

លឹម ផ់ល្អូន នឹង សែន ពិសិដ្ឋ បរិញ្ញាច់ត្រផ្នែកគណិតវិទ្យា

55557

$$\sqrt[3]{\frac{a}{b}} + \sqrt[3]{\frac{b}{a}} \le \sqrt[3]{2(a+b)(\frac{1}{a} + \frac{1}{b})}$$

សម្រាប់សិស្សពុកែកណិតចិន្យា

រក្បាសិទ្ធិ

អ្នកចូលរួមត្រួតពិនិត្យបច្ចេកនេស

លោក ស៊ីម មុខ

លោក អែន ពិសិជ្ជ

លោកស្រី នុយ នៃណ

លោក និត្យ ម៉េខ

លោក ព្រឹម សុនិត្យ

លោក និល ច្នឹងនាយ

អ្នកត្រួតពិសិត្យអគ្គរាទិំរុន្ធ

លោក លឹម មិត្តសិរ

ភារីអុំឲ្យូនរ

កញ្ញា លី គុណ្ណាអា

អ្នកសិពន្ធ សិខ អៀមអៀខ លោក **សីម ឥស្តុល** សិខ លោក **សែល ពីសិដ្ឋ**

ধায়েলভা

ស្យេវភៅ **ទំសមភាព** ដែលអ្នកសិក្សាកំពុងកាន់នៅក្នុងដៃនេះ ខ្ញុំបាទបាន រៀបរៀងជ្រឹងក្នុងគោលបំនងទុកជាឯកសារ សម្រាប់ជាជំនួយដល់អ្នកសិក្សា យកទៅសិក្សាស្រាវជ្រាវដោយខ្លួនឯង និង ម្យ៉ាងទៀតក្នុងគោលបំនងចូលរួម លើកស្លួយវិស័យគណិតវិទ្យានៅប្រទេសកម្ពុជាយើងឲ្យកាន់តែរីកចម្រើនថែម ទៀតដើម្បីបង្កើនធនធានមនុស្សឲ្យមានកាន់តែច្រើនដើម្បីជួយអភិវឌ្ឍន៍ប្រទេស ជាតិរបស់យើង ។

នៅក្នុងស្យេវនេះយើងខ្ញុំបានខិតខំស្រាវជ្រាវជ្រើសរើសយកលំហាត់យ៉ាង សម្រាំងបំផុតពីស្បេវភោបរទេសនិងឯកសារបរទេសផ្សេងៗទៀតតាម Internet យកមកធ្វើដំណោះស្រាយយ៉ាងក្បោះក្បាយដែលអាចឲ្យលោកអ្នក ងាយយល់ឆាប់ចងចាំអំពីសិល្បះនៃការដោះស្រាយទាំងអស់នេះ ។ ប៉ុន្តែទោះជាយ៉ាងណាក់ដោយ កង្វៈខាត និងកំហុសឆ្គងដោយអចេតនាប្រាកដ ជាមានទាំងបច្ចេកទេស និង អក្ខរាវិរុទ្ឋ ។ អាស្រ័យហេតុនេះ យើងខ្ញុំជាអ្នករៀបរៀងរង់ចាំដោយរីករាយជានិច្ចនូវ មតិរិះគន់បែបស្ថាបនាពីសំណាក់អ្នកសិក្សាក្នុងគ្រប់មជ្ឈដ្ឋានដើម្បីជួយកែលំអ ស្បេវភៅនេះឲ្យបានកាន់តែសុក្រិត្រភាពថែមទៀត ។

ជាទីបញ្ចប់នេះយើងខ្ញុំអ្នករ្យេបរ្យេងសូមគោរពជូនពរដល់អ្នកសិក្សា ទាំងអស់ឲ្យមានសុខភាពមាំមួន និង ទទួលជ័យជំនះគ្រប់ភារកិច្ច ។ បាត់ដំបងថ្ងៃទី ៤ មីនា ២០១០ អ្នករៀបរៀ**១ សីម ឥស្តុន**

ទ្រឹស្តីបទវិសមតាពសំខាន់ៗ

១/ វិសមតាព មធ្យមនព្វន្ត មធ្យមធរណីមាត្រ

(The AM-GM Inequality)

ចំពោះគ្រប់ចំនូនពិតមិនអវិជ្ជមាន $a_1,a_2,a_3,...,a_n$ គេបាន $\frac{a_1+a_2+a_3+...+a_n}{n} \geq \sqrt[n]{a_1.a_2.a_3...a_n}$ ។ វិសមភាពនេះក្លាយជាសមភាពលុះត្រាតែ និង គ្រាន់តែ $a_1=a_2=a_3=....=a_n$ ។

សម្រាយបញ្ជាក់

្មាត $\frac{a_1 + a_2}{2} \ge \sqrt{a_1 a_2}$ សមមូល $(\sqrt{a_1} - \sqrt{a_2})^2 \ge 0$ ដូចនេះវិសមភាពពិតចំពោះ n=2 ។

_ឧបមាថាសមភាពនេះពិតដល់តួទី $\mathbf{n} = \mathbf{k}$ គឺ

យើងនឹងស្រាយថាវាពិតដល់តួទី k+1 គឺ ៖

$$\begin{split} &\frac{a_1+a_2+a_3+....+a_k+a_{k+1}}{k+1} \geq \ ^{k+1} \overbrace{a_1.a_2.a_3...a_k.a_{k+1}} \\ &\text{musses} \\ &f(x) = \frac{(x+a_1+a_2+a_3+......+a_k)^{k+1}}{x} \\ &\text{idiff} \ x>0 \ , \ a_k>0 \ , \ k=1 \ , 2 \ , 3 \ , \dots \text{T} \\ &\text{twidins} \\ &f'(x) = \frac{(k+1)(x+a_1+....+a_k)^k x-(x+a_1+...+a_k)^{k+1}}{x^2} \\ &= \frac{(x+a_1+....+a_k)^k \left[(k+1)x-(x+a_1+....+a_k)\right]}{x^2} \\ &= \frac{(x+a_1+a_2+....+a_k)^k \left(kx-a_1-a_2-....-a_k\right)}{x^2} \\ &\text{twidential} \ x = \frac{a_1+a_2+.....+a_k}{k} \\ &\text{then:} \ x = \frac{a_1+a_2+.....+a_k}{k} \\ &f(\frac{a_1+a_2+....+a_k}{k}) = \frac{(\frac{a_1+a_2+....+a_k}{k}+a_1+...+a_k)^{k+1}}{k} \\ &f(\frac{a_1+a_2+.....+a_k}{k}) = (k+1)^{k+1} \left(\frac{a_1+a_2+....+a_k}{k}\right)^k \end{split}$$

២/ វិសមតាព កូស៊ី-ស្វីស (Cauchy-Schwarz's Inequality) ក-ទ្រឹស្តីបទ

ចំពោះគ្រប់ចំនូនពិត $\mathbf{a_1}$; $\mathbf{a_2}$;...; $\mathbf{a_n}$; $\mathbf{b_1}$; $\mathbf{b_2}$; ...; $\mathbf{b_n}$ គេបាន

$$(a_1b_1 + a_2b_2 + \dots + a_nb_n)^2 \le (a_1^2 + a_2^2 + \dots + a_n^2)(b_1^2 + b_2^2 + \dots + b_n^2)$$

ឬ
$$\left(\sum_{k=1}^{n} \left(a_k b_k\right)\right)^2 \le \sum_{k=1}^{n} \left(a_k^2\right) \times \sum_{k=1}^{n} \left(b_k^2\right)$$
 ។

វិសមភាពនេះក្លាយជាសមភាពលុះត្រាតែនិងគ្រាន់តែ

$$\frac{\mathbf{a}_1}{\mathbf{b}_1} = \frac{\mathbf{a}_2}{\mathbf{b}_2} = \frac{\mathbf{a}_3}{\mathbf{b}_3} = \dots = \frac{\mathbf{a}_n}{\mathbf{b}_n}$$
 1

សម្រាយបញ្ហាក់

យើងជ្រើលរើលអនុគមន៍មួយកំនត់ $\forall x \in \mathbf{IR}$ ដោយ ៖

$$f(x) = (a_1x + b_1)^2 + (a_2x + b_2)^2 + \dots + (a_nx + b_n)^2$$

$$f(x) = \sum_{k=1}^{n} (a_k^2) x^2 + 2 \sum_{k=1}^{n} (a_k b_k) x + \sum_{k=1}^{n} (b_k^2)$$

ដោយ
$$\forall x \in IR$$
 ត្រីធា $f(x) \geq 0$ ជានិច្ចនោះ $\left\{ egin{align*} a_f > 0 \\ \Delta' \leq 0 \end{array} \right.$

ដោយ
$$a_f = a_1^2 + a_2^2 + \dots + a_n^2 > 0$$

ហេតុនេះគេបានជានិច្ច $\Delta' \leq 0$

$$\Delta' = \left(\sum_{k=1}^{n} \left(a_k b_k\right)\right)^2 - \sum_{k=1}^{n} \left(a_k^2\right) \times \sum_{k=1}^{n} \left(b_k^2\right) \le 0$$

$$\mathfrak{U}\left(\sum_{k=1}^{n} \left(a_k b_k\right)\right)^2 \le \sum_{k=1}^{n} \left(a_k^2\right) \times \sum_{k=1}^{n} \left(b_k^2\right)$$

2/ Cauchy-Schwarz in Engle form

ចំពោះគ្រប់ចំនួនពិត $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n, \mathbf{y}_1, \mathbf{y}_2, ..., \mathbf{y}_n > \mathbf{0}$ គេបាន

$$\frac{{x_1}^2}{y_1} + \frac{{x_2}^2}{y_2} + \dots + \frac{{x_n}^2}{y_n} \ge \frac{(x_1 + x_2 + \dots + x_n)^2}{y_1 + y_2 + \dots + y_n}$$

វិសមភាពនេះក្លាយជាសមភាពលុះត្រាតែនិងគ្រាន់តែ

$$\frac{\mathbf{x}_1}{\mathbf{y}_1} = \frac{\mathbf{x}_2}{\mathbf{y}_2} = \frac{\mathbf{x}_3}{\mathbf{y}_3} = \dots = \frac{\mathbf{x}_n}{\mathbf{y}_n}$$
 1

សម្រាយបញ្ជាក់

តាមវិសមភាព
$$\left(\sum\limits_{k=1}^n \left(a_k b_k\right)\right)^2 \leq \sum\limits_{k=1}^n \left(a_k^2\right) \times \sum\limits_{k=1}^n \left(b_k^2\right)$$
 បើគេយក $a_k = \frac{X_k}{\sqrt{y_k}}$, $b_k = \sqrt{y_k}$

គេបាន
$$\left(\sum_{k=1}^n \left(\frac{x_k}{\sqrt{y_k}}.\sqrt{y_k}\right)\right)^2 \le \sum_{k=1}^n \left(\frac{x_k^2}{y_k}\right) \times \sum_{k=1}^n \left(y_k\right)$$

គេទាញ
$$\sum_{k=1}^{n} \left(\frac{x_k^2}{y_k}\right) \ge \frac{\left(\sum_{k=1}^{n} (x_k)\right)^2}{\sum_{k=1}^{n} (y_k)}$$
 ,

៣/ វិសមតាពហ្មូលខ្ល័រ (Hölder's Inequality)

ទ្រឹស្តិ៍បទ គ្រប់ចំនូនពិតវិជ្ជមាន $a_{i,j}$, $1 \le i \le m$, $1 \le j \le 1$

គេបាន
$$\prod_{i=1}^m \left(\sum_{j=1}^n a_{ij}\right) \geq \left(\sum_{j=1}^n \sqrt[m]{\prod_{i=1}^m a_{ij}}\right)^m$$
 ។

រូបមន្តជ្យេងទៀតនៃ Hölder's Inequality

គ្រប់ចំនួនវិជ្ជមាន $\mathbf{x_1}, \mathbf{x_2},, \mathbf{x_n}$ និង $\mathbf{y_1}, \mathbf{y_2}, ..., \mathbf{y_n}$

ចំពោះ
$$p > 0, q > 0$$
 និង $\frac{1}{p} + \frac{1}{q} = 1$

នោះគេបាន
$$\sum_{k=1}^{n} \left(x_k y_k \right) \le \left(\sum_{k=1}^{n} x_k^p \right)^{\frac{1}{p}} \times \left(\sum_{k=1}^{n} y_k^q \right)^{\frac{1}{q}}$$
 ។

៤/ វិសមតាពមិនកូស្តី (Minkowski's Inequality)

ទ្រឹស្តីបទទី១ ចំពោះចំនួនវិជ្ជមាន $a_1, a_2, ..., a_n$ និង

 $\mathbf{b_1,b_2,....,b_n}$; $\forall n \in \square$ និងចំពោះ $\mathbf{p} \geq 1$ គេបាន :

$$\left(\sum_{k=1}^{n} (a_k + b_k)^p\right)^{\frac{1}{p}} \le \left(\sum_{k=1}^{n} a_k^p\right)^{\frac{1}{p}} + \left(\sum_{k=1}^{n} b_k^p\right)^{\frac{1}{p}}$$

ទ្រឹស្តីបទទី២ ចំពោះចំនួនវិជ្ជមាន $a_1, a_2, ..., a_n$ និង

 $\mathbf{b_1,b_2,....,b_n}$; $\forall \mathbf{n} \in \square$ ដែល $\mathbf{n} \geq \mathbf{2}$ គេបាន

$$\sqrt[n]{\prod_{k=1}^{n} \left(a_{k}\right)} + \sqrt[n]{\prod_{k=1}^{n} \left(b_{k}\right)} \leq \sqrt[n]{\prod_{k=1}^{n} \left(a_{k} + b_{k}\right)} \quad \Im$$

ដ/វិសមតាពីបន្តលី(Bernoulli's Inequality)

- . ចំពោះ x > -1, $a \in (0,1)$ គេបាន: $(1+x)^a < 1+ax$
- . ចំពោះ x > -1, n < 1 គេបាន: $(1+x)^a > 1+ax$

៦/វិសមតាពCHEBYSHEV(<u>Chebyshev</u>'s Inequality)

គេអោយពីរស្វ៊ីតនៃចំនួនពិតវិជ្ជមាន

$$\mathbf{a_1}$$
, $\mathbf{a_2}$,..., $\mathbf{a_n}$ និង $\mathbf{b_1}$, $\mathbf{b_2}$,...., $\mathbf{b_n}$ និង $\mathbf{n} \in \square$ *

-ចំពោះ
$$\mathbf{a}_1 \leq \mathbf{a}_2 \leq \ldots \leq \mathbf{a}_n$$
 និង $\mathbf{b}_1 \leq \mathbf{b}_2 \leq \ldots \leq \mathbf{b}_n$

គេបាន :
$$\sum_{k=1}^n \left(a_k b_k\right) \ge \frac{1}{n} \sum_{k=1}^n \left(a_k\right) \times \sum_{k=1}^n \left(b_k\right)$$

-ចំពោះ
$$a_1 \leq a_2 \leq ... \leq a_n$$
 និង $b_1 \geq b_2 \geq ... \geq b_n$

គេបាន
$$\sum_{k=1}^{n} (a_k b_k) \le \frac{1}{n} \sum_{k=1}^{n} (a_k) \times \sum_{k=1}^{n} (b_k)$$

៧/ វិសមតារា JENSEN (Jensen's Inequality)

វិសមភាព JENSEN ៩ម្រង់ទី១

គេឲ្យ $\, n$ ចំនូនពិត $\, x_1, x_2, ..., x_n \in I \,$

. បើ f''(x) < 0 និង $\forall x_k \in I$ គេបាន:

$$\frac{1}{n} \sum_{k=1}^{n} \left[f(x_k) \right] \le f \left[\frac{1}{n} \sum_{k=1}^{n} (x_k) \right]$$

