Reconstruction d'objets convexes à partir de photographies

Présentation de Lucie-Hélène Cuingnet

Travail réalisé avec Barnabé Baruchel

Plan

- Selection et Appariement Selection Appariement
- 2. Reconstruction
- 3. Selection et Appariement
- 4. Analyse des résultats

1- Selection et Appariement

Titre d'une slide avant la sous-section

lci on n'a pas encore de titre de sous-section dans le badeau du haut.

Algorithme type Moravec

$$Var_{(dx,dy)}(x,y) = \frac{1}{N} \sum_{i=-w}^{w} I(x+i\cdot dx, y+i\cdot dy)^{2} - \left(\frac{1}{N} \sum_{i=-w}^{w} I(x+i\cdot dx, y+i\cdot dy)^{2}\right)^{2} + \left(\frac{1}{N} \sum_{i=-w}^{w} I(x+i\cdot dx, y+i\cdot dy)^{2}\right)^{2}$$

où:

- ► $I(x + i \cdot dx, y + i \cdot dy)$ est l'intensité du ieme pixel dans la direction (dx, dy),
- N est le nombre de pixels valides (dans l'image) dans la fenêtre centrée en (x, y),
- w est le demi-rayon de la fenêtre .

Algorithme type Moravec

Le score du pixel : minimum des variances dans 4 directions :

$$\mathsf{score}(x,y) = \min\left\{ \mathrm{Var}_{(0,1)}, \ \mathrm{Var}_{(1,0)}, \ \mathrm{Var}_{(1,1)}, \ \mathrm{Var}_{(1,-1)} \right\}$$

Un pixel est considéré comme un point d'intérêt si :

avec T un seuil fixé.

Reconstruction 3D - L.-H. Cuingnet- Mai 2025

1- Selection et Appariement • 1.1 Selection

retourner Liste des points marqués

Algorithme type Moravec

```
Algorithme 1: Moravec (minimum des variances)
Entrée: Image d'intensité image
Sortie: Liste des coins détectés
pour tout pixel (x, y) dans l'image faire
    scores \leftarrow liste vide:
    pour tout direction (dx, dy) parmi : verticale, horizontale, diagonales
     faire
        Calculer la variance locale autour de (x, y) dans la direction
         (dx, dy);
       Ajouter la variance à scores;
    score \leftarrow min(scores);
    if score > SEUIL then
       Marquer (x, y) comme coin
```

1- Selection et Appariement • 1.2 Appariement

Titre de la slide sans lettre descendant sous la baseline

Poburfiréglertite eprofiles hide usuilissent la commande

Plan

1. Selection et Appariement

2. Reconstruction

Modélisation théorique Résolution Résolution de système surdéterminé Reconstruction des points

- 3. Selection et Appariement
- 4. Analyse des résultats

2- Reconstruction

Titre d'une slide avant la sous-section

lci on n'a pas encore de titre de sous-section dans le bandeau du haut.

2- Reconstruction • 2.1 Modélisation théorique

Les différents repères

Les différents repères

$$\lambda_{i} \begin{pmatrix} u^{(i)} \\ v^{(i)} \\ 1 \end{pmatrix} = \begin{pmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \end{pmatrix} \begin{pmatrix} x_{C}^{(i)} \\ y_{C}^{(i)} \\ z_{C}^{(i)} \\ 1 \end{pmatrix}$$

Ce qui apparaît dans l'en-tête

soit
$$AP = 0$$

Titre de la slide sans lettre descendant sous la baseline

On souhaite résoudre le système en évitant la solution triviale P=0. Sachant que la matrice P ne peut être déterminée qu'à un facteur près, on peut imposer arbitrairement $\|P\|^2=1$, et reformuler le système comme un problème d'optimisation :

$$\min_{\|\rho\|^2=1} \|A\rho\|^2 = \min_{\|\rho\|^2=1} \rho^T A^T A \rho$$

On introduit : - $f(p) = p^T A^T A p$ - $g(p) = p^T p - 1$ D'après le théorème d'optimisation sous contrainte, au point optimal P^* , il existe un scalaire λ tel que :

$$\nabla f(P^*) = \lambda \nabla g(P^*)$$

En posant $M = A^T A$, alors :

$$f(p) = \sum_{i=1}^{n} \sum_{j=1}^{n} p_j M_{ij} p_j$$

2- Reconstruction • 2.2 Résolution

Titre de la slide sans lettre descendant sous la baseline

Ici c'est mieux non?

2- Reconstruction • 2.2 Résolution

Titre de la slide qui marche tout seul grâce au q et au g

Plan

- 1. Selection et Appariement
- 2. Reconstruction
- 3. Selection et Appariement Selection Appariement
- 4. Analyse des résultats

Reconstruction 3D - L.-H. Cuingnet- Mai 2025
3- Triangulation

Titre d'une slide avant la sous-section

lci on n'a pas encore de titre de sous-section dans le badeau du haut.

3- Triangulation • 3.1 Selection

Titre d'une slide dans la sous-section

Ce qui apparaît dans l'en-tête

Dans la première ligne:

- → la version courte du titre, précisée en option de (en option = entre crochets, avant les accolades)
- ightarrow la version courte du nom, voire des initiales, redéfinir la commande L.-H. Cuingnet
- → la version courte de la date, précisée en option de

Dans la deuxième ligne:

→ le numéro et le titre de la section, sauf si le numéro est nul

Titre de la slide sans lettre descendant sous la baseline

Polarfiréglartitereproblèshide usuilisæntla commande

Titre de la slide sans lettre descendant sous la baseline

Ici c'est mieux non?

3- Triangulation • 3.2 Appariement

Titre de la slide qui marche tout seul grâce au q et au g

Plan

- 1. Selection et Appariement
- 2. Reconstruction
- 3. Selection et Appariement
- 4. Analyse des résultats Quelques exemples Critiques

4- Analyse des résultats

Titre d'une slide avant la sous-section

lci, on n'a pas encore de titre de sous-section dans le bandeau du haut.

Titre d'une slide dans la sous-section

lci, on a un titre de sous-section, contrairement à la slide.

Voir le code ici pour référencer une slide avec et la citer avec son numéro via .

Reconstruction 3D - L.-H. Cuingnet- Mai 2025
4- Analyse des résultats
4.2 Critiques

Titre sans lettre descendant sous la baseline

Ici c'est mieux, non?

4- Analyse des résultats • 4.2 Critiques

test