UNCLASSIFIED

AD NUMBER AD829742 NEW LIMITATION CHANGE TO Approved for public release, distribution unlimited **FROM** Distribution authorized to U.S. Gov't. agencies and their contractors; Critical Technology; 01 FEB 1968. Other requests shall be referred to Air Force Materials Laboratory, Attn: MAAM, Wright-Patterson, AFB, OH 45433. **AUTHORITY** AFML, USAF ltr, 12 Jan 1972

AD829742

NICKEL BASE ALLOYS ALLOY 718

STATEMENT #2 UNCHASSIFIED

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be also made only with prior approval of flex Jacob Malerials Libration: MAAM, Wright-fatteren, air Jora Boar Che 45433

PROCESSES AND PROPERTIES
HANDBOOK

APR 1 1 1968

The Defense Metals Information Center was established at Battelle Memorial Institute at the request of the Office of the Director of Defense Research and Engineering to provide Government contractors and their suppliers technical assistance and information on titanium, beryllium, magnesium, aluminum, high-strength steels, refractory metals, high-strength alloys for high-temperature service, and corrosion- and oxidation-resistant coatings. Its functions, under the direction of the Office of the Director of Defense Research and Engineering, are as follows:

- 1. To collect, store, and disseminate technical information on the current status of research and development of the above materials.
- To supplement established Service activities in providing technical advisory services to producers, melters, and fabricators of the above materials, and to designers and fabricators of military equipment containing these materials.
- To assist the Government agencies and their contractors in developing technical data required for preparation of specifications for the above materials.
- 4. On assignment, to conduct surveys, or laboratory research investigations, mainly of a short-range nature, as required, to ascertain causes of troubles encountered by fabricators, or to fill minor gaps in established research programs.

METAL WHITE SECTION ()
MORE BUFF SECTION (D)
MEANMOUNCED
MANAGEMENT

MATERIAL SOCIAL

MAIL SOCIA

Contract No. AF 33(615)-3408

Roger J. Runck

Notices

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation what soever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Qualified requesters may obtain copies of this report from the Defense Documentation Center (DDC), Cameron Station, Bidg. 5, 5010 Duke Street, Alexandria, Virginia, 22314. The distribution of this report is limited because the report contains technology identifiable with items on the strategic embargo lists excluded from export or re-export under U. S. Export Control Act of 1949 (63 STAT. 7), as amended (50 U.S.C. App. 2020.2031), as implemented by AFR 400-10.

Copies of this report should not be returned to the Research and Technology Division, Wright-Patterson Air Force Base, Ohio, unless return is required by security considerations, contractual obligations, or notice on a specific document.

NICKEL BASE ALLOYS

ALLOY 718

H. J. Wagner, R. S. Burns, T. E. Carroll, and R. C. Simon*

ABSTRACT

The DMTC Handbook on Alloy 718 is a compilation of available data and information covering the metallurgy, manufacturing, applications, and mechanical properties of this nickel-base heat-resistant alloy. Much of the textual matter has been condensed from reports and literature received from both the producers and the users of this alloy and covers subjects such as melting, forming, welding, metallography, and others of interest to the user. Mechanical properties are presented for each of the product forms and conditions in which this alloy is used and both original and digested data are included for tensile, fatigue, creep-rupture, and other properties.

^{*}Mr. Wagner is Chief of the Specialty Alloys Division; Messrs. Burns and Carroll are Information Specialists, and Mr. Simon is an Information Analyst, in the Information Operations Division, Battelle Columbus Laboratories, Columbus, Ghio.

TABLE OF CONTENTS

	ABSTRACT	i	17.	MECHANICAL PROPERTIES	IV-1
	INTRODUCTION	iii		All Forms	1V-1
	THE POLICE OF THE PROPERTY OF THE POLICE OF	• • • •		Design Properties	IV-1
í.	METALLURGY	1-1		Sheet and Plate	IV-6
••				Tensile Properties	IV-6
	Melting,	1-1		Notched Tensile Properties.	IV-15
	Casting	1-1		Fatigue Properties	IV-17
	Metalworking	1-1		Creep-rupture Properties	IV-37
	Metallograph/	1-3		Sheet (cold-rolled and aged)	IV-41
	Corrosion	1-4		Tensile Properties	IV-41
	Stress Corrosion	I-4		Notched Tensile Properties,	IV-45
	Physical Metallurgy	I -4		Fatigue Properties	IV-47
	• • • • • • • • • • • • • • • • • • • •	-		Creep-rupture Properties	IV-48
II.	MANUFACTURING PROCESSES	11-1		Bars and Forgings	IV-49
				Tensile Properties	IV-49
	Machining	11-1		Impact Properties	IV-59
	forming	11-1		Fatigue Properties	IV-60
	General	11-1		Creep-rupture Properties	IV-64
	Dimpling	11-1		Castings	IV-69
	Heat Treating	11-3		Tensile Properties	IV-69
	Cleaning	11-4		Compressive Properties	IV-72
	Coating	11-5		Impact Properties	IV-73
	Joining	11-5		Fracture-toughness Properties	IV-74
	TIG Welding	11-5		Thermal-fatigue Properties	IV-75
	Electron Beam Weiuing	11-7		Creep-rupture Properties	IV-76
	Resistance Welding	11-8			
	Brazing	11-5	V.	APPENDIX	V-1
	Adhesive Bonding	11-10			
	Surface Finishing	11-10		Specifications	V - I
	-			Chemical Composition	V-3
III.	APPLICATION FACTORS	111-1		References	V-7
				List of Symbols	V-11
	Uses	111-1		Data Basis	V-12
				Constantalife Diagrams (fatigue)	V-12

INTRODUCTION

Alloy 718 is a wrought nickel-base alloy which was initially intended for use up to about 1300 F. It differs from the 1500 to 1800 F nickel alloys in that (1) columbium is substituted for much of the aluminum and titanium and (2) 19 percent iron is substituted for most of the molybdenum and all of the cobalt. The effect of these differences is to reduce the high-temperature strength with a corresponding increase in weldability.

A variety of heat treatments and compositional variations have been used to achieve specific optimum properties such as:

- 1. Short-time high-temperature tensile strength
- 2. Stress-rupture strength
- 3. Notch tensile strength
- 4. Fatigue strength
- 5. Weldability.

In addition, it was discovered that, when properly processed, Alloy 718 has useful cryogenic properties down to -423 F.

Variations in heat treatment and composition and other physical-metallurgy details of Alloy 718 are fully discussed in DMIC Report 217 by Wagner and Hall.

Since DMIC issued Report 217, a considerable quantity of property data on Alloy 718 have been extracted and tabulated. The primary purpose of this Handbook is to make these data available for general dissemination. Much of the information on physical metallurgy was taken from Report 217, and condensed and repackaged to fit the Handbook format.

I. METALLURGY

Melting
Casting
Metalworking
Metallography
Corrosion
Stress Corrosion
Physical Metallurgy

hand**a.** Book

Best Material: Michel

Motel of AMO; Alley 718

Subject: Makatilung

MELTING

Alloy 718 is usually vacuum melted. Procedures employed include (a) induction melting in air followed by consumable-electrode vacuum-arc remelting, or (b) vacuum-induction melting (sometimes followed by consumable-electrode or vacuum-induction remelting). Vacuum melting prevents uncontrolled losses of easily oxidized elements such as Ti and Al and removes gaseous impurities, thereby permitting stricter control of final composition. All of these factors result in more consistent properties than can be obtained by air melting. Consistently better 100-hour creeprupture strength is usually obtained over the entire temperature range of importance by employing vacuum melting techniques.

Consumable-electrode vacuum-arc melting volatilizes impurities and also breaks down and disperses nonmetallic inclusions. Segregation and unsoundness at the center of the ingot are reduced, resulting in improved hot-working characteristics, particularly when vacuum-induction-melted ingots are employed as electrodes for remelting by the consumable-electrode vacuum-arc process.

Ref: * 62553, 66882

CASTING

Although Alloy 718 is used primarily in wrought forms, the alloy is also used in the form of castings. The composition is the same as that of the wrought alloy, and the alloy is usually vacuum melted. Its weldability makes it useful in the construction of cast assemblies such as jetengine frames.

Alloy 718 is one of a number of superalloys for which precision casting methods are currently under study. The objective of an Air Force-sponsored program at the American Brake Shoe Company is to precision cast a full-scale jet-engine turbine disc and a full-scale sircraft fin beam.

Ref: 62553, 66882, 67431, Preliminary information reported by American Brake Shoe Company, Mahwah, New Jersey, under an Air Force Contract.

METALMORKING

Alloy 718 is worked in much the same manner as other wrought nickel-base alloys. The following sections, covering forging, rolling, extrusion, and form-rolling are generally applicable to all wrought nickel-base alloys.

*References are listed in the Appendix.

Forging

Nickel-base alloys are more difficult to forge than are steels. They require more care during initial breakdown (because of lesser ductility), they require higher pressures (up to twice those for steels), and their hot-working temperature range is narrower than that for steels. In addition, nickel-base alloys are damaged by contamination with sulfur.

As for other difficult-to-forge materials, the initial forging operations on nickel-base alloys are made up of light reductions and frequent reheating. This precaution is required until the coarse, as-cast grain structure has been broken up and the alloy gains some degree of toughness. Subsequent working permits the use of greater pressures and greater reduction between reheats.

Control of forging temperature is very important. The upper end of the forging range, around 2200 F, is limited by incipient melting ("hot-shortness") above this temperature. The lower end, around 1600 F, i- just above the tempersture range at which precipitation hardening occurs. During initial forging, the temperature should be maintained in the upper portion of the 1600-2200 F range to avoid cracking of the ingot, and frequent reheating is required. After the as-cast structure has been broken up, the workpiece temperature may be allowed to drop to 1600 F before reheating. The finish temperature for the last forging pass should be near the lower end of the forging range. During the intermediate stages of forging, reductions between heats should exceed 10 percent, in order to produce a fine wrought structure. The reduction following the last reheat should range between about 15 and 30 percent. Finishing at too low a temperature or with too little reduction leads to undesirable grain growth during subsequent heat-treating operations.

Nickel-base alloys are damaged by contamination with sulfur. Some furnaces contain sulfur-rich scale from previous heating cycles or use reducing atmospheres with enough sulfur to be harmful. The recommended practice is to support the billet or preform on clean brick or a plate of a heat-resistant alloy and to use natural gases or low-sulfur oils as furnace fuels. Slightly exidizing conditions are recommended to reduce sulfur pickup from furnace atmospheres.

During forging of nickel-base alloys, a lubricant is necessary between the part and die to reduce their natural tendency to seize and gall. Typically with steels, the natural oxide formed upon heating serves as a parting agent; however, with the oxidation-resistant nickel-base alloys, a parting agent must be introduced mechanically. Lubricants and parting agents containing sulfur are

undesirable. The most commonly used lubricants are mixtures of graphite and oil. Other materials that have been used with varying degrees of success are glass, mica, sawdust, and asbestos. These materials also help to minimize the chilling effect of cold dies.

Rolling

The starting billets for hot rolling include forged slabs for flst products and forged rounds, squares, and octagons for rods, bars, and shapes. These billets require careful surface conditioning (grinding or machining) before the start of rolling and frequently between rolling passes to minimize the initiation and growth of surface flaws.

Plate down to 3/8-inch thick is usually hot rolled on three-high hand mills. In the early stages, cross rolling may be utilized to obtain the desired width and to reduce directionality in the finished product. Plate intended for rerolling is then pickled and shot blasted to produce a clean surface.

Rolling of sheet down to about 0.045-inch thickness is done either hot or cold on two-high mills. Further reduction is done cold. Cold rolling enhances the mechanical properties, improves surface finish, and permits closer control of sheet thickness. Sizes down to 0.008 or 0.010-inch thickness, with widths up to 36 inches, are rolled cold on a Sendzimir mill.

Typical fabrication schedules for the production of hot-finished bar and rod products involve hot rolling of forged bars to 2-1/4-inch gothics on a 24-inch mill, followed by surface conditioning and further hot rolling on a 10-inch mill, down to 5/16-inch rod. Rod intended for later cold drawing into wire is usually coiled at this size.

Hot-rolled sheet and plate are generally heat treated after rolling, then descaled in a hot caustic bath. After being descaled, they are pickled in a hot, strong acid to provide a smooth, bright finish. Plate is flattened by roller leveling, then sheared to finish size. Sheet products are stretch-straightened before being cut to size. Hot-finished bar products are generally centerless ground after heat treating and straightening. Cold-drawing stock is heat-treated, descaled, and pickled.

Extrusion

Hot extrusion is employed for the production of long sections from machine-turned ingots or forgings. All extruders employ the Sejournet glass process, using procedures similar to those developed for extruding steel. Besides providing effective

lubrication, glass serves as an insulator between the tools and the hot billet during extrusion. Excessive overheating of tools does not occur, tool life is increased, and die costs are reduced.

The key to the successful extrusion of nickel-base alloys is accurate, close control of hot-working temperature. Thus, transfer times between the furnace and the extrusion press must be minimized to avoid heat loss. Also, the speed of extrusion must be controlled so that overheating does not result from the heat of deformation that is generated during extrusion.

Whenever possible, the extruded product is quenched after extrusion to remove any adhering glass. Some untwisting or straightening may be required. The extrusion process has been used extensively in the production of seamless tubing from nickel-base alloys. Simple shapes, such as engine rings, have been extruded from a variety of nickel-base alloys.

Work is currently being done by TRW Inc., to develop a technology for the extrusion of superalloys to structural shapes; Alloy 718 is included among the materials being studied. The program is designed to define the process limits for the extrusion of superalloy shapes from cast ingots and to provide an economic appraisal of the process developed. A ring flange used in the outer-motor-case combustion section of a jet engine was selected as the part for the extrusion-process development.

Ref: 62551, 66882, Preliminary information reported by TRW, Inc., Cleveland. Ohio, under an Air Force Contract

Cold Drawing

Nickel-base alloys can be cold drawn into rod, wire, and tubular products. The starting products for the above are annealed, descaled, and pickled bars, rods, and extruded tube hollows.

The larger sizes are finished on a standard drawbench. Smaller sizes of rod and large-diameter wire are drawn on revolving bull blocks. Very fine wire, down to 0.001-inch diameter, is produced on high-speed, multiple-die drawing machines, using diamond dies submerged in oil.

A variety of lubricants are utilized in drawing. During early stages, lead and copper coatings are also used frequently.

In wire drawing, reductions as high as 4G percent can be taken before intermediate annealing is required. To prevent scaling, the wire is annealed in a "bright" annealing furnace, utilizing an atmosphere of cracked ammonia and hydrogen.

Form Rolling

Engeliard Industries is presently engaged in a program to develop and prove economical manufacturing techniques for form-rolling closctolerance shapes from superalloys. Alloy 718 is one of the alloys being studied. Configurations in which these alloys are being formed include E, T, and L sections.

Ref: 66075, Preliminary information reported by Engelhard Industries, Inc., Attleboro, Massachusetts, under an Air Force Contract.

METALLOGRAPHY

Sample Preparation

The preparation of samples for metallographic examination follows standard techniques. For me roexamination, grinding on a surface grinder or coarse emery belt is usually adequate. Etching involves immersion in, or flooding with, Lepito's etchant or hydrochloric acid-peroxide etchant (see below). Macroetching is accelerated by prenesting the sample in hot water before etching.

Freparation for microsxamination requires careful polishing with progressively finer grits, usually with final polishing on a microcloth- or duracloth-covered wheel using a water suspension of gamma alumina. After the polishing, the surface is etched electrolytically with chromic acid for grain-boundary examination.

Microstructure

The microstructure of Alloy 718 is quite complex and is influenced highly by heat treatment and composition.

Two features of the as-cast structure can be retained in the wrought alloy, and they have a strong influence on the resulting mechanical properties. The typical dendritic structure of the as-cant ingot can be broken up through proper hot working. A Lavas phase appears to be related to alloy composition. It has been identified with the appearance of "frackles" in the as-wrought matrix and is found to be derrimental to yield strength and ductility. The Laves phase is isomorphous with Fe₂Ti.

The matrix of wrought Alloy 718 is a facecentered cubic structure. Two phases are subject to precipitation during aging, dependent on the aging temperature and time. The preferred precipitate, called "gamma prime", is formed on aging at 1300 to 1400 F. This phase is a metastable body-centered tetragonal (Ni,V) structure corresponding to Ni $_3$ (Cb, Mo, A1, Ti). Overaging, or aging at higher temperatures, causes the transformation of this phase to a more stable orthorhombic (Ni₃Cb) phase.

The optimum precipitation of the preferred gamma-prime constituent is accomplished by aging for a short time (8 to 10 hours) at 1300 to 1400 F. followed by subsequent aging at lower temperatures.

Ref: 64273

Etching

Etchant	Сопроз	ition(s)	Remarks
Lepito's	15 grams (250 grams Mix and ad	(NH ₄)SO ₄ in 75 ml H ₂ O Fe-1 ₃ in 100 ml HC1 id 30 ml HNO ₃	Etching time 30-120 seconds. Macroetch for general surface condition and weld structure.
Peroxide- Hydrochloric	н ₂ 0 ₂ (30%) нС1 н ₂ 0	2 parts 3 parts	Must be freshly mixed. Use hot water to speed reaction. Any stains formed may be removed with 50% ISNO3. Macroetch for revealing grain structure.
Chromic acid	сто _з Н ₂ 0 ³	5 grams 100 ml	Electrolytic microetch for grain boundaries. Use 0.2 to 0.5 amp/sq cm current for 15 to 30 seconds. Make specimen anode with a platinum or Incomel 600 cathode.

⁽a) Use concentrated acids.

hand- Metal or Allay:

Base Material:

Nicke1

I-4

Alloy 718

Subject:

Metallurgy

PHYSICAL METALLURGY

Strengthening Mechanism

The crystallographic nature of the gammaprime constituent and its role in strengthening Alloy 718 have been studied recently by Cometto. The following summarizes his findings.

Gamma prime, as its name implies, is similar in many ways to the face-centered cubic (gamma) matrix from which it forms. The only difference, in fact, is that gamma prime more nearly approaches the stoichiometric ratio A3B, resulting in ordering of the atomic positions and a slight distortion of the lattice.

The $\Lambda_3 B$ -type intermetallic compounds can he classified according to the way the atoms are ordered. The type A layers can occur in four different stacking sequences, and Type B layers in two different stacking sequences, giving six different types of crystal structure or families of compounds. Table 1 shows these compound types and the corresponding nickel intermetallic compounds. It was found that Alloy 718 precipitates a metastable gamma-prime phase based on the Ni3Ct composition, but with a body-centered tetragonal Ni3V structure.

Table 1. Stacking Arrangements in Close-Packed Ordered A₃B Structures

Structure	Nickel	Layer	Stacking
Type	Compound	Type	Sequence
Cu ₃ Au Ni ₃ Ti Cd ₃ Mg Al ₃ Pu Cu ₃ Ti Al ₃ Ti	Ni ₃ Al Ni ₃ Ti Ni ₃ Cb Ni ₃ V	A A A B B	abcabc abacabac abab abcacbabcacb abab* abcdef*

Neglects sligh distortion.

The atoms of the Ni_3AI and Ni_3V compounds occupy essentially the same lattice sites as the atoms in the gamma solid solution. On the other hand, compounds such as Ni₃Ti (hexagonal structure) and Ni₃Cb (orthorhambic Cu₃Ti structure) require a complete rearrangement of atom sites as well as composition changes in order to precipitate from a face-centered cubic matrix.

Cometto's analysis has shed considerable light on the gamma-prime strengthening mechanism in Alloy 718. It can be used to explain why the double-aging treatment results in higher strength than the single aging. Apparently, to get maximum strengthening, it is necessary to precipitate as nuch gamma prime as possible, without overaging; that is, w. hout transforming from the body-centered tetragonal garma prime to the orthorhombic NigCb. High temperatures and long times favor the latter.

That is, to obtain maximum strengthening it is necessary to precipitate as much gamma prime as possible without transforming to the orthorhombic Ni₃Cb phase Thus, double aging is required.

The individual gamma-prime particles are disc-shaped and lie on the (100) planes of the matrix, with their coaxes perpendicular to these planes. The following lattice constants are reported for the gamma-prime phase, for material aged at 1400 F for 10 hours, furnace cooled to 1200 F, and aged an additional 8 hours:

a_O - 3.624 Angstrom units

co - 7.406 Angstrom units

Ref: 61368

CORROSION

Alloy 718 was considered a candidate material for an application involving piping of hot, flowing, nitrogen tetroxide (N2O4). Tests by the Acrojet-General Corporation determined that Alloy 718 showed no general corrosion in the presence of N_2O_4 ; however, the material did show an intergranular corrosion attack, as illustrated by photomicrographs in Aerojet-General Report No. DVR 64-365.

Ref: DMIC 59644

STRESS CORROSION

Alloy 718 (aged) specimens were subjected to a series of tests to determine their susceptibility to stress corrosion. Results showed that this alloy was immune to stress corrosion when under the following testing conditions:

- (1) Alternate immersion (1000-hr duration) at 90 percent TYS in synthetic seawater
- (2) Salt spray (5 percent concentration, 1000-hr duration) at 90 percent IYS of unnotched specimens
- (3) Alternate immersion (500-hr duration) in synthetic seawater at 80 percent of notched tensile strength of precracked specimens that had been braze-cycle heat treated, then wolded (precrack located in center of weld, asrmal to applied load).

Ref: DMC 37147

 $\mathbf{p}_{\mathbf{C}} \leftarrow \mathbf{p}$

Decoraça Mercea for a contrata Consideration - Contrata A Morror matrical textural Consontación Otras 43.201

II. MANUFACTURING PROCESSES

Machining
Forming
General
Dimpling
Heat Treating
Cleaning
Coating
Joining
TIG Welding
Electron Beam Welding
Resistance Welding
Brazing
Adhesive Bonding
Surface Finishing

with the same

a that

MACHINING

Machining of Alloy 718 can be accomplished readily in either the annealed on age-hardened condition. The alloy will give a slightly longer tool life in the annealed condition. Better chip action on breaker tools and a better finish can be obtained when the alloy is in the age-hardened condition.

Table 1 lists the recommended speeds for machining the alloy with high-speed-steel tools. Table 2 presents typical lathe-turning tool dimensions. In general, the tooling and procedures used in machining Alloy 718 are similar to those used for Incomel X-750.

The Air Force Machinability Data Center, located at Metcut Research Associates, Cincinnati, Ohio, can be contacted for more specific information on the machining of Alloy 718.

Reference 62548 presents a good state-ofthe-art summary on the machining of nickel-base alloys.

Table 1. Speeds (FPM) for Machining with H.S.S. Tools

Turning (a,b)	Drilling (c)	Peaning (d)	Milling(e)	Threading and Tapping
15-20	15-20	7-14	15-20	5-8

(a) Use roughing feeds of 0.010 to 0.015 inch per revolution

Finishing feeds are governed by desired finish.

Operate at 60 to 100 feet per minute with commented carbide tools with feeds of 0.005 to 0.015 i.p.r. Grade C-2 tools

tools with recommendate suitable.
Use feeds proportional to drill diameter
1/16 to 1/4 in. dia. -----0.0005 to 0.002 i.p.r.
1/4 to 3/4 in. dia. -----0.002 to 0.004 i.p.r.
1/4 to 2 in. dia. -----0.004 to 0.00A i.p.r.

(4) Resning feeds are short three times the feed used for a drill of the same size.
 (e) Use a feed of 0.003 to 0.006 inch per tooth.

FORMING

Nickel-base alloys have been fabricated both by primary and secondary forming techniques that are similar to those used for the forming of stainless steels. Methods currently employed for primary fabrication of these alloys include rolling, extrusion, forging, and drawing of tube, rod, and wire. Secondary metal-forming operations are those processes that produce finished or semifinished parts from sheet, bar, or tubing. The room-temperature ductility of most nickel-base alloys compares with that of stainless steels, and secondary working can usually be carried out with conventional processing techniques. These techniques include the following: brake bending, deep drawing, spinning and shear forming, drop-hammer

forming, trapped-rubber forming, stretch forming, tube forming, roll forming and bending, dimpling, joggling, blanking, and sizing. Most nickel-base alloys can be worked at both room and elevated temperatures. The hot-working temperatures are generally higher than those used for steel because the materials retain their strengths to higher temperatures. Reference 62551 presents an excellent state-of-the-art summary of deformation processing of nickel-base alloys.

At the present, comprehensive information on the primary and secondary forming characteristics of Alloy 718 is not readily available. However, total-elongation, uniform-elongation, and bend tests, conducted by McDonnell Aircraft Corp., indicate that the alloy possesses good formability characteristics in the annealed condition. Guerin rubber-forming and impact rubber-forming tests, also conducted by McDonnell, have indicated that in the annealed condition Alloy 718 is readily formable using standard production rubber-forming techniques. Very little restriking and hand working would be required to produce parts to production tolerances. Typical results of the forming tests are presented in Table 3.

Minimum bend radii of 0.031 inch and 0.047 inch were obtained for 0.048-inch, annealed sheet specimens bent perpendicular to and parallel to the rolling direction of the sheet, respectively. The types of failures normally experienced in sheetforming processes are shown in Table 4.

McDonnell Aircraft Corp. has also conducted tests to determine the room-temperature dimpling characteristics of aged 0.045-inch Alloy 718. The dimpling operations were conducted per PS 19015 to determire if the material could be dimpled for 5/32 HJ-Shear rivets and 1/4-inch standard screws. It was determined that adequate dimpling could not be performed at room temperature and that elevated temperatures would be required to chtain dimples of acceptable quality for the sheet-thickness, fastener-size combinations evalusted.

Ref: 61941, 6.551, 56882

Pimpling

Limited data on the dimpling of Allov 718 are recorded in a report by the McDonnell Aircraft Corporation. This report states that attempts to form dimples in 0.043-inch-thick Alley 718 sheet for 0.250-inch-diameter standard screws and 0.156inch Hi-Shear rivets were unsuccessful owing to circumferential tension cracks and excessive internal shear flow.

The elongation characteristics of Alloc 718 in the STA condition are similar to Rene 41

Defanse Metals Information Center - Battelle Memorial institute - Columbus, Ohio 43201

hand- 'book

se Meterial: Mickel

Alloy 718

11-2

...,, , ...

ubject: Manufacturing processes

Table 2. Grind for Typical Lathe Turning Tool

	High-Speed Steel	Comented Carbida
Back Rake Angle	8° to 10°	0° to 8° Positive
Side Rake Angle	10° to 20°	5° Positive
End Relief Angle	7*	8° Positive 5° to 7° (P)
		E* to 10* (8)
Side Relief Angle	7*	5" to 7" (P)
		8° to 10° (5)
End Cutting Edge Angle	8° to 10°	8° to 10°
Side Cutting Edge Angle	15° to 30°	15° to 30°
Nose Radius	1/32 in.	0.010 to 0.032 is

a) (P) Primary

General notes:

Grind drille to 130 to 135" included point angle.

Use narrow land reasers ground to a 30° angle chamfer and with a 5 to 10° face rake.

Use standard milling cutters with 5° (P) and 10° (S) relief back of cutting edges to prevent drag.

Dee standard taps ground to a hook angle of about 7° to 10°.

Use tangent, milled, or hobbed type insert thread chasers ground to 15° rake, 5° relief angle and 20° throat angle.

For drilling, form cutting, and reaming, use chlorinated sulfurized oils.

For general turning, a water-base chanical coolant is recommended. All oils and coolants should be compleiely removed from the metal prior to any heating operations.

Table 3. Forming Tests on famoulod 0.048-inch Alloy 718 Sheet

	flange Length	Avents:	Table 4. Types of F		
100)- tan Hedropess	1.40 stretch flance	Three existing is thrish		Canas of	fallure
	. 36 shrink flange	flange; diagonal buckle in stretch flange mide	Process	Ditties	Perplica
			broke forming		
TOTAL TOTAL Medical Printers	1.00 stretch flange	to wrinkles in either	Displing		
1/2-inch hard-load	9.36 whrish flange	flange, slight web	heading		
overlay with 2 soft load strang(0)		-especie	Serry Number		
took strake.			Subber press	•	
Innect rubber furnoil	: 40 stretch flames	Slight out oursess.	Shoot atrotching	•	
12 test berd lead	6 th shrink flance	slight wrighting of	Jone Log		•
services.		shrink flancy and at	Liner atrotching		
-		ends of stretch flance	frapped rubber, etrotching		
		•	framed rubber, shrinking		
Impact rubber formal	1 of stretch flange	titight out marpage.	hell fermine		
helt lead strip merlar	1 06 shrink fintge	sme, erithles present	in landag		-
at shrink flange		in shrink flange,	hos desites		
lastrika aithaat eest: - lar		elight notyage at the and of electric flyage			
Impact suffer formed	1 66 stretch flange	light ur.ables set			
1/2-linch hard-lead	I de abrimi flange	completely reserved	10-f: 4440)		
ent le		to hand mortise and			
Induced house whetch		restriking georgeisms			
flange oriables by					
hand forming with					
seft lead strape					
Restriño i times Noveet aloues					

to. The bard load evertes consisted of load allesed at 25 48 pertures

lef (4.44;

⁽S) Secondary

Metal or Alley:

Base Meterial: **Mickel**

Alloy 718

Subject:

Manufacturing processes

11-3

alloy in a like condition. Since there is some dimple-formability information available on Rene 41, this was used to estimate the ratio of the dimple slant height, H, to the radius of the dimple hole, R. For a 100-degree fastener, the ratio is H/R = 1.17 for Rene 41 at room temperature. With a dimple depth of 0.045-inch, as was specified, a slant height of 0.070 inch would be obtained. The maximum hole diameter for the dimple would therefore be increased from 100 degrees to say 120 degrees, which would give an H/R ratio of 2.60. it is doubtful whether increasing the temperature of dimpling from room temperature will increase the capabilities for dimpling, since the limits depend on the elongation values for the material. Examination of the elongation values for Alloy 718 at various temperatures indicates that they are about the same from room temperature to approximately 1000 F. At higher temperatures, the elongation is reduced and the properties of the material can be affected by overaging.

