{P}^3, +, \cdot)$?
- We can find 4 linearly independent vectors in P^3 :

1,
$$t$$
, t^2 , t^3

- What is the dimensionality of $P^3 = (\mathbb{P}^3, +, \cdot)$?
- We can find 4 linearly independent vectors in P^3 :

1,
$$t$$
, t^2 , t^3

• All the other vectors (polynomials) from P^3 are linear combinations of those.

- What is the dimensionality of $P^3 = (\mathbb{P}^3, +, \cdot)$?
- We can find 4 linearly independent vectors in P^3 :

1,
$$t$$
, t^2 , t^3

• All the other vectors (polynomials) from P^3 are linear combinations of those.

$$\rightarrow \dim(P^3) = 4.$$

Basis

Basis

• A set of n linearly independent vectors $e_1, e_2, ..., e_n$ in an n-dimensional space V is called a *basis* for V.

Basis

- A set of n linearly independent vectors $e_1, e_2, ..., e_n$ in an n-dimensional space V is called a basis for V.
- Basis is A set of vectors with which we can represent every vector in the vector space by adding them together and scaling them.

•
$$e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
, $e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ is a basis for \mathbb{R}^2 .

•
$$e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
, $e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ is a basis for \mathbb{R}^2 .

•
$$e_1 = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$
, $e_2 = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}$, ..., $e_n = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$ is a basis for \mathbb{R}^n .

•
$$e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
, $e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ is a basis for \mathbb{R}^2 .

•
$$e_1=\begin{bmatrix}1\\0\\\vdots\\0\end{bmatrix}$$
, $e_2=\begin{bmatrix}0\\1\\\vdots\\0\end{bmatrix}$, ..., $e_n=\begin{bmatrix}0\\0\\\vdots\\1\end{bmatrix}$ is a basis for \mathbb{R}^n .

•
$$e_0 = 1$$
, $e_1 = t$, ..., $e_n = t^n$ is a basis for P^n .

Find the basis of a vector space spanned by vectors

$$x = \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix}, \qquad y = \begin{bmatrix} 0 \\ -3 \\ 3 \end{bmatrix}, \qquad z = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

Find the basis of a vector space spanned by vectors

$$x = \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix}, \qquad y = \begin{bmatrix} 0 \\ -3 \\ 3 \end{bmatrix}, \qquad z = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

• Vectors x and y are linearly independent.

Find the basis of a vector space spanned by vectors

$$x = \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix}, \qquad y = \begin{bmatrix} 0 \\ -3 \\ 3 \end{bmatrix}, \qquad z = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

- Vectors x and y are linearly independent.
- Vector z is a linear combination of x and y: z = x y.

Find the basis of a vector space spanned by vectors

$$x = \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix}, \qquad y = \begin{bmatrix} 0 \\ -3 \\ 3 \end{bmatrix}, \qquad z = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

- Vectors x and y are linearly independent.
- Vector z is a linear combination of x and y: z = x y.
- Therefore, V = span[x, y, z] = span[x, y]. $B = \{x, y\}$ - basis of V.

Coordinates

• Let's fixe the order of the vectors in the basis:

$$e_1, e_2, ..., e_n$$

Coordinates

Let's fixe the order of the vectors in the basis:

$$e_1, e_2, ..., e_n$$

• Every vector v in a vector space can be represented as a linear combination of $e_1, e_2, ..., e_n$:

$$v = a_1 e_1 + a_2 e_2 + \dots + a_n e_n$$

Coordinates

• Let's fixe the order of the vectors in the basis:

$$e_1, e_2, ..., e_n$$

• Every vector v in a vector space can be represented as a linear combination of $e_1, e_2, ..., e_n$:

$$v = a_1 e_1 + a_2 e_2 + \dots + a_n e_n$$

• $a_1, a_2, ..., a_n$ - coordinates of the vector v in the basis $e_1, e_2, ..., e_n$.

• Consider \mathbb{R}^2 .

