Agrupar els problemes 1 i 2 en fulls separats, tal com s'indica i responeu el problema 3 en el mateix enunciat. Justifiqueu les respostes. La data de revisió s'anunciarà en el racó. Duració: 2h45. El test es recollirà després de 30 minuts.

Problema 1. (2,5 punts) FULL 1.

Tenim una empresa amb unes Oficines Centrals i 4 Delegacions que es volen connectar a nivell IP. Una de les delegacions està en un altre continent i es decideix connectar-la a les Oficines Centrals a través d'Internet. Per a les altres 3 delegacions es decideix contractar una xarxa WAN privada a un operador local. En les Oficines Centrals tindrem també una sortida a Internet i una zona DMZ per ubicar servidors públics. En el següent esquema teniu com quedaria la connectivitat de les xarxes.

Es vol fer subnetting sobre el rang 10.10.0.0/16, amb una xarxa única IP d'almenys 600 adreces per xarxa N1-N5 (amb adreces més baixes per la xarxa Ni amb i més petit). Per a la DMZ es volen tenir almenys 200 adreces 192.168.0.x. Per als enllaços ppp de central i delegació 4 l'ISP ha assignat les adreces 200.200.10.1/32-200.200.10.2/32 i 200.200.10.3/32-200.200.10.4/32 respectivament (adreces més baixes per al costat d'Internet). Per al túnel T1 es vol fer servir l'adreçament 172.35.0.0/24 (adreces més baixes per al costat de central). Es vol fer sevir RIPv2. En la DMZ hi ha el servidor DNS que fa servir l'empresa i 2 servidors web.

- 1.A (0,7 punts) a) Proposeu un adreçament IP per a les xarxes N1-N5 tot indicant @IPnetwork/netmask (amb notació amb punts i amb la màscara més restrictiva possible). b) Anoteu el nombre màxim d'adreces que es podran fer servir per a hosts a cada xarxa Ni. c) Justifiqueu si les adreces IP 10.10.0.255 i 10.10.1.0 seran adreces vàlides per a hosts. d) Per a la DMZ anoteu la màscara mínima necessària i el nombre màxim de hosts que podrem adreçar.
- **1.B** (0,5 punts) Anoteu com quedarà la taula d'encaminament del Router-Firewall tot indicant @IPnetwork/mask bits, Gateway, Interface, Mètrica RIP. Suposeu que RIP no fa sumarització de rutes (anoteu les suposicions que feu).
- **1.C** (0,2 punts) Suposeu que es fa servir split-horitzon. Digueu quin serà el contingut del missatge d'update que el Router-Firewall enviarà pel túnel.
- **1.D** (0.4 punt) Si després d'executar en el Router-Firewall la comanda "show ip nat translation" tenim la següent taula:

Pro	Inside global	Inside local	Outside local	Outside global
Тср	200.200.10.1:80	192.168.0.3:80		
Тср	200.200.10.1:8080	192.168.0.4:80		

- a) Justifiqueu quin mecanisme s'ha activat en el Router-Firewall i el perquè es fan servir 2 ports diferents (80 i 8080).
- b) Justifiqueu quina entrada s'afegirà a la taula anterior si el host 10.10.10.10 fa un ping al host 200.200.200.200 a Internet. Expliqueu les suposicions que feu.
- 1.E (0.3 punts) Si suposem que hi ha 100 hosts connectats en la delegació 4 i que totes les taules de caché ARP estan buides justifiqueu quins missatges ARP, UDP i ICMP es generaran i quantes entrades s'afegiran en la taula ARP del host que fa el ping quan: a) un host de la delegació 4 fa un ping a la seva adreça de broadcast; b) un host de la delegació 4 fa un ping al nom d'un servidor web de l'empresa.
- 1.F (0.4 punts) Suposeu que en les mateixes condicions que en l'apartat E) hi ha un host PCx de la delegació 4 amb màscara errònia /16. justifiqueu quins missatges ARP, UDP i ICMP es generaran i quantes entrades s'afegiran en la taula ARP del host que fa el ping si: a) PCx fa un ping a l'adreça IP d'un host de la delegació 4 sense màscara errònia; b) PCx fa un ping a l'adreça IP d'un host de la central fa un ping al nom de PCx.

