МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО"

ФАКУЛЬТЕТ СИСТЕМ УПРАВЛЕНИЯ И РОБОТОТЕХНИКИ

Лабораторная работа №4:

«Исследование трёхфазных электрических цепей»

по дисциплине Электротехника Вариант №12

Выполнил: Студент группы

R3237 Осинина Т. С

Преподаватель: Горшков К.С.

1) **Цель работы:** исследование свойств линейных трёхфазных цепей синусоидального тока при соединении приёмников звездой и треугольником с равномерной и неравномерной нагрузкой.

2) Метод экспериментального исследования:

- 1. Анализ
- 2. Лабораторный эксперимент (в программе LTspice)

3) План работы

Часть 1:

Опытная проверка основных соотношений в трёхфазной цепи с нагрузкой, включённой по схеме «звезда», в следующих режимах:

- 1. Симметричная нагрузка с нулевым проводом.
- 2. Симметричная нагрузка без нулевого провода.
- 3. Несимметричная нагрузка с нулевым проводом.
- 4. Несимметричная нагрузка без нулевого провода.
- 5. Обрыв линейного провода с нулевым проводом.
- 6. Обрыв линейного провода без нулевого провода.
- 7. Короткое замыкание одной фазы нагрузки без нулевого провода.

Часть 2:

Опытная проверка основных соотношений в трёхфазной цепи с нагрузкой, включённой по схеме «треугольник», в следующих режимах:

- 1. Симметричная нагрузка.
- 2. Несимметричная нагрузка.
- 3. Обрыв одной фазы нагрузки.
- 4. Обрыв двух фаз нагрузки.
- 5. Обрыв линейного провода с симметричной нагрузкой.
- 6. Обрыв линейного провода с несимметричной нагрузкой.

4) Формулы для расчета

Выражения для расчётов в схеме «звезда».

Напряжение смещения нейтрали: $\underline{U}_{Nn} = \frac{\underline{E}_A \underline{Y}_a + \underline{E}_B \underline{Y}_b + \underline{E}_C \underline{Y}_c}{\underline{Y}_a + \underline{Y}_b + \underline{Y}_c}, \quad \text{где}$ $\underline{E}_A = E_A \cdot e^{j0^\circ}, \quad \underline{E}_B = E_B \cdot e^{-j120^\circ}, \quad \underline{E}_C = E_C \cdot e^{j120^\circ}, \quad E_A, E_B, E_C \quad - \quad \text{действующие}$ значения ЭДС в фазах источника, $\underline{Y}_a, \underline{Y}_b, \underline{Y}_c$ - комплексные действующие значения проводимостей фаз.

Комплексные действующие значения напряжений в фазах приёмника: $\underline{U}_a = \underline{E}_A - \underline{U}_{Nn}, \ \underline{U}_b = \underline{E}_B - \underline{U}_{Nn}, \ \underline{U}_c = \underline{E}_C - \underline{U}_{Nn} \,.$

Комплексные действующие значения фазных токов и тока нейтрального провода: $\underline{I}_a = \underline{U}_a \underline{Y}_a$, $\underline{I}_b = \underline{U}_b \underline{Y}_b$, $\underline{I}_c = \underline{U}_c \underline{Y}_c$, $\underline{I}_{Nn} = \underline{I}_a + \underline{I}_b + \underline{I}_c$.

Активная мощность фаз приёмника: $P_a = U_a I_a \cos \phi_a$, $P_b = U_b I_b \cos \phi_b$, $P_c = U_c I_c \cos \phi_c$, где ϕ_a , ϕ_b , ϕ_c — разности фаз между током и напряжением в фазах приёмника.

Выражения для расчётов в схеме «треугольник».

Комплексные действующие значения напряжений в фазах приёмника: $\underline{U}_{ab} = \underline{E}_A - \underline{E}_B \,,\; \underline{U}_{bc} = \underline{E}_B - \underline{E}_C \,,\; \underline{U}_{ca} = \underline{E}_C - \underline{E}_A \,.$

Комплексные действующие значения токов в фазах приёмника: $\underline{I}_{ab} = \underline{U}_{ab} \underline{Y}_{ab}, \ \underline{I}_{bc} = \underline{U}_{bc} \underline{Y}_{bc} \,, \ \underline{I}_{ca} = \underline{U}_{ca} \underline{Y}_{ca} \,.$

Комплексные действующие значения линейных токов: $\underline{I}_A = \underline{I}_{ab} - \underline{I}_{ca}$, $\underline{I}_B = \underline{I}_{bc} - \underline{I}_{ab}$, $\underline{I}_C = \underline{I}_{ca} - \underline{I}_{bc}$.