- Consider \mathbb{R}^2 .
- $x = \begin{bmatrix} 4 \\ 6 \end{bmatrix}$

- Consider \mathbb{R}^2 .
- $x = \begin{bmatrix} 4 \\ 6 \end{bmatrix}$
- Canonical basis:

$$e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

• Consider \mathbb{R}^2 .

•
$$x = \begin{bmatrix} 4 \\ 6 \end{bmatrix}$$

• Canonical basis:

$$e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$x = 4e_1 + 6e_2$$

• A basis $e_1, ..., e_n$ where $\forall i, j \ e_i \perp e_j$ is an orthogonal basis.

- A basis $e_1, ..., e_n$ where $\forall i, j \ e_i \perp e_j$ is an orthogonal basis.
- If, additionally, $\forall i ||e_i|| = 1$, then e_1, \dots, e_n is an orthonormal basis.

- A basis $e_1, ..., e_n$ where $\forall i, j \ e_i \perp e_j$ is an orthogonal basis.
- If, additionally, $\forall i \ \|e_i\| = 1$, then e_1, \dots, e_n is an *orthonormal basis*. Example:

$$e_1=\begin{bmatrix}1\\0\\\vdots\\0\end{bmatrix},\ e_2=\begin{bmatrix}0\\1\\\vdots\\0\end{bmatrix},\ \dots,\ e_n=\begin{bmatrix}0\\0\\\vdots\\1\end{bmatrix}$$
 is an orthonormal basis of \mathbb{R}^n .

- A basis $e_1, ..., e_n$ where $\forall i, j \ e_i \perp e_j$ is an orthogonal basis.
- If, additionally, $\forall i \ \|e_i\| = 1$, then e_1, \dots, e_n is an *orthonormal basis*. Example:

$$e_1=egin{bmatrix}1\\0\\\vdots\\0\end{bmatrix},\ e_2=egin{bmatrix}0\\1\\\vdots\\0\end{bmatrix},\ \dots,\ e_n=egin{bmatrix}0\\0\\\vdots\\1\end{bmatrix}$$
 is an orthonormal basis of \mathbb{R}^n .

• *Gram-Schmidt process*: a way to convert any basis to an orthogonal one. More details: practical session.

Change of Basis

• A vector space has more than one basis.

- A vector space has more than one basis.
- Example: \mathbb{R}^2

$$e = \left\{ e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$$
 - canonical basis;

- A vector space has more than one basis.
- Example: \mathbb{R}^2

$$e = \left\{ e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$$
 - canonical basis;

$$a = \{a_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, a_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \}$$
 - another basis;

- A vector space has more than one basis.
- Example: \mathbb{R}^2

$$e = \left\{ e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$$
 - canonical basis;

$$a = \left\{ a_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, a_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\} - \text{another basis};$$

$$b = \{b_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, b_2 = \begin{bmatrix} -1 \\ -1 \end{bmatrix} \}$$
 - yet another one.

- A vector space has more than one basis.
- Example: \mathbb{R}^2

$$e = \left\{e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}\right\}$$
 - canonical basis;

$$a = \left\{ a_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, a_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\} - \text{another basis;}$$

$$b = \{b_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, b_2 = \begin{bmatrix} -1 \\ -1 \end{bmatrix} \}$$
 - yet another one.

Different basis = different coordinates.
 How exactly do they change?

• Consider \mathbb{R}^2 with canonical basis

$$e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \qquad e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

• Consider \mathbb{R}^2 with canonical basis

$$e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \qquad e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

New basis:

$$e'_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \qquad e'_2 = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$$

• Consider \mathbb{R}^2 with canonical basis

$$e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
, $e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

New basis:

$$e'_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \qquad e'_2 = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$$

•
$$x_{old} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$

• Consider \mathbb{R}^2 with canonical basis

$$e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
, $e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

New basis:

$$e'_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \qquad e'_2 = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$$

•
$$x_{old} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$

• What are the coordinates in the new basis?

$$x_{new} = ?$$

• Consider a vector space V with basis $e_1, e_2, \dots e_n$.