Ref: B

HEAT TREATING

The effects of various annealing cycles on the microstructure of Alloy 718 are reported by McDonnell Aircraft Corporation. Test specimens of 0.040-inch material were overaged at 1400 F for 30 hours and then annealed 15 minutes at temperatures from 1500 F to 2150 F.

Annealing temperatures below 1700 F failed to dissolve the particles precipitated during aging. Temperatures between 1700 and 1800 F adequately dissolved precipitated phases so that subsequent aging produced maximum hardness. Annealing overaged material at 1900 F for 15 minutes appeared to completely dissolve precipitated phases, without altering precipitation behavior during subsequent aging or encouraging excessive grain growth. Annealing temperatures greater than 1900 F produced excessive grain growth and led to the formation of undesirable grain-boundary films during subsequent aging.

No variation in hardness or microstructure was found to result from air cooling or water quenching from annealing temperatures.

DFH hardness of water- and air-quenched specimens and photomicrographs of the grain s' ture of heat-treated specimens are given references.

Ref: 35049 NcDonnell Aircraft Corps Report A470, (December 12, 19

At the present time, there is m. heat treatment for Alloy 718. Rather, the heat treatment is tailored to fit a specified application

and chemical composition. Most of the heat treatments currently being used with this alloy have in common the steps of solution treating and double aging, resulting in the precipitation of the gammaprime phase (see Metallography). Several such treatments are tabulated on the next page.

Solution Treatment

The solution treatment employed with this alloy has undergone a major change since the alloy was first developed. This has involved a complete reversal of the long-standing idea that high scrutioning temperatures were optimum for creeplimited applications and low solutioning temperatures for tensile-limited applications. The aircraft engine manufacturers, desiring good creeprupture life, have found that 1700 to 1750 F for l hour is the preferred solutioning temperature. (a) On the other hand, when good tensile properties are desired, the solutioning temperature is now specified as 1950 F. The latter treatment seems to be preferred also when toughness at cryogenic temperstures is required in service.

Solution treating is followed by quenching or air cooling, depending on size. Air cooling should be at a rate of around 400 degrees F per minute. Slow cooling (such as air cooling of heavy sections) can result in low yield strengths after aging.

The main reason for not using the 1950 F solution treatment in creep-limited applications is that it reduces rupture ductility. The trend toward using the high solutioning temperature for tensile-limited applications has been accompanied by a lowering of the aluminum content of the allov.

Aging Treatment

For optimum properties, particularly ductility, a double aging treatment is now employed. Initial aging is performed within the range 1325. to 1400 F, usually for 8 to 10 hours. The use of higher temperatures and longer times promotes the transformation of the preferred gamma-prime phase to the more stable, orthorhombic NigCb phase. For this reason, aging is usually completed within the range 1150 to 1200 F, usually for an additional 8 hours Furnace cooling is employed in going from the first aging temperature to the second.

The selection of aging temperatures within the ranges given above is related to the intended application and, possibly, to the chemical composition. Data on the interrelationships between chemical composition, heat-treatment details, and

Strictly speaking, this is an annealing treatment, since complete solution does not take place below 1750 F.

Defense Metals Information Center - Battle e Memoria (not 1.20 - Co., mp. 20, Gt. > 432/C1

The second secon

Typical Heat Treatments for Alloy 718

Specification	Company	Solution Temp., F	First Aging Temp., F	Second Aging Temp., F	Aging Method (a)
AMS 5596A	Society of Automotive	1750	1325	1150	I or II
AMS 5597A	Engineers	1950	1400	1200	
B50T69-G6	General Electric Company	1700	1325	1150	I
C50T79(S1)	General Electric Company	1800	1325	1150	I
PWA 1009-C	Pratt and Whitney Aircraft	1750	1325	1150	I or II
EMS-581c	AiResearch	1950	1350 (b	1200	I
RB0170-101	Rocketdyne	1950	1400	1200	III
AGC-44152	Aerojet-General	1950	1350	1200	IV

- (a) I: Hold 8 hours at first aging temperature, furnace cool at 100 F/hr to second aging temperature. Hold 8 hours, air cool.
 - II: Hold 8 hours at first aging temperature, furnace cool to second aging temperature. Hold at second aging temperature until total time elapsed since the beginning of the first aging is 18 hours.
 - III: Hold 10 hours at first aging temperature, furnace cool to second aging temperature. Hold at second aging temperature until total time elapsed since the beginning of the first aging is 20 hours.
 - IV: Same as II, but first aging time may be 8 to 10 hours.
- (b) F on certain heavy forgings.

resulting mechanical properties are still being accumulated and more data are needed before optimum aging temperatures can be recommended.

Heat Treating Precautions

During aging, Alloy 718 exhibits a linear contraction of about 9.001 inch per inch.

This alloy is susceptible, as are similar nickel-base alloys, to sulfur embrittlement and attack by elements such as lead, bismuth, etc. For this reason, all foreign material such as grease, oils, paints, stc., must be removed by suitable solvents prior to heat treatment. The alloy should be supported on clean brick or a plate of heat-resistant alloy to reduce contamination. Natural gases or low-sulfur oils should be used for fuel, and slightly oxidizing atmospheres are recommended to reduce sulfur pickup.

Ref: 53601, 61368, 66882

CLEANING

Cleaning is very important to the successful welding, coating, hot forming, and stress relieving of nickel-base alloys. Two main types of surface contamination must be removed by cleaning:

- (1) Surface dirt such as paint, grease, and oil
- (2) Oxide films and scales.

Proper surface preparation is necessary to:

- Prevent the harmful effects of sulfur, lead, and other elements that are often present in paint, oil, and other surface dirt
- (2) Prevent the antrapment of oxide film or scale.

Among the methods that are used to clean metal surfaces in general prior to welding are alkaline or solvent cleaning, vapor degreasing, and pickling.

The degree of cleanliness before, during, and often after welding can affect weld quality. Welding should be performed as soon as possible after cleaning, since exides begin to form immediately after exposure of cleaned surfaces to openair atmospheres. Although the exides may be extremely thin and invisible, they can induce the quality of weldments made by resistance welding and solid-state diffusion welding.

The importance of obtaining a clean surface prior to coating cannot be overemphasized. The

Defense Metals Information Center - Battelle Memorial Instituta - Columbus, Ohio 43201

handbook d Materials Michael

#Alloy 718

Hentlecturing processes

11-5

presence of dust, dirt, oxides, oil, grease, fingerprints or similar contaminants on the surface of a part being coated can result in the formation of a coating that is discontinuous, has poor adhesion, and exhibits inferior properties. Specific cleaning procedures for preparing the surfaces of nickel-base alloys prior to coating are generally regarded as proprietary; this is particularly true in the case of cleaning prior to the application of diffusion coatings. Among the methods that are used are polishing on a cotton wheel, vapor blasting, grit blasting, and pickling.

Degreasing can be accomplished by washing in a warm detergent, rinsing, and drying in an oven, or by the use of organic solvents.

There is relatively little information that is available specifically on the cleaning of Alloy 718. However, it appears that many of the cleaning methods used for other nickel-base alloys can be applied to this particular alloy.

Before pickling of this alloy is attempted, it is recommended that producers of Alloy 713 and producers of proprietary pickling materials should be contacted for additional information. Two particularly knowledgeable sources of information on pickling are the Huntington Alloy Products Division of International Nickel Company, Inc., and the Stellite Division of Union Carbide Corporation.

Ref: 64660, 62547 COATINGS

Most diffusion coatings used in the United States for nickel-base alloys are rich in aluminum. They are used primarily to protect parts of aircraft, marine, and automotive gas-turbine engines from the degrading effects of the service environment. There is still much room for improvement in these coatings, particularly in those for engines that will be used near the sea. Under such circumstances, the sait content of the air, combined with sulfur from the jet fuel, causes a new, severe type of sulfidation attack.

Diffusion coatings based on boron have been developed in the Soviet Union as a means of obtaining very hard cases on nickel-base alloys.

Nickel alloys generally are not electroplated or electroless plated, both because they are not used in applications in which plating is required and because they often inherently possess the corrosion resistance or other attribute for which plates are applied. In the relatively few applications where they are electroplated, care must be taken to first remove the passive surface film that occurs naturally on these materials.

Hard facings are not often applied to nickel-base alloys. However, examples are known

in which hard facings have imparted to these materials the required resistance to steam erosion, erosion-corrosion, or wear.

Surface treatments have been developed that provide nickel-base alloys with lubricity under conditions in which oils and greases would deteriorate, such as at high temperature and high vacuum.

Although there seems to be little information available on the specific application of coatings to Alloy 718, it appears that many of the treatments used with other nickel-base alloys could be applied to this alloy.

Coating treatments for nickel-base alloys are discussed in detail in Reference 64660.

Ref: 64660

JOINING

The excellent weldability of Alloy 718 is attributed to the relatively slow rate of precipitation of the strengthening phase, gamma prime. Because of this, little hardening occurs during welding.

The greater portion of the fusion welding of Alloy 718 has been done by the gas tungstenarc (TIG) process. The gas metal-arc (MIG) and electron-beam processes have been used, but to a lesser extent. No data have been found for the shielded metal-arc or submerged-arc processes.

Weld-cracking problems have been associated, by some users, with a high solution-annealing temperature. It has been reported that there is a close relationship between the solution-annealing temperature and the rendency to form microfissures. As the solution annealing temperature is increased, the tendency to form microfissures is increased.

Ref: 57516, 64912, 66682

TIG Welding

Limited data indicate that a weld efficiency of 90 percent may be obtained in the gas tungstenarc welding of Alloy 718 plate. This value is applicable over the temperature range -423 to 1500 F for material that is fully heat treated after welding.

Weld efficiency represents the ratio of tensile yield strength or tensile ultimate strength of the weldment to that of the parent metal. In a limited tessing program, North American Aviation, Inc., welded a number of specimens from one heat of 1/4-inch Alloy 715 plate, using tilloy 716 filler metal. Both parent-metal and as-welded specimens

Defense Metals Information Center - Battelle Memorial Institute - Columbus, Ohio 43201

no Material Mickel

Alley 712

bject: Manufacturing processes

II-6

were then annealed (1900 F/1 hour/air cool) and aged (1400 F/10 hours + 1200 F/10 hours) before testing. Multiple tests were run at each of five temperatures: -423, room, 1000, 1200, and 1500 F. Weld efficiencies were computed at each temperature for specimens from which the reinforcement had been removed. At each temperature, the average yield or ultimate strength at the weldment was from 99 to 108 percent of the corresponding value for the parent metal.

Investigation of the chemical composition of the test materials indicated that the parent metal had a much lower aluminum content (0.27%) than did the filler metal (0.50%). Prior experience at Rocketdyne has indicated that heats containing less than 0.35% aluminum do not respond well to the indicated heat treatment. Thus, the observed weld efficiencies are probably higher than should be expected, and the investigators recommended the use of 90 percent weld efficiency for design purposes.

Ref: 63646, Betts, R. D., "Weld Efficiencies of Inconel 718 Gas Tungsten Arc Welds in the -423 to 1500 F range", North American Aviation Report MPR 5-175-363 (July 27, 1965).

Alloy 718 has been welded by the TIG process in thicknesses ranging from 0.020 to 1.5 inches. The use of filler metals is optional. Argon is the protective gas commonly used, but helium is preferred for deep-penetration welds. Cleaning of the joint areas in preparation for welding must be complete if fully efficient joints are required. Also, light interlayer grinding should be used between passes.

The alloy is similar to other nickel-base alloys in its inability to flow readily when molten. Consequently, in most joints over about G.125-inch thick, joint designs which contribute to full joint penetration are necessary. During a study at the General Electric Company, investigators encountered considerable difficulty in obtaining a joint design in which full-penetration welds could be assured. Several different filler metals and joint configurations were evaluated. It was concluded that U-groover were best.

In the same study, the investigators also considered the effect of both argon and helium as shielding gases. It was determined that the choice of shielding gas affected the results obtained, especially in the thicker plates. Consistent penetration and high welding speeds were more readily obtained when using helium on 0.25-and 0.50-inch plate. Porosity was also decreased by using helium. However, if the weld is properly made, its properties will not be affected by the shielding gas. Optimum TIG weld settings for plate, when helium shielding gas is used, are presented in Table 5. Slight modifications to suit local situations are possible.

The effect of different shielding atmospheres was also studied at McDonnell Aircraft Corporation for TIG butt-welds in 0.045-inch sheet. No difficulties were encountered with either helium or argon atmospheres. However, helium-shielded welds required considerably less heat input and resulted in a cleaner weld appearance. No other effects were detected. Process settings used in this study are shown in Table 6.

Several filler metals have been evaluated during weldability studies of Alloy 718. René 41 and Alloy 718 filler metals received the most attention because the weld metal will respond to aging treatments. The data indicate that there is little choice between using Alloy 718 and René 41 as the filler metal for welds in sheet *tock. Shop experience has shown that more process problems have occurred when René 41 was used. Automatic or semisutomatic welding using Alloy 718 as filler is a preferred proces. Mhere manual welding is necessary on sheet-metal joints, the procedures must be very carefully controlled.

Studies in highly restrained welds in plate thicknesses ranging from 0.7% to 1.50 inches were conducted by the Huntington Allcy Products Division of The International Nicker Company. When welding with René 41 filler metal within the thickness range tested it was concluded that:

- (1) There is no need for weld stress relief prior to aging
- (2) Heavy sections can be welded in the fully aged condition even under restrained conditions
- (3) Welds in heavy sections can be repaired without amealing and the repair welds aged without difficulty
- (4) The stress-rupture properties of welds at 1200 and 1350 P exceed those of the base metal.

Freedom from cracking of the weld was used as the criterion for the first three conclusions.

In their studies of 0.25- and 0.50-inch-thich Alloy 718, General Electric reported on the use of Incomel 69, Hastelloy N, and Hastellov R-235 filler wires. As expected, the maximum properties in heavy thicknesses were obtained when hardenable filler wires were used. This is because the bulk of the weld deposit is crosposed of filler material. The results indicated that Hastelloy R-235 filler wire produces good weld tunsile and runture properties in thick Alloy 718. Incomel 69 filler wire did not give setisfactory results. Hostelloy N filler wire gave welds with lower properties, but its welding characteristics justify its use where maximum strength is not a requirement.

Defense Mytais information Center - Battule Memorial institute - Columbus, Ohio 43201

CARLES CARREST CONTRACTOR CONTRACTOR

Table 5. Optimum TIG Weld Settings for Alloy 718 Plate When Helium Shielding Gas is Used(a)

Thickness, in.:	0.250			0.500(c)		
Pass number	1	2	3	1	2	3
Current, amp	70- 75	70-75	80-85	90-95	90-95	100-110
Arc voltage(b), v	13- 15	13-15	14-16	14-16	14-16	15-17
Weld speed, in./min	1.5-2.0	1.5-2.0	1.5-2.0	2.0	2.0	2.0
Filler wire, dia., in.	0.063	0.094	0.094	0.063	0.094	9.094
Wire feed rate, in./in.	2	4	4	2	4	4
Torch gas, cu ft/hr	30	30	30	35	35	35

(a) Joint design: 0.156 root radius, 0.04-0.05 land single U-groove.

(b) Voltages are averages owing to erratic nature when using helium.

(c) Five or six passes are needed for 0.5-inch plate.

Table 6. Process Settings for Automatic TIG Welds in Alloy 718 Sheet

Thickness, in.:	0.045	Sheet
Shielding Gas:	Argon	lielium
Current, amp	80	40
Arc voltage, v	8-16	16-18
Weld speed, in./min	8	6-8
Filler wire dia., in.	0.030-0.035	0.030-0.035
Wire feed rate, in./min	12-15	8-9
Torch gas, cu ft/hr	20-24	20
Backup gas, cu ft/hr	4	4

The results of a study conducted as part of the Supersonic Transport Research Program on TIG. welds in 0.025-, 0.050-, and 0.125-inch sheet, using no filler, indicated that Alloy 718 exhibits exceptional welding characteristics for its alloy class. By observing the normal procedures employed for cleaning and welding nickel-base alloys it was possible to obtain defect-free welds consistently. Circular patch tests indicated no "hot short" problem, and simulated repair welds were made without cracking. It was determined that the alloy can be welded in the annealed or in the cold rolled (20%) and aged condition. Bend tests were conducted on the welded samples and a minimum bend radius of 1t was obtained for the 0.025-inch gage and 4t for the 0.125-inch gage.

Hot cracking can be a serious limitation to the use of Alloy 718 filler wire for welding highly restrained joints because of its low freezing temperature. In this case, Rene 41 filler wire is preferred.

Ref: 49184, 49649, 53601, 66882

Electron-Peam Welding

Although it is known that Alloy 718 has been the subject of electron-beam welding studies, there are very few data available. Rocketdyne reports that butt welds in parts up to 0.875 inch thick can be made with commercial equipment and by welding from each side. Weld strengths equal to that of the duplex-aged base metal are obtained. The welds are more gas-free than the base metal, and shrinkage is greatly reduced in comparision with gas tungsten-arc welds. Shrinkage in 0.75-inch Alloy 718 was 0.005 inch when electron-beam welded and 0.080 inch when tungsten-arc welded.

Two-pass welding procedures were required for welding 0.060-inch-thick Alloy 718 pressure vessels at Airite Products Division of Electrada Corporation. Single-pass welds did not give reproducible results. The procedure developed to make the two-pass welds was as follows:

Tack Weld --- 80 kv, 1.5 ma, 0.012 defocused beam at 20 in./min

Penetration Weld --- 110 kv, 6.0 ma, 18 in./

Cover Weld -- 80 kv, 2.0 ma, 0.100 defocused beam.

Butt welds were made in 0.025- and 0.125-inch Alloy 718 in the fully aged condition. A 0.020-inch strip was used on the back side of the joint to improve the bead contour. Good reproducibility and weldability were reported when using 3-kw high-voltage equipment. Properties of the joints are not available.

Electron-beam welding should be desirable for Alloy 718 pressure vessels up to about 0.125-inch thick. This of course depends on

Defense Metals Information Center - Battelle Memorial Institute - Columbus, Ohio 43201

the economics involved and the fact that the width of the heat-affected zone increases with the lower welding speeds meeded for thicker materials.

Ref: 53601, 54895, 57516

Registance Wolding

Resistance welding, particularly spot and seam welding, have become increasingly important to the fabrication of high-performance vehicles. The use of welded components in place of rivets or other sechanical fasteners in these vehicles eliminates significant weight at no sacrifice of strength. Consequently, determination of the resistance weldability of Alloy 718 has been the subject of much study.

By taking the proper precautions, Alloy 718 can be resistance seam and spot welded. The development of optimum welding procedures was found to be more difficult for 0.027-inch neterial than for 0.060-inch sheet. Optimum welding procedures for thin-gage material now call for welding schedules with increased weld times at lower current amplitudes. The use of very flot electrode-tip radii when welding thin sheet helps to maintain sheet;-to-sheet contact.

In me study, spot-weld dismeters of 0.100 inch for 0.020-inch sheet and 0.240 inch for 0.060-inch sheet permitted spots as close as 0.188 and 0.500 inch, respectively, before shunting occurred. The minimum edge distance were 0.125 and 0.250 inch, respectively, for these welds. The results of a comparison between agedplus-welded specimens and welded-plus-aged specimens indicated that the lap shear strength of single spot-weld joints was improved by aging after welding. However, when the aged-plus-welded procedure was used, cross tension results were about 10 percent higher. The ductility ratio (cross tension/lap shear) indicated that aging after welding decreased ductility. However, the ductility ratio did not fall below 30 percent. This is considered to be adequate resistance weldjoint ductility.

Typical spot-weld machine settings are given in Table 7.

A study by Padian and Robelotto has shown that a satisfactory seam weld should be at least twice as wide as the thickness of the sheet, have at least 30 percent penetration into each sheet, and have 20 to 40 percent creelap. Seem welding parameters established by the study are given in Table 8. Those seam welded samples which were aged after welding exhibited the best strength properties.

Ref: 44973, 55127, 57516, 58334, 66882

Brazing

The brazing of the age-hardenable nickelbase alloys usually presents problems of technique such as the maintenance of very dry furnace atmospheres or precoating. The aluminum and titanium in these alloys causes difficulty in obtaining proper brazing-alloy wetting. Columbium does not oxidize to form a seriously unwettable surface. Alloy 718 contains a total of about 1.4 percent of aluminum and titanium as commared with about 4.6 percent for Raze 41 and 3.2 percent for Inconel X-750. Consequently, it would be expected that Alloy 718 would be much easier to braze than many agehardenable nickel-base alloys. Tests have shown that this is true. Brazeability is cumparable with that of precipitation-hardening stainless steels such as 17-7PH or PH 15-7 Mo.

McDonnell Aircraft has compared the wettabl' ty of Alloy 718 by three nickel-base and three silver-base filler metals. The specimen surfaces were prepared by alkaline cleaning followed by liquid honing before brzzing. Standard volumes of brazing filler metal: were placed on flat specimens and brazed in a vacuum furnace. The results are tabulated in Table 9. As expected, the nickel-base filler metals appear most suitable for Alloy 718. In addition the limited strength of silverbase brazing filler metals would preclude their use in many Alloy 718 applications.

As a result of the above study, tests were made to determine the room-temperature shear strength of joints unde in Alloy 712 using filler metals OH 52 and OH 56 LC. The specimens were cleaned as in the previous work and brazed in a vacuum of 1 micron or less. Three temperatures (1950, 2000, and 2050 F) and two brazing times (3 and 15 minutes) were used for each alloy.

Although the strongest joints were obtained with the 15 minute brazing cycle, it was concluded that long cycles were detrimental from two aspects serious intergranular penetration by the filler notal, especially CN 56 LC, and possible adverse thermal effect on the Alloy 718. It has been reported that brazing above 1800 F may reduce the elongation of aged Alloy 718 base metal in the temperature runge 1200-1500 F. The McDonnell work was on unaged alloy.

A study was conducted at North American Ariation to deter the Whether any reduction in heat-treated mechanical properties of Alley 718 would occur owing to brazing at temperatures in excess of optimum solution-treating temperature. The results indicate a degradation of between 15 and 20 percent.

Gold-mickel and copper-gold brazing filler metals have been evaluated for fabricating Alley 718

hand-

Matel or Alley 716

pol: Manufacturing processes

Table 7. Typical Spot-Weld Machine Settings for Alley 718 Sheet

Thickness, in.:	0.029	0.020	0.060	0.060
Condition:	As Recd.	Asad	As Recd.	Aged
Preheat heat, percent		8		•••
Preheat impulses		2		
Preheat time, cycles		10		
heat, percent	16	16	40	38
Meld impulses	2	2	2	2
Meld time, cycles	4	10	8	8
Current decay heat, percent	10		35	35
Current decay time, cycles	3		6	6
Cool time, cycles	0.5	C.5	1.5	1.5
Squeeze time, cycles	21	21	21	21
Hold time, cycles	50	59	61	61
Weld force, 1b	660	750	2850	2900
Forge delay (a), cycles	11-E	11-B	G-E	0-E
Forge force, 1b	1500	1950	5380	5400
Electrode class, RAMA	111	111	111	111
Electrode diameter, in.	·5/8	5/8	5/8	5/8
Electrode radius, in.	3	10	5	5

⁽a) B-beginning of weld; E-end of weld.

Table S. Typical Seam-Weld Muchine Settings for Alloy 715 Sheet

Thickness, in.:	0.020	0.020	0.060	J. 360
Condition	As Recd.	Ared	As Aocd.	Aged
Weld heat, percent	45	45	65	63
Weld impul-es	4	4	ė.	ε
Weld time, cycles	\$	3	4	4
Cool time, cycles	0.5	0.5	0.\$	0.5
Drive	(a))	(*)	(a)
Tip force, 1b	800	800	2900	2000
Forge time, cycles	\$	5	\$	5
sheel class, 2000A	111	111	111	111
Keel thickness, in.	1/:	1/2	1/2	1/2
theel radius, in.	3	3	3	٠.
External cooling	Yes	Tes	Xo.	Tes

⁽a) Intermittent

nandhook

Metal of Allay:

Manufacturing processes

Table 9. Wettability of Alloy 718 by Various Brazing Filler Metals

Brazing(a) Alloy	Chamber Pressure, mm Hg x 10	Temp.,	Brazing Time, min	Wetted	Contact Angle, deg	Wettability Index ^(b)
CM 50(c)	5	1950	15	0.185	21.6	0.172
CM 52	4	1990	15	0.762	12.8	0.743
CM 56LC	4	2075	15	0.624	11.6	0.611
LB 925(d)	5	1660	10	0.189		
LB BT(e)	3	1625	10	0.097		
LB 846	4	1750	10	0.276	38.5	0.215
CM 50(£)	5	1950	15	0.236	25.4	0.213
CM 52	5	1990	15	0.414	27.6	0.367
CM 56LC	4	2075	15	0.542	17.3	0.518
LB 925	5	1660	10	0.206	53.5	0.122
LB BT(g)	3	1625	10	0.096	115.2	-0.087
LB 946	4	1750	10	0.246	53.5	0.146

- (a) CM = Coast Metals; LB = H & H Lithobraze.
- (b) Area times cosine wetting angle; index >0.6 indicates excellent wetting, <0.1 poor wetting.</p>
- (c) Sintered, not fused.
- (d) Incomplete fusion.
- (e) Fused, no wetting.
- (f) Sintered, not fused.
- (g) Very little wetting.

honeycomb structures. The gold-base alloys wet the base metal well in a vacuum of less than 1 micron; the copper-base alloys did not. In this study crevice corrosion tests were made in a salt spray and aerated water. No evidence of corrosion was found after 100 hours.

The gold-base filler metal containing chronium appeared to be stronger in both lapshear tests and edgewise compression tests of honeycomb structures. The strength advantage, however, may be lost because of greater degradation of the base metal caused by the higher brazing temperature required.

Alloy 718 can be brazed with relative ease if the proper procedures, approximating those for other aluminum/titanium-containing superalloys, are used. Specimens of the base metal should accompany brazed specimens throughout the brazing and subsequent heat-treatment cycles to determine the effect of these operations on the mechanical properties of the base-metal.

Ref: 50206, 54076, 55050, 57516

Adhesive Bonding

Nicrel-base alloys can be adhesive bonded successfully using presently available techniques and adhesives. Relatively little work has been done on adhesive bonding of these alloys, however.

because nickel-base alloys generally are used at temperatures above the present maximum service temperatures of organic adhesives or under corrosive conditions. Inorganic adhesives of sufficient ductility and low enough maturing temperatures have not as yet been developed to compete with brazing and welding techniques for joining parts for high-temperature structures. As the maximum service temperatures of new organic adhesives continue to increase, production applications of adhesive bonding to nickel-base alloys may become more attractive.

Ref. 62549 is recommended as an excellent summary of the state-of-the-art of adhesive bonding of nickel-base alloys.

Ref: 62549

SURFACE FINISHING

Mechanical surface treatments such as burnishing, explosive hardening, peening and planishing are not used to any great extent for nickel-base allows. When used, they serve a variety of functions including improving surface firish, increasing fatigue strength and surface hardness, and reducing the occurrence of weld cracking. Improvements in mechanical properties arise largely as a result of the residual compressive stress established in the surface of the metal by the treatments.

Defense Metals Information Center • Battelle Memorial Institute • Columbus, Ohio 43201

Base Material: Mickel

Subject:

11-11

Metal or Alley: Alloy 718

Manufacturing processes

Although there seems to be little information available on the specific application of mechanical surface treatments to Alloy 718, it appears that many of these treatments could be applied to this alloy.

Mechanical surface treatments of nickelbase alloys are discussed in detail in reference 64660.

