

LIBRARY UNIVERSITY OF CALIFORNIA DAVIS

State of California THE RESOURCES AGENCY

Department of Water Resources

BULLETIN No. 130-65

HYDROLOGIC DATA: 1965

Volume V: SOUTHERN CALIFORNIA

Appendix E: GROUND WATER QUALITY

DECEMBER 19 MIVERSITY OF CALIFORNIA DAVIS

MAY 8 1967

GOV'T. DOCS. - LIBRARY

HUGO FISHER

Administrator
The Resources Agency

EDMUND G. BROWN Governor State of California WILLIAM E. WARNE

Director

Department of Water Resources

LIBRARY UNIVERSITY OF CALIFORNIA DAVIS

State of California THE RESOURCES AGENCY

Department of Water Resources

BULLETIN No. 130-65

HYDROLOGIC DATA: 1965

Volume V: SOUTHERN CALIFORNIA Appendix E: GROUND WATER QUALITY

DECEMBER 1966

HUGO FISHER

Administrator
The Resources Agency

EDMUND G. BROWN
Governor
State of California

WILLIAM E. WARNE

Director

Department of Water Resources

ORGANIZATION OF BULLETIN NO. 130 SERIES

Volume I - NORTH COASTAL AREA

Volume II - NORTHEASTERN CALIFORNIA

Volume III - CENTRAL COASTAL AREA

Volume IV - SAN JOAQUIN VALLEY

Volume V - SOUTHERN CALIFORNIA

Each volume consists of the following:

TEXT and

Appendix A - CLIMATE

Appendix B - SURFACE WATER FLOW

Appendix C - GROUND WATER MEASUREMENTS

Appendix D - SURFACE WATER QUALITY

Appendix E - GROUND WATER QUALITY

METRIC CONVERSION TABLE

ENGLISH UNIT	EQUIVALE	NT METRIC UNIT
Inch (in)	2.54	Centimeters
Foot (ft)	0.3048	Meter
Mile (mi)	1.609	Kilometers
Acre	0.405	Hectare
Square mile (sq. mi.)	2.590	Square kilometer
U. S. gallon (gal)	3.785	Liters
Acre foot (acre-ft)	1,233.5	Cubic meters
U. S. gallon per minute (gpm)	0.0631	Liters per second
Cubic feet per second (cfs)	1.7	Cubic meters per minute

TABLE OF CONTENTS

		Page
ACKNOWLEDGM	ENTS	viii
ABSTRACT .		х
INTRODUCTION	N	1
MEASUREMENT	TECHNIQUES	3
Defini.	tions	3
Methods	s and Procedures	1;
F	ield Procedures	24
L	aboratory Procedures	5
Re	eporting Methods	5
Accurac	cy	6
Signif	icant Numbers	8
Limita	tions	8
Coding		9
DATA		13
	Province	
	FIGURES	
Figure No.		
1	Area Orientation Map	iii
2	Location of Drainage Province Boundaries	2
3	Lettering Used for Tracts	10
	TABLES	
	IADUES	
Table No.		
E-1	Analyses of Ground Water:	
	Central Coastal Drainage Province (T)	15

TABLES, continued

Table No.		Page
	Los Angeles Drainage Province (U)	73
	Lahontan Drainage Province (W)	293
	Colorado River Basin Drainage Province (X)	326
	Santa Ana Drainage Province (Y)	345
	San Diego Drainage Province (Z)	505
E-2	Analyses of Trace Elements in Ground Water:	
	Central Coastal Drainage Province (T)	545
	Los Angeles Drainage Province (U)	545
	Colorado River Basin Drainage Province (X)	547
	Santa Ana Drainage Province (Y)	547
E-3	Radioassays of Ground Water:	
	Central Coastal Drainage Province (T)	548
	Los Angeles Drainage Province (U)	549
	San Diego Drainage Province (Z)	551
E-4	Analyses of Synthetic Detergents in Ground Water:	
	Central Coastal Drainage Province (T)	555
	Los Angeles Drainage Province (U)	555
	Lahontan Drainage Province (W)	555
	Santa Ana Drainage Province (Y)	556
	San Diego Drainage Province (Z)	561

PIATES (Bound at back of this appendix)

Plate Number	
1	Names and Areal Code Numbers of Hydrologic Areas, Central Coastal Drainage Province (T)
2	Names and Areal Code Numbers of Hydrologic Areas, Los Angeles Drainage Province (U)
3	Names and Areal Code Numbers of Hydrologic Areas, Lahontan Drainage Province (W)
W	Names and Areal Code Numbers of Hydrologic Areas, Colorado River Basin Drainage Province (X)
5	Names and Areal Code Numbers of Hydrologic Areas, Santa Ana Drainage Province (Y)
6	Names and Areal Code Numbers of Hydrologic Areas, San Diego Drainage Province (Z) $$

ACKNOWLEDGMENTS

The Department of Water Resources wishes to acknowledge the valuable assistance and cooperation received from the agencies listed below.

Long Beach Water Department

Los Angeles County Flood Control District

Los Angeles Department of Water and Power

Orange County Flood Control District

Orange County Water District

Riverside County Flood Control and Water Conservation District

San Bernardino County Flood Control District

San Luis Obispo County Flood Control and Water Conservation District

United Water Conservation District, Ventura County

U. S. Geological Survey, Southern California Subdistrict Office

Ventura County Flood Control District

ABSTRACT

Appendix E to Volume V, Bulletin No. 130-65, contains data on the chemical, physical, and radiological characteristics of the ground water in Southern California for the 1964-65 water year. Figures show Southern California area and drainage province boundaries.

INTRODUCTION

Appendix E to Volume V of Bulletin No. 130-65 contains all ground water analyses compiled by the Department of Water Resources during the 1964-65 water year. The data presented are measured values of the chemical, physical, and radiological characteristics of ground water throughout the Southern California area (see Figure 1).

Quality data are tabulated for approximately 4,000 samples of ground water collected from wells and springs in the Southern California area. About 1,000 of these are in the Department's Ground Water Quality Data Program. The remainder were sampled by many cooperating agencies and by various Department units conducting special investigations. Many of these analyses data were generously supplied by other public and private agencies.

The Ground Water Quality Data Program consists of a selection of wells to be sampled, regular collection of samples by the Department and by cooperators, laboratory analyses by the Department or cooperators, examination of the data to note trends or significant changes, and publication of the data.

The sampling program is periodically reviewed, and wells that are found to be out of production for an extended period or can no longer be sampled are deleted. They are replaced with wells selected on the basis of continuity of the records of analysis, ease of sampling, and availability of construction data and geologic logs.

Tables E-1 through E-4 contain detailed information on ground water quality in the six drainage provinces shown on Figure 2.

LOCATION OF DRAINAGE PROVINCE BOUNDARIES

MEASUREMENT TECHNIQUES

The effective use of ground water quality data depends on the accuracy, precision, and availability of the data. To ensure accuracy, certain methods and procedures have been established, and to ensure availability, coding systems have been developed.

The measurement techniques followed include sampling, analyses, and reporting procedures used to obtain the data presented in this appendix. Definitions of the terms used, field and laboratory methods and procedures, accuracy of the reported results, significant numbers retained, limitations of the data, and coding are discussed below.

Definitions

The following definitions will assist the reader in understanding the terms used in this appendix.

Water Year is the 12-month period from October 1 of any year through September 30 of the following year, and is designated by the calendar year in which it ends.

Ground Water is the water below the ground surface in the zone of saturation that is or may be made available for use from wells and springs.

Standard Methods are the methods of analysis for substances in water adopted jointly by the American Public Health Association, American Water Works Association, and Water Pollution Control Federation. They represent the best current analytic procedures and are published as "Standard Methods for the Examination of Water and Waste Water". The current publication is the 12th edition, dated 1965.

Trace Elements Analysis is the quantitative spectrographic estimation of metallic elements which include the following metals: aluminum (Al), beryllium (Be), bismuth (Bi), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), gallium (Ga), germanium (Ge), manganese (Ma), molybdemum (M), nickel (Ni), lead (Pb), titanium (Ti), vanadium (V), and zinc (Zn); reported as parts per billion (ppb).

Radioassays are the radiological analyses which give the count of radioactive events in samples of water within a measured interval of time expressed as picocuries per liter (pc/l) and reported as plus or minus the statistical deviation calculated at a confidence level of 95 percent.

Synthetic Detergents are a class of chemical compounds resembling soap that contain surface-active agents and other materials designed to disperse and emulsify oil, grease, and soil particles. The surface-active agents most widely used in most synthetic detergents are the linear alkylate sulfonates.

Methods and Procedures

Because methods of sampling may affect the analysis of the sample, an explanation of sampling procedures established for ground water sample collection is given below.

Field Procedures

Ground water samples were collected in chemically clean plastic containers of gallon or half-gallon capacity depending upon the type of constituents to be determined. Samples were preferably taken from the nearest tap on the system beyond the pump discharge valve, after at least

five minutes of pumping. Containers were thoroughly rinsed with the water sampled before collecting the sample and afterward tightly capped.

Observations of color, odor, taste, and temperature were recorded, together with significant environmental conditions.

Separate samples were collected for radiological, trace elements, or other special determinations.

Laboratory Procedures

Methods of mineral, bacterial, and radiological analyses used by the Department of Water Resources, Southern District, are generally those described in the American Public Health Association, American Water Works Association, and Water Pollution Control Federation publication "Standard Methods for the Examination of Water and Waste Water", 12th Edition, 1965. In some cases, the methods described in the following publications also have been used:

- U. S. Geological Survey, "Methods for Collection and Analyses of Water Samples", Water Supply Paper 1454, 1960
- U. S. Public Health Service, Taft Sanitary Engineering Center, "Taft Method Analytical Procedure, Alkyl Benzene Sulfonate Determination", 1964

Reporting Methods

Individual chemical constituents of ground water analyses in Table E-1 are reported as parts per million (ppm). Machine methods of data processing are being developed, and all information in Table E-1 has been tabulated on data processing machines. Thus, the Department is able to supply precisely the data that is requested by users.

Trace elements analyses are reported in Table E-2 as parts per billion (ppb). These analyses were performed by the U. S. Geological Survey Laboratory in Sacramento, California. Limitations in the precision of measurements by spectrographic analysis frequently require the reporting of results as less than or more than the amounts presented, as indicated in the footnotes accompanying the table.

Radiological analyses for ground water are reported in picocuries per liter (pc/l) in Table E-3. The analyses were performed by the State Department of Public Health, Sanitation and Radiation Laboratory, Berkeley, California. These ground water samples were given analyses for alpha and beta activity.

Analyses for synthetic detergents and phosphate (PO4) in ground water are shown in Table E-4, and are reported as parts per million.

In mid-1965, the soap and detergent industry replaced the main constituent of synthetic detergents, alkyl benzene sulfonate (ABS), with linear alkylate sulfonate (LAS). Because the standard methylene blue test for surface-active agents does not distinguish between the two types, the results are reported here as methylene blue active substances (MRAS) as ABS. The method of analysis used was the U. S. Public Health Service, Taft Engineering Center "Taft Method Analytical Procedure, Alkyl Benzene Sulfonate Determination", 1964.

Accuracy

The water samples presented to the chemist contain unknown dissolved substances. Some of these substances may interfere with the analyses of other constituents dissolved in the water. Standard methods

of analysis minimize errors due to interference. Laboratory procedures identify and measure individual constituents in orderly sequence in such a way that any significant interference can be allowed for or eliminated.

Various tests are available to the chemist to assure precision of the results. Foremost among these is the comparison termed "Balance" of the sums of equivalents per million of cations and anions, which are exactly equal in ionic solutions. The analysis is complete only after this test meets the following requirements:

- (1) Analyses of water having sums of anions less than 5.00 milliequivalents per liter shall not have a difference between total anions and total cations over 4 percent of the mean value.
- (2) Analyses of water having sums of anions from 5.00 milliequivalents per liter to 10.00 milliequivalents per liter shall not have a difference between total anions and total cations of over 3 percent of the mean value.
- (3) Analyses of water having sums of anions over 10.00 milliequivalents per liter shall not have a difference between total anions and total cations of over 2 percent of the mean value.

If the analysis does not meet this test, the constituents are rerun to verify the individual results, or until the reason for the discrepancy is ascertained.

Control of laboratory quality of analytical results is maintained by splitting selected authentic water samples, distributing these to the laboratories, and comparing the analytic reports. From time to time, synthetic water reference samples supplied by U. S. Public Health Service or California Department of Public Health, containing known proportions of selected constituents, are used as tests of precision of any analytical method. These latter serve as a test of laboratory accuracy as well.

Trace elements analyses are reported to be quantitatively accurate to within 10 percent of the true value.

Radioactivity counts are measures of statistically random independent events. They are subject to environmental, instrumental, and procedural variations that must be estimated and accounted for to eliminate their influences on the reported results. The results are reported as the count plus or minus the counting error.

Significant Numbers

Analytical numerical results follow the recommendations for reporting of "Standard Methods". In general, the number of digits retained in chemical analyses reflects the precision of a determination of one-half unit in the last digit. Accuracy (reproducibility) is estimated at plus or minus 5 percent at critical limits for most constituents.

Limitations

To obtain a representative sampling of the ground water and of conditions in Southern California, an attempt is made to maintain sampling wells that are strategically located throughout a basin. However, because the program relies heavily upon data collected by cooperating agencies, the Department cannot always make the decisions as to which wells are selected and how often they are sampled.

The sampling that is conducted by the Department under the Ground Water Quality Sampling Program must of necessity be limited to wells in those areas that are considered of the greatest economic importance. Thus, the analyses reported cannot be considered equally representative of all parts of Southern California.

All samples are given a complete mineral analysis and, where indications warrant, special analyses are made, such as those for synthetic detergents and phosphates.

Coding

To facilitate the processing of basic hydrological data published in this appendix, number and letter codes are used to designate hydrologic areas and wells.

The letter to the left of the dash refers to the drainage province. (The boundaries of these provinces correspond to boundaries of the regional water quality control boards with the exception of the Los Angeles-Orange and Los Angeles-San Bernardino county boundaries.) Next are two digits to the left of the decimal; these refer to the hydrologic unit. To the right of the decimal is one letter which identifies the hydrologic subunit, and last, a number representing the hydrologic subarea. Plates 1 through 6 show the locations and areal code numbers of the hydrologic subdivisions in each drainage province.

The state well numbering system used in this report is based on township, range, and section subdivision of the Public Land Survey. It is the system used in all ground water investigations and in numbering all wells for which the data are published or filed by the Department of Water

Resources. In this report, the number of a well, assigned in accordance with this system, is referred to as the State Well Number.

Under the system each section is divided into sixteen 40-acre tracts lettered as shown on Figure 3. (Note than I and O are omitted in the grid.)

D	С	В	А
E	F	G	Н
М	L	K	J
N	Р	Q	R

Figure 3. Lettering used for tracts.

Wells are numbered within each 40-acre tract according to the chronological sequence in which they have been assigned state well numbers. For example, a well that is numbered 9N/32W-17Gl S, would be in Township 9 North, Range 32 West, Section 17, San Bernardino base and meridian, and would be further designated as the first well assigned a state well number in tract G. Well numbers in Southern California are referenced to the Mount Diablo base and meridian (M) or to the San Bernardino base and meridian (S).

On the areas where the Public Iand Survey was not made, the Department has arbitrarily projected on maps the township and range lines. Maps showing well locations and State well numbers in the district area are on file at the District's office.

Ground water samples obtained from springs are identified by numbers similar to well numbers, except that an "S" is included after the 40-acre tract designation to signify a spring. An example of a number used to identify a sample from a spring is 165/7E-4MS1 M.

DATA

GROUND WATER QUALITY

TABLE E-I
ANALYSES OF GROUND WATER
CENTRAL COASTAL DRAINAGE PROVINCE (T)

PASO ROBLES HYDRO SUBUNIT 245/11E-25N 1 M 73 8.0	1					per	percent re	reactonce val	e value			parts p	per mi	per million	
PASO ROBLES HYDRO SUBUNIT 245/11E-25N 1 M 73 8.0	at 25°C)	Calcium	Magne- stum Mg	Sodium	Potos - C	Corbon -	Bicar - bonate HCO3	Sulfate SO4	C H 10 =	rote NO3	7 c c c	86.00	5. 1.	EVOD BC°C hardness EVOD 105°C os Compu'ed Cours	Tcha hardness as
1 M 73	Τ.	109но	\$	ALINAS	SALINAS HYDRO UNIT	TINI			10900						
	1650	59 2.94 16	36 2.96 16	275 11•96 67	0.10	0	317	377	174	4 0 • 0 0	0.2	1.18	1	1088	295
245/11E-26D 1 M 65 7.7	1700	4.59	4.69 4.59	222 9•65 51	0.13	0	297	530 11.03 58	2.96	0 • 0	0.5	0.75	1	1158	797
245/11E-33R 1 M 65 7.9	260	48 2•40 38	32 2.63 41	30	0.05	0	268	1.00	0.79	0.08	0 • 2	0.12	1	332	252
245/11E-35A 1 M 66 8.0	1250	46 2.30 16	3.13 2.22	195 8 • 48 61	0.08	0	4111 6 • 74	187 3.89 28	3.19	3	7 • 0	0.67	1	350	272
245/15E-17F 1 M 8.2	1575	52 2 59 14	7.81	172	0.08	0	476 7.80 43	301	135 3.81 21	50.00	7 . 0	1.45	0 7	970	520
255/11E- 1A 1 M 75 8.2 5- 4-65	880	0.95	1.32	165	0.05	0	340	2.02	1.69	3 0.05	0 .2	86.0	1	582	114
255/12E- 5R 1 M 62 8.0	1300	2.74	80 6.58	142 6.17	0.10	0	581	3.46	2.40	0	0 • 2	0.53		841	994
255/12E- 8G 1 M 65 8.0 5- 4-65	1040	2.84	51 4.19 36	105	0 • 10	0	330	154 3.21 28	2.76	0.18	0 • 0	0 • 41	1	696	352

TABLE E-1
ANALYSES OF GROUND WATER
CENTRAL COASTAL DRAINAGE PROVINCE (T)

	Total	nardness os Co Co 3		167	442	808	664	843	472	826	204
uents in	TOS	Evap 180°C hardness Evap 105°C as Computed CoCO3		422	912	1420	834	1524	1282	1826	328
constituents per million	11.5			1	l	32	1	1	1	E 8	40
Mineral c	Boron			0.43	0.59	0 • 60	0.30	0.58	1.09	1.24	0.12
	-011	r d e		0.2	0.5	9 • 0	0 • 2	0.1	0.2	0.5	9.0
	ž	trate NO ₃		2 0 • 0 3	16 0•26 2	6 0 10	0.0	0 * 0	12 0•19	26 0•42	27 0•44 8
million per million ctance value	Chlo-	ride	10900	36	144	206	2.90	777	196	401 11•31 38	1.07
0	Sulfate	\$ 0 \$,-	1.10	221	479	264 5.50	415	345 7.18 32	548 11.41 39	0.15
parts per equivalents percent	Bicor -	bonate HC03		292	378	481 7.88	386 6.33	655	575 9.42 42	386 6.33 21	235
par	Corbon	000	TINI	0	0	0	0	0	1	1	0
Ë	Potos -	Si u R	HYDRO L	0.05	0.13	0.08	0.05	0.05	0.15	0.08	0.05
constituents	8 1000	o Z	SALINAS HYDRO UNIT	3 • 74 52	145	168 7.30 31	113	227 9.87 37	300 13.04 58	300	1.48
Mineral co	000	2 - N	SA	2.14	76 6.25	0	4.69	112 9.21 34	4.85 21	100 8.22 28	2.22
2	81.010	0	109но	24 1•20 17	52 2.59 17	324 16.17 69	106	153	4 4 59 20	166 8•28 28	37 1.85 33
Specific conduct-	ance (micro-	mhos at 25°C)		630	1320	2012	1280	2175	1840	2880	535
	Ha		BUNIT	8 • 2	7.9	7.9	8 • 2	7.6	8 . 2	8 • 2	8 • 2
Тетр	when	sampled In ° F	SUBU	7.8	72	1	09	09	1	1	1
State well		Date sampled	PASO ROBLES HYDRO SU	255/12E-27D 1 M 5- 4-65	255/12E-28B 1 M 5- 4-65	255/12E-28N 1 M 10- 1-64	255/12E-28N 4 M 5- 4-65	255/12E-33Q 2 M 5- 5-65	255/12E-35C 1 M 10-21-64	255/12E-35E 1 M 10-20-64	255/13E-19R 1 M 10- 1-64

ANALYSES OF GROUND WATER CENTRAL COASTAL DRAINAGE PROVINCE (T)

	To os		536	228	229	290	917	181	197	132
constituents in	Evap 180°C Evap 105°C Computed		1074	387	385	484	2030	316	326	375.
constituent	50.5				1		1 6	!	ŀ	
Mineral parts p	3 A		0.48	0 • 0	0.35	0.30	1.18	0.29	0.23	0.74
	2 P u		0.5	0.5	0.5	0.2	0.5	0.5	0.2	0 • 2
	202		37	6 0.10	18 0.29	21 0 34	2 0 0 0 3	6 0 10	0	0.08 1
million ce value	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10900	182 5.13	1.66	50	2.09	234 6.60	34 0 • 96 18	1.16	0.90
per	Sulfate SO4		265	1.29	0.29	0.94	692	0.54	19 0.40	1.12
lent	Bicor - bonote HCO3		344	258	269	299	622	234 3.84	244	278
equiva	Corbon.	UNIT	0	0	0	0	0	1	0	0.17
Ë	Potos x	нурво	0.10	0.05	0.05	0.08	0.10	0.05	0.05	0.05
constituents	E D Z	SALINAS HYDRO UNIT	132 5.74	2.70	1.91	2.70	297 12.91 41	1.74	1.70	4.30
Mineral co	M o g n e .	võ -	5.18	34 2.80	35 2 88 44	3.70	85	1.97	2.14	1.64
Σ	Colcoun	109н0	5.54	35	34	2.10	227	33	36	1.000
Specific conduct-	mhos at 25°C)		1550	665	610	750	2500	480	520	009
	I a	TINC	O	8 • 0	8 • 1	8 • 2	7.5	0 • 8	8 • 1	φ Φ
Temp	sampled In ° F	SUBL	79	1	68	70	79	1	7.0	70
		HYDR	Σ	Σ	Σ	E	Σ ~	Σ		E
State well	Date sampled	PASO ROBLES HYDRO SUBUNIT	255/12E- 8R :	255/12E-16D 1 5- 3-65	255/12E-16K 3	255/12E-16K	255/12E-16L 5- 4-65	255/12E-26L 1 10-21-64	5- 5-65	255/12E-26N 1

TABLE E-1
ANALYSES OF GROUND WATER
CENTRAL COASTAL DRAINAGE PROVINCE (T)

	ordness os occos		171	203	188	425	349	280	351	472
uents in	TDS Total Evap 180°C hardness Evap 105°C os Computed CoCO3		428	562	316	986	554	556	735	842
constituents per million	S.U.2		1	i	8	1	ŀ	-	1	1
Mineral o	Boron		0.58	0.53	0.16	0.78	0.17	0.41	0.05	75.0
	Fluor		7.0	0 • 1	0.5	0.5	0 • 1	0 • 5	9.0	0 • 1
	n: - trate NO3		3 0 • 05	0	0.11	0	10 0 16	10	18 0.29	14 0 • 23
million e value	Chlo ride	10900	0.71	3.05	.1.04	183	1.49	2.45	3.27	145
ts per million reactance value	Sulfore SO4		45	2.79	0.31	274 5.70 35	3.12	2.39	3.04	130 2•71 18
t e p	Bicar - bonate HCO3		313	183 3.00	3.77	328 5 • 38	241	303	361	494 8 • 10 54
parts equiva percen	Carbon ore	UNIT	0	24 0 • 80 8	0	0	0	0	0	0
. <u>c</u>	Pctos S.u.	HYDRO	0.08	0.08	9 0 0 2 3 4	19 0.49	0.05	0.05	2 0 0 0 0 2	0.05
constituents	Sodium	SALINAS HYDRO UNIT	3.57	132 5.74 5.8	1.70	170	1.87	98 4.26 4.3	125	135 5 87 38
Mineral co	Magne s.cm Mg	S	1.81	2.30	1.81	3.95	4.28	2.30	2.88	4.69
2	67.0.00	109но	32 1•60 23	35	1.95	91 4.54 28	2.69	3.29	83 4.14 33	4.74
Specific conduct-	mhos ot 25°C)		999	880	530	1430	800	972	1203	1280
	I	SUBUNIT	8 • 2	8 • 7	8 • 2	8.1	7 . 8	7.5	7.4	7.6
Temp	when sampled in ° F		1	1	1	1	1	1	}	999
State well	led	PASO ROBLES HYDRO	255/14E-33Q 1 M 10- 8-64	265/12E- 3H 2 M 4-26-65	265/12E- 3K 3 M 4-26-65	265/12E- 3L 1 M 4-26-65	265/12E- 5A 2 M 12-18-64	265/12E- 9L 1 M 4- 1-65	265/12E- 9L 2 M	265/12E- 9R 1 M 5- 5-65

State well	Temp		Specific conduct-	2	Mineral co	constituents	C .	p e d	parts per equivalents percent re	er million ts per million reactonce volue	million e volue			Mineral parts p	constituents per million	luents in	
	sampled	Ha	(micro-	Co. c. s. B		Sodium	Potas -	Carbon -	B 10 01 -	Sulfate	0 1 10	2	2 6	40. °B	- 5	T D S Evon Broc	, 10 hordness
Care sampled	Ü.		ot 25°C)	٥	5	0 2	E ¥	200	HCO3	\$ < 4	- U	2 2	, u	Э	~	Computed	0.5 Co u C 3
PASO ROBLES HYDRO SUBUNIT	RO SUE	TINUS		Т09Н0	O)	SALINAS HYDRO UNIT	HYDRO	UNIT			10900						
265/12E-16C 4 M 5- 5-65	7.0	7.7	1140	108	3.37	3.30	0.05	0	293	2.04	142	91	0•1	0.30	-	710	438
265/12E-21D 1 M 5- 6-65	-	8.1	1900	3.59	3.70	320 13.91 65	0.10	0	573	218	275	0.0	1.0	1.28	1	1244	365
265/12E-21L 1 M 5- 5-65	62	7 • 8	086	2.52	1.40	145	30.08	0	330	2.85	2.23	0	1.0	0.35	1	597	200
265/12E-22P 2 M	1	7 - 8	625	32	1.89	3.87	0.05	0	295	18 0.37	1.89	111 00.18	9 • 0	0.31	1	432	175
5- 6-65		89	099	38	1.97	3.35	0.05	0	290	36 0.75	1.92	0.0	0.2	0 30	1	426	104
265/12E-33B 2 M 5-28-65		7.5	1264	106	3.54	113	0.00	0	356 5 83 42	252 5 25 2 3 8	2.68	0.02	6.	0 • 44		820	7 44 5
265/12E-33Q 2 M 5- 6-65	99	7 . 8	680	3.74	2.30	1.09	0.03	0	297	38	1.41	0.0	0 • 2	0.12	1	363	302
265/13E- 4J 1 M 10- 8-64	1		1497	111 5.54 36	2.71	165	0.10	0	378	280	3.07	18 0 • 29	0	2.5	20	965	413

TABLE E-1
ANALYSES OF GROUND WATER
CENTRAL COASTAL DRAINAGE PROVINCE (T)

State well	Temp		Specific conduct-	Σ	Mineral co	constituents	E .	par	parts per equivalents percent r	millior	million e value			Mineral parts p	consti	constituents in ser million	
Date sampled	when sampled in ° F	H	mhos at 25°C)	Colcium	Magne - s · u m M g	Sodium	Potos:	Carbon - ofe CO3	Bicar - bonate HCO3	Sulfate SO4	Ch lo	N C N C N C N C N C N C N C N C N C N C	. d o . r	Boron	S	T D S Total Evap 180°C hardness Evap 105°C as Computed Co CO3	Total hardness as
PASO ROBLES HYDRO SU	so sue	BUNIT		109н0	Ś	SALINAS HYDRO UNIT	HYDRO	TINO			10900						
265/14E-16R 1 M 4-20-65	1	7.8	673	21 1.05 15	64.0	5.17	0.08	0	284	39 0.81 12	43 1•21 18	8 0•13	9 • 0	0.43	1	422	77
265/14E-34D 1 M 10- 8-64	1	7.9	435	30	1,40	1.91	0.08	0	170 2.79 58	29 0.60 13	1.27	8 0•13	0 • 8	0.12	1	302	145
265/15E- 2N 1 M	1	8 • 1	2158	36 1.80	0.58	440 19.13 89	0.08	0	317 5.20	528 10.99 51	184 5.19	1.0	0.2	1.17	-	1396	119
265/15E-20N 1 M	79	7.8	374	41 2.05 53	6400	1.26	0.08	0	151 2.47 63	33 0.69	0.62	10	0.1	0.05	1	241	127
265/15E-28G 2 M	7.7	7.6	4205	360 17.96 35	142 11•68 22	510 22.17 43	0.15	0	327 5.36 11	1276 26.57 52	663 18.70 37	14 0 • 23	0.7	1.34	1	3280	1483
265/16E-31B 1 M	İ	0 .	1490	32 1.60	24 1.97 11	315 13.70 78	12 0•31	0	338	368	115 3•24 19	55 0 • 89	1.2	2.50	ł	1084	179
27S/10E-15GS1 M 10-18-64	65	8 • 0	710	81 4.04	36 2 96 34	36 1.57 18	0.03	1	303	3.08	0.59	0	0.1	60.0	1	502	350
275/10E-15GS2 M 10-18-64	70	8 . 2	810	38 1.90 20	1.32	142 6.17 65	0.05	!	365	2.91	0.65	0.03	0 • 1	0.26	1	588	161

State well number	Temp		Specific conduct-	Σ	Mineral co	constituents	ri S	p e d	parts per equivalents percent r	per	million se value			Mineral parts	constituents per million	uents in	
Date sampled	sampled In ° F	T C	(micro- mhos at 25°C)	Colcius	Mogne- stum M g	Sodium	Potos - sium K	Carbon - ole CO3	Bicor - bonote HCO3	Sulfore SC4	Ch 10 -	7 0 7 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 0 4	68 69 69	S	Evop BCor Evop ICSor Computed	Toho's hordness
PASO ROBLES HYDRO SUBUNIT	30 SUE	BUNIT		109но	S	SALINAS HYDRO UNIT	HYDRO	TINO			10900						
275/11E-16L 1 M 4-30-65	1	8 0	1060	162 8 08 60	54 4 44 4 33	22 0.96	0.03	0	451	247 5.14 38	32 0.90	0	4.0	0 0 8	1	842	627
275/12E- 3C 2 M	1	7.9	752	58 2 • 89 37	3.13	1.83	0.05	0	308	15 0 31	81 2.28 29	9 0 • 15	7.0	0.10	4 8	473	301
5- 5-65	70	7.9	200	2.69	3.13	2.04	0.05	0	315	13	2.68	2 0 0 0 0 3	0 • 1	0.13		495	291
275/12E- 4P 2 M 5- 5-65	62	0 0	006	2.69	22 1.81 18	125	0.05	0	338	133	1.61	0 • 0	9	0.37	1	576	225
275/12E- 9D 2 M 5- 6-65	-	7.9	875	85	4.03	2.13	0.05	0	361 5.92	110 2.29	2.12	2 0.03	0 • 1	0.20	1	040	414
275/12E-21G 1 M 5- 6-65	61	7.7	1460	4.69	6.33	125	0.08	0	429	237	128 3.61 22	35	0.2	0.42	1	990	551
275/12E-21N 1 M	1	7 • 8	1075	122 6.09	4.28	2.00 16	0.03	0	331	244	1.55	5 0 • 08	4 .	0.11	32	787	519
5- 8-65	09	8 • 1	1035	129	4.11 33	1.96	0.03	0	367	248	1.47	3 0.05	0 • 2	0.17	ł	706	5.28

TABLE E-1
ANALYSES OF GROUND WATER
CENTRAL COASTAL DRAINAGE PROVINCE (T)

	Tetal hardness os Calura		518	463	365	573	70	845	115	309
stituents in million	Evap 80°C P		949	650	526	870	418	3142	444	536
constituents per million	Si 1- 00 Si 02		1	8	1	1	45	1		
Mineral parts p	8 8		0.11	0.14	0 • 0 8	0.14	0.37	1.34	0.58	0
	0 7 L		0.5	0.5	0 • 2	0.1	0 • 3	0.7	0 • 8	0 • 2
	roje SČ		0.02	3 0 • 0 5	3 0 • 0 5	0.03	5 0 • 0 8	47	10 0•16	0
million ce value	Chlo	10900	1,83	50	1.30	89 2.51 18	21 0.59	890 25.10 50	1.49	37
millio per eactan	Sulfate S04		235	194	3.27	231 4•81 34	20 00.42	947	1.25	103 2•14 29
parts per equivalents percent re	Bicor - bonote HCO3		338	329 5 • 39 49	250	420 6.88 48	359 5 • 88 84	301	269 4.41 60	263 4•31 58
par	Carbon - ale	UNI T	0	0	0	0	0	0	0	0
.5	Potas -	HYDRO	0.05	0.05	0.03	0.08	0.05	0.13	0.10	0.03
constituents	e n pos	SALINAS HYDRO UNIT	1,83	41 1•78 16	35	2.57	130	770 33.48 66	116 5.04 68	32 1,39 18
Mineral co	Magner sium Mag	U)	5.26	5.02	50 4.11 46	6.17	0.74	81 6.66 13	0.90	3.13
2	Calcium	10940	102 5 • 09 42	4.24 38	3.19	106	13	205	28 1•40 19	3.04
Specific conduct-	micro- mhos at 25°C)		1060	930	770	1220	650	4595	630	099
	H	UNIT	7.6	7.5	7.6	7.7	8 • 2	7 • 8	8 • 0	7.4
Temp	when sampled In ° F	o sub	61	09	0.9	63		73	1	0.9
		HYDR	w E	Σ Σ	E m	Σ	Σ	Σ	Σ	Σ
State well	Date sampled	PASO ROBLES HYDRO SUBUNIT	275/12E-29P 3 5- 6-65	275/12E-32F 2 5- 6-65	275/12E-32Q 3 5- 7-65	275/12E-33N 1 5- 7-65	275/13E- 9P 1 10- 4-64	275/15E-13A 1 10- 7-64	275/16E-23N 1 M 10- 7-64	285/12E- 4G 1 M 5- 6-65

			0	_	-				0.1										
	Toto os Cours		320		414		399		312		297		659		240		264		
constituents in	TDS hordess Evop 180°C hordess computed Cours		191	422	550	517	578	543	0 7 7	417	420	377	099	601	350	322	380	330	
consti	Sili-		1		-		27		l		1		ŀ		1		į į		
Mineral parts p	Boron		0.14		0.12		0.08		60.0		0.12		0.11		0.08		50°0		
	ride.		0.5		0.5		0.5		0.1		0.5		0.1	_	0.2		7.0		
	frose No. 3		4	0.06	14	0.23	2	0.03	3	0.05	7	0.02	15	0.24	7	0.11	7	2 2 2	
million se value	- 0 P D D D D D D D D D D D D D D D D D D	10900	(1)	0.93	7	2.00	52	1.47	0 7	1.13	37	1.04	76	207	O.	0.82	28	13	
per	Sulfote Sul		141	2.94	00	1.85	134	2.79	86	2.04	74	1.54	154	3.21	9	1.39	9	1.42	
parts per equivalents percent	Bicor - bonote HCC3		231	3.79	351	5.75	323	5.29	281	4.61	283	4904	328	2000	224	3.67	232	3.80	
por equ	corbon- ore CO3	TINI	0		0		0		0		0		0		0		0		
Ë	Potos - K	HYDRO (7	0.03	2	0.05	-	0.03	٦	0.03	2	0.05	2	0.05		0.03		50.0	
constituents	Sod ium	SALINAS HYDRO UNIT	2	1.13	37	1.61	4	1.74	34	1.48	2	1.09	4	1.87	30	1.30	23	1.00	
Mineral col	Magne.	S	39	3.21	54	4.44	64	4.03	34	2.80	31	2.55		4.28	28	2.30	26	2.14	
M	8 0 0 0	109но	79	3.19	77	3.84	19	3.94	69	3.44	89	3.39	86	4 8 8 9	50	2.50	63	3.14	
Spacific conduct-	1 0		680		860		868		069		059		1000		260		580		
	I	TINE	7.5		7.8		7.9		7.6		7.6		7 . 4		7.7		7.4		
Тетр	when sampled in ° F	SUBL	09		79		-		09		63		56		99		61		
		HYDRO	2 M		S S		2 W				2 M		Z Z		2 M		1 M		
State well	Date sampled	PASO ROBLES HYDRO SUBUNIT		5- 6-65	28S/12E-10H	5- 6-65	285/12E-10R 2	10- 9-64		5- 5-65		5- 5-65		5- 5-65	285/12E-24F 2	5- 5-65	285/12E-258 1 M	5- 5-65	

TABLE E-1
ANALYSES OF GROUND WATER
CENTRAL COASTAL DRAINAGE PROVINCE (T)

State well	Temp		Specific conduct-	×	Mineral co	constituents	ï	parts equiva percer	Penie	0	million per million ctance value		٤	Mineral constituents parts per million	constituent per million	ents in	
Date sampled	when sampled in °F	I a	mhos at 25°C)	E 0 0 0	Magne,	E nipos	Potos - s · u m K	Carbon -	Bicar - bonate HCO3	Sulfate 504	Chilo -	rose NC3	r de	Boron	S. 1. Co E.	Evop 80°C n Evap 105°C Computed	Total hardness as Caillis
PASO ROBLES HYDRO SUBUNIT	30 SUB	TINOS		10940	S	SALINAS HYDRO UNIT	HYDRO	UNIT			10900						
285/13E-30N 1 M	99	7.3	009	56	30	30		0	232	86	32	9	0.2	0.08	1	390	263
5- 5-65				75 45	2.41	1.30	0000		0.00	27	14	2				358	
285/16E-14N 1 M	9	7.9	595	55	29	33	10.03	0	219	1.96	999	8	0 .8	0.07	1	404	256
10- 1-64				745	36	1043			48	26	25	2				394	
295/13E- 5D 5 M	61	7.1	046	80	57	41	0	0	299	170	59	10	0.1	0.04	-	009	434
2- 4-65				38	4.69	1.0			4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	50 00 00 00 00 00 00 00 00 00 00 00 00 0	1600	0.10				564	
29S/13E- 8M 1 M	69	7.5	059	74	15	48		0	303	40	39	9 (0.1	0.03	-	400	546
5- 4-65				3.69	1.23	2.09	50.0		4.91	0.83	1610	0.10				372	
295/13E- 8N 1 M	65	7.5	089	77	15	47		0	306	41	40	9 0	0.1	0.05	-	400	254
5- 3-65				3.84	1.23	2.04	0.03		5.02	0.85	1013	0.10				378	
295/13E-14B 1 M	63	7.5	580	43	24	37	2	0	191	31	35	55	0.2	0	-	345	206
5- 3-65				2.15	1.97	1.61	0.02		3.13	0.65	0.99	0.89				321	
295/13E-18H 1 M	63	7.5	730	58	33	56		0	315	62		9	0.1	90.0		420	280
5- 4-65				2.89	2.71	2.43	0.03		5.16	1.29	1,30	0.10				417	
295/13E-19H 1 M	ł	8 • 4	059	47	39	40	100	9 6	254	70	41	10	0.1	0.10	Į †	414	278
2-8-6				2632	2.51	1.7		0.00	58	20	16	2 2 2				379	

State well	Temp		Specific conduct-	Σ	Mineral co	constituents	ni s	pod	parts per equivalents percent r	per	million te value			Mineral	constituents per million	uents in	
Date sampled	sampled In F	I a	1 0	Colcium	Magne- sium M g	Sodium	Potos	Corbon -	Bicor - bonote HCO3	Sulfate	Ch 10	ro ro	Fluo-	0 8	S.0.5	T.D.S. Total Evap 180°C hardness Evap 105°C as	Total Nardness as
PASO ROBLES HYDRO SUBUNIT	DRO SU	BUNIT		Т09Н0	S	SALINAS HYDRO UNIT	HYDRO	UNIT			10900						
295/13E-19H 2 M 5- 3-65	Σ	8 . 2	049	2.25 2.25 32	3.29	1.43	0.03	0	252 4 • 13	87 1.81 26	0.93 13	12 0•19 3	0.1	0.11	1	438	277
295/13E-21F 1 M 5- 3-65	Σ Ω	7.6	570	98 4 89	0.90	13	0.03	0	276	38 0 79 13	0.34	34 0 • 55	0.1	90.0	1	354	290
									-								

TABLE E-1
ANALYSES OF GROUND WATER
CENTRAL COASTAL DRAINAGE PROVINCE (T)

	Total hardness as Ca CO3		182	240
Jents in	TDS Evap 80°C r Evap 105°C Computed		314	361
constituents per million	50.1		1	1
Mineral parts p	Boron		0.10	0.12
	و د د د د د		0 8	4
	7 10 16 N.C. 3		21 0.34	0.45
million e value	Ch 10	10900	28 0 . 79 16	0,62
parts per million equivalents per million percent reactance value	Sulfote SO4		34 0.71 14	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
parts per equivalents percent re	Bicar - bonote HCU3		197 3.23 64	3.201
par	Carbon - ate CO3	TINO	0	0
i. s	Potas -	HYDRO	0.03	0.03
constituents	Sodium	SALINAS HYDRO UNIT	36	39 26 26
Mineral co	Magne- sium Mg	S	18 1.48 28	92 7 92 8
Σ	Colcium	01601	43 2•15 41	0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Specific conduct-	mhos at 25°C)		435	920
	H		8 • 0	
Тетр	when sampled in ° F	ΤI	1	
State well	led	POZO HYDRO SUBUNIT	305/15E-10G 2 M 10- 4-64	305/15E-21C 1 M

	\neg		3																		
7 01 0 hardness	00 CO CO CO		209			250		283			245		549		599						
T 0 5	Computed/		225	234		257	277	330	321		419	609	683	200	200		610		-		
	5.02		-			-		-			1		1		-						
Boron	В		0.08			0.11		60.0			0.05		0.05		0.13						
Fluo-	LL		0.1			0.1		0.5			0.5		0.2		9.0						
- 1N	NO 3		0.8	0.01		0 • 8	0.01	8	0.05		17	0.21	14	0.23	1	0.02					
Ch10 -	0.1	11000	17	0 • 48		18	0.51	25	0.71		291	52	296	8.35	150	4.23	74				
Sulfore	504		22	0.46		28	0.58	35	0.73		300	7.00	33	0.69	00	0.17	7				
Bicar -	нсоз	TINO	235	3.85		277	4.54	305	5.00	_	107	1.6	109	1.79	315	5.16	7 (
Carbon -	CO 3	O HYDRO	0			0		0			0		0		17	0.57	٥				
1	×	08159	1	0.03		7	0.03	7	0.03		1	0000	-	0.03	7	0.03					
Sodium	0 N	IN LUIS	12	0.52		15	0.65	21	0.91		139	5.04	139	6.04	100	4.35	74				
	0 1		27	2.22	110A2	34	2.80	42	3.45	F10A3	45	34	949	3.78	52	4.28	7 47				
Colcium	0 0		39	1.95		77	2.20	777	2.20		24	1.20	24	1.20	34	1.70	16				
(micro-	at 25°C)	SUBARE	441		YDRO SU	767		586		BAREA	1197		1195		776						
I		IYDRO	7.6		SUZ H	8 . 1		8.1		so su	7.5		7.9		8.4						
when	<u>-</u>	SUNIT ORO	58		LA	61		1			1		I		I I						
		MBRIA HYDRO SUB	55/ 6E-16A 2 M	10- 5-64	ARROYO DE	255/ 6E-34K 1 M	10- 5-64	265/ 8E- 6G 1 M	6-22-65	SAN SIMEGN	65/ 6E-11B 1 M	1-22-65	265/ 6E-118 2 M	9-21-65	265/ 6E-11H 1 M	7-21-65					
	Sampled PH (Micro- Colcium Mogne- Sodium Potas- Carbon- Bicar- Sulfate Chlo- Ni- Fivo- Boron Sili-	DH (micco Colcium Magne Sodium Polas Carbon Bicar Sulfate Chlo Ni Fluo Boron Sili TDS Society Colcium Sili TDS Society Society	When pH (micro Colcium Magne Sodium Potas Corbon Bicor Sulfate Chlo Ni - Fivo Boron Sulfate Colour Sulfate Colour Sulfate Colour Colour	Sumpled holes in Fig. 2. The part of the policy of the pol	PH (micro colcum Magne Sodium Potos Corbon Bicor Sulfate Chio Solution Sium Oie Boom Graph Solution Sulfate Chio Solution Sium Oie Boom Graph Solution Solution Sium Oie Boom Graph Solution Sulfate Chio Solution Sium Oie Boom Graph Solution Sium Oie Boom Oie Boom Oie Corporate Chian Sium Oie Boom Oie Corporate Chian Oie Boom Oie Corporate Chian Oie Boom Oie Corporate Chian Oie Oie Corporate Chian Oie	Sumpled he (micro labeled by (micro labeled la	Sumpled PH (micro Colcium Mogne Sodium Signa Sodium S	Suppled PH (micro	Sumpled PH (micro Colcour Mogne Sodium Sodium Solum So	SUBJUNITATION NOT SUBAREA TO A 2 TO A	Sumeral Parish Parish	Sumpled PH (Micro- Coltrum Mogne- Sodium Polas- Corbon- Broot- Sulfole Chlo- Ni- Fluo- Coltrum Mogne- Sodium Polas- Corbon- Broot- Sulfole Chlo- Ni- Fluo- Coltrum Chlo- Ni- Fluo- Coltrum Sulfole Chlo- Ni- Fluo- Coltrum Chlo-	Name	Name	Name Part March Part Part	Name	Subunit	Subunity Colicus Magnet Subunity Colicus Magnet Subunity Colicus Magnet Colicus Colicus	Sumple PH (mirco Colcium Mogne Solum Colcium Mogne Colcium Colcium Mogne Colcium Mogne Colcium Colcium	Submitted PH (mirco Cole Lun Mognet State State State State Mognet Mognet State Mognet State Mognet Mognet	Supple Part Control Part Sadium Part Sadium Part Sadium Part Sadium Part Sadium Part Sadium Sadium Part Sadium Sadium

TABLE E-1
ANALYSES OF GROUND WATER
CENTRAL COASTAL DRAINAGE PROVINCE (T)

	Totol hardness os Cours		376		216		546		247			551		312				
uents in	Evap 180°C hardness Evap 105°C as Computed Cours		767	458	398	379	250	274	283	284		688	693	298	296			
constituents per million	50 5		1		-		-		1			l		-				
Mineral parts p	80101		0.07		0.15		60.0		0.16			0.21		0.21				
	9 p		0 • 3		7.0		0.5		0.2		-	0 • 3		0.1	-			
	Note:		0		26	9 9 9	~	0.02	1.8	0.03		0		-	0.02			
million per million ctance value	Chlo:	11000	93	79.7	19	0 0 0 0 0	18	0.51	20	0.56		91	2.5/	14	0.39			
0	Suffore SC4		31	0.65	62	1.29	20	0.42	0 7	15		102	2.12	0	0.06			
parts per equivalents percent re	Bicar - bonate HCO3	SO UNIT	354	0.00	285	4.67	290	4.75	260	4.26		545	8.93	377	66.18			
e o o	Carbon -	ро нур	0		0		0		0			0		0			 	
.E	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0818	2 3	0.00	1000	0.0	7	0.03	7 0	0.03		4	0.10	-	0.03			
constituents	E DOS	SAN LUIS OBISPO HYDRO UNIT	39	1 • / 0	61	38	16	0.70	18	0.78		61	2.65	6	0.39			
Mineral co	Magne- s-um	S T10A3	64	4.03	27	32 32	36	2.96	37	53	T10A4	83	500	99	0.443			
2	E 0 0 0	T10A0	70	38	42	30	39	1.95 35	38	1.990 33		84	30	16	12			
Specific conduct-	micro- mhos at 25°C)	SUBARĘA	857		610		516		529		SUBAREA	1176		520				
	I a	RO	7.8		8 • 2		7.8		8.0			7.5		8 • 2				
Тетр	when sampled in ° F	BUNIT N HYD	-				1		62		A HYDRO	58		1				
State well	led	CAMBRIA HYDRO SUBUNIT SAN SIMEON HYDRO	265/ 7E-26C 1 M	69-17-7	265/ 8E-19CS1 M	50-57-5	275/ 8E- 6H 2 M	69-77-9	275/ 8E- 9P 2 M	10-0-04	SANTA ROSA	275/ 8E-21R 3 M	1010	275/ 8E-36LS1 M	69-67-6			

	nordness 05 Co CO3		573		552	1151	508	767	\$ 0 0
uents ın Iıon	Evap 180°C hardness Evap 55°C as		1006		768	2310	750	716	718
constituents per million	S 02		1		1	-	1	-	1
Mineral o	Buron		0.53		0.20	0 • 31	0.23	0.26	0 • 52
~	, d		7.0		0 9	0.5	0 • 5	0.5	0
	Z 0.7		107		22 0 • 35	80 1.29	27 0 • 44	15 0 • 24	0 0 0 0 0 0 0 0
million per million ctonce volue	0 0 0	11000	280		133	883 24.90	163	135 3.81 28	3 1 2 8 4 6 8 4 6 8 4 6 8 4 6 8 4 6 8 4 6 8 8 4 6 8 8 4 6 8 8 4 6 8 8 8 8
0	Sulfate Su4		52 1.08		37 0 . 7 5	123	36	33	0 36
parts per equivalents percent re	Bicor - bonate HCO3	OUNIT	478		664 10.88 69	564	507 8•31 59	546 8.95 65	7 4 7 6 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
por	Corbon oie CU 3	O HYDR	0		0	0	0	0	0.57
Ē	Potos.	08186	0.03		11 0.28	0.05	0.03	0.03	0.03
constituents	E 7 0 Z	SAN LUIS OBISPO HYDRO UNIT	162 7.04 38		100	340	3.91	92 4.00	4 . 2 2 2 3 3 1
Mineral co	Mog ne S t u m	S T10A5	86 7.07 38	T10A6	7.40	193	81 6.66	6.33	6.00.00
2	E 0	T10A0	88 4.39		3.64	143	3.49	3.54	3.00
Specific conduct-	. 0		1735	A	1335	3739	1307	1268	1255
	I a	BAREA	7.8	SUBAREA	8 • 1	8 - 2	α • 1	7 • 3	₹ • æ
Temp	sampled In ° F	SUNIT RO SUE	74	-	63	1	-	1	1
State well	Date sampled	CAMBRIA HYDRO SUBUNIT VILLA HYDRO SUBAREA	285/ 9E-26E 1 M 10- 6-64	CAYUCOS HYDRO	285/10E-32A 3 M	285/10E-33E 3 M	285/10E-33E 6 M	28S/10E-33E10 M 8- 3-65	285/10E-33L 1 M

TABLE E-1
ANALYSES OF GROUND WATER
CENTRAL COASTAL DRAINAGE PROVINCE (T)

	rdness	C0 CO3		267
. <u>c</u>	T D S T to!	ted Cc		358
constituents per million	Evap	Compu		
constituent per million	5,11-	5:05		-
Mineral	Boron	В		0.0
	Fluo-	LL		0 • 2
	Ni -	NO3		0 • 13 2
million	Chlo-	-0	11000	3.13
parts per million equivalents per million percent reactance value	Sulfate	504		0 0 2 7 4
parts per equivalents percent r	Bicor -	нсоз	TIND O	228 3•74 51
par	Carbon -	CU3	O HYDR	0
CI	Potos -	×	081SP	0
constituents	Sodium	0 2	SAN LUIS OBISPO HYDRO UNIT	1,83
Mineral co	Magne-	o• ∑	S. T10A7	440
Σ	Calctum	Cc	T10A0	0 0 0 0 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3
Specific conduct-	(micro-	at 25°C)		735
	H		REA	8 • 2
Temp	sampled	_	. HYDRO SUBUNIT OLD HYDRO SUBAREA	
			CAMBRIA HYDRO SUBUN OLD HYDRO SUI	
well	Data sampled		HYDR.	980
State well	a+t		RIA	3 I O E B I O
			CAMB	29 S/10E- 3G 8- 3-65

	Took 3		742	1	99	588		405		880	762	
uents in	TDS To see Evop 180°C hardness Evop - 5°C os Compuled Cours		1070	1063	438	735	732	508		1523	1113	
constituents per million	S -:- S		-			1		1		-	1	
Mineral	, a		0.11	ć	0.16	0.11		60.0		0.14	0	
	, p		0 • 3		7.0	7.0		0		0.5	7.0	
	2 0 2 0 2		12 0.19	7	U•26	2	0.03	0.02		3	0.10	
million per million ictance value	C + 10	11000	360	000	6.63	118	3 23	1.89		13.76	255	
0	\$ 50 50		110	11	2.33	106	2.21	1.39		3.10	2.31	
parts per equivalents percent re	Bicar - bonate HCC3	O UNIT	467	3 3	8 - 77	553	9.06	381 6.24 63		744	656	
e d b e d	Corbon ote	O HYDR	0	(>	>		13		0	20 0 • 67	
Ē	0 ×	08186	0.05	C	0.05	=	0000	0.03		0.15	0.13	
constituents	£ 7 0 Z	SAN LUIS OBISPO HYDRO UNIT	124	27	4.35	10	2.65	2.00		252 10.96 38	132 5.74	
Mineral co	Mogne s-um	5	111	4 5	8 • 39	200	8.06	5.26	11082	13.49	11.68	
2	E 2 0 0	11080	114	28	5.34	74	3.69	57 2.84 28		8.0 4.09 14	3.54	
Specific conduct-	mhos at 25°C)		1857	ò	1000	1302		907	~	2561	1859	
	I a	RO SUBUI SUBAREA	8 . 2	,	0	8.2		w •	SUBARE	8 • 2	8 • 4	
Temp	sampled In ° F	HYDRO RO SUL	1		1	68		88	HYDRO S	-	67	
State well	Date sampled	SAN LUIS OBISPO HYDRO SUBUNIT MORRO HYDRO SUBAREA	295/10E-250 1 M	c	4- 6-65	295/10E-25F 1 M	8- 3-65	295/10E-25F 4 M 8- 3-65	CHORRO HY	29S/11E-32M 1 M	8- 3-65	

TABLE E-1
ANALYSES OF GROUND WATER
CENTRAL COASTAL DRAINAGE PROVINCE (T)

	T, toll hardness os		80		136		777		47		35		70		52		45		
constituents in per million	T D S T. to I	1	240	195	340	303	160	66	92	105	160	101	190	178	130	109	120	97	
constituent per million	Sitte ca SiOs		1				-		1		1		-		-1		1		
Mineral parts p	Boron		0		0.02		0.02		0.02		0.02		0.02		0		0		
	Fluo-		0.1		0.1		0.1		0.1		0.1		0.1		0.1		0.1		
	rote .	7	45	22	21	9	2	2 2	5	0.08	9	0.10	12	0.19	17	0.27	13	0.21	_
million e value	Chlo =	11000	58	50	140	3.93	27	41	30	0.85	36	1.02	56	1.58	27	0.70	26	0.73	
per	Sulfate		8		23	04.0	6	0000	9	0.12	6	0.06	16	0.33	9	0.12	2	0.10	
pe	Bicar - bonate	TIND	44	22	34	0.56	61	54	55	0.85	41	0.67	99	1.08	47	0.77	41	39	
parts equiva percen	Carbon -	O HYDRO	0		0		0		0		0		0		0		0		
. <u>c</u>	0 S S X	08189	10.03		0	0.03	0	0.03	1	0.03	7	0.03	-	0.03	1	0.03	1	0.03	
constituents	E 0 20		36	64	57	2.48	21	0.91	21	0.91	25	1.09	39	1.70	19	0.83	18	0.78	
Mineral co	Mogne.	83	11	28	16	1.32	4	0.33	4	0.33	9	0.49	11	0.90	7	0.58	9	0.49	
Σ	Calcium	80	14	22	28	1.40	11	0.00	12	0.60	7	0.20	10	0.50	6	0.45	80	0.40	
Specific conduct-	mhos	2	369		612		186		196		199		344		212		187		
	Hd	SUBUNIT	7.8		7.1		7.5		7.2		7.6		7.6		7.7		7.9		
Temp	when sampled in ° F	HYDRO	-		1				1		99				1		1 5		
=	Date sampled	SAN LUIS OBISPO HYDRO LOS OSOS HYDRO	305/10E-13A 1 M	8- 3-65	30S/10E-13A 2 M	8- 3-65	305/10E-13A 6 M	8- 4-65	305/10E-138 2 M	8- 3-65	30S/10E-13L 1 M	8- 4-65	30S/10E-23H 1 M	8- 5-65	30S/11E- 7G 1 M	8- 3-65	30S/11E- 7G 3 M	8- 3-65	

3 82		75		30		8 9		2 *			0.5	2.2	7	
hardn Co.S												6		
T D S Evap 180°C Evap 105°C Computed		138	125	1849	1795	158	147	131	96		1339	3	1695	
. 03		-		-		I		1			1	1	l	
B B		0		0 * 0		0		0			0.04	l	0.34	
7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 .		0		1.1		0		0.1			0.5	1	0	
		3	2	113	9	26	17	5	0 0		38		0.02	
Chlo -	T1000	33	38	820	70	77	1.7.4				13.82	658	625 17.63	
Sulfate 504		4 0 0 0 8	(A)	94	9	12	0.25	,	-		39		1.77	
Bicor - bonate HCO3	O UNIT	83	56	362	18	35	0.57	31	0.51		478	252	558 9.15 32	
Carbon -	O HYDR	0		0		0		0			0.43	v 0	0	
Potos -	OBISP	0.03		0.03				0			0.03	i t	0.20	
E nipos	AN LUIS	20	36	318	43			21	0.91		230	7	296 12.87 45	
Magne.		11	38	15.99	040	80	0.66	9	0.49	11084	7.24	0	9.13	
E 7:0.00		12	25	112	17	10	0.50	7	0.35		136	87	132 6.59	
mhos at 25°C)		251		3172		280		198		HYDRO S	2330	2378	2755	
I	SUBU	7.8		8.1		7.5		7.0		O CR	4 • 8	7.5	0	
when sampled in ° F	HYDRO	49		69		68		-		08189	99	1		
	15P0 150S	Σ		Σ		Σ		Z I		LUIS	Σ	Σ	Σ	
Date sampled	N LUIS OBI	13/11E- 7N		15/11E- 8J	101)S/11E-18Q	10- 7-64	05/11E-18R	8- 5-65	SAN	05/12E-290 10- 7-64	15/12E-12N 10-13-64	15/12E-32D 10-14-64	
	PH (micro-coloum Mogne-sodium Sodium Sium of solum) Prior-sulfate Chio-nice N: Fig. Before solum sium of solum sium sium of solum sium sium of solum sium sium of solum sium sium sium sium sium of solum sium sium sium sium sium sium sium si	Mingro Co. c.	## Completed PH (micro - Co.cc.um Mogner Sodium Polos - Carbon - Biror Sullole Chio - N. F. v. Beror S. T. 105 1	pH (micro- mhos) co-crum sum Mognet- sum Corbon- sum Groon of Early Suitofe Chio- sum No.3 F (s) suitofe Suitofe Suitofe <td> Sample PH (micro - Corcium Mogne Sodium Potos - Corbon Bicor - Sulfote Chio - Ni Full Bicor Sulfote Chio - Chio Sulfote Chio - Ni Bicor Chio - Ni Chio - Ni Bicor Chio - Ni Bicor Chio - Ni Bicor Chio</td> <td> March PH (micro - Co.cc.um Mogne Sodium Polos - Corbon Bigging Micro - Co.cc.um Mogne Sodium Polos - Corbon Bigging Corpon Color C</td> <td> Fig. /td> <td> March PH (micro Coverage No. 1) March Marc</td> <td> Participation Participatio</td> <td> March PH (micro co.c.um Magne, Sodium Potas Carbon Green Sulfore Carlo No. Fag. Green Sodium Co.c.um Co.c.um No. Fag. Green Sodium Co.c.um Co.c.um No. Fag. Green Sodium Co.c.um C</td> <td> March Park March March</td> <td> March Marc</td> <td> March Park Continue Park Pa</td> <td> Part Continue Part Par</td>	Sample PH (micro - Corcium Mogne Sodium Potos - Corbon Bicor - Sulfote Chio - Ni Full Bicor Sulfote Chio - Chio Sulfote Chio - Ni Bicor Chio - Ni Chio - Ni Bicor Chio - Ni Bicor Chio - Ni Bicor Chio	March PH (micro - Co.cc.um Mogne Sodium Polos - Corbon Bigging Micro - Co.cc.um Mogne Sodium Polos - Corbon Bigging Corpon Color C	Fig. Fig.	March PH (micro Coverage No. 1) March Marc	Participation Participatio	March PH (micro co.c.um Magne, Sodium Potas Carbon Green Sulfore Carlo No. Fag. Green Sodium Co.c.um Co.c.um No. Fag. Green Sodium Co.c.um Co.c.um No. Fag. Green Sodium Co.c.um C	March Park March March	March Marc	March Park Continue Park Pa	Part Continue Part Par

TABLE E-1
ANALYSES OF GROUND WATER
CENTRAL COASTAL DRAINAGE PROVINCE (T)

639	Total hardness os CaCO3	
1312	5 000	luents in
39	Silt-	
0.52	-	_
0 • 5	7 d e	
0	N 0 N N N N N N N N N N N N N N N N N N	
454 12.80 54	chlo-	million e value
1.39	per contone sulfate SO4	million s per reactance
592 9.70 41	equivalents percent Broor- Broore HCO3	parts per equivalents percent
0	Carbon -	par
0.20	T	1
252 10.96	Constituents Sodium	nstituents
7.07	Mineral co	1
114 5.69 24	W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Σ
	Specific conduct- ance (micro- mhos at 25°C)	Specific conduct-
1SP0 CR HYDI	ı.	
081SP	Temp when sampled in ° F	Temp
2 M		
SAN L 315/12E-32D 3-15-65	State well number Date sample	State well
2 M	p	

	8		31			317			504			369			7	_		3	_		7		_	2	_	_	_
Ë	hardness os	\$ 7.0°	43												937			364			464			243			
87	T D S Evap 180°C Evap 105°C		888		877	500		465	748		708	670		260	2032		1511	552		532	688		663	610		465	
constituent per million	Sifte		1			-			1			37			1			1		_	-			ļ			
Mineral o	Boron		0.12			0.10			0.08			0.06			0.12			0.10			0.15			90.0			
-	F100-		0.1			0.1			0.2			4.0			0.1			0.1		_	0.2			0.1			
	trate NO.		33	0.53	3	10	-	2	5	0.08	7	55	0.71	8	23	0.37	1	31	0.50	2	0			127	2.05	28	
million e value	7 de 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	T1000	268	7.56	147	99	1.80	21	103	2.90	22	4 8	1.35	15	596	16.81	99	59	1.66	18	73	2.06	17	71	2.00	28	
ts per million reactance valu	Sulfate		110	2.29	14	132	2.75	33	168	3.50	27	136	2.83	31	192	4.00	16	140	2.91	31	188	3.91	32	80	1.67	23	
equivalents percent r	Bicar - bonate HCO3	O UNIT	341	5.59	35	226	3.70	77	403	6.61	20	261	4.28	47	0			262	4.29	94	378	6.20	51	76	1.54	21	
edi	Carbon -	O HYDR	0			0			0			0			124	4.13	16	0			0			0			
ï	Potos -	08156	9	0.15	1	2	0.05	-	М	0.08	-	2	0.05	7	10	0.26	7	6	0.08	~	4	0.10	7	3	0.08	-1	
constituents	Sodium	SAN LUIS OBISPO HYDRO UNIT	160	96.9	77	45	1.96	24	63	2.74	21	42	1.83	20	205	8.91	32	52	2.26	23	64	2.13	18	58	2.52	34	
Mineral co	Mogne - sum		63	5.18	33	0 4	3.29	39	52	4.28	33	0 4	3.29	36	22	1.81	9	43	3.54	37	54	7707	37	27	2.22	30	
Σ	Calctum	1000	69	3.44	22	61	3.04	36	116	5.79	45	82	60.4	777	339	16.92	61	75	3.74	36	109	5 . 44	42	53,	2.64	35	
conduct-	mhos ot 25°C)	SUBARE	1500			745			1140			869			2620			865			1060			069			
	I a	SUBUNIT	7.9			7.9			7.7			7.6			11.4			8.1			0 . 8			7.9			
Тетр.	sampled in °F	DRO SI	67			99			99			1			79			63			89			-			
	1	GR.	S			S			S			Σ	Ī		S			S			S			Σ			
State well	Date sampled	ARROYO GRANDE HYDRO ARROYO GRANDE	325/12E-24R 1	6-16-65		325/12E-24R 2	6-16-65		325/12E-24R 3	6-16-65		325/13E-29G 1 M	10-13-64		325/13E-30F 1	5-28-65		325/13E-30F 2	5-28-65		325/13E-30F 3	5-28-65		325/13E-30H 2 M	10-13-64		
0,	Do	ARRO	325/			325/			325/			3251	1		3251			325/			325/			325/	1		

TABLE E-1
ANALYSES OF GROUND WATER
CENTRAL COASTAL DRAINAGE PROVINCE (T)

	Total hordness as		231		373		301		462		296		899		551		399		
constituents in per million	T 0 5 Evap 180°C Evap 105°C Computed		594	471	700	909	670	554	814	633	919	632	1020	696	804	744	793	099	
consti	S.111- ca S.02		1		1		1		1		1		-		1		i i		
Mineral	Boron		0.07		90.0		0.05		0.11		0.22		0.15		0.08		0.05		
	Fluo- ride F		0		0.5		0.5		0.1		9.0		0.1		0.1		0.2		
	r or r		125	2.02	108	1.74	128	2.06	22	0.35	80	0.13	0		0		104	1.68	
million per million ctance value	Chlo- ride Cl	T1000	84	2.37	80	2.26	83	2.34	111	3.13	116	3.27	55	1.55	73	2.06	91	2.51	
0	Sulfate SO4		83	1.73	149	3.10	134	2.79	144	3.00	178	3.71	498	10.37	231	4.81	185	3.83	
parts per equivalents percent re	Bicar - bonate HCO3	O UNIT	78	1.28	175	2.87	76	1.54	309	5 • 0 6	224	3.67	245	4.02	423	6.93	168	2.75	
pod	Carbon - ote CO3	O HYDR	0		0		0		0		24	0.80	0		0		0		
ri	Potas - K K	081SP	2	0.05	1 10	0.08	М	0.08	2	0.05	6	0.08	5	0.13	2	0.08	<i>m</i> (20.0	
constituents	Sodium	SAN LUIS OBISPO HYDRO UNIT	62	2.70	56	2.43	09	2.61	55	2.26	102	4.43	75	3.26	57	2.48	62	2.010	
Mineral co	Magner stem Mg	5,	24	1.97	39	3.21	32	2.63	54	4000	77	3.62	06	7.40	75	6.17	43	33	
Σ.	Colcium	1000	53	2.64	, w	4.24	68	3 . 39	96	4 • 79	94	2.30	119	5.94	76	4.84	88	4.44	
Specific conduct-	(micro- mhos at 25°C)	a a	810		1005		930		1080		1100		1320		1145		1082		
	H	SUBUNIT	7.2		7.7		7.4		8 • 2		8.6		7.9		8•1		7.5		
Temp	when sampled in ° F	JRO SU			69		-		8		69		67		49		1		
		E HY	× ×		ις Σ		Σ 0		M		1 S		2 S		3 S		Z M		
State well	Date sampled	ARROYO GRANDE HYDRO	325/13F-30K		325/13E-30K		325/13E-30K10	6-10-65		10-13-64		6-11-65		6-16-65		6-11-65	325/13E-300 2	6-10-65	

							_				_		_	_		_	_	_		_			_			
	Nordness os Calcus		363		437			390		432			391			445			436			397				
constituents in per million	Evap 180°C.		733	623	786	725	00	760	682	784		715	969		642	817		734	819		729	560		542		
consti per mi	\$		1		-			I		-			i			1	_		1						_	
Mineral parts p	, a		0.05		0.07			0.08		0.07			0.02			0.10			90.0			0.02				
) 0) 0 u '		0.2		0.3			0.3		0.3			0.3			0.3			0.3		_	7.0		_		
	rote NC3		118	1.90	117	1.89	4	121	18	115	30	16	81	1.31	12	113	1.82	15	120	1.94	16	65	0.95	10		
million e volue	C	11000	76	2.65	103	2.90	1	103	26	101	2.85	24	93	2.62	24	66	2.79	23	100	2.82	24	64	1.38	15	Ī	
million per eoctono	Sulfate SU4		156	3.25	181	3.77	10	159	30	178	3.71	31	199	4.14	39	184	3.83	31	178	3 • 71	31	138	2.87	30		
parts per equivalents percent r	Bicor - bonote HCU3	O UNIT	137	2.25	219	3.59	2	178	26	208	3.41	58	162	2.66	25	195	3.20	56	215	3.52	29	262	4.29	45		
par	Carbon - ate	OBISPO HYDRO UNIT	0		0			0		0			0		_	17	0.57	5	0			0				
i.	Potos -		2	0.05	2	90.0		0.05		2	0.05		7	0.03		3	0.08	-	3	0.08	1	2	0.05	٦		
constituents	E nipos	SAN LUIS	9	2.83	82	3.57	ì	3,480	· (C)	16	3.30	28	70	3.04	28	16	3 • 30	27	78	3.39	28	36	1.57	16		
Mineral co	M 0 0 0 M	S T10C1	39	3.21	51	4.19		3 4 4 5	30	51	4.19	35	55	4.52	42	90	4.11	33	47	3.87	32	42	3.45	36		
2	£ 0	1000	81	4004	91	4.54		18		89	7407	37	99	3.29	30	96	4.79	39	16	4.84	04	06	67.7	74		
Specific conduct-	mhos at 25°C)	SUBAR	1018		1214			0 7 7 7		1185			1081			1162			1193			206				
	T C	SUBUNIT	7.4		7.4			7 • /		7.6			7 . 4			8 • 4			7.5			8.0				
Тетр	sampled In ° F	LLI	1		1			1		1			1	_		I		ī	-			1				
State well T	Date sampled	ARROYO GRANDE HYDRO SUBUNIT ARROYO GRANDE HYDRO	325/13E-300 4 M	6-10-65	325/13E-318 4 M	6- 4-65		325/13E=31B 5 M		S/13E-318 6 M	6- 5-65		325/13E-318 7 M	6- 5-65		325/13E-318 9 M	7-27-65		325/13E-31B10 M	6- 5-65		325/13E-31812 M	6- 5-65			

TABLE E-1

ANALYSES OF GROUND WATER

CENTRAL COASTAL DRAINAGE PROVINCE (T)

	Tutal hardness as		476	608	290	620	653	338	902	702	
uents in	TDS Total Evap 180°C hardness Evap 105°C as Computed Coucs		190	2509	820	1006	1160	628	1375	1135	
constituents per million	Sift- ca \$:02			1	F	l	-	1	1	1	
Mineral o	Boron		0.08	0.45	0.05	0.11	0.12	0.15	0.02	90.0	
	Fluo- ride		0.3	6 • 0	0 • 4	0.1	0.1	0 • 1	9.0	7.0	
	rote NO3		90	12 0 • 02	0	0	0	0 • 0	1.37	99 1•60 10	
million ce value	Chlo-	11000	96	960	1.18	1.47	1.61	2.51	93 2.62 13	82 2.31 14	-
millic per eacton	Sulfate SO4		183	336	242 5.04 37	394	545 11+35 68	144 3.00 28	460	402 8.37 51	
parts per equivalents percent r	Bicar - bonote HCO3	LIND O	253	520	454 7.44 5.44	354 5 • 80 37	234	329	348 5•70 28	259	
par	carbon -	O HYDR	0	0	0	0	0	0	34	0	
. <u>.</u>	Potos -	OBISE	0.08	1.02	0.08	0.10	0.10	0.08	0.05	0.03	
constituents	E PIPOS	SAN LUIS OBISPO HYDRO UNIT	2.61	21 670 29•13 69	46 2.00 14	2.91	3.57	94 4 0 0 9 3 7	62 2.70 13	60 2•61 16	
Mineral co	Magner slum 'Mg	S T10C1	52	35 98 8.06 19	5.26 38	6.00	78 6.41 38	3.87	99 8•14 39	91 7.48 45	
2	Calcium	T10C0	105	4.09	131	128 6 • 39	133	2.89 2.89	198 9.88 48	131	
Specific conduct-	mhos at 25°C)	SUBUNIT THYDRO SUBAREA	1140	4255	1163	1370	1370	1000	1686	1466	
	H	SUBUNI T HYDRO	8 - 2	7.5	8 • 1	80 1	8 • 0	7.7	8 .	0	
Тетр	when sampled in ° F	DRO S	1	1	1	1	ì	1	69	68	
State well	le d	ARROYO GRANDE HYDRO ARROYO GRANDI	32S/13E-31B13 M 7-27-65	325/13E-31C 1 M 4-14-65	325/13E-31F 1 M 7-27-65	325/13E-31F 2 S 5-12-65	325/13E-31F 3 S 5-14-65	325/13E-31F 4 5 5-12-65	325/13E-31H 1 M 7-27-65	325/13E-31H 2 M 7-27-65	

TABLE E-1
ANALYSES OF GROUND WATER
CENTRAL COASTAL DRAINAGE PROVINCE (T)

State well	Temp		Specific conduct-	2	Mineral co	constituents	ri s	pod	parts per equivalents percent re	r million ts per million reactance value	million e value			Mineral parts	constituent	constituents in per million	
Date sampled	sampled In ° F	I	(micro- mhos	Calcium	,	Sodium	Potos Eura	Carbon -		Sulfote	0410	role	, 4			TDS Tordess	7.10 hordness 0.5
			01 23 C)	٥	5	o Z	×	C 0 3	HCO3	50.4	-	E) Z		в	5 .2	Computed	Co3
ARROYO GRANDE HYDRO	10	SUBUNIT	SUBUNIT T10C0 HYDRO SUBAREA		S, T10C1	SAN LUIS OBISPO HYDRO UNIT	08156	O HYDR	O UNIT		11000						
325/13E-31J 2 M	-	8 • 3	1359	156	75	51	2	12	408	301	59	58	0.5	0.04	1	1070	698
7-27-65				7.78	6.17	2.22	0.05	0 • 40	69.9	6.27	1.66	0) (,
		1	6					1	74	40	0 7	0				212	
325/13E-32D 1 M	2	6.7	885	4.14	3.13	39	0.05	0	3.26	131	1-66	1.44	0.3	0.04	1	528	364
				949	35	19	7		36	30	18	16				539	
325/13E-32D 3 M	1	8.1	866	83	38	35	2	0	198	130	53	89	0.3	90.0	-	561	364
69-97-1				4014	J. 13	1.52	0.05		3.25	2.71	1.49	1.44				3 6 3	
						4	4		0	00	-	10				875	
NIPOMO MESA HY		DRO S	DRO SUBAREA		10C2												
11N/35W- 5L 1 S 10-15-64	69	7.8	711	60.2	2.30	2.04	0.08	0	157	158	53	6.7	0.2	0.03	1	485	592
				04	31	28	-		34	77	20	1				433	
11N/35W- 9P 1 S		7.2	289	12	90%	33	2 5	0	4 6	20 1	53	12	0	0	-	207	5 0
				23	19	56	20.00		30	9	1.47	61.0				150	
									_				***			-	

TABLE E-1
ANALYSES OF GROUND WATER
CENTRAL COASTAL DRAINAGE PROVINCE (T)

	Toto nardness os Colous		339	143	855	237	173	145	393	1825
uents in	T D S T to S Evap 180°C hardness Evap 105°C as Computed Coves		2094	580	2226	0440	418	508	049	7134
constituents per million	Sile- ca \$:02		1	-	43	38	1	25	16	-
Mineral parts p	Boron		1.62	0.53	1.16	0.24	0.27	0.42	0.10	3.25
	Fluo- ride F		9.0	9 • 0	0.7	7.0	0.5	0.8	0.5	0.5
	rote NO3		23 0.37	63 1•02 12	2.73	40	38	15 0•24	86 1•39 13	92 1•48
million e volue	Ch 10 -	T1100	433 12.21 36	2.28 2.28	385 10.86 32	36	31 0.87	1.10	58 1.64	1180 33.28 32.32
million per eactanc	Sulfote SO 4		835 17.38 51	122 2 54 29	835 17.38 50	117 2.44 33	1.31	135 2 81 34	188 3.91 37	3272 68•12 65
parts per equivalents percent	Bicor - bonate HCO3	UNIT	239	176 2.88 33	212 3•47 10	202	3.75	254 4•16 50	3.56	2.70
par	Carbon -	HYDRO	0	0	0	0	0	0	0	0
.Ç	00 to	PLAIN HYDRO UNIT	0.15	0.05	0.03	0.03	0.03	0.05	3 0.08	0.10
constituents	Enipos	CARR120	630 27.39 80	135 5.87 67	390 16.96 50	63 2 • 74 37	3.17	126 5•48 65	60 2.61 25	1630 70.87 66
Mineral co	Mogne- stum Mg	Ü	2.38	8 0 • 66	5.76	20	1.40	1.40	3.37	231 19•00 18
Σ	Colcium Co		88 4•39 13	2.20	227	3.09	41 2.05 31	30 1,50	90 4 • 49 43	350 17•47 16
Specific conduct-	mhos ot 25°C)		2750	800	3030	765	049	816	978	8592
	I a		7.8	7 • 8	7 • 8	7 • 8	8 0	8 2	8 • 1	7.2
Temp	when sampled in ° F		1		1	-	1	1		1
			1 S	Σ	Σ	Σ	Σ	Σ	Σ	Σ
State well	Date sampled		11N/26W- 2G	295/17E-13R 1 10- 5-64	30S/18E- 1L 10- 7-64	30S/18E- 2N 10- 7-64	30S/18E-12N 10- 7-64	30S/18E-13M :	30S/18E-23D :	30s/19E- 8E :

	hardness as		266	2236	3150	423	370	5 R 3	653	523
stituents in million	Evap 180°C h		649	5562	10460	1110	680	2380 5418	710	789
constituents per million	Silt.		1		36	i	24	-	-51	1
Mineral parts p	Boron		0.47	7.80	6.30	1.14	0.38	16.50	0.15	9
	Fluor		1.0	9.0	9.0	ο • •	1 • 0	9. 7	6.0	0
	trote N		41 0.66	90 1.45	175 2.82	32 0 52	30	0	2 0 • 0 3	20 0.32
million e value	Ch 10 -	11100	1.69	465 13.11	1525	1.83	1.47	748 21.09	31 0 87	1.44
millior per eoctono	Sulfate \$0.4		231 4.81 4.5	2654 55.26	5264 109.60	488 10.16	280	2661 55.40 68	301	284 5 • 91 43
equivalents percent	Bicor - bonote HCO3	TINC	215	162	184	253	3.26	306	300	378
por	Carbon -	PLAIN HYDRO UNIT	1	0	0	0	10	0	0	0
Ë	Potos -	PLAIN	0	0.23	0.13	0 • 0 5	0.05	10	0.10	0 0 0 0 5 2
constituents	Sodium	CARR 120	127 5.52 51	665 28.91 39	2250 97.83 61	196 8.52 50	94 4.09	1670 72.61 88	2.74	3.61
Mineral co	Mogne.	Ö	36 2.96 27	175	462 37.99 24	56 4.61	3.95	4.69	63 5•18 43	6.00
Σ	C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		2.35	30.29	500 24.95	3.84	3.44	102	3.99	4. 44 31
Specific conduct-	1 0		076	2400	11507	1537	1030	0049	1054	1260
	ī		8	7 • 7	0	8 • 1	φ •	6.6	0	7 . 9
Temp	sampled In ° F		1	1	1	1	1	1	1	1
			Σ	Σ	Σ	M	Σ	Σ	Σ	Σ
State well	Date sampled		30S/19E-19P 1 10- 7-64	30S/19E-23J 1 M	305/19E-23M 1 M	305/19E-29K 1 M	305/19E-29N 1 M	30S/19E-29Q 1 M	305/19E-30G 1 M	30S/19E-32G 1 M

TABLE E-1
ANALYSES OF GROUND WATER
CENTRAL COASTAL DRAINAGE PROVINCE (T)

	3 %		0	n
	Tchal hardness as Call3		107	227
tuents in	TDS troil Evop 80°C hordness Evop 15°C os		2978 1070	3929
constituent per million	5, 1. co \$ 0.2		1	0
Mineral constituents parts per million	8 8		3.60	2 8 3 5
	7 00 7 de		9 • 0	o.
	troite NC 3		0 • 0	8 -1 6 • 4 5
million e value	Chio- ride	11100	596 16.81	7 - 050
parts per million equivalents per million percent reactance value	Sulfate SO 4		1039 21•63 50	2344 48.80 82 82
parts per equivalents percent re	Bicar - bonate HCO3	TINC	304	2.620
por	Carbon - ate	HYDRO (0	0
Ë	Potas -	PLAIN	8	0 • • •
constituents	Sodium	CARRIZO PLAIN HYDRO UNIT	520 22•61 51	15 9 9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Mineral co	Magne- stum M.g.	70	124 10•20 23	213
Σ	£ 7-00		224 11•18 25	27 56 0 4 6 4 6 4 6 4 6 4 6 4 6 4 6 4 6 4 6
Specific conduct-	mhos at 25°C)		3100	4219
	I a		7.9	O • 80
Temp	when sampled in ° F		i i	1
Stote well	le d		30S/20E-18C 1 M 10- 7-64	305/20E-30K 1 M

	hordness	50003		457		386		06		230		224		401		206		841	
ē.	10°C hor	, o		849	653	658	575	355	329	510 2	28	47 2	56	77 4	91	500 2	994		0
constituents ser million	T 0 S	Compo		9	9	9	2	6	n	2	4	7	4	9	5	2	4	1452	1346
const per m	5 00	502				1		1		-		1		İ		55		1	
Mineral	90	Э		0.17		0.17		0.10		0.10		0.14		60.0		90.0		0.32	
) b	u		9.0		0.5		0.5		0.5		7.0		7.0		0.3		8.0	
	2 0	N . 3		4 0 0 0 0 0 0		~	0.05	21	0.34	15	0.24	21	0.34	m	0.05	15	0.24	3	0.53
per million actance value	0 4 10	- 0	T1200	34		35	0.99	153	4.31	171	3.41	127	3.58	77	1.24	114	3.21	14	2.09
0)	Sulfate	S C 4		289	24	245	5.04	æ	0.17	5	1.08	64	1.02	3	4.83	6	2.06	69	14.39
equivalents percent		HCC3	YDRO U	256	37	545	4.02	52	0.85	17	2.87	164	2.69	251	4.11	06	1.48	293	4.80
p e d	Corbon	3	YAMA H	0		0		0		0		0		0		0		0	
C S	Potos -	×	RIA-CU	2		2	0.05	2	0.05		0.08		0.08	2	50.0	9	0.08		0.13
constituents	Sodium	o Z	SANTA MARIA-CUYAMA HYDRO UNIT	7.04	18	51	2.22	06	3.91	7.0	3.04	9	2.96	24	2.35	19	2.91	120	5.22
Mineral co	g n e. *	5	v)	51	37	55	4.28	11	0.90	17	1.40	15	1.23	77	3.62	22	1.81	91	7.48
Š	E	٥	T12A0	66	777	69	3.44	18	0.90	79	3.19	9	3.24	88	4.39	94	2.30	187	423
Specific conduct-		at 25°C)		1011		190		1084		750		808		934		708		1848	
-	Ha		TINU	7 • 8		8.0		7.3		7 • 8		7.6		8•1		7.2		7.8	
Temp	sampled	-	SUBL			-		-		t i	П	1		89		1		1	
			HYDRO	1 S		1 S		1 8		1 S				4 5		1 5		1 5	
State well	Date sampled		SANTA MARIA HYDRO SUBUNIT	9N/33W- 6G 1 7- 8-65		9N/33W- 8L 1	10- 6-64	9N/33W- 9A 1	10- 6-64	9N/33W-18R 1	10- 6-64		7- 8-65	4 H8 -W4E/N6	7- 9-65	9N/34W- 9E 1	10- 7-64	10N/33W-20F 1	7 - 8 - 65

TABLE E-1
ANALYSES OF GROUND WATER
CENTRAL COASTAL DRAINAGE PROVINCE (T)

EH 10			LO.		00		Jt.	0	_	0
Total hardnes as Cold (3		561	585		848	841	914	560	537	870
T D S Evap 180°C Evap 105°C Computed		890	911	865	1306	1436	1642	990	1005	1506
		1	1		l	1	1	30	32	1
Boron		0.20	0.22		0.24	0.26	0.34	0.20	0.21	0.23
Fluo- ride		0 • 3	9.0		7.0	0.8	1.0	1.0	0.5	7.0
Nt - trate NO 3		17	22	0 • 35	10.44	40	66 1•06	18 0.29	23 0.37	70 1+13
Chio-	11200	1.30	500	1.41	2.28	2.23	231	1.92	3.33	2.00
Sulfate SO 4		405	396	8.24	596 12.41 59	696 14.49 68	539 11.22 43	370	329	670 13.95 62
Bicar - bonate HCO3	YDRO UI	276	31	4.38	292	238 3•90 18	428 7.01 27	254 4•16 30	3.74	326 5•34 24
Carbon - ate CO3	YAMA H	0	0		0	0	0	0	0	0
Potos -	RIA-CU	3	3 1	0.08	0.10	0.10	0.13	0.08	0.08	0.10
Sodium	ANTA MA	3.13	22	2.87	95 4•13 19	111 4.83 22	189	3.09	3.65	105
Mogne- stum M g	v	60 4.93	34	4 85	100	7.57	91 7•48 28	5.10	5.10	96 7.90 36
Calcium	T12A0	126	137	6.84	175 8•73 41	185	216 10•78 41	122 6.09	113	190
mhos at 25°C)		1250	1290		1650	1823	2280	1253	1311	1750
H	TINI	8.1	7.7		7 • 7	7.9	7.2	8 • 2	8 • 2	0
when sampled in ° F	O SUBL		1		1	1	1	1	1	1
	HYDR	2 S			S	1 S		1 S	2 S	2
Date samples	ANTA MARIA	0N/34W- 3P 10- 6-64		7- 8-65		0N/34W-17F 7- 8-65	ON/34W-18D 7- 8-65	0N/34W-21R 10- 6-64	0N/34W-26H 10- 6-64	10N/34W-29N 1 6- 3-65
	PH (micro Colcium Magne Sodium Poiss Corbon Bicar Sulfate Chio Ni Fiuo Boron Siii TDS Co Espanded Ot 25°C) Co Mg No K CO3 HCO3 SO4 CI NO F F B SiO2 Computed	Witten DH (micro Colcium Mogne Sodium Potos Corbon Bicar Sulfate Chio Ni - Fiuo Boron Silin	Colicium Magne- Sodium Polos- Carbon- Bicar- Sulfate Chio- Ni- Fluo- Boron Silin-	Witten PH Chical Magne Sodium Potos Potos Sodium Potos Sodium Potos Sodium Potos Sodium Potos Sodium Potos Potos Sodium Potos Minds PH Micro Colcium Magne Sodium Poiss Corbon Bicor Suitate Chio Ni - Fiuo Boron Suitate Colcium Magne Sodium Suitate Corbon Bicor Suitate Colcium Name	Minch Minc	Marie PH (micro colrum Magne Sedum sium si	Nicolar Nico	Sumple PH Micro Coltum Nogare Sodum Sodum Sum Sodum Sumple Minos Sumple Minos Sumple Minos Sumple Minos Sumple Minos Summer Minos Su		

Mogne	State well	Temp		Specific conduct-	Σ	Mineral co	constituents	i.	equ	parts per equivalents percent	0	million per million ctance value			Mineral parts p	consti	constituents in	
Sampled March Ma		when		once (micro-	0 10 10		E	Ţ.,	00450		Collote		2	i.	2		0	
900 4.59 3.54 2.52 0.08 4.20 5.25 4.2 4.25 4.50 4.20 3.99 4.19 2.26 0.08 4.00 5.52 4.50 3.99 4.19 2.26 0.08 4.00 5.52 4.50 5.20 8.20 8.20 8.20 8.20 8.20 8.20 8.20 8	Date sampled	sampled in ° F		mhos at 25°C)	0		2 2		000		2 2	P - U	e	, p		5 62	Evap 180°C	hardness os Co.v.3
5 7.7 900 4.92 3.54 2.52 0.08 4.72 4.52 4.52 4.52 4.52 4.52 4.54 4.52 4.52 4.52 4.52 4.52 4.52 4.52 4.52 4.52 4.52 4.52 4.52 4.52 4.52 4.52 4.52 4.52 4.52 4.50 4.52 4.50 4.52 4.50 5.52 4.50 5.52 4.50 5.52 4.50 5.52 4.50 5.52 4.50 5.52 4.50 5.52 4.50 5.52 4.50 5.52 4.50 5.52 4.50 5.52 15.51 16.55 5.52 15.51 16.55 5.52 15.51 16.55 5.52 15.51 16.55 5.52 15.51 16.55 5.52 15.51 16.55 15.52 </td <td>SANTA MARIA HYD</td> <td>RO SUB</td> <td>TINOS</td> <td></td> <td>T12A0</td> <td>S</td> <td>ANTA MA</td> <td>RIA-CU</td> <td>YAMA H</td> <td>YDRO U</td> <td>NIT</td> <td>11200</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	SANTA MARIA HYD	RO SUB	TINOS		T12A0	S	ANTA MA	RIA-CU	YAMA H	YDRO U	NIT	11200						
5 8.2 9.00 8.6 4.59 3.54 2.52 0.08 4.72 4.56 5 8.2 9.00 8.0 4.19 2.26 0.08 4.00 5.52 5 7.99 4.19 2.26 0.08 4.00 5.52 5 7.9 4.19 2.26 0.08 4.00 5.52 5 7.9 4.19 2.26 0.10 3.49 5.52 5 6.4 7.6 11.03 7.98 4.30 0.10 5.72 15.01 5 6.4 7.6 2.10 4.26 0.10 5.25 15.01 16.55 5 6.2 8.0 2.06 1.2.48 9.13 4.26 0.10 5.08 17.59 5 6.2 8.0 2.06 1.2.48 9.13 4.26 0.10 5.08 17.59 6 9.0 2.0 1.0 9.1 0.10 5.08 17.59 6 1.0 2.43	-		7.7	006	92	43	1	0	0	288	219	53	7	0.1	0.28	1	899	407
5 8.2 900 80 51 52 0.08 0.244 2655 5 3.99 4.19 2.26 0.08 0.244 5.52 5 7.9 4.0 2.1 3.8 7.21 5 11.0 3 7.98 4.30 0.10 5.72 15.01 5 64 7.6 210 2.50 111 98 4 0 34.9 7.21 5 6.2 7.6 112.48 9.13 4.26 0.10 5.10 16.55 6.5 5 6.2 8.0 2.06 12.48 9.13 4.26 0.10 5.08 17.59 5 6.2 8.0 12.48 9.13 4.26 0.10 5.08 17.59 5 6.2 8.0 11.0 8.06 7.04 0.10 5.08 17.59 5 6.3 7.3 11.0 8.25 0.10 5.08 17.59 5 6.3 8.1 15.8 9.3 4.25	6- 2-65				5.0	3.54	52	0.08		4.72	4.56	1.49	0.06				614	
5 7.9 1887 221 97 4.9 4 0 349 7721 5 64 7.6 2100 250 111 98 4 0 311 795 5 64 7.6 2100 250 111 98 4 0 311 795 5 65 8.0 2066 222 98 162 4 0 310 16.55 6 11.08 8.06 7.04 0.10 5.08 17.59 6 2066 11.08 8.06 7.04 0.10 5.08 17.59 6 3 7.3 12.87 114 189 8.06 7.04 0.10 5.08 17.59 6 3 7.3 12.82 114 189 8.22 0.10 5.08 17.59 5 63 8.1 15.63 5.92 4.55 10.78 5.61 5.08 5.16 6 7.6 5.92 4.55 0.10 2.29 5.10 <	~		8 • 2	006	3,99	51 4.19	2.26	0	0	244	265	200	4 0.06	0.5	0.24	ł	618	607
5 7-9 1887 1221 798 4-30 0-10 5-75 1721 5 64 7-6 2100 250 111 98 4-26 0-10 5-75 15-01 5 62 8-0 2066 222 98 162 4-26 0-10 5-10 16-55 63 7-3 2431 222 98 162 4-0 310 16-55 63 7-3 2431 257 114 189 4-0 310 16-55 63 7-3 2431 257 114 189 4-0 310 17-59 63 7-3 2431 257 114 189 4-0 5-08 17-59 63 7-3 2431 257 0-10 5-61 20-42 9-11 64 7-3 184 8-22 0-10 5-61 20-42 9-11 64 7-6 185 5-92 4-57 0-10 4-89 10-78 64 7-6 10-26 10-10 </td <td></td> <td></td> <td></td> <td></td> <td>0</td> <td>7</td> <td>17</td> <td>н</td> <td></td> <td>00</td> <td>76</td> <td>7</td> <td>1</td> <td></td> <td></td> <td></td> <td>0 7</td> <td></td>					0	7	17	н		00	76	7	1				0 7	
5 64 7.66 210v 250 111 98 4.26 0.10 5.10 16.55 6 62 8.0 2066 12.28 99 162 4.26 0.10 5.08 17.59 63 7.3 2431 222 99 162 4 0 310 845 63 7.3 2431 257 114 189 4 0 342 981 5 63 7.3 12.82 9.38 8.22 0.10 5.61 20.42 5 63 8.1 1563 154 72 4.57 0.10 4.25 10.78 5 64 7.66 5.92 4.57 0.10 4.83 10.78 64 7.6 100 4.83 0.10 4.83 10.72 64 7.6 100 4.83 0.10 4.83 10.72 64 7.6 10.2 10.2 10.2 <td>-</td> <td></td> <td>7.9</td> <td>1887</td> <td>221</td> <td>7.98</td> <td>4.30</td> <td>0.10</td> <td>0</td> <td>34</td> <td>2</td> <td>- 0</td> <td>1.9 0.31</td> <td>9.0</td> <td>0.21</td> <td>1</td> <td>1581</td> <td>951</td>	-		7.9	1887	221	7.98	4.30	0.10	0	34	2	- 0	1.9 0.31	9.0	0.21	1	1581	951
5 6.2 8.0 2066 1222 98 162 0.10 0.310 845 6.3 7.3 2431 257 114 189 4 0.10 5.08 17.59 5 6.3 7.3 2431 257 114 189 4 0 342 981 5 6.3 8.1 15.82 9.38 8.22 0.10 5.61 20.42 981 5 6.3 15.6 7.2 4.57 0.10 4.25 10.78 6.4 7.6 10.2 16.9 7.2 4.55 0.10 4.88 10.72 6.4 7.6 10.2 10.3 4.88 10.72 4.88 10.72 6.4 7.6 10.2 10.3 10.3 4.88 10.72 6.4 7.6 10.2 10.3 4.88 10.72 6.4 7.6 10.3 10.3 4.88 10.72 6.5 <td>-</td> <td></td> <td>7.6</td> <td>2100</td> <td>N</td> <td>9.13</td> <td>98</td> <td>0.10</td> <td>0</td> <td>311 5.10</td> <td>9</td> <td>3.69</td> <td>90.08</td> <td>0.0</td> <td>0.17</td> <td>1</td> <td>1734</td> <td>1041</td>	-		7.6	2100	N	9.13	98	0.10	0	311 5.10	9	3.69	90.08	0.0	0.17	1	1734	1041
5 63 7.3 2431 257 114 189 4 0 342 981 47 0.10 5.61 20.42 5 63 8.1 1563 156 72 105 4 0 259 516 64 7.6 1026 160 74 100 4 0 298 512 444 32 23 0.10 4 0 298 512 457 0.10 4 0 298 512 468 5.92 4.57 0.10 4 0 298 512			© ©	2066	-		162	•]	0	310	3 × 5 × 5	2.85	10	0 • 3	0.34	20	1730	958
5 63 8-1 1563 154 72 105 4 0 259 516 4.2 5 0.10 4 2.2 10.78 4.2 5 10.78 64 7.6 1026 169 74 100 4 0 298 512 4.4 32 0.10 4 0 298 512	7- 9-65	63	7.3	2431	257 12.82 42	9.38	189		0	342 5.61	20	3.55	0.10	0 • 7	0.35	i i	1846	1111
64 7.6 1026 169 74 100 4 0 298 512 8.28 6.07 4.35 0.10 4.88 10.72			α • 1	1563	154	5.4.5	105	•	0	259	51		3/	0 • 7	0.22	31	1195	681
	7- 9-65	4	7.6	1626	160 6.28 44	74	100	0.10	2	298 4.88 26	5.0	2.51	30 0.61 3	0		1	1133	713

TABLE E-1
ANALYSES OF GROUND WATER
CENTRAL COASTAL DRAINAGE PROVINCE (T)

	Tota hardness os Court 3		1052	803	594	964	532	485	448	633
stituents in million	T D S Tota Evap 180°C hardness Evap 105°C os Computed Coucts		1860	1340	1030	930	780	907	772	1110
constituents per million	Sili- co SiO ₂		34	î ê	1	1	1	36	-	37
Mineral parts p	Boron		0.28	0.10	0.24	0 • 34	0.11	0.12	0.08	0.17
	Fluo-		0 • 7	0	0	0.7	0 • 5	9 • 0	0 • 0	0
	rote NO3		23 0•37	12 0•19	0.08	16 0.26	9 0.15	66 1.06	49	0.02
million se value	Chlo	11200	139 3•92 14	3.16	1.92	5.07	75 2-12 16	1.86	1.86	1 • 35 8
millio per eactand	Sulfate SO4	LIN	872 18•16 64	619 12.89 63	471 9.81 62	180 3.75 24	335	295	258	516 10•74 67
ent	Bicar - bonate HCO3	roko u	354	256	246	354	244	211 3.46 28	3.67	209
parts equival percen	corbon -	YAMA H	0	0	0	0	0	0	0	13
ni s	Potas.	ARIA-CL	0.10	0.15	0.10	0.13	2 0 • 0 5	0.08	0.05	0.10
constituents	Sodium	SANTA MARIA-CUYAMA HYDRO UNIT	170	98 4.26 21	3.47	125	2.70	2.83	2.83 2.4	3.48 2.1
Mineral co	Magne- slum Mg	8	110 9.05	84 6.91 34	5.18	3.78	4.69 35	3.95	3.87	5 26 32
Σ	mr., o)	T12A0	240 11.98	183 9.13 45	134 6.69	123	119 5.94 44	115	102 5 09 43	148 7.39 46
Specific conduct-	mhos at 25°C)		2268	1760	1389	1495	1199	1149	1099	1380
	Hd	TINO	0 .	7.3	7.3	7.4	0.0	7.4	7.4	φ •
Temp	when sampled in ° F	so sub	62	61	63	69	65	99	1	1
State well	led	SANTA MARIA HYDRO SUBUNIT	10N/35W-17D 1 S	10N/36W- 1H 1 S 4- 8-65	10N/36W- 2G 1 S 4- 8-65	10N/36W- 2G 2 S 4- 8-65	10N/36W-12R 1 S 7- 9-65	11N/34W-29P 2 S 10- 6-64	7- 9-65	11N/35W-18M 1 S

TABLE E-I
ANALYSES OF GROUND WATER
CENTRAL COASTAL DRAINAGE PROVINCE (T)

State well	Temp		Specific conduct-	Σ	Mineral co	constituents	Ë	pa	parts per equivalents percent r	0	million per million ctance value			Mineral	constituents per million	uents in	
Date sampled	sampled in ° F	T a	1 0	C 0 10:10 B	M a g n e . N a g	E 0 Z	\$ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Carbon- ole CO3	Bicar - bonate HCO3	Sulfote SO4	Chlo-	Ni - frate NO3	Fluo- ride F	Boron	5,112-	TDS hardness Evap 180°C hardness of Cocos	hardness as CaCO3
SANTA MARIA HYDRO		SUBUNIT		T12A0	0)	SANTA MARIA-CUYAMA HYDRO UNIT	RIA-CL	JYAMA H	IYDRO L	TINI	T1200						
11N/35W-19E 2 S 7- 9-65	1	7.5	1322	133	58 4•77 31	3.70	0.10	0	262 4.29 29	433 9.02 61	1.47	1.0	0.5	0.16	1	1000	571
11N/35W-26M 1 S 7- 9-65	1	7.5	793	3.39	31 2.55 31	2.17	0.05	0	149 2.44 30	193	51	9 0 15	7.0	0.07	1	548	297
11N/35W-28B 1 S	99	8 0	943	98 4.89	3.13	2.48	0.08	0	3.26	290	1.18	10	9.0	0.14	35	670	401
11N/35W-28L 1 S	61	7.9	1088	121	4.03	2.52	0.08	0	246	346	1.04	13 0.21	0	0.18	30	810	504
11N/35W-33F 1 S	1	7 - 1	2009	234	103	103 4.48 18	0.10	0	492 8 • 06	13.26	102	8.5	9.0	0.24	1	1618	1008
11N/36W-13R 1 S	1	60	1200	141 7.04 47	40.44	3.39	0.10	18	231	452	1.16	0.03	0 • 5	0.16	39	1005	574
7- 9-65	1	7.5	1313	136	4 8 8 9 9 7 8 9	3.48	0.10	0	250 4.10 28	449	1.33	0.0	0.5	0.16	1	1018	582

TABLE E-1

ANALYSES OF GROUND WATER

CENTRAL COASTAL DRAINAGE PROVINCE (T)

	Tehall hardness as CauO3		576	478	506	622	
uents un	T D S Total		964	890	760	918	
constituents per million	5.02		27	-	1	1	
Mineral parts p	Boron		0.17	0.22	0.21	0.20	
	r de		9•0	0.2	0.5	0.5	
	hrote NO3		19 0•31 2	14 0.23	13 0•21 2	0 • 0	
million e value	Chlo r.de	T1200	31 0.87	29 0 82 14	0 0 0 0	1.30	
millior per eactono	Sulfote Su.4		384	33	328	301 6.27	
parts per equivalents percent re	Bicar - bonate HCO3	rbRo ul	287	257	269 4•41 36	469 7.69 50	
par	Carbon - ole CO3	YAMA H	0	0	0	0	
ri	Potas -	RIA-CU	0.08	0.05	0.05	0.03	
constituents	Sodium	SANTA MARIA-CUYAMA HYDRO UNIT	58 2.52 18	57 2.48 21	56 2.43 19	2.70 18	
Mineral co	Mogne- stum Mg	v)	75 6.17 44	56 4.61 38	61 5.02 40	79 6.50	
2	Calcium	T1280	107	99 4 94	102	119 5.94 39	
Specific conduct-	. 0	,-	1200	910	1115	1170	
	H		7.9	7 • 8	8.1	7.9	
Тепр	when sampled in ° F	BUNIT	-	1	-	1	
State well	led	SISQUOC HYDRO SUBUNIT	9N/32W-17G 1 S 10- 6-64	9N/33W-12R 1 S 10- 6-64	7- 8-65	10N/31W-18J 1 S 2-20-65	

TABLE E-1

	hardness as		15	1111	1272	170	825	2428	371	1147
tuents in	T D S Evap 180°C Evap 105°C Computed		536	1922	2172	250	1420	4010	5 5 c	1698
constituents per million	S.(11.		1	1	İ	1	1		i	
Mineral parts	Boron		0.95	0.28	0.22	0.05	7.50	0.57	0	. 30
	Fluor		1.4	0.1	1.2	0.1	∞ •	1 • 2	0	1 • 2
	rote NO s		2.5	0.0	0	5 0 • 08	0 • 0	0.02	0.0	0
million ce value	ride C1	11200	0.31	17 0.48	0.25	18	16	1.80	0.62	0 39
millio per eoctano	Suffate SO4	T I N	209	1136	1284 26.73 88	21 0.44	703	2321	231	1096 22.82 85
parts per equivalents percent r	Bicor - bonote HCO3	rbRo u	250	240	210	3.62	330	342 5.61	216	3.57
por	carbon -	YAMA HI	0.23	0	0	0	0	0	0	0
ni s	Potos - Sium K	IR IA-CU	0.05	0.10	0.10	0.03	0 • 0	0.13	0.10	0.10
constituents	Sodium	SANTA MARIA-CUYAMA HYDRO UNIT	205 8 • 91 96	122 5•30 19	102	31 1•35 28	83 3.61 18	180	38	3.91
Mineral co	Magne- sium Mg	S	0	113 9.29 34	15.50	12 0.99	141	22.12	2.22	9.46
×	60.01.3 C. 6	11200	0.30	259 12.92 47	259	48 2.40 50	98	529	104	270
Specific conduct-	mhos at 25°C)		893	2000	2150	450	1520	3500	938	2079
	H	SUBUNIT	8 • 2	0	0 • 8	7.9	7 • 8	7.7	7 • 8	7 . 5
Тетр	sampled In ° F		-	-	1	-	l i	-	1	0 9
		Y HY(1 S	1 S	1 S	1 S	1 S	2	1 S	~
State well	Date sampled	CUYAMA VALLEY HYDRO	7N/22W- 2J 6-21-65	7N/23W- 20 1	7N/23W-15R 1 3- 1-65	7N/23W-16G 3- 2-65	7N/23W-19H 1 3- 1-65	7N/23W-19K 1 3- 2-65	7N/23W-22N 1 6-21-65	7N/24W-13C 2 9-28-65

TABLE E-1
ANALYSES OF GROUND WATER
CENTRAL COASTAL DRAINAGE PROVINCE (T)

	5	nardness 05 00 co 3		980		1046		970		227		616		1223		1931		226		
uents in	7 O F	Evap 180°C hardness Evap 105°C os Computed Cour 3		1718	1470	1834	1562	1636	1440	582	592	1736	1477	2050	1853	3630	3021	330	286	
constituent per million	-11			1		-		i		-		1		1		-		-		
Mineral constituents parts per million	Boron			0.18		0 - 50		0.15		0 • 48		0.22		2.50		0.30		60.0		
	Filuo-	7 d e		4.0		8 .		0 8		9.0		0 • 8		1 • 0	_	0 • 8		0.5		
	2			0		0 • 0		0.0		0.0		2	0.03	0.0		4	0	1	70.0	
nillion per million stance value	- ol 4 3	# D	11200	374	4 4	34	0 4	20	2000	55	15	20	0.00	41	1 • 1 0	43	1.41	~ 00	0 4	
0 0	Sulfate	504	L Z	522	77	1028	87	932	17.40	147	29	958	19.93	1235	06	1980	41.622	14	0.67	
pe	Bicar -	bonote HCO3	rdRo u	205	2.00	142	6	189	13	356	56	202	3.31	105	7) • 1	303	10	317	91	
parts equiva percen	Carbon -	01e	YAMA H	0		0		0		0		0		0		0		0		
ui i	Potes -		RIA-CU	4 0	0	40	•	m 0	0	m 0	100	2	0.1.5	200	01.0	ر د د	0 7 0	20 0	~	
constituents	Enibos	0 2	SANTA MARIA-CUYAMA HYDRO UNIT	125	25	3-70	15	79	15	131	55	92	17	76	14	220	20	23	18	
Mineral co	M C D D		, vi	75	25	122	41	118	7.10	17	1.40	142	11.66	103	30	238	17.57	16	1.32	
Σ	Calring	0 0	T12C0	269	13.42	218	744	194	7.00	63	30	158	33	320	96	381	17.01	2 10	57	
Specific conduct-	(micro-	mhos of 25°C)		1850		1800		1650		860		1800		2000		3200		492		
	Hd		SUBUNIT	7.6		7.2		7.8		8.0		8 • 1		7.5		8 • 0		8.1		
Temp	when	in ° F	1	1		89		99		1		-		}		1		1		
			¥	3		S 1		1 S	-	S		S		S		S		S		
State well		Date sampled	CUYAMA VALLEY HYDRO		3-62-62	7N/24W-24A 1	70-7 -5	8N/24W- 6R 1	2-7 -6	8N/24W- 8R 1	0017 10	8N/24W-21M 1	69-7 -6	8N/24W-270 1	60-7-6	8N/24W-28L 1	60-7 -6	9N/22W-15L 1		
			50	7		7.1		8		8		8		8		80		16		

		5.5		~	20	9	m	2		-	
	0.	hardness		1003	1008	976	1023	1006	951	917	1359
constituents in	T D S	20081 dev3		1560	1610	1646	1570	1710	1550	1535	75007
consti	:			1	1	l	1		1		
Mineral parts p	B . c. /			0.24	0.24	0.18	0.16	0 18	0	77.0	0 • 0 4
	, u	ф р "		1.7	1.2	30 •	6.0	9.0	1.3	1.2	1 .5
	. 2			90.0	4 0 0 0 0	0	30.05	0.02	4 0 0 0 0 0 0 0 0	40.00	35
million e value	(h to	p. 7	11200	13	0.34	17 0 • 48	13	14 0 . 39	14 0 39	13	23.00.59
per per eoctanc	Sulfore	5 \ 4	1	950 19•78 85	977	965 20.09 85	1012 21.07 87	1020	916	932 19.40 85	1285 26.75 86
equivalents percent	B 10 01 -		YDRO UI	3.11 13.11	193 3.16 13	3.11	173	239	149 2 • 44 11	175 2.87 13	203
ed	Carbon	000	YAMA H	0	0	0	0	0	0	0	0
L.	Po105 -	. ×	RIA-CU	0.10	0.10	0.08	0.10	0.10	0.10	0.10	0 • 13
constituents	Sodium	0 2	SANTA MARIA-CUYAMA HYDRO UNIT	80 3.48 15	3.65	3.74 16	93	95 4•13 16	3.13	3.30	100
Mineral co	Mogner	S - S	S	1018.31	95 7.81 33	134	1098.96	1028 8 33	7.98	7.653	139
Σ	Calcium	0	11200	235	247	170 8 • 48 36	230	259	221 11.03 50	238 11.88	315
Specific conduct-	-	mhos at 25°C)		1825	1905	1650	1887	1942	1773	1825	2358
	Hd		SUBUNIT	7.9	7 • 4	7 • 8	7.6	7.4	ж • 1	7 • 7	7.9
Temp	*nen compled	In F	1	å F	1	99	1	99	29	62	62
-	3		HYE	s 1		S	S		S		S
State well		Date sampled	CUYAMA VALLEY HYDRO	9N/24W-19F 1 4-27-65	9-28-65	9N/24W-320 2 3-28-65	9N/25W-14R 2 4-27-65	9-28-65	10N/25W-20H 1	9-28-65	10N/25W-21G 1 4-27-65

TABLE E-1
ANALYSES OF GROUND WATER
CENTRAL COASTAL DRAINAGE PROVINCE (T)

	Tetal hardness as Colica		1146		1144		922		646		972		796		945		932		
constituents in per million	TDS Total Evop 180°C hardness Evop 105°C as		1840	1690	1810	1710	1720	1672	1558	1403	1526	1431	1580	1412	1545	1480	1562	1462	
constit per mi	Sift- co SiO ₂		-				1		-		1		1		l i		-		
Mineral o	Boron		0.22		0.24	_	1.40		0.16		0.14		0.16		0.62		0.56		
	Fluor		1.3		1.2		1.3		1+1		1.1		1 • 3		6.0		1 • 1		
	frate NO3		24	1	20	1	2	80.0	18	0.29	21	0.34	39	0 0	2.5	******	3	0	
million e value	chlo- ride	11200	18	2	18	2	158	4.46	16	0.40	- F-1	0.01	20	9 60	39	1.10	33	4	
million per sactanc	Sulfate SO4	NIT	1087	986	1092	85	946	19.65	903	18.80	901	18.70	875	82	925	19.26	921	84	
peritent	Bicor - bonate HCO3	YDRO U	176	11	193	12	139	2.28	153	2.51	180	2.95	167	12	165	2.70	168	12	
parts equiva percen	Carbon -	YAMA H	0		0		0		0		0		0		0		0		
c c	Potas .	RIA-CU	4 0	2	70 %		9	0.15	4	01.0	4 .	0.1.0	40	0	4	0.10	40		
constituents	S 0 d u	SANTA MARIA-CUYAMA HYDRO UNIT	85	14	90	15	175	7.61	72	3.13	74	3.62	70	14	108	4 • 70	102	19	
Mineral co	M o g o w	v,	116	36	107	0 8	87	7.15	102	38	102	37	102	37	06	7.40	90	32	
2	E 0 0 0 0	T12C0	268	50	282	52	226	11.28	212	10.58	221	11.03	218	64	229	11.43	225	848	
Specific conduct-	micro- mhos ot 25°C)	<u> </u>	2055		5096		2200		1768		1802		1785		1908		1874		
	I	SUBUNIT	7.8		7.4		7.8		8 • 1		7.5		8.1		8 • 1		7.6		
Temp	when sampled in ° F		63		63		8		79		63		63		1				
		Y HYI	1 S				1 S		2 S				1 S		1 S				
State well	Date sampled	CUYAMA VALLEY HYDRO	10N/25W-22E	0-17-1	37100	69-97-6	10N/25W-23E	4-27-65		4-51-65	6	69-87-6	10N/25W-32H	501.21+		4-27-65	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		

State well	Temp		Specific conduct-	Σ	Mineral cor	constituents	i n	pod	parts per equivalents percent	60	per million ctance value			Mineral o	constituents per million	stituents in million	
led	when sampled in ° F	ī	mhos at 25°C)	E 0 0 0	, o c o c o c c o c c o c c o c c o c c o c c o c c o c c o c c o c c o c c c o c c c o c c c o c c o c c c o c c o c c c o c c o c c c o c c o c c c o c c c o c c o c c c o c c o c c c o c c o c c c o c c c o c c c o c c c o c c c o c c c o c c c o c c c o c c c o c c c o c c c c o c c c c c o c	E o N O	90 to 9 s	Carbon -	Bicar - bonate HCO3	Suffore S C 4	0110	rote Nus	, p	50 SB	\$	000 100 3 000 100 3	Total
CUYAMA VALLEY HYDRO		SUBUNIT		11200	S	ANTA MA	SANTA MARIA-CUYAMA HYBRO UNIT	YAMA H	HYDRO U	TINI	T1200						
10N/26W- 9R 3 S 4-27-65	67	8 • 0	1989	259 12.92 53	91 7.48 31	92 4.00	0.10	0	151 2.47 10	1028	24 0 • 6 8	10 0.16	0	57.0	ł	1583	1021
9-28-65	99	7 • 4	1980	263 13•12 52	100	3.96	0.13	0	181 2.97 12	1034 21.53 85	20.06	10 0.16	1 • 1	0 .	į t	1708	1068
10N/26W-14CS1 S 4-27-65	74	80	1995	265 13•22 51	106	3.87	0.13	0	165 2.70 11	1049	21 0.59	2 0 • 0 3	1 • 1	0.26	-	1715	1098
9-28-65	9	7.6	2033	263 13•12 50	110	3.96	0.15	0	189 3•10 12	1065 22.17 86	0.54	0.02	1.5	0.75	1	1782	1109
10N/26W-14C 4 S 4-27-65	99	8 • 1	2072	286 14.27 53	111 9.13	3.61	0.10	0	2.93	1070	30.85	11 0.18	1.1	0.23	1	1738	1171
9-28-65	63	7.3	2095	285 14•22 52	9.62	3.48	0.10	0	175 2 87 11	1108	30	16 0.26	1 • 3	0.16	1	1845	1193
10N/26W-23P 1 S	69	7.9	2099	285	102	4.30	0.13	0	137	1089	1.16	10 0.16	0.7	0.23	i t	1836	1131
9-28-65	8 9	7 • 4	2082	281	106 8•72 33	3.96	0.13	0	155 2.54 10	1094 22.78 86	95.0	11 0.18	± 0	0.16	1	1835	1138

TABLE E-1
ANALYSES OF GROUND WATER
CENTRAL COASTAL DRAINAGE PROVINCE (T)

	hardness os faces		2656	487	
e .	UL		5088 2	754	
tituent					
cons	Sifir- ca SiO ₂		-	-	
Mineral constituents parts per million	Boron		0.61	0	
	Fluor ride F		1.0	0.5	
	hrote NO 3		13	0 • 0	
million e value	Chlo- ride Cl	11200	100	17 0.48	
parts per million equivalents per million percent reactance value	Sulfate SO.4		2956 61.54 86	299	
parts per equivalents percent re	Bicar - bonate HCO3	YDRO U	442 7.24 10	318	
pod	Carbon - ate CO 3	YAMA H	0	0	
ri s	Potas X	ARIA-CL	7	0.05	
onstituent	Enipos V	SANTA MARIA-CUYAMA HYDRO UNIT	458 19•91 27	1.96	
Mineral constituents	Magne- s.um Ma	S	317 26.07 36	5.84	
2	Calcium	T12C0	541 27.00 37	3.89	
Specific conduct-	mhos at 25°C)		4941	006	
	Hd	SUBUNIT	7.5	8 • 0	
Тетр	when sampled in°F		1	1	
		Y HY	S	1 S	
State well	Date sampled	CUYAMA VALLEY HYDRO	10N/27W-11C 1 4-27-65	10N/28W-18R 1 2-25-65	

	hardness		213	298	189	136	491	524	285	240
constituents in	Evop iBOC hardness		385	580	410	415	846	888	538	486
constituent per million	5 . 2		1	1	1	1	1	ļ.		
Mineral	. a		0.07	0.12	70.0	60.0	0.14	0 18	0.07	0.07
) P		0.1	7.0	0.2	4.0	0.1	0.3	0.5	π •
	Z 2 2		24 0 • 39	5 0.08	0 • 0	7 0.11	0.0	0	0	0
million se value	7 - 4 - C - E	11300	2.14	73 2.06 23	1.89	1.78	3.21	128 3.01 24	93 2.62 30	2.46
per per eoctano	SOA		11 0.23	182	1.833	103	194	3.96	2.23	1.60
ports per equivalents percent	Bicor bonote HCO ₃	Ŀ	3.39	2.92	137 2.25 38	122 2.00 2 33	414 6.79	439	233	209
pod	Carbon ole CO 3	ORO UN	0	0	0	0	0	0	0	0
ri .	Potos.	NIO HY	0.05	0.08	30.08	0.08	0.08	0.05	0.10	0.05
constituents	E D D N	SAN ANTONIO HYDRO UNIT	1.78	63 2.74 31	2.17	48 2 • 0 9 34	96	4.30	3.00	3.13
Mineral co	Mogne- srum Mg	Ŝ	19 19 26	2.22	18	1.56	4.03	51 4.19 28	22 1.81	1.14
2	Calcium		2.69	3.74	2.30	2.35	116 5.79	126	3.89	3.64
Specific conduct-	(micro- mhos at 25°C)		620	868	580	628	1250	1315	860	808
	Y a		8 . 2	8 . 2	7 . 4	7.0	0 • 8	7 - 7	7 • 7	7.8
Temp	sampled in ° F		1	99	1	6.5	1	67	1	72
			1 S	S 9	2 2		20		1 S	2 2
State well	Date sampled		7N/32W- 1B	8N/32W-30H 6	8N/32W-30H 7	9-29-65	8N/33W-20R	7- 9-65	8N/34W-166 10- 7-64	8N/34W-16G 2 7- 9-65

TABLE E-1
ANALYSES OF GROUND WATER
CENTRAL COASTAL DRAINAGE PROVINCE (T)

	Toto hardness os Colicis		378	387	1380	310
.c	OC hard					
lion	TDS Toto Evap 180°C hardness Evap 105°C os		822	806	4070	960
constituents per million	Sill- SiO ₂		1	-	37	8
Mineral parts p	Boron		0.20	0.18	3.20	0 9 0
	Fluo- ride F		0.2	0.1	0 • 3	φ • O
	hrote NO3		14 0 • 23	23 0•37	19	0 0 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 %
million per million ctance value	Chlo-	T1300	214 6.03 46	202 5 • 70 44	1170 32.99 51	252 7 • 11 4 5 4 5
0	Suffate 504		136 2 83	135 2 81 22	1022 21•28 33	151 3 • 16 2 0
± = ±	Bicor - bonote HCO3	-	244	240 3.93 31	631 0.34 16	2 4 4 8 8 8 9 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ports equivo	Carbon - ale	DRO UNI	0	0	0	0
ri s	Potas -	NIO HY	0.15	0.13	0.13	0 1 1 3 2
constituents	E 2 0 Z	SAN ANTONIO HYDRO UNIT	130	120	840 36.52 57	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Mineral co	Magne- s-um Mg	võ	3.21	3.04	192 15.79 25	6 4 2 2 2 1 2 2 1 2 2 1 2 2 2 2 2 2 2 2 2
2	C 0 1 C 1 C 0		4.34	94 4 69 36	236 11•78 18	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Specific conduct-	(micro- mhos at 25°C)		1300	1318	5587	1587
	ī		7.8	7.5	7.5	۲ •
Temp	sampled In F		1	65	65	1
			v)		s I	v
State well	Date sampled		8N/34W-23B 3	7- 9-65	9N/35W-23R 1 11-30-64	9N/35W-26C 1 11-30-64

	V C 1 0 1	hardness os Coulos			286		290)	0	0 0	_	663		430	, ,	_	582		444			876		
luents in	TOS	Evap 180°C hardness Evap 105°C os Computed Couc3			930	708	1047	0	3 0	0	878	1279	1083	1200	1777	1140	1090	888	0.50		848	1750	-	764T
constituents per million	Sili-				1		į į					1		-			1					-		
Mineral parts p	Boron	8			0.08		0.13		0			0.26		0.7			0.24		36.00			0.93		
	Fluo	rıde F			0.5		0 • 3					7.0		7.0			0.4		0.5)		9.0		
	1 - 2	trate NO ₃			25	0.40	28	0.45	2	0.07		2	0.08	α .	0.01		0		0	-	-	0		
million s value	C h 10 -	r.d.e.	11400		384	10.83	388	10.94	178	5.02	34	198	5.58	256	7.22	37	167	4.71	230	64.9	77 77	167	4.71	67
equivalents per million percent reactance value	Sulfate	504			25	0.52	30	0.62	278	5.79	39	360	7.50	366	7.62	39	256	5.33	191	3.98	27	707	14.72	0
equivalents percent re	B 10 00 -	bonote HCO3			54	0.89	09	0.98	248	4.06	27	323	5.29	287	4.70	24	334	5.47	259	4.25	29	321	5.26	17
9 de de de de de de de de de de de de de	Carbon -	01e CO3	SANTA YNEZ HYDRO UNIT		0		0		C	_		0		C	_		0		0	_		0		
ri s	Potos -	. x	EZ HYD		0	0.13	5	0.13		0.15	7	7	0.18	9	0.15	7	4	0.10	7	0.18	7	S	0.13	4
constituents	Sodium	0 2	ANTA YN		152	6.61	160	96.9	110	4 • 78	31	125	5.44	154	6.70	34	06	3.91	130	5.65	38	184	8.00	1
Mineral co	Mogner	E 0	S		38	3.13	36	2.96	45	3.70	24	56	4.61	63	5.18	56	42	3.45	38	3.13	21	117	9.62	2
×	Calcium	٥		T14A0	52	2.59	57	2.84	134	69.9	777	173	8.63	152	7.58	39	164	8.18	115	5.74	39	158	7.88	1
Specific conduct-	1	mhos at 25°C)			1418		1477		1454			1727		1818			1451		1441			2122		
	Ha				7.6		7.3		7.7			7.4		7.9			7.8		7.8			8.0		
Temp.	samoled	In °F		UNIT	6.8		-		7.1			69		69			7.1		7.0			ł		
				SUB	1 5				1 S			3 S		2 S			1 S		2 S			1 5		
State well		Date sampled		LOMPOC HYDRO SUBUNIT	7N/33W-30B 1 S	7- 6-65		9-22-65	7N/34W-19J 1	7- 7-65		7N/34W-19J 3	7- 7-65	7N/34W-19L	7- 7-65		7N/34W-20L 1	7- 7-65	7N/34W-20M 2 S	7- 7-65		7N/34W-286 1 S	7- 6-65	

TABLE E-1
ANALYSES OF GROUND WATER
CENTRAL COASTAL DRAINAGE PROVINCE (T)

	S 80		0	6	2	7	-	9	7	-
	hardness as Cours		1259	1089	595	2127	2171	4766	527	531
constituents in per million	T D S Evop 180°C Evop 105°C Computed		1980	1895	1994	6206	11745	21800	3054	3125
consti per m	Sili- ca SiO ₂		}	8 8	1	1	1	1	8	1
Mineral parts p	Boron		09.0	0.55	1.38	0.43	1.60	2 • 30	1.08	1.06
	Fluo- ride F		6.0	0 • 5	4.0	9.0	9 • 0	1.2	0 • 5	0.5
	Proje NO3		3 0 • 0 5	2 0 • 0 3	26 0.42	26 0 • 42	16 0•26	10	10	8 0 • 13
million e value	Ch 10 -	11400	204 5.75 18	205	743	2351 66.30 72	6015 169.62 91	11550 325•71 89	1518 42.81 81	1560 43.99 81
millior per eactano	Sulfote SO4		855 17.80 57	871 18•13 65	326 6.79 20	846 17•61 19	615	1653	89 1.85	1.71
parts per equivalents percent	Bicar - bonate HCO3		471 7•72 25	244 4.00	318 5.21 16	472	251 4.11	264	486 7.97 15	505 8•28 15
por	Carbon -	RO UNIT	0	0	0	0	0	0	0	0
ï.	Potas - stum K	EZ HYD	0.15	0.13	0.31	21 0.54	100	1.56	34	36
constituents	Sodium	SANTA YNEZ HYBRO UNIT	140	143	493	1150	3200 139•14 75	6150	952	975 42.39 79
Mineral co	Magne- slum Mg	vi -	153 12,58	11.84	101 8•31 25	322 26.48 28	479	998 82.08 23	7.65	91 7•48 14
Σ	Calcium	T14A0	252 12.57 40	199 9 93 35	3.59	32 16.02 17	3.99	264	2 89 5 89 5	3.14
Specific conduct-	mhos at 25°C)		2519	2319	3414	8432	17857	31450	5365	5682
	Hd		7.6	8.1	8.1	7 • 7	8 • 2	7.1	0	7.8
Temp.	when sampled in ° F	L I N	6.5	65	49		1	99		1
State well	led	LOMPOC HYDRO SUBUNIT	7N/34W-29K 2 S	9-22-65	7N/34W-35H 1 S 8-15-65	7N/35W-17K 1 S 5- 0-65	7N/35W-17M 1 S 4- 8-65	7N/35W-18H 2 S 4- 8-65	7N/35W-18J 1 S 7- 7-65	10- 1-65

ANALYSES OF GROUND WATER CENTRAL COASTAL DRAINAGE PROVINCE (T)

State well	Тетр		Specific conduct-	Σ	Mineral co	constituents	Ë	po	parts per equivalents percent r	millior per eactand	million e value			Mineral	constituents per million	uents in lion	
Sole sampled	sampled In ° F	I a	(micro- mhos at 25°C)	0 0 0	M og ne . M g	8 0 Z	Potas:	Carbon -	Bicor - bonote HCO3	Sulfate SO4	C	rrore NO3	Fluo- ride F	Boron	Side- co SiO2	Evop 180°C	hardness 25 20 v 3
LOMPOC HYDRO SUBUNIT	TINI			114A0	S	SANTA YNEZ HYDRO UNIT	EZ HYD	RO UNI	-		11400						
7N/35W-21L 4 S 7- 7-65	1	7.7	2700	151	106	295	0.18	0	412 6•75 23	407	495 13•96 48	5 0 • 0 8	9.0	0.34	ł	1800	813
7N/35W-22M 1 S	63	7.7	1764	127	3.87	164 7.13	0.15	0	268	3.25	348 9.81 56	0.02	0 • 3	0.14	1	1080	511
7N/35W-23E 2 S	62	7 • 7	2413	172 8.58	101	210	0.18	0	488	456	315 8 88 34	90.00	9.0	0 • 58		1506	845
7N/35W-24E 2 S 9-22-65	1	7.8	2500	165	108	230	10	0	378 6.20 23	574	320 9.02 33	18 0.29	7.0	0.63	1	1737	856
7N/35W-24K 2 S 7- 7-65	99	7.6	2732	179 8.93	7.81	280	12 0.31	0	339 5.56 19	428 8.91 31	510 14.38 49	15 0 24	0.5	0.72	1	1830	838
9-22-65	65	8	2549	7.53	88 7.24 28	258	0.20	0	261 4.28 16	445	455 12 • 83 48	12 0•19 1	0 • 3	0.63	}	1689	739
7N/35W-25D 1 S 7- 6-65	63	7.6	2667	219	13.08	190	0.26	0	346 5.67 18	880 18.32 57	290 8.18 25	9	0.7	0.70		2050	1201
9-22-65	49	e &	2718	177 8 • 83 30	12.25	193 8 - 39 28	0.20	0	208	863 17.97 61	7.90	0.11	0	0 • 73	1	1956	1055

TABLE E-1
ANALYSES OF GROUND WATER
CENTRAL COASTAL DRAINAGE PROVINCE (T)

	Total hordness as		453	
in the second	T D S Total Evap 180°C hardness Evap 105°C as Computed CaCO3		702	
constituents per million	Evap Comp		1	
	5 0 2		1	
Mineral	80101		90	
	7 00.		0	
	1 2 N		© 0 0 • 0	
million	Chlo :	T1400	6 22 6 4 9 9	
parts per million equivalents per million percent reactance value	Sulfore SO 4		2 · 96 · 2 · 96 · 2 · 96 · 2 · 96 · 2 · 96 · 2 · 96 · 2 · 96 · 2 · 96 · 96	
parts per equivalents percent re	Bicor - bonote HCO3	_	9 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 .	
por	Carbon .	RO UNI	0	
CI	Potos -	VEZ HYD	0.13	
constituents	8 P 0 N	SANTA YNEZ HYDRO UNIT	3 • 3 9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
Mineral co	Magners stum Mag	S	3,62,29	
Σ	E7:00	T14A0	0 44 0 44	
Specific conduct-	mhos at 25°C)		1232	
	H		0	
Temp	when sampled in ° F	TINO	9	
		SUBI	v)	
State well	Date sampled	LOMPOC HYDRO SUBUNIT	7N/35W-33J 3 S	
	۵	LOMF	Z	

	Total hardness as		1289	1511	
luents in	Evap 180°C hardness Evap 105°C os Computed CoCC3		2325	2301	
constituents per million	S. 1. Co S 0 2		1	1	
Mineral parts p	Beren		0.76	0 9 0	
	7 C C		1.03	9	
	Z 0 Z		24 0 • 39	2.2 • 0 3.5 1	
million e value	0 1 1 0	71400	264	268 7.56 19	
parts per million equivalents per million percent reactance volue	Suitate Sc4		1003 20.88 62	20 • 0 2 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	
parts per equivalents percent re	Bicor - bonote HCC3		309	10.77	
par	Corbon ote CO3	RO UNI	0	0	
C_	Petas.	EZ HYD	0.10	8 0 •	
constituents	E ? 0 Z	SANTA YNEZ HYDRO UNIT	181 7.87 23	8 * 3 9 8 * 3 9	
Mineral co	M 90 0 M	vi	184 15•13 45	13 6 3 3 6 3 3 6	
Σ	6,000	11480	213	328 16.37 42	
Specific conduct-	1 0		2765	3100	
	I a	117	7 • 8	5 * 2	
Temp	sampled in F	SUBU	7 9		
State well	Date sampled	SANTA RITA HYDRO SUBUNIT	6N/32W-18H 1 S 7- 6-65	9-22-65	

TABLE E-1
ANALYSES OF GROUND WATER
CENTRAL COASTAL DRAINAGE PROVINCE (T)

	Total hardness os Coulta		639		
uents in	Evap 180°C hardness Evap 105°C as Computed		950		
constituent per million	Still- co SiO ₂		1		
Mineral constituents parts per million	Boron		0 • 38		
	Fluo- ride		0.7		
	hrote NO3		14 0•23		
value	Chlo-	11400	1.75		
parts per million equivalents per million percent reactance value	Sulfate 504	1	316 6.58 42		
parts per equivalents percent re	Bicor - bonote HCO3	-	442		
por	Carbon - ale CO3	RO UNI	0		
L .	Potas - s.um K	EZ HYD	0.08		
constituents	Sodium	SANTA YNEZ HYDRO UNIT	2.87 18		
Mineral co	M og ne - s + u m M g	S	68 88 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		
Σ	Calc.um	11400	119 5.94 38		
Specific conduct-	(micro- mhos at 25°C)		1323		
	Ha	-	7+8		
Temp	when sampled in ° F	SUBUNI	65		
w el		HYDRO 3	17L 1 S -65		
State well	Date sampled	BUELLTON HYDRO SUBUNIT	6N/31W-17L 1 7- 9-65		

	60									
	Total hardnes as		258	323	258	224	287	291	1447	266
constituents in	T D S Total Evap 180°C hardness Evap 105°C as		346	410	530	44 3	386	410	768	248
constituent	5 ° ° S		1	;	20	-	1	-	1	ł
Mineral parts p	B B		0.05	70.0	0.18	0.20	60.0	90.0	0.33	0
) D LL		0.4	0.2	0 .2	4.0	0.1	0 • 0	0 • 3	3
	7		4 0 0 0 0 0 0 0 1	0.13	3 0 • 0 5 1	4 0.06 1	8 0•13	11 0•18	0	2.2
million s value	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11400	0.82	29 0.82	51	51	1.80	1.75	24	13
s per million reactance vali	S C A		7 0 0 15	3 0.06	42	4.1 0.85 10	16	12 0.25	269	0
equivalents percent re	Bicor. bonote HCU3		310	376 6.16 86	395	383	276	283	295	315
edn	Corbon.	RO UNI	0	0	15	0	0	0	0	0
i.	Potos.	EZ HYD	0.05	0.03	0.10	3 0.08	0.03	0.05	0.08	0.05
constituents	En. pos	SANTA YNEZ HYDRO UNIT	22 0.96 16	19 0 83	96	92 4 • 00 4 7	1.09	23	2.17	0.22
Mineral co	Mogne: srum Mg	S	36 2.96 48	3.21	36 2.96 31	3.37	4.03	56 4.61	48 3.95 35	4.55 81
Σ	E 0 0 0	11400	2.20	3.24	2.20	22 1•10 13	34 1.70 25	1.20	1000	0.80
-tonduct-	1 0		200	089	876	774	260	637	096	485
	H a	F 1 7	8.1	0 •	80	8 • 2	0	7.9	0 • 8	7.9
Temp	sampled In F	SUBUN	-	1	1	8 2	ł	6 8	1	1
State well	Date sampled	SANTA YNEZ HYDRO SUBUNIT	6N/29W- 7L 2 S 10-19-64	6N/29W-17A 1 S 10-19-64	6N/30W- 2N 1 S 10-13-64	7- 9-65	6N/30W- 7C 4 S 10-13-64	7- 9-65	6N/30W-24H 1 S 10-13-64	7N/29W-15L 1 S 6-21-65

TABLE E-I
ANALYSES OF GROUND WATER
CENTRAL COASTAL DRAINAGE PROVINCE (T)

	Tchail hardness as Cauta		144	517	367	445	706	437	243
luents in	TDS Total Evap 180°C hardness Evap 105°C os Computed Coul3		542	698	450	610	824	464	375
constituent per million	S 0.2		1	1	8	1	1	1	
Mineral constituents parts per million	Boron		0.20	0.16	0.10	0.12	0.20	0 • 0 5	0 0 0
	F uc		0.2	0.1	7.0	0 • 7	0	0.1	0
	ro.e		5 0 • 08	14 0 • 23	10 0•16 2	15 0.24	2.4	0.11	0 • 0
million e value	Ch 10	T1400	33	2.06	0.93	29	0.54	0.56	24
parts per million equivalents per million percent reactance vali	Sulfate SO4		59 1•23 12	30.62	15 0 31	3.29	3.12	0.31	3.62
parts per equivalents percent re	Bicar - bonote HCO3	⊢	496 8•13 78	653 10.70 79	420 6•88 83	378 6.20 59	636 10.42 67	493 8 • 08 89	125 2 05 32
par	Carbon -	ORO UNI	0	0	0	0	1.33	0	0
ri s	90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	VEZ HYI	0.03	0.08	0.05	0.05	0.08	0.03	0.18
constituents	Sodium	SANTA YNEZ HYDRO UNIT	33	3.22	23 1.00 12	36	29 1•26 8	10	1.22
Mineral co	M o g n e .	S	73 6.00 58	7.40	74 6.09 73	5.10	4.93	7.73	2.22 3.53
Σ	Colcium	T14D0	59 2 • 94 2 8	2.94	25	3.74	184 9•18 59	1.00	53 2.64
Specific conduct-	mhos at 25°C)		750	1210	727	894	1450	680	240
	I a	BUNIT	7.9	7.8	0	8 • 2	80	7 • 8	7 • 4
Тетр	when sampled In ° F	SUBU	1	1	1	99	1	1	1
State well	led	SANTA YNEZ HYDRO SU	7N/29W-29R 2 S 10-19-64	7N/30W-24Q 1 S 10-19-64	7N/30W-33M 1 S 7- 9-65	7N/31W-23N 5 S 7- 9-65	8N/29W-34K 1 S 6-21-65	8N/30W-29Q 1 S 10-19-64	8N/30W-35G 1 S 2-28-65

	3 63		7	7	0	
C.	hordness 25		531	384	603	
	Evop BCoc hordress Evop 105°C 55 Computed 50 5		800	532	1100	
constituent per million	5.4.		1	1	1	
Mineral constituents parts per million	8.°c? 8		0.04	0.13	0.10	
	, p		7.0	0.5	•	
	N . N . N . N . N . N . N . N . N . N .		2.2	6 0 10 1	7.5	
million e value	0 1 1 0	11400	0.25	2.31	1.35	
parts per million equivalents per million percent reactance value	Sulfate SO 4		401 8•35 58	1.64	308	
parts per equivalents percent re	Bicar - bonate HCO3	-	334 5.47	383	720 11.80 60	
pad	Corbon Ote CO3	RO UNI	0.17	0	0	
.c.	Potos \$10m K	Е2 НУБ	3 0 • 0 8	0.08	0.13	
constituents	e o pos	SANTA YNEZ HYDRO UNIT	3.48 25	2.61	168	
Mineral co	Mogne stum M g	18	23 1•89 13	63 5.18 50	4 . 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
W	C0.00,m	T14E0	175 8 • 73 62	2.50	152	
Specific conduct-	. 0		1350	810	2018	
	I	I T	8•1	7.6	φ •	
Тетр	when sampled in °F	SUBUN	1	-	1	
State well	led	HEADWATER HYDRO SUBUNIT	5N/25W-14M 1 S 6-21-65	6N/29W- 9J I S 10-19-64	7N/29W-10P 1 S 6-21-65	

TABLE E-1
ANALYSES OF GROUND WATER
CENTRAL COASTAL DRAINAGE PROVINCE (T)

	Tito hordness os Cours		649	333	971	823	260	244	
stituents in million	TDS Tres Evop 185°C hardness Evop 105°C as Computed Cours		1135	567	1737	1543	1605	360	
constituents per million	Sil1+		1	1	1	i	1	1	
Mineral parts p	Boron		0.23	0.08	64.0	0.38	7.70	0.01	
	Fluor		H 93	0 • 5	0 • 8	1.00	1 • 8	4 • 0	
	rote NO3		0.02	0	0	0.0	0.02	0	
million e value	Chlo-	T1500	1.61	39	201	148	780 22.00 81	1.41	
millior per eactanc	Sulfate SO4		544	3.54	669 13•93 52	625 13.01 56	1.92	1.73	
parts per equivalents percent	Bicar - bonote HCO3	TIND	236	301	441	368	205	3.39	
por	carbon - ale CO3	HYDRO	0	0	0	0	0	0	
Ë	Potas - Sium K	RBARA	3	0.05	0.10	0.10	0.13	0.03	
constituents	wn:pos	SANTA BARBARA HYURO UNIT	3.83	66 2.87 30	178	152 6.61	500 21•74 80	1.65	
Mineral co	Mogne- sium M g	v)	1.23	30 2.47 26	91 7.48 27	81 6.66 29	1.40	1.48	
Σ	C 0 1 C 1 C 0	T15A0	235	84 4.19	239	196 9•78 42	3.79	3.39	
Specific conduct-	mhos at 25°C)	,	1488	875	2289	2002	2927	639	
	r o		7.5	8 . 2	7.5	7.9	7.8	7 • 4	
Temp.	when sampled in ° F	JBUNIT	7.0	1	1	1	1	1	
State well	led	ARGUELLO HYDRO SUBUNIT	4N/30W- 18 1 S 9-29-65	5N/30W-30N 1 S 6- 9-65	5N/30W-31N 1 S 6- 9-65	5N/30W-31N 2 S 6- 9-65	5N/32W-34K 1 S 8- 5-65	5N/34W=32A 1 S 8- 3-65	

State well	Temp		Spacific conduct-	2	Mineral co	constituents	C1	6 0	parts per equivalents percent r	0	million per million ctance value			Mineral parts	constituent per million	constituents in	
	when	Hd	(micro-	81.07	, e c c c M	8 60	Dotog	Corbon	1 20 0	Cultote	1	1 1	00014	a		0	
Date sampled	sampled in ° F		mhos at 25°C)	0	E 0.	2	E Z X	0 1 e	bonote HCO3	504	, p		Pi		5.02	Evop 180°C hardness Evop 105°C os Computed Cours	hardness os Cours
SOUTH COAST HYDRO SUBUNIT	SUBI	UNIT		11500	SA T15C1	SANTA BARBARA HYDRO UNIT	RBARA	нүрко	TINO		T1500						
4N/28W- 30 9 S	69	7.2	1078	124		63	100	0	332	244	52	3	9.0	0.02	-	762	994
69-6-1				51	26	23	•		45	42	•					689	
	99	8 • 0	1093	121	w :	65	7 00	0	309	244	24	7 0	0.5	90.0	1	738	450
9-21-65				51	25	7.83	0.03		43	0 4 0 0	1.04	0				619	
4N/28W- 8N 3 S	-	8 • 2	1492	138	J (138	m 9	0	444	290	127	10	7.0	0.23	-	1027	245
10-12-64				6.89	2.45	35	20.0		643	35	3.58	0.10				973	
	1	7.7	1071	58	01	132	0	0	288	158	110	v	0.3	77.0	1	079	204
7- 9-65				5.89	2.38	5.0 14	0.08		4.12	3.29	3.10	0.0				637	
	1	8.2	1586	133	3	168	6	0	436	308	133	7.5	0.5	0.36	1	1053	497
9-21-65				98	3.29	7.36	0.08		7.15	6.41	3.75	0.12				1008	
4N/28W-12K 2 S	1	7 • 7	1479	138	42	88		0	346	321	62	т	9.0	0.14	23	606	517
126-64				6 8 9 9 4 8	3.45	3.83	0.05		5.67	6.68	1.75	0.05				860	
	1	7.8	1129	96	.+	06	2	0	220	339	72	7	1.0	0.18	1	160	433
6-14-65				4 • 79	3.87	3.91	0.05		3.61	7.00	2.03	90.0				755	
	7.0	7.8	1217	113	42	88	2	0	262	319	75	1.0	0.5	0.15	1	850	422
9-21-65				5.64	3.45	8 e 8 e 0 c	0.05		4.59	6.64	2.12	0.02	-			169	

TABLE E-I
ANALYSES OF GROUND WATER
CENTRAL COASTAL DRAINAGE PROVINCE (T)

	T, to? hordness os	n.	210	010		426		1	1/2		161			171			989		772			1119				
uents in	6.0		643	710	527	671	623		705	511	510		493	504	202	000	1879	1838	2034)	1935	2487		7370		
constituents per million	- 00					1			1		1			1			1					ł				
Mineral o	Buren		0			0.08		C	0.35		0.36			0.36			0 • 0		0.38			0.52		-	_	
	7 C C		0			0.5		(0.3		0.4			0.3			0.5		0.0			0.4				
	Z 0 2)		0.5	0.01	ì	0.26	9	18	0.29	6	11	0.18	7	20	0.32	6	0.15		6	0.15			
million	Ch 10	11500	0,0	1.10	12	40	1.13	4 ,	2,19	33	112	3.16	34	114	3.21	†	705	19.88	725	20.45	09	197	22.48	20		
parts per million equivalents per million percent reactance vali	Sulfate	1	205	4.27	47	205	4.27	2 (2 2 2	2	0			12	0.25	n	356	1.4.1	400	8 33	24	338	7.04	97		
parts per equivalents percent re	Brear	UNIT	226	3.69	41	349	5.72	1 1	365	62	329	5.39	59	353	5.79	70	266	4 • 36	278	4.56	13	802	13.14	31	_	
par	Carbon .	HYDRO		0		0		(0		10	0.33	4	0			~	0.43	20	0.67	2	0				
u.	Potos -	RBARA	0	0.05	1	6	0.08	4 (0.20	2 5	6	0.23	Э	89	0.20	7		0.18	9	0.15		10	0.26	٦		
constituents	& nipos	SANTA BARBARA HYDRO UNIT	6.3	2.70	30	09	2.61	, (132	61	132	5.74	63	132	5.74	10	425	18.48	428	18.61	54	448	19.48	0 4		
Mineral co	Magne.	, (30	2.47	27	59	2.38	4 (1.80	20	22	1.81	20	22	1.81	17	146	12.01	153	12.58	37	184	15.13	20		
Σ	writ o)	T15C0	7.8	3.89	43	123	6.14	1 6	31	17	28	1.40	15	32	1.60	1	34	1.70	57	2.84	80	145	7.24	7.1		
Specific conduct-	mhos		C u			1031			248		885			931			3241		3328	1		4093				
	H	BUNIT	7.7	•		7.9		(7 • 8		8.4			8 • 2			8.4		8.6)		7.5				
Temp	when sampled	o subl	1 0	0		7.0			l ž		ł			ŀ			1		ļ			-				
State well	le d	SOUTH COAST HYDRO SUBUNIT	000E1A 11	7- 9-65			9-21-65		4N/28W=1/K 1 S	10 15 01		29-6 -2			9-21-65		4N/29W-14A 2 S	10-12-64		7-12-65			9-21-65			

		1								
	hardness 35		838		357		350	339	308	363
constituents in	T D S		1224		560		560	534	787	0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
constituent	S . S		1		-		1	1	1	1
Mineral parts p	9		0.42		0.24		0.10	0.11	0.11	0
	, p		0.5		9 • 0		0.0	0 0	0 • 0	~ • •
	202		2.3		50.08		11 0.18	0.11	1.0	18 0 0 2 9 3
million	0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	T1500	0.31		1.47		42 1•18 12	1.21	1.27	1.80
tr million ts per million reactance value	Sulfore S < 4		720 14.99		195		102	2.12	102	333333333333333333333333333333333333333
parts per equivalents percent r	Bicor - bonote HCU3	TINC	298 4.88 24		251		385	372 6.10	345	4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
p e d	Corbon	HYDRO (13		0		0	0	0	0
Ë	Potas.	RBARA	0.08		0.10		0.03	0.05	0.05	0.03
constituents	Sodium	SANTA BARBARA HYDRO UNIT	3.48		58 2.52 26		2.65	2.78	2.70	2.047
Mineral co	Mogne- stum M g	SA 115C1	1.97	11502	2.30	115C4	34 2 80 29	35 2 88 2 30	30 2.47	1.97
Σ	C010143	11500	296	4	4.84		4 • 19 4 • 43	3.89	3.69	5 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 .
Specific conduct-	mhos ot 25°C)		1649	SUBAREA	913	SUBAREA	851	870	839	840
	I a	BUNIT	7.8	HYDRO	7 • 8	YDRO SA	8 • 1	89	8.1	○ • ∞
Тетр	sampled in ° F	SUBL SRO SU	1		69	A HY	1	1	1	1
State well	Date sampled	SOUTH COAST HYDRO SUBUNIT	5N/27W-31E 1 S 6-21-65	SANTA BARBARA	4N/27W-18C 1 S 8- 5-65	CARPINTERIA H	4N/25W-21N 4 5 10-12-64	6-14-65	9-21-65	4N/25W-22R 3 S

TABLE E-1
ANALYSES OF GROUND WATER
CENTRAL COASTAL DRAINAGE PROVINCE (T)

Temp		Specific conduct-	Σ	Mineral co	constituents	ï	parts equiva percer	pe lent	million per eactanc	million e value			Mineral constituents parts per million	constituent per million	uents in Iion	
mhos colorum M	Colcium M	Σ ν	Σ ν _	5 C D D N	Sodium	Potos -	Carbon -	Brcor - bonate HCO3	Suifate SU4	ch lo	N. N.	, p	50°0°	5. 4.	Evop .80°C hordness Evot 105°C as computed Coling	T to: hordness os Couca
T15C0	T15C0	1			SANTA BARBARA HYDRO UNIT	RBARA H	HYDRO (TING		11500						
HYDRO SUBAREA T1		11	= 1	T15C4												
	68			27		2	0	188	164	30	36	9.0	0.12	1	470	281
3 • 3 9				2.22	2.22	0.05		3.08	3.41	0.85	0.58				471	
63 7.9 874 99	66			27	20	-	0	289	157	т С	. 52	7.0	0.11	1	5.50	25.00
				2.22	2.17	0.03		4.74	3.27	0.93	0 • 40)	
en en	53	53		24	23			51	35	10	4				535	
	19			59	09	1	0	368	124	68	10	0.2	0.13	i	622	410
			4	4 • 8 5	2.61	0.03		6.03	2.58	1.92	0.16			_		
31				45	54			99	54	18	٦				2.00	
	68		1	31	38	2	0	210	155	25	00	0.5	90.0	1	450	297
			~	52	1.65	0.05		3.44	3.23	0.71	0.13	_				
777				33	77	⊣		94	43	6	2				431	
	93			30	04	7	0	292	151	31	9	7.0	0.04	1	525	356
4.64 2			2	2.47	1.74	0.03		4.79	3.14	0.87	0.10					
0000	500) (-)	2	4				0 7 4	
1580 134	134		C	3.70	4.00	4 0	0	409	235	109	1	1.0	0.14	l	872	520
				26	28	7		94	33	21	200				822	
66 7.6 1342 142	142			45	86	т	0	445	220	100	1.0	0.5	0.21		866	540
			3	3.70	3 • 74	0.08		7.29	4.58	2.82	0.02					
64	64	64		25	56	7		20	31	19					817	
67 7.7 979 96	96		(29	71	6	0	355	109	75	Н	0.5	0.22	-	989	359
V	V	V	V	200	3.09	80.0		5.82	2.27	2.12	0.02					
94				5.3	30			57	22	21					655	
				_												

TABLE E-1
ANALYSES OF GROUND WATER
CENTRAL COASTAL DRAINAGE PROVINCE (T)

State well	Temp		Specific conduct-	2	Mineral co	constituents	E .	por	parts per equivalents percent	millior per eactanc	million e value			Mineral parts p	constituents per million	stituents in million	
Date sampled	sampled In ° F	I	(micro- mhos at 25°C)	£ 30	\$ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	E 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	P, 105	Corbon	B.cor bsnote HC. 3	5. foth	2 0 0	2 0 2	, D	ے 1	00 5	T D S Evap 180°C Evap 105°C	Tota hardness as Califis
SOUTH COAST HYDRO SUBUNIT	RO SUB	DRO S	SUBAREA	11500	5	SANTA BARBARA HYDRO UNIT	RBARA	HYDRO	UNIT		T1500						
4N/25W-29D 3 S	1	8.0	785	88 44 44 50	26 2.14 2.4	2.26	0.03	0	350	2.42	27 0 . 76	4.3	7.0	0.07	l l	520	329
6-14-65	65	7.9	949	2.50	2.14	2.22	0.05	0	3.67	120	24 0.08 10	0.08	9.	90.0	1	380	232
9-21-65	65	7.9	821	900	24	2.26	0.03	0	345	117	0.13	0.05	֥ 0	90.0	-	513	2,2
4N/26W-23H 1 S 6- 2-65	1	7 • 4	1650	138	5.67	148	0.03	C	527 8 • 64 46	3.54	206 5.81	40	0.2	0.25	1	1062	529
4N/26W-24E 4 5 6- 2-65	1		1000	2.50	3.04	121 5.26 48	S. S. S.	0	393	63	3.24	0	0.2	0.30	i t	88 6	217
4N/26W-24F 4 5 6- 2-65	8 9	7 • 4	1400	3.69	62 5.10 33	150	0.05	0	421 6.90 46	1.39	226	30.00	9.0	0.70	i t	970	077
4N/26W-24F 7 S	1	7 • 4	1617	122 6.09	61 5.0? 30	128	0.03	1	418 6.85 40	1.19	276	19	٠ • 0	97	!	1014	556
6-14-65	1	7.9	1232	2.59	3.78	132 5.74	50.0	0	281 4.61 38	1.17	208	30 0.58	1.4	0000	-	672	215

TABLE E-1
ANALYSES OF GROUND WATER
CENTRAL COASTAL DRAINAGE PROVINCE (T)

	hardness as		412
uents in	TDS to to to to to to to to to to to to to		408
constituent per million	S:11- ca S:02		1
Mineral constituents parts per million	Boron		• • • • • • • • • • • • • • • • • • • •
	Fluo- ride F		O • E
	NI - trate NO3		37 0 • 60 4
million e value	chlo- ride	11500	6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
r million ts per million reactance value	Sulfate SO4		1,6,2,1 8
parts per equivalents percent re	Bicar - bonate HCO3	TINO	0 0 0 0 0 0 0 0 0
pod	Carbon - ate CO3	HYDRO	0
ri s	Potas sium K	RBARA	0.03
constituents	Sodium	SANTA BARBARA HYDRO UNII	6 • 0 4 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2
Mineral co	Mogne - Sodium sium Mg No	S T15C4	3.70
2	Colcium	T15C0	4.54 32
Specific conduct-	(micro- mhos at 25°C)	UBUNIT HYDRO SUBAREA	1440
	рн	UNIT DRO S	0 • 8
Temp	wnen sampled in ° F	O SUB	1
State well	led	SOUTH COAST HYDRO SUBUNIT	4N/26W-24F 7 S 9-21-65

TABLE E-1

ANALYSES OF GROUND WATER

LOS ANGELES DRAINAGE PROVINCE (U)

	Total hardnes os Co CCs		828			
ituents in	T D S Evap 180°C Evap 105°C Computed		1310			
const	See 1.		-1			
Mineral constituents parts per million	60.08		98.95			
	Fig.		9 • 0			
	rote NO3		0.0			
million	ride C1	00100	1.52 1.52 8			
ports per million equivalents per million percent reactance value	Sulfate SO 4	2	599 12.47 62			
ts pe	Bicor - bonote HCO3	5	365 5.98 30			
pod	Corbon -	DRO UN	0			
i i	Po 1 0 s -	REEK HY	0.05			
constituents	E 9 2	RINCON CREEK HYDRO UNIT	71 3•09 16			
Mineral c	Mogner Sodium	RI	5.67		 	
	C 0 1 C 4 C B		218 10.88			_
Specific conduct-	(micro - mhos at 25°C)		1490			
	H		7.7			
Temp	when sampled in F		1			
State well	Date sampled		4N/24W-33M 1 S 3-15-65			

TABLE E-1
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	Total hardness as		860	1560	570	
constituents in per million	T D S Total Evap 180°C hardness Evap 105°C as Computed CaCOs		1894	3114 1560 2578	860	
constituent per million	Suli- co SiO ₂		l	1	1	
Mineral parts p	Boron		1.00	0.84	0.60	
	Fluo- ride F		0.2	0 • 1	0.2	
	N: n trate NO3		6.0	90.00	19 0•31 2	
million se value	Chlo-	00200	397 11•20 40	996 28•09 63	2.37	
million per eactand	Sulfate		503 10•47 37	526 10.95 24	300	
parts per equivalents percent r	Bicar - bonate HCO3	TINC	400	356 5.83 13	353	
par	Corbon -	HYDRO (0	0	0	
.E	Potos - sium X	RIVER	0.20	9 0•23 1	0.08	
constituents	Sodium	VENTURA RIVER HYDRO UNIT	242 10•52 38	320 13.91	3.04	
Mineral co	M a g n e . s : u m	>	73 6.00 22	120 9.87 22	5.26	
2	Calcium	UOZAO	224 11•18 40	427	123	
Specific conduct-	(micro- mhos ot 25°C)		2200	3600	1180	
	I a	SUBUNIT	7.7	7.5	7 • 7	
Тетр	when sampled in ° F	HYDRO	-	1	1	
State well	9	LOWER VENTURA R HYDRO	2N/23W- 5L 1 S 10-21-64	2N/23W- 5P 1 S 10-21-64	3N/23W- 8B 2 S	

State well	Temp		Specific conduct-	Σ	Mineral co	constituents	s in	9 6 0	equivalents percent	s per mil	million se value			Mineral parts	constituents per million	uents in	
Date sampled	when sampled in ° F	Hď	mhos at 25°C)	Colcium	M o g n e .	& n p o &	Potos:	Carbon -	Bicor - bonofe HCO3	Sulfate \$0.4	Ch10-	role NO3	Fluo.	80000	5.02	TDS Total Evop 180°C hordress Evop 105°C as Computed Co CO3	Total hardness as CaCO3
UPPER VENTURA R HYD	RO	SUBUNIT		00280	VE	VENTURA RIVER HYDRO UNIT	IVER P	1YDRO L	TINI	,	00200						
0	-	7.9	1084	130	36	65	8	0	301	263	54	0.6	1.0	96.0	54	793	473
				6.49	2.96	2.57	0.08		4.93	5.48	1.52	0.15				727	
2 1 H2 -WEC/NE	1	7.1	1160	132	34	62	2	0	297	9	8 7	0.9	0.2	0.54	1	778	470
4				6.59	2.80	2.70	0.05		4.87	1.33	1.35	0.10				495	
S 1 86 -MEC/NA	1	7.2	1000	. 66	4.5	57	2	0	255	566	4 0	8.0	7.0	64.0	1	736	644
				4.94	4.03	2.48	0.05		4.18	5.54	1.30	0.13				653	
0 1 OII - MEC / N/	1	0	562	77	19	94	1	0	235	56	36	13.0	0 • 8	0.02	35	320	188
4				2.20	1.56	2.00	0.03		3.85	0.54	1.10	0.21				339	
4N / 23W - 14C 1 S	30	7.5	1830	185	55	165	S	0	411	339	544	7.0	0.5	0.53	1	1290	688
				9.23	4.52	7.17	0.13		6.74	7.06	33	0.11				1203	
> 1 291-M2C/N3	1	8.1	1996	195	64	168	5	0	386	283	318	2.0	9.0	0.72	ł	1370	689
4				9.73	4.03	7.30	0.13		6.33	5.89	8.97	0.03				1211	
0 C 041-W2C/W4	ļ	7.8	270	47	1.7	50	~	3	214	3	07	19.0	7.0	0.10	ł	360	188
4				2.35	1.40	2.17	0.03		3.51	1.15	1.13	0.31				335	
4N /23W-16C 4 S	9	7.7	972	119	34	64	2	0	792	253	37	5	1.0	0.58	19	723	437
				5.94	2.80	2.13	0.05			2.71	1001	1.00				624	

TABLE E-1
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	Tehel hardness os Coccos		194		471	029	714	291	
uents in	TDS rates Evap 180°C hardness Evap 105°C as Computed cactos		740	684	724	1274	1350	456	
constituents per million	Silt- ca Si0 ₂		22		1	1	1	1	
Mineral parts p	Boron		09.0		0.50	09•0	0.68	0.36	
	Fluo- ride		0.8		0.5	0.5	0 0	0.2	
	rote NO3		0.10	-	0.0	7.0 0.11	1.0	2.4	
million ce value	Chlo -	00200	1.16	10	1.27	245 6.91 35	250	0.17	
millio per eacton	Sultate SO 4		280	55	299	358 7.45 38	350 7.29 37	188 3.91 50	
len t	Bicar - bonate HCO3	TIN	249	37	269	325	375 6•15 31	228 3•74 48	
parts equiva percer	Carbon - ate CO3	HYDRO (0		0	0	0	0	
Ë	9000 X	RIVER	2 0.05		0.08	0.10	30.08	0.08	
Mineral constituents	Sodium	VENTURA RIVER HYDRO UNIT	2.00	18	2.35	150	134 5-83 29	39 1.70 22	
ineral co	Magne.s.um	>	3.04	27	3.62	5.35	54	1,32	
2	Calcium	00280	126	52	116 5.79 49	161 8 • 03 40	197	90 4 4 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	
Specific conduct-	mhos at 25°C)		1005		930	1740	1825	708	
	H	SUBUL	7.4		0 • 8	7.8	7.8	0 • 0	
Temp	when sampled in ° F	tyDRO	64		1	-	1	1	
State well	led	UPPER VENTURA R HYDRO SUBUNIT	4N/23W-20J 2 S 10-21-64		4N/23W-20Q 8 S 3-14-65	4N/23W-28K 3 S	4N/23W-33M 1 S 12-17-64	5N/23W-14E 1 S 6-21-65	

