الدورة الإستثنائية للعام 2011	امتحانات الشهادة الثانوية العامة الفرع : علوم عامة	وزارة التربية والتعليم العالي المديرية العامة للتربية
	· -	دائرة الامتحانات
الاسم: الرقم:	مسابقة في مادة الرياضيات المدة أربع ساعات	عدد المسائل: ست

ارشادات عامة :- يسمح باستعمال آلة حاسبة غير قابلة للبرمجة او اختزان المعلومات او رسم البيانات - يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالقزام بترتيب المسائل الوارد في المسابقة)

I-(2 points)

Dans le tableau suivant, une seule des réponses proposées à chaque question est correcte. Écrire le numéro de chaque question et donner en justifiant la réponse qui lui correspond.

N°	Questions	Réponses			
1		a	b	С	
1	Si f est la fonction donnée par $f(x) = \ln x$, alors le domaine de définition de $f \circ f$ est :]1;+∞[]0;+∞[]0;1[∪]1;+∞[
2	L'image par l'inversion I(O;1) du cercle (C) de centre O et de rayon 1 est :	(C)	une droite	un cercle passant par O	
3	La dérivée d'ordre n de la fonction donnée par $f(x) = \ln(x+1)$ est:	$\frac{(-1)^{n+1} n!}{(x+1)^n}$	$\frac{(-1)^{n-1}(n-1)!}{(x+1)^n}$	$\frac{(-1)^{n}(n-1)!}{(x+1)^{n}}$	
4	$\int \frac{1}{x^2 + 4x + 8} dx =$	$\arctan \frac{x+2}{2} + k$	$\frac{1}{2}\arctan\frac{x+2}{2}+k$	$\frac{1}{4}\arctan\frac{x+2}{2}+k$	
5	La fonction F définie sur $IR par F(x) = \int_{1}^{x^{2}} \frac{1}{(t^{2}+1)^{2}} dt$ est:	croissante sur IR	décroissante sur IR	non monotone sur IR	
6	ABC est un triangle tel que : AB = 5, BC= 4 et AC = $\sqrt{21}$. La médiane AI est égale à :	2	$\frac{5+\sqrt{21}}{2}$	√19	

II- (2 points)

Dans l'espace rapporté à un repère orthonormé direct $(O; \vec{i}, \vec{j}, \vec{k})$ on donne les points A(1;-1;1), B(2;0;3), C(-1;1;1) et G(4;2;4). On désigne par (P) le plan déterminé par A, B et C.

- 1) a- Calculer l'aire du triangle ABC.
 - b- Calculer le volume du tétraèdre GABC et déduire la distance de G au plan (P).
- 2) Prouver que x + y z + 1 = 0 est une équation du plan (P).
- 3) a- Montrer que le point F(2;0;6) est symétrique de G par rapport au plan (P).
 - b- Donner un système d'équations paramétriques de la droite (d) symétrique de la droite (AF) par rapport au plan (P).
 - c- Démontrer que la droite (AB) est une bissectrice de l'angle FAG.

III- (3 points)

A- Une urne U contient : cinq boules rouges portant chacune le nombre 2 et trois boules blanches portant chacune le nombre -3.

On tire simultanément et au hasard 4 boules de l'urne U.

Soit X la variable aléatoire égale à la somme des nombres portés par les 4 boules tirées.

- 1) Déterminer les 4 valeurs possibles de X.
- 2) Déterminer la loi de probabilité de X.
- **B-** Dans cette partie on suppose que l'urne U contient 5 boules rouges et n boules blanches (n >1). On tire simultanément et au hasard deux boules de l'urne.
 - 1) Calculer la probabilité de chacun des événements suivants :

E: « Les deux boules tirées sont rouges »

F : « Les deux boules tirées sont de la même couleur ».

- 2) a- Sachant que les deux boules tirées sont de la même couleur, montrer que la probabilité p qu'elles soient toutes les deux rouges, est $p = \frac{20}{n^2 n + 20}$.
 - b- Combien de boules blanches l'urne doit-elle contenir pour que l'on ait $p > \frac{10}{13}$?

IV- (3 points)

Dans le plan rapporté au repère orthonormé direct $(O; \vec{i}, \vec{j})$ on considère l'hyperbole (H) de foyer F(2; 0), de directrice la droite (d) d'équation $x = \frac{1}{2}$ et d'excentricité 2.