. បើ f''(x) > 0 និង $\forall x_k \in I$ គេបាន:

$$\frac{1}{n} \sum_{k=1}^{n} \left[f(x_k) \right] \ge f \left[\frac{1}{n} \sum_{k=1}^{n} (x_k) \right]$$

ริชยภาท JENSEN ธเยน่รีย

គេឲ្យ \mathbf{n} ចំនួនពិត $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n \in \mathbf{I}$ និងចំពោះគ្រប់ ចំនួនវិជ្ជមាន $\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_n$ ដែលផលបូក $\sum\limits_{k=1}^n \left(\mathbf{a}_k\right) = \mathbf{1}$

. បើ f''(x) < 0 និង $\forall x_k \in I$ គេបាន:

$$\sum_{k=1}^{n} \left[a_k f(x_k) \right] \le f \left[\sum_{k=1}^{n} (a_k x_k) \right]$$

. បើ $\mathbf{f}''(\mathbf{x}) > \mathbf{0}$ និង $\forall \mathbf{x}_{\mathbf{k}} \in \mathbf{I}$ គេបាន:

$$\sum_{k=1}^{n} \left[f(a_k x_k) \right] \ge f \left[\sum_{k=1}^{n} (a_k x_k) \right]$$

វិសមភាព JENSEN ៩ម្រង់ទី៣

គេឲ្យ \mathbf{n} ចំនួនពិត $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n \in \mathbf{I}$ និងចំពោះគ្រប់ ចំនួនវិជ្ជមាន $\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_n$ ។

. បើ $\mathbf{f}''(\mathbf{x}) < \mathbf{0}$ និង $\forall \mathbf{x}_{\mathbf{k}} \in \mathbf{I}$ គេបាន:

$$\frac{\sum_{k=1}^{n} \left[a_k f(x_k) \right]}{\sum_{k=1}^{n} \left(a_k \right)} \leq f \begin{bmatrix} \sum_{k=1}^{n} \left(a_k x_k \right) \\ \frac{\sum_{k=1}^{n} \left(a_k \right)}{\sum_{k=1}^{n} \left(a_k \right)} \end{bmatrix}$$

. បើ f''(x) > 0 និង $\forall x_k \in I$ គេបាន:

$$\frac{\sum_{k=1}^{n} \left[a_k f(x_k) \right]}{\sum_{k=1}^{n} \left(a_k \right)} \ge f \begin{bmatrix} \sum_{k=1}^{n} \left(a_k x_k \right) \\ \sum_{k=1}^{n} \left(a_k \right) \end{bmatrix}$$

៨/វិសមតាព Schur (Schur's Inequality)

គ្រប់ចំនូនពិតវិជ្ជមាន a,b,c និង n>0 គេបាន $a^n(a-b)(a-c)+b^n(b-c)(b-a)+c^n(c-a)(c-b)\geq 0$ វិសមភាពនេះពិតចំពោះ a=b=c ។

៩/ វិសមតារា (Rearrangement's Inequality)

គេឲ្យ $\left(a_{n}\right)_{n\geq1}$ និង $\left(b_{n}\right)_{n\geq1}$ ជាស្ទីតនៃចំនួនពិតវិជ្ជមាន កើន ឬចុះព្រមគ្នា ។ ចំពោះគ្រប់ចម្លាស់ $\left(c_{n}\right)$ នៃចំនួន $\left(b_{n}\right)$ គេបាន $\sum\limits_{k=1}^{n}\left(a_{k}b_{k}\right)\geq\sum\limits_{k=1}^{n}\left(a_{k}c_{k}\right)\geq\sum\limits_{k=1}^{n}\left(a_{k}b_{n-k+1}\right)$

BBBBBB

លំហាត់ នឹង ដំណោះស្រាយ

លំហាត់ទី១

គេមានបីចំនូនពិតមិនអវិជ្ជមាន a,b,c ។ ចូរបង្ហាញថា $a^2+b^2+c^2 \geq ab+bc+ca$

ដំណោះស្រាយ

តាមវិសមភាព AM-GM គេបាន

$$\frac{a^2+b^2}{2} \ge ab \qquad (1)$$

$$\frac{\mathbf{b}^2 + \mathbf{c}^2}{2} \ge \mathbf{b}\mathbf{c} \qquad (2)$$

$$\frac{c^2 + a^2}{2} \ge ca \qquad (3)$$

ប្ចកវិសមភាព (1) , (2) និង (3) គេបាន

លំហាត់ទី២

គេមានបីចំនូនពិតវិជ្ជមាន a,b,c ។

ចូរបង្ហាញថា
$$(a+b+c)(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}) \ge 9$$
 ។

ដំណោះស្រាយ

តាមវិសមភាព AM-GM គេបាន

$$a+b+c \ge 3\sqrt[3]{abc}$$
 (1)

$$\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \ge \frac{3}{\sqrt[3]{abc}} \quad (2)$$

គុណវិសមភាព (1) នឹង (2) អង្គនិងអង្គគេបាន

$$(a+b+c)(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}) \ge 9$$
 7

លំហាត់ទី៣

គេមានបីចំនូនពិតវិជ្ជមាន a,b,c ។

ចូរបង្ហាញថា
$$\frac{a^3}{bc} + \frac{b^3}{ca} + \frac{c^3}{ab} \ge a + b + c$$
 ។

ដំណោះស្រាយ

តាមវិសមភាព AM-GM គេបាន

$$\frac{a^3}{bc} + b + c \ge 3\sqrt[3]{\frac{a^3}{bc}.b.c} = 3a (1)$$

$$\frac{b^3}{ca} + c + a \ge 3\sqrt[3]{\frac{b^3}{ca}.c.a} = 3b (2)$$

$$\frac{c^3}{ab} + a + b \ge 3\sqrt[3]{\frac{c^3}{ab}.a.b} = 3c (3)$$

ប្ចកវិសមភាព (1), (2) និង (3) អង្គនិងអង្គគេបាន

$$\frac{a^3}{bc} + \frac{b^3}{ca} + \frac{c^3}{ab} + 2(a+b+c) \ge 3(a+b+c)$$

ដូចនេះ
$$\frac{a^3}{bc} + \frac{b^3}{ca} + \frac{c^3}{ab} \ge a + b + c$$
 ។

លំហាត់ទី៤

គេមានចំនួនវិជ្ជមាន $a_1, a_2, a_3, ..., a_n$ ដែលផលគុណ $a_1.a_2.a_3...a_n = 1$ ។ ចូរបង្ហាញថា $(1+a_1)(1+a_2)(1+a_3)...(1+a_n) \geq 2^n$

ដំណោះស្រាយ

$$1+a_k \ge 2 \sqrt{a_k}$$
 , $k=1,2,3,...,n$ គេទាញ

$$\begin{split} \prod_{k=1}^n \left(1+a_k\right) &\geq \prod_{k=1}^n \left(2\sqrt{a_k}\right) \\ (1+a_1)(1+a_2)....(1+a_n) &\geq 2^n \sqrt{a_1.a_2...a_n} \\ ដោយ \ a_1.a_2.a_3...a_n &= 1 \\ ដែបនេះ \ (1+a_1)(1+a_2)(1+a_3)...(1+a_n) &\geq 2^n \ \ \ \ \ \ \end{split}$$

ក.ចូរស្រាយបញ្ជាក់ថា
$$\sqrt{\frac{4n-3}{4n+1}} < \frac{4n-1}{4n+1} < \sqrt{\frac{4n-1}{4n+3}}$$
 ចំពោះគ្រប់ $n \in IN *$

ខ.ទាញបង្ហាញថា

$$\frac{1}{2\sqrt{n+1}} < \frac{3\times7\times11\times....\times(4n-1)}{5\times9\times13\times....\times(4n+1)} < \sqrt{\frac{3}{4n+3}}$$

ដំណោះស្រាយ

ក.ស្រាយបញ្ជាក់ថា
$$\sqrt{rac{4n-3}{4n+1}} < rac{4n-1}{4n+1} < \sqrt{rac{4n-1}{4n+3}}$$

ពាមវិសមភាព AM-GM គេអាចសរសេរ ៖

$$(4n-1) + (4n+3) > 2\sqrt{(4n-1)(4n+3)}$$

$$8n+2 > 2\sqrt{(4n-1)(4n+3)}$$

$$4n+1 > \sqrt{(4n-1)(4n+3)}$$

$$\frac{1}{4n+1} < \frac{1}{\sqrt{(4n-1)(4n+3)}}$$

គុណអង្គទាំងពីរនឹង (4n-1) យើងបាន ៖

$$\frac{4n-1}{4n+1} < \sqrt{\frac{4n-1}{4n+3}} \quad (1)$$

ម្យ៉ាងទ្យេត $(4n-3)+(4n+1)>2\sqrt{(4n-3)(4n+1)}$

$$8n-2 > 2\sqrt{(4n-3)(4n+1)}$$

$$4n-1 > \sqrt{(4n-3)(4n+1)}$$

ចែកទាំងពីរនឹង (4n+1) យើងបាន ៖

$$\frac{4n-1}{4n+1} > \sqrt{\frac{4n-3}{4n+1}} \quad (2)$$

ពាមទំនាក់ទំនង (1) និង (2) គេទាញុបាន ៖

$$\sqrt{\frac{4n-3}{4n+1}} < \frac{4n-1}{4n+1} < \sqrt{\frac{4n-1}{4n+3}}$$

ខ.ទាញបង្ហាញថា

$$\frac{1}{2\sqrt{n+1}} < \frac{3\times7\times11\times....\times(4n-1)}{5\times9\times13\times...\times(4n+1)} < \sqrt{\frac{3}{4n+3}}$$

ពាមសម្រាយខាងលើយើងមាន

$$\sqrt{\frac{4n-3}{4n+1}} < \frac{4n-1}{4n+1} < \sqrt{\frac{4n-1}{4n+3}}$$

ចំពោះ n = 1; 2; 3; ...; n យើងបាន ៖

$$\sqrt{\frac{1}{5}} < \frac{3}{5} < \sqrt{\frac{3}{7}}$$

$$\sqrt{\frac{5}{9}} < \frac{7}{9} < \sqrt{\frac{7}{11}}$$

$$\sqrt{\frac{9}{13}} < \frac{11}{13} < \sqrt{\frac{11}{15}}$$

$$\sqrt{\frac{4n-3}{4n+1}} < \frac{4n-1}{4n+1} < \sqrt{\frac{4n-1}{4n+3}}$$

គុណវិសមភាពទាំងនេះអង្គនឹងអង្គគេបាន ៖

$$\sqrt{\frac{1}{4n+1}} < \frac{3}{5} \cdot \frac{7}{9} \cdot \frac{11}{13} \cdot \dots \cdot \frac{4n-1}{4n+1} < \sqrt{\frac{3}{4n+3}}$$
 ដោយគេមាន
$$\frac{1}{\sqrt{4n+1}} > \frac{1}{\sqrt{4n+4}} = \frac{1}{2\sqrt{n+1}}$$
 ។

ដូចនេះ

$$\frac{1}{2\sqrt{n+1}} < \frac{3\times7\times11\times....\times(4n-1)}{5\times9\times13\times...\times(4n+1)} < \sqrt{\frac{3}{4n+3}}$$

គេឱ្យ x; y; z ជាបីចំនួនពិតវិជ្ជមានដែល xyz = 1 ។

ចូរស្រាយបញ្ជាក់ថា :

$$\frac{x^9 + y^9}{x^6 + x^3y^3 + y^6} + \frac{y^9 + z^9}{y^6 + y^3z^3 + z^6} + \frac{z^9 + x^9}{z^6 + z^3x^3 + x^6} \ge 2$$

ដំណោះស្រាយ

ស្រាយបញ្ជាក់ថា :

$$\frac{x^9 + y^9}{x^6 + x^3y^3 + y^6} + \frac{y^9 + z^9}{y^6 + y^3z^3 + z^6} + \frac{z^9 + x^9}{z^6 + z^3x^3 + x^6} \ge 2$$
បើងមាន $x^9 + y^9 = (x^3 + y^3)(x^6 - x^3y^3 + y^6)$

$$x^9 + y^9 = (x^3 + y^3)(x^6 + x^3y^3 + y^6) - 2x^3y^3(x^3 + y^3)$$
 from
$$\frac{x^9 + y^9}{x^6 + x^3y^3 + y^6} = x^3 + y^3 - \frac{2x^3y^3(x^3 + y^3)}{x^6 + x^3y^3 + y^6}$$

តាមវិសមភាព AM - GM

$$\text{IRMS } x^6 + x^3y^3 + y^6 \ge 3x^3y^3$$

$$\text{IRMS } \frac{2x^3y^3(x^3 + y^3)}{x^6 + x^3y^3 + y^6} \le \frac{2}{3}(x^3 + y^3)$$

$$\text{IRMM } \frac{x^9 + y^9}{x^6 + x^3y^3 + y^6} \ge x^3 + y^3 - \frac{2}{3}(x^3 + y^3)$$

$$\text{IMM } \frac{x^9 + y^9}{x^6 + x^3y^3 + y^6} \ge \frac{1}{3}(x^3 + y^3) \text{ (1)}$$

ស្រាយដូចគ្នាដែរគេបាន
$$\frac{y^9 + z^9}{y^6 + y^3 z^3 + z^6} \ge \frac{1}{3} (y^3 + z^3) (2)$$
$$\frac{z^9 + x^9}{z^6 + z^3 x^3 + x^6} \ge \frac{1}{3} (z^3 + x^3) (3)$$

ធ្វើផលបុក (1); (2) និង (3) អង្គ និង អង្គ គេបាន:

$$\frac{x^9 + y^9}{x^6 + x^3 y^3 + y^6} + \frac{y^9 + z^9}{y^6 + y^3 z^3 + z^6} + \frac{z^9 + x^9}{z^6 + z^3 x^3 + x^6} \ge \frac{2}{3} (x^3 + y^3 + z^3)$$

តាមវិសមភាព AM – GM

ពេយន
$$x^3 + y^3 + z^3 \ge 3xyz = 3$$
 ព្រោះ $xyz = 1$

$$\frac{x^9 + y^9}{x^6 + x^3 y^3 + y^6} + \frac{y^9 + z^9}{y^6 + y^3 z^3 + z^6} + \frac{z^9 + x^9}{z^6 + z^3 x^3 + x^6} \ge 2$$

ដំណោះស្រាយ

បង្ហាញថា
$$\frac{1}{1+a^2(b+c)} + \frac{1}{1+b^2(c+a)} + \frac{1}{1+c^2(a+b)} \le \frac{1}{abc}$$

តាមវិសមភាព AM-GM គេមាន:

$$1 = \frac{ab + bc + ca}{3} \ge \sqrt[3]{(abc)^2} \quad \text{if } abc \le 1 \quad \text{f}$$

ពេមាន

$$\frac{1}{1+a^2(b+c)} = \frac{1}{1+a(ab+ac)} = \frac{1}{1+a(3-bc)} = \frac{1}{3a+(1-abc)}$$
ដោយ $abc \le 1$ ប $1-abc \ge 0$ ទោះ $\frac{1}{abc} \le \frac{1}{abc}$ (1)

ដោយ
$$abc \le 1$$
 ឬ $1 - abc \ge 0$ នោះ $\frac{1}{1 + a^2(b + c)} \le \frac{1}{3a}$ (1)

