

 $2^1 = 2 \mod 15$ $2^2 = 4 \mod 15$ $2^3 = 8 \mod 15$

 $2^4 = 1 \mod 15$ $2^4 = 1 \mod 15$

After which the pattern repeats.

Formally, we say: the **order** of 2 mod 15 is 4. Or, if we defined a function:

$$f(k) = a^k \mod N$$

We would say that the **period** of f is r, since f(x+r) = f(x).

Example of finding factors from a period	MILIOUENE
In our case, we have a=2, N=15 and r=4. Happily r=4 is even. We can rearrange: $a^r=1\mod N$ $a^r-1=0\mod N$ $(a^{r/2}+1)(a^{r/2}-1)=0\mod N$	
In our case, $a^{r/2}-1=2^{4/2}-1=3$ $a^{r/2}+1=2^{4/2}+1=5$	
and $3\times 5=15$	

PHYC90045 Introduction to Quantum Computing	
Divisors of N	
In our case 3 and 5 divide N=15 exactly, but we're not guaranteed that always, only that:	
$(a^{r/2} + 1)(a^{r/2} - 1) = 0 \mod N$	
ie. that	
$(a^{r/2} + 1)(a^{r/2} - 1) = kN$	
As long as neither factor is a multiple of N, then both will have non-trivial factors with N. To find these factors, we find the greatest common divisors (for which the Euclidean algorithm is efficient):	
$gcd(a^{r/2}+1,N)$	
$gcd(a^{r/2}-1,N)$	
These give a non-trivial factor of N.	

If ${\bf r}$ is even or if the factors found are trivial, we repeat the algorithm with a different choice of a.

Example for a=2, N=15

In our example:

We might randomly measure m=4

$$\frac{k}{r} = \frac{m}{2^n} \quad \text{and in this case:} \quad \frac{m}{2^n} = \frac{4}{16}$$

$$= \frac{1}{4}$$

Since this is equal to k/r, We have correctly found r=4

Note: This step might only reveal a factor of r, and so might have to be repeated.

PHYC90045 Introduction to Quantum Computin

Continued Fractions

The result of taking a Fourier transform is a spectrum peaked around (for integer, k):

$$k\frac{2^n}{r}$$

Unless r divides 2^{n} exactly, we will only get an approximation to $\ k2^{n}/r$ when measured.

Most of the time 2^n and r will be relatively prime. The problem then is find good approximations to the measured value $m/2^n = k/r$. The "correct" approximation yields the period, r, as the denominator.

A good method for making *rational approximations* is to use the **continued fractions** method

$$a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{\dots \frac{1}{a_n}}}}$$

'C90045 Introduction to Quantum Computing

Continued Fraction of Pi

As an example, let's try to make a rational approximation to pi. Our first approximation is $% \left(1\right) =\left(1\right) \left(1\right) \left($

$$\pi \approx 3$$
 $(a_0 = 3)$

The remaining decimal part is 0.14159265... = 1/7.0625... This gives a second approximation:

$$\pi \approx 3 + \frac{1}{7} \qquad (a_1 = 7)$$

The remaining decimal part 0.0625 = 1/15.9966... This gives a third approximation:

$$\pi \approx 3 + \frac{1}{7 + \frac{1}{15}}$$
 $(a_2 = 15)$

And so on. This method can be used to find good rational approximations to $\mbox{v/2}^n$ and find r.

Example: Factoring the number $a^{r/2}-1=2^{4/2}-1=3$ $a^{r/2}+1=2^{4/2}+1=5$ Not really necessary here, but in general you'd have to evaluate: $\gcd(3,15)=3$ $\gcd(5,15)=5$

 $3 \times 5 = 15$

And so we've found two non-trivial factors of 15:

