Espacios vectoriales

Matemáticas Empresariales www.fcjs.urjc.es

1. Vectores en el plano \mathbb{R}^2

- Podemos representar en el plano el vector $\mathbf{v} = (x, y) = (2, 1)$.
- Un vector en \mathbb{R}^2 es un par ordenado (x,y) que son las coordenadas o componentes del vector.
- El origen es el (0,0).

1.1. Operaciones básicas con vectores

1.1.1. Suma vectorial

Dados los vectores de \mathbb{R}^2 , \boldsymbol{u} y \boldsymbol{v} calcular $\boldsymbol{u} + \boldsymbol{v}$.

- u = (1,3)
- v = (2,1)
- u + v = (1,3) + (2,1) = (1+2,3+1) = (3,4)
- Otro ejemplo: $\mathbf{u} + \mathbf{v} = (-1, 4) + (2, -2) = (1, 2)$
- \bullet Otro ejemplo: ${\boldsymbol u} + {\boldsymbol v} = (5, -2) + (-5, 2) = (0, 0)$
- Vector cero: $\mathbf{0} = (0, 0)$

1.1.2. Multiplicación por escalar

- $c\mathbf{v} = c(v_1, v_2) = (cv_1, cv_2)$
- Se multiplica el escalar por cada una de las componentes
 - ullet si c>0 entonces $coldsymbol{v}$ tiene la misma dirección que $oldsymbol{v}$

- si c < 0 entonces $c\boldsymbol{v}$ tiene dirección opuesta a \boldsymbol{v}
- ullet si multiplicamos por -1 al vector $oldsymbol{v}$ obtenemos: $-1oldsymbol{v}=-oldsymbol{v}
 ightarrow$ negativo de $oldsymbol{v}$
- también podemos restar: u + (-v) = u v

1.2. Propiedades de los vectores

Sean $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$ vectores del plano y c y d escalares.

- 1. u + v es un vector del plano \rightarrow cerradura de la suma de vectores (operación interna)
- 2. u + v = v + u propiedad conmutativa de la suma
- 3. $(\boldsymbol{u} + \boldsymbol{v}) + \boldsymbol{w} = \boldsymbol{u} + (\boldsymbol{v} + \boldsymbol{w})$ propiedad asociativa de la suma
- 4. u + 0 = u
- 5. u + (-u) = 0
- 6. cu es un vector del plano \rightarrow cerradura bajo producto por escalar (operación interna)
- 7. $c(\boldsymbol{u} + \boldsymbol{v}) = c\boldsymbol{u} + c\boldsymbol{v} \rightarrow \text{propiedad distributiva}$
- 8. $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u} \rightarrow \text{propiedad distributiva}$
- 9. $c(d\mathbf{u}) = (cd)\mathbf{u}$
- 10. $1 \cdot (\boldsymbol{u}) = \boldsymbol{u}$

2. Vectores en \mathbb{R}^n

Por analogía con los vectores en el plano.

 $(x_1, x_2, \dots, x_n) \to \left\{ \begin{array}{l} n - \text{ada} \\ n - \text{upla} \end{array} \right\}$ Vector de \mathbb{R}^n , conjunto ordenado de n componentes

- $\blacksquare \mathbb{R}^1 \to \begin{cases} \text{Espacio unidimensional} \\ \text{Conjunto de todos los números reales } \mathbb{R} \end{cases}$
- $\blacksquare \mathbb{R}^2 \to \left\{ \begin{array}{l} \text{Espacio bidimensional} \\ \text{Conjunto de todos los pares ordenados de números reales } \mathbb{R} \times \mathbb{R} \end{array} \right.$
- $\blacksquare \mathbb{R}^3 \to \left\{ \begin{array}{l} \text{Espacio tridimensional} \\ \text{Conjunto de todas las ternas ordenadas de números reales} \end{array} \right.$
- $\mathbb{R}^4 \to \text{Espacio tetradimensional}$
- . :
- \blacksquare $\mathbb{R}^n \to \text{Espacio } n\text{-dimensional}$

2.1. Suma vectorial en \mathbb{R}^n y producto por escalar

Sean $\boldsymbol{u}, \boldsymbol{v}$ vectores de \mathbb{R}^n y c un escalar.

Siendo:

$$\boldsymbol{u}=(u_1,u_2,\ldots,u_n)$$

$$\boldsymbol{v} = (v_1, v_2, \dots, v_n)$$

Se cumple que:

•
$$u + v = (u_1 + v_1, u_2 + v_2, \dots, u_n + v_n)$$

$$\bullet c\mathbf{u} = (cu_1, cu_2, \dots, cu_n)$$

lacksquare Negativo de $oldsymbol{u}$

$$-\boldsymbol{u} = (-u_1, -u_2, \dots, -u_n) \rightarrow \text{inverso aditivo de } \boldsymbol{u}$$

■ Diferencia de vectores

$$u - v = (u_1 - v_1, u_2 - v_2, \dots, u_n - v_n)$$

• Vector cero de \mathbb{R}^n

 $\mathbf{0} = (0,0,\ldots,0) \to$ neutro aditivo, neutro de la suma de \mathbb{R}^n

2.2. Propiedades de los vectores en \mathbb{R}^n

Las mismas 10 propiedades que vimos para vectores del plano. Sean u, v, w vectores de \mathbb{R}^n y c y d escalares.