ដូចគ្នាដែរ
$$\frac{1}{1+b^2(c+a)} \le \frac{1}{3b} (2)$$
 , $\frac{1}{1+c^2(a+b)} \le \frac{1}{3c} (3)$

បូកវិសមភាព (1); (2) និង (3) គេបាន

$$\frac{1}{1+a^2(b+c)} + \frac{1}{1+b^2(c+a)} + \frac{1}{1+c^2(a+b)} \le \frac{1}{3a} + \frac{1}{3b} + \frac{1}{3c} = \frac{ab+bc+ca}{3abc}$$

ដោយ ab + bc + ca = 3

ដូចនេះ
$$\frac{1}{1+a^2(b+c)} + \frac{1}{1+b^2(c+a)} + \frac{1}{1+c^2(a+b)} \le \frac{1}{abc}$$
 ។

ដំណោះស្រាយ

ស្រាយថា
$$\frac{ab}{a+b+2} \le \sqrt{2}-1$$
ឃើងមាន $(a+b)^2 = a^2 + b^2 + 2ab = 4 + 2ab$
ប្រមាញ $2ab = (a+b)^2 - 4 = (a+b+2)(a+b-2)$
ទាំឱ្យ $\frac{ab}{a+b+2} = \frac{a+b-2}{2}$
 $\frac{ab}{a+b+2} = \frac{a+b}{2}-1$ (1)
ប្រមាញ $(a-b)^2 + (a+b)^2 = 2(a^2+b^2)$
ប្រមាញ $(a+b)^2 = 2(a^2+b^2) - (a-b)^2 \le 2(a^2+b^2) = 8$
ទាំឱ្យ $a+b \le 2\sqrt{2}$ ឬ $\frac{a+b}{2} \le \sqrt{2}$ (2)
តាម (1) និង (2) ប្រមាញមាន $\frac{ab}{a+b+2} \le \sqrt{2}-1$ ។

លំហាត់ទី៩

(Romanian 2007)

គេឱ្យ a , b , c ជាប៊ីចំនួនពិតដែល a , b , $c \in (1 \, , + \, \infty \,)$

ឬ
$$a,b,c \in (0,1)$$
 ។ ចូរបង្ហាញថា

$$\log_a bc + \log_b ca + \log_c ab \ge 4(\log_{ab} c + \log_{bc} a + \log_{ca} b)$$

ដំណោះស្រាយ

បង្ហាញថា

 $\log_a bc + \log_b ca + \log_c ab \ge 4(\log_{ab} c + \log_{bc} a + \log_{ca} b)$ (*)

យើងយក d ជាចំនួនពិតនៃចន្លោះ $(1,+\infty)$ ឬ (0,1) ។

តាមរូបមន្តប្តូរគោលគេបាន
$$\log_a bc = \frac{\log_d bc}{\log_d a} = \frac{\log_d b + \log_d c}{\log_d a}$$

$$\log_b ca = \frac{\log_d ca}{\log_d b} = \frac{\log_d c + \log_d a}{\log_d b}$$

$$\log_{c} ab = \frac{\log_{d} ab}{\log_{d} c} = \frac{\log_{d} a + \log_{d} b}{\log_{d} c}$$

ដោយយក $x = \log_d a$, $y = \log_d b$, $z = \log_d c$

វិសមភាព (*) សមមូល

$$\frac{y+z}{x} + \frac{z+x}{y} + \frac{x+y}{z} \ge 4\left(\frac{x}{y+z} + \frac{y}{z+x} + \frac{z}{x+y}\right)$$

$$\left(\frac{x}{y} + \frac{x}{z}\right) + \left(\frac{y}{x} + \frac{y}{z}\right) + \left(\frac{z}{x} + \frac{z}{y}\right) \ge \frac{4x}{y+z} + \frac{4y}{z+x} + \frac{4z}{x+y} \quad (**)$$

តាមវិសមភាព AM – HM គេមាន

$$\frac{1}{y} + \frac{1}{z} \ge \frac{4}{y+z}$$
 sigt $\frac{x}{y} + \frac{x}{z} \ge \frac{4x}{y+z}$

តាមវិសមភាពនេះគេទាញបាន (**) ពិត ។

ដូចនេះ

 $\log_a bc + \log_b ca + \log_c ab \ge 4(\log_{ab} c + \log_{bc} a + \log_{ca} b)$

(Selection test for JBMO 2007)

ចូរស្រាយថា
$$\frac{x^3 + y^3 + z^3}{3} \ge xyz + \frac{3}{4} |(x - y)(y - z)(z - x)|$$

ចំពោះគ្រប់ $x;y;z \ge 0$ ។

ដំណោះស្រាយ

$$\frac{x^3 + y^3 + z^3}{3} \ge xyz + \frac{3}{4} |(x - y)(y - z)(z - x)|$$

តាង
$$p = |(x-y)(y-z)(z-x)|$$

គេមានឯកលក្ខណះភាព

$$x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - yz - zx)$$
 (i)

ចំពោះគ្រប់ $x;y;z \ge 0$ គេមាន:

$$x + y \ge |x - y|, y + z \ge |y - z|, z + x \ge |z - x|$$

ពេហន
$$2(x+y+z) \ge |x-y| + |y-z| + |z-x|$$

តាមវិសមភាព AM – GM គេបាន $2(x+y+z) \ge 3\sqrt[3]{p}$ (1)

ម្យ៉ាងឡេតែគេមានសមភាព

$$x^{2} + y^{2} + z^{2} - xy - yz - zx = \frac{1}{2}[(x - y)^{2} + (y - z)^{2} + (z - x)^{2}]$$

តាមវិសមភាព AM-GM គេបាន:

$$x^{2} + y^{2} + z^{2} - xy - yz - zx \ge \frac{3}{2} \sqrt[3]{p^{2}}$$
 (2)

ធ្វើវិធីគុណវិសមភាព (1) និង (2) គេទទួលបាន:

$$2(x+y+z)(x^{2}+y^{2}+z^{2}-xy-yz-zx) \ge \frac{9}{2}p$$

$$(x+y+z)(x^2+y^2+z^2-xy-yz-zx) \ge \frac{9}{4}p$$
 (ii)

តាម (i) និង (ii) គេបាន
$$x^3 + y^3 + z^3 - 3xyz \ge \frac{9}{4}p$$

$$\text{then} \, \frac{x^3 + y^3 + z^3}{3} \geq xyz + \frac{3}{4}p$$

ដោយ
$$p = |(x-y)(y-z)(z-x)|$$

ដូចនេះ
$$\frac{x^3 + y^3 + z^3}{3} \ge xyz + \frac{3}{4} |(x - y)(y - z)(z - x)|$$
 ។

តេឱ្យ a, b, c ជាប្រវែងជ្រុងនៃត្រីកោណមួយ ។ ចូរស្រាយថា $\frac{a}{b-a+c} + \frac{b}{a-b+c} + \frac{c}{a+b-c} \ge 3$

(RMC 2000)

ដំណោះស្រាយ

លំហាត់ទី១២

គេឱ្យ a,b , c ជាបីចំនួនពិតដែលផ្ទៀងផ្ទាត់ $a^2+b^2+c^2=3$ ។ ចូរបង្ហាញថា $|a|+|b|+|c|-abc\leq 4$

(RMC 2004)

ដំណោះស្រាយ

បង្ហាញថា |a|+|b|+|c|-abc≤4

តាមវិសមភាព Cauchy-Schwarz គេបាន:

$$(|a|+|b|+|c|)^2 \le 3(a^2+b^2+c^2)=9$$

កេទាញ $|a|+|b|+|c| \le 3$ (1)

តាមវិសមភាព AM-GM គេបាន:

$$a^2 + b^2 + c^2 \ge 3\sqrt[3]{(abc)^2}$$

គេទាញ
$$(abc)^2 \le \left(\frac{a^2 + b^2 + c^2}{3}\right)^3 = 1$$
 ទាំឡ $-1 \le abc \le 1$

គេទាញជាន $-abc \ge 1$ (2)

ធ្វើផលបូកវិសមភាព (1) និង (2) គេបាន:

$$|a|+|b|+|c|-abc \le 4$$

លំហាត់ទី១៣

គេឱ្យ a , b , c ជាបីចំនួនពិតវិជ្ជមានដែល abc = 1 ។

ចូរបង្ហាញថា
$$1+\frac{3}{a+b+c} \ge \frac{6}{ab+bc+ca}$$

(JBMO 2003)

ដំណោះស្រាយ

បង្ហាញថា
$$1+\frac{3}{a+b+c} \ge \frac{6}{ab+bc+ca}$$

យើងពាង $a = \frac{1}{x}$; $b = \frac{1}{y}$; $c = \frac{1}{z}$ នោះវិសមភាពអាចសរសេរ:

$$1 + \frac{3}{xy + yz + zx} \ge \frac{6}{x + y + z}$$
 (imp $xyz = \frac{1}{abc} = 1$)

យើងមាន
$$(x-y)^2 + (y-z)^2 + (z-x)^2 \ge 0$$

ពេទាញ
$$x^2 + y^2 + z^2 \ge xy + yz + zx$$

ថែមអង្គទាំងពីរនឹង 2xy + 2yz + 2zx

ពេយន
$$(x+y+z)^2 \ge 3(xy+yz+zx)$$

នាំឱ្យ
$$1 + \frac{3}{xy + yz + zx} \ge 1 + \frac{9}{(x + y + z)^2} \ge \frac{6}{x + y + z}$$

$$\text{Ims } 1 - \frac{6}{x+y+z} + \frac{9}{(x+y+z)^2} = \left(1 - \frac{3}{x+y+z}\right)^2 \ge 0$$

ដូចនេះ
$$1+\frac{3}{a+b+c} \ge \frac{6}{ab+bc+ca}$$
 ។

បើ x,y,z ជាបីចំនួនពិតខុសពី 1 ដែល xyz=1

នោះចូរបង្ហាញថា ៖

$$\frac{x^2}{(1-x)^2} + \frac{y^2}{(1-y)^2} + \frac{z^2}{(1-z)^2} \ge 1$$

(IMO 2008)

ដំណោះស្រាយ

បង្ហាញថា
$$\frac{x^2}{(1-x)^2} + \frac{y^2}{(1-y)^2} + \frac{z^2}{(1-z)^2} \ge 1$$

តាង
$$a = \frac{x}{1-x}$$
; $b = \frac{y}{1-y}$; $c = \frac{z}{1-z}$

គេបាន
$$abc = \frac{xyz}{(1-x)(1-y)(1-z)} = \frac{1}{(1-x)(1-y)(1-z)}$$

$$\lim xyz = 1$$

ហើយ
$$1+a=\frac{1}{1-x}$$
, $1+b=\frac{1}{1-y}$, $1+c=\frac{1}{1-z}$

គេបាន
$$(1+a)(1+b)(1+c) = \frac{1}{(1-x)(1-y)(1-z)}$$

គេទាញ

$$a^{2} + b^{2} + c^{2} = a^{2} + b^{2} + c^{2} + 2(ab + bc + ca) + 2(a + b + c) + 2$$

$$a^{2} + b^{2} + c^{2} = (a + b + c)^{2} + 2(a + b + c) + 2$$

$$a^{2} + b^{2} + c^{2} = (a + b + c + 1)^{2} + 1 \ge 1$$

$$x^{2} + \frac{x^{2}}{(1 - x)^{2}} + \frac{y^{2}}{(1 - y)^{2}} + \frac{z^{2}}{(1 - z)^{2}} \ge 1 \quad 1$$

លំហាត់ទី១៥

(Indian Mathematical Olympiad 1988)

ដំណោះស្រាយ

<u>រេប្បិបទី១</u>

បង្ហាញថា
$$(a + \frac{1}{a})^2 + (b + \frac{1}{b})^2 \ge \frac{25}{2}$$

តាមវិសមភាព AM-GM យើងបាន ៖

$$(a+\frac{1}{a})^2+(b+\frac{1}{b})^2 \ge 2(a+\frac{1}{a})(b+\frac{1}{b})$$

តាឯ

$$X = 2(a + \frac{1}{a})(b + \frac{1}{b}) = \frac{2(a^2 + 1)(b^2 + 1)}{ab} = 2ab + \frac{2(a^2 + b^2 + 1)}{ab}$$

ដោយ
$$a+b=1$$
 នាំឲ្យ $a^2+b^2=1-2ab$

គេបាន
$$X = 2ab + \frac{2(2-2ab)}{ab} = 2ab - 4 + \frac{4}{ab}$$

តាង
$$t = ab$$
 ហើយ $0 < t \le \frac{1}{4}$ (ព្រោះ $t = ab \le \frac{(a+b)^2}{4} = \frac{1}{4}$)

គេបាន
$$X(t) = 2t - 4 + \frac{4}{t} = 2t + \frac{1}{8t} + \frac{31}{8t} - 4$$

ដោយ
$$2t + \frac{1}{8t} \ge 2\sqrt{2t \cdot \frac{1}{8t}} = 1$$
 ហើយ $t \le \frac{1}{4} \Rightarrow \frac{31}{8t} \ge \frac{31}{2}$

គេបាន
$$X(t) \ge 1 + \frac{31}{2} - 4 = \frac{25}{2}$$
ដូចនេះ $(a + \frac{1}{a})^2 + (b + \frac{1}{b})^2 \ge \frac{25}{2}$ ។

<u>របៀបទី២</u>

ដោយប្រើវិសមភាព
$$x^2 + y^2 \ge \frac{(x+y)^2}{2}$$
គេបាន $(a + \frac{1}{a})^2 + (b + \frac{1}{b})^2 \ge \frac{1}{2}(a + \frac{1}{a} + b + \frac{1}{b})^2$
ដោយ $a + \frac{1}{a} + b + \frac{1}{b} = (a+b) + \frac{(a+b)}{ab} = 1 + \frac{1}{ab}$ ព្រោះ $a+b=1$
ហើយ $ab \le \frac{(a+b)^2}{4} = \frac{1}{4} \Rightarrow 1 + \frac{1}{ab} \ge 5$
ដូចនេះ $(a + \frac{1}{a})^2 + (b + \frac{1}{b})^2 \ge \frac{25}{2}$ ។

លំហាត់ទី១៦

គេឲ្យសមីការ x⁴+px³+qx²+rx+s=0 មានឬសប្អូនវិជ្ជមាន ចូរស្រាយបញ្ជាក់ថា ៖

$$a/pr-16s \ge 0$$

$$b/q^2-36s\geq 0$$

(Indian Mathematical Olympiad 1990)

ដំណោះស្រាយ

ស្រាយបញ្ជាក់ថា pr – 16s ≥ 0

តាង y_1, y_2, y_3, y_4 ជាឬសសមីការ $x^4 + px^3 + qx^2 + rx + s = 0$ តាមទ្រឹស្តីបទវែត្រគេមានទំនាក់ទំនងឬសដូចខាងក្រោម ៖

$$\begin{cases} y_1 + y_2 + y_3 + y_4 = -p \\ y_1 y_2 + y_1 y_3 + y_1 y_4 + y_2 y_3 + y_2 y_4 + y_3 y_4 = q \\ y_1 y_2 y_3 + y_1 y_2 y_4 + y_1 y_3 y_4 + y_2 y_3 y_4 = -r \\ y_1 y_2 y_3 y_4 = s \end{cases}$$

