[資料前處理]

```
train = pd.DataFrame(columns = ['mood','sentence'])
trainfile = open('training_label.txt','r')
line = trainfile.readline()
i = 0
while line:
    if line != '\n':
        i+=1
        temp = line.split("+++$+++", 1)
        new = pd.DataFrame({'mood':temp[0],'sentence':temp[1]},index=[1])
        train = train.append(new,ignore_index=True)
    if i == 100000 : break
    line = trainfile.readline()
trainfile.close()
```

- 切割字串,存成dataframe

以#####或+++\$+++切割字串,前面儲存到mood column,後面儲存到sentence column。test取全部90筆資料,train則嘗試取100000筆資料。

- 停用字

有嘗試直接使用nltk的停用字,但透過觀察停用字發現他會刪掉像no, not, don't等可能對於負面情緒有意義的字眼。因此我透過countvectorizer觀察vocabulary的詞頻來刪減重複次數多且較無意義的字,以下是我刪除的停用字:

- 文字轉向量

```
tv = TfidfVectorizer(use_idf=True, smooth_idf=True, norm=None)
train_fit = tv.fit_transform(train_x)
test_fit = tv.transform(test_x)
```

使用TfidfVectorizer,以train_x也就是刪掉停用字後的sentence資料去fit跟transform,test_x再透過train_x fit好的model轉換,才能保證train_fit跟test_fit的feature一樣,之後建模才不會有問題。

[模型結果比較]

- 未使用任何停用字處理

AdaBoost			-	
Addboost			**	
	precision	recall	f1-score	support
0	0.70	0.76	0.73	37
ĭ	0.82	0.77	0.80	53
1	0.02	0.//	0.00	33
accuracy			0.77	90
macro avo	0.76	0.77	0.76	90
weighted avg	0.77	0.77	0.77	90
weighted avy	0.77	0.77	0.77	50
XGBoost				
	precision	recall	f1-score	support
0	0.64	0.73	0.68	37
1	0.79	0.72	0.75	53
accuracy			0.72	90
macro avg	0.72	0.72	0.72	90
weighted avg	0.73	0.72	0.72	90

- 使用nltk停用字

with nltk sto AdaBoost	p words			
Addboost	precision	recall	f1-score	support
0 1	0.67 0.74	0.59 0.79	0.63 0.76	37 53
accuracy macro avg weighted avg	0.70 0.71	0.69 0.71	0.71 0.70 0.71	90 90 90
XGBoost	precision	recall	f1-score	support
0 1	0.61 0.69	0.51 0.77	0.56 0.73	37 53
accuracy macro avg weighted avg	0.65 0.66	0.64 0.67	0.67 0.65 0.66	90 90 90

可以看出使用nltk停用字甚至比沒用的效果還差,推測可能的原因就像上面所提到的,nltk的停用字可能包含對於情感分析來說有意義的字。

- 自訂停用字

with costom stop words AdaBoost				
Addboost	precision	recall	f1-score	support
0 1	0.71 0.81	0.73 0.79	0.72 0.80	37 53
accuracy macro avg weighted avg	0.76 0.77	0.76 0.77	0.77 0.76 0.77	90 90 90
XGBoost	precision	recall	f1-score	support
0 1	0.67 0.76	0.65 0.77	0.66 0.77	37 53
accuracy macro avg weighted avg	0.71 0.72	0.71 0.72	0.72 0.71 0.72	90 90 90

結果跟沒使用停用字差不多,甚至還差了一點,推測原因可能是tfidf的idf部分本來就會把出現頻率 高的字降低權重,就類似於刪除停用字的效果,但原因也可能是刪除的停用字還不夠多,有些無意 義的字可能因為出現少次所以會讓那個字對於某個句子的代表性高,事實上對於情感分析卻是無意 義的。

- 自訂停用字&調整參數

with costom s AdaBoost	top words and	tuned p	arameter	
71000000	precision	recall	f1-score	support
0	0.78	0.76	0.77	37
1	0.83	0.85	0.84	53
accuracy			0.81	90
macro avg	0.81	0.80	0.80	90
weighted avg	0.81	0.81	0.81	90
XGBoost				
	precision	recall	f1-score	support
0	0.79	0.84	0.82	37
1	0.88	0.85	0.87	53
accuracy			0.84	90
macro avg	0.84	0.84	0.84	90
weighted avg	0.85	0.84	0.84	90