Miejsce na identyfikację szkoły	
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY	LISTOPAD 2015
Czas pracy: 170 minut Instrukcja dla zdającego	
 Sprawdź, czy arkusz egzaminacyjny zawiera 16 stron (zadania 1.–33.). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin. Rozwiązania zadań i odpowiedzi zapisz w miejscu na to przeznaczonym. W zadaniach zamkniętych (1.–25.) zaznacz jedną poprawną odpowiedź. W rozwiązaniach zadań otwartych (26.–33.) przedstaw tok rozumowania prowadzący do ostatecznego wyniku. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl. Zapisy w brudnopisie nie będą oceniane. Obok numeru każdego zadania podana jest maksymalna liczba punktów możliwych do uzyskania. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora. Życzymy powodzenia! 	Za rozwiązanie wszystkich zadań można otrzymać łącznie 50 punktów .
Wpisuje zdający przed rozpoczęciem pracy PESEL ZDAJĄCEGO	KOD ZDAJĄCEGO

ZADANIA ZAMKNIĘTE

W zadaniach 1.-25. wybierz i zaznacz jedną poprawną odpowiedź.

Zadanie 1. (0–1)

Liczba $a = 8^{23} \cdot 4^{17}$ jest równa liczbie:

 $A. 2^{103}$

 $B.4^{63}$

 $C. 2^{59}$

D. 32^{40}

Zadanie 2. (0-1)

Liczbą wymierną jest liczba:

A. 36^{-3}

B. $36^{\frac{1}{2}}$

C. $36^{\frac{1}{4}}$

D. $36^{\frac{3}{4}}$

Zadanie 3. (0–1)

Wyrażenie $(\sqrt{7} - \sqrt{3})^2$ jest równe:

A. 44

B. 10

C. $10 - 2\sqrt{21}$

D. $10 - 2\sqrt{10}$

Zadanie 4. (0–1)

Funkcja $f(x) = (x+6)^2$ ma:

A. jedno miejsce zerowe: 6

B. jedno miejsce zerowe: -6

C. dwa miejsca zerowe: 6, -6

D. zero miejsc zerowych

Zadanie 5. (0–1)

Tangens kąta ostrego w trójkącie prostokątnym jest równy $\frac{3}{4}$, a przeciwprostokątna ma długość

30. Krótsza przyprostokatna trójkata ma długość:

A. 15

B. 18

C. 24

D. 26

Zadanie 6. (0–1)

Jeśli cena towaru najpierw zmniejszyła się o 10%, a następnie zwiększyła się o 20%, to po tych dwóch operacjach wyjściowa cena towaru:

A. zwiększyła się o 10%

B. zmniejszyła się o 10%

C. zwiększyła się o 8%

D. zmniejszyła się o 8%

Zadanie 7. (0–1)

Maksymalny przedział otwarty, w którym funkcja $f(x) = -4x^2 + 16x - 23$ jest rosnąca, to:

 $\mathbf{A}.(-\infty,2)$

B. $(-\infty, -2)$ **C.** $(-\infty, -7)$ **D.** $(7, +\infty)$

Zadanie 8. (0–1)

Zbiór rozwiązań nierówności $x - \sqrt{3}x > 2$ to:

A. $\left(-\infty, -1 - \sqrt{3}\right)$ B. $\left(-\infty, -1 + \sqrt{3}\right)$ C. $\left(-1 - \sqrt{3}, +\infty\right)$ D. $\left(-1 + \sqrt{3}, +\infty\right)$

Zadanie 9. (0–1)

W okrąg o środku O wpisano trójkąt ostrokątny ABC. Jeśli $|ABO| = 48^{\circ}$, to:

A.
$$|\angle ACB| = 42^{\circ}$$

B.
$$|\angle ACB| = 48^{\circ}$$

B.
$$|\angle ACB| = 48^{\circ}$$
 C. $|\angle ACB| = 52^{\circ}$ **D.** $|\angle ACB| = 58^{\circ}$

$$\mathbf{D.} \left| \angle ACB \right| = 58^{\circ}$$

Zadanie 10. (0–1)

