

算法的由来

算法的定义

算法的性质

算法的表示

算法的分析

- 定义
 - 给定数据输入,计算满足某种性质输出的问题

- 定义
 - 给定数据输入,计算满足某种性质输出的问题
- 示例

排序问题

Sorting Problem

输入

• 包含n个数字的数组 $< a_1, ..., a_n >$

输出

• 升序排列的数组

$$< a_1', a_2', ..., a_n' >$$

满足 $a_1' \le a_2' \le \cdots \le a_n'$

- 定义
 - 给定数据输入,计算满足某种性质输出的问题
- 示例

排序问题

Sorting Problem

输入

• 包含n个数字的数组 $< a_1, ..., a_n >$

输出

• 升序排列的数组

$$< a_1', a_2', ..., a_n' >$$

满足 $a_1' \le a_2' \le \cdots \le a_n'$

输入: 包含16个数字的数组

- 定义
 - 给定数据输入,计算满足某种性质输出的问题
- 示例

排序问题

Sorting Problem

输入

包含n个数字的数组 $\langle a_1, ..., a_n \rangle$

输出

升序排列的数组

$$< a_1', a_2', ..., a_n' >$$

满足 $a_1' \le a_2' \le \cdots \le a_n'$

输入: 包含16个数字的数组

17 40 28 **13 14** 22 **32 40** 21 48 **37** 18 **24**

输出:

满足升序性质的输入数组

13

32

• 给定计算问题

• 给定计算问题,算法是一系列良定义的计算步骤

• 给定计算问题,算法是一系列良定义的计算步骤

• 给定计算问题,算法是一系列良定义的计算步骤

给定计算问题,算法是一系列良定义的计算步骤,逐一执行计算步骤即可得预期的输出

排序问题

Sorting Problem

输入

• 包含n个数字的数组 $< a_1, ..., a_n >$

输出

• 升序排列的数组

$$< a_1', a_2', ..., a_n' >$$

满足 $a_1' \le a_2' \le \cdots \le a_n'$

• 插入排序算法

● 将数组待排序元素依次插入到已排序部分,使已排序部分保持升序的性质

• 输入:

<24, 17, 40, 28, 13, 14, 22, 32, 40, 21, 48, 4, 47, 8, 37, 18>

24	17	40	28	13	14	22	32	40	21	48	4	47	8	37	18
											_				

• 输入:

<24, 17, 40, 28, 13, 14, 22, 32, 40, 21, 48, 4, 47, 8, 37, 18>

• 输出:

<4, 8, 13, 14, 17, 18, 21, 22, 24, 28, 32, 37, 40, 40, 47, 48>

4	8	13	14	17	18	21	22	24	28	32	37	40	40	47	48

插入排序: 算法实例

• 输入:

<24, 17, 40, 28, 13, 14, 22, 32, 40, 21, 48, 4, 47, 8, 37, 18>

• 输出:

• <4, 8, 13, 14, 17, 18, 21, 22, 24, 28, 32, 37, 40, 40, 47, 48>

问题:排序问题是否存在其他算法?

排序问题

Sorting Problem

输入

• 包含n个数字的数组 $< a_1, ..., a_n >$

输出

• 升序排列的数组

$$< a_1', a_2', ..., a_n' >$$

满足 $a_1' \le a_2' \le \cdots \le a_n'$

• 选择排序算法

- 第一次遍历找到最小元素
- 第二次在剩余数组中遍历找到次小元素
-
- 第*n*次在剩余数组中遍历找到第*n*小元素

• 输入: <24, 17, 40, 28, 13, 14, 22, 32, 40, 21, 48, 4, 47, 8, 37, 18>

24	17	40	28	13	14	22	32	40	21	48	4	47	8	37	18

• 输入: <24, 17, 40, 28, 13, 14, 22, 32, 40, 21, 48, 4, 47, 8, 37, 18>

• 输出: <4, 8, 13, 14, 17, 18, 21, 22, 24, 28, 32, 37, 40, 40, 47, 48>

4	8	13	14	17	18	21	22	24	28	32	37	40	40	47	48

• 输入: <24, 17, 40, 28, 13, 14, 22, 32, 40, 21, 48, 4, 47, 8, 37, 18>

• 输出: <4, 8, 13, 14, 17, 18, 21, 22, 24, 28, 32, 37, 40, 40, 47, 48>

• 满足

• $4 \le 8 \le 13 \le 14 \le 17 \le 18 \le 21 \le 22 \le 24 \le 28 \le 32 \le 37 \le 40 \le 40 \le 47 \le 48$