Ref: 64660

III. APPLICATION FACTORS

Uses

Base Material:

Hickel

III-1

Alloy 718

Application factors

USES

The following applications for Alloy 718 have been identified in the literature:

Application	Reference
Cryogenic-temperature applications: Diaphragms in vent and relief valves	64409
Inner shell of LOX tankage for both Gemini and LEM	64723
Elevated-temperature applications:	
M-1 turbine manifold	61919
M-1 fuel pump rotor	58539
Titan IIA chamber tube	59644
Cryogenic and elevated-temperature applications:	
Pressure vessels	5 813 7
Point drive fasteners	65780
Saturn V hardware (bellows and gimbal structures)	64912
Alloy 718 is also undergoing tests as a material for:	candidate
SST wing and fuselage skins	57147
Ring flanges, seals, and U, L, T shapes for jet engines	66396

IV. MECHANICAL PROPERTIES

All Forms

Design Properties

Sheet and Plate

Tensile Properties

Notched Tensile Properties

Fatigue Properties

Creep-rupture Properties

Sheet (cold-rolled and aged)

Tensile Properties

Notched Tensile Properties

Fatigue Properties

Creep-rupture Properties

Bucs and Forgings

Tensile Properties

Impact Properties

Fatigue Properties

Creep-rupture Properties

Costings

Tensile Properties

Compressive Properties

Impact Properties

Fracture-toughness Properties

Thermal-rupture Properties

data " sheet

se Material: Nicke

Metal or Alley: Alloy 718

Carrie

Condition:

Alley Data: Design properties p. 1 of 5

IV-1

Alloy 718 has been proposed for inclusion in MIL-HDBK-5, "Metallic Materials and Elements for Acrospace Vehicle Structures". The following table and four figures were contained in an attachment to the agenda for the 34th Meeting (October 1967), which will be considered for approval at the 35th Meeting (April 1968).

Tentative Design Mechanical and Physical Properties of Alloy 718

	_						
Specification	AMS 5383	AMS 5589	AMS 5590	5596, 5597	5662, 5663 5664		
Form	Castings	stings Seamless tubing			Bars, forgings		
Condition	Solution-treated & aged per indicated specification						
Thickness or diameter, in	• 4		≥ 0.125 ≤ 0.015	••			
Basis	S**	S	S	S	s		
*F _{tu} , ksi L T F _{ty} , ksi	125	185	170	180 ^a	185 ^c 180		
L	110	150 	145	150 ^a	150 ^c 150		
e, per cent: L T	5	12	15	15 ab	12 ^c 10 ^d		
E, 10 ⁶ psi	29.6°						
w, lb/in. ³	0.297						

a Test direction longitudinal for widths . 9 in.

b Thickness > 0.025 inch.

c AMS 5662 and 5663 only. For AMS 5664 use 180/150/10 for bars, 180/150/12 for forgings.

d 12 percent for AMS 5664 forgings

e Dynamic modulus.

[•] Symbols are defined in the Appendix.

^{**} See Appendix for basis of design properties.

Temperature, F

Effect of temperature on the ultimate tensile strength (Ftu) of solution-treated and aged Alloy 718.

(Tentative)

Defense Metals Information Center - Battelle Memorial Institute - Columbus, Ohio 43201

Temperature, F
Effect of temperature on the tensile yield strongth (Fty) of solution-treated and aged Alloy 718.

(Tentative)

Defense Metals Information Center - Battelle Memorial Institute - Columbus, Ohio 43201

14 h-

data sed of Alley Alley 715 Shoot from

Temperature, F

Effect of temperature on the tensile modulus (E) of solution treated and aged Alloy 718

(Tentative)

Temperature F

Effect of temperature on the physical properties of Alloy 718

(Tentative)

data was as sheet

4,500

Thermal expansion of Alloy 718 between room temperature and indicated temperature (cryogenic)

Condition: Annealed at 1950 F; aged at 1350 F/8 hours + 1200 F for a total of 20 hours.

Reference: 70525

		LIST W		Men					46/22/91	liten weeks India :	61000		
		-rim maiu	***************************************					9-001	-TIME TENSILE	-			
TEMP	1900 PEI	1000 PS1	Tradica States ? in 1000 PSi	ELând PES CENT	PEP CENT	7857 010	le est	730L0 \$1 7.62 av 1000 PS3		Trieste STRENGTO	CL DNG PER CENT	0,4, M0	7757
#	1000 PEE						- 13 - 13 - 13 - 19 - 19 - 19 - 19 - 19 - 19 - 19 - 19	1000 PS3	6.2 or 1000 or 111.0 103.3 07.0 101.0 00.0 107.0 70.0 70.0	Engugha- 1000 PS1 :07.7 100.3 100.4 101.4 101.0 101.0 121.4 120.0			oja Oja
22.22.22		814.6 864.6 897.0 894.6 896.6	294.0 295.0 295.0 275.1 266.1 277.1	0, 0 7, 0 9, 9 0, 9 7, 0 0, 9		***************************************							

data: Subbit

p. l of

Alloy 718 Sheet Annealed at 1750 F and Aged

Tensile Strength

From Data On pp IV ~ 11 And 12

data. Sieei

les Militaine: "Nicka

Allowan

Alloy 718

Fernig -State

by the Time to more refer

.2% Yield Strength

Elongation

From Data On pp IV - 11 And 12

data was un dis Siggi

p. 3 of

Alloy 718 Sheet and Plate Annealed at 1950 F and Aged

Tensile Strength

From Data on p IV-14

data : sheet

Base Metanik (Mickel) Metal or Aloy: Alloy 718

lendities: Age

Alley Data: / Tensile properties

p. 4 of 8

.2% Yield Strength

Elongation

From Data on p IV-14

		ACCESS!	ION NUMBER MBER 1	65927					ACCESS LOT M	ION NUMBER	67609		
	\$408T-	TIME TENSILE						SHORT	-TIME TENSILE	PROPERTIES			
TEMP	VIELD ST 0.02 PC 1000 PSI		TENSILE STRENGTH 1000 PSI	ELONG PER CENT	R.A. PER CENT	TEST PIR	TEMP	71ELD S 0.02 PC 1000 PSI	TRENSTH 0.2 PC 1000 PST	TFMSILE STRENGTH 1010 PSI	ELONG PER CENT	P.A. PER CENT	TEST DIR
75 75 75	••••	163.3 164.7 164.8	196.0 198.6 195.8	20.e 16.5	27.8 29,5	† † L	79 1200		162.0 135.4	195.0 159.6	16.0 15.0		
75 1000 1000 1000 1000		102.4 101.8 141.8 142.5 144.3	195.6 165.3 146.9 163.7	15.2 17.5 21.5 23.2	32.p 33.0 51.0	7 1			ACCESS LOT NU	ION NUMBER IMBER 24	67613		
1000		141.4	142.3 145.1	10.3	36.1	į		SHORT	T-TIME TENSILE	PROPERTIES			
1200 1200 1200		132.0 135.6 135.0 134.1	197.9 199.6 199.9	12.0	16.4 14.9 17.1 22.1	; ;	TEMP F	1000 PSI	STRENGTH 0.2 PC 1000 PSI	TENSILE STRENGTH 1000 PSI	ELONG PER CENT	PER CENT	TEST
1400 1400 1400		101.6 99.5 104.2 101.3	112.7 113.2 120.7 114.0	0.8 7.0 4.2 3.6	9,5 6.5 10.5	† † L	75 1200		169.7 150.0	194.4 149.6	10.6		
1.00			ION NUMBER	67602	-,•	•			ACCESS LOT NO	ION NUMBER MBER 25	67613		
		LOT NU	M 0 E8 55					2×0#1	-TIME TENSILE	PROPERTIES			
	SHORT-	-TIME TENSILE	PROPERTIES						TRENSTH	TENSILE	ELONG	R.A.	
YEMP	VIELD ST	TRENSTH G.2 PC	TENSILE STRENSTH	ELONG PER	9.A. PFR	TEST	72:00	0.02 PC 1000 PSI	0.2 PC 1000 PST	STRENGTH 1000 PSI	PER CENT	CENT	TEST
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1000 PSI	1000 PS1	1000 PS1	CENT	CENT	nim	75 1200		161.6 120.4	193.4	22.2		
79 79 1000 1000		157.2 167.8 160.5 140.8	198.8 199.8 172.0 173.6	10.5 19.0 20.0 20.5			1504			157.4			
1260 1260 1300 1300		136.6 135.2 124.2 116.0	146-5 164-5 144-6 136-7	19.5 17.5 10.0				8+087	ACCESS LOT NU T-TIME TENSILE		67613		
•••		******							TRENSTH	TENSILE	ELONG	P.A.	
		4668334 UN 101	HOLR 39	6764+			TEMP F 75	0.02 PC 1000 PSI	0.2 PC 1000 PS(STRENGTH 1000 PSI 200.6	PER CENT	PER CENT	TEST DIP
	SHORT-	-TIME TENSILE	PROPERTIES				1200		135.1	151.3	15.0		
	TIELD ST		TENSILE	EL046	R.A.								
Tem	0.02 PC 1000 PSI	9.2 PC 1000 PS;	STACHGTH 1900 PSI	PER CENT	CENT	7541					47413		
77 1200		159.8 127.2	189.1	23.e 14.0					LOT NU	ION HUMBER MBER 27	67613		
				****				SHORT	-TIME TENSILE	PROPERTIES			
		ACCESS LOT NO	130m H30H 66 R30H	67600			TEMP	71ELD 9 0.00 PC 1000 PFI	ITREMOTH 0.2 PC 1000 PSI	TENSILE STRENGTH 1000 PST	ELDHS PER CENT	P.A. PER CENT	TEST
	\$==QB T -	-TIME TENSILI	***************************************				75 1200		171.6	201.6	23.1	**.5	
fame F	1000 b21 0'05 hC 11670 21	1000 PS;	TENSILE STOEMOTH 1000 PSI	ELONG PER CENT	0.4. P(0 C(4)	TEST nlm			144,4	191.0	14,4	****	
7a 1200		175.6	105.0	10.0						MBER 54	67613		
		ACCE 15		67600				ا شيرت	-TIME TENSILE				
				- 4					i - i ime i tena i ce L inche th	TENSILE	FLONE	P.A.	
	?≈30 ₹-	-TIME TEMBLE	P00PF#11E4				75.00	0.68 PC	0.2 PC	578EH674	PER	PER	7687 018
TE WA	71610 %' 0.42 Pr 1000 PSI		THUSILE STOCHATH 1000 PSI	ELONG PEO CENT	*. a. P(3 CF#T	7857 12#	79		143,5	109.0	10.4		
1500		170.0	2*9.0 149.0	19.6 12.6				Heat Tre	ations and Befer	ences on pilk-	::		

Defense Metals Information Center - Battelle Memorial Institute - Columbus, Ohio 43201

data ' Sheet

to Marie Marie del la Marie Alley 718 France Pariet I Confficie Agent

Albert Baller Street Land September 1

			10H MJMBER MBER 29	67613					ACCESS LOT MU	ION MUMBER MBER 94	67614			
	SHORT	-TIME TENSILE	PROPERTIES					SHORT	-TIME TENSILE	PROPERTIES				
TEMP	YIELD S 0.02 PC 1000 PSI	TRENOTH 0.2 PC 1000 F31	TEMBILE STREMATH 1000 PSI	ELONG PER CENT	PER CENT	TEST DIR	TEMP	1000 PSI 0.02 PC 71ELD S		TENSILE STRENGTH 1000 PSI	ELONG PER CENT	P.A. PER CENT	TEST	
75 1200		173.0 147.8	266.8 1 65. 0	15.4 9.7			70 1200		102.6	197.4 145.1	17.0 11.0		Ĺ	
			ION NUMBER NBER 30	67613					ACCESS LOT MU	SION NUMBER MBER 94	67614			
	SHORT	-TIME TENSILE	PROPERTIES					SHORT	-TIME TENSILE	PROPERTIES				
TEMP	VIELD S 6.02 PC 1000 PSI		TENSILE STRENGTH 1000 PSI	ELONG PER CENT	R.A. PER CENT	TEST DIR	TEMP	1000 PGI 0.02 PC 1000 PSI	TREMOTH 0.2 PC 1000 PSI	TEMSILE STREMSTM 1000 PSI	ELONG PEN CENT	R.A. PER CENT	TEST DIA	
75	1000 F34	165.0	196.6	21.0	35.4	W4H	70 70 1200 1200		170.6 100.7 135.7 143.3	195.3 196.6 156.8 159.6	19.0 10.0 14.0 12.0		L L L	
			ION HUMBER MBER 31	67613						SION NUMBER	67614			
	SHORT	-TIME TENSILE	PROPERTIES					41487	-					
TEMP	0.02 PC	8.2 PC	TENSILE STRENGTH	ELONG PER	R.A. PER	TEST		VIELD S	-TIME TENSILF TREMETH	TENSILE	ELON8	R.A.		1
75	1000 PSI	1000 PSI 103.0	202.9	CENT	CENT	nia	TEMP F	0.02 PC 1000 PSI	1000 PS[STRENGTH 1000 PSI	PER CENT	PER CENT	TEST	,
1200		120.0	154.3	12.0			70 1200		179.6	202.2 1 65. 2	17.0		ť	
		ACCESS LOT NU	TON HUMBER HBER 32	67613										
	SHORT	-TIME TENSILE	PROPERTIES						ACCESS	ION NUMBER	67614			
TEMP	O.OS PC	TRENSTH 0.2 PC	TENSILE STRENGTH	ELONG PER	R.A. PER	TEST		PURET	-TIME TENSILE					
F	1000 PSI	1000 PST	1000 PSI	CENT	CENT	DIR		YIELD S		TENSILE	ELONG	R.A.		
75 75		167.3 167.3	215.4 215.4	17.5			TEMP	0.02 PC 1000 PSI	0.2 PC 1000 PST	STRENGTH 1000 PST	PER CENT	PER CENT	TEST	
							70 1 20 0		196.7 160.6	207.7 176.4	13.0	,	Ĺ	
			ION NUMBER	67613									•	
SHORT-TIME TENSILE PROPERTIES							Heat Tre	atment: 1750 F	/l hr + 1325 7/8	hr + 1150 F/8	hr			
TENP	0.02 PC 0.02 PSI VIELD S	TRENGTH 0.2 PC 1000 PSI	TENSILE STRENGTH 1000 PSI	ELONG PER CENT	R.A. PER CENT	TEST DIR	Ref: 65	927, 67602, 676	09, 67613, 67614					
75		180.0	209.4	15.4							•			

data ** sheet or Alley: Adding The Form Shiet Condition April

tenetle properties

		ACCESS LOT MU	ION NUMBER NOER 1	51792					ACCES!	NOEN NOIS	51792		
	SHORT	-TIME TEMSILE	PROPERTIES					SHORT	-TIME TEMSILF	PROPERTIES			
TEMP	VIELD T	TREMOTH	TENSILE STRENSTH	EL ONG PER	R.A. PER	TEST		TIELD S	TRENSTH	TENSILE	ELONG	N.A.	
F	1040 PSI	1000 PS:	1000 PSI	CENT	CENT	nim	TEMP	0.02 PC 1000 PSI	0.2 PC 1000 PS;	STREWSTH 1000 PS;	PER CENT	PER CENT	TEST DIR
-110 73 70 250		160,5 163.6 162.5	212.0 196.0 197.0	25.0 21.0 21.0		Ĭ	70		197.5	214.5	13.6		*
650 658 800		153.0 141.5 137.5 120.0	101.0 171.5 172.0 100.0	20.0 20.0 23.0 23.0		;			ACCES!	NOEN A	51792		
1000		114.6	169.6	24.0		•		SHORT	-TIME TENSILE	PROPERTIES			
							TEMP F	0.02 PC 1000 PSI	STRENGTH 0.2 PC 1000 PSI	TENSILE STRENGTH 1000 PSI	ELONG PER CENT	PER CENT	TEST
		ACCESS LOT NU	ION NUMBER	51792			70		193,5	210.5	12.0		7
	SHORT	-TIME TENSILE	PROPERTIES							-	51792		
	VIELD S		TENSILE	ELONG	R.A.				LOT NU	MBER 5			
TEMP	0.02 PC 1000 PSI	0.2 PC 1000 PSI	STRENGTH 1000 PST	PER CENT	PER	TEST		SHORT	T-TIME TENSILE	PROPERTIES			
-32n -110 70		229.0 206.5 196.5	240.5 232.0 221.0	13.0 17.0 12.0		ŢŢ	TEMP P	1000 SZI 0.05 SC AIETD 1	STRENGTH 0.2 PC 1000 PSI	TENSILE STRENGTH 1300 PSI	ELONG PER CENT	PER CENT	TEST
7n 35n 650 65n 1000		195.5 188.5 179.0 182.0 165,3	212.0 205.0 193.5 198.5 180.5	13.0 12.0 12.0 13.0 10.0		T T T T	70 70 70		142.0 143.8 137.0	100.0 101.0 100.0	21.5 16.0 23.0		† † †

Heat Treatment: 1800 F/1 hr + 1325 F/8 hi

Ref: 51792

ACCESS LOT MU	TON MANUER 1	03647						ation made	41323		
TIME TENSILE						SriQA T	-TIME TENSIL				
MENSTH	TENSILE	FLOWA	P.4.			71ELD \$	Telfant Tue	tend is a	-		
1.2 PC	STOCHSTH	PER	260	TEST	12-	4.42 PC	0.2 PC	TENSILF STOEMSTIN	CL Project	PCD	
1000 P\$1	1000 PSI	CENT	CENT	nie	•	1000 041	1000 PS1	1000 251	CENT	CLAT	76
170.5	219.6	16.0		L			172.5				-
181.1	222.0	13.0		ī	94		173.0	207.5	17.3		L
173.0	219.0	15.0		ī	800		194.7	204.0	10.0		
170.3	214.3	14.0		Ĺ	800		157.5	102.5	20.3		· ·
177.5	210.1	15.0		Ĺ	1000		153.0	170.7	21.0		T
172.2	219.5	19.5		Ū	1000		191.9	177.8	21.4		L
174.5	217-2	13.4		Ĺ	1200		101.0	176.4	\$1.0		Ţ
171.3	214.4	15.0		L	1200		101.7	150.4	11.0		Ļ
171.7	217.6	14.5		Ĺ	•-•-		,,	140.0	10.0		
170.0	212.0	15.0		L							
149.8	103.5	14.0		L							
140.4	187.4	17.0		L			ACCES	5100 WARE	61373		
144,6	100.1	17.0		L				V=0(A)	V. 27 5		
144.5	101-3	17.5		L			•••	 -			
147.3	179-7	14.0		L							
104.0	100.0	13.0		L		3-4-1	- time tempt	E PROPERTIES			
144.3	101.1	17.5	44.1	L		VIELO S	700 0-4 7-4				
147.4	141.6	17.5		L	10-0	0.02 PC	1.2 PC	TENSILE	(rem	•	
147.2	101.6	17.4		L	· • •	1000 P21	1000 PS:	STORMSTO	PEN	960	78
150.5	103.5	14.5		Ļ			1000 >11	1000 521	CENT	CENT	011
125.0	143.9	10.0		·	84		176.5	744.0	• •		
127.4	194.3	14.6		Ŀ			100.0		20.5		L
164.3	144.3	17.9		•	500		154,0	100.5	21.0		7
120.7	193-1	17.0			804		190.0	174.2	19,3		L.
120.1	144.0	17.0			1000		194.2	169.0	17.5		1
	150.0	13.0		•	1000		144,6	143.0	18.0		Ť
124.0	142.0	10.0			1200		103.3	197.4	10,0		
126.6 126.0	151.0	10.0			1200		134.5	147.4	4.1		, L
123.0	192.0	10.0						140.3	7.5		•
121.0	151.0 151.0	19.0									
120.6	141.0	14.0									
124.0	152.0	10.0									
120.0	197.0	17.		•	Cornel S & Spen	: Cold rolled	261 ches seus	treated as ful!			
124.0	191.0	10.0						**************************************	700		
60.4	72.5	14.0		•		<u>Let</u>		met Presumed			
44	72.3	,		ì							
	71.0			-		2		Solution tracted	- 179e -	***	
27 ; }	72.3			i				aged 1323 F/B he	1110	10 34	
				ī							
67.4	72-1	14.8									

	9-001	-TIME TEMBLE	PROPERTIES			
10.0	71ELD S 0.02 PC 1000 PSI	1865H 0.2 PC 1000 PSI	TENSILE STRENSTM 1000 PSI	ELEMS PER CENT	P.A. PEB CENT	721
00 000 000 1000 1000 1200		170,3 100.0 190,0 190,0 190,2 140,0 143,3 134,5	744.0 100.5 174.2 100.0 140.3 143.0 147.6 142.5	20.5 21.0 19.1 17.5 18.0 19.6 6.9 7.5		. 7 . 7 . 7 . 7

Let	Stat Prestment
2	Solution treated or 1730 F, then aged 1323 F/8 he = 3130 F/10 he
•	Seletion treated at 1930 F'10 he aged 1930 F/8 he a 1130 F/12 he

o. 1 of 2

ACCESSION WIMBER \$1792 LOT NUMBER 1

NOTCHED TENSILE AND PUPTURE BATA

12 .	STACSS INTENSITY FACTOR	NOTCHER STRENGTH 1000 PSI	rice ard. In area rea gant	\$74C\$5 1000 P\$1	TION	oto, in sats sen clus
-110	20.0	195.5				
78	24.0	164.0				
70	23.0	170.0				
450	83.0	194.9				
450	23.0	143.0				
866	20.0	150.0				
1000	20.0	143.6				

ACCESSION WINNER \$1792

NOTENCO TENTILE AND BUTTURE DATE

tc≠.	STACSS INTENSITY FACTOR R	withto stated stated 1803 PSI	PED". IN APER PER CENT	57RE55 1080 P31	110m	MED. IN AMEA PER CENT
-320	29.0	234.5				
-110	20.0	2:3.0				
70	20.0	190.9				
70	22.0	199.8				
250	20.1	179.7				
144	23.0	173.5				
454	29.8	172.0				
804	21.0	147-0				
1000	20.6	166-9				

ACCESSION NAMED SITES

NOTINED TENSILE AND AUPTURE DATA

	5:4035	15%	#1LE	 40 P T 100	
•	1916.9314				
	#4C104				
•	•			 	

accession month street

matemata teneti. E and martime 14th

	314635	168	alue		441,00		
	1="6=311+						
tem.	Fac Tool	Stag meter	FAME Y	1111	7 1 1/A	4 34 4	
•	•	1841 731	PER CENT	**:	****	PER CENT	
9 -1	24.4	201.3					

Mage Becasages - IMM E I to x 1923 E # to x 1927 E 12 to

Ban 6 11 792

ACCESSION NUMBER 55200

NOTCHED TENSILE AND PUPTURE DATA

	STACES		sluc		MUPTUR	
	INTERNSTIT	40TC×CD	₩0g lm	\$10E55	DURA-	eco. In
Tem.	FACTOR	STPENSTM	AACA	1000	1100	AMEA
,	4	1000 PSI	PER CENT	PSI	F.QUAS	PER CENT
-427	4.3	303.0				
-423	4.3	314.0				
47)		315.0				
-423	4.3	300.5				
-423	4.3	205.0				
-453	4.3	307.0				
-493	•.3	702.0				
-453	4.3	301.0				
-423	4.3	373.0				
-453	4.3	310.0				
-)28	4.3	294.8				
-354	6.3	245.0				
-358	A.)	700.6				
-354	4.3	201.0				
-250	4.3	279.9				
-320	4.3	284-8				
- 754	•,3	205.6				
- 750	4.3	291.0				
-350	4.3	243.5				
-)20	•.)	280.0				
+1.3	4.3	259.8				
- 00	4.3	\$44.8				
-100	•.3	744-8				
-100	4.3	794.E				
-100	4.3	245.0				
-100	• • •	242.0				
-10: -100	4.) •.)	\$+5-4				
-103	•3	743.8 .241.8				
-103	1.3	264-8				
75	4.3					
73	::;	246.8 246.8				
75	4.3	249.0				
75	₹.5	2.7.4				
75	4.5	2.9.0				
R		2.).				
P\$	i	249.4				
n	•.5	2.0.1				
73	i.;	250-0				
73	4.3	250.0				
,-	**					

SCCESSION WITHOUT SINGS

MOTOMED TENSILE AND BUPTURE DATA

Temp.	STRENS ENTRIGETT FACTOR	worked statedia liss asl	SICE BESIN AMER PER CENT	#J#1000 00#4- 110% #00#5	MO. IN ANEA PER CENT
2)	7.5	184-1			
>>	3.5	1			
-477	1.5	179.0			
-781	>.8	107.9			
-321	2.5	147-1			
-3::	7.5	194.8			
72).3	122.2			
* 1	3, 5	177.1			
**	3.5	121.5			

Complete control designation

\$45 77380 and \$199

A STATE OF THE STA

COLD BON OF ALL ALL THE STREET OF THE STREET

ACCESSION NUMBER 61323

NOTCHED TENSILE AND RUPTURE DATA

TEM.	STRESS INTENSITY FACTOR &	NOTCHED STRENGTH 1000 FSI	RED. "IN APEA APEA PER CENT	STRESS 1000 PSI	NUTTAL DURA- TION HOURS	MED. IN AMEA PER CENT
75	20.0	107.0				
75	20.3	100.0				
800 800	20.6 20.0	130.0		140.0	1700.0	
1000	7.5	100.5		150.0	15.0	
1000	2.5			150.0	95.9	
1000	2.3			140.0	375.0	
1000	2.3			135.0	1305.6	
1000	6.8			100.0	41.6	
1000	•••			150.0	120.0	
1000	4.0			140.0	344.8	
1000	4.1			130.0	**78.0	
1600	20.0	132.0		120.0	1347.0	
1000	20.0	i&.i		100.0	20.0	
1000	20.0				248.0	
2000	20-8			74.0	321.0	
1000	20.0			70.0	395.0	
1000	76.0			45,0	1771.0	
1000	50-0			94.0	55.7	
1000	20.6			150.0		
1000	20.0 20.0			70.0 74.0	371.0	
1000	20.0			79.0	794.0	
1000	20.0			84.1	1541.0	
1200	2.3			90.0	160.0	
1200	2.3			80.0	478.8	
1500	2.3			70.0	301.0	
1200	2.3			65.0	1312.0	
1500	6.1 6.1			90.0	143.0	
1200				94.0 79.0	431.0	
1200	6.0			45.0	1317.6	
1500	20.0	130-0		80.0	11.8	
1200	20.0	139-2		70.0	21.2	
1556	50.0			40.0	1033.3	
1200	20.0			80,0	7.2	
1200	20.0			70.0	276.0	
1500	20.0			40.0	105.0	
****	20.0			\$5.0	1507.0	

ACCESSION NUMBER 61323

IV-16

NOTCHES FEMBLE AND BUFFURE DATA

	NOTCHES FEMBLE AND REPTURE DATA					
TEP.	STRESS INTENSITY FACTOR E	MOTOMED STRENGTH 1000 PSI	red red in area per cent	STRESS 1900 PSI	110m	MED. 14 AMEA PER CENT
75	20.0	196-6				
75	20.0	195-6				
800	20.0	160.0		137.0	1572.0	
000	20.0	167-5		160.0	302.0	
900	50.0			155.0	1079.0	
***	20.0			150.0	2054.0	
944	29.0 20.0			134.0	1657.0	
1900	72.3			150.0	1427.0	
1000	2.5			150.0	94.5	
1000	ž.5			140.0	47.3 267.0	
1060	2.3			130.0	77.2	
1004	2.5			130.0	132.0	
1900	4.0			120.0	155.0	
1600	4.0			110.0	197.0	
1000	4.0			100.0	501.0	
1000	•••			90.0	901.0	
1000	50.0	166.5		124.0	75.4	
1000	50.0	159.5		100.0	134	
1000	20.0				56.]	
1000	20.8 22.8				93.7	
1004	20.0			75.0	133.0	
1000	20.0			70.0	641.3 501.6	
1000	20.0			94.4	214.8	
1000	70.0			80.0	500.0	
1000	20.0			73.0	1431.0	
1200	2.3			44.0	304.0	
1200	2.3			50.0	931.0	
1500	4.0			50.0	44.2	
1500	4.1			45.0	167.6	
1200	4.0			40.0	435.0	
1500	4.1			34.1	2400.0	
1200	20.0 20.0	151.9		50.0	16.1	
1200	20.0	100.4		70.0	••3	
1200	20.4			60.8 45.8	4,5	
1200	20.0			30.0	1771.0	
1200	20.4			74.1	2.5	
1500	20.0			44.4	2.7	
1500	20.0			30.0	41.5	
1200	20.0			46.0	2639.3	

Condition: Call called MT then have consent on dallow

iei <u>bei Irren</u>

Solution treated at 1750 F, that ened 1325 F'S he a 1150 F/10 he

Solution treated at 1930 F, the

Bof: 4132

CONSTANT-LIFE PATIGUE DIAGRAP FOR ALLOY 718 SHEET TESTED AT BOOM TEMPERATURE. (UNNOTCHED AND EDGE-NOTCHED).

Ref: 65927

COMSTANT-LIFE FAFICITY DIMERATIVE ALLERY 718 SHEET TESTED AT 1000 F, (UNMOTCHED AND EDGE-NOTCH,)

Ref: 65927

"The Use of These Diagrams is Described in The Appendix.

