Up Synchronous Binary Counter

$$T_{i} = Q_{i-1} \cdot Q_{i-2} \cdot \dots \cdot Q_{1} \cdot Q_{0}$$

$$= \prod_{j=0}^{i-1} Q_{j} \qquad (i = 1, 2, \dots, n-1)$$

$$Q^* = TQ' + T'Q$$

BEEX TAZ

状态万程

车前出台和

$$Q_{o}^{\star} = Q_{o}^{\prime}$$

$$T_1 = Q$$

$$T_1 = Q_0$$
 $Q_1^* = Q_0 Q_1^{\prime} + Q_0^{\prime} Q_1$

$$T_z = Q_1 Q_0$$
 $Q_z^* = Q_1 Q_0 Q_2' + (Q_1 Q_0)' Q_2$

$$Q_3^* = Q_2Q_1Q_0Q_3' + (Q_2Q_1Q_0)'Q_3$$

c(k

03 02

Q,

Q₀ C

0

0

O

0

2

0

3

O

O

6

0

0

O

1

O

7

D

8

1

б

C

0

10

11

12

Up Synchronous Binary Counter

驱动方程
$T_0 = 1$
$\begin{cases} T_1 = Q_0 \\ T_2 = Q_0 Q_1 \end{cases}$
$T_2 = Q_0 Q_1$
$T_3 = Q_0 Q_1 Q_2$
状态方程
$\int Q_0^* = Q_0'$
$\begin{cases} Q_0^* = Q_0' \\ Q_1^* = Q_0 Q_1' + Q_0' Q_1 \end{cases}$
$\begin{cases} Q_2^* = Q_0 Q_1 Q_2' + (Q_0 Q_1)' Q_2 \end{cases}$
$Q_3^* = Q_0 Q_1 Q_2 Q_3' + (Q_0 Q_1 Q_2)' Q_3$
输出方程
$C = Q_0 Q_1 Q_2 Q_3$

11. We life the		电路	状态	Peter Arte I Alle Hall Miller	进位输出		
计数顺序	Q_3	Q_2	Q_{1}	Q_0	等效十进制数	C	
0	0	0	0	0	0	0	
1 ,	0	0	0	1	1 .	0	
2	0	0	1	0	2	0	
3	0	0	1	1	3	0	
4	0	1	0	0	4	0	
5	0	1	0	1	5	0	
6	0	1	1	0	6	0	
7	0	1	1	1	7	0	
8	1	0	0	0	8	0	
9	1	0	0	1	9	0	
10	1	0	1	0	10	0	
11	1	0	1	1	11	0	
12	1	1	0	0	12	0	
13	1	1	0	1	13	0	
14	1	1	1	0	14	0	
15	1	1	1	1	15	1	
16	0	0	0	0	0	0	

Up Synchronous Binary Counter

Up Synchronous Binary Counter – 74161

CLK	R' _D	LD'	EP	ET	工作状态
×	0	×	×	×	置零
1	1	0	×	×	预置数
×	1	1	0	1	保持
×	1	1	×	0	保持(但 C=0)
1	1	1	1	1	计数

Up Synchronous Binary Counter – 74161

• The same function can also be realized by 74LS161, 74HC161

Down Synchronous Binary Counter

$$-Q_2 T_i = Q'_{i-1} \cdot Q'_{i-2} \cdot \cdots \cdot Q'_1 \cdot Q'_0 = \prod_{j=0}^{i-1} Q'_j (i = 1, 2, \dots, n-1)$$

Up/Down Synchronous Binary Counter – 74161

CLK_1	S'	LD'	U'/D	工作状态
×	1	1	×	保持
×	×	0	×	预置数
†	0	1	0	加法计数
†	0	1	1	减法计数

Up/Down Synchronous Binary Counter - 74161

C/B denotes the carry/borrow

Up/Down Synchronous Binary Counter - 74161

When it does the counting

$$\begin{cases} T_0 = \mathbf{1} \\ T_1 = (U'/D)'Q_0 + (U'/D)Q_0' \\ T_2 = (U'/D)'(Q_0Q_1) + (U'/D)(Q_0'Q_1') \\ T_3 = (U'/D)'(Q_0Q_1Q_2) + (U'/D)(Q_0'Q_1'Q_2') \end{cases} \qquad \text{or} \qquad \begin{cases} T_i = (U'/D)'\prod_{j=0}^{i-1}Q_j + (U'/D)\prod_{j=0}^{i-1}Q_j' & (i=1,2,\cdots,n-1) \\ T_0 = \mathbf{1} \end{cases}$$

Up/Down Synchronous Binary Counter – 74161

Up Synchronous Decimal Counter

驱动方程

$$\begin{cases} T_0 = \mathbf{1} \\ T_1 = Q_0 Q_3' \\ T_2 = Q_0 Q_1 \\ T_3 = Q_0 Q_1 Q_2 + Q_0 Q_3 \end{cases}$$

状态方程

$$\begin{cases} Q_0^* = Q_0' \\ Q_1^* = Q_0 Q_3' Q_1' + (Q_0 Q_3')' Q_1 \\ Q_2^* = Q_0 Q_1 Q_2' + (Q_0 Q_1)' Q_2 \\ Q_3^* = (Q_0 Q_1 Q_2 + Q_0 Q_3) Q_3' \\ + (Q_0 Q_1 Q_2 + Q_0 Q_3)' Q_3 \end{cases}$$

输出方程

Up Synchronous Decimal Counter

计数			- 等效十进制数	that o		
顺序	Q_3	Q_2	Q_1	Q_0	一等效丁进制数	输出 (
0	0	0	0	0	0	0
1	0	0	0	1	1	0
2	0	0	1	0	2	0
3	0	0	1	1	3	0
4	0	1	0	0	4	0
5	0	1	0	1	5	0
6	0	1.	1	0	6	0
7	0	1	1	1	7	0
8	1	0	0	0	8	0
9	1	0	0	1	9	1
10	0	0	0	0	0	0
0	1	0	1	0	10	0
1	1	0	1	1	11	1
2	0	1	1	0	6	0
0	1	1	0	0	12	0
1	1	1	0	1	13	1
2	0	1	0	0	4	0
0	1	1	1	0	14	0
1	1	1	1	1	15	1
2	0	0	1	0	2	0

• 电路可以自启动

Up Synchronous Decimal Counter – 74160

CLK	R_{D}^{\prime}	LD'	EP	ET	工作状态
×	0	×	×	×	置零
1	1	0	×	×	预置数
×	1	1	0	1	保持
×	1	1	×	0	保持(但 C=0)
1	1	1	1	1	计数

Reading materials

- Chapter 9 of Floyd book
- Section 6.3.2 of 阎石 book