1. $\boldsymbol{u} + \boldsymbol{v}$ es un vector de \mathbb{R}^n

$$2. \ \boldsymbol{u} + \boldsymbol{v} = \boldsymbol{v} + \boldsymbol{u}$$

3.
$$(u + v) + w = u + (v + w)$$

4.
$$u + 0 = u$$

5.
$$u + (-u) = 0$$

6. $c\mathbf{u}$ es un vector de \mathbb{R}^n

7.
$$c(\boldsymbol{u} + \boldsymbol{v}) = c\boldsymbol{u} + c\boldsymbol{v}$$

8.
$$(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$$

9.
$$c(d\mathbf{u}) = (cd)\mathbf{u}$$

10.
$$1 \cdot (\boldsymbol{u}) = \boldsymbol{u}$$

2.3. Propiedades del neutro aditivo y los inversos aditivos

Sea v un vector de \mathbb{R}^n y sea c un escalar, entonces se cumplen las siguientes propiedades.

- 1. El neutro aditivo es único. Es decir, si v + u = v entonces u = 0
- 2. El inverso aditivo de v es único. Es decir, si u + v = 0 entonces u = -v
- 3. 0v = 0
- 4. $c\mathbf{0} = \mathbf{0}$
- 5. si $c\mathbf{v} = \mathbf{0}$ entonces c = 0 o $\mathbf{v} = \mathbf{0}$
- 6. -(-v) = v

2.4. Combinación lineal de vectores

$$\boldsymbol{x} = c_1 \boldsymbol{v_1} + c_2 \boldsymbol{v_2} + \dots + c_n \boldsymbol{v_n}$$

El vector \boldsymbol{x} es C.L. de los vectores $\boldsymbol{v_1}, \boldsymbol{v_2}, \ldots, \boldsymbol{v_n}$ si al menos uno de los coeficientes c_1, c_2, \ldots, c_n es distinto de cero.

Ejemplo. Ejemplo en \mathbb{R}^3

Solución.

$$(-1, -2, -2) = a(0, 1, 4) + b(-1, 1, 2) + c(3, 1, 2)$$

Igualando componentes.

$$\begin{pmatrix}
-b + 3c = -1 \\
a + b + c = -2 \\
4a + 2b + 2c = -2
\end{pmatrix}
\xrightarrow{\text{Resolviendo}}
\begin{cases}
a = 1 \\
b = -2 \\
c = -1
\end{cases}
\xrightarrow{\text{por tanto}} \mathbf{x} = \mathbf{u} - 2\mathbf{v} - \mathbf{w}$$

3. Definición de espacio vectorial

Sea $\mathbb V$ un conjunto sobre el que estan definidas dos operaciones: la suma vectorial y la multiplicación por escalar. Si los siguientes axiomas se cumplen para u, v, w en $\mathbb V$ y todo escalar c y d entonces $\mathbb V$ tiene estructura de espacio vectorial.

para la suma

- 1. $\boldsymbol{u} + \boldsymbol{v}$ está en $\mathbb{V} \to \operatorname{cerradura}$ bajo la adición
- 2. $u + v = v + u \rightarrow$ propiedad conmutativa de la suma
- 3. $(\boldsymbol{u}+\boldsymbol{v})+\boldsymbol{w}=\boldsymbol{u}+(\boldsymbol{v}+\boldsymbol{w}) \to \text{propiedad asociativa de la suma}$
- 4. $\mathbb {V}$ contiene un vector cero $\mathbf 0$ (neutro aditivo) tal que para todo $\boldsymbol u$ en $\mathbb {V}$ se cumple que $\boldsymbol u+\mathbf 0=\boldsymbol u$
- 5. $\forall \boldsymbol{u}$ en \mathbb{V} hay un vector en \mathbb{V} denotado por $-\boldsymbol{u}$ (inverso aditivo) tal que $\boldsymbol{u} + (-\boldsymbol{u}) = \boldsymbol{0}$

para la multiplicación escalar

- 6. $c\boldsymbol{u}$ esta en $\mathbb{V} \to \operatorname{cerradura}$ bajo multiplicación por escalar
- 7. $c(\boldsymbol{u} + \boldsymbol{v}) = c\boldsymbol{u} + c\boldsymbol{v} \rightarrow \text{propiedad distributiva}$
- 8. $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u} \rightarrow \text{propiedad distributiva}$
- 9. $c(d\mathbf{u}) = (cd)\mathbf{u} \rightarrow \text{propiedad asociativa}$
- 10. $1 \cdot (\boldsymbol{u}) = \boldsymbol{u} \rightarrow \text{identidad escalar}$

3.1. Ejemplos de espacios vectoriales

Son espacios vectoriales:

- \blacksquare \mathbb{R}
- \blacksquare \mathbb{R}^2
- \blacksquare \mathbb{R}^3
- :
- \blacksquare \mathbb{R}^n
- Los polinomios de grado ≤ 2
- .
- Los polinomios de grado $\leq n$
- Las matrices de orden $m \times n$
- Funciones contínuas $C(-\infty, +\infty)$ definidas sobre toda la recta real \to Conjunto de <u>todas</u> las funciones contínuas $C(-\infty, +\infty)$
- también las funciones contínuas definidas en un intervalo cerrado C[a,b]

3.2. No son espacios vectoriales

- Los puntos de una circunferencia de radio 4, ya que no se cumple que la suma de los vectores de este tipo sea interna, y tampoco se cumple que el producto por escalar sea interno.
- El conjunto V siguiente no es espacio vectorial.

$$\mathbb{V} = \left\{ (x_1, x_2) \in \mathbb{R}^2 \mid c(x_1, x_2) = (cx_1, 0) \right\}$$

Este conjunto $\mathbb V$ satisface los nueve primeros axiomas pero no el décimo.

$$1 \cdot (1,1) = (1,0) \neq (1,1)$$

El décimo axioma decía: $1 \cdot (\boldsymbol{u}) = \boldsymbol{u}$