- Consider a vector space V with basis $e_1, e_2, \dots e_n$.
- Imagine vector $x = [x_1, x_2, ..., x_n] \in V$ $x_1, x_2, ..., x_n$ - coordinates in basis $e_1, e_2, ..., e_n$.

- Consider a vector space V with basis $e_1, e_2, \dots e_n$.
- Imagine vector $x = [x_1, x_2, ..., x_n] \in V$ $x_1, x_2, ..., x_n$ - coordinates in basis $e_1, e_2, ..., e_n$.
- New basis: $e'_1, e'_2, \dots e'_n$.

- Consider a vector space V with basis $e_1, e_2, \dots e_n$.
- Imagine vector $x = [x_1, x_2, ..., x_n] \in V$ $x_1, x_2, ..., x_n$ - coordinates in basis $e_1, e_2, ..., e_n$.
- New basis: e'_1 , e'_2 , ... e'_n .
- What are the coordinates of x in this new basis?

$$x'_{1}, x'_{2}, ..., x'_{n} = ?$$

- Old basis: $e_1, e_2, \dots e_n$ New basis: $e'_1, e'_2, \dots e'_n$
- $x_{old} = [x_1, x_2, ..., x_n], \quad x_{new} = [x'_1, x'_2, ..., x'_n] = ?$
- Coordinates of the new basis in the old one:

- Old basis: $e_1, e_2, \dots e_n$ New basis: $e'_1, e'_2, \dots e'_n$
- $x_{old} = [x_1, x_2, ..., x_n], \quad x_{new} = [x'_1, x'_2, ..., x'_n] = ?$
- Coordinates of the new basis in the old one:

$$e'_{1} = \alpha_{11}e_{1} + \alpha_{21}e_{2} + \dots + \alpha_{n1}e_{n}$$

$$e'_{2} = \alpha_{12}e_{1} + \alpha_{22}e_{2} + \dots + \alpha_{n2}e_{n}$$

$$\vdots$$

$$e'_{i} = \alpha_{1i}e_{1} + \alpha_{2i}e_{2} + \dots + \alpha_{ni}e_{n}$$

$$\vdots$$

$$e'_{n} = \alpha_{1n}e_{1} + \alpha_{2n}e_{2} + \dots + \alpha_{nn}e_{n}$$

$$x = x_1 e_1 + x_2 e_2 + \dots + x_n e_n = x'_1 e'_1 + x'_2 e'_2 + \dots + x'_n e'_n = x'_1 e'_1 + x'_2 e'_1 + x'_2 e'_2 + \dots + x'_n e'_n = x'_1 e'_1 + x'_2 e'_2 + x'_2 e'_2 + x'_2 e'_1 + x'_2 e'_2 + x'$$

$$x = x_1 e_1 + x_2 e_2 + \dots + x_n e_n = x'_1 e'_1 + x'_2 e'_2 + \dots x'_n e'_n =$$
Remember: $e'_i = \alpha_{1i} e_1 + \alpha_{2i} e_2 + \dots + \alpha_{ni} e_n$

$$x = x_1 e_1 + x_2 e_2 + \dots + x_n e_n = x'_1 e'_1 + x'_2 e'_2 + \dots x'_n e'_n =$$
 Remember: $e'_i = \alpha_{1i} e_1 + \alpha_{2i} e_2 + \dots + \alpha_{ni} e_n$
$$= x'_1 \cdot (\alpha_{11} e_1 + \alpha_{21} e_2 + \dots + \alpha_{n1} e_n) + \dots + x'_i \cdot (\alpha_{1i} e_1 + \alpha_{2i} e_2 + \dots + \alpha_{ni} e_n) + \dots + x'_n (\alpha_{1n} e_1 + \alpha_{2n} e_2 + \dots + \alpha_{nn} e_n) =$$

$$x = x_1 e_1 + x_2 e_2 + \dots + x_n e_n = x'_1 e'_1 + x'_2 e'_2 + \dots x'_n e'_n =$$
Remember: $e'_i = \alpha_{1i} e_1 + \alpha_{2i} e_2 + \dots + \alpha_{ni} e_n$

$$= x'_{1} \cdot (\alpha_{11}e_{1} + \alpha_{21}e_{2} + \dots + \alpha_{n1}e_{n}) + \dots + x'_{i} \cdot (\alpha_{1i}e_{1} + \alpha_{2i}e_{2} + \dots + \alpha_{ni}e_{n}) + \dots + x'_{n}(\alpha_{1n}e_{1} + \alpha_{2n}e_{2} + \dots + \alpha_{nn}e_{n}) =$$