TABLE E-1
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	Total hardness as CaCO3		688	583	418	283	711	492	360
tion	Evap 180°C Evap 105°C Computed		1180	1090	786	576	886	1124	230
constituents per million	Sili- co SiO ₂		1	1	1	1	1	1	1
Mineral c	B 8		0.52	0.55	77.0	1.38	0.25	79.0	0000
-	Fluor		9 • 0	0 •	9	0.5	0.2	9.0	• •
	hrote NO3		1.0	26 0 • 42	14 0.23	27 0.44	0.0	1.0	25.0
million e value	Chio.	00200	102 2.88 15	166	3.13	1.95	1.04	7.22	32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
per per pactanc	Sulfore SO 4		374	275 5•73 32	138 2.87 21	13	3.93	200	3.81
len	Bicar - bonote HCO3	TINI	500 8.20 43	421 6.90 39	448 7.34 54	502	672	4007	3.837
equiva	Carbon - ate	YDRO L	0	0	0	0	0	0	0
Ē	0 to 2 X	NIVER H	0.03	0.03	0.03	0.03	0.05	0.08	0.031
constituents	E D Z	VENTURA RIVER HYDRO UNIT	123 5•35 28	134 5 83	121 5.26 39	120	36	208	1.83
Mineral con	Magne-S	VE U02C1	50 4.11	3.37	30 2.47	24 1.97 18	5.02	31 2.55	02C2 1.81 20
N.	Colcium	00200	193	166 8.28 47	118 5.89 43	3.69	184 9•18 58	146 7•29 38	5.108
Specific conduct-	micro - c mhos at 25°C)	SUBAREA	1642	1400	1260	24.0	1240	1815	841
0, 0	Ha		7.3	7.8	7.4	7.5	7.6	7.5	7.9
Temp	when sampled in ° F	T	62	1	26	1	1	1	SUBAREA
well	Dote sampled	OJAI HYDRO SUBUNIT UPPER OJAI	W- 9N 1 S	4N/22W- 90 2 S	22W-10K 2 S 1-12-65	4N/22W-12N 1 S 10-28-64	4N/22W-14J 1 S	4N/22W-17G 1 S 1-12-65	OJAI HYDRD 4N/22W- 5L 8 S 10-29-64
Stote	Dote	DAI HY	4N/22W- 9N 1-12-65	4N/22N	4N/22W-10K	4N/22	4N / 22	4N/22	4N/22

TABLE E-1
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	Total	COCO3		360		325		417		0	273		402			1076						
constituents in per million	T.D.S. Total	Computed CaCO3		9009	530	518	478	615	5.01		000	524	626		564	1946 1076		1597				
constituent per million	St i i-	SiO2		1		i i		-					1			-						
Mineral o	Boron	8		0.04		0.07		0.07		ó	1000		0			0.07						
	Fluor	L		0.5		0.5		9.0			0.0		0.2			0.1						
	Ni -	NO3		25	2 4	2.0	0	26.0	0.42		7.09	2 2 2	32.0	0.52	S	14.0	0.23					
million per million ctance value	Chlo -	- 0	00200	32	10	19	9	25	0.11	· 0	1 , 3 5	14	25	0.71	_	633	17.85	63				
0	Sulfate	504		183	45	178	44	195	4.06	3,4,6	3 0 7	32	200	4.16	43	247	5.14	20				
parts per equivalents percent re	Bicar - bonote	нсоз	TINO	237	43	250	64	299	06.4	305	4.84	51	257	4.21	777	316	5.18	Ω 7				
par	Carbon -	C 0 3	нурво	0		0		0		C	>		0			0						
ni s	Potos -	¥	RIVER	10.03		0.03		1 00	0.03	-	0.03		1	0.03		2	0.05					
constituents	Sodium	0 N	VENTURA RIVER HYDRO UNIT	42	20	39	21	39	1.0	78	1.57	17	04	1.74	₽₹	163	V.09	67				
Mineral co	Magner	D 2	v 002C2	22	20	22	22	31	25	36	2.96	31	34	2.80	67	74	6000	17				
Σ	Calcium	Co	00200	108	69	46	57	116	57	0	4.89	52	105	5.24	50	309	75061	10				
Specific conduct-	(micro-	at 25°C)		841		750		206		873			860			2500						
	Ha		REA	7.9		7.5		6.7		7.5			7.4			7.7						
Temp	when	L E	IT O SUBAREA	1		!		1		1	_		-			1						
State well	De l		OJAI HYDRO SUBUNIT OJAI HYDRO	4N/22W- 5L 8 S 10-29-64		4N/22W- 7C 1 S		4N/22W- 9B I S	40-67-01	4N/23W- 2B 1 S			4N/23W-12H 2 S	10-21-04		4N/23W-12K 2 S	10-17-01					

TABLE E-1
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	hordness		244		647		5370		5201		357		340		432		7.07	
constituents in	TOS Evop 180°C hardness Evop 105°C		999	816	930	822	25020	22976	25260	24568	099	636	069	663	968	156	900	
consti	S.(1)- C.0	7	1		1 9		1		1		1		1		1		t 1	
Mineral	Boron		0.85		0.65		1.94		1.65		0.25		74.0		0.45		0.77	
	Fluor		0.5		0.5		0.1		0.2		0.3		9.0		B.0		0.0	
	frote NO3		0.0		0.0		0.0		0.0		30.05		1.0	0	0.0		1	
r million ts per million reactance value	Chlo- ride Cl	00200	254	94	247	7 7 7 0	12860	06	13587	202.10	1.69	16	40.1	2001	51	1.44	45	
s per reactanc	Sulfate	2	101	2.10	86	7.04	1756	00.00	1768	36.81	248	147	252	750	310	6.43	354	
parts per equivalents percent	Bicor - bonofe HCO3	HYUK	354	0 4	344	3 8	210	2.44	251	4 • 4 1	244	37	274	† C * C * C * C * C * C * C * C * C * C	296	38	268	
por	Corbon -	LLEGUA	Э		0		0		0		1		0		0		i i	
C C	S C S X	AKA-CA	30 00	1000	10	2 2 2	62	0	100	7.00	-		4 01 - 11		4 3			
constituents	Enipos O N	ANTA CL	220	4.01	220	69	0099	72	1450	75	3.57	33	98	38	66	31	3.96	
Mineral co	Magnersium	S, UU3A1	30	17	35	19	865	18	841	16	31 2.55	54	28	21	35	2.3	3.29	
2	Caterum	UOSAU	40	16	42	2.10	725	6 000	697	34. (8	95 4 59	43	26.4	7 7	115	20/4	118	
Specific conduct-	mhos of 25°C)		1360		1320		26000		76000		1010		1027		1170		1182	
	H	SUBUNIT	٦ • ۵		8.1		7.5		7.1		7 • 2		7.5		7.3		7.9	
Temp.	sampled In ° F	0,	!		99		1		1		1		1		i		1	
Stale well	pe	OXNARU PLAIN HYDRO S	15/21W- 8L 1 S	10-13-04	u .	60-6-6	15/21W- 8L 2 S	10-13-04		20-2-40	IN/21W- 3L 1 S 5-17-65		IN/21W- 9M 1 S		1N/21W-18A 1 5	- x - 0	1N/21W-18Q 1 S 11- 4-64	

TABLE E-I
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	Total hardness as CaCO3		434	450	458	964	546	999	327	517
constituents in	T D S Total Evap 180°C hardness Evap 105°C as		854	848	820	996	970	1046	1217	836
constituent per million	5111- C0 S102		\$	1	1	1	1	1	1	1
Mineral parts p	Boron		0.72	0.65	69.0	0.44	0.43	0.56	0.81	0.33
	Figo-		0.7	0 . 8	0.7	0.5	0 • 1	0.1	0 • 5	4.0
	frote NO3		0.0	0.02	0.02	0	3 0 • 0 5	0	0	1.2
million per million ctance value	0 h l o l o l o l o l o l o l o l o l o l	00800	1.33	1.33	1.27	124 3•50 23	199 5.61	195	306 8 63 45	1.49
0 0	Suffate SO 4	SANTA CLARA-CALLEGUAS HYDRO UNIT U0300	326 6.79 54	352 7-33 57	329 6.85 53	305	295	293 6•10 37	221	398 8•29 57
e e	Bicor - bonofe HCO3	HYDRC	274	256	286	326	299	301	359 5.88 31	294
parts equiva percen	Corbon -	LEGUAS	f I	0	0	0	0	0	0	0
Ë	Potos - sium K	ARA-CAL	1	r.10	0.10	0.10	0.15	0.20	0.15	0.13
constituents	Sodium	NTA CL	3.96 3.96	93 4.04 31	3.65 2.8	127 5•52 36	135 5.87 35	122 5.30 32	299 13.00 66	101 4 39
Mineral co	M G G G G G G G G G G G G G G G G G G G	SA U03A1	3.29	3.21	3.21	3.87	68 5.59 33	6.33	3.29	31 2.55 17
2	Colcium	U03A0	108	116 5.79 44	119 5.94	121 6.04	108	100	3.24	156 7•78 52
Specific conduct-	mhos at 25°C)		1178	1154	1164	1464	1360	1480	1963	1255
	H	SUBUNIT	7.5	8 • 2	7.5	7.8	7.5	8 • 1	7.9	7.9
Тетр	sampled In ° F	0,0	1	1	68	-	71	63	1	1
State well	Date sampled	DXNARD PLAIN HYDRO S OXNARD HYDRO	1N/21W-18Q 1 S 5-13-65	8- 6-65	1N/21W-19R 5 S 8-17-65	IN/21W-28F 2 S 6- 3-65	1N/21W-28N 1 S 10- 6-64	5- 6-65	1N/21W-28N 2 S 6- 3-65	1N/21W-29C 1 S 6- 8-65

	Total hardnes os CoCCs		438	88	456	472	356	537	456	451
fuents in	TAD S Total Evap 185°C nardnes Evap 105°C os Computed CoCCS		824	1101	858	858	725	1014	810	969
constituents per million	5.02		1	1	1	1	41	1	0 4	1
Mineral	B0100		0.26	0 • 68	0 83	0.59	0.59	0.62	09.0	0 • 0
	. o p		4.0	9 • 0	0 • 2	0 • 2	9.0	0 • 5	1.0	0 • 5
	rote NO3		1.2	0.02	0 • 0	0	3.0	0.10	2.0	0
million se value	Ch 10 -	10300	1.38	95 2.68 16	1.69	1.58	1.13	1.49	37	1.10
per	Sulfate SO4	SANTA CLARA-CALLEGUAS HYDRO UNIT U0300	336	441 9•18 55	337	371	244 5.08 45	446	364	359
equivalents percent	Bicor - bonote HCO3	HYDRG	293	297	297	287	309	269 4.41 29	256	266 4.36 34
p e d	Carbon- ole CO3	LEGUAS	0	0	0	0	0	0	0	0
Ē.	Potas	ARA-CAI	0.13	0.13	0.10	0.10	0.13	0.08	0.10	0.10
constituents	E D N	INTA CL	104	160 6.96 41	105	100	100	108	3.65	3.65
Mineral co	Mog n Sec N	SA U03A1	36 2.96 22	3.87	4.93	4 8 9 9 9 9 9 9	30 2.47 21	3.70	3.13	2.88
Σ	Colcium	U03A0	5.79	118 5.89 35	84 4.19 30	4.59	4 64	141	120	123
Specific conduct-	mhos of 25°C)		1220	1550	1300	1120	1034	1368	1116	1171
	H.	UNIT	7 • 8	7.5	7.6	7.8	7.6	0 • 8	0	7 - 7
Temp	sampled in ° F	to sue	1	1	1	89	1	1	1	1
		нурв О нус	S S	1 S	v)		2	2 \$	1 S	
State well	Date sampled	OXNARD PLAIN HYDRO SUBUNIT OXNARD HYDRO SUBAREA	1N/21W-29C 3	1N/21W-29G 1 5-27-65	10-15-64	5- 6-65	10-23-64	1N/21W-30C 2	IN/21W-31A 1	8 - 8 - 65

TABLE E-I
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

Sold with Sold		conduct-	Specific Mineral conduct-
4 3.0 0.1 0.33 724 0.05 1.8 0.2 1.01 1008 1 0.03 1.01 1008 2 0.0 0.1 0.48 700 3 0.07 0.79 568 4.1 0.2 0.40 968 5 0.0 0.2 1.12 968 5 0.03 0.2 1.12 1296 6 0.03 0.2 1.12 1078 7 0 0.2 0.44 665 8 0 0.2 0.44 690	Colcium Mogne.	Colcium Mogne.	Colcium Mogne.
0.13	SANT U03A0 U03A1	U03A0 U03A1	U03A1
12 4 256 411 194 1.88 0.2 1.01 1008 0.31 0.13 4.20 8.56 5.47 0.03 0.03 2 0.10 4 256 411 194 0.03 0.03 0.10 0.13 4.20 8.56 5.47 0.03 0.1 0.48 1008 0.10 0.05 0.21 244 61 4.1 0.0 0.1 0.48 700 0.05 0.264 288 195 0.00 0.2 0.40 968 0.13 0.264 288 195 0.00 0.2 0.40 968 0.18 0.26 178 377 188 2.0 0.03 0.03 0.18 0.26 4.4 30 0.03 0.03 0.10 0.28 242 5.30 0.00 0.1 0.29 720 0.10 0.10 0.28 242 5.00 0.1 0.29 720 0.10 0.10 0.28 242 5.00 0.1 0.29 669 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	71 3.54 3.	71	71 3.54 3.
0.31 0.13 4.26 4411 194 1.88 0.03 1.01 1008 2.3 4.20 8.56 5.47 0.03 0.01 0.48 1008 0.010 3.77 5.62 1.18 0.0 0.1 0.48 700 0.05 0.05 2.11 2.44 61 4.1 0.0 0.79 5627 0.05 0.05 0.264 2.88 1.95 0.0 0.79 568 0.13 0.264 2.88 1.95 0.0 0.2 0.79 5627 0.13 0.264 2.88 1.95 0.0 0.0 0.79 568 0.13 0.264 2.88 1.95 0.0 0.0 0.40 968 0.18 0.26 2.86 2.86 2.80 0.0 0.0 0.1 0.2 0.40 1296	30 30		
2 1 23 47 30 1127 0.010	103 34 5.14 2.80		103
0.010			
1 36 53 11 6244 61 4.1 0.2 0.79 568 33.46 5.08 19.72 0.007	57 45 2.84		57
0.05			
0.13	3.49		3.49
0.13	34 15		
0.18	2 48		2 48
0.18		`	`
0.10	137 18		137
0.10			
0.10	44		44
0.10 286 242 52 0 0.2 0.44 690 1 4.69 5.04 1.47 644	61 61		
1 469 5504 1.47		52	53 52
	23 38		

	Total hardness os Colicis		355		367		573		611		167		392		889		519	
uents in	TDS Total Fupp 180°C hardness Evop 105°C os Compared CoCC3		196	710	176	622	1130	1000	1190	1059	999	616	555	1069	945	857	956	8885
constituents per million	Sill- co SiO ₂		1		i i		-		-		1		-		-		1	
Mineral parts p	Boron		0.31		0.83		0.88		0.62		0.38		0.98		0.88		0.71	
-	Fluor		0.1		0.5		0.5		0.5		0.1		0.5		0.5		7.0	
	rote NO3		0.0		9.0	•	0.0		0		2.0	0.03	2.0	0.00	0		0	
million e value	Chio-	00300	57	3	59	16	145	5.50	217	50.12	3 3	2.40	179	250	20 0	2.34	99	10
per per soctonc	Sulfate SO4	SANTA CLARA-CALLEGUAS HYDRO UNIT U0300	307	50.00	237	4.40	343	7.14	352	40	224	4 4 4	389	9 1 0	368	53	362	0
parts per equivalents percent r	Bicar - bonate HCO3	S HYDR	248	34	219	34	283	4.64	299	4.90	214	33	252	4.13	271	4.44	283	31
9 9 0	Carbon - ate CO 3	LLEGUAS	0		80 1	3.0	0		0		0		1 00	2 2 2	0		0	
.c	Potas -	ARA-CA	91.0	7	9 1	- T		0.10	9 .	0.13		0.10	91	1 10		0.08	200	
constituents	Sodium	ANTA CL.	108	36	490	27	135	5.87	140	33	104	4.07	225	55	110	33	110	31
Mineral co	Magae.	S/ U03A1	50	34	12	10	72	5.92	75	33	43	34	34	16	56	4.61	09	32
2	Calcium	U03A0	60 60	25	127	62	1111	5.54	121	33	84	23	101	2.04	103	35	109	36
Specific conduct-	1 0		1000		1170		1200		1600		920		1850		1240		1300	
	H	SUBUNIT O SUBAREA	7.7		8.2		7.6		8.0		7.5		8.1		7.4		7.9	
Temp.	sampled in ° F	RO SUI	1		1		1		99		1		1		-		99	
State well	Date sampled	OXNARD PLAIN HYDRO	IN/21W-32C 1 S		27-66-9	69-17-9	1N/21W-32G 1 S	10-16-64		69=6=6	1N/21W-32K 1 S	101		6000	1N/21W-32L 1 S	10-10-04	1 L	

TABLE E-1
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	Total	0000		313	329	295	454	797	456	476	460	
constituents in per million	T D S Total	Computed		620	696	1112	800	882	877	913	860	
constituent per million		5.02		I	1	1	37	1	1	i	1	
Mineral parts p	Boron	8		14.0	0.41	0.76	0.62	0.74	0.71	69.0	0.32	
	Fluo-	L		0.1	0.1	0 • 7	6.0	0 8	0 • 8	1.00	6 • 0	
	- N - tota	NO3		0.0	0	1	0	1	1	0	8 0•13	
million se value	Chlo-	C 1	00300	21 0.59	1.35	1.58	39	1.18	1.27	1.18	1.13	
million	Sulfate	504	SANTA CLARA-CALLEGUAS HYDRO UNIT U0300	256 5.33 50	240	456	366	385	376	386 8.04 61	323 6•72 53	
parts per equivalents percent re	Bicor - bonote	HCO3	S HYDR	291	328 5.38	284	251 4•11 32	250	251	248 4.06 31	293	
par	Carbon -	C 0 3	LLEGUA	0	0	1	0	1	1	0	0	
ï	Potos -	×	ARA-CA	0.10	0.13	1	0.10	-	i i	0.10	0.10	
constituents	Sodium	o z	ANTA CL	96 4.17 40	117 5.09 43	101	3.65	93	93	3 8 8 8 8 8 8	3.48	
Mineral co	Magne-	0 N	S U03A1	3.37	61 5•02 43	4.44	2.88 2.22	3.29	3.37	3.37	3.45	
2	Colcium	٥٥	U03A0	2.89	31 1.555	138	124 6 19 48	120	115	123 6•14 46	5.74 45	
Specific conduct-	(micro-	at 25°C)	∢	096	980	1432	1130	1228	1218	1203	1164	
	H		SUBUNIT	8 • 0	8.1	7.4	7.4	7.8	7.4	8 0	7.3	
Тепр	sampled in F		RO SU DRO SU	ł	67	1	67	ŀ	1	1	1	
State well	Date sampled		OXNARD PLAIN HYDRO SUBUNIT OXNARD HYDRO SUBAREA	1N/21W-320 1 S 10-16-64	5- 5-65	1N/22W- 3F 4 S	1N/22W- 5G 3 S 12- 4-64	1N/22W- 7D 1 S	5-13-65	6- 8-65	1N/22W- 7J 4 S 8-18-65	

	Total hardness as CaCO3		539	543	1415	492	473	194	094	894
luents in	T.D.S. Evap 180°C Evap 105°C Computed		934	978	2361	925	006	917	738	818
constituents per million	S.0.2		1	1	I	1		1	1	1
Mineral parts p	Boron		0.65	0.63	0.73	0.70	0.53	79.0	0 80	99•0
	F. u.o.		1.0	9.0	9.0	6.0	8 • 0	8	6.0	® • •
	trate NO3		4 0 0 0 0	0	2 0.03	0	1	1	0	0
million se value	- 0140 - 104 - 017	00300	1.61	1.47	770 21.71	1.33	1.33	1.35	1.21	1.27
million per eactand	Suffate SO4	SANTA CLARA-CALLEGUAS HYDRO UNIT U0300	411 8.56 59	444	456	404	398	381	383	379
parts per equivalents percent	Bicor - bonote HCO3	S HYDR	267	253	237	265	255	258	253	256
por	Corbon -	LEGUA	0	0	1	0	1	1	0	0
i.	Potos.	ARA-CAI	0.10	0.10	!	0.08		1	0.10	0.10
constituents	E 0 0	ANTA CL	3.91	3.96	152 6.61	3.74	95	95	3.96	3.83
Mineral co		5,	4.03	3.87	123 10•12 29	3.70	3.37	3.45	3.21	3.21
2	E 70 0 0	00340	135	140	364 18•16 52	123	122	118	120	123
Specific conduct-	mhos at 25°C)		1314	1325	3343	1278	1260	1252	1196	1220
	r a	SUBUNIT	7.7	7.9	7 - 7	8 • 0	7.6	7.2	7.8	7.8
Temp	sampled in ° F	RO SUE	1	ł	1	65	1	1	67	9
Stote well	Date sampled	OXNARD PLAIN HYDRO SUBUNIT OXNARD HYDRO SUBAREA	1N/22W- 9L 3 S 10-22-64	1N/22W- 9M 1 S 6- 8-65	1N/22W- 90 2 S	1N/22W-14F 1 S 2- 5-65	1N/22W-14K 1 S 11-26-64	5-17-65	1N/22W-14K 3 S	1N/22W-14R 3 S 2- 5-65

TABLE E-I
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

Mineral constituents in parts per million	Suit- TDS Total	S.O.2 Computed CaCO3				33 920 536		934	1064 580		986	1041 577		958	1258 735		1142	2500 1204		1707		2194 1220	2194	2194	2194	2194 1766 2530	2194 1766 2530 1835	2194 1766 2530 1835 982	2194 1 1766 2530 1 1835 982	2194 1 1766 2536 1 1835 982	2194 1 1766 2530 1 1835 982
Mineral co	Boron	8 8				0.68			0.73			0.62			0.62			0.68				69.0	69*0	69.0	0.69	0.69	0.69	1.22	1.22	1.22	1.22
	FIU0-	9 D L				6.0			0.9			0.7			0.4			0.7				0.4	4.0	0.4	0.6	0 0 0	0 • 6	0 0 0	4.0000	0 0 0	0 0 0 0 4
	ż	trote NO ₃				4.0	90.0		5	0.08		0			0.0			ď	0.08			0.0	0.0	0.0	0.0	0.0	0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 •	0.00	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
million se value	Chlo-	ride C I	00300			55	1.47	10	50	1.41	5	57	1.61	10	257	7.25	37	582	16.41	55		683	683	683 19•26 62	683 19•26 62 62	683 19.26 62 62 17.65	683 19.26 62 17.65	683 19•26 62 17•65 11•65	683 19.26 626 17.65 56 116 3.27	683 19.26 62 62 17.65 11.65 3.27	683 19.26 62 62 17.65 17.65 3.27
million per eoctano	Sulfate	504	SANTA CLARA-CALLEGUAS HYDRO UNIT U0300			436	9.08	61	483	10.06	9	463	6.64	62	406	8.45	43	465	89.6	32		410	410	410 8.54 28	410 8•54 28 504	410 8•54 28 504 10•49	410 8•54 28 504 10•49	410 8.54 28 10.49 10.49	410 8 • 54 28 504 10 • 49 417 8 • 68	410 8.54 28 28 10.49 417 8.68	410 8 • 54 2 8 2 8 10 • 49 3 3 4 1 7 8 • 68
lent	Bicar -	bonote HCO ₃	S HYDR			259	4.25	59	285	4.67	29	269	4.41	28	237	3.88	20	225	3.69	12		185	185	185 3.03 10	185 3.03 10 216	185 3.03 10 216 3.54	185 3.03 10 216 3.54	185 3.03 10 216 3.54 11	185 3.03 10 216 3.54 11 246 4.03	185 3.03 10 216 3.54 11 246 4.03	185 3.03 10 216 3.54 11 246 4.03
parts equiva	Corbon -	01e CO3	LLEGUA			0			0			0			0			0				0	0	0	0 0	0 0	0 0	0 0 0	0 0 0	0 0 0	0 0 0
s in	Potas -	. x	-ARA-CA				0.1	7	4	0.1			0.1	~	ū	0.13	~		0.15	7	,		0.15		0.15	1.	0.15				
constituents	Sodium	o Z	ANTA C			93	4004	27	102	4.43	17	100	4.35	27	104	4.52	23	122	5.30	18	148	1	90 44	6.44	6.44	6.444 21 185 8.04	6.44 21 185 8.04 26	6.44 6.44 21 185 8.04 26 105	6.44 6.44 21 185 8.04 26 105 4.57	6.44 185 8.04 26 105 4.57 4.57	6.44 185 8.04 26 105 4.57 4.57
Mineral co	Magne-	S to B	0)		UUSAI	64	4.03	27	90	4.11	52	8 7	3.95	25	69	5.35	28	104	8.55	29	96		7.81	7.81	7.81	7.81 25 82 6.74	7.81 25 82 6.74 22	7.81 25 82 6.74 22 55	7.81 25 6.74 6.74 7.55	7.81 2.82 6.74 6.74 7.55 7.55 7.55 7.55	7.81 6.74 6.74 7.55 7.65 7.65 7.65 7.65 7.65 7.65 7.65
. ≥	Colcium	0		U03A0		134	69.9	45	150	7.49	94	152	7.58	24	187	9.33	8 7	311	15.52	53	332	16.57		54	54	326 16-27	326 16.27 52	326 16.27 52 52	326 16.27 52 140 6.99	326 16.27 52 140 6.99 43	326 16.27 52 140 6.99 43
Specific conduct-	(micro-	at 25°C)		<	A	1282			1479			1410			1630			2743			2600				3120	3120	3120	3120	3120	3120	3120
	Hd			SUBUNIT	UBAKE	7.8			7.8			8.0			7.6			7.5			7.2				7.9	7.9	7.9	7.9	7.9	7.9	7.9
Temp	sampled	F		DRO SU	YDKU S	1			69			1			-			-			1		_		-	1	1	1 1	1 1	1 1	1 1
State well		Date sampled		OXNARD PLAIN HYDRO SUBUNIT	OXNAKU H	1N/22W-15B 3 S	10-22-64			2- 5-65			9-8-9		1N/22W-15C 1 S	10- 8-64			6- 7-65		1N/22W-15L 1 S	10-8-64				6- 7-65	6- 7-65	6- 7-65 1N/22W-15P 1 S			

	Total	hardness os CoCOs			424			2243			8670			6973			787			645			694			591			
constituents in	105	Evap 105°C a			1140	2	1043	4063		2912	17540		13696	12440		10209	848		987	700		1074	846		868	1037		916	
constituent per million	Sili-	50iS			1			-			1			1			!			1			1	Ī		-		_	
Mineral parts p	Boron	8			0.75			0.65			0.97			0.70			1.19			0.82			0.75			0.98			
	F100-	7 1 G e			7.0			0.8			0.1			0.8			9.0			9.0			4.0			6.0			
	1 - 2	rate NO3			0			16	0.26		0.0			11	0.18		0.4	0.01		0			0.0			0			
million e value	C h 10 ~	ride C 1	00300		168	4.74	27	1355	38.21	73	7691	216.89	87	5720	161.30	88	81	2.28	14	209	5.89	32	205	5.78	0 7	194	2.41	33	
ts per million reactance value	Sulfate	504	O UNIT		430	8.95	20	481	10.01	19	1162	24.19	10	914	19.03	10	460	9.58	09	396	8.24	42	332	6.91	48	365	7.60	42	
parts per equivalents percent r	Bicor -	bonote HCO3	S HYDR		248	4.06	23	216	3.54	7	423	6.93	m	186	3.05	2	220	3.61	23	248	90.4	22	109	1.79	12	222	3.64	22	
000	Carbon -	01e CO 3	LLEGUAS		0			0			0			0			12	0.40	9	0			0			0			
.c.	Po108 -	. X	ARA-CA		5	0.13	~	89	0.50		31	0.79		25	99.0		4	0.10	7	5	0.13	٦	5	0.13	-	6	0.08		
constituents	Sodium	o Z	SANTA CLARA-CALLEGUAS HYDRO UNIT U0300		113	4.91	28	178	7074	15	1600	69.57	56	1050	45.65	25	145	6.30	39	123	5.35	67	120	5.22	35	104	76.4	87	
Mineral co	Mogne.	E 0-	S	U03A1	72	5.92	34	204	16.78	32	724	29.54	54	612	50.33	27	59	2.38	15	62	5.10	87	57	69.4	25	58	11.4	67	
2	Colcium	0		UOSAU	132	69.9	38	562	28.04	53	2279	113.72	47	1784	89.02	48	146	7.29	45	156	1.078	74	76	69.4	35	141	4000	43	
Specific conduct-	(micro-	mhos at 25°C)			1500			4905			18000			15929			1405			1600			1380			1620			
	H			SUBAREA	8.2			7.3			7.0			7.1			8.4			8.0			7.7			7.8			
Temp	when	E P		20	1			1			1			1			7.1			-			1			69			
State well		Date sampled		OXNARD PLAIN HYDRO	1N/22W-15P 1 S	5-27-65		1N/22W-16E 1 S	4-23-65		IN/22W-16Q 1 S	10-13-64			4- 7-65		1N/22W-17C 1 S	6-23-65		1N/22W-17J 2 S	10-23-04			12-24-64		37-7 -6	50.0		

TABLE E-I
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	Totat	os Cocos		384		044		5355		6111		0	2280		3727		4561		446		
constituents in per million	100	Evap 180°C hardness Evap 105°C as Computed CaCO3		720	726	792	738	19100	15552	17600 6111	14994		5210	5370	11345	10006	13980	13161	815	768	
constituent per million	Sili			- 1		1		-		- 1			1		1		1		1		
Mineral parts p	Bores			0.70		9.0		0.88		74.0			0.85		0.91		1.25		0.58		
	F 100.	r. d e		1.0		6.0		0.2		0.1			2 • 0		1.1		1.2		1.0		
	2			0		4	90.0	0.0		0.0		(0.0		6.6	0.15	9	0.10	1.0	70.0	
million e volue	10140	ride C.1	00300	148	4.11	04	1.13	8704	245.45	8600	242.52	. 0	72.90	78	5587	90	7325	206.57	40	1.13	
r million ts per million reoctance value	Sulfate	504	SANTA CLARA-CALLEGUAS HYDRO UNIT U0300	304	6.33	322	55	1177	6 6	1099	22.88	. 0	19,95	21	856	17.82	1098	22.86	357	59	
parts per equivalents percent r	Bicar	bonate HCO ₃	S HYDR	98	1.61	266	36	19	0.31	2	0.08	o	0.13		10	0.16	54	0.39	231	3.19	
par	Carbon	ole CO3	LLEGUA	0		0		0		0		(5		0		0		0 1	0.67	
. <u>E</u>	Potos -	. x	ARA-CA	5	0.13	9 4	1	55	1	30	0.17	7	0.38		55	1.41	59	0.74	4 0	0.10	
constituents	Sodium		ANTA CL	86	4.26	83	29	3840	61	3200	139.14	1042	46.22	90	2260	98.20	3200	99.14	89	30	
Mineral c	Mogne	E 00 N	s U03A1	51	4.19	39	26	584	17	565	48.93	176	21.46	23	402	33.06	521	42.85	38	24	
-	Calcium	° U	U03A0	07	3.49	112	45	1182	21	1467	73.20	287	24.10	56	830	47.042	896	48.30	116	457	
Specific conduct-	(micro-	mhos at 25°C)	4	1399		1134		18000		20000		8100			16230		20833		1123		
	Hd		SUBUNIT	7.5		7.7		6.5		9.6		5.0			6.3		6.1		8.3		
Temp.	when	sumpled in ° F	0,0	1		1		1		19		1			1		1		1		
State well		Date sampled	OXNARD PLAIN HYDRO S OXNARD HYDRO	1N/22W-17J 2 S	4-71-02	1N/22W-17M 2 S		1N/22W-17M 3 S		1N/22W-170 1 S	10-22-64		12-24-64		77 7 6	00-1		4-21-05	1N/22W-18E 1 S	10 27 01	

	Total hardness as CaCOs		644	456	489	442	2957	797	994	777
uents in lion	T D S E vap 180°C E vap 105°C Computed		826	827	848	822	8875	828	880	870
constituents per million	Sitt:		1	1	1	1	1	1	-	l I
Mineral o	Boron		0.78	0.64	0 • 98	0.58	0.70	0.65	09.0	0.56
2	Fluo-		7.0	6.0	9.0	1.0	9.0	0.5	0.3	6.0
	N: - trate No3		0	2.0	0	2.0	12 0 • 19	0	1	0.03
million e value	- of 40 - of 40 - Of 10	00300	1.30	1.16	51	1.13	4300 121•26 92	45 1.27 10	1.18	1.61
ts per m reactance	Sulfate SO4	SANTA CLARA-CALLEGUAS HYDRO UNIT U0300	379	371	411 8.56 61	351 7•31 58	486 10•12 8	383	380	366
equivalents percent	Bicar - bonofe HCO3	S HYDR	251 4•11 31	236	247	255 4•18 33	29	250	257	3.97
900	Carbon -	LLEGUAS	0	0	0	0	0	0	-	0
.c	0 % 0 0 X 0 0 0 X	ARA-CA	0.10	0.10	0.10	0.10	0.56	0.10	1	0.13
constituents	e n pos	ANTA CL	93	3.91	4.04	3.52	1620	3.87	93	3.65
Mineral co	N c do s	S/ U03A1	4.28	3.37	3.78	34 2.80	340 27.96 21	3.54	32 2.63	3.54
2	Coloida	UO3AO	4.69	115	120	121	624 31.14 24	115	134	120
Specific conduct-	· 0		1160	1157	1160	1141	12821	1130	1237	1208
	H	SUBUNIT	7.7	7.7	7.8	7 • 8	7.4	7 • 8	7.9	7-3
Temp	when sampled in F	8	1	1	1	-	1	1	1	49
		HYDE HYE	S	1 8		1 S	2 2	S 2	S	S
State well	Date sampled	OXNARD PLAIN HYDRO :	1N/22W-18E 1 6- 3-65	1N/22W-18P 1 10-22-64	9-8-9	1N/22W-19A 1 10-22-64	1N/22W-20E 1	1N/22W-20F 2 6- 3-65	IN/22W-20H 2 11- 4-64	1N/22W-20N 2

TABLE E-1
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	-	hardness os Ca CO3		62		53		38		8348		60		39		13		448		
5	1	Ca CO3		0 73	6	0 6653	9	0 8238	9		2	0 82	9	5 1339	00	0 1913			3	
fuents	U C	Evap 180°C Evap 105°C Computed		27160 7362	25619	19080	19126	28120	26496	33180	28255	27150 8209	26036	2115	1988	3420	2881	870	783	
constituent per million				-		1		-		ŀ		1		36		1		-		
Mineral constituents parts per million	0000			1.46		2.07		2.12		1.94		2.00		09.0		0.61		0.56		
		- G		0.1		0 • 1		0 • 8		0.1		1.8		6.0		9.0		0.5		
	2	trole NO3		0.0		0.0		2.5		0.0		6.0		3.0		0		0		
million per million ctance value	-	D D D	00300	14450	91	10450	88	15360	92	15927	91	14900	92	795	99	1300	36.66	39	6	
0	Culfala	400	SANTA CLARA-CALLEGUAS HYDRO UNIT U0300	1979		1913		1809		2176			000	432	26	498	10.37	370	09	
pe t	- 30 G	bonate HCO3	HYDR	67	01.4	11		rv a	•	25	1	7	110	168	0 00	219	7.09	249	32	
parts equiva percen	10000	000	LLEGUAS	0		0		0		0		0		0		0		0		
ri s	2000	, E	ARA-CA	118	3.02	35		141		120	1	94	7	7	1	00 0	0.2.0	5 2	1	
constituents	8 0		ANTA CL	057.69	99	4600	09	6575	63	7400	65	6700	49	168	21	299	13.00	88	30	
Mineral co	- 0 0 0 M	E 0	s U03A1	1019	19	840		1074	19	1119		1087	20	113	27	153	14.56	33	21	
2	6000	0	U03A0	1269	14	1280	19	1529	17	1499	15	1496	16	350	51	514	20.67	125	84	
Specific conduct-	(micro-	mhos at 25°C)		28000		23500		36630		30000		37037		3185		4789		1172		
	PH		SUBUNIT	6 • 8		0.9		9.4		6.3		5.1		7.7		7.3		7.8		
Тетр	when	sampled In ° F	" 0	!		1		19		1		1		1				1		
State well		Date sampled	OXNARD PLAIN HYDRO	IN/22W-20R 1 S	*0-53-01	12-23-64	10 62 31	2- 4-65		3-10-65		4-21-65	60 17	1N/22W-21B 1 S	77 07	37-01-7	000000000000000000000000000000000000000	1N/22W-21B 3 S		

	Total hardness as CaCO3		458		2068		1947		2173		2473		2267		69		503		
constituents in	TOS Total Evap 180°C hardness Evap 105°C as		812	786	3600	3219	5496	2912	3014	3045	4523	3513	3580	3341	629	636	966	879	
constituent per million	Sili- co SiO ₂		1		i		1		ł		1		-		1		1		
Mineral parts	Boron		0.88		0.84		0.65		0.80		0.68		0.74		0.45		0.68		
	Fluo-		6.0		0.5		0.1		0.1		0.7		0.8		0.5		9.0		
	Ni – frate NO 3		0		1000	0000	0		0 • 0		0		9	0.10	1	0.02	0.0		
million e value	Chio	00300	40	1.33	1394	69	1592	44.89	1684	47.14	1800	50.76	1820	51.32	228	6 4 3	87	2.45	
millior per eactonc	Suffate SO4	SANTA CLARA-CALLEGUAS HYDRO UNIT U0300	371	1016	649	12.51	315	6.56	337	7.02	432	8.99	378	7.87	159	3,31	381	7.93	
parts per equivalents percent r	Bicor - bonole HCO3	S HYDR	252	4.13	241	7 - 7	4	0.72	32	0.52	217	3.56	54	0.89		5 5 7 7 7 7	264	4.33	
ed	Carbon - ote	LLEGUA	0		0		0		0		0		0		1	0.03	0		
ř	0	ARA-CA	20.0	0.13	20	0.0	10	0.26	6	0.23	16	0.41	12	0.31	19	0.49	6	0.23	
constituents	Sodium	ANTA CL	80	3.48	342	14.01	310	13.48	280	12.17	294	12.78	330	14.35	190	8.26	100	4.35	
Mineral co	Mogne, stem Mg	S/ U03A1	41	3.37	207	30	180	14.80	235	19,33	197	16.20	217	17.85	m	0.25	47	3.87	
Σ	Calcsum	UO3AO	116	5.79	487	64.3	483	24.10	483	24.10	999	33.23	550	27.45	21	1.05	124	6.19	
Specific conduct-	mhos at 25°C)		1183		4200		4300		5000		6116		5848		1181		1260		
	Hď	SUBUNIT	7.9		7.5		7.1		7.2		7.4		7.0		8 • 5		7.7		
Тетр	when sampled in ° F	RO SUE	1		19		Į		1		1		ţ		-		79		
State well	le d	OXNARD PLAIN HYDRO SUBUNIT OXNARD HYDRO SUBAREA	1N/22W-21H 1 S	2- 6-65	1N/22W-21J 2 S	59-9 -7	1N/22W-21L 1 S	10-22-64		12-23-64		2- 4-65		4-20-65	1N/22W-21L 2 S	4-14-65	1N/22W-22A 1 S	3- 6-65	

TABLE E-I
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	Total	0 s Co CO3			669			1018		916			606			955			917			396			893			
fuents in	TOS	Evop 180°C hardness Evop 105°C os Computed Co CO3			1264	1107	/011	1766 1018	1451	1477		1327	1508		1326	1720		1381	1649		1341	1568		1355	1491		1341	
constituent per million	51.15				1			1		l			l	_		-			1			1			1			
Mineral constituents parts per million	Boron	89			0.48			0.75		0.77			0.81			0.68			0.68			0.71			0.56			
	- 00 -	7 . d			0.4			0.7		0.7			0.7			0.8			0.8			9.0			0.8			
	ī	hrote NO3			0.0			0		0			0			0			0			0			0			
million per million ctance value	C h 10 -	e più	00300		229	94.9	7	492	13.61	415	11.70	20	413	11.65	20	445	12.46	52	418	11.79	20	422	11.90	20	427	12.04	51	
0	Sulfote	504	SANTA CLARA-CALLEGUAS HYDRO UNIT U0300		406	8.45	†	366	30	363	7.56	33	361	7.52	32	369	7.68	32	367	7.64	33	370	7.70	33	370	7.70	33	
e n	Bicor -	bonate HCO3	HYDR		254	4.16	77	236	3.87	240	3.93	17	242	3.97	17	237	3.88	16	243	3.98	17	242	3.97	17	230	3.77	16	
parts equiva percen	Corbon -	016	LLEGUAS		0			0		0			0			0			0			0			0			
. <u>e</u>	Potos -	×	ARA-CA		5	0.13	→	2	0.13	2	0.05		89	0.50	٦	9	0.15	-	3	0.13	-	5	0.13	7	9	0.15	٦	
constituents	Enibos	2	ANTA CL		123	5.35	28	117	5.09	110	4.78	21	108	4.70	20	112	4.87	20	110	4.78	21	108	4.70	20	113	4.91	21	
Mineral co	Moone		S	U03A1	93	7.65	39	83	6.83	75	6.17	27	74	6009	56	75	6.17	56	73	00 • 9	56	85	66.9	58	72	5.92	56	
Σ	Colcium	o U		U03A0	125	6.24	32	271	13,52	243	12.13	52	242	12.08	55	259	12.92	54	247	12,33	53	245	12.23	51	239	11.93	52	
Specific conduct-	(micro-	mhos at 25°C)			1700			2541		2288			2273			2377			2272			2245			2236			
	H			SUBUNIT O SUBAREA	7.8			7.8		0.8			7.7			7.8			7.7			7.6			8.1			
Тетр	when	in ° F		RO SUE	1			1		99)		99			99			99			09			65			
State well		Date sampled		OXNARD PLAIN HYDRO OXNARD HYDRO	1N/22W-22C 1 S	10- 8-64		1N/22W-22H 1 S	2- 6-65		2- 8-65			2- 8-65			2-12-65			2-12-65			2-13-65			2-13-65		

	Total hardness as CaCO3		882	881	857	906	918	882	258	245
ents in on	Evap 180°C N Evap 105°C Computed		1539	1525	1770	1770	1580	1560	2144 1.	2140 1.
constituents per million	Sili- co Ev		1	-	1	1	1	1	1	1
Mineral o	Boron		0.56	0.73	69.0	19.00	09.0	0.85	0.65	0.76
2	Fluor e d e		φ •	0 • 8	7.0	7.0	9.0	0.5	0.5	φ •
	rote NO3		0	0	0 • 0	0.0	0.0	0.0	0.0	7.0
per million ctance value	Chlo-	00300	420 11.84 50	420 11.84	432 12•18 52	427 12.04 52	411	103 2.90 12	695 19•60 63	693 19.54 64
0	Sulfote SO.4	UNIT	369	369	358	357	381 7.93 34	736	377	358
equivalents percent	Bicar - bonate HCO3	HYDRC	3.93	243 3.98 17	238	3.87	246	337 5.52 23	228 3•74	3.67
900	Carbon - ofe CO3	LEGUAS	0	0	0	0	0	0	1	0
ï	Potos X	RA-CAL	0.15	0.20	0.15	0.15	6 0•15 1	7 0 • 18	0.18	0.18
constituents	S odius	SANTA CLARA-CALLEGUAS HYDRO UNIT U0300	110 4.78 21	109	122 5.30	127 5.52 23	120	126 5.48 24	147	138
Mineral cor	Magner Study	SA U03A1	68 5.59 25	5.67	79	77 6.33 27	5.67	73	100	8 • 06 26
¥.	Colcium	UO3AO	241 12•03 53	239	213	236 11.78 50	254 12.67 53	233 11.63 50	339 16.92 53	337
Specific conduct-	1 0		2240	2209	2200	2250	1900	1850	2650	2874
	I	SUBUNIT	7.5	7 . 8	7.6	7.5	7.8	8 . 2	7.8	7.6
Тетр	when sampled in ° F	v ~	62	99	61	99	1	1	68	8 9
State well	p e d	OXNARD PLAIN HYDRO	1N/22W-22H 1 S 2-13-65	2-14-65	2-15-65	2-15-65	2-15-65	1N/22W-22H 2 S	11-20-64	1-12-65

TABLE E-1
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	Total hardness as		1288	1103	881	1725	1537	639	049	588	
constituents in	Evop 105°C		2010	1730	1628	4564	3794	1062	1090	1090	
constituent per million	Schie		1	1	-	-	l	ł	1	1	
Mineral parts p	Boron		0.74	0.79	0.71	1.64	0 88	0.75	0.76	0.82	
	7.00.r		0.8	4.0	0.5	1.0	0.4	9•0	0.8	9.0	
	rote .		6.0	0 • 0	0 • 0	0	0 • 0	0.0	1.0	0	
million per million ctance value	Chlo-	00300	725 20.45 64	613 17.29 60	100 2•82 12	316 8 91 14	280 7.90 15	200	192 5 • 41	142	
0	Sulfate	SANTA CLARA-CALLEGUAS HYDRO UNIT U0300	366	365	728 15.16	2568 53.47 85	2168 45.14 84	370	370	383	
parts per equivalents percent r	Bicor - bonote	S HYDR	222 3•64 11	225 3•69 13	350 5.74 24	၁	0.13	256 4.20 24	254 4•16 24	258	
por	Carbon -	LLEGUA	0	0	İ	13 0.43	24 0.80	0	0	0	
.E	Sotos .	ARA-CA	0.18	0.15	0.15	23	26 0.66	0.13	0.13	0.13	
constituents	E 7 2	ANTA CL	136 5 • 91 19	140	132 5•74 24	620 26.96 43	525 22 • 83 42	113	100	101 4.39 27	
Mineral co	Nogne:	. F	109 8.96 28	72 5.92 21	100	142 11•68 19	95 7.81 14	52 4.28 24	53 4.36 25	3.87	
2	E 7 0 0	A O	336 16.77 53	323 16•12 57	188 9.38 40	457 22.80 37	459 22.90 42	170	169	158 7•88 48	
Specific conduct-	mhos		3344	2600	1870	4100	3950	1600	1572	1300	
	H	SUBUNIT SUBARE,	7.4	8 • 1	0 . 8	0 • 6	9.5	8 0	7.7	7.8	
Temp	when sampled in ° F	SO SUE	1	1	69		69	1	19	1	
State well	ped	OXNARD PLAIN HYDRO SUBUNIT OXNARD HYDRO SUBAREA	1N/22W-22H 2 S 4-20-65	1N/22W-22H 3 S 10-21-64	11-20-64	1N/22W-22H 4 S 10-21-64	11-20-64	1N/22W-22H 5 S 12-22-64	1-12-65	3-10-65	

	Total hardness as		578	518	084	667	501	1032	989	1062
constituents in	T D S Total Evap 180°C hardness Evap 105°C as Computed Co COs		1000	924	880	908	914	1738	2041	1778
constituent per million	Sitte ca SiO ₂	3	1	1	1	ł	2 2	ŀ		1
Mineral parts p	Boron	,	0.70	0.55	0.0	0.71	0.70	29.0	0.71	0
	Fluo- ride	sh.	6.0	9.0	6.0	0 • 4		0	2.0	* 0
	right NO3		0	0 • 0	0.02	0	0	0	0	•
million	Chlo- ride Cl	00300	130 3.67 23	1.61	1.18	1.95	2.37	573 16.16 61	489 13•79 56	532 15.00
million per eactanc	Sulfate SO4	SANTA CLARA-CALLEGUAS HYDRO UNIT U0300	386	402	380	376	356	327	352	8 0 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
parts per equivalents percent r	Bicor - bonote HCO3	S HYDR	259	284	256	250	254	215	206	208
edn	Carbon - ote	LEGUA	0	0	0	0	0	0	0	0
i.c.	7 S S S S S S S S S S S S S S S S S S S	ARA-CAI	0.13	0.10	0.10	0.10	0.13	0.13	0.13	0.13
constituents	Enipos.	ANTA CL	98	100	3.74	4 92 4 28	3.83	135	124 5.39	132 5.74 21
Mineral co	M 0 0 0 M		4.03	53	3.45	4 20 8 8 9 9	3.37	90 7.40 28	88 7•24 29	7.90
2	Colc.uB	U03A0	151 7.53	120	123 6.14	114 5.69	133	265 13•22 50	251 12.52 50	267 13.32 49
Specific conduct-	mhos at 25°C)	-	1443	1140	1076	1110	1286	2350	2420	2300
	H d	SUBUNIT	7.6	7.4	7.7	7.6	7.7	7.4	7 . 8	7.5
Temp	sampled in ° F	RO SUE	1	-	}	1	1	69	1	8 9
State well	Date sampled	OXNARD PLAIN HYDRO SUBUNIT OXNARD HYDRO SUBAREA	1N/22W-22H 5 S	1N/22W-22J 1 S 10- 8-64	5-26-65	1N/22W-22J 2 S	5-27-65	1N/22W-22J 3 S 10- 8-64	6- 3-65	1N/22W-22J 4 S 10- 8-64

TABLE E-1
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	Total	nardness os Co CO3		1208		1412		613		647		049		653		653		654		
constituents in per million	TOS	Evap 105°C nardness Evap 105°C as Computed CaCO3		2178	1676	2688	1933	1020	973	1236	1017	1204	1014	1210	1013	1230	1024	1236	1017	
constituent per million	:115					-		-		1		1		1		1		1		
Mineral parts p	Boron			0.75		0.62		0.78		79.0		09 • 0		0.80		0.78		0.73		
	Fino.	7. de		0.8		1.1		0 • 8		0.4		0.4		4.0		9.0		9.0		
	- 2	trate NO 3		0		0		2.0	0000	0.0		0.0		0.0		0.0		0.0		
million e value	1010	- 1 de	00300	610	28	787	69	178	3000	220	36	219	35	220	36	220	35	218	35	
millior	Sulfote	504	SANTA CLAKA-CALLEGUAS HYDRO UNIT U0300	399	28	401	25.	349	77	342	1.41	339	0 4	346	41	356	1 4 5	352	42	
leni	B.cor -	bonate HCO3	S HYDI	244	14	232	11	256	1 2 2	250	24	261	24	247	23	249	23	247	23	
parts equiva percen	Carbon	000	ALLEGUA	0		0		0		0		0		0		0		0		
.E	Potos -	. X	AKA-C	7 81.00	1	8 0000	1	0.13	1	5		5	7	5	1	5	1	0.13	~	
constituents	Sodius	0 2	SANTA CI	122		132	17	98	26	105	26	110	27	105	56	105	26	104	26	
Mineral co		E 5	U03A1	103	29	118	28	49	24	59	28	5.59	32	73	34	73	34	5.92	33	
2	maioto	0 0	U03A0	314	53	371	54	165	64	162	97	144	41	141	0 4	141	07	143	04	
Specific conduct-	ance (micro-	mhos at 25°C)	¥.	2882		3187		1517		1600		1650		1500		1500		1525		
	Η		BUNI	7 - 7		7.4		7.6		7.7		7.6		7.9		7.9		7.9		
Te mp.	when	sampled In ° F	ORO SU	69		99		70		62		63		99		99		09		
State well		Date sampled	OXNARD PLAIN HYDRO SUBUNIT OXNARD HYDRO SUBAREA	1N/22W-22J 4 S		2-26-65		1N/22W-22J 5 S 1-27-65		2-10-65		2-11-65		2-11-65		2-12-65		2-12-65		

	Total hardness			649		949		643		649		649		249		1467		528		
uents in	T 0 S C F V V V V V V V V V V V V V V V V V V	Computed		1246	1013	1254	1013	1224	1019	1224	1025	1196	1015	1250	1010	7460	2002	1038	506	
constituents per million	Set i-	5:02		1		i		-		t		-		1		1				
Mineral o	Boron	0		0.76		0.59		0.71		0.52		59.0		0.72		0.70		0.82		
2	Fluo-	L.		7.0		4.0		7.0		5.0		7.0		4.0		8 • 0		9.0		
	N - I	NO 3		0.0		0.0		0.0		0.0		0.0		0.0		2	0000	0.0		
per million ctance value	Chio-	- 0	00300	219	6.18	222	35	219	6.18	227	36	223	96 36	220	36	825	99	124	23	
0	Sulfate	504	SANTA CLARA-CALLEGUAS HYDRO UNIT U0300	341	7.10	341	1.10	344	7.16	341	0 0 7	343	1.14	344	41	398	23	368	200	
equivalents percent	Bicor - bonote	нсо3	S HYDR	244	4.00	241	2.45	253	4.15	254	24	242	3.97	250	23	232	11	256	27	
Pe d	Carbon -	C 0 3	LEGUA	0		0		0		0		0		0		0		0		
.c	- S - E	×	4RA-CAI	5	0.13	ru i	100	2	0.13	n,		5	0.13	20 0	7	00 0	1.00	2 2	7	
constituents	E	0 2	ANTA CL.	105	4.57	105	25	105	4.57	113	27	113	4.91	110	27	144	18	110	31	
Mineral co	- e c c c	D 2	S/ U03A1	99	4.61	200	34	58	4.77	72	33.4	73	33	71	334	121	28	5-24	34	
×	E	٥	U03A0	166	8 • 28	163	040	162	8 0 8	141	36	138	38	142	400	388	54	106	34	
Specific conduct-	(micro- mhos	at 25°C)		1590		1600		1600		1640		1650		1650		3399		1400		
	I a		SUBUNIT	7.8		7.7		7.7		7.7		7.8		7.6		7.3		8.0		
Temp	sampled in ° F		to sue	61		63		63		61		49	Ī	63		1		ł	Π	
State well	Sompled Sompled		OXNARD PLAIN HYDRO SUBUNIT OXNARD HYDRO SUBAREA	IN/22W-22J 5 S	2-13-65		60-61-3		2-14-65	u			69-61-7	2-36-66		1N/22W-22K 1 S		IN/22W-22K 2 S		

TABLE E-1
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

State well	Тепр		Specific conduct-	2	Mineral co	constituents	Ë	parts	pellent	millio per eoctono	million ce value			Mineral constituents parts per million	constituent per million	uents in	
	when	Hd	ance (micro-	Epiple		Sodium	Potos -	Carbon -	Bicor -	Suffate	C h 10 :	į	. On 1 &	Boron	-115	105	Total
Date sampled	samplea in ° F		mhos at 25°C)	° U	E 0° 3.	o Z		000	bonote HCO3	808	# P	trate NO3	9 6			Evap 180°C hardness Evap 105°C os Camputed (CaCO3	os CoCO3
						O V EN	10 D D D D	PEGILA	Dauxh	ANTA CI ADA_CALA FOLIA CHADO UNIT TIOSOO	10300						
OXNARD PLAIN HYDRO	ς, ο	SUBUNIT		U03A0	10341												
		,	-1						1 2 2	000	4.00			72		3666	6
IN/22W-22K 2 5	l I	4.0/	2200	225	689	5.87	0.15)	4.11	7.97	11.93	•			}	000	216
				94	29	24	1		17	30	20					1382	
	19	7.6	1852	208	59	110	ر ا	0	245	362	298	7.0	8.0	0.76	-	1280	762
1- 3-65				10.30	4.65	40 (0	- T-0		20 4	38	42	0.11				1111	
	1	7.8	1575	183	99	143	'n	0	239	452	546	0.0	9.0	0.53	ł	1146	688
3- 9-65				9.13	4.61	6.22	0.13		3.92	9.41	7.02					1207	
	-	7.7	1953	208	63	108	9	0	242	370	318	10	6.0	47.0	1	1395	179
4-20-65				10,38	5.18	4.70	0.15		3.97	7.07	8.97	0.16				1204	
2 4 4 CC - MCC / NI	İ	C	0007	000	15.8	645	7	C	26.2	2301	262	0	0	1.26	ł	4146	1606
n			1	19.11	12.99	28.04	0.18	>	5.95	47.91	7.39						
				32	22	94			10	78	12					3936	
IN/22W-22L 2 S	1	8.0	3300	445	173	35		0	221	410	938	0.0	0.2	0.81	1	2652	1823
10- 8-64				22.21	14.23	1.52	40.0		3.62	8.54	26.45					2113	
IN/22W-22M 3 S	99	7.3	5118	584	194	182	00	0	201	463	1410	0	0.7	0.75	-	3976	2256
2- 9-65				29.14	15.95	7.91	0.20		3.29	9.64	39.76					2941	
1N/22W-22M 8 S	-	7.4	5784	688	231	189	0	0	207	439	1715	0	8.0	0.65	1	9614	5669
5-26-65				34.33	19.00 31	8.22	0.23		3,39	9.14	48.36					3374	

č	Total	Nordhess 0.5 Co CO.			17,77	_		1,57				407			475			664			104			400		()	403		
en	0	Evap 180°C hordness Evap 105°C 05 Computed CaCO3			2 9 2 2		2181	R 24	170	773	0	0 0	788		940	801		858	829	9	000	784	0 7 0	000	837	76.3	001	777	
constituents per million					1			1				-			1			1					2.7	-		1			
Mineral	Boros	0		ı	1.28			0.60			0.64	200		72	0		ı	0/0		67.0	-		44.0	0		75			
	. 0 11	r. d.			7.0			9.0			4-0				7.0			7.0		4-0		_	1.0	2		α,			
	ź	Prote No 3			0.8	0.01		0.0			0			9	0 0	7	(0		0			0.0			0.0			
million se value	Chlo	p 0	00800		850	23.97	79	77	1.24	10	84	1.35	10	57	1.61	12	3	1 35	10	77	1.24	10	7 7	1.24	6	4 1	1.16	6	
per	Sulfate	504	SANTA CLARA-CALLEGUAS HYDRO UNIT U0300		512	10.66	58	351	7.31	57	358	7.45	96	303	4.31	40	202	8.16	59	359	7047	28	374	7.79	58	361	7.52	58	
equivalents per per	Brcor -	bonote HC03	S HYDR		161	2.64	_	264	4.33	34	268	4.39	33	349	5.72	41	25.B	4.23	31	260	4.26	33	233	3.82	59	264	4.33	33	
D e d	Corbon -	000	LLEGUA		0			0			0			0			C	0		0				0.50		0			
ü	Polos -	ž ×	ARA-CA		14	0.36	→	4	0.10	~	4	0.10	7	5	0.13	٦	4	0.10	1	S	0.13	~	4	0.10	٦	5	0.13	-	
constituents	Sodium	0 %	ANTA CL		170	7.39	0 0	88	3.83	53	87	3.78	59	66	4004	30	90	3.91	28	91	3.96	30	86	3.74	28	84	3.65	28	
Mineral co	Mogne	E 00		U03A1	04	3.29	h	43	3.54	17	94	3.78	59	45	3.70	27	51	4.19	30	77	3.62	27	36	3.21	54	41	3.37	97	
2	Calcium	Ö	U03A0		513	25.60	2	112	5.59	7	112	5.59	45	116	5.79	45	116	5.79	41	112	5.59	45	122	60.9	95	114	69.5	t	
Specific conduct-	(micro-	mhos at 25°C)			3770			1080			1010			1015			1180			1080			1171			1211			
	Ha		SUBUNIT	JBARE/	7.8			8.1			8.0			7.7			7.9			7.6			8.3			7.9			
Temp	Munen	T en	so sue	JRO St	68			-			19			1			1			1			69			67			
State well		Date sampled	OXNARD PLAIN HYDRO	OXNARD HYDRO SUBAREA	IN/22W-22P 2 S	0-67-05		1N/22W-22Q 2 S	10- 9-64			5- 6-65		1N/22W-22R 1 S	2- 4-65		1M/22W-23B 2 S	6- 3-65		1N/22W-23C 1 S	10- 9-64			10-22-64			59-5-2		

TABLE E-1
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	Total	nardness os Ca CO3			462		421		616		099		701		712		049		999		
uents in	TOS	Evap 105°C Computed			850	798	810	784	1186	1003	1302	1050	1154	1112	1220	1095	1186	1031	1220	1045	
constituents per million	Siii.	5,02			-		1		1		-		1		1				1		
Mineral parts p	Boron	8			0.67		0.55		0.91		0.82		0.82		47.0		62.0		0.70		
	F100-	ride F			0.4		9.0		4.0		9.0		9.0		0.8		9.0		6.0		
	ż	rote NO3			0		0.0		0		0.0		0.0		7.0	1	0.0		0		
million e value	Ch 10	r.de C.1	U0300		52	11	1.30	10	211	34	237	37	260	36	260	39	213	34	222	35	
millior	Sulfate	504	SANTA CLARA-CALLEGUAS HYDRO UNIT U0300°		378	200	403	99	352	45	366	42	362	40	349	39	352	42	365	42	
parts per equivalents percent re	B 10 0 f =	bonote HCO3	S HYDR		258	31	190	24	245	23	244	22	247	21	245	21	257	24	249	23	
par	Carbon -	00 c 0 3	LLEGUA		0		0		0		ł		0		0		0		0		
=	Potos -	E x	-ARA-CA		4 0 0 0	7	6	1	0.13	-	0.13	1	0.13	7	0.13	1	0.15	-	5	~	
constituents	Sodium	0 2	ANTA CI		91	30	92	32	115	53	112	27	115	26	105	24	108	27	100	24	
Mineral co	Mogne	E 2 2		U03A1	62	38	41	27	75 6 17	35	85	38	52	22	59.4	56	50	23	58	27	
2	Calcium	0	U03A0		83	31	101	04	123	35	124	34	195	51	188	20	174	64	171	48	
Specific conduct-	ance (micro-	mhos at 25°C)		A	1160		1060		1520		1620		1700		1739		1550		1670		
	Hd		SUBUNIT	O SUBAREA	8 • 0		7.6		8 • 1		7.9		7.9		7.6		7.9		7.7		
Tenp	when	in ° F	RO SU	DRO S	2 0		1		1		89		1		99		!		1		
State well		Date sampled	OXNARD PLAIN HYDRO	OXNARD HYDR	1N/22W-23C 1 S 5-27-65		1N/22W-23C 2 S 10- 9-64		1N/22W-23E 2 S 10-20-64		11-20-64		12-22-64		1-12-65		3-10-65		4-20-65		

	Total hardnes as		2726	2637	483	598	509	909	530	420
constituents in per million	TDS Total Evap 180°C hardness Evap 105°C as Computed CaCO3		7388	8360	876	1017	1116	1120	992	701
constituent per million	S.0.2		1	1	}	1	1	93	1	1
Mineral parts p	Boron		7.90	7.70	61.0	0.63	0.61	0.62	0.73	0.67
	n 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		1 • 4	1.4	4.0	0 0	9.0	6.	0.2	ο •
	rose No se		30.0	0.00	0.0	0 • 0	0	16 0.26	9 0.15	0
million e value	Chio-	10300	415	472	2.23	142	165	59 1.66 10	1.58	1.69
millior per sectono	Sulfate SO4	SANTA CLARA-CALLEGUAS HYDRO UNIT U0300	4491 93•50 83	4538 94•48 82	338	403 8 . 39	417	506 10.53 61	468	249 5 18 43
parts per equivalents percent re	Bicor - bonote HCO3	S HYDR	408	420	304	259	189 3.10	267	266	5 913
por	Carbon - ote CO 3	LLEGUAS	0	1	0	0	0	0.33	0	0
Ë	Potos .	ARA-CA	11 0.28	13	0.13	0.20	0.13	0.13	0.10	0.10
constituents	E 0 0 Z	ANTA CL.	1350 58.70 52	1380	103	4.22	115	115	110	3.83
Mineral co	S con	S, U03A1	325 26.73 24	316 25-99 23	3.37	4.03	6.99	53 4.36 25	73	36 2.96 24
2	Colcium	UO3AO	556 27 • 74 24	535 26.70 24	126-6-29	159	102	155	4 5 5 9 3 0	109
Specific conduct-	1 0		7000	7800	1125	1546	1500	1458	1340	1117
	Hď	SUBUNIT	8 0	0 . 8	7 • 8	7 • 8	7.9	4 • 6	7.9	0
Temp.	when ampled in ° F	RO SUB	-	69	1	99	1	70	1	1
State well	P .	OXNARD PLAIN HYDRO SUBUNIT OXNARD HYDRO SUBAREA	1N/22W-23E 3 S 10-20-64	11-20-64	1N/22W-23N 2 S 2- 4-65	1N/22W-23Q 1 S 2- 4-65	6- 1-65	1N/22W-26A 1 S 10-22-64	1N/22W-26D 4 S 6- 1-65	1N/22W-26J 2 S

TABLE E-1
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	Total hardness as CaCO3		633	648	449	481	439	777	491	4030
constituents in per million	TDS Total Evap 180°C hardness Evap 105°C as Computed CaCO3		1280	1077	1208	850	858	863	878	5875
constituent per million	S.111- co S.02		1	l	-	1	l	1	1	l
Mineral parts p	Boron		0.88	0.74	0.73	0.51	0.59	0.53	0.67	98.0
	Fluo-		9.0	0 . 8	4.0	0.2	4.0	0.5	9.0	0.7
	rote NO3		0 • 0	0	0	2 0.03	1.0	0	0.0	0.18
million per million ctance value	Ch10 - ride	00300	238	241 6.80 36	228	1.35	1.10	1.27	2.48	2800 78.96 83
0	Sulfate SO 4	SANTA CLARA-CALLEGUAS HYDRO UNIT U0300	376	363	414	415	363	362	373	583 12•14 13
ten te	Bicor - bonote HCO3	HYDR	254	266	272	261 4.28 30	237 3•88 31	255 4•18 32	232 3•80 27	215
parts equiva percer	Carbon - ate	LLEGUAS	0	0	0	0	0	0	0	0
.E	Potos - sium K	ARA-CA	0.15	5 0.13	0.18	0.13	0.10 1	0.18	0.10	20
constituents	Sodium	ANTA CL	140	124 5.39	145	101	3.70	100	92 4•00 29	343 14.91 16
Mineral co	Magner stum Mg	S. U03A1	7.15	53 4°36 24	91 7.48 39	5.43	3.04	3.13 2.13	683	335 27.55 29
2	Colcium	00340	110	172 8.58 46	108 5•39 28	84 4.19 30	115 5.74 46	115 5.74 43	2.99	1062 52.99 55
Specific conduct-	(micro- mhos at 25°C)	A	1700	1779	1650	1200	1120	1225	1230	8695
	T a	SUBUNIT	7.5	7.9	8 • 1	8.2	7.2	7.7	8.2	7.4
Тетр	sampled in ° F		1	1	99	8 9	99	67	69	1
		HYD D HY	1 S			S E	1 8		2 S	2 S
State well	Date sampled	OXNARD PLAIN HYDRO OXNARD HYDRO	1N/22W-26M 10-14-64	2- 9-65	5- 7-65	1N/22W-26M 6- 1-65	1N/22W-26G 10-22-64	6- 1-65	1N/22W-27A 10- 6-64	1N/22W-27B

	Total hordness as	E 0182	4114	386	262	478	538	877	911	£ 4 3
constituents in			6892	868	559	944	976	1540	1620	850
constituent per million	S. i.i.	200	1	1		1	1	1	1	1
Mineral parts p	80100		16.0	0.59	79.0	0.50	0.70	0.48	0.56	0.73
	Fluo- ride		0.2	0.5	9 • 0	0.5	9.0	0.4	4.0	9
	rote 1	2	0	0.0	0 • 0	0	0	0.0	0	0
million per million ctance value	1 0 0 0	00300	3053	1.13	1.69	1.89	3.24	440 12.41 50	454 12.80 49	2.09
0	Sulfate	SANTA CLARA-CALLEGUAS HYDRO UNIT U0300	13.51	364	323	396	398 • 29	408	434	325
parts per equivalents percent r	Bicor - bonote	S HYDR	160	3.23	104	292	260	3.97	264	299
Por	Carbon -	LLEGUA	0	0	0	0	0	0	0	0
Ë	Po to t	ARA-CA	0.20	0.15	0.13	0.18	0.13	0.15	0.18	0.13
constituents	Sodius	ANTA CL	19.13	40.04	98	125	110	175	187	112 4.87 35
Mineral co	Mogne.	A1	331	3.13	3,13	3.62	6.17	107	122 10.03 38	3.21
2	Coltium	AO	1102 54.99	4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	2.10	119 5.94	4.59	175 8•73 35	164 8 18 31	113 5.64 41
Specific conduct-	- 0		8200	1000	1004	1300	1360	1950	2400	1300
	Ha	SUBUNIT	7.6	8 . 2	8.2	8 0	8 0	7.5	7.8	7.5
Temp	sampled in ° F	RO SUE	1	1	1	1	8 9	70	-	1
State well	9	OXNARD PLAIN HYDRO SUBUNIT OXNARD HYDRO SUBAREA	1N/22W-27B 2 S 6- 1-65	1N/22W-278 4 S 10-14-64	2- 9-65	5- 7-65	1N/22W-27H 1 S 6- 1-65	1N/22W-27J 2 S 10- 9-64	6- 1-65	1N/22W-27R 1 S

TABLE E-I
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	Total	C0 C03		39		421		106			2688			2645			2531			2465			2179			
luents in	T D S Total	Computed		289	292	804	743	570		559	0965		4932	5520		5071	5580		7494	5840		1694	4570		0555	
constituent per million	Sili-	SiO2		1		-		1			1			1			-			1			1			
Mineral constituents parts per million	Boron	8		0.25		0.55		0.12			0.68			0.98			0.53			0.76			0.80			
	Fluo-	L		0.3		0.2		0.3			0.1			0.1			0.1			0.1			9.0			
	Ni -	NO3		п	0.02	1.0	0.02	1	0.02		0.0			2.0	0.03		0.0			2	0.03		9	0.10		
million se value	Chlo-	 	00300	36	1.02	94	1.30	163	4.60	50	2713	76.51	87	2819	19.50	9	5649	74.70	06	2628	74.11	S A	2450	60.69	88	
millio per sectond	Sulfate	804	SANTA CLARA-CALLEGUAS HYDRO UNIT U0300	66	1.98	326	6.79	174	3.62	0 7	525	10.93	12	500	10.41	12	389	8.10	0 1	415	8.64	2	450	9.37	12	
e be	Bicar -	нсоз	S HYDR	98	1.41	569	4.41	39	49.0	7	34	0.56	-	0			0			9	0.10		7	0.11		
parts equiva percen	Carbon -	CO3	LLEGUA	14	0.47	0		00	0.27	e	0			0			0			0			0			
. <u>c</u>	Potos -	×	ARA-CA	77	0.10	5	0.13	7	0.18	7	16	0.41		16	0.41		18	94.0	4	19	64.0	-	54	0.61	-	
constituents	Sodium	o Z	ANTA CL	88	3.83	95	4.13	150	6.52	4/	755	32.83	38	850	36.96	41	140	32.18	٧,	190	34.35	14	780	33.91	43	
Mineral co	Magne	E 0	S. U03A1	7	0.58	64	4.03	10	0.82	5	263	21.63	52	272	22.37	52	260	21.38	97	238	19.57	73	228	18+75	24	
2	Colcius	٥٥	00340	4	0.20	88	4.39	26	1.30	15	643	32.09	37	611	30.49	34	585	29.19	CC	565	29.69	32	164	24.80	32	
Specific conduct-	(micro-	at 25°C)		516		970		1060			7500			7600			6400			1400			7692			
	H		SUBUNIT SUBARE	4.6		7.6		0.6			6.2			4.5			4.2			6.4			6.4			
Temp	when	.c.	RO SUE	1		67		-			1			ł			1			-			1			
=		Date sampled	OXNARD PLAIN HYDRO SUBUNIT OXNARD HYDRO SUBAREA	1N/22W-27R 1 S	4- 8-65	1N/22W-27R 2 S	10- 7-64		- 4- 8-65		1N/22W-28B 1 S	10-22-64			12-22-64			2- 3-65			3-11-65			4-15-65		

	Total Nardness as CaCOs		3068	2953	2880	2444	477	394	0 7 7	439
constituents in per million	Evop 180°C hardness Evop 105°C as Computed Cacos		10580 3068	8560	9560	8040 2444	840	854	850	197
constituent per million	Sati- co SiO ₂		1	1	1	1	30	ŀ	1	1
Mineral parts p	Boron		1.00	1.25	76.0	1.30	99.0	0.41	0.43	0 • 63
	Fluor		0.1	0.1	0.1	1.1	6.0	0.5	0 • 5	9
	hrote NO3		0.0	0.0	0	5	0	0	0.02	1
million e volue	Ch 10 -	00300	4294 121•09 86	4590 129•44 90	4567 128•79 91	4200 118-44 89	1.38	1.30	39 1.10 8	1. .35
million per sectono	Suffate 504	SANTA CLARA-CALLEGUAS HYDRO UNIT U0300	768 15.99 11	678 14.12 10	620 12.91	13.70	374	418	376	318
parts per equivalents percent re	Bicor - bonole HCO3	S HYDR	3.23	56 0.92 1	13	15	256	2.90	247	294
0 0 0	Corbon -	LEGUA	0	0	0	0	0	0	0	
.5	Pot os .	ARA-CA	21	23	26	23	0.10	11 0.28	11 0.28	1
constituents	E o	ANTA CL	1760	2070	1980	1900 82.61 63	3.74	113 4.91 38	4.04	3.87
Mineral co	N o o o	S. U03A1	287 23.60 17	319 26.23 18	22.78	25.04 17	3.54	5.43	36 2.96 23	3.8
2	Calcium	UOSAU	756 37•72 27	657 32.78 22	34.78	537 26.80 20	120	2.45	5.84	113
Specific conduct-	, 0		11000	12400	11200	12821	1167	1040	1214	1182
	H a	BUNIT	7.2	6.8	9.9	5 + 5	7.5	7.4	7 • 8	7.6
Temp	sampled in ° F	RO SUE	1	1	i	1	22	68	1	1
State well	Date sampled	OXNARD PLAIN HYDRO SUBUNIT OXNARD HYDRO SUBAREA	1N/22W-28C 1 S 10-22-64	12-23-64	3-10-65	4-15-65	10-23-64 S	1N/22W-29A 4 S 10- 5-64	4- 7-65	1N/22W-35C 1 S

TABLE E-1
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

Н	Total hardness as CaCO3		425	252	392	104	299	453	959	700
lion	T D S Evap 180°C Evap 105°C Computed		802	556	760	1410	569	828	1210	1307
constituents per million	Suli- co SiO ₂		i i	1	44	7 7 7	-	1	1	1
Mineral parts p	Boron		0.75	0.61	0.54	99•0	0.61	69.0	0.61	0.75
	Fluo- ride F		0.5	6 • 0	0.7	1.0	1.0	9.0	0 • 8	9.0
	rote NO3		1	0	90.0	3.0	0	0	27.0	9.0 0.15
per million ctance value	Ch 10 -	00300	1.30	1.35	1.78	335	1.33	1.24	100 2.82 15	2.28 11
0	Sulfore SO 4	SANIA CLAKA-CALLEGUAS HYDRO UNIT U0300	308	1.39	286 5.95 49	305	135 2.81 29	333 6 • 93 55	502 10.45 54	600 12.49 63
parts per equivalents percent r	Bicor - bonote HCO3	S HYDRO	291	346	271	272	337 5.52 57	274	336 5.51 29	304 4.98 25
por	Carbon -	LLEGUA	1	0	0	0	0	0	0	1
Ë	9 0 0 0 X	ARA-CAI	1	0.08	0.18	0.15 1	0.10	0.10	0.13	1
constituents	E ni Do Z	ANTA CL	3.91	3.57	98 4.26 35	143	3.57	3.83	138 6•00 31	132 5•74 29
Mineral co	S C C C C C C C C C C C C C C C C C C C	S, U03A1	34 2 80	1.64	3.04	4°93	2.14	3.21	5.02	5.51
2	Colcium	U03A0	114	3,39	4.79	183 9•13 45	3.84	1175.84	162 8•08 42	170 8 • 48 43
Specific conduct-	micro- mhos at 25°C)		1182	802	1048	1940	968	1156	1682	1748
	I a	SUBUNIT TO SUBAREA	7.5	0	7.8	7.6	7.6	8.1	7.6	7.6
Temp	when sampled in F	RO SUB	1	1	72	02	1	1	1	1
		PLAIN HYDRO OXNARD HYDR	5 1 5	ο τ 	4 5 S	4 × 1 S	5 1 S	H 1 S	4 1 S	A 4 N
State well	Date sampled	OXNARD PLAIN HYDRO	IN/22W-35C 1 5-14-65	1N/22W-35G 6- 1-65	1N/22W-36B 10-23-64	1N/22W-36K 10-23-64	1N/22W-36M 8-25-65	1N/23W- 1H 6- 8-65	2N/21W-18H 1 10-22-64	2N/21W-19A 2 11- 4-64

	Total hordness as CaCO3		693	378	413	614	018	759	680	4 5 3
.5	20C 70c 5°C 70c							2.2	9 7	
lion	TDS Evop 180°C Evop 105°C Computed		1392	724	904	1265	1870	130	1270	953
constituents per million	Sati- co SiO ₂		1	1	1	1	31	1	1	1
Mineral	Boron		0.71	0.45	0.57	0.50	0.84	0.79	99.0	0.61
	Fluo- ride F		7 • 0	0.5	0.5	0.5	1.3	0.7	80	7 .0
	Ni - , trate NO3- '		16 0.26	0.27	2 0 • 0 3	3 0.05	5.0	24.0	25 0 • 40	12 0•19 1
million e value	Chio-	00800	3.44	1.89	1.80	1.95	3.16	1.83	1.86	1.30
per per eactanc	Suffate SO4	SANTA CLARA-CALLEGUAS HYDRO UNIT U0300	535	223	373	583 12.14 63	921 19.18 68	533 11•10 58	535 11.14 58	388 • 0 8 5 9
equivalents percent	Bicor - bonofe HCO3	HYDR	322 5.28 26	334	292	316	362 5.93	352 5.77	345	4.21
Ped	Carbon -	LEGUAS	1	0	0	1	0	1	1	1
.E	P	4RA-CAL	1	0.08	0.13	1	7 0.18	1	1	1
constituents	S 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0	INTA CL	140	110	137 5.96	162 7.04 36	180	136	124 5.39 28	107
Mineral co	N o o n e .	5.003.00	5.05 25	3.62	50 4.11 29	4.69	7.57	4.69	5.26	3.62
Σ	C O C O C O C	U03AU	177 8 • 83	3.94	83 4.14 29	152	256 12•77 45	168	167	109
Specific conduct-	mhos at 25°C)		1838	1060	1220	1692	2193	1698	1680	1293
	Ĭ.	SUBUNIT	7.4	0 • 8	7.9	7.5	7.6	7.5	7.7	7.7
Temp	sampled in ° F	0	1	89	69	1	1	į į	1	1
State well	Date sampled	OXNARD PLAIN HYDRO S	2N/21W-19A 2 S 5-13-65	2N/21W-20F 1 S 2-19-65	2N/21W-20F 2 S 2-19-65	2N/22W-12D 1 S 5-20-65	2N/22W-12G 1 S 10-20-64	2N/22W-14P 2 S 12-21-64	3-24-65	6-16-65

TABLE E-1
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	Total hardness os CoCO3		676	194	458	558	649	601	925	701
constituents in per million	TDS Total Evap 180°C hardness Evap 105°C as Computed CaCO3		1320	995	1007	1120	1250	1257	1630	1370
constituent per million	S:11.		34	1	1	1	1	1	30	1
Mineral parts p	80.00		0.62	0.75	0 . 55	0.55	99.0	0.71	0.68	0.71
	Fluo- ride		6.0	0.7	0.7	0.5	9.0	9 • 0	6 • 0	8
	rote NO3		34.0	5.0	6 0•10	0 • 0	19.0 0.31 2	19 0•31 2	37.0 0.60 2	45.0 0.73 4
million e value	Ch 10 =	10300	74 2.09	53 1.49 10	1.52	85 2.40 15	2.45	83 2.34 13	148	76 2.14 11
millior per eactanc	Suffate SO 4	SANTA CLARA-CALLEGUAS HYDRO UNIT U0300	570 11.87 60	4444	446 9•29 61	469	555 11•56 62	512 10•66 60	761 15.84 65	584 12.16 62
ports per equivalents percent re	Bicor - bonate HCO3	HYDR	319	255 4•18 28	256 4.20 28	265	270	270	240 3.93	284 4.65 24
por	Corbon- ale CO3	LLEGUAS	0	1	1	0	1	1	0	1
ri E	90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ARA-CA	0.15	1	1	0.15	1	1	5 0.13 1	}
constituents	E nipos	ANTA CL	143 6•22 31	132 5 • 74 38	132 5.74 39	125 5•44 32	132 5.74 31	132 5•74 32	138 6•00 24	132 5.74 29
Mineral co	M o g n e	S/	4.93 25	3.29	3.62	3.13	54 4.44 24	4.03	7.40	5.43
Σ	Colcium	U03A0	172 8 • 58 43	121	111 5.54 37	161 8•03 48	171 8•53 46	160	222 11.08 45	172 8.58 43
Specific conduct-	mhos at 25°C)		1692	1403	1402	1700	1661	1652	2016	1777
	H.	UNIT BAREA	7.6	7.9	7.4	8 .0	7.8	7.5	7.8	7.3
Temp	when sampled in ° F	to SUE	1		1	1	1	1	1	1
State well	S Date sampled	OXNARD PLAIN HYDRO SUBUNIT OXNARD HYDRO SUBAREA	2N/22W-15Q 3 S 10-20-64	2N/22W-16K 1 S 11- 4-64	5-13-65	2N/22W-17Q 4 S 4-20-65	2N/22W-20Q 1 S 11- 4-64	5-13-65	2N/22W-21D 3 S 10-20-64	2N/22W-23B 1 S 12-14-64

	Total hardness as		638	615	529	673	648	747	465	757
constituents in per million	Evap 185°C hardness Evap 105°C os		1242	1176	1167	1327	1287	1413	910	1450
constituent per million	Sei 1- ca Se 0-2		1	1	-	1	1	34	1	1
Mineral parts	8 8		0.76	0.93	0 • 60	0.85	0.77	0.78	0.56	88
	Figo-		0.7	0.8	9.0	0 8	8 • 0	1.0	0 • 5	7.0
	rate NO3		32.0 0.52	7.0	1	34.0	27.0	35.0	1	26.0
million e value	C h 10 -	00300	1.83	1.80	1.61	2.03	2.03	2-12	1.35	2.14 10
millior per sactanc	Sulfate SO4	O UNIT	521 10.85 60	548 11•41 65	454	564 11.74 62	547	613 12.76 63	391	618 12.87 63
parts per equivalents percent re	Bicor - bonole HCO3	HYDR	305	265	279	285	293	300	262	306
por	Carbon - ale	LLEGUAS	1	1	1	1	1	0	1	0
ri	Potas.	ARA-CA	1	1	1	1	1	0.13	1	0.13
constituents	E 0 Z	SANTA CLARA-CALLEGUAS HYDRO UNIT U0300	124 5•39 30	124 5 39	118	124 5.39	128	125	107	125 5.44 26
Mineral co	3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	S, U03A1	5.26	56 4.61 26	3.54	4.77 25	5.26 28	5.59	2.96	5.59
2	E	UOSAU	150	154	7.04	174 8 • 68 46	154	187	127	191 9.53 46
Specific conduct-	(micro- mhos at 25°C)		1643	1588	1428	1650	1650	1716	1292	1590
	I a	BAREA	7.5	7.6	7.5	7 • 4	7.4	8 • 1	7.7	O • &
Temp	ampled in F	PLAIN HYDRO SUBUNIT OXNARD HYDRO SUBAREA	1	1	1	1	1	1	1	1
		нур. В нус	2 2	S 2	3 S	1 8	2 S	1 8	\$ 7	S
State well	Date sampled	OXNARD PLAIN HYDRO SUBUNIT	2N/22W-23B 12-14-64	2N/22W-23C 12-14-64	2N/22W-23C 12-14-64	2N/22W-23G 12-14-64	2N/22W-23G 12-14-64	2N/22W-23J 1 10-21-64	2N/22W-23K	2N/22W-230 1 10-27-64

TABLE E-I
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	Total hardness os Ca CO3		778	909	572	999	681	719	477	516	
uents in	T D S Evap 180°C Evap 105°C Computed		1520	1177	1085	1113	1338	1233	889	1160	
constituents per million	S+1 i- c o S+0 2		1	i	1	1	ł	1	1	1	
Mineral parts p	Boron		0 88	0.75	0.68	0 • 68	0.84	0.65	0.65	0 • 68	
	Fluo- ride F		1.1	9.0	9.0	0.7	9•0	6.0	0 8	0.2	
	frote NO3		0.10	17.0 0.27 2	12.0 0.19	10.0	15.0	27.0	2 0.03	1.0	
million e value	- 0 1 0 - C 1 0 - C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C	00300	1.97	65 1.83	1.83	1.66	2.12 11	2.03	1.21	82 2•31 13	
millior per eactanc	Sulfate SO4	SANTA CLARA-CALLEGUAS HYDRO UNIT U0300	716 14.91 68	499 10•39 61	468	475 9.89 61	512 10•66 56	508 10.58 56	384	498 10•37 59	
len i	Bicor - bonote HCO3	HYDR:	293	276	279	277	361	353 5.79 31	244	300	
ports equiva percer	corbon -	LLEGUAS	0	1	1	1	0	0	0	0	
i.	8 = 2 ×	ARA-CA	0.15	1	1	1	5 0•13	0.13	0•10 1	0.15	
constituents	E DI DO N	ANTA CL	140 6.09 28	118 5.13 30	112	116 5.04 31	115 5.00 27	106	83 3•61 27	172 7•48 42	
Mineral co	M o g n e . M o g n e . M o g	S. U03A1	5.92	50 4.11 24	3.70	3.95	63 5.18 28	68 5.59 29	3.45 26	61 5.02 28	
*	Enicion Co.	UO3AO	193	160 7.98 46	155	145	169 8 43 45	176 8•78 46	122 6.09	106	
Specific conduct-	mhos at 25°C)		1808	1568	1482	1452	1500	1625	1202	1550	
	H	SUBUNIT SUBARE	7.7	7.6	7.5	7.3	8•1	7.7	7.6	7.3	
Temp	sampled In ° F	RO SUE	1	1	1		1	1	49	70	
State well number	Sampled	OXNARD PLAIN HYDRO SUBUNIT OXNARD HYDRO SUBAREA	2N/22W-25A 4 S 8-19-65	2N/22W-26F99 S 10- 9-64	11-23-64	12-28-64	2N/22W-27L 1 S 10-21-64	2N/22W-27M 2 S 10-22-64	2N/22W-31C 2 S 8-17-65	2N/23W-13F 1 S 10-26-64	

TABLE E-1
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	Total hardness as		512	588	616	473	787	427	472
uents in lion	TDS Total Evap (80°C hardness Evap 105°C as Computed CaCO3		1100	1145	1255	958	970	952	985
constituents per million	Sili- co SiO ₂		1	0 7	1	1	1	1	1
Mineral parts p	Boron		0.62	09.0	0.78	77.0	94.0	09.0	0.57
-	Fluo- ride F		7 • 0	7.00	7 - 0	0 • 5	0.7	2.4	9
	role NO3		90.0	2.0	22.0	2 0.03	1.0	0 0	1
million se value	Ch 10 -	00300	2.12	2.09	1.69	1.47	1.47	1.75	1.61
millio per soctono	Sulfate 504	SANTA CLARA-CALLEGUAS HYDRO UNIT U0300	10.20	490 10•20 56	512 10.66	394	439 9•14 61	454	425 8 8 5
parts per equivalents percent r	Bicar - bonale HCO3	HYDRO	310	359	310	261	273	191 3•13 22	264
690	Carbon - ote CO3	-LEGUAS	0	0	1	0	0	0	1
<u> </u>	Potos - x	ARA-CAI	0.13	0.13	1	0.13	0.10	0.10	1
constituents	E n po N	INTA CL	160	144 6.26 34	128 5.57 31	113	125	128 5.57	124
Mineral cor	Mogne.	SA U03A1	3.70	4.03	4°28 24	3.21	3.29	3.95	3.04
N	Colcium	U03A0	131	155	161 8.03	125 6.24 43	128	4.59	128
Specific conduct-	1 0		1572	1524	1620	1278	1368	1105	1376
	H	SUBUNIT	7.8	7.7	7.5		7.6	7.8	7.6
Тетр	when sampled in ° F	to sue	1	1	-	-	1	1	1
		HYDE D HYC	1 8	1 S	S S	1 8	1 8	. s	S
State well	Date sampled	OXNARD PLAIN HYDRO SUBUNIT OXNARD HYDRO SUBAREA	2N/23W-13F 9-28-65	2N/23W-14M 10-22-64	2N/23W-23C	2N/23W-23G 1 8- 6-65	2N/23W-250 1 10-22-64	2N/23W-35B 1 10-21-64	2N/23W-36A 1 S

TABLE E-1
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	Total	hardness 0.5 Co.CO.3			1048			371		352			370		224			369		852			994			
tuents in	10 A	Evap 180°C Evap 105°C Computed			2070 1048		1830	1440	1324	685		655	677	642	200	797		810	190	1730		1613	872	804		
constituent per million	: 11.7	5.02						1		40			1		-			52		1			1			
Mineral constituents parts per million	Boron	ø			0.84			0.92		0.56			0.30		0.28			0.36		0.40			0.71			
	-011	7 d			0.8			1.0		0.5			0.3		0.4			5.0		0.2			9.0			
	1 - 2	NO3			33	0.53	7	2	0.03	3.0	0.05		0.0		0			1.0	2	0.0			0.0			
million per million ctance value	1 0	- D	10300		294	8.29	27	256	7.22	53	1.49	14	10 10 12	16	39	1.10	1	129	282	309	8 • 71	32	949	1.30		
0	Sulfate	808	CANTA CIABA-CALIFEUAS HYDRO UNIT U0300		765	15.93	53	386	8.04	235	4.89	14	254	64	123	2.56	1	199	32	567	11.80	77	381	7.93	`	
parts per equivalents percent re	B. C. O.	bonote HCO3	HYDR		337	5.44	18	459	7.03	243	3.98	38	233	35	281	4.61	2	316	20104	392	6.42	54	257	4.21	1	
Por	Carbon	000	FGUA		6	>		0		c)		-		0			0		0			0			
ŕ	Potos -	₹	BA-CAI		ď	0.13		6	0.23	ı (*	0.08	7	+		4	0.10	4	4 .	0.10	9	0.15	7	c	0.13	4	
constituents	8 1100	o Z	NTA		acc	9070	30	340	14.78	1 0	3.39	32	84	333	82	3.57	† †	129	1000	235	10.22	37	88	3.83	67	
Mineral co	2	E 2. Z		245011	000	7,57	25	47	3.87	. 0	2 30	22	31	23	20	1.64	07	43	3.54	59	4.85	18	47	3.87	67	
2	877.0	°		0 0	0	12.37	44	7.1	3.54) u	47.4	45	76	4 4	57	2.84	35	77	3.84	244	12,18	77	109	5.44	14	
Specific conduct-	(micro-	mhos at 25°C)		A CI		2628		2100		i d	786		1006		778			1222		2300	2007		1000			
	Hd			SUBUNIT		7.5		7.6		ı	0./		7.4		7.6			7.7		7.7	•		7.8			
Temp	when	samplea in ° F		SO SUB	ALLE	10		76			7.5		1		1			1		77	00		99			
State well		Date sampled		OXNARD PLAIN HYDRO	Z .	1N/21W- 2J 3 S	8-25-65	2 C AE -WIC/NI			1N/21W- 3L 1 S	10-16-64	,	11-18-64	1N/21W= 9F 1 S			1N/21W-15Q 1 S	10-16-64	0	5-6-65		3 H H 1 - M 1 S			

	Total hardness os CaCO3		197		399		760		553		685		515		707		1070	
constituents in	T D S Evap 180°C Evap 105°C Computed		1492	1295	1010	887	1970	1840	916	787	922	871	985	868	828	804	2326	1951
constituent per million	Srii- ca SiO ₂		1		-		1		-		1		1		-		1	
Mineral	Boron		0.10		0.45		1.00		0.35		0.68		0.40		0.35		0.72	
	Fluor		0.1		9.0		0.4		0.1		5.0		9.0		0.5	Ī	7.0	
	trate I		32.0	25	1	70.0	0.0		0.0		0.0		80.0	1.29	0.0		3.0	
million e value	Chio-	10300	300	37	158	50	255	7.19	272	7.67	45	6	100	2.82		2.40	200	18
per per	Sulfate SO4	SANTA CLARA-CALLEGUAS HYDRO UNIT U0300	334	31	275	37	842	17.53	33	0.69	422	61	313	6.52	330	6.87	1023	8 9
equivalents percent	Bicor - bonote HCO3	HYDR	415	900	320	34	325	5.33	430	7.05	263	30	243	3.98	260	4.26	251	13
690	Carbon -	LLEGUAS	0		0		1		1		0		0		1		0	
.c	Po to s	ARA-CA	- 0	0	200	0.13	9	0.15	-	0.03	7	0.10	4	0.10		0.10	8000	
constituents	m o N	ANTA CL	163	31	165	1101	330	14.35	76	4.09	102	4.43	100	4.35	123	5.35	228	32
Mineral co	Magne- stum Mg	S/ U03A2	90	32	54	4.44	06	7.40	72	5.92	43	3.54	39	3.21	4 %	3.54	92	24
2	Calcium	0	171	37	17	3.54	156	7.78	103	5.14	125	6.24	142	7.09	91	4.54	277	77
Specific conduct-	mhos at 25°C)	SUBA	2000		1437		2410		1410		1260		1370		1160		2050	
	I a	SUBUNIT LEY HYDR	7.3		7.8		7.7		8 • 0		8 • 0		7.8		8 • 0		7.6	
Temp	when sampled in ° F	O SUB	70		1		i		1		68		1		Į.		1	
State well	Date sampled	OXNARD PLAIN HYDRO SUBUNIT PLEASANT VALLEY HYDRO	1N/21W-26K 1 S	10-15-64	IN/21W-27F 2 S	8-19-65	2N/20W-30C 1 S	10- 9-64	2N/20W-300 1 S	10- 8-64	2N/21W-23K 4 S	12-21-64	2N/21W-23R 2 S	12-15-64	2N/21W-23R 3 S	10- 9-64	2N/21W-33A 1 S	70-17-01

TABLE E-I
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	Total hardness os	C0 C03	789
tuents in	T D S Evap 180°C Evap 105°C	Computed	1263
constituent per million	S.11.	202	
Mineral constituents parts per million	Boron		0 • 2 0
	Fluo-		0.5
	_	e O Z	2.0
million per million . ctance value	Chlo-	00300	192 5.41 5.41
0	Sulfate	SANTA CLARA-CALLEGUAS HYDRO UNIT U0300	520 10.83 51
parts per equivalents percent re	Bicor - bonote	HCO3	298 4 • 888 23
por	Carbon -	LLEGUA	-
Ë	Potas -	ARA-CA	0 • 13 1
constituents	E n pos	ANTA CL	172 35 35
Mineral co	Magne	M 9 S, U03A2	6.33
Σ	Colour	0 0	7 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 .
Specific conduct-	once (micro- mhos	at 25°C)	1750
	H	SUNIT HYD	7.8
Temp	when sampled	RO SUI	
State well	pel	OXNARD PLAIN HYDRO SUBUNIT PLEASANT VALLEY HYDRO SUBAREA	2N/21W-36N 4 S

Total nardness os CoCO3 515 545 844 732 3716 1677 866 161 156 2 T 0 5 Evap 180°C Evap 105°C Computed 006 902 975 916 793 1255 1179 1615 823 3224 1515 1600 1572 Mineral constituents per million 36 37 00 5:05 1 36 34 0.37 0.50 0.42 19.0 parts 0.54 0.80 1.34 0.91 Boron 8 0.7 0.8 9.0 0.8 6.0 100 10.0 Fluo-5·0 2 D . 7 1.0 1.0 20.0 26.0 0.00 0.0 2 0.03 NON trate 1.69 1.66 38 9.50 1.95 1113 percent reactance value 337 3.47 3.33 SANTA CLARA-CALLEGUAS HYDRO UNIT U0300 million Ch 10 -1.06 million 436 9.08 64 420 327 1716 10.70 722 633 13.18 57 514 Der 14.03 504 Sulfate equivalents нсоз 3.43 323 359 293 5.72 392 B100r -349 5.85 bonole ports 0 0 Carbon -0 0 0 00 0 1 6 0.10 0.10 0.08 0.20 Polos -30.08 0.13 S- U.S .= × constituents 3.65 76.4 3.61 4.22 158 186 105 58 83 16.96 33 187 Sodium o Z 3.70 3.70 30 141 11.60 23 54 Mogne 5.92 5.92 5.43 U0381 Mineral SILUR 2 132 6.59 130 144 204 194 9.68 94 439 228 53 14 198 Colcium U03B0 ů ot 25°C) micro-1238 1340 1135 Specific conduct-SANTA PAULA HYDRO SUBAREA 3300 2026 2080 2073 1616 once mhos 7.8 7.8 7.6 7.7 7.3 707 7.3 704 SANTA PAULA HYDRO SUBUNIT Ha sampled when H. U. Temp. 72 1 1 1 1 1 S S S S S S _ 3 2 3 ~ 2 3N/21W-218 1 11- 9-64 Date sampled 3N/21W- 9R 2N/22W- 1M 2N/22W- 3M 3N/21W-15C 3N/21W-16K Wei 3N/21W-12D 10-28-64 10-21-64 5-12-65 10-20-64 10-20-64 number State

TABLE E-I
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	Total	0.5 C0 C03		925		895	716	686	1072	1098	763	
constituents in	T D S Total			1992	1738	1757	1536	1965	2133	2710 1098	1570	
constituent per million	S	5:02		1		-	1	1	-	31	1	
Mineral parts p	Boron	æ		1.53		1.45	1.29	1.13	0.72	0.94	09•0	
	F . U.O -	L		0.8		9.0	0.7	0.5	9•0	1.5	9.0	
	N	NO 3		0.0		1	1	1	1	17.0 0.27	0.11	
million per million ctance value	Ch 10 -	0.1	00300	129	13	184	202	100	105	280 7.90 19	94 2.65 11	
0	Sulfate	504	SANTA CLARA-CALLEGUAS HYDRO UNIT U0300	834	11.30	691	499	965	1044	1137 23.67 57	603 12.55 52	
parts per equivalents percent re	Bicor -	нсо3	HYDR	465	1.002	498	510	351	381	589 9.65 23	538 8.82 37	
por	Carbon -	C 0 3	LLEGUAS	0		1	1	1	1	0	0	
C.	Potos -	¥	ARA-CA	9 .	0.10	1	1	1	1	0.20	10 0.26 1	
constituents	Sodium	0 2	ANTA CL	240	36	230	230	2111	220	440 19•13 46	204 8 • 87 36	
Mineral co	Magne	D 2	S/ U03B1	112	32	7.15	60 4 6 9 3	76	90 1-40	129 10•61 26	5.76	
2	Colcium	0 0	00380	186	32	215	188	271	281	227 11•33 27	190 9•48 39	
Specific conduct-	(micro-	at 25°C)	HYDRO SUBAREA	2150		2403	2233	2383	2587	3367	2034	
	Ha		INIT	7.6		7.8	7 • 4	7.9	7.3	7.8	7.9	
Temp.	when	5	0, _	1		1	1	1			1	
State well	7		SANTA PAULA HYDRO SANTA PAULA	3N/21W-21E 1 S	10-15-64	3N/21W-29B 1 S 11- 3-64	5-12-65	3N/21W-31E 1 S 11- 3-64	5-12-65	3N/22W-11H 1 S 10-20-64	3N/22W-23F 2 S 11- 2-64	

	Totol Nardness 05 CoCO3		391
uents in lion	Evap 180°C hardness Evap 105°C 0s Computed CoCOS		α α α ω
constituent per million	5.02		
Mineral constituents parts per million	Boron		90.0
	Fluor		0
	role NO3		0
million per million ctance value	Chlo -	00300	0.025
0	Sulfate SO 4	SANTA CLARA-CALLEGUAS HYDRO UNIT U0300	4 6 6 2 2 4 4 6 6 2 4 6 6 7 4 6 6 7 4 6 7 4 6 7 4 6 7 4 6 7 4 7 4
parts per equivalents percent re	Bicor - bonote HCO3	HYDR	4 · 0 · 0 · 0 · 0 · 0 · 0 · 0 · 0 · 0 ·
por	Carbon -	LLEGUAS	0
Ë	Potos - X	ARA-CA	1 0 5
constituents	Sodius No	ANTA CL	1, 22
Mineral co	N 8 0 0 2 N 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	S, U0382	2 2 3 2 2 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3
2	Colcium	00380	5 • 10 4
Specific conduct-	(micro- mhos at 25°C)		710
	H C	SUBUNIT	
Temp	sampled in F	0,0	
State well	Date sampled	SANTA PAULA HYDRO SISAR HYDRO	4N/21W-18C 1 S

TABLE E-1
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	Total hardness a s Co CO 3		661	559	591	514	1702	1645	1233	1527	
tuents in	TDS Total Evap 180°C hardness Evap 105°C as Computed CoCO3		1132	1036	1022	782	3142	2990	2214	2976	
constituents per million	Siti: ca SiO2		1	1	1	1	1	1	1	1	
Mineral parts	Boron		0.81	0.75	0.22	0.19	1.69	1.60	0.90	0.62	
	Fluo- ride F		0 • 8	0 . 8	4.0	0.5	1.0	1.4	0 • 8	0 • 8	
	NI - trate NO3		38.0 0.61	37	51.0 0.82 6	41.0	71.0	70	36.0 0.58 2	0 • 0	
million e value	Chlo-	10300	1.38	43 1.21 8	31 0.87	28	142	145	147	301	
millior per eactanc	Sulfote SO4	SANTA CLARA-CALLEGUAS HYDRO UNIT U0300	500 10•41 61	411 8•56 58	373	239	1557 32.42 86	1571 32.71	908 18.90 59	1415 29.46 67	
parts per equivalents percent r	Bicor - bonote HCO3	HYDRO	292	274	327 5•36 36	336 5.51 46	4 0.07	431 7.06 16	522 8•56 27	360	
por	Carbon - ale CO 3	LEGUAS	8	!	0	0	0	0	0	0	
in	Potos .	RA-CAI	1	1	0.05	0.05	0.23	0.23	0.08	7	
constituents	Sodium	INTA CLA	95 4•13 24	3.74	63 2°74 19	39	225 9•78 22	270 11.74 26	160	320 13.91 31	
Mineral co	Magne- slum Mg	SA U03C1	66 5•43 31	52 4•28 29	51 4.19 29	3.29	152 12.50 28	162 13•32 30	148 12•17 38	135 11.10 25	
W	Calcium	003C0	156 7.78 45	138	153 7.63 52	140 6.99 58	431 21.51	392 19.56	250 12.48 39	389 19•41 44	
Specific conduct-	mhos of 25°C)		1507	1370	1260	1030	3050	3425	1950	3150	
	Hď	SUBAREA	7.8	7.3	8 • 2	7.8	7.4	7.6	7.6	7.6	
Temp	when sampled in ° F	NI T HYDRO	1	1	1	t	1	1	1	1	
State well	led	SESPE HYDRO SUBUNIT FILLMORE HYDRO	3N/20W- 3N 2 S 11- 3-64	5-14-65	3N/20W- 5C 2 S 10-12-64	3N/20W- 5D 1 S 10-12-64	3N/20W- 9F 1 S 10-15-64	9-30-65	3N/21W-12C 1 S 10-15-64	3N/21W-12D 2 S 10-15-64	

	Total hordness as		644	450	602	705	366	271	695	593
constituents in	T D S Evap 180°C Evap 105°C Computed		830	877	1010	1221	770	490	986	954
constituent per million	Ser. 1- co S. 0.2		1	l	8	1	-	1	1	1
Mineral o	Boron		0.81	10.07	0.72	0.78	2.55	0.28	0.78	1.20
-	ride.		6.0	6 • 0	•	1.0	1.0	5.0	7.0	9
	role NO3		8.0 0.13	12 0 • 19	11.0	20.0	7.0	28.0	56.0	45.0
million e value	Chlo-	00300	37	39	0.76	0 8 9 0	3.16	34 0 96 13	2.31	2.85
million per eactanc	Suffore SO 4	SANTA CLARA-CALLEGUAS HYDRO UNIT U0300	337	357	485 10.10	584 12•16 68	255 5•31 45	2.31	298	294 6.12 41
parts per equivalents percent	Bicor- bonofe HCO3	HYDR	256	255	264	279	189 3.10 27	218	266	329 5 • 39 36
por	Carbon -	LLEGUAS	1	-	0	0	0	0	0	0
Ë	Potos Form	ARA-CA	1	ŧ i	0.10	0.13	0.08	0.03	3 0.08	0.08
constituents	E nipos	ANTA CL	3.57	3.70	3.65	93	101	1.91	2.17	3 35 22
Mineral co	M G G N M G G N M G G N M G M G N M G M G	S/ U03C1	3.29	3.45	5.10	5.76	35 2 88 24	1.48	4.19 31	5.51
W	Colcium	00300	114 5.69	1111 5.54	139	167	4.444	3.94	7.19	127 6.34
Specific conduct-	. 0		1157	1202	1305	1523	1100	069	1200	1340
	H	SUBAREA	7.8	7.5	7.6	7.8	0 • 0	8 • 1	8 0	0.2
Temp	sampled in F	NIT	1		28	i i	1	1	1	-
		SUBU	1 5		\$		1 8	1 S	2 2	S
State well	Date sampled	SESPE HYDRO SUBUNI FILLMORE HY	3N/21W-12H 1 11- 5-64	5-12-65	4N/19W-33D	12- 1-64	4N/20W-12Q 10-12-64	4N/20W-23N 1 10-12-64	4N/20W-230 1 10-12-64	4N/20W-24D 1

TABLE E-1
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

F B S 0 2 Computed Cot03	0.71	0 0 0 1 1 1 2 5 0 1 1 1 1 2 5 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.78 — 0.78 — 1.30 — 1.30	0.71 978 0.78 978 1.25 19 753 1.070 780 1.070 1900 1 1.070 1900 1 1.070 1900 1 1.070 1900 1 1.070 1900 1 1.070 1900 1	1.30 0.78 1.00 0.78 1.00 0.78 1.00 0.78 1.00 0.78 1.00 0.78 1.00 0.78 1.00 0.47 1.00 0
	0.8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	46 44 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	144 0.8 0.71 144 0.8 0.78 145 0.8 0.78 160 1.25 170 1.30 170 1.30 180 1.00 1.30 180 1.00 1.30	44 44 45 60 60 100 100 100 100 100 100
	77 177	083 221 121	2 20 4 9 8 8 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	000 000 001 001	100 030 008 201 101
CLARA-CALLEGUAS HYDRO UNIT U0300	8 6 7			7 7	rd rd
ALLEGUAS HI	5 321	1 1 0	1 1 0 0 0	1 1 0 0 0 0	1 1 0 0 0 0 0
LARA-CA		0 0	0 0	0 0 0	0 0 0 0
SANTA CL	3.35	3.35 2.22 3.22 2.22 2.21 2.09	6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3.35 4.22 3.022 4.22 3.00 1.00 4.81 1.00 4.81 1.00	3 . 3 . 5 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2
m 90	4 25 28 29 29	n why way	2 2 2 2 2 2 2 3 4 4 5 2 8 8 5 7 5 7 5 7 6 8 8 5 7 7 8 8 8 5 7 8 8 5 8 5 8 5 8 5	2, 28 2, 80 2, 80 2, 80 2, 80 2, 80 2, 80 3, 80 3, 80 3, 80 3, 80 3, 80 3, 80 3, 80 3, 80 3, 80 3, 80 3, 80 3, 80 3, 80 3, 80 4, 80 5, 80	2 2 3 3 4 4 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
003C0 151 7.53	142	7 142 7 009 7 009 108 5 39	1,42 7,09 1,09 5,39 6,74 6,74	7.042 7.042 1.049 5.39 6.39 6.74 6.74 13.47 13.47 13.47	L a
244	1334	1334	1334	1334	1334
SUBAREA	7.4	7.4	7 - 7 - 7 - 7 - 8 - 7 - 2 - 2	7 7 7 6 8 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6	7 7 7 7 7 8 8 . 1 8 . 1
HYDRO			71	1	1
SESPE HYDRO SUBUNI FILLMORE HY 4N/20W-25C 1 S	5-12-65	5-12-65 4N/20W-25D 1 S 10-27-64	٦ ،	7 7	1 2 2

TABLE E-1

Total 00000 520 999 500 909 241 339 826 9 Evop 180°C Evop 35°C Computed 955 1048 456 870 899 866 368 160 1850 1779 Mineral constituents parts per million 502 S S 1 1 1.07 91.0 19.0 0.50 0.53 0.53 16.0 30100 8 a p · . 100 1.00 6.0 0.2 00.3 1.0 0.5 500 4 20.0 8.0 0.13 0.68 2.5 1.8 0.11 2 0.03 N C trote equivalents per million percent reactance value 54 1.83 35 38 12 0 34 8400 146 million Ch10-SANTA CLARA-CALLEGUAS HYDRO UNIT U0300 ride million 366 379 431 8.97 61 4128.58 125 8.20 17.16 394 824 Sulfote 504 per HCOJH Bicor bonote 292 317 250 354 281 277 477 ports 0.27 0.0 0 0.17 0 6 Potos -0.10 7 0.18 2 0.05 0.10 8.03 0.08 × .= Mineral constituents 3.87 93 107 96 4.17 29 55 2°39 33 185 235 31 Sod.um 0 3.70 4.03 3.70 4.03 10 0.82 12 0.99 60 4.93 Mogne 64 SIU II 10362 D W 126 Colcium 134 146 122 6.09 3.99 116 273 24 42 U03C0 0 ot 25°C) micro-Specific conduct-1412. 1327 1140 1285 1275 2160 658 mhos ance SUBAREA SESPE HYDRO SUBAREA 7.5 7.8 7.3 707 8.0 1.9 8.2 Hd FILLMORE HYDRO when Temp sampled In °F 72 1 -1 1 1 1 SESPE HYDRO SUBUNIT 4N/20W-34R 1 S 4N/20W-360 1 S 6N/22W-260 1 S S S 4N/20W-36P 2 6N/23W- 6K 1 6N/23W-18M 1 Date sampled State well 11- 4-64 5-12-65 10-15-64 9-30-65 6-21-65 6-21-65 3- 3-65 number

TABLE E-1
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	Total hardness as CaCO3		628	
constituents in per million	T D S Evap 180°C Evap 105°C Computed		1440	
constituent per million	Siff- ca SiO ₂		-	
Mineral parts p	Boron		08 * 0	
	Fluo- rade F		.00	
	NI - trate NU3		0 • 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
million per million ctance value	chlo- ride	00300	0,51	
0	Sulfate SO4	SANTA CLARA-CALLEGUAS HYDRO UNIT U0300	767 15,97 71	
parts per equivalents percent re	Bicar - bonote HCO3	S HYDR	373 6 • 11 27	
par equ	Carbon - ate	LLEGUA	0	
i	Potos - sium K	ARA-CA	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
constituents	Sodium	ANTA CL	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Mineral co	Magne- sium Mg	5	1 ° 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1	
2	Calcium	00300	215 10.73 48	
Specific conduct-	(micro- mhos at 25°C)		2296	
	H	SUBAREA	Ο • œ	
Тетр	when sampled in ° F	NIT RO SU	1	
State well number	Date sampled	SESPE HYBRO SUBUNIT SESPE HYBRO	6-21-65	

	Total hardness as CaCCs		703	909	1489	1422	759	1631	2279	8
constituents in per million	TOS Total Evap 180°C Pardness Evap 105°C as		1262	1205	3107	2730	1335	3136	3800	5110
constituent per million	S.0.2		1	1	1	-		1	1	1
Mineral o	Boron		1.51	1.40	1.26	0.92	0.84	0 • 86	0 83	4.05
<	F uo.		6.0	0 0	1 • 6	1 • 1	1 • 4	7.0	4.0	0.1
	rote NO3		24.0	16 0.26	71.0	49	17 0 • 27	0 0	0 • 0	0
million e value	C 1 10	00300	1.35	1.21	148	3.72	34 0 . 96	0.25	181 5.10	216 6 • 09 8
per	Sulfate SO 4	SANTA CLARA-CALLEGUAS HYDRO UNIT U0300	600	530 11.03 65	1569 32.67 74	1338 27.86	656 13.66	1599 33.29 70	2053	0
equivalents percent	Bicor - bonote HCO3	S HYDR	284	279	391	410	268	841 13.78 29	800 13.11 22	4442
ede	Corbon .	LLEGUA	8	į.	0	0	0	0	0	0
ë	Potos -	ARA-CA	1	1	0.20	0.18	0.13	0.15	0.13	18
constituents	E 0 2	ANTA CL	114	108	336	240	3.78	356 15.48	330	1750 76-09
Mineral co	M og ne .	s, U03D1	5.51	4.55 27	13.24	12.09	83	238	257	0.58
2	67.01.00	00300	171	152	331	327	167	261 13.02 27	489 24.40	1.20
Specific conduct-	1 0	٠, ٠	1640	1510	3408	3026	1565	3200	3500	5100
	Ha	AREA	7.9	7.5	7.7	7.6	7.5	7.8	7.0	6.
Temp	sampled in ° F	IT 5 SUBA	1	1		62	70	1	1	76
	0	BUN	v		S	S	S	S	v	S
State well	Date sampled	PIRU HYDRO SUBUNIT PIRU HYDRO SUBAREA	4N/18W-19R 1	5-14-65	4N/18W-278 1 11-19-64	4N/18W-28C 2 8-26-65	4N/18W-31D 2 8-26-65	4N/19W-23AS1 10-21-64	4N/19W-23AS2 10-22-64	4N/19W-238 1 10-21-64

TABLE E-1
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	Tetal hardness os Co CO3		892		910		1186		721		835		999		809		1226			
constituents in per million	Evap 180°C n Evap 105°C Computed		1523	1414	1622	1505	2036	1889	1014	1170		1432	0 % 0 1	1111	1102	1030	2374		2086	
constituent per million	S.114-		- 1		1		-		-		1		1		1		1			
Mineral c	Boron		1.06		0.93		1.38		0.95		1.49		06.0		0.95		0 • 20			
	7 C O		1.4		0 8		0.4		9.0		6.0		6 • 0		9.0		0.5			
	trote NO3		24.0	0.00	17.0	1	84.0	1.33	33.0	0 0	59.0	0.95	38	3	0.9	0.10	71.0	1.15	m	
million ce value	Chlo-	00300	1 47	0	55	0	25	1.4	52	x x x x x x x x x x x x x x x x x x x	5	1 58	50	89	43	1.21	52	1.47	4	
millic per eactan	Sulfate SO 4	SANTA CLARA-CALLEGUAS HYDRO UNIT U0300	767	10.70	821	69	984	68	615	68	684	14.24	562	99	546	11.37	1033	21.51	49	
pe lent	Bicor - bonate HCO3	S HYDR	313	25	348	23	421	23	245	4.02	255	4.18	237	22	262	4.29	581	9.52	28	
parts equiva percer	Carbon - ate	LLEGUA	0		0		0		0		1		1		0		0			
.i.	P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ARA-CA	5 0	1	0.13	4	9 1		91-0		1		1		4	0.10	īU	0.13		
constituents	Sodium	ANTA CL	116	22	150	26	160	23	102	23	100	4.35	121	28	110	4.78	220	9.57	28	
Mineral co	Magne. s.um Mg	5	90	32	124	4 1	125	33	75	33	84	6.91	69	31	81	99 39	111	9.13	27	
M	Calcium	00300	209	45	160	32	269	9	165	4 43	196	9.78	153	71	110	5.49	308	15.37	42	
Specific conduct-	mhos of 25°C)		1863		1850		2300		1550		1848		1573		1360		2450			
	H	IREA	7.7		7.4		7.6		8 • 0		8.0		7.6		7.8		7.7			
Тетр	when sampled in ° F	IT 5 SUBA	1		62		49		62		l l		1		68		1			
		UBUN	2 S		2 S		5 5		2 S						1 S		1 S			
State well	Date sampled	PIRU HYDRO SUBUNIT PIRU HYDRO SUBAREA	4N/19W-25C		4N/19W-25E		4N/19W-25L		4N/19W-25M			11- 3-64	5-12-65			10-23-64	4N/19W-26J 1	10-23-64		

	Totol hordness os Coulcs		941		908		1124		625	550	177		504		
uents in	T D S Cotoll Evap 185°C as Computed Coulds		1590	1488	1720	1474	1998	1856	1100	1030	1498		1010		
constituent per million	Sili- co SiO ₂		1		-		ì		1	1	1		1		
Mineral constituents parts per million	Boron		0.40		1.07		0.0		96.0	0.07	0.95		7.16		
	Fluo- ride		9.0		9.0		30 •		» •	o •	0.0		٠ در ه		
	rote NO3		62.0	7	50.0	4	18.0	-	25.00	14	10.15		†		
million	Ch10 = ride	00800	1.65	٥	500	0	1.61	3	1.00	10.64	1.49		1.00		
tr million ts per million reoctance value	Sulfate SO 4	SANTA CLARA-CALLEGUAS HYDRO UNII UU300	195	70	717	09	1076	12	511	4.63	615 12.8U 50		7970		
len	Bicar - bonote HCO3	HYDR(287	20	448	30	403	2.1	260	251 4.11 27	400 400 30		247		
parts equiva percen	Carbon -	-LEGUA:	0		0		0		l I	1	0		1	-	
ŗ	Potos .	ARA-CAI	0.13	٦	7 0.14	1	0.15		I I	I I	J.15		1		
constituents	Sodium	ANTA CL	120	22	157	27	170	25	3.83 23	3.83	140		108		
Mineral co	M G G B B B B B B B B B B B B B B B B B	5,	103	35	164	54	187	51	5.10	4.61	11.68	10302	55		
×	Coleium	00300	207	43	92	18	142	24	148	128 6•39 43	3.84		116		
Specific conduct-	1 0		1900		1900		2250		1447	1363	1700	SUBAREA	1370		
	Hd	REA	7.9		7 . 7		7.9		7 • 8	7.2	7.6		7.5		
Temp	when sampled in F	T	9		62		99		1	1	7 9	HYD	1		
State well	led	PIRU HYDRO SUBUNIT PIRU HYDRO SUBAREA	4N/19W-26J 3 S 10-23-64		4N/19W-26P 2 S 10-23-64		4N/19W-260 1 S 10-23-64		4N/19W-33M 2 S	5-19-65	4N/19W-35C 1 5 10-23-64	UPPER PIRL HYDRO	5N/18W-15P 1 S 11-18-64		

TABLE E-1
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	Total	COCO3		576		369	999			184		188		279		243			
constituents in per million	T 0 S Total	Computed		1144	1164	775	1250	1317		596	569	354	312	405	400	455	044		
constituent		5.02				1	-			i		-		1		1		 	
Mineral parts p	Boron	8		0400		1.71	107.00			0.12		0.12		0.16		0.08			
	Fluo-	LL		0.4		1 • 3	0.4			0.2		0.4		2.5		3.2			
	1 In I	NO 3		0.0		0.02	æ (0.13		20	0.32	15	47.0	14	9.53	17	4		
million e value	Chio-	- 0	00800	25	0.71	34	6 0	0.62		10	9 0 58	11		7	0.20	12	, G		
millior per sactano	Sulfate	504	SANTA CLARA-CALLEGUAS HYDRO UNIT U0300	576	11.99	349	712	14.82		43	0.90	70	1.40	102	2.12	162	46		
parts per equivalents percent	Bicar - bonate	нсоз	HYDR	367	6.02	216 3.54 30	222	3.64		208	3.41	222	4000	278	4.06	205	46		
par	Carbon -	C 0 3	LLEGUAS	0		1	0			0		0		0		0			
Ē	Potas	×	ARA-CA	۱ ۱	0.10	1		9 0 0		2	0.00	2	0 0	2	0.0	- 0			
constituents	wnipos	0 2	ANTA CL	170	7.39	97	135	31		29	1.26	040	10/4	37	1.61	57	34		
Mineral co	Mogne-	5	S. U03D2	35	2.88	3.29	8 7 0	2,45	10303	18	30	17	1.40	20	1.64	16	18		
2	Colcium	CO	00800	173	8 63	82 4 09 35	187	4.9	4	777	7.50	47	245	62	3.94	71	48		
Specific conduct-	(micro- mhos	at 25°C)	SUBAREA	1420		1118	1670		SUBARE	420		500		959		702			
	H		los ox	7.4		7.5	7.6		HYDRO	8 • 2		0 .		7.5		7 • 8			
Ten	sampled	-	IT J HYDRO	1		1			F	1		1		20		50			
State well	þe		PIRU HYDRO SUBUNIT UPPER PIRU	6N/18W-12H 1 S	3-15-65	6N/18W-15P 1 S 5-20-65	8N/20W-26H 1 S	69-67-7	HUNGRY VALL	7N/18W- 7J 1 S	4-24-05	7N/19W-12B 1 S	50-47-7	8N/18W-15MS1 S	1-29-65	8N/18W-16RS1 S			

	Total hardness as		80	191	37		23	54	303	4 3 88
uents in lion	Evop 80°C hardness Evop 105°C 0s Computed Co.Co.		254	318	300		295	700	550	344
constituents per million	S. 1.		1	1	1		-	ì	1	1
Mineral parts p	Boron		4.10	0 • 0 8	0.17		71.00	74.0	75.0	10.70
	. o n . u		14.0	1 . 8	0.5		1 . 4	0 • 1	7.0	4 .
	N C N C N C N C N C N C N C N C N C N C		1.5	0	2 0.03		0.05	0.0	6 0 • 10	0
million e value	0 1 4 0 1 - 1 0	00300	0.17	13	18 0.51		0.48	2.20	1.18	0 3 3 3
r million ts per million reoctance value	Sulfate 504	SANTA CLARA-CALLEGUAS HYDRO UNIT U0300	1.73	1.54	20 0.42		2012	39	1.52	338
parts per equivalents percent re	Bicor - bonote HCO3	S HYDR	103	234 3.84	3.61		376	478	419	303
Pad	Corbon.	LLEGUA	0	0	0		0.23	11 00.37	0	0
Ë	Potos.	ARA-CA	0.08 2	0.08	0.03		0.03	0.00	30.08	0 • 1 0
constituents	E 90 N	ANTA CL	93	1.78	3.91		201	245	3.65	3.61
Mineral co	S to g ne .	S, UO3D3	0	1.81	0.08	10304	0.16	0.08	3.37	3.622
2	Coleran	0300	0.15	2000	0.65		0.30	c 0 4	2.69	103
Specific conduct-	(micro- mhos at 25°C)	SUBARE	644	475	430	ZE A	810	1020	805	066
	I a	HYDRO	8 • 1	8 • 1	8 0	SUBAREA	8 . 4	4 • 8	3 •	0 . 8
Temp	sampled In ° F	Ε	1	1	69	HYDRO	99	1	1	1
		UBUN!	1 8	5	1 S		S	رى د	1 S	S
State well	Date sampled	PIRU HYDRO SUBUNIT HUNGRY VALLEY	8N/19W-22N 2-24-65	2-24-65	8N/19W-35P	STAUFFER	7N/21W- 3Q 11-25-64	8N/2UW-18N 2-25-65	8N/20W-33K	8N/21W-24J 1 2-26-65

TABLE E-1
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	Total	hordness os Colicis		106			171		312			
uents in	705	Evop 80°C hordness Evop 105°C os Computed Cocos		380	C	000	220	190	767		024	
consti	S.111-	co Si0 ₂		1			1		1			
Mineral constituents parts per million	Boron	8		0.88			0.13		49.0			
	000	- de		0.5			1.0		0 • 8			
	z	hrote NO ₃		0.0			4	2	2.0	0.03		
million e value	Ch 10 =	ride C 1	00300	14	0.39)	0-17	7	11	0.31	4	
r million ts per million reactance value	Sulfate	\$08	SANTA CLARA-CALLEGUAS HYDRO UNIT U0300	79	1.64	0 0	2000	200	185	3.85	48	
parts per equivalents percent re	Bicor -	bonate HCO3	S HYDR	257	4.21	0 0	177	92	233	3.82	48	
Par	Carbon -	01e CO 3	LLEGUA	0		()		0			
ï	Potos -	. X	ARA-CA	-	0.03	r	10.03		1	0.03		
constituents	Enibos	0 2	ANTA CL	86	4.26		0.39	10	45	1.96	24	
Mineral co	- e	S - S	S U03D4	5	0.41) (1.07	28	23	1.89	23	
2	a project		00300	34	1.70		2.35	61	87	4.34	53	
Specific conduct-	(micro-	mhos at 25°C)		550		0.76	7		685			
	Hd		SUBA	8.2		0			7.07			
Temp.	when	in F	II T HY DRO	1					54			
State well		Date sampled	PIRU HYDRO SUBUNIT STAUFFER HYDRO SUBAREA	8N/21W-25C 1 S	2-26-65	2 L 04C-WIC/NA			8N/21W-33R 3 S	11-25-64		

5	70101	Evap 180°C hardness Evap 105°C as Computed CacC3			342		240	357		561	360		570	571		916	587	27.7	0 3	369	6361		697 398	619	3.5.5	1	632	
constituents per million		Evap 180°C			_					41			41							_				9			9	_
_	Š	5.02			-		_	1			-			-		_	-			-			-		1			
Mineral	80,00	80			i			-			i			*			1			3			0.24		1			
	000	a p			0.5			-			1			9.0			0.7			1			9.0		0			
	ī	rose NO3			24.5	0.40	3	22.0	0.35	n	0.0	0.10		81.0	1.31	0	59.0	96.0	0	7.0	0.11	•	200	7 000	23.5	0.54	5	
value	C N 10 -	r.de	10300		65	1.66	7.7	99	1.80	18	08	2.26	75	104	2.93	K 1	112	3.16	67		1.35		26	0.00	0,4	1.69	15	
r million ts per million reactance value	Sulfate	504	SANTA CLARA-CALLEGUAS HYDRO UNIT U0300		112	2.33	24	118	2.46	24	108	2.25	22	263	5.48	35	272	5.66	30	214	94.4		256	51	167	3.48	32	
ports per equivalents percent r	Bicor -	HCO3	S HYDR		329	5.39	22	332	5.44	54	352	5.77	99	359	5 . 88	200	395	6.47	3	314	5.15		268	1000	320	5.24	48	
69	Corbon -	000	LLEGUA		0			0			0			0			0			0			0		C)		
Ë	Potos -	£ 5 X	ARA-CA		9	0.08	-	3	0.08	7	е	0.08	1	2	0.05		6	0.08		2	0.05		m 2	0.00	(r	0.08	1	
constituents	Sodium	0 2	ANTA CL		89	2.96	30	68	2.96	29	74	3.22	31	100	4.35	87	105	4.57	07	87	3.78		2 2	42 24	ď	3.61	33	
Mineral co	Mogne.	8 ° ° ×	Ŝ	U03E1	26	2.14	22	31	2.55	25	28	2.30	22	61	5.02	25	54	4044	17	37	3.04		33	26	00	1,881	17	
ž	Coloida	°	103E0		76	69.4	84	9.5	4.59	45	86	4°89	24	128	6.39	2 4	146	7.29	0 4	00	4.34	1	105	0. 0.0 0.0 0.0	106	5.29	64	
Specific conduct-	(micro-	mhos at 25°C)	HYDRO SUBUNITU03E0	E.A.	934		Ī	626			952			1440			1480			866			796		1030	3		
	Ha		YDRO	SUBARE	7.8			8.3			8.1			7.6		Ī	7.5			8 • 2			7 . 8		7.6)		
Temp	when	F C			1			69			7.1			1			1			67			79		1			
			CLAR	ERN P	2 4						S			1 S			3 S			1 8			2		~)		
State well		Date sampled	PPER SANTA CLARA R)	4N/15W-22E	5- 4-65			8-23-65		4N/15W-23F	8-23-65		4N/16W-14D	5- 4-65		4N/16W-16Q	5- 4-65		4N/16W-16D	8-23-65		4N/16W-21D	60-67-0	716W-22C	5- 4-65		
			a d		N/						N T			4N			4. P.			47			747		V V			

TABLE E-1

ANALYSES OF GROUND WATER

LOS ANGELES DRAINAGE PROVINCE (U)

	Total hardness as		408	385		376		557		1056		730		510		876		
luents in	Evap 180°C hardness Evap 105°C as Computed CaCO3			670	573		562	1000	928	2600	2478	1430	1306		885		1408	
constituents per million	S C.0 S.10.2		1	1		1		1		-		1		-		1		
Mineral parts p	Boron		1	1		i		0.52		1.12		0.72		1		1		
	F100.		-	0.7		1		1.3		1 . 4		1.2		0.5		8 • 0		
	rote NO3		47.0	14.0	0.63	7.0	0.11	13	0.21	07	2 0 0	47	m	10.5		5.5	0	
million per million ctance value	chlo-	00300	1.83	16 28	0.79	30	0 85	9	1.92	206	15	3.98	18	28	2	84	10	
0	Sulfate \$04	SANTA CLARA-CALLEGUAS HYDRO UNIT U0300	186	34	4.37	200	4.16	404	8.41	1308	07	502	8 7	437	63	683	14.622	
parts per equivalents percent re	Bicar - bonate HCO3	S HYDR	307	270	4.43	278	4.56	305	5.00	322	2.50	405	30	271	31	397	28	
pod	Carbon -	LLEGUA	0	0		0		0		0		0		0		0		
Ë	Potas - sium K	ARA-CA	0.08	٦	0.05	2	0.05	7	0.10	m 0	0	5	1	3	7	200	7.0	
constituents	E 2 0 Z	ANTA CL	3.22	28	2.17	53	2.30	66	4.30	396	11.645	165	33	100	30	133	25 25	
Mineral co	M a g n e -	5	30	22	2.30	27	2 • 2 2	54	4.44	91	19	73	27	3,05	27	77	27	
×	Calcium	UO3EO	114	108	5.39	106	5.29	134	69.9	273	12.02	172	39	125	4 4	224	848	
Specific conduct-	mhos at 25°C)	R HYDRO SUBUNITU03E0	1020	706		856		1362		3205		1898		1270		1920		
	H	YDRO	8 • 3	7.6		8 • 2		7.5		7.4		7.6		8 • 1		7.1		
Temp	sampled in ° F		67	-		63		1		-		-				1		
State well	led	UPPER SANTA CLARA R HYDRO SUI EASTERN HYDRO SUBAREA	4N/16W-23G 3 S 8-23-65	4N/16W~27J 2 S			8-23-65	4N/17W- 1J 1 S	4-22-65	4N/17W-10M 1 S	60-27-4	4N/17W-12B 4 S		4N/17W-12R 1 S		4N/17W-14Q 1 S		

	0.	Col. 3		807			24			715		717			404			656	Ī		281	_		1 m	_		
uents in	50	Evap 180°C nordness Evap 105°C es Computed Cours				1313		2116	7 1 1 7		1222	308		1250	3/80		3541	1156		1044	1340		124.	1130		1045	
constituents per million	- 5	5:02		-			1			1		1			-			1			-	-		1			
Mineral o	Berer	В		-			1		-	1	_	0. 75			0 10			0.58			0.13			0.40			
	, o	- d -		1			l			1					7.0			0.8	Ī		D. 0			D • 0		_	
	10.1	frofe NO3		7.0	0.11	-	0			0.7		m	0.05		13	0.41		16	0.26	2	41	0.24		0			
nillion	Chio-	0.1	10300	20	70.7	17	270	7.61)	1/	100	133	3. 15	18	0 0	1.00	~	7.1	2.00	77	1/4	4.91	54	110	3.10	10	
r million is per million reactance val	Sulfate	504	CLARA-CALLEGUAS HYDRO UNIT U0300	633	13.10	19	935	19.47)	5/3	700	554	11.53	96	2150	44033	70	865	10.37	61	461	09.6	94	411	d.50	7.5	
parts per equivalents percent r	B 10 0r -	bonote HCO3	S HYDRO	368	6.03	28	343	5.62		3/2	, , , , , , , , , , , , , , , , , , ,	32%	5.33	26	301	47.9	12	272	4.40	97	366	00.9	53	352	5.17	23	
pa	Carbon -	co3	ALLEGUA	0			0			Э		0			0			0			0			٥			
C1	Potos -	E X	ARA-CA		0.13	~	1	0.03		2 4 5		*7	0.10		1 1	0.20	→		0.13	_	٥	0.15	7	O	0.15	~	
constituents	Sodium	0 2	SANTA CL	128	5.57	97	730	31.14		13/	57	152	6.61	3.1	133	34.35	99	76	4017	77	213	7.20	44	180	7.63	77	
Mineral co	000	E 0	S UU3E1	7.1	5.84	17	77	0.00		5 = 75	97	13	6 · UU	67	115	7.29	17	Q.	50.05	67	6 9	D . 1d	25	0.6	4.11	~	
Σ	80.0.0	0 0		206	10.28	/ 4	10	0.50		101	77	167	8 . 3 3	0.4	707	10.08	51	162	20 · 20	40	129	550	3.1	113	5.64	35	
Specific conduct-	- OJON	mhos at 25°C)	HYDRO SUBUNITUO3E0) SUBAREA	1770			3140			I o l		1600			3000			1340			1640			1410			
	H		YDRO	8.1			3.6			•		1.,			1.01			1.,			J • D			8.2			
Temp	when	ID ° F		20			1,5			2		l I			Į Į			1			1			I 1			
	50		CLAR,	1 S			ر ر			,		ر ا			.^			· ·						,			
State well		Date sampled	UPPER SANTA CLARA R EASTERN HYDRO	4N/17W-140	8-23-65		4N/17W-15N	4-11-11-11		8-23-65			,9-7 -			4-65		-12D	59-5 -		-123	49-4			,9-7		

TABLE E-I
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	Total	as CaCO3		956		4	0		66				208			199			304			307				
uents in	105	Evap 180°C hardness Evap 105°C as Computed CaCO3		966	200			877	2158		1708		340		320	360		543	010		486	590		439		
constituents per million	-11.5			-		I			-				1			1			i			1				
Mineral parts p	Boron			0.52		1			2.50				0.16			0.18			0.00			0.04				
	F1u0-	ri de		D • 0		I			1.6				0.5			0.5			0.5			7 • 0				
	1 - 2	trate NO 3		10	0.16	7.00	0.11	1	15	57.0			٥	0.10	2	ァ	0.15	9	†	0.71	2	77 77	0.71	ア		
per million ctance value	1 01 4 0	ride C I	00300	10	1.89	4 2	1 · 0 C	12	91	16.7	7		24	0.96	16	30	0.05	0 1	121	3.58	43	138	3.89	20		
0	Sulfate	504	SANTA CLAKA-CALLEGUAS HYDKO UNIT U0300	475	ω ω π) χ) I	α • C α	55	246	11.37	41		99	1.42	24	61	1.27	53	5 0	1.21	3.5	45	76.0	12		
parts per equivalents percent re	Bicor -		S HYDK	268	4.39	, x	4.70	32	0.49	11.31	4 1		205	3.36	58	195	3.20	25	173	2.84	34	137	57.7	5.5		
por	Carbon -	01e CO 3	LLEGUA	0		C			73	2.43	7		0			0			Э			٥				
C .	Potos -	E X	AKA-CA	5	0.13	4 3	0.10	٦	47	0.10			2	30.0	_	2	0.05	_	~	0.00	-	9	0.15	~		
constituents	Sodium		ANTA CL	16	3.96	3 5	3.91	26	615	26.74	96		36	1.57	27	31	1.35	25	09	2.61	30	33	1.43	19		
Mineral co	Moone	S · u · n	S UU3E1	75	6.17	·	4.11	28	7	0.33	~	JU 3 E.5	16	1.32	23	15	1.23	23	21	1.073	2 o	28	2.30	30		
2	Colcium	٥		66	4.94	133	6.64	24	17	0.85	m		57	78°7	64	55	2 . 74	51	18	4.94	200	77	3.84	50		
Specific conduct-	(micro-	mhos at 25°C)	SUBUNITU03EU REA	1220		1270	1		2200				214			539			798			823				
	Hd		R HYDRO	7.8		0	1		8.7			SUSAKEA	1.9			7 . 7			7.8			7.8				
Temp	when	i P F	A R H	1		6.7)		1				ļ			1			1			1				T
State well		Date sampled	UPPER SANTA CLARA R HYDRO SU FASTERN HYDRO SUBAREA	5N/17W-24B 1 S	2-16-65	5N/17W-36H 4 S			64/17w-36B 1 S	2- 4-65		ACTON HYDRO	4N/13W-100 1 S	4-22-65		4N/13W-12C 4 S	4-22-65		5N/12W-28f 1 S	4-22-65		5N/12W-30K 1 S	4-22-65			

	hordness os Cours		313
S	Evon BG C hordness Evon 55 Computed Cours		0 4
constituent per million	E VOE Compu		
cons	5 0 2		
Mineral constituents parts per million	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		0 4 • 0
	, p r		9.0
	Z 2 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z		22 00.35
million e value	C 1 10	00300	2,65
parts per million equivalents per million percent reactance value	Sulfate \$0.4	SANTA CLARA-CALLEGUAS HYDRO UNIT U0300	3.06
parts per equivalents percent re	Bicor - bonote HCO3	S HYDR	2,156
pod	Carbon -	ILLEGUA	0
ni s	Potos.	ARA-CA	0.05
constituents	E O N	ANTA CL	2,22,26,26,26,26,26,26,26,26,26,26,26,26
Mineral co	N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	S U03E5	1 2 2 2 2 2 3 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
W	C 0 10:0 B		4 8 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Specific conduct-	mhos at 25°C)	HYDRO SUBUNITUO3E0 SUBAREA	861
	H	HYDRO SUBAREA	7.07
Temp	when sampled in ° F	RO SU	
State well	led	UPPER SANTA CLARA R ACTON HYDRO	5N/13W-25C 1 S

TABLE E-1
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	Tcfall hardness as Ca CO3		287		190	68	147		314	372	
uents in	T.D.S. Evap. 180°C Evap. 155°C Computed		602		269	223	290		540	630	
constituents per million	S. r. co		1		1	1 0	-		~ 0	12	
Mineral parts p	80,0n		0.36		0.04	0.05	0		0.14	0.14	
	r de		7.0		0 • 4	7 • 0	4.0		0.4	0.6	
	rote NC 3		13.0		0.02	23.0	0.03		5.0	18.0	
per million ctance value	Chlo	00300	1.97		0.28	23 0 • 65 23	12 0.34		2.03	2.68	
0	Sulfore	SANTA CLARA-CALLEGUAS HYDRO UNIT U0300	140 2.91 28		1.87	0.15	54 1•12 27		71 1.48 16	1.92	
parts per equivalents percent r	Bicar - bonate HCO3	HYDR	316 5.18 50		161 2.64 55	104	159		336 5.51	326 5 • 34	
par	carbon -	LLEGUAS	0		0	0	0		0	0	
. <u>E</u>	Potas -	4KA-CA	0.08		0.05	0.03	0.10		0.03	2 0 • 0 5	
constituents	Sodium	ANTA CL.	99 4 30 42		21 0.91 19	25 1.09	23 1.00 25		2.74	68 2.96 28	
Mineral co	Mogne- srum Mg	S, U03F1	34 2.80 28	J03F2	1.40	0.58	1.23	UO3F3	4.03	59 4 85	
Σ	Colcium	0 F 0	2.94	V U	48 2.40 5.0	1.20	34		2.25	2.59	
Specific conduct-	(micro- mhos at 25°C)	< <	820	O SUBAREA	439	308	780	RUSA HYDRO SUBAREA	2850	959	
	I a	D SUB	7.9	HYDR	7.6	7.2	7.5	SA H	7.6	9 0	
Temp	when sampled in ° F	HYDR	1	POSAS	70		1	Ø	1	7.1	
State well	led	CALLEGUAS-CONEJO HYDRO SUBUNIT UGE WEST LAS POSAS HYDRO SUBAREA	2N/21W- 8G 1 S 10-21-64	EAST LAS POSAS HYDRO	3N/19W-19P 2 S 8-26-65	3N/19W-29F 2 S 12-10-64	3N/20W+24R 1 S 8-26-65	ARROYO SANT	2N/2JW-23K 1 S 10-28-64	2N/20w-24E 1 S 10-28-64	

TABLE E-1

	hordness os		407			407		505		315			252		6003		_		
uents in	Evop 180°C hordness Evap 105°C os Computed os 3		948	689		424	412	472	85 m	470	453		1045	3 D 7	0001	1 2 2 2	101		
constituent per million	S -:- S 0.2		1			ŀ		i		i			1 /		5,2		_		
Mineral constituents parts per million	Beren		0.19			10.0		0.05		†0.0			0.70		0.46				
	7 C C		0.3			7.0		0 • 3		0.3			1.0		1 • 1				
	7		(2)	1.21		1.0	0000	16.0	9 8 9	11	~		7.0	0.03	1.0	0.00			
million e value	0 4 6 C = C = C	00300	7.7	2.019		7	1.04	32	0 N	200	16		a a	2.51	00	1.00	7 7		
mullion per eoctano	Suitate	SANTA CLARA-CALLEGUAS HYDRO UNIT U0300	115	2.39		20 0	50.7	13	1.56	7.7	17		310	1.70	155	700/	7		
pe	Bicor bonote HCU3	S HYDR	373	6.11		284	000	567	0.00	305	53		388	6.36	536	U . 1 . 4	2		
ports equiva percer	Carbon - ole	LLEGUAS	0			0		0		0			0		0				
ë	Potos -	ARA-CA	1	0.00		3		Э		2			\$	0 1 0	~	0.0g			
Mineral constituents	Sodium	ANTA CL.	7.1	3.09		747	26	40	92	2.26	97		120	30.66	105	4.57	2		
lineral co	Mogne.	S UO3F3	68	5.57	J03F4	38	41	34	76	34	23	UUSF7	54	17.	10	14.0)		
2	Calcium	U03F0 SUBAREA	76	3.79	4	15	33	99 200	04	3.49	41		135	41	137	4 n . 0			
Specific conduct-	(micro- mhos at 25°C)	SI	1175		SUBAREA	711		178		816		HYDRO SUBAREA	1431		1471				
	pH	SUB SA H	7.6		HYDRO	8.1		7 . 7		7.3		JRO S	7.4		7.5				
Тетр	wnen sampled in ° F	HYDRG NTA RG			_	-		1		1		Y 11Y	1		1				
State well	Date sampled	CALLEGUAS-CONEJO HYDRO SUBUNIT ARROYO SANTA ROSA HYDRO	2N/20W-25D 5 S	8-18-65	CONEJO VALLEY	1N/20W- 3J 1 S	11-13-04	1N/20W-15R 3 S	10.07-11	9-23-65		SIMI VALLEY	2N/17W- 9D 3 S	77-71	2N/17W-15D 2 5	10-20-64			

TABLE E-1

ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	Total nardness os Ca CO3		1199		146		645			187				390					
uents in	Evop 180°C hordness Evop 105°C os Computed CaCO3		4361	2136	1810	1719	1265		1166	568	0.40	007		2/4	6, 1, 1	4			
constituents per million	5111+ C0 S102		1		8 4		3			1				1			 		
Mineral o	Boron		1.80		1.25		74.0			0.05				60.0					
	Fluo-		1.2		1.2		1 . 4			0 . 7				10 1					
	no - 1		0.0		0.9	01.0	15.0	0.21	1	0.0	0.10	7		1.0	70.0				
million e value	chlo- ride Cl	00300	217	11	137	5.86	1	7.65	14	36	1.02	0 4		43	1.21				
millior per eactano	Sulfote SO 4	SANTA CLARA-CALLEGUAS HYDRO UNIT U0300	1046	63	831	17.030	465	7.60	5.1	54	0.50	0		110	7407	J			
parts per equivalents percent r	Bicar - bonate HCO3	HYDR	420	0.7	359	5.88	340	60.39	34	207	3.37			155	5.85				
par	Carbon - ote CO3	LLEGUAS	0		0		0			0				0					
. <u>c</u>	S to to S	ARA-CA	7	7	9 ;	0.10	m	0.00		1	0.03	4		7	0.03				
constituents		ANTA CL	252	31	195	31	144	97.9	33	29	1.26	7 2		15	1.61				
Mineral co	Magne - Sodium stum Mg No	S. UU3F 7	1119	28	96	67	29	5.10	2.1	20	1.64		UUSFB	31	2020				
×	Calcium	UOSEU	284	40	221	11.03	156	8/0/	0.7	77	2.10			105	5.24			•	
Specific conduct-	- 0		2833		2179		1536			964			SUBARCA	400					
	H	SUBI SRO SI	1.04		7.4		7.5			7.6		Ī	HYUKO	104					
Temp	sampled in ° F	HYDRO SUBUNIT EY HYDRO SUBAR	1		1		!				_			-					
State well number	le d	CALLEGUAS-CONEJO HYDRO SUBUNIT SIMI VALLEY HYDRO SUBAREA	2N/18W- 1M 3 S 12-17-64		2N/18W-11B 2 S	10123104	2N/18W-15G 2 S	10-10-04		2N/18W-18G 2 S	12-11-64		THOUSAND DAKS	1N/19W- 2L 1 S	11-30-64				

TABLE E-I
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	7 to: hordness		47.0	7807		1371	1502	505		158	
constituents in	Evap 180°C hordness 6 vot 1.0.5°C 00000184		1146	3340		3216 1391	30 30	817		1213	
constituent	5 60	-		1		1		-		ì	
Mineral c	3, 38		0.00	79.0		0.0	0.79	0.03		0 • 14	
2	, p		2 • 0	7.0		3 •	9.0	0			
	N: N: N: N: N: N: N: N: N: N: N: N: N: N		0.05	10		0		0		8 . 0 . 1 3 . 1 3 . 1	
million e value	0010	00400	2.23	1290		202 5 70 12	210000	0.01		6.003 11	
per	Sulfore		10.97	619 12.89		1450	1489	6.12		407	
paris per equivalents percent r	B.cor.		378	361		643 10.54	504 8 • 26 18	311 5.10		520 544	
equ	Corbon CO 3		Þ	Э		Э	0)		Э	
. <u>c</u>	P	וי טאטאו	~ ~ ~ ~	0.10		150.38	0.31	U . U &		5 · · · · · · · · · · · · · · · · · · ·	
constituents	E 0 Z	MALIBU HYUKO UNIT	126 5.48 28	323		420 18.26 39	345 15.00	2. 1.7 1.8		360 15.65 83	
Mineral co	5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	M U0481	5 8 3 3 5 3	244	79400	148 17•17 26	146	5 5 4 4 • 65 3 9	U0485	1.81	
Σ	E ?	09+00	141	426 21.26 3d		313	361 18 • 01 40	105	4	1.35	
Specific conduct-	1 0	SUBUNIT L	1600	5051	YN HYURO SUBAREA	3400	3250	046	SUDAR	1617	
	Ha	SUBUNII HYDRO S	7 - 2	7.6	7 3	5.	1.6	0.	HYDEO	5 • 20	
Temp.		\ \v	49	\$ 9		70	1	1	ALLEY	1	
		HYD J CRI	S)	5	ROE	v)	.^	un 	-L V	S	
State well	Date sampled	MALIBU CREEK HYDRO MALIBU CREEK	15/17W-29P 1 6-15-65	15/17W-32F 4 6-15-65	LAS VIRGENES	14/17W-17J 1 3-23-65	1N/17W-30G ?	1N/18W-24J 3-23-65	RUSSELL VALIEY HYDED	1N/19W-24M 2	

TABLE E-I
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	Tito. hardness cs Cours		319	327	348	
uents in	Evop 180°C hardness Evop 165°C os		460	556	546	
constituent per million	5 0 2		1	29	1	
Mineral constituents parts per million	8-101		0.02	0.10	0.10	
-	7 . d . c . d		0 • 3	0.1	0 • 3	
	Troje N. 3		13.0	0	0	
million s value	Chio-	00400	33	0.43	1.27	
parts per million equivalents per million percent reactance value	Sulfore SO4		1.00 1.3	2.33	2.00	
parts per equivalents percent re	Bicar - bonote HCO3		357	378 6.20 66	428 7.01	
par	Carbon -	TINO	0	0	0	
.c	Potas -	YDRO 1	0.03	2 0 • 0 5	0.05	
constituents	Sodium	MALIBU HYDRO UNIT	37 1.61 20	3.09	3.30	
Mineral co	Magner s.c.m	M UU486	2 • 3 8 3 0	34 2.80	36 2 96 2 29	
Σ	C 0 1 C 1 U D	U04B0	3.99 50	3.74	3,99	
Specific conduct-	mhos at 25°C)	REA	732	875	646	
	Н	BUNIT	8 •	7.5	7.4	
Тетр	when sampled in ° F	RO SU HYDRO	-	83	70	
State well	led	MALIBU CREEK HYDRO SUBUNIT SHERWOOD HYDRO SUBAREA	1N/19W-29D 5 S 11-19-64	1N/20W-24P 1 S 7- 9-62	9-23-65	

	Nordness os Cours		614		418	
fuents in	Evap 180°C Nordness Evap 180°C Constant		1000		710	
consti	5 1. 5 2		1		1	
Mineral constituents parts per million	ສ		0.05		0.20	
	, p r		7.0		0	
			12 0 • 17 1		0.00	
million e volue	2 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	00400	1.77		3.13	
parts per million equivalents per million percent reoctance value	\$. 14 ote		207		4.40	
parts per equivalents percent	Bicor - binate HCO3		373		244 4 • C C C	
P 6 0	Corton ote CO ₃	1 IV))	
Ē	2 %	YUKU) •) •)) •) •)	
onstituents	E 0 2	MALIBU HYUKU UNII	53 2.30 16		3.22	
Mineral constituents	Mogne.	M UU4C6	5.59 3.59	10401	5.02	
2	Calcium	U04CU	134 6.69	A	3.00	
Specific conduct-	mhos at 25°C)		1267	SUBAR	1,72	
	Hd	AIT ORO SU	7 . 5	HYUR	7.6	
Temp.	sampled In ° F	SUBUN ON HYD	63	ANYON	1	
State well	pe	POINT DUME HYDRO SUBUNIT ZUMA CANYON HYDRO SUBAREA	25/18W- 6M 2 S	TRANCAS CANYON HYURD SUBAREA	15/19W-350 2 S 6-14-65	

TABLE E-1
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	hordness 0.5		502	248	
uents in	Evap 180-C hardness Evap 105°C as Computed Cours		830	824	
constituent per million	S+11- C0 S+0-2		ł		
Mineral constituents parts per million	Boron		0.22	0.13	
	Fluo- ride F		1.00	0.0	
	hrate NO3		2 0 • 0 3	0.08 1	
million ce value	Chio-	00400	2.17	2.48	
millio	Sulfate SO4		283	281 5.85 39	
parts per equivalents percent r	Bicor - bonate HCO3		390	398	
par	Corbon - ote	LIN	0	D D	
, C	Potas - sium K	YURO U	0.03	2 0.05	
constituents	E o N	MALIBU HYDRO UNIT	103 4•48 31	3.91	
Mineral co	Magne- stum Mg		74 6.03 42	7.32	
2	C 0 C 0	U04D0 UBAREA	3.94	3.64	
Specific conduct-	mhos at 25°C)	HYDR SI	1274	1312	
	I	T CYN	7.9	7.6	
Temp	sampled 10°F	SUBUNI	1.1	7.1	
State well	pel	CAMARILLO HYDRO SUBUNIT LITTLE SYCAMORE CYN HYDR SUBAREA U04D5	15/20W-22P 1 S 6-15-65	15/2~W-22P 2 5 6-15-65	

	hordness 35		324	a a	622	, n o	345	368	553	75.
constituents in	Evap 180°C hardness		672	110	1123	101	47.0	730	0 44	573
constituent	5 . 2		-	ŧ	1	1	1	1	1	i I
Mineral parts	r . a		+	1	1	1	1	1	1	1
	, ¹⁰ u		1	1	2	1	1	-	-	1
	2 2 2		0	10.00	0	9	0 0 0 0 1	0.11 0.11)	0.70
million se value	3 P 2 C = 0	00500	3.24	1014	1.84	280/-70	3.24	3.44	2.43	3 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
per	S. 4	SAN GABRIEL KIVEK HYDRU UNIT UO500	2.31	202	205	212	2.31	122	2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 3 · 3 ·	34 34
ports per equivalents percent r	Bicor benote HCc3	и нүрк	410	480	500 8.20	517	403	4117	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	131
por	Carbon -	KIVE+	0	Э	כ	Э	0	٥	5	,
i.c	Pclas s on	GABRIL	y 20.0	0 1 - 1	2 41.0	0.10	0 T 0	υ ~ °) ? · · · · · · · · · · · · · · · · · ·	7
constituents	2 0	⋖	116	0	100	1 d d d d d d d d d d d d d d d d d d d	120	126.37	110	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
Mineral co	\$ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	L UUSA2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	12°4	5.1.	0 . 1 d	2.8c	3.21	24°5	2.000
2	E ?		4. 14	14	7 2 2 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	147	E - ~	4.14	3.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5	2.84
Specific conduct-	(micro- mhos at 25°C)	CO HYDR SUBUNIT UOSAU HYDRO SUBARÉA	1150	1006	2 % 8 7	0.27	115.	12	1090	92%
	H	DR SU	ر ه	7 • d	% 0	1.01	•		ě K	· · ·
Temp	sampled	⊢	-	· ·	1	, ,	*	1.5	* /	
State well	Sampled Sampled	COASTAL PL OF LA	25/14W-18Q 1 S	25/14W-19K 2 11- 4-64	3 4 - 2		25/14W-19K	49-1-4		25/15W-34K 1

TABLE E-I
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	7, to hardness 0.5 Cours		38	483	797	144	737	181	175	210
fuents in	T D S hardness Evop 105°C os Compuled Cock &		203	920	844	280	1410	275	332	352
constituents per million	S		1	-	1	ļ	1	29	1	1
Mineral parts p	8 8		1	0.20	0.13	1	8	0.11	60.0	0.17
	, p		1	0.1	e • 0	1	1	0 • 5	0.4	0.5
	7 2 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		0	0.0	0	0	10	1.0	0	0.0
million a value	de .	00500	2.12	235	211	0.80	2.65	24 0.68 12	26 00.73	0.90
parts per million equivalents per million percent reactance value	Sulfote SO 4	UNIT	0.23	2.52	2.00	0.98	456	1.29	1.23	1.75
parts per equivalents percent r	Bicar - bonote HCO3	RIVER HYDRO UNIT	1.28	315	305 5.00	3.39	481 7.88	223	3.67	233 3•82 59
pa	Corbon -		Э	1	Э	0	3	0	0	1
	00 00 10 s = X	GABRIEL	10.20	0 0 1 1 1	0.13	0.08	0.00	U.U8	0.08	0 • C 8 1
constituents	E o N	A SAN	55 2.39	101	3.96 30	2.04	115 5.00 25	43 1.87 34	2.09 37	2.13
Mineral co	M og ne .	L U05A2	0.16	5.02	32 2.63	10.82	76 6.25	1.07	0.99	1 3 C C
Σ	E 0 0 0	UOSAU	12 0.60	93	133	2.05 2.05 41	170 8.48 43	51 2.54 46	2.50	2 · 36 36
Specific conduct-	(micro- mhos at 25°C)	-	405	1270	1337	491	1680	530	549	2 6 5
	Ha		8 8	7.9	7.8	8 • 2	7.4	7.6	7 • 7	7.9
Temp	when sampled in ° F	· -	1	1	1	-	1	1	1	1
State well	De d	COASTAL PL OF LA (35/13W-19K 2 S 7-20-65	35/13W-296 3 5 10-23-64	3-26-65	35/13W-31E 2 S 7-20-65	35/13W-31L 7 S 7-20-65	35/13W-31M 1 S 11- 2-64	3-25-65	35/13W-32E 2 5 10-23-64

	hardness cs		159		, 2,		178			163			226		543		162		-	000		
fuents in	Evap 180°C hardness Evap 20°C const		290	0 % ~	5 41)	- 00	20 20 30		562	290	276	613		570		574		2 4 4	7 4	1000	1222	
constituents per million	5 62		I		1		1			1			i		1		Į.			1		
Mineral parts	i a		0.11		0.06		0.14			0.15			-		1		1		-	0 0		
	, o , .		7.0		0.5		0.3	,		0.5			1		1		-		(1.0		
	role N. 3		0		0		2.0	0.03	-	0.0			4	0.06	Ð	0.10	٥	0.10	4 3	123.00	100	
per million ctonce value	0 0 0 0	00500	52	0.71	60	1. V	42	1.18	21	38	1.07	0 7	40	2.59	129	3.04	20	1.000	,	2000	4 0	
0	Suffore SO 4	SAN GABRIEL KIVER HYDRO UNII UOSOO	36	0.75	62	1.29	7	0.15	6	2	0.04	-4		0.19	7	0.15	.J	0.00	4 .	037	7 7	
pe pe	Bicor - bonote HCO3	HYDR	230	3.77	209	3.43	265	4.34	16	256	4.20	7	446	8.13	429	1.03	401	15.9	0 1	403	2 7	
parts equivo percer	carbon.	L KIVE	0		0		0	,		0			0		0		0)		
c	Polos Sium K	GABRIE	3	0.08	2	0.02	1 4	0.10	2	4	0.10	7	E	0.08	6	ر . د د د د	3	න - ව	4 /	0 %		
constituents	£ 7 0 Z	A SAN	45	1.96	50	2.30	50	2.17	2 5	7.47	2.04	000	150	6.52	140	6.07	110	4.78		0 0 0) F.	
Mineral co	Mogne. s.u.n M.g	L UUSA2	10	0.82	6	0.74	1 61	1.56	21	1.1	J. 30	7	25	2.06	56	2.14	7.1	1.73	2 .	4.61	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
2	Colcium	UOSAO	147	2.35	69	3.44	0.7	2.00	34	7 47	2.35	j j	64	2 • 45	15	2.5	2	1.9.	9	3 m	0	
Specific conduct- ance	mhos at 25°C)	þ.	502		678		510			520			1044		1 159		808			0000		
	I a	O HYDR SUBUNI HYDRO SUBAREA	8 . 1		7.44		7.2			8			8.2		3.8		3.0					
Temp	sampled In ° F	- American	72				74			†			ŀ		1		1			1		
State well	Date sampled	COASTAL PL OF LA	3S/13W-32E 2 S	3-25-65	15/13W-34H 2 S	3-25-65	35/14W- 3K 1 S				4- 5-65		35/14W- 7K 4 5	10-29-64	35/14W- 70 4 5	10-29-64	35/14W- 70 6 S	15-29-64		35/14W=15G 5 5		

TABLE E-I
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	Total hardness as CaCO3		690		164		420		445		528	66		162		188		
uents in Iion	Evop 180°C hordness		1234	7721	374	346		710		154	914	210	214	324	305	330	316	
constituents per million	Sitt.		1		1]		1		-			1		1		
Mineral parts p	Boron		0.14		0.22		1		1		1	0.16		0.17		0.13		
	Fluo-		0.3		7.0		1		1		1	9.0		0.5		7.0		
	No. i		141	2.27	0.0		7	0.03	0		С	10.00	1	0.0		0.0		
million ce value	Ch10 -	00500	325	9.17	25	1.10	213	7.70	291	5.01	355	15	11	32	16	38	R I	
millio per eactan	Sulfote	SAN GABRIEL KIVEK HYDRO UNII UU500	140	2.91	Э		55	1 0 . 92	56	1.1.1	1.81	26	14	53	19	42	15	
pe	Bicor - bonote HCO3	HYDK	674	7.03	340	5.67	283	4.64	282	33	292	181	42	3.72	65	240	99	
parts equiva percen	Carbon- ote CO3	L KIVE	Э		0		0		0		0	0		1		2000	7	
.드	Potos - Sium K	GABRIE	~	0000	20	0.20	20	0.20	υ	0.20	9 0.23	3 4 1 4 0	2	4 0 0 1 0	7	4 0 1 0	2 ~	
constituents	Sodium	SAN	175	10.0	14	3.22	107	4.65	107	4.60	138	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	40	51	7	2+06	35	
Mineral co	Mogne- s.um Mg	L UUSA2	16	47.9	18	1.48	36	77 77	3.9	23.52	3.87	~ x	15	18	17	17	77	
Σ	Colcium		151	6.52	36	1.80	109	5.44	114	0.69	134 6.69	240	36	35	32	141	4 2 3	
Specific conduct-	. 0	CO HYDR SUBUNIT UOSAO HYDRO SUBAREA	2110		060		1389		1430		1689	378	•	240		250		
	I	YDR SI	g • €		7 . 7		8.1) 0		> • •	7 . 8		7.8		30 • •		
Temp	sampled in ° F	-	1		-		-		1		I I	1		1		l I		
State well	led	COASTAL PL OF LA (35/14W-130 5 S	2010 -4	35/14W-17G 2 S	10-26-64	35/14W-18N 4 S	10-26-64		69-71-6	35/14W-18N 5 S 10-26-64	35/14W-21K 2 5		35/14W-22K 1 S 10-27-64		4- 6-65		

	01	Soc 3		191			116			204			528			256			447			300			:1:				
constituents in	₹ 5	Evap 180°C Evap 15°C Computed		354		318	26,3		300	1102		669	1140		970	2 3		303	4 1 2		2 2 3	, n		507	515		2007		
constituent	J	5 , 2		1			1			i			1			i I			1			1	_		1	_			
Mineral parts p	8,161	æ		0.14			0.08			0.33			0.28			0.07			0.11			0 . 1 .			0.0%				Ī
) ta	7 · d e		7.0			0.5			7.0			7.0			2.0			0.0			0.1			7.0		-		
	2	frote fr x		7.0	0.03	7	1.0	0.05		0.0			0.0			0.0			9.7	0.04	-	0.,	0.00		^4	0.03			
nillion per million ctance value	31 4	900	00300	34	0.90	16	34	0.96	2	363	5.11	7.2	0.24	11.864	47/	70	2004	2,5	10	2.40	5.3	110	, D. 3	26	174	3.50	1		
0	,016916	ک 4	SAN GABRIEL NIVER HYCHO JAII OUSUO	04	0.43	14	3.6	0.75	")	6.5	0.74	1	31	.0 .0	7	1 42	1.04	14	ひひ	1.15	2	2,	1.10	10	10	1 . 1 ,	5 7		
parts per equivalents percent	17.3 B	H	a York	647	4. Ca	6.5	253	4.15	1 /	100	2002	2 1	237	3.56	27	222	2004	5.1	230	3 . 17	7.	3.3	3.67	575		5.000	2		
par	Corbon.	000	χ. 	0			7)			٥			0			٥			3			-				
u,	\$01.4	8:03 K	SABRIF	+7	0.10		3	0.10	0	,7	0.13	7	٥	0.15	-	2	0.08	-	77	0.10	red	2	0.13	~	77	0.10	T		
constituents	E	0 2	A SAN	48	2.03	2)	4000	2.09	7	305	1000	36	115	6.00	35	00	2011	6.7	5.1	2002	910	20	× 22 • ×	*	70	2.91	5.6*	Ī	
Mineral co	*	E N G	1 U05A2	15	1.23	02	13	1.32	53	3.3	2 . 7 I	51	5	4.56	27	10	1 . 3.	18	0 1	1.96	۲, ۲		7.6.	77	3.00	1.64	1 /		
W	£ ,	0 0	UOSAU	55	6507	43	47.47	2.20	50	109	5044	245	124	6.19	3.5	76	8 . 79	27	F	\$ 0.54	23	2,	4.49	4.1	16	1.10	45	_	-
Specific conduct-	(micro-	mhos at 25°C)	⊢	582			996			1180			1510			050			740			700			426				
	Hd		CO HYDR SUBUNI HYDRO SUBAREA	7.6			10.7			1.6			8 . 1			1.5			9.			6.5			7.9				
Temp	when	In ° F		7.3			160			1			1			1			6.7			-			66				
State well		Date sampled	COASTAL PL OF LA CO WEST COAST HY	35/14W-22L 1 S				4- 1-65		35/14W-22R / 5	10-27-64			59-9 -7		35/14W-25K 4 ,	10-26-64			4- 5-65		\$ 1/14W-21 5	10~26~64			69-9-4			