Defense Metals Information Center (Pathole Memorial a soft text of only to the APPO)

CONSTANT-LIFE FATIGUE DIAGRAM FOR ALLOY 718 SHEET TESTED AT 1200 F. (UNBOTCHED AND EDGE-MOTCHED). Ref: 65927

CONSTANT-LIFE FATICUS DIACRAPPOR ALLOY 718 SHEET TESTED AT 1400 F. (UNBOTCHED AND EDGE-MOTCHED) $Ref = 6597^{\circ}$

The Use of These Disgrams is Described in The Apparedos

Defense Metals Information Center - Battele Memorial Institute - C. Imbus, Ohio 43201

Petigue deta for Alloy 718 sheet at ross traperature and atrees ratio, A = and heat treated as per AMS 5996A. Ref: 65927

Stress Concentration,	Toss Direction	Stress (ksi)	Cycles to Failure
1.0	7	34.0	34,960,000 200
-	•	40.0	35,800,000 ber
•	•	42.5	2,976,000
•	•	45.0	2,862,000
•	•	45.0	29,560,000
		47.5	1,252,000
•		50.0	501 000
-	•	50.0	525,000
•	tr ·	50.0	1,037,000
-	· 🙀	35.0	480,000
•	•	60.0	346,000
-	27	73.0	24,000
	L	45.0	30,180,000 DMF
•	ε	60.0	227,000
3.0	•	20.0	24,800,000 DEF
3.0	•	21.0	29,890,000 DMF
=	+	22.0	8,996,000
-	₩	22.0	9,016,000
•	*	23.5	637,000
•	•	23.5	709,000
•	•	23.5	849,000
-	10	25.0	966,000
•	•	30.0	307,000
•	i	25.0	1,190,000

Cycles to Federe sure that sales the sales at sales translating by the sales sales at sales at sales are sales and sales are sales at sales at sales are sales and sales are sales and sales are sales are sales and sales are sal

data '
sheet

Saro Material: Nickel

Alloy 718

form: Sheet

Condition: Aged

kley Jate: Patigue properties

p. 4 of 20

IV- 20

Patigue data for Alloy 718 sheet at room temperature and stress ratio, A = 0.67 and heat trested as per AMS 5596A.

Ref: 65927

Stress	_	Maximum	
Concentration,	Test	Stress	Cycles to
K _t	Diraction	(ku1)	Failure
1.0	7	65.0	30,770,000 DNF
**	10	72.0	36,100,000 DNF
**	11	75.0	35,340,000 DNF
**	"	50.0	482,000
46	**	80.0	948,G00
**	11	85.0	352,000
**	11	30.0	482,000
**	11	95.0	400,000
**	n	105.0	389,000
11	11	120.0	147,000
3.0	11	35.0	30,670,000 DNF
,,	₽.	37.5	15,940,000
-i	11	40.0	7,417,000
	11	47.5	243,006
	! *	47.5	587,000
.,	**	55.0	242,000
**	11	65.9	82,000
**	11	90.0	32,000

*Did Not Fail

Cycles to Failure
S-N DIAGRAM FOR ALLOW 738 SHEET AT ROOM TEMPERATURE WITH STRESS RATIO, A = 0.67 (unnotched and edge-notched)

Detergie Maria des creation Genter. Battielle Memorial Institute - Cellus dius, Unio 43201

sheet

Fatigue data for Alloy 718 sheet (1) at room temperature and stress ratio A = 0.33 and heat treated as follows:

Solution treated 1600 F (1/2 hr) A.C. Aged 1325 F (16 hr) A.C.

Ref: 61646

Stress Concentration, $\frac{K_t}{}$	Sheet Thickness	Maximum Stress (ksi)	Cycles to Failure
1.0	.063	120.0	113,000
11	17	138.5	75,000
**	11	166.2	29,000
1f	11	184.7	9,000
· ·	11	159.4	27,000
H	**	92.3	256,000
**	**	73.9	676,000
n .	**	64.6	1,789,000
••	17	55.4	5,000,000 DNF*
**		106.2	92,000
3.0	**	83.1	17,000
	ŧŧ	101.6	9,000
**	**	64.6	42,000
11	**	46.2	230,000
**	11	92.3	11,000
**	t1	36.9	5,000,000 DNF
11	11	55.4	124,000
11	**	73.9	37,000
**	α	42.5	437,000
**	H .	110.8	9,000
1.0	0.125	92.3	287,000
"	11	138.5	55,000
•	11	110.8	157,000
11	11	73.9	768,000
н	**	83.1	462,000
n	11	123.7	42,000
**	••	64.6	1,289,000
**	4	55.4	3,757,000
**	**	157.0	21,000
•	11	55.4	3,445,600

*Did Not Fail

(1) UTS = 0.063 sheet - 183.8 ksi 0.125 sheet = 176.5 ksi

data ' sheet

Mond of Alloy: Alloy 71
Falls: Report

Condition: Aged

Alley Date: Partiess properties p. 6 of 29

 $(\underline{})$

S-N DIAGRAM FOR ALLOY 718 SHEET AT ROOM TEMPERATURE WITH STRESS RATIO, A= 0.33 (notched and unnotched)

Ref: 61646

data was assisted as a second as a second

Fatigue data for Alloy 718 sheet at 1000 F and stress ratio $A = \infty$ and heat treated as per AMS 5596A. Ref: 65927

Stress Concentration, K _t	Test Direction	Maximum Stress (ksi)	Cycles to Failure
1.0	т	55.0	24,040,000 DNF*
11	ü	58.0	3,447,000
17	**	60.0	2,439,000
•9	· H	65.0	289,000
n	11	70.0	9,000
H	**	70.0	372,000
18	L	52.5	1,747,000
et.	īi .	60.0	108,000
3.0	T	18.0	24,270,000 DNF
11	••	20.0	24,670,000 DNF
**	11	23.0	201,000
D .	**	23.0	607,000
*1	**	27.5	151,000
••	11	35.0	50,000
42	11	40.0	26,000
11	n	45.0	14,000
0 W	L	25.0	151,000

Cycles to Failure S-N DIAGRAM FOR ALLOY 718 SHEET AT 1000 F WITH STRESS RATIO, As (unnotched and edge-notched)

ARTHUR OF

Fig. But

Fallon properties

Fatigue data for Alloy 718 sheet at 1000 F and stress ratio A = 1.0 and heat treated as per AMS 5596A.

Ref: 65927

Stress Concentration, K _t	Test Direction	Maximum Stress (ksi)	Cycles to Failure
			
1.0	T	85.0	25,120,000 DNF*
••	H .	90.0	14,070,000
**	**	95.0	775,090
**	11	100.0	456,000
11	••	105.0	349,000
**	L	90.0	1,659,000
3.0	T	40.0	29,520,000
n	11	43.0	933,000
11	11	45.0	1,909,000
**	**	47.0	400,000
11	**	50.0	76,000
11	L	42.0	158,000
II .	,	45.0	91,000
11	11	45.0	149,000
11	H .	45.0	207,000

Cyclos to Faiture
S-N DIAGRAM FOR ALLOY 718 SHEET AT 1000 F WITH STRESS RATIO, A = 1.0 (unnotched and edge-notched)

data ' sheet

tel or Alley: Alley 1946
Form: Shoot
Condition: Aged

Parigue data for Alloy 718 sheet at 1000 F and stress ratio, A = 0.67 and heat treated as per AMS 5596A.

Ref: 65927

Stress		Maximum	
Concentration,	Test	Stress	Cycles to
<u> </u>	Direction	(ksi)	Failure
1.0	T	95.0	29,860,000 DNF*
**	11	100.0	22,790,000
••		102.5	1,214,000
**	et .	105.0	849,000
н	11	105.0	4,636,000
	**	112.5	403,000
**	**	120.0	290,000
3.0	ţŧ.	35.0	24,520,000 DNF
11	**	42.5	30,170,000 DNF
**	**	46.0	35,210,000 DNF
tt	**	50.0	210,000
**	**	50.0	248,000
**	**	50.0	480,000
**	.•	65.0	65,000
**	***	65.0	67,000
**	11	75.0	43,000
**	**	85.0	19,000
**	11	90.0	15,000

Gycles to Faiture
5-N DIAGRAM FOR ALLOY 718 SHEET AT 1000 F WITH STRESS RATIO, A = 0.67 (unnotched and edge-notched)

data " sheet

6 Melerial: Nickel

Alloy 718

endition: Ago

May Date: P

Fatigue properties p. 10 of 20

IV-26

Fatigue data for Alloy 718 sheet at 1000 F and stress ratio, A = 0.25 and heat treated as per AMS 5596A.

Ref: 65927

Test Direction	Maximum Stress (ksi)	Cycles to Practure
T	145.0	24,120,000 DNF*
11	150.0	10,490,000
11	155.0	4,527,000
n	157.5	8,554,000
11	160.0	2,888,000
··	165.0	1,331,000
н	170.0	381,000
	Direction T " " " " "	Test Stress Direction (ksi) T 145.0 " 150.0 " 157.5 " 160.0 " 165.0

Cycles to Failure
S-N DIAGRAM FOR ALLOY 718 SHEET AT 1000 F WITH STRESS RATIO, A = 0.25 (unnotched)

data sheet

letal or Allega Form Confliction

₩.

Fatigue data for Alloy 718 sheet at 1000 F and stress ratio, A \approx 0.10 and heat treated as per AMS 5596A.

Ref: 65927

Stress Concentration, Kt	Test Direction	Maximum Stress (ksi)	Cycles to Failure
3.0	T	121.0	35,760,000 DNF*
11	11	135.0	39,990,000
10	**	143.0	32,860,000
Ħ	11	154.0	9,148,000
11	11	160.0	2,521,000
II .	11	165.0	205,000

S-N DIAGRAM FOR ALLOY 718 SHEET AT 1000 F WITH STRESS RATIO A - 0.10 (edge-notched)

n en grapp property (*) n et statifisjelij (*)

data " sheet

letel or Alley: Alloy 72
form: Sheet
Confiden: Agod

Alloy Batte Petigue properties p. 12 of 20

IV-28

Fatigue data for Alloy 718 sheet at 1000 F and stress ratio A=0 (stress rupture) and heat treated as per AMS 5596 A.

Ref: 65927

Stress Concentration, K _L	Test Direction	Maximum Stress (ksi)	Time (to Rupture Equivalent Cycles
1.0	T	135.0	163.3	35,272,000 DNF
"	•	150.0	114.2	24,667,000
**	11	160.0	38.4	8,294,000
**	**	167.5	5.6	1,209,000
**	11	168.5	3.2	691,000
11	<u>r</u>	135.0	156.2	33,139,000
11		140.C	72.6	15,681,000
11	н	150.0	53.0	11,448,000
11	**	160.C	14.1	3,645,000
H	**	167.5	3.8	821,000
3.0	T	150.0	131.1	28, 317, 000
"	i	155.0	86.6	18,705,000
ti	11	160.0	62.4	13,478,000
**	H	160.0	75.3	16,264,C00
**	**	170.0	33.2	7,171,000
**	**	180.C	8.5	1,836,000
*1	**	181.5	7.9	1,706,000
**	L	160.0	33.9	7,322,060
11		170.0	52.9	11,426,000
**	**	180.0	4.6	993,000

*Did Not Fail

S-N DIAGAM FOR ALLOY 718 SHEET AT 1000 F WITH STRESS RATIO, $\Lambda \approx 0$ (unnotined and edge-notished).

Defense Metals Information Center • Battoffe Memorial Institute • Columbus, Ohio 13201

Fatigue data for Alloy 718 sheet at 1200 F and stress ratio, A = " and heat treated as per AMF 5596A.

Ref: 65927

Stress Concentration, Kt	Test Direction	Maximum Stress (ksi)	Cycles to Failure
1.0	T	47.5	29,436,000 DNF
н	10	49.0	5,491,000
**	**	50.0	343,000
**	••	52.5	205, 600
**	63	55.0	17,000
**	**	62.5	4,000
20	**	65.0	2,000
**	L	55.0	14,000
3.0	Ť	20.0	26,240,000 DNF
n	••	21.0	23,250,000
**	**	22.5	233,000
*1	99	25.0	130,000

*Did Not Fail

S-N DIAGRAM FOR ALLOY 718 SHEET AT 1 00 F WITH STRESS RATIO, A- * cunnot ched and edge-notched)

But your grown Courses + Barrier & Krour Defende Metal

Intermediate Motor Alloy 7 Intermediate April 1988 Shoot Continue April 1988

P. 14 of 20

IV-30

()

Fatigue data for Alloy 718 sheet at 1200 F and stress ratio, A = 1.0 and heat treated as per AMS 5596A.

Ref: 65927

Stress Concentration, K _t	Test Direction	Maximum Stress (ksi)	Cycles to Failure
1.0	7	85.0	29,250,000 DHF*
я	>1	90.0	2,603,000
**	•	95.0	942,060
**	**	100.0	266,000
Ħ	•	105.0	91,000
3.0	•	33.0	25,280,000 DecF
**	79	35.0	18,090,000
**	**	37.0	9,204,000
••	**	37.5	659,000
**	71	40.0	419,000
**	н	42.5	133,000

*Did Not Fail

3-N DIAGRAM FOR ALLOY 718 SHEFT AT 1290 7 WIT 4 STRESS RATIO, A = 1.0 (unnotched and edge-natched)

Defense Metals Information Center - Battelle Memoria Institute - Columbus, Ohio 43201

Patigue data for Alloy 718 sheet at 1200 F and stress ratio A = 0 (stress rupture) and heat treated as per AMS 5526A.

Saf: 65927

Stress Concentration,	Test	Maximum Stress	Time i	to Repture Equivalent
<u>K</u>	Direction	(ksi)	Hours	Cycles
1.0	т	87.5	117.8	25,444,000
•	•	100.0	31.4	6,782,000
•	•	110.0	9.6	2,073,000
•		120.0	3.1	659,000
•	•	135.0	€.67	19.,006
3.0	•	85.0	28.0	6,048,000
		85 0	73.4	15,854,000
•	•	100.0	19.0	4,1%,000
•	-	120.0	2.6	561,000
•	•	135.0	0.67	.50,000

sex blacken for allow the smear at 1960 teston strate. Ratto, A = 1 summer her en-

Metal or Alloy:

Base Material: Nickel

Alloy 718

Sheet

Form:

Patigue properties

p. 16 of 20

IV-32

(_)

Fatigue data for Alloy 718 sher: at 1490 F and stress ratio, A = = and heat treated as per $_{\rm All}$ S 5396A.

Ref: 65927

Stresa Concentration, Kg	Test Direction	Maximum Stress (ksi)	Cycles to Failure
1.0	T	35.0	24,600,000 DNF
**	**	38.0	6,169,000
	**	38.0	26,150,000 DNF
••	**	40.0	16,150,000
H	**	42.0	871,000
11	"	42.0	7,610,000
•		42.5	1,795,000
11	•5	42.5	12,570,000
H		44.0	9,000
46	••	45.0	14,000
rt .	**	45.0	12,000,000
11	**	45.0	15,0.0,000
**	**	46.0	41,000
**	**	47.0	68,000
	**	48.0	9,000
**	**	48.0	130,000
H	L	38.0	7,570,000
3.0	Ť	17.5	25,100,000 DNF
"	;	19.0	514,000
11		19.0	5,577,000
11	•	20.0	1,484,000
14	**	21.0	186,000
í r	H	25.0	36,000
1+	L	19.0	18,200,000
	<u>.</u>	21.0	151,000

S-M DIAGRAM FOR ALLOY 718 SINCET AT 1400 F WITH STRESS RATIO, A- and edge-notched)

data sheet

Base Material: Mickel

Metal of Alley: Alley 71

Form: Shoe

Condition: Aged

Patigue data for Alloy 718 sheet at 1400 F and stress ratio, $A \approx 1.5$ and heat treated as per AMS 5596A.

Ref: 65927

Stress Concentration, K _t	Test Direction	Maximum Stress (ksi)	Cycles to Failure
1.0	T	45.0	29,550,000 DNF*
**	••	50.0	25,180,000 DNF
**	••	53.0	8,240,000
••	••	55.6	10,780,000
**	**	57.5	17,549,000
••	••	62.5	1,929,000
**	**	62.5	7,962,000
**	••	65.0	4,776,000
#	**	65.0	5,467,000
•	**	70.0	6,055,000
41	**	75.0	382,000
**	**	75.0	920,000
**	**	77.5	227,000
**	**	77.5	452,000
	P4	77.5	1,413,000
•	**	80.0	
**	**	80.0	493,000 659,000
10	н	87.5	
**	L	70.0	14,000
3.0	ī	22.5	2,132,000
:1		25.0	26,320,000 DWF
11	**		6,178,000
**	**	25.0	30,120,000
н		27.5	3,779,000
••	P\$	30.0	531,000
H		35.0	166,000
 H	Ľ "	27.5	1,354,000
•	***	30.0	810,000

S-N DIAGRAM FOR ALLOY 718 SMEET AT 1400 F WITH STRESS "AT". A + 1.5 (unnotiched and edge-noticled)

Defense Metals Information Center (Buttolio Momong Inger John Journbus, Ohio 43201

data Suet ace Material: Micke

Alloy 718

IV-34

Conflict April

Fatigue data for Alloy 718 sheet at 1400 F and stress ratio, A = 0.67 and heat treated as per APS 5596A.

Ref: 65927

Stress Concentration, Kt	Test Direction	Maximum Stress (ksi)	Cycles to Vailure
1.0	T	50.0	26,680,000
"	ñ	55.0	16,760,000
24	H	65.0	5,424,000
**	**	70.0	2,823,000
**	#	80.0	1,454,000
11	•	85.0	804,000
••	11	90.0	397,000
••		95.0	197,000
3.0	#4	25.0	35,390,000
"	н	27.5	25,340,000
H	11	30.0	4,497,000
••	•	35.0	1,966,000
**	87	37.5	417,000
	**		
		45.0	300,000
•	**	55.0	108,000

S-H DIAGRAM FOR ALLOY 718 SHEET AT 1400 F WITH STRESS RATIO, A = 0.67 (unnotched and edge-notched)

Defense Metals Information Center - Battelle Memorial Institute - Columbus, Ohio 43201

lata Mood or Alley: Alle Singlet Combine Aces

Fatigue data for Alloy 718 sheet at 1400 F and stress ratio, A=0.25 and heat treated as per AMS 5596A.

Ref: 65927

Stress Concentration, K _C	Test Direction	Maximum Stress (ksi)	Cycles to Failure
1.0	Ť	45.0	26,500,000
1.0	**	50.0	13,630,000
	••	60.0	2,502,000
	**	60.0	3,789,000
.,	••	60.0	3,843,000
••	**	70.0	
**	**		1,216,000
"	**	80.0	378,000
		95.0	88,000
**	L	45.0	16,700,000
**	**	65.0	1,959,000
11		80.0	130,000
**	**	95.0	91,000
3.0	τ	50.0	2,537,000
••	.	53.5	838,000
**	**	56.0	618,000
**	:9	57.5	529,000
••	••	67.5	283,000
	••		•
••		70.0	216,000

S-N DIAGRAM FOR ALLOY 718 SHEET AT 1400 F WITH STRESS RATIO, A + 0.25 (wennetched and edge-moteched).

Defense Metais Information Center - Batte e Memos a l'estitute - Coumbia, (Inc. 4020)

data sheet

Base Material: Nickel

letal or Alley: Alloy 718

IV-36

Fem: Sheet

Lensiven: Aged

Alley Deta: Petiger Specific

Fatigue data for Alloy 718 sheet at 1400 F and stress ratio A = 0 (stress rupture) and heat treated as per AMS 5596A

Ref: 65927

Stress		Maximum	Time	to Rupture
Concentration, K _t	Test Direction	Stress (ksi)	Hours	Equivalent Cycles
1.0	τ	37.5	100.3	21,464,000
**	20	42.5	48.4	10,454,000
	Ħ	50.0	16.9	3,650,000
*	*	60.0	5.4	1,166,000
н	•	67.5	2.4	518,000
	m	77.5	0.6	130,000
	L	35.0	135.3	29,224,000
	ň	45.0	21.1	4,557,000
n		60.0	3.8	820,000
		75.0	0.6	129,000
3.0	7	32.0	160.7	34,711,000
*		35.0	66.7	14,407,000
		45.0	15.3	3,304,000
		60.0	2.3	496,000
•	•	75.0	C.4	36,000
	L	35.0	49.2	10,627.000
**	.	60.0	2.0	432,000

Cycles to Feilure

5-8 DINCRUM FOR ALLOY 718 SMETT AT 1400 F WITH STRESS EATIO, A = 0 (unnetched and edge-notched).

data sheet

tel Material: Michael IV-37

tel or Alloy: Alloy 718

Force: Project

Continue: Alloy: Alloy 718

Alloy Bate: Continue: Alloy 718

Alloy Bate: Continue: Alloy 718

Alloy 718 Sheet Annealed at 1750 F and Aged

Stress-Creep Rate

Stress-Rupture Time

From Data On p IV-39

Defense Metals Information Center - Battle et Membra a month to common of the Aurilland

data. Sign

Mand at Alley: Alley 718

Forth chart

Location: And the chart

Location: And the chart

Location: And the chart

Alloy 718 Sheet and Plate Annealed at 1950 F and Aged

Stress-Creep Rate

Stress-Rupture Time

	111		100
n.	- 3	υī	,
	•	~.	

ACCESSION	wyw a g s	67602
LOT NUMBER	27	

ORIGINAL CHEEP AND RUPTURE DATA								
tzue,	1000 1000 PSI	DUMA- TIM HOURS	PIN BATE PER CENT PER HOUR	TOTAL CREEP PER CENT	FUPTURE EL RA PER CENT	HARD AFTER TEST		
1100	125.0	244,48			4.4			
1100	124.6	249.00			4.6			
1100	120.0	124.0		10				
1140	120.0	.94.0		.400				
1100	120.4	754.0		1.)				
1100	120.0	290.0		1.0				
1200	100.0	84.50			4.5			
1200	100.0	80.34			11.0			
1200	****	40.0		-500	•••			
1200	***	75.5		.488				
1500	41.0	***		1.0				
1200	9.00	190.5		1.0	54 A			
1 340	72.5	45.72			24.4			
1 306	72,5	41.29			21.0			
1304	50.0	73.0		.400				
1300	54.0	104.0		,500				
1305	54.4	105.5		1.0				

ACCE 4510H AUMBER 67644

		~ 1.41def	cutter han		•	
	51A(55	DURA		TOTAL	SUPTURE	HARD
Tem.	1000	7130	MA CENT	CALL	EL RA	M TER
•	P\$1	-ours	the while	PER CENT	PER CENT	TEST
1 344	77.4	20.00			0.4	

ACCERTION WHEEP 67469

COLOTHAL CHEEP AND AUPTURE DATA

					-	
	310734	00000		1014	SUPTURE	-440
12 	1990		and mone		PER CENT	# 168 1681

ACCESSION NAMES - 67649

delainer couls are ensure only

	-	0.004-	 teta	-	
۱۲ ۵۰ .		1:00		ote ceri	1621

351245194 NAMES - 67641

...

	51 W 96	D.014-	***	-	****	-	ent.	
	2006 PG1				483 eps			# 168 1681
t bed	**-\$	14.30				4.4		

ACCERSION NUMBER - 67614 LOT NUMBER - 02

ORIGINAL	CACEP	440		0474	
----------	-------	-----	--	------	--

16m),	1000	110m Hours	PER HOUR	TOTAL CAEEP PED CENT	RUPTURE EL RA PER CENT	MARO AFTER TEST
1300	72.3	124.48			•.6	**
			CCESSION NU DT NUMBER		1.	
		-	-	OUPTURE DAT	•	
16mb.	879675 1000 PSI	Duma- Time HOURS	MIN RATE SOS CENT PER MOUR	TOTAL CREEP PER CENT	RUPTURE EL RA PER CENT	ALRO AFTER TEST
1 300	72.3	145.40			13.4	•

ACCESSION NUMBER 67414

COLOTHAL CAPER AND BURTURE DATA

	\$18654	DUMA-	MIN MATE	1074	SUPTURE	~440	
100.	1000	1104 ***********	PER HOUR	CACEP PC+ CEnt	PER CENT	## TEST	
1 300	72.5	171.00			11.0	44	
1304	72.5	104.40			4.4		

ACCESSION NUMBER - 07014

LOT NAMES TO

OFISINAL CREEP AND SUPTURE DATA

tem.	\$10E\$\$				aver vak		
		flow mount	SAS MONE SAS CENT	PER CENT	PER CENT	1631	
1 300	70.0	150.10			4.3	•4	

ser sherry knows, knows

p. 4 vf 4

ACCE1	\$10w	MARKE	41363

		0-101-00	Court of the	MALINE BY	.	
Tem.	97RE94 1900	Tion	MIN MATE PER CENT	TOTAL	AUPTURE EL RA	116 0 0
•	~\$1	HOURS	after worse	per cent	PER CENT	TEST
. 696	175.0		.000000			
444	175.4	9162.0	.000000			
800	176.0	4442.0				
400	170.0	3204.4				
400	106.0	1000.6				
300	100.0	1000.0				
Acc	100.0	1006.0				
1000	145.5	54.50	.002000		10.5	
1900	100.0	92.70	-019400		4.1	
1000	140.0	113.00	.020200		1.4	
1000	190.0	733.44	.002100		4.6	
1000	160.0	300.00	.00-500		3.6	
1000	100.0	1372.00	.000005			
1000	143.5	2224.04	.000047		ī.;	
1000	130.0	3750.00	.000300		3.3	
1000	129.4	2004, 10	.001100		2.0	
1200	154.0	33.00				
1200	105.0	96.00	.027003		.4.4	
1200	96.0	134.5	.020000		13.0	
1200	**.	115.00			13.0	
1200	75.0		.012290		•.3	
1200	75.1	944.98	.002150		4.6	
1200		٠٦٥.٠٠	.003150		4.3	
	70.0	973.00	.001000		4.4	
1500	62.6	1254.00	.001204		7.3	

CREEP AND EMPTYME STRENGTH

Temp			1000 761	6.00001	4.0001 FEARLO	00 PS1 0-001
100A 1200	164.6 98.7	144.4	122.60	102.1*	181.00	130.4
	4 10 a 0 a a					

4555104 NUMBER 61323 LOT NUMBER 3

	GRIGINAL CREEF AND RUPTURE DATA									
160.	1000 201	Tion Hours	MIN RATE PER CENT PER HOUR	TOTAL CAREP PER CEUT	RUPTURE EL RA PER CENT	MARO AFTER TEST				
800	176.2	-0.68			7.5					
800	102.5	4343.0	. 444035							
800	101.7	-0.07			10.0					
800	11 9.0	1000.0	.30 7430							
844	100.0	4343.0	. 000044							
1000	100.0	\$7.70	. 034600		1.0					
1000	175.6	62.90	.021000		4.3					
1000	194.6	144.00	.006100		3.0					
1000	150.0	90.00	.00000		1.6					
1000	144.6	711.00	. 000444		1.5					
1000	140.0	1142.00	.000400		2.0					
1000	136.0	003.4	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		4.0					
1004	135.0	1000.00			2.0					
1200	100.6	44.40	.013400		1.1					
1200	104.0	32.20	.009200		1.6					
1200	90.4	200	.002200		1.0					
1200	94.4	104.00	.003900							
1200	80.0	907.00	.000000		8.0					
1240	84.0	144.0	.000204		1.5					
1200	75.0	913.00								
1406	75.0	1103.00	.000076		1.0					

CREEP AND RAPTURE STREETS

19m² Í		25 FOR BUI WICATED. 1000 WOUNS		0.00001	FOR PESIGNATED ACTE: 1000 PST 0.0001 0.001 PC/HOUR PC/HOUR		
1000 1200	151+5 54+2 237849644	130.0	125.00 50.10	***** ****	123.70	142.7	

Condition - Cold online to I then have tendent on delimin

Swintien tenated at 1750 f. the

printing tracked at 1990 F, the

tef +17;

