

Operazioni su Immagini e su matrici

- Un'immagine digitale raster può essere rappresentata da una matrice;
- Su una immagine possono essere fatte tutte le operazioni che si possono fare sulle matrici.
- Non è detto che tali operazioni abbiano un senso logico. Ad esempio che vuol dire moltiplicare due immagini da un punto di vista visivo?
- Qual è il range dei valori dopo tali operazioni?

Prodotto

ATTENZIONE: per le matrici vale la regola del prodotto riga per colonna, mentre nell'image processing si usa fare il prodotto puntuale tra due matrici, cioè il prodotto punto a punto degli elementi corrispondenti.

$$\begin{bmatrix} 1 & 0 & 2 \\ -1 & 3 & 1 \end{bmatrix} \times \begin{bmatrix} 3 & 1 \\ 2 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} (1 \times 3 + 0 \times 2 + 2 \times 1) & (1 \times 1 + 0 \times 1 + 2 \times 0) \\ (-1 \times 3 + 3 \times 2 + 1 \times 1) & (-1 \times 1 + 3 \times 1 + 1 \times 0) \end{bmatrix} = \begin{bmatrix} 5 & 1 \\ 4 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 \\ 3 & -1 \end{bmatrix} \cdot \begin{bmatrix} -3 & 0 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} -3 & 0 \\ 3 & -4 \end{bmatrix}$$

Neighborhood N_p

I vicini 4 connessi di un dato pixel sono quelli alla sua destra e sinistra e quelli sopra e sotto.

I vicini 8 connessi sono quelli 4 connessi a cui si aggiungono i 4 pixel in diagonale.

Operazioni affini

Transformation Name	Affine Matrix, T	Coordinate Equations	Example	
Identity	[1 0 0]	x = v		
	0 1 0	y = w	- y	
	0 0 1		1	
	L		x	
Scaling	$\begin{bmatrix} c_x & 0 & 0 \end{bmatrix}$	$x = c_x v$		
	0 c _y 0	$y = c_y w$	V V	
	0 0 1			
			4	
Rotation	$\begin{bmatrix} \cos \theta & \sin \theta & 0 \end{bmatrix}$	$x = v\cos\theta - w\sin\theta$		
	$-\sin\theta = \cos\theta = 0$	$y = v\sin\theta + w\cos\theta$		
	0 0 1		$\langle \rangle$	
Translation	[1 0 0]	$x = v + t_x$		
	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$	$y = w + t_y$		
	$t_x - t_y = 1$	111	*	
	[4 7]		20	
Shear (vertical)	$\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$	$x = v + s_v w$		
	s _v 1 0	y = w		
	0 0 1			
	L J		L	
Shear (horizontal)	$\begin{bmatrix} 1 & s_h & 0 \end{bmatrix}$	x = v		
	0 1 0	$y = s_h v + w$	//	
	0 0 1		14	

Forward mapping

- Dove (v,w) è il pixel di input, (x,y) quello di output e T la matrice affine.
- Per ottenere il valore

$$[x y 1] = [v w 1] * T$$

 In questo caso si fa scorrere l'immagine di input e per ogni pixel (v,w) si calcola la posizione della nuova immagine (x,y)

Forward mapping

```
A=rgb2gray(imread('lena.jpg'));
A=double(A);
figure,imshow(uint8(A));
[m,n]=size(A);
theta=-45;
B=zeros(size(A));
T=[cosd(theta) sind(theta) 0; -sind(theta) cosd(theta) 0; 0 0 1];
%scorre l'immagine di input e si stabilisce in quale punto finiranno i
%nostri pixel in output
for v=1:m
  for w=1:n
     vett=round([v w 1]*T);
     x=vett(1);
     y=vett(2);
     if (x>0 & x<=m) & (y>0 & y<=n)
        B(x,y)=A(v,w);
     end
  end
end
figure,imshow(uint8(B));
```


Forward mapping (rotazione)

Forward mapping (scaling)

Forward mapping

 In questo caso si fa scorrere l'immagine di input e per ogni pixel (v,w) si calcola la posizione della nuova immagine (x,y)

Inverse mapping

 Visita le posizioni spaziali dei pixel di output (x,y) e per ciascuna di esse calcola le corrispondenti coordinate nell'immagine di input (si ha una formula inversa)

Inverse mapping

 Visita le posizioni spaziali dei pixel di output (x,y) e per ciascuna di esse calcola le corrispondenti coordinate nell'immagine di input (si ha una formula inversa)