Agrupar els problemes 1 i 2 en fulls separats, tal com s'indica i responeu el problema 3 en el mateix enunciat. Justifiqueu les respostes. La data de revisió s'anunciarà en el racó. Duració: 2h45. El test es recollirà després de 30 minuts.

Problema 2. (2,5 punts) FULL 2.

La xarxa de la figura està formada per 312 estacions i 6 servidors. S'han configurat 3 VLANs. Els números que hi ha en els ports dels commutadors indiquen a quina VLAN pertanyen. Tots els ports on és possible tenen capacitat full duplex. Tots els enllaços son Fastethernet, excepte l'enllaç S1-S2 i S1-Router1 que són Gigabitethernet i l'enllaç amb Internet que és de 10 Mbps en ambdos sentits. L'eficiència màxima dels Hubs és del 80%. Suposa totes les estacions fan servir un tipus d'aplicació que: (i) fa servir connexions TCP (ii) pot accedir simultàniament a més d'un servidor, (iii) sempre té informació llesta per transmetre i rebre dels servidor, (iv) en mitjana rep i envia la mateixa quantitat de tràfic.

Contesta per als escenaris que es donen a continuació (Justifica les teves respostes i comenta les suposicions que facis):

- (a) Els enllaços on hi haurà els colls d'ampolla.
- (b) La velocitat efectiva agregada que aconsegueix enviar una estació de cada LAN (és a dir, la suma de les velocitats efectives enviades a tots els servidors als que accedeix). Fes servir la notació $v_{\rm ef}^1,...v_{\rm ef}^4$, per referir-te a la velocitat efectiva d'una estació de la LAN1,...LAN4.
- (c) Quins seran els mecanismes que regularan la velocitat efectiva de les estacions.?
- 2.A (1 punt) Totes les estacions accedeixen simultàniament a tots els servidors que hi ha en la seva VLAN.
- **2.B** (1 punt) Suposa (només per aquest apartat) que tots els servidors estan en la VLAN1, i que totes les estacions accedeixen simultàniament a tots els servidors.
- **2.C** (0,5 punts) Suposa que totes les estacions accedeixen a servidors que hi ha en Internet.

Examen final de	19/6/2009	
NOM:	COGNOMS	DNI:
servir HDLC (és un protoco d'error mesurada escollim transmissions és $N_t = 1,1$. Altres dades: la lon	s illes del Pacífic sud unides a través d'un cable de ARQ de Retransmissió Selectiva) com a nive configurar la targeta HDLC amb una MTI gitud de l'ACK d'HDLC és de 40 bit. La trangels terminals tenen capacitat de procés infinita.	ll d'enllaç a $v_t = 10$ Mbps. Amb la probabilitat $J = 1000$ B. Això ens dóna un nombre de
a) calcula el temps d'anada	i tornada ($T_{\rm T}$ ò RTT).	
b) calcula'n la finestra òptir	na.	
c) a partir de les dades prop	orcionades calcula l'eficiència de la trama (E_t)	

d) dóna la eficiència total ($E_{\rm T}$), tenint en compte la limitació de 3 bits per a identificar les trames.

e) per a millorar la compatibilitat amb el programari existent, decidim fer servir TCP/IP, i com que la probabilitat d'error no és gaire alta provem a <u>desactivar el control d'errors</u> d'HDLC (només fem servir trames "I" d'HDLC, o trames d'Informació). Si no fem servir l'opció <i>window scale</i> , i suposem que ara no hi ha errors de transmissió digues quina serà la velocitat efectiva de transmissió ($v_{\rm ef}$).
f) quin valor de window scale (factor multiplicador sobre el valor d'awnd) recomenaries? (seguim suposant que no hi ha errors de transmissió)
g) si tenim en compte les retransmissions comentades abans (ara sí tornem a tenir errors de transmissió), en règim permanent el llindar d' <i>Slow Start (ssthreshold</i>) es queda en només 2 MTU, però en mitja es produeix una pèrdua cada 10 segments aproximadament. Calcula'n la velocitat mitjana (aproximada).
h) la velocitat efectiva obtinguda a l'apartat anterior és molt inferior que fent servir un enllaç tal i com hem calculat al principi. Per a intentar corregir aquest problema, provem a reactivar el control d'errors de l'HDLC, tot i mantenint-hi TCP/IP a sobre (per a simplificar suposarem que no fem servir Window Scale). Quina veloctitat efectiva obtindrem ara?