តាមវិសមភាព AM-HM គេមាន

$$y_{1}y_{2}y_{3}y_{4}(y_{1} + y_{2} + y_{3} + y_{4})(\frac{1}{y_{1}} + \frac{1}{y_{2}} + \frac{1}{y_{3}} + \frac{1}{y_{4}}) \ge 16y_{1}y_{2}y_{3}y_{4}$$

$$(-p)(-r) \ge 16s$$

$$pr \ge 16s$$

ដូចនេះ pr-16s≥0 ។

ស្រាយបញ្ហាក់ថា q²-36s≥0 តាមវិសមភាព AM-GM គេបាន ៖

$$(y_1y_2 + y_1y_3 + y_1y_4 + y_2y_3 + y_2y_4 + y_3y_4)^2 \ge 36y_1y_2y_3y_4$$

 $q^2 \ge 36s$

រ៉ូបីនេះ $q^2 - 36s \ge 0$ ។

លំហាត់ទី១៧

គេឲ្យ x ; y ; z ជាបីចំនួនពិតមិនអវិជ្ជមាន ។ ច្ចូរស្រាយថា ៖

$$\frac{x^2 + y^2 + z^2 + xy + yz + zx}{6} \le \frac{x + y + z}{3} \sqrt{\frac{x^2 + y^2 + z^2}{3}}$$

(Hungary-Israel Binational 2009)

ដំណោះស្រាយ

ស្រាយថា ៖

$$\frac{x^2 + y^2 + z^2 + xy + yz + zx}{6} \le \frac{x + y + z}{3} \sqrt{\frac{x^2 + y^2 + z^2}{3}}$$

តាង
$$a = x^2 + y^2 + z^2$$
 និង $b = xy + yz + zx$

គេបាន
$$a+2b=(x+y+z)^2 \Rightarrow x+y+z=\sqrt{a+2b}$$

វិសមភាពសមមូល
$$\frac{a+b}{6} \le \frac{\sqrt{a+2b}}{3} \sqrt{\frac{a}{3}}$$

$$\Leftrightarrow 3(a+b)^2 \le 4a(a+2b)$$

$$\Leftrightarrow a^2 + 2ab - 3b^2 \ge 0$$

$$\Leftrightarrow (a-b)(a+3b) \ge 0$$

ដោយ
$$a \ge 0$$
 , $b \ge 0$ នោះ $a + 3b \ge 0$

ហើយ
$$a-b = x^2 + y^2 + z^2 - xy - yz - zx$$

$$\underbrace{\mathbf{U}}_{\mathbf{a}-\mathbf{b}} = \frac{1}{2} \left[(\mathbf{x} - \mathbf{y})^2 + (\mathbf{y} - \mathbf{z})^2 + (\mathbf{z} - \mathbf{x})^2 \right] \ge 0$$

គេទាញ
$$(a-b)(a+3b) \ge 0$$
 ពិត

ដូចនេះ
$$\frac{x^2 + y^2 + z^2 + xy + yz + zx}{6} \le \frac{x + y + z}{3} \sqrt{\frac{x^2 + y^2 + z^2}{3}}$$

លំហាត់ទី១៨

គេឲ្យចំនួនពិតវិជ្ជមាន x;y;z ដែល

$$\frac{1}{x^2+1} + \frac{1}{y^2+1} + \frac{1}{z^2+1} = \frac{1}{2}$$

$$\text{Fights } \frac{1}{x^3+2} + \frac{1}{v^3+2} + \frac{1}{z^3+2} \le \frac{1}{3}$$

(Serbia Junior Balkan Team Selection Test 2009)

បង្ហាញថា
$$\frac{1}{x^3+2} + \frac{1}{y^3+2} + \frac{1}{z^3+2} \le \frac{1}{3}$$
 ជាដំបូងយើងត្រូវស្រាយឲ្យឃើញថា $\frac{1}{x^3+2} \le \frac{2}{3(x^2+1)}$ ។ គេមាន $\frac{1}{x^3+2} \le \frac{2}{3(x^2+1)} \Leftrightarrow 2(x^3+2) \ge 3(x^2+1)$ $\Leftrightarrow 2x^3-3x^2+1 \ge 0$ $\Leftrightarrow 2x^3-2x^2-x^2+1 \ge 0$ $\Leftrightarrow (x-1)^2(2x+1) \ge 0$

ហេតុនេះ
$$\frac{1}{x^3+2} \le \frac{2}{3(x^2+1)}$$
 (1) ពិត ដូចគ្នាដែរ $\frac{1}{y^3+2} \le \frac{2}{3(y^2+1)}$ (2)

ដូចនេះ
$$\frac{1}{x^3+2} + \frac{1}{y^3+2} + \frac{1}{z^3+2} \le \frac{1}{3}$$
 ។

លំហាត់ទី១៩

គេឲ្យ ABC ជាត្រីកោណមួយហើយតាង r និង R រៀងគ្នាជាកាំរង្វង់ចារឹកក្នុង និងកាំរង្វង់ចារឹកក្រៅ ។ ចូរស្រាយបញ្ជាក់ថា ៖

$$\sin\frac{A}{2}\sin\frac{B}{2} + \sin\frac{B}{2}\sin\frac{C}{2} + \sin\frac{C}{2}\sin\frac{A}{2} \le \frac{5}{8} + \frac{r}{4R}$$
(IMO Long lists 1988)

ដំណោះស្រាយ

ស្រាយបញ្ជាក់ថា ៖

$$\sin\frac{A}{2}\sin\frac{B}{2} + \sin\frac{B}{2}\sin\frac{C}{2} + \sin\frac{C}{2}\sin\frac{A}{2} \le \frac{5}{8} + \frac{r}{4R}$$

តាង a,b,c ជាជ្រុងរបស់ត្រីកោណ ABC ហើយយក

$$p = \frac{a+b+c}{2}$$

គេមាន
$$\sin\frac{A}{2}=\sqrt{\frac{(p-b)(p-c)}{bc}}$$
 ; $\sin\frac{B}{2}=\sqrt{\frac{(p-a)(p-c)}{ac}}$ $\sin\frac{C}{2}=\sqrt{\frac{(p-a)(p-b)}{ab}}$

ឃើងបាន
$$\cos A + \cos B + \cos C = 1 + 4\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}$$

$$=1+4\frac{(p-a)(p-b)(p-c)}{abc}$$

$$=1+4\frac{\frac{S^2}{p}}{4RS}=1+\frac{S}{pR}$$

$$=1+\frac{pr}{pR}=1+\frac{r}{R}$$

$$\cos A + \cos B + \cos C = 1 + \frac{r}{R}$$

$$1 - 2\sin^2\frac{A}{2} + 1 - 2\sin^2\frac{B}{2} + 1 - 2\sin^2\frac{C}{2} = 1 + \frac{r}{R}$$

$$3 - 2(\sin^2\frac{A}{2} + \sin^2\frac{B}{2} + \sin^2\frac{C}{2}) = 1 + \frac{r}{R}$$

$$\sin^2 \frac{A}{2} + \sin^2 \frac{B}{2} + \sin^2 \frac{C}{2} = 1 - \frac{r}{2R}$$
 (1)

តាមវិសមភាព Jensen យើងមាន ៖

$$sin\frac{A}{2} + sin\frac{B}{2} + sin\frac{C}{2} \le 3sin(\frac{A+B+C}{6}) = 3sin\frac{\pi}{6}$$

$$\sin\frac{A}{2} + \sin\frac{B}{2} + \sin\frac{C}{2} \le \frac{3}{2}$$

លើកអង្គទាំងពីរជាការេគេបាន ៖

$$\left(\sin\frac{A}{2} + \sin\frac{B}{2} + \sin\frac{C}{2}\right)^2 \le \frac{9}{4} (2)$$

ដោយប្រើសមភាព

$$(x + y + z)^2 = x^2 + y^2 + z^2 + 2xy + 2yz + 2zx$$

តាមទំនាក់ទំនង (1) និង (2) គេទាញបាន ៖

$$\begin{split} 1 - \frac{r}{2R} + 2(\sin\frac{A}{2}\sin\frac{B}{2} + \sin\frac{B}{2}\sin\frac{C}{2} + \sin\frac{C}{2}\sin\frac{A}{2}) &\leq \frac{9}{4} \\ & \text{Y} \quad 2(\sin\frac{A}{2}\sin\frac{B}{2} + \sin\frac{B}{2}\sin\frac{C}{2} + \sin\frac{C}{2}\sin\frac{A}{2}) \leq \frac{5}{4} + \frac{r}{2R} \\ & \text{Y} \quad \text{SIS:} \quad \sin\frac{A}{2}\sin\frac{B}{2} + \sin\frac{B}{2}\sin\frac{C}{2} + \sin\frac{C}{2}\sin\frac{A}{2} \leq \frac{5}{8} + \frac{r}{4R} \end{split}$$

លំហាត់ទី២០

ស្រាយវិសមភាព
$$1-\frac{a+b}{2}+\frac{ab}{3}\geq \frac{1}{1+a+b}$$
 ដោយ a , $b\in [0,1]$ នោះយើងតាង $a=\cos x$; $b=\sin x$ ដែល $0\leq x\leq \frac{\pi}{2}$ ។ យក $t=\sin x+\cos x=\sqrt{2}\sin(x+\frac{\pi}{4})$ ដែល $1\leq t\leq \sqrt{2}$ គេមាន
$$t^2=(\sin x+\cos x)^2=1+2\sin x\cos x\Rightarrow \sin x\cos x=\frac{t^2-1}{2}$$
 វិសមភាពដែលត្រូវបង្ហាញសមមូលនឹង $1-\frac{t}{2}+\frac{t^2-1}{6}\geq \frac{1}{1+t}$ $\Leftrightarrow \frac{3(2-t)(1+t)+(t^2-1)(1+t)-6}{6(t+1)}\geq 0$ $\Leftrightarrow \frac{(t-1)(t^2-t+1)}{6(t+1)}\geq 0$ ដោយ $t-1\geq 0$ និង $t^2-t+1=(t-\frac{1}{2})^2+\frac{3}{4}>0$

លំហាត់ទី២១

គេឲ្យ a , b , c , d ជាបូនចំនូនពិតវិជ្ជមានដែល a+b+c+d=1 ។ បង្ហាញថា $6(a^3+b^3+c^3+d^3) \geq a^2+b^2+c^2+d^2+\frac{1}{8}$ (គណិតវិទ្យាសិស្សព្ទកែប្រទេសបារាំង 2007)

បង្ហាញថា
$$6(a^3+b^3+c^3+d^3) \ge a^2+b^2+c^2+d^2+\frac{1}{8}$$
 តាឯអនុគមន៍ $f(x)=6x^3-x^2$ មានក្រាបតំនាង (c) គេមាន $f'(x)=12x^2-2x$ យកចំនុច $M \in (c)$ មានអាប់ស៊ីស $x=\frac{1}{4}$ និងអរដោនេ $f(\frac{1}{4})=\frac{1}{32}$ សមីការបន្ទាត់ប៉ះ (c) ត្រង់ M គឺ ៖ $y-f(\frac{1}{4})=f'(\frac{1}{4})(x-\frac{1}{4})$ $y-\frac{1}{32}=\frac{5}{8}(x-\frac{1}{4}) \Rightarrow y=\frac{5x}{8}-\frac{1}{8}$ ចំពោះ $x>0$ គេមាន $f(x)-(\frac{5x}{8}-\frac{1}{8})=6(x-\frac{1}{4})^2(x+\frac{1}{3})\ge 0$ គេមាញ $6x^3-x^2\ge \frac{5x}{8}-\frac{1}{8}$ ចំពោះ គ្រប់ $x>0$

គេបាន

$$6(a^3 + b^3 + c^3 + d^3) - (a^2 + b^2 + c^2 + d^2) \ge \frac{5}{8}(a + b + c + d) - \frac{4}{8}$$

$$3 + 6(a^3 + b^3 + c^3 + d^3) \ge a^2 + b^2 + c^2 + d^2 + \frac{1}{8}$$

លំហាត់ទី២២

(Baltic Way 2005)

គេទាញ

$$\frac{a}{2a+1} + \frac{b}{2b+1} + \frac{c}{2c+1} \le \frac{3}{2} - \frac{1}{2} \frac{(\sqrt{bc} + \sqrt{ac} + \sqrt{ab})^2}{6 + bc + ca + ab}$$
(2) តាម (1) និង (2) គេទាញបាន ៖

$$\frac{a}{a^{2}+2} + \frac{b}{b^{2}+2} + \frac{c}{c^{2}+2} \le \frac{3}{2} - \frac{1}{2} \cdot \frac{(\sqrt{bc} + \sqrt{ac} + \sqrt{ab})^{2}}{6 + bc + ca + ab}$$
(3)
ជាបន្តទៅនេះយើងនឹងស្រាយថា
$$\frac{(\sqrt{bc} + \sqrt{ac} + \sqrt{ab})^{2}}{6 + bc + ca + ab} \ge 1$$

តាង
$$x = \sqrt{ab}$$
; $y = \sqrt{bc}$; $z = \sqrt{ac}$ ហើយ $xyz = abc = 1$

វិសមភាពសមមូល
$$\frac{(\sqrt{x} + \sqrt{y} + \sqrt{z})^2}{6 + x + y + z} \ge 1$$

$$\Leftrightarrow (\sqrt{x} + \sqrt{y} + \sqrt{z})^2 \ge 6 + x + y + z$$

$$\Leftrightarrow 2(\sqrt{xy} + \sqrt{yz} + \sqrt{zx}) \ge 6$$

តាមវិមសមភាព $AM - GM \sqrt{xy} + \sqrt{yz} + \sqrt{zx} \ge 3\sqrt[3]{xyz} = 3$

គេទាញ
$$\frac{(\sqrt{x}+\sqrt{y}+\sqrt{z})^2}{6+x+y+z} \ge 1$$
 ពិត

ហើយ
$$\frac{(\sqrt{x} + \sqrt{y} + \sqrt{z})^2}{6 + x + y + z} \ge 1$$
ពិត

ហេតុនេះតាម (3) គេបាន

$$\frac{a}{a^{2}+2} + \frac{b}{b^{2}+2} + \frac{c}{c^{2}+2} \le \frac{3}{2} - \frac{1}{2} = 1$$

$$\frac{a}{b} \text{ IS: } \frac{a}{a^{2}+2} + \frac{b}{b^{2}+2} + \frac{c}{c^{2}+2} \le 1 \qquad 1$$

លំហាត់ទី២៣

គេតាង a, b, c ជារង្វាស់ជ្រុងរបស់ត្រីកោណ ABC ហើយតាង rនិងRជាកាំរង្វង់ចារឹកក្នុង និង កាំរង្វង់ចារឹកក្រៅ នៃត្រីកោណ ។

ប្តូរស្រាយថា $a+b+c \ge 2\sqrt{3r(r+4R)}$ ។

លំហាត់ទី២៤

គេឲ្យa,b,c ជាបីចំនួនពិតវិជ្ជមាន ។ ចូរស្រាយបញ្ជាក់ថា ៖

$$\frac{b+c}{a+\sqrt[3]{4(b^3+c^3)}} + \frac{c+a}{b+\sqrt[3]{4(c^3+a^3)}} + \frac{a+b}{c+\sqrt[3]{4(a^3+b^3)}} \leq 2$$

ដំណោះស្រាយ

ស្រាយថា ៖

$$\frac{b+c}{a+\sqrt[3]{4(b^3+c^3)}} + \frac{c+a}{b+\sqrt[3]{4(c^3+a^3)}} + \frac{a+b}{c+\sqrt[3]{4(a^3+b^3)}} \le 2$$

គេមាន
$$b^3 + c^3 = (b + c)^3 - 3bc(b + c)$$

ពាមវិសមភាព AM-GM គេមាន $b+c \ge 2\sqrt{bc}$

គេទាញ
$$bc \le \left(\frac{b+c}{2}\right)^2$$
 នាំឲ្យ $-3bc(b+c) \ge -\frac{3}{4}(b+c)^3$

