Уравнение для эллиптических функций Вейерштрасса (1):

$$E_R[R(z)] = \left(\frac{dR(z)}{dz}\right)^2 - 4R^3(z) - aR^2(z) - bR(z) - c = 0$$

Уравнение Риккати (2):

$$E_Y[Y(z)] = \frac{dY(z)}{dz} + Y^2(z) - \beta = 0$$

Хотим выразить решения $E_R[R(z)] = 0$ через решения уравнения $E_Y[Y(z)] = 0$

Порядок полюса уравнения $E_R[R(z)] = 0$:

$$p=2$$

Тогда решение $E_R[R(z)] = 0$ выражается через решения уравнения $E_Y[Y(z)] = 0$ следующим образом:

$$R(z) = A_0 + A_1 Y(z) + A_2 Y^2(z)$$

Требуется найти коэффициенты: A_0, A_1, A_2

Выполняем подстановку $R(z)=A_0+A_1Y(z)+A_2Y^2(z)$ в уравнение $E_R[R(z)]=0$. После подстановки член уравнения (1) $\left(\frac{dR(z)}{dz}\right)^2$ породит производную $\frac{dY(z)}{dz}$ функии Y(z).

Выразим из уравнения (2) проивзодную $\frac{dY(z)}{dz}$ и подставим в соответствующее выражение.

Получим полином шестой степени относительно функции Y(z):

$$P(Y(z), A_0, A_1, A_2, a, b, c, \beta) = 0$$

Для того, чтобы он был равен нулю необходимо, чтобы были равны нулю коэффициенты при всех степенях Y(z).

Выпишем коэффициенты при разных степенях Y(z):