Mathematical Methods for Economic Dynamics (ECON 696)

Lecture 1: Logic, Sets, Functions, Sequences, Compactness

Style of the Course

- We place a big emphasis on the formality of the mathematical argument.
- Although proving a theorem is crucial in mathematics, we often skip the proof in the class.
- Proofs omitted in the class should be found in the lecture notes or textbook.

Logic

Notation

 $\neg p$: the **negation** of a statement p.

 $p \wedge q$: the **conjunction** of two statements p and q.

 $p \lor q$: the **disjunction** of p and q.

The **universal** quantifier $(\forall x)$: "for every x,", and

The **existential** quantifier $(\exists x)$: "there exists x."

 $(\exists!x)$: "there is exactly one x."

Thus, the sentence:

For every x, there is a y such that x < y

is symbolized:

$$(\forall x)(\exists y)(x < y).$$

The sentence:

For every x, there is exactly one y such that x + y = 0

is symbolized:

$$(\forall x)(\exists! y)(x+y=0).$$

Necessity and Sufficiency (Ch. 1.2)

Consider any two statements, p and q.

When "q is necessary for p," q must be true for p to be true.

I might say that "q is true if p is true," or simply that "p implies q."

I denote this statement by $p \Rightarrow q$.

Suppose we know that " $p \Rightarrow q$ " is a true statement.

What if q is not true? Because q is necessary for p, when q is not true, then p cannot be true, either. But doesn't this just say that "not-q" (denoted by $\neg q$) implies "not-p." (denoted by $\neg p$)

This latter form of the original statement is called the **contra- positive** form. Contraposition of the arguments in the statement **reverses** the direction of implication for a true statement.

When "q is sufficient for p," "q is true **only if** p is true," or that "p is implied by q" $(p \Leftarrow q)$.

" $p \Leftarrow q$ " and " $p \Rightarrow q$," can both be true. When this is so, "p is necessary and sufficient for q," or "p is true **if and only if** q is true," or "p iff q."

When "p is necessary and sufficient for q," p and q are **equivalent** (" $p \Leftrightarrow q$.")

Set Theory

Sets (Ch. A.1)

A set = any collection of elements.

Sets of objects: A, S, T, \dots

their members of a set: a, s, t, \ldots

We mean by $x \in S$ "x is an element of S."

S is a **subset** of T if every element of S is also an element of T: $S \subseteq T \Leftrightarrow (\forall x \in S)(x \in T)$.

S is a **proper subset** of T if $S \subseteq T$ and $S \neq T$; we write $S \subsetneq T$ in this case.

 $S=T\colon S\subseteq T \text{ and } S\supseteq T\Leftrightarrow (\forall x)((x\in S\Rightarrow x\in T)\land (x\in T\Rightarrow x\in S)).$

|S|: the number of elements in a set S and it is called the **car**-dinality of S.

S is **empty** or is an **empty set** if it contains no elements at all. It is a subset of "every" set.

Example: Let $A = \{x \in (-\infty, \infty) | x^2 = 0 \text{ and } x > 1\}$. Then A is empty.

We denote the empty set by \emptyset .

 $S \setminus T$: all elements in the set S that are not elements of T.

 $S \cup T \equiv \{x | x \in S \text{ or } x \in T\}$: the **union** of S and T.

 $S \cap T \equiv \{x | x \in S \text{ and } x \in T\}$: the **intersection** of S and T.

Vehn Diagrams are often used to depict $S \cup T$, $S \cap T$, $S \setminus T$ or many other.

 S^c : the **complement** of a set S in a universal set U if it is the set of all elements in U that are not in S.

$$S, T \subseteq U \Rightarrow S^c = U \backslash S.$$

Clearly, what S^c crucially depends on what the universal set U is.

Example: Let $S = \{x | 5 \le x \le 10\}$. If $U = (-\infty, \infty)$,

$$S^c = \{x \in U | x < 5 \text{ or } x > 10\}.$$

On the other hand, if $U = \{x \in (-\infty, \infty) | x \ge 0\}$,

$$S^c = \{x \in U | 0 \le x < 5 \text{ or } x > 10\}.$$

So far, the order of the elements in a set does not matter. In particular, $\{a,b\} = \{b,a\}$.

