SQL Target Business Case Study

- 1. Import the dataset and do the usual exploratory analysis steps like checking the structure & characteristics of the dataset
 - 1. The data type of columns in a table

```
SELECT column_name, data_type
FROM target.INFORMATION_SCHEMA.COLUMNS
WHERE table_name = 'customers';
```

Quer	y results			
JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DETAILS
Row	column_name	/	data_type	//
1	customer_id		STRING	
2	customer_unique_	id	STRING	
3	customer_zip_cod	le_prefix	INT64	
4	customer_city		STRING	
5	customer_state		STRING	

```
SELECT column_name, data_type
FROM target.INFORMATION_SCHEMA.COLUMNS
WHERE table_name = 'orders';
```

JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DETAILS
Row	column_name	//	data_type	//
1	order_id		STRING	
2	customer_id		STRING	
3	order_status		STRING	
4	order_purchase_t	imestamp	TIMESTAMP	
5	order_approved_a	at	TIMESTAMP	
6	order_delivered_d	carrier_date	TIMESTAMP	
7	order_delivered_d	customer_date	TIMESTAMP	
8	order_estimated_	delivery_date	TIMESTAMP	

2. Time period for which the data is given

```
with cte as (
SELECT min(order_purchase_timestamp) as min_date ,
max(order_purchase_timestamp) as max_date
from target.orders )
SELECT
cte.min_date,
cte.max_date ,
DATE_DIFF(cte.max_date,cte.min_date,day) as Time_period from cte
```

JOB IN	FORMATION	RESULTS	JSON	EXECUTION DET	TAILS
Row	min_date	//	max_date	//	Time_period
1	2016-09-04 21:15	:19 UTC	2018-10-17 17:3	0:18 UTC	772

3. Cities and States covered in the dataset

```
SELECT c.customer_city, c.customer_state
from target.customers as c

JOIN target.orders as o

ON o.customer_id=c.customer_id

GROUP BY c.customer_state,c.customer_city

ORDER BY c.customer_state,customer_city
```

Query results									
JOB IN	FORMATION	RESULTS	JSON	EXECUTION DET					
Row	customer_city	//	customer_state	//					
1	brasileia		AC						
2	cruzeiro do sul		AC						
3	epitaciolandia		AC						
4	manoel urbano		AC						
5	porto acre		AC						
6	rio branco		AC						
7	senador guiomaro	d	AC						
8	xapuri		AC						
9	agua branca		AL						
10	anadia		AL						

2. In-depth Exploration

1. Is there a growing trend on e-commerce in Brazil? How can we describe a complete scenario? Can we see some seasonality with peaks at specific months

```
with cte as (
  SELECT case when LENGTH( CAST(EXTRACT(MONTH FROM o.order_purchase_timestamp) as
STRING)) = 1 then
  CONCAT(EXTRACT(YEAR FROM o.order_purchase_timestamp),'- 0',EXTRACT(MONTH FROM
o.order_purchase_timestamp))
  else
  CONCAT(EXTRACT(YEAR FROM o.order_purchase_timestamp),'-',EXTRACT(MONTH FROM
o.order_purchase_timestamp))
  end as year_month_analysis,
  oi.price
  FROM target.orders as o
  JOIN target.order_items as oi
  ON o.order_id = oi.order_id
) ,
cte2 as (SELECT year_month_analysis AS YEAR_MONTH ,
SUM(cte.price) as TOTAL_SALES,
AVG(cte.price) as AVG_SALES,
LAG(SUM(cte.price),1) OVER(ORDER BY year_month_analysis) as diff
FROM cte
GROUP BY year_month_analysis
ORDER BY year_month_analysis)
SELECT YEAR_MONTH, TOTAL_SALES, TOTAL_SALES - diff as TOTAL_Increase
FROM cte2
ORDER BY cte2.TOTAL_SALES DESC
```

JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DETAILS		
Row	YEAR_MONTH			TOTAL_SALES	//	TOTAL_Increase
1	2017-11			10102	71.3700000561	346051.9400000216
2	2018- 04			9966	47.7500000475	13434.310000000172
3	2018- 05			99651	7.68000004755	-130.0699999994878
4	2018- 03			98321	3.44000004733	139034.72999999404
5	2018- 01			950	030.360000062	206116.19000002288
6	2018- 07			89550	7.22000003746	30382.910000000848
7	2018- 06			86512	4.31000003661	-131393.37000001094
8	2018- 08			85468	6.33000004024	-40820.88999999722
9	2018- 02			84417	8.71000005328	-105851.65000000875
10	2017-12			74391	4.17000003916	-266357.20000001695
44	0017.10			CC 401	0.40000000451	20017 720000000004

```
with cte as (
    SELECT case when LENGTH( CAST(EXTRACT(MONTH FROM o.order_purchase_timestamp) as
STRING)) = 1 then

CONCAT(EXTRACT(YEAR FROM o.order_purchase_timestamp),'- 0',EXTRACT(MONTH FROM
o.order_purchase_timestamp))
else

CONCAT(EXTRACT(YEAR FROM o.order_purchase_timestamp),'-',EXTRACT(MONTH FROM
o.order_purchase_timestamp))
end as year_month_analysis,
    oi.price

FROM target.orders as o

JOIN target.order_items as oi
    ON o.order_id = oi.order_id
) ,
```

```
cte2 as (SELECT year_month_analysis AS YEAR_MONTH ,
SUM(cte.price) as TOTAL_SALES,
AVG(cte.price) as AVG_SALES,
LAG(SUM(cte.price),1) OVER(ORDER BY year_month_analysis) as diff
FROM cte
GROUP BY year_month_analysis
ORDER BY year_month_analysis)
SELECT YEAR_MONTH, TOTAL_SALES, TOTAL_SALES - diff as TOTAL_Increase
```

FROM cte2

JOB IN	IFORMATION RESULTS	JSON EXECUTION DETAILS	S
Row	YEAR_MONTH	TOTAL_SALES	TOTAL_Increase
1	2016- 09	267.36	null
2	2016-10	49507.660000000309	49240.300000000309
3	2016-12	10.9	-49496.760000000308
4	2017- 01	120312.86999999858	120301.96999999859
5	2017- 02	247303.01999999458	126990.14999999599
6	2017- 03	374344.30000000325	127041.28000000867
7	2017- 04	359927.23000000382	-14417.069999999425
8	2017- 05	506071.14000001457	146143.91000001074
9	2017- 06	433038.60000001255	-73032.540000002016
10	2017- 07	498031.48000001558	64992.880000003031
11	2017- 08	573971.68000003719	75940.2000000216
12	2017- 09	624401.69000003755	50430.010000000359
13	2017-10	664219.43000003451	39817.739999996964
14	2017-11	1010271.3700000561	346051.9400000216
15	2017-12	743914.17000003916	-266357.20000001695
16	2018- 01	950030.360000062	206116.19000002288
17	2018- 02	844178.71000005328	-105851.65000000875
18	2018- 03	983213.44000004733	139034.72999999404
19	2018- 04	996647.7500000475	13434.310000000172

2. What time do Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)?

```
SELECT case when CAST( EXTRACT( HOUR FROM order_purchase_timestamp) as INT64)
IN (6,7,8,9,11,12) then 'MORNING'

when CAST( EXTRACT( HOUR FROM order_purchase_timestamp) as INT64) IN (4,5,6)
then 'DWAN'

when CAST( EXTRACT( HOUR FROM order_purchase_timestamp) as INT64) IN
(19,20,21,22,23,0,1,2,3,4) then 'NIGHT'

ELSE 'AFTERNOON'
END AS BUYING_TIME,

COUNT(order_id) AS TOTAL_ORDERS

From target.orders

GROUP BY BUYING_TIME
```

JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DETAILS
Row	BUYING_TIME	//	TOTAL_ORD	
1	MORNING		22058	
2	NIGHT		32677	
3	AFTERNOON		44312	
4	DWAN		394	