Ovviamente

$$[v w 1] = [x y 1] * inversa(T)$$

Inverse mapping (usato da Matlab)

```
A=rgb2gray(imread('lena.jpg'));
A=double(A);
figure,imshow(uint8(A));
[m,n]=size(A);
theta=38;
B=zeros(size(A));
T=[cosd(theta) sind(theta) 0; -sind(theta) cosd(theta) 0; 0 0 1];
%scorre l'immagine di output
for x=1:m
  for y=1:n
     vett=round([x y 1]*inv(T));
     v=vett(1);
     w=vett(2);
     if (v>0 & v<=m) & (w>0 & w<=n)
       B(x,y)=A(v,w);
     end
  end
end
figure,imshow(uint8(B));
```


Inverse mapping (rotazione)

Inverse mapping (scaling)

Combinazioni

 Inoltre le trasformazioni affini si possono combinare tra di loro semplicemente moltiplicando le corrispondenti matrici T.

```
theta=38;

tx=40;

ty=23;

cx=2;

cy=2;

Tr=[cosd(theta) sind(theta) 0; -sind(theta) cosd(theta) 0; 0 0 1];

Tt=[1 0 0; 0 1 0; tx ty 1];

Ts=[cx 0 0; 0 cy 0; 0 0 1];

T=Tr*Tt*Ts;
```


L'interpolazione

Valori non assegnati

 Nel corso delle trasformazioni, potrebbero esserci dei valori di pixel che non sono mai individuati dalle formule.

Per essi si applica un processo di interpolazione.

Interpolazione

- In generale, l'interpolazione è il processo che partendo da dati reali stima i dati non conosciuti.
- L'interpolazione non comporta un miglioramento della qualità dell'immagine come se "riacquisisse" i valori mancanti ma effettua solo una stima dei valori ignoti.

Zooming in

- L'interpolazione è effettuata anche nei processi di zooming.
- Uno zooming 2× vuol dire che le dimensioni dell'immagine sono raddoppiate. Se ho una immagine m × n essa diverrà 2m × 2n. Che vuol dire che il numero totale di pixel sarà quadruplicato!
- Lo zooming può essere effettuato in maniera differente per le singole dimensioni. Ad esempio si potrebbe raddoppiare il numero di righe e triplicare il numero di colonne. In questo caso, i nostri algoritmi di interpolazione saranno più complicati.

Zooming in (2x)

Dopo aver posizionato i valori già noti, occorre stimare i valori nelle zone vuote.

Vari tipi di interpolazione

Esistono diversi tipi di interpolazione:

- Nearest neighbor (o replication)
- Bilinear
- Bicubic
- Altri...

Replication

(a)

Replication o nearest neighbor

Questo metodo assegna a ogni nuova posizione
 l'intensità del pixel più prossimo nell'immagine originale.

 Questo approccio è molto semplice ma introduce artefatti come distorsioni lungo i lati degli oggetti rappresentati nell'immagine.

Bilinear

Bilinear

Nell'interpolazione bilineare si utilizzano i quattro pixel più vicini per stimare l'intensità da assegnare a ciascuna nuova posizione. Supponiamo che (x, y) siano le coordinate della posizione cui si deve assegnare un valore di intensità e che v(x, y) equivalga al valore dell'intensità. Per l'interpolazione bilineare il valore assegnato si ottiene mediante l'equazione

$$v(x, y) = ax + by + cxy + d$$

Dove i quattro coefficienti sono determinati a partire dalle quattro equazioni nelle quattro incognite ottenibili utilizzando i quattro pixel più vicini al punto (x, y).

 L'interpolazione bilineare produce dei risultati migliori rispetto alla replication con un incremento modesto nella complessità di calcolo.

Bicubic

(a)

Bicubic

 L'interpolazione bicubica utilizza i sedici pixel più vicini al punto. Il valore di intensità assegnato al punto (x, y) si ottiene attraverso l'equazione

$$v(x,y) = \sum_{i=0}^{3} \sum_{j=0}^{3} a_{ij} x^{i} y^{j}$$

- Dove i sedici coefficienti sono determinati a partire da sedici equazioni in sedici incognite che possono essere scritte utilizzando i sedici punti più vicini a (x, y).
- Generalmente l'interpolazione bicubica preserva meglio i dettagli rispetto all'interpolazione bilineare. L'interpolazione bicubica è la tecnica standard utilizzata nei programmi commerciali di editing come Adobe Photoshop e Corel Photopaint.

