Examenul de bacalaureat national 2015 Proba E. d)

Fizică

Filiera tehnologică – profilul tehnic și profilul resurse naturale și protecția mediului

• Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ,

B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ŞI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ

Se acordă 10 puncte din oficiu.
Timpul de lucru efectiv este de 3 ore.

A. MECANICA

Se consideră accelerația gravitațională $g = 10 \text{m/s}^2$.

I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)

- 1. Conform principiului acțiunii și reacțiunii, forța de acțiune și forța de reacțiune:
- a. actionează împreună asupra aceluiași corp
- b. actionează în sens contrar miscării
- c. sunt egale în modul și au același sens
- d. sunt egale în modul și au sensuri contrare

(3p)

Model

2. Simbolurile mărimilor fizice fiind cele utilizate în manualele de fizică, expresia legii lui Hooke este:

a.
$$\Delta \ell = \frac{E \cdot S_0}{F \cdot \ell_0}$$

b.
$$\Delta \ell = \frac{1}{E} \frac{F \cdot \ell_0}{S_0}$$
 c. $\sigma = \frac{F}{S_0}$ **d.** $\varepsilon = \frac{\Delta I}{I_0}$

c.
$$\sigma = \frac{F}{S_0}$$

$$\mathbf{d.} \ \varepsilon = \frac{\Delta I}{I_0}$$

- 3. Simbolurile fiind cele utilizate în manualele de fizică, unitatea de măsură în S.I. a mărimii fizice exprimate prin produsul $a \cdot \Delta t$ este:
- **a.** m · s⁻¹
- **b.** m·s⁻³
- **c.** m⁻¹ · s
- **d.** m⁻³ ⋅ s

- 4. O locomotivă cu puterea de 360kW tractează un tren cu o viteză constantă de 10m/s. Forța dezvoltată de locomotivă are valoarea:
- **a.**10N
- **b.** $3.6 \cdot 10^3$ N
- **c.** 10⁴N
- **d.** 3,6 · 10⁴N
- (3p)
- 5. Graficul din figura alăturată redă dependenta fortei de tractiune care actionează asupra unui corp de coordonata x la care se află corpul. Forta de tractiune actionează pe directia și în sensul deplasării corpului. Lucrul mecanic efectuat de această forță în timpul deplasării pe primii 2cm are valoarea:

- **a.** 10J
- **b.** 1J
- c. 0.1J
- **d.** 0,05J
- (3p) (15 puncte)

II. Rezolvaţi următoarea problemă:

Pentru sistemul de corpuri din figură se cunosc masele corpurilor $m_1 = m_2 = 1$ kg, unghiul planului înclinat $\alpha \approx 37^{\circ} (\sin \alpha = 0.6; \cos \alpha = 0.8)$ şi coeficientul de frecare la alunecare $\mu = 0,2$, același pentru ambele corpuri și suprafețe. Sistemul de corpuri este lăsat liber din repaus.

- a. Reprezentați forțele care acționează asupra fiecărui corp.
- **b.** Calculați valoarea forței de frecare dintre corpul de masă m_2 și planul înclinat.
- **c.** Determinați valoarea accelerației corpurilor.
- **d.** Determinați intervalul de timp în care corpul de masă m_1 parcurge distanța d = 0.75m, dacă sistemul s-ar deplasa cu viteza constantă $v = 0.5 \,\mathrm{m/s}$.

III. Rezolvați următoarea problemă:

Un corp de masă m = 1kg este lansat din punctul A cu viteza $v_1 = 2$ m/s şi se deplasează cu frecare pe o suprafață orizontală AB care se continuă cu o suprafață curbă pe care mișcarea se face fără frecare, ca în figura alăturată. După parcurgerea distanței d = AB = 2m, viteza

corpului în punctul B este $v_2 = \frac{V_1}{2}$. Energia potențială gravitațională

se consideră nulă la nivelul suprafeței orizontale AB. Calculați:

- **a.** energia cinetică a corpului în poziția inițială *A*;
- **b.** înălţimea maximă *h* până la care ajunge corpul;
- c. lucrul mecanic efectuat de forța de frecare în timpul deplasării corpului din A în B;
- d. valoarea coeficientului de frecare la alunecare pe portiunea orizontală.

