

Национальный исследовательский университет ИТМО (Университет ИТМО)

Факультет систем управления и робототехники

Дисциплина: Теория автоматического управления **Отчет по лабораторной работе №2.** <u>Вариант 6</u>

> Студенты: Евстигнеев Д.М. Яшник А.И. Группа: R34423 Преподаватель: Николаев Н.А.

Цель работы: исследование характеристик специализированных устройств, построенных на операционных усилителях.

Данные варианта:

6	D2 D	D7		D10 D	1N914	1N5378B		4	AD795
6	6	- 6	-1	2	5	2	6,5	2	4,5

При моделировании схем используем источник питания в соответствии с рекомендациями, приводимыми в технической документации используемого в схеме операционного усилителя. Рекомендуемое значение напряжение питания 12...18 В

Выполнение работы:

1. Исследование схем ограничения выходного напряжения на ОУ

1.1. Снимем зависимость $U_{\rm Bыx} = f(U_{\rm Bx})$ при этом значение входного напряжения изменим в диапазоне от $-1,1U_{\rm пит}$ до $1,1U_{\rm пит}$. Подаем на вход ограничителя от внешнего генератора синусоидальный сигнал частотой до 1 кГц и амплитудой, превышающей напряжение ограничения исследуемой схемы. Зарисуем осциллограмму $U_{\rm Bыx}$.

Рисунок 1 - Схема ограничения напряжения с одним диодом

Рисунок 2 – Зависимость сигнала выхода от входа

Рисунок 3 - График входного и выходного напряжения

1.2. В схеме, собранной на предыдущем этапе, изменим вид цепи ограничения (цепь ОС), выберем цепь ограничения в соответствии со схемой 2. И повторите эксперименты в соответствии с п.1.1. Сравним результат моделирования по п. 1.1 и п.1.2, сделаем выводы относительно влияния нелинейных элементов в цепи обратной связи.

Рисунок 4 - Схема ограничения напряжения с стабилитроном и диодом

Рисунок 5 - Зависимость выходного сигнала от входного

Рисунок 6 - График входного и выходного напряжения

Вывод: схема с одним диодом является односторонним ограничителем. Со стабилитроном – схема, ограничивающая входное напряжение с обеих сторон.

2. Соберем схему **нуль-компаратора** на ОУ. Модель ОУ в соответствии с номером варианта 6. Установим значение сопротивления $R_1 = 10$ кОм. Подадим на вход схемы синусоидальный сигнал амплитудой 1 мВ, частотой 100...1000 Гц, снимем осциллограммы входного и выходного напряжения. Изменим амплитуду входного напряжения на 1 В, повторим эксперимент.

Рисунок 7 - Схема нуль-компаратора

Рисунок 8 - Графики входного и выходного напряжения (син. сигнал с амплитудой I мВ и частотой 500 Гц)

Рисунок 9 - Графики входного и выходного напряжения (син. сигнал с амплитудой 1 В и частотой 500 Гц)

3. Исследование одновходового компаратора

3.1. Соберем схему одновходового компаратора. Тип используемого операционного усилителя в соответствии с 6 номером варианта.

Зададим значение сопротивления резистора $R_1=100~\mathrm{Om}$. Рассчитайте значения сопротивлений резисторов таким образом, чтобы было обеспечено требуемое значение порогового напряжения, в соответствии с соотношениями

$$U_{\text{nop}} = -U_{\text{on}} \frac{R_1}{R_2}$$

$$R_3 = \frac{R_1 R_2}{R_1 + R_2}$$

В качестве источника опорного напряжения используйте источник напряжения $U_{\rm on}=10~{\rm B}.$

Снимите зависимость $U_{\text{вых}} = f(U_{\text{вх}})$.

$$U_{\rm on} = -6 \text{ B}$$

$$U_{\text{nop}} = 6 \text{ B}$$

$$R_1 = 100 \, \mathrm{Om}$$
, тогда

$$U_{\rm nop} = -U_{\rm on} \frac{R_1}{R_2}$$

$$R_2 = 40 \; \text{Om}$$

$$R_3 = \frac{R_1 R_2}{R_1 + R_2} = 28.5 \text{ Om}$$

Рисунок 10 - Схема одновходового компаратора

Рисунок 11 - Зависимость выходного сигнала от входного

4. Исследование двухвходового компаратора

4.1. Соберем схему двухвходового компаратора без гистерезиса на ОУ Тип используемого ОУ 6 варианта, величина опорного напряжения в соответствии с вариантом 6.

Рисунок 12 - Схема двухвходового компаратора без гистерезиса

Рисунок 13 - Зависимость выходного сигнала от входного

4.2. Соберем схему двухвходового компаратора с гистерезисом на операционном усилителе 0У, рисунок – 6Х.

Рассчитайте значения сопротивлений таким образом, чтобы выполнялись требования к форме гистерезиса

$$U_{\rm BTO} = U_{\rm OII} \frac{R_1}{R_1 + R_2} + \frac{R_2}{R_1 + R_2} (U_{\rm Hac+})$$

$$U_{\rm HTO} = U_{\rm O\Pi} \frac{R_1}{R_1 + R_2} - \frac{R_2}{R_1 + R_2} (U_{\rm Hac-})$$

$$U_{\Gamma} = U_{\text{BTO}} - U_{\text{HTO}} = \frac{R_2}{R_1 + R_2} (U_{\text{Hac+}} + U_{\text{Hac-}})$$