 $e_1, ..., e_n$ linearly independent -> coefficients in front of them should be the same on the both sides of the equality:

$$x = x_1 e_1 + x_2 e_2 + \dots + x_n e_n = x'_1 e'_1 + x'_2 e'_2 + \dots x'_n e'_n =$$

$$\text{Remember: } e'_i = \alpha_{1i} e_1 + \alpha_{2i} e_2 + \dots + \alpha_{ni} e_n$$

$$= x'_{1} \cdot (\alpha_{11}e_{1} + \alpha_{21}e_{2} + \dots + \alpha_{n1}e_{n}) + \dots + x'_{i} \cdot (\alpha_{1i}e_{1} + \alpha_{2i}e_{2} + \dots + \alpha_{ni}e_{n}) + \dots + x'_{n}(\alpha_{1n}e_{1} + \alpha_{2n}e_{2} + \dots + \alpha_{nn}e_{n}) =$$

 $e_1, ..., e_n$ linearly independent -> coefficients in front of them should be the same on the both sides of the equality:

$$x_{1} = x'_{1}\alpha_{11} + \dots + x'_{i}\alpha_{1i} + \dots + x'_{n}\alpha_{1n}$$

$$x_{2} = x'_{1}\alpha_{21} + \dots + x'_{i}\alpha_{2i} + \dots + x'_{n}\alpha_{2n}$$

$$\vdots$$

$$x_{n} = x'_{1}\alpha_{n1} + \dots + x'_{i}\alpha_{ni} + \dots + x'_{n}\alpha_{nn}$$

$$x = x_1 e_1 + x_2 e_2 + \dots + x_n e_n = x'_1 e'_1 + x'_2 e'_2 + \dots x'_n e'_n =$$
 Remember: $e'_i = \alpha_{1i} e_1 + \alpha_{2i} e_2 + \dots + \alpha_{ni} e_n$
$$= x'_1 \cdot (\alpha_{11} e_1 + \alpha_{21} e_2 + \dots + \alpha_{n1} e_n) + \dots + x'_i \cdot (\alpha_{1i} e_1 + \alpha_{2i} e_2 + \dots + \alpha_{ni} e_n) + \dots + x'_n (\alpha_{1n} e_1 + \alpha_{2n} e_2 + \dots + \alpha_{nn} e_n) =$$

$$x_{old} = x'_{1}\alpha_{11} + \dots + x'_{i}\alpha_{1i} + \dots + x'_{n}\alpha_{1n}$$

$$x_{2} = x'_{1}\alpha_{21} + \dots + x'_{i}\alpha_{2i} + \dots + x'_{n}\alpha_{2n}$$

$$\vdots$$

$$x_{n} = x'_{1}\alpha_{n1} + \dots + x'_{i}\alpha_{ni} + \dots + x'_{n}\alpha_{nn}$$

$$x = x_1 e_1 + x_2 e_2 + \dots + x_n e_n = x'_1 e'_1 + x'_2 e'_2 + \dots x'_n e'_n =$$
 Remember: $e'_i = \alpha_{1i} e_1 + \alpha_{2i} e_2 + \dots + \alpha_{ni} e_n$
$$= x'_1 \cdot (\alpha_{11} e_1 + \alpha_{21} e_2 + \dots + \alpha_{n1} e_n) + \dots + x'_i \cdot (\alpha_{1i} e_1 + \alpha_{2i} e_2 + \dots + \alpha_{ni} e_n) + \dots + x'_n (\alpha_{1n} e_1 + \alpha_{2n} e_2 + \dots + \alpha_{nn} e_n) =$$