រក្សាន
$$b^3 + c^3 \ge (b+c)^3 - \frac{3}{4}(b+c)^3 = \frac{1}{4}(b+c)^3$$

គេទាញ
$$b + c \le \sqrt[3]{4(b^3 + c^3)}$$

$$y a + b + c \le a + \sqrt[3]{4(b^3 + c^3)}$$

នាំថ្វ
$$\frac{b+c}{a+\sqrt[3]{4(b^3+c^3)}} \le \frac{b+c}{a+b+c}$$
 (1)

ដូចគ្នាដែរ
$$\frac{c+a}{b+\sqrt[3]{4(c^3+a^3)}} \le \frac{c+a}{a+b+c}$$
 (2)

និង
$$\frac{a+b}{c+\sqrt[3]{4(a^3+b^3)}} \le \frac{a+b}{a+b+c}$$
 (3) ។

ដោយបូកទំនាក់ទំនង (1),(2),(3) គេបាន ៖

$$\frac{b+c}{a+\sqrt[3]{4(b^3+c^3)}} + \frac{c+a}{b+\sqrt[3]{4(c^3+a^3)}} + \frac{a+b}{c+\sqrt[3]{4(a^3+b^3)}} \le 2 \quad \forall$$

លំហាត់ទី២៥

ក្នុងត្រីកោណ ABC មួយចូរស្រាយបញ្ជាក់ថា ៖

$$\frac{1}{\sin\frac{A}{2}} + \frac{1}{\sin\frac{B}{2}} + \frac{1}{\sin\frac{C}{2}} \ge 4\sqrt{\frac{R}{r}}$$

ដែល r និង R ជាកាំរង្វង់ចារឹកក្នុង និង ចារឹកក្រៅត្រីកោណ ។

ដំណោះស្រាយ

ប្រាយថា
$$\frac{1}{\sin\frac{A}{2}} + \frac{1}{\sin\frac{B}{2}} + \frac{1}{\sin\frac{C}{2}} \ge 4\sqrt{\frac{R}{r}} \quad (1)$$

ពាង
$$BC = a$$
, $AC = b$, $AB = c$

ពាមទ្រឹស្តីបទកូស៊ីនូសក្នុងត្រីកោណ ABC គេមាន ៖

$$a^2 = b^2 + c^2 - 2bc.\cos A$$
 fill $\cos A = 1 - 2\sin^2 \frac{A}{2}$

$$\mathbf{1S1}: \ \mathbf{a}^2 = \mathbf{b}^2 + \mathbf{c}^2 - 2\mathbf{bc}(1 - 2\sin^2\frac{\mathbf{A}}{2})$$

គេទាញ
$$\sin^2 \frac{A}{2} = \frac{a^2 - (b - c)^2}{4bc} = \frac{(a + b - c)(a - b + c)}{4bc}$$

ពាង
$$p = \frac{a+b+c}{2}$$
 (កន្លះបរិមាត្រនៃត្រីកោណ)

ពេញន
$$a+b-c=2(p-c)$$
 និង $a-b+c=2(p-b)$

រោធ
$$\sin^2 \frac{A}{2} = \frac{(p-b)(p-c)}{bc}$$

នាំឲ្យ
$$\sin\frac{A}{2} = \sqrt{\frac{(p-b)(p-c)}{bc}}$$
 ។ ដូចគ្នាដែរគេទាញ ៖ $\sin\frac{B}{2} = \sqrt{\frac{(p-a)(p-c)}{ac}}$; $\sin\frac{C}{2} = \sqrt{\frac{(p-a)(p-b)}{ab}}$ ដោបន $\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2} = \frac{(p-a)(p-b)(p-c)}{abc}$ ដោមន $S = \sqrt{p(p-a)(p-b)(p-c)} = pr = \frac{abc}{4R}$ ដោមន $S = \sqrt{p(p-a)(p-b)(p-c)} = pr = \frac{abc}{4R}$ ដោមនាន $\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2} = \frac{r.S}{4R.S} = \frac{r}{4R}$ ។ វិសមភាព (1) សមមួលទៅនឹង ៖
$$\frac{1}{\sin\frac{A}{2}} + \frac{1}{\sin\frac{B}{2}} + \frac{1}{\sin\frac{C}{2}} \ge 4\sqrt{\frac{1}{4\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}}}$$
 $\sqrt{\frac{\sin\frac{B}{2}\sin\frac{C}{2}}{\sin\frac{A}{2}}} + \sqrt{\frac{\sin\frac{A}{2}\sin\frac{A}{2}\sin\frac{B}{2}}{\sin\frac{C}{2}}} \ge 2$ (2) ដោយ $\sin\frac{B}{2}\sin\frac{C}{2} = \sqrt{\frac{(p-a)^2(p-b)(p-c)}{a^2bc}} = \frac{p-a}{a}\sin\frac{A}{2}$

គេទាញ
$$\frac{\sin\frac{B}{2}\sin\frac{C}{2}}{\sin\frac{A}{2}} = \frac{p-a}{a}$$
 ។

ដូចគ្នាដែរគេទាញបាន ៖

$$\frac{\sin\frac{C}{2}\sin\frac{A}{2}}{\sin\frac{B}{2}} = \frac{p-b}{b} \quad \text{Sh} \quad \frac{\sin\frac{A}{2}\sin\frac{B}{2}}{\sin\frac{C}{2}} = \frac{p-c}{c}$$

វិសមភាព (2) សមមូលទៅនឹង ៖

$$\sqrt{\frac{p-a}{a}} + \sqrt{\frac{p-b}{b}} + \sqrt{\frac{p-c}{c}} \ge 2$$

តាមវិលមភាព AM-GM គេបាន ៖

$$\begin{split} p &= (p-a) + a \geq 2\sqrt{(p-a)a} \quad \text{Sigj} \quad \sqrt{\frac{p-a}{a}} \geq \frac{2(p-a)}{p} \end{split}$$
 ដូចគ្នាដែរ $\sqrt{\frac{p-b}{b}} \geq \frac{2(p-b)}{p} \quad \text{\hat{sh}} \quad \sqrt{\frac{p-c}{c}} \geq \frac{2(p-c)}{p} \end{split}$

គេបាន

$$\begin{split} \sqrt{\frac{p-a}{a}} + \sqrt{\frac{p-b}{b}} + \sqrt{\frac{p-c}{c}} &\geq 2\frac{(p-a) + (p-b) + (p-c)}{p} \\ \sqrt{\frac{p-a}{a}} + \sqrt{\frac{p-b}{b}} + \sqrt{\frac{p-c}{c}} &\geq 2 \quad \text{fig} \\ \frac{\text{Highs:}}{\sin\frac{A}{2}} + \frac{1}{\sin\frac{B}{2}} + \frac{1}{\sin\frac{C}{2}} &\geq 4\sqrt{\frac{R}{r}} \end{split}$$

លំហាត់ទី២៦

គេឲ្យ a,b,c ជាបីចំនួនពិតវិជ្ជមានដែល 4abc = a + b + c + 1 ចូរបង្ហាញថា ៖ $b^2 + a^2 + a^2 + a^2 + b^2$

$$\frac{b^{2}+c^{2}}{a}+\frac{c^{2}+a^{2}}{b}+\frac{a^{2}+b^{2}}{c} \geq 2(ab+bc+ca)$$

ដំណោះស្រាយ

ស្រាយថា ៖

$$\frac{b^{2}+c^{2}}{a}+\frac{c^{2}+a^{2}}{b}+\frac{a^{2}+b^{2}}{c} \geq 2(ab+bc+ca)$$

តាមវិសមភាព AM-GM គេមាន ៖

$$4abc = a + b + c + 1 \ge 4\sqrt[4]{abc}$$
 ទាំ់ឲ្យ $abc \ge 1$

គេទាញ
$$a+b+c=4abc-1 \ge 3abc$$
 (1) (ព្រោះ $abc \ge 1$)

តាមវិលមភាព AM-GM គេបាន ៖

$$\frac{b^{2}+c^{2}}{a}+\frac{c^{2}+a^{2}}{b}+\frac{a^{2}+b^{2}}{c}\geq \frac{2bc}{a}+\frac{2ca}{b}+\frac{2ab}{c}$$
 (2)

ពាមវិលមភាព Cauchy - Schwarz គេមាន ៖

$$\begin{split} &(ab+bc+ca)^2 \leq 3 \left[(ab)^2 + (bc)^2 + (ca)^2 \right] \\ &\text{thu} \ \frac{2bc}{a} + \frac{2ca}{b} + \frac{2ab}{c} = \frac{2}{abc} [(bc)^2 + (ca)^2 + (ab)^2] \\ &\text{thu} \ \frac{2bc}{a} + \frac{2ca}{b} + \frac{2ab}{c} \geq \frac{2}{3abc} (ab+bc+ca)^2 \left(3 \right) \end{split}$$

គាម (2) និង (3) គេទាញបាន៖
$$\frac{b^2+c^2}{a}+\frac{c^2+a^2}{b}+\frac{a^2+b^2}{c}\geq \frac{2}{3abc}(ab+bc+ca)^2 \ (4)$$

$$\frac{b^2+c^2}{a}+\frac{c^2+a^2}{b}+\frac{a^2+b^2}{c}\geq 2ab^2c$$

$$\frac{(ab)^2+(bc)^2\geq 2abc^2}{(ca)^2+(ab)^2\geq 2a^2bc}$$

$$\frac{(ab)^2+(bc)^2+(ca)^2\geq 2abc(a+b+c)}{(ab)^2+(bc)^2+(ca)^2\geq abc(a+b+c)}$$

$$\frac{(ab)^2+(bc)^2+(ca)^2\geq abc(a+b+c)}{(ab+bc)^2+(ab)(bc)+2(ab)(ca)+2(bc)(ca)}$$

$$\frac{(ab+bc+ca)^2\geq 3abc(a+b+c)}{(ab+bc+ca)^2\geq 3abc} \ (\text{ min } (1))$$

$$\frac{(ab+bc+ca)^2\geq 9a^2b^2c^2}{(ab+bc+ca)^2+(ab)(ab+bc+ca)} \ \frac{2}{3abc}(ab+bc+ca)^2\geq 2(ab+bc+ca) \ (5)$$

$$\frac{2}{3abc}(ab+bc+ca)^2\geq 2(ab+bc+ca) \ (5)$$

$$\frac{b^2+c^2}{a}+\frac{c^2+a^2}{b}+\frac{a^2+b^2}{c}\geq 2(ab+bc+ca) \ (5)$$

លំហាត់ទី២៧

គេឲ្យa,b,c ជាបីចំនួនពិតវិជ្ជមានដែល ab + bc + ca = 1 ។ ចូរបង្ហាញថា $(a + \frac{1}{b})^2 + (b + \frac{1}{c})^2 + (c + \frac{1}{a})^2 \ge 16$

ដំណោះស្រាយ

បង្ហាញថា
$$(a + \frac{1}{b})^2 + (b + \frac{1}{c})^2 + (c + \frac{1}{a})^2 \ge 16$$

ជាង $A = (a + \frac{1}{b})^2 + (b + \frac{1}{c})^2 + (c + \frac{1}{a})^2$
 $= a^2 + b^2 + c^2 + \frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} + 2\left(\frac{a}{b} + \frac{b}{c} + \frac{c}{a}\right)$

ឃើងពិទិញ្ហ $\frac{1}{a^2} = \frac{ab + bc + ca}{a^2} = \frac{b}{a} + \frac{c}{a} + \frac{bc}{a^2}$
 $\frac{1}{b^2} = \frac{ab + bc + ca}{b^2} = \frac{a}{b} + \frac{c}{b} + \frac{ac}{b^2}$
 $\frac{1}{c^2} = \frac{ab + bc + ca}{c^2} = \frac{b}{c} + \frac{a}{c} + \frac{ab}{c^2}$

តាមវិសមភាព AM-GM គេមាន ៖

ទាំឲ្យ
$$2a^2 + 2b^2 + 2c^2 \ge 2ab + 2bc + 2ca$$

ទាំឲ្យ
$$a^2 + b^2 + c^2 \ge ab + bc + ca = 1$$

ពេញ
$$sA \ge 1 + 9 + 2(3) = 16$$
 ។

ដូចនេះ
$$(a+\frac{1}{b})^2+(b+\frac{1}{c})^2+(c+\frac{1}{a})^2\geq 16$$
 ។

លំហាត់ទី២៨

គេឲ្យ a,b,c ជាជ្រុងរបស់ត្រីកោណមួយនិងតាង p ជាកន្លះបរិមាត្រនៃត្រីកោណ ។

ចូរបង្ហាញថា
$$\frac{1}{p-a} + \frac{1}{p-b} + \frac{1}{p-c} \ge 2\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right)$$

ដំណោះស្រាយ

បង្ហាញថា
$$\frac{1}{p-a} + \frac{1}{p-b} + \frac{1}{p-c} \ge 2\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right)$$
នាំពោលនៅទំនួនគឺន $A > 0$, $B > 0$, terms

ចំពោះគ្រប់ចំនួនពិត
$$A>0\;;B>0$$
 គេមាន ៖

$$(A-B)^2 = A^2 - 2A.B + B^2 \ge 0$$

 $\therefore A^2 + 2A.B + B^2 \ge 4 A.B$

$$(A+B)^2 \ge 4A.B$$

$$\text{IPSITS } \frac{A+B}{A.B} \ge \frac{4}{A+B} \text{ II } \frac{1}{A} + \frac{1}{B} \ge \frac{4}{A+B} \text{ (1)}$$

$$\text{III } A = p-a \text{ , } B = p-b$$

គេបាន
$$A + B = 2p - a - b = c$$
 ជួលក្នុង (1)

គេបាន
$$\frac{1}{p-a} + \frac{1}{p-b} \ge \frac{4}{c}$$
 (2)។

ដូចគ្នាដែរគេទាញ៖

$$\frac{1}{p-b} + \frac{1}{p-c} \ge \frac{4}{a} (3)$$
 $\frac{1}{b}$ $\frac{1}{p-c} + \frac{1}{p-a} \ge \frac{4}{b} (4)$

បូកវិសមភាព (2), (3), (4) អង្គនឹងអង្គគេបាន ៖

$$\frac{2}{p-a} + \frac{2}{p-b} + \frac{2}{p-c} \ge \frac{4}{a} + \frac{4}{b} + \frac{4}{c}$$
ដូចនេះ
$$\frac{1}{p-a} + \frac{1}{p-b} + \frac{1}{p-c} \ge 2\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right) \quad \forall$$

លំហាត់ទី២៩

ដំណោះស្រាយ

បង្ហាញថា
$$\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\geq \frac{3}{2}$$

តាង $\begin{cases} b+c=m \\ c+a=n \\ a+b=p \end{cases}$

តេហ្ស $(b+c)+(c+a)+(a+b)=m+n+p$

នាំឲ្យ $a+b+c=\frac{m+n+p}{2}$
 $a=\frac{n+p-m}{2}$
 $b=\frac{m-n+p}{2}$
 $c=\frac{m+n-p}{2}$

គេបាន

$$\frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b} = \frac{n+p-m}{2m} + \frac{m-n+p}{2n} + \frac{m+n-p}{2p}$$

$$\frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b} = \frac{1}{2} \left[\left(\frac{n}{m} + \frac{m}{n} \right) + \left(\frac{p}{m} + \frac{m}{p} \right) + \left(\frac{n}{p} + \frac{p}{n} \right) - 3 \right]$$