TABLE E-I
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	hordness os Calva	· .	189	210	188	397	370	214	207	196
luents in	T D S + to ' Evap 180°C hardness Evap 105°C os Compuled (out, 3		396	794	382	1252	1242	531	009	1318
constituents per million	Sitir- co SiO ₂		1	i	1	1	1	1	1	1
Mineral parts p	Boron		0.16	0.18	1	1	-	-	l l	0 1 0
	Fluor		0.2	2.0	i	l t	1	1	!	0.5
	rose NO3		1.0	2 0 • 0 3	3 0.05	0	0	10.0	0	0
million s value	Chlo-	00500	1.97	3.10	1.97	408 11.51	395 11.14 54	134 3.78 43	146	644 18•16 76
r million ts per million reactance val	Sulfate SO 4	RIVER HYDRO UNIT U0500	0.00	314 6.54 52	3 0.06	324 6.75	331 6.89	1.77	160	2 0 0 0 0 0
parts per equivalents percent r	Bicor - bonote HCO3	R HYDRO	320	171 2.80	313	168 2•75 13	167 2•74 13	126 2.07 24	167	3.62
por	Carbon -		0	0	0	0	0	0	3	Э
i.	Potos -	GABRIEL	0.18	0.15	0.00	0.23	0.10	0.10	0	1400.36
constituents	Sodium	A SAN	3.01	1928 8 35	3.70	293	304 13•22 64	100	142 6.17 60	163
Mineral co	Magne- s-um M g	L L	1.23	1.40	1-40	3.04	34 2.80 14	1.23	1-40	6.33
Σ	Colcium	UOSAO	2.54	2.79	2.35	4.84	4.59	35.04	53 2.64	192 9.58 40
Specific conduct-	1 0	├ ─	2007	1180	710	2100	2080	906	1040	2002
	T _a	L ()	0 ° %	8.1	8. 1	30 •	8 • 2	Z • 8	œ •	7.6
Temp.	sampled in ° F		1	1	-	-	-	}	1	!
State well	Date sampled	COASTAL PL OF LA WEST COAST	35/14W-29D 3 S	4- 7-65	35/14W-29G 3 S 10-28-64	35/14W-300 2 5 12- 7-64	5-20-65	35/14W-30E 1 S 1-14-65	34/14W-30F 2 4 1-13-65	35/14W-30G 1 S

	4010				303		x 4		347		9 7 6		20		497		c i o		600		
uents in	₹ Q F	Evap Boor Evap 1507 Computed			1654	1288		060	104	651	774	600		745		1275		1116		1,18	
constituents per million	-111S				1		1		1		-		-		-		-	-	-		
Mineral parts	Boron	æ			0.17		1		0.10		0.15		1		\$		1		1		
-	Fluo-	, d			0 • 1		-		0.5		0.2		-		ŀ		1		1		
	- i	NO3			0		П	0.02	0		0		0		0.0		0		0		
million per million ctance value	Ch10 -	1 D	00500		617	17.40	261	7.36	407	44.	262	7.54	100	777	578	10.30	7 2 7	13.68	τα ταα	13.70	
0	Sulfate	504	SAN GABRIEL RIVER HYDRO UNIT 50500		0.5	1.87	52	1.00	20	1.1/	37	0.77	307	55	1,58	13	11/	2.44	195	4.06	
parts per equivalents percent re	Bicor -	HC03	A HYUK		224	3.67	224	3.67	177	3.72	237	3.08	152	21	226	3.10	231	3.00 1.0	215	3.52	
par	Corbon -	00 3	L MIVE		0		0)		0		0		7		Э		၁		
ï	Potas -	, ×	SABRIE		12	0.31	00	3.20	1	0.1°	7	0.18	~ 4	•	10	0.70	5	0.23 1.	10	0.26	
constituents	Enipos.	0 2	A SAN		160	6.96	100	4.35	7 3	4.04	93	4.04	255	27.	176	8. 8. 8. 8. 8.	116	1.48	190	8.26	
Mineral co	Magne -			78000	35	2.88	31	2.55	79	5.10) 6	2.47		2 2 0	51	4 • 1 9 1 8	15	3.67	48	3.95	
Σ	Colcium	°		UODAC	504	13.17	103	5.14	52	2.84	19	5 - 44	3 6	o ~	195	v. v. v. v.	169	4.8	181	9.03	
Specific conduct-	(micro-	mhos at 25°C)		HYDR SUBAREA	2200		1259		1020		1120		1210		2350		2020		2140		
	Ha			rDR St	7.8		8 .3		7 . B		8.1		8.7		1.9		2.8		8.1		
Temp.	when	F F		CO HYDR T HYDRO S	1		1		1		l (1		1		1		1		
State well		Date sampled		COASTAL PL OF LA C	35/14W-30G 1 S	4- 7-65	35/14W-30H 2 S	10-27-64		11-2-64		4- 7-65	35/14W-3UN 1 S	1-13-05	35/14W-31A 4 S	10- 8-64		1-15-65		6-16-65	

TABLE E-1

ANALYSES OF GROUND WATER

LOS ANGELES DRAINAGE PROVINCE (U)

	* o hardness	0 213		75		99	62	2544	2763	1377	1417	124
uents in	Evop 180°C hordness	Computed			1053	166	1005	7510	7728	2410	2549	280
constituents per million	- 00	5.0.5		1		1	1	l l	-	t t	1	1
Mineral parts p	æ.	2		1		3 9	1	1	1	1	1	0.12
	3 0	L		1		1	1		1	-	1	0 • 7
	Z 0 .	Z 3		0		0	0	0	С	0	20 0 32	0
million	7. P. Le	- 0	00500	266	444	235	228	4188 118.10 89	4330 122.11 89	1330	1370 38.63 85	24 0.68 15
parts per million equivalents per million percent reactance value	Suifole	504	GABRILL RIVER HYDRO UNIT U0500	324	6.75	322	324	482 10.04	498 10•37	127 2.64	142 2.96	0
parts per equivalents percent re		HCO3	4 HYDRO	167	2.74	168	144 2 3 6 15	247	246	224 3.67	220 3.61 8	23 8 8 8 8 8 8 5 8 5 8 5 8 5 8 5 8 5 8 5
par	Carbon .	C 0 3	L KIVE	0		0	16 0.53	0	0	Э	Э	0
.c	Potos -	×	GABRIL	~	z (. •)	0.10	0.10	34	34	18	19 0.49	0.10
constituents	Sodium	o N	A SAN	354	15.39	352 14.44	342 14.87	1860 80.87 61	184J GU.00	360	412 17•91 38	2 0 0 4 4 4 4 4 4
Mineral co	- e E	9 M	L UOSA2	6	74.0	8 U•66	0.58	299 24 • 59	3111 25.58	133	138 11.35 24	1.07
≨	Calcium	000		15	0.75	13	13	526 26.25 20	594 29•64 22	332 16.57 38	340 16.97 36	1.40
Specific conduct-		at 25°C)	CO HYDR SUBUNIT U05A0 HYDRO SUBAREA	1760		1680	1630	12376	12600	4450	4540	434
	I a		O HYDR SUBUNI HYDRO SUBAREA	8 • 6		7.9	8.7	20 	8 . 1	0 • 8	8. 3	7 • 4
Temp	when sampled		⊢	-		68	1	1		1	1	2
State well	led		COASTAL PL OF LA WEST COAST	35/14W-31D 1 S	12- 9-64	3- 4-65	7-14-65	35/14W-31L 2 S	5- 4-65	35/14W-31L 4 S 6- 2-65	7-19-65	35/14W-35M 6 5 7-14-65

	* * * * * * * * * * * * * * * * * * *		70.4	3°		4	, s	£ ~ r	-	3	«C
constituents in	Evap 8. or Evap control		7.57		200	1305	1677	20	9	9	1730
constituent	S: co S. 2		1	-		t t	1	-	[ŀ	-
Mineral parts p	9c		1	i		1	-	1	-	1	1
	, 0		1	-		1	i	l t	1	1	!
	2 0 2		0.10	0		0	0	0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	0
r million is per million reactance value	3 0 -	00400	1 7 0 -	100	2	15.12	812	730	1,40	343	764
million per eactance	5.1016	SAN GABRIEL MIVER HYDRU UNIT UD500	0	v 01.		3.00	3.00	103	0.12	1.25	195
parts per equivalents percent r	Bicar - bonote	HY DIK	7.50	358	5 .	2 7 6.	25.00	4.45 7.13	5. 7. 5. 5. 1. 5. 5. 1. 5. 5. 1. 5. 5. 1. 5. 5. 1. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	2 2 7 7 7 7 2 1 7 1 1 1 1 1 1 1 1 1 1 1	344 344 18
par	Corbon -	R I VE	٥			,	J	6	9	5	S)
.c	Potos Eura K	GABKIE	15		~		1 &	0.10	0.30	010000	= 2 2 2 2 3
constituents	E 7 0 N	A S A L	230	, 6 8	4.1	1.83	294 12.78	296	107	133 5.00	10.00 52.52
Mineral co	S - C - S - C - C - C - C - C - C - C -	L UUSA2	1.48	_	2 +	5.42	91 7.48	5.67	34.	23 27 23 27	7 8 1 5 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Σ	E 0 0 0	UOSAO	35.	3.24	37	9.73	10.13	218	8 1 40.44 34	135	282 14.U7 45
Specific conduct-	mhos at 25°C)	CO HYDR SUBUNIT (1170	778	1	7380	3140	2960	1140	1650	3070
	I	DR SU	٠	3.6	0	xx •	7.6	7 . 3		& ~	8 .2
Temp	sampled	CO HY	1	-		1	1	1	1	1	1
State well	Date sampled	COASTAL PL OF LA (35/15W- 3H 2 S	35/15W-13A 4 S		3-1-65	3- 4-65	6-18-65	35/15W-13H ? ; ; 2- 9-65	2-16-65	2-18-69

TABLE E-I
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	10101	hardness os Couls			879			100		295			142			120			118			382			369			
uents in	T D S	Evap 180°C hardness Evap C5°C os Computed Couls				1448			166	1260		1032	889		649	785		240	732		467	827		639	890		714	
constituents per million					1			1		1			1			-			-			1			-			
Mineral parts p	٠٠٠				-			1		100			-			1			i i			1			1			
N G	Buren				1			1		1	_				_	1			-			-	_	_	1		_	
	, u	, A			_			1		-	_		f			-			-			1						
	z	N C 3			0			>		0			0			0			0			0			0			
million per million ctance value	0 1 10	, de	00500		616	17.37	- 3	3000	09	366	10.32	55	136	3.84	32	74	2.09	21	2,5	1.64	18	178	5.02	45	215	90 • 9	94	
0	Suifore	504	RIVER HYDRO UNIT U0500		143	2.98	4 5	2 7 5	1.74	50	1.04	O	19	0 * 40	ω	10	0.21	2	7	0.15	2	94	0.96	30	62	1.29	10	
parts per equivalents percent	Bicar	bonate HCO3	R HYDK		350	5.74	7 7	000	30	877	7.34	39	472	7.74	69	478	7.83	77	794	7.57	81	367	6.02	50	348	5.70	77	
par	Carbon -	016			0		(>		0			0			0			0			0			0			
ui .	Potos -	E n X	GABRIEL		11	0.28	4 F	21.0	1	15	0.38	2	13	0.33	3	11	0.28	m	70	0.50	2	9	0.15	~	27	0.23	2	
constituents	E n pos	0 Z	A SAN		200	8.70	1 0	120	30	286	12.44	99	205	8.91	74	170	7.39	73	157	6.83	73	96	4.17	35	128	5.57	45	
Mineral co	Moone	E D N	٦	U05A2	71	5.84	7 ,	70 7	23	36	2.96	16	20	1.64	14	12	66.0	10	14	1.15	12	31	2.55	21	56	2.38	18	
Σ	8770	0		U05A0	235	11.73	r (0 7 0	0 4 4	59	2.94	16	24	1.20	10	28	1.40	14	54	1.20	13	102	60 • 9	43	100	66.4	38	
Specific conduct-	ance)	mhos at 25°C)		CO HYDR SUBUNII HYDRO SUBAREA	2580		0	1 / 30		1894			1170			916			865			1176			1310			
	Ha			S SU	7.5		,	, 0		8 .3			8 • 7			8 5			7 . 8			8 . 5			8 . 4			
Temp	when	In F		-	1			1					1			ŀ			1			1			I I			
State well		Date sampled		COASTAL PL OF LA	35/15W-13H 2 S	5-20-65		35/15W=15H 5 5	60-01-7	35/15W=13H 4 S	11- 6-64			12- 3-64			1-21-65			3- 3-65		35/15W-13H 5 S	11- 9-64			12- 4-64		

Temp		conduct-	2	Mineral co	constituents	.u.	D 0	equivalents percent r	ts per million reactance value	million e value			Mineral	constituent per million	constituents in	
a	Hd	(micro-	Foron	Mogne	Sodium	Potos -	Corbon -		Sulfate	1010	ı	Fluo	Boron	-1.5	TDS	04.5
		mhos at 25°C)	٥	E o M	0 2	. X	016	bonote HCO3	504	ride C1	7 5 5 E	7 . d e	Ф	5.02	Evap 180°C hardness Evap 15°C os Computed 30°C s	hordness 0s
					4	SAN GABRIEL		R HYDR	RIVER HYDRO UNIT U0500	00500						
	PL OF LA CO HYDR SUBUNI WEST COAST HYDRO SUBAREA	HYDR SUBUNIT U05A0 DRO SUBAREA		U05A2												
	8.5	1240	16	28	116	α	0	349	40	150	0	1	1	1	847	557
			4.94	2.30	5.04	07.0		5.72	1.15	5.53					, 1,	
				1	1	,		0	`	+						
	8.1	1210	76	66	115	m :	う	324	63	700	0	1	1	1	831	370
			96 38	2011	7.CC	0.08		 		0.00					100	
	2	777	146	1 7	120	.0	C	717	152	274	C	1	1	ŀ	1060	5
			7.29	3.37	5.42	0.15)	5.20	3.10	1.13)					
_			45	2.1	33	-		3.5	000	48					808	
	7.8	1710	162	45	128	7	ر	314	1/6	206	0	1	1	1	1140	502
_			8.08	3.70	5.57	0.10		5.15	3.66	69.0						
			949	21	32	7		200	7,	4.7					278	
	8 . 3	1740	164	94	124	7	2	210	176	100	2	1	1	1	1140	2 4 0
			8.18	5.78	5.35	0.10		5.10	3.66	0 · c c					770	
_																
	7.6	1790	177	4.45	120	D ,		774	198	27.0	0	1	1	1	1170	510
			0 7	77	67	1 7 0		12	7 m	1 4					10.3	
	ж • л	4902	347	108	540	12	0	145	314	1510	0	1	1	1	0+01	1511
			17.32	8.48	23.48	C • 3 1		5.0.5	7.79	36.94					44.	
				0 1		4		4	4							
_	3° 60	4630	766	11.2	10 70		J	379	342	1230	0	1	-	1	2900 1445	1 2 2
_			41	19	35			7 77	3 7 7	75					2703	

TABLE E-I
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

		Tetol	00 CO CO 3			1632			1791			1626			705			199			629			682			624				
constituents in		T D S Tetal	Evap 105°C			3130		2924	3420		3209	3100		2895			1181			1140			1151	1450		1282	1290		1122		
constituent		S- 1-	5.05						1			1			1			-			1			1			1				
Mineral parts p	- 1	Boron	Ø			1			1			1			f			1			Î			1			!				
		- 00 F	L						1						ŧ			1			1			ļ			1				
		- Z	Z 2			0			0			0			0			0			0			0			0				
million	מחממ	10140	- 0	00500		1330	37.51	72	1480	41.74	73	1340	37.79	73	588	16.58	77	476	13.42	99	454	12.80	62	540	15.23	99	453	12.77	63		
millior		Sulfate	504	RIVER HYDRO UNIT U0500		370	7.70	15	403	8.39	12	349	7.27	14	77	0.92	7	114	2.37	11	118	2.46	12	129	2.69	12	105	2.19	11		
parts per equivalents	1	Bicor -	HCO3	R HYDR		412	6.75	13	425	6.97	12	904	6909	13	252	4.13	19	306	5.02	24	335	6409	26	322	5.28	23	329	5.39	26		
be d	2	Carbon -	CO3			0			0			0			0			0			0			0			0				
Ē		Potos -	×	GABRIFL		11	0.28	-	13	0.33	-	11	0.28	1	7	0.18	٦	7	0.18	7	9	0.15		8	0.50	-	7	0.18	-		
constituents		Sodium	0 2	A SAN		0440	19.13	37	480	20.87	37	430	18.70	36	172	7.48	34	166	7.22	35	190	8 . 26	39	214	9.30	04	180	7.83	38		
Mineral co		Magne	M g	-	U05A2	129	10.61	20	144	11.84	21	133	10.94	21	56	4.61	21	62	5.10	25	52	4.28	20	62	5.10	22	54	4044	22		
_		Colcium	0 0		UOSAO	441	22.01	45	780	23.95	42	432	21.56	45	190	84.6	77	165	8 • 23	0 7	166	8.28	39	171	8.53	37	161	8.03	39		
Specific conduct-	ance	mhos	at 25°C)		CO HYDR SUBUNIT HYDRO SUBAREA	5100			9460			0067			2280			2101			2040			2330			2070				
	1				YDR S	7.8			8 5			7.3			8 . 2			7 . 7			8 • 6			8.1			8 1				
Temp	when	sampled	ī.		leave.	7.0			-			l			1			-			1			-			1				
State well	Tagen				COASTAL PL OF LA WEST COAST	35/15W-13H 7 S	1-21-65			2- 1-65			3- 3-65		35/15W-13P 1 S	12- 1-64		35/15W-13R 3 S	11-18-64			2- 2-65			3-12-65			3-15-65			

	Acto hardness as Coults		510	328	346	285	1314	773	1309	1326
constituents in per million	T D S Toto Evap 185°C hardness Evap 105°C 05 Computed Colicy		882	709	641	532	2048	1896	5058	2109
constituent per million	5111- ca SiO ₂		1		1	1	1	1	1	1
Mineral o	Boron		1	1	1	1	1	1	1	1
_	Fluor		1	l	-	1		i i	1	1
	rote No3		0	0	0	0	0	0	0	0
million se value	Chio-	00500	349	5.72	213	142	645 18.19 51	924 26.06	632	660 18•61 51
per per actano	Sulfate SO4	SAN GABRIEL RIVER HYDRO UNIT UG500	41	0.31	0.15	0.31	567 11.80 33	140	568 11.83	586 12.20 33
parts per equivalents percent re	Bicor - bonole HCO3	HYDR	335	335	346	346	339 5.56	292	334 5.47	346 5.67 16
por	Corbon -	L RIVER	0	0	0	0	0	0	0	0
ū	Potos -	GABRIE	0.18	0.18	0.18	0.18	17 0.43	0.28	0.31	18
constituents	Sodium	A SAN	139	102	124 5.39 43	100	200	416	200 8 . 70 25	220 9.57 26
Mineral co	Magne- stum M g	L U05A2	3.70	30	2.38	2.06	114 9.38	75 6.17 18	116	9.62
Σ	Colcium		130	4.09	4.54	3.64	338	186	333	338 16.87 46
Specific conduct-	1 0	O HYDR SUBUNIT U05A0 HYDRO SUBAREA	1670	1130	1120	973	3250	3400	3200	3310
	I	O HYDR SUBUNI HYDRO SUBAREA	8.2	8 • 2	9	8 5	7.9	80.3	8.1	7 • 6
Temp.	sampled in ° F	CO HY T HYDR	1	1	1	1		1	!	1
State well	led	COASTAL PL OF LA C	35/15W-13R 6 S 10- 1-64	10- 2-64	10-21-64	35/15W-13R 7 S	10-27-64	10-27-64	12- 1-64	1-26-65

TABLE E-I
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	T to: hordness os four 3		1326	24.9	264	267	3014	3282	3306	351
tuents in	TDS Evop 1815 Evop 105°1 Computed		6907	514	503	461	7377	7661	7589	916
constituents per million	Sili- cd SiO ₂		i	1	ţ	ŀ	1	1	i i	1
Mineral parts p	Boron		1	1		1	1	1	1	1
~	Fluor		1 1	1	-	1	1	1	1	1
	No - Irole NO 3		0	0	0	0	0	0	0	56 0 • 95 6
million e value	Chlo -	00500	18.19	3.67	3.50	3.24	3500	3640	3630	316.8.91
million per eactanc	Suffate SO4	SAN GABRIEL RIVER HYDRO UNIT UUSOO	599 12.47 35	0.21	0.17	70.0	1012	1070	1040	136 2 • 83 18
parts per equivalents percent r	Bicor - bungle HCO3	в нурв	328 5•38 15	360	362	342 5•61 63	521	520 8.52	514 8 • 42	173 2.84 18
Pod	Corbon -	L RIVE	0	С	0	0	0	0	0	0
ï	Potos -	CABRIE	0.05	0.20	0.18	0.18	20	13	28 0.72	0.00%
constituents	Sodium	⋖	214 9•30 26	104	95 4•13 43	3.35	1560 67.83	1570 68.26	1520 66.09	146 8 • 52 55
Mineral co	Mogne-	L UOSA2	128	23 1.89 19	1.89	1.89	275 22.62 18	312	318 26.15	2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2
2	Colerum	UOSAU	320	3.09	3.39	3.44	37.62	800 39.92 30	800 39•92 30	4 4 93
Specific conduct-	(micro- mhos at 25°C)	CO HYDR SUBUNIT HYDRO SUBAREA	3250	988	931	868	11400	12200	11700	1618
	Hd	YDR S	7.3	χ 	8 .3	7 - 7	7.9	7.3	7 • 1	√ • •
Temp.	sampled In F	i-	1	1	1	1	-	1	ļ I	1
State well	Date sampled	COASTAL PL OF LA (35/15W-13R 7 S 3- 4-65	35/15W-13R 8 S 12- 2-64	1-26-65	3- 4-65	35/15W-13R 9 S 12- 2-64	1-25-65	3- 4-65	35/15W-24K 1 5 11-24-64

		hordness	10 3		347			267			11		386			40.5			707		173			345			
constituents in	6	Evap 180°C hordness Evap 105°C	Computed				666		200	0		766			1603		a.			3 20			781			101	
constituent per million			~		1			1			1		i			1			1		1			1			
Mineral parts			2		1			i			1		1			1			1		1			1			
					1			1			ŧ į		1			ŀ			1		1			1			
			~		30	0.48	~	0.4	0.65		0		C			4000	0.75		50	2	0			41.0	0.66	ż	
million ce value	- 4	£ .	-	00500	342	4006	3.00	224	50.0		*,01	2000	155	100/1	9	0 4 4	5. 5. 3. 5. 4. 5. 5. 4. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.		1 3 3	75	152	4.00%	34	544	0 · CC	**	
per	Cultate		20.4	RIVER HYDRO UNIT U0500	179	3.15	36	255	5.31		215	0 0 0	r	h. 10	31	5 8 5	40.87		047	3.00	212	2000	4.5	26.7	6.08	5	
parts per equivalents percent	Biroci		203	R HYDRO	173	7.84	17	142	2.33	2	261	21	151	1400	J.	777	3.51		107	2 3 3	155	406.05	20	173	2.84	-	
par	Corbon	o te	603	L RIVE	٥			0			>		0			0			0		0			0			
ï	Dotos		4	SAN GABRIEL	9	0.15	-	r	U•08	•	7	0	14	0.36	7	47	0.10		\$ 10	7	v	0.13	1	7	0.10	٦	
constituents	Sodius			A SAN	230	10.00	7	210	9. 13.) .	503	71.94	533	23.13	a	140	60.00	;	147	43	21.5	9.35	13	266	11.57	2	
Mineral co	M o o o o	E 0 N	5	L U05A2	28	2.30	13	23	1.87	4	, ,	0 - 0	27	2.52	œ	34	2.80	,	1063	18	14	66.0	œ	52	7.06	7	
M	81.10		٥		* 3	4004	12	69	3.44		1		10	0.50	2	106	5.29		5 4 44	38	64	3.45	19	125	2.84	~	
Specific conduct-	(micro-		10 62 10	HYDR SUBUNIT U05A0 DRO SUBAREA	1710			1410			1630		2760			1370			1 300		1259			1670			
-	Hd			PL OF LA CO HYDR SUBUNI WEST COAST HYDRO SUBAREA	8.1			8.1			† •		ж с.			8.3		0	0 0		3.5			8 • 4			
Temp	when	samplea In ° F		CO H	1			1			1		(9			1			1		1			8,			
				FLA	1 5			5			^		·			5 2					3 S			ı,			
State well		Date sampled		COASTAL PL OF LA CO WEST COAST HY		7-13-65		35/15W-24M 1	6-10-65	200111111111111111111111111111111111111	6-11-65		35/15W-24P	11-20-64			12-14-04		6-11-65			10-26-64			59-11-2		

TABLE E-1
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	Teto	0.5 Co C C 3		9		50		69			262			141			162			727			909			
lion	T D S Teto	Computed			616		776			713		7 20	07/		2573	1		200	7607			1829			5354	
constituents per million	S:11-	5:02		1		ě ě		ŀ			1						1						1			
Mineral parts p	Boron	8		1		1		4			1			1			1			-			-			
	Fluo-	L		1		1		1			1			1			ŀ			-			1			
	T of o	NO3		0		0		0			0.0			0			3.0	0.05		0			0			
million se value	Chlo -	- 0	00500	212	38	193	5.44	95	2.68	54	110	3.10	17	1100	31.02	2	1260	35.53	0	3080	86.86	82	2590	73.04	81	
millio	Sulfate	504	RIVER HYDRO UNIT U0500	332	6.91	334	97	291	90 • 9	54	304	6.33	22	438	9.12	7 7	451	9.39	0.7	778	16.20	15	701	14.59	16	
parts per equivalents percent r	Brcor -	HCO3	HYDR.	167	2.74	160	2.62	150	2.46	22	131	2.15	6.1	152	2.49	0	150	2.46	v	160	2.62	2	162	2.66	n	
por	Carbon -	CO 3		0		0		0			0			0			0			0			0			
Ë	Potos	¥	SAN GABRIEL	4	0.10	ω	0.20	6	0.23	2	5	0.13		23	0.59	-	20	10.0	-1	65	1.66	2	58	1.48	2	
constituents	Sodium	0 %	A SAN	330	14.35	314	13.65	225	9.78	86	149	6.48	55	006	39.13	76	1000	43.48	76	2080	44.06	82	1760	76.52	85	
Mineral co	Mogne	D W	L UOSA2	10	0.82	9	0.49	11	06.0	∞	56	2.14	81	30	2.47	D	32	2.63	٥	142	11.68	11	120	18.6	11	
2	Calcium	٥	UOSAO	6	0.45	10	0.50	80	0000	4	62	3.09	97	7	0.35	4	12	0.60	1	57	2.84	3	45	2.25	2	
Specific conduct-	(micro-	at 25°C)	CO HYDR SUBUNIT HYDRO SUBAREA	1630		1550		1150			1140			4450			4950			10100			8730			
	H		rdr s	8.5		8 • 2		8.5			7.9			8.6			8.3			8 • 4			8 • 2			
Тетр	when	<u>-</u>		1		ŀ					-			l i			ŀ			1			68			
State well	Pol		COASTAL PL OF LA	35/15W-25B 2 S	12-11-64		5-20-65	35/15W-25B 3 S			35/15W-25C 3 S	10- 7-64		35/15W-25C 4 S	12-15-64			5-18-65		35/15W-25D 1 S	10- 6-64			59-9 -4		

	Tetal hordness os Cours		4361	92	847	288	ブ	196	397	€0.0
constituents in	Evop 180°C hordress Evop 105°C os Computed Cours		25300	756	705	716	733	710	306	105
constituent	S. 1.		1	1	1	1	-	t t	Į Į	}
Mineral o	B B		1	1	1	1	1	1	į.	1
>	0 p W		1	1	1	1	1	1	1 1	1
	trote NO3		0	Э	0	0	0	Э	37.5	3.5.0 5.5.0 4.4.0
million 8 value	Chio.	00500	13900 391.98	3.07	2. 10	103	76.7	100.7	79.9	231
per	Sulfate SO 4	GABRIEL RIVER HYDRO UNIT U0500	2140	312 6.50	50%	318	294	304	234	250 2 - 21 35
equivalents percent re	Bicor - bonote HCO3	R HYDR	145 2•38	148 2•43 20	130 2-13	121 1.598 17	157 2.57 22	137	163 2.67	163
be	Carbon - ote	L RIVE	Э	D	Э	0	2	Ó	٥	c)
C .	Potos - sium K	GABRIE	216 5 5 5 2	0.08 1	0.13	0.10	0.18	20.0	0.18	1.10
constituents	S o d o S	A SAN	7800 339.14 79	23. 10.00 84	144	133 5.78 50	255 11.09	170	160	157 6 6 6 6 4 5
Mineral CC	Mogne.	L UOSA2	885 72.78	0.99	22 1.81 16	2.06	0.08	30 2.47 22	2.14	2002
2	C 0 tc . u m	00540	288	0.85	3.14	3.69	0.10	1.45	116 5.79	11.7 5.84 39
conduct-	mhos at 25°C)	-	35200	1220	1090	1130	1190	1120	1480	1480
	I a	HYDR SU	8 . 2	8 . 6	2 4	7 - 4	8 • 7	° ∞	6.5	7.7
Temp	sampled in ° F	CO HY	899	1	63	-	1	1	1	1
State well	Date sampled	OASTAL PL OF LA CO HYDR SUBUNI WEST COAST HYDRO SUBAREA	35/15W-25D 2 S	35/15W-25F 1 \$ 12-16-64	35/154-256 6 S 12- 4-64	5-18-65	35/15w-25G 8 5 1-14-65	35/15W-25G10 S 6-21-65	35/15W-25H 3 S	5-19-65

TABLE E-1

ANALYSES OF GROUND WATER

LOS ANGELES DRAINAGE PROVINCE (U)

	hordness os		20,7	39	175	1506	912	1045	1124	0645
ruents in	TDS hardness Evap 105°C os Computed So		<105	1984	478	10983	2686	4808	4878	31132
constituents per million	Sitt- co SiO ₂		1	1	ł	i	1	1	1	
Mineral parts	Boron				1	1	-	1		1
45	Fluor		1 1	1	1	-	l l	1	1	
	ni - trote NO 3		0	1 · 0 · 0 · 0 · 0 · 0 · 0 · 0 · 0 · 0 ·	Э	2,4 • 0)	17.0)	ס
million per million ctance value	- ch lo -	00000	19.29	644 18.16 57	301 8.49 5d	5730 161-59 86	1820 51.32	2440 68.81 83	2500	17100
0	Sulfate SO4	RIVER HYDRO UNIT	540 11.24 33	510	1.56	1060	461	53/ 11.18 13	535 11•14 13	2540
parts per equivalents percent r	Bicar - bonate HCO3	R HYDR	198 3.25 10	194 3.18	275	202	173	1/0	173 2.84	154
par	Corbon -		0	0	0	0	0	0	0	0
ri c	Potos - sium K	GABRIEL	23 0 . 59	23	18 0 • 46	126 3.22 2	1.46	1.46	1.66	316 * . c
constituents	Sodium	A	32.35	700 30.44	240	3540 153.92 82	1000	1380	1360 59.13	9600
Mineral co	Mogne- s-um M g	U.5A2	8 99•0	0.58	23 1.89 1.5	309	158 12,99	104	182 14.97	1140
2	Colcium	0.75 A	0.30	0.20	32 1.60 11	94 4.69	105	114 5.69	7.49	360
Specific conduct-	mhos at 25°C)	O HYDR SUBUNIT HYDRO SUBAREA	3450	3270	1520	17100	6430	8120	80080	41300
	I	YDR S RO SU	00	30 4	0 • 8	8 • 4	8 • 2	d • 1	8 • 1	φ •
Temp.	sampled in ° F		99	1	7.0	1	l	2 9	1	89
State well	Date sampled	COASTAL PL OF LA WEST COAST	35/15W-25L 1 S	6-21-65	35/15W-25L 2 S 3- 2-65	35/15W-25M 1 S 12-10-64	35/15W-25P 1 S 10-13-64	2-15-65	6-22-65	35/15W-25P 2 S

	* * 0 * 5 * 5 * 5		5521	3000	40 1	4738	0 1	113	0,	0
stituents in million	Evap 105°C S		, C , C , C , C , C	37.	87697	2007	8 0 8	2) 2) 3)	17.	122
constituents per million	5.02		1	-	1		1	1	1	1
Mineral parts p	an I				-	1	1	1	1	1
2	, p u				1	1	1	1	1	1
	trote NO3		2	0	7	0	Э	٠ •	Э	0
million e value	, ad e)	17040	11. 0.1.0 0.1.0	14600	14700	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1820	100 100 100 100 100	3 A A
r million Is per million reoctance valu	Sulfate SO4	JAN GABRILL RIVER MIUNO URLI COLOCO	2480	, set 4	44.07	45.00	7.000	4 6 0 1	31.0	
parts per equivalents percent re	Bicor - bonote HCO3	J 1-1	152	1.84	177	,	110	1/3	160	
pod	Corbon.	N T N	3	Э	3	Э)	0	>	-
ri	Potos -	o App n	40° 10°4°	0 0 0	2.08 2.03	20%	0.10	1.40) , z, z, z, z, z, z, z, z, z, z, z, z, z	2 v .
constituents	Sodium	L A JAN	9400	100	356.54	8200 356.54	120	1000 43.48	11.57	1500 6 000
Mineral co	Magne.	J sheen	1128 92.77	4.1 2.5.3 4.1	76.24	76.73	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15.99 12.99	0.25	2 888
2	Colerum	000 AU	352	4.63	346	17.96	103	105	0.15	2.64
Specific conduct-	micro- mhos at 25°C)	O HYDR SUBUNIT HYDRO SUBAREA	43100	116	36, 00	3 1900	1230	6430) 	3.
	Ha		9.0	7 • 1	•	7.8	7.9	8 • 2	7 • 9	£.
Temp	sampled In ° F	A CO H		1	2	1	1	-	20 2	7.7
State well	oled	COASTAL PL OF LA CO HYDR WEST COAST HYDRO	35/15W-25P 2 S	35/15W-250 2 2 6-23-65	35/15W-25G 5 ,	6-24-65	35/15W-250 4 S	35/15W-25R 2 S	3-12-65	3-17-65

TABLE E-I
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	10101	nordness os Colc (c)		307	352	357	356	357	362	331	217
constituents in per million	105	Evap 80°C hordness Evap 105°C as Computed Coulds		732	750	751	757	748	801	1625	1272
consti	S	5.02		1	1	1	1	1	1	1	1
Mineral parts p	Buron	в			1	-	1	1	1	1	-
	000	- Q - L		1	1	1	ŀ	1	1	ŀ	1
	z	rote NC3		0	0	0	0	0	0	50.08	0
million per million ctance value	0 4 10	r.d.e.	00500	152	106 2.99	3.05 2.05	3.07	3.05	3.50	730	418 11.79 51
0	Sulfate	S C 4	SAN GABRIEL RIVER HYORO UNIT UOSGO	236	326 6 79	332 6.91	56.97	332 6.91 56	350	0.10	0.033
parts per equivalents percent re	B 1C 0r -	bonote HCO3	R HYUK	185 3•03 25	146 2.39 20	144 2•36 19	149 2•44 20	146 2•39 19	143 2•34 18	451 7.39 25	582 11.18 48
pod	Carbon -	co 3	L RIVE	0	0	0	0	0	0	34	э
.c	Potas -	Si U R	6ABK1E	0.18	0.13	5 0•13 1	0.13	0.13	5 0.13	11 0.28	0.36
constituents	Enipos	N o	A	136 5.91 448	120	112	112	108	131 5.70	510 22•17 76	430 18.70 80
Mineral co	Magne-	S I W	L U05A2	20 1-64	31 2,55 21	31 2.55	30 2.47	31 2.55	2.55	38 3.13	35 2 • 68 12
2	Calcium	0 0		90 4.49	96 4 90	92 4.59	93	92 4 59	4.69	3.49	1.45
Specific conduct-	(micro-	mhos at 25°C)	O HYDR SUBUNIT U05A0 HYDRO SUBAREA	1200	1140	1150	1150	1150	1220	2940	2270
	Hd		YDR S	8 . 4	0	0 • 8	7 • 8	8 1	0.8	9 • 6	30 •
Temp	when	10°F	-	!	1	1	1	1	1	1	1
State well		Date sampled	COASTAL PL OF LA WEST COAST	35/15W-36A 2 S 12- 9-64	35/15W-36A 3 S 4-27-65	5-25-65	5-25-65	5-25-65	6-28-65	45/12W-30R 1 S 7-23-65	45/12W-31M 1 5 7-16-65

	hordness 05		77		221			717			701		20			67		_	117			663			
constituents in per million	Evab. BCC hordness Evab 105°C as			176	416		704	101	391		007	260	280		220	254		707	305		314			1067	
constituent per million	S		1		1			1		;	67		-			l			1			-			
Mineral o	Boron		1		0.17			0 * * 0		9	0		0.12			14.0			20.0			1			
-	Fluor		1		0.1			7.0		(7.0		0.3			0.5		_	7.0					_	
	Z O Z		0.0		0.0)		3	0.03		0.0			0.0			Э			2			
million e volue	. 04.	00500	70	0.51	45	1.21	4	, t	1.35 14	2	70.0	77	17	0 - 10	70	53	>₽•0	77	123	3.53	61	710	25.03	25	
r million ts per million reoctonce volt	Sulfate SO.4	SAN GABRIEL RIVER HYDRO UNIT UU500	Э		87	1.81	67	, a	1.67		0.00	15	7	0.02		v	0.10	7	0			649	13.51	17	
parts per equivalents percent re	Bicor - bonote HCO4	K HYDK	169	2.77	255	4 • 18	2	253	4 · 1.5	3 7 1	2.75	79	907	3.58	8 1	183	3.00	,	100	97.7	39	515	8 • 44	7 7	
equ	Corbon -	L KIVE	Э		0			2		J	0.27	٥	0			0			2			77	1.63	2	
ü	P 0 0 0 X	GABRIE	1	0.03	~	0.08	4	4 0	0.10		0 x 0	7	~	0 0	2	2	0.00		~	0.18	60	10	2.56	~	
constituents	Sodium	A SAN	99	2.87	63	2.74)	0 -	38		2.22	0.1	58	75.2	22	95	2.43	70	15	3.20	96	800	34.78	12	
Mineral co	M G G	UUSA2	1	0.08	16	1.32	0	17	200	. 0	7/00	17	Q.	C+4×	12	4	J. 33		14	たん・0	17	79	5.26	1]	
2	@n:0100	UOSAU	7	0.35	62	3.09	r	57	78.7	, , ,	1.30	30	23	1.15	27	20	1. 10	97	17	1 . 35	23	160	7.98	1 7	
Specific conduct-	mhos at 25°C)	JBUNIT BARÉA	312		689			704		7.03	1 7 %		390			360			740			4590			
	I a	NDR SI	8.7		8 • 2			7.9		2	; •		7.07			G • J			30 30			8.6			
Temp	sampled In ° F	CO HY	1 1		7.1			7.1		7.7	-		2 %			1			7.1			1			
State well	Date sampled	COASTAL PL OF LA CO HYDR SUBUNIT	45/12W-34N 1 S	10- 5-64	45/13W-10E 3 S	10-26-64			4-6-65	0 1 25 130			45/13W-22E 1 5	10-28-64		45/13W-22K 5 5	10-28-64			69-9 -7		45/13W-23A 2 5	7-20-65		

TABLE E-I
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	T, to hardness as Cours		360	102	139	1633	5 5	47	1491	65
constituents in per million	T D S T, to Evop 180°C hardness Evop 105°C as Computed Cours		1110	604	302	3014	307	236	7887	727
constituent per million	Sitt- co SiO ₂		1	1	Î	1	ŧ	1	1	
Mineral parts p	Boron		1	1	ł	-	1	1	1	
Mir	Fluo- Bo		1	-	1	1	1			1
	rote No3		0	0	0	0	0	0	0	0
ullion	Chlo =	0050	373	2.99	29 0 82 15	1140	1.61	33	1470 41.45 81	1 4 5 4 4 2 8
r million is per million reactance vali	Suffate SO4	SAN GABRIEL RIVER HYBRO UNIT UUSOO	2.85	0	62 1.29 24	012	0.12	0.17	211	0.21
pe	Bicor - bonate	HYDRU	386	276	204	4417.33	232	3.28	328 5 • 38 11	5 3 3 4 4 1 0
ports equiva percen	Corbon -	L RIVER	Э	0	0	0	3	Э	0	2.13
Ë	Potos - Sium K	GABRIE	0.28	0 0 0 0 0 1	0.08	150.38	0.08	0.10	20 0.51	12.00.31
constituents	Sodius	A SAN	284	128	2.70	460	105	3.35	496	250
Mineral co	Mogne. s.um Mg	L UU5A2	3.70	0.58 8	1.23	134	0.33	U.33	105	0 1 5 6 9 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Σ	Colcium	UOSAU	3.49	29 1.45 19	31	433	14 0.70	12 0.60	424 21•16 41	0.00
Specific conduct-	micro- mhos at 25°C)	CO HYDR SUBUNIT HYDRO SUBAREA	1930	741	516	4810	536	417	5110	1110
	H	rbk s	8.5	9 •	8 .	7.5	3.6	20 0	7 - 7	8 • 7
Temp	sampled in ° F)—	1	1	1	}	1	1	1	1
State well	led	COASTAL PL OF LA	45/13W-25F 1 S	45/13W-26A 2 S 7-26-65	45/13W-26A 3 S 7-26-65	45/13W-26A 4 5 7-26-65	4S/13W-26F 5 S 7-19-65	45/13W-26F 6 S 7-19-65	45/13W-26F 7 S 7-19-65	45/13W-26R 1 5 6-23-65

	Tito hardness os Colus		56	1034	か カ ア	1000	1040	1043	1026	1056
constituents in	Evap 80°C P		250	22 5		4231	2263	2977	2234	2278
constituent per million	S S		1	i	1	1	1	1	1	1
Mineral o	8 8		1	1	1	l I	1	} 1	1	1
Σ	, p		1 1	1	1	8 5	1	8 1	I I	1
	N. S.		0	0	1	Э	0	0	0	0
million s value	C + 10	00500	1.69	2050	968	1000	1010	1000	1020	1030
per million	Suitore SO4	UNIT	0	1.85	1	213	2006	290	5.66	5.73
parts per million equivalents per million percent reactance value	Bicor - S bonote HCO3	GABRIEL RIVER HYDRO UNIT U0500	3.62	362 6 . 26	35%	344 5 . 64	36 / 6 · 0 2 1 5	370	296	326 5•34 13
equ	Carbon - ofe	RIVE	0	Э	0	Э	0	Э	0	<i>(</i> دُ
<u>c</u>	Potos -	SABRIE	0.10	25	-	11 C.28	1 5 ° 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11.0.28	10.20	0.31
constituents	Sodium	A SAN	98	1040	i i	428 18•61 48	18.61	16.61	10.01	18°61 47
Mineral co	Magne- s.c.m M g	L J05A2	0.41	214 17.60	6.00	74 6.39	78 0 41	7.7	6.74	6.33
ž	Colcium	UOSAU	0.70	382 19.06 23	276	282 14.07	286 14.37 36	258	270	296
Specific conduct-	micro- mhos at 25°C)	jan-	526	8560	3830	3880	3470	3880	3940	3940
0, 0	Hd	HYDR SUBUNII DRO SUBAREA	ω •	8 • 1	8 • 1	. 0	7.9	7 • 8	1.6	7.9
Temp	when sampled in F	>-	-	1	Σ Σ	63	99	63	49	49
State well	led	OASTAL PL OF LA CO HYDR SUBUNI	45/13W-26R 2 S 6-23-65	45/13W-26R 3 S 6-23-65	45/13W-27A 2 5 10- 6-64	12- 1-64	1-12-65	3- 2-65	3- 2-65	9-6-

TABLE E-I
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	To+01	Cocc3			1088		1095		1014		1040		71		886		89		63		
tuents in	T 0 S	Evap 05°C 05 Computed Cold3				2324		2331		2244		2318		241		1945		404	234	227	
constituents per million	±	5 0 2			-		1		1		1		-		ş l		-		-		
Mineral parts p	Boron	ம			-		1		1		1		-		t i		1		07.0		
	0 0	- Q - L			-		-		1		1		1		1		-		9.0		
	ž	NC 3			0		0		0		0		0		0		0		0.0		
million	C P 10 ·	- Q - C - C	00500		1050	29.61	1050	29.61	1050	29.61	1050	29.61	27	0.76	1060	86	126	3.05	34	0.96	
parts per million equivalents per million percent reactance value	Sulfate	50.4	KIVER HYDRO UNIT U0500		265	5.52	273	5.68	270	5.62	257	5.35	0		49	1.033	m	0.06	2	0.04	
parts per equivalents	Bicar -	bonote HCO3	R HYUR		367	6.02	367	6.02	255	4.18	359	5.88	228	3.74	222	3.64	228	3.74	197	3.23	
par	Carbon -	co 3			0		0		0		0		0		0		0		0		
.E	Potas -	. x	GABRIEL		13	0.33	12	0.31	13	0.33	12	0.31	n	0.08	12	0.0	7	0.10	2	0.05	
constituents	Sodium	o Z	A SAN		430	18.79	420	18.61	428	18.61	044	19.13	74	3.22	392	10.04	128	5.57	67	2.91	
Mineral co	Magne-	E D W	7	U05A2	77	6.33	78	6.41	74	6.09	78	6.41	5	0.41	72	2.92	7	0.58	2	0.16	
2	Colcium	0	UOSAO		309	15.42	310	15.47	284	14.17	304	15.17	20	1.00	236	11.78	24	1.20	22	1.10	
Specific conduct-	ance (micro-	at 25°C)	→	HYDRO SUBAREA	3970		4030		3910		4030		427		3550		756		380		
	Ha		rdR SI	SO SO	7.07		7 • 8		7.8		7.9		8.5		8.3		8 • 7		7.6		
Temp	when	F C			68		1		7.1		68		1		1		1		-		
State well		Date sampled	COASTAL PL OF LA	WEST COAST	45/13W-27A 2 S	5-11-65		6- 2-65		7- 7-65		8-2-65	45/13W-27E 1 S	6-24-65	45/13W-27E 2 S	69-47-9	45/13W-27K 2 S	7-21-65	45/13W-27M 3 S	10-28-64	

	10407	os Cočics		69		51		0		4522	30 70	e 20	8	20 0
luents in	10.5	Evap 180°C hardness Evap 105°C as Computed Cacics		210	787	286	267	797	275	20828	234		232	662
constituent per million	S. 1.	si0 ₂		1		-		ŧ			1	1	1	1
Mineral constituents parts per million	Borco	æ		0.14		0.25		0.61		1	1	1	1	1
	30	r d e		7.0		8.0		7.0		†	ł	1	1	1
	ż	trate NO ₃		0		0 • 0		0		0	0	1	0	Э
million e value	C h 10 -	r.de	00 < 00	33	21	50	29	51	1.44	11500 324.30 89	26 0 73 16	41	28 0.17	00.07
r million ts per million reactance value	Sulfate	504	SAN GABRIEL RIVER HYDRO UNIT U0500	0		2 0 0 0 0 4		7 0	0.0	1570 32.69	0.08	29	0	0.10
parts per equivalents percent re	Bicor -	bonate HCO3	R HYDR	209	61	211	7.0	217	3.20	377	3.67	3.31	223	4.51
Par	Carbon -	01e	- RIVE	0		0		၁		0	0	1	0	2
.i.	Potos -	. x	GABRIE	2 0 0 0	7	3	2	n :	2000	143 3.66	0.10	-	0.10	0.13
constituents	Sodium	0 2	A SAN	70	69	88 88	78	42	7-	6130	60 2.61 58	3.43	2.10	4 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Mineral co	Mogne.	N	L UOSA2	3 0 25	9	2 (1-16) ()	2 4	0.40	788 64•81	8 0.66	0.66		120 a
2	Calcium	0 0		21	57	17	17	7 7 0	16	512	1.10	1.00	1.00	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Specific conduct-	(micro-	mhos at 25°C)	JBUNIT (415		074		1 CC		31000	454	475	419	512
	Hd		IDR SI	8 • 2		7.6		7.6		& •	ω υ	7.8	\$C	\$ •
Temp	when	in ° F	CO HY	90		1		28		-	1	1	1 1	-
State well		Date sampled	COASTAL PL OF LA CO HYDR SUBUNIT UO5AO WEST COAST HYDRO SUBAREA	45/13W-27M 3 S.		45/13W-27N 1 S		2 - 200 - 6	60-62-6	45/13W-270 1 S 7-21-65	4S/13W-30H 2 S 6-25-65	45/13W-3UH 3 S	45/13W-30H 4 S 6-25-65	45/13W-31N 1 5 7-13-65

TABLE E-1
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	hordness		166		172		707		208		3906		3852		4313		4221		
uents in	Evop 180°C hordness Evot 2°C hordness Evot 2°C hordness		362	334	340	315	380	348	360	344		8595		8740		9066		43378	
constituents per million	St. 15 CO S O 2		1		ł		ļ.				1		1		1		1		
Mineral o	a a a a a a a a a a a a a a a a a a a		0.14		0.07		0.14		0.11		ŀ		1		1		î		
	7 C		0.2		0.5		5.0		0.2	-	1				-		-		
	No A		0.0		0.0		0.0		1	0.02	0		0		10	0.10	0		
million e value	0140	00<00	41	٠ • •	30	1.02	99	1.86	49	1.60	4840	13/•62	4880	9 0	5570	15/•64	12900	363.18	
million	Sulfore SC4		79	28	640	15	37	0.77	5.6	09.0	280	BO • 21	638	N N	189	14.30 8	2000	41.64	
parts per equivalents percent re	Bicar - bonate HCO3	4 HYDK	193	53	239	5.96	234	3.84	246	4.03	221	3.62	233	2 2 2	223	3.65	168	2.7	
par	Carbon - ate CO3	GABRIEL KIVER HYDRO UNII	0		Э		Э		Э		0		0		0		0		
Ë	Potas	CABRIE	4 01 - 0	2	m 2	0 7	4	0.10	4	0.10	30	0.0	31		0 7	1.02	105	2.68	
constituents	Sodium	A SAN	9.7.7	77	56	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	54	2.35	54	2.35	1660	48	1760	200	2000	36.96	7325	318.49	
Mineral C	Mogne. Stum	L U05A2	13	17	15	1.623	15	1.23	19	1.56	352	28.95	350	14	399	32.81		66.70	
2	Colcium	UOSAO	45	37	444	37	56	2.79	52	2.59	486	49.10	996	31	1070	53.39	354	17.666	
Specific conduct-	(micro- mhos at 25°C)	CO HYDR SUBUNIT I HYDRO SUBAREA	530		530		900		620		13800		13800		15900		34500		
	H	YDR S	7.4		8.0		7.9		8.2		8 • 2		1.6		7.6		7 • 8		
Temp	sampled In F	CO H)	1		1		1		1		-		ţ		1		1		
State well number	Date sampled	COASTAL PL OF LA	45/14W- 1F 2 S	10-02-01	9 - 0	2-20-00	45/14W- 3L 2 S	10-28-64		3-20-65	45/14W- 5F 1 S	59-6-5	7 1 1 1 1 1			7-20-65	45/14W- 5N 7 S	1-27-65	

	hardness as	5220	841		0949		6337		1817			5692		3643		5408			5035		
constituents in	Evap Book			2482		32819		32321		40118			12862		15,36			20133		23940	
constituent per million	.1 5		1		1		1		1			1		1		1		-	1		
Mineral parts p	, a		1		1		1		1			-		-		-			-		
	7 C C		1		1		-		-			1		1		1			i i		
	ž o z		0		2		0		0			0		0		0			0		
nillion per million ctance value	0140	00500	10.70	82	10200	0 ^	10000	, v	4730	133.37		8570	0 0 0	8410	25/010	14500	100°40	2	13200	68	
0 0	Sulfale	NO ON	13.87	15	24.70	10	7,000	0000	976	19.28	7 7	1390	11	1190	× × × × × × × × × × × × × × × × × × ×	1960	40°0+	*	1930	100	
parts per equivalents percent	Bicor - bonote HCO.	HYDR	163	Υ	182	~	180	1	157	2.57	7	162	7	218	3.57	285	1004		215	2000	
Por	Carbon.		3		5		0		5			0		0		0			·)		
i n	Potos E y x	GABRIEL	0 0 0 0 0	٦	110		112	7	31	0.79	-4	200	0	L)	† 50 •	124	3.17		100		
constituents	E n pos	SAN	1760	8	10000	11	7800	11	2730	118.70		5000	0 70	4400	121.51	1840	340.048	3	7160	51	
Mineral co	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	L U05A2	162	14	1230	10	1200	70	333	21.37	0	511			20°04	956	18.13	/ 1	869	11	
2	Colcoum	UOSAO	70	7	560	v	560	4.017	119	u . 93	0	221	7	526	20.53	611	30.49	_	584	1	
Specific conduct-	mhos	5 -	3068		43100		42400		14200			24,000		23000		37515			34122		
	I	OR SI	8.2		7 • 6		1.6		7.7			7.8		α • α		1.5			7.5		
Temp.	sampled in F	0 1	7,0		1		1		1			1		1		l t			1		
State well	Date sampled	COASTAL PL OF LA WEST COAST	45/14W- 5N 7 S 3-18-65		45/14W- 5N 6 S 2-15-65		- E		45/14W- 5NIO S	3-22-65		45/14W- 5N12 S	70	45/14W- 5N13 %	40-67-71	45/14W- 68 4 S	11-20-64		45/14W- 68 5 5		

TABLE E-1
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

ents in	TDS	Evop 105°C os Computed Cours				5284	19102	676	000	161	221		529	899		1 169	337	820	0.20	1	5369								
constituents per million	S	5 0 2 0				1			l I		ì			i i	_		-		-	_				1 1					
Mineral c	Buren	20				1			1		1			1			1				1	1	1 1	1 1	1 1	1 1 1			
Σ	0.0 Br	- d e			-	1			i I		1			I I		_	1			_									
	u	-			-									0			0			_	0		0 0	0 0		0 0 0	0 0 0	0 0 0	
	ż	Profe				0)		0																		
million se volue	C h 10	. to 0	00500			10640	300.008		2/3/		143	• 4	45	3520	77.70	70	124	3.50	0.7		11300	11300 318•66 90		(1)	511	113 318• 106 300•	5.1	63 63 63	(4) (4)
million per eactand	Sultate	\$08	SAN GABRIEL RIVER HYDRO UNIT JOSOO			1370	20.02		7 7 7	14	61	1.27	13	761	12.04	13	351	7.31	0		1510	1510	1510 31.44 9	1510 31.44 9 1370 28.52	1510 31.44 9 1370 28.52	1510 31.444 1370 28.52 28.52	1510 31.44 1370 28.52 28.52 1610	1510 1370 28.52 28.52 1610 53.52	1510 31.044 1370 28.52 28.52 1610 53.52
parts per equivalents percent r	Bicar -	bonate HCO3	HYDR			310	5.08	1 .	747	53	256	4.20	777	182	2.98	m	149	2.44	0 1	200	067	4 • 85	4.85	4.85 4.85 1 310 5.08	4.85 4.85 310 5.08	4 • 85 1 310 5 • 08	4 • 85 4 • 85 3 10 5 • 08 5 • 08 5 • 08	5 9 0 8 0 0 1 1 1 2 0 0 8 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	310 5 008 5 008 5 008 5 008 5 003
por	Carbon -	0 % C O 3	L RIVER			0		(Э		0			0			0			0			၁	0	Э	0 0	0 0	0 0	0 0
Ë	Potos -	E X	GABR 1 E			45	1.15	-	0.00	0 -1	v	0.13	T	51	1.30	7	12	0.31	>	85		2.1 (45	7.1 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.1. 1 1.15	1.15	1.15	1 . 1 . 1 . 1 . 2	1.15
constituents	Sodium	0 2	∢			5250	228.27 68) (142	45	115	5.00	52	2250	97.83	94	147	6.39	20 4	5630	01 - 1171	69	69	5250 528.27	5250 528.27 528.27	5250 228.27 68 6000	528.27 528.27 60000 260.888	5250 228.27 60000 260.88	5250 228.27 228.27 66000 26000 260.88
Mineral co	Мадле-	E N G	١	L.15.A.2	28700		59.79	9	24	14	15	1.23	13	176	14.47	12	34	2.80	21	761	62.58	18	18	727	18 727 59•79	727 727 18 18	18 727 59.79 18 839 69.00	18 727 29•79 18 839 69•00	18 727 727 18 18 839 69.00
Σ	Colcium	٥٥				918	45.81	† :	106	39	64	3.19	33	70	3.49	6	42	3.94	56	896	44.71	13	13	13 918 45•81	13 918 45•81 14	918 45.81 14	918 45.81 14 1150 57.339	918 45.81 14 1150 57.39	13 45.81 14 1150 57.39
Specific conduct-	ance (micro-	mhos at 25°C)		CO HYDR SUBUNIT U05AU	BAKEA	28100			1377		943			11200			1260			29100			28100	28100	28100	28100	30500	30200	30500
	Hd			O HYDR SUBUNI	00 02	8.0			8 • 4		200			8 • 2			8.4			7 • 8			0	0.8	0	8.0	8.0	8.0	8 .0
Тетр.	when	In ° F		H-	- 1	1			1		į į			1						1			1	1	1	1 1	1	1 1	1 1
	0,	p		PL OF LA	COAS	1 5			2 S					V 4						5 5				ν 1					
State well		Date sampled		COASTAL PL OF LA	WEST	4S/14W- 6F 1	3- 8-65		45/14W- 6G 2	11-17-04		3-24-65		4S/14W- 6G 4	3- 5-65			7-26-65		45/14W- 6G 5	6- 3-65		46 -W41794	45/14W- 6H 1 3- 8-65	45/14W- 6H 3- 8-65	45/14W- 6H 3- 8-65	4S/14W- 6H 3- 8-65 5-24-65	45/14W- 6H 3- 8-65 5-24-65	45/14W- 6H 3- 8-65 5-24-65

	0437	0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		9509			4072		0			9429			8479			5803			0865			5906			
constituents in	2 6 5 T C 6 0	Evap 105°C				77/17		19591			23719			22911			44577			30067			30327			34370	
constituent		5.05		-			1					1		-	ł			1			-						
Mineral o	Beron	8		-			1		1			1			t)			1			l l			-			
2	j ,	a p i .		1			1 1		1			1			1			1			-			-	-		
	ż	hore No3		0			0)		0			ρ			0			2			၁			
million e value	C P 10 -	r.de	00500	13200	372.24	2	10700	301.108	193661	373.37	06	12800	360.96	06	12500	352.50	20	16648	464.47	000	10000	413.16	0.6	18932	55.09 533.88	200	
millior per eactanc	Sulfate	504	RIVER HYDRO UNIT U0500	1790		7	1640	34.14	3	57.71		1/40	36.23	7	1000	24.90	7	2321	48.32	7		48.51	2	2640	55.09	27	
parts per equivalents percent r	Bicor -	bonate HCO3	A HYDR	279	16.57	7	179	2.93	4	3.20	-	176	3.21	7	178	3.25	-	182	86.2	7	182	2.70	7	200	3.28	~	
pod	Corbon -	01e CO3	L RIVE	0			0)		0			0			0			٥			2			
ri s	Polos -	ž ×	SAN GABRIEL	O B	2.05		66	2.38		7.40	7	C	1074		70	2.30	-	700	7.10	_	252	5 + 4 +	7	400	10.23	٥.	
constituents	Sodium	0 2	∢	0499	288.71	7.0	5480	255.66	00	201.75	99	9700	269.58	19	0809	264.36	ρ¢	9120	396.54	16	9200	400.02	16	10700	465.24	78	
Mineral co	Mogne	E 75	L UUSA2	854	70.23	17	089	16	F	11.36	17	20 20	12.62	18	158	70.48	18	1103	90.71	17	1140	93.75	18	1218	100.17	17	
2	Calcoum	٥	UOSAU	1010	50.40	12	510	25.45		55.94	14	1130	56.39	14	1090	54.39	14	906	25.25	47	516	25.75	v	382	19.06	60	
Specific conduct-	(micro-	at 25°C)		34000			28600			24014		31000			31400			41667			41000			45871			
	Ha		TDR S	8.0			7.3			0 0		7.9			8.1			7.9			30.0			8.0			
Temp.	sampled	r, F	CO HY	!			1			1		1	_		1			1			1			1			
State well		Date sampled	COASTAL PL OF LA CO HYDR SUBUNIT WEST COAST HYDRO SUBAREA	45/14W- 6H 1 S	7-22-65		45/14W- 6J11 S	2-25-65		45/14W- 6L 1 5			3-24-65			5- 4-65		45/14W- 7C 3 S	11-16-64			5- 5-65		45/14W- 7D 1 S	11-16-64		

TABLE E-1
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	, to: hardness	(0003		6184	7 7 7			190		188			6001			9409		10076			6184			
constituents in		Computed		1	33057	6 1 0	32/21		358		4	200		21060			32401			32164			34260	
constituent per million		2102		1	1		-	1		1			1			1		1			1			
Mineral parts p	c	2		1	1			1		1			1			1		1			-			
	Fluo-			1				1		1			1			!		1			-			
	rote 1	NO N		0	C	>		0		0			0			0		0			0			
per million ctance value	Chlo -		00400	18300	2 0	513.	2	2.00	37	88	2.48	00	17600	496.32	>	17900	06	17800	501.96	06		532.98	06	
0 0	Sulfate	204	A SAN GABRIEL RIVER HYDRO UNIT UUSOO	2480	7 07 0	50.59	7)	0.02		1	0.02		2570	53.51	2	2560	10.10	2560	53.30	10	7160	57.46	10	
parts per equivalents percent r	Bicor	E O 3	R HYDR	321	327	5.31	→	264	63	263	4.31	0	136	2.23		128	01.07	134	2.20		142	2 • 33		
bo ed be	Carbon -	60	L RIVE	0)		0		0			0			3		C.			0			
Ē	Potos -	×	GABRIE	220	1 X	4.73	⊣	0.18	3	80	0.20	0	280	7.16	4	308	1 • 0 0	276	7.06	٦	370	9.40	7	
constituents	E nipos	2		10200	Totaled	434.80		2.83	45	62	2.70	T +	0086	426.10		9920	72.0164	0086	426.10	77	10500	456.54		
Mineral co	Mogne	φ. Σ	L UUSA2		12311		2	1,	21	17	1.40	17		97.87	9	1190		1190		18			18	
Σ	Calcium	٥	JUSAU	499	517		n	2.40	35	147	2.35	22	445	22.06		73 05	4	472	23.55	47			r)	
Specific conduct-	mhos	01 23 C)	→	45454	43500			569		692			42700			42700		41700			00924			
	H		rdk s 30 su	8.1	00					8 • 1			7.5			7.6		7.6			7.7			
Temp	when sampled in ° F		A CO HYDR ST HYDRO	1	1					1			-			1		j			79			
State well	led		COASTAL PL OF LA CO HYDR SUBUNI WEST COAST HYDRO SUBAREA	45/14W- 7F 1 S 11-17-64		5- 5-65		45/14W- /J / S			6- 4-65		45/14W- 7J 8 S	2-11-65		2 CC - C	50-33-5		6- 7-65		45/14W- 7K 2 S	1-28-65		

	* 10 Nard: #55 S		0244	6011	0 10 4	397.0	\$0.70	25,1	4615	E 0 4 7
constituents in	Evap 180°C hardress Computed		34000	33176	27867	27.173	23352	19465	211.5	
constituent per million	S.111- C.0 S.0.2		1	1	-	-	1	1	1	1
Mineral o	Boron		1	1	!	1	1	1	-	1
Σ	Fluo-		1	!	-	!	I	Ĭ.	1	1
	Ni - frate NO 3		0	ی	0	٥	Э)	7	1
parts per million equivalents per million percent reactonce value	Chlo	00000	. 18800 530•16 90	18300	16700	16500	18600	14000 394.80	339.53	9800
million per eactonc	Sulfote SO4	SAN GABRILL RIVER MYCAG UNIT UCYGO	2720	2600	2230	2260	2670	2040	10000 37.48	1510
parts per equivalents percent re	Bicor - bonote HCO3	R MYU	146	144	293	3.75	127	137	1,8 2.10	152
equ	carbon -	L RIVE	0	0	0	0	0	0	3	0
.i	Potas - Stum K	GABR II	332	365	3.07	3.32	344	1.53	1.41	20.0
constituents	Sodium	L A SAN	10400	10200	9000 391.32 76	9100	10200	333.93	217.40	0000
Mineral co	Magne- sium Mag	74200	1260 103.62 18	1190 97.87 17	1140 93.75 18	1100 90.46 17	1240	866 71•22 16	71.7 58.55 16	553 65.00 648
Σ	Calcium	UOSAO	424	446	29.54	576 28.74 6	44.	784	33.68	5 6 6 6
Specific conduct-	mhos at 25°C)	CO HYDR SUBUNIT HYDRO SUBAREA	43800	45454	40000	41667	43000	36200	20075	. 71/4
	H	HYDR S	7.9	7.9	n, n	8 . 2	D	7 • 1	7.6	7 • p
	sampled in ° F		-	1	Į,	1	1	1	-	1
State well	Date sampled	COASTAL PL OF LA (45/14W- 7K 2 S	45/14W- 7P 2 S	6-11-65	45/14W- 7P 3 S	6-11-65	45/14W- 8B 1 S	10-16-64	11-19-64

TABLE E-1
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	Total	CaCO3			634		363			153			186			5739			3514			522			19				
uents in	TOS	Evap 105°C os Computed CaCO3				4923		3211	4		1550	6001			1495			32125			22094			7423			2035		
constituent per million		50.8			1		1			1			l t			ŀ			t			1							
Mineral constituents parts per million	Boron	8			!		1			Į Į						î			-			1			-				
~	F100-	9 D			1		-			!						-			1			1			i				
	ī	trate NO ₃			7.0	0.03	0			0			0			0			0			0			0				
million e value	C h 10 t	ride C f	00500		2400	67.68	1460	41.17		533	15.03	60	500	14.33	30	17700	488.14	06	12000	338.40	68	3680	103.78	83	756	21+32	79		
millior per eoctono	Sulfate	504	SAN GABRIEL RIVER HYDRO UNIT U0500			12.93		10.24			8 0 4		380	7.91	32	2600	54	10		38.73	10	872	18,16	15	441	9.18	28		
parts per equivalents percent r	B 10 0 f =	bonote HCO3	R HYDR		153	2.51	148	2.43		153	2.51	2	149	5.44	10	160	2.62		192	3.15	7	181	2.97	2	162	2.66	00		
par	Carbon -	CO3	L RIVE		0		0			0			0			0			0			0			0				
ri s	Polos -	ž E X	GABRIE		10	0.26	Φ	0.20		9 .	0.15	→	5	0.13	-	180	09.4	7	92	2.35	7	39	1.00	7	11	0.28	7		
constituents	Sodium	2	⋖		1620	70.44	1065	46.31		510	22.11	0	470	20.44	84	10000	434.80	78		307.	81	2600	113.05	91	728	31.65	66		
Mineral co	Mogner	E M g	1	UUSAZ	91	7.48	50	4.11	0	19	1.56	0	24	1.97	00	1130	92.93	17	678	55.76	15	102	8 • 39	7	12	66.0	3		
2	Colcium	° U	UOSAU		104	5.19	63	3.14	0) w	1.50	0	35	1.75	7	436	21.76	4	290	14.47	4	41	2.05	2	7	0.35	1		
Specific conduct-	(micro-	mhos at 25°C)	CO HYDR SUBUNIT	HYDRU SUBAKEA	8180		5340			2630			2510			45454			32500			12100			3400				
	Ha		YDRS	KU SL	7.9		7 • 8			ф Ф			8 • 2			7.6			8.4			8.3			8.2				
Тетр	when sampled	in e			1		-			ŀ			1			1			1			-			67				
State well		Date sampled	COASTAL PL OF LA	WEST COAST	45/14W- 8B 1 S	2-10-65		3-17-65			6- 1-65			7-21-65		45/14W- 8D 2 S	10-27-64			12-17-64			1-26-65			3-23-65			

	Toto! hardness ors	5,7,0,7	188	468	328	4813	332	324	0582	5294
constituents in	T D S Evap 180°C Evap 105°C		806	1570	1252	25207	7097	776	5503	5476
constituent	Silve		-	-	1 8	l	-	1	-	i
Mineral parts p	Boron		1	1 1	1	-	1	1	1	1
	Fluo-		1	1	1	-	-	1	1	1
	troite No. 1		0	0	0	0	0	1 0.07	0	0
ir million ts per million reactonce value	Ch lo -	00500	164	626 17.65 66	425	13900 391.98	31.87	3.55 2.8	3070	3040 85.73 88
million s per reactonc	Sulfate	GABRIEL KIVER HYDRO UNIT U0500	342	279 5.81 22	291	2080	4449	332 6.41	379 7.89	364
parts per equivalents percent r	Brear - bonate	R HYDR	154 2.52 18	205	181	169	145	134 2.20	3.72	235
par	Carbon -	L KIVE	0	0	0	0	Э	0	0	}
C.	Po105 -	GABRIE	0.15	0.28	0.28	1.84	15	0.15	28	34
constituents	£ 7.00 Z	<	314	396	326	335.67	850 36.96 84	138	1120	1150
Mineral co	N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	L L	0.16	3.87	33 2.71	388 73.03	63 5.18	35 2 0 8	227 18.67 19	226 18•59 19
Σ	E 0 0 0	O V O	0.20	110	3.84	464 23.15	1.45	3.59	567 28.29 29	546 27•25 28
Specific conduct-	mhos		1470	2780	2155	36200	44643	1240	9500	9488
	I a	YDR S	8.6	80 60		7.1	8 . 5	e 9	° 8	Ο • π
Тетр	sampled	CO HY	1		1	1	i i	1	1	1
State well	Date sampled	COASTAL PL OF LA C	45/14W- 8D 2 S 7- 2-65	45/14W- 8D15 S 10-23-64	11-16-64	45/14W- 8D16 S 10-19-64	11-19-64	3-12-65	45/14W- 8D17 S 10-19-64	11-23-64

TABLE E-1
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	T, tot hardness ors Colung		2406	2374	618	4278	13	45	534	521
uents in lion	TDS T. 101 Evop 180°C hordress Evop 105°C ors		5568	5504	3054	15049	785	840	1361	1295
constituents per million	S.131+ c.0 S.102		ł	1	1	-	1	1	1	1
Mineral o	Boron		-	1	1	8	-		-	1
	Fluo-			å E	1		1	1 t	Į Į	1
	Frote NO3		0	0	0	0	0	0	0	0
million e value	ride C1	00500	3080	3040	1416 39.93 77	7270	2.99	3.16	694 19.57 81	18.61 300
per	Sulfate 504	SAN GABRIEL RIVER HYDRO UNIT UOSOO	390 8.12	395 8 22 8	468 9.74	980	323	348	1.12	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ports per equivalents percent r	Bicor - bonote HCO3	R HYDR	240	234	142 2 33	3.64	152 2.49 20	168 2.75 21	216 3.54 15	218 3•57 15
pod	Carbon - ofe	L RIVE	0	၁	0	0	0	0	0	0
i.	Potos X	GABRIE	25	25	13 0.33	1.59	0.13	0.15	15.0.38	16
constituents	Sodeum	⋖	1150	1155 50.00 51	910	3240 140.88	273	280 12.17 92	312	286 12.44 53
Mineral co	Magne. S.um M.g.	L UCSA2	245 20•15 20	21.79	109 8.96 17	502 41•28 18	0.25	0.90	52 4.28 17	4.28 18
2	Calcium	UOSAU	560 27.94 28	514 25.65 26	3.39	886 44.21 19	0	Э	128	123
Specific conduct-	mhos at 25°C)	CO HYDR SUBUNIT UUSAU HYDRO SUBAREA	9400	9470	5320	20800	1250	1360	2590	2451
	Hd	rdR s) @	9.	8 . 1	7 • 8	80 • 5	8 • 4	0. C.	& • •
Тетр	sampled in ° F	-	1	1	}	1	1	Į į	1	1
State well	pel	COASTAL PL OF LA	45/14W- 8D17 S 2- 9-65	3-16-65	45/14W- 8D21 S 12-21-64	12-21-64	45/14W- 8E 3 S	12-18-64	45/14W- 8E17 S 10-22-64	11-13-64

	Total nordness os CaCO3		3044	9 2 9 7	3436	\$015	3261	9/ *	1504	<i>₹</i>
constituents in	Evap 105°C Computed		11250	4. 9. 3.	11.74	3454	7096	10336	11,00	1 1 7 6
constituent per million	5 . 2		1	-	1	1	-	1	1	1
Mineral o			1	1	-	1	1	-		1
~	, p		ł	1	i i	1	1	1	-	1
	, O ,		0	0	0	0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2	0	0
r million ts per million reactance value	2 0 C	00200	6080 171.46 89	472C 133.10 87	72.19	5240	5360 151-15	5700 160.74 89	6320 178-22 89	736.0 207-55 90
mullion per reactanc	5 4	A SAN GAURIEL FIVER HYORO UNIT UCSOO	897 18.60	17.74	247	691	14.30	16.61	17.82	1000
parts per equivalents percent r	8 cor b, rafe MC, 3	R HYOR	210	160	14	188 3.08	3.15	3.39	3.26	3 1 7 4
par	Carbon -	L KIVE	0	0	0	0	Э	0	0	٥
. <u>c</u>	Potas -	JABRIL	1.16 1.18	1.07	24	34	30	1.00	1.02	1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 .
constituents	Sodium	A SAN	3120	2660 115.66 75	420 18.25 24	2400	2360	2550	2940	3 40 0
Mineral co	Mogne- srum Mg	L UUSA?	332	23.36	239	20.73	374 40.54	386 1.74	388 31.11	54 68 1 54 0 0 0 0 1 7 1 7
Σ	Calcrum		33.53	14.52	778 38.85	33.53	34.58	37.72 5	764 33•12 19	834 1000 18
Specific conduct-	mhos at 25°C)	HYDR SUBUNIT U05AU	17100	14451	7837	15436	15000	16,300	17400	2000
	Ha	DR SI	8 .2	7 • 0	8.0	8 • 1	2.0	0 0	· a	
Temp	wnen sampled in°F	A CO HYDR ST HYDRO	1	I I	Į.	Į Į	1	1	ţ	1
State well	led	COASTAL PL OF LA CO WEST COAST HY	45/14W- 8E20 S	11-18-64	45/14W- 8F 4 S	11-74-64	48-88-8	1-28-65	4-1-65	6 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TABLE E-I
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	Total hardness os		3295		3955		4162		3415			2971			3274		3365			3484		
luents in	T 0 S C E V OD 105 °C			4545		1059		7118		1	1911		07.67	101		9519			9811		11328	
constituent per million	S. 1.	7	i t		1		ŀ		1			-			1		-			1		
Mineral constituents parts per million	Boron		-		1		1		- 1			1			1		-			I		
	7. de		1		1		ł		1			ţ			1		1			1		
	N . N . N . N . N . N . N . N . N . N .		0		0		0		0			0			0		0			0		
million e value	Chlo.	00500	2960	91	4000	9.8	4100	79.611	4370	123.23	ν Σ	5320	150.02	2	5330	10.001	5420	152.84	88	6300	89	
per	Sulfate	SAN GABRIEL KIVEK HYDRO UNIT UU500	300	7	514	30 ,	506	10.53	572	11.91	<u></u>		13.89)	691	74.54 0	151	15.76	6	856	6 11	
parts per equivalents percent re	Bicor - bongle HCO2	к нүрк	148	60	166	2	178	2 2 2	164	2.69	7	119	1.95	-1	198	5.65	210	3.44	2	195	3.20	
pod	Corbon -	L RIVE	0		0		0		0			0			0		0			0		
. <u>c</u>	8 5 5 X	GABRIE	15	П	0.69	-	28	0.12	37	0.95		38	0.97	4	40	1.02	45	1.15	7	40	1.02	
constituents	E nipos	<	60	4	1070	37	960	41014	1520	60.99	4	2400	104.35	9	2300	09	2400	104.35	09	2900	49	
Mineral c	Mogne.	L U05A2	23.52	34	336	22	356	23.62	279	22.94	/1	324	26.65	2	386	19	404	33.22	19	400	32.90	
2	Calcoum	U05A0	848	61	1030	41	1080	10.00	908	45.31	33	959	32.73	2	675	20.50	682	34.03	20	736	30.13	
Specific conduct-	(micro- mhos	O HYDR SUBUNIT	8880		11900		11500		12400			15674			15600		16100			17400		
	T a	YDR S	8 0		7.9		7 . 7		7 • 8			1.9			8 .1		8 • 2			8.9		
Тетр	sampled		1		1		1		-			1			1		!			l l		
State well number	Date sampled	COASTAL PL OF LA	45/14W- 8F 5 S 12-28-64		1-28-65		1 1 1 6	4- 1-00		6-18-65		45/14W- 8F 6 S	11-24-64		27-00-01	to-07-31		1-28-65		,	C0=1 =+	

TABLE E-1
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

Temp		conduct-	2	Mineral C	constituents	e C	ed De	equivalents percent re	s per reactanc	equivalents per million percent reactance value			parts	per million	constituents in	
when	Hq	(micro-	Calcoum	Magne	Sadium	Potos -	Carbon -	Bicor -	Sulfale	Ch 10 -	- 1N	2 0	8,700	- 0	T 0.5 Evop 180°C hardness	* C * O ! hordness
in 'F		at 25°C)	0 0	D W	0 2	×	003	HCO3	504	0.1	NO ₃		8	5:05	Evap 105°C	5000
COASTAL PL OF LA CO H WEST COAST HYD	HYDR S	PL OF LA CO HYDR SUBUNIT U05A0 WEST COAST HYDRO SUBAREA		L UOSA2		GABRIE	L RIVE	R HYDR	A SAN GABRIEL RIVER HYDRO UNIT U0500	00500						
1	8.2	19200	798	466	3200	949	0	194	980	7200	С	1	1	1		4075
			43.11	38.32	139.14	1.18		3.18	20.40	203.04					12851	
1	8.2	1748	129	4.1	152	Φ	0	245	32	421	0	1	1	-		491
			44.9	3.37	6.61	0.20		4.02	79.0	11.87					903	
1	80	1820	143	45	152	82	0	543	0 4	453	C	1	-	-		245
			7.14	3.70	6.61	0.20		3.48	0.83	12.71					096	
i i	8.1	6110	00%	176	009	23	0	159	11	7040	0	1	1	t		1723
			19.96	14.41	60.07			7.01	1.60	93					3394	
}	8 • 1	1111	85	20	132		0	136	323	104	0	1	-			303
			4.24	1.81	5.74	0.08		2.23	6.72	2.03					736	
1	8 . 2	1150	88	56	133	m	2	140	333	109	0	t	1 1	1		327
			4 • 35	2014	2.18	0.00		2.59	56	3.07					761	
1	8.3	0265	397	204	485	23	0	182	61	1910	0	-	1	-		18 31
			19.81	16.78	21.09	0.59		2.98	1.27	53.86					3169	
1	4.7	1370	2	2)	286		0	146	321	146	0	1	į 1	1		80
			0.65	0.41	17.944	0.10		2 . 39	0.00	9.16					839	

TABLE E-1
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	101	hordness Co.v.3		3.1			291			1831			6161			6176			6321			4011			1118			
uents in	T 0 S	Evap Huber Evap Computed				927		7 4 6	(00)		1	3175			30972			31773			31804			20710			5865	
constituent per million	-	5 . 2		1		-	1			1						ţ			-			1			1			
Mineral constituents parts per million	н, т. т	ے		1			ì			1			1						1			-		•	-			
2	,	, de		1			1			ŀ			1			1			1			1			1			
	Z	, o, z		0			0			0			0			0			0			0			0			
million e volue	0 10	- U	00500	186	5.25	30	110	3.10	7	1830	51.61	00	17300	487.86	0.6	17600	496.32	06	17600	496.32	06	11400	321.48	06	3060	86.29	92	
million per eactanc	Sulfate	\$. 4	GABRIEL RIVER HYDRU UNIT U0500	336	7.00	20	324	6.75		140	2.91	Ω	2430	20.59	2	2490	51.84	6	2530		10	1729		10	059	13.53	13	
parts per equivalents percent	Bicor -	bonote HCO3	R HYDK	148	2.43	1 /	144	2.36	1	193	3.16	v	140	2.29		132	2.16		109	1.79		14	0.23	_	137	2.25	2	_
Pod	Carbon -	01e CO3	L RIVE	0			0			0			C			0			0			0			0			
	Potos -	X X	GABRIE	2	0.09		4	0.10	4	27	0.69	-	06	2.30		06	2.30		09	1.53		70	1.79		25	59.0	-	
constituents	Sodium	0 2	A SAN	320	13.91	45	142	6.17	4	465	2007	22	9350	406.54	9/	0086	426.10	77	0086	426.10	11	6380	217.40	17	1820	79.13	11	
Mineral co	Mogner	5 · J.T.	L U05A2	3	0.41	2	20	4.11)	178	14.64	67	1133			1150	74.58	17	1190	97.87	18	744	61.19	17	208	17.11	17	
2	Calcium	0 0	UOSAO	4	0.20		34	1.0/0	4	440	21.96	000	909	59.94	9	578	28.84	r.	570	28.44	2	380	18.96	2	105	5.24	5	
Specific conduct-	(micro-	mhos at 25°C)	CO HYDR SUBUNIT HYDRO SUBAREA	1530			1200			5800			43800			44043			42700			30900			0266			
	Hd		TDR S	D			8.3		:	6.0			7.6			7.5			7.7			7.5			7.8			
Temp	when	- L		1			1												1			-			1			
State well number		Date sampled	COASTAL PL OF LA	45/14W- 8M 6 S	12-18-64			60-07-1		45/14W- 8M12 5	*0-+7-TT		45/14W- 8M13 S	10-27-64			11-25-64			3-10-65		45/14W- 8M14 S	10-20-64		45/14W- 8M15 S	12-12-64		

	T to		15.49	5167	2900	4565	£ C.	4743	ž 2 7	, ^ }
constituents in	E vot Bit or hordness		8074	27037	27.953	19573	1368	96202	15655	
constituent per million	200	7	1	1	į	i	1	ł	t t	1
Mineral o			-	-	1	1	1	1	1	1
-	; ° ,		1	1	†	1	-	1	1	1
	ž 0 z		0	0.10	0	3	С	0	С	o
million per million ictance volue	3 0 0	00500	428U 120.70	15000	15648 441.27	10800 304.50	11800 332.76	11200	12700 358 • 14	11200
0	S 52	SAN GABRIEL KIVLK, HYUNU UNIT UU500	16.53	2099	2046	1523	1710 35.60	33.73	1850 38.52 10	1700 35.39
parts per equivalents percent	B.cor - b, cote	K, HYOF	137	181.2.97	3.10	3.35	208	215	2.64	2 • 44
po	Carbon	EL KIVE	0	0	0	0	0	0	0	0
.5		GABRI	31 0.79	2.35	80.5	1.74	1.28	50 1.28	2.92	1 • 1 5
constituents	E 0 0 2	⋖	2450 106.53	8080 351.32	8400 365.23 75	5700 247.84	6200 269.58 73	5880 255.66	6840 297-40	6000 260•88 74
Mineral co	5 C C C C C C C C C C C C C C C C C C C	L L UUSA2	23.93	985 81•01 17	1044	630	786 64.64 17	740 60.86	817	736 65•13 19
2	£ 7 0 0	UOSAU	161 8 • U3	34.23	82.04 32.04	691 34.48	35.93	700 34.93	643 32.09	23.45
Specific conduct-	mhos at 25°C)		13300	37819	39370	00262	30900	29100	32500	29690
	Hd	YDR S	7.9	Ο • π	7.8	8	7 . 7	7.6	30 •	7 • 7
Temp	when sampled in°F	A CO H	1	1	1	1	1		l t	1
State well	led	COASTAL PL OF LA CO HYDR SUBUNIT	45/14W- 8M15 S 12-15-64	45/14W- 8N 5 S	11- 4-64	45/14W- 8N 6 S 10-13-64	45/14W- 8N 7 5	45/14W- 8N 8 5 1-28-65	45/14W- 8N 9 S	45/14W- 8N10 5 1-18-65

TABLE E-I
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	Tc101	os Colls			4375			2567			2843		154			159			121	129			150		
constituents in	7 D S	Evap 105°C as Computed Call 3					21096		0127			5455			358			339		767	4.4.5	4		559	
constituent per million	S-11-				1			-			1					-			1	1			1		
Mineral parts p	Boron				1			1			1		1			1			1	0.34			!		
	0.0	, de			-			ŀ			!		ŀ			-			1	0.2			-		
	ź	Profe N. 3			2.0	0.03		0			0.08		C)		0			}	0.0			0		
million per million ctance value	C h 10	• p : .	00500		11600	327.12	68	2670	62.51		3110	68	87	2.45	36	83	2.34	36	113	130	3.67	†	201	52	
0	Sulfate	504	A SAN GABRIEL KIVER HYDRU UNIT U0500		1750	36.44	10	268	5.58	,	919	7	3	90.0	1	0			1	η	0.06	7	0		
parts per equivalents percent	BICOF -	bonote HCO3	HYDR.		133	2.18	_	242	3.97		3.97	4	260	4.26	63	256	4.20	49	278	277	4.04)	279	45	
par	Corbon -	ote CO3	L RIVER		0			0		(5		0			0			0	0			0		
i.	Potos -	E Z X	GABRIE		45	1.15		23	0.09	3	0.72	٦	4	0.10	7	4	0.10	2	I I		0.13	ı	0.13		
constituents	Sodium	o Z	A SAN		6380	277.40	0/	770	39	000	39.13	04	83	3.61	53	7.1	3.09	64	-	125	5.44		164	70	
Mineral co	Mogne-	S LUB M G	٠	U05A2	169	63.24	→	245	42	750	20.89	22	13	1.07	16	13	1.07	17	10	10	0.82		12	10	
2	Colcium	°	UOSAO		485	24.20	-	624	36	720	35.93	37	04	2.00	59	42	2.10	33	32	35	1.675		2.00	20	
Specific conduct-	(micro-	mhos at 25°C)	→	HYDRO SUBAREA	30300			8080		0000	,		661			642			777	730			1050		
	Hd		YDR S	40 SU	7.8			7.8		7.9			8 • 2			8 • 1			8 3	7.6			8 • 2		
Temp	when	I P			1			i		1			1			I			73	-			2.1		
State well		Date sampled	COASTAL PL OF LA	WEST COAST	45/14W- 8N11 S	1- 6-65		45/14W- 8P 1 S			7-27-65		45/14W- 8P 2 S	2-17-65			69-17-1		45/14W- 90 1 S 10- 5-64	77-06-01	*0-67-01		1-11-65		

	hordness os		152	181	18.9	178	183	164	170	104
constituents in	Evop Hoor	į	624	109	060	596	569	466	475	370
constituent	Seite- co S-0-2		1	1	1	l b	1	į.	1	30
Mineral parts p	Boron		1	1	0.75	-	1	1	1	0 • 14
	Fluo-		1	1	· 0	i i	1	ţ	1	* • • 0
	reste N z		0	5	0 • 0	0	0	0	0	0.00
million ce value	chlo- ride cl	00500	3.44	230	252	5.20	2111 5-95 51	153	156 4 34 49	7 7 9
per per pocton	Sulfate SO4	SAN GABRIEL RIVER HYDRO UNIT U0500	0.02	0.06	20.10	Э	0.02	0	0	0.25.0
parts per equivalents percent	Bicor - bonale HCO3	R HYDR	282	278	283	277	273	797	279	3.77
e d c	carbon - afe	L RIVE	0	0	0	0	Э	0	0	9
.c	Polos -	GABRIE	0.10	0.15	0.13	0.15	0.15	5 0.13	0.13	0.13
constituents	Sodium	⋖	110	169	187 8•13 68	166	152 6.61	122 5.30 61	120	2.91
Mineral co	Mogne.	L U05A2	0.99	1.32	1.23	1.15	1.07	1.07	1.15	2.5.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2
×	Colecus		2.05	46 20 21	51 2.54 21	2.40	52 2.59 25	2.50	2.75	2 • 5
Specific conduct-	1 0	JBUNIT (199	1200	1165	11110	1080	883	668	63.
	Ha	YDR SI	ω • 1	7.9	8•1	7.9	8.1	30 •	8 • 7	7 • 4
Temp	sampled in ° F	A CO H	9	72	1	1	1	27	12	1
State well	Date sampled	COASTAL PL OF LA CO HYDR SUBUNIT UO5AO WEST COAST HYDRO SUBAREA	45/14W- 90 1 S 2- 1-65	3- 1-65	3-11-65	5-10-65	59-6-5	7- 7-65	8- 7-65	45/14W-10J 1 S

TABLE E-I
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	to Evol Bo'C hardress	5 . 2	13 -13	5 - 2 Computed 5 - 2 5 6 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	36 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	2	2 2 2
7 2 K N		3 0.5 0.1	0 0	\$ 2 S		\$ 2 2 1 7 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
S: 4 CT	UNIT UUSUO	770	770 074	200 to 200 cour	7 7 0 7 0 7 0 0 0 0 V	xvo xoo mao +~a cex	214 GNO 400 MAO 4~4 ORK	770 070 000 000 000 000
CO ₃ HCC ₃ S	L RIVER HYDRO JNII UUSOO							
S S	A SAN GABRIFL	SAN 67 2.91 47	SAN 547 67 67 67 67 67 888 3.83 388	SAN 2 - 91 2 - 91 3 - 81 3 3 8 3 3 8 3 3 8 3 3 8 3 3 8 3 3 8 3 3 8 3 3 8 5 1 3 5 6 1 5 6 5 6 1 5 6 5 6 5 6 5 6 5 6 5 6	SAN SAN SAN SAN SAN SAN SAN SAN SAN SAN	SAN 471 6 7 6 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SAN (47.4) (10.5	SAN 67 67 67 67 67 67 67 67 67 67 67 67 67
C c M g	L UOSAO UOSA2	204	004 940	07 27 27 8	004 940 048 694	00	20 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	20 2 22 22 22 22 22 22 22 22 22 22 22 22
of 25°C)	O HYDR SUBUNIT UO! HYDRO SUBAREA	9	S	9	9	0	5	9
e c	L OF LA CO HY ST COAST HYDR	PL OF LA CO HY EST COAST HYDR 10J 1 S	FST COAST HYDR 10J 1 S	PL OF LA CO HY VEST COAST HYDR 10J 1 S 11F 1 S 1-64	PL OF LA CO HY MEST COAST HYDR 100 1 S 11F 1 S 120 2 S 120 2 S	PL OF LA CO HY WEST COAST HYDR 1-10J 1 S 1-11F 1 S 9-64 1-20 2 S 1-65 1 S 7-64 1 S	PL OF LA CO HY WEST COAST HYDR 1-10 1 S 1-11F 1 S 1-120 2 S 1-16F 1 S 1-6F 1 S	

TABLE E- I

* * 0 hordness 0666 3765 2466 0 '6'y 233 2000 50. 3 00000 5 368B lada. [454] Mineral constituents per million 5 0 ports 20 , p 11016 2 0 0 0 C 0 0 83.47 equivalents per million percent reactance value 134 3400 95.00 12500 33.70 338.40 552.50 7860 3760 10.54 11.60 per million A SAN GABRIEL RIVER HYDRU UNIT U0500 -1 G & TO I I I I 173 3.60 1650 34. 35 1010 777 4.66 122 1.22 11,0 12012 5.31 1 40,0 177 504 Su tote per HCO3 181 231 3.62 3.001 133 3.13 3.17 Bicor -777 3. 16 bonote 100 7 47 [Carbon -0 2 0 0 0 000 016 34 0.79 Potos -1.94 1.74 1.13 SIUM .5 × constituents 31.31 960 203 8.83 628U 6500 37.39 73.05 3240 · 9 · / 5 40.34 46.36 70.70 1100 4 500 Sodium 0 23.70 575 Mogne-376 61.6.1 30.92 444 40.00 36.43 565 14 H . 7 3 Mineral JU5A2 BILLA 2 30.74 34.33 616 1.3 1111. 688 1220 883 35.23 440.6 864 43011 999 COASTAL PL OF LA CO HYDR SUBUNIT U05AU 0 ot 25°C) conduct-8711 micro-9600 Specific 12051 31400 71030 mhos WEST COAST HYDRO SUBAREA once 3. • 4.0 8.2 8.0 H. J. 1.01 105 8.2 I when sampled Temp. IN °F 1 I 1 1 v S U, 45/14W-17D 1 45/14W-170 2 45/14W-170 3 45/14W-17D 4 Date sampled State well 3-26-65 3-26-65 3-25-65 11-20-64 11-25-64 4-6-65 number

TABLE E-1
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

		hardness as Coulca		5065		5918		6694		5432		4802		3424		3822		3611		
constituents in	6	Evap 180°C hardness Evap 105°C as Computed Coulds			29456		28679		8102		9100		18239		10468		13408		9185	
consti per mi		co S		+		1		1		Į.		-		1		1		-		
Mineral parts p				-		1		1		1		-		1		1		1		
		ride F		1		8		i		1		1		1		1		i i		
		trate NC3		0		0		0		0		0		2	0.03	9 ,	0 1 0	0		
million per million ctance value	-	p - U	00500	16300	99.65+	15900	448.38	0494	130.85	5140	144.95	10100	06	5760	162.43	7380	89	5250	06	
0	Cultota	504	RIVER HYDRO UNIT U0500	2290	47.68	2310	48.09	650	13.53	778	16.20	1460	30.40	807	16.80	1012	6 6	646	13.40	
parts per equivalents percent re	1 1	bonate HC03	HYDRO	183	3.00	180	2.95	109	1.79	169	2.77	173	2.84	241	3.95	228	3.64	192	5.15	
por	4	01e		0		0		0		0		0		0		0		Э		
i s	9 0	E 2 X	GABRIEL	124	3.17	136	3.48	18	0.46	20	0.51	25	40.0	56	1.43	68	10/4	040	1.02	
constituents	8	0 2	A SAN	0006	391.32 76	8600	373.93	1150	50.00	1240	53.92	5130	70	2600	62	3600	156.53	2000	54	
Mineral co	. e	S E D S	L U05A2	1100	90.46	1120	92.11 19	450	37.01 26	519	42.68	747	01.43	380	31.25	494	38.16	644	20.73	
2	81.17100	0 0		552	27.54	524	26.15	1140	56.89	1320	65.87	692	34.53	745	37.18	166	38.22	706	35.63	
Specific conduct-	ance (micro-	mhos of 25°C)	O HYDR SUBUNIT I	41300		40000		13400		14100		26200		16556		20661		14900		
	H d		TDR SI	8 • 4		8 • 1		8 • 1		7 • 8		7.7		4.9		8 • 2		7.8		
Тетр	when	samplea In ° F	CO HY I HYDR	1		!		1				Į į		-		-		-		
State well number		Date sampled	COASTAL PL OF LA CO HYDR SUBUNIT UO5AO WEST COAST HYDRO SUBAREA	45/14W-17D 5 S	11-30-64		3-26-65	4S/14W-17D 6 S	11-30-64		3-26-65	45/14W-17D 8 S	3-29-65	45/14W-17D10 S	11- 5-64		11- 5-64	45/14W-17D12 S	3-10-65	

	10407	Cours Cours		7907	3934	3330	3675	3610	5352	5507	4
constituents in	7.0.5	Evap 105°C Computed		16415	14408	2483	5910	2949	78617	27 47	59077
constituent per million		5 0 2		1	-	1	-	ł	-	1	1
Mineral c	Beren	В		1	1		1	-	1	1	1
~	30	r d e		1	1	l l	1	į į	-	1	
	ż	rote NU3		0	Э	7	7)	0	0	0	Э
parts per million equivalents per million percent reactance value	Ch10 -	71de	00400	9040	7960	3420 96•44	3720 104.90	3760 106.03	12260 344.04	12500 352.50	12600 355-32
per	Sulfate	504	SAN GABRIEL KIVER HYDKO UNII UUSUO	1350 28•11 10	1140	1.71	1.98	78 1.62 1	1640	1700	1720
parts per equivalents percent r	Bicor -	bonote HCO3	R HTDK	202	210	3.69	196 3.21 3	181 2.97	3.77	226 3•70	228 3.74
eq.	Carbon -	01e	L KIVE	0	0	0	0	0	Э	9	0
Ē	Potos -	£ ×	GABRIE	1.10	20	1.02	20	34	176	78 1.99	9 0
constituents	Sodium	0 2	∢	465U 2U2.18 71	3960 172-18 69	34.35	850 36.09	860 37.39	6200	6380 277-45	6500
Mineral co	Mogne-	E 0. N	L UUSA2	609 50.08	541 44.43 18	453	44.00	490 400 37	746 61.35	343 69.33	852 70.07
Σ	Colcium	° U	00543	624 31.14	684 34•13 14	587 29.29 29	651 32.48	638 31.84	914	816	816 40.72
Specific conduct-	(micro-	mhos at 25°C)	CO HYDR SUBUNIT HYDRO SUBAREA	24400	23500	9823	10500	1,200	32258	32000	31200
	I a		YDR S	7.8	7.8	8 . 4	8	8.2	8 • 1	8 . 2	8.2
Temp	sampled	in °F	L-	1	\$ 8	1	1		1	1	1
State well		Date sampled	COASTAL PL OF LA	45/14W-17D13 S 3- 4-65	45/14W-17D14 S	45/14W-17E 3 S 11-23-64	5-165	6-15-65	45/14W-17E 4 5 11-23-64	4-10-65	6-15-65

TABLE E-1

ANALYSES OF GROUND WATER

LOS ANGELES DRAINAGE PROVINCE (U)

	Tutol hordness cs Cours		527	1840	1995	2280	4073	4255	1808	1704
constituents in	Evop 8000 Evop 5000 Computed		913	2536	4772	3904	13573	13892	2862	2714
constit	5. 1. co 5.02		1	1		ļ	1	}	1	1
Mineral c	8 8		1	-	1	1	1	1	1	-
2	, de		1	1	1	1	1	1	į į	1
	7 2 N		0	0	7	Э	Э	0	0	0
million		ითგიი	446	1510	1010	2410	7590 214.04	7800	1720	1620 45.68 91
per	Sulfate SO4	GABRIEL RIVER HYDRO UNIT UUSGO	0	46 0•96 2	1.14	1.21	971 20.22	934 17.45 B	90.0	2 0.04
parts per equivalents percent re	Brcor - bonate HCO3	R HYDR	276 4 5 2 6	228 3•74	246	3.62	264	257	260 4.26	271
pod	Carbon - ate CO3	L RIVE	0	0	2	1)	Э	0	0	0
Ë	Potos -	GABRIE	11 0.28	0.18	25.0	3.0.11	1.10	1.43	26	24
constituents	E n p o N	A SAN	142 6.17	24° 10•44	205	26.09	3500	3640	375	364 15.83 31
Mineral co	Magne: Sium Mig	1 1 1 1 1	4.19 25	179	15.87	338 27.80	548 45•07 19	568 46•71 19	176	172 14•15 28
2	E 2000	UOSAU	127 6•34 37	442	480 23.95 46	356 17•76 25	728 36.33	768 38•32 16	434 21.66 41	399 19•91 39
Specific conduct-	mhos at 25°C)	O HYDR SUBUNIT U05AU HYDRO SUBAREA	1792	4810	5100	7620	20200	22900	5400	2100
	ī	YDR S	ж •	7.9	30 •	7.9	7 • 8	7.6	χ •	# 80 80
Тетр	when sampled in ° F	A CO HYDR ST HYDRO S	-	1	1	1	1	1	8	ā P
State well	led	COASTAL PL OF LA C	45/14W-17E 5 5 11-23-64	5-10-65	6-15-65	45/14W-17E 8 S 3-23-65	45/14W-17E 9 S 3-15-65	45/14W-17E11 S 4- 8-65	45/14W-17F 1 S 12- 3-64	5- 6-65

	Total hardness os		3185	3803	191	175	174	210	077	186
uents in lion	TDS Total Evap 180°C hardness Evap 15°C as		8050	8415		474	4 2	0 7	2 0 0	4 5 5
constituent per million	5 12		1		1	1	l	1	I 1	1
Mineral constituents parts per million	ξ, , , , , , , , , , , , , , , , , , ,		1	1	1	0.29	1	1	0.67	1
Σ	, p		1	1	Į.	0	i i	-	0 • 1	1
	rote N 3		0	0		0.0	0	0	0	0
million s value	0 P 10	00500	4680 131.98	4880 151.662	3.78	101	3.41	143	155	7 0 0 4 D 4 D 4 D 4 D 4 D 4 D 4 D 4 D 4 D
er million its per million reactance value	Sulfate S > 4	SAN GABRIEL RIVER HYDRO UNIT U0500	4444	4750	1	0.33	0.04	0.02	0.12	3 0 ° 0
- e D	Bicor - bonote HCO3	R HYDR	3.15	275	293	282	290	287	298 4.88	266
parts equiva percen	Carbon -	L RIVE	0	0	Э	t i	0	0	0.17	0
Ë	Potos - C	GABRIE	1.30	1.13	1	0.1.0	0.13	0.1.5 1.1.5	0.24	0.13
constituents	Sodium	∢	1560	1710	1	120	104	103	110	2
Mineral cor	Mogne- stum M g	L UubA2	455	458	16	1,40	1.23	1.40	1.40	1.32
×	Colcium		766 38.22	38.36	5.50	42 - 10	2.75	56 2 32	2 4 6 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2 24 6
Specific conduct-	mhos at 25°C)	SUBUNIT	134	13800	463	810	2,50	8693	3 2 2	2 2
0, 0	r _a	IDR SI	7 *	61	25 	7 • 4	ς 2	æ.	x •	\$ *
Тепр	when sampled in ° F	CO HY	i	1	1	l I	13	15	1	7.0
Stote well	led	COASTAL PL OF LA CO HYDR SUBUNIT UOSAU WEST COAST HYDRO SUBAREA	45/14W-17F 2 S 12- 3-64	5-6-65	45/14W-17H 1 S. 10- 5-64	10-27-64	1-11-65	3- 1-65	3-3~-65	4-7-65

TABLE E-1
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	Total hardness os Caroa		219	146	177	149	179	153	4112	4213
constituents in	T D S Evap 180°C I Evap 105°C Computed		887	416	482	410	480	410	12891	13515
constituent per million	Silt- co SiO ₂		1	-	t I	1	l	1	ŀ	
Mineral c	Boron		-	1	67.0	1	0.18	1		t t
	Fluor		1	1	0 • 1	!	0.5	-	ł	1
	rote NO3		0	0	0	0	0 • 0	0	10	10
million e value	chlo =	00500	154	106 2.99 38	3.36	1000	3.10	102 2.88 38	7280	7610 214.60
millior	Suffore SO4	SAN GABRIEL KIVER HYDRO UNIT UU500	0	0.17	0.17	0.15	0.04	0.08	844 17.51	910 18•95 8
parts per equivalents percent re	Bicor - bonote HCO3	к нүрк	294	284	276	289	298 4.88	252 4.13	266	258 4 • 23 2
par	Carbon - ofe	L KIVE	0	O	0	0	0.13	0.53	0	0
i.	Potos - Sium K	GABRIE	0.15	0.13	0.13	0.10	0.15	0.13	68 1•74	102 2•61 1
constituents	Sodium	∢	107	107	106	107	107	107	3250 141•31 63	3420 148•70 63
Mineral co	Mogne- stum Mg	L UU5A2	18 1•48 16	1.07	1.23	1.23	1.73	1.15	523 43.01 19	542 44•57 19
2	Colcium	UOSAG	58 2.89 32	37 1.85 24	2.30 2.8	35	37 1.85 22	38 1.90 24	785 39•17 17	794 39•62 17
Specific conduct-	mhos at 25°C)	O HYDR SUBUNIT HYDRO SUBAREA	845	789	775	750	710	147	20200	20900
	H	YDR S	8 • 1	8 • 2	8 • 2	80 9	80	8 • 6	80	8 • 1
Temp.	sampled in ° F	CO H	75	73	1	61	1	72	1	I I
State well	Date sampled	COASTAL PL OF LA CO HYDR SUBUNIT WEST COAST HYDRO SUBAREA	4S/14W-17H 1 S 5-10-65	8- 2-65	45/14W-17H 2 S 10-27-64	2- 1-65	3-30-65	7- 7-65	45/14W-17M 3 S 6-22-65	45/14W-17M 4 S 6-29-65

	Total hordness os		3895	4317	4212	3995	782	4 5 1	576	2920
ion	Evap BCCC hose Evap IOSoC Computed Co		11989	11194	11693	10212	1594	20	080	17065
constituents per million	S 0 2		1	1	i i	1	-	1	1	1
Mineral c parts pe	, s, a		1	1	1	-	1	-	1	1
Σ	2 5		1	1 2		1	1		i i	1
	N. N. 3		0.10	0	0	0	0	0	0	0
million e value	C h 10	00500	6720 189.50 90	6440 181•61 91	6600 186.12 91	5930 167-23	722 20.36 69	346	461 13.00 70	9760
million per pactanc	Sulfate SU4	SAN GABRIEL RIVER MYURU UNIT UUSOO	794 16.53	13.37	728 15.16	506	6 0 • 12	0.10	70.0	1130 23.53 8
lent	Bicor - bonote HCU3	HYUK	260	268	264	278	545 8 • 93 30	36	330	188 3.08
parts equiva percen	Carbon ote CU 3	- KIVE	2	0	0	2	0	0	0	0
Ē	Potos.	SABRIE	1.43	1.43	56	1.05	110.43	10	1110.28	1. 2.4. 8.4.
constituents	E 7. P 0 Z	A SAN	3040 132.18 63	2560 1111•31 56	2840 123.48 59	2300	332	142 6.17	152 6.61 36	4150 180•44 60
Mineral co	Nogoe.	L UOSA2	486 39.97 19	563 46.30 23	537	466 38•32 21	99	5.81	60 4.93	765 62.91 21
Σ	mr., 00	U05A0	759 37.87	801 39.97 20	802 40.02	832 41.52	150	103	132 6.59	1110 55.39 18
Specific conduct-	. 0	⊢	18200	17200	17700	16300	0667	1620	1890	76000
	H	DR SU	7 • 8	7 - 7	7 • G	8 - 2	7 • 7			~∩ • 10
	when sampled in F		1	1	1	1	1	1	1	1
State well	led	COASTAL PL OF LA CO HYUR SUBUNI WEST COAST HYDRO SUBAREA	45/14W-17M 5 S 5- 4-65	45/14W-17N 4 S 6-14-65	45/14W-17N 5 5 6- 3-65	45/14w-17N 6 5	45/14W-17P 1 5 2-23-65	45/14W-17P 2 S 2-19-65	6-15-65	45/14W-18A 1 S

TABLE E-1
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	7-10 hardness as		5512	3952	5152	5234	5923	5976	2037	5818
uents in	TOS 1.10 E VOD BICOT Nardness Evap LEOC as Computed Cours		25596	1914	14004	14642	46287	28833	6745	27142
constituents per million	S- 1- co S 0 2		1	-	1	-	1		1	1
Mineral o	0 0		1	-	!	1	1	-	l t	1
2	2 D T		1	1	1	8	†	į	F 1	1
	2 0 2		0	3.7	0	0	5	0	0	0
million per million ctance value	0 H 10	00500	14200	4530 127.75 91	8360	8360 235•75 91	15700 442.74 90	16000	3680 103•78 88	15100 425.82 90
0	Sulfore	SAN GABRIEL KIVER HYDRO UNIT UOSOO	1920	519 10•81 8	y34 1y•45	947 19•72 8	2170 45•18	2230	556 11.58 10	2090 43•51 9
parts per equivalents percent re	Bicor - bonate HCU3	к нүрк	208	154 2 52	188	3.15	3.08	188 3.08	183 3.00	3.20
eq.	Carbon -	L RIVE	0	С	.5	0	Э	0	5	5
Ë	8 - 2 - 2 X	GABR 16	164 4•19 1	25	1045	56	200 5•11	,24 5.73	13	200 5.11
constituents	S odium	∢	7640 332•19	1420	352U 153.05	3520 153.05 59	8400 365•23 75	373.93	1760	347 • 84 74
Mineral co	M o o n e .	L UUSA2	984 80.92 18	373	650 53.46	665 54.69 21	1080 48.82 18	1070	262	1040 85.53 18
2	Colcium	UOSAJ	586 29.24	968	992	1000	592	29.19	384 19•16 16	616
Specific conduct-	mhos at 25°C)	CO HYDR SUBUNIT U05AJ HYDRO SUBAREA	36800	13300	21800	21900	38500	38800	10700	37600
	H	YDR S	8 • 4	8 2	8 1	8 • 1	7.9	π • 3	7 • 8	0
Temp	when sampled in °F	⊢	i	!	1		-	1	8	1
State well	p 9	COASTAL PL OF LA WEST COAST	45/14W-18A 2 S	45/14W-18A 3 S 12- 1-64	45/14W-18A 4 S 3-29-65	6-14-65	45/14W-18A 5 S 3-29-65	6-14-65	45/14W-18A 6 S 3-29-65	45/14W-18A 8 5 5-12-65

	7 10 hordress 25 20 3		2674	74 20	1287	2734	3,00	3 0 0	0,709	0000
constituents in	Evap 180°C hardness Evap 105°C as Computed 50°3		27700		11/6	2607	76107	10/07	17141	11572
constituent per million	S.119- C.0 S.10 ₂		-	i i	1	1	1	1	1	i i
Mineral parts p	Boron		-	I	-	1	ł	1	1	1
2	Fluor		1	1	-	1	1	}	1	1
	rote NO3		0	Э	0	0	7	0	С	Э
million e value	Ch 10 -	00400	15400	832	1320	81 14600 411.72	14900	16200	9840	10100
equivalents per million percent reactance value	Sulfore 504	A SAN GABRIEL KIVER HYDRO UNIT UDSOU	2120	224	275			2230	1100 22.90 8	23.11
equivalents percent re	Bicar - bonote HCO3	н нүрк	3.20	194	190	222	217	272	215	212
e d Pe d	Carbon - ate CO3	L KIVE	0	0	0	2	0	0	0	0
ë	Potos -	GABR 1E	212	17	22	140	160	280	2.17	84 2.15 1
constituents	Sodium		8200	322	460	1760	7840	8800	4150 180.44 60	4300 186.96 60
Mineral co	M o g n e .	L UUSA2	1050	0 0 0	121		1070	1100	850 69.30	854 10 - 62 22 - 52
Σ	Calcium		622 31.04	200	316	34 040 31.94	624	510	1010	1020
Specific conduct-	mhos ot 25°C)	SUBUNII UOSAC UBAREA	37360	3140	4540	31594	36500	39 700	00257	26000
	I a	HYDR SU	8 1	~ ∘ a	n n	-7	30 0	2	7 • 8	÷ x
Тетр	sampled In ° F	CO HY	1	1	!	1	1	1	}	1
State well	Date sampled	COASTAL PL OF LA CO HYDR SUBUNI WEST COAST HYDRO SUBAREA	45/14W-18A 8 5 6-14-65	45/14W-18A 9 5 5-12-65	6-14-65	45/14w-188 1 5 11-20-64	6-11-65	45/14w-18F 1 5 12- 4-64	4 3/14W-18H 1 5	5-1-65

TABLE E-1
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	Total hardness as	£0003	6061	2558	5032	5010	5009	351	801	1180
constituents in per million	UU	Computed	17819	1997	21513	21548	21793	726	1398	1805
constituent per million		20.2	-	1	1	1	1	1	1	l
Mineral parts p	Boron	m	1	1	1	1		ŀ	1	1
N. W.				1	1	-	1	-	1	-
		200 N	0	0	0	0	0	0	0	0
million s value	Chlo-	00500	10200	4250 119.85 87	11900 335.58	12000 338.40 90	12100 341.22 90	288 8•12 60	706 19.91 77	976 27-52 83
er million nts per million reactance value	Sulfate	SAN GABRIEL RIVER HYDRO UNIT U0500	1160 24.15		1670	1650	34.77	0.10	88 0.00	1.00
parts per equivalents percent re	Bicar - bonate	H H H H H H H H H H H H H H H H H H H	211	206 3•38	233	230	231 3•79	326 5 • 34 39	314 5 15 20	294 4.82 14
por	Carbon -	L RIVE	0	0	0	0	0	0	0	0
, <u>c</u>	Po to \$	GABRIE	185	1.15	78 1.99	1.61	1.48	10	13 0•33 1	16
constituents		∠ <	4300	2000 86.96 62	6250 271.75 73	6250 271.75 73	6380 277-40	143	220	220
Mineral co	Magne	M 9	860 70.73 23	295 24•26 17	795 65.38 17	824 67•77 18	825 67.85 18	2.63	75 6.17 24	112 9•21 27
2	Calcium	C 0	1010	538 26.85 19	705 35.18	648 32•34	646 32•24 9	4 88 33	197 9 • 83 38	288 14•37 43
Specific conduct-	(micro- mhos	O HYDR SUBUNIT	25400	12920	30500	30900	30700	1370	2620	3360
	ī	YOR S	8.2	8 • 2	8 . 2	8 • 1	8 • 2	00	в Э	80 9
Temp.	when sampled in ° F	0.		l I	1 1	1	1	1		1
State well	led	COASTAL PL OF LA	45/14W-18H 1 S 6-21-65	45/14W-18H 2 S 11-25-64	12- 2-64	5- 7-65	6-16-65	45/14W-18H 3 S 12- 2-64	5- 7-65	6-16-65

		hardness	(1)			2246			5603			5003			5877			7 1 0 0			4679			5580			3054				
constituents in		Evap 180°C	Computed					70857			CCTCZ			26435			26482			19849			36855			17495			3134		
constituent			5.02			1			I			1			į,			1			1			1	_		1				
Mineral c	40.00		8			-			8			-			1			1			1						!				
Σ	()		L			-			f			1			1			1			1 1			1					_	_	
	2	trote	NO3			0			0			0			0			0			0			0			0				
million e volue	100	, p	- 0	00500		13800	389.16	06	14000	394.80	06	14700	414.54	0.6	14800	417.36	000	11500	324.30	9.5	10200	513.24	000	10100	24.82	9.5	4920	138.74	37		_
per	Sulfate		504	SAN GABRIEL RIVER HYDRO UNIT U0500		1901	39.58	5	1930	40.18	Эn	1970	41.02	5	2010	41.85	7	1161	24.17	2	2570	53.92	ア	918	_	9	37	0.77	7		
equivalents percent re	- 20 - 0		нсоз	R HYDR		206	3.38	1	210	3.44	7	234	3.84	٦	226	3.70	~	172	2.82	7	140	2.29		316	5.14	2	523	8.57	9		
ped	Corbon	0 1 6	C 0 3	EL RIVE		0			0			0			2			0			0			0			0				
u .	Dolog .	Stuff	×	GABRIE		100	2.56	-	185	4.73	7	100		-	75	1.92		105	7.60	_	270	06.9	~	93	2.38	7	040	1.02	٦		
constituents	Burbos		0 2	∢		7280	316.53	73	7300	317.40	(3	7840	340.88	74	1800	339.14	1	4850	210.00	09	10000	434.80	11	4500	195.66	63	1960	85.22	200		
Mineral co	000	Enis	5	٦	UUSA2	951	78.21	18	1961	79.53	81	1040	85.53	18	1030	84.71	24	918	75.50	22		_	78	780	64.15	21	468	38.49	97		
2	Solvering		0	00540		419	33.63	on .	650	32.44	,	670	33.43	7	656	32.13		1230	61.30	18	506	25.25	1	646	47.36	15	452	22.55	5		
conduct-	(micro-	mhos	at 25°C)	SUBUNII		35000			33600			36200			35200			29100			43800			26300			13800				
	Hd			HYDR S	0)	8.2			8.2			8.1			2.8			8.2			ж			8.4			8.3				
Temp	when	samplea.			>	1			1			1			1			l I			1			-			1				
State well		Date sampled		COASTAL PL OF LA CO	WEST COAST HYDRO	45/14W-18J 1 S	12- 4-64			6-17-65		45/144-18K 1 S	12- 3-64		1	6-1/-9		45/14#-180 1 5	15- 1-64		45/14W-18G 2 S	12- 7-64		45/14W-18Q 3 S	12- 7-64		45/14W-20G 1 S	3-30-65			

TABLE E-I
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	101	hardness 05 Coulds		1614		1937		1	167		327			238			237			139			96			
lion	105	Evop 180°C hardness Evop 105°C os Computed Coults			4352		3450		6 5 8	595	409		587	268		205	524		503			616			480	
constituent per million	-1115			1		ł			1		-			1			1			1			1			
Mineral constituents parts per million	Boron			1		1			57.0		0.24			77.0			0.27			1			i			
	0 11 14	ride F				ŀ		(> 0		0.1			0.2			7.0			-			1			
	2	hrote NO3		2		0		-	0.00		2	0.03		0.0			0.0			0.0			0.0			
per million ctance value	Chito -	ride C I	00500	1250	35.25	1940	54.71	100	3.61	35	101	3.00	34	120	くて。と	31	130	3.01	38	174	4.91	777	1 3 B	3.89	44	
0	Sulfate	504	SAN GABRIEL RIVER HYDRO UNIT U0500	10	0.21	194	4.04	-	0.02	,	ж	0.17	-	2	+O•0		7	0.15	7	22	0.52	v	0			
parts per equivalents percent re	Bicar -	bonate HCO3	R HYDR	554	9.08	264	4.33	007	524	59	955	7.31	49	359	5.00	62	355	5.82	09	347	69.6	51	599	06.4	26	
pod	Carbon -	ote CO3	L RIVE	3		0		S)		2			0			0			٥			Э			
i.	Potos -	8 X	GABRIE	15	U•3¤	19	0.49	a	J.20	~	12	0.31	~	v	0.13	7	7	0.23	2	10	0.26	2	4	0.10	7	
constituents	Sodium	0	⋖	268	11.05	525	22.83	110	4.18	777	103	4.48	0.4	112	4.87	200	114	96 • 4	90	187	8.13	73	158	6.87	18	
Mineral co	Moone	S i u m	L UUSA2	169	13.90	200	16.94	37.	Z • 8 U	97	0.4	3.29	62	24	1.97	20	32	2.63	27	10	0.82	7	7	0.58	_	
2	Burnen	0 0	UUSAJ	368	10.36	436	21.76	43	3.14	27	65	3.24	29	96	5.79	67	42	2.10	٣,	34	1.95	17	56	1.30	15	
Specific conduct-	(micro-	mhos at 25°C)	O HYDR SUBUNIT	4350		6120		2,43			785			300			860			1101			886			
	Hd		YDR S	ۍ ه د		и. В.		7 . R	2		8.1			7.9			9.0			7 . 8			8.5			
Temp	when	in ° F	CO H	1		!		6.7)		1			7.1			-			1			ŧ			
State well		Date sampled	COASTAL PL OF LA C	45/14W-205 2 S	3-30-65	48/14W-206 4 S	3-30-65	2 1 NIC-W41/54	4			3-31-65		45/14W-35F 2 S	10-29-64			4- 2-65		55/12W- 3F 1 S	10- 2-64		58/12W- 3J 1 S	10- 6-64		

	Total hardness 2.5	m 	224	2865	5685	3675	3762	9700	1841	0 0
constituents in	Evop 180°C hardness		1912	30172	05697	11071	18566	33007	2640	30529
constituent per million	. 00	~	1	1	-	1	1	1	-	1 1
Mineral parts p	8, 10, 10		1	-	1	1	1.40		1	2000
	, c ,		1	1	1	1		1	1	† •
	2 0 2		0	٥	18	0	90.0	0	0	0 • 5 3
million e volue	0140	00500	23.64	16 700	16000	9740	9810 276.64	18800	3230 91.09	10000
ts per million reactance volue	Sulfate	SAN GABRIEL RIVER HYDRO UNIT UUSOO	0.25	2240	2190	1300	1179	24400	1.75	2 lod 45.14
parts per equivalents percent re	Bicor	R HYDR	575 9.42 27	228	216 3.54	408	395	426	442	7.28
equ	Carbon -	L RIVE	27 0.90	0	5	0	Э	0	3	5
. <u>E</u>	Potos	GABRIE	0.43	260	6.96	158 10.4	180	160	28	8 . U.S.
constituents	Enipos	A SAN	28 • 87 85	9200	382.62	5250	5325 231•55 74	9600 417.41	1470	9380
Mineral co	Mogne.	L L	2.63	1140	1100	694 51.01	59.95	1370	267	1136 73.42 18
Σ	musal o		3/	470	404 23 • 15	328	305 15.22	1050	294	23.80
Specific conduct-	mhos	JBUNIT (3400	41300	40200	26600	27709	41700	9520	38200
	I a	rok su	υ •	7 - 7	1.6	\$ •	1.5	7 • £	n • n	9.
Temp	sampled	CO HY	1	න ඉ	6 8	2	26	1	ļ i	67
State well	Date sampled	COASTAL PL OF LA CO HYDR SUBUNIT UO5AO	55/13W- 1A 1 S 7-16-65	55/13W- 2G 3 S 5-11-65	8- 2-65	55/13W- 2J 6 S 8-3u-65	55/13W- 2K 8 5 7- 4-65	55/13W- 4E 1 S 6-25-65	55/13W- 4E 2 5 6-25-65	55/13W- 4M 1 5 7- 9-65

TABLE E-1
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	Total			3796		76			6773		125			1849		141		154		148		
constituents in per million	T D S Evop 180°C	Computed			18315			585		28274			1520		32622			1484	1336		1333	
constituent	\$111.	5.02		i		į			ŀ		ŀ			1		- 1		1		-	-	
Mineral o	Boron	8		1		1			!		Ì	-		1		1		1.64		-		
	Fluo-	ų.				1					-			-		1		0 • 8		1		
	Ni -	NU3		0		O			0		0			0		-		0•4	90.0	0		
million e volue	Ch 10 -	t 0	00500	10100	284.82	174	4.91	94	15800	00.0044	560	15.79	D CC		06	572	16.13	546	15.40	216	14.55	
per	Sulfate	504	SAN GABRIEL RIVER HYDRO UNII UOSOO	1290	26.85	C			2020	4 / 0 0 0 0 V	7	0.15		2410		1		-	0.02	13	0.27	
parts per equivalents percent re	Bicor - bonote	нсо3	R HYDE	486	7.97	352	5.77	24	344	7.004	627	10.28	38	339	7	548	8.98	518	8.49	558	9.15	
por	Carbon -	CO3	EL RIVE	0		0			0		28		'n	0		0		0		0		
Ë	Potas -	×	GABRIE	128	3.27	2	0.23	2	92	66.9	16	0.41	7	280) ~ C	1		9	0.15	12	0.31	
constituents	E nipos	0 N	⋖	5500	239.14	205	8.91	70	8200	320.24	560	24.35	68	9800	91	-		024	20.44	470	20.44	
Mineral co	Mogner	6 M	L UU5A2	713	58.64	10	0.82	Φ	1110	91.629	14	1.15	4	1285	19	16	1,32	15	1.23	17	1.40	
2	Calcium	000	UOSAJ	345	17.22	14	0.70	7	883	4 0 0 0	27	1.35	2	480	4	30	1.50	37	1.85	31	1.55	
Specific conduct-	(micro- mhos	at 25°C)	O HYDR SUBUNIT UO5A~ HYDRO SUBAREA	27600		1060			36500		2670			44600		2390		2350		2400		
	Ŧ _d		YDR S	8.0		သ က			8.0		8 • 6			8 • 2		8 • 2		7.9		8 • 4		
Temp	when sampled		CO HYDR	1					-		1					33		0.6		-		
State well	led		COASTAL PL OF LA C	5S/13W- 4N 1 S	8-30-65	58/13W- 5C 1 S	6-24-65		55/13W- 5C 2 S	60-47-9	55/13W- 6B 1 S	7-13-65		55/13W- 68 2 S	0-61-1	55/13W- 6D 1 S	10- 5-64		11- 2-64		11-30-64	

	7.2 to hordness 0.5 Col. 3		138	140	176	150	148	145	141	8482
constituents in per million	EVOD BCCC Andress EVOD 105°C 05 Computed Coling		1105	1811	1376	1313	1305	1287	1303	41397
consti per mi	5.02		1	t t	i	1	-	1		1
Mineral parts p	9,,0		1	-	7.00		1	1	1	1
	, p		1	1	9.0	1	-	1	1	1
	Z 0 Z		3	0	0.02	0	э	0	0	0
million per million ctance value	- 0140	00400	376	410	15.20	514 14.49 02	14.27	13.82	13.76	22800 542.90 90
0	Suifore	A SAN GABRIEL RIVER HYDRU UNII UUDOO	21	210.56	0.17	0.19	0.25	13 0.27	23	3280
parts per equivalents percent re	Bicgr - bonote HCO3	אט אַר	507	325 8.60	9.39	80 24 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	80 80 30 80 80 80	480 7.87 34	542 8•86 38	397
Pod	Carbon - aie CO 3	L RIVE	2	٥	0	2	Э	200.00	0	Э
Ē	Potos .	GABRIE	11 0.28	0.31	18	0.15	14	14	0.31	255
constituents	Sodium		384 16.70 85	420 18.26 85	445	470	460	460	460	12500 543.50
Mineral co	Mogne S-cm Mg	L UUSA2	1.43	1,32	10.32 5	1.64	1.40	1.40	1.32	1589
2	Calcium		1.35	32	444	1.35	1.55	3°C 1 • 5°C	300	38.82
Specific conduct-	mhos at 25°C)	HYDR SUBUNIT UOSAU	1950	2020	2250	2350	2350	2280	2290	53000
	I	DR SI	80 E • 3	8 • 4	0 • 8	8 • 2	7 ° 8	9	8. 1	80 •
Temp	sampled in ° F	CO HY T HYDR	36	96	1	89	1 1	1	8 8	!
State well	Date sampled	COASTAL PL OF LA CO HYDR SUBUNI WEST COAST HYDRO SUBAREA	55/13W- 6D 1 S 1-12-65	2- 1-65	4- 2-65	5-10-65	6- 2-65	7- 6-65	8 - 3 - 6 5	55/13W- 8P 1 S 7-12-65

TABLE E-I
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

		hardness 05 Colica			4772			6243			9049			5000			16297			6163				385				
constituents in per million		Evop 180°C hardness Evop 105°C os Computed Colica					74389			33261			34310	74400		15676	32321		30751			30946		665		558		
constituent		5.02			1			1			-			1			Į.							1				
Mineral c		80.00			1			1			-			3.50			2.90			1				0.12				
		ride F			-			-			-			1.07			6 e m			1				9.0				
		Total N			0			0			0			0	0.10		D	0.13		0				1.3	0.02			
million e value		- 01 U	00401		13500	380.70	06	18300	516.06	06	19000	535.80	0.6	18350	511.47	06	17150	483.63	06	17200	485.04	06		81	2.20	23		
er million 1s per million reactance value		SUITOTE SU4] 🧟		1620	33.73	α			5	2610	54.34	5	2337	40.06	6	2225	4	6	2300	47.89	2		163	(1)			
parts per equivalents percent re		bonate HCO3	I A		570	9.34	2	247	4.05	~	304	86.4	7	369	60.09	1	266	4.36	1	317	5.20			256	4.20	4.2		
pod		016	3/1/9		0			0			0			0			0			0				0				
. <u>c</u>		S 5 3 X	GARRIA		228	5.83	-	300	7.67	→	315	8 • 0 5		264	6.75	П	208	5.32	7	180	4.60	→		2	40.0			
constituents		E 0 2			7440	323.49	16		445.	77	10500	456.54	7.7	10000	434.80	9/	9280	403.49	75	0076	408.71	0		57	2.48	77		
Mineral co		E D N		UUSA2	912	75.00	18	1250	102	18		105.	18	1281	105.35	18	1200	69.86	18	1170	96.22	PΤ	U05A3	42	3.45	34		
2		E 0 0		UOSAO	408	20.36	S	044	21.96	4	456	22.75	4	566	28.24	5	544	27.15	2	540	26.95	0		85	4.24	41		
Specific conduct-	ance	mhos of 25°C)		CO HYDR SUBUNIT I HYDRO SUBAREA	34200			45000			46300			46361			43783			42700			SUBAREA	7967				
	Hd			YDR S	8.3			8•3			8.4			7.0			6.8			8.2			DRO	7.9				
Temp	when	sampled in ° F		CO H	1			63			99			99			67			68			ICA H	-				
State well		Date sampled		COASTAL PL OF LA	5S/13W- 9B 2 S	7-12-65		55/13W-10G 1 S	8-30-65		58/13W-11C 6 S	8-30-65		55/13W-11H 2 S	7- 9-65		58/13W-11H 3 S	7- 9-65			8-30-65		SANTA MONICA HYDRO	1S/15W-32A 5 S	9- 2-65			

	Aordness 35		2528	0565	297	318	310	311	311	34.9
uents in lion	Evot Biogna		4267	7870		9630	010	616	621	739
constituents per million	S 2 2 2		1	-	-	1	İ	1	1	1
Mineral c	, a		0.25	1 • 4 5	ł	1	1	1	1	1
2	2 P u		1 • 2	٥.	ļ	1	1	0	1	3 1
	z 0 z		0	410.66	}	0	0	0	0	0 0 0 0 0 0 1
million value	Ch 10 .	00500	453	3340	2.09	2.71	2.51	27	2.43	138 2.84 2.9
ts per million reactance vali	Sulfote SUA	KIVER HYDRO UNIT U0500	2031	2625	-	2.42	106	1000	100 2.08 18	118
ne pe	Brear - bonate HCU3	R HYDR	464 7.60 12	154	374	375	392	85 704	421	424 6 • 95 52
equivo	Corbon -	KI VE	0	0	0	Э	0	0)	0
Ë	P of or s	GABRIEL	0.23	2.000	-	0.26	0.20	0.23	0.20	11 0.28
constituents	S odius	SAN	301	1760		112	107	110	115	142 6-17 46
Mineral co	Mogne.	LUGBA3	229 18•83 29	478	2.30	2.47	31 2.55	30 2.47	30	2.88
Σ	Colcium		635 31.69	39.62	3.64	3.89	3.64	3.74	3.14	4.09
Specific conduct-	1 0	SUBUNIT UOSAO SUBAREA	9995	13106	984	1087	2000	1060	1020	1266
	I a	HYDR SI HYDRO	7 - 3	7.	4.8	27 • 80	7.5	ν 20	œ •	ο •
Temp	sampled in ° F		-	1	1	2	71	/1	7.	1.2
=		COASTAL PL OF LA CO SANTA MONICA	13H 1 S	65 1 8.	96 1 5	79-	.65	59.	7-65	yC 2 S
State w	Date sampled	ASTAL P	15/16W-33H I 6-14-65	15/16W-33J 1 6-14-65	25/14W-19C 1 10- 5-64	12- 1-64	3- 1-65	6- 1-65	-1 -6	25/14W-19C 2 5 11- 2-64

TABLE E-I
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	Tctol hordness os Colica		412	604	487	487	468	389	694	694
stituents in million	TDS Total Evap BOoc hardness Evap 1050c as		762	735	916	832	810	591	738	738
constituents per million	5 1. co S·02		}	1	1	1	1	-	f	1
Mineral parts p	Boron		-	i t	0.12	0.14	0.12	0.12	l	1
	7 U O		1	0 • 5	0.2	0 • 2	0.2	0.2	1	1
	rote NC3		0	0	0	0	12.0 0.19	10.0 0.16 2	0	0
million ce value	Chlo- ride Cl	00500	144	132 3•72 28	1.00	1.65	66 1.86 15	66 1.86 18	3.10	3.10
millio per eactand	Sulfate SO 4	RIVER HYDRO UNIT U0500	139 2.89	146 3.04 23	341	271 5.64	244	164 3•41 33	221	221 4.•60 35
pe lent	Bicor - bonote HCO3	4 HYDR	422 6.92 50	400	311 5 10 37	311 5.10	307	309 5.06 48	328 5.38 41	328 5.38 41
ports equivo	Carbon - ote CO3		0	0	0	0	0	0	0	0
i	Potas :	GABRIEL	0.18	6 0•15 1	0.08	3 0.08	0.05	2 0 0 0 5	20.05	0 0 0 5 5
constituents	Sodius	A SAN	128	115	3.22	3.00	2.74	2 • 78 2 • 56	3.74	3.74 3.74 28
Mineral co	Magne- s-um Mg	L U05A3	3.54	3.13	51 4•17 32	4.44	81 6.66 55	35 2.88 27	3.78	3.78
2	Colerum		94 4.69	101 5.04 38	1111 5.54	106 5.29	2.69	98 4 98 4 6	112 5.59 42	112 5.59 42
Specific conduct-	(micro- mhos at 25°C)	CO HYDR SUBUNIT U05A0 CA HYDRO SUBAREA	1280	1250	1240	1140	066	066	1200	1200
	I	rDR SI	8 · 1	7.9	7.5	7.5	7 . 8	8 . 2	7.8	8
Temp	sampled In ° F	1-mg	7.0	68	1	1	1	1	22	70
State well	Date sampled	COASTAL PL OF LA	25/14W-19C 2 S 1- 4-65	4- 7-65	25/15W-11C 2 S 1- 5-65	2S/15W-11C 3 S 1- 5-65	2S/15W-11C 4 S 1- 5-65	25/15W-11C 9 S 1- 5-65	25/15W-11F 8 S 2- 1-65	2- 1-65

	Toto: hordness os Colicis		347	347	324	324	360	7777	526	515
constituents in	T.D.S. Evop 180°C Evop 105°C Computed		661	661	725.	725	614	764		245
consti	5:11:- co S:02		-	1	1	1	1	1	1	t I
Mineral o	Boron		1	-	1	1	1	0.18	1	1
	Fluo- ride		0.5	0	1	1	1	0.5	ŧ I	1
	frote NO3		0	0	0	0	0	6.0	ł	46 0 74
million e value	Chlo-	00500	2.57	2.57	3.19	3.19	1.72	2.54	146	138
millior per eactanc	Sulfate SO 4	GABRIEL RIVER HYDRO UNIT UOSOO	161 3•35 28	3.35	3.21	3.21	3.75	3.89	1	4.71
parts per equivalents percent re	Bicar - bonate MCO3	R HYDE	363	363	397	397	333	312 5.11	446	4.38 1.88 4.3
por	Carbon- ate CO3	L RIVE	0	0	0	0	0	0	0	0
i	Potos X X	GABRIE	0.15	0.15	10	10	0.13	0.05	t t	m n 0 •
constituents	Sod: u	A SAN	109	109	147	147 6 - 39	3.61	2.74	1	140
Mineral co	Mogner stum M g	L UUSA3	3.04	3.04	3.04	3.04	36 2.96 27	5.18	55 4 . 28	50 4.11 25
2	Colcoug	UOSAO	3.89	3.89	3.44	3.444	4.24	3.69	125	124 6 19 38
Specific conduct-	1 0	SUBUNIT U05A0 SUBAREA	1100	1100	1229	1229	978	295	1510	1506
	H Q	rdR Si	7.8	7.8	& • •	8.	7.8	7 • 8	8 . 2	7.9
Temp	sampled in ° F	CO H	1	1	1	1	1		1	99
State well	Date sampled	COASTAL PL OF LA CO HYDR SUBUNIT SANTA MONICA HYDRO SUBAREA	25/15W-11F 8 S 4- 7-65	4- 7-65	7-12-65	7-12-65	9- 2-65	25/15W-14C 1 S 1- 5-65	25/15W-140 2 S 10- 5-64	11- 2-64

TABLE E-1

ANALYSES OF GROUND WATER

LOS ANGELES DRAINAGE PROVINCE (U)

	T.C.P.01	hardness as Calis		515	521		527		524		529		534		534		527		
uents m	TOS	Evop .80°C hardness Evop .5°C as Computed .co.c.3		877		911		938		916		917		941		941		941	
constituents per million		5.02		1	1		-		1		i		1		-		-		
Mineral c	Berer	B		-	-				1		1		-		i		-		
Σ	7 OU F	e p . u		1	-		1		-		7.0		0.5		0.5		1		
	ż	N C 3		0	45.2	0.0	46.5	5 0	39.0	0.00	41.6	0 0	48.0		0 7	0.65	42	0.68	
million per million ctance value	C h 10 -	. D . C	00500	3.81	130	3.61	132	23	133	3 - 15	133	2.53	135	2.01	138	3.84	130	3.67	
9	Sulfate	504	RIVER HYDRO UNIT U0500	221	211	4.39	221	28	219	4.56	218	4.54	218	4.54	225	4.68	226	4.71	
parts per equivalents percent	B 10 0 r -	bonate HCO3	A HYDR	448	4 4 4	7.34	453	45	439	7.20	777	45	644	1.36	450	7.38	454	7.44	
por	Carbon -	01e CO 3	L RIVE	3	0		0		0		0		0		0		0		
Ë	Potas	E X	GABRIEL	30.0		0.05	2 3	0	00	0.20	2	0 0	m (2000	n	0.08	2	0.05	
constituents	Sodium	o Z	A SAN	124 5.39	130	5.65	136	36	124	5.39	126	5 • 4 ×	136	5.91	133	5.78	140	6.09	
Mineral co	Mogne-	E 2 N	L UOSA3	4.11	55	4.52	51	4.19	51	4.19	55	4.28	25	4.28	52	4.28	51	4.19	
Σ	Calerum	°		124	110	5.89	127	38	126	6.29	126	6.29	128	6 9 3 9	128	6.39	127	6.34	
Specific conduct-	ance (micro-	mhos at 25°C)	HYDR SUBUNIT U05A0 HYDRO SUBAREA	1492	1440		1490		1500		1470		1490		1530		1450		
	Ha		HYDR SU	8 1	0 • 8		7 • 7		7 . 4		7.7		7.9		7.9		7.8		
Temp	when	F ori		5.7	52		56		9		59		99		69		7.0		
State well		Date sampled	COASTAL PL OF LA CO	25/15W-14Q 2 S 12- 1-64		1- 4-65		2- 1-65		3- 1-65		4- 7-65		5- 3-65		6- 1-65		7- 6-65	

	0	25		534		100		5713		1/ /1			27.			(·		5.8.2			200				
stituents in million	7 D S	Computed C			44.3		ين بر بر		. 7 5 5 5			1540	073	1170			1160		1171	→ - - -		1155	-		
constituents per million		5.02		1		1		1		1			1			I I		-			1				
Mineral ports	Boron	8		1		1		1		7000			0.52			1		1			1				
	F100-	r de		1		1		1		C			0.0			1		1			1			-	
	ı î	trate NO 3		45		7.00	0°0 t	0		5	0000	14	0	1.06	`	0/	9	7.0	1.13	0	10.0	0 0			
million	C h 10 -	ride C I	00 <00	136	57	135	3.81	17200	400.004	7.88	10.71	28	148	4.17	1	140	20	138	2 · a v	0 7	138	20			
r million ts per million reactance valu	Sulfate	504	SAN UNGRIEL RIVER HYDRU URII JUDDO	226	28	225	4.58	2510		750	10.00	0 4	324	6.85)	324	34	342	7.12	30	535	30			
parts per equivalents percent re	Bicor -	bonote HCO3	TY C. X.	455	450	450	7.51	186	3.05	7 2 2 2	7 • 00	18	465	7.62		486	040	468	7.67	7.5	481	0 1			
equ	-	co 3	KIVLÉ	0		0		0		0	>		0		-	0		0			0				
. <u>c</u>	Potos -	Stu B K	CHUK JEI	600	0	2	0.05	385	7.94	7 4	0.10		5	0.13	4	7		4)	₹0.°°		٢	0000			
constituents	Sodium	o N	A SAN	135	35	128	5.57	9550	415.23	2 2	13.40	34	202	8 . 70	Ì	200	0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	200	3.10	77 47	107	0 0 0			
Mineral co	1	£ 5 %	L U05A3	52	97 - 4	54	4000	1160		0 00	1900	12	25	4.85	\$ 7	29	40 / /	9.	4.61	~	1.	70°t			
2	E	o O		128	33	126	6.29	376	13.76	000	14.97	25	155	6.64	n n	125	0.24	130	7.0.00	~	*	3 2 2			
Specific conduct-	(micro-	mhos at 25°C)	HYUK SUBUNII UOSAU HYDRO SUBAREA	1490		1470		42400		110000	2006		1 % . 1			1740		175			113-				
	I		UR SI	7.7				7.8		1	•		103			7.8		. s			1.00				
Temp	when	in o F	CO HY	70		7.1		68					1			68		2			l t				
State well		Date sampled	COASTAL PL OF LA CO SANTA MONICA	25/15W-140 2 S	8- 2-65		9- 7-65	25/15W-20J 1 S			15 0 822-WC1/62			3-29-65		25/15W-22B 8 S	12-17-64		2- 1-65			9- 8-65			

TABLE E-1
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	7.000	hardness as			2698		1938		480			1/0		773	0		1673		1570			2367			
fuents in	705	Evap 180°C hardness Evap 105°C as Computed Cours				0709	5450	4180	1121		1001		4227	276	0074	7427	3318	2875			2683	0995	3027	776	
constituents per million	3115				1				1			-		i			1		I						
Mineral parts p	Boron	8			1		0.26		0.19			1			7 0 7		0.56		1			0.37			
	Fluo-	ride F			1		5.0		0.3			1		(•		0.1		ı			9.0			
	Z	trote NO3			0		9	0.10	0			0		7.7	0.76	2	0.0			0		19	0.31		
million se value	Chlo	ride	00500		7960	83.47	2280	64.30	473	13.34	71	106	19.91	707	19.57	52	1181	33.30	1030	29.05	69	1544	43.54	70	
million per eoctono	Sulfate	504	RIVER HYDRO UNIT U0500		823	17.13	044	9.16	183	3.81	7.7	245	11.39		100 45	29	373	7.77	1 46	/•31	15	601	12.51	0	
parts per equivalents percent r	Bicor -	bonote HC03	N HYDR		324	5.31	6	0.15	98	1.41	00	408	6.69		7 2 2 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	17	716	11.74	707	2.87	26	998	14.19	0.7	
por	Carbon -	ote CO3			0		0		0			0		(>		0		C	>		0			
ri.	Potas -	Siv R	SAN GABRIEL		16	0.41	14	0.36	n	0.08		5	0.13	u	0.13	9	00	0.20	a	0.20		6	0.23		
constituents	Sodium	0	⋖		1200	52.18	821	35.70	210	9.13	7	516	22.44		23.70	62	425	18.48	00	17,39	35	569	24.74	40	
Mineral co	. e c c c	S - U B		U05A3	306	25.17	250	20.56	73	00 • 9	32	87	7.15		10	17	208	17.11	0.0	15.79	. 60	293	24.10	35	
2	Calcium	°		U05A0	576	28.74	364	18.16	72	3.59	61	165	8 • 23	1 0	7.78	20	327	16.32	7.0	15.77	1	465	23.20	35	
Specific conduct-	(micro-	mhos at 25°C)		CO HYDR SUBUNIT U05A0	10100		7342		1960			3700		,	2000		4400		0.537	0 7 0 7		6285			
	Hd			YDR S	7.6		7 • 1		7.5			7.8		,	0 0 /		7.7		0	0		7.3			
Тепр	when	in ° F		CO H	-		69		68			1		(60		69					69			
State well		Date sampled		COASTAL PL OF LA CO	2S/15W-22E 3 S	1-25-65		6-29-65	25/15W-22E 4 S	6-29-65		25/15W-22E 5 S	1-25-65		6-20-65	60-67-0	2S/15W-22R 3 S	10- 2-64		1-22-65	3 4		6-30-65		

	55 ,		9	O	-	~	~	1	~	<u>ن</u>
-	700 hardness as		1066	1100	371	832	1367	374	30 60	1149
constituents in per million	2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		3058	7547	2158	1978	2718	1784		2428
constit per mi	S 0.3	3	1	1		ŀ	1	1	1	-
Mineral o	Berch		1.66	1.50	0.82	0.71	0.10	0.39	i	1
	7 g g		» •	6.0	7.0	ъ • 0	4.0	9	1	1
	Z O Z		90.0	72 1.16	0.0	1.0	82.0 1.32	77 1.24	1	0
million e value	Ch 10 -	00500	1085	1083	642 18•10 56	618	13.90	293	269	13.494
r million is per m reactance	Sulfate	RIVER HYDRO UNIT U0500	275	340	420	426	882 18•36 45	522 10.87 39	1	965
ports per equivalents percent	Bicor - bonate HCO3	HYDR	354 5.80	356	333	336	453	457 7•49 27	448	370
por	Carbon -		0	0	0	Э	0	0	0	0
n1	Potos.	GABRIEL	0.13	0.10	0.23	0.15	0.15	0.08	1	0.10
constituents	Sodius	A SAN	495	515 22.39 50	350	349	325 14.13 34	244 10.61 38	-	17.39
Mineral co	Magne- stum M g	L UOSA3	7.98	100 8.22 18	6.83	82 6.74	112 9.21	7.48	82	119
Σ	E 0 10 0		267	279	212	198 9.88 31	363	2000	198	264 13.17 33
Specific conduct-	1 0	SUBUNIT UO5AU	3900	4454	2650	3067	3000	2512	2440	4032
	Ha	rDR SI	7 . 8	7.6	7 . 4	7 • 2	7 • 8	7.0	8 • 1	0
Temp	sampled In ° F	CO HYDR	1	1	1	1	1	-	68	99
State well	Date sampled	COASTAL PL OF LA CO HYDR SUBUNIT SANTA MONICA HYDKO SUBAREA	25/15W-23A 1 S 10-23-64	3-29-65	25/15W-23A 6 S 10-23-64	3-29-65	25/15W-23C 4 5 10-23-64	3-29-65	25/15W-23C 5 5 10- 5-64	12- 1-64

TABLE E-I
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	T. toll hordness os	2000	1027	156	1439	1096	3375	4132	3848	3617
uents in	TDS 1.101 Evap 180°C hardness Evap 105°C as		5807	1786	2878	2349		8298	1928	7524
constituents per million	Sili		1	l	-	1	1	1	1	1
Mineral o	60.00		1	1	26.0	96.0	ŧ	1.25	1	1
	Fluo-		-	0 • 0	5.0	8.0	1	0 • 1	1	I I
	1 - N - N - N - N - N - N - N - N - N -	n [180 2.90	50	51.0	12 0 • 19	1	0 • 0	0	0
per million ctance value	- 0140	00500	352 9.93	316 8.91 29	624 17.60 38	897 25.30 61	3220	4209 18•69 81	3930 10.83	3710 04•62 79
0	Suffate	SAN GABRIEL RIVER HYDRO UNIT U0500	678 14•12 41	630 13•12 43	861 17•93 39	437	1	972 20.24	1054 21.94	996 20•74 1
ports per equivalents percent re	Bicor - bonote	HYDR	437	455	590 9.67 21	400	492	487	481 7.88	482 7.90 6
eder	Corbon -	L RIVER	0	0	0	0	0	0	0	0
Ë	Potos - sium K	GABRIE	0.03	30.0	0.13	0.20	1	14	13	150038
constituents	E 0 2	<	314	240 10•44	415 18•04 38	434 18•87 46	i	1500	1440 62.61 45	1400 60.87 46
Mineral co	M a g n e -	L UU5A3	102	93 7•65 26	173 14•23 30	117 9.62 23	393	452 37•17 25	443 36.43 26	436 35.86 27
~	Calcium Ca	UOSAO	243 12•13 35	230 11•48 39	291 14.52 31	246 12•28 30	704	910 45.41 31	811 40.47 29	730
Specific conduct-	(micro- mhos	O HYDR SUBUNIT U05A0 A HYDRO SUBAREA	5990	2800	3500	3960	10500	12062	12400	11 792
	Hd		7.4	7.9	7.5	7.5	& •	7 • 4	7 • 7	7 • 8
Temp	when sampled in ° F	00	69	69	ļ ļ	1	68	t 1	63	68
State well	p 89	COASTAL PL OF LA C	2S/15W-23C 5 S 3- 1-65	6- 1-65	25/15W-23J 4 5 10-23-64	3-29-65	2S/15W-23N 1 S 10- 5-64	10-23-64	11- 2-64	12- 1-64

	Pardness 25 25 29 3		, 66	3 3 3 3 4	4480	4588	1628	1286	2521	2111
constituents in	T (S had no sees to see the s		5210	\$ I R 9	0766	11405	3175	15751	5347	4 2 8 1
constituent per million	5 . 2		i	1	t I	1	1	-	Î	t
Mineral parts p	8,7,7		1		1	1.10	-	1	1	1
	, p		1	-	1	9 · 0	1	6.0	1	Ī
	2 0 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z		20 0 • 32	0	0	10	41.6	8.0	0	0
million per million ctance value	0 h 1 a	00500	2300	3220	4800 135.30 81	4940	1010 28.48 51	1990	2400	1900
0	Suffore SU4	SAN GABRIEL RIVER HYDRO UNIT U0500	851 17•72 19	1010	1100 22.90 14	1039 21.63	15.07	761 15.84 20	869 18.09	851 11.72 22
parts per equivalents percent re	Bicor - bonote HCO3	к нүрк	630	523	482	494	11.67	547	518	8 .64
por	Corbon	L RIVE	0	0	0	0	0	0	Э	0
ri s	4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	GABRIE	0.20	11 0.28	1.20	16	0.10	0.18	10	0.28
constituents	E ? 0	<	890 38•70 42	1240 53.92 45	1710/4-55	1800 78.26	515 22°39 41	33.48	1000	880 38.26 47
Mineral co	Mogne s cm	L U05A3	363	39.24	542	550 45.23	188 15•46 28	23.03 23.03 28	303	20.25
2	E		468 23.35 25	689 34.38 28	904	931	342 17.07 31	488	510	425 21•21 26
Specific conduct-	mhos of 25°C)	HYDR SUBUNIT UO5A0 HYDRO SUBAREA	8170	10700	14400	14410	5000	7360	8 720	7130
	I	YDR S	7 • 7	1.6	1.4	7 - 3	2.5	7.5	1.7	7 • 4
Тетр	when sampled in ° F	CO	85	65	69	1	49	7.0	62	67
State well	Date sampled	COASTAL PL OF LA	25/15W-23N 1 S	2- 1-65	3- 1-65	59-62-	59-1 -9	5 - 3 - 65	6- 1-65	7-6-65

TABLE E-I
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

		Nordness os Co Co Co		2126		3032		767		484			687		969			2380		2167			
constituents in per million	50.	Evop 180°C hordness Evop 105°C os Compuled Cocos			4546		6425	1392	1396		000	1296	2080	2044	3348		2297	15000	14081		10066	0001	
constituent per million	_	5:02		1		1		-		1			-		1			-		- 1			
Mineral o				1		!		0.53		!			0.31		0.34			0.80		1			
		P				-		0 • 1		I I			0.4		0.1			1.0		-			
		NO.		0		0		4.0	90.0	0			31	1	0.0			56	06 • 0	0			
million se value	- 4	. D. J.	00500	1900	19	3060			16.22	521	14.69	10	945	72	706	19,91	60	7790	219.68	5670	159.89		
million per soctono	6 0 1 6 0 4 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SAN GABRIEL RIVER HYDRO UNIT U0500	17.	22	922	17		01.0	7	0.15	4	32	2 2	91	1.89	٥	616	12.83	897	18.68	2	
parts per equivalents percent re	0	HCO3	R HYDE	547	11	506	7	563	36	573	9.39	V 0	557	25	537	8 • 80	67	665	10.90	780	12.78	-	
pod	9 4 7 0	000	EL RIVE	0		0		0		0			0		0			0		0			
,c	0000	E X	GABRI	0.23		11 0.28		18	0.40	17	0.43	1	18		48	1.23	7	168	4.30	114	2.91	1	
constituents		2	L A SAN	36.	94	1200	94	360	09	318	13.63)	531	62	980	42.61	ţ	4483	194.92	3320	144.35		
Mineral c	4000	En N	U05A3	252	26	357	26	63	20	99	5.43)	7.98	21	109	8.96	0	485	39.89	444	36.51		
2	E 0 6	0	UOSAO	436	27	626	28	76	18	85	4.24	4	115	15	66	76.7		154	68	136	6.79		
Specific conduct-	(micro-	mhos at 25°C)	CO HYDR SUBUNIT U05A0 CA HYDRO SUBAREA	7150		10100		2400		2460			3750		5400			20907		17800			
	Hd		YDR	7.6		7.9		8.0		8.1			7.5		7.8			7.5		8.7			
Temp	when	sampled in ° F	I	67		68		69		1			67		99			67		1			
State well		Date sampled	COASTAL PL OF LA CO	25/15W-23N 1 S 8- 2-65		9- 7-65		2S/15W-27L 1 S			1-19-65		6-30-65		25/15W-27L 2 S	10- 1-64			60-67-0	25/15W-28Q 1 S	1-19-65		

	- 88 - 5		-	20	5	0	6	10	0	
Ē	Total Nardness Ca CC3		327	35.5	379	360	333	345	340	334
en .	T D S Evop 180°C Evop 105°C Computed		099	642	009	662	721	611	567	625
constituent per million	S. 4. Co SiO ₂		1	1	1	1	1	1	1	1
Mineral parts p	B B		1	1	1	60.0	0.11	1	8	1
	7 c c		1	0 3	7.0	5.0	9.0	0 • 5	0 • 5	+
	role.		12 0.19	5 0 • 0 8	6 0•10 1	9.0	3 0.05	4 0.06	3 0.05	3
million e value	Chlo- ride	00500	2.54	81 2.28 21	2.09	2.31	2.59	2.26	2.09	86 2.43
per	Sulfate SOA	RIVER HYDRO UNIT U0500	262	246 5.12 48	229	299	254 5.29	236	214	251 5•23 51
len!	Bicor - bonote HCO3	HYDRG	163	192 3.15 30	190 3.11	191 3.13 26	151 2.47 24	175 2.87 28	176 2.88 30	2.56
equiva	corbon -		0	0	0	0	0	0	0	0
u ·	Po to to to to to to to to to to to to to	SAN GABRIEL	0.10	0.13	0.10	0.10	0.10	0.10	0.10	4 0 • 10 1
nstituents	E o Z	A SAN	94 4 0 9 9 8 8 9 8	3.57	2.43	3.26	3.91	3.30	63	3.65
Mineral constituents	Mogne.	L U05A5	20 1.64	1.81	23	2.30	1.81	22 1•81 18	1.81	1.73
2	Colcium		98 4 98	106	5.69	98 4 89 46	4.84	102 5.09 49	100	46.94
Specific conduct-	1 0	BUNIT U	1030	866	922	086	1091	952	888	971
	i a	DR SU	7.7	7.8	7 . 8	7.9	7.7	7.8	7 . 8	7 • 9
Temp	sampled in ° F	CO HY	69	63	79	1	99	54	63	4
		LA	S	v.	S	√			S	S
State well	Date sampled	COASTAL PL OF LA CO HYDR SUBUNIT UO5AO CENTRAL HYDRO SUBAREA	2S/11W-18C 2 8- 9-65	25/11W-18Q 1 8- 4-65	25/11W-19F 2 8- 4-65	25/11W-19L 1 10-27-64	4- 1-65	8- 2-65	25/11W-19M 1 8- 2-65	25/11W-19M 4 8- 3-65

TABLE E-I
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

=	Тетр		Specific conduct-	Σ	Mineral co	constituents	Ë	parts	le n	r million ts per million	million		2	Mineral constituents parts per million	constituent per million	ients in	
Laguer	when	I	ance				-	0	1		200		-				
Date sampled	sampled In°F			Calctum	Magne- s-um M g	Sodium	Polos -	Corbon -	Bicor - bonote HCO3	Sulfate SO4	7:de	N C P	, a d e	Buron	S: 1: co E S:02	TDS Total Evop 180°C hardness Evop 105°C os Computed Cacos	Tchail hardness as CalCOs
COASTAL PL OF LA		YDR SU	CO HYDR SUBUNIT U05A0		L	⋖	SAN GABRIEL		R HYDRO	RIVER HYDRO UNIT U0500	00500						
CENTRAL HYDRO SUBAREA	YDRO	SUBAR	EA		U05A5												
25/11W-30Q 1 S 2- 9-65	-	7.7	1120	150	2.38	2.48	0.08	0	305	236	78 2.20 18	15 0 • 24	0.2	0.21	1	790	767
7-20-65	!	7.6	1135	1	1		ļ t	-	-	240	1.97	21 0 • 34	1	i	- 1		
9-29-65	1	7.6	1179	152 7.58 57	36 2.96 22	2.65	0.10	0	339	251 5.23 40	1.95	20 0 32	0.5	0.18	1	822	527
25/12W- 1R 2 5 10-27-64		7.9	086	85 4.24 40	22 1.81 17	101 4.39 4.2	0.10	0	3.26 3.26	211 4.39	97 2.74 26	0.0	0 • 5	0.14		641	303
4- 1-65	1	0 •	1000	3.69	2.14	103	0.15	0	209	3.98	2.79	3 0 • 0 5	4.0	0.24	-	640	292
8- 9-65	78	8 • 2	1250	3.59	1.97	170	0.10	0	141 2.31 18	349	3.47	0	1	i i	1	811	278
25/12W- 9M 2 S 8- 9-65	77	8 • 1	866	2.94	20 1.64	60°7 76	3 0.08	0	270	50 1.04	3.38 3.88	0	1	1	†	614	229
25/12W-10J 1 S 2- 9-65	1	0	570	2.40	1.07	2 22 38	00 00 00 00 00 00 00 00 00 00 00 00 00	0	266 4.36 74	0.35	1.16	0	0 • 2	0.24	1	340	174
																	-

	Tetal hordness as Calls		18.		303	319	197	338	36.20	
lion	Evap BC°C ho Evap 105°C Computed		337		512	521	3 0 6 8	59 4	099	
constituent per million	5 0.5		ł	l F	ł	i i	ì	ł	1	1
Mineral constituents parts per million	8,,,,,		0.21	1	0.14	1	0.19	0.14	0.11	1
) D (L		0 • 3	1	0 • 2	1	4.0	0.5	0.5	i i
	role Nose		0.02	2 0 • 0 3	0.0	0	3 0.05	8.0	0.11	0.11
million e volue	Chlo-	00500	1.21	1.72	1.80	1.95	1.21	2.26	2.40	2.31
million	Suffore SO4	SAN GABRIEL RIVER HYDRO UNIT UO500	36 0 75	3.19	2.73	3.37	1.92	210	230	217
parts per equivalents percent re	Bicor = bonote HCO3	R HYDRO	240	i i	228 3.74 45	224 3.67	226 3.70 54	205	192 3.15 30	1
por	corbon - ote CO3	L RIVER	0	1	0	0	0	0	0	1
Ë	Potos -	GABRIE	3 0.08	ŀ	0.10	0.10	30.08	0.10	0.10	f I
constituents	Sodium	A SAN	2.13	1	2.26	2.61	2.83 41	3.39	3.57	1
Mineral co	Mogne. stum M g	L UOSAS	0.90	1	30 2.47	18 1•48 16	0.90	36 2.96 2.9	1.81	1
×	Coleium		2.74	1	3.59	98° 75°	3.04	3.79	103	1
Specific conduct-	. 0	PL OF LA CO HYDR SUBUNIT UOSAO CENTRAL HYDRO SUBAREA	565	408	800	7778	799	270	980	978
0, 0	H	DR SU	7 - 7	7.5	7 ®	0 • 8	7.6	7.5	7.9	7•3
Temp	when sampled in °F	CO HY	1	1	1	2	1	1	1	1
-		F LA	1 S	2 S	\$ 9	2		7 S		
State well	Date sampled	COASTAL PL OF LA CO	25/12W-10J 1	25/12W-12t 2	25/12W-12F 6 2- 9-65	25/12W-12M 2 8- 9-65	9-53-65	25/12W-13D 7 10-27-64	4- 2-65	7~20-65