Рисунок 3.3 – Схема замещения нагрузки, соединённой по схеме а) «звезда», б) «треугольник».

5) Значения по варианту

		Star-Star												
RMS value		Bala	nced Lo	oad	Unbalanced Load									
								0 - m	eans al	sent	Inf - means absent			
E	F	R	L	С	Ra	Rb	Rc	La Lb L		Lc	Ca	Cb	Сс	
[V]	[Hz]	[Ohm]	[mH]	[mkF]	[Ohm]	[Ohm]	[Ohm]	[mH] [mH] [mH]		[mkF]	[mkF]	[mkF]		
164	60	45	281	Inf	45	27	27	281	365	393	Inf	Inf	Inf	

Star Exp 5,6	Star Exp 7	Delta Exp 3	Delta Exp 4	Delta Exp 5, 6
StarLineBreakage	StarPhaseShortCircuit	DeltaPhaseBreakage1	DeltaPhaseBreakage2	DeltaLineBreakage
В	Α	bc	ab & ca	В

6) Часть 1

$$E_{mA}=E_{mC}=E_{mB}=164\ \mathrm{B}$$
 $\omega=2\cdot\pi\cdot f=2\cdot3,14\cdot60=376,8\ rac{\mathrm{pag}}{\mathrm{c}}$ $\psi A=-120^{0},\psi B=0^{0},\psi c=120^{0}$ $R_{n}=0,09\ \mathrm{Om},\mathrm{l}=1\ \mathrm{m},p=0.196\ \mathrm{mm}^{2}$

1.Схема цепи

Таблица 3.1.

№	Вид нагрузки		Ua, B	Ub, B	Uc, B	Ia, A	Ib, A	Ic, A	Ра, Вт	Рb, Вт	Рс, Вт	UNn, B	INn, A	Za, Ом	Zb, Ом	Zc, Ом
	Симметричная	Изм	115,87	115,87	115,87	1,0366	1,0435	1,0491	35,433	34,257	34,856	0	0	45	45	45
1	нагрузка с нулевым проводом	Выч	115,096	115,096	115,096	1,5002	1,5002	1,5002	60,7635	60,7635	60,7635	0,000	0,000	45	45	45
2	Симметричная нагрузка без нулевого провода	Изм	115,86	115,86	115,86	1,0832	1,0153	1,01	50,403	56,23	53,623	-	-	45	45	45
		Выч	115,966	115,966	115,966	1,170	1,170	1,170	61,637	61,637	61,637	0,000	0,000	45	45	45
	Несимметричная нагрузка с нулевым проводом	Изм	115,85	115,85	115,85	1,0325	0,839	0, 808	51	34,243	8,7678	0	0,254	45	27	27
3		Выч	115,966	115,966	115,966	1,170	0,984	0,918	61,637	26,164	22,733	0,000	0,227	45	27	27
	Несимметричная нагрузка без нулевого провода	Изм	107,07	126,11	115,29	0,946	0, 918	0, 805,	53,037	32,338	19,67	-	-	45	27	27
4		Выч	107,992	127,044	113,742	1,090	1,078	0,900	53,453	31,402	21,869	0,000	0,000	45	27	27
	Обрыв линейного	Изм	115,76	0	115,76	1,0309	0	1,5191	50,249	0	52,988	0,169	1,887	45	∞	27
5	провода с нулевым проводом	Выч	115,966	0,000	115,966	1,170	0,000	0,918	61,637	0,000	22,733	0,000	1,067	45	∞	27
	Обрыв линейного	Изм	87,203	0	114,85	0, 801,	0	0, 801	29,81	0	20,944	-	-	45	∞	27
6	провода без нулевого провода	Выч	88,989	0,000	113,503	0,898	0,000	0,898	36,296	0,000	21,777	0,000	0,000	45	∞	27
	Короткое замыкание	Изм	0	200,7	200,69	0	2,3488	1,682	0	102,69	47,491	0	0	0	27	27
7	одной фазы нагрузки без нулевого провода	Выч	0,000	136,886	203,851	0,000	1,613	1,381	0,000	85,882	70,246	0,000	0,000	0	27	27

Пример расчета для опыта №1.