Alloy 718 Sheet Cold Rolles and Aged

Tensile Strangth

.2% Yield Strength

data " sheet

ee Mattick Rick

Alley 718

k 31.40

Cold rolled and aged

Sells beautic present too

data : ' Spect

es Matrid. Rickel

Alloy 718

Cold-rolled

										•	of 4		
		ACCESS LOT MI	HOER 1	(1323					ACCF99 LOT W	MACA .	65177		
	\$4087	-TIME TENSILE	-					\$4001	-TIME TENSILF	P\$11834044			
	TIELD S	THE MOTH	TENSILE	£1.0~6	A.4.			VIELD \$	TRENSTH 0.2 PC	TENSILE	ELOHA	A.A. PER	7557
Term	9.62 PC	1000 PET	STREMOTH LOGO PEL	PER CENT	PER	TEST	TEMP	0.02 Pr 1000 PAI	1000 251	STACRSTM 1000 PSI	CENT	CENT	nte
60		207.0	210.6	+.5		i,	-422		234.0 234.0	244.0 241.0	20,6		L T
80 860		263.5	217-C 105-8	7.4		Ĭ	-750 -453		227.0	748.8	29.8		į
***		178.0	190.0	7.5		Ť Ł	-321 75		214.0 197.8	244.8 214.0	21.0		Ļ
***		170.0	144.4	12.6 7.0		•	76		183.0	294.5	13,0		Ŧ
200 200		145.0 170.6	174. \$ 173. \$	10.0		L T							
									ACCES!	IT NIGHT	65177		
and it ion:	Cold rolled	241, then aged	1325 F/B hr +	1130 7/19 1	hr			SHOR 1	-TIME TENSILE	-			
	without inte	reediste samual	١.						TRENSTH	TENSILE	ELONG	A,4.	
							!Ent	n ≈≥ 4c 10., ≠\$1	0.2 PC 1000 PS[\$T#EN6TH	PER	CENT	TEST
		ACCESS		05177			-423		244.0	349.0	15.0		Ĺ
		LOT NU					-425 -320		251.0	205.0 242.0	16.0		Ţ
	\$HORT-	TIME TENSILF	PROPERTIES				-329		2340	273.0	13.0		T
	VIELD ST		TENSTLE	FLOWS	R.A.		-100		230.0 216.0	249.0 742.0	11.6		L T
Emp	0.02 PC 1000 PS1	0.7 PC 1000 PS1	8782 - 14 1906 PS1	PER	PER	1 297 3 10	7 5 75		218.6 204.0	230.0 773.0	7.1 7.0		L F
423		97,3		40, 2		Ĺ							
753		91.8 70.0	176.E	49.1 52.0		÷ £			ACCESS	N38PUH 401	65177		
321		75.0	197.0	43.0		<u>.</u> T			LOT NO	m q E# 13			
75 75		47.3 47.8	110.0	43.8 49.0		Ť		SHORT	-TIME TENSILE	PROPERTIES			
								VIELO S		TENSILE	EL044	₽, Δ.	
		400833	IION AURIER	45177			75 100	9.02 PC 1006 PSI	0.2 PC 1000 PS1	STRENGTH 1000 PSE	PER CENT	PER	7897 116
		LOT NO					-423		267.5	337.0	12.0		· ·
	Section 7 -	TIME TENSILS	PROPERTIES				-320 79		274.2 231.3	797.3 240.8	9.7 5.8		L
	VIELD ST		TENSILE	ELONE	R.A.				E-1, /		7,-		·
72.00	0.02 PC 1000 PRI	0.2 PC 1000 PSI	570E467H	PER CENT	CENT	7657 018							
	1444		207.0	21.0	-	į.			ACCESS LOT NO	104 k∪milen milen iv	49177		
-45) -45)		200.0 195.0	742.0	21.0		T							
-350 -350		104.6	343.0 334.0	20.0		r f			TIME TENSILE				
79 75		196.0	192.9	81.0 20. 0		i,	temp	71 0.35 PC	24 5.0	TENSILE Singnatu	E.Ma PER	PER	7587
•			••				•	1996 #51	1999 P\$1	1000 P41	CENT	CENT	-10
							-473 -370		200,5 203,0	329.0	13.4		L
	~ _		100	45177			-100		240.0	304.8 343.6	12.0		Ļ
	_	LOT NO	~6€3 •				79		224.4	747.3	4.3		L
		time temples	-										
14-	1167 8,	18646114 8.3 PC 1886 PS!	77451LE 97 02 4974 1800 7 71	ELONO PEJ CENT	8,4. 968 CENT	1644 010			ACCESS LOT WI	mate 10	4517		
-423	1000 -1	209.4	F*0.4	20.5				Carden	-fine tensile				
-473		204.0	278.0	27.6		7		*1610 *		784314			
. 326 -34:		199.0	232.8 267.8	33.0		ţ	Trus	7.92 **	1.2 %	1'0(mb w	er or 1	P.A.	+681
ari. Arias		171.0 170.0	213.8	83.¢		i.		1000 041	1000 -51	1000 PSE	CENT	CENT	^10
		197.8	198.0	76.0 20.0		÷	-423 -328		300.6 700.6	372.4 710.6	1.>		
13		197.7				•	-100		1.705	242.4	3.0		i
							7.4		700.8	247.4	3.1		

data " sheet

Seco Material: Market 19-44

Metal et Alley: Alley: 718

From: blook:

Condition: Cold-rolled and

Printle properties

			TON NUMBER	46177			iet	<u>Condition</u>
		LOT NO	MBER 10				•	Annealed 1800 F/1 hr
							7.0	Annealed 1800 F/2 br, then
	Since 1	-TIME TENSILE	PROPERTIES				•••	aged 1325/8 hr + 1150 Y/10 hr
	•				•		•	Cold rolled 20%, then sped
	YIELD S	THENSTH	TEHBILE	ELONG	R.A.		•	1325 F/8 hr + 1150 F/10 hr
TEMP	9.92 PC	0.2 PC	STRINGTH	PER	≠ER	TEST	11	Cold rolled 30%, then aged .
7	1000 PSI	1000 PS:	1000 PSI	CĒNT	CENT	nia		1325 F/8 hr + 1150 F/10 hr
						=	13,14	Cold rolled 50%, them aged _
-423		342.4	256 - 8	3,9		L	• •	1325 F/8 hr + 1150 F/10 hr
-423		333.0	340.0	• 7		L	15	Cold rolled 50%, then aged
79		270.0	201,0	2.0		Ĭ.	••	1250 F/8 hr + 1150 F/10 hr
			••-			-	16	Cold rolled 70%, then aged
							**	1250 F/8 hr + 1150 F/10 hr

* Ib intermediate annual prior to aging

Bof: 65177

lata Made or Alley Asset 174 Sheet committee sugar 184 Sheet committee sugar 184 Sheet committee sugar 184

ACCESSION NUMBER A1323 LOT NUMBER 1

NOTCHED TENSILE AND RUPTURE DATA

	STRESS	TEN	SILE		- RUPTUR	£
TEMF.	INTENSITY FACTOR K	MOTCHED STRENGTH 1000 PSI	RED. IN AREA PER CENT	STRESS 1000 PS1	TION HOURS	RED. IN AREA PER CENT
75	20.6	219.5				
75	20.0	204.5				
800	20.0			175.0		
800	20.0			165.6		
806	20.0			155.0	1363.0	
800	26.0			150.0	2764.0	
800	20.2	170.2		180.0		
#00	20.0	104.5		175.0		
800	20.0	101.2		145.0	1718.0	
1000	2.3			140.0	47.0	
1000	2,3			150 0	154.6	
1000	2.3			140.0	34.8	
1000	2.3			130.0	454.0	
1000	4.0			135.0	94.0	
1111	7.7					

ACCESSION NUMBER 61323 LOT NUMBER 1

NOTCHED TENSILE AND BUSTURE DATA

570655	161	SILE		RUPTUAL	
IRTENSITY	NOTCHED	MED. IN	STRESS	DU#A-	RED.
FACTOM	STRENGTH	AREA	1000	TION	AHEA
4	1000 PSI	PER CENT	PSI	HOURS	PER CE
4.0			36.0	1401.0	
20.0	134.5		75.4		
20.0	141.0				
20.0					
			25.0	5510.0	
20.0			75.4	1.3	
24.4					
34.4					
				1:1	
20.0			25.6	1052.6	
	INTERPLET OF THE PROPERTY OF T	INTEMSITY MOTCHED CTREMOTH CTREMOTH 1000 PSI	INTEMATY NOTEMED RED. IN FACTOR CTREMETH AREA 1000 PSI PER CENT	INTENSITY	INTENSITY

Condition: Cold rolled 24%, them aged 1925 F/B hr + 1150 F/10 hr without intermed rate anneal.

Intermed rate anneat.

ACCESSION NUMBER 65177 LOT NUMBER 6

NOTCHED	FENSILE	ANO	PUPTUHE	DATA

7E##.	STRESS INTENSITY FACTOR K	TOTCHED STRENGTH 1000 PSI	RED. IN AREA PER CENT	TION	RED. IN AREA PER CENT
-423	6.3	146.8			
-423	6.3	142.0			
-320	6.3	121.0			
-320	4.3	114.0			
75	4.3	89.2			
75	4.3	84.8			

ACCESSION NUMBER 65177

NOTCHED TENSILE AND RUPTURE DATA

	STPESS	TE4	SILE		RUPTUR	£
	INTENSITY	NOTCHED	RED. IN	STRESS	DURA-	MED. IN
TEMP.	FACTOR	STRENGTH	APEA	1000	TION	AREA
•	K	1000 PSI	PER CENT	PSI	HOURS	PER CENT
-423	6.3	254.6				
-423	4.3	259.0				
-320	6.3	234.0				
-320	6.3	224.6				
75	6.3	196.0				
75	4.3	190.0				

ACCESSION NUMBER 65177

NOTCHED TENSILE AND RUPTURE DATA

TEMP.	STRESS INTENSITY FACTOR K	NOTCHED STRENGTH 1000 PSI	RED." IN AREA PER CENT	STRESS 1000 PSI	DURA- TION	RED. IN AREA PER CENT
-423	6.3	276.0				
-423	4.3	249.0				
-320	4.3	214.0				
-320	6,3	229.0				
-100	6.3	221.0				
-100	6.3	223.0				
75	4.3	207.u				
75	6.3	200.0				

ACCESSION NUMBER 65177 LOT NUMBER 9

NOTCHED TENSILE AND RUPTURE DATA

	574655	TEN	SILE	******	AUP TURE						
	INTENSITY	4UTC#ED	MED. IN	579E 55	こうちゅー	MEC. IM					
TEMP.	FACTOR	STRENSTH	ARE 4	1060	110N	ADEA					
•	R.	1000 PSI	PER CENT	P\$1	HOL 95	PER CENT					
-423	4.3	203.0									
-423	4.3	294.0									
-320	4.3	272.0									
-320	4.3	202.0									
75	• · 3	230.0									
75	4.3	274.0									

Ref: 61323

"种种"

CASC MAN SOUTH

data sheet

See Metrid: Nickel EV-46

Sold or Alloy: Alloy 718

From: Sheet

Condition: Cold-rollod and

Alloy Bate:

p. 2 of 2

ACCESSION NUMBER 69177 LOT NUMBER 11

MOTCHED TENSILE AND RUPTURE DATA

	STRESS	MOTCHED	SILE	178655	PUPTURE DURA-	960. IN
TEMP.	FACTOR	STPENGTH	AREA	1000	TION	AREA
•	K	1000 PSI	PER CENT	P\$1	HOURS	PER CENT
-423	4.3	304.0				
-423	6.3	301.0				
-320	6.3	292.0				
-320	4.3	245.0				
-100	4.3	247.0				
-100	6.3	242.0				
75	6.3	248.8				
75	4,3	246.0				

ACCESSION HUMBER 65177

NOTCHED TENSILE AND RUPTURE DATA

TEMP.	STRESS INTENSITY FACTOR K	HOTCHED STRENGTH 1808 PSI	STRESS	DURA- E	RED. IM AREA PER CENT
-423 -326 75	6.3 6.3	320.0 304.0 261.0			

ACCESSION NUMBER 65177 LOT NUMBER 14

NOTCHED TENSILE AND RUPTURE DATA

	STRESS		SILE			
	INTENSITY	40TCHED	≈©. I∺			MED. IN
TEPP.	FACTOR	STRENGTH		1060	7 I ON	AREA
•	K	1000 PSI	PER CENT	PS1	HOURS	PER CENT
~423	4.3	293.8				
-320	4.3	268.8				
-100	6.3	>39,8				
75	4.3	230.0				

ACCESSION NUMBER 45177 LOT NUMBER 15

NOTCHED TENSILE AND RUPTURE DATA

	STRESS	124	\$1LE	******	AUPTURE	******
TEMP.	FACTOR K	NOTCHED STRENGTH 1000 PSE	REA. IN AREA PER CENT	\$19659 1000 P\$1	TION HOURS	MED. IN AREA PER CENT
-423	6.3	384.6				
-120	4.3	275.0				
-100	4.3	284.9				
75	6.3	249.0				

ACCESSION NUMBER 66171

MOTCHED TEXELLE AND BUPTURE DATA

TEMP.	STRESS INTERSITY FACTOR E	HOTCHED STRENGTH 1000 PSI	BILE AED IN AMEA PER CENT	STRESS 1000	DURA- TION	NLO. IN AMEA PER CENT
-423	4.3	260.0				
-350	4.3	250.0				
75	4,3	193.6				

la:	Condition
•	Associat 1800 7/1 br
7.8	Amouled 1800 F/t br, then and
	1325/8 hr + 1150 7/10 hr
•	deld reiled 16%, thre aged,
	1313 F/8 hr + 1150 F/10 hr
11	Cold rulled 301, then aged,
	1325 F/8 he + 1130 F/10 he
13,1	Cold rolled 50%, thee agod,
	1325 F/G hr + 1150 F/10 hr
13	Cold rolled 10%, then aged,
	1250 F/S he + 1150 F/10 he
14	Cold rolled 70%, the a aged,
	1250 F/8 he + 1150 F/10 he

No intermediate agreed prior to ening

Bor: A517

Fatigue data for Alloy 718 (cold rolled + aged) sheet at room temperature and atress ratio A=0.33 (unmotched, Kt= 1)

Condition: Solution treated at 1600 F, then cold rolled 15%, then aged at 1325 F/16 hr.

Trickness: 0.063 inch

188.1 ksi UTS:

Ref: 61646

Cycles to
Failure
126,000
66,000
34,000
51,000
157,000
274,000
12,000
437,000
1,026,000
2,632,000

3 % DTATUAL TO LAGIOT TOP (CDQD MODISD : A TD) IS FET AT ROOM TEXTRACTIVE WISTON STREET AT ROOM TEXTRACTIVE WISTON IN STREET AT ROOM TEXTRACTIVE WISTON IN

Defense Metals Information Center - Battelle Merdonia Instit de - Columbia, Ohio 43201

data sheet

Base Material: Nicke

Metal of Alloy: Alloy 718

Farm: Sheet

Cold rolled and aged

Alley Data: Creep and supture

ACCESSION NUMBER 61323

		ORIGINAL	CHEEP AND	MPTURE DAT	A	
	510655	DURA-	MIN BATE	TOTAL	AUPTURE	MARC
7000.	1000	7104	PER CENT	CHEEP	EL MA	MITER
•	PSI	HOURS	PFR HOUR	PER CENT	PER CENT	7887
	100.0	1100.0				
800	105.0	1300.0				
0 0.0	184.0	1000.0				
	100.0	1300.0	. 444417			
1000	175.0	42.28	. 630488		3.0	
1000	179.0	34,58	. 957446		4.0	
1000	178.6	61.48	.016400		2.3	
1000	170.0	73.48	.817660		2.0	
1000	300.0	207.00	.002140		1.4	
1000	160.0	80.48			1.0	
1000	150.0	220.90	. 8 8 8 3 4 8		3.0	
1000	150.0	144.98			1.5	
1000	125.0	1877.00			2.1	
1000	139.0	434.4				
1400	125.0	922.4	.044423			
1240	150.0	. 70	******		3.0	
1240	150.0	.48			1.5	
1200	140.0	15.50			1.5	
1200	100.0	14.38			1.0	
1200	75.4	46.28	.002200		1.3	
1244	79.4	44.28	.001946		1.5	
1200	41,1	172.08	. 000230		1.3	
1200	40.0	102.00			1.0	
1200	50.4	419.0				
1200	30.0	130.08	. 0 4 6 3 3 6		. 5	
1200	40.0	2499.48	.600120		1.1	
1500	40.0	1899.05	.000187		1.0	

CREEP AND RUPTURE STREWSTH

	8186	15 /00 sw	PTUME IN	319635	704 DEST	GATED
1500	* [# B#] !	+01C41ED+	1400 PSI	CPEE?	BATE. 16	80 PET
•	100	1050	30000	0.00001	0,4601	0.001
	HOURS	HOURS	HOURS	PC/HOUR	PC/HOUM	PC/HOUR
444				176.90	191.60	245.74
1000	142.7	134.0	119.00	114.20	125.9	154.0
1200	64.6	44,9	29.70	14.30	36.74	47.3
•	FITRAPOLA	750				

Condition: Cold reflect 20%, then appl 1929 F/S hr = 1190 F/10 hr

Mf: 41323

data ' sheet se Material: Bicke

IV-49

Metal or Alley: Alloy

MM: Bars, forgings, and billet

ention Aged

May Data: « Tensile properties

p. 1 of 10

Alloy 718 Bars, Forgings, and Billet Annealed at 1750 F and Aged

Tensile Strength

data Titalian Sieet

.2% Yield Strengti.

data sneet es licuit : Aiche

letal or Alley: 1110y 710

MR: Bars; forgings, and billets

Elongation

Reduction in Area

data Sigei Base Material: Mickel

stal or Alsy: Alloy 718

File: Bars, forgings, and billet

Late (set . Age.)

May Sine ... and the properties

Alloy 718 Forgings Annealed at 1950 F and Aged

Elongation

Reduction in Area

data Mend of Alley

Base Material:

Alley Date:

Supplies			ACCESS LOT MU	104 NUMBER MBER 1	50031					ACCESS LOT MU	ton number nacr 1	63743		
Teal		SHORT	-TIME TENSILE	PROPERTIES					SHORT	-TIME TENSILE	PROPERTIES			
Teal		¥1510.5	TOPNOTH	TENGLIE	EL ONG	0.4.			*1510 S	TREMATH	TENSILE	FLONG	P.A.	
13.0		0.02 PC	0.2 PC	STRENGTH	PER	PER			0.02 PC	0.2 PC	STRENGTH	PEP	94.0	
170.0 194.0 24.0 194.0 24.0 194.0 27.0 194.0 27	75	•						-423		101.1		26.0	37.5	L
1850	400		170.0	104.0	20.0			-423		105.9	237.0	23.0	30.0	
1300										187.9		24.0	30,1	
1808 103.0 105.0 32.4 23														
1986 72.0 75.0 64.5 L 62.5 189.0 24.0 25.0 7 1.0	1400			105.0				-423		184,2	745.0	21.0	20.5	Ť
ACCESSION NUMBER 6372222 185,6	1500		73.0	75.0	44.5		L			165.0				
ACCESSION NUMBER 0374223 185.8 243.0 15.0 15.0 5 1 1.0 5 1										185.4				
ACCESSION NUMBER 6374Z LET NUMBER 1 ACCESSION NUMBER 6374Z LET NUMBER 1 226 118.0 27.0 27.0 23.0 12.0 5 L 226 118.0 27.0 27.0 28.0 12.0 5 L 226 118.0 27.0 27.0 28.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12								-423		187.8		14.6	17.0	
ACCESSION NUMBER 0.3742										145.4		20.0	19.6	
LOT Mymeds 1 -220 179.0 279.0 55.0 55.0 55.0 55.0 55.0 55.0 55.0 5			ACCESS	ION NUMBER	4374Z									
### SHORT-TIRE TRUSILE PROPERTIES -320 175.0 277.0 28.0 1 1 1 1 1 1 1 1 1			LCT NU	-664										
### SHORT-TIME TENSILE PROPERTIES -260								-320		175.0		24.0	34.0	
### SHORT-TIRE TENSILE PROPERTIES TIELD STEPHENTH TEVALIC ELONG Pas. P										173.0		21.0	41.5	
Short-time Tersitic Properties													24,5	
TELD SIPERATIO TEMBLE CLOND A.A. -226 177.2 272.0 12.0 15.0		SHORT-	TIME TENSILE	PROPERTIES				-320		177.2			24.5	Ť
Team 0.82 etc. 0.2 etc. Streemin Fee Pee										177.3	714.0	23.0	24.5	
	10.00									178.1				
## 1-0-5 1A9-5 6.0 13-1 L -110 184-6 194-7 24-0 27-0 77-5 3 ## 1	14,7	1000 PS!	1000 031							177.0				
### 132.7 174.8 124.6 15.0 1		••••								175.3	214.0	27.0	27.5	_
133.6 170.8 120.0 12.0										144.0		28.0	44.0	-
12			130.3	174.8										
### 128-2 158-4 51-6 8.9 1 101-10 107-6 170-6 22-0 21-0 7 ### 128-0 171-3 1-0-6 10-0 1-0-10 10-10 10-2 146-5 27-0 22-0 7 ### 128-0 128-0 171-3 1-0-6 10-0 1-110 10-2 146-5 27-0 22-0 7 ### 128-0 128-7 139-0 10-0 1-110 10-2 146-5 27-0 22-0 7 ### 128-0 128-2 179-0 17-0 17-3 1 -110 10-2 146-5 27-0 22-0 7 ### 128-0 1-2-2 179-0 17-0 17-3 1 -110 10-2 146-5 17-0 12-0 17-0 18-0 12-0 17-0 18-0														ĩ
125.0 171.2 10.6 10.6 1. 11.0 10.0 10.0 12.0 12.0 17.0 12.0 12.0 17.0 12.0 12.0 17.0 12.0 12.0 17.0 12.0 17.0 12.0 12.0			124.2							147.4	109.6	20.0	21.6	
### 141.1 181.0 2.0 17.3 1.0			135.0		14.5		L					14.0	22.0	
10			146.7	140.5	2.0									
### 144.0	80		142,2					-110				17.0		•
### 140.8 140.8 120.9 78.7 L 70 150.7 181.8 72.0 12.0 5 ####################################			144.0	177.2	16.5	14.7	L					14-0	17.5	\$
A0 120.5 153.6 4.0 4.0 L A0 144.1 182.2 29.0 49.0 L A0 129.7 154.6 4.0 L A0 129.7 154.6 29.5 A4.0 L A0 129.7 154.6 29.5 A4.0 L A0 129.7 154.6 29.5 A4.0 L A0 129.7 154.6 154.5 154.6 154.5 L A0 129.7 154.6 154.5 L A0 129.7 154.6 154.5 L A0 129.7 154.6 164.7 22.0 T A0 129.7 154.6 164.7 22.0 T A0 129.7 154.7 22.0 T A0 129.7 2			147.4								183.6	21.0	11.0	
## 120.0 121.5 102.7 10.0 0.0 0.0 1.0 0.0 1.0 1.0 1.0 1.0 2.5 0.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.			120.5			3.0		80		144.1				
111-3 1627 6.6 9.7 C 80 1-32 111-0 21-3 A4-0 C			124.7	144.6	4.0	4.0	L			144.3				L
### ACCESSION WINNER A3742			131.5	162.7	4.0	9.3	Ļ					27.3		
### ACCESSION NUMBER 40 144,3 143,4 24,6 31,5 T ### LOT NUMBER 40 145,2 164,7 75,9 35,0 T ### SHORT-TIME TENSILE PROPERTIES										147.0				
### ACCESSION NUMBER A3742 ### A37										146.3		24.6		
LOT NUMBER			ACCESS	TON SIMULA	A 3743					145.2	18447	25.5		Ţ
### SHORT-TIME TENSILE PROPERTIES ### 80 10.02 10.02 10.00 10.			LOT MY	46L4 1						144.3		79,4		Ţ
TIELD STRENGTH FEMSILE ELONG R.A.			•					80		149.5				
TIELD STREAMS IN FERNALLY CLOWD R.A. OF 10.02 PC 0.02 PC 0.22 PC 0.02		SHOR!	TIME TENSILE	PROPERTIES						130,0	141.4	15.0	14.0	
TEMP 0.02 PC 8.2 PC STERMIN PEN		TIELD ST	MEMOTH .	TENSILE	£1.044			*0		144.3	140.4	24.0	35+0	•
100 100	12ma	0.02 PC	B.Z PC	STREMBTH	PEA	PER								
## 144.8 185.8 14.0 16.8 L BADRY-TIME TENSILE PROPERTIES ## 129.5 171.3 14.5 21.9 C BADRY-TIME TENSILE PROPERTIES ## 141.8 140.7 4.0 12.0 L TEMP 0.02 PC STRENGTH TENSILE ELONG P.A. ## 120.0 142.8 175.0 11.0 16.1 L F 1000 PS 1 10000 PS 1 1000 PS 1 1000 PS 1 1000 P	# 0		133.2	199+1	4.0		L					67599		
### 124.5 171.3 14.5 21.6			146,4		1.0		L			FO. MOR	me~ 1]			
\$0			120.5				Ļ		0,4007					
## 14-6 149-7 4-0 12-0 L TIRD STRENGTM TENSILE CLONG #.A. ## 136-6 143-2 4-8 11-3 L TIRD 0-42-0 0-2-0 STRENGTM PER PER PER TENSILE CLONG #.A. ### 1-42-8 175-8 11-0 10-1 L F 1000 PSI 10000 PSI 1000 PSI 1000 PSI 10000 PSI 10000 PSI 10000	90		343,8	171.1			ī							
80 142.6 179.0 11.0 14.1 L F 1000 PSI 1000 PSI 1000 PSI CENT CENT DID 80 132.6 192.7 2.9 3.0 L 80 132.6 192.7 2.9 3.0 L 80 132.6 192.7 2.9 3.0 L 80 133.0 193.6 4.6 4.6 L 80 133.0 197.6 4.6 4.6 L 80 133.0 197.6 4.6 4.6 L 80 132.0 197.6 4.6 4.6 L 80 132.0 197.6 4.6 4.6 L 80 132.0 197.0 4.6 L 80 132.0 197.0 4.6 L 80 132.0 100.0 20.0 42.0 80 132.0 100.0 2.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			344.6	167.7	4.0	12.0	Ĭ.							
80 132.6 192.7 2.9 5.0 L 70 180.0 702.8 20.0 AG.n 132.6 193.6 4.9 6.6 L 70 180.0 702.8 20.0 AG.n 80 170.9 193.6 4.9 6.6 L 80 140.0 145.0 20.0 AG.n 80 132.0 195.0 4.9 7.8 L 800 140.0 145.0 20.0 AZ.0 AZ.0 AZ.0 AZ.0 AZ.0 AZ.0 AZ.0 A			134.4	143.2										
## 132.6 196.6 3.0 6.7 L 70 160.0 702.8 20.0 60.0 60.0 60.0 60.0 170.0 193.6 4.0 0.6 L 80.0 133.0 193.6 4.0 0.6 L 80.0 140.0 165.0 20.0 42.0 60.0 133.0 186.4 3.5 6.0 L 80.0 132.6 196.4 3.5 6.0 L 80.0 132.6 196.4 20.0 60.0 132.6 196.4 20.0 60.0 132.6 196.2 24.0 28.7 L 1200 125.0 126.0 20.0 20.0 60 127.0 170.5 24.0 24.0 28.7 L 140.0 155.0 110.0 25.0 140.0 25.0 60 129.3 170.5 24.0 72.0 L			132.4	192.7				•	1000 -27	1884 -31	1464 .21	CENT	CENT	UIm
00 170.0 193.6 A.0 0.6 L 00 133.0 197.0 A.0 7.8 L 800 140.0 145.0 20.0 A2.0 A0 134.4 146.4 3.5 8.0 L 1200 134.0 146.0 20.0 A2.0 A0 137.0 190.7 3.0 5.0 L 1200 134.0 146.0 20.0 A0.0 A0 137.0 174.0 16.0 21.1 L 1200 125.0 140.0 20.0 B0 146.6 186.2 24.0 28.7 L 1400 105.0 110.0 25.0 B0 130.3 170.5 24.0 21.7 L	40		133.4	194-4	3.6			70		100.0	702.0	20.0	46.6	
AB 134.6 165.6 2.3 6.0 L 1200 134.0 146.0 20.5 40.0 40.0 40.0 40.0 40.0 40.0 40.0 4			170.0	193.6	4.9	0.4	L							
86 137,6 190,7 3,0 5,0 1 1200 132,0 146,0 20,5 40,0 40 137,0 146,0 20,5 40,0 40 127,0 146,0 20,5 40,0 80 125,0 140,0 20,0 80 146,8 186,2 24,9 28,7 L 1400 185,0 110,0 25,0 40 129,3 170,5 24,0 21,0 L			134.4		1.4			~ ₽ ₽		1-0.0	165.6	26.0	42.0	
69 137.0 174.0 16.0 71.1 L 1300 125.0 140.0 76.0 76.0 80 146.8 166.2 24.0 28.7 L 1400 185.0 110.0 25.0 80 134.3 170.5 26.0 71.0 L	84		132,6	190.7	3.0	5.4				134.0	144.0	20.6	40.0	
86 134,3 178,5 24,6 21,6 L			137.4	174-4	14.0	71.1	L			125.0	140.0	20.0		
			146,6		24.8			1440		105.0	110.0	25.6		

data sheet

ter Material: Miles

Alley 718

Bare, forgings, and billet

endities & Aged

Mar lets rent la proper la

			REGRUM NOTE SI REGRUM	47595					ACCESS LOT MU	ION NUMBER MER 5	67596		
	5,000.7	TIME TENSILE	SPOPERTIES.					SHORT	-TIME TENSILF	PROPERTIES			•
TEMP	71ELD 51 0.02 Pr 1000 P9I		TENSILE STACHOTH LOOD PST	ELOHG PER CENT	PER CENT	TEST NJ#	TEMP	11ELD S 0.02 PC 1000 PSI	TREMSTH 8.2 PC 1000 PSI	TENSILE STRENGTH 1000 PSI	ELONG PER CENT	P.A. PER CENT	TEST DIM
71 1060 1260 1306		152.0 133.0 132.1 125.6 102.0	190.0 165.9 152.6 134.6 105.8				70 70 70 70		175.1 174.3 175.4 175.1	192.4 195.8 193.2 198.2	15.0 12.0 12.0 12.0	24.0 21.0 23.0 24.5	T T T
		4CCC\$8 L07 NO	10-4 HEMBER HBER 1	87594					ACCESS!	ON NUMBER	67596		
								SHORT-	TIME TENSILE	PROPERTIES			
		-TIME TEMBLE		EL043	R.A.		1875	TIELD \$1	IREMOTH 0.2 PC	TENSILE STRENGTH	EL ONG PER	A.A. PER	1597
TEMP	VIELD 3	9.2 PC 1000 PS;	FENSILE STRENOTH 1903 PSI	PER CENT	PER	7887 014	7	1000 PST	1000 PS1	1000 731	CENT	CENT	nir
70 1207	1000 PSI	154.7	169.6	13.8	23.4	7	79 78 78		144.3 172.3 171.7 170.5	199.2 192.8 193.9 192.0	19.0 18.0 18.0 18.0	20.2 27.3 26.1 30.4	† † † †
		400055 LOT NO	104 NUMBFR NRER 2	47596					ACCESS	CON NUMBER	67596		
	SHORT-	TIME TENSILE	PROPERTIES					SHORT	-TIME TENSILE	PROPERTIES			
TCHP F	71ELD \$1 0.82 PC 1000 688	9.2 PC 1000 PS1	TENSILE STREMBIM 1000 PSI	PER CENT	PER CENT	7E47	TEMP	YIELD S W. 02 PC 1000 PRI	TRENGTH 0.7 PC 1000 PS1	TENSILE STRENGTH 1000 PSI	ELON3 PER CENT	P.A. PEA CENT	TEST
70 70 75 1200 1400		186.5 165.7 176.8 133.7 151.0	208.6 2[2.2 266.3 155.3 173.8 172.1	15.9 12.5 12.4 12.9 20.0	24,6 21.8 18.5 15.6 34.5 21.8	Ţ	71 70		174.5 173.9	202.8 107.6	19.3	32.2 74.9	
1200		145.7	171.9	18.0	30.1				ACCESS?	ON NUMBER	67496		
								\$11087	-TIME TENSILF	PROPERTIES			
		ACCESS LOT ML	HORNUMBER -	£75++				71ELD \$	TREMOTH	TENSILE	EL ONG	R.A.	
	_						T E sed F	0.02 PC 1800 PSI	0.2 PC 1000 P\$1	STRENGTH 1000 PSI	PER CENT	CENT	7547 010
	SHORT: YIELD S	-TIME TEMBILS	TENSILE	ELO43	٠,4,		70		147.3	172.3	10.0	18.5	Ţ
18:00	0.02 PC 1000 PS	0.2 PC	STRENGTH 1000 PSI	PER	CENT	TEST	76 71		157.3 149.9 156.8	179.0 175.0 180.4	10.0 12.0 12.0	21.6 71.3 20.2	7 7 7
, 11	1000 >21	183.7	207.2	20.+	40-1		70 70		190.0	176.3	12.0	10.5	Ť
79		142.4	204.5	16.4	36.5		1200		131.3	144.3	13.9	23-1	Ť
70		184.3 141.1	205.9 140.7	16.2	70.0 25.0		1200		120.2 120.7	140.4	12.0	24.4	T T
1200		144.6	142.5	15 , ž	76,4		1200		127,3	1+3.5		***	Ť
		LOT M	THE MANAGER	47525					ACCESE:	130 NUMBER 1868 9	47594		
	SHQ#		E PROPERTIES					\$404.7	-VIME TENSILF	PHOPFRTIES			
TEMP	71EtU :	STRENGTH BLL PC 1000 PST	TENSILE STRENGTH 1818 PSI	ILONG PEP CENT	P.1. PER CENT	7657 010	7Emp	716FD 2 0.85 bc 10(3 b21	ТРЕНЗТИ 0.2 PC 1000 PSI	TENSILE STOENGTH 1000 PSI	ELONG PER CENT	P.A. PER CENT	TEST nia
78		170.7	194.0	14.0	28.1	7	70		160.7	144.4	17.0	23.4	7
70		170.3	192.4 195.4	17.8	29.3 31.2	ŧ	70 70		167-7	185.2	13.0	24.4	7
							76 78		109.5	1.0.1	13.2	23.5 25.3	Ţ
							78 79 70		170.7 178.3 170.2	100.0	17.6 18.6 13.6	20.1 21.0 20.1	7
							78		169.3	100.0	13.4	25.3	7

