Počítačové videnie - Príznaky III.

Ing. Viktor Kocur viktor.kocur@fmph.uniba.sk

DAI FMFI UK

17.10.2018

- Farby
 - Histogramy
 - Kvantizácia
- 2 Houghová transformácia
 - Akumulačný priestor
 - Extrakcia priamok
- 3 Textúra
 - Gáborove filtre

Histogram

imhist

imhist(I) - vráti počty jednotlivých hodnôt pre jasy z obrázka. Histogram aj nakreslí.

Pozor!

Ak chceme aby imhist rozlíšiloval medzi kanálmi, tak ho musíme aplikovať zvlášť po kanáloch.

Úloha

Pre obrázok hrib.jpg nakreslite histogram(y), tak aby z neho boli vidieť jednotlivé kanály.

Histogram ako príznakový vektor

Príznakový vektor

Histogram je v podstate vektor, ktorý predstavuje početnosť jednotlivých hodnôt intenzít v obrázku. Ak máme histogramy tri môžeme ich dať 'za seba'.

Normalizácia

Histogram by sám o sebe nebol vhodný príznak, keď že napr. väčšie obrázky budú ďaleko od rovnakých ale malých obrázkov. Je preto nutné histogramy normalizovať, napr. predelením celkovým počtom pixelov.

Histogram

Príznakový priestor

Opäť môžeme porovnávať príznaky pomocou metriky. Napr.

$$\rho(\vec{a},\vec{b}) = \sqrt{\sum_{i}^{N} (a_i - b_i)^2}.$$

Úloha

Použite normalizovaný histogram ako príznakový vektor a zistite vzdialenosti obrázkov hrib.jpg, mech.jph a bobule.jpg.

Kvantizácia

Histogram ako príznak

V obrázku je strašne veľa unikátnych RGB trojíc. Štandardný histogram tak nieje úplne vhodný.

Riešenie - kvantizácia

Znížime v obraze počet unikátnych farieb. Tento proces sa nazýva kvantizácia. Výsledkom je tzv. indexovaný obraz. (Prípadne stále RGB obraz s menším počtom farieb.)

Kvantizácia - matlab

rgb2ind

[X, map] = rgb2ind(I,n) - vráti indexovaný obraz X (podobné label matici) s n farbami a mapu $n \times 3$ tj. zoznam trojíc farieb v poradí podľa ktorého sa indexuje.

rgb2ind

X = rgb2ind(I,map) - vráti indexovaný obraz X pre danú mapu.

Kvantizácia - matlab

Kód - zobraznie

```
macbeth_map = load('macbeth.mat', 'macbeth_map');
X = rgb2ind(I,macbeth_map);
imagesc(X);
colormap(macbeth_map);
imhist(X,macbeth_map);
```

Úloha

Porovnajte vzdialenosti rovnakých obrázkov ale na histogramoch indexovaných obrázkov. Indexujte buď mapou Macbeth, alebo použite lubovoľné *n*. Všetky obrázky ale indexujte pomocou tej istej mapy.

Houghova transformácia

Akumulačny priestor

Pre objekty, ktoré chceme pomocou houghovej transformácie vyhľadať musím vytvroriť vhodnú parametrizáciu.

Priamky

Pre priamky je bežná parametrizácia $y = m \cdot x + b$. Prečo ale používame parametrizáciu $x = r \cdot cos(\theta)$, $y = r \cdot sin(\theta)$?

Kružnice

Aká by bola vhodná parametrizácia pre kružnice?

Houghová transformácia - postup

Angle	Dist.
0 30 60 90 120 150	40 69.6 81.2 70 40.6 0.4

Angle	Dist.
0	57.1
30	79.5
60	80.5
90	60
120	23.4
150	-19.5

6,0 -<u>39,6</u>

Houghová transformácia - postup II.

Houghová transformácia - matlab

hough

[H,theta,rho]=hough(BW) - vráti maticu akumulačného priestoru H, hodnoty theta a rho podľa ktorých je rozdelený parametrikcý priestor. Vstupný obrázok musí byť binarizovaný.

Kód

```
[H,t,r] = hough(BW)
imagesc(H,'XData',t,'YData',r);
```

Úloha

Zobrazte si Houghovú transformáciu pre obrázok ciary.jpg a ciara.jpg. Nezabudnite obrázok binarizovať.

Nájdenie maxím

houghpeaks

P = houghpeaks(H, n) - vráti body kde sa nachádzajú maximá v akumulačnom priestore H, n určuje maximálny počet nájdených maxím. Vráti iba pozíciu vrámci matice H, nie uhol a vzdialenosť!

houghlines

L = houghlines(BW,t,r,P) - vráti štruktúru L s vlastnosťami: point1, point2, theta, rho. Na vstupe očakáva binariovaný obrázok, t a r z funkcie hough a P z funkcie houghpeaks.

Kód - vykreslenie k-tej čiary do obrázka

```
imshow(I);
xy = [L(k).point1; L(k).point2];
plot(xy(:,1),xy(:,2),'LineWidth',2);
```

Gáborove filtre

gabor

g = gabor(w,o) - vráti Gáborov filter s vlnovou dĺžkou w a orientáciou o, v prípade ak ide o vektory, tak vráti banku.

Úloha

Vykreslite Gáborov filter pre zopár orientácií a vlnových dĺžok. Filter dostaneme z výstupu funkcie gabor cez pole SpatialKernel (g.SpatialKernel). Keď že ide o komplexný filter, je nutné z neho získať reálne hodnoty, alebo amplitúdu (real, imag, abs, angle).

Aplikácia

imgaborfilt

[mag, phase] = imgaborfilt(A,w,o) - vráti maitcu magnitúdy a fázy po aplikácií filtra s vlnovou dĺžkou w a orientáciou o na šedotónový obrázok A.

imgaborfilt - banka

[mag, phase] = imgaborfilt(A, bank) - vráti tenzory magnitúdy a fázy, kde každý 'kanál' mag(:,:,i) predstavuje hodnoty korešpondujúce výsledku pre každý filter z banky.

Úloha

Aplikujte gáborov filter na obrázok a zobrazte si magnitúdu a fázu odozvy.

Segmentácia

Matlabovský tutorial

https://www.mathworks.com/help/images/texture-segmentation-using-gabor-filters.html

Úloha

Otvorte si gabor_texture.m a prezrite si program.