$$x_{old} = x'_{1}\alpha_{11} + \dots + x'_{i}\alpha_{1i} + \dots + x'_{n}\alpha_{1n}$$

$$x_{2} = x'_{1}\alpha_{21} + \dots + x'_{i}\alpha_{2i} + \dots + x'_{n}\alpha_{2n}$$

$$\vdots$$

$$x_{n} = x'_{1}\alpha_{n1} + \dots + x'_{i}\alpha_{ni} + \dots + x'_{n}\alpha_{nn}$$

 x_{new}

$$x = x_1 e_1 + x_2 e_2 + \dots + x_n e_n = x'_1 e'_1 + x'_2 e'_2 + \dots x'_n e'_n =$$
 Remember: $e'_i = \alpha_{1i} e_1 + \alpha_{2i} e_2 + \dots + \alpha_{ni} e_n$
$$= x'_1 \cdot (\alpha_{11} e_1 + \alpha_{21} e_2 + \dots + \alpha_{n1} e_n) + \dots + x'_i \cdot (\alpha_{1i} e_1 + \alpha_{2i} e_2 + \dots + \alpha_{ni} e_n) + \dots + x'_n (\alpha_{1n} e_1 + \alpha_{2n} e_2 + \dots + \alpha_{nn} e_n) =$$

 x_{new}

• Consider
$$\mathbb{R}^2$$
 with basis $e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

• New basis:
$$e'_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
, $e'_2 = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$

•
$$x_{old} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$
, $x_{new} = \begin{bmatrix} x'_1 \\ x'_2 \end{bmatrix}$

- Consider \mathbb{R}^2 with basis $e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$
- New basis: $e'_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, $e'_2 = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$
- $x_{old} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$, $x_{new} = \begin{bmatrix} x_1' \\ x_2' \end{bmatrix}$

- Consider \mathbb{R}^2 with basis $e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$
- New basis: $e'_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, $e'_2 = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$
- $x_{old} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$, $x_{new} = \begin{bmatrix} x_1' \\ x_2' \end{bmatrix}$

 $x_{1} = x'_{1}\alpha_{11} + \dots + x'_{i}\alpha_{1i} + \dots + x'_{n}\alpha_{1n}$ $x_{2} = x'_{1}\alpha_{21} + \dots + x'_{i}\alpha_{2i} + \dots + x'_{n}\alpha_{2n}$ \vdots $x_{n} = x'_{1}\alpha_{n1} + \dots + x'_{i}\alpha_{ni} + \dots + x'_{n}\alpha_{nn}$ x_{new}

$$2 = 2x'_1 - 1x'_2$$
$$-1 = 1x'_1 - 1x'_2$$

Coordinate Change: Example

- Consider \mathbb{R}^2 with basis $e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$
- New basis: $e'_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, $e'_2 = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$

•
$$x_{old} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$
, $x_{new} = \begin{bmatrix} x_1' \\ x_2' \end{bmatrix}$

 $x_{1} = x'_{1}\alpha_{11} + \dots + x'_{i}\alpha_{1i} + \dots + x'_{n}\alpha_{1n}$ $x_{2} = x'_{1}\alpha_{21} + \dots + x'_{i}\alpha_{2i} + \dots + x'_{n}\alpha_{2n}$ \vdots $x_{n} = x'_{1}\alpha_{n1} + \dots + x'_{i}\alpha_{ni} + \dots + x'_{n}\alpha_{nn}$

 x_{new}

$$2 = 2x'_1 - 1x'_2 \iff x'_1 = 3$$

$$-1 = 1x'_1 - 1x'_2 \iff x'_2 = 4$$

Coordinate Change: Example

- Consider \mathbb{R}^2 with basis $e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$
- New basis: $e'_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, $e'_2 = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$

 e'_i $x_{old} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}, \quad x_{new} = \begin{bmatrix} x_1' \\ x_2' \end{bmatrix}$ $x_{old} = \begin{bmatrix} x_1 \\ x_2' \end{bmatrix}$ $x_{old} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}, \quad x_{new} = \begin{bmatrix} x_1' \\ x_2' \end{bmatrix}$ x_{new}

$$2 = 2x'_1 - 1x'_2
-1 = 1x'_1 - 1x'_2 \Leftrightarrow x'_1 = 3
x'_2 = 4 \Leftrightarrow x_{new} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$$

Coordinate Change

• Going from one basis to the other:

Coordinate Change

• Going from one basis to the other:

There is a more compact way of writing this down using matrices.

