

Impact Area Groundwater Study Program

Final Former A Range Investigation Report

Camp Edwards Massachusetts Military Reservation Cape Cod, Massachusetts

April 2012

Prepared for:

U.S. Army Corps of Engineers New England District Concord, Massachusetts for

10

Army National Guard Impact Area Groundwater Study Program Camp Edwards, Massachusetts

Prepared by:

Tetra Tech EC, Inc. 160 Federal St., Boston, MA 02110 Contract No. DACW33-03-D-0006

DISCLAIMER	
This document has been prepared pursuant to government administrative orders (U.S. EPA Region SDWA Docket No. I-97-1019 and 1-2000-0014) and is subject to approval by the U.S. Environment Protection Agency. The opinions, findings, and conclusions expressed are those of the authors and necessarily those of the Environmental Protection Agency.	tal

TABLE OF CONTENTS

EXEC	JTIVE \$	SUMMARY	. ES-1
1.0	INTRO 1.1 1.2 1.3	DDUCTION Purpose of Report Investigation Scope and Objectives Report Organization	1-1 1-1
2.0	SITE E 2.1 2.2 2.3	Site Description Site History Environmental Setting 2.3.1 Geographic Setting 2.3.2 Cultural Setting 2.3.3 Ecological Setting 2.3.4 Climate. 2.3.5 Geology 2.3.6 Hydrology/Hydrogeology	2-1 2-2 2-2 2-2 2-3 2-3
3.0	SUMM 3.1 3.2	MARY OF SITE INVESTIGATIONS	3-1 3-1 3-1 3-3
4.0	RESP 4.1 4.2	ONSE ACTIONSRobotics Technology Demonstration	4-1
5.0	NATU 5.1 5.2 5.3	RE AND EXTENT OF CONTAMINATION. Groundwater	5-1 5-2 5-2 5-3 5-5 5-6 5-8 5-9 5-10
6.0	CONC 6.1 6.2 6.3	SEPTUAL SITE MODEL	6-1 6-1

i

TABLE OF CONTENTS - Continued

7.0 RISK SCREENING			7-1			
	7.1	Groundwater Evaluation7-				
		7.1.1 Explosives	7-1			
		7.1.2 Perchlorate				
		7.1.3 Metals and Inorganics				
		7.1.4 SVOCs				
		7.1.5 VOCs				
	7.0	7.1.6 Summary of Groundwater Evaluation				
	7.2	Soil Evaluation				
		7.2.1 Explosives				
		7.2.3 Pesticides and Herbicides				
		7.2.4 VOCs				
		7.2.5 SVOCs				
		7.2.6 Metals and Inorganics				
		7.2.7 Summary of Soil Screening				
8.0	INIVES	STIGATION FINDINGS				
9.0	KEFE	RENCES	9-1			
		FIGURES				
Figure	2-1	Location of Former A Range, Massachusetts Military Reservation				
Figure						
Figure		Former A Range Layout				
Figure		Surficial Geology of Western Cape Cod				
Figure		Surface Waterbodies in Proximity to Former A Range				
Figure		·				
•	Figure 3-2 Soil Sample Locations (Pre-2004)					
Figure 3-3 AIRMAG Anomaly Map Survey Area 2						
•	igure 3-4 Target Area EM61 Survey Map					
Figure	· ·					
Figure	·					
Figure		Soil Sample Locations (Post-2004)				
Figure		Reverse Particle Tracks				
Figure						
Figure		Geophysical Survey Areas				
Figure		Recent Former A Range BIP Locations (2009 and 2011)				
•		2009 Response Action Locations				
Figure		Explosives in Soil (Pre-2004)				
Figure	·					
•	jure 5-3 SVOCs in Soil Above Background Levels (Pre-2004)					
•	Figure 5-4 Lead and Copper in Soil (Pre-2004)					
Figure	igure 5-5 Contaminants in Soil in Hillside Samples					

ji 2012-O-JV04-0006

TABLE OF CONTENTS – Continued

Figure 5-6	Contaminants in Soil Target Array Samples
igure 5-7	Contaminants in Flanking Samples
igure 5-8	PAHs in Rail Line Samples
igure 5-9	Contaminants in Areas of Small Arms Deposition
igure 5-10	Contaminants in Soil Firing Point Samples
Figure 5-11	RDX Source Investigation Soil Sample Results

TABLES

Table 3-1	Analytical Method, Number of Soil Sampling Locations, and Number of Samples by
	Area
Table 7-1	Groundwater Screening

Table 7-2 Soil Screening

APPENDICES

Appendix A	Analytical Data
Appendix B	Munitions Source Assessment
Appendix C	Information for MassDEP
Appendix D	Shipping Records

iii 2012-O-JV04-0006

ACRONYMS AND ABBREVIATIONS

2,4-DNT 2,4-dinitrotoluene

2A-DNT 2-amino-4,6-dinitrotoluene
4A-DNT 4-amino-2,6-dinitrotoluene
AFRL Air Force Research Laboratory

AIRMAG airborne magnetometer bgs below ground surface bwt below water table blown-in-place

EM electromagnetometry

EM61 Geonics Inc. electromagnetic sensor, Model 61

HA health advisory
HE high explosive

HMX octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine

μg/L micrograms per liter

Massachusetts Department of Environmental Protection

MCL Maximum Contaminant Level MCP Massachusetts Contingency Plan

mg/Kg milligrams per kilogram
MIS multi-increment samples

mm millimeter

MMCL Massachusetts Maximum Contaminant Level

MMR Massachusetts Military Reservation

MSL mean sea level MW monitoring well

PAH polycyclic aromatic hydrocarbon PCN polychlorinated naphthalenes PSU pneumatic separation unit

RDX hexahydro-1,3,5-trinitro-1,3,5-triazine

RSL Regional Screening Level
SSL Soil Screening Level

SVOC semivolatile organic compound TNT 2,4,6-trinitrotoluene (2,4,6-TNT)

USEPA U.S. Environmental Protection Agency

VOC volatile organic compound

iv 2012-O-JV04-0006

EXECUTIVE SUMMARY

This Investigation Report summarizes the results of studies undertaken to characterize the extent of soil and groundwater contamination at the Former A Range on the Massachusetts Military Reservation (MMR). The Former A Range Investigation was conducted under U.S. Environmental Protection Agency Safe Drinking Water Act Administrative Orders SDWA 1-97-1019 and SDWA 1-2000-0014, and in consideration of the substantive cleanup standards of the Massachusetts Contingency Plan (MCP).

The Former A Range (also known as the Gravity Anti-Tank Range) is an inactive anti-tank artillery and rocket practice range. It is located to the west of the Camp Edwards Impact Area in the southern portion of Training Area B-9. Wood Road and Training Area B-8 lie to the immediate south. The range was originally constructed in 1941 and functioned as an anti-tank artillery and rocket site until the 1960s. A prominent feature of the range was the gravity propelled movement of cars along a short downhill rail line to provide moving targets. During the early 1960s to the mid-1970s, the range was used for machine gun practice.

Groundwater monitoring data for four wells on the range indicate the presence of trace levels of a few explosives-related compounds. 2,4,6-trinitrotoluene (TNT) and two of its degradation products 2-amino-4,6-dinitrotoluene (2A-DNT) and 4-amino-2,6-dinitrotoluene (4A-DNT) were observed at low concentrations (<1.0 microgram per liter [μ g/L]) in one well (MW-249M3) downgradient of the target area, although not in well MW-206S immediately beneath the target area. The explosives compounds hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 1,3,5-trinitrobenzene were also detected once in MW-249M3 at concentrations of 0.31J μ g/L and 0.33J μ g/L, respectively.

Overall investigation results indicate that the principal contaminants detected in soils at the range are explosives, semivolatile organic compounds (SVOCs), and metals. These contaminants are primarily observed in the target area of the range. Detections of these contaminants were sporadic. Explosives, SVOCs, and/or metals contaminants in soils are colocated at some but not all sampling locations.

Explosives compounds were detected in a limited number of surface and shallow subsurface soil samples located throughout the target area. The principal explosives that were observed include TNT and its degradation products, 2A-DNT and 4A-DNT. The highest reported TNT concentration (9 milligrams per kilogram [mg/Kg]) was observed in the backstop berm portions of the target area. The highest levels of 2A-DNT (6.8 mg/Kg) and 4A-DNT (2.4 mg/Kg) were reported in the lower berm portions of the target area. Explosives compounds were detected infrequently and at low concentrations in soil samples located outside the target area berms. Semivolatile polycyclic aromatic hydrocarbon (PAH) compounds were also detected sporadically at several locations within the target area. However, most of the higher observed PAH concentrations were clustered in surface and shallow subsurface soils along portions of the rail line. Maximum observed values of most of the more frequently detected PAHs, including fluoranthene (47 mg/Kg), phenanthrene (45 mg/Kg), and pyrene (40 mg/Kg), were all detected at various surface soil locations along the rail line.

ES-1 2012-O-JV04-0006

Concentrations of most metals within the surface and shallow subsurface soil locations across the range were similar to MMR background levels. Concentrations of some metals in the target area were above background levels. Maximum concentrations of several trace metals, including copper (25,100 mg/Kg), lead (11,600 mg/Kg), and chromium (176 mg/Kg), were observed in the target area. The maximum copper detection was observed in a post-blown-in-place (BIP) sample and is likely attributable to the copper component of the perforator used to detonate the item. Other elevated copper detections not associated with BIPs are likely related to either copper present in certain anti-tank munitions (2.36-inch and 3.5-inch anti-tank rockets) or past small arms use at the range. The highest concentration of lead was detected in Grid 132J located in the target area near the second rail line switchback. The cause of the elevated lead detections may be related to the use of shot rounds that contain small lead balls. The maximum chromium detection was observed in a sample from the 15-point soil sampling array located around the target area backstop berms. The source of chromium detections above background is unclear.

Extensive geophysical investigations have been performed at the Former A Range. The scope of the investigations was based on archive search findings, aerial photo assessments, site reconnaissance, and an aerial magnetometer survey. Investigations and assessments focused on the areas presumed to be the most heavily impacted by past military activities, including the target area and the backstop berms.

The majority of high explosive (HE) items discovered on the range were 37mm and 40mm projectiles, which contain very small amounts of explosives (black powder, tetryl, TNT, or MAX-2). Of the most frequently detected items, only the live 37mm developmental projectiles with MAX-2 (aluminum, Comp A4, and graphite) contain RDX (1.4 ounces). A total of 55 of these developmental projectiles were determined to contain MAX-2. Other items found during the course of the investigation included 45 conventional 37mm projectiles (black powder, TNT, or tetryl), thirteen 40mm projectiles (TNT or tetryl), one 4.5-inch rocket (TNT), one 3.5-inch HEAT rocket (Comp B [TNT/RDX]), seven 81mm mortars (TNT or Comp B); two 57mm projectiles (TNT or Comp B), one partial 90mm projectile (TNT or Comp B), and several partial 75mm shrapnel projectiles (black powder). Based on the fact that the areas containing the highest density of subsurface munitions have been cleared or removed as part of various investigation and removal actions; the lack of significant groundwater detections; and the type, size and number of HE munitions found on the range, it is unlikely that residual munitions represent a significant threat to groundwater.

A risk screening was conducted for the Former A Range to assess if any of the analytes detected in soil or groundwater warranted further consideration. For groundwater, only bis(2-ethylhexyl)phthalate, naphthalene and chloroform had maximum concentrations that exceeded a groundwater screening criterion. Bis(2-ethylhexyl)phthalate was detected at trace levels once in 2001 and once in 2002. It has not been detected in more recent sampling events. Chloroform has been previously associated with natural/non-site related sources. The single detection of naphthalene (collected in March 2001) was not reproduced in subsequent sampling efforts. The detected concentrations of bis(2-ethylhexyl)phthalate and chloroform were below Maximum Contaminant Levels (MCLs) for drinking water. There is no MCL for naphthalene.

ES-2 2012-O-JV04-0006

The soil risk screening was performed using the maximum soil concentrations of each detected constituent to identify any analytes that warranted further evaluation. Soil data were available for explosives, perchlorate, metals and inorganics, pesticides and herbicides, SVOCs, and volatile organic compounds (VOCs). Explosives compounds were detected primarily in the target area of the range and had low frequencies of detection, no significant groundwater detections, and generally low detected concentrations. Perchlorate was infrequently detected at concentrations below all screening criteria. Pesticides/herbicides were infrequently detected at low concentrations, were isolated to a few areas and have never been detected in groundwater at Former A Range. VOCs were infrequently detected at concentrations below Method 1 Standards. Only chloroform was detected in both soil and groundwater, but the maximum groundwater concentration was far below the MCL. Furthermore, chloroform has not been identified as a compound associated with historical site activities at the Former A Range. SVOCs (excluding PAHs) were infrequently detected in soil. In general, SVOCs are highly adsorbed or complexed with soil and have low water solubilities. Thus their overall tendency is for low mobility in the environment and they have not been detected in groundwater at the Former A Range.

Several PAHs were detected in soil in the target area and rail line. Generally, the higher PAH detections were observed at only a few locations; sometimes in both the discrete and composite sample collected from the same grid. PAHs are considered to be nearly insoluble and none of these compounds, with the exception of a single low level detection of naphthalene, have been detected in groundwater.

Sixteen metals were detected at maximum concentrations that exceeded at least one of their respective screening criteria. Five of these 16 metals did not have MCP Method 1 Standards. The maximum cobalt detection was below background. The maximum detections of iron, manganese, and molybdenum were all below their EPA Residential Risk Screening Level (RSL). Only the maximum concentration for copper exceeded the EPA RSL. Copper, molybdenum, and manganese were also detected in groundwater; however, the maximum groundwater copper detection was far below its MCL and the maximum detection of both molybdenum and manganese were well below their respective HAs. Seven metals had maximum detections below Method 1 Standards but exceeding an SSL. Of these metals, only silver and zinc were detected in both soil and groundwater, but the maximum groundwater concentrations were well below the lowest screening value. Four metals (antimony, chromium, lead and nickel) had maximum detections that exceeded their MCP Method 1 Standards. Only the maximum detections of antimony, and nickel exceeded their respective MCP Method 1 Standards. The average concentration of these metals was well below their MMR background levels. The average concentration of chromium was also below the MMR background level while the average lead concentration was well below the Method 1 Standard. None of these metals were detected in groundwater on the range.

The metals detected in surface soil at the Former A Range are anticipated to be relatively immobile and resistant to downward migration through the vadose zone. Based on their chemical properties, these metals are preferentially adsorbed to the soil and relatively immobile. This suggests that metals detected at the range are unlikely to migrate through the vadose zone to groundwater. Of the 16 metals detected above soil screening levels only five were detected in

ES-3 2012-O-JV04-0006

Impact Area Groundwater Study Program Final Former A Range Investigation Report April 25, 2012

groundwater (copper, manganese, molybdenum, silver, and zinc) all at concentrations well below the lowest groundwater screening value.

In summary, an extensive soil and groundwater investigation was conducted at the Former A Range over a 10-year period. The groundwater investigation revealed only low concentrations of several analytes that were well below applicable standards. Thus, it does not appear that past activities at the range have significantly impacted groundwater. In addition, there does not appear to be a source for potential future groundwater contamination. The target berms where contamination levels and munitions discoveries were highest have been removed. The results of the soil risk screening suggest that any analytes detected in the remaining soil are unlikely to impact groundwater. Also, based on the types and quantities of munitions found during various investigations and removal actions, it is unlikely that any residual munitions represent a significant threat to groundwater. While no further action appears necessary to address groundwater or source areas on the range, continued monitoring may be appropriate.

ES-4 2012-O-JV04-0006

1.0 INTRODUCTION

This Investigation Report summarizes the results of studies undertaken to characterize and evaluate the extent of soil and groundwater contamination at the Former A Range on the Massachusetts Military Reservation (MMR). The Former A Range investigation was conducted under U.S. Environmental Protection Agency (USEPA) Safe Drinking Water Act Administrative Orders SDWA 1-97-1019 and SDWA 1-2000-0014 and in consideration of the substantive cleanup standards of the Massachusetts Contingency Plan (MCP).

1.1 Purpose of Report

The purpose of this report is to provide a summary of the results of previously reported soil and groundwater investigations at the Former A Range, as well as the results of more recent studies not previously reported. All available analytical data have been used to delineate the nature and extent of the contamination resulting from past activities and to complete a risk screening. This report considers both soil and groundwater at the Former A Range.

A significant amount of the work performed at the range was previously reported in the *Former A Range Additional Delineation Work Plan* (AMEC 2004) and the *Final Technical Team Memorandum 02-1 Former A, Former K, and Demolition Area 2 Report* (AMEC 2002). Therefore, this report focuses on both summarizing the previously reported information and appropriately considering it in conjunction with the extensive more recent studies that were conducted from 2004-2009. In the course of the following discussions, previous reports are referenced as appropriate. This report also provides a summary of the source removal action conducted at the range.

1.2 Investigation Scope and Objectives

An investigation was conducted at the Former A Range to evaluate the nature and extent of contamination in soil and groundwater and evaluate the presence of unexploded ordnance. The investigation included site investigations, geophysical surveys, and the collection and analysis of soil and groundwater samples.

1.3 Report Organization

This section provides an introduction to the report. Section 2.0 provides a description of the Former A Range, and summarizes past historical uses of the range and the cultural and physical characteristics of the study area. Section 3.0 provides a summary of site investigations. Section 4.0 discusses response actions conducted at the Former A Range. Section 5.0 summarizes the nature and extent of soil and groundwater contamination. Section 6.0 presents a Conceptual Site Model for contaminants. Section 7.0 presents a summary of the risk screening. Section 8.0 presents a summary of the investigation findings. References are provided in Section 9.0.

2.0 SITE BACKGROUND

2.1 Site Description

The Former A Range (also known as the Gravity Anti-Tank Range) is an inactive anti-tank artillery and rocket practice range. It is located west of the Impact Area in the southern portion of Training Area B-9 (Figure 2-1). Wood Road and Training Area B-8 lie to the immediate south of the range. Avery Road and the remainder of Training Area B-9 lie to the immediate west and north of the range. The range is largely wooded, which is consistent with other surrounding areas of this portion of the installation. The Former A Range encompasses approximately 44 acres. The Target Area portion of the range includes approximately 17.6 acres.

The range has restricted access with locked gates situated at the southern boundary on Wood Road and at the eastern boundary on Avery Road. The ground surface slopes to the west. A rail line track (rail line) ran from the highest elevation near the eastern range boundary west and downgradient winding through the target area and ending in the southwestern tip of the range near the firing point. An old utility or maintenance road is situated parallel to the rail line.

The range is generally comprised of densely vegetated pitch pine (*Pinus rigida*) surrounded by oak (*Quercus ilicifolia*) trees near the perimeter of the range. The firing point is located at the southwestern tip of the range and is primarily bare sand and gravel deposits with limited vegetation, including immature pitch pine and grasses. The target area includes disturbed areas consisting of fine to coarse sand and gravel with little topsoil present.

2.2 Site History

The range was originally constructed in 1941 and functioned as an anti-tank artillery and rocket practice site up until the 1960s. Targets were placed on specially designed rail cars and rolled on tracks, via gravity, downhill through two sets of switchbacks traversing the target area. The target area switchbacks are visible in aerial photographs of the site (Figure 2-2). Trainees would fire in an easterly direction at moving targets from a firing point approximately 2,400 feet to the west of the target area on the southern side of Wood Road (Figure 2-3). At the base of the hillside, the targets would coast through a rollout section of the course to a platform where they were repaired, loaded onto trucks, and returned to the top of the hill via Avery Road. Records indicate that ordnance used during this period included 37 millimeter (mm) armor piercing and high explosive (HE) rounds, 40mm armor piercing and HE rounds, 75mm HE and shot rounds, 90mm artillery rounds, and 3.5-inch practice rockets (bazooka). In addition, 2.36-inch rocket fragments and a 3.5-inch HEAT rocket were discovered on the range.

Between the early 1960s and mid-1970s, the range was converted to a machine gun practice area. It is not clear how the range was configured and whether firing was conducted on moving targets in a manner similar to earlier artillery and rocket training, but records do indicate that .50 caliber ball and tracer rounds were used at that time. No documentation has been identified that describes activities at the range after the mid-1970s.

The steel tracks and target area backstop berms remain nearly intact at the site. An operator dugout at the top of the target hill, remnants of the target car loading area, and a pair of concrete survey monuments at the firing point are the only other obvious remnants of the

original range. Based upon comparisons of current and historic site maps, much of the original firing point hillside appears to have been removed in association with the straightening of Wood Road.

2.3 Environmental Setting

The following subsections provide further site information regarding geography, cultural setting, ecological setting, climate, geology and hydrology/hydrogeology.

2.3.1 Geographic Setting

MMR includes Camp Edwards, Otis Air National Guard Base, United States Coast Guard Air Station Cape Cod, Cape Cod Air Force Station, and the Veteran's Affairs Cemetery. The northern, non-cantonment area is a wooded area on the Upper Cape that is largely undeveloped, but fringed with highways, homes, and other development (Cape Cod Commission 1998). MMR is situated adjacent to the towns of Bourne, Sandwich, Falmouth, and Mashpee.

2.3.2 Cultural Setting

Land use near MMR is primarily residential and recreational, and secondarily agricultural and industrial. Portions of MMR are opened for deer and turkey hunting by permit. The major agricultural land use near MMR is the cultivation of cranberries. Commercial and industrial development in the area includes service industries, landscaping, sand and gravel pit operations, and municipal landfills (USACE 2002).

An archaeological survey covering 72 percent of Camp Edwards was conducted in 1987 to assess its archaeological sensitivity. A total of one historic site and 26 prehistoric sites were identified within Camp Edwards. Findings from these surveys indicate that humans inhabited the Camp Edwards area up to 10,000 years ago. The area around the Former A Range is an area of moderate archaeological sensitivity, but the range itself is not.

2.3.3 Ecological Setting

The northern two-thirds of MMR are characterized as undeveloped open area, while the southern third is characterized as developed land. The dominant vegetation types vary accordingly. The northern portion of MMR consists of forested uplands dominated by stands of pitch pine and mixed oak species (*Quercus* spp.) with a diverse shrubby understory. Remnant vegetation in the southern portion of MMR consists of open grassland fields interspersed with scattered trees and shrubs. The present composition of the forests is a reflection of eighteenth century logging practices, replanting strategies, and fire suppression activities. The other dominant cover type in this area consists of pitch pine and scrub oak barrens that are maintained by periodic fires (USACE 2002).

There are no federally listed species observed on MMR. There are 39 state-listed species about half of which are lepidoptera (i.e., moths), such as Gerhard's underwing moth (*Catocala herodias gerhardi*), the barrens daggermoth (*Acronicta albarufa*), and Melsheimer's sack bearer (*Cicinnus melsheimer*i). State-listed plant species documented on MMR include broad tinker's weed (*Triosteum perfoliatum*), ovate spikerush (*Eleocaris obtuse var. ovata*), Torrey's beak-

sedge (*Rhynchospora torreyana*), and adder's tongue fern (*Ophioglossum pussilum*). Rare bird species on MMR include the upland sandpiper (*Bartramia longicauda*), the grasshopper sparrow (*Ammodramus savannarum*), the vesper sparrow (*Pooecetes gramineus*), and the northern harrier (*Circus cyaneus*). These species are primarily associated with the grassland fields in the southern cantonment area. No threatened or endangered amphibians, reptiles, fish, or mammals are known to inhabit MMR; however, MMR does support a number of animals that are listed by the state as species of special concern. These include the eastern box turtle (*Terrapene Carolina*), the Cooper's hawk (*Accipiter cooperii*), and the sharp-shinned hawk (*Accipiter striatus*) (USACE 2002).

2.3.4 Climate

The climate for Barnstable County, where MMR is located, is defined as humid continental. The neighboring Atlantic Ocean has a moderating influence on the temperature extremes of winter and summer. Winds of 30 miles per hour may be expected on an average of at least one day per month. Gale force winds can be common and more severe in winter. Average daily temperatures range from 29.6°F in February to 70.4°F in July. The yearly average temperature as reported by the U.S. Department of Agriculture is 49.6°F (USDA 1993).

Mean annual rainfall is 48 inches per year including an average snowfall of 24 inches. Occasional tropical storms that affect Barnstable County may produce 24-hour rainfall events of 5 to 6 inches (NGB 1990).

2.3.5 Geology

The geology of Upper Cape Cod is comprised of glacial sediments deposited during the retreat of the Wisconsin stage of Holocene glaciation, approximately 15,000 years ago. Four sedimentary units characterize the regional geology: the Buzzards Bay Moraine, the Sandwich Moraine, the Buzzards Bay Outwash, and the Mashpee Pitted Plain. The sedimentary units are underlain by crystalline bedrock.

The Buzzards Bay and Sandwich Moraines lie along the western and northern edges of Camp Edwards as shown in Figure 2-4. The Masterson et al. (1997, 1999) report indicates that the Buzzards Bay Moraine resulted from the meltwater deposition of sorted sediments within a stagnant ice margin overlying a basal till. The surface of the moraine is characterized by an abundance of boulders. The upper part of the Sandwich Moraine resulted from glacial deformation of material; the lower part consists of sandy sediments. Masterson et al. (1997) describe the moraine deposits as generally consisting of gravel, sand, silt and clay with locally poorly to moderately sorted sand and gravel. Numerous discontinuous lenses of fine-grained sediments, including laminated silts and unsorted debris flow deposits, are also present in the moraines. The till in the lower part of the Buzzards Bay Moraine is comprised of sand, silt and clay, and scattered gravel in a compacted, unsorted matrix. Both moraines form the hummocky ridges characteristic of the northwest and north side of MMR.

In the vicinity of Former A Range, topography varies over 150 feet, as denoted by surface elevations of 98 feet above mean sea level to 255 feet above mean sea level. Soils encountered during installation of wells at the Former A Range are consistent with the descriptions of the Buzzards Bay Moraine. Boring MW-206 was drilled with a barber rig and the boring was logged

2-3 2012-O-JV04-0006

using a split spoon sampler. The top 150 feet of the boring consisted predominantly of graded medium sands with intervals of fine gravelly sediments. The second 100 feet of the boring consists principally of poorly graded sands. From 150 to 300 feet below grade, soils were logged as very fine sand with gravel or fine to course sand with gravel with intervals containing stringers of sandy clay. Below 300 feet and until bedrock was encountered, low plasticity silts and low plasticity clays were logged. These deposits are representative of a basal till. Crystalline bedrock was encountered at a depth of approximately 325 feet below grade. This boring indicates that the geology in proximity to Former A Range is variable and consists of an assemblage of poorly graded sands with deposits of finer grained materials at depth. Other borings installed at Former A Range are consistent.

The Mashpee Pitted Plain consists of fine- to course-grained sands with gravel forming a broad outwash plain, and lies to the east and south of the moraines, interior to MMR (Figure 2-4). Masterson et al. (1997) report that the lower part of the Mashpee Pitted Plain consists of fine-grained, glacio-lacustrine sediments comprised of fine sand, silt and clay. This laterally persistent facies can be encountered underlying the moraines. The Buzzard's Bay Outwash can be found along west of the MMR boundary to the Canal and Buzzard's Bay. Like the Mashpee Pitted Plain, the Buzzard's Bay Outwash consists of coarse sand and gravel of deltaic origin with locally interbedded fine sand and silt.

2.3.6 Hydrology/Hydrogeology

Surface water resources on Camp Edwards are scarce. Surface water is not usually retained due to the well-drained sandy soils of Camp Edwards. As a result, approximately 60 percent of the annual rainfall on Camp Edwards infiltrates the soil and contributes to the groundwater aquifer (AMEC 2005). The 31 wetlands on the training sites of Camp Edwards comprise only 55 acres of land. No large lakes, rivers or streams exist on the property, only small marshy wetlands and ponds. Most of the wetlands and surface waters in the Sandwich and Buzzards Bay Moraines on Camp Edwards are considered to be perched (MAARNG 2001). In proximity to the range is Deep Bottom Pond (Figure 2-5) and a cranberry bog located just northwest of Deep Bottom Pond.

The groundwater beneath Camp Edwards is known as the Sagamore Lens that is a part of the larger Cape Cod Aquifer (MAARNG 2001). The Sagamore Lens is underlain by low permeability crystalline bedrock, which is not a productive source of water. The source of fresh water recharge to this groundwater system is rainfall and snowmelt. Approximately 27 inches of the average annual rainfall infiltrates the soil and recharges groundwater on an annual basis. The top of the groundwater mound of the Sagamore Lens is located within the area of the J-1, J-2, and J-3 ranges, which are southeast of the Impact Area located in the central portion of MMR. Groundwater flows toward the northwest beneath the Former A Range.

The height of the water table in and around MMR can fluctuate up to 7 feet annually due to seasonal variations in groundwater recharge. Groundwater levels are highest in the spring when recharge rates are high; levels are lowest in the late summer/early autumn when rainfall is minimal.

2-4 2012-O-JV04-0006

Impact Area Groundwater Study Program Final Former A Range Investigation Report April 25, 2012

Within the Former A Range Study Area, the groundwater elevation is typically between 46 and 54 feet National Geodetic Vertical Datum. The hummock like topography causes the water table to vary from 70 to 155 feet below ground surface (bgs).

Water level data collection has been measured since 2002 with the installation of well cluster MW-249. Water levels in well MW-249 have a maximum fluctuation of 7 feet in its 8-year gauging history.

The horizontal hydraulic conductivity of these materials is assumed to range (base-wide) from 125 to 350 feet/day based on grain size analysis (Masterson et al. 1997). The ratio of the horizontal to vertical hydraulic conductivity is 3:1. A layer of till (< 5 to 20 feet thick) is present on top of bedrock. The hydraulic conductivity of the till is estimated at 1 foot/day (Masterson et al. 1997).

Bedrock occurs at depths of approximately 300 (MW-249) to 325 (MW-206) feet bgs beneath the range and can be considered impermeable. Therefore, the bulk of regional groundwater flow is transmitted through the upper outwash units. Effective porosity has not been directly measured at MMR (AMEC 2005). Estimates have been made based on literature values and range from 0.25 to 0.36. The horizontal hydraulic gradient across MMR ranges from about 0.008 to 0.0014 feet/foot (AMEC 2001). Within the range, horizontal hydraulic gradient ranges from 0.00292 to 0.00348 feet/foot. Local variations in groundwater flow speed and direction are influenced principally by local heterogeneities within the sandy aquifer.

2-5 2012-O-JV04-0006

3.0 SUMMARY OF SITE INVESTIGATIONS

This section summarizes the previous investigations at Former A Range that were conducted from 1999 to 2004 to characterize soil and groundwater contamination on the range. Detailed discussions of data collected from this time period were previously presented in the *Former A Range Additional Delineation Work Plan* (AMEC 2004) and the *Final Technical Team Memorandum 02-1 Former A, Former K and Demolition Area 2 Report* (AMEC 2002). This section also summarizes studies at the Former A Range conducted since 2004. The basis and rationale for the more recent investigations were presented in the *Former A Range Additional Delineation Work Plan* (AMEC 2004).

3.1 Groundwater Characterization Activities

Prior to the Phase IIb investigation of the Former A Range, two well clusters, MW-42 and MW-133, were installed in the vicinity of the range (Figure 3-1). These wells were installed as part of the Central Impact Area Investigation. Under the Phase IIb program, a pair of monitoring wells were installed downgradient of the upper target area. MW-149S was installed to intercept the water table and possible contaminants from the Former A Range. A deeper well, MW-149M1, was installed to intercept groundwater originating upgradient of the range in the Central Impact Area.

From 2001 to 2002, several additional wells (MW-206, MW-207, MW-223, and MW-249) were installed in the vicinity of the range as part of the Central Impact Area and/or Former A Range investigations. Two of these monitoring wells, MW-206S and MW-206M1, were installed within the footprint of the target area with MW-206S positioned to monitor groundwater at the target area. MW-249M3 was installed downgradient of the range and screened at depths selected to intercept groundwater originating from beneath the target area.

In November 2009, a groundwater monitoring well (MW-536) was installed downgradient of the target area, along Avery Road, approximately 330 feet east of MW-249 (Figure 3-1). The objectives for this well were to collect shallow groundwater data from the new monitoring well to further assess whether any explosives-related contaminants may be migrating to groundwater from surface soils in the target area of the Former A Range; and confirm that the RDX plume migrating through the Northwest Corner site is not connected to the main RDX plume migrating from the Central Impact Area beneath the Former A Range.

Two well screens were installed at well MW-536, the first screen was set bridging the water-table from 158 to 168 feet bgs to monitor groundwater from the Former A Range target area and the second deeper screen was set from 198 to 208 feet bgs to monitor the Central Impact Area.

3.2 Soil Characterization Activities

3.2.1 Initial Site Investigation

Initial investigations of the Former A Range included soil sampling to determine if past activities may potentially have an adverse impact on groundwater. Soil samples were collected in March and April 2001 (Figure 3-2). Other investigation activities, performed in January 2001, included an airborne magnetometer (AIRMAG) geophysical survey (Figure 3-3). The objectives of this survey were to detect metallic anomalies and to identify sites where ground-based geophysical

surveys might be employed. A ground-based EM-61 geophysical survey was subsequently performed in a portion of the target area in August and November 2001.

As discussed in Section 2.2, the range was predominantly utilized as an anti-tank artillery and rocket site into the 1960s and subsequently through the mid-1970s as a machine gun range. The principal areas of concern with respect to potential soil and/or groundwater contamination at the range were identified as the following:

- Firing Point an area located at the western edge of the range, adjacent to Wood Road, from which anti-tank artillery and later machine gun firing originated.
- Target Area a hill located approximately 2,400 feet east of the firing point across which rail cars would be rolled on railroad track switchbacks to provide targets.

These areas have been the focus of most of the field investigations and associated chemical sampling at the range.

As part of the initial site investigation, soil samples were collected at 20 locations (shown in Figure 3-2) on the range. Nineteen of these samples were collected from five-point composite grids from depth intervals of 0 to 3, 3 to 6, and 6 to 12 inches bgs: five grids were located in the target area where munitions were observed on the ground surface; 10 were located in the two target berms above the rail line; three were located on the lower half of the rail line; and one was located at the firing point. A single grab sample was located in an area of sediment deposition at the base of a slope containing 37mm projectiles (sample location 37MM2). All soil samples were analyzed for explosives, SVOCs, and metals. Approximately 47 samples were also analyzed for pesticides and herbicides, 55 samples for PCBs, and 337 samples for inorganics. Pesticides, herbicides and PCB samples were collected from several sampling grids, including 132B, 132P and 132U. These grids reflect both target area and non-target area locations at the range.

In January 2001, an AIRMAG survey was flown over Training Area B-9, which includes the Former A Range. The results of this survey revealed one predominant, sinuous feature comprised of numerous anomalies (Figure 3-3) presumed to be the steel tracks (Tetra Tech EMI 2002a, 2002b). Using aerial photographs and geologic maps, nearly all of these anomalies were determined to be the result of cultural features or geologic influences. The remaining anomalies were either surface or intrusively inspected, and 12 were determined to be the result of the presence of munitions-related items (Tetra Tech EMI 2002a). Four anomalies (Figure 3-3) were excavated and an inert 57mm projectile, a 75mm projectile base, and several scattered, inert 3.5-inch practice rockets were found. Munitions discovered during the intrusive investigations at the Former A Range are described in Table B-1 in Appendix B.

A ground-based electromagnetic (EM) survey was conducted at the range to search for subsurface unexploded ordnance. Surveys were performed in four separate areas (Survey Areas A, B, C, and D) within the target area, each representing a partially exposed, up-range hillside surface where ordnance was expected to be present (Figure 3-4). The survey results revealed numerous anomalies suggestive of possible subsurface munitions and surface or intrusive inspections were performed at 102 of them. Eight of these anomalies were determined to be the result of burial sites for expended practice rockets (Tetra Tech EMI 2002b). Most of the 247 items recovered from these anomalies were inert 3.5-inch rockets. Items other than

3-2 2012-O-JV04-0006

3.5-inch rockets discovered in these burial sites included four inert 40mm projectiles, one inert 37mm projectile, and one inert 90mm projectile.

Thirty-seven potential unexploded ordnance were discovered but all were determined to be inert except for twelve 40mm projectiles, one 4.5-inch rocket, two 37mm projectiles, and one 57mm projectile. The remaining anomalies were determined to be the result of surface and subsurface munitions scrap, including additional inert projectiles and ordnance fragmentation.

3.2.2 Additional Range Delineation Studies

This section discusses the additional delineation studies at the Former A Range conducted since 2004. The basis and rationale for these investigations is presented in the *Additional Delineation Work Plan* (AMEC 2004). Analytical data for the investigations is presented in Appendix A.

Soil samples collected in support of these investigations were analyzed for explosives, perchlorate, SVOCs, volatile organic compounds (VOCs) and metals. The sampling locations and number of samples collected from each location are presented in Table 3-1. In general, one, two or three samples were collected at each location at varying depths. With the exception of the target ordnance penetration study, all soil samples were collected from surface (either 0 to 3 inches bgs or 0 to 6 inches bgs) or shallow subsurface locations (3 inches to 3 feet bgs).

Target Area Configuration Study

A geophysical survey using time domain EM was performed at the range to map the limits of remnant metallic anomalies in order to confirm that the target area had been adequately sampled and delineated. In earlier studies, the limits of the target area had been inferred based on historical range layout plans, site maps, aerial photographs, and a remaining boundary marker discovered on the southern side of the target area. In December 2004, a survey was conducted (utilizing a Geonics model EM-61 terrain conductivity meter) of 10 predefined transect lines positioned to supplement earlier geophysical survey findings to map the limits of the target area.

The results of the 10 traverses are presented as a color EM analytic signal map (Figure 3-5) showing EM anomalies expressed in millivolts along the 10-foot-wide survey traverses. The EM results are also plotted with data from the EM61 survey performed in September 2001. The EM analytic signal maps were interpreted and target anomalies were selected to excavate and identify. No excavations were proposed along traverses 2 and 3 because of their central location in the assumed high-use portion of the range. Fifty-eight anomalies were intrusively investigated. Eight potential unexploded ordnance items were recovered: two 75mm shrapnel MK1 (unfuzed) projectiles; three 75mm shrapnel MK1 projectiles (base only); one 37mm TP M63/M58 BD fuze; one 37mm HE-T SD M54/M56 PD fuze; and one 3.5-inch HEAT rocket M28/M404 BD fuze. Munitions debris (fragments) accounted for the majority of finds during this event. Other miscellaneous metal scrap was encountered (e.g., rail road tracks, wire, and pallets with nails) at several locations.

Excavation results indicated that the impacted (i.e., high-use) portion of the target area was situated within the limits of the rail line switchbacks. Therefore, no changes were proposed to the original target array dimensions described in the 2004 Work Plan (AMEC 2004).

Target Area Ordnance Penetration Study (Backstop Trench Data)

A target ordnance penetration study was conducted to assess the depths of ordnance penetration below ground surface and the distribution of associated contamination. This study was conducted to determine maximum penetration depth of the various types of munitions used on the range. This investigation involved sampling and analysis to assist in determining the vertical distribution of ordnance and contaminant residues in the upper backstop berm.

Three trenches were excavated in the upper backstop berm to search for deeply penetrating ordnance and to determine associated impacts to soil. The excavation locations (Figure 3-6) were selected based on the magnitude of EM61 anomalies mapped during the ground-based geophysical survey.

The backstop trenches (Trenches W, X, and Y) were excavated in 1-foot lifts. Trench excavations were approximately 40 feet by 16 feet and bottoms were completed to a width of approximately 4 feet. Following excavation, a representative 5-point composite sample was collected from the base of each of the seven lifts of each trench for chemical analyses. Samples were submitted for analyses for explosives, perchlorate, SVOCs, and metals. In addition, a number of additional grab samples were collected in close proximity to ordnance items. Soil sample results are presented in Table A.1 of Appendix A and discussed in Section 5.2.1.

The majority (approximately 85 percent) of munitions items were found in the first lift (upper 1 foot) of each of the three excavations. Approximately 15 percent of the items were located within 1 to 2 feet. The majority of items encountered were 37mm projectiles, inert 3.5-inch rockets, and 75mm projectiles.

Trench W	0 to 1 foot bgs 1 to 2 feet bgs 2 to 3 feet bgs	Fifty-eight 37mm projectiles, one 3.5-inch rocket Twenty-one 37mm projectiles Two 37mm projectiles
Trench X	0 to 1 foot bgs 1 to 2 feet bgs	Sixteen 37mm projectiles, two 75mm bases Nine 37mm projectiles
Trench Y	0 to 1 foot bgs	Five 37mm projectiles, one PD fuze

Thirty-seven 37mm projectiles and the one PD fuze were believed to be energetic.

The location of the trenches was designed to provide the maximum amount of information on subsurface conditions along the berm. Results indicated that the higher density of subsurface items was located in the lowest (downhill) and most northern trench (Trench W) with the second highest density located in the middle trench (Trench X), and the lowest density located within the highest elevation trench (Trench Y). This may be due to the targets first being observed by the firing point personnel at the higher (southern end) and giving the firing personnel time to take aim as the target traveled downgradient along the railway to its northern (lowest) extent.

The trenches were excavated to a depth of 7 feet below the surface of the berm. Soil excavated from the 0 to 1-foot lift (approximately 40 cubic yards) was shipped off site to an approved landfill (Clean Harbors facility in Braintree, Massachusetts, Manifest No. MAU 106944) based on elevated lead detections. Soil from the remaining lifts had no detections exceeding MCP Method 1 Standards and was used to backfill the trenches.

3-4 2012-O-JV04-0006

Additional Soil Delineation Investigation

As part of the additional range delineation study, a multi-component field investigation was conducted to further evaluate chemical contaminant distribution in soil including: explosives, SVOCs, and metals in the target area; PAHs along the rail line; metals associated with small arms firing; propellant at the firing point; and a groundwater RDX source investigation.

With the exception of the firing point and the groundwater source investigation, all of the sampling locations are within the overall target area. The specific sampling locations associated with each task identified above are presented in Figure 3-7.

Target Area Investigation for Explosives, SVOC, and Metals

The first component of the additional soil delineation investigation involved collection of soil samples from locations both within the interpreted range boundary and also at a number of locations outside the range boundary (Figure 3-7).

A total of 15 surface soil samples were collected from a target area-wide sampling array. In addition, a total of 10 flanking samples were collected from areas located just outside the limits of the target area. Each sample was collected as a 30-point multi-increment sample over an area of 25 feet by 25 feet. A systematic random approach was used to collect the sample aliquots and the sample was ground prior to analysis. Five additional sampling points were established along the upper hillside. Sampling was conducted during January 2006, and each sample was collected as a single discrete grab sample. Samples were submitted for analyses for explosives, SVOCs, and metals. The overall analytical results are summarized in Table A.2 of Appendix A and discussed in Section 5.2.1.

Rail Line PAHs

As part of the additional soil delineation investigation, further investigation of SVOCs near the rail line was undertaken. The investigation focused on the collection of surface and shallow subsurface soil samples at 12 sampling locations along the rail line. Soil samples were collected from four separate areas, specifically the major bends in the track between the traverses of the target area hillside. Samples were collected from either two or three depths (0 to 0.25, 0.25 to 0.5, and 0.5 to 1.0 foot bgs) depending on the sampling location. Samples were collected during November 2004, and were analyzed for SVOCs. The analytical results for the rail line are summarized in Table A.4 of Appendix A and discussed in Section 5.2.1.4.

Small Arms Related Metals in Soil

A field study was undertaken to assess the possible impacts of past small arms activities on soil metal concentrations (particularly copper), although some samples were also analyzed for explosives. Soil samples were collected from 15 locations for metals analyses (Figure 3-7). At seven locations, samples were also analyzed for explosives. In selecting sampling locations, consideration was given to visual evidence of small arms projectile fragments on the surface, discovery of small arms targets, and occurrence of sediment depositional areas. At each sampling location, discrete soil grab samples were collected from 0 to 0.5 feet bgs and also from 1.5 to 2.0 feet bgs. The field sampling effort was conducted during November and December 2004. The analytical results for the small arms areas are summarized in Table A.5 of Appendix A and discussed in Section 5.2.1.5.

3-5 2012-O-JV04-0006

Firing Point

Soil samples were collected and analyzed from soil sampling grids at the firing point. Earlier investigation revealed the presence of three compounds potentially related to propellants (2,4-DNT, n-nitrosodiphenylamine, and di-n-butyl phthalate) at trace concentrations. Three additional locations were selected for sampling, as indicated in Figure 3-7, to further characterize propellant-related residues at the firing point. Five-point composite samples were collected from two depths: surface soil (0 to 0.5 feet) and shallow subsoil at a depth of 1.5 to 2.0 feet. The field sampling program was implemented in December 2004. Samples were analyzed for explosives, perchlorate, VOCs, and SVOCs. The analytical results for the firing point are summarized in Table A.6 of Appendix A and discussed in Section 5.2.2.

Groundwater RDX Source Investigation

A site reconnaissance was conducted in the area of particle backtrack for wells MW-206M1 and MW-249M2 in an effort to delineate possible sources of RDX detected in these wells. Particle tracks developed for these wells suggested possible RDX source locations to the southeast of the Former A Range. The particle backtrack for these well screens are presented in Figure 3-8.

Based on the particle backtrack results, three locations were selected for surface and shallow subsurface soil sample collection and analysis (Figure 3-7). Each soil sample was collected and analyzed as a 25-point multi-increment sample. Samples were collected from three depths: surface (0 to 0.25 feet) and shallow subsurface (0.25 to 0.5 feet and 0.5 to 1.0 feet). Samples were collected from these locations in August 2005. All samples were analyzed for explosives, perchlorate, SVOCs, and metals. The analytical results are presented in Table A.7 of Appendix A and discussed in Section 5.2.3.

3.2.3 2010 Geophysical Survey

In 2010, additional geophysical investigations were conducted on Former A Range to verify that the 2009 source removal action (see Section 4.2) was successful and confirm that no areas of high munitions density existed outside the target area.

To accomplish these goals, an EM-61 survey was conducted over the four excavation areas in the backstop berms and detailed reconnaissance were conducted following predefined meandering paths. Based on the results of the meandering path survey, detailed reconnaissance was conducted over two irregularly shaped areas at the end of the berms. These areas were believed to be more likely to contain munitions since they were immediately downhill from the target berms. As the target ran down the track and the shooter was late to fire or led the target too much, the projectile would land just beyond the downhill end of the target berm.

EM Survey of Berm Excavations

Four separate geophysical surveys were conducted within the footprint of the excavations of the backstop berms. The locations of the excavated areas are shown on Figure 3-9. The surveys were conducted using a Geonics model EM-61 meter. The highest level EM-61 anomalies in each excavation were intrusively investigated. Five 37mm projectiles were discovered among the 25 anomalies investigated at Berm A (see Table B-1). Only one 75mm shrapnel projectile

3-6 2012-O-JV04-0006

was discovered among the 25 anomalies investigated in Berm B. No munitions items were discovered among the 25 anomalies investigated at Berm C. Only one 37mm projectile was discovered among the 25 anomalies investigated at Berm D. Based on these results, another 25 anomalies were investigated at Berm A and one additional 37mm projectile was removed. The seven 37mm projectiles were blown-in-place on 25 February 2011 and four were determined to be HE. The 75mm shrapnel projectile was sent to a safe holding area for later destruction in the controlled detonation chamber.

Detailed Reconnaissance

Most ground-based geophysical surveys focused on the target area of the Former A Range. To confirm that no areas of high munitions density exist outside the target area, a detailed reconnaissance was conducted along several predefined meandering paths totaling approximately one mile in length (Figure 3-9). A visual site inspection was performed to document the presence/absence of evidence associated with munitions (i.e., munitions debris, disturbed ground, etc.) along the path. A hand held magnetometer was used to survey for the presence of subsurface anomalies and the size and location of the anomaly was recorded. All of the 475 anomalies detected were intrusively investigated. While the large majority of items were scrap metal, a total of 13 munitions items were discovered during the intrusive investigation including ten 37mm projectiles, one 75mm shrapnel projectile, one 2.36-inch rocket, and one 3.5-inch rocket motor. The 2.36-inch rocket was discovered on meandering path 1.

Based on the location and type of munitions discovered during the initial surveys, a further investigation was conducted at the northern and southern ends of the primary berms. Two irregularly shaped areas at the end of the berms were investigated and an additional 300-foot section of meandering path was surveyed (Figure 3-9). The northern area was investigated in phases as the area of investigation was expanded until the extent of munitions items was defined. A total of 42 munitions items were removed in the northern area including thirty-eight 37mm projectiles, two 81mm mortars, one partial 90mm projectile, and one partial 75mm shrapnel projectile. Only four munitions items were discovered in the southern area including two 37mm projectiles, one 75mm shrapnel projectile, and one 81mm mortar. The partial 75mm shrapnel round was moved to the safe holding area at the corner of Turpentine and Woods Roads on 19 August 2010. No munitions items were discovered in the additional section of meandering path surveyed.

Munitions discovered during the detailed reconnaissance were blown-in-place on 25 February 2011. Blow-in-place (BIP) activities took place at four individual BIP locations along the meandering path (SSFAMEA01, SSFAMEA02, SSFANIE06 and SSFAN123) and two consolidated shot locations (SSFORMACSL06 and SSFACSL01) (Figure 3-10). Pre- and post-BIP samples were collected at each of the individual locations and submitted for explosives, perchlorate, SVOC, and TAL metals analyses in accordance with the BIP sampling and analysis plan. Post-BIP MIS samples were collected from the consolidated shot locations and submitted for explosives, SVOC, and TAL metals analyses in accordance with the established sampling procedures. Results for individual BIP locations and consolidated shot locations are presented in Tables A.11 and A.12 of Appendix A, respectively. A separate BIP Summary Report was not prepared for this work effort.

3-7 2012-O-JV04-0006

Impact Area Groundwater Study Program Final Former A Range Investigation Report April 25, 2012

Low levels of SVOC, perchlorate, and TAL metals were detected in several of the individual preand post-BIP samples. Explosives compounds were non-detect in all post-BIP samples. Cadmium was detected above its screening value in the post-BIP samples collected from SSFAMEA01 and SSFAMEA02 at 3.9 μ g/Kg and 2.3 μ g/Kg, respectively. Perchlorate was also detected in the post-BIP sample collected from location SSFAMEA02 at 185 μ g/Kg. The perchlorate detected in sample SSFAMEA02 will be managed under the BIP program.

The results from the MIS samples collected from the consolidated shot locations were compared to MCL S1/GW1 standards as defined by the Former A consolidated shot procedure project note (dated 12/22/2008). Perchlorate was not detected in any samples collected from the consolidated shot locations. Low levels of SVOCs, mostly PAH compounds, were detected in some samples from the consolidated shot locations. TAL metals were detected below screening values in most of the samples with the exception of lead in samples collected from location SSFACSL01. Lead was detected in two of the three replicate samples collected from the outer 30-foot by 30-foot grid at 403 mg/Kg, 342 mg/Kg and 269 mg/Kg. The results for RDX in all samples collected from location SSFORMACSL06 exceeded the S1/GW1 standard of 1000 μ g/Kg. RDX was detected at 9910 μ g/Kg in the 30-point sample collected from the inner grid and at 22,900 μ g/Kg, 15400 μ g/Kg and 12,000 μ g/Kg in the 50-point replicate samples collected from the outer 30-foot by 30-foot grid.

Supplemental MIS samples were collected from these two locations in October 2011 to evaluate these exceedances. One 30-point sample was collected from the 50-foot by 50-foot outer grid at location SSFACSL01and submitted for lead analysis. Lead was detected at 170 mg/Kg. The average lead concentration for this sample and the SSFACSL01 samples discussed above is less than 300 mg/Kg. One 30-point sample was collected from the 50-foot by 50-foot outer grid at location SSFORMACSL06 and submitted for explosive analysis. Explosives compounds were non-detect in this sample. The RDX detected within the 30-foot by 30-foot grid at consolidated shot location SSFORMACSL06 will be excavated and managed under the BIP program.

3-8 2012-O-JV04-0006

4.0 RESPONSE ACTIONS

4.1 Robotics Technology Demonstration

In June 2008, the Air Force Research Laboratory (AFRL) conducted a technology demonstration at the Former A Range. The demonstration was conducted to evaluate methods to clear potential unexploded ordnance from the range using remotely controlled equipment. Starting in June 2008, AFRL demonstrated the use of a C325 excavator with an electromagnetic attachment.

The C325 excavator work was conducted at the upper backstop berm and the southeastern portion of the lower backstop berm. Based upon preliminary observations, the AFRL equipment appeared to do a reasonable job of removing items from the surface and near-surface. Unexploded ordnance items recovered from the upper berm by the excavator included twelve 37mm suspected HE projectiles and one suspected 57mm HE projectile. In addition, one 81mm HE mortar was discovered during clearance of the area where the AFRL control bunker was installed. A large number of 50 cal. small arms projectiles were also recovered by the excavator. The best results appeared to be obtained when the claw portion of the magnetic attachment was first used to disturb the ground surface.

After the technology demonstration was completed an EM survey was conducted over the area. The results of the EM survey indicated that some subsurface metal was still present in the berm. These berms were included in the 2009 removal action discussed in Section 4.2.

4.2 2009 Soil Removal Action

In November 2009, soil from the face of both the upper and lower backstops of both the upper and lower berms in the target area (Figure 4-1) was excavated to a depth of approximately 2 feet bgs. The 2009 soil removal action was conducted due to the potential for soil contamination and munitions items in the berm to impact groundwater. Approximately 2,500 cubic yards of material were removed. Unexploded ordnance technicians inspected all oversized material (>1 inch) generated during mechanical screening. Eight potential high explosives items were identified: three 81mm mortars; three 37mm projectiles; and two 75mm projectiles. As discussed in Section 3.2.3, an EM-61 survey was conducted on the face of each berm after the soil was excavated. Seven additional 37mm projectiles and one 75mm shrapnel projectile were removed during the intrusive investigation of EM-61 anomalies. Soil from this action was staged on the range in an area between the upper and lower berms. Soil stockpiles were sampled for metals, perchlorate, explosives, VOCs, SVOCs, PCBs, pH, corrosivity, ignitability, and reactivity.

Approximately 50 cubic yards of soil excavated from Grids 132G, 132N, 132R, and 132U, which had in-situ explosives detections, was segregated from the main 2,500 cubic yard stockpile and shipped off-site to an approved disposal facility (Waste Management's Turnkey facility in Rochester, New Hampshire). (The bill of lading for this material is included in Appendix D). The remainder of the soil, which had no significant detections in-situ, was sampled with one sample collected for every 500 tons of soil. Thus, a total of eight samples were collected. Samples were comprised of a minimum of 30 discrete aliquots which were collected from various depths

Impact Area Groundwater Study Program Final Former A Range Investigation Report April 25, 2012

throughout the stockpile. Soil samples were analyzed for metals, perchlorate, explosives, VOCs, SVOCs, PCBs, pH, corrosivity, ignitability, and reactivity.

The stockpile sample results did not show detectable concentrations of explosives (Table A.8 of Appendix A). Some samples revealed the presence of low level SVOCs and metals. None of the analytes detected exceeded MCP Method 1 S-1/GW-1 Standards. In addition, the soil was determined not to be characteristic hazardous waste based on the results of the pH, corrosivity, ignitability, and reactivity analysis. Given the lack of explosives detections and low levels of other analytes, the soil was returned to the Former A Range.

In order to remove the bullets present in the stockpile, the soil was mechanically screened to 3/16 inches. The fraction less than 3/16 inches in diameter was transported and stockpiled at E Range for future use as Small Arms Range berm material. The soil fraction greater than 3/16 inches and less than 1 inch in diameter, along with containing the 0.50 caliber bullets, was further processed using a pneumatic separation unit (PSU). The PSU separated the bullets from the soil. The bullet fraction was then hand-screened by UXO personnel to verify that no live rounds were present. The bullets and other scrap recovered during screening were placed into 50-gallon drums for disposal in accordance with established protocols as presented in the Revised Draft Former A Range Soil Removal Activities Project Note dated July 23, 2009 and the Separation and Disposition of Soils Located on Former D Range Project Note dated April 11, 2011. This screening/separation process took place between July 27 and August 3, 2011.

Post-excavation samples were collected from the footprint/face of the four berms A, B, C and D shown in Figure 4-1. The location IDs were SSFMABA, SSFMABB, SSFMABC and SSFMABD. A total of six 100-point MIS samples were collected and submitted for explosives compounds (Method 8330b) and metals analyses. In addition, one set of replicate samples were submitted from Berm D (Location ID: SSFMABD). All multi-point composite samples were collected from 0 to 0.25 feet bgs. Sample IDs for the six samples are: FAA0003A from location SSFMABA, FAB0003A from location SSFMABB, FAC0003A from location SSFMABC and FAD0003A, B and C from location SSFMABD. No explosives compounds were detected in any of the post-excavation samples (Table A-9 of Appendix A). Several metals were detected but all were consistent with background levels.

4-2 2012-O-JV04-0006

5.0 NATURE AND EXTENT OF CONTAMINATION

5.1 Groundwater

The monitoring wells used to investigate the Former A Range groundwater are shown in Figure 3-1 and summarized as follows:

- MW-149S (screened from +2' to -8' bwt or 48 to 38 MSL) located to the immediate north of the range generally downgradient of the target area
- MW-206S (screened from +2' to -8' bwt or 52 to 42 MSL) located approximately halfway up the target area hillside along the rail line traverse
- MW-249M3 (screened from -20' to -30' bwt or 37 to 27 MSL) located north of the range directly downgradient of the target area along Avery Road
- MW-536S (screened from +2' to -8' bwt or 50.2 to 40.2 MSL) located directly downgradient of the target area along Avery Road

Groundwater monitoring rounds at the key wells (MW-149S, MW-206S, MW-249M3, and MW-536S) were focused on sampling and analysis for explosives-related compounds. Monitoring for VOCs, SVOCs, pesticides, herbicides, and metals was also conducted in well MW-149S. Most recently, monitoring for VOCs, SVOCs, and metals was conducted at all four wells in May 2011. The overall groundwater results for these well locations are summarized in Tables A.10-1 to A.10-4 of Appendix A.

Explosives Compounds

All four Former A Range wells were sampled for explosives compounds but only one well, MW-249M3, had detections. Five explosives compounds (1,3,5-trinitrobenzene, TNT, 2A-DNT, 4A-DNT, and RDX) were detected at low concentrations in this well (Table A.10-3). TNT and its degradation products, 2A-DNT and 4A-DNT, were detected at low concentrations (<1 μ g/L) during several sampling rounds. All of the TNT detections were well below the health advisory (HA) of 400 μ g/L. RDX (0.31 μ g/L) and 1,3,5-trinitrobenzene (0.33 μ g/L) were each detected one time in this well during the June 2005 sampling event. This single RDX detection was well below the 2 μ g/L HA.

Perchlorate

All four Former A Range wells were sampled for perchlorate. Perchlorate was detected twice in well MW-249M3 (Table A.10-3) at concentrations of 0.44 μ g/L (November 2004) and 0.075 μ g/L (June 2009). Perchlorate was also detected twice in MW-536S (Table A.10-4) at concentrations of 0.2 μ g/L (January of 2010) and 0.24 μ g/L (May 2011). All of these detections were well below the Massachusetts Maximum Contaminant Level (MMCL) for perchlorate of 2 μ g/L.

Metals

All four Former A wells were sampled for metals in May 2011 and groundwater metals data was collected from well MW-149S on seven occasions between 2001 and 2005. Low levels of several metals (including barium, boron, calcium, copper, manganese, magnesium, molybdenum, potassium, silver, sodium, and zinc) were detected in groundwater samples from

these wells (Tables A.10-1 and A.10-4). Concentrations appear to be generally consistent with typical background ranges for these metals in groundwater. Groundwater copper concentrations in well MW-149S, which are of interest with respect to past activities at the range, are relatively low. Copper was reported at 2.1 µg/L in 2001, but has not been detected since.

SVOCs

All four Former A wells were sampled for SVOCs in May 2011 and groundwater samples from MW-149S were also analyzed for SVOCs on three occasions between 2001 and 2002. Two phthalate esters and one PAH (naphthalene) have sporadically been detected in groundwater. Bis(2-ethylhexyl)phthalate) was detected twice in samples from MW-149S at a maximum concentration of 1.4 μ g/L. This compound is a common laboratory contaminant and its presence is likely unrelated to activities on the Former A Range. Di-n-butyl phthalate was detected once in a sample from MW-249M3. Naphthalene was detected once in MW-149S at an estimated concentration of 0.37 μ g/L in March 2001. All subsequent results for naphthalene have been non-detect.

VOCs

All four Former A wells were sampled for VOCs in May 2011 and groundwater samples from MW-149S were also analyzed for VOCs on three occasions between 2001 and 2002. Acetone and chloroform were the only VOCs detected in groundwater samples, both from MW-149S. The maximum detected concentration (2 μ g/L) of chloroform was detected in a sample collected in March 2001. The single detection of acetone was in a sample collected in May 2011.

Pesticides and Herbicides

No pesticides or herbicides were detected in any of the groundwater samples collected from MW-149S.

5.2 Soil

Initial investigations of the Former A Range conducted in 2000 included soil sampling to determine if past activities had, or may potentially have, an adverse impact on groundwater. Soil samples were collected during the Phase IIb sampling program in March and April 2001. Additional soil investigations were conducted from 2004 to 2006 under the Former A Range Additional Delineation Work Plan (AMEC 2004). The following sections discuss the results of these investigations by area and analyte.

5.2.1 Target Area

The target area soil sampling includes 41 five-point composite and 133 discrete samples collected from three depths (0 to 3 inches, 3 to 6 inches and 6 to 12 inches) in 22- by 22-foot sample grids in the upper and lower berms during the initial investigation; the 15 thirty-point multi-increment samples collected as part of the target-area-wide sampling array; the 10 thirty-point composite MIS flanking area samples; the 10 five-point composite soil samples collected from two depths in the hillside area behind the target berms; the 24 five-point composite soil samples collected from two depths to investigate PAHs along the rail line, and; the 30 discrete grab samples collected from two depths to evaluate small-arms related metals detections. In

5-2 2012-O-JV04-0006

total 75 five-point composites, 163 discrete samples and 25 multi-increment samples were collected from the target area during the investigations of Former A Range.

5.2.1.1 Primary Berms

During initial field reconnaissance conducted in 2000, the two primary berms were observed to be devoid of vegetation. In addition, several munitions items were observed on the ground surface. Six soil grids were located in five areas where munitions densities appeared to be high. Ten additional grids were evenly spaced along the berms and a single grab sample was located in an area of obvious sediment deposition at the base of the lower berm slope. Additional soil samples were collected from within the target area at 38 sites where suspected unexploded ordnance were blown-in-place. The vertical distribution of contamination was later evaluated as part of the Target Area Ordnance Penetration Study described Section 3.2.2. The distribution of contamination detected in the primary berms is discussed below.

Explosives

Of the seventeen initial soil sample locations located on the primary berms, five had detectable concentrations of explosives (Figure 5-1). Explosives compounds were also detected in post-BIP samples collected at six locations. Additional sampling was conducted in close proximity to three cracked-open 37mm projectiles discovered within the target area.

The most frequently detected explosives-related compounds were 2A-DNT and 4A-DNT. Both are degradation products of TNT and were found, with one exception, only in non-BIP soil grids. The maximum concentrations of 2A-DNT (6.8 mg/Kg) and 4A-DNT (2.4 mg/Kg) were detected in a sample collected from along the lower portion of the target area rail line (grid 132G). TNT, one of the primary filler constituents of many of the projectiles fired at the range, was detected in both non-BIP and post-BIP samples. The maximum concentration of TNT (9 mg/Kg) was detected in a sample collected from the middle portion of the upper berm (grid 132Q). The distributions of these compounds exhibited no systematic pattern within the target area and are presumed to represent residual soil contaminants associated with past range activities.

RDX was found exclusively in post-BIP samples. Since none of the HE munitions destroyed contained RDX, these results suggest that the presence of RDX, a primary constituent of BIP charges, is likely a result of the BIP process. Soil was subsequently removed from eight BIP locations within the target area because explosives were detected in post-BIP samples. Soil was excavated from these craters in January 2002 under the BIP program. The material was shipped off-site to an approved disposal facility in February 2002. A Bill of Lading was provided to MassDEP at the time the soil was shipped. A copy of the Bill of Lading is unavailable for this excavated soil due to the age of the work effort.

Results of representative analyses for the composite trench samples from the Target Area Ordnance Penetration Study are presented in Figure 5-2. This study was performed to evaluate both the vertical distribution of munitions and soil contamination. As shown on Figure 5-2, explosives were not detected in any composite samples from any of the trenches. These results suggest that explosives contamination in the berms is primarily restricted to surface and shallow subsurface soil (0 to 12 inch bgs).

5-3 2012-O-JV04-0006

SVOC

SVOC samples were collected to a depth of 1 foot bgs at several intervals, including 0 to 3 inch bgs, 3 inch to 6 inch bgs, and 6 inch to 1 foot bgs. A suite of SVOCs, consisting mostly of polycyclic aromatic hydrocarbons (PAHs), was detected in several of the initial target area samples (Figure 5-3). Most were reported in grid samples collected from sediment depositional areas near the rail line. The highest concentrations were reported in several samples collected from locations (Grids 132K and 132O) proximate to the lower switchback of the target area rail line. These samples also contained other SVOCs, including carbazole and dibenzofuran.

Where detected, PAHs were generally found at all depth intervals sampled; however, the highest concentrations were typically observed in the surface interval (0 to 3 inches). The locations at which higher PAH concentrations were detected generally correlate with the location of the rail line and suggest a potential link. This relationship may be the result of residues from creosote-treated rail ties or may reflect past use of petroleum products during rail line operation. Notes on a 1941 preliminary design plan for the range recommend the use of grease on the curved portions of the tracks for proper operation of the target cars.

A few other non-PAH semivolatile compounds, including phenol, benzoic acid, bis(2-ethylhexyl)phthalate, and di-n-butyl phthalate, were found almost exclusively in post-BIP soil samples. The source of these contaminants is uncertain, but based on the presence of these compounds in post-BIP samples, they are likely attributable to BIP activities.

PAHs were detected in some soil samples from certain trench lifts in the Target Area Ordnance Penetration Study. Results for several of the more frequently detected PAHs observed in the trench samples are shown on Figure 5-2. As indicated, the more frequently detected PAHs were detected in composite samples from each trench. Detected concentrations were relatively low (<0.5 mg/Kg). Maximum concentrations for fluoranthene (0.13 mg/Kg), pyrene (0.13 mg/Kg), and benzo(a)pyrene (0.069 mg/Kg) were observed in the shallowest lift (Lift 1) from Trench W. Other PAHs were detected in this sample at similar or lower concentrations. Lower but detectable concentrations of fluoranthene, pyrene, benzo(a)pyrene, and other PAHs were also reported in the composite samples from the first lifts from Trenches X and Y. Lower (or non-detect) PAH concentrations were detected in Lifts 2 and 3 from each of the trenches. These results indicate that PAH contaminant distributions are largely confined to the surface and shallow subsurface soils with highest concentrations located near the rail line switchbacks. PAH detections proximate to the rail line are further discussed in Section 5.2.1.4.

<u>Metals</u>

Several metals were detected above background levels in the initial target area sample grids. Metals detected above background at least once include: antimony, arsenic, barium, cadmium, chromium, copper, iron, lead, manganese, mercury, molybdenum, nickel, selenium, silver, sodium, and zinc. Of these metals, copper, lead, and sodium were most frequently reported at concentrations greater than MMR background levels.

As shown in Figure 5-4, the highest copper concentrations were observed in grids 132I (1,330 mg/Kg) and 132G (1,230 mg/Kg). The copper alloy used in the jackets of small arms projectiles is considered a possible source of the elevated copper in soil along with copper used

in certain anti-tank munitions (2.36-inch and 3.5-inch anti-tank rockets). Elevated concentrations of lead (>100 mg/Kg) were reported in samples collected from grids in the lower (westernmost) target berm. The maximum concentration (11,600 mg/Kg) was reported in a sample collected from grid 132J in the switchback area of the rail line. Most of the high concentrations of lead were detected in surface soil samples. Several of the higher concentration lead samples were located in grids (132G and 132H) located at the base of the westernmost berm. Fragments from 75mm anti-personnel projectiles may be a possible cause for the higher concentrations of lead in soil. Grid 132G was excavated during the 2009 soil removal action.

The overall metals data (positive detects) for the composite trench samples collected during the Target Area Ordnance Penetration Study are summarized in Table A.1 of Appendix A. Metals were detected in all of the backstop soil samples. However, concentrations of most metals were comparable to MMR background levels (AMEC 2001). Results for copper and lead are shown on Figure 5-4.

For each of the three trenches, the maximum copper concentrations were observed in the samples collected from Lift 1, the shallowest lift in each trench (ranging from 35.2 to 55.9 mg/Kg). The highest overall copper concentration (55.9 mg/Kg) was observed in the sample from Lift 1 from Trench X. With a few exceptions, copper concentrations generally decrease in each successively deeper lift in each trench. For Lifts 5, 6, and 7 in all three trenches, copper concentrations in each sample were <10 mg/Kg.

Lead concentrations in the trench samples display a pattern similar to those of copper. The highest observed lead concentration was observed in Lift 1, the shallowest soil, for each trench. Lead concentrations in the Lift 1 samples range from 43 to 129 mg/Kg. The maximum observed lead concentration was found in the sample from Trench Y (129 mg/Kg). In each trench, lead concentrations decrease significantly with depth. For Lifts 5, 6, and 7 for all three trenches, lead concentrations were <10 mg/Kg. These results suggest that elevated metals concentrations, specifically lead and copper, are confined to the surface and shallow subsurface soils. Further discussion of metals detections on the range is provided in Section 5.2.1.5.

Other Analytes

The pesticide Beta BHC was detected in two samples collected from grid 132P, both at a concentration around 0.001 mg/Kg. DDT was detected at sampling location SS132B at trace concentrations of 0.001 mg/Kg and 0.002 mg/Kg. No other pesticide was detected in the primary berms. In addition, no PCBs or herbicides were detected in any of the grids. Low level concentrations of several VOCs were detected in grids 132P, 132T and 132U in the primary berm. VOCs detected in these grids included: acetone, bromomethane, chloroform, chloromethane, MEK, and toluene. Acetone concentrations ranged up to 0.7 mg/Kg. However, the acetone is likely a laboratory contaminant. Results for pesticides and VOCs are included in the data tables in Appendix A.

5.2.1.2 Hillside

As part of the additional range delineation study, soil on the hillside above the impact berms was evaluated. This area is located downrange of the berms and rail line, northeast of the current range access road.

Surface and shallow subsurface soil samples were collected from five locations immediately above the rail line. Sampling locations are identified in Figure 5-5. Surface soil samples were collected from 0 to 0.5-foot depths and shallow subsurface samples were collected from 1.5 to 2.0 foot depths. Sampling was conducted during October 2004. Samples were analyzed for explosives, perchlorate, SVOCs, and metals. The overall analytical results for these samples are summarized in Table A.3 of Appendix A.

Explosives and Perchlorate

No explosives or perchlorate were detected in any samples in either the surface or shallow subsurface depths.

SVOCs

No SVOCs were detected above the reporting limit, although trace (estimated) levels of several PAHs, including (benzo(a)pyrene at 0.08 mg/Kg), chrysene (0.12 at mg/Kg), and pyrene (0.18 mg/Kg), were reported for sample SS132CF.

Metals

Overall, most metal concentrations in the five surface soil samples were relatively low and comparable to MMR background levels. Iron was not reported above detection limits in any of the soil samples. Aluminum concentrations ranged from 1,760 to 8,470 mg/Kg with detections below MMR background (15,500 mg/Kg). Cadmium was not detected in any samples. The maximum concentrations of arsenic (3 mg/Kg), chromium (8.3 mg/Kg), molybdenum (0.96 mg/Kg), and nickel (2.2 mg/Kg) were below their MMR background levels.

Copper was detected in all samples at concentrations ranging from 3.1 to 16.1 mg/Kg. The maximum copper concentration reported for these samples is lower than what was detected in the primary berms and small arms deposition areas. Lead was detected at all of the sampling locations. Soil lead concentrations ranged from 2.7 to 42.5 mg/Kg. The highest lead concentration (42.5 mg/Kg) was reported for the sample from location SS132CF and exceeds its background concentration (19 mg/Kg).

5.2.1.3 Target Area Wide Sampling Array

The target-area sampling array consists of the 15 target array samples and the 10 flanking samples. The 15 target array samples were located inside the interpreted limits of the target area but away from the primary berms. The 10 flanking samples were located at the limits or outside the interpreted limits of the target area. Overall sampling results (detects) for this area can be found in Table A.2.

Explosives

Explosives compounds were largely absent in the target array (Figure 5-6) and flanking samples (Figure 5-7). Low/trace levels were reported at a few locations. At location SSFAT04, a low level of 2A-DNT (0.085 mg/Kg) and a trace (estimated) concentration of 4A-DNT (0.093 mg/Kg) were reported. Both of these compounds are breakdown products of TNT. This location was a target array sample and is located approximately 100 feet to the east of the uppermost traverse of the rail line. No other explosives compounds were reported at this location. A trace level of 2A-DNT

5-6 2012-O-JV04-0006

Impact Area Groundwater Study Program Final Former A Range Investigation Report April 25, 2012

(0.031 mg/Kg) was reported in flanking sample SSFAFTA05. No other explosives compounds were reported in the flanking samples. These data suggest that explosives contamination is largely restricted to the primary berms.

SVOCs

SVOCs were detected only sporadically in the target array and flanking samples. PAHs were detected in sample SSFATA14 (e.g., fluoranthene at 790 mg/Kg), located adjacent to the northwestern portion of the rail line and sample SSFATA08 (e.g., fluoranthene at 0.53 mg/Kg), located adjacent to the eastern portion of the rail line. PAHs were also detected in flanking sample SSFAFTA08 (e.g., fluoranthene at 1 mg/Kg), located near the first rail line switchback.

Metals

Metal concentrations in both the target array and flanking samples (Figures 5-6 and 5-7) were generally comparable to MMR background levels. Concentrations of common metals (including iron and aluminum) in the target array samples were relatively low and for iron range from 2,530 to 8,170 mg/Kg. Iron concentrations in the flanking samples were generally similar and ranged from 1,550 to 6,150 mg/Kg. Aluminum concentrations in the target array samples ranged from 857 to 3,490 mg/Kg and in the flanking soil samples ranged from 416 to 5,390 mg/Kg. These concentrations are comparable to MMR soil iron (17,800 mg/Kg) and aluminum (16,000 mg/Kg) background levels.

Concentrations of most trace metals in the target array and flanking samples were also generally low and consistent with MMR background levels. For example, the maximum concentrations of arsenic, molybdenum and nickel were 2.2 mg/Kg, 1.3 mg/Kg, and 5.5 mg/Kg, respectively. Cadmium was not detected in any of the samples. Chromium was detected in most of the soil samples at varying concentrations, ranging from 65 mg/Kg to 176 mg/Kg in the target array and from 39.2 mg/Kg to 141 mg/Kg in the flanking samples. Chromium was detected above background levels in all of the target array samples and nine of ten flanking samples.

Copper was detected in all samples. In the target array samples, concentrations ranged from approximately 4.9 to 197 mg/Kg. Concentrations in the flanking samples ranged from 3 to 44 mg/Kg. The highest copper concentration was found in sample SSFATA11, located toward the center of the target-area-wide sampling array. Lead was also detected in all soil samples. In the target array samples, concentrations were somewhat variable ranging from 16 to 244 mg/Kg. In the flanking samples, lead concentrations were lower and ranged from 7.8 to 82.4 mg/Kg. The highest lead concentration was reported for the sample from location SSFATA12 located in the southwestern portion of the target-area-wide sampling array.

Overall, the observed ranges of most trace metals were similar to reported background levels for both the target array and flanking samples. However, site background levels for chromium (15.5 mg/Kg), copper (11 mg/Kg), and lead (19 mg/Kg) were exceeded in certain samples. Lead and copper levels were also somewhat higher in the target array samples than in the flanking samples.

5-7 2012-O-JV04-0006

5.2.1.4 Rail Line Area PAHs

As noted in Section 5.2.1.1, a suite of SVOCs, consisting mostly of PAHs, was detected in several of the initial samples located in or adjacent to the primary berms. The highest concentrations were reported in several samples collected from locations proximate to the lower switchback of the target area rail line.

As part of the range-related soil investigations, further investigation of PAHs detected near the rail line was undertaken. The rail line field investigation focused on the collection of surface and shallow subsurface soil samples to refine existing information related to PAH contamination along the rail tracks (Figure 5-8). Analyses of samples collected along the rail line indicated the presence of elevated levels of one or more PAHs in the majority of the soil samples collected. The highest PAH concentrations, the greatest array of individual PAH compounds detected, and the highest frequency of detection of individual PAH compounds were observed in surface soil samples (0 to 0.25 feet). With few exceptions, shallow subsurface soil samples collected from 0.25 to 0.5 feet bgs displayed lower PAH concentrations and fewer positive detections for individual PAH compounds. Overall sampling results (detects) for this area can be found in Table A.4.

Results for additional characterization soil samples collected along the rail line are shown on Figure 5-8. The PAHs detected in highest concentrations (40 to 47 mg/Kg) include fluoranthene, phenanthrene, and pyrene, which are frequently among the more common PAHs observed with petroleum based and/or combustion materials. The highest PAH concentrations were generally observed in sample SS132Z, located at the bottom of the hill at the end of the last (bottom-most) rail line traverse.

Overall, the results of the rail line SVOC investigation confirm the presence of PAHs at varying concentrations in some surface soil samples. As noted, PAH concentrations vary with location, but the similarities in the PAH patterns suggest a common source (i.e., creosote residue from the ties or grease used on the rail line). At almost all of the locations sampled, PAH concentrations decrease significantly in the deeper soil samples as compared to the surface samples.

5.2.1.5 Small Arms Deposition Areas

A field study was undertaken to further assess the impacts of small arms activities on soil in portions of the target area. Of the metals detected in soil, copper and lead were frequently reported at concentrations greater than MMR background levels.

Explosives

As part of the investigation of small arms deposition areas, samples from seven locations were submitted for explosives analysis. No explosives compounds were detected in any soil samples.

Metals

The results of further investigation of small arms deposition areas for metals are summarized in Figure 5-9. Levels of most trace metals in soils were generally comparable to site background. The maximum concentration of arsenic (5.8 mg/Kg) was slightly above background.

Soil copper concentrations were found to vary widely. Copper was reported more frequently than lead and was detected in 11 of the 14 locations that were sampled. Copper concentrations ranged from non-detect to a maximum value of 138 mg/Kg in the shallow sample from location 132AO. In most of the soil samples where copper was detected, concentrations generally ranged from 5 mg/Kg to 75 mg/Kg. The analytical results suggest that, overall, copper concentrations tend to be somewhat higher in the shallower soil samples as compared to the deeper samples. However, at a few locations the reverse was observed. Copper detections exceeded the MMR background level of 11 mg/Kg in 20 of the 26 samples.

Soil lead concentrations varied widely among the samples that were collected. Lead concentrations ranged from non-detect values at a number of locations to a maximum value of 409 mg/Kg in the shallow (0 to 0.5 feet) sample from location 132AP. The deeper sample at this location (1.5 to 2 feet) had a lead concentration of 167 mg/Kg. Overall, lead was only detected in samples from three of the 14 sampling locations. The other locations at which lead was detected (132AO and 132AQ) are in the same general area as sample 132AP. At location 132AQ, the higher lead concentration (247 mg/Kg) was reported in the deeper sample. All of the lead detections exceeded the MMR background level of 19 mg/Kg.

5.2.1.6 Target Area Summary

Explosives compounds were, for the most part, detected in samples located on or in close proximity to the primary berms. The most frequently detected explosives compounds were the TNT breakdown products 2A-DNT and 4A-DNT. TNT was also detected in soil grids located at the primary berms. The distributions of these compounds exhibited no systematic pattern within the target area and are presumed to represent residual soil contaminants associated with past range activities. RDX was found exclusively in post-BIP samples and its presence was believed to be a result of the BIP process. Outside the primary berms, explosives were infrequently detected at low concentrations.

SVOCs, consisting of mostly PAHs, were detected in several of the initial target area samples located near the rail line. The results of the additional investigation confirmed the presence of PAHs at varying concentrations in some surface soil samples along the rail line. PAH concentrations vary with location, but the similarities in the PAH patterns suggest a common source (i.e., creosote in the rail ties or grease used on the rail line). At almost all of the locations sampled, PAH concentrations decrease significantly in the deeper soil samples as compared to the surface samples.

Initial soil sampling indicated elevated copper and lead. Further investigation was conducted and soil copper concentrations were found to vary widely. Several of the copper detections exceeded the MMR background. Lead was only detected in samples from three of the 15 additional characterization sampling locations. However, all of these detections exceeded the MMR background level for lead. The soil sample results indicate that elevated concentrations of these metals are largely confined to the surface and shallow subsurface soils. Chromium was also detected at elevated levels and was above background in all of the target array samples and nine of ten flanking samples.

5-9 2012-O-JV04-0006

5.2.2 Firing Point

The firing point located on the southern side of Wood Road was also inspected during the June 2000 reconnaissance. With the exception of a pair of concrete survey monuments and one semicircular berm positioned at the tree line, the inspection revealed little evidence of the former firing points. Historical maps of the range suggest that road reconstruction in this vicinity may account for the lack of distinguishable features. Aerial photographs and available site plans for the period when Former A Range was active show that Wood Road curved north around a small hill upon which the former firing point was established. Since that time the straightening of Wood Road has eliminated all but a small portion of the original firing point. As part of the initial range investigation, a single grid (132E) was located on the remaining portion of the firing point. A total of 15 discrete soil samples were collected in 2001 from three depths within the 22- by 22-foot grid. As part of the additional range delineation study, three additional soil grids were located on the remnants of the firing point to further characterize the nature and extent of propellant related contamination at the firing point (Figure 5-10). A total of fifteen 5-point composite samples were collected in 2004 from three depths at these three locations (132BA, 132BB, and 132BC).

The propellant related compound 2,4-dinitrotoluene (2,4-DNT) was detected in the initial grid (132E) sampled at a concentration of 340 μ g/L from a depth of 6-12 inches bgs. Two SVOCs also potentially related to propellants (n-nitrosodiphenylamine and di-n-butyl phthalate) were found at the firing point at low estimated concentrations (<0.35 mg/Kg), below the analytical reporting limit. The presence of these compounds, along with the 2,4-DNT, is consistent with the use of this area as a firing point.

No explosives, perchlorate or SVOCs were detected in laboratory analyses in any of the composite samples collected under the additional range delineation study (Figure 5-10). Trace detections of a few VOCs were reported but were likely artifacts of the sampling and laboratory analysis programs and have not been included on the figure. These results suggest that significant residual contamination is not present at the firing point.

5.2.3 Groundwater RDX Source Investigation

A site reconnaissance was conducted in the area of particle backtrack for wells MW-206M1 and MW-249M2 in an effort to delineate possible sources of RDX detected in these wells. MW-206M1 is screened approximately 20 feet to 30 feet below the water table (bwt) while MW-249M2 is screened approximately 34 feet to 44 feet bwt. The maximum RDX concentration detected in MW-206M1 was 5.4 μ g/L (February 2004) and the most recent concentration was 3.2 μ g/L (January 2006). The maximum RDX concentration detected in MW-249M2 was 1.6 μ g/L (August 2004) and the most recent concentration was 0.31 μ g/L (June 2010).

Particle tracks developed for these wells suggested possible RDX source locations to the southeast and upgradient of the Former A Range. Based on the particle backtrack results (Figure 3-8), three locations (Figure 5-11) were selected for surface and shallow subsurface soil sample collection and analysis.

There were no detections of explosives compounds or perchlorate in these samples. SVOC analyses were non-detect except in one sample where bis(2-ethylhexyl) phthalate was detected at a trace (estimated) concentration of 0.11 mg/Kg. This may be a laboratory contaminant and

has not been included on Figure 5-11. Metals were detected at varying concentrations in all samples. However, none of the metals detected displayed elevated levels. Metal concentrations were largely consistent with MMR background levels. Lead was reported at 32.3 mg/Kg in sample SS132CHA, which was slightly above background. Copper concentrations were in all cases less than 20 mg/Kg. There were no apparent variations in trace metal (cadmium, chromium, copper, lead, and zinc) concentrations with depth.

5.3 Geophysical

Extensive geophysical investigations have been performed at the Former A Range as described in the previous sections and Appendix B. The scope of the investigations was based on archive search findings, aerial photo assessments, site reconnaissance, and geophysical data. Early investigations and assessments focused on the areas presumed to be the most heavily impacted by past military activities, including the target area and the backstop berms. The 2010 detailed reconnaissance focused on areas outside the target area.

The majority of HE items discovered on the range were 37mm and 40mm projectiles which contain very small amounts of explosives (black powder, tetryl, TNT, or MAX-2). Of the most frequently detected items, only the 37mm developmental projectiles with MAX-2 (aluminum, Comp A4, and graphite) contain RDX (0.09 lbs). Seventy-nine 37mm developmental projectiles were discovered that were determined to contain MAX-2. In addition, other items found during the course of the investigation included: fifty-one conventional 37mm projectiles (black powder, TNT, or tetryl), thirteen 40mm projectiles (TNT or tetryl), one 4.5-inch rocket (TNT); one 3.5-inch HEAT rocket (Comp B [TNT/RDX]); one 2.36-inch HEAT rocket (Pentolite [TNT/PETN]); seven 81mm mortars (TNT or Comp B); two 57mm projectiles (TNT or Comp B), one partial 90mm projectile (TNT), and several partial 75mm shrapnel projectiles (black powder). The 2010 detailed reconnaissance confirmed that vast majority of munitions are located within the target area.

Generally, intrusive activities continued in depth, signal strength and areal extent from higher to lower density areas until only one or two items were found and removed. Thus, it is unlikely a significant number of munitions remain undetected at the site. Any remaining rounds are likely to be single, randomly scattered munitions.

Only low levels of TNT (maximum of 0.51 μ g/L) and it's degradation products 2A-DNT (maximum of 0.4 μ g/L) and 4A-DNT (maximum of 0.5 μ g/L) have been detected in monitoring well MW-249M3; which is located directly downgradient of the main target area. In addition, low levels of RDX and 1,3,5-trinitrobenzene have each been detected only one time in this well at concentrations of 0.31 μ g/L and 0.33 μ g/L, respectively. Based on the fact that the areas containing the highest density of subsurface munitions have been removed as part of various investigation and removal actions and the lack of significant groundwater detections and the type of fillers and the size and number of HE munitions found on the range, it is unlikely that residual munitions represent a significant threat to groundwater.

5-11 2012-O-JV04-0006

6.0 CONCEPTUAL SITE MODEL

The Conceptual Site Model is a depiction of site conditions at the range that relate to contaminant source, environmental pathways for the contaminants, and potential receptors.

6.1 Source

During the Former A Range's use as an anti-tank training area, records indicate that ordnance used included 37mm and 40mm armor piercing and HE rounds, 75mm HE and shot rounds, 90mm rounds, and 3.5-inch practice rockets. Investigation results for soils at the range indicate that contaminants (primarily explosives and metals) were primarily detected in surface soil around the target area. Explosives were likely released as particulate from munitions detonations. The presence of PAHs is attributed to the use of petroleum products during operation of the rail line. The metals detections above background are consistent with the later use of the range for small arms firing.

The limited detection of explosives-related compounds in surface soils may reflect a historical absence of these contaminants at the range, the results of removal actions conducted to date and/or the depletion of existing sources due to environmental migration processes.

6.2 Pathway

Once deposited on the ground surface, contaminants may then dissolve in rainwater depending on their solubility. Most of the principal contaminants detected at the range are present at low concentrations and are relatively non-volatile. Thus, volatilization from surface soils is not anticipated to be an important environmental migration pathway.

Evaluation of environmental chemical properties and reaction processes indicates that rainfall mediated infiltration of contaminants into subsurface soils (the vadose zone) is anticipated to be the dominant contaminant migration process at the range. However, the extent of this process is anticipated to be quite contaminant-specific and strongly influenced by several environmental chemical reaction processes, particularly adsorption/desorption, precipitation, and abiotic/biotic degradation. For metals and PAHs, adsorption/desorption processes (as well as precipitation processes for metals) are likely to control migration in the vadose zone. Relatively high adsorption coefficient ($K_{\rm oc}$) and/or organic partition coefficient ($K_{\rm oc}$) values for most of these contaminants suggest that they will, in general, be strongly bound to surface and very shallow subsurface soils and any migration into deeper vadose soils will be minimal.

The migration of explosives-related compounds is anticipated to be somewhat more complex and dependent upon the individual compound. TNT possesses a relatively high K_{oc} value and is expected to be relatively strongly adsorbed to surface and subsurface soils. In addition, TNT deposited in surface soils may undergo photolytic degradation. However, HMX, and several degradation products of TNT (including 2A-DNT and 4A-DNT) possess somewhat lower K_{oc} values and, therefore, may be prone to greater downward migration through vadose zone soils. However, the extent of downward migration will also be influenced by the initial level of source concentrations. The range was in operation from 1941 until the mid-1970s. Thus ample time has passed to allow contaminants, if mobile, to migrate through the vadose zone and travel to downgradient monitoring wells MW-149S, MW-206S, MW-249M3, and MW-536S.

Impact Area Groundwater Study Program Final Former A Range Investigation Report April 25, 2012

6.3 Receptors

No one is currently using the groundwater in this area or downgradient of it. The area is located on the Massachusetts Military Reservation so access is tightly controlled. The Former A Range is in a restricted area with locked gates to prevent access as well as human exposure to groundwater or soil. TNT and its breakdown products 2A-DNT and 4A-DNT have been detected in one well, MW-249M3, receiving water originating from beneath the footprint of the Former A Range target area. However, all of the detections have been at or below 0.5 μ g/L (the TNT Health Advisory is 2 μ g/L). Perchlorate has also been sporadically detected in MW-249M3, but the highest detected concentration of 0.44 μ g/L (November 2004) was well below the MMCL of 2 μ g/L.

6-2 2012-O-JV04-0006

7.0 RISK SCREENING

A Risk Screening was conducted for the Former A Range to assess if any of the analytes detected in the range soil or groundwater warranted further consideration. Tables 7-1 (Groundwater Screening) and 7-2 (Soil Screening) present the maximum detected concentrations of each detected analyte in the groundwater and soil, the locations of those maximum detected concentrations, the detection frequency, the applicable risk screening criteria, and the results of the screening evaluation. The soil and groundwater data collected within the range boundary from 1999 to 2010 were considered in the screening processes.

7.1 Groundwater Evaluation

A screening evaluation was performed on the groundwater monitoring data collected at the Former A Range. The groundwater data set included all sampling events from the four monitoring wells associated with the Former A Range (MW-149S, MW-206S, and MW-249M3, and MW-536S). Table 7-1 identifies the chemicals that were detected in the groundwater samples collected in these monitoring wells up through and including May 2011. The maximum concentration of each detected analyte was compared, where available, to its federal and Massachusetts MCLs, EPA HA (USEPA 2006), EPA Regional Screening Level (RSL) for Tapwater (USEPA 2009), and the MCP Method 1 GW-1 Standard.

Other factors that were considered in determining whether to further evaluate an analyte included whether the analyte was an essential human or natural nutrient, its frequency of detection, specific characteristics of the analyte, and if the compound had a documented history of false positive analytical results at MMR. The following subsections summarize the results of these comparisons for the groundwater.

7.1.1 Explosives

Five explosives were detected at least once in samples from the groundwater monitoring wells associated with the range (RDX at an estimated concentration of 0.31 μ g/L, 2A-DNT ranging from 0.20 to 0.4 μ g/L, 4A-DNT ranging from 0.25 to 0.5 μ g/L, 1,3,5-trinitrobenzene at an estimated concentration of 0.33 μ g/L, and TNT ranging from 0.30 to 0.51 μ g/L). None of these explosive compounds were detected at concentrations exceeding the screening criteria. Consequently, explosives were not considered for further evaluation.

7.1.2 Perchlorate

Perchlorate was detected in 7 out of 36 samples from the range monitoring wells with a maximum estimated concentration of 0.44 μ g/L at MW-249M3. This concentration did not exceed a screening criterion. Therefore, perchlorate was not considered for further evaluation.

7.1.3 Metals and Inorganics

Seven metals were detected in one or more of the groundwater samples collected from MW-149S (barium, boron, copper, manganese, molybdenum, silver and zinc). The maximum detected concentrations of all seven of these metals did not exceed screening criteria. Therefore, further evaluation of these metals was not warranted.

Nitrogen (as ammonia and as nitrate-nitrite) was detected in one or more of the groundwater samples collected from MW-149S. The maximum detected concentrations of nitrogen (as ammonia and as nitrate-nitrite) did not exceed a drinking water criterion. Therefore, further evaluation of nitrogen was not warranted. Eight other inorganic compounds that do not have screening criteria also were detected in groundwater. These were calcium, chloride, magnesium, phosphorous, potassium, sodium, and sulfate. These constituents are either essential human nutrients or general water chemistry parameters and, thus, were not further evaluated.

7.1.4 **SVOCs**

Two phthalate esters (bis(2-ethylhexyl)phthalate ranging from 0.44 to 1.4 μ g/L, and di-n-butyl phthalate at 0.78 μ g/L) were detected in groundwater in samples analyzed but the maximum detected concentrations did not exceed MCLs or MCP Method 1 GW-1 Standards. Thus, further evaluation of bis(2-ethylhexyl)phthalate and di-n-butyl phthalate was not warranted.

Naphthalene was detected in one groundwater sample at an estimated concentration of 0.37 μ g/L at MW-149S in March 2001. This maximum detected concentration exceeded only the RSL (0.14 μ g/L). All subsequent results for naphthalene since 2001 have been non-detect. Therefore, further evaluation of naphthalene was not warranted.

7.1.5 VOCs

Acetone (at an estimated concentration of $0.057~\mu g/L$) and chloroform (ranging from 1 to $2~\mu g/L$) were the only VOCs detected in groundwater. Acetone was only detected in one sample at a concentration well below screening criteria. Chloroform was detected in all of the groundwater samples collected for VOC analysis. The maximum detected concentration ($2~\mu g/L$) of chloroform was collected at MW-149S in March 2001 and exceeded only the RSL ($0.19~\mu g/L$) but was well below the MCL of $80~\mu g/L$. Chloroform appears to be ubiquitous within the portion of the aquifer being studied. Chloroform, which has not been identified as a compound associated with historical site activities at the range, has been widely observed at low concentrations in groundwater across the Upper Cape and has been determined to be naturally present in much of the groundwater on Cape Cod (Earth Tech 2000). Therefore, no further evaluation of chloroform was warranted.

7.1.6 Summary of Groundwater Evaluation

Groundwater monitoring data were available for explosives, perchlorate, metals and inorganics, SVOCs, and VOCs. Of the 27 groundwater analytes detected in the Former A Range groundwater data set, only three had maximum concentrations that exceeded screening criteria, bis(2-ethylhexyl)phthalate, naphthalene and chloroform. Bis(2-ethylhexyl)phthalate was detected at trace levels once in 2001 and once in 2002. It has not been detected in more recent sampling events. Chloroform has been previously associated with non-site related and/or naturally occurring sources. The single detection of naphthalene (collected in March 2001) was not reproduced in subsequent sampling efforts. The detected concentrations of bis(2-ethylhexyl)phthalate and chloroform were below MCLs for drinking water. There is no MCL for naphthalene. Therefore, further evaluation of bis(2-ehtylhexyl)phthalate, chloroform and naphthalene was not warranted.

7-2 2012-O-JV04-0006

7.2 Soil Evaluation

The initial risk screening for soil was conducted using a soil data set consisting of all validated soil sampling results from August 1999 to March 2010 from all depth intervals for which sampling results were available. At those locations where soil was excavated (including grids 132G, 132N, 132R and 132U), only the post soil removal confirmatory samples were considered in the risk screening. The initial risk screening was performed using the maximum detected concentration of each detected constituent at the range to identify a subset of soil analytes that warranted further evaluation.

Comparisons to the maximum detected concentration of each analyte in the site-wide soil dataset to a series of analyte-specific screening criteria are presented in Table 7-2. These criteria included the MCP Method 1 S-1/GW-1 Standards, MMR Soil Screening Levels (SSLs), EPA Risk-Based SSLs, and the MassDEP Leaching-Based Soil Concentrations. Although they were not used as screening criteria, the MMR background concentrations for each detected analyte were included in Table 7-2 for comparison.

Other factors that were subsequently considered in determining whether to evaluate a compound further included whether the compound was an essential human nutrient, its frequency of detection, whether the compound was detected in both soil and groundwater, any specific circumstances regarding the presence of the compound, and if there were documented prior false positive analytical results at MMR. The following subsections summarize the results of these comparisons.

7.2.1 Explosives

Six explosives compounds were detected in soil and all six of these had maximum detected concentrations exceeding at least one soil screening criterion. The maximum detected concentrations of 2,4-DNT, TNT, 2A-DNT, 4A-DNT, and nitroglycerin exceeded their respective MMR and EPA SSLs. The maximum detected concentration of tetryl exceeded only its MMR SSL. The frequency of detection of the noted explosives was less than 6 percent.

2,4-DNT was detected one time in a single soil sample from the firing point (0.34 mg/Kg at SS132E) at a concentration below the MCP Method S-1/GW-1 Standard (0.7 mg/Kg) and has never been detected in the monitoring wells associated with the range. Almost all detections of TNT (0.015 to 9.0 mg/Kg), 2A-DNT (0.024 to 0.35 mg/Kg), and 4A-DNT (0.02 to 0.17 mg/Kg) were located in the target area. One low level detection of 2A-DNT (0.085 mg/Kg) was observed outside the target area in sample SSFATA04. TNT, 2A-DNT and 4A-DNT have been sporadically detected in only one monitoring well associated with the range and the maximum detected groundwater concentrations of these explosives were all below screening criteria. The only nitroglycerin detection was observed in a post-BIP excavation sample taken from a BIP crater at a concentration below the BIP excavation criteria. Relatively low levels of tetryl were detected in only two target area samples (0.044 mg/Kg and 0.14 mg/Kg). The maximum detected concentration was below its EPA SSL, and this compound has never been detected in any of the four groundwater monitoring wells associated with the Former A Range. Based on low frequencies of detection, the lack of significant groundwater detections, and the relatively low concentrations, no explosives compounds were selected for further evaluation.

7-3 2012-O-JV04-0006

7.2.2 Perchlorate

Perchlorate was infrequently detected (3.5 percent) and only in MIS soil samples from the consolidated shot area (ranging from 0.00043 to 0.00083 mg/Kg). The maximum detected concentration was well below all of its soil screening criteria. As such, perchlorate in soil was determined to not warrant further evaluation.

7.2.3 Pesticides and Herbicides

Five pesticides/herbicides were sporadically detected in range soils (2,4,5-T ranging from 0.00052 to 0.00056 mg/Kg, beta-BHC ranging from 0.00099 to 0.0011 mg/Kg, pentachlorophenol at 0.092 mg/Kg, p,p'-DDE ranging from 0.0018 to 0.0026 mg/Kg and p,p'-DDT ranging from 0.0018 to 0.004 mg/Kg). Many of these pesticide detections were at trace (estimated) concentrations below the analytical reporting limits. Beta-BHC was detected in two samples from one location (target area grid 132P). The other four pesticides or herbicides were all detected in the same sample from the firing point (SS132E). The maximum detected concentrations of beta-BHC and pentachlorophenol exceeded their respective SSLs. However, these compounds were detected at only one location and have not been detected in the groundwater associated with the range. No other pesticide/herbicide exceeded any of the soil screening levels. Based on the low levels, isolated detections, and lack of groundwater detections, pesticides and herbicides detected in Former A Range soils are unlikely to impact groundwater and were not retained for further evaluation.

7.2.4 VOCs

Of the 14 VOCs detected in the Former A Range soils, only eight (acetone, benzene, bromoform, bromomethane, chloroform, chloromethane, ethylbenzene, and PCE) exceeded one or both of their respective SSLs, and none exceeded their respective MCP Method 1 Standard.

With the exception of chloroform, none of these eight VOCs were detected in the groundwater monitoring wells associated with the range. The maximum detected concentration of chloroform in soil (0.00244 mg/Kg) exceeded the screening criteria, but was well below its MCP Method 1 Standard of 0.35 mg/Kg. In addition, and as noted in Section 7.1.5, chloroform has not been identified as a compound associated with historical site activities at the Former A Range. Acetone is a common laboratory contaminant and was likely introduced during the analytical process. Bromomethane, chloromethane, ethylbenzene, and PCE had low frequencies of detection (7 percent or less) at concentrations well below their respective MCP Method 1 Standards. Bromoform was detected more frequently (43 percent) but the maximum detection only marginally exceeded the SSLs. The soil sample with the maximum detected benzene concentration (Sample SS02235-A) was collected in the target area very near one of the bends in the rail line. As benzene is a minor component in creosote (typically comprising 0.01% to 0.5% by weight), the low estimated maximum detection of benzene could be related to the creosote used as railroad tie preservative. No other source of benzene is known to be associated with the range. The frequency of detection of benzene was relatively low (7/60, or 12%) and the maximum detected concentration (0.00341J mg/Kg) was over 580 times lower than the MCP S-1/GW-1 Standard. Based on these factors, no VOCs warranted further evaluation.

7-4 2012-O-JV04-0006

7.2.5 **SVOCs**

Nine SVOCs (excluding PAHs) were detected in the Former A Range soils. These were bis(2-ethylhexyl)phthalate, di-n-butylphthalate, benzoic acid, benzyl alcohol, carbazole, dibenzofuran, 4-methylphenol, n-nitrosodiphenylamine, and phenol. Of these nine SVOCs, four were detected at concentrations exceeding at least one soil screening criteria (carbazole 0.02 to 5.9 mg/Kg, dibenzofuran 0.017 to 4.7 mg/Kg, n-nitrosodiphenylamine 0.17 to 0.28 mg/Kg, and 4-methylphenol 0.11 mg/Kg). Carbazole and dibenzofuran had frequencies of detection of 12 and 8 percent, respectively. There are no MCP or EPA standards/screening criteria for these compounds but both are considered insoluble in water. Nitrosodiphenylamine was detected in 2 of 307 samples (0.7 percent) while 4-methylphenol was detected only once (0.3 percent). Nitrosodiphenylamine is slightly soluble in water while 4-methylphenol is essentially insoluble. None of these four SVOCs have been detected in monitoring wells associated with the range. Based on low frequencies of detections, the lack of groundwater detections, and low water solubilities, SVOCs detected in Former A Range soils were not retained for further evaluation.

Of the 17 PAHs detected in the Former A Range soils, the maximum detected concentrations of 13 exceeded at least one soil screening criterion. Four PAHs (benzo(k)fluoranthene at 14 mg/Kg, chrysene at 20 mg/Kg, fluorene at 5.9 mg/Kg and pyrene at 40 mg/Kg) had maximum detected concentrations exceeding only one or both of their SSLs. The maximum detected concentrations for 2-methylnaphthalene (2.8 mg/Kg), acenaphthylene (3.5 mg/Kg), benzo(a)anthracene (18 mg/Kg), benzo(a)pyrene (15 mg/Kg), benzo(b)fluoranthene (15 mg/Kg), dibenz(a,h)anthracene (2.8 mg/Kg), indeno(1,2,3-c,d)pyrene (7.9 mg/Kg), naphthalene (4.9 mg/Kg), and phenanthrene (45 mg/Kg) exceeded their respective MCP Method 1 Standards.

In general, PAHs are highly adsorbed or complexed with soil. In addition, the high number of aromatic rings and molecular weight of PAHs results in low water solubility. Thus their overall tendency is for low mobility in the environment and with the exception of a single low level naphthalene detection, PAHs have not been detected in groundwater at the Former A Range. Based on their low environmental mobility, lack of groundwater detections, generally low concentrations, none of the PAHs detected in soil at the Former A Range warranted further evaluation.

Polychlorinated naphthalenes (PCNs) were detected in soil samples collected from Trenches W, X and Y. The presence of the PCNs is associated with their use as inert munitions fillers. The maximum concentrations for the three PCNs (0.073 mg/Kg for total trichlorinated naphthalenes, 0.081 mg/Kg for total tetrachlorinated naphthalenes, and 0.03 mg/Kg for total pentaclorinated naphthalenes) were below Relative Experimental Potency adjusted MCP S-1/GW-1 Standard. As such, polychlorinated naphthalenes were not retained for further evaluation.

7.2.6 Metals and Inorganics

A total of 29 metals and inorganic compounds were detected in Former A Range soil samples at various frequencies of detection. Of these 29 analytes, 16 were detected at maximum concentrations that exceeded at least one of their respective screening criteria. Seven metals

(i.e., arsenic, cadmium, mercury, selenium, silver, thallium, and zinc) had maximum detected concentrations below their respective MCP Method 1 S-1/GW-1 Standards, but exceeding one or both of their MMR and EPA SSLs. Of these metals, only silver and zinc were detected in groundwater at concentrations well below the lowest groundwater screening value.

Four metals (antimony, chromium, lead, and nickel) had maximum detections that exceeded their MCP Method 1 S-1/GW-1 Standards. Only the maximum detection of antimony (66.6 mg/Kg at SS132J) exceeded the MCP Method 1 Standard of 20 mg/Kg. The average concentration for antimony across the Former A Range (1. mg/Kg) was well below the MMR background level of 2.3 mg/Kg. Chromium and lead were detected in all 291 soil samples collected on the range. The average concentration of chromium (11.6 mg/Kg) was below the MMR background level (15.5 mg/Kg) while the average lead concentration (110 mg/Kg) was well below its Method 1 Standard. Nickel was detected in 276 of 283 (98 percent) samples. Only the maximum detection (28.9 mg/Kg at SS02221-A) exceeded the MCP Method 1 Standard of 20 mg/Kg. The duplicate result for this sample of 17.3 mg/Kg was below the standard and the average concentration at the target area (2.2 mg/Kg) was well below the MMR background level of 9.4 mg/Kg. None of these five metals has been detected in groundwater.

Five metals (cobalt, copper, iron, manganese, and molybdenum) did not have MCP Method 1 S-1/GW-1 Standards but had maximum detected concentrations that exceeded one or both soil screening levels. Because these metals lacked Method 1 Standards, they were compared to the EPA Screening Levels for Residential Soil (RSL). The maximum cobalt detection of 2.9 mg/Kg was below the MMR background level of 4.5 mg/Kg. Only the maximum detected concentration for copper (25,100 mg/Kg at SS011105-01) exceeded the EPA RSL of 3,100 mg/Kg; the duplicate result for this sample was 63.1 mg/Kg. The maximum detections of iron (42,400 mg/Kg), manganese (383 mg/Kg), and molybdenum (6.6 mg/Kg) were all below their EPA RSLs of 55,000 mg/Kg, 1,800 mg/Kg, and 390 mg/Kg, respectively.

The metals detected in surface soil at the Former A Range are anticipated to be relatively immobile and resistant to downward migration through the vadose zone. Based on their chemical properties, particularly the distribution coefficient (all greater than 8 L/Kg), the metals are preferentially adsorbed to the soil, thus relatively immobile. This suggests that metals detected at the range are unlikely to migrate through the vadose zone to groundwater. Of the 16 metals detected above screening levels only five were detected in groundwater (copper, manganese, molybdenum, silver, and zinc) all at concentrations well below the lowest groundwater screening value. In addition, nearly all metals results that exceeded background levels were for samples from the target area. As discussed in Section 4.0, soil from much of this area was excavated and screened to 3/8 inch to remove small arms bullets. This action significantly reduced the overall mass of metal in soil in this area and multi-point samples from the excavated soil stockpiles revealed only low metals concentrations. Based on the available data, metals detected Former A Range soils are unlikely to impact groundwater and do not warrant further evaluation.

Seven other inorganics that do not have screening criteria were detected in soil. These were calcium, magnesium, nitrogen (as ammonia and as nitrate-nitrite), phosphorous, potassium, sodium, and sulfide. These constituents are either essential human nutrients or general soil chemistry parameters and, thus, were not further evaluated in this risk screening.

7-6 2012-O-JV04-0006

7.2.7 Summary of Soil Screening

The risk screening was performed using the maximum soil concentrations of each detected constituent to identify any analytes that warranted further evaluation. Soil data were available for explosives, perchlorate, metals and inorganics, pesticides and herbicides, SVOCs, and VOCs. Explosives compounds were detected primarily in the target area of the range and had low frequencies of detection, no significant groundwater detections, and generally low detected concentrations. Perchlorate was infrequently detected at concentrations below all screening criteria. Pesticides/herbicides were infrequently detected at low concentrations. Soil detections of pesticides/herbicides have been isolated to a few areas and these compounds have never been detected in groundwater. VOCs were infrequently detected at concentrations above SSLs but below Method 1 Standards. Only chloroform has been detected in groundwater at a maximum concentration that was far below the MCL. Furthermore, chloroform has been detected frequently throughout the area and has not been identified as a compound associated with historical site activities at the Former A Range. SVOCs (excluding PAHs) were infrequently detected in soil and groundwater. Several PAHs were detected in soil in the target area and rail line. Generally the higher PAH detections were observed at only a few locations; sometimes in both the discrete and composite sample collected from the same grid. PAH are considered insoluble and none of these compounds, with the exception of a single low level detection of naphthalene, have been detected in groundwater. In general, SVOCs are highly adsorbed or complexed with soil and have low water solubilities. Thus their overall tendency is for low mobility in the environment.

Sixteen metals were detected at maximum concentrations that exceeded at least one of their respective screening criteria. Seven had maximum detections below Method 1 Standards but exceeding an SSL. Four metals had maximum detections that exceeded their MCP Method 1 Standards. Only the maximum detections of antimony, and nickel exceeded their respective MCP Method 1 Standards. The average concentration of these metals was well below their MMR background levels. The average concentration of chromium was also below the MMR background level while the average lead concentration was well below the Method 1 Standard. Five metals did not have MCP Method 1 Standards. The maximum cobalt detection was below background. The maximum detections of iron, manganese, and molybdenum were all below their EPA RSL. Only the maximum concentration for copper exceeded the EPA RSL.

The metals detected in surface soil at the Former A Range are anticipated to be relatively immobile and resistant to downward migration through the vadose zone. Based on their chemical properties, these metals are preferentially adsorbed to the soil and relatively immobile. This suggests that metals detected at the range are unlikely to migrate through the vadose zone to groundwater. Of the 16 metals detected above screening levels only five were detected in groundwater (copper, manganese, molybdenum, silver, and zinc) all at concentrations well below the lowest groundwater screening value.

Based on the results of the risk screening, analytes detected in soil are unlikely to impact groundwater and did not require further evaluation. Appendix C contains a supplemental analysis of the constituents for which the maximum detected concentrations in soil exceeded their respective MCP Method 1 S-1/GW-1 Standard.

7-7 2012-O-JV04-0006

8.0 INVESTIGATION FINDINGS

A detailed evaluation was undertaken to characterize soil and groundwater contamination at the Former A Range located on MMR. The range was originally constructed in 1941 and functioned as an anti-tank artillery and rocket practice site up until the 1960s. Records indicate that ordnance used during this period included 37mm and 40mm armor piercing and HE rounds, 75mm HE and shot rounds, 90mm anti-tank artillery rounds, and 3.5-inch practice rockets (bazooka). Between the early 1960s and mid-1970s, the range was converted to a machine gun practice area. Records indicate that .50 caliber ball and tracer rounds were used at that time.

A few explosives compounds have been sporadically detected at trace levels in groundwater at the Former A Range. Wells MW-149S, MW-206S, MW-249M3, and MW-536S are best located to intercept potential contamination from the target area of the range. Explosives compounds have not been detected in MW-149S, MW-206S, or MW-536S. TNT and its degradation products, 2A-DNT and 4A-DNT, has been detected at low concentrations in MW-249M3. RDX and 1,3,5-trinitrobenzene were also detected at low concentrations one time in this well. The source of the low-level detections of TNT, 2A-DNT, and 4A-DNT detected in MW-249M3 is likely the target area of the Former A Range.

Perchlorate was detected in wells MW-249M3 and MW-536S at a maximum concentration of 0.44 μ g/L. Low levels of several metals were detected in groundwater in wells associated with the range. Concentrations appear to be generally consistent with MMR background levels. Low levels of three SVOCs (bis(2-ethylhexyl)phthalate, di-n-butyl phthalate and naphthalene) were infrequently detected in wells associated with the range. Acetone and chloroform were the only VOCs detected in groundwater. Chloroform was detected in all of the groundwater samples collected for VOC analysis.

The initial soil investigation of the range was conducted under the Phase IIb program and focused on the firing point, target area, and target roll-out area. Based on the initial sample results, a multi-component field investigation was conducted to further evaluate chemical contaminant distribution in soil including explosives, SVOCs, and metals in the target area; PAHs along the rail line; and propellant at the firing point.

Overall results indicated that explosives compounds were for the most part detected in samples located on or in close proximity to the target area berms. The most frequently detected explosives compounds were 2A-DNT and 4A-DNT. TNT was also detected in soil grids located at the berms. The distributions of these compounds exhibited no systematic pattern within the target area and are presumed to represent residual soil contaminants associated with past range activities. RDX was found exclusively in post-BIP samples and its presence is believed to be a result of the BIP process. Outside the berm areas, explosives were infrequently detected at low concentrations.

A suite of SVOCs, consisting mostly of PAHs, was detected in several of the initial target area samples located near the rail line. The results of the additional investigation confirmed the presence of PAHs at varying concentrations in some surface soil samples along the rail line. PAH concentrations vary with location, but the similarities in the PAH patterns suggest a common source (i.e., creosote or grease used on the rail line). At almost all of the locations, PAH concentrations decrease significantly in the deeper soil samples.

8-1 2012-O-JV04-0006

Soil sampling results indicated some elevated copper and lead concentrations. Further investigation of these areas was conducted and soil copper concentrations were found to vary considerably. Lead was only detected in samples from three of the 14 additional characterization sampling locations. The soil sample results suggest that elevated metals concentrations, specifically copper, are likely associated with either copper in certain anti-tank munitions (2.36-inch and 3.5-inch anti-tank rockets) or bullet pockets and are confined to the surface and shallow subsurface soils. Elevated lead detections may be related to the use of shot rounds that contained small lead balls.

At the firing point, the propellant-related compound 2,4-DNT was detected in the initial grid at low concentration. Two SVOCs potentially related to propellants (n-nitrosodiphenylamine and di-n-butyl phthalate) were also detected. Trace detections of a few VOCs were reported but were likely artifacts of the sampling and laboratory analysis programs. No explosives or perchlorate were detected in any of the soil samples collected under the additional range delineation study. These results suggest that no significant residual contamination is present at the firing point.

Extensive geophysical investigations have been performed at the Former A Range. The scope of the investigations was based on archive search findings, aerial photo assessments, site reconnaissance, and an aerial magnetometer survey. Investigations and assessments focused on the areas presumed to be the most heavily impacted by past military activities, including the target area and the backstop berms.

The majority of HE items discovered on the range were 37mm and 40mm projectiles, which contain very small amounts of explosives (black powder, tetryl, TNT, or MAX-2). Of the most frequently detected items, only the live 37mm developmental projectiles with MAX-2 (aluminum, Comp A4, and graphite) contain RDX (1.4 ounces). A total of 55 of these developmental projectiles were determined to contain MAX-2. In addition, other items found during the course of the investigation included 45 conventional 37mm projectiles (black powder, TNT, or tetryl), thirteen 40mm projectiles (TNT or tetryl), one 4.5-inch rocket (TNT), one 3.5-inch HEAT rocket (Comp B [TNT/RDX]), seven 81mm mortars (TNT or Comp B), two 57mm projectiles (TNT or Comp B), one partial 90mm projectile (TNT), and several partial 75mm shrapnel projectiles (black powder). The 2010 detailed reconnaissance confirmed that vast majority of munitions were located within the target area that was addressed during the 2009 soil removal action.

Based on the fact that the areas containing the highest density of subsurface munitions (target berms and nearby areas) have been cleared or removed as part of various investigation and removal actions; the lack of significant groundwater detections; and the type, size and number of HE munitions found on the range, it is unlikely that residual munitions represent a significant threat to groundwater.

Generally, intrusive activities continued in depth, signal strength and areal extent from higher to lower density areas until only one or two items were found and removed. Thus, it is unlikely a significant number of munitions remain undetected at the site. Any remaining rounds are likely to be single, randomly scattered munitions.

A risk screening was conducted for the Former A Range to assess if any of the analytes detected in soil or groundwater warranted further consideration. For groundwater, only bis(2-

8-2 2012-O-JV04-0006

ethylhexyl)phthalate, naphthalene and chloroform had maximum concentrations that exceeded a groundwater screening criterion. Bis(2-ethylhexyl)phthalate was detected at trace levels once in 2001 and once in 2002. It has not been detected in more recent sampling events. Chloroform has been previously associated with natural/non-site related sources. The single detection of naphthalene (collected in March 2001) was not reproduced in subsequent sampling efforts. The detected concentrations of bis(2-ethylhexyl)phthalate and chloroform were below MCLs for drinking water. There is no MCL for naphthalene. Therefore, no groundwater contaminants were selected for further evaluation.

The soil risk screening was performed using the maximum soil concentrations of each detected constituent to identify any analytes that warranted further evaluation. Soil data were available for explosives, perchlorate, metals and inorganics, pesticides and herbicides, SVOCs, and VOCs. Explosives compounds were detected primarily in the target area of the range and had low frequencies of detection, no significant groundwater detections, and generally low detected concentrations. Perchlorate was infrequently detected at concentrations below all screening criteria. Pesticides/herbicides were infrequently detected at low concentrations. Soil detections of pesticides/herbicides have been isolated to a few areas and these compounds have never been detected in groundwater at Former A Range. VOCs were infrequently detected at concentrations above SSLs but below Method 1 Standards. Only chloroform was detected in both soil and groundwater, but the maximum groundwater concentration was far below the MCL. Furthermore, chloroform has not been identified as a compound associated with historical site activities at the Former A Range. SVOCs (excluding PAHs) were infrequently detected in soil. In general, SVOCs are highly adsorbed or complexed with soil and have low water solubilities. Thus their overall tendency is for low mobility in the environment and they have not been detected in groundwater at the Former A Range.

Several PAHs were detected in soil in the target area and rail line. Generally the higher PAH detections were observed at only a few locations; sometimes in both the discrete and composite sample collected from the same grid. In all cases, the average PAH concentrations were below MCP Method 1 Standards and often below MMR background levels. PAHs are considered to be nearly insoluble and none of these compounds, with the exception of a single low level detection of naphthalene, have been detected in groundwater.

Sixteen metals were detected at maximum concentrations that exceeded at least one of their respective screening criteria. Seven had maximum detections below Method 1 Standards but exceeding an SSL. Of these metals, only silver and zinc were detected in groundwater at concentrations well below the lowest groundwater screening value.

Four metals (antimony, chromium, lead, and nickel) had maximum detections that exceeded their MCP Method 1 Standards. The average concentrations of these metals were well below their MMR background levels. The average concentration of chromium was also below the MMR background level while the average lead concentration was well below the Method 1 Standard. None of these metals has been detected in groundwater on the range.

Five metals (cobalt, copper, iron, manganese, and molybdenum) did not have MCP Method 1 Standards. The maximum cobalt detection was below background. The maximum detections of iron, manganese, and molybdenum were all below their EPA RSL. Only the maximum concentration for copper exceeded the EPA RSL. Copper, molybdenum, and manganese were

8-3 2012-O-JV04-0006

Impact Area Groundwater Study Program Final Former A Range Investigation Report April 25, 2012

detected in groundwater; however, the maximum groundwater copper detection was far below its MCL and the maximum detection of both molybdenum and manganese were well below their respective HAs.

The metals detected in surface soil at the Former A Range are anticipated to be relatively immobile and resistant to downward migration through the vadose zone. Based on their chemical properties, these metals are preferentially adsorbed to the soil and relatively immobile. This suggests that metals detected at the range are unlikely to migrate through the vadose zone to groundwater. Of the 16 metals detected above screening levels only five were detected in groundwater (copper, manganese, molybdenum, silver, and zinc) all at concentrations well below the lowest groundwater screening value. Based on the available data, metals detected Former A Range soils are unlikely to impact groundwater.

In summary, an extensive soil and groundwater investigation was conducted at the Former A Range over a 10-year period. The groundwater investigation revealed only low concentrations of several analytes that were well below applicable standards. Thus, it does not appear that past activities at the range have significantly impacted groundwater. In addition, there does not appear to be a source for potential future groundwater contamination. The target berms where contamination levels and munitions discoveries were highest have been removed. The results of the soil risk screening suggest that any analytes detected in the remaining soil are unlikely to impact groundwater. Also, based on the types and quantities of munitions found during various investigations and removal actions, it is unlikely that any residual munitions represent a significant threat to groundwater. Thus no further action appears necessary to address groundwater or source areas on the range.

8-4 2012-O-JV04-0006

9.0 REFERENCES

- AMEC (AMEC Earth and Environmental, Inc.). 2001. Camp Edwards Impact Area Groundwater Study Final Summary Report June 2000 UXO Detonations. Letter Report prepared for the National Guard Bureau, Arlington, VA, by AMEC Earth and Environmental, Inc., Westford, MA, December.
- AMEC. 2002. Final Technical Team Memorandum 02-1, Former A, Former K, and Demolition Area 2 Report. Prepared for the U.S. Army Corps of Engineers, Concord, MA, for the U.S. Army/National Guard Bureau, Camp Edwards, MA, by AMEC Earth and Environmental, Westford, MA, July 15.
- AMEC. 2004. Final Former A Range Additional Delineation Work Plan. Prepared for the U.S. Army Corps of Engineers, Concord, MA, for the U.S. Army/National Guard Bureau, Camp Edwards, MA, by AMEC Earth and Environmental, Westford, MA. September 17.
- AMEC. 2005. Draft L-Range Soil Characterization Report. Prepared for the U.S. Army Corps of Engineers, Concord, MA, for the U.S. Army/National Guard Bureau, Camp Edwards, MA by AMEC Earth and Environmental, Westford, MA, December 13.
- Cape Cod Commission. 1998. Massachusetts Military Reservation Master Plan Final Report: Prepared in conjunction with the Community Working Group By the Cape Cod Commission.
- Earth Tech. 2000. Source Final Report, WS-2, Water Source Development and Water Supply and Distribution System Design Massachusetts Military Reservation, Upper Cape Cod, MA. Prepared for U.S. Army Corps of Engineers, New England District, Concord, MA.
- IAGWSP (Impact Area Groundwater Study Program). 2008. Project Note Former A Range AFRL Technology Demonstration. March.
- IAGWSP. 2009. Project Note Revised Draft Former A Range Soil Removal Activities. July 23.
- MAARNG (Massachusetts Army National Guard). 2001. Integrated Natural Resources Management Plan. Camp Edwards, Massachusetts. Massachusetts Army National Guard.
- Masterson, J.P., B.D. Stone, D.A. Walter, and J. Savoie. 1997. Hydrogeologic Framework of Western Cape Cod, Massachusetts. U.S. Geological Survey. Hydrologic Investigations Atlas. HA-741. Marlborough, MA.
- Masterson, J.P., B.D. Stone, D.A. Walter, and J. Savoie. 1999. Hydrogeologic Framework of Western Cape Cod, Massachusetts. U.S. Geological Survey. Hydrologic Investigations Atlas. HA-741. Marlborough, MA.
- NGB (National Guard Bureau). 1990. Final Environmental Impact Statement (FEIS)/Final Environmental Impact Report (FEIR), 102 Fighter Interceptor Wing, Massachusetts Air National Guard. June.
- Tetra Tech EC. 2011. Separation and Disposition of Soils Located on Former D Range. April 11.

9-1

Impact Area Groundwater Study Program Final Former A Range Investigation Report April 25, 2012

- Tetra Tech EMI. 2002a. Draft AIRMAG Technology Evaluation and Completion Investigation Report. Prepared for the National Guard Bureau, Arlington, VA, by the U.S. Army Corps of Engineers, Concord, MA, and Tetra Tech, Inc., Franklin, TN, November 21.
- Tetra Tech EMI. 2002b. Final Letter Report for Munitions Survey Program Phase 2 Former A Range. Prepared for the National Guard Bureau, Arlington, VA, by the U.S. Army Corps of Engineers, Concord, MA, and Tetra Tech, Inc., Franklin, TN, August 20.
- USACE (U.S. Army Corps of Engineers). 2002. Military Munitions Management Plan, Work for Impact Area Groundwater Study Program, Massachusetts Military Reservation, prepared for the National Guard Bureau. July 19.
- USDA (U.S. Department of Agriculture). 1993. Soil Survey of Barnstable County, Massachusetts. United States Department of Agriculture. March.
- USEPA (U.S. Environmental Protection Agency). 2006. Edition of the Drinking Water Standards and Health Advisories. EPA 822-R-06-013. Office of Water U.S. Environmental Protection Agency Washington, DC, Summer 2006. Available online at: http://www.epa.gov/waterscience/criteria/drinking/ dwstandards.pdf.
- USEPA. 2009. Regions 3, 6, and 9. Regional Screening Levels for Chemical Contaminants at Superfund Sites. Available online at: http://www.epa.gov/reg3hwmd/risk/human/rb-concentration_table/ Generic_Tables/ index.htm. June 9

.

9-2 2012-O-JV04-0006

FIGURES

Notes:

Aerial Photographs shown are not corrected for spatial distortion inherent in photography of this scale.

1943: National Archives and Records Administration image librar Flown at a sacle of 1" = 2040 feet. Dated June, 1943.

1955: National Ocean Service Image Library.

1966: United States Geological Survey Image Library.

1977: Lockwood Kessler and Bartlett photogrammetric firm. Flown at a sacle of 1" = 1800 feet. Dated December 10, 1977.

Aerial Photographs from 1940s to 1970s

0 390 780 1,170 1,560

File: P:\GIS\MMR\FormerARange\GIS\Spatia\M\XD\
20110418_Inv\Report\20110425_Fig2-\&2_Aeria\s.mxd
Prepared By: william.scales
Coordinate System: NAD 1983 StatePlane
Massachusetts Mainland FIPS 2001

FIGUR 2-2

LEGEND

Roads

Rail Line

Excavation_Sites

Note: 2004 NAEVA EM survey responses shown on traverses 1 through 10.

Remaining EM responses from Tetra Tech, 2001.

Former A Range Target Area Anomaly Excavation Sites

File: P-\GIS\MMR\FormerARange\GIS\Spatia\MXD\
20110418_InvReport\
20110425_Fig3-5_AnomalyExcavation.mxd
Prepared By: william.scales
Coordinate System: NAD 1983 UTM Zone 19N

LEGEND

- BIP Sample (Not Removed)
- Existing Monitoring Well
- Existing Grid

--- Rail Line

() Sample depth in ft. below ground surface.

NOTES & SOURCES

Basemap data from US Geological Survey 7 1/2 minuteTopographic Map Source: MassGIS. Aerial photos: 1:5000 black & white digital orthophotos Resolution: 0.5 feet; Date Flown: 1997; Source: Jacobs Eng.

Former A Range

Explosives in Soil (Pre-2004)

FIGURE

__inveport\ _Fig5-1_Pre2004Explosives.mxd By: william.scales e System: NAD 1983 UTM Zone 19N 5-1

Trench W Composite Samples

	Lift						
Parameter	1	2	3	4	5	6	7
Explosives	ND	ND	ND	ND	ND	ND	ND
PAHs ug/Kg							
Fluoranthene	110-130	35	ND	ND	ND	ND	ND
Pyrene	110-130	40	ND	ND	ND	ND	ND
Benzo(a)pyrene	69	19	ND	ND	ND	ND	ND
Metals mg/Kg							
Copper	35.2-35.7	14.2	7.8	4.3	8.0	3.5	3.3
Lead	43-43.5	18.4	9.3	2.7	6.1	2.5	2.8

Trench X Composite Samples

	Lift						
Parameter	1	2	3	4	5	6	7
Explosives	ND	ND	ND	ND	ND	ND	ND
PAHs ug/Kg							
Fluoranthene	39	ND	31	ND	ND	ND	ND
Pyrene	37	ND	ND	ND	ND	ND	ND
Benzo(a)pyrene	21	ND	16	ND	ND	ND	ND
Metals mg/Kg							
Copper	55.9	18.8	ND	13.2-28.1	5.6	4.6	3.5
Lead	107	36.6	30.8	23-54.9	9.0	7.3	6.1

Trench Y Composite Samples

			_				
	Lift						
Parameter	1	2	3	4	5	6	7
Explosives	ND	ND	ND	ND	ND	ND	ND
PAHs ug/Kg							
Fluoranthene	38	ND	32	ND	ND	ND	ND
Pyrene	39	20	33	ND	ND	ND	ND
Benzo(a)pyrene	26	ND	21	ND	ND	ND	ND
Metals mg/Kg							
Copper	50.3	37.1-38.8	16.8	14.2	3.5	3.5	2.1
Lead	129	74.9-80.2	39.4	20.5	4.7	2.8	3.3

Note: Only the more frequently detected PAHs observed in the trench are shown.

TRENCH SECTION (VIEW PERPENDICULAR TO BERM)

U.S. ARMY CORPS OF ENGINEERS

FORMER A RANGE-IMPACT AREA GROUNDWATER STUDY PROGRAM CAMP EDWARDS, MASSACHUSETTS

FIGURE 5-2 TARGET PENETRATION STUDY RESULTS

TETRA TECH EC, INC.

LEGEND

- BIP Sample (Not Removed)
- Existing Monitoring Well
 - Existing Grid
- --- Rail Line
- () Sample depth in ft. below

NOTES & SOURCES

Basemap data from US Geological Survey 7 1/2 minuteTopographic Map Source: MassGIS. Aerial photos: 1:5000 black & white digital orthophotos Resolution: 0.5 feet; Date Flown: 1997 Source: Jacobs Eng.

TITLE

Former A Range SVOCs in Soil Above Background Levels (Pre-2004)

FIGURE

e: P:\GIS\MMR\FormerARange\GIS\Spatiaf\MXD\ 110418_invReport\20110426_Fig5-3_SVOCs.mxd epared By: william.scales 5-3

LEGEND

- Target Array Soil Sample Location
- Existing Monitoring Well
- Rail Line
- () Sample depth in ft. below

Former A Range Contaminants in Soil Target Array Samples

File: P.\GIS\MMR\FormerARange\GIS\SpatialMXD\
20110418_InvReport\
20110426_Fig5-6_Contaminants_TargetArray.mxd
Prepared By: william.scales
Coordinate System: NAD 1983 UTM Zone 19N

LEGEND

- Small Arms Soil Sample Location
- Existing Monitoring Well
- Rail Line
-) Sample depth in ft. below ground surface.

Former A Range Contaminants in Areas of Small Arms Deposition

260

: P:\GIS\MMR\FormerARange\GIS\SpatialMXD e. P. Ols with rother and english spatial 110418_InvReport 110426_Fig5-9_Small ArmsDeposition.mxd epared By: william.scales

FIGURE 5-9

TABLES

Table 3-1
Analytical Method, Number of Soil Sampling Locations, and Number of Samples by Area

Area	Analysis	Method	# Locations	# Samples
Backstop Trenches (Target Penetration Study)	SVOCs	SW8270C	3	17
	Metals	CL200/CL245.5	3	15
	Explosives	SW8330	3	17
	Perchlorate	E314/SW8321A	3	17
Target Array and Flanking Target Area	SVOCs	SW8270C	25	25
	Metals	SW6010B / 7471A	25	25
	Explosives	SW8330	25	25
	Perchlorate	E331.0	15	15
	Pesticides	CLP	3	47
	Herbicides	SW8151A	3	47
	PCBs	CLP	4	55
Upper Berm Area	SVOCs	SW8270C	5	5
	Metals	CL200.7 / CL245.5	5	5
	Explosives	SW8330	5	5
	Perchlorate	E314.0	5	5
Rail Line	SVOCs	SW8270C	12	36
Small Arms Area	Metals	CL200.7 / CL245.5	15	30
	Explosives	SW8330	7	14
	Perchlorate	E314.0	7	14
Firing Point Area	VOCs	CVOL	3	6
	SVOCs	SW8270C	3	6
	Explosives	SW8330	3	6
	Perchlorate	E314.0	3	6
	Pesticides	CLP	1	17
	Herbicides	SW8151A	1	17
	PCBs	CLP	1	17
RDX Source Area	SVOCs	SW8270C	3	9
	Metals	SW6010B / 7471A	3	9
	Explosives	SW8330	3	9
	Perchlorate	E331.0	3	9

Table 7-1 Former A Range Groundwater Screening

Analyte	Maximum Detected Concentration (ug/L)	Location of Maximum Concentration	Date of Collection	Detection Frequency	Maximum Contaminant Level [a] (ug/L)	EPA Chronic (Lifetime) Health Advisory (HA) for Drinking Water [b] (ug/L)	EPA Regional Screening Level for Tapwater [c] (ug/L)	MCP GW-1 Standard [d] (ug/L)
2-AMINO-4,6-DINITROTOLUENE (2A-DNT)	0.4	MW-249M3	07-Feb-06	13 / 58	-	-	30	-
4-AMINO-2,6-DINITROTOLUENE (4A-DNT)	0.5	MW-249M3	08-Nov-05	13 / 58	-	-	30	-
1,3,5-TRINITROBENZENE	0.33 J	MW-249M3	06-Jun-05	1 / 58	-	-	460	-
2,4,6-TRINITROTOLUENE by Method 8330 (TNT)	0.51 J	MW-249M3	06-Jun-05	13 / 58	-	2	2.2	-
HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE (RDX)	0.31 J	MW-249M3	03-Feb-04	1 / 58	-	2	0.61	1
PERCHLORATE	0.44 J	MW-249M3	09-Nov-04	7 / 36	-	15	11	15
BARIUM	5.2 J	MW-149S	13-Mar-01	2 / 11	2,000	7,000	2,900	2,000
BORON	10.1 J	MW-149S	13-Mar-01	7 / 11	-	6,000	3,100	-
COPPER	2.1 J	MW-149S	19-May-00	1 / 11	1,300	-	620	-
MANGANESE	5.7	MW-149S	12-Nov-99	6 / 11	-	300	320	-
MOLYBDENUM	0.84 J	MW-149S	10-Oct-03	1 / 11	-	40	78	-
SILVER	4.1 J	MW-149S	13-Mar-01	1 / 11	-	100	71	100
ZINC	15 J	MW-149S	05-Oct-05	3 / 11	-	2,000	4,700	5,000
CALCIUM	1440	MW-149S	19-May-00	7 / 11	-	-	-	-
CHLORIDE (AS CL)	7700 J	MW-149S	22-Feb-02	3 / 3	-	-	-	-
MAGNESIUM	1100	MW-149S	10-Oct-03	7 / 11	-	-	-	-
NITROGEN, AMMONIA (AS N)	30 J	MW-149S	13-Mar-01	2 / 3	-	30,000	-	-
NITROGEN, NITRATE-NITRITE [e]	13	MW-149S	19-Nov-99	1 / 3	1,000	10,000	1,600	-
PHOSPHORUS, TOTAL ORTHOPHOSPHATE (AS PO4)	23	MW-149S	12-Nov-99	3 / 3	-	-	-	-
POTASSIUM	913	MW-149S	13-Mar-01	10 / 11	-	-	-	-
SODIUM	6650	MW-149S	25-Aug-04	11 / 11	-	-	-	-
SULFATE (AS SO4)	5000	MW-149S	23-Aug-99	3 / 3	-	-	-	-
bis(2-ETHYLHEXYL) PHTHALATE	1.4 J	MW-149S	24-May-99	2 / 7	6	3	0.071	6
Di-n-BUTYL PHTHALATE	0.78 J	MW-249M3	11-May-11	1 / 7	-	4,000	670	-
NAPHTHALENE	0.37 J	MW-149S	13-Mar-01	1 / 7	-	100	0.14	140
ACETONE	0.57 J	MW-149S	14-May-11	1 / 7	-	-	12,000	6,300
CHLOROFORM	2	MW-149S	13-Mar-01	7 / 7	80	70	0.19	70

Notes:

Data set consists of all sampling events from monitoring wells on the Former A Range (MW-206S) and nearby downgradient wells (MW-149S, MW-249M3, and MW-536S) from all dates between 1999 and May 2011.

Laboratory data validation qualifier codes used for the "Maximum Concentration" are as follows:

J = Estimated Concentration

Highlighting indicates those criteria that were exceeded.

"-" = No listed value.

- [a] Federal Maximum Contaminant Level. The MCL for total trihalomethanes is used for chloroform.
- [b] HA is the Federal EPA Lifetime Health Advisory value (January, 2011) (http://water.epa.gov/action/advisories/drinking/upload/dwstandards2011.pdf).

 The HA shown is the Lifetime value. If no Lifetime value was available, the lower of the Drinking Water Equivalent Level (DWEL) or the 1x10⁶ Cancer Risk level is shown. If neither of these values was available, then the 10-Day acute concentration is shown.
- [c] The USEPA Regional Screening Level (RSL), November, 2011. (http://www.epa.gov/reg3hwmd/risk/human/rb-concentration_table/index.htm)
- [d] MCP Method 1 GW-1 Standards, December 2009. Accessed March 2012.
- [e] The MCL for nitrate is 10,000 ug/L. The Tapwater RSL for nitrate is 25,000 ug/L. Values shown are for nitrite which was conservatively chosen for screening purposes. The HA shown is the 10-day HA for nitrate + nitrite. (http://www.epa.gov/ogwdw000/pdfs/factsheets/ioc/tech/nitrates.pdf)

Table 7-2 Former A Range Soil Screening

Maximum Detected Concentration Concentration (mg/kg) S132Q 9 / 326 - 0.000212 0.013 -	Soil Concentration ion [c] [d]
0 40 TRINITROTOLUTRIF M. () 1000 (TNIT)	
2.4,6-TRINITROTOLUENE by Method 8330 (TNT) 9 J SS132Q 9 / 326 - 0.000212 0.013 -	-
2.4-DINITROTOLUENE by Method 8330 (2.4-DNT)	-
2-AMINO-4.6-DINITROTOLUENE (2A-DNT) 0.35 J SSFATA11 C 12 / 326 - 0.000385 0.023 -	
4-AMINO-2,6-DINITROTOLUENE (4A-DNT) 0.17 J SSFATA12 C 9 / 326 - 0.000385 0.023	
NITROGLYCERIN 1.1 J SS02233-A 1 / 326 - 0.001 0.00066 -	-
TETRYL 0.14 J SSFATA13 2 / 326 - 0.0637 0.59 -	-
PERCHLORATE 0.00083 SSFORMACSL06 4 / 114 0.1 0.00314 - 0.00	-
ALUMINUM 11600 J SS02224-A 283 / 283 - 54006 23000 -	15500
ANTIMONY 66.6 SS132J 60 / 283 20 0.271 0.27 -	2.3
ARSENIC 5.48 J SS02231-A 247 / 291 20 0.00901 0.0013 -	3.9
BARIUM 34.5 SS121304-02 290 / 291 1000 120 120 -	20.2
BERYLLIUM 0.29 SS011905-02 191 / 283 100 2.60 13 -	0.41
BORON 3.4 SS132CG 108 / 283 - 9.52 9.9 -	17.3
CADMIUM 1.7 SS02221-A 84 / 291 2 0.401 0.52 -	0.35
CHROMIUM, TOTAL [e] 176 SSFATA09 291 / 291 30 7.02	15.5
COBALT 2.9 SS132Q 229 / 283 - 132 0.21	4.5
COPPER 25100 SS011105-01 286 / 289 - 45.7 22 -	11
IRON 42400 J SS132Q 283 / 283 - 2422 270 -	12100
LEAD 11600 SS132J 297 / 297 300 4.05	19
MANGANESE 383 SS132H 282 / 283 - 44.2 21 -	122
MERCURY 6 SS132H 104 / 291 20 0.0204 0.033 -	0.1
MOLYBDENUM 6.6 SS132AM 97 / 283 - 0.183 1.6 -	1.1
NICKEL 28.9 SS02221-A 276 / 283 20 292 20 -	9.4
SELENIUM 2.6 SSA05160201 54 / 279 400 2.76 0.4 -	1.1
SILVER 3.65 J SS02221-A 7 / 291 100 16.2 0.6 -	0.61
THALLIUM 0.077 J SSFORMACSL06 1 / 283 8 3.00 0.011 -	1.6
VANADIUM 20.8 SS132S 283 / 283 600 260 78 -	21.7
ZINC 2400 SS011105-01 275 / 283 2500 2202 290 -	25.6
CALCIUM 429 SS132O 222 / 283	-
MAGNESIUM 1750 SS132O 278 / 283	1980
NITROGEN, AMMONIA (AS N) 20.9 SS132U 25 / 30	20
NITROGEN, NITRATE-NITRITE 0.06 SS132E 13 / 30	0.94
PHOSPHORUS, TOTAL ORTHOPHOSPHATE (AS PO4) 68.6 SS132U 30 / 30	143
POTASSIUM 604 SS132Q 246 / 283	733
SODIUM 2360 J SS02232-A 133 / 283	-
SULFIDE 29.8 ECCFASTP 8 / 8 - - - -	-
TRICHLOROPHENOXYACETIC ACID (2,4,5-T) 0.0056 NJ SS132E 2 / 30 - 0.493 0.052 -	-
BETA HEXACHLOROCYCLOHEXANE (BETA BHC) 0.0011 J SS132P 2 / 30 - 0.000199 0.00013 -	-
PENTACHLOROPHENOL 0.092 J SS132E 1 / 30 3 0.000429 0.0017 0.000	-
p.p'-DDE 0.0026 J SS132E 2 / 30 3 0.884 0.046 -	0.012
p.p'-DDT 0.004 J SS132E 6 / 30 3 0.525 0.067 -	-
BENZOIC ACID 0.58 J SS132H 29 / 305 14 -	-
BENZYL ALCOHOL 0.27 J SSFORMACSL06 4 / 305 0.37 -	-
bis(2-ETHYLHEXYL) PHTHALATE 0.2 J SS011005-01 38 / 307 200 72.0 0.017 -	-
CARBAZOLE 5.9 SS132Z 36 / 307 - 0.0121	-
DIBENZOFURAN 4.7 SS132Z 25 / 307 - 0.262 0.11 -	-
DI-n-BUTYL PHTHALATE 0.213 J \$\$02221-A 15 / 307 - 151 1.7 -	-
4-METHYLPHENOL (p-CRESOL) 0.11 J SS132Z 1 / 307 - 0.0388 0.057 -	-
N-NITROSODIPHENYLAMINE 0.28 J SS132E 2 / 307 - 0.00777 0.057 -	-
PHENOL 0.0442 J SS02221-A 4 / 307 1 0.766 2.6 0.95	-
2-METHYLNAPHTHALENE 2.8 SS132Z 13 / 307 0.7 0.0723 0.14 -	-
ACENAPHTHENE 1 J SS132Z 18 / 307 4 2.71 4.1 3.88	-

Table 7-2 Former A Range Soil Screening

		oon ocreening						
Analyte	Maximum Detected Concentration (mg/Kg)	Location of Maximum Concentration	Detection Frequency	MCP S-1/GW-1 Standard [a] (mg/Kg)	MMR SSL (mg/Kg)	EPA RSL Risk- Based SSL [b] (mg/Kg)	MassDEP Leaching- Based Soil Concentration [c] (mg/Kg)	MMR Moraine Background Concentration [d] (mg/Kg)
ACENAPHTHYLENE	3.5	SS132Z	33 / 307	1	0.0676	-	1.18	-
ANTHRACENE	6.5	SS132Z	48 / 307	1000	53.8	42	-	-
BENZO(a)ANTHRACENE	18	SS132O	107 / 307	7	0.0369	0.01	-	0.46
BENZO(a)PYRENE	15	SS132O	105 / 307	2	0.203	0.0035	-	0.46
BENZO(b)FLUORANTHENE	15	SS132O	104 / 307	7	0.114	0.035	-	0.46
BENZO(g,h,i)PERYLENE	7	SS132O	73 / 307	1000	554	-	-	0.46
BENZO(k)FLUORANTHENE	14	SS132O	96 / 307	70	0.114	0.35	-	0.46
CHRYSENE	20	SS132Z	119 / 307	70	3.40	1.1	-	0.46
DIBENZ(a,h)ANTHRACENE	2.8	SS132O	48 / 307	0.7	0.0377	0.011	-	-
FLUORANTHENE	47	SS132Z	122 / 307	1000	108	70	-	0.46
FLUORENE	5.9	SS132Z	36 / 307	1000	13.9	4	-	-
INDENO(1,2,3-c,d)PYRENE	7.9	SS132O	80 / 307	7	0.317	0.12	-	0.46
NAPHTHALENE	4.9	SS132Z	16 / 307	4	0.0136	0.00047	4.48	-
PHENANTHRENE	45	SS132Z	95 / 307	10	48.1	-	10.9	0.46
PYRENE	40	SS132Z	118 / 307	1000	19.0	9.5	-	0.46
TOTAL PENTACHLORINATED NAPHTHALENES [f]	0.03 J	SS132X	1 / 9	0.2	-	-	-	-
TOTAL TETRACHLORINATED NAPHTHALENES	0.081	SS132X	4 / 9	-	-	-	-	-
TOTAL TRICHLORINATED NAPHTHALENES	0.073	SS132X	2 / 9	-	-	-	-	-
ACETONE	0.71 J	SSA05160201	50 / 60	6	0.107	2.4	6.3	-
BENZENE	0.00341 J	SS02235-A	7 / 60	2	0.000103	0.0002	1.50	-
BROMOFORM	0.004 J	SS132P	26 / 60	0.1	0.00217	0.0021	0.007	-
BROMOMETHANE	0.003 J	SS132U	3 / 60	0.5	0.00182	0.0018	0.05	-
CARBON DISULFIDE	0.0006 J	SS132E	1 / 60	-	0.414	0.21	-	-
CHLOROFORM	0.00244 J	SS02221-A	10 / 60	0.4	0.0000364	0.000053	0.35	-
CHLOROMETHANE	0.00218 J	SS02235-A	2 / 60	-	0.000399	0.049	-	-
ETHYLBENZENE	0.00347 J	SS02235-A	1 / 60	40	1.89	0.0015	44.8	-
METHYL ETHYL KETONE (2-BUTANONE)	0.015 J	SSA05160201	17 / 60	4	0.335	1	4	-
METHYL ISOBUTYL KETONE (4-METHYL-2-PENTANONE)	0.00116 J	SS02235-A	1 / 60	0.4	-	0.23	0.35	-
STYRENE	0.00154 J	SS02235-A	5 / 60	3	2.34	1.2	2.9	-
TETRACHLOROETHYLENE(PCE)	0.002 J	SSA05160201	4 / 60	1	0.000435	0.000033	1.24	-
TOLUENE	0.006 J	SSA05160201	7 / 60	30	0.272	0.59	32	-
XYLENES, TOTAL	0.001 J	SS132E	2 / 60	400	0.808	0.19	360	-

Notes:

Laboratory data validation qualifier codes used for the "Maximum Concentration" are as follows:

J = Estimated Concentration

NJ = Presumptively Identified Compound, Estimated Concentration

Highlighting indicates those criteria that were exceeded.

"-" = No listed value.

- [a] MCP Method 1 S-1/GW-1 Standards, December 2009. Accessed March 2012.
- [b] The USEPA Regional Screening Level (RSL), November, 2011.
- [c] MassDEP Leaching-Based Soil Concentrations were not used as screening criteria, but for comparison only. MCP Numerical Standards Development Spreadsheets, May 2009.
- [d] The moraine background values include the maximum of the 0-2 ft depth interval and were not used as screening criteria, but for comparison only.
- [e] MCP standards for Chromium VI used as a surrogate for Chromium, Total.
- [f] MCP S-1/GW-1 Standard Value for pentachlorinated naphthalenes is based on the Standard for 2,3,7,8-TCDD equivalents (2.0 E-05) divided by the Relative Experimental Potency value.

Appendix A Analytical Data

Table A.1-1
Ordnance Penetration Study - Trench W (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER1	MDL	RL	UNITS
SS132W	21518	13-Dec-04	0	0.25	CL200.7	ALUMINUM	4880		4.2	4.2	MG/KG
SS132W	21518	13-Dec-04	0	0.25	CL200.7	ARSENIC	1.7		0.74	0.74	MG/KG
SS132W	21518	13-Dec-04	0	0.25	CL200.7	BARIUM	5.1		0.62	0.62	MG/KG
SS132W	21518	13-Dec-04	0	0.25	CL200.7	BERYLLIUM	0.18		0.07	0.07	MG/KG
SS132W	21518	13-Dec-04	0	0.25	CL200.7	CALCIUM	49.3		15.3	15.3	MG/KG
SS132W	21518	13-Dec-04	0	0.25	CL200.7	CHROMIUM, TOTAL	5.3		0.19	0.19	MG/KG
SS132W	21518	13-Dec-04	0	0.25	CL200.7	COBALT	1.3		0.19	0.19	MG/KG
SS132W	21518	13-Dec-04	0	0.25	CL200.7	COPPER	35.2		0.67	0.67	MG/KG
SS132W	21518	13-Dec-04	0	0.25	CL200.7	IRON	5670		9.2	9.2	MG/KG
SS132W	21518	13-Dec-04	0	0.25	CL200.7	LEAD	43		0.25	0.25	MG/KG
SS132W	21518	13-Dec-04	0	0.25	CL200.7	MAGNESIUM	510		14.4	14.4	MG/KG
SS132W	21518	13-Dec-04	0	0.25	CL200.7	MANGANESE	32.7		0.41	0.41	MG/KG
SS132W	21518	13-Dec-04	0	0.25	CL200.7	NICKEL	2.4		0.41	0.41	MG/KG
SS132W	21518	13-Dec-04	0	0.25	CL200.7	POTASSIUM	246		20.1	20.1	MG/KG
SS132W	21518	13-Dec-04	0	0.25	CL200.7	VANADIUM	9.6		0.25	0.25	MG/KG
SS132W	21518	13-Dec-04	0	0.25	CL200.7	ZINC	8.7		0.46	0.46	MG/KG
SS132W	21518	13-Dec-04	0	0.25	D2216	MOISTURE, PERCENT	8				PERCENT
SS132W	21518	13-Dec-04	0	0.25	SW8270C	BENZO(a)ANTHRACENE	67	J	33.3694	360	UG/KG
SS132W	21518	13-Dec-04	0	0.25	SW8270C	BENZO(a)PYRENE	70	J	37.2698	360	UG/KG
SS132W	21518	13-Dec-04	0	0.25	SW8270C	BENZO(b)FLUORANTHENE	85	J	59.805	360	UG/KG
SS132W	21518	13-Dec-04	0	0.25	SW8270C	BENZO(g,h,i)PERYLENE	47	J	46.9	360	UG/KG
SS132W	21518	13-Dec-04	0	0.25	SW8270C	BENZO(k)FLUORANTHENE	83	J	41.3868	360	UG/KG
SS132W	21518	13-Dec-04	0	0.25	SW8270C	CHRYSENE	91	J	28.169	360	UG/KG
SS132W	21518	13-Dec-04	0	0.25	SW8270C	FLUORANTHENE	130	J	78.3315	360	UG/KG
SS132W	21518	13-Dec-04	0	0.25	SW8270C	INDENO(1,2,3-c,d)PYRENE	43	J	42.9	360	UG/KG
SS132W	21518	13-Dec-04	0	0.25		PHENANTHRENE	42	J	28.494	360	UG/KG
SS132W	21518	13-Dec-04	0	0.25	SW8270C	PYRENE	130	J	81.4735	360	UG/KG
SS132W	21518T	13-Dec-04	0	0.25	SW6010B	LEAD	351		2.3	2.3	UG/L
SS132W	21520	13-Dec-04	0	0.25	CL200.7	ALUMINUM	4860		5	5	MG/KG
SS132W	21520	13-Dec-04	0		CL200.7	ARSENIC	1.5	J	0.89	0.89	MG/KG
SS132W	21520	13-Dec-04	0	0.25	CL200.7	BARIUM	5.2		0.74	0.74	MG/KG
SS132W	21520	13-Dec-04	0	0.25	CL200.7	BERYLLIUM	0.19		0.08	0.08	MG/KG
SS132W	21520	13-Dec-04	0		CL200.7	CALCIUM	51.6		18.4	18.4	MG/KG
SS132W	21520	13-Dec-04	0		CL200.7	CHROMIUM, TOTAL	5.2		0.23	0.23	MG/KG
SS132W	21520	13-Dec-04	0	0.25	CL200.7	COBALT	1.2		0.23	0.23	MG/KG
SS132W	21520	13-Dec-04	0		CL200.7	COPPER	35.7		0.81	0.81	MG/KG
SS132W	21520	13-Dec-04	0		CL200.7	IRON	6200		11.1	11.1	MG/KG
SS132W	21520	13-Dec-04	0		CL200.7	LEAD	43.5		0.3	0.3	MG/KG

Table A.1-1
Ordnance Penetration Study - Trench W (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132W	21520	13-Dec-04	0	0.25	CL200.7	MAGNESIUM	495		17.3	17.3	MG/KG
SS132W	21520	13-Dec-04	0	0.25	CL200.7	MANGANESE	36.9		0.49	0.49	MG/KG
SS132W	21520	13-Dec-04	0	0.25	CL200.7	NICKEL	2.5		0.49	0.49	MG/KG
SS132W	21520	13-Dec-04	0	0.25	CL200.7	POTASSIUM	259		24.2	24.2	MG/KG
SS132W	21520	13-Dec-04	0	0.25	CL200.7	VANADIUM	9		0.3	0.3	MG/KG
SS132W	21520	13-Dec-04	0	0.25	CL200.7	ZINC	9.1		0.55	0.55	MG/KG
SS132W	21520	13-Dec-04	0	0.25	D2216	MOISTURE, PERCENT	8				PERCENT
SS132W	21520	13-Dec-04	0	0.25	SW8270C	BENZO(a)ANTHRACENE	62	J	33.6245	360	UG/KG
SS132W	21520	13-Dec-04	0	0.25	SW8270C	BENZO(a)PYRENE	69	J	37.5546	360	UG/KG
SS132W	21520	13-Dec-04	0	0.25	SW8270C	BENZO(b)FLUORANTHENE	67	J	60.262	360	UG/KG
SS132W	21520	13-Dec-04	0	0.25	SW8270C	BENZO(g,h,i)PERYLENE	48	J	47.9	360	UG/KG
SS132W	21520	13-Dec-04	0	0.25	SW8270C	BENZO(k)FLUORANTHENE	90	J	41.7031	360	UG/KG
SS132W	21520	13-Dec-04	0	0.25	SW8270C	CHRYSENE	88	J	28.3843	360	UG/KG
SS132W	21520	13-Dec-04	0	0.25	SW8270C	FLUORANTHENE	110	J	78.9301	360	UG/KG
SS132W	21520	13-Dec-04	0	0.25	SW8270C	INDENO(1,2,3-c,d)PYRENE	44	J	43.9	360	UG/KG
SS132W	21520	13-Dec-04	0	0.25	SW8270C	PHENANTHRENE	28	J	27.9	360	UG/KG
SS132W	21520	13-Dec-04	0	0.25	SW8270C	PYRENE	110	J	82.0961	360	UG/KG
SS132W	21520T	13-Dec-04	0	0.25	SW6010B	LEAD	359			1.4	UG/L
SS132W	21522	18-Jan-05	0	0.25	CL200.7	ALUMINUM	5740		4.8	4.8	MG/KG
SS132W	21522	18-Jan-05	0	0.25	CL200.7	ARSENIC	2.7		0.85	0.85	MG/KG
SS132W	21522	18-Jan-05	0	0.25	CL200.7	BARIUM	7.6		0.71	0.71	MG/KG
SS132W	21522	18-Jan-05	0	0.25	CL200.7	BERYLLIUM	0.24		0.08	0.08	MG/KG
SS132W	21522	18-Jan-05	0	0.25	CL200.7	CALCIUM	57.7		17.7	17.7	MG/KG
SS132W	21522	18-Jan-05	0	0.25	CL200.7	CHROMIUM, TOTAL	6.7		0.22	0.22	MG/KG
SS132W	21522	18-Jan-05	0	0.25	CL200.7	COBALT	1.8		0.22	0.22	MG/KG
SS132W	21522	18-Jan-05	0	0.25	CL200.7	COPPER	14.2		0.77	0.77	MG/KG
SS132W	21522	18-Jan-05	0	0.25	CL200.7	IRON	8200		10.7	10.7	MG/KG
SS132W	21522	18-Jan-05	0	0.25	CL200.7	LEAD	18.4		0.28	0.28	MG/KG
SS132W	21522	18-Jan-05	0	0.25	CL200.7	MAGNESIUM	628		16.6	16.6	MG/KG
SS132W	21522	18-Jan-05	0	0.25	CL200.7	MANGANESE	39.9		0.47	0.47	MG/KG
SS132W	21522	18-Jan-05	0	0.25	CL200.7	MOLYBDENUM	0.49	J	0.33	0.33	MG/KG
SS132W	21522	18-Jan-05	0	0.25	CL200.7	NICKEL	3.1		0.47	0.47	MG/KG
SS132W	21522	18-Jan-05	0	0.25	CL200.7	POTASSIUM	340		23.2	23.2	MG/KG
SS132W	21522	18-Jan-05	0	0.25	CL200.7	VANADIUM	12.1		0.28	0.28	MG/KG
SS132W	21522	18-Jan-05	0	0.25	CL200.7	ZINC	11.7			0.53	MG/KG
SS132W	21522	18-Jan-05	0	0.25	D2216	MOISTURE, PERCENT	9				PERCENT
SS132W	21522	18-Jan-05	0	0.25	SW8270C	BENZO(a)ANTHRACENE	19		18.9	360	
SS132W	21522	18-Jan-05	0	0.25		BENZO(a)PYRENE	19	J	18.9	360	UG/KG

Table A.1-1
Ordnance Penetration Study - Trench W (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER1	MDL	RL	UNITS
SS132W	21522	18-Jan-05	0	0.25	SW8270C	BENZO(b)FLUORANTHENE	22	J	21.9	360	UG/KG
SS132W	21522	18-Jan-05	0	0.25	SW8270C	BENZO(k)FLUORANTHENE	30	J	29.9	360	UG/KG
SS132W	21522	18-Jan-05	0	0.25	SW8270C	BENZOIC ACID	33	J	32.9	910	UG/KG
SS132W	21522	18-Jan-05	0	0.25	SW8270C	CHRYSENE	28	J	27.9	360	UG/KG
SS132W	21522	18-Jan-05	0	0.25	SW8270C	FLUORANTHENE	35	J	34.9	360	UG/KG
SS132W	21522	18-Jan-05	0	0.25	SW8270C	PYRENE	40	J	39.9	360	UG/KG
SS132W	21522T	18-Jan-05	0	0.25	SW6010B	LEAD	233		2.3	2.3	UG/L
SS132W	21523	31-Mar-05	0	0.25	D2216	MOISTURE, PERCENT	7.8				PERCENT
SS132W	21524	31-Mar-05	0	0.25	CL200.7	ALUMINUM	2920		14.6	14.6	MG/KG
SS132W	21524	31-Mar-05	0	0.25	CL200.7	BARIUM	5		1.4	1.4	MG/KG
SS132W	21524	31-Mar-05	0	0.25	CL200.7	CHROMIUM, TOTAL	2.9		0.2	0.2	MG/KG
SS132W	21524	31-Mar-05	0	0.25	CL200.7	COBALT	1.4		0.45	0.45	MG/KG
SS132W	21524	31-Mar-05	0	0.25	CL200.7	COPPER	7.8		0.43	0.43	MG/KG
SS132W	21524	31-Mar-05	0	0.25	CL200.7	IRON	3430		6.3	6.3	MG/KG
SS132W	21524	31-Mar-05	0	0.25	CL200.7	LEAD	9.3		0.48	0.48	MG/KG
SS132W	21524	31-Mar-05	0	0.25	CL200.7	MAGNESIUM	402		34.8	34.8	MG/KG
SS132W	21524	31-Mar-05	0	0.25	CL200.7	MANGANESE	35.3		0.12	0.12	MG/KG
SS132W	21524	31-Mar-05	0	0.25	CL200.7	MOLYBDENUM	0.34	J	0.33	0.33	MG/KG
SS132W	21524	31-Mar-05	0	0.25	CL200.7	NICKEL	1.4		0.58	0.58	MG/KG
SS132W	21524	31-Mar-05	0	0.25	CL200.7	VANADIUM	5.1		0.45	0.45	MG/KG
SS132W	21524	31-Mar-05	0	0.25	CL200.7	ZINC	6.4		1.2	1.2	MG/KG
SS132W	21524	31-Mar-05	0	0.25	D2216	MOISTURE, PERCENT	6				PERCENT
SS132W	21524	31-Mar-05	0	0.25	SW8270C	bis(2-ETHYLHEXYL) PHTHALATE	35	J	34.9	350	UG/KG
SS132W	21524T	31-Mar-05	0	0.25	SW6010B	LEAD	139		2.7	2.7	UG/L
SS132W	21525	01-Apr-05	0	0.25	D2216	MOISTURE, PERCENT	4.6				PERCENT
SS132W	21526	01-Apr-05	0	0.25	CL200.7	ALUMINUM	2200		15.8	15.8	MG/KG
SS132W	21526	01-Apr-05	0	0.25	CL200.7	ARSENIC	1.5	J	0.76	0.76	MG/KG
SS132W	21526	01-Apr-05	0	0.25	CL200.7	BARIUM	5.6		1.5	1.5	MG/KG
SS132W	21526	01-Apr-05	0	0.25	CL200.7	BERYLLIUM	0.19		0.04	0.04	MG/KG
SS132W	21526	01-Apr-05	0	0.25	CL200.7	BORON	2.2		0.85	0.85	MG/KG
SS132W	21526	01-Apr-05	0	0.25	CL200.7	CHROMIUM, TOTAL	2.8		0.22	0.22	MG/KG
SS132W	21526	01-Apr-05	0	0.25	CL200.7	COBALT	1.6		0.49	0.49	MG/KG
SS132W	21526	01-Apr-05	0	0.25	CL200.7	COPPER	4.3		0.47	0.47	MG/KG
SS132W	21526	01-Apr-05	0		CL200.7	IRON	3260		6.8	6.8	MG/KG
SS132W	21526	01-Apr-05	0	0.25	CL200.7	LEAD	2.7		0.52	0.52	MG/KG
SS132W	21526	01-Apr-05	0		CL200.7	MANGANESE	55.1		0.13	0.13	MG/KG
SS132W	21526	01-Apr-05	0		CL200.7	NICKEL	1.8		0.54	0.54	MG/KG
SS132W	21526	01-Apr-05	0	0.25	CL200.7	VANADIUM	5.6		0.49	0.49	MG/KG

Table A.1-1
Ordnance Penetration Study - Trench W (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132W	21526	01-Apr-05	0	0.25	CL200.7	ZINC	6.9		0.29	0.29	MG/KG
SS132W	21526	01-Apr-05	0	0.25	D2216	MOISTURE, PERCENT	5				PERCENT
SS132W	21527	07-Apr-05	0	0.25	D2216	MOISTURE, PERCENT	3.1				PERCENT
SS132W	21528	07-Apr-05	0	0.25	CL200.7	ALUMINUM	1880		7.1	7.1	MG/KG
SS132W	21528	07-Apr-05	0	0.25	CL200.7	ARSENIC	2.8		0.87	0.87	MG/KG
SS132W	21528	07-Apr-05	0	0.25	CL200.7	BARIUM	5.1		1.8	1.8	MG/KG
SS132W	21528	07-Apr-05	0	0.25	CL200.7	CHROMIUM, TOTAL	2.4		0.25	0.25	MG/KG
SS132W	21528	07-Apr-05	0	0.25	CL200.7	COBALT	1.8		0.77	0.77	MG/KG
SS132W	21528	07-Apr-05	0	0.25	CL200.7	COPPER	8		0.87	0.87	MG/KG
SS132W	21528	07-Apr-05	0	0.25	CL200.7	IRON	3780		8.1	8.1	MG/KG
SS132W	21528	07-Apr-05	0	0.25	CL200.7	LEAD	6.1	J	0.56	0.56	MG/KG
SS132W	21528	07-Apr-05	0	0.25	CL200.7	MAGNESIUM	355		43.6	43.6	MG/KG
SS132W	21528	07-Apr-05	0	0.25	CL200.7	MANGANESE	39.4		0.15	0.15	MG/KG
SS132W	21528	07-Apr-05	0	0.25	CL200.7	MOLYBDENUM	0.46	J	0.41	0.41	MG/KG
SS132W	21528	07-Apr-05	0	0.25	CL200.7	NICKEL	1.4		0.62	0.62	MG/KG
SS132W	21528	07-Apr-05	0	0.25	CL200.7	SODIUM	112	J	101	101	MG/KG
SS132W	21528	07-Apr-05	0	0.25	CL200.7	VANADIUM	5.9		0.56	0.56	MG/KG
SS132W	21528	07-Apr-05	0	0.25	CL200.7	ZINC	7.6		1.5	1.5	MG/KG
SS132W	21528	07-Apr-05	0	0.25	D2216	MOISTURE, PERCENT	4				PERCENT
SS132W	21528T	07-Apr-05	0	0.25	SW6010B	LEAD	78.7		2.7	2.7	UG/L
SS132W	21529	07-Apr-05	0	0.25	D2216	MOISTURE, PERCENT	2.8				PERCENT
SS132W	21530	07-Apr-05	0	0.25	CL200.7	ALUMINUM	1580		5.9	5.9	MG/KG
SS132W	21530	07-Apr-05	0	0.25	CL200.7	ARSENIC	2.6		0.72	0.72	MG/KG
SS132W	21530	07-Apr-05	0	0.25	CL200.7	BARIUM	4.9		1.5	1.5	MG/KG
SS132W	21530	07-Apr-05	0	0.25	CL200.7	BERYLLIUM	0.09	J	0.05	0.05	MG/KG
SS132W	21530	07-Apr-05	0	0.25	CL200.7	CHROMIUM, TOTAL	2.4		0.21	0.21	MG/KG
SS132W	21530	07-Apr-05	0	0.25	CL200.7	COBALT	1.2	J	0.64	0.64	MG/KG
SS132W	21530	07-Apr-05	0	0.25	CL200.7	COPPER	3.5		0.72	0.72	MG/KG
SS132W	21530	07-Apr-05	0	0.25	CL200.7	IRON	3900		6.7	6.7	MG/KG
SS132W	21530	07-Apr-05	0	0.25	CL200.7	LEAD	2.5	J	0.47	0.47	MG/KG
SS132W	21530	07-Apr-05	0	0.25	CL200.7	MAGNESIUM	307		36.2	36.2	MG/KG
SS132W	21530	07-Apr-05	0	0.25	CL200.7	MANGANESE	38.6		0.12	0.12	MG/KG
SS132W	21530	07-Apr-05	0	0.25	CL200.7	MOLYBDENUM	0.44	J	0.34	0.34	MG/KG
SS132W	21530	07-Apr-05	0		CL200.7	NICKEL	1.5		0.52	0.52	MG/KG
SS132W	21530	07-Apr-05	0	0.25	CL200.7	VANADIUM	6.3		0.47	0.47	MG/KG
SS132W	21530	07-Apr-05	0		CL200.7	ZINC	6.5		1.3	1.3	
SS132W	21530	07-Apr-05	0		D2216	MOISTURE, PERCENT	3				PERCENT
SS132W	21530T	07-Apr-05	0	0.25	SW6010B	LEAD	15.4		2.7	2.7	UG/L

Table A.1-1
Ordnance Penetration Study - Trench W (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	TH (FT.)	TEST	ANALYTE	RESULT	QUALIFIER1	MDL	RL	UNITS
SS132W	21531	07-Apr-05	0	0.25	D2216	MOISTURE, PERCENT	3.2				PERCENT
SS132W	21532	07-Apr-05	0	0.25	CL200.7	ALUMINUM	1490		6	6	MG/KG
SS132W	21532	07-Apr-05	0	0.25	CL200.7	ARSENIC	2.3		0.73	0.73	MG/KG
SS132W	21532	07-Apr-05	0	0.25	CL200.7	BARIUM	3.9		1.5	1.5	MG/KG
SS132W	21532	07-Apr-05	0	0.25	CL200.7	BERYLLIUM	0.1	J	0.05	0.05	MG/KG
SS132W	21532	07-Apr-05	0	0.25	CL200.7	CHROMIUM, TOTAL	2		0.21	0.21	MG/KG
SS132W	21532	07-Apr-05	0	0.25	CL200.7	COBALT	1	J	0.64	0.64	MG/KG
SS132W	21532	07-Apr-05	0	0.25	CL200.7	COPPER	3.3		0.73	0.73	MG/KG
SS132W	21532	07-Apr-05	0	0.25	CL200.7	IRON	3650		6.7	6.7	MG/KG
SS132W	21532	07-Apr-05	0	0.25	CL200.7	LEAD	2.8	J	0.47	0.47	MG/KG
SS132W	21532	07-Apr-05	0	0.25	CL200.7	MAGNESIUM	242		36.4	36.4	MG/KG
SS132W	21532	07-Apr-05	0	0.25	CL200.7	MANGANESE	36.5		0.12	0.12	MG/KG
SS132W	21532	07-Apr-05	0	0.25	CL200.7	NICKEL	1.2		0.52	0.52	MG/KG
SS132W	21532	07-Apr-05	0	0.25	CL200.7	VANADIUM	5.7		0.47	0.47	MG/KG
SS132W	21532	07-Apr-05	0	0.25	CL200.7	ZINC	5.3		1.3	1.3	MG/KG
SS132W	21532	07-Apr-05	0	0.25	D2216	MOISTURE, PERCENT	4				PERCENT
SS132W	21532T	07-Apr-05	0	0.25	SW6010B	LEAD	7.7	J	2.7	2.7	UG/L
SS132W	21765	04-Jan-05	0	0.25	D2216	MOISTURE, PERCENT	10				PERCENT
SS132W	21765	04-Jan-05	0	0.25	SW8270C	PYRENE	22	J	21.9	370	UG/KG
SS132W	21767	04-Jan-05	0.25	0.5	D2216	MOISTURE, PERCENT	11				PERCENT
SS132W	21767	04-Jan-05	0.25	0.5	SW8270C	BENZO(a)ANTHRACENE	24	J	23.9	370	UG/KG
SS132W	21767	04-Jan-05	0.25	0.5	SW8270C	bis(2-ETHYLHEXYL) PHTHALATE	30	J	29.9	370	UG/KG
SS132W	21767	04-Jan-05	0.25	0.5	SW8270C	CHRYSENE	39	J	26	370	UG/KG
SS132W	21767	04-Jan-05	0.25	0.5	SW8270C	FLUORANTHENE	20	J	19.9	370	UG/KG
SS132W	21767	04-Jan-05	0.25	0.5	SW8270C	PYRENE	42	J	41.9	370	UG/KG
SS132W	21769	04-Jan-05	0.5	1	D2216	MOISTURE, PERCENT	11				PERCENT
SS132W	22088	18-Jan-05	0	0.25	CL200.7	ALUMINUM	3840		4.8	4.8	MG/KG
SS132W	22088	18-Jan-05	0	0.25	CL200.7	ARSENIC	1.9		0.85	0.85	MG/KG
SS132W	22088	18-Jan-05	0	0.25	CL200.7	BARIUM	7.6		0.71	0.71	MG/KG
SS132W	22088	18-Jan-05	0	0.25	CL200.7	BERYLLIUM	0.19		0.08	0.08	MG/KG
SS132W	22088	18-Jan-05	0	0.25	CL200.7	CALCIUM	58.2		17.7	17.7	MG/KG
SS132W	22088	18-Jan-05	0	0.25	CL200.7	CHROMIUM, TOTAL	5		0.22	0.22	MG/KG
SS132W	22088	18-Jan-05	0	0.25	CL200.7	COBALT	2.3		0.22	0.22	MG/KG
SS132W	22088	18-Jan-05	0	0.25	CL200.7	COPPER	50		0.77	0.77	MG/KG
SS132W	22088	18-Jan-05	0		CL200.7	IRON	6010		10.7	10.7	MG/KG
SS132W	22088	18-Jan-05	0	0.25	CL200.7	LEAD	18.9		0.28	0.28	MG/KG
SS132W	22088	18-Jan-05	0	0.25	CL200.7	MAGNESIUM	611		16.6	16.6	MG/KG
SS132W	22088	18-Jan-05	0	0.25	CL200.7	MANGANESE	43.7		0.47	0.47	MG/KG

Table A.1-1
Ordnance Penetration Study - Trench W (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132W	22088	18-Jan-05	0	0.25	CL200.7	NICKEL	3.1		0.47	0.47	MG/KG
SS132W	22088	18-Jan-05	0	0.25	CL200.7	POTASSIUM	380		23.2	23.2	MG/KG
SS132W	22088	18-Jan-05	0	0.25	CL200.7	VANADIUM	8.7		0.28	0.28	MG/KG
SS132W	22088	18-Jan-05	0	0.25	CL200.7	ZINC	11.6		0.53	0.53	MG/KG
SS132W	22088	18-Jan-05	0	0.25	D2216	MOISTURE, PERCENT	9				PERCENT
SS132W	22088	18-Jan-05	0	0.25	SW8270C	BENZO(a)ANTHRACENE	19	J	18.9	360	UG/KG
SS132W	22088	18-Jan-05	0	0.25	SW8270C	BENZO(a)PYRENE	20	J	19.9	360	UG/KG
SS132W	22088	18-Jan-05	0	0.25	SW8270C	BENZO(b)FLUORANTHENE	25	J	24.9	360	UG/KG
SS132W	22088	18-Jan-05	0	0.25	SW8270C	BENZO(k)FLUORANTHENE	29	J	28.9	360	UG/KG
SS132W	22088	18-Jan-05	0	0.25	SW8270C	bis(2-ETHYLHEXYL) PHTHALATE	110	J	100.9879	360	UG/KG
SS132W	22088	18-Jan-05	0	0.25	SW8270C	CHRYSENE	29	J	28.5401	360	UG/KG
SS132W	22088	18-Jan-05	0	0.25	SW8270C	FLUORANTHENE	37	J	36.9	360	UG/KG
SS132W	22088	18-Jan-05	0	0.25	SW8270C	PHENANTHRENE	18	J	17.9	360	UG/KG
SS132W	22088	18-Jan-05	0	0.25	SW8270C	PYRENE	38	J	37.9	360	UG/KG
SS132W	22093	18-Jan-05	0	0.25	D2216	MOISTURE, PERCENT	8.7				PERCENT
SS132W	22875	31-Mar-05	0	0.25	D2216	MOISTURE, PERCENT	6.6				PERCENT
SS132W	22876	31-Mar-05	0	0.25	CL200.7	ALUMINUM	3900		16.6	16.6	MG/KG
SS132W	22876	31-Mar-05	0	0.25	CL200.7	ARSENIC	1.5	J	0.85	0.85	MG/KG
SS132W	22876	31-Mar-05	0	0.25	CL200.7	BARIUM	7.5		1.6	1.6	MG/KG
SS132W	22876	31-Mar-05	0	0.25	CL200.7	CHROMIUM, TOTAL	5.1		0.23	0.23	MG/KG
SS132W	22876	31-Mar-05	0	0.25	CL200.7	COBALT	2		0.51	0.51	MG/KG
SS132W	22876	31-Mar-05	0	0.25	CL200.7	COPPER	18.1		0.49	0.49	MG/KG
SS132W	22876	31-Mar-05	0	0.25	CL200.7	IRON	5660		7.1	7.1	MG/KG
SS132W	22876	31-Mar-05	0	0.25	CL200.7	LEAD	13.7		0.55	0.55	MG/KG
SS132W	22876	31-Mar-05	0	0.25	CL200.7	MAGNESIUM	648		39.6	39.6	MG/KG
SS132W	22876	31-Mar-05	0	0.25	CL200.7	MANGANESE	37.1		0.13	0.13	MG/KG
SS132W	22876	31-Mar-05	0	0.25	CL200.7	MOLYBDENUM	0.59	J	0.38	0.38	MG/KG
SS132W	22876	31-Mar-05	0	0.25	CL200.7	NICKEL	2.3		0.66	0.66	MG/KG
SS132W	22876	31-Mar-05	0	0.25	CL200.7	VANADIUM	7.6		0.51	0.51	MG/KG
SS132W	22876	31-Mar-05	0		CL200.7	ZINC	10.8		1.4	1.4	
SS132W	22876	31-Mar-05	0	0.25	D2216	MOISTURE, PERCENT	8				PERCENT
SS132W	22876	31-Mar-05	0		SW8270C	bis(2-ETHYLHEXYL) PHTHALATE	47	J	46.9	360	UG/KG
SS132W	22876	31-Mar-05	0			CHRYSENE	17	J	16.9	360	UG/KG
SS132W	22876	31-Mar-05	0			FLUORANTHENE	21		20.9	360	UG/KG
SS132W	22876	31-Mar-05	0	0.25	SW8270C		26		25.9	360	
SS132W	22879	31-Mar-05	0		D2216	MOISTURE, PERCENT	7.1				PERCENT
SS132W	22879	31-Mar-05	0			TOTAL TETRACHLORINATED NAPHTHALENES	25	J	9.1	35	
SS132W	22916	01-Apr-05	0		D2216	MOISTURE, PERCENT	7				PERCENT

Table A.1-1
Ordnance Penetration Study - Trench W (Detects)

LOCATION	SAMPLE ID	DATE	DEP1	TH (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132W	22917	01-Apr-05	0	0.25	CL200.7	ALUMINUM	3220		18	18	MG/KG
SS132W	22917	01-Apr-05	0	0.25	CL200.7	ARSENIC	2.4		0.86	0.86	MG/KG
SS132W	22917	01-Apr-05	0	0.25	CL200.7	BARIUM	6.9		1.7	1.7	MG/KG
SS132W	22917	01-Apr-05	0	0.25	CL200.7	BERYLLIUM	0.21		0.04	0.04	MG/KG
SS132W	22917	01-Apr-05	0	0.25	CL200.7	BORON	2.8		0.96	0.96	MG/KG
SS132W	22917	01-Apr-05	0	0.25	CL200.7	CHROMIUM, TOTAL	4.6		0.25	0.25	MG/KG
SS132W	22917	01-Apr-05	0	0.25	CL200.7	COBALT	2.4		0.55	0.55	MG/KG
SS132W	22917	01-Apr-05	0	0.25	CL200.7	COPPER	9.4		0.53	0.53	MG/KG
SS132W	22917	01-Apr-05	0	0.25	CL200.7	IRON	5070		7.8	7.8	MG/KG
SS132W	22917	01-Apr-05	0	0.25	CL200.7	LEAD	4		0.59	0.59	MG/KG
SS132W	22917	01-Apr-05	0	0.25	CL200.7	MAGNESIUM	644		43.1	43.1	MG/KG
SS132W	22917	01-Apr-05	0	0.25	CL200.7	MANGANESE	43.3		0.14	0.14	MG/KG
SS132W	22917	01-Apr-05	0	0.25	CL200.7	NICKEL	2.7		0.62	0.62	MG/KG
SS132W	22917	01-Apr-05	0	0.25	CL200.7	VANADIUM	8.2		0.55	0.55	MG/KG
SS132W	22917	01-Apr-05	0	0.25	CL200.7	ZINC	10.5		0.33	0.33	MG/KG
SS132W	22917	01-Apr-05	0	0.25	D2216	MOISTURE, PERCENT	8				PERCENT
SS132W	22917	01-Apr-05	0	0.25	SW8270C	bis(2-ETHYLHEXYL) PHTHALATE	120	J	100	360	UG/KG
SS132W	22918	01-Apr-05	0	0.25	D2216	MOISTURE, PERCENT	7.5				PERCENT
SS132W	22918	01-Apr-05	0	0.25	SW8270C	TOTAL TETRACHLORINATED NAPHTHALENES	21	J	9.1	35	UG/KG
SS132W	23067	07-Apr-05	0	0.25	D2216	MOISTURE, PERCENT	4				PERCENT
SS132W	23068	07-Apr-05	0	0.25	D2216	MOISTURE, PERCENT	5				PERCENT
SS132W	23069	07-Apr-05	0	0.25	CL200.7	ALUMINUM	2160		6.7	6.7	MG/KG
SS132W	23069	07-Apr-05	0	0.25	CL200.7	ARSENIC	3.4		0.82	0.82	MG/KG
SS132W	23069	07-Apr-05	0	0.25	CL200.7	BARIUM	4.4		1.7	1.7	MG/KG
SS132W	23069	07-Apr-05	0	0.25	CL200.7	BERYLLIUM	0.16	J	0.06	0.06	MG/KG
SS132W	23069	07-Apr-05	0	0.25	CL200.7	CHROMIUM, TOTAL	3.9		0.23	0.23	MG/KG
SS132W	23069	07-Apr-05	0	0.25	CL200.7	COBALT	1.1	J	0.72	0.72	MG/KG
SS132W	23069	07-Apr-05	0	0.25	CL200.7	COPPER	4.3		0.82	0.82	MG/KG
SS132W	23069	07-Apr-05	0	0.25	CL200.7	IRON	5450		7.6	7.6	MG/KG
SS132W	23069	07-Apr-05	0	0.25	CL200.7	LEAD	4.3	J	0.53	0.53	MG/KG
SS132W	23069	07-Apr-05	0	0.25	CL200.7	MAGNESIUM	411		41	41	MG/KG
SS132W	23069	07-Apr-05	0	0.25	CL200.7	MANGANESE	32.3		0.14	0.14	MG/KG
SS132W	23069	07-Apr-05	0	0.25	CL200.7	MOLYBDENUM	0.64	J	0.39	0.39	MG/KG
SS132W	23069	07-Apr-05	0	0.25	CL200.7	NICKEL	1.7		0.58	0.58	MG/KG
SS132W	23069	07-Apr-05	0		CL200.7	VANADIUM	7.5		0.53	0.53	MG/KG
SS132W	23069	07-Apr-05	0	0.25	CL200.7	ZINC	7.4		1.4	1.4	MG/KG
SS132W	23069	07-Apr-05	0	0.25	D2216	MOISTURE, PERCENT	4				PERCENT
SS132W	23069	07-Apr-05	0		SW8270C	bis(2-ETHYLHEXYL) PHTHALATE	16	J	15.9	340	

Table A.1-1
Ordnance Penetration Study - Trench W (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER1	MDL	RL	UNITS
SS132W	23069T	07-Apr-05	0	0.25	SW6010B	LEAD	38.9		2.7	2.7	UG/L
SS011005-04	22005	12-Jan-05	0	0.25	CL200.7	ALUMINUM	3660		4.6	4.6	MG/KG
SS011005-04	22005	12-Jan-05	0	0.25	CL200.7	ANTIMONY	1.5	J	0.76	0.76	MG/KG
SS011005-04	22005	12-Jan-05	0	0.25	CL200.7	ARSENIC	2.1		0.86	0.86	MG/KG
SS011005-04	22005	12-Jan-05	0	0.25	CL200.7	BARIUM	3.9		0.68	0.68	MG/KG
SS011005-04	22005	12-Jan-05	0	0.25	CL200.7	BERYLLIUM	0.14	J	0.08	0.08	MG/KG
SS011005-04	22005	12-Jan-05	0	0.25	CL200.7	CALCIUM	51		16.9	16.9	MG/KG
SS011005-04	22005	12-Jan-05	0	0.25	CL200.7	CHROMIUM, TOTAL	3.5		0.21	0.21	MG/KG
SS011005-04	22005	12-Jan-05	0	0.25	CL200.7	COBALT	0.66		0.21	0.21	MG/KG
SS011005-04	22005	12-Jan-05	0	0.25	CL200.7	COPPER	46.6		0.6	0.6	MG/KG
SS011005-04	22005	12-Jan-05	0	0.25	CL200.7	IRON	4510		10.2	10.2	MG/KG
SS011005-04	22005	12-Jan-05	0	0.25	CL200.7	LEAD	120	J	0.27	0.27	MG/KG
SS011005-04	22005	12-Jan-05	0	0.25	CL200.7	MAGNESIUM	16		15.9	15.9	MG/KG
SS011005-04	22005	12-Jan-05	0	0.25	CL200.7	MANGANESE	24.4		0.45	0.45	MG/KG
SS011005-04	22005	12-Jan-05	0	0.25	CL200.7	NICKEL	1.6		0.45	0.45	MG/KG
SS011005-04	22005	12-Jan-05	0	0.25	CL200.7	POTASSIUM	199		22.2	22.2	MG/KG
SS011005-04	22005	12-Jan-05	0	0.25	CL200.7	VANADIUM	7.2		0.27	0.27	MG/KG
SS011005-04	22005	12-Jan-05	0	0.25	CL200.7	ZINC	10.1		0.51	0.51	MG/KG
SS011005-04	22005	12-Jan-05	0	0.25	CL245.5	MERCURY	0.16		0.045	0.045	MG/KG
SS011005-04	22005	12-Jan-05	0	0.25	D2216	MOISTURE, PERCENT	8				PERCENT
SS011005-04	22005	12-Jan-05	0	0.25	SW8270C	CHRYSENE	18	J	17.9	360	UG/KG
SS011005-04	22005T	12-Jan-05	0	0.25	SW6010B	LEAD	1100		2.7	2.7	UG/L
SS011905-01	22200	21-Jan-05	0	0.25	CL200.7	ALUMINUM	4080		4.7	4.7	MG/KG
SS011905-01	22200	21-Jan-05	0	0.25	CL200.7	ARSENIC	2.3		0.83	0.83	MG/KG
SS011905-01	22200	21-Jan-05	0	0.25	CL200.7	BARIUM	7.8		0.69	0.69	MG/KG
SS011905-01	22200	21-Jan-05	0	0.25	CL200.7	BERYLLIUM	0.24		0.08	0.08	MG/KG
SS011905-01	22200	21-Jan-05	0	0.25	CL200.7	CALCIUM	72.1		17.2	17.2	MG/KG
SS011905-01	22200	21-Jan-05	0	0.25	CL200.7	CHROMIUM, TOTAL	5.3		0.22	0.22	MG/KG
SS011905-01	22200	21-Jan-05	0	0.25	CL200.7	COBALT	2.4		0.22	0.22	MG/KG
SS011905-01	22200	21-Jan-05	0	0.25	CL200.7	COPPER	4.5	J	0.75	0.75	MG/KG
SS011905-01	22200	21-Jan-05	0	0.25	CL200.7	IRON	5960		10.4	10.4	MG/KG
SS011905-01	22200	21-Jan-05	0	0.25	CL200.7	LEAD	5.6		0.28	0.28	MG/KG
SS011905-01	22200	21-Jan-05	0	0.25	CL200.7	MAGNESIUM	708		16.2	16.2	MG/KG
SS011905-01	22200	21-Jan-05	0	0.25	CL200.7	MANGANESE	45.1		0.46	0.46	MG/KG
SS011905-01	22200	21-Jan-05	0	0.25	CL200.7	NICKEL	3.3		0.46	0.46	MG/KG
SS011905-01	22200	21-Jan-05	0	0.25	CL200.7	POTASSIUM	470		22.6	22.6	MG/KG
SS011905-01	22200	21-Jan-05	0		CL200.7	VANADIUM	9		0.28	0.28	MG/KG
SS011905-01	22200	21-Jan-05	0	0.25	CL200.7	ZINC	10.3		0.51	0.51	MG/KG

Table A.1-1
Ordnance Penetration Study - Trench W (Detects)

LOCATION	SAMPLE ID	DATE	DEP1	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER1	MDL	RL	UNITS
SS011905-01	22200	21-Jan-05	0	0.25	D2216	MOISTURE, PERCENT	7				PERCENT
SS011905-01	22200	21-Jan-05	0	0.25	SW8270C	DI-n-BUTYL PHTHALATE	24	J	23.9	350	UG/KG
SS011905-02	22202	21-Jan-05	0	0.25	CL200.7	ALUMINUM	6590		4.4	4.4	MG/KG
SS011905-02	22202	21-Jan-05	0	0.25	CL200.7	ARSENIC	2.2		0.78	0.78	MG/KG
SS011905-02	22202	21-Jan-05	0	0.25	CL200.7	BARIUM	13.1		0.65	0.65	MG/KG
SS011905-02	22202	21-Jan-05	0	0.25	CL200.7	BERYLLIUM	0.29		0.07	0.07	MG/KG
SS011905-02	22202	21-Jan-05	0	0.25	CL200.7	CALCIUM	116		16.1	16.1	MG/KG
SS011905-02	22202	21-Jan-05	0	0.25	CL200.7	CHROMIUM, TOTAL	8.7		0.2	0.2	MG/KG
SS011905-02	22202	21-Jan-05	0	0.25	CL200.7	COBALT	2.5		0.2	0.2	MG/KG
SS011905-02	22202	21-Jan-05	0	0.25	CL200.7	COPPER	7.7	J	0.7	0.7	MG/KG
SS011905-02	22202	21-Jan-05	0	0.25	CL200.7	IRON	7660		9.7	9.7	MG/KG
SS011905-02	22202	21-Jan-05	0	0.25	CL200.7	LEAD	3.9		0.26	0.26	MG/KG
SS011905-02	22202	21-Jan-05	0	0.25	CL200.7	MAGNESIUM	1150		15.1	15.1	MG/KG
SS011905-02	22202	21-Jan-05	0	0.25	CL200.7	MANGANESE	59		0.43	0.43	MG/KG
SS011905-02	22202	21-Jan-05	0	0.25	CL200.7	NICKEL	4.6		0.43	0.43	MG/KG
SS011905-02	22202	21-Jan-05	0	0.25	CL200.7	POTASSIUM	566		21.1	21.1	MG/KG
SS011905-02	22202	21-Jan-05	0	0.25	CL200.7	VANADIUM	12.9		0.26	0.26	MG/KG
SS011905-02	22202	21-Jan-05	0	0.25	CL200.7	ZINC	12.6		0.48	0.48	MG/KG
SS011905-02	22202	21-Jan-05	0	0.25	D2216	MOISTURE, PERCENT	9				PERCENT
SS011905-02	22202	21-Jan-05	0	0.25	SW8270C	bis(2-ETHYLHEXYL) PHTHALATE	24	J	23.9	360	UG/KG
SS011905-02	22202	21-Jan-05	0	0.25	SW8270C	DI-n-BUTYL PHTHALATE	64	J	27.8634	360	UG/KG
SS121304-01	21999	12-Jan-05	0	0.25	CL200.7	ALUMINUM	4540		4.1	4.1	MG/KG
SS121304-01	21999	12-Jan-05	0	0.25	CL200.7	ARSENIC	2.7	J	0.73	0.73	MG/KG
SS121304-01	21999	12-Jan-05	0	0.25	CL200.7	BARIUM	5.8		0.61	0.61	MG/KG
SS121304-01	21999	12-Jan-05	0	0.25	CL200.7	BERYLLIUM	0.2		0.07	0.07	MG/KG
SS121304-01	21999	12-Jan-05	0	0.25	CL200.7	CALCIUM	58.6		15.1	15.1	MG/KG
SS121304-01	21999	12-Jan-05	0	0.25	CL200.7	CHROMIUM, TOTAL	5.3		0.19	0.19	MG/KG
SS121304-01	21999	12-Jan-05	0	0.25	CL200.7	COBALT	1.7		0.19	0.19	MG/KG
SS121304-01	21999	12-Jan-05	0	0.25	CL200.7	COPPER	30.3		0.54	0.54	MG/KG
SS121304-01	21999	12-Jan-05	0	0.25	CL200.7	IRON	6960		9.1	9.1	MG/KG
SS121304-01	21999	12-Jan-05	0	0.25	CL200.7	LEAD	65.4	J	0.24	0.24	MG/KG
SS121304-01	21999	12-Jan-05	0	0.25	CL200.7	MAGNESIUM	14		13.9	14.2	MG/KG
SS121304-01	21999	12-Jan-05	0	0.25	CL200.7	MANGANESE	32.7		0.4	0.4	MG/KG
SS121304-01	21999	12-Jan-05	0	0.25	CL200.7	NICKEL	2.9		0.4	0.4	MG/KG
SS121304-01	21999	12-Jan-05	0	0.25	CL200.7	POTASSIUM	334		19.7	19.7	MG/KG
SS121304-01	21999	12-Jan-05	0	0.25	CL200.7	SELENIUM	0.87	J	0.5	0.5	MG/KG
SS121304-01	21999	12-Jan-05	0		CL200.7	VANADIUM	9.8		0.24	0.24	MG/KG
SS121304-01	21999	12-Jan-05	0		CL200.7	ZINC	13.8		0.45	0.45	MG/KG

Table A.1-1
Ordnance Penetration Study - Trench W (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS121304-01	21999	12-Jan-05	0		D2216	MOISTURE, PERCENT	10	30712111211	11.52		PERCENT
SS121304-01	21999	12-Jan-05	0			BENZO(a)ANTHRACENE	86	J	34.1085	370	UG/KG
SS121304-01	21999	12-Jan-05	0	0.25		BENZO(a)PYRENE	96	J	38.0952	370	UG/KG
SS121304-01	21999	12-Jan-05	0			BENZO(b)FLUORANTHENE	140	J	61.1296	370	UG/KG
SS121304-01	21999	12-Jan-05	0			BENZO(g,h,i)PERYLENE	58		52.1595	370	UG/KG
SS121304-01	21999	12-Jan-05	0	0.25		BENZO(k)FLUORANTHENE	110		42.3034	370	UG/KG
SS121304-01	21999	12-Jan-05	0			BENZOIC ACID	64	J	63.9	920	UG/KG
SS121304-01	21999	12-Jan-05	0	0.25	SW8270C	bis(2-ETHYLHEXYL) PHTHALATE	38	J	37.9	370	UG/KG
SS121304-01	21999	12-Jan-05	0			CHRYSENE	140		28.7929	370	UG/KG
SS121304-01	21999	12-Jan-05	0		SW8270C	DIBENZ(a,h)ANTHRACENE	23	J	22.9	370	UG/KG
SS121304-01	21999	12-Jan-05	0			FLUORANTHENE	140	J	80.0664	370	UG/KG
SS121304-01	21999	12-Jan-05	0	0.25	SW8270C	INDENO(1,2,3-c,d)PYRENE	61	J	60.9	370	UG/KG
SS121304-01	21999	12-Jan-05	0	0.25		PHENANTHRENE	80	J	29.1251	370	UG/KG
SS121304-01	21999	12-Jan-05	0	0.25	SW8270C	PYRENE	180	J	83.278	370	UG/KG
SS011005-02	22001	12-Jan-05	0	0.25	CL200.7	ALUMINUM	6400		4.3	4.3	MG/KG
SS011005-02	22001	12-Jan-05	0	0.25	CL200.7	ANTIMONY	0.72	J	0.7	0.7	MG/KG
SS011005-02	22001	12-Jan-05	0	0.25	CL200.7	ARSENIC	2	J	0.76	0.76	MG/KG
SS011005-02	22001	12-Jan-05	0	0.25	CL200.7	BARIUM	11.4		0.63	0.63	MG/KG
SS011005-02	22001	12-Jan-05	0	0.25	CL200.7	BERYLLIUM	0.16		0.07	0.07	MG/KG
SS011005-02	22001	12-Jan-05	0	0.25	CL200.7	CADMIUM	0.15	J	0.11	0.11	MG/KG
SS011005-02	22001	12-Jan-05	0	0.25	CL200.7	CALCIUM	66.1		15.7	15.7	MG/KG
SS011005-02	22001	12-Jan-05	0	0.25	CL200.7	CHROMIUM, TOTAL	5.9		0.2	0.2	MG/KG
SS011005-02	22001	12-Jan-05	0	0.25	CL200.7	COBALT	0.95		0.2	0.2	MG/KG
SS011005-02	22001	12-Jan-05	0	0.25	CL200.7	COPPER	51.4		0.56	0.56	MG/KG
SS011005-02	22001	12-Jan-05	0	0.25	CL200.7	IRON	6110		9.5	9.5	MG/KG
SS011005-02	22001	12-Jan-05	0	0.25	CL200.7	LEAD	93.2	J	0.25	0.25	MG/KG
SS011005-02	22001	12-Jan-05	0	0.25	CL200.7	MAGNESIUM	15		14.7	14.7	MG/KG
SS011005-02	22001	12-Jan-05	0	0.25	CL200.7	MANGANESE	25.7		0.41	0.41	MG/KG
SS011005-02	22001	12-Jan-05	0	0.25	CL200.7	NICKEL	2.6		0.41	0.41	MG/KG
SS011005-02	22001	12-Jan-05	0	0.25	CL200.7	POTASSIUM	244		20.6	20.6	MG/KG
SS011005-02	22001	12-Jan-05	0	0.25	CL200.7	SELENIUM	0.75	J	0.52	0.52	MG/KG
SS011005-02	22001	12-Jan-05	0	0.25	CL200.7	VANADIUM	11		0.25	0.25	MG/KG
SS011005-02	22001	12-Jan-05	0	0.25	CL200.7	ZINC	13.8		0.47	0.47	MG/KG
SS011005-02	22001	12-Jan-05	0	0.25	CL245.5	MERCURY	0.19		0.043	0.043	MG/KG
SS011005-02	22001	12-Jan-05	0	0.25	D2216	MOISTURE, PERCENT	15				PERCENT
SS011005-02	22001	12-Jan-05	0	0.25	SW8270C	ANTHRACENE	19	J	18.9	390	UG/KG
SS011005-02	22001	12-Jan-05	0	0.25	SW8270C	BENZO(a)ANTHRACENE	190	J	36.0656	390	UG/KG
SS011005-02	22001	12-Jan-05	0	0.25	SW8270C	BENZO(a)PYRENE	220	J	40.281	390	UG/KG

Table A.1-1
Ordnance Penetration Study - Trench W (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS011005-02	22001	12-Jan-05	0	0.25	SW8270C	BENZO(b)FLUORANTHENE	220	J	64.637	390	UG/KG
SS011005-02	22001	12-Jan-05	0	0.25	SW8270C	BENZO(g,h,i)PERYLENE	140	J	55.1522	390	UG/KG
SS011005-02	22001	12-Jan-05	0	0.25	SW8270C	BENZO(k)FLUORANTHENE	330	J	44.7307	390	UG/KG
SS011005-02	22001	12-Jan-05	0	0.25	SW8270C	BENZOIC ACID	75	J	74.9	980	UG/KG
SS011005-02	22001	12-Jan-05	0	0.25	SW8270C	bis(2-ETHYLHEXYL) PHTHALATE	110	J	107.7283	390	UG/KG
SS011005-02	22001	12-Jan-05	0	0.25	SW8270C	CARBAZOLE	21	J	20.9	390	UG/KG
SS011005-02	22001	12-Jan-05	0	0.25	SW8270C	CHRYSENE	280	J	30.445	390	UG/KG
SS011005-02	22001	12-Jan-05	0	0.25	SW8270C	DIBENZ(a,h)ANTHRACENE	52	J	51.9	390	UG/KG
SS011005-02	22001	12-Jan-05	0	0.25	SW8270C	FLUORANTHENE	230	J	84.6604	390	UG/KG
SS011005-02	22001	12-Jan-05	0	0.25	SW8270C	INDENO(1,2,3-c,d)PYRENE	140	J	75.5269	390	UG/KG
SS011005-02	22001	12-Jan-05	0	0.25	SW8270C	PHENANTHRENE	78	J	30.7963	390	UG/KG
SS011005-02	22001	12-Jan-05	0	0.25	SW8270C	PYRENE	340	J	88.0562	390	UG/KG

NOTE: The results for the TCLP extraction using Method SW6010B are reported in units of ug/l and are, therefore, not compared to subsequent soil screening criteria.

^{1.} Qualifiers: J = value is estimated due to limitations found in the data validation. The samples that are presented without an associated qualifier code were treated as detected results.

Table A.1-2
Ordnance Penetration Study - Trench X (Detects)

LOCATION	SAMPLE ID	DATE	DEPTH (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132X	21550	13-Dec-04	0 0.25	CL200.7	ALUMINUM	3990		5.2	5.2	MG/KG
SS132X	21550	13-Dec-04	0 0.25	CL200.7	ARSENIC	1.8	J	0.91	0.91	MG/KG
SS132X	21550	13-Dec-04	0 0.25	CL200.7	BARIUM	4.1		0.76	0.76	MG/KG
SS132X	21550	13-Dec-04	0 0.25	CL200.7	BERYLLIUM	0.19		0.09	0.09	MG/KG
SS132X	21550	13-Dec-04	0 0.25	CL200.7	CALCIUM	56.6		18.9	18.9	MG/KG
SS132X	21550	13-Dec-04	0 0.25	CL200.7	CHROMIUM, TOTAL	4.6		0.24	0.24	MG/KG
SS132X	21550	13-Dec-04	0 0.25	CL200.7	COBALT	1.3		0.24	0.24	MG/KG
SS132X	21550	13-Dec-04	0 0.25	CL200.7	COPPER	55.9		0.82	0.82	MG/KG
SS132X	21550	13-Dec-04	0 0.25	CL200.7	IRON	5100		11.4	11.4	MG/KG
SS132X	21550	13-Dec-04	0 0.25	CL200.7	LEAD	107		0.3	0.3	MG/KG
SS132X	21550	13-Dec-04	0 0.25	CL200.7	MAGNESIUM	452		17.7	17.7	MG/KG
SS132X	21550	13-Dec-04	0 0.25	CL200.7	MANGANESE	38		0.5	0.5	MG/KG
SS132X	21550	13-Dec-04	0 0.25	CL200.7	NICKEL	2		0.5	0.5	MG/KG
SS132X	21550	13-Dec-04	0 0.25	CL200.7	POTASSIUM	267		24.7	24.7	MG/KG
SS132X	21550	13-Dec-04	0 0.25	CL200.7	VANADIUM	8.6		0.3	0.3	MG/KG
SS132X	21550	13-Dec-04	0 0.25	CL200.7	ZINC	10.5		0.56	0.56	MG/KG
SS132X	21550	13-Dec-04	0 0.25	CL245.5	MERCURY	0.12		0.042	0.042	MG/KG
SS132X	21550	13-Dec-04	0 0.25	D2216	MOISTURE, PERCENT	8				PERCENT
SS132X	21550	13-Dec-04	0 0.25	SW8270C	BENZO(a)ANTHRACENE	22	J	21.9	360	UG/KG
SS132X	21550	13-Dec-04	0 0.25	SW8270C	BENZO(a)PYRENE	21	J	20.9	360	UG/KG
SS132X	21550	13-Dec-04	0 0.25	SW8270C	BENZO(b)FLUORANTHENE	22	J	21.9	360	UG/KG
SS132X	21550	13-Dec-04	0 0.25	SW8270C	BENZO(k)FLUORANTHENE	36	J	35.9	360	UG/KG
SS132X	21550	13-Dec-04	0 0.25	SW8270C	CHRYSENE	36	J	28.169	360	UG/KG
SS132X	21550	13-Dec-04	0 0.25	SW8270C	FLUORANTHENE	39	J	38.9	360	UG/KG
SS132X	21550	13-Dec-04	0 0.25	SW8270C	PYRENE	37	J	36.9	360	UG/KG
SS132X	21550T	13-Dec-04	0 0.25	SW6010B	LEAD	1340		1.4	1.4	UG/L
SS132X	21552	19-Jan-05	0 0.25	CL200.7	ALUMINUM	5040		4.4	4.4	MG/KG
SS132X	21552	19-Jan-05	0 0.25	CL200.7	ARSENIC	2.4		0.77	0.77	MG/KG
SS132X	21552	19-Jan-05	0 0.25	CL200.7	BARIUM	6.6		0.64	0.64	MG/KG
SS132X	21552	19-Jan-05		CL200.7	BERYLLIUM	0.18		0.07	0.07	MG/KG
SS132X	21552	19-Jan-05	0 0.25	CL200.7	CALCIUM	70.4		15.9	15.9	MG/KG
SS132X	21552	19-Jan-05	0 0.25	CL200.7	CHROMIUM, TOTAL	5.8		0.2	0.2	MG/KG
SS132X	21552	19-Jan-05		CL200.7	COBALT	1.6		0.2	0.2	MG/KG
SS132X	21552	19-Jan-05	0 0.25	CL200.7	COPPER	18.8		0.69	0.69	MG/KG
SS132X	21552	19-Jan-05	0 0.25	CL200.7	IRON	6400		9.6	9.6	MG/KG
SS132X	21552	19-Jan-05	0 0.25	CL200.7	LEAD	36.6		0.26	0.26	MG/KG
SS132X	21552	19-Jan-05		CL200.7	MAGNESIUM	534		15	15	MG/KG
SS132X	21552	19-Jan-05		CL200.7	MANGANESE	38.4		0.42	0.42	MG/KG
SS132X	21552	19-Jan-05	0 0.25	CL200.7	NICKEL	3		0.42	0.42	MG/KG
SS132X	21552	19-Jan-05	0 0.25	CL200.7	POTASSIUM	323		20.9	20.9	MG/KG

Table A.1-2
Ordnance Penetration Study - Trench X (Detects)

LOCATION	SAMPLE ID	DATE	DEPTH (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132X	21552	19-Jan-05	0 0.25	CL200.7	VANADIUM	10.5		0.26	0.26	MG/KG
SS132X	21552	19-Jan-05	0 0.25	CL200.7	ZINC	11.6		0.48	0.48	MG/KG
SS132X	21552	19-Jan-05	0 0.25	CL245.5	MERCURY	0.058	J	0.047	0.047	MG/KG
SS132X	21552	19-Jan-05	0 0.25	D2216	MOISTURE, PERCENT	7				PERCENT
SS132X	21552T	19-Jan-05	0 0.25	SW6010B	LEAD	524		2.3	2.3	UG/L
SS132X	21553	31-Mar-05	0 0.25	D2216	MOISTURE, PERCENT	4.3				PERCENT
SS132X	21554	31-Mar-05	0 0.25	CL200.7	ALUMINUM	2920		16.5	16.5	MG/KG
SS132X	21554	31-Mar-05	0 0.25	CL200.7	ARSENIC	1.1	J	0.84	0.84	MG/KG
SS132X	21554	31-Mar-05	0 0.25	CL200.7	BARIUM	5.3		1.6	1.6	MG/KG
SS132X	21554	31-Mar-05	0 0.25	CL200.7	CHROMIUM, TOTAL	3		0.23	0.23	MG/KG
SS132X	21554	31-Mar-05	0 0.25	CL200.7	COBALT	1.4		0.51	0.51	MG/KG
SS132X	21554	31-Mar-05	0 0.25	CL200.7	COPPER	15.9		0.49	0.49	MG/KG
SS132X	21554	31-Mar-05	0 0.25	CL200.7	IRON	3570		7.1	7.1	MG/KG
SS132X	21554	31-Mar-05	0 0.25	CL200.7	LEAD	30.8		0.54	0.54	MG/KG
SS132X	21554	31-Mar-05	0 0.25	CL200.7	MAGNESIUM	478		39.4	39.4	MG/KG
SS132X	21554	31-Mar-05	0 0.25	CL200.7	MANGANESE	36.3		0.13	0.13	MG/KG
SS132X	21554	31-Mar-05	0 0.25	CL200.7	NICKEL	1.5		0.66	0.66	MG/KG
SS132X	21554	31-Mar-05	0 0.25	CL200.7	VANADIUM	5.5		0.51	0.51	MG/KG
SS132X	21554	31-Mar-05	0 0.25	CL200.7	ZINC	11.1		1.4	1.4	MG/KG
SS132X	21554	31-Mar-05	0 0.25	D2216	MOISTURE, PERCENT	5				PERCENT
SS132X	21554	31-Mar-05	0 0.25	SW8270C	BENZO(a)ANTHRACENE	17	J	16.9	350	UG/KG
SS132X	21554	31-Mar-05	0 0.25	SW8270C	BENZO(a)PYRENE	16	J	15.9	350	UG/KG
SS132X	21554	31-Mar-05	0 0.25	SW8270C	BENZO(b)FLUORANTHENE	23	J	22.9	350	UG/KG
SS132X	21554	31-Mar-05	0 0.25	SW8270C	BENZO(k)FLUORANTHENE	24	J	23.9	350	UG/KG
SS132X	21554	31-Mar-05	0 0.25	SW8270C	CHRYSENE	29	J	27.3109	350	UG/KG
SS132X	21554	31-Mar-05	0 0.25	SW8270C	FLUORANTHENE	31	J	30.9	350	UG/KG
SS132X	21554	31-Mar-05	0 0.25	SW8270C	PYRENE	32	J	31.9	350	UG/KG
SS132X	21554T	31-Mar-05	0 0.25	SW6010B	LEAD	467		2.7	2.7	UG/L
SS132X	21555	01-Apr-05	0 0.25	D2216	MOISTURE, PERCENT	4.8				PERCENT
SS132X	21556	01-Apr-05	0 0.25	CL200.7	ALUMINUM	2570		17.9	17.9	MG/KG
SS132X	21556	01-Apr-05	0 0.25	CL200.7	ARSENIC	1.9		0.86	0.86	MG/KG
SS132X	21556	01-Apr-05	0 0.25	CL200.7	BARIUM	6.1		1.7	1.7	MG/KG
SS132X	21556	01-Apr-05	0 0.25	CL200.7	BORON	1.9	J	0.96	0.96	MG/KG
SS132X	21556	01-Apr-05	0 0.25	CL200.7	CHROMIUM, TOTAL	3		0.24	0.24	MG/KG
SS132X	21556	01-Apr-05	0 0.25	CL200.7	COBALT	1.7		0.55	0.55	MG/KG
SS132X	21556	01-Apr-05	0 0.25	CL200.7	COPPER	13.2		0.53	0.53	MG/KG
SS132X	21556	01-Apr-05		CL200.7	IRON	3990		7.7	7.7	MG/KG
SS132X	21556	01-Apr-05	0 0.25	CL200.7	LEAD	23		0.59	0.59	MG/KG
SS132X	21556	01-Apr-05	0 0.25	CL200.7	MANGANESE	44.7		0.14	0.14	MG/KG
SS132X	21556	01-Apr-05	0 0.25	CL200.7	NICKEL	1.9		0.61	0.61	MG/KG

Table A.1-2
Ordnance Penetration Study - Trench X (Detects)

LOCATION	SAMPLE ID	DATE	DEPTH (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132X	21556	01-Apr-05	0 0.25	CL200.7	VANADIUM	6.9		0.55	0.55	MG/KG
SS132X	21556	01-Apr-05	0 0.25	CL200.7	ZINC	8.3		0.33	0.33	MG/KG
SS132X	21556	01-Apr-05	0 0.25	D2216	MOISTURE, PERCENT	5				PERCENT
SS132X	21556T	01-Apr-05	0 0.25	SW6010B	LEAD	783		2.7	2.7	UG/L
SS132X	21557	01-Apr-05	0 0.25	D2216	MOISTURE, PERCENT	5.9				PERCENT
SS132X	21558	01-Apr-05	0 0.25	CL200.7	ALUMINUM	3560		16.7	16.7	MG/KG
SS132X	21558	01-Apr-05	0 0.25	CL200.7	ARSENIC	2.1		0.8	0.8	MG/KG
SS132X	21558	01-Apr-05	0 0.25	CL200.7	BARIUM	6.2		1.6	1.6	MG/KG
SS132X	21558	01-Apr-05	0 0.25	CL200.7	BORON	2.3		0.89	0.89	MG/KG
SS132X	21558	01-Apr-05	0 0.25	CL200.7	CHROMIUM, TOTAL	4.4		0.23	0.23	MG/KG
SS132X	21558	01-Apr-05	0 0.25	CL200.7	COBALT	2.4		0.51	0.51	MG/KG
SS132X	21558	01-Apr-05	0 0.25	CL200.7	COPPER	28.1		0.49	0.49	MG/KG
SS132X	21558	01-Apr-05	0 0.25	CL200.7	IRON	5100		7.2	7.2	MG/KG
SS132X	21558	01-Apr-05	0 0.25	CL200.7	LEAD	54.9		0.55	0.55	MG/KG
SS132X	21558	01-Apr-05	0 0.25	CL200.7	MAGNESIUM	537		39.8	39.8	MG/KG
SS132X	21558	01-Apr-05	0 0.25	CL200.7	MANGANESE	56		0.13	0.13	MG/KG
SS132X	21558	01-Apr-05	0 0.25	CL200.7	NICKEL	2.6		0.57	0.57	MG/KG
SS132X	21558	01-Apr-05	0 0.25	CL200.7	VANADIUM	8.2		0.51	0.51	MG/KG
SS132X	21558	01-Apr-05	0 0.25	CL200.7	ZINC	11.5		0.3	0.3	MG/KG
SS132X	21558	01-Apr-05		D2216	MOISTURE, PERCENT	7				PERCENT
SS132X	21558T	01-Apr-05	0 0.25	SW6010B	LEAD	432		2.7	2.7	UG/L
SS132X	21559	05-Apr-05	0 0.25	D2216	MOISTURE, PERCENT	4.2				PERCENT
SS132X	21560	05-Apr-05	0 0.25	CL200.7	ALUMINUM	1530		18.3	18.3	MG/KG
SS132X	21560	05-Apr-05	0 0.25	CL200.7	ARSENIC	0.93	J	0.87	0.87	MG/KG
SS132X	21560	05-Apr-05	0 0.25	CL200.7	BARIUM	5.5		1.7	1.7	MG/KG
SS132X	21560	05-Apr-05	0 0.25	CL200.7	BERYLLIUM	0.12		0.04	0.04	MG/KG
SS132X	21560	05-Apr-05	0 0.25	CL200.7	BORON	1.1	J	0.98	0.98	MG/KG
SS132X	21560	05-Apr-05	0 0.25	CL200.7	CHROMIUM, TOTAL	1.8		0.25	0.25	MG/KG
SS132X	21560	05-Apr-05	0 0.25	CL200.7	COBALT	1	J	0.56	0.56	MG/KG
SS132X	21560	05-Apr-05		CL200.7	COPPER	5.6		0.54	0.54	MG/KG
SS132X	21560	05-Apr-05	0 0.25	CL200.7	IRON	2440		7.9	7.9	MG/KG
SS132X	21560	05-Apr-05		CL200.7	LEAD	9		0.56	0.56	MG/KG
SS132X	21560	05-Apr-05		CL200.7	MANGANESE	34		0.15	0.15	MG/KG
SS132X	21560	05-Apr-05		CL200.7	NICKEL	1.1	J	0.62	0.62	MG/KG
SS132X	21560	05-Apr-05		CL200.7	VANADIUM	4.4		0.56	0.56	MG/KG
SS132X	21560	05-Apr-05	0 0.25	CL200.7	ZINC	4.8		0.33	0.33	MG/KG
SS132X	21560	05-Apr-05		D2216	MOISTURE, PERCENT	5				PERCENT
SS132X	21560T	05-Apr-05	0 0.25	SW6010B	LEAD	96.3		2.7	2.7	UG/L
SS132X	21561	05-Apr-05	0 0.25	D2216	MOISTURE, PERCENT	3.8				PERCENT
SS132X	21562	05-Apr-05		CL200.7	ALUMINUM	1500		17.2	17.2	

Table A.1-2
Ordnance Penetration Study - Trench X (Detects)

LOCATION	SAMPLE ID	DATE	DEPTH (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132X	21562	05-Apr-05	0 0.25	CL200.7	ARSENIC	1.1	J	0.82	0.82	MG/KG
SS132X	21562	05-Apr-05	0 0.25	CL200.7	BARIUM	5.1		1.6	1.6	MG/KG
SS132X	21562	05-Apr-05	0 0.25	CL200.7	BERYLLIUM	0.13		0.04	0.04	MG/KG
SS132X	21562	05-Apr-05	0 0.25	CL200.7	BORON	1.1	J	0.92	0.92	MG/KG
SS132X	21562	05-Apr-05	0 0.25	CL200.7	CHROMIUM, TOTAL	2		0.23	0.23	MG/KG
SS132X	21562	05-Apr-05	0 0.25	CL200.7	COBALT	1.1		0.53	0.53	MG/KG
SS132X	21562	05-Apr-05	0 0.25	CL200.7	COPPER	4.6		0.51	0.51	MG/KG
SS132X	21562	05-Apr-05	0 0.25	CL200.7	IRON	2530		7.4	7.4	MG/KG
SS132X	21562	05-Apr-05	0 0.25	CL200.7	LEAD	7.3		0.53	0.53	MG/KG
SS132X	21562	05-Apr-05	0 0.25	CL200.7	MANGANESE	32.8		0.14	0.14	MG/KG
SS132X	21562	05-Apr-05	0 0.25	CL200.7	NICKEL	1.3		0.59	0.59	MG/KG
SS132X	21562	05-Apr-05	0 0.25	CL200.7	VANADIUM	4.4		0.53	0.53	MG/KG
SS132X	21562	05-Apr-05	0 0.25	CL200.7	ZINC	5.2		0.31	0.31	MG/KG
SS132X	21562	05-Apr-05	0 0.25	D2216	MOISTURE, PERCENT	4				PERCENT
SS132X	21562T	05-Apr-05	0 0.25	SW6010B	LEAD	107		2.7	2.7	UG/L
SS132X	21563	07-Apr-05	0 0.25	D2216	MOISTURE, PERCENT	3.4				PERCENT
SS132X	21564	07-Apr-05	0 0.25	CL200.7	ALUMINUM	1550		5.9	5.9	MG/KG
SS132X	21564	07-Apr-05	0 0.25	CL200.7	ARSENIC	1.6		0.72	0.72	MG/KG
SS132X	21564	07-Apr-05	0 0.25	CL200.7	BARIUM	5.2		1.5	1.5	MG/KG
SS132X	21564	07-Apr-05	0 0.25	CL200.7	BERYLLIUM	0.1	J	0.05	0.05	MG/KG
SS132X	21564	07-Apr-05	0 0.25	CL200.7	CHROMIUM, TOTAL	1.9		0.21	0.21	MG/KG
SS132X	21564	07-Apr-05	0 0.25	CL200.7	COBALT	0.8	J	0.64	0.64	MG/KG
SS132X	21564	07-Apr-05	0 0.25	CL200.7	COPPER	3.5		0.72	0.72	MG/KG
SS132X	21564	07-Apr-05	0 0.25	CL200.7	IRON	3030		6.7	6.7	MG/KG
SS132X	21564	07-Apr-05	0 0.25	CL200.7	LEAD	6.1	J	0.46	0.46	MG/KG
SS132X	21564	07-Apr-05	0 0.25	CL200.7	MAGNESIUM	304		36.1	36.1	MG/KG
SS132X	21564	07-Apr-05	0 0.25	CL200.7	MANGANESE	40.4		0.12	0.12	MG/KG
SS132X	21564	07-Apr-05	0 0.25	CL200.7	NICKEL	1.3		0.52	0.52	MG/KG
SS132X	21564	07-Apr-05	0 0.25	CL200.7	VANADIUM	5.3		0.46	0.46	MG/KG
SS132X	21564	07-Apr-05		CL200.7	ZINC	5.9		1.3	1.3	MG/KG
SS132X	21564	07-Apr-05	0 0.25	D2216	MOISTURE, PERCENT	5				PERCENT
SS132X	21564T	07-Apr-05	0 0.25	SW6010B	LEAD	76.3		2.7	2.7	UG/L
SS132X	22090	18-Jan-05		CL200.7	ALUMINUM	5990		4.2	4.2	MG/KG
SS132X	22090	18-Jan-05		CL200.7	ARSENIC	2.4		0.75	0.75	MG/KG
SS132X	22090	18-Jan-05	0 0.25	CL200.7	BARIUM	8		0.62	0.62	MG/KG
SS132X	22090	18-Jan-05	0 0.25	CL200.7	BERYLLIUM	0.19		0.07	0.07	MG/KG
SS132X	22090	18-Jan-05		CL200.7	CALCIUM	92.4		15.4	15.4	MG/KG
SS132X	22090	18-Jan-05		CL200.7	CHROMIUM, TOTAL	6.5		0.2	0.2	MG/KG
SS132X	22090	18-Jan-05	0 0.25	CL200.7	COBALT	1.8		0.2	0.2	MG/KG
SS132X	22090	18-Jan-05		CL200.7	COPPER	28		0.67	0.67	MG/KG

Table A.1-2
Ordnance Penetration Study - Trench X (Detects)

LOCATION	SAMPLE ID	DATE	DEPTH (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132X	22090	18-Jan-05	0 0.25	CL200.7	IRON	6870		9.3	9.3	MG/KG
SS132X	22090	18-Jan-05	0 0.25	CL200.7	LEAD	46.7		0.25	0.25	MG/KG
SS132X	22090	18-Jan-05	0 0.25	CL200.7	MAGNESIUM	643		14.5	14.5	MG/KG
SS132X	22090	18-Jan-05	0 0.25	CL200.7	MANGANESE	38.4		0.41	0.41	MG/KG
SS132X	22090	18-Jan-05	0 0.25	CL200.7	MOLYBDENUM	0.47	J	0.28	0.28	MG/KG
SS132X	22090	18-Jan-05	0 0.25	CL200.7	NICKEL	3.4		0.41	0.41	MG/KG
SS132X	22090	18-Jan-05	0 0.25	CL200.7	POTASSIUM	347		20.3	20.3	MG/KG
SS132X	22090	18-Jan-05	0 0.25	CL200.7	VANADIUM	11		0.25	0.25	MG/KG
SS132X	22090	18-Jan-05	0 0.25	CL200.7	ZINC	13.3		0.46	0.46	MG/KG
SS132X	22090	18-Jan-05	0 0.25	CL245.5	MERCURY	0.052	J	0.043	0.043	MG/KG
SS132X	22090	18-Jan-05	0 0.25	D2216	MOISTURE, PERCENT	10				PERCENT
SS132X	22094	18-Jan-05	0 0.25	D2216	MOISTURE, PERCENT	10.1				PERCENT
SS132X	22877	31-Mar-05	0 0.25	D2216	MOISTURE, PERCENT	5				PERCENT
SS132X	22878	31-Mar-05	0 0.25	CL200.7	ALUMINUM	3430		17.4	17.4	MG/KG
SS132X	22878	31-Mar-05	0 0.25	CL200.7	ARSENIC	1.4	J	0.89	0.89	MG/KG
SS132X	22878	31-Mar-05	0 0.25	CL200.7	BARIUM	5.2		1.7	1.7	MG/KG
SS132X	22878	31-Mar-05	0 0.25	CL200.7	CADMIUM	0.22	J	0.12	0.12	MG/KG
SS132X	22878	31-Mar-05	0 0.25	CL200.7	CHROMIUM, TOTAL	3.9		0.24	0.24	MG/KG
SS132X	22878	31-Mar-05	0 0.25	CL200.7	COBALT	1.8		0.53	0.53	MG/KG
SS132X	22878	31-Mar-05	0 0.25	CL200.7	COPPER	15.4		0.51	0.51	MG/KG
SS132X	22878	31-Mar-05	0 0.25	CL200.7	IRON	4400		7.5	7.5	MG/KG
SS132X	22878	31-Mar-05	0 0.25	CL200.7	LEAD	30.4		0.57	0.57	MG/KG
SS132X	22878	31-Mar-05	0 0.25	CL200.7	MANGANESE	32.3		0.14	0.14	MG/KG
SS132X	22878	31-Mar-05	0 0.25	CL200.7	NICKEL	1.7		0.69	0.69	MG/KG
SS132X	22878	31-Mar-05	0 0.25	CL200.7	VANADIUM	7.3		0.53	0.53	MG/KG
SS132X	22878	31-Mar-05		CL200.7	ZINC	8.7		1.5	1.5	MG/KG
SS132X	22878	31-Mar-05	0 0.25	CL245.5	MERCURY	0.14	J	0.044	0.044	MG/KG
SS132X	22878	31-Mar-05	0 0.25	D2216	MOISTURE, PERCENT	6				PERCENT
SS132X	22880	31-Mar-05	0 0.25	D2216	MOISTURE, PERCENT	5.3				PERCENT
SS132X	22880	31-Mar-05	0 0.25	SW8270C	TOTAL PENTACHLORINATED NAPHTHALENES	30	J	13	34	UG/KG
SS132X	22880	31-Mar-05	0 0.25	SW8270C	TOTAL TETRACHLORINATED NAPHTHALENES	81		8.9	34	UG/KG
SS132X	22880	31-Mar-05	0 0.25	SW8270C	TOTAL TRICHLORINATED NAPHTHALENES	73		3.9	34	UG/KG
SS011005-01	21997	12-Jan-05		CL200.7	ALUMINUM	1810		4.4	4.4	MG/KG
SS011005-01	21997	12-Jan-05		CL200.7	ARSENIC	1.9		0.77	0.77	MG/KG
SS011005-01	21997	12-Jan-05	0 0.25	CL200.7	BARIUM	2.4		0.64	0.64	MG/KG
SS011005-01	21997	12-Jan-05	0 0.25	CL200.7	BERYLLIUM	0.15		0.07	0.07	MG/KG
SS011005-01	21997	12-Jan-05		CL200.7	CHROMIUM, TOTAL	2.6		0.2	0.2	MG/KG
SS011005-01	21997	12-Jan-05		CL200.7	COBALT	1.2		0.2	0.2	MG/KG
SS011005-01	21997	12-Jan-05	0 0.25	CL200.7	COPPER	17.4		0.57	0.57	MG/KG
SS011005-01	21997	12-Jan-05		CL200.7	IRON	3480		9.7	9.7	MG/KG

Table A.1-2
Ordnance Penetration Study - Trench X (Detects)

LOCATION	SAMPLE ID	DATE	DEPTH (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS011005-01	21997	12-Jan-05	0 0.25	CL200.7	LEAD	49.5	J	0.26	0.26	MG/KG
SS011005-01	21997	12-Jan-05	0 0.25	CL200.7	MAGNESIUM	15		14.9	15.1	MG/KG
SS011005-01	21997	12-Jan-05	0 0.25	CL200.7	MANGANESE	36.1		0.42	0.42	MG/KG
SS011005-01	21997	12-Jan-05	0 0.25	CL200.7	NICKEL	1.6		0.42	0.42	MG/KG
SS011005-01	21997	12-Jan-05	0 0.25	CL200.7	POTASSIUM	235		21	21	MG/KG
SS011005-01	21997	12-Jan-05	0 0.25	CL200.7	VANADIUM	5.3		0.26	0.26	MG/KG
SS011005-01	21997	12-Jan-05	0 0.25	CL200.7	ZINC	6.2		0.48	0.48	MG/KG
SS011005-01	21997	12-Jan-05		CL245.5	MERCURY	0.096	J	0.053	0.053	MG/KG
SS011005-01	21997	12-Jan-05	0 0.25	D2216	MOISTURE, PERCENT	6				PERCENT
SS011005-01	21997	12-Jan-05	0 0.25	SW8270C	bis(2-ETHYLHEXYL) PHTHALATE	200	J	97.8723	350	UG/KG
SS011005-03	22011	12-Jan-05	0 0.25	CL200.7	ALUMINUM	5610		4.9	4.9	MG/KG
SS011005-03	22011	12-Jan-05	0 0.25	CL200.7	ARSENIC	1.9	J	0.87	0.87	MG/KG
SS011005-03	22011	12-Jan-05	0 0.25	CL200.7	BARIUM	10.6		0.72	0.72	MG/KG
SS011005-03	22011	12-Jan-05	0 0.25	CL200.7	BERYLLIUM	0.25		0.08	0.08	MG/KG
SS011005-03	22011	12-Jan-05	0 0.25	CL200.7	CALCIUM	143		17.9	17.9	MG/KG
SS011005-03	22011	12-Jan-05	0 0.25	CL200.7	CHROMIUM, TOTAL	6.2		0.23	0.23	MG/KG
SS011005-03	22011	12-Jan-05	0 0.25	CL200.7	COBALT	1.5		0.23	0.23	MG/KG
SS011005-03	22011	12-Jan-05	0 0.25	CL200.7	COPPER	104		0.64	0.64	MG/KG
SS011005-03	22011	12-Jan-05	0 0.25	CL200.7	IRON	6840		10.8	10.8	MG/KG
SS011005-03	22011	12-Jan-05	0 0.25	CL200.7	LEAD	182	J	0.29	0.29	MG/KG
SS011005-03	22011	12-Jan-05	0 0.25	CL200.7	MAGNESIUM	17		16.9	16.9	MG/KG
SS011005-03	22011	12-Jan-05	0 0.25	CL200.7	MANGANESE	75.1		0.47	0.47	MG/KG
SS011005-03	22011	12-Jan-05	0 0.25	CL200.7	NICKEL	3.6		0.47	0.47	MG/KG
SS011005-03	22011	12-Jan-05	0 0.25	CL200.7	POTASSIUM	471		23.5	23.5	MG/KG
SS011005-03	22011	12-Jan-05	0 0.25	CL200.7	VANADIUM	11.1		0.29	0.29	MG/KG
SS011005-03	22011	12-Jan-05	0 0.25	CL200.7	ZINC	44.2		0.54	0.54	MG/KG
SS011005-03	22011	12-Jan-05	0 0.25	CL245.5	MERCURY	0.08	J	0.043	0.043	MG/KG
SS011005-03	22011	12-Jan-05	0 0.25	D2216	MOISTURE, PERCENT	11				PERCENT
SS011005-03	22011	12-Jan-05	0 0.25	SW8270C	BENZO(a)ANTHRACENE	31	J	30.9	370	UG/KG
SS011005-03	22011	12-Jan-05	0 0.25	SW8270C	BENZO(a)PYRENE	34	J	33.9	370	UG/KG
SS011005-03	22011	12-Jan-05	0 0.25	SW8270C	BENZO(b)FLUORANTHENE	45	J	44.9	370	UG/KG
SS011005-03	22011	12-Jan-05	0 0.25	SW8270C	BENZO(g,h,i)PERYLENE	23	J	22.9	370	UG/KG
SS011005-03	22011	12-Jan-05	0 0.25	SW8270C	BENZO(k)FLUORANTHENE	45	J	42.9213	370	UG/KG
SS011005-03	22011	12-Jan-05	0 0.25	SW8270C	bis(2-ETHYLHEXYL) PHTHALATE	52	J	51.9	370	UG/KG
SS011005-03	22011	12-Jan-05	0 0.25	SW8270C	CHRYSENE	51	J	29.2135	370	UG/KG
SS011005-03	22011	12-Jan-05	0 0.25	SW8270C	FLUORANTHENE	30	J	29.9	370	UG/KG
SS011005-03	22011	12-Jan-05	0 0.25	SW8270C	INDENO(1,2,3-c,d)PYRENE	19	J	18.9	370	UG/KG
SS011005-03	22011	12-Jan-05	0 0.25	SW8270C	PYRENE	45	J	44.9	370	UG/KG
SS011005-03	22011T	12-Jan-05	0 0.25	SW6010B	LEAD	1970		2.7	2.7	UG/L
SS011105-01	22009	12-Jan-05	0 0.25	CL200.7	ALUMINUM	3910		4.9	4.9	MG/KG

Table A.1-2
Ordnance Penetration Study - Trench X (Detects)

LOCATION	SAMPLE ID	DATE	DEPTH	(FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS011105-01	22009	12-Jan-05	0	0.25	CL200.7	ARSENIC	3	J	0.86	0.86	MG/KG
SS011105-01	22009	12-Jan-05	0	0.25	CL200.7	BARIUM	4.8		0.72	0.72	MG/KG
SS011105-01	22009	12-Jan-05	0	0.25	CL200.7	BERYLLIUM	0.18		0.08	0.08	MG/KG
SS011105-01	22009	12-Jan-05	0	0.25	CL200.7	CHROMIUM, TOTAL	6		0.23	0.23	MG/KG
SS011105-01	22009	12-Jan-05	0	0.25	CL200.7	COBALT	1.5		0.23	0.23	MG/KG
SS011105-01	22009	12-Jan-05	0	0.25	CL200.7	COPPER	63.1		0.64	0.64	MG/KG
SS011105-01	22009	12-Jan-05	0	0.25	CL200.7	IRON	11200		10.8	10.8	MG/KG
SS011105-01	22009	12-Jan-05	0	0.25	CL200.7	LEAD	180	J	0.29	0.29	MG/KG
SS011105-01	22009	12-Jan-05	0	0.25	CL200.7	MAGNESIUM	17		16.8	16.8	MG/KG
SS011105-01	22009	12-Jan-05	0	0.25	CL200.7	MANGANESE	56.8		0.47	0.47	MG/KG
SS011105-01	22009	12-Jan-05	0	0.25	CL200.7	NICKEL	3.6		0.47	0.47	MG/KG
SS011105-01	22009	12-Jan-05	0		CL200.7	POTASSIUM	287		23.4	23.4	MG/KG
SS011105-01	22009	12-Jan-05	0	0.25	CL200.7	SELENIUM	0.89	J	0.6	0.6	MG/KG
SS011105-01	22009	12-Jan-05	0	0.25	CL200.7	VANADIUM	9		0.29	0.29	MG/KG
SS011105-01	22009	12-Jan-05	0	0.25	CL200.7	ZINC	18.8		0.53	0.53	MG/KG
SS011105-01	22009	12-Jan-05	0	0.25	CL245.5	MERCURY	0.37		0.045	0.045	MG/KG
SS011105-01	22009	12-Jan-05	0	0.25	D2216	MOISTURE, PERCENT	11				PERCENT
SS011105-01	22009	12-Jan-05	0	0.25	SW8270C	BENZO(a)ANTHRACENE	63	J	34.6067	370	UG/KG
SS011105-01	22009	12-Jan-05	0	0.25	SW8270C	BENZO(a)PYRENE	64	J	38.6517	370	UG/KG
SS011105-01	22009	12-Jan-05	0	0.25	SW8270C	BENZO(b)FLUORANTHENE	110	J	62.0225	370	UG/KG
SS011105-01	22009	12-Jan-05	0	0.25	SW8270C	BENZO(g,h,i)PERYLENE	29	J	28.9	370	UG/KG
SS011105-01	22009	12-Jan-05	0	0.25	SW8270C	BENZO(k)FLUORANTHENE	120	J	42.9213	370	UG/KG
SS011105-01	22009	12-Jan-05	0	0.25	SW8270C	BENZOIC ACID	78	J	77.9	930	UG/KG
SS011105-01	22009	12-Jan-05	0	0.25	SW8270C	bis(2-ETHYLHEXYL) PHTHALATE	56	J	55.9	370	UG/KG
SS011105-01	22009	12-Jan-05	0	0.25	SW8270C	CHRYSENE	110	J	29.2135	370	UG/KG
SS011105-01	22009	12-Jan-05	0	0.25	SW8270C	FLUORANTHENE	120	J	81.236	370	UG/KG
SS011105-01	22009	12-Jan-05	0	0.25	SW8270C	INDENO(1,2,3-c,d)PYRENE	33	J	32.9	370	UG/KG
SS011105-01	22009	12-Jan-05	0	0.25	SW8270C	PYRENE	85	J	84.4944	370	UG/KG
SS011105-01	22015	12-Jan-05	0	0.25	CL200.7	ALUMINUM	4840		4.8	4.8	MG/KG
SS011105-01	22015	12-Jan-05	0	0.25	CL200.7	ANTIMONY	1.3	J	0.78	0.78	MG/KG
SS011105-01	22015	12-Jan-05	0	0.25	CL200.7	ARSENIC	2.5	J	0.84	0.84	MG/KG
SS011105-01	22015	12-Jan-05	0	0.25	CL200.7	BARIUM	5.6		0.7	0.7	MG/KG
SS011105-01	22015	12-Jan-05	0		CL200.7	CADMIUM	0.22	J	0.12	0.12	MG/KG
SS011105-01	22015	12-Jan-05	0	0.25	CL200.7	CHROMIUM, TOTAL	5.3		0.22	0.22	MG/KG
SS011105-01	22015	12-Jan-05	0	0.25	CL200.7	COBALT	1.5		0.22	0.22	MG/KG
SS011105-01	22015	12-Jan-05	0	0.25	CL200.7	COPPER	25100		6.2	6.2	MG/KG
SS011105-01	22015	12-Jan-05	0		CL200.7	IRON	6940		10.6		MG/KG
SS011105-01	22015	12-Jan-05	0	0.25	CL200.7	LEAD	189	J	0.28	0.28	MG/KG
SS011105-01	22015	12-Jan-05	0	0.25	CL200.7	MAGNESIUM	16		15.9	16.4	MG/KG
SS011105-01	22015	12-Jan-05	0	0.25	CL200.7	MANGANESE	44.8		0.46	0.46	MG/KG

Table A.1-2
Ordnance Penetration Study - Trench X (Detects)

LOCATION	SAMPLE ID	DATE	DEPTH (F1	.) TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS011105-01	22015	12-Jan-05	0 0.2	5 CL200.7	NICKEL	4.2		0.46	0.46	MG/KG
SS011105-01	22015	12-Jan-05	0 0.2	5 CL200.7	POTASSIUM	308		22.9	22.9	MG/KG
SS011105-01	22015	12-Jan-05	0 0.2	5 CL200.7	SILVER	1.1	J	0.28	0.28	MG/KG
SS011105-01	22015	12-Jan-05	0 0.2	5 CL200.7	SODIUM	180		57.4	57.4	MG/KG
SS011105-01	22015	12-Jan-05	0 0.2	5 CL200.7	VANADIUM	11.2		0.28	0.28	MG/KG
SS011105-01	22015	12-Jan-05	0 0.2	5 CL200.7	ZINC	2400		5.8	5.8	MG/KG
SS011105-01	22015	12-Jan-05	0 0.2	5 CL245.5	MERCURY	0.37		0.052	0.052	MG/KG
SS011105-01	22015	12-Jan-05	0 0.2	5 D2216	MOISTURE, PERCENT	9				PERCENT
SS011105-01	22015	12-Jan-05	0 0.2	5 SW8270C	BENZO(a)ANTHRACENE	54	J	33.7349	360	UG/KG
SS011105-01	22015	12-Jan-05	0 0.2	5 SW8270C	BENZO(a)PYRENE	57	J	37.678	360	UG/KG
SS011105-01	22015	12-Jan-05	0 0.2	5 SW8270C	BENZO(b)FLUORANTHENE	100	J	60.46	360	UG/KG
SS011105-01	22015	12-Jan-05	0 0.2	5 SW8270C	BENZO(g,h,i)PERYLENE	41	J	40.9	360	UG/KG
SS011105-01	22015	12-Jan-05	0 0.2	5 SW8270C	BENZO(k)FLUORANTHENE	80	J	41.8401	360	UG/KG
SS011105-01	22015	12-Jan-05	0 0.2	5 SW8270C	bis(2-ETHYLHEXYL) PHTHALATE	60	J	59.9	360	UG/KG
SS011105-01	22015	12-Jan-05	0 0.2	5 SW8270C	CHRYSENE	99	J	28.4775	360	UG/KG
SS011105-01	22015	12-Jan-05	0 0.2	5 SW8270C	FLUORANTHENE	88	J	79.1895	360	UG/KG
SS011105-01	22015	12-Jan-05	0 0.2	5 SW8270C	INDENO(1,2,3-c,d)PYRENE	40	J	39.9	360	UG/KG
SS011105-01	22015	12-Jan-05	0 0.2	5 SW8270C	PYRENE	120	J	82.3658	360	UG/KG
SS011905-03	22204	21-Jan-05	0 0.25	CL200.7	ALUMINUM	6600		5.2	5.2	MG/KG
SS011905-03	22204	21-Jan-05	0 0.25	CL200.7	ARSENIC	2.3		0.92	0.92	MG/KG
SS011905-03	22204	21-Jan-05	0 0.25	CL200.7	BARIUM	8.4		0.77	0.77	MG/KG
SS011905-03	22204	21-Jan-05	0 0.25	CL200.7	BERYLLIUM	0.22		0.09	0.09	MG/KG
SS011905-03	22204	21-Jan-05	0 0.25	CL200.7	CALCIUM	90.9		19	19	MG/KG
SS011905-03	22204	21-Jan-05	0 0.25	CL200.7	CHROMIUM, TOTAL	8.3		0.24	0.24	MG/KG
SS011905-03	22204	21-Jan-05	0 0.25	CL200.7	COBALT	2.4		0.24	0.24	MG/KG
SS011905-03	22204	21-Jan-05	0 0.25	CL200.7	COPPER	73.9		0.83	0.83	MG/KG
SS011905-03	22204	21-Jan-05	0 0.25	CL200.7	IRON	7260		11.5	11.5	MG/KG
SS011905-03	22204	21-Jan-05	0 0.25	CL200.7	LEAD	138		0.31	0.31	MG/KG
SS011905-03	22204	21-Jan-05	0 0.25	CL200.7	MAGNESIUM	1250		17.9	17.9	MG/KG
SS011905-03	22204	21-Jan-05	0 0.25		MANGANESE	60.5		0.5	0.5	MG/KG
SS011905-03	22204	21-Jan-05	0 0.25	CL200.7	NICKEL	5.4		0.5	0.5	MG/KG
SS011905-03	22204	21-Jan-05	0 0.25	CL200.7	POTASSIUM	595		25	25	MG/KG
SS011905-03	22204	21-Jan-05	0 0.25		VANADIUM	12		0.31	0.31	MG/KG
SS011905-03	22204	21-Jan-05	0 0.25	CL200.7	ZINC	26.6		0.57	0.57	MG/KG
SS011905-03	22204	21-Jan-05	0 0.25	CL245.5	MERCURY	0.099	J	0.051	0.051	MG/KG
SS011905-03	22204	21-Jan-05	0 0.25		MOISTURE, PERCENT	10				PERCENT
SS011905-03	22204	21-Jan-05	0 0.25		BENZO(a)ANTHRACENE	74	J	34.375	370	
SS011905-03	22204	21-Jan-05	0 0.25		BENZO(a)PYRENE	53		38.3929	370	UG/KG
SS011905-03	22204	21-Jan-05	0 0.25		BENZO(b)FLUORANTHENE	130		61.6071	370	UG/KG
SS011905-03	22204	21-Jan-05	0 0.25		BENZO(g,h,i)PERYLENE	50		49.9	370	

Table A.1-2
Ordnance Penetration Study - Trench X (Detects)

LOCATION	SAMPLE ID	DATE	DEPTH (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS011905-03	22204	21-Jan-05	0 0.25	SW8270C	BENZO(k)FLUORANTHENE	120	J	42.6339	370	UG/KG
SS011905-03	22204	21-Jan-05	0 0.25	SW8270C	CHRYSENE	120	J	29.0179	370	UG/KG
SS011905-03	22204	21-Jan-05	0 0.25	SW8270C	FLUORANTHENE	120	J	80.692	370	UG/KG
SS011905-03	22204	21-Jan-05	0 0.25	SW8270C	INDENO(1,2,3-c,d)PYRENE	58	J	57.9	370	UG/KG
SS011905-03	22204	21-Jan-05	0 0.25	SW8270C	PYRENE	120	J	83.9286	370	UG/KG
SS011905-03	22204T	21-Jan-05	0 0.25	SW6010B	LEAD	2410		2.7	2.7	UG/L
SS011905-04	22206	21-Jan-05	0 0.25	CL200.7	ALUMINUM	6430		4.4	4.4	MG/KG
SS011905-04	22206	21-Jan-05	0 0.25	CL200.7	ANTIMONY	0.78	J	0.72	0.72	MG/KG
SS011905-04	22206	21-Jan-05	0 0.25	CL200.7	ARSENIC	3.4		0.78	0.78	MG/KG
SS011905-04	22206	21-Jan-05	0 0.25	CL200.7	BARIUM	13		0.65	0.65	MG/KG
SS011905-04	22206	21-Jan-05	0 0.25	CL200.7	BERYLLIUM	0.23		0.07	0.07	MG/KG
SS011905-04	22206	21-Jan-05	0 0.25	CL200.7	CALCIUM	94.2		16.1	16.1	MG/KG
SS011905-04	22206	21-Jan-05	0 0.25	CL200.7	CHROMIUM, TOTAL	7.4		0.2	0.2	MG/KG
SS011905-04	22206	21-Jan-05	0 0.25	CL200.7	COBALT	1.7		0.2	0.2	MG/KG
SS011905-04	22206	21-Jan-05	0 0.25	CL200.7	COPPER	133		0.7	0.7	MG/KG
SS011905-04	22206	21-Jan-05	0 0.25	CL200.7	IRON	7730		9.7	9.7	MG/KG
SS011905-04	22206	21-Jan-05	0 0.25	CL200.7	LEAD	263		0.26	0.26	MG/KG
SS011905-04	22206	21-Jan-05	0 0.25	CL200.7	MAGNESIUM	814		15.2	15.2	MG/KG
SS011905-04	22206	21-Jan-05	0 0.25	CL200.7	MANGANESE	84.4		0.43	0.43	MG/KG
SS011905-04	22206	21-Jan-05	0 0.25	CL200.7	NICKEL	3.8		0.43	0.43	MG/KG
SS011905-04	22206	21-Jan-05	0 0.25	CL200.7	POTASSIUM	447		21.2	21.2	MG/KG
SS011905-04	22206	21-Jan-05	0 0.25	CL200.7	SELENIUM	0.64	J	0.54	0.54	MG/KG
SS011905-04	22206	21-Jan-05	0 0.25	CL200.7	VANADIUM	12		0.26	0.26	MG/KG
SS011905-04	22206	21-Jan-05	0 0.25	CL200.7	ZINC	41.7		0.48	0.48	MG/KG
SS011905-04	22206	21-Jan-05	0 0.25	CL245.5	MERCURY	0.098	J	0.049	0.049	MG/KG
SS011905-04	22206	21-Jan-05	0 0.25	D2216	MOISTURE, PERCENT	6				PERCENT
SS011905-04	22206	21-Jan-05	0 0.25	SW8270C	BENZOIC ACID	18	J	17.9	880	UG/KG
SS011905-04	22206	21-Jan-05	0 0.25	SW8270C	bis(2-ETHYLHEXYL) PHTHALATE	25	J	24.9	350	UG/KG
SS011905-04	22206	21-Jan-05	0 0.25	SW8270C	CHRYSENE	19	J	18.9	350	UG/KG
SS011905-04	22206	21-Jan-05	0 0.25	SW8270C	FLUORANTHENE	20	J	19.9	350	UG/KG
SS011905-04	22206	21-Jan-05	0 0.25	SW8270C	PYRENE	19	J	18.9	350	UG/KG
SS011905-04	22206T	21-Jan-05	0 0.25	SW6010B	LEAD	5080		2.7	2.7	UG/L
SS121304-02	22013	12-Jan-05	0 0.25	CL200.7	ALUMINUM	3350		4.7	4.7	MG/KG
SS121304-02	22013	12-Jan-05	0 0.25	CL200.7	ANTIMONY	0.9	J	0.78	0.78	MG/KG
SS121304-02	22013	12-Jan-05	0 0.25	CL200.7	ARSENIC	1.5	J	0.84	0.84	MG/KG
SS121304-02	22013	12-Jan-05	0 0.25	CL200.7	BARIUM	34.5		0.7	0.7	MG/KG
SS121304-02	22013	12-Jan-05	0 0.25	CL200.7	BERYLLIUM	0.14	J	0.08	0.08	MG/KG
SS121304-02	22013	12-Jan-05	0 0.25	CL200.7	CALCIUM	68.2		17.3	17.3	MG/KG
SS121304-02	22013	12-Jan-05	0 0.25	CL200.7	CHROMIUM, TOTAL	3.6		0.22	0.22	MG/KG
SS121304-02	22013	12-Jan-05	0 0.25	CL200.7	COBALT	0.82		0.22	0.22	MG/KG

Table A.1-2
Ordnance Penetration Study - Trench X (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS121304-02	22013	12-Jan-05	0	0.25	CL200.7	COPPER	42.3		0.62	0.62	MG/KG
SS121304-02	22013	12-Jan-05	0	0.25	CL200.7	IRON	4510		10.4	10.4	MG/KG
SS121304-02	22013	12-Jan-05	0	0.25	CL200.7	LEAD	105	J	0.28	0.28	MG/KG
SS121304-02	22013	12-Jan-05	0	0.25	CL200.7	MAGNESIUM	16		15.9	16.3	MG/KG
SS121304-02	22013	12-Jan-05	0	0.25	CL200.7	MANGANESE	23.7		0.46	0.46	MG/KG
SS121304-02	22013	12-Jan-05	0	0.25	CL200.7	NICKEL	1.9		0.46	0.46	MG/KG
SS121304-02	22013	12-Jan-05	0	0.25	CL200.7	POTASSIUM	229		22.7	22.7	MG/KG
SS121304-02	22013	12-Jan-05	0	0.25	CL200.7	VANADIUM	8.6		0.28	0.28	MG/KG
SS121304-02	22013	12-Jan-05	0	0.25	CL200.7	ZINC	11.2		0.52	0.52	MG/KG
SS121304-02	22013	12-Jan-05	0	0.25	CL245.5	MERCURY	0.12		0.04	0.04	MG/KG
SS121304-02	22013	12-Jan-05	0	0.25	D2216	MOISTURE, PERCENT	11				PERCENT
SS121304-02	22013	12-Jan-05	0	0.25	SW8270C	BENZO(a)ANTHRACENE	22	J	21.9	370	UG/KG
SS121304-02	22013	12-Jan-05	0	0.25	SW8270C	BENZO(a)PYRENE	20	J	19.9	370	UG/KG
SS121304-02	22013	12-Jan-05	0	0.25	SW8270C	BENZOIC ACID	55	J	54.9	930	UG/KG
SS121304-02	22013	12-Jan-05	0	0.25	SW8270C	CHRYSENE	33	J	29.2135	370	UG/KG
SS121304-02	22013	12-Jan-05	0	0.25	SW8270C	FLUORANTHENE	29	J	28.9	370	UG/KG
SS121304-02	22013	12-Jan-05	0	0.25	SW8270C	PYRENE	37	J	36.9	370	UG/KG
SS121304-02	22013T	12-Jan-05	0	0.25	SW6010B	LEAD	8300		2.7	2.7	UG/L

NOTE: The results for the TCLP extraction using Method SW6010B are reported in units of ug/l and are, therefore, not compared to subsequent soil screening criteria. Footnote:

^{1.} Qualifiers: J = value is estimated due to limitations found in the data validation. The samples that are presented without an associated qualifier code were treated as detected results.

