

## ESCOLA DE ENGENHARIA DE VOLTA REDONDA (EEIMVR-UFF) Departamento de Ciências Exatas (VCE)



## Verificação Suplementar (VS) - 2019/1

| Disciplina: | Equações Diferenciais Ordinárias (EDOs)   Data: 18/07/2019 | NOTA |
|-------------|------------------------------------------------------------|------|
| Professor:  | Yoisell Rodríguez Núñez                                    |      |
| Aluno(a):   |                                                            |      |

- 1. (2,00 pontos) Determine a solução geral da EDO:  $(e^{2y} y\cos(xy))dx + (2xe^{2y} x\cos(xy) + 2y)dy = 0$
- 2.  $(2,00 \text{ pontos})^*$  Encontre a solução da seguinte EDO, sabendo que  $y_1(x) = x$  é uma solução particular desta equação:  $\frac{dy}{dx} = 1 + x^2 - 2xy + y^2$

3. 
$$(2,00 \text{ pontos})^*$$
 Resolva o **PVI**: 
$$\begin{cases} y' = \frac{x^2 + y^2}{xy}, \\ y(1) = 1 \end{cases}$$

4. (2,50 pontos) Calcule a solução do PVI:

$$\begin{cases} y'' + 4y = t^2 + 3e^t \\ y(0) = 0, \\ y'(0) = 2 \end{cases}$$

- a) Usando as ferramentas sobre EDOs de 2<sup>a</sup> ordem linear não-homogêneas e com coeficientes constantes (estudadas na primeira parte do curso).
- b) Via transformada de Laplace.

Dicas:

$$\frac{1}{s^2+4}\left[\frac{2}{s^3}+\frac{3}{s-1}+2\right] = -\frac{1}{8s}+\frac{1}{2s^3}+\frac{1}{8}\left[\frac{s}{s^2+4}\right]+\frac{3}{5}\left[\frac{1}{s-1}\right]-\frac{3}{5}\left[\frac{s+1}{s^2+4}\right]+\left[\frac{2}{s^2+4}\right]$$

5. (1,50 pontos) Calcule:

a) 
$$\mathcal{L}^{-1} \left\{ \frac{1}{(s-2)(s-5)} \right\}$$
 b)  $\mathcal{L} \left\{ t^5 \left( \frac{e^{3t} + e^{-3t}}{2} \right) \right\}$  c)  $\mathcal{L}^{-1} \left\{ \frac{e^{7s}}{s^2 + 9} \right\}$ 

b) 
$$\mathcal{L}\left\{t^5\left(\frac{e^{3t}+e^{-3t}}{2}\right)\right\}$$

$$c) \mathcal{L}^{-1} \left\{ \frac{e^{7s}}{s^2 + 9} \right\}$$

6. (2,00 pontos) Encontre a solução geral para o seguinte sistema de EDOs homogêneo, utilizando o método matricial:

$$\begin{cases} x' = 3x + y, \\ y' = 9x - 3y. \end{cases}$$

## Observações:

- o \*Escolha apenas uma dentre as questões 2 ou 3 para resolver. As demais questões são de resolução obrigatória.
- o Todas as respostas devem ser justificadas, isto é, acompanhadas dos argumentos e/ou cálculos usados para obtê-las.

O único lugar onde o SUCESSO vem antes do TRABALHO é no dicionário.

