第一章 整车控制器

第一节 系统概述

整车控制器具备实时动力计算和动力分配、实时信息交互与集中处理转发、传感器信号 采集及处理,同时包括 CAN 通讯、故障处理、在线 CAN 烧写、静默烧写、与其他模块配合完 成整车的工作要求以及自检等功能。

第二节 组件位置

整车控制器安装在副仪表台下方前端,在整车上的安装位置见下图。

第三节 电气原理图及接插件定义

3.1 电气原理图

整车控制器电气原理图见下图。

3.2 产品端接插件定义

产品端接插件型号为: 6437288-5, 示意图如下:

线束端接插件见下图:

34PIN 低压信号接插件:

→1 mlm H	-1 min 42. III -2. Ar	All the law V.L.	H- >>.
引脚号	引脚信号定义	线束接法	备注
1			
2			
3			
4	<i>N</i> *		
5			
6			
7			
8	CAN1屏蔽地		
9	CANL1	接ECM网	CAN 通讯
10			
11			
12			
13			
14			
15			
16			
17	CANH1	接 ECM 网	CAN 通讯
18	PUMP_OUT水泵继电器控制 输出	接水泵继电器控制脚	低有效, <1V

19			
20			
21			
22			
23			
24			
25			
26			
27	CRASH-IN碰撞信号	接 SRS-ECU	PWM 信号
28			
29			
30	制动开关信号	接制动灯开关	高有效, 9V-16V
31	PUMP_TEST水泵检测输入	接水泵继电器	高有效, 9V-16V
32			
33			
34			

26PIN 低压信号接插件:

引脚号	引脚信号定义	线束接法	备注
1	外部输入+12V电源地	接整车电池地	地
2	外部输入+12V电源地	接整车电池地	地
3			
4	GND 刹车深度电源地 1	接刹车踏板	地
5	No.		
6	模式开关信号地	接模式开关	地
7	GND油门深度电源地1	接油门踏板	地
8	GND油门深度电源地2	接油门踏板	地
9	油门深度屏蔽地	整车控制器单端屏蔽地	地
10	+5V油门深度电源1	接油门踏板	+5V
11	+5V油门深度电源2	接油门踏板	+5V
12			
13			
14	外部提供的+12V电源	接外部电源	+12V
15	外部提供的+12V电源	接外部电源	+12V
16	+5V刹车深度电源1	接刹车踏板	+5V
17	DC_BRAKE1刹车深度1	接刹车踏板	模拟量信号
18	DC_GAIN1油门深度1	接油门踏板	模拟量信号

19			
20	GND刹车深度电源地2	接刹车踏板	地
21	GND刹车深度屏蔽地	接刹车踏板	地
22	+5V 刹车深度电源 2	接刹车踏板	+5V
23	DC_BRAKE2刹车深度2	接刹车踏板	模拟量信号
24	DC_GAIN2油门深度2	接油门踏板	模拟量信号
25	模式开关信号	接模式开关	模拟量信号
26			

第四节 故障代码

序号	故障码	故障定义
	(ISO 15031-6)	
1	P1D6000	整车控制器碰撞信号故障(硬线)
2	P1D6144	整车控制器 EEPROM 错误
3	P1D6200	整车控制器巡航开关信号故障
6	P1D6300	整车控制器水泵驱动故障
7	P1D6400	油门信号故障-1 信号故障
8	P1D6500	油门信号故障-2 信号故障
9	P1D6600	油门信号故障-校验故障
10	P1D6700	刹车信号故障-1 信号故障
11	P1D6800	刹车信号故障-2 信号故障
12	P1D6900	刹车信号故障-校验故障
13	U010100	与 TCU 通讯故障
14	U011100	与电池管理器(BMS)通讯故障
15	U015500	与组合仪表通讯故障(预留)
16	U010300	与 ECM 通讯故障
17	U012100	与 ESC 通讯故障
19	U012800	与 EPB 通讯故障
20	U029100	与档位控制器通讯故障
21	U016400	与空调通讯故障
22	U014000	与 BCM 通讯故障
23	U029800	与 DC 通讯故障
26	U01A500	与前电机控制器(FMCU)通讯故障
27	U01A600	与后驱动电机控制器(RMCU)通讯故障
29	U021400	与 I-KEY 通讯故障
30	U029400	与 EV-HEV 开关通讯故障
31	P1B6000	发动机启动失败
32	U012A00	与 EPS(电动助力转向)模块失去通讯
33	U012200	与低压电池管理器(BMS)失去通讯
34	P1D6D00	整车控制器 DSP 复位故障
35	P1BA200	换挡超时