$$f := 60$$

 $\omega := 2 \cdot \pi \cdot f = 376,9911$

$$Za := \sqrt{\left(Ra^2 + \left(\omega \cdot La\right)^2\right)} = 115,0961$$

$$\varphi a := \operatorname{arctg}\left(\omega \cdot \frac{La}{Ra}\right) = 1,1691$$

$$Zb := \sqrt{\left(Rb^2 + \left(\omega \cdot Lb\right)^2\right)} = 115,0961$$

$$\varphi b := \operatorname{arctg}\left(\omega \cdot \frac{Lb}{Rb}\right) = 1,1691$$

$$Zc := \sqrt{\left(Rc^2 + \left(\omega \cdot Lc\right)^2\right)} = 115,0961$$

$$\varphi c := \operatorname{arctg}\left(\omega \cdot \frac{Lc}{Rc}\right) = 1,1691$$

$$Ya := \frac{1}{Za} = 0,0087$$
 $Ua := Ea = 164$
 $Yb := \frac{1}{Zb} = 0,0087$
 $Ub := Eb = 133,5257 + 95,2202 \cdot i$
 $Yc := \frac{1}{Zc} = 0,0087$
 $Uc := Ec = 133,5257 - 95,2202 \cdot i$

$$ya := Ya \cdot \exp(j \cdot \varphi a) = 0,0023 + 0,0089 \cdot i$$
 $|Ua| = 164$
 $yb := Yb \cdot \exp(j \cdot \varphi b) = 0,0023 + 0,0089 \cdot i$ $|Ub| = 164$
 $yc := Yc \cdot \exp(j \cdot \varphi c) = 0,0023 + 0,0089 \cdot i$ $|Uc| = 164$

$$Ia := Ua \cdot ya = 0,3705 + 1,4537 \cdot i$$

$$Ib := Ub \cdot yb = -0,5424 + 1,3987 \cdot i$$
 $Ic := Uc \cdot yc = 1,1457 + 0,9684 \cdot i$

$$|Ia| = 1,5002$$
 $|Ic| = 1,5002$ $|Ib| = 1,5002$

$$Pa := Ia \cdot Ua \cdot \cos \left(\operatorname{arctg} \left(\omega \cdot \frac{La}{Ra} \right) \right) = 15,0073 + 58,8811 \cdot i$$

$$Pb := Ib \cdot Ub \cdot \cos \left[\operatorname{arctg} \left(\omega \cdot \frac{Lb}{Rb} \right) \right] = -50,7798 + 33,3709 \cdot i$$

$$Pc := Ic \cdot Uc \cdot \cos \left(\operatorname{arctg} \left(\omega \cdot \frac{Lc}{Rc} \right) \right) = 60,558 + 4,9938 \cdot i$$

$$|Pa| = 60,7635$$
 $|Pc| = 60,7635$ $|Pb| = 60,7635$

Векторные диаграммы

2.Векторная диаграмма для опыта №1 и №2

3. Векторная диаграмма для опыта N = 3

4. Векторная диаграмма для опыта N24

5. Векторная диаграмма для опыта \mathcal{N}_{2} 5

6. Векторная диаграмма для опыта №6

7. Векторная диаграмма опыта №7

7) Часть 2

8.Схема цепи

Таблица 3.2.

	1 аолица 5.2		1						1					
№	Вид нагрузки		Ia, A	Ib, A	Ic, A	Iab, A	Ibc, A	Ica, A	Pab, Вт	Pbc, Вт	Рса, Вт	Zab, Ом	Zbc, Ом	Zca, Ом
		Изм	1.63	1.63	1.63	0, 891	0, 891	0, 891	45.175	45.175	45.175	45	45	45
1	Симметричная нагрузка	Выч	1.737	1.737	1.737	0.8686	0.8686	0.8686	47,854	47,85	47,85	45	45	45
		Изм	1,69	1,81	1,55	0, 891	0,819	0,7	44.336	19,22	13.66	45	27	27
2	Несимметричная нагрузка	Выч	1,563	1,611	1,420	1,009	0,849	0,791	45,813	19,45	16,9	45	27	27
		Изм	1,57	1,761	1,0	0	1.697	0,6	0	18,5	16,22	45	27	27
3	Обрыв одной фазы нагрузки	Выч	1,563	1,611	1,420	0,000	0,849	0,791	0,000	19,45	16,9	45	27	27
		Изм	0,962	1,0	0	0,809	0	0		0	0	45	27	27
4	Обрыв двух фаз нагрузки	Выч	1,009	1,009	0,000	1,009	0,000	0,000	45,813	0,000	0,000	45	27	27
	Обрыв линейного	Изм	0	1,1	1,08	0,257	0,79	0,326	6,97	27,8	6,9	45	45	45
5	провода с симметричной нагрузкой	Выч	0,000	1,041	1,041	0,393	0,787	0,393	6,961	27,84 4	6,961	45	45	45
	Обрыв	Изм	0,000	0,832	0,965	0,085	0,532	0,425	0,67	9,7	6,5	45	27	27
6	линейного провода с несимметричн ой нагрузкой	Выч	0,000	0,736	1,021	0,131	0,662	0,514	0,770	11,81 9	7,137	45	27	27