Dany jest ciąg o wyrazie ogólnym $a_n = -3n + 118$. Liczba dodatnich wyrazów tego ciągu jest równa:

Zadanie 11. (0–1)

Liczba miejsc zerowych funkcji
$$f(x) = (x-4)^2 + 9$$
 to:
A. 0 **B.** 1 **C.** 2

B. 1
$$(x) = (x - 4) + C$$
.

Zadanie 12. (0–1)

Zbiorem wartości funkcji $f(x) = 2^x + 3$ jest zbiór:

A. wszystkich liczb rzeczywistych B.
$$(0, +\infty)$$
 C. $(-3, +\infty)$ D. $(3, +\infty)$

B.
$$(0, +\infty)$$

$$\mathbf{C}.(-3,+\infty)$$

$$\mathbf{D}.(3,+\infty)$$

Zadanie 13. (0–1)

W ciągu arytmetycznym pierwszy i drugi wyraz są odpowiednio równe: 1, -2. Dziewiąty wyraz tego ciągu jest równy:

$$\mathbf{A.} - 23$$

$$C. -25$$

Zadanie 14. (0-1)

Prosta o równaniu y = 4x + 1 przecina osie układu współrzędnych w punktach:

$$\mathbf{A.}\left(1,0\right)i\left[0,\frac{1}{4}\right]$$

$$\mathbf{B.} \left(1,0\right) \mathrm{i} \left[0,-\frac{1}{4}\right] \qquad \mathbf{C.} \left(0,1\right) \mathrm{i} \left[-\frac{1}{4},0\right] \qquad \mathbf{D.} \left(0,1\right) \mathrm{i} \left[\frac{1}{4},0\right]$$

$$\mathbf{C} \cdot (0,1) i \left(-\frac{1}{4},0\right)$$

D.
$$(0,1)$$
 i $(\frac{1}{4},0)$

Zadanie 15. (0–1)

Dana jest funkcja $f(x) = x^2 + 4x + 10$. Prosta y = m nie ma z wykresem funkcji f punktów wspólnych. Maksymalny zbiór, do którego należy liczba m, to:

$$\mathbf{A.}\left(-\infty,-6\right)$$

$$\mathbf{B}.(-\infty,6)$$

$$\mathbf{C}.(-2,+\infty)$$

D.
$$(2, +\infty)$$

Zadanie 16. (0–1)

Wiadomo, że tg $\alpha = 5$ i α jest kątem ostrym. Wówczas wyrażenie $W = \frac{\sin \alpha - \cos \alpha}{\sin \alpha + \cos \alpha}$ ma wartość:

A. $\frac{1}{2}$ B. $\frac{2}{3}$ C. $\frac{3}{2}$ D. $\frac{3}{1}$

A.
$$\frac{1}{3}$$

B.
$$\frac{2}{3}$$

C.
$$\frac{3}{2}$$

D.
$$\frac{3}{1}$$

Zadanie 17. (0–1)

Jeżeli stosunek przyprostokątnych w trójkącie prostokątnym jest równy $\sqrt{3}$, to jeden z katów ostrych ma miare:

Zadanie 18. (0-1)

Kąt wpisany oparty na $\frac{1}{0}$ okręgu ma miarę:

 $A.80^{\circ}$

B. 40°

 $C.20^{\circ}$

 $\mathbf{D}.10^{\circ}$

Zadanie 19. (0–1)

Jeśli $S = \left(-\frac{1}{2}, \frac{3}{2}\right)$ jest środkiem odcinka AB i $A = \left(-\frac{1}{3}, \frac{2}{3}\right)$, to:

A. $B = \left(-\frac{2}{3}, \frac{7}{3}\right)$ **B.** $B = \left(\frac{2}{3}, \frac{7}{3}\right)$ **C.** $B = \left(-\frac{2}{3}, -\frac{7}{3}\right)$ **D.** $B = \left(\frac{2}{3}, -\frac{7}{3}\right)$

Zadanie 20. (0-1)

Odchylenie standardowe danych: 1, 4, 1, 5, 9, 2, 1, 1 jest równe (z dokładnością do części setnvch):