		ACCESS LGT M	MOEN ADON	67692					ACCES LOT N	SION NUMBER UMBER #1	67614		
	TRONE	-TIME TENSILE	PROPERTIES					SHORT	T-TIME TENSTLE	PROPERTIES			
TEMP	FIELD S	TRENGTH 1.2 PC 1000 PSI	TENSILE STRENSTH 1000 PSI	ELONG PER CENT	A.A. PER CENT	TEST DIR	TEMP	71ELD 1 0.02 PC 1980 PSI	STPENGTH 0.2 PC 1000 PST	TFMSILE STRENGTM 1000 PSI	ELONG PER CENT	PER CENT	TEST DIR
70 70 76 70	145.0 137.0 144.0 135.0	165.0 159.3 163.0 160.3 160.0	192.0 191.0 199.0 192.5 195.5	23.0 23.0 23.0 23.0	36.0 37.0 37.0 36.0 36.0		78 1200 1200	129.0 119.6 108.0	156.8 137.0 125.0	191.5 197.0 154.5	25,9 24.7 18,3	31 26.0 27.4	
70 1151 1150 1202	141.0 118.0 120.0 165.0	162.0 136.5 127.0 120.0	194.0 158.9 199.2 157.0	22.0 21.6 21.6	36.0 40.0 39.0 35.0				ACCES	SION NUMBER UMBER 87	67414		
1200	105.0	133.0 132.1	150.5 359.4	18.0	35.0 39.0			SHCR1	-TIME TENSIL	PROPERTIES			
1250 1250 1250 1300	107.6 104.5 112.2 99.5	133.5 120.0 130.5 119.3	140.0 152.2 153.2 141.0	23.0 23.0 23.0 15.0	33.0 32.0 32.0		TEMP	71ELD 5 0.02 PC 1000 PSI	TRENGTH 0.2 PC 1000 PSI	TENSILE STRENG'H 1000 PSI	ELONG PER CENT	P.A. PER CENT	TEST DIR
1300	107.3	122.0	143.3	21.0	32.0		70 1200	1+7.0 132.0	195.6 148.7	204.0 172.0	18.9 15.1	40.5 34.5	i. L
		ACCESS!	ON NUMBER 1887 21	67602									
	SHORT	-TIME TENSILF	PROPURTIES						ACCES!	SIGH NUMBER JMBER 87	67614		
TEMP	TIELD S	TREMSTH 0.2 PC	TENSILE STRENGTH	ELONG	R.A. PER	TEST		SHORT	-TIME TENSILI	PROPERTIES			
7a 70	1000 751	1000 PS; 163,0 164-5	200.0 200.0 202.5	CENT 22.5 22.0	42.3	nza	TEMP	71ELD 9 0.02 PC 1000 PSI	TRENGIH 0.2 PC 1000 PSI	TENSILE STRENGTH 1000 PSI	ELONA PER CENT	PER CENT	TFST nia
1000 1000 1100		134,2 137.0 135.0 139.2	174.8 174.6 171.8 172.5	20.0 21.0 19.0 17.5	45,2 44,5 44,5 42,2		70 1200	140.0 1<0.0	175.0 145.5	208.5 171.5	23.3	35.0 32.5	Ļ
1150 1150 1200 1200		134.0 130.2 133.5 132.5	160.0 173.0 165.0 163.0	14.5 18.5 19.6 16.0	35.5 37.0 21.5 22.0				ACCESS LOT NU	ION GUMBER MREA BA	67614		
				*****					20. 40				
		165634	RESPINA NOT	47614					-time-tensile				
	811087	LOT HU -TIME TENSILE	M 0 ER 74				TEMP	0.92 PC 1980 PSI	+.2 PC 1000 PSI	TENSILE 3TRENGTH 1000 PSI	FLONG PER CENT	P.A. PER CENT	TEST
TEMP	VIELD S	_	TENSILE STRENGTH INNO PSI	ELONG PER (ENT	R.A. PER CENT	TEST nim	1200	154.0 197.3	194.5 155.0	207.0 162.0	13.5 15.0	33.0 25.0	L
76 1200	145.0	143.0	201.0	21.0 22.4	37.6 34.7	ť			ACCESS LOT NU	ION NUMBER	67610		
								5HQRT-	TIME TENSILE	PROPERTIES			
	aucat	ACESS LOT MA SJIEMST SRIT-		47414			TEMP F	71ELD \$1 0.02 PC 1088 PRI	'жењетн 0.2 РС 1000 РБІ	TENSILE STPENOTH 1000 PSI	ELQNO PER CENT	PER CENT	TEST
iew '	vielo s e.es er lees est		TPUBILE STREMETH 1000 PSI	ELONG PES CENT	A.4. PEN CENT	1 7 97 019	70 1200	1-1.0	74.2 144.0	105.9 165.2	19.7	20.4 43.0	i.
70 1800	118.0	170.0	198.4	19.4 17.4	30.1	Ļ				ON MUMBER	67614		
								Secon t -	TEMBLE	P311830086			
			-043 of 10m m/mgrs	47414			*(==	718LD ST	SEMETH B.E PC	TENSILE STOCHSTH	EL 046	0.4.	
	Sinde 1	-time temblic	0311630000				•	1004 PS1	1000 251	lene PS;	CENT	CENT	TEST
TEMP	71ELD 8 9-82 PC 1003 PGI	10000TH 6.8 PC 1000 PS1	tenkile Proembtu Leas Phi	(L044 AFF 2211	0.4. P(0 CENT	7747 nje	70 72 1200 1700	160.8 150.6 165.5 110.0	170.0 105.0 100.0 100.3	2n3.0 212.6 107.0 102.5	9.4 10.3 10.9	9.3 39.1 14.7 22.4	† 1 1
76. 70 70 120s	;30,6 126.0 146.0 118.2	197.9 141.7 160.5 177.6	; 44.0 200.0 200.5 155.0	23.4 23.4 25.4 17.4	62 7 26.4 26.1 23.7								•

Defense Metals Information Center - Battelle Memorial Institute - Columbus, Ohio 43201

IV-56

p. 8 of 10

										ρ.	0 01	10		
			SICN NUMBER HUMBER B7	67614						ITON NUMBER	67614			
	SHOR	T-TIME TENSIL	E PROPERTIES					SHOR	T-TIME TENSILE	PROPERTIES				•
TEMP F	71ELD 9 0.02 PC 1000 PSI	STREMOTH 0.2 PC 1000 PS:	TENSILE STRENGTH 1000 PSI	ELONA PER CENT	R.A. Pyr Cent	TËST DIR	TEMP	YIELD 0.02 PC 1000 P31	STRENGTH 0.2 PC 1000 PSI	TENSILE STRENGTH 1000 PSI	ELONG PER CENT	R.A. Per Cent	TEST	
70	154.0	177.0	198.0	20.1	32.0	L	70 70 70	139.5 145.8 140.0	169.5 172.0 176.0	198.0 197.9 196.0	25.6 25.7 26.6	23.9 23.0 26.1	L L	
		ACCES	SION NUMBER	67614										
	SHORT	-TIME TENSIL	PROPERTIES							ION NUMBER	67614			
TEMP	71ELD S 0.02 PC 1000 PSI	TRENGTH 0.2 PC 1000 PSI	TENSILE STRENGTH 1009 PSI	ELONG PER CENT	R.A. Per Cent	TEST DIR			T-TIME TENSILE					
76 1230	147.5 325.0	183.5 145.0	221.0 179.0	16.7	36.7 36.8	L L	TEMP F	91ELD: 0.02 PC 1000 FSI	STRENGTH 0.2 PC 1000 PSI	TENSILE STRENGTH 1000 PSI	ELONG PER CENT	P.A. Per Cent	TEST	
			•			•	70	136.5	163.5	188.5	7.6	9.3	T	
		ACCES!	RSBMUM MOIS	67614						ION NUMBER	67614			
	SHORT	-73ME TENSILE	PAOPERTIES							MBER 102				
TEMP	Z GJDZY Se So.n	TRENGTH 0.2 PC	TENSILE STRENGTH	ELONG PER	P.A. PER				T-TIME TENSILE STRENGTH	PROPERTIES TENSILE	ELONG	R.A.		
F 70	1000 PNI	1000 PST 178.0	1000 PSI	CENT 16.1	CENT 35.1	TEST NIA	temp F	0.02 PC 1000 PSI	0.2 PC 1000 PSI	STRENGTH 1000 PSI	PER CENT	PER CENT	TEST DIR	
1200	131.9	149.5	174+5	20.5	32.9	ī	70 70 70 70	129.5 129.3 137.5 138.5	160.5 163.0 365.5 167.0	194.0 201.0 196.0 195.5	27.5 25.4 16.9 16.0	36.0 24.0 23.2 24.0	L T T	
		ACCES!	BION NUMBER JMBER 90	67614									·	
	SHORT	-TIME TENSILE	PROPERTIES							ON NUMBER BER 103	67624			
TEMP	O.OZ PC	TRENGTH O.2 PC	TENSILE STRENGTH	ELONG PER	R.A. PER	TEST		SHORT	-TIME TENSILE	PROPERTIES				
7.0	1000 PŠI 139.4	1000 PST	1000 PSE 208.6	CENT 23.7	CENT 29.4	nta L	TEHP	0.02 Pc	TRENGTH 0.2 PC	TENS)LE	ELONS PER	R.A. PER	TEST	
1266	196.2	126,3	149.0	19.7	23.5	Ĺ	70 /0	1000 PSI 123.2 110.5	1000 P#1 149.5 249.0	1900 PSi 191.5 187.0	9.8 8.2	P.5	nia T T	
		ACCESS LOT NU	(UI: NUMBER MEER 91	67614			20	i 35.5	166.0	195.0	27,7	32.7	i.	
	SHORT	TIME TENSILE												
Tgsep	VIELD ST		TENSILE STRENGTH	ELONG PER	R.A. PER	7847				ON NUMBER BER 104	67614			
	1000 PSI	ICOO PSI	1000 P\$1	CEHT	CCNT	nzm		SHORT	-TIME TENSILE					
70 3 200	197.5	168.0 199.5	:45.0 508.2	25.4	30.7	Ĺ	TEMP	71ELD S 0.62 PC 1000 PSI	TRENGTH 2.2 PC 1600 PSI	Tensile Strength 1000 PSI	ELONG PER CENT	R.A. PER CENT	YEST DIR	
		ACCESS:		67414			76 76	149.0 149.5	175.0 174.5	197.5 146.5	12.7 8.2	11.6	Ĺ	
	- 54007	TIME TENSILE												
	71ELO 87		TENSILE	ELONG	R.A.					ON NUMBER BER 108	67614			
TEMP	100 PC	1080 PS:	HYENDRYS	PER CENT	ege Cent	TEST		SHORT	-TIME TENSILE	PROPERTIES				
76 24 78	153.8 106.9 100.9	177.5 165.5 164.5	197.2 192.5 194.5	11.4 10.0 15.7	15.5	7 7 7	TEMP	∀1ELD \$ 0.0≥ PC 1000 PS1	TREM OT M 9.2 PC 1000 PSI	TENSILE STHENGTH 1000 PSI	ELONG PER CENT	R.A. PER CENT	TEST	
1200	143.5 126.5	196.5	192.5	10.4	19.6	į	76	1+3.5	1 1.2	164.5	14.3	23.9	t .	
1205	124,5	131,2	143.5	20.5	14.6	Ť	70 70	120.0	169.0	194.5	16.0	22.6 44.6	Ļ	
							70 70 70	137.5 130.6 147.6	172.9	191.9 197.8 196.2	19.3 76.1 26.6	18.4	T T	

SINGE Condition And properties

			ION NUMBER	67614						ION NUMBER	67614		
	euont.	LOT NU: TIME TENSILE-	MBER 106					CHORT.	ON NO TIME TENSTLE				
TEMP F	YIELD 5	· · · · · · · · · · · · · · · · · · ·	TENSILE STRENGTH 1000 PSI	ELONG PER CENT	R.A. PER CENT	TEST DIP	TEMP F	VIELO 5'		TENSILE STHENGTH 1000 PSI	FLONG PER CENT	P.A. PER CENT	TEST n]#
70 70 70 70	120.0 122.5 139.1 140.4	145,3 144,0 171.5 170.5	180.5 177.3 196.5 194.0	19.5 20.0 13.6 16.9	25.4 21.0 17.0 20.4	† † † †	70	134,4	160.0	188.5	23.0	40.0	L
									ACCESS LOT HU	ION NUMBER MBER 9	67457		
			ION NUMBER MBER 107	67614				SHORT	TIME TENSILE	PROPERTIES			
	SHORT	-TIME TENSILE					TEMP	VIELD ST	TRENGTH 0.2 PC	TENSILE STR ENS TH	ELONG PER	P.A. PER	TEST
•	YIELD S	TRENGTH	TENSILE	ELONG	R.A.		•	1000 PSI	1000 PSI 173.0	1000 P31	CFNT 20.5	CENT 42.0	n ia L
TEMP	0.02 FG 1000 PSI	0.2 PC 1000 PSI	STRENGTH 1000 PSI	PER CENT	PER CENT	TEST Dir	17 1200	155.0 134.0	152.0	170.0	16.4	32.3	ī
70 70 70 70 70 70	141.5 141.5 119.0 131.5 130.0 145.5 137.0	174.5 174.5 171.5 171.0 169.5 177.8 180.0	198.0 198.0 198.0 198.0 200.5 200.0 197.5	12.9 12.9 19.1 14.2 18.1 7.9 6.1	10.9 13.2 16.8 18.5 23.4 10.1	T T T T			ACCESS LOT NL	SION NUMBER JMRER 10	67657		
					•••			SHORT	-TIME TENSILE	PHOPERTIES			
			ION NUMBER	67614			TEMP F	YIELD S 0.02 PC 1000 PSI	TRENGTH 0.2 PC 1000 PSI	TENSILE STRENGTH 1000 PSI	ELONG PER CENT	R.A. PER CENT	TEST DIR
	SHORT-	TIME TENSILE	PROPERTIES				77 1200	155.0 135.0	179.0 153.0	212.0 174.0	21.2	40.8	L
TEMP	YIELD 51 0.02 PC 1000 PSI	RENGTH 0.2 PC 1000 PSI	TENSILE STRENGTH 1000 PSI	ELONG PER CENT	R.A. PER CENT	TEST DIR	1200			•			
70 70 70	136.5 136.5 131.5	163.5 160.5 161.5	185.5 183.5 184.0	23.6 18.4 16.6	32.5 33.8 28.0	† † †			ACCESS	ION NUMBER	67657		
70 70	136.5	163.5 174.0	194.0 192.5	15.0 7.8	24.6	Ť		SHORT	-TIME TENSILE	PROPERTIES			
70 70 70	144.0 144.5 135.5	175.5 177.5 175.5	197.0 197.5 195.0	12.2 13.7 14.8	15.1 16.7 16.6	T T T	TEMP	71ELD S 0.02 PC 1000 PSI	TRENGTH 0.2 PC 1000 PSI	TENSILE STRENGTH 1000 PST	ELONG PER CENT	R.A. PER CENT	TEST
			ION NUMBER MBER 109	67614			77 1200	151.0 134.0	177.0 154.0	209.0 175.0	10.7	33.3 34.9	L
	SHORT	-TIME TENSILE	PROPERTIES										
TEMP F	91ELD S1 0.62 PC 1000 PSI	TRENGTH 0.2 PC 1000 PSI	TENSILE STRENGTH 1000 PS;	ELONG PER CENT	R.A. PER CENT	TEST DIR							
70	143.5	168.5	189.5	13.0	13.0	•							
			ION NUMBER HBER 110	67614									
	SHORT	-TIME TENSILE	PROPERTIES										
TEMP F	71ELD \$ 0.02 PC 1000 PSI	TRENATH 0.2 PC 1000 PSI	TENTILE STRFMETH 1000 PSI	ELONG PER CENT	R.A. PER CENT	7641 018							
70 70 70 79 70	146.5 147.0 146.5 147.0 148.0	173.5 174.0 170.5 172.5 176.0	199.5 197-3 193.5 198.5 198.6	16.8 18.6 11.7 14.7 16.1	P1.0 21.3 14.5 17.0 16.4	T T T							

Tensile properties at cryogenic, room, and elevated temperatures for Alloy 718 bars, forgings, and billets.

	Lot	
Reference	No.	Heat Treatment
50031	1	"Aged"
63742	1	8 hr/1325 F, 8 hr/1150 F
63743	1	45 min/1950 F, 10 hr/1400 F, 10 hr/1200 F
67595	11	1 hr/1750 F, 8 hr/1325 F, 10 hr/1150 F
67595	12	1 hr/1750 F, 8 hr/1325 F, 10 hr/1150 F
67596	1	1 hr/1750 F, 8 hr/1325 F, 10 hr/1150 F
67596	2	1 hr/1750 F, 8 hr/1325 F, 10 hr/1150 F
67596	3	1 hr/1800 F, 8 hr/1325 F, 8 hr/1150 F
67596	4	1 hr/1950 F, 10 hr/1400 F, 10 hr/1200 F
67596	5	1 hr/1950 F, 10 hr/1400 F, 10 hr/1200 F
67596	6	1 hr/1950 F, 10 hr/1400 F, 10 hr/1200 F
67596	7	1 hr/1950 F, 10 hr/1400 F, 10 hr/1200 F
675 9 6	8	1 hr/1750 F, 8 hr/1325 F, 10 hr/1150 F
67596	9	1 hr/1950 F, 10 hr/1400 F, 10 hr/1200 F
67602	20	1 hr/1750 F, 8 hr/1325 F, 8 hr/1150 F
67602	21	1 hr/1750 F, 8 hr/1325 F
67614	78	1 hr/1700 F, 8 hr/1325 F, 18 hr/1150 F
67614	79	1 hr/1700 F, 8 hr/1325 F, 18 hr/1150 F
67614	80	1 hr/1700 F, 8 hr/1325 F, 18 hr/1150 F
67614	81	1 hr/1700 F, 8 hr/1325 F, 18 hr/1150 F
67614	82	1 hr/1700 F, 8 hr/1325 F, 18 hr/1150 F
67614	83	1 hr/1700 F, 8 hr/1325 F, 18 hr/1150 F
67614	84	1 hr/1750 F, 8 hr/1325 F, 18 hr/1150 F
67614	. 85	1 hr/1750 F, 8 hr/1325 F, 18 hr/1150 F
67614	86	1 hr/1750 F, 8 hr/1325 F, 18 hr/1150 F
67614	87	1 hr/1750 F, 8 hr/1325 F, 18 hr/1150 F
67614	88	1 hr/1750 F, 8 hr/1325 F, 18 hr/1150 F
67614	89	1 hr/1750 F, 8 hr/1325 F, 18 hr/1150 F
67614	90	1 hr/1750 F, 8 hr/1325 F, 18 hr/1150 F
67614	91	1 hr/1750 F, 8 hr/1325 F, 18 hr/1150 F
67614	99	1 hr/1750 F, 8 hr/1325 F, 10 hr/1150 F
67614	100	2 hr/1750 F, 8 hr/1325 F, 10 hr/1150 F
67614	101	2 hr/1750 F, 8 hr/1325 F, 10 hr/1150 F
67614	102	2 hr/1750 F, 8 hr/1325 F, 10 hr/1150 F
67614	103	2 hr/1750 F, 8 hr/1325 F, 10 hr/1150 F
67614	104	2 hr/1750 F, 8 hr/1325 F, 10 hr/1150 F
67614	105	2 hr/1750 F, 8 hr/1325 F, 10 hr/1150 F
67614	106	2 hr/1950 F, 10 hr/1400 F, 10 hr/1200 F
67614	107	2 hr/1950 F, 10 hr/1400 F, 10 hr/1200 F
67614	108	2 hr/1950 F, 10 hr/1400 F, 10 hr/1200 F
67614 67614	109	2 hr/1950 F, 10 hr/1400 F, 10 hr/1200 F
67614 67614	110 111	2 hr/1950 F, 10 hr/1400 F, 10 hr/1200 F
67614	112	2 hr/1950 F, 10 hr/1400 F, 10 hr/1200 F
67614	113	2 hr/1950 F, 10 hr/1400 F, 10 hr/1200 F
67657	9	1 hr/1800 F, 8 hr/1325 F, 18 hr/1150 F 1 hr/1750 F, 8 hr/1325 F, 8 hr/1150 F
67657	10	1 hr/1750 F, 8 hr/1325 F, 8 hr/1150 F
67657	11	and the second of the second o
0/03/	**	1 hr/1750 F, 8 hr/1325 F, 8 hr/3150 F

Impact properties of Alloy 718 at cryoganic temperatures. Enth mill annealed and heat treated specimes were tested. Specimes were method to the dimensions shown in figures from standard No. 5 tepor pins. The substandard size was necessary due to the 30 ft-1b capacity of the testing mechine.

Mean treatment utilized was: aged at 1325 F for 7 hours, furnace cooled at 20 F per hour to 1150 F, and air cooled out of furnace.

	Impact Env	rgy in ft-lbs.
Test Temperature K	Alloy 718 Annealed	Alloy 718 Heat Treated
300	8.3	1.0
300	8.1	1.0
300	7.6	1.0
300	8.4	1.1
300	7.0	1.0
	avg. 7.9	avg. 1.0
194	8.1	1.0
194	8.8	1.2
194	7.4	1.0
194	7.0	0.9
194	8.7	1.0
	evg. 8.0	evg. 1.0
77	8.2	0.9
77	7.3	C. 8
77	7.0	0.7
77	7.8	0.7
	6.8_	0.0
	avg. 7.4	avg. 0.78
20	7.9	0.7
20	7.8	0.7
20 .	7.6	0.8
20 .	7.3	0,8
20		9.4
	AVR. 7.8	ave. 0.76

Ref: DICC 62092

Defense Metals Information Center - Battelle Memorial Institute - Columbus, Ohio 43201

data www. All sheet owner.

Marie or Alley Alley 718

ladia feles popelis

a surface

Unsotched (K_c = 1.0) rotating bending fatigue data at room temperature for solution treated and aged Alloy 718 bar, R = -1 (A = **) heat treated as follows:

Solution treated 1750 P(1 hr.) A.C.

Aged 1325 P(8 hr.) F.C.

1150 F(10 hr.) A.C.

Ref: A

	ow Cycles*	A.	High Cycle	8844
tress		Stress		
(kei)	Cycles	(kel)	Cycles	Remarks
		100.0	121,000	Pailed
		94.0	293,000	Pailed
		85,0	10,163,000	gas out
		90.0	1,193,000	Pailed
		87.5	2,804,000	Failed
		86.0	10,023,000	Pailed
		87.0	11,071,000	Ren out
		105.0	69,000	Pailed
100.0	12,000	85.0	3,320,000	Pailed
100.0	6,000	85.0	950,000	Pailed
90.0	45,000	85.0	1,467,000	Pailed
90.6	11,250	85.0	10,048,000	Zan out
90.0	25,174	85.0	3,354,000	Pailed
100.0	1,500	85.0	4,632,000	Pailed
100.0	1,500	85.0	948 000	Pailed
100.0	750	82.0	10,027,000	Ren out
110.0	286	82.0	2,978,000	Pailed
105.0	437	82.0	11,071,000	Las out
110.0	144	82.0	27,061,000	Zan out
105.0	8 15	82.0	24,514,000	Ren out
95.0	3,250	82.0	10,022,000	Res out
95.0	65,000	82.0	3,983,000	Pailed
105.0	815	82.0	1,274,000	Pailed
88.0	50,000	82.0	936,000	Pailed

^{*} Tracted at 100 cpm at indicated atress level to indicated number of cycles followed by conventional high cycle testing to 10^7 cycles or failure.

⁰⁰ Tested at 10,000 cpm, that No. 5391

Total water to the State of the

Unnotched ($K_{\xi}=1.0$) rotating bending fatigue behavior (S-H) of solution treated and double aged Alloy 718 her at room temperature. R = -1 (A = =)

Ref: A

Unactched ($E_c=1.0$) pull-pull fatigue data at room temperature and 1000 F for double aged Alloy 718 "mini-present" forgings, R=0 ($\Delta=1$) heat treated as follows:

Aged 1325 F(8 hr.) F.C. Aged 1150 F(10 hr.) A.C. Bef: A

Thos.	Heximus	Cycles to
merecure, '	stress (ksi)	failure
RT .	170.0	9,272
	290,0	4,155
	160.0	12,863
	180.0	6,152
	211.5	1,994
	196.6	4,019
	220.0	2,948
1000	200,0	3
	100,0	27/0
	170.0	250
	150.0	1,326
	230.6	2,947
	100.0	22,179
	110.0	17,642
	120.0	3,952
	140.0	2,139

Test speed: 15 cph

Smotched (Eq = 1.0) pull-pull low cycle foligon behavior (5-6) of double aged Alloy 718 forgings at room comperature and 1800 y. A = 0 (A = 1)

Def: A

Unnotated (Kg = 1.0) pull-pull fatigue data at room temperature and 1800 τ for solution treated and double aged Alley 718 forgings, R = 0 (A = 1) heat treated as follows:

Solution treated 1796 F (1 %F.) A.C. Aged 1325 F (8 hr.) F.C. Aged 1190 F (10 hr.) A.C.

mef: A

Toot	Hazima	Cycles to
perature. !	stress (b41)	fellere
RT	150.0	4,904
	160.U	4,268
	170.0	4,842
	180.0	3,396
	190,0	336
	140.0	16,675
	170.0	2,695
	185.0	627
1000	150.0	875
	140.0	941
	130.0	3,000
	120.0	20,810
	160.0	10
	140.0	6,699
	130.0	6,700

* Pailed on leading that No. 26-198-199 Test speed: 15 cph

Smootehod (Eq. + 1.0) pull-pull low excloss fortigue behavior (5-3) of only d in tracted and double aged allow CD forgings or room temperature $\pm id$ 1000 π 8 + 0 (A + 1)

Defense Metals Information Center - Battelle Memorial Institute - Columbus, Onio 43201

data chaot

Base Material: Mickel

Metal or Alley: Alloy 718

Condition: Aprel

Alley Date: Creep and ruprure

p. 1 of 5

See Heat Treatment Conditions on Page IV-68

p. 2 of !