However, the coordinates of a point in xy-plane are given as an **ordered pair** (a,b) of real numbers: (a,b) = (c,d) if and only if a = c and b = d.

The **product** of S and T is

$$S \times T \equiv \{(s,t) | s \in S, t \in T\}.$$

 $\mathbb{R} \equiv \{x | -\infty < x < \infty\}$: the set of real numbers

$$\mathbb{R}^n \equiv \underbrace{\mathbb{R} \times \cdots \times \mathbb{R}}_{n \text{ times}} \equiv \{(x_1, \dots, x_n) \mid x_i \in \mathbb{R}, \ i = 1, \dots, n\}.$$

 \mathbb{R}^n is called *n*-dimensional Euclidean space and any element of it is considered a "point" in \mathbb{R}^n .

$$\mathbb{R}^{n}_{+} \equiv \{(x_{1}, \dots, x_{n}) \mid x_{i} \geq 0, i = 1, \dots, n\} \subseteq \mathbb{R}^{n}$$

 $\mathbb{R}^{n}_{++} \equiv \{(x_{1}, \dots, x_{n}) \mid x_{i} > 0, i = 1, \dots, n\} \subseteq \mathbb{R}^{n}_{+}.$

Functions

Functions (Ch. A.1)

A **function** associates each element of one set with a single, unique element of another set.

 $f: D \to R$: a **mapping, map**, or **transformation** from one set D to another set R, where D denotes the **domain** and R denotes the **range** of the mapping.

y = f(x): y is the point in the range mapped into by the point x in the domain.

Examples

(1) f(x) = 1/(x+3): For x = -3, the formula reduces to the meaningless expression "1/0." For all other values of x, the formula makes f(x) a well-defined number. Thus, the domain of f consists of all (real) numbers $x \neq -3$.

(2) $g(x) = \sqrt{2x+4}$: The expression $\sqrt{2x+4}$ is uniquely defined for all x such that 2x+4 is nonnegative. Solving the inequality $2x+4\geq 0$ for x gives $x\geq -2$. The domain of g is therefore the interval $[-2,\infty)$.

The **image** of f is the set of points in the range into which some point in the domain is mapped, i.e.,

$$f(D) \equiv \{y \in R \mid y = f(x) \text{ for some } x \in D\} \subseteq R.$$

The **inverse image** of a set of points $S \subseteq f(D)$ is defined as

$$f^{-1}(S) \equiv \{x \in D \mid f(x) \in S\}.$$

Example: Let $f(x) = x^2$. Then,

If $D = \mathbb{R}$, the image of f is $f(D) = \mathbb{R}_+$.

Let S = [0, 1]. Then, the inverse image of S = [0, 1] is $f^{-1}([0, 1]) = [-1, 1]$.

A function $f: D \to R$ is **one-to-one** (or **injective**) if, $(\forall x, x' \in D)(f(x) = f(x') \Rightarrow x = x')$.

If f(D) = R, the function f is said to be **onto** (or **surjective**).

If a function is one-to-one and onto (or **bijective**), then an **in-verse function** $f^{-1}: R \to D$ exists and f^{-1} is also one-to-one and onto.

Example: $f: \mathbb{R} \to \mathbb{R}$ with $f(x) = x^2$ is **not** a one-to-one mapping. the same $f(\cdot)$ is **not** onto either. Let $f: \mathbb{R}_+ \to \mathbb{R}_+$ with $f(x) = x^2$. In this case, $f(\cdot)$ is bijective.

Examples of Inverse Functions

(1) y = 4x - 3. Solving the equation for x,

$$y = 4x - 3 \Leftrightarrow 4x = y + 3 \Leftrightarrow x = \frac{1}{4}y + \frac{3}{4}$$
.

So, g(y) = y/4 + 3/4 is the inverse function of f(x) = 4x - 3.

(2) y = (3x - 1)/(x + 4). Multiplying both sides of the equation by (x + 4), we obtain

$$y(x + 4) = 3x - 1 \Leftrightarrow x(3 - y) = 4y + 1.$$

Hence,

$$x = \frac{4y+1}{3-y}.$$

Note that we exclude x = -4 and y = 3 to make both functions well-defined.

Real Numbers

Natural Numbers, Integers, and Rationals

 $\mathbb{N} \equiv \{1, 2, 3, \ldots\}$: the set of all **natural numbers** .