តាមវិសមភាព AM – GM គេបាន ៖

លំហាត់ទី៣០

គេឲ្យ a;b;c ជាបីចំនួនពិតខុសពីសូន្យ ។

ចូរបង្ហាញថា
$$\left(\frac{a}{b}\right)^2 + \left(\frac{b}{c}\right)^2 + \left(\frac{c}{a}\right)^2 \ge \frac{a}{b} + \frac{b}{c} + \frac{c}{a}$$

ដំណោះស្រាយ

បង្ហាញថា
$$\left(\frac{a}{b}\right)^2 + \left(\frac{b}{c}\right)^2 + \left(\frac{c}{a}\right)^2 \ge \frac{a}{b} + \frac{b}{c} + \frac{c}{a}$$

តាមវិសមភាព AM – GM គេមាន ៖

$$\left(\frac{\mathbf{a}}{\mathbf{b}}\right)^2 + \left(\frac{\mathbf{b}}{\mathbf{c}}\right)^2 + \left(\frac{\mathbf{c}}{\mathbf{a}}\right)^2 \ge 3\sqrt[3]{\frac{\mathbf{a}^2}{\mathbf{b}^2} \cdot \frac{\mathbf{b}^2}{\mathbf{c}^2} \cdot \frac{\mathbf{c}^2}{\mathbf{a}^2}} = 3$$

គេទាញ
$$\left(\frac{a}{b}\right)^2 + \left(\frac{b}{c}\right)^2 + \left(\frac{c}{a}\right)^2 \ge 3$$
 (1)

ម្យ៉ាងទ្យេតគេមាន
$$\left\{\left(rac{a}{b}
ight)^2+1\geq 2rac{a}{b}
ight\}$$

$$\begin{pmatrix} \mathbf{c} \\ \frac{\mathbf{c}}{\mathbf{a}} \end{pmatrix}^2 + 1 \ge 2\frac{\mathbf{c}}{\mathbf{a}}$$

គេទាញជាន
$$\left(\frac{a}{b}\right)^2 + \left(\frac{b}{c}\right)^2 + \left(\frac{c}{a}\right)^2 + 3 \ge 2\left(\frac{a}{b} + \frac{b}{c} + \frac{c}{a}\right)$$
 (2)

បូកវិសមភាព (1) និង (2) អង្គ និង អង្គ គេបាន ៖

$$3+2\left[\left(\frac{a}{b}\right)^{2}+\left(\frac{b}{c}\right)^{2}+\left(\frac{c}{a}\right)^{2}\right] \geq 3+2\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)$$

$$2\left[\left(\frac{a}{b}\right)^{2}+\left(\frac{b}{c}\right)^{2}+\left(\frac{c}{a}\right)^{2}\right] \geq 2\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)$$

$$\frac{1}{b}$$

លំហាត់ទី៣១

ចូរបង្ហាញថា ៖

$$\frac{a}{\sqrt{a^2 + 8bc}} + \frac{b}{\sqrt{b^2 + 8ca}} + \frac{c}{\sqrt{c^2 + 8ab}} \ge 1$$

ចំពោះគ្រប់ចំនួនពិតវិជ្ជមាន a,b,c ។

បង្ហាញថា
$$\frac{a}{\sqrt{a^2+8bc}} + \frac{b}{\sqrt{b^2+8ca}} + \frac{c}{\sqrt{c^2+8ab}} \geq 1$$
 ជាដំបូងយើងត្រូវស្រាយថា $\frac{a}{\sqrt{a^2+8bc}} \geq \frac{a^{\frac{4}{3}}}{a^{\frac{4}{3}}+b^{\frac{4}{3}}+c^{\frac{4}{3}}}$ វិសមភាពនេះសមមូល $(a^{\frac{4}{3}}+b^{\frac{4}{3}}+c^{\frac{4}{3}})^2 \geq a^{\frac{4}{3}}(a^2+8bc)$ សមមូល $b^{\frac{8}{3}}+c^{\frac{8}{3}}+2a^{\frac{4}{3}}b^{\frac{4}{3}}+2a^{\frac{4}{3}}c^{\frac{4}{3}}+2b^{\frac{4}{3}}c^{\frac{4}{3}}\geq 8a^{\frac{4}{3}}bc$ ជាមរិសមភាព AM – GM ដោមាន $b^{\frac{8}{3}}+c^{\frac{8}{3}}\geq 2b^{\frac{4}{3}}c^{\frac{4}{3}}$ ជាមាល $b^{\frac{8}{3}}+c^{\frac{8}{3}}+2a^{\frac{4}{3}}b^{\frac{4}{3}}+2a^{\frac{4}{3}}c^{\frac{4}{3}}+2b^{\frac{4}{3}}c^{\frac{4}{3}}\geq 8a^{\frac{4}{3}}bc$ ជាព្រះ $\frac{a}{\sqrt{a^2+8bc}}\geq \frac{a^{\frac{4}{3}}}{a^{\frac{4}{3}}+b^{\frac{4}{3}}+c^{\frac{4}{3}}}$ (1) ដូចគ្នាដែរគេទាញ $\frac{b}{\sqrt{b^2+8ac}}\geq \frac{b^{\frac{4}{3}}}{a^{\frac{4}{3}}+b^{\frac{4}{3}}+c^{\frac{4}{3}}}$ (2)

$$\frac{c}{\sqrt{c^2 + 8ab}} \ge \frac{c^{\frac{4}{3}}}{a^{\frac{4}{3}} + b^{\frac{4}{3}} + c^{\frac{4}{3}}}$$
 (3)

ដោយបូកវិសមភាព (1), (2), (3) អង្គនិងអង្គគេបាន

$$\frac{a}{\sqrt{a^2+8bc}} + \frac{b}{\sqrt{b^2+8ca}} + \frac{c}{\sqrt{c^2+8ab}} \ge 1 \quad \forall$$

លំហាត់ទី៣២

លំហាត់ទី៣៣

គេឲ្យពីរចំនួនពិតវិជ្ជមាន a និង b ។ ចូរបង្ហាញថា $(1+a)(1+b) \geq (1+\sqrt{ab}\,)^2$ អនុវត្តន៍ រកតម្លៃតូចបំផុតនៃអនុគមន៍ ៖ $f(x) = (1+4^{\sin^2 x}\,)(1+4^{\cos^2 x}\,)$ ដែល $x \in IR$ ។

លំហាត់ទី៣៤

គេឲ្យបីចំនួនពិតវិជ្ជមាន a,b និង c ។ ចូរបង្ហាញថា (a+b)(b+c)(c+a) ≥ 8abc

ដំណោះស្រាយ

បង្ហាញថា $(a+b)(b+c)(c+a) \ge 8abc$

តាមវិសមភាព AM-GM គេមាន ៖

$$a+b\geq 2\sqrt{ab} \qquad (1)$$

$$b+c \geq 2 \sqrt{bc} \quad (2)$$

$$c + a \ge 2 \sqrt{ca} \qquad (3)$$

ធ្វើវិធីគុណ(1), (2) និង (3) អង្គនឹងអង្គគេបាន ៖

$$(a+b)(b+c)(c+a) \ge 8\sqrt{ab}.\sqrt{bc}.\sqrt{ca}$$

ង្ហីចំនេះ $(a+b)(b+c)(c+a) \ge 8abc$ ។

លំហាត់ទី៣៥

ចំពោះគ្រប់ចំនួនពិត x ចូរស្រាយថា ៖ $(1+\sin x)(1+\cos x) \leq \frac{3}{2} + \sqrt{2}$

លំហាត់ទី៣៦

លំហាត់ទី៣៧

គេឲ្យ $a \ge 1$ និង $b \ge 1$ ។

ចូរបង្ហាញថា
$$\sqrt{\log_2 a} + \sqrt{\log_2 b} \le 2\sqrt{\log_2(\frac{a+b}{2})}$$

ដំណោះស្រាយ

$$\text{ thus } \sqrt{\log_2 a} + \sqrt{\log_2 b} \le 2\sqrt{\log_2(\frac{a+b}{2})}$$

ចំពោះ $a \ge 1$ និង $b \ge 1$

យើងមាន $\mathbf{a} + \mathbf{b} \geq \mathbf{2} \, \sqrt{\mathbf{a.b}}$ (វិសមភាព $\mathbf{AM} - \mathbf{GM}$)

$$\mathfrak{V} \qquad \frac{\mathbf{a} + \mathbf{b}}{2} \ge \sqrt{\mathbf{a.b}}$$

នាំថ្ង
$$\log_2(\frac{a+b}{2}) \ge \frac{1}{2} (\log_2 a + \log_2 b)$$

ម្ប៉ាងទេត្រគេមាន ៖

$$\log_2 a + \log_2 b \ge 2 \sqrt{\log_2 a} \cdot \sqrt{\log_2 b}$$

$$\begin{split} &2(\log_2 a + \log_2 b) \geq \log_2 a + 2\sqrt{\log_2 a}.\sqrt{\log_2 b} + \log_2 b \\ &2(\log_2 a + \log_2 b) \geq (\sqrt{\log_2 a} + \sqrt{\log_2 b})^2 \\ &\log_2 a + \log_2 b \geq \frac{1}{2} \left(\sqrt{\log_2 a} + \sqrt{\log_2 b} \right)^2 \quad (2) \\ &\text{ mមទំនាក់ទំនង } \quad (1) \quad \text{Sh} \quad (2) \quad \text{tvihen} \ \\ &\frac{1}{2} \left(\sqrt{\log_2 a} + \sqrt{\log_2 b} \right)^2 \leq 2 \log_2 \left(\frac{a + b}{2} \right) \\ &(\sqrt{\log_2 a} + \sqrt{\log_2 b} \right)^2 \leq 4 \log_2 \left(\frac{a + b}{2} \right) \\ &\sqrt{\log_2 a} + \sqrt{\log_2 b} \quad \leq 2 \sqrt{\log_2 \left(\frac{a + b}{2} \right)} \end{split}$$
 Hoss:
$$\sqrt{\log_2 a} + \sqrt{\log_2 b} \leq 2 \sqrt{\log_2 \left(\frac{a + b}{2} \right)}$$

លំហាត់ទី៣៨

គេឲ្យ
$$\theta$$
 ជាចំនួនពិតដែល $0<\theta<rac{\pi}{2}$ ។ ចូរបង្ហាញថា $(\sin\theta)^{\cos\theta}+(\cos\theta)^{\sin\theta}>1$

ដំណោះស្រាយ

បង្ហាញថា
$$(\sin\theta)^{\cos\theta} + (\cos\theta)^{\sin\theta} > 1$$

តាមវិសមភាព Bernoulli
គេមាន $(1+x)^{\alpha} \leq 1+\alpha x$, $\forall x > -1$, $\alpha > 0$
យើងមាន ៖
$$\left(\frac{1}{\sin\theta}\right)^{\cos\theta} = \left(1 + \frac{1-\sin\theta}{\sin\theta}\right)^{\cos\theta}$$

$$\left(\frac{\sin\theta}{\sin\theta}\right) = \left(1 + \frac{\sin\theta}{\sin\theta}\right)$$

$$\left(1\right)^{\cos\theta} = \cos\theta(1 - \sin\theta)$$

$$\left(\frac{1}{\sin\theta}\right)^{\cos\theta} < 1 + \frac{\cos\theta(1-\sin\theta)}{\sin\theta}$$

$$\left(\frac{1}{\sin\theta}\right)^{\cos\theta} < \frac{\sin\theta + \cos\theta - \sin\theta\cos\theta}{\sin\theta}$$

ស្រាយដូចខាងលើនេះ**ដែ**រយើងបាន៖

$$(\cos \theta)^{\sin \theta} > \frac{\cos \theta}{\sin \theta + \cos \theta - \sin \theta \cos \theta}$$
 (2)

បូកវិសមភាព (1) និង (2)ខាងលើនេះយើងបាន ៖

$$(\sin \theta)^{\cos \theta} + (\cos \theta)^{\sin \theta} > \frac{\sin \theta + \cos \theta}{\sin \theta + \cos \theta - \sin \theta \cos \theta}$$
 ដោយគេមាន $\frac{\sin \theta + \cos \theta}{\sin \theta + \cos \theta} > 1$ ដូចនេះ $(\sin \theta)^{\cos \theta} + (\cos \theta)^{\sin \theta} > 1$ ។

លំហាត់ទី៣៩

គេឲ្យបួនចំនួនវិជ្ជមាន a , b , c , d ។

ចូរបង្ហាញថា ៖

$$1 < \frac{a}{a+b+c} + \frac{b}{b+c+d} + \frac{c}{c+d+a} + \frac{d}{d+a+b} < 2$$

ដំណោះស្រាយ

បង្ហាញថា
$$1 < \frac{a}{a+b+c} + \frac{b}{b+c+d} + \frac{c}{c+d+a} + \frac{d}{d+a+b} < 2$$

ចំពោះគ្រប់ a > 0, b > 0, c > 0, d > 0

$$\begin{cases} a+b+c+d > a+b+c > a+c \\ a+b+c+d > b+c+d > b+d \\ a+b+c+d > c+d+a > c+a \\ a+b+c+d > d+a+b > b+d \end{cases}$$

$$\begin{cases}
\frac{a}{a+b+c+d} < \frac{a}{a+b+c} < \frac{a}{a+c} \\
\frac{b}{a+b+c+d} < \frac{b}{b+c+d} < \frac{b}{b+d} \\
\frac{c}{a+b+c+d} < \frac{c}{c+d+a} < \frac{c}{a+c} \\
\frac{d}{a+b+c+d} < \frac{d}{d+a+b} < \frac{d}{b+d}
\end{cases}$$

ដោយបូកទំនាក់ទំនងទាំងនេះអង្គនឹងអង្គគេបាន ៖

$$1<\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}<2$$

លំហាត់ទី៤០

គេមានបីចំនួនពិត
$$a>0\;;b>0\;;c>0$$
 ។
ចូរស្រាយថា $ab(a+b)+bc(b+c)+ca(c+a)\geq 6abc$

លំហាត់ទី៤១

គេឲ្យពីរចំនួន x និង y ខុសពីសូន្យ និង មានសញ្ញាដូចគ្នា ។ ចូរបង្ហាញថា $\frac{x^2}{v^2} + \frac{y^2}{v^2} - 3\left(\frac{x}{v} + \frac{y}{v}\right) + 4 \ge 0$ ។

បង្ហាញថា
$$\frac{x^2}{y^2} + \frac{y^2}{x^2} - 3\left(\frac{x}{y} + \frac{y}{x}\right) + 4 \ge 0$$
 ជាឯ $P = \frac{x}{y} + \frac{y}{x}$ ជាបាន $P^2 = \left(\frac{x}{y} + \frac{y}{x}\right)^2 = \frac{x^2}{y^2} + \frac{y^2}{x^2} + 2$ យក $M = \frac{x^2}{y^2} + \frac{y^2}{x^2} - 3\left(\frac{x}{y} + \frac{y}{x}\right) + 4$ ជាបាន $M = P^2 - 2 - 3P + 4 = P^2 - 3P + 2 = (P - 1)(P - 2)$ ដោយ $P - 2 = \frac{x}{y} + \frac{y}{x} - 2 = \frac{(x - y)^2}{xy} \ge 0$ (ព្រោះ x និង y មានសញ្ហាដូចគ្នា) ហេតុនេះ $M = (P - 2)(P - 1) \ge 0$ ។

លំហាត់ទី៤២

គេឲ្យ a;b;c ជាបីចំនួនពិតវិជ្ជមានដាច់ខាត ។

ចូរបង្ហាញថា
$$\frac{a^2}{b+c} + \frac{b^2}{c+a} + \frac{c^2}{a+b} \ge \frac{a+b+c}{2}$$