Alloy 718 Bars, Forgings, and Billet Annealed at 1750 F and Aged

Rupture Strength

See Heat Treatment Conditions on Page IV-68

deta:

n n King ha hay ta Inga hay da

			CCE95104 NU JT NUNGER	264 038 4	*						ACCCSSION =	J =0 €R 676	•\$	
		0016194	CREEP AND	SUPTURE NA	14					ORIGINA	CHEST AND	BUSTURE DA	74	
	578655	DURA-	KIN RATE	TOTAL	auPtune	HART			510/55		M'M BATE	TOTAL	AUPYURE	HARD
TEW.	1666 PSI	TICH MOURT	PPR CENT	CHEEP MER CENT	EL RA	of TEN TEST		Tgur,	. 1606 PSI	TIM	PER CENI	CREEP PER CENT	E. RA	
1300	75.0	103.00	•		8.6	429		1000	132.5	.,		.100		
1340	75.4	92.08			11.0	429 429		1000	125.0	8,5		.;**		
					••••	~4*		1100	129.0	163.64			2.4	
								1100	120.0	155.0		.100 .100		
					M4			1100 1150	10.0	220.0		.900 .100		
		U	07 W-068	3				1150	3.011	313.00		.100	7.1	
		TRIBINAL	-	NOTURE DAT	14			1150	19.0	115.2		.580 1.800		
•••	STREES	0004-		TOTAL	aup tune	MARO		1200	91.i 7.i	192.00			7.1	
TEMP.	1000 PSI	TIM POURS	POR CENT	CREEP PER CENT	PER CENT	AFTER TEST		1200	96.6	141.0		.190 .100	~•.	
130^	78.0	194.20			11.4	+29		.200	****	14444				
1398	75.0	284,00			4,3	426								
											CCESSION H LOT NUMBER		14	
			CE95104 + W		2					0018:444	CREEP AND	NUPTURE DATE	4	
		L	or which	20					579655	DURA-	MIN BATE	TOTAL	RUPTURE	HARD
		CMEP	AND BUPTUR	E STRENGTH				tem.	1000 PS1	TION PRICON	PER CENT	CHEEP PER CENT	EL RA	TEST
TEN	\$1: * ***********************************	MESS FOR INDICATE	BUPTIME IN	97963	5 FOR DESIGN	ATED		1308	100.0	70.4		764 6647		43
*	100 K109	160	0 10000	0.06881	4.0011	8.481		*300		,,,,,				••
1150	123.6	62.5	19.20	-,://	PE/HOUR >	C/140UH								
1298 1258 1364	111.0 43.3 60.3	71.0	35.00			<i>:</i>					CESSION NUM IT NUMBER	1069 676 16 7 9	•	
	*FETRAPOI	₹¢.7	2.20							-	CREEP MID A	UPTURE BOTA		
		LATEU						_	\$19655	0UBA-	HIM MATE	TOTAL	AUPTUS!	mAR7
•		3						Tem.	1000 711	Tine Hours	PER CENT	CTEEP PER CENT	EL An PER CENT	M TER "EST
			CESSION NO		· ·			. 700	140.0	150.3			- •	39
		Ļ	129euw 15	29										**
		0010144L	CEPES AND M	OPTURE DAY	4	•								
TEW.	1100	PERSON	FER CENT	TOTAL	NATURE Ch. Ba	-ARD		-			CESSION WA			
•	P\$1	HOLES.	P78 min us	PED CENT	PER CENT	AF TEN		•		ro	7 10-10(9	00		
1148 1140	139.0	14.40		.*	4.2					onterno.	-	PTUNE DATE		
1198	114.8	231.34 13F 00			4.C 7.8			Trans.	2726 Kg	0484- 7104	NIM BATE	707AL	EUPTURE	1440
1143	72.0	9\$ 0.4		-109	7.6				PEI	-904	sea north	cates	er ent	AFIER TEST
1155	46.2	1 784.45 1 9 44.4		.100				1700	180.5	Pa. 1				42
1740	125.4	7,08			\$					*	, ,			
1220	ESO. U.	*), së *24.44		4, 1	8.3									
1200	44.8	2644.9 2443.38		*750							CEASTEN MANN F MANNER	-		*
1240	81.4	25 16.4 2017.15		+144										
1846	115.4	4.10			1,5		. :				Caffs map or			
1644	51.3	29.74 200,78		· •	1.1 2.2			TEW.	****	Fina	PER SENT	CHEEP I	er. Projec N. Ra	ease Mark
1 2 9 M	30.0	130.0	2.3	198				* * *	P51	MG / MR	CPO HOUSE	PER CENT	ocu cent.	1887
70.0	23.5	78 fg. g 29 fg. g 2		.1#6				1,991	104.0	79.2				43:
1393	\$1,4 ?\$.0	10.70	:		3.3									+ 1
1 200	76.8	86.78 19.58			6.4	. *								

											p. 4	of 5	
			CCESSION NO OT NUMBER		•					CCESSION NU OT NUMBER	MBER 676 90	14	
		ORIGINAL	CREEP AND	NUPTURE DAT	A				OFIGINAL	-	SUPTURE DAT	ra .	
TEMP.	STRESS 1000 PS1	DURA- TION HOURS	MIN RATE PER CENT PER HOU-	TOTAL CREEP PER CENT	RUPTURE EL RA PER CENT	MARO AFTEN TEST	TEMP.	STRESS 1000 PSI	DURA- TION HOURS	MIN RATE PER CENT PER HOUR	TOTAL CREEP PER CENT	RUPTURE EL 94 PER CENT	HARD AFTER TEST
1300	75.0	54.18			11.2 24.4	43	1300	75.0	67.6F			11.2 22.3	44
			CCE\$510N HU	H BE R 4761	14					CCESSION NU		14	
		L	F30*UM 70.	8 3					OFIGINAL	CREEP AND R	UPTURE DAT		
		OFIGINAL	CREEP AND	NUPTURE DAT	4			STRESS	DURA-	MIN RATE	TOTAL	RUPTURE	CRAM
\ZuP.	STRESS	DURA- TION	MIN PATE PER CENT	TOTAL	RUPTURE EL RA	MARO AFTER	TEMP.	1000 PSI	TION HOURS	PER CENT PPR HOUR	CREEP PER CENT	EL RA PER CENT	AFTER TEST
•	PSI	HOURS	PER HOUR	PER CENT	PER CENT	TEST	1300	75.0	87,28			19.5 22.7	43
1900	75.0	114.34			A.0 20.5	44							
		A (CCESSION NU	48E R 6 751	•					CCESSION NU OT NUMBER		14	
		L	nsown to	64					ORIGINAL	CREEP AND	AC JAUTHUR	TA	
	STRESS	ORIGINAL Duma-	CREEP AND	TAC BRUTPUM VOTAL	A RUPTURE	MARO	TEMP,	STRESS 1000 PSI	DURA- Tion Hours	MTN RATE PER CENT PER HOUR	TOTAL CREEP PER CENT	RUPTURE EL RA PER CENT	HARD AFTER TEST
Temp.	1000	TION	PER CENT	CREEP PER CENT	EL RA PER CENT	AFTER TEST	1300	75.0	.00	HOOK	PER 6241		40
1300	75.0	133.00			10.5 24.3	43	1300	75.0	188.58			7.4 14.2	+1
										CCERSTON NU		14	
			NOTESSON W.		14				U	OT NUMBER	113		
		A&TATUA	CREEP AND	MINTING BAS	74					CREEP AND	PUPTURE DA	TA	
	STRESS	DUGA-	MEN SATE	TOTAL	BUP TURE	MARO	TZwe.	1000	Tion	MIN BATE PER CENT	TOTAL CREEP	RUPTURE EL RA	MARD
Teup.	1860	1104 # 0U# 5	PER CENT F.B HOUR	CREEP PER CENT	EL AA PER CENT	of ter test	1300	PS1 75.0	MOURS	PER HOUR	PER CENT	PER CENT	TEST
1300	75.0	164,78			17.0 10.1	43	.,,,,	, 3,0	117.4				41
			ICCESS:ON IN	# 8 F9 67 8 M						CCESSION NU	# 869 476	57	
			-01	88					L.	07 HUWWER	•		
		-01-1-4	CREEP 440	MIPTUPE 04	TA				_	CREEP AND			
	579ES5	CO. 101-17	TIAN MIN	101AL	aup tyaé	MARO	12-	579622 1000	TIO	PER CENT	COEEP	nyPtyME EL RA	AFTER AFTER
TEMP.	1000	710m =00#\$	PER CENT	CREEP PED CEUT	PER CENT	of Tea Test	1300	P51	+0U85 65.98	PFR HOUR	Ma Cidi	PER CENT	TEST
1380	72.0	39.EE			37.0 53.7	45		70,0	*****			.,,,	
			eccessión n		114					CCESSION NU		97	
			L01 WWW.							CREEP AND		••	
	57 061 9	COLETON.	One <3983 3148 818	1314L	AUPTURE	2400		\$70C\$\$	CUSA-		total	TH PUPTURE	m4#0
tem.	1598 P81	11m 11m	Act cts?	catto	et 16	# 168 1631	Teps.	190: PSI	T I find mGC-Ø-9	PER CENT	CHEEP	PER CENT	M 1ER 1831
tjee	75.0	M.40			17,4 . 19.2	43	1100	79,4	36.76			19.1	
										ACCESSION W		M'	
		• • • • •			-								
								510088		344 1990)			
							¹₹ - 0,	1000	1 3 300 1 3 300 2 4 4 500	are mile are feri	TOTAL	000100E	M 164
			*				•	791			-E= (E+	PER CENT	783

Défense Metais Information Center : Battelle Memorial Institute : Columbus, Ohio 43201

roperties p. 5 of 5

Creep and rupture properties at elevated temperatures for Alloy 718 bars, forgings, and billets.

	Lot	
Reference	No.	<u>Heat Treatment</u>
67596	2	1 hr/1750 F, 8 hr/1325 F, 10 hr/1150 F
67596	3	1 hr/1800 F, 8 hr/1325 F, 8 hr/1150 F
67602	20	1 hr/1750 F, 8 hr/1325 F, 8 hr/1150 F
67602	21	1 hr/1750 F, 8 hr/1325 F
67614	78	1 hr/1700 F, 8 hr/1325 F, 18 hr/1150 F
67614	79	1 hr/1700 F, 8 hr/1325 F, 18 hr/1150 F
67614	30	1 hr/1700 F, 8 hr/1325 F, 18 hr/1150 F
67614	81	1 hr/1700 F, 8 hr/1325 F, 18 hr/1150 F
67614	82	1 hr/1750 F, 8 hr/1325 F, 18 hr/1150 F
67614	83	1 hr/1750 F, 8 hr/1325 F, 18 hr/1150 F
67614	84	1 hr/1750 F, 8 hr/1325 F, 18 hr/1150 F
67614	85	1 hr/1750 F, 8 hr/1325 F, 18 hr/1150 F
67614	88	1 hr/1750 F, 8 hr/1325 F, 18 hr/1150 F
67614	89	1 hr/1750 F, 8 hr/1325 F, 18 hr/1150 F
67614	90	1 hr/1750 T, 8 hr/1325 F, 18 hr/1150 F
67614	91	1 hr/1750 F, 8 hr/1325 F, 18 hr/1150 F
67614	99	1 hr/1750 F, 8 hr/1325 F, 10 hr/1150 F
67614	113	1 hr/1800 F, 10 hr/1400 F, 10 hr/1200 F
67657	9	1 hr/1750 F, 8 hr/1325 F, 8 hr/1150 F
67657	10	1 hr/1750 F, 8 hr/1325 F, 8 hr/1150 F
67657	11	1 hr/1750 F, 8 hr/1325 F, 8 hr/1150 F

Alloy 718 Castings

Tensile Strength

.2% Yield Strength

See Page IV-71 For Heat Treatment Conditions

Defense Metals Information Center - Battelle Memorial Institute - Columbus, Ohio 43201

Tensile Strength

.2% Yield Strength

			SGION NUMBER NUMBER)	43619						unuaçu 34 Caston unuaçu	67613		
	S+10R	T-TIME TENSIL	.F PROPERTIES					5-001	T-TIME TENS!	LF PROPERTIES			
75.00	VIELD : 0.02 PC 1000 PSI	8702 NOTH 8.2 PC 1888 PS1	TENSILE STREMTM LBOC PST	ELONS PER	4.4. PEN	7847	7g -		STUBNATH PAZ PC	TENSILE STREASTH	ELONG PER	R.A. PER	7867
70	1000 521	73.2	••••	CENT	CENT	010	75	*****	isse Pil		CENT	CENT	nīa
72		82.4 83.7	119.2 122.6 120.4	17.6	75.4 31.4		75		123.6	144.2	14.4		
		•••	17004		31.2					######################################	67613		
			1510h W/MCR	42415				\$1001		LF PROPERTIES			
			numer >	63619			Year	71610 5 0.02 Pc 1805 PSI	IMENSTH 8-2 PC	TENSILF STRENSTH	PER PER	0.4. PE0	TEST
	2=04	T-TIME TENSIL	P PROPERTIES				75		1001 751		CL4T	CENT	nia
TEMP	11ELD 4.02 PC 1000 P41	570EH0TH 0.2 PC 1000 PS1	TENSIL! STWENSTH 1800 PSI	ELGWO PER CENT	O.A. PER CENT	7 647 610	,,	•	.116.2	141.6	14.2	29.4	
76 70		40.8	91.2	35.4	35.9 20.7	·				SSION WIMBER WIMBER 37	67613		
76		41.3	32.6	33.0	34 . 3			SHORT	-1146 16451				
		ACCES	SION WAREN	63610			Temp	71ELD S 0.02 PC 1000 PSI	.TRENSTH 0.2 PC 1000 PS;	TENSILE STREMSTH 1000 PGI	ELONG PER CENT	0.4. PEB CENT	rest nin
		LOT M		333.5			75	1000 -00	106.3	349.6	15.0	21.4	.,,-
	Sm0#1	-TIME TENSIL	E PROPERTIES						100,0	,,,,,,		****	
	TIELD S	T#EMSTH	TEMBLE	ELONG	4,4,								
TEMP F	0.02 P¢ 1000 P\$I	1.2 PC 1800 PS1	TOO OLL	PER	CENT	TEST nla				SION WHEE	67613		
78		62.1 84.4	115.2	20.0	25.1 22.3								
1000		64.6 76.8	117.2	12.0	10.9					F Pupperiles			
1060		75.4	100.2	20.0	34.5		70-	11ELD 5'	1.7 %	TENSILE STOCKSTO	NEB Er Gard	*.4. P(#	***
1280 1284		70.4	99.4	17.4	33.2		•	1000 251	1000 751	1000 532	CENT	CENT	nte
1209		77.4 96.4 68.3	103.8	17.0	31.0		75		90.9 90.4	117.2	21.7 10.2	29.3 29.3	
1466		57.4	84.6 77.6 79.2	18.6	16.7 33.8 24.5		75		94.7	126.2	71.1		
										Mater andress	67613		
				43473				\$m 00 T	-1146 164614	£ 911899089 3			
	3-4QB f -	LOT NU SJERRE TENSTE					***	*1610 5' 0.02 0c 1000 051	106*461** 0.2 PC 100** PS1	fenstus stopustus 1000 PSI	ELJus Ept Clut	0.4. PE0 CENT	7851
tgus	71610 31		MASILE	(1,000			73		97,3	134.0	11.4	13.9	710
•	1000 001	1.7 PC 1100 PS:	STOCHSTN LICH PSI	Ma CENT	PE 0	7687	- •		••••	,	****	.,	
-477 -473		125.2 127.4	170.7	3.0	7,9	k.							
-344		188.3	159.2	*.*	17.3	t	5 mg & i	ises the cassings.		geris, somm, and	e ic+ 94 z 4) compre 9 61 aut-	
-364 -366		188.2	194.3		*.*	Ĭ.			in 4	•			
-13* -114		165.3	125.4	7.0	7.6	ì		Mistrae	k.	Cle et	* c at m: 12		
**		100.0	123.5	6.0	1.1	i.		63618 63618	:	82 +825 1 5+ 1800 t			
45		14\$.2 44.2	117.7	19.4	6.3 (1.4	į		67610	,	I be that to be			
•*		110.9	180.4	7.0		i		6 26 1 2 6 16 2 2	: 35.	I to 1890 r. t : Incompant the banks :			
								47637	>1	.4 50 1227 E			
			to extend a	**13				61617	, . M	16 % 1202 f		•	
			44 h	-414						Farmen Maliak, 1		-	
		ine matte						61613	,,	Tavanga Marya sik ji 36 ++ 7 7 €		-	
	-1218 810			e				67617	i st	1 80 mar #5 19 22 2 1		6 b	nt e
76.00	6.44 PC 1984 PR	8.8 PC 1000 PS:	truster tracustu tere est	(for	44. (fai	1621 -18		6 1€1≅	1 9	Parement Mary 16;	0.6	₹, 1 ++ .B	en c
7%		171.0	547.9	15.9									

Room-temperature compression data for one heat of cast Alloy 718 are presented below.

Condition	0.2% Offset Compressive Yield Strength, kei	Compressive Ultimate Strength, ksi	E _c ,
Solution			
Treated Solution	350	Not detected	6.3
Treated	413	3800	5.8
Aged	840	3660	6.4
Aged	871	3210	6.8

Beat 65-506

Solution Treated: 1800 F/2 hrs/Air Cocl

Aged:

1325 F/8 hrs/Furnace Cool to 1150 F-hold 8 hrs-Air Cool

^aBased upon load at failure and original cross sectional area. All failures were ductile shear type.

Ref: 63618

Defense Metals Information Center - Bettelle Memorial Institute - Columbus, Ohio 43201

Cryogenic, room, and elevated temperature charpy impact data for one heat of Alloy 718 are presented below:

Condition	Test Temp. F	Impact Strength
Aged	-40	10.0
Aged	-40	13.2
Aged	-40	12.6
Aged	-40	11.2
Aged	R.T.	12.7
Aged	R.T.	13.7
Aged	R.T.	15.7
Aged	R.T.	13.6
Aged	1200	18.6
Aged	1 200	16.8
Aged	1200	19.8
Aged	1200	18.5

Beat 65-506

Solution Treated: 1800 F/2 hrs, A.C.
Aged: 1325 F/8 hrs, Furnace cooled to 1150 F, hold

for 8 hrs., A.C.

Ref · 63618

Cryogenic, room, and elevated temperature fracture-toughness data for one heat of cast Alloy 718 are presented below. Charpy impact test specimens were pre-cracked in bending fatigue to an average depth of 0.2 inches at the root of the notch following heat treatment:

	Test	Energy to Fracture,	G,
Condition	Temp., P	<u>ft - 1b</u>	in-lb/in ²
Aged	-40	6.6	733
Aged	-40	6.5	666
Aged	-40	6.8	752
Aged	-40	6.5	709
Aged	R.T.	8.0	840
Aged	R.T.	7.8	828
Aged	R.T.	5.7	640
Aged	R.T.	5.8	595
Aged	1200	10.7	1182
Aged	1200	12.7	1268
Aged	1200	9.3	1046
Aged	1200	10.6	1173

Heat 65-506

Solution Treated: 1800 F/2 hrs/A.C.

Aged:

1325 F/8 hrs/furnace cooled to 1150 F -- held for

8 hrs/A.C.

Ref: 63618

Thermal fatigue data for one heat of cast Alloy 718 are presented below.

Condition	Temp. Cycle - F ^A	Cycles to Failure	Heating Compressive Stress, ksi	Cooling Tensils Stress, ksi
Aged	300-1400	*	9 20	762
Aged	300-1400	771	788	9 20
Aged	300-1400	387	866	893
Aged	300-1200	*	5 99	827
Aged	300-1200	•	1100	368

* Test discontinued after 1000 cycles without failure.

Beat 65-506

Solution Treated: 1800 F/2 hrs/A.C.

1396 P/8 hrs/8-mass s

1325 F/8 hrs/Furnace cooled to 1150 F -- held for

8 hrs/A.C.

Ref: 63618

^{*} Heating time 0.5 minutes; cooling time, 2.5 minutes.

ACCESSION NUMBER 63618 LOT NUMBER 3

ORIGINAL CREEP AND SUPTURE DATA

	STRESS	DURA-	HIN RATE	TOTAL	AUP:	HARD		
TEMP.	1000 PSI	TION	PER CENT	CREEP PER CENT	EL. PER	RA CENT	AFTER TEST	
1200	68.0	67.6R	.0018	• ·	4.5	4.0		
1360	72.5	9.38	.105		4.0	3.2		
1300	60.0	109.6R	.01		7.9	6.3		

ACCESSION NUMBER 63618 LOT NUMBER 4

ORIGINAL CREEP AND RUPTURE DATA

	STRESS	-ARUG	MIN RATE	TOTAL	RUP	TURE	HARD
TEMP.		TION	PER CENT	CREEP	EL PER	RA CENT	AFTER TEST
1300	72.5	.:· •.sr	. 054	,	1.0	3.2	

Reference	No.		•	7 (<u>.</u>	H	est	Ţ	restment				
63618	3		2	hr/18	lOC.	F,	8	hr/1325	F.	8	hr/1150	F
63618	4	•	2	56/19	00	F,	8	hr/1325	F,	5	hr/1150	F

V. APPENDIX

Specifications
Chemical Composition
References
List of Symbols
Data Basis
Constant-Life Diagrams (fetigue)

Specifications

As was indicated in the sections covering the metallography and heat treatment of Alloy 718, both the composition and the heat treatment of chis alloy tend to differ according to the intended application. It is for this reason that the applicable specifications can usually be identified as pertaining to creep-rupture or short-time applications. The "creep-rupture" specifications are usually preferred for jet-engine applications, while the "short-time" specifications cover material for pressure vessels and for applications involving relatively short exposures at elevated temperatures.

Alloy 718 is covered by eight Aerospace Material Specifications, which are listed below. In addition, it is covered by a number of proprietary specifications, some of which are included in the table of chemical co-positions on the following page.

Aerospace Material Specifications for Alloy 718

Specification	Type of Product	Application
AMS 5383	Investment Castings	Creep-rupture
AMS 5589	Tubing	Creep-rupture
AMS 5590	Tuling	Short-time
AMS 5596	Sheet, Strip, Plate	Creep-rupture
AMS 5597	Sheet, Strip, Plate	Short-time
AMS 5662, 5663	Bars, forgings	Creep-rupture
AMS 5664	Bars, forgings	Short-time

Specifications

CHEMICAL COMPOSITION OF ALLOY 718 ACCORDING TO VARIOUS SPECIFICATIONS

				Amou	nt Specified(a), percen	t		
Specification		-					Si Men	S	Cu
Identificatio	n Company	Cb + Ta	Ti	Al	В	С (max) (max)	(max)	(mex)
AMS 5596A	SAE	5.00-5,50	0.65-1 15	0.40-0.80	0.002-0.006	0.03-0.10	0.35 0.35	0.015	0.10
AMS 5597	SAE	4.75-5.50	0.65-1.15	0.20-0.80	0.006 max	0.08 max	0.35 0.35	0.015	0.10
AMS 5663	SAE	4.75-5.50	0.65-1.15	0.20-0.80	0.006 maex	0.08 max	0.35 0.35	0.015	0.10
AMS 5664	SAE	4.75-5.50	0.65-1.15	0.20-0.80	0.006 max	0.08 max	0.35 0.35	0.015	0.10
AGC-44152	Aerojet-Genera	14.75-5.5	0.65-1.40	0.10-0.80	0.001-0.010	0.10 max	0.45 0.45	0.015	0.30
	AiResearch Manufacturing Company	4.75-5.50	0.7-1.4	0.2-0.7	0.006 max	0.08 max	0.45 0.40	0.015	0.30
EMS 581D	AiResearch Manufacturing Company	4.75-5.50	0.7-1.4	0.2-0.8	0.006 max	0.08 max	0.45 0.40	0.015	0.30
B50T69-S6	General Elec- tric Company, Large Jet Engine Departs		0.70-1.40	0.20-0.80	0.002-0.010	0.10 max	0.45 0.35	0.03	0.75
C50T79(S1)	General Elec- tric Company, Large Jet Engine Depart	5.00-5.50	0.65-1.15	0.40-0.80	0.002-0.010	0.10 max	0.40 0.35	0.03	
RB0170-101	North American Aviation- Rocketdyne		0.85-1.15	0.40-0.70	0.006 max	0.06 max	0.35 0.35	0.015	0.30
RB0170-038"E"	North American Aviation- Rocketdyne	4.75-5.50	0.70-1.40	0.20-0.80	0.006	0.10 max	0.45 0.40	0.015	0.30
RB0170-039	North American Aviation- Rocketdyne	4.75-5.50	0.65-1.15	0.35-0.85	0.906 max	0.03-0.1	0 0.45 0.40	0.015	0.15
PWA 1009-C	Pratt and Whitney Aircraft	5.00-5.50	0.65-1.15	0.40-0.80			0.35 0.35		
9-222(A)	Solar	4.75-5.50	0.70-1.2	9.20-0.80	0.001-0.007		0.45 0.35		
9-221(A)	Solar	4.75-5.50	0.70-1.2	0.20-0.80	0.001-0.007	0.03-0.10	0.45 0.35	0.015	0.30

⁽a) In addition to the elements shown in the table, all specifications call for the following: Co, 1.00 max; Mi + Co, 50.00-55.00; Cr, 17.00-21.00; Mo, 2.80-3.30; Fe, balance. When specified, P is 0.015 maximum. To is listed in RB0170-101 as 0.50 max and in 850769-S6 as 1.00 max.

p. 1 of 4

Chemical Compositions for Data Sheets in Section ${\tt IV}$

Reference	Lot					Chemical Co	mposition			_	
		NI	CO	CR	МО	FE *	С	H	TI	AL	CB
50031	1			(Compo	sition no	ot reported.)	}				
51 79 2	1										
	2										
	3										
	4										
	5										
55290	1	52.29		18.80	3.12	18.84	•04		.85	•35	5.15
61323	1	52.00	.06	18.68	3.07	19.16	•04	.002	1.01	•33	5.19
	2	52.00	.06	16.68	3.07	19.16	-04	.002	1.01	•33	5.19
	3	52.00	.06	18.68	3.07	19,16	•04	.002	1.01	.33	5.19
63618	1										
	2										
	3										
	4										
63649	1	BAL.		18.59	3.07	18.95	•04	.003	• # 1	•27	
63742	1										
63743	1	52.43		19.41	3.05		•08	.007	.91	.63	
65177	6	53.36		18.92	3.12	17.34	. 05		.98	• 34	5.23
	7	57.76		18.92	3.12	17.34	• 05		.98	•34	5.23
	8	51.45		17.73	3.25	18.96	•05		•64	•45	4.88
	9	53.45		17.73	3.25	18.96	• 05		•64	,45	4.88
	l i	52,29		18.90	3.15	18.84	•04		•85	. 35	5.15
	13	52.29		18.A0	3.12	16.84	• 0 4		.85	. 35	5.15
	14	57.16		19.24	3.10	18,44	•03		.84	.43	5.16
	15	52.16		19.24	3-10	18.44	•03		.84	•43	5.16
	16	52.16		19.24	3.10	18.44	•03		.84	.43	5.16
67595	11	52.00		19.00	3.00		• 0 8		.90	.60	
	12	54.00		19.00	٥٥٠٤		•ûA		.90	.60	
67396	i	57,83	.11	18.78	3.00		.03	.003	1.06	.60	5,25
	2	52,47	.11	1 H . 7 H	٥٥٠٤		د 0 •	.003	1.05	.60	5.25
	1	52.43	.11	14.78	3.00		*07	.003	1.06	.60	5,25
	4	57,83	.11	18.78	3.00		•03	£00.	1.06	94.	5.25

p. 2 of 4

											p. 2 of '
Reference	Lot					Chemica ¹	Compositio	on			
		NŢ	co	CR	МО	FE*	С	8	TI	AL	СВ
67596	5	52.A3	.11	10.78	3.00		.03	.003	1.06	.60	5.25
	6	52.43	.11	18.78	3.00		•03	.003	1.06	.60	5.25
	7	52.83	.11	18.78	3.00		.03	.003	1.06	.60	5.25
	8	52.35	.07	19.46	3.01		.036	.004	.99	.43	5.30
	9	52.35	.07	19.46	3.01		.036	.004	.99	.43	5.30
67602	20	53.23	•55	18.75	2.99		.07	.003	.94	•64	
	21	54.61		18.24	2.81	16.43	•06		•77	,49	
	22	53.28		18.00	3.20		.09	.004	.83	•56	
67609	39	52.10		19.89	2.97		•06	.006	.81	.60	5,24
	40	52.00		19.80	3.00		.08	.005	.83	.55	5,20
	41	51.70		19.A0	3.00		.07	.004	.80	.71	5.20
	42	50.45		20.00	5°35		• 09	.005	.82	.57	4.77
67613	24	51.30		19.70	3.40		•05	.006	1-14	.46	5.60
	25	51.70		20.30	3.10		•08	-014	.85	.74	4.88
	26	53.40		19.00	3.36		.05	.003	1.20	.48	4.91
	27	54.00		18.85	3.23		-04		1,11	•52	5.27
	28	52.30		18.70	3.28		•05	. 205	1-10	•40	4.96
	29	54.52		14.20	2.95		.05	.006	. 85	.68	5.5A
	30	54.20		18.60	2.80		•02	.016	1.07	.48	5.03
	31	51.70		19.80	2.55		-06	.003	.69	.56	5.15
	32	51.70		18.30	3.00		•03	-004	.70	.48	5.05
	33	55.00		18.70	3.25		•06	.006	.93	.40	5.27
	34	53.60		18.80	3.14		•06		.89	,55	4.76
	35	53.30		18.50	3.12		• 0.8		.96	.50	4.98
	36	54.40		14.10	3.32		•06		.95	.64	5.08
	37	53.20		18.40	2.40		.07		.73	•53	4.72
	38	52.80		19.00	3.10		•03		.60	.37	4.50
	39	51.70		14.40	3.7m		.04		.#3	.58	5.05
67614	78	57.20	.10	18.80	3.00		.033	.004	.90	.50	5.25
	79	52.00	.10	14.70	3.97		.038	.004	.93	.46	5.00
	80	52.40	.42	19.00	3.02		.063	.004	.98	.44	5.20
	81	52.40	.42	19.00	3.02		.0+3	.004	.94	.44	