TABLE E-1
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	10101	os CoCO3		338	1		350			336			331			344			322			348			206			
uents in	TOS	Evap 180°C hordness Evap 105°C os Computed Cocos				629			586			959			779	630		631			699	099		616			354	
constituents per million	-: 'S	5.05		1			ŧ			!			1			-			1			}			-			
Mineral parts p	Boron	В					1			1			-			0.14			ţ			0.16			1			
	00	. de		1			1			1			-			0.5			1			7.0			1			
	ż	Irate NO3		7	0.11	1	30	0.13	-	7	0.15	_	8	0.13	1	7	0.11	1	10	0.16	7	2	0.11		0			
million	C h lo 1	ride C 1	10500	86	2.43	23	75	2.12	21	16	2.57	24	88	2.48	23	92	2.59	25	76	2.65	24	48	2.37	23	45	1.27	50	
parts per million equivalents per million percent reactance value	Sulfate	504	RIVER HYDRO UNIT U0500	233	4.85	94	206	4.29	43	263	5.48	51	256	5.33	20	219	4.56	43	260	5.41	64	223	4004	45	72	1.50	23	
parts per equivalents percent re	Bicor -	bonate HC03	R HYDR(190	3.11	30	204	3.34	34	157	2.57	24	161	2.64	25	202	3.31	31	166	2.72	25	195	3.20	31	223	3.65	57	
pod	Corbon -	01e CO3		0			С			0			0			0			0			0			Э			
Ë	Potos -	. X	SAN GABRIEL	4	0.10	7	4	0.10	-	2	0.13	-	4	0.10		2	0.13	1	5	0.13	٦	5	0.13	-	m	0.08	7	
constituents	Sodium	0	⋖	85	3.70	35	69	2.83	87	06	3.91	36	06	3.91	37	85	3 • 70	35	100	4.35	04	76	3.30	32	52	2.26	35	
Mineral co	Mogne-	S . U.S	L U05A5	22	1.81	17	19	1.56	16	21	1 • 73	16	21	1.73	16	23	1.89	18	23	1.89	17	22	1.81	17	16	1.32	20	
2	Colcium	٥٥	_	66	76.7	24	109	5.44	44	100	66.4	94	86	4.89	94	100	66.4	47	91	4.54	45	103	5 . 14	20	56	2.79	43	
Specific conduct-	(micro-	mhos at 25°C)	CO HYDR SUBUNIT U05A0 DRO SUBAREA	066			914			1020			1000			1020			1050			866			616			
	Hd		OR SI	7.9			8.3			8.3			8.3			7.6			7.9			7.5			8.5			
Temp	when	IN P.	~	81			99			99			63			1			69						75			
State well		Date sampled	COASTAL PL OF LA CO HYDR SUBI CENTRAL HYDRO SUBAREA	25/12W-13D 7 S	8- 9-65		25/12W-13M 2 S	8-10-65		25/12W-13M 3 S	8-10-65		25/12W-13M 4 S	8-10-65		2S/12W-148 2 S	2- 9-65		25/12W-148 8 S	8-10-65			9-59-65		25/12W-19C 1 S	8-30-65		

	Toto! hordness os Colicis		339		330	329	344	314	418	
uents in lion	T D S Toto! Evop 180°C hardness Evop 105°C os Computed CoüCs		526		540	523	671	535	0 3 4 0	
constituents per million	S. t. co S:02		1		-	1	1	i	-	
Mineral o	B 0101		0.24	-	0 18	t t	1	1	0.17	
2	5 o c		0.5	\$	5.0	•	0.5	1	0.5	1
	reote NO3		3.0	2 0 • 0 3	30.05	0.00	9 0 15	7 0 • 11	9.0	0.18
n million ce value	Chlo ride Ct	00500	1.89	1.78	1.86	1.000	2.04	1.91	78 2.20 21	2.03
millio per eacton	Sulfore SO 4	A SAN GABRIEL RIVER HYDRO UNII UU5UO	3.69	186	3.81	8	2000	188	223	213
parts per equivalents percent re	Bicor - bonole HCO3	R HYDRG	3.23	-	186 3.05	35	2.70	187 3.06 34	3.72	1
par	Corbon.	RIVER	0	1	0	0	0	0	Э	1
Ē	\$ 5 5 X	SABRIEL	3 0.08	1	0.08	0 0 0 0 0 0	0.13	0.10	0.10	1
constituents	E o Z	A SAN	2.17	1	2.13	7.95	4.13	2.61	2.52	1
Mineral cor	M 00 00 M	L UOSAS	3.29		22 1.81 21	18	21 1.73 16	18 1.48 16	2.22	1
ž	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		3.49	ł	96 4.79	102	103	96 4 19	123	1
Specific conduct-	1 0	BUNIT	720	824	946	328	1220	844	3	952
	Ha	DR SU UBARE	8.2	1.6	7.5) • 0	7.9	8 · 8) • ®	. 3
	sampled in F	CO HY	1	1	i t	13	99	70	1	1
State well	Date sampled	COASTAL PL OF LA CO HYDR SUBUNIT UOSAU	25/12W-21B 5 S 2- 9-65	7-20-65	6-29-65	25/12W-21J 1 5 8- 2-65	28/12W-22J 1 S 8- 3-65	25/12W-23B 4 5 8- 3-65	25/12W-24E 6 5 2- 9-65	7-27-65

TABLE E-1
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	104	hardness as Calics			398			368				369			355			364			336			369			
constituents in	NO F	Evop 180°C hordness Evop 5°C as Computed Cours			849		585	549	618					298			609	049		909			613			260	
constituent					1			ŀ				-			-			1			1			1			
Mineral parts p	0	۵			0.14			0.14		ŀ		ŀ			1			0.12			!			1			
	0.1	. u			7.0			7.0		1		7.0			7.0			9.0			7.0			0.2			
	ž	trote NC3			12		7	4.0	0.06 1	4	0.00	7	0.63		2	0.03		v	0.08	7	2	0.03		J.	0.05	~	
million per million ctonce volue	10180	ride C1	00500		69	1.75	15	28	2.31	7.7	2.50	76	2.14	22	380	2.20	53	0,8	7.56	23	80	2.26	22	0/	1.97	21	
0	Sulfate	504	RIVER HYDRO UNII UUSOO		210	4.31	7 7	147	5.14	243	00 • 0	643	5.06	51	249	5.18	2,0	246	5.12	51	250	5.21	55	223	49.4	64	
pe	- 70 7.	bongte HCU3	HYDR		215	3.52	35	166	2.72	1		162	2.66	2.7	156	2.56	97	157	2.57	56	156	2.56	25	166	2.12	29	
parts equiva percen	. 000	016			0			0		1		0			0			0			၁			ာ			
Ľ.	1 20 4 0 0	S X	SAN GABRIEL		2	0.13	-	7	0.10	1		3	0.13	~	5	0.13	7	4	0.10		5	0.13	→	4	0.10	٦	
constituents	8 60	0 Z	∢		47	2.04	7	69	2 • 8 3	-		65	2.57	25	68	2.90	53	62	2.70	27	7.8	3.39	55	45	1.96	21	
Mineral co	. e c c M	. E &		UU5A5	25	2.06	70	22	1.81	1		23	1.89	19	22	1.01	18	23	1.89	19	21	1.73	1/	23	1.89	20	
2	B	ů		UOSAC	118	5.89	58	111	5.54	1		110	64.6	54	106	5.29	55	108	5.39	53	100	66.4	7, 7	110	5.49	28	
Specific conduct-	(micro-	mhos at 25°C)			948			85∪		954		929			646			646			646			880			
	HQ			SUBARE	7.4			7 • 8		7.04		и • h			7.8			7.4			7 • 7			8.1			
Temp	when	sampled tn ° F		CO H	-			1		ļ į		63			63			!			6.5			63			
State well		Date sampled		COASTAL PL OF LA CO HYDR SUBUNIT CENTRAL HYDRO SUBAREA	2S/12W-24E 6 S	9-59-62		2S/12W-25E10 S	69-67		7-20-65	25/12W-25E 6 S	8- 2-65		25/12W-25Elu S	8- 3-65			9-59-65		2S/12W-25G 1 S	8- 2-65		25/12W-25M 1 S	8- 2-65		

	hardness 5.5 5.0		340	346		222	222	374		34 6
uents in	Evap 180°C hardness Sevab 180°C hardness Sevab 180°C Sevab S		653	714		314	316	620	· · ·	586
constituents per million	\$.2		25	ł	1		1	1	-	į t
Mineral o	(3. A)		0.10	0.20	-	1	5	0.14		0
	, D		9.0	0.5		1	0 • 4	0 • 2	-	0
	rote NO3		0.00	0.10	0.00	0.10	0.08	13.0	14 00-63	14 00.23
million e volue	Ch to L	00500	1.95	2.40	0.07	17	0.51	2.17	73	2.07
millior per soctono	Sulfate Sc.4	SAN GABRIEL RIVER HYDRO UNIT UO500	215	4.77	1001	1.63	1.35	223	205	4.931 444
ieni	Bicor - bonote HCU3	HYDR	194	173	0	236	236	3.29	1	3 2 2 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
parts equiva percer	Carbon .	L RIVER	0	0	1	0	2	0	1	Э
Ë	Potas -	GABRIE	0.10	0.13	4	0.05	C C C	C • 10	1	0 m →
constituents	E n p Z	A SAN	2.03	73	10	30	30	2.61	-	2 . 78
Mineral co	M 0 g 0 e .	L UUSAS	22	4.03	10	1.15	1.15	2.38	1	1.87
Σ	Calcoun		1000	2.39	0	3.29	5.29	102	i	5.09
Specific conduct-	mhos at 25°C)	JBUNIT L	931	266	245	539	543	880	730	245
	Ha	DR SU	4.5	20 .71	1.7	24	7.9	7.8	7.5	<i>></i>
Temp	when sampled in F	CO HY	1	1	1	99	1	1	1	1
State well	led	COASTAL PL OF LA CO HYDR SUBUNIT UO5AO CENTRAL HYURO SUBAREA	2S/12W-25P 7 S 10-27-64	4- 1-65	2S/12W-25G 5 5	8-11-65	9-29-65	25/12W-26E 3 S 2- 9-65	7-2 -65	39-62-6

TABLE E-1
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	Total hardness os CaCO3		320	333	187		549	313	261	273
tuents in	T 0 5 Total Evop 180°C hardness Evop 105°C os Computed Co.Co.	1	614	534	770		740	471	442	458
constituents per million	Sirit- co SiO ₂			1	i	1	1	-	1	1
Mineral parts	0 8		1	1	0.22	!	0.18	1	0.02	0.12
	F. U.O.		0.5	0 • 5	0 • 2	1	0.5	0 • 4	0 • 2	0.2
	N O N		10 0.16	6 0•10	1.0	10.02	0.02	8 0•13	4.0 0.06 1	4 0•06 1
million se value	C	00500	2.20	1.92	3.19	2.45	3.05 3.05	1.52	1.41	50 1•41 19
millio	Sulfate	RIVER HYDRO UNIT U0500	232	199	322 6.70	252	297	141 2.94 36	2.39	2.33 2.33 31
lent	Bicor - bonate HCO3	R HYDR	172 2.82 28	168 2•75 31	157 2.57 2.51	i i	150	218	214 3.51	220 3•61 49
parts equiva percen	Corbon -		0	C	0	1	0	0	0	0
Ē	Pot 2 ×	GABRIEL	0.13	0.10	0.13	}	0.13	0.08	0.08	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
constituents	E ni po Z	A SAN	3.74	2.30	200	1	153	1.91	47 2•04 28	2.04
Mineral co	Magne-	L L UUSAS	1.56	10.56	18 1-48 12		201-64	1.56	1.48	1.32
Σ	E 2 0 0	UOSAO	4.84	102 5.09 56	2.25	1	3.34	4.69	3.74	4 • 14 55
Specific conduct-	mhos at 25°C)		942	830	1060	1009	1170	759	720	069
	H	YDR SI SUBAR	8 • 1	7.9	8 • 1	7.5	7 • 8	0	7.9	7.7
Temp	when sampled in F	CO H	65	7.0	1	-	-	79	-	1
State well	pe	COASTAL PL OF LA CO HYDR SUBUNIT	25/12W+27C 1 5 8- 2-65	25/12W-27G 5 5 8- 2-65	2S/12W-28A 4 S 2- 9-65	7-20-65	9-29-65	25/12W-29A 4 5 8- 2-65	2S/12W-30H 2 S 11- 2-64	4- 1-65

	Tetal hardness os Calida		246	341	337	275	369		363	363
tuents in	TOS Total Evap 180°C hardness Evap 105°C os Computed Colics		364	450	471	392	596		551	545
constituents per million	Suit- co SiO ₂		1	1	1	1	1	1	1	ł
Mineral parts p	Boron		1	70.0	0.07	1	0.24	1	!	0.10
	0 0 L		1	7.0	0.5	7.0	7.0	1	2.0	9.0
	role NO3		0	9.0 0.15 2	10	5 0.08 1	4.0	20.08	5 0•08 1	0 • 1 3 1
million e value	Ch10 -	00500	39	1.27	1.30	0.43	1.89	1.86	1 - 8 6 6 2 0 2 0 2 0 2 0 2 0	1.03
per	Sulfate SO 4	RIVER HYDRO UNIT U0500	1.42	3.02	2.91	2.27	216	207	217	201 4 • 18 45
equivalents percent re	Bicar - bonate HCO3	R HYDR	258	3.72	3.77	3.64	173 2.84 31	1	2.79	3.15 3.15 34
0 0	Corbon -		0	0	0	0	0	1	0	0
n i	Potos -	GABRIEL	0.05	0.10	4 0•10	0.10	0.10	i i	0.10	0.10
constituents	Sodium	A SAN	41 1•78 26	33	29	32 1 39 20	38	1	1.91	37
Mineral co	M G G G G G G G G G G G G G G G G G G G	L UOSAS	1.48	1.73	20 1.64 20	17	2.14	+	22 1•81 20	25.00.2
2	0 0 0 0		3.44	102 5.09 61	102 5.09	4 82	105	1	109	112 5.59 60
Specific conduct-	1 0	HYDR SUBUNIT UO5AO	638	780	781	643	770	862	200	877
	H a	YDR SUBI	8 .5) • •	7 • 8	a 1 • 3	6.1	1.4) • 0	7.4
Тепр	sampled in ° F		22	ŀ	65	89	1	1	٥, ۵	1
State well	Date sampled	COASTAL PL OF LA CO H	25/12W-31M 2 S 8-30-65	25/12W-34P 1 S	3-27-65	25/12W-34R 1 S 8- 5-65	25/12W-35B 2 5 2- 9-65	7-20-65	8- 3-65	49-52-6

TABLE E-1
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	Tutal hardness os Coulos		367	259	264	220	32	237	1 R R	300
constituents in	T D S Tetal Evap 180°C hardness Evap 105°C os Computed Coulds		639	430	430	358	100	375	340	194
constituent	Silt- co SiO ₂		1	1	1	ŧ.	1	1	1	1
Mineral o	Boron		-	0.15	0.20	0.18	0 0 8	0.16	77.0	0.15
	Fluo- ride F		1	0.5	0	9.0	9•0	0.5	0 • 5	9.0
	ni- frofe NO3		7.0	8 0•13	3 0 • 0 1	0	1 0•02 1	2 0 • 0 3	0	10 0.16
million per million ctance value	Chio-	00500	85 2.40 23	35 0 99 14	1.10	28 0•79 12	1.92	26 0.73	0.82	1
0	Sulfate SO 4	RIVER HYDRO UNIT U0500	263	103 2.14 30	107 2.23 30	81 1.69	0	2.02	1.39	122 2 • 54 31
parts per equivalents percent re	Bicar - bonate HCO3	4 HYDR	158 2.59 24	242 3.97 55	246 4•03 54	242 3.97 62	56	237 3.88 58	3.64	244 4•00 49
por	Carbon - ole CO3	L RIVE	0	0	0	0	0	0	0	0
. <u>e</u>	Potas - sium K	SAN GABRIEL	0.10	0.10	0.10	0.10	0 0 0 0 0	0.08	0.08	0.10
constituents	Sodium	A SAN	3.04	2.09 28	2.17	48 2.09 32	51 2.22 76	1.96	48 2.09 35	51 2•22 27
Mineral co	Mogne- slum Mg	L UO5A5	23 1.89 18	1.64	20	1.40	0.33	1.40	13	1.81
2	Colcium		109	3.54	3.64	2.99	0.30	3.34	2.69	4 • 19 5 C
Specific conduct-	mhos at 25°C)	UBUNIT	784	689	703	601	320	633	563	781
	Ha	O HYDR SUBI RO SUBAREA) • n	7.6	7 • 7	7.9	7 • 8	7 • 7	7 • 7	7.6
Temp	when sampled in ° F	CO HY	8	99	64	7.1	68	65	72	63
		PL OF LA C	S -	s 9	S	1 S	1 S	S S	S S	
State well	Date sampled	COASTAL PL OF LA CO HYDR SUBUNIT UO5AO	25/12W-36P 8-11-65	2S/13W-1UP 6-17-65	2S/13W-10G 6-17-65	25/13W-12C 6-17-65	25/13W-12K 7-15-65	25/13W-15N 6-17-65	25/13W-25H 6-17-65	25/13W-28H 1 6-17-65
		Ü								.,

	hardness 0s		504		341		382			7 47			271			231	_		398			1,47	_		
uents in	TCS hardness Evap 105°C as Computed Cours		323	330		620			695	5,0		101	024		42H	404		4.2	505		703	400		3 7 7	
constituents per million	5 2		1		1		1			7 7			ł			30			25			47			
Mineral parts p	, a		0.08		1 1		ş			0.13			0.18			0.14			0.13			0.13			
-	2 0 4		4.0		1		-			1.0			2.0			0.4			9.0			0.0			
	2 0 Z		0 • 0	0.01	0		C	>		0.0	0.10	7	10	0.16	~	0 • 7	0.00		11.0	0.10	2	10.01	0.41	~	
million e value	C h 10	00500	47	0.71	77	4.14	100	2 . 82	22	0,5	0000	77	4 1	1.10	15	2 1	1.15	9 7	20	1041		3.5	ハハ・つ	77	
per	Sulfore Sv 4	SAN GABRIEL RIVER HYDRU UNIT UD500	12	1.56	115	2.35	144	3.00	47	Z Q	1.85	17	96	4000	2.7	03	1013	54	108	2.25	17	0 ^	1.8/	20	
parts per equivalents percent re	Bycor - bonote HCv3	HYURG	276	3.70	274	7.01	422	6.92	54	6.67	\$0.0¢	ング	264	4.53	99	756	07.4	40	266	4.36	23	246	4.03	25	
parts equiva percen	Corbon ote	KIVL.	0		0		C)		Э			0			Э			0			2			
c c	7	GABRIE	~	D -4	4	0.10	7	0.10	-	7	0.10		77	0.10	7	Ĵ	0.10	-4	\$	0.10	~	1	0.10	7	
constituents	E 2 0	A SAN	4.1	1.78	120	5.4.6	115	5.00	39	40	1.76	56	25	2.26	2.4	54	2035	25	52 %	2.09	97	** **	1.91	17	Ī
Mineral co	Mogne.	L UOSAS	14	22.0	38	3.15		3.54	8.0	10	1.32	17	700	1011	52	15	1063	1 /	50	1.01	77	18	1.40	7]	
Σ	C0 10 0 0		62	30.0	74	3.69	, a	60.4	35	7.	3.49	51	69	3 . 44	7 77	68	3 . 3.)	6.7	χ. ~.	4. 14	~	14	5.67	ed u`	
Specific conduct-	mhos at 25°C)	SUBUNIT UOSAO	217		1110		2 -	0011		550			130			014			15:			673			
0, 0	Hd	HYDR SUB SUBAREA	0 • 0) •		0 7	•), •			J.			101			1.01	Ī					
Temp	when sampled in °F	I	1.7		1		, ,	_		1			1			1			1			1 1			
State well	led	COASTAL PL OF LA CO F	25/13W-32R11 S	7-6-65	25/14W- 5D 8 S	1-21-65		19-2 -7		25/14w-14c	11- 2-64			4- 1-65		25/14W-22P 2	11- 2-64		25/14W-23H 3	11- 2-154		25/148-23412 .	11- 2-64		

TABLE E-1
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	Tutoi	00000		236		683		142		276		54		437		192		185		
uents in	T D S Total	Computed		004	375		1034	230	216	398	375	286	797	780	750	340	328	338	325	
constituents per million	S.11-			1		1		-		1				-		-		1		
Mineral parts p	Boron	8		0.16		1		90.0		0.07		0.05		0.24		0.05		0.12		
	Fluor	L		7.0		-		5.0		,0.5		0.0		0.5		7.0		7.0		
	- IN	NO N		20	1	0		0		0		0.0		0.0		0.0		0		
million	Ch lo =		00500	w 3	14	195	0 0	15	10	36	1001	18	11	122	26	200	1 8	39	19	
million	Sulfate	504	RIVER HYDRO UNIT U0500	79	1.04	258	52	20	10	53	1010	54	25	220	35	500	20	58	21	
parts per equivalents		HCO3	4 HYDR	252	09	470	4 1	205	80	303	02	177	49	305	38	228	62	217	61	
por	Carbon -	C 0 3	L RIVE	0		0		0		0		0		0		0		0		
.5	Potos	¥	GABRIEL	W X	0	4 0 0 0		J. 0.0	~	60 3	-	2 0 0 0 5	7	30.08	1	2	1	£ 0.0	~	
constituents	Sodium	o Z	A SAN	245	29	110	26	1.23	23	35	21	93	20	98	33	50	36	51	37	
Mineral co	Mogne	o- ≥	LUOSAS	16	20	58	26	12	24	18	21	0.08	7	28	18	18	24	0.90	15	
2	Colcium	٥٥		998	500	178	4 8	37	45	81	57	ο 0 0 0	5	129	64	7.35	39	56	47	
Specific conduct-	mhos	at 25°C)	CO HYDR SUBUNIT U05AU DRO SUBAREA	620		163∪		387		653		450		118∪		570		550		
	H		OR SUBAR	8.2		8 • 4		7.9		7.9		0 ° 8		9 • 0		8 • 1		7.7		
Temp	when	Ē	>-	1		75		1		1		1		1		1		1		
State well	7		COASTAL PL OF LA CO HYDR SUB CENTRAL HYDRO SUBAREA	25/14W-23H12 S		35/11W- 6K 4 S		35/11W-20J 6 5		35/11W-20R 7 S		35/11W-27G 1 S 10-27-64		4- 1-65	4	35/11W-28P 5 S		4- 1-65		

	teto: hordness es cos		159		371		272		212			383		404				4 36	
uents in	T.C.S. Teto: Evop 180°C hardness Evop 105°C as Computed Co.c.3		250	744	814	177		818	310	785			609	799	264			D 1	0 0
constituents per million	S Co SiO ₂		T		1		1		;					1		1		1	
Mineral parts p	80.00		90.0		0.15		-		0.05			1		0.61		-		0.12	
	Fluo-		7.0		0.0		1		0.5			1		7.0		1		7.0	
	ni - trate NO3		1	0.02	7	0.00	17	0.31	2			0 0 0	7	57	7 .0	12	0.19	7	•
million value	Ch 10 -	00500	25	0.71	110	3.61	166	35	1/	0 7 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °		0/20	22	99	, c	79	1.00	0	10
s per million reactance valu	Sulfate SO 4	GABRIEL RIVER HYDRO UNIT UOSOO	18	0 · 3 /	338	200	276	5.75	43	0.30	,	230	1 4	163	0 0 3 2 2	189	3.43	701	7 7 •
equivalents percent	Bicar - bonote HCO3	HYDRO	222	3.64	142	18	164	2.69	147	4.05		185	, m	187	400	1		261	7 7 7
60 0	Corbon -	L RIVER	0		5		0		Э			0		0	-	1		٥	
U .	Potos -	GABRIL	7	0.05	9	0.13	9	0.15	30	C . C C		4 0100		4 3	1 0 1	1		4 3	2 1
constituents	Sodium	A SAN		1.57	119	2.17	174	1.50	54	1.04		2, 28	57	14	, , , , , , , , , , , , , , , , , , ,	1		45	77
Mineral co	Mogne- stum M g	L UOSAS	10	0.82	35	23	20	1.64	14	1.15		1.97	14	47	700	1 1		6.2	77
ž	Calcium		47	2.35	91	300	76	5. 79	62	5. C.V.		114	200	28.5	7 7	1		127	c 2 0
Specific conduct-	1 0	HYDR SUBUNIT U05A0 5 SUBAREA	442		1225		1310		497			246		066		751		777	
-	Hd	YOR SUBI SUBAREA	70		7.8		ے ص		00			•		ے ق		1.04		7 . 4	
Temp	when sampled in ° F	CO HY	1		-		†		80 49	Ī		* 9		1		t I		1	
State well	led	COASTAL PL OF LA CO H CENTRAL HYDRO	35/11W-29H 1 S	6-16-65	35/11W-30H 4 S	8-17-02	35/11W-30M 3 S	69-77-9	35/11W-30P 2 S	6-16-65		35/12W- 1F 6 5 8- 9-65		35/12W- 1K 1 5		,	7-2:-65	77-06-0	

TABLE E-I
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	T, to? hordness as Coulds		327	351	721	314	192	210	363	271	
fuents in	TDS 1, to: Evop 180°C hordress Evop 105°C os Computed Courts		495	685	1215	329	360	307	679	377	
constituents per million	Si 1:		1	1	-		1	1	i	1	
Mineral parts p	Biron		1	1	77.0	1	0.17	0.11	1	60.0	
	r.de		0.3	0	0	1	χ. •	0 • 2	0.5	7.0	
	role N. 3		0.08	0.08	0.50 0.50	11 0•18	0.10	6 0•10	0.08	0.11	
nillion per million ctance value	C P 10	00500	1.55	2.57	0 - 2 - 0 1 / 0 - 0	36	1.87	24 0.68 12	1.07	40 1.13	
60	Sulfore Sc4	SAN GABRIEL RIVER MYDRO UNIT U0500	175	281 5.85 52	25.2 25.25 31	120 2.50 61	54 1•12 10	31 00.77	187	91 1.89	
parts per equivalents percent	Bicor - bonote HCO3	H HYDK	3.15	168	278 4•56 27	24 0 39 10	239	261	202 3.31 37	3.93	
e d e d	Carbon ore CO ₃	K I VE	0	r)	Э	•	ɔ	0	0	Э	
c.	Potos -	САВКІ	0.08 L	0.13	0.10	0.08 1	2	3 0 • U 8 1	0.10 L	4 0•10 1	
constituents	E 0 0 2	⋖	1.91	4.13 4.13	60 2.61 15	33 1•43 18	2.13	37 1.70 28	1.74	32 1.39 20	
Mineral	Mogne s.um M.g	L L L J J S A S C U	1.64	2.30	3.87	18 1•48 19	18	1.87	22 1.81 20	36 2.96 43	
2	£ 7 0 0 0	U05Av	98 4 89	97	211 10.53 62	96	47	46 2•30	109	2.45	
Specific conduct-	mhos at 25°C)	UBUNIT	184	1050	1589	/10	550	ر د د د	836	670	
	Ha	rdr Si Subari	# # # # # # # # # # # # # # # # # # #	7.9	7.2	ກ • ສ	7 . 8	7.0	? • •	7 • 8	
Temp	sampled in F	CO HY	799	72	1	99	1	1	63	!	
State well	Date sampled	COASTAL PL OF LA CO HYDR SUBUNIT UOSAV CENTRAL HYDRO SUBAREA	35/12W- 2H 4 5 8- 4-65	35/12W- 3M 1 S 8- 2-65	35/12W- 5D 3 S 8-12-65	35/12W- 5M 1 5 8- 2-65	35/12W- 8F 1 S 10-27-64	4- 1-65	35/12w-11P 4 5 8- 4-65	35/12W-11E 1 S 2- 9-65	

	hordness 25			0 %	364	313	2 × 3	7 . 1	110	27.1
uents in	Evap 180°C			4 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	000	7 7 7	220	2.		\$ 7
constituents per million	5 . 2		1	Î	-	ļ Į	1	1	2,	1
Mineral parts p	τ 		1	0.08	1	}) 4	5	0	
	2 0 "		1	0 • 5	7.0	7 • 0	7.0		٥ • •	\$
	2 0 Z		0.13	0.13	0 0 0 0 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2		1 0 • 0))		5
nillion per million ctonce volue	7. de	ממכמת	1.00/	1.10	1.10	1	20°0 20°0	, T) , , , ,	0,00
0	Suitale	SAN GABRIEL RIVER HYDRO UNIT UDDOUD	135	140	140	140	7+, e T		2.00	0.0
1 e t	Bicar - benele MCu3	HYUK		232 3•80 48	232	3.14	3.10	4.38	3	3
parts	Carbon.	L KIVE	;	0	7	0	7	ن	Э)
C -	Pc10s	JABRIE	1	0.1C	0.10	0.13 2.00	, , , , ,	, , , , , , , , , , , , , , , , , , ,		V
Mineral constituents	Sodium	4	1	31 1 35	1 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 .	32	1.042	25	Ly	25
ineral co	Mogne- srug Mg	LUUSAS	1	1.81	1.00	1.56	0.32	1.48	0.74	0.14
2	E 0 0		1	4.17	4 8 4 7 7 9 9 9 9	94.69	46.0	2 4 5 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6	700.7	2.00 2.00 1.00
Specific conduct-	mhos at 25°C)	SUBUNIT U05A0	139	144	135	702	300	450	\$ 0 \$	∞ ∼
	H	YDR S	7.0	7.4	(•)	- •	7			
Temp	sampled In ° F	CO HYDR	1	1	^	***	0.	I 1	1	\$
State well	Date sampled	COASTAL PL OF LA CO HYDR SUBI	35/12W-11E 1 S 7-20-65	9-29-65	35/12W-11F11 3- 4-65	35/12W-14C 5 3- 4-65	5 - 7 1 / w = 1 V = 4	35/12W-25K 1 10-27-64	35/12W-33A 1 , 10-3U-64	; ;

TABLE E-I
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

		hordness os Cour 3		250			197			135		231			329			218			150			148			
stituents in million		Evap 180°C hardness Evap 105°C os Computed Cours		335		341	716	226	0 7		279			407			204	405		404	260		238	209		261	
constituents per million		5:02		-			1					i			1			-			- [-			
Mineral parts p		60 60		0.05			0.13			}		-			1			0.05			0.06			0.04			
		7: de		0.5			0.5			1		1			ţ			0.5			9.0			9.0			
		Z OZ M		0			0.0			0		0			0			0.0			7	0.02		1.0	0.02		
million per million ctance value		0 0 0 0	00 < 00	77	79.0	0 1	12	74.0		3.4) 	42	1.18	30	53	1.49	17	10	2.45	34	11	0.31	_	10	0.45	6	
0		\$ 0 S	SAN GABRIEL KIVEK HYUKU UNII UDSOO	94	0.96	O T	12	0.20)	58	42	114	2.37	33	144	3.00	33	99	1.37	19	20	0.42	6	34	0.81	17	
parts per equivalents percent		bonote HCO3	X T X C X	273	4.47	4/	270	4.43)	176 2.88	52	220	3.61	5 C	273	4.47	50	205	3.36	47	232	3.80	84	220	3.61	74	
equ		ate CO3	L KIVE	0			0		Ý	>		0			0			0			0			Э			
Ë		2 2 X	GABRIC	_ m	0.08		5	80.0	1	7 0.00	1	77	0.08	7	3	0.08	1	7)	80.0	٦	2	0.05	7	2	0.00	1	
constituents	,	0 2	⋖	24	1.04	1 /	97	1.13		2.22	45	58	2.52	35	55	2.39	56	99	2.87	39	35	1.52	33	04	1.74	37	
Mineral co		. E . S	L UUSAS	14	1.15	か	18	1.48		11	100	16	1.32	18	21	1.73	19	10	0.82	11	0	0.74	16	20	99•0	14	
Σ		0 0	1	77	3.84	63	47	7.45	! ;	3.80	36	99	3.29	94	16	4.84	54	7.1	3.54	48	45	2 • 2 5	64	94	2.30	20 4	
Specific conduct-	ance	mhos at 25°C)	CO HYDR SUBUNIT UO5A0 DRO SUBAREA	559			084			0		999			826			700			415			463			
	H		YDR S SUBAR	7.7			-7 • Ω			η •		γ • 8			8 3			7.8			8.2			8 • 0			
Temp	when	sampled in ° F	>-	-			1		,	90		77			72			-						1			
State well		Date sampled	COASTAL PL OF LA CO HYDR SUBR CENTRAL HYDRO SUBAREA	35/12W-35B 4 S	6-16-65		35/12W-35K 1 S	4- 1-65	,	8-30-65		35/13W-12Q11 S	8-30-65		35/13W-25G 2 S	8-30-65		35/13W-34H 2 S	10-30-64		45/11W- 5M 2 S	8- 2-65		45/11W- 8M 2 S	7- 8-65		

	3 55		1		_		30		5		0	9	ħ.	
<u>_</u>	nordness 05 Colum		804		18		218		129	141	179	136	127	
60	Evap Breg Evap Breg Computed		1102	1011	235	247	305	286	300	310	316	320	2 2 2	
per million	5. 1.		1		-		-		16	22	21	9	~ 1	
parts p	8 B		0.11		70.0		0.00		-	-	ţ	1	1	
	7 de		0.5		0.5		0.0		1	1	1		{	
	1101e		8 0 • C		0		7	70.0	1	1	ł	1	1	
million e value	Ch 10 -	00500	192	30	11	0	77	11	23	01.0	0.00	32	77 000	
per	Sulfate SO4	SAN GABRIEL RIVER HYDRO UNIT UO500	224	25	20	15	26	10	40.0000	37	33	0.64	0 · 8 · 0	
equivalents percent re	Bicar - bonale HCO3	R HYDR	498	45	248	a c	263	16.4	172	185	216	215	182	
be	Corbon -	L RIVE	0		0		0		5 0 0 1 7	0	0	7	2	
<u>-</u>	sotos - Ruis	GABRIE	0.10	~	8 20	200	7 4		ο. α 3	α α • •	4 0	ر د د ع	ς c	
constituents	E na No	A SAN	51	12	22	20	25	20	1.83	50.2	5.17	2.22	2.04	
Mineral co	Mogne- s.cm Mg	L UUSAS	3.78	21	9 27	16	15	12	0.33	0.41	0.5	0.41) w u	
Σ	Colerum		246	19	9.000	63	990	200	2.25	4 4 6 0 4 6 0	3.62	2.30	4.55	
conduct-	mhos at 25°C)	HYDR SUBUNIT U05A0) SUBAREA	1724		453		204		1447	4 3 0	537	543	4 2 4	
	I	NDR SUBI SUBAREA	1.6		7.9		× × ×		&) •) • •	8.2	× *	
Temp	sampled In°F		1		1		1		1	1	1 1	I 1	1	
State well	Date sampled	DASTAL PL OF LA CO P	45/12W- 1D 5 5 7- 8-65		45/12W- 1F 3 S		45/12W- 2A 5 5		45/12W- 6D 1 5	12- 1-64	12-30-64	2- 7-65	5 - 5 - 6 5	

TABLE E-1
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	T tot hardness 35 Cours		131	66	137	130	6	177	142	124	
uents in	Evap Bicc hardness Evap Bicc 35 Computed Co. 3		867	787	306	317	250	354	292	786	
constituents per million	5 0.5 SiO ₂		22	77	21	22	18	22	23	17	
Mineral o	Borce		1	1		-	1	1	1	1	
	d b		1	1	-	1	1	1	-	†	
	7 0 N		1	1	1	1	1	1	1	1	
million per million ctance value	Chio-	00500	60.0	6.5	25	25	19	36.0	25	21	
0	Sulfate S > 4	RIVER HYDRO UNIT U0500	21	26 0 . 54	29	2.0	0 5 8 8 5 8	44	33	30	
parts per equivalents percent r	Bicor - bonate HCO3	R HYDR	184	188	193	193	165	212	3.10	187	
par	Carbon -	L RIVE	0.13	0	0	0	0	0	0	0	
ri s	00 00 00 00 00 00 00 00 00 00 00 00 00	GABRIEL	30.0	0.08	0.08	0 0 0 0 0	0.05	30.0	80.0	ر عن • 0	
constituents	Sodium	A SAN	2.13	52.26	50	47	1.83	48 2 • 0 9	46	50	
Mineral co	Mogne- stum Mg	L L	0.41	70.58	0.58	0.49	0.25	64.0	0.33	0.33	
2	Colcium		2.20	28	2.15	2.10	32	3.04	2.50	43	
Specific conduct-	mhos at 25°C)	JBUNIT	465	433	478	484	382	520	482	294	
	I	YDR SI	G • 5	80	ာ စ	8 . 2	80 60	7.9	8 • 2	8 . 2	
Temp	when sampled in ° F	CO HY	-	1	!		1	1	1	1	
State well	ped	COASTAL PL OF LA CO HYDR SUBUNIT UO5A0	45/12W~ 6D 1 S 3-30-65	5- 4-65	6- 1-65	6-29-65	45/12W- 6D 3 S	12- 1-64	12-30-64	2- 2-65	

	April 10 25		isy		9	Ď,	E S	74	~	3	
constituents in	Evap 105°C Evap 105°C			; -	, n	3.40	201			*,	
consti	S S		7.7	. 4	7	0	21	7	7	61	
Mineral parts p	, o , o , o		4	1	1	1	1	1	1	1	
	, D 11		1	-	!	1		1		1	
	N . N . N . N . N . N . N . N . N . N .		1	}	t t	1	1	1	1	1	
million per million ctance value	Chlo	00500	17	0 4 U	20.00	0 2 4 0	0.51	1	12	10.0	
0	Sulfote SO4	RIVER HYDRO UNIT U0560	20 0 0 4 5	21 0 • 44	210.0044	23	19	-	31	Э	
parts per equivalents percent re	Bicar - bonote HCO3	N HYDRG	159	161	162	165	162	166	168	161	**
p e q	corbon -		0.23	0.13	0	0	0	0	0.03	D	
<u>c</u>	Potos -	JABRIEL	c .c .d	٠. س س	20.0	50.0	0.05	30.0	0.10	0.031	
constituents	E P P P P	A SAN GABRIEL	1.78	1.74	1.83	2.17	48	2.13	5.4	3.09	
Mineral co	M 09 76 .	L USSAS	4 0.33	C • 25 3	5	0.49	3 0.25	0.33	3 0.25	1 0.0	
×	£ 2000		49 2 45	34	31	31	30	32	32	10	
Specific conduct-	. 0	SUBUNIT UDSAU	387	200	365	393	413	395	404	386	
	H	HYDR SUBI	8 4	œ ک	8 . 2	8.	2 • 3	æ •	∞ • •	Э • Т	
Тетр	sampled In ° F	1 0	-	1	1		1	α]	78	1	
State well	Date sampled	DASTAL PL OF LA CO F	45/12W- 60 3 S 3- 2-65	3-30-65	r - 4 - 65	5-1-65	6-29-65	8-31-65	9-28-65	45/12W- 6J 1 5 6- 1-65	

TABLE E-I
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	Total hardness os Calcos		39	37	37	39	37	34	8 8	43	
constituents in per million	TDS Total Evap 180°C hardness Evap 105°C os Computed CoCU3		250	248	701	228	270	208	223	230	
constituent per million	Si 1- ca Si 0-2		16	20	12	15	16	19	1,9	19	
Mineral o	Boron		1	1	-	1	6 3	1	1	1	
	7 00 J		1	1	-	1	1		1	1	
	trote NO3		1	1	1	1	1	1	1	1	
per million ctonce value	Chlo- ride Cl	00500	21	28	26.0	28	27	25	0.65	200.56	
0	Sulfate SO 4	RIVER HYDRO UNIT U0500	11 0.23	4 0 0 0 8 0 8	0.04	2 0 • 0 4	0.04	2 0 0 0	21	40.08	
parts per equivalents percent	Bicar - bonate HCO3	R HYDR	165	160	166	162	165	163	149	151	
pod per	carbon - ate CO3		5 0.17	7 0.23	0.20	0.23	0.23	16	0.17	5 0 17	
.E	Potas.	GABRIEL	0.03	0.03	20.0	0.03	0.05	0.03	0.03	0.05	
constituents	S o S	A SAN	60	2.91	2.87	3.00	3.04	3.48	2.65	2.61	
Mineral co	Magne- stum Mg	LUUSAS	0.08	0.08	0.08	0.08	0.08	0.08	0.16	0.16	
2	Calcium		14	13	13	14	13	12	12	0.70	
Specific conduct-	mhos at 25°C)	JBUNIT (354	357	367	378	373	200	348	353	
	I a	DR SI	8 • 6	9 • D	90	8.7	8 • 7	9.0	а • Л	α. Σ	
Teap	sampled in ° F	CO HY	1		}		ı	1	1	1	
State well	Date sampled	COASTAL PL OF LA CO HYDR SUBUNIT UO5AO CENTRAL HYDRO SUBAREA	45/12W- 6J 2 S 11- 4-64	12- 1-64	12-29-64	2- 2-65	3- 2-65	3-30-65	45/12W- 6K 2 S 5- 4-65	6-1-65	

	Total hardness as		80 1	90	4 6	41	154	152	137	145
luents in	1.05 ************************************		240	245			235	235	244	2 3 8
constituents per million	S 1.		19	79	17	18	52	i i	1	1 1
Mineral parts p	80.00		!	1	1	-	0.07	50°0	0.02	0.11
	7 co		1	-	1	1	0 • 5	0 • 5	0.5	0.5
	rore NC3		1	0	1	1	1.0	0.0	0	0
million e value	Ch 10 -	00500	19	0.50	-	21	10	13	19 0.54	1584
million per eactand	Sulfate SO 4	RIVER HYDRO UNIT U0500	0.23	0.21	1	14	13	0.25	18	0.33
leni	Bicor - bonote HCO3	нүрк	153	165	151	144	3.64	3.64	209	3.43
parts equiva percer	Corbon- ole CO3		5 0 0 1 7	0.17	7 0 . 2 3	8	0	0	Э	0
<u>c</u>	Potos -	GABRIEL	0.03	0.03	0.05	0.083	0.03	3 0.08	0.08	0.10
constituents	E 2000	A SAN G	61 2.65	63 2.74	2.83	2.96	23	23	1.522	1.52
Mineral co	Mogne- srum M g	L UOSAS	3 0.25	0.25	0.16	0.16	0.58	0.58	0.49	0.00
2	Colcium		14	0 15 20	0.70	13	2000	2.45	2.25	2 2 4 4
Specific conduct-	(micro- mhos at 25°C)	BUNIT L	316	2900	356	359	392	707	420	2,000
	I	DR SU UBARE	30 •	8 .5	30 • 30	0	7 • 8	⊃ • ∞	6.1	⊙ • ∞
Temp	sampled	CO HY DRO S	1	1	æ	62	1	6 5	1	ŀ
State well	Date sampled	COASTAL PL OF LA CO HYDR SUBUNIT UO5AO CENTRAL HYDRO SUBAREA	4S/12W- 6K 2 S 6-29-65	7-27-65	8-31-65	9-28-65	45/12W-10A 2 S 10-30-64	4- 1-65	45/12W-10G 1 S	4- 1-65

TABLE E-I
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	hardness as Calls		188	134	140	142	136	99	70	72	
constituents in per million	T D S Total Evap 180°C hardness Evap 105°C os Computed Cours		215	275	243			245	254	264	
constituent per million	Silt- co SiO ₂		1	24	21	20	22	21	20	19	
Mineral parts p	Boron		0.05	1	1	1	1	1	1	1	
	Fluor		0 • 5	}		1	1	1	1	1	
	frote NO3		0	1	1	8	1 8	1	1	1	
million per million actance value	Ch 10 -	00500	y 0.25	0.17	0.20	8	0.17	17	12	14	
0	Sulfate SO4	SAN GABRIEL RIVER HYDRO UNIT UO500	13	13	14	1	14 0 . 29	22	17	14	
parts per equivalents percent re	Bicor - bonote HCO3	R HYDK	259	3.26	209	3.39	210	155	168	165	
pod	Carbon -	L RIVER	0	0	0	0	0	8	2 0.07	0.17	
Ë	Potas -	SABRIE	0.08	30.08	0.08	0.10	0.10	2 0.05	2 0 • 0 5	0.05	
constituents	Sodium	A SAN	23 1.00 21	1.22	30	30	31	56 2 43	58	58	
Mineral c	Magne- s-um Mg	L UOSAS	8 0.66 14	0.33	9 4 4 %	9 0 74	0.41	0.16	0.25	0.33	
2	Calcium		3.09	2.35	46.2.30	42 2-10	2.30	23	23	1.10	
Specific conduct-	(micro- mhos at 25°C)	UBUN I T E A	435	380	2780	370	370	384	604	2610	
	рН	YDR SI SUBARI	7 • 7	8.1	⊙ • ⊗	8 . 2	8 • 2	5.0	8 • 4	9 • 4 • 4	
Temp	when sampled in ° F	CO H	1	-	-	79	78	1	1	1	
State well	Date sampled	COASTAL PL OF LA CO HYDR SUBUNIT U05AO CENTRAL HYDRO SUBAREA	45/12W-12Q 1 S 6-16-65	45/12W-13C 3 S 6-29-65	45/12W-13D 3 5	8-31-65	9-28-65	45/12W-13N 2 S 5- 4-65	6-29-65	7-27-65	

State well	Temp		conduct-	2	Mineral co	constituents	Ë	equivalents percent r	equivalents percent ri	0	per million ctance value			Mineral o	constituents per million	uents in	
led	when sampled in ° F	J.	ance (micro- mhos at 25°C)	Calcidm	M a g n e . N G B M	E n N	Potos Tyres	Corbon -	Bicor - bonote HCO3	Sulfate SO4	Ch10 -	N. 1101e NO3	2 D IL.	89 CO 10 B	S. c. 6	Evot Scor Evot 105°C Computed	Total hardness as CaCO3
OASTAL PL OF LA CO		YDR SUBI	HYDR SUBUNIT UO5AO SUBAREA		L UOSAS	<	GABRIE	L RIVE	R HYDRO	SAN GABRIEL KIVER HYDRO UNIT UO500	00500						
45/12W-13N 2 S 8-31-65	7.9	8 • 6	385	1.15	64.0	2.74	90.0	5 0 0 1 7	165	1	1	-	1	1	Ω		8 2
45/12W-13P 1 S 6- 9-65	l	10 • •	398	2.30	0.49	1.43	0.02	0	198 3•25 75	30.00	0.01	80.0	ļ	1	1	287	143
7-28-65	1	φ •	618	2.46 38	10	2.96	0.10	0	3.25	0.83	2.12	0	1	-	1	342	101
45/12W-14A 2 S 3- 2-65	1	7.9	380	2.35	0.41	1.09	30.0	0	194 3.18	25.0	8 0 0 6 3	1	}	1	23	29 89	130
3-30-65		φ • γ	260	5.54	0.41	96.0	U.08	0	3.29	14	0.17	1	Į.	1	2 1	203	148
5- 4-65	1	O •	364	2.05	7	24	0.08	0	3.20	14	12 0 0 24	1	1	-	10	505	132
6- 1-65	# #	1.9	3 8 1	2.35	0.66	1.17	0.0 8 3	0	3.16	0.31	V . 5 . 0	1	1	-	707	243	151
9-53-65	l	0	420	2.48	0.40	1.09		0	3.21	0.33	0.23	1	1	\$ 1	2.1	25.3	140

TABLE E-1

ANALYSES OF GROUND WATER

LOS ANGELES DRAINAGE PROVINCE (U)

	Total hardness as CaCO3		77	18	19	56	19	12	6 8	102	
uents in lion	TDS Total Evap 185°C hardness Evap 105°C as Computed CaCO3		252	218	516	234			205	224	
constituents per million	51117 CO S102		10	18	19	18	17	18	16	20	
Mineral c	Baron		-	1	1	1	1	ł	1	1	
_	r de		1	1	1	1	1	1	1	1	-
	roje NC3		1	1	l t	1	1	\$!	1	
million per million ctance value	C 1 10 -	10500	24	20	19	0700	1	20	0.20	11 0.31	
0	Sulfate SO4	HYDRO UNIT U0500	0.02	0	0.10	15	1	8	17	14	
len it	Bicor - bonote HCO3		129	130	139	134	135	132	148	162	
parts equiva percer	Carbon - ote CO3	RIVER	17	12	8 0.27	13	12	14 0 • 47	0	0	
Ë	Potas For	GABRIEL	0.03	0.03	0.03	0.03	0.05	0.05	0.05	2 0.05	
constituents	Sodium	A SAN (66 2.87	2.78	2.70	2.96	3.00	3.13	37	34	
Mineral co	M o g n e .	L UUSAS	0.08	0	0.08	0.16	0.08	0.08	0.25	0.33	
Σ	Calcium		8 0 4 0	0.35	0.30	0.35	0.30	0.15	1.10	34	
Specific conduct-	1 0	HYDR SUBUNIT UD5A0) SUBAREA	330	319	320	3200	327	325	288	295	
	I	DR SU UBARE	0,	φ •	0,	0 • 6	80 • 0	0 • 6	φ •	8 . 2	
Temp	sampled In F	CO HY	1	i i	1	1	79	79	1	1	
State well number	Date sampled	COASTAL PL OF LA CO H	45/12W-14C 2 S 5- 4-65	6- 1-65	6-29-65	7-27-65	8-31-65	9-28-65	45/12W-14C 5 S 11- 4-64	12- 1-64	

TABLE E-I
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	Total hordness os Coucs		7.6	103	66	102	6 1	90	23	۴.	
constituents in	T D S Total Evap 185°C Andress Computed Colicy		187	190	223	177	245	214	220	172	
constituent per million	5. 1.		21	16	2 1	20	16	7	20	8	
Mineral parts p	80000			1	1	-	1	1	1	-	
	3 P L		-	1	1	1 1	1	1	1	1	
	Note NC3		1	1	{	1	i	1	1	1	
million se value	Ch10 .	00500	7 0 • 20	0.20	0.20	0.14	0.23	13	1110.31	10	
million per eactand	Sulfate SO 4	RIVER HYDRO UNIT U0500	8	0.08	13	10	13	4 0 • 0 8	13	0.12	
parts per equivalents percent r	Bicor - bonote HCO3	R HYDR	168	168	168	167	154	148	145	145	
pod eq	Carbon -	L RIVE	0	0	0	0.10	2 0.07	0.13	5 0 17	0.27	
Ē	Potos.	SAN GABRIEL	30.08	0.05	0.08	0.08	0.05	0.05	0.05	0.05	
constituents	Sodium	⋖	32	1.35	1.35	30	38	1.96	1.91	1.78	
Mineral co	Magne.	L U05A5	0.33	3 0 . 25	0.34	2 0 4 6	0.16	0.16	0.16	0.25	
Σ	Coleium		32	36	33	34	21	23	18	1.00	
Specific conduct-	mhos at 25°C)	JBUNIT (320	327	327	313	288	285	308	313	
	H	YDR SUSUBARE	8 • 1	8 . 2	8 • 1	χ •	8 • 4	9 .	φ •	φ •	
Temp	sampled in °F	A CO H	-	-	1	ł	1	ł	1	1	
State well	p e d	COASTAL PL OF LA CO HYDR SUBUNIT UOSAO CENTRAL HYDRO SUBAREA	45/12W-14C 5 S	2- 2-65	3- 2-65	3-30-65	45/12W-16R 1 S	12- 1-64	3- 2-65	3-30-65	

TABLE E-1
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	Total	hardness 0.5 Co CO3		29	33	25	34	34	110	107	24	
uents in lion	TOS	Evap 180°C hardness Evap 105°C os Computed Co Co3		250	259		202	206	379	385	305	
constituents per million	Sili:	_		18	18	16	18	17	-	1	16	
Mineral c	Boron			1	1	1	1		1	1	1	
	Fluo-	ride F		1	1	-	1	-	1	1	1	
	ž	trote NO 3		1	1	1	1	1	0	0	1	
million ce value	Ch 10 -	- i d e	00500	20	23	1	24	24	3.92	144	18	
millio	Sulfote	504	A SAN GABRIEL RIVER HYDRO UNIT U0500	0.10	0.10	1 1	0.12	0	12 0 . 25	0.21	0.21	
parts per equivalents percent r	BICOT -	bonate HCO3	R HYDR	171	2.79	175	138	145	2.66	2.69	3.15	
pod	Carbon -	016	L RIVE	0.20	10	0.27	0.27	0.23	0	0	0.23	
. <u>c</u>	Potos -	. ×	GABRIE	0.03	0.03	0.05	0.03	0.03	0.03	0.03	0.03	
constituents	Sodium	0 2		2.87	3.13	3.39	2.70	2.48	107	110	3.26	
Mineral co	. a c o o M		L UOSAS	0.08	0.16	0	0.08	0.08	64.0	64.0	0.08	
2	Colouda	٥	UOSAO	0.50	10	10	0.60	12	34 1.70 25	33	0.40	
Specific conduct-	(micro-	mhos at 25°C)	CO HYDR SUBUNIT U05A0 DRO SUBAREA	356	2750	365	325	327	718	733	369	
	Hd		YDR S SUBAR	8.7	8 . 7	φ •	l	8 0	9 •	8 • 4	8 • 8	
Тетр	when	In ° F		1	ē ē	81	1	1	1	1	1	
State well		Date sampled	COASTAL PL OF LA CO HYDR SUBL CENTRAL HYDRO SUBAREA	45/12W-1.7E 1 S 6-29-65	7-27-65	8-31-65	45/12W-17P 3 S 5- 4-65	6- 1-65	45/12W-19A 1 S 1- 5-65	45/12W-19B 4 S	45/12W-20J 4 S	

	55 50		_		m			ď.			
	Total hardness os Calics		27	5 1	2 88	27	27	ι. ι.	54	24	
constituents in	TOS Total Evap 180°C hardness Evap 165°C as Computed Coccs		282	229	232	768	196	252	673	270	
constituent per million	5. 1.		88	18	14	19	17	11	17	18	
Mineral parts p	8		1	1	į.	l		t t	1	1	
~	. o o		1	1	1	1	1	ł	i i	į.	
	7 0 7 0 7 0 7 0 7 0 1 0 1 0 1 0 1 0 1 0		1	1	1	4	1	1	1	1	
per million clance value	- ch lo - c - c - c - c - c - c - c - c - c -	00500	22	18	20.00	18	17	0.56	24	0.51	
0	Sulfate SO4	SAN GABRIEL RIVER HYDRO UNIT UO500	4 0 0 0 8 0 0 8	4 0 0 0 8	4 0 0 0 8	0.06	8	0.15	0.04	0.02	
equivalents percent	Bicor - bonole HCO3	R HYDR	193	3.26	164	179	150	3.06	179	194	
9 9 0	Carbon -	L RIVE	0.20	0.23	8	8 0.27	14 0 0 4 7	0.23	10	5 0 0 1 7	
Ē	Potos -	GABRIE	0.03	0.05	0.03	0.05	0.03	0.03	0.03	0.03	
constituents	E nipos	A SAN	3.39	3.43	3.09	3.17	3.13	3.13	3.48	3.09	
Mineral co	Mogne- sium Mg	L UOSAS	0.08	0.16	0.16	0.08	0.08	0	0.08	0.08	
Σ	Colcium		0.45	0.45	8 2 4 6	0.45	0.45	0.45	8 0 4 0	8 0 7 0 0 0 0	
Specific conduct-	mhos at 25°C)	JBUNIT (375	397	371	367	374	382	381	393	
	H	YDR SL SUBARE	8 0	9	0 0	6.7	80	9 0	80	8	
Temp	when sampled In ° F	A CO H	1	1	1	1	1	1	;	1	
State well	P	COASTAL PL OF LA CO HYDR SUBUNIT UO5AO CENTRAL HYDRO SUBAREA	45/12W-20J 4 S 12- 1-64	12-29-64	2- 2-65	3- 2-65	3-30-65	5- 4-65	6- 1-65	6-29-65	

TABLE E-I
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	Totol	Co CO 3		33	24	32	34	28	29	76	78	
constituents in	T 0 S	Evap 105°C as Computed Cacos				266	186	216	239	262		
constituent per million	Sail.	5.0.5		16	18	17	17	16	17	18	17	
Mineral parts p	Boron	83		l l	1	1	1	1	!	1	1	
	F. U.O.	P P		1	1			1	1	1	1	
	ž	NO 3		1	+	1	1	1	}	1	ţ	
million per million ctance value	C h 10 -	ride C1	00500	1	19	0.34	0.31	18	12	0.37	1	
0	Sulfate	504	RIVER HYDRO UNIT U0500	1	0.25	30.06	23	21	20	25	1	
parts per equivalents percent re	Bicor -	bonate HCO3	4 HYDR	211	3.18	143	131	141	143	167	163	
bed	Carbon -	ate CO3	L RIVE	10	0.37	0.17	0.50	0.20	5 0.17	0.13	0.17	
i.	Potas -	E X	GABRIEL	20.05	90.08	0.05	0.05	0.03	0.03	0.05	0.08	
constituents	Sodium	0 2	A SAN	3.13	3.91	2.78	58 2 52	2.52	63	2.52	2.52	
Mineral co	Модпе-	S . U.B	L	3 0.25	0.08	0.08	0.08	0	0.08	0.41	0.41	
2	Calcium	0 0		8 0.40	0.40	11	12	0.55	10	1.10	23	
Specific conduct-	(micro-	mhos at 25°C)	JBUNIT EA	394	398	35	357	352	334	2800	380	
	H		rdr st	80	8 • 7	8 • 6	0 • 6	8 6	8 . 6	ф •	8 . 6	
Тетр	sampled	in °F	CO HY	81	79	1	1	ŀ	1	1	81	
State well		Date sampled	COASTAL PL OF LA CO HYDR SUBUNIT UO5AO CENTRAL HYDRO SUBAREA	45/12W-20J 4 S 8-31-65	9-28-65	45/12W-23K 3 S 3- 2-65	3-30-65	5- 4-65	6-29-65	45/12W-24M 8 S 7-27-65	8-31-65	

	Total hordness os CoCO3		120	27	3 8	12	19	19	19	15	
tuents in	T D S Evap 180°C Evap 105°C Campuled		255	247	255	256	282	256	224	228	
constituent per million	S. 1-		1	1	15	1	15	18	18	14	
Mineral constituents parts per million	80101		1	ł	ł	0.27	Î	1	1	1	
	7 uo.		1	1	1	9 • 0	1	i	1	1	
	rote NO3		0	0.0	1	0	1	1	1	1	
million se value	Ch 10 -	00500	20 0.56	38	13	18 0.51 13	14	17	16	0.54	
per per sectone	Suffore SO4	A SAN GABRIEL RIVER HYDRO UNIT U0500	38 0.79	35 0 • 73	14	0.21	10	10	40.0	0.04	
parts per equivalents percent re	Bicor - bonote HCO3	R HYDR	198 3•25 71	158 2.59	153	191 3•13 81	170	2.74	168	2.72	
pat	Carbon -	L RIVE	0	0	0.20	0	0.37	12	12	14 0 0 47	
ri Li	Potos -	GABRIE	0.05	0.03	0.05	0.03	0.03	0.03	0.03	0.03	
constituents	Sodium		2.17	3.70	3.00	3.57	2.91	3.17	3.17	2.83	
Mineral co	Mogne- srum M g	L U05A5	0	0.08	0.16	0.08	0.08	0.08	0.08	0	
2	Calcium		2.40	0.45	12	0.15	0.30	0.30	0.30	0.30	
Specific conduct-	mhos at 25°C)	JBUNIT (421	377	374	340	334	332	348	363	
	H	YDR SI	8 5	80	80	7.5	8	8 6 9	8 . 9	0.6	
Temp	sampled in °F	CO H		1	1	}	1	1	1	1	
State well	p	COASTAL PL OF LA CO HYDR SUBUNIT U05A0 CENTRAL HYDRO SUBAREA	45/12W-24Q 1 S 7-28-65	45/12W-26F 2 S 11- 2-64	3- 3-65	45/12W-28H 1 S 10-27-64	45/12W-28H12 S 11- 4-64	12- 1-64	12-29-64	2- 2-65	

TABLE E-1

ANALYSES OF GROUND WATER

LOS ANGELES DRAINAGE PROVINCE (U)

	Total hardness os CauO3		17	17	17	13	19	19	15	17	
uents in Iton	TDS Total Evap 185°C hardness Evap 105°C os		260	201	236	237	266	255			
constituents per million	Sitter SiO ₂		19	17	13	17	18	17	10	18	
Mineral o	Boron		-	į į	1	1	E .	į.	t I	-	
	Fluo-		1	l		1	-	1	!	1	
	ni - trote NO 3		1	1	9	}	1	1	1	† †	
million 8 value	Chlo -	00500	15	15	22	20	15	17	l I	16	
millior per eactanc	Sulfate SO 4	A SAN GABRIEL RIVER HYDRO UNIT U0500	0.23	4 0 • 0 8	7 0.15	0.04	0.04	0.12	1	0.25	
parts per equivalents percent r	Bicar - bonate HC03	R HYDR	167	176	173	162	2.93	170	176	168	
par	Carbon - ole CO 3	L RIVE	13	12	10	14	0.33	16	13	17 0.57	
Ë	Potas -	GABRIE	0.03	0.03	0.03	0.03	0.03	0.03	0.05	0.05	
constituents	Sodium	A SAN	3.30	3.04	3.13	3.26	3.13	3.26	3.13	3.65	
Mineral co	Magne- sium Mg	L UOSAS	0.08	0.08	0.08	0	0.08	0.08	0	0.08	
Σ	Calcium		0.25	0.25	0.25	0.25	0.30	0.30	0.30	0.25	
Specific conduct-	mhos at 25°C)	JBUNIT (360	357	362	361	345	2800	370	370	
	Ha	IDR SI	8 9	8 • 9	φ φ	0,0	8 0,	80 0.	0, 0	0.6	
Тетр.	wnen sampled in ° F	CO HY		-		1	1	1	8	79	
State well	led	COASTAL PL OF LA CO HYDR SUBUNIT UO5AO CENTRAL HYDRO SUBAREA	45/12W-28H12 S 3- 2-65	3-30-65	5- 4-65	6- 1-65	6-29-65	7-27-65	8-31-65	9-28-65	

	Tcfot hardness os CoCC3		68	74	63	32	35	3392	5193	2144
constituents in per million	TOS Total Evap 180°C hardness Evap 105°C os Computed Colics		25.3	247	183	197	652	11576	13098	6128
constituent	S. 1. ca Si0 ₂		1	D	_	1	1	-	ł	1
Mineral parts p	Boren		t	1	1	1	-	I I	1	1
	7 c c		1	t t	i i	ē ē	1	1	į	1
	n. trote NO ₃		0.0	1	!	0	0	0	0	0
per million ctance value	chio	00500	1.18	13	10	16	1.24	6280 177-10 88	7560	3360 94.75 89
0 0	Sulfate SO4	RIVER HYDRO UNIT U0500	34 0.71	21 0.44	0.10	26 0.54	0.77	1040	1080	486 10•12 9
ports per equivalents percent	Bicor - bonate HCO3	R HYDR	2.74	167	150	155 2.54	160	162	121	120
por	Carbon - ofe CO3	L RIVER	0	0.13	4 0 0 1 3	0	0	0	0	0
Ë	Potas - sium K	SAN GABRIEL	0.05	0.05	90.0	0.03	0.03	16	0.20	11 0 • 28
constituents	Sodium	A SAN	68 2.96 68	53	1.78	2.87 81	3.74	3040	3100	1470 63.92 60
Mineral co	Mogne. Stum Mg	L U05A5	0.25	0.33	0.41	0.08	0.25	30.26	23.93	180 14.80 14
2	Calcium	UOSAO	1.10	23	17.	0.55	0.45	37.52	1600	562 28•04 26
Specific conduct-	(micro- mhos at 25°C)	UBUNIT EA	379	373	300	351	399	18200	24200	10200
	Ha	OR SI	8 5	9 . 6	9 0	9 • 6	00	8 . 2	8 • 1	0
Тетр	sampled in ° F	CO HY	1	1	1	1	1	72	75	73
State well	Date sampled	COASTAL PL OF LA CO HYDR SUBUNIT UO5AO CENTRAL HYDRO SUBAREA	45/12W-35C 1 S 11- 4-64	3- 3-65	45/12W-35C 2 S	4S/12W-35H 1 S 10- 7-64	45/12W-35H 5 S 11- 2-64	45/12W-35J 5 S 1-11-65	4S/12W-35J 6 S 1- 8-65	45/12W-35J 7 S

TABLE E-I
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	1000	os CoCO3		2276		2692		5276		969			209		163			570			64			
lion	0	Evap 105°C hardness Evap 105°C as Computed CoCO3			6864		8046		22476			1130		1062			664		1	1157		736		
constituent per million	-	5.02		1		1		1		1			1		ŀ			1			ł			
Mineral constituents parts per million				1		ł		1		1			-		1			1			1			
		, p		1		1		1		1			-		1			-			1			
		rore No 3		0		0		0		0			0		C)		0			0			
million per million ctance value	- 4	de	00500	3740	88	4380	88	12300	346 • 86 89	558	15.74	9/	484	13.65	1 98	5.58	99	572	16.13	80	95	2000	1	
0	0 0 0 0 0 0	400	SAN GABRIEL RIVER HYDRO UNIT U0500	580	10	708	10	1950	40.60	110	2.29	11	126	2.62	7.7	0.98	11	103	2.14	11	225	4 0 0 0	ì	
parts per equivalents percent re	0	bonate HCO3	R HYDR	106	r-1	130	2	206	3,38	131	2.15	11	147	2.41	134	2.20	25	119	1.95	10	286	4.00	<u> </u>	
pod	4	a te	L RIVE	0		0		0		0			0		C	>		0			0			
.c	0	2 5 X	GABRIE	10	2	18		2	0.05	10	0.26	₹	9	0.15	١ ٥	0.05	7	n	0.08		ري د د	0.13	•	
constituents	1	0 2	<	1660	61	1910	09	6500	282.62	138	00.9	30	147	6 • 3 9	124	5.39	62	200	8 • 70	43	253	11.00	*	
Mineral co		E 5 2	LUOSAS	138	10	173	10	756	62.17	35	2.88	14	25	2.06	i (f	0.41	S	13	1.07	Z.	(0 00)	
2	1	, o	UOSAO	684	29	793	29	867	43.26	221	11.03	ζ	202	10.08		2.84	33	207	10,33	51	13	0.65	`	
Specific conduct-	ance	mhos at 25°C)	FIND	11000		13000		30700		2210			1930		926	2		2140			1160			
	Hd		YDR S SUBAR	8 • 0		7.7		8.0		8.2			8.1		4)		8.1			9.5			
Тетр	when	sampled In ° F	_	1		75				1			1		76)		1			1			
State well		Date sampled	COASTAL PL OF LA CO HYDR SUBI CENTRAL HYDRO SUBAREA	45/12W-35J 7 S		6-29-65		45/12W-35K 3 S	6- 7-65	45/12W-35K 6 S	1-19-65			7- 1-65	2 L 45E-MC1/37	1-18-65			7- 1-65		45/12W-35P 1 S	10-11-64		

	Total Nardness as CoCC3		145	75		133	125	114	5625	5629	7400
constituents in	TOS Total Evap 180°C Nardness Evap 105°C as		404		378	667	511	200	29569	28983	28773
constituent per million	Sili- co SiO ₂		1	1		i t	1	-	1	1	1
Mineral parts p	Boron		1	1		1	1	1	1	ł	1
2	Fluo-		1	1		1	1	1	1	1	1
	Ni - frote NO3		0	0		0	0	0	0	0	0
million se value	Chlo- ride Cl	00500	1.89	n 80 3	7.40	28 0.79	0.62	0.51	16400 462.48 90	16000	16000
per	Sulfote SO 4	SAN GABRIEL RIVER HYDRO UNIT UO500	3.48	137	7.83	226	246	242	2300	2300	2300
equivalents percent	Bicor - bonote HCO3	HYDR	171 2.80	40 7	0.66	2.43	138 2•26 28	138	180	181 2.97	204
edu	Carbon - ale CO3	L RIVER	0	0		0	0	0	0	0	0
<u>.</u> <u>.</u>	Potas .	GABRIE	0.15	2 20 6	0.13	0.05	0.03	0.03	188	204 5.22	200
constituents	S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A SAN	118	102	4.43	120	128 5.57 69	128 5.57 71	9000	8800 382.62 76	7840 340.88 69
Mineral co	Magne. s.u.m M.g	L UO5A5	64.0	0 0	0.49	0.41	9 0 6 4 9	0.33	1020 83.88 16	1025 84.30	973 80.02 16
2	Euroloo.		2.40	20	1.00	2.25	2.00	39	572 28.54 6	565 28.19 6	1360 67.86
Specific conduct-	mhos at 25°C)	HYDR SUBUNIT U05A0 SUBAREA	1120	661		787	784	778	40000	37900	37600
	I a	HYDR SUBI	11.4	8.3		80	4.	8 3	7.9	7.9	7.9
Тетр	sampled in ° F		72 1	73		-	72	73	1	1	İ
Stote well	Date sampled	COASTAL PL OF LA CO H	45/12W-35P 1 S		4-28-65	45/12W-35P 2 S	12-30-64	4-29-65	45/12W-35R 3 S 4-14-65	6- 8-65	4S/12W-35R 5 S 6- 7-65

TABLE E-I
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	1040	hordness			171		5793		6164		879		2119		2394		5915		6207		
constituents in	10 ×	Evap 180°C hordness Evap 105°C os				351		31626		34050		1328	6980	6889	1640	7552	29700	29562	30700 6207	30573	
constituent per million	1111		7		1		1		1		1		1		1		-		1		
Mineral parts p	0000				†				-		-		1		1		1		1		
	0.10	7 - d e			-		1		1		1		-		-		1		ţ		
	1 2	e 2			5	0.08	0		0		0		0		0		0		0		
million per million ctance value	1 0		00501		25	0.71	17400	06	18800	06	618	11.042	3790	89	4160	111.031	16400	06	16900	06	
9	Cultate	000	BIVER HYDRO HAIT HOSOD		104	2.17	2430	6		10	181	16	514	0/*01	552	11.49	2144	44.04	2400	6	
parts per equivalents percent re	B . C . C	Donate HCO3	HADB		190	3.11	252	1	198	3.623	128	6	180	2.43	169	2 2	254	4.16	233	3.02	
por	Corbon	a te			0		0		0		0		0		0		0		0		
i s	1 20100	X	CARPIEL		2	0.05	252	٦	285	1 0 2 3	200	0.13	20	10.0	30		185	4 • (3	185	4.10	
constituents	E		Z V		58	2.52	9800	78	10500	78	138	25	1770	10.90	1910	63 63	9000	391.32	9200	70.00+	
Mineral co	0 0	E 0	-	J 005A5	7	0.58	1080	16	1220	17	45	16	220	18.09	219	18.01	1020	83.88	1100	17	
2	E				57	2.84	540	2	458	4	278	12001	486	24.25	598	29 • 84	688	34.33	673	90.00	
Specific conduct-	ance (micro-	mhos of 25°C)		UBUNIT	575		42000		45500		2450		11700		12500		41700		48500		
	Hd			YDR SI	8 .3		8 . 4		8.3		7.8		8 8		8 9		8 • 1		8.0		
Temp.	when	sampled in ° F		CO H'	1		1		-		1		73		ŀ		1		72		
State well		Date sampled		COASTAL PL OF LA CO HYDR SUBUNIT UOSAO CENTRAL HYDRO SUBAREA	4S/12W-35R 6 S	9- 7-65	45/12W-35R10 S 4-15-65		45/12W-35R12 S	4-15-65	45/12W-35R13 S	60-61-4	45/12W-35R17 S	1-14-65		4~20-65	45/12W-35R18 S	10- 1-64		1-13-63	

F 1	TDS Total Evop 65°C hardness Computed CaCCs		30800 6166	13400 3684	15700 4131	266	310	185	51	50
constituents per million										
	S . 1.		1		-	- 11	-	-		1
Mineral	8000		1	1	1	-	1	1	1	1
	00 m		1	}	1	1	1	1	1	1
	rote NC		0	0	0	1	0	0	0	0
million per million ctance value	0 1 10 1 C 1 C 1 C 1	00500	16900	7370	8700	3.02	222 6 . 26	1.41	16 0 • 45	0.37
0	Sulfate SO4	A SAN GABRIEL RIVER HYDRO UNIT U0500	2430		1230	3.33	1.12	1.17	36 0 15	33 0.69
parts per equivalents percent r	Bicor - bonate HCO3	A HYDRO	251	137 2.25	136	276	164 2.69	210	162 2.66 69	161 2.64 71
pod	Corbon. ote CO3	L RIVE	0	0	0	0	0	0	0	0
c .	Potos .	GABRIE	245	8 0 • 20	16	0.13	0.08	0.05	0.03	0.03
constituents	E o v P o S	A SAN	9200	3640	4300	3.26	3.91	53 2•30 38	2.78	2.70
Mineral co	Magne.	L UOSAS	1090	445	40.05	1.97	1.15	11 0.90	0.16	0.25
2	E 20 0 0		673	742 37.03	852 42.51 16	3.34	101	2.79	17 0.85	0.75
Specific conduct-	mhos at 25°C)	HYDR SUBUNIT UO5AO SUBAREA	42400	20800	23400	1020	1070	265	373	371
	I a	YDR SUBI	0 . 8	0	8 2	8 . 2	φ •	8 2	8 • 4	& •
Temp.	sampled in ° F	0.1	1	74	74	1	1	1	1	1
State well	Date sampled	COASTAL PL OF LA CO	45/12W-35R18 S 4-21-65	45/12W-35R19 S 1-12-65	4-16-65	45/12W-36C 1 S 3- 4-65	45/12W-36E 1 S 5-19-65	4S/12W-36E 2 S 5-19-65	45/12W-36M 1 S 10- 1-64	5-19-65

TABLE E-1

AMALYSES OF GROUND WATER

LOS ANGELES DRAINAGE PROVINCE (U)

	Total hardness os CoCO3		6221	5703	5641	6182	6200	137	130	107
constituents in per million	Evap 180°C hardness Evap 105°C as		25101	28854	28818	33742	33415	257	254	240
constituent per million	S.111. C.0		1	-		1	1	1	1	1
Mineral parts p	Boron		1	1	-	1	1	1	1	1
2	F.uo.		1	1	ŧ ŧ	1	1	1	1	1
	trole NG3		0	0	0	0	0	0	0	0
million e value	Ch10 -	00500	13900 391.98 90	15900 448.38 90	16000 451.20 90	18600 524.52	18500 521.70 90	24 0.68 14	0.62	0.683
tr million ts per million reactance value	Sulfale	A SAN GABRIEL RIVER HYDRO UNIT U0500	1960	2280 47.47	2270	2630	260U 54.13	37	0.77	37 0•77 18
parts per equivalents percent r	Bicor - bonote HCO3	R HYDR	165 2.70	182 2.98 1	184 3.02	217	221	198 3.25 69	3.28	178 2.92 67
par	Carbon -	L RIVE	0	0	0	0	Э	D	0	0
ni a	Potos .	GABRIE	1.02	255 6.52 1	260	333 8.51	320 8.18	2 0.05	3 0 • 0 8	0.08
constituents	Sodium		7160 311.32 71	8720 379.15	8600 373.93	10400	10200 443.50	2.00	2.00	2.17
Mineral co	Magne.	L U05A5	820 67.44	1040 85.53	1020 83.88 17	1240 101.98	1230 101.16	0.49	0.49	0.49
2	Calcium	U05A0	1140 56.89	570 28.44 6	578 28.84	432	456 22.75	2.25	42 2.10 45	33 1 65 38
Specific conduct-	(micro- mhos at 25°C)	CO HYDR SUBUNIT U05A0 DRO SUBAREA	35300	40000	39700	45900	45000	467	414	419
	ī	OBAR.	7.8	8 0	8 0	7.9	0 .	8 .2	4 . 8	4.
Тетр	sampled In ° F		1	1	1	1	1	1	1	71
State well	Date sampled	COASTAL PL OF LA CO HYDR SUBI CENTRAL HYDRO SUBAREA	45/12W-36M 2 S 5-19-65	45/12W-36N 2 S	9-4-9	45/12W-36N 3 S 4-23-65	6-4-65	45/12W-36N 4 S 4-23-65	9-4-9	4S/12W-36P 1 S 5-13-65

Second S	State well	Тетр		Specific conduct-	2	Mineral co	constituents	u i	64	parts per equivalents percent r	per	r million ts per million reactance value			Mineral constituents parts per million	constituent	ituents in	
Subarea Subarea No. San Gabriel River Hydro Unit U0500	Date sampled	sampled in °F		(micro- mhos of 25°C)	Colcium	Magne.		Potos -	Corbon -		Sulfate SO4	Chio-	Proje	F100.	Boron	S.02		Total hardness os Co CC3
2 5 73 9+6 352 0+15 0+16 3-64 0+10 1-27 0+75 0+75 0+26 0 1996 3 7 8+6 4+10 1-22 0+04 1-27 0+75 0+7	DASTAL PL OF L		YDR S	UBUNIT (10	<	GABRIE	L RIVE	R HYDRO	O UNIT	00500						
3 S 72 8.44 410 122 0.65 0.08 0.155 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73	2	_	9.6	352	3	100	70	4	38	48	36	20	0	1	+	1		12
3 S 72 8.4 410 1.22 0.44 2.54 0.94 0.43 0.73 0	5-15-65				4	0.00	05	2	38	23	22	17					196	
4 S 73 8.6 477 1.16 0.459 2.52 0.05 <td< td=""><td>3</td><td></td><td>8.4</td><td>410</td><td>22</td><td>9</td><td>58</td><td>m :</td><td>0</td><td>155</td><td>643</td><td>97</td><td>0</td><td>1</td><td>1</td><td>1</td><td></td><td>08</td></td<>	3		8.4	410	22	9	58	m :	0	155	643	97	0	1	1	1		08
6 5 73 8.6 477 1.80 0.58 2.98 0.67 0.85 0.87 0.89	5-20-65				1.10		09	0.00		61	0.90	180					234	
5 S 73 7.7 13900 958 22.78 1920 1.05	4		8.6	477	36	7	53	2	0	182	42	30	0	1	1	1		119
5 S 73 7.7 13900 958 277 1820 18 0 136 671 4750 0 <	5-19-65				1.80 38	0.58	7.30	20.0		2.78	0.8	0.80					529	
6 S 73 8.4 422 118 22.78 79.13 0.46 2.23 13.97 133.95 6 S 73 8.4 422 0.99 0.25 3.04 0.95 0.26 7 0.77 0.76 6 S 73 8.4 422 0.99 0.25 3.04 0.05 0.164 299 124 0 237 0.46 2.23 3.99 7 S 8.0 1160 88.33 340.23 3.99 0.15 0.160 372 116 0	2		7.7	13900	958	277	1820	18	Э	136	671	4750	0	1	1			3532
6 S 73 8.4 422 18 0.25 3.04 0.05 0 163 37 0.77 0.77 0.76 0 237 0 27 0 2.64 18 18 0 8.0 1160 4.09 2.22 5.04 0.13 0 2.65 0 144 299 124 0 33 1.94 88.33 840.23 3.99 0.15 0 160 372 116 0 0	5-17-65				47.80	22.78	79.13	0 * * 0		2.23	13.97	133.95					8561	
6 S 8.0 1160 0.25 3.04 0.05 2.67 0.77 0.76 18 18 6 5 72 116 0.15 0.144 2.29 1.24 0			8 • 4	422	18	~	7.0	2	D	163	37	27	0	-	1	1		58
6 S 8.0 1160 482 2.22 5.04 0.13 2.36 6.23 3.50	5-14-65				21	0.25	3.04	0.00		2.67	0.77	0.76					237	
7 S 7.2 3730	9		8.0	1160	82	27	116		0	144	299	124	0	1	1	-		316
7 5 7.2 3730\ 640 1074 7825 156 0 158 2239 14500 0 26512 8.0 1270 102 34 124 0 0 160 372 110 0 26512 3835	5-19-64				36	22.5	2000	-		7.36	6.63	3.50					724	
8.0 1270 102 34 0.15 2.65 7.75 3.35 8.0 5.39 0.15 2.62 7.75 3.35 8.55 2.80 5.39 0.15 2.62 7.75 3.35 2.40 8.55 2.62 7.75 3.35 7.75 3.35 7.75 3.35 7.75 3.35 7.75 3.35 7.75 3.35 7.75 3.35 7.75 3.35 7.75 3.35 7.75 3.35 7.75 3.35 7.75 3.35 7.75 3.35 7.75 3.35 7.75 3.35 7.75 3.35 7.75 3.35 7.75 3.35 7.75 3.35 7.75 7.7	7		7.2			1074	7825	156	O	158	2239	14500	0	-	1	1		6018
8.0 1270 102 34 124 6 0 160 372 116 0	10-26-63				1.9	88.33	340.23	2000		2.59	10	06.807					26512	
38 21 40 11 19 57 24		1	8		102	34	124	9 .	0	160	372	118	0	\$ 1	1	1		345
	7-26-65				38	21	4.0	1.0		19	57	24					3	

TABLE E-I
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	Tetal hardness os Co CC 3		54	181	790	238	351	1197	133	129
lion	T D S Evap 180°C Evap 105°C		173	275	1702	196	770	5020	354	397
constituent per million	S. 11.		1	-	-	1	1	1	1	
Mineral constituents parts per million	Boron		}	1	1	1	1	1	\$ 1	1
	F 40		1	l i	+	1	1	1	1	1
	Note .		0.0	0	0	0	2.5	0	0	0
million e volue	040	00400	18 0.51 16	1.97	718 20.25 68	3.67	120 3.38 27	2612 73.66	15	1.16
er million ts per million reactance valu	Sulfate SO4	RIVER HYDRO UNIT U0500	0.10	0	240	332 6 • 91 53	330	416 8•66 10	34 0.71	47 0•98 18
parts per equivalents percent re	Bicor - bonote HCO3	HYDK	158 2.59 81	198 3•25 62	282	142 2•33 18	137 2•25 18	171 2.80	210	197 3.23 60
par	Carbon -	RIVER	Э	0	0	0	0	0	0	0
i.	Potos:	SAN GABRIEL	0.03	0.05	0.18	0.15	0.15	19 0.49	2 0.05 1	0 0 0 0 0 1
constituents	Sodium	A SAN	62 2 • 70 84	40 1.74 32	314 13•65 46	182 7.91 62	124 5.39 43	1420 61•74 72	44 1•91 41	2.74
Mineral co	Mogne- stum M g	L UOSA5	0.08	10 0.82 15	50 4.11	2.55	2.63	158 12.99	0.41	7 0.58 11
2	Colcium	UOSAO	0.40	2.79	234 11•68 39	2.20	88 4.39	219 10•93 13	2.25	2.00
Specific conduct-	(micro- mhos at 25°C)	TINC	311	577	2940	1290	1230	8403	437	527
	H	DR SI	8 • 7	80 •	8 • 2	8 • 2	7 • 8	8 .	8 • 6	8 • 4
Temp	when sampled in ° F	CO HY	1	}	+	1	1	1	7.0	1
State well	led	COASTAL PL OF LA CO HYDR SUBL	55/12W- 1E 1 S 10-15-64	55/12W- 1E 2 5 6- 3-65	55/12W- 1E 3 S 6- 3-65	55/12W- 2A 4 5 4-14-65	5S/12W- 2A 5 S 4-14-65	55/12W- 2A 6 5 11- 6-64	55/12W- 2A 8 S 1-15-65	55/12W- 2A 9 5 10- 8-64

	Tc+a1 hordness cs	Colics		9.1		110		76		9,		3444		3240		3842		D D		
uents in lion	T D S Total Evap 180°C hordness Evap 105°C as	Computed		312	977	241	253	329	047	392	300	8340	9575	1370	1290	7270	1100	375	787	
constituents per million	S, c.	2018		1		1		1		t f		-		1		1		t t		
Mineral o	c	8		-		1		-		1		l t		1				1		
Σ	0 0	L		1		1		-		I		-		1		-		t 1	_	
	2 0	NO3		0		1	7	0		0		0		0		0		0		
million	Ch 10 =	- 0	00 500	16		22	14	18	12	1 2 2	25	4590	06	4020	0 00	5100	200	1.18	23	
parts per million equivalents per million percent reactance value	Sulfate	804	RIVER HYDRO UNIT U0500	0 7 0	202	43	20	40	212	200	•	623	7	572	7 6 7 7	712		444	18	
parts per equivalents percent r		H CO3	R HYDR	170	70	184	99	177	19	180	50	134	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	146	200	146	7	179	28	
par	Carbon -	C 0 3		0		0		0		0		0		0		Э		0		
.c	- S E	¥	GABRIEL	E 3	2	20.05		6 2	~	2 0 0 0	1	15	•	07 1		20		20-05	7	
constituents	E	o z	A SAN	50	9	552)	53	2 %	30.30	63	1740	25	1440	54	1910	55	3.61	77	
Mineral co	g ne .	5	L U05A5	20.0	10	9 0	11	4 6	•	5	00	218	12	203	13	254	13	3	2	
×	E 21	٥٥		28	34	34	37	32	37	30	29	1020	35	963	38	1120		22	2	
Specific conduct-		at 25°C)	HYDR SUBUNIT U05AU SUBAREA	389		459		418		424		13600		11700		14800		524		
-	Hd		YDR SUB SUBAREA	8.9		4 . 8		8 8		4 . 8		7.8		0 ° 8		7.9		8.2		
Тетр	sampled in ° F			7.0		1		72		72		1		73		73		1		
State well	Date sampled		COASTAL PL OF LA CO	55/12W- 2A 9 S	1001	55/12W- 2A10 S		12- 0-64	7	4-23-65		55/12W- 2A11 S		37-66		4-45-4		55/12W- 2A12 S		

TABLE E-I
AMALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	Total hardness as		41		43		76			4188			224			22			631			492			
constituents in	T D S Total		305	218	306	226	3 6		241	17100		17030	628		226		0 7 (0		0	3998		26.20	7007	
constituent per million	Sili.	7	1		1		Į.			-			-			-			1			1			
Mineral parts p	0000		-				1			1			1			-			-			1			
	Figo.		1		-		1			1			-			-			-			ł			
	- atom		0		0		0)		8.0	0.13		0			0.0			0			0			
million ce value	1 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00500	16	0.45	21	0.59	3 2	0.51	12	9370	264.23	7.30	225	6.35	69	16	0.45	†	2140	60.35	88	1420	40°04	0	
millio	Sulfate	RIVER HYDRO UNIT U0500	31	0.77	40	0.83	77	0.87	20			10	56	1.17	12	2	0°04	-	293	6.10	6	170	3.54	o	
parts per equivalents percent re	Bicor - bonote	HYDRO	163	2.67	157	2.57	181	2.97	89	179	2.93	~	141	2.31	23	161	2.64	\$ \$	137	2.25	2	130	2,13	Ω	
e d u	Carbon -		0		0		C)		0			0			0			0			0			
c	0 % 0 0 X	SAN GABRIEL	2	0.05	-	0.03	4 0	0.05	-	63	1.61	1	2	0.05	-	1	0.03	-	48	1.23	2	38	16.0	7	
constituents	E 7 0 Z	A SAN	68	2.96	71	3.09	5 4	2 • 39	55	4800	208.70	7.1	120	5.22	54	62	2.70	45	1270	55.22	80	800	34.78	9/	
Mineral co	M C D O M	L	2	0.16	2	0.16	† 4	0.33	80	595	140047	16	5	0.74	Φ	1	0.08	m	112	9.21	13	88	7.24	16	
2	E 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2		13	0.65	14	0.70	31	1.55	36	746	37.23	13	75	3.74	38	7	0.35	11	89	3.39	2	52	2.59	9	
Specific conduct-	mhos at 25°C)	CO HYDR SUBUNIT U05A0 DRO SUBAREA	376		379		730			25900			1060			312			7020			4760			
	H	DR SL	8 8		8 . 3		α	8		8.2			8.6			8.7			8 • 2			8 3			
Temp	sampled in F	>	73		1		70)		7.1			73			!			1			ł			
State well	Date sampled	COASTAL PL OF LA CO HYDR SUBU	55/12W- 2A12 S	12- 7-64		4-22-65	20112W- 2013 C			55/12W- 2A14 S	12-17-64		55/12W- 2A16 S	12-15-64		55/12W- 28 8 S	10- 8-64		55/12W- 2B 9 S	4-20-65			5-13-65		

	Total hardness os Cocos		5809	5515	1587	1100	2056	2056	1219	0424
constituents in	Evap 160°C.		30818	29398	6198	2630	4612	4612	7427	33616
constituent	S. t.		ł	-	1	-	1	1	1	1
Mineral parts p	B 0.00		ł	1	ŀ	1	1	1	1	t 1
	. o p		1	1	l l	1	1	1	ł	1
	role NC3		0	0	2.5	3.2	1.0	1.0	0	0
per million ctance value	0 0 0	00500	16900	16100	3380 95.32 86	26.85	2510 70•78 89	2510 70•78 89	1280 36.10	18500 521•70 90
0	Sulfate S 0 4	HYDRO UNIT U0500	2510 52.26 10	2390	490	693	369	369	428 8.91 19	2700
equivalents percent	Bicor - bonote HCO3		175 2.87	184 3.02	147 2.41	156 2.56 6	1.11	1.11	11111-82	228 3.74
9 9 0	Corbon .	L RIVER	0	0	0	0	0	0	0	0
Ë	Po to t	GABRIEL	328	296 7.57	1.05	0.13	0.20	0.20	0.13	270 6.90
constituents	8 n . p o g	A SAN	9400	9000	1725	496 21.57 49	910	910	515 22.39 48	10250
Mineral co	S C C C C C C C C C C C C C C C C C C C	L UOSAS	1130 92.93 17	1060	228 18•75	56	5.35	5.35	3.45	1220
Σ	£ 0		464 23.15	462	260 12.97	348	716 35.73	716 35.73	419	564 28•14 5
Specific conduct-	1 0	HYDR SUBUNIT U05A0) SUBAREA	42700	40300	10500	4170	1940	7940	4720	45900
-	I.	YDR SUB SUBAREA	8 0	7.9	8 2	8 .3	7.3	7.3		O • 80
Temp	sampled in ° F		-	1	69	1	-	1	72	1
State well	pe	COASTAL PL OF LA CO P	55/12W- 2812 S 4-20-65	5-18-65	55/12W- 2B16 S 12-14-64	55/12W- 2C 7 S 12-21-64	55/12W- 2C 8 S 10-13-64	55/12W- 2C 9 5 10-31-64	12-29-64	55/12W- 2D 4 S 12-28-64

TABLE E-I
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

State well	Тетр		Specific conduct-	2	Mineral co	constituents	.⊆	parts equiva percen	pe	0	million per million ctance value		Σ	Mineral parts p	constituents per million	uents in lion	
pel	when sampled in ° F	T a	(micro- mhos at 25°C)	E 0 10 10 D	N 0 0 0 N C 0 0 N C 0 0 N C 0 0 N C 0 0 N C 0 N	E nipos	0 0 X	Carbon -	Bicar - bonote HCO3	Suffate SO4	Ch 10 -	20 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	3 P L	80 con	5.01.	Evop .80°C hardness Evop 105°C os Computed CocCy	Tetol hardness os Cocca
COASTAL PL OF LA CO HYDR SUBI	>-	YDR S SUBAR	CO HYDR SUBUNIT UOSAO DRO SUBAREA		L UUSAS	A SAN	GABRIE	- RIVER	HYDRG	SAN GABRIEL RIVER HYDRO UNIT U0500	00500						
55/12W- 2D 5 S 12-23-64	70	0 4 •	22900	702 35.03 13	462 37.99 15	4275 185.88	63 1.61	0	193 3.16	1400 29.15 11	8040 226.73 87	8.0	1	1	1	15045	3654
55/12W- 2D 6 S 12-22-64	71	ω • •	6460	160 7.98 13	112 9.21 15	1050	19 0.49	0	138	291 6.06	1960 55.27 87	1.3	1	1	}	3661	860
55/12W- 2F11 S 4-20-65	1	8.1	33300	664 33.13 8	824 67•77 17	6840 297.40	41	0	374 6 • 13	1740	12700 358.14 89	0	1	1	-	22993	5049
5-16-65	1	0 • 8	32900	678 33.83	805	6830 296.97	25	0	375 6•15	1730 36.02	12600 355.32 89	0	i i	1	-	25852	5006
55/12W- 2F12 S 4-20-65	3	7.8	45900	704	1200 98.69	10200	238 6•09	0	201 3.29	2600 54.13	18600 524.52 90	0	i I	-	-	33641	9699
5-16-65	1	7.6	45000	674	1200	10200 443.50 76	228 5.83	0	198 3.25	2650 55.17	18600 524.52 90	0	1		1	33649	6621
55/12W- 2F13 S 5-28-65	1	7.9	36000	564 28•14 6	1040	8450 367•41	263	0	186 3.05	2400 49.97 10	15400 434.28 89	0	1	1	1	28208	5688
55/12W- 2G 5 S 7-27-65	1	ω •	44600	528 26.35 5	1160	9800 426.10	332 8 • 49 2	0	238 3.90	2548 53.05	17800	0	1	1	1	32285	6092

	Tetal hordness os Call 3		6176	6117		4384	4	1		6629		6031		5688		5013	
constituents in	Evap 180°C Evap 105°C Computed		444 70		30861		10253		1000		33631		33123		19/45		22101
constituent per million	Set 1:-		1	-		1	1			1		1		i i		1	
Mineral o	Boron		1	1		1				1		1		1		1	
2	2 P 4		1	1		1				ł		i		1		1	
	Irote NC3		9	0		0)		0		0		0		0	
million e value	C h 10	00500	18500		479.40	57		152.	7	18600			06	11000	06.016	12300	0000
per	Sulfore SO 4	RIVER HYDRO UNIT UUS UO	2630	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	51.22	700	σ	13.28	Œ	2630	3	2600	24.13		00.00	1660	0 0 0 0
equivalents percent	Bicor - bonote HCO3	R HYDR	188 3.08	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	4.82	1.59	- 0	2.18		230	-	244	7	236	2 0 0	221	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
e d o	Corbon -		Э	Э		0	()		0		0		0		0	
Ë	Po108	GABRIEL	372	308	/•8d	150.38		0.38		224		225	2 -	4.5	6.10	20	60.1
constituents	\$ 0 N	A SAN	10200	9200	400.004	2100	15	19.13	47	10200	16	10000	424.80	5250	17.877	6125	69
Mineral co	Mogne-	UUSAS	1230	1120	92.11	240	11	19.66	12	1220	17	1200	78.69	654	53.78	745	16
Σ	Colerum	Í	446	879	31.34	1360	30 %	13/0	41	332.14		678	33.00	12 00	59.68	1100	14.03
Specific conduct-	1 0	HYDR SUBUNIT U05AU	45400	40300		16100		15200		43900		44200		28900		33500	
-	H	DR SI UBAR	8.1	1.7		7.9				7.9		1.9		1.6		1.6	
Temp			1			1				-		-		1		1	
State well	pel	COASTAL PL OF LA CO E	55/12W- 2G19 S 6- 1-65	55/12W- 2G2U S	5-24-65	55/12W- 2H 8 S		5-20-65		55/12W- 2H 9 S	60-61-4		5-20-65	55/12W- 2H12 5	1- 5-65		1-20-65

TABLE E-I
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	Total hardness as		5631	5892	5941	5555	5350	59	50	4079
constituents in	T D S Total Evap 180°C hardness Evap 105°C as Computed CaCO3		21585	21907	22167	20539	17575	383	337	15297
constituent per million	Sili- co SiO ₂		-	1	1	1	-	1	17	1
Mineral o	Boron		-	1	1	1	1		8	1
	Fluo- ride F		1	1	1	1	1	1	1	1
	rote NO3		0	0	0	0	0	6.0	1	0
million e volue	Ch lo - ride	00500	12000 338.40 90	12200 344.04	12300 346.86 90	11400 321.48 90	9800 276.36 90	124 3•50 51	2.12	8732 246•24 92
r million is per million reactance value	Sulfate SO4	GABRIEL RIVER HYDRO UNIT U0500	1630 33.94 9	1650	1670	1520 31.65	1290 26.86	14 0 • 29	0.17	840 17•49
parts per equivalents percent r	Bicor - bonote HCO3	R HYDE	223 3.65	3.64	228 3.74	238 3.90	236	179 2.93 43	171	191 3.13
pod	Carbon -	EL RIVE	0	0	0	0	0	0	0.20	0
i.	Potos x x x	GABRIE	52	1.74	1.74	58	1.41	0.05	0.05	100 2.56 1
constituents	Sodien	A SAN	6000 260.88 70	6000 260.88 69	6125 266.32 69	5630 244.79 69	4550 197.83 65	128 5•57 82	93	4200 182.62 68
Mineral c	M og ne	L UOSAS	713 58•64 16	740 60.86 16	752 61.84 16	634 52•14 15	584 48.03 16	0.33	0.25	467 38.41 14
aZ	Catcium	UOSAO	1080 53•89 14	1140 56.89 15	1140 56•89 15	1180 58.88	118U 58.88 19	17 0.85	0.75	864 43.11 16
Specific conduct-	(micro- mhos of 25°C)	CO HYDR SUBUNIT ORO SUBAREA	31600	32200	32900	29600	26000	169	999	23809
	H	YDR S	7.6	7.4	7.5	7 - 7	7.6	80 • 57	8 • 7	7.5
Temp	sampled in ° F	CO H	1	1	1	I I	1	-	1	1
State well	Date sampled	COASTAL PL OF LA CO HYDR SUB CENTRAL HYDRO SUBAREA	5S/12W- 2H12 S 1-25-65	1-29-65	1-29-65	21 3-65	3- 1-65	55/12W- 2J 2 S 10-26-64	3- 3-65	55/12W- 2J 3 S 10-27-64

	Total hardness as CaCGs		1864	699	345	5065	27	2583	5785	4755
tuents in	TDS Total Evap BOCC hardness Evap IOSOC as		20268	3149	3085	22716	238	9610	18019	18900
constituent per million	S. 0.2		189 W05A5	-	246		-	t	1	1
Mineral constituents parts per million	Boron		1	1	-	î Î	1	1	1	1
	. co d e		1	1	1	1	1	1	1	1
	N trote NG3		1	0	1	0	0	0	0	0
million per million ctance value	Chlo =	00500	9900	1680	1300	12300 346.86	38	4730 133.39 89	10400	10500 296.10 90
0	Sulfore SO4	A SAN GABRIEL RIVER HYDRO UNIT UO500	262	3.56	284	1980 41.22 10	0	593 12.35	988	1360 28•32
ports per equivalents percent r	Bicar - bonote HCO3	R HYDR	167	218	209	317 5.20	208 3.41 76	271	158 2.59	3.06 1
e d l	Carbon - ate CO3	L RIVE	0	0	0	0	0	0	0	0
Ë	Potos -	GABRIE	14	0.31	20	3.07	0.05	28	36	2.20
constituents	E nipos	A SAN	6000	960	785	6650 289-14	3.74	2250	4600 200.01 63	5250 228•27 70
Mineral co	M Q me -	L U05A5	1.73	75 6-17	0.41	800	0.08	20.07	617 50•74 16	607 49.92 15
Σ	m 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		712	144 7•19 13	130	710	0.45	632 31.54	1300 64.87 20	904 45•11 14
Specific conduct-	micro- mhos at 25°C)	HYDR SUBUNIT U05A0	11900	5640	16600	30700	363	13800	25400	29100
	I a	DR SI	7.1	8 • 2	8 .	7.6	8.7	8 • 2	8.0	7.9
Тетр	when sampled in ° F		1	I I	1	1	1	1	1	1
State well	led	COASTAL PL OF LA CO HYDR SUBI	55/12W- 2J 3 S 3- 3-65	55/12W- 2J 4 S 10-27-64	3- 3-65	55/12W- 2J 5 S 5-25-65	55/12W- 2M 1 S 10-29-64	55/12W- 20 1 S	55/12W- 2R 2 S 5-27-65	55/12W- 2R 3 S

TABLE E-1
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	Total hardness as CaCO ₃		6693		0444		4526		4585		4398		1943		2909		22		
constituents in	T D S Total Evap 185°C as Computed CaCO		19240	19144	17200	17125	17200	17055	15500	15348	16000	15837		4053		8174		186	
constit per mi	Sint.		ŀ		-		1		1		-		1		-		1		
Mineral o	Boron		1		-		1		1		1		t t		1		-		
	0 P L		1				8		1		Į Į		1		9		1		
	NO NO NO NO NO NO NO NO NO NO NO NO NO N		0		0		0		0		3.0	•	0.0		0		0.0		
million	- oh 10 - ride	00,500	10700	16	9630	91	9640	16	8700	245.34	8930	251.63	1440	40.61	4050	114.21	16	0.45	
millio per eacton	Suifote SO 4	KIVEK HYDRO UNIT U0500		4 30	1140	0 00	1080	00		20.02		77.044	1170	24.36		22.88	0		
len1	Bicor - bonote HCO3	HYDR	190		200	, ,	209	n ←	212	3.47	230	и. П	182	2.98	192	3.15	187	3.06	
parts equiva percer	Carbon. ate CO3	L KIVER	ó		0		0		0		0		၁		0		0		
. <u>c</u>	Potos -	SAN GABRÍEL	83		70 4 20 4) †	50	0 V	35	η 0 • 0	00 f	V. O.	10	0.26	15	0.38	Н	0.03	
constituents	S od . u B	A SAN	5450	71	4780	02	4730	69	4150	180.44	4280	186.09	049	27.83	1860	80.87	69	3.00	
Mineral co	Mogne. sium Mg	LUOSAS	635	16	554	15	556	15	200	41.12	491	40,38	114	9.38	168	13.82	1	0.08	
2	E 20100		833	12	865	170 170	896	15	968	44.71	952	47.50	290	29.44	888	44.31	7	0.35	
Specific conduct-	mhos at 25°C)	UBUNIT (27900		25100		25600		23500		24000		5945		12600		332		
	H O	7DR S SUBAR	7.9		8 • 0		8		8.1		7.6		7.5		7.5		8.6		
Тетр	sampled in ° F	CO HY	1		1		ā - \$		l i				1		1		1		
State well	Date sampled	COASTAL PL OF LA CO HYDR SUBUNIT UO5AO CENTRAL HYDRO SUBAREA	55/12W- 2R 3 S	60-6-7		60-8 -7		60-11-7		2-19-65		3- 1-65	58/12W- 3A 1 S	10-28-64		7-27-65	55/12W-11G 2 S	10-16-64	

TABLE E-1

	7:10 hordness os Co 3 63		2891	v	
uents in	TDS Torders Evan Control Contr		9276	8	
constituent per million	5 0.2		1	1	
Mineral constituents parts per million	8 8		-		
	7. de		I I		
	, , , , , , , , , , , , , , , , , , ,		14	•	
parts per million equivalents per million percent reactance value	Chlo	00500	4852 136.83	0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 .	
parts per million equivalents per million percent reactance valu	Suffore 504	A SAN GABRIEL RIVER HYDRO UNIT U0500	288 6•00	0	
parts per equivalents percent r	Bicor - bonole HCO3	R HYDR	150	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
pad	Carbon - ate CO3	L RIVE	0	0	
ü	Potos - Sium K	GABRIE	20	α α π 2 2	
Mineral constituents	Sodium		2000 86.96	100.97	
ineral co	Mogne-Sodium stum Mg No	L UUSAS	200	5 8 0 4	
Σ	Colcium		828 41•32	5 1 00 H 1 00 H	
Specific conduct-	mhos at 25°C)	UBUNIT E A	13774	80 O In	
	H	YDR S	7.6	ம்	
Temp	sampled in F	A CO H	1		
State well	Date sampled	COASTAL PL OF LA CO HYDR SUBUNIT UU5AO CENTRAL HYDRO SUBAREA	55/12W-11G 3 S 10-22-64	55/12W-11G 5 S 10-15-64	

TABLE E-I
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	Total hordness as		184		182		2054		1955		274		222		183		202		
uents in lion	T D S Total Evap 180°C hordness Evap 105°C as Computed CoCO3		327	296	364	333	2330	2195	2586	2174	422	382	344	303	276	271	295	285	
constituents per million	5 0 2		1		i i						j.		-	-	-		Į Į		
Mineral o	Boron		0.14		0.11		0.36		0.35		0.10		0.11		0.10		60.0		
-	00 i		9.0		0.5		0.2		2 • 4		4.0		9.0		9.0		9.0		
	role NO3		4 0 0 0	2	18	2	4	90.0	0		41	10	æ	0.13	2	0.08	30	0.02	
per million ctance value	Chlo-	00500	26	13.0	200	14	298	3.9	344	9.70	44	1.24	1 00	14.0	17	0.48	11	0.31	
0	Sulfate SO4	RIVER HYDRO UNIT UUSOO	59	1.53	1 49	1.02	14	0.29	10	0.21	59	1.623	50	1.04	94	0.96	29	1.39	
parts per equivalents percent r	Bicor - bonote HCO3	нүркс	209	0 0 0 0	240	65	2209	36.21	2101	34.44	227	3 • 12	243	3.98	215	3.52	212	3.47	
por equ	Carbon - ole CO3	i I	0		0		0		0		0		0		0		0		
e .	Potos :	GABRIEL	mo	2 2 2	700	0.00	12	0.31	20	0.20	2	0.05	m	0.08	60	0.08	6	0.08	
constituents	Sodius	A SAN C	35	1.52	500	39	102	4.43	115	5.00	31	1.35	97	1.13	30	1.30	24	1.04	
Mineral co		L UOSB1	12	19	15	1.623	223	18.34	188	15.46	56	2.14	17	1.40	14	1.15	14	1.15	
25	C 0 1 C 1 C 3	00580	54	2.69	87	04.0	455	22.70	473	23.60	19	3.34	61	3.04	50	2.50	58	2.89	
Specific conduct-	mhos at 25°C)	UBAREA	526		591		3200		3100		678		541		485		493		
	r _a	UNIT DRO S	8 • 0		7.9		7.2		7 . 1		7.3		8 0		7.47		7.6		
Тетр	sampled In F	O SUB DO HY	68		70		ŀ		t t		1		65		ŀ		1		
State well	D e	SAN FERNANDO HYDRO SUBUNIT SAN FERNANDO HYDRO SUBAREA	1N/13W=18N 1 S	6-30-65	1N/13W-20G 1 S	6-30-65	1N/13W-24P 2 S			5-13-65	N/13W-33N 1 S	4-19-65	1N/14W- 9H 4 S		1N/14W-14B 1 S		1N/14W-16A 1 S		

	Total hardness as		329	200	282	684	1105	1308	211	211
uents in lion	Evap 180°C n Evap 105°C Computed		567	1062	44.9	1700			282	69.3
constituents per million	5.0.5		1	1	1	l	1	1	1	-
Mineral ports p	Boron.		0.18	7770	0.13	0.50	0.35	0.20	1	1
	Fig.		7.0	7.0	4.0	9 • 0	я •	1 • 0	1	1
	Ni - trate NO ₃		15 0 • 24	0.10	12 00.19	0.02	7 0 • 11	0.02	0	0
million se value	Chio-	00500	0.40	1.95	0.71	149	1.83	1.80	10.45 8	34 0.76 18
per	Sulfate SO 4	RIVER HYDRO UNIT U0500	3.77	364	126 2.62 35	740	731 15.22 59	900	44 0.92	1.44
equivalents percent	Bicor - bonote HCO3	HYDRG	271	439	242 + C2 53	7.33	515 8 • 44 33	495 8•11 28	244	2.93
9 9 9	Carbon -		ó	0	0	0	0	0	0	0
u .	Potos.	SAN GABRIEL	0.10	0.13	0.10	0.20	0.20 1	0.20	0.10	4 00 10 4
constituents	Sodium	A SAN	61 2.65 28	124 5 3 3 3 2	41 1.78 24	374	3.52	67 2.91 10	1.04	24 1.04 19
Mineral co	Mogne. s.um M.g	L U0581	2.14	3.78	1.64	4.93	143	151	1.32	1.32
Σ	C 0 0 0	00580	87	152	3 0 0 0 0 0 0	97	207	275 13•72 47	58 2 • 89 54	2 2 8 8 9 5 4 4 5 6 8 9 6 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
Specific conduct-	1 0	SUBAREA	872	1497	203	2433	2019	2171	522	551
	I a	SUBUNIT HYDRO S	7.6	7.5	⊙ •	7.7	1.2	7.1	4 .	7 • 8
Тетр	sampled in ° F		1	1	99	1	-	1	1	1
State well	Date sampled	SAN FERNANDO HYDRO SAN FERNANDO	1N/14W-23E 1 S 4-20-65	1N/14W-28B 1 S 4-20-65	1N/15W- 1K 2 S	1N/16W-14K 1 S 4-20-65	1N/17W-10D 2 S 4-20-65	1N/17W-26A 1 S 4-20-65	2N/14W-190 1 S 12- 2-64	2N/14W-30A 1 S

TABLE E-1
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	Total	5	222		229		269			133		118		217		197		
uents in	TDS Total	7		307	358	304	154	457		546	248	220	202	332	315		255	
constituents per million	S1811-	200	1		i		1			ŧ		1		-				
Mineral parts p	Boron		1		0.13		0.05			0.24		0.02		60.0		1		
	Fluo-		1		٥.٠ ر		9.0			0.3		0.3		0.3		!		
	rote 1	5	0		y 0.15	9	2			4		3		500	0 ~	0		
million per million ctance value	Chlo-	00500	17	α	0.51	6	62	11		20	12	14	10	22	11	19	0.54	
0	Sulfate	SAN GABRIEL RIVER HYDRO UNIT U0500	63	23	1.00	18	84	21		38	17	11	9	190	1.59	42	0.87	
parts per equivalents percent re	Bicor	HYDRO	239	69	240	70	349	68		193	69	198	0 E	223	5.00	208	3.41	
por	Carbon -	RIVER	0		0		0			0		0		0		0		
<u> </u>	Potos -	SABRIEL	4 00.10	2	0.10	2	600			4	2 2	2 5 5 5	7	20	0.13	4	0.10	
constituents	E nipos	A SAN (1.17	20	26	19	70	36		41	39	32	37	28	1.622	20	0.87	
Mineral co	Magne- stum	L L	17	25	18	56	23	22	40582	11	200	8 4	17	14	1.15	17	1.40	
Σ	E 0 1 0 0		3.04	23	3.09	53	70	41		35	39	34	45	49	3.19	51	2.54	
Specific conduct-	micro-	SUBAREA	546		546		785			777		376		956		481		
	H	SUBUNIT HYDRO S	8 • 2		8 3		7.3		SUBAREA	7.9		7.9		7.8		8.2		
Temp.	when sampled in ° F		-		69		1			į į		1		ļ		-		
State well	ped	SAN FERNANDO HYDRO SUBUNIT	2N/14W-30A 3 S		4-21-65		2N/17W-22C 2 S	60-07-4	SYLMAR HYDRO	3N/15W-23P 1 S	4-21-65	3N/15W-25G 1 S	00 13	3N/15W-33Q 1 S	4-21-65	3N/15W-34P 1 S	12- 2-64	

State well	Temp		Specific conduct-	Σ	Mineral constituents	nstituents	i	pod	parts per equivalents percent r	millio per per	million se value			Mineral parts p	constituent per million	constituents in	
Date sampled	when sampled in ° F	I	mhos at 25°C)	Colcium	M o g n e .	E n p a	P 0 0 0 8 - X	Corbon- ote CO3	Bicor- bonote HCO3	Sulfore SO4	- 01 4 5 - 01 4 6 - C 1	rote NC3	7 c c	B 010n	S. 1.	105 Evop :80°C Evop :05°C Computed	Total hordness as
SAN FERNANDO HYDRO SUBUNIT SYLMAR HYDRO SUBAREA	DRO SU YDRO S	SUBUNIT		00580	L U0582	⋖	SAN GABRIEL		R HYDR	RIVER HYDRO UNIT U0500	00500						
3N/15W-34P11 S 4-23-65	1	7.7	929	3.29	22 1•81 28	1.32	0.08	0	260	1.29	21 0.59	24 0 39	0.3	0.25	1	380	255
TUJUNGA HYDRO	HYDRO	SUBAREA	EA		10583												
2N/14W- 5L 1 S 4-21-65	1	8 .2	740	2.15	2.06	3.39	0.13	0	3.72	2.35	38	0	9.0	94.0	1	444	211
2N/14W-11A 1 S 4-19-65	1	8.0	959	3.29	1.40	41 1.78	0.10	0	276	1.39	19 0 . 54	10 0 10	6 • 0	0.31	1	394	235
2N/14W-11N 1 S 4-19-65	1	7.6	912	96 4 79	34 2 80 29	1.91	0.0 1	Э	348 5.70 61	1.39	1.61	37	7.0	0 1 4	ŀ	510	es m
21/14W-12C 2 S 4-19-65	9	7.9	200	2.99	1.56	1.78	0.10	0	277	1.12	11 0.48	0.10	1 • 1	0.04	{	334	27
3N/13W-32J 1 S 4-19-65	1	7 • 8	730	3.69	2.06	2.13	0.00	0	312 5.11 68	1.67	26 00.73	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 • 4	0.36	ł	4 83	288
3N/14W-29F 2 S 4-21-65	-	80	702	0 0 0 0	Э	165 7.17 98	0.03	0.40	378 6.20 82	0.31	0 ° 0 %	70.0	7.0	67.0	1	4 t 0 t 0 t 0 t 0 t 0 t 0 t 0 t 0 t 0 t	Λ

TABLE E-I
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	Total hardness os CaCO3		340	204	203	757		261	185	257
lion	T D S Total Evap 185°C as Computed CaCO3		502	340	365	1278		491	374	454
constituents per million	See E 5102		1	P .		1		-	Î	ŀ
Mineral c parts pe	Boron		0.07	0.08	90 • 0	0.74		0.03	0	0 • 0 5
2	Fig.		0 • 5	0.2	0 • 5	3 • 4		0.1	0.1	0 • 1
	rote NO3		0.02	37	37	2 0 • 0 3		100	73 1•18 25	1.42
nillion per million ctance value	Chlo-	00500	21 0.59	28 0 79	31 0.87	1.33		53 1,49 23	34	1 22 22
0	Sulfate SO 4	GABRIEL RIVER HYDRO UNIT UO500	1.73	26 0.54	30	562 11.70 59		31 0.65	24 0 50 10	0.65
parts per equivalents percent re	Bicar - bonate HCO3	R HYDR	381	233	244	409		167 2.74 42	132 2•16 45	166 2-72 44
par	Carbon - ate CO3	L RIVE	Ö	0	0	0		0	0	0
C.	900 % S S S S S S S S S S S S S S S S S S	GABRIE	0.20	0.10	0.10	0.18		0.08	0.05	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
constituents	Sodium No	A SAN	1.78	36	43 1•87 31	110 4•78 24		31 1.35 20	24 1•04	1.09
Mineral co	Mogne- stum Mg	L U0583	36 2.96 34	1.023 1.023 21	1.32	5.84	J0584	2.38	20 1.64 34	26 2•14 34
Σ	Colcium	00580	3.84	57 2.84 49	2.74	186 9.28 46		2.84	41 2.05 43	60 2 • 99 47
Specific conduct-	1 0	EA	788	920	290	1671	A	969	506	949
	T _a	SUBUNIT O SUBAR	8.2	7.1	7 • 2	6.9	SUBAREA	7.0	7.0	7.0
Тетр	sampled in F	NANDO HYDRO SUBUNIT TUJUNGA HYDRO SUBAREA	1	-	-	1		8 9	68	89
-		GA HY	1 5	ı s	S 2	S	30 HY	S	1 S	s,
State well	Date sampled	SAN FERNANDO HYDRO TUJUNGA HYDR	3N/14W-29J 1 4-21-65	3N/14W-32M 1 4-21-65	3N/14W-32M 2 4-21-65	3N/14W-33K 1 4-21-65	VERDUGO HYDRO	2N/13W-28N 1 4-19-65	2N/13W-29F 1 4-19-65	2N/13W-33G 1 4-19-65

	Tetal hardness os Colics		169
fuents in	Evap BOC Evap ICSOC Computed		251
consti	5. 4.		1
Mineral constituents parts per million	80,00		0.0
	7 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		* ° ° °
	trote NO3		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
million e value	chlo-	00500	0.71
parts per million equivalents per million percent reactance volue	Sulfate SO4	A SAN GABRIEL RIVER HYDRO UNIT U0500	0 2 9 7
parts per equivalents percent re	Bicor - bonate HCO3	HYDRG	2 • 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
equ	Carbon - ofe CO 3	RIVER	0
ri c	Potos - Siem X	GABRIE	0 • 0 5 1
instituent	Sodium No		0.96 0 22 22
Mineral constituents	Mogne. stum Mg	L U0584	1,623
Σ	Colesum	00580	2 • 15 9 4 9
Specific conduct-	1 0		754
	H	SUBUNIT TO SUBARE	7.2
Temp	when sampled in ° F	so sue	8 9
State well	P	SAN FERNANDO HYDRO SUBUNIT VERDUGO HYDRO SUBAREA	2N/13W-33R 1 S

TABLE E-1
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	Tutol hardness os Coulca		70		70		134		119		78		57		135		126		
stituents m million	Evop 180°C hordness Evap 105°C os Computed Couls		180	158	158	129	270	254	212	208	220	203	251	232	222	204	228	208	****
constituents per million	Si 1:		30		į		29		1		25		1		-		i I		
Mineral parts p	Встсл		0.08		0.05		0.14		0.09		0.28		0.52		60.0		0.16		
	7 d e		1 . 4		1.0		1 . 1		0 • 8		1.6		1.6		7.0		1.0		
	rote Neg		21.0	15	20	14	0.04	17	24	0.39	12.0	9	w (0.05	19.0	0000	14	9	
million ce value	Chlo-	00500	10	13	15	19	21	15	20	0.56	13		23	0.65	16	12	19	14	
millio per eocton	Sulfate SO 4	UNIT U0500	200	0,00	4 0	0 4	13	7	18	0.37	24	16	63	1.31	2	13	24	13	
Penient	Bicar - bonate HCO3	R HYDRO	06	19	87	•	145	61	146	499	124	99	116	06.1	147	99	157	67	
parts	Carbon - ale CO 3	L RIVER	0		0		0		0		0		0		0		0		
<u>-</u>	Potas :	GABRIEL	20-05	•	2	200	2	0.00	(0.03	0.03		7	0.03	(, c	20.05		
constituents	Sodium	A SAN	20	38	20	38	30	32	30	35	37	50	63	2.14	24	1.04	27	33	
Mineral co	Magne- s-u-m M-9	L U05C1	9 07 0	21	90%	21	10	20 50	10	0.82	5 0 4 1	13	(ω ω ω Ο	11	24	10	22	
Σ	Colerum	00500	18	36	18	39	37	1+85	31	1.55	23	36	16	0.80	36	1.000	34	45	
Specific conduct-	mhos at 25°C)		228		244		398		382		319		413		370		388		
	r H	SUBAREA	7.2		7.7		7.4		7.8		7.4		8 • 0		7.8		7.6		
Temp	sampled in ° F	BUNIT	1		1		1		1				-		1				
State well	Date sampled	RAYMOND HYDRO SUBUNIT PASADENA HYDRO	IN/12W-21K 1 S	10-07-01	37-66-6	00-62-6	1N/12W-26A 1 S	10-28-04		3-23-65	1N/12W-26C 1 S		4	3-23-65	IN/12W-34E 1 S	10-23-04	3-24-65		

	Pordness os Colons		126	9 4 4	437	1 2 4	10.5		5 D	± ~
constituents in	Evop 180°C nordness Evop 105°C as Computed Cacca		204	744	737	245	203		210	77.
constituent per million	S.111-		1	1	1	1	1		7	1
Mineral parts p	Boron		1	0 . 30	0.29	% О •	0.10		0.00	0 . 1
	71 de		1	7.0	0.7	3 ° C	0 8		3 • •	9
	frote NO3		18.0 0.29 8	1.03	42 0.68	33.0	18 0.29		18.0	0
million per million ctance value	Chio-	00500	18 0.51	2 · 4 ° 7 · 2 · 4 ° 7 · 3 · 4 ° 7 · 4	2.31	0.50	16 0.45		0.73 15	3.007
0	Suffore SO4	RIVER HYDRO UNIT U0500	23 0 48	3.37	3.23	28 0.58	16		0 4 4 7 0 20	310
pe	Bicor - bonate HCO3	4 HYDR	147	249	304	124 2.03	128 2.10 66		210	2 2 2 2 2 1
parts equiva percer	Carbon -		0	0	0	0	0		э	0
c i	Po tos	SAN GABRIEL	0.05	0.08	0.08 1	0.05	0.03		0.00	
constituents	E o Z	< 1	1.17	2.74	61 2.65 23	32 1.39	1.04		1.13	8 . 3 % . 3
Mineral co	Magne. s.um M.g	L U05C1	10 0.82 22	3.37	31 2.55	10 0.82 21	9 0.74 23	10562	1.32	1.523
2	Colesum	005CU	34	1111 5.54	124 6.19 54	33 42	1.35		2.45	2 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Specific conduct-	mhos ot 25°C)		368	1090	1110	360	330	AREA	476	1248
	I	SUBAREA) • •	8 • 0	0 0	7 • 7	8 • 1	SUB,	7.4	⊃ • ∞
Temp	sampled in °F	BUNIT	1	1	1	1	1	HYDRO SUBAREA	1	55
State well	D e	RAYMOND HYDRO SUBUNIT PASADENA HYDRO	1N/12W-34E 1 S 8-11-65	1N/12W-34N 1 S 10-23-64	3-23-65	1M/12W-35B 1 S 10-23-64	3-24-65	MONK HILL	1N/12W- 6M 6 S 10-23-64	3-24-65

TABLE E-I
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	Total hordness os CalCO3		262		145		119		104		106			148		136			
uents in lion	Evap 180°C hordness Evap 105°C os Computed CoCC3		380	371	283	207	244	181	228	153	243	167		254	231	219	207		
constituents per million	5		30		i		1		1				-	-		ŀ			
Mineral o	Boron		0.14		0		0		0		0			0.20		0.22			
	P no		1.0		0.8		1.2		1.0		1.0			1.0		1.0			
	No - trate		28.0	7	34	15	26.0	13	20	11	37	21		15.0	0.24	7	0.11		
million 8 value	- c + 10 - c - 1 C - 1	00500	17	2 20	21	16	17	15	15	15	22 0 • 62	21		12	0.34	14	0.39		
parts per million equivalents per million percent reactance volue	Sulfote SO 4	RIVER HYDRO UNIT U0500	24	0 00	15	6 0	m 4	0.00	4 0	0 m	0			32	0.67	21	0.44		
parts per equivalents percent	Bicor - bonote HCO3	HYDRG	303	78	133	09	133	69	120	71	104	58		178	2.92	180	26.7		
par	Carbon- ote CO3	L RIVER	0		0		0		0		0			0		0			
Ë	Po to \$	SAN GABRIEL	E 0	7	20.05		700	1	7000	1	0.03	→		~	0.03		0.03		
constituents	Sodium	A SAN	29	19	19	22	24	30	18	27	19	28		30	1.30	56	1.13		
Mineral co	Mogne- s.um Mg	L UOSC2	23	29	12	26	7	17	10	28	10	28	10503	11	0.90	10	0.82		
2	Colcium	uosco	5 37.	51	38	200	36	55	25	43	26	44		41	2.05	38	1.90		
Specific conduct-	mhos at 25°C)		009		396		320		300		329		HYDRO SUBAREA	400		386			
	Hd	SUBAREA	7.4		7 . 8		7.7		7.8		7.4		RO SE	7.6		8.0			
Temp	sampled in ° F	BUNIT	1		70		1		72		ļ		4	I I		1			
State well	Date sampled	RAYMOND HYDRO SUBUNIT MONK HILL HYDR	1N/12W- 8H 1 S		IN/12W- 8H 2 S	60-42-6	1N/12W- 9E 1 S	10-67-01	7 7 7 6	60-47-6	1N/12W- 9R 1 S 3-24-65		SANTA ANIT	1N/11W-21C 2 S	10-23-64		3-23-65		

	1040	0000	180	134	757	0 3
ents in	4.3.5.2	Dandwo.	220	312	375	3 2 6
constituents per million	333	200	1	-	-	1
Mineral c	c	2	60.0	0.16	0.14	0 0
2	0 0 0		1.0	9	1.00	€ •
	N trote	2	26 0 • 42	27.0	29 0•47 8	0 ° 0 ° 2 ° 2 ° 2 ° 2 ° 2 ° 2 ° 2 ° 2 °
million e value	Chlo-	00500	15	21 0.59	26 0 - 73	0 • 5 1 0 9 1 0
millior per sactono	Sulfate	L A SAN GABRIEL RIVER HYDRO UNIT UD500	30	36	48 1.00	1 2 2 2 8 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8
- e -	Bicar	A HYDR	3.23	3.16	3.93	200 3.28 61
parts equiva percen	Carbon -	L RIVE	d	0	0	0
c.	Potos	GABRIE	0.03	0.05	0.05	7 m 7 2 •
constituents	E nipos	A SAN	25 1•09 23	2.17	25 1.09 18	2 5 5 7 6 5 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7
Mineral co	S . C B	0	11 0.90 19	7 U.58	1.73	9 7 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4
2	Colcium		2.69	2.20	3.34	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Specific conduct-	mhos		461	087	616	521
	I	DRO S	7.8	7.8	7 - 7	7 • 8
Tenp	sampled in F	BUNIT TA HY	99	1	-	9
State well	Date sampled	RAYMOND HYDRO SUBUNIT SANTA ANITA HYDRO SUBAREA	1N/11W-21C 7 S 7- 2-65	1N/11W-21G 2 S	3-23-65	7-28-65

TABLE E-I
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	T, to! hordness		394	239	307	250	309	308	313	285
constituents in per million	T D S T + oil		601	361	463	374	458 438	419	440	390
constituent	S.117-		1	1	1	1	30	1	1	ŀ
Mineral o	Boron		1	1	1	1	0.03	1	0 • 03	0.19
	ride.		\$	1	1	1	9•0	1	0.5	0
	rote I		140	65.0	104	65.0	66.0 1.06 15	70 1•13 15	75 1•21 17	44 0•71 11
per million ctance value	Chlo -	00500	54 1.52 16	32 0.90	30	43 1•21 19	20	24 0.68	21 0.59 8	26 0•73 11
0	Sulfate SO SO	RIVER HYDRO UNIT U0500	128	53 1.10	1.64	52 1.08 17	41 0.85	42 0.87	43	0.39
parts per equivalents percent r	Bicor - bonote	HYDR	204	192 3.15 51	218	188 3.08 448	290	289	281	273
ede	Corbon -		0	0	0	0	0	0	0	0
.c	Solos Eus X	SAN GABRIEL	0.05	0.05	3 0.08	3 0 • 0 8	2 0.05	2 0.05	0.05	0.08
constituents	E 2 0 N	A SAN	42 1.83 19	33	35 1.52 20	33	25 1.09	30	26	24 1.04 15
Mineral co	M og ne .	L U0501	2 88 30	21 1.73 28	2.30	22 1•81 28	1.64	22 1.81 24	22 1.81 24	1.40
2	Calcium		1000	3.04	3.84	3.19	4.54	4.34	89 4.44 60	86 4.29 63
Specific conduct-	micro - mhos at 25°C)	JBUNIT (914	620	725	643	769	722	769	636
	Hd	ORO SI	8 . 2	8 • 1	8 • 1	7.9	7.9	7.5	8 • 1	8
Тетр	sampled In F	EY HYE	69	7.0	77	71	-	69	69	1
State well	Date sampled	SAN GABRIEL VALLEY HYDRO SUBUNII UO5DO MAIN SAN GABRIEL HYDRO SUBAREA	15/ 9W- 1E 1 S 8-10-65	15/ 9W- 20 1 S 8-10-65	15/ 9W- 3C 1 S 8-10-65	15/ 9W- 4R 1 S 8-10-65	15/10W- 3A 1 S	8-11-65	9- 2-65	15/10W- 3C 2 S 8-31-65

Co Evap 185° Evap 105°	5.02	2000	0 0 0	0 0 0	0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	6.0 0.10 0.10 2.0 2.0 0.04 0.01	0 0 0 • • • • • • • • • • • • • • • • •	0 0 0 0	0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 E 4 4 E 3 F V
	00500		0 0 0 00	0 0 0 00 0	201 218 222	0 0 0 00 0 0
000	226 3.70 3.79 2.18 2.18 3.57 1.10	226 3.70 218 218 3.57 1.10 66 312 5.11 84 84	226 3.70 218 3.57 3.57 1.10 5.11 5.11 0.48 8.44 8.44 8.44 8.44 8.44 8.46 9.58 9.06 9.58	226 3.70 218 3.79 1.53 3.57 1.10 66 5.11 8.44 3.05 67 3.05 67 3.05 67 3.05 67 3.05 67 3.05 67 3.05 67 3.05 67 3.05 67 3.05 67 3.05 67 3.05 67 3.05 67 3.05 67 3.05 67 3.05 67 3.05 67 3.05 67 67 67 67 67 67 67 67 67 67 67 67 67	226 33 270 0.69 79 153 218 53 312 0.69 84 8 84 8 84 8 85 0.96 57 0.96 86 0.96 87 0.96 87 0.96 88 0	226 3.70 218 3.57 1.10 66 66 66 66 66 66 66 66 67 187 3.06 67 187 67 187 67 187 67 67 67 67 67 67 68 67 67 67 67 67 67 67 67 67 67
	0 0	0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
SAN GABRIEL	2 2					
L A	25 19 6	250 270 240	204 270 270	757 270 240 420 771	Not and ata and and	NOT
0050						
RIEL VALLEY HYDRO SUBUNIT UG5D MAIN SAN GABRIEL HYDRO SUBAREA 3D 1 S 7.8 4.38	465					
FEL HYD	7.8	7 .6	, , , , , , , , , , , , , , , , , , ,	D D D D	8	7
GABRI	-	- 6	7 6 7 7 1 1			
SAN GABRIEL VALLEY HYDRO SUBUNIT UO5DO MAIN SAN GABRIEL HYDRO SUBAREA 15/10W- 3D 1 S 7.8 438 6	1-20-65	3-30-65	3-30-65	3-30-65 8-30-65 8-30-65 12-7-64	1-20-65 3-30-65 8-30-65 12-7-64 9-1-65	1-20-65 3-30-65 8-30-65 15/10W- 3K 3 S 12-7-64 9-1-65 15/10W- 4G 1 S

TABLE E-1

ANALYSES OF GROUND WATER

LOS ANGELES DRAINAGE PROVINCE (U)

	Total hardness as		227		238		278		185		197		322		350		371		
uents in	Evap 180°C hardness Evap 105°C os Computed CoCCs		304	293	310	292	417	369	200	219	209	233		395	200	426	534	430	
constituents per million	Sirit C0 SiO ₂		-		1		E		ł		1		-		1		-		
Mineral parts p	8000		0.17		0.14		0.03		0.05		0.03		1		0.10		0.08		
	0 p L L		0.2		0 • 3		7.0		7.0		0 • 3		1		0.5		0.2		
	NO NO NO NO NO NO NO NO NO NO NO NO NO N		5	1	10	9 10	53.0	13	0.6	4	9	1 6	18	4	18.0	4	15	m	
million s value	7 de -	00500	28	14	14	2	20	0 00	10	200	17	11	88	34	100	36	111	38	
parts per million equivalents per million percent reactance value	Sulfote SO4	RIVER HYDRO UNIT U0500	13	5	19	7	41	13	30	15	30	14	1-02	14	53	1.10	54	14	
parts per equivalents percent re	Bicor - bondle	HYDRG	279	80	283	83	264	99	187	74	194	72	215	24	222	3.04	228	4.5	
Pod	Carbon -		0		0		0		0		0		0		0		0		
i.	00 = X	GABRIEL	0.10	2	0.13	2	3		60	2	£ 0	7	60.0		4 (100	0.10	-	
constituents	E n po Z	A SAN	22	17	19	15	21	14	88 48	0	88 48	0	15	6	15	0 0	17	6	
Mineral co	M	L UOSD1	11	16	16	23	16	20	11	22	14	26	20	23	22	23	4.03	64	
2	E		73	69	3.44	09	85	69	56	68	56	64	96	67	104	61 67	3.39	41	
Specific conduct-	micro- mhos ot 25°C)	JBUNIT (510		541		629		393		430		716		765		740		
	H	ORO SI	7.2		7.1		7.7		7.9		8.2		8.0		8.0		7.9		
Temp	when sampled in ° F	EY HYE	68		68		1		-		49		73		1		63		
State well	Date sampled	SAN GABRIEL VALLEY HYDRO SUBUNIT UO5DO MAIN SAN GABRIEL HYDRO SUBAREA	15/10W- 4G 1 S 5-11-65		5-30-65		15/10W- 4R 2 S		15/10W- 6N 1 S		9- 1-65		15/10W- 7A 1 S 8-10-65		15/10W- 7A 6 S		5- 4-65		

	Tchall hardness os Colocos		394	237	275	285	224	244	246	360
stituents in million	TOS Evap 180°C Evap 105°C Computed		520	280	370	375	327	367	346	382
constituents per million	S:11-		1	1	22	-	i i	2 2	î P	2 8
Mineral parts p	Boron.		0.05	0.05	90.0	90 0	0.07	0 • 0 3	0 • 0 5	† 0
_	Fluor		0.4	0 • 0	7 • 0	0 0	0 • 3	9 • 0	9.0	7.0
	rote NO 3		100.00	33.0	37.0	48	46 0.74	49.0	59	0.95
million e volue	Chlo ~ ride Cl	10500	1.38	12 0 . 54	0.71	0.73	25 0 11 13	15 0 • 42	0.50	0.42
million per eactanc	Sulfate SO4	RIVER HYDRO UNIT U0500	1.06	33 0.69	1.02	1.15	1.15	38	38 0.79	1.04
parts per equivalents percent	Bicor - bonote HCO3	HYDRC	287	217	236	232	165	232	3.75	219
P01	Carbon -		0	0	0	0	0	0	0	0
in	Polos -	GABRIEL	0.13	0.10	0.10	0.10	0.10	0.05	0.05	0 0 0 3
constituents	Sodium No	A SAN	14 0.61	11 0.48	0.70	18 0.78 12	18 0.78	20 0.87	20 0.87	18 0.78 13
Mineral co	Magner stum M g	L U05D1	23 1.89 22	1.15	1.15	1.32	1.23	1.23	1.32	1.56
×	Caterium		120	3.59	4.34	4.34	3.24	3.64	3.64	3.64
Specific conduct-	1 0	HYDRO SUBUNIT UO5DO RIEL HYDRO SUBAREA	829	491	615	619	535	563	583	980
0, 0	H	RO SU L HYD	7.8	7.8	7.9	8 . 2	7.9	0 •	7 • 7	1.7
Temp	when sampled in ° F		1	1	1	89	68	1	69	
State well	led	SAN GABRIEL VALLEY HYDRG MAIN SAN GABRIEL	15/10W- 7K 2 S 12- 8-64	15/10W- 8A 2 S 12- 8-64	15/10W- 9F 1 S	8-31-65	15/10W- 9F 2 S 8-31-65	15/10W- 9H 2 S 12- 9-64	9- 1-65	15/10W-10C 1 S

TABLE E-I
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	Total hardness as CaCO3		569		263		264		255		549		215		215		263		
uents in lion	Evap 180°C ha Evap 105°C Computed		376	357		369	382	363	397	348	310	337	306	280		318		411	
constituents per million	Sitte co SiO ₂		-				1		Į.		j t		1		1		i		
Mineral o	Boron		90.0		1		0.02		0.02		0		60.0		1		-		
_	Fluor		0 • 1		1		7.0		0.5		0.5		0.1		1				
	frote NO3		65	0.95	70	1.13	74	1019	59.0	0.95	61	0.98	26	0.42	33	0.53	25	0000	
million e value	Chlo ride	00500	22	0.62	17	0.48	21	0000	14	0.39	17	0.48	17	0.48	27	0.76	31	0.87	
million per eactanc	Sulfore SO 4	GABRIEL RIVER HYDRO UNIT UO500	51	1.06	949	0.96	949	0.96	52	1.08	94	0.96	29	0.60	04	0.83	108	2.25	
pe	Bicor - bonote HCO3	HYDRO	220	3.61	234	3.84	195	3.20	220	3.61	203	3.33	228	3.74	218	3.57	226	3.70	
parts equiva percen	Carbon - ote CO 3	L RIVER	0		0		11	0.37	0		5	0.17	0		0		0		
Ë	Potos .	SABRIE	3	0.08	8	0.08		0.08	m	0.08	2	0.05	4	0.10	1	0.03		0.03	
constituents	Sodium	A SAN	21	0.91	25	1.09	7	0.83	21	0.91	19	0.83	21	0.91	35	1.52	77	1.91	
Mineral co	Mogne, stum Mg	L UOSD1	23	1.89	19	1.56		1.64	19	1.56	20	1.64	23	1.89	17	1.40	22	1.81	
Σ	Colcium	0	7.0	3.49	74	3.69	73	3.64	7.1	3.54	67	3.34	84	2.40	58	2.89	69	3.44	
Specific conduct-	mhos at 25°C)	HYDRO SUBUNIT UO5DO BRIEL HYDRO SUBAREA	570		613		602		584		558		460		548		680		
	H	ORO SU	7.9		7.7		8 3		8 • 0		4 . 8		7.8		8.0		7.07		
Temp	sampled in ° F		65		76		69		1		67				89		75		
State well	pel	SAN GABRIEL VALLEY MAIN SAN GAE	15/10W-10C 1 S	5- 4-65		8-10-65		9- 1-65	15/10W-10P 1 S			9- 1-65	15/10W-19N 1 S		15/10W-20G 4 S	8-10-65	15/10W-23K 1 S	8-10-65	

	Toto! hardness os Colicis		239	186		549	167	201	297	282	224
lion	T 5 S Cotol Evap 160°C hardness Evap 105°C os Computed Cottos		425	3/1	25.3	382	130	208	340	365	307
constituents per million	Sile- ca Si0 ₂		1	1		1	1	-	-	i i	1
Mineral parts p	Boron		50°0	C		70°0	70.0	50°0	1	90.0	1
	Fluo-		0.5	0		0.4	7 • 0	4.0	-	1007	i t
	rrote NO3		26 0.42	9	0.31	35 0 • 56 8	5.0	4.5	14 0 • 23	8 0.13	70.0
per million ctance value	Chlo-	10500	24	2 5	0.51	33	0.50	0.25	10	0.23	0.65
0	Sulfate SO4	RIVER HYDRO UNIT U0500	1.67	2 22	0.46	1.67	28 0.58 15	0.56	27 0.56	0.94	23
equivalents percent r	Bicor - bonote HCO3	HYDRG	232	212	3.47	3.56	181 2.97 78	225 3.69 81	337	303	187 3.06 58
0 0	Carbon - ote CO 3		0	C)	0	0	0	0	0	0
Ē	Potos -	GABRIEL	2 0.05	1 0	0.05	0.03	0.05	0.08	0.05	0.08	0.03
constituents	E o Z	A SAN (1.83	23	0.91	1.74	10 0.43	0.43	15 0 65 10	13	21 0•91 17
Mineral co	Mogne. Stum	L UOSD1	21	7 7	1.07	1.73	0.74	1.07	1.64	1.64	1.64
2	Colesum		3.04	2 0	2.64	3.24	2.52	2.94	86 4.29 65	3.99	57 2.84 52
Spacific conduct-	1 0	VALLEY HYDRO SUBUNIT UOSD SAN GABRIEL HYDRO SUBAREA	622	0. 4		7779	362	456	601	564	236
	I a	RO SU	7.8	a	•	7 • 7	8 • 2	8 • 2	7 - 7	7 • 8	° €
Тетр	when sampled in ° F	EY HYD	7.0	a	0	7.0	1	19	89	7.0	8 9
State well	Ped	SAN GABRIEL VALLEY HYDRO SUBUNIT UO5DO MAIN SAN GABRIEL HYDRO SUBAREA	15/10W-28K 5 S 7- 9-65	9 7 000 mores		15/10W-33D 3 S 7-28-65	15/11W- 1M 1 S 12-11-64	8-31-65	15/11W- 2J 1 S 8-11-65	15/11W- 2J 3 S 7-13-65	15/11W- 4L 2 S 8-10-65

TABLE E-1
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	Total hardness as	COCOS		137		220		167			150			164			149		207			319			
luents in	6162	Computed			181		300			907		1	188	180	100	177	210	176	278		248	454		705	
constituents per million		20.8		1		-		1			1			1			1		ł			1			
Mineral parts p	c	8		1		ŧ		1			1			0.05			0.03		90.00			0.08			
	Pico Pide			1		ŀ		1			1			0.4			4.0		4 0			0.2			
	N -	NO 3		11	0.18	15.0	0.24	10	0.16	4	8 .0	0.13	4	8.0	0.13	n	4	0.06	α		3	19	0.31	4	
million	Chlor	- 0	00500		0.63	24	0.68	6	0.25	٥	\neg	0.31	27	00 (0.63	0	4	0.11	23	0.65	14	45	1.2/	17	
r million ts per million reactance value	Sulfote	504	RIVER HYDRO UNIT U0500	7	0.15	54	0.50	13	0.27	_	21	77.0	13	22	0.40	71	20	0.42	oc rr	0.79	17	120	2.50	34	
parts per equivalents percent r		нсоз	A HYDRO	181	78.7	262	4.29	206	3.38	w %	160	2 • 6 2	15	181	2.97	0	173	2.84	186	3.05	99	197	3.23	777	
99	Corbon -	C 0 3	L RIVER	ó		0		0			0			0			0		C)		0			
ë	Potos -	х	SAN GABRIEL	0		2	0.05		0.03		2	0.05	-	(1)	0.08	٧	2	0.05	~	0.08	2	4	0.10	~	
constituents	Sodium	o Z	A SAN	19	0.83	59	1.26	13	0.57	14	14	0.61	17	6	0.39	01	89	0.35	0	0.43	6	15	0.65	0	
Mineral co	0 ne -	5 ≥	L UOSD1	12	28	17	1.40	12	66.0	25	11	06.0	25	6	0.74	0.7	10	0.82	7,5	1,15	25	04	3.29	94	
Σ		٥٥		35	1.6/5	09	2.99	47	2.35	09	42	2.10	57	51	2.54	0	43	2.15		2.99	99	62	3.09	43	
Specific conduct-		at 25°C)	RIEL VALLEY HYDRO SUBUNIT UOSD MAIN SAN GABRIEL HYDRO SUBAREA	345		503		385			360			359			324		777			059			
	H		RO SU	7.9		8.3		8 .3			7 . 8			7.7			7.07		7.7			7.9			
Temp	sampled In ° F		EY HYD	69		99		79			81			1			1		63	70		1			
	P		VALLE	2 S		S		S 9			5 4			2 S			2 S		0			1 S			
State well	Date sampled		SAN GABRIEL VALLEY HYDRO SUBUNIT UO5DO MAIN SAN GABRIEL HYDRO SUBAREA	15/11W- 7N 2	8- 9-65	1S/11W-10H 1	8-10-65	15/11W-10N 6	8-10-65			8-10-65			12-11-64		1S/11W-12C 2	7-13-65	10/11/1/201	7-13-65		15/11W-14M 1	5- 4-65		
			SAN	15,		15,		15,			15,			15,			15,		0	7		15/			

	Total nordness as CoCC3		139	164	165	121	164	294	392	271
constituents in	T D S Evap 105°C Computed		188	242	215	161	211	368	560	392
constituent	5.02		1	-	1	1		-	Į.	1
Mineral	8000		1	0.27	1	90 • 0	1	1	0.08	0.14
	F. u.o.		1	0 . 8	1	6 • 0	1	1	0•1	0 • 2
	Prote NO3		0	5 0•08	24 0•39 10	3 0 • 0 5 1	10 0.16	42 0.68 10	21 0.34	18 0•29 4
million e value	ride C1	10500	0.23 6	18 0.51 12	11 0.31 8	10 0.28 8	10 0.28	21 0.59	53	1.24
millior per eoctono	Suffate SO4	RIVER HYDRO UNIT U0500	0.23	16 0.33	9 0 0 9	0.25	13	39	1.58	1.77
parts per equivalents percent r	Bicar - bonate HCO3	HYDRC	3.28	214 3.51 79	192 3.15 78	176 2.88 83	205 3•36 83	283	348 •70 63	.62 .62 .52
Por	Carbon - ote CO3		0	0	0	0	0	0	0	0
Ë	90.00 X	SAN GABRIEL	0.03	0.03	0.03	0.03	0.03	20.05	0.10 1	0.10 1
constituents	S 0 0 0 0	A SAN G	21 0.91 25	1.09	19	1.00	19	20 0.87	33 1.43 15	36
Mineral co	Mogne.	L 0501	10	1.48	1.15 2.8	10 0.82 24	1.07	20 1-64	40.04	2.22
2	E 30100	05D0 REA L	1.95	36	2.15 52.5	32 1.60 46	2.20	85 4.24 62	3.39 3.39	3 · 19 45
Specific conduct-	mhos at 25°C)	HYDRO SUBUNIT UO5DO BRIEL HYDRO SUBAREA	358	390	390	332	390	626	062	009
	I a	RO SU L HYD	8 .3	8 • 0	8 . 2	0 • 8	e. W	3 - 2	8 • 8	6.4
Temp	sampled In F	20	69	67	68	69	74	6 9	1	99
		VALLE SAN G	5 S	s 2	1 8	2 S	S	2	S	S
Stote well	Date sampled	AN GABRIEL VALLEY	15/11W-178 8- 9-65	15/11W-17G 5- 4-65	15/11W-18H 8- 9-65	15/11W-19F 7- 7-65	15/11W-20L 8- 9-65	15/11W-21G 8- 9-65	15/11W-25G 5- 4-65	15/11W-26K

TABLE E-1

ANALYSES OF GROUND WATER

LOS ANGELES DRAINAGE PROVINCE (U)

Mineral constituents in equivalents per million percent reactance value names of the percent reactance value sum no sum of the bonnie sum no k CO ₃ HCO ₃ SO ₄ CI NO CO CO CO CO CO CO CO CO CO CO CO CO CO
Mineral constituents in equivalents per million equivalents per million equivalents per million equivalents per million equivalents per million equivalents per million equivalents per million equivalents per million equivalents per million equivalents per million equivalents per million equivalents experience value into experience value experie
Mineral consituents consistents in equivalents per million percent million percent number of percent million percent number of percent </td
Mineral constituents in equivalents per million equivalents per million equivalents per million equivalents per million equivalents per million equivalents per million equivalents per million equivalents per million equivalents per million equivalents of the same of the control of the contr
Mineral constituents in ports ports percent mogne Sodium potos Corbon Bicor Sium of Ko3 HCO3 HCO3 LOSD1 L A SAN GABRIEL RIVER HYDI U05D1 1 24 61 5 0 13 0 232 3 129 265 0 13 3 80
Mineral constituents in equivalent management of a sign
Mineral constituents in equivalent per sequivalent sequivalent per sequivalent sequivalent per sequivalent sequivalent per sequivalent sequivalent per sequiva
Mineral constituents in
Mineral constituents in wogne- Sodium potos- sium No K K No GABRIE LOSD1 L A SAN GABRIE 1.97 2.65 0.13 1 9 2.65 0.13
Mineral constitution of the constitution of th
Mineral Mineral Mogne Stum Mogne Mg Mg Mg Mg Mg Mg Mg Mg Mg Mg Mg Mg Mg
2
BB C
Specific conduct- conduct- mhos at 25°C) at 25°C) APRONIT PRO SUB 942
sompled the conduction of the
remp when sampled in °F F F HYD GABRIE
VALLE SAN O
State well Temp conduct- number sampled conduct- Sampled nicro colorura Sampled nicro colorura Sampled nicro colorura In 25°C) co at 25°C)

	Total	hardness 0 s	COCOS			149		485		543			718		677		476		301		411	
uents im	2 O t	4343	Compuled				193	686	637	804		750	1140	1017	812	173		190		063	814	766
constituents per million			20.5			-		ł					l		1				1		1	
Mineral o	Boron		8			-		0.14		0.28)		0.38		0.50		-		1		0.53	
-	0 71	9 0 -				-		7.0		0.1	•		9.0		0.5		1		1		7.0	
	ž	1 0 1 e	NC 3			0		18	0.29	717	m	7	39	7 0 0	18	7	28	0 %	0		16	2
per million ctance value	Chio	, d e	- 0	00500		Ω	0.63	53	1.49	10	2.14	16	76	15	114	3.61	114	2.61	122	10	129	27
0	Sulfate		504	RIVER HYDRO UNIT UUSOO		14	0.29 8	192	4.00	735	4.89	36	317	9 8 6	217	333	219	380	111	2000	199	30
equivalents percent r	Bicor -	bonate	HCO3	R HYDR		201	3.29	360	5.90	373	6.11	45	494	000	340	2.0	352	2.77	760	37	346	4 7
600	Carbon -	ole	CO3			0		Э		0)		0		0		5		D		0	
ri .	Potos -		×	GABRIEL			0.03	2	0.05	مل	0.08	7	7	0	2	0	2 3	0	14	0 70	n a	
constituents	Sodium		o z	A SAN		20	0.87	41	1.78	70	2.30	11	0 8	3.40	130	4 0 2 0 20	06	3.91	115	44	93	36
Mineral co	Moone		5	7	U05D1	13	1.07	62	5.10	61	5.02	38	50.0	4.30	040	3.69	41	25 25	21	15	25	32
Σ	Calcium		°°	0		38	1.90	92	4.59	117	5.84	55	200	7.70	114	0.00 4.00 4.00	123	94	986	38	103	38
Specific conduct-	(micro-	mhos	at 25°C)	SUBUNIT U0500	ORO SUBA	375		066		1120	4		1533		1090		1260		1106		1140	
	Ha			DRO SU	EL HYI	7.9		7.5		8 2	1		7.5		7.8		7.5		7.6		7.5	
Temp	men	In F		EY HYG	SABRI	81		l		Į.			68		1 2		69		79		1	
State well		Date sampled		SAN GABRIEL VALLEY HYDRO SUBUNIT U05D	MAIN SAN	-36A 2 S	69-6	25/ 9W- 4K 1 S	5- 5-65	- 8R 3 S)		-18E 4 S	60-87-1	- 8E 2 S	20-0-0		60-01-0	10W-10N 1 S	0000	10W-10P 2 S	
State		Date s		AN GAB		15/12W-36A	00	25/ 9W	5-	25/ 9W- 8R	5-		25/ 9W-18E	7-1	25/10W- BE	2	0	1 0	25/10W-10N 1	7-0	25/10W-10P	

TABLE E-I
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	Total hardness as Calics		540	349	386	498	259	271	371	321
uents in lion	E vap 180°C Evap 105°C Computed		910	651	752	738	352	364	539	999
constituents per million	S.0.2		1		1	1	1	1	1	1
Mineral o	0000		0.55	0 • 0 8	0.14	0.12	1	1		1
	0 p 4		9.0	0 • 5	9.0	0.5	1	Î	1	1
	rote NO3		30	8 0•13	6 0.10	11 0•18	5 0.08	0	8.0 0.13	0
million e value	Ch 10 -	00500	138 3.89 26	2.57	2.59	81 2.28 18	33 0 • 93	32 0.90	1.61	1.75
millior per eactand	Sulfate \$0.4	GABRIEL RIVER HYDRO UNIT UO500	236	267 5.56 51	268 5.58 50	294 6 • 12 49	98 2.04 33	2.17	186 3.87 42	191 3.98 41
pe t	Bicor - bonote HCO3	HYDR	341	160	176 2.88 26	231 3•79 31	193 3.16 51	3.39	221 3.62 39	245 4.02 41
ports equiva percen	Corbon -	RIVER	ó	0	0	0	0	0	0	0
Ē	Potos X	GABRIE	0.08	0.15	0.13	0.15	0.08	0.08	0.10	0.05
constituents	Sodium No	A SAN	93	3.78	3.30	2.26 2.26 18	24	24 1.04 16	1.74	3.30
Mineral co	M a g n e .	L U05D1	56 4•61 31	20 1.64 15	24 1.97 18	2.38	1.23	1.23	21 1•73 19	1, 73 1, 73
2	Colcica	1	124 6.19	107 5•34 49	115	152	3.94	84 4.19 64	114 5 69 61	4 4 8 4 4 8 4 8 8 4 8 8 4 8 8 8 8 8 8 8
Specific conduct-	mhos at 25°C)	JBUNIT (1280	1071	1080	1152	583	608	847	899
	r .	ORO SI	7.8	7.6	7.5	7 • 4	ω •		8 • 2	8 •
Temp	sampled In F	EY HYD	1	29	1	1	79	65	49	76
State well	Date sampled	SAN GABRIEL VALLEY HYDRO SUBUNIT UU5DO MAIN SAN GABRIEL HYDRO SUBAREA	25/10W-13H 2 S 5- 5-65	25/11W- 5A 1 S 7- 2-65	25/11W- 5A 2 S 7- 2-65	25/11W- 5B16 S 7- 2-65	25/11W- 5G 1 S 8- 9-65	25/11W- 5N 4 S 8- 9-65	2S/11W- 5N 5 S 8- 9-65	25/11W- 6G 2 S 8- 9-65

State well	Temp.		Specific conduct-	Σ	Mineral cor	constituents	Ë	0 0 0	ports per equivalents percent r	million per per	million e volue			Mineral	constituent per million	constituents in per million	
p e	when sampled in ° F	I	(micro- mhos	Colorum			- so to 0	Carbon -	_		C h 10 -	rote.	.00	0000	S.11-2	T D S Evap 180°C	Total Nordness as
SAN GABRIEL VALLEY	EY H	HYDRO	SUBUNIT UOSDO	7 。		A SAN	5	EL RIVE	R HYDR	RIVER HYDRO UNIT U0500	00500	5		0	200	D Lodwood	\$000 000 000 000
25/11W- 8A 5 S 7.9 670 4.	CABR.	7.9	670	139	1.81	1.83	0.08	0	272	1111 2.31	1.16	8	0 • 1	0.11	1	430	300
1N/ 9W-29C 1 S		8 1	620	3 54	24	33 63	0.15	0	273	76	24	31	7.0	90.0		4 4 4 7 0	276
					2	2			62	22	0	7				400	
1N/ 9W-29M 1 S 8-11-65	14	7.5	919	3.69	1.81	1.39	0.08	0	189 3.10 45	1.21	25 0 11 10	120	1	1	1	427	275
1N/ 9W-32G 1 S	68	7.5	006	3.09	63 5.18 52	1.70	0.05	0	297	2.39	1.33	86 1.39	0.5	0.14	1	560	414
1N/1UW-31A 1 S 12-10-64	1	8	488	3,39	1.15	0.52	3 0.08	0	3.79	34 0.71	13	26.0	4.0	0 • 0 5	1	280	227
8-30-65	70	8 • 1	457	3.24	11 0.90	0.48	0.00%	0	3.44	30	0.31	16 0.26	7.0	90.0	1	290	207
1N/10W-31M 1 S 12-10-64	-	7.7	575	4.04	17 1-40 23	0.52	0.10	0	254	0.64	18 0.51 8	47.0	4.0	0 · 0 ·	1	330	272
8-30-65	6 8	8	458	2.74	1.15	0.52	0.08	0	3.31	29 0.60 13	10 0.28	17 0.27	0 • 3	0.05	ŧ	252	195

TABLE E-1
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	Teto! hardness			189		188		194			228		1	217		193			217		232			
uents in lion	T 0 S Evop 180°C P	Computed		210	230		231	237	000	677	323	307		260	280	356	236)	300	288	0	200	281	
constituents per million	S: 1.	5.05		-		1					21			1		ŀ			21					
Mineral parts p	80.00	8		0.05		i		90 • 0			0.04			0.02		0.07			90.0			0		
	F uc.	u		7.0		ļ		0.3			4.0			† • 0		0.2			0.4		(7.0		
	1.07	NO3		7.0	0.11	S	0.08	4	90.0	-	38.0	0.61		40	13	22.0	0.35	0	28.0	0 0	, (0.37	7	
nillion	Chio -	- 0	00500	οc	0.23	7	0.20	20	0.23	Ω	13	0.50		17	10	16	0.40	2	12	0.04		0.54	10	
parts per million equivalents per million percent reactance value	Sulfate	504	GABRIEL RIVER HYDRO UNII UO500	35	0.73	35	0.73	35	0.73	17	28	0.58		28	0	19	0 * 40	h	22	0 7 0		0990	11	
parts per equivalents percent re		нсоз	HYDR	201	3.29	206	3.38	203	3.33	77	218	3.57)	204	999	198	3.25	2	222	3.04	†	3.80	72	
equi	Carbon -		L RIVER	0		0		0		_	0			0		0			0			0		
Ë	Potos -	×	GABRIE	3	0.08	m	0.08	(r)	0.08	2	4	0.10	1	ma	2 2 2	4	0.10	V	,	0.10	7	0 0 0	1	-
constituents	E nipos	0 N	A SAN	10	0.43	13	0.57	11	0.48	11	12	0.52	4	13	111	14	0.61	13	12	0.52	1 1	0.65	12	
Mineral co	Mogne	0 1	L UOSD1	12	0.99	13	1.07	15	1.23	28	13	1.07	4	14	1.13	22	1.81	0 4	12	66.0	0	23	35	
Σ	Colcoum	Co	0	56	2.79	54	2.69	, r,	2.64	09	70	3.49	5	49	5.19	41	2.05	45	19	3 • 34	ō	55	51	
Specific conduct-	(micro-	of 25°C)	VALLEY HYDRO SUBUNIT UO5DO SAN GABRIEL HYDRO SUBAREA	415		411		407			964			486		044			468			024		
	I		HYDRO SI	7.9		0		0	1		7.9			8 • 0		7.07			7 ° 9			8.2		
Temp	when	L	EY HYE	1		72		44			1			19		-			1			-		
State well	la d		SAN GABRIEL VALLEY MAIN SAN GA	IN/10W-32J 2 S			8-10-65		8-30-65		1N/10W-34L 1 S	12- 9-64			7- 2-65	1N/10W-34N 1 S				12- 9-64		1-10-66	00.61-1	

	Total hardness os Calicis		210	212		7 68	216		239		237	212	234
lion	T 0 S Evap 195°C Computed		298	267	260	250	386	564	280	200	310	304	288
constituents per million	5. 1. ca \$10_2		1	1		1	1		1		l l	1	1
Mineral parts p	Boron		0.12	0.11		0 • 0	0.10		0.07		0.12	3. 0 •	0.11
	7 C C		0.2	0.5		0 3	0.5		7.0		0.5	4.0	0
	trate NO3		22 0 35	77	0.39 8	19 0.31	26.0	5	37.0	1 1	32.0	24 0.34	20.42
per million ctance value	Ch 10 -	00500	0.01	2002	0.56	10.28	21	12	0.56	10	20 0.56	150.42	0.59
0	Sulfore SO 4	RIVER HYDRO UNIT U0500	0.31	16	0.33	21 0.44	25 0 • 46	0	23	7	31 0.65	19	23.00
equivalents percent r	Bicor - bonote HCO3	HYDR	3.64	214	3.51	3.56	212	10	234	70	215	2.51	237
per	Corbon -		0	0		0	0		0		0	Э	0
Ē	Potas -	GABRIEL	0.10	, m	0.08	0.10	0.10	2	0.10	V	0.10	0.03	0 0 0 0 0 1
constituents	Sodium	A SAN	14 0.61	2 61	0.57	0.52	15	13	13	10	13	320	0.61
Mineral co	Mogne- stum M g	L UOSD1	1.56	11	0.90	1.07	24	36	12	19	1.84	0.99	1.23
2	Calcium		53 2.64	67	3.34	5.89	47	94	3.79	10	2.84	3.24	3.44
conduct-	1 0	VALLEY HYDRO SUBUNIT U05D0 SAN GABRIEL HYDRO SUBAREA	540	2,00		443	200		532		480	044	284
	I a	ORO SU	7.6	7 - 7		7.5	7 • 7		7.5		8 • 1	80 • CI	7.7
Temp	sampled in ° F	EY HYI GABRIE	1	67		8 9	I I		1		1	68	9
State well	Date sampled	SAN GABRIEL VALLEY HYDRO MAIN SAN GABRIEL H	1N/10W-34N 1 S 3-30-65		5-10-65	5-26-65	IN/10W-34N 2 S		12- 8-64		1-20-65	3-30-65	5-10-65

TABLE E-I
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	*, 10. hardness	C0 . L3		574		191			220		549		156		201				
luents in	Evop Broc hardness	Computed		087	270	230	246		300	280		177		196	252	750			
constituents per million	. · S			1		1			į į		1		į į		Į Į				
Mineral parts p	Вогол	В		0.00		0.05			0.08		-		1		0.12				
	F1.00	L		7.0		7.0			0.2		-				0.2				
	Z	NU3		25	0.40	15.0	0.24		19	9	0.9	→	0		7	0.06			
million e value	Ch 10 -	- 0	00500	14	0.34	19	0.54		16	100	45	10	4	0.11	13	0.37			
r million ts per million reoctance value	Sulfate	504	A SAN GABRIEL RIVER HYDRO UNIT UOSOO	20	0.42	32	0.67		38	15	133	30	28	0.58	34	0.71			
len i	Bicar -	H CO3	HYDRO	229	3.75	187	3.06		230	7.1	221	147	186	3.05	226	3.70			
ports equiva	Carbon -	003	RIVER	0		0			0		0		Э		0				
ni s	Potos -	¥	GABRIEL	4	0.10	7	0.10		401	2	4 0000)	e :	0.08	7	0.10			
constituents	Sodium	0 2	A SAN	12	0.52	14	0.61		20	16	62	35	14	0.61	13	0.57			
Mineral co	Mogne	o 2	L U05D1	12	0.99	10	0.82	10503	2.20	43	18	10	10	0.82	15	1.23			
2	Calcium	000		70	3.49	09	2.99		42	66	70	24	94	7.30	96	21.0			
Specific conduct-	(micro-	at 25°C)	JBUNIT L	964		443		SUBAREA	024		729		354		420			•	
	I a		RO SU	7.6		0.8			8.0		7.6		7.7		0.8				
Temp	sampled		EY HYU	80		1		YON HYDRO	61		87		99		99				
State well number	4		SAN GABRIEL VALLEY HYDRO SUBUNIT UOSDO MAIN SAN GABRIEL HYDRO SUBAREA	1N/10W-34N 2 S	5-26-65	1N/11W-36R 1 S		UPPER CAN	1N/10W-22M 1 S	0000	IN/10W-23B 1 S		IN/10W-27C 1 S	8-11-65	1N/10W-27C 2 S	5- 6-65			

ADLE ET

	*:10 hordness cs		352	a a	434		
E	2000	-	5			 	
	T S S Total Evap BC°C hardness Evap 105°C cs Computed Coulds		220	t J	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
ifuer							
Mineral constituents parts per million	50.2		1	i	1		
lo s			0.11	1	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		
par	0. 0.		0		Š		
2			0.2	f 1	. 0	 	
	7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -						
	Z 0 Z		34 0.55	5/00	400000000000000000000000000000000000000		
	Z 0 Z						
no no no no no no no no no no no no no n	1	00	1.07	0.43	1.00		
ilie v	0 - 0	000	-	0	-		
parts per million equivalents per million percent reactance value	p 4	A SAN GABRIEL RIVER HYDRO UNIT U0500	126	143 2.78 33	151 3•14		
E DOC	Sulfate SO 4	5	2	2.	(c)		
parts per equivalents percent re		YDR	257	272	315 • 16 48	 	
parts per equivalents percent r	Bicor - bonote HCO3	T T	4.61	272	315 5•16 48		
par		RIVE	0	0	0		
	Carbon -	7.					
		BRIL	0.00	0.05	0.02		
- C	P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	GA					
constituents	E o	SAN	10.26	1.22	1.83		
nstrt	Sodium	٦ ٧	7	1	7		
			5.43	25 2 06 23	4.63		
Mineral	M 0 0 0 M	UJ5E1	2	2	4		
Σ			32	114 •69 63	380	44.44	
	C 0 C 0	UOSEU	7	114 5.69	38 38		
0 -		5	2	x 0	2		
Specific conduct-	mhos at 25°C)		730	818	046		
S	, E = E	REA	80	•	~	 	
	I	UBAI	7.8	7.9	7 • 7		
Temp	Pied	HYDRO SUBUNIT SPADRA HYDRO SUBAREA	8 9	73	20		
Temp	sampled In ° F	SPADRA HYDRO SUBUNIT SPADRA HYDRO	10				
	70	A P			~		
well	Date sampled	YUR	157 9W-26H 5- 5-65	15/ 9W-34B 1 8-11-65	15/ 9W-34F 5- 5-65		
State well	SOL	AH	9w-26H	9W-34B 8-11-65	9W-34F 5- 5-65		
Sto	Date	ADR	200	8	5,		
		Q.	_	7			

TABLE E-1
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	hordness								355	
uents in	Evon 180°C hardness								724	
constituents per million	55		i i	1 1	I I		1	1	50	
Mineral o	B, rc.		1	1	1	1	1	1	90.0	1
	r de		1	1	1	1	1	1	9.0	1
	trole NC3		1	1	1	1	1	1	6. 0 0.00	!
million e value	Ch.10.	00 401	109	82	2.37	2.5/	91 2.57	2.40	43	2.20
millior per eoctono	Sulfore S < 4	A SAN GABRIEL RIVER HYDRO UNIT UUSOO	292	115	114	240	246	104	254	1
parts per equivalents percent re	Bicar - bonate HCU3	HYDK(248	239	244	3.25	3.25	251	188 3.08	24 9 4 • 8 G
par	Carbon - ate	RIVEF	0	0	0	0	0	0	0	0
ŗ	Potos -	SABRIEL	I I	1	1	-	1	1	0.10	1
constituents	& nipo S	A SAN	ŀ	1	8	1		1	3,96	4
Mineral co	Magne - Sodium stum Mg Na	L UUSF1	1	1	1	-	1	1	22 1.01 16	1
2	E 70 0 0	J05FJ	1	-	1	-	i 1	-	106	1
Specific conduct-	mhos at 25°C)		1271	854	876	1059	1059	861	1070	776
	H	SUBAREA	7.6	7 • 6	7.6	7.6	7.5	7 • 8	7.6	7.6
Temp	when sampled in ° F	BUNIT CRO S	1	i	-	99	8 9	i I	1	2
		SO SUE	S C	1 S		2 3		1 .5	**	ν -
State well	Date sampled	ANAHEIM HYDRO SUBUNIT	35/ 9W-32H 3- 3-65	3S/ 9W-33H 1 S 10-13-64	3- 3-65	35/ 9W-33K 1 10-13-64	3- 3-65	35/ 9W-34G 1 S 10-13-64	3- 3-65	35/ 9W-34H 1 10-13-64
		A				01		61		141

	7 10 Pordness 25 20.3					1 1		30		
constituents in	Evap Bud hardress Evap Bud as					7 0 0 0		771		
constituent per million	\$		1	1	i i	1	1	2		1
Mineral parts p	(F) (F)		1 1	1	i i) •)	1	. i .		1
	, D		1	1	1	3	i i		1	1
	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		!	1	1	5 to 5 to 5 to 5 to 5 to 5 to 5 to 5 to	1	v • 0	1	
million per million ctance value	Chlo-	00000	2.09	102	101	2.74	1.444	1 4 2 7 7 4 4 2 4 4 4 5 4 5 4 5 4 5 4 5 7 5 7 5 7 5 7 5	96) d
0	Sulfore	L A SAN GAURIEL RIVER NTURO UNIT OUSUO	t f	235	274	2.41	1.00	242	278	1
parts per equivalents percent re	Bicor - bonote HCc3	TT URC	270	3.61	3 . 4 . 5 . 4 . 5 . 4 . 5	311	3.05	3.00	176	144
par	Carbon ole	K I V L	0	9	Э	Э	7	Э)	2
Ē	Potos -	SAUKIEL	1	1	I I	4 2 4	1	0.1	1	t t
constituents	Sodium	A SAN (1	1	1	90	1	104	-	
Mineral co	M og ne .	L UUSE 1		1		1.04	1	2.47	1	1
×	m	UUSFJ	1	1	I t	17.3	1	104	t 1	1
Specific conduct-	mhos at 25°C)		433	1240	1732	1000	673	1210	1117	8501
3, -	H	UBARE	7.0	7.5	7.6	1	% • /	7.5	7.6	2 • 2
Temp	when sampled in ° F	SUNIT DRO S	7.9	1	1	1	.5	g o	1	υ O
		SUE IM HY	1 S	. S		00	2	.1	ر. د.	υ)
State well	Date sampled	ANAHEIM HYDRO SUBUNIT ANAHEIM HYDRO SUBAREA	35/ 9W-34H 1	35/ 9W-34M 1 10-13-64	3- 3-65	35/1~#-3cF 1 6-22-65	35/10W-36H 1 3-17-65	457 9W- 4M 2 5	45/ 9W- 6G	45/10W- 18 1 3-17-65

TABLE E-I
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	T, to hardness os		405		375	388	383	380	404	707
uents in lion	T D S. T. to Evap 180°C hardness Evap 65°C os Computed Courts		793		590	716	630	678	701	630
constituents per million	S 0.2		23	1	-	1	1	1	1	1
Mineral parts p	80.00		0000	-	90.0	60.0	0.07	60.0	0.08	0.07
	20 L		9.0	1	7 • 0	0.5	7 • 0	0.5	9•0	0.0
	N 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		26.0 0.42		12 0•19 2	13 0•21 2	12 0•19 2	9 0•15	18 0•29	19 0•31 3
million per million ctance value	Ch10 -	00500	2.76	2.68	85 2.40 24	2.31	2.45	2.43	2.45	2 4 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
0	Sulfate SO4	GABRIEL RIVER HYDRO UNIT U0500	266	268 5•58	168 3.50 34	181 3.77 36	169 3.93 38	200	202	3 × 71 3 × 71
parts per equivalents percent re	Bicor - bonote HCO3	HYDRO	182 2.98 25	173	251 4•11 40	246 4•03 39	237	220 3.61 35	239	260
por	Corbon	RIVER	Э	0	0	0	0	0	0	0
. <u>.</u>	0 0 0 0 X	GABRIEL	0.10	1	0.13	0.13	0.13	0.14 1.0	0.13	0 1 2 1
constituents	E ? 2	A SAN	3.57	!	62 2•70 26	2.70 25	2.78	2 • 78 2 • 5	2.78	2.00
Mineral co	Mogne s-um M	L UUSE1	2.06	1	2.06	30 2 47 23	1.81	22 1.81 17	1.89	21 1.73 16
Σ	E 7:00	UOSFO	121 6•04 51	-	109	106 5.29 50	5.84	5.79	124 6•19 56	127 6 • 34 5 · 34
Specific conduct-	mhos at 25°C)		1129	1123	666	1018	1020	1030	1070	2000
	J.	SUBAREA	7 • 7	7.6	7 • 7	7 - 7	7.5	7.6	7.5	ю •
Temp.	when sampled in° F	BUNIT YDRO S	1	67	1	I I		ì	1	1
State well	bel	ANAHEIM HYDRO SUBUNIT ANAHEIM HYDRO	45/10W- 1F 1 S 10-22-64	3- 3-65	45/10W- 3P 1 S 11-27-64	5-18-65	45/10W- 3P 2 S 11-27-64	4-20-65	45/10W- 4R 1 S 4-20-65	45/10W- 4R 5 S 11-27-64

Date sampled sampled in F. AMAHEIM HYDRO SUBUNIT ANAHEIM HYDRO			conduct-	¥	Mineral co	constituents	UI.	bed	percent re		per million scrance value			parts p	per million	per million	
HYDRO SUR	sampled In ° F	Нд	mhos at 25°C)	Calcium	M o o o o o	Sod:um	Potos.	Corbon.	B.cor - bonote HCU3	Sulfore S 0 4	Ch 10	rote NC3	, p	B 69	S 60 5 0 2	Evap BCC . Evap Scc .	Teta hordness os cours
	3UNIT	SUBAREA		U05Fu	L JUDE 1	A SAN	GABRIEL	- RIVE	R HYDRO	SAN GABRIEL RIVER HYDRO UNIT UOSOO	00500						
45/10W- 4R 5 S	1	1.1	1040	120	24	2.48	0.13 L	0	263 4•31 41	159 3•51 32	2.45	54 6.00	0.0	0.08	1	600	510
45/1 W- 4R 6 5 3-24-65	1	7.4	1040	122	26 2.14 13	62 2.10		0	245	160 3.71	2007	0.21	0	0 . 1 3	1	673	; ;
45/1UW- 6P 1 5 6-16-65	1	7 • 8	558	3 - 24 55	13 1.07 18	34	ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο	٥	22.4	1.62	0.19	0.10	5	70.0	1	5 46.	7 70
45/10W- 70 2 5 10-22-64	1	7.9	999	§ 1	1	1	{	Э	253	1.75	36	1	1	1	1		
3-65	1	1.1	613	1	1	Į Į	t I	Э	251	1.71	0.03	1	1		1	-	
45/10W-18C 2 5 7-13-65	1	1.1	858	1000	1.73	41 2.04	4 0 4	0	4.15	114	1.75	22 00.35	0	900	1	4 0 0	3 2 5
45/11W- 8B 2 5 6-16-65	!	1.9	678		0.82	1.63		3	3.64	36 00 72	0.00 500 8	1 . 0	0	0 • 10	1	27.2	1 4 1
45/11W- 8P 2 3	-	1.2	794	2, 35	9 0 14	3.5		2	3.64	38 0 19	12.0	Э	0.0		ł	35.5	

TABLE E-I
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	hardness 0.5 (0.4.3		155		160		3	617		216			302			282			359			358			
constituents in per million	TDS Evap 180°C hardness Evap 105°C 3 Computed (00.03		246	259	268	040		000	327	347		323	094		654	414		416	265		526	612		770	
constituent per million	S:11-		1		- 1			ŀ		1			-			1			1			1			
Mineral parts p	Boron		0.06		0.0		<	0000		0.05			0.08			0.06			0.08			50.0			
	- 1 de		7.0		0.5			0		9.0			0.6			0.5			0.0			9.0			
	hrate NO3		0		-	0.02	4	0.06	7	U . U	60.0	2	~	0.02		12	0.19	n	70	0.32	4	26	0.45	Ω	
million per million ctance value	Chio:	00500	13	0.37 B	11	0.51		0.67	12	22	0.79	13	45	1.27	15	43	1.51	17	20	1.66	18	62	1.7	17	
0	Sulfate SO4	SAN GABRIEL KIVEK HYUKU UNII UOSUO	30	0.75	3.1	0.55	- 1	. 3 0	2	61	1.27	21	120	2.50	30	93	1074	27	126	29.2	58	125	2.60	22	
parts per equivalents percent r	Bicar - bonate HCO3	T TYCK	226	3.70	223	3.75		3.82	49	233	3.82	79	271	4044	24	243	3.78	54	272	94.4	64	268	4.39	τ τ τ	
pat	Carbon -	L KIVE	0		2		c)		>			0			0			0			0			
. <u>e</u>	For os X	GABRIE	7	0.05	2	0.00	7	0.08	7	m	C • C &	Н	4	0.10	~	7	0.10		5	0.13	H	7	0.10	4	
constituents	Sodium	A SAN	0.4	1.74	35	1.52	4	1.57	56	35	1.52	56	14	2 . 04	25	04	1 . 74	63	52	2.26	54	94	2.00	77	
Mineral co		L UUSF1	7	0.74	11	0.40	2	1.23	20	18	1.46	25	20	1.64	20	14	1.15	CT	21	1.73	18	22	1.81	2 7	
*	Colc:um	URSEO	47	2.35	94	2.30	4	3.14	55	5.7	58°7	48	20	4.39	54	90	64.4	٥ ٢	109	2044	5.7	107	5.34	D CC	
Specific conduct-	mhos at 25°C)		476		450		27.0			582			756			748			268			866			
	I	SUBAREA	1.9		7.9		7.65			7 • 8			7.9			7.5			7.5			7.8			
Temp	when sampled in ° F	BUNIT YDRO S	1		!		į.			!			1			-			!			1			
State well	184	ANAHEIM HYDRO SUBUNIT ANAHEIM HYDRO	45/11W- 8P 2 C	6-22-65	45/11W- 9A 1 S	6-10-65	45/11W-11H 1 S	12-16-64			7-13-65		45/11W-12F 1 S	6-16-65		45/11W-12F 2 S	6-22-65		45/11W-12R 1 S	2-16-65			60-10-0		

	Total hardness os		346	320	334	315	10%	7/1	2 51	7/1
Jents in	Evap 180°C hardness concured (10.5)		0 4 1	563	27.5	513	2 5 C	2000	, 10 8 10	0 0
constituents per million	- 02 5		i i	1	-	1	1	-		1
Mineral o	, , , , , , , , , , , , , , , , , , ,		ລວ•ຸດ	0.00	0	20.0	0000	n 0		: :
~	, p		9.0	0.7	ກ • ວ	7.0	0		٥ ٠	
	2 0 2		71 0•34	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0	3	Э	- · · · · · · · · · · · · · · · · · · ·	7
volue	0 0 - - - - - - -	00500	1.75	1 7 0 0 1	1000	10,10) o o	\$ 7 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	2000	\$ > 0 - 0
r million s per million reactance value	S. 4	SAN GABRIEL RIVER HYDRO UNII UU>00	126	1. 14 8 3. 0. 8 3. 0. 8	101 5 14	2	2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.70	30.0	0 1 4 4 1 9 4 4
equivalents percent re	Bicor - bongte	4 HYDK	200	232	4 7 7 4 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	3.44	211	234 3.84	266	3.001
Por	Corbon -	RIVE	·ɔ	2)	٥	7	5	2	7
C_	Potos Fues A	GABR 1 E	0.13	\$ 7 7 T	2 0 1) 1) ~) , , , ,))))))))))	m a ~
constituents	Sodium	A SAN	46	2.26	2.35	2. 2. 2. d. 3.	10.51	1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	35	1. 3. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.
Mineral co	Mogne- srum M g	L UOSF1	1.46	1.81	1.07.5	1.56		1110.90	0.000	1 0 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7
ž	Colcium	U05FJ	10.9	4.59	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	40 14	2.35	2.54	2. 84 5. 84	7.48
Specific conduct-	1 0		872	φ α α	872	227	425	476	かしか	761
	H	UBARE	7 • 8	9 • 2	1.6	1.6	8.2	7.8	3 • \$	5.
Тетр	sampled In ° F	SUNIT	1	1	1	!	3	1	1	t 1
State well	Date sampled	ANAHEIM HYDRO SUBUNIT ANAHEIM HYDRO SUBAREA	45/11W-12R 1 S 8-30-65	45/11W-12R 6 5 10-26-64	5-17-65	4'./lim-13A 3 5 8-30-65	4://11w-15M 1 5	45/11x-160 1 5 11-25-64	45/11W-10f 1 S 6-16-65	45/11W-165 1 5 8-30-65

TABLE E-1
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	Toto hordness os Cocks		256		253		126	0		146			147			142			141			182			
uents in	TDS Toto Evop 80°C hordress Evop 105°C as Computed Cacid		379	372	399	365	264	1	259	280		248	278		259	256		247	273		544	300	f	017	
constituents per million	50.1.		1				1			1			-			-			-			-			
Mineral o	Boron		0.04		0.05		70			0.05			0.04			90.0			0.05			90.0			
	on F		9.0		1.0		0			0.5			0.5			0.3			0.5			9.0			
	N 0 N V C C C C C C C C C C C C C C C C C C		0		0		c)		~	0.02		0			0			0			0			
million 8 value	7 1 0 - C	00500	32	0.40	30	0.85	7 (0.39	α	13	0.37	20	15	0.42	6	16	0.45	0	11	0.31		13	0.3/	_	
parts per million equivalents per million percent reactance value	Sulfate SO4	GABRIEL RIVER HYDRO UNIT U0500	73	1.52	69	1.35		0.81	17	38	0.79	1 /	42	0.87	18	37	0.17	1 /	36	0.75	1 /	44	1.02	0 7	
parts per equivalents percent r	Bicar - bonote HCO3	R HYDR	270	4.43	273	4.47	224	3.67	75	215	3.52	15	217	3.56	73	509	3.43	7 /	212	3.47	1.1	226	3.70	0	
bed bed	Carbon -	EL RIVE	0		0		C)		0			0			0			၁			5			
i.	Potos -	GABRIE	5	0.08 1	3	0.08	^	0.05	1	2	C • C 5		2	0.05	-	2	0.05	~	2	0.05	-	B	α · · · · · · · · · · · · · · · · · · ·	7	
constituents	Sodium	A SAN	39	1.70	39	1.70	42	1.83	0 7	36	1.57	35	2	1.74	37	38	1.65	200	39	1.70	37	36	1.57	2	
Mineral co	M 0 9 n 8 .	UUSF1	16	1.32	13	1.07	r	0.41	6	10	0.82	18	7	0.74	16	3	0.74	9	ar	0.66	14	12	V.V.	C #	
2	E7:0100	UUSFU	76	3.79	98	3.99	46	2.30	200	24	2.10	949	77 77	2.20	147	42	2.10	0	43	2.15	1 4	53	7907	2	
Specific conduct-	mhos at 25°C)	E A	649		249		470			777			476			450			454			511			
	H a	SUGAREA	7.6		7.8		7.6			⊃ • ⊗			7.6			7.5			7 • 8			7.7			
Тетр	when sampled	JBUNIT	1		-		1			68			ļ			1						1			
State well	P	ANAHEIM HYDRO SUBUNIT ANAHEIM HYDRO	45/11W-16J 4 S	12-15-64		5-17-65	45/11W-19J 3 S				6-16-65			7-13-65		45/11W-190 2 S	10-26-64			5-17-65		45/11W-20R 2 S	4-77-4		

	7:10 hardness 0.5 0.0 - 3		313	323	0965	t t	i	~	CF post	0
constituents in	Evap 105°C		4 4 9 0 0 0 0 0	238	24600	210	24.1	707	6 4 7	217
constituent per million	S -: S 0.0		1	-	-	;	-	7 7	1	ţ
Mineral parts p	0,00		0.00	0.00	1	1	1	1	1	1
	30 L		9•0	9.0		1	1	1	1	}
	202		0.03	1.2	5	9	9	1	0	0
million e value	Ch 10 =	00400	1.00	1.75	13500 380.70) p ~ ()	0.70	16	0.45	0.48
parts per million equivalents per million percent reactance value	Suffer &	RIVER HYDRO UNIT U05500	113	118	1940	4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	42	12	38	39 0•81 21
parts per equivalents percent re	Bicor - bonate HCU3	A HYDR	254 4.16 51	251	181	168 2.75 67	159	162	3.31	155
par	Corbon .		ó	0))	0	0	0	3
10	90109 F 2 3	SAN GABRIEL	0000	0.05 1	1.48	~ ~ ~ ~ · · · · · · · · · · · · · · · ·	0.03	0.03	0.08) 0 0 10 10 10 10
constituents	E 7 0	A SAN	2.00	1.91	7.40	3.35	3.13	2.70	2.00	2.70
Mineral co	0 - 2 0 - 2 0 - 2	L UVSF1	1.56	1.56	703	C. 166 a	0.43	4 8 8 4	0.66	0.16
2	8	UOSFU	94 4.69	86.4	1080 53.89	0.15	0.75	α 3.4.0 Ω 2.4.0	1.95	0.95
Spacific conduct-	mhos at 25°C)		2028	ж	33100	431	437	325	421	378
	I	UBARE	7.7	7 . 3	7.8	8 .	m •) •	4 .	φ •
Тетр	sampled in ° F	SUNIT DRO S	1	1	1	7 3	1	1	t	1
State well	le d	ANAHEIM HYDRO SUBUNIT ANAHEIM HYDRO SUBAREA	45/11W-21L 1 S 2-16-65	7-13-65	45/12W-36N 6 5 7- 9-65	45/12W-36N 7 s	7- 9-65	55/12W- 1A 1 5 3- 4-65	55/12W- 1G 2 S 7-15-65	55/12W- 16 3 5 7-14-65

TABLE E-1
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	nordness	C0 4 4 3		77		42		315		39	00	4		27		381			
uents in	T D S TO S Pardness	Computed			707		406		1825	195	000	2	179	268		675	649		
constituents per million	Sr.11-			1 1		1		-		12	ļ			ŀ		34			
Mineral parts p	Boron	8		-		-		l l		1	4					0.08			
	Fluo-	LL.		1		1		1		1				-		1.0			
	- N	NO3		0.0		0.00	T	0.0		1	-	0.02	rel	0		0			
per million ctance value	1 0 1 0 2	ر 1	00500	16	77	106	2 4	745	69	14	-	0.31	10	42 1.18 23		0 3	1.000		
9	Sulfate	504	RIVER HYDRO UNIT U0500	0		0		0 t x	n m	13	C	0.25	20	0		188	36		
parts per equivalents percent r	Bicar -	нсоз	HYDK	205	φ φ	268	5.9	576	53	163		2.64	82	238		315	2.10		
Pod	Carbon -	CO3	L RIVE	0		O		0		0	()		0		0			
.c	Potos -	×	SAN GABRIEL	0.03	-1	2 0.02	-	7 2	o →	0.03		0.03	1	0.05		2,	0.13		
constituents	Sodium	0 2	A SAN	3.42	86	133	78	594	0 P Q C	2.78	Ţ	2.91	80	97 4•22 88		99	2.96		
Mineral co	Magne-	p M	L UOSF1	0.08	2	0.33	7	31	, so	0.33	4)		0.08	U05F2	38	5.13		
2	Cafcium	000	UOSFU	ν. 24.0	11	25	17	75	2014	0.45		0.35	11	0.45		0.6	4 • 4 9		
Specific conduct-	(micro-	at 25°C)		356		752		2289		333	:	31/		406	REA	1037			
	I a		SUBAREA	φ.		9.8		0 • 0		8 • 1				φ •	SUBAREA	7.5			
Temp.	sampled	-	BUN I I	1		l I		1		i i				1	HYDRO	1			
State well	Date sampled		ANAMEIM HYDRO SUBUNIT ANAMEIM HYDRO	55/12w-11J 2 S 10-21-64		55/12W-11J 3 5		55/12W-11P 1 S	10-14-64	55/12W-12C 1 5 3- 4-65		6-16-65		55/12W-12F 2 5 10-23-64	LA HABRA HYDRO	35/10W- 4D 1 S	4-30-65		

	hordness cs			261			\$ \$				
constituents in	2000 dow3			1090		~	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	ī			
constituent per million	5 00 5		1	Ď	1	1	n ~		1	1	
Mineral parts p	, a		1	O . O d	1	1	0 0 0 8		1	1	
	, p		1	7.0	1	1	. 0		1	1	
	2 0 2		2	1.18	105	1.5	5.0 48.0 2.0		1	37	
million e value	0 4 10	00400	115	306 8.63	10.0	106	4.5.7		26.25	3.33	
parts per million equivalents per million percent reactonce value	So Itote SO A	A SAN GABRIEL KIVER HYDRU URIT UUSSUO		1.72	1	-	6.02		ļ	ł	
parts per equivalents percent r	Bicor - bonote HCO3	HYUK	352	237	331	252	289		2679	441	
par	Corbon	L KIVE	0	3	٥	Э	3		7.90	၁	
i.	Potos .	GABRIE	1		l I	1	0.13		1	1	
constituents	E ? . P O Z	A SAN	-	4.17	ţ	1	118		1	1	
Mineral co	M G G G	L UUDE E 2		35 2.83 18	1	1	55.7	JOSE 3	1	1	
Σ	E 7 - 0 - 0 D	U05Fu	1	175	i i	j į	124 6•19 39		1	1	
Specific conduct-	1 0		1584	1680	1059	301	1529	SUBAREA	86798	1240	
	Hd	SUBAREA	1.5	1.2	7 . 4	1 • 1	7 - 2		и• г	1.1	
	sampled in ° F		2 2	Į.		1	7.	JA HY KO	36		
State well	Date sampled	ANAHEIM HYDRO SUBUNIT LA HABRA HYDRO	35/10W- 4D 2 S	35/10W- 7H 3 5 4-30-65	35/10W- 9H 1 5,	35/10W-10M 1 .	4./1.w-15:: 1 5 4~30-65	YORBA LINOA	357 9W- 2P 1 S 3-17-65	357 9W-19B 2 5	

TABLE E-1
ANALYSES OF GROUND WATER
LOS ANGELES DRAINAGE PROVINCE (U)

	Nordness 05								
tuents in	Evop 180°C hordness								
constituent per million	S 03		1	1	1	ŀ			
Mineral constituents parts per million	B 8		1	1 8	1	1			
) o c		1	1	1	8			
	Z 0 Z		0	0	0	ŀ			
million e value	0140	00500	1.000	1.69	2.00	264			
parts per million equivalents per million percent reactance value	Suffate	A SAN GABRIEL RIVER HYDRO UNIT U0500	1	!		į į			
parts per equivalents percent re	Brcor -	. В НУОБ	432	433	377	326			
pod	Corbon -	EL RIVE	0	0	0.07	0			
ï	Potos.	GABRIE	1	1 8	1	1			
Mineral constituents	Sodium		1	l I		ŧ i			
ineral co	e coo M	L UU5F3	1	1		-			
2	Colcium	UOSFU	i i	1		1		_	
Specific conduct-	mhos at 25°C)	SUBAREA	1037	1048	924	1303			
	I a	DRO S	7.6	7.7	8.0	7.3			
Temp	sampled	HYDRO SUBUNIT YORBA LINDA HYDRO	İ	1					
	10	30 St	1 S	2 S	S S	2 S			
State well	Date sampled	ANAHEIM HYDRO SUBUNIT YORBA LINDA HY	35/ 9W-21D 4-14-65	35/ 9W-21D 4-14-65	3S/ 9W-21M 4-14-65	35/ 9W-28L 4-14-65			
		A	6	"	(4)	W			

	Total Nordness as		6
constituents in	Evap 180°C Evap 105°C Computed		2516
constituent per million	S.111-		
Mineral parts p	Boron		8 • 10
	Fluo-		1.6
	role No.		0
er million nts per million reoctance value	Chilo -	0060M	18 . 19 . 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
ports per million equivalents per million percent reoctance val	Sulfate 504		12.30 30
parts per equivalents percent r	Bicor- bonote HCO3		8 7 8 5 0 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
pod	Carbon -	UNIT	2 4 3 9
Ë	Potos.	A HYDRO	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
nstituent	Enipos O N	AMARGOSA HYDRO UNIT	950 96 96
Mineral constituents	Mogne.	A W09D2	0.82
2	E 0 0 0	0060M	1.00
Specific conduct-	. 0		3500
	I a	T	8.7
Temp.	sampled in ° F	SUBUN I HYDRO	105
State well	Date sampled	AMARGOSA HYDRO SUBUNIT AMARGOSA HYDRO SUBAREA	20N/ 7E-33L 1 S

TABLE E-1
ANALYSES OF GROUND WATER
LAHONTAN DRAINAGE PROVINCE (W)

	Tchai bardness os Coulds		84	125		111	66	107	114	91	
uents in	Evap 180°C hardness Evap 105°C os		230	300		252	260	270	236	204	
constituent per million	Sifi- co SiO ₂		1	1		1 8	i	1	1	1	
Mineral constituents parts per million	Boron		90.0	60.0		0.11	0.10	0.10	0.18	0.14	
	Fluo-		0.3	0 5		0.5	0 • 3	0.3	0.4	0.2	
	role NO3		0.03	0		4 0.06	0.03	3 0.05	3 0.05	4 0•06 1	
million	Chlo- ride	W2600	10	15 0 42		26 0.73	17 0.48	17 0.48	19 0.54	0.76	
r million ts per million reactance value	Sulfate SO4		37	133		1.39	1.44	1.42	1.46	1.42	
parts per equivalents percent r	Bicar - bonate HCO3		139 2.28 68	107		136	129 2.11 52	132 2•16 53	122 2.00 49	112	
0 0 0	Carbon - ate	UNIT	0	0		0	0	0	0	0	
Ë	Potas -	HYDRO	0.05	0.05		0.05	0.05	0.05	0.03	0.03	
constituents	Sodium	ANTELOPE HYDRO UNIT	1.74	2.39 48		2.17	1.96	1.87	1.78	2.13	
Mineral co	Magne. Sium Mg	A1 W26A1	7 0 . 58	9 0 0 74	V26A2	0.41	0.33	0.58	7 0.58	0.41	
Σ	Colcium	W26A0	1.10	1.75		36	33	1.55	34	28 1.40 35	
Specific conduct-	mhos at 25°C)		333	501	A	400	401	404	380	380	
	Ha	BARE,	7.5	7.8	SUBAREA	8 • 0	7.5	7.5	7.9	7 • 7	
Temp	when sampled in ° F	UBUN I	74	ł	YDRO	1	72	74	1	-	
State well	pel	ANTELOPE HYDRO SUBUNIT CHAFEE HYDRO SUBAREA	11N/12W-26J 2 S 6- 9-65	11N/12W-32E 1 S 6-23-65	GLOSTER HY	10N/12W-19D 1 S 6- 3-65	10N/12W-20C 1 S 6- 3-65	10N/12W-20C 4 S 6- 3-65	10N/12W-21P 1 S 6- 3-65	10N/13W-24C 2 S 6- 9-65	

TABLE E-I
ANALYSES OF GROUND WATER
LAHONTAN DRAINAGE PROVINCE (W)

	Total hardness		14	127	524	196	-	162	117	125
uents in	TOS Total		272	305	349	506		254	268	245
constituents per million	- 00 8		1	1	1	1		1	1	1
Mineral parts p			0.16	90.0	0.23	60.0		0 • 14	0.12	0.10
	j p		7.0	4.0	0.5	4.0		0.2	0.5	© •
	2 0 2		0.10	5 0.08	5 0.08	8 0•13		11 0.18	20 0.32 8	25 00.40
million	Ch lo	W2600	0.56	0.62	20 0.56	27 0 . 76 10		19 0.54	0.50	0.45
equivalents per million equivalents per million percent reactance value	Su Hate		1.69	2.06	1.17	252 5 5 252 6 7		28 0•58 13	27 0 . 50	0.35
parts per equivalents percent re	Bicor - bonate HCO3		124 2.03	137	289	104		203	2.62	173 2.84 70
equ	Carbon ore	UNIT	0	0	0	0		0	9	0
ui s	Pc105	HYDRO	0.05	0.05	0.05	0.08		0.05	0.05	0 • 0 5
constituents	Soduen	ANTELOPE HYDRO UNIT	2.91	5° 3° 4° 8° 8° 4° 8° 8° 8° 8° 8° 8° 8° 8° 8° 8° 8° 8° 8°	1.96	3.70		34	1.74	36
Mineral co	Mogne s.um Mg	W26A3	0.33	0.49	1.48	10	W26A4	0.99	0.74	0.449
Σ	m, 1,0.		1.15	41 2.05 41	60 2 . 99	3.09	-	2.25	32 1.60	2 4 6
Specific conduct-	mhos at 25°C)	5 SUBAR	430	684	260	760	EA	410	007	400
	Ha	HYDRO	8 0	7 - 7	8 . 2	6.5	SUBARE	6.5) • 8
Temp	sampled In ° F	UBUNI	16	1	-	7.9		78	1	1
State well	Date sampled	ANTELOPE HYDRO SUBUNIT WILLOW SPRINGS HYDRO SUBAREA	9N/13W- 5M 1 S 6- 4-65	9N/13W- 7R 4 S 6- 4-65	iON/13W-18P 1 S	10N/14W-36A 1 5 6- 4-65	NEENACH HYDRO	8N/15W- 1E 1 S 6- 4-65	8N/15W-10P 1 S 6- 2-65	8N /15W-24B 2 S

TABLE E-1
ANALYSES OF GROUND WATER
LAHONTAN DRAINAGE PROVINCE (W)

	Total	0.5 Co.CO3			149			192		202	_		45			62			144		73			110		
lion	T D S Total	Evop 105°C			280		268	332	315	326	250	351	238		204	284	26.2	767	254	255	206	101	101	208	194	
constituent per million		5.02			1			1		- 1			1						-		1			1		
Mineral constituents parts per million	Boron	8			0.38			0.38		0			0.14			0.27			0.30		0.08			0.02		
	Fluo.	9 - 4.			0.2	,		0.2		,	0		6.0			1.0			0.2		0.2			0.2		
	N	trote NO 3			15	0.24	S	11	0.18	c	0.31		16	0.26	7	11	0.18	\$	80	0.13	12	0.19	0	12	2	
million value	C h 10 -	ride C I	M		17	0.48	10	20	0.56		0.71	1 1 1	11	0.31	6	11	0.31	_	22	0.02	13	0.37	71	15	12	
r million ts per million reactance value	Sulfate	504	3		38	0.79	16	19	1.39	ן ני	1.56	25	30	0.62	18	23	0.48	11	38	0.79	19	0.40	CT	17	10	
len +		bonote HCO3			207	3.39	69	231	3.79		2.61	58	140	2.29	99	214	3.51	8/	189	3.10	135	2.21	2	157	73	
parts equiva percer	Carbon -	01e CO3	TINO		C	_		0		(>		0			0			0		0			0		
Ë	1	s x	HYDRO		-	0.03	1	2	0.05	4 (7 0		2	0.05	-	н	0.03		2	0.00	2	0.05	7	100	1000	
constituents	Sodium	0 2	ANTELOPE HYDRO UNIT		45	1.96	39	45	1.96	1	10 0	35	59	2.57	73	78	3.39	73	43	1.87	41	1.78	74	32	39	
Mineral co	Mogne	E M	AN	W26A4	15	1.23	25	32	2.63	}	122	27	7	0.25	7	4	0.33	_	13	1.07	8	0.25	20	90	14	
Σ	Colcium	°		WZ6A0	25	1.75	35	24	1.20	4.7	2 4 6	38	13	0.65	18	18	06.0	19	36	1.80	24	1.20	37	34	7+7	
Specific conduct-	1	ot 25°C)			077	2		520		(220		345			410			044		310			346		
	Ha			UBARE	C			8 0		(ာ စ		7.3			8 • 2			7.9		7.9			7.8		
Тетр	sampled	۳° ۵		DRO S				-			ŀ		ţ i			1			7.8		7.8			1		
		pelo		E HYDRO SUBUNIT	0 -			1 1 5	.0		1 1 8	0	0			S			1 5	.0	1 5			1 5		
State well		Date sampled		ANTELOPE HYDRO SUBUNIT	/16W- EC	6- 2-65		8N/16W- 5M 1	6- 2-65		8N/16W= 6M 1 S	19-7 -9	8N/16W-14L	6- 8-65		8N/16W-18H 1 S	6- 2-65		9N/14W-21D 1 S	9-4-9	/14W-30K	9- 4-9		9N/14W-32D 1 S	8-02	
				ANT	0	5		8 N			80		80			8 N			N6		N6			N6		

	Total hardness as Ca CO3		100	241		164	56	69	164	7
ents in	TOS Total Evap 180°C hordress Evap 105°C as		229	262		240	142	184	272	153
constituents per million	S.O.2 CO.		1	1	_	1	1	-		1
Mineral co	80000		0.25	0.11		9000	0.02	0.17	0.05	0 0 0 1
Σ	F.uo. 8		0•1	0.1		0 0	0.5	9.0	0.1	0
	rote NO3		0.0	12.0		0.02	3 0.05	0.0	11 0 • 18	2 0 • 0 3 1
value	7 10 C	W2600	10	0.25		0.14	0.17	0.76	34 0.96 20	0 5 0 7
ts per million reactance value	Sulfate SO 4	3	0.17	0.15		0.92	19	13 0.27 8	35	0 10 10 10 10 10 10 10 10 10 10 10 10 10
parts per equivalents percent re	Bicor - S bonole HCO3		161 2.64 85	280		188 3.08 74	11.92	136 2.23 68	179 2.93 61	2.33
P01	Corbon .	TINO	0	0		0	0	0	0	0
Ë	9 5 X	HYDRO	0.05	0.03		0.10	0.05	0.03	3 0.08	0.03
constituents	£ 0 Z	ANTELOPE HYDRO UNIT	25 1.09	0.22		17 0•74 18	14 0.61 24	2.00	30	22 0 96 33
Mineral cor	M og ne .	AN W26A4	9 0 24	24 1•97 39	W26A5	1.07	0.49	0.33	1.48	0.49
Σ	Colerem	W26A0 W	1.25	57 2.84 56		2.20	28 1.40 55	21 1.05 31	36	1.45
Specific conduct-	1 0		300	460	RO SUBAREA	381	250	330	450	284
	Hd	UBARE	7.6	8 • 2	Y HYD	7 • 7	7.6	7.8	8 . 1	Ο • •
	sampled in ° F	BUNIT DRO S	72	1	VALLEY HYDRO	į.	63	7.0	-	1
		NO SU	v)	S	STER	vs 1	1 S	s 2	1 S	S
State well	Date sampled	ANTELOPE HYDRO SUBUNIT NEENACH HYDRO SUBAREA	9N/17W-32K 1 10- 5-64	9N/18W-23B 1 10- 5-64	LANCASTER	6N/10W- 5H 1 6- 8-65	6N/11W- 3P 1 6- 8-65	6N/11W- 6G 2 2-14-65	6N/11W-21N 1 6- 4-65	6-26-65 6-26-65

TABLE E-I
ANALYSES OF GROUND WATER
LAHONTAN DRAINAGE PROVINCE (W)

	Total hardness as Coulos		134		121		98		234		107		42		152		98	Ī		
uents in	TOS Total Evop 180°C hardness Evop 105°C as Computed Colors		268	263	262	259	194	186	330	299	184	170	154	131	270	252	186	1	159	
constituent per million	Sili- ca SiO ₂		1				1		1		-		1		1		ł			
Mineral constituents parts per million	80,000		0.12		0.23		0.11		0.14		0.04		90.0		0.10		0.02			
	Fluo-		4.0		0.2		0.5		0.5		0.1		0.1		0.5		0.1			
	rote NO3		3		6	0.05	0		6	0.05	4	0.06	2	0.03	2	0.03	2	0	1	
million e value	Chlo -	W2600	11	2000	14	0.39	S	0.14	22	0.62	13	0.37	7	0.20	25	0.71	17	0.48	16	
millior per Bactanc	Sulfate SO 4		77	35	89	1.85	04	0.83	83	1.73	27	0.56	14	0.29	73	1.52	0 0	0.58	20	
pe	Bicar - bonate HCO3		161	15	127	2.08	142	2.33	184	3.02	123	2.02	118	1.93	126	2.07	11	1.82	63	
parts equiva percen	Carbon - ote	UNIT	0		-		0		0		m	0.10	0		0		0	,		
ï	Potos -	HYDRO	E 0	2 2	6	0.08	2	0.05	n	0.08	2	0.05	1	0.03	2	0.05		0.03		
constituents	Sodium	ANTELOPE HYDRO UNIT	1-83	0 7	45	1.96	36	1.57	18	0.78	21	0.91	20	0.87	32	1.39	20	0.87	30	
Mineral co	Magne- srum Mg	W26A5	10	18	10	0.82	2	0.16	23	1.89	9	0.49	4	0.33	_	0.58	J 72	0.41	14	
2	Colcium	W26A0 SUBAREA	37	4 0 4	32	1.60	31	1.55	56	2.79	33	1.65	25	1.25	64	2.45	31	1.55	24	
Specific conduct-	mhos at 25°C)	HYDRO SUB,	420		410		315		024		300		230		420		270			
	H	>	8.0		8 • 1		8 0		8 0		8 6		8 • 2		7.6		0 8			
Temp.	sampled in F	UBUNI	1		73		1		68				i i		71		1			
State well	led	ANTELOPE HYDRO SUBUNIT LANCASTER VALLEY	7N/ 9W-30F 1 S		7N/10W- 2H 1 S	6-10-65	7N/10W- 6R 1 S	6-10-65	7N/10W-29B 1 S	6-10-65	7N/11W- 4P 1 S	6- 4-65	7N/11W- 6D 1 S	9-4-9	7N/11W-11F 1 S	6- 4-65	7N/11W-20F 1 S	6- 4-65		

	Tubol hordness os Coulds		69	56		55		263		144		113		91		117		
constituents in	Evap 80°C Evap 105°C Computed		124	154	157	150	137	555	507	273	248	250	233	385	365	552	216	
constit	5 . 1.		l l	į. T		1		1		Į.		ł		1		1		
Mineral parts p	Boron		0.07	0.05		60.0		0.36		0.05		0.08		0.10		90.0		
	7 . de		0.5	0.5		0.5		0.5		0 • 3		0.5		9.0		5.0		
	trote NC3		90.0	2 2	0.03	20.03) H	26	2	040	15	22	0.35	26	0.42	52	0.40	
million e value	0110	W2600	5 0 0 14	7 7 7	0.31	9 2 2	7	116	36	15	10	20	0.56	63	1.78	10	0.45	
per	Sulfate SO4	3	10	23	17	14	12	75	117	24	0.50		0.56	75	1.56	22	0.40	
en	Bicor - bonote HCO3		125	127	2.08	122	80	227	41	168	49	159	2.61	139	2.28	154	2.52	
equiva	Corbon - ote	UNIT	0	0		0		0		0		0		0		0		
n s	Sotos Full X	HYDRO	0.05		0.00	10.03	1	10.0			0.03		0.05	2	0.05	2	0.05	
constituents	Sodiu 3	ANTELOPE HYDRO UNIT	23	50 20	31	34	28	82	0 7	34	1.48 34	41	1.78	96	4.13	32	1.39	
Mineral co	M G G D e	AN W26A5	0.08	n m	67.0	10-08	e e	16	15	10	0.82	5	0.41	7	0.16	9	13	
Σ	Calcium		26	0 6	1.65	19	37	79	7.07	41	50.2	37	1.85	33	1.65	37	1.85	
Spacific conduct-	1 0	W26A0 RO SUBAREA	210	260		220		168		429		204		623		376		
	H	Y HYDI	8 • 2	0 • 8		0.8		7.6		7.7		8.0		7 • 8		7.6		
Temp	sampled in ° F	BUNIT	65	68		14		1		72		73		7.5		75		
State well	Date sampled	ANTELOPE HYDRO SUBUNIT LANCASTER VALLEY HYDRO	7N/11W-27G 1 S 6-10-65	7N/11W-33N 1 S	4-65	7N/12W-14J 1 S		7N/13W-11D 2 S	60-7-0	7N/13W-17N 1 S	6- 8-65	7N/13W-27E 1 S	6- 8-65	7N/13W-35E 1 S	6- 2-65	7N/14W- 10 1 S	6- 2-65	

TABLE E-I
ANALYSES OF GROUND WATER
LAHONTAN DRAINAGE PROVINCE (W)

	Tctas hardness as		110		32		109		179			746		454		385)		102		
uents in	TOS Total Evop 105°C as Computed CaCO3		222	195	291	286	220	239	318		320	156	158	786	700	658		599	181	152	
constituents per million	S. t. co		1		45		-		1			1		I		1			1		
Mineral parts p	80.00		0.10		0 • 30		0.11		0.16			0.54		0.26		0 0 10			0.02		
	7. d		0.5		1 • 3		0.5		0.5			0.5		0.5		0.5)		0.3		
	N C S		22	10	0.5	0.01	m	0.05	4	90.0	1	0		4	0.06	5	0.08	1	1	0.02	
million s value	Chlo-	W2600	18	15	4	0.11	9	0.25	17	0.48	6	20 (8	74	2.09	76	2.14	21	m	0.08	
parts per million equivalents per million percent reactance value	Sulfate SO 4		15	0.31	96	1.17	58	1.21	109	2.27	41	21	15	344	7.16	265	5.52	55	13	0.27	
parts per equivalents percent re	Bicar - bonote HCO3		141	99	174	2.85	169	2.77	169	2.77	20	134	77	146	2.39	140	2.29	23	155	2.54	
ped	Carbon - ate	TINO	0		0		0		0			0		0		C)		0		
.c	Potos -	HYDRG	2 4	0.00	2	0.05	m	0.08	6	0.08	_		10.0	4	0.10	0	0.00	٦	1	0.03	
constituents	Sodium	ANTELOPE HYDRO UNIT	30	37	42	3 4 3	77	1.91	41	1.78	33	444	1691	55	2.39	50	2.17	22	20	0.87	
Mineral co	Magne: s:um M.g	A W26A5	9 7.	21	1	0.08	7	0.58	13	1.07	20	2	9	54	4.44	34	2.80	28	9	0.49	
Σ	Colcium	1	29	41	11	0.55	32	1.60	50	2.50	94	15	26	93	49.4	98	4.89	64	31	1.55	
Specific conduct-	mhos at 25°C)	JBUNIT W26A0 VALLEY HYDRO SUBAREA	340		413		405		450			270		955		970			277		
	H	EY HY	7.9		7.5		8.1		8.0			7.9		8.0		0 8			7.7		
Temp	when sampled in °F	UBUNI	1 1		73		i		68			1		19		1			I		
		RO S STER	1 S		1 S		2 S		1 S			1 S		S		S			S		
State well	Date sampled	ANTELOPE HYDRO SUBUNIT	7N/14W-10F	60-7-0	8N/10W- 1C 1	10- 9-64	8N/10W-22H 2	6-10-65		6-10-65		8N/11W-21R	00-01-0	8N/11W-23H 2	6-10-65	8N/11W-33F 1	6- 4-65		8N/12W-34P 2 S	9-8-9	

Potos - Carbon - Bicar - Sulfate Chio - Ni - Fluor Boron - Sili- TOS - Total - sium ale bonole ride ride ride co Evap IOSP - parameter roughter roughter roughter roughter co Cog roughter coc Cog roughter coc Cog roughter ""><th>CO₃ HCO₃ SO₄ CI NO₃ F B S.O₂ Computed NRO UNIT #2600</th><th>3 0 151 65 67 15 0.4 0.06 370 15 4 4 2 23 32 44</th><th>0 185 38 37 12 0.5 0.50 310 3.03 0.79 1.04 0.19 4 284</th><th>1,</th><th>0 210 33 37 22 0.7 0.33 335 3.44 0.69 1.04 0.35 62 1</th><th>0 173 24 13 9 0.3 0.05 230 2.84 0.50 0.37 0.15 2.15</th><th>176 26 32 16 0.7 0.50 280 2.88 0.54 0.90 0.26 6 256 280</th><th>5.00 3.10 3.72 0.13 1.00 37 747 5.00 42 26 31 1.00</th><th>288 113 71 20 2.8 0.90 39 584 4.72 2.35 2.00 0.32 2.8 0.90 39 584 50 25 21 3</th></td<>	CO ₃ HCO ₃ SO ₄ CI NO ₃ F B S.O ₂ Computed NRO UNIT #2600	3 0 151 65 67 15 0.4 0.06 370 15 4 4 2 23 32 44	0 185 38 37 12 0.5 0.50 310 3.03 0.79 1.04 0.19 4 284	1,	0 210 33 37 22 0.7 0.33 335 3.44 0.69 1.04 0.35 62 1	0 173 24 13 9 0.3 0.05 230 2.84 0.50 0.37 0.15 2.15	176 26 32 16 0.7 0.50 280 2.88 0.54 0.90 0.26 6 256 280	5.00 3.10 3.72 0.13 1.00 37 747 5.00 42 26 31 1.00	288 113 71 20 2.8 0.90 39 584 4.72 2.35 2.00 0.32 2.8 0.90 39 584 50 25 21 3
- Carbon - Brear - Sulfate Chilo - Ni - Fruo: Boron Siii. ale bonate cide irate ride co	HC03 S04 C1 N03 F B S.02	0 151 65 67 15 0.4 2.47 1.35 1.89 0.24	185 38 37 12 0.5 0.50 3.03 0.79 1.04 0.19 60 16 21 4	142 51 46 10 0.7 0.50 2.33 1.06 1.22 2.7 3	210 33 37 22 0.7 0.33 3.44 0.69 1.04 0.35 0.56	173 24 13 9 0.3 0.05 0.05 0.15 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	176 26 32 16 0.7 0. 2.88 0.54 0.90 0.26 6	305 149 132 8.0 1.9 1.00 5.00 3.10 3.72 0.13	288 113 71 20 2.8 0.90 4.72 2.35 2.00 0.32 50 25 21 3
- Carbon- Bicar- Sulfate Chlo- Ni- Fluo. Boron ale bonate ride ride ride CO ₃ HCO ₃ SO ₄ CI NO ₃ F B	HCO3 SO4 CI NO3 F B	0 151 65 67 15 0.4 2.47 1.35 1.89 0.24	185 38 37 12 0.5 3.03 0.79 1.04 0.19 60 16 21 4	142 51 46 10 0.7 2.33 1.06 1.30 0.16 48 22 27 3	210 33 37 22 3.44 0.69 1.04 0.35 62 13 19 6.35	173 24 13 9 0.3 2.84 0.50 0.37 0.15 74 13 10	176 26 32 16 0.7 0. 2.88 0.54 0.90 0.26 6	305 149 132 8.0 1.9 5.00 3.10 3.72 0.13 42 26 31	288 113 71 20 2.8 4.72 2.35 2.00 0.32 50 25 21 3
- Carbon - Bicor - Sulfate Chio - N ofe bonote co - ride irate CO ₃ HCO ₃ SO ₄ CI NO ₃	HCO3 SO4 C1 NO3	0 151 65 67 15 2.47 1.35 1.89 0.24	185 38 37 12 3.03 0.79 1.04 0.19 60 16 21 4	142 51 46 10 2.33 1.06 1.30 0.16 48 22 27 3	210 33 37 22 3.44 0.69 1.04 0.35 62 13 19 0.6	2.84 0.50 0.37 0.15 74 13 9	176 26 32 16 2.88 0.54 0.90 0.26 63 12 20 6	305 149 132 8.0 5.00 3.10 3.72 0.13 42 26 3.1	288 113 71 20 2 4.72 2.35 2.00 0.32 50 25 21 3
Corbon - Broor - Sulfate Chlo- ote bonate cog ride	HC03 504 C1	0 151 65 67 15 2.47 1.35 1.89 0.2	185 38 37 12 3.03 0.79 1.04 0.1 60 16 21	2.33 1.06 1.30 0.10 48 22 27	210 33 37 3.44 0.69 1.04 62 13 19	2.84 0.50 0.37 0.1 74 13 10	176 26 32 2.88 0.54 0.90 63 12 20	305 149 132 5.00 3.10 3.72 0 42 26 31	288 113 71 4.72 2.35 2.00 50 25 21
Corbon Bicor Suitate ate bonate So4	1003 SO4	0 151 65 6 2.47 1.35 1.8	185 38 3.03 0.79 1 60 16	142 51 2.33 1.06 1.48 22	210 3.44 6.2 13	2.84 0.50 0.3 74 13	176 26 2.88 0.54 63 12	305 149 5.00 3.10 42 26	288 113 4.72 2.35 50 25
corbon Bicor of CO3 HCO3	1003 SO4	0 151 6	185 3.03 60	2.33	210 3.44 0.6 62	173 2.84 74	176 2.88 63	305	288 4.72 50 2
corbon Bicor of CO3 HCO3	-	0		~	m	7	7	ν.	4
- Carbon	YDRO UNIT		0	0	0	0			
1	YDRO	m m					0	0	0
	I	3 0.08	0.05	0.05	0.05	0.05	0.05	0.13	0.05
Sodium	NO	2.35	2.09	2.74	2.30	1.74	2.09	230 10.00 82	190 8.26 86
e coom	100	0.58	0.58	0.33	9 0.74	0.33	0.49	9 0 0 1 4	0.58
E 0 0 0 0		58 2 • 89 49	48 2.40	33 1.65	2.45	35	2.000	26 1-30 11	0.10
mhos at 25°C)	at 25°C)	009	495	164	545	372	455	1180	918
	T HYD	7.6	7.5	7.6	8 0	8 0	7 - 7	7.6	7.9
sampled in F	UBUNI	77	65	76	7.1	77	73	72	72
	DRO SI	3-65	13W-20K 1 S 6- 3-65	/13W-22K 2 S 6- 4-65	/13W-32N 2 S	/14W-11G 1 S 6- 8-65	6- 8-65	/ 8W- 6H 1 S 10-13-64	9N/ 8W- 6H 2 S
		→ HA	LOPE HYDRO SUBUNIT LANCASTER VALLEY HYDRO 13W-78 1 S 77 7.6 6-3-65	ate sampled in•F all all all all all all all all all al	ANTELOPE HYDRO SUBUNIT ANTELOPE HYDRO SUBUNIT ANTALOPE HYDRO SUBUNIT ANTIBW—78 1 S 77 7.6 6-3-65 8N/13W—20K 1 S 65 7.5 8N/13W—22K 2 S 76 7.6	ate sampled in F all all all all all all all all all a	13W-20K 1 S 65 7.5 6- 4-65 6- 8-65 6-	13W - 78 1 S 77 7.6 6 7.5 6 7.5 6 7.5 6 8 6 8 6 5 8 6 8 6 8 6 8 6 8 6 8 6 8	NTELOPE HYDRO SUBUNIT NTELOPE HYDRO SUBUNIT LANCASTER VALLEY HYDRO 8N/13W-78 1 S 77 7.6 6-3-65 8N/13W-20K 1 S 65 7.5 8N/13W-22K 2 S 76 7.6 6-4-65 8N/13W-3ZN 2 S 77 8.0 6-8-65 8N/14W-11G 1 S 77 8.0 6-8-65 9N/14W-15G 1 S 77 7.7 9N/14W-15G 1 S 7.7

TABLE E-1
ANALYSES OF GROUND WATER
LAHONTAN DRAINAGE PROVINCE (W)

	Total hardness os Coulos		66		175		197		81		145		38		96		68		
uents in lion	T D S Total Evap 180°C hardness Evap 105°C os Computed Colors		742	742	412	395	964	471	252	251	445	426	275	267	273	264	232	228	
constituents per million	Si co		37		30		35		30		38		30		30		58		
Mineral o	Boron		1.10		0.30		0.30		0.20		0 * 40		0 * 0		0.30		0.10		
6	0 0 C C		1.7		0.5		9.0		0.5		1.2		9.0		0.5		7.0		
	trate NO3		9.5	0.10	1.1	20.0	1.1	70.0	1.3	0.02	1.7	0.03	4.0	10.0	0.4	0.01	9.0	0.01	
million	Chlo -	W2600	124	30	56	1.58	55 1	2.19	12	0.34	96	1.58	12	0.34 B	13	0.37	9	0.17	
r million ts per million reoctance val	Sulfate SU4		151	3014	117	2.44	114	2.31	58	1.21	117	2.44	59	1.23	59	1.23	50	1.04	
pe	Bicar - bonote HCO3		280	39	133	2.18	140	2.29	139	2.28	151	2.47	151	2.4/	149	2.44	139	2.28	
parts equiva percen	Carbon -	UNIT	13	0.40	0		0		0		0		0		0		0		
.c	Potas .	нурко	2	0		0.03	2	0.05	2	0.05	2	0.08	-	0.03	-	0.03	2	0.05	
constituents	Sodium	ANTELOPE HYDRO UNIT	230	83	62	2.70	80	3.48	48	2.09	83	3.61	75	3.26	99	2.87	949	2.00	
Mineral co	Mogne- s-cm Mg	AP W26A5	- 0	0.08	12	0.99	14	1.15	2	0.16	11	0.90	2	0.16	2	0.16	2	0.16	
Σ	Colcrum	0	28	1040	50	2.50	96	2.79	59	1.45	04	2.00	12	0.60	19	0.95	24	1.20	
Specific conduct-	mhos at 25°C)	W26A HYDRO SUBAREA	1170		649		793		379		699		414		004		341		
	H	>	8 . 5		7.4		7.4		7.5		7.5		7.4		7.5		7.5		
Тетр	sampled In °F	JBUN 17	72		89		68		69		69		19		19		69		
State well	Pel	ANTELOPE HYDRO SUBUNIT LANCASTER VALLEY	9N/ 8W- 6J 1 S	10-13-64	9N/ 9W- 6A 1 S	10-12-64	9N/ 9W- 6L 1 S	10- 9-64	9N/ 9W-18C 1 S	10- 9-64	9N/10W-16C 2 S	10- 9-64	9N/10W-24C 1 S	10- 9-64	9N/10W-24E 1 S	10- 9-64	9N/10W-24F 1 S	10- 9-64	

	Total	0.5			75		,	t		773		100			107			138			19		144			
constituents in	T 0 S	Evap 105°C Computed			235	233	7 0	162	237	1552	1392	212	1	201	245		230	280	0	002	200	180	260		268	
constituent		5:02			30		0	26		1	-	1			1			1			1				_	
Mineral parts p	Boron	8			0.20		0	0 4 0		0.84		0.16			0.12			0.14	Ī		0.10		0.17			
_	0 7	0			4.0		3			4.0		7.0			0.4	П		5°0			7.0		0.2			
	ż	N C 3			4.0	0.01	-	0.02	1	9	0.10	S	0.08	2	9	0.10	2	30	0.13		7	0.11	æ	0.13	8	
million a value	C h l o -	0 0	W2600		1	0.20	1 4	0.17		255	31	17	940	13	20	0.56	14	55	1.47	7	19	0.04	23	0.65	13	
s per million reactance val	Sulfate	504			52	1.08	, v	1.04	30	480	4.9	34	0.71	20	51	1.06	56	39	0.81	4	26	0.04	52	1.08	22	
equivalents percent r		HCO3			137	2.25	140	2.29	69	374	6.13	142	2.33	65	144	2.36	28	142	2.33	7	124	63	183	3.00	62	
equ	Carbon -	CO 3	TINO		0		C)		0		0			0			0			0		0			
. <u>c</u>	Polos -	 	HYDRC		2	0.05		0.05	1	- 1	0.20	2	0.05	1	2	0.05	4		0.00	(2	•	2	0.05	-	
constituents	Sodium	0 2	ANTELOPE HYDRO UNIT		949	2.00	20	2.52	72	175	33	39	1.70	45	42	1.83	0	55	1.97	4	38	200	42	1.83	39	
Mineral co	1	8 ° 5 €	A	W26A5	6	0.25	-	0.08	2	41	2021	0	0.74	20	7	0.58	7	11	06.0		U	18	10	0.82	17	
2	Colcium	000		WZ6A0 SUBAREA	25	1.25	17	0.85	24	242	14.00	25	1.25	33	3	1.55	60	60	- a - a - a - a - a		20	30	41	2.05	43	
conduct-	1	at 25°C)		HYDRO SUB	352		351			1950		345			404			787			327		420			
	I			>-	7.8		7.7			8.0		7.9			7.7			7.8		,			7.9			
Тетр	sampled	In F		VALL	68		74			1		75			75			16		0.1	20		78			
				RO S STER	1 5		3			1 8		1 5			1 5			1 5			s I		1 S			
State well		Date sampled		ANTELOPE HYDRO SUBUNIT LANCASTER VALLEY	9N/10W-24G 1	10- 9-64	9N/10W-34P			9N/12W-16K	00-11-0		6- 3-65			9-8-9		9N/13W-29E 1	00000	0	1 M25-W21/NV		9N/14W-23B 1	9-4-9		

TABLE E-I
ANALYSES OF GROUND WATER
LAHONTAN DRAINAGE PROVINCE (W)

	Total hardness as CaCO3		104		17	83	8 4	342	127	112
uents in	2000 Geven 2000 C Post of Computed Comp		226		336	693	817	2100	1096	558
constituent	\$001.		ł		24	29	38	38		1
Mineral constituents parts per million	Boron		0.25		0.30	0 • 70	0.80	09.0	4.20	866
	. o o . r		0.4		1.2	1.0	2.9	1.8	1.0	8
	ni - frote NO ₃		8 0•13		0 • 3	0.2	0.0	22.0 0.35	4 0 0 0 0 0 0 0 0	0.03
million e value	Chlo -	W2600	30	-	18 0.51	162	226 6.37 48	960	293	145
million per soctono	Sulfate SO 4		34 0.71 18		1.27	2.23	1.96	141 2.94	274 5.70 31	2.48
leni	Bicor - bonote HCO3		142 2•33 58		208	269	298	234 3.84	268	163
ports equiva percer	Carbon -	UNIT	0		0	0	0	0	0	0
Ë	Potos -	HYDRO	0.05		0.03	0.05	0.05	0.10	0.20	0.23
constituents	m nipos.	ANTELOPE HYDRO UNIT	2.09 50		112	220 9.57 85	275 11.96 92	610 26.52 79	365 15.87 85	162 7.04 74
Mineral co	Magne- srum M g	WZ6A5	10 0.82	W26A6	0.08	5 0 • 4 1	0.25	2.30	0.49	9 47 0 8 8
2	Colciu	WZ6A0 SUBAREA	1.25		0.20	25 1•25 11	14 0 0 0 70	91	41 2.05 11	30 1.50 16
Specific conduct-	(micro- mhos at 25°C)	HYDRO SUB,	360	HYDRO SUBAREA	518	1150	1370	3580	1800	006
	ī	>-	8 0	ORO S	7.4	8 0	7.5	7.6	8 • 1	0 • 8
Temp	sampled in ° F	JBUNIT	78		69	69	19	99	1	1
State well	Date sampled	ANTELOPE HYDRO SUBUNIT LANCASTER VALLE	9N/14W-250 1 S 6- 4-65	NORTH MUROC	10N/ 9W- 4D 2 S 10- 9-64	10N/ .9W- 5B 1 S 10- 9-64	10N/ 9W- 7A 1 S 10- 9-64	10N/ 9W- 7A 2 S	11N/ 7W-32G 4 S 6- 9-65	11N/ 8W-10R 1 S

~								_							_			_			_	_	
	Total Nardness os CaCOs		180		149		403			270			194		588		21			241			
constituents in	Evap 180°C I Evap 105°C Computed		430	404	936	822	1214		1084		1154		,	813		805	420		396	760	,	370	
constituent per million	Siti- ca SiO ₂		1		74		1			99		_	1		61		-			1	_		
Mineral parts p	Boron		1.23		10.80		1.69			0			0.01		0		0.32			0.24			
	Fluor		7.0		-		0.2			-					-		6.0			0.3			
	rote NO 3		5	0.08	14	0.23	7	0.11	1	2.0	0.03		3.0	0000	5.5	0.09	2	0.03		5	0.08	1	
million e value	Chlo-	W2600	63	1.78	180	5.08	429	12.10	49	432	12.18		231	64	205	5.78	58	1.64	25		7 • 84		
per	Sulfate SO4		101	2.10	171	3.56	166	3.46	18	132	2.75		217	34	156	3.25	78	1.62	54	69	1.44	77	
parts per equivalents percent r	Bicar - bonote HCO3		189	3.10	169	2.77	189	3.10	17	148	2.43		143	17	131	2.15	207	3.39	51	163	2.67	77	
equ	Carbon- ote CO3	UNIT	0		13	0.43	0			0			0		12	0.40	0			0			
. <u>c</u>	P0108	HYDRO	5	0.13	10	0.26	0	0.23	m	10	0.26		-		1		1	0.03		7	0.18	7	
constituents	Sodium	ANTELOPE HYDRO UNIT	74	3.22	215	9.35	240	10.44	96	270	11.74		220	17	130	5.65	147	6.39	76	168	7.30	60	
Mineral co	Mogne.	W26A6	17	1.40	13	1.07	36	2.96	16	17	1.40		67	9	23	1.89	2	0.16	2	16	1.32	11	
×	Calcium	W26A0	77	2.20	38	1.90	102	5.09	27	80	3.99		63	23	82	4.09	2	0.25	4	70	3.49	87	
Specific conduct-	mhos at 25°C)	SUBAREA	630		1282		1700			1818			1459		1220		684			1300			
-	I	80	7.6		8 . 6		8.2			8.2			8.2		8.4		8 • 1			7.7			
Temp.	sampled in ° F	JBUNI OC HYL	-		-		1			1			1		ŀ		!			l l			
-		RO SI	2 S		1 S		1 S			1 S		_	1 S		1 5		1 S			1 5			
State well	Date sampled	ANTELOPE HYDRO SUBUNIT NORTH MUROC HYDRO		59-6 -9	11N/ 8W-22L 1	5-12-65	11N/ 8W-30F 1	9-6-9		11N/ 8W-32H 1	4-30-65		11N/ 8W-35N 1	00000	11N/ 9W-240 1	4-30-65	11N/ 9W-28K 1	9-6-9		11N/ 9W-31C 1	59-6 -9		
	0	ANTE	11N		110		IIN			111			11N		11N		1 1N,			111			

TABLE E-1
ANALYSES OF GROUND WATER
LAHONTAN DRAINAGE PROVINCE (W)

	Total hordness as CaCO3			31	52	39	339	341	127	120	
uents m lion	Evap 180°C no Evap 105°C Computed			539	350	531	1123	1085	200	195	
constituents per million	St. co S 0 2			28	1	-	58	1	l	1	
Mineral o	Boron			0.70	0.26	0 • 0	5 • 30	0.56	0°04	4,0°0	
	F. U O			1.3	1 • 4	2.0	}	9.0	0.3	0 • 3	
	trote No3			0.5	2 0.03	0.10	5.3	0.02	0.02	0.02	
nillion value	ride C r	W2600		2.59	25 0•71 13	100 2.82 31	312	306	0.17	0.17	
r million ts per million reactance valu	Sulfate SO4	3		86 1.79 20	70	76 1.58 17	3.96	3.93	32 0.67	31 0.65 20	
parts per equivalents percent r	Bicor - bonote HCO3			266	203	278	3.28	310	151 2.47 74	2.39	
par	Carbon - ate CO3	UNIT		0	0	0	0	0	0	0	
ŗ	Potas -	HYDRO		0.03	0.05	0.05	1	0.13	3 0 • 0 8	0.05	
constituents	Sodium	ANTELOPE HYDRO UNIT		184 8.00	105	195 8.48 91	220 9.57 59	253 11.000 61	17 0 • 74	19 0.83 25	
Mineral co	Mogne. stum Mg	AN	W26A6	0.16	6 4 9 9	0.33	2.14	2.22	M26A7 0 • 74	9 0 0 7 4 2 3	
Σ	Colcium		W26A0 W	0.450	11 0.55	0.40	93 4.64 28	4.59	36	1.65	
Specific conduct-	1 0		SUBAREA	893	554	911	1667	1779	311	311	
	I a			7.4	7.8	7.9	8 • 1	7.5	SUBAREA 7.4	7.5	
Temp	sampled In F		BUNIT C HYDRO	0.2	1	1	1	1	0 9	89	
State well	led		ANTELOPE HYDRO SUBUNIT NORTH MUROC HYD	11N/ 9W-32Q 1 S 10- 9-64	11N/ 9W-33F 1 S 6- 9-65	11N/ 9W-34K 1 S 6- 9-65	11N/ 9W-36C 1 S 4-30-65	11N/10W-36H 1 S 6- 9-65	BUTTES HYDR 5N/11W- 9A 1 S 6- 8-65	5N/11W- 9A 2 S 6- 8-65	

	Tcfall hardness os CoCC3		92		171		169		31		119		347			288		
constituents in	T D S Total Evap 185°C hardness Evap 105°C os Computed Cocc3		252	215	254	240	248	225	184	150	274	280	980	931		362	364	
constituent	S. 1- co SiO ₂		1		1		8		1		-		1			1		
Mineral parts p	Boron		0.10		0.18	-	0.08		0.08		0.07		0.35			0.16		
2	7 00 m		7.0		4.0		0.1		0.1		0.2		0.2			7.0		
	No Profe NO.3		-	0.02	0		2	0.03	2	0.03	т	0.05	142	2.29		6	0.15	
million	Chlo =	W2600	7	0.20	30	0.23	7	0.20	18	0.51	13	0.37	237	97		11	0 • 0	
ts per million reactance value	Sulfate SO4		48	1.00	0,4	1.02	20	1.04	24	0.50	100	2.08	207	4.31		984	1.75	
equivalents percent r	Bicor - bonole HCO3		160	2.62	195	3.20	185	3.03	66	1.62	138	2.26	84	1.38		283	4.64	
edi	Corbon ofe	UNIT	0		0		0		0		0		0			0		
Ë	Potos -	HYDRO	8	0.08	6	0.08	n	0.08	7	0.03	6	0.08	0	0.23		S	0.13	
constituents	Sodium	ANTELOPE HYDRO UNIT	77	1.91	24	1.04	16	0.70	45	1.96	90	2.17	170	7.39		19	0.83	
Mineral cor	Mogne.	WZ6A7	9	0.49	13	1.07	18	1.48	7	0.16	_	0.58	23	1.89	W26AB	30	2.47	
Σ	Calcium	W26A0	27	1.35	147	2.35	38	1.90	6	0.45	36	1,80	101	5.04		99	3.29	
conduct-	1 0		350		400		390		260		450		1400		SUBAREA	570		
	Н	SUBAREA	8.1		8.2		8.2		8.2		7.7		7.7			7.9		
Temp	sampled in ° F	BUNIT RO SU	73		67		1		1		ł		1		K HYDE	62		
	, s	O SL	S		S		S		S		S		S		REE	S		
State well	Date sampled	ANTELOPE HYDRO SUBUNIT BUTTES HYDRO SU	6N/ 9W-100 1	6- 3-65	6N/10W-24H 1	6- 2-65	6N/10W-27F 1		6N/10W-30H 2	5- 4-65	7N/ 9W-34L 2	6-10-65	8N/ 9W-360 1	6-10-65	ROCK CREEK HYDRO	4N/ 9W- 68 1	6-11-65	

TABLE E-1
ANALYSES OF GROUND WATER
LAHONTAN DRAINAGE PROVINCE (W)

	Total hardness as CaCO ₃		180		53		117		100			141		260	2		370			411			
uents in	T D S T Evap 180°C No Evap 105°C Computed		326	328	216	219	260	237	240		233	256	243	424	2	430	920		908	622	564		
constituents per million	S:02		1		-		1					-		1			1			1			
Mineral parts p	Boron		0.05		0.13		0.05		0.09			0.10		80.0			0.26			0.12			
•	, o o i r		0.2		0.8		0.3		0.4			0.2		0.0	7		9.0			0.1			
	role NO3		2	0.03	4	0.06	2	0.03	2	0.03	1	4	0.06	4	0.10	1	m	0.05		33	0.53	1	
million e value	Chlo-	W2600	9	0.17	6	0.25	9	0.17	18	0.51	13	23	0.65	26	0.73	0	80	2.26	15	64	1.38		
millior per soctono	Sulfore SO 4		162	3.37	77	0.92	99	1.17	62	1.29	32	53	1.10	106	2021	28	454	8.83	09	163	3.39	3	
parts per equivalents percent r	Bicor - bonate HCO3		111	1.82	157	2.57	178	2.92	136	2.23	55	163	2.67	280	4074	61	219	3.59	24	300	4.92	2	
por	Carbon -	TINO	0		0		0		0			0		C	,		0			0			
i	o = x	HYDRO	9	0.15	2	0.05	7	0.10	2	0.05		2	0.05	2	0.05	1	5	0.13	-	4	0.10	1	
constituents	Sodium	ANTELOPE HYDRO UNIT	36	1.57	62	2.70	42	1.83	94	2.00	20	35	1.52	80	2.52	32	160	96.9	48	07	10/4		
Mineral co	Magne- stum Mg	AL WZ6A8	17	1.40	2	0.16	12	0.99	9	64.0	12	16	1.32	22	1.81	23	36	2.96	20	58	1104		
2	Calcium	W26A0	77	2.20	18	0.90	27	1.35	30	1.50	37	30	1.50	89	3.39	777	68	4044	31	69	36		
Specific conduct-	mhos at 25°C)	SUBAREA	900		360		405		390			390		650			1300			880			
	H	0	7.4		8.1		7.7		8.1			8.1		7.9			8.1			8.0			
Тетр	when sampled in ° F	BUNIT HYDRO	1 1		1		69					02		1			-			1			
State well	peq	ANTELOPE HYDRO SUBUNIT ROCK CREEK HYDR	5N/ 8W-13R 1 S	6-11-65	5N/ 9W-21F 1 S	6- 2-65	5N/ 9W-25A 1 S	6- 8-65	5N/10W- 7R 1 S	6-11-65		5N/10W-16A 2 S	6- 2-65	5N/10W-268 9 S	6- 2-65		5N/10W-29R 1 S	6-11-65		5N/11W-12F 1 S	69-7 -9		

	Total hardness as CalCO ₃		80		125		107		145	1		79			131			
lion	TOS Total Evap 180°C Pardness Evap 105°C as Computed CaCO3		272	274	328	329	302	298	216	24.7	208	330		325	260		2 4 5	
constituent per million	S.111- C.0 S.0.2		1		-		1		1	П		1			1			
Mineral constituents parts per million	Boron		0.13		60.0		90.0		0.13			0.23			0.19			
2	Fluo-		0.8		0.5		0.5		0.0	1		1.6			7.0			
	trote NO3		3	1	2	0.0	m	0.05		0.05	1	2	0.03	7	2	0.03	-	
million s value	Ch 10 -	W2600	10	9	9 1	3	4	0.11	- [0.31	30	22	0.62	77	13	0.37	o ·	
puris per million equivalents per million percent reoctonce volue	Sulfate 504		98	94	164	2.41	135	2.81	04	0.83	22	125	2.60	00	69	1.35	8	
parts per equivalents percent re	Bicor - bonote HCO3		128	47	106	33	110	1.80	161	2.64	69	117	1.92	10	153	2.51	6	
par eq.	Carbon - ate	TINO	0		0		0		0			0			0			
. <u>c</u>	Potos -	HYDRO	20-05	1	40	2	4	0.10	6	0.08	2	2	0.05	4	6	80.0	N	
nstituents	E 0 2	ANTELOPE HYDRO UNIT	67	49	2.70	53	61	2.65	21	0.91	23	86	3.74	2	39	1.0/0	200	
Mineral constituents	M C C C C C C C C C C C C C C C C C C C	AZ 6A8	3	2	17	26	6	0.74	11	06.0	23	4	0.33)	80	0.66	15	
Σ	C 0 0	W26A0	1.35	30	22	21	28	1.40	07	2.00	51	25	1.25	7	39	1.45	\$	
Specific conduct-	. 0	SUBAREA	450		510		450		355			520			007			
	H a	0	8.2		8.1		8.1		8.1			8.1			8.0			
Тетр	sampled in ° F	UBUNIT K HYDRO	76		1		77		!			1			72			
		REE	S		S		S		S			S			S	П		
State well	Date sampled	ANTELOPE HYDRO SUBUNIT	6- 3-65		6N/ 8W-21J 1		6N/ 8W-35F 2	6- 3-65	6N/ 9W-23N 1	6- 3-65		6N/ 9W-28K 1	6- 3-65		6N/ 9W-28P 1	60-7-0		
S	Dat	ANTEL	/N9		6N/		/N9	~	/N9	9		/N9	•		6N/			

TABLE E-I
ANALYSES OF GROUND WATER
LAHONTAN DRAINAGE PROVINCE (W)

	Tcto! hardness as Couls		335	ω	280	159	
ents in	TDS hardness Evop 180°C hardness Evop 180°C as Computed Co.c.s		366	333	784	3448	
constituents per million	Silt-		l	}	1	1	
Mineral o	Boron		90 • 0	0.16	90.0	0.02	
	Fluor		7 • 0	1.3	1 • 3	9	
	Prote No3		0.8	0	0.0	0.00	
million e value	Chlo -	W2800	15	7 0.20	31 0.87	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
millior per eactanc	Sulfote SO4		1.29 1.29	140 2.91 58	414	187 3.89 71	
pe len	Bicor - bonate HCO3		342	107	132 2.16 19	1 239	
parts equiva percen	Corbon -	LIN	0	5 0 0 3	0	0	
<u> </u>	Potos -	YDRO U	0.10	0.03	0.05	0 • 1 3 2	
constituents	E 0 2	MOJAVE HYDRO UNIT	10 0.43	110	134 5.83	2.22 400	
Mineral co		W	2.30	0.16	22 1.81 16	1907	
ž	E 0 0	W28A0	88 4.39 61	0	3.79	2, 10 38	
Specific conduct-	1 0	3	642	531	1088	ري د د	
	T a	E	7.5	9 0	7 • 8	7 • 8	
Тепр	sampled in ° F	SUBUNIT	-	-	-	1	
State well	Date sampled	EL MIRAGE HYDRO SU	3N/ 7W- 9M 1 S	6N/ 7W-11R 1 S 4- 6-65	6N/ 7W-12G 1 S 12-14-64	6N/ 7W-19E 1 S	

	T to hordness 0.5 50 c. 3		60		23		7.5		116		20		170		112		364	
uents in	Evap 180°C hardness Evap 105°C as Computed Cours		99	43	22	31	86	16	234	197	123	65	244	212	204	178	946	8 3 6
constituents per million	5:11+ co S:02		ł		-		{		1		ž į		-		1		1	
Mineral ports p	Boron		0.01		0.05		0		0.07		0.01		0.16		0.07		0.75	
-	Fluo-		0 0		0.5		0.5		0.1		0	-	5.0		0 • 1		0.0	
	rate NO3		7.0	000000000000000000000000000000000000000	0 • 3		15	0.24	18	67.0	21	0.54	- 0	20.0	4	2 000	3.5	0
nillion	Chlo - ride Cl	W2800	m 0	000	4	19		# xx	36	31	14	0.39	-	0.00	25	0.11	280	200
ts per million reactance value	Sulfote SO 4		0		~ (70.07	9 0	0.12	0 7	25		0.10	10	0.21	32	0.61	202	4.31
equivalents percent	Bicar - bonote HCO3		64	006	27	77		1.25	71	1.10	39	0.64	230	3.11	10	1.7	112	1.84
6 d c	Carbon - ole CO 3	F 17	0		0		0		0		0		0		0		0	
Ë	Potas - K K	YDRO UI	7 0	3 8	-	0.03	. 2	0.00	2	20.0	0		2	0.05	2	0.02		0.13
constituents	Sodium	MOJAVE HYDRO UNIT	7 1	0.17	4 !	0.17	7	0.30	23	30	15	0.65	17	0.74	22	30	155	6 . 74
Mineral co	Mogne: Stum	WC .	20	48		0.25	7	33	S	0.41	9	30	11	0.90		0.58	26	2.14
2	Colcoum	W28B0	\$	0.25	7	0.20	17	685	38	1.90	10	30	50	2.50	33	1.65	103	5.14
Spacific conduct-	- 0		87		99		185		330		155		391		310		1452	
0, 0	Hd	SUNIT	7.1		6.8		6.9		7.2		6.3		7.6		7.8		7.4	
Temp	sampled In°F	30 SUE	ţ		1		Į,		-		1		1		1		1	
		UPPER MOJAVE HYDRO SUBUNIT	0K 1 S	65	2R 2 S	65	6E 1 S	65	6R 1 S	65		65	0) 1 8	65	12H 1 S	.65	1M 1 S	.65
State well	Date sampled	PER MOJ	2N/ 2W-30K 1	5- 4-65	2N/ 2W-32R 2	5- 4-65	2N/ 3W~26E	5- 4-65	2N/ 4W- 6R 1	1- 4-65		5- 3-65	2N/ 4W-10J 1	1-19-65	3N/ 4W-32H 1	1- 4-65	4N/ 3W- IM 1	3- 3-65

TABLE E-1
ANALYSES OF GROUND WATER
LAHONTAN DRAINAGE PROVINCE (W)

	Total hardness os CaCO3		124	52	126	99	143	203	15	19
uents in lion	T 0 S Evap 180°C Evap 105°C Computed		229	115	199	118	327	725	106	117
constituents per million	5.02		1	1	ŀ	1	1	1	1 1	1
Mineral c	8000		0.01	0.02	0.01	0.02	0.28	0.44	0.02	0
	7. de		0 • 3	7.0	0.4	1.0	0.7	1 • 3	0 • 3	0 • 0
	rote NO3		36.5 0.59 18	2.5	12.5	1.4	4.5	1.7	1.7 0.03	2.6
million s value	C 1 0 - C 1	W2800	0.31	0.11	00.50	5 0 14	1.52	244 6 • 88 62	0.23	0.17
parts per million equivalents per million percent reactonce value	Sulfore SO4		0.23	0.08	0.31	7 0.15	1.56	161 3•35 30	0.04	0.00
parts per equivalents percent r	Bicor - bonate HCO3		134 2.20	71 1.16 83	146 2.39	90 1.48 83	100	46 0 0 75	98 1•61 84	1.39
por	Corbon -	L	0	0	0	0	0	0	0	0.23
ŗ	P	rbro ur	0.05	0.03	0.05	0.03	0.05	0.10	0.03	0.03
constituents	8 7 P O N	MOJAVE HYDRO UNIT	0.74	0.39	14 0.61 19	12 0.52 28	2.00	162 7.04 63	35 1.52 82	1.52
Mineral co	M Q a a	Œ.	7 0.58	0.49	0.66	0.41	0.90 18	1.32	0	0.08
×	Calcium	W28B0	38	0.55	37 1.85 58	18	1.95	2.74	0.30	0.30
Specific conduct-	micro- mhos at 25°C)		325	143	304	183	507	1223	183	169
	I	SUBUNIT	7.2	7.6	7.4	7.6	7.9	7.6	7.9	4.0
Temp	when sampled in ° F		1	1	-	l l		1	1	1
State weil	p e d	UPPER MOJAVE HYDRO	4N/ 3W- 6D 2 S	4N/ 3W- 9N 2 S	4N/ 3W-20L 1 S	4N/ 3W-21E 1 S 4- 7-65	5N/ 3W-18F 1 S 4- 7-65	5N/ 3W-25F 1 S 4- 7-65	5N/ 4W- 8Q 1 S 4- 7-65	5N/ 4W= 9G 2 S 4- 7-65

	Toto! hardness os Co.CO3		19	37	53	32	28	101	17	119
uents in	TOS Total Evap 180°C hardness Evap 105°C as Computed Cocos		121	129	215	1111	110	275	4 4 4 1	1138
constituents per million	Sili: co Si02		1	1	l	ŀ	1	-	1	1
Mineral parts p	80.00		0	0.03	0.17	0.01	0.01	0.05	1.15	1.73
	Fluo-		0.5	0.5	6.0	0.2	0.5	0 • 4	17.6	15.4
	rote NO3		1.2	1.5	0	1.9	2.0	1.8	0.3	42 0.68
value	0 P I O I	W2800	5 0 • 14	0.17	1.27	5 0 0 14	5 0 0 14	10 0.28	31 0.87	146
equivalents per million percent reactance value	Sulfate SO4		7 0 0 15	0.12	32 0.67	0.02	0.02	128	205	366
equivalents percent	Bicor - bonate HCO3		1.56	100	1.03	100	95 1.56 81	1.11	66 1.08 16	264
9 6 0	corbon -	T INI	0.23	0	0.23	0.07	0.17	0	0.33	0
Ë	0 ± 0 ± 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 ×	TYDRO L	0.03	0.03	0.03	0.03	0.03	0.08	0.05	0.10
constituents	S odiu	MOJAVE HYDRO UNIT	37 1.61 80	1.26	2.17	30	3 0.13 18	50 2.17 51	158 6 87 95	344 14.96 86
Mineral co	A & & & & & & & & & & & & & & & & & & &	Σ	0.08	0.33	0.41	0.33	0.25	0.66	0.08	0.58
Σ	Coloium	W2880	0.30	0.40	13.	0.30	0.30	1.35	0.25	36
Spacific conduct-	1 0		196	191	323	197	197	7447	462	1761
	T a	SUBUNIT	Ø.	8 • 1	9 • 6	8 • 2	8 • 4	7.9	80	0
Temp.	sampled In ° F		1	1	1	1	-	T	1	1
		НУБ	S E	1 S	2	S	1 2	2 S	1 S	S
State well	Date sampled	UPPER MOJAVE HYDRO	5N/ 4W- 9J 1	5N/ 4W- 9P 1 S	5N/ 4W-11P 2 S 4-14-65	5N/ 4W-16M 1 S	5N/ 4W-20B 1 S	5N/ 5W-22E 2	6N/ 3W- 9D 1 S 4-14-65	6N/3W-9E 1 S 4-14-65
	٥	UPPE	SN	SN	SN	SN	SN	5N	N9	/N9

TABLE E-I
ANALYSES OF GROUND WATER
LAHONTAN DRAINAGE PROVINCE (W)

	hordness os Courts		283		260		26		131		240		392		255		73	
stituents in million	Evop 180°C hordness Evop 105°C as		613	260	541	503	285	273	253	257	410	398	779	733	0440	404	318	289
constituents per million	5. r. co		1		1		Į.		1		-		1		1		-	
Mineral c	8 erc 2		0.28		0.15		0.10		90.0		60.0		0.25		0.20		0.11	
	, p		6.0		6.0		9.0		0.5		9.0		0 • 8		0.7		6.0	
	7 0 7 E		1.06	12	0.3		1.8	0.03	0.1		4.0	10.0	1.4	70.0	0.3		10.00	
million s value	chlo= ride Cl	W2800	97	30	77	97	9 1	71.0	31	0.87	37	1.04	82	2.31	55	1.21	7	4
r million ts per million reactance value	Sulfate SO 4		155	36	157	39	107	2.23	37	0.77	72	1.50	192	31	19	1021	101	777
pe	Bicor - bonote HCO3		122	22	186	36	120	1.97	190	3.11	287	4.70	393	50	276	4.32	151	225
parts equiva percen	Carbon -	F 11 7	0		0		0		0		0		0		0		0	
.c	Potos -	YDRO UI	2 0 0 0 5		4 0	0 10		0.03	2	0.05	2 0	0.00	4 0	0.10	2 2	0.00	2000	
constituents	wn:poS	MOJAVE HYDRO UNIT	78	37	77	39	88	3 6 8 3	47	2.04	56	33	117	39	54	31	32.30	69
Mineral co	Mogne.sum M g	W V	1.56	17	14	6.1	2 ;	0.10	10	0.82	11	12	23	1.69	11	12	3	, v
2	C 0 10 10 0	W2880	82	45	81	47	7	8 8	36	1.80	78	54	119	949	84	95	24	25
Specific conduct-	mhos at 25°C)	2	933		845		644		794		989		1196		714		487	
	H	SUBUNIT	7.8		7.9		8 • 1		7 . 8		7.4		7.6		7.8		8 • 3	
Temp	sampled in °F	0	1						1						-		-	
		E HYDR	2		1 S		1 S		2 S		1 S				1 S		2 S	
State well	Date sampled	UPPER MOJAVE HYDR	6N/ 3W-28R 1 4-14-65		6N/ 4W- 6D 1		6N/ 5W- 8F 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6N/ 5W-29J 2	4- 6-65	7N/ 4W- 7C 1	40-7 -71	27	60-67-6	7N/ 4W-31N 1	00-11-1	7N/ 5W-22N 2 S	

	. 5	5		10 10
Ē	C hords	C0.03		
	E vop 105°C nordress Evop 105°C os	Computed		1 2 5 2 1 2 5 4 2 5
const	5111-	5:02		
Mineral constituents parts per million	c	0		ल • •
	Fino-	L		• 0
	Proje	NO3		90 * 0
million s value	Chio-	5	W2800	3 .03
parts per million equivalents per million percent reactonce volue	Sulfote	504		8 0 4 4 0 4 4
parts per equivalents percent re		нсоз		8 • 1 • 4 9 8 • 1 • 4 1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
be	Ų	003	TINO	0
Ë	Polos -	×	YDRO	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Mineral constituents	Sodium	0 2	MOJAVE HYDRO UNIT	9 ° 6 5 2 2 4 4 8 4 8 4 8 4 8 4 8 4 8 4 8 8 8 8
ineral co		2	Σ	2,28
Σ	Colcium	000	W2880	8 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Specific conduct-		of 25°C)		7971
	Ha		SUBUNIT	7 . 2
Тетр	when sampled in °F			1
State well	pe		UPPER MOJAVE HYDRO	8N/ 4W-31R 1 S-25-65

TABLE E-I
ANALYSES OF GROUND WATER
LAHONTAN DRAINAGE PROVINCE (W)

	Tetal Nordness as			404		435		252		368		564		586		172		202		
uents in	TOS Tetal	1	0	707	169	199	715	696	955	1363	1293	1096	1064	1140	1070	411	399	493	460	
constituents per million	S. 1.			1		1		1		ł		į.		Ì		-		1		
Mineral c	00.08		0	0 - 0		0.11		0.74		0.82		0.20		0.23		0.30		0.45		
2	, p			0 • 0		0.5		0 . 8		6.0		0 • 8		0 • 8		0 • 8		6.0		
	2 0 2		,	10.0	0	68	1.10	12.0	0.19	10.6	7	0.7	10.0	0.7	0	7	0.11	9.9	2 2	
nillion per million ctance value	0 40 -	W2800		2.82	54	108	3.05	221	39	323	43	48	2.31	90	15	48	1.35	58	21	
0 0	Sulfate			2.35	20	115	2.39	261	34	357	35	581	12.10	572	71	102	2,12	130	35	
parts per equivalents percent	Bicor	F 2		5-64	47	356	5.83	248	4.06	288	22	132	2.16	144	14	199	3.26	203	42	
par	Corbon	- P		0		0		0		0		0		0		0		0		
.c	Potas -	YDRO U		4 0	1	4	0.10	m 0	1000	m 0	0	m 0	0000	m 0	0	2 2	0.05	600	-	
constituents	E nipos		ò	3.65	31	84	3.65	242	10.02	321	69	123	32	120	31	62	3.43	86	48	
Mineral co	Magne	2		1.48	13	22	1.81	12	9	19	7 - 20	31	15	35	17	11	13	1,15	15	
Σ	mator of o			132	56	138	55	81	56	116	27	175	8 6 / 3	177	52	51	2.54	58	37	
Specific conduct-	mhos			1139		1180		1595		2132		1495		1511		680		787		
	H	SUBUNIT	,	† ° †		7.6		7.4		7.6		7.6		7.5		8 • 0		7.5		
Temp	when sampled in ° F					1		1		į į		-		1		1		1		
State well	led	MIDDLE MOJAVE HYDRO		12- 2-64 12- 2-64	7 7 7	1	5-56-65	8N/ 4W-20A 1 S	+0-7 -71	3 7 7 6 7 9	68-82-6	8N/ 4W-21C 1 S	17- 2-04	37-76-3	00-02-0	9N/ 2W- 1F 2 S	12- 2-64	5-25-65		

MOJAVE HYDRO UNIT No
0 2.25 0.60 0.54 0.56 0.54 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56
0 0 137 0 0 2 2.25 0 0 134 0 0 2 2.20
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.05
0
19 41
989

TABLE E-1
ANALYSES OF GROUND WATER
LAHONTAN DRAINAGE PROVINCE (W)

	hordness 35 Cours		107	62	19	391	389	130	129	330
ion	TDS hordness Evap 180°C hordness Constitution 25		321	414	421	819	767	257	270	726
constituents per million	S 02 C		1	i i	Į.	-	1		1	1
Mineral c parts pe	8		0.31	0.74	10.0	0.25	0.23	0.08	0.13	0.29
Σ	, p		1 • 2	1 • 7	1.6	0 • 7	1.00	9.0	9.0	9
	2 ° Z		0.5	6.2	6.5	6.3 0.10	5.4	2.0	1.5	10 0.16 1
million e value	Chlo	W2800	38 1.07 19	1.18	41 1.16 18	0.03	158	0.76	25	5.39
parts per million equivalents per million percent reactance value	Sulfote 504	3	1.50	122 2.54 38	120	240	203	0.77	0.73	3.04 3.04
parts per equivalents percent re	Bicar - S bonate HCO3		3.20	173	173 2.84	230	3.64	173 2.84 62	186 3.05 68	2.93
par	Carbon -	TINI	0	0	0	0	0	5 0 0 17	0	0
. <u>c</u>	7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	YDRO (3 0 • 0 8	3 0 0 0 8	0.08	0.10	0.10	0.05	0.05	0.08
constituents	E nipos	MOJAVE HYDRO UNIT	3.61	123	121 5.26 79	114	107	1.91	1.87	113
Mineral co	Mogne- s-um Mg	Σ	0.74	7 0 . 58	64.0	1.73	23	9 0 • 74	7 0.58	1,56
×	Colcium	W28C0	1.40	13	17 0.85	122 6 0 0 9	118 5.89	1.85	2.00	5.04
Specific conduct-	micro- mhos at 25°C)		587	769	692	1267	1228	441	439	1152
6, 0	Ha	SUBUNIT	7.9	7 • 8	7.9	7 • 4	7.6	8 • 2	7 • 8	7 • 7
Temp	when sampled In ° F	80		l l	-	-	ţ ţ	-	-	1
State well	led	MIDDLE MOJAVE HYD	9N/ 3W-24J 1 S 5-25-65	9N/ 3W-26H 1 S 12- 2-64	5-25-65	9N/ 3W-28A 1 S 12- 3-64	5-24-65	10N/ 2W-30Q 1 S 12- 3-64	5-24-65	10N/3W-150 3 S
S	DO	MIDD	N6	9N/		9N/	41	10N/	u v	10N/

	Tchoil hardness ois Colicy		211	211	87	88	310	426	
lion	Evap 180°C hordness Evap CE°C carcis		531	514	267	245	549	782	
constituents per million	5. 1.		1	1	1		1	1	
Mineral o	0 0		0.30	0.36	0.19	0.19	0.10	0.16	
~	3 5 1		0.7	0 • 7	0 8	0 8	9 • 0	0 • 7	
	N. S. S. S. S. S. S. S. S. S. S. S. S. S.		3.5	3.2	0 • 2	0	5.0	5.4	
nillion	1 0 P 1 0 - 1 C P	W2800	2.43	82 2.31 28	39	34 0 . 96 23	3.33	168	
parts per million equivalents per million percent reactance value	Suffate 504		3.10	143 2.98 36	29 00.60 16	0.94	142 2.96 34	196	
equivalents percent	Bicor - S bonote HCO3		176	164 2.69 33	127 2.08 54	134 2.20	145	2.33	
n be	Corbon -	TIN	0	0.17	0.07	0	0	0	
.i	Potos E J E	IYDRO U	0.05	0.05	0.02	0.05	0.05	0.08	
constituents	Sodium	MOJAVE HYDRO UNIT	4.13	3.96	2.09	2.17	2.35	2.91	
Mineral cor	M 00 00 M	M	1.07	13	9 0 0 7 4 19	8 0 . 66	1.56	2.22	
×	Colcium	W28C0	3.14	3.14	1.00	1.10	40.64	126 6.29	
Specific conduct-	1 0		840	831	387	399	854	1124	
	Hd	SUBUNIT	7.9	8 • 2	8 1	0 .	7 • 8	7.5	
Temp.	when sampled in ° F		1	1	-	1	1	1	
State well	led	MIDDLE MOJAVE HYDRO	10N/3W-27D 1 S 12- 2-64	5-24-65	10N/ 3W-35E 1 S 12- 3-64	5-24-65	10N/ 3W-36J 2 S	5-24-65	

TABLE E-1
ANALYSES OF GROUND WATER
LAHONTAN DRAINAGE PROVINCE (W)

Toto! hardness os ColCG3		123	24	79	216	
T 0 5 Evop 180°C Computed		897	385	1220	1221	
		-	8	-	1	
B 0.00		1.30	0.74	1.45	1.80	
r de		0.8	3.2	0.4	6.0	
irole NC3		3	0.8	0	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Ch lo	W2800	154	50 61 1.72 26	506 14.27 70	379 10.69	
Sulfore SO4		244	47 0.98	1.79	269	
Bicar - bonote HCO3		157	240	259	3.36	
Carbon - ote CO3	FINI	0	0	0	0	
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	YDRO (0.13	0.13	0.10	0.20	
Sodium	IOJAVE H	228	130 5.65	441	359 15•61 78	
Magne.	W28D2	0.41	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.33	10	
Calcium	W28D0	2.05	15 0.75	0.09	3.49	
(micro- mhos at 25°C)	₹.	1275	249	2239	2076	
H d	UBARE	7.9	0 .0	8 0	7.7	
sampled In ° F	JUNIT DRO SI	1	-	1	1	
Date sampled	ARPER HYDRO SUE HARPER HY	0N/ 4W- 6H 1 S 4- 7-65	1N/ 3W-15E 1 S	1N/ 4W~ 6M 1 S 4- 7-65	IN/ 4W-30N 2 S 4- 7-65	
	Sampled (micro-colcium Magne-Sodium Polos-Corbon-Bicor-Sulfate Chio Ni Fuo Boron In-	Sampled Micro Colcium Magne Sodium Polos Carbon Bicor Sulfote Chio Ni Fivo Boron Sching Sc	PH (micro- colcium Magne- Sodium polos- Carbon- Groot- Sulfole Chio N. Fuo Boron Science Chio N. Fuo Boron Science Chio N. Fuo Boron Science Chio N. Fuo Boron Science Chio N. Strate Color Chio N. Strate Chio N. Str	March Carlot Carlot March Carlot Carlot Carlot March Carlot C	Sampled PH (micro Cotcum Mogne Sodium Sodium Potos Garbon Bicor Sulfote Coto Ni Five Boron Sodium Silfor Sodium Silfor Sodium Silfor Sodium Silfor Sodium Silfor Sodium Silfor Sodium Silfor Sodium Silfor Sodium Silfor Sodium Silfor Sodium Silfor Sodium Silfor Sodium	Sample PH (micro Colcium Magne Sodium Polos Colon Colo

TABLE E-I
ANALYSES OF GROUND WATER
LAHONTAN DRAINAGE PROVINCE (W)

	-	Conduct				<u> </u>	e d	percent r	Bactano	million e value			parts p	per million	constituents in	
(micro- mhos at 25°C)	micro mhos		Calcium	M	E o Z	0 X X E X	Carbon -	1 0 m	Sulfate SO4	Ch 10 -	Prote NC ₃	, de	80.00	S	TOS Total	Total hardness os CaCC3
		3	WZBEO	MC	MOJAVE HYDRO UNIT	IYDRO U	TINI			W2800						
4	4	480	39	9 0 - 74	2.17	0.05	0	199 3.26 66	36 0.75	30	4.5 0.07	9.0	0.12	1	288	135
4	4	487	7.5 2.20 44	7 0.58 11	51 2.22 44	0.05	0	3.39	34 0 11	31 0.87	4.1	0.0	0.18	1	303	139
		8 7	2.25	0.49	51 2.22	0.05	0	3.39	37 0 - 15	30	3.6	9.0	0.13	1	299	137
4	4	485	2.00	10 0.82 16	51 2.22 44	0.05	0	3.28	36	30	3.6	9.0	0.14	i	269	141
9	9	899	3.04	0.90	2.78 41	0.08	0.17	3.26	1.87	1.44	12.0	0.7	0.49	1	396	197
10	0	013	93	1.32	112	0.10	12 0.40	313 5 13 46	139 2 89 26	83 2.34 21	19.6	0.7	0.68	ł	660	298
10	0	1031	4.49	1.73	107	0.10	0	325 5•33 50	135 2.81 26	2.34	9.5	0.7	0.68	1	642	311
-	-	111	4.39 38	1-40	131 5.70	0.08	0	355 5.82 50	145 3.02 26	2.79	6.3	0 . 0	0	1	695	290

TABLE E-1
ANALYSES OF GROUND WATER
LAHONTAN DRAINAGE PROVINCE (W)

	T, 10 hordness os Cours		86		16		212		173		286		382		419		637	
uents in Iion	T D S Evop 180°C Evop 105°C Computed		230	199	217	200	421	425	352	331	780	104	196	874	1720	1615	1980	1853
constituents per million	5 0 S		1		ł		1		ŀ		ŀ		1 8		1		1	
Mineral o	Beren		60.0		0.13		0.20		0.15		2.65		1.43		2.88		4.28	
2	r de		0.7		1.0		0.5		9.0		0 • 8		0 • 8		1.2		1.1	
	hrote NO3		2.5	1	2.1		11.0	2	6.2	0.10	5.5	0.09	4.9		9.5	0.15	13	
million per million ctance value	Ch 10	W2800	16	12	18	14	53	20	45	1.18	110	3.10	138	27	191	5.39	304	29
0	50 If 01e		26	15	26	15	92	26	70	1.46	250	5.45	318	949	610	12.10	713	200
parts per equivalents percent re	B.cor- bonote HCO3		163	72	159	71	238	52	188	3.08	195	3.20	229	26	476	30	386	21
por	Corbon -	111	0		0		0		0		0		0		0		0	
.c	P	YDRO UN	0.03	-	1	0	0		2	0.05	9	0.15	9 4		9	0.15	80 0	0.00
constituents	E D N	MOJAVE HYDRO UNIT	39	94	1-76	147	72	42	55	2.39	130	5.65	154	94	406	17.65	392	57
Mineral co	M og o e .	W.	8 0 0	18	~ a	16	11	12	10	0.82	7	1.48	23	• -	2	1.73	42	12
Σ	C010100	W28E0	26		27	0	67	0.04	53	2.64	00	4.24	115	400	133	6.64	186	31
Specific conduct-	mhos at 25°C)		358		357		645		574		1144		1386		2421		2756	
	I	SUBUNIT	7 • 8		7.3		7.9		7.6		7.6		7.9		7.6		7.3	
Temp	sampled In F		1		1		1		1		1				!		-	
State well	Date sampled	LOWER MOJAVE HYDRO	9N/ 2E- 8N 2 S	4	37-16-3	69-17-6	9N/ 2E-18E 1 S	12-31-04		5-21-65	9N/ 2E-25K 1 S	3- 2-65	9N/ 2E-25M 1 S	0-06-5	9N/ 2E-25M 2 S	3-30-65	9N/ 2E-250 1 S	00-05-0

## Minds Min	State well	Temp		Specific conduct-	Σ	Mineral co	constituents	C .	9 6 0	equivalents	per	million e value			Mineral	constituents per million	lion	
E HYDRO SUBUNIT State Sta	Date sampled	sample,		(micro-	Calcium	Mogne	Enipos Sodina			Bicar	Sulfate	1.00.	rote.	0 n u	Boros	.15	TOS HOOS	2.0 1 7 7 7 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1
2 S 7.6				at 25°C)	٥	D W		×	CO 3	нсоз	504	- 0	NC 3		8	5.05	Computed	
2 S 7.6 700	WER MOJAVE H		JBUNIT		128E0	Σ	OJAVE H	YDRO U	TINI			W2800						
1 S 8.0 533 1.35 0.41 2.96 0.05 151 1.57 1.57 1.61 0.02 1.40 301 1.1 1.5 1.5 1.5 1.5 1.5 1.40 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	2			700	29	11	97	-	0	126	119	75	0	9.0	2.30	1	401	118
1 S 8.0 533 1.35 0.41 2.96 0.05					22	13	63	2		31	37	32					401	
1 S 8.0 659 31 0.66 4.57 0.08 0.165 1.76 0.08 0.82 409 1 S 8.0 659 3.3 0.66 4.57 0.08 0.165 1.76 0.09 0.82 409 2 S 8.0 660 1.76 0.49 4.57 0.05 0.164 99 55 1.89 0.88 0.82 409 2 S 8.0 1.70 0.49 4.22 0.05 0.164 99 55 1.89 0.88 0.88 414 2 S 8.0 7.30 7.31 0.05 0.248 1.47 0.02 0.89 <td>-</td> <td></td> <td>00</td> <td>533</td> <td>35</td> <td>5</td> <td>68</td> <td></td> <td>0</td> <td>151</td> <td>57</td> <td>50</td> <td>1</td> <td>ô</td> <td>1.40</td> <td>1</td> <td>301</td> <td>108</td>	-		00	533	35	5	68		0	151	57	50	1	ô	1.40	1	301	108
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0010 17				34	8	15	•		64	23	1.41	20.0				294	
2 S 8.0 660 730 771 12 73 655 650 740 750 750 164 750 750 1655 650 750 750 750 750 750 750 750 750 750 7	7		00	659	31	88			0	165	109		2.2	·	0.82		604	111
2 S 8.0 660 1.70 0.49 4.22 0.05 1.64 99 2.06 1.55 0.03 0.99 0.92 414 2 S 8.0 730 731 1.22 1.2	15-31-64				1.23	0.00		0		07.7	33	· ~	0.0				404	
2 S 8.0 730 771 12 73 6.05 1.00 248 114 52 1.00 248 114 42 33 24 1.00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1	00	099	34	9	16	2	0	164	66	4	1.8	°	0.92	1	414	110
2 S 8.0 730 771 14 73 0.05 0.05 751 122 52 1.0 0.05 1.0 4.06 2.37 1.47 0.02 1.0 0.05 1.0 0.0 0.05 1.0 0.0 0.05 1.0 0	5-24-65				1.70	0.49	4.22	0.05		2.69	2.06	2 N	0.03				377	
	2	_		730	71	12	73	2	0	248	114	52	1.3	ò	0.17	-	443	227
8.0 789 77 14 73 0.03 0.03 125 125 52 1.0 0.6 0.17 467 1.5 7.9 1826 149 21 256 8.68 3.69 0.25 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	12-31-64				3.54	0.99	3.17	0.05		4.06	2.37	9 1	0.02				8 7 7	
1 S 7.9 1826 149 21 256 5 0 461 417 131 15.5 0.8 0.58 1267 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		l l	00	789	77	14	73	1	0	251	122	52	1.0	9.0	0.17	ě	194	250
1 S 7.9 1826 149 21 256 5 0 461 417 131 15.5 0.8 0.58 1267 3.69 15.69 1.89 5.79 1.89 9.13 0.10 0.40 6.05 7.14 3.07 0.17 0.17 0.10 0.10 0.40 6.05 7.14 3.07 0.17 0.17 0.10 0.10 0.40 0.05 7.14 3.07 0.17 0.17 0.10 0.10 0.10 0.10 0.10 0	5-24-65				3.84	1.15	3.17	0.03		4.11	2.54	1.47	0.05				797	
8.2 1560 116 23 210 4 12 369 3.69 0.25 10.8 0.50 1026 2.5 3.6 4.2 18 11 54 11 54 1 12 2 36 42 18 11 18 18	~		7.	1826	149	21	256	5	0	461	411	131	15.5	o	0.58	1	1267	654
8.2 1560 116 23 210 4 12 369 343 109 10.5 0.8 0.50 1026 10.8 3.07 0.17 0.17 0.10 0.40 6.05 7.14 3.07 0.17 0.17 0.10 0.10 0.40 0.05 7.14 3.07 0.17 0.17 0.10 0.10 0.10 0.10 0.10 0	12-31-64				7.44	1.73	11.13	0.13		7.56	89 8	3.69	0.25				1222	
34 11 54 1 2 36 42 18 1	37-76-3	-		1560	116	23	210	-	12	369	343	109	10.5	0.8	0.50	-	1026	384
	60-47-6				34	1.03	54	•	1	36	45	18	1				1010	

TABLE E-I
ANALYSES OF GROUND WATER
LAHONTAN DRAINAGE PROVINCE (W)

	Total hardness os CoCO3		177	199	202	288	210	212	
constituents in per million	T D S Total Evap 180°C hardness Evap 105°C os Computed Co CO 3		429	517	522	664	372	441	
constituent per million	5.11i- co 5:02		-	1	1	1	1	1	
Mineral c	Boron		0.47	0.39	0.56	0.59	0.14	0.16	
	Fluo-		0 • 5	0 • 8	0 • 8	9.0	0.7	2.0	
	frate NO3		5.8	5.0	5.0	5.9	2.1	2.1	
million se value	Chlo-	W2800	1.61	2.37	81 2.28 27	96 2•71 24	1.24	1.24	
million	Sulfate SO 4		1.94	118 2•46 29	116 2.42 28	140 2.91 26	111 2.31 31	118 2.46 32	
parts per equivalents percent re	Bicor - bonate HCO3		210	3.39	3.72	332 5.44	240	232	
por	Carbon - ate CO3	TIN	0	10	0	0	0	0.17	
Ë	Potos Fura K	YDRO L	0.08	3 0 • 0 8	3 0.08	3 0.08	3 0 0 0 8	3 0 • 0 8	
constituents	Enipos a N	MOJAVE HYDRO UNIT	3.57	103	103	130	3.22	3.26	
Mineral co	Mogne.	Σ	11 0.90 13	12 0.99 12	0.90	1.56	0.90	11 0.90 12	
2	Colcium	WZ8E0	53 2.64 37	2.99	3.14	84 4•19 36	3.29	3.34	
Specific conduct-	(micro- mhos at 25°C)		700	844	847	1083	727	736	
	H	BUNIT	8 • 1	8.2	8 . 2	7.7	7.7	8.2	
Temp	sampled in F	RO SUI	i i	!	1	}	1	ļ	
State well	Date sampled	LOWER MOJAVE HYDRO SUBUNIT	9N/ 1W-13E 1 S 5-21-65	9N/ 1W-13H 1 S 12- 4-64	5-21-65	9N/ 1W-15N 2 S 5-21-65	10N/ 1W-32J 1 S 12-31-64	5-24-65	

TABLE E-1
ANALYSES OF GROUND WATER
LAHONTAN DRAINAGE PROVINCE (W)

	Totol hordness os CoCC3		687	110	44
uents in	105 Evap :80°C Evap :05°C Computed		1655	502	2176
constituent per million	Sett- co S-0-2		1	-	1
Mineral constituents parts per million	Boron		4.20	1.38	999
€	Fluo-		1.6	1 • 6	φ •
	N C C C		19.0 0.31	0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
million s value	Ch 10 -	W2800	370	81 2.28 27	20.00
r million ts per million reactance val	Sulfote SO 4		549 11.43	135 2.81 34	15, 22, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43
pe	Bicor - bonote HCO3		198 3•25 13	176 2.88 34	3.77
parts equivo	Carbon -	TINI	0	0.40	0
i.	F X	YDRO U	0.20	3 0 • 0 8	N 10 0
constituents	Sodium	MOJAVE HYDRO UNIT	266 11.57 45	145 6.30	464 200.17 57 57
Mineral co	Mogne - Sodium sium Mg No	M28F2	5.35	9 0 14	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Σ	Coleium	W28F0	168 8•38 33	1.45	232 11.568 33
Specific conduct-	1 0		2375	848	3291
	H a	REA	7.5	4	4 • 6
	sampled In ° F	IT 5 SUBA	1	1	1
State well	Date sampled	TROY HYDRO SUBUNIT TROY HYDRO SUBAREA	8N/ 4E- 7B 1 S 6-14-65	8N/ 4E- 78 2 S 6-14-65	9N/ 3E-36F 1 S

TABLE E-1
ANALYSES OF GROUND WATER
COLORADO RIVER BASIN DRAINAGE PROVINCE (X)

	toto 3		192	85	226	380	215	259	184	379
constituents in per million	T.D.S. Evap BOOC Evap C.S.C. Computed		252	698	392	702	357	576	349	805
constituent per million	S. 1:			1		ŧ	ł	ì	-	1
Mineral parts p	Beren		0.04	1.55	0.05	0.09	0.05	0.07	0.18	0.24
	rode rode		0.0	0 • 3	0 .5	9 • 0	1.00	0 • 5	9.0	1 • 0
	rote NO3		3.1	2.3	2.5	9.1 0.15	1.4	5.7	0.1	1.2
per million ctance value	C 1 10	x0100	0.25	121 3.41 32	23 0.65	126 3.55 36	22 0.62	100 2.82 36	18 0.51	150 4.23 35
0	Suffore SO4		23	5.21	112 2.33 38	3.46	143 2.98 53	142 2.96 38	1.29	301
parts per equivalents percent re	Bicar - bonate HCO3		237	129 2.11 20	193 3•16 51	164 2.69 27	124 2.03 36	120	278	100
pod pe	Carbon - ale	UNIT	0	0	0	0	0	0	24 0.80 11	0
<u>c</u>	Potos - K	HYDRO	0.03	5 0 0 13	2 0 • 0 5	0.05	0.05	0.10	12 0.31	0.15
constituents	E nipoS	LUCERNE HYDRO UNIT	17 0 • 74 16	205	39 1.70 27	2.04	30	5.52 32	58 2.52 39	104
Muneral co	Magne- s-um Mg	٦	1.64	0.49	21 1.73 28	36 2.96 31	1,56	2.88	1.73	3 .54
×	Calcium		2.20	1.20	2.79	93	2.74	2.30 2.30	39	81 4°04 33
Specific conduct-	mhos at 25°C)		432	1145	594	971	549	804	909	1201
	Ha		7.9	7.9	7 - 7	7.5	7.5	7.6	8 • 1	7 • 7
Temp	when sampled		1	1	1	1	1	1	1	-
	P		1 S	2 S	1 8	1 S	1 8	2 S	1 S	1 8
Stote well	Date sampled		3N/ 1E= 3F 3- 5-65	4N/ 1E- 1R 2 3- 4-65	4N/ 1E- 6H 1 3- 3-65	4N/ 1E- 60 1 3- 3-65	4N/ 1E- 9A 1 3- 4-65	4N/ 1E-12P 2 3- 4-65	4N/ 1E-32A 1 3- 5-65	4N/2E-7N 1 S 3-4-65
			W.	4	4 N	4	4 Z	V +	Z d	N 4

TABLE E-1

ANALYSES OF GROUND WATER

COLORADO RIVER BASIN DRAINAGE PROVINCE (X)

	hardness as Cakis		174	630	1365	424	293	423	577	202
constituents in	Evop 180°C hardness Evop 105°C os		367	3184	10140	2551	539	728	1266	414
consti	Sitte co S O 2		1	1	1	1	1	1	-	-
Mineral parts p	Boron		90.0	2.00	14.28	2.70	50°0	0.20	0.50	80.0
	Fluo- ride		0 0	2.0	0	6 • 47	0.3	0.5	0 0	9.0
	Ni – frote N. 3		36.0	0	1.8	1.5	2.7	1.0	28.0	0.01
million e volue	Chlo -	x0100	1.30	1240	4850 136.77 84	1020 28.76 70	3.98	128 3.61 34	198 5.58 28	27 0 • 76 13
per	Su ffore		2.00	678	1197 24.92	503 10.47 26	1.35	3.77	407	3.62
ent	Bicor - bonote HCv3		129 2.11 35	1.33	1.36	1000	146 2.39 31	3.28	322	124 2.03 34
equiva	Corbon -	UNIT	0	0	0	0	0	0	0	0
Ë	Potos E > E ×	HYDRO	3 0.08	11 0.28	32 0.82	13	0.05	0.08	0 0 3	0.05
constituents	Sodium	LUCERNE HYDRO UNIT	2.39	868 37•74 75	3120	730 31•74 78	1.91	2.39	188	2.00
Mineral co	Mogne.	5	18 1.48 25	1040	3.37	0.90	2.22	3.62	4.69 24	1.64
2	Colcium		2.00	224 11.18	479 23.90	7.58	3.64	4.84	137 6.84	2.40
Specific conduct-	1 0		617	5110	15250	4227	813	1043	1811	594
	Ha		7.8	7.4	7 • 7	7.9	7.5	7.9	7.4	7.9
Temp	sampled In F		1		1	1	i i	1	1	!
			1 8	2 S	2 S	S	1 S	2	S	v> ←
State well	Date sampled		4N/ 2E-17B	5N/ 1E-17C 3- 4-65	5N/ 1E-23C 3- 4-65	5N/ 1E-28A 3- 4-65	5N/ 1E-29N 3- 4-65	5N/ 1E-31F 3- 4-65	5N/ 1E-32P 3- 3-65	5N/ 1E-32R 3- 3-65
S	Dag		1N7	5N/	5N/	5N/	5N/	5N/	5N/	5N /

TABLE E-I
ANALYSES OF GROUND WATER
COLORADO RIVER BASIN DRAINAGE PROVINCE (X)

	Total hardness os Co CO3		534	157	370	197	224	21	
uents in lion	TOS Total Evap 180°C hardness Evap 105°C as Computed CaCOS		930	231	571	270	939	817	
constituent per million	S. t. 6		1	1	1	1	1	ì	
Mineral constituents parts per million	Boron B		0.03	0.02	0.07	0.02	0.63	1.30	
	0 p 1 u		0.5	0.5	0.5	0 • 2	1 • 7	0 • 9	
	n. trote NC3		37	3.9	16.0	3.8	1.7	2.5	
million s value	Ch 10 -	x0100	3.50	6 0.17	27 0.76	0.14	37	58 1.64	
tr million ts per million reactance value	Sulfote SO4	×	294 6.12	27 0.56	112 2.33	27 0.56	418 8•70 66	1.27	
parts per equivalents percent re	Bicar - bonate HCO3		166	195 3.20 80	391 6.41 66	234 3.84 83	210 3.44 26	658 10.78 79	
por	Carbon -	INIT	0	O	0	0	0	0	
ni s	Potas.	HYDRO (3 0 • 0 8	0.08	0.03	0.05	0.15	13	
constituents	e nipos	LUCERNE HYDRO UNIT	2.13	21 0.91 22	52 2.26 23	14 0.61 13	200 8•70 65	315 13•70 95	
Mineral co	Mogne- stum M g	ני	57	1.89	3.45	20	1.89	0.16	
×	Colcium		120	1.25	3.94	2.30	52 2.59 19	0.25	
Specific conduct-	- 0		1195	375	873	436	1286	1494	
	I a		7.5	7.9	7 • 4	7.7	7.8	7.8	
Тетр	sampled		l 1	1	!	1	1	-	V.
State well	peq		4N/ 1W- 1P 2 S 3- 3-65	4N/ IW-11N 2 S 3- 3-65	4N/ 1W=11Q 1 S	4N/ 1W-14Q 4 S 3- 3-65	4N/ 1W-18E 1 S 3- 3-65	6N/ 1W- 5J 1 S 4- 6-65	

TABLE E-I
ANALYSES OF GROUND WATER
COLORADO RIVER BASIN DRAINAGE PROVINCE(X)

	Total hardness as		268	528	587
i.	4343		503 2	938 5	
ituent	105 Evap 180°C Evap 105°C Computed		v 4	0, 00	984
constituent per million	S:02		-	i	
Mineral constituents parts per million	8		0.14	0.15	0.19
	rode rode		0.5	9.0	1 • 2
	role NO3		0.01	4.2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
million e value	Chlo-	x0200	29 0.82 10	131 3.69 25	11 . 14 . 63 . 63
parts per million equivalents per million percent reactance value	Sulfate SO 4	×	226 4.71 59	415 8•64 59	4 • 3 7 2 10 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
parts per equivalents percent r	Bicor - bonate HCO3		149 2•44 31	134 2.20 15	2.00 2.00 11
pot	Carbon - aie	TINI	0	0	0
C .	0 to 0 to 0 to 0 to 0 to 0 to 0 to 0 to	IYDRO U	0.15	0.15	0010
constituents	Sodium	JOHNSON HYDRO UNIT	56 2.43 31	3.91	5 • 26 31
Mineral	Magne - Sodium sium N g N o	or	22 1.81 23	5.76	38 38
2	Colcium		3.54	96 4.79 33	3.0 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °
Specific conduct-	mhos at 25°C)		769	134	1740
	ī		7.6	7.5	7.7
Temp	when sampled in ° F		1	1	1
State well	p		4N/ 2E-25JSI S 3- 5-65	4N/ 3E-23G 1 S	4N/ 4E-19M 1 S

TABLE E-I
ANALYSES OF GROUND WATER
COLORADO RIVER BASIN DRAINAGE PROVINCE (X)

	Total hardness os CaCOs		534	157	370	197	224	21	
uents in	TOS Total Evop 180°C hardness Evop 105°C os Computed CoCOS		930	231	571	270	939	817	
constituent per million	S C.0 S.O.2		1	1	l l	1	1	1	
Mineral constituents parts per million	Boron		0.03	0.02	0.07	0.02	0.63	1.30	
	7 00 F		0.5	0.2	0.5	0.5	1.7	0 • 9	
	n: rote NC3		37	3.9	16.0	3.8	1.7	2.5	
million per million ctance value	Ch10: ride C1	x0100	3.50	6 0 • 1 7	0.76	5 0 14	37 1.04 8	58 1.64 12	
0	Sulfate SO4		294 6.12	27 0.56 14	112 2.33 24	27	418 8.70 66	1.27	
en +	Bicar - bonote HCO3		166 2.72 21	195 3.20 80	391	234 3.84 83	210	658	
parts equiva percen	Carbon - ofe	T I NI	0	O	0	0	0	0	
Ë	Patas	HYDRO L	3 0.08	3 0 • 0 8	0.03	0.05	0.15	13	
constituents	Sodium	LUCERNE HYDRO UNIT	49 2•13 17	21 0.91 22	52 2.26 23	14 0.61 13	200 8 • 70 65	315 13•70 95	
Minerál co	Mogne. S:um	רו	57 4.69 36	23	3.45	20 1.64 36	23 1.89 14	0.16	
2	E 0 0 0 0		120 5.99	1.25	3.94	2.30	2.59	0.25	
Specific conduct-	mhos at 25°C)		1195	375	873	964	1286	1494	
	Hď		7.5	7.9	7.4	7 • 7	7.8	7.8	
Temp	sampled In F		1	-	1	-	1	1	
State well number	Date sampled		4N/ 1W- 1P 2 S 3- 3-65	4N/ 1W-11N 2 S 3- 3-65	4N/ 1W-110 1 S 3- 3-65	4N/ 1W-140 4 S 3- 3-65	4N/ 1W-18E 1 S 3- 3-65	6N/ 1W- 5J 1 S 4- 6-65	

TABLE E-1

ANALYSES OF GROUND WATER
COLORADO RIVER BASIN DRAINAGE PROVINCE (X)

	Total hardness os CaCO3		268	528	587
tuents in	TDS Total Evap 165°C os Computed Co Cos		503	938	984
constituent per million	\$10.5		1	1	1
Mineral constituents parts per million	80101		0.14	0.15	0.19
	Fluo.		0 • 5	9.0	2 • 2
	rote NO3		0.01	4.2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
milion e value	0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	x0200	29 0.82	131 3.69 25	395
parts per million equivalents per million percent reactance value	Sulfate 504	×	226	415 8.64 59	210 237 25
parts per equivalents percent re	Brear - bonate HCO3		149 2.44 31	134 2.20 15	2,00
be d	Corbon -	TINI	0	0	0
C. S	Potos.	HYDRO L	0.15	0.15	0 1 0 1
constituents	Sodium	JOHNSON HYDRO UNIT	2.43	3.91	5 - 26 31
Mineral	Mogne - Sodium	9	22 1.81 23	5.76	98 2 38
2	Colcium		3.54	4.79	1005
Specific conduct-	mhos at 25°C)		769	134	1740
	I		7.6	7.5	T • T
Тепр	sampled in ° F		1	1	1
State well	Date sampled		4N/ 2E-25JS1 S 3- 5-65	4N/ 3E-23G 1 S 3- 5-65	4N/ 4E-19M 1 S

TABLE E-I
ANALYSES OF GROUND WATER
COLORADO RIVER BASIN DRAINAGE PROVINCE (X)

	Tutol hordness os Coura		16	9.7	132	71	
luents in	Evop .Booc Evop .Cooc		262	262	280	212	
constituents per million	5 0 2		t t	1	1	1	
Mineral parts	Berch		0.33	60.0	0.07	60.0	
	7 ut		1 • 0	0.2	7.0	9.0	
	7 0 7		12 0•19 5	6 0 • 10	4 0 • 06 1	3 0.05	
million se value	Ch 10	x0500	20 0.56 13	27 0•76 18	39	18 0.51 16	
million per per	Suffate 504	×	27 0.56	41 0.85 20	43	30	
len it	Bicar - bonate HCO3		175 2.87 69	153 2.51 59	168 2.75 57	125 2.05 63	
parts equiva percer	Carbon - ale	IN I T	0	0	0	0	
.i.	Potos - sium K	HYDRO L	0.05	0.05	3 0 • 0 8	3 0 • 0 8	
constituents	E nipos	EMERSON HYDRO UNIT	52 2 2 6 55	51 2.22 53	2.04	1.78	
Mineral co	Mogne.	E M	2 0 • 16	0.33	0.58	2 0 • 16	
2	C O C O C		33	32 1.60	2.05	1.25	
Spacific conduct-	(micro- mhos at 25°C)		360	370	420	300	
	I Q		7.4	7.9	7.8	7 • 8	
Тетр	sampled In ° F		-	1	l i		
State well	Date sampled		IN/ 5E-19G 1 S 11- 9-64	2N/ 6E- 6D 2 S 11-11-64	2N/ 6E- 70 1 S	2N/ 6E-18J 1 S 11-11-64	

TABLE E-1
ANALYSES OF GROUND WATER
COLORADO RIVER BASIN DRAINAGE PROVINCE(X)

	Total		31	
uents in	Evan Bord		183	
constit	5.05		20	
Mineral constituents parts per million			0.05	
	, d		0 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	
	Z 0 2		4	
million per million ctance value	0 0 0	X0700	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
0	Sulfore S 4		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
parts per equivalents percent	Bicor b, note		1	
par	Corbon .	UNIT	0 0	
.5	\$ 0.105	нтико	N N N M M M M M M M M M M M M M M M M M	
nstituents	E 0 2	DEADMAN HYDRO UNIT	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
Mineral constituents	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	۵	0 0 0	
Σ	£ 3 3		2000	
Specific conduct-	mhos at 25°C)		7 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
	i a		c c c c c c c c c c c c c c c c c c c	
Тепр	sampled In F		Σ Ω ω	
State well	Date sampled		2N/7E-3A 1 S 11-10-64 2N/7E-3B 1 S 11-10-64	

TABLE E-i
ANALYSES OF GROUND WATER
COLORADO RIVER BASIN DRAINAGE PROVINCE (X)

		- 1				
	Total hardness as CaCG3		77	71	27	9
uents in lion	TDS Evap 180°C hardness Evap 105°C os Computed CaCOS		172	176	194	142
constituent per million	S. 1. 2		1	ł	-	
Mineral constituents parts per million	8 8		0.07	0.07	60.0	0.07
-	7 . d e		0.2	0 • 2	1.0	0
	7 2 2 2 2 2 2 2 2 3 2 3 3 3 3 3 3 3 3 3		10	8 0 • 13	8 0•13	3 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °
million e value	Chlo-	X0800	12 0•34 12	0.25	13	0°34 134
millior per sactanc	Sulfate SO 4		0.27	0.27	0.27	0 • 21 8 8
pe len	Bicar - bonate HCO3	<u>.</u>	126 2.07 73	119	120 1•97 72	109011090
parts equiva percen	Carbon -	DRO UN	0	٥	0	0
ri e	Potos Furs K	rree HY	0.03	0.03	0.03	0.03
constituents	E n po Z	JOSHUA TREE HYDRO UNIT	31 1.35	1.22	49 2•13 79	1.22
Mineral co	Magne- s-um		0.58	0.16	0.08	0.16
2	Colcium	X08A0	0.95	1.25	0.45	1 2 2 0 4 4 6 4 6 6 4 6 6 6 6 6 6 6 6 6 6 6 6
Specific conduct-	mhos at 25°C)		250	240	240	240
	Hď		7.9	7.8	e 80	L • L
Temp	when sampled in ° F	TINO	67	1	68	70
State well	peq	WARREN HYDRO SUBUNIT	15/ 5E- 2C 1 S 11- 9-64	1N/ 5E-35P 1 S	1N/ 6E-29F 1 S	1N/ 6E-29N 1 S
S	Date	WARRE	15/	11/1	1N/ (11-

TABLE E-I
ANALYSES OF GROUND WATER
COLORADO RIVER BASIN DRAINAGE PROVINCE (X)

	Total hardness os Co CC 3		62	4	
ents in	TDS Total Evap 180°C hardness Evap 105°C os		172	13 %	
r milli	S.0.2		1	T	
Mineral constituents parts per million	Boron		0.07	•	
Σ	Fruo.		9.0	•	
	role NO3		9 0.15	0.19 8	
value	ride C I	x0800	0.28	2 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	
parts per million equivalents per million percent reactance value	Sulfate 504		0.25	0 17 6	
ts per ivalents cent r	Bicor - bonote HCO3	11	114	10,033	
900	Carbon - ole	DRO UN	0	0	
Ë	or se se se se se se se se se se se se se	REE HY	0.05	0 0 1	
constituents	Sodium	JOSHUA TREE HYDRO UNIT	32.	1, 52.00	
Mineral cor	Mogne.	ň	0.33	0 0 0	
Min	Colcium	X08B0	18 0.90 34	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Specific conduct-	1 0		230	2 3 0	
	Ha	suau	7.7	7.2	
Temp	sampled in ° F	HYDRO	1	4,0	
State well	led	COPPER MOUNTAIN HYDRO SUBUNIT	1N/ 6E-25N 1 S	11/ 7E-10N 1 S	

TABLE E-1
AMALYSES OF GROUND WATER
COLORADO RIVER BASIN DRAINAGE PROVINCE (X)

	hardness os Cook 3		185	4 1	48	38	4
constituents in per million	T D S T TO S E VOD 180°C OS OS COMPUTED COLLS		578	156	360	178	10,4
constituent per million	S. 1: CO S. 32		i i	1	1	ł	1
Mineral ports p	3. 33 33		0.17	60.0	2.04	0.07	0.07
	, o c		2.4	1 • 6	4 8	1.2	1 • 2
	hrote N. 3		10 0•16	0.13	2 0 • 0 3	50.08	8 • 0 • 13 5
per million ctance value	0 P P - 2	0060x	53 1,49	0.25	30 0 85	0.31	0.39
0	Sulfate Sv.4		248 5.16 54	14 0 . 29	1.71 28	6 0 12	0 0 1 9 7 7
parts per equivalents percent re	Bicar - Sulfate bonate HCO3		2.79	109	3.43	116	111.92
por	Carbon -		0	0	0	0	0
i.	Potos -	RO UNI	0.10	0.03	0.08	0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
constituents	E nipos	DALE HYDRO UNIT	135 5•87 61	39	116 5.04 83	34 1.65 68	1,00,00
Mineral co	Magne, s.um Mg	d G	17	0.16	0.16	0.16	0.00
Σ	£ 0 0	X09A0	2.30	13 0.65	16 0.80 13	12 0.60 25	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Specific conduct-	mhos at 25°C)		810	240	940	220	255
	I	SUBUNIT	7.7	7 • 7	0 • 8	7.7	7.6
Temp	sampled in ° F	HYDRO	1	7.7	1	11	7.
State well	p 6	TWENTYNINE PALMS	1N/ 8E- 9L 1 S 11-10-64	IN/ 8E-36A 1 S 11-10-64	1N/ 9E-20A 1 S	1N/ 9E-31A 1 S	1N/ 9E-31C 1 S 11-10-64

TABLE E-I
ANALYSES OF GROUND WATER
COLORADO RIVER BASIN DRAINAGE PROVINCE (X)

	hordness 55		62	2
lition	105 Evap 60°C; hardness Evap 15°C 35 Computed Cours		1490	1364
constituent per million	\$ 4.		1	1
Mineral constituents parts per million	, a		2.16	0.5%
	3 P u		5.6	v o
	7.01e		0.02	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
million e value	3 1 4 C	0060x	235	5 2 3 4 8 9 4 8 9 4 8 9 8 9 8 9 8 9 9 9 9 9 9
parts per million equivalents per million percent reactance value	Sulfate Sul4		595 12.39 59	8 4 6 8 4 6 8 6 8 6 8 6 8 6 8 6 8 6 8 6
parts per equivalents percent r	Bicor - bonole HCO3		117	2.132
par	Carbon -	-	0	0
Ë	Potos -	RO UNI	0.15	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
instituents	Sodium	DALE HYDRO UNIT	470	2 4 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
Mineral constituents	Mogne- srum Mg	٥	0.58	0 0 0 0
2	Calcium	0860x	2001	1,000
Spacific conduct-	mhos at 25°C)		1960	1940
	I		7.9	φ • 1
Temp	sampled In F	IT	1	1
State well	Date sampled	DALE HYDRO SUBUNIT	1N/10E-14N 2 S	11-10-64

TABLE E-I
ANALYSES OF GROUND WATER
COLORADO RIVER BASIN DRAINAGE PROVINCE (X)

	Tutol hardness os Calu(3		6	
constituents in per million	TDS hardness Evop 80°C hardness os Computed Courts		133	
constil	Silt- ca SiO ₂		1	
Mineral constituent parts per million	Boron		0.22	
	Fluo-		•	
	trate NO3		0 0	
million per million ctance value	Chio.	x1000	0.37	
0	Sulfate SO 4		0,655	
parts per equivalents percent re	Bicor - bonote HCO3		0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
por	Carbon - ote	TINC	0	
. <u>E</u>	Potos -	HYDRO	2 0 0	
constituents	Sodium	BRISTOL HYDRO UNIT	0,83	
Mineral co	Magne.	18	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Σ	Coleium	x1080	1 000 1 4 4 7 1	
Specific conduct-	1 0		508	
	Hd		4 • ٢	
Temp.	when sampled in ° F	UNIT	1	
State well	pel	FENNER HYDRO SUBUNIT	10N/14E-26L 1 S	

TABLE E-I
ANALYSES OF GROUND WATER
COLORADO RIVER BASIN DRAINAGE PROVINCE(X)

	S S S		294	114	192	243
Ē	C hardness					
en .	Evap 180°C hardness Evap 105°C S		564	872	416	724
constituent	5 . 2		1	1	i i	1
Mineral parts p	8,167		0.12	0.10	0.07	0.14
	, p		7.0	4.0	7 0	•
	Trote 7		6 0•10	0.11	0	200
million per million ctance value	2 L D L C L C L C L C L C L C L C L C L C	x1900	34 0 96 10	1.55	23	4 0 0 d
e o	Sulfote		3.35	438 7.12 65	2.12	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
parts per equivalents percent	Bicor - bonote HCO3		317	216	267	91 . 6 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
por	Corbon ofe cts	INU ON	0	0	0	0
ï	\$010\$	к нүш	0.15	0.23	0.15	0 • 1 0 0
constituents	E 0 N	WHITEWAILK HYDRO UNII	3.48	4.13	3.17	20 1 80 50 50 50 50 50 50 50 50 50 50 50 50 50
Mineral co	Mogne S.J.m M.g.	3	32 2.63 2.8	62 5.10 37	12 0.99	1,01
2	w	X19A0	3.24	8 4 4 4 4 3 2 5	2.84	3 7 6 3 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
Specific conduct-	mhos at 25°C)	×	D & 8	1180	009	2 4 2
	Ha		1.9	7 • 7	0.8	°
Temp	when sampled in ° F	BUNIT	1	i i	1	1
		us c	S	1 S	5	o .
State well	Date sampled	MORONGO HYDRO SUBUNII	15/ 4E-13P 1 11- 9-64	15/ 4E-130 1 11- 9-64	15/ 4E-22J 1 11- 9-64	15/ 5E- 7F 1
	Do	MORO	15/	15/	15/	SI

TABLE E-1
ANALYSES OF GROUND WATER
COLORADO RIVER BASIN DRAINAGE PROVINCE (X)

	Total hardness os Collus		154	159	155	127
uents in	Evap 180°C hardness computed Colung		212	207	238	215
constituent	5. 1.		l 1	1	!	
Mineral constituents parts per million	Buron		0	0	0	0
	r.de		0.5	0.4	0 • 0	•
	Note NO3		0	0.02	3 0.05	0 · 0 · 0 · 0 · 0 · 0 · 0 · 0 · 0 · 0 ·
million per million ctance value	Ch 10 -	x1900	0.23	0.25	0.45	0.48
	Sulfore SO 4		25 0.52 15	24 0.50	9 0 0 1 9	0 . 2 . 8 . 8
parts per equivalents percent rea	Bicar - bonote HCO3	⊢	170 2 . 79 79	179 2.93	212 3.47 83	2 . 17 6
par eq.	Corbon -	RO UNI	1	l t	1	0
i.	0 % 0 0 X 0 0 X	ER HYD	3 0.08	3 0.08	0.05	0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
constituents	Sodium	WHITEWATER HYDRO UNIT	9 0.39	0.39	24 1.04 25	1,000
Mineral co	Mogne.	W X19C2	1.23	13 1-07 29	12 0 . 99 24	0 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Σ	Colcium	X19C0	1.85	2.10	2.10	1 8 3 5 0 0
Specific conduct-	mhos at 25°C)	SUBUNIT O HYDRO SUBAREA	332	344	398	361
	H	SUBUNIT HYDRO S	7 • 8	7.8	0 • 8	© ©
Temp	sampled In ° F	RO SUB	-	ł.	1	20
State well	Date sampled	SAN GORGONIO HYDRO SAN GORGONIC	25/ 1E-17L 1 S 4- 9-65	25/ 1E-33J 1 S 4- 9-65	35/ 1E- 7E 1 S 4- 4-65	35/ 3E- 8M 1 5 5- 5-65

ANALYSES OF GROUND WATER COLORADO RIVER BASIN DRAINAGE PROVINCE(X)

I A OLE ET

	To to to to to to to to to to to to to to		18		186		187		202		161		269		052		
fuents in	Evap 185°C hardness Evap 105°C os Computed cours		214	213	898	936	861		648	841	420	413	774	676	703	685	
constituent per million	Silt. co SiO ₂		1		-		1		-		1		l		-		
Mineral constituents parts per million	Boron		0.03		0.30		1		0.51		0.05		0.08		0.08		
<	Fluo- ride F		4.0		1 • 4		1 ° 4		2.1		1.2		8 • 0		1 . 1		
	rote No3		0.7	0	6	0000	7.2	4	0 8	10.0	0		8.0	0 0	4.0		
nillion	ride C.t.	x1900	20	16	999	13	1.89	1	77	17	50	α φ ο ο	50.00	10,76	48	1.53	
r million is per million reactance value	Sulfate SO 4		63	. w	450	7.01	412	7	421	69	178	55	398	72	365	72	
ien i	Bicor - bonote HCO3		102	7.7	185	2.03	173	1,	110	1.80	149	36	103	1.09	96	1001	
equiva	Carbon- ate CO3	SO UNI	0		0		0		0		0		0	-	0		
Ë	Potos .	ER HYD	80-0		1100	0.50	1	•	600	0.629	7	0.18 0.09	10	2 2 2	(0.63	
constituents	Sodium	WHITEWATER HYDRO UNIT	69	87	245	10.03	220	7	204	68	78	50 50	139	52	125	51	
Mineral cor	Mogne- stum M g	W X 1901	0		10	9 9	12 0.99	x19D2	12	0 0	13	1.007	18	13	19	15	
×	Co	x1900 x	7 20	100	58	02	2.74	7	61	23	43	32	78	933	69	32	
Specific conduct-	micro- mhos at 25°C)	SUBAREA	374		1225		1379	SUBAREA	1330		671		1155		1070		-
	Ha		8.2		7.8		7.2	HYVRG	0 • 8		8 • 1		8.0		7.8		
Тетр	sampled in ° F	SUBUNIT	68		9		-		90		74		90		16		
State well T	Date sampled	COACHELLA HYDRO SUBI	35/ 4E-22A 2 S		357 5E-30G 1 S	001	5-65 -4	MISSION GREEK	3S/ 5E-17M 1 S	00010	35/ 5E-18M 1 S	0-0-0	3S/ 5E-18R 1 S		35/ 5E-20D 1 S	00-0-0	

TABLE E-1

ANALYSES OF GROUND WATER
COLORADO RIVER BASIN DRAINAGE PROVINCE (X)

	T_10! hardness os Co CO N		93		138		134			262			170		126			
uents in lion	T D S T 101 Evap 180°C hardness Evap 105°C 05 Computed Co CO 3		985	796	1010	066	1080	1075		840	804		136	217	101	171		
constituent per million	\$ 00		1		1		1			1			1		ŀ			
Mineral constituents parts per million	, a		1.04		0.87		1.54			0.22			0		0			
	2 P L		5.0		9.4		8.2			1.6			0.7		9.0			
	N = 1		2.1		1.2		0			4			6	0.05	2	0.03		
million ce value	Ch10 -	x1900	119	23	116	22	143	26		99	15		10	200	10	0.28		
millio per eactan	Sulfate S0.4		485	70	472	99	524	69		430	72		23	0.48	13	0.27		
pe	Bicar - bonote HCU3		51	9	107	12	51	0		93	1.72		201	3.29	165	2.70		
parts equiva percen	Carbon -	RO UNI	0		0		0			0			ŀ		1			
. <u>c</u>	Potos -	ER HYD	5 0 0 13	٦	0.15	1	7	7		12	9 60		w (0.08	2	0.05		
constituents	Sodium	WHITEWATER HYDRO UNIT	285	86	285	81	315	83		156	5.0		17	18	17	0.74		
Mineral co	Mogne- s-um Mg	m	0		0.41		4 4 4 4 4	200	x1906	26	17	X19D7	11	0.90	80	0.66		
Σ	E CO CO CO CO CO CO CO CO CO CO CO CO CO	x19D0	37	13	2.35	15	7.35	14		62	25		50	69	37	1.85		
Specific conduct-	micro- mhos at 25°C)	SUBAREA	1552		1584		1720		O SUBAREA	1259			401		320			
	H	1T YDRO	7.8		8 0		7.9		HYDRO	7.5		SUBAREA	8.1		8.0			
Temp	when sampled in ° F	SUBUNIT	106		78		78		PALMS	1		RO	73		73			
State well	pe	COACHELLA HYDRO SUBUNIT MIRACLE HILL HYDRO SUBAREA	25/ 5E-30L 1 S 5- 5-65		2S/ 5E-30L 2 S 5- 5-65		35/ 5E-10J 1 S		THOUSAND	45/ 6E- 5M 1 S	60-21-4	INDIO HYD	35/ 4E-36M 1 S	69-71-4	45/ 4E- 1N 2 S	4-12-65		

TABLE E-I
ANALYSES OF GROUND WATER
COLORADO RIVER BASIN DRAINAGE PROVINCE(X)

	Tetoi hardness as Cou(3		184	164	127	187	7	
uents in	TOS Action Evap BOC Actions Evap 105°C as Computed Colics		201	204	172	295	136	
constituents per million	5.0.5		1	1	1		1	
Mineral o	Beron		0.16	0.0	0.02	0.05	7	
2	7 u o		0 • 3	0 • 0	2.0	0 . 3	٠٠ ٥	
	Proje NC3		14 0.23	0.06	3 0.05	16 0.26	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
million s value	Ch lo	x1900	20 0.56	14 0.39	0.17	19 0.54	0.238	
equivalents per million percent reactance value	Sulfate SO 4		1.35	41 0.85	23 0 4 8 15	1.29	0.50	
equivalents percent re	Bicar - bonote HCU3	-	170 2.79 57	3.38	159 2.61 79	171 2.80 57	101	
0 6	Carbon - ate	ORO UNI	-		0	0	0	
. <u>c</u>	P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ER HYE	0.08	0.13	0.10	0.08	0 0	
constituents	Sodius	WHITEWATER HYDRO UNIT	26 1•13 23	1.26	15	1.04	1,33	
Mineral co	Mogne.	WI X19D7	9 0.74	7 0.58	0.49	9 0 0 7 4 15	0 0 0 0 0	
2	E 20 0	X19D0	2.94	2.69	2.05	2.99	0 36	
Specific conduct-	1 0		465	315	320	486	524	
	T a	UNIT	7.9	8 • 2	7.8	7.6	7.6	
Тетр	sampled In ° F	SUBUN RO SU	73	73	-	!	1	
		DRO	1 S	1 S	1 8	1 8	S	
State well number	Date sampled	COACHELLA HYDRO SUBUNIT INDIO HYDRO SUBAN	45/ 4E-11K 4-12-65	45/ 4E-110 1 4-12-65	45/ 5E-15R 4-12-65	4S/ 5E-33G 4-14-65	65/ 8E- 5N	
S	00	OACE	45/	45/	181	184	189	

TABLE E-I
ANALYSES OF GROUND WATER
COLORADO RIVER BASIN DRAINAGE PROVINCE (X)

	hordness as		55
uents in	Evap Book hardness computed Coults		638
constituent	5.4.		40
Mineral constituents parts per million	B B		°0 °0
	ride r		0
	rote NU 3		0 • 2 3
million	Ch 10	X2200	75 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
parts per million equivalents per million percent reactance value	Sulfate \$0.4		2 6 9 9 2 5 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
parts per equivalents percent red	Bicar - bonate HCO3	TIN	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
par	Carbon -	TYDRO U	0
Ë	Potas -	REGO +	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
constituents	E 7 2	ANZA BORREGO HYDRO UNIT	23.91
Mineral co	Magne - Sodium stum Mg Na	A X22A1	2.14
Σ	Colterum	X22A0	100
Specific conduct-	1 0	1	979
	Hd	DRO S	7 . 8
Temp	sampled In ° F	JBUNIT SER HY	
State well	Date sampled	BORREGO HYDRO SUBUNIT TERWILLIGER HYDRO SUBAREA	85/3E-12D 1 S

TABLE E-1

ANALYSES OF GROUND WATER
COLORADO RIVER BASIN DRAINAGE PROVINCE (X)

	Total hardness ols Codess		379	984	2373	8 4 4 8
tuents in	Evap 80°c hardness computed Colos		1050	3234	15120	3 2 3 3 3 4 3 0 3 4 3 0 0 0 0 0 0 0 0 0 0 0
constituent per million	5 0 2		1	1	1	
Mineral constituents parts per million	96,26		0.20	5.00	0 0 8	0 0 0
	7 5 G		2 • 8	2.6	9 • 0	φ *
	rote Res		0 • 0	0 • 0	0.0	0
million e volue	7:de	x2300	3.95	1574	0	1720 48.50 79
millior per sactanc	Suffore		334 6.95	207	4502 93.73	5 5 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6
parts per equivalents percent re	Bicor - bonote HCO3		224 3.67 25	438 7•18 13	99	1.62
par	Carbon. ote CO3	UNIT	0	0	0	0
i.	Polas -	HYDRO	10	1.18	1.18	4 4 5 2 5 5
constituents	Sodium	IMPERIAL HYDRO UNIT	165	1060 46.09 81	4640 01•75 81	1180 51.831 831
Mineral c	Mogne- sium Mg	ž.	4.28	3.87	388 31.91 2	4 w 4 v v
2	Calerum	X23A0	3.29	5.84	311	4 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Specific conduct-	(micro- mhos at 25°C)		1380	2000	17500	0000
	T a		0 • 8	7 • 1	7.9	1 *
Temp	when sampled in ° F	JBUNIT	1	166	1	5
State well	Date sampled	MPERIAL HYDRO SUBUNIT	95/12E- 1D 1 S 10-27-64	95/12E- 2A 1 S 10-27-64	95/12E-22A 1 S 10-29-64	95/13E-20L51 5 10-29-64

TABLE E-1

ANALYSES OF GROUND WATER

COLORADO RIVER BASIN DRAINAGE PROVINCE (X)

	Tetol hardness os Codess		506	211	506	211
luents m	TDS Total Evap 180°C hordness Evap 105°C as Computed Caucis		1808	2122	1808	2128
constituents per million	5.0.5			1	1	1
Mineral constituent parts per million	80101		2.75	2.38	2 • 75	2 . 38
	7 . u o		0 * 0	3.0	9 0	0
	rote NO3		0.0	0 • 0	0 • 0	0
r million is per million reactance value	Ch10 -	x2500	968 27.30 80	1046 29.50 82	968 27.30 80	29.50 29.50 82 82
million per eactanc	Sulfate SO4	×	144 3.00	3.16	3.00	3,152
ports per equivalents percent r	Bicar - bonote HCO3	UNIT	234	214	234	3.514
por	Carbon -	HYDRO	0	0	0	0
ni s	Potas - s.um K	ON SEA	0.10	0.10	0.10	0.10
constituents	Sodius	EAST SALTON SEA HYDRO UNIT	700 30.44 88	740 32.18 88	700 30.44 88	740 32.18 88
Mineral co	Mogne. s.um Mg	EA	2.22	1.23	2.22	1, 23 3
2	C 0 10 10 0		38	60 2.99 8	38	8 8 8
Spacific conduct-	mhos at 25°C)		3200	3500	3200	3500
	Hd		7.8	7.8	7.8	7 • 8
Temp	when sampled In ° F		06	06	06	0
State well	led		85/11E-12P 1 S 10-27-64	85/11E-12P 2 S 10-27-64	85/11E-12P 1 S 10-27-64	85/11E-12P 2 S

TABLE E-I
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	Tetal hardness as Cauds		207	285	347				396	
constituents in per million	TDS Total Evap 180°C hardness Evap 105°C as		329	450	760				634	
constituent per million	Sili- ca SiO ₂		1	1	1		1	1	1	1
Mineral o	Boron		0.04	90 • 0	0.09	1	1	1	0.07	1
	Fluo-		0.5	0 • 5	0 • 8	1	1	1	9 • 0	1
	rate NO3		9 0 15	20 0 • 32	30.05	8.6	1	l l	12 0•19	1
million se value	Chlor	Y0100	1.04	1.75	2.45	73	76	76	2.48 2.3	2.57
million per soctono	Suffate \$0.4		1.06	1.92	5.62	196	3.64	3.64	216	5.70
len	Bicar - bonate HCO3	UNIT	211 3.46 61	3.64	181 2.97	210	3.72	231	213	182 2.98
ports equivo	Carbon - ate CO3	N HYDRO	0	0	0	0	0	0	0	0
.i.	Potos - sium K	A RIVER	0.05	0.08	0.18	-	1	1	0.13	94
constituents	Sodium	SANTA ANA RIVER HYDRO UNIT	34 1.48	1.96	97		-	-	2.57	1
Mineral co	Magne. s.um M.g	SA Y01A1	0.90	1.40	1.89	1	1	1	2.22	1
Σ	Colcium	Y01A0 SUBAREA	3.24	4.29	101	1	1	1	114 5.69 54	1
Specific conduct-	mhos at 25°C)	HYD SUBUNIT) PLAIN HYDRO SU	582	176	1122	941	959	896	1030	1093
	I a	D SUL	7 • 8	7.6	7 . 4	7.9	7 • 8	7.07	7 • 3	7.6
Temp.	sampled	I V	1	1	i i	1	61	09	1	1
		ANA RIV COASTAL	S	v)	S	S	S S		S	S
State well	Date sampled	LOWER SANTA ANA R EAST COAST	45/ 9W-318 1 7-13-65	45/ 9W-328 2 12-16-64	45/10W-13H 2 5-18-65	45/10W-14D 2 10-22-64	45/10W-14H 2 10-13-64	3- 3-65	45/10W-15B 2 10-26-64	4S/10W-24D 2 10-13-64

	hardness os			375			361	396	371	707
tuents in	Evap 180°C Agraness Evap 105°C os Computed (outs			620			557	551	548	647
constituents per million	Sili- co SiO ₂		1	1	1	1	1	1	1	1
Mineral paris p	Boron		1	0.04	1	1	0.05	50°0	90.0	90.0
	Fluo-		t 1	9.0	-	1	0 • 3	0.5	7 • 0	۵ • •
	Trote NO W		{	0.11	1	{	3.1	40	35	9 • 0 • 6 5
million per million ctance value	Chlo -	Y0100	2.57	2.12	2.51	2.51	1.78	1.78	1.89	2.48
0	Suffore SO4		273	218	258	262	139 2.89	132 2 - 75 30	139 2.89	3.64
ports per equivalents gercent re	Bicor - bonote HCO3	UNIT	3.00	189 3.10	171	171	273	244	247	3.82
Pod	Corbon -	RIVER HYDRO UNIT	0	0	0	0	0	0	0	0
ni s	Polos.	A RIVER	1	0.10	1	-	0.13	0.10	0.10	0.13
constituents	Sodium	SANTA ANA	1	52 26 23	1	}	2.00	1.96	2.00	2.22
Mineral co	Magne- s-um M g	SA	1	22 1.81 18	1	1	1.97	1.48	1.73	2.38
2	Colcium	YO1AO SUBAREA Y	1	114 5.69 58	ļ	1	105	129	114 5.69	5.69
Specific conduct-	mhos at 25°C)		1111	943	1027	1037	482	796	935	1020
	T _Q	HYD SUBUNIT PLAIN HYDRO	7.6	7.6	7.6	7.4	7 - 7	7 . 8	7.6	0
Temp	sampled in ° F	> -	1	1	-	1	1	1	-	1
		ANA R	2 S	3	2		S	1 S		2
State well	Date sampled	OWER SANTA ANA RIV EAST COASTAL	45/10W-24D 3	45/10W-24D 7-13-65	45/10W-25N 10-13-64	3- 3-65	45/10W-31F 11-25-64	45/10W-320 1-19-65	6-21-65	45/10W-33F 10-27-64

TABLE E-1
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	Total hardness as CaCO3		436	379	433			78	231	215
uents in lion	Evap 180°C Evap 105°C Computed		946	597	629			221	347	375
constituents per million	S. 0.2			1	1	-	1	1	ł	1
Mineral c	80.00		0.04	0.04	90.0	1	-	0.08	90.0	0.0
2	- 1 d e		0 • 5	9.0	9.0	İ	1 0	0.5	0 • 3	0.5
	trote NO 3		35	25 00.40	41 0.66	l l	8	0	10 0.16	11 0 • 18 3
million e value	Ch 10 -	Y0100	2.31	2.06	2.09	184	182	0.37	29 0.82	35
millior per eactanc	Sulfate SO 4		197	3.73	3.46	1	ľ	0.92	1.79	1,81
parts per equivalents percent r	Bicor - bonate HCO3	O UNIT	3.93	215 3.52 36	279	305	298	168 2 • 75 68	195 3.20 54	3.36
P01	corbon. ate CO3	ER HYDR	0	0	0	0	0	0	0	0
Ċ	Potos -	A RIVE	0.13	0.10	0.10	1	8	0.05	0.05	0.05
constituents	Sodium	SANTA ANA RIVER HYDRO UNIT	2.35	2.09	2.17	1	1	2.70	1.96	2 0.0 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
Mineral co	Mogne- stum M g	YOIAI	2.22	20 1.64 17	2.22	1	Î	0.25	13 1407	1.15
2	Colcium	YOIAO SUBAREA	130	119 5.94 61	129	1	8	1.30	3.54	63 3.14 49
Specific conduct-	- 0		1074	943	1040	1882	1865	454	624	635
	Hd	YD SU	7 - 7	7.5	7.6	7.6	7.2	7 • 8	7.6	7.5
Тетр	sampled in ° F	RIV H	1	1	1	1	79	1	1	1
-		ANA	1 8	S =	v ←	1 S	S H	· · ·	v)	
State well	Date sampled	LOWER SANTA ANA RIV HYD SUBUNIT EAST COASTAL PLAIN HYDRO	45/10W=33F 5-18-65	45/10W-34C 7-13-65	45/10W-34N 1 12-16-64	55/ 8W-31K 1 10-21-64	55/ 8W-32L 1	55/ 9W- 4D 1 1-18-65	55/ 9W- 5R 1 1-18-65	6-21-65

	Total hardness os CoCC3					353	192			
uents in	TOS Total Evop 180°C Ardness Computed CoCC3					535	415			
er mil	Sintr Co SiÓ ₂		1	-	-	1	23	1		1
Mineral constituents parts per million	Boron		1	1	1	0.08	0.17	1	1	1
<	Fiuo-		1	1	1	0.3	0.2	-	-	
	No 3		1	1	}	27 00.44	8 0.13	1	1	I
value	ride C1	Y0100	179	182	1.89	1.75	30	193	193	1.95
reactance value	Sulfate SO4		384	398	126	136 2.83 31	2.23	-	-	1
equivalents percent r	Bicor - bonale HCO ₃	O UNIT	303	311	234	245	3.61	314	317	353
edu	carbon -	R HYDR	0	0	0	0	0	0	0	0
ri	Polos -	A RIVE	1	1	1	0.05	0.03	1	1	1
stituents	Sodius	SANTA ANA RIVER HYDRO UNIT	1	1	8 8	2.04	3.09	!	1	1
Mineral constituents	Mogne- S stum M g		4	ŧ i	1	1.32	1.15	1	1	1
Mir	C 0 1 C 0 D	YOIAO SUBAREA YOIAI	l I	1	-	5.74	2.69	1	1	1
Specific conduct-	1 0	HYD SUBUNIT Y	1753	1848	840	872	673	1848	1900	1129
	Hd	YD SUE	7.4	7.6	7.6	7 • 5	7.6	7.7	7.9	7.6
	sampled in ° F	RIV HY	81	1	79	1	77			18
	~	INA	2 S		v	S	S	S		v)
State well	Date sampled	LOWER SANTA ANA RIV HYD SUBUNIT EAST COASTAL PLAIN HYDRO	55/ 9W-140 2 10-27-64	5- 4-65	55/ 9W-15J 1 2-17-65	55/ 9W-160 2 6-21-65	55/ 9W-21B 1 2-17-65	55/ 9W-24H 1 10-21-64	5- 4-65	55/ 9W-25E 1 2-17-65
0,	Do	LOWE	55/		55/	55/	55/	55/		55/

TABLE E-1
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	Total hardness os Cocos		1029	226	8	129	75		191	264
Jents in	TDS Total Evon 180°C nordness Evon 65°C 05 Computed CoCO3		1757	473	243	335	236		472	1526
constituents per million	S. 1. E		1	1	1	-	ł	ŧ	8	1
Mineral c	80.00		70°0	0.15	60.0	0.12	0.17	1	0.15	1.24
2	7 - 7 0 4 0 6		1.0	0 • 5	0 • 3	0 • 4	0 • 3	1	0 . 5	4 • 0
	N S S S S S S S S S S S S S S S S S S S		46 0 74	0	0	0.6	0.03	1	0	0
million se volue	0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Y0100	167	1.61	12 0.34 8	20 0.56 10	20 0.56	16	1.72	737
per	Sulfore SO4		807 16.80 65	3.31	1.04	1.92	19	1	3.10	0
equivalents percent re	Bicor - S bonote HCO3	TINO O	215	143	161 2.64 66	181 2.97 54	3.06	156	178 2.92 38	351
ped	Carbon -	R HYDR	0	0	0	0	0	0.33	0	0
c .	P 0 0 0 8	A RIVE	0.10	0.08	0.05	0.05	0.05	î î	0.03	0.15
constituents	E 0 Z	SANTA ANA RIVER HYDRO UNIT	134 5.83	2.65	57 2.48 59	2.78	2.39	}	3.70	479 20.83 79
Mineral co	Magne.	YOIAI	5.84	1.73	4 6 9 9 8	10	0.49	1	1.07	1.73
Σ	E 7 0 0	YO1AO	295 14°72 56	2.79	1.35	35 1.75 32	1.00	i i	55 2°74 36	3.54
conduct-	1 0	1	2230	718	454	545	387	433	764	2796
	На	AIN F	7.6	8.1	7.6	7 • 7	8 . 2.	8 • 4	7.9	7 • 7
Temp	ampled In F	RIV H	-	99	1	1	67	l 1		89
	0	COAS	N N	5 4	v> ←			S		
State well	Date sampled	LOWER SANTA ANA RIV HYD SUBUNIT EAST COASTAL PLAIN HYDRO	55/ 9W-30J 8-31-65	55/ 9W-30J 4 6-23-65	55/ 9W-31B 1 1-18-65	5-17-65	6-23-65	55/ 9W~32A 1 10-21-64	2-17-65	7- 6-65

	7 10 hordress as						296	316		362
uents in Iron	Evat 15 Computed					9. No.	670	079		738
constituent	. 60 %			1	1	1	1	1	-	
Mineral constituents parts per million	, , , , , , , , , , , , , , , , , , ,		1	1	1	1	0.07	0.14	1	0 • 14
	, D		1	1	-	i	0.5	7. 0	-	0 3
	\$ 0 4 \$ 0 4			1	1	3 9	20.03	30.00	1	3.1
million e value	2,4,5	Y0100	1.86	2.09	2.12	157	2.00	2.76 2.00	245	123
millior per eactanc	Suitate		1	1		1	180 3.75 32	3.96	l t	210
parts per equivalents percent r	Bicor - bonote	TINO O	244	362	364	3.43	303	301	364	302
par	Corbon. ole	R HYDR	0	0	0	0	0	0	0	0
Ē	P 0 10 X	A RIVE	1	1	1		0.10 1	0.10	ŀ	
Mineral constituents	8 00 2 2 2 S	SANTA ANA RIVER HYDRO UNIT	1	ţ	1	-	106	115	1	126 5.48 43
ineral co	Magne- sium		1	1	1	1	27 2.22 2.32	2.38	1	2.80
Σ	Colcium	Y01A0 SUBAREA	1	-	1	l I	3.69	3.94	1	8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Specific conduct-	1 0	HYD SUBUNIT YOLAO PLAIN HYDRO SUBAREA YOLAI	077	1196	1255	951	1040	1220	2074	1250
	I a	HYD SUE	7.6	7.8	0	7 • 7	7 • 8	7 • 8	7 • 2	7 0 7
Temp	sampled in ° F		84	1	1	8	1	1	72	1
		ANA	1 S	2 S		٧ 	.5		· ·	ر^ ا
State well	Date sampled	LOWER SANTA ANA RIV EAST COASTAL	55/ 9W-34J 1 2-17-65	55/ 9W-34J 2 10-21-64	5- 4-65	55/ 9W-340 1 2-17-65	55/ 9W-35J 1 2-16-65	6-21-65	55/ 9W-36B 1 10-27-64	11-27-64

TABLE E-I
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	Totol hordness os CoCO3		229		275		184		305		301		380		393		266		
uents in lion	TOS Total Evap 180°C hardness as Computed CaCos		294	338	425	904	277	277	468	445	450	445	567	550	607	570	430	403	
constituents per million	S.11		1		1		1		1		!		1		ł		1		
Mineral o	Boron		0.07		0.05		0.05		0.03		90.0		0.05		0.07		0.05		
~	r.de		0.5		0.5		0.5		9.0		0.5		9.0		9.0	-	0.4		
	trate NO3		11	8	20	4	8	0.02	17	0.61	22	0 9 35	7	0.11	11	0.18	14	0.23	
nillion	Ch 10 -	Y0100	1.24	20	56	22	21	12	43	1001	77	1.24	54	1056	99	1.58	47	1.33	
purts per million equivalents per million percent reactance value	Sulfate SO4		53	18	73	21	45	18	104	28	101	2.10	153	33	164	3.41	82	1.71	
equivalents percent	Bicar - bonote HCO3	O UNIT	228	09	228	52	214	69	253	53	248	4.06	295	500	596	4.85	235	3.85	
edu	Carbon -	R HYDR	0		0		0		0		0		0		0		0		
Ë.	Potos -	A RIVE	0.05	-	90.08) (-1	6000	2 2	4 0	7	4	0.10	40	0 7	4	0.10	2	0.05	
constituents	Sodium No	SANTA ANA RIVER HYDRO UNIT	35	25	1.74	54	31	26	42	23	0 + 1	1.74	4 0	21	949	2.00	45	1.96	
Mineral co	M agneral Magneral	S, YOIA1	18	24	14	16	9 0 24	14	19	19	٦,	1.48	22	o	22	1.84	15	1.23	
W	Coleium	Y01A0 SUBAREA Y	3.09	50	4.34	69	59	58	91	57	91	4 0 0 0 0 0 0 0	116	50	121	61	82	999	
Specific conduct-	1 0		609		739		664		140		753		046		952		869		
	H	HYD SUBUNIT PLAIN HYDRO	8 0		7 • 7		7.6		7.7		7.5		7.6		7.6		7.7		
Тетр	when sampled in ° F	RIV HY	l I		1		1				1		1		1		1		
		ANA	2 S				1 S		S				2 S				3		
Stote well	Date sampled	LOWER SANTA ANA RIV EAST COASTAL	5S/10W- 1E 10-27-64		12-15-64		55/10W- 3B 6-22-65		55/10W- 4E		000	00000	55/10W- 4P		37-05-8		55/10W-12L	60-61-4	

	Totol hordness os Co C O 3		176		183		233		176		23		129		19		371		
llion	T D S Evap 80°C Evap 05°C Computed		320	285	278	298	358	345	283	274	217	211	264	246	217	204	820	169	
constituents per million	S: 1- C0 S:02		1		1		ł		1		l l		1		1		1		
Mineral parts p	Boron		0.05		0.05		0.07		0.05		60.0		0.05		0.05		0.16		
2	0 0 L		7.0		0.3		7.0		0 • 3		1.0		7.0		1.0		9.0		
	No - trote NO 3		2.5	7	2.5		6.2	0.10	0		0	-	9.0	4	0.0		2		
nillion	ride CBlo-	Y0100	18 0.51	10	22	11	53	0.82	14	8 8	15	0.42	13	- Φ	13	10	110	25	
reactance value	Sulfate SO 4		1.19	23	58	22	75	1.56	62	1.29	22	0.46	4 6	23	24	13	337	200	
equivalents percent r	Bicor - bonate HCO3	O UNIT	207	99	218	99	224	3.67	190	3.11	173	92	185	69	173	76	151	20	
P 6	Corbon - ote CO 3	R HYDR	0		0		0		0		0		0		0		0		
Ë	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A RIVE	0.05	-	0.05			0.02	(0.00	(0.03	2000	7	0.03	-	9 4 1	4	
constituents	E nipos	SANTA ANA RIVER HYDRO UNIT	39	32	39	31	39	1.00	38	32	80	2 80 8 80	1.001	45	73	89	111	300	
Mineral co	Nogoe Sign	S, YOIA1	10	16	10	15	16	1.32	10	0.82	0	0.75	7	13	0.08	2	32	21	
2	C 0 C 0 C	Y01A0 SUBAREA Y	54 2.69	21	57	52	67	3.34	50	298	4	0.20	40	55	9 0 30	00	96	39	
conduct-	mhos at 25°C)		524		538		019		505		380		194		370		1200		
	H _a	HYD SUBUNIT PLAIN HYDRO	7.5		7.6		7.5		7.5		8.0		7.4		7.8		7.07		
Temp	sampled In ° F		ţ		1		1				1				1		1		
		ANTA ANA RIV	7 S		1 8				1 S		1 S		ς N		S		5 S		
State well number	Date sampled	OWER SANTA ANA RIV EAST COASTAL	55/10W-13B		55/10W-13C 1			3-24-65	55/10W-20N	1 1 8 - 0 2	55/10W-25R	3-24-65	55/10W-26D		55/10W-27E		55/10W-30P		

TABLE E-I
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	T tol hordness as Call 3		424		211		160			230			187			207		255			601			
constituents m per million	Evap Broce Evap CSOC Computed		659	593	325	311	265		239	350	220	367	300	270	613	330	307	425		379	1943	1010	6701	
constituent per million	50.1.		-		1		1			-			1			1		1			1			
Mineral o	c 5 30		0.12		40°0		0.04			0.08			0.04			0.04		0.08			0.08			
	2 P 4		0.5		9.0		9.0			9.0			9.0			7.0		0.5			1.1			
	2 0 Z 0 Z 0 Z 0 Z 0 Z 0 Z 0 Z 0 Z 0 Z 0		4	0.06	0		-1	0.02		0			0			1	0.02	0			2	0.03		
million e value	0 4 10	Y0100	247	1.33	25	0.71	12		Φ	25	0.71	7 7	18	0.51	0	23	0.65	37	1.04	15	202	5.70	64	
million per eactanc	Sultate		140	2.91	48	1.00	33	69.0	15	04	0.83	7	4 1	0.85	D	51	1.06	68	1.42	20	930	19,36	0	
parts per equivalents percent	Brcor - bonate HCO3	UNIT	390	6.39	251	4.11	210	3.44	77	285	4.67	0	234	3.84	t -	237	3.88	276	4.52	69	267	4.38	12	
edi	Carbon -	RIVER HYDRO UNIT	0		C		0			0			0			0		0			0			
.i.	0 % 0 0 % 0 5 X 1 8 X		47	0.10	3	0.08	2	0.05	٦	3	0.08	7	3	0.08	7	3	0.08	4	0.10	٦	8	0.08		
constituents	E o Z	SANTA ANA	53	2.30	35	1.52	29	1.26	28	37	1.61	97	33	1.43	17	35	1.52	43	1.87	56	345	15.00	0	
Mineral co	M a	S, YOIA1	26	2.14	13	1.07	2	0.74	16	14	1.15	βŢ	11	0.90	`	6	0.74	17	1.40	20	55	4.52	7	
2	Calcium	Y01A0 SUBAREA	127	6.34	63	3.14	64	2.45	54	69	3.44	0	57	2.84	40	68	3.39	74	3.69	55	150	7.49	07	
Specific conduct-	(micro- mhos at 25°C)	V HYD SUBUNIT	962		543		428			584			488			525		648			2800			
	I	D SU	7 . 4		8 0		7 . 8			7.5			7.7			0.8		7.6			8.0			
Temp.	sampled in ° F	RIV HYD TAL PLAI	1							1			1			1		-			1			
State well	Date sompled	LOWER SANTA ANA RIV EAST COASTAL	55/10W-31A12 S	7- 9-65	55/10W-31B 3 S	7- 9-65	55/10W-31B 7 S			55/10W-31B 8 S	7- 9-65		55/10W-31C 7 S	7- 9-65		55/10W-31H 3 S	7- 9-65	55/10W-31L 2 S			55/10W-33C 2 S	2-16-65		

	nordness cs Couts		136		319		180		179		150		30		68		23		
uents in	T 6.5 bardness Evop 105°C cs		240	236	506	450	274	569	301	269	245	239	219	196	299	296	229	198	
constituents per million	5. 1. co S 0 2		1		1		1		1		1		-		1		1		
Mineral parts p	() (B		0.03		0.04		0.03		90.0		0.03		90.0		90.0		0.07		
	Fluo-		4.0		9.0		0.5		0.5		0.5		4.0		9.0		9.0		
	Irole NO.		0		80	2 0	0.1		9.0	1000	0		0.0		0		1	200	
per mittion ctance value	Chlo -	Y0100	13	0	53	18	18	10	16	0	12	2	16	1 1 2	31	17	13	10	
0	Sulfore SU4		43	21	105	27	45	19	45	10	34	16	23	13	83	34	21	12	
equivalents percent	Bicor - bonote HCC3	TINO	188	7.1	262	2 20	215	717	216	72	207	16	163	74	153	64	165	92	
por per	Carbon - ate CO3	R HYDRG	0		0		0		0		0		0		0		0		
Ë	Pot os x	A RIVE	0.05	-	4		600	2 2	3	2	2	7	10.03	1	10.03	7	0.03		
constituents	Sodium	SANTA ANA RIVER HYDRO UNIT	36	36	1 - 74	21	32	1.27	32	28	35	33	65 2.83	82	3.48	72	3.09	87	
Mineral co.	N o o o	S/	8 0.66	15	26	26	11	18	6	15	6	16	3	7	3	5	0		
×	Coleius	Y01A0 SUBAREA Y	41 2.05	47	85	52	54	53	57	99	7.25	64	7 0 35	10	22	23	9 0 0 45	13	
Specific conduct-	1 0		944		787		665		664		430		345		536		361		
	I	HYD SUBUNIT PLAIN HYDRO	7.6		7.6		7.5		7.8		7.8		7.6		8 • 2		7.6		
Temp.	sampled in ° F		1		1		1		1		1		}		-		1		
State well	Date sampled	LOWER SANTA ANA RIV EAST COASTAL	55/10W-33C 2 S 8-31-65		55/11W- 1H 1 S 7-13-65		55/11W- 3H 4 S		4-19-65		55/11W- 4D 1 S 2-16-65		55/11W- 7C 1 S 10-27-64		55/11W- 7C 2 S		4-20-65		

TABLE E-I
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	Total hardness as Co C C 3		226		173		152		146		4 1		126		142		9469		
constituents in per million	TDS Total Evop 180°C as Evop 105°C as Computed CoCC3		360	330	302	263	242	243	234	240	223	508	284	252	268	267	30670 6946	28516	
constituent per million	Silt- co SiO ₂		1		ł		1		1		1		1		-		-		
Mineral c	Boron		0.03		0.05		0.04		0.02		0.01		0		0.05		3.10		
_	Fluo- ride F		0.5		0.5		0.5		9.0		0.3		0.3		7.0		1.6		
	ni - irote NO 3		0		0		0		0		0.0		0.0		0.0		13	17.0	
million ce value	Chlo-	Y0100	24	11	13	0	11	0.31	12	900	20	16	18	11	19	11	15775	06	
millic per eactan	Sulfate SO4		57	19	42	18	38	18	38	18	1,37	39	41	19	59	1.63	2145	6	
parts per equivalents percent r	Bicar - bonate HCO3	UNIT	259	69	223	75	206	3.38	204	3.34	79	37	191	3.13	150	55	298		
par	Carbon - ofe	R HYDRO	0		0		0		0		8	8	0		14	10	0		
n in	P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A RIVE	£ 0	7	600	2 2	600	2 2	2 3	0	0.15	4	200	0.10	2	0.13	221		
constituents	Sodium	SANTA ANA RIVER HYDRO UNIT	36	25	32	28	33	1.43	34	33	55	71	747	7.04	4.3	39	8100	71	
Mineral c	Magne- stum Mg	S Y01A1	13	17	10	17	7	13	88	15	2 0 1 4	5	2.	0.41	9 0	10	1035	17	
2	Calcium	Y01A0 SUBAREA	69	56	53	75.	64	2.40	45	51	13	19	42	645	747	64	1076	11	
Specific conduct-	(micro- mhos at 25°C)	HYD SUBUNIT PLAIN HYDRO S	602		488		944		437		330		350		360		00004		
	рн	YD SU	7.8		7.7		7.8		7.9		7.6		8.0		8 • 4		7.2		
Temp	when sampled in °F	RIV H	1		1		1		!		29		19		1		49		
State well	led	LOWER SANTA ANA RIV HYD EAST COASTAL PLAI	55/11W-11Q 3 S	10000	2 - 0 - 1 - 2	00-01-0	55/11W-14K 2 S	77-18-04	55/11W-16A 2 S	10-01-21	55/11W-16G 1 S		55/11W-16G 2 S	60-87-0	58/11W-16G 3 S	69-61-7	55/11W-18N 3 S		

	Total hardness os Ca CO3		1501		3702		595		45		161		191		166		158	
uents in lion	TOS Total Evap 180°C hardness Evap 105°C os		6144	5129	16360	13587	2930	2519	225	195	300	290	380	345	270	273	298	254
constituents per million	Setti- co Seto2		1		1		1		1				!		1		1	
Mineral c	Boron		0.24		1.00		0.20		0.10		0.04		0.07		0.04		0.05	
2	Fluo-		4.0		0 • 8		0.5		9.0		9.0		9.0		1.0		9.0	
	rote NO3		9		11	0.18	11	81.0	0		0		0.0		-	70.0	0.0	
per million ctance value	Chlo-	Y0100	2850	92	7550	06	1320	31.022	14	11	99	35	75	34	28	15	17	10
0	Sulfate SO 4		331	8	973	6	186	0.00	16	0	36	14	37	12	36	15	36	16
- 6	Bicor - bonote HCO3	O UNIT	7		254	4.10	141	5 5	173	80	161	200	207	25.0	207	999	212	74
equiva	Corbon -	R HYDR	9		0		0		0		0		0		5 2	3	0	
Ē	Potos -	A RIVE	25	7	98	10.07	9 4	0 0	0.05		60-0	- 0	40	2	60	2	0.10	2
constituents	8 0 Z	SANTA ANA RIVER HYDRO UNIT	1361	99	3655	99	736	47	61	14	747	38	57	36	1.76	34	34	31
Mineral co	Mogne.	YOIAI	94	0		17	56	11	3	7	10	15	10	13	13	21	8 0 0	14
Σ	E 7 0 0 0	Y01A0 SUBAREA	446	25	695	15	134	15	13	18	2.40	45	09	47	45	44	50	23
Specific conduct-	mhos at 25°C)	HYD SUBUNIT PLAIN HYDRO SI	8850		20096		4647		386		530		049		684		458	
-	I	VD SU	9.2		7.4		7.8		7.7		8.2		7.9		8.4		7.9	
Temp	sampled in F		99		79		99		70		69		1		69		1	
State well	Ded o	LOWER SANTA ANA RIV EAST COASTAL	55/11W-18N 4 S		55/11W-18N 5 S		55/11W-18N 6 S		55/11W-18N 7 S 7- 2-65		55/11W-19B 2 S		55/11W-19B 3 S		7- 8-65		55/11W-19B 4 S 3- 9-65	

TABLE E-I ANALYSES OF GROUND WATER SANTA ANA DRAINAGE PROVINCE (Y)

	Total hardness as CaCO3		156	64	50	18	17	159	144	166
uents in lion	Evap 180°C Fyop Cror Computed		260	228	200	200	160	333	269	332
constituents per million	\$ 1.		1 8	1	1	1	ì	i i	1	1 1
Mineral c	B, 7. 6		0.05	0.05	90.0	60.0	0.10	90.0	0.07	0.07
-	7 C C		9.0	0.5	0 • 5	1.0	1.0	9.0	0.7	9.0
	7 0 7 0 7 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0		0	0.0	0	0.0	0.02	1.0	0	0
million e value	Ch 10 ride C1	Y0100	16	14 0.39	14 0 • 39	14 0 39	17 0 • 48	1.10	22 0.62 13	1.69
per per eoctono	Solfote SO 4		34 0.71	30	30	0.19	0.19	43	39	0.94
pe	Bicor - bonate HCO3	UNIT	212	150	134 2.20	142 2.33	146 2.39	215	195 3.20 69	215 3.52 57
ports equiva percen	Corbon ofe CO ₃	RIVER HYDRO UNIT	0	0	10	0.30	0.23	0	0	0
.c	Potos Sium K	A RIVE	3 0.08	0.05	0.05	0.03	0.03	0.10	0.08	0.05
constituents	E D N	SANTA ANA	33	2.39	59 2.57	2 • 78 88	2.87	2.13	1.74	2 53 4 43
Mineral co	M o g n e		10 0.82	0.08	0.25	0	0.08	10	10	0.82
Σ.	E 7 . 0 . 0	YO1AO SUBAREA YO1A1	2.30	18	0.75	0.35	0.25	2.35	41 2.05 44	2 2 4 4 5 0
Specific conduct-	mhos at 25°C)	IV HYD SUBUNIT YAL PLAIN HYDRO SU	438	355	342	326	301	526	944	049
	Ha	D SU	8 . 2	8 .2	8 . 6	4	4 • 8	8 1	8 • 2	7.9
Temp	sampled in°F	MY HY	8 9	ŀ	71	1	75	1	1	1
		LOWER SANTA ANA RIV HYD EAST COASTAL PLAI	19B 4 S -65	198 5 S -65	-65	S 9 861	-65	19B 8 S	.65	6 8 9 S
State well	Date sampled	OWER SAN	55/11W-19B 7- 8-65	55/11W-198 5 3- 9-65	7- 8-65	55/11W-198 6 S 3- 3-65	7- 8-65	5S/11W-19B 8 3- 3-65	7- 8-65	55/11W-19B 9 3- 3-65

TABLE E-1
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	9.0	50. 3		151			236			254			753			668			822			256			151			
ents in ion	T 0.5	Evap 180°C no Evap 105°C Computed 50		282)	277	437		360	403		364	4682		2880	2900 1		2625	1640		1432	390		362	260		252	
constituents per million	-11.5			1		_	-	_		1			1			1	_		1			1			!			
Mineral c	Boron			0.08			0.08			90.0			0.20			0.20			0.24			0.08			0.05			
≥	Fluo-			0.7			0.5		_	9.0			47 • 0			0.5			7.0			0.7		-	8 · O			
	ı	trate NO3		0			0.0			0			0.0			17	0.27	1	5.0	0.08		0.0			0.0			
million s value	10140	- i d e	Y0100	30	0.85	17	82	2.31	34	85	2.40	36	1517	42.78	82	1420	40.04	86	0 5 5	12.41	48	0 7	1.13	17	15	0.42	6	
ts per million reactance value	Sulfale	504		04	0.83	16	44	0.92	14	42	0.87	13	216	4.50	6	156	3.25	7	247	5.14	20	62	1.29	19	35	0.73	15	
equivalents percent	Bicor -	bonole HCO3	O UNIT	210	3.44	67	213	3.49	55	211	3.46	51	294	4.82	6	198	3.25	7	486	7.97	31	259	4.25	79	217	3.56	16	
edu	Carbon -	0 te	R HYDR	0			0			0			0			0			0			0			0			
.c	Potas -		A RIVE	6	0.08	2	7	0.10	2	8	0.08	1	9	0.15		10	0.26	1	47	0.10		6	0.08	7	m	0.08	2	
constituents	E nipos		SANTA ANA RIVER HYDRO UNIT	949	2.00	39	39	1.70	26	38	1.65	24	369	16.04	31	330	14.35	30	215	9.35	36	37	1.61	24	38	1.65	35	
Mineral co	Moone	8 0	S/	10	0.82	16	~	1.07	16	15	1.23	18	116	9.54	19	114	9.38	20	74	6009	54	16	1.32	19	10	0.82	17	
×	Colcium	° U	Y01A0 SUBAREA	77	2.20	43	73	3.64	56	77	3.84	96	511	25.50	20	480	23.95	50	207	10.33	0.4	76	3.79	96	77	2.20	94	
Specific conduct-	1	mhos at 25°C)		464			672			675			5216			4808			2381			629			445			
	Hd		HYD SUBUNIT PLAIN HYDRO	8.1			8.0			8.1			7.3			7.1			7.9			7.9	Ī		8.2			
Temp.	when	in F		1						1			1			68			ļ L			1			1			
State well		Date sampled	LOWER SANTA ANA RIV EAST COASTAL	55/11W-19B 9 S	7- 8-65		55/11W-19810 S	3- 3-65			7- 8-65		55/11W-19B11 S	3- 9-65			7-12-65		55/11W-20E 4 S	3- 3-65		55/11W-20E 5 S	3- 3-65		55/11W-20E 6 S	3- 3-65		

TABLE E-I
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	Total hardness as Caccs		4685		209		204		99			70		8646		8674		175		
uents in	Evap 105°C Computed		12088	11129	944	376	385	352	260	184		206	207	20560	19655	21830	19765	280	255	
constituent per million	St 1: ca SiO ₂		-		ŀ		-		1			1		1		-		i		
Mineral constituents parts per million	B		0.25		0.04		90.0		0.06			90.0		0.20		0.20		90.0		
	Fluo		9.0		0.5		9.0		0.5			7.0		1.2		1.2		0.8		
	trate NO 3		1 0	70.0	0.0		0.0		0.0			7	0.02	12.0	0.19	2	0.03	0.0		
million e value	Chlo- ride Ci	Y0100	6325	168.31	101	42	9.1	2.57	13	0.37	1	16	0.45	11300	318.66	11335	319.65	21	0.59	
million per sactanc	Sulfate SO4			15.09	45	0.94	41	0.85	24	0.50	1	30	0.62	1200	24.98		24042	31	0.65	
pe len	Bicar - bonate HCO3	LIND	140	2.29	186	20°0 00°0 00°0	181	2.97	156	2.56	-	160	2.62	237	3.88	220	3.61	215	3.52	
parts equiva percen	Carbon - ate	R HYDRO	0		0		0		0			0		0		0		0		
c :	Potos .	A RIVE	27	0	2	0.05	60	0.08	2	0.05	4	2	0.05	36	0.92	38	16.0	60	0.08	
constituents	Enipos No	SANTA ANA RIVER HYDRO UNIT	2360	102.61	09	2.61	53	2.30	20	2.17	70	53	2.30	4000	17,3.92	4120	179.14	30	1,30	
Mineral co	Mogne- stum M g	S	394	32.40	12	0.99	12	0.99	'n	0.41	71	3	0.25	731	60.12	751	61.76	11	0.90	
2	C 0 10:00	YOIAO	1227	51.23	99	3.19	29	3.09	18	0.90	67	23	1.15	2258	112.67	2236	111.58	55	2.59	
Specific conduct-	mhos at 25°C)	HYD SUBUNIT PLAIN HYDRO S	18109		710		659		355			360		26320		29197		468		
	ī	HYD SU PLAIN	7.2		8.0		8.0		8.2			8.1		7.1		7.1		7.9		
Тетр	when sampled in ° F	> -1	69		1		99		1			69		1		99		1		
State well	pe	LOWER SANTA ANA RIV EAST COASTAL	55/11W-20M 2 S	59-6-1	55/11W-20M 3 S	3- 2-65		7- 9-65	5S/11W-20M 4 S	3- 2-65			7- 9-65	55/11W-20M 6 S	3- 2-65		7- 9-65	55/11W-20M 7 S	3- 2-65	

	Total hardness os	COCCS		177				8792		6081		2356		7061		7257		393	
lion	T 0 S Total Evap 180°C hardness Evap 105°C os	Computed		282	271	35130	32132	33720	31211	30000	27952	5010	3411	29800	27255	41800	39830	879	618
constituent per million	Sili	20.5		1		1		f f		į.		1		1		-		-	
Mineral constituents parts per million	c	8		0.06		0.30		0.10		4.00		0.12		2.40		2.00	-	0.11	
	Fluo-			1.0		1.6		1.6		1.0		7.0		1.0		1.1		0.5	-
	Prote	NO3		0		5.0	0.08	13	17.0	11.0	2	5.3		8.7	†	14	0.00	0	
million e value	Chlor	-0	Y0100	26	0.73	19000	535.80	18700	96	15360	06	1968	06	15260	90	22270	91	241	61
per	Sulfate	504		38	0.79		34.42		9	2221		163	5	1940		2849		58	11
equivalents percent r		HCO3	O UNIT	217	3.56	237	3.88	190	0.11	239	1	165	4	353	-	35.5	1.02	193	288
bed	Corbon -	CO 3	R HYDR	0		0		0		0		0		0		0		0	
.E	1 E	×	A RIVE	e,	0.08	500	A 80 0	34	0	235		16		39		289		4	1
constituents	Sodium	o Z	SANTA ANA RIVER HYDRO UNIT	33	1.43	5000	37	4300	33	8270	14	310	22	7590	70	12140	18	77	30
Mineral co	Mogne.	2	YOIAI	11	0.90	1438	118.26		22	1085	18	10.20	17	706		1264		22	16
2	Colcium	٥	Y01A0 SUBAREA	53	2.64		42.00	5037	45	22.29	7	739	09	1333	14	823		121	23
Specific conduct-	micro-	of 25°C)	HYD SUBUNIT PLAIN HYDRO SU	478		40486		42918		37860		6297		36030		48750		1190	
	H _a		D SUE	8 . 1		7.0		7.0		7.2		7.5		7.2		7.6		8.0	
Temp	sampled in ° F			99		1		99		1		1		1		1		1	
State well	Date sampled		LOWER SANTA ANA RIV EAST COASTAL	5S/11W-20M 7 S	7- 9-65	5S/11W-20M 8 S	60-7-6	7- 9-65		55/11W-20N 1 S		55/11W-20N 2 S		55/11W-20N 3 S		55/11W-20N 4 S		55/11W-200 3 S	

TABLE E-I
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	7 to nardness 0s Ca C O 3		550		4633		203		212		178		261		123		218		
uents in Lion	TDS hordness Evop 185°C os Computed Co CO3		1314	785	8720	6918	316	316	398	334	301	295	468	395	332	350	462	344	
constituents per million	5 0 2		1		1		1		ł		-		1		ļ		ŀ		
Mineral c	B 0101		60.0		0.15		0.04		0.10		0.02		0.10		0.05		0.12		
2	F.u0		0.5		9.0		0.5		9.0		0.5		0.5		5°0		0.5		
	frote NO3		0		115	2		0.02	- 0	70.0	0		7	70.0	0		0.0		
million e value	chlo- ride Cl	Y0100	352	10	3872	68	63	30		30	45	1.27	109	3.01	53	1.49	28	13	
millior per eoctono	Sulfate SO4		62	6		1 30	39	0.81	38	13	38	0.79		0.8/	68	1.42	88 3	30	
parts per equivalents percent	Bicor - bonote HCO3	UNIT	185	21	133	2	199	3.26	197	53	208	3.41	203	3.46	151	2.47	214	57	
par	Carbon - ate CO3	ANA RIVER HYDRO UNIT	0		Э		0			4	0		0		19	0.63	0		
ri	90 to 9	A RIVE	0.10	7	16	1	6	0.08	m (0.0	9	0.08	9	0.08	5	0.13	m 0	0.00	
constituents	Sodium	SANTA AN	75	23	669	25	39	1.70	43	30	41	1.78	45	1.96	83	3.61	42	1.03	
Mineral co	Magne. S.u.m	S, Y01A1	30	17	266	18	6	1.07	11	0.90	10	0.82	15	1.23	3	0.25	16	1.32	
W	Calcium	YO1AO	171	65	1417	57	09	2.99	67	3.34	55	2.74	80	3.99	77	2.20	61	70.0	
Specific conduct-	mhos at 25°C)	HYD SUBUNIT PLAIN HYDRO S	1524		11280		586		602		540		742		572		540		
	Hd	ND SU	8 • 1		7.4		8 1		8 3		7.9		8.3		8.3		7.9		
Тетр	sampled in °F	RIV HY	i		ļ				i i				ì		69		1		
State well	pe	LOWER SANTA ANA RIV HYD EAST COASTAL PLAI	55/11W-20Q 4 S 9-23-65		55/11W-20Q 5 S	00-07-6	55/11W-20Q 6 S	9-23-65	55/11W-20011 S	9-23-65	55/11W-20012 S	9-23-65	55/11W-20013 S	9-23-65	55/11W-21G 1 S	6-25-65	55/11W-21M 7 S	1-23-63	

TABLE E-I
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

No. No.
SANTA ANA RIVER HYDRO UNIT SANTA ANA RIVER HYDRO SANTA ANA RIVER
3 5 5 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2.52 0.03 2.61 0.60 0.51 0.0 0.4 0.10 228 2.52 0.03 2.61 0.60 0.51 0.0 0.4 0.10 228 2.22 0.05 0.05 0.62 0.05 0.0 0.4 0.12 368 1.61 0.05 0.197 108 22 0.0 0.4 0.12 368 1.61 0.05 0.197 108 22 0.0 0.4 0.12 368 1.61 0.05 0.06 0.6 0.0 0.0 0.12 248 1.61 0.06 0.06 0.0
2.22 0.05 197 108 22 0.0 0.4 0.12 368 2.22 0.05 197 108 22 0.0 0.4 0.12 368 3.61 1.23 2.25 0.55 0.55 0.0 0.2 0.10 242 1.61 0.05 193 3.1 20 0.0 0.2 0.10 242 1.61 0.05 10.2 10.2 10.2 0.0 0.
2.22 0.05 0.62 0.00 0.4 0.12 366 3.6 1 3.23 2.25 0.62 0.00 0.01 346 1.61 0.05 0 193 3.1 0.56 0.00 0.02 0.01 242 1.61 0.05 0 220 102 46 0.00 0.04 0.01 242 2.35 0.08 1 3.61 2.12 1.30 0.00 0.04 0.01 400 1.78 0.010 2.20 1.20 0.00 0.
1-61
1.51 0.05 0.93 31 20 0.05 0.05 0.00 0.0
1.0 1.0
2.35 0.08 0.08 0.08 0.09 0.00 <td< td=""></td<>
441 3 252 47 46 0.0 0.2 0.10 380 1.78 0.10 4.13 0.98 1.30 347 27 3.6 3 0.216 37 1.44 0.0 0.4 0.10 347 1.57 0.00 3.54 0.77 1.444 25 0.0 0.0 0.0 0.0 0.0 347 1.78 0.00 3.89 1.044 1.47 2.3 0.0 0.0 0.0 0.0 0.0 0.0 3.40 2.30 0.01 1.04 1.47 2.3 0.0 0.
1.78 0.10 252 47 46 0.0 0.2 0.10 380 27 2.1 4.13 0.98 1.30 0.0 0.10 347 1.57 0.05 2.6 0.77 1.44 0.0 0.4 0.10 347 1.57 0.05 0.25 0.77 1.44 0.0 0.2 0.0 3.5 4.1 3 0 235 50 52 0.0 0.2 0.07 404 1.78 0.08 1.04 1.47 0.0 0.2 0.07 307 2.30 0.09 2.35 1.00 2.2 0.07 404 2.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
27 27 2 64 15 20 0.04 0.10 3.44 15 20 15 1.57 0.00 0.44 0.10 3.44 15 20 15 1.57 0.00 0.44 0.10 3.44 15 20 0.00 0.45 0.10 3.44 15 27 0.00 0.2 0.00 0.2 0.00 0.2 0.00 0.2 0.00 0.2 0.00 0.
36 3 0 216 37 1.44 0.0 0.46 0.10 334 27 1 62 13 25 13 25 307 307 1,78 0.05 235 50 25 50 0.0 0.25 0.07 404 28 1 61 1.04 1.47 0.0 0.22 0.07 404 53 1 61 1.04 23 1.47 3.40 3.40 53 1 1 1.54 2.9 14 0.0 0.2 0.10 226 53 0 0 2.3 0.60 0.39 0.10 226 5.30 0
27 1 62 13 25 25 13 25 0.0 0.2 0.07 404 1.47 28 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.0
1.78 0.08 3.85 1.04 1.47 0.0 0.2 0.07 404 1.78 0.0 0.2 0.07 404 1.47 0.0 0.2 0.07 404 1.40 1.41 1.23 0.03 0.39 0.39 0.03 0.03 0.03 0.03 0.0
2.30 0.013 0.03 2.52 0.60 0.39 0.10 226 0.5 0.10 195
2.30 0.03 0.03 2.52 0.60 0.39 0.39 0.10 226 195
67 1 1 71 17 11

TABLE E-I
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	Totol	CO CO CO 3	174			176		123			127			44			27			32			27		
lion	6363	Computed	291	}	258	229	266	320		311	360		283	261		248	241	212	577	237	010	617	219	209	
constituents per million	Siti-	202				1		-			1						1			ŀ			1		
Mineral o	c	20	1			0.04		0.06			0.04			0.17			0.08			0.11			0.11		
	Fluor					9.0		0.5			0 • 3			1.0			9.0			6.0			1.0		
	rote	m O Z	0.5	0.01		1.2	0.02	0 • 8	0.01		0.8	0.01		9.0	0.01		0			1.2	0.02	1	0.0		
million e value	Ch 10 -	Y0100	14	0.39	00	16	0.45	94	1.30	24	32	06.0	18	13	0.37	20	13	0.37	2	16	0.45	7 7	16	12	
million per sactanc	Sulfate	4	6.3	0.90	19	45	0.94	63	1.31	54	25	1.19	54	7	0.15	m	13	0.27	-	13	0.27	_	12	7	
en t		UNIT	213	3.46	73	214	3.51	146	2.39	44	175	2.87	58	246	4.03	88	196	3.21	000	199	3.26	28	190	81	
parts equiva percen	Corbon -	R HYDRO	C)	-	0		12	0 * 40	7	0			0			0			0			0		
	Fotos - 8 - 1 - 8 - 1	A RIVE	a	0.08	2	m	0.08	5	0.13	2	2	0.13		7	0.03	-	0			1	0.03	-	- 0	0 ~	
constituents	E nipos		30	1.30	27	31	1.35	99	2.87	53	55	2.39	24	88	3.83	83	80	3.48	0	77	3.35	40	75	3.60	
Mineral co	Magner	Σ .	OTATO	0.74	15	10	0.82	2	0.41	80	9	64.0	10	1	0.08	2	1	0.08	٧	7	0.08	7	- 0	0.0	
2	Calcium	N O I	DAKEA	2.74	99	54	2.69	43	2.05	38	41	2.05	41	16	0.80	17	0	0.45	1	11	0.55	14	6	12	
Specific conduct-	mhos	TINDBOX OAH A	PLAIN NIUKO SI			476		559			513			436			393			380			388		
	H	ns o	7.4			7.6		4 . 6			8 0			7.7			8 . 2			8.0			8 • 0		
Тетр	sampled in ° F	ZIV H				1		899			89			1			1			ŀ			1		
State well	Pe	LOWER SANTA ANA RIV	FC/11W-23A 2 C				6-21-65	55/11W-26H 7 S			55/11W-26H 8 S	6- 2-65		55/11W-26M 7 S	4-20-65		55/11W-26M 9 S	11-27-64			3-24-65			69-71-1	

number	Temp		conduct-	Σ	Mineral co	constituents	i.	ed	equivalents percent r	ts per million reactance value	million 8 value			Mineral	constituent per million	constituents in per million	
Date sampled	when sampled in °F	Hd	mhos ot 25°C)	£		Enipos D N	0	Corbon -	1 0 0	Sulfate	1046	1 a 6 2	Fluo-	80100	S.11	TOS Total Evap 180°C Ardness Evap 105°C Computed	Total hardness os
LOWER SANTA ANA RIV EAST COASTAL		HYD SU	HYD SUBUNIT Y	YOIAU SUBAREA YOIA	-	SANTA ANA RIVER HYDRO UNIT	A RIVE	R HYDR	TINO O	1	Y0100					1	
55/11W-260 1 S	69	8.4	428	37	4	50	4	80	173	34	16	00	4.0	0.05	1	260	109
5-25-65				1.85	0.33	2.17	0.10	0.27	2.84	0.71	0.45	0.13				246	
55/11W-26Q 2 S	68	8.2	580	63	10	55		11	139	84	09	7.5	9.0	0.05	1	396	198
5-25-65				3.14	0.82	2.39	0.13	0.37	2.28	1.75	1.69	0.12				364	
58/11W-270 3 S	69	8.9	370	10	0	88	М	28	183	0	23	0 .8	9.0	0.13	-	364	25
6-14-65				0.50		3.83	0.08	0.93	3.00		0.65	0.01				243	
58/11W-270 4 S	69	8 9	575	36	7	74		0	124	119	m ·	14.6	0.3	0.16	1	416	119
6-14-65				1.80	0.58	3.22	0.13		2.03	2.48	0.85	0.24				347	
55/11W-28D 4 S	-	7.3	730	89	28	41	9	0	227	208	25	0.0	0.5	0.15	1	545	337
1-25-65				4.44	2.30	1.78	0.08		3.72	4.33	0.71					909	
58/11W-28D 5 S	1	7.9	630	64	23	51	2	0	212	124	20	0.0	0.5	0.18	1	004	217
12-23-64				2.45	1.89	2.22	0.05		3.47	2.58	0.56					374	
	1	8.0	532	58	13	52	2	0	201	110	21	0.0	0.2	0.10	l	370	198
1-25-65				2.89	1.07	2.26	0.05		3.29	2.29	0.59					355	
55/11W-28D 6 S	1	7.7	066	126	32	147	9	0	203	328	6	0.0	0.5	0.15	1	769	944
49-81-71				57	75	18	1000		30	61	000					671	

TABLE E-I
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	Tutol hordness os Cours		397		108		150		14		311		235		1425		1499		
uents in lion	Evop 180°C hordness Evop 105°C os Computed Coves		630	587	335	324	240	255	584	533	700	508	521	429	3012	2343	31540	29290	
constituents per million	Sette- co SiO ₂		l l		1		-		Į.		1		-		į.		1		
Mineral o	Boron		0.12		0.05		0.12		0.05		60.0		0.10		0.30		2.50		
~	Fluor		5.0		5.0		7.0		0.1		4.0		0.5		4.0		1.6		
	Ni - trate NO3		0.0		0		0.0		0.0		1.5	70.0	1	0.02	ω '	0.13	9.0	0.10	
million	Chlo- ride Cl	40100	41	12	96	949	25	15	156	240	195	090	155	4.37	1320	37.22	16150	06	
parts per million equivalents per million percent reactance value	Sulfore SO 4		259	52	20	7	34	15	20	0.10	4	0 00	37	0.77	132	2.75		60014	
parts per equivalents percent	Bicor - bonate HCO3	TIND	196	33	170	147	203	2.03	219	38	173	2.84	159	2.61	123	2.02	183	3.00	
por	Carbon . ote CO 3	RIVER HYDRO UNIT	0		0		0		41	103/	0		0		0		0		
Ë	Potos .	RIVE	w a		2	7	200		13	0.00	m (0.0	6	0.08	2	0.23	130	5.32	
constituents	e no v	SANTA ANA	45	20	81	62	45	38	205	76 8	68	2.96	19	2.91	300	13.04	8720	319.15	
Mineral co	Magne- s-um Mg	YOIAI	26	21	3	4	12	20	1	0.08	-	1.32	11	0.90	00	7.32		93.26	
2	Caicium	Y01A0 SUBAREA	116	58	38	33	10 4	41	7	0.20		4 • 8 9 9	16	3.79	454	21.16	793	39.51	
Specific conduct-	(micro- mhos at 25°C)	HYD SUBUNIT PLAIN HYDRO S	820		622		455		016		616		832		4368		40323		
	Hd	D SU	7.6		8.2		7.2		9.6		8 • 2		8.0		7.6		7.1		
Te T	when sampled in ° F	RIV HY	1		19				69		1				i i		1		
State well	pel	LOWER SANTA ANA RIV HYD EAST COASTAL PLAI	55/11W-28D 6 S		55/11W-28M 2 S		55/11W-29A 7 S	60-62-1	58/11W-29B 5 S	11- 6-64	55/11W-298 9 S	9-23-65	55/11W-29B11 S	9-23-65	55/11W-29B12 S	9-23-65	55/11W-29C 5 S	3- 2-65	

	7 : 4 g	0.5 Co. C3		5320		4441		1024		292		1563		121		4118		207		
constituents in per million	Evap 180%C hordness	Computed		18390	16891	12330	11335	4810	7644	626	177	9500	9030	220	222	13790	12395	388	607	
constituent per million	S-1 i-			1		1	-	1		-		1		ì		Į.		1		
Mineral o	Boron	8		2.20		7.20		0.80		90.0		0.50		90.0		09.0		0.02		
	Fluo-	L		1.0		6.0		6.0		5.0	ī	1 • 1		9.0		8.0		9.0		
	- 1N	NO3		7.0	• • • • • • • • • • • • • • • • • • • •	7.0	1 .0	12.0	61.0	0		31	0000	0		15	0.24	0		
million per million ctance value	Ch 10 -	- 0	Y0100	9400	06	6500	103.30	2375	87	173	26	4950	137.07	13	0.00	6825	192.41	114	2.67	
0	Sulfate	504		1275	5	576	11.99	430	8.95			604	8 8	30	0.02	927	19.30	39	0.81	
leni	Bicar -	нсоз	UNIT	195	3.50	207	300%	59	0.97	209	41	32	70.0	190	3.11	242	3.97	209	7.40	
ports equivo percer	Carbon -	C 0 3	R HYDRO	0		0		0		0		0		0		0		0		
i.	Polos -	×	A RIVE	43	0 1 0	21	0.04	16	0.41	40		113	2 2 2	2 2	0.00	35	0.89	4 0		
constituents	Sodium	0 Z	SANTA ANA RIVER HYDRO UNIT	4320	79	2550	110.81	1300	56.52	58	30	2800	121014	38	1.65	3100	134.79	75	3.20	
Mineral co	Magne	o 2	S. YOIA1	592	16	320	13	127	10.44	14	14	171	14.00	v .	10	426	35.03	14	15	
2	Colcium	٥	YOIAO	1155	500	1251	31	201	10.03	76	55	344	1/01/	0 70	64	146	47.26	09	04	
Specific conduct-	(micro-	ot 25°C)	HYD SUBUNIT Y	23800		16950		7463		904		14970		395		19880		692		
	Ha		D SUE	7.2		7.2		7.8		7.9		6.9		7.5		7.2		8 . 2		
Temp	sampled	<u>-</u>		-		1		1		65		69		69		99		65	Ī	
			ANA RIV COASTAL	S		2 2		S		2 S		3 S		5 5		2 S		5 4		
State well	4	De la la la la la la la la la la la la la	LOWER SANTA A	55/11W-29C 6	69-7-6	55/11W-29C 7	3- 2-65	55/11W-29C 8	3- 2-65	55/11W-338 2		1-338	69-9-1	-338	69-1 -92	1-13A	7- 1-65		(-1-02	

TABLE E-I
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	Toto! hardness os CoCC3		129		8 1		22		378			343					314		
Jents in	TOS TO EVED 180°C Nor Even 105°C Computed		250	251	330	300	220	186	3		813	734	732				848	850	
constituent per million	S.11.2 C.0 E		1		-		1		8			25			Į.		52		
Mineral constituents parts per million	B		0.05		0.08		0.16		0.16			0.12		1	1		0.08		
2	0 p r		0.7		0.5		6.0		0.5			0.4		ì	1		5.0		
	role NO3		0		0		-	0.02	9.3	0.15	rel	9.6	0.15	1	34	0.55	38	0.61	
million e value	ride C I	Y0100	23	0.65	7.1	2.00	18	0.51	96	2 . 71	21	85	2.40	171	168	46.74	175	4.94	
million per soctanc	Sulfate SO 4	*	39	0.81	35	0.73	1	0.02	243	90 • 9	39	207	4.31	1	!		189	3.93	
pe len	Bicor - bonote HCO3	UNIT	190	3.11	159	2.61	178	2.92	300	4.92	38	297	4.87	3.39	211	3.46	235	3.85	
parts equiva percen	carbon - ate	HYDRO	0		0		0		0			0		0	C	,	0		
.i.	0 to 0 x	A RIVER	3	0.08	2	0.05	1	0.03	4 5	0.13	٦	3	0.08	†	!		т	0.08	
constituents	E 0 Z	SANTA ANA RIVER HYDRO UNIT	45	1.96	48	3.65	70	3.04	126	5.48	45	106	4.61	-			165	7.17	
Mineral co	N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SA YOIA1	7	0.58	5	0.41	4	0.33	36	2.96	22	30	2.47	l l			21	1,73	
Σ	Coloium	4	0.40	2.00	24	1.20	(N	0.10	0 6	4.59	35	88	4.39	. !	1		91	4.54	
Specific conduct-	. 0	V HYD SUBUNIT YOLAO L PLAIN HYDRO SUBAREA	944		545		341		1210			1117		1271	1271	1 1 1	1355		
	I	D SUB	7.8		8 • 1		8 • 0		7.4	-		7.8		7.4	7.6		7.8		
Temp	sampled in ° F	> 4	99		70		72		48			83		1	1		1		
State well	Date sampled	LOWER SANTA ANA RIV EAST COASTAL	58/12W-13A 5 S	7- 1-65	S/12W-13A 6 S	7- 1-65	S/12W-13A 7 S		2 C 3 S E S C S C S C S C S C S C S C S C S C	1			5- 4-65	65/ 8W- 70 1 S 10-21-64		5- 4-65	65/ 8W-17D 2 S		

CI.	TOS Pordness Evap 105°C hardness Computed Cacics		403		325	511		28		
	Evop 800 Evop 1050		921		767	1037		354		
constituent per million	5.02		0 4	-	-	-	1	19	1	1
Mineral constituents parts per million	8		0.09	1	0.17	0.12	1	0.26	1	}
	7 . u o		0 • 3	1	0 • 5	4 • 0	1	1.0	1	1
	ni - trote NO3		0.0	1	29 0.47	30	1	0	1	1
million e value	ride Ci	Y0100	137 3.86 26	145	155	186	73	1.97	1.78	1.38
r million is per million reactance vali	Sulfote SO 4		246 5•12 35	1	3.10	253	1.79	12 0 . 25	1	1
parts per equivalents percent r	Bicar - bonote HCO3	O UNIT	356 5.83 39	238	3.62	267	3.39	161 2.64 48	148	185 3.03
P 6	Carbon -	R HYDR	0	0	0	0	0	20 0.67	23	-
n in	Potos - sium K	A RIVE	0.13	1	0.10	0.08	1	0.03	l l	1
constituents	w n o N	SANTA ANA RIVER HYDRO UNIT	140	1	5.09	5.09	š t	115 5.00 89	1	1
Mineral co	Mogne- srum M g	YOIAI	36 2.96	1	2.30	3.37	1	0.16	1	1
2	Colcium	Y01A0 SUBAREA Y	102 5 09 36	1	84 4.19 36	137 6.84	1	0.40	1	1
Specific conduct-	1 0		1392	1168	1200	1520	731	595	552	884
	I.	HYD SUBUNIT PLAIN HYDRO	7.4	7.3	7.6	7.6	7.5	0.6	8 . 9	7.8
Temp	when sampled in °F		63	1	1	1	82	06	t	1
State well	pe	LOWER SANTA ANA RIV EAST COASTAL	65/ 8W-26B 2 S 11-13-64	65/ 9W- 1L 1 S 10-21-64	10-27-64	10-27-64	65/ 9W- 2D 1 S 2-17-65	65/ 9W- 5A 1 S 10-21-64	5- 4-65	65/10W- 1L 1 S 10-13-64

TABLE E-I
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	Tetol hordness os Cours			147	11.	43		525		
uents ın lion	Evap Sec			232	980	321		839		
constituent per million	5.02		1	1	l I	3 4		20	1	1
Mineral constituents parts per million	Horon		i i	0.02	0.03	0.26		0.15	li t	-
2	e production of the production		1	4.0	0	8 • 0		0 • 2	1	1
	trate NC3		1	0	0	2 0.03		2 0.03	£ 1	1
million e value	Chio-	Y0100	1.38	15 0 • 42	298	150.42		1.47	1.24	0.76
millior per eoctono	Suffate SO 4		1	44 0 92 20	30	0		267	1	
parts per equivalents percent	Bicor - bonote HCO3	TINO	191	3.23	203	311 5.10		426 6.98 50	299	308
parts	Corbon -	4 HYDRG	0	0	0	C		0	0	0
Ë	0 0 0 X	RIVE	î	0.05	0.10	0.05		0.03	1	1
constituents	E DON	SANTA ANA RIVER HYDRO UNIT	1	38	2.52 2.52	106		3.13	1	1
Mineral co	Mogne. Secm		1	9 0.74	31 2.55	0.16	YOLA2	3.45	I	
2	C010103	HYD SUBUNIT YOIAO PLAIN HYDRO SUBAREA YOIAI	1	2.20	140	14 0 • 70 13		1417.04	4	1
Spacific conduct-	mhos at 25°C)	BUNIT YARRO SI	904	455	1330	520	REA	1210	1337	861
	I	D SU	7.07	7.5	7.6	7.7	SUBAREA	7 • 1	7.6	- 23
Temp	when sampled in ° F	RIV HY TAL PL	1	1		!	HYDRO	1	\$ 1	1
State well	led	LOWER SANTA ANA RIV HYD SUBUNIT YOLAO EAST COASTAL PLAIN HYDRO SUBARE/	65/10W- 1L 1 S 5-13-65	65/10W- 5B 4 S 7-13-65	65/10W- 6H 1 S 10-27-64	65/11W- 1N 1 S 3-24-65	SANTIAGO HYDRO	55/ 7W-19R 1 S 3-17-65	55/ 8W- 1N 1 S 3-17-65	55/ 8W-13C 1 S 3-17-65

TABLE E-I
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

State well	Temp		Specific conduct-	Σ	Mineral constituents	onstituent	s n	P 6 0	equivalents percent	per per reactanc	ts per million reactance value			Mineral parts p	constituents per million	fuents in	
Date sampled	sampled In ° F	H a	1 0	Coleren	M G G G G G G G G G G G G G G G G G G G	Sodiu	Pot 0 8	Corbon -	Bicor - bonote HCO3	Sulfore S C 4	Ch 10	N C 3	2 0 u	8 c c c a	5 0 2	1 2 8 CT 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	T to: hordness os Cours
OWER SANTA ANA RIV HYD SUBUNIT YOLAO SANTA ANA NARROWS HYDRO SUBAREA	RIV H	YD SUI	BUNIT Y		S. Y01A3	SANTA ANA RIVER HYDRO UNIT	A RIVE	R HYDR	O UNIT		Y0100						
35/ 8W-25J 1 S 10-13-64	1	7 . 8	1666	1	!	-	1	0	376	372	149	1	1	1	1		
4-14-65	1	7.6	1588	1	1	1	ł	0	381	351	144		1	1	1		
35/ 8W-31E 2 S 10-13-64	1	7 . 5	1105	į į	1	1	į į	0	148	298	93	-	1		1		
4-14-65	1	7.5	1155	1	1	1	1	0	181	297	101	1	!	1	l l		
35/ 8W-33K 2 S 10-13-64	1	7.4	1552	1	1	1	1	0	336	411	3.33	1	1	1	1 2		
4-14-65		7 • 3	1576	1	1		1	0	353	395	3.44	ł	1	1	1		
35/ 8W-34M 1 S 10- 6-64	-	7.3	1495	1	1	1	1	0	350	-	3.55	ļ	0 • 5	1	1		
4-14-65	1	7.4	1552	-	1	1	;	0	349	1	3.69	1		ŀ	1		

TABLE E-I
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	Total hardness as CoCO3				559	9
uents in	T D S Total Evap 180°C hardness Evap 105°C as Computed Co CO3				1019	1097
constituents per million	Sili- co SiO ₂		1	-	19	15
Mineral o	Boron		1	1 8	0.26	0.21
~	Fluo-		1	1	9 • 0	• 0
	trate NO NO		1	1	5.8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
million s value	Chlo -	Y0100	95	2.79	147	173 4.88 26 26
r million ts per million reactance value	Sulfate SO4		294	291	319 6.64	331
parts per equivalents percent r	Bicor - bonote HCO3	TIND	178	163	322 5.28 33	6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
par	Carbon -	R HYDRO	0	0	0	0
ri	8 5 5 X	A RIVER	1	8	0.10	0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
constituents	E o Z	SANTA ANA RIVER HYDRO UNIT	1	1	105	6 · 2 2 2 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4
Mineral co	8 c g g g g g g g g g g g g g g g g g g	S/	1	B E	3.29	4 • 5 6 1 2 4 2 4 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
Ē	C 0 1 C 1 C 3		1	1	158 7.88 50	7 - 9 3 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4
Specific conduct-	1 0	SUNIT Y	1136	1123	1517	1694
	Hd	YD SUE	7.6	7.6	7.6	7 . 6
Temp.	when sampled in ° F	RIV H	1	1	1	
Stote well	pe	LOWER SANTA ANA RIV HYD SUBUNIT YOIAO SANTA ANA NARROWS HYDRO SUBAREA	35/ 9W-350 1 S 10-13-64	4-14-65	45/ 9W- 1C 1 S 10-13-64	45/ 9W- 1E 2 S

	Total hardness as Calics		147		286		180		193		185		174		191		160	
fuents in	2 0 T D S C C E vop 105 °C C C C C C C C C C C C C C C C C C C		229	200	572	551	271	246	265	252	264	549	242	228	261	254	205	204
constituent	5.02		1		-		1		1		-		-		-		ŀ	
Mineral constituents parts per million	Boron		0		0.10		0		0		0		0		0		0.01	
	Fruo.		0.2		1.0		0.3		0.3		0.3		0 • 3		0.3		0.5	
	rote NO3		8 • 1	0.13	2.2	0.04	29	0.47	58	0.47	33	0.53	26	10	32	0.52	9.5	4
million B volue	10140	Y0100	7	0.20	7.1	2.00	10	9 9 9	11	0.31	10	0.28	19	13	13	0.37	6	07.0
ts per million	Sc. If ote		S	0.10	217	4.52	25	0.52	25	0.52	56	0.54	1 00	4	24	0.50	7	0.10
equivalents percent	Bicor - bonote HCO3	O UNIT	509	3.43	160	2.62	192	3.15	196	3.21	189	3.10	186	3.05	193	3.16	205	3.76
b d d	Carbon - ate CO 3	R HYDR	0		0		0		0		0		0		0		0	
.E	Potos .	A RIVE	2	0.05	4	0.10	2	0.05	2	0.05	2	0.05	(0.0		0.05	2	0.03
constituents	E o Z	SANTA ANA RIVER HYDRO UNIT	20	0.87	78	3.39	16	0.70	16	0.70	16	0.70	16	0.70	16	0.70	16	0.70
Mineral co	Mogne.	0181	9	0.49	24	1.97	5	0.41	80	0.66	80	0.66	7	0.58	7	0.58	00	0.66
2	E 20 0 0	>	64	2.45	75	3.74	49	3.19	49	3.19	61	3.04	58	89	65	3.24	51	7.54
Specific conduct-	1 0	HYDRO SUBUNIT YOIBO SUBAREA	367		872		433		420		439		403		429		362	
	I a	HYDRO SU SUBAREA	7.6		7.9		7.6		7.8		7.6		7.7		7.8		7.9	
Temp	sampled In ° F		-		1		1		1		1		1		1		1	
		ANA	1 5				1 5				1 5		1 S		1 5		1 5	
State well	Date sampled	MIDDLE SANTA ANA R	1S/ 5W- 6D 1	2- 4-65		9-13-65		2- 4-65		9-13-65		2- 4-65	15/ 5W-20D	9-13-65	15/ 5W-21B	9-13-65		6-29-65

TABLE E-I
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	Tutol hardness os ColC C 3		197	159	156	220	163	140	162	124
stituents in million	Evop 105°C Evop 105°C Computed		341	203	210	328	233	210	235	196
constituents per million	S ca SiO ₂		1	-	1	-	1	1	1	1
Mineral parts p	Boron		90 • 0	0.02	0.01	0.04	0.01	0	0	0 • 0 5
	F.u.o.		7.0	7.0	0.5	0.3	0 • 3	0.3	0.3	4.0
	hrate NO 3		6.2	9.5	12 0 • 19	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	16.0	8 0 • 13	13 0.21	0.10
million per million octance value	C 6 10 -	Y0100	29 0.82	0.25	10 0.28	30	11 0.31	0.17	14 0 39	0.20
60	Sulfate SO4		1.64	0.15	0.19	1.64	15 0 . 31	10	12 0 . 25	10 0.21
len	Bicar - bonote HCO3	HYDRO UNIT	3.15	203	202	184	205	183	3.28	161 2.64 84
parts	Carbon -	R HYDR	0	0	0	0	0	0	0	0
c_	Potas :	A RIVER	0.05	0.05	0.05	3 0.08	0.05	0.05	0.05	0.05
constituents	Sodium	SANTA ANA	36	16 0 70 18	18	34 1.48 25	21 0.91	16	18 0.78 19	14 0.61 19
Mineral co	M o g n e . M g M	S Y0181	11 0.90	7 0 . 58	0.66	1.40	0.41	0.74	12 0.99 24	7 0.58 18
Σ	Colerum	YOIBO	3.04	2.59	2.45	2.99	57 2.84 67	41 2.05 58	2 45	38
Specific conduct-	- 0	HYDRO SUBUNIT Y	529	360	373	536	390	340	375	295
	Hd	ORO SI	7.9	7.9	7 • 8	7.8	7.9	7.5	7 - 7	7.9
Temp	sampled in ° F	C 0	1	1	1	1	į.	1	1	1
State well	Date sampled	MIDDLE SANTA ANA R	15/ 6W-11N 1 S 1-28-65	6-29-65	9-28-65	15/ 6W-12P 1 S 1-28-65	6-29-65	15/ 6W-16A 1 S 3- 8-65	9-27-65	15/ 6W-16L 1 S 6-29-65

Mass 7.5 Ma	State well	Тетр		conduct-	2	Mineral co	constituents	.c.	per	equivalents percent re	0	per million ctance value			Mineral parts	constituent	constituents in	
M.O. N.O. K. CO. HCO. LO. SO. CO. NO. F. B SO. Computed Co.		when		(micro-	Colcium	000	Sod un	Potos -	Carbon -	Bicor - bonate	Sulfate	C h 10 -	1 N 1	Fruor	Boron		T 0 5	Total
SANTA ANA RIVER HYDRO UNIT YO100 YO181	200	Ē		at 25°C)		0 2	o z	×	CO 3	HCO3	504	- 10	NO3	u.	8		Computed	C0 C03
	E SANTA ANA	RO SU	DRO SIBAREA	SUBUNIT	Y0180		ANTA AN	A RIVE	ER HYDR	TINO O		Y0100						
7.9 351 444 10 18 2 1 1 1 175 2.20 0.82 0.78 0.05 0.05 0.01 0.34 0.18 0.34 0.18 0.34 0.18 0.34 0.18 0.34 0.18 0.34 0.18 0.35 0.30 0.35 0.30 0.35 0.30 0.35 0.30 0.35 0.30 0.35 0.30 0.35 0.35	6W-17H 1 S	1	7.3	272	33	5	14	100	0	139	7	9 1	9		0		170	103
					61	15	23	0.03		48	9	9	4 4				141	
7.5 1111 175 21 20 0.08 0 221 212 123 14, 0.09 0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		1	7.9	351	2.20	10	18	2	0	188	10	12	11		0	-	250	151
					57	21	20	1		81	9	3	2				200	
7.9 424 588 0.441 0.91 0.05 3.16 0.15 0.68 0.26 0.26 0.2 258 7.8 422 589 0.441 0.91 0.05 3.16 0.15 0.68 0.26 0.2 258 7.8 422 589 0.49 1.00 0.05 0.2 0 193 0.15 0.68 0.25 0.27 0.1 0.01 246 7.7 436 6.0 0.49 1.00 0.05 0.15 0.15 0.15 0.20 0.34 0.34 0.24 0.41 1.004 0.05 0.15 0.15 0.15 0.15 0.16 0.35 0.34 0.36 0.41 0.04 0.05 0.15 0.15 0.15 0.16 0.36 0.36 0.36 0.37 0.30 0.30 0.30 0.30 0.30 0.30 0.30		1	7.5	1111	175		30	3	0	221	212	123	14	0.3	0.02		910	523
					14		11			31	3 4 80	30	0.62				687	
7.8 422 58 6 10 21 11 74 4 16 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		1	7.9	454	58	5 0 41	21	2	0	193	7	24	16	0.1	0.02		258	165
7.8 436 422 5.89 0.49 1.00 0.05 0.05 0.15 0.15 0.65 0.27 0.27 0.1 0.01 246 7.7 436 6.69 0.33 1.00 0.05 0.05 0.15 0.15 0.85 0.34 0.15 0.85 0.34 7.7 436 2.99 0.33 1.00 0.05 0.15 0.15 0.15 0.15 0.15 0.15					68	10	21			14	4	16	9				228	
7.7 436 660 4 23 22 0 196 75 0.15 0.85 0.34 0.04 290 0.33 1.000 0.05 0.35 0.35 0.35 0.35 0.35 0.35		}	7.8	422	58	9	23	2	0	200	7 4	23	17	0.1	0.01	i	246	169
7.7 436 6.0 0.33 1.00 0.05 1.00 1.00 1.00 1.00 1.00 1.00					69	11	23			75	0.10	15	9				234	
7.7 437 559 55 224 0.41 1.004 0.05 0.17 27 20 0.32 0.34 0.41 1.000 0.08 0.17 3.08 0.15 0.76 0.36 0.36 0.36 0.01 2.79 0.41 1.000 0.08 0.17 3.08 0.15 0.76 0.36 0.30 0.01 2.79 0.30 0.01 2.79 0.30 0.01 2.79	6W-29R 1 S	1	7.7	436	9 . 60	4 00	23	2 5	0	196	7	30	21	0.1	0.04	1	290	166
7.7 437 2.94 0.41 1.004 0.05 3.11 0.15 0.76 0.32 0.3 0.01 273 0.05 0.34 0.41 1.000 0.08 0.17 3.08 0.15 0.76 0.36 0.36 0.30 0.01 279 0.41 1.000 0.08 0.17 3.08 0.15 0.76 0.36 0.36 0.30 0.01 279 0.44 0.41 1.000 0.08 0.17 3.08 0.15 0.15 0.76 0.36 0.36 0.01 279					68	0	23			2001	0 6	0.00	0.34				243	
8.1 423 59 5 5 23 3 5 188 7 27 22.5 0.3 0.01 279	1 R 1 K 5	1	7.7	437	59	5.0		2 40	0	190	7	27	20	0.2	0	-	273	168
8.1 423 5.94 0.41 1.00 0.08 0.17 3.08 0.15 0.76 0.36 0.01 279 0.00 0.01 2.36 0.15 0.16 0.36 0.17 0.36 0.15 0.26 0.36 0.01 0.00 0.00 0.17 0.00 0.00 0.17 0.00 0.00					99	6	23	1		72	9.00	18	7				238	
66 9 23 2 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-29-65	1	8.1	423	59	5	23	6	5	188	7	27	22.5	0.3	0.01	1	279	168
					99	0	23	2	4	68	0.10	17	90 90				544	

TABLE E-I
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	T to! hordness os Colci 3		182		102		95		186		001	7		169		173		158		
uents in	Evap .80°c Person of Evap 105°C Computed		295	566	170	136	155	139	290	250	2000	673	768	272	247	270	244	234	216	
constituents per million	5. r. co		1		1		1		-					1		-		- 1		
Mineral parts p	8,17,18		0.03		0		0.01		0		ć	•		0.04		0.01		0		
	7. de		0.5		0.2		0.2		0.2		C	7 • 0		0.2		0.5		0.3		
	rote NC3		24	0.00	6	0.05	7	0.02	19	0.31		0.34	7	20	0.32	22.0	0 35	17	0.27	
million per million ctance value	Chlo- ride Cl	Y0100	29	0.02		0.14		0.14	32	0.90	, ,	66 0	20	34	0.96		0.85	10	0.28	
0	Sulfate SO4		17	7	_	0.15	10	0.21	9	0.12	n a	0.17	<i>m</i>	13	0.21	14	0.29	12	0.25	
parts per equivalents percent re	Bicor - bonote HCO3	UNIT	201	5.68	144	2.36	143	2.34	205	3.36		3.56	10	184	3.02	181	2.97	198	3.25	
por	Carbon -	R HYDRO	0		0		0		0		(>		0		0		0		
n:	Potas -	A RIVE	2 4	0.00	1 5	0.03	2	0.05	-	0.03	1 (0.05	1	2	0.05		0.08	2	0.05	
constituents	Sodium	SANTA ANA RIVER HYDRO UNIT	26	1.13	14	0.61	16	0.70	25	1.09	0 0	1,22	54	23	1.00	20	0.87	19	0.83	
Mineral co	Mogne- s-um Mg	S Y01B1	9 0	10	6	0.74	9	0.49	13	1.07	1 -	1.15	23	9	0.49	2	0.41	00	0.66	
2	Colcium	Y0180	63	5.14	26	1.30	28	1,40	53	2.64	1 0	2 - 64	55	58	2.89	61	3.04	90	2.50	
Specific conduct-	mhos at 25°C)	HYDRO SUBUNIT Y0180 SUBAREA	430		257		251		476		00%	7		777		434		384		
	H	HYDRO SI SUBAREA	7.3		7.9		7.6		7.6		L			7.8		7.9		7.7		
Тетр	when sampled in ° F	20	ł		-		1		1			l I		-		1		-		
		ANA	1 5		1 S				1 5					1 S				1 S		
State well	Date sample	IDDLE SANTA	15/ 6W-29R	4-30-65	15/ 6W-31D	3-11-65		9-30-65	S/ 6W-31M	3-11-65		9-29-65		S/ 6W-34M	1-28-65		6-29-65	S/ 6W-35A	6-29-65	
	pal	MIDDLE SANTA ANA	15/ 6W-29R 1 S	50-05-6	-	3-11-65		9-30-65	15/ 6W-31M 1 S	3-11-65		9-20-65		-	1-28-65		6-29-65	-	6-29-65	

TABLE E-1
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	hardness os Collis		159		162		166		126		149		145		143		162	
lion	Evap 180°C Evap 105°C Computed		233	197	196	200	230	218	199	247	220	195	210	185	210	194	220	203
constituents per million	S.111- ca S.10 ₂		l		į į		1		ŧ		i i		1		I		1	
Mineral parts p	Boron		0.04		0.03		0.02		0.02		0.01		0.05		0.01		0.02	
	ride ride		0.3		6.0		6.0		9.0		0.5		0.5		0.2		7.0	
	Nr - Trafe NO 3		12.5	5	13	9	27	11	69	25	5	0.08	2000	7	1 0	10.00	16	2
million e volue	Ch10	Y0100	8 0 • 23	9	3 6	9	20 00	9	9	4	9 :	7 .0	0.17		5 5	4 4	88 77 78	
per	Sulfate 504		14	80	13	7	17	0000	21	10	- (0.73	13	2	15	00	10	, v
len!	Bicor - bonote HCO3	TIND 0	186	81	186	81	178	7607	166	61	178	76.7	195	87	202	8 8	186 3.0h	78
equiva percen	Carbon -	RIVER HYDRO UNIT	0		0		0		0		12	111	0		0		5 2 2	*
.c.	P 0 0 0 5 1 2 2 3 1 2 3 1	A RIVE	0.03		2		2		10.03	~	7 4)	2 0 0 0 5		2 0 0 0 5		0.05	-
constituents	Sodium	SANTA ANA	13	15	13	15	16	17	23	28	18	21	18	21	19	22	13	15
Mineral co	M o o o o	S/	10	22	6	19	10	20	8 0.00	19	10	22	9 0 9 7 4	20	8 0 0	18	12	56
Σ	C 0 1 C 1 C 3		47	29	50	69	50	61	37	52	43	57	43	58	2.20	5.6	45	88
Spacific conduct-	1 0	HYDRO SUBUNIT YO1BO SUBAREA	354		348		374		326		346		345		346		357	
	H	HYDRO SU SUBAREA	7.8		8 • 0		7.9		8 0		8 • 4		8.0		7.8		8 • 1	
Temp	sampled in ° F		1				-		1		-		1		1		1	
State well	Date sampled	MIDDLE SANTA ANA R	15/ 7W- 8N 1 S 1-28-65		6-30-65		15/ 7W-20A 1 S 6-30-65		15/ 7W-21D 1 S 6-30-65		15/ 7W-26A 1 5		15/ 7W-26P 1 S 3-11-65		9-30-65		15/ 7W-300 1 S 6-29-65	

TABLE E-I
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	Total hardness os Co Co Co		362		155		13		241		569		192		207		194		
uents m	T D S Evap 180°C Evap 105°C Computed		488	904	220	209	158	149	347	317	365	345	275	260	316	277	296	259	
constituent per million	Sitt. 00 \$:02		-		l		-		-		1		ŀ		ŀ		1		
Mineral constituents parts per million	Boron		0.03		0		0.05		0.02		0.02		0.04		0.03		0.03		
	P uo		9.0		0.2		9.0		0		7.0		0.4		7.0		7.0		
	rote NO3		9.5	2	ဆ	0.13	5.3	60.0	77	1.24	87	1.40	90	0.81	09	0.97	64	0.19	
million e value	Chlo = ride	Y0100	555	20	13	0.37	7	0.11	11	0.31	12	0.34	6	0.25	6	0.25	80 (0.63	
millior	Sulfate 504		15	4	00 1	0.17	22	0.46	37	0.77	77	0.92	24	0.50	28	0.58	25	0.52	
parts per equivalents percent re	Bicor - bonote HCO3	UNIT	361	3	207	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	88	1.44	186	3.05	186	3.05	184	3.02	184	3.02	184	3.02	
par	Carbon -	R HYDRO	0		0		14	0.47	0		0		0		0		0		
. <u>c</u>	9000 S	A RIVE	2000	1	2	0.05	1	0.03	2	0.05	2	0.05	2	0.05	2	0.05	21.0	0.03	
constituents	E n p o S	SANTA ANA RIVER HYDRO UNIT	21	11	20	0.87	54	2.35	13	10	12	0.52	16	0.70	15	0.65	16	15	
Mineral co	Magner s.um M.g	S, Y01B1	31	31	6 ;	0.74	0		16	1.32	18	1.48	14	1.15	17	1.40	15	1.63	
2	Colcium		96	57	47	2.35	20	0.25	7.0	3.49	78	3.89	54	69.7	55	2.74	53	2.04	
Specific conduct-	mhos at 25°C)	HYDRO SUBUNIT YOIBO SUBAREA	942		373		262		528		699		044		467		441		
	I a	HYDRO SI SUBAREA	7.9		8 • 1		9.2		7.8		7.9		7.5		7 • 8		7.3		
Temp	when sampled		Į į		1		1						1		t		1		
State well	D e	MIDDLE SANTA ANA R	15/ 7W-33E 1 S		15/ 7W-35B 1 S	9-30-65	15/ 8W- 9R 1 S	11-13-64	15/ 8W-14A 1 S	11-13-64		11-19-64	r e	77-1-04		12-10-64	77 - 6 - 6 - 6	40-11-21	

-	Total Nordness als		211		240		211		202		199		201		234			
constituents in per million	Evop 180°C hardness Evop 105°C os		288	280	361	325	314	280	335	263	289	267	306	569	319	314	299	
constituent per million	S. 0.5		-		-		Į Į		1		1		-		1		1	
Mineral parts p	80 00 00		0.04		0.03		0.02		0.02		90.0		0.04		40.0		1	
	7.00.7 7.00.7		7.0		5.0		9.0		4.0		0.5		0.5		0.3			
	role Nog		62	1.00	78	1.26	62	1.00	64	17	54	0.87	57	20	78	1.24	1	
million e value	Chlo-	Y0100	10	0.28	13	0.37	10	0.28	0 0	0.60	10	9 9 9	00 00	200	11	9	1	
millior per soctono	Sulfate SO &		28	0.58	39	0.81	26	0.54	24	0.50	27	0.56	27	12	36	14	25 0 • 52	
parts per equivalents percent r	Bicar - bonote HCO3	O UNIT	181	2.97	186	3.05	181	2.97	186	3.05	183	9.00	181	63	183	56	-	
par	Carbon -	R HYDR	0		0		0		0		0		0		0		1	
Ë	Potos -	A RIVE	2	0.05	2	0.05	2 2	0.05	2 2	0.00	2 2	0.00	2 2		20.0	1	1	
constituents	E nipos	SANTA ANA RIVER HYDRO UNIT	15	0.65	14	0.61	14	0.61	15	14	14	13	14	13	13	11	1	
Mineral co	Mogner	-	16	1.32	14	1.15	13	1.07	14	1015	15	1.23	13	1.007	15	23	-	
2	Calcoum	,0180 y	58	2.89	73	3.64	63	3.14	58	19	55	50 69	59	69	69	0.00	1	
Specific conduct-	1 0	HYDRO SUBUNIT YOIBO	114		537		481		452		654		455		519		458	
	I a	HYDRO SU SUBAREA	7.4		7.8		7.7		7.5		7.8		7.8		7.7		7.6	
Тетр	sampled in ° F		1		-		1		-		1		1		1		1	
State well	Date sampled	MIDDLE SANTA ANA R	15/ 8W-14A 1 S	12-23-64		2- 4-65		2-18-65		5-56-65		3- 4-65		2-11-63	37-01-6	00-01-0	3-25-65	

TABLE E-1
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	Total hardness os CoCO3										
uents in lion	T 0 S Total Evap 180°C hardness Evap 105°C os Computed CoCO3		326	324	403	356	404	308	255	332	
constituents per million	S.11:- co \$:02		1	-	l	1	1	1	-	-	
Mineral o	Boron		*	1	8	!	-	1	1	1	
	Fluo-		1	1	-		-	l	1	1	
	rote NO3		1	1	1	1	1	ŧ	1	1	
parts per million equivalents per million percent reactance value	Chlo :	Y0100	1	1	1	ž Š		l I	1	1	
million per eactance	Sulfate SO4		43	30	42	31	1.04	31	24	38	
parts per equivalents percent re	Bicor - bonate HCO3	TIND C	1	1	1	1	1	1	İ	1	
pod	Corbon -	R HYDR	1	1	1	1	a t	l t	1	1	
.5	00 00 00 X	A RIVE	1	P P	1	1		1	1	1	
constituents	Sodium	SANTA ANA RIVER HYDRO UNIT	1	1	1	1	1	1 1	1	1	
Mineral co	M og ne .	S/	1	1	1		1	1		1	
Σ	Calcium		1	1	1	I	1	-	}		
Specific conduct-	mhos at 25°C)	HYDRO SUBUNIT YOIBO SUBAREA	569	472	568	491	581	486	457	522	
	Ha	DRO S BAREA	7.6	7.8	7.5	7.8	7.6	7.3	7 • 8	8•1	
Temp	when sampled in ° F	A R HY	1	}	1	1	1	1	1	1	
State well	Date sampled	MIDDLE SANTA ANA R	15/ 8W-14A 1 S 4- 5-65	4-16-65	4-23-65	4-29-65	5- 6-65	5-13-65	5-21-65	5-27-65	

	Actoria os os	E .					266			
uents in lion	T 0 5 7 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		248	301	378	300	399	389	254	287
constituent per million	50.5		1	1	1	1	1	-	1	i i
Mineral constituents parts per million	000		1	\$ 6	i	1	0.04	1	1	1
~	30.0		1	ė a	1		9•0	-		
	2 0 Z		1	1	1	1	93 1.50 25	1	1	1
nullion value	0 P 10	Y0100	1	1	Í	1	13	1	11	-
parts per million equivalents per million percent reactance value	Suttate		36	0.52	1.04	26	46 0.96 16	46.0	26	21 0 • 44
parts per equivalents percent r	Bicor	UNIT	1	1	1	1	190 3.11 52	à e	į.	1
9 9 0	Carbon .	HYDRC	1	-	1	1	0	-	1	1
. <u>c</u>	0 to 0 x	RIVER	8	ł	ŀ	!	0.05	1	1 1	1
constituents	E 7 0	SANTA ANA RIVER HYDRO UNIT	1	-	ł	i i	13 0.57	1	-	ŧ i
Mineral con	C E C		1	1	1	1	1.48	1	1	1
2	E		1		1		3.84	1	1	}
Specific conduct-	mhos	HYDRO SUBUNIT YOIBO	532	614	571	448	996	563	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	944
W O	Hd	RO SU	7 • 8	7.6	7.9	7.6	7.5	7 . 8	7 . 8	8 8
Temp	when sampled in ° F		1	1	-		1	1		1
State well	p	MIDDLE SANTA ANA R	15/ 8W-14A 1 S 6- 3-65	6-10-65	6-17-65	7-22-65	8 - 6 - 6 5	8-12-65	9-23-65	9-30-65

TABLE E-I
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	Total hardness os Ca C O 3		271		208	204	212	209	204	206	
uents in	T D S Evap 80°C Evap 105°C Computed		391	356	265	252	288	267	283	259	
constituents per million	50.8		1	1	1	1	1	1	1	1	
Mineral parts p	Boron		0.01	1	0.01	0.02	0	0.01	0.02	0.01	
	F.u0 r.de		7.0	1	0.5	0.5	0 • 3	0.2	0 • 3	0.5	
	frote NO3		94 1.52 25	1	43 0•69 15	44 0•71 16	50 0.81 17	47 00.76	44 0•71 16	46 00.74 16	
nillion per million stance value	Chlo- ride Cl	Y0100	12 0 34 6	!	0.29	0 2 5 5	10	0.25	0.23 g	0.25	
0	Sulfate SO4		51 1.06 18	36	0.50	24 0.50	26 0.54	25 0.52 11	24 0.50	25 0 0 5 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
lent	Bicor - bonote HCO3	UNIT	186 3.05 51	1	192 3•15 69	190 3.11 68	192 3.15 66	187 3.06 67	189 3.10 68	189 3.10 67	
parts	carbon - ale CO3	R HYDRO	0	1	0	0	0	0	0	0	
ri s	Potas -	A RIVE	0.08	1	0.05	0.05	0.05	0.05	0.05	0.05	
constituents	Sodium	SANTA ANA RIVER HYDRO UNIT	11 0.48	-	11 0.48 10	0.48	0.48 10	0.48	11 0.48 10	11 0,48 10	
Mineral co	Magne- stum Mg	S Y01B1	1.32	-	1.07	12 0.99	1.15	12 0.99 21	12 0.99 21	1.07	
2	Calcium		82 4.09 69	1	3.09	3.09	3.09	3.19	3.09	3.04	
Specific conduct-	mhos at 25°C)	HYDRO SUBUNIT YOIBO SUBAREA	576	200	303	427	436	426	443	555	
	H	HYDRO SI SUBAREA	7.6	7 . 8	7 • 7	7.8	7.07	7.6	7.8	7.7	
Тетр	sampled in °F	∞ 0	1	1	-	1	1	ŀ	1	1	
State well	Date sampled	MIDDLE SANTA ANA R CHINO HYDRO	15/8W-14A 3 S 7- 1-65	7-15-65	15/ 8W-14N 1 S 10- 1-64	10- 7-64	10-15-64	10-22-64	10-29-64	11- 5-64	

Dote sampled so iii DDLE SANTA ANA F CHINO HYDRO	when							be	percent r	0	ctance value			parts	per million	llion	
CHINO HYDR	in °F	I a		Calcium	M og ne .	Sodium	Potos -	Carbon -		Sulfore	Ch10 -	N	F u.o.	80100	5,11.	T D S Total	Total
MIDDLE SANTA ANA R HYDRO SUBUNIT YOIBO CHINO HYDRO SUBAREA 15/ 8W-14N 1 S - 7.7 442 6			at 25°C)	٥٥	B M	0 Z	х	C 0 3	нсоз	804	0.1	NO3	L	8	20.5	Computed	Coccs
CHINO HYDRO 15/ 8W-14N 1 5	R HYD	RO SU	A TINDBI	0180	S	SANTA ANA RIVER HYDRO UNIT	A RIVE	R HYDR	O UNIT		Y0100						
8W-14N 1 S	o suB	AREA			Y01B1												
	1	7.7	744	61	12	11	2	0	192	23	6	45	0.5	0.01	1		202
11-12-64		Ī		3.04	66.0	0.48	0.05		3.15	0.48	0.25	0.73				271	1
				19	22	=	-		89	10	S	16				258	
	1	7.8	044	58	14	11	2	0	192	24	34	45	0.3	0.03	1	290	202
12-10-64	_			2.89	1.15	0.48	0.05		3.15	0.50	0.25	0.73					
				0	3	1 1	+		0	11	0	16				258	
12-17-64	1	7.8	475	257	15	16	2 00	0	189	24	14	77	0.3	0.01	-	288	204
				59	1.623	0.70	0.0		3.10	0.50	0.00	0.71				, ,	
	_	1	1)	4	•		0	4 4	0	CT				597	
12-23-64			437	2 67	14	12	2	0	189	21	0	43	0.3	0.02	1	250	200
	_			65	1.12	111	0.0		3.10	0.44	0.25	0.69					
				,		•	•		0	2	0	7.7				167	
	1	7.5	461	19	12	10	2	0	189	56	1.1	58.0	0.5	0.02	1	274	217
1-14-02				3.34	0.99	0.43	0.05		3.10	0.54	0.31	76.0					
				0	17	7	4		63	11	9	19				279	
	1	7.8	955	48	2.1	11	2	0	190	23	3	77	7.0	0.03	I I	278	207
3- 4-65				2.40	1.73	0.48	0.05		3.11	0.48	0.25	0.71					
				76	16	0.1	-1		89	11	v	16				252	
4-29-65		7.7	445	1	1	1	1	l l	1	23	1	1	ŀ	-	1	300	
										84.0							
	-	7.7	2447	-	-	-	1	1	1	31	1	1	1	-	1	275	
60-0 -6										0.65							

TABLE E-I
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	Total hardness os Co C O 3							219			
lion	Evop :80°C hardness Evop :05°C os		278	292	290	294	287	286	296	305	
constituent per million	S		1	1		1	1	1		1	
Mineral constituents parts per million	80.00		1	1	8	1	1	90.0	1		
Σ	7 0 0 v		1	1	1	1	1	0 • 3	1	1	
	rote NC3		1	1	1	ŀ	1	48 0•77 16	1	1	
million e value	Chlo-	Y0100	1	1	1	1	ŀ	0.31	1	1	
millior per sactand	Sulfate SO 4		23	23	22 0.46	24	24	28 0.58	26	28	
pe	Bicar - bonate HCO3	TINU C	1	1	1	1	1	3.11	-	1	
par 1s equiva percen	Carbon -	R HYDR	-	-	l i	1	1	0	1	-	
CI	Potos.	A RIVE		1	l		1	0.05	1	1	
constituents	E DI POS	SANTA ANA RIVER HYDRO UNIT	t I	1	8	l l	1	10	-	1	
Mineral co	Magne-	S, Y0181	-	1	1		1	1.23	i i	1	
Σ	Calcium	1	1	1	!	1	1	63 3.14 65	1	1	
Specific conduct-	mhos at 25°C)	HYDRO SUBUNIT YO1BO SUBAREA	677	450	451	944	644	517	450	450	
	H	ORO SI	7.2	7.4	7.9		7 • 8	7 - 7	7 • 8	7 • 7	
Temp.	when sampled in ° F	RO SUE	1	1	t 1	1	-	1		1	
State well	bel	MIDDLE SANTA ANA R CHINO HYDRO	15/ 8W-14N 1 S 5-13-65	5-27-65	6- 3-65	6-17-65	6-24-65	7- 1-65	7- 8-65	7-15-65	

	Total hardness os Co C O 3			212				213		-
uents in lion	TDS Total Evap 180°C Nordness Evap 105°C os Coccos		286	298	304	294	294	266	295	765
constituents per million	Sciet co		1	1	1	1	1	1	1	1
Mineral parts p	Boron		2	0.03	1	1	1	0.01	1	1
	r.de		1	0 • 5	1	1	1	0 • 3	1	1
	role NO3		1	50 0.81 17	1	1	1	50 0.81 17	1	1
million s value	Chlo-	Y0100	1	0.25	1	1	1	0.25	1	1
equivalents per million percent reactance value	Sulfale SO 4		28	26 0.54 11	26	28	27	24 0 50 11	28	28 28
equivalents percent re	Bicor - bonote HCO3	O UNIT	ł	3.25	ŀ	-	į	190 3.11 67	1	1
e q De d	Carbon - ate CO 3	R HYDRO	1	0	-	1	ł	0	1	1
ui .	Potos -	A RIVE	1	0.05	1	1	1	0.05	1	1
constituents	Sodium	SANTA ANA RIVER HYDRO UNIT	1	0.52	1	}	1	0.52	1	1
Mineral co	Mogne- seum M g	SA Y0181	1	1.15		î î		13 1.07	1	1
2	Calcium		1	3.09	1	ł	1	3.19	-	I
Specific conduct-	1 0	BUNIT Y	452	644	794	453	451	452	452	4 5 5
0, 0	На	ORO SU	7 . 8	7 • 8	7 • 8	7 . 8	7.7	0 .	7.9	7 . 8
Temp.	when sampled in F	R HYC	1	l i	t I	1	1	1	1	1
State well	le d	MIDDLE SANTA ANA R HYDRO SUBUNIT YOIBO	15/ 8W-14N 1 S 7-22-65	8- 6-65	8-12-65	8-19-65	8-26-65	9- 2-65	9-16-65	9-23-65

TABLE E-1
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	Total hordness as CaCO3		178	185	180	182	182	182	184	182	
constituents in per million	1050C		243	162	222	258	222	301	241	252	
constituent per million	S 4-		-	1	1	1	1	-	1	1	
Mineral c	Boron B		0.01	0.01	0.02	0	0.02	0.03	0.01	0.01	
-	Fluo.		0.2	0.2	0.2	7.0	9.0	0.3	0.5	0.5	
	rote NO3		34 0.55	35	35 0•56 14	33 0.53 13	34 0.55 13	32 0.52 13	33 0 • 53 13	31 0.50 12	
million e volue	Chlo- ride	Y0100	0.17	0.20	0.17	0.23	0.20	0.17	0.20	0.20	
millior per eactang	Sulfate SO 4		23 0.48	20	19 0.40	22 0•46 11	21 0.44	21 0.44	23 0.48	24 0.50 12	
pe t	Bicar - bonate HCO3	TINU C	182 2.98 71	177 2.90 71	179 2.93 72	179 2.93 71	177 2.90 71	3.02	181 2.97 71	181 2.97 71	
parts equiva percen	Corbon -	R HYDR	0	0	0	0	0	0	0	0	
i	Potos.	A RIVE	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	
constituents	Sodium	SANTA ANA RIVER HYDRO UNIT	12 0.52 13	0.48	0.52	12 0.52 12	0.52	0.52	0.52	0.52	
Mineral co	Magne- stum Mg	S Y01B1	10	11 0.90 21	11 0.90	11 0.90 21	11 0.90 21	0.90	12 0.99 23	0.99	
Σ	Calcium		55 2.74 66	2.79	2.69	55 2 • 74 65	55 2 . 74 65	2.74	2.69	53 2.64	
Specific conduct-	micro- mhos ot 25°C)	HYDRO SUBUNIT YOIBO SUBAREA	384	385	382	388	383	397	401	418	
	I	HYDRO SI SUBAREA	7.6	7 • 8	7 • 8	7.9	7.6	7.9	7 • 7	7.7	
Тетр	when sampled in ° F		1	i	1	-	1	1	1	1	
State well	pe	MIDDLE SANTA ANA R CHINO HYDRO	15/ 8W-15J 1 S 10- 1-64	10- 5-64	10- 7-64	10-15-64	10-22-64	10-29-64	11- 5-64	11-12-64	

State well Te			Specific conduct-	2	Mineral co	constituents	Ë	60	ports per equivalents percent re	r million s per million reactance val	million e value			Mineral constituents parts per million	constituent per million	tuents in	
p e l	sampled in ° F	Ha	mhos	Colcium	- e -	Sodium	Potos -	Corbon -		Suffate	Chlo-	N = trote	- 00 J	Вого	Serie.	1311	Total
			(2 62 10	٥	5	0 2	ĸ.	£ 0.3	E03#	400	5	S O N		Φ.	20.6	Computed	C0 C0 3
MIDDLE SANTA ANA R HYDRO SUBUNIT YOIBO CHINO HYDRO SUBAREA	HYDRO SI SUBAREA	REA	BUNIT Y		SA YOIBI	SANTA ANA RIVER HYDRO UNIT	A RIVE	R HYDRO	O UNIT		Y0100						
1 S	7	7.8	406	55	11	13	2 2	0	186	21		31	4.0	0.01	1	546	182
11-19-64				5.74	0.90	13	0.00		3.05	0.44	0.17	0.50				231	
	7	7.6	994	99	14	11	2	0	194	28	10	77	0.3	0.02	-	248	217
12-23-64				3.19	1.15	0.48	0.05		3.18	0.58	9.28	0.71				569	
	7	7.7	450	7.0	11	10	2	0	163	94	21	43	7.0	0.02	-	292	220
1-13-65				3.49	0.90	0.43	0.05		2.67	0.96	0.59	0.69				284	
		7.7	520	74	12	10	2	0	155	64	27	50	0.3	0	1	342	234
2-18-65				3.69	19		0.00		50	20 5	15	16				301	
	7	7.6	550	78	13	10	2	0	150	49	32	64	0.4	0.08	1	437	248
2-26-65				3.89	1.07	0.43	0.05		2.46	1.33	0.90	0.79				322	
		7.8	537	74	13	10	2 2	0	159	56	23	55	0.5	0.04	1	351	238
3- 4-65				3.69	1.00	, , , , ,	0.00		64	1.17	12	17				312	
3-25-65	-	7.6	465	i	ł	1	1	1	1	43	1	1	1	1	1	305	
4- 5-65		7.6	445	1	l i	1	1	1	1	31	1	1	1	1	1	245	
																Ī	Ī

TABLE E-I
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	Total hardness os CoCO3									
uents III	TDS Total Evop 180°C hardness Evop 105°C os Computed CoCO3		316	306	262	291	289	264	267	267
onstit 8r mil	5.02		1	1	ł	1	1	-	1	1
Mineral constituents parts per million	Boron		1	1	1	1	1	1	8	-
~	Fluo		1	1	1	1	1	-	i i	1
	rote NO3		1	1	1	1	1	1	1	-
million per million ctance value	Chio-	Y0100	t	ŀ	8	1	1	i i	1	-
1 0	Sulfate SO 4		34	24	25	27	28	29	26	29
parts per equivalents percent re	Bicor - bonote HCO3	TINU	1	1	1	1	i i	į į	ļ	1
par	Corbon -	R HYDRG	1	1	1	1	1	†	1	1
. <u>c</u>	Potas - K K	A RIVER	1	1	-	-	1	1	1	
Mineral constituents	S 0 S	SANTA ANA RIVER HYDRO UNIT	-	-	1	-	1	1	1	-
ineral co	M a a a a a a a a a a a a a a a a a a a	S, Y0181	1	1	1	1	1	1	1	1
2	Calcium		ě	1	1	1	1		1	1
Specific conduct-	(micro- mhos at 25°C)	HYDRO SUBUNIT YOIBO SUBAREA	7460	455	430	425	426	454	426	428
	I L	HYDRO SU SUBAREA	7.6	7.8	7 • 8	7 • 4	7.7	8 0	7.8	7.6
Temp.	sampled in ° F		1	1	1	1	!		1	1
State well	Date sampled	MIDDLE SANTA ANA R	15/ 8W-15J 1 S 4-23-65	4-29-65	5- 5-65	5-13-65	5-21-65	5-27-65	6- 3-65	6-10-65

	Total hardness as CaCO3				189					193
uents in lion	T 0 S Evop 180°C Evop 105°C Computed		281	257	259	276	281	266	267	569
constituents per million	511i- co S.0.2		1	1	1	1	1	ł	1	1
Mineral parts p	Boron		1	1	0	1	1	l i	ł	0.03
2	Fluo-		1	1	0.2		1	8	-	* • •
	1 0 N N N N N N N N N N N N N N N N N N		1	8	38 0.61 14	1	1	t I	1	39 0•63 14
million ce value	Chlo -	Y0100	İ	1	10	1	1	-	1	0.25 %
per	Sulfate 504		27	28	30	28	26	30	29	0.60
equivalents percent r	Bicar - bonale HCO3	TIND C	1	1	176 2.88 66			1	1	181 2.97 67
ped	Carbon - ote CO 3	HYDRO	1	-	0	-	1	1	1	0
ë	P	A RIVE	-	1	0.08	1	[-	1	0.05
nstituents	E 0 2	SANTA ANA RIVER HYDRO UNIT	1	1	0.48	1	8	1	1	0.52
Mineral constituents	M G G B G G G G G G G G G G G G G G G G	SA Y0181	1		0.99	1	1	1	1	1.07
M	Calcium		1	1	2.79	1	1	1	1	2.79
Specific conduct-	mhos at 25°C)	HYDRO SUBUNIT YO1BO SUBAREA	416	416	413	0004	415	415	416	414
-	H	HYDRO SU SUBAREA	7.9	7.9	7 • 7	7.4	7 - 7	7 • 8	7 • 7	7.7
Temp.	when sampled in ° F		1	1	1	1	1	{	1	
State well	Date sampled	MIDDLE SANTA ANA R CHINO HYDRO	15/ 8W-15J 1 S 6-17-65	6-24-65	7- 1-65	7- 8-65	7-15-65	7-22-65	7-29-65	8 - 6 - 6 5

TABLE E-I
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	Total hardness as CaCO3					189					
uents in	TDS Total Evop 180°C hardness Evop 105°C as		270	286	274	256	250	245	244	268	
constituents per million	Stort ca		1	1	1	1	1	-	-	1	
Mineral o	Boron		1	1	1	0.03	1	1	1	1	
	0 n		1	1	1	7.0	1	1	1	-	
	rote NO3		1	1	1	36 0.58 13	1	1	1	1	
million	ride Cal	Y0100	1	1		14 0 39	1	1	1	1	
r million ts per million reactance value	Sulfate SO 4		27	28	27	26 0.54	25 0 • 52	26	26	21	
pe	Bicar - bonate HCO3	UNIT	1	1	i i	178 2.92 66	-	1	1		
parts equiva percen	Carbon -	R HYDRO	1	1	ŀ	0		t 1	-	1	
Ë	Potos Fun K	A RIVE	1	1	1	0.05	ę ę	1	-	l t	
constituents	Sodium	SANTA ANA RIVER HYDRO UNIT	1	1	I I	14 0.61 14	1	I	1	1	
Mineral co	Magners M. G. M. G	S4	-	ŧ	1	12 0.99 22	1	ł ś	1	1	
2	Calcium		1	t i	1	2.79	1	ł	1	1	
Specific conduct-	1 0	HYDRO SUBUNIT YO1BO SUBAREA	412	413	607	408	401	707	406	405	
	Ha	HYDRO SL SUBAREA	7 • 7	7.9	7.9	7 • 8	8 • 1	8 • 1	7.8	7 • 8	
Temp	sampled in ° F	R HYE	1		1	1	1	1	1	-	
State well	Date sampled	MIDDLE SANTA ANA R	15/ 8W-15J 1 S 8-12-65	8-19-65	8-26-65	9- 2-65	9-10-65	9-16-65	9-23-65	6-30-65	

	4000	Nordness 0 S			192		101	195		161		162			159		i	162		160		164		
constituents in	0	Evap 105°C nordness Evap 105°C 05				212		225	234	221	214	245		215	232	212	7 7 7	238	217	227	217	230		216
constituent					1			1		1		1			1			[1		1		
Mineral parts p	0	0 00			0.02		6	10.0		0.05		0.03			0			0.01		0.01		0.01		
		D : 4			0.3			0 0		0.3		0 • 3			0			4.0		7.0		0.5		
	2	N C 3			32	0.52	7	0.50	12	21	0.34	21.5	0.35	6	20.5	0.33		22	0	22.5	0.36	22	0.35	0
million a value	10140	, p	00107		9	0.17	x	0.23	2	9 1	4	0	0.17	4	5	41.0		0-17	7	9 !	0.17	٥	0.17	4
ts per million reactance value	Sulfate	808			19	0.40	0.	0.40	0	20	0.42	19	04.0	10	20	0.42		21	11	22	0.46	1.9	0 * * 0	10
equivalents percent r	Biror	bonote HCO3	TIND		192	3.15	100	3.11	73	18	3.02	186	3.05	11	186	3.05		3-02	76	184	3.02	186	3.05	77
9 0	Corbon -	0.0 3	R HYDR		0		C			0		0			0		(0		0		0		
i n	Potos -		A RIVE		2	0.05	^	0.05	7	2 2	0.00	2	0.05	-	2	0.05		20.0		2 2	20.0	2	0.05	-
constituents	Sodium	0 2	SANTA ANA RIVER HYDRO UNIT		11	0.48	11	0.48	11	16	188	16	0.70	18	16	0.70	,	0.70	18	16	18	15	0.65	16
Mineral co	Moone		18	Y01B1	11	0.90	14	1.15	56	10	21	6	0.74	19	10	0.82	C	7200	19	0 :	19	6	0.74	16
Σ	Colesam	00			65	2.94	55	2.74	62	\$ t	09	50	2.50	63	47	2.35		2.50	63	67	29	51	2.54	79
Specific conduct-	1			HYDRO SUBUNIT YOIBO SUBAREA	397		393			375		377			377		0	200		379		379		
	Hd			HYDRO SU SUBAREA	7.8		7.6			7.8		7.9			7.8		0	h •		7.9		7.7		
Temp.	Wilen William	sampled in ° F			1		-			-		-			i i					-		-		
State well		Date sampled		MIDDLE SANTA ANA R	15/ 8W-15P 2 S	10- 2-64		10-22-64		12- 7-64	7		12-10-64			17-11-04		12-30-64		37-71-1	00-+1-1		1-21-65	

TABLE E-I ANALYSES OF GROUND WATER SANTA ANA DRAINAGE PROVINCE (Y)

	Total hardness os CaCO3		167		160		163			164			161			163			157			167			
uents in	TDS Total Evap 180°C hardness Evap 105°C os Computed CaCO3		204	218	247	215	240	1	219	242		214	273		217	237		215	247		219	216		717	
constituent per million	Sil1- co SiO ₂		1	-	1		1			ŀ			1			1			1			-			
Mineral constituents parts per million	Boron		0.03		0.02		0.03			0			0.02			0.05			0			0.01			
	Fluor		0.3		0.3		0.0)		0.3			0.3			0.4			7.0			0.2			
	rote NO3		21	0.34	20	0.32		0.34	ω	22	0.35	0	20	0.32	00	22	0.35	0	23.5	0.38	6	54	0.39	01	
million value	Chlo- ride Cl	Y0100	2	0.14	7	0.20	7	0.14	3	7	0.20	2	10	0.28	7	9	0.17	4	7	0.20	J.	9	0.17	4	
r million s per million reactance vali	Sulfate 504		20	0.42	21	0.44	20	0.45	10	18	0.37	10	18	0.37	0	21	74.0	11	21	44.0	11	20	0.45	11	
lent	Bicar - bonate HCO3	UNIT	189	3.10	186	3.05	142	3.15	78	181	2.97	16	186	3.05	92	183	3.00	16	183	3.00	75	181	2.97	(2)	
ports equivo percer	Corbon - ate CO 3	R HYDRO	0		0		C)		0			0			0			0			0			
i	Potas -	A RIVE	2	0.05	2	0.05	^	0.05	1	2	0.05		2	0.05	~	2	0.05	7	2	0.05	~	2	0.05	→	
constituents	Sodium	SANTA ANA RIVER HYDRO UNIT	16	0.70	16	0.70	16	0.70	18	16	0.70	17	15	0.65	17	16	0.40	18	16	0.70	18	15	0.65	91	
Mineral co	Magne- s-um Mg	S. Y0181	6	0.74	11	0.90	α	0.66	17	6	0.74	18	7	0.58	15	11	06.0	23	9	64.0	13	0	0.74	81	
M	Colcium		52	2.59	94	2.30	5.2	2.59	69	51	2.54	63	53	2.64	19	47	2.35	69	53	2.64	68	52	2.59	49	
Specific conduct-	mhos at 25°C)	HYDRO SUBUNIT YOIBO SUBAREA	383		379		383			376			381			381			382			380			
	H	HYDRO SI SUBAREA	7.4		7.9		7.9			7 • 8			7.7			7.9			7 • 8			7.8			
Temp.	when sampled in ° F		1		;		ł 1			1			ŀ			1			1			1			
State well	Date sampled	MIDDLE SANTA ANA R	15/ 8W-15P 2 S	1-28-65		5- 4-65		2-11-65			2-18-65			2-26-65			3- 4-65			3-11-65			3-18-65		

	hardness as					182		162	162	103
fuents in	Evap Bour		244	202	308	259	7 4 7	226	184	220
constituent per million	5. 1.		1	1	-	ļ	1	i	1	1
Mineral constituents parts per million	9 B		1	1	-	0	-	9	0.02	0.02
	, o . r		1	1	1	0 • 3	1	0 • 2	0.1	0
	7 7 7 7 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5		1	1	1	25 0 • 40	1	20 0•32 8	20 0•32	20 0•32 8
million se value	C + 10	Y0100	1	† E	1	9 0 25	-	0.17	0.14	0.17
million per soctono	Surfore SU4		20	19	36	26 0.54	87.0	20 0.42	20 0 • 42	000
parts per equivalents percent re	Bicor - bonote HCU3	O UNIT	1	1 8	1	3.11	1	182 2.98	184 3.02	182
pad	Corbon ole CU 3	R HYDR	1	1	1	0	!	0	0	0
U.	Potas.	A RIVE	1	}	1	0.05	-	0.05	0.05	0 0 0
constituents	Sodie	SANTA ANA RIVER HYDRO UNIT	ł	1	-	13 0.57	1	0.70	0.70	150.00
Mineral co	Mogne Stum Mg	S. Y0181	t t	1	1	0.93	1	0.74 19	0.74	0.90
2	Calcium		-	1	1	5.5 2 . 14 64	!	2 500	2. 2. C. C. C. C. C. C. C. C. C. C. C. C. C.	2 . 35
Specific conduct-	micro- mhos at 25°C)	HYDRO SUBUNIT YOIBO SUBAREA	384	385	763	399	364	364	356	357
	H	HYDRO SU SUBAREA	7 - 7	7.8	3 •	7.8	7 - 7	7 - 7	4.8	7 • 7
Temp	when sampled in ° F	RO SUE	-	1	1	1	1	1	†	1
State well	led	MIDDLE SANTA ANA R	15/ 8W-15P 2 5 3-25-65	79-5-4	5-27-65	7- 1-65	7-15-65	15/8W-15P 3 5 10-1-64	19- 7-64	19-22-64

TABLE E-1
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	Total hardness as		160			177		192	195	207
uents in	T D S Total Evop 180°C hardness Evap 105°C os Computed Co CO 3		233	250	273	260	260	212	225	281
constituent per million	S.111+ C.0 S.10 ₂		1	1	1	ł	1	1	ł	1
Mineral constituents parts per million	Boron		0.02		1	0.03		0.02	0.01	0 • 0
	Fluo- ride		0.2	1	1	4.0	1	0 • 3	0 • 3	0 • 3
	rote NO3		21 0•34 9	l i	1	26 0•42 10	1	32 0.52 12	31 0.50 12	40
million se value	Chlo -	Y0100	0.14	-	-	0.20	1	0.17	0.23	0.25
per	Sulfore SO4		20 0.42 1I	23	27	24 0.50	23	19 0.40	19	27 0 .56
pe	Bicor - bonote HCO3	TINU C	184 3.02 77	1	1	190 3•11 74	1 6	192 3.15 74	3.11	193 3.16 68
parts equiva percen	Carbon - ofe	R HYDRO	0	1	1	0	l l	0	0	0
5	Pot as -	A RIVE	0.05	t t	-	0.05	1	0.05	0.05	0.05
constituents	Enipos	SANTA ANA RIVER HYDRO UNIT	0.70	i I	1	0.65	1	11 0.48 11	0.48	0 0
Mineral co	Magne- sium Mg	s 70181	0.74	1	1	11 0.90 21	!	0,90	1.15	0.99
2	Calcium	701BC	2.45	l I	8	53 2.64 62		59 2 94 67	2.74	3.14
Specific conduct-	ance (micro- mhos at 25°C)	HYDRO SUBUNIT YOLB SUBAREA	373	387	417	392	390	397	323	431
	I	JRO S BAREA	7.8	7.9	7.8	7.9	7.9	7.8	7.6	7 • 8
Temp	when sampled in ° F	20	1	1	1	1	-	-	1	1
State well	p e q	MIDDLE SANTA ANA R	15/ 8w-15P 3 5	7-22-65	7-29-65	8- 6-65	8-12-65	15/ 8W-15P 5 S 10- 7-64	10-22-64	7- 8-65

TABLE E-I
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	hordness 35 50 cm 3			198				164	153	æ 20 7
tuents in	Evap 185°C hordness Evap 105°C :: 5		597	286	266	302	243	147	162	185
consti	\$ 5.7		1	1	1		i i	1	-	1
Mineral constituents parts per million	8 s		1	0.05	1	1	1	0.01	0.02	Э
	, D		1	7.0	1	1	-	0 • 5	0.5	7.0
	rote N.S.		1	34 0 • 55	1	1	1	31 0.50	25	58 0.61 13
million per million ctance value	C h 10	Y0100	1	14 0•39		1	1	0.17	0.23	0.52
0	Sulfore SU4		24	21 0 44	21	27	20	0.52	22 0.46 12	0.00
parts per equivalents percent r	Bicor - bondle HCO3	O UNIT	1	195 3.20 70	1	1	1	176 2.88 71	2.77	3.11 68
pod	Carbon- afe CO3	HYDRO	1	0	1	1	1	0	0	0
Ë	7 % X	A RIVER	1	0.05	-	1	1	0.05	0.05	0.02
constituents	E nipos	SANTA ANA RIVER HYDRO UNIT	1	11 0.48 11	1	1	1	18 0.78	0.87	0.70
Mineral co	Mogne.	S/ Y0181	1	13 1.07 24	†) L	-	0.74	0.66	0.82
2	Colcium		1	58 2.89	!	}	!	51 2.54 62	2.40 60	2.94
Specific conduct-	1 0	HYDRO SUBUNIT YOIBO SUBAREA	450	413	415	438	390	382	357	454
	H	HYDRO SU SUBAREA	77	7 • 8	7 . 8	7 • 8	8 . 2	7 - 7	7 • 8	7.8
Temp	when sampled in °F		!	1	1	-	-	1	1	1
State well	led	MIDDLE SANTA ANA R	15/ 8W-15P 5 S 7-28-65	8-12-65	8-19-65	8-26-65	9-10-65	15/ 8W-150 2 5 10- 1-64	10- 7-64	10-15-64

TABLE E-1
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	Total hardness as CaCO3		167	197	229	160	162	154	246	156
uents in	TDS Total Evap 105°C hardness Computed CoCC3		132	277	309	233	254	219	332	259
constituent per million	5111-		1	1	1	1	-		1	1
Mineral constituents parts per million	Boron		0.05	0.01	0.02	0.02	0.01	0.02	0.02	0
	Fluo		0 • 3	0.2	4.0	0.5	0.5	0 • 3	0 • 3	0 9
	note NO3		32 0.52 13	43 0.69 15	41 0•66 13	28.8 0.46 11	28.8 0.46 12	25 0•40 11	36 0•58 10	26 0•42 11
million per million ctance value	Chlo -	Y0100	0.20	0.17	0.25	0.23	0.17	0.17	0.31	0.20
0	Sulfate 504		24 0 . 50 12	30	35	0.52	22 0.46	20 0.42	36 0 • 75	21 0.44
ent tent	Bicor - bonote HCO3	UNIT	175 2.87 70	189 3.10 68	212 3.47 68	176 2.88 70	171 2.80 72	171 2.80 74	238	171 2.80 73
parts equiva percen	Carbon -	R HYDRO	0	0	0	0	0	0	٥	0
Ë	Potos - Sium K	A RIVE	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
constituents	S odie	SANTA ANA RIVER HYDRO UNIT	18 0.78 19	15 0.65 14	10 0.43 8	18 0•78 19	18 0•78 19	19 0.83 21	11 0.48 9	19 0.83 21
Mineral co	Mogne- stun Mg	S, Y01B1	9 0.74	11 0.90	12 0•99 20	11 0.90	9 0.74	0.58	1.07	0.66
2	Colcium		2.59	3.04	3.59	2.30	2.50	50 2 50 63	3.84	49 2.45 61
Specific conduct-	(micro- mhos at 25°C)	HYDRO SUBUNIT YOIBO SUBAREA	380	644	473	389	385	382	521	384
	I a	HYDRO SI SUBAREA	7.7	7 - 7	7 • 8	7 • 4	7.7	7.7	7.8	7.8
Тетр	sampled in ° F		1	-	1	î t	-	-	1	1
State well number	Date sampled	MIDDLE SANTA ANA R	15/ 8W-15Q 2 S 10-22-64	11- 5-64	12-30-64	1-14-65	1-21-65	1-28-65	2-11-65	2-18-65

	nordness		158	104	162					
fuents in	Evap 86 or Computed		286	260	577	248	7.65	254	354	\$ 92
constituent	50.4		1	}	1	1	1	1 1	1	1
Mineral constituents parts per million	8,7,5		0.01	0	70.0	-	1	-	1	1
	, 0, 7		0 • 3	7.0	0 . 5	1		Į Į	-	1
	rote.		26 0.42	30 0.48	29 0.47	1	1	1	1	{
million e value	0 P C	Y0100	0.25	0.25	0.23	1	ł	1	1	1
r million ts per million reactance valu	Sulfate Se4		21 0.44	25 0.52	23	24	22	23	32	0.71
parts per equivalents percent re	Bicor - bonote HCO3	UNIT	173	176 2.88	173 2. EL		1	1	1	1
por	Carbon -	R HYDRO	0	0	0	-	1	1	1	1
Ë	Potas -	A RIVE	0.05	0.05	0.05	1	1	t i	1	į.
constituents	Sodium	SANTA ANA RIVER HYDRO UNIT	19	18 0 18	19	1	1	i	1	1
Mineral co	Mogne. s.um Mg	S/	0.66	0.74	9 0.74	1	1	1	1	
2	Colceum		2.50	51 2.54 62	2.50	1	1	1	-	1
Specific conduct-	mhos at 25°C)	HYDRO SUBUNIT YO1BO SUBAREA	386	395	385	390	387	392	503	514
	H	HYDRO SU SUBAREA	7.7	7.8	7.6	7.8	7 . 8	7.9	7 - 7	8
Temp	sampled in ° F		1	1	1	1	1	1	t 1	
State well	Date sampled	MIDDLE SANTA ANA R	15/ 8W-150 2 S 2-26-65	3-11-65	3-18-65	3-25-65	59-5-4	4-16-65	4-23-65	59-62-4

TABLE E-I
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	Total hordness os CoCO3						202				
uents m	T D S Total Evap 180°C hordness Evap 105°C 0s Computed CoCO3		234	232	321	312	298	262	287	250	
constituent per million	S.111. C.0 S.10.2		1	1	-	1	1	+	1	1	
Mineral constituents parts per million	B 0 r 0 n		1	1	1	1	90.0	1	1	1	
	Fluo.		1	1	-	-	0 • 3	1	1	1	
	role NO3		1	1	1	1	45 0•73 15		1	1	
million e value	Chlo- ride	Y0100	I I	1	1	1	10 0.28	1	1	ţ 1	
parts per million equivalents per million percent reactance value	Sulfate SO4		23	23	34	33	29 0.60 13	23	26	25	
parts per equivalents percent r	Bicar - bonate HCO3	TIND 0	-	1	1	1	190 3.11 66	1	1	1	
par	Carbon - ate	R HYDRO	1	1	1	9	0	1	1	1	
Ë	70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A RIVE	1	1	1	-	0.05	1	1		
constituents	S 0 0 X	SANTA ANA RIVER HYDRO UNIT	1	1		1	13 0.57 12	1	}	1	
Mineral co	Mogne- stum Mg	S/ Y0181	1	-	1	1	0.90 19	1	1		
2	C O I C I C M		-	1	1	1	63 3.14 67	-			
Specific conduct-	mhos at 25°C)	HYDRO SUBUNIT YOIBO SUBAREA	399	391	767	466	144	389	200	385	
	I a	HYDRO SU SUBAREA	8 0	7 . 8	0 0	7.8	7 . 8	7.8	7.7	7.5	
Тетр	when sampled in ° F		4 0	1	1	ŧ	1	1	-	1	
State well	led	MIDDLE SANTA ANA R	15/ 8W-15Q 2 S 5-27-65	6-10-65	6-17-65	6-24-65	7- 1-65	7- 8-65	7-15-65	7-22-65	

	Total hardness os CaCO3		168							544
lion	Evap 180°C hardness Evap 105°C as Computed CaCO3		263	241	250	252	233	275	562	318
constituent per million	5.01+ C0 S:02		1	ŀ	1	1	8	1	1	1
Mineral constituents parts per million	Boron		0.02	}	1	8	1	1	1	0 • 0 5
	F . C . C		7.0	1	1	1	1	1	1	0 . 2
	rote NO3		33 0.53	1	1	\$ \$	1	1	}	75 1•21 23
million e value	Chio-	Y0100	0.23	1	l t	8 8	1	1	1	0.28
per	Sulfate SO4		24 0.50	23	26	23	22 0.46	33	0.52	0.69
equivalents percent r	Bicor - bonote HCO3	TIND C	184 3.02 71	1	ŧ	8	1	-	-	190 3.11 59
ed	Carbon - ate	R HYDRO	0	1	ļ	Į.	1	1	1	0
ri	Potos Full	A RIVER	0.05	1	1	t 1	1	1	-	0 0 0 0 0
stifuents	E nipos	SANTA ANA RIVER HYDRO UNIT	18 0.78	1	1	1	1	1	1	0.52
Mineral constituents	Mogne.	SA	11 0.90	1	1	-	1	1	1	1.48
M	Colcium		2.45	1	1	1		1	1	3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
Specific conduct-	1 0	BUNIT Y	387	382	382	381	381	694	463	206
	H	RO SU	7.8	7.8	7.9	7.9	8 •	7.7	7 • 8	7.6
Temp.	wnen sampled in ° F	R HYD	1	1	1	1	ŀ	ŀ	8	1
State well	led	MIDDLE SANTA ANA R HYDRO SUBUNIT YOIBO CHINO HYDRO SUBAREA	15/ 8W-150 2 S 8- 6-65	8-12-65	8-19-65	8-26-65	9-13-65	9-23-65	9-30-65	15/ 8W-23A 3 S 10- 1-64

TABLE E-I
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	Total hardness as CaCO3		239	239	239	236	241	220	251	196	
uents in	T D S Evap 180°C Evap 105°C Computed		294	329	307	334	308	329	365	261	
constituents per million	S. 11.2		1	1	1	1	\$	1	1	1	
Mineral o	Boron		0 • 0 3	0	0.02	0.02	0	0.01	0.01	0.02	
~	. o o		0 • 3	4.0	4.0	0 • 3	0 • 3	0.3	0 • 3	0.2	
	rose No3		73 1•18 23	73	75	73	78 1.26 23	1.10	1.35	42.5 0.69 15	
million ce value	Chlo- ride Cl	Y0100	12 0.34	12 0 34 6	11 0.31	0.31	12 0 34 6	0.31	12 0 34 6	0 .25 9	
millio per eacten	Sulfate SO 4		30	0.69	33 0.69	32 0.67	32 0 • 67	35 0 • 73	39	18 0.37 8	
lent	Bicor - bonate HCO3	TIND	187 3.06 59	190 3.11 58	184 3.02 58	184 3.02 58	189 3.10 58	181 2.97 58	186 3.05 55	199 3.26 71	
ports equivo	Carbon -	R HYDRO	0	0	0	0	0	0	0	0	
Ë	Potos.	A RIVE	0.05	0.05	2 0.05	0.05	0.05	0.05	0.05	0.05	
constituents	Sodium	SANTA ANA RIVER HYDRO UNIT	0.52	0.52	0.52	0.52	0.57	0.52	13 0.57 10	0.52	
Mineral co	Mogne-	S/ Y01B1	1.23	1.23	1.23	1.32	1.32	1.15	1.32	1.23	
Σ	Colcium		3.54	3.54	3.54	3.39	3.49	3.24	3.69	2.69	
Specific conduct-	1 0	HYDRO SUBUNIT YOIBO SUBAREA	964	505	463	503	524	491	547	397	
	H Q	HYDRO SU SUBAREA	7.7	7.7	7.6	7.8	7.6	7.9	7.6	7 . 8	
Тетр	sampled in ° F		1	1	1	1	1	1	1	1	
State well	Date sampled	MIDDLE SANTA ANA R	15/ 8W-23A 3 S 10- 7-64	10-15-64	10-22-64	10-29-64	11- 5-64	11-12-64	11-25-64	1-14-65	

State well	Temp		Spacific conduct-	2	Mineral cor	constituents	<u>c</u>	9 9 0	equivalents	per	million e value		2	Mineral o	per million	100	
number	€ hen	H	ance (micro-	Calcium	Mogne	Sodium	Polos -	Carbon -	1 1	Sulfate	C h 10 -	ı Z	F140-	Boron	Sitt	T D S Total	Total
Date sampled	sampled In F		mhos at 25°C)	0	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0 2	. X	000	bongle HCO3	\$0.8	# D	trote NU3	D U.	0		Computed C	0000
					5,	INTA AN	A RIVE	SANTA ANA RIVER HYDRO UNIT	TINU C		Y0100						
MIDDLE SANTA ANA R		DRO S	HYDRO SUBUNIT YO1BO		Y0181										t		
CHILD			30.5	-	1.4	12	2	0	189	31	6	81	0.3	0.02	1	346	235
15/ 8W-23A 3 S 1-28-65	1	0.	976	3.54	1.15	0.52	0.05		3.10	0.65	0.25	1.31				313	
		7	7 2	7.2	15	12	2	0	184	32	11	62	7.0	0.01	1	350	241
2-18-65	1	•		3.59	1.23	0.52	0.05		3.02	0.67	0.31	1.27				314	
			0	20	16	12	2	0	186	35	11	80	0.5	0.03	-	336	241
3- 4-65	-			3.49	1.32	0.52	0.05		3.05	0.73	0.31	1.29				318	
4-16-65	1	7.7	538	1	1	1	1		1	37	1	1	1	1	1	373	
4-23-65	l t	7.6	531	1	i	1	1	1	1	31	1	1	1	1	1	366	
4-29-65	1	7 • 8	529	1	1	-		1	ŀ	32	1	1	1	1	1	366	
5- 6-65	-	7.5	522		1	-	1	1	1	34 0 • 71		1	-	1	1	433	
5-21-65	1	7.7	524		1	1	i i	1	1	34 0.71	1	1	1	1	1	324	

TABLE E-i
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	Tctol hardness os						239				
uents in	T 0 5 Tc to 1 Evop 180°C hardness Evop 105°C 05	1	351	340	333	401	352	357	342	333	
constituents per million	Sifi- ca SiO ₂		1	1	1	-	1	1	1	1	
Mineral parts p	Boron		1	1	-	1	90.0	1	-	1	
	Fluo-		-	1	-	1	0.3	ŀ	1	1	
	rote NO.		1	1	1	1	75 1•21 23	1	1	1	
million per million ctance value	Chio-	Y0100	1	1	1	1	12 0.34	i i		1	
0	Suifate		35	32	33	46.0	35 0 • 73	33	32	35	
e e	Bicor - bonote HCO3	UNIT	1	1	1	1	186 3.05 57	1	1	1	
parts equiva	Carbon - ote CO3	R HYDRO	1	1	1	1	0	1	\$ \$	1	
Ē	Potos -	A RIVE	1	1	1	8	0.05	1	-	ł	
constituents	Sodius	SANTA ANA RIVER HYDRO UNIT	!	1	1	ŧ ŧ	11 0.48	1	1	1	
Mineral co	Mogne- stum M.g	S Y0181	1	1	1	1	1.23	1	1	1	
Σ	Colcium]	1	1	*	1	3.54	ŀ	1	1	
Specific conduct-	(micro- mhos of 25°C)	HYDRO SUBUNIT Y01B0 SUBAREA	525	515	528	561	519	517	516	164	
	H	HYDRO SU SUBAREA	7.9	7.2	7.6	7 • 8	7.5	7.7	7.7	7 • 8	
Temp	sampled in ° F		1	1	1	1	1	1	1	1	
State well	Date sampled	MIDDLE SANTA ANA R	15/ 8W-23A 3 S 5-27-65	6- 3-65	6-10-65	6-17-65	7- 1-65	7- 8-65	7-15-65	7-22-65	

	Total hordness os CoCO3			239				241		
constituents in per million	TOS Total Evap 160°C hardness Evap 105°C as Computed CaCO3		431	335	333	343	352	301	310	322
constituent per million	S. 11-		-	1	1	1	1	1	1	1
Mineral parts p	80100		1	0.03	1	1	1	0.01	1	1
	F.u.o.		1	0 • 5	1	1	1	7.0	į.	1
	role NO3		1	78 1•26 23	1	!	ł	75 1•21 23	1	1
million se value	Ch 10 =	Y0100	1	0.31	1	1	\$ \$	0.34	1	1
per	Suffore SO 4		35	34 0.71	35	33	34	33 0.69	33	34
parts per equivalents percent re	Bicor - bonole HCO3	UNIT	1	195 3.20 58	1	1	-	3.11 58	1	1
bed bed	are CO3	A HYDRO	-	0	1	1	l l	0	-	1
. <u>E</u>	Potos -	A RIVER	1	0.05	1	1	3 8	0.05	l I	1
constituents	Sodium	SANTA ANA RIVER HYDRO UNIT	1	0.57	ì	1	8	0.57	1	1
Mineral co	Mogne- stum M g	SA Y0181	1	1.23	1	1	1	1.32	1	1
M	Calcium		1	3.54	}	1	ŀ	3.49	1	1
Specific conduct-	1 0	HYDRO SUBUNIT YOIBO SUBAREA	511	523	521	516	513	526	501	521
	Ha	HYDRO SU SUBAREA	7.6	7.8	7.7	7 • 8	7 - 7	8 • 1		7 • 7
Temp.	sampled in *F		1	1	1	l	1	1	į.	1
State well	Date sampled	MIDDLE SANTA ANA R CHINO HYDRO	15/ 8W-23A 3 S 7-29-65	8- 6-65	8-12-65	8-19-65	8-26-65	9- 2-65	9-10-65	9-23-65

TABLE E-I
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

		hardness 0 s Colul			241	539	243	237	236	237	232
constituents in	105	Evap (55°C 05°C Cours		340	3.53	290	341	322	354	342	352 313
constituent	1 3	2		1	1	1	1	ł	1	ł	1
Mineral parts p	Buron			-	0.01	0	0.01	0 • 0 5	0.03	0.02	0.02
	70 4	r de		-	0.5	0.5	7 • 0	0.5	0•1	0.3	0 • 3
	ż	trote NC3		1	76 1•23 23	75 1•21 23	75 1•21 23	11.24	75 1•21 23	77 1.24 24	77 1.24 23
million per million ctance value	0 1 10	ride C I	Y0100	1	13	13	16 0.45	13	13	13	13
0	Sulfate	508		28	31	31	32 0.67	29	30	29	31
parts per equivalents percent re	Bicor -	bonote HCO3	TINO O	1	185 3.03 57	3+06 3+06	184 3•02 56	182 2•98 57	189 3.10 58	186 3.05 58	189 3.10 58
p e d	Carbon -	01e CO 3	R HYDR	1	0	0	0	0	0	0	0 '
.c	Potas -	5 X	A RIVE	}	0.05	0.05	2 0.05	0.05	0.05	0.05	2 0.05 1
constituents	Enipos	o Z	SANTA ANA RIVER HYDRO UNIT	# 6	0.52	12 0•52 10	0.52	0.52	0.52	0.52	0.57 11
Mineral co	Magne	8 - S	S Y0181	1	1.23	1.23	16 16 24	1.15	1.07	1.15	1.15
2	Colcium	٥	Y01B0	<u> </u>	3.59	3.54	3.54	3.59	3.64	3.59	3.49
Specific conduct-	(micro-	mhos at 25°C)	HYDRO SUBUNIT YOIBO SUBAREA	517	507	200	504	164	520	519	522
	H d		HYDRO SI SUBAREA	7.8	7.6	7 • 7	7.8	7.6	7 • 8	7.9	7.9
Тетр	when	in 8 F	2 0	i i	-	-	1		1	1	1
State well		Date sampled	MIDDLE SANTA ANA R CHINO HYDRO	15/8W-23A 3 S 9-30-65	15/ 8W-24E 1 5 10- 1-64	10- 7-64	10-15-64	10-22-64	10-29-64	11- 5-64	11-12-64

TABLE E-I
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	Pordness os				239		238			
uents im	Evop 180°C hardness Evap 105°C 05		357	343	355	370	346	347	375	587
constituents per million	S. c. S. S. S. S. S. S. S. S. S. S. S. S. S.		1	1	1	1	1	1	1	1
Mineral parts p	Boron		-	1	90.0	1	0.02	1	1	1
2	7 . C . F		1	1	0 • 3	1	0.0	1	1	1
	10 N		1	1	75 1•21 23	1	81 1.31 24	1	1	1
million	Ch 10 -	Y0100	1	1	0.39	1	14 0 . 39	1		1
parts per million equivalents per million percent reactonce value	Sulfore SO 4	-	26	30	32 0.67	30	31 0.65	30	34	31
parts per equivalents percent rea	Bicor - bondle HC03	UNIT	1	i t	183 3.00 57	1	3.11	-	1	1
par	Corbon .	HYDRO	1	t I	0	1	0	1	1	1
ü	Potos	RIVER	ŀ	1	0.05	ļ	0.05	1	1	1
constituents	E 0	SANTA ANA RIVER HYDRO UNIT	1	1	11 0.48	1	13 0.57	1	i i	1
Mineral cor	Mogne.	SA Y0181	1	1	1.23	1	1.32	1	1	
Σ	Co cium		8	}	3.54	-	3.44	ŀ	1	1
Specific conduct-	1 0	HYDRO SUBUNIT YOIBO SUBAREA	510	520	515	514	517	524	533	547
80	Hd	HYDRO SU SUBAREA	7.6	0	7 • 8	7.7	7.7	7.6	7.7	Ο • &
Temp	wnen sampled in ° F		1	!	1		1	1	1	1
State well	led	MIDDLE SANTA ANA R CHINO HYDRO	15/ 8W-24E 1 S 4-23-65	5-27-65	7- 1-65	7-15-65	8- 6-65	8-12-65	8-26-65	9-30-65

TABLE E-I
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	Total hardness os Calós		204		207	202	147	145	122	145	
fuents in	TDS Evap 180°C Evap 105°C Computed		275	258	281	275	200	204	219	220	
constituents per million	S. 1. co		1	- 1	8	I I	1	î	-	1	
Mineral parts p	Buron		0.04	1	0 • 0 2	0.04	0.02	0.03	0 • 0 3	0.01	
	7 u 0		0 • 3	1	0.3	0.4	0 • 2	0 • 3	0 • 2	0 • 2	
	role NC3		47 00.76 16	i	48 0•77 17	49	15 0 • 24	17 0.27	18 0•29 8	17 0•27	
million e volue	Chlo-	Y0100	0.34	1	0.31	11 0.31	5 0 1 4	0.17	0.17	0.17	
millior per eactono	Sulfate 504		0.31	14	18 0.37	16 0.33	0.19	0.17	0.19	0.17	
parts per equivalents percent	Bicor - bonote HCO3	UNIT	195 3.20 69	-	193 3.16 69	198 3•25 69	200 3.28 85	190 3.11 84	186 3.05 82	192 3.15 84	
par	Carbon - ate CO3	RIVER HYDRO UNIT	0	!	0	0	0	0	0	0	
.5	Potos - sıum K		0.05	1	0.05	0.05	0.05	0.05	0.05	2 0 • 0 5 1	
constituents	Sodium	SANTA ANA	0.52	1	11 0•48 10	0.52	0.91	21 0.91 24	30 1.30	22 0 96 25 25	
Mineral co	Magne - s i u m M g	S. Y0181	12 0.99 21	1	1,15	1.15	0.74	0.74	7 0.58	9 0•74 19	
2	Calcium	0	3.09	-	2.99	2,889	2.20	2.15	37 1.85 49	43 2.15 55	
Specific conduct-	(micro- mhos at 25°C)	HYDRO SUBUNIT YOIB SUBAREA	443	437	436	437	344	343	346	357	
	Hd	DRO S BAREA	7.9	7 . 8	7 - 7	7.7	7 • 8	7 • 7	7 • 7	7 • 8	
Тетр	sampled in ° F		1	1	1	1	1	1	1	1	
State well	Date sampled	MIDDLE SANTA ANA R CHINO HYDRO	1S/ 8W-25B 1 S 6-10-65	6-24-65	7- 1-65	8- 6-65	15/ 8W-25G 1 S 10- 7-64	10-22-64	10-29-64	11- 5-64	

	hordness 05 50 c. 3		145	154	128	135	131	136	136	0 †
uents in	Evap 180°C hardness Evap 180°C as		243	269	218	219	177	222	214	2.21
constituents per million	S. 1. 8		1	1	1	1	-	1	1	ł
Mineral parts p	8 8		0.01	0.02	0 • 0	0.02	0.02	0	0°C2	70.0
	ر ک د ط و ۳		0.2	4.0	0 • 3	0	0 .3	. 0	0.3	0 • 2
	role NC3		16 0.26	12 0.19	16.5	16 00.26	15 0 0 24	17 00.27	17.5	17.0
million e value	Chlo-	Y0100	8 0 0 2 3	160.45	0.17	0.25	0.17	0.17	6 0 0 1 7	0.i7
millior per eactanc	Sulfate SO4		18 0.37	39	0.19	0.19	7 0 0 1 5 4	0.21	0.23	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
parts per equivalents percent	Bicor - bonate HCO3	UNIT	192 3•15 79	181 2.97 67	186 3.05 83	192 3.15 82	186 3.05 84	192 3•15 83	189 3.10 82	3.15 83
par	Carbon -	RIVER HYDRO UNIT	0	0	0	0	0	0	0	0
Ë	Potas -	A RIVE	2 0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
constituents	S od o	SANTA ANA	23 1•00	1.39	25	22 0.96	24 1.04 28	22 0.96 26	0.96	22 0.96 25
Mineral co	Mogne- s-um Mg	S/	12 0.99	0.82	0.66	0.74	0.66	3.66	3.00	0. 14 1.
2	Colcium		38	2.25	38	39	1.95	2.05	42 2.10 56	41 2.05 54
Specific conduct-	mhos at 25°C)	HYDRO SUBUNIT YO1BO SUBAREA	272	432	342	355	352	356	346	337
	ī	HYDRO SU SUBAREA	7.7	7.8	7.6	7.9	7.9	6.	7 • 8	9.
Temp.	sampled in ° F		1	-		1 1	1	I I	1	i t
State well	Date sampled	MIUULE SANTA ANA R	15/ 8W-250 1 S	11-19-64	12-10-64	12-17-64	12-23-64	12-3 1-64	1-14-65	1 - 5 - 1 - 6 5

TABLE E-I
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	1,10	OS COLV3		138			137		141			141			1 + 1		141			141						
constituents in	T D S	Evap 105°C 05 Computed Courts		198	0	061	240	200	226	0	503	328	209	,	117	200	228		202	202		202	214			
constituent		5.02		-			Į į		-			1			1		ļ			į			1			
Mineral o	Boron	Ð		0.01			0.03		0.02			0.02		0	0		0.01			0.02			1			
	30 9	p		0.3			0.3		0.2			0.3			1		7.0			0 • 3			Į.			
	ž	NO3		15	0.24		16	0.26	16	0.26	,	14	0.23	ì	0.26	7	17.5	0.28	7	17	0.27	7	!			
million	C h 10	2 de	Y0100	7	0.20)	9 1	0.17	9	0.17	1	7	07.0	7	0.17	2	9	0.17	'n	7	0.20	ς.	1			
million per eactonc	Sulfate	504		6	0.19	`	0 0	0.19	6	0.50	v	18	0.36	-	0.23	9	10	0.21	9	6	0.19	J.	6	0.19		
parts per equivalents percent r	B (C Or -	bonote HCO3	UNIT	189	3.10		192	3.15	196	3.21	\$	192	3.15	00	3.11	82	190	3.11	82	190	3.11	82	-			
por	Carbon -	ote CO3	R HYDRO	0			0		0			0		C	>		0			0			i			
in	Potos -	. X .	RIVE	2	0.05		2 5	1	2	0.05	7	2 2	0.00	C	0.05		2	0.05	7	2	90.0		1			
constituents	Sodium	0 2	SANTA ANA RIVER HYDRO UNIT	22	0.96)	22	26	22	0.96	67	22	0.96	23	0.91	24	22	96.0	25	22	96.0	25	1			
Mineral co	Magne.	En X	S/	8	0.66) (2 4	16	80	0.66	7	80 ,	0.00	-	0.82	22	89	99.0	17	80	99.0	17				
2	Colcium	٥		42	2.10) !	43	15	43	2.15	0	43	56	0.7	2.00	53	43	2.15	26	43	2.15	96	1			
Spacific conduct-	(micro-	at 25°C)	HYDRO SUBUNIT YOIBO SUBAREA	357			363		361			358		250			357			355			358			
	H		HYDRO SU SUBAREA	7.7		1	7.9		7 • 8			9.2		7 . 8			7.7			7.8			7.7			
Temp	when	in°F	20	1			1		1			!		l I			1			1			1			
State well		Date sampled	MIDDLE SANTA ANA R	15/ 8W-25Q 1 S	1-28-65		2- 4-65		1	2-11-65			69-97-7		3- 4-65			3-11-65			3-18-65			3-25-65		

-	Total hardness as CaCO3									
constituents in	T D S Total Evap 180°C hardness Evap 105°C as Computed CoCO3		184	222	236	185	205	216	198	203
constituent per million	S.11 C.0 S.10.2		i	1	1	1	1		1	1
Mineral parts p	Boron		1	å	ŧ i	1	1	1	1	1
2	Figo.		1	i i	1	1	8	1	1	1
	role NO3		1	1	1 1	1	ł	1	1	1
million e value	Chlo	Y0100	1	1	1	1	ł	}	-	1
per	Sulfote SO4		0.15	0.21	7 0 0 15	8	10	0.21	0.17	0.35
parts per equivalents percent r	Bicor - bonale HCO3	TIND	1	1	1	1	ł	a t	8	1
000 000 000	Carbon - ate	R HYDRO	1	١	1	1	1	i i	1	1
.c	Potos - C	A RIVE	1	1	1	1	1	1	1	1
constituents	E DO N	SANTA ANA RIVER HYDRO UNIT	1	1	ton on	1	i i	1	8	1
Mineral con	M g m	SA Y0181	1	i i	1	1	1	}	1	1
2	m 0 0 0		1		1	1	8	1	1	1
Specific conduct-	1 0	HYDRO SUBUNIT YO1BO SUBAREA	359	359	358	359	356	358	360	358
	I a	HYDRO SU SUBAREA	7.7	7.8	7.7	7.8	7.7	7.4	7.7	0 . 8
Temp	sampled in °F	RO SUI	1	1	1	1	1	1	1	1
State well	9	MIDDLE SANTA ANA R CHINO HYDRO	15/ 8W-250 1 S 4- 2-65	4-16-65	4-23-65	4-29-65	5- 6-65	5-13-65	5-21-65	5-27-65

TABLE E-1
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	Total hardness os CoCO3						142				
uents in	T D S Total Evap 180°C hardness Evap 105°C as Computed CaCO3		216	199	227	213	208	214	225	224	
constituents per million	S. C. O. S.		-	1	1	1	-	1	1	1	
Mineral o	80.00		1	1	1	1	0.02	1	1	ł	
2	7.00. 7.de		1		1	-	0 • 3	1	1	-	
	rote NO3		1	1	1	8 8	11.3	1	1	1	
million s value	1 0 H 10 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	Y0100	ľ	1	1	ł	0.23	1	i	1	
parts per million equivalents per million percent reactance value	Sulfate SO4		0.12	0.17	0.23	0.17	0.21	0.19	0.21	0.21	
parts per equivalents percent re	Bicar - bonate HCO3	O UNIT	1	}	i i	i	193 3.16 84	1	1		
par	Carbon -	R HYDR	1	1	-	1	0	1	1	1	
.c	Potos -	A RIVE	+	1	1	1	0.05	1	1	1	
constituents	Sodium	SANTA ANA RIVER HYDRO UNIT	-	1	1	1	22 0.96 25	-	1	ı	
Mineral co	Magner srum Mag	S Y0181	-	40	1	1	9 0.74 19	1	ł	!	
2	Colcium		1	1	,	1	2.10	1	ę s	1	
Specific conduct-	mhos at 25°C)	R HYDRO SUBUNIT YO180 O SUBAREA	356	354	351	354	353	340	347	356	
	H	HYDRO SU SUBAREA	7.9	7.4	8 • 1	7.8	7.8	7.6	7.6	7 • 8	
Тетр.	when sampled in F	RO SUI	1	i i	1	-	1	1	1	1	
State well	D e	MIDDLE SANTA ANA R CHINO HYDRO	15/ 8W-250 1 S 6- 3-65	6-10-65	6-17-65	9-54-65	7- 1-65	7- 8-65	7-15-65	7-22-65	

П	Total hardness as CaCO3			144				145		
constituents in per million	Evap 180°C hardness Evap 105°C os Computed CoCO3		218	234	217	225	224	196	200	204
consti	S.111-		1	1	-	1	ŧ.	1	1	1
Mineral constituent parts per million	Boron		1	0.03	1	1	1	0.02	1	1
	e piu		1	4.0	1	1	1	0 • 3	1	1
	rote NO3		1	18 0.29	1	1		17 0.27	1	1
million a value	Chlo-	Y0100	1	0.17	1	-	1	0.20	İ	1
equivalents per million percent reactance volue	Sulfate SO 4		11 0.23	10	10	0.21	10	0.19	9 0 0 1 9	0.19
equivalents percent r	Bicar - bonote HCO3	O UNIT	1	195 3.20 83	1	I I	1	193 3.16 83	1	1
ed	carbon - ote CO 3	4 HYDRG	1	0	1	1	1	0	-	1
Ē	P0108	A RIVER	1	0.05	1	1	1	0.05	ł	1
constituents	Sodium	SANTA ANA RIVER HYDRO UNIT	1	21 0.91 24	1	1	1	0.91	į į	1
Mineral co	Mogne.	SA Y0181	1	10 0.82 21	1	ł	1	0.74	1	1
2	E 0 0 0		1	41 2.05 54	1	1	1	43 2.15 56	ł	1
conduct-	, 0	HYDRO SUBUNIT YOIBO SUBAREA	355	356	357	353	353	354	345	354
	Hd	HYDRO SU SUBAREA	7.8	7.6	7.8	7 • 8	7.9	0 .	8 • 2	8 .
Тетр	sampled in F		1	1	1	1	1	1	1	1
State well	Date sampled	MIDDLE SANTA ANA R	15/ 8W-250 1 S 7-29-65	8- 6-65	8-12-65	8-19-65	8-26-65	9- 2-65	9-10-65	9-13-65

TABLE E-I
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	Total Nardness os CoCO3				231	231	227	231	226	222
uents in	TDS Total Evop 180°C as Evop 105°C as Computed CoCO3		201	211	262	326	290	319	271 289	323 291
constituents per million	S(1)- co SiO ₂		-	1		1	1	1	1	1
Mineral (Boron		1	1	0.02	0.01	0.02	0.02	0.02	0.01
-	Fluo- ride		ì	1	0.2	0.4	0.5	0 • 3	0 • 3	0 • 3
	hrote NO3		-	1	62 1.00 20	1.03	66 1.06 21	62 1.00 20	64 1.03 21	1.03
million s value	Chlo- ride Cl	Y0100	ŀ	1	0.34	12 0.34	12 0.34	12 0 34	0.34	0.37
parts per million equivalents per million percent reactance value	Sulfore 504		11 0.23	0.10	28 0.58 12	31 0.65	26 0.54	27 0.56	26 0.54	0.56
parts per equivalents percent re	Brear - bonate HCO3	UNIT	1	1	3.06 61	184 3.02 60	184 3.02 61	189 3.10 62	186 3.05 61	189 3•10 61
par	Carbon - ofe CO3	HYDRO	1	1	0	0	0	0	0	0
ŗ	Potas .	A RIVER		1	0.05	0.05	0.05	0.05	0.05	0 0 0 0 0 0 1 1
constituents	Sodium	SANTA ANA RIVER HYDRO UNIT	1	3 8	11 0.48	10 0.43 8	10	11 0.48	11 0.48	0.48
Mineral co	Mogne. stum Mg	S/	1	1	1.07	1.07	0.99	13 1.07 21	1.07	0.99
2	Colcium		1	Ì	3.54	3.54	3.54	3.54	3.44	3.44
Specific conduct-	mhos of 25°C)	HYDRO SUBUNIT YO1BO SUBAREA	353	355	471	482	468	492	064	490
0, 0	Hd	HYDRO SU SUBAREA	7.8	7.8	7.7	7.7	7.6	7.8	7.6	9.
Temp	sampled in ° F			-	1	-	1	-	1	1
State well	led	MIDDLE SANTA ANA R CHINO HYDRO	15/8W-25Q 1 S 9-23-65	9-30-65	15/ 8W-26B 1 S 10- 7-64	10-15-64	10-22-64	10-29-64	11- 2-64	11-12-64

.i.	TDS Total Evap 180°C hardness Evap 105°C os		8 221	7	9 222	0	3 222	6	0 225	2	2 223	2	6 222	2	4 223	0	3 224	4
constituents per million			298	287	319	289	323	289	270	285	312	295	306	292	294	290	323	284
constituent per million	Sult- co SiO ₂		1		-		1		1		1		1		-		1	
Mineral	B B		0.03		0.02		0.01		0.02		0.03		0.02		0.01		0.01	
	Fluo- ride F		0.3		0.3		0.3		0.3		4.0		4.0		0.3		0 • 3	
	Proje NO3		61	20	64	21	61	19	62	20	64	20	79	1.03	63.8	20	64	50
million e value	Chlo-	Y0100	12	1	13	7	15	00 0	12		12	7.00	12	0.34	13	7	12	20.00
per per eoctono	Sulfate SO4		28	12	27	11	28	12	26	11	29	12	30	0.62	28	12	27	11
equivalents percent	Bicor - bonote HCO3	O UNIT	189	62	186	61	186	61	184	2000	189	61	181	59	186	61	189	62
equ	Carbon - ate CO3	SANTA ANA RIVER HYDRO UNIT	0		0		0		0		0		2 10	0.00	0		0	
in in	Potos -	IA RIVE	0.05	1	2000		2 4	1	20-05		2 0	0.00	2 0	0.0	2 40	•	20.0	9 -
constituents	E n P N	ANTA AN	11	10	11	10	111	10	11	10	12	10	11	10	10	0 0 0	10	0
Mineral co	Magner soun	S Y0181	13	22	14	23	14	1.13	14	23	10	16	11	18	13	22	21	32
2	Colcium		3.34	68	3,29	99	999	999	79.34	67	73	72	71	71	68	69	55	25
Specific conduct-	1 0	HYDRO SUBUNIT YOIBO	478		727		487		489		474		485		488		064	
-	Hď	HYDRO SU SUBAREA	7.8		7.7		7.8		7.7		7.8		8.0		7.7		7.6	
Temp.	sampled in F		1		1		i		}		1		1		1		1	
State well	Date sampled	MIDDLE SANTA ANA R CHINO HYDRO	15/ 8W-26B 1 S		12-10-64		12-17-64	10-11-31	12-23-64		12-30-64	10-05-21	7 - 7 - 6	6001	1-14-45		1-21-65	

TABLE E-1
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	1000	ordness	20.03		224		222		227		222		224		222				
uents in lion	000	Evap 105°C hardness			296	286	314	290	306	289	345	285	305	289	327	297	356	316	
constituents per million	-				1		1		1		1		-		1		-	-	
Mineral c	0				0.02		0.03		0.02		0		0.04		0.01		1		
	-	, p			0.3		0.4		0.3		0 • 3		4.0		7.0		1	l	
	2	- C Z	2		62	1.00	62	1.00	62	700	63	1.02	63	1.02	68	1.010	1	1	
million	0 4	o pi	,	Y0100	11	0.31	13	0.37	11	0.31	12	0.34	12	0.34	6	0.0	1	1	
parts per million equivalents per million percent reactance value	Cultote		4		27	0.56	28	0.58	55	0.52	26	0.54	28	0.58	29	0.60	31	30	
parts per equivalents percent re	2	Bonote	2003	TIND	186	3.05	186	3.05	194	3.18	181	2.97	186	3.05	186	60	1	1	
par	- addre	o i e	200	R HYDRO	0		0		0		0		0		0		-	1	
.5	Dotor			A RIVE	2	0.00	2	0.05	2	0.05	2	0.05	2	0.05	2	0.02	-	1	
constituents		2 2		SANTA ANA RIVER HYDRO UNIT	10	0 6 6 7	11	0.48	10	0.43	11	10	10	0.43	11	10	-	1	
Mineral co		E 2 2	2	S. Y01B1	12	0.99	11	0.90	12	0.00	11	0.90	12	0.99	11	18	1	1	
Σ	1		2		7.0	3.49	7.1	3.54	7.1	3.54	7.1	3.54	70	3.49	7.1	3.54	ì	1	
Specific conduct-	ance	mhos	10 62 10	HYDRO SUBUNIT YO1BO SUBAREA	491		491		495		489		492		488		511	505	
	Hd			HYDRO SI SUBAREA	7.6		7.8		7 . 8		7.5		7.8		7.8		7 • 4	7.9	
Temp.	when	sampled in ° F			1		!		1		1		1		-		1	1	
State well		Date sampled		MIDDLE SANTA ANA R	15/ 8W-26B 1 S	1-28-65		2- 4-65		2-11-65		2-18-65		3- 4-65		3-11-65	5-13-65	5-21-65	

	Total hardness as CaCO3						232			
uents in	T D S Total Evap 180°C Nardness Evap 105°C as Computed CoCO3		316	323	312	305	308	348	321	308
constituents per million	Sirit- co S:02		1	ł	1	9	-	1		1
Mineral parts p	Boron		-	1	1	1	0.02	1	1	1
	r de		1	1	1	1	0		-	1
	N S S S S S S S S S S S S S S S S S S S		1	1	į	1	61 0.98 19	1	1	1
million a value	Chlo.	Y0100	1	1	1	1	14 0.39	l	}	1
puris per million equivalents per million percent reactance value	Sulfate SO 4		28	27	29	09.0	29 0.60	29	28	31
equivalents percent re	Bicor - bonote HCO3	TIND	1	i	1	-	188 3.08 61	1	-	1
e d	Corbon -	HYDRG	1	l I	1	-	0	-	t t	1
. <u>c</u>	P 0 1 0 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A RIVER	1	i i	g t		0.05	t t	1	1
constituents	S o S	SANTA ANA RIVER HYDRO UNIT	1	-	-	-	10	1 1	1	1
Mineral cor	M 0 0 0 6	SA Y0181	1		-		0.99	1	-	İ
Σ	C 0 10 0 0		1	1	7	1	3.64	ł ſ		1
Specific conduct-	1 0	HYDRO SUBUNIT YOIBO	503	504	765	493	493	064	488	489
	I a	HYDRO SU SUBAREA	0	7.9	0 .	7 . 8	7.6	7.6	7.6	8 .
Тепр	sampled in F		1	1	1	-	1	-	1	1
State well	Date sampled	MIDDLE SANTA ANA R	15/ 8W-26B 1 S 5-27-65	6- 3-65	6-17-65	6-24-65	7- 1-65	7- 8-65	7-15-65	7-22-65

TABLE E-1
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	Total hordness os CaCO3		230				228		245	251
uents in	TDS Total Evap 180°C nordness Evab CS°C as Computed CaCO3		329	317	328	323	307	314	258	291
constituent per million	5. t- co \$ 0.2		1	1	1	1	8	1		1
Mineral constituents parts per million	96167		0.05	1	1	8 8	0 • 0 3	}	0.02	0 0 0 0 5
	r.de		7.0	-		1	7.0	1	0.3	* • • 0
	**************************************		66 1.06 21	1	1	1	64 1.03 21	1	69 1•11 21	66 1•06 20
million per million ctance value	chlo-	۲0100	13		-	-	0.34	!	0.39	0.39
0	Sulfate SO4		30	31	09.0	31	26 0.54	29	25 0•52 10	26 0 54 10
parts per equivalents percent re	Bicar - bonate HCO3	TINU C	186 3.05 60	1	-	1	188 3.08 62	1	3.23	197 3.23 62
por	Corbon -	R HYDRO	1		l i	l t	0	ì	0	0
. <u>e</u>	Potas -	A RIVE	0.05	ł	1	-	0.05	1	0.05	0.03
constituents	Sodium	SANTA ANA RIVER HYDRO UNIT	0.48	1	[!	11 0.48	ŀ	0.43	0.39
Mineral co	Magne- s-um M-g	S Y01B1	1.15	1		1	13 1.07 21	1	1.15	1.07
2	Calcium	Y0180	3.44		l t	1	3.49	1	3.74	3.94
Specific conduct-	mhos at 25°C)	R HYDRO SUBUNIT YO1BO O SUBAREA	797	474	780	486	487	486	506	484
	I a	HYDRO SU SUBAREA	7.7	7 • 8	7.9	7.9	8 • 0	7 • 8	7.6	7.5
Temp	when sampled in ° F	1 0	1	!	1	1	1	1	1	1
State well	pel	MIDDLE SANTA ANA R CHINO HYDRO	15/ 8W-26B 1 S 8- 6-65	8-12-65	8-19-65	8-26-65	9- 2-65	9-16-65	15/ 8W-27K 1 S	10-22-64

TABLE E-I
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	Pordness os Color 3		239	206	227						
uents ın lion	T D S C R E V O D C C C C C C C C C C C C C C C C C C		325	270	392	310	328	293	30%	307	
constituent	S 8		1	-	1	-	1	1	1	1	
Mineral constituents parts per million	Beren		0.03	0.01	0.11	1	1	1	1	1	
	, o		7.0	0.0	7.0	1	1		1	1	
	7 0 N C C e		62 1.00 20	45 0•73 16	58 0.94 19	}	!	1	1	1	
million e value	Chio- ride C1	Y0100	0.34	100.20	14	ţ	1	1	1	1	
per	Sulfate 504		24 0.50 10	19	23	20 0.45	25	22	26	23	
parts per equivalents percent re	Bicor - bonole HCO3	TINO	3.26	3.10	196 3.21 64	1	-	1	1	1	
por	Carbon -	4 HYDR	0	0	0	1	1	}	1	1	
Ë	Potos - Sium K	A RIVE	2 0.05	0.05	0.05	l I	1	1	1 1	1	
constituents	E 0 Z	SANTA ANA RIVER HYDRO UNIT	9 0 39	0.39	0 9 9 8	1	1	-	1	1	
Mineral co	M agne	S/	1.23	0.0000000000000000000000000000000000000	0.99	1	1	1	Į Į	1	
2	Co 1 C		3.54	3.29	3.54	1	1	-	1	1	
Specific conduct-	1 0	HYDRO SUBUNIT YOIBO SUBAREA	493	450	491	470	486	482	483	414	
	I a	HYDRO SU SUBAREA	7.9	7.6	7 • 5	7 • 7	7 • 8	7.5	7.9	7 • 7	
Тетр	sampled in ° F		1		-	t 1	1	I I	1	;	
State well	Date sampled	MIDDLE SANTA ANA R	15/ 8W-27K 1 S 10-29-64	1-28-65	2-26-65	4-29-65	5-27-65	6-10-65	6-17-65	7-8-65	

TABLE E-I
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	Total hardness as CaCO3				231				216	
uents in lion	TDS Total Evap 180°C hardness Evap 105°C as		312	319	316	308	317	294	310	258
constituent per million	Silt:		1	1	1	İ	-	1	1	1
Mineral constituents parts per million	Boron		8	- 1	0.02	1	1	1	0.01	1
	Fluo:		1		0.5	-	1	1	4 • 0	8
	role NO3		1	ł	58 0.94 19	1	1	å f	60 0.97 20	1
million per million ctance value	Chlo-	Y0100	1	;	0.34	1	1	-	11 0•31 6	
0	Sulfate SO 4		24	27	23	22 0 • 46	23	23	38	26
parts per equivalents percent r	Bicar - bonate HCO3	UNIT O	1	1	3.25	!	1	1	173 2.84 58	ŀ
par	Carbon - ate CO 3	HYDRO	1	1	0	1	1	1	0	1
u.	P	A RIVER	1	1	0.05	l I	1	1	0.05	1
constituents	S odio	SANTA ANA RIVER HYDRO UNIT	l I	1	11 0.48	-	1	-	11 0.48 10	1
Mineral co	M 0 0 0 M 0 0 M 0 M 0 M 0 M 0 M 0 M 0 M	S/ Y01B1	1	1	1.23	1		!	1.07	1
Σ	C 0 C 0		1	1	3.33	1		1	3.24	-
Specific conduct-	1 0	HYDRO SUBUNIT YO1BO SUBAREA	727	481	470	465	472	472	473	394
	H a	HYDRO SU SUBAREA	7.7	7 • 7	7.4	7 • 8	7 • 8	0 • 8	7.6	7 • 8
Temp	sampled in ° F		1	1	1	-	ŀ	1	1	
State well number	Date sampled	MIDDLE SANTA ANA R	15/ 8W-27K 1 S 7-15-65	7-29-65	8- 6-65	8-19-65	8-26-65	9-16-65	15/ 8W-28E 2 S 7-22-65	7-29-65

	Toto! hardness os Co C Co		182				173			
uents in	T D S. Total Evap .80°C hardness Evap .05°C as Computed CaCO3		243	240	276	280	230	237	240	224
constituent per million	5:0.5 S:0.2		1	1		1	1	1	1 1	-
Mineral constituents parts per million	Boron		0.02	}	1	1	0.02	1	1	1
	0 0 1 14		0.5	1	1	1	7.0	1		t 1
	Trop Z		31	= 1	1	1	27 0.44	1	1	1
million e value	Ch 10 -	Y0100	14	1	1	1	0.20	1 1	1	-
millior per soctono	Sulfate SO 4		26	25 0 . 52	0.52	0.52	21 0.44	24	0.52	0 5 8 8 6 9 8 8
parts per equivalents percent re	Bicor - bonate HCO3	TIND	178	0	1	!	3.00	-	1	1
ber ber	Corbon- ole CO3	HYDRG	0	1	1	1	0	1	1	}
Ē.	P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	RIVER	0.05	1	\$ I	ļ	0.05	1	1	1
constituents	E O Z	SANTA ANA RIVER HYDRO UNIT	14 0.61	1	1	1	0.61	1	1	1
Mineral cor	M o g n e .	SA Y0181	12 0.99	G	1	1	10 0.82	-	1	1
Σ	Calcium		53 2.64	7	1	1	2.054			
Specific conduct-	1 0	HYDRO SUBUNIT YOIBO SUBAREA	393	389	393	385	382	378	386	0004
	I a	HYDRO SU SUBAREA	7.6	7 . 8	7.8	7 . 8	0 • 8	8.2	0	8 .
Temp.			1	1	1	-	1	1	1	1
State well	pe	MIDDLE SANTA ANA R CHINO HYDRO	15/ 8W-28E 2 S 8- 6-65	8-12-65	8-19-65	8-26-65	9- 2-65	9-10-65	9-16-65	9-23-65

TABLE E-I
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	Total hardness os CoCCs		200		202		217		226		205		222		226		228		
uents m	T D S Evap '80°C Evap 105°C Computed		257	243	277	254	313	276	304	281	282	261	297	284	312	284	265	281	
constituents per million	5.02		1		1				ł		1		1		-		1		
Mineral o	Boron		0.02		0.03		0.03		0.01		0.01		0.02		0.02		0.03		
	r.de		0 • 3		0 • 3		0.4		7.0		0.4		0.5		0.4		0 • 5		
	Prote NO3		35	13	40	14	51.0	17	52	0.84	43	0.69	54	0.87	54	0.87	52	17	
million e value	Chlo-	Y0100	9	9	10	9	12	7	14	0.30	10	9 .0	12	0.34	13	0.37	13	8	
millior per eactano	Sulfore SO 4		21 0.44	10	24	11	27	11	27	0.56	26	0.54	29	0.60	26	0.54	25	11	
parts per equivalents percent r	Bicor - bonote HCO3	TINO	192	72	192	69	194	65	194	3.18	192	5.15	194	3.18	199	3.26	194	69	
par	Carbon - ate	R HYDRO	0		0		0		0		0		0		0		0		
i.	Potas - Rum K	A RIVE	2 0.05	-	0.05	٦	2		2	0 -0	2	0.00	2	0.05	2	0.05	20-05	1	
constituents	Sodium	SANTA ANA RIVER HYDRO UNIT	10	10	10	10	10	0	10		10	9 00	10	0.43	6	0.39	10	0	
Mineral co	Mogne- stum Mg	S, Y01B1	1.15	56	0.99	22	14	24	16	1.32	11	0.30	12	0.00	13	1.07	13	21	
*	Colcium		57	70	3.04	29	3,10	99	49	5.19	49	02 02	69	3.44	69	3.44	3.40	69	
Specific conduct-	mhos at 25°C)	HYDRO SUBUNIT YOIBO SUBAREA	429		439		480		482		414		482		484		485		
	Ha	HYDRO SI SUBAREA	7.7		7.6		7.8.		7.7		7.8		7.8		7.6		7.5		
Temp.	sampled in ° F		1		1		ł		1		1		1		1		1		
State well	Date sampled	MIDDLE SANTA ANA R CHINO HYDRO	15/ 8W-28G 1 S 11-13-64		12- 7-64		12-10-64		77-61-61	*0-/I-2I	77-06-61	15-50-64		1-14-65		1-21-65	1-28-65		

TABLE E-1
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	hordness os Co		220		217		222		223		213		5.56				
uents in	Evap 180°C hardness Evap 105°C os Computed Court		325	617	293	111:	352	087	303	787	314	087	5, 7	612	147	8 0	
constituents per million	5000		1		1		ł		t I		§ 1		1		1	i i	
Mineral o	3,79		0.03		0.02		0.05		0.03		0		20.0		1	1	
-	, de		5.0		0.3		0 • 3		0.5		7.0		0.3		1	t i	
	Z 0 Z		51	17	27	0.77	4.0	0.79	55	7 - 0	24	0.e.g.	5.2	1/	1	1	
volue	chlo- ride cl	Y0100	11	0	10	a ? • O	E 13	×, • 0	A .		12	0.34	12		1	I t	
ts per million reactance value	Sulfote SO4	1	92	11	2.7	0.56	54	0.50	27	11	97	0.54	26	11	2.50	25.0	
equivalents percent re	Bicor - bonote HCO3	I IND C	199	999	202	3.31	204	3.34	203	3.33	195	0.00 0.00 0.00	193	0.00	1	1	
ede	Carbon -	R HYDRG	0		Э		2		٥		0		0		!	1	
ï	P 0 1 0 8 x	A RIVE	2 30	0.00	2	0.05	2 .	C. C.	2	0 -	~ .	5.0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		-	1	
constituents	Sodium	SANTA ANA RIVER HYDRO UNIT	10	200	10	6.4° 0.0°	0 0	0.43	on ;	0.00	10	0. 4. 6. W.	10	200	1	1	
Mineral cor	Mogners sium Mg	SA Y0181	111	18	1.1	0.00	12	200	e :	1.01	17	500	1.3	21	1	1	
Σ	Colcium	1	2,	3.49	69	3.44	69	3.44	68	3.54	\$9	7 5 5	4-60	59	1		
Specific conduct-	1 0	HYDRO SUBUNIT YOIBO SUBAREA	484		472		787		482		4 7 6		416	Ī	481	4.79	
0, 0	H	HYDRO SU SUBAREA	7 . 7		1.01		7.5		1 . 7	Ī	1.1		1 - 1		7.6	7 • 6	
Temp	when sampled in ° F		1		1				t t		!		-		1	1	
State well	led	MIDDLE SANTA ANA R	15/8W-28G 1 %	69-4-7		2-11-65		39-92-		4-65		3-11-55			3-52-65	4-5-65	

TABLE E-I ANALYSES OF GROUND WATER SANTA ANA DRAINAGE PROVINCE (Y)

	T to! Nordness										
uents in	Eventual 2000 Total		327	3 < 0	321	562	267	275	392	462	
constituent per million	- 00 %	J	1	1	ł	1	1	1	1	1	
Mineral constituents parts per million	8, 10,		t	1	1	ŀ	1	1		1	
	1 0 L		-	1	1	1	1		1	-	
	Z 0 Z		ŧ	1	1	1	1	}	i	1	
million B value	C 1 10	Y0100	1	1	1	1	!	1	l I	-	
r million s per million reactance value	Sulfote Su 4		27	24	25 0 • 52	29	26	26	25 0 52	25	
parts per equivalents percent re	Bicor - bonote HCO3	TINU	1	1	-	i i		1	l l	1	
pod	Carbon - ote	R HYDRO	1	1	1	1	-	1	l I	1	
ri	Potos:	A KIVE		1	-	1	ŀ	1	1	1	
constituents	Sodium	SANTA ANA KIVER HYDRO UNIT	4	1	1	1	1	-	1	1	
Mineral co	Magne- sum Mag	S./	1		1	-	1	1	1	1	
2	Calcium		1	1	1	1	1	-	i	ļ	
Specific conduct-	mhos at 25°C)	HYDRO SUBUNIT YOIBC SUBAREA	4482	482	485	474	474	475	476	478	
	H	HYDRO SU SUBAREA	1.1	7 • 6	7 • 7	7.6	7 • 1	7.6	8 • 1	7.07	
Temp	sampled in ° F	20	t i	1	1	1	1	1	1	8	
State well	p e d	MIDDLE SANTA ANA R CHINO HYDRO	15/ 8W-28u 1 5 4-16-65	4-23-65	59-62-4	5- 6-65	5-13-65	5-21-65	5-27-65	6- 3-65	

ē	Totol hordness os				227				227	
en :	T 0 5 Totol Evop :80°C hardness Evop :05°C os		292	290	285	303	318	308	275	277
constituent per million	S.0.3	-	1	1	1	-	1	1	1	1
Mineral parts	80 0 0 80		1	1	0.02	1	1	1	0.02	1
	Fluo.		1	1	0.4	H	-	1	7*0	1
	rote NO3		1	1	48 0°77 16	1	1	1	50 0.81 16	1
million e value	Chio-	Y0100	1	1	12 0.34	-	ł	1	0.34	1
	Sulfate SO4		28	0.52	0.56	27	27	27	27 0.56	25 0 • 52
equivalents per percent reactand	Bicar - bonate HCO3	TINU O	-	1	198 3.25 66	1	1	1	198 3.25 66	1
0.00	Carbon - ote CO3	R HYDR	1	1	0	i	1	}	0	1
ri .	Potos.	A RIVE	1	1	0.05	1	1	1	0.05	1
constituents	Sodium	SANTA ANA RIVER HYDRO UNIT	1	1	0.39	1		-	10	1
Mineral co	M done		i i	1	1.15	1	1	1	1.15	1
2	Calcium		9 9		3,39	1	1	1	3,39	1
conduct-	1 0	BUNIT Y	471	433	474	461	463	797	194	456
	I.	ORO SU	7.7	0 .	7.5	7.7	7.6	7.7	8 • 1	7.9
Temp	sampled in ° F	RO SUE	1	8	1	1	1	-	ł	1
State well	Date sampled	IDDLE SANTA ANA R HYDRO SUBUNIT YOIBO	15/ 8W-28G 1 S 6-10-65	6-17-65	7- 1-65	7- 8-65	7-15-65	7-29-65	9- 2-65	9-16-65

TABLE E-I
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	Total hardness os CaCO3			197	728	704	126	131	350	365
uents m lion	TDS total Evop 185°C hardness Evop 105°C os Computed CoCC3		280	235	1360	1417	184	184	584	555
constituent per million	5.02		-	1	1	1	1	1	ŀ	1
Mineral constituents parts per million	Boron		1	0.01	0.02	0.08	0	0	0.79	0.11
	0 n L n n n n n n n n n n n n n n n n n		1	7.0	9.0	1.0	0.5	0.4	0.5	9.0
	rote No		1	33 0 • 53	307	290 4.68 24	0.10	6.3	29 0.47	27 0.44
million e volue	0 H 10	Y0100	ţ	0.25	153	152	0.23	0.25	2.37	2.37
millior per sactanc	Sulfate SO 4		27	19	5.56	242 5.04 26	12 0.25 8	0.19	1.71	1.73
pe	Bicor - bonote HCO3	UNIT	1	190 3.11 72	342 5.61	348	168 2.75 83	164 2.69 79	336	351
parts equiva percen	Carbon- ofe CO3	R HYDRG	1	0	0	0	0	0.17	0	0
. <u>c</u>	Potos -	A RIVE	1	0.03	0.0	3 0 • 0 8	0.05	0.05	0.03	0.03
constituents	Sodium	SANTA ANA RIVER HYDRO UNIT	1	10	137 5.96 29	134 5.83	18 0•78 23	18 0.78 23	68 2.96 30	2.96
Mineral co	Mogne: stum Mg	S. Y0181	1	12 0.99 23	5.76	5.59 28	5 0 41 12	0.41	3.21	3,45
2	Calcium		1	2.94	176 8.78 43	170	2.10	2.20	3.79	3.84
Specific conduct-	mhos of 25°C)	HYDRO SUBUNIT YO1BO SUBAREA	957	405	1888	1840	319	313	946	958
	H	HYDRO SI SUBAREA	7 • 7	0 .0	7.2	7.4	8 • 0	8 • 2	7 • 7	7.6
Temp	sampled In ° F		-	!	1	1	1	1	1	1
State well	pe	MIDDLE SANTA ANA R	15/ 8W-28G 1 S 9-23-65	15/ 8W-35C 2 S 6-30-65	25/ 5W- 7N 1 S 2-17-65	8-17-65	2S/ 6W- 5A 1 S 2-17-65	8-16-65	25/ 6W-12M 1 S 2-17-65	8-16-65

	Total Nordness as CaCO3		434		777		352		365		324		396		175		228	
constituents in	TDS Total Evap 180°C Pardress Evap 105°C as Computed CaCO3		817	747	866	747	701	653	736	959	513	443	663	564	260	234	330	301
constituent per million	S				1		-		-		-		-		1		-	
Mineral parts p	80.00		0.02		90.0		0.25		0.24		0.02		0.02		0		0	
	Fluo-		1.0		6.0		0.2		0.3		0.3		0.3		0.3		0.5	
	7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		747	0 0	52	9	11	0.18	11.4	2	27	1 9	31	, , ,	14	0.63	35	10
million a value	Ch10 -	70100	119	25.25	120	25	143	35	136	33	50	1.02	09	11	- 4	12	37	19
ts per million reactance volue	Sulfote 504		131	2.5	131	21	110	02 50	115	20	1	1.40	95	20	,	0.10	12	4
equivalents percent	Bicor - bonote HCO3	TINO O	393	4 4 4	388	48	305	43	320	45	273	27	361	59	220	3.61	227	67
9 6	Carbon - ote	R HYDRO	0		0		0		0		0		0		0		0	
ï	Potas -	A RIVE	20.0	0	2 2 2		40	7	4 01-0	7	800	7	600	-	7 0	0.00	0.05	7
constituents	Sodium	SANTA ANA RIVER HYDRO UNIT	110	35	105	34	101	38	95	36	33	18	54	23	23	1.00	24	18
Mineral co	M 0 0 0 0 M	S/	3,78	28	51	31	11	0 00	17	12	15	15	24	19	12	22	19	28
2	Colcium		86	36	46	35	123	53 53	118	51	105	999	119	57	50	55	60	53
Specific conduct-	. 0	HYDRO SUBUNIT YO1BO SUBAREA	1264		1236		1116		1124		647		676		434		553	
	I a	HYDRO SU SUBAREA	7.2		7.4		7.5		7.6		7.5		7.8		7.9		7.8	
Temp	sampled in F		1		1		1		-				1				t 1	
State well	Đ Đ	MIDDLE SANTA ANA R CHINO HYDRO	25/ 6W-14K 1 5		8-14-65		25/ 6W-21Q 1 S	60-11-2	8-16-65		25/ 6W-300 1 S		25/ 6W-31D 2 S		25/ 7W- 2G 1 S	0-11-00	25/ 7W- 20 1 S 3-11-65	

TABLE E-1
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	Total hardness as CaCOs		150		150	151		192		228		369		472		464		
constituents in per million	TDS Total Evap 185°C herdness Computed Co.Co.		275	190	208	241	203	363	232	318	302	638	260	929	628	069	779	
constituent per million	S.11.2 C.0 S.10.2		1		1	l t		1		1		ŧ		ŀ		1		
Mineral parts p	Boron		0.01		0.02	0.04		0.01		0		1.35		0.04		0.42		
	F100		0.3		0 • 3	0 • 3		0 • 3		4.0		0 • 3		0.3		0.4		
	rote NOS		6.8	m	9.3	8 0•13	m	15	5	55	17	60	10	128	19	85	12	
million e volue	Ch 10 -	Y0100	0.11	n	10	13	0	18	12	17	•	81	23	81	21	104	56	
millior per eoctano	Sulfate SO4		16	ת	0.35	18	6	9	4	26	10	72	15	63	12	75	14	
parts per equivalents percent r	Bicar - bonate HCO3	TIND	186	85	188 3.08	186	78	209	78	209	49	312	52	317	84	342	64	
par	Corbon- ote CO3	SANTA ANA RIVER HYDRO UNIT	0		0	0		0		0		0		0		0		
i.	or so to so	A RIVE	0.05	4	0.05	0.05	7	2 0.05	7	2) H	0.05	7	2 9		2		
constituents	S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ANTA AN	17 0 • 74	07	18 0•78 20	18	20	16	15	18	14	59	26	31	12	36	14	
Mineral co	M o g n e .	S. Y0181	12 0.99	97	0.90	13	28	12 0.99	22	16	24	26	21	34	56	3.13	27	
2	E 70100		2.00	50	2.10	39	21	57	62	3.24	09	105	52	133	61	135	29	
Specific conduct-	(micro- mhos at 25°C)	HYDRO SUBUNIT YOIBO SUBAREA	357		354	418		447		512		196		1002		1060		
	T a	HYDRO SI SUBAREA	6 . 8		7.6	7.7		7.6		7.07		7.4		7.9		7.8		
Temp	sampled in °F	00	ŀ		1	1		-		!		1		1		1		
State well number	Date sampled	MIDDLE SANTA ANA R	25/ 7W- 4B 1 S 2-18-65		8-17-65	25/ 7W- 4E 2 S 3- 8-65		2S/ 7W- 6J 1 S 2-18-65		8-17-65		25/ 7W-10C 1 S		25/ 7W-10H 1 S		2S/ 7W-10L 4 S 3- 8-65		

TABLE E-1
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	_	1									
	hordness as		320	344	377	371	319	273	7 7 3	27.5	
istituents in million	Evap 180°C hordness Evap 105°C os		448	482	582	515	552	705	768	572	
constituents per million	÷ 0 5		1	1	1	1	1	1		1 1	
Mineral parts p	B		0.04	0	0.07	0.07	-	ę i	1	1	
	, 5 m		7.0	7.0	0.0	7.0	I I	1	1	1	
	2002		75 1.21 17	1.21	83 1•34 15	1.27	10.4	74.0	1		
per million ctance value	Ch lo	Y0100	1.55	1.64	58 1.64	1.00	1.38	1.27	103	1.69	
0	Sulfate		31	33	1.31	1.31	29	17	34	60000	
parts per equivalents percent r	Bicor - bonote HCO3	UNII 0	237	251 4•11 54	268	4.23	1	1	1	1	
par	Carbon - ate	R HYDRO	0	0	0	0	1	1	1	!	
ui s	Potos -	A RIVE	0.05	0 .0 .7 .1	0.05	20.0 1	0.05	20.0	20.0	0.05	
constituents	E P P O N	SANTA ANA RIVER HYDRO UNIT	23 1.00 13	1.00	29 1•26 14	1.22	1.22	35	2.54	4.7	
Mineral co	M o g o R	S. S. YOIBI	2.30	2.38	2.14	2.52	2.14	1.97	3.0.0	2 3 8 8 2 3	
2	En:0100		4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	77.5	10x 5.39 61	104	882	3.44	134	3 - 19	
Specific conduct-	mhos of 25°C)	HYDRO SUBUNIT YOIBU	723	147	847	612	628	8.05	1097	73.9	
	H	HYDRO SU SUBANCA	7 • 7	8 • 1	7.5	7 • 7		α • 1	• 0	8 •	
Temp	when sampled in ° F		1	1	1) 	1	-	1	1	
State well	peg	MIDDLE SANTA ANA R	25/ 7W-10M 1 S	8-16-65	25/ 7W-110 1 5 2-18-65	8-16-65	2S/ 7W-15K 1 5 1 -23-64	4-28-65	25/ 7W-15P 1 S 10-23-64	39-82-5	

TABLE E-I
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	Total hardness os Cours		698	683	318	197	264	307	299	256	
uents in	Evop 180°C hardness Evop 180°C os computed Court 3		812	1040	532	330	372	399	427	362	
constituents per million	5 · ··			1	1	1	-	1	i i	1	
Mineral parts p	Beren		1	0.14	1	1	50°0	0.03	0	0.02	
	a pra		1	-	4	1	7.0	0.4	0.4	7.0	
	N O N		1	1	1	1	58 0•94 15	71 1.15 16	70 1.13 16	52 0.84 14	
million e volue	Chlo	Y0100	3.33	142	39	18	21 0.59	26 0.73	28 0•79 11	22 0•62 10	
parts per million equivalents per million percent reactance value	Sulfate SO4		1.02	50	31	19	32 0.67	41 0.85	32 0.67	25.00.52	
parts per equivalents percent re	Bicor - bonote HCO3	TIND	1	1	1	-	247	260	273	253 4.15 68	
por	Carbon - ate CO3	R HYDRO	Į.	1	ļ.	1	0	0	0	0	
ri s	Potas -	A RIVE	3 0.08	0.08	0.05	0.05	0.05	2 0 • 0 5 1	0.05	0.05	
constituents	E nipos	SANTA ANA RIVER HYDRO UNIT	3.04	3.04	28	23	19 0.83 13	21 0.91 13	24 1.04 15	21 0.91 15	
Mineral co	Mogne- s-um Mg	S/ Y0181	56	90 4.0	2.06	11	1.64	23	1.73	18 1.48 24	
2	Calcium		187	125	86	3.04	3.64	4.24	85 4.24 60	3.64	
Specific conduct-	mhos at 25°C)	HYDRO SUBUNII YOIBO SUBAREA	1375	1297	999	525	594	0690	673	568	
	ī	HYDRO SU SUBAREA	7.0	7.7	7.3	8 . 2	7 - 7	7.6	7 • 8	7.9	
Temp	when sampled in°F	X 0	1	1	8		l F	1	1	1	
State well	p	MIDDLE SANTA ANA R CHINO HYDRO	25/ 7W-15Q 1 5 10-23-64	4-29-65	25/ 7W-150 2 S 10-23-64	4-28-65	25/ 7W-17D 1 S 2-18-65	8-17-65	25/ 7W-17L 1 5 2-18-65	8-17-65	

	0 1	5					_	267			5	_		5		_	2	_		æ.		_	9		_	9			
č	Tot C Nord	6 (00 13			5 20	-	m			-	505	-	-	379	_		332		_	358			426			216			
constituents per million	10401 2000 EVAN	Compa, ec			28,		258	376		350	669		949	514		478	443		422	498		455	623		587	288		258	
const	5. 1.	5 0 2			-			į į			1			1			1			l F			1			1			
Mineral	8	B			0.02			0.02			0.01			0.05			0.02			0			90.0			0			
	, p				0 • 3			5.0			7.0			0.3			7.0			7.0			7.0			0 • 3			
	2 0	N. 3			17	0.27	5	42	0.68	11	56	0.40	7	43	69.0	20	53	0.85	11	15	0.92	11	45	0.73	7	10	0.16	m	
million e value	Chio	. U	70100		20	0.56	11	22	0.62	10	58	1.64	13	44	1.35	15	34	0.96	13	36	1.02	12	1 15	105	12	2	0.00	7	
millior per eoctono	Sutfore	S . 4			16	0.33	7	34	0.71	11	43	0.40	7	27	0.56	Q	36	0.75	10	0 %	0.83	10	45	76.0	ဆ	34	0.71	15	
parts per equivalents percent r		нсо3	O UNIT		229	3.75	16	265	4.34	89	535	8.77	72	389	6.38	7.1	312	5.11	19	337	5.52	19	200	8.20	73	229	3.75	08	
p e d	Corbon -	C 0 3	HYDR		0			0			0			0			0			0			0			0			
LI S	Potos	×	A RIVER		7	0.05	7	2	0.05	4	2	0.05		3	0.08		2	90.0	-	2	0.05	7	7	0.05		2	0.05	7	
constituents	Sodium	0 2	SANTA ANA RIVER HYDRO UNIT		19	0.83	17	25	1.09	/ 1	64	2.13	17	32	1.39	15	27	1.17	15	28	1.22	14	54	2.35	22	20	0.87	17	
Mineral co	Mogne.	0 N	18	0181	15	1.23	25	20	1.64	67	45	3.70	3.0	53	2.38	56	26	2.14	2.7	27	2.53	97	35	2.88	56	15	1.23	23	
2	Colcium	٥٥	(OIBU	56	2.79	57	74	3.69	2/	128	6.39	55	104	5.19	57	06	64.4	57	66	76.7	20	113	5.64	25	62	3.09	56	
Specific conduct-	(micro-	at 25°C)	F	BUNILY	894			589			1098			800			725			159			1005			264			
	H		0	SAREA	7.9			8.0			7.6			8.0			7.6			8.1			1.6			7.8			
Тетр	sampled		3	R HYL	1			1			1			1			1			1			1			t 1			
			1	HYDE	1 5			1 5			1 S						1 5						1 5			1 5			
State well	Date sampled		k 144 4	MIDDLE SANIA ANA K HYDKO SUBUNII YOIBO	25/ 7W-20L I	3-8-65		25/ 7W-21L 1	8-16-65		25/ 7W-22K 1	2-18-65			8-16-65		25/ 7W-23E 1	2-18-65			8-16-65		25/ TW-27A 1	2-18-65		25/ 7W-30G 1	3-8-65		
	0		0	4100	25/			182	_		25/	-			_		25/				~		251			251			

TABLE E-I
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	T. to. hordness os Cours		270		271		124		327		164		174		65		835		
uents in	Evop 180°C hordness Evop 150°C os Computed Cour 3		398	383	415	380	544	232	563	518	307	303	589	315	189	183	1304	1195	
constituents per million	5.0.2		1		-		-		1		1		1		1		-		
Mineral parts p	8, 3, 8		0.05		0.03		0.04		70.0		0		0.01		0.33		0		
	3 n y		0.1		0.3		0 • 3		7.0		0.3		7.0		8 • 0		0 • 5		
	Z Z Z		8	2	11	0 F	7.5	0.12	29	0.47	11	0.18	17	0.27	12	0.19	£.	0.37	
million se value	- Ch 10 -	Y0100	21	20	1/	0 + 40	11	0.31	7 7	1.16	16	0.45	2.9	0.82	11	0.31	100	2.82	
million	Sulfate SOA		99	19	69	1.44	34	0.71	108	2.25	19	1.39	14	0.98	19	0.40	468	9.74	
parts per equivalents percent r	Bicar - bonote HCO3	TINO	307	7.1	298	70	189	3.10	322	5.28	202	3.31	205	3.36	142	2.33	453	7.42	
par	Carbon -	R HYDRO	0		0		0		2	0.07	0		_	0.23	0		0		
. <u>=</u>	Potos -	A RIVE	3	-	m 0	, c	2	0.0	7	0.05	2	0.05	2	0.05	1	0.03	3	80.0	
constituents	E nipos	SANTA ANA RIVER HYDRO UNIT	37	23	34	1.40	39	1• / O	20	2.57	94	2.00	48	2.09	48	2.09	85	3.70	
Mineral co	Magne.	S,	17	20	15	1.623		0.58	20	1.64	7	0.58	6	0.74	7	0.33	99	5.26	
2	E 7 0 0	(01BO	3.99	56	48	4.17	38	1.90	86	4 • 89	54	2.69	55	2.74	17	0.85	229	11.43	
Specific conduct-	micro- mhos at 25°C)	HYDRO SUBUNIT YOIBO SUBAREA	049		653		365		834		514		52n		317		1709		
	I a	HYDRO SU SUBAREA	8 1		7 - 7		6.2		8 • 2		0 . 8		8.3		8 • 1		7.7		
Temp	when sampled in ° F	202	1		ŀ		!		1				1		1		1		
State well	ped	MIDDLE SANTA ANA R CHINO HYDRO	25/ 7W-30H 1 S		(3- 8-03	25/ 7W-31B 1 S	2-17-65		8-16-65	25/ 7W-32F 1 S	2-17-65		8-16-65	25/ 7W-32K 3 S	8-16-65	25/ 7W-34K 2 S	2-17-65	

	Toto: hardness os Colics		782		297		185		56			66			96	_	153		_	171		
Ē	100 p			4	-2		00	C			0	~	ď	7		v			5		1	
constituents per million	TDS Total Evap 80°C hardness Evap CE°C os Compuled Cality		1338	1114	52	471	27	240	215		209	226	300	2	196	195	227		215	236	731	
const	\$ 0.0		-		-		- 1		1			-			i		1			1		
Mineral	80 0 0		0.02		0		0		0.05			0			0		0			0.03		
	, d.		0.0		0.2		0.3		7.0			7.0			7.0		7.0			0.3		
	rose N cose		12	0.44	31	0.50	07	0.32	12	0.19	Ω	12	0.19	1	2.5	7	7.5	0.12	m	8.5	20.14	
million per million ctance value	0 1 4 0	Y0100	102	2.88	<i>w</i>	1.49	11	0.31	11	0.31	10	20	0.23)	0 10	7	ァ	0.25	9	11	16.0	
0	Suitate		421	8 . 8 9	6 7	1.02	25	0.52	19	0 0 0	10	22	0.40	7 7	19	111	31	0.65	16	35	0.73	
equivalents percent	Bicor. bonote HCU3	HYDRO UNIT	405	35	339	5.56	178	3.25	186	3.05	77	178	2.92	-	175	182	181	2.97	74	190	3.11	
e d l	Corton.		0		0		0		0			0			0		0			0		
<u>c</u>	Potos.	A RIVER	3	0 0 8	2	0.05	7	0.05	2	0.05	~	7	0.05	4	2	n →	2	0.05		2 .	200	
constituents	E n · pos	SANTA ANA	~	3.43	65	2.57	17	0.74	16	0.70	20	16	0.70	2	15	17	50	0.87	22	19	C . 03	
Mineral co	Mogne- s.um Mg	YOIBI	15	4.69	14	1.15	11	0.90	10	0.82	21	10	0.82	7 7	13	28	8	99.0	17	210	1.0	
Σ	Colcium		219	10.93	96	4.79	56	2.79	47	2.35	09	47	7.35	>	41	2000	48	2.40	09	52	60.09	
Specific conduct-	(micro- mhos at 25°C)	HYDRO SUBUNIT YO1BO SUBAREA	1653		823		426		365			368			347		380			395		
	ī	HYDRO SI SUBAREA	7.6		7.5		7.7		7.5			7.9			7.7		7.9			7.8		
Temp	sompled In °F		-		1		ţ		-			1					-			-		
State well	Date sampled	MIDDLE SANTA ANA R CHINO HYDRO	25/ 7W-34K 2 S	8-16-65	25/ 7W-36D 2 S	2-17-65	2S/ 8W-14B 1 S	2-18-65		8-17-65		25/ 8W-14H 1 S	2-18-65		9-17-6		25/ 8W-22B 1 S	2-18-65		P o	8-17-65	

TABLE E-I
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	Total hardness os Ca CO3		246	599	276	256	198	202	225	378
luents in	TOS Total Evap 105°C os Computed CaCO3		328	457	420	413	307	288	300	503
constituents per million	5. 4.		1	1	1	1	1	-	1	1
Mineral parts p	Beron		60.0	0.02	0.03	0.05	0.01	0 • 80	0.02	0.02
-	, d e		0.3	0 • 2	0 • 3	7.0	0 • 3	0 • 3	0 • 3	7.0
	Z 0 Z		30	2 \$ 0 • 39	25	24 0 • 39	0.11	0.10	7.4	22 0•35 4
nillion	Ch 10 -	Y0100	27 0.76 13	21 0.59	19 0.54 8	18 0.51 8	28	24 0 0 68	31 0.87	34 0.96 11
parts per million equivalents per million percent reactance value	Sulfate SO 4	<i>></i>	1.02	129 2.69 37	109	2.02	37 0 - 77	37 0 - 77	40	142 2 • 96 34
parts per equivalents percent re	Bicor - bonote HCO3	O UNIT	3.64	222 3.64 50	214	214	210	202 3.31	222 3.64 67	274 4.49 51
parts	Carbon - ale CO3	RIVER HYDRO UNIT	0	0	0	0	0	0	0	0
i.	Potos -		0.05	0.08	0.05	0.05	0.05	0.05	0.05	0.08
constituents	Sodium	SANTA ANA	22 0 • 96 16	30 1•30 18	26 1•13 17	1.22	22 0.96 19	21 0.91 18	23 1.00 18	30 1•30 15
Mineral co	Magne- stum M g	S,	1.23	20	1.23	1.23	10	11 0.90	1.15	1.81 20 20
2	Calerum	Y0180	3.69	87 4.34 59	86 4.29 64	3.89	3.14	63 3•14 63	3.34	5.74
Specific conduct-	micro- mhos at 25°C)	SUBUNIT	572	678	449	592	487	484	512	823
	H	HYDRO SU SUBAREA	7.7	7 - 7	7.8	7.5	7.7	7 • 8	7.5	7 • 7
Temp	when sampled in°F		1	-	1	1	!	1	1	1
State well	led	MIDDLE SANTA ANA R	25/ 8W-23C 4 S	25/ 8W-25L 1 S 2-18-65	3-8-65	8-17-65	25/ 8W-25M 1 S 2-18-65	3-8-65	8-17-65	25/ 8W-26C 2 5 3- 8-65

	7 c t o .	0.5		430		276			303			267			339			208		127			406			
uents in	T C S	Evap 05°C es Computed Caud3		631	416	3 6		368	436	0	397	413		362	905		7 3	359	350	754		564	622		260	
constituent per million		502		1		1			1			ł			-			1		1 8			1		_	
Mineral constituents parts per million	Beren	ъ		0.05		C			0			0			0			0.02		0.14			0			
		. u.		9.0		0.0	,		4.0			0.3			0.3			0.3		0.5			0.3		_	
	ź	hrote NC3		6.3	0.10	- 2		7	16	0.26	ţ	15.5	0.25	7	22	0.35	4	19	0.31	16	01	9	31	0.50	v	
nillion	Ch 10 -	r.d.e.	Y0100	41	1.16	36	1.02	15	9 †	1.30	87	31	0.87	13	64	1.38	16	27	0.76	2	0.59	13	7.1	2.00	51	
r million is per million reactance val	Sulfate	S . 4	>	179	3.73	24	96.0	14	47	26.0	13	38	0.79	12	84	1.75	20	43	0.90	3.5	0.73	16	80	1.67	15	
equivalents percent	-	HCC3	TINO	366	6.00	0 0	4.62	89	290	61.4	6 9	300	76.45	72	321	5.26	09	268	4 • 39	288	3.08	99	403	6.61	61	
edu	Carbon -	01e	R HYDRO	0		C)		2	0.01		0			0			0		C	,		0			
<u> </u>	Potos -	8 × 3	A RIVE	3	0.08	1 0	0.05	٦	2	0.05	7	2	0.05	7	2	0.05	7	2	0.02	^	0.05	-	60	0.08	-	
constituents	E 7 005	0 Z	SANTA ANA RIVER HYDRO UNIT	55	2.39	3 1	1.35	20	34	1.48	07	32	1.39	21	63	1.87	21	50	2.17	5	2.22	94	62	2.70	25	
Mineral co	:	E o N	S/ Y0181	33	2.71	7 6		21	22	1.81	24	17	1.40	21	23	1.89	22	10	0.82	7	0.58	12	30	2.47	23	
Σ	E 0 . 0 . 0 . 0	ره		118	5.89		40.4	58	85	4.54	96	79	3.94	58	98	4.89	96	67	3.34	30	1.95	4	113	5.64	25	
Specific conduct-	-	mnos at 25°C)	HYDRO SUBUNIT YO1BO SUBAREA	784		444)		675			616			808			609		644	,		991			
0, 0	Hd		HYDRO SU SUBAREA	7.6		7.7			8 . 2			7.7			7.9			7.8		7 . 18)		7.7			
Temp	when	in °F		3 1		!			1			-			1			1		1			1			
			ANA	1 5		0						1 5			1 5			1 5					2			
State well		Date sampled	MIDDLE SANTA ANA R	25/ 8W-26K]	2-18-65	26 / 714 - 3M				8-16-65		35/ 7W- 3R	8-16-65			2-17-65			2-17-65		8-16-65		35/ 7W- 4H 1	2-17-65		

TABLE E-1
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	hardness os	£ 17 00		452		218		231		158			334		283			196			
stituents in million	131.	Computed		738	629	527	312	331	321	219	217	* † 7	727	710	567	563		252	232		
constituents per million		2 0 5		1		1		1		1			-		-			1			
Mineral o	٤	n		0.02		0		0.01		0.05			0.15		0.11			0.04			
	50	-		9.0		0.5		0.5		0.2			9.0		9.0			0.5			
	Z 20 1	z		25	04.0	1 5	0.21	14	0.23	4.3	0.15	r	2.1	0.03	3.3	0.00		3.1	0.05	4	
million e volue	(hio	Y0100		76	2.63	12	0.76	28	0.79	13	0.37	`	107	3.02	11	23		т	0.08	1	
million per eactand	Sulfate	4		986	1.79	35	0.73	30	0.62	11	0.23)	291	90.9	230	4.79		35	0.73)	
pe		UNIT		420	5.6	254	4.16	256	4.20	207	3.39	70	158	2.59	142	7.033		220	3.61	4	
parts equiva percen	Carbon .	RIVER HYDRO UNIT		0		0		S	0.17	0			0		0			0			
Ë	Polos -	A RIVE		w :	0.08	~	0.05	2	0.05	2	0.05	4	5	0.13	J (0.13		2	0.05	1	
constituents		SANTA ANA		69	2.83	31	1.35	33	1.43	19	0.83	7 7	112	4.87	08	3.00		10	0.43)	
Mineral co	Mognes	S S	Y0181	34	7.80	13	1.07	15	1.63	ω	0.66	2	29	2.38	25	2.00	Y0183	13	1.07	- J	
2		70180		125	6.74	99	3.29	68	3.39	50	2.50	20	98	4.29	12	39		57	2.84		
Specific conduct-	+ (HYDRO SUBUNIT YOLBO		1074		551		960		365			1087		306		HEIGHTS HYDRO SUBARFA	400			
	H	JRO St	SUBAREA	7.9		7 • B		8 . 2		7.3			0 • 8		7.6		ITS H	7.9			
Temp	sampled In ° F	02	0	1				-		-			1		1		HE I GH	1			
State well	Date sampled	MIDDLE SANTA ANA	CHINO HYDRO	35/ 7W- 4H 1 S	60-01-0	35/ 7W-10C 1 S	2-17-65		8-16-65	IN/ 6W-11B 1 S	1-28-65		IN/ 6W-25K 1 S	1-28-65		59-67-9	CLAREMONT	1N/ 8W-24L 1 S	1-28-65		

			1						
	Total hardness as		237	165		143	176	173	150
constituents in	Evap 180°C hardness Evap 15°C as		314	206		258	291	288	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
constituent	S co		1	1		1	1	1	
Mineral o	B 8		0.03	0.03		0.01	0.01	0	700
2	۶ د د د د د د د د د د د د د د د د د د د		0 8	•		0 • 0	0	• •	*
	2 0 Z		19 0.31	0.18		14 0 • 23	1.06	60	16
million ce value	C 1 1 0 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C	Y0100	0.17	0.17		0.20	0.31	10.28	0.20
per	Suffate		0.85	24		34	35	38	0.659
equivalents percent re	Bicor - bonote HCO3	O UNIT	234	184 3.02 78		178 2.92	2.33	142 2 33	2 - 92 72 72
bed	Corbon -	ER HYDR	0	0		0	0	0	0
LI 6	Potas .	A RIVE	0.05	0.05		0.03	0.05	0.05	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
constituents	S odiu 3	SANTA ANA RIVER HYDRO UNIT	0.52	11 0.48 13		1.04	20 0.87	22 0.96	1.099
Mineral co	Mogne.	S Y0183	1.40	8 0.66	Y0184	13	1.07	1.15	0.074
2	Colcium	1	3.34	53 2.64		38	2.45	2.30	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
conduct-	- 0	SUBUNIT YOIBO HYDRO SUBAREA	472	357	SUBAREA	383	044	429	484
	I a	DRO SI	7.6	7 • 8	o sue	7.7	7 - 7	7.5	6.0
Тетр	sampled in ° F	R HYE	-	1	HYDR	1	1	1	!
State well	Date sampled	MIDDLE SANTA ANA R HYDRO CLAREMONT HEIGHTS	1N/ 8W-24L 1 S	1N/ 8W-35J 1 S 1-28-65	CUCAMONGA	1N/ 7W-27Q 1 S	1N/ 7W-33A 1 S 1-28-65	7~ 1-65	1N/ 7W-34H 1 S

TABLE E-I
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	hardness as Co.C.C.s		451		471		454		476		694		777	410		583	
uents in	Evap 180°C hardness Evap 105°C os Computed CocCy		886	850	910	872	882	860	980	923		1080	1150	770	702	1450	
constituents per million	S.11.		1		ì		-		-		1		1	ŀ		-	
Mineral parts p	Boron		0.26		0.26		0.32		0 • 40		0.45		0.43	0.15		0 • 80	
	Fluor		0.3		9.0		0.8		9.0		1		1	0.7		-	
	trate No3		93	1.50	106	1.71	100	1.61	103	1.66	1		1	61	0 80	1	
nillion	Chlo-	Y0100	121	3.41	125	3.53	122	3.44	145	4.09	258	7.28	293	127	30	359	
r million ts per million reactance value	Sulfate SO 4		146	3.04	148	3.08	147	3.06	152	3.16	170	3.54	3.37	130	22	226	
len t	Bicor - S bonate HCO3	TINO	397	6.51	403	6.61	394	94.9	416	6.82	1		ŀ	295	70 70 70 70	1	
parts equiva percen	Carbon - ote	RIVER HYDRO UNI	0		0		0		0		-		1	0		1	
. <u>c</u>	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A RIVE	5	0.13	5	0.13	5	0.13	v	0.13	4	0.10	0.10	<i>m</i> (0.08	0.10	
constituents	Sodium	SANTA ANA	129	5.61	125	5.44	130	5.65	144	6.26	172	7.48	170	16	3.96	206	
Mineral co	Magne.	S Y01B5	32	2.63	38	3.13	32	2.63	35	2.88	38	3.13	3.78	31	2.55	56	
2	Calc.um	Y0180	128	6 • 39	126	6.29	129	6 • 44	133	6.64	125	6.24	102	113	2.64	141	
Specific conduct-	micro- mhos at 25°C)	- - -	1418		1379		1424		1523		1522		1879	1164		2269	
	Hd	DRO SI SUBAI	7.8		7.5		7.7		7.5		7.1		7 • 8	7.7		7.6	
Тепр	when sampled in ° F		1		ŀ		1		-		!		1	i i		1	
State well	led	MIDDLE SANTA ANA R HYDRO SUBUI TEMESCAL HYDRO SUBAREA	35/ 6W~28L 1 S	3- 5-65		9-21-65	35/ 6W-28M99 S	3- 5-65		9-21-65	35/ 6W-30F 4 S	10-22-64	4-29-65	35/ 6W-31D 2 S	8-10-65	35/ 7W-150 1 S 4-29-65	

	Total hardness as Cally		745	681	4 7 4	492	649	607	754	2000	
uents in	Evap 180°C hardness Evap 105°C as Computed Colls		1545		804	760			1560		
constituents per million	S. 1. 6		i i	1	1	-	-	1	1	-	
Mineral c parts pe	80100		0.85	1	0.18	0.17	i i	1	1.22	1	
Σ	9 p		0 • 5	1	0	0	1	1	1	1	
	N C P		20 0.32	ì	29 0.47	30 0 • 48	1	1	1	1	
million se value	0 4 1 0 C C C C C C C C C C C C C C C C C C	Y0100	359	352	1,35	1.52	364	278	357	254	
per	Sulfate SO 4		231	1	5.29	246	1	1	266	†	
equivalents percent re	Bicor - S bonole HCO3	O UNIT	508 8.33 35	461	290	243	454	7.52	-	471	
equ	Carbon -	R HYDR	0	0	0	0	0	0	-	0	
Ë	8 5 5 7 X	SANTA ANA RIVER HYDRO UNIT	A ANA RIVER	0.13	1	0.03	0.05	ŀ	1	0.38	1
constituents	Sodies	INTA AN	196	1	48 2.09 17	52 2•26 19	-	1	228	1	
Mineral con	N og ne	SA Y0185	59 4.85 21	1	3.78	3.95	-	1	4.28	1	
2	Colcium		201	-	122 6.09	118 5 89 48	1	1	216	1	
conduct-	1 0	HYDRO SUBUNIT YOIBU RO SUBAREA	2243	2088	1081	1081	2183	1916	2112	1792	
<i>y</i> 0	Hd	RO SL SUBAR	7.2	7.5	7.5	7.4	7.4	7.4	6.7	7 • 5	
Temp			1	1	1	ĝ. E	1	1	1	1	
State well	led	MIDDLE SANTA ANA R HYDRO SUBUI TEMESCAL MYDRO SUBAREA	35/ 7W-150 3 S	4-29-65	35/ 7W-21N 1 S	9-21-65	35/ 7W-22A 1 S 4-29-65	35/ 7W-22A 2 S	35/ 7W-22A 4 S	4 - 5 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6	

TABLE E-1
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	T to hordness 35 Court		427	525	688	481	967	534	577	539
uents in	TOS Evap 180°C n Evap 105°C		1170	964	1584	1280	1044	901		1010
constituents per million	Sili-		1	1	1	-	i i	1	1	1
Mineral o	Boron		0.28	0 • 55	0.55	0.63	0.30	0.27	1	0 • 40
	Fluo- rs de		1	9.0	\$ 	1		9.0	i i	1
	trote NO3		-	33 0 • 53	1	1	1	42 0•68 4	1	
million e volue	chio- ride ci	Y0100	263	200	339	234	201	187	200	199
millior	Sulfate SO 4		228	3.66	233	237	3.00	154 3.21 20	-	3.58
parts per equivalents percent re	Bicar - bonate HCO3	O UNIT	-	428 7•01 42	1	-	-	4 4 8 3 8 6 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	417	1
par	Carbon -	RIVER HYDRO UNIT	1	0		ł 1	1	0	0	!
.E	Potos -	A RIVE	13	0.10	0.20	0.20	0.08	0.08	-	0.10
constituents	Sodium	SANTA ANA	202	146	215	192	127	5.30	8	120
Mineral co	Magne- s.um M.g	Y0185	3.04	2.96	50	3.78	30.	3.04	1	3.78
Σ	Colcium Co	Y0180	110	151	193	117	149	153	f	140
Specific conduct-	mhos at 25°C)	F 17	1891	1635	1357	2025	1392	1556	1527	1586
	Hd	DRO S SUBA	7 . 8	7.6	6.9	7.6	7.3	7.5	7 • 7	8 . 1
Temp	sampled In ° F	I	1	l t	j I	1	1	1	}	1
State well	Date sampled	MIDDLE SANTA ANA R HYDRO SUBUI TEMESCAL HYDRO SUBAREA	35/ 7W-22A 4 S	35/ 7W-22G 2 S 3- 5-65	35/ 7W-22H 1 S 10-22-64	4-29-65	35/ 7W-22J 4 S 10-22-64	3- 5-65	4-29-65	4-29-65

	hordness 8 8 8		349	202	701	452	651	454	979	7 3 3
ion in	Evop 180°C hordness Evop 150°C os computed	1	523	37.5	1464	1390	1524	1220	1270	1190
constituents per million	2 S S S S S S S S S S S S S S S S S S S	-	1	í	1	-				1
Mineral o	, S		0.16	0.7.0	1.10	1.26	1.20	0.62	0.82	3 • •
2	2 b		0.5	0	ž 1	1	1	1	1	1
	2 0 2		56 0 90 10	1.02	1	i	1 1	-	1	1
million se value	0 h 10	Y0100	2.57	2.71	377	376	36/	283	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	300000000000000000000000000000000000000
per	Suffate S C 4		117 2.44 26	2.42	250	228	238	244	184	187
leni	Bicor - bonote	HYDRO UNIT	3.56	3.65	1	1	1		ì	1
equiva	Carbon -		0	0	l 1	1	1	1	1	1
Ë	Polos -	A KIVER	0.08	0 0 0 0	12	0.38	16	16	0.18	0.1.0
constituents	w nipos	SANTA ANA	2 - 70	63 2.74 28	228	220	224	192	206	184
Mineral cor	Mogne- stum	S/ Y0185	2.06	22.22	4.28	3.95	3.62	3.54	7904	3.54
W	Calcium	1	988.4	4 8 4 4 9 4 4 9 4	195	102	188 9 38	1111	178	108
Specific conduct-	1 0	HYDRO SUBUNIT YOIBU RO SUBAREA	096	1961	1452	2269	1416	1989	1888	6661
	H	SUBAR	7 - 7	7.6	6.7	D 1	7.0	7.6	7.0	20
Тетр	when sampled in ° F		-	1		1	i i	3	1	1
State well	Date sampled	MIDDLE SANTA ANA R HYDRO SUBUI TEMESCAL MYDRO SUBAREA	35/ 7W-22L 1 5 3- 5-65	9-21-65	35/ 7W-23D 1 S 10-22-64	4-29-65	35/ 7W-23D 2 5 10-22-64	4-29-65	35/ 7W-23J 4 S	59-65

TABLE E-I
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	hordness os		946	526	552	382	454	441	518	
uents im	TDS Chardness Evop 180°C os		1532	1030	1256	1060	628	700	797	
constituents per million	Sr. co S.0.2		1	1		1	ŀ	1		
Mineral parts p	0.08		0.65	0.41	0 80	0.64	0.10	0.14	09 • 0	
	2 P R		1	1	1	1	0 • 4	4 • 0	0 • 2	
	rote NO.3		l I	11 0 • 18	1	!	29 0 • 47	36 0 58	72 1•16 8	
million e value	chide ride Ci	Y0100	248	226	282	240	1.72	1.83	114 3.21 23	
millior	Sulfore SU4		3.60	3.52	197	192	197	207	3.33	
parts per equivalents percent r	Bicar - bonate HCO3	UNIT	1	-	-	1	261	263	375	
par	Carbon - ofe CO3	R HYDRO	1	1	1	1	0	0	0	
ë	Potas - sıum K	A RIVE	0.13	0.10	0.15	0.10	0.05	0.05	7 0 0 18	
constituents	Sodium	SANTA ANA RIVER HYDRO UNIT	178	165	196	172	2.13	46 2.00 18	3.04	
Mineral co	Mogne. Stum Mg	, S. Y0185	32 2.63	3.13	3.54	3.45	3.04	3,37	70186 2.38 18	
Σ	Colcium		166	148	150	84	5.44	109	160	
Specific conduct-	mhos at 25°C)	JBUNIT	1604	1671	1699	1781	1000	1005	1400	
	Hď	SUBAF	6.7	8 • 2	6 8	8 0	7 • 7	7.4	SUBAREA 8.2 14	
Temp.	sampled in °F	R HYC	1	1	1	1	1	l I	HYDRO 70	
State well number	Date sampled	MIDDLE SANTA ANA R HYDRO SUBUNIT YOIBO	35/ 7W-23K 1 S 10-22-64	4-29-65	35/ 7W-25A 3 S 10-22-64	4-29-65	35/ 7W-28B 1 S 3- 5-65	9-21-65	35/ 5W-14N 1 S	

number	Temp		conduct-	2	Mineral co	constituents	C S	ed De	equivalents percent re	per	million se value			parts	per million	per million	
	when	Hd	(micro-	811.0100		Sodium	- 20100	Corbon -	Birgar	Sulfate	100	1 2	- 0114	Boros	6,110	00	
Date sampled	sampled in ° F		mhos at 25°C)		E D M	0 2		016		50 8	, ide		n d			Evap 180°C hardness Evap 105°C as Computed Colics	hardness os
IDDLE SANTA ANA R HYDRO SUBUN ARLINGTON HYDRO SUBAREA	>	DRO S	HYDRO SUBUNIT YO1BO DRO SUBAREA		S/ Y0186	SANTA ANA RIVER HYDRO UNIT	A RIVE	R HYDR	TINO OIL		Y0100						
35/ 5W-14N 1 S	68	7.6	1429	114	77	121	5	0	395	173	96	106	0.5	0.40	1	956	995
3-26-65				5.69	3.62	5.26	0.13		6.47	3.60	2.71	1.71				0	
				23	67	0	-		î	2	-	-4				5	
35/ 5W-15A 1 S	1	7.5	1965	160	62	131	7 0	0	379	171	277	81	0 • 3	0.33	1	1348	659
69-67-9				1.990	2.10	30	0.10		33	19	41	16.31				1076	
35/ 5W-23C 1 S	74	8 • 1	810	76	14	56	9	0	165	8 7	124	20	0.5	0.20	ŀ	509	247
				3.79	1.15	2.43	0.15		2.70	1.000	3.50	0.32					
				20	15	32	2		36	13	14	7				975	
	72	7.7	823	62	22	61	5	0	172	54	111	30	0.7	0.10	-	484	245
3-26-65	_			3.09	1.81	2.65	0.13		2.82	1.12	3.13	0.48					
				07	54	35	2		37	15	41	9				430	
35/ 5W-24R 1 S	70	7.8	1760	176	90	104	89	0	259	132	385	12	0.3	0 • 40	1 1	1120	649
10-30-64				8 • 78	4.11	4.52	0.20		4.25	2.75	10.86	0.19				0	
				20	53	97			47	15	09	1				222	
	68	8.1	1378	106	04	103	7	0	509	108	246	23	1.0	0.12	i	855	429
3-26-65				5.29	3.29	4.48	0.18		3.43	2.25	6.94	0.37				737	
35/ 5W-25A 1	5 70	8 • 1	720	74	16	77	7	0	192	54	53	89	0.5	0.10	1	50%	251
				3.69	1.32	1001	0.10		3.15	1.12	1.49	1.10					
				53	19	27	-		949	16	22	16				408	
	70	7.3	748	57	26	51	4	0	192	63	56	59	7.0	0.15	1	457	540
3-26-65				2.84	2.14	2.22	0.10		3,15	11.31	1.58	0.95					
				39	62	30	4		42	19	57	14 T				t	
		_															

TABLE E-I
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	Teto: hordness os Coués		505	458			225				
uents m	Evap 80°C r Evap 105°C C		1104	948			419				
constituent per million	5. 1. co \$ 0.2		1	i		-	1	-	1	1	
Mineral constituents parts per million	B. 10.		0.35	0.31		1	0.12	1	1	1	
-	, d &		0.5	0.1		-	1 • 0	1	1	-	
	1101e		56 0 90	97.0		20	28 0•45 6	30	23	26	
million e value	Ch10.	Y0100	185	139 3 • 92 28		1.24	51	1.47	1.44	1.49	
million per sactanc	Sulfate		5.79	237		1.23	71 1.48 19	1.29		1.77	
pe t	Bicor - bonote HCU3	TINU C	384 6 • 29 35	232 3.80 27			266		1	i i	
parts equiva percen	Carbon ofe CO3	R HYDR	0	0		t 1	0	1	1	1	
<u>-</u>	Potos For 3	A RIVE	0.18	0.13		1	0.08	1	ŀ	1	
constituents	S odius	SANTA ANA RIVER HYDRO UNIT	7.70	115 5.00 35		1	3.22	1	1	1	
Mineral co		S Y0186	2.22	1.97	Y0187	1	1.15	1	1	1	
Σ	C010:03		158	1447 -19		ì	3.34	1	-	Î	
Specific conduct-	ance (micro- mhos at 25°C)	R HYDRO SUBUNIT YOIBO HYDRO SUBAREA	1550	1400	AREA	699	077	746	712	775	
	I	DRO S O SUB	7 - 7	7.6	HYDRO SUBAREA	7.5	7.5	7 • 4	7.5	7.4	
Temp	when sampled in ° F	R HY HYDR	70	1		ŀ	6 8	70	1	-	
State well	9	MIDDLE SANTA ANA R HYDRO SUBUN ARLINGTON HYDRO SUBAREA	35/ 6W-22L 2 S 6-25-65	35/ 6W-24P 1 S 6-25-65	RIVERSIDE	15/ 4W-2BL 2 S 3-25-65	5-19-65	8 - 9 - 6 5	1S/ 4W-28N 5 S 10- 7-64	3-25-65	

	Total hardness os Calics		269		160		555	218	212	211
constituents in	Evap 180°C hardness Evap 105°C os Computed Coccs		491		410		850	465	416	436
constituent	5. 1.		1	-	1	ł	1	28	1	1
Mineral parts p	Beren		0.22	1	0.10	1	0.16	0.20	0.10	0.21
	2 C C		0.7	1	1.00	1	0.5	0.7	7.00	. 0
	N C 3		23 0.37	30	30	32	26 0 • 42	17 0 • 27	20	24 0 • 39
million e value	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Y0100	1.55	1.49	1.44	1.52	24	1.86 24	1.21	1.80
per	S. 14 other		82 1.71 22	33	36	36	300	1.33	1.44	1.44
parts per equivalents percent	Bicor - bonole HCU3	TINO C	251 4•11 53	;	235	-	276	254	3.93	246
par	Carbon -	R HYDRO	0	I †	0	1	0	0	0	0
.E	Potos X	A RIVE	0.10	!	0.05	1	0.13	0.13	0.10	0.100
constituents	E 0 Z	SANTA ANA RIVER HYDRO UNIT	53	t I	3.30	1	0.87	3.22	60 2.61 38	3.30
Mineral co	M C C C C C C C C C C C C C C C C C C C	5/	1.23	1	0.90		2.71	1.07	0.90	1.07
Σ	E 7 0 0	70180	83 4•14 53	i I	2.30	i I	168 • 38 69	3.29	3.34	3.14
Specific conduct-	1 0	HYDRO SUBUNIT YO1BO DRO SUBAREA	077	645	658	648	1063	755	969	753
	I a	R HYDRO SUBUN HYDRO SUBAREA	7.6	7.7	7.7	7 • 7	7.2	7.8	7.5	7.5
Temp	sampled in ° F	H X	67	1	70	1	-	1	1 1	1
State well	Date sampled	MIDDLE SANTA ANA RIVERSIDE	15/ 4W-28N 5 S 5-19-65	15/ 4W-28R 1 S 3-19-65	5-17-65	8 - 9 - 65	15/ 4W-29F 1 S 3- 9-65	15/ 4W-29H 1 S 10- 1-64	3- 5-65	9-21-65

TABLE E-I
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	Total hardness os Coucis			286		221	192		193	471
uents in	T D S Evap 180°C Evap 105°C Computed			518		380	418		318	800
constituents per million	Sili- co SiO ₂		1	1	-		-	ł	1	1
Mineral o	Boron		1	0.15	ŀ	0.22	0.08	-	0.02	0 45
	Fluo-		1	0 8	1	9.0	9 • 0	!	0 • 3	0 • 0
	ne - trote NO3		14	11 0•18	15	27 0 • 44	35 0•56 8	31	26 0.42	63 1•02 8
million e volue	Chlo- ride	Y0100	2.17	1.97	78	39 1•10	1.04	1.13	12 0 • 34	2.54
million	Sulfate SO4		71	74 1.54 19	1.33	58 1.21	1.29	1.27	36 0.75	2.10
parts per equivalents percent re	Bicor - bonote HCO3	UNII C	1	258	-	3.93	232	1	3.25	444 7.28 56
por	Carbon - ofe CO3	R HYDRO	-	0	1	0	0	1	0	0
.E	Potos -	A RIVE	ì	0.10	-	0.10	0.10	1	0.05	0.10
constituents	Sodium	SANTA ANA RIVER HYDRO UNIT	1	2.13	ł	2.22	2.87	-	0.74	3.22
Mineral co	Magne- s-um M-g	S Y01B7	1	1,32	\$ B	1.07	0.90	ē t	10 0.82	1.73
2	Colcium		8	88 4 39 55	1	3.34	2.94	l l	3.04	7.68
Specific conduct-	mhos at 25°C)	UBUNIT	196	780	801	949	676	679	454	1227
	I	ORO S O SUB	7.5	7 • 8	7.4	7.6	7 • 8	7.3	7.8	7.3
Temp	when sampled in ° F	R HYI HYDRG	65	1	-	-	!	1	-	1
State well number	Date sampled	MIDDLE SANTA ANA R HYDRO SUBUNIT YOIBO RIVERSIDE HYDRO SUBAREA	15/ 4W-29H 3 S 3-19-65	5-19-65	8- 9-65	15/ 4W-290 1 S 9-21-65	15/ 4W=290 3 S 3- 5-65	4- 1-65	15/ 4W-30D 6 S 3- 9-65	15/ 4w-30L 4 5 3- 9-65

	hordness os		291	267		252		287		210	
uents in	1050 Evap 80°C n		615	579		585		5 8 8		534	
constituent per million	5. 1.		37	-	1	l f	-	1	1	1	
Mineral constituents parts per million	Buren		94.0	0.70	1	2.00	1	0.48	1	0 • 45	
6	3 n y		4.0	4.0	1	0.5	1	0.5	1		
	1014 N.C.3		59 0•95 10	40	4.2	28 0 • 45 7	55	70 1.13	0.10	11 0.18	
million e value	ride C1	Y0100	2.17	2.23	2.23	83 2 34	1.95	2.20	2.23	2.06	
million per sactanc	Sulfate SO 4	1	76 1.58 16	1.56	1.8.	1.67	1.54	1.54	1.54	71 1.48 18	
en	Bicor - bonote HCO3	TINO	317	288		278	1	315	1	281	
parts equival percen	Corbon -	HYDRO	0	0	1	0	1	0	1	0	
ï	P 0 0 0 0 X	RIVER	0.13	0.13	1	0.13	-	0.13	1	0.23	
constituents	£ 2 0 Z	SANTA ANA RIVER HYDRO UNIT	40.04	30 cc cc cc cc cc cc cc cc cc cc cc cc cc	Ī	3.96	1	4.26	-	4 95	
Mineral cor	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	-	1.48	1.15	1	1.15	1	1.40	-	1.40	
2	E 7 - 0 U		4.34	4.17	1	3.89	t 1	4.34	1	2.79	
Specific conduct-	mhos at 25°C)	HYDRO SUBUNIT YOIBO	976	931	912	868	269	971	864	846	
	Hd	RO SUSA	7.2	7.4	7.2	7 • 7	7.4	7.3	7 . 0	۲ «.	
Temp	when sampled in ° F	>	1	1	68	1	5	1	1	ł	
State well	peg	MIDDLE SANTA ANA R HYDRO SUBUN RIVERSIDE HYDRO SUBAREA	15/ 4W-31A 2 5 10- 2-64	3- 9-65	3-10-65	5-18-65	8-1-65	9-20-65	15/ 4W-31D 1 S 3-25-65	5-19-65	

TABLE E-I
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	Nordness os			241	312						
uents in	EVOD 180°C hardness Evon 15°C as Computed Calls			420	551						
constituents per million	\$ 0.5 \$ 0.2		1	1	1		1	1	1	1	
Mineral o	8, 10.1		-	0.25	0.17		1	1		1	
	, p		1	9 • 0	9.0	ŀ	1	1	1	1	
	rote NC3		14 0 • 23	28 0•45	25	6	5	6	0.10	0.10	
million	Chlo = ride	YU100	2.23	1.24	1.69	86	86	86	86	2.43	
millior	Sulfate SO4		1.42	1.31	1.4 1	70	1.44	1.44	1.44	1.42	
len It	Bicor - bonote HCO3	UNIT	!	257 4.21 58	289	1	1	1	1	1	
parts	Corbon -	K HYUKO	1	0	0	}	1	ļ t	ţ	8	
.E	Potos -	A KIVE	1	0.10	0.10	8	1	i	į	1	
constituents	Sodium	SANIA ANA KIVEK HYDKO UNII	1	2.39	46 2 • 0 0 2 4	1	1	t i	!	1	
Mineral co	Magne- sium Mg	S. Y0187	-	1.23	1.40	1		1	ŧ.	i i	
2	Calcium	YOIBO	1	3.59	97	ļ		-	!	-	
Specific conduct-	(micro- mhos at 25°C)	UBUNIT	858	697	802	875	875	876	876	873	
	Hd	ORO S O SUB	7 - 1	7.9	7.8	7.3	7.5	7.5	7.3	7.3	
Temp	sampled In ° F	R HY HYDR	1	į	57	8 9	8 9	69	76	72	
State well	Date sampled	MIDDLE SANTA ANA R HYDRO SUBUNIT RIVERSIDE HYDRO SUBAREA	15/ 4W-31D 1 S 8- 5-65	15/ 4W-32B 2 S 9-24-65	15/ 4W-32E11 S 5-19-65	15/ 4W-32E12 S 12- 3-64	12- 3-64	12- 3-64	12- 3-64	12- 3-64	

c .	Evap 800 concess Evap 105°C cos							222	211	222
en .	Evap 80° Computed							530	520	520
constituent per million	\$ 1. 00 \$ 02		1	-	1	1	1	1	1	1
Mineral parts p	8		1	1	1	1	1	0.50	0.50	0 • 50
	, en		1	-	-	1	į	9.0	9.0	0
	2 0 2 K		30	8 0•13	0.13	8 0•13	0.10	19	3.31	18 0 • 2 9
million e value	Ch10	Y0100	87	85	2.37	5.34	2.48	2.17	10 24 24	2.20
per	Sulfate Su4		1.54	1.50	1.50	1.52	1.46	1.50	1.54	1.54
equivalents percent r	Bicor.	TIND C	1	1	1	1	1	288	290	285 4.67 54
9 0	Carbon -	R HYDR	1	1	1	1	1	0	0	0
c.	, so to x	A RIVE	i 1	1	I I	1 1	-	0.15	0.15	0.15
nts	Sodium	SANTA ANA RIVER HYDRO UNIT	1	[1	1	ë 2	4.22	160	4.26
Mineral co	Nogne s.cm Mg	S Y0187	1		į.	ž Š		0.99	10.82	0.93
Σ	E C C C C		1	1	-	1	1	3.44	39	3.44
conduct-	1 6	HYDRO SUBUNIT YOIBU DRO SUBAREA	863	855	858	858	853	854	2 2 3	856
	Hd	DRO SU	7.3	0 8	7 . 8	7.7	7.6	7.6	7.6	7 • 1
Temp	sampled in ° F	A R HY	1	1		1	1	89	20	6
State well	Date sampled	MIDDLE SANTA ANA R HYDRO SUBUN RIVERSIDE HYDRO SUBAREA	15/ 4W-32E12 S 3+ 4-65	3- 4-65	3- 4-65	3- 4-65	3- 4-65	6- 1-65	6- 1-65	9-2-65

TABLE E-1
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	hardness as Caucis		226	224			192		190	157	
uents in	TOS TOTOS EVOL 100 1800 C NOT COMPUTED CONTRACTOR CONTR		510	250			264		266	205	
constituents per million	\$ 0.2		1	1	1	1	1	1	-	1	
Mineral o	B: o		0 • 48	0 • 48	1	1	0.01	1	0.05	90.0	
_	, c , c , c , c , c , c , c , c , c , c		0.5	9.0	1	1	0.5	-	0 • 3	0 • 2	
	7 2 Z		17 00.27	18 0.29	0.13	0 • 13	11 0.18	13	24 0•39	11 0•18	
million per million ctance value	Chlo- ride Cl	Y0100	78 2.20 25	2.17	82 2 • 31	2.34	0.14	0.17	0.23	0.20	
0	Sulfate SO 4		1.50	1.50	69	1.44	35 0 13	36	26 0 54 12	0.35	
parts per equivalents percent re	Bicor - bonofe HCO3	O UNIT	288 4•72 54	288	-	-	198 3.25 76	-	196 3.21 73	184 3.02 81	
par	Corbon - ale CO3	R HYDR	0	0	1	-	0	1	0	0	
c	Potas -	A RIVE	0.15	0.15	1	1	0.08	1	0.05	0.05	
constituents	Sodium	SANTA ANA RIVER HYDRO UNIT	96	96	1	Į į	0.43	-	13 0.57	13 0.57	
Mineral co	Magne- s-um M-g	s 70187	1.07	0.99	1	1	0.90	1	0.66	6 0.49 13	
2	Colcium	3	3.44	3.49	1	1	59 2.94 68	1	63 3•14 71	53 2.64	
Specific conduct-	mhos at 25°C)	R HYDRO SUBUNIT YOIB HYDRO SUBAREA	778	859	8 5 5	861	412	413	433	354	
	Hd	R HYDRO SUBUN HYDRO SUBAREA	8 0	7 - 7	7.2	7.3	7 • 8	7 • 7	7.7	7.9	
Temp	when sampled in ° F		70	69	69	69	1	-	1	1	
State well	led	MIDDLE SANTA ANA RIVERSIDE	15/ 4W-32E12 S 6- 2-65	6- 2-65	8- 4-65	8- 4-65	15/ 4W-32M 1 S 5-18-65	8 5 5 6 5	15/ 5W-24E 1 S 3- 9-65	9-20-65	

	7, 10 hordness 55		189		185		202		168		182		197		154		193	_	_	
Jents in	Standard Constants	1	280	271	264	240	280	262	248	225	254	237.	285	275	214	190	09.7	2 4 6	,	
constituents per million	S. 1. 2 C.0 8		26		1		1		1		i i		22		1					
Mineral o	2 B		0		0.07		0		70.0		0		0		70.0		\$0·0			
-	, e		0.3		7.0		0.5		7.0		7.0		0 • 3		0 . 3		0.3			
	2 0 2		24	7	54	\$ 6 6 6	30	0.48	77	0.34	27	0.44	22	0 7	10	0.16	42	0.37		
value	C h 10	Y0100	10	0,00	2	0.25	2	0.14	Q	0.23	30	0.23	7 1		Δ.	0.14	7	0.0		
r million ts per million reactance vali	Sulfate SO4	.]	23		53	0.60	36	0.75	77	0.46	74	0.50	2 2	13	16	0 %	17	0.50	,	
ien i	Bicor - bondle HCO3	TIND	194	71	190	3.11	203	3.33	192	3.15	193	3.16	203	73	179	2.93	202	3 - 31		
parts equiva percer	Corbon -	RIVER HYDRO UNIT	0		0		0		0		0		0		0		0			
Ë	Potos - Sium K	A RIVE	2		~	0.05	e	0.00	2	20.0	~	C. C.	C4 :	0 -	C4 .	0.0	^4	0.0 0 - 1		
constituents	Sodium	SANTA ANA	16	15	15	0.65	15	0.65	16	17	15	0.65	14	13.0	11	 	÷	0.05		
Mineral co	Mogne- s-um Mg	_	12	22	11	0.90	12	0.39	10	0.82	11	0.30	11	2000	9	0.49	N	1385		
×	E 0 0 0	YOIRC	56	29	56	2.79	61	3.04	5.1	59	55	7.74	61	999	5.5		0 1	5 0 0		
Specific conduct-	micro- mhos at 25°C)		426		423		977		166		4.3		4.36		355		4 32			
0, 0	H	HYDRO SUBA	7.6		7.9		7.5		7 - 7		7.8		7.3		7 . 8		1.1			
Temp.	when sampled in F	R HYD HYDRO	1		-		1		l l		1		1		1		1			
State well	led	MIDDLE SANTA ANA R HYDRO SUBUN	15/ 5W-240 1 S	\$ D		9-20-65	1S/ 5W-25A 2 5	49-12-t	15/ 5w-25 2 5	29-4-2		2-13-65	15/ 5W-25E 1 3	70-7 -01		1-0-1		69-02-6		

TABLE E-1
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	Tetoll hordness os Corecs			200		295	328		357		
uents in	T.D.S. Total Evap 180°C hardness Evap 105°C os Computed CouC·3			335		760	878		860		
constituents per million	Sitt+ ca S·0.2		1	1	1	25	1			1	
Mineral o	Boron		1	0.15	-	0.24	0.29	t t	0 • 30	1	
	Fluo- ride F		1	0 • 2		1.00	9•0		0.7	1	
	frote N > 3		29	30	32 0.52	51 0.82	44 0 • 74	53 0 • 85	63 1•02	1.05	
million per million ctance value	Chlo-	Y0100	17	0.48	1/0.48	143	146	150	152	186	
0	Sulfate SO4		31	35 0.73	34 0.71	3.12	3.52	3.44	189 3.93 29	234	
parts per equivalents percent re	Bicor - bonate HCO3	TIND C	-	229 3•75 69		238	252 4•13 33	1	273	1	
par	Carbon - ale	R HYDRO	-	0	1	0	0	i 1	0	1	
i.	Potas - sıum K	A RIVE	!	0.10		1.41	1.10	į.	1.59	1	
constituents	Sodium	SANTA ANA RIVER HYDRO UNIT	1	32 1•39 25	1	105	115	1 1	5.09	1	
Mineral co	Magne- stum M g	5	1	11 0.90 16		14 1•15 10	16 16 10	1 1	1.40	ŧ	
2	Calcium	Y0180	1	3.09 56	-	95 4 40	105	1	115	1	
Specific conduct-	(micro- mhos at 25°C)	R HYDRO SUBUNIT YO1BO HYDRO SUBAREA	544	529	527	1196	1310	1284	1376	1477	
	H	R HYDRO SUBUN HYDRO SUBAREA	7.3	7.3	7 • 2	7.5	7 • 4	7.2	7.4	7.2	
Temp.	sampled in ° F		89	-	1	1	l t	-	69	1	
State well number	Date sampled	MIDDLE SANTA ANA RIVERSIDE	15/ 5w-25L 2 S 3-18-65	5-19-65	8- 4-65	15/ 5W+25R 1 S 10- 2-64	3- 9-65	3-19-65	5-17-65	18	

	7.0101 hordness 0.5 Co.C.3		323		311			236		221			225				190	
E	Poc horde		2	57	635			363 2	7 2			7			2			
constituents per million	Evop Booc Person Computed		87	8 5	63	4	0	36	337	354		324	330		315		294	
constituen	5. 1.		1		1			1		1			1			i	1	-
Mineral parts p	Beron		0.21		0.30			0.03		0.02			0.01			1	0.01	1
~	r de		0.7		0.5			0.5		0.3			0.3			1	7.0	1
	role NO3		55	68.0	50	0.81		29	7	51	0.82	15	54	0.79	14	23	20 0.32	24 0 • 39
million e value	Ch 10	Y0100	172	4.65	87	2.45	* 7	34	15	24	0.68	12	25	0.71	13	8	67.0	0.25
per	Sulfore SU4		215	4.48	107	2.23	77	23	0 00	80	0.79	14	36	0.75	17	24	30	26
equivalents percent	Bicor - bonote HCO3	O UNIT	202	3.31	283	79.7	7	192	70	202	3.31	65	196	3.21	65	1	205	1
equ	Corbon . ofe CO 3	R HYDR	0		0			0		0			0			t t	0	1
in s	Potos -	NA RIVE	69	1.76	22	0.56		0.0B		3	0.08	7	2	0.05	~	-	0.05	1
constituents	Sodie	SANTA ANA RIVER HYDRO UNIT	127	2.52	78	3.39	1	16 35	22	24	1.04	19	21	0.91	1 7	1	15 0.65	1
Mineral co	M o g n w	S Y0187	16	1.32	15	1.23	4 .	1.07	17	7	0.58	10	80	99.0	71	1	0.66	1
Σ	C 0 1 C . J . B	Y0180	103	5.14	100	66.4	1	3.64	56	77	3 . 84	69	77	3.84	2	\$ 	3.14	-
Specific conduct-	mhos at 25°C)	=	1399		1002		(766		543			528			435	439	445
	I a	oko st	7.4		7.3		,	<i>‡</i>		7.5			7.7			0.8	7 - 7	30 .
Temp.	sampled in ° F	R HYB	1		69			l I		t i			1			99	8 9	6.9
		ANA	1 S		5 4			0 7		1 5						S		
State well	Date sampled	MIDDLE SANTA ANA R HYDRO SUBUN RIVERSIDE HYDRO SUBAREA	15/ 5W-25R	9-20-62	15/ 5W-25R	5-17-65		2- 4-65		1S/ 5W-34D 1	5- 4-65			9-13-65		15/5W-35G 1 3-18-65	5-19-65	8- 6-65
S	Dat	MIDDL	15/	,	15/	u v		12/		15/	. 0			5		15/	2	ω

TABLE E-I
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	Trial hardness as Caluz			434	385		410		604	350
uents in lion	TDS 77101 Evap 180°C hardness Evap 105°C as Computed Caulty			834	781		838		720	949
constituent per million	Silt-		-	22	1	1	ł	-	1	1
Mineral constituents parts per million	Boron		1	0.41	0.31	1	0.34	1	0.02	74.0
2	Fluo-		1	7.0	7.0	1	0.7	1	0.8	0 • 3
	trate NO3		42	36 0.58	28 0.45	28	26 0 • 42	41	36 0 58	30 0 • 48
value	ride C1	Y0100	150	128 3.61 26	3.55	3.64	135 3•81 28	114	113 3•19 24	1.61
r million is per million reactance valu	Sulfate SO4		139	3.50	143	141	157 3.27 2.4	3.19	173 3.60 27	1.04
pe	Bicar - bonote HCO3	TINO O	1	373 6.11 44	373 6•11 47	1	372 6.10	1	368 6.03 45	365 5.98 66
parts equiva percer	Carbon- ate CO3	RIVER HYDRO UNIT	l t	0	0	1	0	-	0	0
=	Potos -	A RIVE	1	24	19	1	28	1	30	0.10
constituents	Sodium	SANTA ANA		110	109		109	-	102	2.26
Mineral co	Mogner secm	S. Y01B7	1	20	1.40	-	1,56	1	201-64	1.81
Σ	C 0 1 C t C B		-	141 7.04 50	126	-	133	l 1	131 6.54	104 5•19 55
Specific conduct-	mhos at 25°C)	HYDRO SUBUNIT YOIBO	1364	1309	1280	1265	1326	1218	1276	843
	I a	HYDRO SUBUN YDRO SUBAREA	7 . 8	7.4	7.5	7.5	7.3	7.2	7.2	7.3
Тетр	when sampled in ° F	Z I	1	1			ŀ	-	-	1
State well	pel	MIDDLE SANTA ANA R RIVERSIDE H	15/ 5W-36A 1 S 12- 3-64	15/ 5W-36B 6 S 10- 2-64	3- 9-65	3-18-65	5-17-65	8- 4-65	9-20-65	15/ ·5W-36F 1 S 2- 4-65

TABLE E-I
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	Total		340		327		361	325	396		
uents m	Evop BCCC Evop BCCC Comp.1ec		446		580		541	7 7	064		
constituents per million	5. 1.		1	1	į		-	-	1	1	
Mineral parts p	B, rer		0.50	1	0.00	;	0.12	0.12	0.11	1	
	o p i u		0.5	1		1	1.0	9.0	9 · 0	1	
	rote NC3		22 0 35	76	1.19	18	1.23	30 0 4 48	37,	1.52	
million e volue	Ch10 ride C1	Y0100	52 1.47 16	99	2.5%	95	1000	1.78	2.12	141 3.98	
per	Scritore Sc 4		43	1	1.45	1.42	1.42	1.50	2.52	}	
pe	Bicor - bonote HCO3	UNIT	381	1	273	1	291	277	345	1	
ports equiva percen	carbon -	к нүрк	0	1	0	1	0	0	0	1	
C .	Potos - stum K	A KIVE	0.10	1	0.10	1	0.10	0.10	0.13	1	
constituents	Sodium	SANTA ANA KIVER HYDRO UNIT	56. 2.43 26	1	3.04		3.04	1.87	2.91	1	
Mineral co	Magne- stum M g	S/	25 25 22	1	1.64	1	1.97	1.56	1.97	1	
Σ	Calcium	Y0180	95 4 - 74 51	1	98 4.89 51	1	1.5	96.	5.94	1	
Specific conduct-	1 0		812	1092	696	416	993	ກ ຕົ	101	1278	
	H	RO SUBA	7.6	7.4	7 • 4	7.3	7 . 4	7.2	7 • 4	47 • 7	
Тетр	sampled tn ° F	or T	1	6 9	99	7 ->	1	1	1	1 1	
State well	Date sampled	MIDDLE SANTA ANA R HYDRO SUBUN RIVERSIDE HYDRO SUBAREA	15/ 5W-36F 1 S 9-13-65	25/ 4W- 5C 1 5 10- 1-64	5-17-65	8- 9-65	9-13-65	25/ 4W- 6A 1 5 2- 4-65	9-13-65	25/ 4W- 6K ? 5 10- 1-64	

TABLE E-I
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	7. foll hardness 0s					507				380	
uents in	Evop 180°C hardness Evop 105°C 0°s Computed					878				588	
constituent per million	S.111- C.0 S.0.2		1	-	İ		-	1	ŀ	1	
Mineral constituents parts per million	Boron		t t	i i	-	0.31		1	1	0.11	
	Fluor		-	1	i i	9.0	1	1	1	9 • 0	
	rore NO 3		100	41	31	34 0.55	50	51 0.05	45	68 1•10 11	
million per million ctance value	Chlo- ride	۲۰۱۵۵	146	3.44	106	3.07	3.16	2.00	76	85 2•40 24	
0	Sulfate SO 4		3.12	-1-	265	261 5.56 37	294	t g	1.71	2.00	
parts per equivalents percent re	Bicar - bonate RCO3	TINO	-	1	1	349	ŀ	!	1 1	283 4.64 46	
par	Corbon -	K HYDR	1	1	1	0	1	å ì	1	0	
.5	Potas -	A RIVE	-	1	1	0.10	ţ	1	1	0.13	
constituents	E 0 2	SANTA ANA RIVER HYDRO UNIT	1	î î	1	110 4•78 32	1			2.43	
Mineral co	M 0 g n e .	S YUIB7	1	1	1	31 2.55	t I	1	1	1.81 1.81	
2	Calcium	1	1	1	1	152 7.58	t t	1	1	116 5.79 57	
Specific conduct-	micro- mhos at 25°C)	R HYDRO SUBUNIT YOIBU HYDRO SUBAREA	1413	1450	1362	1395	1414	847	906	994	
	Hq	R HYDRO SUBUN HYDRO SUBAREA	7.4	7.3	7.2	7 • 4	7.3	7.3	7.5	7.2	
Тетр	when sampled in ° F		6.2	1 1	1	1	6.5	19	99	29	
State well	Date sampled	MIDDLE SANTA ANA	25/ 4W- 6h 2 5 3-19-65	25/ 4W- 60 2 S 10- 1-64	3-19-65	5-19-65	8- 9-65	25/ 4W- 6R 5 S	3-19-65	5-19-65	

TABLE E-I
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	Pordness os Cours		211		221		234			174			246		284			566			258			
uents in	Evop BCCC Evop BCCC Evop BCCC Computed		864	2 1 4	472	44	515		512	430	7.33	7	530	535	496		430	261		763	204	- 25	t -	
constituents per million	. S. c. S		-		8		-		_	1			10		1			1	_		1			
Mineral parts p	Beren		0.20		0.64		0.41			0.31			77.0		60.0			1			0.11		-	
	, D		1.0		1.0		1.0			0.8			6.0		0.5			0 • 0			1.0			
	trois N > 3		99	1.06	10	1.40	20	0.34	3	7	0.03		34	0.55	41.5	19.0	0	14	0.23	.n	17	0.31	J	
million se value	C 1 C 1	Y0100	80	25.7	42	2.31	83	2.34	26	19	2.23	6.3	19	2000	23	0.65	2	RZ	0.79	7	17	0.0	>	
per	Sulfore Su4		38	0.79	3.5	0.81	16	2002	23	35	1.98	0	55	2.06	54	1.12	15	50	1.04	1 1	49	1 • 3 3	ñ -	
parts per equivalents percent re	Bicor - bonote HCO ₃	TINO O	183	3.00	177	2.90	254	4.16	1 4	203	3.33	7	244	4.00	264	4.33	57	427	7.00		383	6.28	2	_
equ	Carbon. ate CO3	ER HYDR	0		0		0			0			0		25	0.83	11	0			0			
.c	Potos .	A RIV	7	0.10	7	0.10	4	0.10	~	2	0.13	7	5	0.13	9	0.15	7	9	0.15	7	2	0.08		
constituents	Sodium	SANTA ANA RIVER HYDRO UNIT	69	3.00	89	2.96	96	4.17	7	06	3.41	00	06	3.91	42	1.83	74	86	3.74	7 47	900	3.48	3	
Mineral cor	A C C C C C C C C C C C C C C C C C C C	S. Y0187	22	1.81	24	1.97	12	0.99	7 7	13	1.07	1	15	1.23	12	66.0	13	15	1.23	13	16	1.32	57	
Σ	Colcium	Y0180	84	33	64	2.45	74	3.69	7 7	48	2.40	26	74	3.69	96	4.79	62	82	50.5	7 7 7	11	3.84	3	
Specific conduct-	1 0	R HYDRO SUBUNII Y	787		184		890			155			870		089			920			308			
	Ha	ORO SU SUB	7.3	_	7.5		7.6			8.0			1.6		30			7 . 4			7.6			
Temp			58		7.		1			ŧ			1		Î			-			1			
State well	Date sampled	MIDDLE SANTA ANA RIVERSIDE	25/ 4W-33R 2 S	3-26-65		9-22-65	25/ 5W- 1J 2 S				9-50-65		25/ 5W- 10 2 S	10- 2-64	25/ 5W- 2P 1 5			25/ 5W-10C 1 S	10- 7-64			3- 8-65		

TABLE E-I
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	Total		275		228		257			367		326	7 6 0					
uents in	TOS TOS SE EVOD 180°C SS SS COMPANS SS COMPA		527	480	094	401	530	0	000	750	106	5.77	t	529				
constituents per million	- 00 S		1		ļ		1			1		ı			l i	1	ŀ	
Mineral o	3, °8		0.23		0.10		-			0.10		0	0 4		-	1	1	
	0 y D 1 y		4.0		7.0		9•0			0.5		4			1	t t	1	
	Z 2 Z		24	3	46	0.74	18	0.29	0	24	V 6 6 9 9	a	0.45	3	34	38	34	
million e value	Ch10 r.de	Y0100	1.92	22	50	1.41	32	0.00	0	66	7007	77.	2.09	22	72 2.03	2.17	75	
parts per million equivalents per million percent reactance value	Sulfote SU4		76		73	1.52	88	1.83	0 7	134	25		1.71	18	1	125	125	
parts per equivalents percent re	Bicor - bonote HCO3	UNII	286	55	192	3.15	366	00.9	0	408	0.00		5.15	52		1	1	
par	Carbon - ate CO3	RIVER HYDRO UNIT	0		0		0			0		(>		1	1	1	
.s	Potos -	A RIVE	3	1	m :	0.08	7	0.03		4 0	0.10	C	0.08		-	1	1	
constituents	E nipos	SANTA ANA	3.04	35	64	2.13	86	3.74	7 #	116	40.04	- 77	2.87	30	1	1	1	
Mineral co	Mogne- stum M g	S Y0187	19	18	10	0.82	14	1.15	13	20	1.664		1.23	13	1	1	1	
2	Calcium		3.94	94	75	5.0	80	3.99	0	114	2.67	70.5	5,29	56	-	1	1	
Specific conduct-	mhos at 25°C)	R HYDRO SUBUNIT YOIBO HYDRO SUBAREA	844		969		900			1177		010	010		825	951	954	
	I	ORO SI	7 • 4		7 • 8		0 • 8			7.4		2			7.3	7.4	7.1	
Temp	when sampled tn°F		1		-		1			1					68	l l	1	
State well	D 00	MIDDLE SANTA ANA RIVERSIDE	25/ 5W-10C 2 S		25/ 5W-10C 4 S	3-8-67	25/ 5W-10C 5 S	10- 2-64		2S/ 5W-10F 1 S	3-8-65	0 6 300 6 70 6			257 5W-11A 1 S 10- 6-64	3-26-65	4- 1-65	

TABLE E-I
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	April Poss 0 S		20 20								
luents in	Evap 8000 Evap 105°C		590								
constituents per million	5. 1.		1	1	1	į.	1	1	l I	ŧ	
Mineral parts p	8,10,0		77.0	1	1	1	1	}	1	1	
	, p ,		0 • 3	1	\$ t	1	1	1	1 1	1	
	2		34 0.55	46 00 74	0 • 13	16	14 0.23	y • 0 80	0.02	0.02	
million e value	0 h lo	Y0100	1.92	1.97	2.03	2.00	2.00	2.00	7.000	2.14	
millior per eactanc	Suttate Su4		2.33	125	4.56	192	207	237	248	314	
parts per equivalents percent r	Bicor - bonote HCO3	UNIT	259	1	1	1	1		1	1	
por	Carbon - ote	N HYDRO	0	}	1	I I	1	1		1	
Ë	P	A RIVER	0.10	4	1	1	1	}	1	1	
stituents	£ 0 2	SANTA ANA RIVER HYDRO UNIT	2.52 2.52 28	ţ		1	-	1	1	1	
Mineral constituents	Mogne-	SA YOIB7	1.32		}	\$ 	1	1	1	t I	
Ξ	Calcium		101	1	-	1	Į į	i I	1	4 1	
Specific conduct-	. 0	BUNIT Y	486	841	487	961	980	1008	1031	1141	
	Ha	RO SU SUBA	1.6	1.2	٥ •	0.0	8 • 8	0. 7	7 • 9	9 • 9	
Temp	sampled In ° F	R HYD HYDRO	8 0	22	6 8	6 8	67	ිධ ධ	6.7	1	
State well	Date sampled	MIDDLE SANTA ANA R HYDRO SUBUNIT YOIBO RIVERSIDE HYDRO SUBAREA	25/ 5W-11A 1 5 5-19-65	8-10-65	25/ 5w-11K 2 , 12- 3-64	12- 3-64	12- 3-64	12- 3-64	12- 3-64	59-5 -2	

TABLE E-I
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

		hordness os Co C O N						527	519	247	594
fuents in	,	Evap 185°C hordness Evap 105°C os Computed Calify						920	900	930	1000
constituents per million	_	5.02		1	1	1	1	1	1	Ī	-
Mineral parts p		G G		1	l i	i i	1	0 • 40	0.38	0.36	0.36
		op :		1	i	1	1	0 • 5	0.5	0	0
		NC NC NC		5 0 • 0 8	0.10	0.02	0	14 0•23 2	15 0 • 24	13 0•21	0.03
million e value	1 4	9 - 0	Y0100	76	78	78	2.26	2.12	75 2.12 15	2.17	73 2 • 06 14
ts per million reactance value	0.0140.10	8.08		247	247	276	257	401 8•35 59	380 7.91 57	403 8 • 39	494 499.6 499.6
parts per equivalents percent	a d	bonate HCO3	RIVER HYDRO UNIT	1	1	1	-	212	215 3.52 26	212 3•47 24	3.39
p e d	Corbon	0 le	R HYDR	1 4	1	-	-	0	0	0	0
i	0	. ×		1	1	1	1	0.15	0.15	0.15	0.18
constituents	Sodius	0 2	SANTA ANA	1	!	1	1	3.43	3.22	3.13	3.22
Mineral co		E 25 K	S. Y01B7	1	!	1	1	2.55	31 2.55	34 2.80 20	3.04
2	m11.000	0 0		1			f 1	160	157	163 8•13 57	177 8.83 58
Specific conduct-	(micro-	mhos at 25°C)	R HYDRO SUBUNIT YOIBO HYDRO SUBAREA	1058	1043	1076	1065	1274	1245	1280	1344
	Hd		R HYDRO SUBUN HYDRO SUBAREA	7.0	7.0	6 • 9	7 • 1	6.7	6.7	6.7	6.7
Temp	When we	in ° F		1	-	-		65	65	63	6 5
State well number		Date sampled	MIDDLE SANTA ANA RIVERSIDE	25/ 5W-11K 2 S 3- 5-65	3- 5-65	3- 5-65	3- 5-65	6- 3-65	6- 3-65	6- 3-65	6- 3-65

	Total Nardness os Courcs		536						272	
uents in lion	Evop 180°C hardness Evop 105°C os		616						707	
constituents per million	Setter CO 8		1	-	1	1	i	1	1	
Mineral o	Boron		0 * 40	1	ì	1	1	-	0.03	1
2	Fluo- r.de		0 • 5	1	1	1	1 1	1	0 . 4	1
	1 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0.05	12 0.19	11 0.18	0.11	31	38	34 0.50 8	0 0 0
million e value	C 1 10 -	Y0100	2.03	1.95	1.97	7.1	20.50	77	27 0 . 16	34
equivalents per million percent reactance value	Sulfate SO4		418	332	334	329	-	1.62	1.67	2.39
equivalents percent re	Bicor - S bonote HCO3	O UNIT	3.36	1	1 1	1	1		251 4•11 58	i t
edo	corbon -	R HYDR	0	1	1	1	1	1	0	1
. <u>c</u>	Polas -	A RIVE	0.18	1	-	1	ļ	1	3 0.08	1
constituents	E O N	SANTA ANA RIVER HYDRO UNIT	3.17	1	1	1	1	1	36	1
Mineral cor	N 0 0 0 N	S/ Y0187	35 2 88 2 2 2 2 2 2 2 2	1	1	i i	I 1	1	1.15	1
Ž.	E 0 0 0		157	1	1	1	}		86 4.29	1
Specific conduct-	. 0	BUNIT Y	1267	1144	1147	1149	765	671	685	9999
	H _d	RO SU SUBA	6.9	6 . 8	8 • 8	7 • 8	7.5	7 • 5	7.9	7 • 4
	sampled in ° F	R HYD	89	67	6.7	6.8	1	1	-	7.0
well	pel	MIDDLE SANTA ANA R HYDRO SUBUNII YOIBU RIVERSIDE HYDRO SUBAREA	757 5W-11K 2 S 6- 3-65	8- 6-65	9-92	8- 6-65	25/ 5W-11M 1 S 10- 5-64	3-17-65	5-20-65	8- 9-65
State	Date	IDDLE	25/ 54	8	28	α:	25/ 54		- A	8

TABLE E-I
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	Nordness as				697			292	262		
uents in	TDS Total				910			580	546		
constituent per million	5,11; ca S.02		1		1	1	-	21	1	1	
Mineral constituents parts per million	Boron		1 6	1	0.29	1	1	0.39	0.41	1	
	Fluor		-	1	0.7	1	I	9.0	9.0	1	
	rote NU3		37	38	31 0.50	35	410.66	42 0.68	31 0•50 6	37	
million per million ctance value	chlo = cle	Y0100	3.05	128 3.61	121 3.41 26	102	81 2.28	2.37	2.28	78	
0	Sulfote SO4		-	238	233	3.69	1	100 2 08 22	1.96	90	
parts per equivalents percent re	Bicar - bonate HCO3	UNIT	-	1	273	1	į į	256 4.20 45	253	1	
por	Carbon - ale	R HYDRO	1	ļ	0	1	1	0	0	1	
ri .	Potas -	A RIVE	}	1	0.15	1	l l	0.13	5 0•13	1	
constituents	E nipos	SANTA ANA RIVER HYDRO UNIT	1	ě P	93 4.04 30	ł		3.39	3.70	1	
Mineral co	Magner S-um	S Y0187	1	9 1	2.27	1	1	20 1.64 18	1.15	1	
2	Calcium	Y01B0	ł	į į	141 7.04 52	1	1	84 4.19 45	82 4.09 45	1	
Specific conduct-	mhos at 25°C)	R HYDRO SUBUNIT YOIBO HYDRO SUBAREA	1111	1266	1279	1092	864	894	895	874	
	Ha	ORO S O SUB	7.2	7.3	7.4	7 • 2	7 • 1	7.8	7 • 4	7.2	
Тетр	when sampled in F		1	i i	1		1		1	9	
State well	led	MIDDLE SANTA ANA RIVERSIDE	25/ 5W-12B 2 S 10- 1-64	3-17-65	5-19-65	8- 5-65	25/ 5W-12C 1 5 10- 1-64	10- 2-64	3- 9-65	3-17-65	

	* * 0 00rdness	50003		266		258			136		
uents in	Evon 1950c hordness	Computed		558		520			215		
constituents per million	3 0	5.02		1	1	1	1	1	1	1	-
Mineral o	Burer	8		0.37	1	77.0	1		0.01	1	1
~	o Dir	F		9.0	1	0.5	1	1	0	1	1
	Z - Z	NO3		28 0 45	21	21 0 34	4 0 0 0 0	2 0 • 0 3	3 0.05	90.00	3.7
value	Chio-	10	Y0100	2.26	2.23	2.20	0.20	0.17	0 • I • 1 4	0.17	106
parts per million equivalents per million percent reactance value	Sulfate	504		2.04	96	1.92	1	13	0.31	14	
parts per equivalents percent re		нсоз	TIND O	256	1	263	i I	ļ į	173 2.84 85	1	
parts equiva percen	Carbon -	C 0 3	R HYDR	0	1	0	1	-	0	İ	1
ć	Polas -	×	A RIVE	0.13	}	0.13	1	-	0.05	1	1
constituents	E nipos	0 N	SANTA ANA RIVER HYDRO UNIT	3.57	1 4	3.57	l l	1	13 0.57	1	1
Mineral cor	1	6 M	S/ Y0187	1.23	1	1.32	ł l	1	5 0.41	1	
2	E	000		4.09		3.84	E a	1 2	2.30	1	1
Specific conduct-		ot 25°C)	HYDRO SUBUNIT YOIBO	895	870	867	310	767	322	322	1092
	Hd		ORO SUBA	7 • 4	7.3	7.3	7 . 8	8 . 2	æ • 1	7.9	7 • 1
Тетр			R HYE	1 1		1	1	-	-	-	1
State well	Date sampled		MIDDLE SANTA ANA R HYDRO SUBUN RIVERSIDE HYDRO SUBAREA	257 5W-12C 1 S 5-19-65	8-10-65	9-25-65	25/ 5W-12E 1 S 10- 1-64	3-17-65	59-61-5	8- 5-65	25/ 5W-12E 2 5 10- 1-64

TABLE E-1
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	o to 1	os Colco			410		188			271	
uents in lion	TOS	Evop 180°C hordness Evop 105°C os Computed Cocc3			756		456			432	
constituent per million	5. 1.	5.0 2 C		1	-	-	1		1	1 1	1
Mineral constituents parts per million	Boron	0		1	0.19	1	0.54	-	1	0.11	1
2	. 20 4	r de		l	9 • 0	1		1	1	7.0	1
	z	NC3		40	38 0•61	35	9 0•15 2	4 0 • 0 0	0.10	6 0•10	22 0 • 35
million	0110	r.d.e	Y0100	2.79	2.71	95	82 2.31 31	26 0 73	e e e e e e e e e e e e e e e e e e e	34 0 . 96	0,56
t million ts per million reactance value	Sulfate	504		3,31	3,39	161	2.44	1	102	117 2.44 35	1.96
parts per equivalents percent re	_	bonate HCO3	O UNIT	1	261 4.28 39	ì	150	1	1	211	1
por	Carbon -	CO 3	R HYDR	1	0	1	0	1	!	0	t I
·Ē	Potos -	. x c 3	A RIVE	1	0.13	1	0.05	1	1	0.08	1
constituents	Sodium	o Ž	SANTA ANA RIVER HYDRO UNIT	1	2.87 2.87 26	†	3.52		1	33 1•43 21	1
Mineral co	Mogner	E M 9	S Y0187	1	25 2•06 18		10 0.82	1	1	13 1•07 15	1
Σ	# 7 J. 0J	° U	Y01B0	1	123 6•14 55	1	59 2 • 94 40	9	1	4.34	-
Specific conduct-	(micro-	mhos at 25°C)	<u></u>	1061	1075	1052	774	519	626	673	699
	Hd		DRO S	7 • 1	7 • 7	7.3	8 . 2	7.5	7.4	7.5	7 • 4
Тепр	when	In ° F	R HY HYDR	1	1	-	70	1	!	69	70
State well		Date sampled	MIDDLE SANTA ANA R HYDRO SUBUNI RIVERSIDE HYDRO SUBAREA	25/ 5W-12E 2 S 3-17-65	5-19-65	8- 5-65	25/ 5W-14D 1 S 9-30-65	2S/ 5W-14G 2 S 10- 5-64	3-17-65	5-20-65	8- 9-65

	hordress 5		224	282			271			
uents in	Evop 105°C Computed		330	5623			3.74			
constituent per million	, 00 %		1	1	-		1	f f	i i	1
Mineral constituents parts per million	. a		0 0 0	0.14	1	(70.0	1	1	1
-	5 D		** • 0	0 • 3	1	-	0 • 4	1	-	1
	ż 0 Z		4 0 • 06 1	23 00.37	24 0 39	23	22 0 35	30	90.0	4 0 • 0¢
million e value	0 0 0	Y0100	30.85	2.14	25	20000	19.00	0.85	1.41	0.16
millior per octono	Suffate		81 1.69 28	2.29	t I	81	1.81	1.62	1	1.54
e le n	Bicar - bonate HCO3	TINU C	204 3 • 34 56	312 5-11 52	1	1	254	1	1	1
parts equiva percen	Carbon -	R HYDRO	0	7	į	1	0	1	1	l I
Ë	Potos - K	A RIVE	2 0.05	0.15	ļ	1	0.08	l t	1	1
constituents	Sodium	SANTA ANA RIVER HYDRO UNIT	1.22	90 3.91 40	1	i i	35	t	1	į į
Mineral cor	Mogne.	SA Y0187	9 0.74	20 1.64	1	į į	1.07	1	1	1
ž	£		3.74	84 4.19 42	1	I I	81 4.34	Į.	1	1
Specific conduct-	mhos at 25°C)	BUNIT Y	264	1020	618	6 36	/11	619	305	246
-	Hd	ORO SU	1.5	7.9	7.5	1 - 4	1.6	7 . 5	1.4	7 • B
Temp		R HYD	1	+	7.)	I I	æ	69	3	Į į
State well	led	MIDDLE SANTA ANA R HYDRO SUBUNIT YOLBO RIVERSIDE HYDRO SUBAREA	25/5W-146 2 S 8-27-65	25/ 5W-16A 3 5 6-25-65	25/ 5W-20R 1 5 10- 5-64	3-18-65	34-45-5	8 - 9-65	25/ 5W-21J 1 S	3-18-6%

TABLE E-I
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	hordness		366				4 3 1			
uents in	TDS hardness Evap iBOoc hardness Evap.		584 532				689			
constituent	5 2 5		1	1 1	-	1	1	-	1	
Mineral constituents parts per million			0.10	1	ł	1	0.13		1	1
-)		0.5	;	1	1	9.0	1	1	1
	rote N. 3		3 0.05	4 0 • 0 • 0 • 0 •	5 0 • 0 8	6 0 10	4 0.06 1	10.02	20.08	19
million e value	, h lo	Y0100	1.33	1.35	1.69	1.52	1.58	222	1.66	1 • 35
millior	Sulfate		3.75	3.77	1	207	212	0.25	1	1.19
parts per equivalents percent re	Bicar - bonote HCO3	UNIT	250 4•10 44	l l	1	1	281 4.61 43	1	-	1
equ	Carbon - ote CO 3	K HYDRO	0	1	1	1	0	1	1	1
Ë	Potos -	A RIVE	0.10	l l	1		0.13	1	1	1
constituents	Sodium	SANTA ANA RIVER HYDRO UNIT	41 1•78 19	1	-		46 2.00 19	l I	1	
Mineral co	Mogne- stum Mg	S/	21 1•73 19	1		1	24 1.97 18	1	1	1
2	m 7 · 0 · 0 · 0		112 5.59 61	t I	-	ł	133	1	1	1
Specific conduct-	mhos at 25°C)	JBUNIT	866	988	1024	947	986	1789	169	641
	I	ORO SUBA	0 · B	7 • 4	7.5	7.7	7.8	8 . 8	7.3	7.7
Temp	when sampled in °F	R HYE	6.8	89	1	1	67	1	9 9	5.9
State well	led	MIDDLE SANTA ANA R HYDRO SUBUNIT YOIBO	25/ 5W-21J 1 S 5-20-65	8-10-65	25/ 5W-22D 1 S 10- 5-64	3-18-65	5-20-65	25/ 5W-28B 1 S 3-25-65	2S/ 5W-29E 4 S 10- 5-64	3-18-65

				-	
	Dadness Dordness	50 3		189	
tuents in	T 0 5 7 210	Evap 105°C Computed		340	
constituent per million	÷ ;	5 0 2		1	1
Mineral constituents parts per million	90,000	В		0.20	1
	2	r. de		0 • 5	
	z	frote NC 3		0.02	14 0 0 • 2 3
million e value	C h 10 -	r.de C.1	Y0100	34 0.96	0 9 9 7
parts per million equivalents per million percent reactance value	Sulfate	504		41 0.85	9 7 9 9
parts per equivalents percent re	B 1 C 0 F -	bonote HCO3	TIND	232 3.80 67	1
por	Carbon -	01e CO3	HYDRO	0	1
П	,	Si u B	A RIVE	0.15	1
constituents	Sod.u.	0	SANTA ANA RIVER HYDRO UNIT	1.74	1
Mineral co		S . C. B.	S/ V0187	12 0.99	1
2	Ca.c.um	٥٥		200	1
Specific conduct-	1	mhos at 25°C)	BUNIT Y	556	9 9
	Hd		RO SU	7.7	3
Temp	when	in ° F	R HYD	62	20
State well		Date sampled	AIDDLE SANTA ANA R HYDRO SUBUNIT YOIBO	257 5W-29E 4 S 5-24-65	8-10-65

TABLE E-I ANALYSES OF GROUND WATER SANTA ANA DRAINAGE PROVINCE (Y)

	0.00	Co.c. 3		537	642
uents m		Computed C		939	1070
constituents per million	. 00	5 0 5		1	
Mineral c	,	В		0.10	0.14
Σ	, •			9.0	0 • 7
	role.	P.C.3		51 0.82 6	1.03
value	Ch10	- 0	Y0100	2.17	2.76
parts per million equivalents per million percent reactance value		SC 4	>	254 5 29	349
parts per equivalents percent re		нсо3	LIND	323 5.29 39	310
equi		003	HYDRO	0	0
ü	. E	¥	A RIVER	0.05	2 0.05
constituents	E	0 2	SANTA ANA RIVER HYDRO UNIT	3.13	80 3.48 21
Mineral con		5 W	SA YUIC2	3.21	3.54
M	E 2	٥٥	Y01C0 Y	151 7.53	186 9.28 57
Specific conduct-	_	at 25°C)		1274	1425
000	Hd	0	UNIT	7.0	7 • 2
Temp	when sampled in ° F		ORO SUB	1	
State well	led		LAKE MATHEWS HYDRO SUBUNIT BEDFORD HYDRO SUBAREA	6W-21J 1 S	6W-22D 1 S
State	Date s		LAKE MA	45/ 6W-21J 1 3-20-65	45/ 6W-22D 1 3-20-65

	Nordress 25	,	160		20 E	100		539		
.c	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		272]		311	263		0007		
constituents	Evap 8 co					7 7		4 4		
const	5:03	_	1		-	1	1		1	1
Mineral constituents parts per million	. 9. B		0.01		9	0	1	0.14	-	
	2 0 14		7.0		0 • 3	7.0	l I	6.0		1
	17.0.7 NO.9.		6 0•10 3		42 0.68 14	13 0 • 21	5 0.08	0.10	0 • 13	18
million e value	0 1 4 0 7 · d e	Y0100	5 0 14		0 20 0 0 0	0.17	35	1.16	1.27	0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
parts per million equivalents per million percent reactance value	Suffore		36		36	19	1.79	1.77	1.77	1
parts per equivalents percent re	Bicar - bonote HCO3	UNIT	176 2.88 74		196 3.21 66	3.11 80	1	250	1	1
parts equiva percen	Carbon.	HYDRO	0		0	0	l I	0	1	!
Ē	Potos -	RIVER	3 0.08		0.05	0.05	1	4 0•10 1	1	
constituents	S 0 d . u R	SANTA ANA RIVER HYDRO UNIT	11 0.48		16 0.70	0.65	1	2.26	1	1
Mineral cor	N 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		110.00	0104	0.66 13	9 0.74	i i	12 0.99	1	1
×	E 0 0 0 0	00	2.49		3.49	2.45	1	3.79	1	1
Specific conduct-	mhos at 25°C)		366	SUBARLA	473	358	675	684	700	\$ S S
	Ha	SUBUNIT YDRO SU	7.4	HYURU	7.27	7.9	7.4	7.6	7.6	9 • 6
Temp	when sampled in °F	JRO SL	I I		1	1	1	74	I 1	1
State well	pe	COLTON-RIALTO HYDRO SUBUNIT LOWER LYTLE HYDRO SUBAREA	1N/5W-6K2S	COLTON-RIALTO	15/ 4W-18E 1 S	9-13-65	15/ 4W-21L 3 5 3-19-65	5-18-65	8- 3-65	15/ 4W-21R 1 S 10- 6-64

TABLE E-I
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	Aprichess os Cality		342		330		98		102		
uents in lion	TDS 10.		498		601		655		355		
constituents per million	5. 2.		1	1	1	1	ļ	1	4 a	ł	
Mineral parts p	Beron		0.33	1	0 • 35	1	0.36	1	0.41	1	
	, o		0 8	1	0.7	1	0 • 1	1	1 • 4	1	
	rote N 3		13 0.21	12 0.19	16 0•26 3	14	0.02	0	0	0	
million per million ctance value	Chlo ride	Y0100	78 2.20 24	73	73 2.06 23	2.03	2.17	85	30 0 85	31	
0	Sulfore SO4		1.62	1.73	1.77	1.79	0	0	29	30	
parts per equivalents percent r	Bicar - bonate HCO3	UNIT	321 5.26 57	t 1	290	-	520 8 • 52 74	i i	273	-	
par	Carbon - ote	4 HYDRG	0		0		22 0.73	1	0	1	
ni s	Potas -	A RIVE	3 0.08	ga a	0.08	1	0.03	1	0.05	1	
constituents	Sodium	SANTA ANA RIVER HYDRO UNIT	56 2 • 43 26	1	52 2.26 25	}	216 9.39 84	-	3.74	-	
Mineral co	Mogne. s.c.a	S/ Y01D4	2.30	1	2.06	I	8	1	64°0 8	1	
2	Calcium	01100	91 4.54 49	l l	91	1	1.05	-	31		
Specific conduct-	mhos at 25°C)	SUBAR	864	878	866	826	1060	1104	578	573	
	μď	BUNI 1	7.5	7.3	7.4	7.3	8 • 6	8 • 4	8 . 2	0.8	
Temp	sampled In ° F	ORO SU	-	1	1	1	99	69	99	99	
State well	Date sampled	COLTON-RIALTO HYDRO SUBUNIT	15/ 4W-21R 1 S 2- 4-65	3-18-65	5-18-65	8- 9-65	15/ 4W-21R 3 5 6- 1-65	8- 2-65	15/ 4W-21R 4 S 6- 1-65	8- 2-65	

	Total hordness os CaCO3		150		2		153				
uents in	Evop 180°C hordness Evop 105°C 05 Computed CoCO3		344		592		336				
constituents per million	5.25		1	1	1	ŧ 1	1	1 1	1	I I	
Mineral o	R, 7, 7, 8		0.12	1	0.28	1	0.30	1	1	1	
_	, p		1.5	1	0 • 7	1	1 • 2	1	1	l t	
	7 0 7 E		0	0	0	0	0	0	6.79	47	
nillion volue	c n 10	Y0100	0.71	26	0.00	33	27 0.16	62.0	91	2.10	
parts per million equivalents per million percent reactance volue	Sulfore		40 0.83 14	41	47	1.00	2.54	28	1.81	1.81	
parts per equivalents percent rea	Bicor - bonote HCO3	UNIT	261	}	0.33 8	}	295	1	1	1 2	
equival percen	Corbon - ote CO3	HYDRC	0	1	1.87	1	0	1	1	-	
. <u>c</u>	Potos - C	A RIVE	3 0.08	1	0.08	ł l	0.00	i	I I	-	
constituents		SANTA ANA RIVER HYDRO UNIT	2.57	1	3.13	1	2.07 48	Į.	i i	1	
Mineral cor	Mogne - Sodium	SA Y0104	8 0.66 11	1	488	ł	2000	1	1 1	!	
2	Colcium	0100	2.45	1	\$ 3 c	1	2.15	1	1	1	-
Specific conduct-	1 0	SUBAREA	560	563	434	044	58C	275	1050	1064	-
	Ha	SUBUNIT	0.8	0 0	10.0	6.6	8 - 2	æ• 1	7.3	7 • 2	
Temp		DRO SL	-	999	68	8 9	5	19	1.2	69	
State well	led	COLTON-RIALTO HYDRO SUBUNIT COLTON-RIALTO HYDRO SUBAREA	15/ 4W-21R 5 S 6- 1-65	59-2 -8	15/ 4W-21R 6 5 6- 3-65	8- 2-65	15/ 4W-21R 7 c 6- 3-65	8 2 - 65	15/ 4W-28E 1 s	12- 2-64	

TABLE E-1
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	Pordress 35						274	321	303		
uents in	TOS Evap 10 of Computed						589	626	645		
constituents per million	\$ 0.0		i i	ŀ	-	1	1	1	-	-	
Mineral o	B, *C,		1		1	E B	0.58	0.56	0 • 56	1	
	a p		1 2	1	1	1	0.5	5.0	7.0	1	
	z 0 z		47	44	47	44 00.71	57 0.92 9	54 0 • 87 8	55 0 • 89 8	45	
million per million ctance value	0 1 4 0	Y0100	98	2.76	97	96	85 2.40 24	2.23	81 2.28 21	7.1	
0	Sc Hate	1	1.81	1.83	1.83	1.71	1.44	1.54	1.50	1.42	
parts per equivalents percent re	Bicor - bonote HCO3	TINU C	1	1	1	1	332 5 • 44	388 6 • 36 58	373 6•11 57	-	
por	Carbon - ate	4 HYDRG	-	1	1	1	0	0	0	1	
Ë	Potas - K K	A RIVE	1	1	1	1	7 0.18	0.15	0.15	1	
constituents	E nipos	SANTA ANA KIVER HYDRO UNIT			-	1	107	104	105	1	
Mineral co	Magne- s-um Mg	\$/	-	1	-	1	1.23	1.48	1.32	1	
Σ	Ca 10:03	0100	-	1	1		85 4.24 41	4.94	40.74	1	
Specific conduct-	(micro- mhos at 25°C)	SUBAR	1055	1058	1053	1032	1000	1045	1043	931	
	r a	BUNI	7.3	7.2	7 • 1	7.7	8 .	7.8	7.6	7.0	
Тепр	when sampled	DRO SL ALTO H	68	69	6.8	1	68	29	67	69	
State well	Date sampled	COLTON-RIALTO HYDRO SUBUNIT COLTON-RIALTO HYDRO SUBAREA	15/ 4W-28E 1 S 12- 2-64	12- 2-64	12- 2-64	3- 4-65	5-31-65	5-31-65	5-31-65	8-3-65	

nts in			Computed Colds							010 345		417 196
constituents per million		CO Property	2.02 Com		ŀ		1	1	-	1 1	ļ.	1
Mineral c	0		B		1	1	1	1		97.0		0.11
Σ	-0112				i i	i	1	å I	1	5.0	1	э» •
	1 2	4 c c c c c c c c c c c c c c c c c c c	10 3		45	45	45	46 0 74	16	16 0.26	16	21 0 • 34
value	1 0 4	D - C	-	Y0100	74 2 0 0 9	2.00	2.00	72	1.66	1.600	1.75	1.33
parts per million equivalents per million percent reactance value	Culfate		202	<i>></i> -	1.39	1.37	1.39	1.37	128	133	28	1.25
parts per equivalents percent re	Burner		HCO3	LINI	1	1	1	1	1	378	1	246
equi	Corpon		\dashv	HYDRO	1	1	1	1	1	0	1	0
. 드	Dotos		1	RIVER	1	-	}	1	l f	0.08	1	0 0 0 0 0
constituents	E 60		o	SANTA ANA RIVER HYDRO UNIT	1	1	J I	1	1	3.91	1	3.000
Mineral con	M 0 0 0 M		0	SA YUID4	-	1	†	1	1	2.30	1	0.82
Σ	8		٥	0100	1	1		1	1	4.000	1	3.00
Specific conduct-	ance (micro-		01 25 C)	Y SUBAREA	246	956	746	040	1002	1016	300	ຶກ ນ
0, 0	Hd			SUBUNIT	7.0	7 • 0	6.9	6.0	7.3	7.4	7.2	7 • 7
Temp	when	sampled in ° F		DRO SU	67	69	69	69	1	1	1	1
State well		Date sampled		COLTON-RIALTO HYDRO SUBUNIT COLTON-RIALTO HYDRO SUBAREA	15/ 4W-28E 1 S 8- 3-65	8 3 - 6 5	8 - 3 - 6 5	8-3-65	15/ 4W-28G 2 5 3-19-65	5-17-65	8- 9-65	15/ 4W-28R 3 5 2- 4-65

TABLE E-I
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

| | 3 5 |

 | 33 | | 7 | | |
 | 69 | | 16 | | | 96
 | | 62 | | | | |
|----------|--
--
--
--
---|--|--|--|---|--
--	--	--	--	---
--	-------------------	---		
-	hardn os Ca UK			

 | | | | | | |
 | | | | | |
 | | | _ | | | |
| 0 | Evap 180°C
Evap 15°C
Computed |

 | 356 | 360 | 210 | 210 | |
 | 247 | 214 | 244 | 219 | | 279
 | 211 | 195 | 154 | | | |
| 1 | co
5 0 2 |

 | 1 | | 1 | | 1 |
 | 1 | | I | | | -
 | | 1 | | | | |
| a | |

 | 0.11 | | 0.04 | | 1 |
 | 0 | | 0 | | | 0
 | | 0.03 | | | | |
| L | r. de |

 | 0 • 8 | | 7.0 | | 3 |
 | 0.3 | | 0.4 | | | 0.7
 | | 1.2 | | | | - |
| 2 | trate
NC3 | 1

 | 19 | 0.31 | 2 | 0.08 | 0.10 |
 | 18 | 7 | 17 | 0.27 | | 16
 | 0.26 | 1.5 | 0.02 | | | |
| - | r.de | Y0100

 | 45 | 1.20 | 14 | 0.39 | 13 |
 | 91, | 7 7 7 | 7 | 0.20 | | 39
 | 1.10 | 26 | 0.73 | | | |
| 41011.0 | 504 |

 | 55 | 1.08 | 26 | 0.54 | 26 |
 | 13 | 10 | 19 | 0.40 | | 13
 | 0.27 | 7 | 0.15 | | | |
| 200 | bonate
HCU3 | UNIT

 | 226 | 3.70 | 173 | 2.84 | - |
 | 189 | 3.10 | 193 | 3.16 | | 133
 | 2.18 | 121 | 1.98 | | | |
| or hon . | ate
CO3 | A HYDRO

 | 0 | | 0 | | - |
 | 0 | | 0 | | | 0
 | | 0 | | | | |
| | | A RIVE

 | 3 | 0.08 | 2 | 0.05 | ! |
 | 20 | 0.00 | 2 | 0.05 | 1,- | 2
 | 0.05 | n | 0.08 | | | |
| 8 7 60 | 0 2 | ANTA AN

 | 62 | 2.70 | 42 | 1.83 | 1 |
 | 12 | 13 | 13 | 0.57 | | 42
 | 1.83 | 36 | 1.57 | | | |
| | |

 | 10 | 0.82 | 7 | 0.33 | - |
 | 90 | 12 | 7 | 0.58 | YOIDS | 00
 | 0.66 | 7 | 0.58 | | | |
| 877.00 | ٥ | 0100

 | 57 | 2.84 | 32 | 1.60 | 1 |
 | 58 | 73 | 59 | 2.94 | | 25
 | 1.25 | 13 | 0.65 | | | |
| (micro - | mhos
at 25°C) | SUBAR

 | 615 | | 376 | | 384 |
 | 381 | | 382 | | | 396
 | | 588 | | | | |
| Ha | | INDRO

 | 7.9 | | 7.9 | | 7 • 8 |
 | 7.6 | | 7.7 | | SAREA | 7 • 7
 | | 7.4 | | | | |
| when | P F | RO SU

 | 1 | | 69 | | 6 8 |
 | 9 9 | | ! | | | 99
 | | 79 | | | | |
| 3 | Date sampled | COLTON-RIALTO HYDI

 | 1S/ 4W-28R 3 S | 9-13-65 | 15/ 4W-29A 1 S | 5-17-65 | 15/ 4W-29A 2 S |
 | 15/ 5W-12N 1 S | 69-4 -7 | | 9-13-65 | RECHE HYDR | 25/ 3W-18D 1 S
 | 5- 4-65 | 25/ 3W-20D 4 S | 5- 4-65 | | | |
| - | HGCO-CO CO CLUM MODER SAGIN POLICE COCKED BICKLY SALIDING PAGE 1 | WRBING PH <th< td=""><td> Width Chicago Continue Chicago Chica</td><td> Micro Co clum Magne Sod um Polos Corbon Bicar Sulfate Chio N F uc Bicar Solution Chio N F uc Bicar Solution Chio N F uc Bicar Chio N Solution Chio Chio Chio N Solution Chio Chi</td><td>Mutos Co cum Magne Sod um Polos. Carbon Bicar- Sulfate Chio N. Full Beren S. I. 105.90 Confidence Solution S. Carbon Chio Chio Chio Chio Chio Chio Chio Chio</td><td>MINOS CO CLUM MOGNE SOGIUM POLOS. CONDON. BICOT. SUITOTE CALO N. F. U. BETCH S. T. OF CALO N. T. OF</td><td>Micro- Co clum Mogne Sod Jm Polos- Silum Silum Silum Silum Sod Jm Polos- Subarea Solum Silum Silum Silum Silum Silum Silum Solum Si</td><td>THE STATE AND THE SECTION MAGNET SECTION
SECTION SECTI</td><td>TYOLDO Y</td><td>THE STATE OF CLUMN MAGGINE SEGILAR PROTOST CONTROLL STATE OF CLUMN STATE OF CLUMN MAGGINE SEGILAR PROTOST CONTROLL STATE OF CLUMN STATE OF CL</td><td>TUBAREA YOLDO</td><td>TUBON TO CO C. J. J. J. J. J. J. J. J. J. J. J. J. J.</td><td>TYOLDO YOLDO YOLDO YOLDO YOLDO YOLDO SANTA ANA RIVER HYDRO UNIT 125°C) SANTA ANA RIVER HYDRO UNIT YOLDO 38°C SANTA ANA RIVER HYDRO UNIT YOLDO SANTA ANA RIVER HYDRO UNIT YOLDO 38°C SANTA ANA RIVER HYDRO UNIT YOLDO SANTA ANA RIVER HYDRO UNIT YOLDO SANTA ANA RIVER HYDRO UNIT YOLDO SANTA ANA RIVER HYDRO UNIT YOLDO SANTA ANA RIVER HYDRO UNIT YOLDO SANTA ANA RIVER HYDRO UNIT YOLDO SANTA ANA RIVER HYDRO UNIT YOLDO SANTA ANA RIVER HYDRO UNIT YOLDO SANTA ANA RIVER HYDRO UNIT YOLDO SANTA ANA RIVER HYDRO UNIT YOLDO SANTA ANA RIVER HYDRO UNIT YOLDO SANTA ANA RIVER HYDRO UNIT YOLDO SANTA ANA RIVER HYDRO UNIT YOLOO SANTA ANA RIVER HYDRO SANTA ANA RIVER HYDRO UNIT YOLOO SANTA ANA RIVER HYDRO UNIT YOLOO SANTA ANA RIVER HYDRO SANTA ANA RIVER HYDRO SANTA ANA RIVER HYDRO SANTA ANA RIVER HYDRO SANTA ANA RIVER HYDR</td><td> Subare Column Magne Sodum Sodum Sodum Sodum Sodum Sodum
 Sodum So</td><td> Minos Colored Modern Suring Colored Modern Suring Colored Modern Suring Colored Modern Suring Colored Modern Suring Colored Modern Suring Colored Modern Suring Colored </td><td> Minos Continue C</td><td> Substitute</td><td> Subarea Magne Sed um Poles Curon Brico Surface Curio Musq Fuze Sed um </td><td> Subarray No. 10</td><td> Minos Company Minos Company Control
 Control Control</td></th<> | Width Chicago Continue Chicago Chica | Micro Co clum Magne Sod um Polos Corbon Bicar Sulfate Chio N F uc Bicar Solution Chio N F uc Bicar Solution Chio N F uc Bicar Chio N Solution Chio Chio Chio N Solution Chio Chi | Mutos Co cum Magne Sod um Polos. Carbon Bicar- Sulfate Chio N. Full Beren S. I. 105.90 Confidence Solution S. Carbon Chio Chio Chio Chio Chio Chio Chio Chio | MINOS CO CLUM MOGNE SOGIUM POLOS. CONDON. BICOT. SUITOTE CALO N. F. U. BETCH S. T. OF CALO N. T. OF | Micro- Co clum Mogne Sod Jm Polos- Silum Silum Silum Silum Sod Jm Polos- Subarea Solum Silum Silum Silum Silum Silum Silum Solum Si | THE STATE AND THE SECTION MAGNET SECTION
SECTION SECTI | TYOLDO Y | THE STATE OF CLUMN MAGGINE SEGILAR PROTOST CONTROLL STATE OF CLUMN STATE OF CLUMN MAGGINE SEGILAR PROTOST CONTROLL STATE OF CLUMN STATE OF CL | TUBAREA YOLDO | TUBON TO CO C. J. J. J. J. J. J. J. J. J. J. J. J. J. | TYOLDO YOLDO YOLDO YOLDO YOLDO YOLDO SANTA ANA RIVER HYDRO UNIT 125°C) SANTA ANA RIVER HYDRO UNIT YOLDO 38°C SANTA ANA RIVER HYDRO UNIT YOLDO SANTA ANA RIVER HYDRO UNIT YOLDO 38°C SANTA ANA RIVER HYDRO UNIT YOLDO SANTA ANA RIVER HYDRO UNIT YOLDO SANTA ANA RIVER HYDRO UNIT YOLDO SANTA ANA RIVER HYDRO UNIT YOLDO SANTA ANA RIVER HYDRO UNIT YOLDO SANTA ANA RIVER HYDRO UNIT YOLDO SANTA ANA RIVER HYDRO UNIT YOLDO SANTA ANA RIVER HYDRO UNIT YOLDO SANTA ANA RIVER HYDRO UNIT YOLDO SANTA ANA RIVER HYDRO UNIT YOLDO SANTA ANA RIVER HYDRO UNIT YOLDO SANTA ANA RIVER HYDRO UNIT YOLDO SANTA ANA RIVER HYDRO UNIT YOLOO SANTA ANA RIVER HYDRO SANTA ANA RIVER HYDRO UNIT YOLOO SANTA ANA RIVER HYDRO UNIT YOLOO SANTA ANA RIVER HYDRO SANTA ANA RIVER HYDRO SANTA ANA RIVER HYDRO SANTA ANA RIVER HYDRO SANTA ANA RIVER HYDR | Subare Column Magne Sodum
Sodum So | Minos Colored Modern Suring Colored Modern Suring Colored Modern Suring Colored Modern Suring Colored Modern Suring Colored Modern Suring Colored Modern Suring Colored | Minos Continue C | Substitute | Subarea Magne Sed um Poles Curon Brico Surface Curio Musq Fuze Sed um | Subarray No. 10 | Minos Company Minos Company Control |

	3 %		14	CI			
	Toto hardnes os Callo		2	122	\$		
constituents in per million	TOS Partness Evap 105°C as Computed Co. 3		195	597	3 3 4 4		
consti	S. 1. co		1	1	1		
Mineral constituent parts per million	8, rer		0.00	0	99		
	2 D W		1.2	6.0	5		
	frote NO3		1.5	2.5	0	-	
million se value	Ch 10 -	Y0100	20 0.73	1.24	2.34		
millio per eactand	Su Itale S O 4		0.15	23	1.77		
parts per equivalents percent	Bicor - bongle HCO3	O UNIT	121	151 2.47 58	1.28		
pod	Carbon -	R HYDR	0	1	0 2 8		
č	Po10s	A RIVE	0.08	0.05	0.03		
constituents	E ? 0 Z	SANTA ANA RIVER HYDRO UNIT	36	1.70	4.26		
Mineral co		S Y01D5	0.58	0.74	0.23		
2	E 7 0 0	Y01D0	13 0.65 23	34	1.05		
Specific conduct- ance	mhos at 25°C)		599	441	624		
	I a	SUBUNIT	7.4	7.5	m •		
Temp	sampled In ° F	S	79	68	æ v		
		О НУ	S E	ς -	S		
State well	Date sampled	COLTON-RIALTO HYDRO	25/ 3W-2UR 5- 4-65	25/ 4W-12M 5- 4-65	25/ 4W-14D 3-26-65		

TABLE E-I
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	T, to hardness os		193		202		326		331			568		319		369		364			
Jents in	T.O.S. T. 10 Evop 180°C hardness os Computed follows		262	284	356	328	472	459	500		494	439	428	468	452	527	027	537	470		
constituents per million	Si 1.		1		t è		1		1			1		-		1		- 1			
Mineral c parts p	8, co.		0		0.03		0.53		0.56			0.51		0.55		65.0		79.0			
2	ride F		D • G		0		4.0		0 93			400		4.0		4.0		7.0			
	rote NO3		8.2	2	41.1	0.66	27	0.44	27	77.0	2	25	0.40	26	0.42	25	0.40	27	0.44		
million s value	Chlo- ride Cl	Y0100	27	12	17	8 4 8	42	2.23	8 8	2.28	27	72	2.03	77	7.1.7	92	2.59	92	2.59		
r million ts per million reactance value	Suffate 504		34	14	36	13	94	0.96	4.5	76.0	1.1	42	0.87	43	0.90	64	1.02	50	1.04		
parts per equivalents percent re	Bicar - bonate HCO3	UNIT	221	69	238	3.90	594	4.82	300	4.92	57	279	58	295	4 • 8 ¢	288	4.72	282	4.62		Ī
por	Carbon - ate CO3	R HYDRO UNII	0		0		0		C	_		0		0		0		0			
Ë	Potas -	A RIVE	3		4	0.10	4	0.10	1 7	0.10	~	4	0.10	4	0.10	4	0.10	7	0.10	,	
constituents	Sodium	SANTA ANA RIVER	36	29	39	1.70	41	1.78	4.2	1.83	21	39	1.0/0	07	1.74	32	1.39	32	1.39		
Mineral co	Magne- stum Mg	SA YO1E2	17	25	11	0.90	21	1.73	21	1.73	20	18	1.48	18	1.48	35	2.88	32	2.63	2	-
Σ	Calcium	YOIEO	64	45	63	3.14	96	4.79	0	4.89	57	06	4.49	98	09	06	4.49	66	4.64		
Specific conduct-	mhos at 25°C)	REA	385		940		818		845			692		812		870		871			
	Hd	SUBUN	8 . 1		7 • 1		7.5		7.4			7.6		7.3		7.6		7.5			
Тетр.	wnen sampled in ° F	YDRO L HYD	99		19		61		. 5	1		-		61		1		!			
State well	Date sampled	UPPER SANTA ANA HYDRO SUBUNIT BUNKER HILL HYDRO SUBA	15/ 3W- 1H 1 S		15/ 3W- 3Q 1 5	9-54-9	15/ 3W- 8N 2 S	8-24-65		8-24-65			8-24-65		8-24-65	15/ 3W- 8N 3 S	8-25-65		8-25-65		

ANA HYDRO SUBUNITATION Continue Contin	State well	Temp		Specific conduct-	×	Mineral co	constituents	<u></u>	e d l	equivalents percent	0	per million ctance value			Mineral parts p	constituents per million	uents in	
7-8 909 4-84 2-96 1-39 0-10 4-98 1-04 2-71 0-49 1-0	led	sampled In F		(micro- mhos at 25°C)	Colerum	0 - 5 0 - 5	Sodium	,			Sulfate	0 0 0	2 0 2	1 0 c			TOS Evot Burn Computed	hordress 50 5
3 7-8 909 4-84 2-96 1-39 0-10 0 4-96 1-04 2-71 0-46 0-	ER SANTA ANA BUNKER H	HYDR	SUB	E C	YOIEO	0	ANTA A	NA RIVE	ER HYDE	TINO ON		Y0100						
7.6 887 102	m				4.84	36 2.96	32 1 39 15		0	304	1.04	2.71	25		0.65	1	543	340
7.6 887 5102 2.47 1.39 0.10 5.11 1.094 2.557 0.40 0.44 2.557 0.44 2.557 0.44 2.557 0.44 2.557 0.44 2.557 0.44 2.557 0.58 0.58 0.15 0.48 0.17 0.23 0.08 0.14 0.15 0.48 0.17 0.23 0.08 0.14 0.15 0.48 0.17 0.23 0.08 0.14 0.15 0.49 0.49 0.96 0.10 0.10 0.195 0.1	8-25-65	1	7.5	606	101	2.71		0.10	0	304	1.06		28		09.0	1	542	30
5 7.6 242 25 0.58 0.57 0.05 0.05 0.115 0.23 0.08 5 0.04 0.008 140 66 8.1 310 2.50 0.49 0.96 0.12 0.15 0.22 0.17 0.23 0.08 0.17 0.20 5 71 7.9 645 91 114 0.15 0.05 0.05 0.17 0.21 0.20 6 8.0 8.0 497 645 0.09 0.096 0.005 0.17 0.21 0.20 5 71 7.9 645 91 114 0.15 0.05 0.005 0.17 0.22 0.21 0.20 6 8.1 310 2.50 0.49 0.096 0.005 0.005 0.005 0.001 0.000 0.000 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8-25-65	1	7.6	887	10.5	30 2.47	1.39	0.10	0	312	1.04	2.57			0.56	1	53.5	378
66 8.1 310 2.50 0.49 0.96 0.10 3.47 0.23 0.20 0.10 0.10 0.10 0.10 0.10 0.10 0.10	~		7.6	242	1.25	7 0.58	0.53	0	0	1.15	0.17	0.23		7.0	0.08	ţ	140	6
5 71 7.9 645 91 14 15 0.65 0.05 195 65 18 70 0.6 0 4.58 5 69 8.0 497 3.34 0.99 0.52 0.08 0.90 0.37 0.87 0.87 0.8 5 7.1 534 1.15 0.74 0.05 0.52 0.28 0.28 0.03 5 7.1 534 1.15 0.74 0.05 0.55 0.28 0.03 0.03 7 14 11 12 0.74 0.05 0.55 0.28 0.03 0.03 7 15 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	6-24-65	99	8 • 1	310	2.50	0.49	0.96	0.10	0	212	0.23	0 . 0	6.2	0 • 3	1	1	208	150
\$ 69 8.0 497 67 12 12 0.33 0 176 43 13 54 0.6 0 311 \$ 7.7 534 1.15 0.74 0.05 5.26 0.25 0.28 0.03 0.5 0.2 0 291 \$ 5 7.7 534 1.15 0.74 0.05 5.26 0.25 0.25 0.29 0.03 2 292		7.1	7.9	649	91 4.54	1.15	0.65	0.05	0	3.20	1.35	0.51	70 1+13	9 • 0	0	1	4 3 6	285
S 7.7 534 77 14 17 2 0 321 12 10 2 0.2 0 293	3W-14R 1 S 6-18-65	69	9 •	164	3.34	0.99	0.52	0.08	0	176	0.49 18	13	54 0 87	9.0	0		311	217
		1	7 . 7	534	3.84	1.15	0.74	0.05		321	0.25	0.28	2 0 • 0 3	0.5	0	-	283	250

TABLE E-I ANALYSES OF GROUND WATER SANTA ANA DRAINAGE PROVINCE (Y)

	Nordness os Cours		153		185		336			352			403			212			352			202			
constituents in per million	Evop 180°C hordness Evop 105°C os Computed Cocc3		222	211	564	546	064		90%	450		445	240	1	528	280		291	510		767	320	070	617	
constituent per million	Silt.		1				1						1			1			1			-			
Mineral o	Boron		0		0		0.10			0.16			0.24			90.0			0.16			0.02			
-	Fluo- ride F		5.0		0 • 3		70.0			7.0			0.5			9.0			9.0			6.0			
	rote NO3		30	0.48	42	0.68	19	0.31	4	26	0.45	S	36	0.58	9	45	0.73	15	77	1.24	15	36	0.58	7 7	
nillion per million ctance value	Chlo-	Y0100	10	0.28	12	0 • 34 ¤	64	1.38	18	51	1.44	18	62	1 • 75	18	30	0.23	2	18	0.51	9	11	0.31	0	
0	Sultate 504		2	0.58	35	0.73	53	1.10	15	7.0	1.46	18	87	1.81	19	53	1.10	22	136	2.83	35	43	06.00	0 1	
parts per equivalents percent re	Bicar - bonate HCO3	TINU C	145	2.38	156	2.56	285	19.4	0	288	4.72	59	328	5.38	2.5	178	2.92	29	215	3.52	43	190	3.11	0	
par	Carbon -	R HYDR	0		0		0			0			0			0			0			0			
i.	Potas.	A RIVE	2	0.05	2	0.05	8	0.08	pro-d	4	0.10	~	7	0.10	-	2	0.05	→	4	0.10	7	2	0.05	4	
constituents	Sodium	SANTA ANA RIVER HYDRO UNIT	13	15	14	0.61	18	0.78	10		1.0	13	31	1.35	14	17	0.74	15	25	1.09	13	20	0.87	27	
Mineral co	Mogne. Stum	S YULE 2	80	0.66	11	0.90	18	1.48	20	20	1.64	20	24	1.97	21	11	06.0	18	20	1.64	20	12	0.99	0 4	
2	Caterum	YO1EO	84	2.40	56	2.79	105	5.24	69	108	5.39	99	122	60.9	49	67	3.34	99	108	5.39	99	61	3.04	5	
Specific conduct-	(micro- mhos at 25°C)	NIT	371		436		720			762			877			482			757			477			
	Hd	SUBUNIT	7.8		7.7		7.8			7.5			7.4			7.9			7.8			8.0			
Temp	sampled in ° F	HYDRO	62		63		-			1			-			67			19				_		
State well	Date sampled	UPPER SANTA ANA HYDRO SUBUNIT BUNKER HILL HYDRO SUBAREA	15/ 3W-15M 3 S	0-18-02	15/ 3W-16J 1 S	6-18-65	15/ 3W-17C 3 S	3- 6-65			6-18-65			9-29-65		15/ 3W-17L 1 S	6-18-65		15/ 3W-18L 1 S	6-18-65		15/ 3W-19G 2 S	3- 6-65		

Annerd constituents in equivalents per million equivalents per million become social percent reactionce social million sum of su	Anneral constituents in equivalent equivalent equivalent equivalent size co. 1	Anneral constituents in equivalent equivalen	Mineral constituents in parts percent
SANTA ANA RIVER HY SANTA ANA RIVER HY 1 52 0.05 1 1.52 0.08 8 1.52 0.08 8 1.52 0.08 8 1.22 0.08 8 1.22 0.08 9 1.22 0.08 9 1.22 0.08	Mineral constituents in scalar of sc	Mineral constituents in scalar of sc	Summer of constituents in conduct. Specific conduction of constituents in conduction of conductio
0 104 600 810 400 0	Wineral (Mineral Mogne YOLEO YOLEO YOLE 2.00 0.58 3.74 1.07 3.75 1.07 3.34 1.07 3.54 1.07 3.54 1.07 3.54 1.07 3.54 1.07 3.54 1.07 3.54 1.07 3.54 1.07 3.54 1.01 3.54 1.01	Specific Conduct Condu
4	YOLEO YOLEO 3.574 5.53 5.54 5.54 5.55 7.55 7.55 7.55 7.55 7.55	YOLEO YOLEO 3.574 3.575 3.575 3.575 3.575 3.575	Specific conduction of the con

TABLE E-I
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	hordness os CaCu3		231	142		181	189	250	261	309
constituents in ser million	TDS hordness Evap 105°C as Computed CaC. 3		300	208		220	255	352	360	460
constituen per million	Silt- ca SiO ₂		-	1		1	1		1	1
Mineral parts p	Boron		0.01	0.19	1	0.42	0.56	0.02	0 • 10	0 • 0 5
	Fluo-		0.5	3 • 4		0.5	0 • 0	4.0	9 • 0	9 • 0
	NI - trote NO 3		11 0•18	3 0.05	2.0	1100.18	10 0•16 3	72 1•16 20	70 1.13 18	1.37
million per million ctance value	Chlo- ride Cl	Y0100	0.23	0.31	15	17 0•48 11	19 0.54	12 0.34	10 0.28 5	0.39
0 0	Sulfate SO4		1.06	0.33	1.75	26 0.54	24	1.42	1.64	2.06
parts per equivalents percent r	Bicor - bonate HCO3	HYDRO UNIT	234 3.84	183 3.00 81	b T	198 3.25 73	3.39	176 2.88 50	188 3.08 50	3.39
par	Carbon -	R HYDRO	0	0	1	0	0	0	0	0
ri c	Potos -	A RIVER	0.10	0.08	1	0.08	0.05	0.08	30.08	0 9 0 8 1
constituents	Sodium	SANTA ANA	15 0•65 12	18 0•78 21	}	18 0.78 17	0.78	0.83	22 0.96 15	22 0.96 13
Mineral co	Magne- sium Mg	S. Y01E2	13 1.07	9 0 • 74 20	1	0.82	12 0.99 21	1.15	1.23	18 1•48 21
2	Calcrum	YO1EO	3.54	2.10	l i	2.79	2.79	3.84	3.99	46° 4
Specific conduct-	(micro- mhos at 25°C)		492	357	492	456	422	580	593	651
	I I	SUBUNIT ORO SUBA	7 • 8	7.9	0 •	7 • 8	7.5	7.6	7.5	7.6
Тетр	sampled in ° F	HYDRO	8 9	7.0	-	62	1	1	63	1
State well	Date sampled	UPPER SANTA ANA HYDRO SUBUNIT BUNKER HILL HYDRO SUBAREA	1S/ 4W- 5E 5 S 6-16-65	15/ 4W-10F 1 S 6-17-65	1S/ 4W-13E 7 S 3-25-65	15/ 4W-13G 2 S 6-17-65	9-29-65	15/ 4W-13L 1 S 3- 9-65	6-17-65	9-29-65

	hordness os Colvis		7.8	687	243		726		9/7	
uents in Iion	Evap Bler P		155	387	358		417		5 6 0	
constituents per million	5 5 5		1	1	1	1	1	1	1	Ĭ
Mineral o	, B		70.0	0 0 0	0.04	ì	0.13	1	70.0	1
-	, p		1.00	0.0	1.0	ļ	· 0	1	π • •	1
	Z 0 Z		2 0.03	14 0.29	17 00.27	48	55 0.89	40 0 74	21	3.0
million ce value	0 P T O	70100	0.17	17	18 0.51	150.42	15	0.45	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	25
millio per acton	Sulfore Sc.4		0.27	7 dd 2 0 0 4 3 3 3 3 3	102	1	1.64	1.94	136 7.83	273
pe len	Brcar - bonate HCO3	UNIT	133 2.18 82	3.26	3.33	1	3.25	1	3.64	1
parts equiva percen	Carbon - ofe	4 HYDRG	0	0	0	į į	0	1	0	1
Ë	Potos -	A KIVE	20.05	0.08	0.08	1	0.03	1	0.04 2.04	1
constituents		SANTA ANA KIVER HYDRO UNIT	20 0.87	1.26	1.22	1	1.00	i i	35 1•52 20	1
Mineral con	Mogne-Sodium stum Mg No	SA	0.33	0.53	1.07	1	1.23	ţ 1	1.37	1
M	Calcium	YOIEU	28 1•40 53	3.79	3.79	!	3.89	1	4.59	i i
Specific conduct-	micro - c mhos at 25°C)	REA	253	591	589	263	200	616	106	,326
000	Ha	SUBUNIT RO SUBA	7.9	7.6	7.6	/ • /	7.6	7.6	7 • G	
Temp	when sampled in ° F	HYDRO	1	0	99	7 0	61	6.5	1	£
State well	led	UPPER SANTA ANA HYDRO BUNKER HILL HYC	15/ 4W-13M 2 S 9-29-65	15/ 4W-13N 1 S 5-17-65	6-17-65	15/ 4W-13N 5 5 10- 6-64	5-17-65	8- 9-65	15/ 4W-13R 1 S 6-18-65	15/ 4W-14J 3 S

TABLE E-I
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	hordness os		707		203		371		42	
uents in	TDS hardness Evap 185°C hardness computed (55°C)		630		388		530		290	
constituent per million	5111- co 5:02		-	1	ł	1	1	1		1
Mineral constituents parts per million	Boron		90.0	1	0.29	1	0 • 0 8		0.62	
	Fluo- ride F		0 . 5	1		1	9.0	1	2 • 7	1
	frote % 03		2 0 • 0 3	4 0 • 0 0	0.02	0.02	2 0 • 0 3	1.0	0	4 0 • 0 9
million e value	Chlo-	Y0100	21 0.59	23	19 0.54	16	16	1.30	1.33	0.37
millior per eoctono	Sulfate 504		238	296	2.06	197	3.79	28	31 0 65	1.04
parts per equivalents percent	Bicar - bonate HCO3	TIND	232	1	228 3•74 59	1	268 4.39 51	1	178 2.92 60	1
par	Corbon -	R HYDRO	0	1	0		0	1	0	l F
i i	Potas.	A RIVE	0.13	1	0.03	1	0.10	}	0.03	1
constituents	Sodium	SANTA ANA RIVER HYDRO UNIT	31 1 35 14	i i	51 2.22 35	1	27 1.17 13	1	3.04	1
Mineral co	Mogne- stum Mg	S, YO1E2	23	-	0.66	1	1.73	1	0.33	1
2	Colerum	YOIEO	123	1	3 68		114 5.69		30 1.50 31	1
Specific conduct-	1 0	ZEA	857	968	603	828	784	505	510	431
	Ha	SUBUR SRO SU	7 • 4	7.3	7 • 7	7.4	7.6	7.9	7.9	7.7
Temp.	when sampled in ° F	HYDRO	8 9	-	3	1		1	78	}
State well	led	UPPER SANTA ANA HYDRO SUBUNIT BUNKER HILL HYDRO SUBAI	15/ 4W-14J 3 S 5-17-65	8- 4-65	15/ 4W-15M 2 S 6-17-65	15/ 4W-22A 5 S 3-19-65	5-18-65	15/ 4W-22E 1 S 3-19-65	5-18-65	S 9 - 6

TABLE E-I
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	Total hardness os Colus				101		ψ.			
constituents in per million	TOS TOTAL				254		2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3			
constituent per million	S. 1.		-	į į	1	1	1	1	i	
Mineral	B		†	1	70.0	1	0.10	†	1	t I
	7 c.c.		1	1	»·	1	. 0	1	1	1
	7.07e		9.0	9 . 0 . 0 . 0	0 • 13	2 0 • 0 3	3 0.05	2 0 • 0 3	2.0	15.00.24
million per million ctance value	Chlo- ride	Y0100	1 / 0.48	14.00.00	0.45	17	0.73	24.0	C • C G	0.0
0	Suffore SO4		1	1.08	1.10	35	43	34	16	1.71
parts per equivalents percent re	Bicor - bonate HCO3	TIND	-	1	176 2.85 63	1	149	-	1	1
ports equiva percen	Carbon . ote CO 3	A HYDRO	-	1	0	1	0	1	-	1
Ē	Po 105 -	A KIVE	1	1	, 0,0,4	1	0.08	1	1	ţ
constituents	S od . L m	SANTA ANA RIVER HYDRO UNIT	e e	1	30 1 - 30 28	1	2 · 65 68 68	1	1	(
Mineral co	Mogne.	S4	i i	1	0.000	1	0.16	1	1	b 1
Σ	m, , , ,	YOLEO	-	1	2 4 4 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1	1.10	1	1 6	1
Specific conduct-	· 0	REA	436	458	441	370	421	396	312	500
97	T _a	SUBUN ORO SU	7.7	7.7	7.6	0 . 8	0	7 . 8	. e	7 • 6
Тетр	when sampled in °F	HYDRO	;		C Q	1	77	1	1	1
State well	Date sampled	UPPER SANTA ANA HYDRO SUBUNIT BUNKER HILL HYDRO SUBAREA	15/ 4W+22L 5 S 10- 7-64	3-25-65	5-18-65	15/ 4W-23C 2 S 4- 1-65	5-18-65	8-10-65	15/ 4W-23D 2 5	5 1 C 5 2 1 7 5 1 8 9 1 7 5 1 8 9 1 7 9 1 8 9 1 7 9 1 8 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9

TABLE E-1
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	hordness os Colvis			282	217				158	316
ints in	TDS Total			527	964				220	555
nstitue r millic	Silit Co Eve		1	1	-	ž ř	\$ \$		25	1
Mineral constituents parts per million	Boron		1	0.07	90.0	ì	1	1	0.03	0.24
Σ	Fluo- B		1	8.0	8	-	1	1	0 • 3	ω • Ο
	Ni - trote NO 3		51	48 0 17	52 0•84 10	56.0	10.0	0 • 10	9.0	43
nillion	Chlo- ride Cl	Y0100	1.61	1.24	1.16	44	25	20	0.17	1.33
r million ts per million reactance value	Sulfate SO 4	<i>></i>	-	1.71	1.69	1.71	27	29	0.33	102 2•12 21
parts per equivalents percent re	Bicar - bonate HCO3	TIND	1	312 5.11 58	310		}	1	174 2.85 78	5 35 9 5 9 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9
par	Corbon -	RIVER HYDRO UNIT	1	0	0	1	1	1	0.17	0
, ci	Potas E y S	A RIVE	3 1	2 0 0 0 0 1	0.08		1 8	1	0.05	0 0 0 0 0 0 1
constituents	EnipoS v v	SANTA ANA	1	3.17	3.13	1		1	0.52	3.57
Mineral co	Magnes S-LR M	S, Y01E2	1	2.14	2.14	1	1	1	0.90	32 2.63 26
. ≥	Calcium	YOIEO	1	3.49	3.39	1	-	1	2.25	3.69
Specific conduct-	mhos at 25°C)	REA	808	843	824	841	432	410	350	923
	I a	SUBUNIT DRO SUBA	7.6	7.5	7.6	7.6	7.8	7 • 7		7.5
Тетр	sampled in ° F	HYDRO LL HY	19	6.8	68	6.8	72	73	!	8
State well number	Date sampled	UPPER SANTA ANA HYDRO BUNKER HILL HYD	15/ 4W-23K 2 S 10- 6-64	5-17-65	6-17-65	8- 9-65	15/ 4W-23P 3 S 3-18-65	8- 9-65	15/ 4W-24E 1 S 10- 2-64	15/ 4W-25B 2 S 6-17-65

TABLE E-I
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	3 653				7		5.5		-,	
Ē	hardnes 2.5				114				761	
	Evap 180°C hardness Evap 6°C 25 Computed 70°3				320		305		341	
consti	5 -2		1	1	1	i	1	-	1	1
Mineral constituents parts per million	8, rch			1	0.12	1	0.00	1	0.11	1
	r. d.		1	9 1	0	1	χ • 0	1	. 0	-
			3.0	2.0	0.03	2.0.03	0.03	0.10	0.13	3 3 9
million value	0 P 10	Y0100	1.13	3.7	38	37	1.16	1.47	1.41) 1 1 2 2
ts per million reactance value	Sulfate Sc4		1	0.00	45	94.0	43	1.21	10101	1.29
parts per equivalents percent rec	Bicor - bonote HCC3	TIND C	1	1	3.67	1	215	į.	262	1
par	Corbon-	A HYDRO	1	l I	0	1	0	1	Э	1
.E	0 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0	A RIVER		1	0.05	1	0.02 1	1		T T
nstituents	50 die 3	SANTA ANA RIVER HYDRO UNIT	1	i I	3.48	1	3.74	I I	3.17	1
Mineral constituents	Mogne - Sodium sium Mg No	SA YO1E2	-	1	0.58	1	0.33	+	14 1•15 16	1
Σ	Calcium	YO1EU	1	1	34	1	1.65	1	5.69	t I
Specific conduct-	1 0	EA	247	996	572	558	151	869	673	431
	Ha	SUBUN RO SU	0.8	7.8	7.9	7 • 8	7 • د	7.6	1.6	7.5
	sampled In ° F	HYDRO	1	1	72	1	1.	7.)	1	t t
State well	pe	JPPER SANTA ANA HYDRO SUBUNIT BUNKER HILL HYDRO SUBAR	15/ 4W-26F 1 S 10- 6-64	3-25-65	5-17-65	8- 9-65	15/ 4W-26J 1 S 6-17-65	15/ 4W-27B 2 5 3-18-65	5-14-65	5-7-1 - H

TABLE E-I
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	Total	0.5			239			215			534			141			190			131			217			223			
istituents in million	T 0 S	Evap 105°C as Computed CaCO3			044		624	320	217	* 10	830		819	368		408	352		276	308		316	291		265	290		267	
constituents per million		5:05			28			25			58			1			1			-			-			1			
Mineral parts p	Boron	8			0.28			0			0.37			67.0			0.01			0.11			0.01			0.08			
	Fluo-	ride F			1.0			0.4			0 • 3			1.3			0.2			2.3			9.0			9.0			
		trate NO ₃			21.0	0.34	v	42.0	0.09	1	0.46	1.52	11	41	99.0	10	45.5	0.73	16	35	0.63	12	15	0.24	5	16	0.26	2	
million se value	C h 10 -	7.1de	Y0100		0.9	1.69	4 7	2	0.45	1	ソセ	2.71	20	21	0.59	5	18	0.51	11	18	0.51	10	7	0.20	4	7	0.20	4	
mullion per eactand	Sulfate	504			19	1.39	0 7	45	0.94	1	108	2.25	16	98	1.79	56	84	1.00	22	19	1.39	27	33	69.0	14	30	0.62	12	
pe lent	Bicor -	bonote HCO3	TINO		222	3.64	76	194	3.18)	6443	7.26	53	228	3.74	55	146	2 • 39	55	159	2.61	51	234	3.84	77	240	3.93	7.8	
parts equiva percen	Corbon -	0 % C O 3	R HYDRO UNI		0			0			0			0			0			0			0			0			
i	Potos -	E ×	A RIVER		7	0.10	4	7	30°0	J	v	0.13		14	0.36	2	v	0.13	η	3	0.03	1	3	0.08	2	6	0.08	7	
constituents	Sodium	0 2	SANTA ANA		10	2.30	25	17	0.74	ł	72	3.13	77	81	3.52	53	19	0.83	17	61	2.65	20	13	0.57	11	13	0.57	11	
Mineral co	Magne	S I U M	Ś	Y01E2	15	1.23	, 1	~ .	1.15))	26	2.14	41	00	99.0	10	1.1	06.0	19	89	99.0	12	14	1.15	23	16	1.32	97	
2	Calcium	٥٥		YOIEO	7.1	3.54	7	63	3.14	4	171	8 ° 53	19	43	2.15	32	58	2.89	61	39	1.95	31	79	3.19	79	63	3.14	61	
Specific conduct-	(micro-	at 25°C)		REA	704			684			1269			636			580			529			457			456			
	Ha			SUBUNIT ORO SUBA	7 . 4			7 • 6			7.2			8 • 1			7.5			7 . 7			8 • 1			7.5			
Temp.	sampled	e e		HYDRO	1			1			!			83			1			71			99			-			
State well		Date sampled		UPPER SANTA ANA HYDRO BUNKER HILL HYD	15/ 4W-290 1 S	10- 1-64		1S/ 4W-30D 6 S	10- 2-64		1S/ 4W-30L 4 S	10- 2-64		IN/ 3W-31L 3 S	6-24-65		IN/ 3W-33M 1 S	6-24-65		IN: 4W-25A 1 S	6-24-65		IN/ 4W-29E 1 S	6-16-65			69-82-6		

TABLE E-I
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	S 50				_		0.		_	_		_		_	_	_			-	-		_	_	_
.c	hordness 0s		369		530		562			231			3		355		6	2		1	3 14 14 14 14 14 14 14 14 14 14 14 14 14			
en .	T D S Evot BCor Evot CEOC Computed		510	187	800	719	910	0	802	415	364	000		365	255	212		116	167		20	505		
constituent per million	50.8		52		1		1			1		1			1			1			1			
Mineral	8 s		0.32		0.68		76.0			0.08		0			0.07			0.03			0.05			
	7 . de		9.0		1.0		0.5			0.5		7.)		0.7			р •			0.0			
	trote NC3		13.0	0.61	22	0.35	28	0.45	7.	36	0.58	0	0.10	2	28	0.4.0 U.30		01	7 0		2	0.10		
million e value	0 P I O	Y0100	20	0.56	25	0.71	21	0.70	٥	15	24,00	,	0.20	4	14	0.37	-	0 7 0	0 2		71	0.04		
millior per sactanc	Sulfate SO4		147	3.06	293	6.10	340	7.08	2	74	1.54	3.7	0.17	15	27	1.00		1 67	1.00		640	1001		
parts per equivalents percent re	Bicor - bonote HCO3	UNIT	259	2.4	300	4.92	311	5.10	200	239	3.92	234	3.84	17	236	3.87		740	73		248	4.00		
par	Corbon -	RIVER HYDRO UNIT	0		0		0			0		C)		0		(0			0			
i.	Potos.	A RIVER	4	01.0	0	0.15	9	0.15	4	7	0.10	cr	0.08	7	7	0.10	`	1 0	2 2		\$ C	0.10	1	
constituents	Sodium	SANTA ANA	17	7 7	33	1.43	9 7	2.09	01	16	0.70	2	52.0	10	14	0.61		07 . 0	13		7 5	15		
Mineral co	M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	54 Y01E2	23	1.87 7.0	33	2.71	36	7.96	7)	18	1.48	14	1.15	23	17	1.40	,	1.3.	1036		2 .	23.		
2	Calcium	YOIEO	110	67	158	7.88	166	8 • 28	10	80	4.14	44	3.29	59	14	3.69		2 37:	6.1		300	5.04		
Specific conduct-	(micro- mhos at 25°C)	REA	137		1059		1168			605		477			536			2000		1	224			
	I.	SUBUN RO SU	7.4		7 .		1.2			7.5		7.6			7.06.			j •			0.			
Тетр	sampled in ° F	YDRO L HYD	1		ŀ		1			1		1			99			e a			l I			
State well	Date sampled	UPPER SANTA ANA HYDRO SUBUNIT BUNKER HILL HYDRO SUBA	IN/ 4W-29F 1 S	59-7 -71		6-16-65		9-28-65		1N/ 4W-29L 1 5	9-28-65	2 6 dbc-m7 /N1	4- 9-65			6-16-65		1N/ 4M=31A 1	0-01-0		IN DW-23A	0-1-1-		

TABLE E-1
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	101	COLCS		236	103		205	212		290	211	
uents in lion	T 0 5	Evap 105°C		310	116		291	475		455	354	
constituents per million		5:02		-				1	-	1	1	
Mineral o	Boron	8		90.0	0.02		0	0.0		0.02	0.02	
	Fluo-	n 0		9.0	0.5		9.0	0 \$		9.0	9.0	
	- <u>-</u> Z	hrote NO ₃		8 0•13	6.1		34 0.55 12	20 0 • 32		82 1•32 18	8.7	
million e value	C h l o -	ride C t	Y0100	8 0.23	12 0 34	1	12 0.34	1.49		14 0 39	12 0.34	
parts per million equivalents per million percent reactance value	Sulfate	504		51	19	1	38	1.15		1.46	1.25	
parts per equivalents percent re	Bicor -	bonote HCO ₃	TIND	256	127 2.08 80		188 3.08 65	330		254	301	
par	Carbon -	01e CO 3	R HYDRO	0	0	-	0	0		0	0	
. C	Potos -	S X	A RIVE	30.0	0.05		0.08	3 0.08		0.05	0.05	
constituents	Sodium	o N	SANTA ANA RIVER HYDRO UNIT	19	15 0 • 52 20		14 0 • 61 13	3.91		31 1•35 19	53 2 30 35	
Mineral co	Mogne-	S I U M	s YO1E2	16	23 0.66 25	701E3	0.90	1.73	'01E4	2.06	13 1.07 16	
2	Calcium	Co	YOIEO	3.39	28 1•40 53		3.19	2.50		3.74	63 3.14 48	
Specific conduct-	(micro-	of 25°C)	SEA.	500	261	REA	4 6 8	773	A	674	592	
	H		SUBUI	7.6	7.0	SUBAR	7.8	7 • 8	SUBAREA	7.4	7 • 4	
Temp	when	n° F	HYDRO	1	1	HYDRO	67	1		1		
State well number		Date sampled	UPPER SANTA ANA HYDRO SUBUNIT BUNKER HILL HYDRO SUBA	IN/ 5W-23A 2 S 9-28-65	2N/ 3W-27D 1 S 5- 4-65	REDLANDS	15/ 3W-13P 2 S 6-18-65	25/ 3W- 4E 1 S 9-29-65	MENTONE HYDRO	15/ 2W-30B 3 S 9-29-65	15/ 2W-30E 1 S 9-29-65	

TABLE E-I
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	0	hardness		1	7			170			1	7		26.0				3 %						
Ē		2000		11.15		7)			(r			9				-		-	-	
constituents per million	TOS	Evap 105°C hardness Evap 105°C as Computed (o		7	7	377		172	0000		2	0	303	24.		673		000		u u				
constituent	Sitte							-						1				1			Ī			
Mineral parts p	Boron			10.0				0			0 - 27			C)			2						
	F1u0-	1 d e		9.0				0.0			0			.0				0.0						
	ı Z	trate NO3		200	1.02	16		7.0	0.10		77.55	0.44	CT	2.0	0.03	-		ţ	0.00	4				
million e value	C h 10 -	- ide	Y0100	10	0.51	30		5	0.25		7	6.5%	11	~	0.20	\$		υ	82.0					
parts per million equivalents per million percent reactance value	Sulfate	\$08		09	1.25	19		7.5	1.56		0.7	0.96	18	30	1.79	34		20	1.21					
parts per equivalents percent re	Bicor -	HCO3	O UNI	228	3.74	57		212	3.47		207	3.3%	6 3	170	2.19	70		244	4.00					
por	Carbon -	000	H HYDR	0				0			i			16	0.53	O ~		2						
ï	Potos -	5 X	A RIVE	~	0.08	7		7	0.10		~	0.08	7	*	0.08	`		~)	J.U8					
constituents	Sodium	0 Z	SANTA ANA RIVER HYDRO UNIT	42	1.83	77		4.1	1 • 78		26	1.13	7.1	33	1.43	63		1/	0.74					
Mineral co	M o g n e		YOLES	19	1.56	54	YOIE7	12	٠٠٠ ١٠٠	Yoles	14	1.15	21	7	0.74	7.7	YOLEY	70	30					
Σ	Colcoum	0	YO1EO	65	5.94	949		48	2.40		63	3.14	15	5.3	2.64	*		61	3.04					
Specific conduct-	(micro-	mhos at 25°C)		609			CANYON HYDRO SUBAREA	487		SUBAREA	575			375		ı	KEA	503						
	I a		SUBUNIT	7.5			NH NO			25	30 -			8 . 3			SUBAKEA	7 . 7						
Temp.	when	in ° F	HYDRO HYDR(1			CANY	99		K HYJRO	99			63			MYCHO	1						
State well		Date sampled	UPPER SANTA ANA HYDRO SUBUNIT RESERVOIR HYDRO SUBAREA	15/ 3W-35G 8 S	9-59-65		SANTA ANA	15/ 2W- 8C 1 S	6-23-65	MILL CKEEK	15/ 2W- 9P 1 S	6-23-65		15/ 2W-14L 1 5	6-23-65		SYCAMORE	IN/ 5W-23H 1 S	69-87-6					

TABLE E-1
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

ANTA ANA RIVER HYDRO UNIT ANTA ANA RIVER HYDRO UNIT 24 0.05	M og n	Mineral		0 .	Constituents	n	Carbon -	equivalents percent re	ts per million reactance value	million e value	ž	0 2	Mineral parts p	per million	lion Tos	-040
701FU 701FU 701FT	mhos at 25°C)			E 7 2	2		0 he CO 3		504	9 p	rote NC3	. p		5.02	Evap 105°C Computed	hordness os Colus
2.94	OTEO HYDRO SUBUNIT YUCAIPA HYDRO SUBAREA		YOIFU		ANTA AN	A RIVE	R HYDRO	O UNIT		Y0100						
2.94 1.15 1.04 0.05 0.240 32 114 8.0 0.6 0.02 292 22 2.94 1.15 1.04 0.05 0.241 3.5 1.6 8.0 0.6 0.02 292 22 2.94 1.15 1.04 0.05 0.241 3.5 1.0 8.4 0.1	4	-	474 59		24	7 4	0	248	31	14	8.3	9.0	0.02	1	286	201
2.94 1.15 1.04 0.05			1 8 Y 4 B		20	1		78	0.65	60.0	0.13				274	
2.94	494				24	2 5	0	240	32	14	8.0	9.0	0.02		292	205
2.89 1.15			57		1.04	0.0		5.75	13	0 0 0	0.13				272	
2.89 1.15 0.91 0.05 3.95 0.73 0.28 0.14 5 5 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	457	7			21	2	0	241	35	10	8.4	9•0	0.01	1	279	202
0.441 2.526 0.05 0.944 32 20 2.55 0.05			2.89		0.91	0.00		3.95	0.73	0.78	0 • I 4				267	
0.441 2.26 0.05 3.14 0.64 0.50 0.04 701F2 1.23 0.74 0.03 -207 10 18 6 0.6 0.6 0.7 1.23 0.74 0.03 -3.39 0.21 0.51 0.10 2 2 1.632 0.74 0.03 -207 0.9 12 2 2 2 1.32 0.74 0.03 3.39 0.19 5 0.6 0.06 248 1 1.32 0.4 0.03 3.39 0.19 0.54 0.06 211 2 1 1.6 19 2.7 0.06 234 0.41 2.35 0.03 2.75 0.40 0.76 0.06 234 10 59 1 2.75 0.00 0.76 0.06 234 10 59 1 0.00 0.00 0.00 0.00 0.00 0.00	405	5	33		52	2 5	0	194	32	20	2.5	9•0	0.02		250	103
10.17 1.23 0.74 0.03 207 10 18 6 0.6 0.6 0.6 0.7 211 1.6.23 0.74 0.03 207 0.21 0.51 0.10 0.6 0.6 0.6 0.6 0.6 0.7 211 1.32 0.74 0.03 0.207 9 19 5 0.6 0.06 212 1 1.32 0.74 0.03 1 168 19 27 3.5 0.7 0 234 0.41 2.35 0.03 1 2.75 0.40 0.76 0.06 234 10 59 1 10 19 0.76 0.06 217			1.65		2.26	0.05		3.14	0.67	0.56	0.04				242	
1.23 0.74 0.03	SUBAREA	A		Y01F2												
1.523 0.74 0.03 3.39 0.21 0.51 0.10 1.52 0.74 0.03 3.39 0.21 0.54 0.08 1.32 0.74 0.03 3.39 0.19 0.54 0.08 1.52 0.74 0.03 0.19 0.54 0.08 0.41 2.35 0.03 2.75 0.40 0.76 0.06 1.0 5.9 0.03 2.75 0.40 0.76 0.06 1.0 5.9 0.03 0.03 0.00 0.00 0.00 0.00 0.00 0.	399	6	42		17	~	1	207	10	18	9	9.0	0		248	
2.10 1.32 0.74 0.03 0 3.39 0.19 0.54 0.06 0.06 212 1 2.10 1.32 0.74 0.03			2.10		0.74	0.03		3,59	0.21	0.51	0.10				211	
1.32 0.74 0.03 3.39 0.19 0.54 0.08 211 2.35 0.07 0 234 0.41 2.35 0.03 2.75 0.40 0.76 0.06 19 2.7 3.5 0.7 0 234 10 2.9 10 1.9 2.7 3.5 0.7 0 2.17	398	8	45		17		0	207	6	19	2	9.0	90.0		212	
0.41 2.35 0.03 168 19 27 3.5 0.7 0 234 10 20 10 19 27 2.17			2.10	_	0.74	0.03		3.39 81	0.19	0.54	0.08				211	
0.41 2.35 0.03 2.75 0.40 0.76 0.06 10 2.9 10 1.9 2.2 10 1.9 1.0 1.9 1.0 1.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	396	9			54	7	1	168	19	27	3.5	0.7	0		234	
			1.20		2.35	0.03		2.75	0.40	0.76	0.06				217	

TABLE E-I
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	Total		77		117		102		115	ī	119			178		193	_	_	
lion	Evap BC C nc Evap 105°C Computed		192	50%	231	215	188	203	201	170	15%	169		270	7007	359	345	-	_
constituents per million	S 02 0		1		-		1 1		1		l			-	-	1 8			_
Mineral o	9,101		0	-	0.07		0		0	-	0.07			90.0		0.03			
<	7. de		0.7		9.0		1 • 2		9.0		0.0			0 0		0.8		-	
	irote NC3		2.5	1000	5000	2	0		- 0	, n		- T		12	7	8 . 5	~		
million s value	Ch10 -	Y0100	25	2 2	11	11	18	13	16	14	7 7 0	15		C . C	n	12	a		
parts per million equivalents per million percent reactance value	Sulfate SO.4		19	10	12	9	15	3000	7 0	1	w 4	2000		22	7	59	~		
parts per equivalents percent re	Bicor- bonote HCO3	TIND	166	07	224	82	189	6/	167	83	160	080		248	95	283	73		
bar ed u	Carbon -	R HYDRG	0		0		1		1		0			0		0			Ī
Ē	Potas.	A RIVER	10-03		1 0 0 0			7	2 5 5 5	2	2	200		0.05	~	2 0 0 0	-		
constituents	E o N	SANTA ANA RIVER HYDRO UNIT	52	200	25	32	1,01	164	21	28	20	26		35	30	55	38		
Mineral cor	Magne- srum Mg	0162	9	13	4 4 4	10	9 0	12	6	23	10	25	0115	10	16	13	17		
Σ	Colcium	YOIFU	21	27	40	2000	31	900	31	87	31	47	<u> </u>	2.74	53	56	77		
Specific conduct-	1 0	1	398		416		378		322		317		A	814		568			
0, 0	Ha	NIT RO SU	0.8		7.8		6.1		.5 œ		æ •		SUBARE	7.9		1.6			
Тетр.	when sampled	SUBL O HYD	14		99		79		99		75		-	1		1			
State well	led	SAN TIMOTEO HYDRO SUBUNIT SAN TIMOTEO HYDRO SUBAREA	25/ 2W-14M 1 S		25/ 2W-25D 1 S		25/ 2W-35D 1 5		35/ 1W- 90 1 5		3.3-0.5-6		GATEWAY HYERO	15/ IW-30E 1 5 2- 5-65		15/ 2W-25KSI S			

TABLE E-I
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

C.	T D S Tuto Evop 180°C hardness Evop 105°C os Computed Colury		5 200	2 169	5 164	8 150	5 150	9 157	2 134	0 150
constituents per million	T.D.S. Evop 180°C Evop 105°C Compuled		276	292	255	27	275	309	302	301
const	S:11- co S:02		1	1	-	<u> </u>	-	1		1
Mineral parts p	Boron		0.01	0.03	50°0	0.03	0.03	0	0	0.10
	Fluo-		7.0	7.0	0.7	1 • 4	1.0	1.0	1.1	1 • 2
	trate NO3		12 0 • 19	0.11	11 0•18	5.8	8°3 0•13	6.5	4.5	11 0 18
million per million ctance value	Chio-	Y0100	16 0.45 8	277.0	17 0.48	25 0 71 14	24 0.68 13	25 0•71 13	27 0.76 15	24 0.68 13
60	Sulfore SO4		34 0.71	33 0.67	32 0.67	32 0.67	27 0.56	32 0.67	40 0.83	1.02
parts per equivalents percent re	Bicar - bonote HCO3	TIND C	243	243 3.98 79	210	223	230	233	210	3.28
por	Carbon -	R HYDRO	0	0	0	0	0	0	1	0
Ë	so to s E y x	A RIVE	0.03	3 0 0 0	0.05	0.03	0.05	0.03	0.03	15
constituents	Sodium	SANTA ANA RIVER HYDRO UNIT	28 1•22 23	34 1.48 30	30 1•30 28	50 2-17 42	48 2.09 41	2.13	55 2 39 47	2.17
Mineral co	Magne- s.um M.g.	S. Y01F7	1.15	9 0.74	10	12 0.99	12 0.99	12 0.99 19	0.82	0.99
2	Colcium	YOIFO	57 2.84 54	53 2.64 53	2.45	40 2•00 39	40 2.00 39	43 2.15 41	37 1.85 36	2.00
Specific conduct-	(micro- mhos at 25°C)	T SUBAREA	483	894	430	465	480	505	200	465
	Ha		7.6	7 - 7	7.5	7.8	7.6	7.5	7.8	7.5
Тетр.	when sampled in ° F		1	1	1	†	1	1 1	74	72
State well	Date sampled	SAN TIMOTEO HYDRO SOUTH MESA	15/ 1W-31H 1 S 9-29-65	25/ 2W-11F 1 S 2- 5-65	9-29-65	25/ 2W-12M 1 S 2- 5-65	9-29-65	25/ 2W-14B 1 5 2- 4-65	5- 4-65	9-30-65

