Colles de mathématiques en PCSI 5

8 novembre 2011

Programme

Géométrie du plan et de l'espace : produit scalaire, produit mixte, produit vectoriel. Déterminant d'un systeme de vecteurs en dimension 2 et 3. Calcul de déterminants d'ordre 2 et 3. Équation paramétrée et cartesienne des droites du plan, des plans et des droites de l'espace. Problèmes métriques du plan : projeté orthogonal, distance d'un point à une droite, cercle coordonnées polaires. Problèmes métriques de l'espace : projeté orthogonal, distance d'un point à une droite, distance d'un point à un plan, perpendiculaire commune, sphère, coordonnées spherique et cylindrique.

Exercice nº 1

Prouver que pour tous $x_1, x_2, x_3, y_1, y_2, y_3 \in \mathbb{R}$, on a

$$|x_1y_1 + x_2y_2 + x_3y_3| \le \sqrt{x_1^2 + x_2^2 + x_3^2} \sqrt{y_1^2 + y_2^2 + y_3^2}.$$

En donner une interprétation géométrique.

Exercice nº 2

On munit le plan d'un repère orthonormé et on considère deux droites non verticales dans ce repère, de pentes p et p'.

Donner une condition nécessaire et suffisante sur p et p' pour que les droites soient orthogonales.

Exercice nº 3

[Isométries de \mathbb{C}] On appelle isométrie du plan complexe toute application $f:\mathbb{C}\to\mathbb{C}$ qui est telle que

$$\forall z, z' \in \mathbb{C}, |f(z) - f(z')| = |z - z'|.$$

On note γ la conjugaison : $\forall z \in \mathbb{C}, \ \gamma(z) = \bar{z}$.

- 1. Pour tous $a \in \mathbb{C}$ et $u \in \mathbb{U} = \{z \in \mathbb{C} \mid |z| = 1\}$, prouver que les applications $\varphi_{a,u}(z) = uz + a$ et $\psi_{a,u}(z) = u\bar{z} + a$ sont des isométries.
- 2. Prouver que la composée de deux isométries est une isométrie.
- **3.** Soit f une isométrie de $\mathbb C$ telle que f(0)=0 et f(1)=1. Prouver que pour tout $z\in\mathbb C,\, f(z)=z$ ou $f(z)=\bar z.$

Montrer alors que:

$$f(i) = i \Rightarrow f = \mathrm{Id}_{\mathbb{C}};$$

 $f(i) = -i \Rightarrow f = \gamma.$

4. Prenons à présent f une isométrie quelconque. Posons a = f(0) et u = f(1) - f(0). Vérifier que $u \in \mathbb{U}$. Montrer que nécessairement, f(i) = a + iu ou f(i) = a - iu. Prouver alors que

$$f(i) = a + iu \Rightarrow f = \varphi_{a,u};$$

 $f(i) = a - iu \Rightarrow f = \psi_{a,u}.$

(On pourra considérer $\varphi_{-a,u^{-1}} \circ f$ et $\psi_{-a,u^{-1}} \circ f$.)

Exercice nº 4

[Identité du parallélogramme] Soient \vec{u}, \vec{v} deux vecteurs. Prouver que

$$\|\vec{u} + \vec{v}\|^2 + \|\vec{u} - \vec{v}\|^2 = 2(\|\vec{u}\|^2 + \|\vec{v}\|^2).$$

En donner une interprétation géométrique.

Exercice nº 5

Déterminer les complexes $z \in \mathbb{C}^*$ tels que M(z), $N(z^2)$ et $P\left(\frac{1}{z}\right)$ soient alignés.

Exercice nº 6

Soit M un point du plan d'affixe z = x + iy. Établir une expression d'un argument de z en fonction de x et y selon la position de M dans le plan.

Donner le domaine de validité de la formule

$$\operatorname{Arg}(z) = 2 \arctan\left(\frac{y}{x + \sqrt{x^2 + y^2}}\right).$$

Exercice nº 7

Dans le plan, soit Γ le cercle de centre O et de rayon R > 0. Soient $\alpha, \beta, \gamma \in [0, 2\pi[$ et A, B, C les points du cercles leur correspondant, c'est à dire de coordonnées polaires respectives (R, α) , (R, β) et (R, γ) .

1. Montrer que les coordonnées de l'orthocentre H du triangle ABC sont

$$(R(\cos(\alpha) + \cos(\beta) + \cos(\gamma)), R(\sin(\alpha) + \sin(\beta) + \sin(\gamma))).$$

- 2. On rajoute un quatrième point $D(\delta)$). On note H_1 , H_2 , H_3 , H_4 les orthocentres respectifs des triangles BCD, ACD, ABD, ABC. On définit enfin S comme étant le point de coordonnées (x_S, y_S) , avec
 - $x_S = \frac{R}{2}(\cos(\alpha) + \cos(\beta) + \cos(\gamma) + \cos(\delta));$
 - $y_S = \frac{R}{2}(\sin(\alpha) + \sin(\beta) + \sin(\gamma) + \sin(\delta)).$

Prouver que le quadrilatère $H_1H_2H_3H_4$ est l'image du quarilatère ABCD par σ_S , la symétrie centrale de centre S.

Exercice nº 8

[Formule de Gibbs et division vectorielle] Soient \vec{u} , \vec{v} , \vec{w} trois vecteurs de \mathbb{R}^3 .