- 1) a- Ecrire une équation de (H) et déterminer son centre.
 - b- Déterminer les sommets et les asymptotes de (H). Tracer (H).
- 2) Soit (E) l'ellipse de foyer F, de centre O et d'excentricité $\frac{1}{2}$.
 - a- Déterminer les sommets de (E) et tracer (E) dans le même repère que (H).
 - b- Ecrire une équation de (E).
- 3) a- Vérifier que le point I(2;3) est un point d'intersection de (E) et (H).
 - b- Prouver que les tangentes en I à (E) et à (H) sont perpendiculaires.
- 4) Soit (D) le domaine limité par (E), (H) et les deux droites d'équations x = 1 et x = 2. Calculer le volume du solide engendré par la rotation de (D) autour de l'axe des abscisses.

V-(3 points)

On donne dans un plan orienté le rectangle OABE tel que OA = 2 et $(\overrightarrow{OA}, \overrightarrow{OB}) = \frac{\pi}{3}(2\pi)$.

On désigne par (C) le cercle de diamètre [OB] et de centre W.

Soit S la similitude plane directe de centre O, de rapport $\sqrt{3}$ et d'angle $\frac{\pi}{3}$.

A-

1) Soit A' le point de la demi-droite [OB) tel que $OA' = 2\sqrt{3}$. Prouver que A' est l'image de A par S.

c- Construire alors le cercle (C'), image de (C) par S.

B-

Le plan complexe est rapporté à un repère orthonormé direct $(O; \vec{u}, \vec{v})$, tel que :

$$z_A = 2$$
 et $z_E = 2\sqrt{3}i$.

- 1) Ecrire la forme complexe de S.
- 2) Trouver l'affixe de W et celle du point W', image de W par S.
- 3) Soit f la transformation plane de forme complexe $z' = iz + 4 + 2i\sqrt{3}$.
 - a- Montrer que f est une rotation dont on déterminera le centre H et un angle.
 - b- Vérifier que f(W') = W et déterminer $f \circ S(W)$.
 - c- Déterminer la nature et les éléments caractéristiques de $\,f\circ S\,.$

VI- (7 points)

A-

Soit f la fonction définie sur IR par $f(x) = x^2 e^{-2x}$ et (C) sa courbe représentative dans un repère orthonormé $(O; \vec{i}, \vec{j})$.

1) a- Calculer $\lim_{x\to +\infty} f(x)$ et déduire une asymptote à $\left(C\right)$.

b- Calculer
$$\lim_{x \to -\infty} f(x)$$
 et $\lim_{x \to -\infty} \frac{f(x)}{x}$.

- 2) Calculer f '(x) et dresser le tableau de variations de f.
- 3) a- Tracer la courbe (C).

b- Déterminer, suivant les valeurs du réel m, le nombre de solutions de l'équation : $me^{2x} - x^2 = 0$.

B-

Soit (I_n) la suite définie pour tout entier naturel n non nul par $I_n = \int_0^1 x^n e^{-2x} dx$.

- 1) Démontrer que $0 \le I_n \le \frac{1}{n+1}$.
- 2) Démontrer que (I_n) est décroissante.
- 3) Déduire que (I_n) est convergente et préciser sa limite.
- 4) En utilisant une intégration par parties, démontrer que $I_{n+1} = \frac{1}{2} \left[-\frac{1}{e^2} + (n+1)I_n \right]$.
- 5) Soit h la fonction définie sur IR par $h(x) = -\frac{1}{4}(2x+1)e^{-2x}$, calculer h'(x) puis calculer I_1 .
- 6) Déduire l'aire du domaine limité par la courbe (C), l'axe des abscisses et les deux droites d'équations x = 0 et x = 1.

C-

Soit g la fonction définie sur $]0;+\infty[$ par $g(x) = \ln(f(x))$.

- 1) Calculer $\lim_{x\to 0} g(x)$ et interpréter graphiquement le résultat.
- 2) Calculer $\lim_{x\to +\infty} g(x)$ et montrer que la courbe représentative de g admet une direction asymptotique.

4

- 3) Dresser le tableau de variations de g.
- 4) Tracer la courbe représentative de g dans un nouveau repère.