算法的由来

算法的定义

算法的性质

算法的表示

算法的分析

算法的性质

有穷性 可行性

确定性

可行性

- 含义
 - 算法必须在有限个计算步骤后终止

排序问题

Sorting Problem

输入

- 包含n个数字的数组 $< a_1, ..., a_n >$ 输出
- 升序排列的数组

$$< a_1', a_2', ..., a_n' >$$

满足 $a_1' \le a_2' \le \cdots \le a_n'$

确定性

可行性

- 含义
 - 算法必须在有限个计算步骤后终止
- 反例:
 - 给定输入数组,不断交换首尾元素的位置

排序问题

Sorting Problem

- 输入
- 包含n个数字的数组 $< a_1, ..., a_n >$ 输出
- 升序排列的数组

$$< a_1', a_2', ..., a_n' >$$

满足 $a_1' \le a_2' \le \cdots \le a_n'$

确定性

可行性

- 含义
 - 算法必须在有限个计算步骤后终止
- 反例:
 - 给定输入数组,不断交换首尾元素的位置

动作序列没有终结

排序问题

Sorting Problem 输入

- 包含n个数字的数组 $< a_1, ..., a_n >$ 输出
- 升序排列的数组

$$< a_1', a_2', ..., a_n' >$$

满足 $a_1' \le a_2' \le \cdots \le a_n'$

确定性

可行性

- 含义
 - 算法必须在有限个计算步骤后终止
- 反例:
 - 给定输入数组,不断交换首尾元素的位置
- 正例: 选择排序
 - 第一次遍历找到最小元素
 - 第二次在剩余数组中遍历找到次小元素
 - . . .
 - 第*n*次在剩余数组中遍历找到第*n*小元素

排序问题

Sorting Problem

输入

- 包含n个数字的数组 $< a_1, ..., a_n >$ 输出
- 升序排列的数组

$$< a_1', a_2', ..., a_n' >$$

满足 $a_1' \le a_2' \le \cdots \le a_n'$

确定性

可行性

- 含义
 - 算法必须在有限个计算步骤后终止
- 反例:
 - 给定输入数组,不断交换首尾元素的位置
- 正例: 选择排序
 - 第一次遍历找到最小元素
 - 第二次在剩余数组中遍历找到次小元素
 -
 - 第*n*次在剩余数组中遍历找到第*n*小元素

排序问题

Sorting Problem

输入

- 包含n个数字的数组 $< a_1, ..., a_n >$ 输出
- 升序排列的数组

$$< a_1', a_2', ..., a_n' >$$

满足 $a_1' \le a_2' \le \cdots \le a_n'$

遍历次数至多与数组元素个数相同

确定性

可行性

- 含义
 - 算法必须是没有歧义的

排序问题

Sorting Problem

输入

- 包含n个数字的数组 $< a_1, ..., a_n >$ 输出
- 升序排列的数组

$$< a_1', a_2', ..., a_n' >$$

满足 $a_1' \le a_2' \le \cdots \le a_n'$

确定性

可行性

- 含义
 - 算法必须是没有歧义的
- 反例:
 - 对于给定输入数组,交换两个数的位置

排序问题

Sorting Problem

输入

- 包含n个数字的数组 $< a_1, ..., a_n >$ 输出
- 升序排列的数组

$$< a_1', a_2', ..., a_n' >$$

满足 $a_1' \le a_2' \le \cdots \le a_n'$

确定性

可行性

- 含义
 - 算法必须是没有歧义的
- 反例:
 - 对于给定输入数组,交换两个数的位置

没有具体指明是哪两个数

排序问题

Sorting Problem 输入

- 包含n个数字的数组 $< a_1, ..., a_n >$ 输出
- 升序排列的数组

$$< a_1', a_2', ..., a_n' >$$

满足 $a_1' \le a_2' \le \cdots \le a_n'$

确定性

可行性

- 含义
 - 算法必须是没有歧义的
- 反例:
 - 对于给定输入数组,交换两个数的位置
- 正例: 选择排序
 - 第一次遍历找到最小元素
 - 第二次在剩余数组中遍历找到次小元素
 - . . .
 - 第*n*次在剩余数组中遍历找到第*n*小元素