 $\mathbb{Z}_{+} = \mathbb{N} \cup \{0\}$: the set of all **nonnegative integers**.

Construct the set $\mathbb{N}_{-} = \{-1, -2, \ldots\}$ of all **negative integers**.

 $\mathbb{Z} = \mathbb{Z}_+ \cup \mathbb{N}_-$: the set of all **integers**.

For instance, consider an equation like 2x = 1, which makes sense in \mathbb{Z} . However, it cannot possibly be solved in \mathbb{Z} . Hence, we need to extend \mathbb{Z} to the set \mathbb{Q} of all **rational numbers**:

$$\mathbb{Q} = \{ m/n | m, n \in \mathbb{Z}, n \neq 0 \}.$$

Sets of Real Numbers

There are certainly two rational numbers p and q such that $p^2 > 2 > q^2$, but now we know that there is no $r \in \mathbb{Q}$ with $r^2 = 2$. It is as if there were a "hole" in the set of rational numbers.

So, we wish to **complete** $\mathbb Q$ by filling up its holes with "new" numbers. And doing this leads us to the set $\mathbb R$ of **real numbers**.

Note that any member of the set $\mathbb{R}\setminus\mathbb{Q}$ is said to be an **irrational** number.

Properties of Real Numbers (Ch. A.2)

A set $S \subseteq \mathbb{R}$ is **bounded above** if $(\exists b \in \mathbb{R})(\forall x \in S)(b \geq x)$, where b is called an **upper bound** for S.

Definition: b^* is a **least upper bound** for the set S if it is an upper bound for S with the property that $b^* \leq b$ for every upper bound b.

A set S in $\mathbb R$ can have at most one least upper bound, because if b_1^* and b_2^* are both least upper bounds for S, then $b_1^* \leq b_2^*$ and $b_2^* \leq b_1^*$, which thus implies that $b_1^* = b_2^*$.

Notation: $b^* = \sup S$ or $b^* = \sup_{x \in S} x$, where "sup" stands for supremum.

Example: The set $S = (0,5) = \{x \in \mathbb{R} | 0 < x < 5\}$ has many upper bounds, some of which are 100, 6.73, and 5.

Clearly no number smaller than 5 can be an upper bound, so 5 is the least upper bound. Thus, $\sup S = 5$.

A set S in \mathbb{R} is **bounded below** if $(\exists a \in \mathbb{R})(\forall x \in S)(x \geq a)$, where a is called a lower bound for S.

Similarly, a set S in \mathbb{R} that is bounded below has a greatest lower bound a^* .

Notation: $a^* = \inf S$ or $a^* = \inf_{x \in S} x$, where "inf" stands for **infimum**.

Axiom of Real Numbers (Ch. A.2)

Any nonempty set of real numbers that is bounded above has a least upper bound.

Theorem: Let $S \subseteq \mathbb{R}$ and $b^* \in \mathbb{R}$. Then, $\sup S = b^*$ if and only if the following two conditions are satisfied:

1.
$$(\forall x \in S)(x \leq b^*)$$
.

2.
$$(\forall \varepsilon > 0)(\exists x \in S)(x > b^* - \varepsilon)$$
.

Proof: We omit the proof. ■

Topology

Topology in the Euclidean Space

Topology is a concept that allows us to determine how close two objects are.

Key Concepts to be Developed: openness, closedness, boundedness, and compactness of sets and continuity of functions.

Sequences on \mathbb{R} (Ch. A.3)

For $x \in \mathbb{R}$, the **absolute value** of x is defined as:

$$|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$$

A **sequence** is a function $k \mapsto x(k)$ whose domain is $\mathbb{N} = \{1, 2, 3, \ldots\}$ and whose range is \mathbb{R} .

 $x(1), x(2), \ldots, x(k), \ldots$ of the sequence $\Leftrightarrow x^1, x^2, \ldots, x^k, \ldots$

 $\{x^k\}_{k=1}^{\infty}$, or simply $\{x^k\}$: arbitrary sequence of real numbers.

A sequence $\{x^k\}$ of real numbers is said to be:

- 1. nondecreasing if $x^k \le x^{k+1}$ for k = 1, 2, ...
- 2. strictly increasing if $x^k < x^{k+1}$ for k = 1, 2, ...
- 3. nonincreasing if $x^k \ge x^{k+1}$ for k = 1, 2, ...
- 4. strictly decreasing if $x^k > x^{k+1}$ for k = 1, 2, ...