Если $U_{\text{нас+}} = |U_{\text{нас-}}|$, то

$$U_{\Gamma} = 2\frac{R_2}{R_1 + R_2} U_{\text{Hac+}}$$

По условию

$$R_2 = 10 \ кОм$$

$$U_{\rm on} = -1 \, \mathrm{B}$$

$$U_{\Gamma} = 2 \text{ B}$$

Значение резистора R_1 находится из соотношения $U_{\Gamma} = 2 \frac{R_2}{R_1 + R_2} U_{\text{нас+}}$

$$R_1 = 900 \, \text{Om}$$

$$R_3 = \frac{R_1 R_2}{R_1 + R_2} = 820 \text{ Om}$$

Рисунок 14 - Схема двухвходового компаратора с гистерезиса

Рисунок 15 - Зависимость сигнала выхода от входа

Рисунок 16 - Зависимость выходного сигнала от входного синусоидального сигнала с амплитудой $10\,B$ и частотой $100\,\Gamma$ ц

Рисунок 17 - Входной и выходной сигнал двухвходового компаратора с гистерезисом

4.3. Соберем схему триггера Шмитта с однополярным выходом

$$U_{\rm BTO} = 5 \, \rm B$$

$$U_{\rm HTO} = 2 \text{ B}$$

Напряжение питания операционного усилителя $U_\Pi=15~\mathrm{B},$ опорное напряжение $U_{0\Pi}=U_\Pi,$ напряжение насыщения ОУ $U_{\mathrm{hac}}=U_\Pi-1=14~\mathrm{B}.$

Зададим ток через делитель R_1 , R_2 , R_3 равным $I_{\text{дел}}=1$ мА.

Выберем стабилитрон 1N5373B с параметрами $U_{\rm ct} =$ 4,7 В при $I_{\rm ct} =$ 2 мА.

Параметры выбранного транзистора — $U_{\mathrm{K}\Im_{\mathrm{Hac}}}=0.1~\mathrm{B},~U_{\mathrm{E}\Im}=0.7~\mathrm{B},~h_{21_{min}}=50, I_{\mathrm{H}}=1~\mathrm{mA}.$

Так как
$$I_{\text{дел}}=1$$
 мА, то $R_2+R_3=\frac{U_{\text{BTO}}}{I_{\text{лел}}}=5$ кОм.

$$R_1 = \frac{(U_{\text{O\Pi}} - U_{\text{BTO}})}{I_{\text{Лел}}} = 10 \text{ кОм.}$$

$$R_2$$
 находим из $U_{\mathrm{HTO}} = U_{\mathrm{O\Pi}} \frac{R_2}{R_1 + R_2} + U_{\mathrm{K3}_{\mathrm{Hac}}} \to R_2 = \frac{(U_{\mathrm{HTO}} - U_{\mathrm{K3}_{\mathrm{Hac}}})R_1}{U_{\mathrm{O\Pi}} - U_{\mathrm{HTO}} + U_{\mathrm{K3}_{\mathrm{Hac}}}} = 1450 \; \mathrm{Om}.$

$$R_3 = 3550 \,\mathrm{Om}.$$

$$R_B = \frac{U_{\text{Hac}} - U_{\text{БЭ}}}{I_{\text{Дел}} / h_{21_{min}}} = 665 \text{ кОм.}$$

$$R_4 = \frac{U_{
m HAC} - U_{
m CT}}{I_{
m CT} + I_{
m H}} = 3.1 \
m kOm.$$

Рисунок 18 - Схема триггера Шмитта с однополярным выходом

Рисунок 19 - График зависимости выходного напряжения от входного

4.4. Компаратор с окном

Пусть $U_{\rm BTO}=6$ В, $U_{\rm HTO}=5$ В, напряжение питания $U_{\Pi}=12$ В, $U_{\rm O\Pi}=U_{\Pi}$, $R_{\rm H}=2$ кОм [Фолкенбери].

Условия работы компаратора

 $U_{\mathrm{BX}} > U_{\mathrm{BTO}},\,U_{\mathrm{BX}} < U_{\mathrm{HTO}}$ – высокий уровень выходного сигнала

 $U_{
m BTO} > U_{
m BX} > U_{
m HTO}$ – низкий уровень выходного сигнала

$$U_{
m BTO} = U_{
m O\Pi} \left[{(R_2 + R_3) \over (R_1 + R_2 + R_3)}
ight]$$
 $U_{
m HTO} = U_{
m O\Pi} \left[{R_3 \over (R_1 + R_2 + R_3)}
ight]$
 $U_{
m BTO} = 6 \
m B$
 $U_{
m HTO} = 5 \
m B$
 $U_{
m II} = 12 \
m B$
 $U_{
m O\Pi} = U_{
m II}$
 $R_{
m H} = 2 \
m kOm$

Зададим ток делителя $I_{\rm дел}=5~{\rm MA}$

$$R_3 = \frac{U_{\mathrm{HTO}}}{I_{\mathrm{лел}}} = 900 \ \mathrm{Om}$$

Сопротивления R_1 и R_2 найдем из следующих соотношений:

$$U_{
m BTO} = U_{
m O\Pi} \left[{(R_2 + R_3) / (R_1 + R_2 + R_3)}
ight]$$
 $U_{
m HTO} = U_{
m O\Pi} \left[{R_3 / (R_1 + R_2 + R_3)}
ight]$
 $R_1 = 1700 \
m Om, \qquad R_2 = 400 \
m Om$

Рисунок 20 - Схема компаратора с окном

Рисунок 21 - График зависимости выходного напряжения от входного

Вывод:

В ходе выполнения данной лабораторной работы были построены схемы ограничителей и компараторов. Исследованы характеристики специализированных устройств, построенных на операционных усилителях.