Examenul de bacalaureat naţional 2015 Proba E. d)

- Filiera tehnologică profilul tehnic și profilul resurse naturale și protecția mediului

 Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ,

 B. ELEMENTE DE TENDEDINAMICĂ, C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă 10 puncte din oficiu. Timpul de lucru efectiv este de 3 ore.

B. ELEMENTE DE TERMODINAMICĂ

Model

Se consideră: numărul lui Avogadro $N_A = 6.02 \cdot 10^{23} \, \text{mol}^{-1}$, constanta gazelor ideale $R = 8.31 \frac{\text{J}}{\text{mol} \cdot \text{K}}$. Între parametrii

de stare ai gazului ideal într-o stare dată există relația: $p \cdot V = vRT$.

I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)

- Un gaz ideal, închis într-o butelie, este încălzit. În timpul acestei transformări:
- a. volumul gazului creşte
- b. presiunea gazului scade
- c. variația temperaturii gazului este nulă
- d. presiunea gazului creşte

(3p)

- 2. Simbolurile mărimilor fizice fiind cele utilizate în manualele de fizică, relația de definiție a capacității calorice a unui corp este:
- **a.** $C = \frac{Q}{v \cdot \Delta T}$

- **b.** $C = \frac{Q}{m \cdot \Delta T}$ **c.** $C = \frac{Q}{\Delta T}$ **d.** $C = \frac{Q}{R \cdot \Delta T}$ (3p)
- 3. Simbolurile mărimilor fizice și ale unităților de măsură fiind cele utilizate în manuale de fizică, unitatea de măsură în S.I. a mărimii fizice exprimate prin produsul $\rho \cdot R \cdot T \cdot \mu^{-1}$ este:

- (3p)
- 4. Un mol de gaz ideal este supus unei transformări în cursul căreia volumul rămâne constant, iar temperatura acestuia se modifică de la $t_1 = 37^{\circ}\text{C}$ la $T_2 = 290\text{K}$. Căldura molară la volum constant a gazului este $C_v = 3R$. Căldura schimbată de gaz cu exteriorul în cursul acestei transformări este egală cu:
- **a.** Q = 664.8J
- **b.** Q = 498.6J
- **c.** Q = -4986J
- **d.** Q = -664.8 J
 - (3p)
- 5. O cantitate de gaz ideal este supusă procesului termodinamic 1-2-3, reprezentat în coordonate p-T în figura alăturată. Relația dintre volumele ocupate de gaz în stările 1, 2 și
- **a.** $V_1 = V_2 = V_3$
- **b.** $V_3 < V_1 < V_2$
- **c.** $V_1 < V_2 < V_3$
- **d.** $V_3 < V_2 < V_1$

(3p)

II. Rezolvaţi următoarea problemă:

(15 puncte)

Într-un cilindru orizontal cu piston mobil este închisă o masă m = 4.2g de gaz ideal diatomic ($\mu = 28$ g/mol).

Iniţial gazul se află la presiunea $p_1 = 10^5 \, \text{Pa}$ şi ocupă volumul $V_1 = 5 \, \text{L}$. Gazul se răceşte la presiune constantă până în starea 2, în care volumul său este $V_2 = 4L$. Se blochează pistonul, iar gazul este încălzit până în starea 3, în care temperatura ajunge la valoarea inițială. Determinați:

- a. cantitatea de gaz din cilindru;
- b. densitatea gazului în starea 3;
- c. variația presiunii gazului în transformarea 2-3;
- d. lucrul mecanic schimbat de gaz cu exteriorul în transformarea 1-2.

III. Rezolvaţi următoarea problemă:

(15 puncte)

Un gaz ideal aflat iniţial în starea 1, în care presiunea este $p_1 = 10^5 \, \text{Pa}$, iar volumul $V_1 = 2L$, parcurge procesul termodinamic 1-2-3, reprezentat în coordonate p-V în figura alăturată. În cursul transformării 2-3 temperatura gazului rămâne constantă. Căldura molară izocoră a gazului este $C_V = 2.5R$. Se consideră In1,5 \cong 0,4. Determinați:

- a. volumul gazului în starea 3;
- b. lucrul mecanic efectuat de gaz în transformarea 1-2;
- **c.** variația energiei interne a gazului în transformarea 1-2-3;
- d. căldura schimbată de gaz cu mediului exterior în transformarea 2-3.