A sequence that is nondecreasing or nonincreasing is called **mono-tone**.

Example: (1) Let $x^k = 1 - 1/k$ for each $k \in \mathbb{N}$. Then, $\{x^k\}$ is monotone and $x^k \to 1$ as $k \to \infty$.

(2) $y^k = (-1)^k$ for each $k \in \mathbb{N}$. Then, $\{y^k\}$ is clearly neither nonincreasing nor nondecreasing because its terms are $-1, 1, -1, 1, -1, 1, -1, \ldots$

(3)
$$z^k = \sqrt{k+1} - \sqrt{k}$$
 for each $k \in \mathbb{N}$.

$$z^{k} = \sqrt{k+1} - \sqrt{k} = \frac{(\sqrt{k+1} - \sqrt{k})(\sqrt{k+1} + \sqrt{k})}{\sqrt{k+1} + \sqrt{k}} = \frac{1}{\sqrt{k+1} + \sqrt{k}}.$$

So, $\{z^k\}$ is strictly decreasing.

Convergence in \mathbb{R} (Ch. A.3)

Definition: $\{x^k\}$ converges to x if, $\forall \varepsilon > 0$, $\exists N_{\varepsilon} \in \mathbb{N}$ such that $|x^k - x| < \varepsilon$, $\forall k > N_{\varepsilon}$. The number x is called the **limit** of the sequence $\{x^k\}$. A **convergent** sequence is one that converges to some number.

Example: (1) $x^k = 1 - 1/k$. the sequence $\{x^k\}$ converges to 1 as $k \to \infty$. Fix $\varepsilon > 0$. Choose $N_{\varepsilon} \in \mathbb{N}$ such that $N_{\varepsilon} \geq 1/\varepsilon$. Then, for any $k > N_{\varepsilon}$, which means $1/k < \varepsilon$,

$$|x^k - 1| = |(1 - 1/k) - 1| = |-1/k| < \varepsilon.$$

Let us introduce an extra restriction on sequences.

Definition: A sequence $\{x^k\}$ is **bounded** if $\exists M \in \mathbb{R}$ such that $|x^k| \leq M$, $\forall k \in \mathbb{N}$.

Lemma: Every convergent sequence is bounded.

Proof: We omit the proof. ■

Is every bounded sequence convergent?

The answer is "No." For example, the sequence $\{x^k\} = \{(-1)^k\}$ is bounded but not convergent.

Theorem: Every bounded **monotone** sequence is convergent.

Proof: We omit the proof. ■

Subsequences (Ch. A.3)

Let $\{x^k\}$ be a sequence. Consider a strictly increasing sequence of natural numbers

$$k_1 < k_2 < k_3 < \cdots$$

and form a new sequence $\{y^j\}_{j=1}^{\infty}$, where $y^j=x^{k_j}$ for $j=1,2,\ldots$

The sequence $\{y^j\}_j = \{x^{k_j}\}_j$ is called a **subsequence** of $\{x^k\}$.

Example: Let $x^k = k$ for each k. Define $y^j = 2(j-1) + 1$ for each j. Then, $\{y^j\}$ is a subsequence of $\{x^k\}$.

NOTE: Every subsequence of a convergent sequence is itself convergent, and has the same limit as the original sequence.

Not every bounded sequence is convergent, but

Theorem: If the sequence $\{x^k\}$ is bounded, then it contains a convergent subsequence.

Proof: We omit the proof. ■

Example: Let $x^k = (-1)^k$ for each k.

Topology on \mathbb{R}^n

Point Set Topology in \mathbb{R}^n (Ch. 13.1)

Consider the *n*-dimensional Euclidean space \mathbb{R}^n , whose elements, or points, are *n*-vectors $x = (x_1, \dots, x_n)$.

The Euclidean distance (or metric) d(x,y) between any two points $x=(x_1,\ldots,x_n)$ and $y=(y_1,\ldots,y_n)$ in \mathbb{R}^n is:

$$d(x,y) = ||x - y|| = \sqrt{(x_1 - y_1)^2 + \dots + (x_n - y_n)^2}$$

If $x, y, z \in \mathbb{R}^n$, then

$$d(x,z) \le d(x,y) + d(y,z)$$
 (triangle inequality).