第五节 诊断流程

1 把车开进维修间

下一步

2 检查低压蓄电池电压

标准电压值:

 $11\sim14V$

如果电压值低于 11V, 在进行下一步之前请 充电或更换低压蓄电池。

下一步

3 参考故障诊断表

结果	进入步骤
现象不在故障诊断表中	А
现象在故障诊断表中	В

В

转到第5步

Α

4 全面诊断

下一步

5 调整,维修或更换

下一步

6 确认测试

下一步

7 / 结束

具体如下:

5.1 终端故障码诊断

(a) 将 VDS2000 连接 DLC3 诊断口。

提示:将 VDS2000 连接 DLC3 诊断口,如果提示通讯错误,则可能是车辆 DLC3 诊断口问题,也可能是 VDS2000 问题。

将 VDS2000 连接另一辆车的 DLC3 诊断口,如果可以显示,则原车 DLC3 诊断口有问题,需更换。若不可显示则 VDS2000 问题。

OK: 有故障码(记录后清除看故障码是否能清除)

P1D600 ■ 整车控制器碰撞信号故障 (硬线)

1 检查安全气囊 ECU

a、用 VDS2000 读取安全气囊 ECU 是否整车 发生碰撞,如果有,清除故障码即可。

NG

▶ 检查线束和安全气囊 ECU,

ОК

2 更换整车控制器

P1D6144

整车控制器 EEPROM 错误

1 检查整车控制器低压线路是否正常

a、检查整车控制器低压线路。

NG

检查整车控制器低压回路

OK

2 更换整车控制器

P1D6200

整车控制器巡航开关信号故障

1 检查巡航开关低压线路是否正常

NG

更换巡航开关

OK

2 更换整车控制器

P1D6300

整车控制器水泵驱动故障

- 1 检查水泵低压回路和冷却回路
- a、分别检查水泵继电器、保险、水泵及相应 的低压线路和冷却回路。

NG

更换相应故障件

ОК

更换整车控制器

P1D6400/

P1D6500/ P1D6600

油门信号故障-1 信号故障/油门信号故障-2 信号故障/油门信号故障-校验故障

- 1 检查加速踏板传感器低压回路
 - a、检查加速踏板传感器和整车控制器低压接插件是否松动或退端子;
- b、检测加速踏板传感器的电源脚和信号脚电压值是否正常,同时可读取油门深度电源电压时踩油门看数值是否变化,若变化则正常;

端子	线色	条件	正常值
B21-26→车身地	Y/O	油门深度电源1	5V \pm 0.5
B21-27→车身地	Y/G	油门深度电源2	5V \pm 0.5
B21-41→车身地	Y/L	油门深度1	0到5V变化
B21-56→车身地	L/W	油门深度2	5到0V变化

OK

2 更换整车控制器

P1D6700/

P1D6800/ P1D6900 刹车信号故障-1 信号故障/刹车信号故障-2 信号故障/刹车信号故障-校验故障

- 1 检查制动踏板传感器低压回路和真空泵低压回路
- a、检查制动踏板传感器和整车控制器低压接插件是否松动或退端子;
- b、检测制动踏板传感器的电源脚和信号脚电压值是否正常
- c、检测真空泵低压回路

NG

更换相应故障件

OK

2 更换整车控制器

U010100

与 TCU 通讯故障

1 读取 TCU 模块信息,看数据流是否正常

NG

更换 TCU 控制模块或低压线束

2 检查 TCU 和整车控制器的低压接插件和线束

NG

检查低压回路

ОК

3 更换整车控制器

U021400

与 I-KEY 通讯故障

1 检查低压接插件和线束

NG

更换接插件或线束

2 检测 I-KEY

NG

I-KEY 故障

ОК

3 更换整车控制器

P1B6000

发动机启动失败

1 检查发动机、起动机及其低压回路

NG

更换相应故障件

ОК

3 更换整车控制器

5.2 全面诊断

连接端子 引脚名称/功能		条件	正常值
A34-31~车身地 /PUMP_TEST 水泵检测输 入		OK 档,EV 模式	10-14V
A34-27~车身地	CRASH-IN 碰撞信号	0N 档	PWM 信号

