

WHAT IS CLAIMED IS:

- 1 1. A method of fabricating a transistor, the method comprising:
 - 2 providing a workpiece;
 - 3 growing a stressed semiconductor layer over the workpiece;
 - 4 growing a first layer of silicon and carbon over the stressed semiconductor layer;
 - 5 depositing a gate dielectric material over the layer of silicon and carbon;
 - 6 depositing a gate material over the gate dielectric material;
 - 7 patterning the gate material and gate dielectric material to form a gate and a gate
 - 8 dielectric disposed over the layer of silicon and carbon; and
 - 9 forming a source region and a drain region in the layer of silicon and carbon and stressed
 - 10 semiconductor layer, wherein the source region, drain region, gate, and gate dielectric comprise a
 - 11 transistor.
- 1 2. The method according to Claim 1, wherein growing the layer of silicon and carbon
2 comprises epitaxially growing a layer of about 90 to 99.5% silicon and about 0.5 to 10 % carbon
3 having a thickness of about a few tens of Å to about 5 µm.
- 1 3. The method according to Claim 1, wherein growing the stressed semiconductor layer
2 comprises epitaxially growing a second layer of silicon and carbon, a layer of silicon and
3 germanium, or a layer of silicon, carbon and germanium, and wherein growing the stressed
4 semiconductor layer comprises growing a material having a thickness of about 100 Å to about 5
5 µm.

1 4. The method according to Claim 1, wherein depositing the gate dielectric material
2 comprises depositing a high k dielectric material or an oxide, and wherein depositing the gate
3 material comprises depositing a semiconductor material or a metal.

1 5. The method according to Claim 1, further comprising depositing a thin semiconductor
2 material over the first layer of silicon and carbon, before depositing the gate dielectric material.

1 6. The method according to Claim 5, wherein depositing the thin semiconductor material
2 comprises depositing about 100 Å or less of Si, Ge, SiGe, a bilayer of Si/SiGe, or a bilayer of
3 Ge/SiGe.

1 7. The method according to Claim 1, further comprising forming isolation regions in the
2 workpiece, before or after growing the stressed semiconductor layer over the workpiece and
3 growing a first layer of silicon and carbon over the workpiece, and further comprising forming
4 spacers over sidewalls of the gate and gate dielectric.

1 8. The method according to Claim 1, wherein providing the workpiece comprises providing
2 a silicon-on-insulator (SOI) wafer.

1 9. A method of fabricating a transistor, the method comprising:
2 providing a workpiece;
3 growing a first layer of silicon and carbon over the workpiece;
4 depositing a gate dielectric material over the layer of silicon and carbon, the gate
5 dielectric comprising a high dielectric constant (k) material;
6 depositing a gate material over the gate dielectric material, the gate material comprising a
7 metal;
8 patterning the gate material and gate dielectric material to form a gate and a gate
9 dielectric disposed over the layer of silicon and carbon; and
10 forming a source region and a drain region in at least the layer of silicon and carbon,
11 wherein the source region, drain region, gate, and gate dielectric comprise a transistor.

1 10. The method according to Claim 9, wherein growing the layer of silicon and carbon
2 comprises epitaxially growing a layer of about 90 to 99.5% silicon and about 0.5 to 10 % carbon
3 having a thickness of about a few tens of Å to about 5 µm.

1 11. The method according to Claim 9, further comprising growing a stressed semiconductor
2 layer over the workpiece, before growing the first layer of silicon and carbon over the workpiece,
3 wherein forming the source region and the drain region comprises forming the source region and
4 the drain region in the stressed semiconductor layer.

1 12. The method according to Claim 11, wherein growing the stressed semiconductor layer
2 comprises epitaxially growing a second layer of silicon and carbon, a layer of silicon and
3 germanium, or a layer of silicon, carbon and germanium, and wherein growing the stressed
4 semiconductor layer comprises growing a material having a thickness of about 100 Å to 5 µm.

1 13. The method according to Claim 9, further comprising depositing a thin semiconductor
2 material over the first layer of silicon and carbon, before depositing the gate dielectric material.

1 14. The method according to Claim 13, wherein depositing the thin semiconductor material
2 comprises depositing about 100 Å or less of Si, Ge, SiGe, a bilayer of Si/SiGe, or a bilayer of
3 Ge/SiGe.