Пример расчета для опыта №1.

$$\begin{split} j &:= \sqrt{-1} = i \\ Ea &:= 164 \cdot \exp \left(j \cdot (-120)\right) = 133,5257 - 95,2202 \cdot i \\ Eb &:= 164 \cdot \exp \left(j \cdot (120)\right) = 133,5257 + 95,2202 \cdot i \\ Eb &:= 164 \cdot \exp \left(j \cdot (120)\right) = 133,5257 + 95,2202 \cdot i \\ Ec &:= 164 \cdot \exp \left(j \cdot (120)\right) = 133,5257 + 95,2202 \cdot i \\ Ec &:= 164 \cdot \exp \left(j \cdot (120)\right) = 133,5257 + 95,2202 \cdot i \\ Ec &:= 200 \cdot 200 \cdot 200 \cdot 200 \cdot i \\ Ec &:= 200 \cdot 200 \cdot 200 \cdot 200 \cdot i \\ Ec &:= 200 \cdot 200 \cdot 200 \cdot 200 \cdot i \\ Ec &:= 200 \cdot 200 \cdot 200 \cdot 200 \cdot i \\ Ec &:= 200 \cdot 200 \cdot 200 \cdot 200 \cdot i \\ Ec &:= 200 \cdot 200 \cdot 200 \cdot 200 \cdot i \\ Ec &:= 200 \cdot 200 \cdot 200 \cdot 200 \cdot i \\ Ec &:= 200 \cdot 200 \cdot 200 \cdot 200 \cdot i \\ Ec &:= 200 \cdot 200 \cdot 200 \cdot 200 \cdot i \\ Ec &:= 200 \cdot 200 \cdot 200 \cdot 200 \cdot i \\ Ec &:= 200 \cdot 200 \cdot 200 \cdot 200 \cdot i \\ Ec &:= 200 \cdot 200 \cdot 200 \cdot 200 \cdot i \\ Ec &:= 200 \cdot 200 \cdot 200 \cdot 200 \cdot i \\ Ec &:= 200 \cdot 200 \cdot 200 \cdot 200 \cdot i \\ Ec &:= 200 \cdot 200 \cdot 200 \cdot 200 \cdot i \\ Ec &:= 200 \cdot 200 \cdot 200 \cdot 200 \cdot i \\ Ec &:= 200 \cdot 200 \cdot 200 \cdot 200 \cdot 200 \cdot i \\ Ec &:= 200 \cdot 200 \cdot 200 \cdot 200 \cdot i \\ Ec &:= 200 \cdot 200 \cdot 200 \cdot 200 \cdot 200 \cdot i \\ Ec &:= 200 \cdot 200 \cdot 200 \cdot 200 \cdot 200 \cdot i \\ Ec &:= 200 \cdot 200 \cdot 200 \cdot 200 \cdot 200 \cdot i \\ Ec &:= 200 \cdot 200 \cdot 200 \cdot 200 \cdot 200 \cdot i \\ Ec &:= 200 \cdot 200 \cdot 200 \cdot 200 \cdot 200 \cdot i \\ Ec &:= 200 \cdot 200 \cdot 200 \cdot 200 \cdot i \\ Ec &:= 200 \cdot 200 \cdot 200 \cdot i \\ Ec &:= 200 \cdot 200 \cdot 200 \cdot i \\ Ec &:= 200 \cdot 200 \cdot 200 \cdot i \\ Ec &:= 200 \cdot 200 \cdot i$$

Вывод: в процессе выполнения лабораторной работе № 4 были исследованы свойства линейных трёхфазных цепей синусоидального тока при соединении приёмников звездой и треугольником с равномерной и неравномерной нагрузкой. Также были получены значения напряжения, силы тока, мощности для каждого случая с помощью расчетов и эксперимента, сравнивая их, видно, что значения похожи (есть некоторые отличии по причине погрешности измерений), таким образом работа выполнена верно.