Examenul de bacalaureat naţional 2015 Proba E. d) Fizică

Filiera tehnologică – profilul tehnic și profilul resurse naturale și protecția mediului

• Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ,

B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ŞI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ

Se acordă 10 puncte din oficiu.

Timpul de lucru efectiv este de 3 ore.

C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU

Model

- I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)
- 1. Dacă la bornele unei baterii se conectează un conductor ideal (cu rezistență electrică nulă), atunci:
- a. prin baterie nu trece curent electric
- b. tensiunea la bornele bateriei este egală cu tensiunea electromotoare
- c. tensiunea la bornele bateriei este nulă
- d. puterea debitată de sursă pe circuitul exterior este maximă

(3p)

- 2. Simbolurile mărimilor fizice fiind cele utilizate în manualele de fizică, mărimea fizică care poate fi exprimată prin produsul $I \cdot \Delta t$ reprezintă:
- a. sarcina electrică
- b. tensiunea electrică
- c. puterea electrică
- d. intensitatea curentului electric

(3p)

- 3. Simbolurile mărimilor fizice și ale unităților de măsură fiind cele utilizate în manualele de fizică, unitatea de măsură în S.I. a energiei electrice este:
- a. W
- b. J

- d. kW

(3p)

4. Dependența rezistenței electrice a unui conductor liniar de lungimea acestuia este reprezentată în graficul alăturat. Aria secțiunii transversale a conductorului este $S = 3 \text{ mm}^2$. Rezistivitatea electrică a materialului din care este confectionat conductorul are valoarea:

- **a.** $2,1\cdot 10^{-6}\Omega \cdot m$
- **b.** $2.8 \cdot 10^{-7} \Omega \cdot m$
- **c.** $4.2 \cdot 10^{-7} \Omega \cdot m$
- **d.** $4.2 \cdot 10^{-6} \Omega \cdot m$

- (3p)
- **5.** Rezistența electrică a unui fir conductor la temperatura $t_0 = 0$ °C este $R_0 = 12\Omega$. Coeficientul de temperatură al rezistivității conductorului are valoarea $\alpha = 4.5 \cdot 10^{-3} \, \mathrm{grad}^{-1}$. La temperatura $t = 50^{\circ} \mathrm{C}$, rezistența electrică a conductorului este:
- **a.** 12.3Ω
- **b.** 14.7Ω
- c. 27.0Ω
- **d.** $39.0\,\Omega$
- (3p)

II. Rezolvati următoarea problemă:

În figura alăturată este reprezentată schema unui circuit electric. Se cunosc: $E=24\,\mathrm{V}$, $r=2\,\Omega$, $R_2=20\,\Omega$, $R_3=30\,\Omega$. Valoarea intensității indicate de ampermetrul ideal (cu rezistență internă nulă) este $I_2 = 0.6 \,\mathrm{A}$. Rezistența electrică a conductoarelor de legătură se neglijează. Determinați:

- a. tensiunea electrică la bornele rezistorului R₃;
- **b.** intensitatea curentului electric care trece prin rezistorul R_1 ;
- **c.** rezistenţa electrică a rezistorului R_1 ;
- d. tensiunea electrică dintre punctele A și B.

III. Rezolvaţi următoarea problemă:

(15 puncte)

Două baterii identice sunt grupate în serie la bornele unui consumator de rezistență electrică $R = 14\Omega$. Rezistența interioară a unei baterii este $r = 0.5\Omega$. Intensitatea curentului care trece prin consumator are valoarea $I = 0.4 \,\mathrm{A}$. Determinați:

- **a.** energia electrică consumată de către consumator în $\Delta t = 15$ minute de funcționare;
- **b.** puterea electrică disipată pe circuitul interior al unei baterii;
- c. tensiunea electromotoare a unei baterii;
- d. randamentul circuitului electric.