1 15. The method according to Claim 9, further comprising forming isolation regions in the
2 workpiece, before or after growing the stressed semiconductor layer over the workpiece and
3 growing a first layer of silicon and carbon over the workpiece, and further comprising forming
4 spacers over sidewalls of the gate and gate dielectric.

1 16. The method according to Claim 9, wherein providing the workpiece comprises providing
2 a silicon-on-insulator (SOI) wafer.

1 17. A transistor, comprising:
2 a workpiece;
3 a stressed semiconductor layer disposed over the workpiece;
4 a first layer of silicon and carbon disposed over the stressed semiconductor layer;
5 a gate dielectric disposed over the layer of silicon and carbon;
6 a gate disposed over the gate dielectric; and
7 a source region and a drain region formed in the layer of silicon and carbon and stressed
8 semiconductor layer, wherein the source region, drain region, gate, and gate dielectric comprise a
9 transistor.

1 18. The transistor according to Claim 17, wherein the layer of silicon and carbon comprises
2 an epitaxially grown layer comprising about 90 to 99.5% silicon and about 0.5 to 10 % carbon
3 having a thickness of about a few tens of Å to about 5 µm.

1 19. The transistor according to Claim 17, wherein the stressed semiconductor layer comprises
2 an epitaxially grown second layer of silicon and carbon, a layer of silicon and germanium, or a
3 layer of silicon, carbon and germanium, and wherein the stressed semiconductor layer comprises
4 a thickness of about 100 Å to 5 µm.

1 20. The transistor according to Claim 17, wherein the gate dielectric comprises a high k
2 dielectric material or an oxide, and wherein the gate comprises a semiconductor material or a
3 metal.

1 21. The transistor according to Claim 17, further comprising a thin semiconductor material
2 disposed over the first layer of silicon and carbon.

1 22. The transistor according to Claim 21, wherein the thin semiconductor material comprises
2 about 100 Å or less of Si, Ge, SiGe, a bilayer of Si/SiGe, or a bilayer of Ge/SiGe.

1 23. The transistor according to Claim 21, further comprising isolation regions disposed in the
2 workpiece, and further comprising spacers formed over sidewalls of the gate and gate dielectric.

1 24. The transistor according to Claim 21, wherein the workpiece comprises a silicon-on-
2 insulator (SOI) wafer.

1 25. A transistor, comprising:
2 a workpiece;
3 a first layer of silicon and carbon disposed over the workpiece;
4 a gate dielectric disposed over the layer of silicon and carbon, the gate dielectric
5 comprising a high dielectric constant (k) material;
6 a gate disposed over the gate dielectric, the gate comprising metal; and
7 a source region and a drain region formed in at least the layer of silicon and carbon,
8 wherein the source region, drain region, gate, and gate dielectric comprise a transistor.

1 26. The transistor according to Claim 25, wherein the layer of silicon and carbon comprises
2 an epitaxially grown layer comprising about 90 to 99.5% silicon and about 0.5 to 10 % carbon
3 having a thickness of about a few tens of Å to about 5 µm.

1 27. The transistor according to Claim 25, further comprising a stressed semiconductor layer
2 formed over the workpiece beneath the first layer of silicon and carbon, wherein the source
3 region and the drain are also formed in the stressed semiconductor layer.

1 28. The transistor according to Claim 27, wherein the stressed semiconductor layer comprises
2 a second layer of silicon and carbon, a layer of silicon and germanium, or a layer of silicon,
3 carbon and germanium, and wherein the stressed semiconductor layer comprises a material
4 having a thickness of about 100 Å to 5 µm.

1 29. The transistor according to Claim 25, further comprising a thin semiconductor material
2 disposed over the first layer of silicon and carbon, beneath the gate dielectric material.

1 30. The transistor according to Claim 29, wherein the thin semiconductor material comprises
2 about 100 Å or less of Si, Ge, SiGe, a bilayer of Si/SiGe, or a bilayer of Ge/SiGe.

1 31. The transistor according to Claim 25, further comprising isolation regions formed in the
2 workpiece, and further comprising spacers formed over sidewalls of the gate and gate dielectric.

1 32. The transistor according to Claim 25, wherein the workpiece comprises a silicon-on-
2 insulator (SOI) wafer.