Let $x^0 \in \mathbb{R}^n$ and r > 0.

The set of all points $x \in \mathbb{R}^n$ whose distance from x^0 is less than r is called the **open ball** around x^0 with radius r.

$$B_r(x^0) = \{x \in \mathbb{R}^n | d(x^0, x) < r\}$$

Definition: A set $S \subseteq \mathbb{R}^n$ is **open** if, $\forall x \in S$, $\exists \varepsilon > 0$ such that $B_{\varepsilon}(x) \subseteq S$.

On the real line \mathbb{R} , the simplest type of open set is an **open** interval.

Let $S \subseteq \mathbb{R}^n$. A point $x^0 \in S$ is called an **interior point** of S if there is some $\varepsilon > 0$ such that $B_{\varepsilon}(x^0) \subseteq S$.

The set of all interior points of S is called the **interior** of S, and is denoted Int(S) or S° .

Example: Let $S = \{(x,y) \in \mathbb{R}^2 | x^2 + y^2 \le 1\}$. Then, $Int(S) = \{(x,y) \in \mathbb{R}^2 | x^2 + y^2 < 1\}$.

Definition: A set S in \mathbb{R}^n is **closed** if its complement, $S^c = \mathbb{R}^n \backslash S$ is open.

Topology and Convergence (Ch. 13.2)

A sequence $\{x^k\}_{k=1}^{\infty}$ in \mathbb{R}^n is a function such that each natural number k yields a corresponding point x^k in \mathbb{R}^n .

Definition: A sequence $\{x^k\}$ in \mathbb{R}^n converges to a point $x \in \mathbb{R}^n$ if, for each $\varepsilon > 0$, there exists a natural number $N \in \mathbb{N}$ such that $x^k \in B_{\varepsilon}(x)$ for all k > N, or equivalently, $d(x^k, x) < \varepsilon$ for all k > N.

Convergence in \mathbb{R}^n (Ch. 13.2)

Theorem: Let $\{x^k\}$ be a sequence in \mathbb{R}^n . Then, $\{x^k\}$ converges to the vector $x \in \mathbb{R}^n$ if and only if for each $j = 1, \ldots, n$, the real number sequence $\{x_j^k\}_{k=1}^{\infty}$, consisting of jth component of each vector x^k , converges to $x_j \in \mathbb{R}$, the jth component of x.

Proof: We omit the proof. ■

Closedness in terms of Sequences on \mathbb{R}^n (Ch. 13.2)

Theorem: A set $S \subseteq \mathbb{R}^n$ is closed if and only if every convergent sequence of points in S has its limit in S, i.e., $(\forall \{x^k\} \in S)((\exists x \in \mathbb{R}^n)(x^k \to x) \Rightarrow x \in S).$

Proof: We skip the proof. ■

Boundedness in terms of Sequences on \mathbb{R}^n (Ch. 13.2)

Definition: A set S in \mathbb{R}^n is **bounded** if there exists a number $M \in \mathbb{R}_+$ such that $\|x\| \leq M$ for all $x \in S$. A set that is not bounded is called **unbounded**. Here $\|x\| = d(x, \mathbf{0}) = \sqrt{x_1^2 + \dots + x_n^2}$, called the **Euclidean norm**.

Similarly, a sequence $\{x^k\}$ in \mathbb{R}^n is **bounded** if the set $\{x^k|k\in\mathbb{N}\}$ is bounded.

Lemma: Any convergent sequence $\{x^k\}$ in \mathbb{R}^n is bounded.

Proof: We skip the proof. ■

On the other hand, a bounded sequence $\{x^k\}$ in \mathbb{R}^n is "not" necessarily convergent. This is the same as sequences in \mathbb{R} .

Hence, we obtain

Theorem: A subset S of \mathbb{R}^n is bounded if and only if every sequence of points in S has a convergent subsequence.

Proof: We skip the proof. ■

Compactness

Compactness (Ch. 13.2)

Bolzano-Weierstrass Theorem: A subset S of \mathbb{R}^n is closed and bounded if and only if every sequence of points in S has a subsequence that converges to a point in S.

Proof of Bolzano-Weierstrass's Theorem: We skip this. ■

Definition: A set S in \mathbb{R}^n is **compact** if it is closed and bounded.