Table A.1-3
Ordnance Penetration Study - Trench Y (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132Y	21534	13-Dec-04	0	0.25	CL200.7	ALUMINUM	4620		4.7	4.7	MG/KG
SS132Y	21534	13-Dec-04	0	0.25	CL200.7	ANTIMONY	1.4	J	0.78	0.78	MG/KG
SS132Y	21534	13-Dec-04	0	0.25	CL200.7	ARSENIC	2		0.84	0.84	MG/KG
SS132Y	21534	13-Dec-04	0	0.25	CL200.7	BARIUM	3.4		0.7	0.7	MG/KG
SS132Y	21534	13-Dec-04	0	0.25	CL200.7	BERYLLIUM	0.17		0.08	0.08	MG/KG
SS132Y	21534	13-Dec-04	0	0.25	CL200.7	CALCIUM	45.6		17.3	17.3	MG/KG
SS132Y	21534	13-Dec-04	0	0.25	CL200.7	CHROMIUM, TOTAL	4.6		0.22	0.22	MG/KG
SS132Y	21534	13-Dec-04	0	0.25	CL200.7	COBALT	0.92		0.22	0.22	MG/KG
SS132Y	21534	13-Dec-04	0	0.25	CL200.7	COPPER	50.3		0.76	0.76	MG/KG
SS132Y	21534	13-Dec-04	0	0.25	CL200.7	IRON	5870		10.4	10.4	MG/KG
SS132Y	21534	13-Dec-04	0	0.25	CL200.7	LEAD	129		0.28	0.28	MG/KG
SS132Y	21534	13-Dec-04	0	0.25	CL200.7	MAGNESIUM	341		16.3	16.3	MG/KG
SS132Y	21534	13-Dec-04	0	0.25	CL200.7	MANGANESE	26.1		0.46	0.46	MG/KG
SS132Y	21534	13-Dec-04	0	0.25	CL200.7	MOLYBDENUM	0.43	J	0.32	0.32	MG/KG
SS132Y	21534	13-Dec-04	0	0.25	CL200.7	NICKEL	2.3		0.46	0.46	MG/KG
SS132Y	21534	13-Dec-04	0	0.25	CL200.7	POTASSIUM	180		22.7	22.7	MG/KG
SS132Y	21534	13-Dec-04	0	0.25	CL200.7	VANADIUM	9.5		0.28	0.28	MG/KG
SS132Y	21534	13-Dec-04	0	0.25	CL200.7	ZINC	14.7		0.52	0.52	MG/KG
SS132Y	21534	13-Dec-04	0	0.25	CL245.5	MERCURY	0.098	J	0.052	0.052	MG/KG
SS132Y	21534	13-Dec-04	0	0.25	D2216	MOISTURE, PERCENT	8				Т
SS132Y	21534	13-Dec-04	0	0.25	SW8270C	BENZO(a)ANTHRACENE	24	J	23.9	360	UG/KG
SS132Y	21534	13-Dec-04	0	0.25	SW8270C	BENZO(a)PYRENE	26	J	25.9	360	UG/KG
SS132Y	21534	13-Dec-04	0	0.25	SW8270C	BENZO(b)FLUORANTHENE	34	J	33.9	360	UG/KG
SS132Y	21534	13-Dec-04	0	0.25	SW8270C	BENZO(g,h,i)PERYLENE	19	J	18.9	360	UG/KG
SS132Y	21534	13-Dec-04	0	0.25	SW8270C	BENZO(k)FLUORANTHENE	48	J	41.4317	360	UG/KG
SS132Y	21534	13-Dec-04	0	0.25	SW8270C	CHRYSENE	43	J	28.1996	360	UG/KG
SS132Y	21534	13-Dec-04	0	0.25	SW8270C	FLUORANTHENE	38	J	37.9	360	UG/KG
SS132Y	21534	13-Dec-04	0	0.25	SW8270C	INDENO(1,2,3-c,d)PYRENE	19	J	18.9	360	UG/KG
SS132Y	21534	13-Dec-04	0	0.25	SW8270C	PYRENE	39	J	38.9	360	UG/KG
SS132Y	21534T	13-Dec-04	0	0.25	SW6010B	LEAD	1240		1.4	1.4	UG/L
SS132Y	21536	19-Jan-05	0	0.25	CL200.7	ALUMINUM	6240		4.6	4.6	MG/KG
SS132Y	21536	19-Jan-05	0	0.25	CL200.7	ARSENIC	2		0.81	0.81	MG/KG
SS132Y	21536	19-Jan-05	0	0.25	CL200.7	BARIUM	5.5		0.67	0.67	MG/KG
SS132Y	21536	19-Jan-05	0	0.25	CL200.7	BERYLLIUM	0.14	J	0.08	0.08	MG/KG
SS132Y	21536	19-Jan-05	0	0.25	CL200.7	CALCIUM	49.3		16.8	16.8	MG/KG
SS132Y	21536	19-Jan-05	0	0.25	CL200.7	CHROMIUM, TOTAL	5.9		0.21	0.21	MG/KG
SS132Y	21536	19-Jan-05	0	0.25	CL200.7	COBALT	1		0.21	0.21	MG/KG
SS132Y	21536	19-Jan-05	0	0.25	CL200.7	COPPER	38.8		0.73	0.73	MG/KG

Table A.1-3
Ordnance Penetration Study - Trench Y (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132Y	21536	19-Jan-05	0	0.25	CL200.7	IRON	6470		10.1	10.1	MG/KG
SS132Y	21536	19-Jan-05	0	0.25	CL200.7	LEAD	80.2		0.27	0.27	MG/KG
SS132Y	21536	19-Jan-05	0	0.25	CL200.7	MAGNESIUM	462		15.8	15.8	MG/KG
SS132Y	21536	19-Jan-05	0	0.25	CL200.7	MANGANESE	27.6		0.44	0.44	MG/KG
SS132Y	21536	19-Jan-05	0	0.25	CL200.7	MOLYBDENUM	0.44	J	0.31	0.31	MG/KG
SS132Y	21536	19-Jan-05	0	0.25	CL200.7	NICKEL	2.4		0.44	0.44	MG/KG
SS132Y	21536	19-Jan-05	0	0.25	CL200.7	POTASSIUM	230		22	22	MG/KG
SS132Y	21536	19-Jan-05	0	0.25	CL200.7	VANADIUM	10.7		0.27	0.27	MG/KG
SS132Y	21536	19-Jan-05	0	0.25	CL200.7	ZINC	12		0.5	0.5	MG/KG
SS132Y	21536	19-Jan-05	0	0.25	CL245.5	MERCURY	0.057	J	0.053	0.053	MG/KG
SS132Y	21536	19-Jan-05	0	0.25	D2216	MOISTURE, PERCENT	7				Т
SS132Y	21536	19-Jan-05	0	0.25	SW8270C	bis(2-ETHYLHEXYL) PHTHALATE	25	J	24.9	350	UG/KG
SS132Y	21536	19-Jan-05	0	0.25	SW8270C	CHRYSENE	20	J	19.9	350	UG/KG
SS132Y	21536	19-Jan-05	0	0.25	SW8270C	PYRENE	20	J	19.9	350	UG/KG
SS132Y	21536T	19-Jan-05	0	0.25	SW6010B	LEAD	1390		2.3	2.3	UG/L
SS132Y	21538	19-Jan-05	0	0.25	CL200.7	ALUMINUM	5890		4.5	4.5	MG/KG
SS132Y	21538	19-Jan-05	0	0.25	CL200.7	ANTIMONY	1.2	J	0.74	0.74	MG/KG
SS132Y	21538	19-Jan-05	0	0.25	CL200.7	ARSENIC	2.1		0.8	0.8	MG/KG
SS132Y	21538	19-Jan-05	0	0.25	CL200.7	BARIUM	4.9		0.66	0.66	MG/KG
SS132Y	21538	19-Jan-05	0	0.25	CL200.7	BERYLLIUM	0.13	J	0.08	0.08	MG/KG
SS132Y	21538	19-Jan-05	0	0.25	CL200.7	CALCIUM	45.8		16.5	16.5	MG/KG
SS132Y	21538	19-Jan-05	0	0.25	CL200.7	CHROMIUM, TOTAL	5.3		0.21	0.21	MG/KG
SS132Y	21538	19-Jan-05	0	0.25	CL200.7	COBALT	0.85		0.21	0.21	MG/KG
SS132Y	21538	19-Jan-05	0	0.25	CL200.7	COPPER	37.1		0.72	0.72	MG/KG
SS132Y	21538	19-Jan-05	0	0.25	CL200.7	IRON	5880		9.9	9.9	MG/KG
SS132Y	21538	19-Jan-05	0	0.25	CL200.7	LEAD	74.9		0.27	0.27	MG/KG
SS132Y	21538	19-Jan-05	0	0.25	CL200.7	MAGNESIUM	382		15.5	15.5	MG/KG
SS132Y	21538	19-Jan-05	0	0.25	CL200.7	MANGANESE	23.7		0.44	0.44	MG/KG
SS132Y	21538	19-Jan-05	0	0.25	CL200.7	MOLYBDENUM	0.56	J	0.3	0.3	MG/KG
SS132Y	21538	19-Jan-05	0	0.25	CL200.7	NICKEL	2.1		0.44	0.44	MG/KG
SS132Y	21538	19-Jan-05	0	0.25	CL200.7	POTASSIUM	211		21.6	21.6	MG/KG
SS132Y	21538	19-Jan-05	0	0.25	CL200.7	VANADIUM	9.8		0.27	0.27	MG/KG
SS132Y	21538	19-Jan-05	0	0.25	CL200.7	ZINC	10.3		0.49	0.49	MG/KG
SS132Y	21538	19-Jan-05	0	0.25	CL245.5	MERCURY	0.067	J	0.047	0.047	MG/KG
SS132Y	21538	19-Jan-05	0	0.25	D2216	MOISTURE, PERCENT	7				Т
SS132Y	21538	19-Jan-05	0	0.25	SW8270C	BENZOIC ACID	20	J	19.9	890	UG/KG
SS132Y	21538	19-Jan-05	0	0.25	SW8270C	CHRYSENE	20	J	19.9	350	UG/KG
SS132Y	21538T	19-Jan-05	0	0.25	SW6010B	LEAD	1010		2.3	2.3	UG/L

Table A.1-3
Ordnance Penetration Study - Trench Y (Detects)

LOCATION	SAMPLE ID	DATE	DEPTI	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132Y	21539	31-Mar-05	0	0.25	D2216	MOISTURE, PERCENT	5.5				Т
SS132Y	21540	31-Mar-05	0	0.25	CL200.7	ALUMINUM	5350		17.1	17.1	MG/KG
SS132Y	21540	31-Mar-05	0	0.25	CL200.7	ARSENIC	1.2	J	0.88	0.88	MG/KG
SS132Y	21540	31-Mar-05	0	0.25	CL200.7	BARIUM	6.4		1.6	1.6	MG/KG
SS132Y	21540	31-Mar-05	0	0.25	CL200.7	CHROMIUM, TOTAL	4.8		0.23	0.23	MG/KG
SS132Y	21540	31-Mar-05	0	0.25	CL200.7	COBALT	0.97	J	0.53	0.53	MG/KG
SS132Y	21540	31-Mar-05	0	0.25	CL200.7	COPPER	16.8		0.51	0.51	MG/KG
SS132Y	21540	31-Mar-05	0	0.25	CL200.7	IRON	5290		7.4	7.4	MG/KG
SS132Y	21540	31-Mar-05	0	0.25	CL200.7	LEAD	39.4		0.56	0.56	MG/KG
SS132Y	21540	31-Mar-05	0	0.25	CL200.7	MAGNESIUM	522		40.9	40.9	MG/KG
SS132Y	21540	31-Mar-05	0	0.25	CL200.7	MANGANESE	30.9		0.14	0.14	MG/KG
SS132Y	21540	31-Mar-05	0	0.25	CL200.7	MOLYBDENUM	0.61	J	0.39	0.39	MG/KG
SS132Y	21540	31-Mar-05	0	0.25	CL200.7	NICKEL	2		0.68	0.68	MG/KG
SS132Y	21540	31-Mar-05	0	0.25	CL200.7	VANADIUM	7.4		0.53	0.53	MG/KG
SS132Y	21540	31-Mar-05	0	0.25	CL200.7	ZINC	9.6		1.4	1.4	MG/KG
SS132Y	21540	31-Mar-05	0	0.25	D2216	MOISTURE, PERCENT	7				Т
SS132Y	21540	31-Mar-05	0	0.25	SW8270C	ANTHRACENE	22	J	21.9	360	UG/KG
SS132Y	21540	31-Mar-05	0	0.25	SW8270C	BENZO(a)ANTHRACENE	20	J	19.9	360	UG/KG
SS132Y	21540	31-Mar-05	0	0.25	SW8270C	BENZO(a)PYRENE	21	J	20.9	360	UG/KG
SS132Y	21540	31-Mar-05	0	0.25	SW8270C	BENZO(b)FLUORANTHENE	33	J	32.9	360	UG/KG
SS132Y	21540	31-Mar-05	0	0.25	SW8270C	BENZO(g,h,i)PERYLENE	16	J	15.9	360	UG/KG
SS132Y	21540	31-Mar-05	0	0.25	SW8270C	BENZO(k)FLUORANTHENE	30	J	29.9	360	UG/KG
SS132Y	21540	31-Mar-05	0	0.25	SW8270C	CHRYSENE	34	J	27.8075	360	UG/KG
SS132Y	21540	31-Mar-05	0	0.25	SW8270C	FLUORANTHENE	32	J	31.9	360	UG/KG
SS132Y	21540	31-Mar-05	0	0.25	SW8270C	INDENO(1,2,3-c,d)PYRENE	16	J	15.9	360	UG/KG
SS132Y	21540	31-Mar-05	0	0.25	SW8270C	PYRENE	33	J	32.9	360	UG/KG
SS132Y	21540T	31-Mar-05	0	0.25	SW6010B	LEAD	647		2.7	2.7	UG/L
SS132Y	21541	01-Apr-05	0	0.25	D2216	MOISTURE, PERCENT	17				Т
SS132Y	21542	01-Apr-05	0	0.25	CL200.7	ALUMINUM	3260		17.8	17.8	MG/KG
SS132Y	21542	01-Apr-05	0	0.25	CL200.7	ARSENIC	2.3		0.85	0.85	MG/KG
SS132Y	21542	01-Apr-05	0	0.25	CL200.7	BARIUM	4.9		1.7	1.7	MG/KG
SS132Y	21542	01-Apr-05	0	0.25	CL200.7	BORON	1.9	J	0.95	0.95	MG/KG
SS132Y	21542	01-Apr-05	0	0.25	CL200.7	CHROMIUM, TOTAL	3.7		0.24	0.24	MG/KG
SS132Y	21542	01-Apr-05	0		CL200.7	COBALT	1.2		0.55	0.55	MG/KG
SS132Y	21542	01-Apr-05	0	0.25	CL200.7	COPPER	14.2		0.53	0.53	MG/KG
SS132Y	21542	01-Apr-05	0	0.25	CL200.7	IRON	4770		7.7	7.7	MG/KG
SS132Y	21542	01-Apr-05	0	0.25	CL200.7	LEAD	20.5		0.59	0.59	MG/KG
SS132Y	21542	01-Apr-05	0	0.25	CL200.7	MAGNESIUM	437		42.5	42.5	MG/KG

Table A.1-3
Ordnance Penetration Study - Trench Y (Detects)

LOCATION	SAMPLE ID	DATE	DEPTH (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132Y	21542	01-Apr-05	0 0.25	CL200.7	MANGANESE	30.4		0.14	0.14	MG/KG
SS132Y	21542	01-Apr-05	0 0.25	CL200.7	NICKEL	1.8		0.61	0.61	MG/KG
SS132Y	21542	01-Apr-05	0 0.25	CL200.7	VANADIUM	7.3		0.55	0.55	MG/KG
SS132Y	21542	01-Apr-05	0 0.25	CL200.7	ZINC	8.6		0.32	0.32	MG/KG
SS132Y	21542	01-Apr-05	0 0.25	D2216	MOISTURE, PERCENT	5				Т
SS132Y	21542T	01-Apr-05	0 0.25	SW6010B	LEAD	376		2.7	2.7	UG/L
SS132Y	21543	05-Apr-05	0 0.25	D2216	MOISTURE, PERCENT	15				Т
SS132Y	21544	05-Apr-05	0 0.25	CL200.7	ALUMINUM	2350		14.2	14.2	MG/KG
SS132Y	21544	05-Apr-05	0 0.25	CL200.7	ARSENIC	1	J	0.68	0.68	MG/KG
SS132Y	21544	05-Apr-05	0 0.25	CL200.7	BARIUM	4.6		1.4	1.4	MG/KG
SS132Y	21544	05-Apr-05	0 0.25	CL200.7	BERYLLIUM	0.11		0.03	0.03	MG/KG
SS132Y	21544	05-Apr-05	0 0.25	CL200.7	BORON	1.5	J	0.76	0.76	MG/KG
SS132Y	21544	05-Apr-05	0 0.25	CL200.7	CHROMIUM, TOTAL	3.9		0.19	0.19	MG/KG
SS132Y	21544	05-Apr-05	0 0.25	CL200.7	COBALT	0.98		0.44	0.44	MG/KG
SS132Y	21544	05-Apr-05	0 0.25	CL200.7	COPPER	3.5		0.42	0.42	MG/KG
SS132Y	21544	05-Apr-05	0 0.25	CL200.7	IRON	3810		6.1	6.1	MG/KG
SS132Y	21544	05-Apr-05	0 0.25	CL200.7	LEAD	4.7		0.44	0.44	MG/KG
SS132Y	21544	05-Apr-05	0 0.25	CL200.7	MAGNESIUM	488		34	34	MG/KG
SS132Y	21544	05-Apr-05	0 0.25	CL200.7	MANGANESE	30.6		0.11	0.11	MG/KG
SS132Y	21544	05-Apr-05	0 0.25	CL200.7	NICKEL	2.2		0.48	0.48	MG/KG
SS132Y	21544	05-Apr-05	0 0.25	CL200.7	VANADIUM	6		0.44	0.44	MG/KG
SS132Y	21544	05-Apr-05	0 0.25	CL200.7	ZINC	9.2		0.26	0.26	MG/KG
SS132Y	21544	05-Apr-05	0 0.25	D2216	MOISTURE, PERCENT	3				Т
SS132Y	21545	05-Apr-05	0 0.25	D2216	MOISTURE, PERCENT	2				Т
SS132Y	21546	05-Apr-05	0 0.25	CL200.7	ALUMINUM	2160		16.9	16.9	MG/KG
SS132Y	21546	05-Apr-05	0 0.25	CL200.7	ARSENIC	0.93	J	0.86	0.86	MG/KG
SS132Y	21546	05-Apr-05	0 0.25	CL200.7	BARIUM	4.8		1.6	1.6	MG/KG
SS132Y	21546	05-Apr-05	0 0.25	CL200.7	BERYLLIUM	0.2		0.04	0.04	MG/KG
SS132Y	21546	05-Apr-05	0 0.25	CL200.7	BORON	1.4	J	0.9	0.9	MG/KG
SS132Y	21546	05-Apr-05	0 0.25	CL200.7	CADMIUM	0.19	J	0.12	0.12	MG/KG
SS132Y	21546	05-Apr-05	0 0.25	CL200.7	CHROMIUM, TOTAL	5.3		0.23	0.23	MG/KG
SS132Y	21546	05-Apr-05	0 0.25	CL200.7	COBALT	2.1		0.52	0.52	MG/KG
SS132Y	21546	05-Apr-05	0 0.25	CL200.7	COPPER	3.5		0.5	0.5	MG/KG
SS132Y	21546	05-Apr-05	0 0.25	CL200.7	IRON	5830		7.3	7.3	MG/KG
SS132Y	21546	05-Apr-05	0 0.25	CL200.7	LEAD	2.8		0.52	0.52	MG/KG
SS132Y	21546	05-Apr-05	0 0.25	CL200.7	MAGNESIUM	657		40.3	40.3	MG/KG
SS132Y	21546	05-Apr-05	0 0.25	CL200.7	MANGANESE	52.1		0.13	0.13	MG/KG
SS132Y	21546	05-Apr-05	0 0.25	CL200.7	NICKEL	3.1		0.58	0.58	MG/KG

Table A.1-3
Ordnance Penetration Study - Trench Y (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132Y	21546	05-Apr-05	0	0.25	CL200.7	SILVER	0.54	J	0.35	0.35	MG/KG
SS132Y	21546	05-Apr-05	0	0.25	CL200.7	VANADIUM	7.8		0.52	0.52	MG/KG
SS132Y	21546	05-Apr-05	0	0.25	CL200.7	ZINC	8.8		0.31	0.31	MG/KG
SS132Y	21546	05-Apr-05	0	0.25	D2216	MOISTURE, PERCENT	3				Т
SS132Y	21547	07-Apr-05	0	0.25	D2216	MOISTURE, PERCENT	2.5				Т
SS132Y	21548	07-Apr-05	0	0.25	CL200.7	ALUMINUM	1680		6.2	6.2	MG/KG
SS132Y	21548	07-Apr-05	0	0.25	CL200.7	ARSENIC	2.9		0.76	0.76	MG/KG
SS132Y	21548	07-Apr-05	0	0.25	CL200.7	BARIUM	3.9		1.6	1.6	MG/KG
SS132Y	21548	07-Apr-05	0	0.25	CL200.7	BERYLLIUM	0.08	J	0.05	0.05	MG/KG
SS132Y	21548	07-Apr-05	0	0.25	CL200.7	CHROMIUM, TOTAL	2.5		0.22	0.22	MG/KG
SS132Y	21548	07-Apr-05	0	0.25	CL200.7	COBALT	0.76	J	0.67	0.67	MG/KG
SS132Y	21548	07-Apr-05	0	0.25	CL200.7	COPPER	2.1		0.76	0.76	MG/KG
SS132Y	21548	07-Apr-05	0	0.25	CL200.7	IRON	4940		7	7	MG/KG
SS132Y	21548	07-Apr-05	0	0.25	CL200.7	LEAD	3.3	J	0.49	0.49	MG/KG
SS132Y	21548	07-Apr-05	0	0.25	CL200.7	MAGNESIUM	297		37.9	37.9	MG/KG
SS132Y	21548	07-Apr-05	0	0.25	CL200.7	MANGANESE	38		0.13	0.13	MG/KG
SS132Y	21548	07-Apr-05	0	0.25	CL200.7	MOLYBDENUM	0.48	J	0.36	0.36	MG/KG
SS132Y	21548	07-Apr-05	0	0.25	CL200.7	NICKEL	1.6		0.54	0.54	MG/KG
SS132Y	21548	07-Apr-05	0	0.25	CL200.7	VANADIUM	6.9		0.49	0.49	MG/KG
SS132Y	21548	07-Apr-05	0	0.25	CL200.7	ZINC	6.9		1.3	1.3	MG/KG
SS132Y	21548	07-Apr-05	0	0.25	D2216	MOISTURE, PERCENT	3				Т
SS132Y	21548T	07-Apr-05	0	0.25	SW6010B	LEAD	14.5		2.7	2.7	UG/L
SS132Y	21550	13-Dec-04	0	0.25	CL200.7	ALUMINUM	3990		5.2	5.2	MG/KG
SS132Y	21550	13-Dec-04	0	0.25	CL200.7	ARSENIC	1.8	J	0.91	0.91	MG/KG
SS132Y	21550	13-Dec-04	0	0.25	CL200.7	BARIUM	4.1		0.76	0.76	MG/KG
SS132Y	21550	13-Dec-04	0	0.25	CL200.7	BERYLLIUM	0.19		0.09	0.09	MG/KG
SS132Y	21550	13-Dec-04	0	0.25	CL200.7	CALCIUM	56.6		18.9	18.9	MG/KG
SS132Y	21550	13-Dec-04	0	0.25	CL200.7	CHROMIUM, TOTAL	4.6		0.24	0.24	MG/KG
SS132Y	21550	13-Dec-04	0	0.25	CL200.7	COBALT	1.3		0.24	0.24	MG/KG
SS132Y	21550	13-Dec-04	0	0.25	CL200.7	COPPER	55.9		0.82	0.82	MG/KG
SS132Y	21550	13-Dec-04	0	0.25	CL200.7	IRON	5100		11.4	11.4	MG/KG
SS132Y	21550	13-Dec-04	0	0.25	CL200.7	LEAD	107		0.3	0.3	MG/KG
SS132Y	21550	13-Dec-04	0	0.25	CL200.7	MAGNESIUM	452		17.7	17.7	MG/KG
SS132Y	21550	13-Dec-04	0	0.25	CL200.7	MANGANESE	38		0.5	0.5	MG/KG
SS132Y	21550	13-Dec-04	0	0.25	CL200.7	NICKEL	2		0.5	0.5	MG/KG
SS132Y	21550	13-Dec-04	0	0.25	CL200.7	POTASSIUM	267		24.7	24.7	MG/KG
SS132Y	21550	13-Dec-04	0	0.25	CL200.7	VANADIUM	8.6		0.3	0.3	MG/KG
SS132Y	21550	13-Dec-04	0	0.25	CL200.7	ZINC	10.5		0.56	0.56	MG/KG

Table A.1-3
Ordnance Penetration Study - Trench Y (Detects)

LOCATION	SAMPLE ID	DATE	DEPTH (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132Y	21550	13-Dec-04	0 0.25	CL245.5	MERCURY	0.12		0.042	0.042	MG/KG
SS132Y	21550	13-Dec-04	0 0.25	D2216	MOISTURE, PERCENT	8				Т
SS132Y	21550	13-Dec-04	0 0.25	SW8270C	BENZO(a)ANTHRACENE	22	J	21.9	360	UG/KG
SS132Y	21550	13-Dec-04	0 0.25	SW8270C	BENZO(a)PYRENE	21	J	20.9	360	UG/KG
SS132Y	21550	13-Dec-04	0 0.25	SW8270C	BENZO(b)FLUORANTHENE	22	J	21.9	360	UG/KG
SS132Y	21550	13-Dec-04	0 0.25	SW8270C	BENZO(k)FLUORANTHENE	36		35.9	360	UG/KG
SS132Y	21550	13-Dec-04	0 0.25	SW8270C	CHRYSENE	36	J	28.169	360	UG/KG
SS132Y	21550	13-Dec-04	0 0.25	SW8270C	FLUORANTHENE	39	J	38.9	360	UG/KG
SS132Y	21550	13-Dec-04	0 0.25	SW8270C	PYRENE	37	J	36.9	360	UG/KG
SS132Y	21550T	13-Dec-04	0 0.25	SW6010B	LEAD	1340		1.4	1.4	UG/L
SS132Y	22090	18-Jan-05	0 0.25	CL200.7	ALUMINUM	5990		4.2	4.2	MG/KG
SS132Y	22090	18-Jan-05	0 0.25	CL200.7	ARSENIC	2.4		0.75	0.75	MG/KG
SS132Y	22090	18-Jan-05	0 0.25	CL200.7	BARIUM	8		0.62	0.62	MG/KG
SS132Y	22090	18-Jan-05	0 0.25	CL200.7	BERYLLIUM	0.19		0.07	0.07	MG/KG
SS132Y	22090	18-Jan-05	0 0.25	CL200.7	CALCIUM	92.4		15.4	15.4	MG/KG
SS132Y	22090	18-Jan-05	0 0.25	CL200.7	CHROMIUM, TOTAL	6.5		0.2	0.2	MG/KG
SS132Y	22090	18-Jan-05	0 0.25	CL200.7	COBALT	1.8		0.2	0.2	MG/KG
SS132Y	22090	18-Jan-05	0 0.25	CL200.7	COPPER	28		0.67	0.67	MG/KG
SS132Y	22090	18-Jan-05	0 0.25	CL200.7	IRON	6870		9.3	9.3	MG/KG
SS132Y	22090	18-Jan-05	0 0.25	CL200.7	LEAD	46.7		0.25	0.25	MG/KG
SS132Y	22090	18-Jan-05	0 0.25	CL200.7	MAGNESIUM	643		14.5	14.5	MG/KG
SS132Y	22090	18-Jan-05	0 0.25	CL200.7	MANGANESE	38.4		0.41	0.41	MG/KG
SS132Y	22090	18-Jan-05	0 0.25	CL200.7	MOLYBDENUM	0.47	J	0.28	0.28	MG/KG
SS132Y	22090	18-Jan-05	0 0.25	CL200.7	NICKEL	3.4		0.41	0.41	MG/KG
SS132Y	22090	18-Jan-05	0 0.25	CL200.7	POTASSIUM	347		20.3	20.3	MG/KG
SS132Y	22090	18-Jan-05	0 0.25	CL200.7	VANADIUM	11		0.25	0.25	MG/KG
SS132Y	22090	18-Jan-05	0 0.25	CL200.7	ZINC	13.3		0.46	0.46	MG/KG
SS132Y	22090	18-Jan-05	0 0.25	CL245.5	MERCURY	0.052	J	0.043	0.043	MG/KG
SS132Y	22090	18-Jan-05	0 0.25	D2216	MOISTURE, PERCENT	10				Т
SS132Y	22092	19-Jan-05	0 0.25	CL200.7	ALUMINUM	4840		4.1	4.1	MG/KG
SS132Y	22092	19-Jan-05	0 0.25	CL200.7	ARSENIC	2.5		0.72	0.72	MG/KG
SS132Y	22092	19-Jan-05	0 0.25	CL200.7	BARIUM	5.7		0.6	0.6	MG/KG
SS132Y	22092	19-Jan-05	0 0.25	CL200.7	BERYLLIUM	0.15		0.07	0.07	MG/KG
SS132Y	22092	19-Jan-05	0 0.25	CL200.7	CADMIUM	0.12	J	0.1	0.1	MG/KG
SS132Y	22092	19-Jan-05	0 0.25	CL200.7	CALCIUM	64.1		15	15	MG/KG
SS132Y	22092	19-Jan-05	0 0.25	CL200.7	CHROMIUM, TOTAL	4.8		0.19	0.19	MG/KG
SS132Y	22092	19-Jan-05	0 0.25	CL200.7	COBALT	1.1		0.19	0.19	MG/KG
SS132Y	22092	19-Jan-05	0 0.25	CL200.7	COPPER	44.7		0.66	0.66	MG/KG

Table A.1-3
Ordnance Penetration Study - Trench Y (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132Y	22092	19-Jan-05	0	0.25	CL200.7	IRON	5640		9.1	9.1	MG/KG
SS132Y	22092	19-Jan-05	0	0.25	CL200.7	LEAD	97.8		0.24	0.24	MG/KG
SS132Y	22092	19-Jan-05	0	0.25	CL200.7	MAGNESIUM	406		14.1	14.1	MG/KG
SS132Y	22092	19-Jan-05	0	0.25	CL200.7	MANGANESE	30.6		0.4	0.4	MG/KG
SS132Y	22092	19-Jan-05	0	0.25	CL200.7	MOLYBDENUM	0.29	J	0.28	0.28	MG/KG
SS132Y	22092	19-Jan-05	0	0.25	CL200.7	NICKEL	2.3		0.4	0.4	MG/KG
SS132Y	22092	19-Jan-05	0	0.25	CL200.7	POTASSIUM	227		19.7	19.7	MG/KG
SS132Y	22092	19-Jan-05	0	0.25	CL200.7	VANADIUM	9.9		0.24	0.24	MG/KG
SS132Y	22092	19-Jan-05	0	0.25	CL200.7	ZINC	13		0.45	0.45	MG/KG
SS132Y	22092	19-Jan-05	0	0.25	CL245.5	MERCURY	0.13		0.053	0.053	MG/KG
SS132Y	22092	19-Jan-05	0	0.25	D2216	MOISTURE, PERCENT	6				Т
SS132Y	22092	19-Jan-05	0	0.25	SW8270C	BENZO(a)ANTHRACENE	140	J	32.6964	350	UG/KG
SS132Y	22092	19-Jan-05	0	0.25	SW8270C	BENZO(a)PYRENE	130	J	36.518	350	UG/KG
SS132Y	22092	19-Jan-05	0	0.25	SW8270C	BENZO(b)FLUORANTHENE	150	J	58.5987	350	UG/KG
SS132Y	22092	19-Jan-05	0	0.25	SW8270C	BENZO(g,h,i)PERYLENE	80	J	50	350	UG/KG
SS132Y	22092	19-Jan-05	0	0.25	SW8270C	BENZO(k)FLUORANTHENE	160	J	40.552	350	UG/KG
SS132Y	22092	19-Jan-05	0	0.25	SW8270C	BENZOIC ACID	25	J	24.9	880	UG/KG
SS132Y	22092	19-Jan-05	0	0.25	SW8270C	CHRYSENE	180	J	27.6008	350	UG/KG
SS132Y	22092	19-Jan-05	0	0.25	SW8270C	DIBENZ(a,h)ANTHRACENE	25	J	24.9	350	UG/KG
SS132Y	22092	19-Jan-05	0	0.25	SW8270C	FLUORANTHENE	200	J	76.7516	350	UG/KG
SS132Y	22092	19-Jan-05	0	0.25	SW8270C	INDENO(1,2,3-c,d)PYRENE	82	J	68.4713	350	UG/KG
SS132Y	22092	19-Jan-05	0	0.25	SW8270C	PYRENE	230	J	79.8301	350	UG/KG
SS132Y	22092	19-Jan-05	0	0.25	SW8330	2,4,6-TRINITROTOLUENE	140		1.5	13	UG/KG
SS132Y	22092	19-Jan-05	0	0.25	SW8330	2-AMINO-4,6-DINITROTOLUENE	51		3.02	13	UG/KG
SS132Y	22092	19-Jan-05	0	0.25	SW8330	4-AMINO-2,6-DINITROTOLUENE	33		2.49	13	UG/KG
SS132Y	22094	18-Jan-05	0	0.25	D2216	MOISTURE, PERCENT	10.1				Т
SS132Y	22095	19-Jan-05	0	0.25	D2216	MOISTURE, PERCENT	5.9				Т
SS132Y	22095	19-Jan-05	0	0.25	SW8270C	TOTAL TETRACHLORINATED NAPHTHALENES	28	J	12	35	UG/KG
SS132Y	22095	19-Jan-05	0	0.25	SW8270C	TOTAL TRICHLORINATED NAPHTHALENES	24	J	6.7	35	UG/KG
SS011005-05	22007	12-Jan-05	0	0.25	CL200.7	ALUMINUM	3080		5.4	5.4	MG/KG
SS011005-05	22007	12-Jan-05	0	0.25	CL200.7	ARSENIC	2.2	J	0.96	0.96	MG/KG
SS011005-05	22007	12-Jan-05	0	0.25	CL200.7	BARIUM	3		0.8	0.8	MG/KG
SS011005-05	22007	12-Jan-05	0	0.25	CL200.7	CALCIUM	165		19.9	19.9	MG/KG
SS011005-05	22007	12-Jan-05	0	0.25	CL200.7	CHROMIUM, TOTAL	2.7		0.25	0.25	MG/KG
SS011005-05	22007	12-Jan-05	0	0.25	CL200.7	COBALT	0.39	J	0.25	0.25	MG/KG
SS011005-05	22007	12-Jan-05	0	0.25	CL200.7	COPPER	25		0.71	0.71	MG/KG
SS011005-05	22007	12-Jan-05	0	0.25	CL200.7	IRON	3490		12	12	MG/KG
SS011005-05	22007	12-Jan-05	0	0.25	CL200.7	LEAD	75.6	J	0.32	0.32	MG/KG

Table A.1-3
Ordnance Penetration Study - Trench Y (Detects)

LOCATION	SAMPLE ID	DATE	DEPTH	, ,	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS011005-05	22007	12-Jan-05			CL200.7	MAGNESIUM	19		18.7	18.7	MG/KG
SS011005-05	22007	12-Jan-05			CL200.7	MANGANESE	13.6		0.53	0.53	MG/KG
SS011005-05	22007	12-Jan-05			CL200.7	NICKEL	1.5		0.53	0.53	MG/KG
SS011005-05	22007	12-Jan-05			CL200.7	POTASSIUM	158		26.1	26.1	MG/KG
SS011005-05	22007	12-Jan-05	0	0.25	CL200.7	VANADIUM	14.4		0.32	0.32	MG/KG
SS011005-05	22007	12-Jan-05			CL200.7	ZINC	5.2		0.59	0.59	MG/KG
SS011005-05	22007	12-Jan-05	0	0.25	D2216	MOISTURE, PERCENT	17				Т
SS011005-05	22007	12-Jan-05	0	0.25	SW8270C	BENZO(a)ANTHRACENE	48	J	37.2881	400	UG/KG
SS011005-05	22007	12-Jan-05	0	0.25	SW8270C	BENZO(a)PYRENE	55	J	41.6465	400	UG/KG
SS011005-05	22007	12-Jan-05	0	0.25	SW8270C	BENZO(b)FLUORANTHENE	62	J	61.9	400	UG/KG
SS011005-05	22007	12-Jan-05	0	0.25	SW8270C	BENZO(g,h,i)PERYLENE	37	J	36.9	400	UG/KG
SS011005-05	22007	12-Jan-05	0	0.25	SW8270C	BENZO(k)FLUORANTHENE	80	J	46.247	400	UG/KG
SS011005-05	22007	12-Jan-05	0	0.25	SW8270C	BENZOIC ACID	96	J	95.9	1000	UG/KG
SS011005-05	22007	12-Jan-05	0	0.25	SW8270C	CHRYSENE	78	J	31.477	400	UG/KG
SS011005-05	22007	12-Jan-05	0	0.25	SW8270C	FLUORANTHENE	76	J	75.9	400	UG/KG
SS011005-05	22007	12-Jan-05	0	0.25	SW8270C	INDENO(1,2,3-c,d)PYRENE	35	J	34.9	400	UG/KG
SS011005-05	22007	12-Jan-05	0	0.25	SW8270C	PHENANTHRENE	34	J	31.8402	400	UG/KG
SS011005-05	22007	12-Jan-05			SW8270C	PYRENE	98		91.0412	400	UG/KG
SS011105-02	22003	12-Jan-05	0	0.25	CL200.7	ALUMINUM	4130		5.1	5.1	MG/KG
SS011105-02	22003	12-Jan-05	0		CL200.7	ARSENIC	1.4	J	0.9	0.9	MG/KG
SS011105-02	22003	12-Jan-05	0	0.25	CL200.7	BARIUM	3.5		0.75	0.75	MG/KG
SS011105-02	22003	12-Jan-05	0	0.25	CL200.7	BERYLLIUM	0.15	J	0.09		MG/KG
SS011105-02	22003	12-Jan-05	0	0.25	CL200.7	CALCIUM	50.6		18.7	18.7	MG/KG
SS011105-02	22003	12-Jan-05	0	0.25	CL200.7	CHROMIUM, TOTAL	4.2		0.24	0.24	MG/KG
SS011105-02	22003	12-Jan-05	0	0.25	CL200.7	COBALT	1		0.24	0.24	MG/KG
SS011105-02	22003	12-Jan-05	0		CL200.7	COPPER	44.4		0.67		MG/KG
SS011105-02	22003	12-Jan-05	0		CL200.7	IRON	5060		11.3		MG/KG
SS011105-02	22003	12-Jan-05	0		CL200.7	LEAD	103	J	0.3		MG/KG
SS011105-02	22003	12-Jan-05	0		CL200.7	MAGNESIUM	18		17.6		MG/KG
SS011105-02	22003	12-Jan-05	0		CL200.7	MANGANESE	35.1		0.49		MG/KG
SS011105-02	22003	12-Jan-05	0		CL200.7	NICKEL	2.2		0.49		MG/KG
SS011105-02	22003	12-Jan-05	0		CL200.7	POTASSIUM	236		24.5		MG/KG
SS011105-02	22003	12-Jan-05	0		CL200.7	VANADIUM	8		0.3		MG/KG
SS011105-02	22003	12-Jan-05	0		CL200.7	ZINC	9.5		0.56		MG/KG
SS011105-02	22003	12-Jan-05	0		CL245.5	MERCURY	0.14		0.041		MG/KG
SS011105-02	22003	12-Jan-05	0		D2216	MOISTURE, PERCENT	7		3.0 11	0.011	Т
SS011105-02	22003	12-Jan-05	0		SW8270C	BENZOIC ACID	40	J	39.9	890	UG/KG
SS011105-02		12-Jan-05	0		SW8270C	bis(2-ETHYLHEXYL) PHTHALATE	76		75.9		UG/KG

Table A.1-3
Ordnance Penetration Study - Trench Y (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS011105-02	22003	12-Jan-05	0	0.25	SW8270C	CHRYSENE	20	J	19.9	360	UG/KG
SS011105-02	22003	12-Jan-05	0	0.25	SW8270C	PYRENE	23	J	22.9	360	UG/KG
SS012005-01	22210	21-Jan-05	0	0.25	CL200.7	ALUMINUM	4090		5	5	MG/KG
SS012005-01	22210	21-Jan-05	0	0.25	CL200.7	ANTIMONY	1.4	J	0.81	0.81	MG/KG
SS012005-01	22210	21-Jan-05	0	0.25	CL200.7	ARSENIC	2.5		0.88	0.88	
SS012005-01	22210	21-Jan-05	0	0.25	CL200.7	BARIUM	5.8		0.73	0.73	MG/KG
SS012005-01	22210	21-Jan-05	0	0.25	CL200.7	BERYLLIUM	0.09	J	0.08	0.08	MG/KG
SS012005-01	22210	21-Jan-05	0	0.25	CL200.7	CALCIUM	68.3		18.1	18.1	MG/KG
SS012005-01	22210	21-Jan-05	0	0.25	CL200.7	CHROMIUM, TOTAL	3.7		0.23	0.23	MG/KG
SS012005-01	22210	21-Jan-05	0	0.25	CL200.7	COBALT	0.59		0.23	0.23	MG/KG
SS012005-01	22210	21-Jan-05	0	0.25	CL200.7	COPPER	57.7		0.79	0.79	MG/KG
SS012005-01	22210	21-Jan-05	0	0.25	CL200.7	IRON	4900		11	11	MG/KG
SS012005-01	22210	21-Jan-05	0	0.25	CL200.7	LEAD	127		0.29	0.29	MG/KG
SS012005-01	22210	21-Jan-05	0	0.25	CL200.7	MAGNESIUM	262		17.1	17.1	MG/KG
SS012005-01	22210	21-Jan-05	0	0.25	CL200.7	MANGANESE	22.5		0.48	0.48	MG/KG
SS012005-01	22210	21-Jan-05	0	0.25	CL200.7	NICKEL	1.5		0.48	0.48	MG/KG
SS012005-01	22210	21-Jan-05	0	0.25	CL200.7	VANADIUM	8.5		0.29	0.29	MG/KG
SS012005-01	22210	21-Jan-05	0	0.25	CL200.7	ZINC	13.4		0.54	0.54	MG/KG
SS012005-01	22210	21-Jan-05	0	0.25	CL245.5	MERCURY	0.13	J	0.051	0.051	MG/KG
SS012005-01	22210	21-Jan-05	0	0.25	D2216	MOISTURE, PERCENT	6				Т
SS012005-01	22210	21-Jan-05	0	0.25	SW8270C	BENZOIC ACID	23	J	22.9	880	UG/KG
SS012005-01	22210	21-Jan-05	0	0.25	SW8270C	FLUORANTHENE	18	J	17.9	350	UG/KG
SS012005-01	22210	21-Jan-05	0	0.25	SW8270C	PYRENE	17	J	16.9	350	UG/KG
SS012005-01	22210	21-Jan-05	0	0.25	SW8330	2-AMINO-4,6-DINITROTOLUENE	130	J	9.03	120	UG/KG
SS012005-01	22210T	21-Jan-05	0	0.25	SW6010B	LEAD	742		2.7	2.7	UG/L
SS012005-02	22208	21-Jan-05	0	0.25	CL200.7	ALUMINUM	3650		4.4	4.4	MG/KG
SS012005-02	22208	21-Jan-05	0	0.25	CL200.7	ARSENIC	2.5		0.78	0.78	MG/KG
SS012005-02	22208	21-Jan-05	0	0.25	CL200.7	BARIUM	5.2		0.65	0.65	MG/KG
SS012005-02	22208	21-Jan-05	0	0.25	CL200.7	BERYLLIUM	0.12	J	0.07	0.07	MG/KG
SS012005-02	22208	21-Jan-05	0	0.25	CL200.7	CALCIUM	31.1	J	16.1	16.1	MG/KG
SS012005-02	22208	21-Jan-05	0	0.25	CL200.7	CHROMIUM, TOTAL	3.1		0.2	0.2	MG/KG
SS012005-02	22208	21-Jan-05	0	0.25	CL200.7	COBALT	1.3		0.2	0.2	MG/KG
SS012005-02	22208	21-Jan-05	0	0.25	CL200.7	COPPER	3.4	J	0.7	0.7	MG/KG
SS012005-02	22208	21-Jan-05	0		CL200.7	IRON	4250		9.7	9.7	
SS012005-02	22208	21-Jan-05	0	0.25	CL200.7	LEAD	4.8		0.26	0.26	MG/KG
SS012005-02	22208	21-Jan-05	0		CL200.7	MAGNESIUM	345		15.2	15.2	
SS012005-02	22208	21-Jan-05	0		CL200.7	MANGANESE	30.1		0.43	0.43	
SS012005-02		21-Jan-05	0		CL200.7	MOLYBDENUM	0.38	J	0.3	0.3	

Table A.1-3
Ordnance Penetration Study - Trench Y (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS012005-02	22208	21-Jan-05	0	0.25	CL200.7	NICKEL	2		0.43	0.43	MG/KG
SS012005-02	22208	21-Jan-05	0	0.25	CL200.7	VANADIUM	6.5		0.26	0.26	MG/KG
SS012005-02	22208	21-Jan-05	0	0.25	CL200.7	ZINC	6.3		0.48	0.48	MG/KG
SS012005-02	22208	21-Jan-05	0	0.25	D2216	MOISTURE, PERCENT	3				Т

NOTE: The results for the TCLP extraction using Method SW6010B are reported in units of ug/l and are, therefore, not compared to subsequent soil screening criteria. Footnote:

^{1.} Qualifiers: J = value is estimated due to limitations found in the data validation. The samples that are presented without an associated qualifier code were treated as detected results.

Table A.2

Target Array and Flanking Target Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPTH	1 (FT)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SSFAFTA01	SSFAFTA01 C	17-Jan-06	0	` '	SW6010B	ALUMINUM	5390	QUALITIEN	3.2		MG/KG
SSFAFTA01	SSFAFTA01 C	17-Jan-06			SW6010B	ANTIMONY	0.29	J	0.24	4.1386	MG/KG
SSFAFTA01	SSFAFTA01 C	17-Jan-06			SW6010B	ARSENIC	2		0.3	0.6898	MG/KG
SSFAFTA01	SSFAFTA01 C	17-Jan-06			SW6010B	BARIUM	10.1		0.49	13.7952	MG/KG
SSFAFTA01	SSFAFTA01_C	17-Jan-06			SW6010B	BERYLLIUM	0.13		0.014	0.3449	MG/KG
SSFAFTA01	SSFAFTA01 C	17-Jan-06	0		SW6010B	CADMIUM	0.04		0.028	0.3449	MG/KG
SSFAFTA01	SSFAFTA01_C	17-Jan-06	0		SW6010B	CALCIUM	122		19.8		MG/KG
SSFAFTA01	SSFAFTA01 C	17-Jan-06	0	0.5	SW6010B	CHROMIUM. TOTAL	92.2		0.1	0.6898	MG/KG
SSFAFTA01	SSFAFTA01 C	17-Jan-06	0	0.5	SW6010B	COBALT	1.1	J	0.17	3.4488	MG/KG
SSFAFTA01	SSFAFTA01 C	17-Jan-06	0		SW6010B	COPPER	14		0.14	1.7244	MG/KG
SSFAFTA01	SSFAFTA01_C	17-Jan-06	0	0.5	SW6010B	IRON	6150		2.5	13.7952	MG/KG
SSFAFTA01	SSFAFTA01_C	17-Jan-06			SW6010B	LEAD	22.3		0.19	0.6898	MG/KG
SSFAFTA01	SSFAFTA01_C	17-Jan-06			SW6010B	MAGNESIUM	359		10.8	344.8799	MG/KG
SSFAFTA01	SSFAFTA01_C	17-Jan-06	0	0.5	SW6010B	MANGANESE	25.9		0.048	1.0346	MG/KG
SSFAFTA01	SSFAFTA01_C	17-Jan-06	0	0.5	SW6010B	MOLYBDENUM	1.1		0.16	0.6898	MG/KG
SSFAFTA01	SSFAFTA01_C	17-Jan-06	0	0.5	SW6010B	NICKEL	5.5		0.12	2.759	MG/KG
SSFAFTA01	SSFAFTA01_C	17-Jan-06	0	0.5	SW6010B	POTASSIUM	313	J	19.7	344.8799	MG/KG
SSFAFTA01	SSFAFTA01_C	17-Jan-06	0	0.5	SW6010B	SODIUM	31.6	J	27.4	387.3267	MG/KG
SSFAFTA01	SSFAFTA01_C	17-Jan-06	0	0.5	SW6010B	VANADIUM	13.8		0.15	3.4488	MG/KG
SSFAFTA01	SSFAFTA01_C	17-Jan-06	0	0.5	SW6010B	ZINC	7		0.58	1.5493	MG/KG
SSFAFTA01	SSFAFTA01_C	17-Jan-06	0	0.5	SW7471A	MERCURY	0.037		0.014	0.0336	MG/KG
SSFAFTA02	SSFAFTA02_C	13-Jan-06	0	0.5	SW6010B	ALUMINUM	873		3.5	15.2672	MG/KG
SSFAFTA02	SSFAFTA02_C	13-Jan-06	0	0.5	SW6010B	ANTIMONY	0.45	J	0.27	4.5802	MG/KG
SSFAFTA02	SSFAFTA02_C	13-Jan-06	0	0.5	SW6010B	ARSENIC	0.83		0.33	0.7634	MG/KG
SSFAFTA02	SSFAFTA02_C	13-Jan-06	0	0.5	SW6010B	BARIUM	12.2	J	0.54	15.2672	MG/KG
SSFAFTA02	SSFAFTA02_C	13-Jan-06	0	0.5	SW6010B	BERYLLIUM	0.057	J	0.015	0.3817	MG/KG
SSFAFTA02	SSFAFTA02_C	13-Jan-06	0	0.5	SW6010B	CADMIUM	0.067	J	0.03	0.3817	MG/KG
SSFAFTA02	SSFAFTA02_C	13-Jan-06	0	0.5	SW6010B	CALCIUM	221	J	22	381.6794	MG/KG
SSFAFTA02	SSFAFTA02_C	13-Jan-06	0	0.5	SW6010B	CHROMIUM, TOTAL	118		0.11	0.7634	MG/KG
SSFAFTA02	SSFAFTA02_C	13-Jan-06	0	0.5	SW6010B	COBALT	0.54	J	0.18	3.8168	MG/KG
SSFAFTA02	SSFAFTA02_C	13-Jan-06	0	0.5	SW6010B	COPPER	44		0.16	1.9084	MG/KG
SSFAFTA02	SSFAFTA02_C	13-Jan-06	0	0.5	SW6010B	IRON	2770		2.7	15.2672	MG/KG
SSFAFTA02	SSFAFTA02_C	13-Jan-06	0	0.5	SW6010B	LEAD	34.3		0.21	0.7634	MG/KG
SSFAFTA02	SSFAFTA02_C	13-Jan-06	0	0.5	SW6010B	MAGNESIUM	93.1		12	381.6794	MG/KG
SSFAFTA02	SSFAFTA02_C	13-Jan-06	0	0.5	SW6010B	MANGANESE	21.5		0.053	1.145	MG/KG
SSFAFTA02	SSFAFTA02_C	13-Jan-06			SW6010B	MOLYBDENUM	0.96		0.18	0.7634	MG/KG
SSFAFTA02	SSFAFTA02_C	13-Jan-06			SW6010B	NICKEL	3.2		0.14	3.0534	MG/KG
SSFAFTA02	SSFAFTA02_C	13-Jan-06			SW6010B	POTASSIUM	230		21.8		MG/KG
SSFAFTA02	SSFAFTA02_C	13-Jan-06	0	0.5	SW6010B	SODIUM	47.8	J	27		MG/KG
SSFAFTA02	SSFAFTA02_C	13-Jan-06	0	0.5	SW6010B	VANADIUM	9		0.17	3.8168	MG/KG

Table A.2

Target Array and Flanking Target Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPTH	(FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SSFAFTA02	SSFAFTA02 C	13-Jan-06	0		SW6010B	ZINC	7	QUALITIEN	0.57	1.5267	MG/KG
SSFAFTA02	SSFAFTA02 C	13-Jan-06	0		SW7471A	MERCURY	0.056		0.013	0.0324	MG/KG
SSFAFTA03	SSFAFTA03 C	13-Jan-06	0		SW6010B	ALUMINUM	1710		3.2		MG/KG
SSFAFTA03	SSFAFTA03 C	13-Jan-06	0		SW6010B	ANTIMONY	0.33		0.24	4.1667	MG/KG
SSFAFTA03	SSFAFTA03_C	13-Jan-06	0		SW6010B	ARSENIC	1.9		0.3	0.6944	MG/KG
SSFAFTA03	SSFAFTA03 C	13-Jan-06	0		SW6010B	BARIUM	6.7		0.49	13.8889	MG/KG
SSFAFTA03	SSFAFTA03_C	13-Jan-06	0		SW6010B	BERYLLIUM	0.14		0.014	0.3472	MG/KG
SSFAFTA03	SSFAFTA03 C	13-Jan-06	0		SW6010B	CALCIUM	150		20		MG/KG
SSFAFTA03	SSFAFTA03 C	13-Jan-06	0		SW6010B	CHROMIUM, TOTAL	141		0.1	0.6944	MG/KG
SSFAFTA03	SSFAFTA03_C	13-Jan-06	0		SW6010B	COBALT	1	1	0.17	3.4722	MG/KG
SSFAFTA03	SSFAFTA03_C	13-Jan-06	0		SW6010B	COPPER	4.7		0.15	1.7361	MG/KG
SSFAFTA03	SSFAFTA03_C	13-Jan-06	0		SW6010B	IRON	5610		2.5	13.8889	MG/KG
SSFAFTA03	SSFAFTA03_C	13-Jan-06	0		SW6010B	LEAD	7.8		0.19	0.6944	MG/KG
SSFAFTA03	SSFAFTA03_C	13-Jan-06	0		SW6010B	MAGNESIUM	282		10.9		MG/KG
SSFAFTA03	SSFAFTA03_C	13-Jan-06	0		SW6010B	MANGANESE	35.9		0.049	1.0417	MG/KG
SSFAFTA03	SSFAFTA03_C	13-Jan-06	0		SW6010B	MOLYBDENUM	1.2		0.049	0.6944	MG/KG
SSFAFTA03	SSFAFTA03_C	13-Jan-06	0		SW6010B	NICKEL	3.5		0.10		MG/KG
SSFAFTA03	SSFAFTA03_C	13-Jan-06	0		SW6010B	POTASSIUM	369		19.8	-	MG/KG
SSFAFTA03	SSFAFTA03_C	13-Jan-06	0		SW6010B	SELENIUM	0.37		0.24	2.4306	MG/KG
SSFAFTA03	SSFAFTA03_C	13-Jan-06	0		SW6010B	SODIUM	39.3		24.6		MG/KG
SSFAFTA03		13-Jan-06	0		SW6010B	VANADIUM	11.1	J	0.15		MG/KG
SSFAFTA03	SSFAFTA03_C SSFAFTA03_C	13-Jan-06 13-Jan-06	0		SW6010B	ZINC	6.8		0.15	1.3889	MG/KG
			-			MERCURY				0.0333	
SSFAFTA03	SSFAFTA03_C	13-Jan-06	0		SW7471A		0.018		0.014		MG/KG
SSFAFTA04	SSFAFTA04_C	13-Jan-06	0		SW6010B	ALUMINUM	2020		3.5	15.2672	MG/KG
SSFAFTA04	SSFAFTA04_C	13-Jan-06	0		SW6010B	ANTIMONY	2.9		0.27	4.5802	MG/KG
SSFAFTA04	SSFAFTA04_C	13-Jan-06	0		SW6010B	ARSENIC	1.7		0.33	0.7634	MG/KG
SSFAFTA04	SSFAFTA04_C	13-Jan-06	0		SW6010B	BARIUM	12.9	-	0.54	15.2672	MG/KG
SSFAFTA04	SSFAFTA04_C	13-Jan-06	0		SW6010B	BERYLLIUM	0.064		0.015	0.3817	MG/KG
SSFAFTA04	SSFAFTA04_C	13-Jan-06	0		SW6010B	CADMIUM	0.056		0.03	0.3817	MG/KG
SSFAFTA04	SSFAFTA04_C	13-Jan-06	0		SW6010B	CALCIUM	235		22		MG/KG
SSFAFTA04	SSFAFTA04_C	13-Jan-06	0		SW6010B	CHROMIUM, TOTAL	114		0.11	0.7634	MG/KG
SSFAFTA04	SSFAFTA04_C	13-Jan-06	0		SW6010B	COBALT	0.67		0.18	3.8168	MG/KG
SSFAFTA04	SSFAFTA04_C	13-Jan-06	0		SW6010B	COPPER	31.6		0.16	1.9084	MG/KG
SSFAFTA04	SSFAFTA04_C	13-Jan-06	0		SW6010B	IRON	4920		2.7	15.2672	MG/KG
SSFAFTA04	SSFAFTA04_C	13-Jan-06	0		SW6010B	LEAD	82.4		0.21	0.7634	MG/KG
SSFAFTA04	SSFAFTA04_C	13-Jan-06	0		SW6010B	MAGNESIUM	159	-	12	381.6794	MG/KG
SSFAFTA04	SSFAFTA04_C	13-Jan-06	0		SW6010B	MANGANESE	22.5		0.053	1.145	MG/KG
SSFAFTA04	SSFAFTA04_C	13-Jan-06	0	0.5	SW6010B	MOLYBDENUM	0.79		0.18	0.7634	MG/KG
SSFAFTA04	SSFAFTA04_C	13-Jan-06	0	0.5	SW6010B	NICKEL	3.6		0.14	3.0534	MG/KG
SSFAFTA04	SSFAFTA04_C	13-Jan-06	0	0.5	SW6010B	POTASSIUM	326	J	21.8	381.6794	MG/KG

Table A.2

Target Array and Flanking Target Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPTH	/ET \	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SSFAFTA04	SSFAFTA04_C	13-Jan-06	0	, ,	SW6010B	SODIUM	63.7		27		MG/KG
SSFAFTA04	SSFAFTA04_C	13-Jan-06	0		SW6010B	VANADIUM	19.4	3	0.17	3.8168	MG/KG
SSFAFTA04	SSFAFTA04 C	13-Jan-06	0		SW6010B	ZINC	9.5		0.57	1.5267	MG/KG
SSFAFTA04	SSFAFTA04 C	13-Jan-06	0		SW7471A	MERCURY	0.043		0.016	0.0375	MG/KG
SSFAFTA05	SSFAFTA05_C	17-Jan-06	0		SW6010B	ALUMINUM	567		3.4	14.4605	MG/KG
SSFAFTA05	SSFAFTA05 C	17-Jan-06	0		SW6010B	ANTIMONY	0.27	J	0.25	4.3381	MG/KG
SSFAFTA05	SSFAFTA05_C	17-Jan-06	0		SW6010B	ARSENIC	0.83		0.31	0.723	MG/KG
SSFAFTA05	SSFAFTA05_C	17-Jan-06	0		SW6010B	BARIUM	8		0.51	14.4605	MG/KG
SSFAFTA05	SSFAFTA05 C	17-Jan-06	0		SW6010B	BERYLLIUM	0.039		0.015	0.3615	MG/KG
SSFAFTA05	SSFAFTA05 C	17-Jan-06	0		SW6010B	CADMIUM	0.089		0.029	0.3615	MG/KG
SSFAFTA05	SSFAFTA05_C	17-Jan-06	0		SW6010B	CALCIUM	210		20.8	361.512	MG/KG
SSFAFTA05	SSFAFTA05_C	17-Jan-06	0		SW6010B	CHROMIUM, TOTAL	39.2		0.11	0.723	MG/KG
SSFAFTA05	SSFAFTA05_C	17-Jan-06	0		SW6010B	COBALT	0.27		0.17	3.6151	MG/KG
SSFAFTA05	SSFAFTA05_C	17-Jan-06	0	0.5	SW6010B	COPPER	10.5		0.15	1.8076	MG/KG
SSFAFTA05	SSFAFTA05 C	17-Jan-06	0	0.5	SW6010B	IRON	1570		2.6	14.4605	MG/KG
SSFAFTA05	SSFAFTA05_C	17-Jan-06	0	0.5	SW6010B	LEAD	28		0.2	0.723	MG/KG
SSFAFTA05	SSFAFTA05_C	17-Jan-06	0	0.5	SW6010B	MAGNESIUM	96.5	J	11.4	361.512	MG/KG
SSFAFTA05	SSFAFTA05_C	17-Jan-06	0	0.5	SW6010B	MANGANESE	14.3		0.051	1.0845	MG/KG
SSFAFTA05	SSFAFTA05_C	17-Jan-06	0	0.5	SW6010B	MOLYBDENUM	0.54	J	0.17	0.723	MG/KG
SSFAFTA05	SSFAFTA05_C	17-Jan-06	0	0.5	SW6010B	NICKEL	1.9	J	0.13	2.8921	MG/KG
SSFAFTA05	SSFAFTA05_C	17-Jan-06	0	0.5	SW6010B	POTASSIUM	142	J	20.6	361.512	MG/KG
SSFAFTA05	SSFAFTA05_C	17-Jan-06	0	0.5	SW6010B	SODIUM	74.5	J	28.6	404.2103	MG/KG
SSFAFTA05	SSFAFTA05_C	17-Jan-06	0	0.5	SW6010B	VANADIUM	8.5		0.16	3.6151	MG/KG
SSFAFTA05	SSFAFTA05_C	17-Jan-06	0	0.5	SW6010B	ZINC	6.2		0.61	1.6168	MG/KG
SSFAFTA05	SSFAFTA05_C	17-Jan-06	0	0.5	SW7471A	MERCURY	0.082		0.017	0.0397	MG/KG
SSFAFTA05	SSFAFTA05_C	17-Jan-06	0	0.5	SW8330	2-AMINO-4,6-DINITROTOLUENE	31	J	1.4	13	UG/KG
SSFAFTA06	SSFAFTA06_C	12-Jan-06	0	0.5	SW6010B	ALUMINUM	831		3.6	15.5039	MG/KG
SSFAFTA06	SSFAFTA06_C	12-Jan-06	0	0.5	SW6010B	ARSENIC	0.88		0.33	0.7752	MG/KG
SSFAFTA06	SSFAFTA06_C	12-Jan-06	0	0.5	SW6010B	BARIUM	9.4	J	0.55	15.5039	MG/KG
SSFAFTA06	SSFAFTA06_C	12-Jan-06	0	0.5	SW6010B	BERYLLIUM	0.061	J	0.015	0.3876	MG/KG
SSFAFTA06	SSFAFTA06_C	12-Jan-06	0	0.5	SW6010B	CADMIUM	0.054	J	0.031	0.3876	MG/KG
SSFAFTA06	SSFAFTA06_C	12-Jan-06	0	0.5	SW6010B	CALCIUM	241	J	22.3	387.5969	MG/KG
SSFAFTA06	SSFAFTA06_C	12-Jan-06	0	0.5	SW6010B	CHROMIUM, TOTAL	85.4		0.12	0.7752	MG/KG
SSFAFTA06	SSFAFTA06_C	12-Jan-06	0	0.5	SW6010B	COBALT	0.46	J	0.19	3.876	MG/KG
SSFAFTA06	SSFAFTA06_C	12-Jan-06	0	0.5	SW6010B	COPPER	5.1		0.16	1.938	MG/KG
SSFAFTA06	SSFAFTA06_C	12-Jan-06	0	0.5	SW6010B	IRON	2670		2.8	15.5039	MG/KG
SSFAFTA06	SSFAFTA06_C	12-Jan-06	0	0.5	SW6010B	LEAD	24.3		0.21	0.7752	MG/KG
SSFAFTA06	SSFAFTA06_C	12-Jan-06	0	0.5	SW6010B	MAGNESIUM	112		12.2		MG/KG
SSFAFTA06	SSFAFTA06_C	12-Jan-06	0	0.5	SW6010B	MANGANESE	18		0.054	1.1628	MG/KG
SSFAFTA06	SSFAFTA06_C	12-Jan-06	0	0.5	SW6010B	MOLYBDENUM	0.81		0.18	0.7752	MG/KG

Table A.2

Target Array and Flanking Target Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPTH (FT.)	TEST	ANALYTE	RESULT	QUALIFIER1	MDL	RL	UNITS
SSFAFTA06	SSFAFTA06_C	12-Jan-06	0 0.5	SW6010B	NICKEL	3	J	0.14	3.1008	MG/KG
SSFAFTA06	SSFAFTA06_C	12-Jan-06	0 0.5	SW6010B	POTASSIUM	203	J	22.1	387.5969	MG/KG
SSFAFTA06	SSFAFTA06_C	12-Jan-06	0 0.5	SW6010B	SODIUM	65.4	J	27.4	387.5969	MG/KG
SSFAFTA06	SSFAFTA06_C	12-Jan-06	0 0.5	SW6010B	VANADIUM	10.4		0.17	3.876	MG/KG
SSFAFTA06	SSFAFTA06_C	12-Jan-06	0 0.5	SW6010B	ZINC	6.1		0.58	1.5504	MG/KG
SSFAFTA06	SSFAFTA06_C	12-Jan-06	0 0.5	SW7471A	MERCURY	0.043		0.016	0.0375	MG/KG
SSFAFTA07	SSFAFTA07_C	17-Jan-06	0 0.5	SW6010B	ALUMINUM	416		3.6	15.5087	MG/KG
SSFAFTA07	SSFAFTA07_C	17-Jan-06	0 0.5	SW6010B	ANTIMONY	0.28	J	0.27	4.6526	MG/KG
SSFAFTA07	SSFAFTA07_C	17-Jan-06	0 0.5	SW6010B	ARSENIC	0.66	J	0.33	0.7754	MG/KG
SSFAFTA07	SSFAFTA07_C	17-Jan-06	0 0.5	SW6010B	BARIUM	9.3	J	0.55	15.5087	MG/KG
SSFAFTA07	SSFAFTA07_C	17-Jan-06	0 0.5	SW6010B	BERYLLIUM	0.042	J	0.015	0.3877	MG/KG
SSFAFTA07	SSFAFTA07_C	17-Jan-06	0 0.5	SW6010B	CADMIUM	0.077	J	0.031	0.3877	MG/KG
SSFAFTA07	SSFAFTA07_C	17-Jan-06	0 0.5	SW6010B	CALCIUM	120	J	22.3	387.7171	MG/KG
SSFAFTA07	SSFAFTA07_C	17-Jan-06	0 0.5	SW6010B	CHROMIUM, TOTAL	47.8		0.12	0.7754	MG/KG
SSFAFTA07	SSFAFTA07_C	17-Jan-06	0 0.5	SW6010B	COBALT	0.29	J	0.19	3.8772	MG/KG
SSFAFTA07	SSFAFTA07_C	17-Jan-06	0 0.5	SW6010B	COPPER	13.7		0.16	1.9386	MG/KG
SSFAFTA07	SSFAFTA07_C	17-Jan-06	0 0.5	SW6010B	IRON	1550		2.8	15.5087	MG/KG
SSFAFTA07	SSFAFTA07_C	17-Jan-06	0 0.5	SW6010B	LEAD	28		0.21	0.7754	MG/KG
SSFAFTA07	SSFAFTA07_C	17-Jan-06	0 0.5	SW6010B	MAGNESIUM	71.1	J	12.2	387.7171	MG/KG
SSFAFTA07	SSFAFTA07_C	17-Jan-06	0 0.5	SW6010B	MANGANESE	10.7		0.054	1.1632	MG/KG
SSFAFTA07	SSFAFTA07_C	17-Jan-06	0 0.5	SW6010B	MOLYBDENUM	0.55	J	0.18	0.7754	MG/KG
SSFAFTA07	SSFAFTA07_C	17-Jan-06	0 0.5	SW6010B	NICKEL	2.1	J	0.14	3.1017	MG/KG
SSFAFTA07	SSFAFTA07_C	17-Jan-06	0 0.5	SW6010B	POTASSIUM	109	J	22.1	387.7171	MG/KG
SSFAFTA07	SSFAFTA07_C	17-Jan-06	0 0.5	SW6010B	SODIUM	45.1	J	24.1	340.5623	MG/KG
SSFAFTA07	SSFAFTA07_C	17-Jan-06	0 0.5	SW6010B	VANADIUM	6.4		0.17	3.8772	MG/KG
SSFAFTA07	SSFAFTA07_C	17-Jan-06	0 0.5	SW6010B	ZINC	4.5		0.51	1.3622	MG/KG
SSFAFTA07	SSFAFTA07_C	17-Jan-06	0 0.5	SW7471A	MERCURY	0.031	J	0.016	0.0378	MG/KG
SSFAFTA08	SSFAFTA08_C	17-Jan-06	0 0.5	SW6010B	ALUMINUM	1000		3.5	14.8743	MG/KG
SSFAFTA08	SSFAFTA08_C	17-Jan-06	0 0.5	SW6010B	ARSENIC	1.3		0.32	0.7437	MG/KG
SSFAFTA08	SSFAFTA08_C	17-Jan-06	0 0.5	SW6010B	BARIUM	6	J	0.53	14.8743	MG/KG
SSFAFTA08	SSFAFTA08_C	17-Jan-06	0 0.5	SW6010B	BERYLLIUM	0.08	J	0.015	0.3719	MG/KG
SSFAFTA08	SSFAFTA08_C	17-Jan-06	0 0.5	SW6010B	CADMIUM	0.039	J	0.03	0.3719	MG/KG
SSFAFTA08	SSFAFTA08_C	17-Jan-06	0 0.5	SW6010B	CALCIUM	86.6	J	21.4	371.8578	MG/KG
SSFAFTA08	SSFAFTA08_C	17-Jan-06	0 0.5	SW6010B	CHROMIUM, TOTAL	93.6		0.11	0.7437	MG/KG
SSFAFTA08	SSFAFTA08_C	17-Jan-06	0 0.5	SW6010B	COBALT	0.69	J	0.18	3.7186	MG/KG
SSFAFTA08	SSFAFTA08_C	17-Jan-06	0 0.5	SW6010B	COPPER	3.2		0.16	1.8593	MG/KG
SSFAFTA08	SSFAFTA08_C	17-Jan-06	0 0.5	SW6010B	IRON	3870		2.7	14.8743	MG/KG
SSFAFTA08	SSFAFTA08_C	17-Jan-06	0 0.5	SW6010B	LEAD	10.6		0.2	0.7437	MG/KG
SSFAFTA08	SSFAFTA08_C	17-Jan-06		SW6010B	MAGNESIUM	167	J	11.7	371.8578	
SSFAFTA08	SSFAFTA08_C	17-Jan-06	0 0.5	SW6010B	MANGANESE	21.1		0.052	1.1156	MG/KG

Table A.2

Target Array and Flanking Target Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPTH	(FT.) TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SSFAFTA08	SSFAFTA08 C	17-Jan-06		0.5 SW6010B	MOLYBDENUM	1.1		0.17	0.7437	MG/KG
SSFAFTA08	SSFAFTA08_C	17-Jan-06	0	0.5 SW6010B	NICKEL	3.3		0.13		MG/KG
SSFAFTA08	SSFAFTA08 C	17-Jan-06	0	0.5 SW6010B	POTASSIUM	184		21.2		MG/KG
SSFAFTA08	SSFAFTA08 C	17-Jan-06	-	0.5 SW6010B	SODIUM	47.9		24.8		MG/KG
SSFAFTA08	SSFAFTA08_C	17-Jan-06	0	0.5 SW6010B	VANADIUM	7.4		0.16		MG/KG
SSFAFTA08	SSFAFTA08_C	17-Jan-06	-	0.5 SW6010B	ZINC	5.5		0.53	1.4042	MG/KG
SSFAFTA08	SSFAFTA08_C	17-Jan-06	0	0.5 SW8270C	BENZO(a)ANTHRACENE	240		98.9		UG/KG
SSFAFTA08	SSFAFTA08 C	17-Jan-06	-	0.5 SW8270C	BENZO(a)PYRENE	160		90		UG/KG
SSFAFTA08	SSFAFTA08_C	17-Jan-06	-	0.5 SW8270C	BENZO(b)FLUORANTHENE	280	-	92.2		UG/KG
SSFAFTA08	SSFAFTA08 C	17-Jan-06		0.5 SW8270C	BENZO(k)FLUORANTHENE	320		122		UG/KG
SSFAFTA08	SSFAFTA08 C	17-Jan-06		0.5 SW8270C	CARBAZOLE	100		90		UG/KG
SSFAFTA08	SSFAFTA08_C	17-Jan-06		0.5 SW8270C	CHRYSENE	420	-	111		UG/KG
SSFAFTA08	SSFAFTA08 C	17-Jan-06		0.5 SW8270C	FLUORANTHENE	1000		85.6		UG/KG
SSFAFTA08	SSFAFTA08 C	17-Jan-06		0.5 SW8270C	PHENANTHRENE	360		96.7	370	UG/KG
SSFAFTA08	SSFAFTA08_C	17-Jan-06		0.5 SW8270C	PYRENE	610	-	133		UG/KG
SSFAFTA09	SSFAFTA09_C	17-Jan-06		0.5 SW6010B	ALUMINUM	1280		3.5		MG/KG
SSFAFTA09	SSFAFTA09_C	17-Jan-06	0	0.5 SW6010B	ARSENIC	1.6		0.33		MG/KG
SSFAFTA09	SSFAFTA09_C	17-Jan-06	0	0.5 SW6010B	BARIUM	6.2		0.53	15.1589	MG/KG
SSFAFTA09	SSFAFTA09_C	17-Jan-06	0	0.5 SW6010B	BERYLLIUM	0.057	-	0.015		MG/KG
SSFAFTA09	SSFAFTA09_C	17-Jan-06	0	0.5 SW6010B	CALCIUM	120		21.8		MG/KG
SSFAFTA09	SSFAFTA09_C	17-Jan-06		0.5 SW6010B	CHROMIUM, TOTAL	108		0.11	0.7579	MG/KG
SSFAFTA09	SSFAFTA09_C	17-Jan-06	0	0.5 SW6010B	COBALT	0.65		0.18		MG/KG
SSFAFTA09	SSFAFTA09_C	17-Jan-06		0.5 SW6010B	COPPER	3		0.16		MG/KG
SSFAFTA09	SSFAFTA09_C	17-Jan-06	0	0.5 SW6010B	IRON	4170		2.7	15.1589	MG/KG
SSFAFTA09	SSFAFTA09_C	17-Jan-06		0.5 SW6010B	LEAD	9.2		0.2		MG/KG
SSFAFTA09	SSFAFTA09_C	17-Jan-06		0.5 SW6010B	MAGNESIUM	93.8		11.9		MG/KG
SSFAFTA09	SSFAFTA09_C	17-Jan-06		0.5 SW6010B	MANGANESE	16.5		0.053	1.1369	MG/KG
SSFAFTA09	SSFAFTA09_C	17-Jan-06		0.5 SW6010B	MOLYBDENUM	1.1		0.17	0.7579	MG/KG
SSFAFTA09	SSFAFTA09_C	17-Jan-06		0.5 SW6010B	NICKEL	4.2		0.14	3.0318	MG/KG
SSFAFTA09	SSFAFTA09_C	17-Jan-06		0.5 SW6010B	POTASSIUM	177		21.6		MG/KG
SSFAFTA09	SSFAFTA09_C	17-Jan-06	-	0.5 SW6010B	SODIUM	54.8		27.9		MG/KG
SSFAFTA09	SSFAFTA09_C	17-Jan-06		0.5 SW6010B	VANADIUM	10.3		0.17	3.7897	MG/KG
SSFAFTA09	SSFAFTA09_C	17-Jan-06	0	0.5 SW6010B	ZINC	4.6		0.59		MG/KG
SSFAFTA09	SSFAFTA09_C	17-Jan-06	0	0.5 SW7471A	MERCURY	0.025		0.017	0.0403	MG/KG
SSFAFTA10	SSFAFTA10_C	12-Jan-06		0.5 SW6010B	ALUMINUM	2110		3.3	14.2857	MG/KG
SSFAFTA10	SSFAFTA10_C	12-Jan-06	0	0.5 SW6010B	ANTIMONY	0.29	J	0.25	4.2857	MG/KG
SSFAFTA10	SSFAFTA10_C	12-Jan-06	0	0.5 SW6010B	ARSENIC	1		0.31	0.7143	MG/KG
SSFAFTA10	SSFAFTA10_C	12-Jan-06	0	0.5 SW6010B	BARIUM	10.3	J	0.51	14.2857	MG/KG
SSFAFTA10	SSFAFTA10_C	12-Jan-06	0	0.5 SW6010B	BERYLLIUM	0.083	J	0.014	0.3571	MG/KG
SSFAFTA10	SSFAFTA10_C	12-Jan-06	0	0.5 SW6010B	CADMIUM	0.04	J	0.029	0.3571	MG/KG

Table A.2

Target Array and Flanking Target Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SSFAFTA10	SSFAFTA10 C	12-Jan-06			SW6010B	CALCIUM	157		20.5		MG/KG
SSFAFTA10	SSFAFTA10_C	12-Jan-06	0		SW6010B	CHROMIUM, TOTAL	115		0.11	0.7143	MG/KG
SSFAFTA10	SSFAFTA10_C	12-Jan-06	0		SW6010B	COBALT	0.56		0.17	3.5714	MG/KG
SSFAFTA10	SSFAFTA10 C	12-Jan-06	-		SW6010B	COPPER	3.2		0.15	1.7857	MG/KG
SSFAFTA10	SSFAFTA10_C	12-Jan-06	0		SW6010B	IRON	3980		2.6	14.2857	MG/KG
SSFAFTA10	SSFAFTA10_C	12-Jan-06	0		SW6010B	LEAD	14.7		0.19	0.7143	MG/KG
SSFAFTA10	SSFAFTA10_C	12-Jan-06	0		SW6010B	MAGNESIUM	137	J	11.2		MG/KG
SSFAFTA10	SSFAFTA10 C	12-Jan-06	0	0.5	SW6010B	MANGANESE	17.1		0.05	1.0714	MG/KG
SSFAFTA10	SSFAFTA10_C	12-Jan-06	0	0.5	SW6010B	MOLYBDENUM	0.77		0.16	0.7143	MG/KG
SSFAFTA10	SSFAFTA10 C	12-Jan-06	0	0.5	SW6010B	NICKEL	3.3		0.13	2.8571	MG/KG
SSFAFTA10	SSFAFTA10 C	12-Jan-06	0	0.5	SW6010B	POTASSIUM	196	J	20.4	357.1429	MG/KG
SSFAFTA10	SSFAFTA10_C	12-Jan-06	0	0.5	SW6010B	SELENIUM	0.63	J	0.25	2.5	MG/KG
SSFAFTA10	SSFAFTA10_C	12-Jan-06	0	0.5	SW6010B	SODIUM	33.8	J	25.3	357.1429	MG/KG
SSFAFTA10	SSFAFTA10_C	12-Jan-06	0	0.5	SW6010B	VANADIUM	12.9		0.16	3.5714	MG/KG
SSFAFTA10	SSFAFTA10_C	12-Jan-06	0	0.5	SW6010B	ZINC	5.6		0.54	1.4286	MG/KG
SSFAFTA10	SSFAFTA10_C	12-Jan-06	0	0.5	SW7471A	MERCURY	0.043		0.015	0.0353	MG/KG
SS132I	AO086	27-Mar-01	0	0.25	CL200.7	ALUMINUM	2710		11.8501	11.8501	MG/KG
SS132I	AO086	27-Mar-01	0	0.25	CL200.7	ARSENIC	2.1		0.9381	0.9381	MG/KG
SS132I	AO086	27-Mar-01	0	0.25	CL200.7	BARIUM	2.8	J	0.0494	0.0494	MG/KG
SS132I	AO086	27-Mar-01	0	0.25	CL200.7	BERYLLIUM	0.071	J	0.0658	0.0658	MG/KG
SS132I	AO086	27-Mar-01	0	0.25	CL200.7	CALCIUM	54.5		11.093	11.093	MG/KG
SS132I	AO086	27-Mar-01	0	0.25	CL200.7	CHROMIUM, TOTAL	6.7		0.3292	0.3292	MG/KG
SS132I	AO086	27-Mar-01	0	0.25	CL200.7	COBALT	0.29	J	0.2633	0.2633	MG/KG
SS132I	AO086	27-Mar-01	0	0.25	CL200.7	COPPER	81.6	J	0.0988	0.0988	MG/KG
SS132I	AO086	27-Mar-01	0		CL200.7	IRON	5460		5.4478	5.4478	MG/KG
SS132I	AO086	27-Mar-01	0	0.25	CL200.7	LEAD	151		0.2798	0.2798	MG/KG
SS132I	AO086	27-Mar-01	0	0.25	CL200.7	MAGNESIUM	268		11.5868	11.5868	MG/KG
SS132I	AO086	27-Mar-01	0	0.25	CL200.7	MANGANESE	31.4		0.2963	0.2963	MG/KG
SS132I	AO086	27-Mar-01	0	0.25	CL200.7	NICKEL	1.7	J	0.2304	0.2304	MG/KG
SS132I	AO086	27-Mar-01	0	0.25	CL200.7	POTASSIUM	178		4.9375	4.9375	MG/KG
SS132I	AO086	27-Mar-01	0	0.25	CL200.7	SODIUM	241	J	46.2483	46.2483	MG/KG
SS132I	AO086	27-Mar-01	0	0.25	CL200.7	VANADIUM	7.4		0.3292	0.3292	MG/KG
SS132I	AO086	27-Mar-01	0	0.25	CL200.7	ZINC	13.3	J	0.0658	0.0658	MG/KG
SS132I	AO086	27-Mar-01	0	0.25	CL245.5	MERCURY	0.7		0.0531	0.0531	MG/KG
SS132I	AO087	27-Mar-01	0.25	0.5	CL200.7	ALUMINUM	2210		11.7714	11.7714	MG/KG
SS132I	AO087	27-Mar-01	0.25	0.5	CL200.7	ARSENIC	1.1	J	0.9319	0.9319	MG/KG
SS132I	AO087	27-Mar-01	0.25	0.5	CL200.7	BARIUM	2.4	J	0.049	0.049	MG/KG
SS132I	AO087	27-Mar-01	0.25	0.5	CL200.7	BERYLLIUM	0.1	J	0.0654	0.0654	MG/KG
SS132I	AO087	27-Mar-01		0.5	CL200.7	CALCIUM	39.8		11.0194	11.0194	MG/KG
SS132I	AO087	27-Mar-01	0.25	0.5	CL200.7	CHROMIUM, TOTAL	2.5		0.327	0.327	MG/KG

Table A.2

Target Array and Flanking Target Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132I	AO087	27-Mar-01	0.25	0.5	CL200.7	COPPER	77.9	J	0.0981	0.0981	MG/KG
SS132I	AO087	27-Mar-01	0.25	0.5	CL200.7	IRON	3530		5.4116	5.4116	MG/KG
SS132I	AO087	27-Mar-01	0.25	0.5	CL200.7	LEAD	161		0.2779	0.2779	MG/KG
SS132I	AO087	27-Mar-01	0.25	0.5	CL200.7	MAGNESIUM	196		11.5099	11.5099	MG/KG
SS132I	AO087	27-Mar-01	0.25	0.5	CL200.7	MANGANESE	20.7		0.2943	0.2943	MG/KG
SS132I	AO087	27-Mar-01	0.25	0.5	CL200.7	NICKEL	0.88	J	0.2289	0.2289	MG/KG
SS132I	AO087	27-Mar-01	0.25	0.5	CL200.7	POTASSIUM	152		4.9048	4.9048	MG/KG
SS132I	AO087	27-Mar-01	0.25	0.5	CL200.7	SODIUM	107	J	45.9413	45.9413	MG/KG
SS132I	AO087	27-Mar-01	0.25	0.5	CL200.7	VANADIUM	5.9		0.327	0.327	MG/KG
SS132I	AO087	27-Mar-01	0.25	0.5	CL200.7	ZINC	10.1	J	0.0654	0.0654	MG/KG
SS132I	AO087	27-Mar-01	0.25	0.5	CL245.5	MERCURY	0.55		0.0531	0.0531	MG/KG
SS132I	AO088	27-Mar-01	0.5	1	CL200.7	ALUMINUM	2370		11.7315	11.7315	MG/KG
SS132I	AO088	27-Mar-01	0.5	1	CL200.7	ARSENIC	1.7		0.9287	0.9287	MG/KG
SS132I	AO088	27-Mar-01	0.5	1	CL200.7	BARIUM	3.3	J	0.0489	0.0489	MG/KG
SS132I	AO088	27-Mar-01	0.5	1	CL200.7	BERYLLIUM	0.11	J	0.0652	0.0652	MG/KG
SS132I	AO088	27-Mar-01	0.5	1	CL200.7	CALCIUM	43.7		10.9819	10.9819	MG/KG
SS132I	AO088	27-Mar-01	0.5	1	CL200.7	CHROMIUM, TOTAL	2.6		0.3259	0.3259	MG/KG
SS132I	AO088	27-Mar-01	0.5	1	CL200.7	COBALT	0.28	J	0.2607	0.2607	MG/KG
SS132I	AO088	27-Mar-01	0.5	1	CL200.7	COPPER	131	J	0.0978	0.0978	MG/KG
SS132I	AO088	27-Mar-01	0.5	1	CL200.7	IRON	3620		5.3932	5.3932	MG/KG
SS132I	AO088	27-Mar-01	0.5	1	CL200.7	LEAD	300		0.277	0.277	MG/KG
SS132I	AO088	27-Mar-01	0.5	1	CL200.7	MAGNESIUM	193		11.4708	11.4708	MG/KG
SS132I	AO088	27-Mar-01	0.5	1	CL200.7	MANGANESE	31.2		0.2933	0.2933	MG/KG
SS132I	AO088	27-Mar-01	0.5	1	CL200.7	NICKEL	1	J	0.2281	0.2281	MG/KG
SS132I	AO088	27-Mar-01	0.5	1	CL200.7	POTASSIUM	177		4.8881	4.8881	MG/KG
SS132I	AO088	27-Mar-01	0.5	1	CL200.7	SODIUM	185	J	45.7852	45.7852	MG/KG
SS132I	AO088	27-Mar-01	0.5	1	CL200.7	VANADIUM	5.6		0.3259	0.3259	MG/KG
SS132I	AO088	27-Mar-01	0.5	1	CL200.7	ZINC	15	J	0.0652	0.0652	MG/KG
SS132I	AO088	27-Mar-01	0.5	1	CL245.5	MERCURY	0.61		0.0534	0.0534	MG/KG
SS132I	AO089	27-Mar-01	0	0.25	CL200.7	ALUMINUM	2560		12.3112	12.3112	MG/KG
SS132I	AO089	27-Mar-01	0	0.25	CL200.7	ARSENIC	1.2	J	0.9746	0.9746	MG/KG
SS132I	AO089	27-Mar-01	0	0.25	CL200.7	BARIUM	3	J	0.0513	0.0513	MG/KG
SS132I	AO089	27-Mar-01	0	0.25	CL200.7	BERYLLIUM	0.077	J	0.0684	0.0684	MG/KG
SS132I	AO089	27-Mar-01	0	0.25	CL200.7	CALCIUM	51		11.5246	11.5246	MG/KG
SS132I	AO089	27-Mar-01	0	0.25	CL200.7	CHROMIUM, TOTAL	2.8		0.342	0.342	MG/KG
SS132I	AO089	27-Mar-01	0	0.25	CL200.7	COPPER	48.4	J	0.1026	0.1026	MG/KG
SS132I	AO089	27-Mar-01	0	0.25	CL200.7	IRON	3560		5.6597	5.6597	MG/KG
SS132I	AO089	27-Mar-01	0	0.25	CL200.7	LEAD	102		0.4446	0.4446	MG/KG
SS132I	AO089	27-Mar-01	0	0.25	CL200.7	MAGNESIUM	235		12.0376	12.0376	MG/KG
SS132I	AO089	27-Mar-01	0	0.25	CL200.7	MANGANESE	21.3		0.3078	0.3078	MG/KG

Table A.2

Target Array and Flanking Target Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132I	AO089	27-Mar-01	0	0.25	CL200.7	NICKEL	1.2	J	0.2394	0.2394	MG/KG
SS132I	AO089	27-Mar-01	0	0.25	CL200.7	POTASSIUM	183		5.1297	5.1297	MG/KG
SS132I	AO089	27-Mar-01	0	0.25	CL200.7	SODIUM	296	J	48.0477	48.0477	MG/KG
SS132I	AO089	27-Mar-01	0	0.25	CL200.7	VANADIUM	7.9		0.342	0.342	MG/KG
SS132I	AO089	27-Mar-01	0	0.25	CL200.7	ZINC	7.3	J	0.0684	0.0684	MG/KG
SS132I	AO089	27-Mar-01	0	0.25	CL245.5	MERCURY	0.22		0.0543	0.0543	MG/KG
SS132I	AO089	27-Mar-01	0	0.25	SW8270	BENZO(a)ANTHRACENE	200	J	100	360	UG/KG
SS132I	AO089	27-Mar-01	0	0.25	SW8270	BENZO(b)FLUORANTHENE	160	J	130	360	UG/KG
SS132I	AO089	27-Mar-01	0	0.25	SW8270	BENZO(k)FLUORANTHENE	160	J	110	360	UG/KG
SS132I	AO089	27-Mar-01	0	0.25	SW8270	CHRYSENE	200	J	110	360	UG/KG
SS132I	AO089	27-Mar-01	0	0.25	SW8270	FLUORANTHENE	420		120	360	UG/KG
SS132I	AO089	27-Mar-01	0	0.25	SW8270	PHENANTHRENE	230	J	100	360	UG/KG
SS132I	AO089	27-Mar-01	0	0.25	SW8270	PYRENE	330	J	280	360	
SS132I	AO090	27-Mar-01	0.25	0.5	CL200.7	ALUMINUM	2470		10.6223	10.6223	
SS132I	AO090	27-Mar-01	0.25	0.5	CL200.7	ARSENIC	1.4	J	0.8409	0.8409	MG/KG
SS132I	AO090	27-Mar-01			CL200.7	BARIUM	3.5	J	0.0443	0.0443	
SS132I	AO090	27-Mar-01	0.25		CL200.7	BERYLLIUM	0.13	J	0.059	0.059	MG/KG
SS132I	AO090	27-Mar-01	0.25	0.5	CL200.7	CALCIUM	91.7		9.9436	9.9436	MG/KG
SS132I	AO090	27-Mar-01	0.25	0.5	CL200.7	CHROMIUM, TOTAL	3.4		0.2951	0.2951	MG/KG
SS132I	AO090	27-Mar-01	0.25		CL200.7	COBALT	0.49	J	0.2361	0.2361	MG/KG
SS132I	AO090	27-Mar-01	0.25	0.5	CL200.7	COPPER	1330	J	0.0885	0.0885	MG/KG
SS132I	AO090	27-Mar-01	0.25	0.5	CL200.7	IRON	4260		4.8833	4.8833	MG/KG
SS132I	AO090	27-Mar-01	0.25	0.5	CL200.7	LEAD	172		0.3836	0.3836	MG/KG
SS132I	AO090	27-Mar-01	0.25	0.5	CL200.7	MAGNESIUM	325		10.3862	10.3862	MG/KG
SS132I	AO090	27-Mar-01	0.25	0.5	CL200.7	MANGANESE	34.9		0.2656	0.2656	MG/KG
SS132I	AO090	27-Mar-01	0.25	0.5	CL200.7	NICKEL	1.6	J	0.2065	0.2065	MG/KG
SS132I	AO090	27-Mar-01	0.25	0.5	CL200.7	POTASSIUM	274		4.426	4.426	MG/KG
SS132I	AO090	27-Mar-01	0.25	0.5	CL200.7	SODIUM	410	J	41.4564	41.4564	MG/KG
SS132I	AO090	27-Mar-01	0.25	0.5	CL200.7	VANADIUM	7.1		0.2951	0.2951	MG/KG
SS132I	AO090	27-Mar-01	0.25	0.5	CL200.7	ZINC	184	J	0.059	0.059	MG/KG
SS132I	AO090	27-Mar-01	0.25	0.5	CL245.5	MERCURY	0.8		0.0527	0.0527	MG/KG
SS132I	AO091	27-Mar-01	0.5	1	CL200.7	ALUMINUM	1670		12.8187	12.8187	MG/KG
SS132I	AO091	27-Mar-01	0.5	1	CL200.7	BARIUM	3.2	J	0.0534	0.0534	MG/KG
SS132I	AO091	27-Mar-01	0.5	1	CL200.7	BERYLLIUM	0.093	J	0.0712	0.0712	MG/KG
SS132I	AO091	27-Mar-01	0.5		CL200.7	CALCIUM	74.5		11.9997	11.9997	MG/KG
SS132I	AO091	27-Mar-01	0.5	1	CL200.7	CHROMIUM, TOTAL	2.4		0.3561	0.3561	MG/KG
SS132I	AO091	27-Mar-01	0.5		CL200.7	COBALT	0.35		0.2849	0.2849	
SS132I	AO091	27-Mar-01	0.5	1	CL200.7	COPPER	44.6	J	0.1068	0.1068	MG/KG
SS132I	AO091	27-Mar-01	0.5		CL200.7	IRON	2890		5.893	5.893	
SS132I	AO091	27-Mar-01	0.5		CL200.7	LEAD	95.8		0.4629	0.4629	

Table A.2

Target Array and Flanking Target Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132I	AO091	27-Mar-01	0.5	1	CL200.7	MAGNESIUM	239		12.5338	12.5338	MG/KG
SS132I	AO091	27-Mar-01	0.5	1	CL200.7	MANGANESE	28.3		0.3205	0.3205	MG/KG
SS132I	AO091	27-Mar-01	0.5	1	CL200.7	NICKEL	0.93	J	0.2493	0.2493	MG/KG
SS132I	AO091	27-Mar-01	0.5	1	CL200.7	POTASSIUM	242		5.3411	5.3411	MG/KG
SS132I	AO091	27-Mar-01	0.5	1	CL200.7	SODIUM	282	J	50.0285	50.0285	MG/KG
SS132I	AO091	27-Mar-01	0.5	1	CL200.7	VANADIUM	5.1		0.3561	0.3561	MG/KG
SS132I	AO091	27-Mar-01	0.5	1	CL200.7	ZINC	8.1	J	0.0712	0.0712	MG/KG
SS132I	AO091	27-Mar-01	0.5	1	CL245.5	MERCURY	0.26		0.0525	0.0525	MG/KG
SS132I	AO092	27-Mar-01	0.5	1	CL200.7	ALUMINUM	1800		11.9479	11.9479	MG/KG
SS132I	AO092	27-Mar-01	0.5	1	CL200.7	BARIUM	3.2	J	0.0498	0.0498	MG/KG
SS132I	AO092	27-Mar-01	0.5	1	CL200.7	BERYLLIUM	0.1	J	0.0664	0.0664	MG/KG
SS132I	AO092	27-Mar-01	0.5	1	CL200.7	CALCIUM	67.6		11.1846	11.1846	MG/KG
SS132I	AO092	27-Mar-01	0.5	1	CL200.7	CHROMIUM, TOTAL	2.5		0.3319	0.3319	MG/KG
SS132I	AO092	27-Mar-01	0.5	1	CL200.7	COBALT	0.43	J	0.2655	0.2655	MG/KG
SS132I	AO092	27-Mar-01	0.5	1	CL200.7	COPPER	42.9	J	0.0996	0.0996	MG/KG
SS132I	AO092	27-Mar-01	0.5	1	CL200.7	IRON	3540		5.4927	5.4927	MG/KG
SS132I	AO092	27-Mar-01	0.5	1	CL200.7	LEAD	88.8		0.4315	0.4315	MG/KG
SS132I	AO092	27-Mar-01	0.5	1	CL200.7	MAGNESIUM	275		11.6824	11.6824	MG/KG
SS132I	AO092	27-Mar-01	0.5	1	CL200.7	MANGANESE	33.8		0.2987	0.2987	MG/KG
SS132I	AO092	27-Mar-01	0.5	1	CL200.7	NICKEL	1.2	J	0.2323	0.2323	MG/KG
SS132I	AO092	27-Mar-01	0.5	1	CL200.7	POTASSIUM	290		4.9783	4.9783	MG/KG
SS132I	AO092	27-Mar-01	0.5	1	CL200.7	SODIUM	355	J	46.6301	46.6301	MG/KG
SS132I	AO092	27-Mar-01	0.5	1	CL200.7	VANADIUM	6.2		0.3319	0.3319	MG/KG
SS132I	AO092	27-Mar-01	0.5	1	CL200.7	ZINC	8.8	J	0.0664	0.0664	MG/KG
SS132I	AO092	27-Mar-01	0.5	1	CL245.5	MERCURY	0.2		0.0527	0.0527	MG/KG
SS132K	AO059	27-Mar-01	0	0.25	CL200.7	ALUMINUM	3470		12.2895	12.2895	MG/KG
SS132K	AO059	27-Mar-01	0	0.25	CL200.7	ARSENIC	1.5	J	0.9729	0.9729	MG/KG
SS132K	AO059	27-Mar-01	0	0.25	CL200.7	BARIUM	3.7		0.0512	0.0512	MG/KG
SS132K	AO059	27-Mar-01	0	0.25	CL200.7	BERYLLIUM	0.15		0.0683	0.0683	MG/KG
SS132K	AO059	27-Mar-01	0	0.25	CL200.7	CALCIUM	86.9		11.5044	11.5044	MG/KG
SS132K	AO059	27-Mar-01	0	0.25	CL200.7	CHROMIUM, TOTAL	4		0.3414	0.3414	MG/KG
SS132K	AO059	27-Mar-01	0	0.25	CL200.7	COPPER	43		0.1024	0.1024	MG/KG
SS132K	AO059	27-Mar-01	0	0.25	CL200.7	IRON	6260	J	5.6498	5.6498	MG/KG
SS132K	AO059	27-Mar-01	0	0.25	CL200.7	LEAD	145	J	0.2902	0.2902	MG/KG
SS132K	AO059	27-Mar-01	0	0.25	CL200.7	MAGNESIUM	330		12.0164	12.0164	MG/KG
SS132K	AO059	27-Mar-01	0	0.25	CL200.7	MANGANESE	36.4	J	0.3072	0.3072	MG/KG
SS132K	AO059	27-Mar-01	0	0.25	CL200.7	NICKEL	1.8		0.239	0.239	MG/KG
SS132K	AO059	27-Mar-01	0	0.25	CL200.7	POTASSIUM	234		5.1206	5.1206	MG/KG
SS132K	AO059	27-Mar-01	0	0.25	CL200.7	SODIUM	231		47.9633	47.9633	MG/KG
SS132K	AO059	27-Mar-01	0	0.25	CL200.7	VANADIUM	14.6		0.3414	0.3414	MG/KG

Table A.2

Target Array and Flanking Target Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132K	AO059	27-Mar-01	0	, ,	CL200.7	ZINC	7.3		0.0683	0.0683	MG/KG
SS132K	AO059	27-Mar-01	0		SW8270	2-METHYLNAPHTHALENE	270	J	160	370	UG/KG
SS132K	AO059	27-Mar-01	0		SW8270	ACENAPHTHENE	220		99	370	UG/KG
SS132K	AO059	27-Mar-01	0	0.25	SW8270	ACENAPHTHYLENE	1500		92	370	UG/KG
SS132K	AO059	27-Mar-01	0	0.25	SW8270	ANTHRACENE	2100		110	370	UG/KG
SS132K	AO059	27-Mar-01	0		SW8270	BENZO(a)ANTHRACENE	11000		520	1900	UG/KG
SS132K	AO059	27-Mar-01	0	0.25	SW8270	BENZO(a)PYRENE	9600		520	1900	UG/KG
SS132K	AO059	27-Mar-01	0	0.25	SW8270	BENZO(b)FLUORANTHENE	12000		680	1900	UG/KG
SS132K	AO059	27-Mar-01	0	0.25	SW8270	BENZO(g,h,i)PERYLENE	4000	J	150	370	UG/KG
SS132K	AO059	27-Mar-01	0	0.25	SW8270	BENZO(k)FLUORANTHENE	8900		590	1900	UG/KG
SS132K	AO059	27-Mar-01	0	0.25	SW8270	CARBAZOLE	730		110	370	UG/KG
SS132K	AO059	27-Mar-01	0	0.25	SW8270	CHRYSENE	12000		570	1900	UG/KG
SS132K	AO059	27-Mar-01	0	0.25	SW8270	DIBENZ(a,h)ANTHRACENE	1600	J	130	370	UG/KG
SS132K	AO059	27-Mar-01	0	0.25	SW8270	DIBENZOFURAN	720		120	370	UG/KG
SS132K	AO059	27-Mar-01	0	0.25	SW8270	FLUORANTHENE	27000		650	1900	UG/KG
SS132K	AO059	27-Mar-01	0	0.25	SW8270	FLUORENE	1600		81	370	UG/KG
SS132K	AO059	27-Mar-01	0	0.25	SW8270	INDENO(1,2,3-c,d)PYRENE	4300	J	140	370	UG/KG
SS132K	AO059	27-Mar-01	0	0.25	SW8270	NAPHTHALENE	220	J	82	370	UG/KG
SS132K	AO059	27-Mar-01	0	0.25	SW8270	PHENANTHRENE	17000		530	1900	UG/KG
SS132K	AO059	27-Mar-01	0	0.25	SW8270	PYRENE	20000		1400	1900	UG/KG
SS132K	AO060	27-Mar-01	0.25	0.5	CL200.7	ALUMINUM	4770		12.2712	12.2712	MG/KG
SS132K	AO060	27-Mar-01	0.25	0.5	CL200.7	ARSENIC	1.6	J	0.9715	0.9715	MG/KG
SS132K	AO060	27-Mar-01	0.25	0.5	CL200.7	BARIUM	4.6		0.0511	0.0511	MG/KG
SS132K	AO060	27-Mar-01	0.25	0.5	CL200.7	BERYLLIUM	0.17		0.0682	0.0682	MG/KG
SS132K	AO060	27-Mar-01	0.25		CL200.7	CALCIUM	56.2		11.4872	11.4872	MG/KG
SS132K	AO060	27-Mar-01	0.25	0.5	CL200.7	CHROMIUM, TOTAL	5.7		0.3409	0.3409	MG/KG
SS132K	AO060	27-Mar-01	0.25	0.5	CL200.7	COPPER	50.7		0.1023	0.1023	MG/KG
SS132K	AO060	27-Mar-01	0.25	0.5	CL200.7	IRON	5230	J	5.6413	5.6413	MG/KG
SS132K	AO060	27-Mar-01	0.25	0.5	CL200.7	LEAD	134	J	0.2897	0.2897	MG/KG
SS132K	AO060	27-Mar-01	0.25	0.5	CL200.7	MAGNESIUM	327		11.9985	11.9985	MG/KG
SS132K	AO060	27-Mar-01	0.25	0.5	CL200.7	MANGANESE	22.4	J	0.3068	0.3068	MG/KG
SS132K	AO060	27-Mar-01	0.25	0.5	CL200.7	MOLYBDENUM	0.75	J	0.5454	0.5454	MG/KG
SS132K	AO060	27-Mar-01	0.25	0.5	CL200.7	NICKEL	2		0.2386	0.2386	MG/KG
SS132K	AO060	27-Mar-01			CL200.7	POTASSIUM	202		5.113	5.113	MG/KG
SS132K	AO060	27-Mar-01		0.5	CL200.7	SELENIUM	0.27		0.25	0.25	MG/KG
SS132K	AO060	27-Mar-01		0.5	CL200.7	SODIUM	337		47.8918	47.8918	MG/KG
SS132K	AO060	27-Mar-01	0.25	0.5	CL200.7	VANADIUM	11.8		0.3409	0.3409	MG/KG
SS132K	AO060	27-Mar-01			CL200.7	ZINC	6.7		0.0682	0.0682	MG/KG
SS132K	AO060	27-Mar-01	0.25	0.5	CL245.5	MERCURY	0.065	J	0.0562	0.0562	MG/KG
SS132K	AO060	27-Mar-01	0.25	0.5	SW8270	ACENAPHTHYLENE	340	J	90	360	UG/KG

Table A.2

Target Array and Flanking Target Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPTH (F	T.) TEST	ANALYTE	RESULT	QUALIFIER1	MDL	RL	UNITS
SS132K	AO060	27-Mar-01	0.25).5 SW8270	ANTHRACENE	570		110	360	UG/KG
SS132K	AO060	27-Mar-01	0.25).5 SW8270	BENZO(a)ANTHRACENE	1800		100	360	UG/KG
SS132K	AO060	27-Mar-01	0.25).5 SW8270	BENZO(a)PYRENE	1500		100	360	UG/KG
SS132K	AO060	27-Mar-01	0.25).5 SW8270	BENZO(b)FLUORANTHENE	1700		130	360	UG/KG
SS132K	AO060	27-Mar-01	0.25).5 SW8270	BENZO(g,h,i)PERYLENE	790		140	360	UG/KG
SS132K	AO060	27-Mar-01	0.25).5 SW8270	BENZO(k)FLUORANTHENE	1700		110	360	UG/KG
SS132K	AO060	27-Mar-01	0.25).5 SW8270	CARBAZOLE	130	J	110	360	UG/KG
SS132K	AO060	27-Mar-01	0.25).5 SW8270	CHRYSENE	1900		110	360	UG/KG
SS132K	AO060	27-Mar-01	0.25).5 SW8270	DIBENZ(a,h)ANTHRACENE	300	J	130	360	UG/KG
SS132K	AO060	27-Mar-01	0.25).5 SW8270	DIBENZOFURAN	140	J	110	360	UG/KG
SS132K	AO060	27-Mar-01	0.25).5 SW8270	FLUORANTHENE	4700		130	360	UG/KG
SS132K	AO060	27-Mar-01	0.25).5 SW8270	FLUORENE	340	J	79	360	UG/KG
SS132K	AO060	27-Mar-01	0.25).5 SW8270	INDENO(1,2,3-c,d)PYRENE	810		140	360	UG/KG
SS132K	AO060	27-Mar-01	0.25).5 SW8270	PHENANTHRENE	3200		100	360	UG/KG
SS132K	AO060	27-Mar-01	0.25).5 SW8270	PYRENE	3500		280	360	UG/KG
SS132K	AO061	27-Mar-01	0.5	1 CL200.7	ALUMINUM	3170		11.58	11.58	MG/KG
SS132K	AO061	27-Mar-01	0.5	1 CL200.7	ARSENIC	1.3	J	0.9168	0.9168	MG/KG
SS132K	AO061	27-Mar-01	0.5	1 CL200.7	BARIUM	4.3		0.0483	0.0483	MG/KG
SS132K	AO061	27-Mar-01	0.5	1 CL200.7	BERYLLIUM	0.18		0.0643	0.0643	MG/KG
SS132K	AO061	27-Mar-01	0.5	1 CL200.7	CALCIUM	70.2		10.8402	10.8402	MG/KG
SS132K	AO061	27-Mar-01	0.5	1 CL200.7	CHROMIUM, TOTAL	3.4		0.3217	0.3217	MG/KG
SS132K	AO061	27-Mar-01	0.5	1 CL200.7	COPPER	21.1		0.0965	0.0965	MG/KG
SS132K	AO061	27-Mar-01	0.5	1 CL200.7	IRON	4120	J	5.3236	5.3236	MG/KG
SS132K	AO061	27-Mar-01	0.5	1 CL200.7	LEAD	41.6	J	0.2734	0.2734	MG/KG
SS132K	AO061	27-Mar-01	0.5	1 CL200.7	MAGNESIUM	319		11.3227	11.3227	MG/KG
SS132K	AO061	27-Mar-01	0.5	1 CL200.7	MANGANESE	26	J	0.2895	0.2895	MG/KG
SS132K	AO061	27-Mar-01	0.5	1 CL200.7	NICKEL	1.7		0.2252	0.2252	MG/KG
SS132K	AO061	27-Mar-01	0.5	1 CL200.7	POTASSIUM	237		4.825	4.825	MG/KG
SS132K	AO061	27-Mar-01	0.5	1 CL200.7	SELENIUM	0.25	J	0.2357	0.2357	MG/KG
SS132K	AO061	27-Mar-01	0.5	1 CL200.7	SODIUM	223		45.1943	45.1943	MG/KG
SS132K	AO061	27-Mar-01	0.5	1 CL200.7	VANADIUM	7.4		0.3217	0.3217	MG/KG
SS132K	AO061	27-Mar-01	0.5	1 CL200.7	ZINC	6	J	0.0643	0.0643	MG/KG
SS132K	AO061	27-Mar-01	0.5	1 SW8270	ACENAPHTHYLENE	150	J	87	350	UG/KG
SS132K	AO061	27-Mar-01	0.5	1 SW8270	ANTHRACENE	280	J	110	350	UG/KG
SS132K	AO061	27-Mar-01	0.5	1 SW8270	BENZO(a)ANTHRACENE	870		98	350	UG/KG
SS132K	AO061	27-Mar-01	0.5	1 SW8270	BENZO(a)PYRENE	680		98	350	UG/KG
SS132K	AO061	27-Mar-01	0.5	1 SW8270	BENZO(b)FLUORANTHENE	900		130	350	UG/KG
SS132K	AO061	27-Mar-01	0.5	1 SW8270	BENZO(g,h,i)PERYLENE	320	J	140	350	UG/KG
SS132K	AO061	27-Mar-01	0.5	1 SW8270	BENZO(k)FLUORANTHENE	670		110	350	UG/KG
SS132K	AO061	27-Mar-01	0.5	1 SW8270	CHRYSENE	950		110	350	UG/KG

Table A.2

Target Array and Flanking Target Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132K	AO061	27-Mar-01	0.5	1	SW8270	FLUORANTHENE	2100		120	350	UG/KG
SS132K	AO061	27-Mar-01	0.5	1	SW8270	FLUORENE	190	J	76	350	UG/KG
SS132K	AO061	27-Mar-01	0.5	1	SW8270	INDENO(1,2,3-c,d)PYRENE	340	J	130	350	UG/KG
SS132K	AO061	27-Mar-01	0.5	1	SW8270	PHENANTHRENE	1600		100	350	UG/KG
SS132K	AO061	27-Mar-01	0.5	1	SW8270	PYRENE	1600		270	350	UG/KG
SS132K	AO062	27-Mar-01	0	0.25	CL200.7	ALUMINUM	3730		11.6195	11.6195	MG/KG
SS132K	AO062	27-Mar-01	0	0.25	CL200.7	ARSENIC	1.3	J	0.9199	0.9199	MG/KG
SS132K	AO062	27-Mar-01	0	0.25	CL200.7	BARIUM	3.6		0.0484	0.0484	MG/KG
SS132K	AO062	27-Mar-01	0	0.25	CL200.7	BERYLLIUM	0.16		0.0646	0.0646	MG/KG
SS132K	AO062	27-Mar-01	0	0.25	CL200.7	CALCIUM	62.1		10.8771	10.8771	MG/KG
SS132K	AO062	27-Mar-01	0	0.25	CL200.7	CHROMIUM, TOTAL	3.8		0.3228	0.3228	MG/KG
SS132K	AO062	27-Mar-01	0	0.25	CL200.7	COBALT	0.65		0.2582	0.2582	MG/KG
SS132K	AO062	27-Mar-01	0	0.25	CL200.7	COPPER	27.7		0.0968	0.0968	MG/KG
SS132K	AO062	27-Mar-01	0	0.25	CL200.7	IRON	4630	J	5.3417	5.3417	MG/KG
SS132K	AO062	27-Mar-01	0	0.25	CL200.7	LEAD	61.1	J	0.2743	0.2743	MG/KG
SS132K	AO062	27-Mar-01	0	0.25	CL200.7	MAGNESIUM	300		11.3612	11.3612	MG/KG
SS132K	AO062	27-Mar-01	0	0.25	CL200.7	MANGANESE	22.7	J	0.2905	0.2905	MG/KG
SS132K	AO062	27-Mar-01	0	0.25	CL200.7	NICKEL	1.6		0.2259	0.2259	MG/KG
SS132K	AO062	27-Mar-01	0	0.25	CL200.7	POTASSIUM	201		4.8414	4.8414	MG/KG
SS132K	AO062	27-Mar-01	0	0.25	CL200.7	SODIUM	315		45.3482	45.3482	MG/KG
SS132K	AO062	27-Mar-01	0	0.25	CL200.7	VANADIUM	10.3		0.3228	0.3228	MG/KG
SS132K	AO062	27-Mar-01	0	0.25	CL200.7	ZINC	6.2	J	0.0646	0.0646	MG/KG
SS132K	AO062	27-Mar-01	0	0.25	SW8270	ACENAPHTHYLENE	490		88	350	UG/KG
SS132K	AO062	27-Mar-01	0	0.25	SW8270	ANTHRACENE	1100		110	350	UG/KG
SS132K	AO062	27-Mar-01	0	0.25	SW8270	BENZO(a)ANTHRACENE	3600	J	99	350	UG/KG
SS132K	AO062	27-Mar-01	0	0.25	SW8270	BENZO(a)PYRENE	2800	J	99	350	UG/KG
SS132K	AO062	27-Mar-01	0	0.25	SW8270	BENZO(b)FLUORANTHENE	2800	J	130	350	UG/KG
SS132K	AO062	27-Mar-01	0	0.25	SW8270	BENZO(g,h,i)PERYLENE	1400	J	140	350	UG/KG
SS132K	AO062	27-Mar-01	0	0.25	SW8270	BENZO(k)FLUORANTHENE	3000	J	110	350	UG/KG
SS132K	AO062	27-Mar-01	0	0.25	SW8270	CARBAZOLE	190	J	110	350	UG/KG
SS132K	AO062	27-Mar-01	0	0.25	SW8270	CHRYSENE	3600	J	110	350	UG/KG
SS132K	AO062	27-Mar-01	0	0.25	SW8270	DIBENZ(a,h)ANTHRACENE	520	J	130	350	UG/KG
SS132K	AO062	27-Mar-01	0	0.25	SW8270	DIBENZOFURAN	290	J	110	350	UG/KG
SS132K	AO062	27-Mar-01	0	0.25	SW8270	FLUORANTHENE	9200		250	710	UG/KG
SS132K	AO062	27-Mar-01	0	0.25	SW8270	FLUORENE	720		77	350	UG/KG
SS132K	AO062	27-Mar-01	0	0.25	SW8270	INDENO(1,2,3-c,d)PYRENE	1400	J	140	350	UG/KG
SS132K	AO062	27-Mar-01	0	0.25	SW8270	NAPHTHALENE	120	J	78	350	UG/KG
SS132K	AO062	27-Mar-01	0	0.25	SW8270	PHENANTHRENE	6900		200	710	UG/KG
SS132K	AO062	27-Mar-01	0	0.25	SW8270	PYRENE	6900		540	710	UG/KG
SS132K	AO063	27-Mar-01	0.25	0.5	CL200.7	ALUMINUM	2570		11.0304	11.0304	MG/KG

Table A.2

Target Array and Flanking Target Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPTH (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132K	AO063	27-Mar-01	0.25	0.5	CL200.7	ANTIMONY	4.7	J	0.766	0.766	MG/KG
SS132K	AO063	27-Mar-01	0.25	0.5	CL200.7	ARSENIC	1.4	J	0.8732	0.8732	MG/KG
SS132K	AO063	27-Mar-01	0.25	0.5	CL200.7	BARIUM	3.3		0.046	0.046	MG/KG
SS132K	AO063	27-Mar-01	0.25	0.5	CL200.7	BERYLLIUM	0.16		0.0613	0.0613	MG/KG
SS132K	AO063	27-Mar-01	0.25	0.5	CL200.7	BORON	1.7		0.1992	0.1992	MG/KG
SS132K	AO063	27-Mar-01	0.25	0.5	CL200.7	CALCIUM	83.1		10.3257	10.3257	MG/KG
SS132K	AO063	27-Mar-01	0.25	0.5	CL200.7	CHROMIUM, TOTAL	3.1		0.3064	0.3064	MG/KG
SS132K	AO063	27-Mar-01	0.25	0.5	CL200.7	COBALT	0.67		0.2451	0.2451	MG/KG
SS132K	AO063	27-Mar-01	0.25	0.5	CL200.7	COPPER	58.3		0.0919	0.0919	MG/KG
SS132K	AO063	27-Mar-01	0.25	0.5	CL200.7	IRON	4020	J	5.0709	5.0709	MG/KG
SS132K	AO063	27-Mar-01	0.25	0.5	CL200.7	LEAD	388	J	0.2604	0.2604	MG/KG
SS132K	AO063	27-Mar-01	0.25	0.5	CL200.7	MAGNESIUM	260		10.7853	10.7853	MG/KG
SS132K	AO063	27-Mar-01	0.25	0.5	CL200.7	MANGANESE	26.9	J	0.2758	0.2758	MG/KG
SS132K	AO063	27-Mar-01	0.25	0.5	CL200.7	NICKEL	1.4		0.2145	0.2145	MG/KG
SS132K	AO063	27-Mar-01	0.25	0.5	CL200.7	POTASSIUM	223		4.596	4.596	MG/KG
SS132K	AO063	27-Mar-01	0.25	0.5	CL200.7	SELENIUM	0.28	J	0.2387	0.2387	MG/KG
SS132K	AO063	27-Mar-01	0.25	0.5	CL200.7	SODIUM	295		43.0493	43.0493	MG/KG
SS132K	AO063	27-Mar-01	0.25	0.5	CL200.7	VANADIUM	7.6		0.3064	0.3064	MG/KG
SS132K	AO063	27-Mar-01	0.25	0.5	CL200.7	ZINC	6.8	J	0.0613	0.0613	MG/KG
SS132K	AO063	27-Mar-01	0.25	0.5	CL245.5	MERCURY	0.055	J	0.0529	0.0529	MG/KG
SS132K	AO063	27-Mar-01	0.25	0.5	SW8270	ANTHRACENE	120	J	100	350	UG/KG
SS132K	AO063	27-Mar-01	0.25	0.5	SW8270	BENZO(a)PYRENE	320	J	96	350	UG/KG
SS132K	AO063	27-Mar-01	0.25	0.5	SW8270	BENZO(b)FLUORANTHENE	300	J	130	350	UG/KG
SS132K	AO063	27-Mar-01	0.25	0.5	SW8270	BENZO(g,h,i)PERYLENE	170	J	140	350	UG/KG
SS132K	AO063	27-Mar-01	0.25	0.5	SW8270	BENZO(k)FLUORANTHENE	370		110	350	UG/KG
SS132K	AO063	27-Mar-01	0.25	0.5	SW8270	CHRYSENE	390		110	350	UG/KG
SS132K	AO063	27-Mar-01	0.25	0.5	SW8270	FLUORANTHENE	860		120	350	UG/KG
SS132K	AO063	27-Mar-01	0.25	0.5	SW8270	INDENO(1,2,3-c,d)PYRENE	170	J	130	350	UG/KG
SS132K	AO063	27-Mar-01	0.25	0.5	SW8270	PHENANTHRENE	600		98	350	UG/KG
SS132K	AO063	27-Mar-01	0.25	0.5	SW8270	PYRENE	670		270	350	UG/KG
SS132K	AO064	27-Mar-01	0.5	1	CL200.7	ALUMINUM	2140		11.1104	11.1104	MG/KG
SS132K	AO064	27-Mar-01	0.5	1	CL200.7	ARSENIC	1.6	J	0.8796	0.8796	MG/KG
SS132K	AO064	27-Mar-01	0.5	1	CL200.7	BARIUM	3.4		0.0463	0.0463	MG/KG
SS132K	AO064	27-Mar-01	0.5	1	CL200.7	BERYLLIUM	0.18		0.0617	0.0617	MG/KG
SS132K	AO064	27-Mar-01	0.5	1	CL200.7	CALCIUM	73.4		10.4006	10.4006	MG/KG
SS132K	AO064	27-Mar-01	0.5	1	CL200.7	CHROMIUM, TOTAL	2.8		0.3086	0.3086	MG/KG
SS132K	AO064	27-Mar-01	0.5	1	CL200.7	COBALT	0.85		0.2469	0.2469	MG/KG
SS132K	AO064	27-Mar-01	0.5	1	CL200.7	COPPER	14.9		0.0926	0.0926	MG/KG
SS132K	AO064	27-Mar-01	0.5	1	CL200.7	IRON	3720	J	5.1077	5.1077	
SS132K	AO064	27-Mar-01	0.5	1	CL200.7	LEAD	35	J	0.2623	0.2623	MG/KG

Table A.2

Target Array and Flanking Target Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132K	AO064	27-Mar-01	0.5		CL200.7	MAGNESIUM	313		10.8635	10.8635	MG/KG
SS132K	AO064	27-Mar-01	0.5		CL200.7	MANGANESE	31		0.2778	0.2778	MG/KG
SS132K	AO064	27-Mar-01	0.5		CL200.7	NICKEL	1.5		0.216	0.216	MG/KG
SS132K	AO064	27-Mar-01	0.5		CL200.7	POTASSIUM	225		4.6293	4.6293	MG/KG
SS132K	AO064	27-Mar-01	0.5		CL200.7	SODIUM	254		43.3615	43.3615	MG/KG
SS132K	AO064	27-Mar-01	0.5		CL200.7	VANADIUM	6.2		0.3086	0.3086	MG/KG
SS132K	AO064	27-Mar-01	0.5		CL200.7	ZINC	6.2		0.0617	0.0617	MG/KG
SS132K	AO064	27-Mar-01	0.5		SW8270	BENZO(a)ANTHRACENE	190		96	340	UG/KG
SS132K	AO064	27-Mar-01	0.5		SW8270	BENZO(a)PYRENE	160		96	340	UG/KG
SS132K	AO064	27-Mar-01	0.5		SW8270	BENZO(b)FLUORANTHENE	200		130	340	UG/KG
SS132K	AO064	27-Mar-01	0.5		SW8270	BENZO(k)FLUORANTHENE	170		110	340	UG/KG
SS132K	AO064	27-Mar-01	0.5		SW8270	CHRYSENE	230	-	110	340	UG/KG
SS132K	AO064	27-Mar-01	0.5		SW8270	FLUORANTHENE	520		120	340	UG/KG
SS132K	AO064	27-Mar-01	0.5		SW8270	PHENANTHRENE	400		98	340	UG/KG
SS132K	AO064	27-Mar-01	0.5		SW8270	PYRENE	350		260	340	UG/KG
SS132L	AO046	27-Mar-01	0.5		CL200.7	ALUMINUM	5710		12.5681	12.5681	MG/KG
SS132L	AO046	27-Mar-01	0		CL200.7	ARSENIC	2.1		0.995	0.995	MG/KG
SS132L	AO046 AO046	27-Mar-01	0		CL200.7 CL200.7	BARIUM	4.4	J	0.993	0.993	MG/KG
SS132L	AO046 AO046	27-Mar-01	0		CL200.7 CL200.7	BERYLLIUM	0.23		0.0524	0.0524	MG/KG
	AO046 AO046	27-Mar-01	0			CALCIUM	37.5			11.7651	MG/KG
SS132L			-		CL200.7				11.7651		
SS132L	AO046	27-Mar-01	0		CL200.7	CHROMIUM, TOTAL	5.9		0.3491	0.3491	MG/KG
SS132L	AO046	27-Mar-01	0		CL200.7	COPPER	66		0.1047	0.1047	MG/KG
SS132L	AO046	27-Mar-01	0		CL200.7	IRON	8960		5.7778	5.7778	MG/KG
SS132L	AO046	27-Mar-01	0		CL200.7	LEAD	216		0.2967	0.2967	MG/KG
SS132L	AO046	27-Mar-01	0		CL200.7	MAGNESIUM	494		12.2888	12.2888	MG/KG
SS132L	AO046	27-Mar-01	0		CL200.7	MANGANESE	38.8		0.3142	0.3142	MG/KG
SS132L	AO046	27-Mar-01	0		CL200.7	MOLYBDENUM	0.75		0.5586	0.5586	MG/KG
SS132L	AO046	27-Mar-01	0		CL200.7	NICKEL	3.8		0.2444	0.2444	MG/KG
SS132L	AO046	27-Mar-01	0		CL200.7	POTASSIUM	268		5.2367	5.2367	MG/KG
SS132L	AO046	27-Mar-01	0		CL200.7	SELENIUM	0.35		0.2405	0.2405	MG/KG
SS132L	AO046	27-Mar-01	0		CL200.7	SODIUM	435		49.0504	49.0504	MG/KG
SS132L	AO046	27-Mar-01	0		CL200.7	VANADIUM	11.9		0.3491	0.3491	MG/KG
SS132L	AO046	27-Mar-01	0		CL200.7	ZINC	9.4		0.0698	0.0698	MG/KG
SS132L	AO046	27-Mar-01	0		CL245.5	MERCURY	0.066		0.0541	0.0541	MG/KG
SS132L	AO047	27-Mar-01			CL200.7	ALUMINUM	3620		11.5318	11.5318	MG/KG
SS132L	AO047	27-Mar-01			CL200.7	ARSENIC	1.1		0.9129	0.9129	MG/KG
SS132L	AO047	27-Mar-01			CL200.7	BARIUM	3.5		0.048	0.048	MG/KG
SS132L	AO047	27-Mar-01	0.25		CL200.7	BERYLLIUM	0.17		0.0641	0.0641	MG/KG
SS132L	AO047	27-Mar-01		0.5	CL200.7	CALCIUM	60.8		10.7951	10.7951	MG/KG
SS132L	AO047	27-Mar-01	0.25	0.5	CL200.7	CHROMIUM, TOTAL	3.6		0.3203	0.3203	MG/KG

Table A.2

Target Array and Flanking Target Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132L	AO047	27-Mar-01	0.25	0.5	CL200.7	COBALT	1.6		0.2563	0.2563	MG/KG
SS132L	AO047	27-Mar-01	0.25	0.5	CL200.7	COPPER	27.7		0.0961	0.0961	MG/KG
SS132L	AO047	27-Mar-01	0.25	0.5	CL200.7	IRON	5310	J	5.3014	5.3014	MG/KG
SS132L	AO047	27-Mar-01	0.25	0.5	CL200.7	LEAD	105	J	0.2723	0.2723	MG/KG
SS132L	AO047	27-Mar-01	0.25	0.5	CL200.7	MAGNESIUM	432		11.2755	11.2755	MG/KG
SS132L	AO047	27-Mar-01	0.25	0.5	CL200.7	MANGANESE	42.9	J	0.2883	0.2883	MG/KG
SS132L	AO047	27-Mar-01	0.25	0.5	CL200.7	MOLYBDENUM	0.56	J	0.5125	0.5125	MG/KG
SS132L	AO047	27-Mar-01	0.25	0.5	CL200.7	NICKEL	1.8		0.2242	0.2242	MG/KG
SS132L	AO047	27-Mar-01	0.25	0.5	CL200.7	POTASSIUM	256		4.8049	4.8049	MG/KG
SS132L	AO047	27-Mar-01	0.25	0.5	CL200.7	SELENIUM	0.28	J	0.2294	0.2294	MG/KG
SS132L	AO047	27-Mar-01	0.25	0.5	CL200.7	SODIUM	284		45.0061	45.0061	MG/KG
SS132L	AO047	27-Mar-01	0.25	0.5	CL200.7	VANADIUM	7.6		0.3203	0.3203	MG/KG
SS132L	AO047	27-Mar-01	0.25	0.5	CL200.7	ZINC	7.1	J	0.0641	0.0641	MG/KG
SS132L	AO048	27-Mar-01	0.5	1	CL200.7	ALUMINUM	2530		11.1808	11.1808	MG/KG
SS132L	AO048	27-Mar-01	0.5	1	CL200.7	ARSENIC	1.2	J	0.8851	0.8851	MG/KG
SS132L	AO048	27-Mar-01	0.5	1	CL200.7	BARIUM	2.6		0.0466	0.0466	MG/KG
SS132L	AO048	27-Mar-01	0.5	1	CL200.7	BERYLLIUM	0.15		0.0621	0.0621	MG/KG
SS132L	AO048	27-Mar-01	0.5	1	CL200.7	CALCIUM	32.8		10.4665	10.4665	MG/KG
SS132L	AO048	27-Mar-01	0.5	1	CL200.7	CHROMIUM, TOTAL	2.4		0.3106	0.3106	MG/KG
SS132L	AO048	27-Mar-01	0.5	1	CL200.7	COBALT	2		0.2485	0.2485	MG/KG
SS132L	AO048	27-Mar-01	0.5	1	CL200.7	COPPER	18.1		0.0932	0.0932	MG/KG
SS132L	AO048	27-Mar-01	0.5	1	CL200.7	IRON	3240	J	5.1401	5.1401	MG/KG
SS132L	AO048	27-Mar-01	0.5	1	CL200.7	LEAD	72	J	0.264	0.264	MG/KG
SS132L	AO048	27-Mar-01	0.5	1	CL200.7	MAGNESIUM	272		10.9324	10.9324	MG/KG
SS132L	AO048	27-Mar-01	0.5	1	CL200.7	MANGANESE	64.9	J	0.2795	0.2795	MG/KG
SS132L	AO048	27-Mar-01	0.5	1	CL200.7	NICKEL	1.5		0.2174	0.2174	MG/KG
SS132L	AO048	27-Mar-01	0.5	1	CL200.7	POTASSIUM	193		4.6587	4.6587	MG/KG
SS132L	AO048	27-Mar-01	0.5	1	CL200.7	SODIUM	207		43.6362	43.6362	MG/KG
SS132L	AO048	27-Mar-01	0.5	1	CL200.7	VANADIUM	5		0.3106	0.3106	MG/KG
SS132L	AO048	27-Mar-01	0.5	1	CL200.7	ZINC	5.4	J	0.0621	0.0621	MG/KG
SS132L	AO049	27-Mar-01	0	0.25	CL200.7	ALUMINUM	3490		12.003	12.003	MG/KG
SS132L	AO049	27-Mar-01	0	0.25	CL200.7	ARSENIC	1.5	J	0.9502	0.9502	MG/KG
SS132L	AO049	27-Mar-01	0	0.25	CL200.7	BARIUM	3.2		0.05	0.05	MG/KG
SS132L	AO049	27-Mar-01	0	0.25	CL200.7	BERYLLIUM	0.15		0.0667	0.0667	MG/KG
SS132L	AO049	27-Mar-01	0	0.25	CL200.7	CALCIUM	60		11.2361	11.2361	MG/KG
SS132L	AO049	27-Mar-01	0	0.25	CL200.7	CHROMIUM, TOTAL	4		0.3334	0.3334	MG/KG
SS132L	AO049	27-Mar-01	0	0.25	CL200.7	COPPER	21.3		0.1	0.1	MG/KG
SS132L	AO049	27-Mar-01	0	0.25	CL200.7	IRON	5580	J	5.518	5.518	MG/KG
SS132L	AO049	27-Mar-01	0	0.25	CL200.7	LEAD	66.7	J	0.2834	0.2834	MG/KG
SS132L	AO049	27-Mar-01	0	0.25	CL200.7	MAGNESIUM	381		11.7363	11.7363	MG/KG

Table A.2

Target Array and Flanking Target Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132L	AO049	27-Mar-01	0	0.25	CL200.7	MANGANESE	35.2	J	0.3001	0.3001	MG/KG
SS132L	AO049	27-Mar-01	0	0.25	CL200.7	MOLYBDENUM	0.84	J	0.5335	0.5335	MG/KG
SS132L	AO049	27-Mar-01	0	0.25	CL200.7	NICKEL	2		0.2334	0.2334	MG/KG
SS132L	AO049	27-Mar-01	0	0.25	CL200.7	POTASSIUM	233		5.0013	5.0013	MG/KG
SS132L	AO049	27-Mar-01	0	0.25	CL200.7	SODIUM	282		46.8451	46.8451	MG/KG
SS132L	AO049	27-Mar-01	0	0.25	CL200.7	VANADIUM	10.5		0.3334	0.3334	MG/KG
SS132L	AO049	27-Mar-01	0	0.25	CL200.7	ZINC	6.3	J	0.0667	0.0667	MG/KG
SS132L	AO049	27-Mar-01	0	0.25	SW8270	BENZO(a)ANTHRACENE	210	J	99	350	UG/KG
SS132L	AO049	27-Mar-01	0	0.25	SW8270	BENZO(a)PYRENE	140	J	99	350	UG/KG
SS132L	AO049	27-Mar-01	0	0.25	SW8270	BENZO(b)FLUORANTHENE	170	J	130	350	UG/KG
SS132L	AO049	27-Mar-01	0	0.25	SW8270	BENZO(k)FLUORANTHENE	160	J	110	350	UG/KG
SS132L	AO049	27-Mar-01	0	0.25	SW8270	CHRYSENE	220	J	110	350	UG/KG
SS132L	AO049	27-Mar-01	0	0.25	SW8270	FLUORANTHENE	460		120	350	UG/KG
SS132L	AO049	27-Mar-01	0	0.25	SW8270	PHENANTHRENE	400		100	350	UG/KG
SS132L	AO049	27-Mar-01	0	0.25	SW8270	PYRENE	400		270	350	UG/KG
SS132L	AO050	27-Mar-01	0.25	0.5	CL200.7	ALUMINUM	3600		11.1819	11.1819	MG/KG
SS132L	AO050	27-Mar-01	0.25	0.5	CL200.7	ARSENIC	1.2	J	0.8852	0.8852	MG/KG
SS132L	AO050	27-Mar-01	0.25	0.5	CL200.7	BARIUM	3		0.0466	0.0466	MG/KG
SS132L	AO050	27-Mar-01	0.25	0.5	CL200.7	BERYLLIUM	0.16		0.0621	0.0621	MG/KG
SS132L	AO050	27-Mar-01	0.25	0.5	CL200.7	BORON	2.6		0.2019	0.2019	MG/KG
SS132L	AO050	27-Mar-01	0.25	0.5	CL200.7	CALCIUM	41		10.4675	10.4675	MG/KG
SS132L	AO050	27-Mar-01	0.25	0.5	CL200.7	CHROMIUM, TOTAL	4.1		0.3106	0.3106	MG/KG
SS132L	AO050	27-Mar-01	0.25	0.5	CL200.7	COPPER	15.7		0.0932	0.0932	MG/KG
SS132L	AO050	27-Mar-01	0.25	0.5	CL200.7	IRON	5710	J	5.1405	5.1405	MG/KG
SS132L	AO050	27-Mar-01	0.25	0.5	CL200.7	LEAD	39.1	J	0.264	0.264	MG/KG
SS132L	AO050	27-Mar-01	0.25	0.5	CL200.7	MAGNESIUM	410		10.9334	10.9334	MG/KG
SS132L	AO050	27-Mar-01	0.25	0.5	CL200.7	MANGANESE	42.5	J	0.2795	0.2795	MG/KG
SS132L	AO050	27-Mar-01	0.25	0.5	CL200.7	NICKEL	1.7		0.2174	0.2174	MG/KG
SS132L	AO050	27-Mar-01	0.25	0.5	CL200.7	POTASSIUM	219		4.6591	4.6591	MG/KG
SS132L	AO050	27-Mar-01	0.25	0.5	CL200.7	SODIUM	199		43.6403	43.6403	MG/KG
SS132L	AO050	27-Mar-01	0.25	0.5	CL200.7	VANADIUM	9.2		0.3106	0.3106	MG/KG
SS132L	AO050	27-Mar-01	0.25	0.5	CL200.7	ZINC	6.4	J	0.0621	0.0621	MG/KG
SS132L	AO051	27-Mar-01	0.5	1	CL200.7	ALUMINUM	2700		11.3969	11.3969	MG/KG
SS132L	AO051	27-Mar-01	0.5	1	CL200.7	ARSENIC	1.2	J	0.9023	0.9023	MG/KG
SS132L	AO051	27-Mar-01	0.5	1	CL200.7	BARIUM	3.2		0.0475	0.0475	MG/KG
SS132L	AO051	27-Mar-01	0.5	1	CL200.7	BERYLLIUM	0.15		0.0633	0.0633	MG/KG
SS132L	AO051	27-Mar-01	0.5	1	CL200.7	BORON	1.7		0.2058	0.2058	MG/KG
SS132L	AO051	27-Mar-01	0.5	1	CL200.7	CALCIUM	57.3		10.6688	10.6688	MG/KG
SS132L	AO051	27-Mar-01	0.5	1	CL200.7	CHROMIUM, TOTAL	3.3		0.3166	0.3166	MG/KG
SS132L	AO051	27-Mar-01	0.5	1	CL200.7	COPPER	11		0.095	0.095	MG/KG

Table A.2

Target Array and Flanking Target Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPTH	l (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132L	AO051	27-Mar-01	0.5	1	CL200.7	IRON	3910		5.2394	5.2394	MG/KG
SS132L	AO051	27-Mar-01	0.5	1	CL200.7	LEAD	31.8	J	0.2691	0.2691	MG/KG
SS132L	AO051	27-Mar-01	0.5	1	CL200.7	MAGNESIUM	279		11.1436	11.1436	MG/KG
SS132L	AO051	27-Mar-01	0.5	1	CL200.7	MANGANESE	42.2	J	0.2849	0.2849	MG/KG
SS132L	AO051	27-Mar-01	0.5	1	CL200.7	NICKEL	1.5		0.2216	0.2216	MG/KG
SS132L	AO051	27-Mar-01	0.5	1	CL200.7	POTASSIUM	222		4.7487	4.7487	MG/KG
SS132L	AO051	27-Mar-01	0.5	1	CL200.7	SODIUM	220		44.4796	44.4796	MG/KG
SS132L	AO051	27-Mar-01	0.5	1	CL200.7	VANADIUM	6.5		0.3166	0.3166	MG/KG
SS132L	AO051	27-Mar-01	0.5	1	CL200.7	ZINC	4.5	J	0.0633	0.0633	MG/KG
SS132L	AO052	27-Mar-01	0.5	1	CL200.7	ALUMINUM	2670		11.5345	11.5345	MG/KG
SS132L	AO052	27-Mar-01	0.5	1	CL200.7	ARSENIC	0.96	J	0.9131	0.9131	MG/KG
SS132L	AO052	27-Mar-01	0.5	1	CL200.7	BARIUM	2.9		0.0481	0.0481	MG/KG
SS132L	AO052	27-Mar-01	0.5	1	CL200.7	BERYLLIUM	0.16		0.0641	0.0641	MG/KG
SS132L	AO052	27-Mar-01	0.5	1	CL200.7	CALCIUM	53.7		10.7976	10.7976	MG/KG
SS132L	AO052	27-Mar-01	0.5	1	CL200.7	CHROMIUM, TOTAL	3.1		0.3204	0.3204	MG/KG
SS132L	AO052	27-Mar-01	0.5	1	CL200.7	COPPER	10.9		0.0961	0.0961	MG/KG
SS132L	AO052	27-Mar-01	0.5	1	CL200.7	IRON	3580	J	5.3027	5.3027	MG/KG
SS132L	AO052	27-Mar-01	0.5	1	CL200.7	LEAD	29.9	J	0.2723	0.2723	MG/KG
SS132L	AO052	27-Mar-01	0.5	1	CL200.7	MAGNESIUM	268		11.2782	11.2782	MG/KG
SS132L	AO052	27-Mar-01	0.5	1	CL200.7	MANGANESE	41.5	J	0.2884	0.2884	MG/KG
SS132L	AO052	27-Mar-01	0.5	1	CL200.7	NICKEL	1.6		0.2243	0.2243	MG/KG
SS132L	AO052	27-Mar-01	0.5	1	CL200.7	POTASSIUM	202		4.806	4.806	MG/KG
SS132L	AO052	27-Mar-01	0.5	1	CL200.7	SODIUM	217		45.0166	45.0166	MG/KG
SS132L	AO052	27-Mar-01	0.5	1	CL200.7	VANADIUM	5.8		0.3204	0.3204	MG/KG
SS132L	AO052	27-Mar-01	0.5	1	CL200.7	ZINC	4.3	J	0.0641	0.0641	MG/KG
SS132M	AN921	27-Mar-01	0	0.25	CL200.7	ALUMINUM	1750		11.9353	11.9353	MG/KG
SS132M	AN921	27-Mar-01	0	0.25	CL200.7	ARSENIC	1.1	J	0.9449	0.9449	MG/KG
SS132M	AN921	27-Mar-01	0	0.25	CL200.7	BARIUM	2.1		0.0497	0.0497	MG/KG
SS132M	AN921	27-Mar-01	0	0.25	CL200.7	CHROMIUM, TOTAL	2.8		0.3315	0.3315	MG/KG
SS132M	AN921	27-Mar-01	0	0.25	CL200.7	COBALT	0.54		0.2652	0.2652	MG/KG
SS132M	AN921	27-Mar-01	0	0.25	CL200.7	COPPER	9.4		0.0995	0.0995	MG/KG
SS132M	AN921	27-Mar-01	0	0.25	CL200.7	IRON	3050	J	5.4869	5.4869	MG/KG
SS132M	AN921	27-Mar-01	0	0.25	CL200.7	LEAD	30.9	J	0.2818	0.2818	MG/KG
SS132M	AN921	27-Mar-01	0	0.25	CL200.7	MAGNESIUM	180		11.6701	11.6701	MG/KG
SS132M	AN921	27-Mar-01	0	0.25	CL200.7	MANGANESE	19	J	0.2984	0.2984	MG/KG
SS132M	AN921	27-Mar-01	0	0.25	CL200.7	MOLYBDENUM	0.58	J	0.5305	0.5305	MG/KG
SS132M	AN921	27-Mar-01	0	0.25	CL200.7	NICKEL	1.4		0.2321	0.2321	MG/KG
SS132M	AN921	27-Mar-01	0	0.25	CL200.7	POTASSIUM	154		4.9731	4.9731	MG/KG
SS132M	AN921	27-Mar-01	0	0.25	CL200.7	SODIUM	301	J	46.581	46.581	MG/KG
SS132M	AN921	27-Mar-01	0	0.25	CL200.7	VANADIUM	8		0.3315	0.3315	MG/KG

Table A.2

Target Array and Flanking Target Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132M	AN921	27-Mar-01	0	0.25	CL200.7	ZINC	4	J	0.0663	0.0663	MG/KG
SS132M	AN922	27-Mar-01	0.25	0.5	CL200.7	ALUMINUM	1590		11.5917	11.5917	MG/KG
SS132M	AN922	27-Mar-01	0.25	0.5	CL200.7	BARIUM	1.4		0.0483	0.0483	MG/KG
SS132M	AN922	27-Mar-01	0.25	0.5	CL200.7	BERYLLIUM	0.077	J	0.0644	0.0644	MG/KG
SS132M	AN922	27-Mar-01	0.25	0.5	CL200.7	CALCIUM	128		10.8511	10.8511	MG/KG
SS132M	AN922	27-Mar-01	0.25	0.5	CL200.7	CHROMIUM, TOTAL	3.3		0.322	0.322	MG/KG
SS132M	AN922	27-Mar-01	0.25	0.5	CL200.7	COBALT	0.71		0.2576	0.2576	MG/KG
SS132M	AN922	27-Mar-01	0.25	0.5	CL200.7	COPPER	12		0.0966	0.0966	MG/KG
SS132M	AN922	27-Mar-01	0.25	0.5	CL200.7	IRON	3040	J	5.329	5.329	MG/KG
SS132M	AN922	27-Mar-01	0.25	0.5	CL200.7	LEAD	52.1	J	0.2737	0.2737	MG/KG
SS132M	AN922	27-Mar-01	0.25	0.5	CL200.7	MAGNESIUM	549		11.3341	11.3341	MG/KG
SS132M	AN922	27-Mar-01	0.25	0.5	CL200.7	MANGANESE	26.9	J	0.2898	0.2898	MG/KG
SS132M	AN922	27-Mar-01	0.25	0.5	CL200.7	MOLYBDENUM	0.52	J	0.5152	0.5152	MG/KG
SS132M	AN922	27-Mar-01	0.25	0.5	CL200.7	NICKEL	2.2		0.2254	0.2254	MG/KG
SS132M	AN922	27-Mar-01	0.25	0.5	CL200.7	POTASSIUM	104		4.8299	4.8299	MG/KG
SS132M	AN922	27-Mar-01	0.25	0.5	CL200.7	SODIUM	167		45.2398	45.2398	MG/KG
SS132M	AN922	27-Mar-01	0.25	0.5	CL200.7	VANADIUM	5.4		0.322	0.322	MG/KG
SS132M	AN922	27-Mar-01	0.25	0.5	CL200.7	ZINC	4.7	J	0.0644	0.0644	MG/KG
SS132M	AN923	27-Mar-01	0.5	1	CL200.7	ALUMINUM	1450		11.3357	11.3357	MG/KG
SS132M	AN923	27-Mar-01	0.5	1	CL200.7	ARSENIC	0.96	J	0.8974	0.8974	MG/KG
SS132M	AN923	27-Mar-01	0.5	1	CL200.7	BARIUM	2.4		0.0472	0.0472	MG/KG
SS132M	AN923	27-Mar-01	0.5	1	CL200.7	BERYLLIUM	0.096	J	0.063	0.063	MG/KG
SS132M	AN923	27-Mar-01	0.5	1	CL200.7	CALCIUM	76.7		10.6115	10.6115	MG/KG
SS132M	AN923	27-Mar-01	0.5	1	CL200.7	CHROMIUM, TOTAL	2.4		0.3149	0.3149	MG/KG
SS132M	AN923	27-Mar-01	0.5	1	CL200.7	COBALT	0.63		0.2519	0.2519	MG/KG
SS132M	AN923	27-Mar-01	0.5	1	CL200.7	COPPER	7.9		0.0945	0.0945	MG/KG
SS132M	AN923	27-Mar-01	0.5	1	CL200.7	IRON	2520	J	5.2113	5.2113	MG/KG
SS132M	AN923	27-Mar-01	0.5	1	CL200.7	LEAD	38.7	J	0.2676	0.2676	MG/KG
SS132M	AN923	27-Mar-01	0.5	1	CL200.7	MAGNESIUM	193		11.0838	11.0838	MG/KG
SS132M	AN923	27-Mar-01	0.5	1	CL200.7	MANGANESE	20.9	J	0.2834	0.2834	MG/KG
SS132M	AN923	27-Mar-01	0.5	1	CL200.7	NICKEL	1.1		0.2204	0.2204	MG/KG
SS132M	AN923	27-Mar-01	0.5	1	CL200.7	POTASSIUM	180		4.7232	4.7232	MG/KG
SS132M	AN923	27-Mar-01	0.5	1	CL200.7	SODIUM	230		44.2408	44.2408	MG/KG
SS132M	AN923	27-Mar-01	0.5	1	CL200.7	VANADIUM	4.7		0.3149	0.3149	MG/KG
SS132M	AN923	27-Mar-01	0.5	1	CL200.7	ZINC	4.1	J	0.063	0.063	MG/KG
SS132M	AN924	27-Mar-01	0	0.25	CL200.7	ALUMINUM	4170		12.3346	12.3346	MG/KG
SS132M	AN924	27-Mar-01	0	0.25	CL200.7	ARSENIC	1.2	J	0.9765	0.9765	MG/KG
SS132M	AN924	27-Mar-01	0	0.25	CL200.7	BARIUM	3.2		0.0514	0.0514	MG/KG
SS132M	AN924	27-Mar-01	0	0.25	CL200.7	BERYLLIUM	0.086	J	0.0685	0.0685	MG/KG
SS132M	AN924	27-Mar-01	0	0.25	CL200.7	CALCIUM	83.8		11.5465	11.5465	MG/KG

Table A.2

Target Array and Flanking Target Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132M	AN924	27-Mar-01	0	0.25	CL200.7	CHROMIUM, TOTAL	4.7		0.3426	0.3426	MG/KG
SS132M	AN924	27-Mar-01	0	0.25	CL200.7	COBALT	0.8		0.2741	0.2741	MG/KG
SS132M	AN924	27-Mar-01	0	0.25	CL200.7	COPPER	38.8		0.1028	0.1028	MG/KG
SS132M	AN924	27-Mar-01	0	0.25	CL200.7	IRON	5720	J	5.6705	5.6705	MG/KG
SS132M	AN924	27-Mar-01	0	0.25	CL200.7	LEAD	78.7	J	0.2912	0.2912	MG/KG
SS132M	AN924	27-Mar-01	0	0.25	CL200.7	MAGNESIUM	395		12.0605	12.0605	MG/KG
SS132M	AN924	27-Mar-01	0	0.25	CL200.7	MANGANESE	31.1	J	0.3084	0.3084	MG/KG
SS132M	AN924	27-Mar-01	0		CL200.7	NICKEL	1.8		0.2398	0.2398	MG/KG
SS132M	AN924	27-Mar-01	0	0.25	CL200.7	POTASSIUM	160		5.1394	5.1394	MG/KG
SS132M	AN924	27-Mar-01	0	0.25	CL200.7	SODIUM	282		48.1391	48.1391	MG/KG
SS132M	AN924	27-Mar-01	0	0.25	CL200.7	VANADIUM	12.2		0.3426	0.3426	MG/KG
SS132M	AN924	27-Mar-01	0	0.25	CL200.7	ZINC	8.4	J	0.0685	0.0685	MG/KG
SS132M	AN924	27-Mar-01	0	0.25	CL245.5	MERCURY	0.13		0.0552	0.0552	MG/KG
SS132M	AN925	27-Mar-01	0.25	0.5	CL200.7	ALUMINUM	3180		11.4079	11.4079	MG/KG
SS132M	AN925	27-Mar-01	0.25	0.5	CL200.7	ARSENIC	1.5	J	0.9031	0.9031	MG/KG
SS132M	AN925	27-Mar-01	0.25	0.5	CL200.7	BARIUM	3.3		0.0475	0.0475	MG/KG
SS132M	AN925	27-Mar-01	0.25	0.5	CL200.7	BERYLLIUM	0.11	J	0.0634	0.0634	MG/KG
SS132M	AN925	27-Mar-01	0.25	0.5	CL200.7	CALCIUM	53.3		10.6791	10.6791	MG/KG
SS132M	AN925	27-Mar-01	0.25	0.5	CL200.7	CHROMIUM, TOTAL	4		0.3169	0.3169	MG/KG
SS132M	AN925	27-Mar-01	0.25	0.5	CL200.7	COBALT	0.82		0.2535	0.2535	MG/KG
SS132M	AN925	27-Mar-01	0.25	0.5	CL200.7	COPPER	28.1		0.0951	0.0951	MG/KG
SS132M	AN925	27-Mar-01	0.25	0.5	CL200.7	IRON	4430	J	5.2445	5.2445	MG/KG
SS132M	AN925	27-Mar-01	0.25	0.5	CL200.7	LEAD	52.1	J	0.2694	0.2694	MG/KG
SS132M	AN925	27-Mar-01	0.25	0.5	CL200.7	MAGNESIUM	265		11.1544	11.1544	MG/KG
SS132M	AN925	27-Mar-01	0.25	0.5	CL200.7	MANGANESE	48.6	J	0.2852	0.2852	MG/KG
SS132M	AN925	27-Mar-01	0.25	0.5	CL200.7	NICKEL	1.7		0.2218	0.2218	MG/KG
SS132M	AN925	27-Mar-01	0.25	0.5	CL200.7	POTASSIUM	160		4.7533	4.7533	MG/KG
SS132M	AN925	27-Mar-01	0.25	0.5	CL200.7	SODIUM	438		44.5226	44.5226	MG/KG
SS132M	AN925	27-Mar-01	0.25	0.5	CL200.7	VANADIUM	8.2		0.3169	0.3169	MG/KG
SS132M	AN925	27-Mar-01	0.25	0.5	CL200.7	ZINC	6.6	J	0.0634	0.0634	MG/KG
SS132M	AN925	27-Mar-01	0.25	0.5	CL245.5	MERCURY	0.14		0.0531	0.0531	MG/KG
SS132M	AN926	27-Mar-01	0.5	1	CL200.7	ALUMINUM	2190		12.1391	12.1391	MG/KG
SS132M	AN926	27-Mar-01	0.5	1	CL200.7	ARSENIC	1.2	J	0.961	0.961	MG/KG
SS132M	AN926	27-Mar-01	0.5	1	CL200.7	BARIUM	2.8		0.0506	0.0506	MG/KG
SS132M	AN926	27-Mar-01	0.5	1	CL200.7	BERYLLIUM	0.081	J	0.0674	0.0674	MG/KG
SS132M	AN926	27-Mar-01	0.5	1	CL200.7	CALCIUM	84.8		11.3635	11.3635	MG/KG
SS132M	AN926	27-Mar-01	0.5	1	CL200.7	CHROMIUM, TOTAL	2.8		0.3372	0.3372	MG/KG
SS132M	AN926	27-Mar-01	0.5	1	CL200.7	COBALT	0.84		0.2698	0.2698	MG/KG
SS132M	AN926	27-Mar-01	0.5	1	CL200.7	COPPER	13.1		0.1012	0.1012	
SS132M	AN926	27-Mar-01	0.5	1	CL200.7	IRON	3380	J	5.5806	5.5806	MG/KG

Table A.2

Target Array and Flanking Target Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132M	AN926	27-Mar-01	0.5	1	CL200.7	LEAD	27.9	J	0.2866	0.2866	MG/KG
SS132M	AN926	27-Mar-01	0.5	1	CL200.7	MAGNESIUM	212		11.8693	11.8693	MG/KG
SS132M	AN926	27-Mar-01	0.5	1	CL200.7	MANGANESE	26.6	J	0.3035	0.3035	MG/KG
SS132M	AN926	27-Mar-01	0.5	1	CL200.7	NICKEL	1.3		0.236	0.236	MG/KG
SS132M	AN926	27-Mar-01	0.5	1	CL200.7	POTASSIUM	190		5.058	5.058	MG/KG
SS132M	AN926	27-Mar-01	0.5	1	CL200.7	SODIUM	211		47.3762	47.3762	MG/KG
SS132M	AN926	27-Mar-01	0.5	1	CL200.7	VANADIUM	6.2		0.3372	0.3372	MG/KG
SS132M	AN926	27-Mar-01	0.5	1	CL200.7	ZINC	4.6	J	0.0674	0.0674	MG/KG
SS132M	AN927	27-Mar-01	0.5	1	CL200.7	ALUMINUM	1930		11.2636	11.2636	MG/KG
SS132M	AN927	27-Mar-01	0.5	1	CL200.7	BARIUM	2.9		0.0469	0.0469	MG/KG
SS132M	AN927	27-Mar-01	0.5	1	CL200.7	BERYLLIUM	0.074	J	0.0626	0.0626	MG/KG
SS132M	AN927	27-Mar-01	0.5	1	CL200.7	CALCIUM	73		10.544	10.544	MG/KG
SS132M	AN927	27-Mar-01	0.5	1	CL200.7	CHROMIUM, TOTAL	2.4		0.3129	0.3129	MG/KG
SS132M	AN927	27-Mar-01	0.5	1	CL200.7	COBALT	0.51		0.2503	0.2503	MG/KG
SS132M	AN927	27-Mar-01	0.5	1	CL200.7	COPPER	8.7		0.0939	0.0939	MG/KG
SS132M	AN927	27-Mar-01	0.5	1	CL200.7	IRON	2820	J	5.1781	5.1781	MG/KG
SS132M	AN927	27-Mar-01	0.5	1	CL200.7	LEAD	17	J	0.2659	0.2659	MG/KG
SS132M	AN927	27-Mar-01	0.5	1	CL200.7	MAGNESIUM	233		11.0133	11.0133	MG/KG
SS132M	AN927	27-Mar-01	0.5	1	CL200.7	MANGANESE	24.8	J	0.2816	0.2816	MG/KG
SS132M	AN927	27-Mar-01	0.5	1	CL200.7	NICKEL	1.1		0.219	0.219	MG/KG
SS132M	AN927	27-Mar-01	0.5	1	CL200.7	POTASSIUM	152		4.6932	4.6932	MG/KG
SS132M	AN927	27-Mar-01	0.5	1	CL200.7	SODIUM	192		43.9595	43.9595	MG/KG
SS132M	AN927	27-Mar-01	0.5	1	CL200.7	VANADIUM	5.2		0.3129	0.3129	MG/KG
SS132M	AN927	27-Mar-01	0.5	1	CL200.7	ZINC	5	J	0.0626	0.0626	MG/KG
SS132N	AN931	21-Mar-01	0	0.25	SW8330	OCTAHYDRO-1,3,5,7-TETRANITRO-1,3,5,7-TETRAZOCINE	190	J	22	120	UG/KG
SS132N	AN934	21-Mar-01	0	0.25	CL200.7	ALUMINUM	3130		12.5427	12.5427	MG/KG
SS132N	AN934	21-Mar-01	0	0.25	CL200.7	ARSENIC	1.9	J	0.993	0.993	MG/KG
SS132N	AN934	21-Mar-01	0	0.25	CL200.7	BARIUM	2		0.0523	0.0523	MG/KG
SS132N	AN934	21-Mar-01	0	0.25	CL200.7	BERYLLIUM	0.089	J	0.0697	0.0697	MG/KG
SS132N	AN934	21-Mar-01	0	0.25	CL200.7	CALCIUM	45.6		11.7413	11.7413	MG/KG
SS132N	AN934	21-Mar-01	0	0.25	CL200.7	CHROMIUM, TOTAL	3.6		0.3484	0.3484	MG/KG
SS132N	AN934	21-Mar-01	0	0.25	CL200.7	COPPER	33.8		0.1045	0.1045	MG/KG
SS132N	AN934	21-Mar-01	0	0.25	CL200.7	IRON	5330		5.7661	5.7661	MG/KG
SS132N	AN934	21-Mar-01	0	0.25	CL200.7	LEAD	107		0.2961	0.2961	MG/KG
SS132N	AN934	21-Mar-01	0	0.25	CL200.7	MAGNESIUM	208		12.264	12.264	MG/KG
SS132N	AN934	21-Mar-01	0	0.25	CL200.7	MANGANESE	17		0.3136	0.3136	MG/KG
SS132N	AN934	21-Mar-01	0	0.25	CL200.7	MOLYBDENUM	0.68	J	0.5575	0.5575	MG/KG
SS132N	AN934	21-Mar-01	0	0.25	CL200.7	NICKEL	0.57	J	0.2439	0.2439	MG/KG
SS132N	AN934	21-Mar-01	0	0.25	CL200.7	POTASSIUM	105		5.2261	5.2261	
SS132N	AN934	21-Mar-01	0	0.25	CL200.7	VANADIUM	14.3		0.3484	0.3484	MG/KG

Table A.2

Target Array and Flanking Target Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132N	AN934	21-Mar-01	0	0.25	CL200.7	ZINC	5.5	J	0.0697	0.0697	MG/KG
SS132N	AN935	21-Mar-01	0.25	0.5	CL200.7	ALUMINUM	6760		12.0838	12.0838	MG/KG
SS132N	AN935	21-Mar-01	0.25	0.5	CL200.7	ARSENIC	3	J	0.9566	0.9566	MG/KG
SS132N	AN935	21-Mar-01	0.25	0.5	CL200.7	BARIUM	4.7		0.0503	0.0503	MG/KG
SS132N	AN935	21-Mar-01	0.25	0.5	CL200.7	BERYLLIUM	0.12	J	0.0671	0.0671	MG/KG
SS132N	AN935	21-Mar-01	0.25	0.5	CL200.7	CALCIUM	43.5		11.3118	11.3118	MG/KG
SS132N	AN935	21-Mar-01	0.25	0.5	CL200.7	CHROMIUM, TOTAL	6		0.3357	0.3357	MG/KG
SS132N	AN935	21-Mar-01	0.25	0.5	CL200.7	COPPER	1.4	J	0.1007	0.1007	MG/KG
SS132N	AN935	21-Mar-01	0.25	0.5	CL200.7	IRON	6820		5.5552	5.5552	MG/KG
SS132N	AN935	21-Mar-01	0.25	0.5	CL200.7	LEAD	4.4		0.2788	0.2788	MG/KG
SS132N	AN935	21-Mar-01	0.25	0.5	CL200.7	MAGNESIUM	381		11.8153	11.8153	MG/KG
SS132N	AN935	21-Mar-01	0.25	0.5	CL200.7	MANGANESE	27.6		0.3021	0.3021	MG/KG
SS132N	AN935	21-Mar-01	0.25	0.5	CL200.7	NICKEL	1.3	J	0.235	0.235	MG/KG
SS132N	AN935	21-Mar-01	0.25	0.5	CL200.7	POTASSIUM	196		5.0349	5.0349	MG/KG
SS132N	AN935	21-Mar-01	0.25	0.5	CL200.7	SELENIUM	0.32	J	0.2331	0.2331	MG/KG
SS132N	AN935	21-Mar-01	0.25	0.5	CL200.7	VANADIUM	12.7		0.3357	0.3357	MG/KG
SS132N	AN935	21-Mar-01	0.25	0.5	CL200.7	ZINC	8.1	J	0.0671	0.0671	MG/KG
SS132N	AN936	21-Mar-01	0.5	1	CL200.7	ALUMINUM	1370		10.0253	10.0253	MG/KG
SS132N	AN936	21-Mar-01	0.5	1	CL200.7	BARIUM	2.2		0.0418	0.0418	MG/KG
SS132N	AN936	21-Mar-01	0.5	1	CL200.7	BERYLLIUM	0.057	J	0.0557	0.0557	MG/KG
SS132N	AN936	21-Mar-01	0.5	1	CL200.7	CALCIUM	32.3		9.3848	9.3848	MG/KG
SS132N	AN936	21-Mar-01	0.5	1	CL200.7	CHROMIUM, TOTAL	1.4		0.2785	0.2785	MG/KG
SS132N	AN936	21-Mar-01	0.5	1	CL200.7	COPPER	0.36	J	0.0835	0.0835	MG/KG
SS132N	AN936	21-Mar-01	0.5	1	CL200.7	IRON	2080		4.6089	4.6089	MG/KG
SS132N	AN936	21-Mar-01	0.5	1	CL200.7	LEAD	1.8		0.2777	0.2777	MG/KG
SS132N	AN936	21-Mar-01	0.5	1	CL200.7	MAGNESIUM	125		9.8026	9.8026	MG/KG
SS132N	AN936	21-Mar-01	0.5	1	CL200.7	MANGANESE	12.2		0.2506	0.2506	MG/KG
SS132N	AN936	21-Mar-01	0.5	1	CL200.7	NICKEL	0.19	J	0.19	0.1949	MG/KG
SS132N	AN936	21-Mar-01	0.5	1	CL200.7	POTASSIUM	96.3		4.1772	4.1772	MG/KG
SS132N	AN936	21-Mar-01	0.5	1	CL200.7	SELENIUM	0.25	J	0.2324	0.2324	MG/KG
SS132N	AN936	21-Mar-01	0.5	1	CL200.7	VANADIUM	3.8		0.2785	0.2785	MG/KG
SS132N	AN936	21-Mar-01	0.5	1	CL200.7	ZINC	3.4	J	0.0557	0.0557	MG/KG
SS132N	AN937	21-Mar-01	0	0.25	CL200.7	ALUMINUM	4760		11.7345	11.7345	MG/KG
SS132N	AN937	21-Mar-01	0	0.25	CL200.7	ARSENIC	2	J	0.929	0.929	MG/KG
SS132N	AN937	21-Mar-01	0	0.25	CL200.7	BARIUM	5.3		0.0489	0.0489	MG/KG
SS132N	AN937	21-Mar-01	0	0.25	CL200.7	BERYLLIUM	0.12	J	0.0652	0.0652	MG/KG
SS132N	AN937	21-Mar-01	0	0.25	CL200.7	CALCIUM	42.8		10.9848	10.9848	MG/KG
SS132N	AN937	21-Mar-01	0	0.25	CL200.7	CHROMIUM, TOTAL	4.3		0.326	0.326	MG/KG
SS132N	AN937	21-Mar-01	0	0.25	CL200.7	COBALT	0.43	J	0.2608	0.2608	MG/KG
SS132N	AN937	21-Mar-01	0	0.25	CL200.7	COPPER	46.9		0.0978	0.0978	MG/KG

Table A.2

Target Array and Flanking Target Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132N	AN937	21-Mar-01	0	0.25	CL200.7	IRON	5960		5.3946	5.3946	MG/KG
SS132N	AN937	21-Mar-01	0	0.25	CL200.7	LEAD	153		0.2771	0.2771	MG/KG
SS132N	AN937	21-Mar-01	0	0.25	CL200.7	MAGNESIUM	235		11.4737	11.4737	MG/KG
SS132N	AN937	21-Mar-01	0	0.25	CL200.7	MANGANESE	20.3		0.2934	0.2934	MG/KG
SS132N	AN937	21-Mar-01	0	0.25	CL200.7	NICKEL	0.77	J	0.2282	0.2282	MG/KG
SS132N	AN937	21-Mar-01	0	0.25	CL200.7	POTASSIUM	125		4.8894	4.8894	MG/KG
SS132N	AN937	21-Mar-01	0	0.25	CL200.7	SELENIUM	0.37	J	0.2334	0.2334	MG/KG
SS132N	AN937	21-Mar-01	0	0.25	CL200.7	VANADIUM	11.5		0.326	0.326	MG/KG
SS132N	AN937	21-Mar-01	0	0.25	CL200.7	ZINC	7.2	J	0.0652	0.0652	MG/KG
SS132N	AN937	21-Mar-01	0	0.25	CL245.5	MERCURY	0.09	J	0.055	0.055	MG/KG
SS132N	AN938	21-Mar-01	0.25	0.5	CL200.7	ALUMINUM	3870		11.518	11.518	MG/KG
SS132N	AN938	21-Mar-01	0.25	0.5	CL200.7	ARSENIC	0.93	J	0.9118	0.9118	MG/KG
SS132N	AN938	21-Mar-01	0.25	0.5	CL200.7	BARIUM	8.6		0.048	0.048	MG/KG
SS132N	AN938	21-Mar-01	0.25	0.5	CL200.7	CALCIUM	56.3		10.7821	10.7821	MG/KG
SS132N	AN938	21-Mar-01	0.25	0.5	CL200.7	CHROMIUM, TOTAL	3.6		0.3199	0.3199	MG/KG
SS132N	AN938	21-Mar-01	0.25	0.5	CL200.7	COBALT	0.51		0.256	0.256	MG/KG
SS132N	AN938	21-Mar-01	0.25	0.5	CL200.7	COPPER	18.4		0.096	0.096	MG/KG
SS132N	AN938	21-Mar-01	0.25	0.5	CL200.7	IRON	4120		5.2951	5.2951	MG/KG
SS132N	AN938	21-Mar-01	0.25	0.5	CL200.7	LEAD	57.2		0.272	0.272	MG/KG
SS132N	AN938	21-Mar-01	0.25	0.5	CL200.7	MAGNESIUM	249		11.262	11.262	MG/KG
SS132N	AN938	21-Mar-01	0.25	0.5	CL200.7	MANGANESE	20.8		0.2879	0.2879	MG/KG
SS132N	AN938	21-Mar-01	0.25	0.5	CL200.7	NICKEL	0.82	J	0.224	0.224	MG/KG
SS132N	AN938	21-Mar-01	0.25	0.5	CL200.7	POTASSIUM	138		4.7992	4.7992	MG/KG
SS132N	AN938	21-Mar-01	0.25	0.5	CL200.7	VANADIUM	7.1		0.3199	0.3199	MG/KG
SS132N	AN938	21-Mar-01	0.25	0.5	CL200.7	ZINC	5.9	J	0.064	0.064	MG/KG
SS132N	AN939	21-Mar-01	0.5	1	CL200.7	ALUMINUM	1510		11.2431	11.2431	MG/KG
SS132N	AN939	21-Mar-01	0.5	1	CL200.7	ARSENIC	0.94	J	0.8901	0.8901	MG/KG
SS132N	AN939	21-Mar-01	0.5	1	CL200.7	BARIUM	2.4		0.0468	0.0468	MG/KG
SS132N	AN939	21-Mar-01	0.5	1	CL200.7	CALCIUM	37.1		10.5248	10.5248	MG/KG
SS132N	AN939	21-Mar-01	0.5	1	CL200.7	CHROMIUM, TOTAL	1.4		0.3123	0.3123	MG/KG
SS132N	AN939	21-Mar-01	0.5	1	CL200.7	COBALT	0.44	J	0.2498	0.2498	MG/KG
SS132N	AN939	21-Mar-01	0.5	1	CL200.7	IRON	2070		5.1687	5.1687	MG/KG
SS132N	AN939	21-Mar-01	0.5	1	CL200.7	LEAD	1.7		0.2716	0.2716	MG/KG
SS132N	AN939	21-Mar-01	0.5	1	CL200.7	MAGNESIUM	179		10.9932	10.9932	MG/KG
SS132N	AN939	21-Mar-01	0.5	1	CL200.7	MANGANESE	13.7		0.2811	0.2811	MG/KG
SS132N	AN939	21-Mar-01	0.5	1	CL200.7	NICKEL	0.23	J	0.2186	0.2186	MG/KG
SS132N	AN939	21-Mar-01	0.5	1	CL200.7	POTASSIUM	104		4.6846	4.6846	MG/KG
SS132N	AN939	21-Mar-01	0.5	1	CL200.7	VANADIUM	3.4		0.3123	0.3123	MG/KG
SS132N	AN939	21-Mar-01	0.5		CL200.7	ZINC	3.9		0.0625	0.0625	
SS132O	AO072	30-Mar-01	0		CL200.7	ALUMINUM	1780	J	11.8835	11.8835	MG/KG

Table A.2

Target Array and Flanking Target Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132O	AO072	30-Mar-01			CL200.7	ANTIMONY	30.9		0.8252	0.8252	MG/KG
SS132O	AO072	30-Mar-01	0		CL200.7	ARSENIC	1.6		0.9408	0.9408	MG/KG
SS132O	AO072	30-Mar-01	0		CL200.7	BARIUM	3.6		0.0495	0.0495	MG/KG
SS132O	AO072	30-Mar-01	0		CL200.7	BORON	1.5		0.2146	0.2146	MG/KG
SS132O	AO072	30-Mar-01	0		CL200.7	CALCIUM	119		11.1243	11.1243	MG/KG
SS132O	AO072	30-Mar-01	0		CL200.7	CHROMIUM, TOTAL	6.5		0.3301	0.3301	MG/KG
SS132O	AO072	30-Mar-01	0		CL200.7	COBALT	0.59		0.2641	0.2641	MG/KG
SS132O	AO072	30-Mar-01	0		CL200.7	COPPER	117		0.099	0.099	MG/KG
SS132O	AO072	30-Mar-01	0		CL200.7	IRON	8000		5.4631	5.4631	MG/KG
SS132O	AO072	30-Mar-01	0		CL200.7	LEAD	201		0.4291	0.4291	MG/KG
SS132O	AO072	30-Mar-01	0		CL200.7	MAGNESIUM	311		11.6195	11.6195	MG/KG
SS132O	AO072	30-Mar-01	0		CL200.7	MANGANESE	49.1		0.2971	0.2971	MG/KG
SS1320	AO072	30-Mar-01	0		CL200.7	NICKEL	1.5		0.2311	0.2311	MG/KG
SS132O	AO072	30-Mar-01	0		CL200.7	POTASSIUM	184		4.9515	4.9515	MG/KG
SS132O	AO072	30-Mar-01	0		CL200.7	SODIUM	223		46.3788	46.3788	MG/KG
SS1320	AO072	30-Mar-01	0		CL200.7	VANADIUM	9.4		0.3301	0.3301	MG/KG
SS1320	AO072	30-Mar-01	0		CL200.7	ZINC	10.8		0.066	0.066	MG/KG
SS132O	AO072	30-Mar-01	0		SW8270	ACENAPHTHENE	230		98	370	UG/KG
SS1320	AO072	30-Mar-01	0		SW8270	ACENAPHTHYLENE	1400		92	370	UG/KG
SS1320	AO072	30-Mar-01	0		SW8270	ANTHRACENE	3200		110	370	UG/KG
SS1320	AO072	30-Mar-01	0		SW8270	BENZO(a)ANTHRACENE	18000		410	1500	UG/KG
SS1320	AO072	30-Mar-01	0		SW8270	BENZO(a)PYRENE	15000		410	1500	UG/KG
SS1320	AO072	30-Mar-01	0		SW8270	BENZO(b)FLUORANTHENE	15000		540	1500	UG/KG
SS132O	AO072	30-Mar-01	0		SW8270	BENZO(g,h,i)PERYLENE	7000		580	1500	UG/KG
SS1320	AO072	30-Mar-01	0		SW8270	BENZO(k)FLUORANTHENE	14000		470	1500	UG/KG
SS132O	AO072	30-Mar-01	0		SW8270	CARBAZOLE	580		110	370	UG/KG
SS1320	AO072	30-Mar-01	0		SW8270	CHRYSENE	18000		460	1500	UG/KG
SS1320	AO072	30-Mar-01	0		SW8270	DIBENZ(a,h)ANTHRACENE	2800		130	370	UG/KG
SS1320	AO072	30-Mar-01	0		SW8270	DIBENZOFURAN	510		120	370	UG/KG
SS1320	AO072	30-Mar-01	0		SW8270	FLUORANTHENE	41000		1300	3700	UG/KG
SS1320	AO072	30-Mar-01	0		SW8270	FLUORENE	1600		81	370	UG/KG
SS1320	AO072	30-Mar-01	0		SW8270	INDENO(1,2,3-c,d)PYRENE	7900		570	1500	UG/KG
SS1320	AO072	30-Mar-01	0		SW8270	PHENANTHRENE	19000		420	1500	UG/KG
SS1320	AO072	30-Mar-01	0		SW8270	PYRENE	37000		2800	3700	UG/KG
SS1320	AO072 AO073	30-Mar-01	-		CL200.7	ALUMINUM	1300		11.8743	11.8743	MG/KG
SS1320	AO073	30-Mar-01			CL200.7 CL200.7	ANTIMONY	1.3	-	0.8246	0.8246	MG/KG
SS1320	AO073	30-Mar-01			CL200.7 CL200.7	BARIUM	1.3		0.0495	0.0495	MG/KG
SS1320 SS1320	AO073	30-Mar-01			CL200.7 CL200.7	BORON	1.1		0.0495	0.0495	MG/KG
SS1320 SS1320	AO073	30-Mar-01			CL200.7 CL200.7	CALCIUM	46		11.1157	11.1157	MG/KG
SS132O	AO073	30-Mar-01	0.25	0.5	CL200.7	CHROMIUM, TOTAL	2.3		0.3298	0.3298	MG/KG

Table A.2

Target Array and Flanking Target Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPTH	(FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132O	AO073	30-Mar-01	0.25		CL200.7	COBALT	0.4		0.2639	0.2639	MG/KG
SS1320	AO073	30-Mar-01			CL200.7	COPPER	46.5	-	0.099	0.099	MG/KG
SS1320	AO073	30-Mar-01			CL200.7	IRON	3660		5.4589	5.4589	MG/KG
SS1320	AO073	30-Mar-01			CL200.7	LEAD	122		0.4288	0.4288	MG/KG
SS1320	AO073	30-Mar-01			CL200.7	MAGNESIUM	163		11.6105	11.6105	MG/KG
SS1320	AO073	30-Mar-01	0.25		CL200.7	MANGANESE	18.5		0.2969	0.2969	MG/KG
SS1320	AO073	30-Mar-01			CL200.7 CL200.7	NICKEL	0.86		0.2309	0.2309	MG/KG
SS1320	AO073	30-Mar-01			CL200.7 CL200.7	POTASSIUM	137		4.9476	4.9476	MG/KG
SS1320 SS1320	AO073	30-Mar-01				SODIUM	119		46.3429	46.3429	MG/KG
SS1320 SS1320	AO073				CL200.7 CL200.7						MG/KG
		30-Mar-01				VANADIUM	5.3		0.3298	0.3298	
SS1320	AO073	30-Mar-01			SW8270	ACENAPHTHYLENE	370		90	360	UG/KG
SS1320	AO073	30-Mar-01			SW8270	ANTHRACENE	860		110	360	UG/KG
SS132O	AO073	30-Mar-01			SW8270	BENZO(a)ANTHRACENE	4100		100	360	UG/KG
SS132O	AO073	30-Mar-01			SW8270	BENZO(a)PYRENE	3600		100	360	UG/KG
SS132O	AO073	30-Mar-01			SW8270	BENZO(b)FLUORANTHENE	4000		130	360	UG/KG
SS132O	AO073	30-Mar-01			SW8270	BENZO(g,h,i)PERYLENE	1900		140	360	UG/KG
SS132O	AO073	30-Mar-01			SW8270	BENZO(k)FLUORANTHENE	3400		110	360	UG/KG
SS132O	AO073	30-Mar-01	0.25	0.5	SW8270	CARBAZOLE	130	J	110	360	UG/KG
SS132O	AO073	30-Mar-01	0.25	0.5	SW8270	CHRYSENE	4400		110	360	UG/KG
SS132O	AO073	30-Mar-01	0.25	0.5	SW8270	DIBENZOFURAN	150	J	110	360	UG/KG
SS132O	AO073	30-Mar-01	0.25	0.5	SW8270	FLUORANTHENE	7900		250	720	UG/KG
SS132O	AO073	30-Mar-01	0.25	0.5	SW8270	FLUORENE	480		79	360	UG/KG
SS132O	AO073	30-Mar-01	0.25	0.5	SW8270	INDENO(1,2,3-c,d)PYRENE	2100		140	360	UG/KG
SS132O	AO073	30-Mar-01	0.25	0.5	SW8270	PHENANTHRENE	4500		100	360	UG/KG
SS132O	AO073	30-Mar-01	0.25	0.5	SW8270	PYRENE	7900		560	720	UG/KG
SS132O	AO074	30-Mar-01	0.5	1	CL200.7	ALUMINUM	1120	J	12.1359	12.1359	MG/KG
SS132O	AO074	30-Mar-01	0.5	1	CL200.7	BARIUM	1.6		0.0506	0.0506	MG/KG
SS132O	AO074	30-Mar-01	0.5	1	CL200.7	BERYLLIUM	0.081	J	0.0674	0.0674	MG/KG
SS132O	AO074	30-Mar-01	0.5	1	CL200.7	BORON	1.1		0.2191	0.2191	MG/KG
SS132O	AO074	30-Mar-01	0.5	1	CL200.7	CALCIUM	38.9		11.3606	11.3606	MG/KG
SS132O	AO074	30-Mar-01	0.5	1	CL200.7	CHROMIUM, TOTAL	1.8		0.3371	0.3371	MG/KG
SS132O	AO074	30-Mar-01	0.5	1	CL200.7	COBALT	0.3	J	0.2697	0.2697	MG/KG
SS132O	AO074	30-Mar-01	0.5		CL200.7	COPPER	20.9		0.1011	0.1011	MG/KG
SS132O	AO074	30-Mar-01	0.5		CL200.7	IRON	2380		5.5792	5.5792	MG/KG
SS132O	AO074	30-Mar-01	0.5		CL200.7	LEAD	59.4		0.4382	0.4382	MG/KG
SS1320	AO074	30-Mar-01	0.5		CL200.7	MAGNESIUM	163	-	11.8662	11.8662	MG/KG
SS1320	AO074	30-Mar-01	0.5		CL200.7	MANGANESE	15		0.3034	0.3034	MG/KG
SS1320	AO074	30-Mar-01	0.5		CL200.7	NICKEL	0.54		0.236	0.236	MG/KG
SS1320	AO074	30-Mar-01	0.5		CL200.7	POTASSIUM	156		5.0566	5.0566	MG/KG
SS1320	AO074	30-Mar-01	0.5		CL200.7	SODIUM	160		47.3638	47.3638	MG/KG

Table A.2

Target Array and Flanking Target Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132O	AO074	30-Mar-01	0.5		CL200.7	VANADIUM	3.9		0.3371	0.3371	MG/KG
SS1320	AO074	30-Mar-01	0.5		SW8270	FLUORANTHENE	300		120	360	UG/KG
SS1320	AO075	30-Mar-01	0.0		CL200.7	ALUMINUM	4340		11.0314	11.0314	MG/KG
SS1320	AO075	30-Mar-01	0		CL200.7	ANTIMONY	1.5		0.7661	0.7661	MG/KG
SS1320	AO075	30-Mar-01	0		CL200.7	ARSENIC	1.8		0.8733	0.8733	MG/KG
SS1320	AO075	30-Mar-01	0		CL200.7	BARIUM	5		0.046	0.0735	MG/KG
SS1320	AO075	30-Mar-01	0		CL200.7	BERYLLIUM	0.16		0.040	0.040	MG/KG
SS1320	AO075	30-Mar-01	0		CL200.7	BORON	1.4		0.1992	0.0013	MG/KG
SS1320 SS1320	AO075	30-Mar-01	0		CL200.7 CL200.7	CALCIUM	429		10.3267	10.3267	MG/KG
SS1320 SS1320	AO075	30-Mar-01	0		CL200.7 CL200.7	CHROMIUM, TOTAL	7.9			0.3064	MG/KG
			-			·			0.3064		
SS1320	AO075	30-Mar-01	0		CL200.7	COBALT	2.3		0.2451	0.2451	MG/KG
SS1320	AO075	30-Mar-01	0		CL200.7	COPPER	82.8		0.0919	0.0919	MG/KG
SS132O	AO075	30-Mar-01	0		CL200.7	IRON	9420		5.0714	5.0714	MG/KG
SS132O	AO075	30-Mar-01	0		CL200.7	LEAD	271	-	0.3984	0.3984	MG/KG
SS132O	AO075	30-Mar-01	0		CL200.7	MAGNESIUM	1750		10.7863	10.7863	MG/KG
SS132O	AO075	30-Mar-01	0		CL200.7	MANGANESE	65.4		0.2758	0.2758	MG/KG
SS132O	AO075	30-Mar-01	0		CL200.7	NICKEL	6.3		0.2145	0.2145	MG/KG
SS132O	AO075	30-Mar-01	0	0.25	CL200.7	POTASSIUM	187		4.5964	4.5964	MG/KG
SS132O	AO075	30-Mar-01	0	0.25	CL200.7	SELENIUM	0.71	J	0.7048	0.7048	MG/KG
SS132O	AO075	30-Mar-01	0	0.25	CL200.7	SODIUM	329		43.0533	43.0533	MG/KG
SS132O	AO075	30-Mar-01	0	0.25	CL200.7	VANADIUM	12.8		0.3064	0.3064	MG/KG
SS132O	AO075	30-Mar-01	0	0.25	CL200.7	ZINC	19.3	J	0.0613	0.0613	MG/KG
SS132O	AO075	30-Mar-01	0	0.25	SW8270	ACENAPHTHYLENE	780		91	370	UG/KG
SS132O	AO075	30-Mar-01	0	0.25	SW8270	ANTHRACENE	1800		110	370	UG/KG
SS132O	AO075	30-Mar-01	0	0.25	SW8270	BENZO(a)ANTHRACENE	9200		410	1500	UG/KG
SS132O	AO075	30-Mar-01	0	0.25	SW8270	BENZO(a)PYRENE	8500		410	1500	UG/KG
SS132O	AO075	30-Mar-01	0	0.25	SW8270	BENZO(b)FLUORANTHENE	7700		540	1500	UG/KG
SS132O	AO075	30-Mar-01	0	0.25	SW8270	BENZO(g,h,i)PERYLENE	3700		140	370	UG/KG
SS132O	AO075	30-Mar-01	0	0.25	SW8270	BENZO(k)FLUORANTHENE	9000		460	1500	UG/KG
SS132O	AO075	30-Mar-01	0	0.25	SW8270	CARBAZOLE	280	J	110	370	UG/KG
SS132O	AO075	30-Mar-01	0	0.25	SW8270	CHRYSENE	9700		450	1500	UG/KG
SS132O	AO075	30-Mar-01	0	0.25	SW8270	DIBENZOFURAN	300	J	110	370	UG/KG
SS132O	AO075	30-Mar-01	0		SW8270	FLUORANTHENE	19000		510	1500	UG/KG
SS132O	AO075	30-Mar-01	0		SW8270	FLUORENE	1000		80	370	UG/KG
SS132O	AO075	30-Mar-01	0		SW8270	INDENO(1,2,3-c,d)PYRENE	4000		140	370	UG/KG
SS1320	AO075	30-Mar-01	0		SW8270	PHENANTHRENE	11000		420	1500	UG/KG
SS1320	AO075	30-Mar-01	0		SW8270	PYRENE	19000		1100	1500	UG/KG
SS1320	AO076	30-Mar-01	-		CL200.7	ALUMINUM	2170		11.2606	11.2606	MG/KG
SS1320	AO076	30-Mar-01			CL200.7	ANTIMONY	1.4		0.782	0.782	MG/KG
SS1320	AO076	30-Mar-01			CL200.7 CL200.7	ARSENIC	1.4		0.762	0.782	

Table A.2

Target Array and Flanking Target Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPTH (-T.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132O	AO076	30-Mar-01	0.25	0.5 C	L200.7	BARIUM	3.8		0.0469	0.0469	MG/KG
SS132O	AO076	30-Mar-01	0.25	0.5 C	L200.7	BERYLLIUM	0.077	J	0.0626	0.0626	MG/KG
SS132O	AO076	30-Mar-01	0.25	0.5 C	L200.7	BORON	0.91		0.2033	0.2033	MG/KG
SS132O	AO076	30-Mar-01	0.25	0.5 C	L200.7	CALCIUM	87.6		10.5411	10.5411	MG/KG
SS132O	AO076	30-Mar-01	0.25	0.5 C	L200.7	CHROMIUM, TOTAL	3.3		0.3128	0.3128	MG/KG
SS132O	AO076	30-Mar-01	0.25	0.5 C	L200.7	COBALT	1		0.2502	0.2502	MG/KG
SS132O	AO076	30-Mar-01	0.25	0.5 C	L200.7	COPPER	45.6		0.0938	0.0938	MG/KG
SS132O	AO076	30-Mar-01	0.25	0.5 C	L200.7	IRON	3510	J	5.1767	5.1767	MG/KG
SS132O	AO076	30-Mar-01	0.25	0.5 C	L200.7	LEAD	143	J	0.4066	0.4066	MG/KG
SS132O	AO076	30-Mar-01	0.25	0.5 C	L200.7	MAGNESIUM	605		11.0103	11.0103	MG/KG
SS132O	AO076	30-Mar-01	0.25	0.5 C	L200.7	MANGANESE	31.8		0.2815	0.2815	MG/KG
SS132O	AO076	30-Mar-01	0.25	0.5 C	L200.7	NICKEL	1.8	J	0.219	0.219	MG/KG
SS132O	AO076	30-Mar-01	0.25	0.5 C	L200.7	POTASSIUM	231		4.6919	4.6919	MG/KG
SS132O	AO076	30-Mar-01	0.25	0.5 C	L200.7	SODIUM	182	J	43.9475	43.9475	MG/KG
SS132O	AO076	30-Mar-01	0.25	0.5 C	L200.7	VANADIUM	6.5		0.3128	0.3128	MG/KG
SS132O	AO076	30-Mar-01	0.25	0.5 C	L200.7	ZINC	8	J	0.0626	0.0626	MG/KG
SS132O	AO076	30-Mar-01	0.25	0.5 S	W8270	ACENAPHTHYLENE	280	J	89	360	UG/KG
SS132O	AO076	30-Mar-01	0.25	0.5 S	W8270	ANTHRACENE	710		110	360	UG/KG
SS132O	AO076	30-Mar-01	0.25	0.5 S	W8270	BENZO(a)ANTHRACENE	2400		99	360	UG/KG
SS132O	AO076	30-Mar-01	0.25	0.5 S	W8270	BENZO(a)PYRENE	2100		99	360	UG/KG
SS132O	AO076	30-Mar-01	0.25	0.5 S	W8270	BENZO(b)FLUORANTHENE	2200		130	360	UG/KG
SS132O	AO076	30-Mar-01	0.25	0.5 S	W8270	BENZO(g,h,i)PERYLENE	960		140	360	UG/KG
SS132O	AO076	30-Mar-01	0.25	0.5 S	W8270	BENZO(k)FLUORANTHENE	1900		110	360	UG/KG
SS132O	AO076	30-Mar-01	0.25	0.5 S	W8270	CHRYSENE	2600		110	360	UG/KG
SS132O	AO076	30-Mar-01	0.25	0.5 S	W8270	FLUORANTHENE	4400		120	360	UG/KG
SS132O	AO076	30-Mar-01	0.25	0.5 S	W8270	FLUORENE	470		78	360	UG/KG
SS132O	AO076	30-Mar-01	0.25	0.5 S	W8270	INDENO(1,2,3-c,d)PYRENE	1100		140	360	UG/KG
SS132O	AO076	30-Mar-01	0.25	0.5 S	W8270	PHENANTHRENE	3300		100	360	UG/KG
SS132O	AO076	30-Mar-01	0.25	0.5 S	W8270	PYRENE	4600		270	360	UG/KG
SS132O	AO077	30-Mar-01	0.5	1 C	L200.7	ALUMINUM	1750	J	12.1753	12.1753	MG/KG
SS132O	AO077	30-Mar-01	0.5	1 C	L200.7	BARIUM	5.7		0.0507	0.0507	MG/KG
SS132O	AO077	30-Mar-01	0.5	1 C	L200.7	BERYLLIUM	0.071	J	0.0676	0.0676	MG/KG
SS132O	AO077	30-Mar-01	0.5	1 C	L200.7	BORON	1.3		0.2198	0.2198	MG/KG
SS132O	AO077	30-Mar-01	0.5	1 C	L200.7	CALCIUM	62.4		11.3975	11.3975	MG/KG
SS132O	AO077	30-Mar-01	0.5	1 C	L200.7	CHROMIUM, TOTAL	19.7		0.3382	0.3382	MG/KG
SS132O	AO077	30-Mar-01	0.5	1 C	L200.7	COBALT	0.52	J	0.2706	0.2706	MG/KG
SS132O	AO077	30-Mar-01	0.5	1 C	L200.7	COPPER	41.7		0.1015	0.1015	MG/KG
SS132O	AO077	30-Mar-01	0.5	1 C	L200.7	IRON	3070	J	5.5973	5.5973	MG/KG
SS132O	AO077	30-Mar-01	0.5	1 C	L200.7	LEAD	152	J	0.4397	0.4397	MG/KG
SS132O	AO077	30-Mar-01	0.5	1 C	L200.7	MAGNESIUM	265		11.9048	11.9048	MG/KG

Table A.2

Target Array and Flanking Target Area Data (Detects)

SS132O AO SS132O AO	O077 30	DATE 0-Mar-01	DEPTH (FT	.) TEST	ANALYTE	RESULT				I I KII I C
SS132O AO SS132O AO			0.5	1 CL200.7	MANGANESE	26.5	QUALIFIER ¹	MDL 0.3044	RL 0.3044	UNITS MG/KG
SS132O AO		0-Mar-01	0.5	1 CL200.7	MOLYBDENUM	0.87	1	0.5411	0.5411	MG/KG
		0-Mar-01	0.5	1 CL200.7	NICKEL	8.5	J	0.2367	0.3411	MG/KG
SS132O AO		0-Mar-01	0.5	1 CL200.7	POTASSIUM	207		5.0731	5.0731	MG/KG
		80-Mar-01	0.5	1 CL200.7	SODIUM	220	1	47.5176	47.5176	MG/KG
		0-Mar-01	0.5	1 CL200.7	VANADIUM	5.4	J	0.3382	0.3382	MG/KG
		60-Mar-01	0.5	1 CL200.7	ZINC	9.8	1	0.3362	0.3362	MG/KG
		0-Mar-01	0.5	1 SW8270	BENZO(a)ANTHRACENE	390	J	99	360	UG/KG
		0-Mar-01	0.5	1 SW8270	BENZO(a)PYRENE	400		99	360	UG/KG
		0-Mar-01	0.5	1 SW8270	BENZO(b)FLUORANTHENE	330		130	360	UG/KG
		0-Mar-01	0.5	1 SW8270	BENZO(g,h,i)PERYLENE	160	J	140	360	UG/KG
		0-Mar-01	0.5	1 SW8270	BENZO(k)FLUORANTHENE	480		110	360	UG/KG
		0-Mar-01	0.5	1 SW8270	CHRYSENE	470		110	360	UG/KG
		0-Mar-01	0.5	1 SW8270	FLUORANTHENE	1100		120	360	UG/KG
		0-Mar-01	0.5	1 SW8270	INDENO(1,2,3-c,d)PYRENE	180		140	360	UG/KG
SS132O AO	O077 30	0-Mar-01	0.5	1 SW8270	PHENANTHRENE	540	J	100	360	UG/KG
		0-Mar-01	0.5	1 SW8270	PYRENE	840	J	270	360	UG/KG
SS132O AO	O078 30	0-Mar-01	0.5	1 CL200.7	ALUMINUM	1590	J	11.4125	11.4125	MG/KG
SS132O AO	O078 30	0-Mar-01	0.5	1 CL200.7	ARSENIC	1.1	J	0.9035	0.9035	MG/KG
SS132O AO	O078 30	0-Mar-01	0.5	1 CL200.7	BARIUM	3		0.0476	0.0476	MG/KG
SS132O AO	O078 30	0-Mar-01	0.5	1 CL200.7	BERYLLIUM	0.076	J	0.0634	0.0634	MG/KG
SS132O AO	O078 30	0-Mar-01	0.5	1 CL200.7	BORON	1.1		0.2061	0.2061	MG/KG
SS132O AO	O078 30	0-Mar-01	0.5	1 CL200.7	CALCIUM	42.5		10.6834	10.6834	MG/KG
SS132O AO	O078 30	0-Mar-01	0.5	1 CL200.7	CHROMIUM, TOTAL	2.1		0.317	0.317	MG/KG
SS132O AO	O078 30	0-Mar-01	0.5	1 CL200.7	COBALT	0.38	J	0.2536	0.2536	MG/KG
SS132O AO	O078 30	0-Mar-01	0.5	1 CL200.7	COPPER	36.6		0.0951	0.0951	MG/KG
SS132O AO	O078 30	0-Mar-01	0.5	1 CL200.7	IRON	2960	J	5.2466	5.2466	MG/KG
SS132O AO	O078 30	0-Mar-01	0.5	1 CL200.7	LEAD	109	J	0.4121	0.4121	MG/KG
SS132O AO	O078 30	0-Mar-01	0.5	1 CL200.7	MAGNESIUM	202		11.1589	11.1589	MG/KG
SS132O AO	O078 30	0-Mar-01	0.5	1 CL200.7	MANGANESE	24.1		0.2853	0.2853	MG/KG
SS132O AO	O078 30	0-Mar-01	0.5	1 CL200.7	MOLYBDENUM	0.59	J	0.5072	0.5072	MG/KG
		0-Mar-01	0.5	1 CL200.7	NICKEL	0.78		0.2219	0.2219	MG/KG
		0-Mar-01	0.5	1 CL200.7	POTASSIUM	147		4.7552	4.7552	MG/KG
		0-Mar-01	0.5	1 CL200.7	SODIUM	176	J	44.5406	44.5406	MG/KG
		0-Mar-01	0.5	1 CL200.7	VANADIUM	5.3		0.317	0.317	MG/KG
		0-Mar-01	0.5	1 CL200.7	ZINC	7.7		0.0634	0.0634	MG/KG
		0-Mar-01	0.5	1 SW8270	BENZO(a)ANTHRACENE	660		99	360	UG/KG
		0-Mar-01	0.5	1 SW8270	BENZO(a)PYRENE	560	-	99	360	UG/KG
		0-Mar-01	0.5	1 SW8270	BENZO(b)FLUORANTHENE	640	J	130	360	UG/KG
		0-Mar-01	0.5	1 SW8270	BENZO(g,h,i)PERYLENE	290		140	360	UG/KG

Table A.2

Target Array and Flanking Target Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132O	AO078	30-Mar-01	0.5	1	SW8270	BENZO(k)FLUORANTHENE	550		110	360	UG/KG
SS132O	AO078	30-Mar-01	0.5	1	SW8270	CHRYSENE	710		110	360	UG/KG
SS132O	AO078	30-Mar-01	0.5	1	SW8270	FLUORANTHENE	1600		120	360	UG/KG
SS132O	AO078	30-Mar-01	0.5	1	SW8270	INDENO(1,2,3-c,d)PYRENE	320	J	140	360	UG/KG
SS132O	AO078	30-Mar-01	0.5	1	SW8270	PHENANTHRENE	920	J	100	360	UG/KG
SS132O	AO078	30-Mar-01	0.5	1	SW8270	PYRENE	1400	J	270	360	UG/KG
SS132P	AN803	20-Mar-01	0	0.25	CVOL	ACETONE	16	J	4.04	8	UG/KG
SS132P	AN803	20-Mar-01	0	0.25	CVOL	BROMOFORM	2	J	1.15	8	UG/KG
SS132P	AN803	20-Mar-01	0	0.25	E350.2	NITROGEN, AMMONIA (AS N)	2.5	J	1.5	2.46	MG/KG
SS132P	AN803	20-Mar-01	0	0.25	E353.2	NITROGEN, NITRATE-NITRITE	0.04		0.0043	0.01	MG/KG
SS132P	AN803	20-Mar-01	0	0.25	E365.2	PHOSPHORUS, TOTAL ORTHOPHOSPHATE (AS PO4)	36.3		1	1.86	MG/KG
SS132P	AN803T	20-Mar-01	0	0.25	LYDKHN	TOTAL ORGANIC CARBON	316	J			MG/KG
SS132P	AN804	20-Mar-01	0.25	0.5	CVOL	ACETONE	30	J	4.04	9	UG/KG
SS132P	AN804	20-Mar-01	0.25	0.5	CVOL	BROMOFORM	3	J	1.15	9	UG/KG
SS132P	AN804	20-Mar-01	0.25	0.5	E353.2	NITROGEN, NITRATE-NITRITE	0.02		0.0043	0.01	MG/KG
SS132P	AN804	20-Mar-01	0.25	0.5	E365.2	PHOSPHORUS, TOTAL ORTHOPHOSPHATE (AS PO4)	35.9		1	1.81	MG/KG
SS132P	AN805	20-Mar-01	0.5	1	CPEST	BETA BHC (BETA HEXACHLOROCYCLOHEXANE)	0.99	J	0.263	1.8	UG/KG
SS132P	AN805	20-Mar-01	0.5	1	CVOL	ACETONE	11	J	4.04	9	UG/KG
SS132P	AN805	20-Mar-01	0.5	1	CVOL	BROMOFORM	4	J	1.15	9	UG/KG
SS132P	AN805	20-Mar-01	0.5	1	E350.2	NITROGEN, AMMONIA (AS N)	2.5	J	1.5	2.47	MG/KG
SS132P	AN805	20-Mar-01	0.5	1	E353.2	NITROGEN, NITRATE-NITRITE	0.01		0.0043	0.01	MG/KG
SS132P	AN805	20-Mar-01	0.5	1	E365.2	PHOSPHORUS, TOTAL ORTHOPHOSPHATE (AS PO4)	27.7		1	1.74	MG/KG
SS132P	AN806	20-Mar-01	0	0.25	CVOL	ACETONE	26	J	4.04	8	UG/KG
SS132P	AN806	20-Mar-01	0	0.25	CVOL	BROMOFORM	2	J	1.15	8	UG/KG
SS132P	AN806	20-Mar-01	0	0.25	E350.2	NITROGEN, AMMONIA (AS N)	3.6	J	1.5	2.35	MG/KG
SS132P	AN806	20-Mar-01	0	0.25	E365.2	PHOSPHORUS, TOTAL ORTHOPHOSPHATE (AS PO4)	29.1		1	1.93	MG/KG
SS132P	AN806T	20-Mar-01	0	0.25	LYDKHN	TOTAL ORGANIC CARBON	164	J			MG/KG
SS132P	AN807	20-Mar-01	0.25	0.5	CVOL	ACETONE	12	J	4.04	8	UG/KG
SS132P	AN807	20-Mar-01	0.25	0.5	CVOL	BROMOFORM	4	J	1.15	8	UG/KG
SS132P	AN807	20-Mar-01	0.25	0.5	E350.2	NITROGEN, AMMONIA (AS N)	2.8	J	1.5	2.44	MG/KG
SS132P	AN807	20-Mar-01	0.25	0.5	E353.2	NITROGEN, NITRATE-NITRITE	0.01		0.0043	0.01	MG/KG
SS132P	AN807	20-Mar-01	0.25	0.5	E365.2	PHOSPHORUS, TOTAL ORTHOPHOSPHATE (AS PO4)	30.3		1	2.01	MG/KG
SS132P	AN808	20-Mar-01	0.5	1	CPEST	BETA BHC (BETA HEXACHLOROCYCLOHEXANE)	1.1	J	0.263	1.8	UG/KG
SS132P	AN808	20-Mar-01	0.5	1	CVOL	ACETONE	8	J	4.04	8	UG/KG
SS132P	AN808	20-Mar-01	0.5	1	CVOL	BROMOFORM	3	J	1.15	8	UG/KG
SS132P	AN808	20-Mar-01	0.5	1	CVOL	TOLUENE	0.8	J	0.8	8	UG/KG
SS132P	AN808	20-Mar-01	0.5	1	E350.2	NITROGEN, AMMONIA (AS N)	2.3	J	1.5	2.24	MG/KG
SS132P	AN808	20-Mar-01	0.5	1	E353.2	NITROGEN, NITRATE-NITRITE	0.01		0.0043	0.01	MG/KG
SS132P	AN808	20-Mar-01	0.5	1	E365.2	PHOSPHORUS, TOTAL ORTHOPHOSPHATE (AS PO4)	36.4		1	1.85	MG/KG
SS132P	AN809	20-Mar-01	0.5	1	CVOL	ACETONE	14	J	4.04	9	UG/KG

Table A.2

Target Array and Flanking Target Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132P	AN809	20-Mar-01	0.5	1	CVOL	BROMOFORM	4	J	1.15	9	UG/KG
SS132P	AN809	20-Mar-01	0.5	1	E350.2	NITROGEN, AMMONIA (AS N)	2.7	J	1.5	2.43	MG/KG
SS132P	AN809	20-Mar-01	0.5	1	E353.2	NITROGEN, NITRATE-NITRITE	0.01		0.0043	0.01	MG/KG
SS132P	AN809	20-Mar-01	0.5	1	E365.2	PHOSPHORUS, TOTAL ORTHOPHOSPHATE (AS PO4)	31.3		1	1.7	MG/KG
SS132P	AN810	20-Mar-01	0	0.25	CL200.7	ALUMINUM	1570		2.3957	2.3957	MG/KG
SS132P	AN810	20-Mar-01	0	0.25	CL200.7	ARSENIC	0.78	J	0.6359	0.6359	MG/KG
SS132P	AN810	20-Mar-01	0	0.25	CL200.7	BARIUM	1.8		0.1035	0.1035	MG/KG
SS132P	AN810	20-Mar-01	0	0.25	CL200.7	BERYLLIUM	0.05	J	0.0444	0.0444	MG/KG
SS132P	AN810	20-Mar-01	0	0.25	CL200.7	CALCIUM	43.7		1.0648	1.0648	MG/KG
SS132P	AN810	20-Mar-01	0	0.25	CL200.7	CHROMIUM, TOTAL	2.3	J	0.2514	0.2514	MG/KG
SS132P	AN810	20-Mar-01	0	0.25	CL200.7	COBALT	0.59	J	0.3106	0.3106	MG/KG
SS132P	AN810	20-Mar-01	0	0.25	CL200.7	COPPER	13.6	J	0.3845	0.3845	MG/KG
SS132P	AN810	20-Mar-01	0	0.25	CL200.7	IRON	2770	J	5.0429	5.0429	MG/KG
SS132P	AN810	20-Mar-01	0	0.25	CL200.7	LEAD	19.5	J	0.3845	0.3845	MG/KG
SS132P	AN810	20-Mar-01	0	0.25	CL200.7	MAGNESIUM	185		1.9521	1.9521	MG/KG
SS132P	AN810	20-Mar-01	0	0.25	CL200.7	MANGANESE	18.2	J	0.0739	0.0739	MG/KG
SS132P	AN810	20-Mar-01	0	0.25	CL200.7	NICKEL	1.1		0.2514	0.2514	MG/KG
SS132P	AN810	20-Mar-01	0	0.25	CL200.7	POTASSIUM	114	J	18.1899	18.1899	MG/KG
SS132P	AN810	20-Mar-01	0	0.25	CL200.7	SODIUM	103		55.1612	55.1612	MG/KG
SS132P	AN810	20-Mar-01	0	0.25	CL200.7	VANADIUM	5.3		0.3993	0.3993	MG/KG
SS132P	AN810	20-Mar-01	0	0.25	CL200.7	ZINC	3.6	J	0.1627	0.1627	MG/KG
SS132P	AN810	20-Mar-01	0	0.25	SW8270	BENZO(a)ANTHRACENE	310	J	95	340	UG/KG
SS132P	AN810	20-Mar-01	0	0.25	SW8270	BENZO(a)PYRENE	270	J	95	340	UG/KG
SS132P	AN810	20-Mar-01	0	0.25	SW8270	BENZO(b)FLUORANTHENE	510		120	340	UG/KG
SS132P	AN810	20-Mar-01	0	0.25	SW8270	BENZO(g,h,i)PERYLENE	210	J	130	340	UG/KG
SS132P	AN810	20-Mar-01	0	0.25	SW8270	BENZO(k)FLUORANTHENE	430		110	340	UG/KG
SS132P	AN810	20-Mar-01	0	0.25	SW8270	CARBAZOLE	170	J	100	340	UG/KG
SS132P	AN810	20-Mar-01	0	0.25	SW8270	CHRYSENE	590		100	340	UG/KG
SS132P	AN810	20-Mar-01	0	0.25	SW8270	FLUORANTHENE	1100		120	340	UG/KG
SS132P	AN810	20-Mar-01	0	0.25	SW8270	INDENO(1,2,3-c,d)PYRENE	200	J	130	340	UG/KG
SS132P	AN810	20-Mar-01	0	0.25	SW8270	PHENANTHRENE	690		97	340	UG/KG
SS132P	AN810	20-Mar-01	0	0.25	SW8270	PYRENE	860		260	340	UG/KG
SS132P	AN811	20-Mar-01	0.25	0.5	CL200.7	ALUMINUM	1650		2.4764	2.4764	MG/KG
SS132P	AN811	20-Mar-01	0.25	0.5	CL200.7	ARSENIC	0.94	J	0.6573	0.6573	MG/KG
SS132P	AN811	20-Mar-01	0.25	0.5	CL200.7	BARIUM	2.6		0.107	0.107	MG/KG
SS132P	AN811	20-Mar-01	0.25	0.5	CL200.7	BERYLLIUM	0.069	J	0.0459	0.0459	MG/KG
SS132P	AN811	20-Mar-01	0.25	0.5	CL200.7	CALCIUM	67.9		1.1006	1.1006	MG/KG
SS132P	AN811	20-Mar-01	0.25	0.5	CL200.7	CHROMIUM, TOTAL	2.3	J	0.2599	0.2599	MG/KG
SS132P	AN811	20-Mar-01	0.25		CL200.7	COBALT	0.65		0.321	0.321	
SS132P	AN811	20-Mar-01	0.25	0.5	CL200.7	COPPER	15.2	J	0.3974	0.3974	MG/KG

Table A.2

Target Array and Flanking Target Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132P	AN811	20-Mar-01	0.25	0.5	CL200.7	IRON	2760	J	5.2127	5.2127	MG/KG
SS132P	AN811	20-Mar-01	0.25	0.5	CL200.7	LEAD	33.6	J	0.3974	0.3974	MG/KG
SS132P	AN811	20-Mar-01	0.25	0.5	CL200.7	MAGNESIUM	240		2.0178	2.0178	MG/KG
SS132P	AN811	20-Mar-01	0.25	0.5	CL200.7	MANGANESE	24.8	J	0.0764	0.0764	MG/KG
SS132P	AN811	20-Mar-01	0.25	0.5	CL200.7	NICKEL	1.2		0.2599	0.2599	MG/KG
SS132P	AN811	20-Mar-01	0.25	0.5	CL200.7	POTASSIUM	175	J	18.8023	18.8023	MG/KG
SS132P	AN811	20-Mar-01	0.25	0.5	CL200.7	VANADIUM	4.7		0.4127	0.4127	MG/KG
SS132P	AN811	20-Mar-01	0.25	0.5	CL200.7	ZINC	4.9	J	0.1682	0.1682	MG/KG
SS132P	AN812	20-Mar-01	0.5	1	CL200.7	ALUMINUM	1590		2.5429	2.5429	MG/KG
SS132P	AN812	20-Mar-01	0.5	1	CL200.7	ARSENIC	0.78	J	0.675	0.675	MG/KG
SS132P	AN812	20-Mar-01	0.5	1	CL200.7	BARIUM	3.1		0.1099	0.1099	MG/KG
SS132P	AN812	20-Mar-01	0.5	1	CL200.7	BERYLLIUM	0.058	J	0.0471	0.0471	MG/KG
SS132P	AN812	20-Mar-01	0.5	1	CL200.7	CALCIUM	47		1.1302	1.1302	MG/KG
SS132P	AN812	20-Mar-01	0.5	1	CL200.7	CHROMIUM, TOTAL	2.2	J	0.2668	0.2668	MG/KG
SS132P	AN812	20-Mar-01	0.5	1	CL200.7	COBALT	0.68		0.3296	0.3296	MG/KG
SS132P	AN812	20-Mar-01	0.5	1	CL200.7	COPPER	9.1	J	0.4081	0.4081	MG/KG
SS132P	AN812	20-Mar-01	0.5	1	CL200.7	IRON	2650	J	5.3526	5.3526	MG/KG
SS132P	AN812	20-Mar-01	0.5	1	CL200.7	LEAD	18.2	J	0.4081	0.4081	MG/KG
SS132P	AN812	20-Mar-01	0.5	1	CL200.7	MAGNESIUM	249		2.072	2.072	MG/KG
SS132P	AN812	20-Mar-01	0.5	1	CL200.7	MANGANESE	26.8	J	0.0785	0.0785	MG/KG
SS132P	AN812	20-Mar-01	0.5	1	CL200.7	NICKEL	1.1		0.2668	0.2668	MG/KG
SS132P	AN812	20-Mar-01	0.5	1	CL200.7	POTASSIUM	162	J	19.3071	19.3071	MG/KG
SS132P	AN812	20-Mar-01	0.5	1	CL200.7	VANADIUM	4.6		0.4238	0.4238	MG/KG
SS132P	AN812	20-Mar-01	0.5	1	CL200.7	ZINC	12.3	J	0.1727	0.1727	MG/KG
SS132P	AN812	20-Mar-01	0.5	1	SW8270	ANTHRACENE	150	J	100	340	UG/KG
SS132P	AN812	20-Mar-01	0.5	1	SW8270	BENZO(a)ANTHRACENE	540		94	340	UG/KG
SS132P	AN812	20-Mar-01	0.5	1	SW8270	BENZO(a)PYRENE	430		94	340	UG/KG
SS132P	AN812	20-Mar-01	0.5	1	SW8270	BENZO(b)FLUORANTHENE	440		120	340	UG/KG
SS132P	AN812	20-Mar-01	0.5	1	SW8270	BENZO(g,h,i)PERYLENE	200	J	130	340	UG/KG
SS132P	AN812	20-Mar-01	0.5	1	SW8270	BENZO(k)FLUORANTHENE	460		110	340	UG/KG
SS132P	AN812	20-Mar-01	0.5	1	SW8270	CHRYSENE	590		100	340	UG/KG
SS132P	AN812	20-Mar-01	0.5	1	SW8270	FLUORANTHENE	1300		120	340	UG/KG
SS132P	AN812	20-Mar-01	0.5	1	SW8270	FLUORENE	110	J	74	340	UG/KG
SS132P	AN812	20-Mar-01	0.5	1	SW8270	INDENO(1,2,3-c,d)PYRENE	230	J	130	340	UG/KG
SS132P	AN812	20-Mar-01	0.5	1	SW8270	PHENANTHRENE	1000		97	340	UG/KG
SS132P	AN812	20-Mar-01	0.5	1	SW8270	PYRENE	1000		260	340	UG/KG
SS132P	AN813	20-Mar-01	0	0.25	CL200.7	ALUMINUM	1700		2.5854	2.5854	MG/KG
SS132P	AN813	20-Mar-01	0	0.25	CL200.7	ARSENIC	1	J	0.6862	0.6862	MG/KG
SS132P	AN813	20-Mar-01	0	0.25	CL200.7	BARIUM	2.3		0.1117	0.1117	MG/KG
SS132P	AN813	20-Mar-01	0	0.25	CL200.7	BERYLLIUM	0.075	J	0.0479	0.0479	MG/KG

Table A.2

Target Array and Flanking Target Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132P	AN813	20-Mar-01	0	0.25	CL200.7	CALCIUM	64.7		1.1491	1.1491	MG/KG
SS132P	AN813	20-Mar-01	0	0.25	CL200.7	CHROMIUM, TOTAL	2.5	J	0.2713	0.2713	MG/KG
SS132P	AN813	20-Mar-01	0	0.25	CL200.7	COBALT	0.77		0.3351	0.3351	MG/KG
SS132P	AN813	20-Mar-01	0	0.25	CL200.7	COPPER	16.9	J	0.4149	0.4149	MG/KG
SS132P	AN813	20-Mar-01	0	0.25	CL200.7	IRON	3180	J	5.4421	5.4421	MG/KG
SS132P	AN813	20-Mar-01	0	0.25	CL200.7	LEAD	41.6	J	0.4149	0.4149	MG/KG
SS132P	AN813	20-Mar-01	0	0.25	CL200.7	MAGNESIUM	234		2.1066	2.1066	MG/KG
SS132P	AN813	20-Mar-01	0	0.25	CL200.7	MANGANESE	28	J	0.0798	0.0798	MG/KG
SS132P	AN813	20-Mar-01	0	0.25	CL200.7	MOLYBDENUM	0.76	J	0.6543	0.6543	MG/KG
SS132P	AN813	20-Mar-01	0	0.25	CL200.7	NICKEL	1.4		0.2713	0.2713	MG/KG
SS132P	AN813	20-Mar-01	0	0.25	CL200.7	POTASSIUM	141	J	19.6298	19.6298	MG/KG
SS132P	AN813	20-Mar-01	0	0.25	CL200.7	VANADIUM	5.2		0.4309	0.4309	MG/KG
SS132P	AN813	20-Mar-01	0	0.25	CL200.7	ZINC	5.1	J	0.1756	0.1756	MG/KG
SS132P	AN814	20-Mar-01	0.25	0.5	CL200.7	ALUMINUM	1320		2.5078	2.5078	MG/KG
SS132P	AN814	20-Mar-01	0.25	0.5	CL200.7	ARSENIC	0.71	J	0.6657	0.6657	MG/KG
SS132P	AN814	20-Mar-01	0.25	0.5	CL200.7	BARIUM	2		0.1084	0.1084	MG/KG
SS132P	AN814	20-Mar-01	0.25	0.5	CL200.7	BERYLLIUM	0.057	J	0.0464	0.0464	MG/KG
SS132P	AN814	20-Mar-01	0.25	0.5	CL200.7	CALCIUM	34.2	J	1.1146	1.1146	MG/KG
SS132P	AN814	20-Mar-01	0.25	0.5	CL200.7	CHROMIUM, TOTAL	2.2	J	0.2632	0.2632	MG/KG
SS132P	AN814	20-Mar-01	0.25	0.5	CL200.7	COBALT	0.65	J	0.3251	0.3251	MG/KG
SS132P	AN814	20-Mar-01	0.25	0.5	CL200.7	COPPER	25.6	J	0.4025	0.4025	MG/KG
SS132P	AN814	20-Mar-01	0.25	0.5	CL200.7	IRON	2390	J	5.2788	5.2788	MG/KG
SS132P	AN814	20-Mar-01	0.25	0.5	CL200.7	LEAD	31.8	J	0.4025	0.4025	MG/KG
SS132P	AN814	20-Mar-01	0.25	0.5	CL200.7	MAGNESIUM	186		2.0434	2.0434	MG/KG
SS132P	AN814	20-Mar-01	0.25	0.5	CL200.7	MANGANESE	20.2	J	0.0774	0.0774	MG/KG
SS132P	AN814	20-Mar-01	0.25	0.5	CL200.7	MOLYBDENUM	0.64	J	0.6347	0.6347	MG/KG
SS132P	AN814	20-Mar-01	0.25	0.5	CL200.7	NICKEL	1.1		0.2632	0.2632	MG/KG
SS132P	AN814	20-Mar-01	0.25	0.5	CL200.7	POTASSIUM	122	J	19.041	19.041	MG/KG
SS132P	AN814	20-Mar-01	0.25	0.5	CL200.7	VANADIUM	3.5		0.418	0.418	MG/KG
SS132P	AN814	20-Mar-01	0.25	0.5	CL200.7	ZINC	3.8	J	0.1703	0.1703	MG/KG
SS132P	AN815	20-Mar-01	0.5	1	CL200.7	ALUMINUM	1400		2.4584	2.4584	MG/KG
SS132P	AN815	20-Mar-01	0.5	1	CL200.7	BARIUM	2.2		0.1062	0.1062	MG/KG
SS132P	AN815	20-Mar-01	0.5		CL200.7	BERYLLIUM	0.061	J	0.0455	0.0455	MG/KG
SS132P	AN815	20-Mar-01	0.5		CL200.7	CALCIUM	36.6		1.0926	1.0926	
SS132P	AN815	20-Mar-01	0.5		CL200.7	CHROMIUM, TOTAL	2.2		0.258	0.258	
SS132P	AN815	20-Mar-01	0.5		CL200.7	COBALT	0.87		0.3187	0.3187	MG/KG
SS132P	AN815	20-Mar-01	0.5		CL200.7	COPPER	12.3	J	0.3946	0.3946	
SS132P	AN815	20-Mar-01	0.5		CL200.7	IRON	2490		5.1747	5.1747	MG/KG
SS132P	AN815	20-Mar-01	0.5		CL200.7	LEAD	19.7		0.3946	0.3946	
SS132P	AN815	20-Mar-01	0.5		CL200.7	MAGNESIUM	279		2.0031	2.0031	

Table A.2

Target Array and Flanking Target Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132P	AN815	20-Mar-01	0.5	, ,	CL200.7	MANGANESE	23.8	J	0.0759	0.0759	MG/KG
SS132P	AN815	20-Mar-01	0.5	1	CL200.7	MOLYBDENUM	0.68	J	0.6222	0.6222	MG/KG
SS132P	AN815	20-Mar-01	0.5	1	CL200.7	NICKEL	1.1		0.258	0.258	MG/KG
SS132P	AN815	20-Mar-01	0.5	1	CL200.7	POTASSIUM	116	J	18.6655	18.6655	MG/KG
SS132P	AN815	20-Mar-01	0.5	1	CL200.7	VANADIUM	4.3		0.4097	0.4097	MG/KG
SS132P	AN815	20-Mar-01	0.5	1	CL200.7	ZINC	4	J	0.1669	0.1669	MG/KG
SS132P	AN816	20-Mar-01	0.5	1	CL200.7	ALUMINUM	1430		2.4406	2.4406	MG/KG
SS132P	AN816	20-Mar-01	0.5	1	CL200.7	ARSENIC	0.91	J	0.6478	0.6478	MG/KG
SS132P	AN816	20-Mar-01	0.5	1	CL200.7	BARIUM	2.8		0.1055	0.1055	MG/KG
SS132P	AN816	20-Mar-01	0.5	1	CL200.7	BERYLLIUM	0.071	J	0.0452	0.0452	MG/KG
SS132P	AN816	20-Mar-01	0.5	1	CL200.7	CALCIUM	72.4		1.0847	1.0847	MG/KG
SS132P	AN816	20-Mar-01	0.5	1	CL200.7	CHROMIUM, TOTAL	2.2	J	0.2561	0.2561	MG/KG
SS132P	AN816	20-Mar-01	0.5	1	CL200.7	COBALT	0.69		0.3164	0.3164	MG/KG
SS132P	AN816	20-Mar-01	0.5	1	CL200.7	COPPER	10.1	J	0.3917	0.3917	MG/KG
SS132P	AN816	20-Mar-01	0.5	1	CL200.7	IRON	2570	J	5.1372	5.1372	MG/KG
SS132P	AN816	20-Mar-01	0.5	1	CL200.7	LEAD	19.9	J	0.3917	0.3917	MG/KG
SS132P	AN816	20-Mar-01	0.5	1	CL200.7	MAGNESIUM	210		1.9886	1.9886	MG/KG
SS132P	AN816	20-Mar-01	0.5	1	CL200.7	MANGANESE	23.1	J	0.0753	0.0753	MG/KG
SS132P	AN816	20-Mar-01	0.5	1	CL200.7	MOLYBDENUM	0.64	J	0.6177	0.6177	MG/KG
SS132P	AN816	20-Mar-01	0.5	1	CL200.7	NICKEL	1.1		0.2561	0.2561	MG/KG
SS132P	AN816	20-Mar-01	0.5	1	CL200.7	POTASSIUM	181	J	18.5302	18.5302	MG/KG
SS132P	AN816	20-Mar-01	0.5	1	CL200.7	SODIUM	161		56.1933	56.1933	MG/KG
SS132P	AN816	20-Mar-01	0.5	1	CL200.7	VANADIUM	4.7		0.4068	0.4068	MG/KG
SS132P	AN816	20-Mar-01	0.5	1	CL200.7	ZINC	3.9	J	0.1657	0.1657	MG/KG
SS132Q	AN794	20-Mar-01	0.5	1	SW8330	2,4,6-TRINITROTOLUENE	9000	J	7.2	120	UG/KG
SS132Q	AN794	20-Mar-01	0.5	1	SW8330	2-AMINO-4,6-DINITROTOLUENE	130		5.6	120	UG/KG
SS132Q	AN794	20-Mar-01	0.5	1	SW8330	4-AMINO-2,6-DINITROTOLUENE	160		15	120	UG/KG
SS132Q	AN795	20-Mar-01	0.5	1	SW8330	2,4,6-TRINITROTOLUENE	1600	J	7.2	120	UG/KG
SS132Q	AN795	20-Mar-01	0.5	1	SW8330	2-AMINO-4,6-DINITROTOLUENE	140		5.6	120	UG/KG
SS132Q	AN795	20-Mar-01	0.5	1	SW8330	4-AMINO-2,6-DINITROTOLUENE	160		15	120	
SS132Q	AN796	20-Mar-01	0	0.25	CL200.7	ALUMINUM	2740		2.5398	2.5398	MG/KG
SS132Q	AN796	20-Mar-01	0	0.25	CL200.7	ARSENIC	2.4	J	0.6742	0.6742	MG/KG
SS132Q	AN796	20-Mar-01	0	0.25	CL200.7	BARIUM	1.9		0.1097	0.1097	MG/KG
SS132Q	AN796	20-Mar-01	0	0.25	CL200.7	BERYLLIUM	0.074	J	0.047	0.047	MG/KG
SS132Q	AN796	20-Mar-01	0	0.25	CL200.7	CALCIUM	19.8	J	1.1288	1.1288	MG/KG
SS132Q	AN796	20-Mar-01	0	0.25	CL200.7	CHROMIUM, TOTAL	4.1	J	0.2665	0.2665	MG/KG
SS132Q	AN796	20-Mar-01	0	0.25	CL200.7	COBALT	0.54	J	0.3292	0.3292	MG/KG
SS132Q	AN796	20-Mar-01	0	0.25	CL200.7	COPPER	27.2	J	0.4076	0.4076	
SS132Q	AN796	20-Mar-01	0	0.25	CL200.7	IRON	5510	J	5.3462	5.3462	MG/KG
SS132Q	AN796	20-Mar-01	0	0.25	CL200.7	LEAD	59.5	J	0.4076	0.4076	MG/KG

Table A.2

Target Array and Flanking Target Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132Q	AN796	20-Mar-01	0		CL200.7	MAGNESIUM	192		2.0695	2.0695	MG/KG
SS132Q	AN796	20-Mar-01	0		CL200.7	MANGANESE	14.3		0.0784	0.0784	MG/KG
SS132Q	AN796	20-Mar-01	0		CL200.7	NICKEL	1.2		0.2665	0.2665	MG/KG
SS132Q	AN796	20-Mar-01	0		CL200.7	POTASSIUM	128		19.2838	19.2838	MG/KG
SS132Q	AN796	20-Mar-01	0		CL200.7	VANADIUM	10.6		0.4233	0.4233	MG/KG
SS132Q	AN796	20-Mar-01	0		CL200.7	ZINC	5.1		0.4235	0.4235	MG/KG
SS132Q	AN796	20-Mar-01	0		CL200.7 CL245.5	MERCURY	0.16		0.1725	0.1725	MG/KG
SS132Q	AN797	20-Mar-01	-		CL200.7	ALUMINUM	3620		2.6617	2.6617	MG/KG
SS132Q SS132Q	AN797	20-Mar-01			CL200.7 CL200.7	ANTIMONY	1.3		1.2487	1.2487	MG/KG
SS132Q SS132Q	AN797 AN797	20-Mar-01			CL200.7 CL200.7	ARSENIC	4.5		0.7065	0.7065	MG/KG
SS132Q	AN797	20-Mar-01			CL200.7	BARIUM	4.5		0.115	0.115	MG/KG
SS132Q	AN797	20-Mar-01			CL200.7	BERYLLIUM	0.069		0.0493	0.0493	MG/KG
SS132Q	AN797	20-Mar-01			CL200.7	CADMIUM	0.31		0.0822	0.0822	MG/KG
SS132Q	AN797	20-Mar-01			CL200.7	CALCIUM	33.2		1.183	1.183	MG/KG
SS132Q	AN797	20-Mar-01			CL200.7	CHROMIUM, TOTAL	16.4		0.2793	0.2793	MG/KG
SS132Q	AN797	20-Mar-01			CL200.7	COBALT	2.3		0.345	0.345	MG/KG
SS132Q	AN797	20-Mar-01			CL200.7	COPPER	84.9		0.4272	0.4272	MG/KG
SS132Q	AN797	20-Mar-01	0.25	0.5	CL200.7	IRON	42400	J	5.6027	5.6027	MG/KG
SS132Q	AN797	20-Mar-01	0.25	0.5	CL200.7	LEAD	121	J	0.4272	0.4272	MG/KG
SS132Q	AN797	20-Mar-01	0.25	0.5	CL200.7	MAGNESIUM	361		2.1688	2.1688	MG/KG
SS132Q	AN797	20-Mar-01	0.25	0.5	CL200.7	MANGANESE	348	J	0.0822	0.0822	MG/KG
SS132Q	AN797	20-Mar-01	0.25	0.5	CL200.7	NICKEL	7		0.2793	0.2793	MG/KG
SS132Q	AN797	20-Mar-01	0.25	0.5	CL200.7	POTASSIUM	154	J	20.209	20.209	MG/KG
SS132Q	AN797	20-Mar-01	0.25	0.5	CL200.7	SELENIUM	1.5	J	0.7558	0.7558	MG/KG
SS132Q	AN797	20-Mar-01	0.25	0.5	CL200.7	VANADIUM	10.9		0.4436	0.4436	MG/KG
SS132Q	AN797	20-Mar-01	0.25	0.5	CL200.7	ZINC	56	J	0.1807	0.1807	MG/KG
SS132Q	AN797	20-Mar-01	0.25	0.5	CL245.5	MERCURY	0.11		0.0526	0.0526	MG/KG
SS132Q	AN797	20-Mar-01	0.25	0.5	SW8270	ACENAPHTHYLENE	100	J	86	350	UG/KG
SS132Q	AN797	20-Mar-01	0.25	0.5	SW8270	ANTHRACENE	130	J	100	350	UG/KG
SS132Q	AN797	20-Mar-01	0.25	0.5	SW8270	BENZO(a)ANTHRACENE	1200		96	350	UG/KG
SS132Q	AN797	20-Mar-01	0.25		SW8270	BENZO(a)PYRENE	830		96	350	UG/KG
SS132Q	AN797	20-Mar-01			SW8270	BENZO(b)FLUORANTHENE	1600		130	350	UG/KG
SS132Q	AN797	20-Mar-01			SW8270	BENZO(g,h,i)PERYLENE	640		140	350	UG/KG
SS132Q	AN797	20-Mar-01			SW8270	BENZO(k)FLUORANTHENE	1100		110	350	UG/KG
SS132Q	AN797	20-Mar-01			SW8270	CARBAZOLE	120		100	350	UG/KG
SS132Q	AN797	20-Mar-01			SW8270	CHRYSENE	1700	-	110	350	UG/KG
SS132Q	AN797	20-Mar-01			SW8270	DIBENZ(a,h)ANTHRACENE	230		120	350	UG/KG
SS132Q SS132Q	AN797	20-Mar-01			SW8270	FLUORANTHENE	2700		120	350	UG/KG
SS132Q SS132Q	AN797 AN797	20-Mar-01			SW8270 SW8270	INDENO(1,2,3-c,d)PYRENE	650		130	350	UG/KG
SS132Q	AN797	20-Mar-01	0.25	0.5	SW8270	PHENANTHRENE	500		99	350	UG/KG

Table A.2

Target Array and Flanking Target Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132Q	AN797	20-Mar-01	0.25		SW8270	PYRENE	2300		270	350	UG/KG
SS132Q	AN798	20-Mar-01	0.5		CL200.7	ALUMINUM	6290		2.7861	2.7861	MG/KG
SS132Q	AN798	20-Mar-01	0.5		CL200.7	ARSENIC		J	0.7395	0.7395	MG/KG
SS132Q	AN798	20-Mar-01	0.5		CL200.7	BARIUM	8.4		0.1204	0.1204	MG/KG
SS132Q	AN798	20-Mar-01	0.5		CL200.7	BERYLLIUM	0.23		0.0516	0.0516	MG/KG
SS132Q	AN798	20-Mar-01	0.5		CL200.7	CALCIUM	111		1.2383	1.2383	MG/KG
SS132Q	AN798	20-Mar-01	0.5		CL200.7	CHROMIUM, TOTAL	9.8		0.2924	0.2924	MG/KG
SS132Q	AN798	20-Mar-01	0.5		CL200.7	COBALT	2.9		0.3612	0.2524	MG/KG
SS132Q	AN798	20-Mar-01	0.5		CL200.7 CL200.7	COPPER	29.8		0.3012	0.3012	MG/KG
SS132Q SS132Q	AN798	20-Mar-01	0.5		CL200.7 CL200.7	IRON	8680		5.8645	5.8645	MG/KG
SS132Q SS132Q					CL200.7 CL200.7		112				MG/KG
	AN798	20-Mar-01	0.5			LEAD			0.4472	0.4472	
SS132Q	AN798	20-Mar-01	0.5		CL200.7	MAGNESIUM	1480		2.2701	2.2701	MG/KG
SS132Q	AN798	20-Mar-01	0.5		CL200.7	MANGANESE	75.1		0.086	0.086	MG/KG
SS132Q	AN798	20-Mar-01	0.5		CL200.7	NICKEL	6		0.2924	0.2924	MG/KG
SS132Q	AN798	20-Mar-01	0.5		CL200.7	POTASSIUM	604		21.1537	21.1537	MG/KG
SS132Q	AN798	20-Mar-01	0.5		CL200.7	VANADIUM	13.6		0.4643	0.4643	MG/KG
SS132Q	AN798	20-Mar-01	0.5		CL200.7	ZINC	21	-	0.1892	0.1892	MG/KG
SS132Q	AN799	20-Mar-01	0		CL200.7	ALUMINUM	4110		2.4116	2.4116	MG/KG
SS132Q	AN799	20-Mar-01	0		CL200.7	ARSENIC	2.2		0.6401	0.6401	MG/KG
SS132Q	AN799	20-Mar-01	0	0.25	CL200.7	BARIUM	3.6		0.1042	0.1042	MG/KG
SS132Q	AN799	20-Mar-01	0	0.25	CL200.7	BERYLLIUM	0.092	J	0.0447	0.0447	MG/KG
SS132Q	AN799	20-Mar-01	0	0.25	CL200.7	CALCIUM	80.5		1.0718	1.0718	MG/KG
SS132Q	AN799	20-Mar-01	0	0.25	CL200.7	CHROMIUM, TOTAL	6.8	J	0.2531	0.2531	MG/KG
SS132Q	AN799	20-Mar-01	0	0.25	CL200.7	COBALT	1		0.3126	0.3126	MG/KG
SS132Q	AN799	20-Mar-01	0	0.25	CL200.7	COPPER	51.5	J	0.387	0.387	MG/KG
SS132Q	AN799	20-Mar-01	0	0.25	CL200.7	IRON	6730	J	5.0762	5.0762	MG/KG
SS132Q	AN799	20-Mar-01	0	0.25	CL200.7	LEAD	122	J	0.387	0.387	MG/KG
SS132Q	AN799	20-Mar-01	0	0.25	CL200.7	MAGNESIUM	446		1.965	1.965	MG/KG
SS132Q	AN799	20-Mar-01	0	0.25	CL200.7	MANGANESE	37	J	0.0744	0.0744	MG/KG
SS132Q	AN799	20-Mar-01	0	0.25	CL200.7	NICKEL	2.6		0.2531	0.2531	MG/KG
SS132Q	AN799	20-Mar-01	0	0.25	CL200.7	POTASSIUM	234		18.3101	18.3101	MG/KG
SS132Q	AN799	20-Mar-01	0	0.25	CL200.7	SELENIUM	0.86	J	0.6848	0.6848	MG/KG
SS132Q	AN799	20-Mar-01	0		CL200.7	VANADIUM	10.7		0.4019	0.4019	MG/KG
SS132Q	AN799	20-Mar-01	0		CL200.7	ZINC	10.8		0.1637	0.1637	MG/KG
SS132Q	AN799	20-Mar-01	0		CL245.5	MERCURY	0.2		0.0536	0.0536	MG/KG
SS132Q	AN799	20-Mar-01	0		SW8270	BENZO(a)ANTHRACENE	190		98	350	UG/KG
SS132Q	AN799	20-Mar-01	0		SW8270	BENZO(a)PYRENE	180		98	350	UG/KG
SS132Q	AN799	20-Mar-01	0		SW8270	BENZO(b)FLUORANTHENE	290		130	350	UG/KG
SS132Q SS132Q	AN799	20-Mar-01	0		SW8270	BENZO(k)FLUORANTHENE	260		110	350	UG/KG
SS132Q SS132Q	AN799	20-Mar-01	0		SW8270	CHRYSENE	230		110	350	UG/KG

Table A.2

Target Array and Flanking Target Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPTI		TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132Q	AN799	20-Mar-01	0	, ,	SW8270	FLUORANTHENE	160		120	350	UG/KG
SS132Q	AN800	20-Mar-01			CL200.7	ALUMINUM	3360	-	2.4977	2.4977	MG/KG
SS132Q SS132Q	AN800	20-Mar-01			CL200.7 CL200.7	ARSENIC	1.6		0.663	0.663	MG/KG
SS132Q SS132Q	AN800					BARIUM	3.8				MG/KG
		20-Mar-01			CL200.7				0.1079	0.1079	
SS132Q	AN800	20-Mar-01			CL200.7	BERYLLIUM	0.1		0.0463	0.0463	MG/KG
SS132Q	AN800	20-Mar-01			CL200.7	CALCIUM	67.7		1.1101	1.1101	MG/KG
SS132Q	AN800	20-Mar-01			CL200.7	CHROMIUM, TOTAL	4.6		0.2621	0.2621	MG/KG
SS132Q	AN800	20-Mar-01			CL200.7	COBALT	1.1		0.3238	0.3238	MG/KG
SS132Q	AN800	20-Mar-01			CL200.7	COPPER	65.3		0.4009	0.4009	MG/KG
SS132Q	AN800	20-Mar-01			CL200.7	IRON	5260		5.2575	5.2575	MG/KG
SS132Q	AN800	20-Mar-01			CL200.7	LEAD	116		0.4009	0.4009	MG/KG
SS132Q	AN800	20-Mar-01	0.25	0.5	CL200.7	MAGNESIUM	455		2.0352	2.0352	MG/KG
SS132Q	AN800	20-Mar-01	0.25	0.5	CL200.7	MANGANESE	41.2	J	0.0771	0.0771	MG/KG
SS132Q	AN800	20-Mar-01	0.25	0.5	CL200.7	MOLYBDENUM	0.64	J	0.6321	0.6321	MG/KG
SS132Q	AN800	20-Mar-01	0.25	0.5	CL200.7	NICKEL	2.2		0.2621	0.2621	MG/KG
SS132Q	AN800	20-Mar-01	0.25	0.5	CL200.7	POTASSIUM	254		18.9639	18.9639	MG/KG
SS132Q	AN800	20-Mar-01	0.25	0.5	CL200.7	SODIUM	139		57.5085	57.5085	MG/KG
SS132Q	AN800	20-Mar-01	0.25	0.5	CL200.7	VANADIUM	8.8		0.4163	0.4163	MG/KG
SS132Q	AN800	20-Mar-01	0.25	0.5	CL200.7	ZINC	12		0.1696	0.1696	MG/KG
SS132Q	AN800	20-Mar-01	0.25		CL245.5	MERCURY	0.15		0.0532	0.0532	MG/KG
SS132Q	AN801	20-Mar-01	0.5	1	CL200.7	ALUMINUM	3640		2.6308	2.6308	MG/KG
SS132Q	AN801	20-Mar-01	0.5	1	CL200.7	ARSENIC	1.5	J	0.6983	0.6983	MG/KG
SS132Q	AN801	20-Mar-01	0.5	1	CL200.7	BARIUM	5.9		0.1137	0.1137	MG/KG
SS132Q	AN801	20-Mar-01	0.5	1	CL200.7	BERYLLIUM	0.1	J	0.0487	0.0487	MG/KG
SS132Q	AN801	20-Mar-01	0.5	1	CL200.7	CALCIUM	95.8		1.1692	1.1692	MG/KG
SS132Q	AN801	20-Mar-01	0.5		CL200.7	CHROMIUM, TOTAL	4.7		0.2761	0.2761	MG/KG
SS132Q	AN801	20-Mar-01	0.5		CL200.7	COBALT	1.1		0.341	0.341	MG/KG
SS132Q	AN801	20-Mar-01	0.5		CL200.7	COPPER	81.1	J	0.4222	0.4222	MG/KG
SS132Q	AN801	20-Mar-01	0.5		CL200.7	IRON	5280	-	5.5377	5.5377	MG/KG
SS132Q	AN801	20-Mar-01	0.5		CL200.7	LEAD	125		0.4222	0.4222	MG/KG
SS132Q	AN801	20-Mar-01	0.5		CL200.7	MAGNESIUM	498	-	2.1436	2.1436	MG/KG
SS132Q	AN801	20-Mar-01	0.5		CL200.7	MANGANESE	48.6		0.0812	0.0812	MG/KG
SS132Q	AN801	20-Mar-01	0.5		CL200.7	MOLYBDENUM	0.8		0.6658	0.6658	MG/KG
SS132Q	AN801	20-Mar-01	0.5		CL200.7	NICKEL	2.3		0.0050	0.2761	MG/KG
SS132Q	AN801	20-Mar-01	0.5		CL200.7 CL200.7	POTASSIUM	2.3		19.9747	19.9747	MG/KG
SS132Q	AN801	20-Mar-01	0.5		CL200.7 CL200.7	VANADIUM	8.9		0.4385	0.4385	MG/KG
SS132Q SS132Q	AN801	20-Mar-01	0.5		CL200.7 CL200.7	ZINC	16.4		0.4365	0.4365	MG/KG
						-		-			
SS132Q	AN801	20-Mar-01	0.5		CL245.5	MERCURY	0.08		0.0536	0.0536	MG/KG
SS132Q	AN802	20-Mar-01	0.5		CL200.7	ALUMINUM	4060		2.7901	2.7901	MG/KG
SS132Q	AN802	20-Mar-01	0.5	1	CL200.7	ARSENIC	2	J	0.7406	0.7406	MG/KG

Table A.2

Target Array and Flanking Target Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEDT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132Q	AN802	20-Mar-01	0.5		CL200.7	BARIUM	8.3		0.1206	0.1206	MG/KG
SS132Q	AN802	20-Mar-01	0.5		CL200.7	BERYLLIUM	0.12		0.0517	0.0517	MG/KG
SS132Q	AN802	20-Mar-01	0.5		CL200.7	CALCIUM	162		1.24	1.24	MG/KG
SS132Q	AN802	20-Mar-01	0.5		CL200.7	CHROMIUM, TOTAL	5.8		0.2928	0.2928	MG/KG
SS132Q	AN802	20-Mar-01	0.5		CL200.7	COBALT	1.5		0.3617	0.3617	MG/KG
SS132Q	AN802	20-Mar-01	0.5		CL200.7	COPPER	92.6		0.4478	0.4478	MG/KG
SS132Q	AN802	20-Mar-01	0.5		CL200.7	IRON	5950		5.873	5.873	MG/KG
SS132Q	AN802	20-Mar-01	0.5		CL200.7	LEAD	127		0.4478	0.4478	MG/KG
SS132Q	AN802	20-Mar-01	0.5		CL200.7	MAGNESIUM	634	-	2.2734	2.2734	MG/KG
SS132Q	AN802	20-Mar-01	0.5		CL200.7 CL200.7	MANGANESE	67.5		0.0861	0.0861	MG/KG
SS132Q	AN802	20-Mar-01	0.5		CL200.7	MOLYBDENUM	0.71		0.7061	0.7061	MG/KG
SS132Q	AN802	20-Mar-01	0.5		CL200.7	NICKEL	2.9		0.2928	0.2928	MG/KG
SS132Q	AN802	20-Mar-01	0.5		CL200.7	POTASSIUM	380		21.1841	21.1841	MG/KG
SS132Q	AN802	20-Mar-01	0.5		CL200.7	VANADIUM	10.3		0.465	0.465	MG/KG
SS132Q	AN802	20-Mar-01	0.5		CL200.7	ZINC	22.6		0.1895	0.1895	MG/KG
SS132S	AN778	20-Mar-01	0		CL200.7	ALUMINUM	7760		12.2712	12.2712	MG/KG
SS132S	AN778	20-Mar-01	0		CL200.7	ARSENIC	2.3		0.9715	0.9715	MG/KG
SS132S	AN778	20-Mar-01	0	0.25	CL200.7	BARIUM	4.8		0.0511	0.0511	MG/KG
SS132S	AN778	20-Mar-01	0	0.25	CL200.7	BERYLLIUM	0.12	J	0.0682	0.0682	MG/KG
SS132S	AN778	20-Mar-01	0	0.25	CL200.7	BORON	2		0.2216	0.2216	MG/KG
SS132S	AN778	20-Mar-01	0	0.25	CL200.7	CALCIUM	39.7		11.4872	11.4872	MG/KG
SS132S	AN778	20-Mar-01	0	0.25	CL200.7	CHROMIUM, TOTAL	8.4		0.3409	0.3409	MG/KG
SS132S	AN778	20-Mar-01	0	0.25	CL200.7	COBALT	0.77	J	0.2727	0.2727	MG/KG
SS132S	AN778	20-Mar-01	0	0.25	CL200.7	COPPER	43.1		0.1023	0.1023	MG/KG
SS132S	AN778	20-Mar-01	0	0.25	CL200.7	IRON	8330		5.6413	5.6413	MG/KG
SS132S	AN778	20-Mar-01	0	0.25	CL200.7	LEAD	100		0.4431	0.4431	MG/KG
SS132S	AN778	20-Mar-01	0	0.25	CL200.7	MAGNESIUM	629		11.9985	11.9985	MG/KG
SS132S	AN778	20-Mar-01	0	0.25	CL200.7	MANGANESE	38.8		0.3068	0.3068	MG/KG
SS132S	AN778	20-Mar-01	0	0.25	CL200.7	NICKEL	3.2	J	0.2386	0.2386	MG/KG
SS132S	AN778	20-Mar-01	0	0.25	CL200.7	POTASSIUM	277		5.113	5.113	MG/KG
SS132S	AN778	20-Mar-01	0	0.25	CL200.7	SODIUM	341	J	47.8917	47.8917	MG/KG
SS132S	AN778	20-Mar-01	0		CL200.7	VANADIUM	14.2		0.3409	0.3409	MG/KG
SS132S	AN778	20-Mar-01	0		CL200.7	ZINC	9.1		0.0682	0.0682	MG/KG
SS132S	AN780	20-Mar-01	-		CL200.7	ALUMINUM	9760		12.1865	12.1865	MG/KG
SS132S	AN780	20-Mar-01			CL200.7	ANTIMONY	1		0.8463	0.8463	MG/KG
SS132S	AN780	20-Mar-01			CL200.7	ARSENIC	2.9	-	0.9648	0.9648	MG/KG
SS132S	AN780	20-Mar-01			CL200.7	BARIUM	11.1		0.9508	0.9048	MG/KG
SS132S	AN780	20-Mar-01			CL200.7 CL200.7	BERYLLIUM	0.18		0.0508	0.0508	MG/KG
SS132S SS132S	AN780	20-Mar-01	_		CL200.7 CL200.7	BORON	1.8		0.0677	0.0677	MG/KG MG/KG
SS132S	AN780	20-Mar-01	0.25	0.5	CL200.7	CALCIUM	52.5		11.4079	11.4079	MG/KG

Table A.2

Target Array and Flanking Target Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132S	AN780	20-Mar-01	0.25	0.5	CL200.7	CHROMIUM, TOTAL	10.1		0.3385	0.3385	MG/KG
SS132S	AN780	20-Mar-01	0.25	0.5	CL200.7	COBALT	0.5	J	0.2708	0.2708	MG/KG
SS132S	AN780	20-Mar-01	0.25	0.5	CL200.7	COPPER	0.51	J	0.1016	0.1016	MG/KG
SS132S	AN780	20-Mar-01	0.25	0.5	CL200.7	IRON	9510		5.6024	5.6024	MG/KG
SS132S	AN780	20-Mar-01	0.25	0.5	CL200.7	LEAD	4.3		0.4401	0.4401	MG/KG
SS132S	AN780	20-Mar-01	0.25	0.5	CL200.7	MAGNESIUM	469		11.9156	11.9156	MG/KG
SS132S	AN780	20-Mar-01	0.25	0.5	CL200.7	MANGANESE	23.9		0.3047	0.3047	MG/KG
SS132S	AN780	20-Mar-01	0.25	0.5	CL200.7	MOLYBDENUM	0.91		0.5416	0.5416	MG/KG
SS132S	AN780	20-Mar-01	0.25	0.5	CL200.7	NICKEL	2.7	J	0.237	0.237	MG/KG
SS132S	AN780	20-Mar-01	0.25	0.5	CL200.7	POTASSIUM	246	J	5.0777	5.0777	MG/KG
SS132S	AN780	20-Mar-01	0.25	0.5	CL200.7	SODIUM	466		47.561	47.561	MG/KG
SS132S	AN780	20-Mar-01	0.25	0.5	CL200.7	VANADIUM	17.5		0.3385	0.3385	MG/KG
SS132S	AN780	20-Mar-01	0.25	0.5	CL200.7	ZINC	10.1		0.0677	0.0677	MG/KG
SS132S	AN782	20-Mar-01	0.5	1	CL200.7	ALUMINUM	10600		11.7216	11.7216	MG/KG
SS132S	AN782	20-Mar-01	0.5	1	CL200.7	ARSENIC	3.3		0.928	0.928	MG/KG
SS132S	AN782	20-Mar-01	0.5	1	CL200.7	BARIUM	13.1		0.0488	0.0488	MG/KG
SS132S	AN782	20-Mar-01	0.5	1	CL200.7	BERYLLIUM	0.2	J	0.0651	0.0651	MG/KG
SS132S	AN782	20-Mar-01	0.5	1	CL200.7	BORON	2.4		0.2116	0.2116	MG/KG
SS132S	AN782	20-Mar-01	0.5	1	CL200.7	CALCIUM	59		10.9727	10.9727	MG/KG
SS132S	AN782	20-Mar-01	0.5	1	CL200.7	CHROMIUM, TOTAL	11.2		0.3256	0.3256	MG/KG
SS132S	AN782	20-Mar-01	0.5	1	CL200.7	COBALT	0.72	J	0.2605	0.2605	MG/KG
SS132S	AN782	20-Mar-01	0.5	1	CL200.7	COPPER	1.4	J	0.0977	0.0977	MG/KG
SS132S	AN782	20-Mar-01	0.5	1	CL200.7	IRON	11200		5.3887	5.3887	MG/KG
SS132S	AN782	20-Mar-01	0.5	1	CL200.7	LEAD	5		0.4233	0.4233	MG/KG
SS132S	AN782	20-Mar-01	0.5	1	CL200.7	MAGNESIUM	577		11.4611	11.4611	MG/KG
SS132S	AN782	20-Mar-01	0.5	1	CL200.7	MANGANESE	28.9		0.293	0.293	MG/KG
SS132S	AN782	20-Mar-01	0.5	1	CL200.7	MOLYBDENUM	0.63	J	0.521	0.521	MG/KG
SS132S	AN782	20-Mar-01	0.5	1	CL200.7	NICKEL	3.3	J	0.2279	0.2279	MG/KG
SS132S	AN782	20-Mar-01	0.5	1	CL200.7	POTASSIUM	312		4.884	4.884	MG/KG
SS132S	AN782	20-Mar-01	0.5	1	CL200.7	SODIUM	554		45.7468	45.7468	MG/KG
SS132S	AN782	20-Mar-01	0.5	1	CL200.7	VANADIUM	20.8		0.3256	0.3256	MG/KG
SS132S	AN782	20-Mar-01	0.5	1	CL200.7	ZINC	11.2		0.0651	0.0651	MG/KG
SS132S	AN784	20-Mar-01	0	0.25	CL200.7	ALUMINUM	5340		11.1364	11.1364	MG/KG
SS132S	AN784	20-Mar-01	0	0.25	CL200.7	ARSENIC	2		0.8816	0.8816	MG/KG
SS132S	AN784	20-Mar-01	0	0.25	CL200.7	BARIUM	4.8		0.0464	0.0464	MG/KG
SS132S	AN784	20-Mar-01	0	0.25	CL200.7	BERYLLIUM	0.068	J	0.0619	0.0619	MG/KG
SS132S	AN784	20-Mar-01	0	0.25	CL200.7	BORON	1.7		0.2011	0.2011	MG/KG
SS132S	AN784	20-Mar-01	0	0.25	CL200.7	CALCIUM	41.6		10.4249	10.4249	MG/KG
SS132S	AN784	20-Mar-01	0		CL200.7	CHROMIUM, TOTAL	5.8		0.3093	0.3093	
SS132S	AN784	20-Mar-01	0	0.25	CL200.7	COBALT	0.55	J	0.2475	0.2475	MG/KG

Table A.2

Target Array and Flanking Target Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132S	AN784	20-Mar-01	0	0.25	CL200.7	COPPER	26.7		0.0928	0.0928	MG/KG
SS132S	AN784	20-Mar-01	0	0.25	CL200.7	IRON	5990		5.1196	5.1196	MG/KG
SS132S	AN784	20-Mar-01	0	0.25	CL200.7	LEAD	68.6		0.4021	0.4021	MG/KG
SS132S	AN784	20-Mar-01	0	0.25	CL200.7	MAGNESIUM	411		10.8889	10.8889	MG/KG
SS132S	AN784	20-Mar-01	0	0.25	CL200.7	MANGANESE	28.5		0.2784	0.2784	MG/KG
SS132S	AN784	20-Mar-01	0	0.25	CL200.7	NICKEL	1.9	J	0.2165	0.2165	MG/KG
SS132S	AN784	20-Mar-01	0	0.25	CL200.7	POTASSIUM	210		4.6402	4.6402	MG/KG
SS132S	AN784	20-Mar-01	0	0.25	CL200.7	SODIUM	306	J	43.4628	43.4628	MG/KG
SS132S	AN784	20-Mar-01	0	0.25	CL200.7	VANADIUM	11		0.3093	0.3093	MG/KG
SS132S	AN784	20-Mar-01	0	0.25	CL200.7	ZINC	8.1		0.0619	0.0619	MG/KG
SS132S	AN786	20-Mar-01	0.25	0.5	CL200.7	ALUMINUM	5610		11.1037	11.1037	MG/KG
SS132S	AN786	20-Mar-01	0.25	0.5	CL200.7	ARSENIC	2.5		0.879	0.879	MG/KG
SS132S	AN786	20-Mar-01	0.25	0.5	CL200.7	BARIUM	8.2		0.0463	0.0463	MG/KG
SS132S	AN786	20-Mar-01	0.25	0.5	CL200.7	BERYLLIUM	0.16	J	0.0617	0.0617	MG/KG
SS132S	AN786	20-Mar-01	0.25	0.5	CL200.7	BORON	1.7		0.2005	0.2005	MG/KG
SS132S	AN786	20-Mar-01	0.25	0.5	CL200.7	CALCIUM	45.1		10.3943	10.3943	MG/KG
SS132S	AN786	20-Mar-01	0.25	0.5	CL200.7	CHROMIUM, TOTAL	6.5		0.3084	0.3084	MG/KG
SS132S	AN786	20-Mar-01	0.25	0.5	CL200.7	COBALT	0.81	J	0.2467	0.2467	MG/KG
SS132S	AN786	20-Mar-01	0.25	0.5	CL200.7	COPPER	17.9		0.0925	0.0925	MG/KG
SS132S	AN786	20-Mar-01	0.25	0.5	CL200.7	IRON	7110		5.1046	5.1046	MG/KG
SS132S	AN786	20-Mar-01	0.25	0.5	CL200.7	LEAD	45.4		0.401	0.401	MG/KG
SS132S	AN786	20-Mar-01	0.25	0.5	CL200.7	MAGNESIUM	483		10.8569	10.8569	MG/KG
SS132S	AN786	20-Mar-01	0.25	0.5	CL200.7	MANGANESE	32		0.2776	0.2776	MG/KG
SS132S	AN786	20-Mar-01	0.25	0.5	CL200.7	NICKEL	2.5	J	0.2159	0.2159	MG/KG
SS132S	AN786	20-Mar-01	0.25	0.5	CL200.7	POTASSIUM	257		4.6265	4.6265	MG/KG
SS132S	AN786	20-Mar-01	0.25	0.5	CL200.7	SELENIUM	0.87	J	0.7094	0.7094	MG/KG
SS132S	AN786	20-Mar-01	0.25	0.5	CL200.7	SODIUM	356	J	43.3351	43.3351	MG/KG
SS132S	AN786	20-Mar-01	0.25	0.5	CL200.7	VANADIUM	13		0.3084	0.3084	MG/KG
SS132S	AN786	20-Mar-01	0.25	0.5	CL200.7	ZINC	8.4		0.0617	0.0617	MG/KG
SS132S	AN788	20-Mar-01	0.5	1	CL200.7	ALUMINUM	5780		11.3755	11.3755	MG/KG
SS132S	AN788	20-Mar-01	0.5	1	CL200.7	ARSENIC	1.8		0.9006	0.9006	MG/KG
SS132S	AN788	20-Mar-01	0.5	1	CL200.7	BARIUM	10.8		0.0474	0.0474	MG/KG
SS132S	AN788	20-Mar-01	0.5	1	CL200.7	BERYLLIUM	0.18	J	0.0632	0.0632	MG/KG
SS132S	AN788	20-Mar-01	0.5	1	CL200.7	BORON	1.6		0.2054	0.2054	MG/KG
SS132S	AN788	20-Mar-01	0.5	1	CL200.7	CALCIUM	63.9		10.6487	10.6487	MG/KG
SS132S	AN788	20-Mar-01	0.5	1	CL200.7	CHROMIUM, TOTAL	7		0.316	0.316	MG/KG
SS132S	AN788	20-Mar-01	0.5	1	CL200.7	COBALT	1.1	J	0.2528	0.2528	MG/KG
SS132S	AN788	20-Mar-01	0.5	1	CL200.7	COPPER	10.1		0.0948	0.0948	MG/KG
SS132S	AN788	20-Mar-01	0.5		CL200.7	IRON	6490		5.2296	5.2296	
SS132S	AN788	20-Mar-01	0.5	1	CL200.7	LEAD	29.2		0.4108	0.4108	MG/KG

Table A.2

Target Array and Flanking Target Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132S	AN788	20-Mar-01	0.5	1	CL200.7	MAGNESIUM	669		11.1227	11.1227	MG/KG
SS132S	AN788	20-Mar-01	0.5	1	CL200.7	MANGANESE	38.1		0.2844	0.2844	MG/KG
SS132S	AN788	20-Mar-01	0.5	1	CL200.7	NICKEL	3.1	J	0.2212	0.2212	MG/KG
SS132S	AN788	20-Mar-01	0.5	1	CL200.7	POTASSIUM	270		4.7398	4.7398	MG/KG
SS132S	AN788	20-Mar-01	0.5	1	CL200.7	SODIUM	458		44.396	44.396	MG/KG
SS132S	AN788	20-Mar-01	0.5	1	CL200.7	VANADIUM	11.4		0.316	0.316	MG/KG
SS132S	AN788	20-Mar-01	0.5	1	CL200.7	ZINC	16.4		0.0632	0.0632	MG/KG
SS132T	AN764	20-Mar-01	0	0.25	CL200.7	ALUMINUM	2150		11.5385	11.5385	MG/KG
SS132T	AN764	20-Mar-01	0	0.25	CL200.7	ARSENIC	1.1	J	0.9135	0.9135	MG/KG
SS132T	AN764	20-Mar-01	0	0.25	CL200.7	BARIUM	2.9		0.0481	0.0481	MG/KG
SS132T	AN764	20-Mar-01	0	0.25	CL200.7	BORON	1.1		0.2083	0.2083	MG/KG
SS132T	AN764	20-Mar-01	0	0.25	CL200.7	CALCIUM	70.2		10.8013	10.8013	MG/KG
SS132T	AN764	20-Mar-01	0	0.25	CL200.7	CHROMIUM, TOTAL	2.9		0.3205	0.3205	MG/KG
SS132T	AN764	20-Mar-01	0	0.25	CL200.7	COBALT	0.35	J	0.2564	0.2564	MG/KG
SS132T	AN764	20-Mar-01	0	0.25	CL200.7	COPPER	8.7		0.0962	0.0962	MG/KG
SS132T	AN764	20-Mar-01	0	0.25	CL200.7	IRON	2830		5.3045	5.3045	MG/KG
SS132T	AN764	20-Mar-01	0	0.25	CL200.7	LEAD	26.5		0.4167	0.4167	MG/KG
SS132T	AN764	20-Mar-01	0	0.25	CL200.7	MAGNESIUM	275		11.2821	11.2821	MG/KG
SS132T	AN764	20-Mar-01	0	0.25	CL200.7	MANGANESE	24.4		0.2885	0.2885	MG/KG
SS132T	AN764	20-Mar-01	0	0.25	CL200.7	NICKEL	1.5	J	0.2244	0.2244	MG/KG
SS132T	AN764	20-Mar-01	0	0.25	CL200.7	POTASSIUM	171		4.8077	4.8077	MG/KG
SS132T	AN764	20-Mar-01	0	0.25	CL200.7	SODIUM	177	J	45.0321	45.0321	MG/KG
SS132T	AN764	20-Mar-01	0	0.25	CL200.7	VANADIUM	4.9		0.3205	0.3205	MG/KG
SS132T	AN764	20-Mar-01	0	0.25	CL200.7	ZINC	4.9		0.0641	0.0641	MG/KG
SS132T	AN766	20-Mar-01	0.25	0.5	CL200.7	ALUMINUM	901		11.5318	11.5318	MG/KG
SS132T	AN766	20-Mar-01	0.25	0.5	CL200.7	BARIUM	1.7		0.048	0.048	MG/KG
SS132T	AN766	20-Mar-01	0.25	0.5	CL200.7	BORON	0.44		0.2082	0.2082	MG/KG
SS132T	AN766	20-Mar-01	0.25	0.5	CL200.7	CALCIUM	25.4		10.7951	10.7951	MG/KG
SS132T	AN766	20-Mar-01	0.25	0.5	CL200.7	CHROMIUM, TOTAL	1.3	J	0.3203	0.3203	MG/KG
SS132T	AN766	20-Mar-01	0.25	0.5	CL200.7	COPPER	6.3		0.0961	0.0961	MG/KG
SS132T	AN766	20-Mar-01	0.25	0.5	CL200.7	IRON	1420		5.3014	5.3014	MG/KG
SS132T	AN766	20-Mar-01	0.25	0.5	CL200.7	LEAD	19.5		0.4164	0.4164	MG/KG
SS132T	AN766	20-Mar-01	0.25	0.5	CL200.7	MAGNESIUM	150		11.2755	11.2755	MG/KG
SS132T	AN766	20-Mar-01	0.25	0.5	CL200.7	MANGANESE	21.3		0.2883	0.2883	MG/KG
SS132T	AN766	20-Mar-01	0.25	0.5	CL200.7	NICKEL	0.49	J	0.2242	0.2242	MG/KG
SS132T	AN766	20-Mar-01	0.25	0.5	CL200.7	POTASSIUM	110		4.8049	4.8049	MG/KG
SS132T	AN766	20-Mar-01	0.25	0.5	CL200.7	SODIUM	98.6	J	45.0061	45.0061	MG/KG
SS132T	AN766	20-Mar-01	0.25	0.5	CL200.7	VANADIUM	2.3		0.3203	0.3203	MG/KG
SS132T	AN766	20-Mar-01	0.25	0.5	CL200.7	ZINC	2.8		0.0641	0.0641	MG/KG
SS132T	AN768	20-Mar-01	0.5	1	CL200.7	ALUMINUM	1870		11.6522	11.6522	MG/KG

Table A.2

Target Array and Flanking Target Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132T	AN768	20-Mar-01	0.5	1	CL200.7	ANTIMONY	0.82	J	0.8092	0.8092	MG/KG
SS132T	AN768	20-Mar-01	0.5	1	CL200.7	BARIUM	4.7		0.0486	0.0486	MG/KG
SS132T	AN768	20-Mar-01	0.5	1	CL200.7	BORON	1.1		0.2104	0.2104	MG/KG
SS132T	AN768	20-Mar-01	0.5	1	CL200.7	CALCIUM	49.9		10.9077	10.9077	MG/KG
SS132T	AN768	20-Mar-01	0.5	1	CL200.7	CHROMIUM, TOTAL	2.4		0.3237	0.3237	MG/KG
SS132T	AN768	20-Mar-01	0.5	1	CL200.7	COBALT	0.35	J	0.2589	0.2589	MG/KG
SS132T	AN768	20-Mar-01	0.5	1	CL200.7	COPPER	0.19	J	0.0971	0.0971	MG/KG
SS132T	AN768	20-Mar-01	0.5	1	CL200.7	IRON	2700		5.3568	5.3568	MG/KG
SS132T	AN768	20-Mar-01	0.5	1	CL200.7	LEAD	1.9		0.4208	0.4208	MG/KG
SS132T	AN768	20-Mar-01	0.5	1	CL200.7	MAGNESIUM	295		11.3932	11.3932	MG/KG
SS132T	AN768	20-Mar-01	0.5	1	CL200.7	MANGANESE	20.8		0.2913	0.2913	MG/KG
SS132T	AN768	20-Mar-01	0.5	1	CL200.7	NICKEL	1.2	J	0.2266	0.2266	MG/KG
SS132T	AN768	20-Mar-01	0.5	1	CL200.7	POTASSIUM	155		4.8551	4.8551	MG/KG
SS132T	AN768	20-Mar-01	0.5	1	CL200.7	SODIUM	181	J	45.4759	45.4759	MG/KG
SS132T	AN768	20-Mar-01	0.5	1	CL200.7	VANADIUM	4.5		0.3237	0.3237	MG/KG
SS132T	AN768	20-Mar-01	0.5	1	CL200.7	ZINC	3.7		0.0647	0.0647	MG/KG
SS132T	AN770	20-Mar-01	0	0.25	CL200.7	ALUMINUM	2570		10.4814	10.4814	MG/KG
SS132T	AN770	20-Mar-01	0	0.25	CL200.7	ARSENIC	1.1	J	0.8298	0.8298	MG/KG
SS132T	AN770	20-Mar-01	0	0.25	CL200.7	BARIUM	3.8		0.0437	0.0437	MG/KG
SS132T	AN770	20-Mar-01	0	0.25	CL200.7	BORON	0.7		0.1892	0.1892	MG/KG
SS132T	AN770	20-Mar-01	0	0.25	CL200.7	CALCIUM	37.3		9.8118	9.8118	MG/KG
SS132T	AN770	20-Mar-01	0	0.25	CL200.7	CHROMIUM, TOTAL	2.8		0.2912	0.2912	MG/KG
SS132T	AN770	20-Mar-01	0	0.25	CL200.7	COBALT	0.54	J	0.2329	0.2329	MG/KG
SS132T	AN770	20-Mar-01	0	0.25	CL200.7	COPPER	8.2		0.0873	0.0873	MG/KG
SS132T	AN770	20-Mar-01	0	0.25	CL200.7	IRON	2930		4.8185	4.8185	MG/KG
SS132T	AN770	20-Mar-01	0	0.25	CL200.7	LEAD	20.9		0.3785	0.3785	MG/KG
SS132T	AN770	20-Mar-01	0	0.25	CL200.7	MAGNESIUM	330		10.2485	10.2485	MG/KG
SS132T	AN770	20-Mar-01	0	0.25	CL200.7	MANGANESE	28.3		0.262	0.262	MG/KG
SS132T	AN770	20-Mar-01	0	0.25	CL200.7	NICKEL	1.3	J	0.2038	0.2038	MG/KG
SS132T	AN770	20-Mar-01	0	0.25	CL200.7	POTASSIUM	145		4.3673	4.3673	MG/KG
SS132T	AN770	20-Mar-01	0	0.25	CL200.7	SODIUM	181	J	40.9066	40.9066	MG/KG
SS132T	AN770	20-Mar-01	0	0.25	CL200.7	VANADIUM	5		0.2912	0.2912	MG/KG
SS132T	AN770	20-Mar-01	0	0.25	CL200.7	ZINC	5.7		0.0582	0.0582	MG/KG
SS132T	AN772	20-Mar-01	0.25	0.5	CL200.7	ALUMINUM	3080		11.6644	11.6644	MG/KG
SS132T	AN772	20-Mar-01	0.25	0.5	CL200.7	ARSENIC	1.8		0.9234	0.9234	MG/KG
SS132T	AN772	20-Mar-01	0.25	0.5	CL200.7	BARIUM	4.5		0.0486	0.0486	MG/KG
SS132T	AN772	20-Mar-01	0.25	0.5	CL200.7	BERYLLIUM	0.096	J	0.0648	0.0648	MG/KG
SS132T	AN772	20-Mar-01	0.25	0.5	CL200.7	BORON	1.6		0.2106	0.2106	MG/KG
SS132T	AN772	20-Mar-01	0.25	0.5	CL200.7	CALCIUM	77.3		10.9191	10.9191	MG/KG
SS132T	AN772	20-Mar-01	0.25	0.5	CL200.7	CHROMIUM, TOTAL	3.6		0.324	0.324	MG/KG

Table A.2

Target Array and Flanking Target Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPTH	(FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132T	AN772	20-Mar-01	0.25		CL200.7	COBALT	0.92		0.2592	0.2592	MG/KG
SS132T	AN772	20-Mar-01			CL200.7	COPPER	6.4	-	0.2332	0.2332	MG/KG
SS132T	AN772	20-Mar-01			CL200.7	IRON	4340		5.3624	5.3624	MG/KG
SS132T	AN772	20-Mar-01			CL200.7	LEAD	19.2		0.4212	0.4212	MG/KG
SS132T	AN772	20-Mar-01			CL200.7 CL200.7	MAGNESIUM	348		11.4052	11.4052	MG/KG
SS132T	AN772 AN772	20-Mar-01	0.25		CL200.7 CL200.7	MANGANESE	33.7		0.2916	0.2916	MG/KG
SS132T	AN772 AN772	20-Mar-01				NICKEL	1.6		0.2916	0.2916	MG/KG
					CL200.7						
SS132T	AN772	20-Mar-01			CL200.7	POTASSIUM	197		4.8602	4.8602	MG/KG
SS132T	AN772	20-Mar-01			CL200.7	SODIUM	248	J	45.5234	45.5234	MG/KG
SS132T	AN772	20-Mar-01			CL200.7	VANADIUM	7.7		0.324	0.324	MG/KG
SS132T	AN772	20-Mar-01			CL200.7	ZINC	6.4		0.0648	0.0648	MG/KG
SS132T	AN775	20-Mar-01	0.5		CL200.7	ALUMINUM	2140		9.9792	9.9792	MG/KG
SS132T	AN775	20-Mar-01	0.5		CL200.7	ARSENIC	1.5		0.79	0.79	MG/KG
SS132T	AN775	20-Mar-01	0.5	1	CL200.7	BARIUM	4.2		0.0416	0.0416	MG/KG
SS132T	AN775	20-Mar-01	0.5	1	CL200.7	BERYLLIUM	0.064	J	0.0554	0.0554	MG/KG
SS132T	AN775	20-Mar-01	0.5	1	CL200.7	BORON	1.6		0.1802	0.1802	MG/KG
SS132T	AN775	20-Mar-01	0.5	1	CL200.7	CALCIUM	85.6		9.3416	9.3416	MG/KG
SS132T	AN775	20-Mar-01	0.5	1	CL200.7	CHROMIUM, TOTAL	2.5		0.2772	0.2772	MG/KG
SS132T	AN775	20-Mar-01	0.5	1	CL200.7	COBALT	0.67	J	0.2218	0.2218	MG/KG
SS132T	AN775	20-Mar-01	0.5	1	CL200.7	COPPER	3.5	J	0.0832	0.0832	MG/KG
SS132T	AN775	20-Mar-01	0.5	1	CL200.7	IRON	3100		4.5877	4.5877	MG/KG
SS132T	AN775	20-Mar-01	0.5	1	CL200.7	LEAD	8.6		0.3604	0.3604	MG/KG
SS132T	AN775	20-Mar-01	0.5	1	CL200.7	MAGNESIUM	263		9.7574	9.7574	MG/KG
SS132T	AN775	20-Mar-01	0.5		CL200.7	MANGANESE	32.9		0.2495	0.2495	MG/KG
SS132T	AN775	20-Mar-01	0.5		CL200.7	NICKEL	1.4	J	0.194	0.194	MG/KG
SS132T	AN775	20-Mar-01	0.5		CL200.7	POTASSIUM	186	-	4.158	4.158	MG/KG
SS132T	AN775	20-Mar-01	0.5		CL200.7	SODIUM	294		38.9466	38.9466	MG/KG
SS132T	AN775	20-Mar-01	0.5		CL200.7	VANADIUM	5.4		0.2772	0.2772	MG/KG
SS132T	AN775	20-Mar-01	0.5		CL200.7	ZINC	4.8		0.0554	0.0554	MG/KG
SS132T	AN776	20-Mar-01	0.5		CL200.7	ALUMINUM	1810		11.3165	11.3165	MG/KG
SS132T	AN776	20-Mar-01	0.5		CL200.7	BARIUM	3.7		0.0472	0.0472	MG/KG
SS132T	AN776	20-Mar-01	0.5		CL200.7	BORON	0.8		0.2043	0.2043	MG/KG
SS132T	AN776	20-Mar-01	0.5		CL200.7	CALCIUM	68.7		10.5935	10.5935	MG/KG
SS132T	AN776	20-Mar-01	0.5		CL200.7 CL200.7	CHROMIUM, TOTAL	2.1		0.3143	0.3143	MG/KG
SS132T	AN776 AN776	20-Mar-01	0.5		CL200.7 CL200.7	COBALT	0.38		0.3143	0.3143	MG/KG
SS132T	AN776					COPPER		J			MG/KG
		20-Mar-01	0.5		CL200.7				0.0943	0.0943	
SS132T	AN776	20-Mar-01	0.5		CL200.7	IRON	2390		5.2024	5.2024	MG/KG
SS132T	AN776	20-Mar-01	0.5		CL200.7	LEAD	8.7		0.4087	0.4087	MG/KG
SS132T	AN776	20-Mar-01	0.5		CL200.7	MAGNESIUM	247		11.065	11.065	MG/KG
SS132T	AN776	20-Mar-01	0.5	1	CL200.7	MANGANESE	30.8		0.2829	0.2829	MG/KG

Table A.2
Target Array and Flanking Target Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPTH	'	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132T	AN776	20-Mar-01	0.5	1 CL200.7	NICKEL	0.99	J	0.22	0.22	MG/KG
SS132T	AN776	20-Mar-01	0.5	1 CL200.7	POTASSIUM	162		4.7152	4.7152	MG/KG
SS132T	AN776	20-Mar-01	0.5	1 CL200.7	SODIUM	179	J	44.1657	44.1657	MG/KG
SS132T	AN776	20-Mar-01	0.5	1 CL200.7	VANADIUM	4.1		0.3143	0.3143	MG/KG
SS132T	AN776	20-Mar-01	0.5	1 CL200.7	ZINC	4.2		0.0629	0.0629	MG/KG
SS132V	AP903	30-Apr-01	0	0.5 CL200.7	ALUMINUM	1940		5.0356	5.0356	MG/KG
SS132V	AP903	30-Apr-01	0	0.5 CL200.7	BARIUM	2.3		0.0241	0.0241	MG/KG
SS132V	AP903	30-Apr-01	0	0.5 CL200.7	BORON	1.8		0.1719	0.1719	MG/KG
SS132V	AP903	30-Apr-01	0	0.5 CL200.7	CALCIUM	45.5		3.2311	3.2311	MG/KG
SS132V	AP903	30-Apr-01	0	0.5 CL200.7	CHROMIUM, TOTAL	12.6	J	0.2062	0.2062	MG/KG
SS132V	AP903	30-Apr-01	0	0.5 CL200.7	COBALT	1.7		0.3094	0.3094	MG/KG
SS132V	AP903	30-Apr-01	0	0.5 CL200.7	COPPER	21.6	J	0.2062	0.2062	MG/KG
SS132V	AP903	30-Apr-01	0	0.5 CL200.7	IRON	30100		3.2311	3.2311	MG/KG
SS132V	AP903	30-Apr-01	0	0.5 CL200.7	LEAD	27.1	J	0.3781	0.3781	MG/KG
SS132V	AP903	30-Apr-01	0	0.5 CL200.7	MAGNESIUM	409		3.2826	3.2826	MG/KG
SS132V	AP903	30-Apr-01	0	0.5 CL200.7	MANGANESE	269	J	0.0894	0.0894	MG/KG
SS132V	AP903	30-Apr-01	0	0.5 CL200.7	MOLYBDENUM	1.7		0.5843	0.5843	MG/KG
SS132V	AP903	30-Apr-01	0	0.5 CL200.7	NICKEL	8.5	J	0.3094	0.3094	MG/KG
SS132V	AP903	30-Apr-01	0	0.5 CL200.7	POTASSIUM	175	J	16.774	16.774	MG/KG
SS132V	AP903	30-Apr-01	0	0.5 CL200.7	VANADIUM	9.3		0.1891	0.1891	MG/KG
SS132V	AP903	30-Apr-01	0	0.5 CL200.7	ZINC	8.2	J	0.098	0.098	MG/KG
SS132V	AP903	30-Apr-01	0	0.5 SW8270	BENZO(a)ANTHRACENE	300	J	54	330	UG/KG
SS132V	AP903	30-Apr-01	0	0.5 SW8270	BENZO(a)PYRENE	260	J	59	330	UG/KG
SS132V	AP903	30-Apr-01	0	0.5 SW8270	BENZO(b)FLUORANTHENE	280	J	110	330	UG/KG
SS132V	AP903	30-Apr-01	0	0.5 SW8270	BENZO(k)FLUORANTHENE	290	J	120	330	UG/KG
SS132V	AP903	30-Apr-01	0	0.5 SW8270	CHRYSENE	370		41	330	UG/KG
SS132V	AP903	30-Apr-01	0	0.5 SW8270	FLUORANTHENE	820		95	330	UG/KG
SS132V	AP903	30-Apr-01	0	0.5 SW8270	INDENO(1,2,3-c,d)PYRENE	160	J	110	330	UG/KG
SS132V	AP903	30-Apr-01	0	0.5 SW8270	PHENANTHRENE	720		70	330	UG/KG
SS132V	AP903	30-Apr-01	0	0.5 SW8270	PYRENE	620		150	330	UG/KG
SSFANGR	FANGR_PE	20-Jun-08	0.5	0.75 M8015D	FLUORANTHENE	228	J	137	274	UG/KG
SSFANGR	FANGR_PE	20-Jun-08	0.5	0.75 M8015D	INDENO(1,2,3-c,d)PYRENE	270	J	137	274	UG/KG
SSFANGR	FANGR_PE	20-Jun-08	0.5	0.75 M8015D	PHENANTHRENE	230	J	137	274	UG/KG
SSFANGR	FANGR_PE	20-Jun-08	0.5	0.75 M8015D	PYRENE	152	J	137	274	UG/KG
SSFANGR	FANGR_PE	20-Jun-08	0.5	0.75 M8015V	AROMATIC	691		287.5	575	UG/KG
SSFANGR	FANGR_PE	20-Jun-08	0.5	0.75 M8015V	ALIPHATIC	3210		1440	2880	UG/KG
SSFAR1	FAR1_PE	20-Jun-08		12.25 M8015V	VOLATILE PETROLEUM HYDROCARBONS C9-C10 AROMATIC	3480		253		UG/KG
SSFAR1	FAR1_PE	20-Jun-08	12	12.25 M8015V	VOLATILE PETROLEUM HYDROCARBONS C9-C12 ALIPHATIC	20500		1265	2530	UG/KG

Table A.2

Target Array and Flanking Target Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEP1	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SSFAR2	FAR2_PE	20-Jun-08	1	1.25	M8015D	EXTRACTABLE PETROLEUM HYDROCARBONS C11-C22 AROMAT	49400		13100	26200	UG/KG
SSFAR2	FAR2_PE	20-Jun-08	1	1 25	M8015D	EXTRACTABLE PETROLEUM HYDROCARBONS C19-C36	223000		65500	131000	LIC/KC
SSFARZ	FARZ_FE	20-3011-08	'	1.25	IVIOU I SID	ALIPHAT	223000		05500	131000	UG/KG
SSFATA01	SSFATA01_C	11-Jan-06	0	0.5	SW6010B	ALUMINUM	2040		3.5	15.0376	MG/KG
SSFATA01	SSFATA01_C	11-Jan-06	0		SW6010B	ANTIMONY	0.43		0.26	4.5113	
SSFATA01	SSFATA01_C	11-Jan-06	0		SW6010B	ARSENIC	1.8		0.32	0.7519	MG/KG
SSFATA01	SSFATA01 C	11-Jan-06	0		SW6010B	BARIUM	5.9		0.53	15.0376	MG/KG
SSFATA01	SSFATA01_C	11-Jan-06	0		SW6010B	BERYLLIUM	0.12	-	0.015	0.3759	MG/KG
SSFATA01	SSFATA01 C	11-Jan-06	0		SW6010B	CALCIUM	102		21.6		MG/KG
SSFATA01	SSFATA01 C	11-Jan-06	0		SW6010B	CHROMIUM, TOTAL	86.2	-	0.11	0.7519	MG/KG
SSFATA01	SSFATA01_C	11-Jan-06	0		SW6010B	COBALT	0.87		0.18	3.7594	MG/KG
SSFATA01	SSFATA01_C	11-Jan-06	0		SW6010B	COPPER	4.9		0.16	1.8797	MG/KG
SSFATA01	SSFATA01 C	11-Jan-06	0		SW6010B	IRON	4960		2.7	15.0376	MG/KG
SSFATA01	SSFATA01_C	11-Jan-06	0		SW6010B	LEAD	16		0.2	0.7519	MG/KG
SSFATA01	SSFATA01_C	11-Jan-06	0		SW6010B	MAGNESIUM	252		11.8		MG/KG
SSFATA01	SSFATA01_C	11-Jan-06	0		SW6010B	MANGANESE	25		0.053	1.1278	MG/KG
SSFATA01	SSFATA01 C	11-Jan-06	0		SW6010B	MOLYBDENUM	0.69		0.17	0.7519	MG/KG
SSFATA01	SSFATA01_C	11-Jan-06	0		SW6010B	NICKEL	2.6		0.14	3.0075	MG/KG
SSFATA01	SSFATA01_C	11-Jan-06	0		SW6010B	POTASSIUM	279		21.4		MG/KG
SSFATA01	SSFATA01_C	11-Jan-06	0		SW6010B	SODIUM	38.1		26.6		MG/KG
SSFATA01	SSFATA01_C	11-Jan-06	0		SW6010B	VANADIUM	11.9		0.17	3.7594	MG/KG
SSFATA01	SSFATA01_C	11-Jan-06	0		SW6010B	ZINC	5.9		0.56	1.5038	MG/KG
SSFATA01	SSFATA01_C	11-Jan-06	0		SW7471A	MERCURY	0.036		0.015	0.0353	MG/KG
SSFATA02	SSFATA02_C	11-Jan-06	0		SW6010B	ALUMINUM	1140		3.4	14.7059	MG/KG
SSFATA02	SSFATA02_C	11-Jan-06	0		SW6010B	ANTIMONY	0.6		0.26	4.4118	MG/KG
SSFATA02	SSFATA02 C	11-Jan-06	0		SW6010B	ARSENIC	1.2		0.32	0.7353	MG/KG
SSFATA02	SSFATA02 C	11-Jan-06	0		SW6010B	BARIUM	8.9		0.52	14.7059	MG/KG
SSFATA02	SSFATA02_C	11-Jan-06	0		SW6010B	BERYLLIUM	0.064		0.015	0.3676	MG/KG
SSFATA02	SSFATA02_C	11-Jan-06	0		SW6010B	CADMIUM	0.044		0.029	0.3676	MG/KG
SSFATA02	SSFATA02 C	11-Jan-06	0		SW6010B	CALCIUM	220		21.1	367.6471	MG/KG
SSFATA02	SSFATA02_C	11-Jan-06	0		SW6010B	CHROMIUM, TOTAL	141	-	0.11	0.7353	MG/KG
SSFATA02	SSFATA02_C	11-Jan-06	0		SW6010B	COBALT	0.62		0.18		MG/KG
SSFATA02	SSFATA02_C	11-Jan-06	0		SW6010B	COPPER	53.4		0.15	1.8382	MG/KG
SSFATA02	SSFATA02 C	11-Jan-06	0		SW6010B	IRON	4080		2.6	14.7059	MG/KG
SSFATA02	SSFATA02_C	11-Jan-06	0		SW6010B	LEAD	59.3		0.2	0.7353	MG/KG
SSFATA02	SSFATA02_C	11-Jan-06	0		SW6010B	MAGNESIUM	111		11.6		MG/KG
SSFATA02	SSFATA02_C	11-Jan-06	0		SW6010B	MANGANESE	24.7		0.051	1.1029	MG/KG
SSFATA02	SSFATA02_C	11-Jan-06	0		SW6010B	MOLYBDENUM	0.87		0.031	0.7353	MG/KG
SSFATA02	SSFATA02_C	11-Jan-06	0		SW6010B	NICKEL	3.3		0.17		

Table A.2

Target Array and Flanking Target Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPTH (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SSFATA02	SSFATA02_C	11-Jan-06	0 0.5	SW6010B	POTASSIUM	236	J	21	367.6471	MG/KG
SSFATA02	SSFATA02_C	11-Jan-06	0 0.5	SW6010B	SELENIUM	0.36	J	0.26	2.5735	MG/KG
SSFATA02	SSFATA02_C	11-Jan-06	0 0.5	SW6010B	SODIUM	43.1	J	26	367.6471	MG/KG
SSFATA02	SSFATA02_C	11-Jan-06	0 0.5	SW6010B	VANADIUM	13.7		0.16	3.6765	MG/KG
SSFATA02	SSFATA02_C	11-Jan-06	0 0.5	SW6010B	ZINC	6.8		0.55	1.4706	MG/KG
SSFATA02	SSFATA02_C	11-Jan-06	0 0.5	SW7471A	MERCURY	0.041		0.014	0.0333	MG/KG
SSFATA02	SSFATA02_C	11-Jan-06	0 0.5	SW8330	2,4,6-TRINITROTOLUENE	16	J	3.6	13	UG/KG
SSFATA03	SSFATA03_C	17-Jan-06	0 0.5	SW6010B	ALUMINUM	2440		3.1	13.4497	MG/KG
SSFATA03	SSFATA03_C	17-Jan-06	0 0.5	SW6010B	ARSENIC	1.6		0.29	0.6725	MG/KG
SSFATA03	SSFATA03_C	17-Jan-06	0 0.5	SW6010B	BARIUM	11.3	J	0.48	13.4497	MG/KG
SSFATA03	SSFATA03_C	17-Jan-06	0 0.5	SW6010B	BERYLLIUM	0.074	J	0.013	0.3362	MG/KG
SSFATA03	SSFATA03_C	17-Jan-06	0 0.5	SW6010B	CADMIUM	0.23	J	0.027	0.3362	MG/KG
SSFATA03	SSFATA03_C	17-Jan-06	0 0.5	SW6010B	CALCIUM	91.1	J	19.3	336.243	MG/KG
SSFATA03	SSFATA03_C	17-Jan-06	0 0.5	SW6010B	CHROMIUM, TOTAL	106		0.1	0.6725	MG/KG
SSFATA03	SSFATA03_C	17-Jan-06	0 0.5	SW6010B	COBALT	0.65	J	0.16	3.3624	MG/KG
SSFATA03	SSFATA03_C	17-Jan-06	0 0.5	SW6010B	COPPER	21.6		0.14	1.6812	MG/KG
SSFATA03	SSFATA03_C	17-Jan-06	0 0.5	SW6010B	IRON	5130		2.4	13.4497	MG/KG
SSFATA03	SSFATA03_C	17-Jan-06	0 0.5	SW6010B	LEAD	23.3		0.18	0.6725	MG/KG
SSFATA03	SSFATA03_C	17-Jan-06	0 0.5	SW6010B	MAGNESIUM	108	J	10.6	336.243	MG/KG
SSFATA03	SSFATA03_C	17-Jan-06	0 0.5	SW6010B	MANGANESE	16.5		0.047	1.0087	MG/KG
SSFATA03	SSFATA03_C	17-Jan-06	0 0.5	SW6010B	MOLYBDENUM	1		0.15	0.6725	MG/KG
SSFATA03	SSFATA03_C	17-Jan-06	0 0.5	SW6010B	NICKEL	4.5		0.12	2.6899	MG/KG
SSFATA03	SSFATA03_C	17-Jan-06	0 0.5	SW6010B	POTASSIUM	222	J	19.2	336.243	MG/KG
SSFATA03	SSFATA03_C	17-Jan-06	0 0.5	SW6010B	VANADIUM	10.9		0.15	3.3624	MG/KG
SSFATA03	SSFATA03_C	17-Jan-06	0 0.5	SW6010B	ZINC	3.9		0.58	1.5535	MG/KG
SSFATA03	SSFATA03_C	17-Jan-06	0 0.5	SW7471A	MERCURY	0.017	J	0.015	0.0354	MG/KG
SSFATA04	SSFATA04_C	13-Jan-06	0 0.5	SW6010B	ALUMINUM	657		3.3	14.0845	MG/KG
SSFATA04	SSFATA04_C	13-Jan-06	0 0.5	SW6010B	ANTIMONY	1.4	J	0.25	4.2254	MG/KG
SSFATA04	SSFATA04_C	13-Jan-06	0 0.5	SW6010B	ARSENIC	1.1		0.3	0.7042	MG/KG
SSFATA04	SSFATA04_C	13-Jan-06	0 0.5	SW6010B	BARIUM	7.2	J	0.5	14.0845	MG/KG
SSFATA04	SSFATA04_C	13-Jan-06	0 0.5	SW6010B	BERYLLIUM	0.059	J	0.014	0.3521	MG/KG
SSFATA04	SSFATA04_C	13-Jan-06	0 0.5	SW6010B	CADMIUM	0.049	J	0.028	0.3521	MG/KG
SSFATA04	SSFATA04_C	13-Jan-06	0 0.5	SW6010B	CALCIUM	128	J	20.3	352.1127	MG/KG
SSFATA04	SSFATA04_C	13-Jan-06	0 0.5	SW6010B	CHROMIUM, TOTAL	65		0.11	0.7042	MG/KG
SSFATA04	SSFATA04_C	13-Jan-06	0 0.5	SW6010B	COBALT	0.34	J	0.17	3.5211	MG/KG
SSFATA04	SSFATA04_C	13-Jan-06	0 0.5	SW6010B	COPPER	28.9		0.15	1.7606	MG/KG
SSFATA04	SSFATA04_C	13-Jan-06	0 0.5	SW6010B	IRON	2530		2.5	14.0845	MG/KG
SSFATA04	SSFATA04_C	13-Jan-06	0 0.5	SW6010B	LEAD	196		0.19	0.7042	MG/KG
SSFATA04	SSFATA04_C	13-Jan-06	0 0.5	SW6010B	MAGNESIUM	68.7	J	11.1	352.1127	MG/KG
SSFATA04	SSFATA04_C	13-Jan-06	0 0.5	SW6010B	MANGANESE	14.7		0.049	1.0563	MG/KG