- 3. Evolution of E-commerce orders in the Brazil region:
 - 1. Get month-on-month orders by region, states

```
with cte as (
SELECT c.customer_city, c.customer_state,

EXTRACT(MONTH FROM o.order_purchase_timestamp) as Month,
oi.price

from target.customers as c

JOIN target.orders as o

ON o.customer_id=c.customer_id

JOIN target.order_items oi

ON o.order_id = oi.order_id)

SELECT customer_city, customer_state, Month, ROUND(sum(price), 2) as Toatl_Sales

from cte

group by customer_city, customer_state, Month
order by customer_city, customer_state, Month
```

JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DET	AILS	
Row	customer_city	//	customer_state	//	Month	Toatl_Sales
1	abadia dos doura	idos	MG		3	199.0
2	abadia dos doura	idos	MG		7	39.9
3	abadia dos doura	idos	MG		9	120.0
4	abadiania		GO		1	949.99
5	abaete		MG		2	135.0
6	abaete		MG		3	152.97
7	abaete		MG		5	208.9
8	abaete		MG		6	354.9
9	abaete		MG		7	254.99
10	abaete		MG		8	534.99
11	abaete		MG		11	91.06
12	abaetetuba		PA		3	110.7

2. How are customers distributed in Brazil

```
SELECT c.customer_state,

COUNT(c.customer_id) as TOTAL_CUSTOMERS

from target.customers as c

JOIN target.orders as o

ON o.customer_id=c.customer_id

GROUP BY c.customer_state

ORDER BY TOTAL_CUSTOMERS DESC
```

		RESULTS	JSON	EXECUTION DETAILS
Row	customer_state	//	TOTAL_CUSTO	MERS
1	SP			41746
2	RJ			12852
3	MG			11635
4	RS			5466
5	PR			5045
6	SC			3637
7	BA			3380
8	DF			2140
9	ES			2033
10	GO			2020

- 4. Impact on Economy: Analyze the money movemented by e-commerce by looking at order prices, freight and others.
 - 1. Get % increase in the cost of orders from 2017 to 2018 (include months between Jan to Aug only)

```
with cte as (

SELECT case when CAST(EXTRACT(MONTH FROM o.order_purchase_timestamp) AS

INT64) IN (1,2,3,4,5,6,7,8,9) AND CAST(EXTRACT(YEAR FROM
o.order_purchase_timestamp) as INT64) = 2017 THEN '2017'
```

```
when CAST(EXTRACT(MONTH FROM o.order_purchase_timestamp) AS INT64) IN
(1,2,3,4,5,6,7,8,9) AND CAST(EXTRACT(YEAR FROM o.order_purchase_timestamp)as
INT64) = 2018 then '2018'
  END AS YEARS,
  o.order_id
 FROM target.orders as o
) ,
cte2 as (
  SELECT cte.YEARS, oi.price
  from cte
  JOIN target.order_items oi
 ON cte.order_id = oi.order_id
),
cte3 as (
SELECT cte2.YEARS, SUM(cte2.price)as TOTAL_SALES_IN_YEAR
,LAG(SUM(cte2.price),1) OVER(ORDER BY cte2.YEARS ) as prev_year_sale from cte2
where YEARS IS NOT NULL
GROUP BY YEARS )
SELECT ((cte3.TOTAL_SALES_IN_YEAR - prev_year_sale)/prev_year_sale) *100 As
Percentage_Increase_FROM_2017_to_2018 FROM cte3
where prev_year_sale IS NOT NULL
```


1. Mean & Sum of price and freight value by customer state

```
SELECT c.customer_state, ROUND(SUM(oi.price), 2) SUM_PRICE,
ROUND(AVG(oi.price), 2) AVG_PRICE, ROUND(SUM(oi.freight_value), 2)
TOTAL_freight_value, ROUND(AVG(oi.freight_value), 2) AVG_freight_value
from target.orders as o

JOIN target.order_items as oi

ON o.order_id = oi.order_id

JOIN target.customers as c

ON c.customer_id = o.customer_id

GROUP BY c.customer_state
ORDER BY c.customer_state
```

Quer	Query results							
JOB IN	NFORMATION RESULTS	JSON EXECUTION	ON DETAILS					
Row	customer_state	SUM_PRICE	AVG_PRICE	TOTAL_freight_value	AVG_freight_value			
1	AC	15982.95	173.73	3686.75	40.07			
2	AL	80314.81	180.89	15914.59	35.84			
3	AM	22356.84	135.5	5478.89	33.21			
4	AP	13474.3	164.32	2788.5	34.01			
5	BA	511349.99	134.6	100156.68	26.36			
6	CE	227254.71	153.76	48351.59	32.71			
7	DF	302603.94	125.77	50625.5	21.04			
8	ES	275037.31	121.91	49764.6	22.06			
9	GO GO	294591.95	126.27	53114.98	22.77			
10	MA	119648.22	145.2	31523.77	38.26			
11	140	1505000.00	100.75	070000 40	00.00			

5. Analysis on sales, freight and delivery time

1. Calculate days between purchasing, delivering and estimated delivery

SELECT

order_delivered_customer_date,order_purchase_timestamp,order_estimated_delivery
 _date,

DATE_DIFF(order_delivered_customer_date,order_purchase_timestamp, DAY) AS
days_btw_purchase_and_delivery,

DATE_DIFF(order_estimated_delivery_date,order_purchase_timestamp, DAY) AS
days_btw_purchase_and_estimated_delivery

FROM target.orders

where order_delivered_customer_date IS NOT NULL

2. Create columns:

a. time_to_delivery = order_purchase_timestamp-order_delivered_customer_date

where order_delivered_customer_date IS NOT NULL

b. diff_estimated_delivery = order_estimated_delivery_date-order_delivered_customer_date

```
SELECT order_id,

DATE_DIFF(order_delivered_customer_date,order_purchase_timestamp, DAY) AS
time_to_delivery ,

DATE_DIFF(order_estimated_delivery_date,order_delivered_customer_date,
DAY) AS diff_estimated_delivery

FROM target.orders
```

JOB IN	IFORMATION RESULTS	JSON EXECUTION	ON DETAILS
Row	order_id	time_to_delivery	diff_estimated_delivery
1	1950d777989f6a877539f5379	30	-12
2	2c45c33d2f9cb8ff8b1c86cc28	30	28
3	65d1e226dfaeb8cdc42f66542	35	16
4	635c894d068ac37e6e03dc54e	30	1
5	3b97562c3aee8bdedcb5c2e45	32	0
6	68f47f50f04c4cb6774570cfde	29	1
7	276e9ec344d3bf029ff83a161c	43	-4
8	54e1a3c2b97fb0809da548a59	40	-4
9	fd04fa4105ee8045f6a0139ca5	37	-1
10	302bb8109d097a9fc6e9cefc5	33	-5

3. Group data by state, take mean of freight_value, time_to_delivery, diff_estimated_delivery

```
SELECT c.customer_state,ROUND(AVG(oi.freight_value),2) as avg_freight_value,
ROUND(AVG(DATE_DIFF(o.order_delivered_customer_date,o.order_purchase_timestamp,
DAY)),2) AS avg_time_to_delivery ,
ROUND(AVG(DATE_DIFF(o.order_estimated_delivery_date,o.order_delivered_customer_date, DAY)),2) AS avg_diff_estimated_delivery
FROM target.orders o

JOIN target.order_items as oi
ON o.order_id=oi.order_id

JOIN target.customers as c
ON o.customer_id = c.customer_id
```

```
where order_delivered_customer_date IS NOT NULL
GROUP BY c.customer_state
order by c.customer_state
```

Que	ry results					
JOB II	NFORMATION	RESULTS	JSON EXEC	JTION DET	TAILS	
Row	customer_state	h	avg_freight_value	//	avg_time_to_delivery	avg_diff_estimated_delivery
1	AC			40.05	20.33	20.01
2	AL			35.87	23.99	7.98
3	AM			33.31	25.96	18.98
4	AP			34.16	27.75	17.44
5	BA			26.49	18.77	10.12
6	CE			32.73	20.54	10.26
7	DF			21.07	12.5	11.27
8	ES			22.03	15.19	9.77
9	GO			22.56	14.95	11.37
10	MA			38.49	21.2	9.11
11	MO			20.62	11 50	10.4

- 4. Sort the data to get the following:
 - 1. Top 5 states with highest/lowest average freight value sort in desc/asc limit 5

```
SELECT c.customer_state,ROUND(AVG(oi.freight_value),2) as
avg_freight_value,

FROM target.orders o

JOIN target.order_items as oi

ON o.order_id=oi.order_id

JOIN target.customers as c

ON o.customer_id = c.customer_id

where order_delivered_customer_date IS NOT NULL

GROUP BY c.customer_state

order by avg_freight_value
```

LIMIT 5

Query results						
JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DETAILS		
Row	customer_state	//	avg_freight_v	ralue		
1	SP			15.11		
2	PR			20.47		
3	MG			20.63		
4	RJ			20.91		
5	DF			21.07		

```
SELECT c.customer_state,ROUND(AVG(oi.freight_value),2) as
avg_freight_value,
FROM target.orders o

JOIN target.order_items as oi
ON o.order_id=oi.order_id

JOIN target.customers as c
ON o.customer_id = c.customer_id

where order_delivered_customer_date IS NOT NULL

GROUP BY c.customer_state
order by avg_freight_value DESC
LIMIT 5
```

JOB IN	FORMATION	RESULTS	JSON	EXECUTION DETAILS
Row	customer_state	ſı.	avg_freight_valu	ie //
1	PB			43.09
2	RR			43.09
3	RO			41.33
4	AC			40.05
5	PI			39.12

2. Top 5 states with highest/lowest average time to delivery

```
SELECT c.customer_state,

ROUND(AVG(DATE_DIFF(o.order_delivered_customer_date,o.order_purchase_time stamp, DAY)),2) AS avg_time_to_delivery

FROM target.orders o

JOIN target.order_items as oi

ON o.order_id=oi.order_id

JOIN target.customers as c

ON o.customer_id = c.customer_id

where order_delivered_customer_date IS NOT NULL

GROUP BY c.customer_state

order by avg_time_to_delivery

LIMIT 5
```

JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DETAILS
Row	customer_state	//	avg_time_to	
1	SP		8.26	
2	PR		11.48	
3	MG		11.52	
4	DF		12.5	
5	SC		14.52	

```
SELECT c.customer_state,
ROUND(AVG(DATE_DIFF(o.order_delivered_customer_date,o.order_purchase_time
stamp, DAY)),2) AS avg_time_to_delivery
FROM target.orders o

JOIN target.order_items as oi
ON o.order_id=oi.order_id

JOIN target.customers as c
ON o.customer_id = c.customer_id

where order_delivered_customer_date IS NOT NULL
GROUP BY c.customer_state
order by avg_time_to_delivery DESC

LIMIT 5
```

Quer	y results			
JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DETAILS
Row	customer_state	//	avg_time_to	
1	RR		27.83	
2	AP		27.75	
3	AM		25.96	
4	AL		23.99	
5	PA		23.3	

3. Top 5 states where delivery is speedy/ not so fast compared to estimated date

```
SELECT c.customer_state,
ROUND(AVG(DATE_DIFF(o.order_estimated_delivery_date,o.order_delivered_cus
tomer_date, DAY)),2) AS avg_diff_estimated_delivery
FROM target.orders o

JOIN target.order_items as oi
ON o.order_id=oi.order_id

JOIN target.customers as c
ON o.customer_id = c.customer_id
where order_delivered_customer_date IS NOT NULL
GROUP BY c.customer_state
order by avg_diff_estimated_delivery LIMIT 5
```

Query results						
JOB IN	NFORMATION	RESULTS	JSON	EXECUTION DETAILS		
Row	customer_state	//	avg_diff_est			
1	AL		7.98			
2	MA		9.11			
3	SE		9.17			
4	ES		9.77			
5	BA		10.12			

```
SELECT c.customer_state,
ROUND(AVG(DATE_DIFF(o.order_estimated_delivery_date,o.order_delivered_customer_date, DAY)),2) AS avg_diff_estimated_delivery
FROM target.orders o
JOIN target.order_items as oi
ON o.order_id=oi.order_id

JOIN target.customers as c
ON o.customer_id = c.customer_id

where order_delivered_customer_date IS NOT NULL
GROUP BY c.customer_state
order by avg_diff_estimated_delivery DESC LIMIT 5
```

JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DETAILS
Row	customer_state	//	avg_diff_estir	mated_delivery
1	AC			20.01
2	RO			19.08
3	AM			18.98
4	AP			17.44
5	RR			17.43

6. Payment type analysis:

1. Month over Month count of orders for different payment types

```
with cte as (
    SELECT case when LENGTH( CAST(EXTRACT(MONTH FROM o.order_purchase_timestamp))
as STRING)) = 1 then
    CONCAT(EXTRACT(YEAR FROM o.order_purchase_timestamp),'- 0',EXTRACT(MONTH FROM
o.order_purchase_timestamp))
else
    CONCAT(EXTRACT(YEAR FROM o.order_purchase_timestamp),'-',EXTRACT(MONTH FROM
o.order_purchase_timestamp))
end as year_month_analysis,
pi.payment_type
FROM target.orders as o
    JOIN target.payments as pi
    ON o.order_id = pi.order_id
```

```
SELECT year_month_analysis ,payment_type, count(payment_type) as
count_of_orders FROM cte
GROUP BY year_month_analysis , payment_type
ORDER BY year_month_analysis
```

JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DET	TAILS
Row	year_month_analysi	is //	payment_type	//	count_of_orders
1	2016-09		credit_card		3
2	2016-10		credit_card		254
3	2016-10		UPI		63
4	2016-10		voucher		23
5	2016-10		debit_card		2
6	2016-12		credit_card		1
7	2017- 01		credit_card		583
8	2017- 01		UPI		197
9	2017- 01		voucher		61
10	2017-01		debit_card		9

2. Distribution of payment installments and count of orders

```
SELECT payment_installments, count(order_id) as count_of_orders FROm
`target.payments`
GROUP BY payment_installments
```

JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DETAILS
Row	payment_in	count_of_orders	//	
1	0		2	
2	1		52546	
3	2		12413	
4	3		10461	
5	4		7098	
6	5		5239	
7	6		3920	
8	7		1626	
9	8		4268	

7. Actionable Insights

1. The Overall trend in e-commerce in Brazil is growing, with the maximum sales in November 2017.

- 2. The Overall trend in e-commerce in Brazil is growing, with the maximum sales in November 2017.
- 3. The maximum number of orders are placed in the afternoon between 1:00 P.M to 6:00 P.M
- 4. The Maximum number of customers are from Sao Paulo (SP) state in brazil with around forty thousand customers.
- 5. Roraima(RR) State in brazil has the least number of customers
- 6. The percentage Increase in total sales from 2017(Jan to Aug) to 2018(Jan to Aug) is 97%
- 7. Roraima(RR) State in brazil has the highest average fright value of 40

- 8. Sao Paulo (SP) least average fright value of 15
- 9. Paraíba(PB) state of brazil has the highest average order value
- 10. Sao Paulo (SP) has the least average order value
- 11. Sao Paulo (SP) has the fastest delivery in brazil, on the other hand, Roraima(RR) has the slowest average delivery time.
- 12. Around 74% of orders are placed using Credit Cards making it the most preferred way of payment in Brazil

8. Recommendations

- 1. As the maximum number of orders are placed in the afternoon time, Target can offer discounts at other times to distribute the orders.
- 2. Roraima(RR) has the highest Average fright value and the slowest delivery, Target should Improve this by keeping a minimum order value for Roraima(RR).
- 3. Acre(AC) state in brazil has the worst Delivery Estimation system, Target should work on improving this
- 4. As Credit Card is the most used mode of payment and Target has to pay commission to the Credit Cards companies, Target should give more offers on other modes of payment to encourage other modes of payment as well.
- 5. Target Should give discounts on March, as it is the least grossing month