បង្ហាញថា
$$\frac{a^2}{b+c} + \frac{b^2}{c+a} + \frac{c^2}{a+b} \ge \frac{a+b+c}{2}$$

ជាង $T = \frac{a^2}{b+c} + \frac{b^2}{c+a} + \frac{c^2}{a+b}$
 $T = (\frac{a^2}{b+c} + a) + (\frac{b^2}{c+a} + b) + (\frac{c^2}{a+b} + c) - (a+b+c)$
 $T = \frac{a(a+b+c)}{b+c} + \frac{b(b+c+a)}{c+a} + \frac{c(c+a+b)}{a+b} - (a+b+c)$
 $T = (a+b+c)(\frac{a}{b+c} + \frac{b}{b+c} + \frac{c}{a+b} - 1)$
 $T = (a+b+c)\left[(\frac{a}{b+c} + 1) + (\frac{b}{c+a} + 1) + (\frac{c}{a+b} + 1) - 4\right]$
 $T = (a+b+c)\left[(a+b+c)(\frac{1}{b+c} + \frac{1}{c+a} + \frac{1}{a+b}) - 4\right]$ (1)

ជាមារិសាមភាព AM – GM ដៅងមាន ៖

 $(a+b) + (b+c) + (c+a) \ge 3 \sqrt[3]{(a+b)(b+c)(c+a)}$
 $2(a+b+c) \ge 3 \sqrt[3]{(a+b)(b+c)(c+a)}$

ជាមារា $a+b+c \ge \frac{3}{2} \sqrt[3]{(a+b)(b+c)(c+a)}$ (2)

និង
$$\frac{1}{a+b} + \frac{1}{b+c} + \frac{1}{c+a} \ge 3\sqrt[3]{(a+b)(b+c)(c+a)}$$
 (3)

គុណវិសមភាព (2) និង (3) អង្គនឹងអង្គគេបាន ៖

$$(a+b+c) \left(\frac{1}{a+b} + \frac{1}{b+c} + \frac{1}{c+a}\right) \ge \frac{9}{2}$$

$$(a+b+c) \left(\frac{1}{a+b} + \frac{1}{b+c} + \frac{1}{c+a}\right) - 4 \ge \frac{9}{2} - 4$$

$$(a+b+c)(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a})-4\geq \frac{1}{2}$$

គុណអង្គទាំងពីរនឹង a+b+c>0 គេបាន ៖

$$(a+b+c)\left[(a+b+c)(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a})-4\right] \ge \frac{a+b+c}{2} \quad (5)$$

ពាមទំនាក់ទំនង (4) និង (5) គេបាន $T \ge \frac{a+b+c}{2}$

ដូចនេះ
$$\frac{a^2}{b+c} + \frac{b^2}{c+a} + \frac{c^2}{a+b} \ge \frac{a+b+c}{2}$$

លំហាត់ទី៤៣

គេឲ្យ
$$0 < x < \frac{\pi}{2}$$
 ។ ចូរស្រាយបញ្ជាក់ថា ៖
$$\sqrt{\left(1 + \frac{1}{\sin x}\right) \left(1 + \frac{1}{\cos x}\right)} \leq 1 + \sqrt{2}$$
 ។

ដំណោះស្រាយ

ស្រាយបញ្ជាក់ថា ៖

$$\sqrt{\left(1+\frac{1}{\sin x}\right)\left(1+\frac{1}{\cos x}\right)} \leq 1+\sqrt{2}$$

យើងមាន ៖

$$\left(1+\frac{1}{\sin x}\right)\left(1+\frac{1}{\cos x}\right)=1+\frac{1}{\sin x}+\frac{1}{\cos x}+\frac{1}{\sin x\cos x}$$

តាមវិសមភាព AM – GM គេមាន ៖

$$\frac{1}{\sin x} + \frac{1}{\cos x} \ge 2 \sqrt{\frac{1}{\sin x \cos x}}$$

គេទាញ ៖

$$\left(1+\frac{1}{\sin x}\right)\left(1+\frac{1}{\cos x}\right) \ge 1+2\sqrt{\frac{1}{\sin x \cos x}}+\frac{1}{\sin x \cos x}$$

ដោយ
$$\sin x \cos x = \frac{1}{2} \sin 2x \le \frac{1}{2}$$
 ឬ $\frac{1}{\sin x \cos x} \ge 2$

ពេញន
$$\left(1 + \frac{1}{\sin x}\right) \left(1 + \frac{1}{\cos x}\right) \ge 1 + 2\sqrt{2} + 2 = (1 + \sqrt{2})^2$$

ដូចនេះ
$$\sqrt{\left(1+\frac{1}{\sin x}\right)\left(1+\frac{1}{\cos x}\right)} \le 1+\sqrt{2}$$
 ។

លំហាត់ទី៤៤

គេឲ្យ a,b,c ជាជ្រុងរបស់ត្រីកោណមួយ ។ ចូរស្រាយបញ្ហាក់វិសមភាព ៖

$$a^{2}b(a-b) + b^{2}c(b-c) + c^{2}a(c-a) \ge 0$$

ដំណោះស្រាយ

$$\frac{x^2}{y} + \frac{y^2}{z} + \frac{z^2}{z} \ge x + y + z$$

ពាមវិសមភាព Cauchy-Schwarz គេមាន ៖

$$(x + y + z)^2 \le (x + y + z)(\frac{x^2}{y} + \frac{y^2}{z} + \frac{z^2}{z})$$

គេទាញ
$$\frac{x^2}{y} + \frac{y^2}{z} + \frac{z^2}{x} \ge x + y + z$$
 ពិត ។

ដូចនេះ
$$a^2b(a-b) + b^2c(b-c) + c^2a(c-a) \ge 0$$
 ។

លំហាត់ទី៤៥

គេឲ្យ a , b , c ជាជ្រុងរបស់ត្រីកោណមួយដែលមានផ្ទៃក្រឡា ស្មើនឹង S ។ ចូរស្រាយថា $a^2+b^2+c^2\geq 4\sqrt{3}~S$?

 $\tan A = -\frac{\tan B + \tan C}{1 - \tan B \cdot \tan C}$

- tan A + tan B tan C = tan B + tan C គេទាញ tan A + tan B + tan C = tan A tan B tan C គុណអង្គទាំងពីរនឹង cot A cot B cot C គេបានសមភាព

 $\cot A \cot B + \cot B \cot C + \cot C \cot A = 1$ ដោយប្រើវិសមភាព $(x + y + z)^2 \ge 3(xy + yz + zx)$ គេទាញបាន $(\cot A + \cot B + \cot C)^2 \ge 3$

នាំឲ្យ cot A + cot B + cot C ≥ √3 (A , B , C ជាមុំស្រួច) តាមទំនាក់ទំនង (1) គេទាញបាន ៖

 $\mathbf{a}^2 + \mathbf{b}^2 + \mathbf{c}^2 \ge 4\sqrt{3}$ S ជាវិសមភាពដែលត្រូវស្រាយបញ្ជាក់ ។

លំហាត់ទី៤៦

ចំពោះគ្រប់ចំនួនពិតវិជ្ជមាន a,b,c ចូរបង្ហាញថា ៖

$$(a^2 + 2)(b^2 + 2)(c^2 + 2) \ge 9(ab + bc + ca)$$

ដំណោះស្រាយ

ស្រាយថា
$$(a^2 + 2)(b^2 + 2)(c^2 + 2) \ge 9(ab + bc + ca)$$

យើងជ្រើលរើល
$$0 < x$$
 , y , $z < \frac{\pi}{2}$ ដែល
$$\begin{cases} a = \sqrt{2} \tan x \\ b = \sqrt{2} \tan y \\ c = \sqrt{2} \tan z \end{cases}$$

រិលមភាព $(a^2+2)(b^2+2)(c^2+2) \ge 9(ab+bc+ca)$

សមមូលទៅនឹងវិសមភាពខាងក្រោម ៖

$$\frac{8}{\cos^2 x \cos^2 y \cos^2 z} \ge 18(\tan x \tan y + \tan y \tan z + \tan z \tan x)$$

 $\cos x \cos y \cos z (\sin x \sin y \cos z + \sin y \sin z \cos x + \sin z \sin x \cos y) \le \frac{4}{9}$

ដោយប្រើរូបមន្ត ៖

cos(x+y+z) = cosx cosy cosz - sinx siny cosz - siny sinz cosx- sinz sinx cosy

នោះគេអាចសរសេរ ៖

 $\cos x \cos y \cos z \left[\cos x \cos y \cos z - \cos(x + y + z)\right] \le \frac{4}{9} \quad (*)$

តាមវិលមភាព AM-GM និង Jensen យើងបាន ៖

$$\cos x \cos y \cos z \le \left(\frac{\cos x + \cos y + \cos z}{3}\right)^3 \le \cos^3 t$$
ដែល $t = \frac{x + y + z}{3}$ ។វិសមភាព (*) សមមូលទៅនឹងវិសមភាព ៖ $\cos^3 t (\cos^3 t - \cos 3t) \le \frac{4}{9}$ ដោយ $\cos 3t = 4\cos^3 t - 3\cos t$
នោះ $\cos^3 t (3\cos t - 3\cos^3 t) \le \frac{4}{9}$ $\cos^3 t (\cos t - \cos^3 t) \le \frac{4}{27}$ $\cos^4 t (1 - \cos^2 t) \le \frac{4}{27}$

តាមវិលមភាព AM-GM គេបាន ៖

$$\frac{\cos^2 t}{2} \cdot \frac{\cos^2 t}{2} \cdot (1 - \cos^2 t) \le \left(\frac{\cos^2 t}{2} + \frac{\cos^2 t}{2} + 1 - \cos^2 t\right)^3 = \frac{1}{27}$$

គេមាញ $\cos^4 t(1-\cos^2 t) \le \frac{4}{27}$ ពិត ។

ដូចនេះវិសមភាពខាងដើមត្រូវបានស្រាយបញ្ហាក់។

លំហាត់ទី៤៧

គេឱ្យ ${f n}$ ជាចំនួនគត់ធម្មជាតិ ។ ចំពោះគ្រប់ចំនួនពិត ${f heta}$ ចូរស្រាយថា :

$$\left(1+2sin^2\,\theta\right)^n+\left(1+2cos^2\,\theta\right)^n\,\geq\,2^{n+1}$$

ដំណោះស្រាយ

ស្រាយថា :

$$\left(1+2sin^2\,\theta\right)^n+\left(1+2cos^2\,\theta\right)^n\,\geq\,2^{n+1}$$
 តាង $x=1+2sin^2\,\theta$ និង $y=1+2cos^2\,\theta$ ដែល $x>0$; $y>0$

情知器
$$x + y = 1 + 2\sin^2\theta + 1 + 2\cos^2\theta$$

$$x + y = 2 + 2(\sin^2\theta + \cos^2\theta)$$

$$x + y = 4$$

$$y = 4 - x$$

ដោយ
$$y > 0$$
 នោះ $4 - x > 0$ ឬ $x < 4$

$$T = (1 + 2\sin^2 \theta)^n + (1 + 2\cos^2 \theta)^n$$

$$T = x^n + y^n$$

$$T = f(x) = x^n + (4 - x)^n$$

លើងមាន
$$\frac{dT}{dx} = f'(x) = nx^{n-1} - n(4-x)^{n-1}$$

=
$$n [x^{n-1} - (4-x)^{n-1}]$$

= $n[x - (4-x)]g(x)$
= $n(2x-4)g(x)$

ដែល
$$g(x) = x^{n-2} + x^{n-3} (4-x) + ... + (4-x)^{n-2} > 0$$
 ។

បើ
$$2x-4=0$$
 គេទាញ្យូស $x=2$ ។

ចំពោះ
$$x = 2$$
 តេជាន $f(2) = 2^n + (4-2)^n = 2^{n+1}$

តារាងអឋេរភាពនៃ $f(x) = x^n + (4-x)^n$

តាមតារាងខាងលើគេទាញ
$$f(x) \ge 2^{n+1} \quad \forall x \in]\ 0\ ;\ 4\ [$$
 ។ ដូចនេះ $\left(1 + 2\sin^2\theta\right)^n + \left(1 + 2\cos^2\theta\right)^n \ge 2^{n+1}$ គ្រប់ $\theta \in IR$

លំហាត់ទី៤៤

ចូរស្រាយបញ្ជាក់ថា
$$\sqrt[3]{\frac{a}{b}} + \sqrt[3]{\frac{b}{a}} \leq \sqrt[3]{2(a+b)(\frac{1}{a}+\frac{1}{b})}$$
 ចំពោះគ្រប់ចំនួនពិតវិជ្ជមាន a និង b ។

ដំណោះស្រាយ

ស្រាយថា :

$$\sqrt[3]{\frac{a}{b}} + \sqrt[3]{\frac{b}{a}} \le \sqrt[3]{2(a+b)(\frac{1}{a} + \frac{1}{b})}$$

ដោយគុណអង្គទាំងពីរនៃវិសមភាពនឹង $\sqrt[3]{ab}$ គេបាន :

$$\sqrt[3]{a^2} + \sqrt[3]{b^2} \le \sqrt[3]{2(a+b)^2}$$

ពាង
$$x = \sqrt[3]{a}$$
 និង $y = \sqrt[3]{b}$

ពេហន
$$x^2 + y^2 \le \sqrt[3]{2(x^3 + y^3)}$$
 (*)

តាមវិសមភាព AM-GM គេមាន:

$$x^6 + x^3y^3 + x^3y^3 \ge 3x^4y^2 \quad \text{St} \ y^6 + x^3y^3 + x^3y^3 \ge 3x^2y^4$$

បូកវិសមភាពទាំងពីរនេះអង្គនិងអង្គគេបាន :

$$x^6 + 4x^3y^3 + y^6 \ge 3x^4y^2 + 3x^2y^4$$

ថែមអង្គទាំងពីរនៃវិសមភាពនឹង $\mathbf{x}^6 + \mathbf{y}^6$ គេបាន

$$2(x^6+2x^3y^3+y^6)\geq x^6+3x^4y^2+3x^2y^4+y^6$$

$$2(x^3+y^3)^2\geq (x^2+y^2)^3$$
 គេទាញ $x^2+y^2\leq \sqrt[3]{2(x^3+y^3)}$ នាំឱ្យ (*) ពិត ។ ដូចនេះ $\sqrt[3]{\frac{a}{b}}+\sqrt[3]{\frac{b}{a}}\leq \sqrt[3]{2(a+b)(\frac{1}{a}+\frac{1}{b})}$ គ្រប់ $a>0$; $b>0$ ។

លំហាត់ទី៤៩

គេឱ្យត្រីកោណ ABC មួយមានមុំក្នុងជាមុំស្រួច ។ ចូរស្រាយថា :

$$\sqrt{\cos A} + \sqrt{\cos B} + \sqrt{\cos C} \le \frac{3\sqrt{2}}{2}$$

ដំណោះស្រាយ

បង្ហាញថា :

$$\sqrt{\cos A} + \sqrt{\cos B} + \sqrt{\cos C} \le \frac{3\sqrt{2}}{2}$$

តាមវិសមភាព Cauchy-Schwartz យើងបាន:

$$(\sqrt{\cos A} + \sqrt{\cos B} + \sqrt{\cos C})^2 \le 3(\cos A + \cos B + \cos C) \quad (1)$$

តាង
$$T = \cos A + \cos B + \cos C$$

$$=1-2\sin^{2}\frac{A}{2}+2\cos\frac{B+C}{2}\cos\frac{B-C}{2}$$

$$=1-2\sin^2\frac{A}{2}+2\sin\frac{A}{2}\cos\frac{B-C}{2}$$

$$\text{IIM8 } \cos\frac{B+C}{2} = \cos\left(\frac{\pi}{2} - \frac{A}{2}\right) = \sin\frac{A}{2} \quad \text{I}$$