Table A.2

Target Array and Flanking Target Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPTH	/ET \	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SSFATA04	SSFATA04_C	13-Jan-06	0	, ,	SW6010B	MOLYBDENUM	0.67		0.16		MG/KG
SSFATA04	SSFATA04_C	13-Jan-06	0		SW6010B	NICKEL	1.8	-	0.10	2.8169	MG/KG
SSFATA04	SSFATA04_C	13-Jan-06	0		SW6010B	POTASSIUM	162		20.1	352.1127	MG/KG
SSFATA04	SSFATA04_C	13-Jan-06	0		SW6010B	SELENIUM	0.33		0.25	2.4648	MG/KG
SSFATA04	SSFATA04_C	13-Jan-06	0		SW6010B	SODIUM	43.5		24.9		MG/KG
SSFATA04	SSFATA04_C	13-Jan-06	0		SW6010B	VANADIUM	8.5	3	0.15	3.5211	MG/KG
SSFATA04	SSFATA04_C	13-Jan-06	0		SW6010B	ZINC	7.1		0.13		MG/KG
SSFATA04	SSFATA04_C	13-Jan-06	0		SW8330	2-AMINO-4.6-DINITROTOLUENE	85		1.4		UG/KG
SSFATA04	SSFATA04_C	13-Jan-06	0		SW8330	4-AMINO-2.6-DINITROTOLUENE	93	1	2.3	13	UG/KG
SSFATA04	SSFATA04_C	13-Jan-06	0		SW6010B	ALUMINUM	1110	J	3.2	13.6054	MG/KG
SSFATA05	SSFATA05_C	13-Jan-06	0		SW6010B	ANTIMONY	0.44	1	0.24	4.0816	MG/KG
SSFATA05	SSFATA05_C	13-Jan-06	0		SW6010B	ARSENIC	1	J	0.24	0.6803	MG/KG
SSFATA05		13-Jan-06	0		SW6010B	BARIUM	11	1		13.6054	MG/KG
SSFATA05	SSFATA05_C		-			I .		-	0.48		
	SSFATA05_C	13-Jan-06	0		SW6010B	BERYLLIUM	0.066		0.014	0.3401	MG/KG
SSFATA05	SSFATA05_C	13-Jan-06	0		SW6010B	CADMIUM	0.079		0.027	0.3401	MG/KG
SSFATA05	SSFATA05_C	13-Jan-06	0		SW6010B	CALCIUM	167	J	19.6		MG/KG
SSFATA05	SSFATA05_C	13-Jan-06	0		SW6010B	CHROMIUM, TOTAL	89.8		0.1	0.6803	MG/KG
SSFATA05	SSFATA05_C	13-Jan-06	0		SW6010B	COBALT	0.49	J	0.16	3.4014	MG/KG
SSFATA05	SSFATA05_C	13-Jan-06	0		SW6010B	COPPER	17.2		0.14	1.7007	MG/KG
SSFATA05	SSFATA05_C	13-Jan-06	0		SW6010B	IRON	3140		2.4	13.6054	MG/KG
SSFATA05	SSFATA05_C	13-Jan-06	0		SW6010B	LEAD	31.5		0.18	0.6803	MG/KG
SSFATA05	SSFATA05_C	13-Jan-06	0		SW6010B	MAGNESIUM	87.8	J	10.7	340.1361	MG/KG
SSFATA05	SSFATA05_C	13-Jan-06	0		SW6010B	MANGANESE	17		0.048	1.0204	MG/KG
SSFATA05	SSFATA05_C	13-Jan-06	0	0.5	SW6010B	MOLYBDENUM	0.92		0.16	0.6803	MG/KG
SSFATA05	SSFATA05_C	13-Jan-06	0		SW6010B	NICKEL	2.7		0.12		MG/KG
SSFATA05	SSFATA05_C	13-Jan-06	0	0.5	SW6010B	POTASSIUM	180	J	19.4	340.1361	MG/KG
SSFATA05	SSFATA05_C	13-Jan-06	0	0.5	SW6010B	SODIUM	56.4	J	24.1	340.1361	MG/KG
SSFATA05	SSFATA05_C	13-Jan-06	0	0.5	SW6010B	VANADIUM	11.3		0.15	3.4014	MG/KG
SSFATA05	SSFATA05_C	13-Jan-06	0	0.5	SW6010B	ZINC	6.1		0.51	1.3605	MG/KG
SSFATA05	SSFATA05_C	13-Jan-06	0	0.5	SW7471A	MERCURY	0.028	J	0.015	0.0364	MG/KG
SSFATA06	SSFATA06_C	17-Jan-06	0	0.5	SW6010B	ALUMINUM	728		3.5	15.0099	MG/KG
SSFATA06	SSFATA06_C	17-Jan-06	0	0.5	SW6010B	ANTIMONY	0.38	J	0.26	4.503	MG/KG
SSFATA06	SSFATA06_C	17-Jan-06	0	0.5	SW6010B	ARSENIC	0.95		0.32	0.7505	MG/KG
SSFATA06	SSFATA06_C	17-Jan-06	0	0.5	SW6010B	BARIUM	9.4	J	0.53	15.0099	MG/KG
SSFATA06	SSFATA06_C	17-Jan-06	0	0.5	SW6010B	BERYLLIUM	0.049	J	0.015	0.3752	MG/KG
SSFATA06	SSFATA06_C	17-Jan-06	0	0.5	SW6010B	CADMIUM	0.061	J	0.03	0.3752	MG/KG
SSFATA06	SSFATA06_C	17-Jan-06	0	0.5	SW6010B	CALCIUM	206	J	21.6		MG/KG
SSFATA06	SSFATA06_C	17-Jan-06	0	0.5	SW6010B	CHROMIUM, TOTAL	74.4		0.11	0.7505	MG/KG
SSFATA06	SSFATA06_C	17-Jan-06	0		SW6010B	COBALT	0.47	J	0.18	3.7525	MG/KG
SSFATA06	SSFATA06_C	17-Jan-06	0	_	SW6010B	COPPER	6.6		0.16		MG/KG

Table A.2

Target Array and Flanking Target Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPTH (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SSFATA06	SSFATA06_C	17-Jan-06	0 0.	SW6010B	IRON	2750		2.7	15.0099	MG/KG
SSFATA06	SSFATA06_C	17-Jan-06	0 0.	5 SW6010B	LEAD	24.1		0.2	0.7505	MG/KG
SSFATA06	SSFATA06_C	17-Jan-06	0 0.	5 SW6010B	MAGNESIUM	93.7	J	11.8	375.2486	MG/KG
SSFATA06	SSFATA06_C	17-Jan-06	0 0.	5 SW6010B	MANGANESE	19.4		0.052	1.1257	MG/KG
SSFATA06	SSFATA06_C	17-Jan-06	0 0.	5 SW6010B	MOLYBDENUM	0.77		0.17	0.7505	MG/KG
SSFATA06	SSFATA06_C	17-Jan-06	0 0.	5 SW6010B	NICKEL	2.7	J	0.14	3.002	MG/KG
SSFATA06	SSFATA06_C	17-Jan-06	0 0.	5 SW6010B	POTASSIUM	164	J	21.4	375.2486	MG/KG
SSFATA06	SSFATA06_C	17-Jan-06	0 0.	5 SW6010B	SODIUM	28.3	J	26.5	375.2486	MG/KG
SSFATA06	SSFATA06_C	17-Jan-06	0 0.	5 SW6010B	VANADIUM	9.2		0.17	3.7525	MG/KG
SSFATA06	SSFATA06_C	17-Jan-06	0 0.	5 SW6010B	ZINC	5.3		0.56	1.501	MG/KG
SSFATA06	SSFATA06_C	17-Jan-06	0 0.	5 SW7471A	MERCURY	0.042		0.015	0.0347	MG/KG
SSFATA06	SSFATA06_C	17-Jan-06	0 0.	5 SW8330	2,4,6-TRINITROTOLUENE	15	J	3.6	13	UG/KG
SSFATA06	SSFATA06_C FD	17-Jan-06	0 0.	5 SW6010B	ALUMINUM	1040		3.6	15.4549	MG/KG
SSFATA06	SSFATA06_C FD	17-Jan-06	0 0.	5 SW6010B	ANTIMONY	0.41	J	0.27	4.6365	MG/KG
SSFATA06	SSFATA06_C FD	17-Jan-06	0 0.	5 SW6010B	ARSENIC	1.3		0.33	0.7727	MG/KG
SSFATA06	SSFATA06_C FD	17-Jan-06	0 0.	5 SW6010B	BARIUM	12.1	J	0.55	15.4549	MG/KG
SSFATA06	SSFATA06_C FD	17-Jan-06	0 0.	5 SW6010B	BERYLLIUM	0.051	J	0.015	0.3864	MG/KG
SSFATA06	SSFATA06_C FD	17-Jan-06	0 0.	5 SW6010B	CADMIUM	0.058	J	0.031	0.3864	MG/KG
SSFATA06	SSFATA06_C FD	17-Jan-06	0 0.	5 SW6010B	CALCIUM	259	J	22.2	386.3719	MG/KG
SSFATA06	SSFATA06_C FD	17-Jan-06	0 0.	5 SW6010B	CHROMIUM, TOTAL	78		0.12	0.7727	MG/KG
SSFATA06	SSFATA06_C FD	17-Jan-06	0 0.	5 SW6010B	COBALT	0.63	J	0.19	3.8637	MG/KG
SSFATA06	SSFATA06_C FD	17-Jan-06	0 0.	5 SW6010B	COPPER	8.8		0.16	1.9319	MG/KG
SSFATA06	SSFATA06_C FD	17-Jan-06	0 0.	5 SW6010B	IRON	3340		2.8	15.4549	MG/KG
SSFATA06	SSFATA06_C FD	17-Jan-06	0 0.	5 SW6010B	LEAD	32.8		0.21	0.7727	MG/KG
SSFATA06	SSFATA06_C FD	17-Jan-06	0 0.	5 SW6010B	MAGNESIUM	122	J	12.2	386.3719	MG/KG
SSFATA06	SSFATA06_C FD	17-Jan-06	0 0.	5 SW6010B	MANGANESE	24.4		0.054	1.1591	MG/KG
SSFATA06	SSFATA06_C FD	17-Jan-06	0 0.	5 SW6010B	MOLYBDENUM	0.9		0.18	0.7727	MG/KG
SSFATA06	SSFATA06_C FD	17-Jan-06	0 0.	5 SW6010B	NICKEL	3.4		0.14	3.091	MG/KG
SSFATA06	SSFATA06_C FD	17-Jan-06	0 0.9	5 SW6010B	POTASSIUM	201	J	22	386.3719	MG/KG
SSFATA06	SSFATA06_C FD	17-Jan-06	0 0.	5 SW6010B	SODIUM	37.4	J	25.1	354.3963	MG/KG
SSFATA06	SSFATA06_C FD	17-Jan-06		5 SW6010B	VANADIUM	12.8		0.17	3.8637	MG/KG
SSFATA06	SSFATA06_C FD	17-Jan-06	0 0.	5 SW6010B	ZINC	5.3		0.53	1.4176	MG/KG
SSFATA06	SSFATA06_C FD	17-Jan-06	0 0.	5 SW7471A	MERCURY	0.043		0.014	0.0333	MG/KG
SSFATA07	SSFATA07_C	17-Jan-06	0 0.	5 SW6010B	ALUMINUM	2870		3.6	15.4214	MG/KG
SSFATA07	SSFATA07_C	17-Jan-06	0 0.	5 SW6010B	ARSENIC	1.7		0.33	0.7711	MG/KG
SSFATA07	SSFATA07_C	17-Jan-06	0 0.	5 SW6010B	BARIUM	19.6		0.55	15.4214	MG/KG
SSFATA07	SSFATA07_C	17-Jan-06	0 0.	5 SW6010B	BERYLLIUM	0.1	J	0.015	0.3855	MG/KG
SSFATA07	SSFATA07_C	17-Jan-06	0 0.	5 SW6010B	CADMIUM	0.065	J	0.031	0.3855	MG/KG
SSFATA07	SSFATA07_C	17-Jan-06	0 0.	5 SW6010B	CALCIUM	108	J	22.2	385.5347	MG/KG
SSFATA07	SSFATA07_C	17-Jan-06	0 0.	5 SW6010B	CHROMIUM, TOTAL	76.6		0.12	0.7711	MG/KG

Table A.2

Target Array and Flanking Target Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPTH (FT.) TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SSFATA07	SSFATA07 C	17-Jan-06	0	0.5 SW6010B	COBALT	0.72		0.19		MG/KG
SSFATA07	SSFATA07_C	17-Jan-06	0	0.5 SW6010B	COPPER	12.8		0.16	1.9277	MG/KG
SSFATA07	SSFATA07_C	17-Jan-06	0	0.5 SW6010B	IRON	5590		2.8		MG/KG
SSFATA07	SSFATA07_C	17-Jan-06	0	0.5 SW6010B	LEAD	16.4		0.21	0.7711	MG/KG
SSFATA07	SSFATA07_C	17-Jan-06	0	0.5 SW6010B	MAGNESIUM	93.4		12.1	385.5347	MG/KG
SSFATA07	SSFATA07_C	17-Jan-06	0	0.5 SW6010B	MANGANESE	15.6		0.054	1.1566	MG/KG
SSFATA07	SSFATA07_C	17-Jan-06	0	0.5 SW6010B	MOLYBDENUM	0.89		0.18	0.7711	MG/KG
SSFATA07	SSFATA07 C	17-Jan-06	0	0.5 SW6010B	NICKEL	4.4		0.14	3.0843	MG/KG
SSFATA07	SSFATA07_C	17-Jan-06	0	0.5 SW6010B	POTASSIUM	166	J	22	385.5347	MG/KG
SSFATA07	SSFATA07_C	17-Jan-06	0	0.5 SW6010B	SODIUM	28.4	J	26.5		MG/KG
SSFATA07	SSFATA07_C	17-Jan-06	0	0.5 SW6010B	VANADIUM	11.7		0.17	3.8553	MG/KG
SSFATA07	SSFATA07_C	17-Jan-06	0	0.5 SW6010B	ZINC	6.5		0.56	1.4964	MG/KG
SSFATA07	SSFATA07_C	17-Jan-06	0	0.5 SW7471A	MERCURY	0.022		0.015	0.0367	MG/KG
SSFATA08	SSFATA08_C	13-Jan-06	0	0.5 SW6010B	ALUMINUM	2290		3.5	15.2672	MG/KG
SSFATA08	SSFATA08_C	13-Jan-06	0	0.5 SW6010B	ANTIMONY	1.4	J	0.27	4.5802	MG/KG
SSFATA08	SSFATA08_C	13-Jan-06	0	0.5 SW6010B	ARSENIC	1.7		0.33	0.7634	MG/KG
SSFATA08	SSFATA08_C	13-Jan-06	0	0.5 SW6010B	BARIUM	6.7	J	0.54	15.2672	MG/KG
SSFATA08	SSFATA08_C	13-Jan-06	0	0.5 SW6010B	BERYLLIUM	0.096	J	0.015	0.3817	MG/KG
SSFATA08	SSFATA08_C	13-Jan-06	0	0.5 SW6010B	CADMIUM	0.062	J	0.03	0.3817	MG/KG
SSFATA08	SSFATA08_C	13-Jan-06	0	0.5 SW6010B	CALCIUM	170	J	22	381.6794	MG/KG
SSFATA08	SSFATA08_C	13-Jan-06	0	0.5 SW6010B	CHROMIUM, TOTAL	120		0.11	0.7634	MG/KG
SSFATA08	SSFATA08_C	13-Jan-06	0	0.5 SW6010B	COBALT	0.79	J	0.18	3.8168	MG/KG
SSFATA08	SSFATA08_C	13-Jan-06	0	0.5 SW6010B	COPPER	14.3		0.16	1.9084	MG/KG
SSFATA08	SSFATA08_C	13-Jan-06	0	0.5 SW6010B	IRON	5340		2.7	15.2672	MG/KG
SSFATA08	SSFATA08_C	13-Jan-06	0	0.5 SW6010B	LEAD	59.6		0.21	0.7634	MG/KG
SSFATA08	SSFATA08_C	13-Jan-06	0	0.5 SW6010B	MAGNESIUM	198	J	12	381.6794	MG/KG
SSFATA08	SSFATA08_C	13-Jan-06	0	0.5 SW6010B	MANGANESE	24.7		0.053	1.145	MG/KG
SSFATA08	SSFATA08_C	13-Jan-06	0	0.5 SW6010B	MOLYBDENUM	1.2		0.18	0.7634	MG/KG
SSFATA08	SSFATA08_C	13-Jan-06	0	0.5 SW6010B	NICKEL	3.7		0.14	3.0534	MG/KG
SSFATA08	SSFATA08_C	13-Jan-06	0	0.5 SW6010B	POTASSIUM	255	J	21.8	381.6794	MG/KG
SSFATA08	SSFATA08_C	13-Jan-06	0	0.5 SW6010B	SODIUM	58.4	J	27	381.6794	MG/KG
SSFATA08	SSFATA08_C	13-Jan-06	0	0.5 SW6010B	VANADIUM	16.3		0.17	3.8168	MG/KG
SSFATA08	SSFATA08_C	13-Jan-06	0	0.5 SW6010B	ZINC	8		0.57	1.5267	MG/KG
SSFATA08	SSFATA08_C	13-Jan-06	0	0.5 SW7471A	MERCURY	0.054		0.014	0.0333	MG/KG
SSFATA08	SSFATA08_C	13-Jan-06	0	0.5 SW8270C	BENZO(a)ANTHRACENE	210	J	105	390	UG/KG
SSFATA08	SSFATA08_C	13-Jan-06	0	0.5 SW8270C	BENZO(a)PYRENE	160	J	95.3	390	UG/KG
SSFATA08	SSFATA08_C	13-Jan-06	0	0.5 SW8270C	BENZO(b)FLUORANTHENE	220	J	97.6	390	UG/KG
SSFATA08	SSFATA08_C	13-Jan-06	0	0.5 SW8270C	BENZO(k)FLUORANTHENE	200	J	129	390	UG/KG
SSFATA08	SSFATA08_C	13-Jan-06	0	0.5 SW8270C	CHRYSENE	260	J	118	390	UG/KG
SSFATA08	SSFATA08_C	13-Jan-06	0	0.5 SW8270C	FLUORANTHENE	530		90.6	390	UG/KG

Table A.2

Target Array and Flanking Target Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPTH	(ET.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SSFATA08	SSFATA08 C	13-Jan-06			SW8270C	PHENANTHRENE	390		102		UG/KG
SSFATA08	SSFATA08 C	13-Jan-06			SW8270C	PYRENE	450		141	390	UG/KG
SSFATA09	SSFATA09_C	11-Jan-06			SW6010B	ALUMINUM	3360		3.3		MG/KG
SSFATA09	SSFATA09 C	11-Jan-06	-		SW6010B	ANTIMONY	1.7		0.25	4.2254	MG/KG
SSFATA09	SSFATA09_C	11-Jan-06			SW6010B	ARSENIC	2.2		0.3	0.7042	MG/KG
SSFATA09	SSFATA09_C	11-Jan-06	0		SW6010B	BARIUM	7.5		0.5	14.0845	MG/KG
SSFATA09	SSFATA09_C	11-Jan-06			SW6010B	BERYLLIUM	0.13		0.014	0.3521	MG/KG
SSFATA09	SSFATA09_C	11-Jan-06			SW6010B	CADMIUM	0.073		0.028	0.3521	MG/KG
SSFATA09	SSFATA09 C	11-Jan-06			SW6010B	CALCIUM	154		20.3		MG/KG
SSFATA09	SSFATA09 C	11-Jan-06			SW6010B	CHROMIUM, TOTAL	176		0.11	0.7042	MG/KG
SSFATA09	SSFATA09_C	11-Jan-06			SW6010B	COBALT	1.2		0.17	3.5211	MG/KG
SSFATA09	SSFATA09_C	11-Jan-06			SW6010B	COPPER	81.3		0.15	1.7606	MG/KG
SSFATA09	SSFATA09_C	11-Jan-06			SW6010B	IRON	8170		2.5	14.0845	MG/KG
SSFATA09	SSFATA09_C	11-Jan-06			SW6010B	LEAD	151		0.19	0.7042	MG/KG
SSFATA09	SSFATA09_C	11-Jan-06			SW6010B	MAGNESIUM	289		11.1	352.1127	MG/KG
SSFATA09	SSFATA09_C	11-Jan-06			SW6010B	MANGANESE	43.6		0.049	1.0563	MG/KG
SSFATA09	SSFATA09 C	11-Jan-06			SW6010B	MOLYBDENUM	1.2		0.16	0.7042	MG/KG
SSFATA09	SSFATA09_C	11-Jan-06			SW6010B	NICKEL	4.5		0.13	2.8169	MG/KG
SSFATA09	SSFATA09_C	11-Jan-06	0		SW6010B	POTASSIUM	312		20.1	352.1127	MG/KG
SSFATA09	SSFATA09_C	11-Jan-06	0		SW6010B	SELENIUM	0.34		0.25	2.4648	MG/KG
SSFATA09	SSFATA09_C	11-Jan-06	0	0.5	SW6010B	SODIUM	37.4	J	24.9	352.1127	MG/KG
SSFATA09	SSFATA09_C	11-Jan-06	0		SW6010B	VANADIUM	15.8		0.15		MG/KG
SSFATA09	SSFATA09 C	11-Jan-06	0	0.5	SW6010B	ZINC	11.4		0.53	1.4085	MG/KG
SSFATA09	SSFATA09_C	11-Jan-06	0	0.5	SW7471A	MERCURY	0.11		0.017	0.04	MG/KG
SSFATA09	SSFATA09_CFD	11-Jan-06	0	0.5	SW6010B	ALUMINUM	3160		3.1	13.4228	MG/KG
SSFATA09	SSFATA09_CFD	11-Jan-06	0	0.5	SW6010B	ANTIMONY	3.9	J	0.23	4.0268	MG/KG
SSFATA09	SSFATA09_CFD	11-Jan-06	0	0.5	SW6010B	ARSENIC	2		0.29	0.6711	MG/KG
SSFATA09	SSFATA09_CFD	11-Jan-06	0	0.5	SW6010B	BARIUM	6.9	J	0.48	13.4228	MG/KG
SSFATA09	SSFATA09_CFD	11-Jan-06	0	0.5	SW6010B	BERYLLIUM	0.12	J	0.013	0.3356	MG/KG
SSFATA09	SSFATA09_CFD	11-Jan-06	0	0.5	SW6010B	CADMIUM	0.064	J	0.027	0.3356	MG/KG
SSFATA09	SSFATA09_CFD	11-Jan-06	0	0.5	SW6010B	CALCIUM	142	J	19.3	335.5705	MG/KG
SSFATA09	SSFATA09_CFD	11-Jan-06	0	0.5	SW6010B	CHROMIUM, TOTAL	151		0.1	0.6711	MG/KG
SSFATA09	SSFATA09_CFD	11-Jan-06	0	0.5	SW6010B	COBALT	1.1	J	0.16	3.3557	MG/KG
SSFATA09	SSFATA09_CFD	11-Jan-06	0	0.5	SW6010B	COPPER	70.9		0.14	1.6779	MG/KG
SSFATA09	SSFATA09_CFD	11-Jan-06	0	0.5	SW6010B	IRON	7740		2.4	13.4228	MG/KG
SSFATA09	SSFATA09_CFD	11-Jan-06	0	0.5	SW6010B	LEAD	189		0.18	0.6711	MG/KG
SSFATA09	SSFATA09_CFD	11-Jan-06	0	0.5	SW6010B	MAGNESIUM	275	J	10.6	335.5705	MG/KG
SSFATA09	SSFATA09_CFD	11-Jan-06	0	0.5	SW6010B	MANGANESE	41.6		0.047	1.0067	MG/KG
SSFATA09	SSFATA09_CFD	11-Jan-06	0	0.5	SW6010B	MOLYBDENUM	0.99		0.15	0.6711	MG/KG
SSFATA09	SSFATA09_CFD	11-Jan-06	0	0.5	SW6010B	NICKEL	4.1		0.12	2.6846	MG/KG

Table A.2
Target Array and Flanking Target Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPTH (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SSFATA09	SSFATA09_CFD	11-Jan-06	0 0.5	SW6010B	POTASSIUM	283	J	19.1	335.5705	MG/KG
SSFATA09	SSFATA09_CFD	11-Jan-06	0 0.5	SW6010B	SELENIUM	0.36	J	0.23	2.349	MG/KG
SSFATA09	SSFATA09_CFD	11-Jan-06	0 0.5	SW6010B	SODIUM	29.2	J	23.7	335.5705	MG/KG
SSFATA09	SSFATA09_CFD	11-Jan-06	0 0.5	SW6010B	VANADIUM	14.7		0.15	3.3557	MG/KG
SSFATA09	SSFATA09_CFD	11-Jan-06	0 0.5	SW6010B	ZINC	12.5		0.5	1.3423	MG/KG
SSFATA09	SSFATA09_CFD	11-Jan-06	0 0.5	SW7471A	MERCURY	0.1		0.013	0.0308	MG/KG
SSFATA10	SSFATA10_C	11-Jan-06	0 0.5	SW6010B	ALUMINUM	3370		3.3	14.2857	MG/KG
SSFATA10	SSFATA10_C	11-Jan-06	0 0.5	SW6010B	ANTIMONY	3.2	J	0.25	4.2857	MG/KG
SSFATA10	SSFATA10_C	11-Jan-06	0 0.5	SW6010B	ARSENIC	2		0.31	0.7143	MG/KG
SSFATA10	SSFATA10_C	11-Jan-06	0 0.5	SW6010B	BARIUM	7.3	J	0.51	14.2857	MG/KG
SSFATA10	SSFATA10_C	11-Jan-06	0 0.5	SW6010B	BERYLLIUM	0.11	J	0.014	0.3571	MG/KG
SSFATA10	SSFATA10_C	11-Jan-06	0 0.5	SW6010B	CADMIUM	0.042	J	0.029	0.3571	MG/KG
SSFATA10	SSFATA10_C	11-Jan-06	0 0.5	SW6010B	CALCIUM	124	J	20.5	357.1429	MG/KG
SSFATA10	SSFATA10_C	11-Jan-06	0 0.5	SW6010B	CHROMIUM, TOTAL	97.7		0.11	0.7143	MG/KG
SSFATA10	SSFATA10_C	11-Jan-06	0 0.5	SW6010B	COBALT	0.93	J	0.17	3.5714	MG/KG
SSFATA10	SSFATA10_C	11-Jan-06	0 0.5	SW6010B	COPPER	78.2		0.15	1.7857	MG/KG
SSFATA10	SSFATA10_C	11-Jan-06	0 0.5	SW6010B	IRON	6840		2.6	14.2857	MG/KG
SSFATA10	SSFATA10_C	11-Jan-06	0 0.5	SW6010B	LEAD	155		0.19	0.7143	MG/KG
SSFATA10	SSFATA10_C	11-Jan-06	0 0.5	SW6010B	MAGNESIUM	249	J	11.2	357.1429	MG/KG
SSFATA10	SSFATA10_C	11-Jan-06	0 0.5	SW6010B	MANGANESE	31.8		0.05	1.0714	MG/KG
SSFATA10	SSFATA10_C	11-Jan-06	0 0.5	SW6010B	MOLYBDENUM	1		0.16	0.7143	MG/KG
SSFATA10	SSFATA10_C	11-Jan-06	0 0.5	SW6010B	NICKEL	3.2		0.13	2.8571	MG/KG
SSFATA10	SSFATA10_C	11-Jan-06	0 0.5	SW6010B	POTASSIUM	270	J	20.4	357.1429	MG/KG
SSFATA10	SSFATA10_C	11-Jan-06	0 0.5	SW6010B	SELENIUM	0.34	J	0.25	2.5	MG/KG
SSFATA10	SSFATA10_C	11-Jan-06	0 0.5	SW6010B	SODIUM	51.1	J	25.3	357.1429	MG/KG
SSFATA10	SSFATA10_C	11-Jan-06	0 0.5	SW6010B	VANADIUM	14.5		0.16	3.5714	MG/KG
SSFATA10	SSFATA10_C	11-Jan-06	0 0.5	SW6010B	ZINC	8.3		0.54	1.4286	MG/KG
SSFATA10	SSFATA10_C	11-Jan-06	0 0.5	SW7471A	MERCURY	0.15		0.016	0.0387	MG/KG
SSFATA10	SSFATA10_C	11-Jan-06	0 0.5	SW8330	2,4,6-TRINITROTOLUENE	23	J	3.6	13	UG/KG
SSFATA10	SSFATA10_C	11-Jan-06	0 0.5	SW8330	2-AMINO-4,6-DINITROTOLUENE	68	J	1.4	13	UG/KG
SSFATA10	SSFATA10_C	11-Jan-06	0 0.5	SW8330	4-AMINO-2,6-DINITROTOLUENE	55	J	2.3	13	UG/KG
SSFATA11	SSFATA11_C	11-Jan-06	0 0.5	SW6010B	ALUMINUM	2120		3.3	14.3885	MG/KG
SSFATA11	SSFATA11_C	11-Jan-06	0 0.5	SW6010B	ANTIMONY	2.7	J	0.25	4.3165	MG/KG
SSFATA11	SSFATA11_C	11-Jan-06	0 0.5	SW6010B	ARSENIC	1.7		0.31	0.7194	MG/KG
SSFATA11	SSFATA11_C	11-Jan-06	0 0.5	SW6010B	BARIUM	10.5	J	0.51	14.3885	MG/KG
SSFATA11	SSFATA11_C	11-Jan-06	0 0.5	SW6010B	BERYLLIUM	0.1	J	0.014	0.3597	MG/KG
SSFATA11	SSFATA11_C	11-Jan-06	0 0.5	SW6010B	CADMIUM	0.11	J	0.029	0.3597	MG/KG
SSFATA11	SSFATA11_C	11-Jan-06	0 0.5	SW6010B	CALCIUM	267	J	20.7	359.7122	MG/KG
SSFATA11	SSFATA11_C	11-Jan-06	0 0.5	SW6010B	CHROMIUM, TOTAL	111		0.11	0.7194	MG/KG
SSFATA11	SSFATA11_C	11-Jan-06	0 0.5	SW6010B	COBALT	0.65	J	0.17	3.5971	MG/KG

Table A.2

Target Array and Flanking Target Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPTH (FT.) TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SSFATA11	SSFATA11_C	11-Jan-06		0.5 SW6010B	COPPER	99.4		0.15		MG/KG
SSFATA11	SSFATA11_C	11-Jan-06	0	0.5 SW6010B	IRON	5090		2.6	14.3885	MG/KG
SSFATA11	SSFATA11_C	11-Jan-06	0	0.5 SW6010B	LEAD	218		0.19		MG/KG
SSFATA11	SSFATA11_C	11-Jan-06		0.5 SW6010B	MAGNESIUM	193		11.3		MG/KG
SSFATA11	SSFATA11_C	11-Jan-06	0	0.5 SW6010B	MANGANESE	34.8		0.05		MG/KG
SSFATA11	SSFATA11_C	11-Jan-06	-	0.5 SW6010B	MOLYBDENUM	0.52		0.17	0.7194	MG/KG
SSFATA11	SSFATA11_C	11-Jan-06	0	0.5 SW6010B	NICKEL	3		0.13		MG/KG
SSFATA11	SSFATA11_C	11-Jan-06		0.5 SW6010B	POTASSIUM	259		20.5		MG/KG
SSFATA11	SSFATA11_C	11-Jan-06	-	0.5 SW6010B	SODIUM	47.7		25.4		MG/KG
SSFATA11	SSFATA11_C	11-Jan-06		0.5 SW6010B	VANADIUM	14.8		0.16	3.5971	MG/KG
SSFATA11	SSFATA11 C	11-Jan-06	0	0.5 SW6010B	ZINC	13.7		0.54	1.4388	MG/KG
SSFATA11	SSFATA11_C	11-Jan-06		0.5 SW7471A	MERCURY	0.5		0.015		MG/KG
SSFATA11	SSFATA11_C	11-Jan-06	0	0.5 SW8270C	FLUORANTHENE	120		98.7	420	UG/KG
SSFATA11	SSFATA11_C	11-Jan-06		0.5 SW8330	2,4,6-TRINITROTOLUENE	63		3.6		UG/KG
SSFATA11	SSFATA11_C	11-Jan-06	0	0.5 SW8330	2-AMINO-4,6-DINITROTOLUENE	350	-	1.4		UG/KG
SSFATA11	SSFATA11_C	11-Jan-06		0.5 SW8330	4-AMINO-2,6-DINITROTOLUENE	110		2.3		
SSFATA11	SSFATA11_C	11-Jan-06	0	0.5 SW8330	TETRYL	44		1.3		
SSFATA12	SSFATA12 C	17-Jan-06	0	0.5 SW6010B	ALUMINUM	1800		3.4	14.6688	MG/KG
SSFATA12	SSFATA12_C	17-Jan-06	0	0.5 SW6010B	ANTIMONY	2.6		0.26		MG/KG
SSFATA12	SSFATA12_C	17-Jan-06	-	0.5 SW6010B	ARSENIC	1.7		0.32		MG/KG
SSFATA12	SSFATA12_C	17-Jan-06		0.5 SW6010B	BARIUM	13.2		0.52		MG/KG
SSFATA12	SSFATA12_C	17-Jan-06	0	0.5 SW6010B	BERYLLIUM	0.067		0.015		MG/KG
SSFATA12	SSFATA12_C	17-Jan-06	-	0.5 SW6010B	CADMIUM	0.17		0.029	0.3667	MG/KG
SSFATA12	SSFATA12_C	17-Jan-06	0	0.5 SW6010B	CALCIUM	299		21.1		MG/KG
SSFATA12	SSFATA12 C	17-Jan-06		0.5 SW6010B	CHROMIUM, TOTAL	87.9		0.11	0.7334	MG/KG
SSFATA12	SSFATA12_C	17-Jan-06	-	0.5 SW6010B	COBALT	0.66		0.18	3.6672	MG/KG
SSFATA12	SSFATA12_C	17-Jan-06		0.5 SW6010B	COPPER	197		0.15		MG/KG
SSFATA12	SSFATA12_C	17-Jan-06		0.5 SW6010B	IRON	4370		2.6	14.6688	MG/KG
SSFATA12	SSFATA12_C	17-Jan-06		0.5 SW6010B	LEAD	244		0.2		MG/KG
SSFATA12	SSFATA12_C	17-Jan-06		0.5 SW6010B	MAGNESIUM	159		11.5		MG/KG
SSFATA12	SSFATA12 C	17-Jan-06		0.5 SW6010B	MANGANESE	30.8		0.051	1.1002	MG/KG
SSFATA12	SSFATA12_C	17-Jan-06		0.5 SW6010B	MOLYBDENUM	1		0.031	0.7334	MG/KG
SSFATA12	SSFATA12_C	17-Jan-06		0.5 SW6010B	NICKEL	3.5		0.13		MG/KG
SSFATA12	SSFATA12_C	17-Jan-06	0	0.5 SW6010B	POTASSIUM	201		20.9		MG/KG
SSFATA12	SSFATA12_C	17-Jan-06	-	0.5 SW6010B	SODIUM	28.7	-	26.1	369.3963	MG/KG
SSFATA12	SSFATA12_C	17-Jan-06	0	0.5 SW6010B	VANADIUM	15.7	-	0.16		MG/KG
SSFATA12	SSFATA12_C	17-Jan-06	0	0.5 SW6010B	ZINC	14.3		0.10		MG/KG
SSFATA12	SSFATA12_C	17-Jan-06		0.5 SW7471A	MERCURY	0.61		0.013		MG/KG
SSFATA12	SSFATA12_C	17-Jan-06	0	0.5 SW8330	2,4,6-TRINITROTOLUENE	20		3.6		UG/KG
SSFATA12	SSFATA12_C	17-Jan-06	-	0.5 SW8330	2-AMINO-4,6-DINITROTOLUENE	240		1.4		

Table A.2

Target Array and Flanking Target Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPTH	(ET)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SSFATA12	SSFATA12 C	17-Jan-06	0		SW8330	4-AMINO-2.6-DINITROTOLUENE	170		2.3		UG/KG
SSFATA13	SSFATA13 C	17-Jan-06			SW6010B	ALUMINUM	1950	-	3.4	14.5192	MG/KG
SSFATA13	SSFATA13_C	17-Jan-06			SW6010B	ANTIMONY	1.1		0.25	4.3557	MG/KG
SSFATA13	SSFATA13_C	17-Jan-06	-		SW6010B	ARSENIC	1.4		0.23	0.726	MG/KG
SSFATA13	SSFATA13_C	17-Jan-06			SW6010B	BARIUM	9.2		0.51	14.5192	MG/KG
SSFATA13	SSFATA13_C	17-Jan-06	0		SW6010B	BERYLLIUM	0.058		0.015	0.363	MG/KG
SSFATA13	SSFATA13_C	17-Jan-06	-		SW6010B	CADMIUM	0.038		0.013	0.363	MG/KG
SSFATA13	SSFATA13_C	17-Jan-06			SW6010B	CALCIUM	271		20.9	362.979	MG/KG
SSFATA13	SSFATA13_C	17-Jan-06	0		SW6010B	CHROMIUM. TOTAL	69.6	-	0.11	0.726	MG/KG
SSFATA13	SSFATA13_C	17-Jan-06	-		SW6010B	COBALT	09.0		0.11	3.6298	MG/KG
SSFATA13	SSFATA13_C	17-Jan-06			SW6010B	COPPER	43		0.17	1.8149	MG/KG
SSFATA13	SSFATA13_C	17-Jan-06			SW6010B	IRON	3710		2.6		MG/KG
SSFATA13		17-Jan-06 17-Jan-06			SW6010B	LEAD	72		0.2	0.726	MG/KG
	SSFATA13_C										
SSFATA13	SSFATA13_C	17-Jan-06			SW6010B	MAGNESIUM	171		11.4	362.979	MG/KG
SSFATA13	SSFATA13_C	17-Jan-06			SW6010B	MANGANESE	22.4		0.051	1.0889	MG/KG
SSFATA13	SSFATA13_C	17-Jan-06			SW6010B	MOLYBDENUM	0.9		0.17	0.726	MG/KG
SSFATA13	SSFATA13_C	17-Jan-06			SW6010B	NICKEL	3.1		0.13	2.9038	MG/KG
SSFATA13	SSFATA13_C	17-Jan-06			SW6010B	POTASSIUM	207		20.7	362.979	MG/KG
SSFATA13	SSFATA13_C	17-Jan-06	0		SW6010B	VANADIUM	16.3		0.16	3.6298	MG/KG
SSFATA13	SSFATA13_C	17-Jan-06			SW6010B	ZINC	6.9		0.55	1.4731	MG/KG
SSFATA13	SSFATA13_C	17-Jan-06			SW7471A	MERCURY	0.058		0.015	0.0356	MG/KG
SSFATA13	SSFATA13_C	17-Jan-06	0		SW8270C	FLUORANTHENE	120	J	98.7	420	UG/KG
SSFATA13	SSFATA13_C	17-Jan-06			SW8330	2,4,6-TRINITROTOLUENE	15	-	3.6		UG/KG
SSFATA13	SSFATA13_C	17-Jan-06	0	0.5	SW8330	TETRYL	140		1.3		UG/KG
SSFATA14	SSFATA14_C	11-Jan-06			SW6010B	ALUMINUM	3490		3.5		MG/KG
SSFATA14	SSFATA14_C	11-Jan-06	0	0.5	SW6010B	ANTIMONY	1.9	J	0.27	4.5455	MG/KG
SSFATA14	SSFATA14_C	11-Jan-06	0	0.5	SW6010B	ARSENIC	1.9		0.33	0.7576	MG/KG
SSFATA14	SSFATA14_C	11-Jan-06	0	0.5	SW6010B	BARIUM	6.6	J	0.54	15.1515	MG/KG
SSFATA14	SSFATA14_C	11-Jan-06	0	0.5	SW6010B	BERYLLIUM	0.14	J	0.015	0.3788	MG/KG
SSFATA14	SSFATA14_C	11-Jan-06	0	0.5	SW6010B	CALCIUM	148	J	21.8	378.7879	MG/KG
SSFATA14	SSFATA14_C	11-Jan-06	0	0.5	SW6010B	CHROMIUM, TOTAL	93.7		0.11	0.7576	MG/KG
SSFATA14	SSFATA14_C	11-Jan-06	0	0.5	SW6010B	COBALT	1.1	J	0.18	3.7879	MG/KG
SSFATA14	SSFATA14_C	11-Jan-06	0	0.5	SW6010B	COPPER	27.1		0.16	1.8939	MG/KG
SSFATA14	SSFATA14_C	11-Jan-06	0	0.5	SW6010B	IRON	6190		2.7	15.1515	MG/KG
SSFATA14	SSFATA14_C	11-Jan-06	0	0.5	SW6010B	LEAD	59.8		0.2	0.7576	MG/KG
SSFATA14	SSFATA14_C	11-Jan-06	0	0.5	SW6010B	MAGNESIUM	362	J	11.9	378.7879	MG/KG
SSFATA14	SSFATA14_C	11-Jan-06	0	0.5	SW6010B	MANGANESE	32		0.053	1.1364	MG/KG
SSFATA14	SSFATA14_C	11-Jan-06	0	0.5	SW6010B	MOLYBDENUM	0.86		0.17	0.7576	MG/KG
SSFATA14	SSFATA14_C	11-Jan-06			SW6010B	NICKEL	3.4		0.14	3.0303	MG/KG
SSFATA14	SSFATA14_C	11-Jan-06			SW6010B	POTASSIUM	304		21.6	378.7879	MG/KG

Table A.2

Target Array and Flanking Target Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPTH	(FT.) TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SSFATA14	SSFATA14_C	11-Jan-06		0.5 SW6010E		0.55		0.27	2.6515	MG/KG
SSFATA14	SSFATA14_C	11-Jan-06	0	0.5 SW6010E	15	41.4	-	26.8		MG/KG
SSFATA14	SSFATA14_C	11-Jan-06	0	0.5 SW6010E	VANADIUM	14		0.17	3.7879	MG/KG
SSFATA14	SSFATA14_C	11-Jan-06	-	0.5 SW6010E		8.7		0.57	1.5152	MG/KG
SSFATA14	SSFATA14_C	11-Jan-06	0	0.5 SW7471A		0.069		0.014	0.0343	MG/KG
SSFATA14	SSFATA14_C	11-Jan-06	-	0.5 SW82700		340		105	390	UG/KG
SSFATA14	SSFATA14_C	11-Jan-06	0	0.5 SW82700	. ,	260		95.3	390	UG/KG
SSFATA14	SSFATA14_C	11-Jan-06	0	0.5 SW82700	. ,	240		97.6	390	UG/KG
SSFATA14	SSFATA14_C	11-Jan-06	-	0.5 SW82700	. ,	120		118	390	UG/KG
SSFATA14	SSFATA14_C	11-Jan-06		0.5 SW82700	(6. 1)	420		129	390	UG/KG
SSFATA14	SSFATA14 C	11-Jan-06		0.5 SW82700	· · · · · · · · · · · · · · · · · · ·	410		118	390	UG/KG
SSFATA14	SSFATA14_C	11-Jan-06		0.5 SW82700		790		90.6		UG/KG
SSFATA14	SSFATA14_C	11-Jan-06		0.5 SW82700		140		112		UG/KG
SSFATA14	SSFATA14 C	11-Jan-06		0.5 SW82700		530		102		UG/KG
SSFATA14	SSFATA14_C	11-Jan-06		0.5 SW82700		690		141	390	UG/KG
SSFATA14	SSFATA14_C	11-Jan-06		0.5 SW8330	2,4,6-TRINITROTOLUENE	15		3.6		UG/KG
SSFATA15	SSFATA15_C	13-Jan-06	0	0.5 SW6010E		2860		3.5	15.0376	MG/KG
SSFATA15	SSFATA15 C	13-Jan-06	0	0.5 SW6010E		0.88		0.26	4.5113	MG/KG
SSFATA15	SSFATA15_C	13-Jan-06	0	0.5 SW6010E	ARSENIC	1.7		0.32	0.7519	MG/KG
SSFATA15	SSFATA15_C	13-Jan-06		0.5 SW6010E	BARIUM	7.1		0.53	15.0376	MG/KG
SSFATA15	SSFATA15_C	13-Jan-06	0	0.5 SW6010E	BERYLLIUM	0.084	J	0.015	0.3759	MG/KG
SSFATA15	SSFATA15_C	13-Jan-06	0	0.5 SW6010E	CADMIUM	0.069	J	0.03	0.3759	MG/KG
SSFATA15	SSFATA15_C	13-Jan-06	0	0.5 SW6010E	CALCIUM	164	J	21.6	375.9398	MG/KG
SSFATA15	SSFATA15_C	13-Jan-06	0	0.5 SW6010E	CHROMIUM, TOTAL	127		0.11	0.7519	MG/KG
SSFATA15	SSFATA15_C	13-Jan-06	0	0.5 SW6010E	COBALT	0.78	J	0.18	3.7594	MG/KG
SSFATA15	SSFATA15_C	13-Jan-06	0	0.5 SW6010E	COPPER	46.8		0.16	1.8797	MG/KG
SSFATA15	SSFATA15_C	13-Jan-06	0	0.5 SW6010E	IRON	5590		2.7	15.0376	MG/KG
SSFATA15	SSFATA15_C	13-Jan-06	0	0.5 SW6010E	LEAD	68		0.2	0.7519	MG/KG
SSFATA15	SSFATA15_C	13-Jan-06	0	0.5 SW6010E	MAGNESIUM	202	J	11.8	375.9398	MG/KG
SSFATA15	SSFATA15_C	13-Jan-06	0	0.5 SW6010E	MANGANESE	24.4		0.053	1.1278	MG/KG
SSFATA15	SSFATA15_C	13-Jan-06	0	0.5 SW6010E	MOLYBDENUM	1.3		0.17	0.7519	MG/KG
SSFATA15	SSFATA15_C	13-Jan-06	0	0.5 SW6010E	NICKEL	3.9		0.14	3.0075	MG/KG
SSFATA15	SSFATA15_C	13-Jan-06	0	0.5 SW6010E	POTASSIUM	241	J	21.4	375.9398	MG/KG
SSFATA15	SSFATA15_C	13-Jan-06	0	0.5 SW6010E	SELENIUM	0.47	J	0.26	2.6316	MG/KG
SSFATA15	SSFATA15_C	13-Jan-06	0	0.5 SW6010E	SODIUM	37	J	26.6	375.9398	MG/KG
SSFATA15	SSFATA15_C	13-Jan-06	0	0.5 SW6010E	VANADIUM	18.1		0.17	3.7594	MG/KG
SSFATA15	SSFATA15_C	13-Jan-06	0	0.5 SW6010E	ZINC	8.1		0.56	1.5038	MG/KG
SSFATA15	SSFATA15_C	13-Jan-06	0	0.5 SW7471A	MERCURY	0.061		0.016	0.0375	MG/KG
SSFATA15	SSFATA15_C	13-Jan-06	0	0.5 SW8330	2-AMINO-4,6-DINITROTOLUENE	24	J	1.4		UG/KG
SSFORMA07	FORMACS01_PRE	08-Oct-09	0	0.25 SW6010E	ALUMINUM	4700		0.94	20	MG/KG

Table A.2

Target Array and Flanking Target Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPTH	l (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SSFORMA07	FORMACS01_PRE	08-Oct-09	0	0.25	SW6010B	ANTIMONY	0.58	J	0.061	5.1	MG/KG
SSFORMA07	FORMACS01_PRE	08-Oct-09	0	0.25	SW6010B	ARSENIC	1.4		0.081	0.85	MG/KG
SSFORMA07	FORMACS01_PRE	08-Oct-09	0	0.25	SW6010B	BARIUM	4.3	J	0.15	20	MG/KG
SSFORMA07	FORMACS01_PRE	08-Oct-09	0	0.25	SW6010B	BERYLLIUM	0.069	J	0.0057	0.4	MG/KG
SSFORMA07	FORMACS01_PRE	08-Oct-09	0	0.25	SW6010B	BORON	0.67	J	0.03	9	MG/KG
SSFORMA07	FORMACS01_PRE	08-Oct-09	0	0.25	SW6010B	CALCIUM	76.1	J	2.4	400	MG/KG
SSFORMA07	FORMACS01_PRE	08-Oct-09	0	0.25	SW6010B	CHROMIUM, TOTAL	3.3		0.0057	0.85	MG/KG
SSFORMA07	FORMACS01_PRE	08-Oct-09	0	0.25	SW6010B	COBALT	0.21	J	0.013	4.3	MG/KG
SSFORMA07	FORMACS01_PRE	08-Oct-09	0	0.25	SW6010B	COPPER	21.7		0.026	2.1	MG/KG
SSFORMA07	FORMACS01_PRE	08-Oct-09	0	0.25	SW6010B	IRON	5830	J	0.43	20	MG/KG
SSFORMA07	FORMACS01_PRE	08-Oct-09	0	0.25	SW6010B	LEAD	76.1		0.077	0.9	MG/KG
SSFORMA07	FORMACS01_PRE	08-Oct-09	0	0.25	SW6010B	MAGNESIUM	123	J	1.2	400	MG/KG
SSFORMA07	FORMACS01_PRE	08-Oct-09	0	0.25	SW6010B	MANGANESE	11		0.0038	1.3	MG/KG
SSFORMA07	FORMACS01_PRE	08-Oct-09	0	0.25	SW6010B	MOLYBDENUM	0.25	J	0.011	0.85	MG/KG
SSFORMA07	FORMACS01_PRE	08-Oct-09	0	0.25	SW6010B	NICKEL	1.1	J	0.028	3.4	MG/KG
SSFORMA07	FORMACS01_PRE	08-Oct-09	0	0.25	SW6010B	POTASSIUM	105	J	4.4	400	MG/KG
SSFORMA07	FORMACS01_PRE	08-Oct-09	0		SW6010B	VANADIUM	14.9		0.025	4.3	MG/KG
SSFORMA07	FORMACS01_PRE	08-Oct-09	0	0.25	SW6010B	ZINC	6.9		0.003	1.7	MG/KG
SSFORMA07	FORMACS01_PRE	08-Oct-09	0	0.25	SW7471A	MERCURY	0.065		0.017	0.04	MG/KG
SSFORMA07	FORMACS01_PRE	08-Oct-09	0	0.25	SW8270C	BENZO(a)ANTHRACENE	43		21.3524	380	UG/KG
SSFORMA07	FORMACS01_PRE	08-Oct-09	0	0.25	SW8270C	BENZO(a)PYRENE	42		18.9799	380	UG/KG
SSFORMA07	FORMACS01_PRE	08-Oct-09	0	0.25	SW8270C	BENZO(b)FLUORANTHENE	48		40.3323	380	UG/KG
SSFORMA07	FORMACS01_PRE	08-Oct-09	0	0.25	SW8270C	BENZO(k)FLUORANTHENE	62		41.5185	380	UG/KG
SSFORMA07	FORMACS01_PRE	08-Oct-09	0	0.25	SW8270C	CHRYSENE	52		28.4699	380	UG/KG
SSFORMA07	FORMACS01_PRE	08-Oct-09	0	0.25	SW8270C	FLUORANTHENE	110		21.3524	380	UG/KG
SSFORMA07	FORMACS01_PRE	08-Oct-09	0	0.25	SW8270C	PHENANTHRENE	73		23.7249	380	UG/KG
SSFORMA07	FORMACS01_PRE	08-Oct-09	0	0.25	SW8270C	PYRENE	92		27.2836	380	UG/KG
SS02208-A	04892	05-Jun-03	0	0.16	SW8330	2-AMINO-4,6-DINITROTOLUENE	34		4.96	13	UG/KG
SS02208-A	04892	05-Jun-03	0	0.16	SW8330	4-AMINO-2,6-DINITROTOLUENE	28	J	4.58	13	UG/KG
SS02208-A	04893	05-Jun-03	0	0.16	SW8330	2-AMINO-4,6-DINITROTOLUENE	24	J	4.96	13	UG/KG
SS02208-A	04894	05-Jun-03	0	0.16	SW8330	TETRYL	32	J	3.34	13	UG/KG
SS02208-A	04896	05-Jun-03	0	0.16	SW8330	2-AMINO-4,6-DINITROTOLUENE	24	J	4.96	13	UG/KG
SS02208-A	04896	05-Jun-03	0	0.16	SW8330	4-AMINO-2,6-DINITROTOLUENE	21	J	4.58	13	UG/KG
SS02208-A	04897	05-Jun-03	0		SW8330	NITROGLYCERIN	310	J	73.9		UG/KG
SS02208-A	04898	05-Jun-03	0		SW8330	2-AMINO-4,6-DINITROTOLUENE	18		4.96		UG/KG
SS02208-A	04898	05-Jun-03	0	0.16	SW8330	4-AMINO-2,6-DINITROTOLUENE	20	J	4.58	20	UG/KG
SS02214-A	04032	5-May-03	0		CL200.7	ALUMINUM	4330		5.5	5.5	
SS02214-A	04032	5-May-03			CL200.7	ANTIMONY	1.3		0.95	0.95	
SS02214-A	04032	5-May-03			CL200.7	ARSENIC	3.5		0.9	0.93	
SS02214-A	04032	5-May-03			CL200.7	BARIUM	6.1		2.7		MG/KG

Table A.2

Target Array and Flanking Target Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPTH	(FT.)	TEST	ANALYTE	RESULT	QUALIFIER1	MDL	RL	UNITS
SS02214-A	04032	5-May-03	0	0.16	CL200.7	BERYLLIUM	0.13		0.06	0.06	MG/KG
SS02214-A	04032	5-May-03	0	0.16	CL200.7	BORON	2.9	J	1.5	1.5	MG/KG
SS02214-A	04032	5-May-03	0	0.16	CL200.7	CADMIUM	0.25		0.08	0.08	MG/KG
SS02214-A	04032	5-May-03	0	0.16	CL200.7	CALCIUM	197		60.4	60.4	MG/KG
SS02214-A	04032	5-May-03	0	0.16	CL200.7	CHROMIUM, TOTAL	5.7		0.18	0.18	MG/KG
SS02214-A	04032	5-May-03	0	0.16	CL200.7	COBALT	1.2	J	0.57	0.57	MG/KG
SS02214-A	04032	5-May-03	0	0.16	CL200.7	COPPER	24.4		0.48	0.48	MG/KG
SS02214-A	04032	5-May-03	0	0.16	CL200.7	IRON	11200		5.9	5.9	MG/KG
SS02214-A	04032	5-May-03	0	0.16	CL200.7	LEAD	46.8		0.28	0.28	MG/KG
SS02214-A	04032	5-May-03	0	0.16	CL200.7	MAGNESIUM	515		58.4	58.4	MG/KG
SS02214-A	04032	5-May-03	0	0.16	CL200.7	MANGANESE	96.2		0.18	0.18	MG/KG
SS02214-A	04032	5-May-03	0	0.16	CL200.7	MOLYBDENUM	0.55	J	0.32	0.32	MG/KG
SS02214-A	04032	5-May-03	0	0.16	CL200.7	NICKEL	3.1		0.51	0.51	MG/KG
SS02214-A	04032	5-May-03	0	0.16	CL200.7	POTASSIUM	373		64.8	64.8	MG/KG
SS02214-A	04032	5-May-03	0	0.16	CL200.7	VANADIUM	11		0.59	0.59	MG/KG
SS02214-A	04032	5-May-03	0	0.16	CL200.7	ZINC	15.2		0.5	0.5	MG/KG
SS02214-A	04033	5-May-03	0	0.16	CL200.7	ALUMINUM	2970		4.6	4.6	MG/KG
SS02214-A	04033	5-May-03	0	0.16	CL200.7	ARSENIC	3.1		0.79	0.79	MG/KG
SS02214-A	04033	5-May-03	0	0.16	CL200.7	BARIUM	25.2		2.3	2.3	MG/KG
SS02214-A	04033	5-May-03	0	0.16	CL200.7	BERYLLIUM	0.23		0.05	0.05	MG/KG
SS02214-A	04033	5-May-03	0	0.16	CL200.7	BORON	2.7		1.3	1.3	MG/KG
SS02214-A	04033	5-May-03	0	0.16	CL200.7	CADMIUM	0.07	J	0.07	0.07	MG/KG
SS02214-A	04033	5-May-03	0	0.16	CL200.7	CALCIUM	1120		51.2	51.2	MG/KG
SS02214-A	04033	5-May-03	0	0.16	CL200.7	CHROMIUM, TOTAL	4.5	J	0.15	0.15	MG/KG
SS02214-A	04033	5-May-03	0	0.16	CL200.7	COBALT	2.5		0.49	0.49	MG/KG
SS02214-A	04033	5-May-03	0	0.16	CL200.7	COPPER	15		0.4	0.4	MG/KG
SS02214-A	04033	5-May-03	0	0.16	CL200.7	IRON	5840		5	5	MG/KG
SS02214-A	04033	5-May-03	0	0.16	CL200.7	LEAD	17		0.23	0.23	MG/KG
SS02214-A	04033	5-May-03	0	0.16	CL200.7	MAGNESIUM	1060		49.5	49.5	MG/KG
SS02214-A	04033	5-May-03	0	0.16	CL200.7	MANGANESE	49.1		0.15	0.15	MG/KG
SS02214-A	04033	5-May-03	0	0.16	CL200.7	MOLYBDENUM	0.35	J	0.27	0.27	MG/KG
SS02214-A	04033	5-May-03	0	0.16	CL200.7	NICKEL	3.4		0.44	0.44	MG/KG
SS02214-A	04033	5-May-03	0	0.16	CL200.7	POTASSIUM	595		54.9	54.9	MG/KG
SS02214-A	04033	5-May-03	0	0.16	CL200.7	VANADIUM	12.3		0.5	0.5	MG/KG
SS02214-A	04033	5-May-03	0	0.16	CL200.7	ZINC	11.4		0.42	0.42	MG/KG
SS02214-A	04034	5-May-03	0	0.16	CL200.7	ALUMINUM	5640		5.7	5.7	MG/KG
SS02214-A	04034	5-May-03	0	0.16	CL200.7	ANTIMONY	1.6	J	0.98	0.98	MG/KG
SS02214-A	04034	5-May-03	0	0.16	CL200.7	ARSENIC	4.6		0.9	0.96	MG/KG
SS02214-A	04034	5-May-03	0	0.16	CL200.7	BARIUM	8.6		2.8	2.8	MG/KG
SS02214-A	04034	5-May-03	0	0.16	CL200.7	BERYLLIUM	0.26		0.06	0.06	MG/KG

Table A.2

Target Array and Flanking Target Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPTH	l (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS02214-A	04034	5-May-03	0	0.16	CL200.7	BORON	3.5		1.5	1.5	MG/KG
SS02214-A	04034	5-May-03	0	0.16	CL200.7	CALCIUM	783		62.4	62.4	MG/KG
SS02214-A	04034	5-May-03	0	0.16	CL200.7	CHROMIUM, TOTAL	8.6		0.18	0.18	MG/KG
SS02214-A	04034	5-May-03	0	0.16	CL200.7	COBALT	2.9	J	0.59	0.59	MG/KG
SS02214-A	04034	5-May-03	0	0.16	CL200.7	COPPER	46.2		0.49	0.49	MG/KG
SS02214-A	04034	5-May-03	0	0.16	CL200.7	IRON	8480		6.1	6.1	MG/KG
SS02214-A	04034	5-May-03	0	0.16	CL200.7	LEAD	79.6		0.29	0.29	MG/KG
SS02214-A	04034	5-May-03	0	0.16	CL200.7	MAGNESIUM	1560		60.4	60.4	MG/KG
SS02214-A	04034	5-May-03	0	0.16	CL200.7	MANGANESE	95.6		0.18	0.18	MG/KG
SS02214-A	04034	5-May-03	0	0.16	CL200.7	MOLYBDENUM	0.35	J	0.33	0.33	MG/KG
SS02214-A	04034	5-May-03	0	0.16	CL200.7	NICKEL	5.8		0.53	0.53	MG/KG
SS02214-A	04034	5-May-03	0	0.16	CL200.7	POTASSIUM	659		67	67	MG/KG
SS02214-A	04034	5-May-03	0	0.16	CL200.7	VANADIUM	14.4		0.61	0.61	MG/KG
SS02214-A	04034	5-May-03	0	0.16	CL200.7	ZINC	20.4		0.51	0.51	MG/KG
SS02214-A	04034	5-May-03	0	0.16	SW8330	2,4,6-TRINITROTOLUENE	910		4.13	13	UG/KG
SS02214-A	04034	5-May-03	0	0.16	SW8330	2-AMINO-4,6-DINITROTOLUENE	24	J	4.96	13	UG/KG
SS02214-A	04034	5-May-03	0	0.16	SW8330	4-AMINO-2,6-DINITROTOLUENE	24	J	4.58	13	UG/KG
SS02214-A	04035	5-May-03	0	0.16	CL200.7	ALUMINUM	4780		5.5	5.5	MG/KG
SS02214-A	04035	5-May-03	0	0.16	CL200.7	ANTIMONY	1	J	0.95	0.95	MG/KG
SS02214-A	04035	5-May-03	0	0.16	CL200.7	ARSENIC	2.9		0.9	0.93	MG/KG
SS02214-A	04035	5-May-03	0	0.16	CL200.7	BARIUM	6.5		2.7	2.7	MG/KG
SS02214-A	04035	5-May-03	0	0.16	CL200.7	BERYLLIUM	0.11	J	0.06	0.06	MG/KG
SS02214-A	04035	5-May-03	0	0.16	CL200.7	BORON	2.4	J	1.5	1.5	MG/KG
SS02214-A	04035	5-May-03	0	0.16	CL200.7	CALCIUM	313		60.6	60.6	MG/KG
SS02214-A	04035	5-May-03	0	0.16	CL200.7	CHROMIUM, TOTAL	6.6		0.18	0.18	MG/KG
SS02214-A	04035	5-May-03	0	0.16	CL200.7	COBALT	1.6	J	0.58	0.58	MG/KG
SS02214-A	04035	5-May-03	0	0.16	CL200.7	COPPER	12.3		0.48	0.48	MG/KG
SS02214-A	04035	5-May-03	0	0.16	CL200.7	IRON	6290		5.9	5.9	MG/KG
SS02214-A	04035	5-May-03	0	0.16	CL200.7	LEAD	31.1		0.28	0.28	MG/KG
SS02214-A	04035	5-May-03	0	0.16	CL200.7	MAGNESIUM	802		58.6	58.6	MG/KG
SS02214-A	04035	5-May-03	0	0.16	CL200.7	MANGANESE	42.3		0.18	0.18	MG/KG
SS02214-A	04035	5-May-03	0	0.16	CL200.7	NICKEL	4.3		0.52	0.52	MG/KG
SS02214-A	04035	5-May-03	0	0.16	CL200.7	POTASSIUM	469		65	65	MG/KG
SS02214-A	04035	5-May-03	0	0.16	CL200.7	VANADIUM	18.1		0.6	0.6	MG/KG
SS02214-A	04035	5-May-03	0	0.16	CL200.7	ZINC	9.4		0.5	0.5	MG/KG
SS02214-A	04036	5-May-03	0	0.16	CL200.7	ALUMINUM	3670		5.3	5.3	MG/KG
SS02214-A	04036	5-May-03	0	0.16	CL200.7	ANTIMONY	2.1		0.91	0.91	MG/KG
SS02214-A	04036	5-May-03	0	0.16	CL200.7	ARSENIC	4		0.89	0.89	MG/KG
SS02214-A	04036	5-May-03	0	0.16	CL200.7	BARIUM	5.3		2.6	2.6	MG/KG
SS02214-A	04036	5-May-03	0	0.16	CL200.7	BERYLLIUM	0.13		0.06	0.06	MG/KG

Table A.2

Target Array and Flanking Target Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS02214-A	04036	5-May-03	0	0.16	CL200.7	BORON	2.2	J	1.4	1.4	MG/KG
SS02214-A	04036	5-May-03	0	0.16	CL200.7	CHROMIUM, TOTAL	4.6		0.17	0.17	MG/KG
SS02214-A	04036	5-May-03	0	0.16	CL200.7	COBALT	1	J	0.55	0.55	MG/KG
SS02214-A	04036	5-May-03	0	0.16	CL200.7	COPPER	32.8		0.46	0.46	MG/KG
SS02214-A	04036	5-May-03	0	0.16	CL200.7	IRON	5640		5.7	5.7	MG/KG
SS02214-A	04036	5-May-03	0	0.16	CL200.7	LEAD	101		0.27	0.27	MG/KG
SS02214-A	04036	5-May-03	0	0.16	CL200.7	MAGNESIUM	372		56.2	56.2	MG/KG
SS02214-A	04036	5-May-03	0	0.16	CL200.7	MANGANESE	27.7		0.17	0.17	MG/KG
SS02214-A	04036	5-May-03	0	0.16	CL200.7	POTASSIUM	352		62.3	62.3	MG/KG
SS02214-A	04036	5-May-03	0	0.16	CL200.7	VANADIUM	12.5		0.57	0.57	MG/KG
SS02214-A	04036	5-May-03	0	0.16	CL200.7	ZINC	8.5		0.48	0.48	MG/KG
SS02214-A	04037	5-May-03	0	0.16	CL200.7	ALUMINUM	2920		4.9	4.9	MG/KG
SS02214-A	04037	5-May-03	0	0.16	CL200.7	ARSENIC	1.5	J	0.82	0.82	MG/KG
SS02214-A	04037	5-May-03	0	0.16	CL200.7	BARIUM	5.4		2.4	2.4	MG/KG
SS02214-A	04037	5-May-03	0	0.16	CL200.7	BERYLLIUM	0.16		0.05	0.05	MG/KG
SS02214-A	04037	5-May-03	0	0.16	CL200.7	BORON	2.9		1.3	1.3	MG/KG
SS02214-A	04037	5-May-03	0	0.16	CL200.7	CHROMIUM, TOTAL	4.3		0.16	0.16	MG/KG
SS02214-A	04037	5-May-03	0	0.16	CL200.7	COBALT	1.7	J	0.51	0.51	MG/KG
SS02214-A	04037	5-May-03	0	0.16	CL200.7	COPPER	12.6		0.42	0.42	MG/KG
SS02214-A	04037	5-May-03	0	0.16	CL200.7	IRON	4610		5.2	5.2	MG/KG
SS02214-A	04037	5-May-03	0	0.16	CL200.7	LEAD	32.8		0.25	0.25	MG/KG
SS02214-A	04037	5-May-03	0	0.16	CL200.7	MAGNESIUM	547		51.8	51.8	MG/KG
SS02214-A	04037	5-May-03	0	0.16	CL200.7	MANGANESE	41.5		0.16	0.16	MG/KG
SS02214-A	04037	5-May-03	0	0.16	CL200.7	NICKEL	2.7		0.46	0.46	MG/KG
SS02214-A	04037	5-May-03	0	0.16	CL200.7	POTASSIUM	577		57.4	57.4	MG/KG
SS02214-A	04037	5-May-03	0	0.16	CL200.7	VANADIUM	8		0.53	0.53	MG/KG
SS02214-A	04037	5-May-03	0	0.16	CL200.7	ZINC	8.8		0.44	0.44	MG/KG
SS02214-A	04038	5-May-03	0	0.16	CL200.7	ALUMINUM	4880		4.6	4.6	MG/KG
SS02214-A	04038	5-May-03	0	0.16	CL200.7	ARSENIC	5.5		0.79	0.79	MG/KG
SS02214-A	04038	5-May-03	0	0.16	CL200.7	BARIUM	10.6		2.3	2.3	MG/KG
SS02214-A	04038	5-May-03	0	0.16	CL200.7	BERYLLIUM	0.3		0.05	0.05	MG/KG
SS02214-A	04038	5-May-03	0	0.16	CL200.7	BORON	4		1.3	1.3	MG/KG
SS02214-A	04038	5-May-03	0	0.16	CL200.7	CHROMIUM, TOTAL	7.4		0.15	0.15	MG/KG
SS02214-A	04038	5-May-03	0	0.16	CL200.7	COBALT	1.9	J	0.49	0.49	MG/KG
SS02214-A	04038	5-May-03	0	0.16	CL200.7	COPPER	40.3		0.4	0.4	MG/KG
SS02214-A	04038	5-May-03	0	0.16	CL200.7	IRON	9720		5	5	MG/KG
SS02214-A	04038	5-May-03	0	0.16	CL200.7	LEAD	72.9		0.23	0.23	MG/KG
SS02214-A	04038	5-May-03	0	0.16	CL200.7	MAGNESIUM	855		49.5	49.5	MG/KG
SS02214-A	04038	5-May-03	0	0.16	CL200.7	MANGANESE	54.3		0.15	0.15	MG/KG
SS02214-A	04038	5-May-03	0	0.16	CL200.7	NICKEL	4		0.44	0.44	MG/KG

Table A.2

Target Array and Flanking Target Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS02214-A	04038	5-May-03	0	0.16	CL200.7	POTASSIUM	720		54.9	54.9	MG/KG
SS02214-A	04038	5-May-03	0	0.16	CL200.7	VANADIUM	14.9		0.5	0.5	MG/KG
SS02214-A	04038	5-May-03	0	0.16	CL200.7	ZINC	16.9		0.42	0.42	MG/KG
SS02214-A	04039	5-May-03	0	0.16	CL200.7	ALUMINUM	2600		5.5	5.5	MG/KG
SS02214-A	04039	5-May-03	0	0.16	CL200.7	ANTIMONY	1.3	J	0.94	0.94	MG/KG
SS02214-A	04039	5-May-03	0	0.16	CL200.7	ARSENIC	2.3		0.9	0.92	MG/KG
SS02214-A	04039	5-May-03	0	0.16	CL200.7	BARIUM	3.1	J	2.7	2.7	MG/KG
SS02214-A	04039	5-May-03	0	0.16	CL200.7	CHROMIUM, TOTAL	3.1		0.18	0.18	MG/KG
SS02214-A	04039	5-May-03	0	0.16	CL200.7	COPPER	24.8		0.47	0.47	MG/KG
SS02214-A	04039	5-May-03	0	0.16	CL200.7	IRON	4720		5.9	5.9	MG/KG
SS02214-A	04039	5-May-03	0	0.16	CL200.7	LEAD	49.6		0.28	0.28	MG/KG
SS02214-A	04039	5-May-03	0	0.16	CL200.7	MAGNESIUM	212		58.1	58.1	MG/KG
SS02214-A	04039	5-May-03	0	0.16	CL200.7	MANGANESE	22.7		0.18	0.18	MG/KG
SS02214-A	04039	5-May-03	0	0.16	CL200.7	POTASSIUM	268		64.4	64.4	MG/KG
SS02214-A	04039	5-May-03	0	0.16	CL200.7	VANADIUM	10.7		0.59	0.59	MG/KG
SS02214-A	04039	5-May-03	0	0.16	CL200.7	ZINC	5.1		0.49	0.49	MG/KG
SS02214-A	GTRA300004_PE1	19-Sep-06	0	0.25	SW6010B	LEAD	26.5		0.16	0.7519	MG/KG
SS02214-A	GTRA300004_PE2	19-Sep-06	0	0.25	SW6010B	LEAD	18.1		0.15	0.7576	MG/KG
SS02214-A	GTRA300004_PE3	19-Sep-06	0	0.25	SW6010B	LEAD	30.2		0.15	0.7533	MG/KG
SS02214-A	TE879	7-Sep-01	0	0.75	SW8330	2,4,6-TRINITROTOLUENE	62.5	J	2	100	UG/KG
SS02214-A	TE880	7-Sep-01	0	0.75	CL200.7	ALUMINUM	4070		2	39	MG/KG
SS02214-A	TE880	7-Sep-01	0	0.75	CL200.7	ANTIMONY	2.2	J	1	12	MG/KG
SS02214-A	TE880	7-Sep-01	0	0.75	CL200.7	ARSENIC	2.77	J	1	2	MG/KG
SS02214-A	TE880	7-Sep-01	0	0.75	CL200.7	BARIUM	5.2	J	0.2	39	MG/KG
SS02214-A	TE880	7-Sep-01	0	0.75	CL200.7	BERYLLIUM	0.182	J	0.01	1	MG/KG
SS02214-A	TE880	7-Sep-01	0	0.75	CL200.7	CADMIUM	0.113	J	0.03	1	MG/KG
SS02214-A	TE880	7-Sep-01	0	0.75	CL200.7	CALCIUM	112	J	2	978	MG/KG
SS02214-A	TE880	7-Sep-01	0	0.75	CL200.7	CHROMIUM, TOTAL	7.98		0.09	2	MG/KG
SS02214-A	TE880	7-Sep-01	0	0.75	CL200.7	COBALT	1.27	J	0.07	10	MG/KG
SS02214-A	TE880	7-Sep-01	0	0.75	CL200.7	COPPER	122		0.08	5	MG/KG
SS02214-A	TE880	7-Sep-01	0	0.75	CL200.7	IRON	8250	J	3	20	MG/KG
SS02214-A	TE880	7-Sep-01	0	0.75	CL200.7	LEAD	332	J	0.2	1	MG/KG
SS02214-A	TE880	7-Sep-01	0	0.75	CL200.7	MAGNESIUM	565	J	2	978	MG/KG
SS02214-A	TE880	7-Sep-01	0		CL200.7	MANGANESE	59.3		0.1	3	MG/KG
SS02214-A	TE880	7-Sep-01	0	0.75	CL200.7	NICKEL	4.41	J	0.11	8	MG/KG
SS02214-A	TE880	7-Sep-01	0	0.75	CL200.7	POTASSIUM	320	J	3	978	MG/KG
SS02214-A	TE880	7-Sep-01	0	0.75	CL200.7	SELENIUM	1.12		1	1	MG/KG
SS02214-A	TE880	7-Sep-01	0	0.75	CL200.7	SODIUM	359	J	44	978	MG/KG
SS02214-A	TE880	7-Sep-01	0	0.75	CL200.7	VANADIUM	9.97		0.13	10	MG/KG
SS02214-A	TE880	7-Sep-01	0	0.75	CL200.7	ZINC	20.5		0.08	4	MG/KG

Table A.2

Target Array and Flanking Target Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS02214-A	TE880	7-Sep-01	0	0.75	CL245.5	MERCURY	0.077		0.02	0.03	MG/KG
SS02214-A	TE880	7-Sep-01	0	0.75	CVOL	ACETONE	5.26	J	1	8	UG/KG
SS02214-A	TE880	7-Sep-01	0	0.75	CVOL	BROMOFORM	1.27	J	1	8	UG/KG
SS02214-A	TE880	7-Sep-01	0	0.75	CVOL	CHLOROFORM	2.31	J	1	8	UG/KG
SS02214-A	TE880	7-Sep-01	0	0.75	CVOL	CHLOROMETHANE	1.1	J	1	8	UG/KG
SS02214-A	TE880	7-Sep-01	0	0.75	D2216	SOLIDS, PERCENT	97.8				PERCENT
SS02214-A	TE880	7-Sep-01	0	0.75	SW8270C	bis(2-ETHYLHEXYL) PHTHALATE	17.4	J	17	341	UG/KG
SS02214-A	TE880	7-Sep-01	0	0.75	SW8270C	DI-n-BUTYL PHTHALATE	194	J	43	341	UG/KG
SS02214-A	TE880	7-Sep-01	0	0.75	SW8270C	PHENANTHRENE	42.6	J	42	341	UG/KG
SS02214-A	TE880	7-Sep-01	0	0.75	SW8330	TETRYL	127		2	100	UG/KG
SS02216-A	04043	5-May-03	0	0.16	SW8330	2-AMINO-4,6-DINITROTOLUENE	90		4.96	13	UG/KG
SS02216-A	04043	5-May-03	0	0.16	SW8330	4-AMINO-2,6-DINITROTOLUENE	71		4.58	13	UG/KG
SS02216-A	04044	5-May-03	0	0.16	SW8330	4-AMINO-2,6-DINITROTOLUENE	19	J	4.58	13	UG/KG
SS02216-A	04045	5-May-03	0	0.16	SW8330	TETRYL	18	J	3.34	13	UG/KG
SS02216-A	04046	5-May-03	0	0.16	SW8330	2-AMINO-4,6-DINITROTOLUENE	160		4.96	13	UG/KG
SS02216-A	04046	5-May-03	0	0.16	SW8330	4-AMINO-2,6-DINITROTOLUENE	110		4.58	13	UG/KG
SS02216-A	19835	18-Oct-04	0	0.25	SW8330	2-AMINO-4,6-DINITROTOLUENE	30		3.02	13	UG/KG
SS02216-A	19835	18-Oct-04	0	0.25	SW8330	4-AMINO-2,6-DINITROTOLUENE	20		2.49	13	UG/KG
SS02216-A	19836	18-Oct-04	0	0.25	SW8330	2-AMINO-4,6-DINITROTOLUENE	31		3.02	13	UG/KG
SS02216-A	19836	18-Oct-04	0	0.25	SW8330	4-AMINO-2,6-DINITROTOLUENE	28		2.49	13	UG/KG
SS02216-A	TE882	7-Sep-01	0	0.5	CL200.7	ALUMINUM	6120		2	39	MG/KG
SS02216-A	TE882	7-Sep-01	0	0.5	CL200.7	ARSENIC	1.85	J	1	2	MG/KG
SS02216-A	TE882	7-Sep-01	0	0.5	CL200.7	BARIUM	6.33	J	0.2	39	MG/KG
SS02216-A	TE882	7-Sep-01	0	0.5	CL200.7	BERYLLIUM	0.115	J	0.01	1	MG/KG
SS02216-A	TE882	7-Sep-01	0	0.5	CL200.7	CADMIUM	0.147	J	0.03	1	MG/KG
SS02216-A	TE882	7-Sep-01	0	0.5	CL200.7	CALCIUM	108	J	2	981	MG/KG
SS02216-A	TE882	7-Sep-01	0	0.5	CL200.7	CHROMIUM, TOTAL	9.27		0.09	2	MG/KG
SS02216-A	TE882	7-Sep-01	0	0.5	CL200.7	COBALT	0.314	J	0.07	10	MG/KG
SS02216-A	TE882	7-Sep-01	0	0.5	CL200.7	COPPER	88.7		0.08	5	MG/KG
SS02216-A	TE882	7-Sep-01	0	0.5	CL200.7	IRON	7360	J	3	20	MG/KG
SS02216-A	TE882	7-Sep-01	0	0.5	CL200.7	LEAD	151	J	0.2	1	MG/KG
SS02216-A	TE882	7-Sep-01	0	0.5	CL200.7	MAGNESIUM	278	J	2	981	MG/KG
SS02216-A	TE882	7-Sep-01	0	0.5	CL200.7	MANGANESE	43.6		0.1	3	MG/KG
SS02216-A	TE882	7-Sep-01	0	0.5	CL200.7	NICKEL	2.03	J	0.11	8	MG/KG
SS02216-A	TE882	7-Sep-01	0	0.5	CL200.7	POTASSIUM	200	J	3	981	MG/KG
SS02216-A	TE882	7-Sep-01	0	0.5	CL200.7	SELENIUM	0.849	J	0.849	1	MG/KG
SS02216-A	TE882	7-Sep-01	0	0.5	CL200.7	SODIUM	617	J	44	981	MG/KG
SS02216-A	TE882	7-Sep-01	0	0.5	CL200.7	VANADIUM	10.4		0.13	10	MG/KG
SS02216-A	TE882	7-Sep-01	0		CL200.7	ZINC	18.5		0.08	4	MG/KG
SS02216-A	TE882	7-Sep-01	0	0.5	CL245.5	MERCURY	0.233		0.02	0.03	MG/KG

Table A.2

Target Array and Flanking Target Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS02216-A	TE882	7-Sep-01	0	0.5	CVOL	ACETONE	6.18	J	1	6	UG/KG
SS02216-A	TE882	7-Sep-01	0	0.5	CVOL	BENZENE	2.93	J	1	6	UG/KG
SS02216-A	TE882	7-Sep-01	0	0.5	CVOL	CHLOROFORM	0.768	J	0.768	6	UG/KG
SS02216-A	TE882	7-Sep-01	0	0.5	CVOL	CHLOROMETHANE	0.905	J	0.905	6	UG/KG
SS02216-A	TE882	7-Sep-01	0	0.5	CVOL	ETHYLBENZENE	1.14	J	1	6	UG/KG
SS02216-A	TE882	7-Sep-01	0	0.5	CVOL	STYRENE	0.661	J	0.661	6	UG/KG
SS02216-A	TE882	7-Sep-01	0	0.5	D2216	SOLIDS, PERCENT	97.3				PERCENT
SS02216-A	TE882	7-Sep-01	0	0.5	SW8270C	BENZOIC ACID	127	J	106	685	UG/KG
SS02216-A	TE882	7-Sep-01	0	0.5	SW8270C	bis(2-ETHYLHEXYL) PHTHALATE	42.5	J	18	342	UG/KG
SS02216-A	TE882	7-Sep-01	0	0.5	SW8270C	DI-n-BUTYL PHTHALATE	226	J	43	342	UG/KG
SS02216-A	TE882	7-Sep-01	0	0.5	SW8270C	DI-n-OCTYLPHTHALATE	429		45	342	UG/KG
SS02216-A	TE882	7-Sep-01	0	0.5	SW8330	2,4,6-TRINITROTOLUENE	524		2	100	UG/KG
SS02216-A	TE882	7-Sep-01	0	0.5	SW8330	2-AMINO-4,6-DINITROTOLUENE	124		5	100	UG/KG
SS02216-A	TE882	7-Sep-01	0	0.5	SW8330	4-AMINO-2,6-DINITROTOLUENE	119		3	100	UG/KG
SS02216-A	TE882	7-Sep-01	0	0.5	SW8330	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	898		6	100	UG/KG
SS02221-A	TE888	7-Sep-01	0	0.25	CL200.7	ALUMINUM	2900	J	2	39	MG/KG
SS02221-A	TE888	7-Sep-01	0	0.25	CL200.7	ARSENIC	2.6	J	1	2	MG/KG
SS02221-A	TE888	7-Sep-01	0	0.25	CL200.7	BARIUM	8.84	J	0.2	39	MG/KG
SS02221-A	TE888	7-Sep-01	0	0.25	CL200.7	BERYLLIUM	0.147	J	0.01	1	MG/KG
SS02221-A	TE888	7-Sep-01	0	0.25	CL200.7	CADMIUM	1.66		0.03	1	MG/KG
SS02221-A	TE888	7-Sep-01	0	0.25	CL200.7	CALCIUM	119	J	2	985	MG/KG
SS02221-A	TE888	7-Sep-01	0	0.25	CL200.7	CHROMIUM, TOTAL	18.7		0.09	2	MG/KG
SS02221-A	TE888	7-Sep-01	0	0.25	CL200.7	COBALT	1.45	J	0.07	10	MG/KG
SS02221-A	TE888	7-Sep-01	0	0.25	CL200.7	COPPER	58.8		0.08	5	MG/KG
SS02221-A	TE888	7-Sep-01	0	0.25	CL200.7	IRON	12900	J	3	20	MG/KG
SS02221-A	TE888	7-Sep-01	0	0.25	CL200.7	LEAD	122	J	0.2	1	MG/KG
SS02221-A	TE888	7-Sep-01	0	0.25	CL200.7	MAGNESIUM	382	J	2	985	MG/KG
SS02221-A	TE888	7-Sep-01	0	0.25	CL200.7	MANGANESE	134	J	0.1	3	MG/KG
SS02221-A	TE888	7-Sep-01	0	0.25	CL200.7	MOLYBDENUM	6.07		0.09	1	MG/KG
SS02221-A	TE888	7-Sep-01	0	0.25	CL200.7	NICKEL	28.9		0.11	8	MG/KG
SS02221-A	TE888	7-Sep-01	0	0.25	CL200.7	POTASSIUM	324	J	3	985	MG/KG
SS02221-A	TE888	7-Sep-01	0	0.25	CL200.7	SILVER	3.65	J	0.15	2	
SS02221-A	TE888	7-Sep-01	0	0.25	CL200.7	VANADIUM	9.52	J	0.13	10	
SS02221-A	TE888	7-Sep-01	0		CL200.7	ZINC	30.1		0.08	4	
SS02221-A	TE888	7-Sep-01	0	0.25	CL245.5	MERCURY	0.06		0.02	0.03	MG/KG
SS02221-A	TE888	7-Sep-01	0	0.25	CVOL	ACETONE	10.8	J	1	7	UG/KG
SS02221-A	TE888	7-Sep-01	0		CVOL	BROMOFORM	1.39	J	1	7	
SS02221-A	TE888	7-Sep-01	0		CVOL	BROMOMETHANE	1.98		1	7	
SS02221-A	TE888	7-Sep-01	0		CVOL	CHLOROFORM	1.73		1	7	
SS02221-A	TE888	7-Sep-01	0		D2216	SOLIDS, PERCENT	98.7				PERCEN

Table A.2

Target Array and Flanking Target Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPT		TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS02221-A	TE888	7-Sep-01	0	0.25	SW8270C	BENZO(a)ANTHRACENE	151	J	32	338	UG/KG
SS02221-A	TE888	7-Sep-01	0	0.25	SW8270C	BENZO(a)PYRENE	104	J	28	338	UG/KG
SS02221-A	TE888	7-Sep-01	0	0.25	SW8270C	BENZO(b)FLUORANTHENE	157	J	71	338	UG/KG
SS02221-A	TE888	7-Sep-01	0	0.25	SW8270C	BENZO(k)FLUORANTHENE	63.5	J	55	338	UG/KG
SS02221-A	TE888	7-Sep-01	0	0.25	SW8270C	bis(2-ETHYLHEXYL) PHTHALATE	25	J	17	338	UG/KG
SS02221-A	TE888	7-Sep-01	0	0.25	SW8270C	CHRYSENE	147	J	44	338	UG/KG
SS02221-A	TE888	7-Sep-01	0	0.25	SW8270C	DI-n-BUTYL PHTHALATE	172	J	42	338	UG/KG
SS02221-A	TE888	7-Sep-01	0	0.25	SW8270C	FLUORANTHENE	434		74	338	UG/KG
SS02221-A	TE888	7-Sep-01	0	0.25	SW8270C	PHENANTHRENE	252	J	42	338	UG/KG
SS02221-A	TE888	7-Sep-01	0	0.25	SW8270C	PHENOL	44.2	J	27	338	UG/KG
SS02221-A	TE888	7-Sep-01	0	0.25	SW8270C	PYRENE	262	J	69	338	UG/KG
SS02221-A	TE889	7-Sep-01	0	0.25	CL200.7	ALUMINUM	2920	J	2	40	MG/KG
SS02221-A	TE889	7-Sep-01	0	0.25	CL200.7	ARSENIC	2.27	J	1	2	MG/KG
SS02221-A	TE889	7-Sep-01	0	0.25	CL200.7	BARIUM	16.8	J	0.2	40	MG/KG
SS02221-A	TE889	7-Sep-01	0	0.25	CL200.7	BERYLLIUM	0.141	J	0.01	1	MG/KG
SS02221-A	TE889	7-Sep-01	0	0.25	CL200.7	CADMIUM	0.946	J	0.03	1	MG/KG
SS02221-A	TE889	7-Sep-01	0	0.25	CL200.7	CALCIUM	168	J	2	1000	MG/KG
SS02221-A	TE889	7-Sep-01	0	0.25	CL200.7	CHROMIUM, TOTAL	16.6		0.09	2	MG/KG
SS02221-A	TE889	7-Sep-01	0	0.25	CL200.7	COBALT	1.19	J	0.07	10	MG/KG
SS02221-A	TE889	7-Sep-01	0	0.25	CL200.7	COPPER	56.5		0.08	5	MG/KG
SS02221-A	TE889	7-Sep-01	0	0.25	CL200.7	IRON	9520	J	3	20	MG/KG
SS02221-A	TE889	7-Sep-01	0	0.25	CL200.7	LEAD	127	J	0.2	1	MG/KG
SS02221-A	TE889	7-Sep-01	0	0.25	CL200.7	MAGNESIUM	424	J	2	1000	MG/KG
SS02221-A	TE889	7-Sep-01	0	0.25	CL200.7	MANGANESE	99.7	J	0.1	3	MG/KG
SS02221-A	TE889	7-Sep-01	0	0.25	CL200.7	MOLYBDENUM	5.12		0.09	1	MG/KG
SS02221-A	TE889	7-Sep-01	0	0.25	CL200.7	NICKEL	17.3		0.11	8	MG/KG
SS02221-A	TE889	7-Sep-01	0	0.25	CL200.7	POTASSIUM	324	J	3	1000	MG/KG
SS02221-A	TE889	7-Sep-01	0	0.25	CL200.7	SILVER	1.71	J	0.15	2	MG/KG
SS02221-A	TE889	7-Sep-01	0	0.25	CL200.7	VANADIUM	7.98	J	0.13	10	MG/KG
SS02221-A	TE889	7-Sep-01	0	0.25	CL200.7	ZINC	38.6		0.08	4	MG/KG
SS02221-A	TE889	7-Sep-01	0	0.25	CL245.5	MERCURY	0.053		0.02	0.03	MG/KG
SS02221-A	TE889	7-Sep-01	0	0.25	CVOL	ACETONE	10.1	J	1	7	UG/KG
SS02221-A	TE889	7-Sep-01	0		CVOL	BROMOFORM	1.97	J	1	7	
SS02221-A	TE889	7-Sep-01	0		CVOL	BROMOMETHANE	0.884		0.884	7	
SS02221-A	TE889	7-Sep-01	0		CVOL	CHLOROFORM	2.44	J	1	7	UG/KG
SS02221-A	TE889	7-Sep-01	0	0.25	D2216	SOLIDS, PERCENT	98.8				PERCENT
SS02221-A	TE889	7-Sep-01	0		SW8270C	BENZO(a)ANTHRACENE	133	J	32	337	
SS02221-A	TE889	7-Sep-01	0		SW8270C	BENZO(a)PYRENE	101		28	337	
SS02221-A	TE889	7-Sep-01	0		SW8270C	BENZO(b)FLUORANTHENE	166		71	337	
SS02221-A	TE889	7-Sep-01	0		SW8270C	BENZO(k)FLUORANTHENE	60.4		55	337	

Table A.2

Target Array and Flanking Target Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPTH (FT.)	TEST	ANALYTE	RESULT	QUALIFIER1	MDL	RL	UNITS
SS02221-A	TE889	7-Sep-01	0 0.25	SW8270C	bis(2-ETHYLHEXYL) PHTHALATE	59.4	J	17	337	UG/KG
SS02221-A	TE889	7-Sep-01	0 0.25	SW8270C	CHRYSENE	139	J	44	337	UG/KG
SS02221-A	TE889	7-Sep-01	0 0.25	SW8270C	DI-n-BUTYL PHTHALATE	213	J	42	337	UG/KG
SS02221-A	TE889	7-Sep-01	0 0.25	SW8270C	FLUORANTHENE	319	J	74	337	UG/KG
SS02221-A	TE889	7-Sep-01	0 0.25	SW8270C	INDENO(1,2,3-c,d)PYRENE	58	J	53	337	UG/KG
SS02221-A	TE889	7-Sep-01	0 0.25	SW8270C	PHENANTHRENE	193	J	42	337	UG/KG
SS02221-A	TE889	7-Sep-01	0 0.25	SW8270C	PYRENE	197	J	69	337	UG/KG
SS02222-A	TE891	7-Sep-01	0 0.25	CL200.7	ALUMINUM	4220	J	2	40	MG/KG
SS02222-A	TE891	7-Sep-01	0 0.25	CL200.7	ANTIMONY	1.59	J	1	12	MG/KG
SS02222-A	TE891	7-Sep-01	0 0.25	CL200.7	ARSENIC	2.79	J	1	2	MG/KG
SS02222-A	TE891	7-Sep-01	0 0.25	CL200.7	BARIUM	4.22	J	0.2	40	MG/KG
SS02222-A	TE891	7-Sep-01	0 0.25	CL200.7	BERYLLIUM	0.134	J	0.01	1	MG/KG
SS02222-A	TE891	7-Sep-01	0 0.25	CL200.7	CADMIUM	0.168	J	0.03	1	MG/KG
SS02222-A	TE891	7-Sep-01	0 0.25	CL200.7	CALCIUM	123	J	2	1000	MG/KG
SS02222-A	TE891	7-Sep-01	0 0.25	CL200.7	CHROMIUM, TOTAL	10.4		0.09	2	MG/KG
SS02222-A	TE891	7-Sep-01	0 0.25	CL200.7	COBALT	1.08	J	0.07	10	MG/KG
SS02222-A	TE891	7-Sep-01	0 0.25	CL200.7	COPPER	74.6		0.08	5	MG/KG
SS02222-A	TE891	7-Sep-01	0 0.25	CL200.7	IRON	12000	J	3	20	MG/KG
SS02222-A	TE891	7-Sep-01	0 0.25	CL200.7	LEAD	203	J	0.2	1	MG/KG
SS02222-A	TE891	7-Sep-01	0 0.25	CL200.7	MAGNESIUM	498	J	2	1000	
SS02222-A	TE891	7-Sep-01	0 0.25	CL200.7	MANGANESE	80.6	J	0.1	3	MG/KG
SS02222-A	TE891	7-Sep-01	0 0.25	CL200.7	NICKEL	2.74	J	0.11	8	MG/KG
SS02222-A	TE891	7-Sep-01	0 0.25	CL200.7	POTASSIUM	325		3	1000	MG/KG
SS02222-A	TE891	7-Sep-01	0 0.25	CL200.7	VANADIUM	10.5		0.13	10	MG/KG
SS02222-A	TE891	7-Sep-01	0 0.25	CL200.7	ZINC	14.4		0.08	4	MG/KG
SS02222-A	TE891	7-Sep-01	0 0.25	CL245.5	MERCURY	0.029	J	0.02	0.03	MG/KG
SS02222-A	TE891	7-Sep-01	0 0.25	CVOL	ACETONE	25.2	J	1	8	UG/KG
SS02222-A	TE891	7-Sep-01	0 0.25	CVOL	BENZENE	1.05	J	1	8	UG/KG
SS02222-A	TE891	7-Sep-01	0 0.25	CVOL	BROMOFORM	1.47	J	1	8	UG/KG
SS02222-A	TE891	7-Sep-01	0 0.25	CVOL	CHLOROFORM	1.74	J	1	8	UG/KG
SS02222-A	TE891	7-Sep-01	0 0.25	CVOL	STYRENE	0.902	J	0.902	8	UG/KG
SS02222-A	TE891	7-Sep-01	0 0.25	D2216	SOLIDS, PERCENT	96.3				PERCENT
SS02222-A	TE891	7-Sep-01	0 0.25	SW8270C	BENZO(a)ANTHRACENE	186	J	33	346	UG/KG
SS02222-A	TE891	7-Sep-01	0 0.25	SW8270C	BENZO(a)PYRENE	175	J	29	346	
SS02222-A	TE891	7-Sep-01		SW8270C	BENZO(b)FLUORANTHENE	338		73	346	
SS02222-A	TE891	7-Sep-01	0 0.25	SW8270C	BENZO(g,h,i)PERYLENE	136		73	346	
SS02222-A	TE891	7-Sep-01		SW8270C	BENZO(k)FLUORANTHENE	101		56	346	
SS02222-A	TE891	7-Sep-01		SW8270C	bis(2-ETHYLHEXYL) PHTHALATE	25.3		18	346	
SS02222-A	TE891	7-Sep-01		SW8270C	CHRYSENE	242		45	346	
SS02222-A	TE891	7-Sep-01		SW8270C	DI-n-BUTYL PHTHALATE	82.1		44	346	

Table A.2

Target Array and Flanking Target Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS02222-A	TE891	7-Sep-01	0		SW8270C	FLUORANTHENE	365		76	346	UG/KG
SS02222-A	TE891	7-Sep-01	0	0.25	SW8270C	INDENO(1,2,3-c,d)PYRENE	132	J	54	346	UG/KG
SS02222-A	TE891	7-Sep-01	0	0.25	SW8270C	PHENANTHRENE	202	J	43	346	UG/KG
SS02222-A	TE891	7-Sep-01	0	0.25	SW8270C	PYRENE	241	J	71	346	UG/KG
SS02223-A	TE893	7-Sep-01	0	0.25	CL200.7	ALUMINUM	2690	J	2	39	MG/KG
SS02223-A	TE893	7-Sep-01	0	0.25	CL200.7	ARSENIC	3.04	J	1	2	MG/KG
SS02223-A	TE893	7-Sep-01	0	0.25	CL200.7	BARIUM	3.58	J	0.2	39	MG/KG
SS02223-A	TE893	7-Sep-01	0	0.25	CL200.7	BERYLLIUM	0.166	J	0.01	1	MG/KG
SS02223-A	TE893	7-Sep-01	0	0.25	CL200.7	CADMIUM	0.064	J	0.03	1	MG/KG
SS02223-A	TE893	7-Sep-01	0	0.25	CL200.7	CALCIUM	74.7	J	2	974	MG/KG
SS02223-A	TE893	7-Sep-01	0	0.25	CL200.7	CHROMIUM, TOTAL	4.48		0.09	2	MG/KG
SS02223-A	TE893	7-Sep-01	0	0.25	CL200.7	COBALT	1	J	0.07	10	MG/KG
SS02223-A	TE893	7-Sep-01	0	0.25	CL200.7	COPPER	23.6		0.08	5	MG/KG
SS02223-A	TE893	7-Sep-01	0	0.25	CL200.7	IRON	5840	J	3	20	MG/KG
SS02223-A	TE893	7-Sep-01	0	0.25	CL200.7	LEAD	35	J	0.2	1	MG/KG
SS02223-A	TE893	7-Sep-01	0	0.25	CL200.7	MAGNESIUM	412	J	2	974	MG/KG
SS02223-A	TE893	7-Sep-01	0	0.25	CL200.7	NICKEL	1.95	J	0.11	8	MG/KG
SS02223-A	TE893	7-Sep-01	0	0.25	CL200.7	POTASSIUM	282	J	3	974	MG/KG
SS02223-A	TE893	7-Sep-01	0	0.25	CL200.7	VANADIUM	7.02	J	0.13	10	MG/KG
SS02223-A	TE893	7-Sep-01	0	0.25	CL200.7	ZINC	7.39		0.08	4	MG/KG
SS02223-A	TE893	7-Sep-01	0	0.25	CVOL	ACETONE	16	J	1	8	UG/KG
SS02223-A	TE893	7-Sep-01	0	0.25	CVOL	BROMOFORM	1.89	J	1	8	UG/KG
SS02223-A	TE893	7-Sep-01	0	0.25	CVOL	CHLOROFORM	1.91	J	1	8	UG/KG
SS02223-A	TE893	7-Sep-01	0	0.25	D2216	SOLIDS, PERCENT	98.4				PERCENT
SS02223-A	TE893	7-Sep-01	0	0.25	SW8270C	bis(2-ETHYLHEXYL) PHTHALATE	23	J	17	339	UG/KG
SS02224-A	TE895	7-Sep-01	0	0.25	CL200.7	ALUMINUM	11600	J	2	40	MG/KG
SS02224-A	TE895	7-Sep-01	0	0.25	CL200.7	ARSENIC	3.54	J	1	2	MG/KG
SS02224-A	TE895	7-Sep-01	0	0.25	CL200.7	BARIUM	19.6	J	0.2	40	MG/KG
SS02224-A	TE895	7-Sep-01	0	0.25	CL200.7	BERYLLIUM	0.18	J	0.01	1	MG/KG
SS02224-A	TE895	7-Sep-01	0	0.25	CL200.7	CADMIUM	0.179	J	0.03	1	MG/KG
SS02224-A	TE895	7-Sep-01	0	0.25	CL200.7	CALCIUM	127	J	2	1010	MG/KG
SS02224-A	TE895	7-Sep-01	0	0.25	CL200.7	CHROMIUM, TOTAL	14.1		0.09	2	MG/KG
SS02224-A	TE895	7-Sep-01	0	0.25	CL200.7	COBALT	1.78	J	0.07	10	MG/KG
SS02224-A	TE895	7-Sep-01	0	0.25	CL200.7	COPPER	18.2		0.08	5	MG/KG
SS02224-A	TE895	7-Sep-01	0	0.25	CL200.7	IRON	9880	J	3	20	MG/KG
SS02224-A	TE895	7-Sep-01	0	0.25	CL200.7	LEAD	36.2	J	0.2	1	MG/KG
SS02224-A	TE895	7-Sep-01	0	0.25	CL200.7	MAGNESIUM	1320		2	1010	MG/KG
SS02224-A	TE895	7-Sep-01	0	0.25	CL200.7	MANGANESE	56.9	J	0.1	3	MG/KG
SS02224-A	TE895	7-Sep-01	0	0.25	CL200.7	NICKEL	6.42	J	0.11	8	MG/KG
SS02224-A	TE895	7-Sep-01	0	0.25	CL200.7	POTASSIUM	517	J	3	1010	MG/KG

Table A.2

Target Array and Flanking Target Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS02224-A	TE895	7-Sep-01	0	0.25	CL200.7	VANADIUM	19.9		0.13	10	MG/KG
SS02224-A	TE895	7-Sep-01	0	0.25	CL200.7	ZINC	17		0.08	4	MG/KG
SS02224-A	TE895	7-Sep-01	0	0.25	CL245.5	MERCURY	0.024	J	0.02	0.03	MG/KG
SS02224-A	TE895	7-Sep-01	0	0.25	CVOL	ACETONE	46.2	J	1	7	UG/KG
SS02224-A	TE895	7-Sep-01	0	0.25	CVOL	BENZENE	1.17	J	1	7	UG/KG
SS02224-A	TE895	7-Sep-01	0	0.25	CVOL	BROMOFORM	0.827	J	0.827	7	UG/KG
SS02224-A	TE895	7-Sep-01	0	0.25	CVOL	CHLOROFORM	1.03	J	1	7	UG/KG
SS02224-A	TE895	7-Sep-01	0	0.25	CVOL	STYRENE	0.746	J	0.746	7	UG/KG
SS02224-A	TE895	7-Sep-01	0	0.25	D2216	SOLIDS, PERCENT	94.8				PERCENT
SS02224-A	TE895	7-Sep-01	0	0.25	SW8270C	BENZO(a)ANTHRACENE	59.8	J	34	352	UG/KG
SS02224-A	TE895	7-Sep-01	0	0.25	SW8270C	BENZO(a)PYRENE	56.3	J	30	352	UG/KG
SS02224-A	TE895	7-Sep-01	0	0.25	SW8270C	BENZO(b)FLUORANTHENE	120	J	74	352	UG/KG
SS02224-A	TE895	7-Sep-01	0	0.25	SW8270C	bis(2-ETHYLHEXYL) PHTHALATE	39.7	J	18	352	UG/KG
SS02224-A	TE895	7-Sep-01	0	0.25	SW8270C	CHRYSENE	87.2	J	45	352	UG/KG
SS02224-A	TE895	7-Sep-01	0	0.25	SW8270C	FLUORANTHENE	125	J	77	352	UG/KG
SS02224-A	TE895	7-Sep-01	0	0.25	SW8270C	PYRENE	95.6	J	72	352	UG/KG
SS02225-A	TE897	7-Sep-01	0	0.25	CL200.7	ALUMINUM	10700	J	2	41	MG/KG
SS02225-A	TE897	7-Sep-01	0	0.25	CL200.7	ARSENIC	3.95	J	1	2	MG/KG
SS02225-A	TE897	7-Sep-01	0	0.25	CL200.7	BARIUM	15.6	J	0.2	41	MG/KG
SS02225-A	TE897	7-Sep-01	0	0.25	CL200.7	BERYLLIUM	0.173	J	0.01	1	MG/KG
SS02225-A	TE897	7-Sep-01	0	0.25	CL200.7	CADMIUM	0.155	J	0.03	1	MG/KG
SS02225-A	TE897	7-Sep-01	0	0.25	CL200.7	CALCIUM	106	J	2	1020	MG/KG
SS02225-A	TE897	7-Sep-01	0	0.25	CL200.7	CHROMIUM, TOTAL	12		0.09	2	MG/KG
SS02225-A	TE897	7-Sep-01	0	0.25	CL200.7	COBALT	1.23	J	0.07	10	MG/KG
SS02225-A	TE897	7-Sep-01	0	0.25	CL200.7	COPPER	9.48		0.08	5	MG/KG
SS02225-A	TE897	7-Sep-01	0	0.25	CL200.7	IRON	9450	J	3	20	MG/KG
SS02225-A	TE897	7-Sep-01	0	0.25	CL200.7	LEAD	25.2	J	0.2	1	MG/KG
SS02225-A	TE897	7-Sep-01	0	0.25	CL200.7	MAGNESIUM	1000	J	2	1020	MG/KG
SS02225-A	TE897	7-Sep-01	0	0.25	CL200.7	MANGANESE	47.6	J	0.1	3	MG/KG
SS02225-A	TE897	7-Sep-01	0	0.25	CL200.7	NICKEL	4.81	J	0.11	8	MG/KG
SS02225-A	TE897	7-Sep-01	0	0.25	CL200.7	POTASSIUM	407	J	3	1020	MG/KG
SS02225-A	TE897	7-Sep-01	0	0.25	CL200.7	VANADIUM	18.8		0.13	10	MG/KG
SS02225-A	TE897	7-Sep-01	0	0.25	CL200.7	ZINC	16.5		0.08	4	MG/KG
SS02225-A	TE897	7-Sep-01	0		CL245.5	MERCURY	0.021	J	0.02	0.03	MG/KG
SS02225-A	TE897	7-Sep-01	0	0.25	CVOL	ACETONE	24.8	J	1	7	UG/KG
SS02225-A	TE897	7-Sep-01	0	0.25	CVOL	BENZENE	1.15	J	1	7	UG/KG
SS02225-A	TE897	7-Sep-01	0	0.25	CVOL	BROMOFORM	0.99	J	0.99	7	UG/KG
SS02225-A	TE897	7-Sep-01	0	0.25	CVOL	CHLOROFORM	1.23	J	1	7	UG/KG
SS02225-A	TE897	7-Sep-01	0	0.25	D2216	SOLIDS, PERCENT	95.3				PERCENT
SS02225-A	TE897	7-Sep-01	0	0.25	SW8270C	bis(2-ETHYLHEXYL) PHTHALATE	19.9	J	18	350	UG/KG

Table A.2

Target Array and Flanking Target Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS02226-A	TE899	7-Sep-01	0		CL200.7	ALUMINUM	3730	J	2	39	MG/KG
SS02226-A	TE899	7-Sep-01	0	0.25	CL200.7	ANTIMONY	1.09	J	1	12	MG/KG
SS02226-A	TE899	7-Sep-01	0	0.25	CL200.7	ARSENIC	2.49	J	1	2	MG/KG
SS02226-A	TE899	7-Sep-01	0	0.25	CL200.7	BARIUM	5.6	J	0.2	39	MG/KG
SS02226-A	TE899	7-Sep-01	0	0.25	CL200.7	BERYLLIUM	0.136	J	0.01	1	MG/KG
SS02226-A	TE899	7-Sep-01	0	0.25	CL200.7	CADMIUM	0.092	J	0.03	1	MG/KG
SS02226-A	TE899	7-Sep-01	0	0.25	CL200.7	CALCIUM	126	J	2	980	MG/KG
SS02226-A	TE899	7-Sep-01	0	0.25	CL200.7	CHROMIUM, TOTAL	9.3		0.09	2	MG/KG
SS02226-A	TE899	7-Sep-01	0	0.25	CL200.7	COBALT	1.24	J	0.07	10	MG/KG
SS02226-A	TE899	7-Sep-01	0	0.25	CL200.7	COPPER	62.1		0.08	5	MG/KG
SS02226-A	TE899	7-Sep-01	0	0.25	CL200.7	IRON	6490	J	3	20	MG/KG
SS02226-A	TE899	7-Sep-01	0	0.25	CL200.7	LEAD	95.6	J	0.2	1	MG/KG
SS02226-A	TE899	7-Sep-01	0	0.25	CL200.7	MAGNESIUM	515	J	2	980	MG/KG
SS02226-A	TE899	7-Sep-01	0	0.25	CL200.7	MANGANESE	52.9	J	0.1	3	MG/KG
SS02226-A	TE899	7-Sep-01	0	0.25	CL200.7	NICKEL	2.74	J	0.11	8	MG/KG
SS02226-A	TE899	7-Sep-01	0	0.25	CL200.7	POTASSIUM	424	J	3	980	MG/KG
SS02226-A	TE899	7-Sep-01	0	0.25	CL200.7	VANADIUM	8.91	J	0.13	10	MG/KG
SS02226-A	TE899	7-Sep-01	0	0.25	CL200.7	ZINC	13.7		0.08	4	MG/KG
SS02226-A	TE899	7-Sep-01	0	0.25	CL245.5	MERCURY	0.021	J	0.02	0.03	MG/KG
SS02226-A	TE899	7-Sep-01	0	0.25	CVOL	ACETONE	17.1	J	1	7	UG/KG
SS02226-A	TE899	7-Sep-01	0	0.25	CVOL	BENZENE	1.2	J	1	7	UG/KG
SS02226-A	TE899	7-Sep-01	0	0.25	CVOL	BROMOFORM	1.56	J	1	7	UG/KG
SS02226-A	TE899	7-Sep-01	0	0.25	CVOL	CHLOROFORM	0.956	J	0.956	7	UG/KG
SS02226-A	TE899	7-Sep-01	0	0.25	D2216	SOLIDS, PERCENT	98.1				PERCENT
SS02226-A	TE899	7-Sep-01	0	0.25	SW8270C	BENZO(a)ANTHRACENE	56.1	J	33	340	
SS02226-A	TE899	7-Sep-01	0	0.25	SW8270C	BENZO(a)PYRENE	45.5	J	29	340	UG/KG
SS02226-A	TE899	7-Sep-01	0	0.25	SW8270C	BENZO(b)FLUORANTHENE	73.1	J	71	340	UG/KG
SS02226-A	TE899	7-Sep-01	0	0.25	SW8270C	bis(2-ETHYLHEXYL) PHTHALATE	43.5	J	17	340	UG/KG
SS02226-A	TE899	7-Sep-01	0	0.25	SW8270C	CHRYSENE	55.7	J	44	340	UG/KG
SS02226-A	TE899	7-Sep-01	0	0.25	SW8270C	FLUORANTHENE	128	J	74	340	UG/KG
SS02226-A	TE899	7-Sep-01	0		SW8270C	PHENANTHRENE	64.6		42	340	UG/KG
SS02226-A	TE899	7-Sep-01	0	0.25	SW8270C	PYRENE	104	J	69	340	UG/KG
SS02227-A	TE901	7-Sep-01	0	0.25	CL200.7	ALUMINUM	9050	J	2	41	MG/KG
SS02227-A	TE901	7-Sep-01	0	0.25	CL200.7	ARSENIC	3.02	J	1	2	MG/KG
SS02227-A	TE901	7-Sep-01	0	0.25	CL200.7	BARIUM	11.9	J	0.2	41	MG/KG
SS02227-A	TE901	7-Sep-01	0	0.25	CL200.7	BERYLLIUM	0.139		0.01	1	MG/KG
SS02227-A	TE901	7-Sep-01	0	0.25	CL200.7	BORON	1.24	J	0.2	3	MG/KG
SS02227-A	TE901	7-Sep-01	0		CL200.7	CALCIUM	130		2	1040	
SS02227-A	TE901	7-Sep-01	0	0.25	CL200.7	CHROMIUM, TOTAL	9.23	J	0.09	2	MG/KG
SS02227-A	TE901	7-Sep-01	0	0.25	CL200.7	COBALT	1	J	0.07	10	MG/KG

Table A.2

Target Array and Flanking Target Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS02227-A	TE901	7-Sep-01	0	0.25	CL200.7	COPPER	39.3		0.08	5	MG/KG
SS02227-A	TE901	7-Sep-01	0	0.25	CL200.7	IRON	9380	J	3	21	MG/KG
SS02227-A	TE901	7-Sep-01	0	0.25	CL200.7	LEAD	37.5	J	0.2	1	MG/KG
SS02227-A	TE901	7-Sep-01	0	0.25	CL200.7	MAGNESIUM	783	J	2	1040	MG/KG
SS02227-A	TE901	7-Sep-01	0	0.25	CL200.7	MANGANESE	68.2	J	0.1	3	MG/KG
SS02227-A	TE901	7-Sep-01	0	0.25	CL200.7	NICKEL	3.56	J	0.11	8	MG/KG
SS02227-A	TE901	7-Sep-01	0	0.25	CL200.7	POTASSIUM	370	J	3	1040	MG/KG
SS02227-A	TE901	7-Sep-01	0	0.25	CL200.7	VANADIUM	14.5		0.13	10	MG/KG
SS02227-A	TE901	7-Sep-01	0	0.25	CL200.7	ZINC	20.3		0.08	4	MG/KG
SS02227-A	TE901	7-Sep-01	0	0.25	CL245.5	MERCURY	0.042		0.02	0.03	MG/KG
SS02227-A	TE901	7-Sep-01	0	0.25	CVOL	ACETONE	51.3	J	1	11	UG/KG
SS02227-A	TE901	7-Sep-01	0	0.25	CVOL	BENZENE	1.74	J	1	11	UG/KG
SS02227-A	TE901	7-Sep-01	0	0.25	CVOL	CHLOROFORM	1.59	J	1	11	UG/KG
SS02227-A	TE901	7-Sep-01	0	0.25	D2216	SOLIDS, PERCENT	94.5				PERCENT
SS02227-A	TE901	7-Sep-01	0	0.25	SW8270C	BENZO(a)ANTHRACENE	55.1	J	34	353	UG/KG
SS02227-A	TE901	7-Sep-01	0	0.25	SW8270C	BENZO(a)PYRENE	52.2	J	30	353	UG/KG
SS02227-A	TE901	7-Sep-01	0	0.25	SW8270C	BENZO(b)FLUORANTHENE	122	J	74	353	UG/KG
SS02227-A	TE901	7-Sep-01	0	0.25	SW8270C	CHRYSENE	74.8	J	46	353	UG/KG
SS02227-A	TE901	7-Sep-01	0	0.25	SW8270C	FLUORANTHENE	97.4	J	77	353	UG/KG
SS02227-A	TE901	7-Sep-01	0	0.25	SW8270C	PYRENE	75.2	J	72	353	UG/KG
SS02228-A	TE903	7-Sep-01	0	0.25	CL200.7	ALUMINUM	7740	J	2	41	MG/KG
SS02228-A	TE903	7-Sep-01	0	0.25	CL200.7	ARSENIC	2.96	J	1	2	MG/KG
SS02228-A	TE903	7-Sep-01	0	0.25	CL200.7	BARIUM	8.4	J	0.2	41	MG/KG
SS02228-A	TE903	7-Sep-01	0	0.25	CL200.7	BORON	1.81	J	0.2	3	MG/KG
SS02228-A	TE903	7-Sep-01	0		CL200.7	CADMIUM	0.146	J	0.03	1	MG/KG
SS02228-A	TE903	7-Sep-01	0	0.25	CL200.7	CALCIUM	134	J	2	1020	MG/KG
SS02228-A	TE903	7-Sep-01	0	0.25	CL200.7	CHROMIUM, TOTAL	9.44		0.09	2	MG/KG
SS02228-A	TE903	7-Sep-01	0	0.25	CL200.7	COBALT	1.18	J	0.07	10	MG/KG
SS02228-A	TE903	7-Sep-01	0	0.25	CL200.7	COPPER	64.5		0.08	5	MG/KG
SS02228-A	TE903	7-Sep-01	0	0.25	CL200.7	IRON	8620	J	3	20	MG/KG
SS02228-A	TE903	7-Sep-01	0	0.25	CL200.7	LEAD	87.5	J	0.2	1	MG/KG
SS02228-A	TE903	7-Sep-01	0	0.25	CL200.7	MAGNESIUM	852	J	2	1020	MG/KG
SS02228-A	TE903	7-Sep-01	0	0.25	CL200.7	MANGANESE	52.4	J	0.1	3	MG/KG
SS02228-A	TE903	7-Sep-01	0	0.25	CL200.7	MOLYBDENUM	0.673	J	0.09	1	MG/KG
SS02228-A	TE903	7-Sep-01	0	0.25	CL200.7	NICKEL	3.75	J	0.11	8	MG/KG
SS02228-A	TE903	7-Sep-01	0	0.25	CL200.7	POTASSIUM	408	J	3	1020	MG/KG
SS02228-A	TE903	7-Sep-01	0	0.25	CL200.7	VANADIUM	16.2		0.13	10	MG/KG
SS02228-A	TE903	7-Sep-01	0	0.25	CL200.7	ZINC	15.2		0.08	4	MG/KG
SS02228-A	TE903	7-Sep-01	0	0.25	CL245.5	MERCURY	0.054		0.02	0.03	MG/KG
SS02228-A	TE903	7-Sep-01	0	0.25	CVOL	ACETONE	40.4		1	8	UG/KG

Table A.2

Target Array and Flanking Target Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPTH (FT.) TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS02228-A	TE903	7-Sep-01	0	0.25 CVOL	BENZENE	0.967	J	0.967	8	UG/KG
SS02228-A	TE903	7-Sep-01	0	0.25 CVOL	BROMOFORM	0.874	J	0.874	8	UG/KG
SS02228-A	TE903	7-Sep-01	0	0.25 CVOL	CHLOROFORM	1.38	J	1	8	UG/KG
SS02228-A	TE903	7-Sep-01	0	0.25 D2216	SOLIDS, PERCENT	96.2				PERCENT
SS02228-A	TE903	7-Sep-01	0	0.25 SW8270C	bis(2-ETHYLHEXYL) PHTHALATE	23.9	J	18	346	UG/KG
SS02228-A	TE903	7-Sep-01	0	0.25 SW8270C	DI-n-BUTYL PHTHALATE	154	J	44	346	UG/KG
SS02231-A	TE906	7-Sep-01	0	0.25 CL200.7	ALUMINUM	5640	J	2	40	MG/KG
SS02231-A	TE906	7-Sep-01	0	0.25 CL200.7	ARSENIC	5.48	J	1	2	MG/KG
SS02231-A	TE906	7-Sep-01	0	0.25 CL200.7	BARIUM	6.51	J	0.2	40	MG/KG
SS02231-A	TE906	7-Sep-01	0	0.25 CL200.7	BORON	1.75	J	0.2	3	MG/KG
SS02231-A	TE906	7-Sep-01	0	0.25 CL200.7	CADMIUM	0.18	J	0.03	1	MG/KG
SS02231-A	TE906	7-Sep-01	0	0.25 CL200.7	CALCIUM	115	J	2	1010	MG/KG
SS02231-A	TE906	7-Sep-01	0	0.25 CL200.7	CHROMIUM, TOTAL	7.63		0.09	2	MG/KG
SS02231-A	TE906	7-Sep-01	0	0.25 CL200.7	COBALT	0.971	J	0.07	10	MG/KG
SS02231-A	TE906	7-Sep-01	0	0.25 CL200.7	COPPER	50.3		0.08	5	MG/KG
SS02231-A	TE906	7-Sep-01	0	0.25 CL200.7	IRON	13000	J	3	20	MG/KG
SS02231-A	TE906	7-Sep-01	0	0.25 CL200.7	LEAD	116	J	0.2	1	MG/KG
SS02231-A	TE906	7-Sep-01	0	0.25 CL200.7	MAGNESIUM	726	J	2	1010	MG/KG
SS02231-A	TE906	7-Sep-01	0	0.25 CL200.7	MANGANESE	39.9	J	0.1	3	MG/KG
SS02231-A	TE906	7-Sep-01	0	0.25 CL200.7	NICKEL	3.19	J	0.11	8	MG/KG
SS02231-A	TE906	7-Sep-01	0	0.25 CL200.7	POTASSIUM	391	J	3	1010	MG/KG
SS02231-A	TE906	7-Sep-01	0	0.25 CL200.7	VANADIUM	13.7		0.13	10	MG/KG
SS02231-A	TE906	7-Sep-01	0	0.25 CL200.7	ZINC	13.3		0.08	4	MG/KG
SS02231-A	TE906	7-Sep-01	0	0.25 CVOL	ACETONE	37		1	9	UG/KG
SS02231-A	TE906	7-Sep-01	0	0.25 CVOL	BROMOFORM	1.06	J	1	9	UG/KG
SS02231-A	TE906	7-Sep-01	0	0.25 CVOL	CHLOROFORM	1.32	J	1	9	UG/KG
SS02231-A	TE906	7-Sep-01	0	0.25 D2216	SOLIDS, PERCENT	97.3				PERCENT
SS02231-A	TE906	7-Sep-01	0	0.25 SW8270C	bis(2-ETHYLHEXYL) PHTHALATE	20.2	J	18	343	UG/KG
SS02233-A	03920	01-May-03	0	0.16 SW8330	2-AMINO-4,6-DINITROTOLUENE	41	J	4.96	13	UG/KG
SS02233-A	03920	01-May-03	0	0.16 SW8330	4-AMINO-2,6-DINITROTOLUENE	16	J	4.58	13	UG/KG
SS02233-A	03922	01-May-03	0	0.16 SW8330	2-AMINO-4,6-DINITROTOLUENE	29	J	4.96	13	UG/KG
SS02233-A	03922	01-May-03	0	0.16 SW8330	4-AMINO-2,6-DINITROTOLUENE	57	J	4.58	13	UG/KG
SS02233-A	03923	01-May-03	0	0.16 SW8330	2-AMINO-4,6-DINITROTOLUENE	74		4.96	13	UG/KG
SS02233-A	03923	01-May-03	0	0.16 SW8330	4-AMINO-2,6-DINITROTOLUENE	43	J	4.58	13	UG/KG
SS02233-A	03924	01-May-03	0	0.16 SW8330	2-AMINO-4,6-DINITROTOLUENE	26		4.96	13	UG/KG
SS02233-A	03924	01-May-03	0	0.16 SW8330	4-AMINO-2,6-DINITROTOLUENE	15		4.58	13	UG/KG
SS02233-A	03926	01-May-03	0	0.16 SW8330	4-AMINO-2,6-DINITROTOLUENE	20		4.58	13	UG/KG
SS02233-A	03927	01-May-03	0	0.16 SW8330	2-AMINO-4,6-DINITROTOLUENE	86		4.96	13	UG/KG
SS02233-A	03927	01-May-03		0.16 SW8330	4-AMINO-2,6-DINITROTOLUENE	40		4.58		UG/KG
SS02233-A	19842	18-Oct-04		0.25 SW8330	NITROGLYCERIN	1100	J	143		UG/KG

Table A.2

Target Array and Flanking Target Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER1	MDL	RL	UNITS
SS02233-A	TE863	07-Sep-01	0	0.25	SW8330	2,4,6-TRINITROTOLUENE	1390		2	100	UG/KG
SS02233-A	TE863	07-Sep-01	0	0.25	SW8330	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	689		6	100	UG/KG
SS02235-A	TE912	27-Sep-01	0	1	CL200.7	ALUMINUM	1880		2	40	MG/KG
SS02235-A	TE912	27-Sep-01	0	1	CL200.7	ANTIMONY	0.971	J	0.971	12	MG/KG
SS02235-A	TE912	27-Sep-01	0	1	CL200.7	ARSENIC	1.24		1	2	MG/KG
SS02235-A	TE912	27-Sep-01	0	1	CL200.7	BARIUM	2.51		0.2	40	MG/KG
SS02235-A	TE912	27-Sep-01	0	1	CL200.7	BERYLLIUM	0.049		0.01	1	MG/KG
SS02235-A	TE912	27-Sep-01	0	1	CL200.7	CHROMIUM, TOTAL	25.3	J	0.09	2	MG/KG
SS02235-A	TE912	27-Sep-01	0	1	CL200.7	COBALT	0.285		0.07	10	MG/KG
SS02235-A	TE912	27-Sep-01	0	1	CL200.7	COPPER	578		0.08	5	MG/KG
SS02235-A	TE912	27-Sep-01	0	1	CL200.7	IRON	6420		3	20	MG/KG
SS02235-A	TE912	27-Sep-01	0	1	CL200.7	LEAD	205		0.2	1	MG/KG
SS02235-A	TE912	27-Sep-01	0	1	CL200.7	MAGNESIUM	165		2	989	MG/KG
SS02235-A	TE912	27-Sep-01	0	1	CL200.7	MANGANESE	44.5		0.1	3	MG/KG
SS02235-A	TE912	27-Sep-01	0	1	CL200.7	MOLYBDENUM	5.69		0.09	1	MG/KG
SS02235-A	TE912	27-Sep-01	0	1	CL200.7	NICKEL	2.6		0.11	8	MG/KG
SS02235-A	TE912	27-Sep-01	0	1	CL200.7	POTASSIUM	116		3	989	MG/KG
SS02235-A	TE912	27-Sep-01	0	1	CL200.7	SELENIUM	0.956	J	0.956	1	MG/KG
SS02235-A	TE912	27-Sep-01	0	1	CL200.7	SODIUM	2360		45	989	MG/KG
SS02235-A	TE912	27-Sep-01	0	1	CL200.7	VANADIUM	5.35		0.13	10	MG/KG
SS02235-A	TE912	27-Sep-01	0	1	CL200.7	ZINC	43.5		0.08	4	MG/KG
SS02235-A	TE912	27-Sep-01	0	1	CL245.5	MERCURY	0.05		0.02	0.03	MG/KG
SS02235-A	TE912	27-Sep-01	0	1	CVOL	ACETONE	13	J	1	9	UG/KG
SS02235-A	TE912	27-Sep-01	0	1	CVOL	BENZENE	3.41	J	1	9	UG/KG
SS02235-A	TE912	27-Sep-01	0	1	CVOL	CHLOROMETHANE	2.18	J	1	9	UG/KG
SS02235-A	TE912	27-Sep-01	0	1	CVOL	ETHYLBENZENE	3.47	J	1	9	UG/KG
SS02235-A	TE912	27-Sep-01	0	1	CVOL	METHYL ISOBUTYL KETONE (4-METHYL-2-PENTANONE)	1.16	J	1	9	UG/KG
SS02235-A	TE912	27-Sep-01	0	1	CVOL	STYRENE	1.54	J	1	9	UG/KG
SS02235-A	TE912	27-Sep-01	0	1	CVOL	TETRACHLOROETHYLENE(PCE)	1.72	J	1	9	UG/KG
SS02235-A	TE912	27-Sep-01	0	1	CVOL	TOLUENE	1.58	J	1	9	UG/KG
SS02235-A	TE912	27-Sep-01	0	1	D2216	SOLIDS, PERCENT	96.4				PERCENT
SS02235-A	TE912	27-Sep-01	0	1	SW8270C	BENZOIC ACID	265	J	107	691	UG/KG
SS02235-A	TE912	27-Sep-01	0	1	SW8270C	bis(2-ETHYLHEXYL) PHTHALATE	33.5	J	18	346	UG/KG
SS02235-A	TE912	27-Sep-01	0	1	SW8270C	DI-n-BUTYL PHTHALATE	43.9	J	43.9	346	UG/KG
SS02235-A	TE912	27-Sep-01	0	1	SW8270C	PHENOL	41.8	J	28	346	UG/KG
SS02305-A	03918	5-May-03	0	0.16	SW8330	2-AMINO-4,6-DINITROTOLUENE	46	J	4.96	13	UG/KG
SS02305-A	03918	5-May-03	0	0.16	SW8330	4-AMINO-2,6-DINITROTOLUENE	27	J	4.58	13	UG/KG
SS02305-A	04151	1-May-03	0	0.16	SW8330	4-AMINO-2,6-DINITROTOLUENE	22		4.58	13	UG/KG
SS02305-A	19837	18-Oct-04	0	0.25	SW8330	2,4,6-TRINITROTOLUENE	190	J	1.5	13	UG/KG
SS02305-A	TE956	1-Nov-01	0	0.75	SW8330	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	520		6	100	UG/KG

Table A.2

Target Array and Flanking Target Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPTH	(FT.) T	EST	ANALYTE	RESULT	QUALIFIER1	MDL	RL	UNITS
SUPPLEMENTAL TA	RGET AREA DATA			` '							
AM071601-03	AR721	23-Jul-01	0	0.25 CL20	00.7	ALUMINUM	1350		2.2	2.2	MG/KG
AM071601-03	AR721	23-Jul-01	0	0.25 CL20		ARSENIC	1.2		0.56	0.56	MG/KG
AM071601-03	AR721	23-Jul-01	0	0.25 CL20	00.7	BARIUM	2.2		0.56	0.56	MG/KG
AM071601-03	AR721	23-Jul-01	0	0.25 CL20	00.7	BERYLLIUM	0.06		0.02	0.02	MG/KG
AM071601-03	AR721	23-Jul-01	0	0.25 CL20	00.7	CADMIUM	0.31		0.06	0.06	MG/KG
AM071601-03	AR721	23-Jul-01	0	0.25 CL20	00.7	CHROMIUM, TOTAL	6.6	J	0.2	0.42	MG/KG
AM071601-03	AR721	23-Jul-01	0	0.25 CL20	00.7	COBALT	1.2		0.22	0.22	MG/KG
AM071601-03	AR721	23-Jul-01	0	0.25 CL20	00.7	COPPER	525	J	0.3	0.3	MG/KG
AM071601-03	AR721	23-Jul-01	0	0.25 CL20	00.7	IRON	12000		3.5	5.6	MG/KG
AM071601-03	AR721	23-Jul-01	0	0.25 CL20	00.7	LEAD	36		0.2	0.3	MG/KG
AM071601-03	AR721	23-Jul-01	0	0.25 CL20	00.7	MAGNESIUM	275		25.7	25.7	MG/KG
AM071601-03	AR721	23-Jul-01	0	0.25 CL20	00.7	MANGANESE	127	J	0.2	0.2	MG/KG
AM071601-03	AR721	23-Jul-01	0	0.25 CL20	00.7	NICKEL	6	J	0.42	0.42	MG/KG
AM071601-03	AR721	23-Jul-01	0	0.25 CL20	00.7	POTASSIUM	142		32.9	32.9	MG/KG
AM071601-03	AR721	23-Jul-01	0	0.25 CL20	00.7	SELENIUM	2.4		0.46	0.46	MG/KG
AM071601-03	AR721	23-Jul-01	0	0.25 CL20	00.7	VANADIUM	4		0.22	0.22	MG/KG
AM071601-03	AR721	23-Jul-01	0	0.25 CL20	00.7	ZINC	6.9		0.4	0.58	MG/KG
AM071601-03	AR721	23-Jul-01	0	0.25 CL24	45.5	MERCURY	0.12		0.0259	0.05	MG/KG
AM071601-03	AR721	23-Jul-01	0	0.25 CVO	L	ACETONE	11	J	4.04	5	UG/KG
AM071601-03	AR721	23-Jul-01	0	0.25 CVO	L	BROMOFORM	1	J	1	5	UG/KG
AM071601-03	AR721	23-Jul-01	0	0.25 CVO	L	METHYL ETHYL KETONE (2-BUTANONE)	2	J	2	5	UG/KG
AM071601-03	AR721	23-Jul-01	0	0.25 SW8	270	BENZO(a)PYRENE	16	J	16	340	UG/KG
AM071601-03	AR721	23-Jul-01	0	0.25 SW8	270	BENZO(b)FLUORANTHENE	16	J	16	340	UG/KG
AM071601-03	AR721	23-Jul-01	0	0.25 SW8	270	BENZO(k)FLUORANTHENE	23	J	23	340	UG/KG
AM071601-03	AR721	23-Jul-01	0	0.25 SW8	270	CHRYSENE	22	J	22	340	UG/KG
AM071601-03	AR721	23-Jul-01	0	0.25 SW8	270	FLUORANTHENE	51	J	51	340	UG/KG
AM071601-03	AR721	23-Jul-01	0	0.25 SW8	270	PHENANTHRENE	24	J	24	340	UG/KG
AM071601-03	AR721	23-Jul-01	0	0.25 SW8	270	PYRENE	37	J	37	340	UG/KG
AL060200-01_371	AH745	9-Jun-00	0	0.25 CL20	00.7	ALUMINUM	3160		2.5	3.1836	MG/KG
AL060200-01_371	AH745	9-Jun-00	0	0.25 CL20	00.7	BARIUM	4.8		1.18	2.0899	MG/KG
AL060200-01_371	AH745	9-Jun-00	0	0.25 CL20	00.7	BERYLLIUM	0.13		0.03	0.0586	MG/KG
AL060200-01_371	AH745	9-Jun-00	0	0.25 CL20	00.7	CHROMIUM, TOTAL	11.1		0.14	0.4297	MG/KG
AL060200-01_371	AH745	9-Jun-00	0	0.25 CL20	00.7	COBALT	0.66	J	0.26	0.5859	MG/KG
AL060200-01_371	AH745	9-Jun-00	0	0.25 CL20	00.7	COPPER	3490		0.34	0.4102	MG/KG
AL060200-01_371	AH745	9-Jun-00	0	0.25 CL20	00.7	IRON	8220		4.21	4.8633	MG/KG
AL060200-01_371	AH745	9-Jun-00	0	0.25 CL20	0.7	LEAD	82.6		0.32	0.4492	MG/KG
AL060200-01_371	AH745	9-Jun-00	0	0.25 CL20	00.7	MAGNESIUM	285		28.12	52.6958	MG/KG
AL060200-01_371	AH745	9-Jun-00	0	0.25 CL20		MANGANESE	72.7		0.08	0.1953	MG/KG
AL060200-01_371	AH745	9-Jun-00	0	0.25 CL20	00.7	MOLYBDENUM	18.5		0.293	0.293	MG/KG

Table A.2

Target Array and Flanking Target Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEP	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
AL060200-01 371	AH745	9-Jun-00		` ,	CL200.7	NICKEL	3.5	3071III III	0.3		MG/KG
AL060200-01_371	AH745	9-Jun-00	_		CL200.7	POTASSIUM	234		47.22	59.1607	
AL060200-01 371	AH745	9-Jun-00			CL200.7	SELENIUM	8.4		0.61	0.7813	
AL060200-01 371	AH745	9-Jun-00			CL200.7	SODIUM	180		49.79		MG/KG
AL060200-01_371	AH745	9-Jun-00			CL200.7	VANADIUM	7		0.36	0.5664	
AL060200-01_371	AH745	9-Jun-00	_		CL200.7	ZINC	26.1		0.29		MG/KG
AL060200-01_371	AH745	9-Jun-00			CSVOL	ACENAPHTHYLENE	94	J	24.55		UG/KG
AL060200-01_371	AH745	9-Jun-00			CSVOL	ANTHRACENE	270		25.19		UG/KG
AL060200-01 371	AH745	9-Jun-00	0		CSVOL	BENZO(a)ANTHRACENE	1300		26.22		UG/KG
AL060200-01 371	AH745	9-Jun-00	0		CSVOL	BENZO(a)PYRENE	1000		27.73		UG/KG
AL060200-01 371	AH745	9-Jun-00	0		CSVOL	BENZO(b)FLUORANTHENE	920		26.77	490	UG/KG
AL060200-01_371	AH745	9-Jun-00	0		CSVOL	BENZO(g,h,i)PERYLENE	550		33.06		UG/KG
AL060200-01_371	AH745	9-Jun-00	0		CSVOL	BENZO(k)FLUORANTHENE	1200		58.08		UG/KG
AL060200-01_371	AH745	9-Jun-00	0	0.25	CSVOL	CARBAZOLE	61	J	37.71	490	UG/KG
AL060200-01_371	AH745	9-Jun-00	0	0.25	CSVOL	CHRYSENE	1400		27.24	490	UG/KG
AL060200-01_371	AH745	9-Jun-00	0		CSVOL	DIBENZ(a,h)ANTHRACENE	210	J	27.82		UG/KG
AL060200-01_371	AH745	9-Jun-00	0	0.25	CSVOL	DIBENZOFURAN	48	J	25.74	490	UG/KG
AL060200-01_371	AH745	9-Jun-00	0	0.25	CSVOL	FLUORANTHENE	3100		27.34	490	UG/KG
AL060200-01_371	AH745	9-Jun-00	0	0.25	CSVOL	FLUORENE	130	J	25.88	490	UG/KG
AL060200-01_371	AH745	9-Jun-00	0	0.25	CSVOL	INDENO(1,2,3-c,d)PYRENE	590		30.03	490	UG/KG
AL060200-01_371	AH745	9-Jun-00	0	0.25	CSVOL	PHENANTHRENE	2000		25.3	490	UG/KG
AL060200-01_371	AH745	9-Jun-00	0	0.25	CSVOL	PYRENE	2400		31.54	490	UG/KG
AL060200-01_371	AH745	9-Jun-00	0	0.25	CVOL	ACETONE	44	J	4.34	7	UG/KG
AL060200-01_371	AH745	9-Jun-00	0	0.25	CVOL	METHYL ETHYL KETONE (2-BUTANONE)	3	J	1.8	7	UG/KG
AL060200-01_371	03532	23-Apr-03	0	0.16	C200.7	ALUMINUM	2880		6	9.1	MG/KG
AL060200-01_371	03532	23-Apr-03	0	0.16	C200.7	ARSENIC	2.5		0.73	0.73	MG/KG
AL060200-01_371	03532	23-Apr-03	0	0.16	C200.7	BARIUM	4.4	J	2.2	2.2	MG/KG
AL060200-01_371	03532	23-Apr-03	0	0.16	C200.7	BORON	3	J	1.5	1.5	MG/KG
AL060200-01_371	03532	23-Apr-03	0		C200.7	CALCIUM	140		55.9		MG/KG
AL060200-01_371	03532	23-Apr-03	0		C200.7	CHROMIUM, TOTAL	4.1		0.18		MG/KG
AL060200-01_371	03532	23-Apr-03	0		C200.7	COBALT	1.5		0.69		MG/KG
AL060200-01_371	03532	23-Apr-03	0	0.16	C200.7	COPPER	28.2		0.27	0.27	MG/KG
AL060200-01_371	03532	23-Apr-03	0	0.16	C200.7	IRON	6390		5.6	5.6	MG/KG
AL060200-01_371	03532	23-Apr-03	0		C200.7	LEAD	43.9		0.3		MG/KG
AL060200-01_371	03532	23-Apr-03			C200.7	MAGNESIUM	378		52.6		MG/KG
AL060200-01_371	03532	23-Apr-03		0.16	C200.7	MANGANESE	42.8		0.18	0.18	MG/KG
AL060200-01_371	03532	23-Apr-03	0	0.16	C200.7	NICKEL	2.2		0.54		MG/KG
AL060200-01_371	03532	23-Apr-03			C200.7	POTASSIUM	477		59	59	MG/KG
AL060200-01_371	03532	23-Apr-03	0	0.16	C200.7	SODIUM	147		63.8	63.8	MG/KG
AL060200-01_371	03532	23-Apr-03	0	0.16	C200.7	VANADIUM	10.1		0.71	0.71	MG/KG

Table A.2

Target Array and Flanking Target Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEDT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
AL060200-01_371	03532	23-Apr-03	0	, ,	C200.7	ZINC	6.7	QUALITIEN	0.25		MG/KG
AL060200-01_371	03532	23-Apr-03	0		SW8270C	ANTHRACENE	26	.I	25.9		UG/KG
AL060200-01 371	03532	23-Apr-03	0		SW8270C	BENZO(a)ANTHRACENE	150		30.8		UG/KG
AL060200-01 371	03532	23-Apr-03	0		SW8270C	BENZO(a)PYRENE	92		34.4		UG/KG
AL060200-01_371	03532	23-Apr-03	0		SW8270C	BENZO(b)FLUORANTHENE	180		55.2		UG/KG
AL060200-01_371	03532	23-Apr-03	0		SW8270C	BENZO(g,h,i)PERYLENE	56		47.1		UG/KG
AL060200-01_371	03532	23-Apr-03	0		SW8270C	BENZO(k)FLUORANTHENE	180		38.2		UG/KG
AL060200-01 371	03532	23-Apr-03	0		SW8270C	CHRYSENE	200		26		UG/KG
AL060200-01 371	03532	23-Apr-03	0		SW8270C	FLUORANTHENE	460	•	72.3		UG/KG
AL060200-01 371	03532	23-Apr-03	0		SW8270C	FLUORENE	18	.I	17.9		UG/KG
AL060200-01_371	03532	23-Apr-03	0		SW8270C	INDENO(1,2,3-c,d)PYRENE	65		64.5		UG/KG
AL060200-01_371	03532	23-Apr-03	0		SW8270C	PHENANTHRENE	310		26.3		UG/KG
AL060200-01_371	03532	23-Apr-03	0		SW8270C	PYRENE	350		75.2		UG/KG
AL060200-01_371	03533	23-Apr-03	0		C200.7	ALUMINUM	2990	0	6		MG/KG
AL060200-01_371	03533	23-Apr-03	0		C200.7	ARSENIC	1.6		0.72		MG/KG
AL060200-01_371	03533	23-Apr-03	0		C200.7	BARIUM	3.2	.I	2.2		MG/KG
AL060200-01_371	03533	23-Apr-03	0		C200.7	CALCIUM	92.2		55.3		MG/KG
AL060200-01_371	03533	23-Apr-03	0		C200.7	CHROMIUM, TOTAL	3.2	5	0.18		MG/KG
AL060200-01_371	03533	23-Apr-03	0		C200.7	COBALT	0.75	1	0.68		MG/KG
AL060200-01_371 AL060200-01_371	03533	23-Apr-03	0		C200.7	COPPER	11.2	3	0.00		MG/KG
AL060200-01_371 AL060200-01_371	03533	23-Apr-03	0		C200.7	IRON	3860		5.6		MG/KG
AL060200-01_371 AL060200-01_371	03533	23-Apr-03	0		C200.7	LEAD	21.7		0.3		MG/KG
AL060200-01_371 AL060200-01_371	03533	23-Apr-03	0		C200.7	MAGNESIUM	197		52.1		MG/KG
AL060200-01_371 AL060200-01_371	03533	23-Apr-03	0		C200.7	MANGANESE	18.5		0.18		MG/KG
AL060200-01_371 AL060200-01_371	03533	23-Apr-03	0		C200.7	NICKEL	1.4		0.10		MG/KG
AL060200-01_371 AL060200-01_371	03533	23-Apr-03	0		C200.7	POTASSIUM	204	1	58.4		MG/KG
AL060200-01_371 AL060200-01_371	03533	23-Apr-03	0		C200.7	SODIUM	120		63.1		MG/KG
AL060200-01_371 AL060200-01_371	03533	23-Apr-03	0		C200.7	VANADIUM	7.7	J	0.7		MG/KG
AL060200-01_371 AL060200-01_371	03533	23-Apr-03	0		C200.7	ZINC	4.7		0.7		MG/KG
AL060200-01_371 AL060200-01_371	03533	23-Apr-03 23-Apr-03	0		SW8270C	BENZO(a)ANTHRACENE	19	1	18.9		UG/KG
			-								
AL060200-01_371	03533	23-Apr-03	0		SW8270C	BENZO(a)PYRENE	19		18.9		UG/KG
AL060200-01_371	03533	23-Apr-03			SW8270C	CHRYSENE FLUORANTHENE	30		26		UG/KG
AL060200-01_371	03533	23-Apr-03	0		SW8270C		53		52.9		UG/KG
AL060200-01_371	03533	23-Apr-03	0		SW8270C	PHENANTHRENE	31		26.3		UG/KG
AL060200-01_371	03533	23-Apr-03	0		SW8270C	PYRENE	38	J	37.9		UG/KG
AL060200-01_371	03534	23-Apr-03	0		C200.7	ALUMINUM	3260		6		MG/KG
AL060200-01_371	03534	23-Apr-03	0		C200.7	ARSENIC	1.5		0.68		MG/KG
AL060200-01_371	03534	23-Apr-03	0		C200.7	BARIUM	2.8		2.1		MG/KG
AL060200-01_371	03534	23-Apr-03	0		C200.7	CALCIUM	82.6	J	52.6		MG/KG
AL060200-01_371	03534	23-Apr-03	0	0.16	C200.7	CHROMIUM, TOTAL	4.1		0.17	0.17	MG/KG

Table A.2

Target Array and Flanking Target Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPTH (FT.) TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
AL060200-01_371	03534	23-Apr-03		6 C200.7	COBALT	1.9		0.65		MG/KG
AL060200-01 371	03534	23-Apr-03		6 C200.7	COPPER	18.7		0.26	0.26	MG/KG
AL060200-01_371	03534	23-Apr-03		6 C200.7	IRON	5240		5.3	5.3	MG/KG
AL060200-01 371	03534	23-Apr-03	0 0.1	6 C200.7	LEAD	41.9		0.3	0.49	MG/KG
AL060200-01_371	03534	23-Apr-03	0 0.1	6 C200.7	MAGNESIUM	568		49.5	49.5	MG/KG
AL060200-01_371	03534	23-Apr-03	0 0.1	6 C200.7	MANGANESE	54.2		0.17	0.17	MG/KG
AL060200-01_371	03534	23-Apr-03		6 C200.7	NICKEL	3.4		0.51	0.51	MG/KG
AL060200-01_371	03534	23-Apr-03	0 0.1	6 C200.7	POTASSIUM	222	J	55.5	55.5	MG/KG
AL060200-01_371	03534	23-Apr-03	0 0.1	6 C200.7	SODIUM	116	J	60	60	MG/KG
AL060200-01_371	03534	23-Apr-03		6 C200.7	VANADIUM	7.1		0.66	0.66	MG/KG
AL060200-01_371	03534	23-Apr-03	0 0.1	6 C200.7	ZINC	6.5		0.24	0.24	MG/KG
AL060200-01_371	03534	23-Apr-03		6 SW7471	MERCURY	0.066		0.0258		MG/KG
AL060200-01_371	03534	23-Apr-03		6 SW8270C	ACENAPHTHYLENE	30		20.4		UG/KG
AL060200-01_371	03534	23-Apr-03	0 0.1	6 SW8270C	ANTHRACENE	74	J	27.5	340	UG/KG
AL060200-01_371	03534	23-Apr-03	0 0.1	6 SW8270C	BENZO(a)ANTHRACENE	350		30.8	340	UG/KG
AL060200-01_371	03534	23-Apr-03		6 SW8270C	BENZO(a)PYRENE	220	J	34.4	340	UG/KG
AL060200-01_371	03534	23-Apr-03	0 0.1	6 SW8270C	BENZO(b)FLUORANTHENE	320	J	55.2	340	UG/KG
AL060200-01_371	03534	23-Apr-03	0 0.1	6 SW8270C	BENZO(g,h,i)PERYLENE	140	J	47.1	340	UG/KG
AL060200-01_371	03534	23-Apr-03	0 0.1	6 SW8270C	BENZO(k)FLUORANTHENE	340	J	38.2	340	UG/KG
AL060200-01_371	03534	23-Apr-03	0 0.1	6 SW8270C	CHRYSENE	360		26	340	UG/KG
AL060200-01_371	03534	23-Apr-03	0 0.1	6 SW8270C	DIBENZ(a,h)ANTHRACENE	51	J	50.9	340	UG/KG
AL060200-01_371	03534	23-Apr-03	0 0.1	6 SW8270C	FLUORANTHENE	810		72.3	340	UG/KG
AL060200-01_371	03534	23-Apr-03	0 0.1	6 SW8270C	FLUORENE	30	J	29.9	340	UG/KG
AL060200-01_371	03534	23-Apr-03	0 0.1	6 SW8270C	INDENO(1,2,3-c,d)PYRENE	150	J	64.5	340	UG/KG
AL060200-01_371	03534	23-Apr-03	0 0.1	6 SW8270C	PHENANTHRENE	500		26.3	340	UG/KG
AL060200-01_371	03534	23-Apr-03	0 0.1	6 SW8270C	PYRENE	580		75.2	340	UG/KG
AL060200-01_371	03535	23-Apr-03	0 0.1	6 C200.7	ALUMINUM	3460		6	8.8	MG/KG
AL060200-01_371	03535	23-Apr-03	0 0.1	6 C200.7	ARSENIC	2		0.7	0.7	MG/KG
AL060200-01_371	03535	23-Apr-03	0 0.1	6 C200.7	BARIUM	4.9		2.1	2.1	MG/KG
AL060200-01_371	03535	23-Apr-03	0 0.1	6 C200.7	BORON	1.7	J	1.5	1.5	MG/KG
AL060200-01_371	03535	23-Apr-03		6 C200.7	CALCIUM	217		53.8		MG/KG
AL060200-01_371	03535	23-Apr-03		6 C200.7	CHROMIUM, TOTAL	4.8		0.17	0.17	MG/KG
AL060200-01_371	03535	23-Apr-03	0 0.1	6 C200.7	COBALT	1.2	J	0.66	0.66	MG/KG
AL060200-01_371	03535	23-Apr-03	0 0.1	6 C200.7	COPPER	15.9		0.26	0.26	MG/KG
AL060200-01_371	03535	23-Apr-03	0 0.1	6 C200.7	IRON	5360		5.4	5.4	MG/KG
AL060200-01_371	03535	23-Apr-03	0 0.1	6 C200.7	LEAD	32.8		0.3	0.51	MG/KG
AL060200-01_371	03535	23-Apr-03	0 0.1	6 C200.7	MAGNESIUM	540		50.6	50.6	MG/KG
AL060200-01_371	03535	23-Apr-03	0 0.1	6 C200.7	MANGANESE	26.9		0.17	0.17	MG/KG
AL060200-01_371	03535	23-Apr-03	0 0.1	6 C200.7	NICKEL	2.3		0.52	0.52	MG/KG
AL060200-01_371	03535	23-Apr-03	0 0.1	6 C200.7	POTASSIUM	276	J	56.8	56.8	MG/KG

Table A.2

Target Array and Flanking Target Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPTH (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
AL060200-01_371	03535	23-Apr-03	0 0.16	C200.7	SODIUM	218		61.4	61.4	MG/KG
AL060200-01_371	03535	23-Apr-03	0 0.16	C200.7	VANADIUM	9.7		0.68	0.68	MG/KG
AL060200-01_371	03535	23-Apr-03	0 0.16	C200.7	ZINC	5.7		0.24	0.24	MG/KG
AL060200-01_371	03535	23-Apr-03	0 0.16	SW8270C	2-METHYLNAPHTHALENE	1700		28.9	350	UG/KG
AL060200-01_371	03535	23-Apr-03	0 0.16	SW8270C	ACENAPHTHENE	760		31.7	350	UG/KG
AL060200-01_371	03535	23-Apr-03	0 0.16	SW8270C	ACENAPHTHYLENE	2300		20.4	350	UG/KG
AL060200-01_371	03535	23-Apr-03	0 0.16	SW8270C	ANTHRACENE	4000	J	27.5	6900	UG/KG
AL060200-01_371	03535	23-Apr-03	0 0.16	SW8270C	BENZO(a)ANTHRACENE	14000		30.8	6900	UG/KG
AL060200-01_371	03535	23-Apr-03	0 0.16	SW8270C	BENZO(a)PYRENE	10000		34.4	6900	UG/KG
AL060200-01_371	03535	23-Apr-03	0 0.16	SW8270C	BENZO(b)FLUORANTHENE	9600		55.2	6900	UG/KG
AL060200-01_371	03535	23-Apr-03	0 0.16	SW8270C	BENZO(g,h,i)PERYLENE	5700	J	47.1	6900	UG/KG
AL060200-01_371	03535	23-Apr-03	0 0.16	SW8270C	BENZO(k)FLUORANTHENE	14000		38.2	6900	UG/KG
AL060200-01_371	03535	23-Apr-03	0 0.16	SW8270C	CARBAZOLE	910		78.9	350	UG/KG
AL060200-01_371	03535	23-Apr-03	0 0.16	SW8270C	CHRYSENE	15000		26	6900	UG/KG
AL060200-01_371	03535	23-Apr-03	0 0.16	SW8270C	DIBENZ(a,h)ANTHRACENE	1800	J	66	350	UG/KG
AL060200-01_371	03535	23-Apr-03	0 0.16	SW8270C	DIBENZOFURAN	2100		36	350	UG/KG
AL060200-01_371	03535	23-Apr-03	0 0.16	SW8270C	FLUORANTHENE	41000		72.3	6900	UG/KG
AL060200-01_371	03535	23-Apr-03	0 0.16	SW8270C	FLUORENE	4100	J	40.3	6900	UG/KG
AL060200-01_371	03535	23-Apr-03	0 0.16	SW8270C	INDENO(1,2,3-c,d)PYRENE	6200	J	64.5	6900	UG/KG
AL060200-01_371	03535	23-Apr-03	0 0.16	SW8270C	NAPHTHALENE	1100		29.8	350	UG/KG
AL060200-01_371	03535	23-Apr-03	0 0.16	SW8270C	PHENANTHRENE	32000		26.3	6900	UG/KG
AL060200-01_371	03535	23-Apr-03	0 0.16	SW8270C	PYRENE	30000)	75.2	6900	UG/KG
AL060200-01_371	03536	23-Apr-03	0 0.16	C200.7	ALUMINUM	2850		6	8.8	MG/KG
AL060200-01_371	03536	23-Apr-03	0 0.16	C200.7	ARSENIC	1.4	J	0.7	0.7	MG/KG
AL060200-01_371	03536	23-Apr-03	0 0.16	C200.7	BARIUM	3.7	J	2.2	2.2	MG/KG
AL060200-01_371	03536	23-Apr-03	0 0.16	C200.7	BORON	2	J	1.5	1.5	MG/KG
AL060200-01_371	03536	23-Apr-03	0 0.16	C200.7	CALCIUM	145	6	54.2	54.2	MG/KG
AL060200-01_371	03536	23-Apr-03	0 0.16	C200.7	CHROMIUM, TOTAL	3.8		0.18	0.18	MG/KG
AL060200-01_371	03536	23-Apr-03		C200.7	COBALT	1.1	J	0.67	0.67	MG/KG
AL060200-01_371	03536	23-Apr-03	0 0.16	C200.7	COPPER	17.6	6	0.26	0.26	MG/KG
AL060200-01_371	03536	23-Apr-03	0 0.16	C200.7	IRON	4490)	5.5	5.5	MG/KG
AL060200-01_371	03536	23-Apr-03	0 0.16	C200.7	LEAD	30		0.3	0.51	MG/KG
AL060200-01_371	03536	23-Apr-03	0 0.16	C200.7	MAGNESIUM	363		51	51	MG/KG
AL060200-01_371	03536	23-Apr-03	0 0.16	C200.7	MANGANESE	31.4		0.18	0.18	MG/KG
AL060200-01_371	03536	23-Apr-03	0 0.16	C200.7	NICKEL	2.1		0.53	0.53	MG/KG
AL060200-01_371	03536	23-Apr-03	0 0.16	C200.7	POTASSIUM	320	J	57.2	57.2	MG/KG
AL060200-01_371	03536	23-Apr-03	0 0.16	C200.7	SODIUM	138		61.8	61.8	MG/KG
AL060200-01_371	03536	23-Apr-03	0 0.16	C200.7	VANADIUM	7.8		0.68	0.68	MG/KG
AL060200-01_371	03536	23-Apr-03	0 0.16	C200.7	ZINC	6.5	i	0.25	0.25	MG/KG
AL060200-01_371	03536	23-Apr-03	0 0.16	SW8270C	ANTHRACENE	42	. J	27.5	350	UG/KG

Table A.2

Target Array and Flanking Target Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPTI	1 (FT.)	TEST	ANALYTE	RESULT	QUALIFIER1	MDL	RL	UNITS
AL060200-01_371	03536	23-Apr-03	0	0.16	SW8270C	BENZO(a)ANTHRACENE	190	J	30.8	350	UG/KG
AL060200-01_371	03536	23-Apr-03	0	0.16	SW8270C	BENZO(a)PYRENE	180	J	34.4	350	UG/KG
AL060200-01_371	03536	23-Apr-03	0	0.16	SW8270C	BENZO(b)FLUORANTHENE	250	J	55.2	350	UG/KG
AL060200-01_371	03536	23-Apr-03	0	0.16	SW8270C	BENZO(g,h,i)PERYLENE	86	J	47.1	350	UG/KG
AL060200-01_371	03536	23-Apr-03	0	0.16	SW8270C	BENZO(k)FLUORANTHENE	270	J	38.2	350	UG/KG
AL060200-01_371	03536	23-Apr-03	0	0.16	SW8270C	CHRYSENE	280	J	26	350	UG/KG
AL060200-01_371	03536	23-Apr-03	0	0.16	SW8270C	DIBENZ(a,h)ANTHRACENE	52	J	51.9	350	UG/KG
AL060200-01_371	03536	23-Apr-03	0	0.16	SW8270C	FLUORANTHENE	610		72.3	350	UG/KG
AL060200-01_371	03536	23-Apr-03	0	0.16	SW8270C	FLUORENE	21	J	20.9	350	UG/KG
AL060200-01_371	03536	23-Apr-03	0	0.16	SW8270C	INDENO(1,2,3-c,d)PYRENE	96	J	64.5	350	UG/KG
AL060200-01_371	03536	23-Apr-03	0	0.16	SW8270C	PHENANTHRENE	380		26.3	350	UG/KG
AL060200-01_371	03536	23-Apr-03	0	0.16	SW8270C	PYRENE	430		75.2	350	UG/KG
AL060200-01_371	03537	23-Apr-03	0	0.16	C200.7	ALUMINUM	6500		6	9.3	MG/KG
AL060200-01_371	03537	23-Apr-03	0	0.16	C200.7	ARSENIC	2.6		0.74	0.74	MG/KG
AL060200-01_371	03537	23-Apr-03	0	0.16	C200.7	BARIUM	5.2		2.3	2.3	MG/KG
AL060200-01_371	03537	23-Apr-03	0	0.16	C200.7	BORON	1.8	J	1.5	1.5	MG/KG
AL060200-01_371	03537	23-Apr-03	0	0.16	C200.7	CALCIUM	108	J	56.8	56.8	MG/KG
AL060200-01_371	03537	23-Apr-03	0	0.16	C200.7	CHROMIUM, TOTAL	5.6		0.18	0.18	MG/KG
AL060200-01_371	03537	23-Apr-03	0	0.16	C200.7	COBALT	1.1	J	0.7	0.7	MG/KG
AL060200-01_371	03537	23-Apr-03	0	0.16	C200.7	COPPER	18.1		0.28	0.28	MG/KG
AL060200-01_371	03537	23-Apr-03	0	0.16	C200.7	IRON	7290		5.7	5.7	MG/KG
AL060200-01_371	03537	23-Apr-03	0	0.16	C200.7	LEAD	47.2		0.3	0.53	MG/KG
AL060200-01_371	03537	23-Apr-03	0	0.16	C200.7	MAGNESIUM	261		53.5	53.5	MG/KG
AL060200-01_371	03537	23-Apr-03	0	0.16	C200.7	MANGANESE	23.3		0.18	0.18	MG/KG
AL060200-01_371	03537	23-Apr-03	0	0.16	C200.7	NICKEL	2		0.55	0.55	MG/KG
AL060200-01_371	03537	23-Apr-03	0	0.16	C200.7	POTASSIUM	239	J	60	60	MG/KG
AL060200-01_371	03537	23-Apr-03	0	0.16	C200.7	SODIUM	169		64.9	64.9	MG/KG
AL060200-01_371	03537	23-Apr-03	0	0.16	C200.7	VANADIUM	15.5		0.72	0.72	MG/KG
AL060200-01_371	03537	23-Apr-03	0	0.16	C200.7	ZINC	7.9		0.26	0.26	MG/KG
AL060200-01_371	03537	23-Apr-03	0	0.16	SW8270C	ACENAPHTHYLENE	29	J	20.4	370	UG/KG
AL060200-01_371	03537	23-Apr-03	0	0.16	SW8270C	ANTHRACENE	30	J	27.5	370	UG/KG
AL060200-01_371	03537	23-Apr-03	0	0.16	SW8270C	BENZO(a)ANTHRACENE	290	J	30.8	370	UG/KG
AL060200-01_371	03537	23-Apr-03	0	0.16	SW8270C	BENZO(a)PYRENE	240	J	34.4	370	UG/KG
AL060200-01_371	03537	23-Apr-03	0	0.16	SW8270C	BENZO(b)FLUORANTHENE	350	J	55.2	370	UG/KG
AL060200-01_371	03537	23-Apr-03	0	0.16	SW8270C	BENZO(g,h,i)PERYLENE	100	J	47.1	370	UG/KG
AL060200-01_371	03537	23-Apr-03	0	0.16	SW8270C	BENZO(k)FLUORANTHENE	420	J	38.2	370	UG/KG
AL060200-01_371	03537	23-Apr-03	0	0.16	SW8270C	bis(2-ETHYLHEXYL) PHTHALATE	28	J	27.9	370	UG/KG
AL060200-01_371	03537	23-Apr-03	0	0.16	SW8270C	CHRYSENE	390		26	370	UG/KG
AL060200-01_371	03537	23-Apr-03	0	0.16	SW8270C	DIBENZ(a,h)ANTHRACENE	39	J	38.9	370	UG/KG
AL060200-01_371	03537	23-Apr-03	0	0.16	SW8270C	DI-n-BUTYL PHTHALATE	27	J	25.3	370	UG/KG

Table A.2

Target Array and Flanking Target Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
AL060200-01_371	03537	23-Apr-03	0	0.16	SW8270C	FLUORANTHENE	670		72.3	370	UG/KG
AL060200-01_371	03537	23-Apr-03	0	0.16	SW8270C	INDENO(1,2,3-c,d)PYRENE	130	J	64.5	370	UG/KG
AL060200-01_371	03537	23-Apr-03	0	0.16	SW8270C	PHENANTHRENE	220	J	26.3	370	UG/KG
AL060200-01_371	03537	23-Apr-03	0	0.16	SW8270C	PYRENE	490		75.2	370	UG/KG
AL060200-01_371	03538	23-Apr-03	0	0.16	C200.7	ALUMINUM	4220		6	9	MG/KG
AL060200-01_371	03538	23-Apr-03	0	0.16	C200.7	ARSENIC	2.6		0.71	0.71	MG/KG
AL060200-01_371	03538	23-Apr-03	0	0.16	C200.7	BARIUM	4.9		2.2	2.2	MG/KG
AL060200-01_371	03538	23-Apr-03	0	0.16	C200.7	BORON	2.8	J	1.5	1.5	MG/KG
AL060200-01_371	03538	23-Apr-03	0	0.16	C200.7	CALCIUM	174		55	55	MG/KG
AL060200-01_371	03538	23-Apr-03	0	0.16	C200.7	CHROMIUM, TOTAL	6.6		0.18	0.18	MG/KG
AL060200-01_371	03538	23-Apr-03	0	0.16	C200.7	COBALT	1.7		0.68	0.68	MG/KG
AL060200-01_371	03538	23-Apr-03	0	0.16	C200.7	COPPER	25		0.27	0.27	MG/KG
AL060200-01_371	03538	23-Apr-03	0	0.16	C200.7	IRON	10800		5.5	5.5	MG/KG
AL060200-01_371	03538	23-Apr-03	0	0.16	C200.7	LEAD	48.5		0.3	0.52	MG/KG
AL060200-01_371	03538	23-Apr-03	0	0.16	C200.7	MAGNESIUM	404		51.7	51.7	MG/KG
AL060200-01_371	03538	23-Apr-03	0	0.16	C200.7	MANGANESE	80.1		0.18	0.18	MG/KG
AL060200-01_371	03538	23-Apr-03	0	0.16	C200.7	NICKEL	2.9		0.53	0.53	MG/KG
AL060200-01_371	03538	23-Apr-03	0	0.16	C200.7	POTASSIUM	363	J	58	58	MG/KG
AL060200-01_371	03538	23-Apr-03	0	0.16	C200.7	SODIUM	149		62.7	62.7	MG/KG
AL060200-01_371	03538	23-Apr-03	0	0.16	C200.7	VANADIUM	10.4		0.7	0.7	MG/KG
AL060200-01_371	03538	23-Apr-03	0	0.16	C200.7	ZINC	9		0.25	0.25	MG/KG
AL060200-01_371	03538	23-Apr-03	0	0.16	SW8270C	ANTHRACENE	19	J	18.9	350	UG/KG
AL060200-01_371	03538	23-Apr-03	0	0.16	SW8270C	BENZO(a)ANTHRACENE	81	J	30.8	350	UG/KG
AL060200-01_371	03538	23-Apr-03	0	0.16	SW8270C	BENZO(a)PYRENE	71	J	34.4	350	UG/KG
AL060200-01_371	03538	23-Apr-03	0	0.16	SW8270C	BENZO(b)FLUORANTHENE	97	J	55.2	350	UG/KG
AL060200-01_371	03538	23-Apr-03	0	0.16	SW8270C	BENZO(k)FLUORANTHENE	110	J	38.2	350	UG/KG
AL060200-01_371	03538	23-Apr-03	0	0.16	SW8270C	CHRYSENE	110	J	26	350	UG/KG
AL060200-01_371	03538	23-Apr-03	0	0.16	SW8270C	FLUORANTHENE	250	J	72.3	350	UG/KG
AL060200-01_371	03538	23-Apr-03	0	0.16	SW8270C	INDENO(1,2,3-c,d)PYRENE	41	J	40.9	350	UG/KG
AL060200-01_371	03538	23-Apr-03	0	0.16	SW8270C	PHENANTHRENE	160	J	26.3	350	UG/KG
AL060200-01_371	03538	23-Apr-03	0	0.16	SW8270C	PYRENE	180	J	75.2	350	UG/KG
AL060200-01_371	03539	23-Apr-03			C200.7	ALUMINUM	2510		6		MG/KG
AL060200-01_371	03539	23-Apr-03	0	0.16	C200.7	ANTIMONY	2.4	J	1.2	1.2	MG/KG
AL060200-01_371	03539	23-Apr-03	0		C200.7	ARSENIC	2.7		0.66		MG/KG
AL060200-01_371	03539	23-Apr-03	0	0.16	C200.7	BARIUM	3.6	J	2	2	MG/KG
AL060200-01_371	03539	23-Apr-03	0	0.16	C200.7	BORON	1.6	J	1.4	1.4	MG/KG
AL060200-01_371	03539	23-Apr-03	0	0.16	C200.7	CALCIUM	109		51	51	MG/KG
AL060200-01_371	03539	23-Apr-03	0		C200.7	CHROMIUM, TOTAL	4.5		0.17	0.17	MG/KG
AL060200-01_371	03539	23-Apr-03	0	0.16	C200.7	COBALT	1	J	0.63	0.63	MG/KG
AL060200-01_371	03539	23-Apr-03	0	0.16	C200.7	COPPER	65.2		0.25	0.25	MG/KG

Table A.2

Target Array and Flanking Target Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPTH (T.) TEST	ANALYTE	RESULT	QUALIFIER1	MDL	RL	UNITS
AL060200-01 371	03539	23-Apr-03		0.16 C200.7	IRON	6740		5.1		MG/KG
AL060200-01 371	03539	23-Apr-03		0.16 C200.7	LEAD	136		0.3		MG/KG
AL060200-01 371	03539	23-Apr-03		0.16 C200.7	MAGNESIUM	286		48		MG/KG
AL060200-01 371	03539	23-Apr-03		0.16 C200.7	MANGANESE	32.8		0.17		MG/KG
AL060200-01_371	03539	23-Apr-03		0.16 C200.7	NICKEL	2.5		0.5		MG/KG
AL060200-01_371	03539	23-Apr-03).16 C200.7	POTASSIUM	252	J	53.9		MG/KG
AL060200-01_371	03539	23-Apr-03).16 C200.7	SODIUM	118		58.2	58.2	MG/KG
AL060200-01_371	03539	23-Apr-03	0).16 C200.7	VANADIUM	11.1		0.65	0.65	MG/KG
AL060200-01_371	03539	23-Apr-03).16 C200.7	ZINC	6.8		0.23	0.23	MG/KG
AL060200-01_371	03539	23-Apr-03		0.16 SW7471	MERCURY	0.049	J	0.0258	0.049	MG/KG
AL060200-01_371	03539	23-Apr-03	0	0.16 SW8270C	ANTHRACENE	120	J	27.5	350	UG/KG
AL060200-01_371	03539	23-Apr-03		0.16 SW8270C	BENZO(a)ANTHRACENE	590		30.8		UG/KG
AL060200-01_371	03539	23-Apr-03		0.16 SW8270C	BENZO(a)PYRENE	440		34.4		UG/KG
AL060200-01_371	03539	23-Apr-03	0	0.16 SW8270C	BENZO(b)FLUORANTHENE	570		55.2	350	UG/KG
AL060200-01_371	03539	23-Apr-03	0	0.16 SW8270C	BENZO(g,h,i)PERYLENE	200	J	47.1	350	UG/KG
AL060200-01_371	03539	23-Apr-03	0	0.16 SW8270C	BENZO(k)FLUORANTHENE	720	J	38.2	350	UG/KG
AL060200-01_371	03539	23-Apr-03	0	0.16 SW8270C	bis(2-ETHYLHEXYL) PHTHALATE	18	J	17.9	350	UG/KG
AL060200-01_371	03539	23-Apr-03	0	0.16 SW8270C	CARBAZOLE	20	J	19.9	350	UG/KG
AL060200-01_371	03539	23-Apr-03	0	0.16 SW8270C	CHRYSENE	650		26	350	UG/KG
AL060200-01_371	03539	23-Apr-03	0	0.16 SW8270C	DIBENZ(a,h)ANTHRACENE	140	J	66	350	UG/KG
AL060200-01_371	03539	23-Apr-03	0	0.16 SW8270C	FLUORANTHENE	1400		72.3	350	UG/KG
AL060200-01_371	03539	23-Apr-03	0	0.16 SW8270C	FLUORENE	52	J	40.3	350	UG/KG
AL060200-01_371	03539	23-Apr-03	0	0.16 SW8270C	INDENO(1,2,3-c,d)PYRENE	230	J	64.5	350	UG/KG
AL060200-01_371	03539	23-Apr-03		0.16 SW8270C	PHENANTHRENE	790		26.3	350	UG/KG
AL060200-01_371	03539	23-Apr-03	0	0.16 SW8270C	PYRENE	1000		75.2		UG/KG
AL060200-01_372	AH747	9-Jun-00		0.25 CL200.7	ALUMINUM	1940		2.5	3.4256	MG/KG
AL060200-01_372	AH747	9-Jun-00	0	0.25 CL200.7	ARSENIC	0.96	J	0.5254	0.5254	MG/KG
AL060200-01_372	AH747	9-Jun-00		0.25 CL200.7	BARIUM	5.4		1.18		MG/KG
AL060200-01_372	AH747	9-Jun-00		0.25 CL200.7	BERYLLIUM	0.12	J	0.03		MG/KG
AL060200-01_372	AH747	9-Jun-00		0.25 CL200.7	CHROMIUM, TOTAL	2.1		0.14		MG/KG
AL060200-01_372	AH747	9-Jun-00).25 CL200.7	COPPER	183		0.34		MG/KG
AL060200-01_372	AH747	9-Jun-00).25 CL200.7	IRON	3130		4.21		MG/KG
AL060200-01_372	AH747	9-Jun-00		0.25 CL200.7	LEAD	88.8		0.32		MG/KG
AL060200-01_372	AH747	9-Jun-00		0.25 CL200.7	MAGNESIUM	229		28.12	56.7009	
AL060200-01_372	AH747	9-Jun-00		0.25 CL200.7	MANGANESE	24.5		0.08		MG/KG
AL060200-01_372	AH747	9-Jun-00		0.25 CL200.7	NICKEL	2.6		0.3		MG/KG
AL060200-01_372	AH747	9-Jun-00		0.25 CL200.7	POTASSIUM	295		47.22	63.6572	
AL060200-01_372	AH747	9-Jun-00		0.25 CL200.7	VANADIUM	5.4		0.36		MG/KG
AL060200-01_372	AH747	9-Jun-00		0.25 CL200.7	ZINC	11.8		0.29		MG/KG
AL060200-01_372	AH747	9-Jun-00	0).25 CL245.5	MERCURY	0.42		0.0434	0.0487	MG/KG

Table A.2

Target Array and Flanking Target Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
AL060200-01 372	AH747	9-Jun-00		, ,	CSVOL	bis(2-ETHYLHEXYL) PHTHALATE	34		34		UG/KG
AL060200-01_372	AH747	9-Jun-00	0	0.25	CVOL	ACETONE	12	J	4.34	8	UG/KG
AL060200-01 373	AH749	9-Jun-00	0		CL200.7	ALUMINUM	2210		2.5		MG/KG
AL060200-01_373	AH749	9-Jun-00	0	0.25	CL200.7	ARSENIC	0.75		0.4967	0.4967	MG/KG
AL060200-01_373	AH749	9-Jun-00	0	0.25	CL200.7	BARIUM	4	J	1.18	2.1257	MG/KG
AL060200-01_373	AH749	9-Jun-00	0	0.25	CL200.7	BERYLLIUM	0.11	J	0.03	0.0596	MG/KG
AL060200-01_373	AH749	9-Jun-00	0	0.25	CL200.7	CHROMIUM, TOTAL	2.7		0.14	0.4371	MG/KG
AL060200-01_373	AH749	9-Jun-00	0	0.25	CL200.7	COBALT	0.99	J	0.26	0.596	MG/KG
AL060200-01_373	AH749	9-Jun-00	0	0.25	CL200.7	COPPER	197		0.34	0.4172	MG/KG
AL060200-01_373	AH749	9-Jun-00	0	0.25	CL200.7	IRON	4020		4.21	4.9468	MG/KG
AL060200-01_373	AH749	9-Jun-00	0	0.25	CL200.7	LEAD	58.2		0.32	0.4569	MG/KG
AL060200-01_373	AH749	9-Jun-00	0	0.25	CL200.7	MAGNESIUM	373		28.12	53.5998	MG/KG
AL060200-01_373	AH749	9-Jun-00	0	0.25	CL200.7	MANGANESE	30.1		0.08	0.1987	MG/KG
AL060200-01_373	AH749	9-Jun-00	0	0.25	CL200.7	MOLYBDENUM	0.47	J	0.298	0.298	MG/KG
AL060200-01_373	AH749	9-Jun-00	0	0.25	CL200.7	NICKEL	2.6		0.3	0.5761	MG/KG
AL060200-01_373	AH749	9-Jun-00	0	0.25	CL200.7	POTASSIUM	243		47.22	60.1756	MG/KG
AL060200-01_373	AH749	9-Jun-00	0	0.25	CL200.7	SELENIUM	0.8	J	0.61	0.7947	MG/KG
AL060200-01_373	AH749	9-Jun-00	0	0.25	CL200.7	VANADIUM	6.5		0.36	0.5761	MG/KG
AL060200-01_373	AH749	9-Jun-00	0	0.25	CL200.7	ZINC	13.4		0.29	0.298	MG/KG
AL060200-01_373	AH749	9-Jun-00	0	0.25	CL245.5	MERCURY	0.21		0.0356	0.0356	MG/KG
AL060200-01_373	AH749	9-Jun-00	0		CSVOL	ANTHRACENE	20	J	20	340	UG/KG
AL060200-01_373	AH749	9-Jun-00	0		CSVOL	BENZO(a)ANTHRACENE	120	J	26.22		UG/KG
AL060200-01_373	AH749	9-Jun-00	0		CSVOL	BENZO(a)PYRENE	120	J	27.73	340	UG/KG
AL060200-01_373	AH749	9-Jun-00	0		CSVOL	BENZO(b)FLUORANTHENE	160	J	26.77	340	UG/KG
AL060200-01_373	AH749	9-Jun-00	0		CSVOL	BENZO(g,h,i)PERYLENE	94	-	33.06		UG/KG
AL060200-01_373	AH749	9-Jun-00	0		CSVOL	BENZO(k)FLUORANTHENE	190		58.08		UG/KG
AL060200-01_373	AH749	9-Jun-00	0		CSVOL	CHRYSENE	160		27.24		UG/KG
AL060200-01_373	AH749	9-Jun-00			CSVOL	DIBENZ(a,h)ANTHRACENE	44	-	27.82		UG/KG
AL060200-01_373	AH749	9-Jun-00			CSVOL	FLUORANTHENE	370		27.34		UG/KG
AL060200-01_373	AH749	9-Jun-00			CSVOL	FLUORENE	20		20		UG/KG
AL060200-01_373	AH749	9-Jun-00			CSVOL	INDENO(1,2,3-c,d)PYRENE	95	-	30.03		UG/KG
AL060200-01_373	AH749	9-Jun-00			CSVOL	PHENANTHRENE	240		25.3		UG/KG
AL060200-01_373	AH749	9-Jun-00	0		CSVOL	PYRENE	300		31.54		UG/KG
AL060200-01_373	AH749	9-Jun-00			CVOL	ACETONE	8	J	4.34		UG/KG
AL060200-01_373	AH749	9-Jun-00			SW8330	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	350000		29		UG/KG
AL060200-01_373	AH749	9-Jun-00			SW8330	OCTAHYDRO-1,3,5,7-TETRANITRO-1,3,5,7-TETRAZOCINE	290	J	23		UG/KG
AL060200-01_374	AH751	9-Jun-00			CL200.7	ALUMINUM	3060		2.5		MG/KG
AL060200-01_374	AH751	9-Jun-00			CL200.7	ANTIMONY	0.95		0.5		MG/KG
AL060200-01_374	AH751	9-Jun-00			CL200.7	BARIUM	2.8	J	1.18		MG/KG
AL060200-01_374	AH751	9-Jun-00	0	0.25	CL200.7	BERYLLIUM	0.12		0.03	0.0593	MG/KG

Table A.2

Target Array and Flanking Target Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
AL060200-01_374	AH751	9-Jun-00		` '	CL200.7	CHROMIUM, TOTAL	2.6		0.14	0.4348	MG/KG
AL060200-01 374	AH751	9-Jun-00	0		CL200.7	COBALT	0.65	J	0.26	0.5929	MG/KG
AL060200-01 374	AH751	9-Jun-00	0	0.25	CL200.7	COPPER	119		0.34	0.4151	MG/KG
AL060200-01 374	AH751	9-Jun-00		0.25	CL200.7	IRON	4070		4.21	4.9213	MG/KG
AL060200-01_374	AH751	9-Jun-00	0	0.25	CL200.7	LEAD	61.6		0.32	0.4546	MG/KG
AL060200-01_374	AH751	9-Jun-00	0	0.25	CL200.7	MAGNESIUM	245		28.12	53.3244	MG/KG
AL060200-01_374	AH751	9-Jun-00	0	0.25	CL200.7	MANGANESE	26.1		0.08	0.1976	MG/KG
AL060200-01_374	AH751	9-Jun-00	0	0.25	CL200.7	MOLYBDENUM	0.33	J	0.2965	0.2965	MG/KG
AL060200-01_374	AH751	9-Jun-00	0	0.25	CL200.7	NICKEL	2.1		0.3	0.5732	MG/KG
AL060200-01_374	AH751	9-Jun-00	0	0.25	CL200.7	POTASSIUM	186		47.22	59.8664	MG/KG
AL060200-01_374	AH751	9-Jun-00	0	0.25	CL200.7	VANADIUM	6.5		0.36	0.5732	MG/KG
AL060200-01_374	AH751	9-Jun-00	0	0.25	CL200.7	ZINC	8.2		0.29	0.2965	MG/KG
AL060200-01_374	AH751	9-Jun-00	0	0.25	CSVOL	BENZO(a)ANTHRACENE	24	J	24	340	UG/KG
AL060200-01_374	AH751	9-Jun-00	0	0.25	CSVOL	BENZO(a)PYRENE	28	J	27.73	340	UG/KG
AL060200-01_374	AH751	9-Jun-00	0		CSVOL	BENZO(b)FLUORANTHENE	30		26.77	340	UG/KG
AL060200-01_374	AH751	9-Jun-00	0	0.25	CSVOL	BENZO(g,h,i)PERYLENE	24	J	24	340	UG/KG
AL060200-01_374	AH751	9-Jun-00	0		CSVOL	BENZO(k)FLUORANTHENE	42		42	340	UG/KG
AL060200-01_374	AH751	9-Jun-00	0	0.25	CSVOL	CHRYSENE	37	J	27.24	340	UG/KG
AL060200-01_374	AH751	9-Jun-00	0	0.25	CSVOL	FLUORANTHENE	67	J	27.34	340	UG/KG
AL060200-01_374	AH751	9-Jun-00	0	0.25	CSVOL	INDENO(1,2,3-c,d)PYRENE	22	J	22	340	UG/KG
AL060200-01_374	AH751	9-Jun-00	0	0.25	CSVOL	PHENANTHRENE	46	J	25.3	340	UG/KG
AL060200-01_374	AH751	9-Jun-00	0	0.25	CSVOL	PYRENE	67	J	31.54	340	UG/KG
AL060200-01_374	AH751	9-Jun-00	0	0.25	CVOL	ACETONE	11		4.34	7	UG/KG
AL060200-01_374	AH751	9-Jun-00	0	0.25	SW8330	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	61000		29		UG/KG
AL060200-01_374	AL238	26-Oct-00			SW8330	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	1800		29		UG/KG
AL060200-01_374	AL239	26-Oct-00	0	0.25	SW8330	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	910		29	120	UG/KG
AL060200-01_374	AL241	26-Oct-00			SW8330	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	980		29		UG/KG
AL060200-01_374	AL242	26-Oct-00	0	0.25	SW8330	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	510	J	29	120	UG/KG
AL060200-01_375	AH753	9-Jun-00	0	0.25	CL200.7	ALUMINUM	4540		2.5	3.4744	MG/KG
AL060200-01_375	AH753	9-Jun-00	1		CL200.7	BARIUM	5.8		1.18		MG/KG
AL060200-01_375	AH753	9-Jun-00			CL200.7	BERYLLIUM	0.11	J	0.03		MG/KG
AL060200-01_375	AH753	9-Jun-00			CL200.7	CHROMIUM, TOTAL	4.1		0.14		MG/KG
AL060200-01_375	AH753	9-Jun-00	0		CL200.7	COBALT	0.97	J	0.26	0.6395	MG/KG
AL060200-01_375	AH753	9-Jun-00			CL200.7	COPPER	284		0.34		MG/KG
AL060200-01_375	AH753	9-Jun-00	0		CL200.7	IRON	4080		4.21		MG/KG
AL060200-01_375	AH753	9-Jun-00			CL200.7	LEAD	33.6		0.32		MG/KG
AL060200-01_375	AH753	9-Jun-00	0		CL200.7	MAGNESIUM	380		28.12	57.5089	
AL060200-01_375	AH753	9-Jun-00			CL200.7	MANGANESE	32.1		0.08		MG/KG
AL060200-01_375	AH753	9-Jun-00	1		CL200.7	MOLYBDENUM	0.46	J	0.3197		MG/KG
AL060200-01_375	AH753	9-Jun-00	0	0.25	CL200.7	NICKEL	2.6		0.3	0.6181	MG/KG

Table A.2

Target Array and Flanking Target Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
AL060200-01_375	AH753	9-Jun-00		` ,	CL200.7	POTASSIUM	241		47.22	64.5643	MG/KG
AL060200-01 375	AH753	9-Jun-00	0	0.25	CL200.7	VANADIUM	6.6		0.36	0.6181	MG/KG
AL060200-01 375	AH753	9-Jun-00	0	0.25	CL200.7	ZINC	8		0.29	0.3197	MG/KG
AL060200-01_375	AH753	9-Jun-00	0	0.25	CL245.5	MERCURY	0.06	J	0.0431		MG/KG
AL060200-01 375	AH753	9-Jun-00	0	0.25	CVOL	ACETONE	13 .	J	4.34	7	UG/KG
AL060200-01_375	AH753	9-Jun-00	0	0.25	SW8330	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	160		29	120	UG/KG
SS033105-01	22915	1-Apr-05	0	0.25	CL200.7	ALUMINUM	3220		18.9		MG/KG
SS033105-01	22915	1-Apr-05		0.25	CL200.7	ARSENIC	1.6	J	0.97	0.97	MG/KG
SS033105-01	22915	1-Apr-05	0	0.25	CL200.7	BARIUM	6.7		1.8	1.8	MG/KG
SS033105-01	22915	1-Apr-05	0	0.25	CL200.7	BORON	1.1	J	1	1	MG/KG
SS033105-01	22915	1-Apr-05	0	0.25	CL200.7	CADMIUM	0.22	J	0.13	0.13	MG/KG
SS033105-01	22915	1-Apr-05	0	0.25	CL200.7	CHROMIUM, TOTAL	3.8		0.26	0.26	MG/KG
SS033105-01	22915	1-Apr-05	0	0.25	CL200.7	COBALT	2.5		0.58	0.58	MG/KG
SS033105-01	22915	1-Apr-05	0	0.25	CL200.7	COPPER	14.7		0.56	0.56	MG/KG
SS033105-01	22915	1-Apr-05	0	0.25	CL200.7	IRON	4930		8.1	8.1	MG/KG
SS033105-01	22915	1-Apr-05	0	0.25	CL200.7	LEAD	6.9		0.62	0.62	MG/KG
SS033105-01	22915	1-Apr-05	0	0.25	CL200.7	MAGNESIUM	596		45.1	45.1	MG/KG
SS033105-01	22915	1-Apr-05	0	0.25	CL200.7	MANGANESE	43.3		0.15	0.15	MG/KG
SS033105-01	22915	1-Apr-05	0	0.25	CL200.7	MOLYBDENUM	0.52	J	0.43	0.43	MG/KG
SS033105-01	22915	1-Apr-05	0	0.25	CL200.7	NICKEL	2.3		0.75	0.75	MG/KG
SS033105-01	22915	1-Apr-05	0	0.25	CL200.7	VANADIUM	6.7		0.58	0.58	MG/KG
SS033105-01	22915	1-Apr-05	0	0.25	CL200.7	ZINC	12.4		1.6	1.6	MG/KG
SS033105-01	22914	1-Apr-05	0	0.25	D2216	MOISTURE, PERCENT	7.3				PERCENT
SS033105-01	22915	1-Apr-05	0	0.25	D2216	MOISTURE, PERCENT	8				PERCENT
SS040105-01	23062	7-Apr-05	0	0.25	CL200.7	ALUMINUM	1050		5.8	5.8	MG/KG
SS040105-01	23062	7-Apr-05	0	0.25	CL200.7	ARSENIC	1.3	J	0.76	0.76	MG/KG
SS040105-01	23062	7-Apr-05	0	0.25	CL200.7	BARIUM	3.1		1.5	1.5	MG/KG
SS040105-01	23062	7-Apr-05	0	0.25	CL200.7	CHROMIUM, TOTAL	1.2		0.2	0.2	MG/KG
SS040105-01	23062	7-Apr-05	0	0.25	CL200.7	COBALT	0.76	L	0.62	0.62	MG/KG
SS040105-01	23062	7-Apr-05	0	0.25	CL200.7	COPPER	7.6		0.71	0.71	MG/KG
SS040105-01	23062	7-Apr-05	0	0.25	CL200.7	IRON	2190		6.6	6.6	MG/KG
SS040105-01	23062	7-Apr-05	0	0.25	CL200.7	LEAD	7.9	J	0.46	0.46	MG/KG
SS040105-01	23062	7-Apr-05	0	0.25	CL200.7	MAGNESIUM	125		35.5	35.5	MG/KG
SS040105-01	23062	7-Apr-05	0	0.25	CL200.7	MANGANESE	26.2		0.12	0.12	MG/KG
SS040105-01	23062	7-Apr-05	0		CL200.7	MOLYBDENUM	0.68		0.34	0.34	MG/KG
SS040105-01	23062	7-Apr-05	0		CL200.7	NICKEL	0.68	J	0.51	0.51	MG/KG
SS040105-01	23062	7-Apr-05	0	0.25	CL200.7	SODIUM	250		82.5	82.5	MG/KG
SS040105-01	23062	7-Apr-05	0	0.25	CL200.7	VANADIUM	3.8		0.46	0.46	MG/KG
SS040105-01	23062	7-Apr-05	0	0.25	CL200.7	ZINC	4.4		1.2	1.2	MG/KG
SS040105-01	23061	7-Apr-05	0	0.25	D2216	MOISTURE, PERCENT	1.4				PERCENT

Table A.2

Target Array and Flanking Target Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS040105-01	23062	7-Apr-05	1	. ,	D2216	MOISTURE, PERCENT	2				PERCENT
SS040105-01	23064	7-Apr-05			CL200.7	ALUMINUM	1210		6.4		MG/KG
SS040105-01	23064	7-Apr-05	0		CL200.7	ARSENIC	2.4		0.79		MG/KG
SS040105-01	23064	7-Apr-05	0		CL200.7	BARIUM	3.7		1.7		MG/KG
SS040105-01	23064	7-Apr-05			CL200.7	CHROMIUM, TOTAL	1.7		0.22		MG/KG
SS040105-01	23064	7-Apr-05			CL200.7	COBALT	0.86	J	0.69		MG/KG
SS040105-01	23064	7-Apr-05			CL200.7	COPPER	8.9		0.79		MG/KG
SS040105-01	23064	7-Apr-05	0	0.25	CL200.7	IRON	3990		7.3	7.3	MG/KG
SS040105-01	23064	7-Apr-05	0	0.25	CL200.7	LEAD	10.4	J	0.51	0.51	MG/KG
SS040105-01	23064	7-Apr-05	0		CL200.7	MAGNESIUM	175		39.3		MG/KG
SS040105-01	23064	7-Apr-05	0		CL200.7	MANGANESE	31.3		0.13	0.13	MG/KG
SS040105-01	23064	7-Apr-05	0	0.25	CL200.7	NICKEL	1	J	0.56	0.56	MG/KG
SS040105-01	23064	7-Apr-05	0	0.25	CL200.7	VANADIUM	6.9		0.51	0.51	MG/KG
SS040105-01	23064	7-Apr-05	0	0.25	CL200.7	ZINC	5.5		1.4	1.4	MG/KG
SS040105-01	23064	7-Apr-05	0	0.25	D2216	MOISTURE, PERCENT	2				PERCENT
SS040105-01	23063	7-Apr-05	0		D2216	MOISTURE, PERCENT	1.6				PERCENT
SS08517-A	TE941	19-Oct-01	0	0.5	CVOL	ACETONE	77.7	J	1	9	UG/KG
SS08517-A	TE941	19-Oct-01	0	0.5	CVOL	BENZENE	7.82	J	1	9	UG/KG
SS08517-A	TE941	19-Oct-01	0	0.5	CVOL	TOLUENE	2.84	J	1	9	UG/KG
SS08517-A	TE941	19-Oct-01	0	0.5	D2216	SOLIDS, PERCENT	92.8				PERCENT
SS08517-A	TE941	19-Oct-01	0	0.5	SW8270C	2,4-DINITROTOLUENE	51.7	J	47	359	UG/KG
SS08517-A	TE941	19-Oct-01	0	0.5	SW8270C	bis(2-ETHYLHEXYL) PHTHALATE	35.6	J	18	359	UG/KG
SS08517-A	04030	12-May-03	0	0.16	SW8330	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	16	J	2.66	13	UG/KG
SSA11220402	21354	6-Dec-04	0	0.16	CL200.7	ALUMINUM	1810		6.1	6.1	MG/KG
SSA11220402	21354	6-Dec-04	0	0.16	CL200.7	ANTIMONY	1.3	J	0.75	0.75	MG/KG
SSA11220402	21354	6-Dec-04	0	0.16	CL200.7	ARSENIC	0.87	J	0.55	0.55	MG/KG
SSA11220402	21354	6-Dec-04	0	0.16	CL200.7	BARIUM	4.9		2	2	MG/KG
SSA11220402	21354	6-Dec-04	0	0.16	CL200.7	BERYLLIUM	0.06	J	0.05	0.05	MG/KG
SSA11220402	21354	6-Dec-04	0	0.16	CL200.7	CALCIUM	56.1	J	41.6	41.6	MG/KG
SSA11220402	21354	6-Dec-04	0		CL200.7	CHROMIUM, TOTAL	1.5		0.2	0.2	MG/KG
SSA11220402	21354	6-Dec-04	0	0.16	CL200.7	COPPER	61		0.46	0.46	MG/KG
SSA11220402	21354	6-Dec-04	0	0.16	CL200.7	IRON	2480		6.3	6.3	MG/KG
SSA11220402	21354	6-Dec-04	0	0.16	CL200.7	LEAD	130		0.21	0.21	MG/KG
SSA11220402	21354	6-Dec-04	0	0.16	CL200.7	MAGNESIUM	87.4		43.3	43.3	MG/KG
SSA11220402	21354	6-Dec-04	0	0.16	CL200.7	MANGANESE	9		0.18	0.18	MG/KG
SSA11220402	21354	6-Dec-04	0	0.16	CL200.7	MOLYBDENUM	0.36	J	0.36	0.36	MG/KG
SSA11220402	21354	6-Dec-04	0	0.16	CL200.7	NICKEL	0.71	J	0.52	0.52	MG/KG
SSA11220402	21354	6-Dec-04	0	0.16	CL200.7	POTASSIUM	99.8	J	86.6	86.6	MG/KG
SSA11220402	21354	6-Dec-04	0		CL200.7	SELENIUM	0.56	J	0.55	0.55	MG/KG
SSA11220402	21354	6-Dec-04	0	0.16	CL200.7	VANADIUM	7.8		0.54	0.54	MG/KG

Table A.2

Target Array and Flanking Target Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEP1	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SSA11220402	21354	6-Dec-04		, ,	CL200.7	ZINC	4.4	J	0.34	0.34	MG/KG
SSA11220402	21354	6-Dec-04	0	0.16	CL245.5	MERCURY	0.17		0.05	0.05	MG/KG
SSA11220402	21354	6-Dec-04	0	0.16	D2216	MOISTURE, PERCENT	10				PERCENT
SSA11220402	21356	6-Dec-04	0		D2216	MOISTURE, PERCENT	10.4				PERCENT
SSA11220402	21354	6-Dec-04		0.16	SW8270C	BENZOIC ACID	44	J	43	920	UG/KG
SSA11220402	21354	6-Dec-04	0	0.16	SW8270C	FLUORANTHENE	21	J	20	370	UG/KG
SSA11220402	21354	6-Dec-04	0	0.16	SW8270C	PYRENE	22	J	21	370	UG/KG
SSA11220402	21498	10-Dec-04	0	0.16	CL200.7	ALUMINUM	3800		6.9	6.9	MG/KG
SSA11220402	21498	10-Dec-04	0	0.16	CL200.7	ARSENIC	1.5	J	0.63	1.5	MG/KG
SSA11220402	21498	10-Dec-04	0	0.16	CL200.7	BARIUM	15.9		2.2	2.2	MG/KG
SSA11220402	21498	10-Dec-04	0	0.16	CL200.7	CADMIUM	0.16	J	0.1	0.1	MG/KG
SSA11220402	21498	10-Dec-04	0	0.16	CL200.7	CALCIUM	94.6		47	47	MG/KG
SSA11220402	21498	10-Dec-04	0	0.16	CL200.7	CHROMIUM, TOTAL	3.6		0.22	0.22	MG/KG
SSA11220402	21498	10-Dec-04	0	0.16	CL200.7	COPPER	487		0.52	0.52	MG/KG
SSA11220402	21498	10-Dec-04	0	0.16	CL200.7	IRON	8210		7.2	7.2	MG/KG
SSA11220402	21498	10-Dec-04	0	0.16	CL200.7	LEAD	173		0.24	0.24	MG/KG
SSA11220402	21498	10-Dec-04	0	0.16	CL200.7	MAGNESIUM	180		48.9	48.9	MG/KG
SSA11220402	21498	10-Dec-04	0	0.16	CL200.7	MANGANESE	37.3		0.2	0.2	MG/KG
SSA11220402	21498	10-Dec-04	0	0.16	CL200.7	NICKEL	1.6		0.59	0.59	MG/KG
SSA11220402	21498	10-Dec-04	0	0.16	CL200.7	POTASSIUM	258	J	97.8	97.8	MG/KG
SSA11220402	21498	10-Dec-04	0	0.16	CL200.7	SELENIUM	2.1		0.63	0.63	MG/KG
SSA11220402	21498	10-Dec-04	0	0.16	CL200.7	VANADIUM	16.5		0.61	0.61	MG/KG
SSA11220402	21498	10-Dec-04	0	0.16	CL200.7	ZINC	41.8		0.38	0.38	MG/KG
SSA11220402	21498	10-Dec-04	0	0.16	CL245.5	MERCURY	2		0.065	0.065	MG/KG
SSA11220402	21498	10-Dec-04	0	0.16	D2216	MOISTURE, PERCENT	23				PERCENT
SSA11220402	21498	10-Dec-04	0	0.16	SW8270C	BENZOIC ACID	250	J	158.915	1100	UG/KG
SSA05160201	BE044	24-May-02	0	0.25	CL200.7	ALUMINUM	2690		3.9	3.9	MG/KG
SSA05160201	BE044	24-May-02	0	0.25	CL200.7	ARSENIC	1.5	J	0.29	0.29	MG/KG
SSA05160201	BE044	24-May-02	0	0.25	CL200.7	BARIUM	4		1	1	MG/KG
SSA05160201	BE044	24-May-02	0	0.25	CL200.7	BORON	2.7		1.3	1.3	MG/KG
SSA05160201	BE044	24-May-02	0	0.25	CL200.7	CALCIUM	67.3		25.2	25.2	MG/KG
SSA05160201	BE044	24-May-02	0	0.25	CL200.7	CHROMIUM, TOTAL	4.3		0.16	0.16	MG/KG
SSA05160201	BE044	24-May-02	0	0.25	CL200.7	COBALT	1.1		0.29	0.29	MG/KG
SSA05160201	BE044	24-May-02	0	0.25	CL200.7	COPPER	842	J	0.35	0.35	MG/KG
SSA05160201	BE044	24-May-02	0	0.25	CL200.7	IRON	5940		4.6	4.6	MG/KG
SSA05160201	BE044	24-May-02	0	0.25	CL200.7	LEAD	207		0.18	0.18	MG/KG
SSA05160201	BE044	24-May-02	0	0.25	CL200.7	MAGNESIUM	354		25.9	25.9	MG/KG
SSA05160201	BE044	24-May-02	0	0.25	CL200.7	MANGANESE	43.4		0.16	0.16	MG/KG
SSA05160201	BE044	24-May-02	0	0.25	CL200.7	NICKEL	2.4		0.26	0.26	MG/KG
SSA05160201	BE044	24-May-02	0	0.25	CL200.7	POTASSIUM	225		38.1	38.1	MG/KG

Table A.2 **Target Array and Flanking Target Area Data (Detects)**

LOCATION	SAMPLE ID	DATE	DEPT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER1	MDL	RL	UNITS
SSA05160201	BE044	24-May-02			CL200.7	SELENIUM	2.6		0.51	0.51	MG/KG
SSA05160201	BE044	24-May-02	0	0.25	CL200.7	VANADIUM	9.4		0.39	0.39	MG/KG
SSA05160201	BE044	24-May-02	0	0.25	CL200.7	ZINC	9.6		0.22	0.22	MG/KG
SSA05160201	BE044	24-May-02	0	0.25	CVOL	ACETONE	710	J	3.81	7	UG/KG
SSA05160201	BE044	24-May-02	0	0.25	CVOL	BROMOMETHANE	3	J	3	7	UG/KG
SSA05160201	BE044	24-May-02	0	0.25	CVOL	CHLOROMETHANE	1	J	1	7	UG/KG
SSA05160201	BE044	24-May-02	0	0.25	CVOL	METHYL ETHYL KETONE (2-BUTANONE)	15	J	3.6	7	UG/KG
SSA05160201	BE044	24-May-02	0	0.25	CVOL	TETRACHLOROETHYLENE(PCE)	2	J	2	7	UG/KG
SSA05160201	BE044	24-May-02	0	0.25	CVOL	TOLUENE	6	J	2.37	7	UG/KG
SSA05160201	BE044	24-May-02	0	0.25	SW8270	BENZO(a)ANTHRACENE	28	J	28	360	UG/KG
SSA05160201	BE044	24-May-02	0	0.25	SW8270	BENZO(a)PYRENE	30	J	30	360	UG/KG
SSA05160201	BE044	24-May-02	0	0.25	SW8270	BENZO(b)FLUORANTHENE	46	J	46	360	UG/KG
SSA05160201	BE044	24-May-02	0	0.25	SW8270	BENZO(k)FLUORANTHENE	38	J	38	360	UG/KG
SSA05160201	BE044	24-May-02	0	0.25	SW8270	BENZOIC ACID	20	J	20	900	UG/KG
SSA05160201	BE044	24-May-02	0	0.25	SW8270	bis(2-ETHYLHEXYL) PHTHALATE	50	J	50	360	UG/KG
SSA05160201	BE044	24-May-02		0.25	SW8270	CHRYSENE	48		46.8		UG/KG
SSA05160201	BE044	24-May-02	0	0.25	SW8270	FLUORANTHENE	96	J	90.9	360	UG/KG
SSA05160201	BE044	24-May-02		0.25	SW8270	INDENO(1,2,3-c,d)PYRENE	18	J	18		UG/KG
SSA05160201	BE044	24-May-02	0	0.25	SW8270	PHENANTHRENE	46	J	42.6	360	UG/KG
SSA05160201	BE044	24-May-02	0	0.25	SW8270	PYRENE	71	J	43.2	360	UG/KG
SS37MM_HEAVERY	AC999	5-Aug-99	0	0.25	CL200.7	ALUMINUM	1480		2.5	2.8962	MG/KG
SS37MM_HEAVERY	AC999	5-Aug-99		0.25	CL200.7	BARIUM	4.1		0.9268	0.9268	MG/KG
SS37MM_HEAVERY	AC999	5-Aug-99		0.25	CL200.7	CHROMIUM, TOTAL	1.8		0.14	0.3089	MG/KG
SS37MM_HEAVERY	AC999	5-Aug-99	0	0.25	CL200.7	COPPER	11.5		0.34	1.8343	MG/KG
SS37MM_HEAVERY	AC999	5-Aug-99	0	0.25	CL200.7	IRON	5250		4.0161		MG/KG
SS37MM_HEAVERY	AC999	5-Aug-99		0.25	CL200.7	LEAD	24.8		0.1545	0.1545	MG/KG
SS37MM_HEAVERY	AC999	5-Aug-99		0.25	CL200.7	MAGNESIUM	246		25.293	25.293	MG/KG
SS37MM_HEAVERY	AC999	5-Aug-99		0.25	CL200.7	MANGANESE	48.9		0.0772	0.0772	MG/KG
SS37MM_HEAVERY	AC999	5-Aug-99	0	0.25	CL200.7	NICKEL	0.6	J	0.3	0.4634	MG/KG
SS37MM_HEAVERY	AC999	5-Aug-99		0.25	CL200.7	POTASSIUM	278		47.22	57.344	MG/KG
SS37MM_HEAVERY	AC999	5-Aug-99			CL200.7	VANADIUM	2.3	J	0.36		MG/KG
SS37MM_HEAVERY	AC999	5-Aug-99	0	0.25	CL245.5	MERCURY	0.05	J	0.0434	0.0456	MG/KG
SS37MM_HEAVERY	AC999	5-Aug-99		0.25	CSVOL	FLUORANTHENE	24		24	330	UG/KG
SS37MM_HEAVERY	AC999	5-Aug-99			CSVOL	PHENANTHRENE	16		16		UG/KG
SS37MM_HEAVERY	AC999	5-Aug-99		0.25	CSVOL	PYRENE	23	J	23	330	UG/KG
SS37MM_HEAVERY	AC999	5-Aug-99			CVOL	ACETONE	18		4.34		UG/KG
Footnote:						1					

Table A.3
Soil Hillside Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIERS ¹	MDL	RL	UNITS
SS132CC	20401	29-Oct-04	0	0.5	CL200.7	ALUMINUM	3800		6.5	6.5	MG/KG
SS132CC	20401	29-Oct-04	0	0.5	CL200.7	ARSENIC	1.7		0.59	0.59	MG/KG
SS132CC	20401	29-Oct-04	0	0.5	CL200.7	BARIUM	3.1	J	2.1	2.1	MG/KG
SS132CC	20401	29-Oct-04	0	0.5	CL200.7	BORON	1.6	J	1.3	1.3	MG/KG
SS132CC	20401	29-Oct-04	0	0.5	CL200.7	CHROMIUM, TOTAL	2.8		0.21	0.21	MG/KG
SS132CC	20401	29-Oct-04	0	0.5	CL200.7	COPPER	14.7		0.5	0.5	MG/KG
SS132CC	20401	29-Oct-04	0	0.5	CL200.7	IRON	3890	J	6.8	6.8	MG/KG
SS132CC	20401	29-Oct-04	0	0.5	CL200.7	LEAD	15.2		0.23	0.23	MG/KG
SS132CC	20401	29-Oct-04	0	0.5	CL200.7	MAGNESIUM	179		46.1	46.1	MG/KG
SS132CC	20401	29-Oct-04	0	0.5	CL200.7	MANGANESE	14.5	J	0.19	0.19	MG/KG
SS132CC	20401	29-Oct-04	0	0.5	CL200.7	MOLYBDENUM	0.43	J	0.38	0.38	MG/KG
SS132CC	20401	29-Oct-04	0	0.5	CL200.7	POTASSIUM	113	J	92.2	92.2	MG/KG
SS132CC	20401	29-Oct-04	0	0.5	CL200.7	VANADIUM	7.6		0.57	0.57	MG/KG
SS132CC	20401	29-Oct-04	0	0.5	CL200.7	ZINC	4.1		0.36	0.36	MG/KG
SS132CC	20401	29-Oct-04	0	0.5	D2216	MOISTURE, PERCENT	5				Т
SS132CC	20401	29-Oct-04	0	0.5	SW8270	BENZO(a)PYRENE	17	J	17	350	UG/KG
SS132CC	20401	29-Oct-04	0	0.5	SW8270	CHRYSENE	35	J	27.3684	350	UG/KG
SS132CC	20401	29-Oct-04	0	0.5	SW8270	FLUORANTHENE	60	J	60	350	UG/KG
SS132CC	20401	29-Oct-04	0	0.5	SW8270	PHENANTHRENE	21	J	21	350	UG/KG
SS132CC	20401	29-Oct-04	0	0.5	SW8270	PYRENE	45	J	45	350	UG/KG
SS132CC	20403	29-Oct-04	1.5	2	CL200.7	ALUMINUM	7540		7.3	7.3	MG/KG
SS132CC	20403	29-Oct-04	1.5	2	CL200.7	ARSENIC	3		0.67	0.67	MG/KG
SS132CC	20403	29-Oct-04	1.5	2	CL200.7	BARIUM	4.3	J	2.4	2.4	MG/KG
SS132CC	20403	29-Oct-04	1.5	2	CL200.7	BORON	3		1.5	1.5	MG/KG
SS132CC	20403	29-Oct-04	1.5	2	CL200.7	CHROMIUM, TOTAL	4.6		0.24	0.24	MG/KG
SS132CC	20403	29-Oct-04	1.5	2	CL200.7	IRON	7390	J	7.6	7.6	MG/KG
SS132CC	20403	29-Oct-04	1.5	2	CL200.7	LEAD	3.9		0.26	0.26	MG/KG
SS132CC	20403	29-Oct-04	1.5	2	CL200.7	MAGNESIUM	175		52.2	52.2	MG/KG
SS132CC	20403	29-Oct-04	1.5	2	CL200.7	MANGANESE	11.3	J	0.22	0.22	MG/KG
SS132CC	20403	29-Oct-04	1.5	2	CL200.7	MOLYBDENUM	0.5	J	0.43	0.43	MG/KG
SS132CC	20403	29-Oct-04	1.5	2	CL200.7	POTASSIUM	107	J	104	104	MG/KG
SS132CC	20403	29-Oct-04	1.5	2	CL200.7	VANADIUM	12.4		0.65	0.65	MG/KG
SS132CC	20403	29-Oct-04	1.5	2	CL200.7	ZINC	4.9		0.41	0.41	MG/KG
SS132CC	20403	29-Oct-04	1.5	2	D2216	MOISTURE, PERCENT	8				Т
SS132CC	20403	29-Oct-04	1.5	2	SW8270	BENZOIC ACID	47	J	47	900	UG/KG
SS132CD	20406	28-Oct-04	0	0.5	CL200.7	ALUMINUM	4420		5.7	5.7	MG/KG
SS132CD	20406	28-Oct-04	0	0.5	CL200.7	ARSENIC	1.8		0.51	0.51	MG/KG
SS132CD	20406	28-Oct-04	0	0.5	CL200.7	BARIUM	3.1	J	1.8	1.8	MG/KG

Table A.3
Soil Hillside Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIERS1	MDL	RL	UNITS
SS132CD	20406	28-Oct-04	0	0.5	CL200.7	BERYLLIUM	0.09	J	0.05	0.05	MG/KG
SS132CD	20406	28-Oct-04	0	0.5	CL200.7	BORON	1.2	J	1.1	1.1	MG/KG
SS132CD	20406	28-Oct-04	0	0.5	CL200.7	CHROMIUM, TOTAL	2.8		0.18	0.18	MG/KG
SS132CD	20406	28-Oct-04	0	0.5	CL200.7	COPPER	11.4		0.43	0.43	MG/KG
SS132CD	20406	28-Oct-04	0	0.5	CL200.7	IRON	4050	J	5.9	5.9	MG/KG
SS132CD	20406	28-Oct-04	0	0.5	CL200.7	LEAD	14.2		0.2	0.2	MG/KG
SS132CD	20406	28-Oct-04	0	0.5	CL200.7	MAGNESIUM	91.9		40.2	40.2	MG/KG
SS132CD	20406	28-Oct-04	0	0.5	CL200.7	MANGANESE	5.9	J	0.17	0.17	MG/KG
SS132CD	20406	28-Oct-04	0	0.5	CL200.7	MOLYBDENUM	0.41	J	0.33	0.33	MG/KG
SS132CD	20406	28-Oct-04	0	0.5	CL200.7	NICKEL	1.2		0.48	0.48	MG/KG
SS132CD	20406	28-Oct-04	0	0.5	CL200.7	VANADIUM	7.5		0.5	0.5	MG/KG
SS132CD	20406	28-Oct-04	0	0.5	CL200.7	ZINC	2.8		0.32	0.32	MG/KG
SS132CD	20406	28-Oct-04	0	0.5	D2216	MOISTURE, PERCENT	5				Т
SS132CD	20408	28-Oct-04	1.5	2	CL200.7	ALUMINUM	3970		6.9	6.9	MG/KG
SS132CD	20408	28-Oct-04	1.5	2	CL200.7	ARSENIC	1.3		0.62	0.62	MG/KG
SS132CD	20408	28-Oct-04	1.5	2	CL200.7	BARIUM	5		2.2	2.2	MG/KG
SS132CD	20408	28-Oct-04	1.5	2	CL200.7	BERYLLIUM	0.1	J	0.06	0.06	MG/KG
SS132CD	20408	28-Oct-04	1.5	2	CL200.7	CHROMIUM, TOTAL	3.5		0.22	0.22	MG/KG
SS132CD	20408	28-Oct-04	1.5	2	CL200.7	COBALT	0.69	J	0.62	0.62	MG/KG
SS132CD	20408	28-Oct-04	1.5	2	CL200.7	COPPER	3.2		0.52	0.52	MG/KG
SS132CD	20408	28-Oct-04	1.5	2	CL200.7	IRON	4160	J	7.1	7.1	MG/KG
SS132CD	20408	28-Oct-04	1.5	2	CL200.7	LEAD	2.7		0.24	0.24	MG/KG
SS132CD	20408	28-Oct-04	1.5	2	CL200.7	MAGNESIUM	310		48.7	48.7	MG/KG
SS132CD	20408	28-Oct-04	1.5	2	CL200.7	MANGANESE	32.2	J	0.2	0.2	MG/KG
SS132CD	20408	28-Oct-04	1.5	2	CL200.7	MOLYBDENUM	0.46	J	0.4	0.4	MG/KG
SS132CD	20408	28-Oct-04	1.5	2	CL200.7	NICKEL	1.7		0.58	0.58	MG/KG
SS132CD	20408	28-Oct-04	1.5	2	CL200.7	VANADIUM	6.4		0.6	0.6	MG/KG
SS132CD	20408	28-Oct-04	1.5	2	CL200.7	ZINC	5.2		0.38	0.38	MG/KG
SS132CD	20408	28-Oct-04	1.5	2	D2216	MOISTURE, PERCENT	4				Т
SS132CE	20411	28-Oct-04	0	0.5	CL200.7	ALUMINUM	3370		6	6	MG/KG
SS132CE	20411	28-Oct-04	0	0.5	CL200.7	ANTIMONY	0.87	J	0.74	0.74	MG/KG
SS132CE	20411	28-Oct-04	0	0.5	CL200.7	ARSENIC	1.4		0.55	0.55	MG/KG
SS132CE	20411	28-Oct-04	0	0.5	CL200.7	BARIUM	2.9	J	1.9	1.9	MG/KG
SS132CE	20411	28-Oct-04	0	0.5	CL200.7	BERYLLIUM	0.11	J	0.05	0.05	MG/KG
SS132CE	20411	28-Oct-04	0	0.5	CL200.7	BORON	1.4	J	1.2	1.2	MG/KG
SS132CE	20411	28-Oct-04	0	0.5	CL200.7	CHROMIUM, TOTAL	3.3		0.19	0.19	MG/KG
SS132CE	20411	28-Oct-04	0	0.5	CL200.7	COBALT	0.81	J	0.55	0.55	MG/KG
SS132CE	20411	28-Oct-04	0	0.5	CL200.7	COPPER	14.3		0.46	0.46	MG/KG

Table A.3
Soil Hillside Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPTH (FT.)	TEST	ANALYTE	RESULT	QUALIFIERS ¹	MDL	RL	UNITS
SS132CE	20411	28-Oct-04	0 0	.5	CL200.7	IRON	4020	J	6.3	6.3	MG/KG
SS132CE	20411	28-Oct-04	0 0	.5	CL200.7	LEAD	38.1		0.21	0.21	MG/KG
SS132CE	20411	28-Oct-04	0 0	.5	CL200.7	MAGNESIUM	356		42.7	42.7	MG/KG
SS132CE	20411	28-Oct-04	0 0	.5	CL200.7	MANGANESE	22.5	J	0.18	0.18	MG/KG
SS132CE	20411	28-Oct-04	0 0	.5	CL200.7	MOLYBDENUM	0.6	J	0.35	0.35	MG/KG
SS132CE	20411	28-Oct-04	0 0	.5	CL200.7	NICKEL	1.8		0.51	0.51	MG/KG
SS132CE	20411	28-Oct-04	0 0	.5	CL200.7	VANADIUM	7.2		0.53	0.53	MG/KG
SS132CE	20411	28-Oct-04	0 0	.5	CL200.7	ZINC	5.6		0.33	0.33	MG/KG
SS132CE	20411	28-Oct-04	0 0	.5	D2216	MOISTURE, PERCENT	7				Т
SS132CE	20413	28-Oct-04	0 0	.5	CL200.7	ALUMINUM	3550		6.2	6.2	MG/KG
SS132CE	20413	28-Oct-04	0 0	.5	CL200.7	ARSENIC	1.5		0.56	0.56	MG/KG
SS132CE	20413	28-Oct-04	0 0	.5	CL200.7	BARIUM	3.1	J	2	2	MG/KG
SS132CE	20413	28-Oct-04	0 0	.5	CL200.7	BERYLLIUM	0.11	J	0.05	0.05	MG/KG
SS132CE	20413	28-Oct-04	0 0	.5	CL200.7	BORON	1.4	J	1.3	1.3	MG/KG
SS132CE	20413	28-Oct-04	0 0	.5	CL200.7	CHROMIUM, TOTAL	3.2		0.2	0.2	MG/KG
SS132CE	20413	28-Oct-04	0 0	.5	CL200.7	COBALT	0.65	J	0.56	0.56	MG/KG
SS132CE	20413	28-Oct-04	0 0	.5	CL200.7	COPPER	16.1		0.47	0.47	MG/KG
SS132CE	20413	28-Oct-04	0 0	.5	CL200.7	IRON	4020	J	6.4	6.4	MG/KG
SS132CE	20413	28-Oct-04	0 0	.5	CL200.7	LEAD	32.8		0.22	0.22	MG/KG
SS132CE	20413	28-Oct-04	0 0	.5	CL200.7	MAGNESIUM	368		43.9	43.9	MG/KG
SS132CE	20413	28-Oct-04	0 0	.5	CL200.7	MANGANESE	20.8	J	0.18	0.18	MG/KG
SS132CE	20413	28-Oct-04	0 0	.5	CL200.7	MOLYBDENUM	0.96		0.36	0.36	MG/KG
SS132CE	20413	28-Oct-04	0 0	.5	CL200.7	NICKEL	1.4		0.53	0.53	MG/KG
SS132CE	20413	28-Oct-04	0 0	.5	CL200.7	VANADIUM	7.1		0.54	0.54	MG/KG
SS132CE	20413	28-Oct-04	0 0	.5	CL200.7	ZINC	6.3		0.34	0.34	MG/KG
SS132CE	20413	28-Oct-04	0 0	.5	D2216	MOISTURE, PERCENT	4				Т
SS132CE	20415	28-Oct-04	1.5	2	CL200.7	ALUMINUM	1760		5.7	5.7	MG/KG
SS132CE	20415	28-Oct-04	1.5	2	CL200.7	ARSENIC	1.1	J	0.51	0.51	MG/KG
SS132CE	20415	28-Oct-04	1.5	2	CL200.7	BARIUM	2.1	J	1.8	1.8	MG/KG
SS132CE	20415	28-Oct-04	1.5	2	CL200.7	BERYLLIUM	0.1	J	0.05	0.05	MG/KG
SS132CE	20415	28-Oct-04	1.5	2	CL200.7	CHROMIUM, TOTAL	2.1		0.18	0.18	MG/KG
SS132CE	20415	28-Oct-04	1.5	2	CL200.7	COBALT	0.73	J	0.51	0.51	MG/KG
SS132CE	20415	28-Oct-04	1.5	2	CL200.7	COPPER	7.1		0.43	0.43	MG/KG
SS132CE	20415	28-Oct-04	1.5	2	CL200.7	IRON	2710	J	5.9	5.9	MG/KG
SS132CE	20415	28-Oct-04	1.5	2	CL200.7	LEAD	22.4		0.2	0.2	MG/KG
SS132CE	20415	28-Oct-04	1.5	2	CL200.7	MAGNESIUM	240		40.2	40.2	MG/KG
SS132CE	20415	28-Oct-04	1.5	2	CL200.7	MANGANESE	22.2	J	0.17	0.17	MG/KG
SS132CE	20415	28-Oct-04	1.5	2	CL200.7	MOLYBDENUM	0.39	J	0.33	0.33	MG/KG

Table A.3
Soil Hillside Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPTH	(FT.)	TEST	ANALYTE	RESULT	QUALIFIERS ¹	MDL	RL	UNITS
SS132CE	20415	28-Oct-04	1.5	2	CL200.7	NICKEL	1.5		0.48	0.48	MG/KG
SS132CE	20415	28-Oct-04	1.5	2	CL200.7	VANADIUM	3.2		0.5	0.5	MG/KG
SS132CE	20415	28-Oct-04	1.5	2	CL200.7	ZINC	5.6		0.32	0.32	MG/KG
SS132CE	20415	28-Oct-04	1.5	2	D2216	MOISTURE, PERCENT	3				Т
SS132CF	20419	28-Oct-04	0 (0.5	CL200.7	ALUMINUM	3060		6.9	6.9	MG/KG
SS132CF	20419	28-Oct-04	0 (0.5	CL200.7	BORON	2.7	J	1.4	1.4	MG/KG
SS132CF	20419	28-Oct-04	0 (0.5	CL200.7	CHROMIUM, TOTAL	3.3		0.22	0.22	MG/KG
SS132CF	20419	28-Oct-04	0 (0.5	CL200.7	COBALT	0.82	J	0.62	0.62	MG/KG
SS132CF	20419	28-Oct-04	0 (0.5	CL200.7	COPPER	11.7		0.52	0.52	MG/KG
SS132CF	20419	28-Oct-04	0 (0.5	CL200.7	IRON	9240	J	7.1	7.1	MG/KG
SS132CF	20419	28-Oct-04	0 (0.5	CL200.7	LEAD	42.5		0.24	0.24	MG/KG
SS132CF	20419	28-Oct-04	0 (0.5	CL200.7	MAGNESIUM	225		48.7	48.7	MG/KG
SS132CF	20419	28-Oct-04	0 (0.5	CL200.7	MANGANESE	42.5	J	0.2	0.2	MG/KG
SS132CF	20419	28-Oct-04	0 (0.5	CL200.7	NICKEL	1.5		0.58	0.58	MG/KG
SS132CF	20419	28-Oct-04	0 (0.5	CL200.7	VANADIUM	8.1		0.6	0.6	MG/KG
SS132CF	20419	28-Oct-04	0 (0.5	CL200.7	ZINC	4.9		0.38	0.38	MG/KG
SS132CF	20419	28-Oct-04	0 (0.5	D2216	MOISTURE, PERCENT	4				Т
SS132CF	20419	28-Oct-04	0 (0.5	SW8270	BENZO(a)ANTHRACENE	70	J	32.1906	340	UG/KG
SS132CF	20419	28-Oct-04	0 (0.5	SW8270	BENZO(a)PYRENE	80	J	35.9532	340	UG/KG
SS132CF	20419	28-Oct-04	0 (0.5	SW8270	BENZO(b)FLUORANTHENE	89	J	57.6923	340	UG/KG
SS132CF	20419	28-Oct-04	0 (0.5	SW8270	BENZO(g,h,i)PERYLENE	47	J	47	340	UG/KG
SS132CF	20419	28-Oct-04	0 (0.5	SW8270	BENZO(k)FLUORANTHENE	94	J	39.9247	340	UG/KG
SS132CF	20419	28-Oct-04	0 (0.5	SW8270	CHRYSENE	120	J	27.1739	340	UG/KG
SS132CF	20419	28-Oct-04	0 (0.5	SW8270	FLUORANTHENE	260	J	75.5644	340	UG/KG
SS132CF	20419	28-Oct-04	0 (0.5	SW8270	INDENO(1,2,3-c,d)PYRENE	49	J	49	340	UG/KG
SS132CF	20419	28-Oct-04	0 (0.5	SW8270	PHENANTHRENE	150	J	27.4875	340	UG/KG
SS132CF	20419	28-Oct-04	0 (0.5	SW8270	PYRENE	180	J	78.5953	340	UG/KG
SS132CF	20421	28-Oct-04	1.5	2	CL200.7	ALUMINUM	2060		6.8	6.8	MG/KG
SS132CF	20421	28-Oct-04	1.5	2	CL200.7	ANTIMONY	0.98	J	0.83	0.83	MG/KG
SS132CF	20421	28-Oct-04	1.5	2	CL200.7	ARSENIC	1.5		0.62	0.62	MG/KG
SS132CF	20421	28-Oct-04	1.5	2	CL200.7	BARIUM	2.4	J	2.2	2.2	MG/KG
SS132CF	20421	28-Oct-04	1.5	2	CL200.7	BERYLLIUM	0.12	J	0.06	0.06	MG/KG
SS132CF	20421	28-Oct-04	1.5	2	CL200.7	BORON	1.5	J	1.4	1.4	MG/KG
SS132CF	20421	28-Oct-04	1.5	2	CL200.7	CALCIUM	66.9	J	46.2	46.2	MG/KG
SS132CF	20421	28-Oct-04	1.5	2	CL200.7	CHROMIUM, TOTAL	2.8		0.22	0.22	MG/KG
SS132CF	20421	28-Oct-04	1.5	2	CL200.7	COBALT	1.2	J	0.62	0.62	MG/KG
SS132CF	20421	28-Oct-04	1.5	2	CL200.7	COPPER	8.1		0.52	0.52	MG/KG
SS132CF	20421	28-Oct-04	1.5	2	CL200.7	IRON	3870	J	7.1	7.1	MG/KG

Table A.3
Soil Hillside Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPTH	l (FT.)	TEST	ANALYTE	RESULT	QUALIFIERS ¹	MDL	RL	UNITS
SS132CF	20421	28-Oct-04	1.5	2	CL200.7	LEAD	23.8		0.24	0.24	MG/KG
SS132CF	20421	28-Oct-04	1.5	2	CL200.7	MAGNESIUM	414		48.1	48.1	MG/KG
SS132CF	20421	28-Oct-04	1.5	2	CL200.7	MANGANESE	33.7	J	0.2	0.2	MG/KG
SS132CF	20421	28-Oct-04	1.5	2	CL200.7	MOLYBDENUM	0.47	J	0.4	0.4	MG/KG
SS132CF	20421	28-Oct-04	1.5	2	CL200.7	NICKEL	2.2		0.58	0.58	MG/KG
SS132CF	20421	28-Oct-04	1.5	2	CL200.7	VANADIUM	5.8		0.6	0.6	MG/KG
SS132CF	20421	28-Oct-04	1.5	2	CL200.7	ZINC	5.4		0.38	0.38	MG/KG
SS132CF	20421	28-Oct-04	1.5	2	D2216	MOISTURE, PERCENT	3				Т
SS132CG	20424	29-Oct-04	0	0.5	CL200.7	ALUMINUM	8470		6.8	6.8	MG/KG
SS132CG	20424	29-Oct-04	0	0.5	CL200.7	ARSENIC	2.7		0.62	0.62	MG/KG
SS132CG	20424	29-Oct-04	0	0.5	CL200.7	BARIUM	6.3		2.2	2.2	MG/KG
SS132CG	20424	29-Oct-04	0	0.5	CL200.7	BORON	3.2		1.4	1.4	MG/KG
SS132CG	20424	29-Oct-04	0	0.5	CL200.7	CADMIUM	0.11	J	0.1	0.1	MG/KG
SS132CG	20424	29-Oct-04	0	0.5	CL200.7	CALCIUM	48.8	J	46.6	46.6	MG/KG
SS132CG	20424	29-Oct-04	0	0.5	CL200.7	CHROMIUM, TOTAL	8.1		0.22	0.22	MG/KG
SS132CG	20424	29-Oct-04	0	0.5	CL200.7	COBALT	1.2	J	0.62	0.62	MG/KG
SS132CG	20424	29-Oct-04	0	0.5	CL200.7	COPPER	12.1		0.52	0.52	MG/KG
SS132CG	20424	29-Oct-04	0	0.5	CL200.7	IRON	7130	J	7.1	7.1	MG/KG
SS132CG	20424	29-Oct-04	0	0.5	CL200.7	LEAD	9.1		0.24	0.24	MG/KG
SS132CG	20424	29-Oct-04	0	0.5	CL200.7	MAGNESIUM	492		48.5	48.5	MG/KG
SS132CG	20424	29-Oct-04	0	0.5	CL200.7	MANGANESE	22.5	J	0.2	0.2	MG/KG
SS132CG	20424	29-Oct-04	0	0.5	CL200.7	MOLYBDENUM	0.47	J	0.4	0.4	MG/KG
SS132CG	20424	29-Oct-04	0	0.5	CL200.7	POTASSIUM	257		97	97	MG/KG
SS132CG	20424	29-Oct-04	0	0.5	CL200.7	VANADIUM	13.8		0.6	0.6	MG/KG
SS132CG	20424	29-Oct-04	0	0.5	CL200.7	ZINC	7.1		0.38	0.38	MG/KG
SS132CG	20424	29-Oct-04	0	0.5	D2216	MOISTURE, PERCENT	8				Т
SS132CG	20426	29-Oct-04	1.5	2	CL200.7	ALUMINUM	7210		7.5	7.5	MG/KG
SS132CG	20426	29-Oct-04	1.5	2	CL200.7	BARIUM	11.2		2.4	2.4	MG/KG
SS132CG	20426	29-Oct-04	1.5	2	CL200.7	BORON	3.4		1.5	1.5	MG/KG
SS132CG	20426	29-Oct-04	1.5	2	CL200.7	CALCIUM	62.9	J	50.9	50.9	MG/KG
SS132CG	20426	29-Oct-04	1.5	2	CL200.7	CHROMIUM, TOTAL	8.3		0.24	0.24	MG/KG
SS132CG	20426	29-Oct-04	1.5	2	CL200.7	COBALT	1.8		0.68	0.68	MG/KG
SS132CG	20426	29-Oct-04	1.5	2	CL200.7	COPPER	3.1		0.57	0.57	MG/KG
SS132CG	20426	29-Oct-04	1.5	2	CL200.7	IRON	6290	J	7.8	7.8	MG/KG
SS132CG	20426	29-Oct-04	1.5	2	CL200.7	LEAD	5.8		0.26	0.26	MG/KG
SS132CG	20426	29-Oct-04	1.5	2	CL200.7	MAGNESIUM	813		53	53	MG/KG
SS132CG	20426	29-Oct-04	1.5	2	CL200.7	MANGANESE	33.4	J	0.22	0.22	MG/KG
SS132CG	20426	29-Oct-04	1.5	2	CL200.7	MOLYBDENUM	0.6	J	0.44	0.44	MG/KG

Table A.3 Soil Hillside Data (Detects)

LOCATION	SAMPLE ID	DATE	DEP	ΓΗ (FT.)	TEST	ANALYTE	RESULT	QUALIFIERS ¹	MDL	RL	UNITS
SS132CG	20426	29-Oct-04	1.5	2	CL200.7	POTASSIUM	342		106	106	MG/KG
SS132CG	20426	29-Oct-04	1.5	2	CL200.7	VANADIUM	13		0.66	0.66	MG/KG
SS132CG	20426	29-Oct-04	1.5	2	CL200.7	ZINC	9.4		0.42	0.42	MG/KG
SS132CG	20426	29-Oct-04	1.5	2	D2216	MOISTURE, PERCENT	9				Т
Footnote:											

^{1.} Qualifiers: J = value is estimated due to limitations found in the data validation. The samples that are presented without an associated qualifier code were treated as detected results.