| Laplace transforms – Table                  |                                        |                               |                                                         |  |  |
|---------------------------------------------|----------------------------------------|-------------------------------|---------------------------------------------------------|--|--|
| $f(t) = L^{-1}{F(s)}$                       | <b>F</b> (s)                           | $f(t) = L^{-1}\{F(s)\}$       | <b>F</b> (s)                                            |  |  |
| $a  t \ge 0$                                | $\frac{a}{s}$ $s > 0$                  | $\sin \omega t$               | $\frac{\omega}{s^2 + \omega^2}$                         |  |  |
| at $t \ge 0$                                | $\frac{a}{s^2}$                        | cosωt                         | $\frac{s}{s^2 + \omega^2}$                              |  |  |
| e <sup>-at</sup>                            | $\frac{1}{s+a}$                        | $\sin(\omega t + \theta)$     | $\frac{s\sin\theta + \omega\cos\theta}{s^2 + \omega^2}$ |  |  |
| te <sup>-at</sup>                           | $\frac{1}{(s+a)^2}$                    | $\cos(\omega t + \theta)$     | $\frac{s\cos\theta - \omega\sin\theta}{s^2 + \omega^2}$ |  |  |
| $\frac{1}{2}t^2e^{-at}$                     | $\frac{1}{(s+a)^3}$                    | t sin ωt                      | $\frac{2\omega s}{(s^2 + \omega^2)^2}$                  |  |  |
| $\frac{1}{(n-1)!}t^{n-1}e^{-at}$            | $\frac{1}{(s+a)^n}$                    | tcosωt                        | $\frac{s^2 - \omega^2}{(s^2 + \omega^2)^2}$             |  |  |
| e <sup>at</sup>                             | $\frac{1}{s-a} \qquad s > a$           | sinh ωt                       | $\frac{\omega}{s^2 - \omega^2} \qquad s >  \omega $     |  |  |
| te <sup>at</sup>                            | $\frac{1}{(s-a)^2}$                    | $\cosh \omega t$              | $\frac{s}{s^2 - \omega^2} \qquad s >  \omega $          |  |  |
| $\frac{1}{b-a}\left(e^{-at}-e^{-bt}\right)$ | $\frac{1}{(s+a)(s+b)}$                 | e <sup>-at</sup> sin ωt       | $\frac{\omega}{(s+a)^2+\omega^2}$                       |  |  |
| $\frac{1}{a^2}[1-e^{-at}(1+at)]$            | $\frac{1}{s(s+a)^2}$                   | e <sup>-at</sup> cosωt        | $\frac{s+a}{(s+a)^2+\omega^2}$                          |  |  |
| t <sup>n</sup>                              | $\frac{n!}{s^{n+1}}$ $n = 1,2,3$       | e <sup>at</sup> sin ωt        | $\frac{\omega}{(s-a)^2+\omega^2}$                       |  |  |
| t <sup>n</sup> e <sup>at</sup>              | $\frac{n!}{(s-a)^{n+1}}  s > a$        | e <sup>at</sup> cosωt         | $\frac{s-a}{(s-a)^2+\omega^2}$                          |  |  |
| t <sup>n</sup> e <sup>-at</sup>             | $\frac{n!}{(s+a)^{n+1}}  s > a$        | $1-e^{-at}$                   | $\frac{a}{s(s+a)}$                                      |  |  |
| $\sqrt{t}$                                  | $\frac{\sqrt{\pi}}{2s^{3/2}}$          | $\frac{1}{a^2}(at-1+e^{-at})$ | $\frac{1}{s^2(s+a)}$                                    |  |  |
| $\frac{1}{\sqrt{t}}$                        | $\sqrt{\frac{\pi}{s}}$ $s > 0$         | $f(t-t_1)$                    | $e^{-t_1s}F(s)$                                         |  |  |
| $g(t) \cdot p(t)$                           | $G(s) \cdot P(s)$                      | $f_1(t) \pm f_2(t)$           | $F_1(s) \pm F_2(s)$                                     |  |  |
| $\int f(t)dt$                               | $\frac{F(s)}{s} + \frac{f^{-1}(0)}{s}$ | $\delta(t)$ unit impulse      | 1 all s                                                 |  |  |
| $\frac{df}{dt}$                             | sF(s)-f(0)                             | $\frac{d^2f}{df^2}$           | $s^2F(s) - sf(0) - f'(0)$                               |  |  |
| $\frac{d^n f}{dt^n}$                        |                                        |                               |                                                         |  |  |