U201714670 范唯 CS1703

朴素贝叶斯作业

请用表 2-1 的训练数据学习一个朴素贝叶斯分类器,表中 $X^{(1)}$, $X^{(2)}$ 为特征,取值的集合分别为 $A_1=\{1,2,3\}$, $A_2=\{S,M,L\}$, Y为类标记,Y \in C $=\{1,-1\}$. 并确定 $\mathbf{x}=(2,S)^T$ 的类标签 y,请给出推导具体过程。

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$X^{(1)}$	1	1	1	1	1	2	2	2	2	2	3	3	3	3	3
$X^{(2)}$	S	М	М	S	S	S	М	М	L	L	L	М	М	L	L
Υ	-1	-1	1	1	-1	-1	-1	1	1	1	1	1	1	1	-1

表 2-1.

解题思路

从上述推导过程可以得出 $x=(2,S)^T$ 的类标签y应该为-1.

拉普拉斯平滑(Laplace smoothing):由于概率计算中间可能会出现所要估计概率值为0的情况,进而使得后验概率的计算结果受到影响,使分类结果产生偏差,所以会采用Laplace校准

$$P_{\lambda}(Y=c_k) = rac{\sum_{i=1}^{N}I(y_i=c_k) + \lambda}{N+K\lambda}$$

但是如果需要考虑到拉普拉斯平滑的话。则需要作出以下修正

$$P(Y=1)=10/17$$
, $P(Y=-1)=7/17$ $P(X^{(1)}=1|Y=1)=3/12$, $P(P(X^{(1)}=2|Y=1)=4/12$, $P(P(X^{(1)}=3|Y=1)=5/12$ $P(X^{(2)}=S|Y=1)=2/12$, $P(X^{(2)}=M|Y=1)=5/12$, $P(X^{(2)}=L|Y=1)=5/12$, $P(X^{(1)}=1|Y=-1)=4/9$, $P(X^{(1)}=2|Y=-1)=3/9$, $P(X^{(1)}=3|Y=-1)=2/9$ 所以对于给定的 $x=(2,S)$ 计算:
$$P(Y=1)P(X^{(1)}=2|Y=1)P(X^{(2)}=S|Y=1)=(10/17)(4/12)(2/12)=0.0327$$
 $P(Y=-1)P(X^{(1)}=2|Y=1)P(X^{(2)}=S|Y=1)=(7/17)(3/9)(4/9)=0.0610$ 所以分类结果为 $y=-1$

相关知识

贝叶斯定理: P(B|A) = P(A|B)P(B)/P(A)

朴素贝叶斯分类是一种十分简单的分类算法,**叫它朴素贝叶斯分类是因为这种方法的思想真的很朴素**,朴素贝叶斯的思想基础是这样的:对于给出的待分类项,求解在此项出现的条件下各个类别出现的概率,哪个最大,就认为此待分类项属于哪个类别。通俗来说,就好比这么个道理,你在街上看到一个黑人,我问你你猜这哥们哪里来的,你十有八九猜非洲。为什么呢?因为黑人中非洲人的比率最高,当然人家也可能是美洲人或亚洲人,但在没有其它可用信息下,我们会选择条件概率最大的类别,这就是朴素贝叶斯的思想基础。

$$X=x_1,x_2,\ldots,x_m$$
 $Y=y_1,y_2,\ldots,y_n$ 计算 $P(y_1|X),P(y_2|X),\ldots,P(y_n|X)$ 这里找出最大的 $P(y_k|X)X\in y_k$ (我们可以把 X 等想像成迎面走来的穿着 $AirJordan$ 黑人,而 y_1,y_2 可以想象成欧洲人、非洲人等等)(而 x_1 则是特征黑人, x_2 则是特征穿着 $AirJordan$) 1.统计各个类别下各个特征属性的条件概率估计: $P(x_1|y_1),P(x_1|y_2),\ldots P(x_m|y_n)$ 2.并且 $P(y_i|X)=P(X|y_i)P(y_i)/P(X)$ 3.因为各个特征是独立的,所以 $P(X|y_i)P(y_i)$ 可以由下列算式计算 $P(x_1|y_i)P(x_2|y_i)\ldots P(x_m|y_i)P(y_i)=P(y_i)\prod_{j=1}^m P(x_j|y_i)$ 4.那么可以求得所有的 $P(y_i|X)$,得出最大的 $P(y_k|X)$