Table A.4
Rail Line Soil Data (Detects)

LOCATION	SAMPLE ID	DATE	DEP1	TH (FT.)	TEST	ANALYTE	RESULT	QUALIFIER1	MDL	RL	UNITS
SS132A	AN718	19-Mar-01	0	, ,	TOTAL	ALUMINUM	2230		5.3	8.4	MG/KG
SS132A	AN718	19-Mar-01	0	0.25	TOTAL	BARIUM	2.5		0.7234	0.72	MG/KG
SS132A	AN718	19-Mar-01	0	0.25	TOTAL	BERYLLIUM	0.04	J	0.0201	0.02	MG/KG
SS132A	AN718	19-Mar-01	0	0.25	TOTAL	CALCIUM	40.3	J	36.1506	36.2	MG/KG
SS132A	AN718	19-Mar-01	0	0.25	TOTAL	CHROMIUM, TOTAL	2.4	J	0.2	0.28	MG/KG
SS132A	AN718	19-Mar-01	0	0.25	TOTAL	COBALT	0.7		0.2411	0.24	MG/KG
SS132A	AN718	19-Mar-01	0	0.25	TOTAL	COPPER	0.97	J	0.5024	0.5	MG/KG
SS132A	AN718	19-Mar-01	0	0.25	TOTAL	IRON	2170	J	3.5	7.46	MG/KG
SS132A	AN718	19-Mar-01	0	0.25	TOTAL	LEAD	2.2	J	0.2	0.26	MG/KG
SS132A	AN718	19-Mar-01	0	0.25	TOTAL	MAGNESIUM	252		37.9592	38	MG/KG
SS132A	AN718	19-Mar-01	0	0.25	TOTAL	MANGANESE	19.4	J	0.1206	0.12	MG/KG
SS132A	AN718	19-Mar-01	0	0.25	TOTAL	NICKEL	1.3	J	0.2612	0.26	MG/KG
SS132A	AN718	19-Mar-01	0	0.25	TOTAL	POTASSIUM	114		32.2522	32.3	MG/KG
SS132A	AN718	19-Mar-01	0	0.25	TOTAL	VANADIUM	4.3		0.2813	0.28	MG/KG
SS132A	AN718	19-Mar-01	0	0.25	TOTAL	ZINC	4	J	0.3014	0.3	MG/KG
SS132A	AN719	19-Mar-01	0.25	0.5	TOTAL	ALUMINUM	1890	J	5.3	7.48	MG/KG
SS132A	AN719	19-Mar-01	0.25	0.5	TOTAL	BARIUM	3.2		0.6445	0.64	MG/KG
SS132A	AN719	19-Mar-01	0.25	0.5	TOTAL	BERYLLIUM	0.04	J	0.0179	0.02	MG/KG
SS132A	AN719	19-Mar-01	0.25	0.5	TOTAL	CALCIUM	52.3	J	32.209	32.2	MG/KG
SS132A	AN719	19-Mar-01	0.25	0.5	TOTAL	CHROMIUM, TOTAL	2.4	J	0.2	0.25	MG/KG
SS132A	AN719	19-Mar-01	0.25	0.5	TOTAL	COBALT	0.68		0.2148	0.21	MG/KG
SS132A	AN719	19-Mar-01	0.25	0.5	TOTAL	COPPER	0.8	J	0.4476	0.45	MG/KG
SS132A	AN719	19-Mar-01	0.25	0.5	TOTAL	IRON	2130	J	3.5	6.64	MG/KG
SS132A	AN719	19-Mar-01	0.25	0.5	TOTAL	LEAD	1.7	J	0.2	0.23	MG/KG
SS132A	AN719	19-Mar-01	0.25	0.5	TOTAL	MAGNESIUM	205		33.8203	33.8	MG/KG
SS132A	AN719	19-Mar-01	0.25	0.5	TOTAL	MANGANESE	16.8	J	0.1074	0.11	MG/KG
SS132A	AN719	19-Mar-01	0.25	0.5	TOTAL	NICKEL	1	J	0.2327	0.23	MG/KG
SS132A	AN719	19-Mar-01	0.25	0.5	TOTAL	POTASSIUM	132		28.7356	28.7	MG/KG
SS132A	AN719	19-Mar-01	0.25	0.5	TOTAL	VANADIUM	4		0.2507	0.25	MG/KG
SS132A	AN719	19-Mar-01	0.25	0.5	TOTAL	ZINC	3.6	J	0.2686	0.27	MG/KG
SS132A	AN720	19-Mar-01	0.5	1	TOTAL	ALUMINUM	1700	J	5.3	7.81	MG/KG
SS132A	AN720	19-Mar-01	0.5	1	TOTAL	BARIUM	2.9		0.6729	0.67	MG/KG
SS132A	AN720	19-Mar-01	0.5	1	TOTAL	BERYLLIUM	0.04	J	0.0187	0.02	MG/KG
SS132A	AN720	19-Mar-01	0.5	1	TOTAL	CALCIUM	53	J	33.6249	33.6	MG/KG
SS132A	AN720	19-Mar-01	0.5	1	TOTAL	CHROMIUM, TOTAL	1.9	J	0.2	0.26	MG/KG
SS132A	AN720	19-Mar-01	0.5	1	TOTAL	COBALT	0.44		0.2243		MG/KG
SS132A	AN720	19-Mar-01	0.5	1	TOTAL	COPPER	0.49		0.4673		MG/KG
SS132A	AN720	19-Mar-01	0.5	1	TOTAL	IRON	1940		3.5		MG/KG

Table A.4
Rail Line Soil Data (Detects)

LOCATION	SAMPLE ID	DATE	DEP1	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132A	AN720	19-Mar-01	0.5	1	TOTAL	LEAD	2.3	J	0.2	0.24	MG/KG
SS132A	AN720	19-Mar-01	0.5	1	TOTAL	MAGNESIUM	147		35.3071	35.3	MG/KG
SS132A	AN720	19-Mar-01	0.5	1	TOTAL	MANGANESE	12.7	J	0.1121	0.11	MG/KG
SS132A	AN720	19-Mar-01	0.5	1	TOTAL	NICKEL	0.8	J	0.243	0.24	MG/KG
SS132A	AN720	19-Mar-01	0.5	1	TOTAL	POTASSIUM	118		29.9989	30	MG/KG
SS132A	AN720	19-Mar-01	0.5	1	TOTAL	VANADIUM	3.4		0.2617	0.26	MG/KG
SS132A	AN720	19-Mar-01	0.5	1	TOTAL	ZINC	3.2	J	0.2804	0.28	MG/KG
SS132A	AN720	19-Mar-01	0.5	1	SW3550	FLUORENE	18	J	18	340	UG/KG
SS132A	AN721	19-Mar-01	0.5	1	TOTAL	ALUMINUM	1500	J	5.3	7.46	MG/KG
SS132A	AN721	19-Mar-01	0.5	1	TOTAL	BARIUM	2.4		0.6425	0.64	MG/KG
SS132A	AN721	19-Mar-01	0.5	1	TOTAL	BERYLLIUM	0.04	J	0.0178	0.02	MG/KG
SS132A	AN721	19-Mar-01	0.5	1	TOTAL	CALCIUM	39.6	J	32.1089	32.1	MG/KG
SS132A	AN721	19-Mar-01	0.5	1	TOTAL	CHROMIUM, TOTAL	1.8	J	0.2	0.25	MG/KG
SS132A	AN721	19-Mar-01	0.5	1	TOTAL	COBALT	0.7		0.2142	0.21	MG/KG
SS132A	AN721	19-Mar-01	0.5	1	TOTAL	COPPER	0.56	J	0.4462	0.45	MG/KG
SS132A	AN721	19-Mar-01	0.5	1	TOTAL	IRON	1770	J	3.5	6.62	MG/KG
SS132A	AN721	19-Mar-01	0.5	1	TOTAL	LEAD	1.3	J	0.2	0.23	MG/KG
SS132A	AN721	19-Mar-01	0.5	1	TOTAL	MAGNESIUM	137		33.7153	33.7	MG/KG
SS132A	AN721	19-Mar-01	0.5	1	TOTAL	MANGANESE	14.4	J	0.1071	0.11	MG/KG
SS132A	AN721	19-Mar-01	0.5	1	TOTAL	NICKEL	0.95	J	0.232	0.23	MG/KG
SS132A	AN721	19-Mar-01	0.5	1	TOTAL	POTASSIUM	113		28.6464		MG/KG
SS132A	AN721	19-Mar-01	0.5	1	TOTAL	VANADIUM	3.2		0.2499		MG/KG
SS132A	AN721	19-Mar-01	0.5	1	TOTAL	ZINC	2.7	J	0.2677	0.27	MG/KG
SS132A	AN722	19-Mar-01	0	0.25	TOTAL	ALUMINUM	3560	J	5.3	8.69	MG/KG
SS132A	AN722	19-Mar-01	0	0.25	TOTAL	ARSENIC	1.1	J	0.8525	0.85	MG/KG
SS132A	AN722	19-Mar-01	0	0.25	TOTAL	BARIUM	2.3		0.7485	0.75	MG/KG
SS132A	AN722	19-Mar-01	0	0.25	TOTAL	BERYLLIUM	0.03	J	0.0208	0.02	MG/KG
SS132A	AN722	19-Mar-01	0	0.25	TOTAL	CALCIUM	56.2		37.4067	37.4	MG/KG
SS132A	AN722	19-Mar-01	0	0.25	TOTAL	CHROMIUM, TOTAL	2.9	J	0.2	0.29	MG/KG
SS132A	AN722	19-Mar-01	0	0.25	TOTAL	COBALT	0.43	J	0.2495	0.25	MG/KG
SS132A	AN722	19-Mar-01	0	0.25	TOTAL	COPPER	3.7	J	0.5198	0.52	MG/KG
SS132A	AN722	19-Mar-01	0	0.25	TOTAL	IRON	3410	J	3.5	7.71	MG/KG
SS132A	AN722	19-Mar-01	0	0.25	TOTAL	LEAD	9.6	J	0.2	0.27	MG/KG
SS132A	AN722	19-Mar-01	0	0.25	TOTAL	MAGNESIUM	192		39.2781	39.3	MG/KG
SS132A	AN722	19-Mar-01	0	0.25	TOTAL	MANGANESE	15.2	J	0.1248	0.12	MG/KG
SS132A	AN722	19-Mar-01	0	0.25	TOTAL	NICKEL	0.91	J	0.2703	0.27	MG/KG
SS132A	AN722	19-Mar-01	0	0.25	TOTAL	POTASSIUM	136		33.3728	33.4	MG/KG
SS132A	AN722	19-Mar-01	0	0.25	TOTAL	VANADIUM	8.1		0.2911	0.29	MG/KG

Table A.4
Rail Line Soil Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132A	AN722	19-Mar-01	0	0.25	TOTAL	ZINC	3.7		0.3119		MG/KG
SS132A	AN723	19-Mar-01	0.25	0.5	TOTAL	ALUMINUM	3020	J	5.3	7.44	MG/KG
SS132A	AN723	19-Mar-01	0.25	0.5	TOTAL	BARIUM	2.5		0.6409	0.64	MG/KG
SS132A	AN723	19-Mar-01	0.25	0.5	TOTAL	BERYLLIUM	0.04	J	0.0178	0.02	MG/KG
SS132A	AN723	19-Mar-01	0.25	0.5	TOTAL	CALCIUM	57.9	J	32.0289	32	MG/KG
SS132A	AN723	19-Mar-01	0.25	0.5	TOTAL	CHROMIUM, TOTAL	2.4	J	0.2	0.25	MG/KG
SS132A	AN723	19-Mar-01	0.25	0.5	TOTAL	COBALT	0.46		0.2136	0.21	MG/KG
SS132A	AN723	19-Mar-01	0.25	0.5	TOTAL	COPPER	1.5	J	0.4451	0.45	MG/KG
SS132A	AN723	19-Mar-01	0.25	0.5	TOTAL	IRON	2520	J	3.5	6.61	MG/KG
SS132A	AN723	19-Mar-01	0.25	0.5	TOTAL	LEAD	6	J	0.2	0.23	MG/KG
SS132A	AN723	19-Mar-01	0.25	0.5	TOTAL	MAGNESIUM	223		33.6312	33.6	MG/KG
SS132A	AN723	19-Mar-01	0.25	0.5	TOTAL	MANGANESE	19.2	J	0.1068	0.11	MG/KG
SS132A	AN723	19-Mar-01	0.25	0.5	TOTAL	NICKEL	1.1	J	0.2314	0.23	MG/KG
SS132A	AN723	19-Mar-01	0.25	0.5	TOTAL	POTASSIUM	151		28.575	28.6	MG/KG
SS132A	AN723	19-Mar-01	0.25	0.5	TOTAL	VANADIUM	4.2		0.2493	0.25	MG/KG
SS132A	AN723	19-Mar-01	0.25	0.5	TOTAL	ZINC	4	J	0.2671	0.27	MG/KG
SS132A	AN724	19-Mar-01	0.5	1	TOTAL	ALUMINUM	2050	J	5.3	7.82	MG/KG
SS132A	AN724	19-Mar-01	0.5	1	TOTAL	BARIUM	2.4		0.6739	0.67	MG/KG
SS132A	AN724	19-Mar-01	0.5	1	TOTAL	BORON	1.6	J	0.7862	0.79	MG/KG
SS132A	AN724	19-Mar-01	0.5	1	TOTAL	CALCIUM	47.3	J	33.674	33.7	MG/KG
SS132A	AN724	19-Mar-01	0.5	1	TOTAL	CHROMIUM, TOTAL	1.8	J	0.2	0.26	MG/KG
SS132A	AN724	19-Mar-01	0.5	1	TOTAL	COBALT	0.38	J	0.2246	0.22	MG/KG
SS132A	AN724	19-Mar-01	0.5	1	TOTAL	COPPER	0.73	J	0.468	0.47	MG/KG
SS132A	AN724	19-Mar-01	0.5	1	TOTAL	IRON	1850	J	3.5	6.94	MG/KG
SS132A	AN724	19-Mar-01	0.5	1	TOTAL	LEAD	2.9	J	0.2	0.24	MG/KG
SS132A	AN724	19-Mar-01	0.5	1	TOTAL	MAGNESIUM	162		35.3586	35.4	MG/KG
SS132A	AN724	19-Mar-01	0.5	1	TOTAL	MANGANESE	14.4	J	0.1123	0.11	MG/KG
SS132A	AN724	19-Mar-01	0.5	1	TOTAL	NICKEL	0.88	J	0.2433	0.24	MG/KG
SS132A	AN724	19-Mar-01	0.5	1	TOTAL	VANADIUM	3.2		0.2621	0.26	MG/KG
SS132A	AN724	19-Mar-01	0.5	1	TOTAL	ZINC	3.7	J	0.2808	0.28	MG/KG
SS132AA	20548	16-Nov-04	0	0.25	D2216	MOISTURE, PERCENT	24				Т
SS132AA	20548	16-Nov-04	0	0.25	SW8270C	2-METHYLNAPHTHALENE	150	J	75.9527	870	UG/KG
SS132AA	20548	16-Nov-04	0	0.25	SW8270C	ACENAPHTHENE	140	J	83.3114	870	UG/KG
SS132AA	20548	16-Nov-04	0	0.25	SW8270C	ACENAPHTHYLENE	490	J	53.6137	870	UG/KG
SS132AA	20548	16-Nov-04	0	0.25	SW8270C	ANTHRACENE	1100		72.2733	870	UG/KG
SS132AA	20548	16-Nov-04	0	0.25	SW8270C	BENZO(a)ANTHRACENE	4800		80.9461	870	
SS132AA	20548	16-Nov-04	0	0.25	SW8270C	BENZO(a)PYRENE	4300		90.4074	870	UG/KG
SS132AA	20548	16-Nov-04	0	0.25		BENZO(b)FLUORANTHENE	6900		363.1579	2200	UG/KG

Table A.4
Rail Line Soil Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132AA	20548	16-Nov-04	0	0.25	SW8270C	BENZO(g,h,i)PERYLENE	1500		123.7845	870	UG/KG
SS132AA	20548	16-Nov-04	0	0.25	SW8270C	BENZO(k)FLUORANTHENE	4600	J	100.3942	870	UG/KG
SS132AA	20548	16-Nov-04	0	0.25	SW8270C	CARBAZOLE	1000		207.3587	870	UG/KG
SS132AA	20548	16-Nov-04	0	0.25	SW8270C	CHRYSENE	9000		171.0526	2200	UG/KG
SS132AA	20548	16-Nov-04	0	0.25	SW8270C	DIBENZ(a,h)ANTHRACENE	740	J	173.456	870	UG/KG
SS132AA	20548	16-Nov-04	0	0.25	SW8270C	DIBENZOFURAN	190	J	94.6124	870	UG/KG
SS132AA	20548	16-Nov-04	0	0.25	SW8270C	FLUORANTHENE	12000		475.6579	2200	UG/KG
SS132AA	20548	16-Nov-04	0	0.25	SW8270C	FLUORENE	360	J	105.9133	870	UG/KG
SS132AA	20548	16-Nov-04	0	0.25	SW8270C	INDENO(1,2,3-c,d)PYRENE	1900		169.5138	870	UG/KG
SS132AA	20548	16-Nov-04	0	0.25	SW8270C	NAPHTHALENE	140	J	78.318	870	UG/KG
SS132AA	20548	16-Nov-04	0	0.25	SW8270C	PHENANTHRENE	4300		69.1196	870	UG/KG
SS132AA	20548	16-Nov-04	0	0.25	SW8270C	PYRENE	13000		494.7368	2200	UG/KG
SS132AA	20549	16-Nov-04	0.25	0.5	D2216	MOISTURE, PERCENT	9				Т
SS132AA	20549	16-Nov-04	0.25	0.5	SW8270C	ANTHRACENE	50	J	30.1205	360	UG/KG
SS132AA	20549	16-Nov-04	0.25	0.5	SW8270C	BENZO(a)ANTHRACENE	200	J	33.7349	360	UG/KG
SS132AA	20549	16-Nov-04	0.25	0.5	SW8270C	BENZO(a)PYRENE	180	J	37.678	360	UG/KG
SS132AA	20549	16-Nov-04	0.25	0.5	SW8270C	BENZO(b)FLUORANTHENE	280	J	60.46	360	UG/KG
SS132AA	20549	16-Nov-04	0.25	0.5	SW8270C	BENZO(g,h,i)PERYLENE	130	J	51.5882	360	UG/KG
SS132AA	20549	16-Nov-04	0.25	0.5	SW8270C	BENZO(k)FLUORANTHENE	220	J	41.8401	360	UG/KG
SS132AA	20549	16-Nov-04	0.25	0.5	SW8270C	CARBAZOLE	34	J	34	360	UG/KG
SS132AA	20549	16-Nov-04	0.25	0.5	SW8270C	CHRYSENE	300	J	28.4775	360	UG/KG
SS132AA	20549	16-Nov-04	0.25	0.5	SW8270C	DIBENZ(a,h)ANTHRACENE	51	J	51	360	UG/KG
SS132AA	20549	16-Nov-04	0.25	0.5	SW8270C	FLUORANTHENE	440		79.1895	360	UG/KG
SS132AA	20549	16-Nov-04	0.25	0.5	SW8270C	FLUORENE	27	J	27	360	UG/KG
SS132AA	20549	16-Nov-04	0.25	0.5	SW8270C	INDENO(1,2,3-c,d)PYRENE	130	J	70.6462	360	UG/KG
SS132AA	20549	16-Nov-04	0.25	0.5	SW8270C	PHENANTHRENE	250	J	28.8061	360	UG/KG
SS132AA	20549	16-Nov-04	0.25	0.5	SW8270C	PYRENE	410		82.3658	360	UG/KG
SS132AA	20550	16-Nov-04	0.5	1	D2216	MOISTURE, PERCENT	9				Т
SS132AA	20550	16-Nov-04	0.5	1	SW8270C	ACENAPHTHYLENE	26	J	22.467	360	UG/KG
SS132AA	20550	16-Nov-04	0.5	1	SW8270C	ANTHRACENE	57	J	30.2863	360	UG/KG
SS132AA	20550	16-Nov-04	0.5	1	SW8270C	BENZO(a)ANTHRACENE	300	J	33.9207	360	UG/KG
SS132AA	20550	16-Nov-04	0.5	1	SW8270C	BENZO(a)PYRENE	250	J	37.8855	360	UG/KG
SS132AA	20550	16-Nov-04	0.5	1	SW8270C	BENZO(b)FLUORANTHENE	340	J	60.793	360	UG/KG
SS132AA	20550	16-Nov-04	0.5	1	SW8270C	BENZO(g,h,i)PERYLENE	180	J	51.8722	360	UG/KG
SS132AA	20550	16-Nov-04	0.5	1	SW8270C	BENZO(k)FLUORANTHENE	340	J	42.0705	360	UG/KG
SS132AA	20550	16-Nov-04	0.5	1	SW8270C	CARBAZOLE	69	J	69	360	UG/KG
SS132AA	20550	16-Nov-04	0.5	1	SW8270C	CHRYSENE	470		28.6344	360	UG/KG
SS132AA	20550	16-Nov-04	0.5	1	SW8270C	DIBENZ(a,h)ANTHRACENE	80	J	72.6872	360	UG/KG

Table A.4
Rail Line Soil Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPTI	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132AA	20550	16-Nov-04	0.5	1	SW8270C	DIBENZOFURAN	27	J	27	360	UG/KG
SS132AA	20550	16-Nov-04	0.5	1	SW8270C	FLUORANTHENE	670		79.6256	360	UG/KG
SS132AA	20550	16-Nov-04	0.5	1	SW8270C	FLUORENE	49	J	44.3833	360	UG/KG
SS132AA	20550	16-Nov-04	0.5	1	SW8270C	INDENO(1,2,3-c,d)PYRENE	180	J	71.0352	360	UG/KG
SS132AA	20550	16-Nov-04	0.5	1	SW8270C	NAPHTHALENE	23	J	23	360	UG/KG
SS132AA	20550	16-Nov-04	0.5	1	SW8270C	PHENANTHRENE	450		28.9648	360	UG/KG
SS132AA	20550	16-Nov-04	0.5	1	SW8270C	PYRENE	630		82.8194	360	UG/KG
SS132AB	20551	16-Nov-04	0	0.25	METHOD	MOISTURE, PERCENT	14				Т
SS132AB	20551	16-Nov-04	0	0.25	SW8270C	ACENAPHTHENE	43	J	42	770	UG/KG
SS132AB	20551	16-Nov-04	0	0.25	SW8270C	ACENAPHTHYLENE	120	J	47.4971	770	UG/KG
SS132AB	20551	16-Nov-04	0	0.25	SW8270C	ANTHRACENE	290	J	64.0279	770	UG/KG
SS132AB	20551	16-Nov-04	0	0.25	SW8270C	BENZO(a)ANTHRACENE	2400		71.7113	770	UG/KG
SS132AB	20551	16-Nov-04	0	0.25	SW8270C	BENZO(a)PYRENE	1600		80.0931	770	UG/KG
SS132AB	20551	16-Nov-04	0	0.25	SW8270C	BENZO(b)FLUORANTHENE	3000		128.5215	770	UG/KG
SS132AB	20551	16-Nov-04	0	0.25	SW8270C	BENZO(g,h,i)PERYLENE	1100		109.6624	770	UG/KG
SS132AB	20551	16-Nov-04	0	0.25	SW8270C	BENZO(k)FLUORANTHENE	3200	J	88.9406	770	UG/KG
SS132AB	20551	16-Nov-04	0	0.25	SW8270C	BENZOIC ACID	110	J	109	1900	UG/KG
SS132AB	20551	16-Nov-04	0	0.25	SW8270C	CARBAZOLE	360	J	183.702	770	UG/KG
SS132AB	20551	16-Nov-04	0	0.25	SW8270C	CHRYSENE	5100		60.5355	770	UG/KG
SS132AB	20551	16-Nov-04	0	0.25	SW8270C	DIBENZ(a,h)ANTHRACENE	400	J	153.6671	770	UG/KG
SS132AB	20551	16-Nov-04	0	0.25	SW8270C	DIBENZOFURAN	73	J	72	770	UG/KG
SS132AB	20551	16-Nov-04	0	0.25	SW8270C	FLUORANTHENE	6700		336.2791	1500	UG/KG
SS132AB	20551	16-Nov-04	0	0.25	SW8270C	FLUORENE	130	J	93.83	770	UG/KG
SS132AB	20551	16-Nov-04	0	0.25	SW8270C	INDENO(1,2,3-c,d)PYRENE	1100		150.1746	770	UG/KG
SS132AB	20551	16-Nov-04	0	0.25	SW8270C	NAPHTHALENE	49	J	48	770	UG/KG
SS132AB	20551	16-Nov-04	0	0.25	SW8270C	PHENANTHRENE	2500		61.234	770	UG/KG
SS132AB	20551	16-Nov-04	0	0.25	SW8270C	PYRENE	7600		349.7674	1500	UG/KG
SS132AB	20552	16-Nov-04	0	0.25	METHOD	MOISTURE, PERCENT	14				Т
SS132AB	20552	16-Nov-04	0	0.25	SW8270C	2-METHYLNAPHTHALENE	45	J	44	770	UG/KG
SS132AB	20552	16-Nov-04	0	0.25	SW8270C	ACENAPHTHENE	51	J	50	770	UG/KG
SS132AB	20552	16-Nov-04	0	0.25	SW8270C	ACENAPHTHYLENE	200	J	47.3868	770	UG/KG
SS132AB	20552	16-Nov-04	0	0.25	SW8270C	ANTHRACENE	400	J	63.8792	770	UG/KG
SS132AB	20552	16-Nov-04	0	0.25	SW8270C	BENZO(a)ANTHRACENE	3200		71.5447	770	UG/KG
SS132AB	20552	16-Nov-04	0	0.25	SW8270C	BENZO(a)PYRENE	2100		79.9071	770	UG/KG
SS132AB	20552	16-Nov-04	0	0.25	SW8270C	BENZO(b)FLUORANTHENE	4000		128.223	770	UG/KG
SS132AB	20552	16-Nov-04	0	0.25	SW8270C	BENZO(g,h,i)PERYLENE	1400		109.4077	770	UG/KG
SS132AB	20552	16-Nov-04	0	0.25	SW8270C	BENZO(k)FLUORANTHENE	3500	J	88.734	770	UG/KG
SS132AB	20552	16-Nov-04	0	0.25	SW8270C	BENZOIC ACID	130	J	129	1900	UG/KG

Table A.4
Rail Line Soil Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132AB	20552	16-Nov-04	0	0.25	SW8270C	CARBAZOLE	530	J	183.2753	770	UG/KG
SS132AB	20552	16-Nov-04	0	0.25	SW8270C	CHRYSENE	5900		60.3949	770	UG/KG
SS132AB	20552	16-Nov-04	0	0.25	SW8270C	DIBENZ(a,h)ANTHRACENE	750	J	153.3101	770	UG/KG
SS132AB	20552	16-Nov-04	0	0.25	SW8270C	DIBENZOFURAN	99	J	83.6237	770	UG/KG
SS132AB	20552	16-Nov-04	0	0.25	SW8270C	FLUORANTHENE	9800		336.2791	1500	UG/KG
SS132AB	20552	16-Nov-04	0	0.25	SW8270C	FLUORENE	170	J	93.6121	770	UG/KG
SS132AB	20552	16-Nov-04	0	0.25	SW8270C	INDENO(1,2,3-c,d)PYRENE	1600		149.8258	770	UG/KG
SS132AB	20552	16-Nov-04	0	0.25	SW8270C	NAPHTHALENE	78	J	69.2218	770	UG/KG
SS132AB	20552	16-Nov-04	0	0.25	SW8270C	PHENANTHRENE	3600		61.0918	770	UG/KG
SS132AB	20552	16-Nov-04	0	0.25	SW8270C	PYRENE	8900		349.7674	1500	UG/KG
SS132AB	20553	16-Nov-04	0.25	0.5		MOISTURE, PERCENT	11				Т
SS132AB	20553	16-Nov-04	0.25	0.5	SW8270C	2-METHYLNAPHTHALENE	31	J	30	370	UG/KG
SS132AB	20553	16-Nov-04	0.25	0.5	SW8270C	ACENAPHTHENE	18	J	17	370	UG/KG
SS132AB	20553	16-Nov-04	0.25	0.5	SW8270C	ACENAPHTHYLENE	55	J	22.8443	370	UG/KG
SS132AB	20553	16-Nov-04	0.25	0.5	SW8270C	ANTHRACENE	110	J	30.7951	370	UG/KG
SS132AB	20553	16-Nov-04	0.25	0.5	SW8270C	BENZO(a)ANTHRACENE	640		34.4905	370	UG/KG
SS132AB	20553	16-Nov-04	0.25	0.5	SW8270C	BENZO(a)PYRENE	520		38.5218	370	UG/KG
SS132AB	20553	16-Nov-04	0.25	0.5	SW8270C	BENZO(b)FLUORANTHENE	890		61.8141	370	UG/KG
SS132AB	20553	16-Nov-04	0.25	0.5	SW8270C	BENZO(g,h,i)PERYLENE	360	J	52.7436	370	UG/KG
SS132AB	20553	16-Nov-04	0.25	0.5	SW8270C	BENZO(k)FLUORANTHENE	970	J	42.7772	370	UG/KG
SS132AB	20553	16-Nov-04	0.25	0.5	SW8270C	BENZOIC ACID	40	J	39	930	UG/KG
SS132AB	20553	16-Nov-04	0.25	0.5	SW8270C	CARBAZOLE	130	J	88.3539	370	UG/KG
SS132AB	20553	16-Nov-04	0.25	0.5	SW8270C	CHRYSENE	1300		29.1153	370	UG/KG
SS132AB	20553	16-Nov-04	0.25	0.5	SW8270C	DIBENZ(a,h)ANTHRACENE	130	J	73.9082	370	UG/KG
SS132AB	20553	16-Nov-04	0.25	0.5	SW8270C	DIBENZOFURAN	51	J	40.3135	370	UG/KG
SS132AB	20553	16-Nov-04	0.25	0.5	SW8270C	FLUORANTHENE	1800		80.963	370	UG/KG
SS132AB	20553	16-Nov-04	0.25	0.5	SW8270C	FLUORENE	84	J	45.1288	370	UG/KG
SS132AB	20553	16-Nov-04	0.25	0.5	SW8270C	INDENO(1,2,3-c,d)PYRENE	380		72.2284	370	UG/KG
SS132AB	20553	16-Nov-04	0.25	0.5	SW8270C	NAPHTHALENE	58	J	33.3707	370	UG/KG
SS132AB	20553	16-Nov-04	0.25	0.5	SW8270C	PHENANTHRENE	920		29.4513	370	UG/KG
SS132AB	20553	16-Nov-04	0.25	0.5	SW8270C	PYRENE	2200		84.2105	370	UG/KG
SS132AB	20554	16-Nov-04	0.5	1	METHOD	MOISTURE, PERCENT	8				Т
SS132AB	20554	16-Nov-04	0.5	1	SW8270C	BENZO(a)ANTHRACENE	23	J	22	360	UG/KG
SS132AB	20554	16-Nov-04	0.5	1	SW8270C	BENZO(b)FLUORANTHENE	40	J	39	360	UG/KG
SS132AB	20554	16-Nov-04	0.5	1	SW8270C	BENZO(k)FLUORANTHENE	34	J	33	360	UG/KG
SS132AB	20554	16-Nov-04	0.5	1	SW8270C	BENZOIC ACID	19	J	18	900	UG/KG
SS132AB	20554	16-Nov-04	0.5	1	SW8270C	CHRYSENE	41		28.3843	360	UG/KG
SS132AB	20554	16-Nov-04	0.5	1	SW8270C	FLUORANTHENE	60	J	59	360	UG/KG

Table A.4
Rail Line Soil Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132AB	20554	16-Nov-04	0.5	1	SW8270C	PHENANTHRENE	25	J	24	360	UG/KG
SS132AB	20554	16-Nov-04	0.5	1	SW8270C	PYRENE	64	J	63	360	UG/KG
SS132AC	20555	16-Nov-04	0	0.25	D2216	MOISTURE, PERCENT	4				Т
SS132AC	20555	16-Nov-04	0	0.25	SW8270C	2-METHYLNAPHTHALENE	77	J	29.8797	340	UG/KG
SS132AC	20555	16-Nov-04	0	0.25	SW8270C	ACENAPHTHENE	45	J	32.7746	340	UG/KG
SS132AC	20555	16-Nov-04	0	0.25	SW8270C	ACENAPHTHYLENE	160	J	21.0915	340	UG/KG
SS132AC	20555	16-Nov-04	0	0.25	SW8270C	ANTHRACENE	380		28.4322	340	UG/KG
SS132AC	20555	16-Nov-04	0	0.25	SW8270C	BENZO(a)ANTHRACENE	1400		31.8441	340	UG/KG
SS132AC	20555	16-Nov-04	0	0.25	SW8270C	BENZO(a)PYRENE	1200		35.5661	340	UG/KG
SS132AC	20555	16-Nov-04	0	0.25	SW8270C	BENZO(b)FLUORANTHENE	1300		57.0712	340	UG/KG
SS132AC	20555	16-Nov-04	0	0.25	SW8270C	BENZO(g,h,i)PERYLENE	600		48.6966	340	UG/KG
SS132AC	20555	16-Nov-04	0	0.25	SW8270C	BENZOIC ACID	45	J	45	860	UG/KG
SS132AC	20555	16-Nov-04	0	0.25	SW8270C	CARBAZOLE	120	J	81.5746	340	UG/KG
SS132AC	20555	16-Nov-04	0	0.25	SW8270C	CHRYSENE	1700		26.8813	340	UG/KG
SS132AC	20555	16-Nov-04	0	0.25	SW8270C	DIBENZ(a,h)ANTHRACENE	250	J	68.2373	340	UG/KG
SS132AC	20555	16-Nov-04	0	0.25	SW8270C	DIBENZOFURAN	140	J	37.2203	340	UG/KG
SS132AC	20555	16-Nov-04	0	0.25	SW8270C	FLUORANTHENE	2700		74.7508	340	UG/KG
SS132AC	20555	16-Nov-04	0	0.25	SW8270C	FLUORENE	240	J	41.6661	340	UG/KG
SS132AC	20555	16-Nov-04	0	0.25	SW8270C	INDENO(1,2,3-c,d)PYRENE	650		66.6864	340	UG/KG
SS132AC	20555	16-Nov-04	0	0.25	SW8270C	NAPHTHALENE	110	J	30.8102	340	UG/KG
SS132AC	20555	16-Nov-04	0	0.25	SW8270C	PHENANTHRENE	2100		27.1915	340	UG/KG
SS132AC	20555	16-Nov-04	0	0.25	SW8270C	PYRENE	2300		77.7491	340	UG/KG
SS132AC	20556	16-Nov-04	0.25	0.5	D2216	MOISTURE, PERCENT	7				T
SS132AC	20556	16-Nov-04	0.25	0.5	SW8270C	ANTHRACENE	49	J	29.5699	350	UG/KG
SS132AC	20556	16-Nov-04	0.25	0.5	SW8270C	BENZO(a)ANTHRACENE	320	J	33.1183	350	UG/KG
SS132AC	20556	16-Nov-04	0.25	0.5	SW8270C	BENZO(a)PYRENE	280	J	36.9892	350	UG/KG
SS132AC	20556	16-Nov-04	0.25	0.5	SW8270C	BENZO(b)FLUORANTHENE	320	J	59.3548	350	UG/KG
SS132AC	20556	16-Nov-04	0.25	0.5	SW8270C	BENZO(g,h,i)PERYLENE	180	J	50.6452	350	UG/KG
SS132AC	20556	16-Nov-04	0.25	0.5	SW8270C	CARBAZOLE	31	J	31	350	UG/KG
SS132AC	20556	16-Nov-04	0.25	0.5	SW8270C	CHRYSENE	500		27.957	350	UG/KG
SS132AC	20556	16-Nov-04	0.25	0.5	SW8270C	DIBENZ(a,h)ANTHRACENE	67	J	67	350	UG/KG
SS132AC	20556	16-Nov-04	0.25	0.5	SW8270C	FLUORANTHENE	600		77.7419	350	UG/KG
SS132AC	20556	16-Nov-04	0.25	0.5	SW8270C	FLUORENE	20	J	20	350	UG/KG
SS132AC	20556	16-Nov-04	0.25	0.5	SW8270C	INDENO(1,2,3-c,d)PYRENE	200	J	69.3548	350	UG/KG
SS132AC	20556	16-Nov-04	0.25	0.5	SW8270C	PHENANTHRENE	230	J	28.2796	350	UG/KG
SS132AC	20556	16-Nov-04	0.25	0.5	SW8270C	PYRENE	700		80.8602	350	UG/KG
SS132AC	20557	16-Nov-04	0.5	1	D2216	MOISTURE, PERCENT	2				Т
SS132AC	20557	16-Nov-04	0.5	1	SW8270C	ACENAPHTHYLENE	25	J	20.8802	340	UG/KG

Table A.4
Rail Line Soil Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	TH (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132AC	20557	16-Nov-04	0.5	1	SW8270C	ANTHRACENE	160	J	28.1474	340	UG/KG
SS132AC	20557	16-Nov-04	0.5	1	SW8270C	BENZO(a)ANTHRACENE	430		31.5251	340	UG/KG
SS132AC	20557	16-Nov-04	0.5	1	SW8270C	BENZO(a)PYRENE	340		35.2098	340	UG/KG
SS132AC	20557	16-Nov-04	0.5	1	SW8270C	BENZO(b)FLUORANTHENE	230	J	56.4995	340	UG/KG
SS132AC	20557	16-Nov-04	0.5	1	SW8270C	BENZO(g,h,i)PERYLENE	150	J	48.2088	340	UG/KG
SS132AC	20557	16-Nov-04	0.5	1	SW8270C	CHRYSENE	440		26.6121	340	UG/KG
SS132AC	20557	16-Nov-04	0.5	1	SW8270C	DIBENZ(a,h)ANTHRACENE	52	J	52	340	UG/KG
SS132AC	20557	16-Nov-04	0.5	1	SW8270C	DIBENZOFURAN	17	J	17	340	UG/KG
SS132AC	20557	16-Nov-04	0.5	1	SW8270C	FLUORANTHENE	950		74.002	340	UG/KG
SS132AC	20557	16-Nov-04	0.5	1	SW8270C	FLUORENE	42	J	41.2487	340	UG/KG
SS132AC	20557	16-Nov-04	0.5	1	SW8270C	INDENO(1,2,3-c,d)PYRENE	170	J	66.0184	340	UG/KG
SS132AC	20557	16-Nov-04	0.5	1	SW8270C	PHENANTHRENE	550		26.9191	340	UG/KG
SS132AC	20557	16-Nov-04	0.5	1	SW8270C	PYRENE	720		76.9703	340	UG/KG
SS132AD	20558	15-Nov-04	0	0.25	D2216	MOISTURE, PERCENT	16				Т
SS132AD	20558	15-Nov-04	0	0.25	SW8270C	ACENAPHTHENE	32	J	32	390	UG/KG
SS132AD	20558	15-Nov-04	0	0.25	SW8270C	ACENAPHTHYLENE	29	J	24.2857	390	UG/KG
SS132AD	20558	15-Nov-04	0	0.25	SW8270C	ANTHRACENE	120	J	32.7381	390	UG/KG
SS132AD	20558	15-Nov-04	0	0.25	SW8270C	BENZO(a)ANTHRACENE	520		36.6667	390	UG/KG
SS132AD	20558	15-Nov-04	0	0.25	SW8270C	BENZO(a)PYRENE	340	J	40.9524	390	UG/KG
SS132AD	20558	15-Nov-04	0	0.25	SW8270C	BENZO(b)FLUORANTHENE	1000		65.7143	390	UG/KG
SS132AD	20558	15-Nov-04	0	0.25	SW8270C	BENZO(g,h,i)PERYLENE	240	J	56.0714	390	UG/KG
SS132AD	20558	15-Nov-04	0	0.25	SW8270C	CARBAZOLE	170	J	93.9286	390	UG/KG
SS132AD	20558	15-Nov-04	0	0.25	SW8270C	DIBENZ(a,h)ANTHRACENE	110	J	78.5714	390	UG/KG
SS132AD	20558	15-Nov-04	0	0.25	SW8270C	DIBENZOFURAN	29	J	29	390	UG/KG
SS132AD	20558	15-Nov-04	0	0.25	SW8270C	FLUORANTHENE	2200	J	86.0714	390	UG/KG
SS132AD	20558	15-Nov-04	0	0.25	SW8270C	FLUORENE	36	J	36	390	UG/KG
SS132AD	20558	15-Nov-04	0	0.25	SW8270C	INDENO(1,2,3-c,d)PYRENE	260	J	76.7857	390	UG/KG
SS132AD	20558	15-Nov-04	0	0.25	SW8270C	PHENANTHRENE	620		31.3095	390	UG/KG
SS132AD	20558	15-Nov-04	0	0.25	SW8270C	PYRENE	1900		89.5238	390	UG/KG
SS132AD	20559	15-Nov-04	0.25	0.5	D2216	MOISTURE, PERCENT	16				Т
SS132AD	20559	15-Nov-04	0.25	0.5	SW8270C	ANTHRACENE	24	J	24	390	UG/KG
SS132AD	20559	15-Nov-04	0.25	0.5	SW8270C	BENZO(a)ANTHRACENE	200	J	36.4497	390	UG/KG
SS132AD	20559	15-Nov-04	0.25	0.5	SW8270C	BENZO(a)PYRENE	160	J	40.7101	390	UG/KG
SS132AD	20559	15-Nov-04	0.25	0.5	SW8270C	BENZO(b)FLUORANTHENE	340	J	65.3254	390	UG/KG
SS132AD	20559	15-Nov-04	0.25	0.5	SW8270C	BENZO(g,h,i)PERYLENE	110	J	55.7396	390	UG/KG
SS132AD	20559	15-Nov-04	0.25	0.5		BENZO(k)FLUORANTHENE	350	J	45.2071	390	UG/KG
SS132AD	20559	15-Nov-04	0.25	0.5		CHRYSENE	370	J	30.7692	390	UG/KG
SS132AD	20559	15-Nov-04	0.25	0.5	SW8270C	DIBENZ(a,h)ANTHRACENE	57	J	57	390	UG/KG

Table A.4
Rail Line Soil Data (Detects)

LOCATION	SAMPLE ID	DATE	DEP1	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132AD	20559	15-Nov-04	0.25	0.5	SW8270C	FLUORANTHENE	390	J	85.5621	390	UG/KG
SS132AD	20559	15-Nov-04	0.25	0.5	SW8270C	INDENO(1,2,3-c,d)PYRENE	120	J	76.3314	390	UG/KG
SS132AD	20559	15-Nov-04	0.25	0.5	SW8270C	PHENANTHRENE	72	J	31.1243	390	UG/KG
SS132AD	20559	15-Nov-04	0.25	0.5	SW8270C	PYRENE	480		88.9941	390	UG/KG
SS132AD	20560	15-Nov-04	0.5	1	D2216	MOISTURE, PERCENT	9				T
SS132AD	20560	15-Nov-04	0.5	1	SW8270C	BENZO(a)ANTHRACENE	37	J	33.6229	360	UG/KG
SS132AD	20560	15-Nov-04	0.5	1	SW8270C	BENZO(a)PYRENE	42	J	37.5528	360	UG/KG
SS132AD	20560	15-Nov-04	0.5	1	SW8270C	BENZO(b)FLUORANTHENE	68	J	60.2592	360	UG/KG
SS132AD	20560	15-Nov-04	0.5	1	SW8270C	BENZO(k)FLUORANTHENE	64	J	41.7011	360	UG/KG
SS132AD	20560	15-Nov-04	0.5	1	SW8270C	CHRYSENE	100	J	28.3829	360	UG/KG
SS132AD	20560	15-Nov-04	0.5	1	SW8270C	FLUORANTHENE	140	J	78.9264	360	UG/KG
SS132AD	20560	15-Nov-04	0.5	1	SW8270C	INDENO(1,2,3-c,d)PYRENE	24	J	24	360	UG/KG
SS132AD	20560	15-Nov-04	0.5	1	SW8270C	PHENANTHRENE	46	J	28.7104	360	UG/KG
SS132AD	20560	15-Nov-04	0.5	1	SW8270C	PYRENE	130	J	82.0922	360	UG/KG
SS132AE	20561	16-Nov-04	0	0.25	D2216	MOISTURE, PERCENT	9				Т
SS132AE	20561	16-Nov-04	0	0.25	SW8270C	2-METHYLNAPHTHALENE	22	J	22	360	UG/KG
SS132AE	20561	16-Nov-04	0	0.25	SW8270C	ACENAPHTHENE	26	J	26	360	UG/KG
SS132AE	20561	16-Nov-04	0	0.25	SW8270C	ACENAPHTHYLENE	110	J	22.3684	360	UG/KG
SS132AE	20561	16-Nov-04	0	0.25	SW8270C	ANTHRACENE	270	J	30.1535	360	UG/KG
SS132AE	20561	16-Nov-04	0	0.25	SW8270C	BENZO(a)ANTHRACENE	1100		33.7719	360	UG/KG
SS132AE	20561	16-Nov-04	0	0.25	SW8270C	BENZO(a)PYRENE	860		37.7193	360	UG/KG
SS132AE	20561	16-Nov-04	0	0.25	SW8270C	BENZO(b)FLUORANTHENE	1000		60.5263	360	UG/KG
SS132AE	20561	16-Nov-04	0	0.25	SW8270C	BENZO(g,h,i)PERYLENE	430		51.6447	360	UG/KG
SS132AE	20561	16-Nov-04	0	0.25	SW8270C	BENZOIC ACID	78	J	78	910	UG/KG
SS132AE	20561	16-Nov-04	0	0.25	SW8270C	CARBAZOLE	86	J	86	360	UG/KG
SS132AE	20561	16-Nov-04	0	0.25	SW8270C	CHRYSENE	1400		28.5088	360	UG/KG
SS132AE	20561	16-Nov-04	0	0.25	SW8270C	DIBENZ(a,h)ANTHRACENE	180	J	72.3684	360	UG/KG
SS132AE	20561	16-Nov-04	0	0.25	SW8270C	DIBENZOFURAN	74	J	39.4737	360	UG/KG
SS132AE	20561	16-Nov-04	0	0.25	SW8270C	DI-n-BUTYL PHTHALATE	19	J	19	360	UG/KG
SS132AE	20561	16-Nov-04	0	0.25	SW8270C	FLUORANTHENE	2100		79.2763	360	UG/KG
SS132AE	20561	16-Nov-04	0	0.25	SW8270C	FLUORENE	170	J	44.1886	360	UG/KG
SS132AE	20561	16-Nov-04	0	0.25	SW8270C	INDENO(1,2,3-c,d)PYRENE	480		70.7237	360	UG/KG
SS132AE	20561	16-Nov-04	0	0.25	SW8270C	PHENANTHRENE	1700		28.8377	360	UG/KG
SS132AE	20561	16-Nov-04	0	0.25	SW8270C	PYRENE	1800		82.4561	360	UG/KG
SS132AE	20562	16-Nov-04	0.25	0.5	D2216	MOISTURE, PERCENT	6				Т
SS132AE	20562	16-Nov-04		0.5		2-METHYLNAPHTHALENE	150	J	30.8761	350	UG/KG
SS132AE	20562	16-Nov-04		0.5	SW8270C	ACENAPHTHENE	150		33.8675	350	UG/KG
SS132AE	20562	16-Nov-04	0.25	0.5	SW8270C	ACENAPHTHYLENE	640		21.7949	350	UG/KG

Table A.4
Rail Line Soil Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132AE	20562	16-Nov-04	0.25	0.5	SW8270C	ANTHRACENE	2200		29.3803	350	UG/KG
SS132AE	20562	16-Nov-04	0.25	0.5	SW8270C	BENZO(a)ANTHRACENE	5500		163.8298	1800	UG/KG
SS132AE	20562	16-Nov-04	0.25	0.5	SW8270C	BENZO(a)PYRENE	3700		182.9787	1800	UG/KG
SS132AE	20562	16-Nov-04	0.25	0.5	SW8270C	BENZO(b)FLUORANTHENE	3500		293.617	1800	UG/KG
SS132AE	20562	16-Nov-04	0.25	0.5	SW8270C	BENZO(g,h,i)PERYLENE	1300		50.3205	350	UG/KG
SS132AE	20562	16-Nov-04	0.25	0.5	SW8270C	BENZOIC ACID	38	J	38	880	UG/KG
SS132AE	20562	16-Nov-04	0.25	0.5	SW8270C	CARBAZOLE	230	J	84.2949	350	UG/KG
SS132AE	20562	16-Nov-04	0.25	0.5	SW8270C	CHRYSENE	5700		138.2979	1800	UG/KG
SS132AE	20562	16-Nov-04	0.25	0.5	SW8270C	DIBENZ(a,h)ANTHRACENE	1000		70.5128	350	UG/KG
SS132AE	20562	16-Nov-04	0.25	0.5	SW8270C	DIBENZOFURAN	480		38.4615	350	UG/KG
SS132AE	20562	16-Nov-04	0.25	0.5	SW8270C	FLUORANTHENE	9500		384.5745	1800	UG/KG
SS132AE	20562	16-Nov-04	0.25	0.5	SW8270C	FLUORENE	1100		43.0556	350	UG/KG
SS132AE	20562	16-Nov-04	0.25	0.5	SW8270C	INDENO(1,2,3-c,d)PYRENE	1700		68.9103	350	UG/KG
SS132AE	20562	16-Nov-04	0.25	0.5	SW8270C	NAPHTHALENE	65	J	31.8376	350	UG/KG
SS132AE	20562	16-Nov-04	0.25	0.5	SW8270C	PHENANTHRENE	8100		139.8936	1800	UG/KG
SS132AE	20562	16-Nov-04	0.25	0.5	SW8270C	PYRENE	7900		400	1800	UG/KG
SS132AE	20563	16-Nov-04	0.5	1	D2216	MOISTURE, PERCENT	10				T
SS132AE	20563	16-Nov-04	0.5	1	SW8270C	2-METHYLNAPHTHALENE	76	J	32.1468	370	UG/KG
SS132AE	20563	16-Nov-04	0.5	1	SW8270C	ACENAPHTHENE	28	J	28	370	UG/KG
SS132AE	20563	16-Nov-04	0.5	1	SW8270C	ACENAPHTHYLENE	120	J	22.6919	370	UG/KG
SS132AE	20563	16-Nov-04	0.5	1	SW8270C	ANTHRACENE	530		30.5895	370	UG/KG
SS132AE	20563	16-Nov-04	0.5	1	SW8270C	BENZO(a)ANTHRACENE	1300		34.2603	370	UG/KG
SS132AE	20563	16-Nov-04	0.5	1	SW8270C	BENZO(a)PYRENE	910		38.2647	370	UG/KG
SS132AE	20563	16-Nov-04	0.5	1	SW8270C	BENZO(b)FLUORANTHENE	940		61.4016	370	UG/KG
SS132AE	20563	16-Nov-04	0.5	1	SW8270C	BENZO(g,h,i)PERYLENE	450		52.3915	370	UG/KG
SS132AE	20563	16-Nov-04	0.5	1	SW8270C	CARBAZOLE	66	J	66	370	UG/KG
SS132AE	20563	16-Nov-04	0.5	1	SW8270C	CHRYSENE	1500		28.921	370	UG/KG
SS132AE	20563	16-Nov-04	0.5	1	SW8270C	DIBENZ(a,h)ANTHRACENE	210	J	73.4149	370	UG/KG
SS132AE	20563	16-Nov-04	0.5	1	SW8270C	DIBENZOFURAN	170	J	40.0445	370	UG/KG
SS132AE	20563	16-Nov-04	0.5	1	SW8270C	FLUORANTHENE	2300		80.4227	370	UG/KG
SS132AE	20563	16-Nov-04	0.5	1	SW8270C	FLUORENE	260	J	44.8276	370	UG/KG
SS132AE	20563	16-Nov-04	0.5	1	SW8270C	INDENO(1,2,3-c,d)PYRENE	510		71.7464	370	UG/KG
SS132AE	20563	16-Nov-04	0.5	1	SW8270C	NAPHTHALENE	39	J	33.1479	370	UG/KG
SS132AE	20563	16-Nov-04	0.5	1	SW8270C	PHENANTHRENE	2400		29.2547	370	UG/KG
SS132AE	20563	16-Nov-04	0.5	1	SW8270C	PYRENE	1900		83.6485	370	UG/KG
SS132AF	20564	19-Nov-04	0	0.25	METHOD	MOISTURE, PERCENT	8				Т
SS132AF	20564	19-Nov-04	0	0.25	SW8270C	ANTHRACENE	52	J	29.8265	360	UG/KG
SS132AF	20564	19-Nov-04	0	0.25	SW8270C	BENZO(a)ANTHRACENE	430		33.4056	360	UG/KG

Table A.4
Rail Line Soil Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPTH (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132AF	20564	19-Nov-04	0 0.25	SW8270C	BENZO(a)PYRENE	300	J	37.3102	360	UG/KG
SS132AF	20564	19-Nov-04	0 0.25	SW8270C	BENZO(b)FLUORANTHENE	910		59.8698	360	UG/KG
SS132AF	20564	19-Nov-04	0 0.25	SW8270C	BENZO(g,h,i)PERYLENE	240	J	51.0846	360	UG/KG
SS132AF	20564	19-Nov-04	0 0.25	SW8270C	BENZO(k)FLUORANTHENE	700	J	41.4317	360	UG/KG
SS132AF	20564	19-Nov-04	0 0.25	SW8270C	bis(2-ETHYLHEXYL) PHTHALATE	190	J	99.7831	360	UG/KG
SS132AF	20564	19-Nov-04	0 0.25	SW8270C	CARBAZOLE	78	J	77	360	UG/KG
SS132AF	20564	19-Nov-04	0 0.25	SW8270C	CHRYSENE	1100		28.1996	360	UG/KG
SS132AF	20564	19-Nov-04	0 0.25	SW8270C	DIBENZ(a,h)ANTHRACENE	87	J	71.5835	360	UG/KG
SS132AF	20564	19-Nov-04	0 0.25	SW8270C	FLUORANTHENE	1300		78.4165	360	UG/KG
SS132AF	20564	19-Nov-04	0 0.25	SW8270C	INDENO(1,2,3-c,d)PYRENE	260	J	69.9566	360	UG/KG
SS132AF	20564	19-Nov-04	0 0.25	SW8270C	PHENANTHRENE	280	J	28.5249	360	UG/KG
SS132AF	20564	19-Nov-04	0 0.25	SW8270C	PYRENE	1400		81.5618	360	UG/KG
SS132AF	20565	19-Nov-04	0 0.25	METHOD	MOISTURE, PERCENT	8				Т
SS132AF	20565	19-Nov-04	0 0.25	SW8270C	ANTHRACENE	40	J	29.8588	360	UG/KG
SS132AF	20565	19-Nov-04	0 0.25	SW8270C	BENZO(a)ANTHRACENE	310	J	33.4419	360	UG/KG
SS132AF	20565	19-Nov-04	0 0.25	SW8270C	BENZO(a)PYRENE	250	J	37.3507	360	UG/KG
SS132AF	20565	19-Nov-04	0 0.25	SW8270C	BENZO(b)FLUORANTHENE	700		59.9349	360	UG/KG
SS132AF	20565	19-Nov-04	0 0.25	SW8270C	BENZO(g,h,i)PERYLENE	170	J	51.1401	360	UG/KG
SS132AF	20565	19-Nov-04	0 0.25	SW8270C	BENZO(k)FLUORANTHENE	780	J	41.4767	360	UG/KG
SS132AF	20565	19-Nov-04	0 0.25	SW8270C	CARBAZOLE	50	J	49	360	UG/KG
SS132AF	20565	19-Nov-04	0 0.25	SW8270C	CHRYSENE	780		28.2302	360	UG/KG
SS132AF	20565	19-Nov-04	0 0.25	SW8270C	DIBENZ(a,h)ANTHRACENE	67	J	66	360	UG/KG
SS132AF	20565	19-Nov-04	0 0.25	SW8270C	FLUORANTHENE	860		78.5016	360	UG/KG
SS132AF	20565	19-Nov-04	0 0.25	SW8270C	INDENO(1,2,3-c,d)PYRENE	200	J	70.0326	360	UG/KG
SS132AF	20565	19-Nov-04	0 0.25	SW8270C	PHENANTHRENE	170	J	28.5559	360	UG/KG
SS132AF	20565	19-Nov-04	0 0.25	SW8270C	PYRENE	970		81.6504	360	UG/KG
SS132AF	20566	19-Nov-04	0.25 0.5	METHOD	MOISTURE, PERCENT	6				Т
SS132AF	20566	19-Nov-04	0.25 0.5	SW8270C	ANTHRACENE	17	J	16	350	UG/KG
SS132AF	20566	19-Nov-04	0.25 0.5	SW8270C	BENZO(a)ANTHRACENE	180	J	32.5926	350	UG/KG
SS132AF	20566	19-Nov-04	0.25 0.5	SW8270C	BENZO(a)PYRENE	140	J	36.4021	350	UG/KG
SS132AF	20566	19-Nov-04	0.25 0.5	SW8270C	BENZO(b)FLUORANTHENE	210	J	58.4127	350	UG/KG
SS132AF	20566	19-Nov-04	0.25 0.5	SW8270C	BENZO(g,h,i)PERYLENE	79	J	49.8413	350	UG/KG
SS132AF	20566	19-Nov-04	0.25 0.5	SW8270C	BENZO(k)FLUORANTHENE	280	J	40.4233	350	UG/KG
SS132AF	20566	19-Nov-04	0.25 0.5	SW8270C	CHRYSENE	270		27.5132	350	UG/KG
SS132AF	20566	19-Nov-04	0.25 0.5	SW8270C	DIBENZ(a,h)ANTHRACENE	30	J	29	350	UG/KG
SS132AF	20566	19-Nov-04	0.25 0.5	SW8270C	FLUORANTHENE	290	J	76.5079	350	UG/KG
SS132AF	20566	19-Nov-04	0.25 0.5	SW8270C	INDENO(1,2,3-c,d)PYRENE	90	J	68.254	350	UG/KG
SS132AF	20566	19-Nov-04	0.25 0.5	SW8270C	PHENANTHRENE	53	J	27.8307	350	UG/KG

Table A.4
Rail Line Soil Data (Detects)

LOCATION	SAMPLE ID	DATE	DEP1	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132AF	20566	19-Nov-04	0.25	0.5	SW8270C	PYRENE	320	J	79.5767	350	UG/KG
SS132AF	20567	19-Nov-04	0.5	1	METHOD	MOISTURE, PERCENT	5				Т
SS132AF	20567	19-Nov-04	0.5	1	SW8270C	BENZO(a)ANTHRACENE	25	J	24	350	UG/KG
SS132AF	20567	19-Nov-04	0.5	1	SW8270C	BENZO(a)PYRENE	23	J	22	350	UG/KG
SS132AF	20567	19-Nov-04	0.5	1	SW8270C	BENZO(b)FLUORANTHENE	41	J	40	350	UG/KG
SS132AF	20567	19-Nov-04	0.5	1	SW8270C	BENZO(k)FLUORANTHENE	41	J	40.3379	350	UG/KG
SS132AF	20567	19-Nov-04	0.5	1	SW8270C	CHRYSENE	45	J	27.4551	350	UG/KG
SS132AF	20567	19-Nov-04	0.5	1	SW8270C	FLUORANTHENE	60	J	59	350	UG/KG
SS132AF	20567	19-Nov-04	0.5	1	SW8270C	PHENANTHRENE	17	J	16	350	UG/KG
SS132AF	20567	19-Nov-04	0.5	1	SW8270C	PYRENE	66	J	65	350	UG/KG
SS132AG	20568	19-Nov-04	0	0.25	METHOD	MOISTURE, PERCENT	9				Т
SS132AG	20568	19-Nov-04	0	0.25	SW8270C	ACENAPHTHENE	27	J	26	360	UG/KG
SS132AG	20568	19-Nov-04	0	0.25	SW8270C	ACENAPHTHYLENE	29	J	22.467	360	UG/KG
SS132AG	20568	19-Nov-04	0	0.25	SW8270C	ANTHRACENE	96	J	30.2863	360	UG/KG
SS132AG	20568	19-Nov-04	0	0.25	SW8270C	BENZO(a)ANTHRACENE	1100	J	33.9207	360	UG/KG
SS132AG	20568	19-Nov-04	0	0.25	SW8270C	BENZO(a)PYRENE	1200	J	37.8855	360	UG/KG
SS132AG	20568	19-Nov-04	0	0.25	SW8270C	BENZO(b)FLUORANTHENE	2200	J	93.4154	560	UG/KG
SS132AG	20568	19-Nov-04	0	0.25	SW8270C	BENZO(g,h,i)PERYLENE	690	J	51.8722	360	UG/KG
SS132AG	20568	19-Nov-04	0	0.25	SW8270C	BENZO(k)FLUORANTHENE	2400	J	42.0705	360	UG/KG
SS132AG	20568	19-Nov-04	0	0.25	SW8270C	CARBAZOLE	130	J	86.8943	360	UG/KG
SS132AG	20568	19-Nov-04	0	0.25	SW8270C	CHRYSENE	2300	J	44	560	UG/KG
SS132AG	20568	19-Nov-04	0	0.25	SW8270C	DIBENZ(a,h)ANTHRACENE	280	J	72.6872	360	UG/KG
SS132AG	20568	19-Nov-04	0	0.25	SW8270C	FLUORANTHENE	2200		79.6256	360	UG/KG
SS132AG	20568	19-Nov-04	0	0.25	SW8270C	INDENO(1,2,3-c,d)PYRENE	750	J	71.0352	360	UG/KG
SS132AG	20568	19-Nov-04	0	0.25	SW8270C	PHENANTHRENE	300	J	28.9648	360	UG/KG
SS132AG	20568	19-Nov-04	0	0.25	SW8270C	PYRENE	2500	J	127.2615	560	UG/KG
SS132AG	20569	19-Nov-04	0.25	0.5	METHOD	MOISTURE, PERCENT	6				Т
SS132AG	20569	19-Nov-04	0.25	0.5	SW8270C	BENZO(a)ANTHRACENE	59	J	32.4843	350	UG/KG
SS132AG	20569	19-Nov-04	0.25	0.5	SW8270C	BENZO(a)PYRENE	63	J	36.2812	350	UG/KG
SS132AG	20569	19-Nov-04	0.25	0.5	SW8270C	BENZO(b)FLUORANTHENE	130	J	58.2186	350	UG/KG
SS132AG	20569	19-Nov-04	0.25	0.5	SW8270C	BENZO(g,h,i)PERYLENE	55	J	49.6757	350	UG/KG
SS132AG	20569	19-Nov-04	0.25	0.5	SW8270C	BENZO(k)FLUORANTHENE	110	J	40.289	350	UG/KG
SS132AG	20569	19-Nov-04	0.25	0.5	SW8270C	CHRYSENE	140	J	27.4218	350	UG/KG
SS132AG	20569	19-Nov-04	0.25	0.5	SW8270C	DIBENZ(a,h)ANTHRACENE	19	J	18	350	UG/KG
SS132AG	20569	19-Nov-04	0.25	0.5	SW8270C	FLUORANTHENE	160	J	76.2538	350	UG/KG
SS132AG	20569	19-Nov-04	0.25	0.5	SW8270C	INDENO(1,2,3-c,d)PYRENE	55	J	54	350	UG/KG
SS132AG	20569	19-Nov-04	0.25	0.5	SW8270C	PHENANTHRENE	38	J	27.7382	350	UG/KG
SS132AG	20569	19-Nov-04	0.25	0.5	SW8270C	PYRENE	170	J	79.3123	350	UG/KG

Table A.4
Rail Line Soil Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132AG	20570	19-Nov-04	0.5	1	METHOD	MOISTURE, PERCENT	6				Т
SS132AG	20570	19-Nov-04	0.5	1	SW8270C	BENZO(a)ANTHRACENE	46	J	32.7311	350	UG/KG
SS132AG	20570	19-Nov-04	0.5	1	SW8270C	BENZO(a)PYRENE	56	J	36.5569	350	UG/KG
SS132AG	20570	19-Nov-04	0.5	1	SW8270C	BENZO(b)FLUORANTHENE	120	J	58.661	350	UG/KG
SS132AG	20570	19-Nov-04	0.5	1	SW8270C	BENZO(g,h,i)PERYLENE	57	J	50.0531	350	UG/KG
SS132AG	20570	19-Nov-04	0.5	1	SW8270C	BENZO(k)FLUORANTHENE	97	J	40.5951	350	UG/KG
SS132AG	20570	19-Nov-04	0.5	1	SW8270C	CHRYSENE	110	J	27.6302	350	UG/KG
SS132AG	20570	19-Nov-04	0.5	1	SW8270C	DIBENZ(a,h)ANTHRACENE	30	J	29	350	UG/KG
SS132AG	20570	19-Nov-04	0.5	1	SW8270C	FLUORANTHENE	130	J	76.8332	350	UG/KG
SS132AG	20570	19-Nov-04	0.5	1	SW8270C	INDENO(1,2,3-c,d)PYRENE	53	J	52	350	UG/KG
SS132AG	20570	19-Nov-04	0.5	1	SW8270C	PHENANTHRENE	19	J	18	350	UG/KG
SS132AG	20570	19-Nov-04	0.5	1	SW8270C	PYRENE	160	J	79.915	350	UG/KG
SS132AH	20571	16-Nov-04	0	0.25	METHOD	MOISTURE, PERCENT	9				Т
SS132AH	20571	16-Nov-04	0	0.25	SW8270C	ANTHRACENE	26	J	25	360	UG/KG
SS132AH	20571	16-Nov-04	0	0.25	SW8270C	BENZO(a)ANTHRACENE	270	J	33.8834	360	UG/KG
SS132AH	20571	16-Nov-04	0	0.25	SW8270C	BENZO(a)PYRENE	180	J	37.8438	360	UG/KG
SS132AH	20571	16-Nov-04	0	0.25	SW8270C	BENZO(b)FLUORANTHENE	500		60.7261	360	UG/KG
SS132AH	20571	16-Nov-04	0	0.25	SW8270C	BENZO(g,h,i)PERYLENE	140	J	51.8152	360	UG/KG
SS132AH	20571	16-Nov-04	0	0.25	SW8270C	BENZO(k)FLUORANTHENE	430	J	42.0242	360	UG/KG
SS132AH	20571	16-Nov-04	0	0.25	SW8270C	BENZOIC ACID	49	J	48	910	UG/KG
SS132AH	20571	16-Nov-04	0	0.25	SW8270C	CARBAZOLE	51	J	50	360	UG/KG
SS132AH	20571	16-Nov-04	0	0.25	SW8270C	CHRYSENE	710		28.6029	360	UG/KG
SS132AH	20571	16-Nov-04	0	0.25	SW8270C	DIBENZ(a,h)ANTHRACENE	50	J	49	360	UG/KG
SS132AH	20571	16-Nov-04	0	0.25	SW8270C	FLUORANTHENE	820		79.538	360	UG/KG
SS132AH	20571	16-Nov-04	0	0.25	SW8270C	INDENO(1,2,3-c,d)PYRENE	150	J	70.9571	360	UG/KG
SS132AH	20571	16-Nov-04	0	0.25	SW8270C	PHENANTHRENE	180	J	28.9329	360	UG/KG
SS132AH	20571	16-Nov-04	0	0.25	SW8270C	PYRENE	1100		82.7283	360	UG/KG
SS132AH	20572	16-Nov-04	0.25	0.5	METHOD	MOISTURE, PERCENT	7				Т
SS132AH	20572	16-Nov-04	0.25	0.5	SW8270C	BENZO(a)ANTHRACENE	100	J	32.9412	350	UG/KG
SS132AH	20572	16-Nov-04	0.25	0.5	SW8270C	BENZO(a)PYRENE	93	J	36.7914	350	UG/KG
SS132AH	20572	16-Nov-04	0.25	0.5	SW8270C	BENZO(b)FLUORANTHENE	160	J	59.0374	350	UG/KG
SS132AH	20572	16-Nov-04	0.25	0.5	SW8270C	BENZO(g,h,i)PERYLENE	63	J	50.3743	350	UG/KG
SS132AH	20572	16-Nov-04	0.25	0.5	SW8270C	BENZO(k)FLUORANTHENE	180	J	40.8556	350	UG/KG
SS132AH	20572	16-Nov-04	0.25	0.5	SW8270C	CHRYSENE	190	J	27.8075	350	UG/KG
SS132AH	20572	16-Nov-04	0.25	0.5	SW8270C	DIBENZ(a,h)ANTHRACENE	24	J	23	350	UG/KG
SS132AH	20572	16-Nov-04		0.5	SW8270C	FLUORANTHENE	210	J	77.3262	350	UG/KG
SS132AH	20572	16-Nov-04	0.25	0.5	SW8270C	INDENO(1,2,3-c,d)PYRENE	61	J	60	350	UG/KG
SS132AH	20572	16-Nov-04	0.25	0.5	SW8270C	PHENANTHRENE	38	J	28.1283	350	UG/KG

Table A.4
Rail Line Soil Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPI	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132AH	20572	16-Nov-04		0.5		PYRENE	260		80.4278	350	UG/KG
SS132AH	20573	16-Nov-04	0.5	1	METHOD	MOISTURE, PERCENT	7				Т
SS132AI	20574	15-Nov-04	0	0.25	D2216	MOISTURE, PERCENT	10				Т
SS132AI	20574	15-Nov-04	0	0.25	SW8270C	ACENAPHTHYLENE	39	J	22.7425	370	UG/KG
SS132AI	20574	15-Nov-04	0	0.25	SW8270C	ANTHRACENE	48	J	30.6577	370	UG/KG
SS132AI	20574	15-Nov-04	0	0.25	SW8270C	BENZO(a)ANTHRACENE	560		34.3367	370	UG/KG
SS132AI	20574	15-Nov-04	0	0.25	SW8270C	BENZO(a)PYRENE	500		38.3501	370	UG/KG
SS132AI	20574	15-Nov-04	0	0.25	SW8270C	BENZO(b)FLUORANTHENE	1000		61.5385	370	UG/KG
SS132AI	20574	15-Nov-04	0	0.25	SW8270C	BENZO(g,h,i)PERYLENE	350	J	52.5084	370	UG/KG
SS132AI	20574	15-Nov-04	0	0.25	SW8270C	BENZO(k)FLUORANTHENE	800		42.5864	370	UG/KG
SS132AI	20574	15-Nov-04	0	0.25	SW8270C	BENZOIC ACID	110	J	110	920	UG/KG
SS132AI	20574	15-Nov-04	0	0.25	SW8270C	CARBAZOLE	32	J	32	370	UG/KG
SS132AI	20574	15-Nov-04	0	0.25	SW8270C	CHRYSENE	1000		28.9855	370	UG/KG
SS132AI	20574	15-Nov-04	0	0.25	SW8270C	DIBENZ(a,h)ANTHRACENE	150	J	73.5786	370	UG/KG
SS132AI	20574	15-Nov-04	0	0.25	SW8270C	FLUORANTHENE	930		80.602	370	UG/KG
SS132AI	20574	15-Nov-04	0	0.25	SW8270C	INDENO(1,2,3-c,d)PYRENE	350	J	71.9064	370	UG/KG
SS132AI	20574	15-Nov-04	0	0.25	SW8270C	PHENANTHRENE	240	J	29.32	370	UG/KG
SS132AI	20574	15-Nov-04	0	0.25	SW8270C	PYRENE	1500		83.835	370	UG/KG
SS132AI	20575	15-Nov-04	0	0.25	D2216	MOISTURE, PERCENT	11				Т
SS132AI	20575	15-Nov-04	0	0.25	SW8270C	ACENAPHTHYLENE	66	J	22.8443	370	UG/KG
SS132AI	20575	15-Nov-04	0	0.25	SW8270C	ANTHRACENE	79	J	30.7951	370	UG/KG
SS132AI	20575	15-Nov-04	0	0.25	SW8270C	BENZO(a)ANTHRACENE	920		34.4905	370	UG/KG
SS132AI	20575	15-Nov-04	0	0.25	SW8270C	BENZO(a)PYRENE	810		38.5218	370	UG/KG
SS132AI	20575	15-Nov-04	0	0.25	SW8270C	BENZO(b)FLUORANTHENE	1700		61.8141	370	UG/KG
SS132AI	20575	15-Nov-04	0	0.25	SW8270C	BENZO(g,h,i)PERYLENE	540		52.7436	370	UG/KG
SS132AI	20575	15-Nov-04	0	0.25	SW8270C	BENZO(k)FLUORANTHENE	1100		42.7772	370	UG/KG
SS132AI	20575	15-Nov-04	0	0.25	SW8270C	BENZOIC ACID	100	J	100	930	UG/KG
SS132AI	20575	15-Nov-04	0	0.25	SW8270C	CARBAZOLE	48	J	48	370	UG/KG
SS132AI	20575	15-Nov-04	0	0.25	SW8270C	CHRYSENE	1400		29.1153	370	UG/KG
SS132AI	20575	15-Nov-04	0	0.25	SW8270C	DIBENZ(a,h)ANTHRACENE	300	J	73.9082	370	UG/KG
SS132AI	20575	15-Nov-04	0	0.25	SW8270C	FLUORANTHENE	1400		80.963	370	UG/KG
SS132AI	20575	15-Nov-04	0	0.25	SW8270C	INDENO(1,2,3-c,d)PYRENE	550		72.2284	370	UG/KG
SS132AI	20575	15-Nov-04	0	0.25	SW8270C	PHENANTHRENE	290	J	29.4513	370	UG/KG
SS132AI	20575	15-Nov-04	0	0.25	SW8270C	PYRENE	2100		84.2105	370	UG/KG
SS132AI	20576	15-Nov-04	0.25	0.5	D2216	MOISTURE, PERCENT	5				Т
SS132AI	20576	15-Nov-04	0.25	0.5		BENZO(a)ANTHRACENE	180	J	32.5238	350	UG/KG
SS132AI	20576	15-Nov-04	0.25	0.5	SW8270C	BENZO(a)PYRENE	150	J	36.3252	350	UG/KG
SS132AI	20576	15-Nov-04	0.25	0.5	SW8270C	BENZO(b)FLUORANTHENE	190	J	58.2893	350	UG/KG

Table A.4
Rail Line Soil Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132AI	20576	15-Nov-04	0.25	0.5	SW8270C	BENZO(g,h,i)PERYLENE	99	J	49.736	350	UG/KG
SS132AI	20576	15-Nov-04	0.25	0.5	SW8270C	BENZO(k)FLUORANTHENE	290	J	40.3379	350	UG/KG
SS132AI	20576	15-Nov-04	0.25	0.5	SW8270C	BENZOIC ACID	19	J	19	870	UG/KG
SS132AI	20576	15-Nov-04	0.25	0.5	SW8270C	CHRYSENE	280	J	27.4551	350	UG/KG
SS132AI	20576	15-Nov-04	0.25	0.5	SW8270C	DIBENZ(a,h)ANTHRACENE	32	J	32	350	UG/KG
SS132AI	20576	15-Nov-04	0.25	0.5	SW8270C	FLUORANTHENE	350		76.3464	350	UG/KG
SS132AI	20576	15-Nov-04	0.25	0.5	SW8270C	INDENO(1,2,3-c,d)PYRENE	100	J	68.1098	350	UG/KG
SS132AI	20576	15-Nov-04	0.25	0.5	SW8270C	PHENANTHRENE	74	J	27.7719	350	UG/KG
SS132AI	20576	15-Nov-04	0.25	0.5	SW8270C	PYRENE	450		79.4087	350	UG/KG
SS132AI	20577	15-Nov-04	0.5	1	D2216	MOISTURE, PERCENT	5				Т
SS132AI	20577	15-Nov-04	0.5	1	SW8270C	BENZO(a)ANTHRACENE	61	J	32.4895	350	UG/KG
SS132AI	20577	15-Nov-04	0.5	1	SW8270C	BENZO(a)PYRENE	56	J	36.2869	350	UG/KG
SS132AI	20577	15-Nov-04	0.5	1	SW8270C	BENZO(b)FLUORANTHENE	73	J	58.2278	350	UG/KG
SS132AI	20577	15-Nov-04	0.5	1	SW8270C	BENZO(g,h,i)PERYLENE	35	J	35	350	UG/KG
SS132AI	20577	15-Nov-04	0.5	1	SW8270C	BENZO(k)FLUORANTHENE	110	J	40.2954	350	UG/KG
SS132AI	20577	15-Nov-04	0.5	1	SW8270C	CHRYSENE	110	J	27.4262	350	UG/KG
SS132AI	20577	15-Nov-04	0.5	1	SW8270C	DIBENZ(a,h)ANTHRACENE	17	J	17	350	UG/KG
SS132AI	20577	15-Nov-04	0.5	1	SW8270C	FLUORANTHENE	140	J	76.2658	350	UG/KG
SS132AI	20577	15-Nov-04	0.5	1	SW8270C	INDENO(1,2,3-c,d)PYRENE	35	J	35	350	UG/KG
SS132AI	20577	15-Nov-04	0.5	1	SW8270C	PHENANTHRENE	30	J	27.7426	350	UG/KG
SS132AI	20577	15-Nov-04	0.5	1	SW8270C	PYRENE	180	J	79.3249	350	UG/KG
SS132AJ	20578	15-Nov-04	0	0.25	D2216	MOISTURE, PERCENT	15				Т
SS132AJ	20578	15-Nov-04	0	0.25	SW8270C	2-METHYLNAPHTHALENE	30	J	30	390	UG/KG
SS132AJ	20578	15-Nov-04	0	0.25	SW8270C	ACENAPHTHENE	110	J	37.2941	390	UG/KG
SS132AJ	20578	15-Nov-04	0	0.25	SW8270C	ACENAPHTHYLENE	48	J	24	390	UG/KG
SS132AJ	20578	15-Nov-04	0	0.25	SW8270C	ANTHRACENE	210	J	32.3529	390	UG/KG
SS132AJ	20578	15-Nov-04	0	0.25	SW8270C	BENZO(a)ANTHRACENE	730		36.2353	390	UG/KG
SS132AJ	20578	15-Nov-04	0	0.25	SW8270C	BENZO(a)PYRENE	510		40.4706	390	UG/KG
SS132AJ	20578	15-Nov-04	0	0.25	SW8270C	BENZO(b)FLUORANTHENE	2600		64.9412	390	UG/KG
SS132AJ	20578	15-Nov-04	0	0.25	SW8270C	BENZO(g,h,i)PERYLENE	400		55.4118	390	UG/KG
SS132AJ	20578	15-Nov-04	0	0.25		BENZO(k)FLUORANTHENE	1600		44.9412	390	UG/KG
SS132AJ	20578	15-Nov-04	0	0.25	SW8270C	BENZOIC ACID	100	J	100	980	UG/KG
SS132AJ	20578	15-Nov-04	0	0.25	SW8270C	CARBAZOLE	370	J	92.8235	390	UG/KG
SS132AJ	20578	15-Nov-04	0	0.25		CHRYSENE	3200		101.8588	1300	UG/KG
SS132AJ	20578	15-Nov-04	0	0.25	SW8270C	DIBENZ(a,h)ANTHRACENE	150		77.6471	390	UG/KG
SS132AJ	20578	15-Nov-04	0	0.25	SW8270C	DIBENZOFURAN	98	J	42.3529	390	UG/KG
SS132AJ	20578	15-Nov-04	0	0.25		FLUORANTHENE	7400		283.2459	1300	UG/KG
SS132AJ	20578	15-Nov-04	0	0.25		FLUORENE	95		47.4118	390	

Table A.4
Rail Line Soil Data (Detects)

LOCATION	SAMPLE ID	DATE	DEP1	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132AJ	20578	15-Nov-04	0	0.25	SW8270C	INDENO(1,2,3-c,d)PYRENE	430		75.8824	390	UG/KG
SS132AJ	20578	15-Nov-04	0	0.25		NAPHTHALENE	75	J	35.0588	390	UG/KG
SS132AJ	20578	15-Nov-04	0	0.25	SW8270C	PHENANTHRENE	3200		103.0341	1300	UG/KG
SS132AJ	20578	15-Nov-04	0	0.25	SW8270C	PYRENE	6300		294.6071	1300	UG/KG
SS132AJ	20579	15-Nov-04	0.25	0.5	D2216	MOISTURE, PERCENT	5				Т
SS132AJ	20579	15-Nov-04	0.25	0.5	SW8270C	ACENAPHTHENE	45	J	33.2983	350	UG/KG
SS132AJ	20579	15-Nov-04	0.25	0.5	SW8270C	ANTHRACENE	400		28.8866	350	UG/KG
SS132AJ	20579	15-Nov-04	0.25	0.5	SW8270C	BENZO(a)ANTHRACENE	170	J	32.3529	350	UG/KG
SS132AJ	20579	15-Nov-04	0.25	0.5	SW8270C	BENZO(a)PYRENE	150	J	36.1345	350	UG/KG
SS132AJ	20579	15-Nov-04	0.25	0.5	SW8270C	BENZO(b)FLUORANTHENE	460		57.9832	350	UG/KG
SS132AJ	20579	15-Nov-04	0.25	0.5	SW8270C	BENZO(g,h,i)PERYLENE	110	J	49.4748	350	UG/KG
SS132AJ	20579	15-Nov-04	0.25	0.5	SW8270C	BENZO(k)FLUORANTHENE	440		40.1261	350	UG/KG
SS132AJ	20579	15-Nov-04	0.25	0.5	SW8270C	CARBAZOLE	53	J	53	350	UG/KG
SS132AJ	20579	15-Nov-04	0.25	0.5	SW8270C	CHRYSENE	520		27.3109	350	UG/KG
SS132AJ	20579	15-Nov-04	0.25	0.5	SW8270C	DIBENZ(a,h)ANTHRACENE	42	J	42	350	UG/KG
SS132AJ	20579	15-Nov-04	0.25	0.5	SW8270C	DIBENZOFURAN	37	J	37	350	UG/KG
SS132AJ	20579	15-Nov-04	0.25	0.5	SW8270C	FLUORANTHENE	720		75.9454	350	UG/KG
SS132AJ	20579	15-Nov-04	0.25	0.5	SW8270C	FLUORENE	45	J	42.3319	350	UG/KG
SS132AJ	20579	15-Nov-04	0.25	0.5	SW8270C	INDENO(1,2,3-c,d)PYRENE	110	J	67.7521	350	UG/KG
SS132AJ	20579	15-Nov-04	0.25	0.5	SW8270C	PHENANTHRENE	360		27.6261	350	UG/KG
SS132AJ	20579	15-Nov-04	0.25	0.5	SW8270C	PYRENE	1000		78.9916	350	UG/KG
SS132AJ	20580	15-Nov-04	0.5	1	D2216	MOISTURE, PERCENT	5				Т
SS132AJ	20580	15-Nov-04	0.5	1	SW8270C	BENZO(a)PYRENE	22	J	22	350	UG/KG
SS132AJ	20580	15-Nov-04	0.5	1	SW8270C	BENZO(b)FLUORANTHENE	77	J	57.801	350	UG/KG
SS132AJ	20580	15-Nov-04	0.5	1		BENZO(g,h,i)PERYLENE	17	J	17	350	UG/KG
SS132AJ	20580	15-Nov-04	0.5	1	SW8270C	BENZO(k)FLUORANTHENE	65	J	40	350	UG/KG
SS132AJ	20580	15-Nov-04	0.5	1	SW8270C	CHRYSENE	64	J	27.2251	350	UG/KG
SS132AJ	20580	15-Nov-04	0.5	1	SW8270C	FLUORANTHENE	140	J	75.7068	350	UG/KG
SS132AJ	20580	15-Nov-04	0.5	1	SW8270C	INDENO(1,2,3-c,d)PYRENE	16	J	16	350	UG/KG
SS132AJ	20580	15-Nov-04	0.5	1	SW8270C	PHENANTHRENE	52	J	27.5393	350	UG/KG
SS132AJ	20580	15-Nov-04	0.5	1	SW8270C	PYRENE	140	J	78.7435	350	UG/KG
SS132AK	20581	15-Nov-04	0	0.25	D2216	MOISTURE, PERCENT	2				T
SS132AK	20581	15-Nov-04	0	0.25	SW8270C	ACENAPHTHENE	53	J	32.314	340	UG/KG
SS132AK	20581	15-Nov-04	0	0.25	SW8270C	ACENAPHTHYLENE	64		20.7951	340	UG/KG
SS132AK	20581	15-Nov-04	0	0.25	SW8270C	ANTHRACENE	340		28.0326	340	UG/KG
SS132AK	20581	15-Nov-04	0	0.25	SW8270C	BENZO(a)ANTHRACENE	950		31.3965	340	UG/KG
SS132AK	20581	15-Nov-04	0	0.25		BENZO(a)PYRENE	900		35.0663	340	UG/KG
SS132AK	20581	15-Nov-04	0	0.25		BENZO(b)FLUORANTHENE	2800		112.6531	670	UG/KG

Table A.4
Rail Line Soil Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPTH (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132AK	20581	15-Nov-04	0 0.25	SW8270C	BENZO(g,h,i)PERYLENE	520		48.0122	340	UG/KG
SS132AK	20581	15-Nov-04	0 0.25	SW8270C	BENZOIC ACID	22	J	22	850	UG/KG
SS132AK	20581	15-Nov-04	0 0.25	SW8270C	CARBAZOLE	460		80.4281	340	UG/KG
SS132AK	20581	15-Nov-04	0 0.25	SW8270C	CHRYSENE	2900		53.0612	670	UG/KG
SS132AK	20581	15-Nov-04	0 0.25	SW8270C	DIBENZ(a,h)ANTHRACENE	270	J	67.2783	340	UG/KG
SS132AK	20581	15-Nov-04	0 0.25	SW8270C	DIBENZOFURAN	44	J	36.6972	340	UG/KG
SS132AK	20581	15-Nov-04	0 0.25	SW8270C	FLUORANTHENE	4100		147.551	670	UG/KG
SS132AK	20581	15-Nov-04	0 0.25	SW8270C	FLUORENE	47	J	41.0805	340	UG/KG
SS132AK	20581	15-Nov-04	0 0.25	SW8270C	INDENO(1,2,3-c,d)PYRENE	630		65.7492	340	UG/KG
SS132AK	20581	15-Nov-04	0 0.25	SW8270C	NAPHTHALENE	20	J	20	340	UG/KG
SS132AK	20581	15-Nov-04	0 0.25	SW8270C	PHENANTHRENE	1600	J	26.8094	340	UG/KG
SS132AK	20581	15-Nov-04	0 0.25	SW8270C	PYRENE	4000		153.4694	670	UG/KG
SS132AK	20582	15-Nov-04	0 0.25	D2216	MOISTURE, PERCENT	5				Т
SS132AK	20582	15-Nov-04	0 0.25	SW8270C	2-METHYLNAPHTHALENE	24	J	24	350	UG/KG
SS132AK	20582	15-Nov-04	0 0.25	SW8270C	ACENAPHTHENE	190	J	33.4036	350	UG/KG
SS132AK	20582	15-Nov-04	0 0.25	SW8270C	ACENAPHTHYLENE	80	J	21.4963	350	UG/KG
SS132AK	20582	15-Nov-04	0 0.25	SW8270C	ANTHRACENE	380		28.9779	350	UG/KG
SS132AK	20582	15-Nov-04	0 0.25	SW8270C	BENZO(a)ANTHRACENE	1300		32.4552	350	UG/KG
SS132AK	20582	15-Nov-04	0 0.25	SW8270C	BENZO(a)PYRENE	1200		36.2487	350	UG/KG
SS132AK	20582	15-Nov-04	0 0.25	SW8270C	BENZO(b)FLUORANTHENE	3100		193.4905	1200	UG/KG
SS132AK	20582	15-Nov-04	0 0.25	SW8270C	BENZO(g,h,i)PERYLENE	780		49.6312	350	UG/KG
SS132AK	20582	15-Nov-04	0 0.25	SW8270C	BENZOIC ACID	21	J	21	870	UG/KG
SS132AK	20582	15-Nov-04	0 0.25	SW8270C	CARBAZOLE	580		83.1401	350	UG/KG
SS132AK	20582	15-Nov-04	0 0.25	SW8270C	CHRYSENE	4100		91.1368	1200	UG/KG
SS132AK	20582	15-Nov-04	0 0.25	SW8270C	DIBENZ(a,h)ANTHRACENE	360		69.5469	350	UG/KG
SS132AK	20582	15-Nov-04	0 0.25	SW8270C	DIBENZOFURAN	100	J	37.9347	350	UG/KG
SS132AK	20582	15-Nov-04	0 0.25	SW8270C	FLUORANTHENE	6800		253.4305	1200	UG/KG
SS132AK	20582	15-Nov-04	0 0.25	SW8270C	FLUORENE	140	J	42.4658	350	UG/KG
SS132AK	20582	15-Nov-04	0 0.25	SW8270C	INDENO(1,2,3-c,d)PYRENE	850		67.9663	350	UG/KG
SS132AK	20582	15-Nov-04	0 0.25	SW8270C	NAPHTHALENE	39	J	31.4015	350	UG/KG
SS132AK	20582	15-Nov-04	0 0.25	SW8270C	PHENANTHRENE	3300	J	92.1884	1200	UG/KG
SS132AK	20582	15-Nov-04	0 0.25	SW8270C	PYRENE	6500		263.5958	1200	UG/KG
SS132AK	20583	15-Nov-04	0.25 0.5	D2216	MOISTURE, PERCENT	20				Т
SS132AK	20583	15-Nov-04	0.25 0.5	SW8270C	ACENAPHTHENE	48	J	39.7742	410	UG/KG
SS132AK	20583	15-Nov-04	0.25 0.5	SW8270C	ACENAPHTHYLENE	67	J	25.596	410	UG/KG
SS132AK	20583	15-Nov-04		SW8270C	ANTHRACENE	220	J	34.5044	410	UG/KG
SS132AK	20583	15-Nov-04	0.25 0.5	SW8270C	BENZO(a)ANTHRACENE	1100		38.6449	410	UG/KG
SS132AK	20583	15-Nov-04	0.25 0.5	SW8270C	BENZO(a)PYRENE	1000		43.1619	410	UG/KG

Table A.4
Rail Line Soil Data (Detects)

LOCATION	SAMPLE ID	DATE	DEP1	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132AK	20583	15-Nov-04		0.5		BENZO(b)FLUORANTHENE	2900		69.2597	410	UG/KG
SS132AK	20583	15-Nov-04	0.25	0.5	SW8270C	BENZO(g,h,i)PERYLENE	580		59.0966	410	UG/KG
SS132AK	20583	15-Nov-04	0.25	0.5	SW8270C	CARBAZOLE	320	J	98.9962	410	UG/KG
SS132AK	20583	15-Nov-04	0.25	0.5	SW8270C	CHRYSENE	3000		32.6223	410	UG/KG
SS132AK	20583	15-Nov-04	0.25	0.5	SW8270C	DIBENZ(a,h)ANTHRACENE	310	J	82.8105	410	UG/KG
SS132AK	20583	15-Nov-04	0.25	0.5	SW8270C	DIBENZOFURAN	26	J	26	410	UG/KG
SS132AK	20583	15-Nov-04	0.25	0.5	SW8270C	FLUORANTHENE	3600		129.2363	590	UG/KG
SS132AK	20583	15-Nov-04	0.25	0.5	SW8270C	FLUORENE	33	J	33	410	UG/KG
SS132AK	20583	15-Nov-04	0.25	0.5	SW8270C	INDENO(1,2,3-c,d)PYRENE	670		80.9285	410	UG/KG
SS132AK	20583	15-Nov-04	0.25	0.5	SW8270C	PHENANTHRENE	780		32.9987	410	UG/KG
SS132AK	20583	15-Nov-04	0.25	0.5	SW8270C	PYRENE	3200		94.3538	410	UG/KG
SS132AK	20584	15-Nov-04	0.5	1	D2216	MOISTURE, PERCENT	22				Т
SS132AK	20584	15-Nov-04	0.5	1	SW8270C	BENZO(a)ANTHRACENE	61	J	39.3862	420	UG/KG
SS132AK	20584	15-Nov-04	0.5	1		BENZO(a)PYRENE	81	J	43.9898	420	UG/KG
SS132AK	20584	15-Nov-04	0.5	1	SW8270C	BENZO(b)FLUORANTHENE	180	J	70.5882	420	UG/KG
SS132AK	20584	15-Nov-04	0.5	1	SW8270C	BENZO(g,h,i)PERYLENE	59	J	59	420	UG/KG
SS132AK	20584	15-Nov-04	0.5	1	SW8270C	BENZO(k)FLUORANTHENE	130	J	48.8491	420	UG/KG
SS132AK	20584	15-Nov-04	0.5	1		CHRYSENE	160		33.2481	420	UG/KG
SS132AK	20584	15-Nov-04	0.5	1	SW8270C	DIBENZ(a,h)ANTHRACENE	29	J	29	420	UG/KG
SS132AK	20584	15-Nov-04	0.5	1		FLUORANTHENE	200	J	92.4552	420	UG/KG
SS132AK	20584	15-Nov-04	0.5	1	SW8270C	INDENO(1,2,3-c,d)PYRENE	60	J	60	420	UG/KG
SS132AK	20584	15-Nov-04	0.5	1	SW8270C	PHENANTHRENE	74	J	33.6317	420	UG/KG
SS132AK	20584	15-Nov-04	0.5	1	SW8270C	PYRENE	220	J	96.1637	420	UG/KG
SS132B	AN725	19-Mar-01	0	0.25	TOTAL	ALUMINUM	1880		5.3	7.51 I	MG/KG
SS132B	AN725	19-Mar-01	0	0.25	TOTAL	BARIUM	4.5		0.6466	0.65 I	MG/KG
SS132B	AN725	19-Mar-01	0	0.25	TOTAL	BERYLLIUM	0.04	J	0.018	0.02 I	MG/KG
SS132B	AN725	19-Mar-01	0	0.25	TOTAL	CHROMIUM, TOTAL	1.9		0.2	0.25 I	MG/KG
SS132B	AN725	19-Mar-01	0	0.25	TOTAL	COBALT	0.77		0.2155	0.22 I	MG/KG
SS132B	AN725	19-Mar-01	0	0.25	TOTAL	COPPER	1.2		0.449	0.45 I	MG/KG
SS132B	AN725	19-Mar-01	0	0.25	TOTAL	IRON	2170		3.5	6.66 I	MG/KG
SS132B	AN725	19-Mar-01	0	0.25	TOTAL	LEAD	2.6		0.2	0.23 I	MG/KG
SS132B	AN725	19-Mar-01	0	0.25	TOTAL	MAGNESIUM	195		82.5	119	MG/KG
SS132B	AN725	19-Mar-01	0	0.25	TOTAL	MANGANESE	18.9		0.0539	0.05	MG/KG
SS132B	AN725	19-Mar-01	0	0.25	TOTAL	NICKEL	1.1		0.2335		MG/KG
SS132B	AN725	19-Mar-01	0	0.25	TOTAL	POTASSIUM	237	1.5	64.4576		MG/KG
SS132B	AN725	19-Mar-01	0	0.25	TOTAL	VANADIUM	3.8		0.2514		MG/KG
SS132B	AN725	19-Mar-01	0	0.25	TOTAL	ZINC	3.6		0.4		MG/KG
SS132B	AN725	19-Mar-01	0		METHOD	p,p'-DDT	1.9		1.63		JG/KG

Table A.4
Rail Line Soil Data (Detects)

LOCATION	SAMPLE ID	DATE	DEP1	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER1	MDL	RL	UNITS
SS132B	AN725	19-Mar-01	0	0.25	METHOD	ACETONE	40	J	4.04	8	UG/KG
SS132B	AN725	19-Mar-01	0	0.25	METHOD	BROMOFORM	2	J	1.15	8	UG/KG
SS132B	AN725	19-Mar-01	0	0.25	WOS	NITROGEN, AMMONIA (AS N)	3.3	J	1.5	2.46	MG/KG
SS132B	AN725	19-Mar-01	0	0.25	METHOD	ORTHOPHOSPHATE (AS PO4)	43.8		1	1.83	MG/KG
SS132B	AN725	19-Mar-01	0	0.25	METHOD	TOTAL ORGANIC CARBON	324				MG/KG
SS132B	AN725	19-Mar-01	0	0.25	SW3550	BENZO(a)ANTHRACENE	22	J	22	340	UG/KG
SS132B	AN725	19-Mar-01	0	0.25	SW3550	BENZO(a)PYRENE	18	J	18	340	UG/KG
SS132B	AN725	19-Mar-01	0	0.25	SW3550	BENZO(b)FLUORANTHENE	31	J	31	340	UG/KG
SS132B	AN725	19-Mar-01	0	0.25	SW3550	BENZO(k)FLUORANTHENE	27	J	27	340	UG/KG
SS132B	AN725	19-Mar-01	0	0.25	SW3550	bis(2-ETHYLHEXYL) PHTHALATE	25	J	25	340	UG/KG
SS132B	AN725	19-Mar-01	0	0.25	SW3550	CHRYSENE	40	J	40	340	UG/KG
SS132B	AN725	19-Mar-01	0	0.25	SW3550	FLUORANTHENE	53	J	53	340	UG/KG
SS132B	AN725	19-Mar-01	0	0.25	SW3550	PHENANTHRENE	17	J	17	340	UG/KG
SS132B	AN725	19-Mar-01	0	0.25	SW3550	PYRENE	52	J	52	340	UG/KG
SS132B	AN726	19-Mar-01	0.25	0.5	TOTAL	ALUMINUM	1700		5.3	8.07	MG/KG
SS132B	AN726	19-Mar-01	0.25	0.5	TOTAL	BARIUM	3.9		0.6953	0.7	MG/KG
SS132B	AN726	19-Mar-01	0.25	0.5	TOTAL	BERYLLIUM	0.03	J	0.0193	0.02	MG/KG
SS132B	AN726	19-Mar-01	0.25	0.5	TOTAL	BORON	0.89	J	0.8112	0.81	MG/KG
SS132B	AN726	19-Mar-01	0.25	0.5	TOTAL	CHROMIUM, TOTAL	1.8		0.2	0.27	MG/KG
SS132B	AN726	19-Mar-01	0.25	0.5	TOTAL	COBALT	0.61		0.2318	0.23	MG/KG
SS132B	AN726	19-Mar-01	0.25	0.5	TOTAL	COPPER	1.6		0.4829	0.48	MG/KG
SS132B	AN726	19-Mar-01	0.25	0.5	TOTAL	IRON	2090		3.5	7.17	MG/KG
SS132B	AN726	19-Mar-01	0.25	0.5	TOTAL	LEAD	2.4		0.2	0.25	MG/KG
SS132B	AN726	19-Mar-01	0.25	0.5	TOTAL	MAGNESIUM	178	J	82.5	128	MG/KG
SS132B	AN726	19-Mar-01	0.25	0.5	TOTAL	MANGANESE	19.1		0.0579	0.06	MG/KG
SS132B	AN726	19-Mar-01	0.25	0.5	TOTAL	NICKEL	0.93	J	0.2511	0.25	MG/KG
SS132B	AN726	19-Mar-01	0.25	0.5	TOTAL	POTASSIUM	211		69.3192		MG/KG
SS132B	AN726	19-Mar-01	0.25	0.5	TOTAL	VANADIUM	3.5		0.2704	0.27	MG/KG
SS132B	AN726	19-Mar-01	0.25	0.5	TOTAL	ZINC	3.6		0.4	0.93	MG/KG
SS132B	AN726	19-Mar-01	0.25	0.5	METHOD	p,p'-DDT	2.4		1.63	3.5	UG/KG
SS132B	AN726	19-Mar-01		0.5	METHOD	ACETONE	24	J	4.04		UG/KG
SS132B	AN726	19-Mar-01		0.5	METHOD	BROMOFORM		J	1.15	7	UG/KG
SS132B	AN726	19-Mar-01	0.25	0.5	WOS	NITROGEN, AMMONIA (AS N)	6.1		1.5	2.24	MG/KG
SS132B	AN726	19-Mar-01		0.5	METHOD	ORTHOPHOSPHATE (AS PO4)	40.9		1		MG/KG
SS132B	AN726	19-Mar-01		0.5	METHOD	TOTAL ORGANIC CARBON	628				MG/KG
SS132B	AN726	19-Mar-01		0.5	SW3550	BENZO(a)ANTHRACENE	37		37		UG/KG
SS132B	AN726	19-Mar-01		0.5	SW3550	BENZO(a)PYRENE	30		30		UG/KG
SS132B	AN726	19-Mar-01		0.5	SW3550	BENZO(b)FLUORANTHENE	36		36		UG/KG

Table A.4
Rail Line Soil Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132B	AN726	19-Mar-01	0.25	0.5	SW3550	BENZO(k)FLUORANTHENE	38	J	38	350	UG/KG
SS132B	AN726	19-Mar-01	0.25	0.5	SW3550	bis(2-ETHYLHEXYL) PHTHALATE	31	J	31	350	UG/KG
SS132B	AN726	19-Mar-01	0.25	0.5	SW3550	CHRYSENE	58	J	58	350	UG/KG
SS132B	AN726	19-Mar-01	0.25	0.5	SW3550	FLUORANTHENE	91	J	84.8	350	UG/KG
SS132B	AN726	19-Mar-01	0.25	0.5	SW3550	INDENO(1,2,3-c,d)PYRENE	22	J	22	350	UG/KG
SS132B	AN726	19-Mar-01	0.25	0.5	SW3550	PHENANTHRENE	33	J	33	350	UG/KG
SS132B	AN726	19-Mar-01	0.25	0.5	SW3550	PYRENE	84	J	75	350	UG/KG
SS132B	AN727	19-Mar-01	0.5	1	TOTAL	ALUMINUM	1630		5.3	7.65	MG/KG
SS132B	AN727	19-Mar-01	0.5	1	TOTAL	BARIUM	4.2		0.6593	0.66	MG/KG
SS132B	AN727	19-Mar-01	0.5	1	TOTAL	BERYLLIUM	0.04	J	0.0183	0.02	MG/KG
SS132B	AN727	19-Mar-01	0.5	1	TOTAL	CHROMIUM, TOTAL	1.7	J	0.2	0.26	MG/KG
SS132B	AN727	19-Mar-01	0.5	1	TOTAL	COBALT	0.63		0.2198	0.22	MG/KG
SS132B	AN727	19-Mar-01	0.5	1	TOTAL	COPPER	0.74	J	0.4578	0.46	MG/KG
SS132B	AN727	19-Mar-01	0.5	1	TOTAL	IRON	2010		3.5	6.79	MG/KG
SS132B	AN727	19-Mar-01	0.5	1	TOTAL	LEAD	1.9		0.2	0.24	MG/KG
SS132B	AN727	19-Mar-01	0.5	1	TOTAL	MAGNESIUM	164	J	82.5	122	MG/KG
SS132B	AN727	19-Mar-01	0.5	1	TOTAL	MANGANESE	17.9		0.0549	0.05	MG/KG
SS132B	AN727	19-Mar-01	0.5	1	TOTAL	NICKEL	1.2	J	0.2381	0.24	MG/KG
SS132B	AN727	19-Mar-01	0.5	1	TOTAL	POTASSIUM	217		65.7254	65.7	MG/KG
SS132B	AN727	19-Mar-01	0.5	1	TOTAL	VANADIUM	3.3		0.2564	0.26	MG/KG
SS132B	AN727	19-Mar-01	0.5	1	TOTAL	ZINC	3.2		0.4	0.88	MG/KG
SS132B	AN727	19-Mar-01	0.5	1	METHOD	ACETONE	19	J	4.04	9	UG/KG
SS132B	AN727	19-Mar-01	0.5	1	METHOD	BROMOFORM	4	J	1.15	9	UG/KG
SS132B	AN727	19-Mar-01	0.5	1	METHOD	ORTHOPHOSPHATE (AS PO4)	45.6		1	1.58	MG/KG
SS132B	AN727	19-Mar-01	0.5	1	METHOD	TOTAL ORGANIC CARBON	549	J			MG/KG
SS132B	AN727	19-Mar-01	0.5	1	SW3550	BENZO(a)ANTHRACENE	35	J	35	340	UG/KG
SS132B	AN727	19-Mar-01	0.5	1	SW3550	BENZO(a)PYRENE	31	J	31	340	UG/KG
SS132B	AN727	19-Mar-01	0.5	1	SW3550	BENZO(b)FLUORANTHENE	48	J	48	340	UG/KG
SS132B	AN727	19-Mar-01	0.5	1	SW3550	BENZO(g,h,i)PERYLENE	24	J	24	340	UG/KG
SS132B	AN727	19-Mar-01	0.5	1	SW3550	BENZO(k)FLUORANTHENE	61	J	61	340	UG/KG
SS132B	AN727	19-Mar-01	0.5	1	SW3550	bis(2-ETHYLHEXYL) PHTHALATE	24	J	24	340	UG/KG
SS132B	AN727	19-Mar-01	0.5	1	SW3550	CHRYSENE	63	J	63	340	UG/KG
SS132B	AN727	19-Mar-01	0.5	1	SW3550	FLUORANTHENE	78	J	78	340	UG/KG
SS132B	AN727	19-Mar-01	0.5	1	SW3550	INDENO(1,2,3-c,d)PYRENE	24	J	24	340	UG/KG
SS132B	AN727	19-Mar-01	0.5	1	SW3550	PYRENE	66	J	66	340	UG/KG
SS132B	AN728	19-Mar-01	0.5	1	TOTAL	ALUMINUM	1900		5.3	7.83	MG/KG
SS132B	AN728	19-Mar-01	0.5	1	TOTAL	BARIUM	5		0.6743	0.67	MG/KG
SS132B	AN728	19-Mar-01	0.5	1	TOTAL	BERYLLIUM	0.04	J	0.0187	0.02	MG/KG

Table A.4
Rail Line Soil Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	TH (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132B	AN728	19-Mar-01	0.5	1	TOTAL	CHROMIUM, TOTAL	2.2		0.2	0.26	MG/KG
SS132B	AN728	19-Mar-01	0.5	1	TOTAL	COBALT	0.83		0.2248	0.22	MG/KG
SS132B	AN728	19-Mar-01	0.5	1	TOTAL	COPPER	1.3		0.4682	0.47	MG/KG
SS132B	AN728	19-Mar-01	0.5	1	TOTAL	IRON	2270		3.5	6.95	MG/KG
SS132B	AN728	19-Mar-01	0.5	1	TOTAL	LEAD	2.2		0.2	0.24	MG/KG
SS132B	AN728	19-Mar-01	0.5	1	TOTAL	MAGNESIUM	227	J	82.5	124	MG/KG
SS132B	AN728	19-Mar-01	0.5	1	TOTAL	MANGANESE	22.7		0.0562	0.06	MG/KG
SS132B	AN728	19-Mar-01	0.5	1	TOTAL	POTASSIUM	267	J	67.2211	67.2	MG/KG
SS132B	AN728	19-Mar-01	0.5	1	TOTAL	VANADIUM	3.9		0.2622	0.26	MG/KG
SS132B	AN728	19-Mar-01	0.5	1	TOTAL	ZINC	4.1		0.4	0.9	MG/KG
SS132B	AN728	19-Mar-01	0.5	1	METHOD	ACETONE	20	J	4.04	8	UG/KG
SS132B	AN728	19-Mar-01	0.5	1	METHOD	BROMOFORM	3	J	1.15	8	UG/KG
SS132B	AN728	19-Mar-01	0.5	1	WOS	NITROGEN, AMMONIA (AS N)	3.5	J	1.5	2.47	MG/KG
SS132B	AN728	19-Mar-01	0.5	1	METHOD	ORTHOPHOSPHATE (AS PO4)	48.7		1	2.08	MG/KG
SS132B	AN728	19-Mar-01	0.5	1	METHOD	TOTAL ORGANIC CARBON	427	J			MG/KG
SS132B	AN728	19-Mar-01	0.5	1	SW3550	BENZO(a)ANTHRACENE	17	J	17	340	UG/KG
SS132B	AN728	19-Mar-01	0.5	1	SW3550	BENZO(b)FLUORANTHENE	22	J	22	340	UG/KG
SS132B	AN728	19-Mar-01	0.5	1	SW3550	BENZO(k)FLUORANTHENE	19	J	19	340	UG/KG
SS132B	AN728	19-Mar-01	0.5	1	SW3550	bis(2-ETHYLHEXYL) PHTHALATE	31	J	31	340	UG/KG
SS132B	AN728	19-Mar-01	0.5	1	SW3550	CHRYSENE	28	J	28	340	UG/KG
SS132B	AN728	19-Mar-01	0.5	1	SW3550	FLUORANTHENE	46	J	46	340	UG/KG
SS132B	AN728	19-Mar-01	0.5	1	SW3550	PYRENE	39	J	39	340	UG/KG
SS132B	AN729	19-Mar-01	0	0.25	TOTAL	ALUMINUM	1870		5.3	8.53	MG/KG
SS132B	AN729	19-Mar-01	0	0.25	TOTAL	BARIUM	3.5		0.7345	0.73	MG/KG
SS132B	AN729	19-Mar-01	0	0.25	TOTAL	BERYLLIUM	0.03	J	0.0204	0.02	MG/KG
SS132B	AN729	19-Mar-01	0	0.25	TOTAL	CHROMIUM, TOTAL	1.8		0.2	0.29	MG/KG
SS132B	AN729	19-Mar-01	0	0.25	TOTAL	COBALT	0.57		0.2448	0.24	MG/KG
SS132B	AN729	19-Mar-01	0	0.25	TOTAL	COPPER	1.7		0.5101	0.51	MG/KG
SS132B	AN729	19-Mar-01	0	0.25	TOTAL	IRON	2130		3.5	7.57	MG/KG
SS132B	AN729	19-Mar-01	0	0.25	TOTAL	LEAD	3.6		0.2	0.27	MG/KG
SS132B	AN729	19-Mar-01	0	0.25	TOTAL	MAGNESIUM	173	J	82.5	136	MG/KG
SS132B	AN729	19-Mar-01	0	0.25	TOTAL	MANGANESE	15.9		0.0612	0.06	MG/KG
SS132B	AN729	19-Mar-01	0	0.25	TOTAL	NICKEL	0.85	J	0.2652	0.27	MG/KG
SS132B	AN729	19-Mar-01	0	0.25	TOTAL	POTASSIUM	161		73.2285	73.2	MG/KG
SS132B	AN729	19-Mar-01	0	0.25	TOTAL	VANADIUM	3.7		0.2857	0.29	MG/KG
SS132B	AN729	19-Mar-01	0	0.25	TOTAL	ZINC	3.3		0.4	0.98	MG/KG
SS132B	AN729	19-Mar-01	0	0.25	METHOD	ACETONE	91	J	4.04		UG/KG
SS132B	AN729	19-Mar-01	0	0.25	METHOD	BROMOFORM	2	J	1.15	6	UG/KG

Table A.4
Rail Line Soil Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132B	AN729	19-Mar-01	0	0.25	WOS	NITROGEN, AMMONIA (AS N)	2.5	J	1.5	2.49	MG/KG
SS132B	AN729	19-Mar-01	0	0.25	METHOD	ORTHOPHOSPHATE (AS PO4)	39.9		1	1.65	MG/KG
SS132B	AN729	19-Mar-01	0	0.25	METHOD	TOTAL ORGANIC CARBON	882				MG/KG
SS132B	AN729	19-Mar-01	0	0.25	SW3550	BENZO(a)ANTHRACENE	17	J	17	340	UG/KG
SS132B	AN729	19-Mar-01	0	0.25	SW3550	BENZO(b)FLUORANTHENE	25	J	25	340	UG/KG
SS132B	AN729	19-Mar-01	0	0.25	SW3550	BENZO(k)FLUORANTHENE	26	J	26	340	UG/KG
SS132B	AN729	19-Mar-01	0	0.25	SW3550	bis(2-ETHYLHEXYL) PHTHALATE	20	J	20	340	UG/KG
SS132B	AN729	19-Mar-01	0	0.25	SW3550	CHRYSENE	34	J	34	340	UG/KG
SS132B	AN729	19-Mar-01	0	0.25	SW3550	FLUORANTHENE	40	J	40	340	UG/KG
SS132B	AN729	19-Mar-01	0	0.25	SW3550	PYRENE	37	J	37	340	UG/KG
SS132B	AN730	19-Mar-01	0.25	0.5	TOTAL	ALUMINUM	1880		5.3	7.53	MG/KG
SS132B	AN730	19-Mar-01	0.25	0.5	TOTAL	BARIUM	3.3		0.6481	0.65	MG/KG
SS132B	AN730	19-Mar-01	0.25	0.5	TOTAL	BERYLLIUM	0.02	J	0.018	0.02	MG/KG
SS132B	AN730	19-Mar-01	0.25	0.5	TOTAL	CHROMIUM, TOTAL	1.7	J	0.2	0.25	MG/KG
SS132B	AN730	19-Mar-01	0.25	0.5	TOTAL	COBALT	0.55		0.216	0.22	MG/KG
SS132B	AN730	19-Mar-01	0.25	0.5	TOTAL	COPPER	0.79	J	0.4501	0.45	MG/KG
SS132B	AN730	19-Mar-01	0.25	0.5	TOTAL	IRON	2030		3.5	6.68	MG/KG
SS132B	AN730	19-Mar-01	0.25	0.5	TOTAL	LEAD	2.9		0.2	0.23	MG/KG
SS132B	AN730	19-Mar-01	0.25	0.5	TOTAL	MAGNESIUM	150	J	82.5	120	MG/KG
SS132B	AN730	19-Mar-01	0.25	0.5	TOTAL	MANGANESE	13.9		0.054	0.05	MG/KG
SS132B	AN730	19-Mar-01	0.25	0.5	TOTAL	NICKEL	0.85	J	0.234	0.23	MG/KG
SS132B	AN730	19-Mar-01	0.25	0.5	TOTAL	POTASSIUM	162		64.6143	64.6	MG/KG
SS132B	AN730	19-Mar-01	0.25	0.5	TOTAL	VANADIUM	3.4		0.252	0.25	MG/KG
SS132B	AN730	19-Mar-01	0.25	0.5	TOTAL	ZINC	3.2		0.4	0.86	MG/KG
SS132B	AN730	19-Mar-01	0.25	0.5	METHOD	ACETONE	36	J	4.04	7	UG/KG
SS132B	AN730	19-Mar-01	0.25	0.5	METHOD	BROMOFORM	2	J	1.15	7	UG/KG
SS132B	AN730	19-Mar-01	0.25	0.5	METHOD	ORTHOPHOSPHATE (AS PO4)	36.9		1	1.85	MG/KG
SS132B	AN730	19-Mar-01	0.25	0.5	METHOD	TOTAL ORGANIC CARBON	571				MG/KG
SS132B	AN730	19-Mar-01	0.25	0.5	SW3550	bis(2-ETHYLHEXYL) PHTHALATE	23	J	23	340	UG/KG
SS132B	AN730	19-Mar-01	0.25	0.5	SW3550	CHRYSENE	17	J	17	340	UG/KG
SS132B	AN730	19-Mar-01	0.25	0.5	SW3550	FLUORANTHENE	21	J	21	340	UG/KG
SS132B	AN730	19-Mar-01	0.25	0.5	SW3550	PYRENE	35	J	35	340	UG/KG
SS132B	AN731	19-Mar-01	0.5	1	TOTAL	ALUMINUM	1960		5.3	7.73	MG/KG
SS132B	AN731	19-Mar-01	0.5	1	TOTAL	BARIUM	3.7		0.6658		MG/KG
SS132B	AN731	19-Mar-01	0.5	1	TOTAL	BERYLLIUM	0.03	J	0.0185		MG/KG
SS132B	AN731	19-Mar-01	0.5	1	TOTAL	CHROMIUM, TOTAL	2.2		0.2		MG/KG
SS132B	AN731	19-Mar-01	0.5	1	TOTAL	COBALT	0.73		0.2219		MG/KG
SS132B	AN731	19-Mar-01	0.5	1	TOTAL	COPPER	1.2		0.4624		MG/KG

Table A.4
Rail Line Soil Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132B	AN731	19-Mar-01	0.5	1	TOTAL	IRON	2140		3.5	6.86	MG/KG
SS132B	AN731	19-Mar-01	0.5	1	TOTAL	LEAD	2.6		0.2	0.24	MG/KG
SS132B	AN731	19-Mar-01	0.5	1	TOTAL	MAGNESIUM	165	J	82.5	123	MG/KG
SS132B	AN731	19-Mar-01	0.5	1	TOTAL	MANGANESE	13.8		0.0555	0.06	MG/KG
SS132B	AN731	19-Mar-01	0.5	1	TOTAL	NICKEL	1.1	J	0.2404	0.24	MG/KG
SS132B	AN731	19-Mar-01	0.5	1	TOTAL	POTASSIUM	185		66.3763	66.4	MG/KG
SS132B	AN731	19-Mar-01	0.5	1	TOTAL	SELENIUM	0.77	J	0.7	0.72	MG/KG
SS132B	AN731	19-Mar-01	0.5	1	TOTAL	VANADIUM	3.8		0.2589	0.26	MG/KG
SS132B	AN731	19-Mar-01	0.5	1	TOTAL	ZINC	3.3		0.4	0.89	MG/KG
SS132B	AN731	19-Mar-01	0.5	1	METHOD	ACETONE	25	J	4.04	7	UG/KG
SS132B	AN731	19-Mar-01	0.5	1	METHOD	BROMOFORM	2	J	1.15	7	UG/KG
SS132B	AN731	19-Mar-01	0.5	1	WOS	NITROGEN, AMMONIA (AS N)	3.7	J	1.5	2.33	MG/KG
SS132B	AN731	19-Mar-01	0.5	1	METHOD	ORTHOPHOSPHATE (AS PO4)	33.3		1	2.05	MG/KG
SS132B	AN731	19-Mar-01	0.5	1	METHOD	TOTAL ORGANIC CARBON	424				MG/KG
SS132B	AN731	19-Mar-01	0.5	1	SW3550	bis(2-ETHYLHEXYL) PHTHALATE	16	J	16	340	UG/KG
SS132C	AN733	19-Mar-01	0	0.25	TOTAL	ALUMINUM	2210		5.3	7.76	MG/KG
SS132C	AN733	19-Mar-01	0	0.25	TOTAL	ARSENIC	1	J	0.7615	0.76	MG/KG
SS132C	AN733	19-Mar-01	0	0.25	TOTAL	BARIUM	2.9		0.6686	0.67	MG/KG
SS132C	AN733	19-Mar-01	0	0.25	TOTAL	BERYLLIUM	0.07		0.0186	0.02	MG/KG
SS132C	AN733	19-Mar-01	0	0.25	TOTAL	CHROMIUM, TOTAL	2.7		0.2	0.26	MG/KG
SS132C	AN733	19-Mar-01	0	0.25	TOTAL	COBALT	0.68		0.2229	0.22	MG/KG
SS132C	AN733	19-Mar-01	0	0.25	TOTAL	COPPER	10.4		0.4643	0.46	MG/KG
SS132C	AN733	19-Mar-01	0	0.25	TOTAL	IRON	3050		3.5	6.89	MG/KG
SS132C	AN733	19-Mar-01	0	0.25	TOTAL	LEAD	25.9	J	0.2	0.24	MG/KG
SS132C	AN733	19-Mar-01	0	0.25	TOTAL	MAGNESIUM	204	J	82.5	123	MG/KG
SS132C	AN733	19-Mar-01	0	0.25	TOTAL	MANGANESE	16.3		0.0557	0.06	MG/KG
SS132C	AN733	19-Mar-01	0	0.25	TOTAL	NICKEL	1.1	J	0.2414	0.24	MG/KG
SS132C	AN733	19-Mar-01	0	0.25	TOTAL	POTASSIUM	159		66.6549	66.7	MG/KG
SS132C	AN733	19-Mar-01	0	0.25	TOTAL	VANADIUM	6.4		0.26	0.26	MG/KG
SS132C	AN733	19-Mar-01	0	0.25	TOTAL	ZINC	3.8		0.4	0.89	MG/KG
SS132C	AN733	19-Mar-01	0	0.25	SW3550	BENZO(a)ANTHRACENE	23	J	23	340	UG/KG
SS132C	AN733	19-Mar-01	0	0.25	SW3550	BENZO(a)PYRENE	21	J	21	340	UG/KG
SS132C	AN733	19-Mar-01	0	0.25	SW3550	BENZO(b)FLUORANTHENE	24	J	24	340	UG/KG
SS132C	AN733	19-Mar-01	0	0.25	SW3550	BENZO(k)FLUORANTHENE	31	J	31	340	UG/KG
SS132C	AN733	19-Mar-01	0	0.25	SW3550	CHRYSENE	30	J	30	340	UG/KG
SS132C	AN733	19-Mar-01	0	0.25	SW3550	FLUORANTHENE	39		39		UG/KG
SS132C	AN733	19-Mar-01	0	0.25	SW3550	PHENANTHRENE	22		22	340	UG/KG
SS132C	AN733	19-Mar-01	0	0.25	SW3550	PYRENE	40	J	40		UG/KG

Table A.4
Rail Line Soil Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132C	AN734	19-Mar-01	0.25	0.5	TOTAL	ALUMINUM	6960		5.3	8.96	MG/KG
SS132C	AN734	19-Mar-01	0.25	0.5	TOTAL	ARSENIC	1.8		0.8786	0.88	MG/KG
SS132C	AN734	19-Mar-01	0.25	0.5	TOTAL	BARIUM	6.6		0.7715	0.77	MG/KG
SS132C	AN734	19-Mar-01	0.25	0.5	TOTAL	BERYLLIUM	0.1		0.0214	0.02	MG/KG
SS132C	AN734	19-Mar-01	0.25	0.5	TOTAL	BORON	2	J	1.2	1.74	MG/KG
SS132C	AN734	19-Mar-01	0.25	0.5	TOTAL	CHROMIUM, TOTAL	7.4		0.2	0.3	MG/KG
SS132C	AN734	19-Mar-01	0.25	0.5	TOTAL	COBALT	2		0.2572	0.26	MG/KG
SS132C	AN734	19-Mar-01	0.25	0.5	TOTAL	COPPER	5.5		0.5357	0.54	MG/KG
SS132C	AN734	19-Mar-01	0.25	0.5	TOTAL	IRON	6780		3.5	7.95	MG/KG
SS132C	AN734	19-Mar-01	0.25	0.5	TOTAL	LEAD	7.4	J	0.2	0.28	MG/KG
SS132C	AN734	19-Mar-01	0.25	0.5	TOTAL	MAGNESIUM	749		82.5	142	MG/KG
SS132C	AN734	19-Mar-01	0.25	0.5	TOTAL	MANGANESE	49.2		0.0643	0.06	MG/KG
SS132C	AN734	19-Mar-01	0.25	0.5	TOTAL	NICKEL	3.6		0.2786	0.28	MG/KG
SS132C	AN734	19-Mar-01	0.25	0.5	TOTAL	POTASSIUM	291		76.9099	76.9	MG/KG
SS132C	AN734	19-Mar-01	0.25	0.5	TOTAL	VANADIUM	10.5		0.3	0.3	MG/KG
SS132C	AN734	19-Mar-01	0.25	0.5	TOTAL	ZINC	18.4		0.4	1.03	MG/KG
SS132C	AN735	19-Mar-01	0.5	1	TOTAL	ALUMINUM	4310		5.3	8.59	MG/KG
SS132C	AN735	19-Mar-01	0.5	1	TOTAL	ARSENIC	1.9		0.8425	0.84	MG/KG
SS132C	AN735	19-Mar-01	0.5	1	TOTAL	BARIUM	6.6		0.7397	0.74	MG/KG
SS132C	AN735	19-Mar-01	0.5	1	TOTAL	BERYLLIUM	0.11		0.0205	0.02	MG/KG
SS132C	AN735	19-Mar-01	0.5	1	TOTAL	BORON	2.1	J	1.2	1.66	MG/KG
SS132C	AN735	19-Mar-01	0.5	1	TOTAL	CHROMIUM, TOTAL	5.4		0.2	0.29	MG/KG
SS132C	AN735	19-Mar-01	0.5	1	TOTAL	COBALT	1.7		0.2466	0.25	MG/KG
SS132C	AN735	19-Mar-01	0.5	1	TOTAL	COPPER	1.6		0.5137	0.51	MG/KG
SS132C	AN735	19-Mar-01	0.5	1	TOTAL	IRON	5130		3.5	7.62	MG/KG
SS132C	AN735	19-Mar-01	0.5	1	TOTAL	LEAD	3.1	J	0.2	0.27	MG/KG
SS132C	AN735	19-Mar-01	0.5	1	TOTAL	MAGNESIUM	557		82.5	136	MG/KG
SS132C	AN735	19-Mar-01	0.5	1	TOTAL	MANGANESE	30.8		0.0616	0.06	MG/KG
SS132C	AN735	19-Mar-01	0.5	1	TOTAL	NICKEL	2.9		0.2671	0.27	MG/KG
SS132C	AN735	19-Mar-01	0.5	1	TOTAL	POTASSIUM	310		73.7453	73.7	MG/KG
SS132C	AN735	19-Mar-01	0.5	1	TOTAL	VANADIUM	8.4		0.2877	0.29	MG/KG
SS132C	AN735	19-Mar-01	0.5	1	TOTAL	ZINC	11.9		0.4	0.99	MG/KG
SS132C	AN736	19-Mar-01	0	0.25	TOTAL	ALUMINUM	3980		5.3	8.57	MG/KG
SS132C	AN736	19-Mar-01	0	0.25	TOTAL	ARSENIC	1.7	J	0.8406		MG/KG
SS132C	AN736	19-Mar-01	0	0.25	TOTAL	BARIUM	6.1		0.7381	0.74	MG/KG
SS132C	AN736	19-Mar-01	0	0.25	TOTAL	BERYLLIUM	0.12		0.0205	0.02	MG/KG
SS132C	AN736	19-Mar-01	0	0.25	TOTAL	CADMIUM	0.26		0.041		MG/KG
SS132C	AN736	19-Mar-01	0	0.25	TOTAL	CHROMIUM, TOTAL	4.3		0.2	0.29	MG/KG

Table A.4
Rail Line Soil Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	TH (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132C	AN736	19-Mar-01	0	0.25	TOTAL	COBALT	1.2		0.246	0.25	MG/KG
SS132C	AN736	19-Mar-01	0	0.25	TOTAL	COPPER	10.4		0.5126	0.51	MG/KG
SS132C	AN736	19-Mar-01	0	0.25	TOTAL	IRON	5080		3.5	7.61	MG/KG
SS132C	AN736	19-Mar-01	0	0.25	TOTAL	LEAD	23	J	0.2	0.27	MG/KG
SS132C	AN736	19-Mar-01	0	0.25	TOTAL	MAGNESIUM	386		82.5	136	MG/KG
SS132C	AN736	19-Mar-01	0	0.25	TOTAL	MANGANESE	31.2		0.0615	0.06	MG/KG
SS132C	AN736	19-Mar-01	0	0.25	TOTAL	NICKEL	2.2		0.2665	0.27	MG/KG
SS132C	AN736	19-Mar-01	0	0.25	TOTAL	POTASSIUM	213		73.5865	73.6	MG/KG
SS132C	AN736	19-Mar-01	0	0.25	TOTAL	VANADIUM	8.7		0.287	0.29	MG/KG
SS132C	AN736	19-Mar-01	0	0.25	TOTAL	ZINC	8.1		0.4	0.98	MG/KG
SS132C	AN736	19-Mar-01	0	0.25	SW3550	BENZO(a)ANTHRACENE	100	J	88.7	350	UG/KG
SS132C	AN736	19-Mar-01	0	0.25	SW3550	BENZO(a)PYRENE	96	J	73.1	350	UG/KG
SS132C	AN736	19-Mar-01	0	0.25	SW3550	BENZO(b)FLUORANTHENE	180	J	68.2	350	UG/KG
SS132C	AN736	19-Mar-01	0	0.25	SW3550	BENZO(g,h,i)PERYLENE	78	J	78	350	UG/KG
SS132C	AN736	19-Mar-01	0	0.25	SW3550	BENZO(k)FLUORANTHENE	100	J	90.1	350	UG/KG
SS132C	AN736	19-Mar-01	0	0.25	SW3550	CHRYSENE	180	J	92.9	350	UG/KG
SS132C	AN736	19-Mar-01	0	0.25	SW3550	DIBENZ(a,h)ANTHRACENE	26	J	26	350	UG/KG
SS132C	AN736	19-Mar-01	0	0.25	SW3550	FLUORANTHENE	190	J	84.8	350	UG/KG
SS132C	AN736	19-Mar-01	0	0.25	SW3550	INDENO(1,2,3-c,d)PYRENE	74	J	74	350	UG/KG
SS132C	AN736	19-Mar-01	0	0.25	SW3550	PHENANTHRENE	70	J	70	350	UG/KG
SS132C	AN736	19-Mar-01	0	0.25	SW3550	PYRENE	180	J	75	350	UG/KG
SS132C	AN737	19-Mar-01	0.25	0.5	TOTAL	ALUMINUM	4650		5.3	8.5	MG/KG
SS132C	AN737	19-Mar-01	0.25	0.5	TOTAL	ARSENIC	1.5	J	0.8334	0.83	MG/KG
SS132C	AN737	19-Mar-01	0.25	0.5	TOTAL	BARIUM	6		0.7318	0.73	MG/KG
SS132C	AN737	19-Mar-01	0.25	0.5	TOTAL	BERYLLIUM	0.11		0.0203	0.02	MG/KG
SS132C	AN737	19-Mar-01	0.25	0.5	TOTAL	BORON	2.1	J	1.2	1.65	MG/KG
SS132C	AN737	19-Mar-01	0.25	0.5	TOTAL	CHROMIUM, TOTAL	5.7		0.2	0.28	MG/KG
SS132C	AN737	19-Mar-01	0.25	0.5	TOTAL	COBALT	1.5		0.2439	0.24	MG/KG
SS132C	AN737	19-Mar-01	0.25	0.5	TOTAL	COPPER	12.1		0.5082	0.51	MG/KG
SS132C	AN737	19-Mar-01	0.25	0.5	TOTAL	IRON	5930		3.5	7.54	MG/KG
SS132C	AN737	19-Mar-01	0.25	0.5	TOTAL	LEAD	22.3	J	0.2	0.26	MG/KG
SS132C	AN737	19-Mar-01	0.25	0.5	TOTAL	MAGNESIUM	437		82.5	135	MG/KG
SS132C	AN737	19-Mar-01	0.25	0.5	TOTAL	MANGANESE	37.9		0.061	0.06	MG/KG
SS132C	AN737	19-Mar-01	0.25	0.5	TOTAL	NICKEL	2.6		0.2643		MG/KG
SS132C	AN737	19-Mar-01	0.25	0.5	TOTAL	POTASSIUM	257		72.9561	73	MG/KG
SS132C	AN737	19-Mar-01	0.25	0.5	TOTAL	VANADIUM	9.4		0.2846		MG/KG
SS132C	AN737	19-Mar-01	0.25	0.5	TOTAL	ZINC	8.2		0.4		MG/KG
SS132C	AN737	19-Mar-01	0.25	0.5	SW3550	BENZO(a)ANTHRACENE	33	J	33	360	UG/KG

Table A.4
Rail Line Soil Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132C	AN737	19-Mar-01	0.25	0.5	SW3550	BENZO(a)PYRENE	33	J	33	360	UG/KG
SS132C	AN737	19-Mar-01	0.25	0.5	SW3550	BENZO(b)FLUORANTHENE	74	J	68.2	360	UG/KG
SS132C	AN737	19-Mar-01	0.25	0.5	SW3550	BENZO(g,h,i)PERYLENE	27	J	27	360	UG/KG
SS132C	AN737	19-Mar-01	0.25	0.5	SW3550	BENZO(k)FLUORANTHENE	52	J	52	360	UG/KG
SS132C	AN737	19-Mar-01	0.25	0.5	SW3550	CHRYSENE	80	J	80	360	UG/KG
SS132C	AN737	19-Mar-01	0.25	0.5	SW3550	FLUORANTHENE	73	J	73	360	UG/KG
SS132C	AN737	19-Mar-01	0.25	0.5	SW3550	INDENO(1,2,3-c,d)PYRENE	26	J	26	360	UG/KG
SS132C	AN737	19-Mar-01	0.25	0.5	SW3550	PHENANTHRENE	18	J	18	360	UG/KG
SS132C	AN737	19-Mar-01	0.25	0.5	SW3550	PYRENE	76	J	75	360	UG/KG
SS132C	AN738	19-Mar-01	0.5	1	TOTAL	ALUMINUM	5640		5.3	8.13	MG/KG
SS132C	AN738	19-Mar-01	0.5	1	TOTAL	ARSENIC	1.4	J	0.7975	0.8	MG/KG
SS132C	AN738	19-Mar-01	0.5	1	TOTAL	BARIUM	7.8		0.7003	0.7	MG/KG
SS132C	AN738	19-Mar-01	0.5	1	TOTAL	BERYLLIUM	0.14		0.0195	0.02	MG/KG
SS132C	AN738	19-Mar-01	0.5	1	TOTAL	BORON	2.2	J	1.2	1.58	MG/KG
SS132C	AN738	19-Mar-01	0.5	1	TOTAL	CHROMIUM, TOTAL	6.2		0.2	0.27	MG/KG
SS132C	AN738	19-Mar-01	0.5	1	TOTAL	COBALT	2		0.2334	0.23	MG/KG
SS132C	AN738	19-Mar-01	0.5	1	TOTAL	COPPER	7.6		0.4863	0.49	MG/KG
SS132C	AN738	19-Mar-01	0.5	1	TOTAL	IRON	5470		3.5	7.22	MG/KG
SS132C	AN738	19-Mar-01	0.5	1	TOTAL	LEAD	10	J	0.2	0.25	MG/KG
SS132C	AN738	19-Mar-01	0.5	1	TOTAL	MAGNESIUM	644		82.5	129	MG/KG
SS132C	AN738	19-Mar-01	0.5	1	TOTAL	MANGANESE	40.3		0.0584	0.06	MG/KG
SS132C	AN738	19-Mar-01	0.5	1	TOTAL	NICKEL	3.6		0.2529	0.25	MG/KG
SS132C	AN738	19-Mar-01	0.5	1	TOTAL	POTASSIUM	343		69.814	69.8	MG/KG
SS132C	AN738	19-Mar-01	0.5	1	TOTAL	VANADIUM	9.5		0.2723	0.27	MG/KG
SS132C	AN738	19-Mar-01	0.5	1	TOTAL	ZINC	11		0.4	0.93	MG/KG
SS132D	AO291	28-Mar-01	0	0.25	TOTAL	ALUMINUM	1290	J	10.2633	10.3	MG/KG
SS132D	AO291	28-Mar-01	0	0.25	TOTAL	BARIUM	2.1		0.0428	0.04	MG/KG
SS132D	AO291	28-Mar-01	0	0.25	TOTAL	BERYLLIUM	0.11	J	0.057	0.06	MG/KG
SS132D	AO291	28-Mar-01	0	0.25	TOTAL	BORON	0.72		0.1853	0.19	MG/KG
SS132D	AO291	28-Mar-01	0	0.25	TOTAL	CALCIUM	29.9		9.6076	9.61	MG/KG
SS132D	AO291	28-Mar-01	0	0.25	TOTAL	CHROMIUM, TOTAL	1.9	J	0.2851	0.29	MG/KG
SS132D	AO291	28-Mar-01	0	0.25	TOTAL	COBALT	0.36	J	0.2281	0.23	MG/KG
SS132D	AO291	28-Mar-01	0	0.25	TOTAL	COPPER	4.8	J	0.0855	0.09	MG/KG
SS132D	AO291	28-Mar-01	0	0.25	TOTAL	IRON	2430	J	4.7183	4.72	MG/KG
SS132D	AO291	28-Mar-01	0	0.25	TOTAL	LEAD	5.6		0.2423	0.24	MG/KG
SS132D	AO291	28-Mar-01	0	0.25	TOTAL	MAGNESIUM	182		10.0352		MG/KG
SS132D	AO291	28-Mar-01	0	0.25	TOTAL	MANGANESE	12.4		0.2566	0.26	MG/KG
SS132D	AO291	28-Mar-01	0	0.25	TOTAL	NICKEL	0.87	J	0.1996		MG/KG

Table A.4
Rail Line Soil Data (Detects)

LOCATION	SAMPLE ID	DATE	DEDT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132D	AO291	28-Mar-01	0 DEPI	0.25	TOTAL	POTASSIUM	111		4.2764		MG/KG
SS132D	AO291	28-Mar-01	0	0.25	TOTAL	SODIUM	49.9		40.0553		MG/KG
SS132D	AO291	28-Mar-01	0	0.25	TOTAL	VANADIUM	49.9	-	0.2851		MG/KG
SS132D SS132D	AO291	28-Mar-01	0	0.25	TOTAL	ZINC	3.2		0.2651		MG/KG
SS132D	AO291	28-Mar-01	0.25	0.23	TOTAL	ALUMINUM	1220		10.7466		MG/KG
SS132D	AO292	28-Mar-01	0.25	0.5	TOTAL	BARIUM	2.3		0.0448		MG/KG
SS132D	AO292 AO292	28-Mar-01	0.25	0.5	TOTAL	BERYLLIUM	0.15		0.0448		MG/KG
SS132D	AO292	28-Mar-01	0.25	0.5	TOTAL	BORON	0.13				MG/KG
SS132D SS132D	AO292 AO292	28-Mar-01	0.25	0.5	TOTAL	CALCIUM	25		0.194 10.06		MG/KG
SS132D SS132D	AO292 AO292			0.5	TOTAL	CHROMIUM, TOTAL			0.2985		MG/KG
SS132D SS132D	AO292 AO292	28-Mar-01 28-Mar-01	0.25	0.5	TOTAL	COBALT	1.8				
SS132D SS132D	AO292 AO292		0.25	0.5	TOTAL	COPPER	0.35 2.7		0.2388		MG/KG
SS132D SS132D	AO292 AO292	28-Mar-01 28-Mar-01	0.25	0.5	TOTAL	IRON	2500		0.0896		MG/KG MG/KG
	AO292 AO292	28-Mar-01	0.25	0.5	TOTAL	LEAD			4.9404		
SS132D					-		2		0.2537		MG/KG
SS132D	AO292	28-Mar-01	0.25	0.5	TOTAL	MAGNESIUM	159		10.5078		MG/KG
SS132D	AO292	28-Mar-01	0.25	0.5	TOTAL	MANGANESE	13.9		0.2687		MG/KG
SS132D	AO292	28-Mar-01	0.25	0.5	TOTAL	NICKEL	0.82		0.209	_	MG/KG
SS132D	AO292	28-Mar-01	0.25	0.5	TOTAL	POTASSIUM	119		4.4777		MG/KG
SS132D	AO292	28-Mar-01	0.25	0.5	TOTAL	SODIUM	88.6		41.9416		MG/KG
SS132D	AO292	28-Mar-01	0.25	0.5	TOTAL	VANADIUM	3.8		0.2985		MG/KG
SS132D	AO292	28-Mar-01	0.25	0.5	TOTAL	ZINC	3.9		0.0597		MG/KG
SS132D	AO293	28-Mar-01	0.5	1	TOTAL	ALUMINUM	1190		10.8365		MG/KG
SS132D	AO293	28-Mar-01	0.5	1	TOTAL	BARIUM	2.3		0.0452		MG/KG
SS132D	AO293	28-Mar-01	0.5	1	TOTAL	BORON	0.87		0.1957	_	MG/KG
SS132D	AO293	28-Mar-01	0.5	1	TOTAL	CHROMIUM, TOTAL	1.9	J	0.301		MG/KG
SS132D	AO293	28-Mar-01	0.5	1	TOTAL	COBALT	0.7		0.2408		MG/KG
SS132D	AO293	28-Mar-01	0.5	1	TOTAL	COPPER	2.4	J	0.0903	0.09	MG/KG
SS132D	AO293	28-Mar-01	0.5	1	TOTAL	IRON	2880	J	4.9818		MG/KG
SS132D	AO293	28-Mar-01	0.5	1	TOTAL	LEAD	2		0.2559	0.26	MG/KG
SS132D	AO293	28-Mar-01	0.5	1	TOTAL	MAGNESIUM	209		10.5957	10.6	MG/KG
SS132D	AO293	28-Mar-01	0.5	1	TOTAL	MANGANESE	17.6		0.2709	0.27	MG/KG
SS132D	AO293	28-Mar-01	0.5	1	TOTAL	MOLYBDENUM	0.59	J	0.4816	0.48	MG/KG
SS132D	AO293	28-Mar-01	0.5	1	TOTAL	NICKEL	0.99	J	0.2107	0.21	MG/KG
SS132D	AO293	28-Mar-01	0.5	1	TOTAL	POTASSIUM	143		4.5152	4.52	MG/KG
SS132D	AO293	28-Mar-01	0.5	1	TOTAL	SODIUM	78.7	J	42.2925	42.3	MG/KG
SS132D	AO293	28-Mar-01	0.5	1	TOTAL	VANADIUM	4.9		0.301	0.3	MG/KG
SS132D	AO293	28-Mar-01	0.5	1	TOTAL	ZINC	4	J	0.0602		MG/KG
SS132D	AO294	28-Mar-01	0	0.25	TOTAL	ALUMINUM	1740	J	11.42	11.4	MG/KG

Table A.4
Rail Line Soil Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	Ή (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132D	AO294	28-Mar-01	0	0.25	TOTAL	BARIUM	1.9		0.0476		MG/KG
SS132D	AO294	28-Mar-01	0	0.25	TOTAL	BORON	0.96		0.2062	0.21	MG/KG
SS132D	AO294	28-Mar-01	0	0.25	TOTAL	CHROMIUM, TOTAL	2.5	J	0.3172	0.32	MG/KG
SS132D	AO294	28-Mar-01	0	0.25	TOTAL	COBALT	0.46	J	0.2538	0.25	MG/KG
SS132D	AO294	28-Mar-01	0	0.25	TOTAL	COPPER	11.5	J	0.0952	0.1	MG/KG
SS132D	AO294	28-Mar-01	0	0.25	TOTAL	IRON	3080	J	5.2501	5.25	MG/KG
SS132D	AO294	28-Mar-01	0	0.25	TOTAL	LEAD	16.1		0.2696	0.27	MG/KG
SS132D	AO294	28-Mar-01	0	0.25	TOTAL	MAGNESIUM	215		11.1663	11.2	MG/KG
SS132D	AO294	28-Mar-01	0	0.25	TOTAL	MANGANESE	17.4		0.2855	0.29	MG/KG
SS132D	AO294	28-Mar-01	0	0.25	TOTAL	NICKEL	1	J	0.2221	0.22	MG/KG
SS132D	AO294	28-Mar-01	0	0.25	TOTAL	POTASSIUM	134		4.7584	4.76	MG/KG
SS132D	AO294	28-Mar-01	0	0.25	TOTAL	SODIUM	99.9	J	44.5699	44.6	MG/KG
SS132D	AO294	28-Mar-01	0	0.25	TOTAL	VANADIUM	5.7		0.3172	0.32	MG/KG
SS132D	AO294	28-Mar-01	0	0.25	TOTAL	ZINC	4.2	J	0.0634	0.06	MG/KG
SS132D	AO295	28-Mar-01	0.25	0.5	TOTAL	ALUMINUM	1720	J	12.1647	12.2	MG/KG
SS132D	AO295	28-Mar-01	0.25	0.5	TOTAL	ARSENIC	1.2	J	0.963	0.96	MG/KG
SS132D	AO295	28-Mar-01	0.25	0.5	TOTAL	BARIUM	2		0.0507	0.05	MG/KG
SS132D	AO295	28-Mar-01	0.25	0.5	TOTAL	BERYLLIUM	0.084	J	0.0676	0.07	MG/KG
SS132D	AO295	28-Mar-01	0.25	0.5	TOTAL	BORON	1.7		0.2196	0.22	MG/KG
SS132D	AO295	28-Mar-01	0.25	0.5	TOTAL	CALCIUM	45.7		11.3875	11.4	MG/KG
SS132D	AO295	28-Mar-01	0.25	0.5	TOTAL	CHROMIUM, TOTAL	2.7		0.3379	0.34	MG/KG
SS132D	AO295	28-Mar-01	0.25	0.5	TOTAL	COBALT	0.66		0.2703	0.27	MG/KG
SS132D	AO295	28-Mar-01	0.25	0.5	TOTAL	COPPER	7.3		0.1014	0.1	MG/KG
SS132D	AO295	28-Mar-01	0.25	0.5	TOTAL	IRON	3740	J	5.5924	5.59	MG/KG
SS132D	AO295	28-Mar-01	0.25	0.5	TOTAL	LEAD	11.5		0.4393	0.44	MG/KG
SS132D	AO295	28-Mar-01	0.25	0.5	TOTAL	MAGNESIUM	260		11.8944	11.9	MG/KG
SS132D	AO295	28-Mar-01	0.25	0.5	TOTAL	MANGANESE	19		0.3041	0.3	MG/KG
SS132D	AO295	28-Mar-01	0.25	0.5	TOTAL	NICKEL	1.2	J	0.2365	0.24	MG/KG
SS132D	AO295	28-Mar-01	0.25	0.5	TOTAL	POTASSIUM	165		5.0686	5.07	MG/KG
SS132D	AO295	28-Mar-01	0.25	0.5	TOTAL	SODIUM	205	J	47.4762	47.5	MG/KG
SS132D	AO295	28-Mar-01	0.25	0.5	TOTAL	VANADIUM	5.9		0.3379	0.34	MG/KG
SS132D	AO296	28-Mar-01	0.5	1	TOTAL	ALUMINUM	1850	J	12.3495	12.3	MG/KG
SS132D	AO296	28-Mar-01	0.5	1	TOTAL	BARIUM	4.6		0.0515	0.05	MG/KG
SS132D	AO296	28-Mar-01	0.5	1	TOTAL	BERYLLIUM	0.1	J	0.0686	0.07	MG/KG
SS132D	AO296	28-Mar-01	0.5	1	TOTAL	BORON	1.3		0.223	0.22	MG/KG
SS132D	AO296	28-Mar-01	0.5	1	TOTAL	CALCIUM	54.7		11.5605	11.6	MG/KG
SS132D	AO296	28-Mar-01	0.5	1	TOTAL	CHROMIUM, TOTAL	2.3		0.343	0.34	MG/KG
SS132D	AO296	28-Mar-01	0.5	1	TOTAL	COBALT	0.74		0.2744	0.27	MG/KG

Table A.4
Rail Line Soil Data (Detects)

LOCATION	SAMPLE ID	DATE	DEP1	TH (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132D	AO296	28-Mar-01	0.5	1	TOTAL	COPPER	3.9		0.1029	0.1	MG/KG
SS132D	AO296	28-Mar-01	0.5	1	TOTAL	IRON	3630	J	5.6773	5.68	MG/KG
SS132D	AO296	28-Mar-01	0.5	1	TOTAL	LEAD	4.6		0.446	0.45	MG/KG
SS132D	AO296	28-Mar-01	0.5	1	TOTAL	MAGNESIUM	450		12.0751	12.1	MG/KG
SS132D	AO296	28-Mar-01	0.5	1	TOTAL	MANGANESE	23.3		0.3087	0.31	MG/KG
SS132D	AO296	28-Mar-01	0.5	1	TOTAL	NICKEL	0.82	J	0.2401	0.24	MG/KG
SS132D	AO296	28-Mar-01	0.5	1	TOTAL	POTASSIUM	406		5.1456	5.15	MG/KG
SS132D	AO296	28-Mar-01	0.5	1	TOTAL	SODIUM	129	J	48.1973	48.2	MG/KG
SS132D	AO296	28-Mar-01	0.5	1	TOTAL	VANADIUM	7		0.343	0.34	MG/KG
SS132D	AO296	28-Mar-01	0.5	1	TOTAL	ZINC	27.1	J	0.0686	0.07	MG/KG
SS132D	AO297	28-Mar-01	0.5	1	TOTAL	ALUMINUM	1520	J	11.9048	11.9	MG/KG
SS132D	AO297	28-Mar-01	0.5	1	TOTAL	ARSENIC	1	J	0.9425	0.94	MG/KG
SS132D	AO297	28-Mar-01	0.5	1	TOTAL	BARIUM	2.5		0.0496	0.05	MG/KG
SS132D	AO297	28-Mar-01	0.5	1	TOTAL	BORON	1.3		0.2149	0.21	MG/KG
SS132D	AO297	28-Mar-01	0.5	1	TOTAL	CALCIUM	37.6		11.1442	11.1	MG/KG
SS132D	AO297	28-Mar-01	0.5	1	TOTAL	CHROMIUM, TOTAL	2.5		0.3307	0.33	MG/KG
SS132D	AO297	28-Mar-01	0.5	1	TOTAL	COBALT	0.34	J	0.2646	0.26	MG/KG
SS132D	AO297	28-Mar-01	0.5	1	TOTAL	COPPER	4.3		0.0992	0.1	MG/KG
SS132D	AO297	28-Mar-01	0.5	1	TOTAL	IRON	3140	J	5.4729	5.47	MG/KG
SS132D	AO297	28-Mar-01	0.5	1	TOTAL	LEAD	4.1		0.4299	0.43	MG/KG
SS132D	AO297	28-Mar-01	0.5	1	TOTAL	MAGNESIUM	230		11.6402	11.6	MG/KG
SS132D	AO297	28-Mar-01	0.5	1	TOTAL	MANGANESE	17.6		0.2976	0.3	MG/KG
SS132D	AO297	28-Mar-01	0.5	1	TOTAL	NICKEL	0.91	J	0.2315	0.23	MG/KG
SS132D	AO297	28-Mar-01	0.5	1	TOTAL	POTASSIUM	144		4.9603	4.96	MG/KG
SS132D	AO297	28-Mar-01	0.5	1	TOTAL	SODIUM	146	J	46.4616	46.5	MG/KG
SS132D	AO297	28-Mar-01	0.5	1	TOTAL	VANADIUM	5.4		0.3307	0.33	MG/KG
SS132Z	20545	16-Nov-04	0	0.25	D2216	MOISTURE, PERCENT	16				Т
SS132Z	20545	16-Nov-04	0	0.25	SW8270C	2-METHYLNAPHTHALENE	2800		171.6152	2000	UG/KG
SS132Z	20545	16-Nov-04	0	0.25	SW8270C	4-METHYLPHENOL (p-CRESOL)	110	J	110	2000	UG/KG
SS132Z	20545	16-Nov-04	0	0.25	SW8270C	ACENAPHTHENE	1000	J	188.2423	2000	UG/KG
SS132Z	20545	16-Nov-04	0	0.25	SW8270C	ACENAPHTHYLENE	3500		121.1401	2000	UG/KG
SS132Z	20545	16-Nov-04	0	0.25	SW8270C	ANTHRACENE	6500		163.3017	2000	UG/KG
SS132Z	20545	16-Nov-04	0	0.25	SW8270C	BENZO(a)ANTHRACENE	15000		733.3333	7900	UG/KG
SS132Z	20545	16-Nov-04	0	0.25	SW8270C	BENZO(a)PYRENE	14000		204.2755	2000	UG/KG
SS132Z	20545	16-Nov-04	0	0.25	SW8270C	BENZO(b)FLUORANTHENE	13000		1314.2856	7900	UG/KG
SS132Z	20545	16-Nov-04	0	0.25	SW8270C	BENZO(g,h,i)PERYLENE	5300		279.6912	2000	UG/KG
SS132Z	20545	16-Nov-04	0	0.25	SW8270C	BENZO(k)FLUORANTHENE	9100	J	226.8409	2000	UG/KG
SS132Z	20545	16-Nov-04	0	0.25	SW8270C	CARBAZOLE	5900		468.5273	2000	UG/KG

Table A.4
Rail Line Soil Data (Detects)

LOCATION	SAMPLE ID	DATE	DEP1	TH (FT.)	TEST	ANALYTE	RESULT	QUALIFIER1	MDL	RL	UNITS
SS132Z	20545	16-Nov-04	0	0.25	SW8270C	CHRYSENE	20000		619.0476	7900	UG/KG
SS132Z	20545	16-Nov-04	0	0.25	SW8270C	DIBENZ(a,h)ANTHRACENE	2400		391.924	2000	UG/KG
SS132Z	20545	16-Nov-04	0	0.25	SW8270C	DIBENZOFURAN	4700		213.7767	2000	UG/KG
SS132Z	20545	16-Nov-04	0	0.25	SW8270C	FLUORANTHENE	47000		1721.4286	7900	UG/KG
SS132Z	20545	16-Nov-04	0	0.25	SW8270C	FLUORENE	5900		239.3112	2000	UG/KG
SS132Z	20545	16-Nov-04	0	0.25	SW8270C	INDENO(1,2,3-c,d)PYRENE	6600		383.0166	2000	UG/KG
SS132Z	20545	16-Nov-04	0	0.25	SW8270C	NAPHTHALENE	4900		176.9596	2000	UG/KG
SS132Z	20545	16-Nov-04	0	0.25	SW8270C	PHENANTHRENE	45000		626.1905	7900	UG/KG
SS132Z	20545	16-Nov-04	0	0.25	SW8270C	PYRENE	40000		1790.4762	7900	UG/KG
SS132Z	20546	16-Nov-04	0.25	0.5	D2216	MOISTURE, PERCENT	7				Т
SS132Z	20546	16-Nov-04	0.25	0.5	SW8270C	2-METHYLNAPHTHALENE	140	J	31.2095	350	UG/KG
SS132Z	20546	16-Nov-04	0.25	0.5	SW8270C	ACENAPHTHENE	75	J	34.2333	350	UG/KG
SS132Z	20546	16-Nov-04	0.25	0.5	SW8270C	ACENAPHTHYLENE	220	J	22.0302	350	UG/KG
SS132Z	20546	16-Nov-04	0.25	0.5	SW8270C	ANTHRACENE	580		29.6976	350	UG/KG
SS132Z	20546	16-Nov-04	0.25	0.5	SW8270C	BENZO(a)ANTHRACENE	1200		33.2613	350	UG/KG
SS132Z	20546	16-Nov-04	0.25	0.5	SW8270C	BENZO(a)PYRENE	980		37.149	350	UG/KG
SS132Z	20546	16-Nov-04	0.25	0.5	SW8270C	BENZO(b)FLUORANTHENE	1100		59.6112	350	UG/KG
SS132Z	20546	16-Nov-04	0.25	0.5	SW8270C	BENZO(g,h,i)PERYLENE	520		50.8639	350	UG/KG
SS132Z	20546	16-Nov-04	0.25	0.5	SW8270C	BENZO(k)FLUORANTHENE	1100	J	41.2527	350	UG/KG
SS132Z	20546	16-Nov-04	0.25	0.5	SW8270C	CARBAZOLE	240	J	85.2052	350	UG/KG
SS132Z	20546	16-Nov-04	0.25	0.5	SW8270C	CHRYSENE	1400		28.0778	350	UG/KG
SS132Z	20546	16-Nov-04	0.25	0.5	SW8270C	DIBENZ(a,h)ANTHRACENE	200	J	71.2743	350	UG/KG
SS132Z	20546	16-Nov-04	0.25	0.5	SW8270C	DIBENZOFURAN	260	J	38.8769	350	UG/KG
SS132Z	20546	16-Nov-04	0.25	0.5	SW8270C	FLUORANTHENE	2600		78.0778	350	UG/KG
SS132Z	20546	16-Nov-04	0.25	0.5	SW8270C	FLUORENE	450		43.5205	350	UG/KG
SS132Z	20546	16-Nov-04	0.25	0.5	SW8270C	INDENO(1,2,3-c,d)PYRENE	560		69.6544	350	UG/KG
SS132Z	20546	16-Nov-04	0.25	0.5	SW8270C	NAPHTHALENE	200	J	32.1814	350	UG/KG
SS132Z	20546	16-Nov-04	0.25	0.5	SW8270C	PHENANTHRENE	2600		28.4017	350	UG/KG
SS132Z	20546	16-Nov-04	0.25	0.5	SW8270C	PYRENE	2300		81.2095	350	UG/KG
SS132Z	20547	16-Nov-04	0.5	1	D2216	MOISTURE, PERCENT	7				Т
SS132Z	20547	16-Nov-04	0.5	1	SW8270C	ACENAPHTHYLENE	27	J	21.865	360	UG/KG
SS132Z	20547	16-Nov-04	0.5	1	SW8270C	ANTHRACENE	76	J	29.4748	360	UG/KG
SS132Z	20547	16-Nov-04	0.5	1	SW8270C	BENZO(a)ANTHRACENE	290	J	33.0118	360	UG/KG
SS132Z	20547	16-Nov-04	0.5	1	SW8270C	BENZO(a)PYRENE	230	J	36.8703	360	UG/KG
SS132Z	20547	16-Nov-04	0.5	1	SW8270C	BENZO(b)FLUORANTHENE	310	J	59.164	360	UG/KG
SS132Z	20547	16-Nov-04	0.5	1	SW8270C	BENZO(g,h,i)PERYLENE	130	J	50.4823	360	UG/KG
SS132Z	20547	16-Nov-04	0.5	1	SW8270C	BENZO(k)FLUORANTHENE	290	J	40.9432	360	UG/KG
SS132Z	20547	16-Nov-04	0.5	1	SW8270C	CARBAZOLE	48	J	48	360	UG/KG

Table A.4
Rail Line Soil Data (Detects)

LOCATION	SAMPLE ID	DATE	DEP1	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132Z	20547	16-Nov-04	0.5	1	SW8270C	CHRYSENE	390		27.8671	360	UG/KG
SS132Z	20547	16-Nov-04	0.5	1	SW8270C	DIBENZ(a,h)ANTHRACENE	59	J	59	360	UG/KG
SS132Z	20547	16-Nov-04	0.5	1	SW8270C	DIBENZOFURAN	31	J	31	360	UG/KG
SS132Z	20547	16-Nov-04	0.5	1	SW8270C	FLUORANTHENE	600		77.492	360	UG/KG
SS132Z	20547	16-Nov-04	0.5	1	SW8270C	FLUORENE	59	J	43.194	360	UG/KG
SS132Z	20547	16-Nov-04	0.5	1	SW8270C	INDENO(1,2,3-c,d)PYRENE	140	J	69.1318	360	UG/KG
SS132Z	20547	16-Nov-04	0.5	1	SW8270C	NAPHTHALENE	19	J	19	360	UG/KG
SS132Z	20547	16-Nov-04	0.5	1	SW8270C	PHENANTHRENE	440		28.1886	360	UG/KG
SS132Z	20547	16-Nov-04	0.5	1	SW8270C	PYRENE	600		80.6002	360	UG/KG
SSFABKG	FABKG	20-Jun-08	0	0.25	SW3550	BENZO(a)ANTHRACENE	137	J	130.5	261	UG/KG
SSFABKG	FABKG	20-Jun-08	0	0.25	SW3550	BENZO(b)FLUORANTHENE	282		130.5	261	UG/KG
SSFABKG	FABKG	20-Jun-08	0	0.25	SW3550	CHRYSENE	247	J	130.5	261	UG/KG
SSFABKG	FABKG	20-Jun-08	0	0.25	SW3550	DIBENZ(a,h)ANTHRACENE	175	J	130.5	261	UG/KG
SSFABKG	FABKG	20-Jun-08	0	0.25	SW3550	FLUORANTHENE	483		130.5	261	UG/KG
SSFABKG	FABKG	20-Jun-08	0	0.25	SW3550	INDENO(1,2,3-c,d)PYRENE	298		130.5	261	UG/KG
SSFABKG	FABKG	20-Jun-08	0	0.25	SW3550	PHENANTHRENE	167	J	130.5	261	UG/KG
SSFABKG	FABKG	20-Jun-08	0	0.25	SW3550	PYRENE	408		130.5	261	UG/KG
SSFABKG	FABKG	20-Jun-08	0	0.25	SW5030	HYDROCARBONS C9-C10 AROMATIC	1670		254.5	509	UG/KG
SSFABKG	FABKG	20-Jun-08	0	0.25	SW5030	HYDROCARBONS C9-C12 ALIPHATIC	4730		1275	2550	UG/KG
SSFORMACSL06	FMACSLA01_IN	13-Jan-09	0	0.25	TOTAL	ALUMINUM	2700		0.91	19.7	MG/KG
SSFORMACSL06	FMACSLA01_IN	13-Jan-09	0	0.25	TOTAL	ARSENIC	2.1		0.12	0.99	MG/KG
SSFORMACSL06	FMACSLA01_IN	13-Jan-09	0	0.25	TOTAL	BARIUM	3.4	J	0.11	19.7	MG/KG
SSFORMACSL06	FMACSLA01_IN	13-Jan-09	0	0.25	TOTAL	BERYLLIUM	0.082	J	0.0064	0.49	MG/KG
SSFORMACSL06	FMACSLA01_IN	13-Jan-09	0	0.25	TOTAL	BORON	0.98	J	0.027	9.85	MG/KG
SSFORMACSL06	FMACSLA01_IN	13-Jan-09	0	0.25	TOTAL	CADMIUM	0.11	J	0.0079	0.49	MG/KG
SSFORMACSL06	FMACSLA01_IN	13-Jan-09	0	0.25	TOTAL	CALCIUM	55.6	J	1.8	493	MG/KG
SSFORMACSL06	FMACSLA01_IN	13-Jan-09	0	0.25	TOTAL	CHROMIUM, TOTAL	4.5		0.0069	0.99	MG/KG
SSFORMACSL06	FMACSLA01_IN	13-Jan-09	0	0.25	TOTAL	COBALT	0.62	J	0.014	4.93	MG/KG
SSFORMACSL06	FMACSLA01_IN	13-Jan-09	0	0.25	TOTAL	COPPER	66.5		0.021	2.46	MG/KG
SSFORMACSL06	FMACSLA01_IN	13-Jan-09	0	0.25	TOTAL	IRON	4930		0.27	19.7	MG/KG
SSFORMACSL06	FMACSLA01_IN	13-Jan-09	0	0.25	TOTAL	LEAD	38.3		0.069	0.99	MG/KG
SSFORMACSL06	FMACSLA01_IN	13-Jan-09	0	0.25	TOTAL	MAGNESIUM	288	J	1.1	493	MG/KG
SSFORMACSL06	FMACSLA01_IN	13-Jan-09	0	0.25	TOTAL	MANGANESE	26.9		0.0029	1.48	MG/KG
	FMACSLA01_IN	13-Jan-09	0	0.25	TOTAL	MOLYBDENUM	0.2	J	0.0094		MG/KG
SSFORMACSL06	FMACSLA01_IN	13-Jan-09	0	0.25	TOTAL	NICKEL	2.6	J	0.054	3.94	MG/KG
SSFORMACSL06	FMACSLA01_IN	13-Jan-09	0	0.25	TOTAL	POTASSIUM	154		3.9	493	MG/KG
	FMACSLA01_IN	13-Jan-09	0	0.25	TOTAL	SELENIUM	0.23		0.074		MG/KG
SSFORMACSL06	FMACSLA01_IN	13-Jan-09	0	0.25	TOTAL	THALLIUM	0.077	J	0.048	2.46	MG/KG

Table A.4
Rail Line Soil Data (Detects)

								1			
LOCATION	SAMPLE ID	DATE		H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
	FMACSLA01_IN	13-Jan-09	0		TOTAL	VANADIUM	9.2		0.025		MG/KG
	FMACSLA01_IN	13-Jan-09	0		TOTAL	ZINC	6.3		0.0037		MG/KG
	FMACSLA01_IN	13-Jan-09	0	0.25	METHOD	PERCHLORATE	0.83		0.075		UG/KG
	FMACSLA01_IN	13-Jan-09	0	0.25	TOTAL	MERCURY	0.056		0.01		MG/KG
	FMACSLA01_IN	13-Jan-09	0	0.25	SW3550	BENZO(a)ANTHRACENE	22		18		UG/KG
SSFORMACSL06	FMACSLA01_IN	13-Jan-09	0	0.25	SW3550	BENZO(a)PYRENE	24	J	16	330	UG/KG
SSFORMACSL06	FMACSLA01_IN	13-Jan-09	0	0.25	SW3550	BENZO(g,h,i)PERYLENE	22	J	18	330	UG/KG
SSFORMACSL06	FMACSLA01_IN	13-Jan-09	0	0.25	SW3550	BENZYL ALCOHOL	190	J	31		UG/KG
SSFORMACSL06	FMACSLA01_IN	13-Jan-09	0	0.25	SW3550	CHRYSENE	25	J	24	330	UG/KG
SSFORMACSL06	FMACSLA01_IN	13-Jan-09	0	0.25	SW3550	DIBENZ(a,h)ANTHRACENE	18	J	14	330	UG/KG
SSFORMACSL06	FMACSLA01_IN	13-Jan-09	0	0.25	SW3550	DI-n-BUTYL PHTHALATE	33	J	19	330	UG/KG
SSFORMACSL06	FMACSLA01_IN	13-Jan-09	0	0.25	SW3550	FLUORANTHENE	49	J	18	330	UG/KG
SSFORMACSL06	FMACSLA01_IN	13-Jan-09	0	0.25	SW3550	INDENO(1,2,3-c,d)PYRENE	23	J	21	330	UG/KG
SSFORMACSL06	FMACSLA01_IN	13-Jan-09	0	0.25	SW3550	PHENANTHRENE	35	J	20	330	UG/KG
SSFORMACSL06	FMACSLA01_IN	13-Jan-09	0	0.25	SW3550	PHENOL	41	J	22	330	UG/KG
SSFORMACSL06	FMACSLA01_IN	13-Jan-09	0	0.25	SW3550	PYRENE	29	J	23	330	UG/KG
SSFORMACSL06	FMACSLB06_OU	13-Jan-09	0	0.25	TOTAL	ALUMINUM	2410		0.91	19.8	MG/KG
SSFORMACSL06	FMACSLB06_OU	13-Jan-09	0	0.25	TOTAL	ANTIMONY	0.89	J	0.084	5.94	MG/KG
SSFORMACSL06	FMACSLB06_OU	13-Jan-09	0	0.25	TOTAL	ARSENIC	1.8		0.12	0.99	MG/KG
SSFORMACSL06	FMACSLB06_OU	13-Jan-09	0	0.25	TOTAL	BARIUM	3.9	J	0.11	19.8	MG/KG
SSFORMACSL06	FMACSLB06_OU	13-Jan-09	0	0.25	TOTAL	BERYLLIUM	0.063	J	0.0064	0.5	MG/KG
SSFORMACSL06	FMACSLB06_OU	13-Jan-09	0	0.25	TOTAL	BORON	0.89	J	0.027	9.9	MG/KG
SSFORMACSL06	FMACSLB06_OU	13-Jan-09	0	0.25	TOTAL	CADMIUM	0.066	J	0.0079	0.5	MG/KG
SSFORMACSL06	FMACSLB06_OU	13-Jan-09	0	0.25	TOTAL	CALCIUM	122	J	1.8	495	MG/KG
	FMACSLB06_OU	13-Jan-09	0	0.25	TOTAL	CHROMIUM, TOTAL	3.2		0.0069		MG/KG
SSFORMACSL06	FMACSLB06_OU	13-Jan-09	0	0.25	TOTAL	COBALT	0.46	J	0.014	4.95	MG/KG
SSFORMACSL06	FMACSLB06_OU	13-Jan-09	0	0.25	TOTAL	COPPER	20.5		0.021	2.48	MG/KG
SSFORMACSL06	FMACSLB06_OU	13-Jan-09	0	0.25	TOTAL	IRON	4350		0.27	19.8	MG/KG
	FMACSLB06_OU	13-Jan-09	0	0.25	TOTAL	LEAD	42.7		0.069	0.99	MG/KG
	FMACSLB06_OU	13-Jan-09	0	0.25	TOTAL	MAGNESIUM	267	J	1.1		MG/KG
	FMACSLB06_OU	13-Jan-09	0	0.25	TOTAL	MANGANESE	23.1		0.0029		MG/KG
	FMACSLB06 OU	13-Jan-09	0	0.25	TOTAL	MOLYBDENUM	0.11	J	0.0094	0.99	MG/KG
	FMACSLB06 OU	13-Jan-09	0	0.25	TOTAL	NICKEL	3.2		0.054		MG/KG
	FMACSLB06 OU	13-Jan-09	0	0.25	TOTAL	POTASSIUM	145		4		MG/KG
	FMACSLB06_OU	13-Jan-09	0	0.25	TOTAL	SELENIUM	0.24		0.074		MG/KG
	FMACSLB06_OU	13-Jan-09	0	0.25	TOTAL	VANADIUM	12		0.025		MG/KG
	FMACSLB06_OU	13-Jan-09	0	0.25	TOTAL	ZINC	7		0.0037		MG/KG
SSFORMACSL06	_	13-Jan-09	0		METHOD	PERCHLORATE	0.55		0.075		UG/KG

Table A.4
Rail Line Soil Data (Detects)

						I		1			
LOCATION	SAMPLE ID	DATE		H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
	FMACSLB06_OU	13-Jan-09	0		TOTAL	MERCURY	0.043		0.0096		MG/KG
	FMACSLB06_OU	13-Jan-09	0	0.25	SW3550	2-METHYLNAPHTHALENE	91		22		UG/KG
	FMACSLB06_OU	13-Jan-09	0	0.25	SW3550	ACENAPHTHENE	41	1	15		UG/KG
	FMACSLB06_OU	13-Jan-09	0	0.25	SW3550	ACENAPHTHYLENE	150		20		UG/KG
	FMACSLB06_OU	13-Jan-09	0	0.25	SW3550	ANTHRACENE	150		20		UG/KG
	FMACSLB06_OU	13-Jan-09	0	0.25	SW3550	BENZO(a)ANTHRACENE	310		18		UG/KG
	FMACSLB06_OU	13-Jan-09	0	0.25	SW3550	BENZO(a)PYRENE	310		16		UG/KG
	FMACSLB06_OU	13-Jan-09	0	0.25	SW3550	BENZO(b)FLUORANTHENE	480		34		UG/KG
	FMACSLB06_OU	13-Jan-09	0	0.25	SW3550	BENZO(g,h,i)PERYLENE	55		18		UG/KG
	FMACSLB06_OU	13-Jan-09	0	0.25	SW3550	BENZO(k)FLUORANTHENE	410		35		UG/KG
SSFORMACSL06	FMACSLB06_OU	13-Jan-09	0	0.25	SW3550	BENZYL ALCOHOL	270		31	330	UG/KG
SSFORMACSL06	FMACSLB06_OU	13-Jan-09	0	0.25	SW3550	CARBAZOLE	87	J	19	330	UG/KG
SSFORMACSL06	FMACSLB06_OU	13-Jan-09	0	0.25	SW3550	CHRYSENE	330		24	330	UG/KG
	FMACSLB06_OU	13-Jan-09	0	0.25	SW3550	DIBENZ(a,h)ANTHRACENE	25	J	14	330	UG/KG
SSFORMACSL06	FMACSLB06_OU	13-Jan-09	0	0.25	SW3550	DIBENZOFURAN	130	J	19	330	UG/KG
SSFORMACSL06	FMACSLB06_OU	13-Jan-09	0	0.25	SW3550	DI-n-BUTYL PHTHALATE	31	J	19	330	UG/KG
SSFORMACSL06	FMACSLB06_OU	13-Jan-09	0	0.25	SW3550	FLUORANTHENE	1200		18	330	UG/KG
SSFORMACSL06	FMACSLB06_OU	13-Jan-09	0	0.25	SW3550	FLUORENE	200	J	18	330	UG/KG
SSFORMACSL06	FMACSLB06_OU	13-Jan-09	0	0.25	SW3550	INDENO(1,2,3-c,d)PYRENE	69	J	21	330	UG/KG
SSFORMACSL06	FMACSLB06_OU	13-Jan-09	0	0.25	SW3550	NAPHTHALENE	130	J	25	330	UG/KG
SSFORMACSL06	FMACSLB06_OU	13-Jan-09	0	0.25	SW3550	PHENANTHRENE	1100		20	330	UG/KG
SSFORMACSL06	FMACSLB06_OU	13-Jan-09	0	0.25	SW3550	PYRENE	450		23	330	UG/KG
SSFORMACSL06	FMACSLB06_OUR1	13-Jan-09	0	0.25	TOTAL	ALUMINUM	2700		0.92	19.9	MG/KG
SSFORMACSL06	FMACSLB06_OUR1	13-Jan-09	0	0.25	TOTAL	ANTIMONY	0.16	J	0.085	5.97	MG/KG
	FMACSLB06_OUR1	13-Jan-09	0	0.25	TOTAL	ARSENIC	1.8		0.12	1	MG/KG
SSFORMACSL06	FMACSLB06_OUR1	13-Jan-09	0	0.25	TOTAL	BARIUM	3.9	J	0.11	19.9	MG/KG
	FMACSLB06_OUR1	13-Jan-09	0	0.25	TOTAL	BERYLLIUM	0.057		0.0065		MG/KG
SSFORMACSL06	FMACSLB06_OUR1	13-Jan-09	0	0.25	TOTAL	BORON	0.86	J	0.027	9.95	MG/KG
	FMACSLB06_OUR1	13-Jan-09	0	0.25	TOTAL	CADMIUM	0.054	J	0.008	0.5	MG/KG
	FMACSLB06_OUR1	13-Jan-09	0	0.25	TOTAL	CALCIUM	118		1.8		MG/KG
	FMACSLB06_OUR1	13-Jan-09	0	0.25	TOTAL	CHROMIUM, TOTAL	3.2		0.007		MG/KG
	FMACSLB06 OUR1	13-Jan-09	0	0.25	TOTAL	COBALT	0.48		0.014		MG/KG
	FMACSLB06 OUR1	13-Jan-09	0	0.25	TOTAL	COPPER	22		0.021		MG/KG
	FMACSLB06_OUR1	13-Jan-09	0	0.25	TOTAL	IRON	4640		0.27		MG/KG
	FMACSLB06_OUR1	13-Jan-09	0	0.25	TOTAL	LEAD	37.3		0.07		MG/KG
SSFORMACSL06	FMACSLB06_OUR1	13-Jan-09	0	0.25	TOTAL	MAGNESIUM	299		1.1		MG/KG
	FMACSLB06_OUR1	13-Jan-09	0	0.25	TOTAL	MANGANESE	25.1	-	0.0029		MG/KG
	FMACSLB06_OUR1	13-Jan-09	0		TOTAL	MOLYBDENUM	0.081	J	0.0025		MG/KG

Table A.4
Rail Line Soil Data (Detects)

LOCATION	041101 5 10	D.4.T.E.	DED:	/== \			DEQUIT	OUALIEED1			
LOCATION	SAMPLE ID	DATE		H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
	FMACSLB06_OUR1	13-Jan-09	0		TOTAL	NICKEL	2.8		0.055		MG/KG
	FMACSLB06_OUR1	13-Jan-09	0	0.25	TOTAL	POTASSIUM	148		4		MG/KG
	FMACSLB06_OUR1	13-Jan-09	0	0.25	TOTAL	SELENIUM	0.24	-	0.075		MG/KG
	FMACSLB06_OUR1	13-Jan-09	0	0.25	TOTAL	VANADIUM	11.6		0.025		MG/KG
	FMACSLB06_OUR1	13-Jan-09	0	0.25	TOTAL	ZINC	7.1		0.0037		MG/KG
	FMACSLB06_OUR1	13-Jan-09	0	0.25	METHOD	PERCHLORATE	0.5		0.075		UG/KG
	FMACSLB06_OUR1	13-Jan-09	0	0.25	TOTAL	MERCURY	0.033		0.0098		MG/KG
	FMACSLB06_OUR1	13-Jan-09	0	0.25	SW3550	ACENAPHTHYLENE	62		20		UG/KG
SSFORMACSL06	FMACSLB06_OUR1	13-Jan-09	0	0.25	SW3550	ANTHRACENE	77		20		UG/KG
	FMACSLB06_OUR1	13-Jan-09	0	0.25	SW3550	BENZO(a)ANTHRACENE	240	1	18		UG/KG
SSFORMACSL06	FMACSLB06_OUR1	13-Jan-09	0	0.25	SW3550	BENZO(a)PYRENE	230		16	330	UG/KG
SSFORMACSL06	FMACSLB06_OUR1	13-Jan-09	0	0.25	SW3550	BENZO(b)FLUORANTHENE	380		34	330	UG/KG
SSFORMACSL06	FMACSLB06_OUR1	13-Jan-09	0	0.25	SW3550	BENZO(g,h,i)PERYLENE	42	J	18	330	UG/KG
SSFORMACSL06	FMACSLB06_OUR1	13-Jan-09	0	0.25	SW3550	BENZO(k)FLUORANTHENE	310	J	35	330	UG/KG
SSFORMACSL06	FMACSLB06_OUR1	13-Jan-09	0	0.25	SW3550	BENZYL ALCOHOL	170	J	31	330	UG/KG
SSFORMACSL06	FMACSLB06_OUR1	13-Jan-09	0	0.25	SW3550	CARBAZOLE	23	J	19	330	UG/KG
SSFORMACSL06	FMACSLB06_OUR1	13-Jan-09	0	0.25	SW3550	CHRYSENE	260	J	24	330	UG/KG
SSFORMACSL06	FMACSLB06_OUR1	13-Jan-09	0	0.25	SW3550	DIBENZ(a,h)ANTHRACENE	19	J	14	330	UG/KG
SSFORMACSL06	FMACSLB06_OUR1	13-Jan-09	0	0.25	SW3550	DIBENZOFURAN	31	J	19	330	UG/KG
	FMACSLB06 OUR1	13-Jan-09	0	0.25	SW3550	DI-n-BUTYL PHTHALATE	21	J	19		UG/KG
SSFORMACSL06	FMACSLB06_OUR1	13-Jan-09	0	0.25	SW3550	FLUORANTHENE	880		18	330	UG/KG
	FMACSLB06 OUR1	13-Jan-09	0	0.25	SW3550	FLUORENE	57	J	18		UG/KG
SSFORMACSL06	FMACSLB06_OUR1	13-Jan-09	0	0.25	SW3550	INDENO(1,2,3-c,d)PYRENE	52	J	21		UG/KG
	FMACSLB06_OUR1	13-Jan-09	0	0.25	SW3550	PHENANTHRENE	610		20		UG/KG
	FMACSLB06_OUR1	13-Jan-09	0	0.25	SW3550	PYRENE	310		23		UG/KG
	FMACSLB06_OUR2	13-Jan-09	0	0.25	TOTAL	ALUMINUM	2550	-	0.9		MG/KG
	FMACSLB06 OUR2	13-Jan-09	0	0.25	TOTAL	ANTIMONY	0.28		0.083		MG/KG
	FMACSLB06_OUR2	13-Jan-09	0	0.25	TOTAL	ARSENIC	1.8		0.12		MG/KG
	FMACSLB06_OUR2	13-Jan-09	0	0.25	TOTAL	BARIUM	3.6		0.11		MG/KG
	FMACSLB06_OUR2	13-Jan-09	0	0.25	TOTAL	BERYLLIUM	0.054		0.0064		MG/KG
	FMACSLB06_OUR2	13-Jan-09	0	0.25	TOTAL	BORON	0.84		0.027		MG/KG
	FMACSLB06_OUR2	13-Jan-09	0	0.25	TOTAL	CADMIUM	0.068		0.0078		MG/KG
	FMACSLB06 OUR2	13-Jan-09	0	0.25	TOTAL	CALCIUM	120		1.8		MG/KG
	FMACSLB06_OUR2	13-Jan-09	0	0.25	TOTAL	CHROMIUM, TOTAL	3.4		0.0069		MG/KG
	FMACSLB06_OUR2	13-Jan-09	0	0.25	TOTAL	COBALT	0.51		0.0009		MG/KG
	FMACSLB06_OUR2	13-Jan-09	0	0.25	TOTAL	COPPER	68.9		0.014		MG/KG MG/KG
	FMACSLB06_OUR2	13-Jan-09	0	0.25	TOTAL	IRON	4730		0.021		MG/KG MG/KG
	_		0		TOTAL	LEAD					
SSFURIVIAUSE06	FMACSLB06_OUR2	13-Jan-09	U	0.25	IUIAL	LEAU	37.3		0.069	บ.98	MG/KG

Table A.4
Rail Line Soil Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER1	MDL	RL	UNITS
SSFORMACSL06	FMACSLB06_OUR2	13-Jan-09	0	0.25	TOTAL	MAGNESIUM	286	J	1.1	490	MG/KG
SSFORMACSL06	FMACSLB06_OUR2	13-Jan-09	0	0.25	TOTAL	MANGANESE	24.6		0.0028	1.47	MG/KG
SSFORMACSL06	FMACSLB06_OUR2	13-Jan-09	0	0.25	TOTAL	MOLYBDENUM	0.087	J	0.0093	0.98	MG/KG
SSFORMACSL06	FMACSLB06_OUR2	13-Jan-09	0	0.25	TOTAL	NICKEL	6		0.054	3.92	MG/KG
SSFORMACSL06	FMACSLB06_OUR2	13-Jan-09	0	0.25	TOTAL	POTASSIUM	147	J	3.9	490	MG/KG
SSFORMACSL06	FMACSLB06_OUR2	13-Jan-09	0	0.25	TOTAL	SELENIUM	0.16	J	0.073	3.43	MG/KG
SSFORMACSL06	FMACSLB06_OUR2	13-Jan-09	0	0.25	TOTAL	VANADIUM	12.1		0.025	4.9	MG/KG
SSFORMACSL06	FMACSLB06_OUR2	13-Jan-09	0	0.25	TOTAL	ZINC	6.4		0.0037	1.96	MG/KG
SSFORMACSL06	FMACSLB06_OUR2	13-Jan-09	0	0.25	METHOD	PERCHLORATE	0.43	J	0.075	0.8	UG/KG
SSFORMACSL06	FMACSLB06_OUR2	13-Jan-09	0	0.25	TOTAL	MERCURY	0.031		0.01	0.02	MG/KG
SSFORMACSL06	FMACSLB06_OUR2	13-Jan-09	0	0.25	SW3550	BENZO(a)ANTHRACENE	76	J	18	330	UG/KG
SSFORMACSL06	FMACSLB06_OUR2	13-Jan-09	0	0.25	SW3550	BENZO(a)PYRENE	80	J	16	330	UG/KG
SSFORMACSL06	FMACSLB06_OUR2	13-Jan-09	0	0.25	SW3550	BENZO(b)FLUORANTHENE	130	J	34	330	UG/KG
SSFORMACSL06	FMACSLB06_OUR2	13-Jan-09	0	0.25	SW3550	BENZO(g,h,i)PERYLENE	19	J	18	330	UG/KG
SSFORMACSL06	FMACSLB06_OUR2	13-Jan-09	0	0.25	SW3550	BENZO(k)FLUORANTHENE	110	J	35	330	UG/KG
SSFORMACSL06	FMACSLB06_OUR2	13-Jan-09	0	0.25	SW3550	BENZYL ALCOHOL	210	J	31	330	UG/KG
SSFORMACSL06	FMACSLB06_OUR2	13-Jan-09	0	0.25	SW3550	CHRYSENE	100	J	24	330	UG/KG
SSFORMACSL06	FMACSLB06_OUR2	13-Jan-09	0	0.25	SW3550	DI-n-BUTYL PHTHALATE	19	J	19	330	UG/KG
SSFORMACSL06	FMACSLB06_OUR2	13-Jan-09	0	0.25	SW3550	FLUORANTHENE	270	J	18	330	UG/KG
SSFORMACSL06	FMACSLB06_OUR2	13-Jan-09	0	0.25	SW3550	INDENO(1,2,3-c,d)PYRENE	24	J	21	330	UG/KG
SSFORMACSL06	FMACSLB06_OUR2	13-Jan-09	0	0.25	SW3550	PHENANTHRENE	140	J	20	330	UG/KG
SSFORMACSL06	FMACSLB06_OUR2	13-Jan-09	0	0.25	SW3550	PHENOL	43	J	22	330	UG/KG
SSFORMACSL06	FMACSLB06_OUR2	13-Jan-09	0	0.25	SW3550	PYRENE	120	J	23	330	UG/KG
Footnote:											

1. Qualifiers: J = value is estimated due to limitations found in the data validation. The samples that are presented without an associated qualifier code were treated as detected results.

Table A.5 Small Arms Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEP	TH (FT.)	TEST	ANALYTE	RESULT	QUALIFIER1	MDL	RL	UNITS
SS132AL	20972	06-Dec-04	0	0.5	CL200.7	ALUMINUM	8190		6.9	6.9	MG/KG
SS132AL	20972	06-Dec-04	0	0.5	CL200.7	ARSENIC	2.5		0.63	0.63	MG/KG
SS132AL	20972	06-Dec-04	0	0.5	CL200.7	BARIUM	7.6		2.2	2.2	MG/KG
SS132AL	20972	06-Dec-04	0	0.5	CL200.7	CADMIUM	0.17	J	0.1	0.1	MG/KG
SS132AL	20972	06-Dec-04	0	0.5	CL200.7	CALCIUM	116		47.3	47.3	MG/KG
SS132AL	20972	06-Dec-04	0	0.5	CL200.7	CHROMIUM, TOTAL	6.1		0.22	0.22	MG/KG
SS132AL	20972	06-Dec-04	0	0.5	CL200.7	COBALT	1.1	J	0.63	0.63	MG/KG
SS132AL	20972	06-Dec-04	0	0.5	CL200.7	COPPER	164	J	0.53	0.53	MG/KG
SS132AL	20972	06-Dec-04	0	0.5	CL200.7	IRON	6580		7.2	7.2	MG/KG
SS132AL	20972	06-Dec-04	0	0.5	CL200.7	LEAD	240	J	0.24	0.24	MG/KG
SS132AL	20972	06-Dec-04	0	0.5	CL200.7	MAGNESIUM	394		49.3	49.3	MG/KG
SS132AL	20972	06-Dec-04	0	0.5	CL200.7	MANGANESE	37.6		0.2	0.2	MG/KG
SS132AL	20972	06-Dec-04	0	0.5	CL200.7	NICKEL	2.6		0.59	0.59	MG/KG
SS132AL	20972	06-Dec-04	0	0.5	CL200.7	POTASSIUM	228	J	98.5	98.5	MG/KG
SS132AL	20972	06-Dec-04	0	0.5	CL200.7	SELENIUM	1.2	J	0.63	0.63	MG/KG
SS132AL	20972	06-Dec-04	0	0.5	CL200.7	VANADIUM	13.2		0.61	0.61	MG/KG
SS132AL	20972	06-Dec-04	0	0.5	CL200.7	ZINC	19.7		0.39	0.39	MG/KG
SS132AL	20972	06-Dec-04	0	0.5	CL245.5	MERCURY	0.077	J	0.045	0.045	MG/KG
SS132AL	20972	06-Dec-04	0	0.5	D2216	MOISTURE, PERCENT	14				PERCENT
SS132AL	20973	06-Dec-04	1.5	2	CL200.7	ALUMINUM	6900		6.9	6.9	MG/KG
SS132AL	20973	06-Dec-04	1.5	2	CL200.7	ARSENIC	2.5		0.62	0.62	MG/KG
SS132AL	20973	06-Dec-04	1.5	2	CL200.7	BARIUM	10.6		2.2	2.2	MG/KG
SS132AL	20973	06-Dec-04	1.5	2	CL200.7	CADMIUM	0.24		0.1	0.1	MG/KG
SS132AL	20973	06-Dec-04	1.5	2	CL200.7	CALCIUM	124		46.8	46.8	MG/KG
SS132AL	20973	06-Dec-04	1.5	2	CL200.7	CHROMIUM, TOTAL	6.2		0.22	0.22	MG/KG
SS132AL	20973	06-Dec-04	1.5	2	CL200.7	COBALT	0.93	J	0.62	0.62	MG/KG
SS132AL	20973	06-Dec-04	1.5	2	CL200.7	COPPER	120	J	0.52	0.52	MG/KG
SS132AL	20973	06-Dec-04	1.5	2	CL200.7	IRON	7130		7.1	7.1	MG/KG
SS132AL	20973	06-Dec-04	1.5	2	CL200.7	LEAD	160	J	0.24	0.24	MG/KG
SS132AL	20973	06-Dec-04	1.5	2	CL200.7	MAGNESIUM	513		48.7	48.7	MG/KG
SS132AL	20973	06-Dec-04	1.5	2	CL200.7	MANGANESE	61		0.2	0.2	MG/KG
SS132AL	20973	06-Dec-04	1.5	2	CL200.7	MOLYBDENUM	0.64	J	0.4	0.4	MG/KG
SS132AL	20973	06-Dec-04	1.5	2	CL200.7	NICKEL	2.6		0.58	0.58	MG/KG
SS132AL	20973	06-Dec-04	1.5	2	CL200.7	POTASSIUM	261	J	97.4	97.4	MG/KG
SS132AL	20973	06-Dec-04	1.5	2	CL200.7	VANADIUM	12.7		0.6	0.6	MG/KG
SS132AL	20973	06-Dec-04	1.5	2	CL200.7	ZINC	25.9		0.38	0.38	MG/KG
SS132AL	20973	06-Dec-04	1.5	2	D2216	MOISTURE, PERCENT	16				PERCENT
SS132AM	20975	06-Dec-04	0	0.5	CL200.7	ALUMINUM	5890		7.8	7.8	MG/KG

Table A.5 Small Arms Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEP	ΓΗ (FT.)	TEST	ANALYTE	RESULT	QUALIFIER1	MDL	RL	UNITS
SS132AM	20975	06-Dec-04	0	0.5	CL200.7	ARSENIC	2.2		0.71	0.71	MG/KG
SS132AM	20975	06-Dec-04	0	0.5	CL200.7	BARIUM	10.7		2.5	2.5	MG/KG
SS132AM	20975	06-Dec-04	0	0.5	CL200.7	CADMIUM	0.34		0.11	0.11	MG/KG
SS132AM	20975	06-Dec-04	0	0.5	CL200.7	CALCIUM	133		53.2	53.2	MG/KG
SS132AM	20975	06-Dec-04	0	0.5	CL200.7	CHROMIUM, TOTAL	5.1		0.25	0.25	MG/KG
SS132AM	20975	06-Dec-04	0	0.5	CL200.7	COBALT	1	J	0.71	0.71	MG/KG
SS132AM	20975	06-Dec-04	0	0.5	CL200.7	COPPER	131	J	0.59	0.59	MG/KG
SS132AM	20975	06-Dec-04	0	0.5	CL200.7	IRON	7150		8.1	8.1	MG/KG
SS132AM	20975	06-Dec-04	0	0.5	CL200.7	LEAD	280	J	0.27	0.27	MG/KG
SS132AM	20975	06-Dec-04	0	0.5	CL200.7	MAGNESIUM	353		55.4	55.4	MG/KG
SS132AM	20975	06-Dec-04	0	0.5	CL200.7	MANGANESE	52.5		0.23	0.23	MG/KG
SS132AM	20975	06-Dec-04	0	0.5	CL200.7	MOLYBDENUM	6.6		0.46	0.46	MG/KG
SS132AM	20975	06-Dec-04	0	0.5	CL200.7	NICKEL	2.8		0.66	0.66	MG/KG
SS132AM	20975	06-Dec-04	0	0.5	CL200.7	POTASSIUM	218	J	111	111	MG/KG
SS132AM	20975	06-Dec-04	0	0.5	CL200.7	VANADIUM	13		0.69	0.69	MG/KG
SS132AM	20975	06-Dec-04	0	0.5	CL200.7	ZINC	23		0.43	0.43	MG/KG
SS132AM	20975	06-Dec-04	0	0.5	CL245.5	MERCURY	0.15		0.05	0.05	MG/KG
SS132AM	20975	06-Dec-04	0	0.5	D2216	MOISTURE, PERCENT	13				PERCENT
SS132AM	20977	06-Dec-04	1.5	2	CL200.7	ALUMINUM	6610		6.5	6.5	MG/KG
SS132AM	20977	06-Dec-04	1.5	2	CL200.7	ARSENIC	1.5		0.59	0.59	MG/KG
SS132AM	20977	06-Dec-04	1.5	2	CL200.7	BARIUM	10.8		2.1	2.1	MG/KG
SS132AM	20977	06-Dec-04	1.5	2	CL200.7	CADMIUM	0.19		0.09	0.09	MG/KG
SS132AM	20977	06-Dec-04	1.5	2	CL200.7	CALCIUM	60.4	J	44.1	44.1	MG/KG
SS132AM	20977	06-Dec-04	1.5	2	CL200.7	CHROMIUM, TOTAL	6.1		0.21	0.21	MG/KG
SS132AM	20977	06-Dec-04	1.5	2	CL200.7	COBALT	0.96	J	0.59	0.59	MG/KG
SS132AM	20977	06-Dec-04	1.5	2	CL200.7	COPPER	11.7		0.49	0.49	MG/KG
SS132AM	20977	06-Dec-04	1.5	2	CL200.7	IRON	5880		6.7	6.7	MG/KG
SS132AM	20977	06-Dec-04	1.5	2	CL200.7	LEAD	15	J	0.23	0.23	MG/KG
SS132AM	20977	06-Dec-04	1.5	2	CL200.7	MAGNESIUM	352		46	46	MG/KG
SS132AM	20977	06-Dec-04	1.5	2	CL200.7	MANGANESE	22.2		0.19	0.19	MG/KG
SS132AM	20977	06-Dec-04	1.5	2	CL200.7	MOLYBDENUM	0.42		0.38	0.38	MG/KG
SS132AM	20977	06-Dec-04	1.5	2	CL200.7	NICKEL	2.4		0.55	0.55	MG/KG
SS132AM	20977	06-Dec-04	1.5	2	CL200.7	POTASSIUM	186		91.9	91.9	MG/KG
SS132AM	20977	06-Dec-04	1.5	2	CL200.7	VANADIUM	10.3		0.57	0.57	MG/KG
SS132AM	20977	06-Dec-04	1.5	2	CL200.7	ZINC	18.3		0.36	0.36	MG/KG
SS132AM	20977	06-Dec-04	1.5	2	D2216	MOISTURE, PERCENT	9				PERCENT
SS132AN	20978	06-Dec-04	0	0.5	CL200.7	ALUMINUM	6890		7.3	7.3	MG/KG
SS132AN	20978	06-Dec-04	0	0.5	CL200.7	ANTIMONY	1.2		0.9	0.9	

Table A.5 Small Arms Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEP1	TH (FT.)	TEST	ANALYTE	RESULT	QUALIFIER1	MDL	RL	UNITS
SS132AN	20978	06-Dec-04	0	0.5	CL200.7	ARSENIC	3.4		0.66	0.66	MG/KG
SS132AN	20978	06-Dec-04	0	0.5	CL200.7	BARIUM	17.1		2.4	2.4	MG/KG
SS132AN	20978	06-Dec-04	0	0.5	CL200.7	CADMIUM	0.62		0.11	0.11	MG/KG
SS132AN	20978	06-Dec-04	0	0.5	CL200.7	CALCIUM	74.1	J	49.9	49.9	MG/KG
SS132AN	20978	06-Dec-04	0	0.5	CL200.7	CHROMIUM, TOTAL	8.8		0.24	0.24	MG/KG
SS132AN	20978	06-Dec-04	0	0.5	CL200.7	COBALT	1.5		0.66	0.66	MG/KG
SS132AN	20978	06-Dec-04	0	0.5	CL200.7	COPPER	302	J	0.56	0.56	MG/KG
SS132AN	20978	06-Dec-04	0	0.5	CL200.7	IRON	23400		7.6	7.6	MG/KG
SS132AN	20978	06-Dec-04	0	0.5	CL200.7	LEAD	360	J	0.26	0.26	MG/KG
SS132AN	20978	06-Dec-04	0	0.5	CL200.7	MAGNESIUM	382		51.9	51.9	MG/KG
SS132AN	20978	06-Dec-04	0	0.5	CL200.7	MANGANESE	117		0.21	0.21	MG/KG
SS132AN	20978	06-Dec-04	0	0.5	CL200.7	MOLYBDENUM	0.71	J	0.43	0.43	MG/KG
SS132AN	20978	06-Dec-04	0	0.5	CL200.7	NICKEL	4.7		0.62	0.62	MG/KG
SS132AN	20978	06-Dec-04	0	0.5	CL200.7	POTASSIUM	238	J	104	104	MG/KG
SS132AN	20978	06-Dec-04	0	0.5	CL200.7	VANADIUM	12.8		0.64	0.64	MG/KG
SS132AN	20978	06-Dec-04	0	0.5	CL200.7	ZINC	38.1		0.41	0.41	MG/KG
SS132AN	20978	06-Dec-04	0	0.5	D2216	MOISTURE, PERCENT	10				PERCENT
SS132AN	20979	06-Dec-04	0	0.5	CL200.7	ALUMINUM	6000		7.6	7.6	MG/KG
SS132AN	20979	06-Dec-04	0	0.5	CL200.7	ANTIMONY	1	J	0.94	0.94	MG/KG
SS132AN	20979	06-Dec-04	0	0.5	CL200.7	ARSENIC	2		0.69	0.69	MG/KG
SS132AN	20979	06-Dec-04	0	0.5	CL200.7	BARIUM	17.2		2.5	2.5	MG/KG
SS132AN	20979	06-Dec-04	0	0.5	CL200.7	CADMIUM	0.19	J	0.11	0.11	MG/KG
SS132AN	20979	06-Dec-04	0	0.5	CL200.7	CALCIUM	74.6	J	51.8	51.8	MG/KG
SS132AN	20979	06-Dec-04	0	0.5	CL200.7	CHROMIUM, TOTAL	5		0.25	0.25	MG/KG
SS132AN	20979	06-Dec-04	0	0.5	CL200.7	COBALT	1.1	J	0.69	0.69	MG/KG
SS132AN	20979	06-Dec-04	0	0.5	CL200.7	COPPER	281	J	0.58	0.58	MG/KG
SS132AN	20979	06-Dec-04	0	0.5	CL200.7	IRON	6070		7.9	7.9	MG/KG
SS132AN	20979	06-Dec-04	0	0.5	CL200.7	LEAD	320	J	0.27	0.27	MG/KG
SS132AN	20979	06-Dec-04	0	0.5	CL200.7	MAGNESIUM	339		54	54	MG/KG
SS132AN	20979	06-Dec-04	0	0.5	CL200.7	MANGANESE	51.6		0.22	0.22	MG/KG
SS132AN	20979	06-Dec-04	0	0.5	CL200.7	NICKEL	2.3		0.65	0.65	MG/KG
SS132AN	20979	06-Dec-04	0	0.5	CL200.7	POTASSIUM	202	J	108	108	MG/KG
SS132AN	20979	06-Dec-04	0	0.5	CL200.7	VANADIUM	11.4		0.67	0.67	MG/KG
SS132AN	20979	06-Dec-04	0	0.5	CL200.7	ZINC	34.3		0.42	0.42	MG/KG
SS132AN	20979	06-Dec-04	0	0.5	D2216	MOISTURE, PERCENT	14				PERCENT
SS132AN	20980	06-Dec-04	1.5	2	CL200.7	ALUMINUM	3580		5.9	5.9	
SS132AN	20980	06-Dec-04	1.5	2	CL200.7	ARSENIC	1.7		0.53	0.53	MG/KG
SS132AN	20980	06-Dec-04		2	CL200.7	BARIUM	23.7		1.9	1.9	

Table A.5 Small Arms Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEP	ΓΗ (FT.)	TEST	ANALYTE	RESULT	QUALIFIER1	MDL	RL	UNITS
SS132AN	20980	06-Dec-04	1.5	2	CL200.7	CADMIUM	0.14	J	0.09	0.09	MG/KG
SS132AN	20980	06-Dec-04	1.5	2	CL200.7	CALCIUM	84		40.1	40.1	MG/KG
SS132AN	20980	06-Dec-04	1.5	2	CL200.7	CHROMIUM, TOTAL	3.4		0.19	0.19	MG/KG
SS132AN	20980	06-Dec-04	1.5	2	CL200.7	COBALT	0.66	J	0.53	0.53	MG/KG
SS132AN	20980	06-Dec-04	1.5	2	CL200.7	COPPER	48.4	J	0.45	0.45	MG/KG
SS132AN	20980	06-Dec-04	1.5	2	CL200.7	IRON	4610		6.1	6.1	MG/KG
SS132AN	20980	06-Dec-04	1.5	2	CL200.7	LEAD	21	J	0.21	0.21	MG/KG
SS132AN	20980	06-Dec-04	1.5	2	CL200.7	MAGNESIUM	241		41.7	41.7	MG/KG
SS132AN	20980	06-Dec-04	1.5	2	CL200.7	MANGANESE	20.4		0.17	0.17	MG/KG
SS132AN	20980	06-Dec-04	1.5	2	CL200.7	MOLYBDENUM	0.38	J	0.34	0.34	MG/KG
SS132AN	20980	06-Dec-04	1.5	2	CL200.7	NICKEL	1.4		0.5	0.5	MG/KG
SS132AN	20980	06-Dec-04	1.5	2	CL200.7	POTASSIUM	161	J	83.4	83.4	MG/KG
SS132AN	20980	06-Dec-04	1.5	2	CL200.7	VANADIUM	8.5		0.52	0.52	MG/KG
SS132AN	20980	06-Dec-04	1.5	2	CL200.7	ZINC	18.6		0.33	0.33	MG/KG
SS132AN	20980	06-Dec-04	1.5	2	D2216	MOISTURE, PERCENT	9				PERCENT
SS132AO	20981	23-Nov-04	0	0.5	CL200.7	ALUMINUM	2600		6.3	6.3	MG/KG
SS132AO	20981	23-Nov-04	0	0.5	CL200.7	ANTIMONY	2.6		0.77	0.77	MG/KG
SS132AO	20981	23-Nov-04	0	0.5	CL200.7	ARSENIC	2		0.57	0.57	MG/KG
SS132AO	20981	23-Nov-04	0	0.5	CL200.7	BARIUM	3.3	J	2	2	MG/KG
SS132AO	20981	23-Nov-04	0	0.5	CL200.7	CADMIUM	0.14	J	0.09	0.09	MG/KG
SS132AO	20981	23-Nov-04	0	0.5	CL200.7	CALCIUM	86.6		42.9	42.9	MG/KG
SS132AO	20981	23-Nov-04	0	0.5	CL200.7	CHROMIUM, TOTAL	2.8		0.2	0.2	MG/KG
SS132AO	20981	23-Nov-04	0	0.5	CL200.7	COBALT	0.63	J	0.57	0.57	MG/KG
SS132AO	20981	23-Nov-04	0	0.5	CL200.7	COPPER	138		0.48	0.48	MG/KG
SS132AO	20981	23-Nov-04	0	0.5	CL200.7	IRON	4470		6.5	6.5	MG/KG
SS132AO	20981	23-Nov-04	0	0.5	CL200.7	LEAD	362		0.22	0.22	MG/KG
SS132AO	20981	23-Nov-04	0	0.5	CL200.7	MAGNESIUM	192		44.7	44.7	MG/KG
SS132AO	20981	23-Nov-04	0	0.5	CL200.7	MANGANESE	37.3		0.18	0.18	MG/KG
SS132AO	20981	23-Nov-04	0	0.5	CL200.7	NICKEL	1.3		0.53	0.53	MG/KG
SS132AO	20981	23-Nov-04	0	0.5	CL200.7	POTASSIUM	171	J	89.3	89.3	MG/KG
SS132AO	20981	23-Nov-04	0	0.5	CL200.7	VANADIUM	7.3		0.55	0.55	MG/KG
SS132AO	20981	23-Nov-04	0	0.5	CL200.7	ZINC	19.8		0.35	0.35	MG/KG
SS132AO	20981	23-Nov-04	0	0.5	CL245.5	MERCURY	0.093		0.042	0.042	MG/KG
SS132AO	20981	23-Nov-04	0	0.5	D2216	MOISTURE, PERCENT	5				PERCENT
SS132AO	20982	23-Nov-04	1.5	2	CL200.7	ALUMINUM	6330		6.4	6.4	MG/KG
SS132AO	20982	23-Nov-04	1.5	2	CL200.7	ARSENIC	2.2		0.58	0.58	MG/KG
SS132AO	20982	23-Nov-04	1.5	2	CL200.7	BARIUM	4.2		2.1	2.1	MG/KG
SS132AO	20982	23-Nov-04	1.5	2	CL200.7	CADMIUM	0.16	J	0.09	0.09	MG/KG

Table A.5 Small Arms Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEP	TH (FT.)	TEST	ANALYTE	RESULT	QUALIFIER1	MDL	RL	UNITS
SS132AO	20982	23-Nov-04	1.5	2	CL200.7	CALCIUM	49.7	J	43.7	43.7	MG/KG
SS132AO	20982	23-Nov-04	1.5	2	CL200.7	CHROMIUM, TOTAL	5		0.21	0.21	MG/KG
SS132AO	20982	23-Nov-04	1.5	2	CL200.7	COBALT	0.7	J	0.58	0.58	MG/KG
SS132AO	20982	23-Nov-04	1.5	2	CL200.7	COPPER	58.8		0.49	0.49	MG/KG
SS132AO	20982	23-Nov-04	1.5	2	CL200.7	IRON	5690		6.7	6.7	MG/KG
SS132AO	20982	23-Nov-04	1.5	2	CL200.7	LEAD	154		0.23	0.23	MG/KG
SS132AO	20982	23-Nov-04	1.5	2	CL200.7	MAGNESIUM	256		45.6	45.6	MG/KG
SS132AO	20982	23-Nov-04	1.5	2	CL200.7	MANGANESE	24.3		0.19	0.19	MG/KG
SS132AO	20982	23-Nov-04	1.5	2	CL200.7	NICKEL	1.5		0.55	0.55	MG/KG
SS132AO	20982	23-Nov-04	1.5	2	CL200.7	POTASSIUM	162	J	91.1	91.1	MG/KG
SS132AO	20982	23-Nov-04	1.5	2	CL200.7	VANADIUM	10.5		0.56	0.56	MG/KG
SS132AO	20982	23-Nov-04	1.5	2	CL200.7	ZINC	11.5		0.36	0.36	MG/KG
SS132AO	20982	23-Nov-04	1.5	2	D2216	MOISTURE, PERCENT	7				PERCENT
SS132AP	20984	23-Nov-04	0	0.5	CL200.7	ALUMINUM	4050		6.7	6.7	MG/KG
SS132AP	20984	23-Nov-04	0	0.5	CL200.7	ANTIMONY	2.1		0.83	0.83	MG/KG
SS132AP	20984	23-Nov-04	0	0.5	CL200.7	ARSENIC	1.4		0.61	0.61	MG/KG
SS132AP	20984	23-Nov-04	0	0.5	CL200.7	BARIUM	3.3	J	2.2	2.2	MG/KG
SS132AP	20984	23-Nov-04	0	0.5	CL200.7	CALCIUM	68.1	J	46	46	MG/KG
SS132AP	20984	23-Nov-04	0	0.5	CL200.7	CHROMIUM, TOTAL	3.6		0.22	0.22	MG/KG
SS132AP	20984	23-Nov-04	0	0.5	CL200.7	COBALT	0.61	J	0.61	0.61	MG/KG
SS132AP	20984	23-Nov-04	0	0.5	CL200.7	COPPER	120		0.51	0.51	MG/KG
SS132AP	20984	23-Nov-04	0	0.5	CL200.7	IRON	4410		7	7	MG/KG
SS132AP	20984	23-Nov-04	0	0.5	CL200.7	LEAD	409		0.24	0.24	MG/KG
SS132AP	20984	23-Nov-04	0	0.5	CL200.7	MAGNESIUM	310		47.9	47.9	MG/KG
SS132AP	20984	23-Nov-04	0	0.5	CL200.7	MANGANESE	34.6		0.2	0.2	MG/KG
SS132AP	20984	23-Nov-04	0	0.5	CL200.7	NICKEL	1.4		0.57	0.57	MG/KG
SS132AP	20984	23-Nov-04	0	0.5	CL200.7	POTASSIUM	223		95.7	95.7	MG/KG
SS132AP	20984	23-Nov-04	0	0.5	CL200.7	VANADIUM	8.2		0.59	0.59	MG/KG
SS132AP	20984	23-Nov-04	0	0.5	CL200.7	ZINC	12.2		0.38	0.38	MG/KG
SS132AP	20984	23-Nov-04	0	0.5	CL245.5	MERCURY	0.41		0.052	0.052	MG/KG
SS132AP	20984	23-Nov-04	0	0.5	D2216	MOISTURE, PERCENT	8				PERCENT
SS132AP	20986	23-Nov-04	1.5	2	CL200.7	ALUMINUM	4910		6.5	6.5	MG/KG
SS132AP	20986	23-Nov-04	1.5	2	CL200.7	ARSENIC	2.1		0.59	0.59	MG/KG
SS132AP	20986	23-Nov-04	1.5	2	CL200.7	BARIUM	8		2.1	2.1	MG/KG
SS132AP	20986	23-Nov-04	1.5	2	CL200.7	CADMIUM	0.13	J	0.09	0.09	MG/KG
SS132AP	20986	23-Nov-04	1.5	2	CL200.7	CALCIUM	66.5	J	44.1	44.1	MG/KG
SS132AP	20986	23-Nov-04	1.5	2	CL200.7	CHROMIUM, TOTAL	4.7		0.21	0.21	MG/KG
SS132AP	20986	23-Nov-04	1.5	2	CL200.7	COBALT	1.5		0.59	0.59	MG/KG

Table A.5 Small Arms Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEP1	ΓΗ (FT.)	TEST	ANALYTE	RESULT	QUALIFIER1	MDL	RL	UNITS
SS132AP	20986	23-Nov-04	1.5	2	CL200.7	COPPER	95.2		0.49	0.49	MG/KG
SS132AP	20986	23-Nov-04	1.5	2	CL200.7	IRON	5120		6.7	6.7	MG/KG
SS132AP	20986	23-Nov-04	1.5	2	CL200.7	LEAD	167		0.23	0.23	MG/KG
SS132AP	20986	23-Nov-04	1.5	2	CL200.7	MAGNESIUM	411		45.9	45.9	MG/KG
SS132AP	20986	23-Nov-04	1.5	2	CL200.7	MANGANESE	36.2		0.19	0.19	MG/KG
SS132AP	20986	23-Nov-04	1.5	2	CL200.7	MOLYBDENUM	0.5	J	0.38	0.38	MG/KG
SS132AP	20986	23-Nov-04	1.5	2	CL200.7	NICKEL	2.8		0.55	0.55	MG/KG
SS132AP	20986	23-Nov-04	1.5	2	CL200.7	POTASSIUM	322		91.8	91.8	MG/KG
SS132AP	20986	23-Nov-04	1.5	2	CL200.7	VANADIUM	7.8		0.57	0.57	MG/KG
SS132AP	20986	23-Nov-04	1.5	2	CL200.7	ZINC	15.8		0.36	0.36	MG/KG
SS132AP	20986	23-Nov-04	1.5	2	CL245.5	MERCURY	0.11		0.051	0.051	MG/KG
SS132AP	20986	23-Nov-04	1.5	2	D2216	MOISTURE, PERCENT	7				PERCENT
SS132AQ	20988	23-Nov-04	0	0.5	CL200.7	ALUMINUM	3250		6.6	6.6	MG/KG
SS132AQ	20988	23-Nov-04	0	0.5	CL200.7	ANTIMONY	1	J	0.81	0.81	MG/KG
SS132AQ	20988	23-Nov-04	0	0.5	CL200.7	ARSENIC	2.3		0.6	0.6	MG/KG
SS132AQ	20988	23-Nov-04	0	0.5	CL200.7	BARIUM	2.6	J	2.1	2.1	MG/KG
SS132AQ	20988	23-Nov-04	0	0.5	CL200.7	CADMIUM	0.11	J	0.1	0.1	MG/KG
SS132AQ	20988	23-Nov-04	0	0.5	CL200.7	CALCIUM	63.6	J	44.7	44.7	MG/KG
SS132AQ	20988	23-Nov-04	0	0.5	CL200.7	CHROMIUM, TOTAL	4.1		0.21	0.21	MG/KG
SS132AQ	20988	23-Nov-04	0	0.5	CL200.7	COBALT	0.84	J	0.6	0.6	MG/KG
SS132AQ	20988	23-Nov-04	0	0.5	CL200.7	COPPER	27.3		0.5	0.5	MG/KG
SS132AQ	20988	23-Nov-04	0	0.5	CL200.7	IRON	5400		6.8	6.8	MG/KG
SS132AQ	20988	23-Nov-04	0	0.5	CL200.7	LEAD	69.4		0.23	0.23	MG/KG
SS132AQ	20988	23-Nov-04	0	0.5	CL200.7	MAGNESIUM	320		46.6	46.6	MG/KG
SS132AQ	20988	23-Nov-04	0	0.5	CL200.7	MANGANESE	28.7		0.19	0.19	MG/KG
SS132AQ	20988	23-Nov-04	0	0.5	CL200.7	MOLYBDENUM	0.56	J	0.38	0.38	MG/KG
SS132AQ	20988	23-Nov-04	0	0.5	CL200.7	NICKEL	1.7		0.56	0.56	MG/KG
SS132AQ	20988	23-Nov-04	0	0.5	CL200.7	POTASSIUM	264		93.1	93.1	MG/KG
SS132AQ	20988	23-Nov-04	0	0.5	CL200.7	SELENIUM	0.69	J	0.6	0.6	MG/KG
SS132AQ	20988	23-Nov-04	0	0.5	CL200.7	VANADIUM	11.8		0.58	0.58	MG/KG
SS132AQ	20988	23-Nov-04	0	0.5	CL200.7	ZINC	7.7	J	0.37	0.37	MG/KG
SS132AQ	20988	23-Nov-04	0	0.5	D2216	MOISTURE, PERCENT	5				PERCENT
SS132AQ	20990	23-Nov-04	1.5	2	CL200.7	ALUMINUM	5490		7.1	7.1	MG/KG
SS132AQ	20990	23-Nov-04	1.5	2	CL200.7	ANTIMONY	2.1		0.88	0.88	MG/KG
SS132AQ	20990	23-Nov-04	1.5	2	CL200.7	ARSENIC	2		0.65	0.65	MG/KG
SS132AQ	20990	23-Nov-04	1.5	2	CL200.7	BARIUM	4.2	J	2.3	2.3	
SS132AQ	20990	23-Nov-04	1.5	2	CL200.7	CADMIUM	0.11		0.1	0.1	MG/KG
SS132AQ	20990	23-Nov-04	1.5	2	CL200.7	CALCIUM	95.6		48.5	48.5	

Table A.5 Small Arms Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEP	ΓΗ (FT.)	TEST	ANALYTE	RESULT	QUALIFIER1	MDL	RL	UNITS
SS132AQ	20990	23-Nov-04	1.5	2	CL200.7	CHROMIUM, TOTAL	5.4		0.23	0.23	MG/KG
SS132AQ	20990	23-Nov-04	1.5	2	CL200.7	COBALT	0.94	J	0.65	0.65	MG/KG
SS132AQ	20990	23-Nov-04	1.5	2	CL200.7	COPPER	93.7		0.54	0.54	MG/KG
SS132AQ	20990	23-Nov-04	1.5	2	CL200.7	IRON	6350		7.4	7.4	MG/KG
SS132AQ	20990	23-Nov-04	1.5	2	CL200.7	LEAD	247		0.25	0.25	MG/KG
SS132AQ	20990	23-Nov-04	1.5	2	CL200.7	MAGNESIUM	402		50.5	50.5	MG/KG
SS132AQ	20990	23-Nov-04	1.5	2	CL200.7	MANGANESE	39.2		0.21	0.21	MG/KG
SS132AQ	20990	23-Nov-04	1.5	2	CL200.7	MOLYBDENUM	0.74	J	0.42	0.42	MG/KG
SS132AQ	20990	23-Nov-04	1.5	2	CL200.7	NICKEL	2.3		0.6	0.6	MG/KG
SS132AQ	20990	23-Nov-04	1.5	2	CL200.7	POTASSIUM	287		101	101	MG/KG
SS132AQ	20990	23-Nov-04	1.5	2	CL200.7	SODIUM	79.6	J	74.6	74.6	MG/KG
SS132AQ	20990	23-Nov-04	1.5	2	CL200.7	VANADIUM	10.6		0.63	0.63	MG/KG
SS132AQ	20990	23-Nov-04	1.5	2	CL200.7	ZINC	13		0.4	0.4	MG/KG
SS132AQ	20990	23-Nov-04	1.5	2	CL245.5	MERCURY	0.39		0.047	0.047	MG/KG
SS132AQ	20990	23-Nov-04	1.5	2	D2216	MOISTURE, PERCENT	7				PERCENT
SS132AR	20991	23-Nov-04	0	0.5	CL200.7	ALUMINUM	7250		7.4	7.4	MG/KG
SS132AR	20991	23-Nov-04	0	0.5	CL200.7	ARSENIC	2.6		0.67	0.67	MG/KG
SS132AR	20991	23-Nov-04	0	0.5	CL200.7	BARIUM	5.9		2.4	2.4	MG/KG
SS132AR	20991	23-Nov-04	0	0.5	CL200.7	BORON	3.1		1.5	1.5	MG/KG
SS132AR	20991	23-Nov-04	0	0.5	CL200.7	CADMIUM	0.23		0.11	0.11	MG/KG
SS132AR	20991	23-Nov-04	0	0.5	CL200.7	CALCIUM	53	J	50.2	50.2	MG/KG
SS132AR	20991	23-Nov-04	0	0.5	CL200.7	CHROMIUM, TOTAL	7.9		0.24	0.24	MG/KG
SS132AR	20991	23-Nov-04	0	0.5	CL200.7	COBALT	1.6		0.67	0.67	MG/KG
SS132AR	20991	23-Nov-04	0	0.5	CL200.7	COPPER	42.6		0.56	0.56	MG/KG
SS132AR	20991	23-Nov-04	0	0.5	CL200.7	IRON	7500		7.7	7.7	MG/KG
SS132AR	20991	23-Nov-04	0	0.5	CL200.7	LEAD	44.4	J	0.26	0.26	MG/KG
SS132AR	20991	23-Nov-04	0	0.5	CL200.7	MAGNESIUM	817		52.3	52.3	MG/KG
SS132AR	20991	23-Nov-04	0	0.5	CL200.7	MANGANESE	35.7	J	0.22	0.22	MG/KG
SS132AR	20991	23-Nov-04	0	0.5	CL200.7	MOLYBDENUM	0.45	J	0.43	0.43	MG/KG
SS132AR	20991	23-Nov-04	0	0.5	CL200.7	NICKEL	3.7		0.63	0.63	MG/KG
SS132AR	20991	23-Nov-04	0	0.5	CL200.7	POTASSIUM	317		105	105	MG/KG
SS132AR	20991	23-Nov-04	0	0.5	CL200.7	VANADIUM	12.9		0.65	0.65	MG/KG
SS132AR	20991	23-Nov-04	0	0.5	CL200.7	ZINC	10.1		0.41	0.41	MG/KG
SS132AR	20991	23-Nov-04	0	0.5	D2216	MOISTURE, PERCENT	9		-		PERCENT
SS132AR	20992	23-Nov-04	0	0.5	CL200.7	ALUMINUM	6850		7.1	7.1	
SS132AR	20992	23-Nov-04	0	0.5	CL200.7	ARSENIC	2.6		0.65	0.65	MG/KG
SS132AR	20992	23-Nov-04	0	0.5	CL200.7	BARIUM	5.1		2.3	2.3	MG/KG
SS132AR	20992	23-Nov-04	0	0.5	CL200.7	BORON	3		1.4	1.4	

Table A.5 Small Arms Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEP	ΓΗ (FT.)	TEST	ANALYTE	RESULT	QUALIFIER1	MDL	RL	UNITS
SS132AR	20992	23-Nov-04	0	0.5	CL200.7	CADMIUM	0.22		0.1	0.1	MG/KG
SS132AR	20992	23-Nov-04	0	0.5	CL200.7	CALCIUM	49.5	J	48.4	48.4	MG/KG
SS132AR	20992	23-Nov-04	0	0.5	CL200.7	CHROMIUM, TOTAL	7		0.23	0.23	MG/KG
SS132AR	20992	23-Nov-04	0	0.5	CL200.7	COBALT	1.3		0.65	0.65	MG/KG
SS132AR	20992	23-Nov-04	0	0.5	CL200.7	COPPER	40.4		0.54	0.54	MG/KG
SS132AR	20992	23-Nov-04	0	0.5	CL200.7	IRON	6920		7.4	7.4	MG/KG
SS132AR	20992	23-Nov-04	0	0.5	CL200.7	LEAD	45.4	J	0.25	0.25	MG/KG
SS132AR	20992	23-Nov-04	0	0.5	CL200.7	MAGNESIUM	630		50.4	50.4	MG/KG
SS132AR	20992	23-Nov-04	0	0.5	CL200.7	MANGANESE	31.2	J	0.21	0.21	MG/KG
SS132AR	20992	23-Nov-04	0	0.5	CL200.7	MOLYBDENUM	0.45	J	0.42	0.42	MG/KG
SS132AR	20992	23-Nov-04	0	0.5	CL200.7	NICKEL	3		0.6	0.6	MG/KG
SS132AR	20992	23-Nov-04	0	0.5	CL200.7	POTASSIUM	317		101	101	MG/KG
SS132AR	20992	23-Nov-04	0	0.5	CL200.7	SELENIUM	0.83	J	0.65	0.65	MG/KG
SS132AR	20992	23-Nov-04	0	0.5	CL200.7	VANADIUM	11.7		0.62	0.62	MG/KG
SS132AR	20992	23-Nov-04	0	0.5	CL200.7	ZINC	9		0.4	0.4	MG/KG
SS132AR	20992	23-Nov-04	0	0.5	D2216	MOISTURE, PERCENT	9				PERCENT
SS132AR	20993	23-Nov-04	1.5	2	CL200.7	ALUMINUM	2600		7	7	MG/KG
SS132AR	20993	23-Nov-04	1.5	2	CL200.7	ARSENIC	0.87	J	0.63	0.63	
SS132AR	20993	23-Nov-04	1.5	2	CL200.7	BARIUM	4.4		2.2	2.2	MG/KG
SS132AR	20993	23-Nov-04	1.5	2	CL200.7	BORON	1.9		1.4	1.4	MG/KG
SS132AR	20993	23-Nov-04	1.5	2	CL200.7	CADMIUM	0.13	J	0.1	0.1	MG/KG
SS132AR	20993	23-Nov-04	1.5	2	CL200.7	CHROMIUM, TOTAL	3		0.22	0.22	MG/KG
SS132AR	20993	23-Nov-04	1.5	2	CL200.7	COBALT	0.74	J	0.63	0.63	MG/KG
SS132AR	20993	23-Nov-04	1.5	2	CL200.7	COPPER	7.1		0.53	0.53	MG/KG
SS132AR	20993	23-Nov-04	1.5	2	CL200.7	IRON	3330		7.3	7.3	
SS132AR	20993	23-Nov-04	1.5	2	CL200.7	LEAD	6.2	J	0.25	0.25	MG/KG
SS132AR	20993	23-Nov-04	1.5	2	CL200.7	MAGNESIUM	244		49.5	49.5	MG/KG
SS132AR	20993	23-Nov-04	1.5	2	CL200.7	MANGANESE	19.8	J	0.2	0.2	MG/KG
SS132AR	20993	23-Nov-04	1.5	2	CL200.7	NICKEL	1.7		0.59	0.59	MG/KG
SS132AR	20993	23-Nov-04	1.5	2	CL200.7	POTASSIUM	214		98.9	98.9	MG/KG
SS132AR	20993	23-Nov-04	1.5	2	CL200.7	VANADIUM	5.8		0.61	0.61	MG/KG
SS132AR	20993	23-Nov-04	1.5	2	CL200.7	ZINC	5.2		0.39	0.39	
SS132AR	20993	23-Nov-04	1.5	2	D2216	MOISTURE, PERCENT	4				PERCENT
SS132AS	20994	23-Nov-04	0	0.5	CL200.7	ALUMINUM	6560		7.5	7.5	
SS132AS	20994	23-Nov-04	0	0.5	CL200.7	ARSENIC	2.7		0.68	0.68	
SS132AS	20994	23-Nov-04	0	0.5	CL200.7	BARIUM	3.3	J	2.4	2.4	
SS132AS	20994	23-Nov-04	0	0.5	CL200.7	BORON	2.7		1.5	1.5	
SS132AS	20994	23-Nov-04	0	0.5	CL200.7	CADMIUM	0.28		0.11	0.11	

Table A.5 Small Arms Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEP	TH (FT.)	TEST	ANALYTE	RESULT	QUALIFIER1	MDL	RL	UNITS
SS132AS	20994	23-Nov-04	0	0.5	CL200.7	CHROMIUM, TOTAL	4.5		0.24	0.24	MG/KG
SS132AS	20994	23-Nov-04	0	0.5	CL200.7	COPPER	87.1		0.57	0.57	MG/KG
SS132AS	20994	23-Nov-04	0	0.5	CL200.7	IRON	8100		7.8	7.8	MG/KG
SS132AS	20994	23-Nov-04	0	0.5	CL200.7	LEAD	154	J	0.26	0.26	MG/KG
SS132AS	20994	23-Nov-04	0	0.5	CL200.7	MAGNESIUM	157		53.5	53.5	MG/KG
SS132AS	20994	23-Nov-04	0	0.5	CL200.7	MANGANESE	157	J	0.22	0.22	MG/KG
SS132AS	20994	23-Nov-04	0	0.5	CL200.7	MOLYBDENUM	0.46	J	0.44	0.44	MG/KG
SS132AS	20994	23-Nov-04	0	0.5	CL200.7	NICKEL	1.3		0.64	0.64	MG/KG
SS132AS	20994	23-Nov-04	0	0.5	CL200.7	POTASSIUM	173	J	107	107	MG/KG
SS132AS	20994	23-Nov-04	0	0.5	CL200.7	SELENIUM	0.82	J	0.68	0.68	MG/KG
SS132AS	20994	23-Nov-04	0	0.5	CL200.7	VANADIUM	13.9		0.66	0.66	MG/KG
SS132AS	20994	23-Nov-04	0	0.5	CL200.7	ZINC	6.8		0.42	0.42	MG/KG
SS132AS	20994	23-Nov-04	0	0.5	D2216	MOISTURE, PERCENT	9				PERCENT
SS132AS	20995	23-Nov-04	1.5	2	CL200.7	ALUMINUM	6230		5.9	5.9	MG/KG
SS132AS	20995	23-Nov-04	1.5	2	CL200.7	ARSENIC	2.2		0.54	0.54	MG/KG
SS132AS	20995	23-Nov-04	1.5	2	CL200.7	BARIUM	6.1		1.9	1.9	MG/KG
SS132AS	20995	23-Nov-04	1.5	2	CL200.7	BORON	2.2	J	1.2	1.2	MG/KG
SS132AS	20995	23-Nov-04	1.5	2	CL200.7	CADMIUM	0.2		0.09	0.09	MG/KG
SS132AS	20995	23-Nov-04	1.5	2	CL200.7	CALCIUM	48.3	J	40.3	40.3	MG/KG
SS132AS	20995	23-Nov-04	1.5	2	CL200.7	CHROMIUM, TOTAL	5.5		0.19	0.19	MG/KG
SS132AS	20995	23-Nov-04	1.5	2	CL200.7	COBALT	0.77	J	0.54	0.54	MG/KG
SS132AS	20995	23-Nov-04	1.5	2	CL200.7	COPPER	1.8		0.45	0.45	MG/KG
SS132AS	20995	23-Nov-04	1.5	2	CL200.7	IRON	5950		6.2	6.2	MG/KG
SS132AS	20995	23-Nov-04	1.5	2	CL200.7	LEAD	4.3	J	0.21	0.21	MG/KG
SS132AS	20995	23-Nov-04	1.5	2	CL200.7	MAGNESIUM	283		42	42	MG/KG
SS132AS	20995	23-Nov-04	1.5	2	CL200.7	MANGANESE	20.8	J	0.17	0.17	MG/KG
SS132AS	20995	23-Nov-04	1.5	2	CL200.7	MOLYBDENUM	0.58	J	0.35	0.35	MG/KG
SS132AS	20995	23-Nov-04	1.5	2	CL200.7	NICKEL	2.1		0.5	0.5	MG/KG
SS132AS	20995	23-Nov-04	1.5	2	CL200.7	POTASSIUM	165	J	84	84	MG/KG
SS132AS	20995	23-Nov-04	1.5	2	CL200.7	VANADIUM	9.7		0.52	0.52	MG/KG
SS132AS	20995	23-Nov-04	1.5	2	CL200.7	ZINC	7.8		0.33	0.33	MG/KG
SS132AS	20995	23-Nov-04	1.5	2	D2216	MOISTURE, PERCENT	7				PERCENT
SS132AT	20996	23-Nov-04	0	0.5	CL200.7	ALUMINUM	3830		6.5	6.5	MG/KG
SS132AT	20996	23-Nov-04	0	0.5	CL200.7	ARSENIC	2		0.6	0.6	MG/KG
SS132AT	20996	23-Nov-04	0	0.5	CL200.7	BARIUM	3.5		2.1	2.1	MG/KG
SS132AT	20996	23-Nov-04	0	0.5	CL200.7	BORON	3.2		1.3	1.3	MG/KG
SS132AT	20996	23-Nov-04	0	0.5	CL200.7	CADMIUM	0.33		0.1	0.1	MG/KG
SS132AT	20996	23-Nov-04	0	0.5	CL200.7	CALCIUM	56.6	J	44.7	44.7	MG/KG

Table A.5 Small Arms Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEP	TH (FT.)	TEST	ANALYTE	RESULT	QUALIFIER1	MDL	RL	UNITS
SS132AT	20996	23-Nov-04	0	0.5	CL200.7	CHROMIUM, TOTAL	4.7		0.21	0.21	MG/KG
SS132AT	20996	23-Nov-04	0	0.5	CL200.7	COBALT	0.84	J	0.6	0.6	MG/KG
SS132AT	20996	23-Nov-04	0	0.5	CL200.7	COPPER	23.6		0.5	0.5	MG/KG
SS132AT	20996	23-Nov-04	0	0.5	CL200.7	IRON	10000		6.8	6.8	MG/KG
SS132AT	20996	23-Nov-04	0	0.5	CL200.7	LEAD	42	J	0.23	0.23	MG/KG
SS132AT	20996	23-Nov-04	0	0.5	CL200.7	MAGNESIUM	246		46.5	46.5	MG/KG
SS132AT	20996	23-Nov-04	0	0.5	CL200.7	MANGANESE	29.6	J	0.19	0.19	MG/KG
SS132AT	20996	23-Nov-04	0	0.5	CL200.7	MOLYBDENUM	0.65	J	0.38	0.38	MG/KG
SS132AT	20996	23-Nov-04	0	0.5	CL200.7	NICKEL	2.9		0.56	0.56	MG/KG
SS132AT	20996	23-Nov-04	0	0.5	CL200.7	POTASSIUM	178	J	93	93	MG/KG
SS132AT	20996	23-Nov-04	0	0.5	CL200.7	VANADIUM	11.1		0.58	0.58	MG/KG
SS132AT	20996	23-Nov-04	0	0.5	CL200.7	ZINC	7		0.36	0.36	MG/KG
SS132AT	20996	23-Nov-04	0	0.5	D2216	MOISTURE, PERCENT	7				PERCENT
SS132AT	20997	23-Nov-04	1.5	2	CL200.7	ALUMINUM	4950		6	6	MG/KG
SS132AT	20997	23-Nov-04	1.5	2	CL200.7	ARSENIC	1.3		0.55	0.55	MG/KG
SS132AT	20997	23-Nov-04	1.5	2	CL200.7	BARIUM	6.4		1.9	1.9	MG/KG
SS132AT	20997	23-Nov-04	1.5	2	CL200.7	BORON	2.5		1.2	1.2	MG/KG
SS132AT	20997	23-Nov-04	1.5	2	CL200.7	CADMIUM	0.19		0.09	0.09	MG/KG
SS132AT	20997	23-Nov-04	1.5	2	CL200.7	CHROMIUM, TOTAL	4.9		0.19	0.19	MG/KG
SS132AT	20997	23-Nov-04	1.5	2	CL200.7	COBALT	0.78	J	0.55	0.55	MG/KG
SS132AT	20997	23-Nov-04	1.5	2	CL200.7	COPPER	1.7		0.46	0.46	MG/KG
SS132AT	20997	23-Nov-04	1.5	2	CL200.7	IRON	5320		6.2	6.2	MG/KG
SS132AT	20997	23-Nov-04	1.5	2	CL200.7	LEAD	3.2	J	0.21	0.21	MG/KG
SS132AT	20997	23-Nov-04	1.5	2	CL200.7	MAGNESIUM	356		42.7	42.7	MG/KG
SS132AT	20997	23-Nov-04	1.5	2	CL200.7	MANGANESE	19.3	J	0.18	0.18	MG/KG
SS132AT	20997	23-Nov-04	1.5	2	CL200.7	MOLYBDENUM	0.37	J	0.35	0.35	MG/KG
SS132AT	20997	23-Nov-04	1.5	2	CL200.7	NICKEL	2		0.51	0.51	MG/KG
SS132AT	20997	23-Nov-04	1.5	2	CL200.7	POTASSIUM	197		85.2	85.2	MG/KG
SS132AT	20997	23-Nov-04	1.5	2	CL200.7	VANADIUM	8.9		0.53	0.53	MG/KG
SS132AT	20997	23-Nov-04	1.5	2	CL200.7	ZINC	5.4		0.33	0.33	MG/KG
SS132AT	20997	23-Nov-04	1.5	2	D2216	MOISTURE, PERCENT	6				PERCENT
SS132AU	20998	23-Nov-04	0	0.5	CL200.7	ALUMINUM	3910		6.8	6.8	MG/KG
SS132AU	20998	23-Nov-04	0	0.5	CL200.7	ARSENIC	1.8		0.62	0.62	MG/KG
SS132AU	20998	23-Nov-04	0	0.5	CL200.7	BARIUM	3.4	J	2.2	2.2	MG/KG
SS132AU	20998	23-Nov-04	0	0.5	CL200.7	BORON	2.5	J	1.4	1.4	MG/KG
SS132AU	20998	23-Nov-04	0	0.5	CL200.7	CADMIUM	0.2		0.1	0.1	MG/KG
SS132AU	20998	23-Nov-04	0	0.5	CL200.7	CALCIUM	71.4		46.5	46.5	MG/KG
SS132AU	20998	23-Nov-04	0	0.5	CL200.7	CHROMIUM, TOTAL	4.2		0.22	0.22	MG/KG

Table A.5 Small Arms Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEP	TH (FT.)	TEST	ANALYTE	RESULT	QUALIFIER1	MDL	RL	UNITS
SS132AU	20998	23-Nov-04	0	0.5	CL200.7	COBALT	0.89	J	0.62	0.62	MG/KG
SS132AU	20998	23-Nov-04	0	0.5	CL200.7	COPPER	29		0.52	0.52	MG/KG
SS132AU	20998	23-Nov-04	0	0.5	CL200.7	IRON	5180		7.1	7.1	MG/KG
SS132AU	20998	23-Nov-04	0	0.5	CL200.7	LEAD	75.2	J	0.24	0.24	MG/KG
SS132AU	20998	23-Nov-04	0	0.5	CL200.7	MAGNESIUM	376		48.5	48.5	MG/KG
SS132AU	20998	23-Nov-04	0	0.5	CL200.7	MANGANESE	35	J	0.2	0.2	MG/KG
SS132AU	20998	23-Nov-04	0	0.5	CL200.7	MOLYBDENUM	0.46	J	0.4	0.4	MG/KG
SS132AU	20998	23-Nov-04	0	0.5	CL200.7	NICKEL	1.8		0.58	0.58	MG/KG
SS132AU	20998	23-Nov-04	0	0.5	CL200.7	POTASSIUM	247		96.9	96.9	MG/KG
SS132AU	20998	23-Nov-04	0	0.5	CL200.7	SELENIUM	0.9	J	0.62	0.62	MG/KG
SS132AU	20998	23-Nov-04	0	0.5	CL200.7	VANADIUM	11		0.6	0.6	MG/KG
SS132AU	20998	23-Nov-04	0	0.5	CL200.7	ZINC	7.7		0.38	0.38	MG/KG
SS132AU	20998	23-Nov-04	0	0.5	D2216	MOISTURE, PERCENT	7				PERCENT
SS132AU	20999	23-Nov-04	1.5	2	CL200.7	ALUMINUM	4430		7.1	7.1	MG/KG
SS132AU	20999	23-Nov-04	1.5	2	CL200.7	ARSENIC	2.1		0.64	0.64	MG/KG
SS132AU	20999	23-Nov-04	1.5	2	CL200.7	BARIUM	4.2	J	2.3	2.3	MG/KG
SS132AU	20999	23-Nov-04	1.5	2	CL200.7	BORON	2.6	J	1.4	1.4	MG/KG
SS132AU	20999	23-Nov-04	1.5	2	CL200.7	CADMIUM	0.23		0.1	0.1	MG/KG
SS132AU	20999	23-Nov-04	1.5	2	CL200.7	CALCIUM	59.2	J	48.4	48.4	MG/KG
SS132AU	20999	23-Nov-04	1.5	2	CL200.7	CHROMIUM, TOTAL	5.8		0.23	0.23	MG/KG
SS132AU	20999	23-Nov-04	1.5	2	CL200.7	COBALT	1.5		0.64	0.64	MG/KG
SS132AU	20999	23-Nov-04	1.5	2	CL200.7	COPPER	28.1		0.54	0.54	MG/KG
SS132AU	20999	23-Nov-04	1.5	2	CL200.7	IRON	5790		7.4	7.4	MG/KG
SS132AU	20999	23-Nov-04	1.5	2	CL200.7	LEAD	38.6	J	0.25	0.25	MG/KG
SS132AU	20999	23-Nov-04	1.5	2	CL200.7	MAGNESIUM	642		50.4	50.4	MG/KG
SS132AU	20999	23-Nov-04	1.5	2	CL200.7	MANGANESE	46.2	J	0.21	0.21	MG/KG
SS132AU	20999	23-Nov-04	1.5	2	CL200.7	NICKEL	3.3		0.6	0.6	MG/KG
SS132AU	20999	23-Nov-04	1.5	2	CL200.7	POTASSIUM	250		101	101	MG/KG
SS132AU	20999	23-Nov-04	1.5	2	CL200.7	VANADIUM	9.6		0.62	0.62	MG/KG
SS132AU	20999	23-Nov-04	1.5	2	CL200.7	ZINC	11.8		0.4	0.4	MG/KG
SS132AU	20999	23-Nov-04	1.5	2	D2216	MOISTURE, PERCENT	8				PERCENT
SS132AV	21000	22-Nov-04	0	0.5	CL200.7	ALUMINUM	3940		7.1	7.1	MG/KG
SS132AV	21000	22-Nov-04	0	0.5	CL200.7	ANTIMONY	1.5	J	0.88	0.88	MG/KG
SS132AV	21000	22-Nov-04	0	0.5	CL200.7	ARSENIC	2		0.65	0.65	MG/KG
SS132AV	21000	22-Nov-04	0	0.5	CL200.7	BARIUM	3		2.3	2.3	MG/KG
SS132AV	21000	22-Nov-04	0	0.5	CL200.7	BERYLLIUM	0.11		0.06	0.06	MG/KG
SS132AV	21000	22-Nov-04	0	0.5	CL200.7	BORON	2.1		1.4	1.4	MG/KG
SS132AV	21000	22-Nov-04	0	0.5	CL200.7	CADMIUM	0.18		0.1	0.1	MG/KG

Table A.5 Small Arms Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEP	ΓΗ (FT.)	TEST	ANALYTE	RESULT	QUALIFIER1	MDL	RL	UNITS
SS132AV	21000	22-Nov-04	0	0.5	CL200.7	CHROMIUM, TOTAL	4		0.23	0.23	MG/KG
SS132AV	21000	22-Nov-04	0	0.5	CL200.7	COBALT	0.74	J	0.65	0.65	MG/KG
SS132AV	21000	22-Nov-04	0	0.5	CL200.7	COPPER	79.8		0.54	0.54	MG/KG
SS132AV	21000	22-Nov-04	0	0.5	CL200.7	IRON	5280		7.4	7.4	MG/KG
SS132AV	21000	22-Nov-04	0	0.5	CL200.7	LEAD	120	J	0.25	0.25	MG/KG
SS132AV	21000	22-Nov-04	0	0.5	CL200.7	MAGNESIUM	329		50.6	50.6	MG/KG
SS132AV	21000	22-Nov-04	0	0.5	CL200.7	MANGANESE	28.2	J	0.21	0.21	MG/KG
SS132AV	21000	22-Nov-04	0	0.5	CL200.7	NICKEL	1.7		0.61	0.61	MG/KG
SS132AV	21000	22-Nov-04	0	0.5	CL200.7	POTASSIUM	220		101	125	MG/KG
SS132AV	21000	22-Nov-04	0	0.5	CL200.7	VANADIUM	9.9		0.63	0.63	MG/KG
SS132AV	21000	22-Nov-04	0	0.5	CL200.7	ZINC	9.8		0.4	0.4	MG/KG
SS132AV	21000	22-Nov-04	0	0.5	CL245.5	MERCURY	0.082	J	0.045	0.045	MG/KG
SS132AV	21000	22-Nov-04	0	0.5	D2216	MOISTURE, PERCENT	7				PERCENT
SS132AV	21001	22-Nov-04	1.5	2	CL200.7	ALUMINUM	4730		6.7	6.7	MG/KG
SS132AV	21001	22-Nov-04	1.5	2	CL200.7	ANTIMONY	0.84	J	0.83	0.83	MG/KG
SS132AV	21001	22-Nov-04	1.5	2	CL200.7	ARSENIC	2.6		0.61	0.61	MG/KG
SS132AV	21001	22-Nov-04	1.5	2	CL200.7	BARIUM	4.3		2.2	2.2	MG/KG
SS132AV	21001	22-Nov-04	1.5	2	CL200.7	BERYLLIUM	0.19		0.06	0.06	MG/KG
SS132AV	21001	22-Nov-04	1.5	2	CL200.7	BORON	2.8		1.4	1.4	MG/KG
SS132AV	21001	22-Nov-04	1.5	2	CL200.7	CADMIUM	0.22		0.1	0.1	MG/KG
SS132AV	21001	22-Nov-04	1.5	2	CL200.7	CALCIUM	54.3	J	46	46	MG/KG
SS132AV	21001	22-Nov-04	1.5	2	CL200.7	CHROMIUM, TOTAL	6.4		0.22	0.22	MG/KG
SS132AV	21001	22-Nov-04	1.5	2	CL200.7	COBALT	1.5		0.61	0.61	MG/KG
SS132AV	21001	22-Nov-04	1.5	2	CL200.7	COPPER	72.5		0.51	0.51	MG/KG
SS132AV	21001	22-Nov-04	1.5	2	CL200.7	IRON	6320		7	7	MG/KG
SS132AV	21001	22-Nov-04	1.5	2	CL200.7	LEAD	183		0.24	0.24	MG/KG
SS132AV	21001	22-Nov-04	1.5	2	CL200.7	MAGNESIUM	753		47.9	47.9	MG/KG
SS132AV	21001	22-Nov-04	1.5	2	CL200.7	MANGANESE	49.8		0.2	0.2	MG/KG
SS132AV	21001	22-Nov-04	1.5	2	CL200.7	NICKEL	3		0.57	0.57	MG/KG
SS132AV	21001	22-Nov-04	1.5	2	CL200.7	POTASSIUM	376		95.7	118	MG/KG
SS132AV	21001	22-Nov-04	1.5	2	CL200.7	VANADIUM	10.2		0.59	0.59	MG/KG
SS132AV	21001	22-Nov-04	1.5	2	CL200.7	ZINC	17.2		0.38	0.38	MG/KG
SS132AV	21001	22-Nov-04	1.5	2	D2216	MOISTURE, PERCENT	6				PERCENT
SS132AW	21003	22-Nov-04	0	0.5	CL200.7	ALUMINUM	4440		7.3	7.3	
SS132AW	21003	22-Nov-04	0	0.5	CL200.7	ARSENIC	1.4		0.66	0.66	MG/KG
SS132AW	21003	22-Nov-04	0	0.5	CL200.7	BARIUM	4.5		2.3	2.3	MG/KG
SS132AW	21003	22-Nov-04	0	0.5	CL200.7	BERYLLIUM	0.11		0.06	0.06	MG/KG
SS132AW	21003	22-Nov-04	0	0.5	CL200.7	BORON	1.7		1.5	1.5	MG/KG

Table A.5 Small Arms Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEP.	TH (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132AW	21003	22-Nov-04		0.5	CL200.7	CADMIUM	0.2	J	0.11	0.11	MG/KG
SS132AW	21003	22-Nov-04	0	0.5	CL200.7	CALCIUM	58.7	J	49.6	49.6	MG/KG
SS132AW	21003	22-Nov-04	0	0.5	CL200.7	CHROMIUM, TOTAL	3.4		0.23	0.23	MG/KG
SS132AW	21003	22-Nov-04	0	0.5	CL200.7	COPPER	23.2		0.55	0.55	MG/KG
SS132AW	21003	22-Nov-04	0	0.5	CL200.7	IRON	4410		7.6	7.6	MG/KG
SS132AW	21003	22-Nov-04	0	0.5	CL200.7	LEAD	19.3	J	0.26	0.26	MG/KG
SS132AW	21003	22-Nov-04	0	0.5	CL200.7	MAGNESIUM	233		51.6	51.6	MG/KG
SS132AW	21003	22-Nov-04	0	0.5	CL200.7	MANGANESE	17.5	J	0.21	0.21	MG/KG
SS132AW	21003	22-Nov-04	0	0.5	CL200.7	MOLYBDENUM	0.47	J	0.43	0.43	MG/KG
SS132AW	21003	22-Nov-04	0	0.5	CL200.7	NICKEL	1.5		0.62	0.62	MG/KG
SS132AW	21003	22-Nov-04	0	0.5	CL200.7	POTASSIUM	156	J	103	127	MG/KG
SS132AW	21003	22-Nov-04	0	0.5	CL200.7	VANADIUM	7.9		0.64	0.64	MG/KG
SS132AW	21003	22-Nov-04	0	0.5	CL200.7	ZINC	5.9		0.4	0.4	MG/KG
SS132AW	21003	22-Nov-04	0	0.5	D2216	MOISTURE, PERCENT	9				PERCENT
SS132AW	21005	22-Nov-04	1.5	2	CL200.7	ALUMINUM	5370		6.6	6.6	MG/KG
SS132AW	21005	22-Nov-04	1.5	2	CL200.7	ARSENIC	1.7		0.6	0.6	MG/KG
SS132AW	21005	22-Nov-04	1.5	2	CL200.7	BARIUM	5.6		2.1	2.1	MG/KG
SS132AW	21005	22-Nov-04	1.5	2	CL200.7	BERYLLIUM	0.11	J	0.06	0.06	MG/KG
SS132AW	21005	22-Nov-04	1.5	2	CL200.7	BORON	1.8	J	1.3	1.3	MG/KG
SS132AW	21005	22-Nov-04	1.5	2	CL200.7	CADMIUM	0.22		0.1	0.1	MG/KG
SS132AW	21005	22-Nov-04	1.5	2	CL200.7	CHROMIUM, TOTAL	3.8		0.21	0.21	MG/KG
SS132AW	21005	22-Nov-04	1.5	2	CL200.7	COPPER	2.1		0.5	0.5	MG/KG
SS132AW	21005	22-Nov-04	1.5	2	CL200.7	IRON	5320		6.8	6.8	MG/KG
SS132AW	21005	22-Nov-04	1.5	2	CL200.7	LEAD	2.9	J	0.23	0.23	MG/KG
SS132AW	21005	22-Nov-04	1.5	2	CL200.7	MAGNESIUM	172		46.7	46.7	MG/KG
SS132AW	21005	22-Nov-04	1.5	2	CL200.7	MANGANESE	10	J	0.19	0.19	MG/KG
SS132AW	21005	22-Nov-04	1.5	2	CL200.7	NICKEL	1.5		0.56	0.56	MG/KG
SS132AW	21005	22-Nov-04	1.5	2	CL200.7	POTASSIUM	135	J	93.4	115	MG/KG
SS132AW	21005	22-Nov-04	1.5	2	CL200.7	VANADIUM	8.7		0.58	0.58	MG/KG
SS132AW	21005	22-Nov-04	1.5	2	CL200.7	ZINC	6.5		0.37	0.37	MG/KG
SS132AW	21005	22-Nov-04	1.5	2	D2216	MOISTURE, PERCENT	7				PERCENT
SS132AX	21007	22-Nov-04	0	0.5	CL200.7	ALUMINUM	3110		7.1	7.1	MG/KG
SS132AX	21007	22-Nov-04	0	0.5	CL200.7	ANTIMONY	1.1	J	0.87	0.87	MG/KG
SS132AX	21007	22-Nov-04	0	0.5	CL200.7	ARSENIC	1.5		0.64	0.64	MG/KG
SS132AX	21007	22-Nov-04	0	0.5	CL200.7	BARIUM	2.3	J	2.3	2.3	MG/KG
SS132AX	21007	22-Nov-04	0	0.5	CL200.7	BERYLLIUM	0.1	J	0.06	0.06	MG/KG
SS132AX	21007	22-Nov-04	0	0.5	CL200.7	BORON	1.6	J	1.4	1.4	MG/KG
SS132AX	21007	22-Nov-04	0	0.5	CL200.7	CADMIUM	0.18	J	0.1	0.1	MG/KG

Table A.5 Small Arms Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEP1	TH (FT.)	TEST	ANALYTE	RESULT	QUALIFIER1	MDL	RL	UNITS
SS132AX	21007	22-Nov-04	0	0.5	CL200.7	CHROMIUM, TOTAL	2.9		0.23	0.23	MG/KG
SS132AX	21007	22-Nov-04	0	0.5	CL200.7	COPPER	46.5		0.54	0.54	MG/KG
SS132AX	21007	22-Nov-04	0	0.5	CL200.7	IRON	4480		7.3	7.3	MG/KG
SS132AX	21007	22-Nov-04	0	0.5	CL200.7	LEAD	113	J	0.25	0.25	MG/KG
SS132AX	21007	22-Nov-04	0	0.5	CL200.7	MAGNESIUM	207		50.2	50.2	MG/KG
SS132AX	21007	22-Nov-04	0	0.5	CL200.7	MANGANESE	18	J	0.21	0.21	MG/KG
SS132AX	21007	22-Nov-04	0	0.5	CL200.7	NICKEL	1.2		0.6	0.6	MG/KG
SS132AX	21007	22-Nov-04	0	0.5	CL200.7	POTASSIUM	162	J	100	124	MG/KG
SS132AX	21007	22-Nov-04	0	0.5	CL200.7	VANADIUM	6.3		0.62	0.62	MG/KG
SS132AX	21007	22-Nov-04	0	0.5	CL200.7	ZINC	7.4		0.39	0.39	MG/KG
SS132AX	21007	22-Nov-04	0	0.5	CL245.5	MERCURY	0.074	J	0.049	0.049	MG/KG
SS132AX	21007	22-Nov-04	0	0.5	D2216	MOISTURE, PERCENT	7				PERCENT
SS132AX	21009	22-Nov-04	0	0.5	CL200.7	ALUMINUM	3050		7	7	MG/KG
SS132AX	21009	22-Nov-04	0	0.5	CL200.7	ARSENIC	1.6		0.64	0.64	MG/KG
SS132AX	21009	22-Nov-04	0	0.5	CL200.7	BARIUM	2.3	J	2.3	2.3	MG/KG
SS132AX	21009	22-Nov-04	0	0.5	CL200.7	BERYLLIUM	0.08	J	0.06	0.06	MG/KG
SS132AX	21009	22-Nov-04	0	0.5	CL200.7	BORON	1.6	J	1.4	1.4	MG/KG
SS132AX	21009	22-Nov-04	0	0.5	CL200.7	CADMIUM	0.15	J	0.1	0.1	MG/KG
SS132AX	21009	22-Nov-04	0	0.5	CL200.7	CALCIUM	48.4	J	47.9	47.9	MG/KG
SS132AX	21009	22-Nov-04	0	0.5	CL200.7	CHROMIUM, TOTAL	3.1		0.23	0.23	MG/KG
SS132AX	21009	22-Nov-04	0	0.5	CL200.7	COPPER	41.9		0.54	0.54	MG/KG
SS132AX	21009	22-Nov-04	0	0.5	CL200.7	IRON	3650		7.3	7.3	MG/KG
SS132AX	21009	22-Nov-04	0	0.5	CL200.7	LEAD	109	J	0.25	0.25	MG/KG
SS132AX	21009	22-Nov-04	0	0.5	CL200.7	MAGNESIUM	202		49.9	49.9	MG/KG
SS132AX	21009	22-Nov-04	0	0.5	CL200.7	MANGANESE	16.8	J	0.21	0.21	MG/KG
SS132AX	21009	22-Nov-04	0	0.5	CL200.7	NICKEL	1.4		0.6	0.6	MG/KG
SS132AX	21009	22-Nov-04	0	0.5	CL200.7	POTASSIUM	173	J	99.8	123	MG/KG
SS132AX	21009	22-Nov-04	0	0.5	CL200.7	VANADIUM	6.2		0.62	0.62	MG/KG
SS132AX	21009	22-Nov-04	0	0.5	CL200.7	ZINC	5.7		0.39	0.39	MG/KG
SS132AX	21009	22-Nov-04	0	0.5	CL245.5	MERCURY	0.067	J	0.051	0.051	MG/KG
SS132AX	21009	22-Nov-04	0	0.5	D2216	MOISTURE, PERCENT	7				PERCENT
SS132AX	21011	22-Nov-04	1.5	2	CL200.7	ALUMINUM	3700		6.3	6.3	MG/KG
SS132AX	21011	22-Nov-04	1.5	2	CL200.7	ARSENIC	1.8		0.58	0.58	MG/KG
SS132AX	21011	22-Nov-04	1.5	2	CL200.7	BARIUM	4.4		2	2	MG/KG
SS132AX	21011	22-Nov-04	1.5	2	CL200.7	BORON	1.7	J	1.3	1.3	MG/KG
SS132AX	21011	22-Nov-04	1.5	2	CL200.7	CADMIUM	0.2		0.09	0.09	MG/KG
SS132AX	21011	22-Nov-04	1.5	2	CL200.7	CALCIUM	50.2	J	43.3	43.3	MG/KG
SS132AX	21011	22-Nov-04	1.5	2	CL200.7	CHROMIUM, TOTAL	3.1		0.2	0.2	

Table A.5 Small Arms Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEP	ΓΗ (FT.)	TEST	ANALYTE	RESULT	QUALIFIER1	MDL	RL	UNITS
SS132AX	21011	22-Nov-04	1.5	2	CL200.7	COBALT	0.63	J	0.58	0.58	MG/KG
SS132AX	21011	22-Nov-04	1.5	2	CL200.7	COPPER	79.1		0.48	0.48	MG/KG
SS132AX	21011	22-Nov-04	1.5	2	CL200.7	IRON	3890		6.6	6.6	MG/KG
SS132AX	21011	22-Nov-04	1.5	2	CL200.7	LEAD	122	J	0.22	0.22	MG/KG
SS132AX	21011	22-Nov-04	1.5	2	CL200.7	MAGNESIUM	210		45.1	45.1	MG/KG
SS132AX	21011	22-Nov-04	1.5	2	CL200.7	MANGANESE	23.7	J	0.19	0.19	MG/KG
SS132AX	21011	22-Nov-04	1.5	2	CL200.7	NICKEL	1.5		0.54	0.54	MG/KG
SS132AX	21011	22-Nov-04	1.5	2	CL200.7	POTASSIUM	134	J	90.1	111	MG/KG
SS132AX	21011	22-Nov-04	1.5	2	CL200.7	VANADIUM	6.1		0.56	0.56	MG/KG
SS132AX	21011	22-Nov-04	1.5	2	CL200.7	ZINC	15.1		0.35	0.35	MG/KG
SS132AX	21011	22-Nov-04	1.5	2	CL245.5	MERCURY	0.087		0.041	0.041	MG/KG
SS132AX	21011	22-Nov-04	1.5	2	D2216	MOISTURE, PERCENT	7				PERCENT
SS132AY	21013	19-Nov-04	0	0.5	CL200.7	ALUMINUM	5220		7.4	7.4	MG/KG
SS132AY	21013	19-Nov-04	0	0.5	CL200.7	ARSENIC	2.3		0.67	0.67	MG/KG
SS132AY	21013	19-Nov-04	0	0.5	CL200.7	BARIUM	9		2.4	2.4	MG/KG
SS132AY	21013	19-Nov-04	0	0.5	CL200.7	BERYLLIUM	0.11	J	0.06	0.06	MG/KG
SS132AY	21013	19-Nov-04	0	0.5	CL200.7	BORON	2.5	J	1.5	1.5	MG/KG
SS132AY	21013	19-Nov-04	0	0.5	CL200.7	CADMIUM	0.33		0.11	0.11	MG/KG
SS132AY	21013	19-Nov-04	0	0.5	CL200.7	CALCIUM	84.1	J	50.4	50.4	MG/KG
SS132AY	21013	19-Nov-04	0	0.5	CL200.7	CHROMIUM, TOTAL	4.4		0.24	0.24	MG/KG
SS132AY	21013	19-Nov-04	0	0.5	CL200.7	COBALT	0.89	J	0.67	0.67	MG/KG
SS132AY	21013	19-Nov-04	0	0.5	CL200.7	COPPER	62.5		0.56	0.56	MG/KG
SS132AY	21013	19-Nov-04	0	0.5	CL200.7	IRON	6510		7.7	7.7	MG/KG
SS132AY	21013	19-Nov-04	0	0.5	CL200.7	LEAD	96	J	0.26	0.26	MG/KG
SS132AY	21013	19-Nov-04	0	0.5	CL200.7	MAGNESIUM	278		52.5	52.5	MG/KG
SS132AY	21013	19-Nov-04	0	0.5	CL200.7	MANGANESE	27.3	J	0.22	0.22	MG/KG
SS132AY	21013	19-Nov-04	0	0.5	CL200.7	NICKEL	1.8		0.63	0.63	MG/KG
SS132AY	21013	19-Nov-04	0	0.5	CL200.7	POTASSIUM	211		105	105	MG/KG
SS132AY	21013	19-Nov-04	0	0.5	CL200.7	VANADIUM	11.6		0.65	0.65	MG/KG
SS132AY	21013	19-Nov-04	0	0.5	CL200.7	ZINC	13.8		0.41	0.41	MG/KG
SS132AY	21013	19-Nov-04	0	0.5	D2216	MOISTURE, PERCENT	10				PERCENT
SS132AY	21015	19-Nov-04	1.5	2	CL200.7	ALUMINUM	4130		6.4	6.4	MG/KG
SS132AY	21015	19-Nov-04	1.5	2	CL200.7	ARSENIC	1.9		0.59	0.59	MG/KG
SS132AY	21015	19-Nov-04	1.5	2	CL200.7	BARIUM	6.1		2.1	2.1	MG/KG
SS132AY	21015	19-Nov-04	1.5	2	CL200.7	BERYLLIUM	0.11	J	0.06	0.06	MG/KG
SS132AY	21015	19-Nov-04	1.5	2	CL200.7	BORON	1.7		1.3	1.3	MG/KG
SS132AY	21015	19-Nov-04	1.5	2	CL200.7	CADMIUM	0.15		0.09	0.09	MG/KG
SS132AY	21015	19-Nov-04		2	CL200.7	CHROMIUM, TOTAL	3.6	-	0.21	0.21	MG/KG

Table A.5 Small Arms Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEP1	ΓΗ (FT.)	TEST	ANALYTE	RESULT	QUALIFIER1	MDL	RL	UNITS
SS132AY	21015	19-Nov-04	1.5	2	CL200.7	COBALT	1.4		0.59	0.59	MG/KG
SS132AY	21015	19-Nov-04	1.5	2	CL200.7	COPPER	5		0.49	0.49	MG/KG
SS132AY	21015	19-Nov-04	1.5	2	CL200.7	IRON	4350		6.7	6.7	MG/KG
SS132AY	21015	19-Nov-04	1.5	2	CL200.7	LEAD	6	J	0.23	0.23	MG/KG
SS132AY	21015	19-Nov-04	1.5	2	CL200.7	MAGNESIUM	462		45.8	45.8	MG/KG
SS132AY	21015	19-Nov-04	1.5	2	CL200.7	MANGANESE	31.1	J	0.19	0.19	MG/KG
SS132AY	21015	19-Nov-04	1.5	2	CL200.7	NICKEL	2.1		0.55	0.55	MG/KG
SS132AY	21015	19-Nov-04	1.5	2	CL200.7	POTASSIUM	246		91.6	91.6	MG/KG
SS132AY	21015	19-Nov-04	1.5	2	CL200.7	SELENIUM	0.85	J	0.59	0.59	MG/KG
SS132AY	21015	19-Nov-04	1.5	2	CL200.7	VANADIUM	6.9		0.57	0.57	MG/KG
SS132AY	21015	19-Nov-04	1.5	2	CL200.7	ZINC	10.6		0.36	0.36	MG/KG
SS132AY	21015	19-Nov-04	1.5	2	D2216	MOISTURE, PERCENT	5				PERCENT
SS132AZ	21017	19-Nov-04	0	0.5	CL200.7	ALUMINUM	4870		7.6	7.6	MG/KG
SS132AZ	21017	19-Nov-04	0	0.5	CL200.7	ANTIMONY	1.1	J	0.93	0.93	MG/KG
SS132AZ	21017	19-Nov-04	0	0.5	CL200.7	ARSENIC	2		0.69	0.69	MG/KG
SS132AZ	21017	19-Nov-04	0	0.5	CL200.7	BARIUM	3.7	J	2.4	2.4	MG/KG
SS132AZ	21017	19-Nov-04	0	0.5	CL200.7	BERYLLIUM	0.09	J	0.07	0.07	MG/KG
SS132AZ	21017	19-Nov-04	0	0.5	CL200.7	BORON	2	J	1.5	1.5	MG/KG
SS132AZ	21017	19-Nov-04	0	0.5	CL200.7	CADMIUM	0.24		0.11	0.11	MG/KG
SS132AZ	21017	19-Nov-04	0	0.5	CL200.7	CHROMIUM, TOTAL	4.5		0.24	0.24	MG/KG
SS132AZ	21017	19-Nov-04	0	0.5	CL200.7	COBALT	0.8	J	0.69	0.69	MG/KG
SS132AZ	21017	19-Nov-04	0	0.5	CL200.7	COPPER	10.1		0.58	0.58	MG/KG
SS132AZ	21017	19-Nov-04	0	0.5	CL200.7	IRON	5430		7.9	7.9	MG/KG
SS132AZ	21017	19-Nov-04	0	0.5	CL200.7	LEAD	58.4		0.27	0.27	MG/KG
SS132AZ	21017	19-Nov-04	0	0.5	CL200.7	MAGNESIUM	297		53.7	53.7	MG/KG
SS132AZ	21017	19-Nov-04	0	0.5	CL200.7	MANGANESE	20.2	J	0.22	0.22	MG/KG
SS132AZ	21017	19-Nov-04	0	0.5	CL200.7	NICKEL	1.9		0.64	0.64	MG/KG
SS132AZ	21017	19-Nov-04	0	0.5	CL200.7	POTASSIUM	220		107	107	MG/KG
SS132AZ	21017	19-Nov-04	0	0.5	CL200.7	VANADIUM	10.4		0.66	0.66	MG/KG
SS132AZ	21017	19-Nov-04	0	0.5	CL200.7	ZINC	6.1		0.42	0.42	MG/KG
SS132AZ	21017	19-Nov-04	0	0.5	D2216	MOISTURE, PERCENT	10				PERCENT
SS132AZ	21019	19-Nov-04	1.5	2	CL200.7	ALUMINUM	3880		5.7	5.7	MG/KG
SS132AZ	21019	19-Nov-04	1.5	2	CL200.7	ARSENIC	1.6		0.52	0.52	MG/KG
SS132AZ	21019	19-Nov-04	1.5	2	CL200.7	BARIUM	5.9		1.8	1.8	MG/KG
SS132AZ	21019	19-Nov-04	1.5	2	CL200.7	BERYLLIUM	0.08		0.05	0.05	MG/KG
SS132AZ	21019	19-Nov-04	1.5	2	CL200.7	BORON	1.8		1.1	1.1	MG/KG
SS132AZ	21019	19-Nov-04	1.5	2	CL200.7	CADMIUM	0.16		0.08	0.08	MG/KG
SS132AZ	21019	19-Nov-04		2	CL200.7	CALCIUM	41.5		38.7	38.7	MG/KG

Table A.5 Small Arms Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEP	TH (FT.)	TEST	ANALYTE	RESULT	QUALIFIER1	MDL	RL	UNITS
SS132AZ	21019	19-Nov-04	1.5	2	CL200.7	CHROMIUM, TOTAL	3.6		0.18	0.18	MG/KG
SS132AZ	21019	19-Nov-04	1.5	2	CL200.7	COBALT	0.96	J	0.52	0.52	MG/KG
SS132AZ	21019	19-Nov-04	1.5	2	CL200.7	COPPER	17.9		0.43	0.43	MG/KG
SS132AZ	21019	19-Nov-04	1.5	2	CL200.7	IRON	4030		5.9	5.9	MG/KG
SS132AZ	21019	19-Nov-04	1.5	2	CL200.7	LEAD	13.5	J	0.2	0.2	MG/KG
SS132AZ	21019	19-Nov-04	1.5	2	CL200.7	MAGNESIUM	295		40.3	40.3	MG/KG
SS132AZ	21019	19-Nov-04	1.5	2	CL200.7	MANGANESE	25.9	J	0.17	0.17	MG/KG
SS132AZ	21019	19-Nov-04	1.5	2	CL200.7	NICKEL	1.8		0.48	0.48	MG/KG
SS132AZ	21019	19-Nov-04	1.5	2	CL200.7	POTASSIUM	246		80.6	80.6	MG/KG
SS132AZ	21019	19-Nov-04	1.5	2	CL200.7	SELENIUM	0.81	J	0.52	0.52	MG/KG
SS132AZ	21019	19-Nov-04	1.5	2	CL200.7	VANADIUM	6.5		0.5	0.5	MG/KG
SS132AZ	21019	19-Nov-04	1.5	2	CL200.7	ZINC	5.8		0.32	0.32	MG/KG
SS132AZ	21019	19-Nov-04	1.5	2	D2216	MOISTURE, PERCENT	6				PERCENT
SS132G	AN829	21-Mar-01	0.25	0.5	SW8330	2-AMINO-4,6-DINITROTOLUENE	130		5.6	120	UG/KG
SS132G	AN829	21-Mar-01	0.25	0.5	SW8330	4-AMINO-2,6-DINITROTOLUENE	130		15	120	UG/KG
SS132G	AN830	21-Mar-01		0.5	SW8330	2-AMINO-4,6-DINITROTOLUENE	360		5.6	120	UG/KG
SS132G	AN830	21-Mar-01		0.5	SW8330	4-AMINO-2,6-DINITROTOLUENE	310		15	120	UG/KG
SS132G	AN835	21-Mar-01	0.5	1	SW8330	2-AMINO-4,6-DINITROTOLUENE	6800		5.6	120	UG/KG
SS132G	AN835	21-Mar-01	0.5	1	SW8330	4-AMINO-2,6-DINITROTOLUENE	2400		15	120	UG/KG
SS132G	AN836	21-Mar-01	0.5	1	SW8330	2-AMINO-4,6-DINITROTOLUENE	150		5.6	120	UG/KG
SS132G	AN837	21-Mar-01	0	0.25	CL200.7	ALUMINUM	6140		2.5382	2.5382	MG/KG
SS132G	AN837	21-Mar-01	0	0.25	CL200.7	ARSENIC	2.7	J	0.6737	0.6737	MG/KG
SS132G	AN837	21-Mar-01	0	0.25	CL200.7	BARIUM	5		0.1097	0.1097	MG/KG
SS132G	AN837	21-Mar-01	0	0.25	CL200.7	BERYLLIUM	0.12	J	0.047	0.047	MG/KG
SS132G	AN837	21-Mar-01	0	0.25	CL200.7	CALCIUM	71.1		1.1281	1.1281	MG/KG
SS132G	AN837	21-Mar-01	0	0.25	CL200.7	CHROMIUM, TOTAL	6.2	J	0.2664	0.2664	MG/KG
SS132G	AN837	21-Mar-01	0	0.25	CL200.7	COBALT	0.98		0.329	0.329	MG/KG
SS132G	AN837	21-Mar-01	0	0.25	CL200.7	COPPER	245	J	0.4074	0.4074	MG/KG
SS132G	AN837	21-Mar-01	0	0.25	CL200.7	IRON	7180		5.3427	5.3427	MG/KG
SS132G	AN837	21-Mar-01	0	0.25	CL200.7	LEAD	548		0.4074	0.4074	MG/KG
SS132G	AN837	21-Mar-01	0	0.25	CL200.7	MAGNESIUM	478		2.0682	2.0682	MG/KG
SS132G	AN837	21-Mar-01	0	0.25	CL200.7	MANGANESE	44	J	0.0783	0.0783	MG/KG
SS132G	AN837	21-Mar-01	0	0.25	CL200.7	MOLYBDENUM	0.67	J	0.6424	0.6424	MG/KG
SS132G	AN837	21-Mar-01	0	0.25	CL200.7	NICKEL	2.8		0.2664	0.2664	MG/KG
SS132G	AN837	21-Mar-01	0	0.25	CL200.7	POTASSIUM	248		19.2714	19.2714	MG/KG
SS132G	AN837	21-Mar-01	0	0.25	CL200.7	VANADIUM	12.4		0.423	0.423	MG/KG
SS132G	AN837	21-Mar-01	0	0.25	CL200.7	ZINC	19.4	J	0.1723	0.1723	MG/KG
SS132G	AN837	21-Mar-01	0	0.25	CL245.5	MERCURY	0.081		0.0541	0.0541	MG/KG

Table A.5 Small Arms Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEP1	ΓΗ (FT.)	TEST	ANALYTE	RESULT	QUALIFIER1	MDL	RL	UNITS
SS132G	AN838	21-Mar-01	0	0.25	CL200.7	ALUMINUM	6100		2.5451	2.5451	MG/KG
SS132G	AN838	21-Mar-01	0	0.25	CL200.7	ARSENIC	2.3	J	0.6755	0.6755	MG/KG
SS132G	AN838	21-Mar-01	0	0.25	CL200.7	BARIUM	4		0.11	0.11	MG/KG
SS132G	AN838	21-Mar-01	0	0.25	CL200.7	BERYLLIUM	0.11	J	0.0471	0.0471	MG/KG
SS132G	AN838	21-Mar-01	0	0.25	CL200.7	CALCIUM	37.6		1.1311	1.1311	MG/KG
SS132G	AN838	21-Mar-01	0	0.25	CL200.7	CHROMIUM, TOTAL	6.1	J	0.2671	0.2671	MG/KG
SS132G	AN838	21-Mar-01	0	0.25	CL200.7	COBALT	0.74		0.3299	0.3299	MG/KG
SS132G	AN838	21-Mar-01	0	0.25	CL200.7	COPPER	46.7	J	0.4085	0.4085	MG/KG
SS132G	AN838	21-Mar-01	0	0.25	CL200.7	IRON	6970	J	5.3572	5.3572	MG/KG
SS132G	AN838	21-Mar-01	0	0.25	CL200.7	LEAD	143	J	0.4085	0.4085	MG/KG
SS132G	AN838	21-Mar-01	0	0.25	CL200.7	MAGNESIUM	357		2.0738	2.0738	MG/KG
SS132G	AN838	21-Mar-01	0	0.25	CL200.7	MANGANESE	23.1	J	0.0786	0.0786	MG/KG
SS132G	AN838	21-Mar-01	0	0.25	CL200.7	MOLYBDENUM	0.72	J	0.6441	0.6441	MG/KG
SS132G	AN838	21-Mar-01	0	0.25	CL200.7	NICKEL	2.3		0.2671	0.2671	MG/KG
SS132G	AN838	21-Mar-01	0	0.25	CL200.7	POTASSIUM	174	J	19.3237	19.3237	MG/KG
SS132G	AN838	21-Mar-01	0	0.25	CL200.7	SELENIUM	0.79	J	0.7227	0.7227	MG/KG
SS132G	AN838	21-Mar-01	0	0.25	CL200.7	VANADIUM	12.2		0.4242	0.4242	MG/KG
SS132G	AN838	21-Mar-01	0	0.25	CL200.7	ZINC	8.4	J	0.1728	0.1728	MG/KG
SS132G	AN839	21-Mar-01	0	0.25	CL200.7	ALUMINUM	4990		2.6542	2.6542	MG/KG
SS132G	AN839	21-Mar-01	0	0.25	CL200.7	ARSENIC	1.4	J	0.7045	0.7045	MG/KG
SS132G	AN839	21-Mar-01	0	0.25	CL200.7	BARIUM	5.2		0.1147	0.1147	MG/KG
SS132G	AN839	21-Mar-01	0	0.25	CL200.7	BERYLLIUM	0.059	J	0.0492	0.0492	MG/KG
SS132G	AN839	21-Mar-01	0	0.25	CL200.7	CALCIUM	17.7	J	1.1797	1.1797	MG/KG
SS132G	AN839	21-Mar-01	0	0.25	CL200.7	CHROMIUM, TOTAL	4.1	J	0.2785	0.2785	MG/KG
SS132G	AN839	21-Mar-01	0	0.25	CL200.7	COBALT	0.38	J	0.3441	0.3441	MG/KG
SS132G	AN839	21-Mar-01	0	0.25	CL200.7	COPPER	82.8	J	0.426	0.426	MG/KG
SS132G	AN839	21-Mar-01	0	0.25	CL200.7	IRON	5370	J	5.587	5.587	MG/KG
SS132G	AN839	21-Mar-01	0	0.25	CL200.7	LEAD	248	J	0.426	0.426	MG/KG
SS132G	AN839	21-Mar-01	0	0.25	CL200.7	MAGNESIUM	194		2.1627	2.1627	MG/KG
SS132G	AN839	21-Mar-01	0	0.25	CL200.7	MANGANESE	19.6	J	0.0819	0.0819	MG/KG
SS132G	AN839	21-Mar-01	0	0.25	CL200.7	MOLYBDENUM	0.93	J	0.6717	0.6717	MG/KG
SS132G	AN839	21-Mar-01	0	0.25	CL200.7	NICKEL	1.3		0.2785	0.2785	MG/KG
SS132G	AN839	21-Mar-01	0	0.25	CL200.7	POTASSIUM	80.5	J	20.1524	20.1524	MG/KG
SS132G	AN839	21-Mar-01	0	0.25	CL200.7	SELENIUM	0.97	J	0.7537	0.7537	MG/KG
SS132G	AN839	21-Mar-01	0	0.25	CL200.7	VANADIUM	9.8		0.4424	0.4424	MG/KG
SS132G	AN839	21-Mar-01	0	0.25	CL200.7	ZINC	15.8	J	0.1802	0.1802	MG/KG
SS132G	AN840	21-Mar-01	0	0.25	CL200.7	ALUMINUM	4080		2.5613	2.5613	MG/KG
SS132G	AN840	21-Mar-01	0	0.25	CL200.7	ARSENIC	1.7	J	0.6799	0.6799	MG/KG

Table A.5 Small Arms Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEP	ΓΗ (FT.)	TEST	ANALYTE	RESULT	QUALIFIER1	MDL	RL	UNITS
SS132G	AN840	21-Mar-01	0	0.25	CL200.7	BARIUM	3.3		0.1107	0.1107	MG/KG
SS132G	AN840	21-Mar-01	0	0.25	CL200.7	BERYLLIUM	0.081	J	0.0474	0.0474	MG/KG
SS132G	AN840	21-Mar-01	0	0.25	CL200.7	CALCIUM	42		1.1384	1.1384	MG/KG
SS132G	AN840	21-Mar-01	0	0.25	CL200.7	CHROMIUM, TOTAL	5	J	0.2688	0.2688	MG/KG
SS132G	AN840	21-Mar-01	0	0.25	CL200.7	COBALT	0.76		0.332	0.332	MG/KG
SS132G	AN840	21-Mar-01	0	0.25	CL200.7	COPPER	97.1	J	0.4111	0.4111	MG/KG
SS132G	AN840	21-Mar-01	0	0.25	CL200.7	IRON	5690	J	5.3915	5.3915	MG/KG
SS132G	AN840	21-Mar-01	0	0.25	CL200.7	LEAD	117	J	0.4111	0.4111	MG/KG
SS132G	AN840	21-Mar-01	0	0.25	CL200.7	MAGNESIUM	363		2.087	2.087	MG/KG
SS132G	AN840	21-Mar-01	0	0.25	CL200.7	MANGANESE	36.6	J	0.0791	0.0791	MG/KG
SS132G	AN840	21-Mar-01	0	0.25	CL200.7	NICKEL	2.1		0.2688	0.2688	MG/KG
SS132G	AN840	21-Mar-01	0	0.25	CL200.7	POTASSIUM	198	J	19.4473	19.4473	MG/KG
SS132G	AN840	21-Mar-01	0	0.25	CL200.7	VANADIUM	10.5		0.4269	0.4269	MG/KG
SS132G	AN840	21-Mar-01	0	0.25	CL200.7	ZINC	13.2	J	0.1739	0.1739	MG/KG
SS132G	AN840	21-Mar-01	0	0.25	CL245.5	MERCURY	0.15		0.053	0.053	MG/KG
SS132G	AN841	21-Mar-01	0	0.25	CL200.7	ALUMINUM	5310		2.5485	2.5485	MG/KG
SS132G	AN841	21-Mar-01	0	0.25	CL200.7	ARSENIC	3.1	J	0.6764	0.6764	MG/KG
SS132G	AN841	21-Mar-01	0	0.25	CL200.7	BARIUM	5.9		0.1101	0.1101	MG/KG
SS132G	AN841	21-Mar-01	0	0.25	CL200.7	BERYLLIUM	0.096	J	0.0472	0.0472	MG/KG
SS132G	AN841	21-Mar-01	0	0.25	CL200.7	CALCIUM	67.2		1.1326	1.1326	MG/KG
SS132G	AN841	21-Mar-01	0	0.25	CL200.7	CHROMIUM, TOTAL	7.5	J	0.2674	0.2674	MG/KG
SS132G	AN841	21-Mar-01	0	0.25	CL200.7	COBALT	1.2		0.3304	0.3304	MG/KG
SS132G	AN841	21-Mar-01	0	0.25	CL200.7	COPPER	81.6	J	0.409	0.409	MG/KG
SS132G	AN841	21-Mar-01	0	0.25	CL200.7	IRON	14800	J	5.3643	5.3643	MG/KG
SS132G	AN841	21-Mar-01	0	0.25	CL200.7	LEAD	167	J	0.409	0.409	MG/KG
SS132G	AN841	21-Mar-01	0	0.25	CL200.7	MAGNESIUM	470		2.0765	2.0765	MG/KG
SS132G	AN841	21-Mar-01	0	0.25	CL200.7	MANGANESE	92.9	J	0.0787	0.0787	MG/KG
SS132G	AN841	21-Mar-01	0	0.25	CL200.7	MOLYBDENUM	13.7		0.645	0.645	MG/KG
SS132G	AN841	21-Mar-01	0	0.25	CL200.7	NICKEL	5.2		0.2674	0.2674	MG/KG
SS132G	AN841	21-Mar-01	0	0.25	CL200.7	POTASSIUM	205		19.3494	19.3494	MG/KG
SS132G	AN841	21-Mar-01	0	0.25	CL200.7	SELENIUM	1.3	J	0.7236	0.7236	MG/KG
SS132G	AN841	21-Mar-01	0	0.25	CL200.7	VANADIUM	12.9		0.4247	0.4247	MG/KG
SS132G	AN841	21-Mar-01	0	0.25	CL200.7	ZINC	20.5	J	0.173	0.173	MG/KG
SS132G	AN841	21-Mar-01	0	0.25	CL245.5	MERCURY	0.089	J	0.0539	0.0539	MG/KG
SS132G	AN842	21-Mar-01	0.25	0.5	CL200.7	ALUMINUM	6920		12.0927	12.0927	MG/KG
SS132G	AN842	21-Mar-01		0.5	CL200.7	ANTIMONY	1		0.8398	0.8398	MG/KG
SS132G	AN842	21-Mar-01		0.5	CL200.7	ARSENIC	2	J	0.9573	0.9573	MG/KG
SS132G	AN842	21-Mar-01		0.5	CL200.7	BARIUM	8.2		0.0504	0.0504	MG/KG

Table A.5 Small Arms Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEP	ΓΗ (FT.)	TEST	ANALYTE	RESULT	QUALIFIER1	MDL	RL	UNITS
SS132G	AN842	21-Mar-01	0.25	0.5	CL200.7	BERYLLIUM	0.086	J	0.0672	0.0672	MG/KG
SS132G	AN842	21-Mar-01	0.25	0.5	CL200.7	BORON	1.6		0.2183	0.2183	MG/KG
SS132G	AN842	21-Mar-01	0.25	0.5	CL200.7	CALCIUM	67.2		11.3201	11.3201	MG/KG
SS132G	AN842	21-Mar-01	0.25	0.5	CL200.7	CHROMIUM, TOTAL	6.8	J	0.3359	0.3359	MG/KG
SS132G	AN842	21-Mar-01	0.25	0.5	CL200.7	COBALT	0.83	J	0.2687	0.2687	MG/KG
SS132G	AN842	21-Mar-01	0.25	0.5	CL200.7	COPPER	355	J	0.1008	0.1008	MG/KG
SS132G	AN842	21-Mar-01	0.25	0.5	CL200.7	IRON	7260	J	5.5593	5.5593	MG/KG
SS132G	AN842	21-Mar-01	0.25	0.5	CL200.7	LEAD	501	J	0.4367	0.4367	MG/KG
SS132G	AN842	21-Mar-01	0.25	0.5	CL200.7	MAGNESIUM	489		11.824	11.824	MG/KG
SS132G	AN842	21-Mar-01	0.25	0.5	CL200.7	MANGANESE	41.8	J	0.3023	0.3023	MG/KG
SS132G	AN842	21-Mar-01	0.25	0.5	CL200.7	NICKEL	2.9	J	0.2351	0.2351	MG/KG
SS132G	AN842	21-Mar-01	0.25	0.5	CL200.7	POTASSIUM	237		5.0386	5.0386	MG/KG
SS132G	AN842	21-Mar-01	0.25	0.5	CL200.7	SODIUM	339	J	47.1952	47.1952	MG/KG
SS132G	AN842	21-Mar-01	0.25	0.5	CL200.7	VANADIUM	12.2		0.3359	0.3359	MG/KG
SS132G	AN842	21-Mar-01	0.25	0.5	CL200.7	ZINC	37.2	J	0.0672	0.0672	MG/KG
SS132G	AN843	21-Mar-01	0.25	0.5	CL200.7	ALUMINUM	7350		11.4942	11.4942	MG/KG
SS132G	AN843	21-Mar-01	0.25	0.5	CL200.7	ANTIMONY	0.94	J	0.7982	0.7982	MG/KG
SS132G	AN843	21-Mar-01		0.5	CL200.7	ARSENIC	2.5	J	0.91	0.91	MG/KG
SS132G	AN843	21-Mar-01	0.25	0.5	CL200.7	BARIUM	5.9		0.0479	0.0479	MG/KG
SS132G	AN843	21-Mar-01		0.5	CL200.7	BERYLLIUM	0.091	J	0.0639	0.0639	MG/KG
SS132G	AN843	21-Mar-01	0.25	0.5	CL200.7	BORON	2.2		0.2075	0.2075	MG/KG
SS132G	AN843	21-Mar-01	0.25	0.5	CL200.7	CALCIUM	65.5		10.7599	10.7599	MG/KG
SS132G	AN843	21-Mar-01	0.25	0.5	CL200.7	CHROMIUM, TOTAL	7.4	J	0.3193	0.3193	MG/KG
SS132G	AN843	21-Mar-01	0.25	0.5	CL200.7	COBALT	0.3	J	0.2554	0.2554	MG/KG
SS132G	AN843	21-Mar-01	0.25	0.5	CL200.7	COPPER	42.3		0.0958	0.0958	MG/KG
SS132G	AN843	21-Mar-01	0.25	0.5	CL200.7	IRON	6850		5.2842	5.2842	MG/KG
SS132G	AN843	21-Mar-01	0.25	0.5	CL200.7	LEAD	121		0.4151	0.4151	MG/KG
SS132G	AN843	21-Mar-01	0.25	0.5	CL200.7	MAGNESIUM	510		11.2388	11.2388	MG/KG
SS132G	AN843	21-Mar-01	0.25	0.5	CL200.7	MANGANESE	26.3	J	0.2874	0.2874	MG/KG
SS132G	AN843	21-Mar-01	0.25	0.5	CL200.7	MOLYBDENUM	0.62		0.5109	0.5109	MG/KG
SS132G	AN843	21-Mar-01	0.25	0.5	CL200.7	NICKEL	2.6		0.2235	0.2235	MG/KG
SS132G	AN843	21-Mar-01		0.5	CL200.7	POTASSIUM	285		4.7893	4.7893	MG/KG
SS132G	AN843	21-Mar-01		0.5	CL200.7	SODIUM	362	J	44.8595	44.8595	MG/KG
SS132G	AN843	21-Mar-01		0.5	CL200.7	VANADIUM	14.3		0.3193	0.3193	MG/KG
SS132G	AN843	21-Mar-01		0.5	CL200.7	ZINC	8.2	J	0.0639	0.0639	MG/KG
SS132G	AN844	21-Mar-01		0.5	CL200.7	ALUMINUM	6100	-	11.6321	11.6321	MG/KG
SS132G	AN844	21-Mar-01		0.5	CL200.7	ARSENIC	1.6	J	0.9209	0.9209	MG/KG
SS132G	AN844	21-Mar-01		0.5	CL200.7	BARIUM	6.5	-	0.0485	0.0485	MG/KG

Table A.5 Small Arms Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEP	ΓΗ (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132G	AN844	21-Mar-01	0.25	0.5	CL200.7	BORON	0.96	J	0.21	0.21	MG/KG
SS132G	AN844	21-Mar-01	0.25	0.5	CL200.7	CALCIUM	30.2		10.889	10.889	MG/KG
SS132G	AN844	21-Mar-01	0.25	0.5	CL200.7	CHROMIUM, TOTAL	6.4	J	0.3231	0.3231	MG/KG
SS132G	AN844	21-Mar-01	0.25	0.5	CL200.7	COPPER	46.4	J	0.0969	0.0969	MG/KG
SS132G	AN844	21-Mar-01	0.25	0.5	CL200.7	IRON	5780	J	5.3475	5.3475	MG/KG
SS132G	AN844	21-Mar-01	0.25	0.5	CL200.7	LEAD	103	J	0.42	0.42	MG/KG
SS132G	AN844	21-Mar-01	0.25	0.5	CL200.7	MAGNESIUM	218		11.3736	11.3736	MG/KG
SS132G	AN844	21-Mar-01	0.25	0.5	CL200.7	MANGANESE	16.1	J	0.2908	0.2908	MG/KG
SS132G	AN844	21-Mar-01	0.25	0.5	CL200.7	MOLYBDENUM	0.64	J	0.517	0.517	MG/KG
SS132G	AN844	21-Mar-01	0.25	0.5	CL200.7	NICKEL	1.3	J	0.2262	0.2262	MG/KG
SS132G	AN844	21-Mar-01	0.25	0.5	CL200.7	POTASSIUM	132		4.8467	4.8467	MG/KG
SS132G	AN844	21-Mar-01	0.25	0.5	CL200.7	SODIUM	305	J	45.3976	45.3976	MG/KG
SS132G	AN844	21-Mar-01	0.25	0.5	CL200.7	VANADIUM	11.5		0.3231	0.3231	MG/KG
SS132G	AN844	21-Mar-01	0.25	0.5	CL200.7	ZINC	9.4	J	0.0646	0.0646	MG/KG
SS132G	AN845	21-Mar-01	0.25	0.5	CL200.7	ALUMINUM	8760		11.127	11.127	MG/KG
SS132G	AN845	21-Mar-01	0.25	0.5	CL200.7	ANTIMONY	2.6	J	0.7727	0.7727	MG/KG
SS132G	AN845	21-Mar-01	0.25	0.5	CL200.7	ARSENIC	3	J	0.8809	0.8809	MG/KG
SS132G	AN845	21-Mar-01	0.25	0.5	CL200.7	BARIUM	88.7		0.0464	0.0464	MG/KG
SS132G	AN845	21-Mar-01	0.25	0.5	CL200.7	BERYLLIUM	0.34	J	0.0618	0.0618	MG/KG
SS132G	AN845	21-Mar-01	0.25	0.5	CL200.7	BORON	2.4		0.2009	0.2009	MG/KG
SS132G	AN845	21-Mar-01	0.25	0.5	CL200.7	CADMIUM	3.8		0.0927	0.0927	MG/KG
SS132G	AN845	21-Mar-01	0.25	0.5	CL200.7	CALCIUM	3490		10.4161	10.4161	MG/KG
SS132G	AN845	21-Mar-01	0.25	0.5	CL200.7	CHROMIUM, TOTAL	10.8	J	0.3091	0.3091	MG/KG
SS132G	AN845	21-Mar-01	0.25	0.5	CL200.7	COBALT	2	J	0.2473	0.2473	MG/KG
SS132G	AN845	21-Mar-01	0.25	0.5	CL200.7	COPPER	1230	J	0.0927	0.0927	MG/KG
SS132G	AN845	21-Mar-01	0.25	0.5	CL200.7	IRON	9880	J	5.1153	5.1153	MG/KG
SS132G	AN845	21-Mar-01	0.25	0.5	CL200.7	LEAD	4030	J	0.4018	0.4018	MG/KG
SS132G	AN845	21-Mar-01	0.25	0.5	CL200.7	MAGNESIUM	1150		10.8797	10.8797	MG/KG
SS132G	AN845	21-Mar-01	0.25	0.5	CL200.7	MANGANESE	296	J	0.2782	0.2782	MG/KG
SS132G	AN845	21-Mar-01	0.25	0.5	CL200.7	NICKEL	4.8		0.2164	0.2164	MG/KG
SS132G	AN845	21-Mar-01	0.25	0.5	CL200.7	POTASSIUM	368		4.6362	4.6362	MG/KG
SS132G	AN845	21-Mar-01	0.25	0.5	CL200.7	SODIUM	699		43.4262	43.4262	MG/KG
SS132G	AN845	21-Mar-01	0.25	0.5	CL200.7	VANADIUM	15.4		0.3091	0.3091	MG/KG
SS132G	AN845	21-Mar-01	0.25	0.5	CL200.7	ZINC	280	J	0.0618	0.0618	MG/KG
SS132G	AN845	21-Mar-01	0.25	0.5	CL245.5	MERCURY	0.12		0.0552	0.0552	MG/KG
SS132G	AN846	21-Mar-01	0.25	0.5	CL200.7	ALUMINUM	7840		11.6428	11.6428	MG/KG
SS132G	AN846	21-Mar-01	0.25	0.5	CL200.7	ARSENIC	2.4	J	0.9217	0.9217	MG/KG
SS132G	AN846	21-Mar-01	0.25	0.5	CL200.7	BARIUM	6.5		0.0485	0.0485	MG/KG

Table A.5 Small Arms Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEP	ΓΗ (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132G	AN846	21-Mar-01	0.25	0.5	CL200.7	BERYLLIUM	0.14	J	0.0647	0.0647	MG/KG
SS132G	AN846	21-Mar-01	0.25	0.5	CL200.7	BORON	2.2		0.2102	0.2102	MG/KG
SS132G	AN846	21-Mar-01	0.25	0.5	CL200.7	CALCIUM	64.5		10.8989	10.8989	MG/KG
SS132G	AN846	21-Mar-01	0.25	0.5	CL200.7	CHROMIUM, TOTAL	8.8	J	0.3234	0.3234	MG/KG
SS132G	AN846	21-Mar-01	0.25	0.5	CL200.7	COBALT	0.68	J	0.2587	0.2587	MG/KG
SS132G	AN846	21-Mar-01	0.25	0.5	CL200.7	COPPER	131	J	0.097	0.097	MG/KG
SS132G	AN846	21-Mar-01	0.25	0.5	CL200.7	IRON	7710	J	5.3524	5.3524	MG/KG
SS132G	AN846	21-Mar-01	0.25	0.5	CL200.7	LEAD	273	J	0.4204	0.4204	MG/KG
SS132G	AN846	21-Mar-01	0.25	0.5	CL200.7	MAGNESIUM	755		11.384	11.384	MG/KG
SS132G	AN846	21-Mar-01	0.25	0.5	CL200.7	MANGANESE	53.3	J	0.2911	0.2911	MG/KG
SS132G	AN846	21-Mar-01	0.25	0.5	CL200.7	NICKEL	3.6		0.2264	0.2264	MG/KG
SS132G	AN846	21-Mar-01	0.25	0.5	CL200.7	POTASSIUM	334		4.8511	4.8511	MG/KG
SS132G	AN846	21-Mar-01	0.25	0.5	CL200.7	SODIUM	417	J	45.4391	45.4391	MG/KG
SS132G	AN846	21-Mar-01	0.25	0.5	CL200.7	VANADIUM	16.6		0.3234	0.3234	MG/KG
SS132G	AN846	21-Mar-01	0.25	0.5	CL200.7	ZINC	20.9	J	0.0647	0.0647	MG/KG
SS132G	AN846	21-Mar-01	0.25	0.5	CL245.5	MERCURY	1.4		0.0542	0.0542	MG/KG
SS132G	AN847	20-Mar-01	0.5	1	CL200.7	ALUMINUM	9010		12.1724	12.1724	MG/KG
SS132G	AN847	20-Mar-01	0.5	1	CL200.7	BARIUM	69.1	J	0.0507	0.0507	MG/KG
SS132G	AN847	20-Mar-01	0.5	1	CL200.7	BERYLLIUM	0.22		0.0676	0.0676	MG/KG
SS132G	AN847	20-Mar-01	0.5	1	CL200.7	CADMIUM	1.7	J	0.1014	0.1014	MG/KG
SS132G	AN847	20-Mar-01	0.5	1	CL200.7	CALCIUM	104		11.3948	11.3948	MG/KG
SS132G	AN847	20-Mar-01	0.5	1	CL200.7	CHROMIUM, TOTAL	8.5		0.3381	0.3381	MG/KG
SS132G	AN847	20-Mar-01	0.5	1	CL200.7	COBALT	1.2		0.2705	0.2705	MG/KG
SS132G	AN847	20-Mar-01	0.5	1	CL200.7	COPPER	104	J	0.1014	0.1014	MG/KG
SS132G	AN847	20-Mar-01	0.5	1	CL200.7	IRON	9280	J	5.5959	5.5959	MG/KG
SS132G	AN847	20-Mar-01	0.5	1	CL200.7	LEAD	145		0.4396	0.4396	MG/KG
SS132G	AN847	20-Mar-01	0.5	1	CL200.7	MAGNESIUM	566		11.9019	11.9019	MG/KG
SS132G	AN847	20-Mar-01	0.5	1	CL200.7	MANGANESE	49.4	J	0.3043	0.3043	MG/KG
SS132G	AN847	20-Mar-01	0.5	1	CL200.7	MOLYBDENUM	0.71		0.541	0.541	MG/KG
SS132G	AN847	20-Mar-01	0.5	1	CL200.7	NICKEL	4.3		0.2367	0.2367	MG/KG
SS132G	AN847	20-Mar-01	0.5	1	CL200.7	POTASSIUM	344		5.0719	5.0719	MG/KG
SS132G	AN847	20-Mar-01	0.5	1	CL200.7	SELENIUM	1.4	J	0.7777	0.7777	MG/KG
SS132G	AN847	20-Mar-01	0.5	1	CL200.7	SODIUM	552	-	47.5064	47.5064	MG/KG
SS132G	AN847	20-Mar-01	0.5	1	CL200.7	VANADIUM	16		0.3381	0.3381	MG/KG
SS132G	AN847	20-Mar-01	0.5	1	CL200.7	ZINC	57.6	J	0.0676	0.0676	MG/KG
SS132G	AN848	20-Mar-01	0.5	1	CL200.7	ALUMINUM	4510	-	10.656	10.656	MG/KG
SS132G	AN848	20-Mar-01	0.5	1	CL200.7	ARSENIC	1.5		0.8436	0.8436	MG/KG
SS132G	AN848	20-Mar-01		1	CL200.7	BARIUM	4.4	J	0.0444	0.0444	MG/KG

Table A.5 Small Arms Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPTH (FT.)	TEST	ANALYTE	RESULT	QUALIFIER1	MDL	RL	UNITS
	AN848	20-Mar-01	0.5 1	CL200.7	BERYLLIUM	0.059		0.059	0.059	MG/KG
SS132G	AN848	20-Mar-01	0.5 1	CL200.7	CALCIUM	41.8		9.9752	9.9752	MG/KG
SS132G	AN848	20-Mar-01	0.5 1	CL200.7	CHROMIUM, TOTAL	5		0.296	0.296	MG/KG
SS132G	AN848	20-Mar-01	0.5 1	CL200.7	COBALT	0.52		0.2368	0.2368	MG/KG
SS132G	AN848	20-Mar-01	0.5 1	CL200.7	COPPER	19.3	J	0.0888	0.0888	MG/KG
SS132G	AN848	20-Mar-01	0.5 1	CL200.7	IRON	4160	J	4.8988	4.8988	MG/KG
SS132G	AN848	20-Mar-01	0.5 1	CL200.7	LEAD	83.9	J	0.3848	0.3848	MG/KG
SS132G	AN848	20-Mar-01	0.5 1	CL200.7	MAGNESIUM	405		10.4192	10.4192	MG/KG
SS132G	AN848	20-Mar-01	0.5 1	CL200.7	MANGANESE	21.9	J	0.2664	0.2664	MG/KG
SS132G	AN848	20-Mar-01	0.5 1	CL200.7	NICKEL	2		0.2072	0.2072	MG/KG
SS132G	AN848	20-Mar-01	0.5 1	CL200.7	POTASSIUM	212		4.44	4.44	MG/KG
SS132G	AN848	20-Mar-01	0.5 1	CL200.7	SELENIUM	0.75	J	0.6808	0.6808	MG/KG
SS132G	AN848	20-Mar-01	0.5 1	CL200.7	SODIUM	270	J	41.588	41.588	MG/KG
SS132G	AN848	20-Mar-01	0.5 1	CL200.7	VANADIUM	8.3		0.296	0.296	MG/KG
SS132G	AN848	20-Mar-01	0.5 1	CL200.7	ZINC	6.9	J	0.0592	0.0592	MG/KG
SS132G	AN849	21-Mar-01	0.5 1	CL200.7	ALUMINUM	7020		11.858	11.858	MG/KG
SS132G	AN849	21-Mar-01	0.5 1	CL200.7	ARSENIC	1.8		0.9388	0.9388	MG/KG
SS132G	AN849	21-Mar-01	0.5 1	CL200.7	BARIUM	7.6	J	0.0494	0.0494	MG/KG
SS132G	AN849	21-Mar-01	0.5 1	CL200.7	CALCIUM	51.4		11.1004	11.1004	MG/KG
SS132G	AN849	21-Mar-01	0.5 1	CL200.7	CHROMIUM, TOTAL	5.9		0.3294	0.3294	MG/KG
SS132G	AN849	21-Mar-01	0.5 1	CL200.7	COPPER	13.5	J	0.0988	0.0988	MG/KG
SS132G	AN849	21-Mar-01	0.5 1	CL200.7	IRON	6470	J	5.4514	5.4514	MG/KG
SS132G	AN849	21-Mar-01	0.5 1	CL200.7	LEAD	76.8	J	0.4282	0.4282	MG/KG
SS132G	AN849	21-Mar-01	0.5 1	CL200.7	MAGNESIUM	290		11.5945	11.5945	MG/KG
SS132G	AN849	21-Mar-01	0.5 1	CL200.7	MANGANESE	16	J	0.2965	0.2965	MG/KG
SS132G	AN849	21-Mar-01	0.5 1	CL200.7	NICKEL	1.9		0.2306	0.2306	MG/KG
SS132G	AN849	21-Mar-01	0.5 1	CL200.7	POTASSIUM	175		4.9408	4.9408	MG/KG
SS132G	AN849	21-Mar-01	0.5 1	CL200.7	SODIUM	392		46.2792	46.2792	MG/KG
SS132G	AN849	21-Mar-01	0.5 1	CL200.7	VANADIUM	13.5		0.3294	0.3294	MG/KG
SS132G	AN849	21-Mar-01	0.5 1	CL200.7	ZINC	13.2		0.0659	0.0659	MG/KG
SS132G	AN850	21-Mar-01	0.5 1	CL200.7	ALUMINUM	6520		12.215	12.215	MG/KG
SS132G	AN850	21-Mar-01	0.5 1	CL200.7	ANTIMONY	1	J	0.8483	0.8483	MG/KG
SS132G	AN850	21-Mar-01	0.5 1	CL200.7	ARSENIC	2.1		0.967	0.967	MG/KG
SS132G	AN850	21-Mar-01	0.5 1	CL200.7	BARIUM	6.4	J	0.0509	0.0509	MG/KG
SS132G	AN850	21-Mar-01	0.5 1	CL200.7	CALCIUM	141		11.4346	11.4346	MG/KG
SS132G	AN850	21-Mar-01	0.5 1	CL200.7	CHROMIUM, TOTAL	6.4		0.3393	0.3393	MG/KG
SS132G	AN850	21-Mar-01	0.5 1	CL200.7	COBALT	0.79		0.2714	0.2714	MG/KG
SS132G	AN850	21-Mar-01	0.5 1	CL200.7	COPPER	210	J	0.1018	0.1018	MG/KG

Table A.5 Small Arms Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEP	ΓΗ (FT.)	TEST	ANALYTE	RESULT	QUALIFIER1	MDL	RL	UNITS
SS132G	AN850	21-Mar-01	0.5	1	CL200.7	IRON	6370	J	5.6155	5.6155	MG/KG
SS132G	AN850	21-Mar-01	0.5	1	CL200.7	LEAD	688	J	0.4411	0.4411	MG/KG
SS132G	AN850	21-Mar-01	0.5	1	CL200.7	MAGNESIUM	489		11.9435	11.9435	MG/KG
SS132G	AN850	21-Mar-01	0.5	1	CL200.7	MANGANESE	38.7	J	0.3054	0.3054	MG/KG
SS132G	AN850	21-Mar-01	0.5	1	CL200.7	NICKEL	2.7		0.2375	0.2375	MG/KG
SS132G	AN850	21-Mar-01	0.5	1	CL200.7	POTASSIUM	260		5.0896	5.0896	MG/KG
SS132G	AN850	21-Mar-01	0.5	1	CL200.7	SELENIUM	1	J	0.7804	0.7804	MG/KG
SS132G	AN850	21-Mar-01	0.5	1	CL200.7	SODIUM	504		47.6724	47.6724	MG/KG
SS132G	AN850	21-Mar-01	0.5	1	CL200.7	VANADIUM	11.7		0.3393	0.3393	MG/KG
SS132G	AN850	21-Mar-01	0.5	1	CL200.7	ZINC	27	J	0.0679	0.0679	MG/KG
SS132G	AN850	21-Mar-01	0.5	1	CL245.5	MERCURY	0.13		0.0543	0.0543	MG/KG
SS132G	AN851	21-Mar-01	0.5	1	CL200.7	ALUMINUM	7820		11.3154	11.3154	MG/KG
SS132G	AN851	21-Mar-01	0.5	1	CL200.7	ARSENIC	3.1		0.8958	0.8958	MG/KG
SS132G	AN851	21-Mar-01	0.5	1	CL200.7	BARIUM	11.8	J	0.0471	0.0471	MG/KG
SS132G	AN851	21-Mar-01	0.5	1	CL200.7	BERYLLIUM	0.14	J	0.0629	0.0629	MG/KG
SS132G	AN851	21-Mar-01	0.5	1	CL200.7	CADMIUM	1.1	J	0.0943	0.0943	MG/KG
SS132G	AN851	21-Mar-01	0.5	1	CL200.7	CALCIUM	86.9		10.5925	10.5925	MG/KG
SS132G	AN851	21-Mar-01	0.5	1	CL200.7	CHROMIUM, TOTAL	7.2		0.3143	0.3143	MG/KG
SS132G	AN851	21-Mar-01	0.5	1	CL200.7	COBALT	0.98		0.2515	0.2515	MG/KG
SS132G	AN851	21-Mar-01	0.5	1	CL200.7	COPPER	61.7	J	0.0943	0.0943	MG/KG
SS132G	AN851	21-Mar-01	0.5	1	CL200.7	IRON	8870	J	5.2019	5.2019	MG/KG
SS132G	AN851	21-Mar-01	0.5	1	CL200.7	LEAD	23.6	J	0.4086	0.4086	MG/KG
SS132G	AN851	21-Mar-01	0.5	1	CL200.7	MAGNESIUM	415		11.064	11.064	MG/KG
SS132G	AN851	21-Mar-01	0.5	1	CL200.7	MANGANESE	53.8	J	0.2829	0.2829	MG/KG
SS132G	AN851	21-Mar-01	0.5	1	CL200.7	NICKEL	3.3		0.22	0.22	MG/KG
SS132G	AN851	21-Mar-01	0.5	1	CL200.7	POTASSIUM	287		4.7148	4.7148	MG/KG
SS132G	AN851	21-Mar-01	0.5	1	CL200.7	SODIUM	461		44.1615	44.1615	MG/KG
SS132G	AN851	21-Mar-01	0.5	1	CL200.7	VANADIUM	14.1		0.3143	0.3143	MG/KG
SS132G	AN851	21-Mar-01	0.5	1	CL200.7	ZINC	28.1	J	0.0629	0.0629	MG/KG
SS132G	AN852	21-Mar-01	0.5	1	CL200.7	ALUMINUM	2840		11.2931	11.2931	MG/KG
SS132G	AN852	21-Mar-01	0.5	1	CL200.7	ARSENIC	1.5	J	0.894	0.894	MG/KG
SS132G	AN852	21-Mar-01	0.5	1	CL200.7	BARIUM	17.2	J	0.0471	0.0471	MG/KG
SS132G	AN852	21-Mar-01	0.5	1	CL200.7	CADMIUM	0.77	J	0.0941	0.0941	MG/KG
SS132G	AN852	21-Mar-01	0.5	1	CL200.7	CALCIUM	115		10.5716	10.5716	MG/KG
SS132G	AN852	21-Mar-01	0.5	1	CL200.7	CHROMIUM, TOTAL	3.4		0.3137	0.3137	MG/KG
SS132G	AN852	21-Mar-01	0.5	1	CL200.7	COBALT	0.46	J	0.251	0.251	MG/KG
SS132G	AN852	21-Mar-01	0.5	1	CL200.7	COPPER	44.6		0.0941	0.0941	MG/KG
SS132G	AN852	21-Mar-01		1	CL200.7	IRON	3760		5.1917	5.1917	MG/KG