^{*} Balance, if not reported.

p. 3 of 4

Reference	Lot	NI	C0	CR	MO	Chemical Composition FE [®] C	n B	TI	AL	C8
67614	82	52.20	.10	18.80	3.00	•033	.014	.90	.50	5.25
	83	52.20	.10	10.80	3.0c	.033	.004	.90	.50	
	84	52.26	.10	10.80	3.00	.033	.004	.90	.50	
	85	52.00	.18	18.70	3.07	•03A	.004	.93	.46	5-04
	86	51.40	-10	18.70	3.00	•033	.0n3	.43	.47	5.20
	87	51.90	.10	14.50	2.94	A+0.	.015	1.00	.54	5.12
	88	51.60	.10	18.50	2.94	.048	.005	1.00	.54	5.12
	89	51.40	.10	1R+50	2.94	.048	.005	1.00	.54	4.12
	90	52.00	.54	10.00	3.00	.0+3	.005	1-00	.48	5.20
	91	52.40	.42	19.00	3.02	• 0 • 3	.004	.9#	.44	5-20
	92	52.40	•20	18.50	3.06	•043	.003	.94	.45	5.20
	93	58.40	.20	18.50	3.06	•0+3	.003	.94	.45	5-20
	94	52.40	.20	18.50	3.06	•043	.003	.94^	.45	5.20
	95	52.40	.20	18.50	3.06	.043	.003	.94	.45	5.20
	96	52.40	•50	18.50	3.06	.043	F00.	.94	.45	5.20
	97	52.40	. 20	18.50	3.06	•0•3	.003	.94	.45	5.20
	98	52.40	.20	18.50	3.06	•043	F00.	.94	.45	5.70
	99	52.40	.20	18.50	3.06	.043	.003	.44	.45	5.20
	100	51.80	-10	14.50	2.94	•04R	.015	1.00	.54	5-12
	101	52.40	.42	19.00	3.02	.043	.004	.98	,44	5.20
	102	52,40	.42	19.00	3,02	.0+3	.004	.98	.44	4.20
	103	52.40	••5	10.00	3.02	•1•3	.014	.98	.44	5.20
	104	52.40	.20	18.50	3.06	.043	.003	-94	.45	4.20
	105	51.40	•1º	18.70	3.00	.033	.003	.43	.47	5.70
	106	51.40	.10	18.70	3.000	•033	.013	.#3	.47	5.20
	107	52.00	.54	19.00	3.00	.0+3	.005	1.00	,48	4.20
	108	52.00	.54	10.00	٥٥.٤	.043	.015	1.00	.49	4.20
	109	52.40	. 44	15.00	3.02	.043	.014	40.	. 4 4	5.20
	110	52.40	.20	18.50	3.06	.043	.003	. ••	. +5	4.70
	111	52,40	.20	14.50	3.06	.043	.003	.94	.45	د. ۶۵
	112	52.40	.20	18.50	٨٥.٤	-043	.003	.94	.45	4.20
	113	5>.40	.42	19.00	3.02	.043	.004	.98	.44	\$,20

^{*} Balance, if not reported

p. 4 of 4

Reference	Lot					Chemical (ompositie)			
		NI	ĊΩ	CR	MO	FE *	c		TI	AL	CR
67657	9	52.07		19.33	3.03		.049	.014	.87	.40	
	10	52.34		19-15	3.01		•04	.004	.84	.57	
	11	52.11		19.31	2.98		.045	.004	.47	.41	
63673	1	54.00		18.97	2.91		•0•		.80	.44	

* Balance, if not reported,

6

REFERENCES

	Reference No.	Reference	Reference No.	Reference
)	A	Unpublished data under Air Force contract AF 33(657)15787	55049	Newcomer, R., "Effect of Various
	В	Morris, B., McDonnell Aircraft Corporation, Report No. 513-241.02 (December 6, 1963)		Annealing Cycles on Inconel 718 Microstructure", McDonnell Aircraft Corporation, St. Louis, Missouri, Report A470 (December 12, 1962), AF 33(657)-11215
	44973	Padian, W., "Inconel 718 Spot-Weld Design A.lowables", North American Aviation, Inc., Los Angeles, Cali- fornia TFD-61-924 (September 29, 1961)	55050	Coffey, F. J., "Evaluation of Brazing Alloys for the Fabrication of Inconel 718 Honeycomb Sandwich Panels", Mc- Donnell Aircraft Corporation, St. Louis, Missouri, Report A469 (July
	49184	"Evaluation of Welds in Inconel 718 & Rene 41 At Room Temperature, -100 F and -320 F", AiResearch Manufacturing Company, Los Angeles, California	55127	12, 1963), AF 33(657)-11215 Padian, W. D., Robelotto, R. P., "Resistance Welding of Inconel 718
	49649	"Inert Gas Tungsten Arc Welding of Inconel Alloy 718 with Rene 41 Filler Metal", International Nickel Com-		Nickel Base Alloy", Welding Journal Volume 43, No. 2, (February, 1964), pp 49-s - 56-s.
		pany, Huntington Alloy Products, Huntington, W. Va. (November 28, 1962)	55290	Christian, J. L., "Physical and Mechanical Properties of Pressure Vessel Material for Application in a Cryogenic Environment", General Dy-
	50031	"Lescalloy 718 VAC Arc - Property Data", Latrobe, Pennsylvania, Metal- lurgical Report (August, 1962)		namics Corporation, Astronautics, San Diego, California, Report No. GD/A 63-0818-2, 3rd Quarterly Pro- gress Report, USAF, (February 15,
	50206	Coffey, F. J., "Initial Evaluation of Brazeability of Inconel 718 Nickel Chromium Alloy", McDonnell	57147	1964), AF 33(657)-11289, Phase II Avery, C. H., Turley, R. V., "Chloride
)		Aircraft Corporation, St. Louis, Missouri, Report No. 9337 (January 10, 1963), AF 33(657)-7749	••••	Stress Corrosion Susceptibility of High Strength Stainless Steel Titani- um Alloy and Superalloy Sheet", Douglas Aircraft Company, Inc., Long
	51792	Raring, R. H., Freeman, J. W., Schultz. J. W., Voorhees, H. R., "Progress Report of the NASA Special Committee on Materials Research for	•	Beach, California, ML-TDR-64-44, Volume I (March, 1964), ASD, FAA & NASA, AF 33(657)-8543)
		Supersonic Transports", NASA & University of Michigan, Ann Arbor, Michigan, NASA TN D-1798 (May 1963)	57516	Evans, R. M., "The Welding and Brazing of Alloy 718", Battelle Memorial Institute, Columbus, Ohio, DMIC Report 204 (June 1, 1964)
	53427	"Huntington Alloys", The Internationat Nickel Company, Inc., Huntington, West Virginia (1963)	58137	Lage, A. P., "Pressure Vessel Fabrication", Menasco Manufacturing Company, Burbank, California, Paper
	53601	Schmidt, E. H., "Correlation of Experimental Data For Fabrication of Inconel 718", Rocketdyne, A Division		presented at SAZ Aerospace Manufacturing Forum, Los Angeles, California (October 5, 1964)
	54024	of North American Aviation, Inc., Canoga Park, California, Report No. RD 62-10 (July 6, 1962)	58334	Beeson, P. A., Lobb, A. E., "Weld- ing Characteristics", Boeing-North American, Los Angeles, California, ML TDR 64-237 (July, 1964), AF
	54026	Coffey, F. J., "Shear Strength of Brazed Inconel 718", McDonnell Air- craft Corporation, St. Louis, Missouri, Report No. A252, (January	58539	Mat. Lab., AF 33(657)-11461 Inouye, F. T., "Fatigue Properties
	54895	3, 1963), AF 3-(657)-11215 Fabre, B., "Certification of Electron		of Inconel 718 and Tungsten Inert Gas Weldments", Aerojet-General Corporation, Sacramento, California, Report No. DVR 64-305, (June 2,
7		Beam Weld Process for Inconel 718", Airite Products, Division of the Electrada Corporation, Los Angeles,	50444	1964), Progress Report, AD 448 564
<i>J</i>		California, Report No. W6426 (December 2, 1963)	59644	Lemaes, R., "Hot N ₂ O ₄ Inconel 718 Compatibility Study", Aerojet-General Corporation, Sacramento, California, Report No. 64-365, (July 15, 1964), Final Report

Reference No.	Reference	Reference No.	V-8 Reference	
61323	Cullen, T. M., Freeman, J. W., "The Mechanical Properties of Incomel 718 Sheet Alloy at 800 F, 1000 F, and 1200 F", University of Michigan, Ann Arbor, Michigan, CR-268, (July, 1965), Contractor Report, NASA	62548	Olofson, C. T., Gurklis, J. A., Boulger, F. W., 'Machining and Grinding of Nickel- and Cobalt-Base Alloys'', Battelle Memorial Institute, Columbus, Ohio, Technical Memoran- dum, NASA-TM-X-53446, U. S. Arry	•
61368	Wagner, H. J., Hall, A. M., "Physical Metallurgy of Alloy 718", Battelle Memorial Institute, Columbus, Ohio, DMIC Report 217, (June 1, 1965), DOD, AF 33(615)-1121	62549	Missile Command, DA-01-021-AMC- 11651 (Z) Keith, R. E., Monroe, R. E., Martin, D. C., "Adhesive Bonding of Nickel and Nickel-Base Alloys", Battelle Memorial Institute, Columbus, Ohio,	
61646	Lambase, J. M., "Inco 718 Parent Metal and Meld Joint Design Allow- ables", North American Aviation, Inc., Los Angeles, California, NAA		Technical Memorandum, NASA-TM-S- 53428, U. S. Army Missile Command, DA-01-021-AMC-11651 (Z)	
	Report No: TFD 60-915, (December 2, 1960)	62551	Strohecker, D. E., Byrer, T. G., Gerds, A. F., Gehrke, J. H., Boulger F. W., "Deformation Processing of	,
61919	West, J., "Incon:1 718 Evaluation for M-1 Turbine Manifold", Aerojet- General Corporation, Azusa, Cali- fornia, Report No. 63-220 (March 14, 1963), Progress Report		Nickel-Base and Cobalt-Base Alloys", Battelle Memorial Institute, Colum- bus, Ohio, Technical Hemorandum, U. S. Army Missile Command, DA-01- 021-AMC-11651 (Z)	
61947	Morris, G., "Evaluation of Incomel 718, Age Hardenable Nickel-Chromium Alloy", McDonnell Aircraft Corpora- tion, St. Louis, Missouri, Report No. 513-241.02 (December 6, 1963), Final Report	62553	Kura, J. G., Barth, V. D., Safranek, W. H., Hall, E. H., McCurdy, H., McIntire, H. O., "The Making of Nickel and Nickel-Alloy Shapes by Casting, Powder Metallurgy, Electroforming, Chemical Vapor Deposition, and Metal Spraying", Battelle Memori-	-
61996	Kiefer, T. F., Keys, R. D., Schwartzberg, F. R., "Determination of Low-Temperature Fatigue Proper- ties of Structural Metal Alloys", Martin Company, Denver, Colorado, CR-65-70 (October, 1965), Final Report, NASA NAS8-11300	62807	al Institute, Columbus, Ohio, Technical Memorandum, U. S. Army Missile Command, DA-01-021-AMC-11651 (Z) Slunder, C. J., Hall, A. M., "Thermal and Mechanical Treatments for Nickel and Selected Nickel-Base	
62082	Eash, D. T., "A Cryostat for Izod Impact Testing", University of Cali- fornia, Los Alamos, New Mexico, Paper No. G-1, for AEC, presented at Cryogenic Engineering Conference		Alloys and Their Effect on Mechanical Properties", Battelle Memorial Institute, Columbus, Ohio, Technical Memorandum, U. S. Army Missile Command, DA-01-021-AMC-11651 (2)	
	held at Rice University, Houston, Texas (August 25, 1965)	63618	Heyer, B. A., Marlatt, J. W., Avery, H. S., "Manufacturing Process Development for Superalloy Cast	
62422	McCulloch, A. J., Melcon, M. A., Young, L., Bakow, L., "Fatigue Be- havior of Sheet Materials for the Supersonic Transport", Lockheed- California Company, Burbank, Cali- fornia, AFML-TR-64-399, Volume II,		Parts", American Brake Shoe Company, Mahwah, New Jersey, Interim Engi- neering Progress Report No. 1R-8- 297 (2) (December 31, 1965), AF Mat. Lab., AF 33(615)-2797	
	(January 1965), Final Technical Report, FAA, AF 33(657)-11460	63646	Redlinger, R. W., Rishavy, T. E., "Process Development for Precision Radial Forging Integral Turbine	
62547	Vagi, J. J., Monroe, R. E., Evans, R. M., Martin, D. C., "Joining of Nickel and Nickel-Base Alloys", Battelle Memorial Institute, Columbus, Ohio, Technical Hemorandum,		Mheels", TRM Inc., Cleveland, Ohio, Interim Technical Progress Report, No. 2 (February 28, 1966), AF 33 (615)-2171	
	U. S. Army Missile Command, DA-01-021-AMC-11651 (2)	63649	Betts, R. D., Fish, R. E., Shira, C. S., "Weld Efficiencies of Inconel 718 Gas Tungsten Arc Welds in the -423 F to 1500 F Temperature Range", North American Aviation, Inc. Canoga Park, California, Final Re- port MPR 5-175-363 (July 27, 1965)	· (

Reference No.	Reference	Reference No.	Reference V-9
63673	Malin, C., Green, E. F., "Low Temperature Properties of Cast Inconel 718", North American Aviation, Inc., Los Angeles, Cali- fornia, Progress Report No. 1 (June 2, 1964) Lynn, J. N., "Summary of Properties	65927	Blatherwick, A. A., Cers, A., "Fatigue, Creep and Stress-Rupture Properties of Nicrotung, Super -286, and Inconel 718", University of Minnesota, Minnespolis, Minnesota, Technical Report AFML-TR-65-447 (June 1966), AF 33(657)-7453 and AF 33(615)-1122
63743	- J-2 Injector Forging S/N 2219 by Myman-Gordon from INCO 718 Alloy", North American/Rocketdyne, Canoga Park, California, Laboratory Report No. TAMM 2114-61 (July 24, 1962) Malin. C. O., "Low Temperature Pro-	66076	Dumn, Jr., E. J., "Development of Manufacturing Methods for Form Rolling Close Tolerance Shapes of Superalloys", Engelhard Industries, Inc., Attleboro, Massachusetts, Interim Engineering Progress Report No. 1, IR9-104-(I) (April 30, 1966)
	perties of a Large Incomel 718 Forg- ing for Two Heat Treat Conditions", North American/Rocketdyne, Canoga Park, California, Research Report No. MPR 5-175-08 (January 7, 1965)	66396	Hoegfeldt, J. M., "Manufacturing Technology for the Extrusion of Superalloy Structural Shapes", TRW Inc., Cleveland, Ohio, Interim Engineering Progress Report IR
64273	"Handbook of Huntington Alloys", The International Nickel Company, Inc., Huntington, West Virginia (1966)	66882	8-301 (V) (October 1, 1966), AF 33(615)-2873 Sessler, J., Weiss, V., "Materials
64409	Lynn, J. N., Green, E. F., "Property Evaluation of Inconel 718 Foil", North American Aviation, Inc., Canoga Park, California, Research Report MPR 5-175-221 (May 13, 1965)		Data Handbook - Inconel Alloy 718", Syracuse University Research Insti- tute, Syracuse, New York Handbook (September 1966) NASA, NAS8-11345 Barker, J. F., "A Superalloy for
64660	Jackson, C. M., Hall, A. M., "Surface Treatments for Nickel and Nickel-Base Alloys", NASA, George	67431	Medium Temperatures", Metal Progress, Vol. 81, No. 5, (May 1962), pp. 72-76
	C. Marshall Space Flight Center, Huntsville, Alabama, Technical Memorandum NASA TM X-53448 (April 20, 1966) Redstone Ars DA-01-021- AMC-11651 (Z)	ASTM-ASME Jo temperatures	the unpublished data collected by the int Committee, on the effect of on the properties of metals, is referenced by the following DMIC mbers:
64723	Cawthorne, E. W., "Trip to Ai- Research Manufacturing Company, Los Angeles, California, Report on Official Travel to: R. Runck, Battelle Memorial Institute, Colum- bus, Ohio (February 4, 1965)		67595 67596 67602 67609 67613 67614
64912	Valdez, P. J., "Establishment of an Optimum Heat Treatment for Use in 718 Alloy Bellows and Gimbal Structures", Solar, a Division of International Harvester Company, San Diego, California, Research Report No. RDR 1460 (March 1966), NASA, NAS 8-11282	70525	Janser, R. R., "Summary of Materials Technology of M-1 Engine", Aerojet-General Corporation, Sacramento, California, Technology Report, NASA CR-S4961 (July 22, 1966), NASA, NAS3-2555
65177	Christian, J. L., "Mechanical Pro- perties of Several Nickel Base Alloys at Room and Cryogenic Tem- peratures", General Dynamics/Convair, San Diego, California, Paper No. G-4 presented at the 1966 Cryogenic Engineering Conference, Boulder, Colorado (June 13-15, 1966)		
65780	Glackin, J. J., Gowen, Jr., E. F., "Evaluation of Fasteners and Fastener Materials for Space Vehicles", Standard Pressed Steel Company, Jenkintown, Pennsylvania, Final Re- port (December 31, 1965) NASA, NAS8-11125, p. iv		

List of Symbols

Symbo	Description	
TUS (Ftu)	Tensile ultimate strength	
TYS (F _{ty})	Tensile yield strength (0.2% offe	met)
CTS (F _{cy})	Compressive yield strength	
SUS (F _{pu})	Shear ultimate strength	
BUS (P _{bru})	Bearing ultimate strength	
BYS (P _{bry})	Bearing yield strength	
•	Elongation	
Z	Modulus of elasticity in tension	
E _c	Modulus of elasticity in compress	ion
C	Modulus of electicity in shear	
μ	Poisson's ratio	
•	Density	
С	Specific heat	
K	Thermal conductivity	
æ	Coefficient of thermal expansion	
K t	Stress-concentration factor	
K _{Ic}	Critical stress-intensity factor	
e/D	Edge/distance ratio (hearing data	1)
A	Ratio of alternating stress to m (fatigue)	MM str
R	Ratio of maximum stress to minim (fatigue)	m stre

Symbols shown in parentheses indicate minimum values used in design.

Data Basis for "Design" Properties

Tables of "design" mechanical and physical properties in this document indicate a coded basis for the values presented therein. This code employs the letters A, B, and S, which are defined below, together with explanatory footnotes as required. The data basis indicated by this code is applicable to the following properties: F_{tu} , F_{ty} , F_{cy} , F_{su} , F_{bru} , F_{bry} , and e. It is not applicable to elastic or physical properties (E, E_c, G, u, ω , C, K, and α), which are average properties, nor is a data basis applicable to individual test data, averages, or plots of these data.

The use of a data basis, together with the designation of data as "design properties", implies that the data have been reduced in some manner to minimum values, defined as follows:

A basis. The A mechanical-property value is the value above which at least 99 percent of the population of values is expected to fall, with a confidence of 95 percent.

basis. The B mechanical-property value is the value above which at least 90 percent of the population of values is expected to fall, with a confidence of 95 percent.

S basis. The S mechanical-property value is the minimum value specified by the Federal Specification, Military Specification, or SAE Aerospace Material Specification listed for the material. For certain products heat-treated by the user, the S value may reflect a specified quality-control requirement.

Usually, only F_{tu} and F_{ty} in a specified testing direction are determined in such manner that they can be termed A or B values, in accordance with the definitions given above. Likewise, usually only F_{tu} , F_{ty} , and e are specified in the governing specifications and can be termed S values. However, ratioing procedures have been established by means of which other property values for F_{tu} and F_{ty} , and the same basis is used.

A more detailed description of data bases and the computational procedures used to determine design values is presented in AFML-TR-66-386 "MIL-HDBK-5 Guidelines for the Presentation of Data" (February 1967).

Constant-Life Diagrams (fatigue)

Fatigue-test data in this document are presented either in stress-lifetime (S-N) tables or curves or in constant-life diagrams, depending on the type of data that are available. Since the latter are not familiar to many readers, a brief description of their construction and use may be helpful.

Each constant-life diagram represents a composite, or "cross-plotting", of related S-N curves for several stress ratios. Initially,

stress-lifetime data are plotted as stress (usually maximum stress) versus lifetime (number of cycles, logarithmic scale). Individual plots are usually made for cach set of test conditions (stress ratio, notch acuity, testing temperature) and product (product form, heat treatment, etc.). In addition, tensile data (at temperatures below that at which cree, is significant) and creep-rupture data (at elevated temperatures) are employed as "fatigue" data for the limiting case where alternating stress is zero (A = O, R = 1).

Within each plot a smooth curve is drawn to represent the mean of the plotted data. Then, from each related curve, differing only in stress ratio, stresses are selected corresponding to one or more arbitrary lifetimes. By convention, these lifetimes are in powers of 10 cycles (that is, 10³, 10⁴, etc.)^b; within the temperature range at which creep occurs, the corresponding duration in hours is usually indicated parenthetically (duration = number of cycles/frequency).

On a constant-life diagram, these points are replotted, and smooth curves are drawn through the plotted points representing each lifetime.

The format used for these diagrams is that approved for use in Military Handbook 5. It represents a modified Goodman diagram, which has been rotated 45 degrees to permit horizontal and vertical scaling of maximum and minimum stress, respectively. Diagonal scaling is employed for alternating and mean stress, and different stress ratios are indicated by a series of straight lines radiating from the origin.

This diagram may be used in many ways. For example, to determine the maximum stress corresponding to a specified lifetime and stress ratio, one would find the intersection of the lifetime curve and the stress-ratio radian, then read the coordinates of this intercept on the maximum-stress scale on the left margin of the plot.

A more detailed description of constantlife diagrams may be found in AFML-TR-66-386, "MIL-HDBK-5 Guidelines for the Presentation of Data" (February 1967).

a The term "lifetime" may be applied either to rupture, the attainment of 0.2 percent plastic strain, or other life criteria as desired.

b Within the lower temperature range, tensile data are presumed to be time-independent and a single value (TUS or TYS) is used for all lifetimes.

Creep-rupture data are first converted to equivalent number of cycles at the frequency employed in conducting the fatigue tests (number of cycles, n = time/frequency).

Security Classification			
	NTROL DATA - RED		
(Security classification of title, body of abatract and indexis 1. ORIGINATING ACTIVITY (Corporate author)	Andrew Company of the Control of the		and the same of th
	7 "		COMPA CUA HESCATION SECLE
Battelle Memorial Institute		Unclase	IIIed
Defense Metals Information Center	2.5	GROUP	
505 King Avenue, Columbus, Ohio 43201			
3. REPORT TITLE			
Nickel - Base Alloys / Alloy 718			
4. DESCRIPTIVE NC (18 (Type of report and inclusive dates)		· · · · · · · · · · · · · · · · · · ·	
DMIC Handbool			
5. AUTHOR(5) (Last n is. first name, initial)			
Wagner, H.J., Burns, R.S., Carroll, T.	E., and Sumon, K.	•	
6. REPORT DATE	74- TOTAL NO. OF PAGE	76.	NO OF REFE
February 1, 1968	112		62
SJ. CONTRACT OR GRANT NO.	SH. ORIGINATOR'S REPOR	THUMBER	i)
F33615-68-C-1325	Notie		
& PROJECT NO.			
c.	SE OTHER REPORT HOS	(Any other	numbers that may be essigned
	mia reporti		
<i>c</i> .			
18 AVAILABILITY/LIMITATION NOTICES Copies of t	his . ort may be	obtaine	G. while the supply
lasts, from DMIC at ne cost by U.S. Go	vernment agencies.	contra	ctors. subcontrac-
tors, and their suppliers. Qualified Defense Documentation Conter (DDC). Al	requestors may ala	o obtai	n copies from the
11. SUPPLEMENTARY NOTES	12 SPONSORING MILITAR	ACTIVITY	
	U.S. Air Force	Materia	ls Laboratory
	Research and To		
	Į.	-	orce Base, Ohio
13. ABSTRACT			
This handbook consists of fi	ve sections: (1)	Metallu	rgy (2) Manufac-
turing Processes (3) Application Factor			
pendix. The first three sections are			
pendix, the first chice sections are			

section presents design data and data on tensile-, fatigue-, imprupture-, and thermal-fatigue-properties for various mill forms.

Unclassified

Security Classification

		LIN	KA	LINA	P	LIN	K C
KEY WORK	78	ROLE	#1	-	W T	HOLE	WT
Nickel Alloys (Alloy 718) Mechanical Properties Tensile properties Fatigue	Metallurgy (continued) Machining Heat Treatment						
Creep Compressive properties Toughness Thermal stresses	Cleaning Coatings Joining Bonding Thermal Joining						
Metallurgy Metallography Melting	Brazing Welding Finishes & Finishing						
Casting Corrosion Manufacturing Methods	Specifications Chemical Analysis						

INSTRUCTIONS

- 1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantes, Department of Defense activity or other organization (composate author) issuing the report.
- 2s. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate uscurity regulations.
- 25. GROUP: Automatic Sowngrading is specified in DoD Directive 5200, 10 and Armed Forces Industrial Manual. Enter the group number. Also, alway applicable, show that optional markings have been used for Croup 3 and Group 4 as authorized.
- 3. REPORT TITLE: Enter the complete report title in all capital lotters. Titles in all cases should be unclassified. If a meaningful title innot be selected without classification, show title climmediately follow the title.
- 4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summery, annual, or final. Give the if clusive dates when a special reporting period is covered.
- 5. AUTHOR(S): Enter the name(a) of author(a) as shown on or in the report. Enter last name, first name, middle initial, if military, show rank and branch of service. The name of the principal whor is an absolute minimum requirement.
- 6. REPORT DATE: Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication.
- 7s. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.
- 76. NUMBER OF REFERENCES. Enter the total number of references cited in the report.
- Ba. CONTRACT OR CT LIT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.
- 86, Rr, & 8d. PROJECT NUMBER: Enter the appropriate military de, artment identification, such as project number, subproject number, system numbers, task number, etc.
- 9a. ORIGINATOR'S REPORT NUMBER(5): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.
- 96 OTHER REPORT NUMBER(3): If the report has been assigned any 5th is report numbers (either b) the originator or by the sponsoc), also enter this number(s).
- 10. AVAILABILITY LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other then those

imposed by security classification, using standard statements such as:

- "Qualified requesters may obtain copies of this report from DDC."
- (2) "Foreign announcement and dissemination of this report by DDC is not authorized."
- (3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through
- (4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through
- (5) "All distribution of this report is controlled. Qualified DDC users shall request through

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known

- 11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.
- 12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.
- 13. ABSTRACT: Enter an abstract giving a brief and factual numbers of the document indicative of the report, even though it may also appear elanwhere in the body of the technical report. If additional apace is required a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military accuracy classification of the information in the paragraph, represented as (TS), (S), (C), or (U)

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14 FEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no accurity classification is required. Identifiers, such as equipment model designation, trade name, multiary project code name, geographic location, may be could as key words but will be followed by an induction of technical content. The assignment of links, rules, and weights in operated.