

WIFI SSID:SparkAlSummit | Password: UnifiedAnalytics

databricks

Near Real-Time Analytics with Apache Spark

Brandon Hamric, Data Engineer at Eventbrite Beck Cronin-Dixon, Data Engineer at Eventbrite

#UnifiedAnalytics #SparkAlSummit

Who are we

Brandon Hamric
Principal Data Engineer
Eventbrite

Beck Cronin-Dixon Senior Data Engineer Eventbrite

Overview

- Components of near real-time data
- Requirements
- Data ingestion approaches
- Benchmarks
- Considerations

Components of Near Real-time Data

- Data
 - Size
 - Mutability
 - Schema evolution
- Deduplication
- Infrastructure
 - Ad-hoc queries
 - Batch
 - Streaming queries

Components of Near Real-time Data

Storage

- Folder/file partitioning and bucketing
- Format

Compression

- at-rest
- in-transit

Common Requirements

- Latency is specific to use case
- Most stakeholders ask for latency in minutes
- Latency of dependencies*
- Some implementations fit certain latency better than others
- Mixed grain*

Real-time services, Real-time ML prediction

Up-to-date data dumps, transactional level reports, Fraud

Up-to-date business metrics, Site health

Hourly Aggregations, Business health, Auditing

Daily Aggregations, ML training, Accounting

Eventbrite Requirements

- Web interaction data: billions of records per month
- Real-time DB: Multiple TB
- Event Organizer reporting requirements
- Business and accounting reporting
- Mixed Grain Seconds to Daily
- Stack: Spark, Presto, S3, HDFS, Kafka
- Parquet

Ingestion Approaches

- Full overwrite
- Batch incremental merge
- Append only
- Key/value store
- Hybrid batch/stream view

Approaches: Full Overwrite

- Batch Spark process
- Overwrite entire table every run
- Complete copy of real-time DB
- Direct ETL

Approaches: Full Overwrite

The Good

- Simple to implement
- Ad Hoc Queries are fast/simple

The Bad

- Significant load on real-time DB
- High Latency
- High write I/O requirement

Full Overwrite Logic

Approaches: Batch Incremental Merge

- Get new/changed rows
- Union new rows to base table
- Deduplicate to get latest rows
- Overwrite entire table
- limited latency to how fast you can write to data lake

Approaches: Batch Incremental Merge

The Good

- Lower load on real-time DB
- Queries are fast/simple

The Bad

- Relatively high Latency
- High write I/O requirement
- Requires reliable incremental fields

Batch Incremental Merge Logic

```
base_events_df = spark.read.parquet("hdfs://user/warehouse/demo/events")
# get new rows from mysgl
new mysgl events df = get events jdbc dataframe reader(numPartitions=40) \
    .option("partitionColumn", "changed") \
    .option("lowerBound", max_changed_from_base) \
    .option("upperBound", max_changed_from_mysql) \
    .load() \
    .filter(F.col('changed') >= F.lit(max_changed_from_base))
# merge the new rows to the base table
updated_df = base_events_df \
    .union(new_mysql_events_df) \
    .orderBy("id", F.col("changed").desc()) \
    .dropDuplicates(["id"])
updated_df.write.parquet("hdfs://user/warehouse/demo/events")
```


Approaches: Append-Only Tables

- Query the real-time db for new/changed rows
- Coalesce and write new part files
- Run compaction hourly, then daily

Approaches: Append Only

The Good

- Latency in minutes
- Ingestion is easy to implement
- Simplifies the data lake
- Great for immutable source tables

The Bad

- Requires a compaction process
- Extra logic in the queries
- May require views

Append-Only Logic

Approaches: Key/Value Store

- Query the real-time db for new/changed rows
- Upsert rows

Approaches: Key/Value Store

The Good

- Straightforward to implement
- Built in idempotency
- Good bridge between data lake and web services

The Bad

- Batch writes to a key/value store are slower than using HDFS
- Not optimized for large scans

Key/Value Store Logic

Approaches: Hybrid Batch/Stream View

- Batch ingest from DB transaction logs in kafka
- Batch merge new rows to base rows
- Store transaction ID in the base table
- Ad-hoc queries merge base table and latest transactions and deduplicate on-the-fly

Approaches: Hybrid Batch/Stream View

The Good

- Data within seconds*
- Batch job is relatively easy to implement
- Spark can do both tasks

The Bad

- Streaming merge is complex
- Processing required on read

Hybrid Batch/Stream View

So Delta Lake is open source now...

Table

ACID transactions in Spark!!!!!!

Frequent Ingestion Processes

 Simpler than other incremental merge approaches

Hybrid approach still bridges

latency gap

Read/Write Benchmark

Where is Spark Streaming?

- More frequent incremental writes
- Less stream to stream joins
- Decreasing batch intervals gives us more stream to batch joins
- Less stream to stream joins, means less memory and faster joins

Considerations

- Use case
- Latency needs
- Data size
- Deduplication
- Storage

sample mysql jdbc reader

DON'T FORGET TO RATE AND REVIEW THE SESSIONS

SEARCH SPARK + AI SUMMIT

5\|
SPARK+AI

O