Table A.5 Small Arms Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEP	ΓΗ (FT.)	TEST	ANALYTE	RESULT	QUALIFIER1	MDL	RL	UNITS
SS132G	AN852	21-Mar-01	0.5	1	CL200.7	LEAD	40.1	J	0.4078	0.4078	MG/KG
SS132G	AN852	21-Mar-01	0.5	1	CL200.7	MAGNESIUM	299		11.0421	11.0421	MG/KG
SS132G	AN852	21-Mar-01	0.5	1	CL200.7	MANGANESE	34.2	J	0.2823	0.2823	MG/KG
SS132G	AN852	21-Mar-01	0.5	1	CL200.7	NICKEL	1.5	J	0.2196	0.2196	MG/KG
SS132G	AN852	21-Mar-01	0.5	1	CL200.7	POTASSIUM	137		4.7054	4.7054	MG/KG
SS132G	AN852	21-Mar-01	0.5	1	CL200.7	SODIUM	384		44.0743	44.0743	MG/KG
SS132G	AN852	21-Mar-01	0.5	1	CL200.7	VANADIUM	6.5		0.3137	0.3137	MG/KG
SS132G	AN852	21-Mar-01	0.5	1	CL200.7	ZINC	46	J	0.0627	0.0627	MG/KG
SS132H	AN870	21-Mar-01	0	0.25	CL200.7	ALUMINUM	3660		11.9901	11.9901	MG/KG
SS132H	AN870	21-Mar-01	0	0.25	CL200.7	ANTIMONY	2.1	J	0.8326	0.8326	MG/KG
SS132H	AN870	21-Mar-01	0	0.25	CL200.7	ARSENIC	3.4		0.9492	0.9492	MG/KG
SS132H	AN870	21-Mar-01	0	0.25	CL200.7	BARIUM	4.9	J	0.05	0.05	MG/KG
SS132H	AN870	21-Mar-01	0	0.25	CL200.7	CALCIUM	109		11.2241	11.2241	MG/KG
SS132H	AN870	21-Mar-01	0	0.25	CL200.7	CHROMIUM, TOTAL	5.2		0.3331	0.3331	MG/KG
SS132H	AN870	21-Mar-01	0	0.25	CL200.7	COBALT	1.3		0.2664	0.2664	MG/KG
SS132H	AN870	21-Mar-01	0	0.25	CL200.7	COPPER	150	J	0.0999	0.0999	MG/KG
SS132H	AN870	21-Mar-01	0	0.25	CL200.7	IRON	25300	J	5.5121	5.5121	MG/KG
SS132H	AN870	21-Mar-01	0	0.25	CL200.7	LEAD	554		0.433	0.433	MG/KG
SS132H	AN870	21-Mar-01	0	0.25	CL200.7	MAGNESIUM	294		11.7237	11.7237	MG/KG
SS132H	AN870	21-Mar-01	0	0.25	CL200.7	MANGANESE	159	J	0.2998	0.2998	MG/KG
SS132H	AN870	21-Mar-01	0	0.25	CL200.7	NICKEL	2.3		0.2331	0.2331	MG/KG
SS132H	AN870	21-Mar-01	0	0.25	CL200.7	POTASSIUM	209		4.9959	4.9959	MG/KG
SS132H	AN870	21-Mar-01	0	0.25	CL200.7	SELENIUM	1	J	0.766	0.766	MG/KG
SS132H	AN870	21-Mar-01	0	0.25	CL200.7	SODIUM	457		46.7947	46.7947	MG/KG
SS132H	AN870	21-Mar-01	0	0.25	CL200.7	VANADIUM	12.7		0.3331	0.3331	MG/KG
SS132H	AN870	21-Mar-01	0	0.25	CL200.7	ZINC	18.5	J	0.0666	0.0666	MG/KG
SS132H	AN870	21-Mar-01	0	0.25	CL245.5	MERCURY	0.17		0.0554	0.0554	MG/KG
SS132H	AN871	21-Mar-01	0	0.25	CL200.7	ALUMINUM	6280		11.2289	11.2289	MG/KG
SS132H	AN871	21-Mar-01	0	0.25	CL200.7	ANTIMONY	3.6	J	0.7798	0.7798	MG/KG
SS132H	AN871	21-Mar-01	0	0.25	CL200.7	ARSENIC	2.1		0.889	0.889	MG/KG
SS132H	AN871	21-Mar-01	0	0.25	CL200.7	BARIUM	7.8	J	0.0468	0.0468	MG/KG
SS132H	AN871	21-Mar-01	0	0.25	CL200.7	BERYLLIUM	0.092		0.0624	0.0624	MG/KG
SS132H	AN871	21-Mar-01	0	0.25	CL200.7	CALCIUM	51.3	-	10.5115	10.5115	MG/KG
SS132H	AN871	21-Mar-01	0	0.25	CL200.7	CHROMIUM, TOTAL	5.5		0.3119	0.3119	MG/KG
SS132H	AN871	21-Mar-01	0	0.25	CL200.7	COBALT	0.48	J	0.2495	0.2495	MG/KG
SS132H	AN871	21-Mar-01	0	0.25	CL200.7	COPPER	116		0.0936	0.0936	MG/KG
SS132H	AN871	21-Mar-01	0	0.25	CL200.7	IRON	6850		5.1622	5.1622	MG/KG
SS132H	AN871	21-Mar-01	0	0.25	CL200.7	LEAD	1100		0.4055	0.4055	MG/KG

Table A.5 Small Arms Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEP1	TH (FT.)	TEST	ANALYTE	RESULT	QUALIFIER1	MDL	RL	UNITS
SS132H	AN871	21-Mar-01	0	0.25	CL200.7	MAGNESIUM	342		10.9794	10.9794	MG/KG
SS132H	AN871	21-Mar-01	0	0.25	CL200.7	MANGANESE	41.6	J	0.2807	0.2807	MG/KG
SS132H	AN871	21-Mar-01	0	0.25	CL200.7	NICKEL	2.8		0.2183	0.2183	MG/KG
SS132H	AN871	21-Mar-01	0	0.25	CL200.7	POTASSIUM	183		4.6787	4.6787	MG/KG
SS132H	AN871	21-Mar-01	0	0.25	CL200.7	SELENIUM	1.2	J	0.7174	0.7174	MG/KG
SS132H	AN871	21-Mar-01	0	0.25	CL200.7	SODIUM	349		43.8241	43.8241	MG/KG
SS132H	AN871	21-Mar-01	0	0.25	CL200.7	VANADIUM	10.8		0.3119	0.3119	MG/KG
SS132H	AN871	21-Mar-01	0	0.25	CL200.7	ZINC	20.4	J	0.0624	0.0624	MG/KG
SS132H	AN872	21-Mar-01	0	0.25	CL200.7	ALUMINUM	2740		11.807	11.807	MG/KG
SS132H	AN872	21-Mar-01	0	0.25	CL200.7	ANTIMONY	0.9	J	0.8199	0.8199	MG/KG
SS132H	AN872	21-Mar-01	0	0.25	CL200.7	ARSENIC	1.4	J	0.9347	0.9347	MG/KG
SS132H	AN872	21-Mar-01	0	0.25	CL200.7	BARIUM	9.8	J	0.0492	0.0492	MG/KG
SS132H	AN872	21-Mar-01	0	0.25	CL200.7	CALCIUM	67.3		11.0527	11.0527	MG/KG
SS132H	AN872	21-Mar-01	0	0.25	CL200.7	CHROMIUM, TOTAL	2.6		0.328	0.328	MG/KG
SS132H	AN872	21-Mar-01	0	0.25	CL200.7	COPPER	352	J	0.0984	0.0984	MG/KG
SS132H	AN872	21-Mar-01	0	0.25	CL200.7	IRON	3240	J	5.428	5.428	MG/KG
SS132H	AN872	21-Mar-01	0	0.25	CL200.7	LEAD	167	J	0.4264	0.4264	MG/KG
SS132H	AN872	21-Mar-01	0	0.25	CL200.7	MAGNESIUM	168		11.5447	11.5447	MG/KG
SS132H	AN872	21-Mar-01	0	0.25	CL200.7	MANGANESE	36.2	J	0.2952	0.2952	MG/KG
SS132H	AN872	21-Mar-01	0	0.25	CL200.7	NICKEL	0.75		0.2296	0.2296	MG/KG
SS132H	AN872	21-Mar-01	0	0.25	CL200.7	POTASSIUM	143		4.9196	4.9196	MG/KG
SS132H	AN872	21-Mar-01	0	0.25	CL200.7	SELENIUM	1.1	J	0.7543	0.7543	MG/KG
SS132H	AN872	21-Mar-01	0	0.25	CL200.7	SODIUM	386		46.0803	46.0803	MG/KG
SS132H	AN872	21-Mar-01	0	0.25	CL200.7	VANADIUM	6.7		0.328	0.328	MG/KG
SS132H	AN872	21-Mar-01	0	0.25	CL200.7	ZINC	16.7	J	0.0656	0.0656	MG/KG
SS132H	AN873	21-Mar-01	0	0.25	CL200.7	ALUMINUM	4850		11.4097	11.4097	MG/KG
SS132H	AN873	21-Mar-01	0	0.25	CL200.7	ARSENIC	3.5		0.9033	0.9033	MG/KG
SS132H	AN873	21-Mar-01	0	0.25	CL200.7	BARIUM	5.5	J	0.0475	0.0475	MG/KG
SS132H	AN873	21-Mar-01	0	0.25	CL200.7	CALCIUM	76.7		10.6808	10.6808	MG/KG
SS132H	AN873	21-Mar-01	0	0.25	CL200.7	CHROMIUM, TOTAL	8.9		0.3169	0.3169	MG/KG
SS132H	AN873	21-Mar-01	0	0.25	CL200.7	COBALT	1.2		0.2535	0.2535	MG/KG
SS132H	AN873	21-Mar-01	0	0.25	CL200.7	COPPER	249	J	0.0951	0.0951	MG/KG
SS132H	AN873	21-Mar-01	0	0.25	CL200.7	IRON	20500		5.2453	5.2453	MG/KG
SS132H	AN873	21-Mar-01	0	0.25	CL200.7	LEAD	660		0.412	0.412	MG/KG
SS132H	AN873	21-Mar-01	0	0.25	CL200.7	MAGNESIUM	293		11.1562	11.1562	MG/KG
SS132H	AN873	21-Mar-01	0	0.25	CL200.7	MANGANESE	168	J	0.2852	0.2852	MG/KG
SS132H	AN873	21-Mar-01	0	0.25	CL200.7	MOLYBDENUM	2.1		0.5071	0.5071	MG/KG
SS132H	AN873	21-Mar-01	0	0.25	CL200.7	NICKEL	9.2		0.2219	0.2219	MG/KG

Table A.5 Small Arms Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEP	ΓΗ (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132H	AN873	21-Mar-01	0	0.25	CL200.7	POTASSIUM	206		4.7541	4.7541	MG/KG
SS132H	AN873	21-Mar-01	0	0.25	CL200.7	SELENIUM	0.83	J	0.729	0.729	MG/KG
SS132H	AN873	21-Mar-01	0	0.25	CL200.7	SODIUM	436		44.5297	44.5297	MG/KG
SS132H	AN873	21-Mar-01	0	0.25	CL200.7	VANADIUM	12.3		0.3169	0.3169	MG/KG
SS132H	AN873	21-Mar-01	0	0.25	CL200.7	ZINC	18.9	J	0.0634	0.0634	MG/KG
SS132H	AN873	21-Mar-01	0	0.25	CL245.5	MERCURY	0.071	J	0.0539	0.0539	MG/KG
SS132H	AN873	21-Mar-01	0	0.25	SW8270	ANTHRACENE	110	J	110	350	UG/KG
SS132H	AN873	21-Mar-01	0	0.25	SW8270	BENZO(a)ANTHRACENE	350	J	98	350	UG/KG
SS132H	AN873	21-Mar-01	0	0.25	SW8270	BENZO(a)PYRENE	260	J	98	350	UG/KG
SS132H	AN873	21-Mar-01	0	0.25	SW8270	BENZO(b)FLUORANTHENE	280	J	130	350	UG/KG
SS132H	AN873	21-Mar-01	0	0.25	SW8270	BENZO(k)FLUORANTHENE	300	J	110	350	UG/KG
SS132H	AN873	21-Mar-01	0	0.25	SW8270	CHRYSENE	400		110	350	UG/KG
SS132H	AN873	21-Mar-01	0	0.25	SW8270	FLUORANTHENE	910		120	350	UG/KG
SS132H	AN873	21-Mar-01	0	0.25	SW8270	FLUORENE	110	J	77	350	UG/KG
SS132H	AN873	21-Mar-01	0	0.25	SW8270	INDENO(1,2,3-c,d)PYRENE	140	J	140	350	UG/KG
SS132H	AN873	21-Mar-01	0	0.25	SW8270	PHENANTHRENE	810		100	350	UG/KG
SS132H	AN873	21-Mar-01	0	0.25	SW8270	PYRENE	700		270	350	UG/KG
SS132H	AN874	21-Mar-01	0	0.25	CL200.7	ALUMINUM	3740		12.432	12.432	MG/KG
SS132H	AN874	21-Mar-01	0	0.25	CL200.7	ARSENIC	1.8	J	0.9842	0.9842	MG/KG
SS132H	AN874	21-Mar-01	0	0.25	CL200.7	BARIUM	8.5	J	0.0518	0.0518	MG/KG
SS132H	AN874	21-Mar-01	0	0.25	CL200.7	CADMIUM	0.83	J	0.1036	0.1036	MG/KG
SS132H	AN874	21-Mar-01	0	0.25	CL200.7	CALCIUM	71		11.6377	11.6377	MG/KG
SS132H	AN874	21-Mar-01	0	0.25	CL200.7	CHROMIUM, TOTAL	3.7		0.3453	0.3453	MG/KG
SS132H	AN874	21-Mar-01	0	0.25	CL200.7	COBALT	0.36	J	0.2763	0.2763	MG/KG
SS132H	AN874	21-Mar-01	0	0.25	CL200.7	COPPER	74.8	J	0.1036	0.1036	MG/KG
SS132H	AN874	21-Mar-01	0	0.25	CL200.7	IRON	5640	J	5.7153	5.7153	MG/KG
SS132H	AN874	21-Mar-01	0	0.25	CL200.7	LEAD	149	J	0.4489	0.4489	MG/KG
SS132H	AN874	21-Mar-01	0	0.25	CL200.7	MAGNESIUM	185		12.1557	12.1557	MG/KG
SS132H	AN874	21-Mar-01	0	0.25	CL200.7	MANGANESE	25.3	J	0.3108	0.3108	MG/KG
SS132H	AN874	21-Mar-01	0	0.25	CL200.7	NICKEL	1.3	J	0.2417	0.2417	MG/KG
SS132H	AN874	21-Mar-01	0	0.25	CL200.7	POTASSIUM	142		5.18	5.18	MG/KG
SS132H	AN874	21-Mar-01	0	0.25	CL200.7	SODIUM	379		48.5194	48.5194	MG/KG
SS132H	AN874	21-Mar-01	0	0.25	CL200.7	VANADIUM	10.3		0.3453	0.3453	MG/KG
SS132H	AN874	21-Mar-01	0	0.25	CL200.7	ZINC	7.2	J	0.0691	0.0691	MG/KG
SS132H	AN874	21-Mar-01	0	0.25	SW8270	BENZO(a)ANTHRACENE	340	J	100	370	UG/KG
SS132H	AN874	21-Mar-01	0	0.25	SW8270	BENZO(a)PYRENE	230	J	100	370	UG/KG
SS132H	AN874	21-Mar-01	0	0.25	SW8270	BENZO(b)FLUORANTHENE	250	J	130	370	UG/KG
SS132H	AN874	21-Mar-01	0	0.25	SW8270	BENZO(k)FLUORANTHENE	260	J	120	370	UG/KG

Table A.5 Small Arms Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEP	TH (FT.)	TEST	ANALYTE	RESULT	QUALIFIER1	MDL	RL	UNITS
SS132H	AN874	21-Mar-01	0	0.25	SW8270	CHRYSENE	370		110	370	UG/KG
SS132H	AN874	21-Mar-01	0	0.25	SW8270	FLUORANTHENE	630		130	370	UG/KG
SS132H	AN874	21-Mar-01	0	0.25	SW8270	PHENANTHRENE	570		100	370	UG/KG
SS132H	AN874	21-Mar-01	0	0.25	SW8270	PYRENE	660		280	370	UG/KG
SS132H	AN875	21-Mar-01	0.25	0.5	CL200.7	ALUMINUM	7540		11.5429	11.5429	MG/KG
SS132H	AN875	21-Mar-01	0.25	0.5	CL200.7	ARSENIC	4.6		0.9138	0.9138	MG/KG
SS132H	AN875	21-Mar-01	0.25	0.5	CL200.7	BARIUM	18.5	J	0.0481	0.0481	MG/KG
SS132H	AN875	21-Mar-01	0.25	0.5	CL200.7	CADMIUM	0.24	J	0.0962	0.0962	MG/KG
SS132H	AN875	21-Mar-01	0.25	0.5	CL200.7	CALCIUM	105		10.8054	10.8054	MG/KG
SS132H	AN875	21-Mar-01	0.25	0.5	CL200.7	CHROMIUM, TOTAL	13.7		0.3206	0.3206	MG/KG
SS132H	AN875	21-Mar-01	0.25	0.5	CL200.7	COBALT	2.6		0.2565	0.2565	MG/KG
SS132H	AN875	21-Mar-01	0.25	0.5	CL200.7	COPPER	172	J	0.0962	0.0962	MG/KG
SS132H	AN875	21-Mar-01	0.25	0.5	CL200.7	IRON	39200	J	5.3065	5.3065	MG/KG
SS132H	AN875	21-Mar-01	0.25	0.5	CL200.7	LEAD	290	J	0.4168	0.4168	MG/KG
SS132H	AN875	21-Mar-01	0.25	0.5	CL200.7	MAGNESIUM	470		11.2864	11.2864	MG/KG
SS132H	AN875	21-Mar-01	0.25	0.5	CL200.7	MANGANESE	383	J	0.2886	0.2886	MG/KG
SS132H	AN875	21-Mar-01	0.25	0.5	CL200.7	NICKEL	7.8		0.2244	0.2244	MG/KG
SS132H	AN875	21-Mar-01	0.25	0.5	CL200.7	POTASSIUM	199		4.8095	4.8095	MG/KG
SS132H	AN875	21-Mar-01	0.25	0.5	CL200.7	SELENIUM	1.6	J	0.7375	0.7375	MG/KG
SS132H	AN875	21-Mar-01	0.25	0.5	CL200.7	SODIUM	519		45.0494	45.0494	MG/KG
SS132H	AN875	21-Mar-01	0.25	0.5	CL200.7	VANADIUM	11.6	J	0.3206	0.3206	MG/KG
SS132H	AN875	21-Mar-01	0.25	0.5	CL200.7	ZINC	73.5		0.0641	0.0641	MG/KG
SS132H	AN875	21-Mar-01	0.25	0.5	CL245.5	MERCURY	0.27		0.0553	0.0553	MG/KG
SS132H	AN876	21-Mar-01	0.25	0.5	CL200.7	ALUMINUM	1060		11.4695	11.4695	MG/KG
SS132H	AN876	21-Mar-01	0.25	0.5	CL200.7	BARIUM	6	J	0.0478	0.0478	MG/KG
SS132H	AN876	21-Mar-01	0.25	0.5	CL200.7	CALCIUM	34.1		10.7368	10.7368	MG/KG
SS132H	AN876	21-Mar-01	0.25	0.5	CL200.7	CHROMIUM, TOTAL	1.6		0.3186	0.3186	MG/KG
SS132H	AN876	21-Mar-01	0.25	0.5	CL200.7	IRON	1990	J	5.2728	5.2728	MG/KG
SS132H	AN876	21-Mar-01	0.25	0.5	CL200.7	LEAD	4.6	J	0.4142	0.4142	MG/KG
SS132H	AN876	21-Mar-01	0.25	0.5	CL200.7	MAGNESIUM	61		11.2147	11.2147	MG/KG
SS132H	AN876	21-Mar-01	0.25	0.5	CL200.7	MANGANESE	8.6	J	0.2867	0.2867	MG/KG
SS132H	AN876	21-Mar-01	0.25	0.5	CL200.7	POTASSIUM	96.8		4.779	4.779	MG/KG
SS132H	AN876	21-Mar-01	0.25	0.5	CL200.7	SODIUM	282		44.763	44.763	MG/KG
SS132H	AN876	21-Mar-01	0.25	0.5	CL200.7	VANADIUM	5.9		0.3186	0.3186	MG/KG
SS132H	AN876	21-Mar-01	0.25	0.5	CL200.7	ZINC	1.8	J	0.0637	0.0637	MG/KG
SS132H	AN876	21-Mar-01	0.25	0.5	SW8270	BENZOIC ACID	580	J	200	890	UG/KG
SS132H	AN877	21-Mar-01	0.25	0.5	CL200.7	ALUMINUM	2250		11.4591	11.4591	MG/KG
SS132H	AN877	21-Mar-01	0.25	0.5	CL200.7	ARSENIC	1.2	J	0.9072	0.9072	MG/KG

Table A.5 Small Arms Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEP	ΓΗ (FT.)	TEST	ANALYTE	RESULT	QUALIFIER1	MDL	RL	UNITS
SS132H	AN877	21-Mar-01		0.5	CL200.7	BARIUM	3.2	J	0.0477	0.0477	MG/KG
SS132H	AN877	21-Mar-01	0.25	0.5	CL200.7	CALCIUM	51		10.727	10.727	MG/KG
SS132H	AN877	21-Mar-01	0.25	0.5	CL200.7	CHROMIUM, TOTAL	1.8		0.3183	0.3183	MG/KG
SS132H	AN877	21-Mar-01	0.25	0.5	CL200.7	IRON	3720	J	5.268	5.268	MG/KG
SS132H	AN877	21-Mar-01	0.25	0.5	CL200.7	LEAD	3.6	J	0.4138	0.4138	MG/KG
SS132H	AN877	21-Mar-01	0.25	0.5	CL200.7	MAGNESIUM	115		11.2045	11.2045	MG/KG
SS132H	AN877	21-Mar-01	0.25	0.5	CL200.7	MANGANESE	11.6	J	0.2865	0.2865	MG/KG
SS132H	AN877	21-Mar-01	0.25	0.5	CL200.7	NICKEL	0.25	J	0.2228	0.2228	MG/KG
SS132H	AN877	21-Mar-01	0.25	0.5	CL200.7	POTASSIUM	137		4.7746	4.7746	MG/KG
SS132H	AN877	21-Mar-01	0.25	0.5	CL200.7	SODIUM	387		44.7224	44.7224	MG/KG
SS132H	AN877	21-Mar-01	0.25	0.5	CL200.7	VANADIUM	8.1		0.3183	0.3183	MG/KG
SS132H	AN877	21-Mar-01	0.25	0.5	CL200.7	ZINC	8.4	J	0.0637	0.0637	MG/KG
SS132H	AN878	21-Mar-01	0.25	0.5	CL200.7	ALUMINUM	7190		11.4853	11.4853	MG/KG
SS132H	AN878	21-Mar-01	0.25	0.5	CL200.7	ARSENIC	2.1		0.9093	0.9093	MG/KG
SS132H	AN878	21-Mar-01	0.25	0.5	CL200.7	BARIUM	6.3	J	0.0479	0.0479	MG/KG
SS132H	AN878	21-Mar-01	0.25	0.5	CL200.7	CALCIUM	55.3		10.7515	10.7515	MG/KG
SS132H	AN878	21-Mar-01	0.25	0.5	CL200.7	CHROMIUM, TOTAL	4.9		0.319	0.319	MG/KG
SS132H	AN878	21-Mar-01	0.25	0.5	CL200.7	COPPER	148	J	0.0957	0.0957	MG/KG
SS132H	AN878	21-Mar-01	0.25	0.5	CL200.7	IRON	6890	J	5.28	5.28	MG/KG
SS132H	AN878	21-Mar-01	0.25	0.5	CL200.7	LEAD	482	J	0.4147	0.4147	MG/KG
SS132H	AN878	21-Mar-01	0.25	0.5	CL200.7	MAGNESIUM	184		11.23	11.23	MG/KG
SS132H	AN878	21-Mar-01	0.25	0.5	CL200.7	MANGANESE	17	J	0.2871	0.2871	MG/KG
SS132H	AN878	21-Mar-01	0.25	0.5	CL200.7	NICKEL	1.3	J	0.2233	0.2233	MG/KG
SS132H	AN878	21-Mar-01	0.25	0.5	CL200.7	POTASSIUM	147		4.7855	4.7855	MG/KG
SS132H	AN878	21-Mar-01	0.25	0.5	CL200.7	SODIUM	312		44.8245	44.8245	MG/KG
SS132H	AN878	21-Mar-01	0.25	0.5	CL200.7	VANADIUM	12.7		0.319	0.319	MG/KG
SS132H	AN878	21-Mar-01	0.25	0.5	CL200.7	ZINC	14.6	J	0.0638	0.0638	MG/KG
SS132H	AN879	21-Mar-01	0.25	0.5	CL200.7	ALUMINUM	2880		11.8588	11.8588	MG/KG
SS132H	AN879	21-Mar-01	0.25	0.5	CL200.7	ARSENIC	1.3	J	0.9388	0.9388	MG/KG
SS132H	AN879	21-Mar-01	0.25	0.5	CL200.7	BARIUM	21.5	J	0.0494	0.0494	MG/KG
SS132H	AN879	21-Mar-01	0.25	0.5	CL200.7	CADMIUM	0.31	J	0.0988	0.0988	MG/KG
SS132H	AN879	21-Mar-01	0.25	0.5	CL200.7	CALCIUM	64.8		11.1011	11.1011	MG/KG
SS132H	AN879	21-Mar-01	0.25	0.5	CL200.7	CHROMIUM, TOTAL	2.7		0.3294	0.3294	MG/KG
SS132H	AN879	21-Mar-01		0.5	CL200.7	COBALT	0.34	J	0.2635	0.2635	MG/KG
SS132H	AN879	21-Mar-01		0.5	CL200.7	COPPER	145		0.0988	0.0988	MG/KG
SS132H	AN879	21-Mar-01		0.5	CL200.7	IRON	3370		5.4517	5.4517	MG/KG
SS132H	AN879	21-Mar-01		0.5	CL200.7	LEAD	37.9		0.4282	0.4282	MG/KG
SS132H	AN879	21-Mar-01		0.5	CL200.7	MAGNESIUM	176		11.5953		MG/KG

Table A.5 Small Arms Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEP	ΓΗ (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132H	AN879	21-Mar-01	0.25	0.5	CL200.7	MANGANESE	16.5	J	0.2965	0.2965	MG/KG
SS132H	AN879	21-Mar-01	0.25	0.5	CL200.7	NICKEL	0.88	J	0.2306	0.2306	MG/KG
SS132H	AN879	21-Mar-01	0.25	0.5	CL200.7	POTASSIUM	147		4.9412	4.9412	MG/KG
SS132H	AN879	21-Mar-01	0.25	0.5	CL200.7	SELENIUM	0.94	J	0.7576	0.7576	MG/KG
SS132H	AN879	21-Mar-01	0.25	0.5	CL200.7	SODIUM	281		46.2822	46.2822	MG/KG
SS132H	AN879	21-Mar-01	0.25	0.5	CL200.7	VANADIUM	6.9		0.3294	0.3294	MG/KG
SS132H	AN879	21-Mar-01	0.25	0.5	CL200.7	ZINC	12.7	J	0.0659	0.0659	MG/KG
SS132H	AN879	21-Mar-01	0.25	0.5	CL245.5	MERCURY	0.17		0.0548	0.0548	MG/KG
SS132H	AN880	21-Mar-01	0.25	0.5	CL200.7	ALUMINUM	4210		11.5252	11.5252	MG/KG
SS132H	AN880	21-Mar-01	0.25	0.5	CL200.7	ARSENIC	1.2	J	0.9124	0.9124	MG/KG
SS132H	AN880	21-Mar-01	0.25	0.5	CL200.7	BARIUM	13.4	J	0.048	0.048	MG/KG
SS132H	AN880	21-Mar-01	0.25	0.5	CL200.7	CADMIUM	0.098	J	0.096	0.096	MG/KG
SS132H	AN880	21-Mar-01	0.25	0.5	CL200.7	CALCIUM	87.6		10.7888	10.7888	MG/KG
SS132H	AN880	21-Mar-01	0.25	0.5	CL200.7	CHROMIUM, TOTAL	4		0.3201	0.3201	MG/KG
SS132H	AN880	21-Mar-01	0.25	0.5	CL200.7	COBALT	0.48	J	0.2561	0.2561	MG/KG
SS132H	AN880	21-Mar-01	0.25	0.5	CL200.7	COPPER	29.5	J	0.096	0.096	MG/KG
SS132H	AN880	21-Mar-01	0.25	0.5	CL200.7	IRON	4300	J	5.2984	5.2984	MG/KG
SS132H	AN880	21-Mar-01	0.25	0.5	CL200.7	LEAD	14.4	J	0.4162	0.4162	MG/KG
SS132H	AN880	21-Mar-01	0.25	0.5	CL200.7	MAGNESIUM	310		11.269	11.269	MG/KG
SS132H	AN880	21-Mar-01		0.5	CL200.7	MANGANESE	23.5	J	0.2881	0.2881	MG/KG
SS132H	AN880	21-Mar-01	0.25	0.5	CL200.7	NICKEL	1.9		0.2241	0.2241	MG/KG
SS132H	AN880	21-Mar-01	0.25	0.5	CL200.7	POTASSIUM	183		4.8022	4.8022	MG/KG
SS132H	AN880	21-Mar-01	0.25	0.5	CL200.7	SODIUM	348		44.9802	44.9802	MG/KG
SS132H	AN880	21-Mar-01	0.25	0.5	CL200.7	VANADIUM	7.7		0.3201	0.3201	MG/KG
SS132H	AN880	21-Mar-01	0.25	0.5	CL200.7	ZINC	14.2	J	0.064	0.064	MG/KG
SS132H	AN880	21-Mar-01	0.25	0.5	CL245.5	MERCURY	0.2		0.0548	0.0548	MG/KG
SS132H	AN881	21-Mar-01	0.5	1	CL200.7	ALUMINUM	5640		10.8932	10.8932	MG/KG
SS132H	AN881	21-Mar-01	0.5	1	CL200.7	ARSENIC	1.7	J	0.8624	0.8624	MG/KG
SS132H	AN881	21-Mar-01	0.5	1	CL200.7	BARIUM	28.1		0.0454	0.0454	MG/KG
SS132H	AN881	21-Mar-01	0.5	1	CL200.7	BERYLLIUM	0.11	J	0.0605	0.0605	MG/KG
SS132H	AN881	21-Mar-01	0.5	1	CL200.7	CADMIUM	0.4		0.0908	0.0908	MG/KG
SS132H	AN881	21-Mar-01	0.5	1	CL200.7	CALCIUM	85.9		10.1973	10.1973	MG/KG
SS132H	AN881	21-Mar-01	0.5	1	CL200.7	CHROMIUM, TOTAL	5		0.3026	0.3026	MG/KG
SS132H	AN881	21-Mar-01	0.5	1	CL200.7	COBALT	0.62		0.2421	0.2421	MG/KG
SS132H	AN881	21-Mar-01		1	CL200.7	COPPER	22.4		0.0908	0.0908	MG/KG
SS132H	AN881	21-Mar-01	0.5	1	CL200.7	IRON	5620		5.0079	5.0079	MG/KG
SS132H	AN881	21-Mar-01	0.5	1	CL200.7	LEAD	42.2		0.2572	0.2572	MG/KG
SS132H	AN881	21-Mar-01		1	CL200.7	MAGNESIUM	423		10.6512		MG/KG

Table A.5 Small Arms Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPTH (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132H	AN881	21-Mar-01	0.5 1	CL200.7	MANGANESE	26.4		0.2723	0.2723	MG/KG
SS132H	AN881	21-Mar-01	0.5 1	CL200.7	MOLYBDENUM	0.57	J	0.4841	0.4841	MG/KG
SS132H	AN881	21-Mar-01	0.5 1	CL200.7	NICKEL	2.1	J	0.2118	0.2118	MG/KG
SS132H	AN881	21-Mar-01	0.5 1	CL200.7	POTASSIUM	184		4.5389	4.5389	MG/KG
SS132H	AN881	21-Mar-01	0.5 1	CL200.7	VANADIUM	9.8		0.3026	0.3026	MG/KG
SS132H	AN881	21-Mar-01	0.5 1	CL200.7	ZINC	57.1	J	0.0605	0.0605	MG/KG
SS132H	AN882	21-Mar-01	0.5 1	CL200.7	ALUMINUM	7040		11.7446	11.7446	MG/KG
SS132H	AN882	21-Mar-01	0.5 1	CL200.7	ARSENIC	2.1	J	0.9298	0.9298	MG/KG
SS132H	AN882	21-Mar-01	0.5 1	CL200.7	BARIUM	11.6		0.0489	0.0489	MG/KG
SS132H	AN882	21-Mar-01	0.5 1	CL200.7	BERYLLIUM	0.19		0.0652	0.0652	MG/KG
SS132H	AN882	21-Mar-01	0.5 1	CL200.7	BORON	1.9		0.2121	0.2121	MG/KG
SS132H	AN882	21-Mar-01	0.5 1	CL200.7	CALCIUM	64		10.9942	10.9942	MG/KG
SS132H	AN882	21-Mar-01	0.5 1	CL200.7	CHROMIUM, TOTAL	7.1		0.3262	0.3262	MG/KG
SS132H	AN882	21-Mar-01	0.5 1	CL200.7	COBALT	0.9		0.261	0.261	MG/KG
SS132H	AN882	21-Mar-01	0.5 1	CL200.7	COPPER	3.2	J	0.0979	0.0979	MG/KG
SS132H	AN882	21-Mar-01	0.5 1	CL200.7	IRON	6920		5.3992	5.3992	MG/KG
SS132H	AN882	21-Mar-01	0.5 1	CL200.7	LEAD	7.8		0.2773	0.2773	MG/KG
SS132H	AN882	21-Mar-01	0.5 1	CL200.7	MAGNESIUM	607		11.4836	11.4836	MG/KG
SS132H	AN882	21-Mar-01	0.5 1	CL200.7	MANGANESE	33.5		0.2936	0.2936	MG/KG
SS132H	AN882	21-Mar-01	0.5 1	CL200.7	NICKEL	2.5	J	0.2284	0.2284	MG/KG
SS132H	AN882	21-Mar-01	0.5 1	CL200.7	POTASSIUM	260		4.8936	4.8936	MG/KG
SS132H	AN882	21-Mar-01	0.5 1	CL200.7	VANADIUM	12.4		0.3262	0.3262	MG/KG
SS132H	AN882	21-Mar-01	0.5 1	CL200.7	ZINC	13.3	J	0.0652	0.0652	MG/KG
SS132H	AN883	21-Mar-01	0.5 1	CL200.7	ALUMINUM	4820		12.7152	12.7152	MG/KG
SS132H	AN883	21-Mar-01	0.5 1	CL200.7	ARSENIC	2.1	J	1.0066	1.0066	MG/KG
SS132H	AN883	21-Mar-01	0.5 1	CL200.7	BARIUM	4.2		0.053	0.053	MG/KG
SS132H	AN883	21-Mar-01	0.5 1	CL200.7	CALCIUM	30.5		11.9029	11.9029	MG/KG
SS132H	AN883	21-Mar-01	0.5 1	CL200.7	CHROMIUM, TOTAL	3.5		0.3532	0.3532	MG/KG
SS132H	AN883	21-Mar-01	0.5 1	CL200.7	COPPER	33.9		0.106	0.106	MG/KG
SS132H	AN883	21-Mar-01	0.5 1	CL200.7	IRON	6270		5.8455	5.8455	MG/KG
SS132H	AN883	21-Mar-01	0.5 1	CL200.7	LEAD	11.7		0.3002	0.3002	MG/KG
SS132H	AN883	21-Mar-01	0.5 1	CL200.7	MAGNESIUM	132		12.4327	12.4327	MG/KG
SS132H	AN883	21-Mar-01	0.5 1	CL200.7	MANGANESE	14.6		0.3179	0.3179	MG/KG
SS132H	AN883	21-Mar-01	0.5 1	CL200.7	MOLYBDENUM	0.74	J	0.5651	0.5651	MG/KG
SS132H	AN883	21-Mar-01	0.5 1	CL200.7	POTASSIUM	106		5.298	5.298	MG/KG
SS132H	AN883	21-Mar-01	0.5 1	CL200.7	VANADIUM	11.3		0.3532	0.3532	MG/KG
SS132H	AN883	21-Mar-01	0.5 1	CL200.7	ZINC	12.4	J	0.0706	0.0706	MG/KG
SS132H	AN884	21-Mar-01	0.5 1	CL200.7	ALUMINUM	6170		12.7551	12.7551	MG/KG

Table A.5 Small Arms Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	TH (FT.)	TEST	ANALYTE	RESULT	QUALIFIER1	MDL	RL	UNITS
SS132H	AN884	21-Mar-01	0.5	1	CL200.7	ANTIMONY	1.1	J	0.8858	0.8858	MG/KG
SS132H	AN884	21-Mar-01	0.5	1	CL200.7	ARSENIC	2.2	J	1.0098	1.0098	MG/KG
SS132H	AN884	21-Mar-01	0.5	1	CL200.7	BARIUM	7.4		0.0531	0.0531	MG/KG
SS132H	AN884	21-Mar-01	0.5	1	CL200.7	CALCIUM	45		11.9402	11.9402	MG/KG
SS132H	AN884	21-Mar-01	0.5	1	CL200.7	CHROMIUM, TOTAL	4.4		0.3543	0.3543	MG/KG
SS132H	AN884	21-Mar-01	0.5	1	CL200.7	COPPER	152		0.1063	0.1063	MG/KG
SS132H	AN884	21-Mar-01	0.5	1	CL200.7	IRON	6810		5.8638	5.8638	MG/KG
SS132H	AN884	21-Mar-01	0.5	1	CL200.7	LEAD	620		0.3012	0.3012	MG/KG
SS132H	AN884	21-Mar-01	0.5	1	CL200.7	MAGNESIUM	196		12.4717	12.4717	MG/KG
SS132H	AN884	21-Mar-01	0.5	1	CL200.7	MANGANESE	35.4		0.3189	0.3189	MG/KG
SS132H	AN884	21-Mar-01	0.5	1	CL200.7	NICKEL	0.62	J	0.248	0.248	MG/KG
SS132H	AN884	21-Mar-01	0.5	1	CL200.7	POTASSIUM	130		5.3146	5.3146	MG/KG
SS132H	AN884	21-Mar-01	0.5	1	CL200.7	SELENIUM	0.31	J	0.2404	0.2404	MG/KG
SS132H	AN884	21-Mar-01	0.5	1	CL200.7	VANADIUM	12.7		0.3543	0.3543	MG/KG
SS132H	AN884	21-Mar-01	0.5	1	CL200.7	ZINC	15.9	J	0.0709	0.0709	MG/KG
SS132H	AN884	21-Mar-01	0.5	1	SW8270	BENZO(a)ANTHRACENE	110	J	100	360	UG/KG
SS132H	AN884	21-Mar-01	0.5	1	SW8270	CHRYSENE	140	J	110	360	UG/KG
SS132H	AN884	21-Mar-01	0.5	1	SW8270	FLUORANTHENE	270	J	130	360	UG/KG
SS132H	AN884	21-Mar-01	0.5	1	SW8270	PHENANTHRENE	160	J	100	360	UG/KG
SS132H	AN885	21-Mar-01	0.5	1	CL200.7	ALUMINUM	3450		12.9003	12.9003	MG/KG
SS132H	AN885	21-Mar-01	0.5	1	CL200.7	ARSENIC	1.2	J	1.0213	1.0213	MG/KG
SS132H	AN885	21-Mar-01	0.5	1	CL200.7	BARIUM	9.7		0.0538	0.0538	MG/KG
SS132H	AN885	21-Mar-01	0.5	1	CL200.7	CALCIUM	32.4		12.0761	12.0761	MG/KG
SS132H	AN885	21-Mar-01	0.5	1	CL200.7	CHROMIUM, TOTAL	3.1		0.3583	0.3583	MG/KG
SS132H	AN885	21-Mar-01	0.5	1	CL200.7	COBALT	0.47	J	0.2867	0.2867	MG/KG
SS132H	AN885	21-Mar-01	0.5	1	CL200.7	COPPER	2.3	J	0.1075	0.1075	MG/KG
SS132H	AN885	21-Mar-01	0.5	1	CL200.7	IRON	4010		5.9306	5.9306	MG/KG
SS132H	AN885	21-Mar-01	0.5	1	CL200.7	LEAD	7.4		0.3046	0.3046	MG/KG
SS132H	AN885	21-Mar-01	0.5	1	CL200.7	MAGNESIUM	178		12.6137	12.6137	MG/KG
SS132H	AN885	21-Mar-01	0.5	1	CL200.7	MANGANESE	12.3		0.3225	0.3225	MG/KG
SS132H	AN885	21-Mar-01	0.5	1	CL200.7	NICKEL	0.33	J	0.2508	0.2508	MG/KG
SS132H	AN885	21-Mar-01	0.5	1	CL200.7	SELENIUM	0.24	J	0.2375	0.2375	MG/KG
SS132H	AN885	21-Mar-01	0.5	1	CL200.7	VANADIUM	7.6		0.3583	0.3583	MG/KG
SS132H	AN885	21-Mar-01	0.5	1	CL200.7	ZINC	9.8	J	0.0717	0.0717	MG/KG
SS132H	AN885	21-Mar-01	0.5	1	CL245.5	MERCURY	6		0.28	0.28	MG/KG
SS132H	AN886	21-Mar-01	0.5	1	CL200.7	ALUMINUM	4140		12.0167	12.0167	MG/KG
SS132H	AN886	21-Mar-01	0.5	1	CL200.7	ARSENIC	2	J	0.9513	0.9513	MG/KG
SS132H	AN886	21-Mar-01	0.5	1	CL200.7	BARIUM	7.1		0.0501	0.0501	MG/KG

Table A.5 Small Arms Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEP	ΓΗ (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132H	AN886	21-Mar-01	0.5	1	CL200.7	CALCIUM	38.5		11.249	11.249	MG/KG
SS132H	AN886	21-Mar-01	0.5	1	CL200.7	CHROMIUM, TOTAL	3.7		0.3338	0.3338	MG/KG
SS132H	AN886	21-Mar-01	0.5	1	CL200.7	COBALT	0.44	J	0.267	0.267	MG/KG
SS132H	AN886	21-Mar-01	0.5	1	CL200.7	COPPER	23.5		0.1001	0.1001	MG/KG
SS132H	AN886	21-Mar-01	0.5	1	CL200.7	IRON	4530		5.5244	5.5244	MG/KG
SS132H	AN886	21-Mar-01	0.5	1	CL200.7	LEAD	69.9		0.2837	0.2837	MG/KG
SS132H	AN886	21-Mar-01	0.5	1	CL200.7	MAGNESIUM	276		11.7497	11.7497	MG/KG
SS132H	AN886	21-Mar-01	0.5	1	CL200.7	MANGANESE	17.2		0.3004	0.3004	MG/KG
SS132H	AN886	21-Mar-01	0.5	1	CL200.7	NICKEL	0.52	J	0.2337	0.2337	MG/KG
SS132H	AN886	21-Mar-01	0.5	1	CL200.7	POTASSIUM	126		5.007	5.007	MG/KG
SS132H	AN886	21-Mar-01	0.5	1	CL200.7	SELENIUM	0.29	J	0.2428	0.2428	MG/KG
SS132H	AN886	21-Mar-01	0.5	1	CL200.7	VANADIUM	8.7		0.3338	0.3338	MG/KG
SS132H	AN886	21-Mar-01	0.5	1	CL200.7	ZINC	7.8	J	0.0668	0.0668	MG/KG
SS132H	AN886	21-Mar-01	0.5	1	CL245.5	MERCURY	0.32		0.0555	0.0555	MG/KG
SS132J	AO150	27-Mar-01	0	0.25	CL200.7	ALUMINUM	4860		13.8817	13.8817	MG/KG
SS132J	AO150	27-Mar-01	0	0.25	CL200.7	ARSENIC	1.3	J	1.099	1.099	MG/KG
SS132J	AO150	27-Mar-01	0	0.25	CL200.7	BARIUM	4.9	J	0.0578	0.0578	MG/KG
SS132J	AO150	27-Mar-01	0	0.25	CL200.7	CALCIUM	31.4		12.9948	12.9948	MG/KG
SS132J	AO150	27-Mar-01	0	0.25	CL200.7	CHROMIUM, TOTAL	4.8		0.3856	0.3856	MG/KG
SS132J	AO150	27-Mar-01	0	0.25	CL200.7	COPPER	9.3	J	0.1157	0.1157	MG/KG
SS132J	AO150	27-Mar-01	0	0.25	CL200.7	IRON	4980		6.3817	6.3817	MG/KG
SS132J	AO150	27-Mar-01	0	0.25	CL200.7	LEAD	5.6		0.3278	0.3278	MG/KG
SS132J	AO150	27-Mar-01	0	0.25	CL200.7	MAGNESIUM	163		13.5732	13.5732	MG/KG
SS132J	AO150	27-Mar-01	0	0.25	CL200.7	MANGANESE	10.2		0.347	0.347	MG/KG
SS132J	AO150	27-Mar-01	0	0.25	CL200.7	NICKEL	0.92	J	0.2699	0.2699	MG/KG
SS132J	AO150	27-Mar-01	0	0.25	CL200.7	POTASSIUM	143		5.784	5.784	MG/KG
SS132J	AO150	27-Mar-01	0	0.25	CL200.7	SODIUM	150	J	54.177	54.177	MG/KG
SS132J	AO150	27-Mar-01	0	0.25	CL200.7	VANADIUM	9.6		0.3856	0.3856	MG/KG
SS132J	AO150	27-Mar-01	0	0.25	CL200.7	ZINC	3.3	J	0.0771	0.0771	MG/KG
SS132J	AO151	27-Mar-01	0	0.25	CL200.7	ALUMINUM	5620		14.3023	14.3023	MG/KG
SS132J	AO151	27-Mar-01	0	0.25	CL200.7	BARIUM	4.2	J	0.0596	0.0596	MG/KG
SS132J	AO151	27-Mar-01	0	0.25	CL200.7	BERYLLIUM	0.0795	J	0.0795	0.0795	MG/KG
SS132J	AO151	27-Mar-01	0	0.25	CL200.7	CALCIUM	27.7		13.3886	13.3886	MG/KG
SS132J	AO151	27-Mar-01	0	0.25	CL200.7	CHROMIUM, TOTAL	5.1		0.3973	0.3973	MG/KG
SS132J	AO151	27-Mar-01	0	0.25	CL200.7	COPPER	14.5	J	0.1192	0.1192	MG/KG
SS132J	AO151	27-Mar-01	0	0.25	CL200.7	IRON	5510		6.5751	6.5751	MG/KG
SS132J	AO151	27-Mar-01	0	0.25	CL200.7	LEAD	33.4		0.3377	0.3377	MG/KG
SS132J	AO151	27-Mar-01	0	0.25	CL200.7	MAGNESIUM	141		13.9845	13.9845	MG/KG

Table A.5 Small Arms Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEP1	TH (FT.)	TEST	ANALYTE	RESULT	QUALIFIER1	MDL	RL	UNITS
SS132J	AO151	27-Mar-01	0	0.25	CL200.7	MANGANESE	8.2		0.3576	0.3576	MG/KG
SS132J	AO151	27-Mar-01	0	0.25	CL200.7	NICKEL	1	J	0.2781	0.2781	MG/KG
SS132J	AO151	27-Mar-01	0	0.25	CL200.7	SODIUM	159	J	55.8188	55.8188	MG/KG
SS132J	AO151	27-Mar-01	0	0.25	CL200.7	VANADIUM	10.5		0.3973	0.3973	MG/KG
SS132J	AO151	27-Mar-01	0	0.25	CL200.7	ZINC	7.3	J	0.0795	0.0795	MG/KG
SS132J	AO152	27-Mar-01	0	0.25	CL200.7	ALUMINUM	3750		12.7392	12.7392	MG/KG
SS132J	AO152	27-Mar-01	0	0.25	CL200.7	BARIUM	2.8	J	0.0531	0.0531	MG/KG
SS132J	AO152	27-Mar-01	0	0.25	CL200.7	CALCIUM	30.2		11.9253	11.9253	MG/KG
SS132J	AO152	27-Mar-01	0	0.25	CL200.7	CHROMIUM, TOTAL	3.6		0.3539	0.3539	MG/KG
SS132J	AO152	27-Mar-01	0	0.25	CL200.7	COBALT	0.3	J	0.2831	0.2831	MG/KG
SS132J	AO152	27-Mar-01	0	0.25	CL200.7	COPPER	45.4	J	0.1062	0.1062	MG/KG
SS132J	AO152	27-Mar-01	0	0.25	CL200.7	IRON	4530		5.8565	5.8565	MG/KG
SS132J	AO152	27-Mar-01	0	0.25	CL200.7	LEAD	98.8		0.3008	0.3008	MG/KG
SS132J	AO152	27-Mar-01	0	0.25	CL200.7	MAGNESIUM	201		12.4561	12.4561	MG/KG
SS132J	AO152	27-Mar-01	0	0.25	CL200.7	MANGANESE	16.1		0.3185	0.3185	MG/KG
SS132J	AO152	27-Mar-01	0	0.25	CL200.7	NICKEL	1.2	J	0.2477	0.2477	MG/KG
SS132J	AO152	27-Mar-01	0	0.25	CL200.7	SODIUM	160	J	49.7182	49.7182	MG/KG
SS132J	AO152	27-Mar-01	0	0.25	CL200.7	VANADIUM	8.5		0.3539	0.3539	MG/KG
SS132J	AO152	27-Mar-01	0	0.25	CL200.7	ZINC	6		0.0708	0.0708	MG/KG
SS132J	AO152	27-Mar-01	0	0.25	CL245.5	MERCURY	0.078	J	0.0544	0.0544	MG/KG
SS132J	AO153	27-Mar-01	0	0.25	CL200.7	ALUMINUM	3870		12.9992	12.9992	MG/KG
SS132J	AO153	27-Mar-01	0	0.25	CL200.7	ARSENIC	1.1	J	1.0291	1.0291	MG/KG
SS132J	AO153	27-Mar-01	0	0.25	CL200.7	BARIUM	2.9	J	0.0542	0.0542	MG/KG
SS132J	AO153	27-Mar-01	0	0.25	CL200.7	CALCIUM	30.3		12.1687	12.1687	MG/KG
SS132J	AO153	27-Mar-01	0	0.25	CL200.7	CHROMIUM, TOTAL	4.3		0.3611	0.3611	MG/KG
SS132J	AO153	27-Mar-01	0	0.25	CL200.7	COPPER	22.8		0.1083	0.1083	MG/KG
SS132J	AO153	27-Mar-01	0	0.25	CL200.7	IRON	4750		5.976	5.976	MG/KG
SS132J	AO153	27-Mar-01	0	0.25	CL200.7	LEAD	35		0.3069	0.3069	MG/KG
SS132J	AO153	27-Mar-01	0	0.25	CL200.7	MAGNESIUM	118		12.7103	12.7103	MG/KG
SS132J	AO153	27-Mar-01	0	0.25	CL200.7	MANGANESE	11.3		0.325	0.325	MG/KG
SS132J	AO153	27-Mar-01	0	0.25	CL200.7	NICKEL	0.97	J	0.2528	0.2528	MG/KG
SS132J	AO153	27-Mar-01	0	0.25	CL200.7	SODIUM	112		50.733	50.733	MG/KG
SS132J	AO153	27-Mar-01	0	0.25	CL200.7	VANADIUM	11.9		0.3611	0.3611	MG/KG
SS132J	AO153	27-Mar-01	0	0.25	CL200.7	ZINC	5.4		0.0722	0.0722	MG/KG
SS132J	AO153	27-Mar-01	0	0.25	SW8270	FLUORANTHENE	160		120	360	UG/KG
SS132J	AO154	27-Mar-01	0	0.25	CL200.7	ALUMINUM	5750		12.8157	12.8157	MG/KG
SS132J	AO154	27-Mar-01	0	0.25	CL200.7	ANTIMONY	66.6		0.89	0.89	MG/KG
SS132J	AO154	27-Mar-01	0	0.25	CL200.7	ARSENIC	1.9		1.0146	1.0146	MG/KG

Table A.5 Small Arms Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEP	TH (FT.)	TEST	ANALYTE	RESULT	QUALIFIER1	MDL	RL	UNITS
SS132J	AO154	27-Mar-01	0	0.25	CL200.7	BARIUM	4.2	J	0.0534	0.0534	MG/KG
SS132J	AO154	27-Mar-01	0	0.25	CL200.7	CALCIUM	30.5		11.9969	11.9969	MG/KG
SS132J	AO154	27-Mar-01	0	0.25	CL200.7	CHROMIUM, TOTAL	5.2		0.356	0.356	MG/KG
SS132J	AO154	27-Mar-01	0	0.25	CL200.7	COPPER	41.4	J	0.1068	0.1068	MG/KG
SS132J	AO154	27-Mar-01	0	0.25	CL200.7	IRON	5190		5.8917	5.8917	MG/KG
SS132J	AO154	27-Mar-01	0	0.25	CL200.7	LEAD	11600		0.4628	0.4628	MG/KG
SS132J	AO154	27-Mar-01	0	0.25	CL200.7	MAGNESIUM	147		12.5309	12.5309	MG/KG
SS132J	AO154	27-Mar-01	0	0.25	CL200.7	MANGANESE	37.7		0.3204	0.3204	MG/KG
SS132J	AO154	27-Mar-01	0	0.25	CL200.7	NICKEL	1.5	J	0.2492	0.2492	MG/KG
SS132J	AO154	27-Mar-01	0	0.25	CL200.7	POTASSIUM	135		5.3399	5.3399	MG/KG
SS132J	AO154	27-Mar-01	0	0.25	CL200.7	SILVER	0.19	J	0.1424	0.1424	MG/KG
SS132J	AO154	27-Mar-01	0	0.25	CL200.7	SODIUM	147	J	50.0169	50.0169	MG/KG
SS132J	AO154	27-Mar-01	0	0.25	CL200.7	VANADIUM	10		0.356	0.356	MG/KG
SS132J	AO154	27-Mar-01	0	0.25	CL200.7	ZINC	6	J	0.0712	0.0712	MG/KG
SS132J	AO155	27-Mar-01	0.25	0.5	CL200.7	ALUMINUM	5580		13.2105	13.2105	MG/KG
SS132J	AO155	27-Mar-01	0.25	0.5	CL200.7	ARSENIC	2		1.0458	1.0458	MG/KG
SS132J	AO155	27-Mar-01	0.25	0.5	CL200.7	BARIUM	6.4	J	0.055	0.055	MG/KG
SS132J	AO155	27-Mar-01		0.5	CL200.7	BERYLLIUM	0.12	J	0.0734	0.0734	MG/KG
SS132J	AO155	27-Mar-01	0.25	0.5	CL200.7	CALCIUM	51.7		12.3665	12.3665	MG/KG
SS132J	AO155	27-Mar-01	0.25	0.5	CL200.7	CHROMIUM, TOTAL	5.7		0.367	0.367	MG/KG
SS132J	AO155	27-Mar-01	0.25	0.5	CL200.7	COPPER	11.8	J	0.1101	0.1101	MG/KG
SS132J	AO155	27-Mar-01	0.25	0.5	CL200.7	IRON	5610		6.0732	6.0732	MG/KG
SS132J	AO155	27-Mar-01	0.25	0.5	CL200.7	LEAD	11.9		0.3119	0.3119	MG/KG
SS132J	AO155	27-Mar-01	0.25	0.5	CL200.7	MAGNESIUM	231		12.917	12.917	MG/KG
SS132J	AO155	27-Mar-01	0.25	0.5	CL200.7	MANGANESE	14.1		0.3303	0.3303	MG/KG
SS132J	AO155	27-Mar-01	0.25	0.5	CL200.7	MOLYBDENUM	0.73	J	0.5871	0.5871	MG/KG
SS132J	AO155	27-Mar-01	0.25	0.5	CL200.7	NICKEL	1.5		0.2569	0.2569	MG/KG
SS132J	AO155	27-Mar-01	0.25	0.5	CL200.7	POTASSIUM	188		5.5044	5.5044	MG/KG
SS132J	AO155	27-Mar-01	0.25	0.5	CL200.7	SODIUM	321	J	51.5577	51.5577	MG/KG
SS132J	AO155	27-Mar-01	0.25	0.5	CL200.7	VANADIUM	11.3		0.367	0.367	MG/KG
SS132J	AO155	27-Mar-01	0.25	0.5	CL200.7	ZINC	4.6	J	0.0734	0.0734	MG/KG
SS132J	AO156	27-Mar-01	0.25	0.5	CL200.7	ALUMINUM	5250		13.0189	13.0189	MG/KG
SS132J	AO156	27-Mar-01	0.25	0.5	CL200.7	ARSENIC	1.4	J	1.0307	1.0307	MG/KG
SS132J	AO156	27-Mar-01		0.5	CL200.7	BARIUM	4.4	J	0.0542	0.0542	MG/KG
SS132J	AO156	27-Mar-01		0.5	CL200.7	CALCIUM	26.7		12.1872	12.1872	MG/KG
SS132J	AO156	27-Mar-01		0.5	CL200.7	CHROMIUM, TOTAL	4.6		0.3616	0.3616	MG/KG
SS132J	AO156	27-Mar-01		0.5	CL200.7	COPPER	13.5	J	0.1085	0.1085	MG/KG
SS132J	AO156	27-Mar-01		0.5	CL200.7	IRON	4960		5.9851	5.9851	MG/KG

Table A.5 Small Arms Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEP	ΓΗ (FT.)	TEST	ANALYTE	RESULT	QUALIFIER1	MDL	RL	UNITS
SS132J	AO156	27-Mar-01		0.5	CL200.7	LEAD	39.5		0.3074	0.3074	MG/KG
SS132J	AO156	27-Mar-01	0.25	0.5	CL200.7	MAGNESIUM	136		12.7296	12.7296	MG/KG
SS132J	AO156	27-Mar-01	0.25	0.5	CL200.7	MANGANESE	7.7		0.3255	0.3255	MG/KG
SS132J	AO156	27-Mar-01	0.25	0.5	CL200.7	NICKEL	1.5	J	0.2531	0.2531	MG/KG
SS132J	AO156	27-Mar-01	0.25	0.5	CL200.7	SODIUM	185	J	50.8101	50.8101	MG/KG
SS132J	AO156	27-Mar-01	0.25	0.5	CL200.7	VANADIUM	9.3		0.3616	0.3616	MG/KG
SS132J	AO156	27-Mar-01	0.25	0.5	CL200.7	ZINC	6.7	J	0.0723	0.0723	MG/KG
SS132J	AO157	27-Mar-01	0.25	0.5	CL200.7	ALUMINUM	5580		13.0064	13.0064	MG/KG
SS132J	AO157	27-Mar-01	0.25	0.5	CL200.7	ARSENIC	2		1.0297	1.0297	MG/KG
SS132J	AO157	27-Mar-01	0.25	0.5	CL200.7	BARIUM	4.7	J	0.0542	0.0542	MG/KG
SS132J	AO157	27-Mar-01	0.25	0.5	CL200.7	BERYLLIUM	0.09	J	0.0723	0.0723	MG/KG
SS132J	AO157	27-Mar-01	0.25	0.5	CL200.7	CALCIUM	26.1		12.1754	12.1754	MG/KG
SS132J	AO157	27-Mar-01	0.25	0.5	CL200.7	CHROMIUM, TOTAL	5.2		0.3613	0.3613	MG/KG
SS132J	AO157	27-Mar-01	0.25	0.5	CL200.7	COPPER	29	J	0.1084	0.1084	MG/KG
SS132J	AO157	27-Mar-01	0.25	0.5	CL200.7	IRON	5680		5.9793	5.9793	MG/KG
SS132J	AO157	27-Mar-01	0.25	0.5	CL200.7	LEAD	55.3		0.3071	0.3071	MG/KG
SS132J	AO157	27-Mar-01	0.25	0.5	CL200.7	MAGNESIUM	135		12.7173	12.7173	MG/KG
SS132J	AO157	27-Mar-01	0.25	0.5	CL200.7	MANGANESE	9.7		0.3252	0.3252	MG/KG
SS132J	AO157	27-Mar-01	0.25	0.5	CL200.7	NICKEL	1	J	0.2529	0.2529	MG/KG
SS132J	AO157	27-Mar-01	0.25	0.5	CL200.7	POTASSIUM	131		5.4193	5.4193	MG/KG
SS132J	AO157	27-Mar-01	0.25	0.5	CL200.7	SODIUM	151	J	50.761	50.761	MG/KG
SS132J	AO157	27-Mar-01	0.25	0.5	CL200.7	VANADIUM	10.4		0.3613	0.3613	MG/KG
SS132J	AO157	27-Mar-01	0.25	0.5	CL200.7	ZINC	3.8	J	0.0723	0.0723	MG/KG
SS132J	AO157	27-Mar-01	0.25	0.5	CL245.5	MERCURY	0.062	J	0.0546	0.0546	MG/KG
SS132J	AO158	27-Mar-01	0.25	0.5	CL200.7	ALUMINUM	4490		12.2265	12.2265	MG/KG
SS132J	AO158	27-Mar-01	0.25	0.5	CL200.7	BARIUM	4.2	J	0.0509	0.0509	MG/KG
SS132J	AO158	27-Mar-01	0.25	0.5	CL200.7	CALCIUM	31.7		11.4454	11.4454	MG/KG
SS132J	AO158	27-Mar-01	0.25	0.5	CL200.7	CHROMIUM, TOTAL	4.2		0.3396	0.3396	MG/KG
SS132J	AO158	27-Mar-01	0.25	0.5	CL200.7	COPPER	13.9	J	0.1019	0.1019	MG/KG
SS132J	AO158	27-Mar-01	0.25	0.5	CL200.7	IRON	3980		5.6208	5.6208	MG/KG
SS132J	AO158	27-Mar-01	0.25	0.5	CL200.7	LEAD	24.5		0.2887	0.2887	MG/KG
SS132J	AO158	27-Mar-01	0.25	0.5	CL200.7	MAGNESIUM	150		11.9548	11.9548	MG/KG
SS132J	AO158	27-Mar-01	0.25	0.5	CL200.7	MANGANESE	9.8		0.3057	0.3057	MG/KG
SS132J	AO158	27-Mar-01	0.25	0.5	CL200.7	NICKEL	1.2	J	0.2377	0.2377	MG/KG
SS132J	AO158	27-Mar-01	0.25	0.5	CL200.7	POTASSIUM	130		5.0944	5.0944	MG/KG
SS132J	AO158	27-Mar-01	0.25	0.5	CL200.7	SODIUM	180	J	47.7173	47.7173	MG/KG
SS132J	AO158	27-Mar-01	0.25	0.5	CL200.7	VANADIUM	7.7		0.3396	0.3396	MG/KG
SS132J	AO158	27-Mar-01	0.25	0.5	CL200.7	ZINC	3.5	J	0.0679	0.0679	MG/KG

Table A.5 Small Arms Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEP	ΓΗ (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132J	AO159	27-Mar-01	0.25	0.5	CL200.7	ALUMINUM	5770		11.8835	11.8835	MG/KG
SS132J	AO159	27-Mar-01	0.25	0.5	CL200.7	ARSENIC	1.8		0.9408	0.9408	MG/KG
SS132J	AO159	27-Mar-01	0.25	0.5	CL200.7	BARIUM	6.3	J	0.0495	0.0495	MG/KG
SS132J	AO159	27-Mar-01	0.25	0.5	CL200.7	BERYLLIUM	0.12	J	0.066	0.066	MG/KG
SS132J	AO159	27-Mar-01	0.25	0.5	CL200.7	CALCIUM	40		11.1243	11.1243	MG/KG
SS132J	AO159	27-Mar-01	0.25	0.5	CL200.7	CHROMIUM, TOTAL	5.5		0.3301	0.3301	MG/KG
SS132J	AO159	27-Mar-01	0.25	0.5	CL200.7	COPPER	5.4	J	0.099	0.099	MG/KG
SS132J	AO159	27-Mar-01	0.25	0.5	CL200.7	IRON	5200		5.4631	5.4631	MG/KG
SS132J	AO159	27-Mar-01	0.25	0.5	CL200.7	LEAD	9.7		0.2806	0.2806	MG/KG
SS132J	AO159	27-Mar-01	0.25	0.5	CL200.7	MAGNESIUM	255		11.6195	11.6195	MG/KG
SS132J	AO159	27-Mar-01	0.25	0.5	CL200.7	MANGANESE	15.4		0.2971	0.2971	MG/KG
SS132J	AO159	27-Mar-01	0.25	0.5	CL200.7	NICKEL	1.7	J	0.2311	0.2311	MG/KG
SS132J	AO159	27-Mar-01	0.25	0.5	CL200.7	POTASSIUM	163		4.9515	4.9515	MG/KG
SS132J	AO159	27-Mar-01	0.25	0.5	CL200.7	SODIUM	204	J	46.3788	46.3788	MG/KG
SS132J	AO159	27-Mar-01	0.25	0.5	CL200.7	VANADIUM	9.2		0.3301	0.3301	MG/KG
SS132J	AO159	27-Mar-01	0.25	0.5	CL200.7	ZINC	5.8	J	0.066	0.066	MG/KG
SS132J	AO160	27-Mar-01	0.25	0.5	CL200.7	ALUMINUM	6300		12.322	12.322	MG/KG
SS132J	AO160	27-Mar-01		0.5	CL200.7	ARSENIC	1.8		0.9755	0.9755	MG/KG
SS132J	AO160	27-Mar-01	0.25	0.5	CL200.7	BARIUM	6.9	J	0.0513	0.0513	MG/KG
SS132J	AO160	27-Mar-01		0.5	CL200.7	BERYLLIUM	0.11		0.0685	0.0685	MG/KG
SS132J	AO160	27-Mar-01	0.25	0.5	CL200.7	CALCIUM	41.9		11.5348	11.5348	MG/KG
SS132J	AO160	27-Mar-01	0.25	0.5	CL200.7	CHROMIUM, TOTAL	6		0.3423	0.3423	MG/KG
SS132J	AO160	27-Mar-01	0.25	0.5	CL200.7	COPPER	3.6	J	0.1027	0.1027	MG/KG
SS132J	AO160	27-Mar-01	0.25	0.5	CL200.7	IRON	5860		5.6647	5.6647	MG/KG
SS132J	AO160	27-Mar-01	0.25	0.5	CL200.7	LEAD	6.8		0.2909	0.2909	MG/KG
SS132J	AO160	27-Mar-01	0.25	0.5	CL200.7	MAGNESIUM	262		12.0482	12.0482	MG/KG
SS132J	AO160	27-Mar-01	0.25	0.5	CL200.7	MANGANESE	16.8		0.3081	0.3081	MG/KG
SS132J	AO160	27-Mar-01	0.25	0.5	CL200.7	NICKEL	1.6	J	0.2396	0.2396	MG/KG
SS132J	AO160	27-Mar-01	0.25	0.5	CL200.7	POTASSIUM	166		5.1342	5.1342	MG/KG
SS132J	AO160	27-Mar-01	0.25	0.5	CL200.7	SODIUM	208		48.0901	48.0901	MG/KG
SS132J	AO160	27-Mar-01	0.25	0.5	CL200.7	VANADIUM	10.5		0.3423	0.3423	MG/KG
SS132J	AO160	27-Mar-01		0.5	CL200.7	ZINC	5.6		0.0685	0.0685	MG/KG
SS132J	AO161	27-Mar-01	0.5	1	CL200.7	ALUMINUM	6900		12.6283	12.6283	MG/KG
SS132J	AO161	27-Mar-01	0.5	1	CL200.7	ARSENIC	2.1		0.9997	0.9997	MG/KG
SS132J	AO161	27-Mar-01		1	CL200.7	BARIUM	10.4	J	0.0526	0.0526	MG/KG
SS132J	AO161	27-Mar-01	0.5	1	CL200.7	BERYLLIUM	0.16		0.0702	0.0702	MG/KG
SS132J	AO161	27-Mar-01	0.5	1	CL200.7	CALCIUM	42.6		11.8215	11.8215	MG/KG
SS132J	AO161	27-Mar-01		1	CL200.7	CHROMIUM, TOTAL	7		0.3508	0.3508	MG/KG

Table A.5 Small Arms Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEP	ΓΗ (FT.)	TEST	ANALYTE	RESULT	QUALIFIER1	MDL	RL	UNITS
SS132J	AO161	27-Mar-01	0.5	1	CL200.7	COPPER	2.1	J	0.1052	0.1052	MG/KG
SS132J	AO161	27-Mar-01	0.5	1	CL200.7	IRON	7400		5.8055	5.8055	MG/KG
SS132J	AO161	27-Mar-01	0.5	1	CL200.7	LEAD	4		0.2982	0.2982	MG/KG
SS132J	AO161	27-Mar-01	0.5	1	CL200.7	MAGNESIUM	360		12.3476	12.3476	MG/KG
SS132J	AO161	27-Mar-01	0.5	1	CL200.7	MANGANESE	21.3		0.3157	0.3157	MG/KG
SS132J	AO161	27-Mar-01	0.5	1	CL200.7	NICKEL	2	J	0.2455	0.2455	MG/KG
SS132J	AO161	27-Mar-01	0.5	1	CL200.7	POTASSIUM	205		5.2618	5.2618	MG/KG
SS132J	AO161	27-Mar-01	0.5	1	CL200.7	SODIUM	322	J	49.2853	49.2853	MG/KG
SS132J	AO161	27-Mar-01	0.5	1	CL200.7	VANADIUM	14.1		0.3508	0.3508	MG/KG
SS132J	AO161	27-Mar-01	0.5	1	CL200.7	ZINC	6.8	J	0.0702	0.0702	MG/KG
SS132J	AO162	27-Mar-01	0.5	1	CL200.7	ALUMINUM	6260		12.5727	12.5727	MG/KG
SS132J	AO162	27-Mar-01	0.5	1	CL200.7	ARSENIC	2.2		0.9953	0.9953	MG/KG
SS132J	AO162	27-Mar-01	0.5	1	CL200.7	BARIUM	8.7	J	0.0524	0.0524	MG/KG
SS132J	AO162	27-Mar-01	0.5	1	CL200.7	BERYLLIUM	0.13	J	0.0698	0.0698	MG/KG
SS132J	AO162	27-Mar-01	0.5	1	CL200.7	CALCIUM	39.3		11.7694	11.7694	MG/KG
SS132J	AO162	27-Mar-01	0.5	1	CL200.7	CHROMIUM, TOTAL	6.2		0.3492	0.3492	MG/KG
SS132J	AO162	27-Mar-01	0.5	1	CL200.7	COPPER	0.7	J	0.1048	0.1048	MG/KG
SS132J	AO162	27-Mar-01	0.5	1	CL200.7	IRON	6600		5.7799	5.7799	MG/KG
SS132J	AO162	27-Mar-01	0.5	1	CL200.7	LEAD	3.6		0.2969	0.2969	MG/KG
SS132J	AO162	27-Mar-01	0.5	1	CL200.7	MAGNESIUM	293		12.2933	12.2933	MG/KG
SS132J	AO162	27-Mar-01	0.5	1	CL200.7	MANGANESE	15.9		0.3143	0.3143	MG/KG
SS132J	AO162	27-Mar-01	0.5	1	CL200.7	NICKEL	1.7	J	0.2445	0.2445	MG/KG
SS132J	AO162	27-Mar-01	0.5	1	CL200.7	POTASSIUM	199		5.2386	5.2386	MG/KG
SS132J	AO162	27-Mar-01	0.5	1	CL200.7	SODIUM	281	J	49.0684	49.0684	MG/KG
SS132J	AO162	27-Mar-01	0.5	1	CL200.7	VANADIUM	11.9		0.3492	0.3492	MG/KG
SS132J	AO162	27-Mar-01	0.5	1	CL200.7	ZINC	7.9	J	0.0698	0.0698	MG/KG
SS132J	AO163	27-Mar-01	0.5	1	CL200.7	ALUMINUM	5250		11.7814	11.7814	MG/KG
SS132J	AO163	27-Mar-01	0.5	1	CL200.7	ARSENIC	1.7		0.9327	0.9327	MG/KG
SS132J	AO163	27-Mar-01	0.5	1	CL200.7	BARIUM	6.7	J	0.0491	0.0491	MG/KG
SS132J	AO163	27-Mar-01	0.5	1	CL200.7	BERYLLIUM	0.092	J	0.0655	0.0655	MG/KG
SS132J	AO163	27-Mar-01	0.5	1	CL200.7	CALCIUM	25.7		11.0287	11.0287	MG/KG
SS132J	AO163	27-Mar-01	0.5	1	CL200.7	CHROMIUM, TOTAL	5.2		0.3273	0.3273	MG/KG
SS132J	AO163	27-Mar-01	0.5	1	CL200.7	COPPER	12.1	J	0.0982	0.0982	MG/KG
SS132J	AO163	27-Mar-01	0.5	1	CL200.7	IRON	5460		5.4162	5.4162	MG/KG
SS132J	AO163	27-Mar-01	0.5	1	CL200.7	LEAD	3		0.2782	0.2782	MG/KG
SS132J	AO163	27-Mar-01	0.5	1	CL200.7	MAGNESIUM	161		11.5195	11.5195	MG/KG
SS132J	AO163	27-Mar-01	0.5	1	CL200.7	MANGANESE	10.4	İ	0.2945	0.2945	MG/KG
SS132J	AO163	27-Mar-01		1	CL200.7	NICKEL	1.1	J	0.2291	0.2291	MG/KG

Table A.5 Small Arms Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEP	ΓΗ (FT.)	TEST	ANALYTE	RESULT	QUALIFIER1	MDL	RL	UNITS
SS132J	AO163	27-Mar-01	0.5	1	CL200.7	POTASSIUM	136		4.9089	4.9089	MG/KG
SS132J	AO163	27-Mar-01	0.5	1	CL200.7	SODIUM	189	J	45.98	45.98	MG/KG
SS132J	AO163	27-Mar-01	0.5	1	CL200.7	VANADIUM	9.8		0.3273	0.3273	MG/KG
SS132J	AO163	27-Mar-01	0.5	1	CL200.7	ZINC	4	J	0.0655	0.0655	MG/KG
SS132J	AO164	27-Mar-01	0.5	1	CL200.7	ALUMINUM	4430		12.8296	12.8296	MG/KG
SS132J	AO164	27-Mar-01	0.5	1	CL200.7	BARIUM	7.9	J	0.0535	0.0535	MG/KG
SS132J	AO164	27-Mar-01	0.5	1	CL200.7	CALCIUM	23.1		12.01	12.01	MG/KG
SS132J	AO164	27-Mar-01	0.5	1	CL200.7	CHROMIUM, TOTAL	4.2		0.3564	0.3564	MG/KG
SS132J	AO164	27-Mar-01	0.5	1	CL200.7	COPPER	2.5	J	0.1069	0.1069	MG/KG
SS132J	AO164	27-Mar-01	0.5	1	CL200.7	IRON	4260		5.8981	5.8981	MG/KG
SS132J	AO164	27-Mar-01	0.5	1	CL200.7	LEAD	3.8		0.3029	0.3029	MG/KG
SS132J	AO164	27-Mar-01	0.5	1	CL200.7	MAGNESIUM	235		12.5445	12.5445	MG/KG
SS132J	AO164	27-Mar-01	0.5	1	CL200.7	MANGANESE	14.9		0.3207	0.3207	MG/KG
SS132J	AO164	27-Mar-01	0.5	1	CL200.7	NICKEL	1.2	J	0.2495	0.2495	MG/KG
SS132J	AO164	27-Mar-01	0.5	1	CL200.7	POTASSIUM	130		5.3457	5.3457	MG/KG
SS132J	AO164	27-Mar-01	0.5	1	CL200.7	SODIUM	115	J	50.0713	50.0713	MG/KG
SS132J	AO164	27-Mar-01	0.5	1	CL200.7	VANADIUM	7.1		0.3564	0.3564	MG/KG
SS132J	AO164	27-Mar-01	0.5	1	CL200.7	ZINC	5.6	J	0.0713	0.0713	MG/KG
SS132J	AO165	27-Mar-01	0.5	1	CL200.7	ALUMINUM	5180		12.0679	12.0679	MG/KG
SS132J	AO165	27-Mar-01	0.5	1	CL200.7	ARSENIC	1.4	J	0.9554	0.9554	MG/KG
SS132J	AO165	27-Mar-01	0.5	1	CL200.7	BARIUM	7	J	0.0503	0.0503	MG/KG
SS132J	AO165	27-Mar-01	0.5	1	CL200.7	BERYLLIUM	0.11	J	0.067	0.067	MG/KG
SS132J	AO165	27-Mar-01	0.5	1	CL200.7	CALCIUM	50.2		11.2969	11.2969	MG/KG
SS132J	AO165	27-Mar-01	0.5	1	CL200.7	CHROMIUM, TOTAL	5.3		0.3352	0.3352	MG/KG
SS132J	AO165	27-Mar-01	0.5	1	CL200.7	COPPER	2.7	J	0.1006	0.1006	MG/KG
SS132J	AO165	27-Mar-01	0.5	1	CL200.7	IRON	4810		5.5479	5.5479	MG/KG
SS132J	AO165	27-Mar-01	0.5	1	CL200.7	LEAD	6.2		0.2849	0.2849	MG/KG
SS132J	AO165	27-Mar-01	0.5	1	CL200.7	MAGNESIUM	330		11.7997	11.7997	MG/KG
SS132J	AO165	27-Mar-01	0.5	1	CL200.7	MANGANESE	20.8		0.3017	0.3017	MG/KG
SS132J	AO165	27-Mar-01	0.5	1	CL200.7	NICKEL	1.9	J	0.2347	0.2347	MG/KG
SS132J	AO165	27-Mar-01	0.5	1	CL200.7	POTASSIUM	172		5.0283	5.0283	MG/KG
SS132J	AO165	27-Mar-01	0.5	1	CL200.7	SODIUM	224	J	47.0983	47.0983	MG/KG
SS132J	AO165	27-Mar-01	0.5	1	CL200.7	VANADIUM	8.2		0.3352	0.3352	MG/KG
SS132J	AO165	27-Mar-01	0.5	1	CL200.7	ZINC	6.6	J	0.067	0.067	MG/KG
SS132J	AO166	27-Mar-01	0.5	1	CL200.7	ALUMINUM	4660	-	11.9743	11.9743	MG/KG
SS132J	AO166	27-Mar-01	0.5	1	CL200.7	BARIUM	6.5	J	0.0499	0.0499	MG/KG
SS132J	AO166	27-Mar-01	0.5	1	CL200.7	BERYLLIUM	0.093		0.0665	0.0665	MG/KG
SS132J	AO166	27-Mar-01		1	CL200.7	CALCIUM	54	-	11.2092		MG/KG

Table A.5 Small Arms Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEP	ΓΗ (FT.)	TEST	ANALYTE	RESULT	QUALIFIER1	MDL	RL	UNITS
SS132J	AO166	27-Mar-01	0.5	1	CL200.7	CHROMIUM, TOTAL	4.7		0.3326	0.3326	MG/KG
SS132J	AO166	27-Mar-01	0.5	1	CL200.7	COPPER	2.2	J	0.0998	0.0998	MG/KG
SS132J	AO166	27-Mar-01	0.5	1	CL200.7	IRON	4380		5.5048	5.5048	MG/KG
SS132J	AO166	27-Mar-01	0.5	1	CL200.7	LEAD	5.1		0.2827	0.2827	MG/KG
SS132J	AO166	27-Mar-01	0.5	1	CL200.7	MAGNESIUM	357		11.7082	11.7082	MG/KG
SS132J	AO166	27-Mar-01	0.5	1	CL200.7	MANGANESE	25.8		0.2994	0.2994	MG/KG
SS132J	AO166	27-Mar-01	0.5	1	CL200.7	NICKEL	1.5	J	0.2328	0.2328	MG/KG
SS132J	AO166	27-Mar-01	0.5	1	CL200.7	POTASSIUM	159		4.9893	4.9893	MG/KG
SS132J	AO166	27-Mar-01	0.5	1	CL200.7	SODIUM	204	J	46.7329	46.7329	MG/KG
SS132J	AO166	27-Mar-01	0.5	1	CL200.7	VANADIUM	7		0.3326	0.3326	MG/KG
SS132J	AO166	27-Mar-01	0.5	1	CL200.7	ZINC	7.1	J	0.0665	0.0665	MG/KG
SS132R	AO201	28-Mar-01	0	0.25	SW8330	2-AMINO-4,6-DINITROTOLUENE	330		5.6	120	UG/KG
SS132R	AO201	28-Mar-01	0	0.25	SW8330	4-AMINO-2,6-DINITROTOLUENE	130	J	15	120	UG/KG
SS132R	AO206	28-Mar-01	0.25	0.5	SW8330	2-AMINO-4,6-DINITROTOLUENE	400		5.6	120	UG/KG
SS132R	AO206	28-Mar-01	0.25	0.5	SW8330	4-AMINO-2,6-DINITROTOLUENE	180		15	120	UG/KG
SS132R	AO207	28-Mar-01	0.25	0.5	SW8330	2-AMINO-4,6-DINITROTOLUENE	340		5.6	120	UG/KG
SS132R	AO207	28-Mar-01	0.25	0.5	SW8330	4-AMINO-2,6-DINITROTOLUENE	170		15	120	UG/KG
SS132R	AO216	28-Mar-01	0	0.25	CL200.7	ALUMINUM	3450	J	10.8878	10.8878	MG/KG
SS132R	AO216	28-Mar-01	0	0.25	CL200.7	ARSENIC	1.2	J	0.862	0.862	MG/KG
SS132R	AO216	28-Mar-01	0	0.25	CL200.7	BARIUM	2.8		0.0454	0.0454	MG/KG
SS132R	AO216	28-Mar-01	0	0.25	CL200.7	BORON	1.1		0.1966	0.1966	MG/KG
SS132R	AO216	28-Mar-01	0	0.25	CL200.7	CHROMIUM, TOTAL	3.9	J	0.3024	0.3024	MG/KG
SS132R	AO216	28-Mar-01	0	0.25	CL200.7	COBALT	0.54		0.242	0.242	MG/KG
SS132R	AO216	28-Mar-01	0	0.25	CL200.7	COPPER	25.4	J	0.0907	0.0907	MG/KG
SS132R	AO216	28-Mar-01	0	0.25	CL200.7	IRON	4800		5.0054	5.0054	MG/KG
SS132R	AO216	28-Mar-01	0	0.25	CL200.7	LEAD	48		0.3932	0.3932	MG/KG
SS132R	AO216	28-Mar-01	0	0.25	CL200.7	MAGNESIUM	293		10.6459	10.6459	MG/KG
SS132R	AO216	28-Mar-01	0	0.25	CL200.7	MANGANESE	21.8		0.2722	0.2722	MG/KG
SS132R	AO216	28-Mar-01	0	0.25	CL200.7	MOLYBDENUM	0.57	J	0.4839	0.4839	MG/KG
SS132R	AO216	28-Mar-01	0	0.25	CL200.7	NICKEL	1.6	J	0.2117	0.2117	MG/KG
SS132R	AO216	28-Mar-01	0	0.25	CL200.7	POTASSIUM	175		4.5366	4.5366	MG/KG
SS132R	AO216	28-Mar-01	0	0.25	CL200.7	SODIUM	183	J	42.4927	42.4927	MG/KG
SS132R	AO216	28-Mar-01	0	0.25	CL200.7	VANADIUM	7.9		0.3024	0.3024	MG/KG
SS132R	AO216	28-Mar-01	0	0.25	CL200.7	ZINC	5.4	J	0.0605	0.0605	MG/KG
SS132R	AO216	28-Mar-01	0	0.25	CL245.5	MERCURY	0.065		0.0533	0.0533	MG/KG
SS132R	AO217	28-Mar-01	0	0.25	CL200.7	ALUMINUM	4380		11.164	11.164	MG/KG
SS132R	AO217	28-Mar-01	0	0.25	CL200.7	ARSENIC	0.92		0.8838	0.8838	MG/KG
SS132R	AO217	28-Mar-01	0	0.25	CL200.7	BARIUM	3.9		0.0465	0.0465	MG/KG

Table A.5 Small Arms Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEP	ГН (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132R	AO217	28-Mar-01	0	0.25	CL200.7	BORON	1.1		0.2016	0.2016	MG/KG
SS132R	AO217	28-Mar-01	0	0.25	CL200.7	CHROMIUM, TOTAL	4.5	J	0.3101	0.3101	MG/KG
SS132R	AO217	28-Mar-01	0	0.25	CL200.7	COBALT	0.65		0.2481	0.2481	MG/KG
SS132R	AO217	28-Mar-01	0	0.25	CL200.7	COPPER	96.6	J	0.093	0.093	MG/KG
SS132R	AO217	28-Mar-01	0	0.25	CL200.7	IRON	5630	J	5.1323	5.1323	MG/KG
SS132R	AO217	28-Mar-01	0	0.25	CL200.7	LEAD	211		0.4031	0.4031	MG/KG
SS132R	AO217	28-Mar-01	0	0.25	CL200.7	MAGNESIUM	260		10.9159	10.9159	MG/KG
SS132R	AO217	28-Mar-01	0	0.25	CL200.7	MANGANESE	32.1		0.2791	0.2791	MG/KG
SS132R	AO217	28-Mar-01	0	0.25	CL200.7	NICKEL	1.5	J	0.2171	0.2171	MG/KG
SS132R	AO217	28-Mar-01	0	0.25	CL200.7	POTASSIUM	161		4.6517	4.6517	MG/KG
SS132R	AO217	28-Mar-01	0	0.25	CL200.7	SODIUM	270	J	43.5706	43.5706	MG/KG
SS132R	AO217	28-Mar-01	0	0.25	CL200.7	VANADIUM	9.7		0.3101	0.3101	MG/KG
SS132R	AO217	28-Mar-01	0	0.25	CL200.7	ZINC	8.5	J	0.062	0.062	MG/KG
SS132R	AO217	28-Mar-01	0	0.25	CL245.5	MERCURY	0.29		0.0554	0.0554	MG/KG
SS132R	AO218	28-Mar-01	0	0.25	CL200.7	ALUMINUM	3730	J	11.2851	11.2851	MG/KG
SS132R	AO218	28-Mar-01	0	0.25	CL200.7	ARSENIC	1.1	J	0.8934	0.8934	MG/KG
SS132R	AO218	28-Mar-01	0	0.25	CL200.7	BARIUM	3.8		0.047	0.047	MG/KG
SS132R	AO218	28-Mar-01	0	0.25	CL200.7	BORON	1		0.2038	0.2038	MG/KG
SS132R	AO218	28-Mar-01	0	0.25	CL200.7	CHROMIUM, TOTAL	4.4	J	0.3135	0.3135	MG/KG
SS132R	AO218	28-Mar-01	0	0.25	CL200.7	COBALT	0.35	J	0.2508	0.2508	MG/KG
SS132R	AO218	28-Mar-01	0	0.25	CL200.7	COPPER	58.5	J	0.094	0.094	MG/KG
SS132R	AO218	28-Mar-01	0	0.25	CL200.7	IRON	5580	J	5.188	5.188	MG/KG
SS132R	AO218	28-Mar-01	0	0.25	CL200.7	LEAD	140		0.4075	0.4075	MG/KG
SS132R	AO218	28-Mar-01	0	0.25	CL200.7	MAGNESIUM	281		11.0343	11.0343	MG/KG
SS132R	AO218	28-Mar-01	0	0.25	CL200.7	MANGANESE	26.5		0.2821	0.2821	MG/KG
SS132R	AO218	28-Mar-01	0	0.25	CL200.7	NICKEL	1.7	J	0.2194	0.2194	MG/KG
SS132R	AO218	28-Mar-01	0	0.25	CL200.7	POTASSIUM	175		4.7021	4.7021	MG/KG
SS132R	AO218	28-Mar-01	0	0.25	CL200.7	SODIUM	302	J	44.0432	44.0432	MG/KG
SS132R	AO218	28-Mar-01	0	0.25	CL200.7	VANADIUM	10		0.3135	0.3135	MG/KG
SS132R	AO218	28-Mar-01	0	0.25	CL200.7	ZINC	11.1	J	0.0627	0.0627	MG/KG
SS132R	AO218	28-Mar-01	0	0.25	CL245.5	MERCURY	0.098	J	0.0545	0.0545	MG/KG
SS132R	AO219	28-Mar-01	0	0.25	CL200.7	ALUMINUM	3040	J	11.1493	11.1493	MG/KG
SS132R	AO219	28-Mar-01	0	0.25	CL200.7	ARSENIC	1.3	J	0.8827	0.8827	MG/KG
SS132R	AO219	28-Mar-01	0	0.25	CL200.7	BARIUM	2.6		0.0465	0.0465	MG/KG
SS132R	AO219	28-Mar-01	0	0.25	CL200.7	BORON	1		0.2013	0.2013	MG/KG
SS132R	AO219	28-Mar-01	0	0.25	CL200.7	CALCIUM	131		10.437	10.437	MG/KG
SS132R	AO219	28-Mar-01	0	0.25	CL200.7	CHROMIUM, TOTAL	4	J	0.3097	0.3097	MG/KG
SS132R	AO219	28-Mar-01	0	0.25	CL200.7	COBALT	0.5		0.2478	0.2478	MG/KG

Table A.5 Small Arms Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPTH (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132R	AO219	28-Mar-01	0 0.25	CL200.7	COPPER	19.8		0.0929	0.0929	MG/KG
SS132R	AO219	28-Mar-01	0 0.25	CL200.7	IRON	4980	J	5.1256	5.1256	MG/KG
SS132R	AO219	28-Mar-01	0 0.25	CL200.7	LEAD	46.6		0.4026	0.4026	MG/KG
SS132R	AO219	28-Mar-01	0 0.25	CL200.7	MAGNESIUM	348		10.9015	10.9015	MG/KG
SS132R	AO219	28-Mar-01	0 0.25	CL200.7	MANGANESE	31.4		0.2787	0.2787	MG/KG
SS132R	AO219	28-Mar-01	0 0.25	CL200.7	MOLYBDENUM	0.66	J	0.4955	0.4955	MG/KG
SS132R	AO219	28-Mar-01	0 0.25	CL200.7	NICKEL	1.4	J	0.2168	0.2168	MG/KG
SS132R	AO219	28-Mar-01	0 0.25	CL200.7	POTASSIUM	193		4.6455	4.6455	MG/KG
SS132R	AO219	28-Mar-01	0 0.25	CL200.7	SODIUM	247	J	43.5133	43.5133	MG/KG
SS132R	AO219	28-Mar-01	0 0.25	CL200.7	VANADIUM	11.8		0.3097	0.3097	MG/KG
SS132R	AO219	28-Mar-01	0 0.25	CL200.7	ZINC	7.8	J	0.0619	0.0619	MG/KG
SS132R	AO220	28-Mar-01	0 0.25	CL200.7	ALUMINUM	4800	J	12.0474	12.0474	MG/KG
SS132R	AO220	28-Mar-01	0 0.25	CL200.7	BARIUM	4		0.0502	0.0502	MG/KG
SS132R	AO220	28-Mar-01	0 0.25	CL200.7	BORON	0.82		0.2175	0.2175	MG/KG
SS132R	AO220	28-Mar-01	0 0.25	CL200.7	CHROMIUM, TOTAL	4.6	J	0.3346	0.3346	MG/KG
SS132R	AO220	28-Mar-01	0 0.25	CL200.7	COBALT	0.31	J	0.2677	0.2677	MG/KG
SS132R	AO220	28-Mar-01	0 0.25	CL200.7	COPPER	46.2	J	0.1004	0.1004	MG/KG
SS132R	AO220	28-Mar-01	0 0.25	CL200.7	IRON	5940	J	5.5385	5.5385	MG/KG
SS132R	AO220	28-Mar-01	0 0.25	CL200.7	LEAD	66.6		0.435	0.435	MG/KG
SS132R	AO220	28-Mar-01	0 0.25	CL200.7	MAGNESIUM	211		11.7797	11.7797	MG/KG
SS132R	AO220	28-Mar-01	0 0.25	CL200.7	MANGANESE	16.4		0.3012	0.3012	MG/KG
SS132R	AO220	28-Mar-01	0 0.25	CL200.7	NICKEL	1.7	J	0.2343	0.2343	MG/KG
SS132R	AO220	28-Mar-01	0 0.25	CL200.7	POTASSIUM	168		5.0197	5.0197	MG/KG
SS132R	AO220	28-Mar-01	0 0.25	CL200.7	SODIUM	296	J	47.0183	47.0183	MG/KG
SS132R	AO220	28-Mar-01	0 0.25	CL200.7	VANADIUM	12.8		0.3346	0.3346	MG/KG
SS132R	AO220	28-Mar-01	0 0.25	CL200.7	ZINC	6.4	J	0.0669	0.0669	MG/KG
SS132R	AO221	28-Mar-01	0.25 0.5	CL200.7	ALUMINUM	4190	J	11.5311	11.5311	MG/KG
SS132R	AO221	28-Mar-01	0.25 0.5	CL200.7	ARSENIC	1.8	J	0.9129	0.9129	MG/KG
SS132R	AO221	28-Mar-01	0.25 0.5	CL200.7	BARIUM	3.6		0.048	0.048	MG/KG
SS132R	AO221	28-Mar-01	0.25 0.5	CL200.7	BORON	1.1		0.2082	0.2082	MG/KG
SS132R	AO221	28-Mar-01	0.25 0.5	CL200.7	CHROMIUM, TOTAL	4.3	J	0.3203	0.3203	MG/KG
SS132R	AO221	28-Mar-01	0.25 0.5	CL200.7	COBALT	0.76		0.2562	0.2562	MG/KG
SS132R	AO221	28-Mar-01	0.25 0.5	CL200.7	COPPER	31.7	J	0.0961	0.0961	MG/KG
SS132R	AO221	28-Mar-01	0.25 0.5	CL200.7	IRON	5950	J	5.3011	5.3011	MG/KG
SS132R	AO221	28-Mar-01	0.25 0.5	CL200.7	LEAD	51.4		0.4164	0.4164	MG/KG
SS132R	AO221	28-Mar-01	0.25 0.5	CL200.7	MAGNESIUM	319		11.2748	11.2748	MG/KG
SS132R	AO221	28-Mar-01	0.25 0.5	CL200.7	MANGANESE	28.1		0.2883	0.2883	MG/KG
SS132R	AO221	28-Mar-01	0.25 0.5	CL200.7	MOLYBDENUM	0.73	J	0.5125	0.5125	MG/KG

Table A.5 Small Arms Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEP	ΓΗ (FT.)	TEST	ANALYTE	RESULT	QUALIFIER1	MDL	RL	UNITS
SS132R	AO221	28-Mar-01	0.25	0.5	CL200.7	NICKEL	2	J	0.2242	0.2242	MG/KG
SS132R	AO221	28-Mar-01	0.25	0.5	CL200.7	POTASSIUM	194		4.8046	4.8046	MG/KG
SS132R	AO221	28-Mar-01	0.25	0.5	CL200.7	SODIUM	253	J	45.0032	45.0032	MG/KG
SS132R	AO221	28-Mar-01	0.25	0.5	CL200.7	VANADIUM	9.4		0.3203	0.3203	MG/KG
SS132R	AO221	28-Mar-01	0.25	0.5	CL200.7	ZINC	6.3	J	0.0641	0.0641	MG/KG
SS132R	AO221	28-Mar-01	0.25	0.5	CL245.5	MERCURY	0.063	J	0.0561	0.0561	MG/KG
SS132R	AO222	28-Mar-01	0.25	0.5	CL200.7	ALUMINUM	5310	J	10.9394	10.9394	MG/KG
SS132R	AO222	28-Mar-01	0.25	0.5	CL200.7	ARSENIC	1.3	J	0.866	0.866	MG/KG
SS132R	AO222	28-Mar-01	0.25	0.5	CL200.7	BARIUM	12.3		0.0456	0.0456	MG/KG
SS132R	AO222	28-Mar-01	0.25	0.5	CL200.7	BORON	0.93		0.1975	0.1975	MG/KG
SS132R	AO222	28-Mar-01	0.25	0.5	CL200.7	CHROMIUM, TOTAL	5.4	J	0.3039	0.3039	MG/KG
SS132R	AO222	28-Mar-01	0.25	0.5	CL200.7	COBALT	0.77		0.2431	0.2431	MG/KG
SS132R	AO222	28-Mar-01	0.25	0.5	CL200.7	COPPER	134	J	0.0912	0.0912	MG/KG
SS132R	AO222	28-Mar-01	0.25	0.5	CL200.7	IRON	9040	J	5.0291	5.0291	MG/KG
SS132R	AO222	28-Mar-01	0.25	0.5	CL200.7	LEAD	400		0.395	0.395	MG/KG
SS132R	AO222	28-Mar-01	0.25	0.5	CL200.7	MAGNESIUM	315		10.6963	10.6963	MG/KG
SS132R	AO222	28-Mar-01	0.25	0.5	CL200.7	MANGANESE	75		0.2735	0.2735	MG/KG
SS132R	AO222	28-Mar-01	0.25	0.5	CL200.7	MOLYBDENUM	0.67	J	0.4862	0.4862	MG/KG
SS132R	AO222	28-Mar-01	0.25	0.5	CL200.7	NICKEL	2.1	J	0.2127	0.2127	MG/KG
SS132R	AO222	28-Mar-01	0.25	0.5	CL200.7	POTASSIUM	196		4.5581	4.5581	MG/KG
SS132R	AO222	28-Mar-01	0.25	0.5	CL200.7	SODIUM	274	J	42.6941	42.6941	MG/KG
SS132R	AO222	28-Mar-01	0.25	0.5	CL200.7	VANADIUM	8.8		0.3039	0.3039	MG/KG
SS132R	AO222	28-Mar-01	0.25	0.5	CL200.7	ZINC	24.5	J	0.0608	0.0608	MG/KG
SS132R	AO222	28-Mar-01	0.25	0.5	CL245.5	MERCURY	0.38		0.0539	0.0539	MG/KG
SS132R	AO223	28-Mar-01	0.25	0.5	CL200.7	ALUMINUM	5230	J	11.6448	11.6448	MG/KG
SS132R	AO223	28-Mar-01	0.25	0.5	CL200.7	ARSENIC	1.5	J	0.9219	0.9219	MG/KG
SS132R	AO223	28-Mar-01	0.25	0.5	CL200.7	BARIUM	3.9		0.0485	0.0485	MG/KG
SS132R	AO223	28-Mar-01	0.25	0.5	CL200.7	BORON	1		0.2103	0.2103	MG/KG
SS132R	AO223	28-Mar-01	0.25	0.5	CL200.7	CHROMIUM, TOTAL	7	J	0.3235	0.3235	MG/KG
SS132R	AO223	28-Mar-01	0.25	0.5	CL200.7	COBALT	0.61		0.2588	0.2588	MG/KG
SS132R	AO223	28-Mar-01	0.25	0.5	CL200.7	COPPER	75.8	J	0.097	0.097	MG/KG
SS132R	AO223	28-Mar-01	0.25	0.5	CL200.7	IRON	7070	J	5.3534	5.3534	MG/KG
SS132R	AO223	28-Mar-01	0.25	0.5	CL200.7	LEAD	135		0.4205	0.4205	MG/KG
SS132R	AO223	28-Mar-01	0.25	0.5	CL200.7	MAGNESIUM	619		11.3861	11.3861	MG/KG
SS132R	AO223	28-Mar-01	0.25	0.5	CL200.7	MANGANESE	33.9		0.2911	0.2911	MG/KG
SS132R	AO223	28-Mar-01		0.5	CL200.7	NICKEL	2.7	J	0.2264	0.2264	MG/KG
SS132R	AO223	28-Mar-01		0.5	CL200.7	POTASSIUM	138		4.852	4.852	MG/KG
SS132R	AO223	28-Mar-01		0.5	CL200.7	SODIUM	211	J	45.4472		MG/KG

Table A.5 Small Arms Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEP	ΓΗ (FT.)	TEST	ANALYTE	RESULT	QUALIFIER1	MDL	RL	UNITS
SS132R	AO223	28-Mar-01	0.25	0.5	CL200.7	VANADIUM	11.8		0.3235	0.3235	MG/KG
SS132R	AO223	28-Mar-01	0.25	0.5	CL200.7	ZINC	8.8	J	0.0647	0.0647	MG/KG
SS132R	AO223	28-Mar-01	0.25	0.5	CL245.5	MERCURY	0.09	J	0.0546	0.0546	MG/KG
SS132R	AO224	28-Mar-01	0.25	0.5	CL200.7	ALUMINUM	4900	J	11.8351	11.8351	MG/KG
SS132R	AO224	28-Mar-01	0.25	0.5	CL200.7	ARSENIC	2	J	0.9369	0.9369	MG/KG
SS132R	AO224	28-Mar-01	0.25	0.5	CL200.7	BARIUM	3.7		0.0493	0.0493	MG/KG
SS132R	AO224	28-Mar-01	0.25	0.5	CL200.7	BERYLLIUM	0.14		0.0658	0.0658	MG/KG
SS132R	AO224	28-Mar-01	0.25	0.5	CL200.7	BORON	1.4		0.2137	0.2137	MG/KG
SS132R	AO224	28-Mar-01	0.25	0.5	CL200.7	CALCIUM	50.6		11.079	11.079	MG/KG
SS132R	AO224	28-Mar-01	0.25	0.5	CL200.7	CHROMIUM, TOTAL	5.6	J	0.3288	0.3288	MG/KG
SS132R	AO224	28-Mar-01	0.25	0.5	CL200.7	COBALT	0.97		0.263	0.263	MG/KG
SS132R	AO224	28-Mar-01	0.25	0.5	CL200.7	COPPER	33.2	J	0.0986	0.0986	MG/KG
SS132R	AO224	28-Mar-01	0.25	0.5	CL200.7	IRON	6800	J	5.4409	5.4409	MG/KG
SS132R	AO224	28-Mar-01	0.25	0.5	CL200.7	LEAD	62.1		0.4274	0.4274	MG/KG
SS132R	AO224	28-Mar-01	0.25	0.5	CL200.7	MAGNESIUM	420		11.5721	11.5721	MG/KG
SS132R	AO224	28-Mar-01	0.25	0.5	CL200.7	MANGANESE	25.8		0.2959	0.2959	MG/KG
SS132R	AO224	28-Mar-01	0.25	0.5	CL200.7	NICKEL	2.3	J	0.2301	0.2301	MG/KG
SS132R	AO224	28-Mar-01	0.25	0.5	CL200.7	POTASSIUM	221		4.9313	4.9313	MG/KG
SS132R	AO224	28-Mar-01	0.25	0.5	CL200.7	SODIUM	255	J	46.1897	46.1897	MG/KG
SS132R	AO224	28-Mar-01	0.25	0.5	CL200.7	VANADIUM	10.6		0.3288	0.3288	MG/KG
SS132R	AO224	28-Mar-01	0.25	0.5	CL200.7	ZINC	7.9	J	0.0658	0.0658	MG/KG
SS132R	AO225	28-Mar-01	0.25	0.5	CL200.7	ALUMINUM	6690	J	12.5198	12.5198	MG/KG
SS132R	AO225	28-Mar-01	0.25	0.5	CL200.7	BARIUM	6.3		0.0522	0.0522	MG/KG
SS132R	AO225	28-Mar-01	0.25	0.5	CL200.7	BERYLLIUM	0.17		0.0696	0.0696	MG/KG
SS132R	AO225	28-Mar-01	0.25	0.5	CL200.7	BORON	0.84		0.2261	0.2261	MG/KG
SS132R	AO225	28-Mar-01	0.25	0.5	CL200.7	CALCIUM	22.4		11.7199	11.7199	MG/KG
SS132R	AO225	28-Mar-01	0.25	0.5	CL200.7	CHROMIUM, TOTAL	4.4	J	0.3478	0.3478	MG/KG
SS132R	AO225	28-Mar-01	0.25	0.5	CL200.7	COPPER	25.9	J	0.1043	0.1043	MG/KG
SS132R	AO225	28-Mar-01	0.25	0.5	CL200.7	IRON	6950	J	5.7556	5.7556	MG/KG
SS132R	AO225	28-Mar-01	0.25	0.5	CL200.7	LEAD	26.7		0.4521	0.4521	MG/KG
SS132R	AO225	28-Mar-01	0.25	0.5	CL200.7	MAGNESIUM	123		12.2416	12.2416	MG/KG
SS132R	AO225	28-Mar-01	0.25	0.5	CL200.7	MANGANESE	7.5		0.313	0.313	MG/KG
SS132R	AO225	28-Mar-01	0.25	0.5	CL200.7	MOLYBDENUM	0.77	J	0.5564	0.5564	MG/KG
SS132R	AO225	28-Mar-01	0.25	0.5	CL200.7	NICKEL	1.8	J	0.2434	0.2434	MG/KG
SS132R	AO225	28-Mar-01	0.25	0.5	CL200.7	POTASSIUM	120		5.2166	5.2166	MG/KG
SS132R	AO225	28-Mar-01	0.25	0.5	CL200.7	SODIUM	209	J	48.8619	48.8619	MG/KG
SS132R	AO225	28-Mar-01	0.25	0.5	CL200.7	VANADIUM	12		0.3478	0.3478	MG/KG
SS132R	AO225	28-Mar-01	0.25	0.5	CL200.7	ZINC	10.8	J	0.0696	0.0696	MG/KG

Table A.5 Small Arms Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEP	TH (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132R	AO226	28-Mar-01	0.5	1	CL200.7	ALUMINUM	3710	J	11.396	11.396	MG/KG
SS132R	AO226	28-Mar-01	0.5	1	CL200.7	BARIUM	3.6		0.0475	0.0475	MG/KG
SS132R	AO226	28-Mar-01	0.5	1	CL200.7	BERYLLIUM	0.17		0.0633	0.0633	MG/KG
SS132R	AO226	28-Mar-01	0.5	1	CL200.7	BORON	0.79		0.2058	0.2058	MG/KG
SS132R	AO226	28-Mar-01	0.5	1	CL200.7	CALCIUM	45.4		10.6679	10.6679	MG/KG
SS132R	AO226	28-Mar-01	0.5	1	CL200.7	CHROMIUM, TOTAL	3.7	J	0.3166	0.3166	MG/KG
SS132R	AO226	28-Mar-01	0.5	1	CL200.7	COBALT	0.65		0.2532	0.2532	MG/KG
SS132R	AO226	28-Mar-01	0.5	1	CL200.7	COPPER	31.5	J	0.095	0.095	MG/KG
SS132R	AO226	28-Mar-01	0.5	1	CL200.7	IRON	4940	J	5.239	5.239	MG/KG
SS132R	AO226	28-Mar-01	0.5	1	CL200.7	LEAD	47.8		0.4115	0.4115	MG/KG
SS132R	AO226	28-Mar-01	0.5	1	CL200.7	MAGNESIUM	307		11.1428	11.1428	MG/KG
SS132R	AO226	28-Mar-01	0.5	1	CL200.7	MANGANESE	24.8		0.2849	0.2849	MG/KG
SS132R	AO226	28-Mar-01	0.5	1	CL200.7	NICKEL	1.7	J	0.2216	0.2216	MG/KG
SS132R	AO226	28-Mar-01	0.5	1	CL200.7	POTASSIUM	167		4.7483	4.7483	MG/KG
SS132R	AO226	28-Mar-01	0.5	1	CL200.7	SODIUM	231	J	44.4761	44.4761	MG/KG
SS132R	AO226	28-Mar-01	0.5	1	CL200.7	VANADIUM	7.8		0.3166	0.3166	MG/KG
SS132R	AO226	28-Mar-01	0.5	1	CL200.7	ZINC	6.7	J	0.0633	0.0633	MG/KG
SS132R	AO226	28-Mar-01	0.5	1	CL245.5	MERCURY	0.058	J	0.0534	0.0534	MG/KG
SS132R	AO227	28-Mar-01	0.5	1	CL200.7	ALUMINUM	4290	J	10.6328	10.6328	MG/KG
SS132R	AO227	28-Mar-01	0.5	1	CL200.7	ARSENIC	1.3	J	0.8418	0.8418	MG/KG
SS132R	AO227	28-Mar-01	0.5	1	CL200.7	BARIUM	9.9		0.0443	0.0443	MG/KG
SS132R	AO227	28-Mar-01	0.5	1	CL200.7	BERYLLIUM	0.16		0.0591	0.0591	MG/KG
SS132R	AO227	28-Mar-01	0.5	1	CL200.7	BORON	0.94		0.192	0.192	MG/KG
SS132R	AO227	28-Mar-01	0.5	1	CL200.7	CALCIUM	31.3		9.9535	9.9535	MG/KG
SS132R	AO227	28-Mar-01	0.5	1	CL200.7	CHROMIUM, TOTAL	4.5	J	0.2954	0.2954	MG/KG
SS132R	AO227	28-Mar-01	0.5	1	CL200.7	COBALT	0.6		0.2363	0.2363	MG/KG
SS132R	AO227	28-Mar-01	0.5	1	CL200.7	COPPER	28.5	J	0.0886	0.0886	MG/KG
SS132R	AO227	28-Mar-01	0.5	1	CL200.7	IRON	4910	J	4.8881	4.8881	MG/KG
SS132R	AO227	28-Mar-01	0.5	1	CL200.7	LEAD	23.3		0.384	0.384	MG/KG
SS132R	AO227	28-Mar-01	0.5	1	CL200.7	MAGNESIUM	311		10.3965	10.3965	MG/KG
SS132R	AO227	28-Mar-01	0.5	1	CL200.7	MANGANESE	23.2		0.2658	0.2658	MG/KG
SS132R	AO227	28-Mar-01	0.5	1	CL200.7	NICKEL	2.1	J	0.2067	0.2067	MG/KG
SS132R	AO227	28-Mar-01	0.5	1	CL200.7	POTASSIUM	165		4.4303	4.4303	MG/KG
SS132R	AO227	28-Mar-01	0.5	1	CL200.7	SODIUM	204	J	41.4974	41.4974	MG/KG
SS132R	AO227	28-Mar-01	0.5	1	CL200.7	VANADIUM	8.2		0.2954	0.2954	MG/KG
SS132R	AO227	28-Mar-01	0.5	1	CL200.7	ZINC	14	J	0.0591	0.0591	MG/KG
SS132R	AO227	28-Mar-01	0.5	1	CL245.5	MERCURY	0.12		0.0535	0.0535	MG/KG
SS132R	AO228	28-Mar-01	0.5	1	CL200.7	ALUMINUM	3750	J	11.3545	11.3545	MG/KG

Table A.5 Small Arms Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEP	ΓΗ (FT.)	TEST	ANALYTE	RESULT	QUALIFIER1	MDL	RL	UNITS
SS132R	AO228	28-Mar-01	0.5	1	CL200.7	ARSENIC	1	J	0.8989	0.8989	MG/KG
SS132R	AO228	28-Mar-01	0.5	1	CL200.7	BARIUM	3.4		0.0473	0.0473	MG/KG
SS132R	AO228	28-Mar-01	0.5	1	CL200.7	BERYLLIUM	0.14		0.0631	0.0631	MG/KG
SS132R	AO228	28-Mar-01	0.5	1	CL200.7	BORON	1		0.205	0.205	MG/KG
SS132R	AO228	28-Mar-01	0.5	1	CL200.7	CALCIUM	45		10.6291	10.6291	MG/KG
SS132R	AO228	28-Mar-01	0.5	1	CL200.7	CHROMIUM, TOTAL	3.6	J	0.3154	0.3154	MG/KG
SS132R	AO228	28-Mar-01	0.5	1	CL200.7	COBALT	0.35	J	0.2523	0.2523	MG/KG
SS132R	AO228	28-Mar-01	0.5	1	CL200.7	COPPER	68.4	J	0.0946	0.0946	MG/KG
SS132R	AO228	28-Mar-01	0.5	1	CL200.7	IRON	4700	J	5.2199	5.2199	MG/KG
SS132R	AO228	28-Mar-01	0.5	1	CL200.7	LEAD	165		0.41	0.41	MG/KG
SS132R	AO228	28-Mar-01	0.5	1	CL200.7	MAGNESIUM	221		11.1022	11.1022	MG/KG
SS132R	AO228	28-Mar-01	0.5	1	CL200.7	MANGANESE	19.8		0.2839	0.2839	MG/KG
SS132R	AO228	28-Mar-01	0.5	1	CL200.7	MOLYBDENUM	0.68	J	0.5046	0.5046	MG/KG
SS132R	AO228	28-Mar-01	0.5	1	CL200.7	NICKEL	1	J	0.2208	0.2208	MG/KG
SS132R	AO228	28-Mar-01	0.5	1	CL200.7	POTASSIUM	167		4.731	4.731	MG/KG
SS132R	AO228	28-Mar-01	0.5	1	CL200.7	SODIUM	216	J	44.3141	44.3141	MG/KG
SS132R	AO228	28-Mar-01	0.5	1	CL200.7	VANADIUM	7.8		0.3154	0.3154	MG/KG
SS132R	AO228	28-Mar-01	0.5	1	CL200.7	ZINC	6.2	J	0.0631	0.0631	MG/KG
SS132R	AO229	28-Mar-01	0.5	1	CL200.7	ALUMINUM	5190	J	11.156	11.156	MG/KG
SS132R	AO229	28-Mar-01	0.5	1	CL200.7	ARSENIC	1.7	J	0.8832	0.8832	MG/KG
SS132R	AO229	28-Mar-01	0.5	1	CL200.7	BARIUM	5.1		0.0465	0.0465	MG/KG
SS132R	AO229	28-Mar-01	0.5	1	CL200.7	BERYLLIUM	0.19		0.062	0.062	MG/KG
SS132R	AO229	28-Mar-01	0.5	1	CL200.7	BORON	1.5		0.2014	0.2014	MG/KG
SS132R	AO229	28-Mar-01	0.5	1	CL200.7	CALCIUM	56.4		10.4433	10.4433	MG/KG
SS132R	AO229	28-Mar-01	0.5	1	CL200.7	CHROMIUM, TOTAL	6.1	J	0.3099	0.3099	MG/KG
SS132R	AO229	28-Mar-01	0.5	1	CL200.7	COBALT	1		0.2479	0.2479	MG/KG
SS132R	AO229	28-Mar-01	0.5	1	CL200.7	COPPER	30.2	J	0.093	0.093	MG/KG
SS132R	AO229	28-Mar-01	0.5	1	CL200.7	IRON	6520	J	5.1287	5.1287	MG/KG
SS132R	AO229	28-Mar-01	0.5	1	CL200.7	LEAD	65.7		0.4029	0.4029	MG/KG
SS132R	AO229	28-Mar-01	0.5	1	CL200.7	MAGNESIUM	643		10.9081	10.9081	MG/KG
SS132R	AO229	28-Mar-01	0.5	1	CL200.7	MANGANESE	35.5		0.2789	0.2789	MG/KG
SS132R	AO229	28-Mar-01	0.5	1	CL200.7	NICKEL	3	J	0.2169	0.2169	MG/KG
SS132R	AO229	28-Mar-01	0.5	1	CL200.7	POTASSIUM	292		4.6484	4.6484	MG/KG
SS132R	AO229	28-Mar-01	0.5	1	CL200.7	SELENIUM	1.9	J	1.6079	1.6079	MG/KG
SS132R	AO229	28-Mar-01	0.5	1	CL200.7	SODIUM	453	J	43.5396	43.5396	MG/KG
SS132R	AO229	28-Mar-01	0.5	1	CL200.7	VANADIUM	9.8		0.3099	0.3099	MG/KG
SS132R	AO229	28-Mar-01	0.5	1	CL200.7	ZINC	10.1	J	0.062	0.062	MG/KG
SS132R	AO229	28-Mar-01	0.5	1	CL245.5	MERCURY	0.064	J	0.055	0.055	MG/KG

Table A.5 Small Arms Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEP	ΓΗ (FT.)	TEST	ANALYTE	RESULT	QUALIFIER1	MDL	RL	UNITS
SS132R	AO230	28-Mar-01	0.5	1	CL200.7	ALUMINUM	1890	J	11.1721	11.1721	MG/KG
SS132R	AO230	28-Mar-01	0.5	1	CL200.7	BARIUM	3.9		0.0466	0.0466	MG/KG
SS132R	AO230	28-Mar-01	0.5	1	CL200.7	BERYLLIUM	0.12	J	0.0621	0.0621	MG/KG
SS132R	AO230	28-Mar-01	0.5	1	CL200.7	BORON	0.52		0.2017	0.2017	MG/KG
SS132R	AO230	28-Mar-01	0.5	1	CL200.7	CALCIUM	50		10.4584	10.4584	MG/KG
SS132R	AO230	28-Mar-01	0.5	1	CL200.7	CHROMIUM, TOTAL	1.8	J	0.3103	0.3103	MG/KG
SS132R	AO230	28-Mar-01	0.5	1	CL200.7	COBALT	0.75		0.2483	0.2483	MG/KG
SS132R	AO230	28-Mar-01	0.5	1	CL200.7	COPPER	1.9	J	0.0931	0.0931	MG/KG
SS132R	AO230	28-Mar-01	0.5	1	CL200.7	IRON	2630	J	5.1361	5.1361	MG/KG
SS132R	AO230	28-Mar-01	0.5	1	CL200.7	LEAD	3.2		0.2638	0.2638	MG/KG
SS132R	AO230	28-Mar-01	0.5	1	CL200.7	MAGNESIUM	178		10.9239	10.9239	MG/KG
SS132R	AO230	28-Mar-01	0.5	1	CL200.7	MANGANESE	34.7		0.2793	0.2793	MG/KG
SS132R	AO230	28-Mar-01	0.5	1	CL200.7	MOLYBDENUM	0.61	J	0.4965	0.4965	MG/KG
SS132R	AO230	28-Mar-01	0.5	1	CL200.7	NICKEL	1.2	J	0.2172	0.2172	MG/KG
SS132R	AO230	28-Mar-01	0.5	1	CL200.7	POTASSIUM	143		4.6551	4.6551	MG/KG
SS132R	AO230	28-Mar-01	0.5	1	CL200.7	SODIUM	95.4	J	43.6024	43.6024	MG/KG
SS132R	AO230	28-Mar-01	0.5	1	CL200.7	VANADIUM	4.6		0.3103	0.3103	MG/KG
SS132R	AO230	28-Mar-01	0.5	1	CL200.7	ZINC	5.6	J	0.0621	0.0621	MG/KG
SS132R	AO231	28-Mar-01	0.5	1	CL200.7	ALUMINUM	1400	J	11.2755	11.2755	MG/KG
SS132R	AO231	28-Mar-01	0.5	1	CL200.7	BARIUM	3.5		0.047	0.047	MG/KG
SS132R	AO231	28-Mar-01	0.5	1	CL200.7	BERYLLIUM	0.1	J	0.0626	0.0626	MG/KG
SS132R	AO231	28-Mar-01	0.5	1	CL200.7	BORON	0.79		0.2036	0.2036	MG/KG
SS132R	AO231	28-Mar-01	0.5	1	CL200.7	CALCIUM	52.9		10.5552	10.5552	MG/KG
SS132R	AO231	28-Mar-01	0.5	1	CL200.7	CHROMIUM, TOTAL	1.6	J	0.3132	0.3132	MG/KG
SS132R	AO231	28-Mar-01	0.5	1	CL200.7	COBALT	0.52		0.2506	0.2506	MG/KG
SS132R	AO231	28-Mar-01	0.5	1	CL200.7	COPPER	1.4	J	0.094	0.094	MG/KG
SS132R	AO231	28-Mar-01	0.5	1	CL200.7	IRON	2120	J	5.1836	5.1836	MG/KG
SS132R	AO231	28-Mar-01	0.5	1	CL200.7	LEAD	5.1		0.2662	0.2662	MG/KG
SS132R	AO231	28-Mar-01	0.5	1	CL200.7	MAGNESIUM	150		11.025	11.025	MG/KG
SS132R	AO231	28-Mar-01	0.5	1	CL200.7	MANGANESE	22.1		0.2819	0.2819	MG/KG
SS132R	AO231	28-Mar-01	0.5	1	CL200.7	NICKEL	1.1	J	0.2192	0.2192	MG/KG
SS132R	AO231	28-Mar-01	0.5	1	CL200.7	POTASSIUM	135		4.6981	4.6981	MG/KG
SS132R	AO231	28-Mar-01	0.5	1	CL200.7	SODIUM	102	J	44.0059	44.0059	MG/KG
SS132R	AO231	28-Mar-01	0.5	1	CL200.7	VANADIUM	3.6		0.3132	0.3132	MG/KG
SS132R	AO231	28-Mar-01	0.5	1	CL200.7	ZINC	3.8	J	0.0626	0.0626	MG/KG
SS132U	AO168	28-Mar-01	0	0.25	CVOL	ACETONE	63		4.04	10	UG/KG
SS132U	AO168	28-Mar-01	0	0.25	E350.2	NITROGEN, AMMONIA (AS N)	24.6		1.5	2.54	MG/KG
SS132U	AO168	28-Mar-01	0	0.25	E353.2	NITROGEN, NITRATE-NITRITE	0.02		0.0043	0.01	MG/KG

Table A.5 Small Arms Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPTH (FT	.) TEST	ANALYTE	RESULT	QUALIFIER1	MDL	RL	UNITS
	AO168	28-Mar-01	0 0.25	E365.2	PHOSPHORUS, TOTAL ORTHOPHOSPHATE (AS PO4)	65		1	1.97	MG/KG
SS132U	AO168	28-Mar-01	0 0.25	LYDKHN	TOTAL ORGANIC CARBON	2550			-	MG/KG
SS132U	AO169	28-Mar-01	0 0.25	CVOL	ACETONE	77		4.04	8	UG/KG
SS132U	AO169	28-Mar-01	0 0.25	CVOL	METHYL ETHYL KETONE (2-BUTANONE)	5	J	4.56	8	UG/KG
SS132U	AO169	28-Mar-01	0 0.25	E350.2	NITROGEN, AMMONIA (AS N)	30.6		1.5	2.19	MG/KG
SS132U	AO169	28-Mar-01	0 0.25	E353.2	NITROGEN, NITRATE-NITRITE	0.01		0.0043	0.01	MG/KG
SS132U	AO169	28-Mar-01	0 0.25	E365.2	PHOSPHORUS, TOTAL ORTHOPHOSPHATE (AS PO4)	53.9		1	2.16	MG/KG
SS132U	AO169	28-Mar-01	0 0.25	LYDKHN	TOTAL ORGANIC CARBON	2010				MG/KG
SS132U	AO170	28-Mar-01	0 0.25	CVOL	ACETONE	48	J	4.04	9	UG/KG
SS132U	AO170	28-Mar-01	0 0.25	CVOL	METHYL ETHYL KETONE (2-BUTANONE)	4	J	4	9	UG/KG
SS132U	AO170	28-Mar-01	0 0.25	E350.2	NITROGEN, AMMONIA (AS N)	5.6	J	1.5	2.65	MG/KG
SS132U	AO170	28-Mar-01	0 0.25	E353.2	NITROGEN, NITRATE-NITRITE	0.01		0.0043	0.01	MG/KG
SS132U	AO170	28-Mar-01	0 0.25	E365.2	PHOSPHORUS, TOTAL ORTHOPHOSPHATE (AS PO4)	45.9		1	1.97	MG/KG
SS132U	AO170	28-Mar-01	0 0.25	LYDKHN	TOTAL ORGANIC CARBON	3210				MG/KG
SS132U	AO171	28-Mar-01	0 0.25	CVOL	ACETONE	51	J	4.04	8	UG/KG
SS132U	AO171	28-Mar-01	0 0.25	CVOL	METHYL ETHYL KETONE (2-BUTANONE)	4	J	4	8	UG/KG
SS132U	AO171	28-Mar-01	0 0.25	E350.2	NITROGEN, AMMONIA (AS N)	9	J	1.5	2.5	MG/KG
SS132U	AO171	28-Mar-01	0 0.25	E365.2	PHOSPHORUS, TOTAL ORTHOPHOSPHATE (AS PO4)	62.6		1	2.16	MG/KG
SS132U	AO171	28-Mar-01	0 0.25	LYDKHN	TOTAL ORGANIC CARBON	4230				MG/KG
SS132U	AO172	28-Mar-01	0 0.25	CVOL	ACETONE	62	J	4.04	9	UG/KG
SS132U	AO172	28-Mar-01	0 0.25	CVOL	METHYL ETHYL KETONE (2-BUTANONE)	4	J	4	9	UG/KG
SS132U	AO172	28-Mar-01	0 0.25	E350.2	NITROGEN, AMMONIA (AS N)	20.1		1.5	2.73	MG/KG
SS132U	AO172	28-Mar-01	0 0.25	E353.2	NITROGEN, NITRATE-NITRITE	0.02		0.0043	0.01	MG/KG
SS132U	AO172	28-Mar-01	0 0.25	E365.2	PHOSPHORUS, TOTAL ORTHOPHOSPHATE (AS PO4)	75.6		1	2.1	MG/KG
SS132U	AO172	28-Mar-01	0 0.25	LYDKHN	TOTAL ORGANIC CARBON	4280				MG/KG
SS132U	AO173	28-Mar-01	0.25 0.5	CVOL	ACETONE	34	J	4.04	8	UG/KG
SS132U	AO173	28-Mar-01	0.25 0.5	CVOL	METHYL ETHYL KETONE (2-BUTANONE)	4	J	4	8	UG/KG
SS132U	AO173	28-Mar-01	0.25 0.5	E350.2	NITROGEN, AMMONIA (AS N)	18.5		1.5	2.53	MG/KG
SS132U	AO173	28-Mar-01	0.25 0.5	E353.2	NITROGEN, NITRATE-NITRITE	0.02		0.0043	0.01	MG/KG
SS132U	AO173	28-Mar-01	0.25 0.5	E365.2	PHOSPHORUS, TOTAL ORTHOPHOSPHATE (AS PO4)	71.6		1	1.83	MG/KG
SS132U	AO173	28-Mar-01	0.25 0.5	LYDKHN	TOTAL ORGANIC CARBON	3290				MG/KG
SS132U	AO174	28-Mar-01	0.25 0.5	E350.2	NITROGEN, AMMONIA (AS N)	10.6	J	1.5	2.52	MG/KG
SS132U	AO174	28-Mar-01	0.25 0.5	E353.2	NITROGEN, NITRATE-NITRITE	0.01		0.0043	0.01	MG/KG
SS132U	AO174	28-Mar-01	0.25 0.5	E365.2	PHOSPHORUS, TOTAL ORTHOPHOSPHATE (AS PO4)	54.4		1	1.98	MG/KG
SS132U	AO174	28-Mar-01	0.25 0.5	LYDKHN	TOTAL ORGANIC CARBON	1440				MG/KG
SS132U	AO175	28-Mar-01	0.25 0.5	CVOL	METHYL ETHYL KETONE (2-BUTANONE)	2	J	2	7	UG/KG
SS132U	AO175	28-Mar-01	0.25 0.5	E350.2	NITROGEN, AMMONIA (AS N)	10.5	J	1.5	2.32	MG/KG
SS132U	AO175	28-Mar-01	0.25 0.5	E353.2	NITROGEN, NITRATE-NITRITE	0.01		0.0043	0.01	MG/KG

Table A.5 Small Arms Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEP	ΓΗ (FT.)	TEST	ANALYTE	RESULT	QUALIFIER1	MDL	RL	UNITS
SS132U	AO175	28-Mar-01	0.25	0.5	E365.2	PHOSPHORUS, TOTAL ORTHOPHOSPHATE (AS PO4)	36.4		1	2.03	MG/KG
SS132U	AO175	28-Mar-01	0.25	0.5	LYDKHN	TOTAL ORGANIC CARBON	5440				MG/KG
SS132U	AO175	28-Mar-01	0.25	0.5	SW8330	2-AMINO-4,6-DINITROTOLUENE	330		5.6	120	UG/KG
SS132U	AO175	28-Mar-01	0.25	0.5	SW8330	4-AMINO-2,6-DINITROTOLUENE	130		15	120	UG/KG
SS132U	AO176	28-Mar-01	0.25	0.5	CVOL	ACETONE	84	J	4.04	9	UG/KG
SS132U	AO176	28-Mar-01	0.25	0.5	CVOL	METHYL ETHYL KETONE (2-BUTANONE)	5	J	4.56	9	UG/KG
SS132U	AO176	28-Mar-01	0.25	0.5	E350.2	NITROGEN, AMMONIA (AS N)	12.8	J	1.5	2.51	MG/KG
SS132U	AO176	28-Mar-01	0.25	0.5	E365.2	PHOSPHORUS, TOTAL ORTHOPHOSPHATE (AS PO4)	60.7		1	1.94	MG/KG
SS132U	AO176	28-Mar-01	0.25	0.5	LYDKHN	TOTAL ORGANIC CARBON	2840	J			MG/KG
SS132U	AO177	28-Mar-01	0.25	0.5	CVOL	ACETONE	78	J	4.04	8	UG/KG
SS132U	AO177	28-Mar-01	0.25	0.5	CVOL	METHYL ETHYL KETONE (2-BUTANONE)	4	J	4	8	UG/KG
SS132U	AO177	28-Mar-01	0.25	0.5	E350.2	NITROGEN, AMMONIA (AS N)	15.5	J	1.5	2.62	MG/KG
SS132U	AO177	28-Mar-01	0.25	0.5	E353.2	NITROGEN, NITRATE-NITRITE	0.01		0.0043	0.01	MG/KG
SS132U	AO177	28-Mar-01	0.25	0.5	E365.2	PHOSPHORUS, TOTAL ORTHOPHOSPHATE (AS PO4)	60.9		1	2.05	MG/KG
SS132U	AO177	28-Mar-01	0.25	0.5	LYDKHN	TOTAL ORGANIC CARBON	3850				MG/KG
SS132U	AO178	28-Mar-01	0.5	1	CVOL	ACETONE	34	J	4.04	8	UG/KG
SS132U	AO178	28-Mar-01	0.5	1	CVOL	METHYL ETHYL KETONE (2-BUTANONE)	3	J	3	8	UG/KG
SS132U	AO178	28-Mar-01	0.5	1	E350.2	NITROGEN, AMMONIA (AS N)	8.8	J	1.5	2.48	MG/KG
SS132U	AO178	28-Mar-01	0.5	1	E353.2	NITROGEN, NITRATE-NITRITE	0.02		0.0043	0.01	MG/KG
SS132U	AO178	28-Mar-01	0.5	1	E365.2	PHOSPHORUS, TOTAL ORTHOPHOSPHATE (AS PO4)	65.4		1	2.05	MG/KG
SS132U	AO178	28-Mar-01	0.5	1	LYDKHN	TOTAL ORGANIC CARBON	4120	J			MG/KG
SS132U	AO178	28-Mar-01	0.5	1	SW8330	2-AMINO-4,6-DINITROTOLUENE	230		5.6	120	UG/KG
SS132U	AO178	28-Mar-01	0.5	1	SW8330	4-AMINO-2,6-DINITROTOLUENE	120		15	120	UG/KG
SS132U	AO179	28-Mar-01	0.5	1	CVOL	ACETONE	38	J	4.04	9	UG/KG
SS132U	AO179	28-Mar-01	0.5	1	CVOL	CHLOROFORM	1	J	0.902	9	UG/KG
SS132U	AO179	28-Mar-01	0.5	1	CVOL	METHYL ETHYL KETONE (2-BUTANONE)	3	J	3	9	UG/KG
SS132U	AO179	28-Mar-01	0.5	1	E350.2	NITROGEN, AMMONIA (AS N)	7	J	1.5	2.37	MG/KG
SS132U	AO179	28-Mar-01	0.5	1	E353.2	NITROGEN, NITRATE-NITRITE	0.02		0.0043	0.01	MG/KG
SS132U	AO179	28-Mar-01	0.5	1	E365.2	PHOSPHORUS, TOTAL ORTHOPHOSPHATE (AS PO4)	43.6		1	2.07	MG/KG
SS132U	AO179	28-Mar-01	0.5	1	LYDKHN	TOTAL ORGANIC CARBON	2380	J			MG/KG
SS132U	AO180	28-Mar-01	0.5	1	CVOL	METHYL ETHYL KETONE (2-BUTANONE)	2		2	7	UG/KG
SS132U	AO180	28-Mar-01	0.5	1	E350.2	NITROGEN, AMMONIA (AS N)	8.8	J	1.5	2.55	MG/KG
SS132U	AO180	28-Mar-01	0.5	1	E365.2	PHOSPHORUS, TOTAL ORTHOPHOSPHATE (AS PO4)	49.4		1	1.84	MG/KG
SS132U	AO180	28-Mar-01	0.5	1	LYDKHN	TOTAL ORGANIC CARBON	2530		-		MG/KG
SS132U	AO181	28-Mar-01	0.5	1	CVOL	ACETONE	32	J	4.04	9	UG/KG
SS132U	AO181	28-Mar-01	0.5	1	CVOL	METHYL ETHYL KETONE (2-BUTANONE)	3		3	9	UG/KG
SS132U	AO181	28-Mar-01	0.5	1	E350.2	NITROGEN, AMMONIA (AS N)	6.5		1.5	2.51	MG/KG
SS132U	AO181	28-Mar-01		1	E365.2	PHOSPHORUS, TOTAL ORTHOPHOSPHATE (AS PO4)	48	-	1	2.12	MG/KG

Table A.5 Small Arms Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEP	ΓΗ (FT.)	TEST	ANALYTE	RESULT	QUALIFIER1	MDL	RL	UNITS
SS132U	AO181	28-Mar-01	0.5	1	LYDKHN	TOTAL ORGANIC CARBON	1100				MG/KG
SS132U	AO182	28-Mar-01	0.5	1	CVOL	ACETONE	120	J	4.04	9	UG/KG
SS132U	AO182	28-Mar-01	0.5	1	CVOL	BROMOMETHANE	3	J	1.66	9	UG/KG
SS132U	AO182	28-Mar-01	0.5	1	CVOL	CHLOROMETHANE	0.8	J	0.8	9	UG/KG
SS132U	AO182	28-Mar-01	0.5	1	CVOL	METHYL ETHYL KETONE (2-BUTANONE)	8	J	4.56	9	UG/KG
SS132U	AO182	28-Mar-01	0.5	1	E350.2	NITROGEN, AMMONIA (AS N)	10.2	J	1.5	2.58	MG/KG
SS132U	AO182	28-Mar-01	0.5	1	E365.2	PHOSPHORUS, TOTAL ORTHOPHOSPHATE (AS PO4)	62.7		1	2.12	MG/KG
SS132U	AO182	28-Mar-01	0.5	1	LYDKHN	TOTAL ORGANIC CARBON	2710	J			MG/KG
SS132U	AO183	28-Mar-01	0.5	1	CVOL	METHYL ETHYL KETONE (2-BUTANONE)	2	J	2	9	UG/KG
SS132U	AO183	28-Mar-01	0.5	1	E350.2	NITROGEN, AMMONIA (AS N)	9.9	J	1.5	2.66	MG/KG
SS132U	AO183	28-Mar-01	0.5	1	E353.2	NITROGEN, NITRATE-NITRITE	0.01		0.0043	0.01	MG/KG
SS132U	AO183	28-Mar-01	0.5	1	E365.2	PHOSPHORUS, TOTAL ORTHOPHOSPHATE (AS PO4)	61.2		1	2.15	MG/KG
SS132U	AO183	28-Mar-01	0.5	1	LYDKHN	TOTAL ORGANIC CARBON	2340	J			MG/KG
SS132U	AO184	28-Mar-01	0	0.25	CL200.7	ALUMINUM	5160		13.5135	13.5135	MG/KG
SS132U	AO184	28-Mar-01	0	0.25	CL200.7	BARIUM	4.4		0.0563	0.0563	MG/KG
SS132U	AO184	28-Mar-01	0	0.25	CL200.7	BERYLLIUM	0.075	J	0.075	0.0751	MG/KG
SS132U	AO184	28-Mar-01	0	0.25	CL200.7	CALCIUM	77.3		12.6502	12.6502	MG/KG
SS132U	AO184	28-Mar-01	0	0.25	CL200.7	CHROMIUM, TOTAL	5.3		0.3754	0.3754	MG/KG
SS132U	AO184	28-Mar-01	0	0.25	CL200.7	COBALT	0.71	J	0.3003	0.3003	MG/KG
SS132U	AO184	28-Mar-01	0	0.25	CL200.7	COPPER	47.3		0.1126	0.1126	MG/KG
SS132U	AO184	28-Mar-01	0	0.25	CL200.7	IRON	6110		6.2125	6.2125	MG/KG
SS132U	AO184	28-Mar-01	0	0.25	CL200.7	LEAD	151		0.488	0.488	MG/KG
SS132U	AO184	28-Mar-01	0	0.25	CL200.7	MAGNESIUM	904		13.2132	13.2132	MG/KG
SS132U	AO184	28-Mar-01	0	0.25	CL200.7	MANGANESE	47.2	J	0.3378	0.3378	MG/KG
SS132U	AO184	28-Mar-01	0	0.25	CL200.7	NICKEL	2.3	J	0.2628	0.2628	MG/KG
SS132U	AO184	28-Mar-01	0	0.25	CL200.7	POTASSIUM	219		5.6306	5.6306	MG/KG
SS132U	AO184	28-Mar-01	0	0.25	CL200.7	SODIUM	317	J	52.7403	52.7403	MG/KG
SS132U	AO184	28-Mar-01	0	0.25	CL200.7	VANADIUM	15.2		0.3754	0.3754	MG/KG
SS132U	AO184	28-Mar-01	0	0.25	CL200.7	ZINC	12.1		0.0751	0.0751	MG/KG
SS132U	AO184	28-Mar-01	0	0.25	CL245.5	MERCURY	0.27		0.0563	0.0563	MG/KG
SS132U	AO185	28-Mar-01	0	0.25	CL200.7	ALUMINUM	5250		13.2674	13.2674	MG/KG
SS132U	AO185	28-Mar-01	0	0.25	CL200.7	ARSENIC	1.7	J	1.0503	1.0503	MG/KG
SS132U	AO185	28-Mar-01	0	0.25	CL200.7	BARIUM	4.6		0.0553	0.0553	MG/KG
SS132U	AO185	28-Mar-01	0	0.25	CL200.7	BERYLLIUM	0.096	J	0.0737	0.0737	MG/KG
SS132U	AO185	28-Mar-01	0	0.25	CL200.7	CALCIUM	59.8		12.4197	12.4197	MG/KG
SS132U	AO185	28-Mar-01	0	0.25	CL200.7	CHROMIUM, TOTAL	6		0.3685	0.3685	MG/KG
SS132U	AO185	28-Mar-01	0	0.25	CL200.7	COBALT	0.44	J	0.2948	0.2948	MG/KG
SS132U	AO185	28-Mar-01	0	0.25	CL200.7	COPPER	11.3		0.1106	0.1106	MG/KG

Table A.5 Small Arms Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEP	ΓΗ (FT.)	TEST	ANALYTE	RESULT	QUALIFIER1	MDL	RL	UNITS
SS132U	AO185	28-Mar-01	0	0.25	CL200.7	IRON	6980		6.0993	6.0993	MG/KG
SS132U	AO185	28-Mar-01	0	0.25	CL200.7	LEAD	23.7		0.4791	0.4791	MG/KG
SS132U	AO185	28-Mar-01	0	0.25	CL200.7	MAGNESIUM	383		12.9725	12.9725	MG/KG
SS132U	AO185	28-Mar-01	0	0.25	CL200.7	MANGANESE	44.8	J	0.3317	0.3317	MG/KG
SS132U	AO185	28-Mar-01	0	0.25	CL200.7	MOLYBDENUM	0.73	J	0.5897	0.5897	MG/KG
SS132U	AO185	28-Mar-01	0	0.25	CL200.7	NICKEL	2.7		0.258	0.258	MG/KG
SS132U	AO185	28-Mar-01	0	0.25	CL200.7	POTASSIUM	208		5.5281	5.5281	MG/KG
SS132U	AO185	28-Mar-01	0	0.25	CL200.7	SODIUM	343	J	51.7796	51.7796	MG/KG
SS132U	AO185	28-Mar-01	0	0.25	CL200.7	VANADIUM	12.3		0.3685	0.3685	MG/KG
SS132U	AO185	28-Mar-01	0	0.25	CL200.7	ZINC	9.1		0.0737	0.0737	MG/KG
SS132U	AO186	28-Mar-01	0	0.25	CL200.7	ALUMINUM	5440		11.1446	11.1446	MG/KG
SS132U	AO186	28-Mar-01	0	0.25	CL200.7	ANTIMONY	11.7		0.7739	0.7739	MG/KG
SS132U	AO186	28-Mar-01	0	0.25	CL200.7	ARSENIC	5.8	J	0.8823	0.8823	MG/KG
SS132U	AO186	28-Mar-01	0	0.25	CL200.7	BARIUM	4.6		0.0464	0.0464	MG/KG
SS132U	AO186	28-Mar-01	0	0.25	CL200.7	BERYLLIUM	0.16	J	0.0619	0.0619	MG/KG
SS132U	AO186	28-Mar-01	0	0.25	CL200.7	CALCIUM	68.4		10.4326	10.4326	MG/KG
SS132U	AO186	28-Mar-01	0	0.25	CL200.7	CHROMIUM, TOTAL	5.8		0.3096	0.3096	MG/KG
SS132U	AO186	28-Mar-01	0	0.25	CL200.7	COBALT	0.6	J	0.2477	0.2477	MG/KG
SS132U	AO186	28-Mar-01	0	0.25	CL200.7	COPPER	35.6		0.0929	0.0929	MG/KG
SS132U	AO186	28-Mar-01	0	0.25	CL200.7	IRON	8080		5.1234	5.1234	MG/KG
SS132U	AO186	28-Mar-01	0	0.25	CL200.7	LEAD	339		0.4024	0.4024	MG/KG
SS132U	AO186	28-Mar-01	0	0.25	CL200.7	MAGNESIUM	438		10.897	10.897	MG/KG
SS132U	AO186	28-Mar-01	0	0.25	CL200.7	MANGANESE	38.9	J	0.2786	0.2786	MG/KG
SS132U	AO186	28-Mar-01	0	0.25	CL200.7	NICKEL	2.5		0.2167	0.2167	MG/KG
SS132U	AO186	28-Mar-01	0	0.25	CL200.7	POTASSIUM	260		4.6436	4.6436	MG/KG
SS132U	AO186	28-Mar-01	0	0.25	CL200.7	SELENIUM	0.23	J	0.219	0.219	MG/KG
SS132U	AO186	28-Mar-01	0	0.25	CL200.7	SODIUM	482	J	43.4951	43.4951	MG/KG
SS132U	AO186	28-Mar-01	0	0.25	CL200.7	VANADIUM	12.8		0.3096	0.3096	MG/KG
SS132U	AO186	28-Mar-01	0	0.25	CL200.7	ZINC	11.9		0.0619	0.0619	MG/KG
SS132U	AO187	28-Mar-01	0	0.25	CL200.7	ALUMINUM	5850		14.9395	14.9395	MG/KG
SS132U	AO187	28-Mar-01	0	0.25	CL200.7	BARIUM	5.6		0.0622	0.0622	MG/KG
SS132U	AO187	28-Mar-01	0	0.25	CL200.7	CALCIUM	66.9		13.985	13.985	MG/KG
SS132U	AO187	28-Mar-01	0	0.25	CL200.7	CHROMIUM, TOTAL	5.6		0.415	0.415	MG/KG
SS132U	AO187	28-Mar-01	0	0.25	CL200.7	COPPER	17.7		0.1245	0.1245	MG/KG
SS132U	AO187	28-Mar-01	0	0.25	CL200.7	IRON	6420		6.868	6.868	MG/KG
SS132U	AO187	28-Mar-01	0	0.25	CL200.7	LEAD	43.5		0.5395	0.5395	MG/KG
SS132U	AO187	28-Mar-01	0	0.25	CL200.7	MAGNESIUM	362		14.6075	14.6075	MG/KG
SS132U	AO187	28-Mar-01	0	0.25	CL200.7	MANGANESE	21.5	J	0.3735	0.3735	MG/KG

Table A.5 Small Arms Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEP	ΓΗ (FT.)	TEST	ANALYTE	RESULT	QUALIFIER1	MDL	RL	UNITS
SS132U	AO187	28-Mar-01	0	0.25	CL200.7	MOLYBDENUM	0.85	J	0.664	0.664	MG/KG
SS132U	AO187	28-Mar-01	0	0.25	CL200.7	NICKEL	1.8	J	0.2905	0.2905	MG/KG
SS132U	AO187	28-Mar-01	0	0.25	CL200.7	POTASSIUM	226		6.2248	6.2248	MG/KG
SS132U	AO187	28-Mar-01	0	0.25	CL200.7	SELENIUM	0.48	J	0.4175	0.4175	MG/KG
SS132U	AO187	28-Mar-01	0	0.25	CL200.7	SODIUM	472	J	58.3054	58.3054	MG/KG
SS132U	AO187	28-Mar-01	0	0.25	CL200.7	VANADIUM	14.5		0.415	0.415	MG/KG
SS132U	AO187	28-Mar-01	0	0.25	CL200.7	ZINC	7.5		0.083	0.083	MG/KG
SS132U	AO188	28-Mar-01	0	0.25	CL200.7	ALUMINUM	5510		12.3879	12.3879	MG/KG
SS132U	AO188	28-Mar-01	0	0.25	CL200.7	ARSENIC	1.4	J	0.9807	0.9807	MG/KG
SS132U	AO188	28-Mar-01	0	0.25	CL200.7	BARIUM	5.8		0.0516	0.0516	MG/KG
SS132U	AO188	28-Mar-01	0	0.25	CL200.7	BERYLLIUM	0.15	J	0.0688	0.0688	MG/KG
SS132U	AO188	28-Mar-01	0	0.25	CL200.7	CALCIUM	60.3		11.5965	11.5965	MG/KG
SS132U	AO188	28-Mar-01	0	0.25	CL200.7	CHROMIUM, TOTAL	5.4		0.3441	0.3441	MG/KG
SS132U	AO188	28-Mar-01	0	0.25	CL200.7	COPPER	10		0.1032	0.1032	MG/KG
SS132U	AO188	28-Mar-01	0	0.25	CL200.7	IRON	6300		5.695	5.695	MG/KG
SS132U	AO188	28-Mar-01	0	0.25	CL200.7	LEAD	22		0.4473	0.4473	MG/KG
SS132U	AO188	28-Mar-01	0	0.25	CL200.7	MAGNESIUM	359		12.1127	12.1127	MG/KG
SS132U	AO188	28-Mar-01	0	0.25	CL200.7	MANGANESE	24.5	J	0.3097	0.3097	MG/KG
SS132U	AO188	28-Mar-01	0	0.25	CL200.7	NICKEL	2.2	J	0.2409	0.2409	MG/KG
SS132U	AO188	28-Mar-01	0	0.25	CL200.7	POTASSIUM	199		5.1616	5.1616	MG/KG
SS132U	AO188	28-Mar-01	0	0.25	CL200.7	SELENIUM	0.38	J	0.3159	0.3159	MG/KG
SS132U	AO188	28-Mar-01	0	0.25	CL200.7	SODIUM	474	J	48.3474	48.3474	MG/KG
SS132U	AO188	28-Mar-01	0	0.25	CL200.7	VANADIUM	14.3		0.3441	0.3441	MG/KG
SS132U	AO188	28-Mar-01	0	0.25	CL200.7	ZINC	8.9		0.0688	0.0688	MG/KG
SS132U	AO189	28-Mar-01	0.25	0.5	CL200.7	ALUMINUM	6800		12.1724	12.1724	MG/KG
SS132U	AO189	28-Mar-01	0.25	0.5	CL200.7	ARSENIC	2.1	J	0.9637	0.9637	MG/KG
SS132U	AO189	28-Mar-01	0.25	0.5	CL200.7	BARIUM	6		0.0507	0.0507	MG/KG
SS132U	AO189	28-Mar-01	0.25	0.5	CL200.7	BERYLLIUM	0.17	J	0.0676	0.0676	MG/KG
SS132U	AO189	28-Mar-01	0.25	0.5	CL200.7	CALCIUM	117		11.3948	11.3948	MG/KG
SS132U	AO189	28-Mar-01	0.25	0.5	CL200.7	CHROMIUM, TOTAL	7.1		0.3381	0.3381	MG/KG
SS132U	AO189	28-Mar-01	0.25	0.5	CL200.7	COBALT	1.2	J	0.2705	0.2705	MG/KG
SS132U	AO189	28-Mar-01	0.25	0.5	CL200.7	COPPER	137		0.1014	0.1014	MG/KG
SS132U	AO189	28-Mar-01	0.25	0.5	CL200.7	IRON	7410		5.5959	5.5959	MG/KG
SS132U	AO189	28-Mar-01	0.25	0.5	CL200.7	LEAD	402		0.4396	0.4396	MG/KG
SS132U	AO189	28-Mar-01	0.25	0.5	CL200.7	MAGNESIUM	1020		11.9019	11.9019	MG/KG
SS132U	AO189	28-Mar-01	0.25	0.5	CL200.7	MANGANESE	101	J	0.3043	0.3043	MG/KG
SS132U	AO189	28-Mar-01	0.25	0.5	CL200.7	NICKEL	3.3		0.2367	0.2367	MG/KG
SS132U	AO189	28-Mar-01	0.25	0.5	CL200.7	POTASSIUM	247		5.0719	5.0719	MG/KG

Table A.5 Small Arms Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEP	TH (FT.)	TEST	ANALYTE	RESULT	QUALIFIER1	MDL	RL	UNITS
SS132U	AO189	28-Mar-01	0.25	0.5	CL200.7	SELENIUM	0.45	J	0.3237	0.3237	MG/KG
SS132U	AO189	28-Mar-01	0.25	0.5	CL200.7	SODIUM	376	J	47.5064	47.5064	MG/KG
SS132U	AO189	28-Mar-01	0.25	0.5	CL200.7	VANADIUM	12		0.3381	0.3381	MG/KG
SS132U	AO189	28-Mar-01	0.25	0.5	CL200.7	ZINC	36.4		0.0676	0.0676	MG/KG
SS132U	AO189	28-Mar-01	0.25	0.5	CL245.5	MERCURY	0.72		0.0549	0.0549	MG/KG
SS132U	AO190	28-Mar-01	0.25	0.5	CL200.7	ALUMINUM	5930		13.1103	13.1103	MG/KG
SS132U	AO190	28-Mar-01	0.25	0.5	CL200.7	BARIUM	6		0.0546	0.0546	MG/KG
SS132U	AO190	28-Mar-01	0.25	0.5	CL200.7	BERYLLIUM	0.13	J	0.0728	0.0728	MG/KG
SS132U	AO190	28-Mar-01	0.25	0.5	CL200.7	CALCIUM	62.5		12.2727	12.2727	MG/KG
SS132U	AO190	28-Mar-01	0.25	0.5	CL200.7	CHROMIUM, TOTAL	6.3		0.3642	0.3642	MG/KG
SS132U	AO190	28-Mar-01	0.25	0.5	CL200.7	COBALT	0.58	J	0.2913	0.2913	MG/KG
SS132U	AO190	28-Mar-01	0.25	0.5	CL200.7	COPPER	12.5		0.1093	0.1093	MG/KG
SS132U	AO190	28-Mar-01	0.25	0.5	CL200.7	IRON	5800		6.0271	6.0271	MG/KG
SS132U	AO190	28-Mar-01	0.25	0.5	CL200.7	LEAD	17.1		0.4734	0.4734	MG/KG
SS132U	AO190	28-Mar-01	0.25	0.5	CL200.7	MAGNESIUM	467		12.819	12.819	MG/KG
SS132U	AO190	28-Mar-01	0.25	0.5	CL200.7	MANGANESE	25.7	J	0.3278	0.3278	MG/KG
SS132U	AO190	28-Mar-01	0.25	0.5	CL200.7	NICKEL	2.7		0.2549	0.2549	MG/KG
SS132U	AO190	28-Mar-01	0.25	0.5	CL200.7	POTASSIUM	230		5.4626	5.4626	MG/KG
SS132U	AO190	28-Mar-01	0.25	0.5	CL200.7	SELENIUM	0.4	J	0.3702	0.3702	MG/KG
SS132U	AO190	28-Mar-01		0.5	CL200.7	SODIUM	348	J	51.1667	51.1667	MG/KG
SS132U	AO190	28-Mar-01	0.25	0.5	CL200.7	VANADIUM	11.3		0.3642	0.3642	MG/KG
SS132U	AO190	28-Mar-01	0.25	0.5	CL200.7	ZINC	8.1		0.0728	0.0728	MG/KG
SS132U	AO191	28-Mar-01	0.25	0.5	CL200.7	ALUMINUM	2040		13.6904	13.6904	MG/KG
SS132U	AO191	28-Mar-01	0.25	0.5	CL200.7	BARIUM	5.7		0.057	0.057	MG/KG
SS132U	AO191	28-Mar-01	0.25	0.5	CL200.7	CALCIUM	31.3		12.8158	12.8158	MG/KG
SS132U	AO191	28-Mar-01	0.25	0.5	CL200.7	CHROMIUM, TOTAL	2		0.3803	0.3803	MG/KG
SS132U	AO191	28-Mar-01	0.25	0.5	CL200.7	COPPER	18		0.1141	0.1141	MG/KG
SS132U	AO191	28-Mar-01	0.25	0.5	CL200.7	IRON	3290		6.2938	6.2938	MG/KG
SS132U	AO191	28-Mar-01	0.25	0.5	CL200.7	LEAD	259		0.4944	0.4944	MG/KG
SS132U	AO191	28-Mar-01	0.25	0.5	CL200.7	MAGNESIUM	100		13.3862	13.3862	MG/KG
SS132U	AO191	28-Mar-01	0.25	0.5	CL200.7	MANGANESE	9.9	J	0.3423	0.3423	MG/KG
SS132U	AO191	28-Mar-01	0.25	0.5	CL200.7	NICKEL	0.39	J	0.2662	0.2662	MG/KG
SS132U	AO191	28-Mar-01	0.25	0.5	CL200.7	POTASSIUM	141		5.7043	5.7043	MG/KG
SS132U	AO191	28-Mar-01		0.5	CL200.7	SELENIUM	0.53	J	0.4214	0.4214	MG/KG
SS132U	AO191	28-Mar-01		0.5	CL200.7	SODIUM	445		53.4307	53.4307	MG/KG
SS132U	AO191	28-Mar-01		0.5	CL200.7	VANADIUM	7		0.3803	0.3803	MG/KG
SS132U	AO191	28-Mar-01		0.5	CL200.7	ZINC	3.4		0.0761	0.0761	MG/KG
SS132U	AO191	28-Mar-01		0.5	CL245.5	MERCURY	0.07	J	0.0556	0.0556	MG/KG

Table A.5 Small Arms Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEP	ΓΗ (FT.)	TEST	ANALYTE	RESULT	QUALIFIER1	MDL	RL	UNITS
SS132U	AO192	28-Mar-01	0.25	0.5	CL200.7	ALUMINUM	5920		12.9176	12.9176	MG/KG
SS132U	AO192	28-Mar-01	0.25	0.5	CL200.7	ARSENIC	1.4	J	1.0226	1.0226	MG/KG
SS132U	AO192	28-Mar-01	0.25	0.5	CL200.7	BARIUM	6.5		0.0538	0.0538	MG/KG
SS132U	AO192	28-Mar-01	0.25	0.5	CL200.7	BERYLLIUM	0.097	J	0.0718	0.0718	MG/KG
SS132U	AO192	28-Mar-01	0.25	0.5	CL200.7	CALCIUM	65.6		12.0923	12.0923	MG/KG
SS132U	AO192	28-Mar-01	0.25	0.5	CL200.7	CHROMIUM, TOTAL	5.8		0.3588	0.3588	MG/KG
SS132U	AO192	28-Mar-01	0.25	0.5	CL200.7	COPPER	7.2		0.1076	0.1076	MG/KG
SS132U	AO192	28-Mar-01	0.25	0.5	CL200.7	IRON	6240		5.9385	5.9385	MG/KG
SS132U	AO192	28-Mar-01	0.25	0.5	CL200.7	LEAD	16		0.4665	0.4665	MG/KG
SS132U	AO192	28-Mar-01	0.25	0.5	CL200.7	MAGNESIUM	387		12.6305	12.6305	MG/KG
SS132U	AO192	28-Mar-01	0.25	0.5	CL200.7	MANGANESE	21.2	J	0.3229	0.3229	MG/KG
SS132U	AO192	28-Mar-01	0.25	0.5	CL200.7	NICKEL	2.1	J	0.2512	0.2512	MG/KG
SS132U	AO192	28-Mar-01	0.25	0.5	CL200.7	POTASSIUM	227		5.3823	5.3823	MG/KG
SS132U	AO192	28-Mar-01	0.25	0.5	CL200.7	SELENIUM	0.44	J	0.3874	0.3874	MG/KG
SS132U	AO192	28-Mar-01	0.25	0.5	CL200.7	SODIUM	395	J	50.4144	50.4144	MG/KG
SS132U	AO192	28-Mar-01	0.25	0.5	CL200.7	VANADIUM	13.1		0.3588	0.3588	MG/KG
SS132U	AO192	28-Mar-01	0.25	0.5	CL200.7	ZINC	7		0.0718	0.0718	MG/KG
SS132U	AO193	28-Mar-01	0.25	0.5	CL200.7	ALUMINUM	6070		11.7245	11.7245	MG/KG
SS132U	AO193	28-Mar-01	0.25	0.5	CL200.7	ARSENIC	1	J	0.9282	0.9282	MG/KG
SS132U	AO193	28-Mar-01		0.5	CL200.7	BARIUM	7.1		0.0489	0.0489	MG/KG
SS132U	AO193	28-Mar-01	0.25	0.5	CL200.7	BERYLLIUM	0.11	J	0.0651	0.0651	MG/KG
SS132U	AO193	28-Mar-01	0.25	0.5	CL200.7	CALCIUM	68.9		10.9754	10.9754	MG/KG
SS132U	AO193	28-Mar-01	0.25	0.5	CL200.7	CHROMIUM, TOTAL	6.1		0.3257	0.3257	MG/KG
SS132U	AO193	28-Mar-01	0.25	0.5	CL200.7	COBALT	0.58	J	0.2605	0.2605	MG/KG
SS132U	AO193	28-Mar-01	0.25	0.5	CL200.7	COPPER	37.4		0.0977	0.0977	MG/KG
SS132U	AO193	28-Mar-01	0.25	0.5	CL200.7	IRON	7160		5.39	5.39	MG/KG
SS132U	AO193	28-Mar-01	0.25	0.5	CL200.7	LEAD	41.1		0.4234	0.4234	MG/KG
SS132U	AO193	28-Mar-01	0.25	0.5	CL200.7	MAGNESIUM	480		11.4639	11.4639	MG/KG
SS132U	AO193	28-Mar-01	0.25	0.5	CL200.7	MANGANESE	43.5	J	0.2931	0.2931	MG/KG
SS132U	AO193	28-Mar-01	0.25	0.5	CL200.7	NICKEL	2.5		0.228	0.228	MG/KG
SS132U	AO193	28-Mar-01	0.25	0.5	CL200.7	POTASSIUM	227		4.8852	4.8852	MG/KG
SS132U	AO193	28-Mar-01	0.25	0.5	CL200.7	SELENIUM	0.33	J	0.2617	0.2617	MG/KG
SS132U	AO193	28-Mar-01	0.25	0.5	CL200.7	SODIUM	415	J	45.758	45.758	MG/KG
SS132U	AO193	28-Mar-01		0.5	CL200.7	VANADIUM	12		0.3257	0.3257	MG/KG
SS132U	AO193	28-Mar-01		0.5	CL200.7	ZINC	14.1		0.0651	0.0651	MG/KG
SS132U	AO194	28-Mar-01	0.5	1	CL200.7	ALUMINUM	6830		12.7755	12.7755	MG/KG
SS132U	AO194	28-Mar-01	0.5	1	CL200.7	ARSENIC	1.7		1.0114	1.0114	MG/KG
SS132U	AO194	28-Mar-01		1	CL200.7	BARIUM	17		0.0532	0.0532	MG/KG

Table A.5 Small Arms Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEP	ΓΗ (FT.)	TEST	ANALYTE	RESULT	QUALIFIER1	MDL	RL	UNITS
SS132U	AO194	28-Mar-01	0.5	1	CL200.7	BERYLLIUM	0.18	J	0.071	0.071	MG/KG
SS132U	AO194	28-Mar-01	0.5	1	CL200.7	CADMIUM	0.12	J	0.1065	0.1065	MG/KG
SS132U	AO194	28-Mar-01	0.5	1	CL200.7	CALCIUM	69.9		11.9593	11.9593	MG/KG
SS132U	AO194	28-Mar-01	0.5	1	CL200.7	CHROMIUM, TOTAL	7.3		0.3549	0.3549	MG/KG
SS132U	AO194	28-Mar-01	0.5	1	CL200.7	COBALT	0.57	J	0.2839	0.2839	MG/KG
SS132U	AO194	28-Mar-01	0.5	1	CL200.7	COPPER	191		0.1065	0.1065	MG/KG
SS132U	AO194	28-Mar-01	0.5	1	CL200.7	IRON	7030		5.8732	5.8732	MG/KG
SS132U	AO194	28-Mar-01	0.5	1	CL200.7	LEAD	135		0.4613	0.4613	MG/KG
SS132U	AO194	28-Mar-01	0.5	1	CL200.7	MAGNESIUM	583		12.4916	12.4916	MG/KG
SS132U	AO194	28-Mar-01	0.5	1	CL200.7	MANGANESE	58.8	J	0.3194	0.3194	MG/KG
SS132U	AO194	28-Mar-01	0.5	1	CL200.7	NICKEL	3.3		0.2484	0.2484	MG/KG
SS132U	AO194	28-Mar-01	0.5	1	CL200.7	POTASSIUM	317		5.3231	5.3231	MG/KG
SS132U	AO194	28-Mar-01	0.5	1	CL200.7	SELENIUM	0.24	J	0.2182	0.2182	MG/KG
SS132U	AO194	28-Mar-01	0.5	1	CL200.7	SODIUM	480	J	49.8598	49.8598	MG/KG
SS132U	AO194	28-Mar-01	0.5	1	CL200.7	VANADIUM	12.9		0.3549	0.3549	MG/KG
SS132U	AO194	28-Mar-01	0.5	1	CL200.7	ZINC	43.8		0.071	0.071	MG/KG
SS132U	AO194	28-Mar-01	0.5	1	CL245.5	MERCURY	0.3		0.055	0.055	MG/KG
SS132U	AO195	28-Mar-01	0.5	1	CL200.7	ALUMINUM	4810		12.487	12.487	MG/KG
SS132U	AO195	28-Mar-01	0.5	1	CL200.7	ARSENIC	1	J	0.9886	0.9886	MG/KG
SS132U	AO195	28-Mar-01	0.5	1	CL200.7	BARIUM	7.3		0.052	0.052	MG/KG
SS132U	AO195	28-Mar-01	0.5	1	CL200.7	BERYLLIUM	0.15	J	0.0694	0.0694	MG/KG
SS132U	AO195	28-Mar-01	0.5	1	CL200.7	CALCIUM	56.2		11.6892	11.6892	MG/KG
SS132U	AO195	28-Mar-01	0.5	1	CL200.7	CHROMIUM, TOTAL	5.1		0.3469	0.3469	MG/KG
SS132U	AO195	28-Mar-01	0.5	1	CL200.7	COBALT	0.33	J	0.2775	0.2775	MG/KG
SS132U	AO195	28-Mar-01	0.5	1	CL200.7	COPPER	3		0.1041	0.1041	MG/KG
SS132U	AO195	28-Mar-01	0.5	1	CL200.7	IRON	5100		5.7405	5.7405	MG/KG
SS132U	AO195	28-Mar-01	0.5	1	CL200.7	LEAD	4.3		0.4509	0.4509	MG/KG
SS132U	AO195	28-Mar-01	0.5	1	CL200.7	MAGNESIUM	402		12.2095	12.2095	MG/KG
SS132U	AO195	28-Mar-01	0.5	1	CL200.7	MANGANESE	26	J	0.3122	0.3122	MG/KG
SS132U	AO195	28-Mar-01	0.5	1	CL200.7	NICKEL	2.2	J	0.2428	0.2428	MG/KG
SS132U	AO195	28-Mar-01	0.5	1	CL200.7	POTASSIUM	209		5.2029	5.2029	MG/KG
SS132U	AO195	28-Mar-01	0.5	1	CL200.7	SODIUM	365	J	48.734	48.734	MG/KG
SS132U	AO195	28-Mar-01	0.5	1	CL200.7	VANADIUM	9.3		0.3469	0.3469	MG/KG
SS132U	AO195	28-Mar-01	0.5	1	CL200.7	ZINC	7.6		0.0694	0.0694	MG/KG
SS132U	AO196	28-Mar-01	0.5	1	CL200.7	ALUMINUM	4190		12.0277	12.0277	MG/KG
SS132U	AO196	28-Mar-01	0.5	1	CL200.7	ARSENIC	1.9	J	0.9522	0.9522	MG/KG
SS132U	AO196	28-Mar-01	0.5	1	CL200.7	BARIUM	9.9		0.0501	0.0501	MG/KG
SS132U	AO196	28-Mar-01		1	CL200.7	BERYLLIUM	0.11	J	0.0668	0.0668	MG/KG

Table A.5 Small Arms Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPTH (FT.)	TEST	ANALYTE	RESULT	QUALIFIER1	MDL	RL	UNITS
SS132U	AO196	28-Mar-01	0.5 1	CL200.7	CALCIUM	59.5		11.2592	11.2592	MG/KG
SS132U	AO196	28-Mar-01	0.5 1	CL200.7	CHROMIUM, TOTAL	4.4		0.3341	0.3341	MG/KG
SS132U	AO196	28-Mar-01	0.5 1	CL200.7	COPPER	1.7		0.1002	0.1002	MG/KG
SS132U	AO196	28-Mar-01	0.5 1	CL200.7	IRON	5160		5.5294	5.5294	MG/KG
SS132U	AO196	28-Mar-01	0.5 1	CL200.7	LEAD	290		0.4343	0.4343	MG/KG
SS132U	AO196	28-Mar-01	0.5 1	CL200.7	MAGNESIUM	282		11.7604	11.7604	MG/KG
SS132U	AO196	28-Mar-01	0.5 1	CL200.7	MANGANESE	18.5	J	0.3007	0.3007	MG/KG
SS132U	AO196	28-Mar-01	0.5 1	CL200.7	NICKEL	1.9	J	0.2339	0.2339	MG/KG
SS132U	AO196	28-Mar-01	0.5 1	CL200.7	POTASSIUM	206		5.0115	5.0115	MG/KG
SS132U	AO196	28-Mar-01	0.5 1	CL200.7	SELENIUM	0.33	J	0.2718	0.2718	MG/KG
SS132U	AO196	28-Mar-01	0.5 1	CL200.7	SODIUM	491	J	46.9413	46.9413	MG/KG
SS132U	AO196	28-Mar-01	0.5 1	CL200.7	VANADIUM	10		0.3341	0.3341	MG/KG
SS132U	AO196	28-Mar-01	0.5 1	CL200.7	ZINC	7.4		0.0668	0.0668	MG/KG
SS132U	AO196	28-Mar-01	0.5 1	CL245.5	MERCURY	0.085	J	0.0551	0.0551	MG/KG
SS132U	AO197	28-Mar-01	0.5 1	CL200.7	ALUMINUM	5940		12.1059	12.1059	MG/KG
SS132U	AO197	28-Mar-01	0.5 1	CL200.7	ARSENIC	1.7	J	0.9584	0.9584	MG/KG
SS132U	AO197	28-Mar-01	0.5 1	CL200.7	BARIUM	9		0.0504	0.0504	MG/KG
SS132U	AO197	28-Mar-01	0.5 1	CL200.7	BERYLLIUM	0.16	J	0.0673	0.0673	MG/KG
SS132U	AO197	28-Mar-01	0.5 1	CL200.7	CALCIUM	55.9		11.3325	11.3325	MG/KG
SS132U	AO197	28-Mar-01	0.5 1	CL200.7	CHROMIUM, TOTAL	5.5		0.3363	0.3363	MG/KG
SS132U	AO197	28-Mar-01	0.5 1	CL200.7	COBALT	0.34	J	0.269	0.269	MG/KG
SS132U	AO197	28-Mar-01	0.5 1	CL200.7	COPPER	1.4		0.1009	0.1009	MG/KG
SS132U	AO197	28-Mar-01	0.5 1	CL200.7	IRON	6190		5.5654	5.5654	MG/KG
SS132U	AO197	28-Mar-01	0.5 1	CL200.7	LEAD	4.9		0.4372	0.4372	MG/KG
SS132U	AO197	28-Mar-01	0.5 1	CL200.7	MAGNESIUM	378		11.8369	11.8369	MG/KG
SS132U	AO197	28-Mar-01	0.5 1	CL200.7	MANGANESE	21.9	J	0.3026	0.3026	MG/KG
SS132U	AO197	28-Mar-01	0.5 1	CL200.7	NICKEL	2.1	J	0.2354	0.2354	MG/KG
SS132U	AO197	28-Mar-01	0.5 1	CL200.7	POTASSIUM	220		5.0441	5.0441	MG/KG
SS132U	AO197	28-Mar-01	0.5 1	CL200.7	SODIUM	384	J	47.2468	47.2468	MG/KG
SS132U	AO197	28-Mar-01	0.5 1	CL200.7	VANADIUM	11.3		0.3363	0.3363	MG/KG
SS132U	AO197	28-Mar-01	0.5 1	CL200.7	ZINC	7.4		0.0673	0.0673	MG/KG
SS132U	AO198	28-Mar-01	0.5 1	CL200.7	ALUMINUM	5320		11.7256	11.7256	MG/KG
SS132U	AO198	28-Mar-01	0.5 1	CL200.7	ARSENIC	2	J	0.9283	0.9283	MG/KG
SS132U	AO198	28-Mar-01	0.5 1	CL200.7	BARIUM	9		0.0489	0.0489	MG/KG
SS132U	AO198	28-Mar-01	0.5 1	CL200.7	BERYLLIUM	0.16	J	0.0651	0.0651	MG/KG
SS132U	AO198	28-Mar-01	0.5 1	CL200.7	CALCIUM	56.9		10.9765	10.9765	MG/KG
SS132U	AO198	28-Mar-01	0.5 1	CL200.7	CHROMIUM, TOTAL	5.4		0.3257	0.3257	MG/KG
SS132U	AO198	28-Mar-01	0.5 1	CL200.7	COBALT	0.72	J	0.2606	0.2606	MG/KG

Table A.5 Small Arms Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEP	TH (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132U	AO198	28-Mar-01	0.5	1	CL200.7	COPPER	58.6		0.0977	0.0977	MG/KG
SS132U	AO198	28-Mar-01	0.5	1	CL200.7	IRON	6960		5.3905	5.3905	MG/KG
SS132U	AO198	28-Mar-01	0.5	1	CL200.7	LEAD	30.8		0.4234	0.4234	MG/KG
SS132U	AO198	28-Mar-01	0.5	1	CL200.7	MAGNESIUM	332		11.465	11.465	MG/KG
SS132U	AO198	28-Mar-01	0.5	1	CL200.7	MANGANESE	95.4	J	0.2931	0.2931	MG/KG
SS132U	AO198	28-Mar-01	0.5	1	CL200.7	NICKEL	2.5		0.228	0.228	MG/KG
SS132U	AO198	28-Mar-01	0.5	1	CL200.7	POTASSIUM	190		4.8857	4.8857	MG/KG
SS132U	AO198	28-Mar-01	0.5	1	CL200.7	SODIUM	411	J	45.7625	45.7625	MG/KG
SS132U	AO198	28-Mar-01	0.5	1	CL200.7	VANADIUM	11.1		0.3257	0.3257	MG/KG
SS132U	AO198	28-Mar-01	0.5	1	CL200.7	ZINC	18.1		0.0651	0.0651	MG/KG
SS132U	AO199	28-Mar-01	0.5	1	CL200.7	ALUMINUM	5910		12.7474	12.7474	MG/KG
SS132U	AO199	28-Mar-01	0.5	1	CL200.7	ARSENIC	1.4	J	1.0092	1.0092	MG/KG
SS132U	AO199	28-Mar-01	0.5	1	CL200.7	BARIUM	9.1		0.0531	0.0531	MG/KG
SS132U	AO199	28-Mar-01	0.5	1	CL200.7	BERYLLIUM	0.17	J	0.0708	0.0708	MG/KG
SS132U	AO199	28-Mar-01	0.5	1	CL200.7	CALCIUM	76.1		11.933	11.933	MG/KG
SS132U	AO199	28-Mar-01	0.5	1	CL200.7	CHROMIUM, TOTAL	5.7		0.3541	0.3541	MG/KG
SS132U	AO199	28-Mar-01	0.5	1	CL200.7	COBALT	0.45	J	0.2833	0.2833	MG/KG
SS132U	AO199	28-Mar-01	0.5	1	CL200.7	COPPER	105		0.1062	0.1062	MG/KG
SS132U	AO199	28-Mar-01	0.5	1	CL200.7	IRON	6810		5.8603	5.8603	MG/KG
SS132U	AO199	28-Mar-01	0.5	1	CL200.7	LEAD	21.3		0.4603	0.4603	MG/KG
SS132U	AO199	28-Mar-01	0.5	1	CL200.7	MAGNESIUM	387		12.4641	12.4641	MG/KG
SS132U	AO199	28-Mar-01	0.5	1	CL200.7	MANGANESE	109	J	0.3187	0.3187	MG/KG
SS132U	AO199	28-Mar-01	0.5	1	CL200.7	NICKEL	2.4		0.2479	0.2479	MG/KG
SS132U	AO199	28-Mar-01	0.5	1	CL200.7	POTASSIUM	252		5.3114	5.3114	MG/KG
SS132U	AO199	28-Mar-01	0.5	1	CL200.7	SELENIUM	0.31	J	0.2306	0.2306	MG/KG
SS132U	AO199	28-Mar-01	0.5	1	CL200.7	SODIUM	481	J	49.7504	49.7504	MG/KG
SS132U	AO199	28-Mar-01	0.5	1	CL200.7	VANADIUM	11.3		0.3541	0.3541	MG/KG
SS132U	AO199	28-Mar-01	0.5	1	CL200.7	ZINC	15.7		0.0708	0.0708	MG/KG
SS02232-A	03894	01-May-03	0	0.16	CL200.7	ALUMINUM	5590		6	9.8	MG/KG
SS02232-A	03894	01-May-03	0	0.16	CL200.7	ARSENIC	1.7		0.78	0.78	MG/KG
SS02232-A	03894	01-May-03	0	0.16	CL200.7	BARIUM	5.2		2.4	2.4	MG/KG
SS02232-A	03894	01-May-03	0	0.16	CL200.7	CHROMIUM, TOTAL	4.9		0.19	0.19	MG/KG
SS02232-A	03894	01-May-03	0	0.16	CL200.7	COPPER	14.4		0.47	0.47	MG/KG
SS02232-A	03894	01-May-03	0	0.16	CL200.7	IRON	4820		6.1	6.1	MG/KG
SS02232-A	03894	01-May-03	0	0.16	CL200.7	LEAD	9		0.27	0.27	MG/KG
SS02232-A	03894	01-May-03	0	0.16	CL200.7	MANGANESE	16.2		0.19	0.19	MG/KG
SS02232-A	03894	01-May-03	0	0.16	CL200.7	NICKEL	1.4		0.58	0.58	MG/KG
SS02232-A	03894	01-May-03	0	0.16	CL200.7	POTASSIUM	142	J	63.4	63.4	MG/KG

Table A.5 Small Arms Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPTH (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
	03894	01-May-03		CL200.7	SODIUM	124		68.6	68.6	MG/KG
SS02232-A	03894	01-May-03	0 0.16	CL200.7	VANADIUM	8.9		0.76	0.76	MG/KG
SS02232-A	03894	01-May-03	0 0.16	CL200.7	ZINC	3.6		0.27	0.27	MG/KG
SS02232-A	03895	01-May-03	0 0.16	CL200.7	ALUMINUM	3640		6	9.2	MG/KG
SS02232-A	03895	01-May-03	0 0.16	CL200.7	ARSENIC	1.9		0.73	0.73	MG/KG
SS02232-A	03895	01-May-03	0 0.16	CL200.7	BARIUM	4.1	J	2.2	2.2	MG/KG
SS02232-A	03895	01-May-03	0 0.16	CL200.7	CALCIUM	87	J	56.2	56.2	MG/KG
SS02232-A	03895	01-May-03	0 0.16	CL200.7	CHROMIUM, TOTAL	3.7		0.18	0.18	MG/KG
SS02232-A	03895	01-May-03	0 0.16	CL200.7	COPPER	66.9		0.44	0.44	MG/KG
SS02232-A	03895	01-May-03	0 0.16	CL200.7	IRON	4410		5.7	5.7	MG/KG
SS02232-A	03895	01-May-03	0 0.16	CL200.7	LEAD	121		0.25	0.25	MG/KG
SS02232-A	03895	01-May-03	0 0.16	CL200.7	MANGANESE	21.4		0.18	0.18	MG/KG
SS02232-A	03895	01-May-03	0 0.16	CL200.7	NICKEL	1.6		0.55	0.55	MG/KG
SS02232-A	03895	01-May-03	0 0.16	CL200.7	POTASSIUM	152	J	59.3	59.3	MG/KG
SS02232-A	03895	01-May-03	0 0.16	CL200.7	SODIUM	110	J	64.1	64.1	MG/KG
SS02232-A	03895	01-May-03	0 0.16	CL200.7	VANADIUM	11.1		0.71	0.71	MG/KG
SS02232-A	03895	01-May-03	0 0.16	CL200.7	ZINC	9.1		0.25	0.25	MG/KG
SS02232-A	03896	01-May-03	0 0.16	CL200.7	ALUMINUM	2960		6	10.5	MG/KG
SS02232-A	03896	01-May-03	0 0.16	CL200.7	ARSENIC	1.2	J	0.83	0.83	MG/KG
SS02232-A	03896	01-May-03	0 0.16	CL200.7	BARIUM	2.9	J	2.6	2.6	MG/KG
SS02232-A	03896	01-May-03	0 0.16	CL200.7	CHROMIUM, TOTAL	3.2		0.21	0.21	MG/KG
SS02232-A	03896	01-May-03	0 0.16	CL200.7	COPPER	47.7		0.5	0.5	MG/KG
SS02232-A	03896	01-May-03	0 0.16	CL200.7	IRON	3820		6.5	6.5	MG/KG
SS02232-A	03896	01-May-03	0 0.16	CL200.7	LEAD	77.9		0.29	0.29	MG/KG
SS02232-A	03896	01-May-03	0 0.16	CL200.7	MANGANESE	24.1		0.21	0.21	MG/KG
SS02232-A	03896	01-May-03	0 0.16	CL200.7	NICKEL	1.4		0.63	0.63	MG/KG
SS02232-A	03896	01-May-03	0 0.16	CL200.7	POTASSIUM	190	J	67.8	67.8	MG/KG
SS02232-A	03896	01-May-03	0 0.16	CL200.7	SODIUM	88.9	J	73.4	73.4	MG/KG
SS02232-A	03896	01-May-03	0 0.16	CL200.7	VANADIUM	7		0.81	0.81	MG/KG
SS02232-A	03896	01-May-03	0 0.16	CL200.7	ZINC	6		0.29	0.29	MG/KG
SS02232-A	03896	01-May-03	0 0.16	CL245.5	MERCURY	0.08		0.0258	0.042	MG/KG
SS02232-A	03897	01-May-03	0 0.16	CL200.7	ALUMINUM	4790		6	10.3	MG/KG
SS02232-A	03897	01-May-03	0 0.16	CL200.7	ARSENIC	1.7		0.82	0.82	MG/KG
	03897	01-May-03	0 0.16	CL200.7	BARIUM	4.3		2.5	2.5	MG/KG
SS02232-A	03897	01-May-03	0 0.16	CL200.7	CHROMIUM, TOTAL	4.1		0.21	0.21	MG/KG
	03897	01-May-03	0 0.16	CL200.7	COPPER	36.2		0.49	0.49	MG/KG
SS02232-A	03897	01-May-03	0 0.16	CL200.7	IRON	4250		6.4	6.4	MG/KG
SS02232-A	03897	01-May-03	0 0.16	CL200.7	LEAD	48.5		0.29	0.29	MG/KG

Table A.5 Small Arms Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPTH (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS02232-A	03897	01-May-03	0 0.16	CL200.7	MANGANESE	10.6		0.21	0.21	MG/KG
SS02232-A	03897	01-May-03	0 0.16	CL200.7	NICKEL	1.1	J	0.62	0.62	MG/KG
SS02232-A	03897	01-May-03	0 0.16	CL200.7	POTASSIUM	116	J	66.9	66.9	MG/KG
SS02232-A	03897	01-May-03	0 0.16	CL200.7	SODIUM	105	J	72.3	72.3	MG/KG
SS02232-A	03897	01-May-03	0 0.16	CL200.7	VANADIUM	9.5		0.8	0.8	MG/KG
SS02232-A	03897	01-May-03	0 0.16	CL200.7	ZINC	4.1		0.29	0.29	MG/KG
SS02232-A	03898	01-May-03	0 0.16	CL200.7	ALUMINUM	7600		6	9.5	MG/KG
SS02232-A	03898	01-May-03	0 0.16	CL200.7	ARSENIC	2.2		0.75	0.75	MG/KG
SS02232-A	03898	01-May-03	0 0.16	CL200.7	BARIUM	5.8		2.3	2.3	MG/KG
SS02232-A	03898	01-May-03	0 0.16	CL200.7	CHROMIUM, TOTAL	6.6		0.19	0.19	MG/KG
SS02232-A	03898	01-May-03	0 0.16	CL200.7	COPPER	5.5		0.45	0.45	MG/KG
SS02232-A	03898	01-May-03	0 0.16	CL200.7	IRON	6080		5.9	5.9	MG/KG
SS02232-A	03898	01-May-03	0 0.16	CL200.7	LEAD	12.8		0.26	0.26	MG/KG
SS02232-A	03898	01-May-03	0 0.16	CL200.7	MANGANESE	15		0.19	0.19	MG/KG
SS02232-A	03898	01-May-03	0 0.16	CL200.7	NICKEL	1.6		0.56	0.56	MG/KG
SS02232-A	03898	01-May-03	0 0.16	CL200.7	POTASSIUM	159	J	61.3	61.3	MG/KG
SS02232-A	03898	01-May-03	0 0.16	CL200.7	SODIUM	171		66.3	66.3	MG/KG
SS02232-A	03898	01-May-03	0 0.16	CL200.7	VANADIUM	10.9		0.73	0.73	MG/KG
SS02232-A	03898	01-May-03	0 0.16	CL200.7	ZINC	5.2		0.26	0.26	MG/KG
SS02232-A	03899	01-May-03	0 0.16	CL200.7	ALUMINUM	6310		5.1	5.1	MG/KG
SS02232-A	03899	01-May-03	0 0.16	CL200.7	ARSENIC	1.9		0.87	0.87	MG/KG
SS02232-A	03899	01-May-03	0 0.16	CL200.7	BARIUM	9.2		2.5	2.5	MG/KG
SS02232-A	03899	01-May-03	0 0.16	CL200.7	BERYLLIUM	0.14		0.06	0.06	MG/KG
SS02232-A	03899	01-May-03	0 0.16	CL200.7	BORON	2.1	J	1.4	1.4	MG/KG
SS02232-A	03899	01-May-03	0 0.16	CL200.7	CALCIUM	120		56.5	56.5	MG/KG
SS02232-A	03899	01-May-03	0 0.16	CL200.7	CHROMIUM, TOTAL	5.8		0.17	0.17	MG/KG
SS02232-A	03899	01-May-03	0 0.16	CL200.7	COBALT	1.2		0.54	0.54	MG/KG
SS02232-A	03899	01-May-03	0 0.16	CL200.7	COPPER	84.2		0.44	0.44	MG/KG
SS02232-A	03899	01-May-03	0 0.16	CL200.7	IRON	6210		5.5	5.5	MG/KG
SS02232-A	03899	01-May-03	0 0.16	CL200.7	LEAD	96.8		0.26	0.26	MG/KG
SS02232-A	03899	01-May-03	0 0.16	CL200.7	MAGNESIUM	356		54.7	54.7	MG/KG
SS02232-A	03899	01-May-03	0 0.16	CL200.7	MANGANESE	34.4		0.17	0.17	MG/KG
SS02232-A	03899	01-May-03	0 0.16	CL200.7	NICKEL	3.4		0.48	0.48	MG/KG
SS02232-A	03899	01-May-03	0 0.16	CL200.7	POTASSIUM	342	J	60.6	60.6	MG/KG
SS02232-A	03899	01-May-03	0 0.16	CL200.7	VANADIUM	10.2		0.56	0.56	MG/KG
SS02232-A	03899	01-May-03	0 0.16	CL200.7	ZINC	24.5		0.46	0.46	MG/KG
SS02232-A	03899	01-May-03	0 0.16	CL245.5	MERCURY	0.06	J	0.0258	0.042	MG/KG
SS02232-A	03900	01-May-03	0 0.16	CL200.7	ALUMINUM	4260		6	8.9	MG/KG

Table A.5 Small Arms Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPTH (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
	03900	01-May-03		CL200.7	ARSENIC	1.5		0.71	0.71	MG/KG
SS02232-A	03900	01-May-03	0 0.16	CL200.7	BARIUM	3.6	J	2.2	2.2	MG/KG
SS02232-A	03900	01-May-03	0 0.16	CL200.7	CHROMIUM, TOTAL	3.8		0.18	0.18	MG/KG
SS02232-A	03900	01-May-03	0 0.16	CL200.7	COPPER	45.8		0.43	0.43	MG/KG
SS02232-A	03900	01-May-03	0 0.16	CL200.7	IRON	4860		5.5	5.5	MG/KG
SS02232-A	03900	01-May-03	0 0.16	CL200.7	LEAD	71.8		0.25	0.25	MG/KG
SS02232-A	03900	01-May-03	0 0.16	CL200.7	MANGANESE	18.2		0.18	0.18	MG/KG
SS02232-A	03900	01-May-03	0 0.16	CL200.7	NICKEL	1.6		0.53	0.53	MG/KG
SS02232-A	03900	01-May-03	0 0.16	CL200.7	POTASSIUM	136	J	57.8	57.8	MG/KG
SS02232-A	03900	01-May-03	0 0.16	CL200.7	SODIUM	119	J	62.5	62.5	MG/KG
SS02232-A	03900	01-May-03	0 0.16	CL200.7	VANADIUM	12.5		0.69	0.69	MG/KG
SS02232-A	03900	01-May-03	0 0.16	CL200.7	ZINC	5.7		0.25	0.25	MG/KG
SS02232-A	03901	01-May-03	0 0.16	CL200.7	ALUMINUM	7940		4.9	4.9	MG/KG
SS02232-A	03901	01-May-03	0 0.16	CL200.7	ARSENIC	2		0.82	0.82	MG/KG
SS02232-A	03901	01-May-03	0 0.16	CL200.7	BARIUM	6.7		2.4	2.4	MG/KG
SS02232-A	03901	01-May-03	0 0.16	CL200.7	BERYLLIUM	0.07	J	0.05	0.05	MG/KG
SS02232-A	03901	01-May-03	0 0.16	CL200.7	BORON	1.5	J	1.3	1.3	MG/KG
SS02232-A	03901	01-May-03	0 0.16	CL200.7	CALCIUM	61.3	J	53.6	53.6	MG/KG
SS02232-A	03901	01-May-03	0 0.16	CL200.7	CHROMIUM, TOTAL	5.8		0.16	0.16	MG/KG
SS02232-A	03901	01-May-03	0 0.16	CL200.7	COBALT	0.73	J	0.51	0.51	MG/KG
SS02232-A	03901	01-May-03	0 0.16	CL200.7	COPPER	7.2		0.42	0.42	MG/KG
SS02232-A	03901	01-May-03	0 0.16	CL200.7	IRON	5910		5.2	5.2	MG/KG
SS02232-A	03901	01-May-03	0 0.16	CL200.7	LEAD	10.7		0.25	0.25	MG/KG
SS02232-A	03901	01-May-03	0 0.16	CL200.7	MAGNESIUM	203		51.8	51.8	MG/KG
SS02232-A	03901	01-May-03	0 0.16	CL200.7	MANGANESE	16		0.16	0.16	MG/KG
SS02232-A	03901	01-May-03	0 0.16	CL200.7	NICKEL	2.4		0.46	0.46	MG/KG
SS02232-A	03901	01-May-03	0 0.16	CL200.7	POTASSIUM	226	J	57.5	57.5	MG/KG
SS02232-A	03901	01-May-03	0 0.16	CL200.7	VANADIUM	12.5		0.53	0.53	MG/KG
SS02232-A	03901	01-May-03	0 0.16	CL200.7	ZINC	7.1		0.44	0.44	MG/KG
SS02232-A	03902	01-May-03	0 0.16	CL200.7	ALUMINUM	7980		4.9	4.9	MG/KG
SS02232-A	03902	01-May-03	0 0.16	CL200.7	ANTIMONY	0.87	J	0.86	0.86	MG/KG
SS02232-A	03902	01-May-03	0 0.16	CL200.7	ARSENIC	2.2		0.84	0.84	MG/KG
SS02232-A	03902	01-May-03	0 0.16	CL200.7	BARIUM	12.1		2.4	2.4	MG/KG
SS02232-A	03902	01-May-03	0 0.16	CL200.7	BERYLLIUM	0.15		0.05	0.05	MG/KG
SS02232-A	03902	01-May-03	0 0.16	CL200.7	BORON	2.4	J	1.3	1.3	MG/KG
SS02232-A	03902	01-May-03		CL200.7	CALCIUM	158		54.5	54.5	MG/KG
SS02232-A	03902	01-May-03	0 0.16	CL200.7	CHROMIUM, TOTAL	7.4		0.16	0.16	MG/KG
SS02232-A	03902	01-May-03	0 0.16	CL200.7	COBALT	1.5		0.52	0.52	MG/KG

Table A.5 Small Arms Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEP	ΓΗ (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
	03902	01-May-03		0.16	CL200.7	COPPER	128		0.43	0.43	MG/KG
SS02232-A	03902	01-May-03	0	0.16	CL200.7	IRON	7880		5.3	5.3	MG/KG
SS02232-A	03902	01-May-03	0	0.16	CL200.7	LEAD	143		0.25	0.25	MG/KG
SS02232-A	03902	01-May-03	0	0.16	CL200.7	MAGNESIUM	507		52.7	52.7	MG/KG
SS02232-A	03902	01-May-03	0	0.16	CL200.7	MANGANESE	49.9		0.16	0.16	MG/KG
SS02232-A	03902	01-May-03	0	0.16	CL200.7	NICKEL	3		0.46	0.46	MG/KG
SS02232-A	03902	01-May-03	0	0.16	CL200.7	POTASSIUM	370	J	58.4	58.4	MG/KG
SS02232-A	03902	01-May-03	0	0.16	CL200.7	VANADIUM	13.7		0.54	0.54	MG/KG
SS02232-A	03902	01-May-03	0	0.16	CL200.7	ZINC	32.6		0.45	0.45	MG/KG
SS02232-A	03902	01-May-03	0	0.16	CL245.5	MERCURY	0.068	J	0.0258	0.042	MG/KG
SS02232-A	GTRA300021_PE1	15-Sep-06	0	0.25	SW6010B	COPPER	12.8		0.17	1.9493	MG/KG
SS02232-A	GTRA300021_PE2	15-Sep-06	0	0.25	SW6010B	COPPER	1.2	J	0.18	2.0433	MG/KG
SS02232-A	GTRA300021_PE3	15-Sep-06	0	0.25	SW6010B	COPPER	1.5	J	0.17	1.9848	MG/KG
SS02232-A	TE908	07-Sep-01	0	0.25	CL200.7	ALUMINUM	5930	J	23	393	MG/KG
SS02232-A	TE908	07-Sep-01	0	0.25	CL200.7	BARIUM	6.79	J	0.2	393	MG/KG
SS02232-A	TE908	07-Sep-01	0	0.25	CL200.7	CALCIUM	103	J	22	9830	MG/KG
SS02232-A	TE908	07-Sep-01	0	0.25	CL200.7	CHROMIUM, TOTAL	8.43	J	1	20	MG/KG
SS02232-A	TE908	07-Sep-01	0	0.25	CL200.7	COPPER	7220		1	49	MG/KG
SS02232-A	TE908	07-Sep-01	0	0.25	CL200.7	IRON	7540	J	28	197	MG/KG
SS02232-A	TE908	07-Sep-01	0	0.25	CL200.7	LEAD	114	J	3	6	MG/KG
SS02232-A	TE908	07-Sep-01	0	0.25	CL200.7	MAGNESIUM	470	J	18	9830	MG/KG
SS02232-A	TE908	07-Sep-01	0	0.25	CL200.7	MANGANESE	45.5	J	0.1	30	MG/KG
SS02232-A	TE908	07-Sep-01	0	0.25	CL200.7	NICKEL	5.16	J	2	79	MG/KG
SS02232-A	TE908	07-Sep-01	0	0.25	CL200.7	POTASSIUM	241	J	28	9830	MG/KG
SS02232-A	TE908	07-Sep-01	0	0.25	CL200.7	SODIUM	2630	J	446	9830	MG/KG
SS02232-A	TE908	07-Sep-01	0	0.25	CL200.7	VANADIUM	10.8	J	2	98	MG/KG
SS02232-A	TE908	07-Sep-01	0	0.25	CL200.7	ZINC	791		1	39	MG/KG
SS02232-A	TE908	07-Sep-01	0	0.25	CL245.5	MERCURY	0.019		0.02	0.03	MG/KG
SS02232-A	TE908	07-Sep-01	0	0.25	CVOL	ACETONE	14.9		1	9	UG/KG
SS02232-A	TE908	07-Sep-01	0	0.25	CVOL	BROMOFORM	1.15	J	1	9	UG/KG
SS02232-A	TE908	07-Sep-01	0	0.25	CVOL	CHLOROFORM	2.22	J	1	9	UG/KG
SS02232-A	TE908	07-Sep-01	0	0.25	D2216	SOLIDS, PERCENT	97.3				PERCENT
SS02232-A	TE908	07-Sep-01	0	0.25	SW8270C	bis(2-ETHYLHEXYL) PHTHALATE	227	J	18	343	UG/KG
SS02232-A	TE908	07-Sep-01	0	0.25	SW8270C	DI-n-BUTYL PHTHALATE	128	J	43	343	UG/KG
SS02234-A	03903	01-May-03	0	0.16	CL200.7	ALUMINUM	4350		5.4	5.4	MG/KG
SS02234-A	03903	01-May-03	0	0.16	CL200.7	ANTIMONY	1.6	J	0.93	0.93	MG/KG
SS02234-A	03903	01-May-03	0	0.16	CL200.7	ARSENIC	2.1		0.9	0.91	MG/KG
SS02234-A	03903	01-May-03	0	0.16	CL200.7	BARIUM	6.3		2.6	2.6	MG/KG

Table A.5 Small Arms Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPTH (FT.)	TEST	ANALYTE	RESULT	QUALIFIER1	MDL	RL	UNITS
	03903	01-May-03		CL200.7	BORON	2.6		1.5	1.5	MG/KG
SS02234-A	03903	01-May-03	0 0.16	CL200.7	CALCIUM	175		59.3	59.3	MG/KG
SS02234-A	03903	01-May-03	0 0.16	CL200.7	CHROMIUM, TOTAL	4.9		0.17	0.17	MG/KG
SS02234-A	03903	01-May-03	0 0.16	CL200.7	COBALT	0.79	J	0.56	0.56	MG/KG
SS02234-A	03903	01-May-03	0 0.16	CL200.7	COPPER	75.3		0.47	0.47	MG/KG
SS02234-A	03903	01-May-03	0 0.16	CL200.7	IRON	6150		5.8	5.8	MG/KG
SS02234-A	03903	01-May-03	0 0.16	CL200.7	LEAD	105		0.27	0.27	MG/KG
SS02234-A	03903	01-May-03	0 0.16	CL200.7	MAGNESIUM	339		57.3	57.3	MG/KG
SS02234-A	03903	01-May-03	0 0.16	CL200.7	MANGANESE	37.1		0.17	0.17	MG/KG
SS02234-A	03903	01-May-03	0 0.16	CL200.7	MOLYBDENUM	0.56	J	0.31	0.31	MG/KG
SS02234-A	03903	01-May-03	0 0.16	CL200.7	NICKEL	2.5		0.5	0.5	MG/KG
SS02234-A	03903	01-May-03	0 0.16	CL200.7	POTASSIUM	310	J	63.6	63.6	MG/KG
SS02234-A	03903	01-May-03	0 0.16	CL200.7	VANADIUM	19		0.58	0.58	MG/KG
SS02234-A	03903	01-May-03	0 0.16	CL200.7	ZINC	9.4		0.49	0.49	MG/KG
SS02234-A	03903	01-May-03	0 0.16	CL245.5	MERCURY	0.25	J	0.0258	0.052	MG/KG
SS02234-A	03904	01-May-03	0 0.16	CL200.7	ALUMINUM	3660		6	10.6	MG/KG
SS02234-A	03904	01-May-03	0 0.16	CL200.7	ARSENIC	2.4		0.84	0.84	MG/KG
SS02234-A	03904	01-May-03	0 0.16	CL200.7	BARIUM	5.1	J	2.6	2.6	MG/KG
SS02234-A	03904	01-May-03	0 0.16	CL200.7	CALCIUM	160		64.8	64.8	MG/KG
SS02234-A	03904	01-May-03	0 0.16	CL200.7	CHROMIUM, TOTAL	4.2		0.21	0.21	MG/KG
SS02234-A	03904	01-May-03	0 0.16	CL200.7	COPPER	77.2		0.5	0.5	MG/KG
SS02234-A	03904	01-May-03	0 0.16	CL200.7	IRON	5450		6.5	6.5	MG/KG
SS02234-A	03904	01-May-03	0 0.16	CL200.7	LEAD	98.6		0.29	0.29	MG/KG
SS02234-A	03904	01-May-03	0 0.16	CL200.7	MANGANESE	27.1		0.21	0.21	MG/KG
SS02234-A	03904	01-May-03	0 0.16	CL200.7	MOLYBDENUM	0.57	J	0.4	0.48	MG/KG
SS02234-A	03904	01-May-03	0 0.16	CL200.7	NICKEL	2.3		0.63	0.63	MG/KG
SS02234-A	03904	01-May-03	0 0.16	CL200.7	POTASSIUM	164	J	68.4	68.4	MG/KG
SS02234-A	03904	01-May-03		CL200.7	SODIUM	109	J	73.9	73.9	MG/KG
SS02234-A	03904	01-May-03	0 0.16	CL200.7	VANADIUM	19.2		0.82	0.82	MG/KG
SS02234-A	03904	01-May-03	0 0.16	CL200.7	ZINC	10.4		0.29	0.29	MG/KG
SS02234-A	03904	01-May-03	0 0.16	CL245.5	MERCURY	0.066		0.0258	0.051	MG/KG
SS02234-A	03905	01-May-03	0 0.16	CL200.7	ALUMINUM	4190		6	10.8	MG/KG
SS02234-A	03905	01-May-03	0 0.16	CL200.7	ARSENIC	1.3	J	0.86	0.86	MG/KG
SS02234-A	03905	01-May-03	0 0.16	CL200.7	BARIUM	4.1	J	2.6	2.6	MG/KG
SS02234-A	03905	01-May-03	0 0.16	CL200.7	CALCIUM	78.2	J	66.3	66.3	MG/KG
SS02234-A	03905	01-May-03	0 0.16	CL200.7	CHROMIUM, TOTAL	4.5		0.22	0.22	MG/KG
SS02234-A	03905	01-May-03	0 0.16	CL200.7	COPPER	51.4		0.52	0.52	MG/KG
SS02234-A	03905	01-May-03	0 0.16	CL200.7	IRON	4950		6.7	6.7	MG/KG

Table A.5 Small Arms Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPTH (FT.)	TEST	ANALYTE	RESULT	QUALIFIER1	MDL	RL	UNITS
	03905	01-May-03		CL200.7	LEAD	201		0.3	0.3	MG/KG
SS02234-A	03905	01-May-03		CL200.7	MANGANESE	21.9		0.22	0.22	MG/KG
SS02234-A	03905	01-May-03	0 0.16	CL200.7	NICKEL	2		0.65	0.65	MG/KG
SS02234-A	03905	01-May-03	0 0.16	CL200.7	POTASSIUM	163 J	I	67.3	67.3	MG/KG
SS02234-A	03905	01-May-03	0 0.16	CL200.7	SODIUM	111 J	I	75.7	75.7	MG/KG
SS02234-A	03905	01-May-03	0 0.16	CL200.7	VANADIUM	15.1		0.84	0.84	MG/KG
SS02234-A	03905	01-May-03	0 0.16	CL200.7	ZINC	12.1		0.3	0.3	MG/KG
SS02234-A	03905	01-May-03	0 0.16	CL245.5	MERCURY	0.06		0.0258	0.05	MG/KG
SS02234-A	03906	01-May-03	0 0.16	CL200.7	ALUMINUM	4770		6	10.3	MG/KG
SS02234-A	03906	01-May-03	0 0.16	CL200.7	ARSENIC	2.6		0.82	0.82	MG/KG
SS02234-A	03906	01-May-03	0 0.16	CL200.7	BARIUM	4 J	l	2.5	2.5	MG/KG
SS02234-A	03906	01-May-03	0 0.16	CL200.7	CHROMIUM, TOTAL	4.2		0.2	0.2	MG/KG
SS02234-A	03906	01-May-03	0 0.16	CL200.7	COPPER	36.2		0.49	0.49	MG/KG
SS02234-A	03906	01-May-03	0 0.16	CL200.7	IRON	5190		6.4	6.4	MG/KG
SS02234-A	03906	01-May-03	0 0.16	CL200.7	LEAD	112		0.29	0.29	MG/KG
SS02234-A	03906	01-May-03	0 0.16	CL200.7	MANGANESE	18.3		0.2	0.2	MG/KG
SS02234-A	03906	01-May-03	0 0.16	CL200.7	NICKEL	1.4		0.61	0.61	MG/KG
SS02234-A	03906	01-May-03	0 0.16	CL200.7	POTASSIUM	149 J	ı	66.5	66.5	MG/KG
SS02234-A	03906	01-May-03	0 0.16	CL200.7	SODIUM	123 J	I	71.9	71.9	MG/KG
SS02234-A	03906	01-May-03	0 0.16	CL200.7	VANADIUM	12.9		0.8	0.8	MG/KG
SS02234-A	03906	01-May-03	0 0.16	CL200.7	ZINC	8.1		0.29	0.29	MG/KG
SS02234-A	03906	01-May-03	0 0.16	CL245.5	MERCURY	0.057		0.0258	0.055	MG/KG
SS02234-A	03907	01-May-03	0 0.16	CL200.7	ALUMINUM	6180		5.6	5.6	MG/KG
SS02234-A	03907	01-May-03	0 0.16	CL200.7	ANTIMONY	3.1 J	ı	0.96	0.96	MG/KG
SS02234-A	03907	01-May-03	0 0.16	CL200.7	ARSENIC	2.2		0.9	0.94	MG/KG
SS02234-A	03907	01-May-03	0 0.16	CL200.7	BARIUM	6.1		2.7	2.7	MG/KG
SS02234-A	03907	01-May-03	0 0.16	CL200.7	BERYLLIUM	0.08 J	J	0.06	0.06	MG/KG
SS02234-A	03907	01-May-03	0 0.16	CL200.7	BORON	2.4 J	J	1.5	1.5	MG/KG
SS02234-A	03907	01-May-03	0 0.16	CL200.7	CALCIUM	108 J	I	61.2	61.2	MG/KG
SS02234-A	03907	01-May-03	0 0.16	CL200.7	CHROMIUM, TOTAL	6.2		0.18	0.18	MG/KG
SS02234-A	03907	01-May-03	0 0.16	CL200.7	COBALT	1 J	J	0.58	0.58	MG/KG
SS02234-A	03907	01-May-03	0 0.16	CL200.7	COPPER	77.1		0.48	0.48	MG/KG
SS02234-A	03907	01-May-03	0 0.16	CL200.7	IRON	6930		6	6	MG/KG
SS02234-A	03907	01-May-03	0 0.16	CL200.7	LEAD	246		0.28	0.28	MG/KG
SS02234-A	03907	01-May-03	0 0.16	CL200.7	MAGNESIUM	440		59.2	59.2	MG/KG
SS02234-A	03907	01-May-03	0 0.16	CL200.7	MANGANESE	32.5		0.18	0.18	MG/KG
SS02234-A	03907	01-May-03	0 0.16	CL200.7	NICKEL	2.6		0.52	0.52	MG/KG
SS02234-A	03907	01-May-03	0 0.16	CL200.7	POTASSIUM	388 J	ı	65.6	65.6	MG/KG

Table A.5 Small Arms Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPTH (FT.)	TEST	ANALYTE	RESULT	QUALIFIER1	MDL	RL	UNITS
	03907	01-May-03		CL200.7	VANADIUM	17.7		0.6	0.6	MG/KG
SS02234-A	03907	01-May-03	0 0.16	CL200.7	ZINC	11.7		0.5	0.5	MG/KG
SS02234-A	03907	01-May-03	0 0.16	CL245.5	MERCURY	0.1	J	0.0258	0.054	MG/KG
SS02234-A	03908	01-May-03	0 0.16	CL200.7	ALUMINUM	3710		6	10	MG/KG
SS02234-A	03908	01-May-03	0 0.16	CL200.7	ARSENIC	1.9		0.8	0.8	MG/KG
SS02234-A	03908	01-May-03	0 0.16	CL200.7	BARIUM	4	J	2.4	2.4	MG/KG
SS02234-A	03908	01-May-03	0 0.16	CL200.7	CALCIUM	88.1	J	61.4	61.4	MG/KG
SS02234-A	03908	01-May-03	0 0.16	CL200.7	CHROMIUM, TOTAL	3.9		0.2	0.2	MG/KG
SS02234-A	03908	01-May-03	0 0.16	CL200.7	COPPER	73		0.48	0.48	MG/KG
SS02234-A	03908	01-May-03	0 0.16	CL200.7	IRON	4970		6.2	6.2	MG/KG
SS02234-A	03908	01-May-03	0 0.16	CL200.7	LEAD	128		0.28	0.28	MG/KG
SS02234-A	03908	01-May-03	0 0.16	CL200.7	MANGANESE	27.2		0.2	0.2	MG/KG
SS02234-A	03908	01-May-03	0 0.16	CL200.7	NICKEL	1.6		0.6	0.6	MG/KG
SS02234-A	03908	01-May-03	0 0.16	CL200.7	POTASSIUM	178	J	64.8	64.8	MG/KG
SS02234-A	03908	01-May-03	0 0.16	CL200.7	SODIUM	115	J	70.1	70.1	MG/KG
SS02234-A	03908	01-May-03	0 0.16	CL200.7	VANADIUM	14.8		0.78	0.78	MG/KG
SS02234-A	03908	01-May-03	0 0.16	CL200.7	ZINC	9.4		0.28	0.28	MG/KG
SS02234-A	03908	01-May-03	0 0.16	CL245.5	MERCURY	0.069		0.0258	0.05	MG/KG
SS02234-A	03909	01-May-03	0 0.16	CL200.7	ALUMINUM	4920		6	6.2	MG/KG
SS02234-A	03909	01-May-03	0 0.16	CL200.7	ANTIMONY	1.7	J	1.1	1.1	MG/KG
SS02234-A	03909	01-May-03	0 0.16	CL200.7	ARSENIC	1.7	J	0.9	1.1	MG/KG
SS02234-A	03909	01-May-03	0 0.16	CL200.7	BARIUM	6.7		3	3	MG/KG
SS02234-A	03909	01-May-03	0 0.16	CL200.7	BORON	1.7	J	1.7	1.7	MG/KG
SS02234-A	03909	01-May-03	0 0.16	CL200.7	CALCIUM	510		68.2	68.2	MG/KG
SS02234-A	03909	01-May-03	0 0.16	CL200.7	CHROMIUM, TOTAL	4		0.2	0.2	MG/KG
SS02234-A	03909	01-May-03	0 0.16	CL200.7	COBALT	1.2	J	0.65	0.65	MG/KG
	03909	01-May-03	0 0.16	CL200.7	COPPER	84.8		0.54	0.54	MG/KG
SS02234-A	03909	01-May-03	0 0.16	CL200.7	IRON	6610		6.7	6.7	MG/KG
SS02234-A	03909	01-May-03	0 0.16	CL200.7	LEAD	143		0.3	0.31	MG/KG
SS02234-A	03909	01-May-03	0 0.16	CL200.7	MAGNESIUM	653		66	66	MG/KG
SS02234-A	03909	01-May-03	0 0.16	CL200.7	MANGANESE	73.1		0.2	0.2	MG/KG
SS02234-A	03909	01-May-03	0 0.16	CL200.7	NICKEL	3.9		0.58	0.58	MG/KG
SS02234-A	03909	01-May-03	0 0.16	CL200.7	POTASSIUM	319	J	73.2	73.2	MG/KG
SS02234-A	03909	01-May-03	0 0.16	CL200.7	VANADIUM	19.4		0.67	0.67	MG/KG
SS02234-A	03909	01-May-03	0 0.16	CL200.7	ZINC	19.3		0.56	0.56	MG/KG
SS02234-A	03910	01-May-03	0 0.16	CL200.7	ALUMINUM	2600		6	11	MG/KG
SS02234-A	03910	01-May-03	0 0.16	CL200.7	BARIUM	5.6		2.7	2.7	MG/KG
SS02234-A	03910	01-May-03	0 0.16	CL200.7	CALCIUM	161	J	67.7	67.7	MG/KG

Table A.5 Small Arms Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEP	ГН (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
	03910	01-May-03		0.16	CL200.7	CHROMIUM, TOTAL	2.2		0.22	0.22	MG/KG
SS02234-A	03910	01-May-03	0	0.16	CL200.7	COPPER	11.3		0.53	0.53	MG/KG
SS02234-A	03910	01-May-03	0	0.16	CL200.7	IRON	4130		6.8	6.8	MG/KG
SS02234-A	03910	01-May-03	0	0.16	CL200.7	LEAD	75.6		0.3	0.31	MG/KG
SS02234-A	03910	01-May-03	0	0.16	CL200.7	MAGNESIUM	570		64.8	64.8	MG/KG
SS02234-A	03910	01-May-03	0	0.16	CL200.7	MANGANESE	69.7		0.22	0.22	MG/KG
SS02234-A	03910	01-May-03	0	0.16	CL200.7	MOLYBDENUM	0.83		0.4	0.51	MG/KG
SS02234-A	03910	01-May-03	0	0.16	CL200.7	NICKEL	2.2		0.66	0.66	MG/KG
SS02234-A	03910	01-May-03	0	0.16	CL200.7	POTASSIUM	300	J	71.5	71.5	MG/KG
SS02234-A	03910	01-May-03	0	0.16	CL200.7	SODIUM	90.1	J	77.3	77.3	MG/KG
SS02234-A	03910	01-May-03	0	0.16	CL200.7	VANADIUM	11.9		0.86	0.86	MG/KG
SS02234-A	03910	01-May-03	0	0.16	CL200.7	ZINC	13.5		0.31	0.31	MG/KG
SS02234-A	03910	01-May-03	0	0.16	CL245.5	MERCURY	0.067		0.0258	0.052	MG/KG
SS02234-A	GTRA300023_PE1	19-Sep-06	0	0.25	SW6010B	COPPER	6.5		0.18	2.0127	MG/KG
SS02234-A	GTRA300023_PE1	19-Sep-06	0	0.25	SW6010B	LEAD	10.3		0.16	0.8051	MG/KG
SS02234-A	GTRA300023_PE2	19-Sep-06	0	0.25	SW6010B	COPPER	7.5		0.17	1.9724	MG/KG
SS02234-A	GTRA300023_PE2	19-Sep-06	0	0.25	SW6010B	LEAD	14.7		0.16	0.789	MG/KG
SS02234-A	GTRA300023_PE3	19-Sep-06	0	0.25	SW6010B	COPPER	2.1		0.17	1.9174	MG/KG
SS02234-A	GTRA300023_PE3	19-Sep-06	0	0.25	SW6010B	LEAD	4.9		0.15	0.767	MG/KG
SS02234-A	TE910	27-Sep-01	0	1	CL200.7	ALUMINUM	5750		5	82	MG/KG
SS02234-A	TE910	27-Sep-01	0	1	CL200.7	ANTIMONY	1.56	J	1	24	MG/KG
SS02234-A	TE910	27-Sep-01	0	1	CL200.7	ARSENIC	1.7		1.7	4	MG/KG
SS02234-A	TE910	27-Sep-01	0	1	CL200.7	BARIUM	6.85		0.2	82	MG/KG
SS02234-A	TE910	27-Sep-01	0	1	CL200.7	BERYLLIUM	0.212		0.01	2	MG/KG
SS02234-A	TE910	27-Sep-01	0	1	CL200.7	CHROMIUM, TOTAL	22.5	J	0.09	4	MG/KG
SS02234-A	TE910	27-Sep-01	0	1	CL200.7	COBALT	0.755		0.07	20	MG/KG
SS02234-A	TE910	27-Sep-01	0	1	CL200.7	COPPER	1030		0.08	10	MG/KG
SS02234-A	TE910	27-Sep-01	0	1	CL200.7	IRON	8480		6	41	MG/KG
SS02234-A	TE910	27-Sep-01	0	1	CL200.7	LEAD	360		1	1	MG/KG
SS02234-A	TE910	27-Sep-01	0	1	CL200.7	MAGNESIUM	598		4	2050	MG/KG
SS02234-A	TE910	27-Sep-01	0	1	CL200.7	MANGANESE	50.3		0.1	6	MG/KG
SS02234-A	TE910	27-Sep-01	0	1	CL200.7	MOLYBDENUM	3.94		0.09	2	MG/KG
SS02234-A	TE910	27-Sep-01	0	1	CL200.7	NICKEL	4.22		0.11	16	MG/KG
SS02234-A	TE910	27-Sep-01	0	1	CL200.7	POTASSIUM	256		6	2050	MG/KG
SS02234-A	TE910	27-Sep-01	0	1	CL200.7	SELENIUM	3.06	J	2	2	MG/KG
SS02234-A	TE910	27-Sep-01	0	1	CL200.7	SODIUM	1990		93	2050	MG/KG
SS02234-A	TE910	27-Sep-01	0	1	CL200.7	VANADIUM	11.1		0.13	20	MG/KG
SS02234-A	TE910	27-Sep-01	0	1	CL200.7	ZINC	17.1		0.08	8	MG/KG

Table A.5 Small Arms Area Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPTH (FT.)	TEST	ANALYTE	RESULT	QUALIFIER1	MDL	RL	UNITS
SS02234-A	TE910	27-Sep-01	0 1	CL245.5	MERCURY	0.114		0.02	0.03	MG/KG
SS02234-A	TE910	27-Sep-01	0 1	CVOL	ACETONE	22.7	J	1	8	UG/KG
SS02234-A	TE910	27-Sep-01	0 1	CVOL	BENZENE	4.36	J	1	8	UG/KG
SS02234-A	TE910	27-Sep-01	0 1	CVOL	BROMOMETHANE	0.912	J	0.912	8	UG/KG
SS02234-A	TE910	27-Sep-01	0 1	CVOL	CARBON DISULFIDE	2.58	J	1	8	UG/KG
SS02234-A	TE910	27-Sep-01	0 1	CVOL	CHLOROMETHANE	2.1	J	1	8	UG/KG
SS02234-A	TE910	27-Sep-01	0 1	CVOL	ETHYLBENZENE	1.07	J	1	8	UG/KG
SS02234-A	TE910	27-Sep-01	0 1	CVOL	STYRENE	2.33	J	1	8	UG/KG
SS02234-A	TE910	27-Sep-01	0 1	CVOL	TOLUENE	2.01	J	1	8	UG/KG
SS02234-A	TE910	27-Sep-01	0 1	CVOL	XYLENES, TOTAL	1.67	J	1	8	UG/KG
SS02234-A	TE910	27-Sep-01	0 1	D2216	SOLIDS, PERCENT	93.9				PERCENT
SS02234-A	TE910	27-Sep-01	0 1	SW8270C	BENZOIC ACID	596	J	110	710	UG/KG
SS02234-A	TE910	27-Sep-01	0 1	SW8270C	bis(2-ETHYLHEXYL) PHTHALATE	31.3	J	18	355	UG/KG
SS02234-A	TE910	27-Sep-01	0 1	SW8270C	PHENOL	229	J	29	355	UG/KG
Footnote:					tion. The complet that are presented without an acceptance	11.61				

1. Qualifiers: J = value is estimated due to limitations found in the data validation. The samples that are presented without an associated qualifier code were treated as detected results.

Table A.6
Firing Point Data (Detects)

LOCATION	SAMPLE ID	DATE	DEP1	TH (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132BA	21310	06-Dec-04	0	0.5	D2216	MOISTURE, PERCENT	7				PERCENT
SS132BA	21312	06-Dec-04	0	0.5	D2216	MOISTURE, PERCENT	7				PERCENT
SS132BA	21314	06-Dec-04	1.5	2	D2216	MOISTURE, PERCENT	11				PERCENT
SS132BA	21323	06-Dec-04	0	0.5	CVOL	METHYL ETHYL KETONE (2-BUTANONE)	2	J	1.9	9	UG/KG
SS132BA	21324	06-Dec-04	0	0.5	CVOL	ACETONE	24	J	3.0691	8	UG/KG
SS132BA	21324	06-Dec-04	0	0.5	CVOL	METHYL ETHYL KETONE (2-BUTANONE)	2	J	1.9	8	UG/KG
SS132BA	21325	06-Dec-04	1.5	2	CVOL	ACETONE	37	J	2.6872	7	UG/KG
SS132BA	21325	06-Dec-04	1.5	2	CVOL	METHYL ETHYL KETONE (2-BUTANONE)	2	J	1.9373	7	UG/KG
SS132BB	21316	06-Dec-04	0	0.5	D2216	MOISTURE, PERCENT	4				PERCENT
SS132BB	21318	06-Dec-04	1.5	2	D2216	MOISTURE, PERCENT	5				PERCENT
SS132BB	21326	06-Dec-04	0	0.5	CVOL	METHYL ETHYL KETONE (2-BUTANONE)	1	J	0.9	6	UG/KG
SS132BC	21320	06-Dec-04	0	0.5	D2216	MOISTURE, PERCENT	9				PERCENT
SS132BC	21320	06-Dec-04	0	0.5	SW8270C	DI-n-BUTYL PHTHALATE	38	J	25.3	360	UG/KG
SS132BC	21322	06-Dec-04	1.5	2	D2216	MOISTURE, PERCENT	6				PERCENT
SS132BC	21328	08-Dec-04	0	0.5	CVOL	ACETONE	22	J	3.8661	10	UG/KG
SS132BC	21328	08-Dec-04	0	0.5	CVOL	METHYL ETHYL KETONE (2-BUTANONE)	2	J	1.9	10	UG/KG
SS132BC	21329	08-Dec-04	1.5	2	CVOL	ACETONE	12	J	2.9533	8	UG/KG
SS132BC	21329	08-Dec-04	1.5	2	CVOL	METHYL ETHYL KETONE (2-BUTANONE)	1	J	0.9	8	UG/KG
SS132E	21332	06-Dec-04	1.5	2	D2216	MOISTURE, PERCENT	9				PERCENT
SS132E	AP013	30-Mar-01	0	0.25	CVOL	ACETONE	57	J	4.04	8	UG/KG
SS132E	AP013	30-Mar-01	0	0.25	CVOL	STYRENE	1	J	1	8	UG/KG
SS132E	AP013	30-Mar-01	0	0.25	CVOL	TETRACHLOROETHYLENE(PCE)	1	J	1	8	UG/KG
SS132E	AP013	30-Mar-01	0	0.25	CVOL	TOLUENE	0.8	J	0.8	8	UG/KG
SS132E	AP013	30-Mar-01	0	0.25	E350.2	NITROGEN, AMMONIA (AS N)	3.4	J	1.5	2.8	MG/KG
SS132E	AP013	30-Mar-01	0	0.25	E353.2	NITROGEN, NITRATE-NITRITE	0.06		0.0043	0.01	MG/KG
SS132E	AP013	30-Mar-01	0	0.25	E365.2	PHOSPHORUS, TOTAL ORTHOPHOSPHATE (AS PO4)	46.3	J	1	1.99	MG/KG
SS132E	AP013	30-Mar-01	0	0.25	LYDKHN	TOTAL ORGANIC CARBON	2380	J			MG/KG
SS132E	AP014	30-Mar-01	0.25	0.5	CVOL	ACETONE	18	J	4.04	8	UG/KG
SS132E	AP014	30-Mar-01	0.25	0.5	CVOL	STYRENE	0.8	J	0.8	8	UG/KG
SS132E	AP014	30-Mar-01	0.25	0.5	CVOL	XYLENES, TOTAL	1	J	1	8	UG/KG
SS132E	AP014	30-Mar-01	0.25	0.5	E353.2	NITROGEN, NITRATE-NITRITE	0.02		0.0043	0.01	MG/KG
SS132E	AP014	30-Mar-01	0.25	0.5	E365.2	PHOSPHORUS, TOTAL ORTHOPHOSPHATE (AS PO4)	30.2	J	1	2.2	MG/KG
SS132E	AP015	30-Mar-01	0.5	1	CVOL	ACETONE	22	J	4.04	8	UG/KG
	AP015	30-Mar-01	0.5	1	CVOL	TETRACHLOROETHYLENE(PCE)	0.8		0.8	8	UG/KG
	AP015	30-Mar-01	0.5	1	CVOL	XYLENES, TOTAL	0.8	J	0.8	8	UG/KG
SS132E	AP015	30-Mar-01	0.5	1	E353.2	NITROGEN, NITRATE-NITRITE	0.01		0.0043	0.01	MG/KG
	AP015	30-Mar-01	0.5	1	E365.2	PHOSPHORUS, TOTAL ORTHOPHOSPHATE (AS PO4)	45.3	J	1	2.08	MG/KG
SS132E	AP015	30-Mar-01	0.5	1	LYDKHN	TOTAL ORGANIC CARBON	430				MG/KG

Table A.6
Firing Point Data (Detects)

LOCATION	SAMPLE ID	DATE	DEP1	ΓΗ (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132E	AP020	30-Mar-01	0	0.25	CL200.7	ALUMINUM	1720	J	12.2833	12.2833	MG/KG
SS132E	AP020	30-Mar-01	0	0.25	CL200.7	ARSENIC	1.2		0.9724	0.9724	MG/KG
SS132E	AP020	30-Mar-01	0	0.25	CL200.7	BARIUM	2.2		0.0512	0.0512	MG/KG
SS132E	AP020	30-Mar-01	0	0.25	CL200.7	BORON	1.3		0.2218	0.2218	MG/KG
SS132E	AP020	30-Mar-01	0	0.25	CL200.7	CALCIUM	42		11.4986	11.4986	MG/KG
SS132E	AP020	30-Mar-01	0	0.25	CL200.7	CHROMIUM, TOTAL	2.4		0.3412	0.3412	MG/KG
SS132E	AP020	30-Mar-01	0	0.25	CL200.7	COBALT	0.5	J	0.273	0.273	MG/KG
SS132E	AP020	30-Mar-01	0	0.25	CL200.7	COPPER	1	J	0.1024	0.1024	MG/KG
SS132E	AP020	30-Mar-01	0	0.25	CL200.7	IRON	2950	J	5.6469	5.6469	MG/KG
SS132E	AP020	30-Mar-01	0	0.25	CL200.7	LEAD	2.2	J	0.4436	0.4436	MG/KG
SS132E	AP020	30-Mar-01	0	0.25	CL200.7	MAGNESIUM	202		12.0104	12.0104	MG/KG
SS132E	AP020	30-Mar-01	0	0.25	CL200.7	MANGANESE	13.7		0.3071	0.3071	MG/KG
SS132E	AP020	30-Mar-01	0	0.25	CL200.7	NICKEL	0.9	J	0.2388	0.2388	MG/KG
SS132E	AP020	30-Mar-01	0	0.25	CL200.7	POTASSIUM	157		5.1181	5.1181	MG/KG
SS132E	AP020	30-Mar-01	0	0.25	CL200.7	SODIUM	197		47.9391	47.9391	MG/KG
SS132E	AP020	30-Mar-01	0	0.25	CL200.7	VANADIUM	7.5		0.3412	0.3412	MG/KG
SS132E	AP021	30-Mar-01	0.25	0.5	CL200.7	ALUMINUM	1550	J	11.8612	11.8612	MG/KG
SS132E	AP021	30-Mar-01	0.25	0.5	CL200.7	BARIUM	1.9		0.0494	0.0494	MG/KG
SS132E	AP021	30-Mar-01	0.25	0.5	CL200.7	BORON	1.1		0.2142	0.2142	MG/KG
SS132E	AP021	30-Mar-01	0.25	0.5	CL200.7	CALCIUM	28.1		11.1034	11.1034	MG/KG
SS132E	AP021	30-Mar-01	0.25	0.5	CL200.7	CHROMIUM, TOTAL	2		0.3295	0.3295	MG/KG
SS132E	AP021	30-Mar-01	0.25	0.5	CL200.7	COPPER	0.9	J	0.0988	0.0988	MG/KG
SS132E	AP021	30-Mar-01	0.25	0.5	CL200.7	IRON	2630	J	5.4529	5.4529	MG/KG
SS132E	AP021	30-Mar-01	0.25	0.5	CL200.7	LEAD	2.2	J	0.4283	0.4283	MG/KG
SS132E	AP021	30-Mar-01	0.25	0.5	CL200.7	MAGNESIUM	183		11.5976	11.5976	MG/KG
SS132E	AP021	30-Mar-01	0.25	0.5	CL200.7	MANGANESE	12.5		0.2965	0.2965	MG/KG
SS132E	AP021	30-Mar-01	0.25	0.5	CL200.7	NICKEL	0.67	J	0.2306	0.2306	MG/KG
SS132E	AP021	30-Mar-01	0.25	0.5	CL200.7	POTASSIUM	101		4.9422	4.9422	MG/KG
SS132E	AP021	30-Mar-01	0.25	0.5	CL200.7	SODIUM	104		46.2917	46.2917	MG/KG
SS132E	AP021	30-Mar-01	0.25	0.5	CL200.7	VANADIUM	6.5		0.3295	0.3295	MG/KG
SS132E	AP022	30-Mar-01	0.5	1	CL200.7	ALUMINUM	2440	J	12.0401	12.0401	MG/KG
SS132E	AP022	30-Mar-01	0.5	1	CL200.7	ARSENIC	1.2	J	0.9532	0.9532	MG/KG
SS132E	AP022	30-Mar-01	0.5	1	CL200.7	BARIUM	2.8		0.0502	0.0502	MG/KG
SS132E	AP022	30-Mar-01	0.5	1	CL200.7	BORON	1.6		0.2174	0.2174	MG/KG
SS132E	AP022	30-Mar-01	0.5	1	CL200.7	CALCIUM	86		11.2709	11.2709	MG/KG
SS132E	AP022	30-Mar-01	0.5	1	CL200.7	CHROMIUM, TOTAL	2.7		0.3344	0.3344	MG/KG
SS132E	AP022	30-Mar-01	0.5	1	CL200.7	COBALT	0.32	J	0.2676	0.2676	MG/KG
SS132E	AP022	30-Mar-01	0.5	1	CL200.7	COPPER	0.8	J	0.1003	0.1003	MG/KG

Table A.6
Firing Point Data (Detects)

LOCATION	SAMPLE ID	DATE	DEP1	ΓΗ (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132E	AP022	30-Mar-01	0.5	1	CL200.7	IRON	3370	J	5.5351	5.5351	MG/KG
SS132E	AP022	30-Mar-01	0.5	1	CL200.7	LEAD	2.5	J	0.4348	0.4348	MG/KG
SS132E	AP022	30-Mar-01	0.5	1	CL200.7	MAGNESIUM	243		11.7726	11.7726	MG/KG
SS132E	AP022	30-Mar-01	0.5	1	CL200.7	MANGANESE	15.5		0.301	0.301	MG/KG
SS132E	AP022	30-Mar-01	0.5	1	CL200.7	NICKEL	1	J	0.2341	0.2341	MG/KG
SS132E	AP022	30-Mar-01	0.5	1	CL200.7	POTASSIUM	179		5.0167	5.0167	MG/KG
SS132E	AP022	30-Mar-01	0.5	1	CL200.7	SODIUM	345		46.99	46.99	MG/KG
SS132E	AP022	30-Mar-01	0.5	1	CL200.7	VANADIUM	6.9		0.3344	0.3344	MG/KG
SS132E	AP030	02-Apr-01	0	0.25	E350.2	NITROGEN, AMMONIA (AS N)	10	J	1.5	2.41	MG/KG
SS132E	AP030	02-Apr-01	0	0.25	E365.2	PHOSPHORUS, TOTAL ORTHOPHOSPHATE (AS PO4)	48.2	J	1	1.98	MG/KG
SS132E	AP030	02-Apr-01	0	0.25	LYDKHN	TOTAL ORGANIC CARBON	954	J			MG/KG
SS132E	AP031	02-Apr-01	0	0.25	E350.2	NITROGEN, AMMONIA (AS N)	15.2		1.5	2.43	MG/KG
SS132E	AP031	02-Apr-01	0	0.25	E365.2	PHOSPHORUS, TOTAL ORTHOPHOSPHATE (AS PO4)	33.3	J	1	1.99	MG/KG
SS132E	AP031	02-Apr-01	0	0.25	LYDKHN	TOTAL ORGANIC CARBON	3880	J			MG/KG
SS132E	AP032	02-Apr-01	0.25	0.5	E350.2	NITROGEN, AMMONIA (AS N)	7.2	J	1.5	2.33	MG/KG
SS132E	AP032	02-Apr-01	0.25	0.5	E365.2	PHOSPHORUS, TOTAL ORTHOPHOSPHATE (AS PO4)	53.7	J	1	2.12	MG/KG
SS132E	AP032	02-Apr-01	0.25	0.5	LYDKHN	TOTAL ORGANIC CARBON	274	J			MG/KG
SS132E	AP032	02-Apr-01	0.25	0.5	SW8151A	PENTACHLOROPHENOL	92	J	30	36	UG/KG
SS132E	AP033	02-Apr-01	0	0.25	CVOL	METHYL ETHYL KETONE (2-BUTANONE)	2	J	2	4	UG/KG
SS132E	AP033	02-Apr-01	0	0.25	E350.2	NITROGEN, AMMONIA (AS N)	20.9		1.5	2.63	MG/KG
SS132E	AP033	02-Apr-01	0	0.25	E365.2	PHOSPHORUS, TOTAL ORTHOPHOSPHATE (AS PO4)	52.2	J	1	2.2	MG/KG
SS132E	AP033	02-Apr-01	0	0.25	LYDKHN	TOTAL ORGANIC CARBON	5940	J			MG/KG
SS132E	AP034	02-Apr-01	0.25	0.5	CVOL	METHYL ETHYL KETONE (2-BUTANONE)	3	J	3	6	UG/KG
SS132E	AP034	02-Apr-01	0.25	0.5	E350.2	NITROGEN, AMMONIA (AS N)	9.3	J	1.5	2.33	MG/KG
SS132E	AP034	02-Apr-01	0.25	0.5	E365.2	PHOSPHORUS, TOTAL ORTHOPHOSPHATE (AS PO4)	49.7	J	1	2.09	MG/KG
SS132E	AP034	02-Apr-01	0.25	0.5	LYDKHN	TOTAL ORGANIC CARBON	2460	J			MG/KG
SS132E	AP034	02-Apr-01	0.25	0.5	SW8151A	2,4,5-T (TRICHLOROPHENOXYACETIC ACID)	5.6	J	5	5	UG/KG
SS132E	AP035	02-Apr-01	0.25	0.5	CPEST	p,p'-DDT	2.7	J	1.63	3.5	UG/KG
SS132E	AP035	02-Apr-01	0.25	0.5	CVOL	ACETONE	48	J	4	4	UG/KG
SS132E	AP035	02-Apr-01	0.25	0.5	CVOL	METHYL ETHYL KETONE (2-BUTANONE)	2	J	2	4	UG/KG
SS132E	AP035	02-Apr-01	0.25	0.5	E350.2	NITROGEN, AMMONIA (AS N)	15.5		1.5	2.54	MG/KG
SS132E	AP035	02-Apr-01	0.25	0.5	E353.2	NITROGEN, NITRATE-NITRITE	0.01		0.0043	0.01	MG/KG
SS132E	AP035	02-Apr-01	0.25	0.5	E365.2	PHOSPHORUS, TOTAL ORTHOPHOSPHATE (AS PO4)	49.4	J	1	2.02	MG/KG
	AP035	02-Apr-01	0.25	0.5	LYDKHN	TOTAL ORGANIC CARBON	4040	J			MG/KG
SS132E	AP036	02-Apr-01	0.25	0.5	CVOL	BROMOFORM	0.6	J	0.6	4	UG/KG
SS132E	AP036	02-Apr-01	0.25	0.5	CVOL	METHYL ETHYL KETONE (2-BUTANONE)	1		1	4	UG/KG
	AP036	02-Apr-01	0.25	0.5	E350.2	NITROGEN, AMMONIA (AS N)	7.7		1.5	2.4	MG/KG
SS132E	AP036	02-Apr-01	0.25	0.5	E365.2	PHOSPHORUS, TOTAL ORTHOPHOSPHATE (AS PO4)	33.1	J	1	2.04	MG/KG

Table A.6
Firing Point Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132E	AP036	02-Apr-01	0.25	0.5	LYDKHN	TOTAL ORGANIC CARBON	1550	J			MG/KG
SS132E	AP037	02-Apr-01	0.25	0.5	CPEST	p,p'-DDE	2.6	J	0.523	3.6	UG/KG
SS132E	AP037	02-Apr-01	0.25	0.5	CPEST	p,p'-DDT	4 .	J	1.63	3.6	UG/KG
SS132E	AP037	02-Apr-01	0.25	0.5	CVOL	ACETONE	45 .	J	4	4	UG/KG
SS132E	AP037	02-Apr-01	0.25	0.5	CVOL	METHYL ETHYL KETONE (2-BUTANONE)	2 .	J	2	4	UG/KG
SS132E	AP037	02-Apr-01	0.25	0.5	E350.2	NITROGEN, AMMONIA (AS N)	15.5	J	1.5	2.59	MG/KG
SS132E	AP037	02-Apr-01	0.25	0.5	E365.2	PHOSPHORUS, TOTAL ORTHOPHOSPHATE (AS PO4)	51.9	J	1	2.08	MG/KG
SS132E	AP037	02-Apr-01	0.25	0.5	LYDKHN	TOTAL ORGANIC CARBON	2640	J			MG/KG
SS132E	AP037	02-Apr-01	0.25	0.5	SW8151A	2,4,5-T (TRICHLOROPHENOXYACETIC ACID)	5.2	J	5.2	5.2	UG/KG
SS132E	AP038	02-Apr-01	0.25	0.5	CPEST	p,p'-DDT	2.6	J	1.63	3.5	UG/KG
SS132E	AP038	02-Apr-01	0.25	0.5	CVOL	ACETONE	45	J	4	4	UG/KG
SS132E	AP038	02-Apr-01	0.25	0.5	CVOL	METHYL ETHYL KETONE (2-BUTANONE)	3 .	J	3	4	UG/KG
SS132E	AP038	02-Apr-01	0.25	0.5	CVOL	TOLUENE	1 ,	J	1	4	UG/KG
SS132E	AP038	02-Apr-01	0.25	0.5	E350.2	NITROGEN, AMMONIA (AS N)	11.7	J	1.5	2.48	MG/KG
SS132E	AP038	02-Apr-01	0.25	0.5	E365.2	PHOSPHORUS, TOTAL ORTHOPHOSPHATE (AS PO4)	50.5	J	1	2.14	MG/KG
SS132E	AP038	02-Apr-01	0.25	0.5	LYDKHN	TOTAL ORGANIC CARBON	2030	J			MG/KG
SS132E	AP039	02-Apr-01	0.5	1	CPEST	p,p'-DDE	1.8	J	0.523	3.5	UG/KG
SS132E	AP039	02-Apr-01	0.5	1	CVOL	ACETONE	76	J	4	4	UG/KG
SS132E	AP039	02-Apr-01	0.5	1	CVOL	BROMOFORM	0.4	J	0.4	4	UG/KG
SS132E	AP039	02-Apr-01	0.5	1	CVOL	CARBON DISULFIDE	0.6	J	0.6	4	UG/KG
SS132E	AP039	02-Apr-01	0.5	1	CVOL	METHYL ETHYL KETONE (2-BUTANONE)	2 .	J	2	4	UG/KG
SS132E	AP039	02-Apr-01	0.5	1	CVOL	TOLUENE	3 .	J	1.17	4	UG/KG
SS132E	AP039	02-Apr-01	0.5	1	E350.2	NITROGEN, AMMONIA (AS N)	10.4	J	1.5	2.25	MG/KG
SS132E	AP039	02-Apr-01	0.5	1	E353.2	NITROGEN, NITRATE-NITRITE	0.02		0.0043	0.01	MG/KG
SS132E	AP039	02-Apr-01	0.5	1	E365.2	PHOSPHORUS, TOTAL ORTHOPHOSPHATE (AS PO4)	51.7	J	1	2.04	MG/KG
SS132E	AP039	02-Apr-01	0.5	1	LYDKHN	TOTAL ORGANIC CARBON	2670	J			MG/KG
SS132E	AP040	02-Apr-01	0.5	1	CVOL	ACETONE	69	J	4.04	6	UG/KG
SS132E	AP040	02-Apr-01	0.5	1	CVOL	METHYL ETHYL KETONE (2-BUTANONE)	3 .	J	3	6	UG/KG
SS132E	AP040	02-Apr-01	0.5	1	CVOL	TOLUENE	0.5	J	0.5	6	UG/KG
SS132E	AP040	02-Apr-01	0.5	1	E350.2	NITROGEN, AMMONIA (AS N)	13.1	J	1.5	2.61	MG/KG
SS132E	AP040	02-Apr-01	0.5	1	E353.2	NITROGEN, NITRATE-NITRITE	0.02		0.0043	0.01	MG/KG
SS132E	AP040	02-Apr-01	0.5	1	E365.2	PHOSPHORUS, TOTAL ORTHOPHOSPHATE (AS PO4)	63.1	J	1	2.19	MG/KG
SS132E	AP040	02-Apr-01	0.5	1	LYDKHN	TOTAL ORGANIC CARBON	7090	J			MG/KG
SS132E	AP041	02-Apr-01	0.5	1	E350.2	NITROGEN, AMMONIA (AS N)	8.3	J	1.5	2.18	MG/KG
SS132E	AP041	02-Apr-01	0.5	1	E365.2	PHOSPHORUS, TOTAL ORTHOPHOSPHATE (AS PO4)	45 .	J	1	2.05	MG/KG
SS132E	AP041	02-Apr-01	0.5	1	LYDKHN	TOTAL ORGANIC CARBON	3400	J			MG/KG
SS132E	AP042	02-Apr-01	0.5	1	CPEST	p,p'-DDT	1.8	J	1.63	3.6	UG/KG
SS132E	AP042	02-Apr-01	0.5	1	CVOL	ACETONE	44 .	J	4	4	UG/KG

Table A.6
Firing Point Data (Detects)

LOCATION	SAMPLE ID	DATE	DEP1	ΓΗ (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132E	AP042	02-Apr-01	0.5	1	CVOL	METHYL ETHYL KETONE (2-BUTANONE)	2	J	2	4	UG/KG
SS132E	AP042	02-Apr-01	0.5	1	E350.2	NITROGEN, AMMONIA (AS N)	13.4	J	1.5	2.63	MG/KG
SS132E	AP042	02-Apr-01	0.5	1	E353.2	NITROGEN, NITRATE-NITRITE	0.02		0.0043	0.01	MG/KG
SS132E	AP042	02-Apr-01	0.5	1	E365.2	PHOSPHORUS, TOTAL ORTHOPHOSPHATE (AS PO4)	68.6	J	1	1.99	MG/KG
SS132E	AP042	02-Apr-01	0.5	1	LYDKHN	TOTAL ORGANIC CARBON	8260	J			MG/KG
SS132E	AP042	02-Apr-01	0.5	1	SW8330	2,4-DINITROTOLUENE	340		5.1	120	UG/KG
SS132E	AP043	02-Apr-01	0	0.25	CL200.7	ALUMINUM	2550	J	11.7176	11.7176	MG/KG
	AP043	02-Apr-01	0	0.25	CL200.7	ARSENIC	1.6	J	0.9276	0.9276	MG/KG
SS132E	AP043	02-Apr-01	0	0.25	CL200.7	BARIUM	3	J	0.0488	0.0488	MG/KG
SS132E	AP043	02-Apr-01	0	0.25	CL200.7	BERYLLIUM	0.088	J	0.0651	0.0651	MG/KG
	AP043	02-Apr-01	0	0.25	CL200.7	BORON	1.7		0.2116	0.2116	MG/KG
SS132E	AP043	02-Apr-01	0	0.25	CL200.7	CALCIUM	47.1		10.969	10.969	MG/KG
SS132E	AP043	02-Apr-01	0	0.25	CL200.7	CHROMIUM, TOTAL	3.5		0.3255	0.3255	MG/KG
SS132E	AP043	02-Apr-01	0	0.25	CL200.7	COBALT	0.49	J	0.2604	0.2604	MG/KG
SS132E	AP043	02-Apr-01	0	0.25	CL200.7	COPPER	1.3	J	0.0976	0.0976	MG/KG
SS132E	AP043	02-Apr-01	0	0.25	CL200.7	IRON	3920		5.3868	5.3868	MG/KG
SS132E	AP043	02-Apr-01	0	0.25	CL200.7	LEAD	3.2		0.2767	0.2767	MG/KG
SS132E	AP043	02-Apr-01	0	0.25	CL200.7	MAGNESIUM	271		11.4572	11.4572	MG/KG
SS132E	AP043	02-Apr-01	0	0.25	CL200.7	MANGANESE	19.4		0.2929	0.2929	MG/KG
SS132E	AP043	02-Apr-01	0	0.25	CL200.7	NICKEL	1.2		0.2278	0.2278	MG/KG
SS132E	AP043	02-Apr-01	0	0.25	CL200.7	POTASSIUM	188		4.8823	4.8823	MG/KG
SS132E	AP043	02-Apr-01	0	0.25	CL200.7	SELENIUM	1.2	J	0.7486	0.7486	MG/KG
SS132E	AP043	02-Apr-01	0	0.25	CL200.7	SODIUM	237	J	45.7312	45.7312	MG/KG
SS132E	AP043	02-Apr-01	0	0.25	CL200.7	VANADIUM	7.6		0.3255	0.3255	MG/KG
SS132E	AP043	02-Apr-01	0	0.25	CL200.7	ZINC	5.2		0.0651	0.0651	MG/KG
SS132E	AP044	02-Apr-01	0	0.25	CL200.7	ALUMINUM	1620	J	11.58	11.58	MG/KG
SS132E	AP044	02-Apr-01	0	0.25	CL200.7	BARIUM	2.4	J	0.0483	0.0483	MG/KG
SS132E	AP044	02-Apr-01	0	0.25	CL200.7	BERYLLIUM	0.066	J	0.0643	0.0643	MG/KG
SS132E	AP044	02-Apr-01	0	0.25	CL200.7	BORON	1.4		0.2091	0.2091	MG/KG
SS132E	AP044	02-Apr-01	0	0.25	CL200.7	CALCIUM	44.3		10.8402	10.8402	MG/KG
SS132E	AP044	02-Apr-01	0	0.25	CL200.7	CHROMIUM, TOTAL	2.1		0.3217	0.3217	MG/KG
SS132E	AP044	02-Apr-01	0	0.25	CL200.7	COPPER	16.5		0.0965	0.0965	MG/KG
SS132E	AP044	02-Apr-01	0	0.25	CL200.7	IRON	2770		5.3236	5.3236	MG/KG
	AP044	02-Apr-01	0	0.25	CL200.7	LEAD	2.5		0.2734	0.2734	MG/KG
SS132E	AP044	02-Apr-01	0	0.25	CL200.7	MAGNESIUM	179		11.3227	11.3227	MG/KG
SS132E	AP044	02-Apr-01	0	0.25	CL200.7	MANGANESE	14.4		0.2895	0.2895	MG/KG
SS132E	AP044	02-Apr-01	0	0.25	CL200.7	NICKEL	0.76		0.2252	0.2252	MG/KG
SS132E	AP044	02-Apr-01	0	0.25	CL200.7	POTASSIUM	168		4.825	4.825	MG/KG

Table A.6
Firing Point Data (Detects)

LOCATION	SAMPLE ID	DATE	DEP1	ΓΗ (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132E	AP044	02-Apr-01	0	0.25	CL200.7	SODIUM	136	J	45.1943	45.1943	MG/KG
SS132E	AP044	02-Apr-01	0	0.25	CL200.7	VANADIUM	6.7		0.3217	0.3217	MG/KG
SS132E	AP044	02-Apr-01	0	0.25	CL200.7	ZINC	6.5	J	0.0643	0.0643	MG/KG
SS132E	AP045	02-Apr-01	0.25	0.5	CL200.7	ALUMINUM	1960	J	11.5808	11.5808	MG/KG
SS132E	AP045	02-Apr-01	0.25	0.5	CL200.7	BARIUM	3.3	J	0.0483	0.0483	MG/KG
SS132E	AP045	02-Apr-01	0.25	0.5	CL200.7	BERYLLIUM	0.076	J	0.0643	0.0643	MG/KG
SS132E	AP045	02-Apr-01	0.25	0.5	CL200.7	BORON	1.5		0.2091	0.2091	MG/KG
SS132E	AP045	02-Apr-01	0.25	0.5	CL200.7	CALCIUM	43.7		10.8409	10.8409	MG/KG
SS132E	AP045	02-Apr-01	0.25	0.5	CL200.7	CHROMIUM, TOTAL	2.5		0.3217	0.3217	MG/KG
SS132E	AP045	02-Apr-01	0.25	0.5	CL200.7	COBALT	0.29	J	0.2574	0.2574	MG/KG
SS132E	AP045	02-Apr-01	0.25	0.5	CL200.7	COPPER	0.98	J	0.0965	0.0965	MG/KG
SS132E	AP045	02-Apr-01	0.25	0.5	CL200.7	IRON	3200		5.3239	5.3239	MG/KG
SS132E	AP045	02-Apr-01	0.25	0.5	CL200.7	LEAD	2.9		0.2734	0.2734	MG/KG
SS132E	AP045	02-Apr-01	0.25	0.5	CL200.7	MAGNESIUM	215		11.3234	11.3234	MG/KG
SS132E	AP045	02-Apr-01	0.25	0.5	CL200.7	MANGANESE	16.1		0.2895	0.2895	MG/KG
SS132E	AP045	02-Apr-01	0.25	0.5	CL200.7	NICKEL	0.92		0.2252	0.2252	MG/KG
SS132E	AP045	02-Apr-01	0.25	0.5	CL200.7	POTASSIUM	182		4.8253	4.8253	MG/KG
SS132E	AP045	02-Apr-01	0.25	0.5	CL200.7	SODIUM	223	J	45.1972	45.1972	MG/KG
SS132E	AP045	02-Apr-01	0.25	0.5	CL200.7	VANADIUM	7.4		0.3217	0.3217	MG/KG
SS132E	AP045	02-Apr-01	0.25	0.5	CL200.7	ZINC	4.7	J	0.0643	0.0643	MG/KG
SS132E	AP046	02-Apr-01	0	0.25	CL200.7	ALUMINUM	2990	J	10.5854	10.5854	MG/KG
SS132E	AP046	02-Apr-01	0	0.25	CL200.7	ARSENIC	1.4	J	0.838	0.838	MG/KG
SS132E	AP046	02-Apr-01	0	0.25	CL200.7	BARIUM	2.7	J	0.0441	0.0441	MG/KG
SS132E	AP046	02-Apr-01	0	0.25	CL200.7	BERYLLIUM	0.072	J	0.0588	0.0588	MG/KG
SS132E	AP046	02-Apr-01	0	0.25	CL200.7	BORON	1		0.1911	0.1911	MG/KG
SS132E	AP046	02-Apr-01	0	0.25	CL200.7	CALCIUM	46.3		9.9091	9.9091	MG/KG
SS132E	AP046	02-Apr-01	0	0.25	CL200.7	CHROMIUM, TOTAL	2.8		0.294	0.294	MG/KG
SS132E	AP046	02-Apr-01	0	0.25	CL200.7	COBALT	0.32	J	0.2352	0.2352	MG/KG
SS132E	AP046	02-Apr-01	0	0.25	CL200.7	COPPER	1.1	J	0.0882	0.0882	MG/KG
SS132E	AP046	02-Apr-01	0	0.25	CL200.7	IRON	3540		4.8663	4.8663	MG/KG
SS132E	AP046	02-Apr-01	0	0.25	CL200.7	LEAD	3.1		0.2499	0.2499	MG/KG
SS132E	AP046	02-Apr-01	0	0.25	CL200.7	MAGNESIUM	248		10.3501	10.3501	MG/KG
SS132E	AP046	02-Apr-01	0	0.25	CL200.7	MANGANESE	18.8		0.2646	0.2646	MG/KG
SS132E	AP046	02-Apr-01	0	0.25	CL200.7	NICKEL	1.2		0.2058	0.2058	MG/KG
SS132E	AP046	02-Apr-01	0	0.25	CL200.7	POTASSIUM	158		4.4106	4.4106	MG/KG
SS132E	AP046	02-Apr-01	0	0.25	CL200.7	SELENIUM	1	J	0.6763	0.6763	MG/KG
SS132E	AP046	02-Apr-01	0	0.25	CL200.7	SODIUM	243	J	41.3123		MG/KG
SS132E	AP046	02-Apr-01	0	0.25	CL200.7	VANADIUM	9		0.294	0.294	MG/KG

Table A.6
Firing Point Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER1	MDL	RL	UNITS
SS132E	AP046	02-Apr-01	0	0.25	CL200.7	ZINC	5.7	J	0.0588	0.0588	MG/KG
SS132E	AP047	02-Apr-01	0.25	0.5	CL200.7	ALUMINUM	2340	J	11.2518	11.2518	MG/KG
SS132E	AP047	02-Apr-01	0.25	0.5	CL200.7	ARSENIC	1.4	J	0.8908	0.8908	MG/KG
SS132E	AP047	02-Apr-01	0.25	0.5	CL200.7	BARIUM	3.3	J	0.0469	0.0469	MG/KG
SS132E	AP047	02-Apr-01	0.25	0.5	CL200.7	BERYLLIUM	0.066	J	0.0625	0.0625	MG/KG
SS132E	AP047	02-Apr-01	0.25	0.5	CL200.7	BORON	1.1		0.2032	0.2032	MG/KG
SS132E	AP047	02-Apr-01	0.25	0.5	CL200.7	CALCIUM	33.3		10.5329	10.5329	MG/KG
SS132E	AP047	02-Apr-01	0.25	0.5	CL200.7	CHROMIUM, TOTAL	2.7		0.3125	0.3125	MG/KG
SS132E	AP047	02-Apr-01	0.25	0.5	CL200.7	COPPER	2	J	0.0938	0.0938	MG/KG
SS132E	AP047	02-Apr-01	0.25	0.5	CL200.7	IRON	3340		5.1727	5.1727	MG/KG
SS132E	AP047	02-Apr-01	0.25	0.5	CL200.7	LEAD	4.4		0.2657	0.2657	MG/KG
SS132E	AP047	02-Apr-01	0.25	0.5	CL200.7	MAGNESIUM	182		11.0017	11.0017	MG/KG
SS132E	AP047	02-Apr-01	0.25	0.5	CL200.7	MANGANESE	12.5		0.2813	0.2813	MG/KG
SS132E	AP047	02-Apr-01	0.25	0.5	CL200.7	MOLYBDENUM	0.63	J	0.5001	0.5001	MG/KG
SS132E	AP047	02-Apr-01	0.25	0.5	CL200.7	NICKEL	0.93		0.2188	0.2188	MG/KG
SS132E	AP047	02-Apr-01	0.25	0.5	CL200.7	POTASSIUM	160		4.6882	4.6882	MG/KG
SS132E	AP047	02-Apr-01	0.25	0.5	CL200.7	SODIUM	106	J	43.9131	43.9131	MG/KG
SS132E	AP047	02-Apr-01	0.25	0.5	CL200.7	VANADIUM	6.8		0.3125	0.3125	MG/KG
SS132E	AP047	02-Apr-01	0.25	0.5	CL200.7	ZINC	5	J	0.0625	0.0625	MG/KG
SS132E	AP048	02-Apr-01	0.25	0.5	CL200.7	ALUMINUM	1900	J	11.29	11.29	MG/KG
SS132E	AP048	02-Apr-01	0.25	0.5	CL200.7	ARSENIC	1.4	J	0.8938	0.8938	MG/KG
SS132E	AP048	02-Apr-01	0.25	0.5	CL200.7	BARIUM	3.3	J	0.047	0.047	MG/KG
SS132E	AP048	02-Apr-01	0.25	0.5	CL200.7	BORON	1.1		0.2038	0.2038	MG/KG
SS132E	AP048	02-Apr-01	0.25	0.5	CL200.7	CALCIUM	41.3		10.5687	10.5687	MG/KG
SS132E	AP048	02-Apr-01	0.25	0.5	CL200.7	CHROMIUM, TOTAL	2.3		0.3136	0.3136	MG/KG
SS132E	AP048	02-Apr-01	0.25	0.5	CL200.7	COPPER	4.7		0.0941	0.0941	MG/KG
SS132E	AP048	02-Apr-01	0.25	0.5	CL200.7	IRON	3050		5.1902	5.1902	MG/KG
SS132E	AP048	02-Apr-01	0.25	0.5	CL200.7	LEAD	5.6		0.2666	0.2666	MG/KG
SS132E	AP048	02-Apr-01	0.25	0.5	CL200.7	MAGNESIUM	152		11.0391	11.0391	MG/KG
SS132E	AP048	02-Apr-01	0.25	0.5	CL200.7	MANGANESE	12		0.2822	0.2822	MG/KG
SS132E	AP048	02-Apr-01	0.25	0.5	CL200.7	NICKEL	0.87		0.2195	0.2195	MG/KG
SS132E	AP048	02-Apr-01	0.25	0.5	CL200.7	POTASSIUM	148		4.7041	4.7041	MG/KG
SS132E	AP048	02-Apr-01	0.25	0.5	CL200.7	SODIUM	210	J	44.0622	44.0622	MG/KG
SS132E	AP048	02-Apr-01	0.25	0.5	CL200.7	VANADIUM	7		0.3136	0.3136	MG/KG
SS132E	AP048	02-Apr-01	0.25	0.5	CL200.7	ZINC	7.7		0.0627	0.0627	MG/KG
SS132E	AP048	02-Apr-01	0.25	0.5	SW8270	N-NITROSODIPHENYLAMINE	280	J	130	350	UG/KG
SS132E	AP049	02-Apr-01	0.25	0.5	CL200.7	ALUMINUM	1310		10.8844	10.8844	MG/KG
SS132E	AP049	02-Apr-01	0.25	0.5	CL200.7	BARIUM	2.3	J	0.0454	0.0454	MG/KG

Table A.6
Firing Point Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132E	AP049	02-Apr-01	0.25	0.5	CL200.7	BERYLLIUM	0.063	J	0.0605	0.0605	MG/KG
SS132E	AP049	02-Apr-01	0.25	0.5	CL200.7	BORON	0.9		0.1965	0.1965	MG/KG
SS132E	AP049	02-Apr-01	0.25	0.5	CL200.7	CALCIUM	26.9		10.189	10.189	MG/KG
SS132E	AP049	02-Apr-01	0.25	0.5	CL200.7	CHROMIUM, TOTAL	1.9		0.3023	0.3023	MG/KG
SS132E	AP049	02-Apr-01	0.25	0.5	CL200.7	COPPER	0.61	J	0.0907	0.0907	MG/KG
SS132E	AP049	02-Apr-01	0.25	0.5	CL200.7	IRON	2360		5.0038	5.0038	MG/KG
SS132E	AP049	02-Apr-01	0.25	0.5	CL200.7	LEAD	1.8	J	0.257	0.257	MG/KG
SS132E	AP049	02-Apr-01	0.25	0.5	CL200.7	MAGNESIUM	156		10.6425	10.6425	MG/KG
SS132E	AP049	02-Apr-01	0.25	0.5	CL200.7	MANGANESE	11.5		0.2721	0.2721	MG/KG
SS132E	AP049	02-Apr-01	0.25	0.5	CL200.7	NICKEL	0.78		0.2116	0.2116	MG/KG
SS132E	AP049	02-Apr-01	0.25	0.5	CL200.7	POTASSIUM	143		4.5351	4.5351	MG/KG
SS132E	AP049	02-Apr-01	0.25	0.5	CL200.7	SODIUM	133	J	42.4792	42.4792	MG/KG
SS132E	AP049	02-Apr-01	0.25	0.5	CL200.7	VANADIUM	5.2		0.3023	0.3023	MG/KG
SS132E	AP049	02-Apr-01	0.25	0.5	CL200.7	ZINC	14.4	J	0.0605	0.0605	MG/KG
SS132E	AP050	02-Apr-01	0.25	0.5	CL200.7	ALUMINUM	2870	J	10.5332	10.5332	MG/KG
SS132E	AP050	02-Apr-01	0.25	0.5	CL200.7	ARSENIC	1.2	J	0.8339	0.8339	MG/KG
SS132E	AP050	02-Apr-01	0.25	0.5	CL200.7	BARIUM	3.8	J	0.0439	0.0439	MG/KG
SS132E	AP050	02-Apr-01	0.25	0.5	CL200.7	BERYLLIUM	0.07	J	0.0585	0.0585	MG/KG
SS132E	AP050	02-Apr-01	0.25	0.5	CL200.7	BORON	1.1		0.1902	0.1902	MG/KG
SS132E	AP050	02-Apr-01	0.25	0.5	CL200.7	CALCIUM	48.3		9.8603	9.8603	MG/KG
SS132E	AP050	02-Apr-01	0.25	0.5	CL200.7	CHROMIUM, TOTAL	2.9		0.2926	0.2926	MG/KG
SS132E	AP050	02-Apr-01	0.25	0.5	CL200.7	COBALT	0.64		0.2341	0.2341	MG/KG
SS132E	AP050	02-Apr-01	0.25	0.5	CL200.7	COPPER	5.5		0.0878	0.0878	MG/KG
SS132E	AP050	02-Apr-01	0.25	0.5	CL200.7	IRON	3790		4.8424	4.8424	MG/KG
SS132E	AP050	02-Apr-01	0.25	0.5	CL200.7	LEAD	8.1		0.2487	0.2487	MG/KG
SS132E	AP050	02-Apr-01	0.25	0.5	CL200.7	MAGNESIUM	209		10.2992	10.2992	MG/KG
SS132E	AP050	02-Apr-01	0.25	0.5	CL200.7	MANGANESE	16.2		0.2633	0.2633	MG/KG
SS132E	AP050	02-Apr-01	0.25	0.5	CL200.7	NICKEL	1.2		0.2048	0.2048	MG/KG
SS132E	AP050	02-Apr-01	0.25	0.5	CL200.7	POTASSIUM	157		4.3889	4.3889	MG/KG
SS132E	AP050	02-Apr-01	0.25	0.5	CL200.7	SODIUM	239	J	41.1089	41.1089	MG/KG
SS132E	AP050	02-Apr-01	0.25	0.5	CL200.7	VANADIUM	8.7		0.2926	0.2926	MG/KG
SS132E	AP050	02-Apr-01	0.25	0.5	CL200.7	ZINC	7.3	J	0.0585	0.0585	MG/KG
SS132E	AP050	02-Apr-01	0.25	0.5	SW8270	N-NITROSODIPHENYLAMINE	170	J	130	350	UG/KG
SS132E	AP051	02-Apr-01	0.25	0.5	CL200.7	ALUMINUM	2750	J	12.0809	12.0809	MG/KG
SS132E	AP051	02-Apr-01	0.25	0.5	CL200.7	ARSENIC	1.3	J	0.9564	0.9564	MG/KG
SS132E	AP051	02-Apr-01	0.25	0.5	CL200.7	BARIUM	3.9	J	0.0503	0.0503	MG/KG
SS132E	AP051	02-Apr-01	0.25	0.5	CL200.7	BERYLLIUM	0.069		0.0671	0.0671	MG/KG
SS132E	AP051	02-Apr-01	0.25	0.5	CL200.7	BORON	1.1		0.2181	0.2181	MG/KG

Table A.6
Firing Point Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132E	AP051	02-Apr-01	0.25	0.5	CL200.7	CALCIUM	43.4		11.3091	11.3091	MG/KG
SS132E	AP051	02-Apr-01	0.25	0.5	CL200.7	CHROMIUM, TOTAL	3.3		0.3356	0.3356	MG/KG
SS132E	AP051	02-Apr-01	0.25	0.5	CL200.7	COPPER	5.2		0.1007	0.1007	MG/KG
SS132E	AP051	02-Apr-01	0.25	0.5	CL200.7	IRON	3680		5.5539	5.5539	MG/KG
SS132E	AP051	02-Apr-01	0.25	0.5	CL200.7	LEAD	7.8		0.2852	0.2852	MG/KG
SS132E	AP051	02-Apr-01	0.25	0.5	CL200.7	MAGNESIUM	200		11.8125	11.8125	MG/KG
SS132E	AP051	02-Apr-01	0.25	0.5	CL200.7	MANGANESE	16.3		0.302	0.302	MG/KG
SS132E	AP051	02-Apr-01	0.25	0.5	CL200.7	NICKEL	1.2		0.2349	0.2349	MG/KG
SS132E	AP051	02-Apr-01	0.25	0.5	CL200.7	POTASSIUM	153		5.0337	5.0337	MG/KG
SS132E	AP051	02-Apr-01	0.25	0.5	CL200.7	SODIUM	200	J	47.1492	47.1492	MG/KG
SS132E	AP051	02-Apr-01	0.25	0.5	CL200.7	VANADIUM	8.9		0.3356	0.3356	MG/KG
SS132E	AP051	02-Apr-01	0.25	0.5	CL200.7	ZINC	6.1	J	0.0671	0.0671	MG/KG
SS132E	AP051	02-Apr-01	0.25	0.5	SW8270	DI-n-BUTYL PHTHALATE	170	J	120	350	UG/KG
SS132E	AP052	02-Apr-01	0.5	1	CL200.7	ALUMINUM	2700	J	10.5149	10.5149	MG/KG
SS132E	AP052	02-Apr-01	0.5	1	CL200.7	ARSENIC	1.1	J	0.8324	0.8324	MG/KG
SS132E	AP052	02-Apr-01	0.5	1	CL200.7	BARIUM	3.4	J	0.0438	0.0438	MG/KG
SS132E	AP052	02-Apr-01	0.5	1	CL200.7	BERYLLIUM	0.06	J	0.0584	0.0584	MG/KG
SS132E	AP052	02-Apr-01	0.5	1	CL200.7	BORON	1.2		0.1899	0.1899	MG/KG
SS132E	AP052	02-Apr-01	0.5	1	CL200.7	CALCIUM	44.8		9.8432	9.8432	MG/KG
SS132E	AP052	02-Apr-01	0.5	1	CL200.7	CHROMIUM, TOTAL	2.7		0.2921	0.2921	MG/KG
SS132E	AP052	02-Apr-01	0.5	1	CL200.7	COPPER	1.5	J	0.0876	0.0876	MG/KG
SS132E	AP052	02-Apr-01	0.5	1	CL200.7	IRON	4160		4.834	4.834	MG/KG
SS132E	AP052	02-Apr-01	0.5	1	CL200.7	LEAD	5.4		0.2483	0.2483	MG/KG
SS132E	AP052	02-Apr-01	0.5	1	CL200.7	MAGNESIUM	167		10.2813	10.2813	MG/KG
SS132E	AP052	02-Apr-01	0.5	1	CL200.7	MANGANESE	11.4		0.2629	0.2629	MG/KG
SS132E	AP052	02-Apr-01	0.5	1	CL200.7	NICKEL	1.1		0.2045	0.2045	MG/KG
SS132E	AP052	02-Apr-01	0.5	1	CL200.7	POTASSIUM	157		4.3812	4.3812	MG/KG
SS132E	AP052	02-Apr-01	0.5	1	CL200.7	SODIUM	212	J	41.0375	41.0375	MG/KG
SS132E	AP052	02-Apr-01	0.5	1	CL200.7	VANADIUM	7.8		0.2921	0.2921	MG/KG
SS132E	AP052	02-Apr-01	0.5	1	CL200.7	ZINC	6.8	J	0.0584	0.0584	MG/KG
SS132E	AP053	02-Apr-01	0.5	1	CL200.7	ALUMINUM	3570	J	12.0004	12.0004	MG/KG
SS132E	AP053	02-Apr-01	0.5	1	CL200.7	ARSENIC	1.8	J	0.95	0.95	MG/KG
SS132E	AP053	02-Apr-01	0.5	1	CL200.7	BARIUM	3.5	J	0.05	0.05	MG/KG
SS132E	AP053	02-Apr-01	0.5	1	CL200.7	BORON	1.1		0.2167	0.2167	MG/KG
SS132E	AP053	02-Apr-01	0.5	1	CL200.7	CALCIUM	35		11.2337	11.2337	MG/KG
SS132E	AP053	02-Apr-01	0.5	1	CL200.7	CHROMIUM, TOTAL	3.1		0.3333	0.3333	MG/KG
SS132E	AP053	02-Apr-01	0.5	1	CL200.7	COPPER	1.9		0.1	0.1	MG/KG
SS132E	AP053	02-Apr-01	0.5	1	CL200.7	IRON	4860		5.5169	5.5169	MG/KG

Table A.6
Firing Point Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	TH (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132E	AP053	02-Apr-01	0.5	1	CL200.7	LEAD	3		0.2833	0.2833	MG/KG
SS132E	AP053	02-Apr-01	0.5	1	CL200.7	MAGNESIUM	144		11.7337	11.7337	MG/KG
SS132E	AP053	02-Apr-01	0.5	1	CL200.7	MANGANESE	10.3		0.3	0.3	MG/KG
SS132E	AP053	02-Apr-01	0.5	1	CL200.7	MOLYBDENUM	0.55	J	0.5334	0.5334	MG/KG
SS132E	AP053	02-Apr-01	0.5	1	CL200.7	NICKEL	0.88		0.2333	0.2333	MG/KG
SS132E	AP053	02-Apr-01	0.5	1	CL200.7	POTASSIUM	143		5.0002	5.0002	MG/KG
SS132E	AP053	02-Apr-01	0.5	1	CL200.7	SODIUM	221	J	46.8349	46.8349	MG/KG
SS132E	AP053	02-Apr-01	0.5	1	CL200.7	VANADIUM	9.5		0.3333	0.3333	MG/KG
SS132E	AP053	02-Apr-01	0.5	1	CL200.7	ZINC	6.8	J	0.0667	0.0667	MG/KG
SS132E	AP054	02-Apr-01	0.5	1	CL200.7	ALUMINUM	1920	J	10.1198	10.1198	MG/KG
SS132E	AP054	02-Apr-01	0.5	1	CL200.7	ARSENIC	1.1	J	0.8012	0.8012	MG/KG
SS132E	AP054	02-Apr-01	0.5	1	CL200.7	BARIUM	3.1	J	0.0422	0.0422	MG/KG
SS132E	AP054	02-Apr-01	0.5	1	CL200.7	BERYLLIUM	0.069	J	0.0562	0.0562	MG/KG
SS132E	AP054	02-Apr-01	0.5	1	CL200.7	BORON	1.2		0.1827	0.1827	MG/KG
SS132E	AP054	02-Apr-01	0.5	1	CL200.7	CALCIUM	44.1		9.4733	9.4733	MG/KG
SS132E	AP054	02-Apr-01	0.5	1	CL200.7	CHROMIUM, TOTAL	2.3		0.2811	0.2811	MG/KG
SS132E	AP054	02-Apr-01	0.5	1	CL200.7	COBALT	0.56		0.2249	0.2249	MG/KG
SS132E	AP054	02-Apr-01	0.5	1	CL200.7	COPPER	0.65	J	0.0843	0.0843	MG/KG
SS132E	AP054	02-Apr-01	0.5	1	CL200.7	IRON	2950		4.6523	4.6523	MG/KG
SS132E	AP054	02-Apr-01	0.5	1	CL200.7	LEAD	3		0.2389	0.2389	MG/KG
SS132E	AP054	02-Apr-01	0.5	1	CL200.7	MAGNESIUM	248		9.8949	9.8949	MG/KG
SS132E	AP054	02-Apr-01	0.5	1	CL200.7	MANGANESE	15		0.253	0.253	MG/KG
SS132E	AP054	02-Apr-01	0.5	1	CL200.7	NICKEL	1.1		0.1968	0.1968	MG/KG
SS132E	AP054	02-Apr-01	0.5	1	CL200.7	POTASSIUM	166		4.2166	4.2166	MG/KG
SS132E	AP054	02-Apr-01	0.5	1	CL200.7	SODIUM	143	J	39.4954	39.4954	MG/KG
SS132E	AP054	02-Apr-01	0.5	1	CL200.7	VANADIUM	6.3		0.2811	0.2811	MG/KG
SS132E	AP054	02-Apr-01	0.5	1	CL200.7	ZINC	4.9	J	0.0562	0.0562	MG/KG
SS132E	AP055	02-Apr-01	0.5	1	CL200.7	ALUMINUM	3560	J	11.4416	11.4416	MG/KG
SS132E	AP055	02-Apr-01	0.5	1	CL200.7	ARSENIC	0.94	J	0.9058	0.9058	MG/KG
SS132E	AP055	02-Apr-01	0.5	1	CL200.7	BARIUM	4.6	J	0.0477	0.0477	MG/KG
SS132E	AP055	02-Apr-01	0.5	1	CL200.7	BORON	1.1		0.2066	0.2066	MG/KG
SS132E	AP055	02-Apr-01	0.5	1	CL200.7	CALCIUM	115		10.7107	10.7107	MG/KG
SS132E	AP055	02-Apr-01	0.5	1	CL200.7	CHROMIUM, TOTAL	3.5		0.3178	0.3178	MG/KG
SS132E	AP055	02-Apr-01	0.5	1	CL200.7	COPPER	6.7		0.0953	0.0953	MG/KG
SS132E	AP055	02-Apr-01	0.5	1	CL200.7	IRON	4850		5.26	5.26	MG/KG
SS132E	AP055	02-Apr-01	0.5	1	CL200.7	LEAD	7.1		0.2701	0.2701	MG/KG
SS132E	AP055	02-Apr-01	0.5	1	CL200.7	MAGNESIUM	183		11.1874	11.1874	MG/KG
SS132E	AP055	02-Apr-01	0.5	1	CL200.7	MANGANESE	16.5		0.286	0.286	MG/KG

Table A.6
Firing Point Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPT	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132E	AP055	02-Apr-01	0.5	1	CL200.7	NICKEL	1.1		0.2225	0.2225	MG/KG
SS132E	AP055	02-Apr-01	0.5	1	CL200.7	POTASSIUM	160		4.7674	4.7674	MG/KG
SS132E	AP055	02-Apr-01	0.5	1	CL200.7	SODIUM	278	J	44.6542	44.6542	MG/KG
SS132E	AP055	02-Apr-01	0.5	1	CL200.7	VANADIUM	9.7		0.3178	0.3178	MG/KG
SS132E	AP055	02-Apr-01	0.5	1	CL200.7	ZINC	4.8	J	0.0636	0.0636	MG/KG
Footnote:											
1. Qualifiers: J = value is estimated due to limitations found in the data validation. The samples that are presented without an associated qualifier code were treated as detected results.											

