

Who are we?

tryo-labs LUMINOTH

Outline

Machine Learning

- Types of Machine Learning Problems
- Steps to solve a Machine Learning Problem

Deep Learning

Artificial Neural Networks

Image Classification

Convolutional Neural Networks

What is a Cat?

What is a Cat?

Occlusion

Diversity

Deformation

Lighting variations

What is Machine Learning?

The subfield of computer science that "gives computers the ability to learn without being explicitly programmed". (Arthur Samuel, 1959)

A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves with experience E." (Tom Mitchell, 1997)

> Using data, for, answering questions **Training Predicting**

The Big Data Era

Data

Data already available everywhere

Low storage costs: everyone has several GBs for "free"

Hardware more powerful and cheaper than ever before

Devices

Everyone has a computer fully packed with sensors:

- GPS
- Cameras
- Microphones

Permanently connected to Internet

Services

Cloud Computing:

- Online storage
- Infrastructure as a Service

User applications:

- YouTube
- Gmail
- Facebook
- Twitter

Supervised

Unsupervised

Reinforcement

Supervised

Learn through **examples** of which we know the desired output (what we want to predict).

Is this a cat or a dog?

Are these emails spam or not?

Predict the market value of houses, given the square meters, number of rooms, neighborhood, etc.

Unsupervised

Reinforcement

Supervised

Unsupervised

Reinforcement

There is **no** desired output. Learn something about the data. Latent relationships.

I have photos and want to put them in 20 groups.

I want to find anomalies in the credit card usage patterns of my customers.

Useful for learning structure in the data (clustering), hidden correlations, reduce dimensionality, etc.

Unsupervised

© 2019 Tryolabs

An agent interacts with an environment and watches the result of the interaction.

Environment gives feedback via a positive or negative reward signal.

Reinforcement

Steps to Solve a Machine Learning Problem

Data
Gathering

Collect data from various sources

Data Preprocessing

Clean data to have homogeneity

Feature Engineering

Making your data more useful

Algorithm Selection & Training

Selecting the right machine learning model

Making Predictions

Evaluate the model

Data Gathering

Might depend on human work

- Manual labeling for supervised learning.
- Domain knowledge. Maybe even experts.

May come for free, or "sort of"

• E.g., Machine Translation.

The more the better: Some algorithms need large amounts of data to be useful (e.g., neural networks).

The quantity and quality of data dictate the model accuracy

Data Preprocessing

Is there anything wrong with the data?

- Missing values
- **Outliers**
- Bad encoding (for text)
- Wrongly-labeled examples
- Biased data
 - Do I have many more samples of one class than the rest?

Need to fix/remove data?

Feature Engineering

What is a feature?

A feature is an individual measurable property of a phenomenon being observed

Our inputs are represented by a **set of features**.

To classify spam email, features could be:

- Number of words that have been *ch4ng3d* like this.
- Language of the email (0=English, 1=Spanish)
- Number of emojis

Feature Engineering

Extract more information from existing data, not adding "new" data per-se

- Making it more useful
- With good features, most algorithms can learn faster

It can be an art

Requires thought and knowledge of the data

Two steps:

- Variable transformation (e.g., dates into weekdays, normalizing)
- Feature creation (e.g., n-grams for texts, if word is capitalized to detect names, etc.)

Algorithm Selection & Training

Supervised

- Linear classifier
- Naive Bayes
- Support Vector Machines (SVM)
- Decision Tree
- Random Forests
- k-Nearest Neighbors
- Neural Networks (Deep learning)

Unsupervised

- PCA
- t-SNE
- k-means
- DBSCAN

Reinforcement

- SARSA-λ
- Q-Learning

Algorithm Selection & Training

Goal of training: making the correct prediction as often as possible

Incremental improvement:

- Use of metrics for evaluating performance and comparing solutions
- Hyperparameter tuning: more an art than a science

Introduction to Machine Learning

Making Predictions

Introduction to Machine Learning

Summary

- Machine Learning is intelligent use of data to answer questions
- Enabled by an exponential increase in computing power and data availability
- Three big types of problems: supervised, unsupervised, reinforcement
- 5 steps to every machine learning solution:
 - 1. Data Gathering
 - 2. Data Preprocessing
 - 3. Feature Engineering
 - 4. Algorithm Selection & Training
 - 5. Making Predictions

