

					Pr	inte	d Pa	ge: 1	of 2	,
				\mathbf{S}_{1}	ubje	ct C	ode:	KC	S303	,
Roll No:										

BTECH (SEM III) THEORY EXAMINATION 2021-22 DISCRETE STRUCTURES & THEORY OF LOGIC

Time: 3 Hours Total Marks: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

2x10 = 20

Qno.	Question	Marks	CO
a.	Let $A = \{1,2,3,4,5,6\}$ be the set and $R = \{(1,1) (1,5) (2,2) (2,3) (2,6) (3,2) \}$	2	1
	(3,3,) (3,6) (4,4) (5,1) (5,5) (6,2) (6,3) (6,6)} be the relation defined on set		
	A.		
	Find Equivalence classes induced by R.		
b.	Solve Ackerman Function A (2,1).	2	1
c.	State and justify "Every cyclic group is an abelian group".	2	2
d.	State Ring and Field with example.	2	2
e.	Differentiate complemented lattice and distributed lattice.	2	3
f.	State De Morgan's law and Absorption Law.	2	3
g.	Translate the conditional statement "If it rains, then I will stay at home" into	2	4
	contrapositive, converse and inverse statement.		
h.	State Universal Modus Ponens and Universal Modus Tollens laws.	2	4
i.	Explain Euler's formula. Determine number of regions if a planar graph has	2	5
	30 vertices of degree 3 each.		Va
j.	Explain pigeonhole principle with example	2	5

SECTION B

2. Attempt any three of the following:

3x10 = 30

Qno.	Question	Marks	CO
a.	Justify that for any sets A, B, and C:	10	1
	$i) (A - (A \cap B)) = A - B$ $ii) (A - (B \cap C)) = (A - B) \cup (A + C)$		
b.	Explain Cyclic group. Let H be a subgroup of a finite group G. Justify the	10	2
	statement "the order of H is a divisor of the order of G".		
c.	Solve $E(x,y,z,t) = \sum (0,2,6,8,10,12,14,15)$ using K-map.	10	3
d.	Construct the truth table for the following statements:	10	4
	$i) (P \rightarrow Q') \rightarrow P'$ $ii) P \leftrightarrow (P' \lor Q').$		
e.	Solve the recurrence relation using generating function.	10	5
	a_{n+2} - $5a_{n+1}$ + $6a_n$ =2, with a_0 =3 and a_1 =7.		
	4/4		

SECTION C

3. Attempt any *one* part of the following:

1x10 = 10

Qno.	Question	Marks	CO
a.	State Principle of Duality. Let A denote the set of real numbers and a	10	1
	relation R is defined on A such that $(a,b)R(c,d)$ if and only if $a^2 + b^2 = c^2 + c^2$		
	d ² . Justify that R is an equivalence relation.		
b.	i) Let $R = \{(1,2)(2,3)(3,1)\}$ defined on $A = \{1,2,3\}$. Find the transitive	10	1
	closure of R using Warshall's algorithm.		
	ii) Justify that "If f: $A \rightarrow B$ and g: $B \rightarrow C$ be one-to-one onto functions, then		
	gof is also one to one onto and $(gof)^{-1} = f^{-1}o g^{-1}$.		

					Pr	inte	l Pa	ge: 2	of 2	,
				Sı	ubje	ct C	ode:	KC	S303	j
Roll No:										

BTECH (SEM III) THEORY EXAMINATION 2021-22 DISCRETE STRUCTURES & THEORY OF LOGIC

4. Attempt any *one* part of the following:

1x10 = 10

Qno.	Question	Marks	CO
a.	Define the binary operation * on Z by $x*y=x+y+1$ for all x,y belongs to set of integers. Verify that $(Z,*)$ is abelian group? Discuss the properties of	10	2
	abelian group.		
b.	 i) Justify that "The intersection of any two subgroup of a group (G,*) is again a subgroup of (G,*)". ii) Justify that "If a,b are the arbitrary elements of a group G then (ab)² = a²b² if and only if G is abelian. 	10	2

5. Attempt any *one* part of the following:

1x10 = 10

Qno.	Question	Marks	CO
a.	Define Modular Lattice. Justify that if 'a' and 'b' are the elements in a	10	3
	bounded distributive lattice and if 'a' has complement a'. then		
	I) $a \lor (a' \land b) = a \lor b$ II) $a \land (a' \lor b) = a \land b$		ļ
b.	i) Justify that (D ₃₆ ,\) is lattice.	10	3
	ii) Let L_1 be the lattice defined as D_6 and L_2 be the lattice $(P(S), \leq)$, where		ļ
	$P(S)$ be the power set defined on set $S = \{a, b\}$. Justify that the two lattices		
	are isomorphic.		
_	4	0 10	. 01

6. Attempt any *one* part of the following:

1x10 = 10

Qno.	Question	Marks	CO
a.	Use rules of inference to Justify that the three hypotheses (i) "If it does not	10	4
	rain or if it is not foggy, then the sailing race will be held and the lifesaving		
	demonstration will go on." (ii) "If the sailing race is held, then the trophy		
	will be awarded." (iii) "The trophy was not awarded." imply the conclusion		
	(iv) "It rained."		
b.	Justify that the following premises are inconsistent. (i) If Nirmala misses	10	4
	many classes through illness then he fails high school. (ii) If Nirmala fails		
	high school, then he is uneducated. (iii) If Nirmala reads a lot of books then		
	he is not uneducated. (iv) Nirmala misses many classes through illness and		
	reads a lot of books.		

7. Attempt any *one* part of the following:

1x10 = 10

Qno.	Question	Marks	CO
a.	Explain the following terms with example:	10	5
	i. Graph coloring and chromatic number.		
	ii. How many edges in K ₇ and K _{3,3}		
	iii. Isomorphic Graph and Hamiltonian graph.		
	iv. Bipartite graph.		
	v. Handshaking theorem.		
b.	i. Justify that "In a undirected graph the total	number of odd degree 10	5
	vertices is even".		
	ii. Justify that "The maximum number of edge	es in a simple graph is	
	n(n-1)/2".	2 2 1	