QI	Corrigé	Note
1	$f \circ f(x) = \ln(\ln(x)), \ x > 0 \text{ et } \ln x > 0 \Rightarrow x > 1. \tag{a}$	0.5
2	Le cercle (C) est l'ensemble des points invariants par I donc l'image de (C) est lui-même. (a)	0.5
3	$f'(x) = \frac{1}{x+1}$; $f''(x) = \frac{-1}{(x+1)^2} = \frac{(-1)^1 \times 1!}{(x+1)^2}$ (b)	0.5
4	$\int \frac{1}{x^2 + 4x + 8} dx = \frac{1}{4} \int \frac{1}{1 + \left(\frac{x+2}{2}\right)^2} dx = \frac{1}{2} \arctan\left(\frac{x+2}{2}\right) + K $ (b)	1
5	$F'(x) = \frac{2x}{(x^2 + 1)^2}; \text{ F est croissante sur } [0; +\infty[\text{ et décroissante sur }] -\infty; 0] \text{ donc f n'est pas}$ monotone sur IR. (c)	0.5
6	$AI^{2} = AB^{2} + BI^{2} - 2AB \times BI \cos B \qquad AC^{2} = AB^{2} + BC^{2} - 2AB \times BC \cos B \Rightarrow \cos B = \frac{1}{2};$ $AI^{2} = 19 \Rightarrow AI = \sqrt{19}$ (c)	1

QII	Corrigé	Note
1a	$S = \frac{\ \overrightarrow{AB} \wedge \overrightarrow{AC}\ }{2} ; \overrightarrow{AB} \wedge \overrightarrow{AC} = -4 \overrightarrow{i} - 4 \overrightarrow{j} + 4 \overrightarrow{k} ; S = 2\sqrt{3} u^{2}.$	0.5
1b	$V = \frac{ \overrightarrow{AG}.(\overrightarrow{AB} \land \overrightarrow{AC}) }{6} = \frac{ -12 }{6} = 2 u^3 ; V = \frac{d \times S}{3} \text{ d'où } d = \frac{3V}{S} = \frac{6}{2\sqrt{3}} = \sqrt{3}$	1
2	\rightarrow \rightarrow \rightarrow AM .(AB \land AC) = 0; -4(x-1)-4(y+1)+4(z-1)=0; x+y-z+1=0 \Rightarrow OU: Les coordonnées de A, B et C vérifient l'équation de (P).	0.5
3a	FG (2; 2; -2); N_P (1; 1; -1); $FG = 2$ N_P donc (FG) \perp (P). I milieu de [FG]; I(3; 1; 5); $3+1-5+1=0$ donc I appartient à (P). \Rightarrow OU: on démontre que (P) est le plan médiateur de [FG].	0.5
3b	(d) est la droite (AG): $x = m + 1$; $y = m - 1$ et $z = m + 1$.	0.5
3c	(AI) est la bissectrice de FAG car AF = AG et I milieu de [FG], \rightarrow \rightarrow \rightarrow \rightarrow or AI(2;2;4) et AB(1;1;2) donc AI = 2 AB et B appartient à la demi-droite [AI).	1

QIII	Corrigé				Note		
A1	Les 4 valeurs de X sont : -7; -2; 3 et 8.				0.5		
	X _i	-7	-2	3	8		
A2	p _i	$\frac{\mathbf{C}_3^3 \times \mathbf{C}_5^1}{\mathbf{C}_8^4} = \frac{1}{14}$	$\frac{C_3^2 \times C_5^2}{C_8^4} = \frac{3}{7}$	$\frac{C_5^3 \times C_3^1}{C_8^4} = \frac{3}{7}$	$\frac{C_5^4}{C_8^4} = \frac{1}{14}$		2
B1	$p(E) = \frac{C_5^2}{C_{n+5}^2} = \frac{1}{C_5^2}$	$\frac{20}{(n+5)(n+4)}$					1

	$p(F) = \frac{C_5^2 + C_n^2}{C_{n+5}^2} = \frac{20}{(n+4)(n+5)} + \frac{n(n-1)}{(n+4)(n+5)} = \frac{n^2 - n + 20}{(n+4)(n+5)}$	
B2a	$p(E/F) = \frac{p(E \cap F)}{p(F)} = \frac{p(E)}{p(F)} = \frac{20}{n^2 - n + 20}$	1.5
B2b	$\frac{20}{n^2 - n + 20} > \frac{10}{13} ; n^2 - n - 6 < 0; -2 < n < 3 \text{ mais } n > 1 \text{ donc } n = 2$	1

