

基于多模态数据的情感分析技术研究

姓 名: 邱浙宇

学 号: 1023040814

专 业: 计算机科学与技术

01 技术背景

02 模型框架

03 模型训练

04 功能演示与测试

05 总结与展望

技术背景

第一部分

技术背景及课题概要

情感分析介绍

情感分析技术指的是为给定的信息判定情感,如二分类则判定为积极或者消极。通过情感分析,可以分析各类数据隐藏的信息,从而达到更深层次地理解与分析。

传统的情感分析技术通常只使用文本数据 进行分析,这可能会忽略其他可用的重要 信息来源。

技术背景及课题概要

多模态情感分析

提出一种基于多模态数据的情感分析模型

模型架构

第二部分

模型整体架构

- ●组成部分
 - 文本子网络
 - 音频视觉子网络
 - 特征融合子网络
 - 情感分类层

原始数据

MOSI

MOSI数据集是一个英文多模态语料库,它包含了2199段意见视频片段。

SIMS

SIMS数据集是一个中文多模态情感分析数据集,它包含了2,281个精炼的视频片段

知识图谱嵌入BERT

WN11

WN11是从WordNet抽取的子集, 共有38696个实体,11种关系。

• 嵌入方法

将WN11知识图谱当作原始数据,对BERT模型进行重新训练。

🚯 config.json

eval_results.txt

pytorch_model.bin

test_results.txt

vocab.txt

文本子网络

使用知识增强的BERT模型进行数据处理

- 分词步骤
 - 1、分词, Tokens = [我, 爱, 学, 习]
 - 2、加上[CLS]与[SEP]
 - 3、补全到最大长度,[PAD]填充
 - 4、标注[PAD]位置
 - 5、单词映射为数字

文本子网络

使用BERT进行处理

- 字向量: [[CLS], 我, 爱, 学, 习, [SEP], [PAD]]
- 位置向量: [1, 1, 1, 1, 1, 1, 0]
- 词向量: [101, 300, 203, 421, 423, 102, 0]

音频视觉子网络

音频处理

- OpenSmile (ffmpeg)
 - 1、设置路径
 - 2、设置配置文件,选择ComParE_2026(标准特征集数量最多)
 - 3、配置相关命令进行原始音频数据的处理

音频视觉子网络

视频处理

OpenFace

OpenFace 是一个能够进行面部标志检测、 头部姿势估计、面部 动作单元识别和眼睛 注视估计的工具包

音频视觉子网络

音视频特征处理

LSTM

$$i_t = \alpha(W_i \cdot [h_{t-1}, x_t] + b_i)$$

$$f_t = \alpha \big(W_f \cdot [h_{t-1}, x_t] + b_f \big)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_c)$$

$$O_t = \alpha(W_o \cdot [h_{t-1}, x_t] + b_o)$$

特征融合子网络

特征融合

情感分类层

情感分析

• 分类层

三个线性变换层

两个Relu激活函数

• 两类情感

二分类:积极、消极

五分类:积极、弱积极、中

性、弱消极、消极

模型训练

第三部分

模型训练

数据集分割

模型训练

第四部分

实验环境

主机环境 操作系统 Windows 11 12th Gen Intel(R) Core(TM) 处理器 i7-12700H 2.30 GHz 16.0 GB (15.7 GB 可用) 内存 NVIDIA GeForce RTX 3060 显卡 LapTop GPU 6G 虚拟环境 3.9.16 Python 1.13.1 Pytorch 1.23.5 Numpy 以及一些其他用于python计算和训练所需的基础包

• 保存的模型

				- 0)
序号	音频编号	二分类结果	五分类结果	原始文本
1	video_0003\$_\$0006	消极	弱消极	这事结婚前咱俩不是说好了?
2	video_0010\$_\$0038	消极	消极	你妈说来磊儿来了影响方一凡学习。
3	video_0023\$_\$0007	消极	消极	你看我行吗?
4	video_0021\$_\$0005	积极	积极	那也让我见识下你的本事。
5	video_0045\$_\$0009	消极	中性	以我对你的判断我觉得你应该会先派黄橙橙
6	video_0027\$_\$0039	消极	弱消极	镇长,您把心放宽,多保重。
7	video_0019\$_\$0002	消极	弱消极	无所谓,乱世。
8	video_0024\$_\$0031	积极	中性	老马,平时在里边儿都爱喝啥啊
9	video_0016\$_\$0022	积极	弱积极	现在好了,汽水不冰了,可我的心却是冰冰的
10	video_0024\$_\$0054	消极	弱消极	倒是也行,你是法人,你看着办。
11	video_0051\$_\$0034	消极	弱消极	娘
12	video_0010\$_\$0036	积极	积极	你看他发挥多稳定啊,说明他心理素质特别好。
13	video_0016\$_\$0033	消极	消极	夏洛夏洛,我赢了,夏洛你知道吗,我为了打败你这套连招我练了多少

指标参数

• 二分类准确率(SIMS) • 五分类准确率(SIMS)

78.12%

44.86%

模型对比 • 二分类准确率(MOSI)

模型对比 • 五分类准确率(MOSI)

总结与展望

第五部分

总结与展望

总结

- 1、总结了相关研究,提出了一种基于多模态数据的情感分析方法。
- 2、文本:知识增强BERT;音视频:OpenSmile、OpenFace、LSTM。
- 3、对模型性能进行了测试,并与现存模型进行了比较。

总结与展望

展望

- 1、特定研究方向的知识图谱
- 2、特定研究方向的数据集
- 3、更高效的各部分处理方法