Matrices

A Matrix

• $A \in \mathbb{R}^{m \times n}$ - a matrix with m rows and n columns:

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

A Matrix

• $A \in \mathbb{R}^{m \times n}$ - a matrix with m rows and n columns:

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

• Examples:

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \in \mathbb{R}^{2 \times 2}, \quad \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \in \mathbb{R}^{2 \times 3}$$

Diagonal matrix:
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} \quad (a_{ii} \neq 0, \ a_{ij} = 0 \ \forall i \neq j)$$

• Diagonal matrix:
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} \quad (a_{ii} \neq 0, \ a_{ij} = 0 \ \forall i \neq j)$$

• Identity matrix:
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \left(a_{ii} = 1, \ a_{ij} = 0 \ \forall i \neq j \right)$$

• Diagonal matrix:
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} \quad (a_{ii} \neq 0, \ a_{ij} = 0 \ \forall i \neq j)$$

• Identity matrix:
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad (a_{ii} = 1, \ a_{ij} = 0 \ \forall i \neq j)$$

• Symmetric matrix:
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} \quad (a_{ij} = a_{ji})$$

• Diagonal matrix:
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} \quad (a_{ii} \neq 0, \ a_{ij} = 0 \ \forall i \neq j)$$

• Symmetric matrix:
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} \quad (a_{ij} = a_{ji})$$

• Triangular matrix:
$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 2 & 3 & 0 \\ 4 & 5 & 6 \end{bmatrix} \quad (a_{ij} = 0 \ \forall i > j \ or \ \forall i < j)$$

Vectors vs Matrices

• An n-dimensional vector can be considered a $n \times 1$ matrix:

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^{n \times 1}$$

Operations with Matrices

Transpose of a Matrix

Consider a matrix

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

Transpose of a Matrix

Consider a matrix

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

Transpose = writing columns as rows:

$$A^T = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \cdots & \cdots & \cdots & \cdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{bmatrix}, \qquad \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}^T = [x_1, \dots, x_n]$$
 girafe

Transpose of a Matrix: Example

$$\bullet \quad \begin{bmatrix} 0 & 1 & 2 \\ 2 & 1 & 5 \end{bmatrix}^{\mathrm{T}} = \begin{bmatrix} 0 & 2 \\ 1 & 1 \\ 2 & 5 \end{bmatrix}$$

Transpose of a Matrix: Example

• Transposing a symmetrical matrix = no changes:

$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 2 \\ 3 & 2 & 1 \end{bmatrix}^T = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 2 \\ 3 & 2 & 1 \end{bmatrix}$$

Multiplying by a Scalar

• We can multiply matrix by a scalar:

$$\lambda A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} = \begin{bmatrix} \lambda a_{11} & \lambda a_{12} & \cdots & \lambda a_{1n} \\ \lambda a_{21} & \lambda a_{22} & \cdots & \lambda a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ \lambda a_{m1} & \lambda a_{m2} & \cdots & \lambda a_{mn} \end{bmatrix}$$

Multiplying by a Scalar

• We can multiply matrix by a scalar:

$$\lambda A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \end{bmatrix} = \begin{bmatrix} \lambda a_{11} & \lambda a_{12} & \cdots & \lambda a_{1n} \\ \lambda a_{21} & \lambda a_{22} & \cdots & \lambda a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

Example:

$$5 \cdot \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix}$$

Sum of Two Matrices

We can sum up matrices of the same size:

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}, \qquad B = \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ b_{m1} & b_{m2} & \cdots & b_{mn} \end{bmatrix},$$

$$A + B = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} & \cdots & a_{2n} + b_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \cdots & a_{mn} + b_{mn} \end{bmatrix}$$

Sum of Two Matrices

We can sum up matrices of the same size:

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}, \qquad B = \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ b_{m1} & b_{m2} & \cdots & b_{mn} \end{bmatrix},$$

$$A + B = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} & \cdots & a_{2n} + b_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \cdots & a_{mn} + b_{mn} \end{bmatrix}$$

• Example:

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} -1 & 2 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 0 & 2 \\ 0 & 4 \end{bmatrix}$$

Matrices Also Form a Vector Space!

