CORRELATION FUNCTIONS AND WHITE NOISE

Dr. Susan Simmons
Institute for Advanced Analytics

CORRELATION FUNCTIONS

Dependencies

- A time series is *typically* analyzed with an assumption that observations have a potential relationship across time.
 - Ex: Weight
- Same approach can be taken with space as well as time.
 - Ex: Temperature

- Autocorrelation is the correlation between two sets of observations, from the same series, that are separated by k points in time.
- The autocorrelation function (ACF) is the function of all autocorrelations (between two **sets of observations** Y_t and Y_{t-k}) across time (for all values of k).

$$\rho_k = \operatorname{Corr}(Y_t, Y_{t-k})$$

t	Y_t	Y_{t-1}	Y_{t-2}
1	20		
2	2	20	
3	16	2	20
4	-3	16	2
5	-14	-3	16
6	-28	-14	-3
999	0	29	17
1000	-19	0	29

(Y_t)	(Y_{t-1})	Y_{t-2}
20	•	
2	20	
16	2	20
-3	16	2
-14	-3	16
-28	-14	-3
0	29	17
-19	0	29
	2 16 -3 -14 -28 	2 20 16 2 -3 16 -14 -3 -28 -14 0 29

$$\hat{\rho}_1 = 0.46$$

(Y_t)	Y_{t-1}	(Y_{t-2})
20		
2	20	
16	2	20
-3	16	2
-14	-3	16
-28	-14	-3
0	29	17
-19	0	29
	2 16 -3 -14 -28 	2 20 16 2 -3 16 -14 -3 -28 -14 0 29

$$\hat{\rho}_1 = 0.46$$

$$\hat{\rho}_2 = -0.08$$

Scatterplots of Y with First 2 Lags

- Suppose that the first autocorrelation value (ACF(1)) is significant.
- This implies that two consecutive time points are related to each other.
 - March is related to April, April is related to May, etc.
 - Monday is related to Tuesday, Tuesday is related to Wednesday, etc.

- This relationship can be both in a positive and negative direction:
 - Positive High Mondays imply high Tuesdays
 - Negative High Mondays imply low Tuesdays
- This same relationship goes for all lags of the autocorrelation function.

- Partial autocorrelation is the correlation between two sets of observations, from the same series, that are separated by k points in time, after adjusting for all previous (1, 2, ..., k-1) autocorrelations.
- Partial autocorrelations are conditional correlations.
- The partial autocorrelation function (PACF) is the function of all partial autocorrelations (between two **sets of observations** Y_t and Y_{t-k}) across time (for all values of k).

$$\phi_k = \text{Corr}(Y_t, Y_{t-k} \mid Y_{t-1}, Y_{t-2}, \dots, Y_{t-k-1})$$

t	Y_t	Y_{t-1}	Y_{t-2}
1	20		-
2	2	20	-
3	16	2	20
4	-3	16	2
5	-14	-3	16
6	-28	-14	-3
999	0	29	17
1000	-19	0	29

(Y_t)	(Y_{t-1})	Y_{t-2}
20		
2	20	
16	2	20
-3	16	2
-14	-3	16
-28	-14	-3
0	29	17
-19	0	29
	2 16 -3 -14 -28 	2 20 16 2 -3 16 -14 -3 -28 -14 0 29

$$\hat{\rho}_1 = 0.46$$

$$\hat{\phi}_1 = 0.46$$

No time points in between to influence results!

t	(Y_t)	Y_{t-1}	Y_{t-2}
1	20		
2	2	20	
3	16	2	20
4	-3	16	2
5	-14		16
6	-28	-14	-3
999	0	29	17
1000	-19		29

Must remove influence of time point in between!

 The partial autocorrelation for the kth lag is calculated from the following regression:

$$Y_{t} = \beta_{0} + \phi_{1}Y_{t-1} + \phi_{2}Y_{t-2} + \dots + \phi_{k}Y_{t-k} + e_{t}$$

 The partial autocorrelation for the kth lag is calculated from the following regression:

$$Y_t = \beta_0 + \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \dots + \phi_k Y_{t-k} + e_t$$

• For example, the 2nd partial autocorrelation (ϕ_2) is estimated from:

$$\hat{Y}_t = \hat{\beta}_0 + \hat{\phi}_1 Y_{t-1} + \hat{\phi}_2 Y_{t-2}$$

 The partial autocorrelation functions tries to measure the direct relationship between two sets of observations, without the influence of other sets of time in between.

Inverse Autocorrelation Function

- Inverse autocorrelation is the correlation between two sets of observations, from the same series, that are separated by k points in time, after adjusting for all previous (1, 2, ..., k-1) autocorrelations.
- Similar to the PACF, but without the same calculations.
- IACF typically has opposite signs as the PACF.

Inverse Autocorrelation Function

Correlation Functions – SAS

```
proc arima data=Time.AR2 plot(unpack)=all;
   identify var=y nlag=10;
run;
quit;
```

Correlation Functions – R

Acf(Y, lag=10) \$acf
Pacf(Y, lag=10) \$acf

Notice that RW affect the correlation plots

Only
dependent on
previous
observation.
Perfect
correlation

RW – Inverse Autocorrelation Function

WHITE NOISE

Statistical Forecasting

White Noise

- A white noise time series follows a Normal distribution (or bell-shaped) with mean zero and positive, constant variance in which all observations are independent of each other.
- Autocorrelation and partial autocorrelation functions have a value close to zero at every time point (except for lag of 0).

White Noise

- The goal of modeling time series is to be left with white noise time series in the residuals.
- If the residuals still have a correlation structure, then more modeling can typically be done.
- How do we know when we are left with white noise at the end of the model?

Ljung-Box χ^2 Test for White Noise

- The Ljung-Box test may be applied to the original data or to the residuals after fitting a model.
- The null hypothesis is that the series has NO autocorrelation, and the alternative hypothesis is that one or more autocorrelations up to lag m are not zero.

$$\chi_m^2 = n(n+2) \sum_{k=1}^m \frac{\hat{\rho}_k^2}{n-k}$$

Testing for White Noise – SAS

```
proc arima data=Time.AR2 plot(unpack)=all;
   identify var=y nlag=10;
   estimate method=ML;
run;
quit;
```

Testing for White Noise – R