Page 11 of 11

Table A.7
RDX Source Investigation Data (Detects)

LOCATION	SAMPLE ID	DATE	DEP	TH (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132CH	SS132CH-A	11-Aug-05	0	0.25	SW6010B	ALUMINUM	459		2.9	20.1845	MG/KG
SS132CH	SS132CH-A	11-Aug-05	0	0.25	SW6010B	ARSENIC	0.53	J	0.4	1.0092	MG/KG
SS132CH	SS132CH-A	11-Aug-05	0	0.25	SW6010B	BARIUM	13.4	J	0.77	20.1845	MG/KG
SS132CH	SS132CH-A	11-Aug-05	0	0.25	SW6010B	COBALT	0.2	J	0.16	5.0461	MG/KG
SS132CH	SS132CH-A	11-Aug-05	0	0.25	SW6010B	COPPER	9.7		0.27	2.5231	MG/KG
SS132CH	SS132CH-A	11-Aug-05	0	0.25	SW6010B	IRON	1210		3.3	20.1845	MG/KG
SS132CH	SS132CH-A	11-Aug-05	0	0.25	SW6010B	LEAD	32.3		0.22	1.0092	MG/KG
SS132CH	SS132CH-A	11-Aug-05	0	0.25	SW6010B	MANGANESE	5.8		0.061	1.5138	MG/KG
SS132CH	SS132CH-A	11-Aug-05	0	0.25	SW6010B	NICKEL	0.99	J	0.19	4.0369	MG/KG
SS132CH	SS132CH-A	11-Aug-05	0	0.25	SW6010B	VANADIUM	6.2		0.2	5.0461	MG/KG
SS132CH	SS132CH-A	11-Aug-05	0	0.25	SW6010B	ZINC	3.4		0.43	2.0184	MG/KG
SS132CH	SS132CH-A	11-Aug-05	0	0.25	SW7471A	MERCURY	0.023	J	0.015	0.0367	MG/KG
SS132CH	SS132CH-B	11-Aug-05	0.25	0.5	SW6010B	ALUMINUM	474		2.5	17.3304	MG/KG
SS132CH	SS132CH-B	11-Aug-05	0.25	0.5	SW6010B	ARSENIC	0.71	J	0.35	0.8665	MG/KG
SS132CH	SS132CH-B	11-Aug-05	0.25	0.5	SW6010B	BARIUM	7	J	0.66	17.3304	MG/KG
SS132CH	SS132CH-B	11-Aug-05	0.25	0.5	SW6010B	COBALT	0.17	J	0.14	4.3326	MG/KG
SS132CH	SS132CH-B	11-Aug-05	0.25	0.5	SW6010B	COPPER	2.3		0.23	2.1663	MG/KG
SS132CH	SS132CH-B	11-Aug-05	0.25	0.5	SW6010B	IRON	1390		2.8	17.3304	MG/KG
SS132CH	SS132CH-B	11-Aug-05	0.25	0.5	SW6010B	LEAD	5.6		0.19	0.8665	MG/KG
SS132CH	SS132CH-B	11-Aug-05	0.25	0.5	SW6010B	MANGANESE	3		0.052	1.2998	MG/KG
SS132CH	SS132CH-B	11-Aug-05	0.25	0.5	SW6010B	NICKEL	0.46	J	0.16	3.4661	MG/KG
SS132CH	SS132CH-B	11-Aug-05	0.25	0.5	SW6010B	VANADIUM	5.4		0.17	4.3326	MG/KG
SS132CH	SS132CH-B	11-Aug-05	0.25	0.5	SW6010B	ZINC	1.8		0.37	1.733	MG/KG
SS132CH	SS132CH-C	11-Aug-05	0.5	1	SW6010B	ALUMINUM	1390		2.5	17.2598	MG/KG
SS132CH	SS132CH-C	11-Aug-05	0.5	1	SW6010B	ARSENIC	0.99		0.35	0.863	MG/KG
SS132CH	SS132CH-C	11-Aug-05	0.5	1	SW6010B	BARIUM	3.9	J	0.66	17.2598	MG/KG
SS132CH	SS132CH-C	11-Aug-05	0.5	1	SW6010B	COBALT	0.24	J	0.14	4.315	MG/KG
SS132CH	SS132CH-C	11-Aug-05	0.5	1	SW6010B	COPPER	0.48	J	0.23	2.1575	MG/KG
SS132CH	SS132CH-C	11-Aug-05	0.5	1	SW6010B	IRON	3210		2.8	17.2598	MG/KG
SS132CH	SS132CH-C	11-Aug-05	0.5	1	SW6010B	LEAD	1.9		0.19	0.863	MG/KG
SS132CH	SS132CH-C	11-Aug-05	0.5	1	SW6010B	MANGANESE	3.5		0.052	1.2945	MG/KG
SS132CH	SS132CH-C	11-Aug-05	0.5	1	SW6010B	NICKEL	0.42	J	0.16	3.452	MG/KG
SS132CH	SS132CH-C	11-Aug-05	0.5	1	SW6010B	VANADIUM	7		0.17	4.315	MG/KG

Table A.7
RDX Source Investigation Data (Detects)

LOCATION	SAMPLE ID	DATE	DEP	TH (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132CH	SS132CH-C	11-Aug-05	0.5	1	SW6010B	ZINC	1.3	J	0.37	1.726	MG/KG
SS132CH	SS132CH-C	11-Aug-05	0.5	1	SW8270C	bis(2-ETHYLHEXYL) PHTHALATE	110	J	102	340	UG/KG
SS132CH	SS132CH-C FD	11-Aug-05	0.5	1	SW6010B	ALUMINUM	1200		2.6	17.6653	MG/KG
SS132CH	SS132CH-C FD	11-Aug-05	0.5	1	SW6010B	ARSENIC	0.79	J	0.35	0.8833	MG/KG
SS132CH	SS132CH-C FD	11-Aug-05	0.5	1	SW6010B	BARIUM	2.8	J	0.67	17.6653	MG/KG
SS132CH	SS132CH-C FD	11-Aug-05	0.5	1	SW6010B	COBALT	0.17	J	0.14	4.4163	MG/KG
SS132CH	SS132CH-C FD	11-Aug-05	0.5	1	SW6010B	COPPER	0.86	J	0.24	2.2082	MG/KG
SS132CH	SS132CH-C FD	11-Aug-05	0.5	1	SW6010B	IRON	2750		2.9	17.6653	MG/KG
SS132CH	SS132CH-C FD	11-Aug-05	0.5	1	SW6010B	LEAD	1.8		0.19	0.8833	MG/KG
SS132CH	SS132CH-C FD	11-Aug-05	0.5	1	SW6010B	MAGNESIUM	104	J	16.7	441.6337	MG/KG
SS132CH	SS132CH-C FD	11-Aug-05	0.5	1	SW6010B	MANGANESE	2.4		0.053	1.3249	MG/KG
SS132CH	SS132CH-C FD	11-Aug-05	0.5	1	SW6010B	NICKEL	0.3	J	0.17	3.5331	MG/KG
SS132CH	SS132CH-C FD	11-Aug-05	0.5	1	SW6010B	VANADIUM	6.2		0.18	4.4163	MG/KG
SS132CH	SS132CH-C FD	11-Aug-05	0.5	1	SW6010B	ZINC	1.2	J	0.38	1.7665	MG/KG
SS132CI	SS132CI-A	11-Aug-05	0	0.25	SW6010B	ALUMINUM	1100		2.9	20.1349	MG/KG
SS132CI	SS132CI-A	11-Aug-05	0	0.25	SW6010B	ARSENIC	1.1		0.4	1.0067	MG/KG
SS132CI	SS132CI-A	11-Aug-05	0	0.25	SW6010B	BARIUM	6	J	0.77	20.1349	MG/KG
SS132CI	SS132CI-A	11-Aug-05	0	0.25	SW6010B	COBALT	0.28	J	0.16	5.0337	MG/KG
SS132CI	SS132CI-A	11-Aug-05	0	0.25	SW6010B	COPPER	1.6	J	0.27	2.5169	MG/KG
SS132CI	SS132CI-A	11-Aug-05	0	0.25	SW6010B	IRON	1680		3.3	20.1349	MG/KG
SS132CI	SS132CI-A	11-Aug-05	0	0.25	SW6010B	LEAD	15.6		0.22	1.0067	MG/KG
SS132CI	SS132CI-A	11-Aug-05	0	0.25	SW6010B	MAGNESIUM	200	J	19	503.3726	MG/KG
SS132CI	SS132CI-A	11-Aug-05	0	0.25	SW6010B	MANGANESE	4.8		0.06	1.5101	MG/KG
SS132CI	SS132CI-A	11-Aug-05	0	0.25	SW6010B	NICKEL	0.93	J	0.19	4.027	MG/KG
SS132CI	SS132CI-A	11-Aug-05	0	0.25	SW6010B	VANADIUM	9.7		0.2	5.0337	MG/KG
SS132CI	SS132CI-A	11-Aug-05	0	0.25	SW6010B	ZINC	2.6		0.43	2.0135	MG/KG
SS132CI	SS132CI-B	11-Aug-05	0.25	0.5	SW6010B	ALUMINUM	1100		2.9	19.846	MG/KG
SS132CI	SS132CI-B	11-Aug-05	0.25	0.5	SW6010B	ARSENIC	1.1		0.4	0.9923	MG/KG
SS132CI	SS132CI-B	11-Aug-05	0.25	0.5	SW6010B	BARIUM	5.6	J	0.75	19.846	MG/KG
SS132CI	SS132CI-B	11-Aug-05	0.25	0.5	SW6010B	COBALT	0.36	J	0.16	4.9615	MG/KG
SS132CI	SS132CI-B	11-Aug-05	0.25	0.5	SW6010B	COPPER	1	J	0.27	2.4807	MG/KG
SS132CI	SS132CI-B	11-Aug-05	0.25	0.5	SW6010B	IRON	1970		3.2	19.846	MG/KG
SS132CI	SS132CI-B	11-Aug-05	0.25	0.5	SW6010B	LEAD	10.7		0.22	0.9923	MG/KG

Table A.7
RDX Source Investigation Data (Detects)

LOCATION	SAMPLE ID	DATE	DEP	TH (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132CI	SS132CI-B	11-Aug-05	0.25	0.5	SW6010B	MANGANESE	5.1		0.059	1.4884	MG/KG
SS132CI	SS132CI-B	11-Aug-05	0.25	0.5	SW6010B	NICKEL	0.81	J	0.19	3.9692	MG/KG
SS132CI	SS132CI-B	11-Aug-05	0.25	0.5	SW6010B	VANADIUM	9.8		0.2	4.9615	MG/KG
SS132CI	SS132CI-B	11-Aug-05	0.25	0.5	SW6010B	ZINC	2.5		0.43	1.9846	MG/KG
SS132CI	SS132CI-C	11-Aug-05	0.5	1	SW6010B	ALUMINUM	9570		3.1	21.1193	MG/KG
SS132CI	SS132CI-C	11-Aug-05	0.5	1	SW6010B	ARSENIC	3		0.42	1.056	MG/KG
SS132CI	SS132CI-C	11-Aug-05	0.5	1	SW6010B	BARIUM	5.9	J	0.8	21.1193	MG/KG
SS132CI	SS132CI-C	11-Aug-05	0.5	1	SW6010B	CHROMIUM, TOTAL	6.3		0.074	1.056	MG/KG
SS132CI	SS132CI-C	11-Aug-05	0.5	1	SW6010B	COBALT	0.72	J	0.17	5.2798	MG/KG
SS132CI	SS132CI-C	11-Aug-05	0.5	1	SW6010B	COPPER	1.4	J	0.29	2.6399	MG/KG
SS132CI	SS132CI-C	11-Aug-05	0.5	1	SW6010B	IRON	9800		3.4	21.1193	MG/KG
SS132CI	SS132CI-C	11-Aug-05	0.5	1	SW6010B	LEAD	5.7		0.23	1.056	MG/KG
SS132CI	SS132CI-C	11-Aug-05	0.5	1	SW6010B	MANGANESE	11.3		0.063	1.5839	MG/KG
SS132CI	SS132CI-C	11-Aug-05	0.5	1	SW6010B	NICKEL	1.6	J	0.2	4.2239	MG/KG
SS132CI	SS132CI-C	11-Aug-05	0.5	1	SW6010B	SELENIUM	0.75		0.5	3.6959	MG/KG
SS132CI	SS132CI-C	11-Aug-05	0.5	1	SW6010B	VANADIUM	14.2		0.21	5.2798	MG/KG
SS132CI	SS132CI-C	11-Aug-05	0.5	1	SW6010B	ZINC	4.2		0.45	2.1119	MG/KG
SS132CJ	SS132CJ-A	11-Aug-05	0	0.25	SW6010B	ALUMINUM	621		3	20.6612	MG/KG
SS132CJ	SS132CJ-A	11-Aug-05	0	0.25	SW6010B	ARSENIC	0.63	J	0.41	1.0331	MG/KG
SS132CJ	SS132CJ-A	11-Aug-05	0	0.25	SW6010B	BARIUM	7.3	J	0.79	20.6612	MG/KG
SS132CJ	SS132CJ-A	11-Aug-05	0	0.25	SW6010B	CALCIUM	41.7	J	30.7	516.5289	MG/KG
SS132CJ	SS132CJ-A	11-Aug-05	0	0.25	SW6010B	COBALT	0.19	J	0.17	5.1653	MG/KG
SS132CJ	SS132CJ-A	11-Aug-05	0	0.25	SW6010B	COPPER	2.1	J	0.28	2.5826	MG/KG
SS132CJ	SS132CJ-A	11-Aug-05	0	0.25	SW6010B	IRON	1620		3.3	20.6612	MG/KG
SS132CJ	SS132CJ-A	11-Aug-05	0	0.25	SW6010B	LEAD	12.7		0.23	1.0331	MG/KG
SS132CJ	SS132CJ-A	11-Aug-05	0	0.25	SW6010B	MANGANESE	4.7		0.062	1.5496	MG/KG
SS132CJ	SS132CJ-A	11-Aug-05	0	0.25	SW6010B	MOLYBDENUM	0.34	J	0.18	1.0331	MG/KG
SS132CJ	SS132CJ-A	11-Aug-05	0	0.25	SW6010B	NICKEL	0.78	J	0.2	4.1322	MG/KG
SS132CJ	SS132CJ-A	11-Aug-05	0	0.25	SW6010B	VANADIUM	8.2		0.21	5.1653	MG/KG
SS132CJ	SS132CJ-A	11-Aug-05	0	0.25	SW6010B	ZINC	2.4		0.44	2.0661	MG/KG
SS132CJ	SS132CJ-B	11-Aug-05	0.25	0.5	SW6010B	ALUMINUM	607		3.1	21.4539	MG/KG
SS132CJ	SS132CJ-B	11-Aug-05	0.25	0.5	SW6010B	ARSENIC	1	J	0.43	1.0727	MG/KG
SS132CJ	SS132CJ-B	11-Aug-05	0.25	0.5	SW6010B	BARIUM	4.4	J	0.82	21.4539	MG/KG

Table A.7 **RDX Source Investigation Data (Detects)**

LOCATION	SAMPLE ID	DATE	DEP1	TH (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SS132CJ	SS132CJ-B	11-Aug-05	0.25	0.5	SW6010B	COPPER	0.93	J	0.29	2.6817	MG/KG
SS132CJ	SS132CJ-B	11-Aug-05	0.25	0.5	SW6010B	IRON	1420		3.5	21.4539	MG/KG
SS132CJ	SS132CJ-B	11-Aug-05	0.25	0.5	SW6010B	LEAD	4.2		0.24	1.0727	MG/KG
SS132CJ	SS132CJ-B	11-Aug-05	0.25	0.5	SW6010B	MANGANESE	3.2		0.064	1.609	MG/KG
SS132CJ	SS132CJ-B	11-Aug-05	0.25	0.5	SW6010B	NICKEL	0.32	J	0.2	4.2908	MG/KG
SS132CJ	SS132CJ-B	11-Aug-05	0.25	0.5	SW6010B	VANADIUM	7.1		0.21	5.3635	MG/KG
SS132CJ	SS132CJ-B	11-Aug-05	0.25	0.5	SW6010B	ZINC	1.6	J	0.46	2.1454	MG/KG
SS132CJ	SS132CJ-C	11-Aug-05	0.5	1	SW6010B	ALUMINUM	4720		2.6	17.714	MG/KG
SS132CJ	SS132CJ-C	11-Aug-05	0.5	1	SW6010B	ARSENIC	1.6		0.35	0.8857	MG/KG
SS132CJ	SS132CJ-C	11-Aug-05	0.5	1	SW6010B	BARIUM	4.4	J	0.67	17.714	MG/KG
SS132CJ	SS132CJ-C	11-Aug-05	0.5	1	SW6010B	CHROMIUM, TOTAL	2.8		0.062	0.8857	MG/KG
SS132CJ	SS132CJ-C	11-Aug-05	0.5	1	SW6010B	COBALT	0.26	J	0.14	4.4285	MG/KG
SS132CJ	SS132CJ-C	11-Aug-05	0.5	1	SW6010B	COPPER	0.72	J	0.24	2.2143	MG/KG
SS132CJ	SS132CJ-C	11-Aug-05	0.5	1	SW6010B	IRON	6240		2.9	17.714	MG/KG
SS132CJ	SS132CJ-C	11-Aug-05	0.5	1	SW6010B	LEAD	3.1		0.19	0.8857	MG/KG
SS132CJ	SS132CJ-C	11-Aug-05	0.5	1	SW6010B	MANGANESE	5.2		0.053	1.3286	MG/KG
SS132CJ	SS132CJ-C	11-Aug-05	0.5	1	SW6010B	NICKEL	0.55	J	0.17	3.5428	MG/KG
SS132CJ	SS132CJ-C	11-Aug-05	0.5	1	SW6010B	VANADIUM	10.8		0.18	4.4285	MG/KG
SS132CJ	SS132CJ-C	11-Aug-05	0.5	1	SW6010B	ZINC	2.2		0.38	1.7714	MG/KG
Footnote:											

^{1.} Qualifiers: J = value is estimated due to limitations found in the data validation. The samples that are presented without an associated qualifier code were treated as detected results.

Table A.8
Stock Pile Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPTH (FT.)	TEST	ANALYTE	RESULT	QUALIFIERS ¹	MDL	RL	UNITS
ECCFASTP	FASTP	20-Jun-08	0 (D2216	MOISTURE, PERCENT	4		0	0	Т
ECCFASTP	FASTP	20-Jun-08	0 (M8015D	AROMAT	66700		13600	27200	UG/KG
ECCFASTP	FASTP	20-Jun-08	0 (M8015D	ALIPHAT	134000		13600	27200	UG/KG
ECCFASTP	FASTP	20-Jun-08	0 (0 M8015V	AROMATIC	5850		269		UG/KG
ECCFASTP	FASTP	20-Jun-08	0 (0 M8015V	ALIPHATIC	35800		1320	2640	UG/KG
ECCFASTP	FASTP	20-Jun-08	0 (SW6010B	ARSENIC	2.1		0.091	0.8267	MG/KG
ECCFASTP	FASTP	20-Jun-08	0 (SW6010B	BARIUM	4.7	J	0.11	16.534	MG/KG
ECCFASTP	FASTP	20-Jun-08	0 (SW6010B	CADMIUM	0.038	J	0.012	0.4134	MG/KG
ECCFASTP	FASTP	20-Jun-08	0 (SW6010B	CHROMIUM, TOTAL	2.3		0.0079	0.8267	MG/KG
ECCFASTP	FASTP	20-Jun-08	0 (SW6010B	LEAD	8.2		0.055	0.8267	MG/KG
ECCFASTP	FASTP	20-Jun-08	0 (SW8260B	CARBON DISULFIDE	62	J	29.7619	270	UG/KG
ECCFASTP	FASTP	20-Jun-08	0 (SW8260B	ETHYLBENZENE	55	J	29.7619	270	UG/KG
ECCFASTP	FASTP	20-Jun-08	0 (SW8260B	M,P-XYLENE (SUM OF ISOMERS)	220	J	54.2092	270	UG/KG
ECCFASTP	FASTP	20-Jun-08	0 (SW8260B	O-XYLENE (1,2-DIMETHYLBENZENE)	140	J	26.5731	270	UG/KG
ECCFASTP	FASTP	20-Jun-08	0 (SW8260B	XYLENES, TOTAL	360		54.2092		UG/KG
ECCFASTP	FASTP	20-Jun-08	0 (SW8270C	2-METHYLNAPHTHALENE	330	J	22.9167	340	UG/KG
ECCFASTP	FASTP	20-Jun-08	0 (SW8270C	BENZO(a)ANTHRACENE	16	J	16	340	UG/KG
ECCFASTP	FASTP	20-Jun-08	0 (SW8270C	bis(2-ETHYLHEXYL) PHTHALATE	67	J	19.7917	340	UG/KG
ECCFASTP	FASTP	20-Jun-08			CHRYSENE	22	J	22	340	UG/KG
ECCFASTP	FASTP	20-Jun-08	0 (SW8270C	DIBENZOFURAN	53	J	19.7917	340	UG/KG
ECCFASTP	FASTP	20-Jun-08	0 (SW8270C	FLUORENE	110	J	18.75	340	UG/KG
ECCFASTP	FASTP	20-Jun-08	0 (SW8270C	NAPHTHALENE	58	J	26.0417	340	UG/KG
ECCFASTP	FASTP	20-Jun-08	0 (SW8270C	PHENANTHRENE	91	J	20.8333	340	UG/KG
ECCFASTP	FASTP	20-Jun-08	0 (SW8270C	PYRENE	55	J	23.9583	340	UG/KG
ECCFASTP	FASTP	20-Jun-08	0 (SW9045	pH	5.2		0	0	PH UNITS
ECCFASTP	FMA_STP1	11-Mar-10	0 0.25	5 SW8270C	ACENAPHTHYLENE	24	J	22.2478	360	UG/KG
	FMA_STP1	11-Mar-10	0 0.25	5 SW8260B	ACETONE	4.5	J	2.1313		UG/KG
	FMA_STP2	11-Mar-10	0 0.25	5 SW8260B	ACETONE	3.2		1.8376		UG/KG
	FMA_STP3	11-Mar-10			ACETONE	8.5		2.0813		UG/KG
ECCFASTP	FMA STP4	11-Mar-10		5 SW8260B	ACETONE	3.3	J	1.8876		UG/KG
ECCFASTP	FMA_STP5	11-Mar-10	0 0.25	5 SW8260B	ACETONE	34		1.9132	4.8	UG/KG
	FMA STP6	11-Mar-10			ACETONE	2.3	J	1.8381		UG/KG
ECCFASTP	FMA_STP7	11-Mar-10			ACETONE	6.9		2.0329		UG/KG
	FMA_STP8	11-Mar-10			ACETONE	50		2.0678		UG/KG
	FMA_STP1	11-Mar-10	0 0.25	SW6010B	ARSENIC	2.1		0.093		MG/KG
	FMA_STP2	11-Mar-10			ARSENIC	2.4		0.1		MG/KG
ECCFASTP	FMA STP3	11-Mar-10			ARSENIC	2.7		0.1		MG/KG
ECCFASTP	FMA STP4	11-Mar-10			ARSENIC	2		0.1		MG/KG

Table A.8
Stock Pile Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPTH (ANALYTE	RESULT	QUALIFIERS ¹	MDL	RL	UNITS
ECCFASTP	FMA_STP5	11-Mar-10	0	0.25 SW6010B	ARSENIC	2.8		0.095	0.87	MG/KG
ECCFASTP	FMA_STP6	11-Mar-10	0	0.25 SW6010B	ARSENIC	2.4		0.1	0.91	MG/KG
ECCFASTP	FMA_STP7	11-Mar-10	0	0.25 SW6010B	ARSENIC	2.1		0.1	0.95	MG/KG
ECCFASTP	FMA_STP8	11-Mar-10	0	0.25 SW6010B	ARSENIC	2.3		0.097	0.87	MG/KG
ECCFASTP	FMA_STP1	11-Mar-10	0	0.25 SW6010B	BARIUM	5.4	J	0.19	20	MG/KG
ECCFASTP	FMA_STP2	11-Mar-10	0	0.25 SW6010B	BARIUM	5.7	J	0.21	20	MG/KG
ECCFASTP	FMA_STP3	11-Mar-10	0	0.25 SW6010B	BARIUM	5.7	J	0.21	20	MG/KG
ECCFASTP	FMA_STP4	11-Mar-10	0	0.25 SW6010B	BARIUM	4.9	J	0.21	20	MG/KG
ECCFASTP	FMA_STP5	11-Mar-10	0	0.25 SW6010B	BARIUM	6.9	J	0.2	20	MG/KG
ECCFASTP	FMA_STP6	11-Mar-10	0	0.25 SW6010B	BARIUM	3.7	J	0.21	20	MG/KG
ECCFASTP	FMA_STP7	11-Mar-10	0	0.25 SW6010B	BARIUM	3.5	J	0.22	20	MG/KG
ECCFASTP	FMA_STP8	11-Mar-10	0	0.25 SW6010B	BARIUM	5.5	J	0.2	20	MG/KG
ECCFASTP	FMA_STP1	11-Mar-10	0	0.25 SW8270C	BENZO(a)ANTHRACENE	100	J	33.5899	360	UG/KG
ECCFASTP	FMA_STP3	11-Mar-10	0	0.25 SW8270C	BENZO(a)ANTHRACENE	110	J	33.1133	360	UG/KG
ECCFASTP	FMA_STP6	11-Mar-10	0	0.25 SW8270C	BENZO(a)ANTHRACENE	55	J	32.7271	350	UG/KG
ECCFASTP	FMA_STP1	11-Mar-10	0	0.25 SW8270C	BENZO(a)PYRENE	87	J	37.5159	360	UG/KG
ECCFASTP	FMA_STP3	11-Mar-10	0	0.25 SW8270C	BENZO(a)PYRENE	80	J	36.9837	360	UG/KG
ECCFASTP	FMA_STP6	11-Mar-10	0	0.25 SW8270C	BENZO(a)PYRENE	44	J	36.5523	350	UG/KG
ECCFASTP	FMA_STP1	11-Mar-10	0	0.25 SW8270C	BENZO(b)FLUORANTHENE	120	J	60.2	360	UG/KG
ECCFASTP	FMA_STP3	11-Mar-10	0	0.25 SW8270C	BENZO(b)FLUORANTHENE	100	J	59.3459	360	UG/KG
ECCFASTP	FMA_STP1	11-Mar-10	0	0.25 SW8270C	BENZO(k)FLUORANTHENE	100	J	41.6601	360	UG/KG
ECCFASTP	FMA_STP3	11-Mar-10	0	0.25 SW8270C	BENZO(k)FLUORANTHENE	110	J	41.0691	360	UG/KG
ECCFASTP	FMA_STP6	11-Mar-10	0	0.25 SW8270C	BENZO(k)FLUORANTHENE	57	J	40.5901	350	UG/KG
ECCFASTP	FMA_STP7	11-Mar-10	0	0.25 SW8270C	BENZO(k)FLUORANTHENE	45	J	40.2468	340	UG/KG
ECCFASTP	FMA_STP2	11-Mar-10	0	0.25 SW6010B	CADMIUM	0.062	J	0.013	0.5	MG/KG
ECCFASTP	FMA_STP3	11-Mar-10	0	0.25 SW6010B	CADMIUM	0.022	J	0.013	0.5	MG/KG
ECCFASTP	FMA_STP4	11-Mar-10	0	0.25 SW6010B	CADMIUM	0.047	J	0.013	0.5	MG/KG
ECCFASTP	FMA_STP5	11-Mar-10	0	0.25 SW6010B	CADMIUM	0.052	J	0.012	0.4	MG/KG
ECCFASTP	FMA_STP6	11-Mar-10	0	0.25 SW6010B	CADMIUM	0.015	J	0.013	0.5	MG/KG
ECCFASTP	FMA_STP7	11-Mar-10	0	0.25 SW6010B	CADMIUM	0.03	J	0.013	0.5	MG/KG
ECCFASTP	FMA_STP1	11-Mar-10	0	0.25 SW6010B	CHROMIUM, TOTAL	3.7		0.0093	0.84	MG/KG
ECCFASTP	FMA_STP2	11-Mar-10	0	0.25 SW6010B	CHROMIUM, TOTAL	5.3		0.01	0.93	MG/KG
ECCFASTP	FMA_STP3	11-Mar-10	0	0.25 SW6010B	CHROMIUM, TOTAL	4.5		0.01	0.93	MG/KG
ECCFASTP	FMA_STP4	11-Mar-10	0	0.25 SW6010B	CHROMIUM, TOTAL	3.9		0.01	0.93	MG/KG
ECCFASTP	FMA_STP5	11-Mar-10	0	0.25 SW6010B	CHROMIUM, TOTAL	5.1		0.0095	0.87	MG/KG
ECCFASTP	FMA_STP6	11-Mar-10	0	0.25 SW6010B	CHROMIUM, TOTAL	4		0.01		MG/KG
ECCFASTP	FMA_STP7	11-Mar-10	0	0.25 SW6010B	CHROMIUM, TOTAL	3.2		0.011	0.95	MG/KG
ECCFASTP	FMA_STP8	11-Mar-10	0	0.25 SW6010B	CHROMIUM, TOTAL	4.9		0.0096	0.87	MG/KG

Table A.8
Stock Pile Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPTH (F	T.) TEST	ANALYTE	RESULT	QUALIFIERS1	MDL	RL	UNITS
ECCFASTP	FMA_STP1	11-Mar-10	0 (.25 SW8270C	CHRYSENE	120	J	28.3551	360	UG/KG
ECCFASTP	FMA_STP2	11-Mar-10	0 (.25 SW8270C	CHRYSENE	34	J	28.7615	360	UG/KG
ECCFASTP	FMA_STP3	11-Mar-10	0 (.25 SW8270C	CHRYSENE	130	J	27.9528	360	UG/KG
ECCFASTP	FMA_STP6	11-Mar-10	0 (.25 SW8270C	CHRYSENE	64	J	27.6268	350	UG/KG
ECCFASTP	FMA_STP7	11-Mar-10	0 (.25 SW8270C	CHRYSENE	37	J	27.3931	340	UG/KG
ECCFASTP	FMA_STP1	11-Mar-10	0 (.25 SW8270C	FLUORANTHENE	230	J	78.8489	360	UG/KG
ECCFASTP	FMA_STP3	11-Mar-10	0 (.25 SW8270C	FLUORANTHENE	260	J	77.7303	360	UG/KG
ECCFASTP	FMA_STP6	11-Mar-10	0 (.25 SW8270C	FLUORANTHENE	120	J	76.8237	350	UG/KG
ECCFASTP	FMA_STP7	11-Mar-10	0 (.25 SW8270C	FLUORANTHENE	95	J	76.174	340	UG/KG
ECCFASTP	FMA_STP1	11-Mar-10	0 (.25 SW6010B	LEAD	19.6		0.051	0.8	MG/KG
ECCFASTP	FMA_STP2	11-Mar-10	0 (.25 SW6010B	LEAD	40		0.056	0.9	MG/KG
ECCFASTP	FMA_STP3	11-Mar-10	0 (.25 SW6010B	LEAD	51		0.056	0.9	MG/KG
ECCFASTP	FMA_STP4	11-Mar-10	0 (.25 SW6010B	LEAD	34.2		0.056	0.9	MG/KG
ECCFASTP	FMA_STP5	11-Mar-10	0 (.25 SW6010B	LEAD	54		0.052	0.9	MG/KG
ECCFASTP	FMA_STP6	11-Mar-10	0 (.25 SW6010B	LEAD	44.3		0.055	0.9	MG/KG
ECCFASTP	FMA_STP7	11-Mar-10	0 (.25 SW6010B	LEAD	35.6		0.057	1	MG/KG
ECCFASTP	FMA_STP8	11-Mar-10	0 (.25 SW6010B	LEAD	54.8		0.053	0.9	MG/KG
ECCFASTP	FMA_STP1	11-Mar-10	0 (.25 SW7471A	MERCURY	0.024	J	0.017	0.04	MG/KG
ECCFASTP	FMA_STP2	11-Mar-10	0 (.25 SW7471A	MERCURY	0.075		0.015	0.04	MG/KG
ECCFASTP	FMA_STP3	11-Mar-10	0 (.25 SW7471A	MERCURY	0.077		0.016	0.04	MG/KG
ECCFASTP	FMA_STP4	11-Mar-10	0 (.25 SW7471A	MERCURY	0.04		0.017	0.04	MG/KG
ECCFASTP	FMA_STP5	11-Mar-10	0 (.25 SW7471A	MERCURY	0.077		0.018	0.04	MG/KG
ECCFASTP	FMA_STP6	11-Mar-10	0 (.25 SW7471A	MERCURY	0.047		0.014	0.03	MG/KG
ECCFASTP	FMA_STP7	11-Mar-10	0 (.25 SW7471A	MERCURY	0.055		0.015	0.04	MG/KG
ECCFASTP	FMA_STP8	11-Mar-10			MERCURY	0.074		0.016	0.04	MG/KG
ECCFASTP	FMA_STP1	11-Mar-10			рН	4.6			0	PH UNITS
ECCFASTP	FMA_STP2	11-Mar-10	0 (.25 SW9045C	рН	3.9			0	PH UNITS
ECCFASTP	FMA_STP3	11-Mar-10	0 (.25 SW9045C	рН	4.1			0	PH UNITS
ECCFASTP	FMA_STP4	11-Mar-10	0 (.25 SW9045C	рН	4			0	PH UNITS
ECCFASTP	FMA_STP5	11-Mar-10	0 (.25 SW9045C	рН	3.8				PH UNITS
ECCFASTP	FMA_STP6	11-Mar-10	0 (.25 SW9045C	рН	4.1			0	PH UNITS
ECCFASTP	FMA_STP7	11-Mar-10			рН	4.3				PH UNITS
ECCFASTP	FMA_STP8	11-Mar-10	0 (.25 SW9045C	рН	4.2			0	PH UNITS
ECCFASTP	FMA_STP1	11-Mar-10	0 (.25 SW8270C	PHENANTHRENE	140	J	28.6822	360	UG/KG
ECCFASTP	FMA_STP3	11-Mar-10	0 (.25 SW8270C	PHENANTHRENE	62	J	28.2753	360	UG/KG
ECCFASTP	FMA_STP6	11-Mar-10	0 (.25 SW8270C	PHENANTHRENE	58	J	27.9455	350	UG/KG
ECCFASTP	FMA_STP7	11-Mar-10	0 (.25 SW8270C	PHENANTHRENE	67	J	27.7092	340	UG/KG
ECCFASTP	FMA_STP1	11-Mar-10	0 (.25 SW8270C	PYRENE	190	J	82.0116	360	UG/KG

Table A.8
Stock Pile Data (Detects)

LOCATION	SAMPLE ID	DATE	DEPTH	(FT.)	TEST	ANALYTE	RESULT	QUALIFIERS ¹	MDL	RL	UNITS
ECCFASTP	FMA_STP3	11-Mar-10	0	0.25	SW8270C	PYRENE	250	J	80.8481	360	UG/KG
ECCFASTP	FMA_STP6	11-Mar-10	0	0.25	SW8270C	PYRENE	100	J	79.9051	350	UG/KG
ECCFASTP	FMA_STP3	11-Mar-10	0	0.25	SW6010B	SELENIUM	0.16	J	0.13	3.3	MG/KG
ECCFASTP	FMA_STP4	11-Mar-10	0	0.25	SW6010B	SELENIUM	0.35	J	0.13	3.2	MG/KG
ECCFASTP	FMA_STP5	11-Mar-10	0	0.25	SW6010B	SELENIUM	0.23	J	0.12	3	MG/KG
ECCFASTP	FMA_STP6	11-Mar-10	0	0.25	SW6010B	SELENIUM	0.21	J	0.13	3.2	MG/KG
ECCFASTP	FMA_STP8	11-Mar-10	0	0.25	SW6010B	SELENIUM	0.49	J	0.12	3.1	MG/KG
ECCFASTP	FMA_STP6	11-Mar-10	0	0.25	SW6010B	SILVER	0.052	J	0.033	0.91	MG/KG
ECCFASTP	FMA_STP7	11-Mar-10	0	0.25	SW6010B	SILVER	0.052	J	0.034	0.95	MG/KG
ECCFASTP	FMA_STP1	11-Mar-10	0	0.25	SW9034	SULFIDE	16.4		5.163	16.4	MG/KG
ECCFASTP	FMA_STP2	11-Mar-10	0	0.25	SW9034	SULFIDE	21.7		5.237	17.4	MG/KG
ECCFASTP	FMA_STP3	11-Mar-10	0	0.25	SW9034	SULFIDE	29.8		5.1407	17	MG/KG
ECCFASTP	FMA_STP4	11-Mar-10	0	0.25	SW9034	SULFIDE	20.2		5.0211	16.1	MG/KG
ECCFASTP	FMA_STP5	11-Mar-10	0	0.25	SW9034	SULFIDE	16		5.1799	16	MG/KG
ECCFASTP	FMA_STP6	11-Mar-10	0	0.25	SW9034	SULFIDE	25		5.064	16.7	MG/KG
ECCFASTP	FMA_STP7	11-Mar-10	0	0.25	SW9034	SULFIDE	20.4		5.0211	16.4	MG/KG
ECCFASTP	FMA_STP8	11-Mar-10	0	0.25	SW9034	SULFIDE	25.4		5.1075	16.9	MG/KG
Footnote:										,	

^{1.} Qualifiers: J = value is estimated due to limitations found in the data validation. The samples that are presented without an associated qualifier code were treated as detected results.

Table A.9
Post-Excavation Sampling Results (Detects)

LOCATION	SAMPLE ID	DATE	DEP	TH (FT)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SSFMABA	FAA0003A	20-Jul-10	0	0.25	SW6010B	Aluminum	3500		0.84	10.0	MG/KG
SSFMABA	FAA0003A	20-Jul-10	0	0.25	SW6010B	Arsenic	2.5		0.06	0.50	MG/KG
SSFMABA	FAA0003A	20-Jul-10	0	0.25	SW6010B	Barium	5.7	J	0.12	10.0	MG/KG
SSFMABA	FAA0003A	20-Jul-10	0	0.25	SW6010B	Beryllium	0.3		0.0034	0.25	MG/KG
SSFMABA	FAA0003A	20-Jul-10	0	0.25	SW6010B	Boron	1.8	J	0.035	5.0	MG/KG
SSFMABA	FAA0003A	20-Jul-10	0	0.25	SW6010B	Calcium	74	J	1.2	250	MG/KG
SSFMABA	FAA0003A	20-Jul-10	0	0.25	SW6010B	Chromium	4.7		0.0049	0.50	MG/KG
SSFMABA	FAA0003A	20-Jul-10	0	0.25	SW6010B	Copper	7.2		0.018	1.2	MG/KG
SSFMABA	FAA0003A	20-Jul-10	0	0.25	SW6010B	Iron	5760		0.23	10.0	MG/KG
SSFMABA	FAA0003A	20-Jul-10	0	0.25	SW6010B	Lead	10.4		0.05	0.50	MG/KG
SSFMABA	FAA0003A	20-Jul-10	0	0.25	SW6010B	Magnesium	518		0.98	250	MG/KG
SSFMABA	FAA0003A	20-Jul-10	0	0.25	SW6010B	Manganese	37	J	0.0019	0.75	MG/KG
SSFMABA	FAA0003A	20-Jul-10	0	0.25	SW6010B	Molybdenum	0.37	J	0.011	0.50	MG/KG
SSFMABA	FAA0003A	20-Jul-10	0	0.25	SW6010B	Nickel	2.3		0.022	2.0	MG/KG
SSFMABA	FAA0003A	20-Jul-10	0	0.25	SW6010B	Potassium	230	J	2.6	250	MG/KG
SSFMABA	FAA0003A	20-Jul-10	0	0.25	SW6010B	Sodium	7.1	J	0.61	250	MG/KG
SSFMABA	FAA0003A	20-Jul-10	0	0.25	SW6010B	Vanadium	8.8		0.015	2.5	MG/KG
SSFMABA	FAA0003A	20-Jul-10	0	0.25	SW6010B	Zinc	9.4		0.0065	1.0	MG/KG
SSFMABA	FAA0003A	20-Jul-10	0	0.25	SW7471A	Mercury	0.035		0.01	0.020	MG/KG
SSFMABA	FAA0003A	20-Jul-10	0	0.25	SW8330B	ND all Explosives Compounds	ND	U			UG/KG
SSFMABB	FAB0003A	20-Jul-10	0	0.25	SW6010B	Aluminum	5090		0.84	10.0	MG/KG
SSFMABB	FAB0003A	20-Jul-10	0	0.25	SW6010B	Arsenic	2.5		0.06	0.50	MG/KG
SSFMABB	FAB0003A	20-Jul-10	0	0.25	SW6010B	Barium	7.2	J	0.12	10.0	MG/KG
SSFMABB	FAB0003A	20-Jul-10	0	0.25	SW6010B	Beryllium	0.28		0.0034	0.25	MG/KG
SSFMABB	FAB0003A	20-Jul-10	0	0.25	SW6010B	Boron	1.3	J	0.035	5.0	MG/KG
SSFMABB	FAB0003A	20-Jul-10	0	0.25	SW6010B	Calcium	54	J	1.2	250	MG/KG
SSFMABB	FAB0003A	20-Jul-10	0	0.25	SW6010B	Chromium	5.6		0.0049	0.50	MG/KG
SSFMABB	FAB0003A	20-Jul-10	0	0.25	SW6010B	Copper	9.3		0.018	1.2	MG/KG
SSFMABB	FAB0003A	20-Jul-10	0	0.25	SW6010B	Iron	6130		0.23	10.0	MG/KG
SSFMABB	FAB0003A	20-Jul-10	0	0.25	SW6010B	Lead	14.5		0.05	0.50	MG/KG
SSFMABB	FAB0003A	20-Jul-10	0	0.25	SW6010B	Magnesium	508		0.98	250	MG/KG
SSFMABB	FAB0003A	20-Jul-10	0	0.25	SW6010B	Manganese	34.7	J	0.0019	0.75	MG/KG
SSFMABB	FAB0003A	20-Jul-10	0	0.25	SW6010B	Nickel	2.8		0.022	2.0	MG/KG

Table A.9
Post-Excavation Sampling Results (Detects)

LOCATION	SAMPLE ID	DATE	DEP	TH (FT)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SSFMABB	FAB0003A	20-Jul-10	0	0.25	SW6010B	Potassium	211	J	2.6	250	MG/KG
SSFMABB	FAB0003A	20-Jul-10	0	0.25	SW6010B	Sodium	6.9	J	0.61	250	MG/KG
SSFMABB	FAB0003A	20-Jul-10	0	0.25	SW6010B	Vanadium	10		0.015	2.5	MG/KG
SSFMABB	FAB0003A	20-Jul-10	0	0.25	SW6010B	Zinc	10.4		0.0065	1.0	MG/KG
SSFMABB	FAB0003A	20-Jul-10	0	0.25	SW7471A	Mercury	0.02		0.01	0.020	MG/KG
SSFMABB	FAB0003A	20-Jul-10	0	0.25	SW8330B	ND all Explosives Compounds	ND	U			UG/KG
SSFMABC	FAC0003A	20-Jul-10	0	0.25	SW6010B	Aluminum	1750		0.84	10.0	MG/KG
SSFMABC	FAC0003A	20-Jul-10	0	0.25	SW6010B	Arsenic	2.1		0.06	0.50	MG/KG
SSFMABC	FAC0003A	20-Jul-10	0	0.25	SW6010B	Barium	3	J	0.12	10.0	MG/KG
SSFMABC	FAC0003A	20-Jul-10	0	0.25	SW6010B	Beryllium	0.2	J	0.0034	0.25	MG/KG
SSFMABC	FAC0003A	20-Jul-10	0	0.25	SW6010B	Boron	1.3	J	0.035	5.0	MG/KG
SSFMABC	FAC0003A	20-Jul-10	0	0.25	SW6010B	Calcium	58.4	J	1.2	250	MG/KG
SSFMABC	FAC0003A	20-Jul-10	0	0.25	SW6010B				0.0049	0.50	MG/KG
SSFMABC	FAC0003A	20-Jul-10	0	0.25	SW6010B				0.018	1.2	MG/KG
SSFMABC	FAC0003A	20-Jul-10	0	0.25	SW6010B				0.23	10.0	MG/KG
SSFMABC	FAC0003A	20-Jul-10	0	0.25	SW6010B	Lead	28.9		0.05	0.50	MG/KG
SSFMABC	FAC0003A	20-Jul-10	0	0.25	SW6010B	Magnesium	273		0.98	250	MG/KG
SSFMABC	FAC0003A	20-Jul-10	0	0.25	SW6010B	Manganese	44	J	0.0019	0.75	MG/KG
SSFMABC	FAC0003A	20-Jul-10	0	0.25	SW6010B	Nickel	1.7	J	0.022	2.0	MG/KG
SSFMABC	FAC0003A	20-Jul-10	0	0.25	SW6010B	Potassium	180	J	2.6	250	MG/KG
SSFMABC	FAC0003A	20-Jul-10	0	0.25	SW6010B	Sodium	4.1	J	0.61	250	MG/KG
SSFMABC	FAC0003A	20-Jul-10	0	0.25	SW6010B	Vanadium	6.6		0.015	2.5	MG/KG
SSFMABC	FAC0003A	20-Jul-10	0	0.25	SW6010B	Zinc	5.6		0.0065	1.0	MG/KG
SSFMABC	FAC0003A	20-Jul-10	0	0.25	SW7471A	Mercury	0.015	J	0.01	0.020	MG/KG
SSFMABC	FAC0003A	20-Jul-10	0	0.25	SW8330B	ND all Explosives Compounds	ND	U			UG/KG
SSFMABD	FAD0003A	21-Jul-10	0	0.25	SW6010B	Aluminum	5880		0.84	10.0	MG/KG
SSFMABD	FAD0003A	21-Jul-10	0	0.25	SW6010B	Arsenic	3.2		0.06	0.50	MG/KG
SSFMABD	FAD0003A	21-Jul-10	0	0.25	SW6010B	Barium	8.3	J	0.12	10.0	MG/KG
SSFMABD	FAD0003A	21-Jul-10	0	0.25	SW6010B	Beryllium	0.28		0.0034	0.25	MG/KG
SSFMABD	FAD0003A	21-Jul-10	0	0.25	SW6010B	Boron	1.2	J	0.035	5.0	MG/KG
SSFMABD	FAD0003A	21-Jul-10	0	0.25	SW6010B	Calcium	56.8	J	1.2	250	MG/KG
SSFMABD	FAD0003A	21-Jul-10	0	0.25	SW6010B	Chromium	5.9		0.0049	0.50	MG/KG
SSFMABD	FAD0003A	21-Jul-10	0	0.25	SW6010B	Copper	27.1		0.018	1.2	MG/KG

Table A.9
Post-Excavation Sampling Results (Detects)

SSFMABD FAD0003A 21-Jul-10 0 0.25 SW6010B Lead 49.4 0.05 0.50 N SSFMABD FAD0003A 21-Jul-10 0 0.25 SW6010B Magnesium 359 0.98 250 N SSFMABD FAD0003A 21-Jul-10 0 0.25 SW6010B Manganese 24.9 J 0.0019 0.75 N SSFMABD FAD0003A 21-Jul-10 0 0.25 SW6010B Nickel 2 0.022 2.0 N SSFMABD FAD0003A 21-Jul-10 0 0.25 SW6010B Potassium 164 J 2.6 250 N SSFMABD FAD0003A 21-Jul-10 0 0.25 SW6010B Vanadium 12.5 0.015 2.5 N SSFMABD FAD0003A 21-Jul-10 0 0.25 SW6010B Zinc 12.4 0.0065 1.0 N SSFMABD FAD0003A 21-Jul-10 0	LOCATION	SAMPLE ID	DATE	DEP	TH (FT)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SSFMABD FAD0003A 21-Jul-10 0 0.25 SW6010B Magnesium 359 0.98 250 N SSFMABD FAD0003A 21-Jul-10 0 0.25 SW6010B Manganese 24.9 J 0.0019 0.75 N SSFMABD FAD0003A 21-Jul-10 0 0.25 SW6010B Nickel 2 0.022 2.0 N SSFMABD FAD0003A 21-Jul-10 0 0.25 SW6010B Sodium 7.6 J 0.61 250 N SSFMABD FAD0003A 21-Jul-10 0 0.25 SW6010B Vanadium 12.5 0.015 2.5 N SSFMABD FAD0003A 21-Jul-10 0 0.25 SW6010B Zinc 12.4 0.0065 1.0 N SSFMABD FAD0003A 21-Jul-10 0 0.25 SW6010B All minum 0.057 0.01 0.020 N 0.25 SW6010B All minum 0.057	SSFMABD	FAD0003A	21-Jul-10	0	0.25	SW6010B	Iron	6990		0.23	10.0	MG/KG
SSFMABD	SSFMABD	FAD0003A	21-Jul-10	0	0.25	SW6010B	Lead	49.4		0.05	0.50	MG/KG
SSFMABD FAD0003A 21-Jul-10 0 0.25 SW6010B Nickel 2 0.022 2.0 M SSFMABD FAD0003A 21-Jul-10 0 0.25 SW6010B Potassium 164 J 2.6 250 M SSFMABD FAD0003A 21-Jul-10 0 0.25 SW6010B Sodium 7.6 J 0.61 250 M SSFMABD FAD0003A 21-Jul-10 0 0.25 SW6010B Vanadium 12.5 0.015 2.5 M SSFMABD FAD0003A 21-Jul-10 0 0.25 SW6010B Zinc 1.2 4 0.0065 1.0 M SSFMABD FAD0003A 21-Jul-10 0 0.25 SW6010B Aluminum 5940 0.01 0.02 V U U U U U U U U U U U U U U U U U U U	SSFMABD	FAD0003A	21-Jul-10	0	0.25	SW6010B	Magnesium	359		0.98	250	MG/KG
SSFMABD FAD0003A 21-Jul-10 0 0.25 SW6010B Potassium 164 J 2.6 250 M SSFMABD FAD0003A 21-Jul-10 0 0.25 SW6010B Sodium 7.6 J 0.61 250 M SSFMABD FAD0003A 21-Jul-10 0 0.25 SW6010B Zinc 12.4 0.0065 1.0 M SSFMABD FAD0003A 21-Jul-10 0 0.25 SW6010B Zinc 12.4 0.0065 1.0 M SSFMABD FAD0003A 21-Jul-10 0 0.25 SW630B ND all Explosives Compounds ND U SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Aluminum 5940 0.84 1.0 0 SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Barium 8.9 J 0.12 10.0 M SSFMABD FAD0003B 21-Jul-10 0	SSFMABD	FAD0003A	21-Jul-10	0	0.25	SW6010B	Manganese	24.9	J	0.0019	0.75	MG/KG
SFMABD	SSFMABD	FAD0003A	21-Jul-10	0	0.25	SW6010B	Nickel	2		0.022	2.0	MG/KG
SSFMABD FAD0003A 21-Jul-10 0 0.25 SW6010B Vanadium 12.5 0.015 2.5 M SSFMABD FAD0003A 21-Jul-10 0 0.25 SW6010B Zinc 12.4 0.0065 1.0 M SSFMABD FAD0003A 21-Jul-10 0 0.25 SW7471A Mercury 0.057 0.01 0.020 N SSFMABD FAD0003A 21-Jul-10 0 0.25 SW7471A Mercury 0.057 0.01 0.020 N SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Aluminum 5940 0.84 10.0 W SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Barium 8.9 J 0.12 10.0 W SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Beryllium 0.28 0.0034 0.25 SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010	SSFMABD	FAD0003A	21-Jul-10	0	0.25	SW6010B	Potassium	164	J	2.6	250	MG/KG
SSFMABD FAD0003A 21-Jul-10 0 0.25 SW6010B Zinc 12.4 0.0065 1.0 M SSFMABD FAD0003A 21-Jul-10 0 0.25 SW7471A Mercury 0.057 0.01 0.020 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW830B ND all Explosives Compounds ND U	SSFMABD	FAD0003A	21-Jul-10	0	0.25	SW6010B	Sodium	7.6	J	0.61	250	MG/KG
SSFMABD FAD0003A 21-Jul-10 0 0.25 SW7471A Mercury 0.057 0.01 0.020 M SSFMABD FAD0003A 21-Jul-10 0 0.25 SW8330B ND all Explosives Compounds ND U	SSFMABD	FAD0003A	21-Jul-10	0	0.25	SW6010B	Vanadium	12.5		0.015	2.5	MG/KG
SSFMABD FAD0003A 21-Jul-10 0 0.25 SW8330B ND all Explosives Compounds ND U	SSFMABD	FAD0003A	21-Jul-10	0	0.25	SW6010B	Zinc	12.4		0.0065	1.0	MG/KG
SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Aluminum 5940 0.84 10.0 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Arsenic 2.7 0.06 0.50 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Barium 8.9 J 0.12 10.0 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Beryllium 0.28 0.0034 0.25 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Boron 1.4 J 0.035 5.0 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Calcium 57.3 J 1.2 2250 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Chromium 6 0.0049 0.50 M SSFMABD FAD0003B 21-Jul	SSFMABD	FAD0003A	21-Jul-10	0	0.25	SW7471A	Mercury	0.057		0.01	0.020	MG/KG
SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Arsenic 2.7 0.06 0.50 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Barium 8.9 J 0.12 10.0 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Beryllium 0.28 0.0034 0.25 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Boron 1.4 J 0.035 5.0 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Calcium 57.3 J 1.2 250 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Chromium 6 0.0049 0.50 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Cropper 21 0.018 1.2 M SSFMABD FAD0003B 21-Jul-10<	SSFMABD	FAD0003A	21-Jul-10	0	0.25	SW8330B	ND all Explosives Compounds	ND	U			UG/KG
SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Barium 8.9 J 0.12 10.0 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Beryllium 0.28 0.0034 0.25 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Boron 1.4 J 0.035 5.0 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Calcium 57.3 J 1.2 250 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Chromium 6 0.0049 0.50 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Copper 21 0.018 1.2 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Lead 47.2 0.05 0.50 M SSFMABD FAD0003B 21-Jul-10 <td>SSFMABD</td> <td>FAD0003B</td> <td>21-Jul-10</td> <td>0</td> <td>0.25</td> <td>SW6010B</td> <td>Aluminum</td> <td>5940</td> <td></td> <td>0.84</td> <td>10.0</td> <td>MG/KG</td>	SSFMABD	FAD0003B	21-Jul-10	0	0.25	SW6010B	Aluminum	5940		0.84	10.0	MG/KG
SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Beryllium 0.28 0.0034 0.25 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Boron 1.4 J 0.035 5.0 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Calcium 57.3 J 1.2 250 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Chromium 6 0.0049 0.50 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Copper 21 0.018 1.2 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Lead 47.2 0.05 0.50 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Magnesium 395 0.98 250 M SSFMABD FAD0003B 21-Jul-10 0 </td <td>SSFMABD</td> <td>FAD0003B</td> <td>21-Jul-10</td> <td>0</td> <td>0.25</td> <td>SW6010B</td> <td>Arsenic</td> <td>2.7</td> <td></td> <td>0.06</td> <td>0.50</td> <td>MG/KG</td>	SSFMABD	FAD0003B	21-Jul-10	0	0.25	SW6010B	Arsenic	2.7		0.06	0.50	MG/KG
SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Boron 1.4 J 0.035 5.0 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Calcium 57.3 J 1.2 250 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Chromium 6 0.0049 0.50 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Chromium 6 0.0049 0.50 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Iron 7080 0.23 10.0 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Lead 47.2 0.05 0.50 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Magnesium 395 0.98 250 M SSFMABD FAD0003B 21-Jul-10 0	SSFMABD	FAD0003B	21-Jul-10	0	0.25	SW6010B	Barium	8.9	J	0.12	10.0	MG/KG
SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Calcium 57.3 J 1.2 250 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Chromium 6 0.0049 0.50 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Copper 21 0.018 1.2 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Iron 7080 0.23 10.0 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Lead 47.2 0.05 0.50 M SSFMABD FAD003B 21-Jul-10 0 0.25 SW6010B Magnesium 395 0.98 250 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Manganese 25.3 J 0.0019 0.75 M SSFMABD FAD0003B 21-Jul-10 0 <td>SSFMABD</td> <td>FAD0003B</td> <td>21-Jul-10</td> <td>0</td> <td>0.25</td> <td>SW6010B</td> <td>Beryllium</td> <td>0.28</td> <td></td> <td>0.0034</td> <td>0.25</td> <td>MG/KG</td>	SSFMABD	FAD0003B	21-Jul-10	0	0.25	SW6010B	Beryllium	0.28		0.0034	0.25	MG/KG
SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Chromium 6 0.0049 0.50 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Copper 21 0.018 1.2 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Iron 7080 0.23 10.0 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Lead 47.2 0.05 0.50 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Magnesium 395 0.98 250 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Manganese 25.3 J 0.0019 0.75 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Molybdenum 0.37 J 0.011 0.50 M SSFMABD FAD0003B 21-Jul-10 <	SSFMABD	FAD0003B	21-Jul-10	0	0.25	SW6010B	Boron	1.4	J	0.035	5.0	MG/KG
SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Copper 21 0.018 1.2 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Iron 7080 0.23 10.0 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Lead 47.2 0.05 0.50 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Magnesium 395 0.98 250 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Manganese 25.3 J 0.0019 0.75 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Molybdenum 0.37 J 0.011 0.50 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Nickel 2.2 0.022 2.0 M SSFMABD FAD0003B 21-Jul-10 <td< td=""><td>SSFMABD</td><td>FAD0003B</td><td>21-Jul-10</td><td>0</td><td>0.25</td><td>SW6010B</td><td>Calcium</td><td>57.3</td><td>J</td><td>1.2</td><td>250</td><td>MG/KG</td></td<>	SSFMABD	FAD0003B	21-Jul-10	0	0.25	SW6010B	Calcium	57.3	J	1.2	250	MG/KG
SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Iron 7080 0.23 10.0 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Lead 47.2 0.05 0.50 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Magnesium 395 0.98 250 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Manganese 25.3 J 0.0019 0.75 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Molybdenum 0.37 J 0.011 0.50 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Nickel 2.2 0.022 2.0 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Potassium 182 J 2.6 250 M SSFMABD FAD0003B 21-Ju	SSFMABD	FAD0003B	21-Jul-10	0	0.25	SW6010B	Chromium	6		0.0049	0.50	MG/KG
SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Lead 47.2 0.05 0.50 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Magnesium 395 0.98 250 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Manganese 25.3 J 0.0019 0.75 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Molybdenum 0.37 J 0.011 0.50 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Nickel 2.2 0.022 2.0 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Potassium 182 J 2.6 250 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Sodium 8.2 J 0.61 250 M SSFMABD FAD0003B <td>SSFMABD</td> <td>FAD0003B</td> <td>21-Jul-10</td> <td>0</td> <td>0.25</td> <td>SW6010B</td> <td>Copper</td> <td>21</td> <td></td> <td>0.018</td> <td>1.2</td> <td>MG/KG</td>	SSFMABD	FAD0003B	21-Jul-10	0	0.25	SW6010B	Copper	21		0.018	1.2	MG/KG
SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Magnesium 395 0.98 250 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Manganese 25.3 J 0.0019 0.75 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Molybdenum 0.37 J 0.011 0.50 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Nickel 2.2 0.022 2.0 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Potassium 182 J 2.6 250 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Sodium 8.2 J 0.61 250 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Zinc 12.9 0.0065 1.0 M SSFMABD FAD0003B <td>SSFMABD</td> <td>FAD0003B</td> <td>21-Jul-10</td> <td>0</td> <td>0.25</td> <td>SW6010B</td> <td>Iron</td> <td>7080</td> <td></td> <td>0.23</td> <td>10.0</td> <td>MG/KG</td>	SSFMABD	FAD0003B	21-Jul-10	0	0.25	SW6010B	Iron	7080		0.23	10.0	MG/KG
SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Manganese 25.3 J 0.0019 0.75 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Molybdenum 0.37 J 0.011 0.50 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Nickel 2.2 0.022 2.0 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Potassium 182 J 2.6 250 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Sodium 8.2 J 0.61 250 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Vanadium 12.7 0.015 2.5 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Zinc 12.9 0.0065 1.0 M SSFMABD FAD0003B </td <td>SSFMABD</td> <td>FAD0003B</td> <td>21-Jul-10</td> <td>0</td> <td>0.25</td> <td>SW6010B</td> <td>Lead</td> <td>47.2</td> <td></td> <td>0.05</td> <td>0.50</td> <td>MG/KG</td>	SSFMABD	FAD0003B	21-Jul-10	0	0.25	SW6010B	Lead	47.2		0.05	0.50	MG/KG
SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Molybdenum 0.37 J 0.011 0.50 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Nickel 2.2 0.022 2.0 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Potassium 182 J 2.6 250 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Sodium 8.2 J 0.61 250 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Vanadium 12.7 0.015 2.5 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Zinc 12.9 0.0065 1.0 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW8330B ND all Explosives Compounds ND U U SSFMABD FAD0003C 21-Jul-10	SSFMABD	FAD0003B	21-Jul-10	0	0.25	SW6010B	Magnesium	395		0.98	250	MG/KG
SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Nickel 2.2 0.022 2.0 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Potassium 182 J 2.6 250 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Sodium 8.2 J 0.61 250 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Vanadium 12.7 0.015 2.5 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Zinc 12.9 0.0065 1.0 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW7471A Mercury 0.07 0.01 0.020 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW8330B ND all Explosives Compounds ND U U SSFMABD FAD0003C 21-Jul-10 0	SSFMABD	FAD0003B	21-Jul-10	0	0.25	SW6010B	Manganese	25.3	J	0.0019	0.75	MG/KG
SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Potassium 182 J 2.6 250 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Sodium 8.2 J 0.61 250 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Vanadium 12.7 0.015 2.5 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Zinc 12.9 0.0065 1.0 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW7471A Mercury 0.07 0.01 0.020 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW8330B ND all Explosives Compounds ND U U SSFMABD FAD0003C 21-Jul-10 0 0.25 SW6010B Aluminum 5030 0.84 10.0 M	SSFMABD	FAD0003B	21-Jul-10	0	0.25	SW6010B	Molybdenum	0.37	J	0.011	0.50	MG/KG
SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Sodium 8.2 J 0.61 250 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Vanadium 12.7 0.015 2.5 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Zinc 12.9 0.0065 1.0 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW7471A Mercury 0.07 0.01 0.020 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW8330B ND all Explosives Compounds ND U SSFMABD FAD0003C 21-Jul-10 0 0.25 SW6010B Aluminum 5030 0.84 10.0 M	SSFMABD	FAD0003B	21-Jul-10	0	0.25	SW6010B	Nickel	2.2		0.022	2.0	MG/KG
SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Vanadium 12.7 0.015 2.5 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Zinc 12.9 0.0065 1.0 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW7471A Mercury 0.07 0.01 0.020 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW8330B ND all Explosives Compounds ND U U SSFMABD FAD0003C 21-Jul-10 0 0.25 SW6010B Aluminum 5030 0.84 10.0 M	SSFMABD	FAD0003B	21-Jul-10	0	0.25	SW6010B	Potassium	182	J	2.6	250	MG/KG
SSFMABD FAD0003B 21-Jul-10 0 0.25 SW6010B Zinc 12.9 0.0065 1.0 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW7471A Mercury 0.07 0.01 0.020 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW8330B ND all Explosives Compounds ND U U U SSFMABD FAD0003C 21-Jul-10 0 0.25 SW6010B Aluminum 5030 0.84 10.0 M	SSFMABD	FAD0003B	21-Jul-10	0	0.25	SW6010B	Sodium	8.2	J	0.61	250	MG/KG
SSFMABD FAD0003B 21-Jul-10 0 0.25 SW7471A Mercury 0.07 0.01 0.020 M SSFMABD FAD0003B 21-Jul-10 0 0.25 SW8330B ND all Explosives Compounds ND U U SSFMABD FAD0003C 21-Jul-10 0 0.25 SW6010B Aluminum 5030 0.84 10.0 M	SSFMABD	FAD0003B	21-Jul-10	0	0.25	SW6010B	Vanadium	12.7		0.015	2.5	MG/KG
SSFMABD FAD0003B 21-Jul-10 0 0.25 SW8330B ND all Explosives Compounds ND U U SSFMABD FAD0003C 21-Jul-10 0 0.25 SW6010B Aluminum 5030 0.84 10.0 M	SSFMABD	FAD0003B	21-Jul-10	0	0.25	SW6010B	Zinc	12.9		0.0065	1.0	MG/KG
SSFMABD FAD0003C 21-Jul-10 0 0.25 SW6010B Aluminum 5030 0.84 10.0 M	SSFMABD	FAD0003B	21-Jul-10	0	0.25	SW7471A	Mercury	0.07		0.01	0.020	MG/KG
	SSFMABD	FAD0003B	21-Jul-10	0	0.25	SW8330B	ND all Explosives Compounds	ND	U			UG/KG
	SSFMABD	FAD0003C	21-Jul-10	0	0.25	SW6010B	Aluminum	5030		0.84	10.0	MG/KG
SSFMABD FAD0003C 21-Jul-10 0 0.25 SW6010B Arsenic 2.3 0.06 0.50 M	SSFMABD	FAD0003C	21-Jul-10	0	0.25	SW6010B	Arsenic	2.3		0.06	0.50	MG/KG

Table A.9
Post-Excavation Sampling Results (Detects)

LOCATION	SAMPLE ID	DATE	DEP	TH (FT)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
SSFMABD	FAD0003C	21-Jul-10	0	0.25	SW6010B	Barium	7.5	J	0.12	10.0	MG/KG
SSFMABD	FAD0003C	21-Jul-10	0	0.25	SW6010B	Beryllium	0.23	J	0.0034	0.25	MG/KG
SSFMABD	FAD0003C	21-Jul-10	0	0.25	SW6010B	Boron	1.1	J	0.035	5.0	MG/KG
SSFMABD	FAD0003C	21-Jul-10	0	0.25	SW6010B	Calcium	52	J	1.2	250	MG/KG
SSFMABD	FAD0003C	21-Jul-10	0	0.25	SW6010B	Chromium	5		0.0049	0.50	MG/KG
SSFMABD	FAD0003C	21-Jul-10	0	0.25	SW6010B	Copper	20.6		0.018	1.2	MG/KG
SSFMABD	FAD0003C	21-Jul-10	0	0.25	SW6010B	Iron	5570		0.23	10.0	MG/KG
SSFMABD	FAD0003C	21-Jul-10	0	0.25	SW6010B	Lead	38.9		0.05	0.50	MG/KG
SSFMABD	FAD0003C	21-Jul-10	0	0.25	SW6010B	Magnesium	338		0.98	250	MG/KG
SSFMABD	FAD0003C	21-Jul-10	0	0.25	SW6010B	Manganese	22.3	J	0.0019	0.75	MG/KG
SSFMABD	FAD0003C	21-Jul-10	0	0.25	SW6010B	Nickel	1.9	J	0.022	2.0	MG/KG
SSFMABD	FAD0003C	21-Jul-10	0	0.25	SW6010B	Potassium	148	J	2.6	250	MG/KG
SSFMABD	FAD0003C	21-Jul-10	0	0.25	SW6010B	Sodium	6.7	J	0.61	250	MG/KG
SSFMABD	FAD0003C	21-Jul-10	0	0.25	SW6010B	Vanadium	9.8		0.015	2.5	MG/KG
SSFMABD	FAD0003C	21-Jul-10	0	0.25	SW6010B	Zinc	11.4		0.0065	1.0	MG/KG
SSFMABD	FAD0003C	21-Jul-10	0	0.25	SW7471A	Mercury	0.06		0.01	0.020	MG/KG
SSFMABD	FAD0003C	21-Jul-10	0	0.25	SW8330B	ND all Explosives Compounds	ND	U			UG/KG

Footnote:

^{1.} Qualifiers: J = value is estimated due to limitations found in the data validation. The samples that are presented without an associated qualifier code were treated as detected results.

Table A.10-1 Monitoring Well MW-149 (Detects)

LOCATION	SAMPLE ID	DATE	DEPTH	1 (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
MW-149S	08476	10-Oct-03	105.5	115.5	CL200.7	BORON	9.8	J	3.6	6.3	UG/L
MW-149S	08476	10-Oct-03	105.5	115.5	CL200.7	CALCIUM	1420		287	287	UG/L
MW-149S	08476	10-Oct-03	105.5	115.5	CL200.7	MAGNESIUM	1100		301	301	UG/L
MW-149S	08476	10-Oct-03	105.5	115.5	CL200.7	POTASSIUM	638		318	318	UG/L
MW-149S	08476	10-Oct-03	105.5	115.5	CL200.7	SODIUM	5640		454	454	UG/L
MW-149S	18244	20-Sep-04	105.5	115.5	CL200.7	CALCIUM	1440		332	332	UG/L
MW-149S	18244	20-Sep-04	105.5	115.5	CL200.7	MAGNESIUM	986		141	141	UG/L
MW-149S	18244	20-Sep-04	105.5	115.5	CL200.7	POTASSIUM	622	J	319	319	UG/L
MW-149S	18244	20-Sep-04	105.5	115.5	CL200.7	SODIUM	5240		292	292	UG/L
MW-149S	18244	20-Sep-04	105.5	115.5	CL200.7	ZINC	9.9	J	5.9	5.9	UG/L
MW-149S	25715	5-Oct-05	105.5	115.5	CL200.7	CALCIUM	1270	J	300	300	UG/L
MW-149S	25715	5-Oct-05	105.5	115.5	CL200.7	MAGNESIUM	1020	J	270	270	UG/L
MW-149S	25715	5-Oct-05	105.5	115.5	CL200.7	SODIUM	5610		638	638	UG/L
MW-149S	25715	5-Oct-05	105.5	115.5	CL200.7	ZINC	15	J	4.4	4.4	UG/L
MW-149S	AN619	13-Mar-01	105.5	115.5	E310.1	ALKALINITY, BICARBONATE (AS CACO3)	4				MG/L
MW-149S	AN619	13-Mar-01	105.5	115.5	E310.1	ALKALINITY, TOTAL (AS CaCO3)					MG/L
MW-149S	AN619	13-Mar-01	105.5	115.5	CL200.7	BARIUM		J	3.6	3.6	UG/L
MW-149S	AN619	13-Mar-01	105.5	115.5	SW8270	bis(2-ETHYLHEXYL) PHTHALATE	1.4	J	1.4	5.1	UG/L
MW-149S	AN619	13-Mar-01	105.5	115.5	CL200.7	BORON	10.1	J	8.1	8.1	UG/L
MW-149S	AN619	13-Mar-01	105.5	115.5	CL200.7	CALCIUM	1360		140.9	140.9	UG/L
MW-149S	AN619	13-Mar-01	105.5	115.5	E300	CHLORIDE (AS CL)	7				MG/L
MW-149S	AN619	13-Mar-01	105.5	115.5	CVOL	CHLOROFORM	2		0.0474	1	UG/L
MW-149S	AN619	13-Mar-01	105.5	115.5	CL200.7	MAGNESIUM	1060		126.8	126.8	UG/L
MW-149S	AN619	13-Mar-01	105.5	115.5	CL200.7	MANGANESE	5.7		0.3	0.3	UG/L
MW-149S	AN619	13-Mar-01	105.5	115.5	SW8270	NAPHTHALENE	0.37	J	0.37	5.1	UG/L
MW-149S	AN619	13-Mar-01	105.5	115.5	E350.2	NITROGEN, AMMONIA (AS N)	0.03	J	0.015	0.02	MG/L
MW-149S	AN619	13-Mar-01	105.5	115.5	E365.2	PHOSPHORUS, TOTAL ORTHOPHOSPHATE (AS PO4)	0.01		0.005	0.01	MG/L
MW-149S	AN619	13-Mar-01	105.5	115.5	CL200.7	POTASSIUM	913		358.9	358.9	UG/L
MW-149S	AN619	13-Mar-01	105.5	115.5	CL200.7	SILVER	4.1	J	1	1	UG/L
MW-149S	AN619	13-Mar-01	105.5	115.5	CL200.7	SODIUM	5660		333.4	333.4	UG/L
MW-149S	AN619	13-Mar-01	105.5	115.5	E300	SULFATE (AS SO4)	5				MG/L
MW-149S	AR117	21-Jun-01	105.5	115.5	E310.1	ALKALINITY, BICARBONATE (AS CACO3)	2				MG/L
MW-149S	AR117	21-Jun-01	105.5	115.5	E310.1	ALKALINITY, TOTAL (AS CaCO3)	2				MG/L
MW-149S	AR117	21-Jun-01	105.5	115.5	CL200.7	BARIUM	3.7	J	3.7	3.7	UG/L

Table A.10-1 Monitoring Well MW-149 (Detects)

LOCATION	SAMPLE ID	DATE	DEPTI	1 (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
MW-149S	AR117	21-Jun-01	105.5	115.5	CL200.7	CALCIUM	1210		119	119	UG/L
MW-149S	AR117	21-Jun-01	105.5	115.5	E300	CHLORIDE (AS CL)	7.5				MG/L
MW-149S	AR117	21-Jun-01	105.5	115.5	CVOL	CHLOROFORM	1		0.0474	1	UG/L
MW-149S	AR117	21-Jun-01	105.5	115.5	CL200.7	COPPER	2.1	J	1.9	1.9	UG/L
MW-149S	AR117	21-Jun-01	105.5	115.5	CL200.7	MAGNESIUM	985		129	129	UG/L
MW-149S	AR117	21-Jun-01	105.5	115.5	CL200.7	MANGANESE	1.3	J	1.2	1.2	UG/L
MW-149S	AR117	21-Jun-01	105.5	115.5	E365.2	PHOSPHORUS, TOTAL ORTHOPHOSPHATE (AS PO4)	0.023		0.005	0.01	MG/L
MW-149S	AR117	21-Jun-01	105.5	115.5	CL200.7	POTASSIUM	597		165	165	UG/L
MW-149S	AR117	21-Jun-01	105.5	115.5	CL200.7	SODIUM	5600		356	356	UG/L
MW-149S	AR117	21-Jun-01	105.5	115.5	E300	SULFATE (AS SO4)	4.4				MG/L
MW-149S	AR117	21-Jun-01	105.5	115.5	SW9060	TOTAL ORGANIC CARBON	0.62	J			MG/L
MW-149S	AY334	22-Feb-02	105.5	115.5	E310.1	ALKALINITY, BICARBONATE (AS CACO3)	3				MG/L
MW-149S	AY334	22-Feb-02	105.5	115.5	E310.1	ALKALINITY, TOTAL (AS CaCO3)	3				MG/L
MW-149S	AY334	22-Feb-02	105.5	115.5	SW8270	bis(2-ETHYLHEXYL) PHTHALATE	0.44	J	0.44	5.2	UG/L
MW-149S	AY334	22-Feb-02	105.5	115.5	CL200.7	CALCIUM	1220		182	182	UG/L
MW-149S	AY334	22-Feb-02	105.5	115.5	E353.1	CHLORIDE (AS CL)	7.7	J			MG/L
MW-149S	AY334	22-Feb-02	105.5	115.5	CVOL	CHLOROFORM	1		0.278	1	UG/L
MW-149S	AY334	22-Feb-02	105.5	115.5	CL200.7	MAGNESIUM	996		226	226	UG/L
MW-149S	AY334	22-Feb-02	105.5	115.5	E350.2	NITROGEN, AMMONIA (AS N)	0.025	J	0.022	0.024	MG/L
MW-149S	AY334	22-Feb-02	105.5	115.5	E353.2	NITROGEN, NITRATE-NITRITE	0.013		0.0037	0.01	MG/L
MW-149S	AY334	22-Feb-02	105.5	115.5	E365.2	PHOSPHORUS, TOTAL ORTHOPHOSPHATE (AS PO4)	0.021		0.006	0.01	MG/L
MW-149S	AY334	22-Feb-02	105.5	115.5	CL200.7	POTASSIUM	530		193	193	UG/L
MW-149S	AY334	22-Feb-02	105.5	115.5	CL200.7	SODIUM	5350		580	580	UG/L
MW-149S	AY334	22-Feb-02	105.5	115.5	E353.1	SULFATE (AS SO4)	4.8				MG/L
MW-149S	BH858	6-Sep-02	105.5	115.5	CL200.7	BORON	6.4	J	3.6	4.2	UG/L
MW-149S	BH858	6-Sep-02	105.5	115.5	CL200.7	CALCIUM	1190		179	179	UG/L
MW-149S	BH858	6-Sep-02	105.5	115.5	CL200.7	MAGNESIUM	966		260	260	UG/L
MW-149S	BH858	6-Sep-02	105.5	115.5	CL200.7	MOLYBDENUM	0.84	J	0.8	0.8	UG/L
MW-149S	BH858	6-Sep-02	105.5	115.5	CL200.7	POTASSIUM	438		194	194	UG/L
MW-149S	BH858	6-Sep-02	105.5	115.5	CL200.7	SODIUM	5000		548.6	654	UG/L
MW-149S	MW-149S_S11	11-May-11	106	116	SW6010B	Boron	7.9	J	2.0	100	
MW-149S	MW-149S_S11	11-May-11	106	116	SW6010B	Manganese	1.1		0.36	15.0	
MW-149S	MW-149S_S11	11-May-11	106	116	SW6010B	Potassium	552		230	5000	
MW-149S	MW-149S_S11	11-May-11	106	116	SW6010B	Sodium	5080		61.0	5000	
MW-149S	MW-149S_S11	11-May-11	106	116	SW8260B	Acetone	0.57		0.49	5.0	
MW-149S	MW-149S_S11	11-May-11	106	116	SW8260B	Chloroform	0.98	J	0.20	1.0	UG/L

Table A.10-2 Monitoring Well MW-206 (Detects)

LOCATION	SAMPLE ID	DATE	DEPTI	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
MW-206M1	01486	05-Feb-03	178.5	188.5	SW8330	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	4.3		0.0398	0.25	UG/L
MW-206M1	01486	05-Feb-03	178.5	188.5	SW8330	OCTAHYDRO-1,3,5,7-TETRANITRO-1,3,5,7-TETRAZOCINE	0.45		0.0438	0.25	UG/L
MW-206M1	11567	03-Feb-04	178.5	188.5	SW8330	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	5.4		0.0281	0.25	UG/L
MW-206M1	11567	03-Feb-04	178.5	188.5	SW8330	HEXAHYDRO-1-MONONITROSO-3,5-DINITRO-1,3,5-TRIAZINE	0.26		0.0453	0.25	UG/L
MW-206M1	11567	03-Feb-04	178.5	188.5	SW8330	OCTAHYDRO-1,3,5,7-TETRANITRO-1,3,5,7-TETRAZOCINE	0.69	J	0.0165	0.25	UG/L
MW-206M1	12627	09-Mar-04	178.5	188.5	SW8330	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	5		0.0281	0.25	UG/L
MW-206M1	12627	09-Mar-04	178.5	188.5	SW8330	OCTAHYDRO-1,3,5,7-TETRANITRO-1,3,5,7-TETRAZOCINE	0.77		0.0165	0.25	UG/L
MW-206M1	14964	19-May-04	178.5	188.5	SW8330	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	4.2		0.0281	0.25	UG/L
MW-206M1	14964	19-May-04	178.5	188.5	SW8330	OCTAHYDRO-1,3,5,7-TETRANITRO-1,3,5,7-TETRAZOCINE	0.84		0.0165	0.25	UG/L
MW-206M1	14968	19-May-04	178.5	188.5	SW8330	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	4.1		0.0281	0.25	UG/L
MW-206M1	14968	19-May-04	178.5	188.5	SW8330	OCTAHYDRO-1,3,5,7-TETRANITRO-1,3,5,7-TETRAZOCINE	0.85		0.0165	0.25	UG/L
MW-206M1	17756	29-Sep-04	178.5	188.5	SW8330	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3.6		0.0281	0.25	UG/L
MW-206M1	17756	29-Sep-04	178.5	188.5	SW8330	OCTAHYDRO-1,3,5,7-TETRANITRO-1,3,5,7-TETRAZOCINE	0.94		0.0165	0.25	UG/L
MW-206M1	21877	28-Feb-05	178.5	188.5	SW8330	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	2.7		0.0281	0.25	UG/L
MW-206M1	21877	28-Feb-05	178.5	188.5	SW8330	OCTAHYDRO-1,3,5,7-TETRANITRO-1,3,5,7-TETRAZOCINE	0.71		0.0165	0.25	UG/L
MW-206M1	23783	24-May-05	178.5	188.5	SW8330	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3.5		0.032	0.25	UG/L
MW-206M1	23783	24-May-05	178.5	188.5	SW8330	OCTAHYDRO-1,3,5,7-TETRANITRO-1,3,5,7-TETRAZOCINE	0.81	J	0.024	0.25	UG/L
MW-206M1	25690	05-Oct-05	178.5	188.5	SW8330	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3.2		0.094	0.25	UG/L
MW-206M1	25690	05-Oct-05	178.5	188.5	SW8330	OCTAHYDRO-1,3,5,7-TETRANITRO-1,3,5,7-TETRAZOCINE	0.8		0.063	0.25	UG/L
MW-206M1	25691	05-Oct-05	178.5	188.5	SW8330	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3.2		0.094	0.25	UG/L
MW-206M1	25691	05-Oct-05	178.5	188.5	SW8330	OCTAHYDRO-1,3,5,7-TETRANITRO-1,3,5,7-TETRAZOCINE	0.8		0.063	0.25	UG/L
MW-206M1	26530	09-Jan-06	178.5	188.5	SW8330	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3.2		0.094	0.25	UG/L
MW-206M1	26530	09-Jan-06	178.5	188.5	SW8330	OCTAHYDRO-1,3,5,7-TETRANITRO-1,3,5,7-TETRAZOCINE	0.73		0.063	0.25	UG/L
MW-206M1	BF384	18-Jul-02	178.5	188.5	SW8330	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	2.6		0.045	0.25	UG/L
MW-206M1	BF384	18-Jul-02	178.5	188.5	SW8330	OCTAHYDRO-1,3,5,7-TETRANITRO-1,3,5,7-TETRAZOCINE	0.39		0.054	0.25	UG/L
MW-206M1	BJ369	15-Oct-02	178.5	188.5	SW8330	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3.3		0.0398	0.25	UG/L
MW-206M1	BJ369	15-Oct-02	178.5	188.5	SW8330	OCTAHYDRO-1,3,5,7-TETRANITRO-1,3,5,7-TETRAZOCINE	0.38	J	0.0438	0.25	UG/L
MW-206S	MW-206S_S11	10-May-11	156	166	SW6010B	Boron	7.9	J	2.0	100	UG/L
MW-206S	MW-206S_S11	10-May-11	156	166	SW6010B	Manganese	0.41	J	0.36	15.0	UG/L
MW-206S	MW-206S_S11	10-May-11	156	166	SW6010B	Potassium	539	J	230	5000	UG/L
MW-206S	MW-206S_S11	10-May-11	156	166	SW6010B	Sodium	5930		61.0	5000	UG/L
MW-206S	MW-206S_S11	10-May-11	156	166	SW6010B	Zinc	4.5	J	3.6	20.0	UG/L
MW-206S	MW-206S_S11	10-May-11	156	166	SW8260B	Chloroform	1.5		0.20	1.0	UG/L
Footnote:											
1. Qualifiers:	J = value is estim	ated due to li	mitation	ns found	d in the data	validation. The samples that are presented without an associated qu	ualifier code	were treated a	s detecte	ed resu	lts.

Page 1 of 1

Table A.10-3 Monitoring Well MW-249 (Detects)

LOCATION	SAMPLE ID	DATE	DEPTI	H (FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
MW-249M2	00655	21-Jan-03	174	184	SW8330	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	0.56		0.0398	0.25	UG/L
MW-249M2	03847	02-May-03	174	184	SW8330	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	0.67		0.0281	0.25	UG/L
MW-249M2	06963	22-Aug-03	174	184	SW8330	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	1		0.0281	0.25	UG/L
MW-249M2	15504	07-Jun-04	174	184	SW8330	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	1.2		0.0281	0.25	UG/L
MW-249M2	16804	23-Sep-04	174	184	SW8330	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	1.6		0.0281	0.25	UG/L
MW-249M2	21919	23-Mar-05	174	184	SW8330	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	0.54		0.0281	0.25	UG/L
MW-249M2	24269	02-Jun-05	174	184	SW8330	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	0.44	J	0.032	0.25	UG/L
MW-249M2	26026	08-Nov-05	174	184	SW8330	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	0.44	J	0.094	0.25	UG/L
MW-249M2	26714	07-Feb-06	174	184	SW8330	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	0.37	J	0.094	0.25	UG/L
MW-249M2	27460	19-Oct-06	174	184	SW8330	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	0.58		0.053	0.25	UG/L
MW-249M2	MW-249M2	13-Nov-07	0	0	SW8330	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	0.61		0.053	0.25	UG/L
MW-249M2	MW-249M2_F08	10-Dec-08	174	184	SW8330	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	0.37		0.056	0.25	UG/L
MW-249M2	MW-249M2_SPR08	10-Jun-08	174	184	SW8330	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	0.34		0.017	0.25	UG/L
MW-249M3	00657	23-Jan-03	154	164	SW8330	2,4,6-TRINITROTOLUENE	0.41		0.0282	0.25	UG/L
MW-249M3	07085	26-Aug-03	154	164	SW8330	2,4,6-TRINITROTOLUENE	0.42	J	0.0302	0.25	UG/L
MW-249M3	07085	26-Aug-03	154	164	SW8330	2-AMINO-4,6-DINITROTOLUENE	0.26		0.034	0.25	UG/L
MW-249M3	07085	26-Aug-03	154	164	SW8330	4-AMINO-2,6-DINITROTOLUENE	0.4	J	0.0441	0.25	UG/L
MW-249M3	10435	12-Dec-03	154	164	SW8330	2,4,6-TRINITROTOLUENE	0.4	J	0.0302	0.25	UG/L
MW-249M3	10435	12-Dec-03	154	164	SW8330	2-AMINO-4,6-DINITROTOLUENE	0.27	J	0.034	0.25	UG/L
MW-249M3	10435	12-Dec-03	154	164	SW8330	4-AMINO-2,6-DINITROTOLUENE	0.34	J	0.0441	0.25	UG/L
MW-249M3	15505	07-Jun-04	154	164	SW8330	2,4,6-TRINITROTOLUENE	0.44		0.0302	0.25	UG/L
MW-249M3	15505	07-Jun-04	154	164	SW8330	2-AMINO-4,6-DINITROTOLUENE	0.39		0.034	0.25	UG/L
MW-249M3	15505	07-Jun-04	154	164	SW8330	4-AMINO-2,6-DINITROTOLUENE	0.3		0.0441	0.25	UG/L
MW-249M3	16806	09-Nov-04	154	164	SW8330	2,4,6-TRINITROTOLUENE	0.38	J	0.0302	0.25	UG/L
MW-249M3	16806	09-Nov-04	154	164	SW8330	2-AMINO-4,6-DINITROTOLUENE	0.26		0.034	0.25	UG/L
MW-249M3	16806	09-Nov-04	154	164	SW8330	4-AMINO-2,6-DINITROTOLUENE	0.38	J	0.0441	0.25	UG/L
MW-249M3	16807	09-Nov-04	154	164	E314.0	PERCHLORATE	0.44	J	0.35	1	UG/L
MW-249M3	16808	09-Nov-04	154	164	SW8330	2,4,6-TRINITROTOLUENE	0.39	J	0.0302	0.25	UG/L
MW-249M3	16808	09-Nov-04	154	164	SW8330	2-AMINO-4,6-DINITROTOLUENE	0.25		0.034	0.25	UG/L
MW-249M3	16808	09-Nov-04	154	164	SW8330	4-AMINO-2,6-DINITROTOLUENE	0.38		0.0441	0.25	UG/L
MW-249M3	21920	23-Mar-05	154	164	SW8330	2,4,6-TRINITROTOLUENE	0.4	J	0.0302	0.25	UG/L
MW-249M3	21920	23-Mar-05	154	164	SW8330	2-AMINO-4,6-DINITROTOLUENE	0.35	J	0.034	0.25	UG/L
MW-249M3	21920	23-Mar-05	154	164	SW8330	4-AMINO-2,6-DINITROTOLUENE	0.47	J	0.0441	0.25	UG/L
MW-249M3	24271	06-Jun-05	154	164	SW8330	1,3,5-TRINITROBENZENE	0.33	J	0.049	0.25	UG/L
MW-249M3	24271	06-Jun-05	154	164	SW8330	2,4,6-TRINITROTOLUENE	0.51	J	0.032	0.25	UG/L
MW-249M3	24271	06-Jun-05	154	164	SW8330	2-AMINO-4,6-DINITROTOLUENE	0.38	J	0.035	0.25	UG/L

Table A.10-3 Monitoring Well MW-249 (Detects)

LOCATION	SAMPLE ID	DATE	DEPTH	(FT.)	TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS
MW-249M3	24271	06-Jun-05	154	164	SW8330	4-AMINO-2,6-DINITROTOLUENE	0.44	J	0.034	0.25	UG/L
MW-249M3	24271	06-Jun-05	154	164	SW8330	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	0.31	J	0.032	0.25	UG/L
MW-249M3	26027	08-Nov-05	154	164	SW8330	2,4,6-TRINITROTOLUENE	0.46	J	0.026	0.25	UG/L
MW-249M3	26027	08-Nov-05	154	164	SW8330	2-AMINO-4,6-DINITROTOLUENE	0.37		0.021	0.25	UG/L
MW-249M3	26027	08-Nov-05	154	164	SW8330	4-AMINO-2,6-DINITROTOLUENE	0.5		0.029	0.25	UG/L
MW-249M3	26715	07-Feb-06	154	164	SW8330	2-AMINO-4,6-DINITROTOLUENE	0.4		0.021	0.25	UG/L
MW-249M3	26715	07-Feb-06	154	164	SW8330	4-AMINO-2,6-DINITROTOLUENE	0.42		0.029	0.25	UG/L
MW-249M3	27256	26-Jun-06	154	164	SW8330	2-AMINO-4,6-DINITROTOLUENE	0.37		0.021	0.25	UG/L
MW-249M3	27256	26-Jun-06	154	164	SW8330	4-AMINO-2,6-DINITROTOLUENE	0.34		0.029	0.25	UG/L
MW-249M3	MW-249M3_0508	27-Jun-08	154	164	SW8330	2,4,6-TRINITROTOLUENE	0.34		0.012	0.25	UG/L
MW-249M3	MW-249M3_0508	27-Jun-08	154	164	SW8330	2-AMINO-4,6-DINITROTOLUENE	0.27		0.018	0.25	UG/L
MW-249M3	MW-249M3_0508	27-Jun-08	154	164	SW8330	4-AMINO-2,6-DINITROTOLUENE	0.25		0.022	0.25	UG/L
MW-249M3	MW-249M3_SPR09	30-Jun-09	154	164	SW6850	PERCHLORATE	0.075	J	0.04	0.2	UG/L
MW-249M3	MW-249M3_SPR09	30-Jun-09	154	164	SW8330	2,4,6-TRINITROTOLUENE	0.39		0.025	0.25	UG/L
MW-249M3	MW-249M3_S11	11-May-11	154	164	SW6010B	Boron	8.3	J	2.0	100	UG/L
MW-249M3	MW-249M3_S11	11-May-11	154	164	SW6010B	Manganese	2.2	J	0.36	15.0	UG/L
MW-249M3	MW-249M3_S11	11-May-11	154	164	SW6010B	Potassium	667	J	230	5000	UG/L
MW-249M3	MW-249M3_S11	11-May-11	154	164	SW6010B	Sodium	6310		61.0	5000	UG/L
MW-249M3	MW-249M3_S11	11-May-11	154	164	SW8260B	Chloroform	1.0		0.20	1.0	UG/L
MW-249M3	MW-249M3_S11	11-May-11	154	164	SW8270C	Di-n-Butyl Phthalate	0.78	J	0.41	5.0	UG/L
MW-249M3	MW-249M3_S11	11-May-11	154	164	SW8330	2,4,6-Trinitrotoluene	0.30		0.012	0.20	UG/L
MW-249M3	MW-249M3_S11	11-May-11	154	164	SW8330	2-Amino-4,6-Dinitrotoluene	0.20		0.021	0.20	UG/L
MW-249M3	MW-249M3_S11	11-May-11	154	164	SW8330	4-Amino-2,6-Dinitrotoluene	0.25		0.022	0.20	UG/L
Footnote:											

1. Qualifiers: J = value is estimated due to limitations found in the data validation. The samples that are presented without an associated qualifier code were treated as detected results.

Table A.10-4
Monitoring Well MW-536S (Detects)

SAMPLE ID	DATE	DEPTH (FT.) TEST		TEST	ANALYTE	RESULT	QUALIFIER ¹	MDL	RL	UNITS		
MW-536S_DEC09	20-Jan-10	158	168	SW6850	PERCHLORATE	0.2		0.04	0.2	UG/L		
MW-536S_S11	10-May-11	158	168	SW6010B	Boron	8.8	J	2.0	100	UG/L		
MW-536S_S11	10-May-11	158	168	SW6010B	Manganese	2.3	J	0.36	15.0	UG/L		
MW-536S_S11	10-May-11	158	168	SW6010B	Potassium	667	J	230	5000	UG/L		
MW-536S_S11	10-May-11	158	168	SW6010B	Sodium	6650		61.0	5000	UG/L		
MW-536S_S11	10-May-11	158	168	SW6850	Perchlorate	0.24		0.015	0.20	UG/L		
MW-536S_S11	10-May-11	158	168	SW8260B	Chloroform	0.98	J	0.20	1.0	UG/L		
Footnote:												
	MW-536S_DEC09 MW-536S_S11 MW-536S_S11 MW-536S_S11 MW-536S_S11 MW-536S_S11 MW-536S_S11	MW-536S_DEC09 20-Jan-10 MW-536S_S11 10-May-11 MW-536S_S11 10-May-11 MW-536S_S11 10-May-11 MW-536S_S11 10-May-11 MW-536S_S11 10-May-11 MW-536S_S11 10-May-11	MW-536S_DEC09 20-Jan-10 158 MW-536S_S11 10-May-11 158	MW-536S_DEC09 20-Jan-10 158 168 MW-536S_S11 10-May-11 158 168	MW-536S_DEC09 20-Jan-10 158 168 SW6850 MW-536S_S11 10-May-11 158 168 SW6010B MW-536S_S11 10-May-11 158 168 SW6850 MW-536S_S11 10-May-11 158 168 SW8260B	MW-536S_DEC09 20-Jan-10 158 168 SW6850 PERCHLORATE MW-536S_S11 10-May-11 158 168 SW6010B Boron MW-536S_S11 10-May-11 158 168 SW6010B Manganese MW-536S_S11 10-May-11 158 168 SW6010B Potassium MW-536S_S11 10-May-11 158 168 SW6010B Sodium MW-536S_S11 10-May-11 158 168 SW6850 Perchlorate MW-536S_S11 10-May-11 158 168 SW8260B Chloroform	MW-536S_DEC09 20-Jan-10 158 168 SW6850 PERCHLORATE 0.2 MW-536S_S11 10-May-11 158 168 SW6010B Boron 8.8 MW-536S_S11 10-May-11 158 168 SW6010B Manganese 2.3 MW-536S_S11 10-May-11 158 168 SW6010B Potassium 667 MW-536S_S11 10-May-11 158 168 SW6010B Sodium 6650 MW-536S_S11 10-May-11 158 168 SW6850 Perchlorate 0.24 MW-536S_S11 10-May-11 158 168 SW8260B Chloroform 0.98	MW-536S_DEC09 20-Jan-10 158 168 SW6850 PERCHLORATE 0.2 MW-536S_S11 10-May-11 158 168 SW6010B Boron 8.8 J MW-536S_S11 10-May-11 158 168 SW6010B Manganese 2.3 J MW-536S_S11 10-May-11 158 168 SW6010B Potassium 667 J MW-536S_S11 10-May-11 158 168 SW6010B Sodium 6650 MW-536S_S11 10-May-11 158 168 SW6850 Perchlorate 0.24 MW-536S_S11 10-May-11 158 168 SW8260B Chloroform 0.98 J	MW-536S_DEC09 20-Jan-10 158 168 SW6850 PERCHLORATE 0.2 0.04 MW-536S_S11 10-May-11 158 168 SW6010B Boron 8.8 J 2.0 MW-536S_S11 10-May-11 158 168 SW6010B Manganese 2.3 J 0.36 MW-536S_S11 10-May-11 158 168 SW6010B Potassium 667 J 230 MW-536S_S11 10-May-11 158 168 SW6010B Sodium 6650 61.0 MW-536S_S11 10-May-11 158 168 SW6850 Perchlorate 0.24 0.015 MW-536S_S11 10-May-11 158 168 SW8260B Chloroform 0.98 J 0.20	MW-536S_DEC09 20-Jan-10 158 168 SW6850 PERCHLORATE 0.2 0.04 0.2 MW-536S_S11 10-May-11 158 168 SW6010B Boron 8.8 J 2.0 100 MW-536S_S11 10-May-11 158 168 SW6010B Manganese 2.3 J 0.36 15.0 MW-536S_S11 10-May-11 158 168 SW6010B Potassium 667 J 230 5000 MW-536S_S11 10-May-11 158 168 SW6010B Sodium 6650 61.0 5000 MW-536S_S11 10-May-11 158 168 SW6850 Perchlorate 0.24 0.015 0.20		

1. Qualifiers: J = value is estimated due to limitations found in the data validation. The samples that are presented without an associated qualifier code were treated as detected results.

Table A.11
Former A Range BIP Locations
Summary Data Table

			Date										
Item	Location ID	Field Sample ID	Sampled	Northing	Easting	Test Method	Analyte	Result Value	Qualifier	Units	MDL	RL	RCS-1
2.36 RKT	SSFAMEA01	TT083010FMA01_PRE	02/24/2011	4620999.5	369861.7	SW6010B	Aluminum	450		MG/KG	4.8	17.0	
	SSFAMEA01	TT083010FMA01_PRE	02/24/2011	4620999.5	369861.7	SW6010B	Antimony	0.39	J	MG/KG	0.28	5.1	20
	SSFAMEA01	TT083010FMA01_PRE	02/24/2011	4620999.5	369861.7	SW6010B	Arsenic	0.64	J	MG/KG	0.34	0.85	20
	SSFAMEA01	TT083010FMA01_PRE	02/24/2011	4620999.5	369861.7	SW6010B	Barium	14	J	MG/KG	0.37	17.0	1000
	SSFAMEA01	TT083010FMA01_PRE	02/24/2011	4620999.5	369861.7	SW6010B	Beryllium	0.04	J	MG/KG	0.044	0.42	100
	SSFAMEA01	TT083010FMA01_PRE	02/24/2011	4620999.5	369861.7	SW6010B	Boron	0.90	J	MG/KG	0.12	8.5	
	SSFAMEA01	TT083010FMA01_PRE	02/24/2011	4620999.5	369861.7	SW6010B	Cadmium	0.66		MG/KG	0.048	0.42	2
	SSFAMEA01	TT083010FMA01_PRE	02/24/2011	4620999.5	369861.7	SW6010B	Calcium	556		MG/KG	10.2	425	
	SSFAMEA01	TT083010FMA01_PRE	02/24/2011	4620999.5	369861.7	SW6010B	Chromium	0.79	J	MG/KG	0.068	0.85	30
	SSFAMEA01	TT083010FMA01_PRE	02/24/2011	4620999.5	369861.7	SW6010B	Cobalt	0.07	J	MG/KG	0.064	4.2	500
	SSFAMEA01	TT083010FMA01_PRE	02/24/2011	4620999.5	369861.7	SW6010B	Copper	9.80		MG/KG	0.18	2.1	1000
	SSFAMEA01	TT083010FMA01_PRE	02/24/2011	4620999.5	369861.7	SW6010B	Iron	677		MG/KG	2.3	17.0	
	SSFAMEA01	TT083010FMA01_PRE	02/24/2011	4620999.5	369861.7	SW6010B	Lead	11		MG/KG	0.30	0.85	300
	SSFAMEA01	TT083010FMA01_PRE	02/24/2011	4620999.5	369861.7	SW6010B	Magnesium	152	J	MG/KG	4.2	425	
	SSFAMEA01	TT083010FMA01_PRE	02/24/2011	4620999.5	369861.7	SW6010B	Manganese	19.8		MG/KG	0.020	1.3	
	SSFAMEA01	TT083010FMA01_PRE	02/24/2011	4620999.5	369861.7	SW6010B	Molybdenum	0.17	J	MG/KG	0.058	0.85	
	SSFAMEA01	TT083010FMA01_PRE	02/24/2011	4620999.5	369861.7	SW6010B	ND for 3 Analytes	ND	U	MG/KG	ND	ND	
	SSFAMEA01	TT083010FMA01_PRE	02/24/2011	4620999.5	369861.7	SW6010B	Nickel	1.40	J	MG/KG	0.11	3.4	20
	SSFAMEA01	TT083010FMA01_PRE	02/24/2011	4620999.5	369861.7	SW6010B	Potassium	167	J	MG/KG	17.0	425	
	SSFAMEA01	TT083010FMA01_PRE	02/24/2011	4620999.5	369861.7	SW6010B	Sodium	42.0	J	MG/KG	4.3	425	
	SSFAMEA01	TT083010FMA01_PRE	02/24/2011	4620999.5	369861.7	SW6010B	Vanadium	5.7		MG/KG	0.065	4.2	600
	SSFAMEA01	TT083010FMA01_PRE	02/24/2011	4620999.5	369861.7	SW6010B	Zinc	8.0		MG/KG	0.080	1.7	2500
	SSFAMEA01	TT083010FMA01_PRE	02/24/2011	4620999.5	369861.7	SW6850	Perchlorate	0.42	J	UG/KG	0.065	1.0	100
	SSFAMEA01	TT083010FMA01_PRE	02/24/2011	4620999.5	369861.7	SW7471A	Mercury	0.04		MG/KG	0.013	0.038	20
	SSFAMEA01	TT083010FMA01_PRE	02/24/2011	4620999.5	369861.7	SW8270C	Benzo(a)anthracene	19.0	J	UG/KG	17.0	430	7000
	SSFAMEA01	TT083010FMA01_PRE	02/24/2011	4620999.5	369861.7	SW8270C	Benzoic acid	84.0	J	UG/KG	73.0	1100	1000
	SSFAMEA01	TT083010FMA01_PRE	02/24/2011	4620999.5	369861.7	SW8270C	Chrysene	36.0	J	UG/KG	23.0	430	70000
	SSFAMEA01	TT083010FMA01_PRE	02/24/2011	4620999.5	369861.7	SW8270C	Di-n-Butyl Phthalate	21.0	J	UG/KG	20.0	430	50
	SSFAMEA01	TT083010FMA01_PRE	02/24/2011	4620999.5	369861.7	SW8270C	Fluoranthene	53.0	J	UG/KG	16.0	430	1000000
	SSFAMEA01	TT083010FMA01_PRE	02/24/2011	4620999.5	369861.7	SW8270C	n,n'-Diethylcarbanilide	85.0	J	UG/KG	38.0	430	
	SSFAMEA01	TT083010FMA01_PRE	02/24/2011	4620999.5	369861.7	SW8270C	ND for 70 Analytes	ND	U	UG/KG	ND	ND	
	SSFAMEA01	TT083010FMA01_PRE	02/24/2011	4620999.5	369861.7	SW8270C	Phenanthrene	29.0	J	UG/KG	16.0	430	10000
	SSFAMEA01	TT083010FMA01_PRE	02/24/2011	4620999.5	369861.7	SW8270C	Pyrene	43.0	J	UG/KG	18.0	430	1000000
	SSFAMEA01	TT083010FMA01_PRE	02/24/2011	4620999.5	369861.7	SW8330	ND for ALL Explosives	ND	U	UG/KG	ND	ND	
	SSFAMEA01	TT083010FMA01_PO	03/01/2011	4620999.5	369861.7	SW6010B	Aluminum	556		MG/KG	5.0	17.9	
	SSFAMEA01	TT083010FMA01_PO	03/01/2011	4620999.5	369861.7	SW6010B	Arsenic	0.98		MG/KG	0.36	0.90	20

Table A.11
Former A Range BIP Locations
Summary Data Table

			Date										
Item	Location ID	Field Sample ID	Sampled	Northing	Easting	Test Method	Analyte	Result Value	Qualifier	Units	MDL	RL	RCS-1
	SSFAMEA01	TT083010FMA01_PO	03/01/2011	4620999.5	369861.7	SW6010B	Barium	3.10	J	MG/KG	0.39	17.9	1000
	SSFAMEA01	TT083010FMA01_PO	03/01/2011	4620999.5	369861.7	SW6010B	Cadmium	3.90		MG/KG	0.051	0.45	2
	SSFAMEA01	TT083010FMA01_PO	03/01/2011	4620999.5	369861.7	SW6010B	Calcium	31.4	J	MG/KG	10.7	448	
	SSFAMEA01	TT083010FMA01_PO	03/01/2011	4620999.5	369861.7	SW6010B	Chromium	2.00		MG/KG	0.072	0.90	30
	SSFAMEA01	TT083010FMA01_PO	03/01/2011	4620999.5	369861.7	SW6010B	Cobalt	0.08	J	MG/KG	0.067	4.5	500
	SSFAMEA01	TT083010FMA01_PO	03/01/2011	4620999.5	369861.7	SW6010B	Copper	205		MG/KG	0.19	2.2	1000
	SSFAMEA01	TT083010FMA01_PO	03/01/2011	4620999.5	369861.7	SW6010B	Iron	2,160		MG/KG	2.4	17.9	
	SSFAMEA01	TT083010FMA01_PO	03/01/2011	4620999.5	369861.7	SW6010B	Lead	95.3		MG/KG	0.31	0.90	300
	SSFAMEA01	TT083010FMA01_PO	03/01/2011	4620999.5	369861.7	SW6010B	Magnesium	38.3	J	MG/KG	4.4	448	
	SSFAMEA01	TT083010FMA01_PO	03/01/2011	4620999.5	369861.7	SW6010B	Manganese	8.30		MG/KG	0.021	1.3	
	SSFAMEA01	TT083010FMA01_PO	03/01/2011	4620999.5	369861.7	SW6010B	Molybdenum	0.34	J	MG/KG	0.061	0.90	
	SSFAMEA01	TT083010FMA01_PO	03/01/2011	4620999.5	369861.7	SW6010B	ND for 5 Analytes	ND	U	MG/KG	ND	ND	
	SSFAMEA01	TT083010FMA01_PO	03/01/2011	4620999.5	369861.7	SW6010B	Nickel	1.10	J	MG/KG	0.12	3.6	20
	SSFAMEA01	TT083010FMA01_PO	03/01/2011	4620999.5	369861.7	SW6010B	Potassium	50.6	J	MG/KG	17.9	448	
	SSFAMEA01	TT083010FMA01_PO	03/01/2011	4620999.5	369861.7	SW6010B	Silver	0.43	J	MG/KG	0.17	0.90	100
	SSFAMEA01	TT083010FMA01_PO	03/01/2011	4620999.5	369861.7	SW6010B	Sodium	8.20	J	MG/KG	4.6	448	
	SSFAMEA01	TT083010FMA01_PO	03/01/2011	4620999.5	369861.7	SW6010B	Vanadium	4.60		MG/KG	0.069	4.5	600
	SSFAMEA01	TT083010FMA01_PO	03/01/2011	4620999.5	369861.7	SW6010B	Zinc	2.60		MG/KG	0.084	1.8	2500
	SSFAMEA01	TT083010FMA01_PO	03/01/2011	4620999.5	369861.7	SW6850	Perchlorate	0.38	J	UG/KG	0.056	0.90	100
	SSFAMEA01	TT083010FMA01_PO	03/01/2011	4620999.5	369861.7	SW7471A	Mercury	ND	U	MG/KG	ND	ND	20
	SSFAMEA01	TT083010FMA01_PO	03/01/2011	4620999.5	369861.7	SW8270C	2-Chloronaphthalene	84.0	J	UG/KG	48.0	370	
	SSFAMEA01	TT083010FMA01_PO	03/01/2011	4620999.5	369861.7	SW8270C	Benzoic acid	140	J	UG/KG	62.0	920	1000
	SSFAMEA01	TT083010FMA01_PO	03/01/2011	4620999.5	369861.7	SW8270C	bis(2-Ethylhexyl) Phthalate	28.0	J	UG/KG	23.0	370	200000
	SSFAMEA01	TT083010FMA01_PO	03/01/2011	4620999.5	369861.7	SW8270C	Naphthalene	120	J	UG/KG	17.0	370	4000
	SSFAMEA01	TT083010FMA01_PO	03/01/2011	4620999.5	369861.7	SW8270C	ND for 74 Analytes	ND	U	UG/KG	ND	ND	
	SSFAMEA01	TT083010FMA01_PO	03/01/2011	4620999.5	369861.7	SW8330	ND for ALL Explosives	ND	U	UG/KG	ND	ND	
MKII 37mm P	SSFAMEA02	TT083110FMA01_PRE	02/24/2011	4620958.89	369965.83	SW6010B	Aluminum	1,370		MG/KG	8.0	28.5	
	SSFAMEA02	TT083110FMA01_PRE	02/24/2011	4620958.89	369965.83	SW6010B	Arsenic	1.40		MG/KG	0.57	1.4	20
	SSFAMEA02	TT083110FMA01_PRE	02/24/2011	4620958.89	369965.83	SW6010B	Barium	14.1	J	MG/KG	0.63	28.5	1000
	SSFAMEA02	TT083110FMA01_PRE	02/24/2011	4620958.89	369965.83	SW6010B	Beryllium	0.09	J	MG/KG	0.074	0.71	100
	SSFAMEA02	TT083110FMA01_PRE	02/24/2011	4620958.89	369965.83	SW6010B	Boron	1.40	J	MG/KG	0.20	14.3	
	SSFAMEA02	TT083110FMA01_PRE	02/24/2011	4620958.89	369965.83	SW6010B	Cadmium	0.22	J	MG/KG	0.081	0.71	2
	SSFAMEA02	TT083110FMA01_PRE	02/24/2011	4620958.89	369965.83	SW6010B	Calcium	245	J	MG/KG	17.1	713	
	SSFAMEA02	TT083110FMA01_PRE	02/24/2011	4620958.89	369965.83	SW6010B	Chromium	1.70		MG/KG	0.11	1.4	30
	SSFAMEA02	TT083110FMA01_PRE	02/24/2011	4620958.89	369965.83	SW6010B	Cobalt	0.14	J	MG/KG	0.11	7.1	500
	SSFAMEA02	TT083110FMA01_PRE	02/24/2011	4620958.89	369965.83	SW6010B	Copper	51.4		MG/KG	0.30	3.6	1000

Table A.11
Former A Range BIP Locations
Summary Data Table

			Date										
Item	Location ID	Field Sample ID	Sampled	Northing	Easting	Test Method	Analyte	Result Value	Qualifier	Units	MDL	RL	RCS-1
	SSFAMEA02	TT083110FMA01_PRE	02/24/2011	4620958.89	369965.83	SW6010B	Iron	1,470		MG/KG	3.9	28.5	
	SSFAMEA02	TT083110FMA01_PRE	02/24/2011	4620958.89	369965.83	SW6010B	Lead	39.0		MG/KG	0.50	1.4	300
	SSFAMEA02	TT083110FMA01_PRE	02/24/2011	4620958.89	369965.83	SW6010B	Magnesium	254	J	MG/KG	7.0	713	
	SSFAMEA02	TT083110FMA01_PRE	02/24/2011	4620958.89	369965.83	SW6010B	Manganese	9.70		MG/KG	0.034	2.1	
	SSFAMEA02	TT083110FMA01_PRE	02/24/2011	4620958.89	369965.83	SW6010B	Molybdenum	0.29	J	MG/KG	0.097	1.4	
	SSFAMEA02	TT083110FMA01_PRE	02/24/2011	4620958.89	369965.83	SW6010B	ND for 4 Analytes	ND	U	MG/KG	ND	ND	
	SSFAMEA02	TT083110FMA01_PRE	02/24/2011	4620958.89	369965.83	SW6010B	Nickel	3.20	J	MG/KG	0.19	5.7	20
	SSFAMEA02	TT083110FMA01_PRE	02/24/2011	4620958.89	369965.83	SW6010B	Potassium	268	J	MG/KG	28.5	713	
	SSFAMEA02	TT083110FMA01_PRE	02/24/2011	4620958.89	369965.83	SW6010B	Sodium	71.8	J	MG/KG	7.3	713	
	SSFAMEA02	TT083110FMA01_PRE	02/24/2011	4620958.89	369965.83	SW6010B	Vanadium	12.8		MG/KG	0.11	7.1	600
	SSFAMEA02	TT083110FMA01_PRE	02/24/2011	4620958.89	369965.83	SW6010B	Zinc	13.3		MG/KG	0.13	2.9	2500
	SSFAMEA02	TT083110FMA01_PRE	02/24/2011	4620958.89	369965.83	SW6850	Perchlorate	0.27	J	UG/KG	0.076	1.2	100
	SSFAMEA02	TT083110FMA01_PRE	02/24/2011	4620958.89	369965.83	SW7471A	Mercury	0.07		MG/KG	0.015	0.046	20
	SSFAMEA02	TT083110FMA01_PRE	02/24/2011	4620958.89	369965.83	SW8270C	Benzo(a)anthracene	22.0	J	UG/KG	20.0	500	7000
	SSFAMEA02	TT083110FMA01_PRE	02/24/2011	4620958.89	369965.83	SW8270C	Benzoic acid	130.0	J	UG/KG	86.0	1300	1000
	SSFAMEA02	TT083110FMA01_PRE	02/24/2011	4620958.89	369965.83	SW8270C	Chrysene	42.0	J	UG/KG	28.0	500	70000
	SSFAMEA02	TT083110FMA01_PRE	02/24/2011	4620958.89	369965.83	SW8270C	Di-n-Butyl Phthalate	24.0	J	UG/KG	23.0	500	50
	SSFAMEA02	TT083110FMA01_PRE	02/24/2011	4620958.89	369965.83	SW8270C	Di-n-Octylphthalate	55.0	J	UG/KG	35.0	500	1000
	SSFAMEA02	TT083110FMA01_PRE	02/24/2011	4620958.89	369965.83	SW8270C	Fluoranthene	58.0	J	UG/KG	18.0	500	1000000
	SSFAMEA02	TT083110FMA01_PRE	02/24/2011	4620958.89	369965.83	SW8270C	ND for 70 Analytes	ND	U	UG/KG	ND	ND	
	SSFAMEA02	TT083110FMA01_PRE	02/24/2011	4620958.89	369965.83	SW8270C	Phenanthrene	33.0	J	UG/KG	18.0	500	10000
	SSFAMEA02	TT083110FMA01_PRE	02/24/2011	4620958.89	369965.83	SW8270C	Pyrene	47.0	J	UG/KG	21.0	500	1000000
	SSFAMEA02	TT083110FMA01_PRE	02/24/2011	4620958.89	369965.83	SW8330	ND for ALL Explosives	ND	U	UG/KG	ND	ND	
	SSFAMEA02	TT083110FMA01_PO	03/01/2011	4620958.89	369965.83	SW6010B	Aluminum	6,630		MG/KG	5.1	18.1	
	SSFAMEA02	TT083110FMA01_PO	03/01/2011	4620958.89	369965.83	SW6010B	Arsenic	3.30		MG/KG	0.36	0.91	20
	SSFAMEA02	TT083110FMA01_PO	03/01/2011	4620958.89	369965.83	SW6010B	Barium	7.10	J	MG/KG	0.40	18.1	1000
	SSFAMEA02	TT083110FMA01_PO	03/01/2011	4620958.89	369965.83	SW6010B	Beryllium	0.13	J	MG/KG	0.047	0.45	100
	SSFAMEA02	TT083110FMA01_PO	03/01/2011	4620958.89	369965.83	SW6010B	Cadmium	2.30		MG/KG	0.052	0.45	2
	SSFAMEA02	TT083110FMA01_PO	03/01/2011	4620958.89	369965.83	SW6010B	Calcium	25	J	MG/KG	10.9	454	
	SSFAMEA02	TT083110FMA01_PO	03/01/2011	4620958.89	369965.83	SW6010B	Chromium	4.80		MG/KG	0.073	0.91	30
	SSFAMEA02	TT083110FMA01_PO	03/01/2011	4620958.89	369965.83	SW6010B	Cobalt	0.25	J	MG/KG	0.068	4.5	500
	SSFAMEA02	TT083110FMA01_PO	03/01/2011	4620958.89	369965.83	SW6010B	Copper	247		MG/KG	0.19	2.3	1000
	SSFAMEA02	TT083110FMA01_PO	03/01/2011	4620958.89	369965.83	SW6010B	Iron	9,710		MG/KG	2.4	18.1	
	SSFAMEA02	TT083110FMA01_PO	03/01/2011	4620958.89	369965.83	SW6010B	Lead	97.7		MG/KG	0.32	0.91	300
	SSFAMEA02	TT083110FMA01_PO	03/01/2011	4620958.89	369965.83	SW6010B	Magnesium	163	J	MG/KG	4.4	454	
	SSFAMEA02	TT083110FMA01_PO	03/01/2011	4620958.89	369965.83	SW6010B	Manganese	13.2		MG/KG	0.022	1.4	

Table A.11
Former A Range BIP Locations
Summary Data Table

			Date										
Item	Location ID	Field Sample ID	Sampled	Northing	Easting	Test Method	Analyte	Result Value	Qualifier	Units	MDL	RL	RCS-1
	SSFAMEA02	TT083110FMA01_PO	03/01/2011	4620958.89	369965.83	SW6010B	Molybdenum	0.64	J	MG/KG	0.062	0.91	
	SSFAMEA02	TT083110FMA01_PO	03/01/2011	4620958.89	369965.83	SW6010B	ND for 5 Analytes	ND	U	MG/KG	ND	ND	
	SSFAMEA02	TT083110FMA01_PO	03/01/2011	4620958.89	369965.83	SW6010B	Nickel	1.40	J	MG/KG	0.12	3.6	20
	SSFAMEA02	TT083110FMA01_PO	03/01/2011	4620958.89	369965.83	SW6010B	Potassium	326	J	MG/KG	18.1	454	
	SSFAMEA02	TT083110FMA01_PO	03/01/2011	4620958.89	369965.83	SW6010B	Sodium	13.1	J	MG/KG	4.6	454	
	SSFAMEA02	TT083110FMA01_PO	03/01/2011	4620958.89	369965.83	SW6010B	Vanadium	17.7		MG/KG	0.070	4.5	600
	SSFAMEA02	TT083110FMA01_PO	03/01/2011	4620958.89	369965.83	SW6010B	Zinc	42.6		MG/KG	0.085	1.8	2500
	SSFAMEA02	TT083110FMA01_PO	03/01/2011	4620958.89	369965.83	SW6850	Perchlorate	185		UG/KG	0.31	5.0	100
	SSFAMEA02	TT083110FMA01_PO	03/01/2011	4620958.89	369965.83	SW7471A	Mercury	ND	U	MG/KG	ND	ND	20
	SSFAMEA02	TT083110FMA01_PO	03/01/2011	4620958.89	369965.83	SW8270C	Benzoic acid	230	J	UG/KG	69.0	1000	1000
	SSFAMEA02	TT083110FMA01_PO	03/01/2011	4620958.89	369965.83	SW8270C	ND for 76 Analytes	ND	U	UG/KG	ND	ND	
	SSFAMEA02	TT083110FMA01_PO	03/01/2011	4620958.89	369965.83	SW8270C	Phenol	53	J	UG/KG	49.0	400	1000
	SSFAMEA02	TT083110FMA01_PO	03/01/2011	4620958.89	369965.83	SW8330	ND for ALL Explosives	ND	U	UG/KG	ND	ND	
81 mm	SSFANI23	TT110410FMA03_PRE	02/24/2011	4621139.53	370009.22	SW6010B	Aluminum	4,630		MG/KG	5.0	17.9	
	SSFANI23	TT110410FMA03_PRE	02/24/2011	4621139.53	370009.22	SW6010B	Arsenic	3.10		MG/KG	0.36	0.90	20
	SSFANI23	TT110410FMA03_PRE	02/24/2011	4621139.53	370009.22	SW6010B	Barium	3.80	J	MG/KG	0.39	17.9	1000
	SSFANI23	TT110410FMA03_PRE	02/24/2011	4621139.53	370009.22	SW6010B	Beryllium	0.25	J	MG/KG	0.047	0.45	100
	SSFANI23	TT110410FMA03_PRE	02/24/2011	4621139.53	370009.22	SW6010B	Boron	1.10	J	MG/KG	0.13	9.0	
	SSFANI23	TT110410FMA03_PRE	02/24/2011	4621139.53	370009.22	SW6010B	Cadmium	0.13	J	MG/KG	0.051	0.45	2
	SSFANI23	TT110410FMA03_PRE	02/24/2011	4621139.53	370009.22	SW6010B	Calcium	52.3	J	MG/KG	10.7	448	
	SSFANI23	TT110410FMA03_PRE	02/24/2011	4621139.53	370009.22	SW6010B	Chromium	5.30		MG/KG	0.072	0.90	30
	SSFANI23	TT110410FMA03_PRE	02/24/2011	4621139.53	370009.22	SW6010B	Cobalt	0.74	J	MG/KG	0.067	4.5	500
	SSFANI23	TT110410FMA03_PRE	02/24/2011	4621139.53	370009.22	SW6010B	Copper	16.3		MG/KG	0.19	2.2	1000
	SSFANI23	TT110410FMA03_PRE	02/24/2011	4621139.53	370009.22	SW6010B	Iron	6,440		MG/KG	2.4	17.9	
	SSFANI23	TT110410FMA03_PRE	02/24/2011	4621139.53	370009.22	SW6010B	Lead	47.7		MG/KG	0.31	0.90	300
	SSFANI23	TT110410FMA03_PRE	02/24/2011	4621139.53	370009.22	SW6010B	Magnesium	532		MG/KG	4.4	448	
	SSFANI23	TT110410FMA03_PRE	02/24/2011	4621139.53	370009.22	SW6010B	Manganese	29		MG/KG	0.021	1.3	
	SSFANI23	TT110410FMA03_PRE	02/24/2011	4621139.53	370009.22	SW6010B	Molybdenum	0.32	J	MG/KG	0.061	0.90	
	SSFANI23	TT110410FMA03_PRE	02/24/2011	4621139.53	370009.22	SW6010B	ND for 4 Analytes	ND	U	MG/KG	ND	ND	
	SSFANI23	TT110410FMA03_PRE	02/24/2011	4621139.53	370009.22	SW6010B	Nickel	2.20	J	MG/KG	0.12	3.6	20
	SSFANI23	TT110410FMA03_PRE	02/24/2011	4621139.53	370009.22	SW6010B	Potassium	226	J	MG/KG	17.9	448	
	SSFANI23	TT110410FMA03_PRE	02/24/2011	4621139.53	370009.22	SW6010B	Sodium	14	J	MG/KG	4.6	448	
	SSFANI23	TT110410FMA03_PRE	02/24/2011	4621139.53	370009.22	SW6010B	Vanadium	10.00		MG/KG	0.069	4.5	600
	SSFANI23	TT110410FMA03_PRE	02/24/2011	4621139.53	370009.22	SW6010B	Zinc	7.60		MG/KG	0.084	1.8	2500
	SSFANI23	TT110410FMA03_PRE	02/24/2011	4621139.53	370009.22	SW7471A	Mercury	0.02	J	MG/KG	0.011	0.034	20
	SSFANI23	TT110410FMA03_PRE	02/24/2011	4621139.53	370009.22	SW8270C	ND for ALL SVOC	ND	U	UG/KG	ND	ND	

Table A.11
Former A Range BIP Locations
Summary Data Table

			Date										
Item	Location ID	Field Sample ID	Sampled	Northing	Easting	Test Method	Analyte	Result Value	Qualifier	Units	MDL	RL	RCS-1
	SSFANI23	TT110410FMA03_PRE	02/24/2011	4621139.53	370009.22	SW8330	ND for 18 Analytes	ND	U	UG/KG	ND	ND	
	SSFANI23	TT110410FMA03_PRE	02/24/2011	4621139.53	370009.22	SW8330	Tetryl	933		UG/KG	16.0	100	100
	SSFANI23	TT110410FMA03_PO	03/01/2011	4621139.53	370009.22	SW6010B	Aluminum	5,180		MG/KG	5.1	18.3	
	SSFANI23	TT110410FMA03_PO	03/01/2011	4621139.53	370009.22	SW6010B	Arsenic	2.90		MG/KG	0.37	0.91	20
	SSFANI23	TT110410FMA03_PO	03/01/2011	4621139.53	370009.22	SW6010B	Barium	3.70	J	MG/KG	0.40	18.3	1000
	SSFANI23	TT110410FMA03_PO	03/01/2011	4621139.53	370009.22	SW6010B	Beryllium	0.15	J	MG/KG	0.047	0.46	100
	SSFANI23	TT110410FMA03_PO	03/01/2011	4621139.53	370009.22	SW6010B	Boron	1.00	J	MG/KG	0.13	9.1	
	SSFANI23	TT110410FMA03_PO	03/01/2011	4621139.53	370009.22	SW6010B	Calcium	29.1	J	MG/KG	11.0	456	
	SSFANI23	TT110410FMA03_PO	03/01/2011	4621139.53	370009.22	SW6010B	Chromium	5.60		MG/KG	0.073	0.91	30
	SSFANI23	TT110410FMA03_PO	03/01/2011	4621139.53	370009.22	SW6010B	Cobalt	0.84	J	MG/KG	0.068	4.6	500
	SSFANI23	TT110410FMA03_PO	03/01/2011	4621139.53	370009.22	SW6010B	Copper	13.3		MG/KG	0.19	2.3	1000
	SSFANI23	TT110410FMA03_PO	03/01/2011	4621139.53	370009.22	SW6010B	Iron	7,040		MG/KG	2.5	18.3	
	SSFANI23	TT110410FMA03_PO	03/01/2011	4621139.53	370009.22	SW6010B	Lead	25.5		MG/KG	0.32	0.91	300
	SSFANI23	TT110410FMA03_PO	03/01/2011	4621139.53	370009.22	SW6010B	Magnesium	622		MG/KG	4.5	456	
	SSFANI23	TT110410FMA03_PO	03/01/2011	4621139.53	370009.22	SW6010B	Manganese	38		MG/KG	0.022	1.4	
	SSFANI23	TT110410FMA03_PO	03/01/2011	4621139.53	370009.22	SW6010B	Molybdenum	0.30	J	MG/KG	0.062	0.91	
	SSFANI23	TT110410FMA03_PO	03/01/2011	4621139.53	370009.22	SW6010B	ND for 5 Analytes	ND	U	MG/KG	ND	ND	
	SSFANI23	TT110410FMA03_PO	03/01/2011	4621139.53	370009.22	SW6010B	Nickel	3.00	J	MG/KG	0.12	3.7	20
	SSFANI23	TT110410FMA03_PO	03/01/2011	4621139.53	370009.22	SW6010B	Potassium	156	J	MG/KG	18.3	456	
	SSFANI23	TT110410FMA03_PO	03/01/2011	4621139.53	370009.22	SW6010B	Sodium	9.20	J	MG/KG	4.7	456	
	SSFANI23	TT110410FMA03_PO	03/01/2011	4621139.53	370009.22	SW6010B	Vanadium	11.9		MG/KG	0.070	4.6	600
	SSFANI23	TT110410FMA03_PO	03/01/2011	4621139.53	370009.22	SW6010B	Zinc	7.10		MG/KG	0.086	1.8	2500
	SSFANI23	TT110410FMA03_PO	03/01/2011	4621139.53	370009.22	SW7471A	Mercury	ND	U	MG/KG	ND	ND	20
	SSFANI23	TT110410FMA03_PO	03/01/2011	4621139.53	370009.22	SW8270C	bis(2-Ethylhexyl) Phthalate	41.0	J	UG/KG	23.0	360	200000
	SSFANI23	TT110410FMA03_PO	03/01/2011	4621139.53	370009.22	SW8270C	ND for 77 Analytes	ND	U	UG/KG	ND	ND	
	SSFANI23	TT110410FMA03_PO	03/01/2011	4621139.53	370009.22	SW8330	ND for ALL Explosives	ND	U	UG/KG	ND	ND	
81 mm	SSFANIE06	TT120910FMA01_PRE	02/24/2011	4621154.9	370040.05	SW6010B	Aluminum	3,080		MG/KG	5.1	18.2	
	SSFANIE06	TT120910FMA01_PRE	02/24/2011	4621154.9	370040.05	SW6010B	Arsenic	2.50		MG/KG	0.36	0.91	20
	SSFANIE06	TT120910FMA01_PRE	02/24/2011	4621154.9	370040.05	SW6010B	Barium	3.30	J	MG/KG	0.40	18.2	1000
	SSFANIE06	TT120910FMA01_PRE	02/24/2011	4621154.9	370040.05	SW6010B	Beryllium	0.11	J	MG/KG	0.047	0.45	100
	SSFANIE06	TT120910FMA01_PRE	02/24/2011	4621154.9	370040.05	SW6010B	Calcium	54.0	J	MG/KG	10.9	454	
	SSFANIE06	TT120910FMA01_PRE	02/24/2011	4621154.9	370040.05	SW6010B	Chromium	3.10		MG/KG	0.073	0.91	30
	SSFANIE06	TT120910FMA01_PRE	02/24/2011	4621154.9	370040.05	SW6010B	Cobalt	0.13	J	MG/KG	0.068	4.5	500
	SSFANIE06	TT120910FMA01_PRE	02/24/2011	4621154.9	370040.05	SW6010B	Copper	6.10		MG/KG	0.19	2.3	1000
	SSFANIE06	TT120910FMA01_PRE	02/24/2011	4621154.9	370040.05	SW6010B	Iron	5,270		MG/KG	2.5	18.2	
	SSFANIE06	TT120910FMA01_PRE	02/24/2011	4621154.9	370040.05	SW6010B	Lead	9.50		MG/KG	0.32	0.91	300

Table A.11
Former A Range BIP Locations
Summary Data Table

			Date										
Item	Location ID	Field Sample ID	Sampled	Northing	Easting	Test Method	Analyte	Result Value	Qualifier	Units	MDL	RL	RCS-1
	SSFANIE06	TT120910FMA01_PRE	02/24/2011	4621154.9	370040.05	SW6010B	Magnesium	114	J	MG/KG	4.5	454	
	SSFANIE06	TT120910FMA01_PRE	02/24/2011	4621154.9	370040.05	SW6010B	Manganese	10.40		MG/KG	0.022	1.4	
	SSFANIE06	TT120910FMA01_PRE	02/24/2011	4621154.9	370040.05	SW6010B	Molybdenum	0.25	J	MG/KG	0.062	0.91	
	SSFANIE06	TT120910FMA01_PRE	02/24/2011	4621154.9	370040.05	SW6010B	ND for 6 Analytes	ND	U	MG/KG	ND	ND	
	SSFANIE06	TT120910FMA01_PRE	02/24/2011	4621154.9	370040.05	SW6010B	Nickel	0.67	J	MG/KG	0.12	3.6	20
	SSFANIE06	TT120910FMA01_PRE	02/24/2011	4621154.9	370040.05	SW6010B	Potassium	96.7	J	MG/KG	18.2	454	
	SSFANIE06	TT120910FMA01_PRE	02/24/2011	4621154.9	370040.05	SW6010B	Sodium	11.9	J	MG/KG	4.6	454	
	SSFANIE06	TT120910FMA01_PRE	02/24/2011	4621154.9	370040.05	SW6010B	Vanadium	10.20		MG/KG	0.070	4.5	600
	SSFANIE06	TT120910FMA01_PRE	02/24/2011	4621154.9	370040.05	SW6010B	Zinc	3.50		MG/KG	0.085	1.8	2500
	SSFANIE06	TT120910FMA01_PRE	02/24/2011	4621154.9	370040.05	SW7471A	Mercury	ND	U	MG/KG	ND	ND	20
	SSFANIE06	TT120910FMA01_PRE	02/24/2011	4621154.9	370040.05	SW8270C	ND for ALL SVOC	ND	U	UG/KG	ND	ND	
	SSFANIE06	TT120910FMA01_PRE	02/24/2011	4621154.9	370040.05	SW8330	ND for ALL Explosives	ND	U	UG/KG	ND	ND	
	SSFANIE06	TT120910FMA01_PO	03/01/2011	4621154.9	370040.05	SW6010B	Aluminum	3,850		MG/KG	4.7	16.6	
	SSFANIE06	TT120910FMA01_PO	03/01/2011	4621154.9	370040.05	SW6010B	Arsenic	3.10		MG/KG	0.33	0.83	20
	SSFANIE06	TT120910FMA01_PO	03/01/2011	4621154.9	370040.05	SW6010B	Barium	4.10	J	MG/KG	0.37	16.6	1000
	SSFANIE06	TT120910FMA01_PO	03/01/2011	4621154.9	370040.05	SW6010B	Beryllium	0.11	J	MG/KG	0.043	0.42	100
	SSFANIE06	TT120910FMA01_PO	03/01/2011	4621154.9	370040.05	SW6010B	Calcium	36.4	J	MG/KG	10.0	415	
	SSFANIE06	TT120910FMA01_PO	03/01/2011	4621154.9	370040.05	SW6010B	Chromium	3.70		MG/KG	0.066	0.83	30
	SSFANIE06	TT120910FMA01_PO	03/01/2011	4621154.9	370040.05	SW6010B	Cobalt	0.23	J	MG/KG	0.062	4.2	500
	SSFANIE06	TT120910FMA01_PO	03/01/2011	4621154.9	370040.05	SW6010B	Copper	30.8		MG/KG	0.17	2.1	1000
	SSFANIE06	TT120910FMA01_PO	03/01/2011	4621154.9	370040.05	SW6010B	Iron	8,840		MG/KG	2.2	16.6	
	SSFANIE06	TT120910FMA01_PO	03/01/2011	4621154.9	370040.05	SW6010B	Lead	17.6		MG/KG	0.29	0.83	300
	SSFANIE06	TT120910FMA01_PO	03/01/2011	4621154.9	370040.05	SW6010B	Magnesium	124	J	MG/KG	4.1	415	
	SSFANIE06	TT120910FMA01_PO	03/01/2011	4621154.9	370040.05	SW6010B	Manganese	10.9		MG/KG	0.020	1.2	
	SSFANIE06	TT120910FMA01_PO	03/01/2011	4621154.9	370040.05	SW6010B	Molybdenum	0.33	J	MG/KG	0.056	0.83	
	SSFANIE06	TT120910FMA01_PO	03/01/2011	4621154.9	370040.05	SW6010B	ND for 6 Analytes	ND	U	MG/KG	ND	ND	
	SSFANIE06	TT120910FMA01_PO	03/01/2011	4621154.9	370040.05	SW6010B	Nickel	0.97	J	MG/KG	0.11	3.3	20
	SSFANIE06	TT120910FMA01_PO	03/01/2011	4621154.9	370040.05	SW6010B	Potassium	79.4	J	MG/KG	16.6	415	
	SSFANIE06	TT120910FMA01_PO	03/01/2011	4621154.9	370040.05	SW6010B	Sodium	10.00	J	MG/KG	4.2	415	
	SSFANIE06	TT120910FMA01_PO	03/01/2011	4621154.9	370040.05	SW6010B	Vanadium	12.7		MG/KG	0.064	4.2	600
	SSFANIE06	TT120910FMA01_PO	03/01/2011	4621154.9	370040.05	SW6010B	Zinc	4.30		MG/KG	0.078	1.7	2500
	SSFANIE06	TT120910FMA01_PO	03/01/2011	4621154.9	370040.05	SW7471A	Mercury	ND	U	MG/KG	ND	ND	20
	SSFANIE06	TT120910FMA01_PO	03/01/2011	4621154.9	370040.05	SW8270C	Benzoic acid	91.0	J	UG/KG	63.0	930	1000
	SSFANIE06	TT120910FMA01_PO	03/01/2011	4621154.9	370040.05	SW8270C	bis(2-Ethylhexyl) Phthalate	47.0	J	UG/KG	24.0	370	200000
	SSFANIE06	TT120910FMA01_PO	03/01/2011	4621154.9	370040.05	SW8270C	ND for 76 Analytes	ND	U	UG/KG	ND	ND	
	SSFANIE06	TT120910FMA01_PO	03/01/2011	4621154.9	370040.05	SW8330	ND for ALL Explosives	ND	U	UG/KG	ND	ND	

Table A.12
Former A Range Consolidated Shot BIP Locations
Summary Data Table

			Date					Result					T
Description	Location ID	Field Sample ID	Sampled	Northing	Easting	Test Method	Analyte	Value	Qualifier	Units	MDL	RL	S1/GW1
Inner 30-pt Grid	SSFACSL01	SSFACSL01_30A	03/01/2011	4620983.9	370042.8	SW6010B	Aluminum	10,200		MG/KG	2.7	9.8	1
·	SSFACSL01	SSFACSL01_30A	03/01/2011	4620983.9	370042.8	SW6010B	Antimony	0.21	J	MG/KG	0.16	2.9	20
	SSFACSL01	SSFACSL01_30A	03/01/2011	4620983.9	370042.8	SW6010B	Arsenic	3.80		MG/KG	0.20	0.49	20
	SSFACSL01	SSFACSL01_30A	03/01/2011	4620983.9	370042.8	SW6010B	Barium	12		MG/KG	0.22	9.8	1000
	SSFACSL01	SSFACSL01_30A	03/01/2011	4620983.9	370042.8	SW6010B	Beryllium	0.25		MG/KG	0.025	0.25	100
	SSFACSL01	SSFACSL01_30A	03/01/2011	4620983.9	370042.8	SW6010B	Boron	1.40	J	MG/KG	0.069	4.9	
	SSFACSL01	SSFACSL01_30A	03/01/2011	4620983.9	370042.8	SW6010B	Cadmium	0.47		MG/KG	0.028	0.25	2
	SSFACSL01	SSFACSL01_30A	03/01/2011	4620983.9	370042.8	SW6010B	Calcium	128	J	MG/KG	5.9	245	
	SSFACSL01	SSFACSL01_30A	03/01/2011	4620983.9	370042.8	SW6010B	Chromium	12.8		MG/KG	0.039	0.49	30
	SSFACSL01	SSFACSL01_30A	03/01/2011	4620983.9	370042.8	SW6010B	Cobalt	2.10	J	MG/KG	0.037	2.5	
	SSFACSL01	SSFACSL01_30A	03/01/2011	4620983.9	370042.8	SW6010B	Copper	97.3		MG/KG	0.10	1.2	
	SSFACSL01	SSFACSL01_30A	03/01/2011	4620983.9	370042.8	SW6010B	Iron	9,890		MG/KG	1.3	9.8	
	SSFACSL01	SSFACSL01_30A	03/01/2011	4620983.9	370042.8	SW6010B	Lead	141		MG/KG	0.17	0.49	300
	SSFACSL01	SSFACSL01_30A	03/01/2011	4620983.9	370042.8	SW6010B	Magnesium	1,360		MG/KG	2.4	245	
	SSFACSL01	SSFACSL01_30A	03/01/2011	4620983.9	370042.8	SW6010B	Manganese	59.5		MG/KG	0.012	0.74	
	SSFACSL01	SSFACSL01_30A	03/01/2011	4620983.9	370042.8	SW6010B	Molybdenum	0.51		MG/KG	0.033	0.49	
	SSFACSL01	SSFACSL01_30A	03/01/2011	4620983.9	370042.8	SW6010B	ND for 3 Analytes	ND	U	MG/KG	ND	ND	
	SSFACSL01	SSFACSL01_30A	03/01/2011	4620983.9	370042.8	SW6010B	Nickel	6.40		MG/KG	0.064	2.0	20
	SSFACSL01	SSFACSL01_30A	03/01/2011	4620983.9	370042.8	SW6010B	Potassium	368		MG/KG	9.8	245	1
	SSFACSL01	SSFACSL01_30A	03/01/2011	4620983.9	370042.8	SW6010B	Sodium	70.1	J	MG/KG	2.5	245	
	SSFACSL01	SSFACSL01_30A	03/01/2011	4620983.9	370042.8	SW6010B	Vanadium	17.8		MG/KG	0.038	2.5	600
	SSFACSL01	SSFACSL01_30A	03/01/2011	4620983.9	370042.8	SW6010B	Zinc	28.1		MG/KG	0.046	0.98	2500
	SSFACSL01	SSFACSL01_30A	03/01/2011	4620983.9	370042.8	SW6850	ND for Perchlorate	ND	U	UG/KG	ND	ND	
	SSFACSL01	SSFACSL01_30A	03/01/2011	4620983.9	370042.8	SW7471A	Mercury	0.05		MG/KG	0.0066	0.020	20
	SSFACSL01	SSFACSL01_30A	03/01/2011	4620983.9	370042.8	SW8270C	2,4-Dinitrotoluene	200	J	UG/KG	24.0	330	700
	SSFACSL01	SSFACSL01_30A	03/01/2011	4620983.9	370042.8	SW8270C	Benzyl alcohol	640		UG/KG	16.0	330	
	SSFACSL01	SSFACSL01_30A	03/01/2011	4620983.9	370042.8	SW8270C	Benzyl butyl phthalate	51.0	J	UG/KG	20.0	330	
	SSFACSL01	SSFACSL01_30A	03/01/2011	4620983.9	370042.8	SW8270C	Diethyl Phthalate	30.0	J	UG/KG	15.0	330	10000
	SSFACSL01	SSFACSL01_30A	03/01/2011	4620983.9	370042.8	SW8270C	Di-n-Butyl Phthalate	47.0	J	UG/KG	15.0	330	Ī
	SSFACSL01	SSFACSL01_30A	03/01/2011	4620983.9	370042.8	SW8270C	ND for 71 Analytes	ND	U	UG/KG	ND	ND	
	SSFACSL01	SSFACSL01_30A	03/01/2011	4620983.9	370042.8	SW8270C	Phenanthrene	14.0	J	UG/KG	12.0	330	100000
	SSFACSL01	SSFACSL01_30A	03/01/2011	4620983.9	370042.8	SW8270C	Phenol	68.0	J	UG/KG	40.0	330	1000
	SSFACSL01	SSFACSL01_30A	03/01/2011	4620983.9	370042.8	SW8330	2,4,6-Trinitrotoluene	88,200		UG/KG	67.4	1020	
	SSFACSL01	SSFACSL01_30A	03/01/2011	4620983.9	370042.8	SW8330	2,6-Dinitrotoluene	261	J	UG/KG	6.3	102	
	SSFACSL01	SSFACSL01_30A	03/01/2011	4620983.9	370042.8	SW8330	2-Amino-4,6-dinitrotoluene	607	J	UG/KG	7.2	102	
	SSFACSL01	SSFACSL01_30A	03/01/2011	4620983.9	370042.8	SW8330	4-Amino-2,6-Dinitrotoluene	705	J	UG/KG	10.2	102	
	SSFACSL01	SSFACSL01_30A	03/01/2011	4620983.9	370042.8	SW8330	ND for 13 Analytes	ND	U	UG/KG	ND	ND	
	SSFACSL01	SSFACSL01_30A	03/01/2011	4620983.9	370042.8	SW8330	Tetryl	5,150		UG/KG	16.3	102	

Table A.12
Former A Range Consolidated Shot BIP Locations
Summary Data Table

			Date					Result					
Description	Location ID	Field Sample ID	Sampled	Northing	Easting	Test Method	Analyte	Value	Qualifier	Units	MDL	RL	S1/GW1
Outer 30' X 30' grid (50 pt)	SSFACSL01	SSFACSL01_50A	03/01/2011	4620983.9	370042.8	SW6010B	Aluminum	4,660		MG/KG	2.8	9.9	
	SSFACSL01	SSFACSL01_50A	03/01/2011	4620983.9	370042.8	SW6010B	Antimony	1.70	J	MG/KG	0.16	3.0	20
	SSFACSL01	SSFACSL01_50A	03/01/2011	4620983.9	370042.8	SW6010B	Arsenic	2.60		MG/KG	0.20	0.49	20
	SSFACSL01	SSFACSL01_50A	03/01/2011	4620983.9	370042.8	SW6010B	Barium	12.5		MG/KG	0.22	9.9	1000
	SSFACSL01	SSFACSL01_50A	03/01/2011	4620983.9	370042.8	SW6010B	Beryllium	0.09	J	MG/KG	0.026	0.25	100
	SSFACSL01	SSFACSL01_50A	03/01/2011	4620983.9	370042.8	SW6010B	Boron	1.20	J	MG/KG	0.069	4.9	
	SSFACSL01	SSFACSL01_50A	03/01/2011	4620983.9	370042.8	SW6010B	Cadmium	0.50		MG/KG	0.028	0.25	2
	SSFACSL01	SSFACSL01_50A	03/01/2011	4620983.9	370042.8	SW6010B	Calcium	331		MG/KG	5.9	246	
	SSFACSL01	SSFACSL01_50A	03/01/2011	4620983.9	370042.8	SW6010B	Chromium	8.30		MG/KG	0.039	0.49	30
	SSFACSL01	SSFACSL01_50A	03/01/2011	4620983.9	370042.8	SW6010B	Cobalt	0.74	J	MG/KG	0.037	2.5	
	SSFACSL01	SSFACSL01_50A	03/01/2011	4620983.9	370042.8	SW6010B	Copper	160		MG/KG	0.10	1.2	
	SSFACSL01	SSFACSL01_50A	03/01/2011	4620983.9	370042.8	SW6010B	Iron	6,930		MG/KG	1.3	9.9	
	SSFACSL01	SSFACSL01_50A	03/01/2011	4620983.9	370042.8	SW6010B	Lead	403		MG/KG	0.17	0.49	300
	SSFACSL01	SSFACSL01_50A	03/01/2011	4620983.9	370042.8	SW6010B	Magnesium	381		MG/KG	2.4	246	
	SSFACSL01	SSFACSL01_50A	03/01/2011	4620983.9	370042.8	SW6010B	Manganese	40		MG/KG	0.012	0.74	
	SSFACSL01	SSFACSL01_50A	03/01/2011	4620983.9	370042.8	SW6010B	Molybdenum	0.51		MG/KG	0.033	0.49	
	SSFACSL01	SSFACSL01_50A	03/01/2011	4620983.9	370042.8	SW6010B	ND for 3 Analytes	ND	U	MG/KG	ND	ND	
	SSFACSL01	SSFACSL01_50A	03/01/2011	4620983.9	370042.8	SW6010B	Nickel	4.50		MG/KG	0.064	2.0	20
	SSFACSL01	SSFACSL01_50A	03/01/2011	4620983.9	370042.8	SW6010B	Potassium	234	J	MG/KG	9.9	246	1
	SSFACSL01	SSFACSL01_50A	03/01/2011	4620983.9	370042.8	SW6010B	Sodium	45.1	J	MG/KG	2.5	246	
	SSFACSL01	SSFACSL01_50A	03/01/2011	4620983.9	370042.8	SW6010B	Vanadium	16.6		MG/KG	0.038	2.5	600
	SSFACSL01	SSFACSL01_50A	03/01/2011	4620983.9	370042.8	SW6010B	Zinc	61.0		MG/KG	0.046	0.99	2500
	SSFACSL01	SSFACSL01_50A	03/01/2011	4620983.9	370042.8	SW6850	ND for Perchlorate	ND	U	UG/KG	ND	ND	
	SSFACSL01	SSFACSL01_50A	03/01/2011	4620983.9	370042.8	SW7471A	Mercury	0.30		MG/KG	0.0065	0.019	20
	SSFACSL01	SSFACSL01_50A	03/01/2011	4620983.9	370042.8	SW8270C	2,4-Dinitrotoluene	130	J	UG/KG	23.0	320	700
	SSFACSL01	SSFACSL01_50A	03/01/2011	4620983.9	370042.8	SW8270C	Benzo(a)anthracene	13.0	J	UG/KG	13.0	320	7000
	SSFACSL01	SSFACSL01_50A	03/01/2011	4620983.9	370042.8	SW8270C	Benzo(b)fluoranthene	36.0	J	UG/KG	22.0	320	7000
	SSFACSL01	SSFACSL01_50A	03/01/2011	4620983.9	370042.8	SW8270C	Benzoic acid	140	J	UG/KG	55.0	810	
	SSFACSL01	SSFACSL01_50A	03/01/2011	4620983.9	370042.8	SW8270C	Benzyl alcohol	760		UG/KG	16.0	320	
	SSFACSL01	SSFACSL01_50A	03/01/2011	4620983.9	370042.8	SW8270C	Benzyl butyl phthalate	76.0	J	UG/KG	20.0	320	
	SSFACSL01	SSFACSL01_50A	03/01/2011	4620983.9	370042.8	SW8270C	Chrysene	24.0	J	UG/KG	18.0	320	70000
	SSFACSL01	SSFACSL01_50A	03/01/2011	4620983.9	370042.8	SW8270C	Diethyl Phthalate	43.0	J	UG/KG	15.0	320	10000
	SSFACSL01	SSFACSL01_50A	03/01/2011	4620983.9	370042.8	SW8270C	Di-n-Butyl Phthalate	340		UG/KG	15.0	320	
	SSFACSL01	SSFACSL01_50A	03/01/2011	4620983.9	370042.8	SW8270C	Fluoranthene	33.0	J	UG/KG	12.0	320	1000000
	SSFACSL01	SSFACSL01_50A	03/01/2011	4620983.9	370042.8	SW8270C	ND for 64 Analytes	ND	U	UG/KG	ND	ND	
	SSFACSL01	SSFACSL01_50A	03/01/2011	4620983.9	370042.8	SW8270C	n-Nitrosodiphenylamine	17.0	J	UG/KG	16.0	380	
	SSFACSL01	SSFACSL01_50A	03/01/2011	4620983.9	370042.8	SW8270C	Phenanthrene	24.0	J	UG/KG	12.0	320	100000
	SSFACSL01	SSFACSL01_50A	03/01/2011	4620983.9	370042.8	SW8270C	Phenol	91.0	J	UG/KG	39.0	320	1000

Table A.12
Former A Range Consolidated Shot BIP Locations
Summary Data Table

			Date					Result					T
Description	Location ID	Field Sample ID	Sampled	Northing	Easting	Test Method	Analyte	Value	Qualifier	Units	MDL	RL	S1/GW1
	SSFACSL01	SSFACSL01_50A	03/01/2011	4620983.9	370042.8	SW8270C	Pyrene	34.0	J	UG/KG	14.0	320	1000000
	SSFACSL01	SSFACSL01_50A	03/01/2011	4620983.9	370042.8	SW8330	2,4,6-Trinitrotoluene	2,050		UG/KG	6.7	101	
	SSFACSL01	SSFACSL01_50A	03/01/2011	4620983.9	370042.8	SW8330	2,6-Dinitrotoluene	28.8	J	UG/KG	6.3	101	
	SSFACSL01	SSFACSL01_50A	03/01/2011	4620983.9	370042.8	SW8330	2-Amino-4,6-dinitrotoluene	148		UG/KG	7.1	101	
	SSFACSL01	SSFACSL01_50A	03/01/2011	4620983.9	370042.8	SW8330	4-Amino-2,6-Dinitrotoluene	91.8	J	UG/KG	10.1	101	
	SSFACSL01	SSFACSL01_50A	03/01/2011	4620983.9	370042.8	SW8330	ND for 13 Analytes	ND	U	UG/KG	ND	ND	1
	SSFACSL01	SSFACSL01_50A	03/01/2011	4620983.9	370042.8	SW8330	Tetryl	247		UG/KG	16.2	101	1
Outer 30' X 30' grid (50 pt)	SSFACSL01	SSFACSL01_50B	03/01/2011	4620983.9	370042.8	SW6010B	Aluminum	4,530		MG/KG	2.8	10.0	1
Replicate Spl 1	SSFACSL01	SSFACSL01_50B	03/01/2011	4620983.9	370042.8	SW6010B	Antimony	1.40	J	MG/KG	0.16	3.0	20
	SSFACSL01	SSFACSL01_50B	03/01/2011	4620983.9	370042.8	SW6010B	Arsenic	2.60		MG/KG	0.20	0.50	20
	SSFACSL01	SSFACSL01_50B	03/01/2011	4620983.9	370042.8	SW6010B	Barium	11		MG/KG	0.22	10.0	1000
	SSFACSL01	SSFACSL01_50B	03/01/2011	4620983.9	370042.8	SW6010B	Beryllium	0.10	J	MG/KG	0.026	0.25	100
	SSFACSL01	SSFACSL01_50B	03/01/2011	4620983.9	370042.8	SW6010B	Boron	1.10	J	MG/KG	0.070	5.0	1
	SSFACSL01	SSFACSL01_50B	03/01/2011	4620983.9	370042.8	SW6010B	Cadmium	0.21	J	MG/KG	0.028	0.25	2
	SSFACSL01	SSFACSL01_50B	03/01/2011	4620983.9	370042.8	SW6010B	Calcium	310		MG/KG	6.0	249	1
	SSFACSL01	SSFACSL01_50B	03/01/2011	4620983.9	370042.8	SW6010B	Chromium	7.00		MG/KG	0.040	0.50	30
	SSFACSL01	SSFACSL01_50B	03/01/2011	4620983.9	370042.8	SW6010B	Cobalt	0.73	J	MG/KG	0.037	2.5	1
	SSFACSL01	SSFACSL01_50B	03/01/2011	4620983.9	370042.8	SW6010B	Copper	102		MG/KG	0.10	1.2	1
	SSFACSL01	SSFACSL01_50B	03/01/2011	4620983.9	370042.8	SW6010B	Iron	7,100		MG/KG	1.3	10.0	1
	SSFACSL01	SSFACSL01_50B	03/01/2011	4620983.9	370042.8	SW6010B	Lead	342		MG/KG	0.17	0.50	300
	SSFACSL01	SSFACSL01_50B	03/01/2011	4620983.9	370042.8	SW6010B	Magnesium	374		MG/KG	2.4	249	
	SSFACSL01	SSFACSL01_50B	03/01/2011	4620983.9	370042.8	SW6010B	Manganese	38		MG/KG	0.012	0.75	
	SSFACSL01	SSFACSL01_50B	03/01/2011	4620983.9	370042.8	SW6010B	Molybdenum	0.48	J	MG/KG	0.034	0.50	
	SSFACSL01	SSFACSL01_50B	03/01/2011	4620983.9	370042.8	SW6010B	ND for 3 Analytes	ND	U	MG/KG	ND	ND	
	SSFACSL01	SSFACSL01_50B	03/01/2011	4620983.9	370042.8	SW6010B	Nickel	4.30		MG/KG	0.065	2.0	20
	SSFACSL01	SSFACSL01_50B	03/01/2011	4620983.9	370042.8	SW6010B	Potassium	234	J	MG/KG	10.0	249	
	SSFACSL01	SSFACSL01_50B	03/01/2011	4620983.9	370042.8	SW6010B	Sodium	32.5	J	MG/KG	2.5	249	
	SSFACSL01	SSFACSL01_50B	03/01/2011	4620983.9	370042.8	SW6010B	Vanadium	15.2		MG/KG	0.038	2.5	600
	SSFACSL01	SSFACSL01_50B	03/01/2011	4620983.9	370042.8	SW6010B	Zinc	67.1		MG/KG	0.047	1.0	2500
	SSFACSL01	SSFACSL01_50B	03/01/2011	4620983.9	370042.8	SW6850	ND for Perchlorate	ND	U	UG/KG	ND	ND	
	SSFACSL01	SSFACSL01_50B	03/01/2011	4620983.9	370042.8	SW7471A	Mercury	0.27		MG/KG	0.0065	0.019	20
	SSFACSL01	SSFACSL01_50B	03/01/2011	4620983.9	370042.8	SW8270C	Benzo(a)anthracene	18.0	J	UG/KG	13.0	330	7000
	SSFACSL01	SSFACSL01_50B	03/01/2011	4620983.9	370042.8	SW8270C	Benzo(b)fluoranthene	23.0	J	UG/KG	23.0	330	7000
	SSFACSL01	SSFACSL01_50B	03/01/2011	4620983.9	370042.8	SW8270C	Benzoic acid	100	J	UG/KG	55.0	820	
	SSFACSL01	SSFACSL01_50B	03/01/2011	4620983.9	370042.8	SW8270C	Benzyl alcohol	840		UG/KG	16.0	330	
	SSFACSL01	SSFACSL01_50B	03/01/2011	4620983.9	370042.8	SW8270C	Benzyl butyl phthalate	78.0	J	UG/KG	20.0	330	1
	SSFACSL01	SSFACSL01_50B	03/01/2011	4620983.9	370042.8	SW8270C	Chrysene	28.0	J	UG/KG	18.0	330	70000
	SSFACSL01	SSFACSL01_50B	03/01/2011	4620983.9	370042.8	SW8270C	Diethyl Phthalate	53.0	J	UG/KG	15.0	330	10000

Table A.12
Former A Range Consolidated Shot BIP Locations
Summary Data Table

			Date					Result					T
Description	Location ID	Field Sample ID	Sampled	Northing	Easting	Test Method	Analyte	Value	Qualifier	Units	MDL	RL	S1/GW1
•	SSFACSL01	SSFACSL01_50B	03/01/2011	4620983.9	370042.8	SW8270C	Di-n-Butyl Phthalate	69.0	J	UG/KG	15.0	330	1
	SSFACSL01	SSFACSL01_50B	03/01/2011	4620983.9	370042.8	SW8270C	Fluoranthene	38.0	J	UG/KG	12.0	330	1000000
	SSFACSL01	SSFACSL01_50B	03/01/2011	4620983.9	370042.8	SW8270C	ND for 66 Analytes	ND	U	UG/KG	ND	ND	1
	SSFACSL01	SSFACSL01_50B	03/01/2011	4620983.9	370042.8	SW8270C	Phenanthrene	28.0	J	UG/KG	12.0	330	10000
	SSFACSL01	SSFACSL01_50B	03/01/2011	4620983.9	370042.8	SW8270C	Phenol	97.0	J	UG/KG	40.0	330	1000
	SSFACSL01	SSFACSL01_50B	03/01/2011	4620983.9	370042.8	SW8270C	Pyrene	44.0	J	UG/KG	14.0	330	1000000
	SSFACSL01	SSFACSL01_50B	03/01/2011	4620983.9	370042.8	SW8330	2,4,6-Trinitrotoluene	2,270		UG/KG	6.5	98.0	1
	SSFACSL01	SSFACSL01_50B	03/01/2011	4620983.9	370042.8	SW8330	2,4-Dinitrotoluene	44.8	J	UG/KG	15.7	98.0	700
	SSFACSL01	SSFACSL01_50B	03/01/2011	4620983.9	370042.8	SW8330	2,6-Dinitrotoluene	26.2	J	UG/KG	6.1	98.0	
	SSFACSL01	SSFACSL01_50B	03/01/2011	4620983.9	370042.8	SW8330	2-Amino-4,6-dinitrotoluene	199		UG/KG	6.9	98.0	
	SSFACSL01	SSFACSL01_50B	03/01/2011	4620983.9	370042.8	SW8330	4-Amino-2,6-Dinitrotoluene	113		UG/KG	9.8	98.0	1
	SSFACSL01	SSFACSL01_50B	03/01/2011	4620983.9	370042.8	SW8330	ND for 13 Analytes	ND	U	UG/KG	ND	ND	1
	SSFACSL01	SSFACSL01_50B	03/01/2011	4620983.9	370042.8	SW8330	Tetryl	62.6	J	UG/KG	15.7	98.0	1
Outer 30' X 30' grid (50 pt)	SSFACSL01	SSFACSL01_50C	03/01/2011	4620983.9	370042.8	SW6010B	Aluminum	5,240		MG/KG	2.8	10.0	1
Replicate Spl 1	SSFACSL01	SSFACSL01_50C	03/01/2011	4620983.9	370042.8	SW6010B	Antimony	1.00	J	MG/KG	0.16	3.0	20
	SSFACSL01	SSFACSL01_50C	03/01/2011	4620983.9	370042.8	SW6010B	Arsenic	2.60		MG/KG	0.20	0.50	20
	SSFACSL01	SSFACSL01_50C	03/01/2011	4620983.9	370042.8	SW6010B	Barium	10.2		MG/KG	0.22	10.0	1000
	SSFACSL01	SSFACSL01_50C	03/01/2011	4620983.9	370042.8	SW6010B	Beryllium	0.11	J	MG/KG	0.026	0.25	100
	SSFACSL01	SSFACSL01_50C	03/01/2011	4620983.9	370042.8	SW6010B	Boron	1.10	J	MG/KG	0.070	5.0	1
	SSFACSL01	SSFACSL01_50C	03/01/2011	4620983.9	370042.8	SW6010B	Cadmium	0.13	J	MG/KG	0.028	0.25	2
	SSFACSL01	SSFACSL01_50C	03/01/2011	4620983.9	370042.8	SW6010B	Calcium	253		MG/KG	6.0	250	
	SSFACSL01	SSFACSL01_50C	03/01/2011	4620983.9	370042.8	SW6010B	Chromium	6.70		MG/KG	0.040	0.50	30
	SSFACSL01	SSFACSL01_50C	03/01/2011	4620983.9	370042.8	SW6010B	Cobalt	0.62	J	MG/KG	0.038	2.5	1
	SSFACSL01	SSFACSL01_50C	03/01/2011	4620983.9	370042.8	SW6010B	Copper	86.3		MG/KG	0.10	1.2	1
	SSFACSL01	SSFACSL01_50C	03/01/2011	4620983.9	370042.8	SW6010B	Iron	6,180		MG/KG	1.4	10.0	1
	SSFACSL01	SSFACSL01_50C	03/01/2011	4620983.9	370042.8	SW6010B	Lead	269		MG/KG	0.18	0.50	300
	SSFACSL01	SSFACSL01_50C	03/01/2011	4620983.9	370042.8	SW6010B	Magnesium	447		MG/KG	2.4	250	
	SSFACSL01	SSFACSL01_50C	03/01/2011	4620983.9	370042.8	SW6010B	Manganese	31.2		MG/KG	0.012	0.75	
	SSFACSL01	SSFACSL01_50C	03/01/2011	4620983.9	370042.8	SW6010B	Molybdenum	0.50		MG/KG	0.034	0.50	
	SSFACSL01	SSFACSL01_50C	03/01/2011	4620983.9	370042.8	SW6010B	ND for 3 Analytes	ND	U	MG/KG	ND	ND	
	SSFACSL01	SSFACSL01_50C	03/01/2011	4620983.9	370042.8	SW6010B	Nickel	4.10		MG/KG	0.065	2.0	20
	SSFACSL01	SSFACSL01_50C	03/01/2011	4620983.9	370042.8	SW6010B	Potassium	222	J	MG/KG	10.0	250	1
	SSFACSL01	SSFACSL01_50C	03/01/2011	4620983.9	370042.8	SW6010B	Sodium	31.7	J	MG/KG	2.6	250	1
	SSFACSL01	SSFACSL01_50C	03/01/2011	4620983.9	370042.8	SW6010B	Vanadium	15.2		MG/KG	0.038	2.5	600
	SSFACSL01	SSFACSL01_50C	03/01/2011	4620983.9	370042.8	SW6010B	Zinc	13.1		MG/KG	0.047	1.0	2500
	SSFACSL01	SSFACSL01_50C	03/01/2011	4620983.9	370042.8	SW6850	ND for Perchlorate	ND	U	UG/KG	ND	ND	
	SSFACSL01	SSFACSL01_50C	03/01/2011	4620983.9	370042.8	SW7471A	Mercury	0.24		MG/KG	0.0065	0.019	20
	SSFACSL01	SSFACSL01_50C	03/01/2011	4620983.9	370042.8	SW8270C	Benzoic acid	85.0	J	UG/KG	55.0	820	

Table A.12
Former A Range Consolidated Shot BIP Locations
Summary Data Table

			Date					Result					
Description	Location ID	Field Sample ID	Sampled	Northing	Easting	Test Method	Analyte	Value	Qualifier	Units	MDL	RL	S1/GW1
	SSFACSL01	SSFACSL01_50C	03/01/2011	4620983.9	370042.8	SW8270C	Benzyl alcohol	730		UG/KG	16.0	330	
	SSFACSL01	SSFACSL01_50C	03/01/2011	4620983.9	370042.8	SW8270C	Benzyl butyl phthalate	71.0	J	UG/KG	20.0	330	
	SSFACSL01	SSFACSL01_50C	03/01/2011	4620983.9	370042.8	SW8270C	Chrysene	21.0	J	UG/KG	18.0	330	70000
	SSFACSL01	SSFACSL01_50C	03/01/2011	4620983.9	370042.8	SW8270C	Diethyl Phthalate	48.0	J	UG/KG	15.0	330	10000
	SSFACSL01	SSFACSL01_50C	03/01/2011	4620983.9	370042.8	SW8270C	Di-n-Butyl Phthalate	64.0	J	UG/KG	15.0	330	1
	SSFACSL01	SSFACSL01_50C	03/01/2011	4620983.9	370042.8	SW8270C	Fluoranthene	25.0	J	UG/KG	12.0	330	1000000
	SSFACSL01	SSFACSL01_50C	03/01/2011	4620983.9	370042.8	SW8270C	ND for 68 Analytes	ND	U	UG/KG	ND	ND	
	SSFACSL01	SSFACSL01_50C	03/01/2011	4620983.9	370042.8	SW8270C	Phenanthrene	21.0	J	UG/KG	12.0	330	10000
	SSFACSL01	SSFACSL01_50C	03/01/2011	4620983.9	370042.8	SW8270C	Phenol	90.0	J	UG/KG	40.0	330	1000
	SSFACSL01	SSFACSL01_50C	03/01/2011	4620983.9	370042.8	SW8270C	Pyrene	27.0	J	UG/KG	14.0	330	1000000
	SSFACSL01	SSFACSL01_50C	03/01/2011	4620983.9	370042.8	SW8330	2,4,6-Trinitrotoluene	3,250		UG/KG	6.7	101	
	SSFACSL01	SSFACSL01_50C	03/01/2011	4620983.9	370042.8	SW8330	2,4-Dinitrotoluene	89.7	J	UG/KG	16.1	101	700
	SSFACSL01	SSFACSL01_50C	03/01/2011	4620983.9	370042.8	SW8330	2,6-Dinitrotoluene	60.4	J	UG/KG	6.3	101	1
	SSFACSL01	SSFACSL01_50C	03/01/2011	4620983.9	370042.8	SW8330	2-Amino-4,6-dinitrotoluene	282		UG/KG	7.1	101	1
	SSFACSL01	SSFACSL01_50C	03/01/2011	4620983.9	370042.8	SW8330	4-Amino-2,6-Dinitrotoluene	219		UG/KG	10.1	101	1
	SSFACSL01	SSFACSL01_50C	03/01/2011	4620983.9	370042.8	SW8330	ND for 13 Analytes	ND	U	UG/KG	ND	ND	1
	SSFACSL01	SSFACSL01_50C	03/01/2011	4620983.9	370042.8	SW8330	Tetryl	40.8	J	UG/KG	16.1	101	1
30 point MIS from 50'x50'	SSFACSL01	FACSL01_SS30A	10/10/2011	4620983.9	370042.8	SW6010B	Lead	170		MG/KG	0.19	0.85	300
around initial grid													
Inner 30-pt Grid	SSFORMACSL06	SSFMACSL06_30A	03/01/2011	4621110.33	370015.37	SW6010B	Aluminum	2,670		MG/KG	2.8	9.9	
	SSFORMACSL06	SSFMACSL06_30A	03/01/2011	4621110.33	370015.37	SW6010B	Antimony	0.86	J	MG/KG	0.16	3.0	20
	SSFORMACSL06	SSFMACSL06_30A	03/01/2011	4621110.33	370015.37	SW6010B	Arsenic	2.40		MG/KG	0.20	0.49	20
	SSFORMACSL06	SSFMACSL06_30A	03/01/2011	4621110.33	370015.37	SW6010B	Barium	3.40	J	MG/KG	0.22	9.9	1000
	SSFORMACSL06	SSFMACSL06_30A	03/01/2011	4621110.33	370015.37	SW6010B	Beryllium	0.07	J	MG/KG	0.026	0.25	100
	SSFORMACSL06	SSFMACSL06_30A	03/01/2011	4621110.33	370015.37	SW6010B	Boron	0.97	J	MG/KG	0.069	4.9	
	SSFORMACSL06	SSFMACSL06_30A	03/01/2011	4621110.33	370015.37	SW6010B	Calcium	71	J	MG/KG	5.9	246	
	SSFORMACSL06	SSFMACSL06_30A	03/01/2011	4621110.33	370015.37	SW6010B	Chromium	8.70		MG/KG	0.039	0.49	30
	SSFORMACSL06	SSFMACSL06_30A	03/01/2011	4621110.33	370015.37	SW6010B	Cobalt	0.33	J	MG/KG	0.037	2.5	
	SSFORMACSL06	SSFMACSL06_30A	03/01/2011	4621110.33	370015.37	SW6010B	Copper	1,390		MG/KG	0.10	1.2	
	SSFORMACSL06	SSFMACSL06_30A	03/01/2011	4621110.33	370015.37	SW6010B	Iron	6,120		MG/KG	1.3	9.9	
	SSFORMACSL06	SSFMACSL06_30A	03/01/2011	4621110.33	370015.37	SW6010B	Lead	390		MG/KG	0.17	0.49	300
	SSFORMACSL06	SSFMACSL06_30A	03/01/2011	4621110.33	370015.37	SW6010B	Magnesium	103	J	MG/KG	2.4	246	
	SSFORMACSL06	SSFMACSL06_30A	03/01/2011	4621110.33	370015.37	SW6010B	Manganese	34		MG/KG	0.012	0.74	
	SSFORMACSL06	SSFMACSL06_30A	03/01/2011	4621110.33	370015.37	SW6010B	Molybdenum	1.50		MG/KG	0.033	0.49	
-	SSFORMACSL06	SSFMACSL06_30A	03/01/2011	4621110.33	370015.37	SW6010B	ND for 3 Analytes	ND	U	MG/KG	ND	ND	
	SSFORMACSL06	SSFMACSL06_30A	03/01/2011	4621110.33	370015.37	SW6010B	Nickel	3.20		MG/KG	0.064	2.0	20
	SSFORMACSL06	SSFMACSL06_30A	03/01/2011	4621110.33	370015.37	SW6010B	Potassium	96	J	MG/KG	9.9	246	

Table A.12
Former A Range Consolidated Shot BIP Locations
Summary Data Table

			Date		-			Result					
Description	Location ID	Field Sample ID	Sampled	Northing	Easting	Test Method	Analyte	Value	Qualifier	Units	MDL	RL	S1/GW1
· · ·	SSFORMACSL06	SSFMACSL06_30A	03/01/2011	4621110.33	370015.37	SW6010B	Selenium	3.20		MG/KG	0.29	1.7	400
	SSFORMACSL06	SSFMACSL06_30A	03/01/2011	4621110.33	370015.37	SW6010B	Sodium	772		MG/KG	2.5	246	
	SSFORMACSL06	SSFMACSL06_30A	03/01/2011	4621110.33	370015.37	SW6010B	Vanadium	9.5		MG/KG	0.038	2.5	600
	SSFORMACSL06	SSFMACSL06_30A	03/01/2011	4621110.33	370015.37	SW6010B	Zinc	19.4		MG/KG	0.046	0.99	2500
	SSFORMACSL06	SSFMACSL06_30A	03/01/2011	4621110.33	370015.37	SW6850	ND for Perchlorate	ND	U	UG/KG	ND	ND	1
	SSFORMACSL06	SSFMACSL06_30A	03/01/2011	4621110.33	370015.37	SW7471A	Mercury	0.19		MG/KG	0.0066	0.020	20
	SSFORMACSL06	SSFMACSL06_30A	03/01/2011	4621110.33	370015.37	SW8270C	Benzo(a)anthracene	25.0	J	UG/KG	13.0	330	7000
	SSFORMACSL06	SSFMACSL06_30A	03/01/2011	4621110.33	370015.37	SW8270C	Benzo(b)fluoranthene	49.0	J	UG/KG	23.0	330	7000
	SSFORMACSL06	SSFMACSL06_30A	03/01/2011	4621110.33	370015.37	SW8270C	Benzoic acid	250	J	UG/KG	55.0	820	
	SSFORMACSL06	SSFMACSL06_30A	03/01/2011	4621110.33	370015.37	SW8270C	Benzyl alcohol	350		UG/KG	16.0	330	
	SSFORMACSL06	SSFMACSL06_30A	03/01/2011	4621110.33	370015.37	SW8270C	Benzyl butyl phthalate	42.0	J	UG/KG	20.0	330	
	SSFORMACSL06	SSFMACSL06_30A	03/01/2011	4621110.33	370015.37	SW8270C	Chrysene	35.0	J	UG/KG	18.0	330	70000
	SSFORMACSL06	SSFMACSL06_30A	03/01/2011	4621110.33	370015.37	SW8270C	Diethyl Phthalate	27.0	J	UG/KG	15.0	330	10000
	SSFORMACSL06	SSFMACSL06_30A	03/01/2011	4621110.33	370015.37	SW8270C	Di-n-Butyl Phthalate	50.0	J	UG/KG	15.0	330	
	SSFORMACSL06	SSFMACSL06_30A	03/01/2011	4621110.33	370015.37	SW8270C	Fluoranthene	64.0	J	UG/KG	12.0	330	1000000
	SSFORMACSL06	SSFMACSL06_30A	03/01/2011	4621110.33	370015.37	SW8270C	Naphthalene	16.0	J	UG/KG	15.0	330	4000
	SSFORMACSL06	SSFMACSL06_30A	03/01/2011	4621110.33	370015.37	SW8270C	ND for 65 Analytes	ND	U	UG/KG	ND	ND	
	SSFORMACSL06	SSFMACSL06_30A	03/01/2011	4621110.33	370015.37	SW8270C	Phenanthrene	57.0	J	UG/KG	12.0	330	10000
	SSFORMACSL06	SSFMACSL06_30A	03/01/2011	4621110.33	370015.37	SW8270C	Phenol	100	J	UG/KG	40.0	330	1000
	SSFORMACSL06	SSFMACSL06_30A	03/01/2011	4621110.33	370015.37	SW8270C	Pyrene	68.0	J	UG/KG	14.0	330	1000000
	SSFORMACSL06	SSFMACSL06_30A	03/01/2011	4621110.33	370015.37	SW8330	2,4,6-Trinitrotoluene	47.6	J	UG/KG	6.5	98.5	
	SSFORMACSL06	SSFMACSL06_30A	03/01/2011	4621110.33	370015.37	SW8330	Hexahydro-1,3,5-Trinitro-1,3,5- Triazine (RDX)	9,910		UG/KG	21.7	197	1,000
	SSFORMACSL06	SSFMACSL06_30A	03/01/2011	4621110.33	370015.37	SW8330	ND for 16 Analytes	ND	U	UG/KG	ND	ND	
	SSFORMACSL06	SSFMACSL06_30A	03/01/2011	4621110.33	370015.37	SW8330	Octahydro-1,3,5,7-Tetranitro- 1,3,5,7-Tetrazocine (HMX)	405		UG/KG	6.1	98.5	2,000
Outer 30' X 30' grid (50 pt)	SSFORMACSL06	SSFMACSL06_50A	03/01/2011	4621110.33	370015.37	SW6010B	Aluminum	2,600		MG/KG	2.8	9.9	
очног оо ж оо уна (оо рт)	SSFORMACSL06	SSFMACSL06 50A	03/01/2011	4621110.33	370015.37	SW6010B	Antimony	0.61	J	MG/KG	0.16	3.0	20
	SSFORMACSL06	SSFMACSL06 50A	03/01/2011	4621110.33	370015.37	SW6010B	Arsenic	2.20		MG/KG	0.20	0.49	20
	SSFORMACSL06	SSFMACSL06_50A	03/01/2011	4621110.33	370015.37	SW6010B	Barium	5.40	J	MG/KG	0.22	9.9	1000
	SSFORMACSL06	SSFMACSL06_50A	03/01/2011	4621110.33	370015.37	SW6010B	Beryllium	0.10	J	MG/KG	0.026	0.25	100
	SSFORMACSL06	SSFMACSL06_50A	03/01/2011	4621110.33	370015.37	SW6010B	Boron	0.99	J	MG/KG	0.069	4.9	1
	SSFORMACSL06	SSFMACSL06_50A	03/01/2011	4621110.33	370015.37	SW6010B	Cadmium	0.03	J	MG/KG	0.028	0.25	2
	SSFORMACSL06	SSFMACSL06_50A	03/01/2011	4621110.33	370015.37	SW6010B	Calcium	128	J	MG/KG	5.9	246	1
	SSFORMACSL06	SSFMACSL06_50A	03/01/2011	4621110.33	370015.37	SW6010B	Chromium	3.70		MG/KG	0.039	0.49	30
	SSFORMACSL06	SSFMACSL06_50A	03/01/2011	4621110.33	370015.37	SW6010B	Cobalt	0.64	J	MG/KG	0.037	2.5	
	SSFORMACSL06	SSFMACSL06_50A	03/01/2011	4621110.33	370015.37	SW6010B	Copper	149		MG/KG	0.10	1.2	1
	SSFORMACSL06	SSFMACSL06_50A	03/01/2011	4621110.33	370015.37	SW6010B	Iron	4,820	1	MG/KG	1.3	9.9	1
	SSFORMACSL06	SSFMACSL06_50A	03/01/2011	4621110.33	370015.37	SW6010B	Lead	103		MG/KG	0.17	0.49	300

Table A.12
Former A Range Consolidated Shot BIP Locations
Summary Data Table

			Date					Result					
Description	Location ID	Field Sample ID	Sampled	Northing	Easting	Test Method	Analyte	Value	Qualifier	Units	MDL	RL	S1/GW1
	SSFORMACSL06	SSFMACSL06_50A	03/01/2011	4621110.33	370015.37	SW6010B	Magnesium	360		MG/KG	2.4	246	
	SSFORMACSL06	SSFMACSL06_50A	03/01/2011	4621110.33	370015.37	SW6010B	Manganese	26.5		MG/KG	0.012	0.74	
	SSFORMACSL06	SSFMACSL06_50A	03/01/2011	4621110.33	370015.37	SW6010B	Molybdenum	0.32	J	MG/KG	0.033	0.49	
	SSFORMACSL06	SSFMACSL06_50A	03/01/2011	4621110.33	370015.37	SW6010B	ND for 3 Analytes	ND	U	MG/KG	ND	ND	
	SSFORMACSL06	SSFMACSL06_50A	03/01/2011	4621110.33	370015.37	SW6010B	Nickel	3.10		MG/KG	0.064	2.0	2
	SSFORMACSL06	SSFMACSL06_50A	03/01/2011	4621110.33	370015.37	SW6010B	Potassium	156	J	MG/KG	9.9	246	
	SSFORMACSL06	SSFMACSL06_50A	03/01/2011	4621110.33	370015.37	SW6010B	Sodium	32.7	J	MG/KG	2.5	246	
	SSFORMACSL06	SSFMACSL06_50A	03/01/2011	4621110.33	370015.37	SW6010B	Vanadium	10.1		MG/KG	0.038	2.5	60
	SSFORMACSL06	SSFMACSL06_50A	03/01/2011	4621110.33	370015.37	SW6010B	Zinc	10.6		MG/KG	0.046	0.99	250
	SSFORMACSL06	SSFMACSL06_50A	03/01/2011	4621110.33	370015.37	SW6850	ND for Perchlorate	ND	U	UG/KG	ND	ND	T
	SSFORMACSL06	SSFMACSL06_50A	03/01/2011	4621110.33	370015.37	SW7471A	Mercury	0.17		MG/KG	0.0065	0.019	2
	SSFORMACSL06	SSFMACSL06_50A	03/01/2011	4621110.33	370015.37	SW8270C	Anthracene	30.0	J	UG/KG	14.0	320	100000
	SSFORMACSL06	SSFMACSL06_50A	03/01/2011	4621110.33	370015.37	SW8270C	Benzo(a)anthracene	120	J	UG/KG	13.0	320	700
	SSFORMACSL06	SSFMACSL06_50A	03/01/2011	4621110.33	370015.37	SW8270C	Benzo(a)pyrene	110	J	UG/KG	98.0	320	200
	SSFORMACSL06	SSFMACSL06_50A	03/01/2011	4621110.33	370015.37	SW8270C	Benzo(b)fluoranthene	150	J	UG/KG	23.0	320	700
	SSFORMACSL06	SSFMACSL06_50A	03/01/2011	4621110.33	370015.37	SW8270C	Benzo(g,h,i)perylene	56.0	J	UG/KG	13.0	320	100000
	SSFORMACSL06	SSFMACSL06_50A	03/01/2011	4621110.33	370015.37	SW8270C	Benzo(k)fluoranthene	140	J	UG/KG	30.0	320	7000
	SSFORMACSL06	SSFMACSL06_50A	03/01/2011	4621110.33	370015.37	SW8270C	Benzoic acid	180	J	UG/KG	55.0	820	1
	SSFORMACSL06	SSFMACSL06_50A	03/01/2011	4621110.33	370015.37	SW8270C	Benzyl alcohol	440		UG/KG	16.0	320	1
	SSFORMACSL06	SSFMACSL06_50A	03/01/2011	4621110.33	370015.37	SW8270C	Benzyl butyl phthalate	55.0	J	UG/KG	20.0	320	1
	SSFORMACSL06	SSFMACSL06_50A	03/01/2011	4621110.33	370015.37	SW8270C	Chrysene	150	J	UG/KG	18.0	320	7000
	SSFORMACSL06	SSFMACSL06_50A	03/01/2011	4621110.33	370015.37	SW8270C	Diethyl Phthalate	32.0	J	UG/KG	15.0	320	1000
	SSFORMACSL06	SSFMACSL06_50A	03/01/2011	4621110.33	370015.37	SW8270C	Di-n-Butyl Phthalate	50.0	J	UG/KG	15.0	320	1
	SSFORMACSL06	SSFMACSL06_50A	03/01/2011	4621110.33	370015.37	SW8270C	Fluoranthene	260	J	UG/KG	12.0	320	100000
	SSFORMACSL06	SSFMACSL06_50A	03/01/2011	4621110.33	370015.37	SW8270C	Fluorene	23.0	J	UG/KG	15.0	320	100000
	SSFORMACSL06	SSFMACSL06_50A	03/01/2011	4621110.33	370015.37	SW8270C	ND for 61 Analytes	ND	U	UG/KG	ND	ND	1
	SSFORMACSL06	SSFMACSL06_50A	03/01/2011	4621110.33	370015.37	SW8270C	Phenanthrene	200	J	UG/KG	12.0	320	1000
	SSFORMACSL06	SSFMACSL06_50A	03/01/2011	4621110.33	370015.37	SW8270C	Phenol	91.0	J	UG/KG	39.0	320	100
	SSFORMACSL06	SSFMACSL06_50A	03/01/2011	4621110.33	370015.37	SW8270C	Pyrene	240	J	UG/KG	14.0	320	100000
	SSFORMACSL06	SSFMACSL06_50A	03/01/2011	4621110.33	370015.37	SW8330	2,4,6-Trinitrotoluene	107	J	UG/KG	6.6	99.9	1
	SSFORMACSL06	SSFMACSL06_50A	03/01/2011	4621110.33	370015.37	SW8330	Hexahydro-1,3,5-Trinitro-1,3,5- Triazine (RDX)	22,900		UG/KG	33.0	300	1,00
	SSFORMACSL06	SSFMACSL06_50A	03/01/2011	4621110.33	370015.37	SW8330	ND for 16 Analytes	ND	U	UG/KG	ND	ND	1
	SSFORMACSL06	SSFMACSL06_50A	03/01/2011	4621110.33	370015.37	SW8330	Octahydro-1,3,5,7-Tetranitro- 1,3,5,7-Tetrazocine (HMX)	926		UG/KG	6.2	99.9	2,00
iter 30' X 30' grid (50 pt)	SSFORMACSL06	SSFMACSL06_50B	03/01/2011	4621110.33	370015.37	SW6010B	Aluminum	2,820	1	MG/KG	2.8	9.9	1
plicate Spl 1	SSFORMACSL06	SSFMACSL06_50B	03/01/2011	4621110.33	370015.37	SW6010B	Antimony	0.66	J	MG/KG	0.16	3.0	2
	SSFORMACSL06	SSFMACSL06_50B	03/01/2011	4621110.33	370015.37	SW6010B	Arsenic	2.30		MG/KG	0.20	0.50	2
	SSFORMACSL06	SSFMACSL06 50B	03/01/2011	4621110.33	370015.37	SW6010B	Barium	7.20	J	MG/KG	0.22	9.9	100

Table A.12
Former A Range Consolidated Shot BIP Locations
Summary Data Table

Description	Location ID	Field Sample ID	Date Sampled	Northing	Easting	Test Method	Analyte	Result Value	Qualifier	Units	MDL	RL	S1/GW1
	SSFORMACSL06	SSFMACSL06_50B	03/01/2011	4621110.33	370015.37	SW6010B	Beryllium	0.10	J	MG/KG	0.026	0.25	100
	SSFORMACSL06	SSFMACSL06_50B	03/01/2011	4621110.33	370015.37	SW6010B	Boron	1.00	J	MG/KG	0.069	5.0	
	SSFORMACSL06	SSFMACSL06_50B	03/01/2011	4621110.33	370015.37	SW6010B	Calcium	179	J	MG/KG	5.9	248	
	SSFORMACSL06	SSFMACSL06_50B	03/01/2011	4621110.33	370015.37	SW6010B	Chromium	4.30		MG/KG	0.040	0.50	30
	SSFORMACSL06	SSFMACSL06_50B	03/01/2011	4621110.33	370015.37	SW6010B	Cobalt	0.63	J	MG/KG	0.037	2.5	1
	SSFORMACSL06	SSFMACSL06_50B	03/01/2011	4621110.33	370015.37	SW6010B	Copper	193		MG/KG	0.10	1.2	
	SSFORMACSL06	SSFMACSL06_50B	03/01/2011	4621110.33	370015.37	SW6010B	Iron	6,220		MG/KG	1.3	9.9	1
	SSFORMACSL06	SSFMACSL06_50B	03/01/2011	4621110.33	370015.37	SW6010B	Lead	116		MG/KG	0.17	0.50	300
	SSFORMACSL06	SSFMACSL06_50B	03/01/2011	4621110.33	370015.37	SW6010B	Magnesium	297		MG/KG	2.4	248	
	SSFORMACSL06	SSFMACSL06_50B	03/01/2011	4621110.33	370015.37	SW6010B	Manganese	37.7		MG/KG	0.012	0.74	
	SSFORMACSL06	SSFMACSL06_50B	03/01/2011	4621110.33	370015.37	SW6010B	Molybdenum	0.37	J	MG/KG	0.034	0.50	
	SSFORMACSL06	SSFMACSL06_50B	03/01/2011	4621110.33	370015.37	SW6010B	ND for 3 Analytes	ND	U	MG/KG	ND	ND	
	SSFORMACSL06	SSFMACSL06_50B	03/01/2011	4621110.33	370015.37	SW6010B	Nickel	2.40		MG/KG	0.064	2.0	20
	SSFORMACSL06	SSFMACSL06_50B	03/01/2011	4621110.33	370015.37	SW6010B	Potassium	165	J	MG/KG	9.9	248	
	SSFORMACSL06	SSFMACSL06_50B	03/01/2011	4621110.33	370015.37	SW6010B	Selenium	0.41	J	MG/KG	0.29	1.7	400
	SSFORMACSL06	SSFMACSL06_50B	03/01/2011	4621110.33	370015.37	SW6010B	Sodium	37.1	J	MG/KG	2.5	248	
	SSFORMACSL06	SSFMACSL06_50B	03/01/2011	4621110.33	370015.37	SW6010B	Vanadium	9.9		MG/KG	0.038	2.5	600
	SSFORMACSL06	SSFMACSL06_50B	03/01/2011	4621110.33	370015.37	SW6010B	Zinc	11.4		MG/KG	0.047	0.99	2500
	SSFORMACSL06	SSFMACSL06_50B	03/01/2011	4621110.33	370015.37	SW6850	ND for Perchlorate	ND	U	UG/KG	ND	ND	
	SSFORMACSL06	SSFMACSL06_50B	03/01/2011	4621110.33	370015.37	SW7471A	Mercury	0.12		MG/KG	0.0063	0.019	20
	SSFORMACSL06	SSFMACSL06_50B	03/01/2011	4621110.33	370015.37	SW8270C	Benzo(a)anthracene	100	J	UG/KG	18.0	460	7000
	SSFORMACSL06	SSFMACSL06_50B	03/01/2011	4621110.33	370015.37	SW8270C	Benzo(b)fluoranthene	99.0	J	UG/KG	32.0	460	7000
	SSFORMACSL06	SSFMACSL06_50B	03/01/2011	4621110.33	370015.37	SW8270C	Benzo(g,h,i)perylene	45.0	J	UG/KG	18.0	460	1000000
	SSFORMACSL06	SSFMACSL06_50B	03/01/2011	4621110.33	370015.37	SW8270C	Benzo(k)fluoranthene	110	J	UG/KG	42.0	460	70000
	SSFORMACSL06	SSFMACSL06_50B	03/01/2011	4621110.33	370015.37	SW8270C	Benzoic acid	160	J	UG/KG	79.0	1200	
	SSFORMACSL06	SSFMACSL06_50B	03/01/2011	4621110.33	370015.37	SW8270C	Benzyl alcohol	600		UG/KG	23.0	460	
	SSFORMACSL06	SSFMACSL06_50B	03/01/2011	4621110.33	370015.37	SW8270C	Benzyl butyl phthalate	72.0	J	UG/KG	28.0	460	
	SSFORMACSL06	SSFMACSL06_50B	03/01/2011	4621110.33	370015.37	SW8270C	Chrysene	140	J	UG/KG	25.0	460	70000
	SSFORMACSL06	SSFMACSL06_50B	03/01/2011	4621110.33	370015.37	SW8270C	Diethyl Phthalate	44.0	J	UG/KG	21.0	460	10000
	SSFORMACSL06	SSFMACSL06_50B	03/01/2011	4621110.33	370015.37	SW8270C	Di-n-Butyl Phthalate	66.0	J	UG/KG	21.0	460	
	SSFORMACSL06	SSFMACSL06_50B	03/01/2011	4621110.33	370015.37	SW8270C	Fluoranthene	180	J	UG/KG	17.0	460	1000000
	SSFORMACSL06	SSFMACSL06_50B	03/01/2011	4621110.33	370015.37	SW8270C	ND for 64 Analytes	ND	U	UG/KG	ND	ND	1
	SSFORMACSL06	SSFMACSL06_50B	03/01/2011	4621110.33	370015.37	SW8270C	Phenanthrene	100	J	UG/KG	17.0	460	10000
	SSFORMACSL06	SSFMACSL06_50B	03/01/2011	4621110.33	370015.37	SW8270C	Phenol	86.0	J	UG/KG	56.0	460	1000
	SSFORMACSL06	SSFMACSL06_50B	03/01/2011	4621110.33	370015.37	SW8270C	Pyrene	170	J	UG/KG	20.0	460	1000000
	SSFORMACSL06	SSFMACSL06_50B	03/01/2011	4621110.33	370015.37	SW8330	2,4,6-Trinitrotoluene	40.3	J	UG/KG	6.5	97.7	
	SSFORMACSL06	SSFMACSL06_50B	03/01/2011	4621110.33	370015.37	SW8330	Hexahydro-1,3,5-Trinitro-1,3,5- Triazine (RDX)	15,400		UG/KG	21.5	195	1,000

Table A.12
Former A Range Consolidated Shot BIP Locations
Summary Data Table

			Date					Result					T
Description	Location ID	Field Sample ID	Sampled	Northing	Easting	Test Method	Analyte	Value	Qualifier	Units	MDL	RL	S1/GW1
-	SSFORMACSL06	SSFMACSL06_50B	03/01/2011	4621110.33	370015.37	SW8330	ND for 16 Analytes	ND	U	UG/KG	ND	ND	
	SSFORMACSL06	SSFMACSL06_50B	03/01/2011	4621110.33	370015.37	SW8330	Octahydro-1,3,5,7-Tetranitro- 1,3,5,7-Tetrazocine (HMX)	610		UG/KG	6.1	97.7	2,000
Outer 30' X 30' grid (50 pt)	SSFORMACSL06	SSFMACSL06_50C	03/01/2011	4621110.33	370015.37	SW6010B	Aluminum	3,080		MG/KG	2.8	9.9	+
Replicate Spl 2	SSFORMACSL06	SSFMACSL06_50C	03/01/2011	4621110.33	370015.37	SW6010B	Antimony	0.58	J	MG/KG	0.16	3.0	20
	SSFORMACSL06	SSFMACSL06_50C	03/01/2011	4621110.33	370015.37	SW6010B	Arsenic	2.40		MG/KG	0.20	0.49	20
	SSFORMACSL06	SSFMACSL06_50C	03/01/2011	4621110.33	370015.37	SW6010B	Barium	6.80	J	MG/KG	0.22	9.9	1000
	SSFORMACSL06	SSFMACSL06_50C	03/01/2011	4621110.33	370015.37	SW6010B	Beryllium	0.10	J	MG/KG	0.026	0.25	100
	SSFORMACSL06	SSFMACSL06_50C	03/01/2011	4621110.33	370015.37	SW6010B	Boron	1.10	J	MG/KG	0.069	4.9	1
	SSFORMACSL06	SSFMACSL06_50C	03/01/2011	4621110.33	370015.37	SW6010B	Cadmium	0.03	J	MG/KG	0.028	0.25	2
	SSFORMACSL06	SSFMACSL06_50C	03/01/2011	4621110.33	370015.37	SW6010B	Calcium	167	J	MG/KG	5.9	246	
	SSFORMACSL06	SSFMACSL06_50C	03/01/2011	4621110.33	370015.37	SW6010B	Chromium	4.20		MG/KG	0.039	0.49	30
	SSFORMACSL06	SSFMACSL06_50C	03/01/2011	4621110.33	370015.37	SW6010B	Cobalt	0.67	J	MG/KG	0.037	2.5	1
	SSFORMACSL06	SSFMACSL06_50C	03/01/2011	4621110.33	370015.37	SW6010B	Copper	272		MG/KG	0.10	1.2	1
	SSFORMACSL06	SSFMACSL06_50C	03/01/2011	4621110.33	370015.37	SW6010B	Iron	5,360		MG/KG	1.3	9.9	1
	SSFORMACSL06	SSFMACSL06_50C	03/01/2011	4621110.33	370015.37	SW6010B	Lead	146		MG/KG	0.17	0.49	300
	SSFORMACSL06	SSFMACSL06_50C	03/01/2011	4621110.33	370015.37	SW6010B	Magnesium	316		MG/KG	2.4	246	1
	SSFORMACSL06	SSFMACSL06_50C	03/01/2011	4621110.33	370015.37	SW6010B	Manganese	32		MG/KG	0.012	0.74	
	SSFORMACSL06	SSFMACSL06_50C	03/01/2011	4621110.33	370015.37	SW6010B	Molybdenum	0.41	J	MG/KG	0.033	0.49	
	SSFORMACSL06	SSFMACSL06_50C	03/01/2011	4621110.33	370015.37	SW6010B	ND for 2 Analytes	ND	U	MG/KG	ND	ND	
	SSFORMACSL06	SSFMACSL06_50C	03/01/2011	4621110.33	370015.37	SW6010B	Nickel	3.50		MG/KG	0.064	2.0	20
	SSFORMACSL06	SSFMACSL06_50C	03/01/2011	4621110.33	370015.37	SW6010B	Potassium	178	J	MG/KG	9.9	246	
	SSFORMACSL06	SSFMACSL06_50C	03/01/2011	4621110.33	370015.37	SW6010B	Selenium	0.57	J	MG/KG	0.29	1.7	400
	SSFORMACSL06	SSFMACSL06_50C	03/01/2011	4621110.33	370015.37	SW6010B	Sodium	45.0	J	MG/KG	2.5	246	
	SSFORMACSL06	SSFMACSL06_50C	03/01/2011	4621110.33	370015.37	SW6010B	Vanadium	10.9		MG/KG	0.038	2.5	600
	SSFORMACSL06	SSFMACSL06_50C	03/01/2011	4621110.33	370015.37	SW6010B	Zinc	11.3		MG/KG	0.046	0.99	2500
	SSFORMACSL06	SSFMACSL06_50C	03/01/2011	4621110.33	370015.37	SW6850	ND for Perchlorate	ND	U	UG/KG	ND	ND	
	SSFORMACSL06	SSFMACSL06_50C	03/01/2011	4621110.33	370015.37	SW7471A	Mercury	0.13		MG/KG	0.0066	0.020	20
	SSFORMACSL06	SSFMACSL06_50C	03/01/2011	4621110.33	370015.37	SW8270C	Anthracene	14.0	J	UG/KG	14.0	340	1000000
	SSFORMACSL06	SSFMACSL06_50C	03/01/2011	4621110.33	370015.37	SW8270C	Benzo(a)anthracene	59.0	J	UG/KG	13.0	340	7000
	SSFORMACSL06	SSFMACSL06_50C	03/01/2011	4621110.33	370015.37	SW8270C	Benzo(b)fluoranthene	51.0	J	UG/KG	23.0	340	7000
	SSFORMACSL06	SSFMACSL06_50C	03/01/2011	4621110.33	370015.37	SW8270C	Benzo(g,h,i)perylene	24.0	J	UG/KG	13.0	340	1000000
	SSFORMACSL06	SSFMACSL06_50C	03/01/2011	4621110.33	370015.37	SW8270C	Benzo(k)fluoranthene	71.0	J	UG/KG	30.0	340	70000
	SSFORMACSL06	SSFMACSL06_50C	03/01/2011	4621110.33	370015.37	SW8270C	Benzoic acid	87.0	J	UG/KG	57.0	840	
	SSFORMACSL06	SSFMACSL06_50C	03/01/2011	4621110.33	370015.37	SW8270C	Benzyl alcohol	560		UG/KG	16.0	340	
	SSFORMACSL06	SSFMACSL06_50C	03/01/2011	4621110.33	370015.37	SW8270C	Benzyl butyl phthalate	60.0	J	UG/KG	20.0	340	
	SSFORMACSL06	SSFMACSL06_50C	03/01/2011	4621110.33	370015.37	SW8270C	Chrysene	72.0	J	UG/KG	18.0	340	70000
	SSFORMACSL06	SSFMACSL06_50C	03/01/2011	4621110.33	370015.37	SW8270C	Diethyl Phthalate	34.0	J	UG/KG	15.0	340	10000

Table A.12
Former A Range Consolidated Shot BIP Locations
Summary Data Table

			Date					Result					
Description	Location ID	Field Sample ID	Sampled	Northing	Easting	Test Method	Analyte	Value	Qualifier	Units	MDL	RL	S1/GW1
	SSFORMACSL06	SSFMACSL06_50C	03/01/2011	4621110.33	370015.37	SW8270C	Di-n-Butyl Phthalate	54.0	J	UG/KG	15.0	340	
	SSFORMACSL06	SSFMACSL06_50C	03/01/2011	4621110.33	370015.37	SW8270C	Fluoranthene	140	J	UG/KG	12.0	340	1000000
	SSFORMACSL06	SSFMACSL06_50C	03/01/2011	4621110.33	370015.37	SW8270C	ND for 63 Analytes	ND	U	UG/KG	ND	ND	
	SSFORMACSL06	SSFMACSL06_50C	03/01/2011	4621110.33	370015.37	SW8270C	Phenanthrene	94.0	J	UG/KG	12.0	340	10000
	SSFORMACSL06	SSFMACSL06_50C	03/01/2011	4621110.33	370015.37	SW8270C	Phenol	75.0	J	UG/KG	41.0	340	1000
	SSFORMACSL06	SSFMACSL06_50C	03/01/2011	4621110.33	370015.37	SW8270C	Pyrene	110	J	UG/KG	14.0	340	1000000
	SSFORMACSL06	SSFMACSL06_50C	03/01/2011	4621110.33	370015.37	SW8330	2,4,6-Trinitrotoluene	31.7	J	UG/KG	6.8	103	
	SSFORMACSL06	SSFMACSL06_50C	03/01/2011	4621110.33	370015.37	SW8330	Hexahydro-1,3,5-Trinitro-1,3,5-	12,000		UG/KG	22.6	205	1,000
							Triazine (RDX)						
	SSFORMACSL06	SSFMACSL06_50C	03/01/2011	4621110.33	370015.37	SW8330	ND for 16 Analytes	ND	U	UG/KG	ND	ND	
	SSFORMACSL06	SSFMACSL06_50C	03/01/2011	4621110.33	370015.37	SW8330	Octahydro-1,3,5,7-Tetranitro-	461		UG/KG	6.4	103	2,000
							1,3,5,7-Tetrazocine (HMX)						
30 point MIS from 50'x50' around initial grid	SSFORMACSL06	FMACSL06_30A	10/10/2011	4621110.33	370015.37	SW8330	ND for all explosives compounds	ND	U	UG/KG	ND	ND	

Appendix B Munitions Source Assessment

TABLE OF CONTENTS

1.0	INTRO 1.1 1.2	DUCTIONPurpose of ReportSite Background	B-1			
2.0	SUMM 2.1 2.2 2.3 2.4 2.5	IARY OF MUNITIONS RELATED INVESTIGATIONS Site Inspections and Reconnaissance Airborne and Ground-Based Magnetometry Surveys. Target Area Configuration Study. Target Area Ordnance Penetration Study. Site Closeout Geophysical Survey.	B-2 B-3 B-3 B-4			
3.0	SOUR 3.1 3.2	CE REMOVAL ACTIVITIES Robotics Technology Demonstration Source Removal Action	B-7			
4.0	CONCEPTUAL SITE MODEL					
5.0	FINDINGS					
6.0	REFEI	RENCES	B-10			

FIGURES

Figure B-1 Former A Range Layout

Figure B-2 Former A Range Munitions Summary

TABLE

Table B-1 Former A Range Munitions Summary

Impact Area Groundwater Study Program Final Former A Range Investigation Report April 25, 2012

ACRONYMS AND ABBREVIATIONS

AFRL Air Force Research Laboratory

AIRMAG airborne magnetometer

AP armor piercing BIP blown-in-place

bgs below ground surface

EM electromagnetic
HE high explosive
mm millimeter

1.0 INTRODUCTION

This assessment describes geophysical investigations conducted at the Former A Range and examines the likelihood of munitions remaining at the range. This analysis is based on lines of evidence collected from literature searches, aerial photographs, range records, and the results of investigation findings and recent munitions clearance activities conducted at the Former A Range Study Area.

1.1 Purpose of Report

Historical use of the Former A Range has resulted in the deposition of munitions on the ground surface and within shallow subsurface areas of the range. The purpose of this report is to provide a summary of munitions investigations and clearance-related activities conducted at the Former A Range and to evaluate the likelihood of residual on the range.

1.2 Site Background

The Former A Range was originally constructed in 1941 and functioned as an anti-tank artillery and rocket training site up until the 1960s. Tank targets were placed upon specially designed rail cars and rolled on tracks, via gravity, downhill through two sets of switchbacks traversing the target area. The target area switchbacks are clearly visible in aerial photographs of the site (Figure B-1). Artillery would fire in an easterly direction at moving targets from gun positions at a firing point approximately 2,400 feet to the west of the target area on the southern side of Wood Road. At the base of the hillside, the railroad targets would coast through a rollout section of the course to a platform where they were repaired, loaded onto trucks, and returned to the top of the hill via Avery Road.

Records compiled in support of the Archive Search Report (USACE 2001) indicate that ordnance used during this period at the Former A Range (denoted as Area L) included 37 millimeter (mm) armor piercing (AP) and high explosive (HE) rounds, 40mm AP and HE rounds, 75mm HE and shot rounds, 90mm artillery, 2.36-inch rockets, and 3.5-inch practice rockets (bazooka). Between the early 1960s and mid-1970s, the range was converted to a machine gun training area. Records indicate that .50 caliber ball and tracer rounds were used at that time.

2.0 SUMMARY OF MUNITIONS RELATED INVESTIGATIONS

Munitions investigation work has been ongoing at the Former A Range for a number of years and has resulted in a good understanding of munitions use and disposition. The investigations assessed areas of interest identified during numerous site reconnaissance efforts and in the Archive Search Report.

The principal field investigations at the Former A Range, related to the nature and extent of munitions, have included the following:

- 1998 Visual Site Inspection
- 2000 Field Reconnaissance
- 2001 Airborne Magnetometry Survey
- 2001 Munitions Survey Project Phase 2
- 2004 Target Area Configuration Study
- 2004 Target Area Ordnance Penetration Study
- 2005 RDX Source Area Site Inspection
- 2008 Robotic Technology Demonstration
- 2008 Post Technology Demonstration Geophysical Survey
- 2009 Source Removal Action
- 2010 Geophysical Survey

2.1 Site Inspections and Reconnaissance

In 1998, a visual inspection of the Former A Range was conducted to assess the site. Several inert and scrap items were observed including: one tail fin from a 90mm round; one 105mm practice round; 5.56mm and 7.62mm blanks; expended smoke grenades; and other ordnance-related debris. Seven HE 37mm MK11 TP/M38 BD fuzes were also found and destroyed. Table B-1 and Figure B-2 present this information.

In June 2000, a field reconnaissance was conducted to further assess site conditions related to munitions. The reconnaissance team walked the entire rail line beginning at the top of the target area hill, southwestward through mostly open areas along the switchbacks and rollout area, and ending across Wood Road at the former firing point. The target area, target rollout area (repair facility), and firing point, located near the southern side of Wood Road, were inspected during this reconnaissance. The inspection revealed little of the former firing point remained. Historical maps suggest that the straightening of Wood Road eliminated all but a small portion of the original firing point. Munitions-related items noted during this reconnaissance included: fragments from 90mm recoilless rifle rounds; pieces from 60mm and 81mm mortars; two inert 40mm projectiles; and one inert 37mm projectile. Five HE 37mm projectiles were also found and destroyed. Evidence of small arms training activities, including numerous bullet fragments, and several perforated 55-gallon drums were also noted.

In March 2005, a site reconnaissance was conducted in the area of particle backtrack for wells MW-206M1 and MW-249M2 in an effort to delineate possible sources of RDX detected in these wells. Particle tracks developed for these wells suggested possible RDX source locations to the southeast of the Former A Range Target Area. Based on the particle backtrack and a

reconnaissance of this area, three locations (identified in Figure 5-11 of the Investigation Report) were selected for surface and shallow subsurface soil sample collection and analysis. A detailed reconnaissance with intrusive investigation was also conducted in this area. A total of 12 anomalies were encountered and excavated. Items discovered included the nose cone of a 3.5-inch rocket, an inert 57mm projectile, a 7.62mm cartridge, fragmentation, barbed wire, and a piece of rebar.

2.2 Airborne and Ground-Based Magnetometry Surveys

In January 2001, an airborne magnetometry (AIRMAG) survey was flown over Area B-9, which includes the Former A Range. The results of this survey revealed one predominant, sinuous feature comprised of numerous anomalies presumed to be produced by the steel tracks (Tetra Tech EMI 2002a, 2002b, 2009). A total of 2,577 individual anomalies were identified in the AIRMAG data set. Using aerial photographs and geologic maps, nearly all of these anomalies were determined to be the result of cultural features or geologic influences. A total of 8080 anomalies were chosen for field inspection. Munitions-related items were found at or near four anomalies on the range and included: one inert 57mm projectile; one 75mm projectile base; and several scattered, inert 3.5-inch practice rockets.

A ground-based electromagnetic (EM) survey was conducted from August to November 2001 to search for possible disposal sites. Surveys were performed in four separate areas (Survey Areas A, B, C, and D) within the target area (Figure B-2), each representing a partially exposed, uprange hillside surface where ordnance was expected to be present. The areas were located using Global Positioning System (GPS) and then surveyed using a Geonics EM-61 Mk.2 metal detector array.

The survey results revealed numerous anomalies, and surface or intrusive inspections were performed at 102 of them. Eight of these anomaly locations were determined to be the result of disposal sites for expended practice rounds (Tetra Tech EMI 2002b). Most of the 247 items recovered from these disposal sites were inert 3.5-inch rockets. Other items discovered in these disposal sites included four inert 40mm projectiles, one inert 37mm projectile, one inert 75mm projectile, and one inert 90mm projectile. Other munitions found, mostly in the uppermost berm (Survey Area A) included: twelve HE and ten inert 40mm projectiles; two HE and ten inert 37mm projectiles; one HE 4.5-inch rocket; one inert 81mm mortar; and one HE 57mm projectile. The remaining anomalies were determined to be the result of surface and subsurface munitions scrap and ordnance fragmentation. Table B-1 and Figure B-2 incorporate the munitions locations and results from the 2001 survey.

2.3 Target Area Configuration Study

An EM-61 survey was performed at the range during December 2004 to map the limits of remnant metallic anomalies in order to confirm that the target area had been adequately delineated. In earlier studies, the limits of the target area had been inferred based on historical range layout plans, site maps, aerial photographs, and a remaining boundary marker on the southern side of the target area. Geophysical surveys were performed on ten predefined transect lines positioned to supplement earlier geophysical survey findings and map the limits of the target area.

The results of ten traverses are presented as a color EM analytic signal map showing EM anomalies expressed in millivolts along the 10-foot-wide survey traverses (Figure B-2). The 2004 EM results were also plotted with data from the EM-61 survey performed in September 2001. The combined EM results analytic signal maps were interpreted and target anomalies were selected to excavate and identify. No excavations were proposed along traverses 2 and 3 because of their central location in the assumed high-use portion of the range. The surface and subsurface metallic items consisted mostly of munitions scrap and some potential HE munitions. Intrusive excavation results indicated that the impacted (i.e., high-use) portion of the target area was situated within the limits of the rail switchbacks. Therefore, no changes were proposed to the original target area sampling array dimensions.

Fifty-eight anomalies were intrusively investigated. Munitions debris (fragments) accounted for the majority of finds during this event. Other miscellaneous ferrous scrap debris was encountered including rail road tracks, wire, and pallets (with nails). Munitions-related items discovered included: six practice and one HEAT 3.5-inch rockets; pieces from five 75mm projectiles; two HE 75mm shrapnel MK1 projectiles; three HE 75mm shrapnel MK1 projectiles (base only); three practice and two HE 37mm projectiles; one practice 81mm mortar; two segments from 155mm shrapnel rounds; one inert 60mm mortar; one expended HE-T 40mm projectile; and four 0.50 caliber bullets. Table B-1 and Figure B-2 present this information.

2.4 Target Area Ordnance Penetration Study

A Target Ordnance Penetration Study was conducted in 2004 to assess the depths of ordnance penetration below ground surface (bgs) and the distribution of associated contamination. This study was conducted to determine maximum penetration depth of the various types of munitions used on the range. This investigation also involved extensive sampling and analysis to assist in determining the vertical distribution of ordnance and contaminant residues in the uppermost backstop berm.

Three trenches were excavated in the upper backstop berm to search for deeply penetrating ordnance and to determine associated impacts to soil. The excavation locations were selected based on the magnitude of EM61 anomalies mapped during the ground-based geophysical survey conducted under the Munitions Survey Program.

The backstop trenches (Trenches W, X, and Y) were excavated in 1-foot lifts as depicted in Figure 5-2 of the Investigation Report. This was done to allow qualified personnel to safely clear the excavations of possible UXO. Trench excavations were approximately 40 feet by 16 feet and bottoms were completed to a width of approximately 4 feet. Following excavation, a representative composite sample was collected from the base of each lift of each trench for chemical analyses. In addition, a number of additional grab samples were collected in close proximity to ordnance items before they were removed or blown-in-place.

Chemical data confirmed that soil contamination associated with ordnance penetration was largely confined to near surface depths (top foot of soil) for most contaminants. Similarly, the majority (approximately 85 percent) of items were found in the first lift (upper 1 foot) of each of the three excavations. Approximately 15 percent of the items were located within 1 to 2 feet. The majority of items encountered were 37mm projectiles.

Impact Area Groundwater Study Program Final Former A Range Investigation Report April 25, 2012

Trench results in summary:

•	Trench W	0 to 1 foot bgs	Fifty-eight 37mm projectiles, one 3.5-inch rocket
		1 to 2 feet bgs	Twenty-one 37mm projectiles
		2 to 3 feet bgs	Two 37mm projectiles
		3 to 6 feet bgs	No munitions found
•	Trench X	0 to 1 foot bgs	Sixteen 37mm projectiles, two 75mm bases
		1 to 2 feet bgs	Nine 37mm projectiles
		2 to 6 feet bgs	No munitions found
•	Trench Y	0 to 1 foot bgs	Five 37mm projectiles, one PD fuze
		1 to 6 feet bgs	No munitions found

Many of these items were blown-in-place collectively due to their close proximities. Thirty-seven 37mm projectiles and the one PD fuze were presumed to be HE.

The location of the trenches was designed to provide the maximum amount of information on subsurface conditions along the berm. Results indicated that the higher density of subsurface items was located in the lowest (downhill) and most northern trench (Trench W) with the second highest density located in the middle trench (Trench X), and the lowest density located within the highest elevation trench (Trench Y). This may be due to the targets first being observed by the firing point personnel at the higher (southern end) and giving the firing personnel time to take aim as the target traveled downgradient along the railway to its northern (lowest) extent. Figure B-2 shows the locations of the trenches excavated as part of the penetration study and identifies the number of munitions-related items encountered during the excavation at each trench and lift.

2.5 Site Closeout Geophysical Survey

In 2010, additional geophysical surveys were conducted on Former A Range to verify that the 2009 soil removal action at the upper and lower primary backstop berms was successful and confirm that no areas of high munitions density existed outside the target area.

To accomplish these goals, an EM-61 survey was conducted over the four excavation areas in the backstop berms and detailed reconnaissance were conducted following predefined meandering paths. Based on the results of the meandering path survey, detailed reconnaissance was conducted over two irregularly shaped areas at the end of the berms. These areas were believed to be more likely to contain munitions since they were immediately downhill from the target berms. As the target ran down the track and a shooter was late to fire or led the target too much, the round would land just beyond the downhill end of the target berm.

Four separate geophysical surveys were conducted within the footprint of the excavations of the backstop berms. The locations of the excavated areas are shown on Figure B-2. The surveys were conducted using a Geonics model EM-61 meter. The EM signal map was interpreted and 100 anomalies were selected for excavation. Five 37mm projectiles were discovered among the 25 anomalies investigated at Berm A (see Table B-1). Only one 75mm shrapnel projectile was discovered among the 25 anomalies investigated in Berm B. No munitions items were discovered among the 25 anomalies investigated at Berm C. Only one 37mm projectile was

Impact Area Groundwater Study Program Final Former A Range Investigation Report April 25, 2012

discovered among the 25 anomalies investigated at Berm D. Based on these results, another 25 anomalies were investigated at Berm A and one additional 37mm projectile was removed. The seven 37mm projectiles were blown-in-place on 25 February 2011 and four were determined to be HE. The 75mm shrapnel round was sent to a safe holding area for later destruction in the controlled detonation chamber.

Most ground-based geophysical surveys focused on the target area of the Former A Range. To confirm that no areas of high munitions density existed outside the target area, detailed reconnaissance were conducted along several predefined meandering paths that totaled approximately one mile in length. A visual site inspection was performed to document the presence/absence of evidence associated with munitions (i.e., munitions debris, disturbed ground, etc.) along the path. A hand-held magnetometer was also used to survey for the presence of subsurface magnetic anomalies and the size and location of the anomaly was recorded. A total of 475 anomalies were identified all of which intrusively investigated. While the large majority of items were scrap metal, a total of 13 munitions items were discovered during the intrusive investigation including ten 37mm projectiles, one 75mm shrapnel projectile, one 2.36-inch rocket, and one 3.5-inch rocket motor.

Based on the location and type of munitions discovered during the initial survey, a further investigation was conducted at the northern and southern ends of the primary berms. Thus two irregularly shaped areas at the end of the berms were investigated and an additional 300-foot section of meandering path was surveyed (Figure B-2). The northern area was investigated in phases as the area of investigation was expanded until the extent of munitions items was defined. A total of 42 munitions items were removed in the northern area including thirty-eight 37mm projectiles, two 81mm mortars, one partial 90mm projectile, and one partial 75mm shrapnel round. Only four items were discovered in the southern area including two 37mm projectiles, one 75mm shrapnel round, and one 81mm mortar. No munitions items were discovered in the additional section of meandering path surveyed. Munitions discovered during the detailed reconnaissance were blown-in-place on 25 February 2011 and 27 of the 37mm projectiles and the 2.36-inch rocket were determined to be inert.

3.0 SOURCE REMOVAL ACTIVITIES

3.1 Robotics Technology Demonstration

In June 2008, the Air Force Research Laboratory (AFRL) conducted a technology demonstration at the Former A Range. The demonstration was conducted to evaluate methods to clear potential munitions from the range using remotely controlled equipment. AFRL demonstrated the use of a C325 excavator with an electromagnetic attachment.

Initial C325 excavator work was conducted at the upper backstop of the upper primary target area. Subsequently, additional demonstration work was performed on the upper backstop of the lower primary target area.

Over a two-day time frame, the C325 excavator cleared approximately 1/4 of an acre of the face of the upper berm. Based upon preliminary observations, the AFRL equipment appeared to do a reasonable job of removing items from the surface and near-surface. Munitions items recovered from the upper berm by the excavator included twelve HE 37mm projectiles and one HE 57 mm projectile.

A large number of small arms rounds were also recovered by the excavator. The best results appeared to be obtained when the claw portion of the magnetic attachment was first used to disturb the ground surface. In addition, one HE 81mm mortar was discovered during clearance of the area where the AFRL control bunker was installed.

A geophysical survey was conducted upon completion of the Robotics Technology Demonstration work at the upper backstop of the upper primary target area. Based on the results of the geophysical survey it appeared that a significant amount of surface/subsurface ferrous debris remained in the berm face.

3.2 Source Removal Action

In November 2009, soil from the face of both the upper and lower backstops of both the upper and lower primary target areas was excavated to a depth of approximately 2 feet bgs to remove potentially contaminated soil and any remaining UXO. Approximately 2,500 cubic yards of material was excavated and mechanically screened to one inch or less. UXO technicians inspected all oversized material (>1 inch) generated during mechanical screening.

No munitions items were discovered in the soils from Berms A and C. Five potentially live MK1 75mm shrapnel projectile bases with pusher plate were found in Berm B soils. Four potentially live 75mm shrapnel projectile bases with pusher plate, two practice 37mm projectiles, and fifteen MK 29 3.5-inch practice rockets were found in Berm D soils. As discussed in Section 2.5, an EM-61 survey was conducted on the face of each berm after the soil was excavated. Seven additional 37mm projectiles and one 75mm shrapnel projectile were discovered during intrusive investigation of EM-61 anomalies.

Various munitions-related items and debris were encountered during the clearance of the areas that were used for staging of the excavated material. Munitions-related items included: three HE 81mm mortars; three potentially live MK1 75mm shrapnel projectile bases with pusher plate; three HE and one inert 37mm projectiles; and fifty-two 3.5-inch practice rockets.

The original locations, for the munitions included within the consolidated shot, are shown on Figure B-2 and are summarized within Table B-1.

4.0 CONCEPTUAL SITE MODEL

The range conceptual site model is a summary of what is known about the natural conditions, range characteristics, munitions use and disposition, and contamination at a site. The site model integrates the results of available investigations and is used to identify potential contaminant sources, to assist in understanding contaminant fate and transport, and to support the evaluation of potential risk of harm to human health and the environment. The conceptual site model of soil contamination is presented in Section 6.0 of the Former A Range Investigation Report. The conceptual site model described here focuses on munitions and incorporates information from aerial photographs, range records, munitions characteristics and history, geophysical survey results, and field observations.

Former A Range was a direct-fire range. Munitions, primarily HE and inert 37mm/40mm projectiles and inert 3.5-inch rockets, were fired from a point on Wood Road at targets mounted on rail cars as they rolled downhill through a series of switchbacks. The conceptual site model for a direct fire range assumes that projectiles are fired directly at a visible target. The rail car target was visible only during the two lower target area traverses. The target would become visible after the second switchback and the trainee would then need time to acquire the target before firing. Historic aerial photographs show the greatest disturbance at the middle of the second traverse, through the third switchback, to the middle of the third traverse. This pattern suggests that the trainee would require approximately half the second traverse to acquire the target and fire. The target window seems to end in the middle of the third traverse, which may indicate that the target was no longer visible at this point.

The rail line in the target area was protected by two berms. Short rounds would have struck these berms. Target berms were located above the rail line and rounds that did not hit the moving target would have impacted the berms. A small percentage of munitions containing energetic material would fail to detonate. The ordnance penetration study indicated that approximately 85 percent of all munitions items in the berms were discovered within one foot of the ground surface. The majority (approximately 15 percent) of the remaining munitions items were discovered from 1 to 2 feet bgs. Given the low trajectory of the weapons system, any rounds landing outside the berms would likely be on or near the surface.

5.0 FINDINGS

Extensive geophysical investigations have been performed at the Former A Range as described in the previous sections. The scope of the investigations was based on archive search findings, aerial photo assessments, site reconnaissance, and geophysical data. Investigations and assessments focused on the areas presumed to be the most heavily impacted by past military activities, including the target area and the backstop berms.

The majority of HE items discovered on the range were 37mm and 40mm projectiles which contain very small amounts of explosives (black powder, tetryl, TNT, or MAX-2). Of the most frequently detected items, only the 37mm developmental projectiles with MAX-2 (aluminum, Comp A4, and graphite) contain RDX (1.4 ounces). Fifty-five of these types of projectiles were discovered. A few larger items were found during the course of the investigation including one 4.5-inch inch rocket (TNT), one 3.5-inch HEAT rocket (Comp B [TNT/RDX]), four 81mm mortars (TNT or Comp B), two 57mm projectiles (TNT or Comp B), one partial 90mm projectile (TNT), and several partial 75mm shrapnel projectiles (black powder).

The areas containing the highest density of munitions, the four primary berms, were excavated in 2009 and the post-excavation geophysical survey confirmed that munitions were successfully removed from these areas. The area between the berms was also cleared of munitions so it could be used as a staging area for equipment and materials. No munitions items were discovered during the meandering path surveys conducted outside the target area and it is unlikely there are significant residual munitions on the range. Generally, intrusive activities continued in depth, signal strength and areal extent from higher to lower density areas until only one or two items were found and removed. Thus, it is unlikely a significant number of munitions remain undetected at the site.

Only very low levels of TNT (maximum of 0.51 μ g/L) and it's degradation products 2A-DNT (maximum of 0.4 μ g/L) and 4A-DNT (maximum of 0.5 μ g/L) have been detected in monitoring well MW-249M3, which is located directly downgradient of the main target area. The explosives compounds RDX and 1,3,5-trinitrobenzene have each been detected only one time in this well at concentrations of 0.31 μ g/L and 0.33 μ g/L, respectively. Based on the lack of significant groundwater detections and the type of fillers and the size and number of HE munitions found on the range, it is unlikely that residual munitions represent a significant threat to groundwater.

6.0 REFERENCES

- Tetra Tech EMI. 2002a. Draft AIRMAG Technology Evaluation and Completion Investigation Report. Prepared for the National Guard Bureau, Arlington, VA, by the U.S. Army Corps of Engineers, Concord, MA, and Tetra Tech, Inc., Franklin, TN, November 21.
- Tetra Tech EMI. 2002b. Final Letter Report for Munitions Survey Program Phase 2 Former A Range. Prepared for the National Guard Bureau, Arlington, VA, by the U.S. Army Corps of Engineers, Concord, MA, and Tetra Tech, Inc., Franklin, TN, August 20.
- Tetra Tech EMI. 2009. Draft Final Airborne Magnetometer Technology Evaluation and Completion Investigation Report, April 10.
- USACE. 2001. Revised Ordnance and Explosives Archives Search Report for MMR. October 2001. USACE Rock Island District and Defense Ammunition Center, McAlester AAP, Oklahoma.

Table B-1 Former A Range Munitions Summary

Activity	Date	Item ID	No	Service Filler
1998 Visual Inspection/Archive Search	30-Jul-99	Projectile, 37MM MKII TP	7	Black Powder (0.8 ounces)
2000 Field recon	8-Jun-00	Projectile, 37MM HE M54	5	Tetryl (1.6 ounces)
2001 Field recon	16-Jul-01	Projectile, 37MM MKII TP	1	Black Powder (0.8 ounces)
2001 MSP Phase 2	29-Aug to 25-Sep-2001	Projectile, 40MM HE MK2	12	TNT or Tetryl (2.2 ounces)
2001 MSP Phase 2	29-Aug to 25-Sep-2001	Rocket, 4.5" HE M16	1	TNT (6.5LBS)
2001 MSP Phase 2	29-Aug to 25-Sep-2001	Projectile, 37MM HE M54/Unfuzed (Filler Exp.)	2	Tetryl (1.6)
2001 MSP Phase 2	29-Aug to 25-Sep-2001	Projectile, 57MM HE M306	1	Comp B/TNT (8.8 ounces)
2004 Target Area Configuration Study	22-Nov to 14-Dec-2004	Projectile, 75MM Shrapnel MK1 (Unfuzed Portion)	2	Black Powder (3 ounces)
2004 Target Area Configuration Study	22-Nov to 14-Dec-2004	Projectile, 37MM TP M63	1	TNT (1.3 ounces)
2004 Target Area Configuration Study	22-Nov to 14-Dec-2004	Projectile, 37MM HE-T SD M54	1	Tetryl (1.6 ounces)
2004 Target Area Configuration Study	22-Nov to 14-Dec-2004	Projectile, 75MM Shrapnel MK1 (Base Only)	3	Black Powder (3 ounces)
2004 Target Area Configuration Study	22-Nov to 14-Dec-2004	Rocket, 3.5" HEAT M28	1	Comp B (1.88 LBS)
2004 Target Area Ordnance Penetration Study	10-Jan to 19 Jan-2005	Projectile, 37MM HE-T SD M54	7	Tetryl (1.6 ounces)
2004 Target Area Ordnance Penetration Study	10-Jan to 19 Jan-2005	Fuze, Projectile, Point Detonating M9	1	Tetryl (2.292808 ounces)
2004 Target Area Ordnance Penetration Study	10-Jan to 19 Jan-2005	Projectile, 37MM Developmental	30	MAX-2 (4 ounces)
2006 BIP Excavation*	18-Aug-06	Projectile, 37MM Developmental	4	MAX-2 (4 ounces)
2006 BIP Excavation*	1-Nov-06	Projectile, 40MM HE M54	1	Tetryl (0.16 ounces)
2008 Robotic Technology Demonstration	22-Dec-08	Mortar, 81MM HE M374	1	Comp B (2.10 LBS)
2008 Robotic Technology Demonstration	22-Dec-08	Projectile, 37MM MKII HE	12	TNT (1 ounce)
2008 Robotic Technology Demonstration	22-Dec-08	Projectile, 57MM M306 HE	1	TNT or Comp B (8.8 ounces)
2009 Source Soil Removal Action	6-Nov to 10-Nov-2009	Mortar, 81MM HE M43	3	TNT (1.22LBS) or Comp B (1.29LBS)
2009 Source Soil Removal Action	6-Nov to 10-Nov-2009	Projectile, 75MM Shrapnel, MK1 (Portion)	12	Black Powder (3 ounces)
2009 Source Soil Removal Action	6-Nov to 10-Nov-2009	Projectile, 37MM Developmental	3	MAX-2 (4 ounces)
2010 Geophysical Survey - EM-61 Survey	8-Aug to 27-Sep-2010	Projectile, 37MM Developmental	4	MAX-2 (4 ounces)
2010 Geophysical Survey - EM-61 Survey	8-Aug to 27-Sep-2010	Projectile, 75MM Shrapnel, MK1 (Portion)	1	Black Powder (3 ounces)
2010 Detailed Reconnaissance - Initial Meandering Path	8-Aug to 16 -Sep-2010	Projectile, 37MM Developmental	4	MAX-2 (4 ounces)
2010 Detailed Reconnaissance - Initial Meandering Path	8-Aug to 16 -Sep-2010	Projectile, 37MM HE M54	1	Tetryl (1.6 ounces)
2010 Detailed Reconnaissance - Initial Meandering Path	8-Aug to 16 -Sep-2010	Projectile, 75MM Shrapnel, MK1 (Portion)	1	Black Powder (3 ounces)
2010 Detailed Reconnaissance - Follow-on Investigation	17-Sep to 20-Dec-2010	Projectile, 37MM Developmental	8	MAX-2 (4 ounces)
2010 Detailed Reconnaissance - Follow-on Investigation	17-Sep to 20-Dec-2010	Projectile, 37MM Developmental (Portion)	2	MAX-2 (4 ounces)
2010 Detailed Reconnaissance - Follow-on Investigation	17-Sep to 20-Dec-2010	Projectile, 37MM HE M54	8	Tetryl (1.6 ounces)
2010 Detailed Reconnaissance - Follow-on Investigation	17-Sep to 20-Dec-2010	Mortar, 81MM HE M43	3	TNT (1.22LBS) or Comp B (1.29LBS)
2010 Detailed Reconnaissance - Follow-on Investigation	17-Sep to 20-Dec-2010	Projectile, 75MM Shrapnel, MK1 (Portion)	2	Black Powder (3 ounces)
2010 Detailed Reconnaissance - Follow-on Investigation	17-Sep to 20-Dec-2010	Projectile, 90MMM71 (Portion)	1	TNT (2.0 LBS) (or Composition B)
	135 13 23 23 20 10	Total	147	(===) (==============================

Appendix C Information for MassDEP

Appendix C Information for MassDEP

As discussed in the main body of the report, none of the analytes detected at Former A Range were determined to be a threat to groundwater. This finding was arrived at using data from all investigations conducted at the range. The soil samples evaluated were collected from various depths, but no deeper than 2 feet below ground surface. However, 13 analytes (antimony, chromium, lead, nickel, 2-methylnaphthalene, acenaphthylene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene, naphthalene, and phenanthrene) were detected at maximum concentrations that exceeded their respective MCP Method 1 S1/GW-1 Standard. A summary of these exceedances (including the analyte name, the frequency of detection, the number of exceedances, and the maximum detected concentration) is provided in Table C.1.

The four metals detected above the S-1/GW-1 Standards are either naturally occurring or infrequently detected above standards with no apparent pattern of detections. PAH compounds are generally ubiquitous and could be present in MMR soil irrespective of the conduct of past or ongoing military activities. PAH compounds near the rail line could also be the results of creosote from the ties or grease used on the rail. Table C.2 presents a summary comparison of the Former A Range soil data relative to the MMR moraine background concentrations and the MassDEP published background levels for natural soil. The comparisons indicate that lead is present at the greatest number of locations at levels exceeding background. Chromium was reported at levels above background in the second highest number of samples. A chromeplated grinder was used to prepare the soil samples from the sampling event in January of 2006. The chromium results for all samples from this event were considerably higher than the prior and later samples. This grinding is believed to have introduced chromium into the samples prior to their analysis. No samples analyzed after the switch to a ceramic grinder reported chromium (total) concentrations that exceeded background. Table C.2 suggests that the nickel reported in the soil samples is very likely naturally occurring. The reported PAH concentrations were more frequently above the MMR background concentrations and MassDEP published background levels for natural soil, especially for benzo(a)anthracene, benzo(a)pyrene, and benzo(b)fluoranthene.

A follow-up analysis was performed on the soil sampling results that exceeded the MCP Method 1 S1/GW-1 Standards to estimate the potential exposure point concentrations in the surficial soils. For this purpose, a set of hypothetical exposure subarea boundaries were developed to include the locations with exceedances of the MCP Method 1 S1/GW-1 Standards for the 13 metals and PAHs. These hypothetical exposure subareas are shown in Figure C.1 and were developed to be approximately ¼ to ½ acre in size and include the locations with the MCP Method 1 S1/GW-1 Standard exceedances. Using the data from within these subarea boundaries, average concentrations were calculated for each of the analytes showing an exceedance. Non-detect results were taken at ½ the method detection limit for purposes of this calculation. Table C.3 presents these average concentrations by sample type (discrete, composite or multi-increment samples [MIS]) and compares them to their respective MCP

Impact Area Groundwater Study Program Final Former A Range Investigation Report April 25, 2012

Method 1 S1/GW-1 Standard. Combinations of analytes and exposure subareas that did not have an exceedance are blacked out in Table C.3. Data used to calculate the average concentrations is presented in Table C.4.

As can be seen, nearly all subarea specific averages were below their respective MCP Method 1 S1/GW-1 Standard. The only exceptions were chromium in MIS samples collected from subarea 4, which were discussed above (the January 2006 results) as being the result of chromium introduced to the sample during grinding; and lead discrete (or grab) samples collected from subarea 3 as part of the initial 2001 sampling effort. During the 2001 sampling event, seventeen 22-foot by 22-foot sampling grids were established across the target area. At each grid, sample depths were set at 0 to 3 inches, 3 to 6 inches and 6 to 12 inches. At two of the sample grids in the target area (132H and 132J) discrete soil samples were collected at each grid node for analysis. At the 12 other grids, 5-point composite samples were collected at each of the three depth intervals. In addition, a discrete sample was collected from the center node of each grid.

For subarea 3, there is only one discrete sample that exceeds 300 mg/Kg, SS132J (11,600 mg/Kg lead), which was collected in 2001; the other 16 discrete samples from this location were well below 300 mg/Kg. The average of the composite samples in this subarea was 22.65 mg/Kg.

Most recently, in 2006, a series of fifteen 30-foot by 30-foot, 30-point multi-increment sample grids were established across the target area with an additional ten in areas flanking the target area. Lead and all other analytes were below the MCP Method 1 Standards in all of the multi-increment sample locations.

Table C.1
Former A Range
Summary of Detected Soil Analytes with Exceedances of MCP Method 1 S-1/GW-1 Standards

Detected Analyte	Analytical Method	Detection Frequency	Number of MCP Method 1 S-1/GW-1 Exceedances	Location and Sample ID of Maximum Concentration (depth ft)	Maximum Detected Concentration (Qualifier) (mg/Kg)	MCP Method 1 S-1/GW-1 Standard ^a (mg/Kg)
METALS						
Antimony	C200.7, CL200.7, 6010B	60/283	2	SS132J (0-0.25)	66.6	20
Chromium, Total	C200.7, CL200.7, 6010B	291/291	21	SSFATA09 (0-0.5)	176	30
Lead	C200.7, CL200.7, 6010B	297/297	10	SS132J (0-0.25)	11600	300
Nickel	C200.7, CL200.7, 6010B	276/283	1	SS02221-A (0-0.25)	28.9	20
PAHs						
2-Methylnaphthalene	CSVOL, 8270, 8270C	13/307	2	SS132Z (0-0.25)	2.8	0.7
Acenaphthylene	CSVOL, 8270, 8270C	33/307	4	SS132Z (0-0.25)	3.5	1
Benzo(a)anthracene	CSVOL, 8270, 8270C	107/307	5	SS132O (0-0.25)	18	7
Benzo(a)pyrene	CSVOL, 8270, 8270C	105/307	11	SS132O (0-0.25)	15	2
Benzo(b)fluoranthene	CSVOL, 8270, 8270C	104/307	5	SS132O (0-0.25)	15	7
Dibenz(a,h)anthracene	CSVOL, 8270, 8270C	48/307	7	SS132O (0-0.25)	2.8	0.7
Indeno(1,2,3-c,d)pyrene	CSVOL, 8270, 8270C	80/307	1	SS132O (0-0.25)	7.9	7
Naphthalene	CSVOL, 8270, 8270C	16/307	1	SS132Z (0-0.25)	4.9	4
Phenanthrene	CSVOL, 8270, 8270C	95/307	5	SS132Z (0-0.25)	45	10

Notes:

^{&#}x27;[a] MCP Method 1 S-1/GW-1 Standards, May 2009 (http://www.mass.gov/dep/service/compliance/riskasmt.htm). MCP Numerical Standards Development Spreadsheets, May 2009 (http://www.mass.gov/dep/service/compliance/riskasmt.htm)

Table C.2
Former A Range
Comparison of Soil Sampling Results to Background Levels for Metals and PAHs with Exceedances of their MCP S-1/GW-1 Standards

Analyte Exceeding its MCP Method 1 S-1/GW-1 Standard	Number of Exceedances of the MCP Method 1 S-1/GW-1 Standard	Total Number of Analytical Results	Number of Results Exceeding the MMR Moraine Background Concentration	MMR Moraine Background Concentration (mg/Kg)	MassDEP Identified Background Concentration in Natural Soil (mg/Kg)	Number of Results Exceeding the Default MassDEP Background Concentration
METALS						
Antimony	2	283	11	2.3	1.0	35
Chromium, Total	21	291	26 *	15.5	30	21 *
Lead	10	297	192	19	100	72
Nickel	1	283	2	9.4	20	1
PAHs						
2-Methylnaphthalene	2	307	NA	NA	0.5	2
Acenaphthalene	4	307	NA	NA	0.5	2
Benzo(a)anthracene	5	307	28	0.46	2.0	12
Benzo(a)pyrene	11	307	25	0.46	2.0	11
Benzo(b)fluoranthene	5	307	32	0.46	2.0	14
Dibenz(a,h)anthracene	7	307	NA	NA	0.5	8
Indeno(1,2,3-c,d)pyrene	1	307	20	0.46	1.0	12
Naphthalene	1	307	NA	NA	0.5	2
Phenanthrene	5	307	36	0.46	3.0	13

Notes:

^{*} All of these samples were collected and analyzed in 2001 or 2006. The samples from the 2006 sampling event used a sample preparation process involving grinding in a metallic (chromium-containing) mill. Later samples employed a ceramic grinding mill. The soil grinding in the metal mill may have added chromium and potentially some other metals into these samples.

Table C.3 Former A Range

Comparison of the Average Exposure Sub-Area Soil Concentrations to the MCP Method 1 S-1/GW-1 Standards for Chemicals With Maximum Detected Concentrations Exceeding the Standard

Analyte	Sample Type	Average		ıb-Area Conc /Kg)	entration	MCP Method 1 S-1/GW-1 Standard (mg/Kg)
Sub-Area		METALS-1	METALS-2	METALS-3	METALS-4	
Surface Area of SubArea (ft²)		17,298	21,722	15,888	17,351	
ANTIMONY	Composite		1.14	0.43		20
	Discrete		3.93	3.29		20
	MIS	_	-	-		20
CHROMIUM, TOTAL	Composite				4.4	30
	Discrete MIS				8.8 163.5	30 30
LEAD	Composite	120	131	22.65	62.1	300
LLAD	Discrete	206	95	305	39	300
	MIS	-	-	-	170	300
NICKEL	Composite			1.94		20
	Discrete			3.01		20
	MIS			-		20
		Average		ıb-Area Conc /Kg)	entration	MCP Method 1 S-1/GW-1 Standard (mg/Kg)
Sub-Area		PAHS-1	PAHS-2	PAHS-3	PAHS-4	
Surface Area of SubArea (ft²)		16,275	16,210	8,869	11,151	
2-METHYLNAPHTHALENE	Composite	0.37			0.18	0.7
	Discrete	0.18			0.24	0.7
	MIS	0.20			-	0.7
ACENAPHTHYLENE	Composite	0.43	0.27		0.18	1.0
	Discrete	0.18	0.28		0.25	1.0
DENIZO(a) ANTUDA CENE	MIS	0.20 2.18	1.50		- 0.14	1.0 7.0
BENZO(a)ANTHRACENE	Composite Discrete	0.10	1.58 1.39		0.14 0.77	7.0
	MIS	0.10	1.59		-	7.0
BENZO(a)PYRENE	Composite	1.90	1.41	0.87	0.15	2.0
	Discrete	0.10	1.20	-	0.58	2.0
	MIS	0.20	-	0.18	-	2.0
BENZO(b)FLUORANTHENE	Composite	2.33	1.35		0.15	7.0
	Discrete	0.11	1.31		0.62	7.0
	MIS	0.20	-		-	7.0
DIBENZ(a,h)ANTHRACENE	Composite	0.41	0.21	0.23	0.18	0.7
	Discrete	0.18	0.32	-	0.22	0.7
INDENO(1,2,3-c,d)PYRENE	MIS Composite	0.20	0.73	0.08	-	0.7 7.0
INDENO(1,2,3-c,u)FTRENE	Discrete		0.73			7.0 7.0
	MIS		-			7.0
NAPHTHALENE	Composite	0.49				4.0
	Discrete	0.18				4.0
	MIS	0.20				4.0
PHENANTHRENE	Composite	4.64	2.23		0.15	10
	Discrete	0.11	1.76		1.60	10
	MIS	0.20	_			10

Notes:

Blacked out cells indicate subarea-analyte combinations for which there were no MCP Method 1 S-1/GW-1 Standard exceedances.

Table C.4-1
Former A Range
Calculation of Averages Concentrations for Metals Exhibiting Maximum Concentrations Above a Screening Criterion in the Metals 1 Exposure Area

										Cor	ncentration	
			lormal or								Used in	
Area	Location ID	Collection Date D	Field Begin Duplicate Depth (ft)	End Depth (ft)	Analytical Method	4	Analyte	Units	Detected Value		nputation of Averages	Sample Type
Target Area	SS132AN	12/6/2004 N	1 ()	0.5	CL200.7	ANTIMONY		MG/KG	1.2 J	,go F		i-point Composite
Target Area	SS132AN	12/6/2004 FI			CL200.7	ANTIMONY		MG/KG	1 J		1 5	-point Composite
Target Area Target Area	SS132AN SS132AO	12/6/2004 N 11/23/2004 N			CL200.7 CL200.7	ANTIMONY ANTIMONY		MG/KG MG/KG	2.6	J		i-point Composite i-point Composite
Target Area	SS132AO SS132AO	11/23/2004 N 11/23/2004 N			CL200.7 CL200.7	ANTIMONY		MG/KG	2.0 U			i-point Composite
Target Area	SS132M	3/27/2001 N		0.25	CL200.7	ANTIMONY		MG/KG	U	J	0.43 5	-point composite
Target Area	SS132M SS132M	3/27/2001 N			CL200.7	ANTIMONY		MG/KG	U			-point composite
Target Area Target Area	SS132M SS132M	3/27/2001 N 3/27/2001 FI			CL200.7 CL200.7	ANTIMONY ANTIMONY		MG/KG MG/KG	U			i-point composite i-point composite
Target Area	SS132L	3/27/2001 N		0.25	CL200.7	ANTIMONY		MG/KG	U	J		i-point composite
Target Area	SS132L	3/27/2001 N			CL200.7	ANTIMONY		MG/KG	U			-point composite
Target Area Target Area	SS132L SS132L	3/27/2001 N 3/27/2001 FI			CL200.7 CL200.7	ANTIMONY ANTIMONY		MG/KG MG/KG	U			i-point composite i-point composite
raiget Alea	33132L	3/21/2001 FL	D 0.) 1	CL200.7	ANTIWONT	AVERAG		ONY 5-POINT CO		0.676	-point composite
Target Area	SS132H	3/21/2001 N			CL200.7	ANTIMONY		MG/KG	2.1 J		2.1 [Discrete
Target Area Target Area	SS132H SS132H	3/21/2001 N 3/21/2001 N			CL200.7 CL200.7	ANTIMONY ANTIMONY		MG/KG MG/KG	3.6 J 0.9 J			Discrete Discrete
Target Area	SS132H SS132H	3/21/2001 N 3/21/2001 N			CL200.7 CL200.7	ANTIMONY		MG/KG	0.9 J			Discrete Discrete
Target Area	SS132H	3/21/2001 N		0.25	CL200.7	ANTIMONY		MG/KG	U	J		Discrete
Target Area	SS132H	3/21/2001 N			CL200.7	ANTIMONY		MG/KG	U			Discrete
Target Area Target Area	SS132H SS132H	3/21/2001 N 3/21/2001 N			CL200.7 CL200.7	ANTIMONY ANTIMONY		MG/KG MG/KG	U			Discrete Discrete
Target Area	SS132H SS132H	3/21/2001 N 3/21/2001 N			CL200.7 CL200.7	ANTIMONY		MG/KG	U			Discrete Discrete
Target Area	SS132H	3/21/2001 N	0.2	5 0.5	CL200.7	ANTIMONY		MG/KG	U	J	0.41	Discrete
Target Area	SS132H	3/21/2001 N			CL200.7	ANTIMONY		MG/KG	U			Discrete
Target Area Target Area	SS132H SS132H	3/21/2001 N 3/21/2001 N			CL200.7 CL200.7	ANTIMONY ANTIMONY		MG/KG MG/KG	U			Discrete Discrete
Target Area	SS132H	3/21/2001 N			CL200.7	ANTIMONY		MG/KG	Ü			Discrete
Target Area	SS132H	3/21/2001 N	0.	5 1	CL200.7	ANTIMONY		MG/KG	1.1 J		1.1 [Discrete
Target Area	SS132H	3/21/2001 N			CL200.7	ANTIMONY ANTIMONY		MG/KG	U			Discrete
Target Area Target Area	SS132H SS132M	3/21/2001 N 3/27/2001 N			CL200.7 CL200.7	ANTIMONY		MG/KG MG/KG	U			Discrete Discrete
Target Area	SS132M	3/27/2001 N			CL200.7	ANTIMONY		MG/KG	Ü			Discrete
Target Area	SS132M	3/27/2001 N	0.		CL200.7	ANTIMONY		MG/KG	U			Discrete
Target Area Target Area	SS132L SS132L	3/27/2001 N 3/27/2001 N			CL200.7 CL200.7	ANTIMONY ANTIMONY		MG/KG MG/KG	U			Discrete Discrete
Target Area	SS132L SS132L	3/27/2001 N 3/27/2001 N			CL200.7 CL200.7	ANTIMONY		MG/KG	U			Discrete Discrete
								AVERAGE	FOR ANTIMONY D		0.672	
Target Area	SS132AN	12/6/2004 N			CL200.7	CHROMIUM,		MG/KG	8.8			-point Composite
Target Area Target Area	SS132AN SS132AN	12/6/2004 FI 12/6/2004 N			CL200.7 CL200.7	CHROMIUM, CHROMIUM,		MG/KG MG/KG	5 3.4			i-point Composite i-point Composite
Target Area	SS132AN	11/23/2004 N			CL200.7 CL200.7	CHROMIUM,		MG/KG	2.8			i-point Composite
Target Area	SS132AO	11/23/2004 N	1.	5 2	CL200.7	CHROMIUM,	TOTAL	MG/KG	5		5 5	-point Composite
Target Area	SS132M SS132M	3/27/2001 N			CL200.7	CHROMIUM,		MG/KG MG/KG	4.7 4			-point composite
Target Area Target Area	SS132M SS132M	3/27/2001 N 3/27/2001 N			CL200.7 CL200.7	CHROMIUM, CHROMIUM,		MG/KG	2.8			i-point composite i-point composite
Target Area	SS132M	3/27/2001 FI	D 0.	5 1	CL200.7	CHROMIUM,	TOTAL	MG/KG	2.4			i-point composite
Target Area	SS132L	3/27/2001 N			CL200.7	CHROMIUM,		MG/KG	4			-point composite
Target Area Target Area	SS132L SS132L	3/27/2001 N 3/27/2001 N			CL200.7 CL200.7	CHROMIUM, CHROMIUM,		MG/KG MG/KG	4.1 3.3			i-point composite i-point composite
Target Area	SS132L SS132L	3/27/2001 N 3/27/2001 FI			CL200.7 CL200.7	CHROMIUM,		MG/KG	3.3 3.1			i-point composite
						AVE	RAGE FOR C	CHROMIUM, TO	OTAL 5-POINT CO	MPOSITE	4.108	
Target Area	SS132H SS132H	3/21/2001 N 3/21/2001 N			CL200.7 CL200.7	CHROMIUM, CHROMIUM,		MG/KG MG/KG	5.2 5.5			Discrete Discrete
Target Area Target Area	SS132H SS132H	3/21/2001 N 3/21/2001 N			CL200.7 CL200.7	CHROMIUM,		MG/KG	5.5 2.6			Discrete Discrete
Target Area	SS132H	3/21/2001 N		0.25	CL200.7	CHROMIUM,	TOTAL	MG/KG	8.9		8.9 🛭	Discrete
Target Area	SS132H	3/21/2001 N			CL200.7	CHROMIUM,		MG/KG	3.7			Discrete
Target Area Target Area	SS132H SS132H	3/21/2001 N 3/21/2001 N			CL200.7 CL200.7	CHROMIUM, CHROMIUM,		MG/KG MG/KG	13.7 1.6			Discrete Discrete
Target Area	SS132H	3/21/2001 N			CL200.7	CHROMIUM,		MG/KG	1.8			Discrete
Target Area	SS132H	3/21/2001 N	0.2		CL200.7	CHROMIUM,	TOTAL	MG/KG	4.9		4.9 🛭	Discrete
Target Area Target Area	SS132H SS132H	3/21/2001 N 3/21/2001 N			CL200.7 CL200.7	CHROMIUM, CHROMIUM,		MG/KG MG/KG	2.7			Discrete Discrete
Target Area	SS132H	3/21/2001 N 3/21/2001 N			CL200.7 CL200.7	CHROMIUM,		MG/KG	5			Discrete
Target Area	SS132H	3/21/2001 N	0.	5 1	CL200.7	CHROMIUM,	TOTAL	MG/KG	7.1		7.1 [Discrete
Target Area	SS132H	3/21/2001 N			CL200.7	CHROMIUM,		MG/KG	3.5			Discrete
Target Area Target Area	SS132H SS132H	3/21/2001 N 3/21/2001 N			CL200.7 CL200.7	CHROMIUM, CHROMIUM,		MG/KG MG/KG	4.4 3.1			Discrete Discrete
Target Area	SS132H	3/21/2001 N 3/21/2001 N			CL200.7 CL200.7	CHROMIUM,		MG/KG	3.7			Discrete
Target Area	SS132M	3/27/2001 N		0.25	CL200.7	CHROMIUM,	TOTAL	MG/KG	2.8		2.8 🛭	Discrete
Target Area	SS132M	3/27/2001 N			CL200.7	CHROMIUM,		MG/KG	3.3			Discrete
Target Area Target Area	SS132M SS132L	3/27/2001 N 3/27/2001 N			CL200.7 CL200.7	CHROMIUM, CHROMIUM,		MG/KG MG/KG	2.4 5.9			Discrete Discrete
Target Area	SS132L	3/27/2001 N 3/27/2001 N			CL200.7 CL200.7	CHROMIUM,		MG/KG	3.6			Discrete
Target Area	SS132L	3/27/2001 N			CL200.7	CHROMIUM,	TOTAL	MG/KG	2.4	NOODETT	2.4 🛭	Discrete
Target Area	SS132AN	12/6/2004 N		0.5	CL200.7	LEAD	AVER	AGE FOR CHE MG/KG	ROMIUM, TOTAL D 360 J	JISCRETE	4.426 360 5	i-point Composite
Target Area	SS132AN SS132AN	12/6/2004 N 12/6/2004 FI			CL200.7 CL200.7	LEAD		MG/KG	320 J			i-point Composite
Target Area	SS132AN	12/6/2004 N	1.	5 2	CL200.7	LEAD		MG/KG	21 J		21 5	-point Composite
Target Area	SS132AO	11/23/2004 N		0.5	CL200.7	LEAD		MG/KG	362		362 5	-point Composite
Target Area Target Area	SS132AO SS132M	11/23/2004 N 3/27/2001 N			CL200.7 CL200.7	LEAD LEAD		MG/KG MG/KG	154 78.7 J			i-point Composite i-point composite
Target Area Target Area	SS132M SS132M	3/27/2001 N 3/27/2001 N			CL200.7 CL200.7	LEAD		MG/KG	78.7 J 52.1 J			-point composite i-point composite
Target Area	SS132M	3/27/2001 N	0.	5 1	CL200.7	LEAD		MG/KG	27.9 J		27.9 5	-point composite
Target Area	SS132M	3/27/2001 FI			CL200.7	LEAD		MG/KG	17 J			-point composite
Target Area Target Area	SS132L SS132L	3/27/2001 N 3/27/2001 N			CL200.7 CL200.7	LEAD LEAD		MG/KG MG/KG	66.7 J 39.1 J			i-point composite i-point composite
ı aryet Area												
Target Area	SS132L	3/27/2001 N	0:) 1	CL200.7	LEAD		MG/KG	31.8.1		31.85	-point composite
Target Area Target Area	SS132L SS132L	3/27/2001 N 3/27/2001 FI			CL200.7 CL200.7	LEAD		MG/KG	31.8 J 29.9 J LEAD 5-POINT C O			i-point composite i-point composite

Table C.4-1
Former A Range
Calculation of Averages Concentrations for Metals Exhibiting Maximum Concentrations Above a Screening Criterion in the Metals 1 Exposure Area

											Concentration	
		Normal									Used in	
		Collection Field		End Depth					Detected		Computation of	
Area	Location ID	Date Duplica	ate Depth (ft)	(ft)	Method		Analyte	Units	Value	Flags	Averages	Sample Type
Target Area	SS132H	3/21/2001 N	0		L200.7	LEAD		MG/KG	554 J			iscrete
Target Area	SS132H	3/21/2001 N	0		L200.7	LEAD		MG/KG	1100 J		1100 D	
Target Area	SS132H	3/21/2001 N	0		L200.7	LEAD		MG/KG	167 J			iscrete
Target Area	SS132H	3/21/2001 N	0		L200.7	LEAD		MG/KG	660 J			iscrete
Target Area	SS132H	3/21/2001 N	0		L200.7	LEAD		MG/KG	149 J			iscrete
Target Area	SS132H	3/21/2001 N	0.25		L200.7	LEAD		MG/KG	290 J			iscrete
Target Area	SS132H	3/21/2001 N	0.25		L200.7	LEAD		MG/KG	4.6 J			iscrete
Target Area	SS132H	3/21/2001 N	0.25		L200.7	LEAD		MG/KG	3.6 J			iscrete
Target Area	SS132H	3/21/2001 N	0.25		L200.7	LEAD		MG/KG	482 J			iscrete
Target Area Target Area	SS132H SS132H	3/21/2001 N 3/21/2001 N	0.25 0.25		L200.7 L200.7	LEAD LEAD		MG/KG MG/KG	37.9 J 14.4 J		37.9 D 14.4 D	
Target Area	SS132H	3/21/2001 N 3/21/2001 N	0.25		L200.7 L200.7	LEAD		MG/KG	42.2		42.2 D	
Target Area	SS132H	3/21/2001 N 3/21/2001 N	0.5		L200.7 L200.7	LEAD		MG/KG	7.8			iscrete
Target Area	SS132H	3/21/2001 N 3/21/2001 N	0.5		L200.7 L200.7	LEAD		MG/KG	11.7		1.6 D 11.7 D	
Target Area	SS132H	3/21/2001 N 3/21/2001 N	0.5		L200.7	LEAD		MG/KG	620		620 D	
Target Area	SS132H	3/21/2001 N 3/21/2001 N	0.5		L200.7 L200.7	LEAD		MG/KG	7.4			iscrete
Target Area	SS132H	3/21/2001 N	0.5		L200.7	LEAD		MG/KG	69.9		69.9 D	
Target Area	SS132M	3/27/2001 N	0.5		L200.7	LEAD		MG/KG	30.9 J		30.9 D	
Target Area	SS132M	3/27/2001 N	0.25		L200.7	LEAD		MG/KG	52.1 J		52.1 D	
Target Area	SS132M	3/27/2001 N	0.5		L200.7	LEAD		MG/KG	38.7 J		38.7 D	
Target Area	SS132L	3/27/2001 N	0.0		L200.7	LEAD		MG/KG	216 J		216 D	
Target Area	SS132L	3/27/2001 N	0.25		L200.7	LEAD		MG/KG	105 J			iscrete
Target Area	SS132L	3/27/2001 N	0.5		L200.7	LEAD		MG/KG	72 J			iscrete
									E FOR LEAD	ISCRETE		
Target Area	SS132AN	12/6/2004 N	0	0.5 0	L200.7	NICKEL		MG/KG	4.7		4.7 5-	point Composite
Target Area	SS132AN	12/6/2004 FD	0	0.5 0	L200.7	NICKEL		MG/KG	2.3		2.3 5-	point Composite
Target Area	SS132AN	12/6/2004 N	1.5	2 0	L200.7	NICKEL		MG/KG	1.4		1.4 5-	point Composite
Target Area	SS132AO	11/23/2004 N	0	0.5 0	L200.7	NICKEL		MG/KG	1.3		1.3 5-	point Composite
Target Area	SS132AO	11/23/2004 N	1.5		L200.7	NICKEL		MG/KG	1.5		1.5 5-	point Composite
Target Area	SS132M	3/27/2001 N	0		L200.7	NICKEL		MG/KG	1.8		1.8 5-	point composite
Target Area	SS132M	3/27/2001 N	0.25		L200.7	NICKEL		MG/KG	1.7			point composite
Target Area	SS132M	3/27/2001 N	0.5		L200.7	NICKEL		MG/KG	1.3			point composite
Target Area	SS132M	3/27/2001 FD	0.5		L200.7	NICKEL		MG/KG	1.1			point composite
Target Area	SS132L	3/27/2001 N	0		L200.7	NICKEL		MG/KG	2			point composite
Target Area	SS132L	3/27/2001 N	0.25		L200.7	NICKEL		MG/KG	1.7			point composite
Target Area	SS132L	3/27/2001 N	0.5		L200.7	NICKEL		MG/KG	1.5			point composite
Target Area	SS132L	3/27/2001 FD	0.5	1 (L200.7	NICKEL		MG/KG	1.6			point composite
	0040011	0/04/0004 11				NIOVE	AVERA	AGE FOR NICKE		MPOSITE	1.838	
Target Area	SS132H	3/21/2001 N	0		L200.7	NICKEL		MG/KG	2.3 2.8			iscrete
Target Area Target Area	SS132H SS132H	3/21/2001 N 3/21/2001 N	0		L200.7 L200.7	NICKEL NICKEL		MG/KG MG/KG	2.8 0.75 J		2.8 D 0.75 D	iscrete
	SS132H SS132H	3/21/2001 N 3/21/2001 N	0		L200.7 L200.7	NICKEL		MG/KG MG/KG	0.75 J 9.2			iscrete iscrete
Target Area Target Area	SS132H SS132H	3/21/2001 N 3/21/2001 N	0		L200.7 L200.7	NICKEL		MG/KG MG/KG	9.2 1.3 J			iscrete iscrete
Target Area	SS132H	3/21/2001 N 3/21/2001 N	0.25		L200.7 L200.7	NICKEL		MG/KG	7.8			iscrete
Target Area	SS132H	3/21/2001 N 3/21/2001 N	0.25		L200.7	NICKEL		MG/KG	7.6 U	.1	0.11 D	
Target Area	SS132H	3/21/2001 N	0.25		L200.7	NICKEL		MG/KG	0.25 J	•	0.77 D	
Target Area	SS132H	3/21/2001 N	0.25		L200.7	NICKEL		MG/KG	1.3 J			iscrete
Target Area	SS132H	3/21/2001 N	0.25		L200.7	NICKEL		MG/KG	0.88 J		0.88 D	
Target Area	SS132H	3/21/2001 N	0.25		L200.7	NICKEL		MG/KG	1.9			iscrete
Target Area	SS132H	3/21/2001 N	0.5		L200.7	NICKEL		MG/KG	2.1 J			iscrete
Target Area	SS132H	3/21/2001 N	0.5		L200.7	NICKEL		MG/KG	2.5 J			iscrete
Target Area	SS132H	3/21/2001 N	0.5		L200.7	NICKEL		MG/KG	U	J	0.12 D	
Target Area	SS132H	3/21/2001 N	0.5		L200.7	NICKEL		MG/KG	0.62 J		0.62 D	
Target Area	SS132H	3/21/2001 N	0.5		L200.7	NICKEL		MG/KG	0.33 J		0.33 D	
Target Area	SS132H	3/21/2001 N	0.5		L200.7	NICKEL		MG/KG	0.52 J		0.52 D	
Target Area	SS132M	3/27/2001 N	0		L200.7	NICKEL		MG/KG	1.4		1.4 D	iscrete
	SS132M	3/27/2001 N	0.25		L200.7	NICKEL		MG/KG	2.2			iscrete
i arget Area	SS132M	3/27/2001 N	0.5		L200.7	NICKEL		MG/KG	1.1		1.1 D	iscrete
Target Area Target Area	33 1 32 IVI											
	SS132L	3/27/2001 N	0	0.25 0	L200.7	NICKEL		MG/KG	3.8		3.8 D	iscrete
Target Area		3/27/2001 N 3/27/2001 N	0 0.25		L200.7 L200.7	NICKEL NICKEL		MG/KG MG/KG	3.8 1.8			iscrete iscrete
Target Area Target Area	SS132L			0.5 0				MG/KG MG/KG			1.8 D	

Note: Values shown in italics represent one-half the reported limit for that sample.