Deep Learning

"Any sufficiently advanced technology is indistinguishable from magic." (Arthur C. Clarke)

Deep Learning

Artificial Neural Networks

- First model of artificial neural networks proposed in 1943
- Analogy to the human brain greatly exaggerated
- Given some inputs (x), the network calculates some outputs (y), using a set of weights (w)

Loss function

Weights must be adjusted (learned from the data)

 Idea: define a function that tells us how "close" the network is to generating the desired output

Minimize the loss → optimization problem

 With a continuous and differentiable loss function, we can apply gradient descent

Deep Learning

The Rise, Fall, Rise, Fall and Rise of Neural Networks

- Perceptron gained popularity in the 60s
 - Belief that would lead to true Al
- XOR problem and Al Winter (1969 1986)
- Backpropagation to the rescue! (1986)
 - Training of multilayer neural nets
 - LeNet-5 (Yann LeCun et al., 1998)
- Unable to scale. Lack of good data and processing power

Deep Learning

The Rise, Fall, Rise, Fall and Rise of Neural Networks

- Regained popularity since ~2006.
 - Train each layer at a time
 - Rebranded field as Deep Learning
 - Old ideas rediscovered (e.g., Convolution)
- Breakthrough in 2012 with AlexNet (Krizhevsky et al.)
 - Use of GPUs
 - Convolution

Digital Representation of Images

The Convolution Operation

Kernel

Feature Map

Image Classification with Deep Neural Networks

The Convolution Operation

The Convolution Operation

- Takes spatial dependencies into account
- Used as a feature extraction tool
- Differentiable operation → the kernels can be learned

Traditional ML

Deep Learning

Non-linear Activation Functions

Increment the network's capacity

Convolution, matrix multiplication and summation are linear

Sigmoid

$$f(x) = \frac{1}{1 + e^{-x}}$$

Hyperbolic tangent

$$tanh(x) = \frac{e^{2x-1}}{e^{2x+1}}$$

ReLU

$$f(x) = \max(0, x)$$

Non-linear Activation Functions

The Pooling Operation

12	20	30	0			
8	12	2	0	2x2 Max Pooling	20	30
34	70	37	4		112	37
112	100	25	12			

- Used to reduce dimensionality
- Most common: Max pooling
- Makes the network invariant to small transformations, distortions and translations.

Image Classification with Deep Neural Networks

Putting all together

Training Convolutional Neural Networks

Image classification is a supervised problem

- Gather images and label them with desired output
- Train the network with backpropagation!

Training Convolutional Neural Networks

Image classification is a supervised problem

- Gather images and label them with desired output
- Train the network with backpropagation!

Image Classification with Deep Neural Networks

Surpassing Human Performance

ImageNet Classification with Deep Convolutional Neural Networks

Alex Krizhevsky University of Toronto kriz@cs.utoronto.ca

Ilya Sutskever University of Toronto

Geoffrey E. Hinton University of Toronto ilya@cs.utoronto.ca hinton@cs.utoronto.ca

Abstract

We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overfitting in the fully-connected

Deep Learning in the Wild

Deep Learning is Here to Stay

Conclusions

Machine learning algorithms learn from data to find hidden relations, to make predictions, to interact with the world, ...

A machine learning algorithm is as good as its input data

Good model + Bad data = Bad Results

Deep learning is making significant breakthroughs in: speech recognition, language processing, computer vision, control systems, ...

If you are not using or considering using Deep Learning to understand or solve vision problems, you almost certainly should be

Resource

Our work

Tryolabs Blog https://www.tryolabs.com/blog

Luminoth (Computer Vision Toolkit) https://www.luminoth.ai

To Learn More...

Google Machine Learning Crash Course https://developers.google.com/machine-learning/crash-course/

Stanford course **CS229**: Machine Learning https://developers.google.com/machine-learning/crash-course/

Stanford course **CS231n**: Convolutional Neural Networks for Visual Recognition http://cs231n.stanford.edu/

