Homework 5 CS 323 - Numerical Analysis

1. Given the following linear system:

$$A = \begin{pmatrix} 3.02 & -1.05 & 2.53 \\ 4.33 & 0.56 & -1.78 \\ -0.83 & -0.54 & 1.47 \end{pmatrix}, \text{ and } \bar{b} = \begin{pmatrix} -1.61 \\ 7.23 \\ -3.38 \end{pmatrix}$$

- (a) Compute the condition number of the matrix
- (b) Find the solution to the system using Gaussian Elimination with pivoting and using six-digit arithmetic.
- (c) Use Gaussian Elimination with pivoting and using three digit arithmetic.
- (d) Comment about the difference between both solutions
- 2. As we did in class, some curve fitting problems can be converted to linear least square approximation problems. One example is the fitting function $y = ax^b$.

For this exercise suppose that you are given a set of points (x_i, y_i) $1 \le i \le n$ and you want to find the values of a and b for the following fitting function

$$y = \frac{1}{(ax+b)^3}$$

Use the least squares method to find the formulas to compute a and b.

3. Given the following data, do a quadratic least squares polynomial fit using $P_2(x) = a_0 + a_1 x + a_2 x^2$.

x_i	y_i	x_i	y_i	x_i	y_i
-1.0	7.904	-0.3	0.335	0.4	-0.711
-0.9	7.452	-0.2	-0.271	0.5	0.224
-0.8	5.827	-0.1	-0.963	0.6	0.689
-0.7	4.400	0	-0.847	0.7	0.861
-0.6	2.908	0.1	-1.278	0.8	1.358
-0.5	2.144	0.2	-1.335	0.9	2.613
-0.4	0.581	0.3	-0.656	1.0	4.599

4. For $n, m \ge 0$ and $n \ne m$, show

$$\int_{-1}^{1} \frac{T_n(x)T_m(x)}{\sqrt{1-x^2}} dx = 0$$

This is called the $orthogonality\ relation$ for Chebyshev polynomials.

 $\mathit{Hint:}\ \mathrm{Use}\ T_n(x) = \cos(n\cos^{-1}(x))\ \mathrm{and}\ x = \cos\theta.$