A. 7,25

B. 2.69

C.5.75

D. 2.40

Zadanie 21. (0–1)

Przekatna przekroju osiowego walca jest nachylona do jego płaszczyzny podstawy pod katem 45°. Wysokość walca ma długość 8. Objętość walca jest równa:

A. 216π

B. 128π

 \mathbf{D} , 32π

Zadanie 22. (0-1)

Pole trójkata jest równe 15. Dwa boki mają długości 10 i 6. Kat między tymi bokami może mieć miare:

A. 75°

 $B.60^{\circ}$

C. 45°

 $\mathbf{D}.30^{\circ}$

Zadanie 23. (0–1)

Prosta l ma równanie 3x - 2y = 7. Prosta k prostopadła do prostej l może mieć równanie:

A. $y = \frac{2}{2}x + 1$

B. $y = -\frac{2}{3}x + 1$ **C.** $y = \frac{3}{2}x + 1$ **D.** $y = -\frac{3}{2}x + 1$

Zadanie 24. (0–1)

Liczb czterocyfrowych o różnych cyfrach i o parzystej cyfrze tysięcy, setek i dziesiątek jest:

 $\mathbf{A.4} \cdot 4 \cdot 3 \cdot 7$

B. $4 \cdot 4 \cdot 3 \cdot 8$

 $\mathbf{C.5.5.4.8}$

D. $4 \cdot 5 \cdot 4 \cdot 9$

Zadanie 25. (0–1)

Sześcian przecięto płaszczyzną przechodzącą przez dwie równoległe przekątne dolnej i górnej podstawy. Pole otrzymanego przekroju jest równe 16. Pole powierzchni całkowitej sześcianu jest równe:

A. $8\sqrt{2}$

B. $32\sqrt{2}$

 $C_{1}48\sqrt{2}$

D. $56\sqrt{2}$

ZADANIA OTWARTE

Rozwiązania zadań 26.–33. należy zapisać w wyznaczonych miejscach pod treścią zadania.

Zadanie 26. (0-2)

Sprawdź, czy liczba $\frac{33}{27}$ jest wyrazem ciągu o wyrazie ogólnym $a_n = \frac{3n-1}{2n+5}$.

Zadanie 27. (0–2)

Rozwiąż nierówność $-x^2 + 8x - 20 < 0$.

Zadanie 28. (0–2)

Punkty A = (-2,4), B = (6,2) są wierzchołkami trójkąta równobocznego. Wyznacz długość wysokości tego trójkąta.

Zadanie 29. (0–2)

Wykaż, że dla dowolnych liczb rzeczywistych x,y prawdziwa jest nierówność $x^2-6x+y^2-4y+13\geq 0$.

Zadanie 30. (0-2)

Dany jest kwadrat o boku a=6. W ten kwadrat wpisano trójkąt równoboczny w ten sposób, że jeden wierzchołek trójkąta jest wierzchołkiem kwadratu, a przeciwległy bok trójkąta jest równoległy do przekątnej kwadratu (patrz rysunek). Wykaż, że bok trójkąta jest równy $6\left(\sqrt{6}-\sqrt{2}\right)$.

Zadanie 31. (0-4)

Dana jest funkcja określona wzorem $f(x) = ax^2 + bx + c$. Wartość największa funkcji jest równa 10. Funkcja jest rosnąca jedynie w przedziale $(-\infty, 2)$, a do jej wykresu należy punkt A = (4, -2). Wyznacz wartości współczynników a, b, c.

Zadanie 32. (0-5)

Pierwszy wyraz ciągu arytmetycznego jest równy 4, a suma kwadratów wyrazu drugiego, czwartego i siódmego jest równa 702. Wyznacz ogólny wyraz tego ciągu.

Zadanie 33. (0-6)

Dany jest ostrosłup prawidłowy trójkątny. Promień okręgu wpisanego w podstawę jest równy 6. Ściana boczna tworzy z płaszczyzną podstawy kąt 60°. Oblicz objętość i pole powierzchni bocznej bryły.