1. Prouver la formule de Gibbs

$$\vec{u} \wedge (\vec{v} \wedge \vec{w}) = (\vec{u}.\vec{w}) \vec{v} - (\vec{u}.\vec{v}) \vec{w}.$$

2. Montrer que si $\vec{u}, \vec{v} \neq \vec{0}$ s'il existe $\vec{x} \in \mathbb{R}^3$ tel que $\vec{u} \wedge \vec{x} = \vec{v}$, alors $\vec{u}. \vec{v} = 0$ et que \vec{x} s'écrit $\vec{x} = \lambda \vec{u} + \mu \vec{u} \wedge \vec{v}$.

En déduire, quand $\vec{u} \cdot \vec{v} = 0$, toutes les solutions de l'équation $\vec{u} \wedge \vec{x} = \vec{v}$.

Exercice nº 9

Dans \mathbb{R}^3 , déterminer l'image de l'axe (Oz) par la réflexion orthogonale par rapport au plan d'équation x+2y+3z-1=0.

Exercice nº 10

[Puissance d'un point par rapport à un cercle, orthogonalité de cercles]

Soient \mathcal{C} un cercle et A un point du plan. On se donne une droite arbitraire qui passe par A et qui coupe \mathcal{C} en deux points M et M'.

1. Prouver que la quantité $\overrightarrow{AM}.\overrightarrow{AM'}$ est indépendante du choix de la droite (du moment que celle-ci coupe le cercle bien-sûr).

On pourra introduire le projeté orthogonal du centre du cercle sur la droite.

Définition 1. Cette quantité indépendante de la droite est appelée puissance de A par rapport à C, et on la note $P_C(A)$.

2. Prouver que A est sur le cercle si et seulement si $P_{\mathcal{C}}(A) = 0$; et que A est à l'extérieur du cercle si et seulement si $P_{\mathcal{C}}(A) > 0$.

Définition 2. On dit que deux cercles \mathcal{C} et \mathcal{C}' sont orthogonaux quand leur angle est droit, c'est à dire lorsqu'ils se coupent et les tangentes au point d'intersection sont orthogonales.

- 3. En notant O,R et O',R' les centres et rayons respectifs de C et C', prouver que les cercles sont orthogonaux si et seulement si $P_{C'}(O) = R^2$. Remarquer que $P_{C'}(O) = R^2 \iff P_C(O') = R'^2$.
- **4.** Application: Soit I une inversion de cercle C. Soient M et M' un point du plan et son image par I. Alors tous les cercles passant par M et M' sont orthogonaux au cercle C.

Rappel: Soient O un point du plan et $k \neq 0$. On appelle inversion de pôle O et de puissance k la transformation définie partout sauf en O et qui est telle que pour tout $M \neq O$, l'image M' est donnée par

$$\overrightarrow{OM'} = \frac{k}{OM^2} \overrightarrow{OM}.$$

L'ensemble des points fixés par cette inversion est le cercle de centre O et de rayon \sqrt{k} . L'inversion échange alors intérieur et extérieur du cercle. Tout cercle est alors le cercle d'inversion d'une unique inversion.

Exercice nº 11

- 1. Rappeler la définition du produit mixte de 3 vecteurs, et en donner une interprétation géométrique.
- 2. En déduire que si P, Q, R sont non alignés et si P est le plan qu'ils engendrent, alors pour tout point A de l'espace, on a la relation suivante

$$d(A, \mathcal{P}) = \frac{|\det(\overrightarrow{AP}, \overrightarrow{AQ}, \overrightarrow{AR})|}{\|\overrightarrow{PQ} \wedge \overrightarrow{PR}\|},$$

où $d(A, \mathcal{P})$ désigne la distance de A au plan \mathcal{P} .

Exercice nº 12

Dans \mathbb{R}^3 , soit S=(1,1,1). Déterminer l'équation du cône d'axe (OS), de sommet S et de demi-angle au sommet $\frac{\pi}{6}$.

Indication: M est sur le cône si et seulement si $\cos(\overrightarrow{SM}, \overrightarrow{SO}) = \frac{\sqrt{3}}{2}$.

Exercice nº 13

Déterminer l'ensemble décrit par le système d'équation suivant et en donner les caractéristiques géométriques

$$\begin{cases} x^2 + y^2 + z^2 - 4x - 2y + 6z + 5 = 0\\ 2x - y + 3z - 2 = 0 \end{cases}$$

Exercice nº 14

Dans le plan, soient ABC un triangle et M, N, P les milieux respectifs des cotés [BC], [AC], [AB]. Notons

- O le centre du cercle circonscrit à ABC;
- G le centre de gravité de ABC;
- ω le centre du cercle circonscrit à MNP;
- H l'orthocentre de ABC.

On veut prouver que O, G, ω et H sont alignés.

- 1. Montrer que $\overrightarrow{OH} 3\overrightarrow{OG} = \overrightarrow{AH} 2\overrightarrow{OM}$. En déduire que $\overrightarrow{OH} = 3\overrightarrow{OG}$.
- **2.** Faire de même dans MNP.
- 3. Conclure.

Préciser en plus les positions relatives des points.

Exercice nº 15

[Plus difficile] Soient A, B deux points du plan et $\alpha \in [0, \pi[$. Déterminer le lieu des points M tels que $((AM), (BM)) = \alpha$.

Rappel : l'angle entre deux droites du plan est défini modulo π .

Indication : écarter les cas $\alpha=0$ ou $\frac{\pi}{2}$. Remarquer alors que $\frac{\overrightarrow{AM}.\overrightarrow{BM}}{\det(\overrightarrow{AM},\overrightarrow{BM})}=\frac{1}{\tan\alpha}$. Faire alors du calcul en coordonnées dans un repère bien choisi.