AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions and listings of claims in the application:

1. (Currently amended) A reactive blue dye represented by the following Formula 1, which is characterized by introduction of a 4-aminophenyl-vinylsulfone vinylsulphone group and a 4-aminoacetanilide group:

$$H_2C$$
 $N = N$
 $N = N$

wherein M is a hydrogen atom or an alkali metal atom.

- 2. (Currently amended) A method for the preparation of a reactive blue dye represented by the following Formula 1, which comprises:
- a) diazotization of 4-aminophenyl-vinylsulfone vinylsulphone represented by the following Formula 2 and first coupling with-1-naphthol-8-amino-3,6-disulphonic acid represented by the following Formula 4; and
- b) diazotization of 4-aminoacetanilide represented by the following Formula 3 and the second coupling with the solution of said step a):

$$H_2C$$
 (2) H_2C (2) H_3C (3) H_3C (4) H_3C (3) H_3C (4) H_3C (4) H_3C (5) H_3C (6) H_3C (6) H_3C (7) H_3C (8) H_3C (8)

wherein M is a hydrogen atom or an alkali metal atom.

3. (Original) The method for a preparation of a reactive blue dye according to Claim 2, wherein the first coupling is carried out under the condition of 5 to

10°C and pH 1.0 to 2.0, and the second coupling is carried out under the condition of 5 to 10°C and pH 6.5 to 7.5.