Cosa fare ai bordi?

Un problema è quello dei bordi: come fare l'interpolazione ai bordi?

POSSIBILI SOLUZIONI:

- Non fare nulla
- Interpolare con i valori presenti anche se in numero minore di quelli usati per altri pixel.

Interazione & Multimedia

Considerare solo le zone centrali dell'immagine.

In questo caso non si calcolano i valori ai bordi

input

 1
 2
 3

 4
 5
 6

 7
 8
 9

output

1	1.5	2	2.5	3	
2.5	3	3.5	4	4.5	
4	4.5	5	5.5	6	
5.5	6	6.5	7	7.5	
7	7.5	8	8.5	9	

Dopo aver fatto i calcoli replicare le ultime righe e colonne.

 In questo caso per fare i calcoli si replicano i valori nelle righe e nelle colonne «isolate»

input

1	2	3
4	5	6
7	8	9

output

1	1.5	2	2.5	3	3
2.5	3	3.5	4	4.5	4.5
4	4.5	5	5.5	6	6
5.5	6	6.5	7	7.5	7.5
7	7.5	8	8.5	9	9
7	7.5	8	8.5	9	9

Zooming out

- Se lo zooming è fatto con un numero inferiore ad 1, si ottiene una immagine più piccola dell'originale.
- Se riduco una immagine, ho un processo detto di «decimazione».
- Data una immagine mxn con uno zooming out di 0,5 si otterrà una immagine m/2 × n/2.

Decimazione: metodo 1

Ogni quattro pixel se ne sceglie uno.

Decimazione: metodo 2

Di quattro pixel se ne calcola il valore medio.

output

Stima della qualità di un algoritmo

MSE: (*Mean Square Error*) tale parametro serve a stimare l'errore quadratico medio tra due immagini; più tale indice è basso minore è la differenza tra le immagini.

PSNR: (*Peak Signal to NoiseRatio*) parametro per misurare la qualità di un immagine compressa rispetto all'originale, dipende dalla differenza tra l'immagine codificata e quella originale. Maggiore è il suo valore maggiore sarà la "somiglianza" con l'originale.

PSNR (Peak Signal to Noise Ratio)

- È una tecnica Full reference.
- Per calcolarlo è necessario avere sia l'immagine da valutare I' (MxN) che una sua versione ottimale I (MxN).
- Il PSNR non è il migliore parametro per valutare la qualità di un algoritmo di interpolazione, ma è il più diffuso.

Schema per il calcolo del PSNR in caso di zooming

PSNR: formule

Per calcolare il PSNR abbiamo bisogno dell'MSE (Mean Square Error):

$$MSE = \frac{1}{MN} \sum_{x=1}^{M} \sum_{y=1}^{N} [I'(x, y) - I(x, y)]^{2}$$

Il PSNR è calcolato con una delle seguenti formule (sono equivalenti):

$$PSNR = -10\log_{10}\frac{MSE}{S^2} \qquad PSNR = 20\log_{10}\left(\frac{S}{\sqrt{MSE}}\right), \ PSNR = 10\log_{10}\left(\frac{S^2}{MSE}\right)$$

S is the maximum pixel value (usually 255),

MSE e PSNR

MSE e PSNR sono molto usati perché semplici da calcolare, però non sempre danno un risultato fedele a quello dato dal sistema visivo umano. Infatti:

- La sensibilità del sistema HVS agli errori può essere diversa per diversi tipi di errori, e può variare anche in base al contesto visuale. Tale differenza non può essere colta adeguatamente dall'MSE.
- Due immagini distorte possono avere tipi molto diversi di errori pur avendo lo stesso MSE.
- Entrambe le metriche sono fortemente influenzate anche da "impercettibili" movimenti spaziali (traslazioni,rotazioni, flipping di righe e/colonne)

PSNR vs MSE

Interazione & Multimedia

Andamento grafico

- Ecco come varia il PSNR e MSE se facciamo variare in maniera random i pixel di una immagine.
- Ogni volta che varia un pixel calcolo il PSNR e MSE.

MSE

PSNR

MSE e PSNR per immagini RGB

- Solitamente si usa una delle seguenti soluzioni
 - la semplice media dei valori MSE (o PSNR) sui 3 canali
 - Una combinazione lineare che pesa maggiormente la componente verde
 - **...**