Table C.4-2
Former A Range
Calculation of Averages Concentrations for Metals Exhibiting Maximum Concentrations Above a Screening Criterion in the Metals 2 Exposure Area

											Concentration	
		Collection	Normal or Field	Begin	End Depth	Analytical			Detected		Used in Computation	
Area	Location ID	Date	Duplicate	Depth (ft)	(ft)	Method	Analyte	Units	Value	Flags	of Averages	Sample Type
Target Area Target Area	SS132AQ SS132AQ	11/23/2004 11/23/2004		0 1.5		CL200.7 CL200.7	ANTIMONY ANTIMONY	MG/KG MG/KG	1 . 2.1	J		5-point Composite 5-point Composite
Target Area	SS132AR	11/23/2004		0		CL200.7 CL200.7	ANTIMONY	MG/KG	l			5-point Composite
Target Area	SS132AR	11/23/2004		0		CL200.7	ANTIMONY	MG/KG	Į.			5-point Composite
Target Area Target Area	SS132AR SS132K	11/23/2004 3/27/2001		1.5		CL200.7 CL200.7	ANTIMONY ANTIMONY	MG/KG MG/KG	l I	JJ		5-point Composite 5-point composite
Target Area	SS132K	3/27/2001		0.25		CL200.7 CL200.7	ANTIMONY	MG/KG	4.7			5-point composite
Target Area	SS132K	3/27/2001		0.5		CL200.7	ANTIMONY	MG/KG		JJ		5-point composite
Target Area Target Area	SS132O SS132O	3/30/2001 3/30/2001		0 0.25		CL200.7 CL200.7	ANTIMONY ANTIMONY	MG/KG MG/KG	1.5 1.4 、			5-point composite 5-point composite
Target Area	SS1320	3/30/2001		0.25		CL200.7 CL200.7	ANTIMONY	MG/KG	1.4 .			5-point composite
Target Area	SS132O	3/30/2001		0.5		CL200.7	ANTIMONY	MG/KG	<u> </u>		0.396	5-point composite
Target Area	AL060200-01 372	6/9/2000	N	0	0.25	CL200.7	ANTIMONY	ERAGE FOR ANTIMO MG/KG	ONY 5-POINT CO			Discrete
Target Area	AM071601-03	7/23/2001	N	0	0.25	CL200.7	ANTIMONY	MG/KG		JJ	0.360	Discrete
Target Area Target Area	SS132K SS132K	3/27/2001 3/27/2001		0 0.25		CL200.7 CL200.7	ANTIMONY ANTIMONY	MG/KG MG/KG		JJ JJ		Discrete Discrete
Target Area	SS132K	3/27/2001		0.25		CL200.7 CL200.7	ANTIMONY	MG/KG		JJ		Discrete
Target Area	SS132O	3/30/2001	N	0	0.25	CL200.7	ANTIMONY	MG/KG	30.9		30.9	Discrete
Target Area	SS132O SS132O	3/30/2001		0.25		CL200.7 CL200.7	ANTIMONY ANTIMONY	MG/KG MG/KG	1.3 l			Discrete Discrete
Target Area Target Area	SS132V	3/30/2001 4/30/2001		0.5 0		CL200.7 CL200.7	ANTIMONY	MG/KG		JJ		Discrete
									OR ANTIMONY	DISCRETE		
Target Area Target Area	SS132AQ SS132AQ	11/23/2004 11/23/2004		0 1.5		CL200.7 CL200.7	CHROMIUM, TOTAL CHROMIUM, TOTAL	MG/KG MG/KG	4.1 5.4			5-point Composite 5-point Composite
Target Area	SS132AR	11/23/2004	N	0	0.5	CL200.7	CHROMIUM, TOTAL	MG/KG	7.9		7.9	5-point Composite
Target Area	SS132AR	11/23/2004		0		CL200.7	CHROMIUM, TOTAL	MG/KG	7			5-point Composite
Target Area Target Area	SS132AR SS132K	11/23/2004 3/27/2001		1.5 0		CL200.7 CL200.7	CHROMIUM, TOTAL CHROMIUM, TOTAL	MG/KG MG/KG	3 3.8			5-point Composite 5-point composite
Target Area	SS132K	3/27/2001		0.25		CL200.7	CHROMIUM, TOTAL	MG/KG	3.1			5-point composite
Target Area	SS132K	3/27/2001		0.5		CL200.7	CHROMIUM, TOTAL	MG/KG	2.8			5-point composite
Target Area Target Area	SS132O SS132O	3/30/2001 3/30/2001		0 0.25		CL200.7 CL200.7	CHROMIUM, TOTAL CHROMIUM, TOTAL	MG/KG MG/KG	7.9 3.3			5-point composite 5-point composite
Target Area	SS132O	3/30/2001		0.5		CL200.7	CHROMIUM, TOTAL	MG/KG	19.7			5-point composite
Target Area	SS132O	3/30/2001	FD	0.5	1	CL200.7	CHROMIUM, TOTAL	MG/KG	2.1	MDOCITE	2.1 5.842	5-point composite
Target Area	AL060200-01_372	6/9/2000	N	0	0.25	CL200.7	CHROMIUM, TOTAL	MG/KG	2.1	DIVIPUSITE		Discrete
Target Area	AM071601-03	7/23/2001		0		CL200.7	CHROMIUM, TOTAL	MG/KG	6.6	J		Discrete
Target Area Target Area	SS132K SS132K	3/27/2001 3/27/2001		0 0.25		CL200.7 CL200.7	CHROMIUM, TOTAL CHROMIUM, TOTAL	MG/KG MG/KG	4 5.7			Discrete Discrete
Target Area	SS132K	3/27/2001		0.25		CL200.7 CL200.7	CHROMIUM, TOTAL	MG/KG	3.4			Discrete
Target Area	SS132O	3/30/2001		0		CL200.7	CHROMIUM, TOTAL	MG/KG	6.5			Discrete
Target Area Target Area	SS132O SS132O	3/30/2001 3/30/2001		0.25 0.5		CL200.7 CL200.7	CHROMIUM, TOTAL CHROMIUM, TOTAL	MG/KG MG/KG	2.3 1.8			Discrete Discrete
Target Area	SS132V	4/30/2001		0.5		CL200.7 CL200.7	CHROMIUM, TOTAL	MG/KG MG/KG	12.6	J		Discrete
Target Area	SS132AQ	11/23/2004	N	0	0.5	CL200.7	LEAD A'	VERAGE FOR CHRO MG/KG	MIUM, TOTAL 69.4	DISCRETE		5-point Composite
Target Area	SS132AQ	11/23/2004		1.5		CL200.7	LEAD	MG/KG	247			5-point Composite
Target Area	SS132AR	11/23/2004		0		CL200.7	LEAD	MG/KG	44.4			5-point Composite
Target Area Target Area	SS132AR SS132AR	11/23/2004 11/23/2004		0 1.5		CL200.7 CL200.7	LEAD LEAD	MG/KG MG/KG	45.4 s 6.2 s			5-point Composite 5-point Composite
Target Area	SS132K	3/27/2001		0		CL200.7	LEAD	MG/KG	61.1			5-point composite
Target Area	SS132K	3/27/2001		0.25		CL200.7	LEAD	MG/KG	388			5-point composite
Target Area Target Area	SS132K SS132O	3/27/2001 3/30/2001		0.5		CL200.7 CL200.7	LEAD LEAD	MG/KG MG/KG	35 c 271 c			5-point composite 5-point composite
Target Area	SS1320	3/30/2001		0.25		CL200.7 CL200.7	LEAD	MG/KG	143			5-point composite
Target Area	SS132O	3/30/2001		0.5		CL200.7	LEAD	MG/KG	152			5-point composite
Target Area	SS132O	3/30/2001	FD	0.5	1	CL200.7	LEAD	MG/KG AVERAGE FOR LE	AD 5-POINT CO			5-point composite
Target Area	AL060200-01_372	6/9/2000		0		CL200.7	LEAD	MG/KG	88.8		88.8	Discrete
Target Area Target Area	AM071601-03 SS132K	7/23/2001 3/27/2001		0		CL200.7 CL200.7	LEAD LEAD	MG/KG MG/KG	36 145 .	ı		Discrete Discrete
Target Area	SS132K SS132K	3/27/2001		0.25		CL200.7 CL200.7	LEAD	MG/KG MG/KG	134 3			Discrete
Target Area	SS132K	3/27/2001		0.5		CL200.7	LEAD	MG/KG	41.6			Discrete
Target Area Target Area	SS132O SS132O	3/30/2001 3/30/2001		0 0.25		CL200.7 CL200.7	LEAD LEAD	MG/KG MG/KG	201 . 122 .			Discrete Discrete
Target Area	SS132O	3/30/2001		0.25		CL200.7 CL200.7	LEAD	MG/KG	59.4			Discrete
Target Area	SS132V	4/30/2001		0		CL200.7	LEAD	MG/KG	27.1 C	J	27.1	Discrete
Target Area	SS132AQ	11/23/2004	N	0	0.5	CL200.7	NICKEL	MG/KG	1.7	PIOCKETE		5-point Composite
Target Area	SS132AQ	11/23/2004	N	1.5	2	CL200.7	NICKEL	MG/KG	2.3		2.3	5-point Composite
Target Area Target Area	SS132AR SS132AR	11/23/2004 11/23/2004		0		CL200.7 CL200.7	NICKEL NICKEL	MG/KG MG/KG	3.7			5-point Composite 5-point Composite
Target Area	SS132AR SS132AR	11/23/2004		1.5		CL200.7 CL200.7	NICKEL	MG/KG MG/KG	1.7			5-point Composite
Target Area	SS132K	3/27/2001	N	0	0.25	CL200.7	NICKEL	MG/KG	1.6		1.6	5-point composite
Target Area Target Area	SS132K SS132K	3/27/2001 3/27/2001		0.25 0.5		CL200.7 CL200.7	NICKEL NICKEL	MG/KG MG/KG	1.4 1.5			5-point composite 5-point composite
Target Area	SS132N SS132O	3/30/2001		0.5		CL200.7 CL200.7	NICKEL	MG/KG	6.3			5-point composite
Target Area	SS132O	3/30/2001	N	0.25	0.5	CL200.7	NICKEL	MG/KG	1.8	J	1.8	5-point composite
Target Area Target Area	SS132O SS132O	3/30/2001 3/30/2001		0.5 0.5		CL200.7 CL200.7	NICKEL NICKEL	MG/KG MG/KG	8.5 0.78 、	J		5-point composite 5-point composite
								AVERAGE FOR NICI	KEL 5-POINT CO		2.857	
Target Area Target Area	AL060200-01_372 AM071601-03	6/9/2000 7/23/2001		0		CL200.7 CL200.7	NICKEL NICKEL	MG/KG MG/KG	2.6 6 .			Discrete Discrete
Target Area	SS132K	3/27/2001		0		CL200.7 CL200.7	NICKEL	MG/KG	1.8			Discrete
Target Area	SS132K	3/27/2001	N	0.25	0.5	CL200.7	NICKEL	MG/KG	2		2	Discrete
Target Area Target Area	SS132K SS132O	3/27/2001 3/30/2001		0.5 0		CL200.7 CL200.7	NICKEL NICKEL	MG/KG MG/KG	1.7 1.5 .	ı		Discrete Discrete
Target Area	SS1320 SS1320	3/30/2001		0.25		CL200.7 CL200.7	NICKEL	MG/KG MG/KG	0.86			Discrete
Target Area	SS132O	3/30/2001	N	0.5	1	CL200.7	NICKEL	MG/KG	0.54	J	0.54	Discrete
Target Area	SS132V	4/30/2001	N	0	0.5	CL200.7	NICKEL	MG/KG AVERAG	8.5 CE FOR NICKEL			Discrete

Note: Values shown in italics represent one-half the reported limit for that sample.

Table C.4-3
Former A Range
Calculation of Averages Concentrations for Metals Exhibiting Maximum Concentrations Above a Screening Criterion in the Metals 3 Exposure Area

												Concentration	
			Normal or									Used in	
Area	Location ID	Collection Date	Field Duplicate	Begin Depth (ft)	End Depth (ft)	Analytical Method		Analyte	Units	Detected Value	Flags	Computation of Averages	Sample Type
Target Area	SS011905-01	1/21/2005		0 Deptil (II)		CL200.7	ANTIMONY	Analyte	MG/KG		J		5-point Composite
Target Area	SS033105-01	4/1/2005		0	0.25	CL200.7	ANTIMONY		MG/KG	l	J		5-point Composite
Target Area	SS132W	4/7/2005		0		CL200.7	ANTIMONY		MG/KG	Į.			5-point Composite
Target Area	SS132AS SS132AS	11/23/2004		0 1.5		CL200.7 CL200.7	ANTIMONY ANTIMONY		MG/KG MG/KG	l l			5-point Composite
Target Area Target Area	SS132W SS132W	12/13/2004		1.5		CL200.7 CL200.7	ANTIMONY		MG/KG	l			5-point Composite 5-point Composite
Target Area	SS132W	12/13/2004		0		CL200.7	ANTIMONY		MG/KG	ì			5-point Composite
Target Area	SS132W	1/18/2005	N	0	0.25	CL200.7	ANTIMONY		MG/KG	l	J		5-point Composite
Target Area	SS132W	3/31/2005		0		CL200.7	ANTIMONY		MG/KG	l			5-point Composite
Target Area	SS132W SS132W	4/1/2005 4/7/2005		0		CL200.7	ANTIMONY		MG/KG	l l			5-point Composite
Target Area Target Area	SS132W SS132W	4/7/2005		0		CL200.7 CL200.7	ANTIMONY ANTIMONY		MG/KG MG/KG	l			5-point Composite 5-point Composite
Target Area	SS132W	4/7/2005		0		CL200.7	ANTIMONY		MG/KG	ì			5-point Composite
Target Area	SS132W	1/18/2005	N	0	0.25	CL200.7	ANTIMONY		MG/KG	l			5-point Composite
Target Area	SS132W	3/31/2005		0		CL200.7	ANTIMONY		MG/KG	Į.			5-point Composite
Target Area Target Area	SS132W SS132P	4/1/2005 3/20/2001		0		CL200.7 CL200.7	ANTIMONY ANTIMONY		MG/KG MG/KG		JJ J		5-point Composite 5-point composite
	SS132P	3/20/2001		0.25		CL200.7 CL200.7	ANTIMONY		MG/KG		JJ		5-point composite
	SS132P	3/20/2001		0.5		CL200.7	ANTIMONY		MG/KG		JJ		5-point composite
Target Area	SS132P	3/20/2001	N	0.5	1	CL200.7	ANTIMONY		MG/KG		JJ		5-point composite
Tarant Arres	AL 000000 04 074	4/00/0000	NI .	_	0.10	0000 7	ANITIMANE	AVERA	GE FOR ANTIMOI				Diamete
Target Area Target Area	AL060200-01_371 AL060200-01_371	4/23/2003 4/23/2003		0		C200.7 C200.7	ANTIMONY ANTIMONY		MG/KG MG/KG		JJ JJ		Discrete Discrete
Target Area	AL060200-01_371 AL060200-01_371	4/23/2003		0		C200.7 C200.7	ANTIMONY		MG/KG		JJ		Discrete
Target Area	AL060200-01_371	4/23/2003		0		C200.7	ANTIMONY		MG/KG		JJ		Discrete
Target Area	AL060200-01_371	4/23/2003		0		C200.7	ANTIMONY		MG/KG		JJ		Discrete
Target Area	AL060200-01_371	4/23/2003		0		C200.7	ANTIMONY		MG/KG		JJ		Discrete
Target Area Target Area	AL060200-01_371 AL060200-01_371	4/23/2003 4/23/2003		0		C200.7 C200.7	ANTIMONY		MG/KG MG/KG	2.4	JJ I		Discrete Discrete
Target Area	SS040105-01	4/23/2003		0		CL200.7 CL200.7	ANTIMONY		MG/KG	2.4 .			Discrete
Target Area	SS040105-01	4/7/2005		0		CL200.7	ANTIMONY		MG/KG	i			Discrete
Target Area	SS37MM_HEAVERY	8/5/1999		0		CL200.7	ANTIMONY		MG/KG	ι			Discrete
Target Area	SS02221-A	9/7/2001		0		CL200.7	ANTIMONY		MG/KG	l l			Discrete
Target Area Target Area	SS02221-A SS02222-A	9/7/2001 9/7/2001		0		CL200.7 CL200.7	ANTIMONY ANTIMONY		MG/KG MG/KG	1.59			Discrete Discrete
Target Area	SS02223-A	9/7/2001		0		CL200.7	ANTIMONY		MG/KG	1.00 (Discrete
Target Area	SS02224-A	9/7/2001	N	0		CL200.7	ANTIMONY		MG/KG	l			Discrete
Target Area	SS02225-A	9/7/2001		0		CL200.7	ANTIMONY		MG/KG		-		Discrete
Target Area	SS02226-A SS02227-A	9/7/2001 9/7/2001		0		CL200.7 CL200.7	ANTIMONY ANTIMONY		MG/KG MG/KG	1.09 J			Discrete Discrete
Target Area Target Area	SS02227-A SS02228-A	9/7/2001		0		CL200.7 CL200.7	ANTIMONY		MG/KG	i			Discrete
Target Area	SS02231-A	9/7/2001		0		CL200.7	ANTIMONY		MG/KG		Ĵ		Discrete
Target Area	SS132P	3/20/2001	N	0		CL200.7	ANTIMONY		MG/KG		JJ		Discrete
Target Area	SS132P	3/20/2001		0.25		CL200.7	ANTIMONY		MG/KG		JJ		Discrete
Target Area Target Area	SS132P SS132J	3/20/2001 3/27/2001		0.5 0		CL200.7 CL200.7	ANTIMONY ANTIMONY		MG/KG MG/KG		JJ JJ		Discrete Discrete
Target Area	SS132J	3/27/2001		0		CL200.7 CL200.7	ANTIMONY		MG/KG		J		Discrete
Target Area	SS132J	3/27/2001		0		CL200.7	ANTIMONY		MG/KG		j		Discrete
Target Area	SS132J	3/27/2001		0		CL200.7	ANTIMONY		MG/KG		JJ		Discrete
Target Area	SS132J	3/27/2001		0		CL200.7	ANTIMONY		MG/KG	66.6			Discrete
Target Area Target Area	SS132J SS132J	3/27/2001 3/27/2001		0.25 0.25		CL200.7 CL200.7	ANTIMONY ANTIMONY		MG/KG MG/KG		JJ		Discrete Discrete
Target Area	SS132J	3/27/2001		0.25		CL200.7	ANTIMONY		MG/KG		J		Discrete
Target Area	SS132J	3/27/2001	N	0.25	0.5	CL200.7	ANTIMONY		MG/KG		JJ	0.425	Discrete
Target Area	SS132J	3/27/2001		0.25		CL200.7	ANTIMONY		MG/KG		JJ		Discrete
Target Area Target Area	SS132J SS132J	3/27/2001 3/27/2001		0.25 0.5		CL200.7 CL200.7	ANTIMONY ANTIMONY		MG/KG MG/KG		JJ J		Discrete Discrete
Target Area	SS132J SS132J	3/27/2001		0.5		CL200.7 CL200.7	ANTIMONY		MG/KG		J J		Discrete
Target Area	SS132J	3/27/2001		0.5		CL200.7	ANTIMONY		MG/KG	l	j		Discrete
Target Area	SS132J	3/27/2001		0.5		CL200.7	ANTIMONY		MG/KG		JJ		Discrete
Target Area	SS132J SS132J	3/27/2001 3/27/2001		0.5 0.5		CL200.7	ANTIMONY ANTIMONY		MG/KG MG/KG	l l	J		Discrete Discrete
Target Area	JJ 132J	3/2//2001	טו	0.5	1	CL200.7	ANTIMONY		AVERAGE FO				DISCIPLE
Target Area	SS011905-01	1/21/2005	N	0	0.25	CL200.7	CHROMIUM,	TOTAL	MG/KG	5.3			5-point Composite
Target Area	SS033105-01	4/1/2005	N	0	0.25	CL200.7	CHROMIUM,	TOTAL	MG/KG	3.8		3.8	5-point Composite
Target Area	SS132W	4/7/2005		0		CL200.7	CHROMIUM,		MG/KG	3.9			5-point Composite
Target Area Target Area	SS132AS SS132AS	11/23/2004 11/23/2004		0 1.5		CL200.7 CL200.7	CHROMIUM, CHROMIUM,		MG/KG MG/KG	4.5 5.5			5-point Composite 5-point Composite
Target Area	SS132AS SS132W	12/13/2004		1.5		CL200.7 CL200.7	CHROMIUM,		MG/KG MG/KG	5.5			5-point Composite 5-point Composite
Target Area	SS132W	12/13/2004		0		CL200.7	CHROMIUM,		MG/KG	5.2			5-point Composite
Target Area	SS132W	1/18/2005	N	0	0.25	CL200.7	CHROMIUM,	TOTAL	MG/KG	6.7			5-point Composite
Target Area	SS132W	3/31/2005		0		CL200.7	CHROMIUM,		MG/KG	2.9			5-point Composite
Target Area	SS132W SS132W	4/1/2005 4/7/2005		0		CL200.7 CL200.7	CHROMIUM, CHROMIUM,		MG/KG MG/KG	2.8 2.4			5-point Composite 5-point Composite
Target Area Target Area	SS132W SS132W	4/7/2005		0		CL200.7 CL200.7	CHROMIUM,		MG/KG	2.4			5-point Composite
Target Area	SS132W	4/7/2005		0		CL200.7	CHROMIUM,		MG/KG	2.4			5-point Composite
Target Area	SS132W	1/18/2005	N	0	0.25	CL200.7	CHROMIUM,	TOTAL	MG/KG	5		5	5-point Composite
	SS132W	3/31/2005		0		CL200.7	CHROMIUM,		MG/KG	5.1			5-point Composite
Target Area	00400141			0	0.25	CL200.7	CHROMIUM,	ICHAI	MG/KG	4.6		4.6	5-point Composite
Target Area	SS132W SS132P	4/1/2005											
Target Area Target Area	SS132P	3/20/2001	N	0	0.25	CL200.7	CHROMIUM,	TOTAL	MG/KG	2.5		2.5	5-point composite
Target Area			N N		0.25 0.5			TOTAL TOTAL			J	2.5 2.2	
Target Area Target Area Target Area	SS132P SS132P	3/20/2001 3/20/2001	N N N	0 0.25	0.25 0.5 1	CL200.7 CL200.7	CHROMIUM, CHROMIUM, CHROMIUM, CHROMIUM,	TOTAL TOTAL TOTAL TOTAL	MG/KG MG/KG	2.5 c 2.2 c 2.2 c 2.2 c	J J	2.5 2.2 2.2 2.2	5-point composite 5-point composite

Table C.4-3
Former A Range
Calculation of Averages Concentrations for Metals Exhibiting Maximum Concentrations Above a Screening Criterion in the Metals 3 Exposure Area

											Concentration	
		Collection	Normal or Field	Begin	End Depth	Analytical			Detected		Used in Computation	
Area	Location ID	Date	Duplicate	Depth (ft)	(ft)	Method	Analyte	Units	Value	Flags	of Averages	Sample Type
Target Area Target Area	AL060200-01_371 AL060200-01_371	4/23/2003 4/23/2003		0		C200.7 C200.7	CHROMIUM, TOTAL CHROMIUM, TOTAL	MG/KG MG/KG	4.1 3.2			Discrete Discrete
Target Area	AL060200-01_371	4/23/2003		0		C200.7	CHROMIUM, TOTAL	MG/KG	4.1			Discrete
Target Area	AL060200-01_371	4/23/2003	N	0	0.16	C200.7	CHROMIUM, TOTAL	MG/KG	4.8		4.8 [Discrete
Target Area	AL060200-01_371	4/23/2003		0		C200.7	CHROMIUM, TOTAL	MG/KG	3.8			Discrete
Target Area Target Area	AL060200-01_371 AL060200-01_371	4/23/2003 4/23/2003		0		C200.7 C200.7	CHROMIUM, TOTAL CHROMIUM, TOTAL	MG/KG MG/KG	5.6 6.6			Discrete Discrete
Target Area	AL060200-01_371	4/23/2003		0		C200.7	CHROMIUM, TOTAL	MG/KG	4.5			Discrete
Target Area	SS040105-01	4/7/2005		0		CL200.7	CHROMIUM, TOTAL	MG/KG	1.2			Discrete
Target Area	SS040105-01	4/7/2005		0		CL200.7 CL200.7	CHROMIUM, TOTAL	MG/KG	1.7			Discrete
Target Area Target Area	SS37MM_HEAVERY SS02221-A	8/5/1999 9/7/2001		0		CL200.7 CL200.7	CHROMIUM, TOTAL CHROMIUM, TOTAL	MG/KG MG/KG	1.8 18.7			Discrete Discrete
Target Area	SS02221-A	9/7/2001		0		CL200.7	CHROMIUM, TOTAL	MG/KG	16.6			Discrete
Target Area	SS02222-A	9/7/2001		0		CL200.7	CHROMIUM, TOTAL	MG/KG	10.4			Discrete
Target Area	SS02223-A	9/7/2001		0		CL200.7	CHROMIUM, TOTAL	MG/KG	4.48			Discrete
Target Area Target Area	SS02224-A SS02225-A	9/7/2001 9/7/2001		0		CL200.7 CL200.7	CHROMIUM, TOTAL CHROMIUM, TOTAL	MG/KG MG/KG	14.1 12			Discrete Discrete
Target Area	SS02226-A	9/7/2001		0		CL200.7	CHROMIUM, TOTAL	MG/KG	9.3			Discrete
Target Area	SS02227-A	9/7/2001	N	0		CL200.7	CHROMIUM, TOTAL	MG/KG	9.23	J		Discrete
Target Area	SS02228-A	9/7/2001		0		CL200.7	CHROMIUM, TOTAL	MG/KG	9.44			Discrete
Target Area	SS02231-A	9/7/2001		0		CL200.7	CHROMIUM, TOTAL	MG/KG	7.63			Discrete
Target Area Target Area	SS132P SS132P	3/20/2001 3/20/2001		0 0.25		CL200.7 CL200.7	CHROMIUM, TOTAL CHROMIUM, TOTAL	MG/KG MG/KG	2.3 .			Discrete Discrete
Target Area	SS132P	3/20/2001		0.5		CL200.7	CHROMIUM, TOTAL	MG/KG	2.2 3			Discrete
Target Area	SS132J	3/27/2001	N	0	0.25	CL200.7	CHROMIUM, TOTAL	MG/KG	4.8		4.8 [Discrete
Target Area	SS132J	3/27/2001		0		CL200.7	CHROMIUM, TOTAL	MG/KG	5.1			Discrete
Target Area Target Area	SS132J SS132J	3/27/2001 3/27/2001		0		CL200.7 CL200.7	CHROMIUM, TOTAL CHROMIUM, TOTAL	MG/KG MG/KG	3.6 4.3			Discrete Discrete
Target Area	SS132J	3/27/2001		0		CL200.7 CL200.7	CHROMIUM, TOTAL	MG/KG	5.2			Discrete
Target Area	SS132J	3/27/2001	N	0.25	0.5	CL200.7	CHROMIUM, TOTAL	MG/KG	5.7		5.7 [Discrete
Target Area	SS132J	3/27/2001		0.25		CL200.7	CHROMIUM, TOTAL	MG/KG	4.6			Discrete
Target Area Target Area	SS132J SS132J	3/27/2001 3/27/2001		0.25 0.25		CL200.7 CL200.7	CHROMIUM, TOTAL CHROMIUM, TOTAL	MG/KG MG/KG	5.2 4.2			Discrete Discrete
Target Area	SS132J SS132J	3/27/2001		0.25		CL200.7 CL200.7	CHROMIUM, TOTAL	MG/KG	5.5			Discrete
Target Area	SS132J	3/27/2001		0.25		CL200.7	CHROMIUM, TOTAL	MG/KG	6			Discrete
Target Area	SS132J	3/27/2001		0.5		CL200.7	CHROMIUM, TOTAL	MG/KG	7			Discrete
Target Area	SS132J	3/27/2001		0.5		CL200.7	CHROMIUM, TOTAL	MG/KG	6.2			Discrete
Target Area Target Area	SS132J SS132J	3/27/2001 3/27/2001		0.5 0.5		CL200.7 CL200.7	CHROMIUM, TOTAL CHROMIUM, TOTAL	MG/KG MG/KG	5.2 4.2			Discrete Discrete
Target Area	SS132J	3/27/2001		0.5		CL200.7	CHROMIUM, TOTAL	MG/KG	5.3			Discrete
Target Area	SS132J	3/27/2001		0.5		CL200.7	CHROMIUM, TOTAL	MG/KG	4.7		4.7 [Discrete
T A	00044005.04	1/01/0005			0.05	01.000.7		VERAGE FOR CHR		DISCRETE		
Target Area Target Area	SS011905-01 SS033105-01	1/21/2005 4/1/2005		0		CL200.7 CL200.7	LEAD LEAD	MG/KG MG/KG	5.6 6.9			5-point Composite 5-point Composite
Target Area	SS132W	4/7/2005		0		CL200.7	LEAD	MG/KG	4.3 .	J		5-point Composite
Target Area	SS132AS	11/23/2004		0		CL200.7	LEAD	MG/KG	154 J			5-point Composite
Target Area	SS132AS	11/23/2004		1.5		CL200.7	LEAD	MG/KG	4.3 J	J		5-point Composite
Target Area Target Area	SS132W SS132W	12/13/2004 12/13/2004		0		CL200.7 CL200.7	LEAD LEAD	MG/KG MG/KG	43 43.5			5-point Composite 5-point Composite
Target Area	SS132W	1/18/2005		0		CL200.7	LEAD	MG/KG	18.4			5-point Composite
Target Area	SS132W	3/31/2005		0		CL200.7	LEAD	MG/KG	9.3			5-point Composite
Target Area	SS132W	4/1/2005		0		CL200.7	LEAD	MG/KG	2.7			5-point Composite
Target Area Target Area	SS132W SS132W	4/7/2005 4/7/2005		0		CL200.7 CL200.7	LEAD LEAD	MG/KG MG/KG	6.1 J 2.5 J			5-point Composite 5-point Composite
Target Area	SS132W	4/7/2005		0		CL200.7	LEAD	MG/KG	2.8 3			5-point Composite
Target Area	SS132W	1/18/2005	N	0		CL200.7	LEAD	MG/KG	18.9			5-point Composite
Target Area	SS132W	3/31/2005		0		CL200.7	LEAD	MG/KG	13.7			5-point Composite
Target Area Target Area	SS132W SS132P	4/1/2005 3/20/2001		0		CL200.7 CL200.7	LEAD LEAD	MG/KG MG/KG	4 41.6 J	ı		5-point Composite 5-point composite
Target Area	SS132P	3/20/2001		0.25		CL200.7 CL200.7	LEAD	MG/KG	31.8			5-point composite
Target Area	SS132P	3/20/2001	N	0.5	1	CL200.7	LEAD	MG/KG	19.7 J	J	19.7 5	5-point composite
Target Area	SS132P	3/20/2001	N	0.5	1	CL200.7	LEAD	MG/KG AVERAGE FOR L	19.9 J			5-point composite
Target Area	AL060200-01_371	4/23/2003	N	0	0.16	C200.7	LEAD	MG/KG	43.9	-WIFUSIIE		Discrete
Target Area	AL060200-01_371	4/23/2003		0		C200.7	LEAD	MG/KG	21.7			Discrete
Target Area	AL060200-01_371	4/23/2003	N	0	0.16	C200.7	LEAD	MG/KG	41.9		41.9 [Discrete
Target Area	AL060200-01_371	4/23/2003		0		C200.7	LEAD	MG/KG	32.8			Discrete
Target Area Target Area	AL060200-01_371 AL060200-01_371	4/23/2003 4/23/2003		0		C200.7 C200.7	LEAD LEAD	MG/KG MG/KG	30 47.2			Discrete Discrete
Target Area	AL060200-01_371 AL060200-01_371	4/23/2003		0		C200.7 C200.7	LEAD	MG/KG	47.2			Discrete Discrete
Target Area	AL060200-01_371	4/23/2003	N	0	0.16	C200.7	LEAD	MG/KG	136		136 [Discrete
Target Area	SS040105-01	4/7/2005		0		CL200.7	LEAD	MG/KG	7.9 .			Discrete
Target Area Target Area	SS040105-01 SS37MM HEAVERY	4/7/2005 8/5/1999		0		CL200.7 CL200.7	LEAD LEAD	MG/KG MG/KG	10.4 J 24.8	J		Discrete Discrete
Target Area	SS02214-A	9/19/2006		0		SW6010B	LEAD	MG/KG	24.8 26.5			Discrete Discrete
Target Area	SS02214-A	9/19/2006		0		SW6010B	LEAD	MG/KG	18.1			Discrete
Target Area	SS02214-A	9/19/2006	N	0		SW6010B	LEAD	MG/KG	30.2		30.2 [Discrete
Target Area	SS02221-A	9/7/2001		0		CL200.7	LEAD	MG/KG	122 3			Discrete
Target Area Target Area	SS02221-A SS02222-A	9/7/2001 9/7/2001		0		CL200.7 CL200.7	LEAD LEAD	MG/KG MG/KG	127 J 203 J			Discrete Discrete
Target Area	SS02223-A	9/7/2001		0		CL200.7 CL200.7	LEAD	MG/KG	35 3			Discrete
Target Area	SS02224-A	9/7/2001	N	0	0.25	CL200.7	LEAD	MG/KG	36.2	J	36.2 [Discrete
Target Area	SS02225-A	9/7/2001	N	0	0.25	CL200.7	LEAD	MG/KG	25.2 3	J		Discrete
Target Area	SS02226-A	9/7/2001		0		CL200.7	LEAD	MG/KG	95.6			Discrete
Target Area Target Area	SS02227-A SS02228-A	9/7/2001 9/7/2001		0		CL200.7 CL200.7	LEAD LEAD	MG/KG MG/KG	37.5 J 87.5 J			Discrete Discrete
Target Area	SS02228-A SS02231-A	9/7/2001		0		CL200.7 CL200.7	LEAD	MG/KG	116 3			Discrete Discrete
Target Area	SS132P	3/20/2001		0	0.25	CL200.7	LEAD	MG/KG	19.5 J	J		Discrete
Target Area	SS132P	3/20/2001		0.25		CL200.7	LEAD	MG/KG	33.6			Discrete
Target Area	SS132P	3/20/2001		0.5		CL200.7	LEAD	MG/KG	18.2 J	J		Discrete
Target Area	SS132J	3/27/2001	IN	0	0.25	CL200.7	LEAD	MG/KG	5.6		5.6 l	Discrete

Table C.4-3
Former A Range
Calculation of Averages Concentrations for Metals Exhibiting Maximum Concentrations Above a Screening Criterion in the Metals 3 Exposure Area

			ormal or	Find Danish - Analysis of				Detected		Concentration Used in	
Area	Location ID		Field Begin uplicate Depth (ft)	End Depth Analytical (ft) Method		Analyte	Units	Value	Flags	Computation of Averages Sample	e Type
Target Area	SS132J	3/27/2001 N	0	0.25 CL200.7	LEAD	·	MG/KG	33.4		33.4 Discrete	
Target Area	SS132J	3/27/2001 N	0	0.25 CL200.7	LEAD		MG/KG	98.8		98.8 Discrete	
Target Area	SS132J	3/27/2001 N	0	0.25 CL200.7	LEAD		MG/KG	35		35 Discrete	
Target Area	SS132J	3/27/2001 N	0	0.25 CL200.7	LEAD		MG/KG	11600		11600 Discrete	
Target Area	SS132J	3/27/2001 N	0.25	0.5 CL200.7	LEAD		MG/KG	11.9		11.9 Discrete	
Target Area	SS132J	3/27/2001 N	0.25	0.5 CL200.7	LEAD		MG/KG	39.5		39.5 Discrete	
Target Area Target Area	SS132J SS132J	3/27/2001 N 3/27/2001 N	0.25 0.25	0.5 CL200.7 0.5 CL200.7	LEAD LEAD		MG/KG MG/KG	55.3 24.5		55.3 Discrete 24.5 Discrete	
Target Area	SS132J	3/27/2001 N	0.25	0.5 CL200.7	LEAD		MG/KG	9.7		9.7 Discrete	
Target Area	SS132J	3/27/2001 FD		0.5 CL200.7	LEAD		MG/KG	6.8		6.8 Discrete	
Target Area	SS132J	3/27/2001 N	0.5	1 CL200.7	LEAD		MG/KG	4		4 Discrete	
Target Area	SS132J	3/27/2001 N	0.5	1 CL200.7	LEAD		MG/KG	3.6		3.6 Discrete	
Target Area	SS132J	3/27/2001 N	0.5	1 CL200.7	LEAD		MG/KG	3		3 Discrete	
Target Area	SS132J	3/27/2001 N	0.5	1 CL200.7	LEAD		MG/KG	3.8		3.8 Discrete	
Target Area	SS132J SS132J	3/27/2001 N	0.5 0.5	1 CL200.7	LEAD LEAD		MG/KG MG/KG	6.2 5.1		6.2 Discrete 5.1 Discrete	
Target Area	3313ZJ	3/27/2001 FD	0.5	1 CL200.7	LEAD			SE FOR LEAD D	ISCRETE		
Target Area	SS011905-01	1/21/2005 N	0	0.25 CL200.7	NICKEL		MG/KG	3.3	JOUNETE	3.3 5-point Comp	neite
Target Area	SS033105-01	4/1/2005 N	0	0.25 CL200.7	NICKEL		MG/KG	2.3		2.3 5-point Comp	
Target Area	SS132W	4/7/2005 N	0	0.25 CL200.7	NICKEL		MG/KG	1.7		1.7 5-point Comp	
Target Area	SS132AS	11/23/2004 N	0	0.5 CL200.7	NICKEL		MG/KG	1.3		1.3 5-point Comp	
Target Area	SS132AS	11/23/2004 N	1.5	2 CL200.7	NICKEL		MG/KG	2.1		2.1 5-point Comp	
Target Area	SS132W	12/13/2004 N	0	0.25 CL200.7	NICKEL		MG/KG	2.4		2.4 5-point Comp	
Target Area	SS132W	12/13/2004 FD		0.25 CL200.7	NICKEL		MG/KG	2.5		2.5 5-point Comp	
Target Area	SS132W	1/18/2005 N	0	0.25 CL200.7	NICKEL		MG/KG	3.1		3.1 5-point Comp	
Target Area	SS132W SS132W	3/31/2005 N	0	0.25 CL200.7 0.25 CL200.7	NICKEL NICKEL		MG/KG MG/KG	1.4 1.8		1.4 5-point Comp	
Target Area Target Area	SS132W SS132W	4/1/2005 N 4/7/2005 N	0	0.25 CL200.7 0.25 CL200.7	NICKEL		MG/KG MG/KG	1.8 1.4		1.8 5-point Comp 1.4 5-point Comp	
Target Area	SS132W	4/7/2005 N 4/7/2005 N	0	0.25 CL200.7	NICKEL		MG/KG	1.5		1.5 5-point Comp	
Target Area	SS132W	4/7/2005 N	0	0.25 CL200.7	NICKEL		MG/KG	1.2		1.2 5-point Comp	
Target Area	SS132W	1/18/2005 N	0	0.25 CL200.7	NICKEL		MG/KG	3.1		3.1 5-point Comp	
Target Area	SS132W	3/31/2005 N	0	0.25 CL200.7	NICKEL		MG/KG	2.3		2.3 5-point Comp	osite
Target Area	SS132W	4/1/2005 N	0	0.25 CL200.7	NICKEL		MG/KG	2.7		2.7 5-point Comp	osite
Target Area	SS132P	3/20/2001 N	0	0.25 CL200.7	NICKEL		MG/KG	1.4		1.4 5-point comp	
Target Area	SS132P	3/20/2001 N	0.25	0.5 CL200.7	NICKEL		MG/KG	1.1		1.1 5-point comp	
Target Area	SS132P	3/20/2001 N	0.5	1 CL200.7	NICKEL		MG/KG	1.1		1.1 5-point comp	
Target Area	SS132P	3/20/2001 N	0.5	1 CL200.7	NICKEL	AVEDAC	MG/KG	1.1 EL 5-POINT CO	MDOSITE	1.1 5-point comp 1.94	osite
Target Area	AL060200-01_371	4/23/2003 N	0	0.16 C200.7	NICKEL	AVENAC	MG/KG	2.2	WIFOSITE	2.2 Discrete	
Target Area	AL060200-01_371	4/23/2003 N	0	0.16 C200.7	NICKEL		MG/KG	1.4		1.4 Discrete	
Target Area	AL060200-01_371	4/23/2003 N	0	0.16 C200.7	NICKEL		MG/KG	3.4		3.4 Discrete	
Target Area	AL060200-01_371	4/23/2003 N	0	0.16 C200.7	NICKEL		MG/KG	2.3		2.3 Discrete	
Target Area	AL060200-01_371	4/23/2003 N	0	0.16 C200.7	NICKEL		MG/KG	2.1		2.1 Discrete	
Target Area	AL060200-01_371	4/23/2003 N	0	0.16 C200.7	NICKEL		MG/KG	2		2 Discrete	
Target Area	AL060200-01_371	4/23/2003 N	0	0.16 C200.7	NICKEL		MG/KG	2.9		2.9 Discrete	
Target Area Target Area	AL060200-01_371 SS040105-01	4/23/2003 N 4/7/2005 N	0	0.16 C200.7 0.25 CL200.7	NICKEL NICKEL		MG/KG MG/KG	2.5 0.68 J		2.5 Discrete 0.68 Discrete	
Target Area	SS040105-01	4/7/2005 FD		0.25 CL200.7	NICKEL		MG/KG	0.00 J		1 Discrete	
Target Area	SS37MM_HEAVERY	8/5/1999 N	0	0.25 CL200.7	NICKEL		MG/KG	0.6 J		0.6 Discrete	
Target Area	SS02221-A	9/7/2001 N	0	0.25 CL200.7	NICKEL		MG/KG	28.9		28.9 Discrete	
Target Area	SS02221-A	9/7/2001 FD		0.25 CL200.7	NICKEL		MG/KG	17.3		17.3 Discrete	
Target Area	SS02222-A	9/7/2001 N	0	0.25 CL200.7	NICKEL		MG/KG	2.74 J		2.74 Discrete	
Target Area	SS02223-A	9/7/2001 N	0	0.25 CL200.7	NICKEL		MG/KG	1.95 J		1.95 Discrete	
Target Area	SS02224-A	9/7/2001 N	0	0.25 CL200.7	NICKEL		MG/KG	6.42 J		6.42 Discrete	
Target Area	SS02225-A SS02226-A	9/7/2001 N 9/7/2001 N	0	0.25 CL200.7 0.25 CL200.7	NICKEL NICKEL		MG/KG MG/KG	4.81 J 2.74 J		4.81 Discrete 2.74 Discrete	
Target Area Target Area	SS02226-A SS02227-A	9/7/2001 N 9/7/2001 N	0	0.25 CL200.7 0.25 CL200.7	NICKEL		MG/KG MG/KG	2.74 J 3.56 J		2.74 Discrete 3.56 Discrete	
Target Area	SS02228-A	9/7/2001 N 9/7/2001 N	0	0.25 CL200.7 0.25 CL200.7	NICKEL		MG/KG	3.75 J		3.75 Discrete	
Target Area	SS02220-A SS02231-A	9/7/2001 N	0	0.25 CL200.7	NICKEL		MG/KG	3.19 J		3.19 Discrete	
Target Area	SS132P	3/20/2001 N	0	0.25 CL200.7	NICKEL		MG/KG	1.1		1.1 Discrete	
Target Area	SS132P	3/20/2001 N	0.25	0.5 CL200.7	NICKEL		MG/KG	1.2		1.2 Discrete	
Target Area	SS132P	3/20/2001 N	0.5	1 CL200.7	NICKEL		MG/KG	1.1		1.1 Discrete	
				0.25 CL200.7	NICKEL		MG/KG	0.92 J		0.92 Discrete	
Target Area	SS132J	3/27/2001 N	0				MG/KG	1 J		1 Discrete	
Target Area Target Area	SS132J	3/27/2001 N	0	0.25 CL200.7	NICKEL						
Target Area Target Area Target Area	SS132J SS132J	3/27/2001 N 3/27/2001 N	0	0.25 CL200.7	NICKEL		MG/KG	1.2 J		1.2 Discrete	
Target Area Target Area Target Area Target Area	SS132J SS132J SS132J	3/27/2001 N 3/27/2001 N 3/27/2001 N	0 0 0	0.25 CL200.7 0.25 CL200.7	NICKEL NICKEL		MG/KG MG/KG	1.2 J 0.97 J		0.97 Discrete	
Target Area Target Area Target Area Target Area Target Area	SS132J SS132J SS132J SS132J	3/27/2001 N 3/27/2001 N 3/27/2001 N 3/27/2001 N	0 0 0 0	0.25 CL200.7 0.25 CL200.7 0.25 CL200.7	NICKEL NICKEL NICKEL		MG/KG MG/KG MG/KG	1.2 J 0.97 J 1.5 J		0.97 Discrete 1.5 Discrete	
Target Area Target Area Target Area Target Area Target Area Target Area	SS132J SS132J SS132J SS132J SS132J	3/27/2001 N 3/27/2001 N 3/27/2001 N 3/27/2001 N 3/27/2001 N	0 0 0 0 0.25	0.25 CL200.7 0.25 CL200.7 0.25 CL200.7 0.5 CL200.7	NICKEL NICKEL NICKEL NICKEL		MG/KG MG/KG MG/KG MG/KG	1.2 J 0.97 J 1.5 J 1.5 J		0.97 Discrete 1.5 Discrete 1.5 Discrete	
Target Area Target Area Target Area Target Area Target Area Target Area Target Area	SS132J SS132J SS132J SS132J SS132J SS132J	3/27/2001 N 3/27/2001 N 3/27/2001 N 3/27/2001 N 3/27/2001 N 3/27/2001 N	0 0 0 0 0.25 0.25	0.25 CL200.7 0.25 CL200.7 0.25 CL200.7 0.5 CL200.7 0.5 CL200.7	NICKEL NICKEL NICKEL NICKEL		MG/KG MG/KG MG/KG MG/KG MG/KG	1.2 J 0.97 J 1.5 J 1.5 J 1.5 J		0.97 Discrete 1.5 Discrete 1.5 Discrete 1.5 Discrete	
Target Area	SS132J SS132J SS132J SS132J SS132J SS132J SS132J	3/27/2001 N 3/27/2001 N 3/27/2001 N 3/27/2001 N 3/27/2001 N 3/27/2001 N 3/27/2001 N	0 0 0 0.25 0.25	0.25 CL200.7 0.25 CL200.7 0.25 CL200.7 0.5 CL200.7 0.5 CL200.7 0.5 CL200.7	NICKEL NICKEL NICKEL NICKEL NICKEL		MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG	1.2 J 0.97 J 1.5 J 1.5 J 1.5 J		0.97 Discrete 1.5 Discrete 1.5 Discrete	
Target Area Target Area Target Area Target Area Target Area Target Area Target Area	SS132J SS132J SS132J SS132J SS132J SS132J	3/27/2001 N 3/27/2001 N 3/27/2001 N 3/27/2001 N 3/27/2001 N 3/27/2001 N	0 0 0 0 0.25 0.25	0.25 CL200.7 0.25 CL200.7 0.25 CL200.7 0.5 CL200.7 0.5 CL200.7	NICKEL NICKEL NICKEL NICKEL		MG/KG MG/KG MG/KG MG/KG MG/KG	1.2 J 0.97 J 1.5 J 1.5 J 1.5 J		0.97 Discrete 1.5 Discrete 1.5 Discrete 1.5 Discrete 1.5 Discrete 1 Discrete	
Target Area	\$\$132J \$\$132J \$\$132J \$\$132J \$\$132J \$\$132J \$\$132J \$\$132J \$\$132J \$\$132J	3/27/2001 N 3/27/2001 N 3/27/2001 N 3/27/2001 N 3/27/2001 N 3/27/2001 N 3/27/2001 N 3/27/2001 N 3/27/2001 FD	0 0 0 0.25 0.25 0.25 0.25 0.25	0.25 CL200.7 0.25 CL200.7 0.25 CL200.7 0.5 CL200.7 0.5 CL200.7 0.5 CL200.7 0.5 CL200.7 0.5 CL200.7	NICKEL NICKEL NICKEL NICKEL NICKEL NICKEL NICKEL NICKEL		MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG	1.2 J 0.97 J 1.5 J 1.5 J 1.5 J 1.2 J 1.7 J 1.6 J		0.97 Discrete 1.5 Discrete 1.5 Discrete 1.5 Discrete 1.5 Discrete 1 Discrete 1.2 Discrete 1.7 Discrete 1.6 Discrete	
Target Area Target Area	\$\$132J \$\$132J \$\$132J \$\$132J \$\$132J \$\$132J \$\$132J \$\$132J \$\$132J \$\$132J	3/27/2001 N 3/27/2001 N 3/27/2001 N 3/27/2001 N 3/27/2001 N 3/27/2001 N 3/27/2001 N 3/27/2001 N 3/27/2001 FD 3/27/2001 N	0 0 0 0.25 0.25 0.25 0.25 0.25 0.25	0.25 CL200.7 0.25 CL200.7 0.25 CL200.7 0.5 CL200.7 0.5 CL200.7 0.5 CL200.7 0.5 CL200.7 0.5 CL200.7 0.5 CL200.7 0.5 CL200.7	NICKEL NICKEL NICKEL NICKEL NICKEL NICKEL NICKEL NICKEL NICKEL		MG/KG	1.2 J 0.97 J 1.5 J 1.5 J 1.5 J 1.2 J 1.7 J 1.6 J 2 J		0.97 Discrete 1.5 Discrete 1.5 Discrete 1.5 Discrete 1.5 Discrete 1.5 Discrete 1.1 Discrete 1.2 Discrete 1.7 Discrete 1.6 Discrete 2 Discrete	
Target Area Target Area	\$\$132J \$\$132J \$\$132J \$\$132J \$\$132J \$\$132J \$\$132J \$\$132J \$\$132J \$\$132J \$\$132J \$\$132J	3/27/2001 N 3/27/2001 N 3/27/2001 N 3/27/2001 N 3/27/2001 N 3/27/2001 N 3/27/2001 N 3/27/2001 N 3/27/2001 D 3/27/2001 N 3/27/2001 N	0 0 0 0 0.25 0.25 0.25 0.25 0.25 0.5 0.5	0.25 CL200,7 0.25 CL200,7 0.25 CL200,7 0.5 CL200,7 0.5 CL200,7 0.5 CL200,7 0.5 CL200,7 0.5 CL200,7 0.5 CL200,7 1 CL200,7 1 CL200,7	NICKEL NICKEL NICKEL NICKEL NICKEL NICKEL NICKEL NICKEL NICKEL NICKEL		MG/KG	1.2 J 0.97 J 1.5 J 1.5 J 1.5 J 1.2 J 1.7 J 1.6 J 2 J 1.7 J		0.97 Discrete 1.5 Discrete 1.5 Discrete 1.5 Discrete 1.5 Discrete 1 Discrete 1.2 Discrete 1.7 Discrete 1.6 Discrete 2 Discrete 1.7 Discrete 1.7 Discrete 1.7 Discrete 1.7 Discrete	
Target Area	\$\$132J \$\$132J \$\$132J \$\$132J \$\$132J \$\$132J \$\$132J \$\$132J \$\$132J \$\$132J \$\$132J \$\$132J \$\$132J	3/27/2001 N 3/27/2001 N 3/27/2001 N 3/27/2001 N 3/27/2001 N 3/27/2001 N 3/27/2001 N 3/27/2001 N 3/27/2001 FD 3/27/2001 N 3/27/2001 N 3/27/2001 N	0 0 0 0 0.25 0.25 0.25 0.25 0.25 0.25 0.	0.25 CL200.7 0.25 CL200.7 0.25 CL200.7 0.5 CL200.7 0.5 CL200.7 0.5 CL200.7 0.5 CL200.7 0.5 CL200.7 0.5 CL200.7 1 CL200.7 1 CL200.7 1 CL200.7	NICKEL NICKEL NICKEL NICKEL NICKEL NICKEL NICKEL NICKEL NICKEL NICKEL NICKEL		MG/KG	1.2 J 0.97 J 1.5 J 1.5 J 1.5 J 1.2 J 1.7 J 1.6 J 2 J 1.7 J		0.97 Discrete 1.5 Discrete 1.5 Discrete 1.5 Discrete 1.5 Discrete 1 Discrete 1.2 Discrete 1.7 Discrete 1.6 Discrete 2 Discrete 1.7 Discrete 1.1 Discrete 1.1 Discrete 1.1 Discrete 1.1 Discrete	
Target Area	\$\$132J \$\$132J \$\$132J \$\$132J \$\$132J \$\$132J \$\$132J \$\$132J \$\$132J \$\$132J \$\$132J \$\$132J \$\$132J \$\$132J	3/27/2001 N 3/27/2001 N	0 0 0 0 0.25 0.25 0.25 0.25 0.25 0.25 0.	0.25 CL200.7 0.25 CL200.7 0.25 CL200.7 0.5 CL200.7 0.5 CL200.7 0.5 CL200.7 0.5 CL200.7 0.5 CL200.7 1.5 CL200.7 1 CL200.7 1 CL200.7 1 CL200.7 1 CL200.7 1 CL200.7	NICKEL NICKEL NICKEL NICKEL NICKEL NICKEL NICKEL NICKEL NICKEL NICKEL NICKEL NICKEL		MG/KG	1.2 J 0.97 J 1.5 J 1.5 J 1.5 J 1.7 J 1.6 J 2 J 1.7 J 1.1 J		0.97 Discrete 1.5 Discrete 1.5 Discrete 1.5 Discrete 1.5 Discrete 1.5 Discrete 1.7 Discrete 1.7 Discrete 1.6 Discrete 2 Discrete 1.7 Discrete 1.1 Discrete 1.1 Discrete 1.2 Discrete 1.2 Discrete 1.2 Discrete 1.2 Discrete	
Target Area	SS132J SS132J SS132J SS132J SS132J SS132J SS132J SS132J SS132J SS132J SS132J SS132J SS132J	3/27/2001 N 3/27/2001 N 3/27/2001 N 3/27/2001 N 3/27/2001 N 3/27/2001 N 3/27/2001 N 3/27/2001 N 3/27/2001 FD 3/27/2001 N 3/27/2001 N 3/27/2001 N	0 0 0 0 0.25 0.25 0.25 0.25 0.25 0.5 0.5 0.5	0.25 CL200.7 0.25 CL200.7 0.25 CL200.7 0.5 CL200.7 0.5 CL200.7 0.5 CL200.7 0.5 CL200.7 0.5 CL200.7 0.5 CL200.7 1 CL200.7 1 CL200.7 1 CL200.7	NICKEL NICKEL NICKEL NICKEL NICKEL NICKEL NICKEL NICKEL NICKEL NICKEL NICKEL		MG/KG	1.2 J 0.97 J 1.5 J 1.5 J 1.5 J 1.2 J 1.7 J 1.6 J 2 J 1.7 J		0.97 Discrete 1.5 Discrete 1.5 Discrete 1.5 Discrete 1.5 Discrete 1 Discrete 1.2 Discrete 1.7 Discrete 1.6 Discrete 2 Discrete 1.7 Discrete 1.1 Discrete 1.1 Discrete 1.1 Discrete 1.1 Discrete	

Note: Values shown in italics represent one-half the reported limit for that sample.

Table C.4-4
Former A Range
Calculation of Averages Concentrations for Metals Exhibiting Maximum Concentrations Above a Screening Criterion in the Metals 4 Exposure Area

		Normal	or					Concentration Used in
		Collection Field		End Depth Analytical			Detected	Computation
Area	Location ID	Date Duplica		(ft) Method	Analyte	Units	Value Fla	
Target Area	SS132AU	11/23/2004 N	0	0.5 CL200.7	ANTIMONY	MG/KG	U	0.420 5-point Composite
Target Area	SS132AU	11/23/2004 N	1.5	2 CL200.7	ANTIMONY	MG/KG	U	0.435 5-point Composite
Target Area	SS132AV	11/22/2004 N	0	0.5 CL200.7	ANTIMONY	MG/KG	1.5 J	1.5 5-point Composite
Target Area	SS132AV	11/22/2004 N	1.5	2 CL200.7	ANTIMONY	MG/KG	0.84 J	0.84 5-point Composite
Target Area	SS132Y	12/13/2004 N	0	0.25 CL200.7	ANTIMONY	MG/KG	1.4 J U	1.4 5-point Composite
Target Area	SS132Y SS132Y	1/19/2005 N 1/19/2005 FD	0	0.25 CL200.7 0.25 CL200.7	ANTIMONY ANTIMONY	MG/KG MG/KG	1.2 J	0.375 5-point Composite
Target Area Target Area	SS132Y	4/1/2005 N	0	0.25 CL200.7 0.25 CL200.7	ANTIMONY	MG/KG	1.2 J U	1.2 5-point Composite 0.415 5-point Composite
Target Area	SS132Y	4/5/2005 N	0	0.25 CL200.7 0.25 CL200.7	ANTIMONY	MG/KG	Ü	0.330 5-point Composite
Target Area	SS132Y	4/5/2005 N	0	0.25 CL200.7	ANTIMONY	MG/KG	Ü	0.395 5-point Composite
Target Area	SS132Y	4/7/2005 N	0	0.25 CL200.7	ANTIMONY	MG/KG	Ü	0.370 5-point Composite
Target Area	SS132Y	12/13/2004 N	0	0.25 CL200.7	ANTIMONY	MG/KG	Ū	0.425 5-point Composite
Target Area	SS011105-02	1/12/2005 N	0	0.25 CL200.7	ANTIMONY	MG/KG	ÜJ	0.420 5-point Composite
Target Area	SS011005-04	1/12/2005 N	0	0.25 CL200.7	ANTIMONY	MG/KG	1.5 J	1.5 5-point Composite
Target Area	SS011005-05	1/12/2005 N	0	0.25 CL200.7	ANTIMONY	MG/KG	UJ	0.445 5-point Composite
Target Area	SS132Y	1/18/2005 N	0	0.25 CL200.7	ANTIMONY	MG/KG	U	0.345 5-point Composite
Target Area	SS132Y	1/19/2005 N	0	0.25 CL200.7	ANTIMONY	MG/KG	U	0.335 5-point Composite
Target Area	SS012005-02	1/21/2005 N	0	0.25 CL200.7	ANTIMONY	MG/KG	U	0.360 5-point Composite
Target Area	SS012005-01	1/21/2005 N	0	0.25 CL200.7	ANTIMONY	MG/KG	1.4 J	1.4 5-point Composite
Target Area	SS132T	3/20/2001 N	0	0.25 CL200.7	ANTIMONY	MG/KG	U	0.364 5-point composite
Target Area	SS132T	3/20/2001 N	0.25	0.5 CL200.7	ANTIMONY	MG/KG	U	0.405 5-point composite
Target Area	SS132T	3/20/2001 N	0.5	1 CL200.7	ANTIMONY	MG/KG	U	0.347 5-point composite
Target Area	SS132T	3/20/2001 FD	0.5	1 CL200.7	ANTIMONY	MG/KG	U	0.393 5-point composite
Target Area Target Area	SS132S SS132S	3/20/2001 N	0	0.25 CL200.7	ANTIMONY	MG/KG	U U	0.387 5-point composite 0.386 5-point composite
Target Area	SS132S SS132S	3/20/2001 N 3/20/2001 N	0.25 0.5	0.5 CL200.7 1 CL200.7	ANTIMONY ANTIMONY	MG/KG MG/KG	U	0.395 5-point composite
raiget Alea	331323	3/20/2001 N	0.5	1 GL200.7	ANTIWONT	AGE FOR ANTIMON		OSITE 0.599
Target Area	SS132T	3/20/2001 N	0	0.25 CL200.7	ANTIMONY	MG/KG	I J-I OINT COMIT	0.401 Discrete
Target Area	SS132T	3/20/2001 N	0.25	0.5 CL200.7	ANTIMONY	MG/KG	Ü	0.400 Discrete
Target Area	SS132T	3/20/2001 N	0.5	1 CL200.7	ANTIMONY	MG/KG	0.82 J	0.82 Discrete
Target Area	SS132S	3/20/2001 N	0.5	0.25 CL200.7	ANTIMONY	MG/KG	0.0 <u>2</u> U	0.426 Discrete
Target Area	SS132S	3/20/2001 N	0.25	0.5 CL200.7	ANTIMONY	MG/KG	1 J	1 Discrete
Target Area	SS132S	3/20/2001 N	0.5	1 CL200.7	ANTIMONY	MG/KG	Ü	0.407 Discrete
Target Area	SS02235-A	9/27/2001 N	0	1 CL200.7	ANTIMONY	MG/KG	0.971 J	0.971 Discrete
						AVERAGE FOR	ANTIMONY DISC	RETE 0.632
Target Area	SSFATA09	1/11/2006 N	0	0.5 SW6010B	ANTIMONY	MG/KG	1.7 J	1.7 MIS
Target Area	SSFATA09	1/11/2006 FD	0	0.5 SW6010B	ANTIMONY	MG/KG	3.9 J	3.9 MIS
							SE FOR ANTIMON	
Target Area	SS132AU	11/23/2004 N	0	0.5 CL200.7	CHROMIUM, TOTAL	MG/KG	4.2	4.2 5-point Composite
Target Area	SS132AU	11/23/2004 N	1.5	2 CL200.7	CHROMIUM, TOTAL	MG/KG MG/KG	4.2 5.8	4.2 5-point Composite 5.8 5-point Composite
Target Area Target Area	SS132AU SS132AV	11/23/2004 N 11/22/2004 N	1.5 0	2 CL200.7 0.5 CL200.7	CHROMIUM, TOTAL CHROMIUM, TOTAL	MG/KG MG/KG MG/KG	4.2 5.8 4	4.2 5-point Composite 5.8 5-point Composite 4 5-point Composite
Target Area Target Area Target Area	SS132AU SS132AV SS132AV	11/23/2004 N 11/22/2004 N 11/22/2004 N	1.5 0 1.5	2 CL200.7 0.5 CL200.7 2 CL200.7	CHROMIUM, TOTAL CHROMIUM, TOTAL CHROMIUM, TOTAL	MG/KG MG/KG MG/KG MG/KG	4.2 5.8 4 6.4	4.2 5-point Composite 5.8 5-point Composite 4 5-point Composite 6.4 5-point Composite
Target Area Target Area Target Area Target Area	SS132AU SS132AV SS132AV SS132Y	11/23/2004 N 11/22/2004 N 11/22/2004 N 12/13/2004 N	1.5 0 1.5 0	2 CL200.7 0.5 CL200.7 2 CL200.7 0.25 CL200.7	CHROMIUM, TOTAL CHROMIUM, TOTAL CHROMIUM, TOTAL CHROMIUM, TOTAL	MG/KG MG/KG MG/KG MG/KG MG/KG	4.2 5.8 4 6.4 4.6	4.2 5-point Composite 5.8 5-point Composite 4 5-point Composite 6.4 5-point Composite 4.6 5-point Composite
Target Area Target Area Target Area Target Area Target Area	SS132AU SS132AV SS132AV SS132Y SS132Y	11/23/2004 N 11/22/2004 N 11/22/2004 N 12/13/2004 N 1/19/2005 N	1.5 0 1.5 0	2 CL200.7 0.5 CL200.7 2 CL200.7 0.25 CL200.7 0.25 CL200.7	CHROMIUM, TOTAL CHROMIUM, TOTAL CHROMIUM, TOTAL CHROMIUM, TOTAL CHROMIUM, TOTAL	MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG	4.2 5.8 4 6.4 4.6 5.9	4.2 5-point Composite 5.8 5-point Composite 4 5-point Composite 6.4 5-point Composite 4.6 5-point Composite 5.9 5-point Composite
Target Area	SS132AU SS132AV SS132AV SS132Y SS132Y SS132Y	11/23/2004 N 11/22/2004 N 11/22/2004 N 12/13/2004 N 1/19/2005 N 1/19/2005 FD	1.5 0 1.5 0 0	2 CL200.7 0.5 CL200.7 2 CL200.7 0.25 CL200.7 0.25 CL200.7 0.25 CL200.7	CHROMIUM, TOTAL CHROMIUM, TOTAL CHROMIUM, TOTAL CHROMIUM, TOTAL CHROMIUM, TOTAL CHROMIUM, TOTAL	MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG	4.2 5.8 4 6.4 4.6 5.9 5.3	4.2 5-point Composite 5.8 5-point Composite 4 5-point Composite 6.4 5-point Composite 4.6 5-point Composite 5.9 5-point Composite 5.3 5-point Composite
Target Area	SS132AU SS132AV SS132AV SS132Y SS132Y SS132Y SS132Y	11/23/2004 N 11/22/2004 N 11/22/2004 N 12/13/2004 N 1/19/2005 N 1/19/2005 FD 4/1/2005 N	1.5 0 1.5 0 0 0	2 CL200.7 0.5 CL200.7 2 CL200.7 0.25 CL200.7 0.25 CL200.7 0.25 CL200.7 0.25 CL200.7	CHROMIUM, TOTAL	MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG	4.2 5.8 4 6.4 4.6 5.9 5.3 3.7	4.2 5-point Composite 5.8 5-point Composite 4 5-point Composite 6.4 5-point Composite 4.6 5-point Composite 5.9 5-point Composite 5.3 5-point Composite 3.7 5-point Composite
Target Area	SS132AU SS132AV SS132AV SS132Y SS132Y SS132Y	11/23/2004 N 11/22/2004 N 11/22/2004 N 12/13/2004 N 1/19/2005 N 1/19/2005 FD	1.5 0 1.5 0 0	2 CL200.7 0.5 CL200.7 2 CL200.7 0.25 CL200.7 0.25 CL200.7 0.25 CL200.7	CHROMIUM, TOTAL CHROMIUM, TOTAL CHROMIUM, TOTAL CHROMIUM, TOTAL CHROMIUM, TOTAL CHROMIUM, TOTAL	MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG	4.2 5.8 4 6.4 4.6 5.9 5.3	4.2 5-point Composite 5.8 5-point Composite 4 5-point Composite 6.4 5-point Composite 6.6 5-point Composite 5.9 5-point Composite 5.3 5-point Composite 5.3 7 5-point Composite 3.9 5-point Composite
Target Area	SS132AU SS132AV SS132AV SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y	11/23/2004 N 11/22/2004 N 11/22/2004 N 12/13/2004 N 12/13/2005 N 1/19/2005 FD 4/1/2005 N 4/5/2005 N	1.5 0 1.5 0 0 0	2 CL200.7 0.5 CL200.7 2 CL200.7 0.25 CL200.7 0.25 CL200.7 0.25 CL200.7 0.25 CL200.7 0.25 CL200.7 0.25 CL200.7	CHROMIUM, TOTAL	MG/KG	4.2 5.8 4 6.4 4.6 5.9 5.3 3.7 3.9	4.2 5-point Composite 5.8 5-point Composite 4 5-point Composite 6.4 5-point Composite 4.6 5-point Composite 5.9 5-point Composite 5.3 5-point Composite 3.7 5-point Composite
Target Area	SS132AU SS132AV SS132AV SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y	11/23/2004 N 11/22/2004 N 11/22/2004 N 11/22/2004 N 12/13/2004 N 1/19/2005 N 1/19/2005 FD 4/1/2005 N 4/5/2005 N	1.5 0 1.5 0 0 0 0	2 CL200.7 0.5 CL200.7 2 CL200.7 0.25 CL200.7 0.25 CL200.7 0.25 CL200.7 0.25 CL200.7 0.25 CL200.7 0.25 CL200.7	CHROMIUM, TOTAL	MG/KG	4.2 5.8 4 6.4 4.6 5.9 5.3 3.7 3.9 5.3	4.2 5-point Composite 5.8 5-point Composite 4 5-point Composite 6.4 5-point Composite 6.4 5-point Composite 4.6 5-point Composite 5.9 5-point Composite 5.3 5-point Composite 3.7 5-point Composite 3.9 5-point Composite 5.3 5-point Composite 5.3 5-point Composite
Target Area	SS132AU SS132AV SS132AV SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y	11/23/2004 N 11/22/2004 N 11/22/2004 N 12/13/2004 N 1/19/2005 N 1/19/2005 FD 4/1/2005 N 4/5/2005 N 4/7/2005 N	1.5 0 1.5 0 0 0 0 0 0 0	2 CL200.7 0.5 CL200.7 2 CL200.7 0.25 CL200.7 0.25 CL200.7 0.25 CL200.7 0.25 CL200.7 0.25 CL200.7 0.25 CL200.7 0.25 CL200.7 0.25 CL200.7	CHROMIUM, TOTAL	MG/KG	4.2 5.8 4 6.4 4.6 5.9 5.3 3.7 3.9 5.3 2.5	4.2 5-point Composite 5.8 5-point Composite 4 5-point Composite 6.4 5-point Composite 6.4 5-point Composite 5.9 5-point Composite 5.9 5-point Composite 5.3 5-point Composite 3.7 5-point Composite 3.9 5-point Composite 5.3 5-point Composite 5.5 5-point Composite 5.5 5-point Composite
Target Area	SS132AU SS132AV SS132AV SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y	11/23/2004 N 11/22/2004 N 11/22/2004 N 12/23/2004 N 12/13/2005 N 1/19/2005 FD 4/1/2005 N 4/5/2005 N 4/5/2005 N 4/5/2005 N 12/13/2004 N	1.5 0 1.5 0 0 0 0 0 0 0 0	2 CL200.7 0.5 CL200.7 2 CL200.7 0.25 CL200.7 0.25 CL200.7 0.25 CL200.7 0.25 CL200.7 0.25 CL200.7 0.25 CL200.7 0.25 CL200.7 0.25 CL200.7	CHROMIUM, TOTAL	MG/KG	4.2 5.8 4 6.4 4.6 5.9 5.3 3.7 3.9 5.3 2.5	4.2 5-point Composite 5.8 5-point Composite 4 5-point Composite 6.4 5-point Composite 6.4 5-point Composite 5.9 5-point Composite 5.9 5-point Composite 5.3 5-point Composite 3.7 5-point Composite 3.9 5-point Composite 5.3 5-point Composite 5.5 5-point Composite 6.5 5-point Composite 6.5 5-point Composite 6.6 5-point Composite 6.7 5-point Composite 6.8 5-point Composite
Target Area	SS132AU SS132AV SS132AV SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS011105-02 SS011105-04 SS011005-05	11/23/2004 N 11/22/2004 N 11/22/2004 N 12/13/2004 N 12/13/2005 N 1/19/2005 FD 4/1/2005 N 4/5/2005 N 4/7/2005 N 4/7/2005 N 1/13/2004 N 1/13/2005 N 1/12/2005 N 1/12/2005 N	1.5 0 1.5 0 0 0 0 0 0 0 0 0 0 0	2 CL200.7 0.5 CL200.7 2 CL200.7 0.25 CL200.7	CHROMIUM, TOTAL	MG/KG	4.2 5.8 4 6.4 4.6 5.9 5.3 3.7 3.9 5.3 2.5 4.6 4.2 3.5 2.7	4.2 5-point Composite 5.8 5-point Composite 4 5-point Composite 6.4 5-point Composite 6.4 5-point Composite 6.9 5-point Composite 5.9 5-point Composite 5.3 5-point Composite 3.7 5-point Composite 3.9 5-point Composite 5.3 5-point Composite 5.5 5-point Composite 4.6 5-point Composite 4.6 5-point Composite 4.7 5-point Composite 5.7 5-point Composite 6.7 5-point Composite 6.7 5-point Composite 6.7 5-point Composite
Target Area	SS132AU SS132AV SS132AV SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS11105-02 SS0111005-04 SS0111005-05 SS132Y	11/23/2004 N 11/22/2004 N 11/22/2004 N 12/13/2004 N 1/19/2005 N 1/19/2005 FD 4/1/2005 N 4/5/2005 N 4/5/2005 N 4/7/2005 N 12/13/2004 N 1/12/2005 N 1/12/2005 N 1/12/2005 N	1.5 0 1.5 0 0 0 0 0 0 0 0 0 0	2 CL200.7 0.5 CL200.7 2 CL200.7 0.25 CL200.7	CHROMIUM, TOTAL	MG/KG	4.2 5.8 4 6.4 4.6 5.9 5.3 3.7 3.9 5.3 2.5 4.2 3.5 2.7 6.5	4.2 5-point Composite 5.8 5-point Composite 4 5-point Composite 6.4 5-point Composite 6.4 5-point Composite 6.5 5-point Composite 5.9 5-point Composite 5.3 5-point Composite 3.7 5-point Composite 3.9 5-point Composite 5.3 5-point Composite 6.5 5-point Composite 4.6 5-point Composite 4.2 5-point Composite 4.2 5-point Composite 5.3 5-point Composite 6.5 5-point Composite 6.5 5-point Composite 6.5 5-point Composite
Target Area	SS132AU SS132AV SS132AV SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS011105-02 SS011005-04 SS011005-05 SS132Y SS132Y	11/23/2004 N 11/22/2004 N 11/22/2004 N 12/23/2004 N 12/13/2005 N 1/19/2005 FD 4/1/2005 N 4/5/2005 N 4/5/2005 N 4/5/2005 N 12/13/2004 N 1/12/2005 N 1/12/2005 N 1/12/2005 N 1/13/2005 N 1/12/2005 N 1/18/2005 N 1/18/2005 N	1.5 0 1.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 CL200.7 0.5 CL200.7 0.5 CL200.7 2 CL200.7 0.25 CL200.7	CHROMIUM, TOTAL	MG/KG	4.2 5.8 4 6.4 4.6 5.9 5.3 3.7 3.9 5.3 2.5 4.6 4.2 3.5 2.7 6.5 4.8	4.2 5-point Composite 5.8 5-point Composite 4 5-point Composite 6.4 5-point Composite 6.4 5-point Composite 5.9 5-point Composite 5.9 5-point Composite 5.3 5-point Composite 3.7 5-point Composite 3.9 5-point Composite 5.3 5-point Composite 5.3 5-point Composite 6.5 5-point Composite 4.6 5-point Composite 4.2 5-point Composite 4.2 5-point Composite 5.5 5-point Composite 6.5 5-point Composite 6.5 5-point Composite 6.8 5-point Composite 6.9 5-point Composite
Target Area	SS132AU SS132AV SS132AV SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS011105-02 SS011005-04 SS011005-05 SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS012005-02	11/23/2004 N 11/22/2004 N 11/22/2004 N 12/13/2004 N 12/13/2005 PD 4/1/2005 PD 4/1/2005 N 4/5/2005 N 4/5/2005 N 4/7/2005 N 1/13/2004 N 1/12/2005 N 1/12/2005 N 1/12/2005 N 1/12/2005 N 1/13/2005 N 1/13/2005 N 1/19/2005 N	1.5 0 1.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 CL200.7 0.5 CL200.7 2 CL200.7 0.25 CL200.7	CHROMIUM, TOTAL	MG/KG	4.2 5.8 4 6.4 4.6 5.9 5.3 3.7 3.9 5.3 2.5 4.6 4.2 3.5 2.7 6.5 4.8 3.1	4.2 5-point Composite 5.8 5-point Composite 4 5-point Composite 6.4 5-point Composite 6.4 5-point Composite 6.9 5-point Composite 5.9 5-point Composite 5.3 5-point Composite 3.7 5-point Composite 3.9 5-point Composite 5.3 5-point Composite 5.3 5-point Composite 6.5 5-point Composite 4.6 5-point Composite 4.2 5-point Composite 4.2 5-point Composite 5.5 5-point Composite 6.5 5-point Composite
Target Area	SS132AU SS132AV SS132AV SS132AV SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS11105-02 SS0111005-04 SS011005-05 SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y	11/23/2004 N 11/22/2004 N 11/22/2004 N 12/13/2004 N 11/19/2005 N 1/19/2005 FD 4/1/2005 N 4/5/2005 N 4/5/2005 N 4/7/2005 N 12/13/2004 N 11/12/2005 N 1/12/2005 N 1/12/2005 N 1/12/2005 N 1/19/2005 N 1/19/2005 N 1/19/2005 N	1.5 0 1.5 0 0 0 0 0 0 0 0 0 0 0 0 0	2 CL200.7 0.5 CL200.7 2 CL200.7 0.25 CL200.7	CHROMIUM, TOTAL	MG/KG	4.2 5.8 4 6.4 4.6 5.9 5.3 3.7 3.9 5.3 2.5 4.6 4.2 3.5 2.7 6.5 4.8 3.1	4.2 5-point Composite 5.8 5-point Composite 4 5-point Composite 6.4 5-point Composite 6.4 5-point Composite 6.5 5-point Composite 5.9 5-point Composite 5.3 5-point Composite 3.9 5-point Composite 3.9 5-point Composite 3.5 5-point Composite 5.3 5-point Composite 6.5 5-point Composite 4.6 5-point Composite 4.2 5-point Composite 4.2 5-point Composite 5.3 5-point Composite 6.5 5-point Composite 7.5 5-point Composite 6.7 5-point Composite 6.7 5-point Composite 7.7 5-point Composite
Target Area	SS132AU SS132AV SS132AV SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS011005-04 SS011005-05 SS132Y SS01205-02 SS012005-02 SS122Y SS012005-02 SS132Y	11/23/2004 N 11/22/2004 N 11/22/2004 N 12/23/2004 N 12/13/2005 N 1/19/2005 FD 4/1/2005 N 4/5/2005 N 4/5/2005 N 1/13/2004 N 1/12/2005 N 1/12/2005 N 1/12/2005 N 1/13/2005 N 1/13/2005 N 1/13/2005 N 1/13/2005 N 1/13/2005 N 1/12/2005 N 1/12/2005 N 1/12/2005 N 1/12/2005 N 1/21/2005 N 1/21/2005 N	1.5 0 1.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 CL200.7 0.5 CL200.7 0.5 CL200.7 2 CL200.7 0.25 CL200.7	CHROMIUM, TOTAL	MG/KG	4.2 5.8 4 6.4 4.6 5.9 5.3 3.7 3.9 5.3 2.5 4.6 4.2 3.5 2.7 6.5 4.8 3.1 3.7 2.8	4.2 5-point Composite 5.8 5-point Composite 4 5-point Composite 6.4 5-point Composite 6.4 5-point Composite 5.9 5-point Composite 5.9 5-point Composite 5.3 5-point Composite 6.5 5-point Composite 4.6 5-point Composite 4.2 5-point Composite 4.2 5-point Composite 5.3 5-point Composite 6.5 5-point Composite 7.5 5-point Composite 6.5 5-point Composite 6.5 5-point Composite 7.5 5-point Composite
Target Area	SS132AU SS132AV SS132AV SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS011105-02 SS011005-04 SS011005-05 SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y	11/23/2004 N 11/22/2004 N 11/22/2004 N 12/23/2004 N 12/13/2005 N 1/19/2005 FD 4/1/2005 N 4/5/2005 N 4/5/2005 N 4/7/2005 N 1/12/2005 N 1/21/2005 N	1.5 0 1.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 CL200.7 0.5 CL200.7 0.5 CL200.7 2 CL200.7 0.25 CL200.7	CHROMIUM, TOTAL	MG/KG	4.2 5.8 4 6.4 4.6 5.9 5.3 3.7 3.9 5.3 2.5 4.6 4.2 3.5 2.7 6.5 4.8 3.1 3.7 2.8	4.2 5-point Composite 5.8 5-point Composite 4 5-point Composite 6.4 5-point Composite 6.4 5-point Composite 6.9 5-point Composite 5.9 5-point Composite 5.3 5-point Composite 3.7 5-point Composite 3.9 5-point Composite 5.3 5-point Composite 5.3 5-point Composite 6.5 5-point Composite 4.2 5-point Composite 4.2 5-point Composite 5.5 5-point Composite 6.5 5-point Composite
Target Area	SS132AU SS132AV SS132AV SS132AV SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS011105-02 SS011005-05 SS132Y SS132Y SS132S SS132S SS132S SS132S SS132S SS132S SS132T SS132T SS132T SS132T SS132T	11/23/2004 N 11/22/2004 N 11/22/2004 N 12/23/2004 N 12/13/2005 N 1/19/2005 FD 4/1/2005 N 4/5/2005 N 4/5/2005 N 1/13/2004 N 1/12/2005 N 1/21/2005 N	1.5 0 1.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 CL200.7 0.5 CL200.7 2 CL200.7 2 CL200.7 0.25 CL200.7 0.5 CL200.7 1 CL200.7	CHROMIUM, TOTAL CHROMIUM, TOTA	MG/KG	4.2 5.8 4 6.4 4.6 5.9 5.3 3.7 3.9 5.3 2.5 4.6 4.2 3.5 2.7 6.5 4.8 3.1 3.7 2.8 3.6 2.5	4.2 5-point Composite 5.8 5-point Composite 4 5-point Composite 6.4 5-point Composite 6.4 5-point Composite 6.5 5-point Composite 5.9 5-point Composite 5.3 5-point Composite 5.3 5-point Composite 3.9 5-point Composite 5.3 5-point Composite 6.5 5-point Composite 4.6 5-point Composite 4.2 5-point Composite 4.2 5-point Composite 5.3 5-point Composite 6.5 5-point Composite 7.5 5-point Composite 7.5 5-point Composite 8.5 5-point Composite 9.5 5-point Composite 1.5 5-point Composite
Target Area	SS132AU SS132AV SS132AV SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS011005-04 SS011005-04 SS011005-05 SS132Y SS012005-02 SS012005-01 SS132T SS132T SS132T SS132T SS132T SS132T	11/23/2004 N 11/22/2004 N 11/22/2004 N 12/23/2004 N 12/13/2005 N 1/19/2005 FD 4/1/2005 N 4/5/2005 N 4/5/2005 N 4/5/2005 N 1/13/2004 N 1/13/2005 N 1/13/2005 N 1/12/2005 N 1/14/2005 N 1/14/2005 N 1/14/2005 N 1/12/2005 N 1/12/2005 N 1/21/2005 N 1/21/2001 N 3/20/2001 N 3/20/2001 FD	1.5 0 1.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 CL200.7 0.5 CL200.7 2 CL200.7 0.25 CL200.7 1 CL200.7 1 CL200.7	CHROMIUM, TOTAL	MG/KG	4.2 5.8 4 6.4 4.6 5.9 5.3 3.7 3.9 5.3 2.5 4.6 4.2 3.5 2.7 6.5 4.8 3.1 3.7 2.8 3.6 2.5 2.8	4.2 5-point Composite 5.8 5-point Composite 4 5-point Composite 6.4 5-point Composite 6.4 5-point Composite 6.5 5-point Composite 5.9 5-point Composite 5.3 5-point Composite 5.3 5-point Composite 5.3 5-point Composite 5.3 5-point Composite 6.5 5-point Composite 4.6 5-point Composite 4.2 5-point Composite 4.2 5-point Composite 4.5 5-point Composite 6.5 5-point Composite 6.5 5-point Composite 6.7 5-point Composite 6.8 5-point Composite 6.9 5-point composite
Target Area	SS132AU SS132AV SS132AV SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS011105-04 SS011005-05 SS132Y SS012005-01 SS132Y SS012005-01 SS132T SS132T SS132T SS132T SS132T SS132T SS132T SS132T SS132T SS132T SS132T SS132T SS132T	11/23/2004 N 11/22/2004 N 11/22/2004 N 12/13/2004 N 1/19/2005 D 4/1/2005 D 4/1/2005 N 4/5/2005 N 4/5/2005 N 4/7/2005 N 1/13/2004 N 1/12/2005 N 1/12/2005 N 1/12/2005 N 1/12/2005 N 1/12/2005 N 1/18/2005 N 1/19/2005 N 1/21/2005 N 1/21/2001 N 3/20/2001 N 3/20/2001 FD 3/20/2001 FD	1.5 0 1.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 CL200.7 0.5 CL200.7 2 CL200.7 0.25 CL200.7 1 CL200.7 1 CL200.7 1 CL200.7 1 CL200.7 1 CL200.7	CHROMIUM, TOTAL	MG/KG	4.2 5.8 4 6.4 4.6 5.9 5.3 3.7 3.9 5.3 2.5 4.6 4.2 3.5 2.7 6.5 4.8 3.1 3.7 2.8 3.6 2.5 4.6 5.3	4.2 5-point Composite 5.8 5-point Composite 4 5-point Composite 6.4 5-point Composite 6.4 5-point Composite 4.6 5-point Composite 5.9 5-point Composite 5.9 5-point Composite 5.3 5-point Composite 3.9 5-point Composite 5.3 5-point Composite 5.3 5-point Composite 4.6 5-point Composite 4.6 5-point Composite 4.2 5-point Composite 4.2 5-point Composite 5.3 5-point Composite 6.5 5-point Composite 7.7 5-point Composite 8.8 5-point Composite 9.5 5-point Composite 1.7 5-point composite 1.8 5-point composite 1.8 5-point composite 1.9 5-point composite
Target Area	SS132AU SS132AV SS132AV SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS011105-02 SS011005-04 SS011005-05 SS132Y SS012005-01 SS132Y SS012005-01 SS132T SS132T SS132T SS132T SS132T SS132T SS132T SS132T SS132S	11/23/2004 N 11/22/2004 N 11/22/2004 N 12/23/2004 N 12/13/2005 N 1/19/2005 FD 4/1/2005 N 4/5/2005 N 4/5/2005 N 1/13/2004 N 1/12/2005 N 1/13/2004 N 1/12/2005 N 1/14/2005 N 1/14/2005 N 1/14/2005 N 1/18/2005 N 1/18/2005 N 1/19/2005 N 1/21/2005 N	1.5 0 1.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 CL200.7 0.5 CL200.7 0.5 CL200.7 2 CL200.7 0.25 CL200.7 0.5 CL200.7 1 CL200.7 1 CL200.7 0.25 CL200.7 0.5 CL200.7 0.5 CL200.7	CHROMIUM, TOTAL	MG/KG	4.2 5.8 4 6.4 4.6 5.9 5.3 3.7 3.9 5.3 2.5 4.6 4.2 3.5 2.7 6.5 4.8 3.1 3.7 2.8 3.6 3.6 3.6 3.7 3.7 3.8 3.6 4.6 4.2 3.5 4.6 5.3 5.3 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5	4.2 5-point Composite 5.8 5-point Composite 4 5-point Composite 6.4 5-point Composite 6.4 5-point Composite 6.5 5-point Composite 5.9 5-point Composite 5.3 5-point Composite 3.7 5-point Composite 3.9 5-point Composite 5.3 5-point Composite 6.5 5-point Composite 4.6 5-point Composite 4.6 5-point Composite 4.7 5-point Composite 6.7 5-point Composite 6.8 5-point Composite 6.9 5-point Composite
Target Area	SS132AU SS132AV SS132AV SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS011105-04 SS011005-05 SS132Y SS012005-01 SS132Y SS012005-01 SS132T SS132T SS132T SS132T SS132T SS132T SS132T SS132T SS132T SS132T SS132T SS132T SS132T	11/23/2004 N 11/22/2004 N 11/22/2004 N 12/13/2004 N 11/19/2005 N 1/19/2005 FD 4/1/2005 N 4/5/2005 N 4/5/2005 N 4/7/2005 N 1/13/2004 N 1/12/2005 N 1/12/2005 N 1/12/2005 N 1/12/2005 N 1/12/2005 N 1/19/2005 N 1/19/2005 N 1/21/2005 N	1.5 0 1.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 CL200.7 0.5 CL200.7 2 CL200.7 0.25 CL200.7 1 CL200.7 1 CL200.7 1 CL200.7 1 CL200.7 1 CL200.7	CHROMIUM, TOTAL	MG/KG	4.2 5.8 4 6.4 4.6 5.9 5.3 3.7 3.9 5.3 2.5 4.6 4.2 3.5 2.7 6.5 4.8 3.1 3.7 2.8 3.6 2.5 4.8 3.1 3.7 3.9 5.3	4.2 5-point Composite 5.8 5-point Composite 4 5-point Composite 6.4 5-point Composite 6.4 5-point Composite 5.9 5-point Composite 5.9 5-point Composite 5.3 5-point Composite 5.3 5-point Composite 5.3 5-point Composite 5.3 5-point Composite 6.5 5-point composite 7.5-point composite 6.5 5-point composite 6.5 5-point composite 7.5-point composite
Target Area	SS132AU SS132AV SS132AV SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS011105-02 SS011005-05 SS132Y SS012005-01 SS132T SS012005-01 SS132T SS132T SS132T SS132T SS132T SS132T SS132T SS132T SS132S SS132S SS132S	11/23/2004 N 11/22/2004 N 11/22/2004 N 12/13/2004 N 11/19/2005 N 1/19/2005 FD 4/1/2005 N 4/5/2005 N 4/5/2005 N 1/13/2004 N 12/13/2004 N 11/12/2005 N 1/12/2005 N 1/12/2005 N 1/12/2005 N 1/12/2005 N 1/19/2005 N 1/19/2005 N 1/21/2005 N 1/21/2005 N 1/21/2005 N 1/21/2005 N 1/21/2005 N 1/21/2001 N 3/20/2001 N 3/20/2001 N 3/20/2001 N 3/20/2001 N 3/20/2001 N 3/20/2001 N 3/20/2001 N 3/20/2001 N	1.5 0 1.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 CL200.7 0.5 CL200.7 0.5 CL200.7 2 CL200.7 0.25 CL200.7 0.5 CL200.7 0.5 CL200.7 0.5 CL200.7 1 CL200.7 1 CL200.7 1 CL200.7 0.25 CL200.7 0.25 CL200.7 0.25 CL200.7	CHROMIUM, TOTAL	MG/KG	4.2 5.8 4 4.4 4.6 5.9 5.3 3.7 3.9 5.3 2.5 4.6 4.2 3.5 2.7 6.5 4.8 3.1 3.7 2.8 3.6 2.5 2.1 5.8 6.5 7	4.2 5-point Composite 5.8 5-point Composite 4 5-point Composite 6.4 5-point Composite 6.4 5-point Composite 6.5 5-point Composite 5.9 5-point Composite 6.5 5-point Composite 6.6 5-point Composite 6.7 5-point Composite 6.8 5-point composite 6.9 5-point composite
Target Area	SS132AU SS132AV SS132AV SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS011105-02 SS011005-04 SS011005-05 SS132Y SS012005-01 SS132Y SS012005-01 SS132T SS132T SS132T SS132T SS132T SS132S SS132S SS132S	11/23/2004 N 11/22/2004 N 11/22/2004 N 12/23/2004 N 12/23/2005 N 1/19/2005 FD 4/1/2005 N 4/5/2005 N 4/5/2005 N 4/5/2005 N 1/13/2004 N 1/12/2005 N 1/12/2005 N 1/12/2005 N 1/12/2005 N 1/12/2005 N 1/12/2005 N 1/12/2005 N 1/21/2005 N 1/21/2001 N 3/20/2001 N 3/20/2001 N 3/20/2001 N	1.5 0 1.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 CL200.7 0.5 CL200.7 0.5 CL200.7 2 CL200.7 0.25 CL200.7 1 CL200.7 1 CL200.7 0.5 CL200.7 0.5 CL200.7 1 CL200.7 0.5 CL200.7 0.5 CL200.7 0.5 CL200.7 0.5 CL200.7 0.5 CL200.7 0.5 CL200.7	CHROMIUM, TOTAL TOTA	MG/KG	4.2 5.8 4 6.4 4.6 5.9 5.3 3.7 3.9 5.3 2.5 4.6 4.2 3.5 2.7 6.5 4.8 3.1 2.8 3.6 2.5 2.8 3.6 2.5 4.6 4.2 3.5 2.7 6.5 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5	4.2 5-point Composite 5.8 5-point Composite 4 5-point Composite 6.4 5-point Composite 6.4 5-point Composite 6.5 5-point Composite 5.9 5-point Composite 5.3 5-point Composite 5.3 5-point Composite 6.5 3-point Composite 6.5 3-point Composite 6.5 3-point Composite 6.5 5-point composite 6.6 5-point composite 6.7 5-point composite 6.7 5-point composite 6.8 5-point composite 6.9 5-point composite 7 5-point composite 7 5-point composite 7 5-point composite
Target Area	SS132AU SS132AV SS132AV SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS011105-02 SS011005-04 SS011005-05 SS132Y SS012005-02 SS012005-01 SS132T SS132T SS132T SS132T SS132T SS132T SS132T SS132T SS132T SS132S	11/23/2004 N 11/22/2004 N 11/22/2004 N 12/23/2004 N 12/23/2005 PD 4/1/2005 PD 4/1/2005 N 4/5/2005 N 4/5/2005 N 4/7/2005 N 1/13/2004 N 1/12/2005 N 1/21/2005 N 1/21/2005 N 1/21/2005 N 1/21/2005 N 1/21/2005 N 1/21/2005 N 1/21/2005 N 1/21/2001 N 3/20/2001 N 3/20/2001 N 3/20/2001 N 3/20/2001 N 3/20/2001 N 3/20/2001 N 3/20/2001 N 3/20/2001 N	1.5 0 1.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 CL200.7 0.5 CL200.7 0.5 CL200.7 2 CL200.7 0.25 CL200.7 0.5 CL200.7 1 CL200.7	CHROMIUM, TOTAL	MG/KG	4.2 5.8 4 6.4 4.6 5.9 5.3 3.7 3.9 5.3 2.5 4.6 4.2 3.5 2.7 6.5 4.8 3.1 3.7 2.8 3.6 2.5 2.1 5.8 6.5 7 2.9 1.3 J	4.2 5-point Composite 5.8 5-point Composite 4 5-point Composite 6.4 5-point Composite 6.4 5-point Composite 6.5 5-point Composite 5.9 5-point Composite 5.3 5-point Composite 6.5 3-point Composite 6.5 5-point composite 7.5-point composite 6.5 5-point composite 6.5 5-point composite 7.5-point composite 6.5 5-point composite
Target Area	SS132AU SS132AV SS132AV SS132AV SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS011105-02 SS011005-04 SS011005-05 SS132Y SS012005-01 SS132T SS132T SS132T SS132T SS132T SS132S SS132S SS132S SS132S SS132S SS132S	11/23/2004 N 11/22/2004 N 11/22/2004 N 12/13/2004 N 11/19/2005 D 41/19/2005 FD 41/19/2005 N 4/5/2005 N 4/5/2005 N 4/7/2005 N 12/13/2004 N 11/12/2005 N 11/12/2005 N 11/12/2005 N 11/12/2005 N 11/12/2005 N 11/12/2005 N 11/19/2005 N 11/19/2005 N 1/21/2005 N 1/21/2005 N 1/21/2001 N 3/20/2001 N	1.5 0 1.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 CL200.7 0.5 CL200.7 0.5 CL200.7 2 CL200.7 0.25 CL200.7 1 CL200.7 1 CL200.7 0.5 CL200.7 0.5 CL200.7 1 CL200.7 0.5 CL200.7 0.5 CL200.7 0.5 CL200.7 0.5 CL200.7 0.5 CL200.7 0.5 CL200.7	CHROMIUM, TOTAL	MG/KG	4.2 5.8 4 6.4 4.6 5.9 5.3 3.7 3.9 5.3 2.5 4.6 4.2 3.5 2.7 6.5 4.8 3.1 3.7 2.8 3.6 2.5 2.1 5.8 6.5 7 - 5-POINT COMP(2.9 1.3 J	4.2 5-point Composite 5.8 5-point Composite 4 5-point Composite 6.4 5-point Composite 6.4 5-point Composite 6.5 5-point Composite 5.9 5-point Composite 5.3 5-point Composite 5.3 5-point Composite 6.5 5-point Composite 6.5 5-point Composite 6.5 5-point Composite 6.6 5-point Composite 6.7 5-point Composite 6.8 5-point Composite 6.9 5-point composite
Target Area	SS132AU SS132AV SS132AV SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS011105-02 SS011005-04 SS011005-05 SS132Y SS012005-02 SS012005-01 SS132T SS132T SS132T SS132T SS132T SS132T SS132T SS132T SS132T SS132S	11/23/2004 N 11/22/2004 N 11/22/2004 N 12/23/2004 N 12/23/2005 PD 4/1/2005 PD 4/1/2005 N 4/5/2005 N 4/5/2005 N 4/7/2005 N 1/13/2004 N 1/12/2005 N 1/21/2005 N 1/21/2005 N 1/21/2005 N 1/21/2005 N 1/21/2005 N 1/21/2005 N 1/21/2005 N 1/21/2001 N 3/20/2001 N 3/20/2001 N 3/20/2001 N 3/20/2001 N 3/20/2001 N 3/20/2001 N 3/20/2001 N 3/20/2001 N	1.5 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 CL200.7 0.5 CL200.7 0.5 CL200.7 2 CL200.7 0.25 CL200.7 1 CL200.7 1 CL200.7 1 CL200.7 0.5 CL200.7	CHROMIUM, TOTAL	MG/KG	4.2 5.8 4 6.4 4.6 5.9 5.3 3.7 3.9 5.3 2.5 4.6 4.2 3.5 2.7 6.5 4.8 3.1 3.7 2.8 3.6 2.5 2.1 5.8 6.5 7 2.9 1.3 J	4.2 5-point Composite 5.8 5-point Composite 4 5-point Composite 6.4 5-point Composite 6.4 5-point Composite 6.5 5-point Composite 5.9 5-point Composite 5.3 5-point Composite 6.5 3-point Composite 6.5 5-point composite 7.5-point composite 6.5 5-point composite 6.5 5-point composite 7.5-point composite 6.5 5-point composite
Target Area	SS132AU SS132AV SS132AV SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS011005-04 SS011005-05 SS132Y SS012005-02 SS012005-01 SS132T SS132T SS132T SS132T SS132T SS132T SS132T SS132T SS132T SS132T SS132T SS132T SS132T SS132S	11/23/2004 N 11/22/2004 N 11/22/2004 N 12/23/2004 N 12/13/2005 N 1/19/2005 FD 4/1/2005 N 4/5/2005 N 4/5/2005 N 4/5/2005 N 1/13/2004 N 1/13/2005 N 1/13/2005 N 1/12/2005 N 1/12/2005 N 1/12/2005 N 1/12/2005 N 1/12/2005 N 1/21/2005 N 1/21/2005 N 1/21/2005 N 1/21/2005 N 1/21/2005 N 1/21/2005 N 1/21/2005 N 1/21/2000 N 1/21/2001 N 3/20/2001 N	1.5 0 1.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 CL200.7 0.5 CL200.7 0.5 CL200.7 2 CL200.7 0.25 CL200.7 0.5 CL200.7 1 CL200.7 1 CL200.7 0.5 CL200.7	CHROMIUM, TOTAL	MG/KG	4.2 5.8 4 6.4 4.6 5.9 5.3 3.7 3.9 5.3 2.5 4.6 4.2 3.5 2.7 6.5 4.8 3.1 2.8 3.6 2.1 5.8 6.5 2.7 5.8 6.5 2.1 5.8 6.5 2.1 5.8 6.5 2.9 1.3 J 2.4 8.4	4.2 5-point Composite 5.8 5-point Composite 4 5-point Composite 6.4 5-point Composite 6.4 5-point Composite 5.9 5-point Composite 5.9 5-point Composite 5.3 5-point Composite 5.3 5-point Composite 5.3 5-point Composite 5.3 5-point Composite 6.5 3-point Composite 6.5 5-point composite 6.
Target Area	SS132AU SS132AV SS132AV SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS011105-02 SS011005-04 SS011005-05 SS132Y SS012005-02 SS012005-01 SS132T SS132T SS132T SS132T SS132T SS132T SS132T SS132T SS132T SS132T SS132S SS132S	11/23/2004 N 11/22/2004 N 11/22/2004 N 12/23/2004 N 12/23/2005 PD 4/1/2005 PD 4/1/2005 N 4/5/2005 N 4/5/2005 N 4/7/2005 N 1/13/2004 N 1/12/2005 N 1/21/2005 N 1/21/2005 N 1/21/2005 N 1/21/2005 N 1/21/2001 N 3/20/2001 N	1.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.25 0.5 0.5 0.5 0.25	2 CL200.7 0.5 CL200.7 0.5 CL200.7 2 CL200.7 0.25 CL200.7 1 CL200.7 1 CL200.7 1 CL200.7 0.5 CL200.7	CHROMIUM, TOTAL	MG/KG	4.2 5.8 4 6.4 4.6 5.9 5.3 3.7 3.9 5.3 2.5 4.6 4.2 3.5 2.7 6.5 5.8 3.1 3.7 2.8 3.6 2.5 2.1 5.8 5.6 7 - S-POINT COMP(2.9 1.3 J 2.4 10.1 11.2 25.3 J	4.2 5-point Composite 5.8 5-point Composite 4 5-point Composite 6.4 5-point Composite 6.4 5-point Composite 5.9 5-point Composite 5.9 5-point Composite 5.3 5-point Composite 6.5 3-point Composite 6.5 5-point composite 6.6 5-point composite 6.6 5-point composite 6.7 5-point composite 6.8 5-point composite 6.9 5-point composite 6.
Target Area	SS132AU SS132AV SS132AV SS132AV SS132Y SS011105-02 SS011005-04 SS011005-04 SS01205-02 SS012005-01 SS132T SS132T SS132T SS132T SS132T SS132T SS132T SS132T SS132S	11/23/2004 N 11/22/2004 N 11/22/2004 N 12/23/2004 N 12/23/2005 FD 4/1/2005 FD 4/1/2005 N 4/5/2005 N 4/5/2005 N 1/19/2005 N 1/13/2004 N 1/12/2005 N 1/21/2005 N 1/21/2005 N 1/21/2005 N 1/21/2005 N 1/21/2001 N 3/20/2001 N	1.5 0 1.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 CL200.7 0.5 CL200.7 0.5 CL200.7 2 CL200.7 0.25 CL200.7 0.5 CL200.7 1 CL200.7 1 CL200.7 0.5 CL200.7	CHROMIUM, TOTAL	MG/KG	4.2 5.8 4 6.4 4.6 5.9 5.3 3.7 3.9 5.3 2.5 4.6 4.2 3.5 2.7 6.5 5.8 3.1 3.7 2.8 3.6 2.5 2.1 5.8 5.6 7 - S-POINT COMP(2.9 1.3 J 2.4 10.1 11.2 25.3 J	4.2 5-point Composite 5.8 5-point Composite 4 5-point Composite 6.4 5-point Composite 6.4 5-point Composite 5.9 5-point Composite 5.9 5-point Composite 5.3 5-point Composite 6.5 3-point Composite 6.5 5-point composite 6.6 5-point composite 6.6 5-point composite 6.7 5-point composite 6.8 5-point composite 6.9 5-point composite 6.
Target Area	SS132AU SS132AV SS132AV SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS011105-02 SS011005-04 SS011005-05 SS132Y SS012005-01 SS132Y SS012005-01 SS132T SS132S SS132S SS132S SS132S SS132S SS132S SS132S SS132S SS132S SS132S SS132S	11/23/2004 N 11/22/2004 N 11/22/2004 N 12/23/2004 N 12/23/2005 FD 4/1/2005 FD 4/1/2005 N 4/5/2005 N 4/5/2005 N 1/19/2005 N 1/13/2004 N 1/12/2005 N 1/21/2005 N 1/21/2005 N 1/21/2005 N 1/21/2005 N 1/21/2001 N 3/20/2001 N	1.5 0 1.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 CL200.7 0.5 CL200.7 0.5 CL200.7 2 CL200.7 0.25 CL200.7 0.5 CL200.7 1 CL200.7 1 CL200.7 0.5 CL200.7	CHROMIUM, TOTAL	MG/KG	4.2 5.8 4 6.4 4.6 5.9 5.3 3.7 3.9 5.3 2.5 4.6 4.2 3.5 2.7 6.5 5.8 3.1 3.7 2.8 3.6 2.5 2.1 5.8 5.6 7 - S-POINT COMP(2.9 1.3 J 2.4 10.1 11.2 25.3 J	4.2 5-point Composite 5.8 5-point Composite 4 5-point Composite 6.4 5-point Composite 6.4 5-point Composite 5.9 5-point Composite 5.9 5-point Composite 5.3 5-point Composite 6.5 3-point Composite 6.5 5-point composite 6.6 5-point composite 6.6 5-point composite 6.7 5-point composite 6.8 5-point composite 6.9 5-point composite 6.

Table C.4-4
Former A Range
Calculation of Averages Concentrations for Metals Exhibiting Maximum Concentrations Above a Screening Criterion in the Metals 4 Exposure Area

								Concentration
		Normal or						Used in
Aron	Location ID	Collection Field		nd Depth Analytical		Unito	Detected	Computation
Area rget Area	SS132AU	Date Duplicate 11/23/2004 N	Depth (ft)	(ft) Method 0.5 CL200.7	LEAD Analyte	MG/KG	Value Flags 75.2 J	of Averages Sample Type 75.2 5-point Composite
get Area	SS132AU SS132AU	11/23/2004 N 11/23/2004 N	1.5	2 CL200.7	LEAD	MG/KG	75.2 J 38.6 J	38.6 5-point Composite
get Area	SS132AV	11/22/2004 N	0	0.5 CL200.7	LEAD	MG/KG	120 J	120 5-point Composite
get Area	SS132AV	11/22/2004 N	1.5	2 CL200.7	LEAD	MG/KG	183 J	183 5-point Composite
get Area	SS132Y	12/13/2004 N	0	0.25 CL200.7	LEAD	MG/KG	129	129 5-point Composite
get Area	SS132Y	1/19/2005 N	0	0.25 CL200.7	LEAD	MG/KG	80.2	80.2 5-point Composite
rget Area	SS132Y	1/19/2005 FD	0	0.25 CL200.7	LEAD	MG/KG	74.9	74.9 5-point Composite
rget Area	SS132Y	4/1/2005 N	0	0.25 CL200.7	LEAD	MG/KG	20.5	20.5 5-point Composite
rget Area	SS132Y	4/5/2005 N	0	0.25 CL200.7	LEAD	MG/KG	4.7	4.7 5-point Composite
rget Area	SS132Y	4/5/2005 N 4/5/2005 N	0	0.25 CL200.7 0.25 CL200.7	LEAD	MG/KG	2.8	2.8 5-point Composite
rget Area	SS132Y	4/7/2005 N	0	0.25 CL200.7 0.25 CL200.7	LEAD	MG/KG	3.3 J	
	SS132Y	12/13/2004 N	0	0.25 CL200.7 0.25 CL200.7	LEAD	MG/KG	107	3.3 5-point Composite 107 5-point Composite
rget Area	SS011105-02	1/12/2004 N	0	0.25 CL200.7 0.25 CL200.7	LEAD	MG/KG	107 103 J	103 5-point Composite
rget Area	SS011105-02	1/12/2005 N 1/12/2005 N	0	0.25 CL200.7 0.25 CL200.7	LEAD	MG/KG	120 J	
rget Area	SS011005-04 SS011005-05		0	0.25 CL200.7 0.25 CL200.7	LEAD	MG/KG	75.6 J	120 5-point Composite
		1/12/2005 N 1/18/2005 N						75.6 5-point Composite
rget Area	SS132Y		0	0.25 CL200.7	LEAD	MG/KG	46.7	46.7 5-point Composite
arget Area	SS132Y	1/19/2005 N	0	0.25 CL200.7	LEAD	MG/KG	97.8	97.8 5-point Composite
rget Area	SS012005-02	1/21/2005 N	0	0.25 CL200.7	LEAD	MG/KG	4.8	4.8 5-point Composite
rget Area	SS012005-01	1/21/2005 N	0	0.25 CL200.7	LEAD	MG/KG	127	127 5-point Composite
rget Area	SS132T	3/20/2001 N	0	0.25 CL200.7	LEAD	MG/KG	20.9	20.9 5-point composite
rget Area	SS132T	3/20/2001 N	0.25	0.5 CL200.7	LEAD	MG/KG	19.2	19.2 5-point composite
arget Area	SS132T	3/20/2001 N	0.5	1 CL200.7	LEAD	MG/KG	8.6	8.6 5-point composite
arget Area	SS132T	3/20/2001 FD	0.5	1 CL200.7	LEAD	MG/KG	8.7	8.7 5-point composite
arget Area	SS132S	3/20/2001 N	0	0.25 CL200.7	LEAD	MG/KG	68.6	68.6 5-point composite
arget Area	SS132S	3/20/2001 N	0.25	0.5 CL200.7	LEAD	MG/KG	45.4	45.4 5-point composite
rget Area	SS132S	3/20/2001 N	0.5	1 CL200.7	LEAD	MG/KG	29.2	29.2 5-point composite
	00400=	0/00/005 :		0.05.01	1515		D 5-POINT COMPOSITE	
rget Area	SS132T	3/20/2001 N	0	0.25 CL200.7	LEAD	MG/KG	26.5	26.5 Discrete
rget Area	SS132T	3/20/2001 N	0.25	0.5 CL200.7	LEAD	MG/KG	19.5	19.5 Discrete
rget Area	SS132T	3/20/2001 N	0.5	1 CL200.7	LEAD	MG/KG	1.9	1.9 Discrete
rget Area	SS132S	3/20/2001 N	0	0.25 CL200.7	LEAD	MG/KG	100	100 Discrete
rget Area	SS132S	3/20/2001 N	0.25	0.5 CL200.7	LEAD	MG/KG	4.3	4.3 Discrete
arget Area	SS132S	3/20/2001 N	0.5	1 CL200.7	LEAD	MG/KG	5	5 Discrete
arget Area	SS02234-A	9/19/2006 N	0	0.25 SW6010B	LEAD	MG/KG	10.3	10.3 Discrete
arget Area	SS02234-A	9/19/2006 N	0	0.25 SW6010B	LEAD	MG/KG	14.7	14.7 Discrete
arget Area	SS02234-A	9/19/2006 N	0	0.25 SW6010B	LEAD	MG/KG	4.9	4.9 Discrete
arget Area	SS02235-A	9/27/2001 N	0	1 CL200.7	LEAD	MG/KG	205	205 Discrete
							E FOR LEAD DISCRETE	
	SSFATA09				LEAD		151	151 MIS
		1/11/2006 N	0	0.5 SW6010B		MG/KG		
	SSFATA09	1/11/2006 FD	0	0.5 SW6010B 0.5 SW6010B	LEAD	MG/KG	189	189 MIS
arget Area	SSFATA09	1/11/2006 FD	0	0.5 SW6010B	LEAD	MG/KG	189 /ERAGE FOR LEAD MIS	189 MIS 3 170
arget Area	SSFATA09 SS132AU	1/11/2006 FD 11/23/2004 N	0	0.5 SW6010B 0.5 CL200.7	NICKEL	MG/KG AV	189 /ERAGE FOR LEAD MIS 1.8	189 MIS 5 170 1.8 5-point Composite
arget Area arget Area arget Area	SSFATA09 SS132AU SS132AU	1/11/2006 FD 11/23/2004 N 11/23/2004 N	0 0 1.5	0.5 SW6010B 0.5 CL200.7 2 CL200.7	NICKEL NICKEL	MG/KG MG/KG MG/KG	189 /ERAGE FOR LEAD MIS 1.8 3.3	189 MIS 5 170 1.8 5-point Composite 3.3 5-point Composite
arget Area arget Area arget Area arget Area	SSFATA09 SS132AU SS132AU SS132AV	1/11/2006 FD 11/23/2004 N 11/23/2004 N 11/22/2004 N	0 0 1.5 0	0.5 SW6010B 0.5 CL200.7 2 CL200.7 0.5 CL200.7	NICKEL NICKEL NICKEL	MG/KG MG/KG MG/KG MG/KG MG/KG	189 /ERAGE FOR LEAD MIS 1.8 3.3 1.7	189 MIS 5 170 1.8 5-point Composite 3.3 5-point Composite 1.7 5-point Composite
arget Area arget Area arget Area arget Area arget Area	SSFATA09 SS132AU SS132AU SS132AV SS132AV	1/11/2006 FD 11/23/2004 N 11/23/2004 N 11/22/2004 N 11/22/2004 N	0 1.5 0 1.5	0.5 SW6010B 0.5 CL200.7 2 CL200.7 0.5 CL200.7 2 CL200.7	NICKEL NICKEL NICKEL NICKEL	MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG	189 /ERAGE FOR LEAD MIS 1.8 3.3 1.7 3	189 MIS 5 170 1.8 5-point Composite 3.3 5-point Composite 1.7 5-point Composite 3 5-point Composite
arget Area arget Area arget Area arget Area arget Area arget Area	SSFATA09 SS132AU SS132AU SS132AV SS132AV SS132Y	1/11/2006 FD 11/23/2004 N 11/23/2004 N 11/22/2004 N 11/22/2004 N 12/13/2004 N	0 1.5 0 1.5 0	0.5 SW6010B 0.5 CL200.7 2 CL200.7 0.5 CL200.7 2 CL200.7 2 CL200.7 0.25 CL200.7	NICKEL NICKEL NICKEL NICKEL NICKEL	MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG	189 /ERAGE FOR LEAD MIS 1.8 3.3 1.7 3 2.3	189 MIS 170 1.8 5-point Composite 3.3 5-point Composite 1.7 5-point Composite 3 5-point Composite 2.3 5-point Composite
arget Area arget Area arget Area arget Area arget Area arget Area arget Area	SSFATA09 SS132AU SS132AU SS132AV SS132AV SS132Y SS132Y	1/11/2006 FD 11/23/2004 N 11/23/2004 N 11/22/2004 N 11/22/2004 N 12/13/2004 N 1/19/2005 N	0 1.5 0 1.5 0	0.5 SW6010B 0.5 CL200.7 2 CL200.7 0.5 CL200.7 2 CL200.7 0.25 CL200.7 0.25 CL200.7	NICKEL NICKEL NICKEL NICKEL NICKEL NICKEL	MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG	189 /ERAGE FOR LEAD MIS 1.8 3.3 1.7 3 2.3 2.4	189 MIS 170 1.8 5-point Composite 3.5 5-point Composite 1.7 5-point Composite 3 5-point Composite 2.3 5-point Composite 2.4 5-point Composite
arget Area arget Area arget Area arget Area arget Area arget Area arget Area arget Area arget Area	SSFATA09 SS132AU SS132AU SS132AV SS132AV SS132AV SS132Y SS132Y SS132Y SS132Y	1/11/2006 FD 11/23/2004 N 11/23/2004 N 11/22/2004 N 11/22/2004 N 12/13/2004 N 1/19/2005 N 1/19/2005 FD	0 1.5 0 1.5 0 0	0.5 SW6010B 0.5 CL200.7 2 CL200.7 0.5 CL200.7 2 CL200.7 0.25 CL200.7 0.25 CL200.7 0.25 CL200.7 0.25 CL200.7	NICKEL NICKEL NICKEL NICKEL NICKEL NICKEL NICKEL NICKEL	MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG	189 /ERAGE FOR LEAD MIS 1.8 3.3 1.7 3 2.3 2.4 2.1	189 MIS 170 1.8 5-point Composite 3.3 5-point Composite 1.7 5-point Composite 2.3 5-point Composite 2.3 5-point Composite 2.4 5-point Composite 2.1 5-point Composite 2.1 5-point Composite
arget Area arget Area arget Area arget Area arget Area arget Area arget Area arget Area arget Area arget Area	SSFATA09 SS132AU SS132AU SS132AV SS132AV SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y	1/11/2006 FD 11/23/2004 N 11/23/2004 N 11/22/2004 N 11/22/2004 N 12/13/2004 N 1/19/2005 N 1/19/2005 FD 4/1/2005 N	0 1.5 0 1.5 0 0 0	0.5 SW6010B 0.5 CL200.7 2 CL200.7 0.5 CL200.7 2 CL200.7 0.25 CL200.7 0.25 CL200.7 0.25 CL200.7 0.25 CL200.7 0.25 CL200.7	NICKEL NICKEL NICKEL NICKEL NICKEL NICKEL NICKEL NICKEL NICKEL	MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG	189 /ERAGE FOR LEAD MIS 1.8 3.3 1.7 3 2.3 2.4 2.1 1.8	189 MIS 170 1.8 5-point Composite 3.3 5-point Composite 1.7 5-point Composite 3 5-point Composite 2.3 5-point Composite 2.4 5-point Composite 2.1 5-point Composite 1.8 5-point Composite
arget Area arget Area	SSFATA09 SS132AU SS132AU SS132AV SS132AV SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y SS132Y	1/11/2006 FD 11/23/2004 N 11/23/2004 N 11/22/2004 N 11/22/2004 N 12/13/2004 N 1/19/2005 N 1/19/2005 FD 4/1/2005 N	0 1.5 0 1.5 0 0 0 0	0.5 SW6010B 0.5 CL200.7 2 CL200.7 0.5 CL200.7 2 CL200.7 0.25 CL200.7	NICKEL NICKEL NICKEL NICKEL NICKEL NICKEL NICKEL NICKEL NICKEL NICKEL NICKEL	MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG	189 /FRAGE FOR LEAD MIS 1.8 3.3 1.7 3 2.3 2.4 2.1 1.8 2.2	189 MIS 170 1.8 5-point Composite 3.3 5-point Composite 1.7 5-point Composite 3 5-point Composite 2.3 5-point Composite 2.4 5-point Composite 2.1 5-point Composite 1.8 5-point Composite 2.2 5-point Composite
arget Area arget Area	SSFATA09 SS132AU SS132AU SS132AV SS132AV SS132Y	1/11/2006 FD 11/23/2004 N 11/23/2004 N 11/22/2004 N 11/22/2004 N 12/13/2004 N 1/19/2005 N 1/19/2005 FD 4/1/2005 N 4/5/2005 N	0 1.5 0 1.5 0 0 0 0	0.5 SW6010B 0.5 CL200.7 2 CL200.7 0.5 CL200.7 2 CL200.7 0.25 CL200.7	NICKEL	MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG	189 /ERAGE FOR LEAD MIS 1.8 3.3 1.7 3 2.3 2.4 2.1 1.8 2.2 3.1	189 MIS 170 1.8 5-point Composite 3.3 5-point Composite 1.7 5-point Composite 2.3 5-point Composite 2.3 5-point Composite 2.4 5-point Composite 2.1 5-point Composite 1.8 5-point Composite 1.8 5-point Composite 2.2 5-point Composite 3.1 5-point Composite
arget Area arget Area	SSFATA09 SS132AU SS132AV SS132AV SS132Y	1/11/2006 FD 11/23/2004 N 11/23/2004 N 11/22/2004 N 11/22/2004 N 12/13/2004 N 1/19/2005 N 1/19/2005 FD 4/1/2005 N 4/5/2005 N 4/5/2005 N	0 1.5 0 1.5 0 0 0 0 0	0.5 SW6010B 0.5 CL200.7 2 CL200.7 0.5 CL200.7 2 CL200.7 0.25 CL200.7	NICKEL	MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG	189 /ERAGE FOR LEAD MIS 1.8 3.3 1.7 3 2.3 2.4 2.1 1.8 2.2 3.1 1.6	189 MIS 170 1.8 5-point Composite 3.3 5-point Composite 1.7 5-point Composite 2.3 5-point Composite 2.3 5-point Composite 2.4 5-point Composite 2.1 5-point Composite 1.8 5-point Composite 2.2 5-point Composite 1.8 5-point Composite 1.6 5-point Composite 3.1 5-point Composite 1.6 5-point Composite
arget Area arget Area	SSFATA09 SS132AU SS132AV SS132AV SS132Y	1/11/2006 FD 11/23/2004 N 11/23/2004 N 11/22/2004 N 11/22/2004 N 12/13/2005 N 1/19/2005 FD 4/1/2005 N 4/5/2005 N 4/5/2005 N 4/7/2005 N 1/13/2004 N	0 1.5 0 1.5 0 0 0 0 0	0.5 SW6010B 0.5 CL200.7 2 CL200.7 0.5 CL200.7 0.25 CL200.7	NICKEL	MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG	189 /FRAGE FOR LEAD MIS 1.8 3.3 1.7 3 2.3 2.4 2.1 1.8 2.2 3.1 1.6 2	189 MIS 170 1.8 5-point Composite 3.3 5-point Composite 1.7 5-point Composite 2.5 5-point Composite 2.4 5-point Composite 2.1 5-point Composite 2.1 5-point Composite 2.1 5-point Composite 1.8 5-point Composite 3.1 5-point Composite 1.6 5-point Composite 1.6 5-point Composite 2.5 5-point Composite 2.5 5-point Composite
arget Area arget Area	SSFATA09 SS132AU SS132AU SS132AV SS132AV SS132Y	1/11/2006 FD 11/23/2004 N 11/23/2004 N 11/22/2004 N 11/22/2004 N 12/13/2004 N 1/19/2005 FD 4/1/2005 N 4/5/2005 N 4/5/2005 N 4/7/2005 N 1/19/2005 N 1/19/2005 N	0 1.5 0 1.5 0 0 0 0 0 0	0.5 SW6010B 0.5 CL200.7 2 CL200.7 0.5 CL200.7 2 CL200.7 0.25 CL200.7	NICKEL	MG/KG MG/KG	189 /FRAGE FOR LEAD MIS 1.8 3.3 1.7 3 2.3 2.4 2.1 1.8 2.2 3.1 1.6 2 2.2	189 MIS 170 1.8 5-point Composite 3.3 5-point Composite 1.7 5-point Composite 2.3 5-point Composite 2.4 5-point Composite 2.1 5-point Composite 2.5 5-point Composite 1.8 5-point Composite 2.2 5-point Composite 1.6 5-point Composite 1.6 5-point Composite 2.7 5-point Composite 2.8 5-point Composite 2.9 5-point Composite 2.9 5-point Composite 2.9 5-point Composite
irget Area	SSFATA09 SS132AU SS132AV SS132AV SS132AV SS132Y	1/11/2006 FD 11/23/2004 N 11/23/2004 N 11/22/2004 N 11/22/2004 N 12/13/2004 N 1/19/2005 N 1/19/2005 FD 4/5/2005 N 4/5/2005 N 4/5/2005 N 1/12/2005 N 1/12/2005 N	0 1.5 0 1.5 0 0 0 0 0 0 0 0 0	0.5 SW6010B 0.5 CL200.7 2 CL200.7 0.5 CL200.7 2 CL200.7 0.25 CL200.7	NICKEL	MG/KG MG/KG	189 //ERAGE FOR LEAD MIS 1.8 3.3 1.7 3 2.3 2.4 2.1 1.8 2.2 3.1 1.6 2 2.2 1.6	189 MIS 170 1.8 5-point Composite 3.3 5-point Composite 1.7 5-point Composite 3.5-point Composite 2.3 5-point Composite 2.4 5-point Composite 2.1 5-point Composite 1.8 5-point Composite 2.2 5-point Composite 2.5 5-point Composite 3.1 5-point Composite 1.6 5-point Composite 2.5 5-point Composite 2.5 5-point Composite 1.6 5-point Composite 2.5 5-point Composite 1.6 5-point Composite
riget Area	SSFATA09 SS132AU SS132AV SS132AV SS132AV SS132Y SS011105-02 SS0111005-04 SS011005-05	1/11/2006 FD 11/23/2004 N 11/23/2004 N 11/22/2004 N 11/22/2004 N 12/13/2004 N 12/13/2005 N 1/19/2005 N 4/1/2005 N 4/5/2005 N 4/7/2005 N 1/13/2004 N 1/12/2005 N	0 1.5 0 1.5 0 0 0 0 0 0 0 0 0	0.5 SW6010B 0.5 CL200.7 2 CL200.7 0.5 CL200.7 0.25 CL200.7	NICKEL	MG/KG MG/KG	189 //ERAGE FOR LEAD MIS 1.8 3.3 1.7 3 2.3 2.4 2.1 1.8 2.2 3.1 1.6 2 2.2 1.6 1.5	189 MIS 170 1.8 5-point Composite 3.3 5-point Composite 1.7 5-point Composite 2.3 5-point Composite 2.3 5-point Composite 2.4 5-point Composite 2.1 5-point Composite 2.5 5-point Composite 3.1 5-point Composite 3.1 5-point Composite 4.6 5-point Composite 2.5 5-point Composite 3.5 5-point Composite 3.5 5-point Composite 3.5 5-point Composite
rget Area	SSFATA09 SS132AU SS132AU SS132AV SS132AV SS132Y	1/11/2006 FD 11/23/2004 N 11/23/2004 N 11/22/2004 N 11/22/2004 N 12/13/2004 N 1/19/2005 FD 4/1/2005 FD 4/1/2005 N 4/5/2005 N 4/5/2005 N 1/19/2005 N 1/13/2004 N 1/12/2005 N 1/12/2005 N	0 1.5 0 1.5 0 0 0 0 0 0 0 0 0	0.5 SW6010B 0.5 CL200.7 2 CL200.7 0.5 CL200.7 0.25 CL200.7	NICKEL	MG/KG MG/KG	189 //ERAGE FOR LEAD MIS 1.8 3.3 1.7 3 2.3 2.4 2.1 1.8 2.2 3.1 1.6 2 2.2 1.6 1.5 3.4	189 MIS 170 1.8 5-point Composite 3.3 5-point Composite 1.7 5-point Composite 2.3 5-point Composite 2.3 5-point Composite 2.4 5-point Composite 2.1 5-point Composite 1.8 5-point Composite 2.2 5-point Composite 2.5 5-point Composite 2.5 5-point Composite 1.6 5-point Composite 2.5 5-point Composite 1.6 5-point Composite
rget Area	SSFATA09 SS132AU SS132AV SS132AV SS132Y	1/11/2006 FD 11/23/2004 N 11/23/2004 N 11/22/2004 N 11/22/2004 N 12/13/2004 N 1/19/2005 N 1/19/2005 N 4/5/2005 N 4/5/2005 N 1/19/2005 N 1/12/2005 N	0 1.5 0 1.5 0 0 0 0 0 0 0 0 0	0.5 SW6010B 0.5 CL200.7 2 CL200.7 0.5 CL200.7 2 CL200.7 0.25 CL200.7	NICKEL	MG/KG MG/KG	189 /FRAGE FOR LEAD MIS 1.8 3.3 1.7 3 2.3 2.4 2.1 1.8 2.2 3.1 1.6 2 2.2 1.6 1.5 3.4 2.3	189 MIS 170 1.8 5-point Composite 3.3 5-point Composite 1.7 5-point Composite 2.5 5-point Composite 2.4 5-point Composite 2.1 5-point Composite 2.1 5-point Composite 2.2 5-point Composite 3.1 5-point Composite 3.1 5-point Composite 2.5 5-point Composite 2.5 5-point Composite 2.5 5-point Composite 1.6 5-point Composite 2.5 5-point Composite 2.5 5-point Composite 3.5 5-point Composite
rget Area	\$\$132AU \$\$132AU \$\$132AV \$\$132AV \$\$132AV \$\$132Y \$\$214Y \$\$21	1/11/2006 FD 11/23/2004 N 11/23/2004 N 11/22/2004 N 11/22/2004 N 12/13/2005 N 1/19/2005 FD 4/1/2005 N 4/5/2005 N 4/5/2005 N 4/5/2005 N 1/12/2005 N 1/12/2005 N 1/12/2005 N 1/12/2005 N 1/12/2005 N 1/12/2005 N	0 1.5 0 1.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.5 SW6010B 0.5 CL200.7 2 CL200.7 0.5 CL200.7 0.5 CL200.7 0.25 CL200.7	NICKEL	MG/KG MG/KG	189 /FRAGE FOR LEAD MIS 1.8 3.3 1.7 3 2.3 2.4 2.1 1.8 2.2 3.1 1.6 2 2.2 1.6 1.5 3.4 2.3 2.4 2.1 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2	189 MIS 170 1.8 5-point Composite 3.3 5-point Composite 1.7 5-point Composite 2.3 5-point Composite 2.3 5-point Composite 2.4 5-point Composite 2.1 5-point Composite 2.1 5-point Composite 2.2 5-point Composite 3.1 5-point Composite 3.1 5-point Composite 2.2 5-point Composite 2.5 5-point Composite 2.5 5-point Composite 2.5 5-point Composite 3.5 5-point Composite 3.6 5-point Composite 3.7 5-point Composite 3.7 5-point Composite 3.8 5-point Composite 3.9 5-point Composite
rget Area	SSFATA09 SS132AU SS132AU SS132AV SS132AV SS132Y SS011105-02 SS011005-04 SS011005-05 SS132Y	1/11/2006 FD 11/23/2004 N 11/23/2004 N 11/22/2004 N 11/22/2004 N 12/13/2004 N 1/19/2005 FD 4/1/2005 N 4/5/2005 N 4/5/2005 N 4/5/2005 N 1/13/2004 N 1/12/2005 N 1/12/2005 N 1/12/2005 N 1/12/2005 N 1/12/2005 N	0 1.5 0 1.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.5 SW6010B 0.5 CL200.7 2 CL200.7 0.5 CL200.7 0.25 CL200.7	NICKEL	MG/KG MG/KG	189 //ERAGE FOR LEAD MIS 1.8 3.3 1.7 3 2.3 2.4 2.1 1.8 2.2 3.1 1.6 2 2.2 1.6 1.5 3.4 2.3 2 1.5	189 MIS 170 1.8 5-point Composite 3.3 5-point Composite 1.7 5-point Composite 2.3 5-point Composite 2.4 5-point Composite 2.4 5-point Composite 2.5 5-point Composite 3.6 5-point Composite 2.5 5-point Composite 3.5 5-point Composite 3.5 5-point Composite 3.5 5-point Composite
rget Area	SSFATA09 SS132AU SS132AV SS132AV SS132AV SS132Y SS0111005-02 SS011005-04 SS011005-05 SS132Y SS01205-02 SS012005-01 SS132T	1/11/2006 FD 11/23/2004 N 11/23/2004 N 11/22/2004 N 11/22/2004 N 12/13/2004 N 12/13/2005 N 1/19/2005 FD 4/1/2005 N 4/1/2005 N 4/5/2005 N 4/5/2005 N 1/13/2004 N 1/12/2005 N 1/21/2005 N 1/21/2005 N	0 1.5 0 1.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.5 SW6010B 0.5 CL200.7 2 CL200.7 0.5 CL200.7 0.25 CL200.7	NICKEL	MG/KG MG/KG	189 /FRAGE FOR LEAD MIS 1.8 3.3 1.7 3 2.3 2.4 2.1 1.8 2.2 3.1 1.6 2 2.2 1.6 1.5 3.4 2.3 2 1.5 1.3 J	189 MIS 170 1.8 5-point Composite 3.3 5-point Composite 1.7 5-point Composite 2.5 5-point Composite 2.5 5-point Composite 2.6 5-point Composite 2.7 5-point Composite 2.8 5-point Composite 2.9 5-point Composite 3.1 5-point Composite 3.1 5-point Composite 2.5 5-point Composite 3.5 5-point Composite 4.5 5-point Composite 5.5 5-point Composite
rget Area	\$\$132AU \$\$132AU \$\$132AV \$\$132AV \$\$132AV \$\$132Y \$\$13	1/11/2006 FD 11/23/2004 N 11/23/2004 N 11/22/2004 N 11/22/2004 N 12/13/2004 N 12/13/2005 N 1/19/2005 N 4/1/2005 N 4/1/2005 N 4/1/2005 N 4/1/2005 N 1/12/2005 N 1/21/2005 N	0 1.5 0 1.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.5 SW6010B 0.5 CL200.7 2 CL200.7 0.5 CL200.7 0.25 CL200.7	NICKEL	MG/KG MG/KG	189 //ERAGE FOR LEAD MIS 1.8 3.3 1.7 3 2.3 2.4 2.1 1.8 2.2 3.1 1.6 2 2.2 1.6 1.5 3.4 2.3 2 1.5 1.6 J	189 MIS 170 1.8 5-point Composite 3.3 5-point Composite 1.7 5-point Composite 2.3 5-point Composite 2.3 5-point Composite 2.4 5-point Composite 2.1 5-point Composite 1.8 5-point Composite 2.2 5-point Composite 3.1 5-point Composite 3.1 5-point Composite 2.2 5-point Composite 2.5 5-point Composite 2.5 5-point Composite 2.5 5-point Composite 2.5 5-point Composite 3.4 5-point Composite 3.4 5-point Composite 3.4 5-point Composite 3.5 5-point Composite 3.5 5-point Composite 5.5 5-point Composite 1.5 5-point Composite
rget Area	SSFATA09 SS132AU SS132AV SS132AV SS132AV SS132Y SS011005-02 SS011005-04 SS011205-01 SS132T SS132T SS132T SS132T SS132T SS132T	1/11/2006 FD 11/23/2004 N 11/23/2004 N 11/22/2004 N 11/22/2004 N 12/13/2004 N 1/19/2005 N 4/19/2005 FD 4/1/2005 N 4/5/2005 N 4/5/2005 N 1/12/2005 N 1/21/2005 N 3/20/2001 N 3/20/2001 N	0 1.5 0 1.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.5 SW6010B 0.5 CL200.7 2 CL200.7 0.5 CL200.7 0.5 CL200.7 0.25 CL200.7	NICKEL	MG/KG MG/KG	189 /FRAGE FOR LEAD MIS 1.8 3.3 1.7 3 2.4 2.1 1.8 2.2 3.1 1.6 2 2.2 2.1 1.6 1.5 3.4 2.3 2 1.5 1.3 J 1.4 J	189 MIS 5 170 1.8 5-point Composite 3.3 5-point Composite 1.7 5-point Composite 3.5-point Composite 3.5-point Composite 2.3 5-point Composite 2.1 5-point Composite 2.1 5-point Composite 2.2 5-point Composite 3.1 5-point Composite 3.1 5-point Composite 2.5-point Composite 2.5-point Composite 2.5-point Composite 2.5-point Composite 2.5-point Composite 2.5-point Composite 3.4 5-point Composite 3.5-point Composite 1.5 5-point composite
rget Area	SSFATA09 SS132AU SS132AV SS132AV SS132AV SS132Y SS011105-02 SS0111005-04 SS011005-05 SS132Y SS012005-01 SS132T SS132T SS132T SS132T SS132T	1/11/2006 FD 11/23/2004 N 11/23/2004 N 11/22/2004 N 11/22/2004 N 12/13/2004 N 12/13/2005 N 1/19/2005 N 4/1/2005 N 4/1/2005 N 4/5/2005 N 4/7/2005 N 1/13/2006 N 1/12/2005 N 1/21/2005 N	0 1.5 0 1.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.5 SW6010B 0.5 CL200.7 2 CL200.7 0.5 CL200.7 0.25 CL200.7 1 CL200.7	NICKEL	MG/KG MG/KG	189 /FRAGE FOR LEAD MIS 1.8 3.3 1.7 3 2.3 2.4 2.1 1.8 2.2 3.1 1.6 6 2 2.2 1.6 1.5 3.4 2.3 2.3 1.5 1.6 1.5 3.4 1.5 3.4 2.3 1.6 1.6 1.5 3.4 2.3 1.6 1.6 1.5 3.4 2.9 1.6 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9	189 MIS 170 1.8 5-point Composite 3.3 5-point Composite 1.7 5-point Composite 2.5 5-point Composite 2.5 5-point Composite 2.5 5-point Composite 2.6 5-point Composite 2.7 5-point Composite 2.8 5-point Composite 3.8 5-point Composite 3.9 5-point Composite 3.9 5-point Composite 4.9 5-point Composite 5.9 5-point Composite 2.9 5-point Composite 2.9 5-point Composite 3.9 5-point Composite 3.9 5-point Composite 3.9 5-point Composite 3.9 5-point Composite 5.9 5-point Composite 5.9 5-point Composite 1.9 5-point composite
rget Area	SSFATA09 SS132AU SS132AU SS132AV SS132AV SS132Y SS132T SS132T SS132T SS132T SS132T SS132T SS132T SS132T SS132T	1/11/2006 FD 11/23/2004 N 11/23/2004 N 11/22/2004 N 11/22/2004 N 12/13/2004 N 12/13/2004 N 1/19/2005 FD 4/1/2005 N 4/5/2005 N 4/5/2005 N 4/5/2005 N 1/19/2005 N 1/12/2005 N 1/21/2005 N 3/20/2001 N 3/20/2001 N 3/20/2001 FD 3/20/2001 N	0 1.5 0 1.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.5 SW6010B 0.5 CL200.7 2 CL200.7 0.5 CL200.7 0.5 CL200.7 0.25 CL200.7 0.5 CL200.7 0.5 CL200.7 1 CL200.7 1 CL200.7 0.25 CL200.7	NICKEL	MG/KG MG/KG	189 //ERAGE FOR LEAD MIS 1.8 3.3 1.7 3 2.3 2.4 2.1 1.8 2.2 3.1 1.6 6 2 2.2 1.6 1.5 3.4 2.3 2 1.5 1.3 J 1.6 J 1.4 J 0.99 J 1.9 J	189 MIS 170 1.8 5-point Composite 3.3 5-point Composite 1.7 5-point Composite 2.3 5-point Composite 2.3 5-point Composite 2.4 5-point Composite 2.5 5-point Composite 2.5 5-point Composite 3.5 5-point Composite 3.7 5-point Composite 2.7 5-point Composite 2.8 5-point Composite 2.9 5-point Composite 2.9 5-point Composite 2.9 5-point Composite 2.9 5-point Composite 3.0 5-point Composite 3.0 5-point Composite 3.1 5-point Composite 3.2 5-point Composite 3.3 5-point Composite 1.5 5-point composite 1.9 5-point composite
rget Area	SSFATA09 SS132AU SS132AV SS132AV SS132AV SS132Y SS0111005-02 SS011005-05 SS132Y SS012005-01 SS132Y SS01205-02 SS012005-01 SS132T SS132T SS132T SS132T SS132T SS132T SS132S SS132S SS132S	1/11/2006 FD 11/23/2004 N 11/23/2004 N 11/22/2004 N 11/22/2004 N 12/13/2004 N 1/19/2005 N 1/19/2005 FD 4/1/2005 N 4/5/2005 N 4/5/2005 N 1/11/2/2005 N 1/12/2005 N 1/21/2005 N	0 1.5 0 1.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.5 SW6010B 0.5 CL200.7 2 CL200.7 0.5 CL200.7 0.25 CL200.7 0.5 CL200.7 1 CL200.7 1 CL200.7 0.25 CL200.7 0.25 CL200.7 0.5 CL200.7	NICKEL	MG/KG MG/KG	189 /FRAGE FOR LEAD MIS 1.8 3.3 1.7 3 2.3 2.4 2.1 1.8 2.2 3.1 1.6 2 2.2 3.1 1.6 1.5 3.4 2.3 2 1.5 1.3 J 1.6 J 1.4 J 0.99 J 1.9 J 2.5 J	189 MIS 170 1.8 5-point Composite 3.3 5-point Composite 1.7 5-point Composite 2.5 5-point Composite 2.5 5-point Composite 2.4 5-point Composite 2.1 5-point Composite 2.1 5-point Composite 2.2 5-point Composite 3.1 5-point Composite 3.1 5-point Composite 2.5 5-point Composite 2.5 5-point Composite 2.5 5-point Composite 2.5 5-point Composite 3.5 5-point composite
get Area	SSFATA09 SS132AU SS132AU SS132AV SS132AV SS132Y SS132T SS132T SS132T SS132T SS132T SS132T SS132T SS132T SS132T	1/11/2006 FD 11/23/2004 N 11/23/2004 N 11/22/2004 N 11/22/2004 N 12/13/2004 N 12/13/2004 N 1/19/2005 FD 4/1/2005 N 4/5/2005 N 4/5/2005 N 4/5/2005 N 1/19/2005 N 1/12/2005 N 1/21/2005 N 3/20/2001 N 3/20/2001 N 3/20/2001 FD 3/20/2001 N	0 1.5 0 1.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.5 SW6010B 0.5 CL200.7 2 CL200.7 0.5 CL200.7 0.5 CL200.7 0.25 CL200.7 0.5 CL200.7 0.5 CL200.7 1 CL200.7 1 CL200.7 0.25 CL200.7	NICKEL	MG/KG MG/KG	189 /FRAGE FOR LEAD MIS 1.8 3.3 1.7 3 2.3 2.4 2.1 1.8 2.2 3.1 1.6 2 2.2 1.5 3.4 2.3 2 1.5 1.3 1.6 J 1.4 J 0.99 J 1.9 J 2.5 J 3.1 J	189 MIS 5 170 1.8 5-point Composite 3.3 5-point Composite 1.7 5-point Composite 2.3 5-point Composite 2.3 5-point Composite 2.4 5-point Composite 2.1 5-point Composite 2.1 5-point Composite 2.2 5-point Composite 3.1 5-point Composite 3.1 5-point Composite 2.2 5-point Composite 2.2 5-point Composite 2.2 5-point Composite 2.2 5-point Composite 3.4 5-point Composite 3.4 5-point Composite 3.4 5-point Composite 3.5 5-point Composite 1.5 5-point composite 1.6 5-point composite 1.7 5-point composite 1.8 5-point composite 1.9 5-point composite
get Area	SSFATA09 SS132AU SS132AU SS132AV SS132AV SS132Y SS132T SS132T SS132T SS132T SS132T SS132T SS132T SS132T SS132S SS132S SS132S	1/11/2006 FD 11/23/2004 N 11/23/2004 N 11/22/2004 N 11/22/2004 N 12/13/2004 N 12/13/2004 N 1/19/2005 FD 4/1/2005 N 4/5/2005 N 4/5/2005 N 4/5/2005 N 1/19/2005 N 1/12/2005 N 1/21/2005 N 3/20/2001 N 3/20/2001 N 3/20/2001 N 3/20/2001 N 3/20/2001 N 3/20/2001 N	0 1.5 0 1.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.5 SW6010B 0.5 CL200.7 2 CL200.7 0.5 CL200.7 0.5 CL200.7 0.25 CL200.7 0.5 CL200.7 1 CL200.7 1 CL200.7 0.25 CL200.7 0.25 CL200.7 0.25 CL200.7	NICKEL	MG/KG MG/KG	189 /FRAGE FOR LEAD MIS 1.8 3.3 1.7 3 2.3 2.4 2.1 1.8 2.2 3.1 1.6 2 2.2 3.1 1.6 1.5 3.4 2.3 2 1.5 1.3 J 1.6 J 1.4 J 0.99 J 1.9 J 2.5 J	189 MIS 170 1.8 5-point Composite 3.3 5-point Composite 1.7 5-point Composite 2.3 5-point Composite 2.3 5-point Composite 2.4 5-point Composite 2.1 5-point Composite 1.8 5-point Composite 1.8 5-point Composite 2.2 5-point Composite 2.2 5-point Composite 2.2 5-point Composite 2.5 5-point Composite 3.4 5-point Composite 3.5 5-point Composite 3.5 5-point Composite 3.5 5-point Composite 1.5 5-point composite
rget Area	SSFATA09 SS132AU SS132AV SS132AV SS132AV SS132Y SS011105-02 SS011005-04 SS011005-05 SS132Y SS012005-01 SS132T SS132T SS132T SS132T SS132T SS132T SS132T SS132S SS132S SS132S	1/11/2006 FD 11/23/2004 N 11/23/2004 N 11/22/2004 N 11/22/2004 N 12/13/2004 N 12/13/2005 N 1/19/2005 N 4/1/2005 N 4/5/2005 N 4/5/2005 N 4/5/2005 N 1/13/2004 N 1/12/2005 N 1/21/2005 N 1/21/2001 N 3/20/2001 N 3/20/2001 N 3/20/2001 N 3/20/2001 N	0 1.5 0 1.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.5 SW6010B 0.5 CL200.7 2 CL200.7 0.5 CL200.7 0.25 CL200.7 1 CL200.7 1 CL200.7 0.5 CL200.7	NICKEL	MG/KG MG/KG	189 /FRAGE FOR LEAD MIS 1.8 3.3 1.7 3 2.3 2.4 2.1 1.8 2.2 3.1 1.6 2 2.2 3.1 1.6 2 2.2 1.6 1.5 3.4 2.3 2 1.5 1.3 J 1.6 J 1.9 J 2.5 J 3.1 J 2.5 J 3.1 J 2.5 POINT COMPOSITE 1.5 J	189 MIS 170 1.8 5-point Composite 3.3 5-point Composite 1.7 5-point Composite 2.3 5-point Composite 2.3 5-point Composite 2.4 5-point Composite 2.1 5-point Composite 2.1 5-point Composite 2.2 5-point Composite 3.1 5-point Composite 3.1 5-point Composite 2.2 5-point Composite 2.5 5-point Composite 3.5 5-point Composite 4.5 5-point Composite 5.5 5-point Composite 1.5 5-point Composite 1.5 5-point Composite 1.5 5-point composite 1.5 5-point composite 1.6 5-point composite 1.7 5-point composite 1.8 5-point composite 1.9 5-point composite
rget Area	SSFATA09 SS132AU SS132AU SS132AV SS132AV SS132Y SS132T SS132T SS132T SS132T SS132T SS132T SS132T SS132T SS132S SS132S SS132S	1/11/2006 FD 11/23/2004 N 11/23/2004 N 11/22/2004 N 11/22/2004 N 12/13/2004 N 12/13/2004 N 1/19/2005 FD 4/1/2005 N 4/5/2005 N 4/5/2005 N 4/5/2005 N 1/19/2005 N 1/12/2005 N 1/21/2005 N 3/20/2001 N	0 1.5 0 1.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.5 SW6010B 0.5 CL200.7 2 CL200.7 0.5 CL200.7 0.5 CL200.7 0.25 CL200.7 0.5 CL200.7 1 CL200.7 1 CL200.7 0.25 CL200.7 0.25 CL200.7 0.25 CL200.7	NICKEL	MG/KG MG/KG	189 //ERAGE FOR LEAD MIS 1.8 3.3 1.7 3 2.3 2.4 2.1 1.8 2.2 3.1 1.6 6 2 2.2 1.6 1.5 3.4 2.3 2 1.5 1.3 J 1.6 J 1.4 J 0.99 J 1.9 J 2.5 J 3.1 J 2.5 J 3.1 J 3.1 J 5.1 S 5.1 S 5.2 S 5.3 S 5.3 S 5.3 S 5.4 S 5.5	189 MIS 170 1.8 5-point Composite 3.3 5-point Composite 1.7 5-point Composite 2.3 5-point Composite 2.3 5-point Composite 2.4 5-point Composite 2.1 5-point Composite 1.8 5-point Composite 1.8 5-point Composite 2.2 5-point Composite 2.2 5-point Composite 2.2 5-point Composite 2.5 5-point Composite 3.4 5-point Composite 3.5 5-point Composite 3.5 5-point Composite 3.5 5-point Composite 1.5 5-point composite
rget Area	SSFATA09 SS132AU SS132AV SS132AV SS132AV SS132Y SS011105-02 SS011005-04 SS011005-05 SS132Y SS012005-01 SS132T SS132T SS132T SS132T SS132T SS132T SS132T SS132S SS132S SS132S	1/11/2006 FD 11/23/2004 N 11/23/2004 N 11/22/2004 N 11/22/2004 N 12/13/2004 N 12/13/2005 N 1/19/2005 N 4/1/2005 N 4/5/2005 N 4/5/2005 N 4/5/2005 N 1/13/2004 N 1/12/2005 N 1/21/2005 N 1/21/2001 N 3/20/2001 N 3/20/2001 N 3/20/2001 N 3/20/2001 N	0 1.5 0 1.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.5 SW6010B 0.5 CL200.7 2 CL200.7 0.5 CL200.7 0.25 CL200.7 1 CL200.7 1 CL200.7 0.5 CL200.7	NICKEL	MG/KG MG/KG	189 /FRAGE FOR LEAD MIS 1.8 3.3 1.7 3 2.3 2.4 2.1 1.8 2.2 3.1 1.6 2 2.2 3.1 1.6 2 2.2 1.6 1.5 3.4 2.3 2 1.5 1.3 J 1.6 J 1.9 J 2.5 J 3.1 J 2.5 J 3.1 J 2.5 POINT COMPOSITE 1.5 J	189 MIS 170 1.8 5-point Composite 3.3 5-point Composite 1.7 5-point Composite 2.3 5-point Composite 2.3 5-point Composite 2.4 5-point Composite 2.1 5-point Composite 2.1 5-point Composite 2.2 5-point Composite 3.1 5-point Composite 3.1 5-point Composite 2.2 5-point Composite 2.5 5-point Composite 3.5 5-point Composite 4.5 5-point Composite 5.5 5-point Composite 1.5 5-point Composite 1.5 5-point Composite 1.5 5-point composite 1.5 5-point composite 1.6 5-point composite 1.7 5-point composite 1.8 5-point composite 1.9 5-point composite
rget Area	SSFATA09 SS132AU SS132AV SS132AV SS132AV SS132Y SS0111005-02 SS011005-02 SS012005-01 SS132T SS132T SS132T SS132T SS132T SS132T SS132S SS132S SS132S	1/11/2006 FD 11/23/2004 N 11/23/2004 N 11/22/2004 N 11/22/2004 N 12/13/2004 N 12/13/2005 N 1/19/2005 N 4/5/2005 N 4/5/2005 N 4/5/2005 N 4/7/2005 N 1/12/2005 N 1/21/2005 N 1/21/2001 N 3/20/2001 N 3/20/2001 N 3/20/2001 N 3/20/2001 N 3/20/2001 N	0 1.5 0 1.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.5 SW6010B 0.5 CL200.7 2 CL200.7 0.5 CL200.7 0.5 CL200.7 0.25 CL200.7 0.5 CL200.7 1 CL200.7 1 CL200.7 0.5 CL200.7 0.5 CL200.7 0.5 CL200.7 0.5 CL200.7 0.5 CL200.7	NICKEL	MG/KG MG/KG	189 //ERAGE FOR LEAD MIS 1.8 3.3 1.7 3 2.3 2.4 2.1 1.8 2.2 3.1 1.6 2 2.2 1.6 1.5 3.4 2.3 2 1.5 1.5 3.4 2.3 2 1.5 1.5 3.4 1.5 3.4 2.3 2 1.5 5 3.5 1.5 1.5 1.5 1.6 J 1.9 J 2.5 J 3.1 J 1.9 J 2.5 J 3.1 J 3.1 J 3.1 J 3.1 J 4.4 J 5.9 J 6.4 J 7.5 J 7.6 J 7.6 J 7.7	189 MIS 170 1.8 5-point Composite 3.3 5-point Composite 1.7 5-point Composite 2.3 5-point Composite 2.3 5-point Composite 2.4 5-point Composite 2.1 5-point Composite 2.5 5-point Composite 3.1 5-point Composite 3.1 5-point Composite 2.2 5-point Composite 3.4 5-point Composite 3.4 5-point Composite 3.4 5-point Composite 3.5 5-point Composite 1.5 5-point composite 1.6 5-point composite 1.7 5-point composite 1.9 5-point composite
rget Area	SSFATA09 SS132AU SS132AU SS132AV SS132AV SS132Y SS132T	1/11/2006 FD 11/23/2004 N 11/23/2004 N 11/22/2004 N 11/22/2004 N 12/13/2004 N 12/13/2005 N 1/19/2005 N 4/5/2005 N 4/5/2005 N 4/5/2005 N 1/19/2005 N 1/12/2005 N 1/21/2005 N 1/21/2005 N 3/20/2001 N	0 1.5 0 1.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.5 SW6010B 0.5 CL200.7 2 CL200.7 0.5 CL200.7 0.5 CL200.7 0.25 CL200.7 0.5 CL200.7 1 CL200.7 0.5 CL200.7	NICKEL	MG/KG MG/KG	189 /FRAGE FOR LEAD MIS 1.8 3.3 1.7 3 2.4 2.1 1.8 2.2 3.1 1.6 2 2.2 3.1 1.6 1.5 3.4 2.3 2 1.5 1.3 J 1.6 J 1.9 J 2.5 J 3.1 J 1.5 J 0.49 J 1.2 J	189 MIS 5 170 1.8 5-point Composite 3.3 5-point Composite 1.7 5-point Composite 2.5 5-point Composite 2.4 5-point Composite 2.1 5-point Composite 2.1 5-point Composite 2.1 5-point Composite 2.2 5-point Composite 3.1 5-point Composite 3.1 5-point Composite 2.2 5-point Composite 2.5 5-point Composite 2.5 5-point Composite 2.5 5-point Composite 2.5 5-point Composite 3.4 5-point Composite 1.5 5-point Composite 2.5 5-point Composite 1.5 5-point Composite 2.5 5-point Composite 2.5 5-point Composite 2.5 5-point composite 1.6 5-point composite 1.7 5-point composite 1.8 5-point composite 1.9 5-point composite
rget Area	SSFATA09 SS132AU SS132AV SS132AV SS132AV SS132Y SS0111005-04 SS011005-05 SS132Y SS011205-02 SS012005-01 SS132Y SS012005-01 SS132T SS132T SS132T SS132T SS132S SS132S SS132S SS132S SS132S SS132T SS132T SS132T SS132T SS132T SS132T SS132S SS132S	1/11/2006 FD 11/23/2004 N 11/23/2004 N 11/22/2004 N 11/22/2004 N 12/13/2004 N 12/13/2004 N 1/19/2005 N 4/19/2005 N 4/1/2005 N 4/1/2005 N 4/1/2005 N 1/13/2004 N 1/12/2005 N 1/21/2005 N 1/21/2005 N 1/21/2005 N 1/21/2005 N 1/21/2005 N 1/21/2005 N 1/21/2001 N 3/20/2001 N	0 1.5 0 1.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.5 SW6010B 0.5 CL200.7 2 CL200.7 0.5 CL200.7 0.5 CL200.7 0.25 CL200.7 1 CL200.7 0.5 CL200.7	NICKEL	MG/KG MG/KG	189 /FRAGE FOR LEAD MIS 1.8 3.3 1.7 3 2.3 2.4 2.1 1.8 2.2 3.1 1.6 2 2.2 3.1 1.6 2 2.2 1.6 1.5 3.4 2.3 2 1.5 1.3 J 1.6 J 0.99 J 1.9 J 2.5 J 3.1 J 1.5 J 0.49 J 1.5 J 0.49 J 1.2 J 3.2 J	189 MIS 5 170 1.8 5-point Composite 3.3 5-point Composite 1.7 5-point Composite 2.5 5-point Composite 2.5 5-point Composite 2.6 5-point Composite 2.7 5-point Composite 2.8 5-point Composite 2.9 5-point Composite 3.1 5-point Composite 3.1 5-point Composite 3.1 5-point Composite 2.2 5-point Composite 2.5 5-point Composite 2.5 5-point Composite 2.5 5-point Composite 3.6 5-point Composite 4.5 5-point Composite 5.5 5-point Composite 1.5 5-point Composite 2.5 5-point Composite 2.5 5-point Composite 1.5 5-point composite 1.5 5-point composite 1.6 5-point composite 1.6 5-point composite 1.7 5-point composite 1.8 5-point composite 1.9 5-point composite
rget Area	SSFATA09 SS132AU SS132AU SS132AV SS132AV SS132Y SS011005-02 SS011005-05 SS132Y SS012005-01 SS132T SS132S	1/11/2006 FD 11/23/2004 N 11/23/2004 N 11/22/2004 N 11/22/2004 N 12/13/2004 N 12/13/2004 N 1/19/2005 N 1/19/2005 N 4/5/2005 N 4/5/2005 N 4/5/2005 N 1/12/2005 N 1/21/2005 N 1/21/2005 N 1/21/2001 N 3/20/2001 N	0 1.5 0 1.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.5 SW6010B 0.5 CL200.7 2 CL200.7 0.5 CL200.7 0.5 CL200.7 0.25 CL200.7 0.5 CL200.7 1 CL200.7 0.5 CL200.7	NICKEL	MG/KG MG/KG	189 /FRAGE FOR LEAD MIS 1.8 3.3 1.7 3 2.3 2.4 2.1 1.8 2.2 3.1 1.6 2 2.2 3.1 1.6 1.5 3.4 2.3 2 1.5 1.3 J 1.6 J 1.4 J 0.99 J 1.9 J 2.5 J 3.1 J 5.5 J 3.1 J 5.5 J 3.4 J 3.2 J 2.7 J 3.3 J 3.3 J	189 MIS 5 170 1.8 5-point Composite 3.3 5-point Composite 1.7 5-point Composite 2.5 5-point Composite 2.5 5-point Composite 2.6 5-point Composite 2.7 5-point Composite 2.8 5-point Composite 2.9 5-point Composite 3.1 5-point Composite 3.1 5-point Composite 2.5 5-point Composite 2.5 5-point Composite 2.5 5-point Composite 2.5 5-point Composite 3.5 5-point Composite 3.5 5-point Composite 4.5 5-point Composite 5.5 5-point Composite 1.5 5-point composite 1.9 5-point composite 1.9 5-point composite 1.9 5-point composite 2.100 1.5 Discrete 1.2 Discrete 3.2 Discrete 3.2 Discrete 3.3 Discrete
get Area	SSFATA09 SS132AU SS132AV SS132AV SS132AV SS132Y SS0111005-02 SS011005-04 SS011005-05 SS132Y SS132T SS132T SS132T SS132T SS132T SS132T SS132T SS132T SS132S SS132S SS132S SS132T SS132S	1/11/2006 FD 11/23/2004 N 11/23/2004 N 11/22/2004 N 11/22/2004 N 12/13/2004 N 12/13/2004 N 1/19/2005 N 4/15/2005 N 4/5/2005 N 4/5/2005 N 1/19/2005 N 1/12/2005 N 1/21/2005 N 3/20/2001 N	0 1.5 0 0 1.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.5 SW6010B 0.5 CL200.7 2 CL200.7 0.5 CL200.7 0.5 CL200.7 0.25 CL200.7 0.5 CL200.7	NICKEL	MG/KG MG/KG	189 //ERAGE FOR LEAD MIS 1.8 3.3 1.7 3 2.3 2.4 2.1 1.8 2.2 3.1 1.6 2 2.2 3.1 1.6 2 2.2 1.6 1.5 3.4 2.3 2 1.5 1.3 J 1.6 J 1.4 J 0.99 J 1.9 J 2.5 J 3.1 J 3.1 J 3.1 J 3.1 J 3.1 J 3.2 J 2.7 J	189 MIS 170 1.8 5-point Composite 3.3 5-point Composite 1.7 5-point Composite 2.3 5-point Composite 2.3 5-point Composite 2.4 5-point Composite 2.1 5-point Composite 2.1 5-point Composite 2.2 5-point Composite 3.1 5-point Composite 3.1 5-point Composite 2.2 5-point Composite 2.2 5-point Composite 2.2 5-point Composite 2.2 5-point Composite 2.3 5-point Composite 2.4 5-point Composite 3.4 5-point Composite 3.5 5-point Composite 2.5 5-point Composite 1.5 5-point Composite 1.5 5-point Composite 2.5 5-point Composite 1.5 5-point composite 1.5 5-point composite 1.6 5-point composite 1.7 5-point composite 1.8 5-point composite 1.9 5-point composite 2.100 1.5 Discrete 1.2 Discrete 1.2 Discrete 3.2 Discrete 3.1 Discrete 3.1 Discrete 3.2 Discrete 3.3 Discrete 3.1 Discrete 3.1 Discrete 3.1 Discrete
get Area	SSFATA09 SS132AU SS132AV SS132AV SS132AV SS132Y SS011005-04 SS011005-05 SS132Y SS012005-01 SS132T SS132S	1/11/2006 FD 11/23/2004 N 11/23/2004 N 11/22/2004 N 11/22/2004 N 12/13/2004 N 12/13/2004 N 1/19/2005 N 4/15/2005 N 4/5/2005 N 4/5/2005 N 1/19/2005 N 1/12/2005 N 1/21/2005 N 3/20/2001 N	0 1.5 0 0 1.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.5 SW6010B 0.5 CL200.7 2 CL200.7 0.5 CL200.7 0.5 CL200.7 0.25 CL200.7 0.5 CL200.7 1 CL200.7 0.5 CL200.7	NICKEL	MG/KG MG/KG	189 /FRAGE FOR LEAD MIS 1.8 3.3 1.7 3 2.3 2.4 2.1 1.8 2.2 3.1 1.6 2 2.2 3.1 1.6 6 2.2 2.1 1.5 3.4 2.3 2.1 1.5 3.4 2.3 2.1 1.5 3.4 2.3 2.5 1.5 3.4 2.3 2.5 1.5 3.4 2.3 2.5 1.5 3.4 2.3 2.5 1.5 3.4 2.3 2.7 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.2 3.2 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3	189 MIS 170 1.8 5-point Composite 3.3 5-point Composite 1.7 5-point Composite 2.5 5-point Composite 2.5 5-point Composite 2.5 5-point Composite 2.6 5-point Composite 2.7 5-point Composite 2.8 5-point Composite 3.8 5-point Composite 3.9 5-point Composite 3.9 5-point Composite 2.9 5-point Composite 2.9 5-point Composite 2.9 5-point Composite 3.9 5-point composite 3.1 5-point composite 3.1 5-point composite 3.1 5-point composite 3.1 5-point composite 4.5 Discrete 3.2 Discrete 3.3 Discrete 3.3 Discrete 3.4 5 MIS
get Area	SSFATA09 SS132AU SS132AV SS132AV SS132AV SS132AV SS132Y SS132T SS132S	1/11/2006 FD 11/23/2004 N 11/23/2004 N 11/22/2004 N 11/22/2004 N 12/13/2004 N 12/13/2004 N 12/13/2005 N 1/19/2005 N 4/1/2005 N 4/1/2005 N 4/1/2005 N 4/1/2005 N 1/12/2005 N 1/21/2005 N 1/21/2005 N 1/21/2005 N 1/21/2001 N 3/20/2001 N	0 1.5 0 1.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.5 SW6010B 0.5 CL200.7 2 CL200.7 0.5 CL200.7 0.5 CL200.7 0.25 CL200.7 1 CL200.7 0.5 CL200.7	NICKEL	MG/KG MG/KG	189 //ERAGE FOR LEAD MIS 1.8 3.3 1.7 3 2.3 2.4 2.1 1.8 2.2 2.1 1.6 2.2 2.2 1.6 1.5 3.4 2.3 2 1.5 1.6 J 1.4 J 0.99 J 1.9 J 2.5 J 3.1 J 2.5 J 3.1 J 2.5 J 3.2 J 2.7 J 3.3 J 2.6 B FOR NICKEL DISCRETE	189 MIS 170 1.8 5-point Composite 3.3 5-point Composite 1.7 5-point Composite 2.3 5-point Composite 2.3 5-point Composite 2.4 5-point Composite 2.1 5-point Composite 2.5 5-point Composite 3.1 5-point Composite 3.1 5-point Composite 3.1 5-point Composite 2.2 5-point Composite 2.2 5-point Composite 2.5 5-point Composite 3.4 5-point Composite 3.4 5-point Composite 3.4 5-point Composite 3.5 5-point Composite 1.5 5-point composite 1.9 5-point composite 1.9 5-point composite 1.9 5-point composite 2.15 Discrete 3.1 5-point composite 3.3 Discrete 3.3 Discrete 3.3 Discrete 3.3 Discrete 3.15-piscrete

Note: Values shown in italics represent one-half the reported limit for that sample.

Table C.4-5
Former A Range
Calculation of Averages Concentrations for PAHs Exhibiting Maximum Concentrations Above a Screening Criterion in the PAH 1 Exposure Area

No. Concention 10											Concentration	
March Constant Dec											Used in	
SIGNATION STREET, STRE	Area	Location ID					Analyte	Units		Flags		Sample Type
Separate	Target Area											
SELECTION OF THE PROPERTY OF T	Target Area											
SELIUM SSEZIONA 1116/2004 N												
Sallere S 512249 11/16/2004 0	Rail Line											
Ballane Sept	Rail Line										180	5-point Composite
SILVEY STORY OF THE PROPERTY O	Rail Line											
Sale Live S 5312240												
Section Sect	Rail Line											
Strict	Rail Line											
Section Comparison Compar												
	Itali Lille	33132Z	11/10/20041	IN .	0.5	1 300270						
	Target Area								•	-		
	Target Area											
April Apri												
1996 Amps	g		0,0 0,000		•							
	Target Area											
STEAPA	Target Area Target Area											
SST22AB	Rail Line	SS132AA	11/16/2004 I	N	0	0.25 SW8270	ACENAPHTHYLENE	UG/KG	490	i	490	5-point Composite
all Line	Rail Line	SS132AA	11/16/2004 I	N		1 SW8270					26	5-point Composite
all Line	Rail Line											
Strict S	Rail Line Rail Line											
ial Line S1329.89 11/16/2004 N 0.5 1 SW82700 ACNAPHTHYLENE UG/KG 3U 199 S-point Composite and Line S1322 11/16/2004 N 0.5 0.25 SW8270 ACNAPHTHYLENE UG/KG 300 300 S-point Composite and Line S1322 11/16/2004 N 0.5 0.5 SW8270 ACNAPHTHYLENE UG/KG 2/J 2/7 S-point Composite and Line S1322 11/16/2004 N 0.5 0.5 SW8270 ACNAPHTHYLENE UG/KG 2/J 2/7 S-point Composite and Line S1320 31/16/2001 N 0.5 0.5 SW8270 ACNAPHTHYLENE UG/KG 2/J 2/7 S-point Composite and Line S1320 31/16/2001 N 0.5 0.5 SW8270 ACNAPHTHYLENE UG/KG U 17/70 Discrete and Line S1320 31/16/2001 N 0.5 0.5 SW8270 ACNAPHTHYLENE UG/KG U 18/90 Discrete and Line S1320 31/16/2001 N 0.5 0.5 SW8270 ACNAPHTHYLENE UG/KG U 18/90 Discrete and Line S1320 31/16/2001 N 0.5 0.5 SW8270 ACNAPHTHYLENE UG/KG U 18/90 Discrete and Line S1320 31/16/2001 N 0.5 0.5 SW8270 ACNAPHTHYLENE UG/KG U 18/90 Discrete and Line S1320 31/16/2001 N 0.5 0.5 SW8270 ACNAPHTHYLENE UG/KG U 18/90 Discrete and Line S1320 31/16/2001 N 0.5 0.5 SW8270 ACNAPHTHYLENE UG/KG U 18/90 Discrete and Line S1320 31/16/2001 N 0.5 0.5 SW8270 ACNAPHTHYLENE UG/KG U 18/90 Discrete and Line S1320 31/16/2001 N 0.5 0.5 SW8270 ACNAPHTHYLENE UG/KG U 18/90 Discrete and Line S1320 31/16/2001 N 0.5 0.5 SW8270 ACNAPHTHYLENE UG/KG U 18/90 Discrete and Line S1320 31/16/2001 N 0.5 0.5 SW8270 ACNAPHTHYLENE UG/KG U 19/90 DIscrete and Line S1320 31/16/2001 N 0.5 0.5 SW8270 ACNAPHTHYLENE UG/KG U 19/90 DIscrete and Line S1320 31/16/2001 N 0.5 0.5 SW8270 ACNAPHTHYLENE UG/KG U 19/90 DISCRETE T17/2001 N 0.5 0.5 SW8270 ACNAPHTHYLENE UG/KG U 19/90 DISCRETE T17/2001 N 0.5 0.5 SW8270 ACNAPHTHYLENE UG/KG U 19/90 DISCRETE T17/2001 N 0.5 0.5 SW8270 ACNAPHTHYLENE UG/KG U 19/90 DISCRETE T17/2001 N 0.5 0.5 SW8270 ACNAPHTHYLENE UG/KG U 19/90 DISCRETE T17/2001 N 0.5 0.5 SW8270 ACNAPHTHYLENE UG/KG U 19/90 DISCRETE T17/2001 N 0.5 0.5 SW8270 ACNAPHTHYLENE UG/KG U 19/90 DISCRETE T17/2001 N 0.5 0.5 SW8270 ACNAPHTHYLENE UG/KG U 19/90 DISCRETE T17/2001 N 0.5 0.5 SW8270 ACNAPHTHYLENE UG/KG U 19/90 DISCRETE T17/2001 N 0.5 0.5 SW8270 ACNAPHTHYLENE UG/KG U 19/90	Rail Line				0.25							
Selection Sele	Rail Line		11/16/2004 I	N		1 SW8270C	ACENAPHTHYLENE			J	180	5-point Composite
Table Tabl	Rail Line									ı		
### APPEARS FOR ACENAPHTHALENE S-POINT COMPOSITE #25.015 ### APPEARS S132C											220	5-point Composite
Age April Straig Age Straig Straig Straig Age Age Ag	raii Lino	001022	11/10/20041		0.0	1 0110270						o point composite
	Target Area											
	Target Area											
AVERAGE FOR ACENAPHTHALENE DISCRETE 176.28												
ariget Area \$5132C 9/19/2001 N 0 0.25 9/8270 BENZO(a)ANTHRACENE UG/KG 100 J 100 \$-point Composite ariget Area \$5132C 3/19/2001 N 0.5 5/98/270 BENZO(a)ANTHRACENE UG/KG 33 J 3.3 \$-point Composite ariget Area \$5132C 3/19/2001 N 0.5 1.5 9/8270 BENZO(a)ANTHRACENE UG/KG 33 J 3.3 \$-point Composite ariget Area \$5132C 3/19/2001 N 0.5 1.5 9/8270 BENZO(a)ANTHRACENE UG/KG 30 J 300 \$-point Composite ariget Area \$1324A 11/19/2004 N 0.5 0.5 9/8270 BENZO(a)ANTHRACENE UG/KG 20 J 200 \$-point Composite ariget Area \$1324B 11/19/2004 N 0.0 0.25 9/8270 BENZO(a)ANTHRACENE UG/KG 20 J 200 \$-point Composite ariget Area \$1324B 11/19/2004 N 0.0 0.25 9/8270 BENZO(a)ANTHRACENE UG/KG 2400 2400 \$-point Composite ariget Area 28/18/2004 2400	rargotzaoa	00/100/100201	0/2 1/2002 I	.,		0.20 0110210						21001010
arget Area \$5132C 9/19/2001 N 0.25 0.5 SW8270 BERZO(g)ANTHRACENE UG/KG 33 J 33 S-point Composite and Line \$5132AA 11/18/2004 N 0.5 0.25 SW8270 BERZO(g)ANTHRACENE UG/KG 400 480 S-point Composite and Line \$5132AA 11/18/2004 N 0.5 0.25 SW8270 BERZO(g)ANTHRACENE UG/KG 400 480 S-point Composite and Line \$5132AB 11/18/2004 N 0.25 0.25 SW8270 BERZO(g)ANTHRACENE UG/KG 400 420 S-point Composite and Line \$5132AB 11/18/2004 N 0.25 SW8270 BERZO(g)ANTHRACENE UG/KG 2400 2400 S-point Composite and Line \$5132AB 11/18/2004 N 0.25 SW8270 BERZO(g)ANTHRACENE UG/KG 2400 2400 S-point Composite and Line \$5132AB 11/18/2004 N 0.5 SW8270 BERZO(g)ANTHRACENE UG/KG 2400 2400 S-point Composite and Line \$5132AB 11/18/2004 N 0.5 SW8270 BERZO(g)ANTHRACENE UG/KG 2400 2400 S-point Composite and Line \$5132AB 11/18/2004 N 0.5 SW8270 BERZO(g)ANTHRACENE UG/KG 2400 2400 S-point Composite and Line \$5132AB 11/18/2004 N 0.5 SW8270 BERZO(g)ANTHRACENE UG/KG 23 J 22 S SPOINT Composite and Line \$5132AB 11/18/2004 N 0.5 SW8270 BERZO(g)ANTHRACENE UG/KG 23 J 22 S SPOINT COMPOSITE 218 SW8270 BERZO(g)ANTHRACENE UG/KG 23 J 22 S SW8270 BERZO(g)ANTHRACENE UG/KG 23 J 23 S Secrete 23 S SW8270 BERZO(g)ANTHRACENE UG/KG 23 J 23 S Secrete 23 S SW8270 BERZO(g)ANTHRACENE UG/KG 23 J 23 S SECRETE 23 S SW8270 BERZO(g)ANTHRACENE UG/KG 23 J 23 S SECRETE 23 S SW8270 BERZO(g)ANTHRACENE UG/KG 23 J 35 S SECRETE 23 S SW8270 BERZO(g)ANTHRACENE UG/KG 23 J 35 S SECRETE 23 S SW8270 BERZO(g)ANTHRACENE UG/KG 33	Target Area											
A	Target Area											
Italia Lene S3132AA												
Italia Line \$3132AB 11/16/2004 N 0.25 0.5 SW8270 BENZO(a)ANTHRACENE UGAG 200 J 200 5-point Composite call Line \$3132AB 11/16/2004 N 0.025 SW8270C BENZO(a)ANTHRACENE UGAG 2400 2400 5-point Composite call Line \$3132AB 11/16/2004 N 0.25 0.5 SW8270C BENZO(a)ANTHRACENE UGAG 2400 2400 5-point Composite call Line \$3132AB 11/16/2004 N 0.25 0.5 SW8270C BENZO(a)ANTHRACENE UGAG 640 640 5-point Composite call Line \$3132AB 11/16/2004 N 0.25 0.5 SW8270C BENZO(a)ANTHRACENE UGAG 640 640 5-point Composite call Line \$3132Z 11/16/2004 N 0.25 0.5 SW8270C BENZO(a)ANTHRACENE UGAG 1200 1200 5-point Composite call Line \$3132Z 11/16/2004 N 0.25 0.5 SW8270C BENZO(a)ANTHRACENE UGAG 1200 1200 5-point Composite call Line \$3132Z 11/16/2004 N 0.5 15 W8270 BENZO(a)ANTHRACENE UGAG 1200 1200 5-point Composite call Line \$3132Z 11/16/2004 N 0.5 15 W8270 BENZO(a)ANTHRACENE UGAG 29 J 220 5-point Composite call Line \$3132C 31/19/2001 N 0.5 15 W8270 BENZO(a)ANTHRACENE UGAG 23 J 23 Biscrete sarget Area \$3132C 31/19/2001 N 0.5 15 W8270 BENZO(a)ANTHRACENE UGAG 23 J 23 Biscrete sarget Area \$3132C 31/19/2001 N 0.5 0.5 SW8270 BENZO(a)ANTHRACENE UGAG 24 J 25 Biscrete sarget Area \$3132C 31/19/2001 N 0.5 0.5 SW8270 BENZO(a)ANTHRACENE UGAG 24 J 30 Biscrete sarget Area \$3132C 31/19/2001 N 0.0 0.5 SW8270 BENZO(a)ANTHRACENE UGAG 24 J 30 Biscrete sarget Area \$3132C 31/19/2001 N 0.0 0.5 SW8270 BENZO(a)ANTHRACENE UGAG 34 J 33 5-point Composite sarget Area \$3132C 31/19/2001 N 0.0 0.5 SW8270 BENZO(a)ANTHRACENE UGAG 34 J 33 5-point Composite sarget Area \$3132C 31/19/2001 N 0.5 0.5 SW8270 BENZO(a)ANTHRACENE UGAG 34 J 33 5-point Composite sarget Area \$3132C 31/19/2001 N 0.5 0.5 SW8270 BENZO(a)ANTHRACENE UGAG 34 J 33 5-point Composite sarget Area \$31	Rail Line									,		
Italia Line S3132AB	Rail Line											
tal Line S132AB 11/16/2004 N 0.25 SW8270 BEXZO[a)ARTHRACENE UGKG 240 2400 \$-point Composite tal Line S132AB 11/16/2004 N 0.25 SW8270 BEXZO[a)ARTHRACENE UGKG 640 640 \$-point Composite tal Line S132AB 11/16/2004 N 0.5 1 SW8270 BEXZO[a)ARTHRACENE UGKG 23 J 23 \$-point Composite tal Line S132AB 11/16/2004 N 0.5 1 SW8270 BEXZO[a)ARTHRACENE UGKG 1200 1200 \$-point Composite tal Line S132Z 11/16/2004 N 0.5 0.5 SW8270 BEXZO[a)ARTHRACENE UGKG 1200 1200 \$-point Composite tal Line S132Z 11/16/2004 N 0.5 1 SW8270 BEXZO[a)ARTHRACENE UGKG 1200 1200 \$-point Composite tal Line S132Z 11/16/2004 N 0.5 1 SW8270 BEXZO[a)ARTHRACENE UGKG 1200 1200 \$-point Composite tal Line S132Z 11/16/2004 N 0.5 1 SW8270 BEXZO[a)ARTHRACENE UGKG 1200 1200 \$-point Composite tal Line S132Z 11/16/2004 N 0.5 1 SW8270 BEXZO[a)ARTHRACENE UGKG 1200 1200 \$-point Composite tal Line S132Z 11/16/2004 N 0.5 1 SW8270 BEXZO[a)ARTHRACENE UGKG U 7/75 Discrete appt Area S132C 31/19/2001 N 0.5 SW8270 BEXZO[a)ARTHRACENE UGKG U 7/75 Discrete appt Area S132C 31/19/2001 N 0.25 MS270 BEXZO[a)ARTHRACENE UGKG U 1/16/20 Discrete arapet Area S132C 31/19/2001 N 0.0 SW8270 BEXZO[a)ARTHRACENE UGKG U 1/16/20 Discrete arapet Area S132C 31/19/2001 N 0.0 SW8270 BEXZO[a)ARTHRACENE UGKG U 1/16/20 Discrete arapet Area S132C 31/19/2001 N 0.0 SW8270 BEXZO[a)ARTHRACENE UGKG 96 J 96 5-point Composite arapet Area S132C 31/19/2001 N 0.2 SW8270 BEXZO[a)ARTHRACENE UGKG 96 J 96 5-point Composite arapet Area S132C 31/19/2001 N 0.2 SW8270 BEXZO[a)ARTHRACENE UGKG 96 J 96 5-point Composite arapet Area S132C 31/19/2001 N 0.2 SW8270 BEXZO[a)ARTHRACENE UGKG 96 J 96 5-point Composite arapet Area S132C 31/19/2001 N 0.2 SW8270 BEXZO[a)ARTHRACENE UGKG 90 J 96 5-point Composite tal Line S132AA 11/16/2004 N 0.2 SW8270 BEXZO[a)ARTHRACENE UGKG 90 J 96 5-point Composite tal Line S132AA 11/16/2004 N 0.2 SW8270 BEXZO[a)ARTHRACENE UGKG 90 J 96 5-point Composite tal Line S132AB 11/16/2004 N 0.2 SW8270 BEXZO[a)ARTHRACENE UGKG 90 J 96 5-point Composite tal Line S132AB 11/16/2004 N 0.2 SW8270 BEXZO[a)ARTHRACENE UGKG 9	Rail Line									I		
Lail Line S132AB 111/16/2004 N 0.5 0.5 SW8270 BEXZO(a)ARTHRACENE UGKG 23 J 23 5-point Composite lail Line S132AB 111/16/2004 N 0.5 1 SW8270 BEXZO(a)ARTHRACENE UGKG 23 J 23 5-point Composite lail Line S132Z 111/16/2004 N 0.25 SW8270 BEXZO(a)ARTHRACENE UGKG 1500 15000 5-point Composite lail Line S132Z 111/16/2004 N 0.25 SW8270 BEXZO(a)ARTHRACENE UGKG 1500 200 5-point Composite lail Line S132Z 111/16/2004 N 0.5 1 SW8270 BEXZO(a)ARTHRACENE UGKG 1200 200 5-point Composite lail Line S132Z 111/16/2004 N 0.5 1 SW8270 BEXZO(a)ARTHRACENE UGKG 1200 200 5-point Composite lail Line S132Z 111/16/2004 N 0.5 1 SW8270 BEXZO(a)ARTHRACENE UGKG 1200 200 5-point Composite lail Line S132Z 111/16/2004 N 0.5 1 SW8270 BEXZO(a)ARTHRACENE UGKG 10 175 Discrete larget Area S132C 31/16/2001 N 0.25 SW8270 BEXZO(a)ARTHRACENE UGKG 0 U 175 Discrete larget Area S142C 31/16/2001 N 0.25 SW8270 BEXZO(a)ARTHRACENE UGKG 10 16/80 Discrete larget Area S142C 31/16/2001 N 0.0 25 SW8270 BEXZO(a)ARTHRACENE UGKG 28 J 28 Discrete larget Area S142C 31/16/2001 N 0.0 25 SW8270 BEXZO(a)ARTHRACENE UGKG 28 J 28 Discrete larget Area S142C 31/16/2001 N 0.0 25 SW8270 BEXZO(a)ARTHRACENE UGKG 33 J 33 5-point Composite larget Area S142C 31/16/2001 N 0.0 25 SW8270 BEXZO(a)ARTHRACENE UGKG 33 J 33 5-point Composite larget Area S142C 31/16/2001 N 0.0 25 SW8270 BEXZO(a)ARTHRACENE UGKG 33 J 33 5-point Composite larget Area S142C 31/16/2001 N 0.5 1 SW8270 BEXZO(a)ARTHRACENE UGKG 30 J 30 Spoint Composite larget Area S142C 31/16/2001 N 0.5 1 SW8270 BEXZO(a)ARTHRACENE UGKG 30 J 30 Spoint Composite larget Area S142C 31/16/2004 N 0.5 1 SW8270 BEXZO(a)ARTHRACENE UGKG 20 J 40 S0 5-point Composite larget Area S142C 31/16/2004 N 0.5 1 SW8270 BEXZO(a)ARTHRACENE UGKG 20 J 40 S0 5-point Composite lail Line S143ZAA 111/16/2004 N 0.25 0.5 SW8270 BEXZO(a)ARTHRACENE UGKG 20 J 40 S0 5-point Composite lail Line S143ZAA 111/16/2004 N 0.25 0.5 SW8270 BEXZO(a)ARTHRACENE UGKG 20 J 40 S0 5-point Composite lail Line S143ZAA 111/16/2004 N 0.25 0.5 SW8270 BEXZO(a)ARTHRACENE UGKG 10 J 40 S0 5-point Comp												
Lail Line S1322AB 11/16/2004 N 0.5 1 SW8270C BENZO(JAMTHRACENE UG/KG 23 J 23 5-point Composite tail Line S1322 11/16/2004 N 0.5 0.5 SW8270 BENZO(JAMTHRACENE UG/KG 1200 1200 5-point Composite tail Line S1322 11/16/2004 N 0.5 1 SW8270 BENZO(JAMTHRACENE UG/KG 1200 1200 5-point Composite tail Line S1322 11/16/2004 N 0.5 1 SW8270 BENZO(JAMTHRACENE UG/KG 1200 1200 5-point Composite arguel Area S1320 3/19/2001 N 0.5 1 SW8270 BENZO(JAMTHRACENE UG/KG 23 J 23 Dicrete arguel Area S1320 3/19/2001 N 0.5 1 SW8270 BENZO(JAMTHRACENE UG/KG 23 J 23 Dicrete arguel Area S1320 3/19/2001 N 0.5 1 SW8270 BENZO(JAMTHRACENE UG/KG 23 J 23 Dicrete arguel Area S1320 3/19/2001 N 0.5 1 SW8270 BENZO(JAMTHRACENE UG/KG 23 J 23 Dicrete arguel Area S1320 3/19/2001 N 0.5 SW8270 BENZO(JAMTHRACENE UG/KG 24 J 28 Discrete arguel Area S1320 3/19/2001 N 0.5 SW8270 BENZO(JAMTHRACENE UG/KG 24 J 28 Discrete arguel Area S1320 3/19/2001 N 0.5 0.5 SW8270 BENZO(JAMTHRACENE UG/KG 24 J 28 Discrete arguel Area S1320 3/19/2001 N 0.5 0.5 SW8270 BENZO(JAMTHRACENE UG/KG 24 J 28 Discrete arguel Area S1320 3/19/2001 N 0.5 0.5 SW8270 BENZO(JAMTHRACENE UG/KG 34 J 33 3 Speint Composite arguel Area S1320 3/19/2001 N 0.5 0.5 SW8270 BENZO(JAMTHRACENE UG/KG 34 J 33 3 Speint Composite arguel Area S1320 3/19/2001 N 0.5 0.5 SW8270 BENZO(JAMTHRACENE UG/KG 34 J 33 3 Speint Composite arguel Area S1320 3/19/2001 N 0.5 0.5 SW8270 BENZO(JAMTHRACENE UG/KG 34 J 33 3 Speint Composite arguel Area S1320 3/19/2001 N 0.5 0.5 SW8270 BENZO(JAMTHRACENE UG/KG 34 J 33 3 Speint Composite arguel Area S1320 3/19/2001 N 0.5 0.5 SW8270 BENZO(JAMTHRACENE UG/KG 35 J 33 3 Speint Composite arguel Area S1320 3/19/2001 N 0.5 0.5 SW8270 BENZO(JAMTHRACENE UG/KG 40 U 190 Speint Composite arguel Area S1320 3/19/2001 N 0.5 0.5 SW8270 BENZO(JAMTHRACENE UG/KG 40 U 190 Speint Composite arguel Area S1320 3/19/2001 N 0.5 0.5 SW8270 BENZO(JAMTHRACENE UG/KG 40 U 190 Speint Composite arguel Area S1320 3/19/2001 N 0.5 0.5 SW8270 BENZO(JAMTHRACENE UG/KG 40 U 190 Speint Composite arguel Area S1322 3/19/2001 N 0.5 0.5 SW827	Rail Line											
tall Line S1332Z 11/16/2004 N 0.5 SW8270 BENZO(a)ANTHRACENE UG/KG 1200 1200 5-point Composite arget Area S132C 3/19/2001 N 0.0.25 SW8270 BENZO(a)ANTHRACENE - UG/KG 29 J 290 5-point Composite arget Area S132C 3/19/2001 N 0.5 1 SW8270 BENZO(a)ANTHRACENE - UG/KG 23 J 23 Discrete arget Area S132C 3/19/2001 N 0.5 1 SW8270 BENZO(a)ANTHRACENE UG/KG U 175 Discrete arget Area S132C 3/19/2001 N 0.5 0.5 SW8270 BENZO(a)ANTHRACENE UG/KG U 180 Discrete arget Area S132C 3/19/2001 N 0.5 0.5 SW8270 BENZO(a)ANTHRACENE UG/KG U 180 Discrete arget Area SA05160201 5/24/2002 N 0 0.25 SW8270 BENZO(a)ANTHRACENE UG/KG U 180 Discrete arget Area S132C 3/19/2001 N 0.0 0.25 SW8270 BENZO(a)ANTHRACENE UG/KG 28 J 28 Discrete Discrete arget Area S132C 3/19/2001 N 0.0 0.25 SW8270 BENZO(a)ANTHRACENE UG/KG 28 J 96 5-point Composite arget Area S132C 3/19/2001 N 0.0 0.25 SW8270 BENZO(a)ANTHRACENE UG/KG 33 J 96 5-point Composite arget Area S132C 3/19/2001 N 0.5 1 SW8270 BENZO(a)ANTHRACENE UG/KG 33 J 33 5-point Composite arget Area S132C 3/19/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG 33 J 33 5-point Composite arget Area S132C 3/19/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG 33 J 33 5-point Composite arget Area S132C 3/19/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG 4300 4300 5-point Composite all Line S13/2AA 11/16/2004 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG 4300 4300 5-point Composite all Line S13/2AA 11/16/2004 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG 520 1 250 S-point Composite all Line S13/2AB 11/16/2004 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG 520 5 SP0-point Composite all Line S13/2AB 11/16/2004 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG 100 1 100 S-point Composite all Line S13/2AB 11/16/2004 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG 100 1 100 S-point Composite all Line S13/2AB 11/16/2004 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG 100 1 100 S-point Composite all Line S13/2AB 11/16/2004 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG 10 U 100 S-point Composite arget Area S13/2C 3/19/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG 10 U 100 S-point Composite arget Area S13/2C 3/19/2001 N 0.5 5 SW8270 BENZO	Rail Line						BENZO(a)ANTHRACENE			I	23	5-point Composite
	Rail Line											
AVERAGE FOR BENZO(a)ANTHRACENE 2182										ı		
Sarget Area S5132C 3/19/2001 N 0.5 1.5W8270 BENZO(a)ANTHRACENE U.G/KG U 175 Discrete arright Area S5132C 3/19/2001 N 0.5 0.5 SW8270 BENZO(a)ANTHRACENE U.G/KG 28 J 28 Discrete U.G/KG 28 J 28 Discrete U.G/KG U 160 Discrete U.G/KG U U.G/KG U.G/KG U U.G/KG	Itali Lille	33132Z	11/10/20041	IN .	0.5	1 300270						
Sarget Area SS132C 3/19/2001 N 0.25 0.5 SW8270 BENZO(a)ANTHRACENE UG/KG U 195 MIS	Target Area											
Sapat Area SAO5160201 5/24/2002 N												
Are Are As Separta of 1/17/2006 N 0 0.5 SW8270C BENZO(a)ANTHRACENE DIGKET 101.5 anget Area SF132C 3/19/2001 N 0.5 SW8270 BENZO(a)PYRENE UGKG 96 J 96 5-point Composite anget Area SF132C 3/19/2001 N 0.5 SW8270 BENZO(a)PYRENE UGKG 33 J 33 5-point Composite anget Area SF132C 3/19/2001 N 0.5 SW8270 BENZO(a)PYRENE UGKG 33 J 33 5-point Composite anget Area SF132C 3/19/2001 N 0.5 SW8270 BENZO(a)PYRENE UGKG 3 J 1/16/2004 N 0.5 SW8270 BENZO(a)PYRENE UGKG 4 U 1/10/0 5-point Composite tall Line SF132AA 11/16/2004 N 0.5 SW8270 BENZO(a)PYRENE UGKG 4300 4300 5-point Composite tall Line SF132AA 11/16/2004 N 0.5 SW8270 BENZO(a)PYRENE UGKG 250 J 250 5-point Composite tall Line SF132AA 11/16/2004 N 0.5 SW8270 BENZO(a)PYRENE UGKG 250 J 250 5-point Composite tall Line SF132AA 11/16/2004 N 0.5 SW8270 BENZO(a)PYRENE UGKG 250 J 1/10/2004 N 0.5 SW8270 BENZO(a)PYRENE UGKG 250 J 1/10/2004 N 0.5 SW8270 BENZO(a)PYRENE UGKG 250 J 1/10/2004 N 0.5 SW8270 BENZO(a)PYRENE UGKG 250 SPOINT Composite tall Line SF132AB 11/16/2004 N 0.5 SW8270 BENZO(a)PYRENE UGKG 2100 2100 5-point Composite tall Line SF132AB 11/16/2004 N 0.5 SW8270 BENZO(a)PYRENE UGKG 2100 2100 5-point Composite tall Line SF132AB 11/16/2004 N 0.5 SW8270 BENZO(a)PYRENE UGKG 200 350 5-point Composite tall Line SF132AB 11/16/2004 N 0.5 SW8270 BENZO(a)PYRENE UGKG 200 550 5-point Composite tall Line SF132AB 11/16/2004 N 0.5 SW8270 BENZO(a)PYRENE UGKG 200 550 5-point Composite tall Line SF132AB 11/16/2004 N 0.5 SW8270 BENZO(a)PYRENE UGKG 400 14000 5-point Composite tall Line SF132AB 11/16/2004 N 0.5 SW8270 BENZO(a)PYRENE UGKG 400 14000 5-point Composite tall Line SF132AB 11/16/2004 N 0.5 SW8270 BENZO(a)PYRENE UGKG 400 14000 5-point Composite anget Area SF132C 3/19/2001 N 0.5 SW8270 BENZO(a)PYRENE UGKG 400 14000 5-point Composite anget Area SF132C 3/19/2001 N 0.5 SW8270 BENZO(a)PYRENE UGKG 400 14000 5-point Composite anget Area SF132C 3/19/2001 N 0.5 SW8270 BENZO(a)PYRENE UGKG 400 14000 5-point Composite anget Area SF132C 3/19/2001 N 0.5 SW8270 BENZO(a)PYRENE UGKG 400 1400 5-point Composite	Target Area											
Staget Area Sti32C 3/19/2001 N 0 0.25 SW8270 BENZO(a)PYRENE UG/NG 96 J 96 5-point Composite araget Area Sti32C 3/19/2001 N 0.25 0.25 SW8270 BENZO(a)PYRENE UG/NG U 1/80 5-point Composite half Line Sti32AA 11/16/2004 N 0.5 1 SW8270 BENZO(a)PYRENE UG/NG U 4/80 5-point Composite half Line Sti32AA 11/16/2004 N 0.5 1 SW8270 BENZO(a)PYRENE UG/NG 250 J 250 5-point Composite half Line Sti32AA 11/16/2004 N 0.25 SW8270 BENZO(a)PYRENE UG/NG 250 J 250 5-point Composite half Line Sti32AB 11/16/2004 N 0.25 SW8270 BENZO(a)PYRENE UG/NG 2100 2100 5-point Composite half Line Sti32AB 11/16/2004 N 0.25 SW8270 BENZO(a)PYRENE UG/NG 2100 2100 5-point Composite half Line Sti32AB 11/16/2004 N 0.25 SW8270 BENZO(a)PYRENE UG/NG 250 520 5-point Composite half Line Sti32AB 11/16/2004 N 0.25 SW8270 BENZO(a)PYRENE UG/NG 520 520 5-point Composite half Line Sti32AB 11/16/2004 N 0.5 SW8270 BENZO(a)PYRENE UG/NG 520 520 5-point Composite half Line Sti32AB 11/16/2004 N 0.5 SW8270 BENZO(a)PYRENE UG/NG 520 520 5-point Composite half Line Sti32AB 11/16/2004 N 0.5 SW8270 BENZO(a)PYRENE UG/NG 14000 14000 5-point Composite half Line Sti32AB 11/16/2004 N 0.5 SW8270 BENZO(a)PYRENE UG/NG 230 J 230 5-point Composite half Line Sti32AB 11/16/2004 N 0.5 SW8270 BENZO(a)PYRENE UG/NG 230 J 230 5-point Composite half Line Sti32AB 11/16/2004 N 0.5 SW8270 BENZO(a)PYRENE UG/NG 230 J 230 5-point Composite half Line Sti32AB 3/19/2001 N 0.5 SW8270 BENZO(a)PYRENE UG/NG 20 J 230 5-point Composite half Line Sti32AB 3/19/2001 N 0.5 SW8270 BENZO(a)PYRENE UG/NG 20 J 230 5-point Composite half Line Sti32AB 3/19/2001 N 0.5 SW8270 BENZO(a)PYRENE UG/NG 30 J 30 Discrete 3/19/2001 N 0.5 SW8270 BENZO(a)PYRENE UG/NG 30 J 30 Discrete 3/19/2001 N 0.5 SW8270 BENZO(a)PYRENE UG/NG	J											
Part	Target Area											
arget Area SS132C 3/19/2001 N 0.5 1 SW8270 BENZO(a)PYRENE U.G/KG 430 4300 5-point Composite tail Line SS132AA 11/16/2004 N 0.5 1 SW8270 BENZO(a)PYRENE U.G/KG 420 U.G/KG 430 U.G/KG 250 J 250 Spoint Composite tail Line SS132AA 11/16/2004 N 0.5 1 SW8270 BENZO(a)PYRENE U.G/KG 250 J 250 Spoint Composite tail Line SS132AB 11/16/2004 FD 0.25 0.5 SW8270 BENZO(a)PYRENE U.G/KG 2100 2100 Spoint Composite tail Line SS132AB 11/16/2004 N 0.0 0.25 SW8270C BENZO(a)PYRENE U.G/KG 1600 1600 S-point Composite tail Line SS132AB 11/16/2004 N 0.0 0.5 SW8270C BENZO(a)PYRENE U.G/KG 1600 1600 S-point Composite tail Line SS132AB 11/16/2004 N 0.0 0.25 SW8270C BENZO(a)PYRENE U.G/KG 500 500 S-point Composite tail Line BENZO(a)PYRENE U.G/KG 50 500 S-point Composite tail Line BENZO(a)PYRENE U.G/KG 10 1800 S-point Composite tail Line BENZO(a)PYRENE U.G/KG 20												
Real Line SS132AA 11/16/2004 N 0 0.25 SW8270 BENZO(a)PYRENE UG/KG 250 J 250 S-point Composite tail Line SS132AA 11/16/2004 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG 250 J 250 S-point Composite tail Line SS132AB 11/16/2004 N 0.25 SW8270 BENZO(a)PYRENE UG/KG 180 J 180 5-point Composite tail Line SS132AB 11/16/2004 N 0 0.25 SW8270 BENZO(a)PYRENE UG/KG 180 J 180 5-point Composite tail Line SS132AB 11/16/2004 N 0 0.25 SW8270 BENZO(a)PYRENE UG/KG 1600 1600 5-point Composite tail Line SS132AB 11/16/2004 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG 520 520 5-point Composite tail Line SS132AB 11/16/2004 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG 520 520 5-point Composite tail Line SS132AB 11/16/2004 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG U 180 5-point Composite tail Line SS132Z 11/16/2004 N 0.25 SW8270 BENZO(a)PYRENE UG/KG U 180 5-point Composite tail Line SS132Z 11/16/2004 N 0.25 SW8270 BENZO(a)PYRENE UG/KG 44000 14000 5-point Composite tail Line SS132Z 11/16/2004 N 0.25 SW8270 BENZO(a)PYRENE UG/KG 230 J 230 5-point Composite tail Line SS132Z 31/19/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG 230 J 230 5-point Composite tail Line SS132Z 31/19/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG 230 J 230 5-point Composite 230 5-point Comp	Target Area											
Rail Line SS132AA	Rail Line	SS132AA	11/16/2004 I	N	0	0.25 SW8270	BENZO(a)PYRENE	UG/KG	4300		4300	5-point Composite
tail Line SS132AB 11/16/2004 FD 0 0.25 SW8270C BENZO(a)PYRENE UG/KG 2100 2106 5-point Composite tail Line SS132AB 11/16/2004 N 0.25 SW8270C BENZO(a)PYRENE UG/KG 1600 1600 5-point Composite tail Line SS132AB 11/16/2004 N 0.25 SW8270C BENZO(a)PYRENE UG/KG 520 Spoint Composite tail Line SS132AB 11/16/2004 N 0.5 SW8270C BENZO(a)PYRENE UG/KG 4000 14000 5-point Composite tail Line SS132Z 11/16/2004 N 0.25 SW8270 BENZO(a)PYRENE UG/KG 980 980 5-point Composite tail Line SS132Z 11/16/2004 N 0.25 SW8270 BENZO(a)PYRENE UG/KG 980 980 5-point Composite tail Line SS132Z 11/16/2004 N 0.5 SW8270 BENZO(a)PYRENE UG/KG 980 980 5-point Composite tail Line SS132C 3/19/2001 N 0.5 SW8270 BENZO(a)PYRENE UG/KG 230 J 230 5-point Composite tail Line SS132C 3/19/2001 N 0.5 SW8270 BENZO(a)PYRENE UG/KG 21 J 21 Discrete tail Line SS132C 3/19/2001 N 0.5 SW8270 BENZO(a)PYRENE UG/KG	Rail Line											
Sala Line SS132AB 11/16/2004 N 0 0.25 SW8270C BENZO(a) PYRENE UG/KG 1600 1600 5-point Composite to tail Line SS132AB 11/16/2004 N 0.25 0.5 SW8270C BENZO(a) PYRENE UG/KG 520 520 5-point Composite to tail Line SS132Z 11/16/2004 N 0.5 1 SW8270C BENZO(a) PYRENE UG/KG U 180 5-point Composite to tail Line SS132Z 11/16/2004 N 0.25 SW8270 BENZO(a) PYRENE UG/KG 14000 14000 5-point Composite to tail Line SS132Z 11/16/2004 N 0.25 SW8270 BENZO(a) PYRENE UG/KG 980 980 5-point Composite to tail Line SS132Z 11/16/2004 N 0.5 1 SW8270 BENZO(a) PYRENE UG/KG 230 J 230 5-point Composite to tail Line SS132Z 11/16/2004 N 0.5 1 SW8270 BENZO(a) PYRENE UG/KG 230 J 230 5-point Composite to tail Line SS132C 3/19/2001 N 0.5 1 SW8270 BENZO(a) PYRENE UG/KG 21 J 21 Discrete to target Area SS132C 3/19/2001 N 0.5 1 SW8270 BENZO(a) PYRENE UG/KG U 175 Discrete target Area SS132C 3/19/2001 N 0.25 SW8270 BENZO(a) PYRENE UG/KG U 176 Discrete target Area SS132C 3/19/2001 N 0.25 SW8270 BENZO(a) PYRENE UG/KG U 176 Discrete target Area SS132C 3/19/2001 N 0.25 SW8270 BENZO(a) PYRENE UG/KG U 176 Discrete target Area SS132C 3/19/2001 N 0.25 SW8270 BENZO(a) PYRENE UG/KG U 176 Discrete target Area SS132C 3/19/2001 N 0.25 SW8270 BENZO(a) PYRENE UG/KG 180 J 180 5-point Composite target Area SS132C 3/19/2001 N 0.25 SW8270 BENZO(b) FLUORANTHENE UG/KG 180 J 180 5-point Composite tail Line SS132AA 11/16/2004 N 0.25 SW8270 BENZO(b) FLUORANTHENE UG/KG 300 J 300 S-point Composite tail Line SS132AA 11/16/2004 N 0.25 SW8270 BENZO(b) FLUORANTHENE UG/KG 300 J 300 5-point Composite tail Line SS132AB 11/16/2004 N 0.25 SW8270 BENZO(b) FLUORANTHENE UG/KG 300 J 300 5-point Composite tail Line SS132AB 11/16/2004 N 0.25 SW8270 BENZO(b) FLUORANTHENE UG/KG 300 J 300 5-point Composite tail Line SS132A	Rail Line Rail Line									'		
tail Line SS132AB 11/16/2004 N 0.25 0.5 SW8270C BENZO(a)PYRENE UG/KG 520 520 5-point Composite tail Line SS132AB 11/16/2004 N 0.5 1 SW8270C BENZO(a)PYRENE UG/KG U 180 5-point Composite tail Line SS132Z 11/16/2004 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG 14000 14000 5-point Composite tail Line SS132Z 11/16/2004 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG 280 980 5-point Composite tail Line SS132Z 11/16/2004 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG 230 J 230 5-point Composite tail Line SS132C 3/19/2001 N 0 0.25 SW8270 BENZO(a)PYRENE UG/KG 23 J 20 5-point Composite tail Line SS132C 3/19/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG 21 J 21 Discrete tail Line SS132C 3/19/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG 21 J 21 Discrete tail Line SS132C 3/19/2001 N 0.25 SW8270 BENZO(a)PYRENE UG/KG 0 J 180 Discrete tail Line	Rail Line											
Sal Line SS132Z	Rail Line	SS132AB	11/16/2004 I	N	0.25	0.5 SW8270C	BENZO(a)PYRENE	UG/KG	520		520	5-point Composite
Rail Line SS132Z 11/16/2004 N 0.5 0.5 SW8270 BENZO(a)PYRENE UG/KG 980 980 5-point Composite AVERAGE FOR BENZO(a)PYRENE 5-POINT COMPOSITE 1896.076923 AVERAGE FOR BENZO(a)PYRENE UG/KG 21 J 21 Discrete arget Area SS132C 3/19/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG U 175 Discrete arget Area SS132C 3/19/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG U 176 Discrete arget Area SSA05160201 5/24/2002 N 0 0.25 SW8270 BENZO(a)PYRENE UG/KG U 196 MIS arget Area SS132C 3/19/2001 N 0 0.25 SW8270 BENZO(b)FLUORANTHENE UG/KG 180 J 180 5-point Composite arget Area SS132C 3/19/2001 N 0.25 5 SW8270	Rail Line									J		
Rail Line SS132Z	Rail Line Rail Line											
AVERAGE FOR BENZO(a)PYRENE 5-POINT COMPOSITE 1896.076923 arget Area SS132C 3/19/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG 21 J 21 Discrete arget Area SS132C 3/19/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG U 175 Discrete arget Area SS132C 3/19/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete arget Area SS132C 3/19/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete arget Area SSA05160201 5/24/2002 N 0 0.25 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete arget Area SSA05160201 5/24/2002 N 0 0.25 SW8270 BENZO(a)PYRENE UG/KG U 195 MIS arget Area SS132C 3/19/2001 N 0 0.25 SW8270 BENZO(a)PYRENE UG/KG U 195 MIS arget Area SS132C 3/19/2001 N 0.25 SW8270 BENZO(a)PYRENE UG/KG 180 J 180 5-point Composite arget Area SS132C 3/19/2001 N 0.25 SW8270 BENZO(b)FLUORANTHENE UG/KG 74 J 74 5-point Composite arget Area SS132C 3/19/2001 N 0.5 1 SW8270 BENZO(b)FLUORANTHENE UG/KG 74 J 74 5-point Composite arget Area SS132C 3/19/2001 N 0.5 1 SW8270 BENZO(b)FLUORANTHENE UG/KG 74 J 74 5-point Composite arget Area SS132C 3/19/2001 N 0.5 1 SW8270 BENZO(b)FLUORANTHENE UG/KG 000 6900 5-point Composite tail Line SS132AA 11/16/2004 N 0.5 1 SW8270 BENZO(b)FLUORANTHENE UG/KG 340 J 340 5-point Composite tail Line SS132AA 11/16/2004 N 0.5 1 SW8270 BENZO(b)FLUORANTHENE UG/KG 340 J 340 5-point Composite tail Line SS132AB 11/16/2004 N 0.25 0.5 SW8270 BENZO(b)FLUORANTHENE UG/KG 380 J 280 5-point Composite tail Line SS132AB 11/16/2004 N 0.25 0.5 SW8270 BENZO(b)FLUORANTHENE UG/KG 3000 3000 5-point Composite tail Line SS132AB 11/16/2004 N 0.25 0.5 SW8270 BENZO(b)FLUORANTHENE UG/KG 890 890 5-point Composite tail Line SS132AB 11/16/2004 N 0.25 0.5 SW8270 BENZO(b)FLUORANTHENE UG/KG 890 890 5-point Composite tail Line SS132AB 11/16/2004 N 0.25 0.5 SW8270 BENZO(b)FLUORANTHENE UG/KG 40 J 40 5-point Composite tail Line SS132AB 11/16/2004 N 0.25 0.5 SW8270 BENZO(b)FLUORANTHENE UG/KG 40 J 40 5-point Composite tail Line SS132AB 11/16/2004 N 0.25 0.5 SW8270 BENZO(b)FLUORANTHENE UG/KG 40 J 40 5-point Composite tail Line SS132AB 11/16/2004 N 0.25 0.5 SW82	Rail Line						BENZO(a)PYRENE	UG/KG	230 .		230	5-point Composite
Parget Area SS132C 3/19/2001 N 0.5 1.5 W8270 BENZO(a)PYRENE UG/KG U 175 Discrete 176 Discrete 176 Discrete 177 Discrete 177 Discrete 178 Discre								BENZO(a)PYR	ENE 5-POINT C	OMPOSITE	1896.076923	
Parget Area S132C 3/19/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete	Target Area											
SA05160201 5/24/2002 N 0 0.25 SW8270 BENZO(a)PYRENE UG/KG 30 J 30 Discrete									l I	J		
AVERAGE FOR BENZO(a)PYRENE DISCRETE 101.5	Target Area						BENZO(a)PYRENE	UG/KG	30 .	I	30	Discrete
Part							AVER	AGE FOR BEI	NZO(a)PYRENE	DISCRETE	101.5	
Parget Area S3132C 3/19/2001 N 0.25 0.5 SW8270 BENZO(b)FLUORANTHENE UG/KG U 180 5-point Composite arget Area S3132C 3/19/2001 N 0.5 1 SW8270 BENZO(b)FLUORANTHENE UG/KG U 180 5-point Composite arget Area S3132A 11/16/2004 N 0.0 0.25 SW8270 BENZO(b)FLUORANTHENE UG/KG 6900 69005-point Composite area Composite Composite area Composite Composite area Composite Composi												
Farget Area SS132C 3/19/2001 N 0.5 1.5 W8270 BENZO(b)FLUORANTHENE UG/KG U 180 5-point Composite to tail Line SS132AA 11/16/2004 N 0.5 0.25 SW8270 BENZO(b)FLUORANTHENE UG/KG 340 J 340 5-point Composite tail Line SS132AA 11/16/2004 N 0.5 0.5 SW8270 BENZO(b)FLUORANTHENE UG/KG 340 J 340 5-point Composite tail Line SS132AB 11/16/2004 N 0.25 0.5 SW8270 BENZO(b)FLUORANTHENE UG/KG 280 J 280 5-point Composite tail Line SS132AB 11/16/2004 N 0.25 SW8270 BENZO(b)FLUORANTHENE UG/KG 280 J 280 5-point Composite tail Line SS132AB 11/16/2004 N 0.25 SW8270 BENZO(b)FLUORANTHENE UG/KG 3000 3000 5-point Composite tail Line SS132AB 11/16/2004 N 0.25 0.5 SW8270 BENZO(b)FLUORANTHENE UG/KG 3000 3000 5-point Composite tail Line SS132AB 11/16/2004 N 0.5 0.5 SW8270 BENZO(b)FLUORANTHENE UG/KG 890 890 5-point Composite tail Line SS132AB 11/16/2004 N 0.5 1.5 W8270 BENZO(b)FLUORANTHENE UG/KG 40 J 40 5-point Composite tail Line SS132Z 11/16/2004 N 0.5 0.25 SW8270 BENZO(b)FLUORANTHENE UG/KG 13000 13000 5-point Composite tail Line SS132Z 11/16/2004 N 0.25 0.5 SW8270 BENZO(b)FLUORANTHENE UG/KG 13000 13000 5-point Composite tail Line SS132Z 11/16/2004 N 0.25 0.5 SW8270 BENZO(b)FLUORANTHENE UG/KG 13000 13000 5-point Composite tail Line SS132Z 11/16/2004 N 0.5 0.5 SW8270 BENZO(b)FLUORANTHENE UG/KG 1100 1100 5-point Composite tail Line SS132Z 11/16/2004 N 0.5 SW8270 BENZO(b)FLUORANTHENE UG/KG 310 J 310 5-point Composite 31	Target Area											
Rail Line SS132AA 11/16/2004 N 0 0.25 SW8270 BENZO(b)FLUORANTHENE UG/KG 6900 6900 5-point Composite Itail Line SS132AA 11/16/2004 N 0.5 1 SW8270 BENZO(b)FLUORANTHENE UG/KG 340 J 340 5-point Composite Itail Line SS132AA 11/16/2004 N 0.25 0.5 SW8270 BENZO(b)FLUORANTHENE UG/KG 280 J 280 5-point Composite Itail Line SS132AB 11/16/2004 N 0 0.25 SW8270C BENZO(b)FLUORANTHENE UG/KG 4000 4000 5-point Composite Itail Line SS132AB 11/16/2004 N 0.25 0.5 SW8270C BENZO(b)FLUORANTHENE UG/KG 3000 3000 5-point Composite Itail Line SS132AB 11/16/2004 N 0.25 0.5 SW8270C BENZO(b)FLUORANTHENE UG/KG 890 890 5-point Composite Itail Line SS132AB 11/16/2004 N 0.5 1 SW8270C BENZO(b)FLUORANTHENE UG/KG 40 J 40 5-point Composite Itail Line SS132Z 11/16/2004 N 0 0.25 SW8	Target Area	SS132C			0.5	1 SW8270		UG/KG	ι			
kail Line SS132AA 11/16/2004 N 0.25 0.5 SW8270 BENZO(b)FLUCRANTHENE UG/KG 280 J 280 5-point Composite kail Line SS132AB 11/16/2004 N 0 0.25 SW8270C BENZO(b)FLUCRANTHENE UG/KG 3000 3000 5-point Composite kail Line SS132AB 11/16/2004 N 0.25 SW8270C BENZO(b)FLUCRANTHENE UG/KG 3000 3000 5-point Composite kail Line SS132AB 11/16/2004 N 0.25 SW8270C BENZO(b)FLUCRANTHENE UG/KG 890 890 5-point Composite kail Line SS132ZB 11/16/2004 N 0.5 1 SW8270 BENZO(b)FLUORANTHENE UG/KG 40 J 40 5-point Composite kail Line SS132Z 11/16/2004 N 0 0.25 SW8270 BENZO(b)FLUORANTHENE UG/KG 13000 13000 5-point Composite kail Line SS132Z 11/16/2004 N 0.25 0.5 SW8270 BENZO(b)FLUORANTHENE UG/KG 1100 1100 5-point Composite kail Line SS132Z 11/16/2004 N 0.25 0.5 SW8270 BENZO(b)FLUORANTHENE UG/	Rail Line	SS132AA	11/16/2004 I	N	0	0.25 SW8270	BENZO(b)FLUORANTHENE	UG/KG	6900		6900	5-point Composite
Rail Line SS132AB 11/16/2004 FD 0 0.25 SW8270C BENZO(b)FLUCRANTHENE UG/KG 4000 4000 5-point Composite Rail Line SS132AB 11/16/2004 N 0 0.25 SW8270C BENZO(b)FLUCRANTHENE UG/KG 3000 3000 5-point Composite Rail Line SS132AB 11/16/2004 N 0.25 0.5 SW8270C BENZO(b)FLUCRANTHENE UG/KG 890 8805-point Composite Rail Line SS132AB 11/16/2004 N 0.5 1 SW8270C BENZO(b)FLUCRANTHENE UG/KG 40 J 40 5-point Composite Rail Line SS132Z 11/16/2004 N 0.25 0.5 SW8270 BENZO(b)FLUCRANTHENE UG/KG 13000 13000 5-point Composite Rail Line SS132Z 11/16/2004 N 0.25 0.5 SW8270 BENZO(b)FLUCRANTHENE UG/KG 1100 1100 5-point Composite Rail Line SS132Z 11/16/2004 N 0.5 1 SW8270 BENZO(b)FLUCRANTHENE UG/KG 310 J 310 5-point Composite	Rail Line											
kail Line SS132AB 11/16/2004 N 0 0.25 SW8270C BENZO(b)FLUORANTHENE UG/KG 3000 3000 5-point Composite kail Line SS132AB 11/16/2004 N 0.25 0.5 SW8270C BENZO(b)FLUORANTHENE UG/KG 890 890 5-point Composite kail Line SS132AB 11/16/2004 N 0.5 1 SW8270C BENZO(b)FLUORANTHENE UG/KG 40 J 40 5-point Composite kail Line SS132Z 11/16/2004 N 0 0.25 SW8270 BENZO(b)FLUORANTHENE UG/KG 1300 13000 5-point Composite kail Line SS132Z 11/16/2004 N 0.25 0.5 SW8270 BENZO(b)FLUORANTHENE UG/KG 1100 1100 5-point Composite kail Line SS132Z 11/16/2004 N 0.5 1 SW8270 BENZO(b)FLUORANTHENE UG/KG 310 J 310 5-point Composite										,		
kail Line SS132AB 11/16/2004 N 0.25 0.5 SW8270C BENZO(b)FLUORANTHENE UG/KG 890 890 5-point Composite kail Line SS132AB 11/16/2004 N 0.5 1 SW8270C BENZO(b)FLUORANTHENE UG/KG 40 J 40 5-point Composite kail Line SS132Z 11/16/2004 N 0.25 SW8270 BENZO(b)FLUORANTHENE UG/KG 13000 13000 5-point Composite kail Line SS132Z 11/16/2004 N 0.25 SW8270 BENZO(b)FLUORANTHENE UG/KG 1100 1100 5-point Composite kail Line SS132Z 11/16/2004 N 0.5 1 SW8270 BENZO(b)FLUORANTHENE UG/KG 310 J 310 5-point Composite	Rail Line											
tail Line SS132AB 11/16/2004 N 0.5 1 SW8270C BENZO(b)FLUORANTHENE UG/KG 40 J 40 5-point Composite tail Line SS132Z 11/16/2004 N 0 0.25 SW8270 BENZO(b)FLUORANTHENE UG/KG 13000 13000 5-point Composite tail Line SS132Z 11/16/2004 N 0.25 0.5 SW8270 BENZO(b)FLUORANTHENE UG/KG 1100 1100 5-point Composite tail Line SS132Z 11/16/2004 N 0.5 1 SW8270 BENZO(b)FLUORANTHENE UG/KG 310 J 310 5-point Composite	Rail Line	SS132AB			0.25	0.5 SW8270C	BENZO(b)FLUORANTHENE	UG/KG	890			
Rail Line SS132Z 11/16/2004 N 0.25 0.5 SW8270 BENZO(b)FLUORANTHENE UG/KG 1100 1100 5-point Composite Rail Line SS132Z 11/16/2004 N 0.5 1 SW8270 BENZO(b)FLUORANTHENE UG/KG 310 J 310 5-point Composite	Rail Line	SS132AB	11/16/2004 I	N	0.5	1 SW8270C		UG/KG	40 .	I	40	5-point Composite
tail Line SS132Z 11/16/2004 N 0.5 1 SW8270 BENZO(b)FLUORANTHENE UG/KG 310 J 310 5-point Composite	Rail Line											
	Rail Line Rail Line									I		
	=10				0.0	. 0110210						

Table C.4-5
Former A Range
Calculation of Averages Concentrations for PAHs Exhibiting Maximum Concentrations Above a Screening Criterion in the PAH 1 Exposure Area

											Concentration	
			Normal or								Used in	
Area	Location ID	Collection Date	Field Duplicate	Begin Depth (ft)	End Depth (ft)	Analytical Method	Analyte	Units	Detected Value	Flags	Computation of Averages	Sample Type
Target Area	SS132C	3/19/2001 N	N	0	0.25	SW8270	BENZO(b)FLUORANTHENE	UG/KG	24 J	_	24	Discrete
Target Area Target Area	SS132C SS132C	3/19/2001 N 3/19/2001 N		0.5 0.25		SW8270 SW8270	BENZO(b)FLUORANTHENE BENZO(b)FLUORANTHENE	UG/KG UG/KG	L L			Discrete Discrete
Target Area	SSA05160201	5/24/2002 N		0.20		SW8270	BENZO(b)FLUORANTHENE	UG/KG	46 J		46	Discrete
Target Area	SSFAFTA01	1/17/2006 1	NI .	0	0.5	SW8270C	AVERAGE FOR BENZO(b)FLUORANTHENE	UG/KG	IORANTHENE I		106.25 195	MIS
Target Area	SS132C	3/19/2001		0		SW8270C	DIBENZ(a,h)ANTHRACENE	UG/KG	26 J			5-point Composite
Target Area	SS132C SS132C	3/19/2001		0.25		SW8270 SW8270	DIBENZ(a,h)ANTHRACENE	UG/KG UG/KG	L			5-point Composite
Target Area Rail Line	SS132AA	3/19/2001 N 11/16/2004 N		0.5 0		SW8270	DIBENZ(a,h)ANTHRACENE DIBENZ(a,h)ANTHRACENE	UG/KG	740 J			5-point Composite 5-point Composite
Rail Line	SS132AA	11/16/2004		0.5		SW8270	DIBENZ(a,h)ANTHRACENE	UG/KG	80 J			5-point Composite
Rail Line Rail Line	SS132AA SS132AB	11/16/2004 N 11/16/2004 F		0.25 0		SW8270 SW8270C	DIBENZ(a,h)ANTHRACENE DIBENZ(a,h)ANTHRACENE	UG/KG UG/KG	51 J 750 J			5-point Composite 5-point Composite
Rail Line	SS132AB	11/16/2004		0		SW8270C	DIBENZ(a,h)ANTHRACENE	UG/KG	400 J		400	5-point Composite
Rail Line Rail Line	SS132AB SS132AB	11/16/2004 N 11/16/2004 N		0.25 0.5		SW8270C SW8270C	DIBENZ(a,h)ANTHRACENE DIBENZ(a,h)ANTHRACENE	UG/KG UG/KG	130 J L			5-point Composite 5-point Composite
Rail Line	SS132Z	11/16/2004 1	N	0	0.25	SW8270	DIBENZ(a,h)ANTHRACENE	UG/KG	2400		2400	5-point Composite
Rail Line Rail Line	SS132Z SS132Z	11/16/2004 N 11/16/2004 N		0.25 0.5		SW8270 SW8270	DIBENZ(a,h)ANTHRACENE DIBENZ(a,h)ANTHRACENE	UG/KG UG/KG	200 J 59 J			5-point Composite 5-point Composite
rtaii Eirio							AVERAGE FOR DIBENZO(a,	h)ANTHRACE		OMPOSITE	413.538	•
Target Area Target Area	SS132C SS132C	3/19/2001 N 3/19/2001 N		0 0.5		SW8270 SW8270	DIBENZ(a,h)ANTHRACENE DIBENZ(a,h)ANTHRACENE	UG/KG UG/KG	L L			Discrete Discrete
Target Area	SS132C	3/19/2001	N	0.25	0.5	SW8270	DIBENZ(a,h)ANTHRACENE	UG/KG	L	J	180	Discrete
Target Area	SSA05160201	5/24/2002 N	N	0	0.25	SW8270	DIBENZ(a,h)ANTHRACENE AVERAGE FOR D	UG/KG	NTHRACENE I		180 176.25	Discrete
Target Area	SSFAFTA01	1/17/2006 N	N	0	0.5	SW8270C	DIBENZ(a,h)ANTHRACENE	UG/KG	ANTHRACENE I		176.25	MIS
Target Area	SS132C	3/19/2001	N	0	0.25	SW8270	INDENO(1,2,3-c,d)PYRENE	UG/KG	74 J		74	5-point Composite
Target Area Target Area	SS132C SS132C	3/19/2001 N 3/19/2001 N		0.25 0.5		SW8270 SW8270	INDENO(1,2,3-c,d)PYRENE INDENO(1,2,3-c,d)PYRENE	UG/KG UG/KG	26 J L			5-point Composite 5-point Composite
Rail Line	SS132AA	11/16/2004 N	N	0	0.25	SW8270	INDENO(1,2,3-c,d)PYRENE	UG/KG	1900		1900	5-point Composite
Rail Line Rail Line	SS132AA SS132AA	11/16/2004 N 11/16/2004 N		0.5 0.25		SW8270 SW8270	INDENO(1,2,3-c,d)PYRENE INDENO(1,2,3-c,d)PYRENE	UG/KG UG/KG	180 J 130 J			5-point Composite 5-point Composite
Rail Line	SS132AB	11/16/2004 F	FD	0	0.25	SW8270C	INDENO(1,2,3-c,d)PYRENE	UG/KG	1600		1600	5-point Composite
Rail Line Rail Line	SS132AB SS132AB	11/16/2004 N 11/16/2004 N		0 0.25		SW8270C SW8270C	INDENO(1,2,3-c,d)PYRENE INDENO(1,2,3-c,d)PYRENE	UG/KG UG/KG	1100 380			5-point Composite 5-point Composite
Rail Line	SS132AB	11/16/2004	N	0.5	1	SW8270C	INDENO(1,2,3-c,d)PYRENE	UG/KG	L	J	180	5-point Composite
Rail Line Rail Line	SS132Z SS132Z	11/16/2004 N 11/16/2004 N		0 0.25		SW8270 SW8270	INDENO(1,2,3-c,d)PYRENE INDENO(1,2,3-c,d)PYRENE	UG/KG UG/KG	6600 560			5-point Composite 5-point Composite
Rail Line	SS132Z	11/16/2004 N		0.23		SW8270	INDENO(1,2,3-c,d)PYRENE	UG/KG	140 J		140	5-point Composite
Target Area	SS132C	3/19/2001 1	NI.	0	0.25	SW8270	AVERAGE FOR INDENO(1 INDENO(1,2,3-c,d)PYRENE	,2,3-c,d)PYRE UG/KG	NE 5-POINT CO		1003.846154	Discrete
Target Area	SS132C	3/19/2001 N		0.5	1	SW8270	INDENO(1,2,3-c,d)PYRENE	UG/KG	L	J		Discrete
Target Area Target Area	SS132C SSA05160201	3/19/2001 N 5/24/2002 N		0.25 0		SW8270 SW8270	INDENO(1,2,3-c,d)PYRENE INDENO(1,2,3-c,d)PYRENE	UG/KG UG/KG	L 18 J			Discrete Discrete
raiget Alea		3/24/2002 1	· ·				AVERAGE FOR				135.75	Discrete
Target Area Target Area	SSFAFTA01 SS132C	1/17/2006 N 3/19/2001 N		0		SW8270C SW8270	INDENO(1,2,3-c,d)PYRENE NAPHTHALENE	UG/KG UG/KG	L L		195 175	MIS 5-point Composite
Target Area	SS132C	3/19/20011		0.25		SW8270	NAPHTHALENE	UG/KG	Ü			5-point Composite
Target Area	SS132C	3/19/2001		0.5		SW8270 SW8270	NAPHTHALENE	UG/KG	140.1			5-point Composite
Rail Line Rail Line	SS132AA SS132AA	11/16/2004 N 11/16/2004 N		0 0.5		SW8270 SW8270	NAPHTHALENE NAPHTHALENE	UG/KG UG/KG	140 J 23 J			5-point Composite 5-point Composite
Rail Line	SS132AA	11/16/2004		0.25		SW8270	NAPHTHALENE	UG/KG	L			5-point Composite
Rail Line Rail Line	SS132AB SS132AB	11/16/2004 F 11/16/2004 P		0 0.25		SW8270C SW8270C	NAPHTHALENE NAPHTHALENE	UG/KG UG/KG	78 J 58 J			5-point Composite 5-point Composite
Rail Line	SS132AB	11/16/2004 1	N	0	0.25	SW8270C	NAPHTHALENE	UG/KG	49 J		49	5-point Composite
Rail Line Rail Line	SS132AB SS132Z	11/16/2004 N 11/16/2004 N		0.5 0		SW8270C SW8270	NAPHTHALENE NAPHTHALENE	UG/KG UG/KG	4900	J		5-point Composite 5-point Composite
Rail Line	SS132Z	11/16/2004 1	N	0.25	0.5	SW8270	NAPHTHALENE	UG/KG	200 J		200	5-point Composite
Rail Line	SS132Z	11/16/2004 N	N	0.5	1	SW8270	NAPHTHALENE AVERAGE FOR	UG/KG NAPHTHALE	19 J NE 5-POINT CO	OMPOSITE	19 489.385	5-point Composite
Target Area	SS132C	3/19/2001		0		SW8270	NAPHTHALENE	UG/KG	L	J	170	Discrete
Target Area Target Area	SS132C SS132C	3/19/2001 N 3/19/2001 N		0.5 0.25		SW8270 SW8270	NAPHTHALENE NAPHTHALENE	UG/KG UG/KG	L L			Discrete Discrete
Target Area	SSA05160201	5/24/2002 N		0.20		SW8270	NAPHTHALENE	UG/KG	Ĺ	J	180	Discrete
Target Area	SSFAFTA01	1/17/2006 1	N	0	0.5	SW8270C	NAPHTHALENE	UG/KG	APHTHALENE I		176.25 195	MIS
Target Area	SS132C	3/19/2001	N	0	0.25	SW8270	PHENANTHRENE	UG/KG	70 J		70	5-point Composite
Target Area Target Area	SS132C SS132C	3/19/2001 N 3/19/2001 N		0.25 0.5		SW8270 SW8270	PHENANTHRENE PHENANTHRENE	UG/KG UG/KG	18 J L			5-point Composite 5-point Composite
Rail Line	SS132AA	11/16/2004 N	N	0	0.25	SW8270	PHENANTHRENE	UG/KG	4300	-	4300	5-point Composite
Rail Line Rail Line	SS132AA SS132AA	11/16/2004 N 11/16/2004 N		0.5 0.25		SW8270 SW8270	PHENANTHRENE PHENANTHRENE	UG/KG UG/KG	450 250 J			5-point Composite 5-point Composite
Rail Line	SS132AB	11/16/2004 F		0.25		SW8270 SW8270C	PHENANTHRENE	UG/KG	3600			5-point Composite 5-point Composite
Rail Line	SS132AB	11/16/2004 N	N	0	0.25	SW8270C	PHENANTHRENE	UG/KG	2500		2500	5-point Composite
	SS132AB SS132AB	11/16/2004 N 11/16/2004 N		0.25 0.5		SW8270C SW8270C	PHENANTHRENE PHENANTHRENE	UG/KG UG/KG	920 25 J			5-point Composite 5-point Composite
Rail Line Rail Line		11/16/2004 N	N	0	0.25	SW8270	PHENANTHRENE	UG/KG	45000		45000	5-point Composite
Rail Line Rail Line	SS132Z				0.5	SW8270	PHENANTHRENE	UG/KG	2600		2600	5-point Composite
Rail Line		11/16/2004 N 11/16/2004 N		0.25 0.5		SW8270	PHENANTHRENE	UG/KG	440		440	5-point Composite
Rail Line Rail Line Rail Line Rail Line	SS132Z SS132Z SS132Z	11/16/2004 N 11/16/2004 N	N	0.5	1		AVERAGE FOR P	HENANTHRE	NE 5-POINT CO		440 4642.538	•
Rail Line Rail Line Rail Line Rail Line Target Area	SS132Z SS132Z SS132Z SS132C	11/16/2004 N 11/16/2004 N 3/19/2001 N	N N	0.5	0.25	SW8270 SW8270 SW8270	AVERAGE FOR P	HENANTHRE UG/KG	NE 5-POINT CO 22 J		440 4642.538 22	Discrete
Rail Line Rail Line Rail Line Rail Line Target Area Target Area Target Area	SS132Z SS132Z SS132Z SS132C SS132C SS132C SS132C	3/19/2001 N 3/19/2001 N 3/19/2001 N	N N N	0.5 0 0.5 0.25	0.25 1 0.5	SW8270 SW8270 SW8270	AVERAGE FOR P PHENANTHRENE PHENANTHRENE PHENANTHRENE PHENANTHRENE	UG/KG UG/KG UG/KG UG/KG	NE 5-POINT CO 22 J L L	J J	440 4642.538 22 175 180	Discrete Discrete Discrete
Rail Line Rail Line Rail Line Rail Line Target Area Target Area	SS132Z SS132Z SS132Z SS132C SS132C	11/16/2004 N 11/16/2004 N 3/19/2001 N 3/19/2001 N	N N N	0.5 0 0.5	0.25 1 0.5	SW8270 SW8270	AVERAGE FOR P PHENANTHRENE PHENANTHRENE PHENANTHRENE PHENANTHRENE PHENANTHRENE	UG/KG UG/KG UG/KG UG/KG UG/KG	NE 5-POINT CO 22 J	J J	440 4642.538 22 175 180	Discrete Discrete

Table C.4-6
Former A Range
Calculation of Averages Concentrations for PAHs Exhibiting Maximum Concentrations Above a Screening Criterion in the PAH 2 Exposure Area

									Saurandurdian
		Normal or						,	Concentration Used in
		Collection Field		End Depth Analytical			Detected		Computation
Area	Location ID	Date Duplicate		(ft) Method	Analyte	Units	Value		of Averages Sample Typ
Target Area Target Area	SS132K SS132K	3/27/2001 N 3/27/2001 N	0.5 0	1 SW8270 0.25 SW8270	2-METHYLNAPHTHALENE 2-METHYLNAPHTHALENE	UG/KG UG/KG	l L		170 5-point composite 175 5-point composite
Target Area	SS132K	3/27/2001 N	0.25	0.5 SW8270	2-METHYLNAPHTHALENE	UG/KG	i		175 5-point composite
Target Area	SS132L	3/27/2001 N	0.5	1 SW8270	2-METHYLNAPHTHALENE	UG/KG	ĭ		170 5-point composite
Target Area	SS132L	3/27/2001 FD	0.5	1 SW8270	2-METHYLNAPHTHALENE	UG/KG	L	J	170 5-point composite
Target Area	SS132L	3/27/2001 N	0	0.25 SW8270	2-METHYLNAPHTHALENE	UG/KG	L		175 5-point composite
Target Area	SS132L	3/27/2001 N	0.25	0.5 SW8270	2-METHYLNAPHTHALENE	UG/KG	L		175 5-point composite
Target Area	SS132O	3/30/2001 N	0.25	0.5 SW8270	2-METHYLNAPHTHALENE	UG/KG	L		180 5-point composite
Target Area	SS1320 SS1320	3/30/2001 N	0.5	1 SW8270	2-METHYLNAPHTHALENE	UG/KG	Ļ		180 5-point composite
Target Area Target Area	SS1320 SS1320	3/30/2001 FD 3/30/2001 N	0.5 0	1 SW8270 0.25 SW8270	2-METHYLNAPHTHALENE 2-METHYLNAPHTHALENE	UG/KG UG/KG	L		180 5-point composite 185 5-point composite
raiget Alea	331320	3/30/2001 N	- 0	0.25 300270	AVERAGE FOR 2-METHY				175.909
Target Area	AL060200-01 372	6/9/2000 N	0	0.25 CSVOL	2-METHYLNAPHTHALENE	UG/KG	120.0		175 Discrete
Target Area	AM071601-03	7/23/2001 N	0	0.25 SW8270	2-METHYLNAPHTHALENE	UG/KG		JJ	170 Discrete
Target Area	SS132H	3/21/2001 N	0	0.25 SW8270	2-METHYLNAPHTHALENE	UG/KG	L		175 Discrete
Target Area	SS132H	3/21/2001 N	0.25	0.5 SW8270	2-METHYLNAPHTHALENE	UG/KG	L		175 Discrete
Target Area	SS132H	3/21/2001 N	0.25	0.5 SW8270	2-METHYLNAPHTHALENE	UG/KG	L		175 Discrete
Target Area	SS132H	3/21/2001 N	0.5	1 SW8270	2-METHYLNAPHTHALENE	UG/KG	Ļ		175 Discrete
Target Area	SS132H	3/21/2001 N	0	0.25 SW8270	2-METHYLNAPHTHALENE	UG/KG UG/KG	L L		180 Discrete
Target Area Target Area	SS132H SS132H	3/21/2001 N 3/21/2001 N	0	0.25 SW8270 0.25 SW8270	2-METHYLNAPHTHALENE 2-METHYLNAPHTHALENE	UG/KG UG/KG	į		180 Discrete 180 Discrete
Target Area	SS132H	3/21/2001 N	0.25	0.5 SW8270	2-METHYLNAPHTHALENE	UG/KG	i		180 Discrete
Target Area	SS132H	3/21/2001 N	0.25	0.5 SW8270	2-METHYLNAPHTHALENE	UG/KG	ĭ		180 Discrete
Target Area	SS132H	3/21/2001 N	0.25	0.5 SW8270	2-METHYLNAPHTHALENE	UG/KG	L	J	180 Discrete
Target Area	SS132H	3/21/2001 N	0.25	0.5 SW8270	2-METHYLNAPHTHALENE	UG/KG	L		180 Discrete
Target Area	SS132H	3/21/2001 N	0.5	1 SW8270	2-METHYLNAPHTHALENE	UG/KG	L		180 Discrete
Target Area	SS132H	3/21/2001 N	0.5	1 SW8270	2-METHYLNAPHTHALENE	UG/KG	Ļ		180 Discrete
Target Area	SS132H	3/21/2001 N	0.5	1 SW8270 1 SW8270	2-METHYLNAPHTHALENE	UG/KG UG/KG	L L		180 Discrete
Target Area Target Area	SS132H SS132H	3/21/2001 N 3/21/2001 N	0.5 0	0.25 SW8270	2-METHYLNAPHTHALENE 2-METHYLNAPHTHALENE	UG/KG	į		180 Discrete 185 Discrete
Target Area	SS132H	3/21/2001 N	0.5	1 SW8270	2-METHYLNAPHTHALENE	UG/KG	i		185 Discrete
Target Area	SS132K	3/27/2001 N	0	0.25 SW8270	2-METHYLNAPHTHALENE	UG/KG	270 J		270 Discrete
Target Area	SS132K	3/27/2001 N	0.5	1 SW8270	2-METHYLNAPHTHALENE	UG/KG	Ĺ		175 Discrete
Target Area	SS132K	3/27/2001 N	0.25	0.5 SW8270	2-METHYLNAPHTHALENE	UG/KG	L	J	180 Discrete
Target Area	SS132L	3/27/2001 N	0.5	1 SW8270	2-METHYLNAPHTHALENE	UG/KG	L	-	170 Discrete
Target Area	SS132L	3/27/2001 N	0	0.25 SW8270	2-METHYLNAPHTHALENE	UG/KG	L	-	175 Discrete
Target Area	SS132L	3/27/2001 N	0.25	0.5 SW8270	2-METHYLNAPHTHALENE	UG/KG	Ļ		175 Discrete
Target Area	SS132O SS132O	3/30/2001 N	0.25 0.5	0.5 SW8270 1 SW8270	2-METHYLNAPHTHALENE 2-METHYLNAPHTHALENE	UG/KG UG/KG	l L		180 Discrete 180 Discrete
Target Area Target Area	SS1320	3/30/2001 N 3/30/2001 N	0.5	0.25 SW8270	2-METHYLNAPHTHALENE	UG/KG	Ĺ		185 Discrete
Target Area	SS132V	4/30/2001 N	0	0.5 SW8270	2-METHYLNAPHTHALENE	UG/KG	ĭ		165 Discrete
						R 2-METHYLNA	PHTHALENE	DISCRETE	181.034
Target Area	SS132K	3/27/2001 N	0	0.25 SW8270	ACENAPHTHYLENE	UG/KG	490		490 5-point composite
Target Area	SS132K	3/27/2001 N	0.5	1 SW8270	ACENAPHTHYLENE	UG/KG	L		170 5-point composite
Target Area	SS132K	3/27/2001 N	0.25	0.5 SW8270	ACENAPHTHYLENE	UG/KG	Ļ		175 5-point composite
Target Area	SS132L				ACENAPHTHYLENE	UG/KG	L	J	
Target Area		3/27/2001 N	0.5	1 SW8270					170 5-point composite
	SS132L	3/27/2001 FD	0.5	1 SW8270	ACENAPHTHYLENE	UG/KG	L	J	170 5-point composite
Target Area Target Area	SS132L	3/27/2001 FD 3/27/2001 N	0.5 0	1 SW8270 0.25 SW8270	ACENAPHTHYLENE ACENAPHTHYLENE	UG/KG UG/KG	L L	J J	170 5-point composite175 5-point composite
Target Area	SS132L SS132L	3/27/2001 FD 3/27/2001 N 3/27/2001 N	0.5	1 SW8270 0.25 SW8270 0.5 SW8270	ACENAPHTHYLENE ACENAPHTHYLENE ACENAPHTHYLENE	UG/KG UG/KG UG/KG	l L	J J	170 5-point composite 175 5-point composite 175 5-point composite
	SS132L	3/27/2001 FD 3/27/2001 N	0.5 0 0.25	1 SW8270 0.25 SW8270	ACENAPHTHYLENE ACENAPHTHYLENE	UG/KG UG/KG	L L))	170 5-point composite175 5-point composite
Target Area Target Area	SS132L SS132L SS132O	3/27/2001 FD 3/27/2001 N 3/27/2001 N 3/30/2001 N	0.5 0 0.25 0	1 SW8270 0.25 SW8270 0.5 SW8270 0.25 SW8270	ACENAPHTHYLENE ACENAPHTHYLENE ACENAPHTHYLENE ACENAPHTHYLENE	UG/KG UG/KG UG/KG UG/KG	L L 780 280 J L	J J J	170 5-point composite 175 5-point composite 175 5-point composite 780 5-point composite
Target Area Target Area Target Area	SS132L SS132L SS132O SS132O	3/27/2001 FD 3/27/2001 N 3/27/2001 N 3/30/2001 N 3/30/2001 N	0.5 0 0.25 0 0.25	1 SW8270 0.25 SW8270 0.5 SW8270 0.25 SW8270 0.5 SW8270	ACENAPHTHYLENE ACENAPHTHYLENE ACENAPHTHYLENE ACENAPHTHYLENE ACENAPHTHYLENE ACENAPHTHYLENE ACENAPHTHYLENE	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG	L L 780 280 J L L))))	170 5-point composite 175 5-point composite 175 5-point composite 780 5-point composite 280 5-point composite 180 5-point composite
Target Area Target Area Target Area Target Area Target Area	\$\$132L \$\$132L \$\$132O \$\$132O \$\$132O \$\$132O	3/27/2001 FD 3/27/2001 N 3/27/2001 N 3/30/2001 N 3/30/2001 N 3/30/2001 N 3/30/2001 FD	0.5 0 0.25 0 0.25 0.5 0.5	1 SW8270 0.25 SW8270 0.5 SW8270 0.25 SW8270 0.5 SW8270 1 SW8270 1 SW8270	ACENAPHTHYLENE	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG	L 780 280 J L L NE 5-POINT CO	J J J DMPOSITE	170 5-point composite 175 5-point composite 175 5-point composite 780 5-point composite 280 5-point composite 180 5-point composite 180 5-point composite 280 7-point composite 280 5-point composite
Target Area Target Area Target Area Target Area Target Area Target Area	\$\$132L \$\$132L \$\$132O \$\$132O \$\$132O \$\$132O \$\$132O	3/27/2001 FD 3/27/2001 N 3/27/2001 N 3/30/2001 N 3/30/2001 N 3/30/2001 N 3/30/2001 FD	0.5 0 0.25 0 0.25 0.5 0.5	1 SW8270 0.25 SW8270 0.5 SW8270 0.25 SW8270 0.5 SW8270 1 SW8270 1 SW8270	ACENAPHTHYLENE ACENAPHTHYLENE ACENAPHTHYLENE ACENAPHTHYLENE ACENAPHTHYLENE ACENAPHTHYLENE ACENAPHTHYLENE AVERAGE FOR AC ACENAPHTHYLENE	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG	L 180 280 J L L NE 5-POINT CO	J J J DMPOSITE	170 5-point composite 175 5-point composite 175 5-point composite 780 5-point composite 280 5-point composite 180 5-point composite 180 5-point composite 180 5-point composite 175 Discrete
Target Area	SS132L SS132L SS132O SS132O SS132O SS132O AL060200-01_372 AM071601-03	3/27/2001 FD 3/27/2001 N 3/27/2001 N 3/30/2001 N 3/30/2001 N 3/30/2001 N 3/30/2001 FD	0.5 0 0.25 0 0.25 0.5 0.5	1 SW8270 0.25 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 1.5 SW8270 1 SW8270 1 SW8270 0.25 CSVOL 0.25 SW8270	ACENAPHTHYLENE	UG/KG	L 180 280 J L NE 5-POINT CC L	J J J J DMPOSITE	170 5-point composite 175 5-point composite 175 5-point composite 780 5-point composite 280 5-point composite 180 5-point composite 180 5-point composite 180 5-point composite 170 Discrete 170 Discrete
Target Area	\$5132L \$5132L \$5132O \$5132O \$5132O \$5132O \$5132O AL060200-01_372 AM071601-03 \$5132H	3/27/2001 FD 3/27/2001 N 3/27/2001 N 3/30/2001 N 3/30/2001 N 3/30/2001 PD 6/9/2000 N 7/23/2001 N 3/21/2001 N	0.5 0 0.25 0 0.25 0.5 0.5 0.05	1 SW8270 0.25 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 1 SW8270 1 SW8270 0.25 CSVOL 0.25 SW8270 0.25 SW8270	ACENAPHTHYLENE ACENAPHTHYLENE ACENAPHTHYLENE ACENAPHTHYLENE ACENAPHTHYLENE ACENAPHTHYLENE ACENAPHTHYLENE AVERAGE FOR AC ACENAPHTHYLENE ACENAPHTHYLENE ACENAPHTHYLENE ACENAPHTHYLENE ACENAPHTHYLENE	UG/KG	L 180 280 J L L NE 5-POINT CO	J J J DMPOSITE J J	170 5-point composite 175 5-point composite 175 5-point composite 178 5-point composite 280 5-point composite 180 5-point composite 180 5-point composite 180 5-point composite 175 Discrete 176 Discrete 176 Discrete
Target Area	SS132L SS132L SS132O SS132O SS132O SS132O AL060200-01_372 AM071601-03	3/27/2001 FD 3/27/2001 N 3/27/2001 N 3/30/2001 N 3/30/2001 N 3/30/2001 N 3/30/2001 FD	0.5 0 0.25 0 0.25 0.5 0.5	1 SW8270 0.25 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 1.5 SW8270 1 SW8270 1 SW8270 0.25 CSVOL 0.25 SW8270	ACENAPHTHYLENE	UG/KG	L 1 780 280 J L L NE 5-POINT CC L L	J J J DMPOSITE J J J	170 5-point composite 175 5-point composite 175 5-point composite 780 5-point composite 280 5-point composite 180 5-point composite 180 5-point composite 180 5-point composite 170 Discrete 170 Discrete
Target Area	SS132L SS132L SS132O SS132O SS132O SS132O AL060200-01_372 AM071601-03 SS132H SS132H SS132H SS132H	3/27/2001 FD 3/27/2001 N 3/27/2001 N 3/30/2001 N 3/30/2001 N 3/30/2001 N 3/30/2001 FD 6/9/2000 N 7/23/2001 N 3/21/2001 N 3/21/2001 N 3/21/2001 N 3/21/2001 N	0.5 0 0.25 0 0.5 0.5 0.5 0.5	1 SW8270 0.25 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 1.5 SW8270 1 SW8270 1 SW8270 0.25 CSVOL 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.5 SW8270 1.5 SW8270 1.5 SW8270 1.5 SW8270	ACENAPHTHYLENE	UG/KG	L (1 780 J 280 J L (1 NE 5-POINT CC L (1 L (1 L	J J DMPOSITE J J J J	170 5-point composite 175 5-point composite 175 5-point composite 176 5-point composite 280 5-point composite 180 5-point composite 180 5-point composite 180 5-point composite 180 5-point composite 175 Discrete
Target Area	S5132L S5132C S5132O S5132O S5132O S5132O AL060200-01_372 AM071601-03 S5132H S5132H S5132H S5132H S5132H S5132H S5132H	3/27/2001 FD 3/27/2001 N 3/27/2001 N 3/30/2001 N 3/30/2001 N 3/30/2001 N 3/30/2001 FD 6/9/2000 N 7/23/2001 N 3/21/2001 N 3/21/2001 N 3/21/2001 N 3/21/2001 N 3/21/2001 N 3/21/2001 N	0.5 0 0.25 0.5 0.5 0.5 0.5 0.5	1 SW8270 0.25 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 1.5 SW8270 1 SW8270 1 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270	ACENAPHTHYLENE	UG/KG	L 780 280 J L NE 5-POINT CC L L L L L	J J DMPOSITE J J J J J	170 5-point composite 175 5-point composite 175 5-point composite 176 5-point composite 280 5-point composite 180 5-point composite 180 5-point composite 180 5-point composite 175 Discrete 176 Discrete 175 Discrete 176 Discrete 177 Discrete 178 Discrete 179 Discrete 179 Discrete 179 Discrete 179 Discrete
Target Area	SS132L SS132L SS132O SS132O SS132O SS132O AL060200-01_372 AM071601-03 SS132H SS132H SS132H SS132H SS132H SS132H SS132H SS132H	3/27/2001 FD 3/27/2001 N 3/27/2001 N 3/30/2001 N 3/30/2001 N 3/30/2001 N 3/30/2001 PD 6/9/2000 N 7/23/2001 N 3/21/2001 N	0.5 0 0.25 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.0 0.25 0.25	1 SW8270 0.25 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 1.5 SW8270 1.5 SW8270 1.5 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.5 SW8270	ACENAPHTHYLENE	UG/KG	L () () () () () () () () () ()	J J DMPOSITE J J J J J J J J J	170 5-point composite 175 5-point composite 175 5-point composite 178 5-point composite 280 5-point composite 180 5-point composite 180 5-point composite 180 5-point composite 180 5-point composite 175 Discrete 176 Discrete 177 Discrete 177 Discrete 178 Discrete 179 Discrete
Target Area	SS132L SS132L SS132O SS132O SS132O SS132O AL060200-01_372 AM071601-03 SS132H SS132H SS132H SS132H SS132H SS132H SS132H SS132H SS132H SS132H SS132H SS132H	3/27/2001 FD 3/27/2001 N 3/27/2001 N 3/30/2001 N 3/30/2001 N 3/30/2001 PD 6/9/2000 N 7/23/2001 N 3/21/2001 N	0.5 0 0.25 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.25 0.2	1 SW8270 0.25 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 1 SW8270 1 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270	ACENAPHTHYLENE	UG/KG	L 780 280 J L NE 5-POINT CC L L L L L L	J J J DMPOSITE J J J J J J J J J	170 5-point composite 175 5-point composite 175 5-point composite 176 5-point composite 280 5-point composite 180 5-point composite 180 5-point composite 180 5-point composite 180 5-point composite 175 Discrete 176 Discrete 177 Discrete 178 Discrete 179 Discrete 180 Discrete 180 Discrete 180 Discrete
Target Area	S5132L S5132C S5132O S5132O S5132O S5132O AL060200-01_372 AM071601-03 S5132H S5132H S5132H S5132H S5132H S5132H S5132H S5132H S5132H S5132H S5132H S5132H S5132H	3/27/2001 FD 3/27/2001 N 3/27/2001 N 3/30/2001 N 3/30/2001 N 3/30/2001 N 3/30/2001 FD 6/9/2000 N 7/23/2001 N 3/21/2001 N	0.5 0 0.25 0.5 0.5 0.5 0.5 0.5 0.0 0 0 0.25 0.25	1 SW8270 0.25 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 1 SW8270 1 SW8270 1 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.5 SW8270	ACENAPHTHYLENE	UG/KG	L 780 280 J L NE 5-POINT CC L L L L L	J J DMPOSITE J J J J J J J J J J J J	170 5-point composite 175 5-point composite 175 5-point composite 178 5-point composite 280 5-point composite 180 5-point composite 180 5-point composite 180 5-point composite 180 5-point composite 175 Discrete 176 Discrete 180 Discrete 180 Discrete 180 Discrete 180 Discrete 180 Discrete
Target Area	SS132L SS132L SS132O SS132O SS132O SS132O SS132O AL060200-01_372 AM071601-03 SS132H SS132H SS132H SS132H SS132H SS132H SS132H SS132H SS132H SS132H SS132H SS132H SS132H SS132H SS132H SS132H	3/27/2001 FD 3/27/2001 N 3/27/2001 N 3/30/2001 N 3/30/2001 N 3/30/2001 PD 6/9/2000 N 7/23/2001 N 3/21/2001 N	0.5 0.25 0.25 0.5 0.5 0.5 0.0 0 0 0.25 0.25 0.25 0.25	1 SW8270 0.25 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 1 SW8270 1 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.25 SW8270 0.5 SW8270	ACENAPHTHYLENE	UG/KG		J J J J J J J J J J J J J J J J J J J	170 5-point composite 175 5-point composite 175 5-point composite 176 5-point composite 280 5-point composite 180 5-point composite 180 5-point composite 180 5-point composite 180 5-point composite 175 Discrete 175 Discrete 175 Discrete 175 Discrete 175 Discrete 175 Discrete 176 Discrete 180 Discrete
Target Area	SS132L SS132L SS132O SS132O SS132O SS132O AL060200-01_372 AM071601-03 SS132H	3/27/2001 FD 3/27/2001 N 3/27/2001 N 3/30/2001 N 3/30/2001 N 3/30/2001 N 3/30/2001 FD 6/9/2000 N 7/23/2001 N 3/21/2001 N	0.5 0 0.25 0 0.25 0.5 0.5 0.5 0.5 0 0 0 0.25 0.25 0.25 0.25 0.25 0.25	1 SW8270 0.25 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 1 SW8270 1 SW8270 1 SW8270 0.25 CSVOL 0.25 SW8270 0.25 SW8270 0.5 SW8270	ACENAPHTHYLENE	UG/KG	L 780 280 J L NE 5-POINT CC L L L L L L L L L	J J J J J J J J J J J J J J J J J J J	170 5-point composite 175 5-point composite 175 5-point composite 176 5-point composite 280 5-point composite 180 5-point composite 180 5-point composite 180 5-point composite 180 5-point composite 175 Discrete 180 Discrete
Target Area	SS132L SS132L SS132O SS132O SS132O SS132O SS132O AL060200-01_372 AM071601-03 SS132H SS132H SS132H SS132H SS132H SS132H SS132H SS132H SS132H SS132H SS132H SS132H SS132H SS132H SS132H SS132H	3/27/2001 FD 3/27/2001 N 3/27/2001 N 3/30/2001 N 3/30/2001 N 3/30/2001 FD 6/9/2000 N 7/23/2001 N 3/21/2001 N	0.5 0.25 0.25 0.5 0.5 0.5 0.0 0 0 0.25 0.25 0.25 0.25	1 SW8270 0.25 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 1 SW8270 1 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.25 SW8270 0.5 SW8270	ACENAPHTHYLENE	UG/KG		J J J J J J J J J J J J J J J J J J J	170 5-point composite 175 5-point composite 175 5-point composite 176 5-point composite 280 5-point composite 180 5-point composite 180 5-point composite 180 5-point composite 180 5-point composite 175 Discrete 175 Discrete 175 Discrete 175 Discrete 175 Discrete 175 Discrete 176 Discrete 180 Discrete
Target Area	SS132L SS132L SS132O SS132O SS132O SS132O AL060200-01_372 AM071601-03 SS132H	3/27/2001 FD 3/27/2001 N 3/27/2001 N 3/30/2001 N 3/30/2001 N 3/30/2001 N 3/30/2001 FD 6/9/2000 N 7/23/2001 N 3/21/2001 N	0.5 0 0.25 0 0.25 0.5 0.5 0.5 0.5 0 0 0 0.25 0.25 0.25 0.25 0.25 0.25 0.25	1 SW8270 0.25 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 1.5 SW8270 1 SW8270 1 SW8270 0.25 CSVOL 0.25 SW8270 0.25 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.5 SW8270 1.5 SW8270	ACENAPHTHYLENE	UG/KG	L 780 280 J L NE 5-POINT CC L L L L L L L L L L L L L L L L L L	J J J J J J J J J J J J J J J J J J J	170 5-point composite 175 5-point composite 175 5-point composite 178 5-point composite 280 5-point composite 180 5-point composite 180 5-point composite 180 5-point composite 175 Discrete 180 Discrete
Target Area	S5132L S5132C S5132O S5132O S5132O S5132O AL060200-01_372 AM071601-03 S5132H	3/27/2001 FD 3/27/2001 N 3/27/2001 N 3/30/2001 N 3/30/2001 N 3/30/2001 N 3/30/2001 FD 6/9/2000 N 7/23/2001 N 3/21/2001 N	0.5 0 0.25 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	1 SW8270 0.25 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 1.5 SW8270 1.5 SW8270 1.5 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.5 SW8270 1.5 SW8270	ACENAPHTHYLENE	UG/KG	L	J J J J J J J J J J J J J J J J J J J	170 5-point composite 175 5-point composite 175 5-point composite 178 5-point composite 280 5-point composite 180 5-point composite 175 Discrete 175 Discrete 175 Discrete 175 Discrete 175 Discrete 180 Discrete
Target Area	SS132L SS132L SS132O SS132O SS132O SS132O AL060200-01_372 AM071601-03 SS132H	3/27/2001 FD 3/27/2001 N 3/27/2001 N 3/30/2001 N 3/30/2001 N 3/30/2001 N 3/30/2001 PD 6/9/2000 N 7/23/2001 N 3/21/2001 N	0.5 0 0.25 0.5 0.5 0.5 0.5 0.6 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	1 SW8270 0.25 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 1 SW8270 1 SW8270 0.25 CSVOL 0.25 SW8270 0.25 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.25 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 1 SW8270 1 SW8270 1 SW8270 1 SW8270 1 SW8270	ACENAPHTHYLENE	UG/KG	L	J J J J J J J J J J J J J J J J J J J	170 5-point composite 175 5-point composite 175 5-point composite 176 5-point composite 280 5-point composite 180 Discrete 175 Discrete 175 Discrete 175 Discrete 175 Discrete 180 Discrete
Target Area	SS132L SS132C SS132O SS132O SS132O SS132O AL060200-01_372 AM071601-03 SS132H	3/27/2001 FD 3/27/2001 N 3/27/2001 N 3/30/2001 N 3/30/2001 N 3/30/2001 N 3/30/2001 FD 6/9/2000 N 7/23/2001 N 3/21/2001 N	0.5 0 0.25 0 0.25 0.5 0.5 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 SW8270 0.25 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 1 SW8270 1 SW8270 1 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.5 SW8270 1 SW8270	ACENAPHTHYLENE	UG/KG	L 780 280 J L NE 5-POINT CC L L L L L L L L L L L L L L L L L L	J J J J J J J J J J J J J J J J J J J	170 5-point composite 175 5-point composite 175 5-point composite 178 5-point composite 280 5-point composite 180 5-point composite 180 5-point composite 180 5-point composite 180 5-point composite 175 Discrete 180 Discrete
Target Area	SS132L SS132L SS132O SS132O SS132O SS132O SS132O AL060200-01_372 AM071601-03 SS132H	3/27/2001 FD 3/27/2001 N 3/27/2001 N 3/30/2001 N 3/30/2001 N 3/30/2001 N 3/30/2001 FD 6/9/2000 N 7/23/2001 N 3/21/2001 N	0.5 0 0.25 0.5 0.5 0.5 0.5 0.5 0 0 0 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	1 SW8270 0.25 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 1 SW8270 1 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.5 SW8270 1 SW8270	ACENAPHTHYLENE	UG/KG	L	J J J J J J J J J J J J J J J J J J J	170 5-point composite 175 5-point composite 175 5-point composite 176 5-point composite 280 5-point composite 180 Discrete 175 Discrete 175 Discrete 175 Discrete 175 Discrete 180 Discrete
Target Area	SS132L SS132L SS132O SS132O SS132O SS132O AL060200-01_372 AM071601-03 SS132H	3/27/2001 FD 3/27/2001 N 3/27/2001 N 3/30/2001 N 3/30/2001 N 3/30/2001 N 3/30/2001 FD 6/9/2000 N 7/23/2001 N 3/21/2001 N	0.5 0 0.25 0 0.25 0.5 0.5 0.5 0.5 0 0 0 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	1 SW8270 0.25 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 1 SW8270 1 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 1 SW8270	ACENAPHTHYLENE	UG/KG	T80 280 J L L L L L L L L L L L L L L L L L L	J J J J J J J J J J J J J J J J J J J	170 5-point composite 175 5-point composite 175 5-point composite 176 5-point composite 280 5-point composite 280 5-point composite 180 5-point composite 175 Discrete 175 Discrete 175 Discrete 175 Discrete 176 Discrete 176 Discrete 180 Discrete
Target Area	SS132L SS132L SS132O SS132O SS132O SS132O SS132O AL060200-01_372 AM071601-03 SS132H	3/27/2001 FD 3/27/2001 N 3/27/2001 N 3/30/2001 N 3/30/2001 N 3/30/2001 N 3/30/2001 PD 6/9/2000 N 7/23/2001 N 3/21/2001 N	0.5 0 0.25 0.5 0.5 0.5 0.5 0.5 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 SW8270 0.25 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 1.5 SW8270 1.5 SW8270 1.5 SW8270 1.5 SW8270 0.25 SW8270 0.25 SW8270 0.5 SW8270 1.5 SW8270	ACENAPHTHYLENE	UG/KG	L C C C C C C C C C C C C C C C C C C C	J J J J J J J J J J J J J J J J J J J	170 5-point composite 175 5-point composite 176 5-point composite 178 5-point composite 280 5-point composite 180 5-point composite 175 Discrete 175 Discrete 175 Discrete 175 Discrete 175 Discrete 180 Discrete 181 Discrete 182 Discrete 183 Discrete 184 Discrete 185 Discrete 185 Discrete 185 Discrete 186 Discrete 187 Discrete 188 Discrete 189 Discrete 180 Discrete 180 Discrete
Target Area	SS132L SS132L SS132O SS132O SS132O SS132O SS132O AL060200-01_372 AM071601-03 SS132H SS	3/27/2001 FD 3/27/2001 N 3/27/2001 N 3/30/2001 N 3/30/2001 N 3/30/2001 N 3/30/2001 PD 6/9/2000 N 7/23/2001 N 3/21/2001 N	0.5 0 0.25 0 0.25 0.5 0.5 0.5 0.5 0 0 0 0 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	1 SW8270 0.25 SW8270 0.25 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 1 SW8270 1 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.15 SW8270 0.25 SW8270 0.15 SW8270 1 SW8270 1 SW8270 1 SW8270 1 SW8270 1 SW8270 1 SW8270 0.25 SW8270	ACENAPHTHYLENE	UG/KG	780 J 780 J L NE 5-POINT CC L L L L L L L L L L L L L L L L L L	J J J J J J J J J J J J J J J J J J J	170 5-point composite 175 5-point composite 175 5-point composite 178 5-point composite 280 5-point composite 180 Discrete 175 Discrete 175 Discrete 175 Discrete 175 Discrete 180 Discrete 181 Discrete 182 Discrete 183 Discrete 184 Discrete 185 Discrete 185 Discrete 186 Discrete 187 Discrete 188 Discrete
Target Area	SS132L SS132L SS132O SS132O SS132O SS132O SS132O AL060200-01_372 AM071601-03 SS132H SS	3/27/2001 FD 3/27/2001 N 3/27/2001 N 3/30/2001 N 3/30/2001 N 3/30/2001 N 3/30/2001 FD 6/9/2000 N 7/23/2001 N 3/21/2001 N	0.5 0 0.25 0.5 0.5 0.5 0.5 0.5 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.5 SW8270 1 SW8270 1 SW8270 1 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 1 SW8270 0.25 SW8270 1 SW8270 1 SW8270 0.5 SW8270 1 SW8270 1 SW8270 0.5 SW8270 1 SW8270 1 SW8270 0.5 SW8270 1 SW8270 0.5 SW8270 1 SW8270 0.5 SW8270 1 SW8270 1 SW8270 1 SW8270 1 SW8270	ACENAPHTHYLENE	UG/KG	T800 280 J L L L L L L L L L L L L L L L L L L	J J J J J J J J J J J J J J J J J J J	170 5-point composite 175 5-point composite 175 5-point composite 178 5-point composite 280 5-point composite 180 5-point composite 180 5-point composite 180 5-point composite 180 5-point composite 175 Discrete 175 Discrete 175 Discrete 175 Discrete 175 Discrete 175 Discrete 176 Discrete 180 Discrete
Target Area	SS132L SS132L SS132O SS132O SS132O SS132O SS132O AL060200-01_372 AM071601-03 SS132H SS	3/27/2001 FD 3/27/2001 N 3/27/2001 N 3/30/2001 N 3/30/2001 N 3/30/2001 N 3/30/2001 PD 6/9/2000 N 7/23/2001 N 3/21/2001 N	0.5 0 0.25 0 0.25 0.5 0.5 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 SW8270 0.25 SW8270 0.25 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 1 SW8270 1 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.15 SW8270 0.25 SW8270 0.15 SW8270 1 SW8270 1 SW8270 1 SW8270 1 SW8270 1 SW8270 1 SW8270 0.25 SW8270	ACENAPHTHYLENE	UG/KG	780 J 780 J L NE 5-POINT CC L L L L L L L L L L L L L L L L L L	J J J J J J J J J J J J J J J J J J J	170 5-point composite 175 5-point composite 175 5-point composite 178 5-point composite 280 5-point composite 180 Discrete 175 Discrete 175 Discrete 175 Discrete 175 Discrete 180 Discrete 181 Discrete 182 Discrete 183 Discrete 184 Discrete 185 Discrete 185 Discrete 186 Discrete 187 Discrete 188 Discrete
Target Area	SS132L SS132C SS132O SS132O SS132O SS132O SS132O AL060200-01_372 AM071601-03 SS132H SS	3/27/2001 FD 3/27/2001 N 3/27/2001 N 3/30/2001 N 3/30/2001 N 3/30/2001 N 3/30/2001 PD 6/9/2000 N 7/23/2001 N 3/21/2001 N	0.5 0 0 0.25 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 SW8270 0.25 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 1 SW8270 1 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.5 SW8270 1 SW8270 0.25 SW8270 0.25 SW8270 0.5 SW8270 1 SW8270 1 SW8270 1 SW8270 1 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.5 SW8270 1 SW8270 1 SW8270 1 SW8270 0.5 SW8270 1 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 1 SW8270	ACENAPHTHYLENE	UG/KG	L C C C C C C C C C C C C C C C C C C C	J J J J J J J J J J J J J J J J J J J	170 5-point composite 175 5-point composite 176 5-point composite 178 5-point composite 178 5-point composite 180 5-point composite 175 Discrete 175 Discrete 175 Discrete 175 Discrete 180 Discrete 181 Discrete 185 Discrete 185 Discrete 185 Discrete 185 Discrete 185 Discrete 185 Discrete 186 Discrete 187 Discrete 188 Discrete 189 Discrete 199 Discrete 199 Discrete 199 Discrete 199 Discrete 190 Discrete
Target Area	SS132L SS132L SS132O SS132O SS132O SS132O SS132O AL060200-01_372 AM071601-03 SS132H SS132L SS132L SS132L SS132L SS132L SS132D SS132O SS132O SS132O SS132O	3/27/2001 FD 3/27/2001 N 3/27/2001 N 3/30/2001 N 3/30/2001 N 3/30/2001 N 3/30/2001 FD 6/9/2000 N 7/23/2001 N 3/21/2001 N	0.5 0 0.25 0.5 0.5 0.5 0.5 0.5 0.25 0.25 0.25	1 SW8270 0.25 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 1 SW8270 1 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.5 SW8270 1 SW8270 1 SW8270 1 SW8270 1 SW8270 1 SW8270 1 SW8270 0.5 SW8270	ACENAPHTHYLENE	UG/KG	780 J 780 J 10 S	J J J J J J J J J J J J J J J J J J J	170 5-point composite 175 5-point composite 176 5-point composite 178 5-point composite 280 5-point composite 180 5-point composite
Target Area	SS132L SS132L SS132O SS132O SS132O SS132O AL060200-01_372 AM071601-03 SS132H SS132L SS132C SS132C SS132C SS132C	3/27/2001 FD 3/27/2001 N 3/30/2001 N 3/30/2001 N 3/30/2001 N 3/30/2001 FD 6/9/2000 N 7/23/2001 N 3/21/2001 N 3/30/2001 N 3/30/2001 N	0.5 0 0.25 0.5 0.5 0.5 0.5 0.6 0 0 0 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	1 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.5 SW8270 1 SW8270 1 SW8270 1 SW8270 0.25 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 1 SW8270 0.25 SW8270 1 SW8270 0.25 SW8270 1 SW8270 0.25 SW8270 1 SW8270 0.25 SW8270 0.25 SW8270 1 SW8270 0.25 SW8270 0.5 SW8270	ACENAPHTHYLENE	UG/KG	1780 280 J L L L L L L L L L L L L L L L L L L	J J J J J J J J J J J J J J J J J J J	170 5-point composite 175 5-point composite 176 5-point composite 280 5-point composite 267.727 175 Discrete 176 Discrete 175 Discrete 175 Discrete 175 Discrete 176 Discrete 180 Discrete 181 Discrete 185 Discrete 185 Discrete 185 Discrete 180 Discrete 180 Discrete 180 Discrete 181 Discrete 182 Discrete 183 Discrete 184 Discrete 185 Discrete 186 Discrete 187 Discrete 187 Discrete 188 Discrete 189 Discrete 189 Discrete 189 Discrete 180 Discrete 180 Discrete
Target Area	SS132L SS132L SS132O SS132O SS132O SS132O SS132O AL060200-01_372 AM071601-03 SS132H SS132L SS132L SS132L SS132L SS132L SS132D SS132O SS132O SS132O SS132O	3/27/2001 FD 3/27/2001 N 3/27/2001 N 3/30/2001 N 3/30/2001 N 3/30/2001 N 3/30/2001 FD 6/9/2000 N 7/23/2001 N 3/21/2001 N	0.5 0 0.25 0.5 0.5 0.5 0.5 0.5 0.25 0.25 0.25	1 SW8270 0.25 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 1 SW8270 1 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.5 SW8270 1 SW8270 1 SW8270 1 SW8270 1 SW8270 1 SW8270 1 SW8270 0.5 SW8270	ACENAPHTHYLENE	UG/KG	1, 780	J J J J J J J J J J J J J J J J J J J	170 5-point composite 175 5-point composite 176 5-point composite 178 5-point composite 280 5-point composite 180 5-point composite

Table C.4-6
Former A Range
Calculation of Averages Concentrations for PAHs Exhibiting Maximum Concentrations Above a Screening Criterion in the PAH 2 Exposure Area