B26-6~B26-25	GND 巡航信号地	OFF 档	2150-2190 Ω	
B26-7~车身地	GND 油门深度电源地1 OFF 档		小于 1Ω	
B26-8~车身地	GND 油门深度电源地2	0FF 档	小于 1Ω	
B26-20~车身地	GND 刹车深度电源地2	0FF 档	小于 1Ω	
B26-16~车身地	+5V 刹车深度电源1	0N 档	0-5V 模拟信号	
B26-10~车身地	+5V 油门深度电源1	0N 档	0-5V 模拟信号	
B26-11~车身地	+5V 油门深度电源2	0N 档	0-5V 模拟信号	
B26-4~车身地	GND 刹车深度电源地1	OFF 档	小于 1Ω	
		0N 档	10-141/	
B34-18~车身地	/PUMP_OUT 水泵输出	水泵未工作	10-14V	
		OK, EV 模式水泵工作	小于 1V	
B34-9~B34-17	CANL CAN信号低	0FF 档	54-69 Ω	
B34-17~ B34-9	CANH CAN信号高	0FF 档	54-69 Ω	
B26-25~B26-6	CURISE_IN 巡航信号	0FF 档		
B26-18~车身地	DC_GAIN1 油门深度信号1	0N 档		
B26-21~车身地	GND 刹车深度屏蔽地	0FF 档	小于 1Ω	
B26- 22~车身地 +5V 刹车深度电源2		0N 档	4.5-5.5V	
B26-17~车身地	/IN_FEET_BRAKE 脚刹信 号	预留	预留	
B26-9~车身地	GND 油门深度屏蔽地	0FF 档	小于 1Ω	
B26-24~车身地	DC_GAIN2 油门深度信号2	0N 档		
B26-17~车身地	DC_BRAKE1 刹车深度1	0N 档		
B26-23~车身地	DC_BRAKE2 刹车深度2	0N 档		
B26-1~车身地	GND(VCC) 外部电源地	0FF 档	小于 1Ω	
B26-14~车身地	VCC 外部12V电源	ON 档	10-14V	
B26-2~车身地	GND(VCC) 外部电源地	0FF 档	小于 1Ω	
B26-15~车身地	VCC 外部12V电源	ON 档	10-14V	

第六节 拆卸与安装

紧固件型号及数量见下表:

序号	零部件编号	零部件名称	数量	备注
1	Q1840616T1F3A	六角法兰面螺栓	4	

拆卸维修前需:

- 1)解除防盗密钥;
- 2) 点火开关置于 OFF 档:
- 3) 低压蓄电池断电:
- 4) 拆卸副仪表台及空调管路。

6.1 拆卸

- 1) 拔掉低压接插件;
- 2) 按照安装脚对角线顺序打松并取出紧固螺栓:
- 3) 将整车控制器取出。

6.2 安装

- 1) 将整车控制器的安装脚 1 的螺栓旋入 1/3;
- 2) 将整车控制器以安装脚1螺栓轴线为中心点旋转,直至安装脚3的孔与车身的螺孔对齐,将安装脚的螺栓放置于安装脚3的孔;
- 3) 将整车控制器以安装脚 1 螺栓轴线为中心点,顺时针旋转到安装脚 2 的孔与车身孔对准。旋入安装脚 3 螺栓,如果旋不进,重复步骤 (3);
- 4) 旋入安装脚 2 的螺栓,如果旋不进,轻微移动下整车控制器(注意安装脚 1 和安装脚 3 的螺栓不能脱落,安装脚 3 螺栓脱落后请重复步骤(2),安装脚 1 螺栓脱落后需将安装脚 1 螺栓旋入 1/3);
 - 5) 按照安装脚 1、2、3、4 顺序循环打紧螺栓 (力矩 9N·M);
 - 6) 按要求连接低压接插件线束:
 - 7) 开启防盗密钥。