• $(\mathbb{R}^{m \times n}, +, \cdot)$ - a vector space. "Vectors" = matrices.

Matrices Also Form a Vector Space!

• $(\mathbb{R}^{m \times n}, +, \cdot)$ - a vector space. "Vectors" = matrices.

You can check yourself that the necessary axioms hold.

Matrix Multiplication

- Consider two matrices $A = \{a_{ij}\}_{m \times n}$ and $b = \{b_{ij}\}_{n \times p}$.
- C = AB product of two matrices.

Matrix Multiplication

- Consider two matrices $A = \{a_{ij}\}_{m \times n}$ and $b = \{b_{ij}\}_{n \times p}$.
- C = AB product of two matrices.
- Each element c_{ij} of C is a dot product of i-th row of A and j-th column of B: $C = \left\{c_{ij}\right\}_{m \times p} = \left\{\left(A_i, B^j\right)\right\}_{m \times p}$

Matrix Multiplication

- Consider two matrices $A = \{a_{ij}\}_{m \times n}$ and $b = \{b_{ij}\}_{n \times p}$.
- C = AB product of two matrices.
- Each element c_{ij} of C is a dot product of i-th row of A and j-th column of B: $C = \left\{c_{ij}\right\}_{m \times p} = \left\{\left(A_i, B^j\right)\right\}_{m \times p}$

• Example $\mathbb{R}^{2 \times 2}$: $\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \cdot \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \end{bmatrix}$

Matrix Multiplication: Example

$$\begin{bmatrix} 0 & 1 & 2 \\ 2 & 1 & 5 \end{bmatrix} \begin{bmatrix} 3 & 6 & 4 \\ 2 & 5 & 8 \\ 7 & 1 & 9 \end{bmatrix} =$$

Matrix Multiplication: Example

$$\begin{bmatrix} 0 & 1 & 2 \\ 2 & 1 & 5 \end{bmatrix} \begin{bmatrix} 3 & 6 & 4 \\ 2 & 5 & 8 \\ 7 & 1 & 9 \end{bmatrix} =$$

$$= \begin{bmatrix} 0+2+14 & 0+5+2 & 0+8+18 \\ 6+2+35 & 12+5+5 & 8+8+45 \end{bmatrix} =$$

Matrix Multiplication: Example

$$\begin{bmatrix} 0 & 1 & 2 \\ 2 & 1 & 5 \end{bmatrix} \begin{bmatrix} 3 & 6 & 4 \\ 2 & 5 & 8 \\ 7 & 1 & 9 \end{bmatrix} =$$

$$= \begin{bmatrix} 0+2+14 & 0+5+2 & 0+8+18 \\ 6+2+35 & 12+5+5 & 8+8+45 \end{bmatrix} =$$

$$= \begin{bmatrix} 16 & 7 & 26 \\ 43 & 22 & 61 \end{bmatrix}$$

Coordinate Change: Matrix Notation

Result obtained before:

$$e_1, ..., e_n$$
 - old basis $e'_1, ..., e'_n$ - new basis

$$x_{old} = [x_1, ..., x_n], \qquad x_{new} = [x'_1, ..., x'_n]$$

Coordinate Change: Matrix Notation

Result obtained before:

$$e_1, ..., e_n$$
 - old basis $e'_1, ..., e'_n$ - new basis

$$x_{old} = [x_1, ..., x_n], \qquad x_{new} = [x'_1, ..., x'_n]$$

 Transition matrix: columns = coordinates of the new basis in the old one.