Tages Ame SST-120. SST-2200 P												Concentration	
Sept Area				Field								Used in Computation	
Septiment Sept													
Target Anno SSTOCK 3077000 N													
Figure Ame Still	Target Area												
Seption Sept	Target Area												
Figure Ame	Target Area												
											J		
Timple New 95/3200 300 300 500 1 399/3270 300 500 300 50											ı		
AVERAGE FOR BETACOJANTHRACENE PONT COMPOSITE 1777 Dictions 1772													
Type Ame								AVERAGE FOR BENZ	O(a)ANTHRACE	NE 5-POINT CO	OMPOSITE		'
	Target Area												
Target Arm													
Figor Anale \$513294 \$321,000 N 0.5 1 \$W02700 \$9500000 \$9500000 \$9500000 \$9500000 \$9500000 \$9500000 \$9500000 \$95000000 \$95000000000000000000000000000000000000													
Target Ann. \$51324 \$377001 N													
Tigrage Arms													
Fingle Ana SS1324 321/2001 N	Target Area									i	j		
Target Anno S5132H 321/2001 N 0 0.25 SW9270 BENCOJA)ATTRACENE UGKG U 1/60 Discrite Target Anno S5132H 321/2001 N 0.25 0.5 SW9270 BENCOJA)ATTRACENE UGKG U 1/60 Discrite Target Anno S5132H 321/2001 N 0.25 0.5 SW9270 BENCOJA)ATTRACENE UGKG U 1/60 Discrite Target Anno S5132H 321/2001 N 0.25 0.5 SW9270 BENCOJA)ATTRACENE UGKG U 1/60 Discrite Target Anno S5132H 321/2001 N 0.25 0.5 SW9270 BENCOJA)ATTRACENE UGKG U 1/60 Discrite Target Anno S5132H 321/2001 N 0.5 1 SW9270 BENCOJA)ATTRACENE UGKG U 1/60 Discrite Target Anno S5132H 321/2001 N 0.5 1 SW9270 BENCOJA)ATTRACENE UGKG U 1/60 Discrite Target Anno S5132H 321/2001 N 0.5 1 SW9270 BENCOJA)ATTRACENE UGKG U 1/60 Discrite Target Anno S5132H 321/2001 N 0.5 1 SW9270 BENCOJA)ATTRACENE UGKG U 1/60 Discrite Target Anno S5132H 321/2001 N 0.5 1 SW9270 BENCOJA)ATTRACENE UGKG U 1/60 Discrite Target Anno S5132H 321/2001 N 0.5 1 SW9270 BENCOJA)ATTRACENE UGKG U 1/60 Discrite Target Anno S5132H 321/2001 N 0.5 1 SW9270 BENCOJA)ATTRACENE UGKG U 1/60 Discrite Target Anno S5132H 321/2001 N 0.5 1 SW9270 BENCOJA)ATTRACENE UGKG U 1/60 Discrite Target Anno S5132H 321/2001 N 0.5 1 SW9270 BENCOJA)ATTRACENE UGKG U 1/70 Discrite Target Anno S5132H 321/2001 N 0.5 0.5 SW9270 BENCOJA)ATTRACENE UGKG U 1/70 Discrite Target Anno S5132H 321/2001 N 0.5 0.5 SW9270 BENCOJA)ATTRACENE UGKG U 1/70 Discrite Target Anno S5132H 321/2001 N 0.5 0.5 SW9270 BENCOJA)ATTRACENE UGKG U 1/70 Discrite Target Anno S5132H 321/2001 N 0.5 0.5 SW9270 BENCOJA)ATTRACENE UGKG U 1/70 Discrite Target Anno S5132H 321/2001 N 0.5 0.5 SW9270 BENCOJA)ATTRACENE UGKG U 1/70 Discrite Target Anno S5132H 321/2001 N 0.5 0.5 SW9270 BENCOJA)ATTRACENE UGKG U 1/70 Discrite Target Anno S5132	Target Area	SS132H	3/21/2001	N	0.5	1	SW8270	BENZO(a)ANTHRACENE	UG/KG				
Target Area \$8132H 321/2001 N 0 0.25 SW8270 BRNZO) ANTHRACENE UGMG U 140 Discrete Target Area \$8132H 321/2001 N 0.25 0.5 SW8270 BRNZO ANTHRACENE UGMG U 140 Discrete Target Area \$8132H 321/2001 N 0.5 1 SW8270 BRNZO ANTHRACENE UGMG U 140 Discrete Target Area \$8132H 321/2001 N 0.5 1 SW8270 BRNZO ANTHRACENE UGMG U 140 Discrete Target Area \$8132H 321/2001 N 0.5 1 SW8270 BRNZO ANTHRACENE UGMG U 140 Discrete Target Area \$8132H 321/2001 N 0.5 1 SW8270 BRNZO ANTHRACENE UGMG U 140 Discrete Target Area \$8132H 321/2001 N 0.5 1 SW8270 BRNZO ANTHRACENE UGMG U 140 Discrete Target Area \$8132H 321/2001 N 0.5 1 SW8270 BRNZO ANTHRACENE UGMG U 140 Discrete Target Area \$8132H 321/2001 N 0.5 1 SW8270 BRNZO ANTHRACENE UGMG U 140 Discrete Target Area \$8132K 327/2001 N 0.5 0.5 SW8270 BRNZO ANTHRACENE UGMG U 140 Discrete Target Area \$8132K 327/2001 N 0.5 0.5 SW8270 BRNZO ANTHRACENE UGMG U 140 Discrete UGMG U	Target Area												
Target Arms	Target Area												
Target Area \$5132H \$27/2001 N 0.25 0.5 SW3277 BENZOjajANTHRACENE U.GKG U 760 Discrete 1600 Area \$5132H \$27/2001 N 0.25 0.5 SW3277 BENZOjajANTHRACENE U.GKG U 760 Discrete 1600 Area \$5132H \$27/2001 N 0.25 0.5 SW3277 BENZOjajANTHRACENE U.GKG U 760 Discrete 1600 Area \$5132H \$27/2001 N 0.5 1 SW3270 BENZOjajANTHRACENE U.GKG U 760 Discrete 1600 Area \$5132H \$27/2001 N 0.5 1 SW3270 BENZOjajANTHRACENE U.GKG U 760 Discrete 1600 Area \$5132H \$27/2001 N 0.5 1 SW3270 BENZOjajANTHRACENE U.GKG U 760 Discrete 1600 Area \$5132H \$27/2001 N 0.5 1 SW3270 BENZOjajANTHRACENE U.GKG U 760 Discrete 1600 Area \$5132H \$27/2001 N 0.5 1 SW3270 BENZOjajANTHRACENE U.GKG U 760 Discrete 1600 Area \$5132K \$27/2001 N 0.5 1 SW3270 BENZOjajANTHRACENE U.GKG U 770 Discrete 1600 Discrete 1600 Area \$5132K \$27/2001 N 0.5 1 SW3270 BENZOjajANTHRACENE U.GKG U 770 Discrete 1600													
Target Area S3132H 32/12001 N 0.25 0.5 SW3277 BENZO ajANTHRACENE UOKG U 160 Discrete Target Area S3132H 32/12001 N 0.25 0.5 SW3277 BENZO ajANTHRACENE UOKG U 160 Discrete Target Area S3132H 32/12001 N 0.5 1.5 W3270 BENZO ajANTHRACENE UOKG U 160 Discrete Target Area S3132H 32/12001 N 0.5 1.5 W3270 BENZO ajANTHRACENE UOKG U 160 Discrete Target Area S3132H 32/12001 N 0.5 0.5 W3270 BENZO ajANTHRACENE UOKG U 160 Discrete Target Area S3132H 32/12001 N 0.5 0.5 W3270 BENZO ajANTHRACENE UOKG U 160 Discrete Target Area S3132H 32/12001 N 0.5 0.5 W3270 BENZO ajANTHRACENE UOKG U 160 Discrete Target Area S3132H 32/12001 N 0.5 0.5 W3270 BENZO ajANTHRACENE UOKG U 170 Discrete Target Area S3132H 32/12001 N 0.5 0.5 W3270 BENZO ajANTHRACENE UOKG BIO 11000 Discrete Target Area S3132H 32/12001 N 0.5 0.5 W3270 BENZO ajANTHRACENE UOKG BIO 170 Discrete Target Area S3132H 32/12001 N 0.5 0.5 W3270 BENZO ajANTHRACENE UOKG BIO 170 Discrete Target Area S3132H 32/12001 N 0.5 0.5 W3270 BENZO ajANTHRACENE UOKG BIO 170 Discrete Target Area S3132H 32/12001 N 0.5 0.5 W3270 BENZO ajANTHRACENE UOKG BIO 170 Discrete Target Area S3132H 32/12001 N 0.5 0.5 W3270 BENZO ajANTHRACENE UOKG U 170 Discrete Target Area S3132H 32/12001 N 0.5 0.5 W3270 BENZO ajANTHRACENE UOKG U 170 Discrete Target Area S3132H 32/12001 N 0.5 0.5 W3270 BENZO ajANTHRACENE UOKG U 170 Discrete Target Area S3132H 32/12001 N 0.5 0.5 W3270 BENZO ajANTHRACENE UOKG U 170 Discrete Target Area S3132H 32/12001 N 0.5 0.5 W3270 BENZO ajANTHRACENE UOKG U 170 Discrete Target Area S3132H 32/12001 N 0.5 0.5 W3270 BENZO ajANTHRACENE UOKG U 170 Discrete Target Area S3132H 32/12001 N 0.5 0.5 W3270 BENZO ajANTHRACENE UOKG U 170													
Target Ans													
Target Arms	Target Area												
Farged Anne	Target Area	SS132H	3/21/2001	N	0.5	1	SW8270	BENZO(a)ANTHRACENE	UG/KG	Ü	j	180 [Discrete
Empty Anno	Target Area												
Target Area S5132K 32772001 N													
Target Area S112X 32772001 N											J		
Target Area													
Target Area S132L 30772001 N 0.5 1 SW8270 BENZO(a)ANTHRACENE US/KG U 1775 Discrete Target Area S1312L 32772001 N 0.25 SW8270 BENZO(a)ANTHRACENE US/KG U 1775 Discrete Target Area S1312C 33002001 N 0.25 SW8270 BENZO(a)ANTHRACENE US/KG U 1775 Discrete Target Area S1312C 33002001 N 0.25 SW8270 BENZO(a)ANTHRACENE US/KG U 1705 Discrete Target Area S1312C 33002001 N 0.25 SW8270 BENZO(a)ANTHRACENE US/KG 4100 4100 Discrete March 1996 Ma													
Target Area S132L 37772001 N 0.25 0.5 SW870 BENZO(a)ANTHRACENE UG/KG 100 170 100	Target Area										J		
Target Ama S1320 330/2001 N 0 0.25 SW8270 BENZO(a)ANTHRACENE UGKIG 10000 Discrete Target Ama S1320 330/2001 N 0.5 0.5 SW8270 BENZO(a)ANTHRACENE UGKIG U 160 Discrete Target Ama S1320 330/2001 N 0.5 SW8270 BENZO(a)ANTHRACENE UGKIG U 160 Discrete Target Ama S1320 327/2001 N 0.0 0.5 SW8270 BENZO(a)ANTHRACENE UGKIG U 160 Discrete Target Ama S1320 327/2001 N 0.0 0.5 SW8270 BENZO(a)ANTHRACENE UGKIG 220 J 3200 Spont composite Target Ama S1320 327/2001 N 0.0 0.5 SW8270 BENZO(a)ANTHRACENE UGKIG 220 J 2300 Spont composite Target Ama S1320 327/2001 N 0.0 0.5 SW8270 BENZO(a)ANTHRACENE UGKIG 220 J 2300 Spont composite Target Ama S1320 327/2001 N 0.5 1.5 W8270 BENZO(a)ANTHRACENE UGKIG 320 J 160 Spont composite Target Ama S1320 327/2001 N 0.5 1.5 W8270 BENZO(a)ANTHRACENE UGKIG 320 J 160 Spont composite Target Ama S1320 327/2001 N 0.5 1.5 W8270 BENZO(a)ANTHRACENE UGKIG 320 J 160 Spont composite Target Ama S1320 327/2001 N 0.5 1.5 W8270 BENZO(a)ANTHRACENE UGKIG 100 J 160 Spont composite Target Ama S1320 327/2001 N 0.5 1.5 W8270 BENZO(a)ANTHRACENE UGKIG U 170 Spont composite Target Ama S1320 330/2001 N 0.2 S W8270 BENZO(a)ANTHRACENE UGKIG U 170 Spont composite Target Ama S1320 330/2001 N 0.2 S W8270 BENZO(a)ANTHRACENE UGKIG U 170 Spont composite Target Ama S1320 330/2001 N 0.2 S W8270 BENZO(a)ANTHRACENE UGKIG U 170 Spont composite Target Ama S1320 330/2001 N 0.5 1.5 W8270 BENZO(a)ANTHRACENE UGKIG U 170 Spont composite Target Ama S1320 330/2001 N 0.5 1.5 W8270 BENZO(a)ANTHRACENE UGKIG U 170 Spont composite Target Ama S1320 330/2001 N 0.5 1.5 W8270 BENZO(a)ANTHRACENE UGKIG U 170 Spont composite Target Ama S1320 330/2001 N 0.5 1.5 W8270 BENZO(a)ANTHRACENE UGKIG U 170 Spont composite Target Ama S1320	Target Area		3/27/2001	N	0	0.25	SW8270		UG/KG			175 [Discrete
Target Area S1320 330/2001 N 0.25 0.5 SW8270 BENZO(a)ANTHRACENE UG/NG	Target Area										J		
Target Ana S1320 330/2001 N 0 5 SW8270 SENZO(a)ANTHRACENE UGKG U 160 Discrete	Target Area												
Target Area \$132V 490/2001 N													
Target Area \$5132K 3/27/2001 N 0 0.25 SW8270 BENZO(a)PYRENE UGNKG 2800 J 2800 6-point composite Target Area \$5132K 3/27/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UGNKG 2800 J 200 6-point composite Target Area \$5132K 3/27/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UGNKG 320 J 320 6-point composite Target Area \$5132K 3/27/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UGNKG 160 J 160 6-point composite Target Area \$5132L 3/27/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UGNKG 140 J 140 5-point composite Target Area \$5132L 3/27/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UGNKG U 170 5-point composite Target Area \$5132L 3/27/2001 N 0.5 0.5 SW8270 BENZO(a)PYRENE UGNKG U 170 5-point composite Target Area \$5132L 3/27/2001 N 0.5 0.5 SW8270 BENZO(a)PYRENE UGNKG U 170 5-point composite Target Area \$5132D 3/09/2001 N 0.0 2.5 0.5 SW8270 BENZO(a)PYRENE UGNKG U 170 5-point composite Target Area \$5132D 3/09/2001 N 0.0 2.5 0.5 SW8270 BENZO(a)PYRENE UGNKG \$500 8000 5-point composite Target Area \$5132D 3/09/2001 N 0.5 SW8270 BENZO(a)PYRENE UGNKG \$500 \$600 5-point composite Target Area \$5132D 3/09/2001 N 0.5 SW8270 BENZO(a)PYRENE UGNKG \$500 \$600 5-point composite Target Area \$5132D 3/09/2001 N 0.5 SW8270 BENZO(a)PYRENE UGNKG \$500 \$600 5-point composite Target Area \$5132D 3/09/2001 N 0.5 SW8270 BENZO(a)PYRENE UGNKG \$210 \$210 SENSET \$210 SENSET													
Target Area S132K 3/27/2001 N 0.25 0.5 S/W8/270 BENZO(a)PYRENE UG/KG 160 J 160 5-pint composite rarget Area S132K 3/27/2001 N 0.5 1 S/W8/270 BENZO(a)PYRENE UG/KG 160 J 160 5-pint composite rarget Area S132L 3/27/2001 N 0.5 1 S/W8/270 BENZO(a)PYRENE UG/KG U 170 5-pint composite rarget Area S132L 3/27/2001 FD 0.5 1 S/W8/270 BENZO(a)PYRENE UG/KG U 170 5-pint composite rarget Area S132L 3/27/2001 N 0.5 1 S/W8/270 BENZO(a)PYRENE UG/KG U 170 5-pint composite rarget Area S132L 3/27/2001 N 0.5 5 S/W8/270 BENZO(a)PYRENE UG/KG U 170 5-pint composite rarget Area S132D 3/27/2001 N 0.5 5 S/W8/270 BENZO(a)PYRENE UG/KG U 170 5-pint composite rarget Area S132D 3/03/2001 N 0.5 1 S/W8/270 BENZO(a)PYRENE UG/KG 2100 20.5 5-pint composite rarget Area S132D 3/03/2001 N 0.5 1 S/W8/270 BENZO(a)PYRENE UG/KG 2100 20.5 5-pint composite rarget Area S132D 3/03/2001 N 0.5 1 S/W8/270 BENZO(a)PYRENE UG/KG 2100 20.5 5-pint composite rarget Area S132D 3/03/2001 N 0.5 1 S/W8/270 BENZO(a)PYRENE UG/KG 2100 20.5 5-pint composite rarget Area S132D 3/03/2001 N 0.5 1 S/W8/270 BENZO(a)PYRENE UG/KG 2100 20.5 5-pint composite rarget Area S132D 3/03/2001 N 0.0 0.25 S/W3/270 BENZO(a)PYRENE UG/KG 2100 20.5 5-pint composite rarget Area S132D 3/03/2001 N 0.0 0.25 S/W3/270 BENZO(a)PYRENE UG/KG 20.0 1 0.5 pint composite rarget Area S132D 3/03/2001 N 0.0 0.25 S/W3/270 BENZO(a)PYRENE UG/KG 20.0 1 0.5 pint composite rarget Area S132D 3/03/2001 N 0.0 0.25 S/W3/270 BENZO(a)PYRENE UG/KG 20.0 1 0.5 pint composite rarget Area S132D 3/03/2001 N 0.0 0.25 S/W3/270 BENZO(a)PYRENE UG/KG U 176 Discrete rarget Area S132D 3/03/2001 N 0.0 0.25 S/W3/270 BENZO(a)PYRENE UG/KG U 176 Discrete rarget Area S132D 3/03/2001 N 0.0 0.25 S/W3/270 BENZO(a)PYRENE UG/KG U 176 Discrete rarget Area S132D 3/03/2001 N 0.0 0.25 S/W3/270 BENZO(a)PYRENE UG/KG U 176 Discrete rarget Area S132D 3/03/2001 N 0.0 0.25 S/W3/270 BENZO(a)PYRENE UG/KG U 176 Discrete rarget Area S132D 3/03/2001 N 0.0 0.25 S/W3/270 BENZO(a)PYRENE UG/KG U 176 Discrete rarget Area S132D 3/03/2001 N 0.0 0.25 S/W3/270 BENZO(a)PYREN	raigotriioa	001021	1/00/2001	.,		0.0	0110210						31001010
Flarget Area S5132K 32772001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG 140 J 140 S-point composite larget Area S5132L 32772001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG U 170 S-point composite larget Area S5132L 32772001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG U 170 S-point composite larget Area S5132L 32772001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG U 170 S-point composite larget Area S5132L 32772001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG U 175 S-point composite larget Area S5132D 330/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG U 175 S-point composite larget Area S5132D 330/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG 2100 2100 S-point composite larget Area S5132D 330/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG 2100 200 S-point composite larget Area S5132D 330/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG 2100 200 S-point composite larget Area S5132D 330/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG 200 400 S-point composite larget Area S5132D 320/2001 N 0.0 0.25 SW8270 BENZO(a)PYRENE UG/KG 400 400 S-point composite larget Area S5132D 321/2001 N 0.0 0.25 SW8270 BENZO(a)PYRENE UG/KG 200 J 260 Discrete larget Area S5132D 321/2001 N 0.0 0.25 SW8270 BENZO(a)PYRENE UG/KG 200 J 260 Discrete larget Area S5132D 321/2001 N 0.0 0.25 SW8270 BENZO(a)PYRENE UG/KG 200 J 260 Discrete larget Area S5132D 321/2001 N 0.0 0.25 SW8270 BENZO(a)PYRENE UG/KG 0.0 175 Discrete larget Area S5132D 321/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG 0.0 175 Discrete larget Area S5132D 321/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG U 175 Discrete larget Area S5132D 321/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG U 175 Discrete larget Area S5132D 321/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG U 176 Discrete larget Area S5132D 321/2001 N 0.0 0.25 SW8270 BENZO(a)	Target Area		3/27/2001	N		0.25	SW8270	BENZO(a)PYRENE				2800 5	5-point composite
Flaget Area S5132L 32772001 N	Target Area												
Target Area S5132L 3/27/2001 FD 0.5 1 SW8270 BENZO(a)PYRENE UG/KG U 170 S-point composite larget Area S5132L 3/27/2001 FD 0.5 0.5 SW8270 BENZO(a)PYRENE UG/KG U 170 S-point composite larget Area S5132L 3/27/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG U 170 S-point composite larget Area S51320 3/30/2001 FD 0.5 0.5 SW8270 BENZO(a)PYRENE UG/KG 2100 Septiment composite larget Area S51320 3/30/2001 FD 0.5 1 SW8270 BENZO(a)PYRENE UG/KG 2100 5-point composite larget Area S51320 3/30/2001 FD 0.5 1 SW8270 BENZO(a)PYRENE UG/KG 2100 5-point composite larget Area S51320 3/30/2001 FD 0.5 1 SW8270 BENZO(a)PYRENE UG/KG 2100 5-point composite larget Area S51320 3/30/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG 400 400 S-point composite larget Area S51320 3/30/2001 N 0.0 0.25 SW8270 BENZO(a)PYRENE UG/KG 400 400 S-point composite larget Area S51324 3/21/2001 N 0.0 0.25 SW8270 BENZO(a)PYRENE UG/KG U 175 Discrete larget Area S51324 3/21/2001 N 0.0 0.25 SW8270 BENZO(a)PYRENE UG/KG 260 J 260 Discrete larget Area S51324 3/21/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG U 175 Discrete larget Area S51324 3/21/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG U 175 Discrete larget Area S51324 3/21/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG U 175 Discrete larget Area S51324 3/21/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG U 175 Discrete larget Area S51324 3/21/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG U 175 Discrete larget Area S51324 3/21/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG U 175 Discrete larget Area S51324 3/21/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG U 176 Discrete larget Area S51324 3/21/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG U 176 Discrete larget Area S51324 3/21/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG U 1													
Larget Area S132L 3/27/2001 N 0.25 0.5 WB270 BENZO(a)PYRENE UG/KG U 17.0 S-point composite larget Area S1320 3/30/2001 N 0.0 2.5 SW8270 BENZO(a)PYRENE UG/KG 8500 8500 S-point composite larget Area S1320 3/30/2001 N 0.0 2.5 SW8270 BENZO(a)PYRENE UG/KG 8500 2100 S-point composite larget Area S1320 3/30/2001 N 0.5 1.5 WB270 BENZO(a)PYRENE UG/KG 560 560 S-point composite larget Area S1320 3/30/2001 N 0.5 1.5 WB270 BENZO(a)PYRENE UG/KG 560 560 S-point composite larget Area S1320 3/30/2001 N 0.5 1.5 WB270 BENZO(a)PYRENE UG/KG 560 400 S-point composite larget Area AL060200-01 3/72 69/2000 N 0.0 2.5 SW8270 BENZO(a)PYRENE UG/KG 400 400 S-point composite larget Area AL060200-01 3/72 69/2000 N 0.0 2.5 SW8270 BENZO(a)PYRENE UG/KG 400 400 S-point composite larget Area AL060200-01 3/72 69/2000 N 0.0 2.5 SW8270 BENZO(a)PYRENE UG/KG 1.5 J 16 Discrete larget Area AL060200-01 3/72 69/2000 N 0.0 2.5 SW8270 BENZO(a)PYRENE UG/KG 1.5 J 16 Discrete larget Area S1324 3/21/2001 N 0.0 2.5 SW8270 BENZO(a)PYRENE UG/KG 230 J 260 Discrete larget Area S1324 3/21/2001 N 0.25 SW8270 BENZO(a)PYRENE UG/KG 230 J 230 Discrete larget Area S1324 3/21/2001 N 0.25 SW8270 BENZO(a)PYRENE UG/KG U 17.5 Discrete larget Area S1324 3/21/2001 N 0.5 SW8270 BENZO(a)PYRENE UG/KG U 17.5 Discrete larget Area S1324 3/21/2001 N 0.5 SW8270 BENZO(a)PYRENE UG/KG U 17.5 Discrete larget Area S1324 3/21/2001 N 0.5 SW8270 BENZO(a)PYRENE UG/KG U 17.5 Discrete larget Area S1324 3/21/2001 N 0.5 SW8270 BENZO(a)PYRENE UG/KG U 17.5 Discrete larget Area S1324 3/21/2001 N 0.5 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete larget Area S1324 3/21/2001 N 0.25 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete larget Area S1324 3/21/2001 N 0.25 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete larget Area S1324 3/2													
Target Area SS132L 3/27/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG U 175 5-point composite Target Area SS132O 3/30/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG 2100 2100 5-point composite Target Area SS132O 3/30/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG 2100 2100 5-point composite UG/KG 2100 2100 5-point composite UG/KG 2100 2100 5-point composite UG/KG 400 400 400 5-point composite UG/KG 400 400 5-point composite UG/KG 400 400 400 400 400 400 5-point composite UG/KG 400 4													
Target Area S1320 3/30/2001 N													
Target Area S1320 3/30/2001 FD 0.5 1 SW8270 BENZO(a)PYRENE UG/KG 400 400 \$-point composite Target Area S1327 SS1320	Target Area									8500			
Target Area A A B B B B B B B B	Target Area		3/30/2001	N	0.25	0.5	SW8270	BENZO(a)PYRENE	UG/KG	2100		2100 5	5-point composite
Target Area	Target Area												
Target Area ALG60200-01_372 6/9/2000 N 0 0.25 CSVOL BENZO(a)PYRENE UG/KG U 175 Discrete Target Area S132H 3/21/2001 N 0 0.25 SW8270 BENZO(a)PYRENE UG/KG 260 J 260 Discrete Carget Area S132H 3/21/2001 N 0 0.25 SW8270 BENZO(a)PYRENE UG/KG 260 J 260 Discrete Carget Area S132H 3/21/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG 230 J 230 Discrete Carget Area S132H 3/21/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG U 175 Discrete Carget Area S132H 3/21/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG U 175 Discrete Carget Area S132H 3/21/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG U 175 Discrete Carget Area S132H 3/21/2001 N 0 0.25 SW8270 BENZO(a)PYRENE UG/KG U 175 Discrete Carget Area S132H 3/21/2001 N 0 0.25 SW8270 BENZO(a)PYRENE UG/KG U 175 Discrete Carget Area S132H 3/21/2001 N 0 0.25 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete Carget Area S132H 3/21/2001 N 0 0.25 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete Carget Area S132H 3/21/2001 N 0 0.25 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete Carget Area S132H 3/21/2001 N 0 0.25 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete Carget Area S132H 3/21/2001 N 0 0.25 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete Carget Area S132H 3/21/2001 N 0 0.25 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete Carget Area S132H 3/21/2001 N 0 0.25 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete Carget Area S132H 3/21/2001 N 0 0.25 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete Carget Area S132H 3/21/2001 N 0 0.5 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete Carget Area S132H 3/21/2001 N 0 0.5 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete Carget Area S132H 3/21/2001 N 0 0.5 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete Carget Area S132H 3/21/2001 N 0 0.5 SW8270 BENZO(Larget Area	SS132O	3/30/2001	N	0.5	1	SW8270				MDOSITE		o-point composite
Target Area AM071601-03 7/23/2001 N 0 0.25 SW8270 BENZO(a)PYRENE UG/KG 16 J 16 Discrete Target Area SS132H 3/21/2001 N 0 0.25 SW8270 BENZO(a)PYRENE UG/KG 260 J 260 Discrete Target Area SS132H 3/21/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG 230 J 230 Discrete Target Area SS132H 3/21/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG U 175 Discrete Target Area SS132H 3/21/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG U 175 Discrete Target Area SS132H 3/21/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG U 175 Discrete Target Area SS132H 3/21/2001 N 0 0.25 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete Target Area SS132H 3/21/2001 N 0 0.25 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete Target Area SS132H 3/21/2001 N 0 0.25 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete Target Area SS132H 3/21/2001 N 0 0.25 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete Target Area SS132H 3/21/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete Target Area SS132H 3/21/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete Target Area SS132H 3/21/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete Target Area SS132H 3/21/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete Target Area SS132H 3/21/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete Target Area SS132H 3/21/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete Target Area SS132H 3/21/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete Target Area SS132H 3/21/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete Target Area SS132H 3/21/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete Target Area SS132H 3/21/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete Target Area SS132K 3/27/2001 N 0.	Target Area	AL060200-01 372	6/9/2000	N	Λ	n 25	CSVOL						Discrete
Target Area SS132H 3/21/2001 N 0 0.25 SW8270 BENZO(a)PYRENE UG/KG 230 J 230 Discrete Target Area SS132H 3/21/2001 N 0.25 SW8270 BENZO(a)PYRENE UG/KG 230 J 230 Discrete Target Area SS132H 3/21/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG U 175 Discrete Target Area SS132H 3/21/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG U 175 Discrete Target Area SS132H 3/21/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG U 175 Discrete Target Area SS132H 3/21/2001 N 0 0.25 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete Target Area SS132H 3/21/2001 N 0 0.25 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete Target Area SS132H 3/21/2001 N 0 0.25 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete Target Area SS132H 3/21/2001 N 0 0.25 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete Target Area SS132H 3/21/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete Target Area SS132H 3/21/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete Target Area SS132H 3/21/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete Target Area SS132H 3/21/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete Target Area SS132H 3/21/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete Target Area SS132H 3/21/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete Target Area SS132H 3/21/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete Target Area SS132H 3/21/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete Target Area SS132H 3/21/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete Target Area SS132H 3/21/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete Target Area SS132K 3/21/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete Target Area SS132K 3/21/2001 N 0.5 1 SW827	Target Area												
Target Area SS132H 3/21/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG U 175 Discrete	Target Area				0	0.25	SW8270	BENZO(a)PYRENE	UG/KG	260 .	J	260 [Discrete
Target Area SS132H 3/21/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG U 175 Discrete	Target Area												
Target Area SS132H 3/21/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG U 175 Discrete larget Area SS132H 3/21/2001 N 0 0.25 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete larget Area SS132H 3/21/2001 N 0 0.25 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete larget Area SS132H 3/21/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete larget Area SS132H 3/21/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete larget Area SS132H 3/21/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete larget Area SS132H 3/21/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete larget Area SS132H 3/21/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete larget Area SS132H 3/21/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete larget Area SS132H 3/21/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete larget Area SS132H 3/21/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete larget Area SS132H 3/21/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete larget Area SS132H 3/21/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete larget Area SS132H 3/21/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete larget Area SS132H 3/21/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete larget Area SS132H 3/21/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete larget Area SS132H 3/21/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete larget Area SS132H 3/21/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete larget Area SS132K 3/21/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG U 185 Discrete larget Area SS132K 3/21/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG U 185 Discrete larget Area SS132K 3/21/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG U 185 Discrete larget Area SS132K 3/21/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG U 175 Discrete larget Area SS132L 3/21/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG U 175 Discrete larget Area SS132L 3/21/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG U 175 Discrete larget Area SS132L 3/21/2001 N 0.5 5 SW8270 BENZO(a)PYRENE UG/KG U 175 Discrete larget Area SS132C 3/30	Target Area												
Target Area SS132H 3/21/2001 N													
Target Area SS132H 3/21/2001 N													
Target Area \$\$132H \$\$/21/2001 N 0 0.25 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete Target Area \$\$132H 321/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete Target Area \$\$132H 321/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete Target Area \$\$132H 321/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete Target Area \$\$132H 3/21/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete Target Area \$\$132H 3/21/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete Target Area \$\$132H 3/21/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete Target Area \$\$132H 3/21/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete	Target Area												
Target Area SS132H 3/21/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete	Target Area												
Target Area S5132H 3/21/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete Target Area S5132H 3/21/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete Target Area S5132H 3/21/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete Target Area S5132H 3/21/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete Target Area S5132H 3/21/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete Target Area S5132H 3/21/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete Target Area S5132H 3/21/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete Target Area S5132H 3/21/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete Target Area S5132H 3/21/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete Target Area S5132K 3/21/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete Target Area S5132K 3/21/2001 N 0.5 0.5 SW8270 BENZO(a)PYRENE UG/KG 9600 9600 Discrete Target Area S5132K 3/21/2001 N 0.5 0.5 SW8270 BENZO(a)PYRENE UG/KG 9600 9600 Discrete Target Area S5132K 3/21/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG 680 680 Discrete Target Area S5132K 3/21/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG 680 680 Discrete Target Area S5132L 3/21/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG U 170 Discrete Target Area S5132L 3/21/2001 N 0.25 SW8270 BENZO(a)PYRENE UG/KG U 175 Discrete Target Area S5132L 3/21/2001 N 0.25 SW8270 BENZO(a)PYRENE UG/KG U 175 Discrete Target Area S5132L 3/21/2001 N 0.25 SW8270 BENZO(a)PYRENE UG/KG U 175 Discrete Target Area S5132L 3/21/2001 N 0.25 SW8270 BENZO(a)PYRENE UG/KG U 175 Discrete Target Area S5132C 3/30/2001 N 0.25 SW8270 BENZO(a)PYRENE UG/KG U 175 Discrete Target Area S5132C 3/30/2001 N 0.25 SW8270 BENZO(a)PYRENE UG/KG	Target Area	SS132H	3/21/2001	N	0.25	0.5	SW8270	BENZO(a)PYRENE	UG/KG	Ü	J	180 [Discrete
Target Area SS132H 3/21/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete Target Area SS132H 3/21/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete Target Area SS132H 3/21/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete Target Area SS132H 3/21/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete Target Area SS132H 3/21/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete Target Area SS132H 3/21/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete Target Area SS132K 3/27/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG U 185 Discrete Target Area SS132K 3/27/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG 9600 9600 Discrete <	Target Area									l	J		
Target Area SS132H 3/21/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete Target Area SS132H 3/21/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete Target Area SS132H 3/21/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete Target Area SS132H 3/21/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete Target Area SS132H 3/21/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete Target Area SS132K 3/27/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG 9600 9600 Discrete Target Area SS132K 3/27/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG 1500 1500 Discrete Target Area SS132L 3/27/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG 680 680 Discrete	Target Area												
Target Area SS132H 3/21/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete Target Area SS132H 3/21/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete Target Area SS132H 3/21/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete Target Area SS132H 3/21/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG U 185 Discrete Target Area SS132K 3/27/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG 9600 9600 Discrete Target Area SS132K 3/27/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG 1500 1500 Discrete Target Area SS132L 3/27/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG 680 680 Discrete Target Area SS132L 3/27/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG U 170 Discrete													
Target Area SS132H 3/21/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete Target Area SS132H 3/21/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete Target Area SS132H 3/21/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG U 185 Discrete Target Area SS132K 3/27/2001 N 0.25 SW8270 BENZO(a)PYRENE UG/KG 9600 9600 Discrete Target Area SS132K 3/27/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG 1500 1500 Discrete Target Area SS132K 3/27/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG 680 680 Discrete Target Area SS132L 3/27/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG U 170 Discrete Target Area SS132L 3/27/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG U 175 Discrete Target Area<													
Target Area SS132H 3/21/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete Target Area SS132H 3/21/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG U 185 Discrete Target Area SS132K 3/27/2001 N 0.05 SW8270 BENZO(a)PYRENE UG/KG 9600 9600 Discrete Target Area SS132K 3/27/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG 1500 1500 Discrete Target Area SS132L 3/27/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG 680 680 Discrete Target Area SS132L 3/27/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG U 170 Discrete Target Area SS132L 3/27/2001 N 0.25 0.25 SW8270 BENZO(a)PYRENE UG/KG U 175 Discrete Target Area SS132L 3/27/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG U 175 Discrete	Target Area												
Target Area SS132K 3/27/2001 N 0 0.25 SW8270 BENZO(a)PYRENE UG/KG 9600 9600 Discrete Target Area SS132K 3/27/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG 1500 1500 Discrete Target Area SS132K 3/27/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG 680 680 Discrete Target Area SS132L 3/27/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG U 170 Discrete Target Area SS132L 3/27/2001 N 0.25 SW8270 BENZO(a)PYRENE UG/KG U 175 Discrete Target Area SS132C 3/30/2001 N 0.25 O.5 SW8270 BENZO(a)PYRENE UG/KG U 175 Discrete Target Area SS132O 3/30/2001 N 0.25 O.5 SW8270 BENZO(a)PYRENE UG/KG 15000 15000 Discrete Target Area SS132O 3/30/2001 N 0.25 O.5 SW8270 BENZO(a)PYRENE UG/KG 3600 3600 Discrete Target Area SS132O 3/30/2001 N 0.25 O.5 SW8	Target Area	SS132H	3/21/2001	N	0.5	1	SW8270	BENZO(a)PYRENE	UG/KG	ι	J	180 [Discrete
Target Area SS132K 3/27/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG 1500 1500 Discrete Target Area SS132K 3/27/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG 680 680 Discrete Target Area SS132L 3/27/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG U 1775 Discrete Target Area SS132L 3/27/2001 N 0.25 SW8270 BENZO(a)PYRENE UG/KG U 175 Discrete Target Area SS132L 3/27/2001 N 0.25 SW8270 BENZO(a)PYRENE UG/KG U 175 Discrete Target Area SS132O 3/30/2001 N 0.025 SW8270 BENZO(a)PYRENE UG/KG U 175 Discrete Target Area SS132O 3/30/2001 N 0.25 O.5 SW8270 BENZO(a)PYRENE UG/KG 15000 15000 Discrete Target Area SS132O 3/30/2001 N 0.25 SW8270 BENZO(a)PYRENE UG/KG 0 3600 Discrete Target Area SS132O 3/30/2001 N	Target Area										J		
Target Area SS132K 3/27/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG 680 680 Discrete Target Area SS132L 3/27/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG U 1770 Discrete Target Area SS132L 3/27/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG U 175 Discrete Target Area SS132L 3/27/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG U 175 Discrete Target Area SS132O 3/30/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG 15000 15000 Discrete Target Area SS132O 3/30/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG 3600 3600 Discrete Target Area SS132O 3/30/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG 0 1600 Discrete Target Area SS132O 3/30/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG U 160 Discrete	Target Area												
Target Area SS132L 3/27/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG U 170 Discrete Target Area SS132L 3/27/2001 N 0.25 SW8270 BENZO(a)PYRENE UG/KG U 175 Discrete Target Area SS132L 3/27/2001 N 0.25 SW8270 BENZO(a)PYRENE UG/KG U 175 Discrete Target Area SS132O 3/30/2001 N 0.025 SW8270 BENZO(a)PYRENE UG/KG 15000 15000 Discrete Target Area SS132O 3/30/2001 N 0.25 O.5 SW8270 BENZO(a)PYRENE UG/KG 3600 3600 Discrete Target Area SS132O 3/30/2001 N 0.5 SW8270 BENZO(a)PYRENE UG/KG 0 15000 Discrete Target Area SS132V 4/30/2001 N 0.5 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete Target Area SS132V 4/30/2001 N 0.5 SW8270 BENZO(a)PYRENE UG/KG 260 J 260 Discrete													
Target Area SS132L 3/27/2001 N 0 0.25 SW8270 BENZO(a)PYRENE UG/KG U 175 Discrete Target Area SS132L 3/27/2001 N 0.25 W8270 BENZO(a)PYRENE UG/KG U 175 Discrete Target Area SS132O 3/30/2001 N 0 0.25 SW8270 BENZO(a)PYRENE UG/KG 15000 15000 Discrete Target Area SS132O 3/30/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG 3600 3600 Discrete Target Area SS132O 3/30/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete Target Area SS132V 4/30/2001 N 0 0.5 SW8270 BENZO(a)PYRENE UG/KG 260 J 260 Discrete													
Target Area SS132L 3/27/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG U 175 Discrete Target Area SS132O 3/30/2001 N 0 0.25 SW8270 BENZO(a)PYRENE UG/KG 15000 15000 Discrete Target Area SS132O 3/30/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG 3600 3600 Discrete Target Area SS132O 3/30/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete Target Area SS132V 4/30/2001 N 0 0.5 SW8270 BENZO(a)PYRENE UG/KG 260 J 260 Discrete													
Target Area SS132O 3/30/2001 N 0 0.25 SW8270 BENZO(a)PYRENE UG/KG 15000 15000 Discrete Target Area SS132O 3/30/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG 3600 3600 Discrete Target Area SS132O 3/30/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG 0 1800 Discrete Target Area SS132V 4/30/2001 N 0 0.5 SW8270 BENZO(a)PYRENE UG/KG 260 J 260 Discrete													
Target Area SS132O 3/30/2001 N 0.25 0.5 SW8270 BENZO(a)PYRENE UG/KG 3600 3600 Discrete Target Area SS132O 3/30/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete Target Area SS132V 4/30/2001 N 0 0.5 SW8270 BENZO(a)PYRENE UG/KG 260 J 260 Discrete	Target Area										-		
Target Area SS132O 3/30/2001 N 0.5 1 SW8270 BENZO(a)PYRENE UG/KG U 180 Discrete Target Area SS132V 4/30/2001 N 0 0.5 SW8270 BENZO(a)PYRENE UG/KG 260 J 260 Discrete	Target Area												
	Target Area	SS132O	3/30/2001	N	0.5	1	SW8270	BENZO(a)PYRENE	UG/KG	ι		180 [Discrete
AVERAGE FOR BENZO(a)PYRENE DISCRETE 1196.931	Target Area	SS132V	4/30/2001	N	0	0.5	SW8270						Discrete
								AVE	RAGE FOR BEN	ZO(a)PYRENE	DISCRETE	1196.931	

Table C.4-6
Former A Range
Calculation of Averages Concentrations for PAHs Exhibiting Maximum Concentrations Above a Screening Criterion in the PAH 2 Exposure Area

								Concentration	
		Normal or						Used in	
		Collection Field		End Depth Analytical			Detected	Computation	
Area	Location ID	Date Duplicate		(ft) Method	Analyte	Units	Value	Flags of Averages	Sample Type
Target Area Target Area	SS132K SS132K	3/27/2001 N 3/27/2001 N	0 0.25	0.25 SW8270 0.5 SW8270	BENZO(b)FLUORANTHENE BENZO(b)FLUORANTHENE	UG/KG UG/KG	2800 J 300 J		point composite
Target Area	SS132K	3/27/2001 N	0.5	1 SW8270	BENZO(b)FLUORANTHENE	UG/KG	200 J		point composite
Target Area	SS132L	3/27/2001 N	0	0.25 SW8270	BENZO(b)FLUORANTHENE	UG/KG	170 J		point composite
Target Area	SS132L	3/27/2001 N	0.5	1 SW8270	BENZO(b)FLUORANTHENE	UG/KG	U		point composite
Target Area	SS132L	3/27/2001 FD	0.5	1 SW8270	BENZO(b)FLUORANTHENE	UG/KG	U		point composite
Target Area Target Area	SS132L SS132O	3/27/2001 N 3/30/2001 N	0.25 0	0.5 SW8270 0.25 SW8270	BENZO(b)FLUORANTHENE BENZO(b)FLUORANTHENE	UG/KG UG/KG	7700		point composite
Target Area	SS1320	3/30/2001 N	0.25	0.5 SW8270	BENZO(b)FLUORANTHENE	UG/KG	2200		point composite
Target Area	SS132O	3/30/2001 FD	0.5	1 SW8270	BENZO(b)FLUORANTHENE	UG/KG	640 J		point composite
Target Area	SS132O	3/30/2001 N	0.5	1 SW8270	BENZO(b)FLUORANTHENE	UG/KG	330 J		oint composite
_					AVERAGE FOR BENZO(b)F				
Target Area Target Area	AL060200-01_372 AM071601-03	6/9/2000 N	0	0.25 CSVOL 0.25 SW8270	BENZO(b)FLUORANTHENE	UG/KG UG/KG	U 16 J	<i>175</i> Dis 16 Dis	
Target Area	SS132H	7/23/2001 N 3/21/2001 N	0	0.25 SW8270	BENZO(b)FLUORANTHENE BENZO(b)FLUORANTHENE	UG/KG	280 J	280 Dis	
Target Area	SS132H	3/21/2001 N	0	0.25 SW8270	BENZO(b)FLUORANTHENE	UG/KG	250 J	250 Dis	
Target Area	SS132H	3/21/2001 N	0.25	0.5 SW8270	BENZO(b)FLUORANTHENE	UG/KG	U	175 Dis	screte
Target Area	SS132H	3/21/2001 N	0.25	0.5 SW8270	BENZO(b)FLUORANTHENE	UG/KG	U	175 Dis	
Target Area	SS132H	3/21/2001 N	0.5	1 SW8270	BENZO(b)FLUORANTHENE	UG/KG	U		
Target Area Target Area	SS132H SS132H	3/21/2001 N 3/21/2001 N	0	0.25 SW8270 0.25 SW8270	BENZO(b)FLUORANTHENE BENZO(b)FLUORANTHENE	UG/KG UG/KG	U	180 Dis 180 Dis	
Target Area	SS132H	3/21/2001 N 3/21/2001 N	0	0.25 SW8270 0.25 SW8270	BENZO(b)FLUORANTHENE	UG/KG UG/KG	U		
Target Area	SS132H	3/21/2001 N	0.25	0.5 SW8270	BENZO(b)FLUORANTHENE	UG/KG	Ŭ		
Target Area	SS132H	3/21/2001 N	0.25	0.5 SW8270	BENZO(b)FLUORANTHENE	UG/KG	U	180 Dis	screte
Target Area	SS132H	3/21/2001 N	0.25	0.5 SW8270	BENZO(b)FLUORANTHENE	UG/KG	U		
Target Area	SS132H	3/21/2001 N	0.25	0.5 SW8270	BENZO(b)FLUORANTHENE	UG/KG	U		
Target Area Target Area	SS132H SS132H	3/21/2001 N 3/21/2001 N	0.5 0.5	1 SW8270 1 SW8270	BENZO(b)FLUORANTHENE BENZO(b)FLUORANTHENE	UG/KG UG/KG	U		
Target Area	SS132H	3/21/2001 N	0.5	1 SW8270	BENZO(b)FLUORANTHENE	UG/KG	U		
Target Area	SS132H	3/21/2001 N	0.5	1 SW8270	BENZO(b)FLUORANTHENE	UG/KG	U		
Target Area	SS132H	3/21/2001 N	0.5	1 SW8270	BENZO(b)FLUORANTHENE	UG/KG	U	185 Dis	
Target Area	SS132K	3/27/2001 N	0	0.25 SW8270	BENZO(b)FLUORANTHENE	UG/KG	12000	12000 Dis	
Target Area Target Area	SS132K SS132K	3/27/2001 N 3/27/2001 N	0.25 0.5	0.5 SW8270 1 SW8270	BENZO(b)FLUORANTHENE BENZO(b)FLUORANTHENE	UG/KG UG/KG	1700 900	1700 Dis 900 Dis	
Target Area	SS132L	3/27/2001 N 3/27/2001 N	0.5	1 SW8270	BENZO(b)FLUORANTHENE	UG/KG	900 U	170 Dis	
Target Area	SS132L	3/27/2001 N	0.0	0.25 SW8270	BENZO(b)FLUORANTHENE	UG/KG	Ü		
Target Area	SS132L	3/27/2001 N	0.25	0.5 SW8270	BENZO(b)FLUORANTHENE	UG/KG	U	175 Dis	
Target Area	SS132O	3/30/2001 N	0	0.25 SW8270	BENZO(b)FLUORANTHENE	UG/KG	15000	15000 Dis	
Target Area	SS132O	3/30/2001 N	0.25	0.5 SW8270	BENZO(b)FLUORANTHENE	UG/KG	4000	4000 Dis	
Target Area Target Area	SS1320 SS132V	3/30/2001 N 4/30/2001 N	0.5 0	1 SW8270 0.5 SW8270	BENZO(b)FLUORANTHENE BENZO(b)FLUORANTHENE	UG/KG UG/KG	U 280 J	180 Dis 280 Dis	
raiget /iica	001021	4/30/2001 14	0	0.0 000270	AVERAGE FOR				Jordie
Target Area	SS132K	3/27/2001 N	0	0.25 SW8270	DIBENZ(a,h)ANTHRACENE	UG/KG	520 J	520 5-p	oint composite
Target Area	SS132K	3/27/2001 N	0.5	1 SW8270	DIBENZ(a,h)ANTHRACENE	UG/KG	U		point composite
Target Area	SS132K	3/27/2001 N	0.25	0.5 SW8270	DIBENZ(a,h)ANTHRACENE	UG/KG	U.		point composite
Target Area Target Area	SS132L SS132L					UG/KG	U.		point composite
Target Area		3/27/2001 N 3/27/2001 FD	0.5 0.5	1 SW8270 1 SW8270	DIBENZ(a,h)ANTHRACENE DIBENZ(a,h)ANTHRACENE		U		
		3/27/2001 FD	0.5	1 SW8270	DIBENZ(a,h)ANTHRACENE	UG/KG	U U.	170 5-p	
Target Area	SS132L SS132L						U U. U.	170 5- _F J 175 5- _F	point composite point composite
Target Area	SS132L SS132L SS132O	3/27/2001 FD 3/27/2001 N 3/27/2001 N 3/30/2001 N	0.5 0 0.25 0.25	1 SW8270 0.25 SW8270 0.5 SW8270 0.5 SW8270	DIBENZ(a,h)ANTHRACENE DIBENZ(a,h)ANTHRACENE DIBENZ(a,h)ANTHRACENE DIBENZ(a,h)ANTHRACENE	UG/KG UG/KG UG/KG UG/KG	U. U. U	170 5-5 J 175 5-5 J 175 5-5 180 5-5	point composite point composite point composite
Target Area Target Area	SS132L SS132L SS132O SS132O	3/27/2001 FD 3/27/2001 N 3/27/2001 N 3/30/2001 N 3/30/2001 N	0.5 0 0.25 0.25 0.5	1 SW8270 0.25 SW8270 0.5 SW8270 0.5 SW8270 1 SW8270	DIBENZ(a,h)ANTHRACENE DIBENZ(a,h)ANTHRACENE DIBENZ(a,h)ANTHRACENE DIBENZ(a,h)ANTHRACENE DIBENZ(a,h)ANTHRACENE	UG/KG UG/KG UG/KG UG/KG UG/KG	U. U. U	170 5-5 J 175 5-5 J 175 5-5 180 5-5 180 5-5	point composite point composite point composite point composite point composite
Target Area Target Area Target Area	SS132L SS132L SS132O SS132O SS132O	3/27/2001 FD 3/27/2001 N 3/27/2001 N 3/30/2001 N 3/30/2001 N 3/30/2001 FD	0.5 0 0.25 0.25 0.5 0.5	1 SW8270 0.25 SW8270 0.5 SW8270 0.5 SW8270 1 SW8270 1 SW8270	DIBENZ(a,h)ANTHRACENE DIBENZ(a,h)ANTHRACENE DIBENZ(a,h)ANTHRACENE DIBENZ(a,h)ANTHRACENE DIBENZ(a,h)ANTHRACENE DIBENZ(a,h)ANTHRACENE	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG	U. U. U U	170 5- _F J 175 5- _F J 175 5- _F 180 5- _F 180 5- _F 180 5- _F	point composite
Target Area Target Area	SS132L SS132L SS132O SS132O	3/27/2001 FD 3/27/2001 N 3/27/2001 N 3/30/2001 N 3/30/2001 N	0.5 0 0.25 0.25 0.5	1 SW8270 0.25 SW8270 0.5 SW8270 0.5 SW8270 1 SW8270	DIBENZ(a,h)ANTHRACENE DIBENZ(a,h)ANTHRACENE DIBENZ(a,h)ANTHRACENE DIBENZ(a,h)ANTHRACENE DIBENZ(a,h)ANTHRACENE DIBENZ(a,h)ANTHRACENE DIBENZ(a,h)ANTHRACENE	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG	U. U. U U U	170 5-; J 175 5-; J 175 5-; 180 5-; 180 5-; 180 5-; 185 5-;	point composite point composite point composite point composite point composite
Target Area Target Area Target Area	SS132L SS132L SS132O SS132O SS132O	3/27/2001 FD 3/27/2001 N 3/27/2001 N 3/30/2001 N 3/30/2001 N 3/30/2001 FD	0.5 0 0.25 0.25 0.5 0.5	1 SW8270 0.25 SW8270 0.5 SW8270 0.5 SW8270 1 SW8270 1 SW8270 0.25 SW8270	DIBENZ(a,h)ANTHRACENE DIBENZ(a,h)ANTHRACENE DIBENZ(a,h)ANTHRACENE DIBENZ(a,h)ANTHRACENE DIBENZ(a,h)ANTHRACENE DIBENZ(a,h)ANTHRACENE	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG	U. U. U U U U. NE 5-POINT CO	J 170 S-1 J 175 S-1 J 175 S-1 180 S-1 180 S-1 180 S-1 185 S-1 MPOSITE 207.273	point composite
Target Area Target Area Target Area Target Area Target Area Target Area	\$\$132L \$\$132L \$\$132O \$\$132O \$\$132O \$\$132O \$\$132O \$\$132O	3/27/2001 FD 3/27/2001 N 3/27/2001 N 3/30/2001 N 3/30/2001 N 3/30/2001 FD 3/30/2001 FD 3/30/2001 N	0.5 0 0.25 0.25 0.5 0.5 0	1 SW8270 0.25 SW8270 0.5 SW8270 0.5 SW8270 1 SW8270 1 SW8270 0.25 SW8270 0.25 SW8270	DIBENZ(a,h)ANTHRACENE DIBENZ(a,h)ANTHRACENE DIBENZ(a,h)ANTHRACENE DIBENZ(a,h)ANTHRACENE DIBENZ(a,h)ANTHRACENE DIBENZ(a,h)ANTHRACENE DIBENZ(a,h)ANTHRACENE AVERAGE FOR DIBENZ(a,h)ANTHRACENE DIBENZ(a,h)ANTHRACENE DIBENZ(a,h)ANTHRACENE	UG/KG	U. U. U U U. ENE 5-POINT CO U	170 5-1 J 175 5-1 J 175 5-1 180 5-1 180 5-1 180 5-1 180 5-1 185 5-1 185 5-1 175 Dis 170 Dis	coint composite
Target Area	\$5132L \$5132L \$5132O \$5132O \$5132O \$5132O AL060200-01_372 AM071601-03 \$5132H	3/27/2001 FD 3/27/2001 N 3/27/2001 N 3/30/2001 N 3/30/2001 N 3/30/2001 FD 3/30/2001 N 6/8/2000 N 7/23/2001 N 3/21/2001 N	0.5 0 0.25 0.25 0.5 0.5 0	1 SW8270 0.25 SW8270 0.5 SW8270 0.5 SW8270 1.5 SW8270 1 SW8270 1 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270	DIBENZ(a,h)ANTHRACENE	UG/KG	U. U. U U U U ENE 5-POINT CO U U	170 S-1 J 175 S-1 J 175 S-1 180 S-1 180 S-1 180 S-1 180 S-1 185 S-1 187 S-1 187 D-1 175 D-1 175 D-1 175 D-1 175 D-1 175 D-1 175 D-1	ooint composite
Target Area	S5132L S5132L S5132O S5132O S5132O S5132O AL060200-01_372 AM071601-03 S5132H	3/27/2001 FD 3/27/2001 N 3/27/2001 N 3/30/2001 N 3/30/2001 N 3/30/2001 FD 3/30/2001 N 6/9/2000 N 7/23/2001 N 3/21/2001 N 3/21/2001 N	0.5 0 0.25 0.25 0.5 0.5 0.0 0	1 SW8270 0.25 SW8270 0.5 SW8270 0.5 SW8270 1 SW8270 1 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.55 SW8270	DIBENZ(a,h)ANTHRACENE	UG/KG	U. U. U U U U INE 5-POINT CO U U U	J 170 S-1 J 175 S-7 J 175 S-7 J 175 S-7 180 S-7 187 S-7 187 S-7 187 Dis 175 Dis 175 Dis	ooint composite
Target Area	S5132L S5132L S5132O S5132O S5132O S5132O AL060200-01_372 AM071601-03 S5132H S5132H S5132H	3/27/2001 FD 3/27/2001 N 3/27/2001 N 3/30/2001 N 3/30/2001 N 3/30/2001 FD 3/30/2001 N 6/8/2000 N 7/23/2001 N 3/21/2001 N 3/21/2001 N 3/21/2001 N	0.5 0 0.25 0.25 0.5 0.5 0 0 0 0 0 0 0.25	1 SW8270 0.25 SW8270 0.5 SW8270 0.5 SW8270 1.5 W8270 1 SW8270 1 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.55 SW8270 0.55 SW8270 0.55 SW8270 0.55 SW8270	DIBENZ(a,h)ANTHRACENE	UG/KG	U. U. U U U ENE 5-POINT CO U U U	170 5-1 J 175 5-1 J 175 5-7 180 5-7 180 5-7 180 5-7 180 5-7 180 5-7 180 5-7 180 5-7 180 5-7 185 5-7 185 5-7 185 5-7 175 Dis 175 Dis 175 Dis 175 Dis	noint composite point composit
Target Area	S5132L S5132L S5132O S5132O S5132O S5132O AL060200-01_372 AM071601-03 S5132H	3/27/2001 FD 3/27/2001 N 3/27/2001 N 3/30/2001 N 3/30/2001 N 3/30/2001 FD 3/30/2001 N 6/9/2000 N 7/23/2001 N 3/21/2001 N 3/21/2001 N	0.5 0 0.25 0.25 0.5 0.5 0.0 0	1 SW8270 0.25 SW8270 0.5 SW8270 0.5 SW8270 1 SW8270 1 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.55 SW8270	DIBENZ(a,h)ANTHRACENE	UG/KG	U. U. U U U U INE 5-POINT CO U U U	170 S-1 J 175 S-1 J 175 S-1 J 175 S-1 180 S-1 180 S-1 180 S-1 185 S-1 187 S-1 187 S-1 187 S-1 175 Dis	ooint composite screte screte screte screte screte screte
Target Area	S5132L S5132L S5132O S5132O S5132O S5132O AL060200-01_372 AM071601-03 S5132H S5132H S5132H S5132H S5132H S5132H S5132H	3/27/2001 FD 3/27/2001 N 3/27/2001 N 3/27/2001 N 3/30/2001 N 3/30/2001 FD 3/30/2001 N 6/9/2000 N 7/23/2001 N 3/21/2001 N 3/21/2001 N 3/21/2001 N 3/21/2001 N	0.5 0.25 0.25 0.5 0.5 0.5 0.0 0 0 0.25 0.25	1 SW8270 0.25 SW8270 0.5 SW8270 0.5 SW8270 1 SW8270 1 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.5 SW8270	DIBENZ(a,h)ANTHRACENE	UG/KG	U. U. U. U. U. U. U. V. V. V. V. V. V. U.	170 S-1 J 175 S-1 J 175 S-1 180 S-1 180 S-1 180 S-1 180 S-1 185 S-1 185 S-1 175 Di 176 Di 177 Di 177 Di 178 Di 178 Di 179 Di 170 Di 175 Di 175 Di 176 Di 177 Di 177 Di 178 Di 179 Di 180 Di 180 Di	noint composite control control composite control control composite control co
Target Area	SS132L SS132L SS132O SS132O SS132O SS132O AL060200-01_372 AM071601-03 SS132H SS132H SS132H SS132H SS132H SS132H SS132H SS132H SS132H SS132H SS132H SS132H	3/27/2001 FD 3/27/2001 N 3/27/2001 N 3/30/2001 N 3/30/2001 N 3/30/2001 FD 3/30/2001 FD 3/30/2001 N 6/9/2000 N 7/23/2001 N 3/21/2001 N	0.5 0.25 0.25 0.5 0.5 0 0 0 0 0.25 0.25	1 SW8270 0.25 SW8270 0.5 SW8270 0.5 SW8270 1 SW8270 1 SW8270 1 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.5 SW8270 0.5 SW8270 1 SW8270 1 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270	DIBENZ(a,h)ANTHRACENE	UG/KG	U. U	J 170 S-1 J 175 S-1 J 175 S-1 J 175 S-1 180 S-1 180 S-1 180 S-1 185 S-1 185 S-1 187 Dis 175 Dis 180 Dis 180 Dis	soint composite screte screte screte screte screte screte screte screte screte
Target Area	S5132L S5132C S5132O S5132O S5132O S5132O AL060200-01_372 AM071601-03 S5132H S5132H S5132H S5132H S5132H S5132H S5132H S5132H S5132H S5132H S5132H S5132H	3/27/2001 FD 3/27/2001 N 3/27/2001 N 3/30/2001 N 3/30/2001 N 3/30/2001 FD 3/30/2001 FD 3/30/2001 N 6/9/2000 N 7/23/2001 N 3/21/2001 N	0.5 0 0.25 0.25 0.5 0.5 0 0 0 0 0.25 0.25	1 SW8270 0.25 SW8270 0.5 SW8270 0.5 SW8270 1 SW8270 1 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.5 SW8270	DIBENZ(a,h)ANTHRACENE	UG/KG	U. U. U. U. U. U. V. V. V. V. V. V. U.	170 S-1 J 175 S-1 J 175 S-7 J 175 S-7 180 S-7 180 S-7 180 S-7 180 S-7 180 S-7 180 S-7 185 S-7 185 S-7 187 Di 176 Di 175 Di 175 Di 175 Di 175 Di 175 Di 180 Di	noint composite point composit
Target Area	S5132L S5132L S5132O S5132O S5132O S5132O AL060200-01_372 AM071601-03 S5132H S5132H S5132H S5132H S5132H S5132H S5132H S5132H S5132H S5132H S5132H S5132H S5132H S5132H	3/27/2001 FD 3/27/2001 N 3/27/2001 N 3/30/2001 N 3/30/2001 N 3/30/2001 FD 3/30/2001 FD 3/30/2001 N 6/8/2000 N 7/23/2001 N 3/21/2001 N	0.5 0.25 0.25 0.5 0.5 0.5 0.0 0 0.25 0.25	1 SW8270 0.25 SW8270 0.5 SW8270 0.5 SW8270 1 SW8270 1 SW8270 1 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.5 SW8270	DIBENZ(a,h)ANTHRACENE	UG/KG	U. U. U. U. U. U. U. V. V. V. V. V. U.	170 S-1 J 175 S-1 J 175 S-1 180 S-1 175 Dis 175 Dis 175 Dis 175 Dis 175 Dis 175 Dis 180 Dis 180 Dis 180 Dis 180 Dis 180 Dis 180 Dis	noint composite control control composite control control composite control co
Target Area	S5132L S5132L S5132O S5132O S5132O S5132O AL060200-01_372 AM071601-03 S5132H	3/27/2001 FD 3/27/2001 N 3/27/2001 N 3/30/2001 N 3/30/2001 N 3/30/2001 FD 3/30/2001 FD 3/30/2001 N 6/9/2000 N 7/23/2001 N 3/21/2001 N	0.5 0.25 0.25 0.5 0.5 0 0 0 0 0.25 0.25	1 SW8270 0.25 SW8270 0.5 SW8270 0.5 SW8270 1 SW8270 1 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.5 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.5 SW8270	DIBENZ(a,h)ANTHRACENE	UG/KG	U. U. U. U. U. U. V. V. V. V. V. V. U.	J 170 S-1 J 175 S-1 J 175 S-2 J 175 S-2 J 180 S-3 180	noint composite point composit
Target Area	S5132L S5132L S5132O S5132O S5132O S5132O AL060200-01_372 AM071601-03 S5132H S5132H S5132H S5132H S5132H S5132H S5132H S5132H S5132H S5132H S5132H S5132H S5132H S5132H	3/27/2001 FD 3/27/2001 N 3/27/2001 N 3/30/2001 N 3/30/2001 N 3/30/2001 FD 3/30/2001 FD 3/30/2001 N 6/8/2000 N 7/23/2001 N 3/21/2001 N	0.5 0.25 0.25 0.5 0.5 0.5 0.0 0 0.25 0.25	1 SW8270 0.25 SW8270 0.5 SW8270 0.5 SW8270 1 SW8270 1 SW8270 1 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.5 SW8270	DIBENZ(a,h)ANTHRACENE	UG/KG	U. U	170 S-1 J 175 S-1 J 175 S-1 180 S-1 180 S-1 180 S-1 180 S-1 180 S-1 185 S-1 185 S-1 175 Dia 176 Dia 177 Dia 177 Dia 178 Dia 179 Dia 17	soint composite sorete screte
Target Area	S5132L S5132L S5132O S5132O S5132O S5132O AL060200-01_372 AM071601-03 S5132H	3/27/2001 FD 3/27/2001 N 3/27/2001 N 3/30/2001 N 3/30/2001 N 3/30/2001 FD 3/30/2001 FD 3/30/2001 N 6/9/2000 N 7/23/2001 N 3/21/2001 N	0.5 0 0.25 0.25 0.5 0.5 0.5 0 0 0 0 0.25 0.25 0.25 0.5 0 0 0 0 0.25 0.25 0.25 0.25 0.25 0.25 0.	1 SW8270 0.25 SW8270 0.5 SW8270 0.5 SW8270 1 SW8270 1 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.5 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.5 SW8270 1 SW8270 1 SW8270 1 SW8270	DIBENZ(a,h)ANTHRACENE	UG/KG	U. U	J 170 S-1 J 175 S-1 J 175 S-1 J 175 S-1 180 S-1 185 S-1 187 Dis 175 Dis 175 Dis 175 Dis 175 Dis 175 Dis 176 Dis 180 Di	noint composite point composit
Target Area	S5132L S5132C S5132O S5132O S5132O S5132O AL060200-01_372 AM071601-03 S5132H	3/27/2001 FD 3/27/2001 N 3/27/2001 N 3/30/2001 N 3/30/2001 N 3/30/2001 FD 3/30/2001 N 6/8/2000 N 7/23/2001 N 3/21/2001 N	0.5 0.25 0.25 0.5 0.5 0.5 0.05 0.00 0 0.25 0.25	1 SW8270 0.25 SW8270 0.5 SW8270 1.5 SW8270 1 SW8270 1 SW8270 1 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.5 SW8270 1.5 SW8270	DIBENZ(a,h)ANTHRACENE	UG/KG	U. U. U. U. V.	170 S-1 J 175 S-1 J 175 S-1 180 S-1 180 S-1 180 S-1 180 S-1 180 S-1 185 S-1 187 S-1 188 S-1 189 S-1 180 S-1 18	soint composite screte
Target Area	S5132L S5132C S5132O S5132O S5132O S5132O AL060200-01_372 AM071601-03 S5132H	3/27/2001 FD 3/27/2001 N 3/27/2001 N 3/30/2001 N 3/30/2001 N 3/30/2001 FD 3/30/2001 FD 3/30/2001 N 6/9/2000 N 7/23/2001 N 3/21/2001 N	0.5 0.25 0.25 0.5 0.5 0 0 0 0 0 0 0 0.25 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.	1 SW8270 0.25 SW8270 0.5 SW8270 1.5 SW8270 1 SW8270 1 SW8270 1 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.25 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 1 SW8270 1 SW8270 1 SW8270 1 SW8270 1 SW8270	DIBENZ(a,h)ANTHRACENE	UG/KG	U. U	J 170 S-1 J 175 S-1 J 175 S-1 J 175 S-1 180 S-1 180 S-1 180 S-1 180 S-1 185 S-1 185 S-1 185 S-1 187 Dia 175 Dia 180 Dia	noint composite point composit
Target Area	S5132L S5132C S5132O S5132O S5132O S5132O S5132O AL060200-01_372 AM071601-03 S5132H	3/27/2001 FD 3/27/2001 N 3/27/2001 N 3/30/2001 N 3/30/2001 N 3/30/2001 FD 3/30/2001 FD 3/30/2001 N 6/9/2000 N 7/23/2001 N 3/21/2001 N	0.5 0.25 0.25 0.5 0.5 0.5 0.05 0.25 0.25	1 SW8270 0.25 SW8270 0.5 SW8270 1 SW8270 1 SW8270 1 SW8270 0.5 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.5 SW8270 1 SW8270	DIBENZ(a,h)ANTHRACENE	UG/KG	U. U. U. U. V.	170 S-1 J 175 S-1 J 175 S-1 180 S-1 175 Dia 17	noint composite point composit
Target Area	S5132L S5132C S5132O S5132O S5132O S5132O AL060200-01_372 AM071601-03 S5132H	3/27/2001 FD 3/27/2001 N 3/27/2001 N 3/30/2001 N 3/30/2001 N 3/30/2001 FD 3/30/2001 N 6/6/2000 N 7/23/2001 N 3/21/2001 N	0.5 0.25 0.25 0.5 0.5 0 0 0 0 0 0 0 0.25 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.	1 SW8270 0.25 SW8270 0.5 SW8270 0.5 SW8270 1 SW8270 1 SW8270 1 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.25 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 1 SW8270	DIBENZ(a,h)ANTHRACENE	UG/KG	U. U	170 S-1 J 175 S-1 J 175 S-1 180 S-1 175 Dis 180 Dis 185 Dis 185 Dis	noint composite point composit
Target Area	SS132L SS132L SS132O SS132O SS132O SS132O AL060200-01_372 AM071601-03 SS132H	3/27/2001 FD 3/27/2001 N 3/27/2001 N 3/30/2001 N 3/30/2001 N 3/30/2001 FD 3/30/2001 FD 3/30/2001 N 6/9/2000 N 7/23/2001 N 3/21/2001 N	0.5 0.25 0.25 0.5 0.5 0.5 0 0 0 0.25 0.25	1 SW8270 0.25 SW8270 0.5 SW8270 1 SW8270 1 SW8270 1 SW8270 0.5 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.5 SW8270 1 SW8270	DIBENZ(a,h)ANTHRACENE	UG/KG	U. U. U. U. V.	J 170 S-I J 175 S-I J 175 S-I J 175 S-I 180 S-I 170 Di 175 Di 180 Di	noint composite point composit
Target Area	SS132L SS132L SS132O SS132O SS132O SS132O AL060200-01_372 AM071601-03 SS132H SS	3/27/2001 FD 3/27/2001 N 3/27/2001 N 3/30/2001 N 3/30/2001 N 3/30/2001 FD 3/30/2001 N 3/30/2001 N 3/20/2001 N 3/21/2001 N	0.5 0.25 0.25 0.5 0.5 0.0 0 0 0 0.25 0.5 0.0 0 0 0.25 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.	1 SW8270 0.25 SW8270 0.5 SW8270 1.5 SW8270 1.5 SW8270 1.5 SW8270 1.5 SW8270 1.5 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.15 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 1.5 SW8270	DIBENZ(a,h)ANTHRACENE	UG/KG	U. U	170 S-1 J 175 S-1 J 175 S-1 J 175 S-1 180 S-1 175 Dis 180 Dis	noint composite point composit
Target Area	SS132L SS132L SS132O SS132O SS132O SS132O AL060200-01_372 AM071601-03 SS132H	3/27/2001 FD 3/27/2001 N 3/27/2001 N 3/30/2001 N 3/30/2001 N 3/30/2001 FD 3/30/2001 FD 3/30/2001 N 6/9/2000 N 7/23/2001 N 3/21/2001 N	0.5 0.25 0.25 0.5 0.5 0.5 0.6 0.25 0.25 0.25 0.5 0.0 0.25 0.25 0.25 0	1 SW8270 0.25 SW8270 0.5 SW8270 1 SW8270 1 SW8270 1 SW8270 1 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.5 SW8270 1 SW8270 1 SW8270 1 SW8270 1 SW8270 1 SW8270 0.5 SW8270 0.5 SW8270 1 SW8270 0.5 SW8270 1 SW8270 0.5 SW8270 1 SW8270 1 SW8270	DIBENZ(a,h)ANTHRACENE	UG/KG	U. U	170 S-1 J 175 S-1 J 175 S-1 180 S-1 175 Dis 180 Dis 187 Dis 188 Dis 189 Dis 189 Dis 180 Dis 18	noint composite point composit
Target Area	SS132L SS132C SS132O SS132O SS132O SS132O SS132O AL060200-01_372 AM071601-03 SS132H SS	3/27/2001 FD 3/27/2001 N 3/27/2001 N 3/30/2001 N 3/30/2001 N 3/30/2001 FD 3/30/2001 FD 3/30/2001 N 6/8/2000 N 7/23/2001 N 3/21/2001 N	0.5 0.25 0.25 0.5 0.5 0.5 0.05 0.25 0.25	1 SW8270 0.25 SW8270 0.5 SW8270 1.5 SW8270 1.5 SW8270 1.5 SW8270 1.5 SW8270 1.5 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.25 SW8270 0.25 SW8270 0.5 SW8270 1.5 SW8270 0.25 SW8270 0.25 SW8270 0.5 SW8270 1.5 SW8270	DIBENZ(a,h)ANTHRACENE	UG/KG	U. U	170 S-1 J 175 S-1 J 175 S-1 180 S-1 180 S-1 180 S-1 180 S-1 180 S-1 185 S-1 180 S-1 185 S-1 180 S-1 185 S-1 187 D-1 175 D-1 175 D-1 175 D-1 180 D-1 18	noint composite point composit
Target Area	SS132L SS132C SS132O SS132O SS132O SS132O AL060200-01_372 AM071601-03 SS132H SS132L SS132L	3/27/2001 FD 3/27/2001 N 3/27/2001 N 3/30/2001 N 3/30/2001 N 3/30/2001 FD 3/30/2001 FD 3/30/2001 N 3/20/2001 N 3/21/2001 N	0.5 0.25 0.25 0.5 0.5 0 0 0 0 0 0 0.25 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.	1 SW8270 0.25 SW8270 0.5 SW8270 1 SW8270 1 SW8270 1 SW8270 1 SW8270 1 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.5 SW8270 1 SW8270	DIBENZ(a,h)ANTHRACENE	UG/KG	U. U	J 170 S-I J 175 S-I J 175 S-I J 175 S-I 180 S-I 175 Di 180 D	soint composite soint composit
Target Area	SS132L SS132L SS132O SS132O SS132O SS132O AL060200-01_372 AM071601-03 SS132H SS132L SS132L SS132L SS132L	3/27/2001 FD 3/27/2001 N 3/27/2001 N 3/30/2001 N 3/30/2001 N 3/30/2001 FD 3/30/2001 N 6/9/2000 N 7/23/2001 N 3/21/2001 N	0.5 0.25 0.25 0.5 0.5 0.5 0.5 0.6 0.25 0.25 0.25 0.5 0.0 0 0 0.25 0.25 0.	1 SW8270 0.25 SW8270 0.5 SW8270 1.5 SW8270 1.5 SW8270 1.5 SW8270 1.5 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.5 SW8270 1.5 SW8270 0.25 SW8270	DIBENZ(a,h)ANTHRACENE	UG/KG	U. U	170 S-1 J 175 S-1 J 175 S-1 180 S-1 185 S-1 185 S-1 175 Dis 175 Dis 175 Dis 180 Dis 18	soint composite soint composit
Target Area	SS132L SS132C SS132O SS132O SS132O SS132O AL060200-01_372 AM071601-03 SS132H SS132L SS132L	3/27/2001 FD 3/27/2001 N 3/27/2001 N 3/30/2001 N 3/30/2001 N 3/30/2001 FD 3/30/2001 FD 3/30/2001 N 3/20/2001 N 3/21/2001 N	0.5 0.25 0.25 0.5 0.5 0 0 0 0 0 0 0.25 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.	1 SW8270 0.25 SW8270 0.5 SW8270 1 SW8270 1 SW8270 1 SW8270 1 SW8270 1 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.5 SW8270 1 SW8270	DIBENZ(a,h)ANTHRACENE	UG/KG	U. U	J 170 S-I J 175 S-I J 175 S-I J 175 S-I 180 S-I 175 Di 180 D	soint composite soint composit
Target Area	SS132L SS132L SS132O SS132O SS132O SS132O AL060200-01_372 AM071601-03 SS132H SS132L SS132L SS132L SS132L SS132L SS132L SS132L SS132D	3/27/2001 FD 3/27/2001 N 3/27/2001 N 3/30/2001 N 3/30/2001 N 3/30/2001 FD 3/30/2001 N 3/30/2001 N 3/30/2001 N 3/20/2001 N 3/21/2001 N	0.5 0.25 0.25 0.5 0.5 0.5 0.05 0.25 0.25	1 SW8270 0.25 SW8270 0.5 SW8270 0.5 SW8270 1 SW8270 1 SW8270 1 SW8270 1 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.5 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.25 SW8270 0.5 SW8270 1 SW8270 1 SW8270 1 SW8270 1 SW8270 1 SW8270 0.5 SW8270	DIBENZ(a,h)ANTHRACENE	UG/KG	U. U	170 S-1 J 175 S-1 J 175 S-1 180 S-1 180 S-1 180 S-1 180 S-1 180 S-1 185 S-1 185 S-1 175 Dis 175 Dis 175 Dis 175 Dis 176 Dis 178 Dis 178 Dis 179 Dis 180 Dis 18	soint composite soint composit

Table C.4-6
Former A Range
Calculation of Averages Concentrations for PAHs Exhibiting Maximum Concentrations Above a Screening Criterion in the PAH 2 Exposure Area

		Collection	Normal or Field		End Depth				Detected		Concentration Used in Computation	
Area	Location ID		Duplicate	Depth (ft)	(ft)	Method	Analyte	Units	Value	Flags	of Averages	Sample Type
Target Area	SS132K	3/27/2001 1		0		SW8270	INDENO(1,2,3-c,d)PYRENE	UG/KG	1400 J 170 J			point composite
Target Area Target Area	SS132K SS132K	3/27/2001 N 3/27/2001 N		0.25 0.5		SW8270 SW8270	INDENO(1,2,3-c,d)PYRENE INDENO(1,2,3-c,d)PYRENE	UG/KG UG/KG	170 J			point composite
Target Area	SS132L	3/27/2001 N		0.5		SW8270	INDENO(1,2,3-c,d)PYRENE	UG/KG	U			point composite
Target Area	SS132L	3/27/2001 F		0.5		SW8270	INDENO(1,2,3-c,d)PYRENE	UG/KG	Ü			point composite
Target Area	SS132L	3/27/2001 N		0		SW8270	INDENO(1,2,3-c,d)PYRENE	UG/KG	Ū			point composite
Target Area	SS132L	3/27/2001		0.25		SW8270	INDENO(1,2,3-c,d)PYRENE	UG/KG	Ū			point composite
Target Area	SS132O	3/30/2001 N	٧	0	0.25	SW8270	INDENO(1,2,3-c,d)PYRENE	UG/KG	4000		4000 5-	point composite
Target Area	SS132O	3/30/2001		0.25		SW8270	INDENO(1,2,3-c,d)PYRENE	UG/KG	1100			point composite
Target Area	SS132O	3/30/2001 F		0.5		SW8270	INDENO(1,2,3-c,d)PYRENE	UG/KG	320 J			point composite
Target Area	SS132O	3/30/2001	N .	0.5	1	SW8270	INDENO(1,2,3-c,d)PYRENE	UG/KG	180 J	MDOOITE		point composite
T	11 000000 04 070	0/0/0000		^	0.05	001/01	AVERAGE FOR INDENO(1			MPOSITE		
Target Area Target Area	AL060200-01_372 AM071601-03	6/9/2000 N 7/23/2001 N		0		CSVOL SW8270	INDENO(1,2,3-c,d)PYRENE INDENO(1,2,3-c,d)PYRENE	UG/KG UG/KG	U		175 Di 170 Di	
Target Area	SS132H	3/21/2001 N		0		SW8270	INDENO(1,2,3-c,d)PYRENE	UG/KG	140 J		140 Di	
Target Area	SS132H	3/21/2001 N		0.25		SW8270	INDENO(1,2,3-c,d)PYRENE	UG/KG	U		175 Di	
Target Area	SS132H	3/21/2001 N		0.25		SW8270	INDENO(1,2,3-c,d)PYRENE	UG/KG	Ū		175 Di	
Target Area	SS132H	3/21/2001 N		0.5		SW8270	INDENO(1,2,3-c,d)PYRENE	UG/KG	Ü		175 Di	
Target Area	SS132H	3/21/2001 N	V	0	0.25	SW8270	INDENO(1,2,3-c,d)PYRENE	UG/KG	U		180 Di	screte
Target Area	SS132H	3/21/2001	N	0		SW8270	INDENO(1,2,3-c,d)PYRENE	UG/KG	U		180 Di	
Target Area	SS132H	3/21/2001		0		SW8270	INDENO(1,2,3-c,d)PYRENE	UG/KG	U		180 Di	
Target Area	SS132H	3/21/2001		0.25		SW8270	INDENO(1,2,3-c,d)PYRENE	UG/KG	U		180 Di	
Target Area	SS132H	3/21/2001 1		0.25		SW8270	INDENO(1,2,3-c,d)PYRENE	UG/KG	U		180 Di	
Target Area	SS132H	3/21/2001 N		0.25		SW8270	INDENO(1,2,3-c,d)PYRENE	UG/KG	U		180 Di	
Target Area	SS132H	3/21/2001 N		0.25		SW8270	INDENO(1,2,3-c,d)PYRENE	UG/KG	U		180 Di	
Target Area Target Area	SS132H SS132H	3/21/2001 N 3/21/2001 N		0.5 0.5		SW8270 SW8270	INDENO(1,2,3-c,d)PYRENE INDENO(1,2,3-c,d)PYRENE	UG/KG UG/KG	U		180 Di 180 Di	
Target Area Target Area	SS132H SS132H	3/21/2001 F 3/21/2001 F		0.5		SW8270 SW8270	INDENO(1,2,3-c,d)PYRENE INDENO(1,2,3-c,d)PYRENE	UG/KG UG/KG	U		180 Di	
Target Area	SS132H	3/21/2001 N		0.5		SW8270	INDENO(1,2,3-c,d)PYRENE	UG/KG	Ü		180 Di	
Target Area	SS132H	3/21/2001 N		0		SW8270	INDENO(1,2,3-c,d)PYRENE	UG/KG	Ū		185 Di	
Target Area	SS132H	3/21/2001 N		0.5		SW8270	INDENO(1,2,3-c,d)PYRENE	UG/KG	Ü		185 Di	
Target Area	SS132K	3/27/2001 N	V	0	0.25	SW8270	INDENO(1,2,3-c,d)PYRENE	UG/KG	4300 J		4300 Di	screte
Target Area	SS132K	3/27/2001 N		0.25		SW8270	INDENO(1,2,3-c,d)PYRENE	UG/KG	810		810 Di	
Target Area	SS132K	3/27/2001 N		0.5		SW8270	INDENO(1,2,3-c,d)PYRENE	UG/KG	340 J		340 Di	
Target Area	SS132L	3/27/2001 N		0.5		SW8270	INDENO(1,2,3-c,d)PYRENE	UG/KG	U		170 Di	
Target Area	SS132L	3/27/2001 N		0		SW8270	INDENO(1,2,3-c,d)PYRENE	UG/KG	U		175 Di	
Target Area	SS132L	3/27/2001 N		0.25		SW8270	INDENO(1,2,3-c,d)PYRENE	UG/KG	U		175 Di	
Target Area Target Area	SS132O	3/30/2001 N		0		SW8270	INDENO(1,2,3-c,d)PYRENE INDENO(1,2,3-c,d)PYRENE	UG/KG	7900 2100		7900 Di	
Target Area	SS1320 SS1320	3/30/2001 N 3/30/2001 N		0.25 0.5		SW8270 SW8270	INDENO(1,2,3-c,d)PYRENE	UG/KG UG/KG	2100 U		2100 Di: <i>180</i> Di:	
Target Area	SS132V	4/30/2001 N		0.5		SW8270	INDENO(1,2,3-c,d)PYRENE	UG/KG	160 J		160 Di	
raigotriioa	00.021	1/00/20011	•		0.0	01102.0	AVERAGE FOR			ISCRETE		501010
Target Area	SS132K	3/27/2001 N	٧	0	0.25	SW8270	NAPHTHALENE	UG/KG	120 J			point composite
Target Area	SS132K	3/27/2001 N	٧	0.5	1	SW8270	NAPHTHALENE	UG/KG	U		170 5-	point composite
Target Area	SS132K	3/27/2001 N	N	0.25		SW8270	NAPHTHALENE	UG/KG	U		175 5-	point composite
Target Area	SS132L	3/27/2001 N		0.5		SW8270	NAPHTHALENE	UG/KG	U			point composite
Target Area	SS132L	3/27/2001 F		0.5		SW8270	NAPHTHALENE	UG/KG	U			point composite
Target Area	SS132L	3/27/2001 1		0		SW8270	NAPHTHALENE	UG/KG	U			point composite
Target Area	SS132L	3/27/2001 1		0.25		SW8270	NAPHTHALENE	UG/KG	U			point composite
Target Area Target Area	SS1320 SS1320	3/30/2001 N 3/30/2001 N		0.25 0.5		SW8270 SW8270	NAPHTHALENE NAPHTHALENE	UG/KG UG/KG	U			point composite
Target Area	SS1320	3/30/2001 F		0.5		SW8270	NAPHTHALENE	UG/KG	U			point composite
Target Area	SS1320	3/30/2001 1		0.5		SW8270	NAPHTHALENE	UG/KG	ii			point composite
raigotriioa	00.020	0/00/20011	•		0.20	01102.0	AVERAGE FOR		NE 5-POINT CO	MPOSITE		ount composite
Target Area	AL060200-01_372	6/9/2000 N	V	0	0.25	CSVOL	NAPHTHALENE	UG/KG	U		175 Di	screte
Target Area	AM071601-03	7/23/2001 N		0	0.25	SW8270	NAPHTHALENE	UG/KG	U		170 Di	screte
Target Area	SS132H	3/21/2001		0		SW8270	NAPHTHALENE	UG/KG	U		175 Di	
Target Area	SS132H	3/21/2001		0.25		SW8270	NAPHTHALENE	UG/KG	U		175 Di	
Target Area	SS132H	3/21/2001 N		0.25		SW8270	NAPHTHALENE	UG/KG	U		175 Di	
Target Area	SS132H	3/21/2001 N		0.5		SW8270	NAPHTHALENE	UG/KG	U		175 Di	
Target Area	SS132H SS132H	3/21/2001 N		0		SW8270	NAPHTHALENE	UG/KG UG/KG	U		180 Di	
Target Area Target Area	SS132H SS132H	3/21/2001 N 3/21/2001 N		0		SW8270 SW8270	NAPHTHALENE NAPHTHALENE	UG/KG UG/KG	U		180 Di 180 Di	
Target Area Target Area	SS132H SS132H	3/21/2001 N		0.25		SW8270 SW8270	NAPHTHALENE	UG/KG UG/KG	U		180 Di	
Target Area	SS132H	3/21/2001 1		0.25		SW8270	NAPHTHALENE	UG/KG	U		180 Di	
Target Area	SS132H	3/21/2001 N		0.25		SW8270	NAPHTHALENE	UG/KG	Ü		180 Di	
Target Area	SS132H	3/21/2001 N		0.25		SW8270	NAPHTHALENE	UG/KG	Ŭ		180 Di	
Target Area	SS132H	3/21/2001 N		0.5		SW8270	NAPHTHALENE	UG/KG	U		180 Di	
Target Area	SS132H	3/21/2001	N	0.5	1	SW8270	NAPHTHALENE	UG/KG	U		180 Di	
Target Area	SS132H	3/21/2001		0.5		SW8270	NAPHTHALENE	UG/KG	U		180 Di	
Target Area	SS132H	3/21/2001		0.5		SW8270	NAPHTHALENE	UG/KG	U		180 Di	
Target Area	SS132H	3/21/2001		0		SW8270	NAPHTHALENE	UG/KG	U		185 Di	
	SS132H	3/21/2001 1		0.5		SW8270	NAPHTHALENE	UG/KG	U		185 Di	
Target Area		3/27/2001 N		0		SW8270	NAPHTHALENE	UG/KG	220 J		220 Di	
Target Area Target Area	SS132K		N	0.5		SW8270	NAPHTHALENE	UG/KG	U		175 Di	
Target Area Target Area Target Area	SS132K	3/27/2001 N	d .		0.5	SW8270	NAPHTHALENE	UG/KG	U		180 Di	suiele
Target Area Target Area Target Area Target Area	SS132K SS132K	3/27/2001		0.25		CIVIDATO	NADHTHALENE	LIGIVO			470 D:	coroto
Target Area Target Area Target Area Target Area Target Area	SS132K SS132K SS132L	3/27/2001 N 3/27/2001 N	N	0.5	1	SW8270 SW8270	NAPHTHALENE NAPHTHALENE	UG/KG UG/KG	U		170 Di	
Target Area	SS132K SS132K SS132L SS132L	3/27/2001 N 3/27/2001 N 3/27/2001 N	N N	0.5 0	1 0.25	SW8270	NAPHTHALENE	UG/KG	U		175 Di	screte
Target Area	SS132K SS132K SS132L SS132L SS132L	3/27/2001 N 3/27/2001 N 3/27/2001 N 3/27/2001 N	N N N	0.5 0 0.25	0.25 0.5	SW8270 SW8270	NAPHTHALENE NAPHTHALENE	UG/KG UG/KG	U U		175 Di 175 Di	screte screte
Target Area Target Area Target Area Target Area Target Area Target Area Target Area Target Area Target Area	SS132K SS132K SS132L SS132L SS132L SS132C	3/27/2001 N 3/27/2001 N 3/27/2001 N 3/27/2001 N 3/30/2001 N	N N N	0.5 0 0.25 0.25	1 0.25 0.5 0.5	SW8270 SW8270 SW8270	NAPHTHALENE NAPHTHALENE NAPHTHALENE	UG/KG UG/KG UG/KG	U U U		175 Di 175 Di 180 Di	screte screte screte
Target Area	SS132K SS132K SS132L SS132L SS132L	3/27/2001 N 3/27/2001 N 3/27/2001 N 3/27/2001 N	N N N N	0.5 0 0.25	1 0.25 0.5 0.5 1	SW8270 SW8270	NAPHTHALENE NAPHTHALENE	UG/KG UG/KG	U U		175 Di 175 Di	screte screte screte screte
Target Area	SS132K SS132K SS132L SS132L SS132L SS132O SS132O	3/27/2001 N 3/27/2001 N 3/27/2001 N 3/27/2001 N 3/30/2001 N 3/30/2001 N	N N N N N	0.5 0 0.25 0.25 0.5	1 0.25 0.5 0.5 1 0.25	SW8270 SW8270 SW8270 SW8270	NAPHTHALENE NAPHTHALENE NAPHTHALENE NAPHTHALENE	UG/KG UG/KG UG/KG UG/KG	U U U		175 Di 175 Di 180 Di 180 Di	screte screte screte screte screte

Table C.4-6
Former A Range
Calculation of Averages Concentrations for PAHs Exhibiting Maximum Concentrations Above a Screening Criterion in the PAH 2 Exposure Area

Area	Location ID	Collection Date	Normal or Field Duplicate	Begin Depth (ft)	End Depth Analytical (ft) Method	Analyte	Units	Detected Value	Flags	Concentration Used in Computation of Averages	Sample Type
Target Area	SS132K	3/27/2001		0	0.25 SW8270	PHENANTHRENE	UG/KG	6900	riugs		5-point composite
Target Area	SS132K	3/27/2001		0.25	0.5 SW8270	PHENANTHRENE	UG/KG	600			5-point composite
Target Area	SS132K	3/27/2001		0.5	1 SW8270	PHENANTHRENE	UG/KG	400			5-point composite
Target Area	SS132L	3/27/2001		0.0	0.25 SW8270	PHENANTHRENE	UG/KG	400			5-point composite
Target Area	SS132L	3/27/2001		0.5	1 SW8270	PHENANTHRENE	UG/KG	U			5-point composite
Target Area	SS132L	3/27/2001		0.5	1 SW8270	PHENANTHRENE	UG/KG	Ü			5-point composite
arget Area	SS132L	3/27/2001		0.25	0.5 SW8270	PHENANTHRENE	UG/KG	Ü			5-point composite
arget Area	SS1320	3/30/2001		0.23	0.25 SW8270	PHENANTHRENE	UG/KG	11000			5-point composite
	SS1320 SS1320	3/30/2001		0.25	0.25 SW8270 0.5 SW8270	PHENANTHRENE	UG/KG UG/KG	3300			5-point composite
arget Area arget Area	SS1320 SS1320	3/30/2001		0.25	1 SW8270	PHENANTHRENE	UG/KG UG/KG	920 J			5-point composite
	SS1320 SS1320	3/30/2001		0.5	1 SW8270 1 SW8270		UG/KG UG/KG	920 J 540 J			5-point composite 5-point composite
arget Area	33132U	3/30/2001	IN	0.5	1 SVV8270	PHENANTHRENE	E FOR PHENANTHRE		MDOCITE		s-point composite
arget Area	AL060200-01_372	6/9/2000	N	0	0.25 CSVOL	PHENANTHRENE	UG/KG	NE 5-POINT COI	MPOSITE		Discrete
arget Area	AM071601-03	7/23/2001		0	0.25 SW8270	PHENANTHRENE	UG/KG	24 J			Discrete
arget Area	SS132H	3/21/2001			0.25 SW8270	PHENANTHRENE	UG/KG	810			Discrete
arget Area	SS132H	3/21/2001		0	0.25 SW8270	PHENANTHRENE	UG/KG	570			Discrete
arget Area	SS132H	3/21/2001		0.5	1 SW8270	PHENANTHRENE	UG/KG	160 J			Discrete
arget Area	SS132H	3/21/2001		0.25	0.5 SW8270	PHENANTHRENE	UG/KG	U			Discrete
arget Area	SS132H	3/21/2001		0.25	0.5 SW8270	PHENANTHRENE	UG/KG	U			Discrete
arget Area	SS132H	3/21/2001		0.5	1 SW8270	PHENANTHRENE	UG/KG	U			Discrete
arget Area	SS132H	3/21/2001		0	0.25 SW8270	PHENANTHRENE	UG/KG	U			Discrete
arget Area	SS132H	3/21/2001		0	0.25 SW8270	PHENANTHRENE	UG/KG	U			Discrete
arget Area	SS132H	3/21/2001		0	0.25 SW8270	PHENANTHRENE	UG/KG	U			Discrete
arget Area	SS132H	3/21/2001		0.25	0.5 SW8270	PHENANTHRENE	UG/KG	U			Discrete
arget Area	SS132H	3/21/2001		0.25	0.5 SW8270	PHENANTHRENE	UG/KG	U			Discrete
arget Area	SS132H	3/21/2001	N	0.25	0.5 SW8270	PHENANTHRENE	UG/KG	U		180 I	Discrete
arget Area	SS132H	3/21/2001		0.25	0.5 SW8270	PHENANTHRENE	UG/KG	U			Discrete
arget Area	SS132H	3/21/2001	N	0.5	1 SW8270	PHENANTHRENE	UG/KG	U		180 I	Discrete
arget Area	SS132H	3/21/2001	N	0.5	1 SW8270	PHENANTHRENE	UG/KG	U			Discrete
arget Area	SS132H	3/21/2001	N	0.5	1 SW8270	PHENANTHRENE	UG/KG	U			Discrete
arget Area	SS132H	3/21/2001	N	0.5	1 SW8270	PHENANTHRENE	UG/KG	U			Discrete
arget Area	SS132K	3/27/2001	N	0	0.25 SW8270	PHENANTHRENE	UG/KG	17000		17000 [Discrete
arget Area	SS132K	3/27/2001		0.25	0.5 SW8270	PHENANTHRENE	UG/KG	3200		3200 [Discrete
arget Area	SS132K	3/27/2001	N	0.5	1 SW8270	PHENANTHRENE	UG/KG	1600		1600 [Discrete
arget Area	SS132L	3/27/2001	N	0.5	1 SW8270	PHENANTHRENE	UG/KG	U		170 [Discrete
arget Area	SS132L	3/27/2001	N	0	0.25 SW8270	PHENANTHRENE	UG/KG	U		175 [Discrete
arget Area	SS132L	3/27/2001	N	0.25	0.5 SW8270	PHENANTHRENE	UG/KG	U		175 [Discrete
arget Area	SS132O	3/30/2001	N	0	0.25 SW8270	PHENANTHRENE	UG/KG	19000		19000 [Discrete
arget Area	SS132O	3/30/2001	N	0.25	0.5 SW8270	PHENANTHRENE	UG/KG	4500		4500 [Discrete
arget Area	SS132O	3/30/2001	N	0.5	1 SW8270	PHENANTHRENE	UG/KG	U		180 [Discrete
arget Area	SS132V	4/30/2001		0	0.5 SW8270	PHENANTHRENE	UG/KG	720			Discrete
							AVERAGE FOR PHE	NANTHRENE D	ISCRETE		

Table C.4-7
Former A Range
Calculation of Averages Concentrations for PAHs Exhibiting Maximum Concentrations Above a Screening Criterion in the PAH 3 Exposure Area

											Concentration	
			Normal or								Used in	
Area	Location ID	Collection Date		Begin epth (ft)	End Depth (ft)	Analytical Method	Analyte	Units	Detected Value	Flags	Computation of Averages	Sample Type
Rail Line	SS132AC	11/16/2004 1	N	0	0.25	SW8270	2-METHYLNAPHTHALENE	UG/KG	77 J	_	77	5-point Composite
Rail Line Rail Line	SS132AC SS132AC	11/16/2004 N 11/16/2004 N		0.25 0.5		SW8270 SW8270	2-METHYLNAPHTHALENE 2-METHYLNAPHTHALENE	UG/KG UG/KG	l L			5-point Composite 5-point Composite
Rail Line	SS132AD	11/15/2004 1		0.5		SW8270	2-METHYLNAPHTHALENE	UG/KG	i			5-point Composite
Rail Line	SS132AD	11/15/2004		0.25		SW8270	2-METHYLNAPHTHALENE	UG/KG	Ļ			5-point Composite
Rail Line Rail Line	SS132AD SS132AE	11/15/2004 N 11/16/2004 N		0.5 0		SW8270 SW8270	2-METHYLNAPHTHALENE 2-METHYLNAPHTHALENE	UG/KG UG/KG	ا 22 J			5-point Composite 5-point Composite
Rail Line	SS132AE	11/16/2004		0.25		SW8270	2-METHYLNAPHTHALENE	UG/KG	150 J			5-point Composite
Rail Line	SS132AE	11/16/2004	١	0.5	1	SW8270	2-METHYLNAPHTHALENE	UG/KG	76 J	MDOOITE		5-point Composite
Target Area	SSFORMACSL06	1/13/2009 1	V.	0	0.25	SW8270C	2-METHYLNAPHTHALENE	UG/KG	IE 5-POINT CO		137.778	MIS
Target Area	SSFORMACSL06	1/13/2009 1	٧	0	0.25	SW8270C	2-METHYLNAPHTHALENE	UG/KG	91 J		91	MIS
Target Area	SSFORMACSL06	1/13/2009 1		0		SW8270C	2-METHYLNAPHTHALENE	UG/KG	Ļ		165	
Target Area Target Area	SSFORMACSL06 SSFATA14	1/13/2009 N 1/11/2006 N		0		SW8270C SW8270C	2-METHYLNAPHTHALENE 2-METHYLNAPHTHALENE	UG/KG UG/KG	l I		165 195	
9			•						HYLNAPHTHA	LENE MIS	156.2	
Rail Line	SS132AC	11/16/2004		0		SW8270	ACENAPHTHYLENE	UG/KG	160 J			5-point Composite
Rail Line Rail Line	SS132AC SS132AC	11/16/2004 N 11/16/2004 N		0.25 0.5		SW8270 SW8270	ACENAPHTHYLENE ACENAPHTHYLENE	UG/KG UG/KG	ا 25 J			5-point Composite 5-point Composite
Rail Line	SS132AD	11/15/2004	٧	0	0.25	SW8270	ACENAPHTHYLENE	UG/KG	29 J		29	5-point Composite
Rail Line	SS132AD	11/15/2004 1		0.25		SW8270	ACENAPHTHYLENE	UG/KG	Ļ			5-point Composite
Rail Line Rail Line	SS132AD SS132AE	11/15/2004 N 11/16/2004 N		0.5 0		SW8270 SW8270	ACENAPHTHYLENE ACENAPHTHYLENE	UG/KG UG/KG	110 J	,		5-point Composite 5-point Composite
Rail Line	SS132AE	11/16/2004	٧	0.25	0.5	SW8270	ACENAPHTHYLENE	UG/KG	640		640	5-point Composite
Rail Line	SS132AE	11/16/2004 1	١	0.5	1	SW8270	AVERAGE FOR ACEN	UG/KG	120 J	MDOSITE	120 181.556	5-point Composite
Target Area	SSFORMACSL06	1/13/2009 N	N	0	0.25	SW8270C	AVERAGE FOR ACEN. ACENAPHTHYLENE	UG/KG	IE 5-POINT CO		181.556 165	MIS
Target Area	SSFORMACSL06	1/13/2009 1	٧	0	0.25	SW8270C	ACENAPHTHYLENE	UG/KG	150 J		150	MIS
Target Area	SSFORMACSL06	1/13/2009 1		0		SW8270C SW8270C	ACENAPHTHYLENE ACENAPHTHYLENE	UG/KG	62 J	ı		MIS
Target Area Target Area	SSFORMACSL06 SSFATA14	1/13/2009 N 1/11/2006 N		0		SW8270C SW8270C	ACENAPHTHYLENE	UG/KG UG/KG	į		165 195	
							AVE	RAGE FOR A	ACENAPHTHA	LENE MIS	147.4	
Rail Line	SS132AC	11/16/2004 1		0		SW8270	BENZO(a)ANTHRACENE	UG/KG	1400			5-point Composite
Rail Line Rail Line	SS132AC SS132AC	11/16/2004 N 11/16/2004 N		0.25 0.5		SW8270 SW8270	BENZO(a)ANTHRACENE BENZO(a)ANTHRACENE	UG/KG UG/KG	320 J 430			5-point Composite 5-point Composite
Rail Line	SS132AD	11/15/2004	٧	0	0.25	SW8270	BENZO(a)ANTHRACENE	UG/KG	520		520	5-point Composite
Rail Line	SS132AD	11/15/2004 1		0.25		SW8270	BENZO(a)ANTHRACENE	UG/KG	200 J			5-point Composite
Rail Line Rail Line	SS132AD SS132AE	11/15/2004 N 11/16/2004 N		0.5		SW8270 SW8270	BENZO(a)ANTHRACENE BENZO(a)ANTHRACENE	UG/KG UG/KG	37 J 1100			5-point Composite 5-point Composite
Rail Line	SS132AE	11/16/2004	٧	0.25	0.5	SW8270	BENZO(a)ANTHRACENE	UG/KG	5500		5500	5-point Composite
Rail Line	SS132AE	11/16/2004 1	١	0.5	1	SW8270	BENZO(a)ANTHRACENE AVERAGE FOR BENZO(a)A	UG/KG	1300	MDOSITE	1300 1200.778	5-point Composite
Target Area	SSFORMACSL06	1/13/2009 N	V	0	0.25	SW8270C	BENZO(a)ANTHRACENE	UG/KG	22 J	WIFUSITE		MIS
Target Area	SSFORMACSL06	1/13/2009 1	٧	0	0.25	SW8270C	BENZO(a)ANTHRACENE	UG/KG	310 J		310	MIS
Target Area	SSFORMACSL06	1/13/2009 N		0		SW8270C	BENZO(a)ANTHRACENE	UG/KG	240 J 76 J		240	
Target Area Target Area	SSFORMACSL06 SSFATA14	1/13/2009 N 1/11/2006 N		0		SW8270C SW8270C	BENZO(a)ANTHRACENE BENZO(a)ANTHRACENE	UG/KG UG/KG	76 J 340 J		340	MIS MIS
							AVERAG		ZO(a)ANTHRA	CENE MIS	197.6	
Rail Line Rail Line	SS132AC SS132AC	11/16/2004 N 11/16/2004 N		0 0.25		SW8270 SW8270	BENZO(a)PYRENE BENZO(a)PYRENE	UG/KG UG/KG	1200 280 J			5-point Composite 5-point Composite
Rail Line	SS132AC	11/16/2004 1		0.25		SW8270	BENZO(a)PYRENE	UG/KG	340			5-point Composite
Rail Line	SS132AD	11/15/2004		0		SW8270	BENZO(a)PYRENE	UG/KG	340 J			5-point Composite
Rail Line Rail Line	SS132AD SS132AD	11/15/2004 N 11/15/2004 N		0.25 0.5		SW8270 SW8270	BENZO(a)PYRENE BENZO(a)PYRENE	UG/KG UG/KG	160 J 42 J			5-point Composite 5-point Composite
Rail Line	SS132AE	11/16/2004 1		0.5		SW8270	BENZO(a)PYRENE	UG/KG	860			5-point Composite
Rail Line	SS132AE	11/16/2004		0.25		SW8270	BENZO(a)PYRENE	UG/KG	3700			5-point Composite
Rail Line	SS132AE	11/16/2004 1	N .	0.5	1	SW8270	BENZO(a)PYRENE AVERAGE FOR BEN	UG/KG	910 VE 5-POINT CO	MPOSITE	910 870.222	5-point Composite
Target Area	SSFORMACSL06	1/13/2009 1		0	0.25	SW8270C	BENZO(a)PYRENE	ÚG/KG	24 J			MIS
Target Area	SSFORMACSL06	1/13/2009 1		0		SW8270C	BENZO(a)PYRENE	UG/KG	310 J		310	
Target Area Target Area	SSFORMACSL06 SSFORMACSL06	1/13/2009 N 1/13/2009 N		0		SW8270C SW8270C	BENZO(a)PYRENE BENZO(a)PYRENE	UG/KG UG/KG	230 J 80 J		230	MIS MIS
Target Area	SSFATA14	1/11/2006 N		0		SW8270C	BENZO(a)PYRENE	UG/KG	260 J			MIS
									R BENZO(a)PY	RENE MIS		
Rail Line Rail Line	SS132AC SS132AC	11/16/2004 N 11/16/2004 N		0 0.25		SW8270 SW8270	BENZO(b)FLUORANTHENE BENZO(b)FLUORANTHENE	UG/KG UG/KG	1300 320 J			5-point Composite 5-point Composite
Rail Line	SS132AC	11/16/2004 1	٧	0.25	1	SW8270	BENZO(b)FLUORANTHENE	UG/KG	230 J		230	5-point Composite
Rail Line	SS132AD	11/15/2004	٧	0	0.25	SW8270	BENZO(b)FLUORANTHENE	UG/KG	1000			5-point Composite
Rail Line Rail Line	SS132AD SS132AD	11/15/2004 N 11/15/2004 N		0.25 0.5		SW8270 SW8270	BENZO(b)FLUORANTHENE BENZO(b)FLUORANTHENE	UG/KG UG/KG	340 J 68 J			5-point Composite 5-point Composite
Rail Line	SS132AE	11/16/2004 1		0.5	0.25	SW8270	BENZO(b)FLUORANTHENE	UG/KG	1000			5-point Composite
Rail Line	SS132AE	11/16/2004	٧	0.25	0.5	SW8270	BENZO(b)FLUORANTHENE	UG/KG	3500		3500	5-point Composite
Rail Line	SS132AE	11/16/2004	N	0.5	1	SW8270	BENZO(b)FLUORANTHENE AVERAGE FOR BENZO(b)FLU	UG/KG	940 NE 5-POINT CO	MPOSITE		5-point Composite
Target Area	SSFORMACSL06	1/13/2009 1	N	0	0.25	SW8270C	BENZO(b)FLUORANTHENE	UG/KG	VE 5-FOINT CC			MIS
Target Area	SSFORMACSL06	1/13/2009 1	٧	0	0.25	SW8270C	BENZO(b)FLUORANTHENE	UG/KG	480		480	MIS
Target Area Target Area	SSFORMACSL06 SSFORMACSL06	1/13/2009 N 1/13/2009 N		0		SW8270C SW8270C	BENZO(b)FLUORANTHENE BENZO(b)FLUORANTHENE	UG/KG UG/KG	380 130 J			MIS MIS
Target Area	SSFATA14	1/13/2009 P		0		SW8270C SW8270C	BENZO(b)FLUORANTHENE	UG/KG UG/KG	240 J			MIS
Ť							AVERAGE	FOR BENZO	(b)FLUORANT	HENE MIS	279	
Rail Line	SS132AC	11/16/2004 N		0.25		SW8270	DIBENZ(a,h)ANTHRACENE	UG/KG	250 J			5-point Composite
	SS132AC SS132AC	11/16/2004 N 11/16/2004 N		0.25 0.5		SW8270 SW8270	DIBENZ(a,h)ANTHRACENE DIBENZ(a,h)ANTHRACENE	UG/KG UG/KG	67 J 52 J			5-point Composite 5-point Composite
Rail Line						SW8270	DIBENZ(a,h)ANTHRACENE	UG/KG	110 J			5-point Composite
Rail Line Rail Line Rail Line	SS132AD	11/15/2004		0								
Rail Line Rail Line Rail Line Rail Line	SS132AD SS132AD	11/15/2004 N 11/15/2004 N	٧	0.25	0.5	SW8270	DIBENZ(a,h)ANTHRACENE	UG/KG	57 J		57	5-point Composite
Rail Line Rail Line Rail Line Rail Line Rail Line	SS132AD SS132AD SS132AD	11/15/2004 N 11/15/2004 N 11/15/2004 N	N N	0.25 0.5	0.5 1	SW8270 SW8270	DIBENZ(a,h)ANTHRACENE DIBENZ(a,h)ANTHRACENE	UG/KG UG/KG	57 J	J	57 180	5-point Composite 5-point Composite
Rail Line Rail Line Rail Line Rail Line Rail Line Rail Line Rail Line	SS132AD SS132AD SS132AD SS132AE SS132AE	11/15/2004 N 11/15/2004 N 11/15/2004 N 11/16/2004 N 11/16/2004 N	N N N	0.25 0.5 0 0.25	0.5 1 0.25 0.5	SW8270 SW8270 SW8270 SW8270	DIBENZ(a,h)ANTHRACENE DIBENZ(a,h)ANTHRACENE DIBENZ(a,h)ANTHRACENE DIBENZ(a,h)ANTHRACENE	UG/KG UG/KG UG/KG UG/KG	57 J L 180 J 1000	J	57 <i>180</i> 180 1000	5-point Composite 5-point Composite 5-point Composite 5-point Composite
Rail Line Rail Line Rail Line Rail Line Rail Line Rail Line	SS132AD SS132AD SS132AD SS132AE	11/15/2004 N 11/15/2004 N 11/15/2004 N 11/16/2004 N	N N N	0.25 0.5 0	0.5 1 0.25 0.5	SW8270 SW8270 SW8270 SW8270 SW8270	DIBENZ(a,h)ANTHRACENE DIBENZ(a,h)ANTHRACENE DIBENZ(a,h)ANTHRACENE	UG/KG UG/KG UG/KG UG/KG UG/KG	57 J 180 J 1000 210 J	J	57 180 180 1000 210	5-point Composite 5-point Composite 5-point Composite

Table C.4-7
Former A Range
Calculation of Averages Concentrations for PAHs Exhibiting Maximum Concentrations Above a Screening Criterion in the PAH 3 Exposure Area

Area	Location ID	Collection Date	Normal or Field Duplicate	Begin Depth (ft)	End Depth A	nalytical Method	Analyte	Units	Detected Value	Flags	Concentration Used in Computation of Averages	Sample Type
Target Area	SSFORMACSL06	1/13/2009	N	0	0.25 SV	V8270C	DIBENZ(a,h)ANTHRACENE	UG/KG	18 J		18 MI	S
Target Area	SSFORMACSL06	1/13/2009	N	0		V8270C	DIBENZ(a,h)ANTHRACENE	UG/KG	25 J		25 MI	S
Target Area	SSFORMACSL06	1/13/2009	N	0	0.25 SV	V8270C	DIBENZ(a,h)ANTHRACENE	UG/KG	19 J		19 MI	S
Target Area	SSFORMACSL06	1/13/2009	N	0			DIBENZ(a,h)ANTHRACENE	UG/KG	U		165 MI	S
Target Area	SSFATA14	1/11/2006	N	0	0.5 SV	V8270C	DIBENZ(a,h)ANTHRACENE	UG/KG	U		195 MI	S
									(a,h)ANTHRA	ENE MIS	84.4	
Rail Line	SS132AC	11/16/2004		0			INDENO(1,2,3-c,d)PYRENE	UG/KG	650			point Composite
Rail Line	SS132AC	11/16/2004		0.25			INDENO(1,2,3-c,d)PYRENE	UG/KG	200 J			point Composite
Rail Line	SS132AC	11/16/2004		0.5		V8270	INDENO(1,2,3-c,d)PYRENE	UG/KG	170 J			point Composite
Rail Line	SS132AD	11/15/2004		0			INDENO(1,2,3-c,d)PYRENE	UG/KG	260 J			point Composite
Rail Line	SS132AD	11/15/2004		0.25			INDENO(1,2,3-c,d)PYRENE	UG/KG	120 J			point Composite
Rail Line	SS132AD	11/15/2004		0.5		V8270	INDENO(1,2,3-c,d)PYRENE	UG/KG	24 J			point Composite
Rail Line	SS132AE	11/16/2004		0			INDENO(1,2,3-c,d)PYRENE	UG/KG	480			point Composite
Rail Line	SS132AE	11/16/2004		0.25			INDENO(1,2,3-c,d)PYRENE	UG/KG	1700			point Composite
Rail Line	SS132AE	11/16/2004	N	0.5	1 SV	V8270	INDENO(1,2,3-c,d)PYRENE	UG/KG	510			point Composite
							AVERAGE FOR INDENO(1,2			MPOSITE		
Target Area	SSFORMACSL06	1/13/2009		0			INDENO(1,2,3-c,d)PYRENE	UG/KG	23 J		23 MI	
Target Area	SSFORMACSL06	1/13/2009		0			INDENO(1,2,3-c,d)PYRENE	UG/KG	69 J		69 MI	
Target Area	SSFORMACSL06	1/13/2009		0			INDENO(1,2,3-c,d)PYRENE	UG/KG	52 J		52 MI	
Target Area	SSFORMACSL06	1/13/2009		0			INDENO(1,2,3-c,d)PYRENE	UG/KG	24 J		24 MI	
Target Area	SSFATA14	1/11/2006	N	0	0.5 SV	V8270C	INDENO(1,2,3-c,d)PYRENE	UG/KG	140 J		140 MI	S
	0010010								D(1,2,3-c,d)PYI	KENE MIS		
Rail Line	SS132AC	11/16/2004		0			NAPHTHALENE	UG/KG	110 J			point Composite
Rail Line	SS132AC	11/16/2004		0.25			NAPHTHALENE	UG/KG	U			point Composite
Rail Line	SS132AC	11/16/2004		0.5		V8270	NAPHTHALENE	UG/KG	U			point Composite
Rail Line	SS132AD	11/15/2004		0			NAPHTHALENE	UG/KG	U			point Composite
Rail Line	SS132AD	11/15/2004		0.25			NAPHTHALENE	UG/KG	U			point Composite
Rail Line	SS132AD	11/15/2004		0.5		V8270	NAPHTHALENE	UG/KG	U			point Composite
Rail Line Rail Line	SS132AE SS132AE	11/16/2004		0 0.25			NAPHTHALENE	UG/KG UG/KG	65 J			point Composite
		11/16/2004					NAPHTHALENE					point Composite
Rail Line	SS132AE	11/16/2004	N	0.5	1 50	V8270	NAPHTHALENE AVERAGE FOR N	UG/KG	39 J	MDOCITE		point Composite
Tarant Aran	SSFORMACSL06	1/13/2009	N		0.05.69	V8270C	NAPHTHALENE	UG/KG		WPUSITE	145.444 165 MI	0
Target Area				0				UG/KG UG/KG	130 J			
Target Area	SSFORMACSL06	1/13/2009		0			NAPHTHALENE	UG/KG UG/KG	130 J		130 MI	
Target Area	SSFORMACSL06 SSFORMACSL06	1/13/2009		0			NAPHTHALENE NAPHTHALENE	UG/KG UG/KG	U		165 MI 165 MI	
Target Area Target Area	SSFATA14	1/13/2009 1/11/2006		0		V8270C V8270C	NAPHTHALENE	UG/KG UG/KG	U		195 MI	
raiget Area	33FATA14	1/11/2006	IN	- 0	0.5 50	V0270C	NAFHIHALENE		OR NAPHTHAI	ENE MIS	164	3
Rail Line	SS132AC	11/16/2004	N	0	0.25 SV	M0270	PHENANTHRENE	UG/KG	2100	LINE IVIIS		soint Composito
Rail Line Rail Line	SS132AC SS132AC	11/16/2004		0.25			PHENANTHRENE	UG/KG UG/KG	2100 230 J			point Composite
Rail Line	SS132AC SS132AC	11/16/2004		0.25		V8270 V8270	PHENANTHRENE	UG/KG	230 J 550			point Composite
Rail Line	SS132AC SS132AD	11/15/2004		0.5			PHENANTHRENE	UG/KG UG/KG	620			point Composite
Rail Line	SS132AD SS132AD	11/15/2004		0.25			PHENANTHRENE	UG/KG	72 J			point Composite
Rail Line	SS132AD SS132AD	11/15/2004		0.25		V8270 V8270	PHENANTHRENE	UG/KG	72 J 46 J			point Composite
Rail Line	SS132AE	11/16/2004		0.5			PHENANTHRENE	UG/KG	1700			point Composite
Rail Line	SS132AE SS132AE	11/16/2004		0.25			PHENANTHRENE	UG/KG	8100			point Composite
Rail Line	SS132AE SS132AE	11/16/2004		0.25		V8270 V8270	PHENANTHRENE	UG/KG	2400			point Composite
. tail Ellio	33.02/IL	11/10/2004	•	0.0	1 01	10210	AVERAGE FOR PH			MPOSITE	1757.556	John Composite
Target Area	SSFORMACSL06	1/13/2009	N	0	0.25 SV	N8270C	PHENANTHRENE	UG/KG	35 J	00112	35 MI	9
Target Area	SSFORMACSL06	1/13/2009		0			PHENANTHRENE	UG/KG	1100		1100 MI	
Target Area	SSFORMACSL06	1/13/2009		0			PHENANTHRENE	UG/KG	610		610 MI	
Target Area	SSFORMACSL06	1/13/2009		0			PHENANTHRENE	UG/KG	140 J		140 MI	
		1/11/2009		0			PHENANTHRENE	UG/KG			530 MI	
Target Area	SSFATA14					V8270C			530			

Table C.4-8
Former A Range
Calculation of Averages Concentrations for PAHs Exhibiting Maximum Concentrations Above a Screening Criterion in the PAH 4 Exposure Area

Page Ame												Concentration	
April					Regin	End Denth	Analytical			Detected			
Tagge Tagg	Area	Location ID						Analyte	Units		Flags		Sample Type
Target Anno \$31329													5-point Composite
Triggl And SISTEPY (1970) 1													5-point composite
Tagged Anale SENDAY	Target Area		3/20/2001 I	N							-	170	5-point composite
Tagget Anno SS12979											-		
Target Ann.											-		
Taggst Area \$\$1297 1999 Area 1999 Area 1999 Area 1999 Area 1999 Area 1999 Area 19	Target Area		4/7/2005 I	N							_	170	5-point Composite
Tagget Ane \$513207											-		
Tingget Ann											-		
Target Ann.											-	175	5-point Composite
Target Area													
Target Anales					0						-		5-point Composite
Target Area											_		5-point Composite
Target Ans											-		
Target Ann.	Target Area	SS132W	1/4/2005 I	FD	0	0.25	SW8270C	2-METHYLNAPHTHALENE	UG/KG			185	5-point Composite
Target Area ALROSQUO-1-371 AC\$25000 N													
Target Area AL080200-1371 AC220000 N 0 0.16 SW2707C 2-METHYLAPHTHALENE UGRG U 770 Decrete Target Area AL080200-1371 AC22000 N 0 0.16 SW2707C 2-METHYLAPHTHALENE UGRG U 775 Decrete AL080200-1371 AC22000 N 0 0.16 SW2707C 2-METHYLAPHTHALENE UGRG U 775 Decrete AL080200-1371 AC22000 N 0 0.16 SW2707C 2-METHYLAPHTHALENE UGRG U 775 Decrete AL080200-1371 AC22000 N 0 0.16 SW2707C 2-METHYLAPHTHALENE UGRG U 775 Decrete AL080200-1371 AC22000 N 0 0.16 SW2707C 2-METHYLAPHTHALENE UGRG U 775 Decrete AL080200-1371 AC22000 N 0 0.16 SW2707C 2-METHYLAPHTHALENE UGRG U 775 Decrete AL080200-1371 AC22000 N 0 0.15 SW2707C 2-METHYLAPHTHALENE UGRG U 775 Decrete AL080200-1371 AC22000 N 0 0.25 SW2707C 2-METHYLAPHTHALENE UGRG U 775 Decrete AL080200-1371 AC22000 N 0 0.25 SW2707C 2-METHYLAPHTHALENE UGRG U 775 Decrete AL080200-1371 AC22000 N 0 0.25 SW2707C 2-METHYLAPHTHALENE UGRG U 775 Decrete AL080200-1371 AC22000 N 0 0.25 SW2707C 2-METHYLAPHTHALENE UGRG U 775 Decrete AL08020-1371 AL080200-1371 AL08	raiget Area	33132W	1/4/2005 1	N	0.5	- '	30002700						5-point Composite
Target Area AL080200-1371 AC220003 N													
Target Ans. ALDROZOPO 371													
Target Ann					0				UG/KG				
Target Ans. ALDESCOOP 1,371 4/23/2003 N	Target Area	AL060200-01_371	4/23/2003 I	N	0	0.16	SW8270C	2-METHYLNAPHTHALENE	UG/KG			175	Discrete
Target Ana													
Targer Area SSM0100-01 477/200 FD 0 0.2 S SW270C 2-METHYLAPHTHALENE UGMG U 166 5 Discrete Targer Area SS02221-A 977/2001 N 0 0.2 S SW270C 2-METHYLAPHTHALENE UGMG U 166 5 Discrete 167 5 Disc					0						-		
Target Aea S802221-A											_		
Target Area S02221-A											-		
Target Area \$202224	Target Area	SS02221-A	9/7/2001 I	N	0	0.25	SW8270C	2-METHYLNAPHTHALENE	UG/KG	i	J	169	Discrete
Target Area S802224-A													
Target Area S02225-A											-		
Target Area S022227-A 97/2001 N 0 0.25 SW2270C 2-METHYLNAPHTHALENE UG/NG U 177.5 Discrete Target Area S02223-A 97/2001 N 0 0.25 SW2270C 2-METHYLNAPHTHALENE UG/NG U 777.5 Discrete Target Area S02223-A 3/20/2001 N 0.25 SW2270C 2-METHYLNAPHTHALENE UG/NG U 170 Discrete Target Area S03223-A 3/20/2001 N 0.25 0.5 SW2270 2-METHYLNAPHTHALENE UG/NG U 170 Discrete Target Area S03122P 3/20/2001 N 0.25 0.5 SW2270 2-METHYLNAPHTHALENE UG/NG U 170 Discrete Target Area S03124P S05/1999 N 0 0.25 SW2270 2-METHYLNAPHTHALENE UG/NG U 170 Discrete Target Area S03132P S05/1999 N 0 0.25 SW2270 2-METHYLNAPHTHALENE UG/NG U 170 Discrete Target Area S0313510-01 41/2005 N 0 0.25 SW2270C 2-METHYLNAPHTHALENE UG/NG U 170 Sport Comp Target Area S0313510-01 41/2005 N 0 0.25 SW2270C ACENAPHTHYLENE UG/NG U 170 Sport Comp Target Area S03132P 3/20/2001 N 0.25 SW2270C ACENAPHTHYLENE UG/NG U 170 Sport comp Target Area S03132P 3/20/2001 N 0.5 1 SW2270 ACENAPHTHYLENE UG/NG U 170 Sport comp Target Area S03132P 3/20/2001 N 0.5 1 SW2270 ACENAPHTHYLENE UG/NG U 170 Sport comp Target Area S03132P 3/20/2001 N 0.5 1 SW2270 ACENAPHTHYLENE UG/NG U 170 Sport comp Target Area S03132P 3/20/2001 N 0.5 1 SW2270 ACENAPHTHYLENE UG/NG U 170 Sport comp Target Area S03132P 3/20/2001 N 0.5 1 SW2270 ACENAPHTHYLENE UG/NG U 170 Sport comp Target Area S03132W 41/2005 N 0 0.25 SW2270C ACENAPHTHYLENE UG/NG U 170 Sport comp Target Area S03132W 41/2005 N 0 0.25 SW2270C ACENAPHTHYLENE UG/NG U 170 Sport comp Target Area S0312W 41/2005 N 0 0.25 SW2270C ACENAPHTHYLENE UG/NG U 170 Sport comp Target Area S0312W 41/2005 N 0 0.25 SW2270C ACENAPHTHYLENE UG/NG U 170 Sport comp Target Area S0312W 41/2005 N 0 0.25 SW2270C ACENAPHTHYLENE UG/NG U	Target Area										-		
Target Area S02223-A 977/2001 N 0 0.25 SW8270C 2-METHYLNAPHTHALENE UG/NG U 777.0 Biocrete Target Area S052231-A 977/2001 N 0 0.25 SW8270C 2-METHYLNAPHTHALENE UG/NG U 770 Discrete Target Area S05122P 3/20/2001 N 0.5 5 SW8270 2-METHYLNAPHTHALENE UG/NG U 770 Discrete Target Area S05122P 3/20/2001 N 0.5 1 SW8270 2-METHYLNAPHTHALENE UG/NG U 770 Discrete Target Area S05122P 3/20/2001 N 0.5 1 SW8270 2-METHYLNAPHTHALENE UG/NG U 770 Discrete Target Area S05122P 3/20/2001 N 0.5 25 SW8270 2-METHYLNAPHTHALENE UG/NG U 770 Discrete Target Area S05129P 3/20/2001 N 0 0.25 SW8270 2-METHYLNAPHTHALENE UG/NG U 170 Spenit Company Target Area S05129P 3/20/2001 N 0 0.25 SW8270 2-METHYLNAPHTHALENE UG/NG U 170 Spenit Company Target Area S05122P 3/20/2001 N 0 0.25 SW8270 2-METHYLNAPHTHALENE UG/NG U 170 Spenit company Target Area S05122P 3/20/2001 N 0.5 1 SW8270 2-METHYLNAPHTHALENE UG/NG U 170 Spenit company Target Area S05122P 3/20/2001 N 0.5 1 SW8270 2-METHYLNAPHTHALENE UG/NG U 170 Spenit company Target Area S05122P 3/20/2001 N 0.5 1 SW8270 2-METHYLNAPHTHALENE UG/NG U 170 Spenit company Target Area S05122P 3/20/2001 N 0.5 1 SW8270 2-METHYLNAPHTHALENE UG/NG U 170 Spenit company Target Area S05122P 3/20/2001 N 0.5 1 SW8270 2-METHYLNAPHTHALENE UG/NG U 170 Spenit company Target Area S05122P 3/20/2001 N 0.5 1 SW8270 2-METHYLNAPHTHALENE UG/NG U 170 Spenit company Target Area S05122P 3/20/2001 N 0.5 1 SW8270 2-METHYLNAPHTHALENE UG/NG U 170 Spenit company Target Area S05122P 3/20/2001 N 0.5 SW8270C 2-METHYLNAPHTHALENE UG/NG U 170 Spenit company Target Area S05122P 3/20/2001 N 0.5 SW8270C 2-METHYLNAPHTHALENE UG/NG U 170 Spenit company Target Area S05122P 3/20/2001 N 0 0.5 SW8270C											-		
Target Area											_		
Target Area SS132P 3/20/2001 N 0.5 0.5 SW8270 2-METHYLNAPHTHALENE LG/KG U 170 Discrete Target Area SS132P 3/20/2001 N 0.5 5/88/270 2-METHYLNAPHTHALENE LG/KG U 170 Discrete Target Area SS132P 3/20/2001 N 0.0 0.25 SW8270C ACENAPHTHYLENE LG/KG U 175 S-point Compared Area SS132P 3/20/2001 N 0.0 0.25 SW8270C ACENAPHTHYLENE LG/KG U 175 S-point Compared Area SS132P 3/20/2001 N 0.0 0.25 SW8270C ACENAPHTHYLENE LG/KG U 170 S-point compared Area SS132P 3/20/2001 N 0.5 SW8270C ACENAPHTHYLENE LG/KG U 170 S-point compared Area SS132P 3/20/2001 N 0.5 SW8270C ACENAPHTHYLENE LG/KG U 170 S-point compared Area SS132P 3/20/2001 N 0.5 SW8270C ACENAPHTHYLENE LG/KG U 170 S-point compared Area SS132P 3/20/2001 N 0.5 SW8270C ACENAPHTHYLENE LG/KG U 170 S-point compared Area SS132P 3/20/2001 N 0.5 SW8270C ACENAPHTHYLENE LG/KG U 170 S-point compared Area SS132W 4/7/2005 N 0.0 0.25 SW8270C ACENAPHTHYLENE LG/KG U 170 S-point compared Area SS132W 4/7/2005 N 0.0 0.25 SW8270C ACENAPHTHYLENE LG/KG U 170 S-point compared Area SS132W 4/7/2005 N 0.0 0.25 SW8270C ACENAPHTHYLENE LG/KG U 170 S-point compared Area SS132W 4/7/2005 N 0.0 0.25 SW8270C ACENAPHTHYLENE LG/KG U 170 S-point compared Area SS132W 4/7/2005 N 0.0 0.25 SW8270C ACENAPHTHYLENE LG/KG U 170 S-point compared Area SS132W 3/31/2005 N 0.0 0.25 SW8270C ACENAPHTHYLENE LG/KG U 170 S-point compared Area SS132W 3/31/2005 N 0.0 0.25 SW8270C ACENAPHTHYLENE LG/KG U 170 S-point compared Area SS132W 3/31/2005 N 0.0 0.25 SW8270C ACENAPHTHYLENE LG/KG U 170 S-point compared Area SS132W 3/31/2005 N 0.0 0.25 SW8270C ACENAPHTHYLENE LG/KG U 170 S-point compared Area SS132W 3/31/2005 N 0.0 0.25 SW8270C ACENAPHTHYLENE LG/KG U 170 S-point compared Area SS132W 3/31/2005 N 0.0 0.25											-		
Target Area SS132P 3/20/2001 N													
Target Area S0311905-01 1/21/2006 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 170 5-point Comp Target Area S033105-01 41/2006 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 170 5-point Comp Target Area S5132P 3/20/2001 N 0.25 SW8270 ACENAPHTHYLENE UG/KG U 170 5-point comp Target Area S5132P 3/20/2001 N 0.5 0.5 SW8270 ACENAPHTHYLENE UG/KG U 170 5-point comp Target Area S5132P 3/20/2001 N 0.5 1 SW8270 ACENAPHTHYLENE UG/KG U 170 5-point comp Target Area S5132P 3/20/2001 N 0.5 1 SW8270 ACENAPHTHYLENE UG/KG U 170 5-point comp Target Area S5132P 3/20/2001 N 0.5 1 SW8270 ACENAPHTHYLENE UG/KG U 170 5-point comp Target Area S5132W 4/7/2005 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 170 5-point comp Target Area S5132W 4/7/2005 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 170 5-point Comp Target Area S5132W 4/7/2005 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 170 5-point Comp Target Area S5132W 4/7/2005 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 170 5-point Comp Target Area S5132W 3/1/2004 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 170 5-point Comp Target Area S5132W 3/1/2004 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 170 5-point Comp Target Area S5132W 3/1/2004 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 170 5-point Comp Target Area S5132W 3/1/2004 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 170 5-point Comp Target Area S5132W 1/1/2004 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 170 5-point Comp Target Area S5132W 1/1/2004 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 170 5-point Comp Target Area S5132W 1/1/2005 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 170 5-point Comp Target Area S5132W 1/1/2005 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 170 5-point Comp Target Area S5132W 1/1/2005 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U	Target Area										-		
Target Area SS011995-01 1/21/2005 N	Target Area	SS37MM_HEAVERY	8/5/1999 I	N	0	0.25	CSVOL						
Target Area SS132P 3/20/2001 N	Target Area	SS011905-01	1/21/2005	N	0	0.25	SW8270C						5-point Composite
Target Area S5132P 3/20/2001 N 0.5 1.5 SW8270 ACENAPHTHYLENE UG/KG U 170 5-point comp Target Area S5132P 3/20/2001 N 0.5 1.5 SW8270 ACENAPHTHYLENE UG/KG U 170 5-point Comp Target Area S5132P 3/20/2001 N 0.5 1.5 SW8270 ACENAPHTHYLENE UG/KG U 170 5-point Comp Target Area S5132W 4/7/2005 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 170 5-point Comp Target Area S5132W 4/7/2005 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 170 5-point Comp Target Area S5132W 4/7/2005 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 170 5-point Comp Target Area S5132W 4/7/2005 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 170 5-point Comp Target Area S5132W 3/31/2006 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 170 5-point Comp Target Area S5132W 3/31/2006 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 170 5-point Comp Target Area S5132W 3/31/2006 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 170 5-point Comp Target Area S5132W 1/18/2004 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 180 5-point Comp Target Area S5132W 1/18/2005 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 180 5-point Comp Target Area S5132W 1/18/2005 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 180 5-point Comp Target Area S5132W 1/18/2005 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 180 5-point Comp Target Area S5132W 1/18/2005 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 180 5-point Comp Target Area S5132W 1/18/2005 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 180 5-point Comp Target Area S5132W 1/14/2005 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 180 5-point Comp Target Area S5132W 1/14/2005 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 180 5-point Comp Target Area S5132W 1/14/2005 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 180 5-point Comp Target Area S5132W 1/14/2005 N 0 0.25 SW8270C ACENAPHTHYLENE													5-point Composite
Target Area S5132P 3/20/2001 N 0.5 1 SW8270 ACENAPHTHYLENE UG/KG U 170 5-point comp Target Area S5132W 4/7/2005 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 170 5-point Comp Target Area S5132W 4/7/2005 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 170 5-point Comp Target Area S5132W 4/7/2005 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 170 5-point Comp Target Area S5132W 4/7/2005 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 170 5-point Comp Target Area S5132W 4/7/2005 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 170 5-point Comp Target Area S5132W 3/31/2006 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 175 5-point Comp Target Area S5132W 4/1/2005 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 176 5-point Comp Target Area S5132W 4/1/2006 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 176 5-point Comp Target Area S5132W 1/1/3/2004 FD 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 176 5-point Comp Target Area S5132W 1/1/3/2004 FD 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 180 5-point Comp Target Area S5132W 1/1/3/2005 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 180 5-point Comp Target Area S5132W 1/1/3/2005 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 180 5-point Comp Target Area S5132W 1/1/3/2005 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 180 5-point Comp Target Area S5132W 1/1/3/2005 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 180 5-point Comp Target Area S5132W 1/1/3/2005 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 180 5-point Comp Target Area S5132W 1/1/3/2005 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 180 5-point Comp Target Area S5132W 1/1/3/2005 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 180 5-point Comp Target Area S5132W 1/1/3/2005 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 180 5-point Comp Target Area S5132W 1/1/3/2005 N 0 0.25 SW8270C ACENAPHT													
Target Area S5132W	Target Area	SS132P	3/20/2001 I	N	0.5	1	SW8270	ACENAPHTHYLENE	UG/KG		-	170	5-point composite
Target Area S5132W											-		
Target Area											-		5-point Composite
Target Area SS132W 3/31/2005 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 175 5-point Comp Target Area SS132W 4/1/2005 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 176 5-point Comp Target Area SS132W 12/13/2004 FD 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 180 5-point Comp Target Area SS132W 1/18/2005 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 180 5-point Comp Target Area SS132W 1/18/2005 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 180 5-point Comp Target Area SS132W 3/31/2005 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 180 5-point Comp Target Area SS132W 3/31/2005 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 180 5-point Comp Target Area SS132W 1/4/2005 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 185 5-point											-		5-point Composite
Target Area SS132W 4/1/2005 N 0 0.25 SW8270C ACENAPHTHYLENE U.G/KG U 176 5-point Comp Target Area SS132W 12/13/2004 FD 0 0.25 SW8270C ACENAPHTHYLENE U.G/KG U 180 5-point Comp Target Area SS132W 1/18/2005 N 0 0.25 SW8270C ACENAPHTHYLENE U.G/KG U 180 5-point Comp Target Area SS132W 1/18/2005 N 0 0.25 SW8270C ACENAPHTHYLENE U.G/KG U 180 5-point Comp Target Area SS132W 3/31/2005 N 0 0.25 SW8270C ACENAPHTHYLENE U.G/KG U 180 5-point Comp Target Area SS132W 4/1/2005 N 0 0.25 SW8270C ACENAPHTHYLENE U.G/KG U 180 5-point Comp Target Area SS132W 1/4/2005 N 0.25 SW8270C ACENAPHTHYLENE U.G/KG U 185 5-point Comp Target Area AL060200-01 1/4/2005 N 0.25 SW8270C ACENAPHTHYLENE U.G/KG U 185 5-point Comp <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td></tr<>											-		
Target Area S5132W 12/13/2004 FD 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 180 5-point Comp Target Area S5132W 1/18/2005 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 180 5-point Comp Target Area S5132W 3/31/2005 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 180 5-point Comp Target Area S5132W 3/31/2005 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 180 5-point Comp Target Area S5132W 1/4/2005 N 0.25 0.5 SW8270C ACENAPHTHYLENE UG/KG U 185 5-point Comp Target Area S5132W 1/4/2005 N 0.25 0.5 SW8270C ACENAPHTHYLENE UG/KG U 185 5-point Comp Target Area S5132W 1/4/2005 N 0.25 0.5 SW8270C ACENAPHTHYLENE UG/KG U 185 5-point Comp Target Area AL060200-01_371 4/23/2003 N 0 0.16 SW8270C ACENAPHTHYLENE UG/KG 230					0				UG/KG				5-point Composite
Target Area S5132W 1/18/2005 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 180 5-point Comp Target Area S5132W 3/31/2005 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 180 5-point Comp Target Area S5132W 4/1/2005 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 180 5-point Comp Target Area S5132W 4/1/2005 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 186 5-point Comp Target Area S5132W 1/4/2005 N 0.25 SW8270C ACENAPHTHYLENE UG/KG U 185 5-point Comp Target Area S5132W 1/4/2005 N 0.25 0.5 SW8270C ACENAPHTHYLENE UG/KG U 185 5-point Comp Target Area AL060200-01 1/4/2005 N 0.5 1 SW8270C ACENAPHTHYLENE UG/KG U 185 5-point Comp Target Area AL060200-01 371 4/23/2003 N 0 0.16 SW8270C ACENAPHTHYLENE UG/KG 0 16 5											-		5-point Composite
Target Area S5132W 1/18/2005 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 180 5-point Comp Target Area S5132W 3/31/2005 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 180 5-point Comp Target Area S5132W 1/4/2005 FD 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 185 5-point Comp Target Area S5132W 1/4/2005 N 0.25 0.5 SW8270C ACENAPHTHYLENE UG/KG U 185 5-point Comp Target Area S5132W 1/4/2005 N 0.25 0.5 SW8270C ACENAPHTHYLENE UG/KG U 185 5-point Comp Target Area S5132W 1/4/2005 N 0.5 1 SW8270C ACENAPHTHYLENE UG/KG U 185 5-point Comp Target Area AL060200-01_371 4/23/2003 N 0 0.16 SW8270C ACENAPHTHYLENE UG/KG 2300 2300 Discrete Target Area AL060200-01_371 4/23/2003 N 0 0.16 SW8270C ACENAPHTHYLENE UG/KG 30 J											-		5-point Composite 5-point Composite
Target Area SS132W 4/1/2005 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 180 5-point Comp Target Area SS132W 1/4/2005 FD 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 185 5-point Comp Target Area SS132W 1/4/2005 N 0.25 0.5 SW8270C ACENAPHTHYLENE UG/KG U 185 5-point Comp Target Area SS132W 1/4/2005 N 0.5 1 SW8270C ACENAPHTHYLENE UG/KG U 185 5-point Comp Target Area AL060200-01_371 4/23/2003 N 0 0.16 SW8270C ACENAPHTHYLENE UG/KG 2300 2300 Discrete Target Area AL060200-01_371 4/23/2003 N 0 0.16 SW8270C ACENAPHTHYLENE UG/KG 30 J 30 Discrete Target Area AL060200-01_371 4/23/2003 N 0 0.16 SW8270C ACENAPHTHYLENE UG/KG 29 J 29 Discrete Target Area AL060200-01_371 4/23/2003 N 0 0.16 SW8270C ACENAPHTHYLENE UG/KG	Target Area	SS132W	1/18/2005 I	N	0	0.25	SW8270C	ACENAPHTHYLENE	UG/KG		-	180	5-point Composite
Target Area S5132W 1/4/2005 FD 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 185 5-point Comp Target Area SS132W 1/4/2005 N 0.25 0.5 SW8270C ACENAPHTHYLENE UG/KG U 185 5-point Comp Target Area SS132W 1/4/2005 N 0.5 1 SW8270C ACENAPHTHYLENE UG/KG U 185 5-point Comp AU660200-01_371 4/23/2003 N 0 0.16 SW8270C ACENAPHTHYLENE UG/KG 2300 2300 Discrete Target Area AL.060200-01_371 4/23/2003 N 0 0.16 SW8270C ACENAPHTHYLENE UG/KG 30 J 30 Discrete Target Area AL.060200-01_371 4/23/2003 N 0 0.16 SW8270C ACENAPHTHYLENE UG/KG 29 J 29 Discrete Target Area AL.060200-01_371 4/23/2003 N 0 0.16 SW8270C ACENAPHTHYLENE UG/KG U 175 Discrete Target Area AL.060200-01_371 4/23/2003 N 0 0.16 SW8270C ACENAPHTHYLENE UG/KG U											-		5-point Composite
Target Area S5132W 1/4/2005 N 0.25 0.5 SW8270C ACENAPHTHYLENE UG/KG U 1/85 5-point Comp Target Area SS132W 1/4/2005 N 0.5 1 SW8270C ACENAPHTHYLENE UG/KG U 1/85 5-point Comp AVERAGE FOR ACENAPHTHALENE 5-POINT COMPOSITE 176.190	Target Area	SS132W	1/4/2005 I	FD	0	0.25	SW8270C	ACENAPHTHYLENE	UG/KG	ı	J	185	5-point Composite
AUG0200-01_371			1/4/2005 I	N		0.5	SW8270C						5-point Composite
Target Area AL.060200-01_371 4/23/2003 N 0 0.16 SW8270C ACENAPHTHYLENE UG/KG 30 J 30 Discrete Target Area AL.060200-01_371 4/23/2003 N 0 0.16 SW8270C ACENAPHTHYLENE UG/KG 30 J 30 Discrete Target Area AL.060200-01_371 4/23/2003 N 0 0.16 SW8270C ACENAPHTHYLENE UG/KG 29 J 29 Discrete Target Area AL.060200-01_371 4/23/2003 N 0 0.16 SW8270C ACENAPHTHYLENE UG/KG U 175 Discrete Target Area AL.060200-01_371 4/23/2003 N 0 0.16 SW8270C ACENAPHTHYLENE UG/KG U 175 Discrete Target Area AL.060200-01_371 4/23/2003 N 0 0.16 SW8270C ACENAPHTHYLENE UG/KG U 175 Discrete Target Area AL.060200-01_371 4/23/2003 N 0 0.16 SW8270C ACENAPHTHYLENE UG/KG U 175 Discrete Target Area AL.060200-01_371 4/23/2003 N 0 0.16 SW8270C ACENAPHTHYLENE	rarget Area	33132VV	1/4/2005 1	N	0.5	1	3VV82/UC						o-point Composite
Target Area AL.060200-01_371 4/23/2003 N 0 0.16 SW8270C ACENAPHTHYLENE UG/KG 29 J 29 Discrete Target Area AL.060200-01_371 4/23/2003 N 0 0.16 SW8270C ACENAPHTHYLENE UG/KG U 175 Discrete Target Area AL.060200-01_371 4/23/2003 N 0 0.16 SW8270C ACENAPHTHYLENE UG/KG U 175 Discrete Target Area AL.060200-01_371 4/23/2003 N 0 0.16 SW8270C ACENAPHTHYLENE UG/KG U 175 Discrete Target Area AL.060200-01_371 4/23/2003 N 0 0.16 SW8270C ACENAPHTHYLENE UG/KG U 175 Discrete Target Area AL.060200-01_371 4/23/2003 N 0 0.16 SW8270C ACENAPHTHYLENE UG/KG U 175 Discrete Target Area SS040105-01 4/7/2005 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 170 Discrete Target Area SS040105-01 4/7/2005 FD 0 0.25 SW8270C ACENAPHTHYLENE UG/KG								ACENAPHTHYLENE	UG/KG	2300		2300	
Target Area AL.060200-01_371 4/23/2003 N 0 0.16 SW8270C ACENAPHTHYLENE UG/KG U 175 Discrete Target Area AL.060200-01_371 4/23/2003 N 0 0.16 SW8270C ACENAPHTHYLENE UG/KG U 175 Discrete Target Area AL.060200-01_371 4/23/2003 N 0 0.16 SW8270C ACENAPHTHYLENE UG/KG U 175 Discrete Target Area AL.060200-01_371 4/23/2003 N 0 0.16 SW8270C ACENAPHTHYLENE UG/KG U 175 Discrete Target Area SS040105-01 4/723/2003 N 0 0.16 SW8270C ACENAPHTHYLENE UG/KG U 175 Discrete Target Area SS040105-01 4/7/2005 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 170 Discrete Target Area SS04221-A 9/7/2001 FD 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 168.5 Discrete Target Area SS02221-A 9/7/2001 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U<													
Target Area AL.060200-01_371 4/23/2003 N 0 0.16 SW8270C ACENAPHTHYLENE UG/KG U 175 Discrete Target Area AL.060200-01_371 4/23/2003 N 0 0.16 SW8270C ACENAPHTHYLENE UG/KG U 175 Discrete Target Area AL.060200-01_371 4/23/2003 N 0 0.16 SW8270C ACENAPHTHYLENE UG/KG U 175 Discrete Target Area AL.060200-01_371 4/23/2003 N 0 0.16 SW8270C ACENAPHTHYLENE UG/KG U 175 Discrete Target Area SS040105-01 4/7/2005 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 170 Discrete Target Area SS0420105-01 4/7/2005 FD 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 170 Discrete Target Area SS02221-A 9/7/2001 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 168.5 Discrete Target Area SS02222-A 9/7/2001 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U </td <td></td>													
Target Area AL.060200-01_371 4/23/2003 N 0 0.16 SW8270C ACENAPHTHYLENE UG/KG U 175 Discrete Target Area AL.060200-01_371 4/23/2003 N 0 0.16 SW8270C ACENAPHTHYLENE UG/KG U 175 Discrete Target Area SS040105-01 4/7/2005 FD 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 170 Discrete Target Area SS0221-A 9/7/2001 FD 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 168.5 Discrete Target Area SS02221-A 9/7/2001 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 168.5 Discrete Target Area SS02222-A 9/7/2001 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 173 Discrete Target Area SS02222-A 9/7/2001 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 173 Discrete Target Area SS02222-A 9/7/2001 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 1	Target Area	AL060200-01_371	4/23/2003 I	N	0	0.16	SW8270C	ACENAPHTHYLENE	UG/KG				
Target Area AL.060200-01_371 4/23/2003 N 0 0.16 SW8270C ACENAPHTHYLENE UG/KG U 175 Discrete Target Area SS040105-01 4/7/2005 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 170 Discrete Target Area SS0221-A 9/7/2001 FD 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 188.5 Discrete Target Area SS02221-A 9/7/2001 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 168.5 Discrete Target Area SS02222-A 9/7/2001 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 173 Discrete Target Area SS02222-A 9/7/2001 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 173 Discrete Target Area SS02223-A 9/7/2001 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 169.5 Discrete Target Area SS02223-A 9/7/2001 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 169.5 Di											-		
Target Area SS040105-01 4/7/2005 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 170 Discrete Target Area SS040105-01 4/7/2005 FD 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 170 Discrete Target Area SS02221-A 9/7/2001 FD 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 168.5 Discrete Target Area SS02221-A 9/7/2001 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 169 Discrete Target Area SS02222-A 9/7/2001 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 173 Discrete Target Area SS02223-A 9/7/2001 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 169.5 Discrete Target Area SS02224-A 9/7/2001 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 169.5 Discrete Target Area SS02224-A 9/7/2001 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 169.5 Discre	Target Area	AL060200-01_371	4/23/2003 I	N	0	0.16	SW8270C	ACENAPHTHYLENE	UG/KG	ı	J	175	Discrete
Target Area SS02221-A 9/7/2001 FD 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 168.5 Discrete Target Area SS02221-A 9/7/2001 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 169 Discrete Target Area SS02222-A 9/7/2001 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 173 Discrete Target Area SS02223-A 9/7/2001 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 169.5 Discrete Target Area SS02224-A 9/7/2001 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 176.Discrete											-		
Target Area SS02221-A 9/7/2001 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 169 Discrete Target Area SS02222-A 9/7/2001 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 173 Discrete Target Area SS02223-A 9/7/2001 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 169.5 Discrete Target Area SS02224-A 9/7/2001 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 176 Discrete													
Target Area SS02223-A 9/7/2001 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 169.5 Discrete Target Area SS02224-A 9/7/2001 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 176 Discrete	Target Area	SS02221-A	9/7/2001 I	N	0	0.25	SW8270C	ACENAPHTHYLENE	UG/KG	l	J	169	Discrete
Target Area SS02224-A 9/7/2001 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 176 Discrete													
											-		
	Target Area	SS02225-A	9/7/2001 I	N	0	0.25	SW8270C	ACENAPHTHYLENE	UG/KG	ı	J	175	Discrete
Target Area SS02226-A 9/7/2001 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 170 Discrete Target Area SS02227-A 9/7/2001 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 176.5 Discrete													
Target Area SS02227-A 9/7/2001 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 176.5 Discrete Target Area SS02228-A 9/7/2001 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 173 Discrete											-		
Target Area SS02231-A 977/2001 N 0 0.25 SW8270C ACENAPHTHYLENE UG/KG U 171.5 Discrete	Target Area	SS02231-A	9/7/2001 I	N	0	0.25	SW8270C	ACENAPHTHYLENE	UG/KG	ı	J	171.5	Discrete
Target Area SS132P 3/20/2001 N 0 0.25 SW8270 ACENAPHTHYLENE UG/KG U 170 Discrete Target Area SS132P 3/20/2001 N 0.25 0.5 SW8270 ACENAPHTHYLENE UG/KG U 170 Discrete													
Target Area SS132P 3/20/2001 N 0.25 0.5 SW8270 ACENAPHTHYLENE UG/KG U 170 Discrete Target Area SS132P 3/20/2001 N 0.5 1 SW8270 ACENAPHTHYLENE UG/KG U 170 Discrete													
Target Area SS37MM_HEAVERY 8/5/1999 N 0 0.25 CSVOL ACENAPHTHYLENE UG/KG U 165 Discrete								ACENAPHTHYLENE	UG/KG	l	J	165	Discrete
AVERAGE FOR ACENAPHTHALENE DISCRETE 248.792								AVERA	GE FOR ACE	NAPHTHALENE	DISCRETE	248.792	

Table C.4-8
Former A Range
Calculation of Averages Concentrations for PAHs Exhibiting Maximum Concentrations Above a Screening Criterion in the PAH 4 Exposure Area

										Concentration	
			Normal or							Used in	
Area	Location ID	Collection Date	Field Begin Duplicate Depth (ft)	End Depth A	nalytical Method	Analyte	Units	Detected Value	Flags	Computation of Averages	Sample Type
Target Area	SS011905-01	1/21/2005 N				BENZO(a)ANTHRACENE	UG/KG	Ĺ			5-point Composite
Target Area Target Area	SS033105-01 SS132P	4/1/2005 N 3/20/2001 N				BENZO(a)ANTHRACENE BENZO(a)ANTHRACENE	UG/KG UG/KG	l L			5-point Composite 5-point composite
Target Area	SS132P	3/20/2001 N				BENZO(a)ANTHRACENE	UG/KG	ĭ			5-point composite
Target Area	SS132P	3/20/2001				BENZO(a)ANTHRACENE	UG/KG	L			5-point composite
Target Area Target Area	SS132P SS132W	3/20/2001 N 12/13/2004 N				BENZO(a)ANTHRACENE BENZO(a)ANTHRACENE	UG/KG UG/KG	67 J	•		5-point composite 5-point Composite
Target Area	SS132W	12/13/2004 F	FD 0	0.25 SW	V8270C	BENZO(a)ANTHRACENE	UG/KG	62 J			5-point Composite
Target Area	SS132W	1/4/2005				BENZO(a)ANTHRACENE	UG/KG	24 J			5-point Composite
Target Area Target Area	SS132W SS132W	1/18/2005 N 1/18/2005 N				BENZO(a)ANTHRACENE BENZO(a)ANTHRACENE	UG/KG UG/KG	19 J 19 J			5-point Composite 5-point Composite
Target Area	SS132W	4/7/2005 N	N 0	0.25 SW	V8270C	BENZO(a)ANTHRACENE	UG/KG	L	J	170	5-point Composite
Target Area	SS132W SS132W	4/7/2005 N 4/7/2005 N				BENZO(a)ANTHRACENE	UG/KG UG/KG	L			5-point Composite
Target Area Target Area	SS132W	4/7/2005 N				BENZO(a)ANTHRACENE BENZO(a)ANTHRACENE	UG/KG	i	•		5-point Composite 5-point Composite
Target Area	SS132W	3/31/2005 N	N 0	0.25 SW	V8270C	BENZO(a)ANTHRACENE	UG/KG	Ü		175	5-point Composite
Target Area Target Area	SS132W SS132W	4/1/2005 N 3/31/2005 N				BENZO(a)ANTHRACENE BENZO(a)ANTHRACENE	UG/KG UG/KG	L L			5-point Composite 5-point Composite
Target Area	SS132W	4/1/2005 N				BENZO(a)ANTHRACENE	UG/KG	i			5-point Composite
Target Area	SS132W	1/4/2005 F	FD 0	0.25 SW	V8270C	BENZO(a)ANTHRACENE	UG/KG	L		185	5-point Composite
Target Area	SS132W	1/4/2005 N	N 0.5	1 SW	V8270C	BENZO(a)ANTHRACENE AVERAGE FOR BENZO	UG/KG	CENE 5-POINT CO			5-point Composite
Target Area	AL060200-01_371	4/23/2003 N	N 0	0.16 SW	V8270C	BENZO(a)ANTHRACENE	UG/KG	14000	JWIF OSITE		Discrete
Target Area	AL060200-01_371	4/23/2003 N	N 0	0.16 SW	V8270C	BENZO(a)ANTHRACENE	UG/KG	590		590	Discrete
Target Area Target Area	AL060200-01_371 AL060200-01_371	4/23/2003 N 4/23/2003 N				BENZO(a)ANTHRACENE BENZO(a)ANTHRACENE	UG/KG UG/KG	350 290 J			Discrete Discrete
Target Area	AL060200-01_371 AL060200-01_371	4/23/2003 N				BENZO(a)ANTHRACENE	UG/KG	190 J			Discrete
Target Area	AL060200-01_371	4/23/2003 N	N 0	0.16 SW	V8270C	BENZO(a)ANTHRACENE	UG/KG	150 J		150	Discrete
Target Area Target Area	AL060200-01_371 AL060200-01_371	4/23/2003 N 4/23/2003 N				BENZO(a)ANTHRACENE BENZO(a)ANTHRACENE	UG/KG UG/KG	81 J 19 J			Discrete Discrete
Target Area	SS040105-01	4/7/2005 N				BENZO(a)ANTHRACENE	UG/KG	19 3			Discrete
Target Area	SS040105-01	4/7/2005 F	FD 0	0.25 SW	V8270C	BENZO(a)ANTHRACENE	UG/KG			170	Discrete
Target Area Target Area	SS02221-A SS02221-A	9/7/2001 N 9/7/2001 F				BENZO(a)ANTHRACENE BENZO(a)ANTHRACENE	UG/KG UG/KG	151 J 133 J			Discrete Discrete
Target Area	SS02222-A	9/7/2001 N				BENZO(a)ANTHRACENE	UG/KG	186 J			Discrete
Target Area	SS02223-A	9/7/2001	N 0		V8270C	BENZO(a)ANTHRACENE	UG/KG	L	J	169.5	Discrete
Target Area Target Area	SS02224-A SS02225-A	9/7/2001 N 9/7/2001 N				BENZO(a)ANTHRACENE BENZO(a)ANTHRACENE	UG/KG UG/KG	59.8 J			Discrete Discrete
Target Area	SS02226-A	9/7/2001 N				BENZO(a)ANTHRACENE	UG/KG	56.1 J	•		Discrete
Target Area	SS02227-A	9/7/2001				BENZO(a)ANTHRACENE	UG/KG	55.1 J			Discrete
Target Area Target Area	SS02228-A SS02231-A	9/7/2001 N 9/7/2001 N				BENZO(a)ANTHRACENE BENZO(a)ANTHRACENE	UG/KG UG/KG	L L			Discrete Discrete
Target Area	SS132P	3/20/2001				BENZO(a)ANTHRACENE	UG/KG	540			Discrete
Target Area	SS132P SS132P	3/20/2001 1				BENZO(a)ANTHRACENE BENZO(a)ANTHRACENE	UG/KG UG/KG	310 J			Discrete Discrete
Target Area Target Area	SS37MM_HEAVERY	3/20/2001 N 8/5/1999 N				BENZO(a)ANTHRACENE	UG/KG	Ĺ			Discrete
						AVERAGE)ANTHRACENE		771.875	
Target Area					V8270C			L	ı		5-point Composite
	SS011905-01 SS033105-01	1/21/2005 N				BENZO(a)PYRENE	UG/KG				5-noint Composite
Target Area Target Area	SS011905-01 SS033105-01 SS132P	1/21/2005 N 4/1/2005 N 3/20/2001 N	N 0	0.25 SW	V8270C	BENZO(a)PYRENE BENZO(a)PYRENE BENZO(a)PYRENE	UG/KG UG/KG UG/KG	Ĺ	J	180	5-point Composite 5-point composite
Target Area Target Area Target Area	SS033105-01 SS132P SS132P	4/1/2005 N 3/20/2001 N 3/20/2001 N	N 0 N 0.25	0.25 SW 0.25 SW 0.5 SW	V8270C V8270 V8270	BENZO(a)PYRENE BENZO(a)PYRENE BENZO(a)PYRENE	UG/KG UG/KG UG/KG	լ Լ	J J J	180 : 170 : 170 :	5-point composite 5-point composite
Target Area Target Area Target Area Target Area	SS033105-01 SS132P SS132P SS132P	4/1/2005 N 3/20/2001 N 3/20/2001 N 3/20/2001 N	N 0 N 0.25 N 0.5	0.25 SW 0.25 SW 0.5 SW 1 SW	V8270C V8270 V8270 V8270	BENZO(a)PYRENE BENZO(a)PYRENE BENZO(a)PYRENE BENZO(a)PYRENE	UG/KG UG/KG UG/KG UG/KG	լ Լ Լ)))	180 ! 170 ! 170 ! 170 !	5-point composite 5-point composite 5-point composite
Target Area Target Area Target Area	SS033105-01 SS132P SS132P	4/1/2005 N 3/20/2001 N 3/20/2001 N	N 0 N 0.25 N 0.5 N 0.5 N 0.5	0.25 SW 0.25 SW 0.5 SW 1 SW 1 SW 0.25 SW	V8270C V8270 V8270 V8270 V8270 V8270 V8270C	BENZO(a)PYRENE BENZO(a)PYRENE BENZO(a)PYRENE BENZO(a)PYRENE BENZO(a)PYRENE BENZO(a)PYRENE	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG	լ Լ))))	180 : 170 : 170 : 170 : 170 :	5-point composite 5-point composite
Target Area Target Area Target Area Target Area Target Area Target Area Target Area	\$\$033105-01 \$\$132P \$\$132P \$\$132P \$\$132P \$\$132P \$\$132W \$\$132W	4/1/2005 N 3/20/2001 N 3/20/2001 N 3/20/2001 N 3/20/2001 N 12/13/2004 N 12/13/2004 N	N 0 N 0.25 N 0.5 N 0.5 N 0.5	0.25 SW 0.25 SW 0.5 SW 1 SW 1 SW 0.25 SW 0.25 SW	V8270C V8270 V8270 V8270 V8270 V8270C V8270C	BENZO(a)PYRENE BENZO(a)PYRENE BENZO(a)PYRENE BENZO(a)PYRENE BENZO(a)PYRENE BENZO(a)PYRENE BENZO(a)PYRENE	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG	L L L 70 J 69 J]]]]	180 : 170 : 170 : 170 : 170 : 70 : 69 :	5-point composite 5-point composite 5-point composite 5-point composite 5-point Composite 5-point Composite
Target Area	SS033105-01 SS132P SS132P SS132P SS132P SS132W SS132W SS132W SS132W	4/1/2005 N 3/20/2001 N 3/20/2001 N 3/20/2001 N 3/20/2001 N 12/13/2004 N 12/13/2004 N	N 0 N 0.25 N 0.55 N 0.5 N 0 FD 0	0.25 SW 0.25 SW 0.5 SW 1 SW 1 SW 0.25 SW 0.25 SW 0.25 SW	V8270C V8270 V8270 V8270 V8270 V8270C V8270C V8270C	BENZO(a)PYRENE BENZO(a)PYRENE BENZO(a)PYRENE BENZO(a)PYRENE BENZO(a)PYRENE BENZO(a)PYRENE BENZO(a)PYRENE BENZO(a)PYRENE BENZO(a)PYRENE	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG	L L L 70 J 69 J 20 J]]]]	180 : 170 : 170 : 170 : 170 : 70 : 69 : 20 :	5-point composite 6-point Composite
Target Area	\$\$033105-01 \$\$132P \$\$132P \$\$132P \$\$132P \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W	4/1/2005 N 3/20/2001 N 3/20/2001 N 3/20/2001 N 3/20/2001 N 12/13/2004 N 12/13/2004 N 1/18/2005 N 4/7/2005 N	N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.25 SW 0.25 SW 0.5 SW 1 SW 1 SW 0.25 SW 0.25 SW 0.25 SW 0.25 SW	V8270C V8270 V8270 V8270 V8270 V8270C V8270C V8270C V8270C V8270C V8270C	BENZO(a)PYRENE	UG/KG	L L L 70 J 69 J 20 J 19 J L		180 ± 170 ±	5-point composite
Target Area	\$5033105-01 \$\$132P \$\$132P \$\$132P \$\$132P \$\$132P \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W	4/1/2005 N 3/20/2001 N 3/20/2001 N 3/20/2001 N 3/20/2001 N 12/13/2004 N 12/13/2004 N 1/18/2005 N 1/18/2005 N 4/7/2005 N	N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.25 SW 0.25 SW 0.5 SW 1 SW 1 SW 0.25 SW 0.25 SW 0.25 SW 0.25 SW 0.25 SW	V8270C V8270 V8270 V8270 V8270 V8270C V8270C V8270C V8270C V8270C V8270C V8270C	BENZO(a)PYRENE	UG/KG	L L L 70 J 69 J 20 J 19 J L		180 ± 170 ±	5-point composite
Target Area	\$\$033105-01 \$\$132P \$\$132P \$\$132P \$\$132P \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W	4/1/2005 N 3/20/2001 N 3/20/2001 N 3/20/2001 N 3/20/2001 N 12/13/2004 N 12/13/2004 N 1/18/2005 N 4/7/2005 N	N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.25 SW 0.25 SW 0.5 SW 1 SW 1 SW 0.25 SW 0.25 SW 0.25 SW 0.25 SW 0.25 SW 0.25 SW	V8270C V8270 V8270 V8270 V8270 V8270C V8270C V8270C V8270C V8270C V8270C V8270C V8270C	BENZO(a)PYRENE	UG/KG	L L L 70 J 69 J 20 J 19 J L		180 ± 170 ±	5-point composite
Target Area	\$5033105-01 \$\$132P \$\$132P \$\$132P \$\$132P \$\$132P \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W	4/1/2005 h 3/20/2001 h 3/20/2001 h 3/20/2001 h 3/20/2001 h 12/13/2004 h 12/13/2004 h 1/18/2005 h 4/7/2005 h 4/7/2005 h 4/7/2005 h 3/31/2005 h	N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.25 SW 0.25 SW 0.5 SW 1 SW 1 SW 0.25 SW 0.25 SW 0.25 SW 0.25 SW 0.25 SW 0.25 SW 0.25 SW 0.25 SW	V8270C V8270 V8270 V8270 V8270 V8270C V8270C V8270C V8270C V8270C V8270C V8270C V8270C V8270C V8270C V8270C	BENZO(a)PYRENE	UG/KG	L L L 70 J 69 J 20 J 19 J L L L		180 170 170 170 170 170 170 170 170 170 17	5-point composite
Target Area	\$\$033105-01 \$\$132P \$\$132P \$\$132P \$\$132P \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W	4/1/2005 h 3/20/2001 h 3/20/2001 h 3/20/2001 h 3/20/2001 h 12/13/2004 h 12/13/2004 h 1/18/2005 h 4/7/2005 h	N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.25 SW 0.25 SW 1 SW 1 SW 0.25 SW 0.25 SW 0.25 SW 0.25 SW 0.25 SW 0.25 SW 0.25 SW 0.25 SW 0.25 SW	V8270C V8270 V8270 V8270 V8270 V8270 V8270C V8270C V8270C V8270C V8270C V8270C V8270C V8270C V8270C V8270C	BENZO(a)PYRENE	UG/KG	L L L TO J 69 J 20 J 19 J L L		180 170 170 170 170 70 70 69 20 19 170 170 170 170 175	5-point composite
Target Area	\$5033105-01 \$\$132P \$\$132P \$\$132P \$\$132P \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W	4/1/2005 h 3/20/2001 h 3/20/2001 h 3/20/2001 h 3/20/2001 h 12/13/2004 h 12/13/2004 h 1/18/2005 h 4/7/2005 h 4/7/2005 h 4/7/2005 h 3/31/2005 h	N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.25 SW 0.25 SW 0.5 SW 1 SW 0.25 SW	V8270C V8270 V8270 V8270 V8270 V8270C	BENZO(a)PYRENE	UG/KG	L L TO J 69 J 20 J 19 J L L L L L		180 170 170 170 170 70 69 20 19 170 170 170 175 175	5-point composite
Target Area	\$\$033105-01 \$\$132P \$\$132P \$\$132P \$\$132P \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W	4/1/2005 h 3/20/2001 h 3/20/2001 h 3/20/2001 h 3/20/2001 h 12/13/2004 h 12/13/2004 h 1/18/2005 h 4/7/2005 h 4/7/2005 h 4/7/2005 h 4/7/2005 h 3/31/2005 h 1/1/2005 h 1/1/2005 h 1/1/2005 h	N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.25 SW 0.25 SW 1 SW 1 SW 0.25 SW	V8270C V8270 V8270 V8270 V8270 V8270C	BENZO(a)PYRENE	UGKG UGKG UGKG UGKG UGKG UGKG UGKG UGKG	L L L TO J 69 J 20 J 19 J L L L L L		180 170 170 170 170 70 70 69 20 19 170 170 170 175 180 180	5-point composite
Target Area	\$5033105-01 \$\$132P \$\$132P \$\$132P \$\$132P \$\$132P \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W	4/1/2005 h 3/20/2001 h 3/20/2001 h 3/20/2001 h 3/20/2001 h 12/13/2004 h 12/13/2004 h 1/13/2005 h 4/7/2005 h 4/7/2005 h 4/7/2005 h 4/7/2005 h 4/1/2005 h 4/1/2005 h 1/1/2005 h	N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.25 SW 0.25 SW 0.5 SW 1 SW 0.25 SW	V8270C V8270 V8270 V8270 V8270 V8270C	BENZO(a)PYRENE	UG/KG	L L TO J 69 J 20 J 19 J L L L L L		180 170 170 170 170 170 170 170 170 170 17	5-point composite
Target Area	\$5033105-01 \$\$132P \$\$132P \$\$132P \$\$132P \$\$132P \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W	4/1/2005 h 3/20/2001 h 3/20/2001 h 3/20/2001 h 3/20/2001 h 12/13/2004 h 12/13/2004 h 1/18/2005 h 4/7/2005 h 4/7/2005 h 4/7/2005 h 4/7/2005 h 4/7/2005 h 4/7/2005 h 1/4/2005 h 1/4/2005 h 1/4/2005 h	N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.25 SW 0.25 SW 0.5 SW 1 SW 0.25 SW	W8270C W8270 W8270 W8270 W8270 W8270C	BENZO(a)PYRENE	UGKG UGKG UGKG UGKG UGKG UGKG UGKG UGKG	L L L 70 J 29 J 19 J L L L L L L L L L L L L L L L L L L L		180 170 170 170 170 170 170 170 170 170 17	5-point composite
Target Area	\$5033105-01 \$5132P \$5132P \$5132P \$5132P \$5132P \$5132W \$5132W \$5132W \$5132W \$5132W \$5132W \$5132W \$5132W \$5132W \$5132W \$5132W \$5132W \$5132W \$5132W \$5132W \$5132W	4/1/2005 h 3/20/2001 h 3/20/2001 h 3/20/2001 h 3/20/2001 h 3/20/2001 h 12/13/2004 h 12/13/2004 h 1/18/2005 h 4/7/2005 h 4/7/2005 h 4/7/2005 h 4/7/2005 h 4/1/2005 h 1/1/2005 h	N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.25 SW 0.25 SW 0.5 SW 1 SW 0.25 SW	W8270C W8270 W8270 W8270 W8270 W8270C W8270C W8270C W8270C W8270C W8270C W8270C W8270C W8270C W8270C W8270C W8270C W8270C W8270C W8270C W8270C W8270C W8270C W8270C	BENZO(a)PYRENE	UG/KG	L L L L L L L L L L L L L L L L L L L		180 170 170 170 170 170 170 170 170 170 17	5-point composite
Target Area	\$5033105-01 \$5132P \$5132P \$5132P \$5132P \$5132W \$5132W \$5132W \$5132W \$5132W \$5132W \$5132W \$5132W \$5132W \$5132W \$5132W \$5132W \$5132W \$5132W \$5132W \$5132W \$5132W	4/1/2005 h 3/20/2001 h 3/20/2001 h 3/20/2001 h 3/20/2001 h 3/20/2001 h 12/13/2004 h 12/13/2004 h 1/18/2005 h 4/7/2005 h 4/7/2005 h 4/7/2005 h 4/7/2005 h 1/1/2005 h	N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.25 SW 0.25 SW 0.5 SW 1 SW 0.25 SW	W8270C W8270 W8270 W8270 W8270 W8270C	BENZO(a)PYRENE	UG/KG	L L L L L L L L L L L L L L L L L L L	J J J J J J J J J J J J J J J J J J J	180 170 170 170 170 170 170 170 170 170 17	5-point composite
Target Area	\$5033105-01 \$5132P \$5132P \$5132P \$5132P \$5132W \$5132W \$5132W \$5132W \$5132W \$5132W \$5132W \$5132W \$5132W \$5132W \$5132W \$5132W \$5132W \$5132W \$5132W \$5132W \$5132W \$5132W \$6132W \$	4/1/2005 h 3/20/2001 h 3/20/2001 h 3/20/2001 h 3/20/2001 h 3/20/2001 h 12/13/2004 h 12/13/2004 h 1/18/2005 h 4/7/2005 h 4/7/2005 h 4/7/2005 h 4/7/2005 h 4/7/2005 h 1/1/2005 h	N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.25 SW 0.25 SW 1 SW 1 SW 0.25 SW	W8270C W8270 W8270 W8270 W8270C	BENZO(a)PYRENE	UG/KG	L L L L L L L L L L L L L L L L L L L	J J J J J J J J J J J J J J J J J J J	180 170 170 170 170 170 170 170 170 170 17	5-point composite
Target Area	\$5033105-01 \$\$132P \$\$132P \$\$132P \$\$132P \$\$132P \$\$132W \$\$13	4/1/2005 h 3/20/2001 h 3/20/2001 h 3/20/2001 h 3/20/2001 h 3/20/2001 h 12/13/2004 h 12/13/2004 h 1/18/2005 h 4/7/2005 h 4/7/2005 h 4/7/2005 h 4/7/2005 h 1/1/2005 h	N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.25 SW 0.25 SW 1 SW 1 SW 0.25 SW 0.26 SW 0.26 SW 0.26 SW 0.27 SW 0.27 SW 0.28 SW 0.48	W8270C W8270 W8270 W8270 W8270 W8270C	BENZO(a)PYRENE	UGKG UGKG UGKG UGKG UGKG UGKG UGKG UGKG	L L L L L L L L L L L L L L L L L L L	J J J J J J J J J J J J J J J J J	180 170 170 170 170 170 170 170 170 170 17	5-point composite Discrete Discrete Discrete Discrete
Target Area	\$5033105-01 \$5132P \$5132P \$5132P \$5132P \$5132W \$5132W \$5132W \$5132W \$5132W \$5132W \$5132W \$5132W \$5132W \$5132W \$5132W \$5132W \$5132W \$5132W \$5132W \$5132W \$5132W \$5132W \$6132W \$	4/1/2005 h 3/20/2001 h 3/20/2001 h 3/20/2001 h 3/20/2001 h 3/20/2001 h 12/13/2004 h 12/13/2004 h 1/18/2005 h 4/7/2005 h 4/7/2005 h 4/7/2005 h 4/7/2005 h 4/7/2005 h 1/1/2005 h	N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.25 SW 0.25 SW 0.25 SW 1 SW 1 SW 0.25 SW 0.26 SW 0.26 SW 0.26 SW 0.26 SW 0.26 SW 0.27 SW 0.27 SW 0.28 SW 0.28 SW 0.29 SW 0.29 SW 0.29 SW 0.20 SW 0.25	W8270C W8270 W8270 W8270 W8270 W8270C	BENZO(a)PYRENE	UG/KG	L L L L L L L L L L L L L L L L L L L	J J J J J J J J J J J J J J J J J J J	180 170 170 170 170 170 170 170 170 170 17	5-point composite
Target Area	\$5033105-01 \$5132P \$5132P \$5132P \$5132P \$5132P \$5132W \$5132W \$5132W \$5132W \$5132W \$5132W \$5132W \$5132W \$5132W \$5132W \$5132W \$5132W \$5132W \$5132W \$5132W \$5132W \$5132W \$6132W \$	4/1/2005 h 3/20/2001 h 3/20/2001 h 3/20/2001 h 3/20/2001 h 12/13/2004 h 12/13/2004 h 12/13/2004 h 1/18/2005 h 4/7/2005 h 4/7/2005 h 4/7/2005 h 4/7/2005 h 1/1/2005 h	N	0.25 SW 0.25 SW 0.25 SW 1 SW 1 SW 0.25 SW 0.26 SW 0.26 SW 0.26 SW 0.26 SW 0.27 SW 0.27 SW 0.28 SW 0.28 SW 0.29 SW 0.29 SW 0.29 SW 0.29 SW 0.29 SW 0.29 SW 0.20	W8270C W8	BENZO(a)PYRENE	UG/KG	L L L L L L L L L L L L L L L L L L L	J J J J J J J J J J J J J J J J J	180 170 170 170 170 170 170 170 170 170 17	5-point composite 6-point Comp
Target Area	\$5033105-01 \$\$132P \$\$132P \$\$132P \$\$132P \$\$132P \$\$132P \$\$132P \$\$132W \$\$132H \$\$132W \$\$132W \$\$132W \$\$132H \$\$132W	4/1/2005 h 3/20/2001 h 3/20/2001 h 3/20/2001 h 3/20/2001 h 3/20/2001 h 12/13/2004 h 12/13/2004 h 12/13/2004 h 1/18/2005 h 4/1/2005 h 4/1/2005 h 4/1/2005 h 1/1/2005 h	N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.25 SW 0.25 SW 0.25 SW 1 SW 1 SW 0.25 SW 0.26 SW 0.26 SW 0.27 SW 0.27 SW 0.28 SW 0.28 SW 0.29 SW 0.29 SW 0.29 SW 0.29 SW 0.25 SW 0.25 SW 0.25 SW 0.25 SW 0.26 SW 0.26 SW 0.16 SW	W8270C W8270 W8270 W8270 W8270 W8270C	BENZO(a)PYRENE	UG/KG	L L L L L L L L L L L L L L L L L L L	J J J J J J J J J J J J J J J J J	180 170 170 170 170 170 170 170 170 170 17	5-point composite 6-point Comp
Target Area	\$5033105-01 \$5132P \$5132P \$5132P \$5132P \$5132P \$5132W \$5132W \$5132W \$5132W \$5132W \$5132W \$5132W \$5132W \$5132W \$5132W \$5132W \$5132W \$5132W \$5132W \$5132W \$5132W \$5132W \$6132W \$	4/1/2005 h 3/20/2001 h 3/20/2001 h 3/20/2001 h 3/20/2001 h 12/13/2004 h 12/13/2004 h 12/13/2004 h 1/18/2005 h 4/7/2005 h 4/7/2005 h 4/7/2005 h 4/7/2005 h 1/1/2005 h	N 0 0 N 0.25 N 0.5 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N	0.25 SW 0.25 SW 0.25 SW 1 SW 1 SW 0.25 SW 0.26 SW 0.26 SW 0.27 SW 0.27 SW 0.28 SW 0.28 SW 0.29 SW 0.29 SW 0.29 SW 0.29 SW 0.25 SW 0.25 SW 0.25 SW 0.25 SW 0.26 SW 0.26 SW 0.16 SW	W8270C W8270 W8270 W8270 W8270 W8270C	BENZO(a)PYRENE	UG/KG	L L L L L L L L L L L L L L L L L L L	J J J J J J J J J J J J J J J J J	180 170 170 170 170 170 170 170 170 170 17	5-point composite 6-point Comp
Target Area	\$5033105-01 \$\$132P \$\$132P \$\$132P \$\$132P \$\$132P \$\$132P \$\$132P \$\$132W \$\$132H AL060200-01_371 S\$040105-01 \$\$040105-01 \$\$040105-01 \$\$040105-01 \$\$050221-A	4/1/2005 h 3/20/2001 h 3/20/2001 h 3/20/2001 h 3/20/2001 h 3/20/2001 h 12/13/2004 h 12/13/2004 h 12/13/2004 h 1/18/2005 h 4/1/2005 h 4/1/2005 h 4/1/2005 h 4/1/2005 h 1/1/2005 h	N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.25 SW 0.25 SW 0.25 SW 1 SW 1 SW 0.25 SW	W8270C W8270 W8270 W8270 W8270 W8270C	BENZO(a)PYRENE	UG/KG	L L L L L L L L L L L L L L L L L L L	J J J J J J J J J J J J J J J J J J J	180 170 170 170 170 170 170 170 170 180 185 185 150.881 10000 1220 180 170 170 170 170 170 170 170 170 170 17	5-point composite 6-point Comp
Target Area	\$5033105-01 \$5132P \$5132P \$5132P \$5132P \$5132P \$5132W \$5040105-01 \$5040105-01 \$5022Z21-A \$502Z22-A	4/1/2005 h 3/20/2001 h 3/20/2001 h 3/20/2001 h 3/20/2001 h 12/13/2004 h 12/13/2004 h 12/13/2004 h 1/18/2005 h 4/7/2005 h 4/7/2005 h 4/7/2005 h 3/31/2005 h 4/1/2005 h 1/4/2005 h	N	0.25 SW 0.25 SW 0.25 SW 1 SW 1 SW 0.25 SW 0.16 SW 0.25 SW 0.25 SW	W8270C W8270 W8270 W8270 W8270 W8270C	BENZO(a)PYRENE	UGKG UGKG UGKG UGKG UGKG UGKG UGKG UGKG	RENE 5-POINT CC 10000 440 220 J 230 J 240 J 250 J 260 J 271 J 271 J 271 J 275 J 275 J 277	J J J J J J J J J J J J J J J J J J J	180 170 170 170 170 170 170 170 170 170 17	5-point composite Discrete
Target Area	\$5033105-01 \$\$132P \$\$132P \$\$132P \$\$132P \$\$132P \$\$132P \$\$132P \$\$132W \$\$132H AL060200-01_371 S\$040105-01 \$\$040105-01 \$\$040105-01 \$\$040105-01 \$\$050221-A	4/1/2005 h 3/20/2001 h 3/20/2001 h 3/20/2001 h 3/20/2001 h 3/20/2001 h 12/13/2004 h 12/13/2004 h 12/13/2004 h 1/18/2005 h 4/1/2005 h 4/1/2005 h 4/1/2005 h 4/1/2005 h 1/1/2005 h	N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.25 SW 0.25 SW 0.5 SW 1 SW 1 SW 0.25 SW 0.16 SW 0.15 SW	W8270C W8270 W8270 W8270 W8270 W8270 W8270C	BENZO(a)PYRENE	UG/KG	L L L L L L L L L L L L L L L L L L L	J J J J J J J J J J J J J J J J J J J	180 170 170 170 170 170 170 170 170 170 17	5-point composite 6-point Comp
Target Area	\$5033105-01 \$\$132P \$\$132P \$\$132P \$\$132P \$\$132P \$\$132P \$\$132P \$\$132P \$\$132W \$\$13	4/1/2005 h 3/20/2001 h 3/20/2001 h 3/20/2001 h 3/20/2001 h 3/20/2001 h 12/13/2004 h 12/13/2004 h 12/13/2004 h 1/18/2005 h 4/1/2005 h 4/1/2005 h 4/1/2005 h 4/1/2005 h 1/1/2005 h	N	0.25 SW 0.25 SW 0.25 SW 1 SW 1 SW 0.25 SW 0.16 SW 0.25 SW 0.25 SW 0.25 SW 0.25 SW 0.25 SW	W8270C W8270 W8270 W8270 W8270 W8270C	BENZO(a)PYRENE	UG/KG	L L L L L L L L L L L L L L L L L L L	J J J J J J J J J J J J J J J J J J J	180 170 170 170 170 170 170 170 170 170 17	5-point composite 5-point Comp
Target Area	\$5033105-01 \$\$132P \$\$132P \$\$132P \$\$132P \$\$132P \$\$132P \$\$132P \$\$132W \$\$5132W \$\$5	4/1/2005 h 3/20/2001 h 3/20/2001 h 3/20/2001 h 3/20/2001 h 3/20/2001 h 12/13/2004 h 12/13/2004 h 12/13/2004 h 1/18/2005 h 4/1/2005 h 4/1/2005 h 4/1/2005 h 4/1/2005 h 1/4/2005 h	N	0.25 SW 0.25 SW 1 SW 1 SW 1 SW 1 SW 0.25 SW	W8270C W8270 W8270 W8270 W8270 W8270 W8270C	BENZO(a)PYRENE	UG/KG	L L L L L L L L L L L L L L L L L L L	J J J J J J J J J J J J J J J J J J J	180 170 170 170 170 170 170 170 170 185 185 185 150.381 10000 120 180 170 170 170 170 170 170 170 170 170 17	5-point composite 6-point Comp
Target Area	\$5033105-01 \$\$132P \$\$132P \$\$132P \$\$132P \$\$132P \$\$132P \$\$132P \$\$132P \$\$132W \$\$13	4/1/2005 h 3/20/2001 h 3/20/2001 h 3/20/2001 h 3/20/2001 h 3/20/2001 h 12/13/2004 h 12/13/2004 h 12/13/2004 h 1/18/2005 h 4/1/2005 h 4/1/2005 h 4/1/2005 h 4/1/2005 h 1/1/2005 h	N	0.25 SW 0.25 SW 0.25 SW 1 SW 1 SW 0.25 SW 0.16 SW 0.25 SW	W8270C W8270 W8270 W8270 W8270 W8270C	BENZO(a)PYRENE	UG/KG	L L L L L L L L L L L L L L L L L L L	J J J J J J J J J J J J J J J J J J J	180 170 170 170 170 170 170 170 170 170 17	5-point composite 5-point Comp
Target Area	\$5033105-01 \$\$132P \$\$132P \$\$132P \$\$132P \$\$132P \$\$132P \$\$132P \$\$132W \$\$5132W \$	4/1/2005 h 3/20/2001 h 3/20/2001 h 3/20/2001 h 3/20/2001 h 3/20/2001 h 3/20/2001 h 12/13/2004 h 12/13/2004 h 1/18/2005 h 4/1/2005 h 4/1/2005 h 4/1/2005 h 4/1/2005 h 1/1/2005 h 1/1/2001 h	N	0.25 SW 0.25 SW 1.5 SW 1 SW 1.5 SW 0.25 SW	W8270C W8270 W8270 W8270 W8270 W8270 W8270C	BENZO(a)PYRENE	UGKG UGKG UGKG UGKG UGKG UGKG UGKG UGKG	L L L L L L L L L L L L L L L L L L L	J J J J J J J J J J J J J J J J J J J	180 170 170 170 170 170 170 170 170 170 17	5-point composite 6-point Comp
Target Area	\$5033105-01 \$\$132P \$\$132P \$\$132P \$\$132P \$\$132P \$\$132P \$\$132P \$\$132P \$\$132W \$\$13	4/1/2005 h 3/20/2001 h 3/20/2001 h 3/20/2001 h 3/20/2001 h 3/20/2001 h 12/13/2004 h 12/13/2004 h 12/13/2004 h 1/18/2005 h 4/1/2005 h 4/1/2005 h 4/1/2005 h 4/1/2005 h 1/1/2005 h 1/1/2001 h	N	0.25 SW 0.25 SW 0.25 SW 1 SW 1 SW 0.25 SW	W8270C W8270 W8270 W8270 W8270 W8270C	BENZO(a)PYRENE	UGKG UGKG UGKG UGKG UGKG UGKG UGKG UGKG	RENE 5-POINT CC RENE 5-POINT CC 10000 440 240 J 220 J 180 J 171 J 175 J 56.3 J 45.5 J 52.2 J 430	J J J J J J J J J J J J J J J J J J J	180	5-point composite 6-point Comp
Target Area	\$5033105-01 \$\$132P \$\$132P \$\$132P \$\$132P \$\$132P \$\$132P \$\$132P \$\$132W \$\$13	4/1/2005 h 3/20/2001 h 3/20/2001 h 3/20/2001 h 3/20/2001 h 3/20/2001 h 12/13/2004 h 12/13/2004 h 12/13/2004 h 1/18/2005 h 4/7/2005 h 4/7/2005 h 4/7/2005 h 4/7/2005 h 1/1/2005 h 1/1/2001 h	N	0.25 SW 0.25 SW 0.25 SW 1 SW 1 SW 0.25 SW 0.16 SW 0.25 SW	W8270C	BENZO(a)PYRENE	UGKG UGKG UGKG UGKG UGKG UGKG UGKG UGKG	L L L L L L L L L L L L L L L L L L L	J J J J J J J J J J J J J J J J J J J	180 170 170 170 170 170 170 170 170 170 17	5-point composite 6-point Comp
Target Area	\$5033105-01 \$\$132P \$\$132P \$\$132P \$\$132P \$\$132P \$\$132P \$\$132P \$\$132W \$\$13	4/1/2005 h 3/20/2001 h 3/20/2001 h 3/20/2001 h 3/20/2001 h 3/20/2001 h 12/13/2004 h 12/13/2004 h 12/13/2004 h 1/18/2005 h 4/1/2005 h 4/1/2005 h 4/1/2005 h 4/1/2005 h 1/4/2005 h 1/4/2003 h 1/4/2/2003 h 1/4/2/2004 h 1/4/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/	N	0.25 SW 0.25 SW 0.25 SW 1 SW 1 SW 0.25 SW 0.16 SW 0.25 SW	W8270C	BENZO(a)PYRENE	UGKG UGKG UGKG UGKG UGKG UGKG UGKG UGKG	L L L L L L L L L L L L L L L L L L L	J J J J J J J J J J J J J J J J J J J	180 170 170 170 170 170 170 170 170 170 17	5-point composite 6-point Comp

Table C.4-8
Former A Range
Calculation of Averages Concentrations for PAHs Exhibiting Maximum Concentrations Above a Screening Criterion in the PAH 4 Exposure Area

										Concentration	
			Normal or	F. I B. at	Ameliation			Barriera		Used in	
Area	Location ID	Collection Date	Field Begin Duplicate Depth (ft		Analytical Method	Analyte	Units	Detected Value	Flags	Computation of Averages	Sample Type
Target Area	SS011905-01	1/21/2005 1	N	0 0.25	SW8270C	BENZO(b)FLUORANTHENE	UG/KG	L			-point Composite
Target Area	SS033105-01 SS132P	4/1/2005 1			SW8270C SW8270	BENZO(b)FLUORANTHENE	UG/KG UG/KG	Ų			-point Composite
Target Area Target Area	SS132P SS132P	3/20/2001 f 3/20/2001 f			SW8270 SW8270	BENZO(b)FLUORANTHENE BENZO(b)FLUORANTHENE	UG/KG	L L			5-point composite 5-point composite
Target Area	SS132P	3/20/2001	N 0	.5 1	SW8270	BENZO(b)FLUORANTHENE	UG/KG	Ĺ		170 5	5-point composite
Target Area	SS132P	3/20/2001 1			SW8270	BENZO(b)FLUORANTHENE	UG/KG UG/KG	05.1			5-point composite
Target Area Target Area	SS132W SS132W	12/13/2004 f 12/13/2004 f			SW8270C SW8270C	BENZO(b)FLUORANTHENE BENZO(b)FLUORANTHENE	UG/KG	85 J 67 J			i-point Composite i-point Composite
Target Area	SS132W	1/18/2005 1	N	0 0.25	SW8270C	BENZO(b)FLUORANTHENE	UG/KG	25 J		25 5	-point Composite
Target Area Target Area	SS132W SS132W	1/18/2005 f 4/7/2005 f			SW8270C SW8270C	BENZO(b)FLUORANTHENE BENZO(b)FLUORANTHENE	UG/KG UG/KG	22 J			i-point Composite i-point Composite
Target Area	SS132W	4/7/2005 1			SW8270C	BENZO(b)FLUORANTHENE	UG/KG	ĭ			5-point Composite
Target Area	SS132W	4/7/2005 1			SW8270C	BENZO(b)FLUORANTHENE	UG/KG	L			-point Composite
Target Area Target Area	SS132W SS132W	4/7/2005 f 3/31/2005 f			SW8270C SW8270C	BENZO(b)FLUORANTHENE BENZO(b)FLUORANTHENE	UG/KG UG/KG	L			5-point Composite 5-point Composite
Target Area	SS132W	4/1/2005 I			SW8270C	BENZO(b)FLUORANTHENE	UG/KG	ĭ			5-point Composite
Target Area	SS132W	3/31/2005			SW8270C	BENZO(b)FLUORANTHENE	UG/KG	L			-point Composite
Target Area Target Area	SS132W SS132W	4/1/2005 f 1/4/2005 f			SW8270C SW8270C	BENZO(b)FLUORANTHENE BENZO(b)FLUORANTHENE	UG/KG UG/KG	L			5-point Composite 5-point Composite
Target Area	SS132W	1/4/2005 1			SW8270C	BENZO(b)FLUORANTHENE	UG/KG	ũ	i		i-point Composite
Target Area	SS132W	1/4/2005 1	N 0	.5 1	SW8270C	BENZO(b)FLUORANTHENE	UG/KG	L			-point Composite
Target Area	AL060200-01_371	4/23/2003 1	V	0 0.16	SW8270C	AVERAGE FOR BENZO(b)F BENZO(b)FLUORANTHENE	UG/KG	9600	MPOSITE		Discrete
Target Area	AL060200-01_371	4/23/2003 1	N	0 0.16	SW8270C	BENZO(b)FLUORANTHENE	UG/KG	570		570 E	Discrete
Target Area	AL060200-01_371	4/23/2003 1			SW8270C	BENZO(b)FLUORANTHENE	UG/KG	350 J			Discrete
Target Area Target Area	AL060200-01_371 AL060200-01_371	4/23/2003 t 4/23/2003 t			SW8270C SW8270C	BENZO(b)FLUORANTHENE BENZO(b)FLUORANTHENE	UG/KG UG/KG	320 J 250 J			Discrete Discrete
Target Area	AL060200-01_371	4/23/2003 1	N	0 0.16	SW8270C	BENZO(b)FLUORANTHENE	UG/KG	180 J		180 E	Discrete
Target Area	AL060200-01_371	4/23/2003 1			SW8270C	BENZO(b)FLUORANTHENE	UG/KG	97 J			Discrete
Target Area Target Area	AL060200-01_371 SS040105-01	4/23/2003 t 4/7/2005 t			SW8270C SW8270C	BENZO(b)FLUORANTHENE BENZO(b)FLUORANTHENE	UG/KG UG/KG	L			Discrete Discrete
Target Area	SS040105-01	4/7/2005 F			SW8270C	BENZO(b)FLUORANTHENE	UG/KG	ũ		170 E	Discrete
Target Area	SS02221-A	9/7/2001			SW8270C	BENZO(b)FLUORANTHENE	UG/KG	166 J			Discrete
Target Area Target Area	SS02221-A SS02222-A	9/7/2001 f 9/7/2001 f			SW8270C SW8270C	BENZO(b)FLUORANTHENE BENZO(b)FLUORANTHENE	UG/KG UG/KG	157 J 338 J			Discrete Discrete
Target Area	SS02223-A	9/7/2001 1	N	0 0.25	SW8270C	BENZO(b)FLUORANTHENE	UG/KG	L		169.5 E	Discrete
Target Area	SS02224-A	9/7/2001			SW8270C	BENZO(b)FLUORANTHENE	UG/KG	120 J			Discrete
Target Area Target Area	SS02225-A SS02226-A	9/7/2001 f 9/7/2001 f			SW8270C SW8270C	BENZO(b)FLUORANTHENE BENZO(b)FLUORANTHENE	UG/KG UG/KG	73.1 J			Discrete Discrete
Target Area	SS02227-A	9/7/2001 1	N	0 0.25	SW8270C	BENZO(b)FLUORANTHENE	UG/KG	122 J		122 🛭	Discrete
Target Area Target Area	SS02228-A SS02231-A	9/7/2001 f 9/7/2001 f			SW8270C SW8270C	BENZO(b)FLUORANTHENE BENZO(b)FLUORANTHENE	UG/KG UG/KG	L			Discrete Discrete
Target Area	SS132P	3/20/2001 1			SW8270C	BENZO(b)FLUORANTHENE	UG/KG	510	'		Discrete
Target Area	SS132P	3/20/2001	N 0	.5 1	SW8270	BENZO(b)FLUORANTHENE	UG/KG	440		440 E	Discrete
Target Area Target Area	SS132P SS37MM_HEAVERY	3/20/2001 f 8/5/1999 f			SW8270 CSVOL	BENZO(b)FLUORANTHENE BENZO(b)FLUORANTHENE	UG/KG UG/KG	L) 		Discrete Discrete
raigetriica	OOSTWINI_TIEXVEICT	0/0/10001		0 0.20	COVOL			LUORANTHENE I	DISCRETE		risorcic
Target Area	SS011905-01	1/21/2005 1			SW8270C SW8270C	DIBENZ(a,h)ANTHRACENE	UG/KG	L			5-point Composite 5-point Composite
		4/4/2005									
Target Area Target Area	SS033105-01 SS132P	4/1/2005 t 3/20/2001 t				DIBENZ(a,h)ANTHRACENE DIBENZ(a,h)ANTHRACENE	UG/KG UG/KG	L L			
Target Area Target Area	SS132P SS132P	3/20/2001 f 3/20/2001 f	N 0.2	0 0.25 25 0.5	SW8270 SW8270	DIBENZ(a,h)ANTHRACENE DIBENZ(a,h)ANTHRACENE	UG/KG UG/KG	L L) 	170 5 170 5	5-point composite 5-point composite
Target Area Target Area Target Area	SS132P SS132P SS132P	3/20/2001 f 3/20/2001 f 3/20/2001 f	N N 0.2 N 0	0 0.25 25 0.5 .5 1	SW8270 SW8270 SW8270	DIBENZ(a,h)ANTHRACENE DIBENZ(a,h)ANTHRACENE DIBENZ(a,h)ANTHRACENE	UG/KG UG/KG UG/KG	L L	 	170 5 170 5 170 5	i-point composite i-point composite i-point composite
Target Area Target Area	SS132P SS132P	3/20/2001 f 3/20/2001 f	N 0.2 N 0.2 N 0	0 0.25 25 0.5 .5 1	SW8270 SW8270	DIBENZ(a,h)ANTHRACENE DIBENZ(a,h)ANTHRACENE	UG/KG UG/KG	L L	 	170 5 170 5 170 5 170 5	5-point composite 5-point composite
Target Area Target Area Target Area Target Area Target Area Target Area	SS132P SS132P SS132P SS132P SS132W SS132W	3/20/2001 3/20/2001 3/20/2001 3/20/2001 4/7/2005 4/7/2005	N 0.3 N 0.3 N 0 N 0	0 0.25 25 0.5 .5 1 .5 1 0 0.25 0 0.25	SW8270 SW8270 SW8270 SW8270 SW8270C SW8270C	DIBENZ(a,h)ANTHRACENE DIBENZ(a,h)ANTHRACENE DIBENZ(a,h)ANTHRACENE DIBENZ(a,h)ANTHRACENE DIBENZ(a,h)ANTHRACENE DIBENZ(a,h)ANTHRACENE	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG	U U U		170 5 170 5 170 5 170 5 170 5 170 5	i-point composite i-point composite i-point composite i-point composite i-point Composite i-point Composite
Target Area	SS132P SS132P SS132P SS132P SS132W SS132W SS132W SS132W	3/20/2001 3/20/2001 3/20/2001 3/20/2001 4/7/2005 4/7/2005	N 0.3 N 0.3 N 0 N 0	0 0.25 25 0.5 5 1 5 1 0 0.25 0 0.25 0 0.25	SW8270 SW8270 SW8270 SW8270 SW8270C SW8270C SW8270C	DIBENZ(a,h)ANTHRACENE DIBENZ(a,h)ANTHRACENE DIBENZ(a,h)ANTHRACENE DIBENZ(a,h)ANTHRACENE DIBENZ(a,h)ANTHRACENE DIBENZ(a,h)ANTHRACENE DIBENZ(a,h)ANTHRACENE	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG	U U U		170 5 170 5 170 5 170 5 170 5 170 5 170 5	i-point composite i-point composite i-point composite i-point composite i-point Composite i-point Composite i-point Composite
Target Area Target Area Target Area Target Area Target Area Target Area	SS132P SS132P SS132P SS132P SS132W SS132W	3/20/2001 3/20/2001 3/20/2001 3/20/2001 4/7/2005 4/7/2005	N 0.2 N 0.3 N 0 N 0 N N	0 0.25 25 0.5 .5 1 .5 1 0 0.25 0 0.25 0 0.25	SW8270 SW8270 SW8270 SW8270 SW8270C SW8270C	DIBENZ(a,h)ANTHRACENE DIBENZ(a,h)ANTHRACENE DIBENZ(a,h)ANTHRACENE DIBENZ(a,h)ANTHRACENE DIBENZ(a,h)ANTHRACENE DIBENZ(a,h)ANTHRACENE	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG	U U U		170 5 170 5 170 5 170 5 170 5 170 5 170 5	i-point composite i-point composite i-point composite i-point composite i-point Composite i-point Composite
Target Area	\$\$132P \$\$132P \$\$132P \$\$132P \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W	3/20/2001 I 3/20/2001 I 3/20/2001 I 3/20/2001 I 4/7/2005 I 4/7/2005 I 4/7/2005 I 3/31/2005 I 4/1/2005 I	N 0.2 N 0 N 0 N 0 N N N N	0 0.25 25 0.5 5 1 .5 1 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25	SW8270 SW8270 SW8270 SW8270C SW8270C SW8270C SW8270C SW8270C SW8270C SW8270C SW8270C	DIBENZ(a,h)ANTHRACENE	UG/KG			170 5 170 5 170 5 170 5 170 5 170 5 170 5 170 5	i-point composite
Target Area	SS132P SS132P SS132P SS132P SS132W SS132W SS132W SS132W SS132W SS132W	3/20/2001 3/20/2001 3/20/2001 3/20/2001 3/20/2001 4/7/2005 4/7/2005 4/7/2005 4/7/2005 3/31/2005 4/1/2005 1/2/3/2004 1/2/2004 1	N 0.2 N 0.3 N 0 N 0 N 0 N 0 N 0 N N 0 N N 0 N N N 0 N N N N	0 0.25 25 0.5 .5 1 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25	SW8270 SW8270 SW8270 SW8270 SW8270C SW8270C SW8270C SW8270C SW8270C SW8270C SW8270C SW8270C SW8270C	DIBENZ(a,h)ANTHRACENE	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG			170 5 170 5 170 5 170 5 170 5 170 5 170 5 170 5 175 5 176 5	-point composite
Target Area	\$\$132P \$\$132P \$\$132P \$\$132P \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W	3/20/2001 I 3/20/2001 I 3/20/2001 I 3/20/2001 I 4/7/2005 I 4/7/2005 I 4/7/2005 I 4/7/2005 I 4/1/2005 I 12/13/2004 I 1/18/2005 I	N 0.: N 0.: N 0.: N 0 N 0 N 0 N N 0 N N N N N N N N N N N	0 0.25 55 0.5.5 1 1.5 1 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25	SW8270 SW8270 SW8270 SW8270 SW8270C SW8270C SW8270C SW8270C SW8270C SW8270C SW8270C SW8270C SW8270C SW8270C SW8270C	DIBENZ(a,h)ANTHRACENE	UG/KG			170 5 170 5 170 5 170 5 170 5 170 5 170 5 170 5 175 5 180 5 180 5	i-point composite
Target Area	\$\$132P \$\$132P \$\$132P \$\$132P \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W	3/20/2001 3/20/2001 3/20/2001 3/20/2001 4/7/2005 4/7/2005 4/7/2005 4/7/2005 4/7/2005 1/1/2005 1/1/2005 1/1/2005 1/1/2005 1/1/2006 1/1/2006 1/1/2006 1/1/2006 1/1/2006 1/1/2006		0 0.25 0.5 0.5 5 10 0 0.25 0 0.25	SW8270 SW8270 SW8270 SW8270C SW8270C SW8270C SW8270C SW8270C SW8270C SW8270C SW8270C SW8270C SW8270C SW8270C SW8270C SW8270C SW8270C	DIBENZ(a,h)ANTHRACENE	UG/KG			170 5 170 5 170 5 170 5 170 5 170 5 170 5 175 5 180 5 180 5	i-point composite
Target Area	\$\$132P \$\$132P \$\$132P \$\$132P \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W	3/20/2001 I 3/20/2001 I 3/20/2001 I 3/20/2001 I 4/7/2005 I 4/7/2005 I 4/7/2005 I 4/7/2005 I 4/1/2005 I 12/13/2004 I 1/18/2005 I	N 0.3 N 0.3 N 0.5 N 0 N 0 N 0	0 0.25 0.5 0.5 5 1 5 1 0 0.25 0 0.25	SW8270 SW8270 SW8270 SW8270 SW8270C SW8270C SW8270C SW8270C SW8270C SW8270C SW8270C SW8270C SW8270C SW8270C SW8270C	DIBENZ(a,h)ANTHRACENE	UG/KG			170 5 170 5 170 5 170 5 170 5 170 5 170 5 175 5 180 5 180 5 180 5	i-point composite
Target Area	\$\$132P \$\$132P \$\$132P \$\$132P \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W	3/20/2001 3/20/2001 1 3/20/2001 1 3/20/2001 4/7/2005 4/7/2005 4/7/2005 4/7/2005 3/31/2005 4/1/2005 1/18/2004 1/18/2005 3/31/2004 1/18/2005 3/31/2005 4/1/2005 1/18/200	N 0.2 N 0.2 N 0 N 0 N N 0 N N N N N N N N N N N N N	0 0.25 0.5 0.5 5 1 1.5 1 0 0.25 0 0.25	SW8270 SW8270 SW8270 SW8270 SW8270C SW8270C SW8270C SW8270C SW8270C SW8270C SW8270C SW8270C SW8270C SW8270C SW8270C SW8270C SW8270C SW8270C SW8270C SW8270C SW8270C SW8270C	DIBENZ(a,h)ANTHRACENE	UG/KG			170 5 170 5 170 5 170 5 170 5 170 5 170 5 175 5 180 5 180 5 180 5	i-point composite
Target Area	\$\$132P \$\$132P \$\$132P \$\$132P \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W	3/20/2001 3/20/2001 3/20/2001 3/20/2001 3/20/2001 4/7/2005 4/7/2005 4/7/2005 4/7/2005 1/13/2004 1/14/2005 1/18/2005 1/18/2005 4/1/2005 1/18/2005	N	0 0.25 0.5 0.5 1.5 1 0 0.25 0 0.25	SW8270 SW8270 SW8270 SW8270C	DIBENZ(a,h)ANTHRACENE	UG/KG			170 5 170 5 170 5 170 5 170 5 170 5 170 5 175 5 175 5 180 5 180 5 180 5 180 5	i-point composite
Target Area	\$\$132P \$\$132P \$\$132P \$\$132P \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W	3/20/2001 3/20/2001 1 3/20/2001 1 3/20/2001 4/7/2005 4/7/2005 4/7/2005 3/31/2005 4/7/2005 12/13/2004 12/13/2004 1/18/2005 3/31/2005 1/1/200	N	0 0.25 0.5 0.5 1.5 0.5 0 0.25 0 0 0.25 0 0 0.25	SW8270 SW8270 SW8270 SW8270 SW8270C SW8270C SW8270C SW8270C SW8270C SW8270C SW8270C SW8270C SW8270C SW8270C SW8270C SW8270C SW8270C SW8270C SW8270C SW8270C SW8270C SW8270C	DIBENZ(a,h)ANTHRACENE	UGKG UGKG UGKG UGKG UGKG UGKG UGKG UGKG	U U U U U U U U U U U U U U U U U U U		170 5 170 5 170 5 170 5 170 5 170 5 170 5 170 5 170 5 170 5 180 5 180 5 180 5 180 5 180 5 180 5	i-point composite
Target Area	\$\$132P \$\$132P \$\$132P \$\$132P \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W	3/20/2001 3/20/2001 3/20/2001 3/20/2001 4/7/2005 4/7/2005 4/7/2005 4/7/2005 4/7/2005 1/1/2005 1/1/2005 1/1/2005 1/1/2005 1/1/2005 1/1/2005 1/1/2005 1/1/2005	N	0 0.25 25 0.5 5 1 0 0.25 0 0.25 1 0 0.25	\$W8270 \$W8270 \$W8270 \$W8270 \$W8270C	DIBENZ(a,h)ANTHRACENE	UG/KG	L L L L L L L L L L L L L L L L L L L		170 5 170 5 170 5 170 5 170 5 170 5 170 5 170 5 170 5 170 5 170 5 170 5 180 5 180 5 180 5 180 5 180 5 180 5 180 5 180 5 180 5	i-point composite point Composite
Target Area	\$\$132P \$\$132P \$\$132P \$\$132P \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W \$\$132W	3/20/2001 3/20/2001 3/20/2001 3/20/2001 3/20/2001 4/7/2001 4/7/2005 4/7/2005 4/7/2005 3/31/2006 4/1/2005 1/2/3/2004 12/13/2004 1/18/2005 1/4/2005 1/4/2005 1/4/2005 1/4/2005 1/4/2005 4/23/2003 4/	N	0 0.25 0.5 0.5 1.5 0.5 0 0.25 0 0 0.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	\$W8270 \$W8270 \$W8270 \$W8270 \$W8270C	DIBENZ(a,h)ANTHRACENE AVERAGE FOR DIBENZO(a,h)ANTHRACENE DIBENZ(a,h)ANTHRACENE DIBENZ(a,h)ANTHRACENE DIBENZ(a,h)ANTHRACENE	UG/KG		MPOSITE	170 5 170 5 170 5 170 5 170 5 170 5 170 5 170 5 170 5 170 5 170 5 180 5 180 5 180 5 180 5 180 5 180 5 185 5 185 5 185 5 185 5 185 5 185 5 185 5 185 5 185 5	i-point composite
Target Area	\$\$132P \$\$132P \$\$132P \$\$132P \$\$132W \$\$142W	3/20/2001 3/20/2001 3/20/2001 3/20/2001 3/20/2001 4/7/2005 4/7/2005 4/7/2005 3/31/2005 3/31/2005 1/3/2004 1/3/2004 1/3/2004 1/3/2005 1/3/2004 1/3/2005 1/3/	N	0 0.25 0.5 0.5 1.5 1 0 0.25 0 0 0 0.25 0 0 0 0.25 0 0 0 0 0.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	\$W8270 \$W8270 \$W8270 \$W8270 \$W8270C \$W	DIBENZ(a,h)ANTHRACENE	UG/KG	ENE 5-POINT CC 1800 J 140 J 52 J 51 J	MPOSITE	170 5 170 5 170 5 170 5 170 5 170 5 170 5 170 5 170 5 170 5 170 5 170 5 170 5 180 5	i-point composite
Target Area	\$\$132P \$\$132P \$\$132P \$\$132P \$\$132W \$\$	3/20/2001 3/20/2001 3/20/2001 3/20/2001 3/20/2001 4/7/2005 4/7/2005 4/7/2005 3/31/2005 4/1/2005 1/18/2005	N	0 0.25 0.5 0.5 1.5 0.5 0 0.25 0 0 0.26 0 0 0 0.26 0 0 0.26 0 0 0 0 0.26 0 0 0 0 0 0.26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	\$\text{SW8270}\$ \$\text{SW8270}\$ \$\text{SW8270}\$ \$\text{SW8270C}\$	DIBENZ(a,h)ANTHRACENE	UG/KG	L L L L L L L L L L L L L L L L L L L	MPOSITE	170 5 170 5 170 5 170 5 170 5 170 5 170 5 170 5 170 5 170 5 175 5 180 5	i-point composite i-point Comp
Target Area	\$\$132P \$\$132P \$\$132P \$\$132P \$\$132W \$\$142W	3/20/2001 3/20/2001 3/20/2001 3/20/2001 3/20/2001 4/7/2005 4/7/2005 4/7/2005 3/31/2005 3/31/2005 1/3/2004 1/3/2004 1/3/2004 1/3/2005 1/3/2004 1/3/2005 1/3/	N	0 0.25 25 0.5.5 1 0 0.25 0 0 0.16 0 0 0.16 0 0 0.16 0 0 0.16	\$W8270 \$W8270 \$W8270 \$W8270 \$W8270C \$W	DIBENZ(a,h)ANTHRACENE	UG/KG	ENE 5-POINT CC 1800 J 140 J 52 J 51 J	UNITED STEELS	170 5 170 5	i-point composite
Target Area	\$\$132P \$\$132P \$\$132P \$\$132P \$\$132W \$\$	3/20/2001 3/20/2001 3/20/2001 3/20/2001 4/7/2005 4/7/2005 4/7/2005 4/7/2005 3/31/2005 1/1/2005 1/1/2005 1/1/2006 1/1/2005 1/1/2005 1/1/2005 1/1/2005 1/1/2005 1/1/2005 1/1/2005 1/1/2005 1/1/2005 1/1/2005 1/1/2003 4/23/2003 4/23/2003 4/23/2003 4/23/2003 4/23/2003 4/23/2003 4/23/2003 4/23/2003 4/23/2003	N	0 0.25 0.5 0.5 1.5 0.5 1.5 1 0 0.25 0	\$W8270 \$W8270 \$W8270 \$W8270 \$W8270C \$W	DIBENZ(a,h)ANTHRACENE	UG/KG	L L L L L L L L L L L L L L L L L L L	J J DMPOSITE	170 5 170 5 170 5 170 5 170 5 170 5 170 5 170 5 170 5 170 5 175 5 180 5 185 5 185 5 175 175 175 175 175 175 175 175 175 175	i-point composite i-point Comp
Target Area	\$\$132P \$\$132P \$\$132P \$\$132P \$\$132W \$\$142W \$\$142W \$\$142W \$\$142W \$\$142W \$\$142W \$\$142W \$\$142W	3/20/2001 3/20/2001 3/20/2001 3/20/2001 3/20/2001 4/7/2005 4/7/2005 4/7/2005 4/7/2005 3/31/2005 3/31/2005 1/3/2004 1/3/2004 1/3/2004 1/3/2005 1/4/		0 0.25 25 0.5 5 1 0 0.25 0 0.26 0 0.26 0 0.26 0 0.26 0 0.27	\$W8270 \$W8270 \$W8270 \$W8270 \$W8270C \$W	DIBENZ(a,h)ANTHRACENE	UG/KG	ENE 5-POINT CC SENE 5-POINT CC 1800 J 140 J 52 J 51 J 39 J L L L L L L L L L L L L L	JUNION STEEL	170 5 170 5 170 5 170 5 170 5 170 5 170 5 170 5 170 5 170 5 170 5 180 5	i-point composite i-point Comp
Target Area	\$\$132P \$\$132P \$\$132P \$\$132P \$\$132W \$\$	3/20/2001 3/20/2001 3/20/2001 3/20/2001 4/7/2005 4/7/2005 4/7/2005 4/7/2005 3/31/2005 1/1/2005 1/1/2005 1/1/2006 1/1/2005 1/1/2005 1/1/2005 1/1/2005 1/1/2005 1/1/2005 1/1/2005 1/1/2005 1/1/2005 1/1/2005 1/1/2003 4/23/2003 4/23/2003 4/23/2003 4/23/2003 4/23/2003 4/23/2003 4/23/2003 4/23/2003 4/23/2003	N	0 0.25 0.5 0.5 1.5 0.5 5.5 1 0 0.25	\$W8270 \$W8270 \$W8270 \$W8270 \$W8270C \$W	DIBENZ(a,h)ANTHRACENE	UG/KG	L L L L L L L L L L L L L L L L L L L	J J J J J J J J J J J J J J J J J J J	170 5 170 5 170 5 170 5 170 5 170 5 170 5 170 5 170 5 170 5 170 5 180 5	i-point composite i-point Comp
Target Area	\$\$132P \$\$132P \$\$132P \$\$132P \$\$132W	3/20/2001 3/20/2001 3/20/2001 3/20/2001 4/7/2005 4/7/2005 4/7/2005 4/7/2005 3/31/2005 1/1/2005 1/1/2005 1/1/2005 1/1/2005 1/1/2005 1/1/2005 1/1/2005 1/1/2005 1/1/2005 1/1/2005 1/1/2005 1/1/2005 1/1/2005 1/1/2005 1/1/2005 1/1/2005 1/1/2005 1/1/2005 4/23/2003	N	0 0.25 0.5 0.5 1.5 0.5 1.5 1.5 0.0 0.25	\$W8270 \$W8270 \$W8270 \$W8270 \$W8270 \$W8270C	DIBENZ(a,h)ANTHRACENE	UG/KG	EENE 5-POINT CC 1800 J 52 J 53 J 53 J 64 L 64 L 65 L 66	J J J J J J J J J J J J J J J J J J J	170 5 170 5 170 5 170 5 170 5 170 5 170 5 170 5 170 5 170 5 170 5 180 5 180 5 180 5 180 5 180 5 180 5 180 5 180 5 180 5 180 5 185 5 185 5 185 5 185 5 175 10	i-point composite i-point Comp
Target Area	\$\$132P \$\$132P \$\$132P \$\$132P \$\$132W \$\$140000001_371 \$\$140000001_371 \$\$140000001_371 \$\$140000001_371 \$\$140000001_371 \$\$140000001_371 \$\$140000001_371 \$\$140000001_371 \$\$140000001_371 \$\$140000001_371 \$\$140000001_371 \$\$140000001_371 \$\$140000001_371 \$\$140000001_371 \$\$140000001_371 \$\$140000001_371 \$\$140000001_371 \$\$1400000001_371 \$\$1400000001_371 \$\$1400000001_371 \$\$1400000001_371 \$\$14000000001_371 \$\$140000000000000000000000000000000000	3/20/2001 3/20/2001 3/20/2001 3/20/2001 3/20/2001 4/7/2005 4/7/2005 4/7/2005 4/7/2005 3/31/2006 1/1/3/2004 12/13/2004 12/13/2004 1/18/2005 1/4/2003 1/2/2003 1/2/2003 1/2/2003 1/2/2003 1/2/2003 1/2/2003 1/2/2003 1/2/2005	N	0 0.25 0.5 0.5 1.5 0.5 1.5 0.0 0.25 0 0.26 0 0.16 0 0.16 0 0.16 0 0.16 0 0.16 0 0.16 0 0.16 0 0.16 0 0.25 0 0.25 0 0.25	\$\\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	DIBENZ(a,h)ANTHRACENE	UG/KG	EENE 5-POINT CC SENE 5-POINT CC 1800 J 140 J 52 J 51 J 39 J 10 L L L L L L L L L L L L L L L L L L L	JUNE STEEL S	170 5 170 5 170 5 170 5 170 5 170 5 170 5 170 5 170 5 170 5 170 5 180 5 180 5 180 5 180 5 180 5 180 5 180 5 180 5 180 5 180 5 185 5	i-point composite i-point Comp
Target Area	\$\$132P \$\$132P \$\$132P \$\$132P \$\$132W	3/20/2001 3/20/2001 3/20/2001 3/20/2001 4/7/2005 4/7/2005 4/7/2005 4/7/2005 3/31/2005 1/1/2005 1/1/2005 1/1/2005 1/1/2005 1/1/2005 1/1/2005 1/1/2005 1/1/2005 1/1/2005 1/1/2005 1/1/2005 1/1/2005 1/1/2005 1/1/2005 1/1/2005 1/1/2005 1/1/2005 1/1/2005 4/23/2003	N	0 0.25 0.5 0.5 1 0 0.25 0 0.26 0 0.16 0 0.16 0 0.16 0 0.16 0 0.16 0 0.16 0 0.16 0 0.16 0 0.16 0 0.25 0 0.25 0 0.25	\$W8270 \$W8270 \$W8270 \$W8270 \$W8270 \$W8270C	DIBENZ(a,h)ANTHRACENE	UG/KG	EENE 5-POINT CC 1800 J 52 J 53 J 53 J 64 L 64 L 65 L 66	JUNION STEEL	170 5 170 5 170 5 170 5 170 5 170 5 170 5 170 5 170 5 170 5 170 5 170 5 180 6 180 0 170 0 170 0 188 5 199 0 170 0 168 5	i-point composite i-point Comp
Target Area	\$\$132P \$\$132P \$\$132P \$\$132P \$\$132W \$\$14060200-01371 \$\$1406	3/20/2001 3/20/2001 3/20/2001 3/20/2001 3/20/2001 4/7/2005 4/7/2005 4/7/2005 4/7/2005 3/31/2005 1/1/3/2004 1/1/3/2004 1/1/3/2004 1/1/3/2004 1/1/3/2004 1/1/3/2004 1/1/3/2004 1/1/3/2004 1/1/3/2004 1/1/3/2004 1/1/3/2004 1/1/3/2004 1/1/3/2004 1/1/3/2004 1/1/3/2005 4/23/2003 4/23/200 4/23/200	N	0 0.25 25 0.5 5 1.5 6 1.5 7 0 0.25 7 0 0.25 8 0 0.25 9 0 0.26 9 0 0.16 9 0 0.16 9 0 0.16 9 0 0.16 9 0 0.16 9 0 0.16 9 0 0.16 9 0 0.16 9 0 0.16 9 0 0.25 9 0 0.25 0 0 0.25 0 0 0.25 0 0 0.25 0 0 0.25	\$\\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	DIBENZ(a,h)ANTHRACENE	UG/KG	EENE 5-POINT CC 1800 J 140 J 51 J 39 J 51	JUNE STEEL S	170 5 180 5 170 1 170 1 170 1 170 1 168 5 169 5 169 5 173 1 169 5 173 1 169 5 177 1	i-point composite i-point Comp
Target Area	SS132P SS132P SS132P SS132P SS132P SS132W SS	3/20/2001 3/20/2001 3/20/2001 3/20/2001 4/7/2005 4/7/2005 4/7/2005 4/7/2005 3/31/2005 1/3/2004 12/3/2004 12/3/2004 1/4/2005 1/4/		0 0.25 0.5 0.5 1 0 0.25	\$\\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	DIBENZ(a,h)ANTHRACENE	UG/KG	EENE 5-POINT CC 1800 J 140 J 52 J 39 J 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	JJ JJ JJ JJ JJ JJ JJ JJ JJ JJ JJ JJ JJ	170 5 170 5 170 5 170 5 170 5 170 5 170 5 170 5 170 5 170 5 170 5 170 5 185 5 185 6 170 1 170 1 170 1 170 1 168 5 169 1 173 1 169 5 176 1 176 1 177 1 180 1 180 1 180 1 177 1 178 1 179 1 170 1 180 1 170 1 180 1 170 1 180 1 171 1 180 1 172 1 175 1 176 1 177 1 180 1 180 1 177 1 180 1 180 1 177 1 180 1 180 1 177 1 180 1	i-point composite i-point Comp
Target Area	\$\$132P \$\$132P \$\$132P \$\$132P \$\$132W \$\$14060200-01371 \$\$1406	3/20/2001 3/20/2001 3/20/2001 3/20/2001 3/20/2001 4/7/2005 4/7/2005 4/7/2005 4/7/2005 3/31/2005 1/1/3/2004 1/1/3/2004 1/1/3/2004 1/1/3/2004 1/1/3/2004 1/1/3/2004 1/1/3/2004 1/1/3/2004 1/1/3/2004 1/1/3/2004 1/1/3/2004 1/1/3/2004 1/1/3/2004 1/1/3/2004 1/1/3/2005 4/23/2003 4/23/200 4/23/200	N	0 0.25 0.5 0.5 1.5 0.5 1.5 1 0 0.25 0 0.26 0 0.16 0 0.16 0 0.16 0 0.16 0 0.16 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25	\$\\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	DIBENZ(a,h)ANTHRACENE	UG/KG	EENE 5-POINT CC 1800 J 140 J 51 J 39 J 51	J J J J J J J J J J J J J J J J J J J	170 5 170 5 170 5 170 5 170 5 170 5 170 5 170 5 170 5 170 5 170 5 180 5 180 5 180 5 180 5 180 5 180 5 180 5 180 5 180 5 180 5 185 5 176 195 105 177 105 105 117 105 105 117 105 105 117 105 105 117 105 11	i-point composite i-point Comp
Target Area	\$\$132P \$\$132P \$\$132P \$\$132P \$\$132W \$\$14000000-01	3/20/2001 3/20/2001 3/20/2001 3/20/2001 3/20/2001 4/7/2005 4/7/2005 4/7/2005 4/7/2005 3/31/2005 4/1/2005 1/18/2005 1/18/2005 1/18/2005 1/18/2005 1/18/2005 1/18/2005 1/18/2005 1/18/2005 1/18/2005 1/18/2005 1/18/2005 1/18/2005 1/18/2005 1/18/2005 1/18/2005 1/18/2005 1/18/2005 1/18/2003 4/23/2003 4/23/2003 4/23/2003 4/23/2003 4/23/2003 4/23/2003 4/23/2003 4/23/2003 1/23/2005 1/2001 1/2001 1/2001 1/2001 1/2001 1/2001 1/7/2001 1		0 0.25 0.5 0.5 1.5 0.5 1.5 1.5 0.0 0.25	\$\begin{array}{c} \$\$\swaller{\text{WB270}}\$\$\$\swaller{\text{WB270C}}\$\$\	DIBENZ(a,h)ANTHRACENE	UG/KG	EENE 5-POINT CC 1800 J 52 J 51	JJ JJ JJ JJ JJ JJ JJ JJ JJ JJ JJ JJ JJ	170 5 170 5 170 5 170 5 170 5 170 5 170 5 170 5 170 5 170 5 170 5 180 5 180 5 180 5 180 5 180 5 180 5 180 5 180 5 180 5 180 5 185 5	i-point composite i-point Comp
Target Area	\$\$132P \$\$132P \$\$132P \$\$132P \$\$132W \$\$14060200-01_371 \$\$140	3/20/2001 3/20/2001 3/20/2001 3/20/2001 3/20/2001 4/7/2005 4/7/2005 4/7/2005 4/7/2005 3/31/2006 4/1/2005 1/4/2		0 0.25 0.5 0.5 1.5 0.5 1.5 1 0 0.25 0 0.26 0 0.16 0 0.16 0 0.16 0 0.16 0 0.16 0 0.16 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25	\$\\$\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	DIBENZ(a,h)ANTHRACENE	UG/KG	EENE 5-POINT CC 1800 J 140 J 52 J 51 J 39 J 10 L L L L L L L L L L L L L L L L L L L	J J J J J J J J J J J J J J J J J J J	170 5 170 5 170 5 170 5 170 5 170 5 170 5 170 5 170 5 170 5 170 5 170 5 170 5 170 5 180 5 176 10 177 10 177 10 178	i-point composite i-point Comp
Target Area	\$\$132P \$\$132P \$\$132P \$\$132P \$\$132W \$\$14000000-01	3/20/2001 3/20/2001 3/20/2001 3/20/2001 3/20/2001 4/7/2005 4/7/2005 4/7/2005 4/7/2005 3/31/2005 4/1/2005 1/18/2005 1/18/2005 1/18/2005 1/18/2005 1/18/2005 1/18/2005 1/18/2005 1/18/2005 1/18/2005 1/18/2005 1/18/2005 1/18/2005 1/18/2005 1/18/2005 1/18/2005 1/18/2005 1/18/2005 1/18/2003 4/23/2003 4/23/2003 4/23/2003 4/23/2003 4/23/2003 4/23/2003 4/23/2003 4/23/2003 1/23/2005 1/2001 1/2001 1/2001 1/2001 1/2001 1/2001 1/7/2001 1		0 0.25 0.5 0.5 1 0 0.25 0.0 0.25 0 0 0.26 0 0 0.26 0 0 0.25	\$\begin{array}{c} \$\$\swaller{\text{WB270}}\$\$\$\swaller{\text{WB270C}}\$\$\	DIBENZ(a,h)ANTHRACENE	UG/KG	EENE 5-POINT CC 1800 J 52 J 51	JUJUJUJUJUJUJUJUJUJUJUJUJUJUJUJUJUJUJU	170 5 170 5 170 5 170 5 170 5 170 5 170 5 170 5 170 5 170 5 170 5 180 6 180 7 180 0 100 1	i-point composite i-point Comp
Target Area	SS132P SS132P SS132P SS132P SS132P SS132W SS0220-1_371 AL060200-01_371 AL060200-01_371 AL060200-01_371 AS06220-01_371 SS040105-01 SS040105-01 SS040105-01 SS040105-01 SS040105-01 SS040105-01 SS040220-A SS02221-A SS02222-A SS02222-A SS02222-A SS02222-A SS02223-A SS02223-A SS02223-A SS02223-A SS02223-A SS02221-A SS02231-A SS132P	3/20/2001 3/20/2001 3/20/2001 3/20/2001 4/7/2005 4/7/2005 4/7/2005 4/7/2005 3/31/2005 1/3/2004 12/3/2004 12/3/2004 1/4/2005 1/4/		0 0.25 0.5 0.5 1 0 0.25	\$\\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	DIBENZ(a,h)ANTHRACENE	UG/KG	ENE 5-POINT CC 1800 J 140 J 52 J 10 L L L L L L L L L L L L L L L L L L L	JUNE STEEL S	170 5 170 5 170 5 170 5 170 5 170 5 170 5 170 5 170 5 170 5 170 5 180 5 175 1 170 1	i-point composite i-point Comp

Table C.4-8
Former A Range
Calculation of Averages Concentrations for PAHs Exhibiting Maximum Concentrations Above a Screening Criterion in the PAH 4 Exposure Area

March Marc												Concentration	
Annie			Collection	Normal or Field	Begin	End Depth	Analytical			Detected		Used in Computation	
Topin Price 1987					Depth (ft)	. ,						of Averages	Sample Type
Target Ann. \$513.0P													
Tape Color													
Target Area													
Taget Prices \$11500											-		
Target PANS \$3512507													
Target Area \$31207	Target Area	SS132W	12/13/2004	N	0	0.25	SW8270C	INDENO(1,2,3-c,d)PYREN	E UG/KG	43 .	J	43	5-point Composite
Target Acea											-		
Target Ana											-		
Trigger Ann SS 1520/W 14 (1900) Ann SS 1520/W 15 (1900) Ann SS 1520/W	Target Area	SS132W	4/7/2005	N	0	0.25	SW8270C	INDENO(1,2,3-c,d)PYREN	E UG/KG	i l	-	170	5-point Composite
Togal Ane 851209 119-0006 N 0 0 25 99/8770 N 0 0 10 25 99/8770 N 0											-		
Tagget Anno SSESTOW											-		
Target Area					0				E UG/KG	i l	J		
Target Area											-		
Target Ann											-		
April											j		
Tiggal Area ALGOSCOCO 171	Target Area	SS132W	1/4/2005	N	0.5	1	SW8270C						
Target Anno	Tarnet Area	AL060200-01 371	4/23/2003	N	0	0.16	SW8270C						
Targer Ann													
Target Ans. A-200200 N	Target Area	AL060200-01_371	4/23/2003	N	0	0.16	SW8270C	INDENO(1,2,3-c,d)PYRENI	E UG/KG	150	J	150	Discrete
Target And ACCESSION 1 4720000 N 0 0 16 50 50 50 50 50 50 50 5													
Target Ann													
Target Ans			4/23/2003	N	0	0.16	SW8270C	INDENO(1,2,3-c,d)PYRENI	E UG/KG	41 .		41	Discrete
Target Area SS20221-A SS20													
Targia Ans S02221-A 9772001 N 0 0.2 S 9872700 N 0 0 0 0.2 S 9872700 N 0 0 0 0.2 S 9872700 N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0											-		
Target Ans											-		
Target Ans S02223-A 9772001 N 0 0.25 SW27070 N NDENDI (1.2-sg)PYRENE UGNG U 175 Discrete Fragric Ans S02223-A 9772001 N 0 0.25 SW27070 NDENDI (1.2-sg)PYRENE UGNG U 175 Discrete Fragric Ans S02223-A 9772001 N 0 0.25 SW27070 NDENDI (1.2-sg)PYRENE UGNG U 175 Discrete Fragric Ans S02223-A 9772001 N 0 0.25 SW27070 NDENDI (1.2-sg)PYRENE UGNG U 175 Discrete Fragric Ans S02223-A 9772001 N 0 0.25 SW27070 NDENDI (1.2-sg)PYRENE UGNG U 176 Discrete Fragric Ans S02223-A 9772001 N 0 0.25 SW27070 NDENDI (1.2-sg)PYRENE UGNG U 177 Discrete Fragric Ans S02223-A 9772001 N 0 0.25 SW27070 NDENDI (1.2-sg)PYRENE UGNG U 177 Discrete Fragric Ans S02223-A 9772001 N 0 0.25 SW27070 NDENDI (1.2-sg)PYRENE UGNG U 177 Discrete Fragric Ans S02223-A 9772001 N 0 0 0.25 SW27070 NDENDI (1.2-sg)PYRENE UGNG U 177 Discrete Fragric Ans S0223-A 9772001 N 0 0 0.25 SW27070 NDENDI (1.2-sg)PYRENE UGNG U 177 Discrete Fragric Ans S0223-A 972001 N 0.25 SW27070 NDENDI (1.2-sg)PYRENE UGNG U 177 Discrete Fragric Ans S02124-B 93202001 N 0.25 SW27070 NDENDI (1.2-sg)PYRENE UGNG U 177 Discrete Fragric Ans S02136-DI (1.2-sg)PYRENE UGNG U 177 Discrete Fragric Ans S02136-DI (1.2-sg)PYRENE UGNG U 177 Discrete Fragric Ans S02136-DI (1.2-sg)PYRENE UGNG U 177 Discrete Fragric Ans S02124-B 93202001 N 0 0.25 SW27070 NDENDI (1.2-sg)PYRENE UGNG U 177 Discrete Fragric Ans S02124-B 93202001 N 0 0.25 SW27070 NDENDI (1.2-sg)PYRENE UGNG U 177 Discrete Fragric Ans S02124-B 93202001 N 0 0.25 SW27070 NDENDI (1.2-sg)PYRENE UGNG U 177 Discrete Fragric Ans S02124-B 93202001 N 0 0.25 SW27070 NDENDI (1.2-sg)PYRENE UGNG U 177 Discrete Fragric Ans S02124-B 93202001 N 0 0.25 SW27070 NDENDI (1.2-sg)PYRENE UGNG U 177 Discrete Fragric Ans S02124-B 93202001 N 0 0.25 SW27070 NDENDI (1.2-sg)PYRENE UGNG U 177 Discrete Fragric Ans S02124-B 93202001 N 0 0.25 SW27070 NDENDI (1.2-sg)PYRENE UGNG U 177 Discrete Fragric Ans S02124-B 93202001 N 0 0.25 SW27070 NDENDI (1.2-sg)PYRENE UGNG U 177 Discrete Fragric Ans S02124-B 93202001 N 0 0 0.25 SW27070 NDENDI (1.2-s											-		
Target Area S922224-A 97/2001 N 0 0.25 SW8270 NDENOTIC 3-0-0)PYERE UGKG U 170 Discrete													
Target Area SS02229-A 97/2001 N 0 0 0.25 SW82700 NDENO(1,2 3-c.p)*PERNE UGKG U 1775 Discrete 1786 SS0227-A 97/2001 N 0 0.25 SW82700 NDENO(1,2 3-c.p)*PERNE UGKG U 1776 Discrete 1786 Dis											-		
Target Area S02227-A 87/2001 N 0 0.25 SW8270 NDENOTE 2-3-GPYRENE UGKG U 177 Discrete	Target Area	SS02225-A			0	0.25	SW8270C	INDENO(1,2,3-c,d)PYREN	E UG/KG	i l	J	175	Discrete
Targel Area \$802229-A											-		
Target Area \$802231-A											-		
Targel Area S\$132P		SS02231-A			0	0.25	SW8270C	INDENO(1,2,3-c,d)PYREN	E UG/KG	i l	-	171.5	Discrete
Targed Area S3132P													
Target Area													
Target Area Sol 1905-61 12/12/006 N											-		
Target Area S303316-01 41/2005 N	T 1 A	00011005.01	1/01/0005			0.05	014/00700						5 ' O'
Target Area S5132P 3/20/2001 N 0 0.25 SW8270 NAPHTHALENE UG/KG U 770 S-point composite Target Area S5132P 3/20/2001 N 0.5 1 SW8270 NAPHTHALENE UG/KG U 770 S-point composite Target Area S5132P 3/20/2001 N 0.5 1 SW8270 NAPHTHALENE UG/KG U 770 S-point composite Target Area S5132W 4/7/2005 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 770 S-point composite Target Area S5132W 4/7/2005 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 770 S-point composite Target Area S5132W 4/7/2005 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 770 S-point composite Target Area S5132W 4/7/2005 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 770 S-point composite Target Area S5132W 4/7/2005 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 770 S-point composite Target Area S5132W 4/7/2005 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 775 S-point Composite Target Area S5132W 4/1/2005 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 775 S-point Composite Target Area S5132W 4/1/2005 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 175 S-point Composite Target Area S5132W 4/1/2005 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 175 S-point Composite Target Area S5132W 1/1/3/2004 FO 0 0.25 SW8270C NAPHTHALENE UG/KG U 175 S-point Composite Target Area S5132W 1/1/3/2004 FO 0 0.25 SW8270C NAPHTHALENE UG/KG U 180 S-point Composite Target Area S5132W 1/1/3/2005 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 180 S-point Composite Target Area S5132W 1/1/3/2005 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 180 S-point Composite Target Area S5132W 1/1/3/2005 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 180 S-point Composite Target Area S5132W 1/1/3/2005 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 180 S-point Composite Target Area S5132W 1/1/3/2005 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 180 S-point Composite Target Area S5132W 1/1/3/2003 N													
Target Area S8132P 3/20/2001 N 0.5 1 SW8270 NAPHTHALENE UGKG U 170 S-point composite Target Area S8132W 4/7/2005 N 0 0.25 SW8270C NAPHTHALENE UGKG U 170 S-point Composite Target Area S8132W 4/7/2005 N 0 0.25 SW8270C NAPHTHALENE UGKG U 170 S-point Composite Target Area S8132W 4/7/2005 N 0 0.25 SW8270C NAPHTHALENE UGKG U 170 S-point Composite Target Area S8132W 4/7/2005 N 0 0.25 SW8270C NAPHTHALENE UGKG U 170 S-point Composite Target Area S8132W 4/7/2005 N 0 0.25 SW8270C NAPHTHALENE UGKG U 170 S-point Composite Target Area S8132W 3/31/2005 N 0 0.25 SW8270C NAPHTHALENE UGKG U 170 S-point Composite Target Area S8132W 3/31/2005 N 0 0.25 SW8270C NAPHTHALENE UGKG U 170 S-point Composite Target Area S8132W 2/13/2004 N 0 0.25 SW8270C NAPHTHALENE UGKG U 170 S-point Composite Target Area S8132W 1/13/2004 N 0 0.25 SW8270C NAPHTHALENE UGKG U 180 S-point Composite Target Area S8132W 1/13/2005 N 0 0.25 SW8270C NAPHTHALENE UGKG U 180 S-point Composite Target Area S8132W 1/13/2005 N 0 0.25 SW8270C NAPHTHALENE UGKG U 180 S-point Composite Target Area S8132W 1/13/2005 N 0 0.25 SW8270C NAPHTHALENE UGKG U 180 S-point Composite Target Area S8132W 1/13/2005 N 0 0.25 SW8270C NAPHTHALENE UGKG U 180 S-point Composite Target Area S8132W 1/13/2005 N 0 0.25 SW8270C NAPHTHALENE UGKG U 180 S-point Composite Target Area S8132W 1/13/2005 N 0 0.25 SW8270C NAPHTHALENE UGKG U 180 S-point Composite Target Area S8132W 1/13/2005 N 0 0.25 SW8270C NAPHTHALENE UGKG U 180 S-point Composite Target Area AL060200-01.371 4/23/2003 N 0 0.16 SW8270C NAPHTHALENE UGKG U 170 Siscrete Target Area AL060200-01.371 4/23/2003 N 0 0.16 SW8270C NAPHTHALENE UGKG U 170 Siscrete Target Area AL060200-01.371 4/23/2003 N 0 0.16 S													
Target Area S8132P											-		
Target Area S112W											-		
Target Area Set 132W											-		
Target Area SS132W											-	170	5-point Composite
Target Area											-		
Target Area S\$132W											-		
Target Area											-		
Target Area SS132W 1/18/2005 N 0 0.25 SW2270C NAPHTHALENE UG/KG U 180 5-point Composite Target Area SS132W 3/31/2005 N 0 0.25 SW2270C NAPHTHALENE UG/KG U 180 5-point Composite Target Area SS132W 3/31/2005 N 0 0.25 SW2270C NAPHTHALENE UG/KG U 180 5-point Composite Target Area SS132W 1/4/2005 FD 0 0.25 SW2270C NAPHTHALENE UG/KG U 180 5-point Composite Target Area SS132W 1/4/2005 FD 0 0.25 SW2270C NAPHTHALENE UG/KG U 186 5-point Composite Target Area SS132W 1/4/2005 N 0.25 SW2270C NAPHTHALENE UG/KG U 185 5-point Composite Target Area SS132W 1/4/2005 N 0.55 1 SW2270C NAPHTHALENE UG/KG U 185 5-point Composite Target Area SS132W 1/4/2005 N 0.55 1 SW2270C NAPHTHALENE UG/KG U 185 5-point Composite NAPHTHALENE UG/KG U 175 Discrete NAPHTHALENE UG/											-		
Target Area SS132W 3/12/005 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 180 5-point Composite Target Area SS132W 3/12/005 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 180 5-point Composite Target Area SS132W 4/12/005 FD 0 0.25 SW8270C NAPHTHALENE UG/KG U 180 5-point Composite Target Area SS132W 1/4/2005 N 0.25 0.5 SW8270C NAPHTHALENE UG/KG U 185 5-point Composite Target Area SS132W 1/4/2005 N 0.25 0.5 SW8270C NAPHTHALENE UG/KG U 185 5-point Composite Target Area SS132W 1/4/2005 N 0.5 1 SW8270C NAPHTHALENE UG/KG U 185 5-point Composite Target Area AL060200-01_371 4/23/2003 N 0 0.16 SW8270C NAPHTHALENE UG/KG U 170 Discrete Target Area AL060200-01_371 4/23/2003 N 0 0.16 SW8270C NAPHTHALENE UG/KG U 170 Discrete Target Area AL060200-01_371 4/23/2003 N 0 0.16 SW8270C NAPHTHALENE UG/KG U 170 Discrete Target Area AL060200-01_371 4/23/2003 N 0 0.16 SW8270C NAPHTHALENE UG/KG U 175 Discrete Target Area AL060200-01_371 4/23/2003 N 0 0.16 SW8270C NAPHTHALENE UG/KG U 175 Discrete Target Area AL060200-01_371 4/23/2003 N 0 0.16 SW8270C NAPHTHALENE UG/KG U 175 Discrete Target Area AL060200-01_371 4/23/2003 N 0 0.16 SW8270C NAPHTHALENE UG/KG U 175 Discrete Target Area AL060200-01_371 4/23/2003 N 0 0.16 SW8270C NAPHTHALENE UG/KG U 175 Discrete Target Area AL060200-01_371 4/23/2003 N 0 0.16 SW8270C NAPHTHALENE UG/KG U 175 Discrete Target Area AL060200-01_371 4/23/2003 N 0 0.16 SW8270C NAPHTHALENE UG/KG U 175 Discrete Target Area AL060200-01_371 4/23/2003 N 0 0.16 SW8270C NAPHTHALENE UG/KG U 175 Discrete Target Area AL060200-01_371 4/23/2003 N 0 0.16 SW8270C NAPHTHALENE UG/KG U 175 Discrete Target Area AL060200-01_371 4/23/2003 N 0 0.16 SW8270C NAPHTHALENE UG/KG U 175 Discrete Target Area SS040105-01 4/72005 FD 0 0.25 SW8270C NAPHTH											-		
Target Area SS132W	Target Area	SS132W	1/18/2005	N	0	0.25	SW8270C	NAPHTHALENE	UG/KG	i l	j	180	5-point Composite
Target Area SS132W	T											100	5 a at at 0 a a a a a a a
Target Area											-		
Target Area AL060200-01_371 4/23/2003 N 0 0.16 SW8270C NAPHTHALENE UG/KG U 170 Discrete Target Area AL060200-01_371 4/23/2003 N 0 0.16 SW8270C NAPHTHALENE UG/KG U 170 Discrete Target Area AL060200-01_371 4/23/2003 N 0 0.16 SW8270C NAPHTHALENE UG/KG U 175 Discrete Target Area AL060200-01_371 4/23/2003 N 0 0.16 SW8270C NAPHTHALENE UG/KG U 175 Discrete Target Area AL060200-01_371 4/23/2003 N 0 0.16 SW8270C NAPHTHALENE UG/KG U 175 Discrete Target Area AL060200-01_371 4/23/2003 N 0 0.16 SW8270C NAPHTHALENE UG/KG U 175 Discrete Target Area AL060200-01_371 4/23/2003 N 0 0.16 SW8270C NAPHTHALENE UG/KG U 175 Discrete Target Area AL060200-01_371 4/23/2003 N 0 0.16 SW8270C NAPHTHALENE UG/KG U 175 Discrete Target Area AL060200-01_371 4/23/2003 N 0 0.16 SW8270C NAPHTHALENE UG/KG U 175 Discrete Target Area AL060200-01_371 4/23/2003 N 0 0.16 SW8270C NAPHTHALENE UG/KG U 175 Discrete Target Area AL060200-01_371 4/23/2003 N 0 0.16 SW8270C NAPHTHALENE UG/KG U 175 Discrete Target Area SS040105-01 4/72/2005 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 170 Discrete Target Area SS040105-01 4/72/2005 FD 0 0.25 SW8270C NAPHTHALENE UG/KG U 170 Discrete Target Area SS02221-A 9/7/2001 FD 0 0.25 SW8270C NAPHTHALENE UG/KG U 168.5 Discrete Target Area SS02222-A 9/7/2001 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 169.5 Discrete Target Area SS02222-A 9/7/2001 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 169.5 Discrete Target Area SS02222-A 9/7/2001 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 175 Discrete Target Area SS02222-A 9/7/2001 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 176 Discrete Target Area SS02222-A 9/7/2001 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 176 Discrete Target Area SS02222-A 9/7/2001 N 0 0.25 SW8270C NAPHTHALENE	Target Area	SS132W	1/4/2005	N		0.5	SW8270C	NAPHTHALENE	UG/KG	i l		185	5-point Composite
Target Area	Target Area	SS132W	1/4/2005	N	0.5	1	SW8270C						
Target Area AL060200-01_371 4/23/2003 N 0 0.16 SW8270C NAPHTHALENE UG/KG U 170 Discrete Target Area AL060200-01_371 4/23/2003 N 0 0.16 SW8270C NAPHTHALENE UG/KG U 175 Discrete Target Area AL060200-01_371 4/23/2003 N 0 0.16 SW8270C NAPHTHALENE UG/KG U 175 Discrete Target Area AL060200-01_371 4/23/2003 N 0 0.16 SW8270C NAPHTHALENE UG/KG U 175 Discrete Target Area AL060200-01_371 4/23/2003 N 0 0.16 SW8270C NAPHTHALENE UG/KG U 175 Discrete Target Area AL060200-01_371 4/23/2003 N 0 0.16 SW8270C NAPHTHALENE UG/KG U 175 Discrete Target Area AL060200-01_371 4/23/2003 N 0 0.16 SW8270C NAPHTHALENE UG/KG U 175 Discrete Target Area SS040105-01 4/7/2005 N 0 0.25 SW8270C NAPHTHALENE UG/KG U <	Target Area	AL060200-01 371	4/23/2003	N	0	0.16	SW8270C				JINIT USI I E		
Target Area AL060200-01_371 4/23/2003 N 0 0.16 SW8270C NAPHTHALENE UG/KG U 175 Discrete Target Area AL060200-01_371 4/23/2003 N 0 0.16 SW8270C NAPHTHALENE UG/KG U 175 Discrete Target Area AL060200-01_371 4/23/2003 N 0 0.16 SW8270C NAPHTHALENE UG/KG U 175 Discrete Target Area AL060200-01_371 4/23/2003 N 0 0.16 SW8270C NAPHTHALENE UG/KG U 175 Discrete Target Area AL060200-01_371 4/23/2003 N 0 0.16 SW8270C NAPHTHALENE UG/KG U 175 Discrete Target Area SS040105-01 4/7/2005 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 170 Discrete Target Area SS040105-01 4/7/2005 FD 0 0.25 SW8270C NAPHTHALENE UG/KG U 170 Discrete Target Area SS02221-A 9/7/2001 FD 0 0.25 SW8270C NAPHTHALENE UG/KG U 168.5 D	Target Area	AL060200-01_371	4/23/2003	N	0	0.16	SW8270C	NAPHTHALENE	UG/KG	i l		170	Discrete
Target Area AL060200-01_371 4/23/2003 N 0 0.16 SW8270C NAPHTHALENE UG/KG U 175 Discrete Target Area AL060200-01_371 4/23/2003 N 0 0.16 SW8270C NAPHTHALENE UG/KG U 175 Discrete Target Area AL060200-01_371 4/23/2003 N 0 0.16 SW8270C NAPHTHALENE UG/KG U 175 Discrete Target Area AL060200-01_371 4/23/2003 N 0 0.16 SW8270C NAPHTHALENE UG/KG U 176 Discrete Target Area SS040105-01 4/7/2005 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 170 Discrete Target Area SS040105-01 4/7/2005 FD 0 0.25 SW8270C NAPHTHALENE UG/KG U 170 Discrete Target Area SS040105-01 4/7/2001 FD 0 0.25 SW8270C NAPHTHALENE UG/KG U 188.5 Discrete Target Area SS02221-A 9/7/2001 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 168.5 Disc													
Target Area AL060200-01_371 4/23/2003 N 0 0.16 SW8270C NAPHTHALENE UG/KG U 175 Discrete Target Area AL060200-01_371 4/23/2003 N 0 0.16 SW8270C NAPHTHALENE UG/KG U 175 Discrete Target Area AL060200-01_371 4/23/2003 N 0 0.16 SW8270C NAPHTHALENE UG/KG U 175 Discrete Target Area SS040105-01 4/7/2005 FD 0 0.25 SW8270C NAPHTHALENE UG/KG U 170 Discrete Target Area SS04221-A 97/2001 FD 0 0.25 SW8270C NAPHTHALENE UG/KG U 170 Discrete Target Area SS02221-A 97/2001 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 168.5 Discrete Target Area SS02222-A 97/2001 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 169.5 Discrete Target Area SS02223-A 97/2001 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 169.5 Discrete											-		
Target Area AU.06/200-01_371 4/23/2003 N 0 0.16 SW8270C NAPHTHALENE UG/KG U 175 Discrete Target Area AL.060200-01_371 4/23/2003 N 0 0.16 SW8270C NAPHTHALENE UG/KG U 185 Discrete Target Area SS040105-01 4/7/2005 FD 0 0.25 SW8270C NAPHTHALENE UG/KG U 170 Discrete Target Area SS040105-01 4/7/2005 FD 0 0.25 SW8270C NAPHTHALENE UG/KG U 170 Discrete Target Area SS0221-A 9/7/2001 FD 0 0.25 SW8270C NAPHTHALENE UG/KG U 168.5 Discrete Target Area SS0221-A 9/7/2001 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 169.0 Discrete Target Area SS02221-A 9/7/2001 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 173 Discrete Target Area SS02223-A 9/7/2001 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 176 Discrete <											-		
Target Area SS040105-01 47/2005 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 170 Discrete Target Area SS040105-01 47/2005 FD 0 0.25 SW8270C NAPHTHALENE UG/KG U 170 Discrete Target Area SS02221-A 97/2001 FD 0 0.25 SW8270C NAPHTHALENE UG/KG U 168.5 Discrete Target Area SS02221-A 97/2001 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 169.0 Discrete Target Area SS02222-A 97/2001 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 173 Discrete Target Area SS02223-A 97/2001 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 169.5 Discrete Target Area SS02225-A 97/2001 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 176 Discrete Target Area SS02225-A 97/2001 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 176 Discrete	Target Area	AL060200-01_371	4/23/2003	N	0	0.16	SW8270C	NAPHTHALENE	UG/KG	i l	J	175	Discrete
Target Area SS040105-01 4/7/2005 FD 0 0.25 SW8270C NAPHTHALENE UG/KG U 170 Discrete Target Area SS02221-A 9/7/2001 FD 0 0.25 SW8270C NAPHTHALENE UG/KG U 168.5 Discrete Target Area SS02221-A 9/7/2001 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 173 Discrete Target Area SS02222-A 9/7/2001 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 173 Discrete Target Area SS02222-A 9/7/2001 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 169.5 Discrete Target Area SS02224-A 9/7/2001 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 176 Discrete Target Area SS02225-A 9/7/2001 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 175 Discrete Target Area SS02225-A 9/7/2001 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 176 Discrete													
Target Area SS02221-A 97/2001 FD 0 0.25 SW8270C NAPHTHALENE UG/KG U 168.5 Discrete Target Area SS02221-A 97/2001 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 169 Discrete Target Area SS02222-A 97/2001 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 169.5 Discrete Target Area SS02223-A 97/2001 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 169.5 Discrete Target Area SS02224-A 97/2001 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 176 Discrete Target Area SS02225-A 97/2001 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 176 Discrete Target Area SS02225-A 97/2001 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 175 Discrete Target Area SS02225-A 97/2001 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 176 Discrete													
Target Area \$502222-A 97/2001 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 173 Discrete Target Area \$502223-A 97/2001 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 169.5 Discrete Target Area \$502224-A 97/2001 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 176 Discrete Target Area \$502225-A 97/2001 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 175 Discrete Target Area \$502227-A 97/2001 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 176 Discrete Target Area \$502228-A 97/2001 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 176.5 Discrete Target Area \$502228-A 97/2001 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 173 Discrete Target Area \$502228-A 97/2001 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 171.5 Discrete T	Target Area	SS02221-A	9/7/2001	FD	0	0.25	SW8270C	NAPHTHALENE	UG/KG	i l	J	168.5	Discrete
Target Area SS02223-A 97/2001 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 169.5 Discrete Target Area SS02224-A 97/2001 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 176 Discrete Target Area SS02225-A 97/2001 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 175 Discrete Target Area SS02225-A 97/2001 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 176 Discrete Target Area SS02225-A 97/2001 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 176 Discrete Target Area SS02225-A 97/2001 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 173 Discrete Target Area SS02228-A 97/2001 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 173 Discrete Target Area SS132P 3/20/2001 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 170 Discrete Target											-		
Target Area SS02224-A 97/2001 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 176 Discrete Target Area SS02225-A 97/2001 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 177 Discrete Target Area SS02226-A 97/2001 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 176.5 Discrete Target Area SS02227-A 97/2001 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 176.5 Discrete Target Area SS022231-A 97/2001 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 171.5 Discrete Target Area SS022231-A 97/2001 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 171.5 Discrete Target Area SS132P 3/20/2001 N 0 0.25 SW8270 NAPHTHALENE UG/KG U 170 Discrete Target Area SS132P 3/20/2001 N 0.25 0.5 SW8270 NAPHTHALENE UG/KG U 170 Discrete <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td></td<>											-		
Target Area SS02225-A 9/7/2001 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 175 Discrete Target Area SS02226-A 9/7/2001 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 176.5 Discrete Target Area SS02227-A 9/7/2001 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 173 Discrete Target Area SS02228-A 9/7/2001 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 173 Discrete Target Area SS02231-A 9/7/2001 N 0 0.25 SW8270 NAPHTHALENE UG/KG U 171.5 Discrete Target Area SS132P 3/20/2001 N 0 0.25 SW8270 NAPHTHALENE UG/KG U 170 Discrete Target Area SS132P 3/20/2001 N 0.25 SW8270 NAPHTHALENE UG/KG U 170 Discrete Target Area SS132P 3/20/2001 N 0.55 1 SW8270 NAPHTHALENE UG/KG U 170 Discrete Target Area								NAPHTHALENE			-		
Target Area \$502227-A 9/7/2001 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 176.5 Discrete Target Area \$502228-A 9/7/2001 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 177.5 Discrete Target Area \$5132P 3/20/2001 N 0 0.25 SW8270 NAPHTHALENE UG/KG U 170 Discrete Target Area \$5132P 3/20/2001 N 0.25 SW8270 NAPHTHALENE UG/KG U 170 Discrete Target Area \$5132P 3/20/2001 N 0.25 SW8270 NAPHTHALENE UG/KG U 170 Discrete Target Area \$5132P 3/20/2001 N 0.5 1 SW8270 NAPHTHALENE UG/KG U 170 Discrete Target Area \$537MM_HEAVERY 8/5/1999 N 0 0.25 CSVOL NAPHTHALENE UG/KG U 170 Discrete		SS02225-A	9/7/2001	N		0.25	SW8270C		UG/KG	i l	-	175	Discrete
Target Area SS02228-A 9/7/2001 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 173 Discrete Target Area SS02231-A 9/7/2001 N 0 0.25 SW8270 NAPHTHALENE UG/KG U 177.5 Discrete Target Area SS132P 3/20/2001 N 0 0.25 SW8270 NAPHTHALENE UG/KG U 170 Discrete Target Area SS132P 3/20/2001 N 0.25 0.5 SW8270 NAPHTHALENE UG/KG U 170 Discrete Target Area SS132P 3/20/2001 N 0.5 1 SW8270 NAPHTHALENE UG/KG U 170 Discrete Target Area SS37MM_HEAVERY 8/5/1999 N 0 0.25 CSVOL NAPHTHALENE UG/KG U 170 Discrete													
Target Area \$S02231-A 9/7/2001 N 0 0.25 SW8270C NAPHTHALENE UG/KG U 171.5 Discrete Target Area \$S132P 3/20/2001 N 0 0.25 SW8270 NAPHTHALENE UG/KG U 170 Discrete Target Area \$S132P 3/20/2001 N 0.25 0.5 SW8270 NAPHTHALENE UG/KG U 170 Discrete Target Area \$S132P 3/20/2001 N 0.5 1 SW8270 NAPHTHALENE UG/KG U 170 Discrete Target Area \$S37MM_HEAVERY 8/5/1999 N 0 0.25 CSVOL NAPHTHALENE UG/KG U 165 Discrete											-		
Target Area S\$132P 3/20/2001 N 0.25 0.5 SW8270 NAPHTHALENE UG/KG U 170 Discrete Target Area S\$132P 3/20/2001 N 0.5 1 SW8270 NAPHTHALENE UG/KG U 170 Discrete Target Area S\$37MM_HEAVERY 8/5/1999 N 0 0.25 CSVOL NAPHTHALENE UG/KG U 165 Discrete	Target Area	SS02231-A	9/7/2001	N	0	0.25	SW8270C	NAPHTHALENE	UG/KG	i l	-	171.5	Discrete
Target Area SS132P 3/20/2001 N 0.5 1 SW8270 NAPHTHALENE UG/KG U 170 Discrete Target Area SS37MM_HEAVERY 8/5/1999 N 0 0.25 CSVOL NAPHTHALENE UG/KG U 165 Discrete											-		
Target Area SS37MM_HEAVERY 8/5/1999 N 0 0.25 CSVOL NAPHTHALENE UG/KG U 165 Discrete											-		
								NAPHTHALENE	UG/KG	i l	j	165	
AVERAGE FOR NAPHTHALENE DISCRETE 211.125											DISCRETE		_

Table C.4-8
Former A Range
Calculation of Averages Concentrations for PAHs Exhibiting Maximum Concentrations Above a Screening Criterion in the PAH 4 Exposure Area

Area	Location ID	Normal Collection Field Date Duplica	Begin	End Depth Analytical	Analyte	Units	Detected Value Flags	Concentration Used in Computation of Averages Sample Type
Target Area	SS011905-01	1/21/2005 N	0		PHENANTHRENE	UG/KG	U	175 5-point Composite
Target Area	SS033105-01	4/1/2005 N	0		PHENANTHRENE	UG/KG	U	180 5-point Composite
Target Area	SS132P	3/20/2001 N	0	0.25 SW8270	PHENANTHRENE	UG/KG	U	170 5-point composite
Target Area	SS132P	3/20/2001 N	0.25	0.5 SW8270	PHENANTHRENE	UG/KG	U	170 5-point composite
Target Area	SS132P	3/20/2001 N	0.5		PHENANTHRENE	UG/KG	U	170 5-point composite
Target Area	SS132P	3/20/2001 N	0.5	1 SW8270	PHENANTHRENE	UG/KG	U	170 5-point composite
Target Area	SS132W	12/13/2004 N	0	0.25 SW8270C	PHENANTHRENE	UG/KG	42 J	42 5-point Composite
Target Area	SS132W	12/13/2004 FD	0		PHENANTHRENE	UG/KG	28 J	28 5-point Composite
Target Area	SS132W	1/18/2005 N	0		PHENANTHRENE	UG/KG	18 J	18 5-point Composite
Target Area	SS132W	4/7/2005 N	0	0.25 SW8270C	PHENANTHRENE	UG/KG	U	170 5-point Composite
Target Area	SS132W	4/7/2005 N	0	0.25 SW8270C	PHENANTHRENE	UG/KG	U	170 5-point Composite
Target Area	SS132W	4/7/2005 N	0	0.25 SW8270C	PHENANTHRENE	UG/KG	U	170 5-point Composite
Target Area	SS132W	4/7/2005 N	0		PHENANTHRENE	UG/KG	U	170 5-point Composite
Target Area	SS132W	3/31/2005 N	0	0.25 SW8270C	PHENANTHRENE	UG/KG	U	175 5-point Composite
Target Area	SS132W	4/1/2005 N	0	0.25 SW8270C	PHENANTHRENE	UG/KG	U	175 5-point Composite
Target Area	SS132W	1/18/2005 N	0	0.25 SW8270C	PHENANTHRENE	UG/KG	U	180 5-point Composite
Target Area	SS132W	3/31/2005 N	0	0.25 SW8270C	PHENANTHRENE	UG/KG	U	180 5-point Composite
Target Area	SS132W	4/1/2005 N	0	0.25 SW8270C	PHENANTHRENE	UG/KG	U	180 5-point Composite
Target Area	SS132W	1/4/2005 FD	0	0.25 SW8270C	PHENANTHRENE	UG/KG	U	185 5-point Composite
Target Area	SS132W	1/4/2005 N	0.25	0.5 SW8270C	PHENANTHRENE	UG/KG	U	185 5-point Composite
Target Area	SS132W	1/4/2005 N	0.5	1 SW8270C	PHENANTHRENE	UG/KG	U	185 5-point Composite
					AVERAG	E FOR PHENANTHRE	NE 5-POINT COMPOSIT	E 154.667
Target Area	AL060200-01_371	4/23/2003 N	0	0.16 SW8270C	PHENANTHRENE	UG/KG	32000	32000 Discrete
Target Area	AL060200-01_371	4/23/2003 N	0	0.16 SW8270C	PHENANTHRENE	UG/KG	790	790 Discrete
Target Area	AL060200-01_371	4/23/2003 N	0	0.16 SW8270C	PHENANTHRENE	UG/KG	500	500 Discrete
Target Area	AL060200-01_371	4/23/2003 N	0	0.16 SW8270C	PHENANTHRENE	UG/KG	380	380 Discrete
Target Area	AL060200-01_371	4/23/2003 N	0	0.16 SW8270C	PHENANTHRENE	UG/KG	310 J	310 Discrete
Target Area	AL060200-01_371	4/23/2003 N	0	0.16 SW8270C	PHENANTHRENE	UG/KG	220 J	220 Discrete
Target Area	AL060200-01_371	4/23/2003 N	0	0.16 SW8270C	PHENANTHRENE	UG/KG	160 J	160 Discrete
Target Area	AL060200-01_371	4/23/2003 N	0	0.16 SW8270C	PHENANTHRENE	UG/KG	31 J	31 Discrete
Target Area	SS040105-01	4/7/2005 N	0	0.25 SW8270C	PHENANTHRENE	UG/KG	U	170 Discrete
Target Area	SS040105-01	4/7/2005 FD	0	0.25 SW8270C	PHENANTHRENE	UG/KG	U	170 Discrete
Target Area	SS02221-A	9/7/2001 N	0	0.25 SW8270C	PHENANTHRENE	UG/KG	252 J	252 Discrete
Target Area	SS02221-A	9/7/2001 FD	0	0.25 SW8270C	PHENANTHRENE	UG/KG	193 J	193 Discrete
Target Area	SS02222-A	9/7/2001 N	0	0.25 SW8270C	PHENANTHRENE	UG/KG	202 J	202 Discrete
Target Area	SS02223-A	9/7/2001 N	0	0.25 SW8270C	PHENANTHRENE	UG/KG	U	169.5 Discrete
Target Area	SS02224-A	9/7/2001 N	0	0.25 SW8270C	PHENANTHRENE	UG/KG	U	176 Discrete
Target Area	SS02225-A	9/7/2001 N	0	0.25 SW8270C	PHENANTHRENE	UG/KG	Ü	175 Discrete
Target Area	SS02226-A	9/7/2001 N	0	0.25 SW8270C	PHENANTHRENE	UG/KG	64.6 J	64.6 Discrete
Target Area	SS02227-A	9/7/2001 N	0		PHENANTHRENE	UG/KG	U	176.5 Discrete
Target Area	SS02228-A	9/7/2001 N	0		PHENANTHRENE	UG/KG	Ü	173 Discrete
Target Area	SS02231-A	9/7/2001 N	0	0.25 SW8270C	PHENANTHRENE	UG/KG	Ü	171.5 Discrete
Target Area	SS132P	3/20/2001 N	0.5	1 SW8270	PHENANTHRENE	UG/KG	1000	1000 Discrete
Target Area	SS132P	3/20/2001 N	0	0.25 SW8270	PHENANTHRENE	UG/KG	690	690 Discrete
Target Area	SS132P	3/20/2001 N	0.25	0.5 SW8270	PHENANTHRENE	UG/KG	U	170 Discrete
Target Area	SS37MM HEAVERY	8/5/1999 N	0		PHENANTHRENE	UG/KG	16 J	16 Discrete
	_						ENANTHRENE DISCRET	

Appendix D Shipping Records

mi.Tätnar Ticket# 730589

Valume

Television .

103077MA (CONTAMINATED SOIL (DISPO

DOWLING RO

0111968

Not Required

stomer Name TANTARACORP TANTARA CORPORATI Carrier cket Date 04/05/2011 Vehicle# 116 yment Type Credit Account Container nual Ticket# Driver uling Ticket# Check# ute Billing # ate Waste Code None Gen EPA ID nifest í) ái PO stination Profile nerator

NE-MASSNATIONALGUARD Massachusette National Guard

Time Scale Operator Inbound Grass 62740 lb 04/05/2011 13:06:31 scale 1 inbou eric metzler Tare 28440 lb 04/05/2011 13:36:47 scale 2 outbo phil boisvert Net 34300 16 Tons 17.15

ments

duct	LD%	Ot y	UOM	Rate	Fee	Amount	Origin
Cont Soil Met-Tans		17.15	Tons				Pin .
FUEL-Fuel Surcharg EVF-P-Standard Env			%. %.				MA MA

Total Fees Total Ticket

LID WASTE TRANSPORTER DECLARATION: I certify under penalty of perjury that e information provided is true and correct to the best of my knowledge and belief. THE BEST OF MY KNOWLEDGE THIS TRUCK CONTAINS NO HAZARDOUS OR UNACCEPTABLE WASTE.

ver's Signaturé

05WM-Gonic, NH

Note:

Make additional copies of this page as necessary.

Massachusetts Department of Environmental Protection Bureau of Waste Prevention

Material Shipping Record & Log For the shipment of contaminated soil, urban fill, and dredge

For the shipment of contaminated soil, urban fill, and dredge materials not subject to management under section 310 CMR 40.0035 nor manifesting under 310 CMR 30.000

Profile # 103077MA
Tracking Number

Load#: /			///
LOGU#.			1 V/
Low O. Me		V ////	2/1
Signature of transporter	0.11	Receiving facility	
Date received	Time received	Data of this wart	
61274	7,110,1000,1700	Date of shipment	Time of shipment
Truck/Tractor registration		Trailer registration	
Load size (cubic yards/tons)		-	
Load#:			
LOQUIT,			
Signature of transporter			
orginature of transporter		Receiving facility	
Date received	Time received	Date of shipment	Time of shipment
Truck/Tractor registration		**************************************	
_		Trailer registration	
Load size (cubic yards/tons)			
Load#:			
Signature of transporter		Receiving facility	
Pate received	ime received		
	mie received	Date of shipment	Time of shipment
ruck/Tractor registration		Trailer registration	
oad size (cubic yards/tons)		- take	
, , , , , , , , , , , , , , , , , , , ,			
On Sheet Volume	Information		
and oucer volume			
otal volume this page (cubic yards	s/tons)	***************************************	of

K.

•

CLEAR	P	(ω					
1 2 3 4 5 6 7 23242526272829 454647484950515253545565758596061626364656667686970717273 DI FROM & NS QUANTITY S MENTARY S I DIS PROD PROD PROD PROD PROD PROD PROD PROD	UNIT PRICE	Œ CTS	1. TOTAL PR	crs	E	rack Rd Edwards, 542	3 SHIP TO	?a., 5 4.
24, DOCUMENT NUMBER & SUFFIX (30-44)	5 ODC BATE 9511 10 OTY REC	6 NM	1 UP 12 UNIT	7 FRT R. WEIGHT	13	8 TYPE C		9 PS
STOCK NO STOCK Approx Lons One of the control of t	17 ITEM NOM 18 TY CONT During Tr 22 RECEIVED	19 NC	TURÉ D CONT 		AL WEIGHT	tons	I TOTAL CUE OATE REC 0405	EIVÉO
"This certifies and verifies that the material listed has been 100 percent inspected and to explosives or related numerials." Continue Con	o the best o	of our	r knawledg	2 and be	elief are	inert and/	or free af	
Charles Campbell, ESS/UXOQCS TIEC								Form Flow (DLA)

Original Ticket# 730662

stomer Name TANTARACORP TANTARA CORPORATI Carrier MYSTIC MYSTIC MOTR TRANS INC. cket Date 04/05/2011 Vehicle# Volume yment Type Credit Account Container nual Ticket# Driver uling Ticket# Check# Billing # 0111968 ate Waste Code None Gen EPA ID Not Required nifest กล po

stination Profile 103077MA (CONTAMINATED SOIL (DISPO nerator NE-MASSNATIONALGUARD Massachusette National Guard

Time Scale Operator Inbound Grass 64840 lb 04/05/2011 15:25:30 scale 1 inbou eric metzler Tare 25440 16 **04/05/2011 15:53:5**2 scale 2 outbo phil boisvert Net 39400 15 Tons 19.70

denta

fuct	LDX	Oty	UOM	Rate	Fee	Amount	Origin
Coñt Soil Met-Tons FUEL-Fuel Surcharg EVF-P-Standard Env	100	19.70	Tons % %				MA MA

Total Fees Total Ticket

_ID WASTE TRANSPORTER DECLARATION: I certify under penalty of perjury that : information provided is true and correct to the best of my knowledge and belief. THE BEST OF MY KNOWLEDGE_THIS TRUCK CONTAINS NO HAZARDOUS OR UNACCEPTABLE WASTE.

ver's Signature

5WM-Gonic, NH

Note:

Make additional copies of this page as necessary.

Massachusetts Department of Environmental Protection Bureau of Waste Prevention

Material Shipping Record & Log For the shipment of contaminated soil, urban fill, and dredge

For the shipment of contaminated soil, urban fill, and dredge materials not subject to management under section 310 CMR 40.0035 nor manifesting under 310 CMR 30.000

Profile # 103077MA
Tracking Number

. Load Information		r. N
Signalure of Iransporter 4-5-11	Receiving facility	Hier.
Dale received Time received 70543 MH Truck/Tractor registration	Date of shipment	Time of shipment
Load size (cubic yards/tons)		
Load#:		
Signature of transporter	Receiving facility	
Date received Time received	Date of shipment	Time of shipment
Truck/Tractor registration	Trailer registration	
Load size (cubic yards/lons)		
Load#:		
Signature of transporter	Receiving facility	
Date received Time received	Date of shipment	Time of shipment
ruck/Tractor registration	Trailer registration	
oad size (cubic yards/tons)		
og Sheet Volume Information		
otal volume this page (cubic yards/tons)		
otal carried forward (cubic yards/tons)	Page	of

Total carried forward and this page (cubic yards/tons)

Volume

TEMP ANY CARRIER

stomer Name TANTARACORP TANTARA CORPORATI Carrier Vehicle# removal 04/05/2011 sket Date Container yment Type Credit Account Driver aual Ticket# Check# uling Ticket# Billing # ute ate Waste Code None nifest na

Sen EPA ID Not Required PO 103077MA (CONTAMINATED SOIL (DISP Profile NE-MASSNATIONALGUARD Massachusette National Guard

0111968

Time 04/05/2011 13:04:36 04/05/2011 13:39:08	Scale Operator scale 1 inbou eric metzler scale 2 outbo phil boisvert	Inbound	Gross Tare Net Tons	65220 1b 29400 1b 35740 1b 17.87
--	---	---------	------------------------------	---

ments

etination

nerator

oduet	LD%	aty	HOM	Rate	Fee	Amount	Drigin
Cont Soil Met-Tons FUEL-Fuel Surcharg EVF-P-Standard Env	100	17.87	Tons % 4				MA MA MA

Total Fees Total Ticket

SOLID WASTE TRANSPORTER DECLARATION: I certify under penalty of perjury that the information provided is true and correct to the best of my knowledge and belief. TO THE BEST OF MY KNOWLEDGE THIS TRUCK CONTAINS NO HAZARDOUS OR UNACCEPTABLE WASTE.

~iver's Signature

Note:

Make additional copies of this page as necessary.

Massachusetts Department of Environmental Protection
Bureau of Waste Prevention

Material Shipping Record & Log

For the shipment of contaminated soil, urban fill, and dredge materials not subject to management under section 310 CMR 40.0035 nor manifesting under 310 CMR 30.000

Profile # 103077MA Tracking Number

J. Load Information Load#: Date received Time of shipment MA. 67 Truck/Tractor registration Trailer registration Load size (cubic yards/tons) **Lo**ad#: Signature of transporter Receiving facility Date received Time received Date of shipment Time of shipment Truck/Tractor registration Trailer registration Load size (cubic yards/tons) **Lo**ad#: Signature of transporter Receiving facility Date received Time received Date of shipment Time of shipment Truck/Tractor registration Trailer registration Load size (cubic yards/tons) K. Log Sheet Volume Information Total volume this page (cubic yards/tons) Page _____ of ____ Total carried forward (cubic yards/tons)

Total carried forward and this page (cubic yards/tons)

Driginal Ticket# 730696

Volume

istomer Name TANTARACORP TANTARA CORPORATI Carrier TEMP ANY CARRIER cket Date 04/06/2011 Vehicle# removal wment Type Credit Account Container mual Ticket# Driver uling Ticket# Check# ut e Billing # 0111968 ate Waste Code Mone Gen EPA ID Not Required nifest na

103077MA (CONTAMINATED SOIL (DISPO nerator NE-MASSNATIONALGUARD Massachusette National Guard

Time Scale Operator inbound Gross 49140 lb 04/06/2011 07:03:14 scale 1 inbou eric metzler 29700 15 Tare 04/06/2011 07:47:31 scale 2 outbe phil boisvert Net 19440 16 Tons 9.72

Profile

ments

stination

*4.							e e e e e e e e e e e e e e e e e e e
duct	LD%	Qty	LIOM	Rate	Fee	Amount :	Origin
Cont Soil Met-Tons FUEL-Fuel Surcharg EVF-P-Standard Env	100	9.72	Tons % %	21 (rideram alaq seri rajanan 24) rampusu sun	Min talk das yem de zone day day day	- Ya va da vo ramadan - Ya ay Vo	MA MA MA

Total Fees Total Ticket

LID WASTE TRANSPORTER DECLARGION: I certify under penalty of perjury that e information provided is true and correct to the best of my knowledge and belief. THE BEST OF MY KNOWLEDGE THIS TRUCK CONTAINS NO HAZARDOUS OR UNACCEPTABLE WASTE.

05WM-Gonic, NH

Massachusetts Department of Environmental Protection
Bureau of Waste Prevention

Material Shipping Record & Log

For the shipment of contaminated soil, urban fill, and dredge materials not subject to management under section 310 CMR 40.0035 nor manifesting under 310 CMR 30.000

Profile # 103077MA

Tracking Number

J. Load Information

Note: Make additional copies of this page as necessary.

Load#: C(Receiping facility Date of shipment Trailer registration
Load#: Signature of transporter 1-6. // Date received Truck/Tractor registration Load size (cubic yards/tons)	Receiving facility Date of shipment Traifer registration
Load#: Signature of transporter	Receiving facility
Date received Time received	
	Date of shipment Time of shipment
Truck/Tractor registration	Trailer registration
Load size (cubic yards/tons)	
Log Sheet Volume Information	
Total volume this page (cubic yards/tons)	
	Page of
Total carried forward (cubic yards/tons)	. 490
Total carried forward and this page (cubic yards/tons)	

K.