Q IV	Corrigé	Note
1a	$M(x,y) \in (H) ; MF^2 = 4d^2(M; (d)) ; x^2 - 4x + 4 + y^2 = 4x^2 - 4x + 1 .$ $(H) : x^2 - \frac{y^2}{3} = 1 . \text{ Le centre de } (H) \text{ est l'origine } O(0; 0) .$	1
1b	$a^2 = 1 , b^2 = 3$ Sommets de (H): $A(1;0) \text{ et A'}(-1;0).$ Asymptotes de (H): $(\delta_2) : y = -\sqrt{3}x$ $(\delta_2) : y = -\sqrt{3}x$ $(\delta_3) : y = -\sqrt{3}x$ $(\delta_3) : y = -\sqrt{3}x$	1
2a	c=OF=2 et e= $\frac{c}{a} = \frac{1}{2}$; donc $a = 4$ et $b^2 = a^2 - c^2 = 12$ soit $b = 2\sqrt{3}$. Les sommets de (E) sont: (4;0), (-4;0), (0;2 $\sqrt{3}$) et (0;-2 $\sqrt{3}$).	1
2b	L'axe focal de (E) étant x'x, $a = 4$ et $b = 2\sqrt{3}$; donc (E): $\frac{x^2}{16} + \frac{y^2}{12} = 1$.	0.5
3a	Les coordonnées de I vérifient les équations de (E) et de(H).	0.5
3b	Tangente en I à (H) est (T_1) : $xx_1 - \frac{yy_1}{3} = 1$; (T_1) : $2x - y = 1$. Tangente en I à (E) est (T_2) : $\frac{xx_1}{16} + \frac{yy_1}{12} = 1$; soit (T_2) : $x + 2y = 1$; pente de $(T_1) \times$ pente de (T_2) = -1; donc (T_1) et (T_2) sont perpendiculaires. Ou (T_1) est la bissectrice intérieure de $F\hat{I}F'$ et (T_2) est la bissectrice extérieure de $F\hat{I}F'$; donc elles sont perpendiculaires.	1
4	$V = \pi \int_{1}^{2} \left(y_{(E)}^{2} - y_{(H)}^{2} \right) dx = \pi \int_{1}^{2} \left[12 - \frac{3}{4} x^{2} - 3x^{2} + 3 \right] dx = \pi \int_{1}^{2} (15 - \frac{15}{4} x^{2}) dx$ $= \pi \left[15x - \frac{15}{4} \times \frac{x^{3}}{3} \right]_{1}^{2} = \frac{25}{4} \pi \text{ unités de volume }.$	1

QV	Corrigé	Note
A1	$\left(\overrightarrow{OA}, \overrightarrow{OA'}\right) = \frac{\pi}{3} \operatorname{car}\left(\overrightarrow{OA}, \overrightarrow{OB}\right) = \frac{\pi}{3} \text{ et } OA' = 2\sqrt{3} = OA\sqrt{3} \text{ donc } A' = S(A)$	0.5
A2a	$(\overrightarrow{OA}, \overrightarrow{OW}) = \frac{\pi}{3}$ et WO = WA (W centre du rectangle) donc OAW est équilatéral.	0.5
A2b	OAW est un triangle équilatéral direct donc son image par S est le triangle équilatéral direct OA'W'.	0.5
A2c	(C') est le cercle de centre W' et de rayon $OW' = OA' = 2\sqrt{3}$ et passe par O.	0.5
B1	$z' = \sqrt{3}e^{i\frac{\pi}{3}}z = \left(\frac{\sqrt{3}}{2} + \frac{3}{2}i\right)z$	0.5
B2	$z_{w} = \frac{z_{B}}{2} = 1 + i\sqrt{3}$, $z_{w'} = \sqrt{3}e^{i\frac{\pi}{3}}(1 + \sqrt{3}i) = -\sqrt{3} + 3i$	0.5
ВЗа	$z' = az + b$ avec $a = i$, $ a = 1$ et $arg a = \frac{\pi}{2}(2\pi)$ donc f est une rotation d'angle $\frac{\pi}{2}$ et de centre H d'affixe $z_H = \frac{b}{1-a} = 2 - \sqrt{3} + (2 + \sqrt{3})i$.	1
B3b	$iz_{w'} + 4 + 2i\sqrt{3} = 1 + i\sqrt{3} = z_w \text{ donc } f(W') = W,$ $f \circ S(W) = f(S(W)) = f(W') = W$	1
ВЗс	$f \circ S = f\left(H, 1, \frac{\pi}{2}\right) \circ S\left(O, \sqrt{3}, \frac{\pi}{3}\right) = S\left(W, \sqrt{3}, \frac{5\pi}{6}\right) \text{car } f \circ S(W) = W.$	1