$$A = \begin{bmatrix} \alpha_{11} & \alpha_{12} & \dots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & \dots & \alpha_{21} \\ \vdots & \vdots & \vdots & \vdots \\ \alpha_{n1} & \alpha_{n2} & \dots & \alpha_{nn} \end{bmatrix}$$

Coordinate Change: Matrix Notation

Result obtained before:

$$e_1, ..., e_n$$
 - old basis $e'_1, ..., e'_n$ - new basis

$$x_{old} = [x_1, ..., x_n], \qquad x_{new} = [x'_1, ..., x'_n]$$

 Transition matrix: columns = coordinates of the new basis in the old one.

$$A = \begin{bmatrix} \alpha_{11} & \alpha_{12} & \dots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & \dots & \alpha_{21} \\ \vdots & \vdots & \vdots & \vdots \\ \alpha_{n1} & \alpha_{n2} & \dots & \alpha_{nn} \end{bmatrix}$$

$$x_{old} = Ax_{new}$$

• Consider
$$\mathbb{R}^2$$
 with basis $e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

• New basis:
$$e'_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
, $e'_2 = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$

•
$$x_{old} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$
, $x_{new} = \begin{bmatrix} x'_1 \\ x'_2 \end{bmatrix} = ?$

• Consider
$$\mathbb{R}^2$$
 with basis $e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

• New basis:
$$e'_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
, $e'_2 = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$

•
$$x_{old} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$
, $x_{new} = \begin{bmatrix} x'_1 \\ x'_2 \end{bmatrix} = ?$

$$A = \begin{bmatrix} 2 & -1 \\ 1 & -1 \end{bmatrix},$$

• Consider
$$\mathbb{R}^2$$
 with basis $e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

• New basis:
$$e'_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
, $e'_2 = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$

•
$$x_{old} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$
, $x_{new} = \begin{bmatrix} x'_1 \\ x'_2 \end{bmatrix} = ?$

$$A = \begin{bmatrix} 2 & -1 \\ 1 & -1 \end{bmatrix}, \qquad \begin{bmatrix} 2 \\ -1 \end{bmatrix} = x_{old} = Ax_{new} = Ax_{new}$$

- Consider \mathbb{R}^2 with basis $e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$
- New basis: $e'_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, $e'_2 = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$

•
$$x_{old} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$
, $x_{new} = \begin{bmatrix} x'_1 \\ x'_2 \end{bmatrix} = ?$

$$A = \begin{bmatrix} 2 & -1 \\ 1 & -1 \end{bmatrix}, \qquad \begin{bmatrix} 2 \\ -1 \end{bmatrix} = x_{old} = Ax_{new} = \begin{bmatrix} 2 & -1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1' \\ x_2' \end{bmatrix} =$$

- Consider \mathbb{R}^2 with basis $e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$
- New basis: $e'_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, $e'_2 = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$

•
$$x_{old} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$
, $x_{new} = \begin{bmatrix} x'_1 \\ x'_2 \end{bmatrix} = ?$

$$A = \begin{bmatrix} 2 & -1 \\ 1 & -1 \end{bmatrix}, \qquad \begin{bmatrix} 2 \\ -1 \end{bmatrix} = x_{old} = Ax_{new} = \begin{bmatrix} 2 & -1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} 2x_1' - x_2' \\ x_1' - x_2' \end{bmatrix}$$

- Consider \mathbb{R}^2 with basis $e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$
- New basis: $e'_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, $e'_2 = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$

•
$$x_{old} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$
, $x_{new} = \begin{bmatrix} x'_1 \\ x'_2 \end{bmatrix} = ?$

$$A = \begin{bmatrix} 2 & -1 \\ 1 & -1 \end{bmatrix}, \qquad \begin{bmatrix} 2 \\ -1 \end{bmatrix} = x_{old} = Ax_{new} = \begin{bmatrix} 2 & -1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} 2x_1' - x_2' \\ x_1' - x_2' \end{bmatrix}$$

$$x_{new} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$$
.

To Sum Up

- Vector spaces
 - Linear (in)dependence
 - Span
 - Basis
- Matrices
 - Matrix operations
 - Change of coordinates

Next Time

- More on matrices
- Systems of linear equations

