Departamento de Matemática da Universidade de Aveiro

CÁLCULO III - agrup. 4

2022/23

Folha 7: Teoremas fundamentais: teoremas de Green, de Stokes e de Gauss

- 1. Determine o trabalho realizado pelo campo
 - (a) $\mathbf{F}(x,y) = (x^4, xy)$ ao longo da fronteira do triângulo de vértices (0,0), (1,0) e (0,1).
 - (b) $\mathbf{F}(x,y) = (3y + \cos(x^3), 7x + e^{y^4+1})$ ao longo da circunferência $x^2 + y^2 = 4$.
- 2. Use o Teorema de Green para calcular o trabalho efectuado pelo campo de forças

$$\mathbf{F}(x,y) = (y+3x, 2y-x)$$

ao longo da elipse $4x^2 + y^2 = 4$, percorrida em sentido anti-horário.

- 3. Calcule o integral de linha
 - (a) $\int_{\mathcal{C}} (x-y)dx + (x+y)dy$, sendo $\mathcal{C}: x^2 + y^2 = 4$
 - (b) $\int_{\mathcal{C}} x^2 y^2 dx + xy dy$, sendo \mathcal{C} o arco de parábola que une (0,0) a (1,1), em conjunto com os segmentos de recta que unem (0,1) a (0,0) e (1,1) a (0,1).
 - (c) Calcule $\int_{\mathcal{C}} (5-xy-y^2)dx (2xy-x^2)dy$, onde \mathcal{C} é o quadrado de vértices em (0,0),(1,0),(0,1) e (1,1), percorrido em sentido directo.
 - (d) $\int_{\mathcal{C}} \sin(y) dx + x^2 \cos(y) dy$, sendo \mathcal{C} o rectângulo de vértices (0,0),(5,0),(5,2), e (0,2).
 - (e) $\int_{\mathcal{C}} (y + e^{\sqrt{x}}) dx + (2x + \cos(y^2)) dy$, sendo \mathcal{C} a fronteira da região delimitada por $y = x^2$ e $x = y^2$.
- 4. Calcule
 - (a) $\iint_{\mathcal{S}} \operatorname{rot} \mathbf{F} \cdot \hat{\mathbf{n}} dS$, com $\mathbf{F}(x, y, z) = (xz, yz, xy)$ e \mathcal{S} sendo a parte da superfície esférica $x^2 + y^2 + z^2 = 4$ interior ao cilíndro $x^2 + y^2 = 1$, $z \ge 0$ (orientação de dentro para fora).
 - (b) $\iint_{\mathcal{S}} \operatorname{rot} \mathbf{F} \cdot \hat{\mathbf{n}} dS$, com $\mathbf{F}(x, y, z) = (2y \cos z, e^x \sin z, xe^y)$ e \mathcal{S} sendo a parte da superfície esférica $x^2 + y^2 + z^2 = 9$, $z \ge 0$ (orientação de dentro para fora).
- 5. Seja $\mathcal C$ uma curva simples fechada, C^1 , sobre o plano x+y+z=1. Mostre que o integral $\int_{\mathcal C} z dx 2x dy + 3y dz$ depende apenas da área da região delimitada por $\mathcal C$.
- 6. Calcule o fluxo $\iint_{\mathcal{S}} \mathbf{F} \cdot \hat{\mathbf{n}} dS$, sendo

- (a) $\mathbf{F}(x, y, z) = (z, y, x)$ e \mathcal{S} a parte superfície esférica $x^2 + y^2 + z^2 = 1$ (orientação de dentro para fora).
- (b) $\mathbf{F}(x,y,z) = (xy,y^2 + e^{xz^2},\sin(xy))$ e \mathcal{S} a superfície que delimita o sólido $0 \le z \le 1 x^2, \ 0 \le y \le 2 z$ (orientação de dentro para fora).

7. Calcule $\iint_{\mathcal{S}} \mathbf{F} \cdot \hat{\mathbf{n}}_{ext} dS,$ sendo

- (a) $\mathbf{F}(x,y,z) = (3x,xy,2xz)$ e \mathcal{S} a fronteira do sólido definido por $|x| \geq 1, |y| \geq 1, |z| \geq 1$.
- (b) $\mathbf{F}(x, y, z) = (z, y, x)$ e S dada por $x^2 + y^2 + z^2 = 16$.
- (c) $\mathbf{F}(x,y,z) = (x^2yz, xy^2z, xyz^2)$ e \mathcal{S} a fronteira do sólido definido por $0 \le x \le a, 0 \le y \le b, 0 \le z \le c$.
- (d) $\mathbf{F}(x, y, z) = (x^3 + y^3, y^3 + z^3, z^3 + x^3)$ e \mathcal{S} dada por $x^2 + y^2 + z^2 = 1$.