QVI	Corrigé	Note
A1a	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x^2}{e^{2x}} = \lim_{x \to +\infty} \frac{x}{e^{2x}} = 0 $; l'axe des abscisses est une asymptote.	0.5
A1b	$\lim_{x \to -\infty} f(x) = +\infty; \lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} xe^{-2x} = -\infty, \text{ D.A verticale.}$	0.5
A2	$f'(x) = 2x(1-x) e^{-2x} \qquad \frac{x -\infty 0 1 +\infty}{f'(x) - 0 + 0 -}$ $f(x) +\infty \qquad e^{-2}$	1.5
A3a		1.5
A3b	$me^{2x} = x^2$; $m = x^2e^{-2x}$ Pour $m < 0$ pas de racines ; Pour $m = 0$ une racine double; Pour $0 < m < e^{-2}$; trois racines Pour $m = e^{-2}$ une racine simple et une autre double; Pour $m > e^{-2}$ une racine.	1

	1	
	$0 \le x \le 1$, donc $e^{-2}x^n \le x^n e^{-2x} \le x^n$ soit $0 \le x^n e^{-2x} \le x^n$ donc $0 \le I_n \le \int_0^1 x^n dx$ ou	
B1	$0 \le I_n \le \left[\frac{x^{n+1}}{n+1}\right]_0^1 \text{ soit } 0 \le I_n \le \frac{1}{n+1}.$	1
B2	$I_{n+1} - I_n = \int_0^1 x^n e^{-2x} (x-1) dx \le 0 \text{ car } x^n \ge 0, \ e^{-2x} > 0 \text{ et } x - 1 \le 0.$	1
D2	$\left(I_{n}\right)$ est minorée par 0 et décroissante donc elle est convergente , et puisque	0.5
В3	$\lim_{n \to +\infty} \frac{1}{n+1} = 0 \text{ alors } \lim_{n \to +\infty} I_n = 0.$	0.5
	$u = x^{n+1}$ et $v' = e^{-2x}$ donne $u' = (n+1)x^n$ et $v = -0.5e^{-2x}$,	
B4	$I_{n+1} = \left[-0.5x^{n+1}e^{-2x} \right]_0^1 + 0.5(n+1)I_n = \frac{1}{2} \left[-\frac{1}{e^2} + (n+1)I_n \right]$	1
	$h'(x) = -\frac{1}{4} \left[2e^{-2x} - 2e^{-2x} (2x+1) \right] = xe^{-2x} donc$	
В5	$I_{1} = \int_{0}^{1} xe^{-2x} dx = \left[h(x) \right]_{0}^{1} = \frac{1 - 3e^{-2}}{4}$	1
В6	$A = \int_{0}^{1} x^{2} e^{-2x} dx = I_{2} = \frac{1}{2} \left[-\frac{1}{e^{2}} + 2I_{1} \right] = \frac{1}{2} \left[-\frac{1}{e^{2}} + \frac{1 - 3e^{-2}}{2} \right] = \frac{1 - 5e^{-2}}{4} u^{2}$	1
C1	$\lim_{x\to 0} g(x) = -\infty \text{ donc } x = 0 \text{ est une asymptote à la courbe de g.}$	0.5
C2	$\lim_{x \to +\infty} g(x) = -\infty, \ g(x) = -2x + \ln(x^2) \ ; \lim_{x \to +\infty} \frac{g(x)}{x} = \lim_{x \to +\infty} \left(-2 + \frac{\ln(x^2)}{x} \right) = -2$	1
	$\lim_{x\to +\infty} [g(x) + 2x] = \lim_{x\to +\infty} \ln x^2 = +\infty \text{ donc il ya une direction asymptotique celle de la}$	1
	droite d'équation $y = -2x$.	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
С3	g'(x) + 0 -	1
	$g(x)$ $-\infty$ $-\infty$	
C4		
	3-4-	1
	5	
	8	