排序问题

Sorting Problem

输入

- 包含n个数字的数组 $< a_1, ..., a_n >$ 输出
- 升序排列的数组

$$< a_1', a_2', ..., a_n' >$$

满足 $a_1' \le a_2' \le \cdots \le a_n'$

确定性

可行性

- 含义
 - 算法必须是没有歧义的
- 反例:
 - 对于给定输入数组,交换两个数的位置
- 正例: 选择排序
 - 第一次遍历找到最小元素
 - 第二次在剩余数组中遍历找到次小元素
 -
 - 第*n*次在剩余数组中遍历找到第*n*小元素

排序问题

Sorting Problem

输入

- 包含n个数字的数组 $< a_1, ..., a_n >$ 输出
- 升序排列的数组

$$< a_1', a_2', ..., a_n' >$$

满足 $a_1' \le a_2' \le \cdots \le a_n'$

每一个步骤都是确定的

确定性

可行性

- 含义
 - 可以机械地一步一步执行基本操作步骤

排序问题

Sorting Problem

输入

- 包含n个数字的数组 $< a_1, ..., a_n >$ 输出
- 升序排列的数组

$$< a_1', a_2', ..., a_n' >$$

满足 $a_1' \le a_2' \le \cdots \le a_n'$

确定性

可行性

- 含义
 - 可以机械地一步一步执行基本操作步骤
- 反例:
 - 将大元素放数组后部,小元素放数组前部

排序问题

Sorting Problem

输入

- 包含n个数字的数组 $< a_1, ..., a_n >$ 输出
- 升序排列的数组

$$< a_1', a_2', ..., a_n' >$$

满足 $a_1' \le a_2' \le \cdots \le a_n'$

确定性

可行性

- 含义
 - 可以机械地一步一步执行基本操作步骤
- 反例:
 - 将大元素放数组后部,小元素放数组前部

描述含糊,不可拆解为基本操作步骤

排序问题

Sorting Problem 输入

- 包含n个数字的数组 $< a_1, ..., a_n >$ 输出
- 升序排列的数组

$$< a_1', a_2', ..., a_n' >$$

满足 $a_1' \le a_2' \le \cdots \le a_n'$

确定性

可行性

- 含义
 - 可以机械地一步一步执行基本操作步骤
- 反例:
 - 将大元素放数组后部,小元素放数组前部
- 正例: 选择排序
 - 第一次遍历找到最小元素
 - 第二次在剩余数组中遍历找到次小元素
 -
 - 第*n*次在剩余数组中遍历找到第*n*小元素

排序问题

Sorting Problem

输入

- 包含n个数字的数组 $< a_1, ..., a_n >$ 输出
- 升序排列的数组

$$< a_1', a_2', ..., a_n' >$$

满足 $a_1' \le a_2' \le \cdots \le a_n'$

确定性

可行性

- 含义
 - 可以机械地一步一步执行基本操作步骤
- 反例:
 - 将大元素放数组后部,小元素放数组前部
- 正例: 选择排序
 - 第一次遍历找到最小元素
 - 第二次在剩余数组中遍历找到次小元素
 - . . .
 - 第*n*次在剩余数组中遍历找到第*n*小元素

排序问题

Sorting Problem

输入

- 包含n个数字的数组 $< a_1, ..., a_n >$ 输出
- 升序排列的数组

$$< a_1', a_2', ..., a_n' >$$

满足 $a_1' \le a_2' \le \cdots \le a_n'$

算法可一步步地执行完成