Examenul de bacalaureat national 2015 Proba E. d) **Fizică**

Filiera tehnologică – profilul tehnic și profilul resurse naturale și protecția mediului

• Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ,

B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ

 Se acordă 10 puncte din oficiu. Timpul de lucru efectiv este de 3 ore.

D. OPTICA Model

Se consideră: viteza luminii în vid $c = 3 \cdot 10^8 \,\mathrm{m/s}$, constanta Planck $h = 6.6 \cdot 10^{-34} \,\mathrm{J \cdot s}$.

- I. Pentru itemii 1-5 scrieti pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)
- 1. În cazul efectului fotoelectric extern:
- a. Emisia fotoelectronilor se produce pentru orice lungime de undă a radiațiilor electromagnetice incidente
- b. Numărul electronilor emişi creşte cu creşterea fluxului radiației electromagnetice incidente, la frecvență
- c. Energia cinetică a fotoelectronilor emişi creşte liniar cu fluxul radiației electromagnetice incidente, la frecventă constantă
- **d.** Intervalul de timp Δt dintre momentul iluminării și cel al emisiei electronilor este $\Delta t \cong 1$ s (3p)
- 2. Simbolurile mărimilor fizice fiind cele utilizate în manualele de fizică, frecvența de prag pentru producerea efectului fotoelectric extern este dată de relaţia:

a.
$$v_0 = \frac{L}{h}$$

b.
$$v_0 = \frac{h}{I}$$

$$\mathbf{c.} \ \mathbf{v}_0 = \frac{\mathbf{c}}{\lambda}$$

$$\mathbf{d.} \ \ \nu_0 = \frac{\lambda}{C}$$

3. Dioptria reprezintă convergența unei lentile cu distanța focală de:

4. Dacă indicele de refracție al apei este $n = \frac{4}{3}$, atunci viteza de propagare a luminii în apă are valoarea de:

b.
$$1.5 \cdot 10^8$$
 m/s

- (3p)
- 5. Graficul din figură a fost obținut pe baza măsurătorilor efectuate într-un experiment de studiu al efectului fotoelectric extern. Se cunoaște că $1 \text{ eV} = 1.6 \cdot 10^{-19} \text{ J}$. Lucrul mecanic de extracție, obținut pe baza datelor din acest experiment, are valoarea de aproximativ:

- **a.** 1.8 · 10⁻¹⁹ J
- **b.** $1.9 \cdot 10^{-19}$ J
- **c.** $2,4 \cdot 10^{-19}$ J

d.
$$3.8 \cdot 10^{-19}$$
 J

II. Rezolvaţi următoarea problemă:

(15 puncte)

(3p)

- O lentilă subțire plan convexă are distanța focală de 20cm. La distanța de 60cm în fața ei se așază, perpendicular pe axa optică principală, un obiect cu înălţimea de 5 cm.
- a. Realizati un desen în care să evidentiati construcția grafică a imaginii prin lentilă.
- b. Calculați distanța la care se formează imaginea față de lentilă.
- c. Calculați înălțimea imaginii.
- d. Se alipește lentila cu alta identică, pentru a forma un sistem optic centrat. Calculați distanța focală echivalentă a sistemului optic format.

III. Rezolvaţi următoarea problemă:

(15 puncte)

Un vas cilindric cu un diametru suficient de mare, având adâncimea h = 20cm, este umplut cu lichid transparent având indicele de refracție $n = 1,41 = \sqrt{2}$. Pe fundul vasului se află o sursă de lumină având dimensiuni mici. O rază de lumină care provine de la sursă ajunge la suprafața lichidului sub un unghi de 30° fată de verticală. Se observă că o parte din lumină se reflectă si alta se refractă.

- a. Desenați mersul razei de lumină în cele două medii.
- **b.** Calculați unghiul, față de verticală, sub care iese raza de lumină în aer. Se cunoaște $n_{aer} = 1$.
- c. Determinați distanța față de sursă la care ajunge pe fundul vasului raza de lumină reflectată.
- d. Calculati valoarea unghiului de incidentă al unei raze de lumină pe suprafata lichidului astfel încât, după refractie, raza să se propage de-a lungul suprafeței lichidului.