AUTOMATON WITH OUTPUT

ITEU133

AUTOMATA AND THEORY OF COMPUTATION

COURSE SYLLABUS

V. Automaton with Output

- Moore Machines
- Mealy Machines
- Equivalence of Moore and Mealy Machine
- Applications of Automaton with Output

FINITE AUTOMATA AS MATHEMATICAL MODELS OF COMPUTERS

```
letters of words \( \ldots \) input

transitions \( \ldots \) execution of instructions (a program)

state \( \ldots \) contents of memory

output
```


- A finite-state machine M = (Q, S, O,d, I, q)
 0 consists of a finite
- set Q of states, a finite input alphabet S, a finite output alphabet O,
- a transition function δ that assigns to each state and input pair a new state, an output function ϵ that assigns to each state and input pair an output, and an initial state q0.

- A Moore machine is a collection of 5 things:
 - 1. a finite set of states $q_0, q_1, q_2, ...$, where q_0 is designated the start state
 - 2. an alphabet Σ of input letters
 - 3. an alphabet Γ of output characters
 - 4. a transition table that shows for each state and each input letter what state to go to next.
 - 5. an output table that shows what character is output (or printed) when entering a state.

(state, letter from Σ)—transition state

Example: states = $\{q_0, q_1, q_2, q_3\}$

$$\Sigma = \{a,b\}$$

$$\Gamma = \{0, 1\}$$

Old state	Output by the	New state			
	old state	After input a	After input b		
$-q_0$	1	q_1	q_3		
q_1	0	q_3	q_1		
q_2	0	q_0	q_3		
q_3	1	q_3	q_2		

Example: A machine that counts 'aab's

Input		а	а	а	b	а	b	b	а	а	b	b
State	q_0	q_1	q_2	q_2	q_3	q_1	q_0	q_0	q_1	q_2	q_3	$ q_0 $
Output	0	0	0	0	1	0	0	0	0	0	1	0

Printing 1 ≈ final state

words that end in aab

- A Mealy machine is:
 - 1. a finite set of states $q_0, q_1, q_2, ...$, where q_0 is designated the start state
 - 2. an alphabet Σ of input letters
 - 3. an alphabet Γ of output characters
 - 4. a finite set of transitions that indicate, for each state and letter of the input alphabet, the state to go to next and the character that is output (printed).

Example

Abbreviation:

Example: binary complement

$$\Sigma = \{0, 1\}$$

$$\Gamma = \{0, 1\}$$

101 001010

010 110101

<u>Definition:</u> Let Mo be a Moore machine that prints x in the start state. Let Me be a Mealy machine. The two machines are equivalent if for every input, whenever the output from Me is w, the output from Mo is xw.

Theorem: For every Moore machine, there exists a Mealy machine that is equivalent to it.

Proof: By constructive algorithm

Theorem: For every Mealy machine, there exists a Moore machine that is equivalent to it.

Proof: By constructive algorithm

One copy of the state for each letter in Γ that labels an arrow entering it.

We must consider

- 1. incoming edges
- 2. outgoing edges
- 3. loops

If there is no entering arrow, choose any letter from Γ .

Choose any copy of q_0 as the start state.

Old	<u>Input</u>	0	Input 1		
state	new state	output	new state	output	
q_0	q_2	0	q_2	1	
q_1	q_2	1	q_0	1	
q_2	q_3	0	q_1	1	
q_3	q_3	1	q_1	1	

Automata Summary

	Finite Automata	Tr. Graphs	Generalized Tr. Graphs	non-determ automata	Moore Machines	Mealy Machines
start states	1	≥1	≥1	1	1	1
final states	≥0	≥0	≥0	≥0	0	0
labels on arrows	letters of Σ	words of Σ^*	Reg. Expr. over Σ	letters of Σ	letters of Σ	i/o, i $\in \Sigma$, o $\in \Gamma$
# of trans. from each state	1 transition for each letter of Σ	≥0	≥0	≥0	1 transition for each letter of Σ	1 transition for each letter of Σ
Deterministic?	Yes	No	No	No	Yes	Yes
Output?	No	No	No	No	Yes	Yes