Where are the Bonds?

B-H distances 117 pm and 132 pm; B-B distance 175 pm

[CONTRIBUTION FROM GATES CHEMICAL LABORATORY, CALIFORNIA INSTITUTE OF TECHNOLOGY, No. 280]

THE NATURE OF THE CHEMICAL BOND. APPLICATION OF RESULTS OBTAINED FROM THE QUANTUM MECHANICS AND FROM A THEORY OF PARAMAGNETIC SUSCEPTIBILITY TO THE STRUCTURE OF MOLECULES

By LINUS PAULING

RECEIVED FEBRUARY 17, 1931 PUBLISHED APRIL 6, 1931

Simplest Molecule: H2+ - 1electron

 H_2^+ Molecule Ion Exists, Stable (Experimentally observed) Bond length ~ 1Å (2a₀); Bond Energy ~ 270 kJ/mole (0.1E_H)

One more electron complicate matters to great extent! Just like many electron atoms – So, we need to build a Model with H_2^+ and get insight into chemical bonding

Then extend model for other multi-electronic molecules 5

Understanding Chemical Bonding

A theory is required which would teach us:

- 1. Why sharing leads to a lowering of energy
- 2. Energy of a particular bond is related to the nature of sharing
- 3. Why sharing might not be equal between atoms

Dissociating this molecule to H and H⁺ requires 256 kJ/mol or 61 kcal/mol

Bond Dissociation energy

$$BDE(H_2^+) = E(H_2^+) - E(H + H^+)$$

Simplest Molecules: H2+

Potential Energy

- (i) Favourable interaction of electron and nucleus which is dependent on R
- (ii) Unfavourable interaction between nucleus (1/R)

Kinetic Energy

(i) KE of electron associated with its motion about both nucleus

The total energy is summation of these three terms and the minimum at a particular value of R is called equilibrium separator $R_{\rm e}$

Simplest Molecules: H₂⁺ and H₂

TISE for H₂+

$$\widehat{H}_{H_2^+}(\vec{r},R)\Psi_{H_2^+}(\vec{r},R) = E_{H_2^+}(\vec{r},R)\Psi_{H_2^+}(\vec{r},R)$$

Very difficult, but <u>possible</u> to solve TISE under elliptical polar coordinates at one R. <u>Solve for energy at various R</u>

Molecular Orbital Theory

Analogous to the atomic orbitals, wavefunctions which describe electrons in a molecule are called Molecular Orbital (MO) MO: Polycentric 1-electron function: spreads through the molecule

One way of constructing the molecular orbitals is to add together atomic orbital wavefunctions which are located at various atoms of the molecule: Linear Combination of Atomic Orbitals (LCAO)