Examen final de Xarxes de Computadors (XC) – Test			19/06/2009				
NOM:			DNI:				
Todas las preguntas son de respuesta única. Son 0,25 puntos si la respuesta es correcta, 0 en caso contrario. El test es recollirà després de 30 minuts.							
Un datagrama conteniendo un segmento TCP con un MSS de 1460 bytes ha de atravesar una subred con una MTU de 515 bytes. Asumiendo que se permite la fragmentación,							
1. ¿cuántos datagramas llegan al c que fragmentar más en el recorrido		2. ¿cuál es el tamaño (en bytes) del datagrama más pequeño que llega? □ 36 □ 508 □ 514 □ 515					
La tabla de Routing de un Router que utiliza RIP tiene las siguientes entradas: Destino, Gateway, Métrica A, G1, 2 B, G1, 3 C, G2, 4 D, G2, 3							
A continuación, llega de G1 el siguiente mensaje RIP (Destino/Métrica): A/1, B/3, C/2, E/2, 3. La tabla cambia a (sólo las filas modificadas): □ E, G1, 3 □ B, G1, 4; E, G1, 3 □ B, G1, 4; C, G1, 3; E, G1, 3 □ A, G1,1; B, G1, 3; C, G1, 2; E, G1, 2							
Tenemos una comunicación TCP con las siguientes características: Ventana anunciada = 8192 bytes; RTT = 200 ms; RTO = 400 ms; MSS = 1024 bytes. Si se envían 10240 bytes y se pierde el cuarto segmento,							
4. ¿Cuánto vale la ventana real al transmisión (una vez recibidos t □ 2048 bytes □ 4096 bytes □ 5120 bytes □ 8192 bytes		5. ¿Cuánto tiempo se tarda en enviar los 10240 bytes? 400 ms 800 ms 1200 ms 1400 ms					
6. PC1 y PC2 comparten un Hub FastEthernet conectado a un Router. PC1 transmite 50 Mbits y PC2 20 Mbits, ambos hacia un servidor más allá del Router y simultáneamente. Cuando los 2 PCs envían a la vez, consideramos una eficiencia Ethernet del 80%, en caso contrario será del 100%. ¿Cuánto vale (redondeada) la eficiencia total de la red medida desde el inicio de la transmisión hasta el final de la transmisión de PC1? □ 80 % □ 85 % □ 90 % □ 100 %							
7. Tenemos un cable con una atenuación de 4 dB/km. Se transmite una señal NRZ que se recibe a 12,5 km de distancia a través de dicho cable. ¿Con que potencia debemos transmitir la señal si tenemos 2 repetidores, uno a 5 km y otro a 10 km del origen, de 20 dB de ganancia si queremos que la señal no llegue por debajo de 1 mW? Nota: Suponer que los repetidores tienen una sensibilidad de 0,1 mW. 1 mW 10 mW 100 mW 100 mW							
Tenemos un canal con una SNR de 30 dB y un ancho de banda de 100 kHz por el que transmitimos con la máxima velocidad de modulación posible 4 símbolos distintos.							
8. ¿Cuánto vale el tiempo de símbolo? 1 microsegundo 5 microsegundos 10 microsegundos 50 microsegundos	9. ¿Cuánto vale la transmisión? ☐ 200 kbits/s ☐ 200 kHz ☐ 50 kBytes/s ☐ 600 kBytes/s	velocidad de	10. ¿Cuánto vale la capacidad del canal? ☐ 300 kbits/s ☐ 1 Mbit/s ☐ 3 Mbits/s ☐ 300 kHz				