TABLE E-I
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	hardness os		210		173		170		211		170					
tuents in	Evop H or hordress Evop H or hordress Computed Cours		967	567	175	70%	183	224	214	614	736	960	-	V 10.	 -	
constituent per million	S J 2		-		1		1		1 1		ŀ					
Mineral constituents parts per million	8 B		0.03		0		0.07		0		0					
	, p		•		9.0		9.0		9.0		٧٠٠					
	2 0 2 .		v.v.		7 5		1	~	4 0 0 0	1	5	2				
million e value	0 0 0	Y0100	20 20	10	7 0 7 0 3	2	77	a t	26	14	18	2				
r million ts per million reactance value	Sulfote 5 × 4		17	9	27	14	2 4 2	1.9	37	15	54	20				
parts per equivalents percent re	Bicor - bonote HCC3	UNIT	288	82	201	9	183	2000	225	2	230	69				
por	Corbon	R HYDRO	0		-		1		1		1					
C.	S C S X	A RIVE	0.03		20.0	-	7 0 0 0		0.03		2 40-11					
nstituent	E 0 2	SANTA ANA RIVER HYDRO UNIT	36	27	12	13	19	50	22	18	31	53				
Mineral constituents	8 0 0 M	S/YO1F7	1.40	24	1 14	2.9	1 . 1 5	27	1.0	88	1.40	26				
2	E 7 0 0	YO1FO	56	8 4	46	19	7-25	53	55	53	84	777				
Specific conduct-	mhos at 25°C)		523	IBAREA	394		454		510		>32					
	I a	NIT O SUB	1.4	RO SU	7.5		7.9		7.8		٥ • •					
Temp	when sampled in ° F	SUBU	1	ТК НҰ	7.5		7.2		35		13					
State well	le d	SAN TIMOTEO HYDRO SUBUNIT SOUTH MESA HYDRO SUBAREA	25/ 2W-14C 1 5 9-29-65	NOBIE CREEK HYDRO SUBAREA	25/ 1W- 1E 1 5		25/ IW-14N 1 5		25/ IW-22H 1 5		25/ IW-278 1 5					

TABLE E-1
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	T to! hordness os Colucis		122
uents in	T. D. S. Evap 105°C Computed		141
constituent per million	5. 4.		1
Mineral constituents parts per million	2. a		60.0
	, p		0.0
	roje NC3		0.0000000000000000000000000000000000000
million e value	0 P J O	Y0100	0 17 0
ts per million reoctance value	Sultate		0.17
parts per equivalents percent re	Bicor - bonote HCU3	TIND C	2 · 5 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
par	Carbon -	R HYDRO	0
U.	0 0 0 0 X	A RIVE	न ल न • •
constituents	E 2 0 Z	SANTA ANA RIVER HYDRO UNIT.	0,43
Mineral co	M 0 0 0 M	S Y0163	1,23
2	E	70160	1,20
Specific conduct-	(micro- mhos of 25°C)	F 11 7	279
	I	RO SU SUBAR	0.2
Temp	sampled in ° F	2	
State well number	Date sampled	SAN BERNARDINO MT HYDRO SUBU! BALDWIN HYDRO SUBAREA	2N/ 2E-194 1 S

TABLE E-1
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	Total hardness os Colids		341		91		66		139		222		171		16		88	
constituents in	TOS Total Evap 180°C hardness Evap 105°C os Computed Colos		542	729	274	548	288	266	865	452	799	571	244	529	348	339	330	315
constituen per million	Sert.		1		ŀ		1		1		i		1		1	_	į į	
Mineral parts	80 c c o B		0.14		90.0		0.05		0.17		1.01		0.92		0.56		0.52	
	2 5 17		9.0		0.2		0.5		0.8		1.0		1.0		9.0		1.0	
	rote NO3		0		35	13	35	0.56	0		23	4 4	26	2 4 0	28		23	
million se value	C 1 10 -	Y0200	104	25	643	9 (1)	62	38	207	72	238	11.00	177	55	123	9.40	1117	61
per	Sulfate SO4		312	55	80 71	ed.	,	0.10	11	ų.	26	0.0	643	10	14	5 .0	17	9
equivalents percent	Bicor - bonote HCO3	rDRO U	146	200	130	050	136	4.8	122	25	148	24	171	31	96	1.57	84	26
9 9 0	Carbon -	LLEY H	0		0		0		0		0		0		0		0	
ï	Potos .	NTO VAI	40	1	€ a	2	4 0	2 2 2	9 0	7	7 0 0	2.5	200	-	£ 0	1	6	2 0
constituents	Sodium	SAN JACINTO VALLEY HYDRO UNIT	119	43	57	57	58	55	120	49	130	55	132	62	88	65	80	0.40
Mineral co	Magne. Stum	S, Y02A1	29	20	5	6	- 0	13	13	13	26	2.14	13	1.00	9 3	9	5	# co
Σ	C 0 10	02A0	88	37	28	32	28	30	34	21	9 6	25	7 47	25	29	25	27	25
Specific conduct-	1 0	SUBARE	1177		410		044		770		086		006		595		609	
	I a	HYURO	7.8		8.1		8 .0		8 • 1		8 • 1		7.8		0.8		8.0	
Temp	sampled in ° F	⊢ ≻	56		82		80		84		75		19		80		90	
		SUBL	1 S		1 S		2 5		S		2 5		S		1 5			
State well	Date sampled	PERRIS HYDRO SUBUNIT PERRIS VALLEY P	25/ 3W-31N 1		35/ 3W- 2L 1		35/ 3W- 2L 2		35/ 3W-21A 1		35/ 3W-21A 2	69-6-6	35/ 3W-22D 1		35/ 3W-29M 1		20100	

TABLE E-I
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	Total hardness as CaCO3		135		84		213	010		34			332			251			201			339			
constituents in per million	TOS Total Evap 185°C hardness Evap 105°C as Computed CoCO3		452	347	289	273	, a	0	661	297		261	726		613	648		511	341		439	755		704	
constituent per million	Silit- co SiO ₂		- !		1		l			-			1			1			1			-			
Mineral o	Boron		79.0		0.74		1.00	2		0.73			0.68			0.51			0.52			0.24			
	F uo-		8.0		1 . 4		7 0			1.2			0.5			9.0			0.5			9.0			
	rote NO3		19	0.31	5	0.15	00	0.13	1	8.2	0.13	9	25	0.40	4	16	0.26	3	11	0.18	2	1.8	0.03		
million per million ctance value	Ch10 -	Y0200	130	3.67	105	2.96	286	8.07	69	91	2.57	59	280	7.90	73	214	6.03	99	214	6.03	78	136	3.84	33	
0	Suffate SO4		22	0.46	18	0.37	77	0.92	80	54	0.50	12	25	0.52	S	32	19.0	7	14	0.29	4	272	99°5	64	
parts per equivalents percent re	Bicar - bonate HCO3	rbRo u	96	1.57	75	1.23	156	4 . 56	22	64	0.80	18	125	2.05	19	129	2.11	23	77	1.26	16	126	2.07	18	
pod	Carbon - ate CO 3	LLEY HY	-		0		0			10	0.33	00	-			0			!			0			
ë	Potas X	NTO VA	m	0.08	2	0.05	r,	0.13	1	2	0.05	1	7	0.10	~	4	0.10	-	en.	0.08		2	0.05		
constituents	E nipos	SAN JACINTO VALLEY HYDRO UNIT	74	3.22	69	3.00	125	5.44	94	87	3.78	94	9.6	4.26	30	06	3.91	43	86	3 • 74	8 4	112	4.87	45	
Mineral co	Magne. s.um M.g	S. Y02A1	9	0.49	4	0.33	16	1.32	11	1	0.08	2	23	1.89	17	16	1.32	15	13	1.07	14	58	2.38	20	-
2	Calcium	02A0	77	2.20	27	1.35	66	76°7	45	12	09.0	13	66	40 74	43	74	3.69	4]	59	2.94	38	88	4.39	38	
Specific conduct-	mhos at 25°C)	SUBARE	619		544		1090			206			1229			1028			806			1196			
	I a	IT EY HYDRO	7.9		8.0		7.9			8.9			7.9			7.8			7.7			7.8			
Temp.	when sampled in F	UNIT	74		16		72			72			73			16			73			99			
State well number	Date sampled	PERRIS HYDRO SUBUNIT	35/ 3W-32M 1 S	4-30-65		9-24-65	45/ 3W- 5E 1 S	4-29-65		45/ 3W- 60 1 S	3-29-65		45/ 3W- 7J 1 S	3-30-65		45/ 3W-16N 1 S	3-29-65		45/ 3W-17C 1 S	3-30-65			9-54-65		

TABLE E-I
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

State well	Temp.		Specific conduct-	Σ	Mineral co	constituents	n i	e d	equivalents percent	per	teactance value			Mineral constituents parts per million	constituent per million	tuents in	
Date sampled	when sampled in ° F	Hd	mhos at 25°C)	E 7 0 0 0	S C C C	E 0 Z	Potos -	Carbon -	Bicor - bonate HCO3	Sulfale SO4	Ch to -	frote NO3	Fluo- ride	Boron	S.11:- ca S.02	T 0.5 Evap 180°C hardness Evap 105°C as Computed CoCC3	Total hardness os CoCC3
PERRIS HYDRO SUBUNIT PERRIS VALLEY	1	HYDRO	SUBARE	02A0	S,	SAN JACINTO VALLEY HYDRO UNIT	NTO VAL	LEY H	rbRo Uh	117	Y0200						
45/ 3W-17J 1 S	73	8.2	1759	147	32	141	5	-	162	47	425	13	9.0	96.0	-	984	664
3-30-65				7.34	2.63	6.13	0.13		2.66	0.98	11.99	0.21				891	
	74	7.5	1723	147	33	128		0	186	8 7	398	16	9.0	0.83	-	1264	503
9-54-65				7.34	2.71	5.57	0.13		3.05	1.00	11.22	0.26				898	
45/ 3W-21F 1 S	75	7.5	1780	183	0 7	150	7	0	83	94	582	13	7.0	0.43	1	1122	621
5- 3-65				9.13	3.29	6.52	0.10		1.36	0.96	16.41	0.21				1060	
45/ 3W-21J 2 S	1	7.7	780	74	23	61		0	256	19	120	17	5.0	0.12	1	556	279
69-62-7				3.69	1.89	2.65	0.10		4.20	0.40	20 m	0.27				555	
45/ 3W-26C 1 S	81	7.4	16620	1314	230	2262	22	0	114	643	966	11	6.0	7.90	1	11620	4228
6-30-65				65.57	18.92	98.35	0.56		1.87	13.39	168.07	0.18				10501	
45/ 3W-26F 1 S	77	7.5	5965	419	100	653	12	0	112	244	1770	20	7.0	2.50	ł	3763	1458
3-29-65				20.91	8.22	28.39	0.31		1.84	0.0	88	0.13				3264	
	80	7.6	6341	458	109	717	ア	0	126	297	1947	14	7.0	3.10	-	4375	1592
9-54-65				22.85	8.96	31.18	0.23		2.07	6.18	54.91	0.23				3616	
45/ 3W-26F 2 S	81	7.4	8400	818	112	1225	25	0	116	358	3316	0	0.5	1.54		7270	2504
4-29-65				40.82	9.21	53.26	0.64		1.90	7.45	93.51					5913	

TABLE E-I
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	Tural hordness as CaCO3		186	-	509		180		310			357			1102		, 0,	707		256			
uents m	Evap 180°C hordness Evap 105°C as Computed CaCO3		1040	884	1082	996	1066	885	1934		1661	800	142	111	2244	1793		1777	1932	2690		2620	
constituents per million	S.0.2		1		1		-		1 1			1			1		C	71		1			
Mineral o	8 vron		0.52		0.58		0.53		0.55			0.10			0.37		1 70	0 • 1		1.60			
	7		4.0		4.0		0.5		0.5			0.4			0.2		-	1 0 1		9.0			
	role NO3		10	0.16	7	0.11	10	0.16	4	90.0		1	0.02		18	0.29	1	0.05		0			
million e value	Chlo ride Cl	Y0200	465	13.11	505	14.24	472	13.31	961	27.10	95	115	3.24	97	805	22.70		23.55	73	1262	35.59	81	
million per sactanc	Sulfate SO 4		04	0 8 0	04	0.83	36	0.75	37	0.77	m	333	6.93	20	169	3.52	4 7	5.14	16	327	6.81	16	
pe	Bicar - bonate HCO3	DRO U	55	9	83	1.36	62	1.02	45	0.74	6	153	2.51	07	326	5.34	4 0	2.30	11	87	1.43	m	
ports equivo	Carbon - ale CO3	LLEY HI	5	0.1/	0	•	0		0			0			0		(>		0			
c.	Polos.	V V VA	4	0.10	9	0.15	4	0.10	00	0.20	1	9	0.15	-	4	0.10	U	0	4	10	0.26	7	
constituents	Sodium	SAN JACINTO VALLEY HYDRO UNIT	260	11.30	285	12.39	262	11.39	505	21.96	77	130	5.65	777	235	10.22	, ,	30.00	600	880	38.26	88	
Mineral co	Mogne- s-u-g M-g	S,	4	0.33	4	0.33	3	0.25	1 ~	0.16		51	4.19	35	62	5.10	2	0.7%	2	10	0.82	2	
Σ	Calcium	02A0	68	3.39	77	3 • 84	67	3.34	121	6.04	21	65	2.94	5.7	339	16.92	1	1.30	4	86	4.29	10	
Specific conduct-	mhos at 25°C)	SUBARE	1783		1550		1737		2600			1180			2800			2448		4000			
	I a	HYDRO	8.3		7.8		8.1		7.5			7.8			7.5			٥٠٠		4.9			
Temp	sampled In ° F		80		82		80		282	1		1			-					73			
State well	pel	PERRIS HYDRO SUBUNIT PERRIS VALLEY	45/ 3W-26J 1 S	3-29-65		4-29-65		9-24-65	45/ 3W-260 1 S			45/ 3W-27D 2 S	4-29-65		45/ 3W-28H 1 S	5- 3-65		45/ 3W=34E I S	10 31 11		4-29-65		

TABLE E-I
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

E	Total	(0000)		180		193			1313		284			352		740		488		
	EVOD (BOOC hardness			406	354	438	34.7	200	3030	2362	734	681		744	730	1870	1065	1116	890	
const	S	20.5		1		1			1		1			į.		l		1		
Mineral constituents parts per million	Boron	8		0.13		0.09			0.60		0.51			0.19		0.05		0.10		
	7 c o	u.		0.5		9.0			7.0		0.8			9.0		0 • 3		0.5		
	- N	NO 3		26	0.42	35	0.56		9		7	0.06		0		5.8	0.47	æ [1	
million s value	Ch 10 -	- 0	Y0200	09	1.69	62	1.75	j	1394	000	359	10.12		105	2.96	517	14.58	261	2 3 7	
reactance value	Sulfate	504		27	0.56	26	0.54		38	2	14	0.29		312	6.50	81	1.69	267	37	
equivalents percent	Bicor - bonote	HCO3	YD UI	230	3.77	226	3.70		124	1 5 7 tv	62	1.02		151	2.47	140	2.29	130	14	
p e d	Carbon -	CO3	SAN JACINTO VALLEY HYD UNIT	0		0		(0		9	02.0		0		0		0		
.i	Potos -	×	NTO VA	4	0.10	4	0.10	,	0.41		4	0.10		v	0.13	9	0.15	200	-	
constituents	Sodium	0 2	AN JACI	09	2.61	61	2.65		15.65	37	156	54		112	4.87	96	4.17	120	35	
Mineral co	Mogne.	5	S, Y02A1	14	1.15	16	1.32		5.02	12	12	8 8	.02A2	31	2.55	5.1	4.19	1,87	56	
Σ	Calcium	0 0	02A0	64	2.45	51	2.54		21.21	20	76	4.09		0.6	4.49	216	10.78	118	39	
Specific conduct-	1	ot 25°C)	SUBARE	653		799		000	200		1040		A	1180		2030		1460		
,, -	Hd		TYDRO	7.7		7.8		,	<i>t</i>		8.5		SUBARE	8.2		7.6		7.1		
Temp	sampled	r C	JNIT LEY	63		99		C	60		81			68		78		1		
			SUBL	S					0		S		H H	2 S				S		
State well	pelomos et o		PERRIS HYDRO SUBUNIT PERRIS VALLEY HYDRO	55/ 2W-17C 1	3-29-65		9-27-65	700	4-29-65		55/ 3W- 3R 1	60-67-4	MENIFEE HYDRO		3-30-65		9-24-65	55/ 3W-36D 2		

TABLE E-I
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	Toto hordness Cours		418		498		316		389			431		354		188	,		185		
stituents in million	Evop 180°C hardness		898	791	096	8 34	769	609	755	-	106	912	800	740	672	4 16		346	418	349	
constituents per million	5.02		1		1		!		1			1		1		I			-		
Mineral parts p	B, ron		0.12		0.12		0.12		60.0			0.12		0.17		0.05			0.22		
	0 D		7.0		7.0		7.0		9.0			0.2		0.2		0.0	1		0.5		
	Z 0 Z			0.13	15	0.24	9	0.10	ブ	0.15	-4	15	0.24	0		2.1	0.34	9	19	0.31	
per million ctance value	Chlo	Y0200	213	6.01	220	6.20	147	4.10	123	3.47	17	147	30	155	4.37	080	2.26	37	84	39	
60	Sulfate SO4	L Z	236	4.91	163	3.39	16	2.02	151	3.14	67	228	4.00	177	3.69	09	1.25	21	53	1.01.0	
parts per equivalents percent re	Bicar - bonote	YDRO U	141	2.31	309	5.06	281	4.61	366	6.00	7	283	4.04	230	3.77	1 8	2.18	36	140	2.29	
p e d	Carbon - o re CO 3	LLEY H	0		0		0		0			0		0		С	•		0		
ï	Potos.	NTO VA	0	0.13	5	0.13	9	0.15	2	0.13	٦	200	0 = 10	7	0.18	c	0.08	7	6	0.08	
constituents	Sodium	SAN JACINIO VALLEY HYDRO UNIT	117	5.09	108	4.70	105	4.57	104	4.52	26	120	37.62	108	4.70	52	2.26	37	56	2.43	
Mineral co	Mogne- stum Mg	S. YUZA2	39	3.21	77	3.62	27	2.22	35	2.88	57	41	2.51	949	3.78	17	1.40	23	14	1.15	
2	Calcium	Y02AU	103	5.14	127	6 • 34	82	4.09	9.6	4.89	3.5	105	38	99	3.29	- 47	2.35	39	51	41	
Specific conduct-	micro- mhos at 25°C)		1300		1483		1060		1235			132∪		1110		290			565		
	Hd	SUBAREA	7.4		6.5		7 - 1		6.9			7 • 0		7 • 8		6 • 9			7.3		
Temp.	when sampled in ° F	1	65		72				74			1		9		1			-		
		SUB!	2 S		1 S		2		1 5			1 5		1.5						Т	
State well	Date sampled	PERRIS HYDRO SUBUNIT MENIFEE HYDRO		4-65	55/ 3W-36Q 1	3-30-65		5- 4-65		3-30-65		65/ 2W- 7A	#0-C -II		5- 4-65	65/ 3W- 2F 1	11- 5-64			4-62	

TABLE E-I
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

when sampled to sampled to sampled to sampled to sample	HO						per	cent r	percent reactance value	a value			parts	per million	non	
RIS HYDRO SUBUNIT		mhos	Colcium	5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	w nipos	Potos -	Carbon -	Bicor	Sulfate	10140	rote.	7 - C - C - C - C - C - C - C - C - C -	0.000	S	TOS Total	Total hardness as
	I SUBAREA	5	, o 4			NTO VA	LLEY H	YDRO UN	4	Y0200				2		50.00
65/ 3W-16C 1 S 70	7.6	1655	140	09	106	60	0	317	99	300	42 0.48	0.5	60.0	1	1153	969
60-17-6			42	· W	28			32	13	52	4				906	
65/ 3W-20B 1 S 60	7.3	602	89 7	17	45	2 0	0	206	31	61	13	7.0	0.08	-	312	190
3-30-65			2.40	1.40	1.96 34	0.0		5.38	0.65	1012	0.01				319	
07	7.4	603	64	17	45	2 0	0	198	29	65	15	5.0	0°04	i i	382	193
69-12-6			242	1.40	33	0.00		55	10	31	4 4 6 0				320	
WINCHESTER HYDRO SUBARLA	YDRO S	UBAREA		r02A3												
55/ 2W- 3M 1 S 70	0 7.5	662	48	17	59	5	0	267	24	8 7	23	9.0	0.16		376	190
3-29-65			2.40	1.40	2.57	0.13		4.38	0.50	1.35	0.37				356	
70	0 7.6	829	79	23	74		0	296	38	15	36	6.0	0.21	i	505	254
9-27-65			3.19	1.89	3.22	0.15		4 · 8 5 5 8	0.81	2.12	0.58				463	
55/ 2W-19N 1 S 76	6 9 9	675	57	11	63	~	0	115	37	105	25	0.2	60.0		458	158
3-30-65			2.25	0.90	2.74	0.08		1.88	0.77	2.96	0.40				346	
16	6 7.0	755	57	13	69	E	0	134	36	113	50	0.3	0.02	1	530	196
9-27-65			2.84	1.07	3.00	0.08		32	0.75	2.19	15				407	

TABLE E-1
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	Total hardness as		422		844		3952		893		473		115		536			
uents in	Evap 180°C hardness Evap 105°C as Computed Co.Co.g.		086	958	1650	1510	8596	8116	2026	1991	096	868	328	272	1034	975		
constituent per million	Sift. co SiO ₂	7	1		12		1		ŀ		1		-		i i			
Mineral constituents parts per million	Boron		96.0		09.0		1.36		1.08		0.17		90.0		0.31			
	Fluo-		0.1	-	0.5		0.1		0.1		0.1		0.2		0.1			
	frote NO3		12		5	0	0		0		33	9	10	2 6	15	0.04		
million e value	Chlo -	Y0200	299	52	630	69	3308	13.67	645	200	180	30	71	45	256	55° /		
r million ts per million reactance value	Sulfate SO4		269	35	296	24	2040	31	512	31	40	2	27	12	301	38		
en t	Bicor - bonote HCO3	rdRo u	117	12	98	9	176	2	315	15	643	62	127	643	173	17		
parts equiva percen	Carbon -	LLEY HI	0		0		0		0		0		0		0			
o i	Potos.	NTO VA	7 0.18	1	7	-	22	•	14	7	0.15	\ r=4	2 5	1	7			
constituents	Sodium	SAN JACINTO VALLEY HYDRO UNIT	167	94	210	9 5	1310	42	355	94	175	44	60	200	137	35		
Mineral co	Magner Stum Mg	S Y02A3	3.45	22	57	18	362	22	75	18	5.26	31	11	18	63	31		
2	Calcium	Y02A0	100	31	244	47	986	36	234	35	84	54	28	28	111	3 3 3		
Specific conduct-	(micro- mhos at 25°C)	SUBAREA	1480		2571		10000		3000		1550		094		1550			
	I.		7.9		7.3		7.6		6.9		9.9		7.9		7.8			
Temp.	sampled in ° F	UNIT R HYDE	7.0		l I				02		49		1		70			
State well number	Date sampled	PERRIS HYDRO SUBUNIT WINCHESTER HYDRO	55/ 2W-25C 1 S 5- 4-65		55/ 2W-26H 3 S		55/ 2W-27P 1 S		55/ 2W-29N 1 S		55/ 2W-31H 1 S 5- 4-65		55/ 2W-33E 1 S		55/ 2W-36D 1 S			

TABLE E-I
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	hardness as		17	15.6	17a	·	1057	1		90.	
istituents in million	T 0 S		254	557	376	4 8 8	1866	1464		3 6	
constituents per million	5. 6.		1		†	1	į.	ł		}	
Mineral parts	10 B		2.64	7.930	0 • 6	0.50	1 . 5 . 5	1.70		0.11	
	7 . de		1 • 4	0.5	χ. •	m. O	0.5	0.3		~ 5	
	100'e		0	3.5	0.08	5 0.08	0 · 1 · 0	0.08		43	
million per million ctance value	0 P L O	Y0200	224	3.38 43	220	152	25.83 808	741		45° 7	
	Sulfate SO 4		0.23	2.31	248 5.16	12 0 . 25	192	3.50		197	
parts per equivalents percent rec	Bicgr - bongle HCO3	'DRO U	76	131 2-15	173 2.84 20	134	151	118		3.62	
par	Carbon -	LLEY HI	3 0 • 10	- (0	0	0	0		၁	
Ë	Potas -	NTO VA	0.08	0.10	0.09	0.10	10 10 1	0.18		0.23	
constituents	Sodium	SAN JACINTO VALLEY HYDRO UNIT	177	108	252 10.96 75	3.22	270 11-74 35	244		3.48	
Mineral co	Mogne- stum Mg	S,	0.08	13 1-07 14	1.15	1.23	79	58	Y02A5	30	
Σ	Calctum	Y02A0	0.25	41 2.05 26	48 2.40 16	2.40	293	220		40 47	
Specific conduct-	mhos at 25°C)		760	842	1360	758	3000	2798		1048	
	H	SUBAREA	8.5	7.9	7.6	7.9	7 - 7	3 •	SAREA	7.8	
Temp	sampled In ° F	UNIT	66	74	1	74	œ	78	RU SUBAREA	8	
State well	Date sampled	PERRIS HYDRO SUBUNIT LAKEVIEW HYDRO	35/ 2W-37R 1 S 4-30-65	45/ 2W- 9M 1 S	45/ 2W-11E 2 5 4-30-65	45/ 3W-130 1 S	45/ 3W-25D 2 5	39-25-6	MEMET HYD	55/ 1E-20D 1 S 9-29-65	

TABLE E-I
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	653		301	319	336	8 7	103	350	515	294
-	Total hardness as Calcos				<u>w</u>					
lion	T D S Total Evop 180°C hordness Evop 105°C as Computed CoCO3		981	971		434	548	678	982	578
constituent per million	Sour- co \$102		1	1	1	-	1	1	1	1
Mineral constituents parts per million	Boron		96.0	1.20	1	0.78	0.36	0.12	0.11	0 • 0 5
	Fluor		χ •	6.0	1	1.1	0 • 4	6.0	0.5	0 • 5
	role NO3		5 0•08 1	5 0.08	1	2 0.03	12 0•19	24 0 • 39	82 1•32	16 0.26 3
nillion per million ctance value	Chlo- ride Cl	Y0200	246	261 7.36 48	391	32 0.90	128 3.61 41	1.89	145	1.97
0	Sulfate SO 4		263	270 5.62 37	1	47	173	226	360	215
parts per equivalents percent r	Bicar - bonote HCO3	DRO UN	141 2.31 16	140	305	291	1.43	209	142 2.33	2.79
par	Carbon - ale	LEY HI	i T	0	0	1	0	0	0	1
i.	Po to to to to to to to to to to to to to	NTO VA	0.15	0.20	1	0.13	0.18	0.20	7 0.18	0.15
constituents	Sodium	SAN JACINTO VALLEY HYDRO UNIT	199 8•65 58	206 8 • 96 58	l	130 5.65 84	152 6.61	3.26	108	3,52
Mineral co	Magne. s.um Mg	S,	1.73	1.89	1	0.25	0.16	2.06	4.61 30	18 1•48 16
2	Colcium	Y02A0	4.29	90 4.49 29	}	0.70	38	40.94	114 5.69	88 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
Specific conduct-	mhos at 25°C)		1550	1574	2820	049	850	786	1380	938
	H	T SUBAREA	7.8	8.0	7.8	8 • 1	8 • 1	0 . 8	7.9	7.9
Temp.	wnen sampled in ° F	NIT O SUB	7.0	70	l l	70	76	72	76	92
-		SUBU	S		v	v	ν	S	S	S
State well	Date sampled	PERRIS HYDRO SUBUNIT HEMET HYDRO S	45/ 1W-31D 2 4-30-65	9-30-65	45/ 2W-36A 1 12- 9-64	45/ 2W-36J 1 4-30-65	55/ 1W- 58 1 5- 6-65	55/ IW-13C 1 9-29-65	55/ 1W-15D 1 5- 5-65	55/ 1W-20B 1 4-29-65
		PE	4		4	4	70	25	5.5	5.5

TABLE E-I
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	Agridness 25 50 v. 3		3000	, ·	166	17.5	176	2	471	2-
luents in	Evap 180°C Agraness Evap 105°C 35 Cours		623	396	39.2	D 0 5	4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	37 4	1310	1360
constituents per million	\$ 5.2		1	-	1	1	t i	1	~	!
Mineral parts p	8c.		0 .06	.0.0	0.10	0.11	• 0	0.11	, e d	10.2
	, D		7.0	0	0 • 5	3.0	0.2	^,, •	· 0	0 0
	7. N. N. N. N. N. N. N. N. N. N. N. N. N.		17 0.27	17 0 . 27	38	42 0.68 10	0.11	20.00	5.00	0 . 3 1 2
million ce value	0140	Y0200	2.00	2.03	4.51	2.51	80 2.26 31	205	1425	12.07 58
millio per eacton	Suffate SC4		211 4.39	1.77	0.96	46 0.96 14	1.87	1.44	551 11.47 22	5.35
parts per equivalents percent	Bicor - bondle HCC3	rdro u	172 2.82 30	165	2.67	2.74	3.06	253 4 • 15 45	3 · a a a a a a a a a a a a a a a a a a	2.92
por	Carbon	LEY H	0	0	1	0	0	0	0	0
Ë	Potos	NTO VAL	0.15	0.13	0.10	C.10	14	0.150	0.33	0.18
constituents	E 5 0	SAN JACINTO VALLEY HYDRO UNIT	3.52	63	3.30	3.35	3.48	3.87	33.48	213
Mineral co	M 0 0 0 M	S,	1.56	1.15	13 1-07	1.23	1.07	3.29	51 4.19 8	5.51
2	67.000	Y02A0	4.34	2.899	2.25	2.35	2 • 45	39	305	120 5.99 29
Specific conduct-	mhos at 25°C)		941	706	708	724	700) 30 30	5208	1950
	Ha	T SUBAREA	7 . 8	7 • 7	7 . 8	7.9	7.6	30° C	7 • 7	7.6
Temp	sampled in ° F	UNIT RO SUE	76	74	\$0	\$	1	70		5.
State well	Date sampled	PERRIS HYDRO SUBUNIT HEMET HYDRO S	55/ 1W-20B 1 S 9-27-65	55/ 1W-21A 1 S 9-29-65	55/ 1W-27L 1 5	9-29-65	55/ 2W- 1A 1 5 5- 3-65	55/ 2W-120 2 5 5- 6-65	55/ 2W-13P 1 S	55/ 2W-24R 1 5 5- 4-65

TABLE E-I
ANALYSES OF GROUND WATER
SANTA ANA DRAINAGE PROVINCE (Y)

	Total hardness tas Cacos		75	156	112	150	25	132	136
uents in	T D S Total Evap 180°C hardness Evap 105°C as Computed Cololy		163	309	313	689	532	247	200.
constituents per million	Sili- ca SiO ₂		1	!	1	ł	1	1	I
Mineral o	Boron		60.0	0.03	0.19	0.35	0.62	0	0.07
	Fluo- ride F		0.7	0.5	1 • 8	4.9	3 • 5	0.4	4.0
	rote NO3		2 0.03	3.6	5 0•08	3	12 0•19	0.02	0.02
per million ctonce volue	Chlo -	Y0200	19 0.54	27 0 • 76 14	24 0.68 13	1.66	96 2.71 29	17 0.48	0 0 118
00	Sulfate SO 4		23 0.48	75 1.56	0.56	297 6.18 58	200.42	37 0 19	32 0.67 17
parts per equivalents percent r	Bicar - bonate HCO3	roko ul	136	189 3.10 57	248	173 2.84 26	340	171 2.80	172 2.82 70
par	Corbon -	LLEY HY	0.27	0	}	0	17 0.57	1	0
i.	Ф Ф Ф Ф Б Б С С С С С С	NTO VA	0.05	0.10	0.05	0.10	3 0.08	0.10	0.10
constituents	Sodium	SAN JACINTO VALLEY HYDRO UNIT	2.00	2.17	3.39	185	204	30 1.30	1,22
Mineral co	M o g n e .	S. Y0281	0.25	0.58	12 0.99 17	1.15	0.25	4 £ 6 0 8 8	0.41
×	Calerum	Y0280	1.25	2.54	1.25	37	0.25	2.30	2 46 57
Specific conduct-	mhos at 25°C)	SUBUNIT HYDRO SUBAREA	340	537	529	1087	932	404	386
	I a	JNIT DRO SU	4	7.9	0	7.8	8 .	7.9	O • ®
Temp.	sampled in ° F	۰٬ ۵۱	92	49	48	08	76	8 9	99
State well	Date sampled	SAN JACINTO HYDRO S	55/ 1E- 5M 2 S 9-29-65	55/ 1E- 9J 1 S 5- 7-65	55/ 1E-14G 1 S 4-29-65	9-29-65	35/ 2W- 7P 1 S 9-30-65	55/ 1W- 1C 1 S 4-30-65	9-29-65

	1						
	*, * 0 hordness 0.5		403	18			
constituents in		Compared	921	1178			
constituent per million	- 00	2	07	30	1	1	
Mineral parts p	30 3		60.0	00.44	1	1	
	3 D .		0.3	1.0	1	1	
	2 0 4		0	0	1	1	
million per million octance value	0 1 40	20100	3.86	291	793	750	
(I)	Sulfate	4	246 5 • 12 35	1.83	1	1	
parts per equivalents percent r	Bicar	2	356	549	468	446	
po	Carbon -	TIND	0	34	0	0	
s in	90 0 0 X	HYDRO	0.13	0.20	1	-	
constituents	E 0 20 Z	SAN JUAN HYDRO UNIT	140	435 18.91 97	1	1	
Mineral co	Magne -		36 2 96 21	0.16	1	1	
2	Calcium	AO	102	0.20	1	-	
Specific conduct-	mhos		1392	1993	5350	0964	
	I	SAREA	7 • 4	8.	7.2	7.6	
Temp	sampled In ° F	UNIT RO SUE	63	0.80		1	
State well	Date sampled	LAGUNA HYDRO SUBUNIT ALISO HYDRO SUBAREA	65/ 8W-26B 2 S 11-13-64	75/ 8W-16Q 2 S	75/ 8W-32L 2 S 10-27-64	4-27-65	

TABLE E-I
ANALYSES OF GROUND WATER
SAN DIEGO DRAINAGE PROVINCE (Z)

	hordness os Co CO 3		403	298	261		289		009	
uents in	T D S		603	498	870		510		1244	
constituents per million	\$ 00 5		17	30	26	1	33	1	24	1
Mineral o	B 80		0.04	0.04	0.33		90.0		0.10	
	2 D L		0.1	0.0	φ •	1	0.5	1	7.0	1
	rote N.C.3		2.5	1.8	0 • 2	1	7.1	1	0.0	1
million per million sctance value	C 10 C 1	20100	29	28	181 5.10 36	198	1.83	1.89	262	7.59
0	Sulfate S04		213	127	213	1	123 2.56 32		386 8 • 04	1
pe leni	Bicor - bonote HCO3		259	242 3.97 53	278	288	217	211	359 5•88 28	232
parts equiva percen	Corbon .	LIND	0	0	o	0	0	0	0	0
<u> </u>	Potas -	нурко	0.08	0.08	0.10	i i	0.10	1 1	0.10	1
constituents	Sodium	SAN JUAN HYDRO UNIT	30	34 1•48 20	192 8•35 61	1	47 2.04 26	1	208	1
Mineral co	Nogoe.	vī.	2.22	1.56	21 1•73 13		1.73	1	50 4•11 19	
Σ	Colcium	20180	117 5.84 62	88 4•39 58	3.49		81 4.04 51	1	158 7.88 37	1
Specific conduct-	mhos at 25°C)		884	711	1412	1495	807	807	2033	1936
	Ha	_	7.6	7 - 4	7.6	7.4	7.3	7.3	7.4	7.4
Тетр	sampled In ° F	UBUNI	1	1	62	49	65	1	40	8 9
State well	Date sampled	SAN JUAN HYDRO SUBUNIT	65/ 7W-11N 2 S	75/ 7W-19D 2 S 11-30-64	75/ 7W-32R 1 S 11-13-64	5-14-65	75/ 7W-36A 1 S 11-18-64	5-14-65	75/ 8W- 1D 1 S 11-13-64	5-14-65

Date sampled			-tonduct-	2	Mineral co	constituents	=	De	percent r	eactanc	e value			parts	per million	nillion	
Date sampled	when	Ha	(micro-	Colcium	Mogne	Sodium	Polas -	Corbon -	Bicar	Sulfate	1 0 1 0	2	L	E	-	V	,
	In ° F		mhos of 25°C)	°		0 2		0 1 e	Bonote HCO3	504	- i de	role NO2	71 de	(0)	5.0.2	Evap 196	OC hardness
										7					7		
AN JUAN HYDRO SUBUNIT	JBUNI	j.	12	20180	18	SAN JUAN HYBRO UNIT	HYDRO	UNIT			20100						
75/ 8W-25B 4 S	99	7.4	854	106	23	41	21	0	246	166	53	9	0 • 3	0.05	25	597	359
				56	20	19	0		77	3 %	10	7.0				562	
8S/ 7W- 6H 1 S	-	7.3	2163	226	61	200	4 0	0	313	67	214	0	7.0	0.36	26	1630	816
2-14-62				11.28	2005	35	0		5.13	13.97	6.03					1557	
85/ 7W- 6H 3 S	65	7.0	2096	223	19-4	160	2 2 2	0	261	687	193	0.0	5.0	0.24	31	1585	833
				24	23	53	1		18	000	101					1495	
85/ 7W- 7C 3 S	t i	7.3	5083	480	160	598	10	0	377	1830	704	0	!	64.0	27	4291	1857
***************************************				38	21	41	0 7 • 0		10	65	17.00					3995	
85/ 8W- 1L 1 S	-	7.1	1667	214	42	96	7 0	0	281	644	152	13	7.0	0.07	54	1223	707
11-20-04				65	19	2007	0 7		4.01	7.52	* * * * * * * * * * * * * * * * * * *	0.00				1127	
85/ 8W-12L 4 5	ŝ	7.4	1613	208	42	104	4 01.0	0	354	425	132	0	0.5	0.10	33	1191	240
				26	19	75 74			300	0 4	202					1123	
5-13-65	67	7.5	1666	1	-	1 1	1	0	354	1	138 3.89	1	1 1	ŧ ŧ	1		
85/ 8W-12P 2 5 5-14-65	99	7 . 5	2096	260	60	137	0.10	0	390	623	182	0	0.3	0.24	2,7	1599	988
				54	21	25				53	2.1					1483	

TABLE E-1

ANALYSES OF GROUND WATER

SAN DIEGO DRAINAGE PROVINCE (Z)

Total hardness as Caura		833	956	1777	
T D S op 180°C op 105°C mputed		1401	1676	3550	
		19	19	21	
Boron		0 • 0 0	0.11	1	
F uo		0 • 5	4 • 0	1	
frote NC3		16 0.26	0	0	
Ch10 = r.de	20100	185	190	923	
Sulfote Su4		500 10.41 48	641	1096 22.82	
		353 5.79 27	438 7•18 28	432 7•08 13	
	UNIT	0	0	0	
	нурко	0.15	0.10	0.15	
E n pos	AN JUAN	114 4.96 23	156 6•78 26	470	
Magne- sium Mg	v)	1.07	5.43	11.51	
E	20180	312 15.57 72	274	481 24.00 43	
mhos at 25°C)		1918	2163	4840	
T d	Þ	7.2	7.2	7.3	
sampled In ° F	UBUNI	-	69	1	
Date sampled	AN JUAN HYDRO S	85/ 8W-14H 2 S	8S/ 8W-14H 4 S 5-13-65	85/ 8W-14Q 1 S 6-28-65	
	sampled mhos mhos sum sum of CO3 HCO1 Co c.um Magne-Sodium Poios-Carbon. Bicor-Sulfate Chio-N Fue ride ride ride ride ride ride ride rid	Miles PH (Micro- Co.c.um Magne- Sodium Polos- Corbon- Bicor- Sulfole Chio- N Five Boron Silling Minos Silling	PH (micro decide Magne Sodium Polos Carbon Bicar Sulfate Chio N F vo Boron Silva Carbon Bicar Sulfate Chio N F vo Boron Silva Co Sulfate Chio N Silva Co Sulfate Chio N Silva Co Sulfate Chio N Silva Co Sulfate Chio N Silva Co Sulfate Chio N Silva Co Sulfate Chio N Silva Co Sulfate Chio N Silva Co Sulfate Chio N Silva	PH (micro co c.um Magne Sodum polos Corbon Bicor Sulfate Chio Ny Fue Boron Silva Corbon Grand Bicor Sulfate Chio Ny Fue Boron Silva Co Sulfate Chio Chio Chio Chio Chio Chio Chio Chio	PH (micro land) Magne land)

	hordness as		242	26.3	271	3
uents in lion	Evot Read		630	550	572	0 0 0 N 1 1
constituents per million	S :: 8		1	1	į.	1
Mineral parts p			0.14	0.20	0.14	21.0
	, 0		9 • 0	7.0	7 • 0	N •
	2 0 2		0	0 • 0	0.0	•
million se value	0 0 0	20100	2 - 79	128 3.61	2.51 2.51	2 2 2 2 2 9 2 9 9 9 9 9 9 9 9 9 9 9 9 9
millio per eocton	Sulfore SO4		2.37	134 2 29	3.19	4 9 9
parts per equivalents percent r	Bicor - bonote HCO3		3.11	192 3.15 33	203	3.472
eq.	Carbon- oie CO3	TINO	0	0	0	0
in	Potos	HYDRO	0.08	0.08	0.10	0 0 1
constituents	Sodium	SAN JUAN HYDRO UNIT	3.52	4.30	3.65	W 4 7 W 4
Mineral co	M og o e . M og o	S	2.14	2.14	2.38	47.7
2	E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20100	2.69	3.24	3.04	2 % % % % % % % % % % % % % % % % % % %
Spacific conduct-	1 0	7	780	920	088	760
	I a	SUBUNIT	7 • 4	7.4	7.2	4
Temp	sampled in ° F		77	1	78	7.7
State well	p e d	SAN CLEMENTE HYDRO	95/ 7W-10A 1 S	95/ 7W-10A 2 S	95/ 7W-10A 3 S 11-23-64	95/ 7W-10H 1 S

TABLE E-1
ANALYSES OF GROUND WATER
SAN DIEGO DRAINAGE PROVINCE (Z)

	Total hardness os Cours		234	310	
nts in	T D S Total Evap 180°C hardness Evap 105°C as Computed Cours		464	2 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
constituents per million	Evap Evap			1	
con	5. 1.				
Mineral	B. ton		0.12	0 • 0 2	
	7 0 r d e		0.1	0 • 0	
	ž 0 Z		10 0•16 2	112 0 • 19 2	
million per million ictance value	Ch10	20100	82 2•31 30	6 9 3 6 3 4 6	
9	Suffore S C 4		95 1.98 26	2,62	
pe len'	Bicor - bonote HCO3		191 3•13 41	3 . 2 2 . 2 3 . 4 . 3 . 4 . 4 . 4 . 4 . 4 . 4 . 4 .	
ports equivo percer	Carbon. ote CO3	UNIT	0	0	
Ē	Potos .	HYDRO	0.03	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
constituents	E D Z	SAN JUAN HYDRO UNIT	3.00	3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Mineral cor	M og n e	SA	20	2, 53 2 6 5 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	
Σ.	0 U U U	20100	3.04	3,64,37,41,41,41,41,41,41,41,41,41,41,41,41,41,	
Specific conduct-	1 0	7 (720	0 7 6	
	T .	⊥ I	6.7	L .	
Temp	sampled In ° F	SUBUN	68	6 7 1	
		DRO	1 S	S .	
State well	Date sampled	SAN MATEO HYDRO SUBUNIT	95/ 7W-11A 11-23-64	95/ 7W-14G 1 11-23-64	
	٥	SAN	95/	126	

			390		50	221	6	205	172
constituents in per million	T D S 1 a Evop 105°C as compared contact as compared contact as compared contact as		880		700	4442	193	590	7 7 2 0 0 0
constituent	S 2 2 2		5		09	20	φ (C)	2 1	Į Į
Mineral parts p	B, 'C, 'B		0.18		3.50	0 • 0 5	,0°0	0.18	0
	0 P L		1.6		0 • 0	7 • 0	0 • 0	0 • 0	e •
	rote NC3		0.02		3	16 0.26	11 00.18	3	0 es 2 3
million s value	ride C1	20200	3.58		342	2.28	32 0 0 0 0 33	159	3.10
parts per million equivalents per million percent reactance vali	Suffate SO4		377		0.35	23	5 0 • 10	88 1•83 18	1000
parts per equivalents percent re	Bicor - bonote HCO3	TIND O	129 2•11 16		18	245	1.52	3.69	3.08
par	Carbon - ate CO 3	A HYDR	0		26	0	0	0	0
.c	0 0 0 0 X	RGARIT	0.18		0.10	0.03	0.03	0.05	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
constituents	Sodium	SANTA MARGARITA HYDRO UNIT	125 5.44		243	2°52 36	1.43	132 5 74 5 58	7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Mineral co	M 0 0 0 0 M	0201	34 2.80	0202	0	1.23	0.33	1.56	1.23
Σ	Colcium	20200	1000	2	0 0 4	3.19	0.85	2.54	2 2 2 2 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Specific conduct-	mhos at 25°C)		1271	REA	1269	169	298	1019	799
	I a	SUBAR	7.8	SUBAREA	9.1	7.9	7.6	7.9	7 .
Тетр	sampled in ° F	JBUNIT	1	HYDRO	120	-	1	1	4
		RO SI	2 5	ETA		S 2	1 S	S S	2
State well	Date sampled	MURRIETA HYDRO SUBUNIT WILDOMAR HYDRO SUBAREA	65/ 4W-34J 2 12- 2-64	MURRIETA HYDRO	75/ 3W-14J 5 S 12- 2-64	75/ 3W-21D 12- 2-64	85/ 3W-12C 1 12- 2-64	85/ 3W-12N 5 12- 2-64	85/3W-13K1 S 6-2-65

TABLE E-I
ANALYSES OF GROUND WATER
SAN DIEGO DRAINAGE PROVINCE (2)

	Toto hardness as		275			472		202	700			164			162				
uents in	T D S T. to S Evap 180°C as Computed Cours		249	617		938	898	787	0	159		384	0	249	361	346			
constituents per million	Silt- co S.02		147			53		5,2	7 7			ł			1			 	
Mineral parts p	Boron		60.0			0.12			0			0.07			0.11				
	Fluor		0.7			0.5		4				0.4			4.0				
	N L L		4	0.06		σ	0.15	00	0.32	m		20	0.32	v	20	0.37	-		
million e value	Chlo =	20200	110	3.10		181	5.10	128	3.61	29		51	1.44	47	52	1.41			
parts per million equivalents per million percent reactance value	Sulfote SO4		168	3.50		215	4.48	l a l	3.77	31		69	1.35	77	65	1.35			
parts per equivalents percent re	Bicar - bonate HCO3	UNIT	189	3.10		311	5.10	270	4.57	37		183	3.00	7	181	64			
por	Corbon -	A HYDRO	0			0		c)			-			0				
. <u>e</u>	Po to s	RGARIT	3	0.08		5	0.13	u	0.13	7		E	0.08	7	n 0	000			
constituents	E nipos	SANTA MARGARITA HYDRO UNIT	93	4.04		116	5.04	102	4.43	36		62	2.70	t U	09	744			
Mineral co	Mogners srum Mg	S. 202C3	19	1.56	20205	37	3.04	0	2.47	20	20206	13	1.07	24	12	17			
2	Calcium	Z02C0	62	3.94		128	6.39	103	5.14	45		77	2.20	20	45	38			
Specific conduct-	(micro- mhos of 25°C)		975		BAREA	1390		1180	2		EA	613			565				
	H	T UBARE	7.6		30 SU	7.2		7.6	•		SUBAREA	7.8			7.2				
Temp	when sampled in ° F	UBUN I	68		I HYD	-		1				82			74				
State well	Date sampled	MURRIETA HYDRO SUBUNIT FRENCH HYDRO SUBAREA	65/ 2W-28G 3 S	12- 2-64	DOMENIGONI HYDRO SUBAREA	65/ 2W- 3R 2 S	12- 2-64	657 2W=10D 2 C	12- 2-64		DIAMOND HYDRO	65/ 1W- 4J 1 S	4-29-65		0	60-67-6			

	-	S S S		355		87	_	-	7 7			379	-	
Ë	,	So Cly		01	7		_							
constituents per million	V C F	Evap 80°C hardness Evap 35°C as Computed 30 ct 3		87.8	857	300	297		343	348		786		717
const	-	5.02		40		25			17			47		
Mineral	0.00	. a		0.12		0.14			64.0			0.08		
	00	, d		1.0		0 • 8			0 • 8			0.8		
	ż	NO.		10	0.10	14	5		2	0.03		1	0.02	
million per million ctonce value	10140	- D	20200	198	300	65	38		107	3.02		126	3.55	O m
0	Sulfate	504		157	25	25	11		34	0.71		185	3.85	32
parts per equivalents percent re	Brear =	_	TIND O	339	38	136	94		121	1.98		272	94.4	00 M
p e d	Carbon -	000	A HYDR	0		0			0			0		
.E	Potos -		RGARIT	2 3		0.05	7		2 5	0.02		9	0.15	
constituents	Sodium	o Z	SANTA MARGARITA HYDRO UNIT	166	50	7.91	62		108	83		91	3.96	4
Mineral co	- e u o o W	S - C B	\$ 20201	39	22	9	10	10202		0.08	20204	04	3.29	2 8
Σ	Corciam	٥,٥	20200	78	27	25	27		16	14	-154	86	4.29	m
Specific conduct-	,	mhos at 25°C)	7	1407		508		REA	620		tEA .	1132		
	Hd		REA	7.9		7.8		SUBAREA	7.8		SUBAREA	7.0		
		In F	IT 0 SUBA	1		-		HYDRO	-		HYDRO	1		
State well		Date sampled	AULD HYDRO SUBUNIT AULD HYDRO SUBAREA	75/ 2W-10D 1 S		75/ 3W-24A 1 S	1	GERTRUDIS HYD	75/ 3W-358 1 S	+0-7-71	TUCALOTA HYDRO	75/ 1W-12H 1 S	12- 2-64	

TABLE E-I
ANALYSES OF GROUND WATER
SAN DIEGO DRAINAGE PROVINCE (Z)

	Total hardness as Calics		308	m m	
constituents in per million	TDS Total Evop 180°C hardness Evap 105°C as Computed CalC3		099	247	
constituent per million	Sitr. co SiO ₂		22	12	
Mineral o	Boron		0.15	99 0	
	Fluor		. 0 . 5	ന •	
	Nr - Trate No 3		0	0	
million se value	Chlo -	20200	3.27	1,970	
mitlio per eactone	Sulfate SO4		191 3.98 35	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
parts per equivalents percent r	Bicar - bonate HCO3	UNIT	246 4.03 36	1.094	
par	Carbon - ate CO 3	A HYDRO	0	0	
n i	Potas -	RGARIT	0.10	0 0 0 0 1	
constituents	Sodium	SANTA MARGARITA HYDRO UNIT	115	3, 30, 00, 00, 00, 00, 00, 00, 00, 00, 0	
Mineral co	Mogne. S.c.m	S. Z02E2	22 1.81 16	0.16	
×	C 0 10 10 M	ZOZEO	4.34	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Specific conduct-	mhos at 25°C)		1093	9.60	
	H	SUBAL	7 - 7	0	
Temp	sampled in ° F	UBUNIT	l t	0,0	
State well	Date sampled	PECHANGA HYDRO SUBUNIT PECHANGA HYDRO SUBAREA	85/ 2W-20B 4 S	85/ 2W-28M 1 5	

	Teto hardness as Cours		108
luents in	T D S Evap BCC Evap CSCC Computed		8 5 5
constituent per million	S. 1. C.0 S 0.2		36
Mineral constituents parts per million	80.00 B		0 • 3 6
	7		e • 1
	rore NC3		0.03
million 8 value	0 h l o	20200	5 • 87 8 97 97 97 97 97 97 97 97 97 97 97 97 97
parts per million equivalents per million percent reactance value	Sulfore SO4		4.46 2.8 2.8
parts per equivalents percent	Bicor - bonate HCO3	O UNIT	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
par	Carbon -	A HYDR	0
Ë	Potos Susa Fusa Fusa	RGARIT	0.15
nstituents	S d : u 3	SANTA MARGARITA HYDRO UNIT	9.44
Mineral constituents	M a g n e	S, Z02F1	2,22,14
2	Colcium	Z02F0	3 - 79 24
Specific conduct-	1 0		1547
	I	SUB.	7.7
Temp.		UNIT	9
State well	p e d	WILSON HYDRO SUBUNIT LANCASTER HYDRO SUBAREA	85/ 1E- 70 4 5 12- 2-64

TABLE E-I
ANALYSES OF GROUND WATER
SAN DIEGO DRAINAGE PROVINCE (Z)

	Total Nardness os		94		177	93		244	
lition	Evap 180°C nordness Evap 100°C os		214		415	180		492	
constituent	S +-	J	23		35	30		41	
Mineral constituents parts per million	60.00		0.02		0°04	0.03		0.02	
	Fue:		0.4		0 • 3	0 • 3		0 • 5	
	Z 0 Z		0.03		89 1.44 27	2 0•03		9 0.15	
million e volue	0140	20200	1.49		34 0.96	32 0.90 31		1.95	
r million ts per million reoctance val	Sulfate	1	18 0.37		38	0.21		139 2 89	
len +	Bicor - bonote HCO2	TINU	92		129 2.11 40	106		143 2•34 32	
ports equiva percen	Carbon .	A HYDRO	0		0	0		0	
.c	Potas	RGARIT	0.08		0.13	0.08		6 0.15	
constituents	E nipos	SANTA MARGARITA HYDRO UNIT	53 2.30 70		34 1.48 29	20 0.87		2.13	
Mineral	Mogne.	5 20261	0.16	20202	0.90 17	0.41	20263	1.23	
_	Colcium	202G0 EA	0.75	EA	53 2.64 51	1.45		3.64	
Specific conduct-	(micro- mhos at 25°C)	O SUBAR	364	D SUBAREA	553	293		734	
	I a	HYDR	7.5	HYDR	7.3	7.4	REA	7.6	
Тетр	sampled In ° F	ITHUILA	1	HUILA	-	!	SUBAREA	9	
State well	Date sampled	ANZA HYDRO SUBUNIT LOWER COAHUILA HYDRO SUBAREA	75/ 2E-32J 1 S 12- 3-64	UPPER COAHUILA HYDRD	75/ 2E-13D 1 S 12- 3-64	75/ 2E-26B 1 S 12- 3-64	ANZA HYDRD	75/ 3E-20J 1 S 12- 3-64	

IABLE E-I

	7010' hordness 05		401
tuents in	Evap BCoc Evap 15 oc Computed		8 8 8 4 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
consti	5		4 6
Mineral constituents parts per million			0.17
	33 6		о О
	2 0 2		0.03
million	Ch10 -	20200	3.30
parts per million equivalents per million percent reactance value	Sulfate SU4		261 261 40
parts per equivalents percent r	Bicor - bonate HCO3	O UNIT	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
b e d	Corbon- ote CO3	SANTA MARGARITA HYDRO UNIT	0
.i.	Potos x	RGARIT	0.10
constituents	Sodium	ANTA MA	5,52 4,0
Mineral co	Mogne- stum '	S, 202H3	2 2 38 17
2	Colerum	Z02H0 Z	5 · 6 · 4 · 4 · 11 · 3
Specific conduct-	1 0		1281
	ī	BAREA	7.5
Temp	sampled in ° F	BUNIT RO SU	1
State well	led	AGUANGA HYDRO SUBUNIT REDEC HYDRO SUBAREA	85/ 1E-190 2 5

TABLE E-I
ANALYSES OF GROUND WATER
SAN DIEGO DRAINAGE PROVINCE (Z)

	Tetal hardness as Calibs		439		183	
ents in	TDS Tetai Evop 180°C hordness Evop 105°C os Computed CocC3		863		306	
constituents per million	S : 17 - C 0 E E E E E E E E E E E E E E E E E E		0 7		4 3	
Mineral c	80000		60.0		0	
	F. U.O.		9.0		7.0	
	No		20 0 • 32		5 0 0 0 8	
million e value	Chlo	20200	84 2•37 18		35	
er million ts per million reactance value	Sulfate SO4		261		0.25	
n pe	Bicar - bonate HCO3	TIND	330		238	
parts	Corbon -	A HYDR	0		0	
.c.	Potos - sium K	RGARIT	0.15		0.08	
onstituents	Sodium	SANTA MARGARITA HYDRO UNIT	104		33 1.43 28	
Mineral constituents	Mogne- Sium Mg	5 20211	2.63	20214	1.15	
2	Calctum	20210	123		2.50	
Specific conduct-	(micro- mhos at 25°C)	BAREA	1250	AREA	501	
	T a	T RO SU	7.6	o sue	7.5	
Temp	sampled in ° F	UBUN I	1	HYDR	1	
State well number	Date sampled	OAKGROVE HYDRO SUBUNIT LOWER CULP HYDRO SUBAREA	95/ 1E-12A 1 S 12- 3-64	CHIHUAHUA HYDRO SUBAREA	95/3E-16A 1 S 12- 3-64	

	Tota nordness os Colica		160	004	5 5 3	1600	1607	1407	976	366
lion	Evop 80°C revop 105°C Computed		1740	736	1068	2580	2492	3672	1190	872
constituents per million	Sitt. co 5:02		i	1	Į.	-	1		1	i
Mineral o	Boron		0.36	0.17	0.19	0	0.10	0.54	0.20	0 8 0
	Fluo-		0.5	0	0.1	7.0	0 • 0	0 • 1	2 • 0	9
	role NO3		1	0.10	49	0.0	0	0	0	14 0 • 23
million e value	Ch 10 -	20300	19.63	192 5 • 41	333	1168 32.94	33.73	1418 39.99	357	266
per	Sulfate SOA		325	2.06	3.12	260 5.41	300	419	222	2.42
ient ient	Bicar - bonote HCO3	L II	242	307	195 3.20 19	244	3.88	496 8 • 13	301	239
equivo	Corbon- cos	REY HYDRO UNIT	0	0	0	0	0	0	0	0
ci	Potos x		9 0 0 2 3	0.13	30.08	13 0 • 33	0.28	0.31	0.20	0.08
constituents	E 0 Z	SAN LUIS	251	105	125 5 • 44	225 9.78 23	200 8 • 70 21	655 28.48 50	167	158
Mineral cor	Mogne.	0341	78	1.15	56 4.61 28	137	11.76	141	55 4 . 5 2	1.23
2	C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Z03A0	176	137 6.84	129	415 20.71 49	408	331	301	122 6.09
Specific conduct-	1 0		2570	1240	1730	3360	0404	0064	1850	1340
S O	Hd	SUBAREA	7.9	0	7 • 9	7.4	8 • 1	7 - 7	7.8	6.
Temp	sampled In F	-	65	67		1	1	1	1	1
F		SUB NA HY	S	S	2 8	S		S 4	(1)	2 2
State well	Date sampled	BONSALL HYDRO SUBUNI	115/ 4W- 4K 1 6-15-65	115/ 4W- 4N 1 11-19-64	115/ 4W- 4P	115/ 4W- 5K 11-30-64	7-22-65	115/ 4W- 6R 11-19-64	115/ 4W- 8E 11-19-64	115/ 4W- 8K 1 11-19-64

TABLE E-I
ANALYSES OF GROUND WATER
SAN DIEGO DRAINAGE PROVINCE (Z)

	T to! hardness os Colum		631	672	807	784	953	885	881	901
uents in lion	Evap 180°C R		1480	1276	1896	1816	1870	1712	1660	1876
constituents per million	S. 1. 8		1	1	1	1	-	1	1	1
Mineral parts p	Boron		0.35	0.12	0 * 0	0.40	0.10	0.17	0.14	0.10
	Fino.		0.5	0 • 2	0 • 5	7.0	0.5	0.5	0 • 5	0 • 1
	N C S		0 • 0	0	0.01	0.1	1	0 • 0	1	0
million a value	Ch 10	20300	592	412	500	484 13.65	604	418	308	599 16.89 60
r million ts per million reactance vali	Sulfate SO 4		193	25.29	420	425 8 85 31	450	562 11.70 41	500	280 5.83 21
en en	Bicar - bonate HCO3	F 17	313	288	371 6.08 21	374 6.13	288	293 4•80 17	312	320 5.24 19
parts equiva percen	Carbon - ote	REY HYDRO UNIT	0	0	0	0	0	0	0	0
. <u>c</u>	ot of E x		0.05	0.20	13	10	10	0.20	9 0.23	0 2 3
constituents	Sodium	SAN LUIS	310	190 8 • 26 38	250	265	190	178 7•74 30	150	230
Mineral co	Mogne- stum Mg	S Z03A1	5.02	5.84	59 4.85 18	5.18	7.57	79 6.50 25	80	6.33
2	Colcium	Z03A0	152	152 7.58	226 11.28 41	210 10.48 38	230	224 11.18	221	234 11.668 41
Specific conduct-	(micro- mhos at 25°C)	EA	2500	1950	2520	2610	2620	2150	2150	2500
	H	SUBAR	7.9	0 • 8	7.6	7.7	7.9	7.1	7.7	7 - 5
Temp	when sampled in ° F	BUNIT	1	1	1	1	1	6.8	-	9
State well	led	BONSALL HYDRO SUBUNIT MISSION HYDRO SUBAREA	115/ 4W- 8N 2 S 11-23-64	115/ 4W- 8N 3 S 11-23-64	115/ 4W-18C 8 S	7-22-65	115/ 4W-18G 2 S 6-15-65	115/ 4W-18L 3 S 11-23-64	6-15-65	115/ 4W-18L 4 S

_								
	hordness os Co. 3		1058	2532		0 0	2 0 3	275
constituents in	Evop 180°C hardness Evop 105°C os Computed Coll 3		2146 1058	13930 2532		1274	1284	13001
constituent per million	5.02		1	1		1	-	1
Mineral parts p	Boron		0.12	0.76		0.25	0	7 . 0
2	Fluo-		0.1	0 • 1		0.2	0.5	· •
	Irote No3		0 • 0	0		54 0 . 87	44 0 0 79	0.27
million per million actance value	Ch 10 1	20300	624 17.60 55	6560 184.99		250	255	1 0 0
-	Sulfate SO 4		10.35	894 18•61		256	257	1 2 5
parts per equivalents percent re	Bicor - bondle HCO3	117	263	386		529 8.67 40	530	68 4 8 4 2 3 8 2 4 2 3 8
pod	Carbon . ofe CO3	YDRO U	0	0		0	0	0
ü	Potos -	REY H	10	1.53		0.10	0.10	0 O
constituents	Sodium	SAN LUIS REY HYDRO UNIT	240	3570 155.22 75		203	203	14 328 4 4 3 4 6 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
Mineral co	Mogne. s.un	S 203A1	7.07	20.81	Z03A2	19	78 6.41 29	5,50
2	Colcium	Z03A0	282	597 29.79 14		134 6 • 69	1417.04	33 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
Specific conduct-	mhos ot 25°C)		2750	17000	EA	1970	2000	5600
	Hd	SUBAR	7.4	7.7	SUBAREA	0 •	O • n	2 • 5
Temp	when sampled in F	BUNIT YDRO S	i i	67		1	89	1
		SU	S	S		S	LO.	cs
State well	Date sampled	BONSALL HYDRO SUBUNIT MISSION HYDRO SUBAREA	115/ 5W-13L 1 5-10-65	115/ 5W-23E 5 11-23-64	BONSALL HYDRO	105/ 3W-12C 1 11-24-64	10S/ 3W-12F 1 11-24-64	105/ 3W-20P 3
0,	٥	BONS	115/	115/		105/	105/	105/

TABLE E-I
ANALYSES OF GROUND WATER
SAN DIEGO DRAINAGE PROVINCE (Z)

	Total hardness as CaCO3		571		149	
uents in	Evop 180°C hardness Evu 105°C as Computed CoCO3		1072		350	
constituents per million	Siltr- co SiO ₂		1		1	
Mineral	Boron		0.18		0.23	
	Fluo- ride		0.5		0 • 2	
	hrote NO3		2 0.03		0.02	
million e value	Chlo-	20300	3.47		1.41	
millior per eactanc	Sulfate SO4		347		46 0.96 18	
parts per equivalents percent r	Bicar - bonote HCO3	⊢ 11 7	276		2.80	
por	Carbon - ote CO3	IYDRO U	0		0	
ri .	Potas - s.u.m K	REY H	0.15		0.08	
constituents	Sodium	SAN LUIS REY HYDRO UNIT	3.78		2.26	
Mineral co	Mogne- s.um M.g	20381	7.32	20382	1,23	
2	Calcium	20380	82 4•09 27		35 1•75 33	
Specific conduct-	(micro- mhos at 25°C)		1480		505	
	Ha	BUNIT	7.5	SUBAREA	7.8	
Temp	sampled In ° F	SUBUN RO SUB	1		74	
State well number	led	MONSERATE HYDRO SUBUNIT PALA HYDRO SUBAR	95/ 2W-31Q 1 S 11-24-64	PAUMA HYDRO	10S/ 1W-16H 1 S 11-24-64	

	2			_	_														
	P. 10 hardness 05 Columb		309		137		136		5		137		122		70		102		
constituents in	T D S Evap 180°C Evap 5°C Computed		520	247	300	325	250	275	355	373	270	599	334	3 2 4	150	163	240	239	
constituent	5. tr		39		37		35		20		30		37		52		D T		_
Mineral parts p	8		0		0.04		0.10		0.70		0.05		0.05		0		0		
	7		0 • 3		0.8		0 • 3		5 . 0		0.3		7.0		9.0		2.0	er transport	
	7 . N . N . N . N . N . N . N . N . N .		2 0 • 0 3		0		\$ C	2	rel	0.02	5	0.08	2	0.03	4	0.00	32	0.52	
million s value	C N 10	20300	1.97	21	33	19	21	14	25	0.71	37	1.04	1	1.13	15	10.42	9,7	0.73	
r million is per million reactance valu	Sulfote SO 4		1.02	11	100	4 3	54	26	137	2.85	6	0.19	30	1.00	7	0.10		0.17	
parts per equivalents percent r	Bicor - bonote HCO3	H IN	396	68	114	38	150	286	36	0.59	230	3.77	196	3.21	119	1.95	117	1.92	
Pod	Carbon - ole CO3	REY HYDRO UNIT	0		0		0		0		0		0		0		0		
i i	Po 1 0 %	REY H	30.08	~	0.15	4	20.0	•	2	0.05	~	0°C	2	0.02	-	0.03	20	80.0	
constituents	Sodium	SAN LUIS	3 • 48	36	1 45	0 7	36	36	66	4.13	53	2.30	79	2.78	28	1.62	59	1.26	
Mineral co	Magne-	5/203C1	23	16	12	20	10	19	0		6	0.74	7	111	0	19	2	0.74	
×	Calcium	20300	86	77	35	36	38	44	2	0.10	0.4	39	37	35	18	34	97	1.30	
Specific conduct-	1 0		892		205		428		500		503		534		597		349		
	Ha	SUBAREA	8.1		7.4		7.8		9.9		7.9		80		⊃ • ∞		7 . 4		
Temp	when sampled in ° F	UNIT DRO SL	1		1		69		120		1		68		1		1		
		SUB	S		S		S		1 \$		2 5		2 5		in .		S		
Stote well	Date sampled	WARNER HYDRO SUBUNIT WARNER HYDRO	95/ 2E-36N 1 12- 3-64		95/ 2E-360 1		105/ 2E-26A 1	*D-C -21		12- 3-64		12- 3-64		12- 3-64	115/ 3E- 3N 1	12- 3-64	115/ 3E-18P 1	12- 3-64	
	٥	MARN	95/		95/	,	105,		105/		105		105		115/		115		

TABLE E-I
ANALYSES OF GROUND WATER
SAN DIEGO DRAINAGE PROVINCE (Z)

Total hardness os Ca CO3		554	551	
T D S Evap 180°C Evap 105°C Computed		1098	1428	
Siti- ca SiO ₂		1	1	
Boron		0.27	0.59	
Fluo- ride		0.2	0.5	
rate NO3		15 0.24	0	
Chlo-	20400	312	571 16.10	
Sulfate S04		3.93	773 16.09 43	
Bicar - bonate HCO3		305 5 00 28	299	
Carbon - ate	TINO	0	0	
Potas -	HYDRO	0.10	0.10	
Sodius R	ARLSBAD	162	275 11.96 52	
Mogne.		91 7.48 41	60 4.93	
Colcium		3.59	122 6.09	
mhos at 25°C)		1710	2300	
I a		7.9	7.1	
sampled In ° F	NIT	1	99	
	RO SUBUR	5E 1 S 64	3F 1 S	
Date sam	ISTA HYDI	1S/ 4W-2	15/ 4W-3: 11-19-0	
	Colcium Magne- Sodium Poiss- Carbon - Bicar- Sulfide Chlo- Ni- Fluo- Boron Sili- Co Mg Na K CO3 HCO3 SO4 CI NO3 F B SiO2	Sampled Minoro Colcium Mogne Sadium Polis Corbon Bicar Sulfole Chio Ni Fivo Boron Sium	PH (micro- colcium Mogne- Sodium Potos- Corbon- Bicor- Suffole Chio- Ni- Fluo- Boron Solidaria Coloum Solidaria Coloum Solidaria Coloum Colou	Ph (micro- Colcium Mogne- Sodium Sodium Solum Sodium Silum

	hordness	53.65	747
fuents in	T D S Evap 180°C		1522
constituent	S111-	Y	1
Mineral constituents parts per million	Вогол		0.34
	Fluo-		4 • 0
	rote NO.		0.0
million e volue	- ohlo-	20400	20,25 73
er million ts per million reoctance value	Sulfate	1	1,001
parts per equivalents percent re	Bicor - bonate		202 22 22 22 22 22 22 22 22 22 22 22 22
pod	Carbon -	UNIT	0
r: S	Potas -	HYDRO	0.15
nstituent	E ni po Z	CARLSBAD HYDRO UNIT	282 12•26 43
Mineral constituents	Mogne- S+UR		7,24
2	Colcium	0740	174 8.68 31
Specific conduct-	mhos	SUBAR	2520
	Hd	UBUNI	8 • 1
Temp	sampled in ° F	DRO S	
State well	Date sampled	AGUA HEDIONDA HYDRO SUBUNIT ZO AGUA HEDIONDA HYDRO SUBAREA	125/ 4W-10H 3 S

TABLE E-I
ANALYSES OF GROUND WATER
SAN DIEGO DRAINAGE PROVINCE (Z)

	hardness as		239		420	
uents in	TOS hardness Evap 180°C hardness computed CaCO3		822		960	
constituents per million	5. 1.		1		1	
Mineral parts p	Buren		0.32		40.0	
	2 D L		9.0		9.0	
	arote NC 3		0.0		71 1.15	
million e value	Ch 10	20400	298		304	
parts per million equivalents per million percent reoctance value	Sulfore SU4		93		2.75	
ts per ivalents	Bicor - bonote HCO3		3.67		103	
par	Corbon -	TIND	0		0	
.i.	Potos -	HYDRC	0.10		0.10	
constituents	Sodium	CARLSBAD HYDRO UNIT	210 9•13 65		134 5 8 8 3 4 1	
Mineral co	Mogne- sium Mig	C C 204E1	2.14	Z04E2	56	
2	mu. 100	Z04E0	53 2.64		3.79	
Specific conduct-	1 0		1340	HYDRO SUBAREA	1513	
	H	NIT RO SU	7.4	RO SU	7.2	
Temp		SUBUI	1		1	
State well	led	SAN MARCOS HYDRO SUBUNIT BATIQUITOS HYDRO SUBAREA	125/ 4W-26H 1 S 11-19-64	SAN MARCOS	125/ 2W-17M 1 S 1-26-65	

TABLE E-1
ANALYSES OF GROUND WATER
SAN DIEGO DRAINAGE PROVINCE (Z)

	hordness os Co. 3		576		1 L	5669	240	404	300	3132
uents in	Evan H. C. S. Computed Co. 3		1430		1227	5335		1312	2610	4970
constituents per million	5 . 5		1		1				-	1
Mineral parts p	, a		0.59		0.08	20.00	0.25	0.21	0.22	000
	, 0		0.7		9.0	7.00	1	6.0	1 • 2	• 0
	7 2 2 N		0.02		0.97	37	1	38 0.61	57 0 0 0 3 2	24
million per million ctance value	0 p 1 0	70400	400 11.28		300 8 . 46	2188	625	430	950	2560 72-19 83
0	Sulfore SO4		280 5 · 83		244	263	1	127 2.64	247 5-14 11	197
parts per equivalents percent re	Bicor - bonofe HCO3		381		319	644 10.56 13	629	450	732 2.00	637
parts equival percen	Carbon -	UNIT	0		0	0	1	0	0	0
.E	Potos -	HYDRO	3		0.15	0.33	i	0.0	5 0 • 13	0.31
constituents	Sodium	CARLSBAD HYDRO UNIT	276 12.00 51		264 11.48 58	575 25.00	1	328	606 26 35	563 4.4.48 28
Mineral co	Mogne.	C. 204F1	5.67	Z04F2	53	358 29.44	7.32	54 4°44 20	126	406 33.39 38
Σ	Colcium	Z04F0	117 5.84		3.89	479 23.90	91	3.74	153	585 20-19 33
Specific conduct-	micro- mhos at 25°C)		2253	AREA	1940	7273	3182	2284	4299	7874
	I a	T SUB/	7.6	SUE	7.5	7 • 1	7 . 7	7.8	7 . 5	7 • 1
Тетр	when sampled in ° F	SUBUN	1	HYDRO SUBAREA	1	1	-	ŧ 1	1	1
State well	led	ESCONDIDO HYDRO SUBUNIT SAN ELIJO HYDRO SUBAREA	125/ 2W-31D 1 S 1-27-65	ESCONDIDE	125/ 2W-16N 1 S 1-26-65	125/ 2W-20G 2 S 1-26-65	125/ 2W-20H 5 S 1-26-65	125/ 2W-20J 1 S 1-26-65	125/ 2W-20J10 S 1-26-65	125/ 2W-2UK 1 5

TABLE E-1
ANALYSES OF GROUND WATER
SAN DIEGO DRAINAGE PROVINCE (Z)

	Total hardness as		122		265		431		538		347		285				
. <u>c</u>	1343		357	275	570	572	970	809	1710	1601	1110	7.1	860	805			
uents	Evop 180° Evop 105° Computed		3	2	5	5	6	80	17	16	11	1011	Φ	80			
constituent per million	Silit- co SiO ₂		1		1		-		1		1		1				
Mineral constituents parts per million	Boron		0.01		0		0.03		0.74		0.30	_	0.23				
Σ	Fluo-		0.5		0.5		0.7		6.0	-	1.0		0.5			 	
	NI - trate NO 3		38	13	15	0.24	29	0.47	10	0.16	15	0.24		70.0			
million	Chlo-	20400	90	54	122	3.44	360	10.15	064	13.82	760	7.33	254	610/			
er million ts per million reoctance value	Sulfate SO4	12	24	11	145	3.02	52	1.08	338	7.04	219	4.56	136	2.83			
parts per equivalents percent re	Bicar - bonate HCO3		1.05	22	204	33	171	2.80	398	6.52	400	6.56	243	3.98			
par	Corbon - oie	TINO	0		0		0		0		0		0				
ï	Potas -	нүрко	3	2	9 0	0.15	5	0.13	18	0.46	2	0.05	4	0.10			
constituents	Sodium	CARLSBAD HYDRO UNIT	49	949	105	4.5/	139	6.04	372	16.17	569	11.70	190	8.26			
Mineral co	Mogne- stum Mg	C. C. 204F2	15	27	43	35	52	4.28	61	5.02	48	3.95	22	1.81			
Σ	Colcium	204F0	24	26	35	1.7	87	4.34	115	5.74	09	2.99	78	3.89			
Specific conduct-	mhos at 25°C)	SUBAREA	534		1026		1556		2667		1811		1447				
	H _Q	T SUB,	7 • 1		7.8		7.6		7.2		7.7		7.8				
	when sampled in ° F	SUBUNI	1								-		1				
State well	Date sampled	ESCONDIDO HYDRO SUBUNIT	125/ 2W-20K 2 S		12S/ 2W-20K 3 S	1-26-65	125/ 2W-20P 2 S	1-26-65	125/ 2W-200 2 S	1-26-65	125/ 2W-21D 2 S	1-26-65	125/ 2W-30N 2 S	1-27-65			

	. 3		505	535	020	956	745	1.01	E T	2
nts in	Evap 180°C hardness computed co. 3		942	1290	1246 5	1558 5	1780 7	2350 12	1738. 9	1250 5
constituents per million	S.(1:- Evg co Evg S:02 Com		t I					7 7		
Mineral co	Boron		0 . 15	0.26	0 - 0	0.21	0.29	0.11	0.15	5.0
ž	Fluo- Bi		0.2	0	0.2	0 • 2	7.0	0.5	• 0	~ 0
	N Frate NO3		0	3 0 • 0 5	0.0	0 • 0	0.0	20.03	0	0
million e value	Chlo-	20500	31.4 4.8.5 8.0.5 8.0.3	357	387	353	504 15.90	808	597 16.89	361 10.18 48
s per million reactance value	Sulfate 504		3.48	226	3.19	450	356	344	397	203
equivalents percent re	Bicor - S bonote HCO3	II	275	431	3.46	318	361	288 4•72 13	337	4.23 6.43 3.2
edu	Corbon -	DRO UN	0	0	0	0	0	0	0	0
Ë	Polos -	лто ну	0.08	9 0 2 0	0.13	8 0 • 2 0	0.20	1 8 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10.41	0.20
constituents	E 0 Z	SAN DIEGUITO HYDRO UNIT	150	250	165	320 13.91 55	335	270	272 11.83	217
Mineral cor	M og ne .	SA 05A1	50 4.11 25	4 989 52 52	5.51	4.93	5.10	1119	98 8.06 26	4.55
2	C 0 C 0	205A0	120	1117 5.84	98.7	124 6.19	196	285 14•22 39	214 10•68 34	146
conduct-	(micro- mhos at 25°C)	SUBAREA	1525	1900	1645	2200	2500	3000	2560	1950
	Ha	SUBUNIT O HYDRO S	7.5	7.9	7.5	7 • B	7.9	7 • 7	7.5	7 • 7
Temp	sampled in ° F	0	1	70	†	68	58	59	1	1
		HYD	2 5	1 8	1 8	رم ط	2 5	· 5	ري د	c c
State well	Date sampled	SAN DIEGUITO HYDRO	135/ 3W-28N 2 3-26-65	135/ 3W-32R 1 3- 4-65	135/3W-33B 1 3- 4-65	135/ 3W-33D 1	135/ 3W-33E 2 3- 4-65	135/ 3W-33F 4 3- 4-65	135/ 3W-33L 3 3-25-65	135/ 3W-33L 6
S	Dot	SAND	135/	135/	135/	135/	135/	135/	135/	135/

TABLE E-1
ANALYSES OF GROUND WATER
SAN DIEGO DRAINAGE PROVINCE (Z)

State well	Temp		Specific conduct-	Σ	Mineral co	constituents	=	pod	ports per equivalents percent re	per	million se value			Mineral parts p	constituents per million	Jents in	
	when	Hd	ance		-						1				-		
Date sampled	sampled In ° F		mhos at 25°C)	E 0 0 0 3	Magner S-cB Mg	E O Z	Potos.	corbon -	Bicar - bonote HCO3	Sulfate SO 4	Ch lo :	trote N. 3	ride F	80ron 8	5.72	Evop 185°C nordness Evop 105°C as Computed Cours	Total nordness as
					S	SAN DIEGUITO HYDRO UNIT	UITO H	YDRO UI	FIZ		20500						
SAN DIEGUITO HYDRO	DRO SU UITO H	SUBUNIT HYDRO	SUBAREA	Z05A0	Z05A1											Н	
135/ 3W-33M 2 S	7.1	8 • 0	2742	264	16	285	6	1	221	419	527	2.1	0.4	0.10	1	1800	725
7- 1-65				13.17	1.32	12.39	0.23		3.62	8.72	14.86	0.03				1631	
13S/ 3W-330 1 S	1	7.3	6200	429	184	1005	43	0	379	189	2089	0.0	0.4	0.53		4450	1828
3-25-65				21.41	15.13	43.70	1.10		6.21	14.18	58.91					4618	
135/ 3W-330 3 S	99	7.5	3000	52	58	565	22	0	110	145	1011	0	0.2	0.26	-	1956	368
3- 4-65				2.59	4.77	25.87	0.56		1.80	3.02	28.51					1937	
145/ 3W- 3D 1 S	1	7.2	6200	611	216	780	7	0	251	868	2089	0.0	9.0	0.77	1	5160	2414
3- 4-65				30.49	17.76	33.91	0.18		4.11	18.70	58.91					4726	
145/ 3W- 4N 1 S	l i	7.07	2700	222	86	285	8	0	569	301	684	7	0.4	0 + 0	-	2010	908
3- 4-65				11.08	7.07	12.39	80.0		4.41	6.27	19.29	0.11				1721	
145/ 3W- 4P 1 S	I I	7 • 2	0055	477	141	420	2	0	332	664	1181	18	0.5	0.37	ł	3600	1771
4-00				77	11.60	10.20	0		10	13.02	63	1				3067	
14S/ 3W- 5F 1 S	1	7.5	3000	152	85	515	41	0	553	800	445	0.0	1.0	0.63	1	2196	729
3-19-65				7.58	6.99	22.39	1.05		9.06	16.66	12,46					2309	
145/3W-5K 2 S	1	7.5	2000	325	106	730	33	0	243	573	1450	0.0	0.1	0.87	-	3610	1248
3-65				10.22	0.12	31.14	0.04		2.40	11.93	40.07					3337	

	Total	0000			405		1603		1002		076		010		201		634		7.94		
tuents in	T D S T0401	Evap 105°C Computed			1848	1951	9408	10409	5620 1002	5847	7102	5650	2610	3564	0 7 7	432	1496	1460	18.0	1077	
constituents per million		5.02			-		1	_	1		1		-		1		1		1		
Mineral	Boron	8			00.0		3.50		1.85		2.00		3.50		0.28		67.0		0.50		
	F100-	a de			0.5		0.1		7.0		0 . 8		ο 0		0.2		0.1		7.0		
	i N	hore NO3			0.0		2	0.03	2	0.03	0.0		0.0		7	0.00	7	20.0	0.0		
nillion per million ctance value	C h 10 -	7.1de	20500		762	64.17	4820	135.92	2550	11.91	3041	85.16	1450	89 07	103	2.38	741	20.90	486	13.71	
0	Sulfate	504			210	13	889	18.51	610	12.70	832	17.32	724	15.07	09	1.25	145	3.02	478	9.95	
pe lent	Bicor	bonote HCO3	FIZ		480	23	1479	24.24	796	15.80	1027	16.83	228	3.74	215	3.22	00	1.33	300	4.92	
parts	Carbon -	01e CO3	YDRO U		0		0		0		0		0		0		0		0		
.i.	Potos -	ž X	UITO H		31	2 %	70	1.79	50	1.28	75	1.92	20	0.51	e-0	0.03	9	0.15	00	0.20	
constituents	Sodium	0 2	SAN DIEGUITO HYDRO UNIT		570	4/ 1/	3400	147.83	1820	19.13	2250		980	42.61	88	60 CA	305	13.26	280	12.17	
Mineral co	Magner	S - C B	S	Z05A1	33	2.01	224	18.42	133	10.94	129	10.01	109	8.96	16	1.32	35	2.88	63	5.18	
Σ	Colcium	٥٥		Z05A0	108	16	273	13.62	206	10.28	164	8.18	170	8 • 48	54	2.69	196	9.78	214	10.68	
Specific conduct-	(micro-	at 25°C)		SUBAREA	3000		12400		8000		9200		2000		725		2225		2450		
	H			SUBUNIT	7.8		8.0		7.7		8 • 2		7.5		7.7		8.0		7.4		
Temp.	when	in ° F		ITO H	1		-		1		68		68		-		1		ŧ		
State well	Т	Date sampled		SAN DIEGUITO HYDRO SUBUNIT SAN DIEGUITO HYDRO SUBAREA	145/ 3W- 5N 1 S	3-14-65	145/ 3W- 6P 1 S	3-18-65	145/ 3W- 7C 3 S	2-26-65	145/ 3W- 7C 6 S	3-18-65	145/ 3W- 7E 2 S	3-17-65	145/ 3W- 7J 1 S	3- 1-65	145/ 3W- 7L 1 S	3-24-65	145/ 3W- 7L 4 S	3- 1-65	

TABLE E-1
ANALYSES OF GROUND WATER
SAN DIEGO DRAINAGE PROVINCE (Z)

	nardness as Cours		1140		1028		426		611			538		72		367		3533			
stituents in million	Evap .80°C Evap 105°C Computed		2190	2025	2758	2599	1450	1246	1490		1130	1236	1183	304	271	1474	1476	17400	00 171	11129	
constituents per million	5. 1. co \$ 0.2		-		-		1		I I			-		-		-					
Mineral o	8 8		0.48		1.00		0.50		0.28			0.45		0.17		2.46		5.25			
	7 C C		7.0		1 • 0		0.1		0.5			0.1		0.5		0.8		0.8			
	role NC3		0.0		9	0.10	1	0.02	11	0.18	-	0.0		54	6.39	0.0		0.0			
million e value	Ch 10	20500	560	12.19	972	27.41	568	16.02	571	16.	82	390	11.00	80	2.26	577	16.27	9170	2	68	
million per eactanc	Sulfore SU4		631	13.14	514	10.70	121	2.52	91	1.89	10	199	4.14	25	0.52	297	6.18	1436	29.90	10	
e p	Bicar - bonate HCU3	F 17	309	5.06	377	6.18	190	3.11	91	1.49	Φ	348	5.70		1.38	111	1.82	138	2.26	-	
parts equival percen	Carbon. ale CO3	YDRO UI	0		0		0		0			0		0		0		0			
. <u>E</u>	Potas:	UITO H	,) ()	38	0.97	12	0.31	5	0.13	-	14	0.36	1	0.03	6	0.23	120	3.07	→	
constituents	Sodium	SAN DIEGUITO HYDRO UNIT	263	11.44	545	23.70	300	13.04	190	8 . 26	07	230	10.00	74	3.22	394	17.13	5100	221.75	(2)	
Mineral co	Magne - stum Mg	S Z05A1	70	2.7	115	9.46	32	2.63	43	3.54	17	5 8	4.77	9	0.49	6	0.74			0	
2	Colcium	Z05A0	341	17.02	222	11.08	118	5.89	174	8 • 68	45	120	5.99	19	0.95	132	6.59	945	47.01	16	
Specific conduct-	(micro- mhos at 25°C)	SUBAREA	2800		3500		1950		1925			1900		425		2250		19500			
	H	SUBUNIT O HYDRO	7.2		8.0		7 • 8		7 . 4			6.7		7.0		7.8		7.3			
Temp	when sampled in ° F	RO SUITO H	-		29		1		1					1		70		- !			
		GUITO HYDRO SAN DIEGUIT	5 S		3		1 S		V 4			6 5		2 S		1 5		<i>S</i>			
State well	Date sampled	SAN DIEGUITO HYDRO SAN DIEGUITO	145/ 3W- 7L	1-65	145/ 3W- 7M 3	3- 1-65	145/ 3W- 7P	3- 1-65	14S/ 3W- 7P	3- 2-65			3- 2-65	145/ 3W- 8M 2	3- 1-65	4W- 1K	2-25-65	4W- 10	3-24-65		
Š	Dat	SAN D	148/	m	145/	m	145/	m	145/	3		145/	m	148/	m	148/	2	145/	6		

	hordness os Co COn		1063	7165	5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
constituents in	TOS Pordness		3534	27402 9165	000001
constituent	5 . 2		1	1 0	
Mineral parts	: a		7.70	12.70	N 0 *
	, 0		7.0	0 • 1	•
	2 0 2		0	0	•
million per million actance value	3 4 5 0	20500	1344	13634 384.48	9750 274.95 84.
	Sulfate Su4		842 17.53	1340	2536
parts per equivalents percent re	Bicor - Bonote HCO3	T I N	137	1.05	0
par	Corbon CO3	YDRO U	0	0	0
ni	0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 ×	0110	35.0	1.79	2 2 4 4 5 5 5 5 6 5 6 6 6 6 6 6 6 6 6 6 6 6
constituents	Sodium	SAN DIEGUITO HYDRO UNIT	835 36.31 62	294 5200 24.18 226.10 6 55	550 6020 45.23 201.75 14 79
Mineral co	Mogne- s-um Mg	S 205A1	32 7.63	24.18	45.23 14 14
2	Colerum	Z05A0	375 18•71 32	3186 158 • 98 39	393. 6 61 6 61
Spacific conduct-	(micro- mhos at 25°C)	SUBAREA	4500	28000	25000
	I a	SUBUNIT HYDRO	7.4	7.9	*
Temp	sampled In ° F	JRO SU	70		Φ
State well	Date sampled	SAN DIEGUITO HYDRO SUBUNIT SAN DIEGUITO HYDRO SUBAREA	145/ 4W- 1R 4 S	145/ 4W-11J 2 S	145/ 4W-12H 1 S
		U)	-	H	A

TABLE E-1
ANALYSES OF GROUND WATER
SAN DIEGO DRAINAGE PROVINCE (Z)

	T to hordness os Colls		618	387
fuents in	Evap Bruc Evap Bruc Evap Coc		1578	906
constituents per million	S. 1.		1	1
Mineral	B B		0. £	0 • 5
	, de		χ) •	• 0
	role Note		24 00.35	0 0
million ce value	0140	20600	385 10.86 51	5.41
millio per eactan	Sulfate SV4		283 5.89 28	4.02
parts per equivalents percent re	Bicor - bonote HCO3		252	2 ° ° 4 3 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °
par	Carbon -	RO UNIT	0	0
ri s	Potos -	TO HYD	0 0 0	0 0 0
constituents	E nipos	PENASQUITO HYDRO UNIT	210 9 • 13 42	0.0 4.5 4.5 4.5
Mineral co	Magne: sium Mg	σ.	58	3, 2, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
2	Colcium C,o	Z06A0	152	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Specific conduct-	mhos at 25°C)		2000	1360
	H		7.8	7 . 8
Temp	when sampled In ° F	BUNIT	1	0
		30 SU	1 S	N
State well	Date sampled	SOLEDAD HYDRO SUBUNIT	145/ 3W-19G 1 11-19-64	145/ 3W-20L 2
		SOL	145	14 6

	*, *0 hordness 0.5		614		1139		553		150		27 70 20			187					
uents in	Evon H. C. S. S. Computed		1522	1334	2196	4187	1496	1378	1632	1456	1725	- 3	0	345	\$ \$0	2810		10005	
constituents per million	S S		1		-				1		35			1		-		1	
Mineral parts p	3, 3		t		0.37		0.52		04.0		0.24			64.0		8		1	
	, ev , D u.		. 0.2		0.1		7.0		7.0		0.5			J . C		1		1	
	2 0 Z		14	~	10	0.16	0		~	0.00	147	0.76	7	0		1		1	
per million ctance value	0 1 40	20700	390	94	198	24.50	428	12.07	200	12.00	5.0	15.51	7	270	0 0 0 0 0	1075	30.32	11/21	
0	Sulfate SO4		248	21	378	1.81	362	7.54	163	3.81	197	4 • 10	7	2	13	1	-	1	
equivalents percent re	B car - bonote HCO3		465	32	482	21	569	4.41	452	7.41	429	7.03	07	329	34	1		1	
ped	Carbon ote CO 3	TIND	0		0		0		0		0			0		1		1	
i	P 2 2 3 X	O HYDR	0.05		9.	01.0	9	0.15	N	0 0 0	m	30.0		1	0 -1	1		1	
constituents	Sodium	SAN DIEGO HYDRO UNIT	260	48	370	16.03	285	12.39	267	11.61	310	13.48	7	277	12.04	700	30.44	527	
Mineral co	Magne	S4 207A1	85	30	105	8.64	89	7.3%	133	10.94	7.1	5.84	1 2	24	103/	1		-	
M	E 7:00	ZO7AO SUBAREA Z	106	22	283	14.12	75	3.74	8	4.04	163	8.13	0	36	11	1		-	
Specific conduct-	1 0	35.	2250	Ī	3500		2200		2400		2653			1500		1		4340	
	Ha	RO SUBUNIT DIEGO HYDRO	8 1 • 1		8 • 1		7.6		7 - 7		7.2			1.3		1		φ •	
Тетр	sampled in ° F	HYDRO IN DIE	-		-		79		1		j t			20		1		1	
-		GO F	1 S		2 S		5		0		رب -			2 S		<i>S</i>			
State well	Date sampled	LOWER SAN DIEGO HYDRO SUBUNIT MISSION SAN DIEGO HYDR	65/ 2W- 9B 1			11-18-64		6- 3-65	165/ 2W-17D	6- 2-65	165/ 2W-17H				29-7 -9	165/ 3W-21J 1	3-11-65	5-17-65	
	0	OWE	165,		165		165,		165		165			165		165			

TABLE E-1
ANALYSES OF GROUND WATER
SAN DIEGO DRAINAGE PROVINCE (Z)

State well	Temp		Specific conduct-	Σ	Mineral co	constituents	.5	par	parts per equivalents percent re	million per eoctono	parts per million equivalents per million percent reactance value		-	Mineral parts p	constituents per million	Jents in	
led	when sampled in ° F	I	micro- mhos at 25°C)	# 2:0100	M og ne -	Sodium	Potos -	Corbon -	Bicor - bonate HCO3	Sulfate Sulfate	Ch lo	Trote N. A.	a p i u	Baren	5. 1. E	Evop 105°C Concress Computed Co. 3	hardness
LOWER SAN DIEGO HYDRO SUBUNIT MISSION SAN DIEGO HYDRO	HYDRO AN DIE	SUBUNIT EGO HYDR	NIT YDRO SU	207A0 SUBAREA	S Z07A1	SAN DIEGO HYDRO UNIT	SO HYDR	O UNIT			20700						
165/ 3W-21J 1 S	68	7.9	3900	267	136	515	15	0	374	345	1225		0.2	0.30	1	7897	1226
0017				13.52	77 57	24	0.00		13	15	34.33	0000				7690	
	69	1.7	4149	221	141	435	15	0	339	395	974	~	9.0	0.24	1	2814	1132
7- 8-65				11.03	11.60	18.91	0.38		5.56	8.22	27.47	0.02				2349	
165/ 3W-22H 5 S	-	7.9	3600	216	86	540	10	0	385	414	196	2	4.0	0.74		5546	943
11-17-64				10.78	8.06	23.48	0.26		6.31	8.62	27.10	0.03				2431	
165/ 3W-22K 2 S	1	7.6	3461	212	66	383	9	0	376	401		0	0.5	0.29	1	2260	915
7- 8-65				10.58	7.65	16.65	0.15		6.16	8.35	20.13					1995	
SANTEE HYDR	0	SUBAREA	۵		Z07A2												
155/ 1E- 7E 2 S	1	7.4	1530	87	59	175	2	0	230	62	604	0	0.5	0.11	1	980	460
9-65				4.34	4.85	7.61	0.00		3.77	1.29	11.53					106	
155/ 1E-170 2 S	1	7 • 7	089	64	35	09	C 0	0	208	103	80	0	0.5	60.0	ļ	458	267
9-65				2.45	2.88	2.61	0.08		3.41	2.14	2.26					432	
155/ 1W-24C 9 S	49	9 • 0	1780	134	61	175	40	0	260	278	358	5	0.2	0.14	į	1334	586
1000				34	20.02	39	7		4.20	29	50	0				1143	

	ofal os os		1867	4770	203	275		340	107.	~
uents in lion	T D S Total Evap 180°C hardness Evap 105°C os Computed CoCO3		2188 1	1730	5000	585		1050	2388 1	* * * * * * * * * * * * * * * * * * *
constituents per million	S. 0.2 C		1	000	1]		i t		1
Mineral o	Boron		0.17	0.52	0.30	0.26		0 . 14	17.0	0.07
2	F1u0-		2.0	33 • •	7.0	0.5		٥ • •	0 • 5	0
	rote NO3		10	27 0 . 44	0.11	13 0.21		40 0 74	9	7 0 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °
nillion	ride C I	20700	762	565 15.93 60	12.0 4.0 4.0 4.0	166		230	972	233
parts per million equivalents per million percent reactance value	Suffate \$0.4	7	1114 23.19	168 3.50 13	1.52	90 1.87 18		196 4.08 24	144 3.00	444
equivalents percent	Bicor - bonote HCO3		358 5.87 12	401	188 3.08 34	3.64		334 5.47	390	306
por equ	corbon -	UNIT	0	0	0	0		0	0	0
.c	Polos - Stum	D HYDRO	7 0.18	0.05	0.02	0.03		0.13	0.10	0 0
constituents	E nipos	SAN DIEGO HYDRO UNIT	305 13.26 26	320 13.91 53	4.13 45	113		178	360	190 8 26 37
Mineral cor	Mogne.	07A2	208 17-11 34	66 5.43 21	30 6.41	36 2 96 28	07A3	3.70	7.65	31.00
×	Calcium	Z07A0 Z	405	141	2.5.2	51 2.54 24	_7	85 4.09 26	279	145
Spacific conduct-	1 0	<u> </u>	3700	2611	880	1000	ΕA	1480	3250	2040
	Ha	SUBUNIT	7.5	7 • 7	8 • 1	7.8	SUBAREA	7.9	0	89
Тетр	sampled in °F	YDRO RO SU	8 9	1		6.5	IYDRO	1	2	I I
State well Transmin	led	OWER SAN DIEGO HYDRO SUBUN SANTEE HYDRO SUBAREA	55/ 1W-27A 5 S 6- 3-65	55/ 1W-28G 3 s 11-18-64	55/ 1W-30K 2 S 11-18-64	69-8-9	EL CAJON HYDRO	55/ 1E-31R 1 S 11-18-64	55/ 1W-28Q 4 5 6- 3-65	65/ 1W- 1G 1 %

TABLE E-1
ANALYSES OF GROUND WATER
SAN DIEGO DRAINAGE PROVINCE (Z)

	Total hardness as		586	370		334	838		755	1354		211	
uents in	T D S Total Evap 180°C hardness Evap 105°C as Computed Calify		1370	1035	933	875	2242	1906	1865	2738 1		350	
constituents per million	Sili- ca E SiO ₂ C		09	12		33	45		58	ŀ			
Mineral o	80 0 8		0.10	0.16		0.18	0.20		0.14	0.15		0.05	
	F100-		1.0	9 • 0		9.0	4 • 0		0 • 8	0 • 1		0.2	
	rote NO3		110	ca m	0.05	0.10	111	9	98 1•58	113		0	
million per million ctance value	Chlo-	20700	386	077	12.41	334	819	71	21.12	904		1.80	
0	Sulfate SO4		3.85	72	1.50	1.17	151	10	3.00	220 4.58		0.29	
parts per equivalents percent	Bicar - bonate HCO3		264	155	2.54	2.93	261	13	305	273		221 3.62 63	
par	Carbon - ate	O UNIT	18	n 0		0	0		0	0		0	
. <u>E</u>	Potas -	O HYDR	2 0.05	6	0.08	0.13	2 2	•	30.0	0.15		0.05	
constituents	£ 7 0 Z	SAN DIEGO HYDRO UNIT	225	205	8.91	155	365	64	384 16•70 52	220		37 1.61 27	
Mineral co	Magners N	S 207A3	63	45	3.45	3.13	75	19	87 7•15 22	13.24	Z07A5	22 1•81 31	
2	Calcium	Z07A0	131	30	3.94	3.54	212	32	159	277 13.82 38		48 2.40 41	
Specific conduct-	mhos at 25°C)	NIT	2088	1730		1441	3000		3135	3400	REA	520	
	Ha	SUBUNIT	8 • 4	8.0		8.1	7.3		8 • 2	7.6	SUBAREA	8 • 0	
Temp	sampled in ° F	HYDRO	-	1		75	-		§ .	1	HYDRO	72	
State well	Date sampled	LOWER SAN DIEGO HYDRO EL CAJON HYDRO	16S/ 1W- 2K 6 S 11-18-64	165/ 1W- 3C 2 S	11-18-64	165/ 1W- 3E 1 S 11-18-64	165/ 1W-11P 4 S	11-0-03	11-18-64	165/ 1W-12J 3 S 11-18-64	EL MONTE HYDRO	155/ 1E- 2K 1 S 6- 3-65	

	_							
	Total hordness os		7+6	476	407	344		
constituents in per million	Evap BCCC Evap 105°C Computed		1970	1942	1909	834		
constituent per million	5 60		1	1	1	1		
Mineral parts p	8		70.0	0 • 50	0.37	. 25		
	, 0		7.0	0 • 2	9.0	0		
	202		12 00.19	0	0	0		
million s value	0 0 0	00602	13.00	869	760	2.99		
ts per million reactance value	Sulfote SO 4		502	3.31	3.25	322		
equivalents percent re-	Bicar - bonote HCO3	⊢	543 8 • 90 27	329	5 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -	141 2•31 19		
0 0 0	Corbon -	ORO UNI	0	12 0.40	0	0		
Ë	Po to s	IER HYD	0.03	0.33	16 0.41	0.13		
constituents	Sodium	SWEETWATER HYDRO UNIT	410	550 23.91 71	497	120 5.22 43		
Mineral co	Magne. s.um	S Z09A2	86 7.07 22	60 4.93	62 5.10 16	3.78		
Σ	E 0 0 0	Z09A0	157	4.59 14	85 4.24 14	3.09		
Specific conduct-	· 0	-	2900	3200	3286	1100		
	H	SUBI RO SUE	7.6	\$ * *D	6.7) ©		
Temp	sampled In ° F	WEETWATER HYDRO SUBUNIT SWEETWATER HYDRO SUBAREA	-	1	2	1		
		MATER	8	S		1 S		
State well	Date sampled	OWER SWEETWATER HYDRO SUBUNIT SWEETWATER HYDRO SUBARE	165/ 1W-15K 11-18-64	75/ 2W-33B 11-17-64	7- 7-65	175/ 2W-36D		
0,	Do	OWE	65/	75/		75/		

TABLE E-1
ANALYSES OF GROUND WATER
SAN DIEGO DRAINAGE PROVINCE (2)

	Total hardness as CaCO3		306	306	657	581	575	617
uents in	Evop 180°C h Evop 105°C Computed		874	750	1433	2064	1844	2148
constituents per million	Sitte co SiO ₂		1	1	1	1	1	1
Mineral parts p	Boron		0.23	0.15	0.34	0.26	0	O
	Fluo- ride F		0.5	0.5	0 • 1	0	4 • 0	0
	rote NO3		2 0.03	0	0	0.0	20.7	7.1
million e volue	chio-	21000	279	113 3.19 28	762 21•49 83	708 19.97 76	653 18•41 74	709 19.99 76
millior	Sulfate SO 4		1,35	293	100 2.08	3.91 15	3.04	3.27 12 12
pe	Bicar - bonate HCO3		3.36	121 1.98 18	140	150	165 2•70 11	20 10 10 10 10 10 10 10 10 10 10 10 10 10
parts equivo	Carbon - ale	±	0	0	0	0	13	0.63
i.	Potos -	RO UNI	0.05	0.10	3 0 0 0 8	0.13	0.18	0 13
constituents	Sodium	OTAY HYDRO UNIT	150 6 52 51	118 5•13 45	300	325 14•13 55	300 13•04 53	315 13•70 52
Mineral co	Mogne- stum Mg	0	53 4°36 34	35 2 • 88 25	85 6.99 27	55 4.52 17	2.22	5 . 10 19
2	Colcium	21080	35	3.24	123 6•14 23	142 7•09 27	186 9.28 38	145 7 • 24 2 8
Specific conduct-	(micro- mhos at 25°C)		1210	930	2500	2680	2430	2680
	Ha		7.9	7.6	7.9	8 • 1	8 • 4	m •
Temp	sampled In ° F	11	70	ł	7.1	7.0	1	1
State well	Date sampled	OTAY HYDRO SUBUNIT	18S/ 2W-15J 2 S 1-12-65	185/ 2W-15R 1 S 1-12-65	185/ 2W-21J 1 S 1-12-65	6-30-65	185/ 2W-21J 2 S 6-30-65	185/ 2W-21L 1 5 6-29-65

		_	T	
	7.40 hordness 0 s s		946	
nt str	Evap Book		73.7	
ineral constituent parts per million	Evap Evap Comp			
con	S C 2		1	
Mineral constituents parts per million	8 crc.		9.0	
	, D		0 . 0	_
	7. 2. N. 3		0	
million per million ctance value	7. de	21000	2 2 2 2 4 2 2 4 2 4 2 4 2 4 2 4 2 4 2 4	
0	Sulfate	Ì	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
parts per equivalents percent re	B.cor - bonote HCO3		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
pod	Corbon ore	<u>_</u>	0	
ci	Potos -	RO UNI	0 • 1 9	
constituents	£ ? 0 \$	OTAY HYDRO UNIT	5 - 30 4 3	
Mineral co	, s s s s s s s s s s s s s s s s s s s	21003	4 3 2 8 3 3 5 4	
Σ	£	21000	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
Specific conduct-	1 0	2	1100	
	ī	SAREA	0 • 8	
Temp	sampled	BUNIT RO SUE		
State well	Date sampled	DULZURA HYDRO SUBUNIT JAMUL HYDRO SUBAREA	175/ 16-106 1 5	

TABLE E-1
ANALYSES OF GROUND WATER
SAN DIEGO DRAINAGE PROVINCE (Z)

	hordness os CoCO3		387	696	991	1272	267	1078	1004	254
stituents in	Evop 180°C hardness Evop 105°C as		1280	2932	3331	2980	1291	2924	2901	1240
constituents per million	5. 1.		1	1	1	i i		1	1	99
Mineral o	Burge		0.36	0.27	0.55	69*0	0.43	0.71	0.68	44.0
	7 C .		0.5	0 • 3	9.0	0.5	9•0	0.5	0 8	9.0
	Z 0 Z		0.0	13.8 0.22	35 0•56	1.7	0	8.2	0.11	0
million e volue	Chlo	21100	427	1206 34.01 78	1400 39.48 79	1037 29.24	346	33.56	1064 30.00 63	350
million	Suffore		191 3.98 21	220 4.58 10	230	611 12•72 27	244 5 • 08	347	411 8•56 18	234
parts per equivalents percent	Bicor - bonote HCO3		199 3.26 17	298 4.88 11	329 5.39	356 5.83 12	371 6.08	446 7•31 15	526 8•62 18	359 5 • 88 29
por	Carbon - ote CO 3	O UNIT	0	0	0	0	0	0	0	0
Ë	Potos -	A HYDR	0.08	0.15	0.13	0.15	0.23	10	0.33	0.28
constituents	Sodium	TIA JUANA HYDRO UNIT	265	580 25.22 56	676 29.39 60	530 23.04	345 15•00 73	630 27.39 56	621 27.00 57	345 15.00 74
Mineral co	Magne	7 21141	5.10	107 8.80 20	123 10•12 21	184 15.13 31	3.54	14.56	116	3 13 15
2	w^,0	Z11A0	53 2.64	210	194	206 10.28 21	36	140	211 10.53 22	1.95
Specific conduct-	mhos at 25°C)	SUBAREA	1850	4385	4973	4300	2138	4410	4562	2062
	I	II o sub	7.8	8 • 1	7.1	7.6	8 • 1	7.9	7.5	0 8
Тетр	sampled In °F	SUBUNI	33	67	-	6 8	87	6 8	67	94
		DRO	N I	1 2	2 S	v 4	1 S	5 S	5 6	S
State well	Date sampled	TIA JUANA HYDRO SUBUNIT TIA JUANA HYDRO	18S/ 2W-26H 1 1-12-65	18S/ 2W-28L 6-29-65	185/ 2W-29P 7- 7-65	18S/ 2W-33K 6-29-65	185/ 2W-33L 7- 7-65	185/ 2W-33L 6-29-65	185/ 2W-33L 7- 7-65	185/ 2W-33L10 S 10-15-64
0)	00	TIA	185/	185/	185/	185/	185/	185/	185/	185/

	1000	Co CO3		502	*6.7	00%	: :: ::	200	2 2	2.1	5
stituents in million	J1	Evap 105°C norness Evap 105°C as Computed CaCO3		12.72		165h	.91.	2 × 3 × 5 × 5 × 5 × 5 × 5 × 5 × 5 × 5 × 5	1370	1 2 2 2	1 2 2
constituents per million		0		1	1	š. I	1	1		t t]
Mineral parts p				97.0	7.	0		0.0	0.36	0.1	\$
•	,	0 4		7.0	0	° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	2	* C	α • •	ć	•
	2	0 2		0.0	0 • 55	0.0	* 0	4 = 0	* • • •	2 "	- 0
million se volue	3	£ (71100	372	200 V S C C C C C C C C C C C C C C C C C C	691 13.47 03	140°.	32.00	18.05 18.05	1845	
per	Su tote	8		244	19.65	186 3.07 14	34,	7. 6. 5. 1. C. 1.	10.10	417 *•633	11.
equivalents percent	Bicor -	bonote HCO3		378	464 7 • 93	309 5.06 18	25.000000000000000000000000000000000000	39.5 6 • 4 7 1 4	3, c 80.08	512	2
9 9 0	Carbon -	co 3	TINU C	i	Э	С	9	С	:)	-	2
n	Potos -	S C S	A HYDRO	0.31	ε > • • •	20.0	2 0	0.15	2 2	* *	
constituents	Sodium	0 2	TIA JUANA HYDRO UNIT	380	713	433	676	450 19.57 56	396	369	780
Mineral co	- 0 0 0 W	ν. φ. Μ.	7 Z	3.70	133	\$ \$ \$ \$ 1 \$ 1 \$ 6 \$ 1	1 3 3 3 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	F 2 2	\$ \$ 5 ° °	16.47	116 7.54 18
W	e (·) b	0	Z11AU 2	1.60	283	108	207	188	186 9.28 28	381 19.01 29	194
Specific conduct-	(micro-	mhos at 25°C)		1850	5157	2750	5155	3100	3096	5800	485°
	Hd		T SUBAREA	7 • 7	9 • 1	7.8	7.5	7.8	7.9	7.7	7.9
Temp	_	In ° F	SUBUNI	93	7.2	1	1	69	99	1	6.8
State well		Date sampled	TIA JUANA HYDRO SUBUNIT TIA JUANA HYDRO	185/ 2W-33L10 S 1-14-65	185/ 24-341 2 S	185/ 2W-35D 1 S	185/ 2W-35L 1 S	1957 2W- 1M13 S 10-15-64	195/ 2W- 4AlU S 10-15-64	1957 2W- 4D 1 S 6-30-65	195/ 2W- 4F 4 5 6-29-65
Stote		Date	LIA JUA	185/ 2W	185/ 24	185/ 2W	185/ 2W	195/ 2W	195/ 2W	195/ 2W	195/ 24

TABLE E-I
ANALYSES OF GROUND WATER
SAN DIEGO DRAINAGE PROVINCE (Z)

		hardness os			966	1395
fuents in		Evap 180°C hardness Evap 105°C os			2752	33954
constituent per million		5:03			1	
Mineral constituents parts per million		8			0.23	NS • 0
		ri de			0.7	•
		Z Z Z			1.7	0
million per million ctonce votue		1 0 P C	21100		879	1461
0		SOA			565 11.76 29	5
parts per equivalents	1	bonofe HCO3	,		269	2 7 9 5 C 7
par	2	o te	O UNIT		0	O
ni 6		S 10 0 0 X	IA HYDE		0.18	0 0 0
constituents		0 2	TIA JUANA HYDRO UNIT		490	30.65
Mineral co		S LU R		Z11A1	106 8•72 21	9.887
2		0.0		Z11A0	224 11•18 27	361 18.01 31
Specific conduct-	ance	mhos at 25°C)		AREA	4560	2000
	Ha			1 T 5 SUB	7.9	9
Temp.	when	sampled In ° F		SUBUN A HYDR	1	2
State well	iagiin.	Date sampled		TIA JUANA HYDRO SUBUNIT TIA JUANA HYDRO SUBAREA	195/ 2m- 4L 4 5 6-30-65	195/ 2W- 50 2 S

150

:

. 15. 1

: 5

. .

1111

* Results are less than the amount indicated.

TABLE E-2
ANALYSES OF TRACE ELEMENTS IN GROUND WATER

	Zinc (Zn)			13**	13*	13*		13*		13*		133****		13*		13* 13* 19* 107 13*		13*
	Vanadium (V)			5.5	10.0	*19.0		*79.0 *79.0		100		0.67* 3.5 4.8 8.0		0.67		0.67 0.67 0.067 0.067 0.067 0.067 0.067		7.3 5.0 3.1*
	Titonium (Ti)			1.3*	1.3**	***		1.3*		1.3*		1.0% 7.3 7.3		1.3*		*-*******		1.3*
	Lead (Pb)			***	* * *	* * *		* * * * * * * * * * * * * * * * * * * *		3.3*		****		3.3*		*******		* * *
	Nickel (Ni)			0.67*	0.67**	0.80		*19.0		3.5		0.67** 1.9 1.7 6.7		1.4		0.007 0.07 0.03 0.03 0.05		28 0.67* 0.67*
	Molyb- denum (Mo)			4.3 0.67* 4.7	0.67*	2.1		0.67*		8.7		0.67* 2.5 2.9 0.67*		*29.0		0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00		6.7
billion	Manga- nese (Mn)			***0	3.3*	127		176 34		27		12 (00000** (667** (00000**		3.3*		07.00 07.00		1400** 3.3* 3.3*
per	Germa-			*L9°0	*79.0	0.67*		*29*0		*29*0		0.67* 0.67* 0.67* 0.67*		*19.0		*********		*79.0
s in parts	Gallium (Ga.)			13*	13***	13*		13*		13*		*****		13*		**********		13*
Constituents	Iron (Fe)			5.9 1.6 6.7	* * * *	***		8.7		21		10 9.3 17 73 16		8.7		287 287 287 5.7 5.7 4.3		26.0
ပိ	Copper (Cu)			****	***.	3°3*		***		3.3*		* * * * * * * * * * * * * * * * * * * *		3*3*		********		****
	Chro- mium (Cr.)			****	***	***		***		3.3*		*****		3.3*		*******		****
	Cobalt (Co)			* * * *				****		3.3*		* * * * *		3.3*		* * * * * * * * * * * * * * * * * * *		* * * * * * * * * * * * * * * * * * * *
	Cadmium (Cd)			****	***	***		3.3*		3.3*		*****		3.3*		*******		* * * * * * * * * * * * * * * * * * * *
	Bismuth (Bi)			*29°0 *29°0 *67*	*79.0	*19.0		*19.0		*19*0		*76.0 *76.0 *76.0 *76.0		*19*0		**********		0.67* 0.67*
	Beryl- lium (Be)	3		#*** 1:3*	***	**.°.1	88	1.3*	parea	1.3*		*****		1.3*		********* ***************************		1.3* 1.3*
	Alumi- num (Al)	- Court-ton	rea	3.3*	4.3 4.0 4.0	18	ic Subar	***	logic Su	3.3*	ubarea	10 113 123 144 123	Subarea	3.3*	rea	0,024,024 6,024,024	Subarea	25 9.3 8.0
	DATE	CONTINCE (II)	rologic Subarea	6-29-65 7-20-65 2- 4-65	2- 4-65 2- 4-65 2- 4-65	2- 4-65	as Hydrologic	8-26-65	Rosa Hydro	8-18-65	lydrologic St	7-14-65 7- 9-65 7- 9-65 7- 9-65	Hydrologic	9- 2-65	rologic Subarea	8-12-65 8-12-65 8-12-65 8-12-65 7-14-65 7-14-65 7-8-65	Hydrologic	5-13-65 6-30-65 7- 6-65
L b d d	NUMBER	TOG ANGELEG DATAGE D	U-03.El Eastern Hydro	4N/16W - 21D1 S 4N/17W - 12B4 S 5N/16W - 71 S	- 1201 121 121	12K1 S 6N/17W - 36B1 S	U-03.F2 East Las Pos	3N/19W - 19P2 S 3N/20W - 24R1 S	U-03.F3 Arroyo Santa	2N/20W - 25D5 S	U-05.A2 West Coast	38/144 - 35M6 S 58/13W - 2K8 S 141 S 11H2 S 11H3 S	U-05.A3 Santa Monica	IS/15W = 32A5 S	U-05.A5 Central Hydr	25/13W - 32R11S 35/11W - 200 6 5 20R1 8 35/12W - 503 3 1984 8 15/11W - 682 5 45/11W - 115 5	U-05.Bl San Fernando	111/13W - 24F2 S 111/14W 9H4 S 111/15W 1K2 S

				_				-												
	Zinc	(Zu)			**64		* * © & d d		* * * * * * * * * * * * * * * *	យុស្តិកិត្តិ សូកាត់គឺ សូកាត់គ	****			* *			•		9.	
	Vonadium	(V)			11		10.3		11.01	0000	ط بر از در در در در در در در در در در در در در			14					:	
	Trianium	(Ti)			1.3*		1.3*		* * * *	****	****			*, *			* .:		.;	
	Lead	(PP)			***		**		***	****	****			* *			~ ~		*.	
	Nickel	(NI)			0.67*		0.80		0.9	0.67* 0.07* 0.67*	1.2 0.67* 1.5			**********			*. 2.0		2.0	
	Molyb-	(Mo)			6.0		*19.0		33.3	2.0 0.67* 0.67*	5.6 0.67* 0.67*		_	0 t-			05. 05.		e	
ion	Manga-	(Mn)			***		* * *		* * * *	****	****			1 (2)			\$. 3 *E. 3		* · · · ·	
s per billion	Germa-	(Ce))			0.67*		0.67*		0.67* 0.67*	0.67* 0.67* 0.67*	0.67* 0.67* 0.67*			5.5			*T3.0		1	
in parts	Gallium	(09)			13*		13*		13.4.	*****	****			13*			*.		*00	
Constituents	Iron	(Fe)			4.9		6.3		5.5	7.3	000°			***			4.7		14	
Ö	Copper	(Cu)			***		***		* * * *	****	* * * * * * * * * * * * * * * * * * * *			* * * * * * * * * * * * * * * * * * * *			3.3*		\$.5	
	Chro-	(Cr.)			***		****		****	****	****			5.7			*C *C		\$.0	
	Cobalt	(00)			₩. ₩. ₩. ₩.		***		* * * *	****	****			5.0*			3.3*		\$ 5.0	
	Cadmium	(p)			* * *		**		***	****	****			***			3.3*		5.04	
	Bismuth	(Bi)			*19.0		*79.0		*L9°0 *L9°0 *L9°0	*79.0 *79.0 *79.0	\$5.0°.67*			0.67* 0.67*			0.67*		3.5	
	Beryl-	(Be)	(g)		1.3*		1:3	area	***:	1:3*	1.3**			1.3*			1.3*		\$.9	
	A lumi-		continued)	Subarea	0.0	Subarea	13	ric Sub	8.5.3	8.0 11 6.7	110 100 6.7	THOSE (X)		5. v		mi	e.3	263	e	
	SAMPLED		OVINCE (U) (ological Sub	6-30-65	Hydrologic S	7-2-65	Galriel Hydrolb	7- 9-65 7- 7-65 7-28-65	7-13-65 7-13-65 7-13-65 7-7-65	7-28-65 7- 2-65 7- 2-65 7- 2-65	AINAGE FROM	ologic Unit	11-10-64	INCE (X)	ogic Jularda	7-13-65	vologic Subares	3-20-65	
STATE	0		LOS ANGELES DRAINAGE PRO	U-05.B4 Verdugo Hydro	1N/13W - 18N1 S 20G1 S	U-05.03 Santa Anita H	1N/11W - 21C7 S 21H3 S	U-05.Dl Main San Gabr	15/104 - 28K5 S 3004 S 3303 S	15/11W - 243 S 12Ct 3 13F1 S 19Ft S	28/ 94 - 1954 S 28/114 - 541 S 542 S 5816 S	COLORADO RIVER BASIN DR	X-07.00 Designan Hydr	2N/TE - 3A1 S 3B1 S	SANTA ANA DRAINAGE PROV	Y-01.Bl Chino Hydrol	13/6W - 33D1 S	Y-01.C2 Redford Hydr	45/6W - 22D1 S	

TABLE E-3

RADIOASSAYS OF GROUND WATER

CENTRAL COASTAL DRAINAGE PROVINCE (T)

State	Date	Pic	cocuries per liter ^a	
		Gross Alpha	Solid Alpha	Dissolved Alpha
Well Number	Sampled	Gross Beta	Solid Beta	Dissolved Beta

T-09.IO Pozo Hydrologic Subunit

30S/15E-10G2 M 10- 4-64 0.72 ± 2.09 0.18 + 10.80

T-10.B2 Chorro Hydrologic Subarea

298/11E-32M1 M 10- 7-64 5.65 ± 2.50 -10.31

T-10.B4 San Luis Obispo Creek Hydrologic Subarea

31S/12E-32D2 M 10-14-64 0.00 -5.10

T-10.B6 Pismo Hydrologic Subarea

32S/12E-13J1 M 10-13-64 211.00 ± 68.60 23.82 + 14.38

T-10.Cl Arroyo Grande Hydrologic Subarea

328/13E-32H1 M 10-14-64 -1.22 -10.34

T-11.00 Carrizo Plain Hydrologic Unit

30S/18E-2N1 M 10- 7-64 3.60 ± 3.42 -8.04

TABLE E-3

RADIOASSAYS OF GROUND WATER

LOS ANGELES DRAINAGE PROVINCE (U)

State	Date	Pic	ocuries per litera	
Well Number	Sampled	Gross Alpha Gross Beta	Solid Alpha Solid Beta	Dissolved Alpha Dissolved Beta
	U-02.C1 U	pper Ojai Hydrolo	gic Subarea	
4 N /22W- 9Q2 S	10-28-64		0.41 ± 0.81 -3.10	4.15 ± 6.23 15.21 + 13.72
4N/22W-12N1 S	10-28-64		-0.26 -1.08	1.21 ± 2.56 -5.34
	U-02.C2 0	jai Hydrologic Su	barea	
4N/23W-11D1 S	10-22-64		0.07 ± 0.73 -10.53	- <u>1.13</u> -1 2.37
4N/23W-12H2 S	10-27-64		0.15 ± 0.63	-2.52 -16.79
	U-03.A2 P	leasant Valley Hy	drologic Subarea	
2N/21W-23K4 S	12-21-64	-2.73 ⁺ 1.13 -8.44 + 10.61		
	U-03.D1 P	iru Hydrologic Su	barea	
4N/19W-33D4 S	12- 1-64	6.82 ± 11.76 13.30 ± 14.47		
	U-03.F3 A	rroyo Santa Rosa	Hydrologic Subares	1
2N/20W-24E1 S	10-28-64	8.25 ± 6.02 -3.93		•
	U-05.A2 W	est Coast Hydrolo	gic Subarea	
3S/14W-25K4 S	10-26-64	-0.86 2.16 <u>+</u> 10.95		
3S/14W-27C1 S	10-26-64	<u>-0.30</u> <u>-3.39</u>		
3S/14W-30H2 S	11- 2-64		-0.41 -3.48	<u>-1.43</u> <u>-6.25</u>

TABLE E-3

RADIOASSAYS OF GROUND WATER

IOS ANGELES DRAINAGE PROVINCE (U) (Cont'd)

State	Date	Pic	cocuries per liter	
Well Number	Sampled	Gross Alpha	Solid Alpha	Dissolved Alpha
Well Mulliper	Samplea	Gross Beta	Solid Beta	Dissolved Beta

U-05.A2 West Coast Hydrologic Subarea 45/14W- 9Q1 S 10-30-64 1.67 + 3.60 0.56 + 11.97

4S/14W-16L4 S 10-29-64 5.13 ± 4.46 -13.22

TABLE E-3

RADIOASSAYS OF GROUND WATER

SAN DIEGO DRAINAGE PROVINCE (Z)

		Dia	cocuries per litera	
State Well Number	Date Sampled	Gross Alpha Gross Beta	Solid Alpha Solid Beta	Dissolved Alpho Dissolved Beta
	Z-01.CO	San Clemente Hydr	ologic Subunit	
9S/7W-10A1 S	11-23-64		-0.07 -3.19	1.69 ± 2.64 17.41 ± 11.97
95/7W-10A2 S	11-23-64		0.30 ± 0.81 6.20 ± 7.94	1.49 ± 3.27 -21.17
95/7W-10A3 S	11-23-64		0.48 ± 0.81 -9.91	0.77 ± 2.61 5.49 ± 10.91
95/7W-10H1 S	11-23-64		-0.15 4.35 + 8.78	-0.12 3.65 ± 11.11
	Z-01.DO S	an Mateo Hydrolog	ic Subunit	
9S/7W-11A1 S	11-23-64		<u>-0.26</u> <u>-6.70</u>	<u>-1.92</u> -12.86
95/7W-14G1 S	11-23-64		0.07 ± 0.73 -4.08	0.75 ± 3.29 1.61 ± 10.99
	Z-02.C2 M	urrieta Hydrologi	c Subarea	
8s/3W-12N5 s	12- 2-64		-0.59 4.90 <u>+</u> 8.88	-0.43 7.12 <u>+</u> 12.33
	Z-02.C3 F	rench Hydrologic	Subarea	
6s/2W - 28G3 s	12- 2-64		<u>-0.59</u> <u>-2.26</u>	0.86 ± 1.71 -8.31
	Z-02.C5 D	omenigoni Hydrolo	gic Subarea	
6s/2W- 3R2 s	12- 2-64		0.26 ± 0.73	-0.19 7.47 ± 11.34
	Z-02.D1 At	ıld Hydrologic Su	barea	
7S/2W-10D1 S	12- 2-64		0.33 ± 0.81 -0.67	10.07 ± 1.67 2.54 + 9.55

TABLE E-3

RADIOASSAYS OF GROUND WATER

SAN DIEGO DRAINAGE PROVINCE (Z) (Cont'd)

State	Data	Pic	ocuries per litera	
Well Number	Date Sampled	Gross Alpha Gross Beta	Solid Alpha Solid Beta	Dissolved Alpha Dissolved Beta
-,	Z-02.D4 T	ucalota Hydrologic		
75/1W-12HI S	12- 2-64		0.07 ± 0.63 -0.12	4.59 ± 6.49 12.05 ± 13.47
	Z-02.E2 P	echanga Hydrologic	Subarea	
8s/2W-20B4 s	12- 2-64		3.65 ± 5.31 -0.93	
<u> 2</u>	2-02.Fl Lancas	ster Valley Hydrole	ogic Subarea	
85/1E- 7Q4 S	12- 2-64		-0.59 -7.80	<u>0.53 ± 4.47</u> -2.00
	Z-02.G1 L	ower Coahuila Hydro	ologic Subarea	
75/2E-32J1 S	12- 3-64		0.71 ± 0.89 -0.26	0.98 ± 1.53 7.28 ± 10.48
	Z-03.A1 M	ission Hydrologic	Subarea	
11S/4W- 4N1 S	11-19-64		-0.04 8.05 <u>+</u> 8.58	5.51 ± 5.63 3.55 ± 13.04
115/4W- 6R4 S	11-19-64		<u>-6.25</u> -3.33	-0.52 10.87 <u>+</u> 8.97
115/4W- 8K1 S	11-19-64		0.26 ± 0.73	21.43 ± 44.72 10.21 ± 13.32
115/4W- 8N3 S	12-23-64		0.59 ± 0.96 6.29 ± 8.85	2.34 ± 2.58 1.48 + 11.06
11S/4W-18L3 S	12-23-64		0.30 ± 0.81 -1.86	-35.00 2.37 <u>+</u> 15.03
	Z-03.C1 W	arner Hydrologic S	ubarea	
115/3E- 3N1 S	12- 3-64		0.15 ± 0.64 -9.28	-0.46 9.48 <u>+</u> 10.59

TABLE E-3

RADIOASSAYS OF GROUND WATER

SAN DIEGO DRAINAGE PROVINCE (Z) (Cont'd)

CALA	Dete	Pi	cocuries per litera	
State Well Number	Date Sampled	Gross Alpha Gross Beta	Solid Alpha Solid Beta	Dissolved Alpha Dissolved Beta
	Z-04.B1 C	arlsbad Hydrologi	ic Subarea	
118/4W-33F1 S	11-19-64		0.45 ± 0.81 9.33 ± 8.73	-8.00 2.32 <u>+</u> 13.58
	Z-04.C1 A	gua Hedionda Hydi	rologic Subarea	
12S/4W-10H3 S	11-19-64		0.11 ± 0.63 2.42 ± 8.71	<u>-5.22</u> -1.04
	Z-06.A0 S	Soledad Hydrologic	Subunit	
145/3W-1 9 Q1 S	11-19-64		-0.45 1.07 + 9.43	4.65 ± 7.75 29.52 + 15.10
	Z-07.A2 S	Santee Hydrologic	Subarea	
15S/1W-28Q3 S	11-18-64		-0.22 0.03 <u>+</u> 8.62	3.33 ± 8.17 2.29 ± 12.49
	Z-07.A3 E	Cl Cajon Hydrolog	ic Subarea	
15S/1E-31R1 S	11-18-64		<u>-0.07</u> <u>-4.46</u>	$\frac{7.12 \pm 6.25}{12.97 \pm 13.25}$
168/1W- 1G1 S	11-18-64		-1.78 10.00 + 28.67	-0.52 0.43 <u>+</u> 8.64
16S/1W- 2K6 S	11-18-64		<u>-0.33</u> -1.27	3.60 ± 7.84 10.84 ± 14.16
16S/1W- 3C2 S	11-18-64		<u>-0.30</u> <u>-7.13</u>	$\frac{6.33 \pm 6.00}{7.35 \pm 11.51}$
16S/1W-11P4 S	11-18-64		<u>-4.37</u>	2.22 ± 9.43 8.37 ± 30.85
16s/1W-12J3 S	11-18-64		-0.22 -1.86	6.15 ± 16.85 7.27 ± 30.30
	Z-09.A2	Sweetwater Hydrol	ogic Subarea	
16s/1W-15K8 s	11-18-64		0.74 ± 0.63 -2.62	4.44 ± 10.89 22.17 ± 34.00

TABLE E-3

RADIOASSAYS OF GROUND WATER

SAN DIEGO DRAINAGE PROVINCE (Z) (Cont'd)

State	Date	Pico	ocuries per litera										
		Gross Alpha	Solid Alpha	Dissolved Alpha									
Well Number	Sampled	Gross Beta	Solid Beta	Dissolved Beta									
	Z-10.C3 Jamul Hydrologic Subarea												
17S/1E-10G1 S	11-17-64		0.74 + 0.63	5.96 ± 5.44									
210/2020			3.77 ± 8.48	5.96 ± 5.44 9.25 ± 11.38									
	(7 3 3 A 3 M	is Turne Understand	Cubana										
	Z-II.AI T	ia Juana Hydrologic	Subarea										
18S/2W-35L1 S	10-15-64		2.01 + 1.02	7.45 ± 6.26									
,			-0.17	7.45 ± 6.26 0.25 ± 11.46									
195/2W-1M13 S	10-15-64	/	-0.26	4.00 ± 9.80									
1)0/1: 1115	10 1		1.16 + 8.62	99.04 + 34.61									
, ,			_	_									
19S/2W-4A10 S	10-15-64		-0.75 3.90 + 9.94	51.36 ± 99.59 6.23 + 14.56									
			3.90 ± 9.94	0.23 ± 14.70									
19S/2W- 5Q2 S	10-15-64		0.07 ⁺ 0.57	-4.00									
			-1.07	-25.61									

TABLE E-4

ANALYSES OF SYNTHETIC DETERGENTS IN GROUND WATER

State	Date		per Million	State	Date	Parts p	per Million
Well Number	Sampled	MBAS d	P04	Well Number	Sampled	MBAS 0s ABS	P04
CENTRAL COASTAL DRAINAGE PROVINCE	E PROVINCE (T)			LOS ANGELES DRAINAGE PROVINCE	DVINCE (U)	(cont'd)	
T-09.HO Paso Robles Hyd	Hydrologic Subunit			U-05.A5 Central Hydrologic	ric Subaree		
	5- 4-65	0.20	0 10	28/12W-25F10 S	5-0-65	0.10	00.
	5- 4 65	0.40	0.00		7-20-65	0.03	0.00
M 5401-	5-4-65 5-4-65	0.00	0.00	i i	59-02-0	0.02	0.10
-21D1 M	5-6-65	0.70	0.10	51 × 355	7.20.65	0.07	6,0
	5- 6-65	0.50	1 40	-26E 3 B	2-0-6	0.0	3 8
-33E2 N	5-28-65	09.0			7-20-65	0.0	0.0
-3302 M	5- 6-65	0.00	0.20		9-20-65	0.0	9.00
E :3:11.681 23 F3.12 001	(11) SOUTHWEST			-28A 4 S	2- 9-65	0.0	0.70
	OVIEW (O)				7-20-65	0000	0.10
U-05.A5 Central Hyarolo	oloric Subarea			0 CT.C.	CAT 2-0	0000	1.20 50
				1	7-20-65	0.0	28
25/11W-30Q1 S	7-20-65	6.8	0.04		3-23-65)c	
	7-27-65	0.04	0.05	38/12W- 1K 1 S	7-20-65	15.0	000
	7-29-65	0.0 10.0	0.08		9-29-65	0.04	0.05
	7-20-65	0.04	90.0	-11E : 3	7-20-65	0.01;	00.0
w o	7-20-65	70.0	0.02		7-29-65	o.0	00.00
	1.0	0000	0.80	TAHORTAN DRATMAGE PROVINCE	(E)		
,	7-20-65	0.03	0.00				
	1-27-65	0.0	0.00	W-28.E0 Lower Moleve Branchogic Submit	rologic Sub	unit.	
-2455 S	2- 1-65	5.12	0.30				
	7-20-65	0.04	0.05	3	2-10-65	3.16	1
	59-15-1	0.03	0.00	- 9H 1 S	2-10-65	0.44	1

See page 6. Methylene blue active substance as alkyl benzene sulfonate. d

TABLE E-4
ANALYSES OF SYNTHETIC DETERGENTS IN GROUND WATER

per Million	P04			1	!	1 1	!	1	;	1 1	1 8	:	;	1 2	!	1 1	1	1	t t				1	1			! !	
Parts p	MBAS as ABS	g		0.05	00.00	0.02	0.05	%.0	0.13	0.20	0.16	90.0	0.13	90.0	0.03	0.05	0.04	0.01	0.03				0 0	0000		70.0	0.17	
Date	Sampled	INCE (Y) cont'd	Subarea	3-11-65	9-30-65	9-30-65	3-11-65	3-11-65	3-8-65	3- 9-65	3-8-65	3-8-65	3- 8-65	10-29-64	3-8-65	3-8-65	3-8-65	3- 8-65	3-8-65		Hydrologic Subarea		3-5-65	3- 5-65	20-10-0	2 5 65	3- 5-65	
State	Well Number	SANTA ANA DRAINAGE FROVINCE (Y)	Y-01.Bl Chino Hydrologic	18/7W-26Pl S	-26Pl S	ſΩ	ďΩ	മ	ťΩ	Ø	Ω	ಭ	Ω.	מ	ſΩ	ĽΩ	S	ĽΩ			Y-01.B5 Temescal Hydrol		38/6W-28LL S				-2234 8	
per Million	P04			į į	!	1	1	!	Į I	1	1	1 \$	1	1 1	-	1 1				1	1	1 1	1 1	! !	1 1	1		
Parts pe	MBAS os ABS		Subarea	0.10	0.10	0.10	0.10	0.10	0.20	0.00	0.00	0.10	0.05	00.00		0.10				0.04	0.03	0.03		20.0	0.06	0.04	0.02	
Date	Sampled	PROVINCE (Y)	Plain Hydrologic	1-25-65	1-25-65	1-25-65	1-25-65	1-25-65	1-25-65	1-25-65	1-25-65	1-25-65	12-23-64	12-18-64	1-25-65	1-25-65		c Subarea		3-8-65	3-8-65	3- 0-65 7-0-0-0	3-1-6-8	9-30-65	3-11-65	9-29-67	9-30-65	
State	Well Number	SANTA ANA DRAINAGE PROV	Y-01.Al East Coastal Pl	58/11W-21M7 S				-21N4		-ZIN6	-SINT		- 28D5 - 28D5			-29A7 S		Y-01.Bl Chino Hydrologic					-23k1 5					

TABLE E-4

ANALYSES OF SYNTHETIC DETERGENTS IN GROUND WATER

P04 per Million 11111199819999 MBAS os ABS Parts cont'd. Y-Ol.B7 Riverside Hydralogic Subarea Sampled 10- 2-64 10- 2-64 10- 2-64 10- 2-64 3-19-65 3-19-65 5-19-65 5-19-65 7-19-65 8- 5-65 10- 2-64 3- 9-65 10- 2-64 3- 9-65 10- 2-64 3- 9-65 10- 2-64 3- 9-65 10- 2-64 3- 9-65 10- 2-64 3- 9-65 10- 2-64 3- 9-65 10- 2-64 3- 9-65 10- 2-64 3- 9-65 10- 2-64 3- 9-65 10- 2-64 3- 9-65 Date SANTA ANA DRAINAGE PROVINCE (Y) Well Number ťΩ S ľΩ 02 02 ľΩ S State 30L 4 18/4W-30D 6 0 -32E11 240 1 Q H 1S/5W-24E 1 314 -25A per Million P04 1 1 1 1 Parts MBAS as ABS 0.00 SAITA AIM DRAINAGE PROVINCE (Y) cont'd. 3-5-65 9-21-65 3-5-65 9-21-65 ic Subarea Y-01.B5 Temescal Mydrologic Subarea 3-25-65 5-19-65 10-1-64 3-19-65 10-1-64 3-25-65 3-19-65 10-1-64 3-25-65 3-19-65 3-1 Sampled Date Y-D1. B7 Riverside Hydro Well Number State (2) -28Bl 3S/TW-22L1 -28N5 1S/4W-28L2 29H3 -28R1 -29HL 2991 -2963

TABLE E-4
ANALYSES OF SYNTHETIC DETERGENTS IN GROUND WATER

per Million	PO4			00.00	0.04	00.00	500	90.0	00.00	0.14	1	1	10		0.02	0.04	9.0	0.05	90.0	0.04	00.00	00.00	0.10	0.01	0.04	
Parts pe	MBAS ds ABS	'd.		60 0	0.13	60.0		0.12	0.03	0.12	0.18	0.31	0.00) C	0.53	0.60	09.0	0.04	0.03	0.08	800	0.05	0.13	0.09	0.10	
Date	Sampled	INCE (Y) cont'd.	logic Subarea	10- 1-64	3-19-65	10-1-64	5-19-65	8-9-65	10- 1-64	3-19-65	10- 2-64	3- 9-65	9-20-65	19-90-8	14- 1-65	5-19-65	8-10-65	10- 5-64	3-17-65	5-20-65	8- 9-65	10- 1-64	3-17-65	5-19-65	8- 5-65	
State	Well Number	SANTA ANA DRAINAGE PROVINCE	Y-01. B7 Rivered de Hydrologic Subarea	28/4W- 6K2 S		- 692 s			- 6R5 S		2S/5W- 1J2 S		מ ומרו –					-11ML S				-12E2 S				
per Million	P04			3.50	0.23	20.00	1	0.02	0.12	0.00	1	0.18	0.10	0.0	0.70	0.00	1	1	0.04	90.0	1	1	0.04	0.08	0.04	
Parts p	MBAS as ABS	۵,		0.36	0.36	0,32	0.36	94.0	0.36	0.20	0.30	0.40	000	3 6	0.16	0.00	0.44	0.48	0.35	0.36	09.0	0.52	0.14	0.14	0.16	
Date	Sampled	PROVINCE (Y) cont	logic Subarea	3-10-65	5-19-65	10-2-64	3- 9-65	3-19-65	5-17-65	8- 5-65	9-20-62	5-17-65	3-18-65	8-6-65	12- 3-64	3- 5-65	10-2-64	3- 9-65	3-18-65	5-17-65	8- 5-65	9-20-65	10-1-64	5-17-65	8- 9-65	
State	Well Number	SANTA ANA DRAINAGE PROV	Y-01. B7 Riverside Hydrologic Subarea	1S/5W-25L2 S		-2581						-25R4 S			-36A1 S		-36B6 S						2S/4W- 5C1 S			

TABLE E-4

ANALYSES OF SYNTHETIC DETERGENTS IN GROUND WATER

A	State	Date	Parts pe	per Million	State	Date	Parts p	per Million
SANITO AND TRAININGE FROM THOSE (Y) cont d. SANITO AND DEALINGE FROM THOSE (Y) cont d.	Well Number	Sampled	MBAS as ABS	P04	Well Number	Sampled	BAS	P04
Y-01. BT Riverside Hydrollogic Subarea 28/5W-22D1 S 10-2-64 0.36 -1-28D1 S 10-5-64 0.02 0.03 0.03 0.03 0.03 0.04 0.25 0.0	1	TINCE (X)	d.		ANA	(X)	d.	
28/5W-12C1 S 10-1-64 0.36 28/5W-2D1 S 10-5-64 0.00 3-10-2-64 0.23 28D1 S 3-18-65 0.00 3-18-65 0.00 3-18-65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.		ologic Subarea			Y-01.B7 Riverside Hydro	logic Subarea		
10-2-64 0.23 12811 S 10-65 0.20 0.042811 S 13-18-65 0.06 -12811 S 10-65 0.00 0.002811 S 13-18-65 0.06 -12812 S 10-1-64 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.0			0.36	1		10 10 01	8	
-12Fil S 10-1-64 0.00 0.04 -26Dl S 3-25-65 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.0		1000			,	10-0-04	20.0	3,
-1287 S -19-65 0.20 0.04 -28B1 S 3-25-65 0.05 0.04 -29B4 S 10-5-64 0.05 0.04 0.00 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.06 0.04 0.05 0.06 0.04 0.05 0.06 0.04 0.05 0.06 0.06 0.04 0.05 0.06 0.04 0.05 0.04 0.06 0.04 0.06 0.04 0.05 0.04 0.06 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.06 0.06 0.06 0.06 0.06 0.06 0.06		3-17-65	0.13	0.06		3-1C-05	0.00	96
-12FI S 10-65 0.00 0.04 -29EH S 10-5-64 0.05 -12FI S 10-5-64 0.05 -12FI S 10-1-64 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.		5-19-65	0.50	0.04		3-25-65	300	5000
1281 S 10-1-64 0.00 0.00 0.00 3-18-65 0.16 5-19-65 0.01 0.04 0.00 0.00 0.00 0.00 0.00 0.00		8-10-65	0.20	0.04		10-5-01	0.05	
3-17-65 0.01 0.04 -1272 S -19-65 0.03 0.06 -1272 S -19-65 0.04 -1272 S -19-65 0.04 -1272 S -19-65 0.04 -1272 S -19-65 0.04 -1272 S -19-65 0.04 -1272 S -19-65 0.04 -1272 S -19-65 0.04 -1272 S -19-65 0.04 -1272 S -19-65 0.04 -1272 S -19-65 0.04 -1272 S -19-65 0.04 -1272 S -19-65 0.04 -1272 S -19-65 0.04 -1272 S -19-65 0.04 -1272 S -19-65 0.04 -1272 S -19-65 0.04 -1272 S -19-65 0.04 -1272 S -19-65 0.04 -1272 S -19-65 0.04 -1273 S -19-65 0.04 -1273 S -19-65 0.04 -1273 S -19-65 0.04 -1273 S -19-65 0.04 -1273 S -19-65 0.04 -1273 S -19-65 0.04 -1273 S -19-65 0.04 -1273 S -19-65 0.05 -1274 S -19-65 0.05 -1274 S -19-65 0.05 -1274 S -19-65 0.05 -1274		10- 1-61	0.00	00.00		3-18-65	0.10	0.40
-1282 S 10-19-65 0.08 0.00		3-17-65	0.01	0.0		5-21:-65	0.12	3.00
8 - 5-65 0.04 0.00		5-19-65	0.03	30.0		59-01-3	0.10	0.00
S 10-1-64 0.06 0.00		8- 5-65	0.04	0.01				
5-17-65 6.36 6.004 6.002 8.5-17-65 6.34 6.002 8.5-201 8 7-2010 8-2010 8 7-20-65 6.002 6.002 6.002 6.003 6.003 6.003 6.003 6.003 6.004 6.003 6.004 6.005 6.004 6.005 6.004 6.005 6.005 6.006 6.006 6.006 6.006 6.007 6.007 6.006 6.00		10-1-64	90.0	0.00	Y-01.C2 Bedford Hydrold			
8 - 5-65 0.34 0.00 - 22D1 S 3-20-65 0.12 3-17-65 0.02 0.00 3-17-65 0.06 0.00 8- 9-65 0.00 0.00 10- 5-64 0.05 0.08 10- 5-64 0.05 0.08 10- 5-64 0.05 0.08 10- 5-65 0.04 0.00 10- 5-65 0.05 0.00 10- 5-65 0.05 0.00 10- 5-65 0.05 0.00 10- 5-65 0.05 0.00 10- 5-65 0.05 0.00 10- 5-65 0		3-17-65	0.39	0.10		000	(
S 10- 5-64 0.02 0.00		8 5-67	0.30	# 00		3-20-65	50.00	1
3-17-65 0.02 0.10		10-5-64	0.02	0.02		3-60-6.7	J	!
S 10-5-65 0.06 0.08 1S/4W-21L3 S 3-19-65 0.46 0.09 0.09 0.18 0.09 0.18 0.18 0.18 0.09 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18		3-17-65	0.05	0.10			rea	
S 10-5-65 0.10 0.00 18/4W-21L3 S 3-19-65 0.16 0.05 0.18 0.18 0.05 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18		5-20-65	90.0	0.00				
8 - 3-18-65 0.05 0.18 0.05 0.18 0.05 0.18 0.05 0.07 0.18 0.00 0.00 0.10 0.10 0.10 0.10 0.10		8- 9-65	0.10	0.08		3-19-65	0.15	0.04
3-13-65 0.04 0.12 -21R1 S 2-6-65 0.07 0.04 0.10 0.10 0.10 0.04 0.10 0.04 0.10 0.05 0.07 0.07 0.06 0.00 0.00 0.10 0.00 0.00 0.00 0.00		10- 5-64	0.05	0.18		5-18-65	0.56	0.20
8 -9-65 0.08 0.10 -21R1 S 2.00 8-6.4 2.00 3-10-5-64 2.00 3-10-5-65 0.05 0.00 0.00 3-10-65 0.07 3-10-65 0.06 0.00 8-65 0.00 8-6		12-10-02 03-10-02	0.03	0.12		8-3-65	0.47	0.00
3-16-55 0.05 0.00 3-16-55 0.07 3-16-55 0.07 3-16-55 0.07 3-16-55 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0		2-44-07	0.04	07.0		10-6-64	2.00	C. (I)
3-18-65 0.05 0.00 3-18-65 2.00 3-18-65 2.00 3-18-65 2.00 3-18-65 2.00 3-18-65 2.00 3-18-65 2.00 3-18-65 2.00 3-18-65 2.00 3-18-65 2.00 3-18-65 2.00 3-18-65 2.00 3-18-65 2.00 3-18-65 2.00 3-18-65 2.00 3-18-65 2.00 3-18-65 2.00 3-18-65 2.00 3-18-65		2-6-60	00.0	07.0		2- 4-65	0.7	1
0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06		10-5-65	0.00	0.00		3-18-65	2.00	D. 04
0.05 0.06 -21R3 s 11-30-64 0.12 0.12 0.05 0.06 0.06 0.06 0.12 0.12 0.12 0.06 0.06 0.12 0.12 0.06 0.12 0.12 0.06 0.12 0.12 0.12 0.06 0.12 0.12 0.06 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12		3-10-07 70-07	10.0	9000		5-36-59	(i)	0.05
0.06 0.06 -21R3 S 11-30-64 0.12 3-1-65 0.08 5-1-65 0.08 5-1-65 0.08		2-20-62	3	0.00		8- 0-65	2:30	0.00
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		2-10-65	0.06	90.0		11-30-64	0.12	1.24
						3-1-65	0.0	3.00
						- 10	57	O. C.

TABLE E-4
ANALYSES OF SYNTHETIC DETERGENTS IN GROUND WATER

State	Date	Parts p	per Million	State	Date	Parts pe	per Million
Well Number	Sampled	MBAS as ABS	P04	Well Number	Sampled	MBAS as ABS	P04
SANTA ANA DRAINAGE PROV	PROVINCE (Y) cont	ď.		SANTA ANA DRAINAGE PROV	PROVINCE (Y) cont'd	10.	
Y-01.D4 Colton-Rialto	Hydrologic Subarea	ea		Y-01.E2 Bunker Hill Hyd	Hydrologic Subarea	B	
15/4W-21R4 S	11-30-64	0.03	0.16		3- 9-65	0.12	1
	3- 1-65	0.05	0.20		9-59-62	0.04	1
	6- 1-65	0.02	0.14		3-25-65	0.00	00.00
	2-2-65	0.03	0.12		9-29-65	0.00	-
-21K) 5	77777		38		79-67-0	0.14	ĝ E
	6-1-65		0.04	TANK D	7-7-67	0.02	10
	8- 2-65	0.08	00.00		10-6-64	300	0000
-21R6 S	11-30-64	0.04	0.00		5-17-65	0.10	0.10
	2-26-65	0.02	0.28		8- 9-65	0.09	0.04
	6- 3-65	0.04	0.00	-14J3 S	3-25-65	0.02	0.04
	8- 2-65	0.04	0.02		5-17-65	0,02	0.04
-21R7 S	11-30-64	0.03	0.12		8- 4-65	0.04	0.00
	2-25-65	0.10	00.00	-22A5 S	3-19-65	00.00	0.04
	6- 3-65	0.04	0.14		5-18-65	0.02	0.24
	8- 2-65	0.04	0.18	-22El S	3-19-65	0.02	00.00
-28 G 2 S	3-19-65	0.08	90.0		5-18-65	0.03	00.00
	5-17-65	0.10	00.00		8- 9-65	0" 01	90.0
	8- 9-65	0.10	0.04	-22L5 S	10- 7-64	00.00	0.08
-29Al S	5-17-65	0.04	00.00		3-25-65	0.02	0,12
-29A2 S	3-19-65	0.04	00.00		5-18-65	0°0T	0.08
				-23C2 S	4- 1-65	0.02	0.04
Y-01.E2 Bunker Hill Hyd	Hydrologic Subarea				5-18-65	0.01	90.0
					8-10-65	0.02	0.02
18/3W- 9E2 S	3- 9-65	0.04	1				
-17c3 s	3- 9-65	0.00	1				
	7-67-07	O. 16	-				

TABLE E-4

ANALYSES OF SYNTHETIC DETERGENTS IN GROUND WATER

per Million				0.08	1		1 0	0.00	1	1 1	0000			
Parts p	1	fð.	Subarea	0.14	0.43		0.30	0.30	0.32	09.0	0.10			
Date	Sampled	INCE (Z) cont'd	go Hydrologic	11-18-64	9 ;	1c Subarea	6- 3-65	11-18-64	6- 3-65 ogic Subarea	6- 3-65	11-18-64			
State	Well Number	SAN DIEGO DRAINAGE PROVINCE (Z)	Z-07.Al Mission San Diego	16s/2W-17H1 S	165/3W-21J1 S	2-01.42 Sance nyarotogic	15S/1W-27A5 S -2803 S	-30K2 S	2-07.A3 El Cajon Hydrologic Subarea	15S/1W-28Q4 S	16S/1W-3C2 S			
per Million	P04			0.00	0.00	0.02	0.04	0.08	000	9000	0.00			000
Parts pe	MBAS as ABS	d.		0000		000	0.03	0.01	98	0.03	0.03		Subarea	0.60
Date	Sampled	PROVINCE (Y) cont	1 Hydrologic Subarea	3-25-65	5-17-65	3-18-65	10- 2-65	10- 6-64	5-17-65	3-25-65	2-18-65 8- 9-65 12- 2-64	PROVINCE (Z)	n Diego Hydrologic S	11-18-64 11-18-64 6- 3-65 6- 2-65
State	Well Number	SANTA ANA DRAINAGE PROV	Y-01.E2 Bunker Hill Hyd	15/4W-23D2 S -23J1 S	م کابڑی۔	-23P3 S	-24EL S	-26F1 S		-27B2 S	1N/4w-29F1 S	SAN DIEGO DRAINAGE PROV	Z-07.Al Mission San Die	165/24-9B1 S - 9B2 S - 9C9 S -17D1 S

AADHOFOC PALLES SOUNTED AND SORAKERS

CENTRAL COASTAL DRAINAGE PROVINCE

1-09-00	SALIMAS HYURO UNIT
T-09+H0	PASO ROBLES HYUNO SUBUNIT
1-09-10	POZO HYDRO SUBUNIT
F-10+00	
1-10+A)	CANGRIA HYDRO SUBBRIT
7-1 -A1	
1-1 -A2	ARROYO DE LA CRUZ HYDRO SURANEA
T-1 +43	SAN SIMLON HYDRO SUBAREA
I-contra	SANTA HOSA HYUNU SUBAREA
	VILLA HYURO SUBANEA
7-1 456	CAYUCOS MYONO SUBAREA
7 - 1 - A 7	OLD HYURO S. BAKEA
THE VAR	TORO HYURO SUBARFA
1-1 .4	SAM LUIS OBISPO MYDRO SUBUNIT
TARCAND	MDRRO HYDRO SUBAREA
1-10.81	CHORRO HYDRO SUBARFA
7-1 -03	LOS OSOS HYDRO SUBAREA
T-1 +84	SAN LUIS OBISPO CR MYDRO SUBANE
1-11-55	POINT SAN LUIS HYONG SUBANEA
T-1 +05	PISHO MYURO SUBAREA
T-1 -5 -	TIMUBUL DINGRIP SCHAND GYORRA
7-1-4 1	ARROYD GRANUL HYDRO SUBAREA
2-12000	NIPOHO KESA HYDNO SUBAKEA

-11. CARRIZO PLAIN HYDRO UNIT
-12+00 SANTA MARIA-CUYAMA HYDRO UNIT
1-12+00 SANTA MARIA NYURO SUBUNIT
1-12-80 \$15QUOC MYORO SUBUNIT

1-13-00 SAM ANTONIO MYUKO UNIT 1-14-00 SAMTA YMEE MYONO UNIT 1-14-00 LOMPOC HYONO SUBUNIT 1-14-00 SAMTA RITA MYONO SUBUNIT

T-14-EO HEADWATER MYDRO SUBURIT -15-UD SANTA BAMBARA MYDRO UNIT T-15-AD ARGUELEO MYDRO SUBURIT 1-15-C SUMM COAST MYDRO SUBURIT

SOLETA MYDRO SUBAREA
SANTA BARBARA MYDRO SUBAREA
MONTECITO MYDRO SUBAREA
CARPINIERIA MYDRO SUBAREA

. . . apper makes unit W-SOUTH INDRE UATE Amenda medica (Material Amenda Material Materia Material Material Material

KEY MAP

STATE OF CALIFORNIA THE RESOURCES AGENCY DEPARTMENT OF WATER RESOURCES SOUTHERN DISTRICT

. ...

1-35. K-26.

1 . .

HYDROLOGIC DATA, 1965

NAMES AND AREAL CODE NUMBERS OF HYDROLOGIC AREAS DRADO RIVER BASIN DRAINAGE PROVINCE (X)

F-54-00

1-14.00

1+10-00

1-20,00 WEST SALTON SEA HYDRO UNIT MEAT SALTON SER HYDDO UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AMERICAN THOSE UNIT
AM

DI ATE A KEY MAP LEGEND ORALBAGE PROVINCE BOUNDARY - HYDROLOGIC UNIT BOUNDARY ---- NYOROLOGIC SUBUNIT BOURDARY ---- HYDROLOGIC SUBARFA BOMOGARY 283 AREAL CODE NUMBER WATER BEARING SEDIMENTS THE RESOURCES AGENCY DEPARTMENT OF WATER RESOURCES SOUTHERN DISTRICT HYDROLOGIC DATA, 1965 NAMES AND AREAL CODE NUMBERS OF HYDROLOGIC AREAS COLORADO RIVER BASIN DRAINAGE PROVINCE(X)

KEY MAP

LEGEND

ORAINAGE PROVINCE BOUNDARY
HYDROLOGIC UNIT BOUNDARY
HYDROLOGIC SUBUNIT BOUNDARY
HYDROLOGIC SUBAREA BOUNDARY
AREAL CODE NUMBER
WATER BEARING SEDIMENTS

STATE OF CAUPORNIA
THE RESOURCES AGENCY
DEPARTMENT OF WATER RESOURCES
SOUTHERN DISTRICT

HYDROLOGIC DATA, 1965

NAMES AND AREAL CODE NUMBERS OF HYDROLOGIC AREAS SANTA ANA DRAINAGE PROVINCE (Y)

CAN DIEGO ENAINAGE DROVINCE

T-01-E SAN JAA PHONO UNIT LAUVAH HAWO QHINAT LAUVAH LAUVA

TAS DUNCAS NEW DEMARKS

TAS DUNCAS NEW DEMARKS

SANTA MARKAGALTA MYDDO CMIT

YSIDHAA MYDDO CMIT
YSIDHAA MYDDO CMIT
YSIDHAA MYDDO CMIT
THADON MYDDO CMARKS
MARKAGALTA MYDDO CMIT
THADON MYDDO CMARKS
MYDER YSIDHAA MYDDO SURABEA
JE LUZ HYDDO SURABEA
JE LUZ HYDDO SURABEA
THADON SURBEA
MYDDO SURABEA
MYDDO SURABEA
MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
THADAN MYDDO SURABEA
TH

Z=02.64 Z=02.64 Z=02.80 Z=02.80 Z=02.80 Z=02.81 Z=02.81 Z=02.81 Z=02.81 Z=02.81

Z=03+00

COMES ENTER SUBANCE

CARES HEVER INST

LONG ALTA HEVER STRUMET

VISTA HEVER SUBDATI

VISTA HEVER SUBDATI

VISTA HEVER SUBDATI

AUTA HEVER SUBDATI

AUTA HEVER SUBDATI

AUTA HEVER SUBDATI

AUTA HEVER SUBDATI

AUTA HEVER SUBDATI

CAN HEVER SUBDATI

CAN HEVER SUBDATI

CAN HEVER SUBDATI

CAN HEVER SUBDATI

CAN HEVER SUBDATI

CAN HEVER SUBDATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBBATI

CAN HEVER SUBB

FCCNNSICO NUTURO COMPATA
SAN DIEGOLITO MYROD CHI
SAN DIEGOLITO MYROD CHI
SAN DIEGOLITO MYROD CHI
SAN DIEGOLITO MYROD CHI
SAN DIEGOLITO MYROD CHI
SAN DIEGOLITO MYROD CHI
SAN DIEGOLITO MYROD CHI
MADORE MYROD CHI
MADORE MYROD CHI
MADORE MYROD CHI
MADORE MYROD CHI
MADORE MYROD CHI
MADORE
MYROD CHI
MADORE
MYROD CHI
MADORE
MYROD CHI
MADORE
MYROD CHI
MADORE
MYROD CHI
MADORE
MYROD CHI
MADORE
MYROD CHI
MADORE
MYROD CHI
MADORE
MYROD CHI
MADORE
MYROD CHI
MADORE
MYROD CHI
MADORE
MYROD CHI
MADORE
MYROD CHI
MADORE
MYROD CHI
MADORE
MYROD CHI
MADORE
MYROD CHI
MADORE
MYROD CHI
MADORE
MYROD CHI
MADORE
MYROD CHI
MADORE
MYROD CHI
MADORE
MYROD CHI
MADORE
MYROD CHI
MADORE
MYROD CHI
MADORE
MYROD CHI
MADORE
MYROD CHI
MADORE
MYROD CHI
MADORE
MYROD CHI
MADORE
MYROD CHI
MADORE
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
MYROD
M Z-05+06 Z-05+A1 Z-05+A1 Z-05+A1

KEY MAP

LEGEND

DRAINAGE PROVINCE BOUNDARY MYDROLOGIC UNIT BOUNDARY MYDROLDGIC SUBLINIT BOUNDARY HYDROLOGIC SUBAREA BOUNDARY 283 AREAL CODE NUMBER WATER BEARING SEDIMENTS

STATE OF CALIFORNIA THE RESOURCES AGENCY DEPARTMENT OF WATER RESOURCES SOUTHERN DISTRICT

HYDROLOGIC DATA, 1965

NAMES AND AREAL CODE NUMBERS OF HYDROLOGIC AREAS SAN DIEGO DRAINAGE PROVINCE (Z)

PLATE 6

THIS BOOK IS DUE ON THE LAST DATE STAMPED BELOW

RENEWED BOOKS ARE SUBJECT TO IMMEDIATE RECALL

SEP 25 1972 JUN 22 REC'D

LIBRARY, UNIVERSITY OF CALIFORNIA, DAVIS

Book Slip-55m-10,'68(J4048s8)458-A-31/5

Nº 601065

California. Tepartment of Water Resources.
Bulletin.

PHYSICAL SCIENCES LIBRARY TC824 C2 A2 no.130:65 v.5 appx.F

LIBRARY UNIVERSITY OF CALIFORNIA DAVIS

Call Number:

601065
California. Dept.
of Water Resources.
Bulletin.

TC824 C2 A2 no.130:65