ដោយ B និង C ជាមុំស្រួចនោះ
$$0 < B < \frac{\pi}{2}$$
 ; $0 < C < \frac{\pi}{2}$

កេទាញ
$$-\frac{\pi}{4} < \frac{B-C}{2} < \frac{\pi}{4}$$
 នាំឱ្យ $\cos \frac{B-C}{2} \le 1$

ហេតុនេះ
$$T \le 1 - 2\sin^2\frac{A}{2} + 2\sin\frac{A}{2} = \frac{3}{2} - \frac{1}{2}(1 - 2\sin\frac{A}{2})^2 \le \frac{3}{2}$$

តាមទំនាក់ទំនង (1) និង (2) គេទាញបាន:

$$(\sqrt{\cos A} + \sqrt{\cos B} + \sqrt{\cos C})^2 \le \frac{9}{2}$$
 ដូចនេះ $\sqrt{\cos A} + \sqrt{\cos B} + \sqrt{\cos C} \le \frac{3\sqrt{2}}{2}$

លំហាត់ទី៥០

គេឱ្យ
$$\mathbf{z}_1$$
 ; \mathbf{z}_2 ជាចំនួនកុំផ្លិចដែល $|\mathbf{z}_1| = |\mathbf{z}_2| = \mathbf{r} > \mathbf{0}$ ។

បង្ហាញថា
$$\left(\frac{\mathbf{z}_1 + \mathbf{z}_2}{\mathbf{r}^2 + \mathbf{z}_1 \mathbf{z}_2}\right)^2 + \left(\frac{\mathbf{z}_1 - \mathbf{z}_2}{\mathbf{r}^2 - \mathbf{z}_1 \mathbf{z}_2}\right)^2 \ge \frac{1}{\mathbf{r}^2}$$

ដំណោះស្រាយ

បង្ហាញថា:

$$\left(\frac{\mathbf{z}_{1} + \mathbf{z}_{2}}{\mathbf{r}^{2} + \mathbf{z}_{1}\mathbf{z}_{2}}\right)^{2} + \left(\frac{\mathbf{z}_{1} - \mathbf{z}_{2}}{\mathbf{r}^{2} - \mathbf{z}_{1}\mathbf{z}_{2}}\right)^{2} \ge \frac{1}{\mathbf{r}^{2}}$$

តាង $z_1 = r(\cos 2x + i\sin 2x)$ និង $z_2 = r(\cos 2y + i\sin 2y)$

ដែល $x \in IR$; $y \in IR$ ។

កេបាន:

$$\begin{split} \frac{z_1 + z_2}{r^2 + z_1 z_2} &= \frac{r[\; (\cos 2x + \cos 2y) + i (\sin 2x + \sin 2y) \;]}{r^2 + r^2 [\; \cos(2x + 2y) + i . \sin(2x + 2y) \;]} \\ &= \frac{2\cos(x + y)\cos(x - y) + 2i\sin(x + y)\cos(x - y)}{r \; [\; 2\cos^2(x + y) + 2i\sin(x + y)\cos(x + y) \;]} \\ &= \frac{1}{r} \cdot \frac{\cos(x - y)}{\cos(x + y)} \\ \text{Highing its } \frac{z_1 - z_2}{r^2 - z_1 z_2} &= \frac{1}{r} \frac{\sin(y - x)}{\sin(y + x)} \end{split}$$

គេបាន:

$$\begin{split} &\left(\frac{z_1+z_2}{r^2+z_1z_2}\right)^2 + \left(\frac{z_1-z_2}{r^2-z_1z_2}\right)^2 = \frac{1}{r^2} \left[\frac{\cos^2(x-y)}{\cos^2(x+y)} + \frac{\sin^2(y-x)}{\sin^2(y+x)}\right] \\ &\text{thus} \quad \frac{\cos^2(x-y)}{\cos^2(x+y)} \ge \cos^2(x-y) \quad \text{thus} \quad \cos^2(x+y) \le 1 \\ &\text{thus} \quad \frac{\sin^2(y-x)}{\sin^2(y+x)} \ge \sin^2(x-y) \quad \text{thus} \quad \sin^2(x+y) \le 1 \\ &\frac{\cos^2(x-y)}{\sin^2(y+x)} + \frac{\sin^2(y-x)}{\sin^2(y+x)} \ge \cos^2(x-y) + \sin^2(x-y) = 1 \\ &\frac{\cos^2(x-y)}{\cos^2(x+y)} + \frac{\sin^2(y-x)}{\sin^2(y+x)} \ge \cos^2(x-y) + \sin^2(x-y) = 1 \\ &\frac{\cos^2(x-y)}{\cos^2(x+y)} + \frac{\sin^2(y-x)}{\sin^2(y+x)} \ge \cos^2(x-y) + \sin^2(x-y) = 1 \end{split}$$

លំហាត់ទី៥១

គេយក \mathbf{z}_1 ; \mathbf{z}_2 ;; \mathbf{z}_n ជាចំនួនកុំផ្លិចដែលផ្ទេ ងផ្ទាត់ទំនាក់ទំនង

$$(k+1)z_{k+1} - i(n-k)z_k = 0$$
; $k = 0, 1, 2, ..., n-1$

ក-កំនត់ z_0 បើគេដឹងថា $z_0 + z_1 + z_2 + + z_n = 2^n$

ខ-ចំពោះតម្លៃ \mathbf{z}_0 ដែលបានកំនត់ខាងលើចូរបង្ហាញថា :

$$|\mathbf{z}_0|^2 + |\mathbf{z}_1|^2 + |\mathbf{z}_2|^2 + \dots + |\mathbf{z}_n|^2 < \frac{(3n+1)^n}{n!}$$

ក-កំនត់
$$z_0$$
 បើគេដឹងថា $z_0 + z_1 + z_2 + + z_n = 2^n$

ពេមាន
$$(k+1)z_{k+1} - i(n-k)z_k = 0$$

កេយុន
$$\frac{z_{k+1}}{z_k} = i \cdot \frac{n-k}{k+1}$$

$$\prod_{k=0}^{(p-1)} \left(\frac{z_{k+1}}{z_k} \right) = \prod_{k=0}^{p-1} \left(i \cdot \frac{n-k}{k+1} \right)$$

$$\frac{z_p}{z_0} = i^p C_n^p$$
; $C_n^p = \frac{n!}{p!(n-p)!}$

កេទាញ
$$z_p = i^p z_0 C_n^p$$
; $p = 0, 1, 2, ...$

ដោយ
$$z_0 + z_1 + z_2 + \dots + z_n = 2^n$$
 ឬ $\sum_{p=0}^n (z_p) = 2^n$

មាន
$$\sum_{p=0}^n (z_p) = z_0 \sum_{p=0}^n C_n^p \, i^p = z_0 (1+i)^n$$

កេបាន $z_0(1+i)^n=2^n$

គេទាញ
$$z_0 = \frac{2^n}{(1+i)^n} = (1-i)^n$$

ដូចនេះ $\mathbf{z}_0 = (1 - \mathbf{i})^n$

ខ-ចំពោះតម្លៃ \mathbf{z}_0 ដែលបានកំនត់ខាងលើចូរបង្ហាញថា :

$$|\mathbf{z}_0|^2 + |\mathbf{z}_1|^2 + |\mathbf{z}_2|^2 + \dots + |\mathbf{z}_n|^2 < \frac{(3n+1)^n}{n!}$$

ដោយអនុវត្តន៍វិសមភាព AM – GM យើងបាន

$$\begin{split} \left| \left| z_{0} \right|^{2} + \left| \left| z_{1} \right|^{2} + \ldots + \left| \left| z_{n} \right|^{2} = \left| \left| z_{0} \right|^{2} \left((C_{n}^{0})^{2} + (C_{n}^{1})^{2} + \ldots + (C_{n}^{n})^{2} \right) \right. \\ &= \left| \left| z_{0} \right|^{2} C_{2n}^{n} = 2^{n} \cdot \frac{(2n)!}{n! n!} \right. \\ &= \frac{2^{n}}{n!} \left(2n(2n-1)(2n-2) \cdot \ldots (n+1) \right) \right. \\ &< \frac{2^{n}}{n!} \left(\frac{2n + (2n-1) + (2n-2) + \ldots + (n+1)}{n} \right)^{n} \\ &< \frac{(3n+1)^{n}}{n!} \end{split}$$

ដូចនេះ
$$|\mathbf{z}_0|^2 + |\mathbf{z}_1|^2 + |\mathbf{z}_2|^2 + \dots + |\mathbf{z}_n|^2 < \frac{(3n+1)^n}{n!}$$
 ។

លំហាត់ទី៥២

គេឱ្យ x; y; z ជាចំនួនពិតវិជ្ជមានដែល xyz = 1 ។ ចូរស្រាយថា :

$$\frac{1}{{{{(x + 1)}^2} + {y^2} + 1}} + \frac{1}{{{{(y + 1)}^2} + {z^2} + 1}} + \frac{1}{{{{(z + 1)}^2} + {x^2} + 1}} \le \frac{1}{2}$$

ដំណោះស្រាយ

បង្ហាញថា

$$\frac{1}{(x+1)^2+y^2+1} + \frac{1}{(y+1)^2+z^2+1} + \frac{1}{(z+1)^2+x^2+1} \le \frac{1}{2}$$
 បើងមាន $(x+1)^2+y^2+1=x^2+y^2+2x+2$

ដោយ
$$x^2 + y^2 \ge 2xy$$

គេទាញ
$$(x+1)^2 + y^2 + 1 \ge 2(xy + x + 1)$$

នាំឱ្យ
$$\frac{1}{(x+1)^2 + y^2 + 1} \le \frac{1}{2} \cdot \frac{1}{xy + x + 1}$$

គេមាន
$$xyz = 1$$
 នោះគេអាចយក $x = \frac{b}{a}$; $y = \frac{c}{b}$, $z = \frac{a}{c}$

ដែល
$$a>0$$
 ; $b>0$; $c>0$ ។

កេបាន
$$xy + x + 1 = \frac{c}{a} + \frac{b}{a} + 1 = \frac{a+b+c}{a}$$

ហេតុនេះ
$$\frac{1}{(x+1)^2 + v^2 + 1} \le \frac{1}{2} \cdot \frac{a}{a+b+c}$$
 (1)

ស្រាយដូចគ្នាដែរគេបាន :

$$\frac{1}{(y+1)^2+z^2+1} \le \frac{1}{2} \cdot \frac{b}{a+b+c} (2)$$

$$\frac{1}{(z+1)^2+x^2+1} \le \frac{1}{2} \cdot \frac{c}{a+b+c}$$
 (3)

ធ្វើផលបូកវិសមភាព (1); (2) និង (3) គេបាន:

$$\frac{1}{\left(x+1\right)^{2}+y^{2}+1}+\frac{1}{\left(y+1\right)^{2}+z^{2}+1}+\frac{1}{\left(z+1\right)^{2}+x^{2}+1}\leq\frac{1}{2}$$

លំហាត់ទី៥៣

គេឱ្យ a ; b ; c ជាចំនួនពិតវិជ្ជមានដែល abc=1 ។ ចូរស្រាយថា :

$$a(b^2 - \sqrt{b}) + b(c^2 - \sqrt{c}) + c(a^2 - \sqrt{a}) \ge 0$$

ដំណោះស្រាយ

បង្ហាញថា
$$a(b^2 - \sqrt{b}) + b(c^2 - \sqrt{c}) + c(a^2 - \sqrt{a}) \ge 0$$

ដោយ
$$abc = 1$$
 នោះគេអាចតាង $a = \frac{x^2}{y^2}$; $b = \frac{y^2}{z^2}$; $c = \frac{z^2}{x^2}$

ដែល x > 0; y > 0; z > 0 ។

វិសមភាពខាងលើសមមូល:

$$\begin{split} &\frac{x^2}{y^2}(\frac{y^4}{z^4} - \frac{y}{z}) + \frac{y^2}{z^2}(\frac{z^4}{x^4} - \frac{z}{x}) + \frac{z^2}{x^2}(\frac{x^4}{y^4} - \frac{x}{y}) \geq 0 \\ &\frac{x^2y^2}{z^4} - \frac{x^2}{yz} + \frac{y^2z^2}{x^4} - \frac{y^2}{zx} + \frac{z^2x^2}{y^4} - \frac{z^2}{xy} \geq 0 \\ &\frac{2x^2y^2}{z^4} - \frac{2x^2}{yz} + \frac{2y^2z^2}{x^4} - \frac{2y^2}{zx} + \frac{2z^2x^2}{y^4} - \frac{2z^2}{xy} \geq 0 \\ &\left(\frac{xy}{z^2} - \frac{yz}{x^2}\right)^2 + \left(\frac{yz}{x^2} - \frac{zx}{y^2}\right)^2 + \left(\frac{zx}{y^2} - \frac{xy}{z^2}\right)^2 \geq 0 \quad \widehat{\mathbb{N}} \widehat{\mathbb{N}} \end{split}$$

លំហាត់ទី៥៤

គេឱ្យ $a_1, a_2, ..., a_n > 0$ និង $x_1, x_2, ..., x_n > 0$ ។ ចូរស្រាយថា :

$$\frac{{a_1}^2}{x_1} + \frac{{a_2}^2}{x_2} + \dots + \frac{{a_n}^2}{x_n} \ge \frac{(a_1 + a_2 + \dots + a_n)^2}{x_1 + x_2 + \dots + x_n}$$

ដំណោះស្រាយ

ស្រាយថា :

$$\begin{split} &\frac{{a_1}^2}{x_1} + \frac{{a_2}^2}{x_2} + \ldots + \frac{{a_n}^2}{x_n} \geq \frac{(a_1 + a_2 + \ldots + a_n)^2}{x_1 + x_2 + \ldots + x_n} \\ &\text{ where } T_n = \frac{{a_1}^2}{x_1} + \frac{{a_2}^2}{x_2} + \ldots + \frac{{a_n}^2}{x_n} - \frac{(a_1 + a_2 + \ldots + a_n)^2}{x_1 + x_2 + \ldots + x_n} \end{split}$$

ចំពោះ
$${\bf n}=1$$
 គេបាន ${\bf T}_1={a_1^{2}\over x_1}-{a_1^{2}\over x_1}=0\geq 0$ ពិត

ចំពោះ n=2 គេបាន:

$$\begin{split} T_2 &= \frac{{a_1}^2}{x_1} + \frac{{a_2}^2}{x_2} - \frac{(a_1 + a_2)^2}{x_1 + x_2} \\ &= \frac{(x_1 + x_2)({a_1}^2 x_2 + {a_2}^2 x_1) - x_1 x_2 (a_1 + a_2)^2}{x_1 x_2 (x_1 + x_2)} \\ &= \frac{(a_1 x_2 - a_2 x_1)^2}{x_1 x_2 (x_1 + x_2)} \ge 0 \ \widehat{\mathfrak{N}} \widehat{\mathfrak{N}} \end{split}$$

ឧបមាថាវាពិតដល់តូទី k គឺ $T_k \geq 0$ ពិត

យើងនឹងស្រាយថាវាពិតដល់តួទី k+1 គឺ $T_{k+1} \geq 0$ ពិត

គេមាន $T_k \geq 0$ (ការឧបមាខាងលើ)

រកមាន
$$rac{{a_1}^2}{x_1} + rac{{a_2}^2}{x_2} + ... + rac{{a_k}^2}{x_k} - rac{{(a_1 + a_2 + ... + a_k)}^2}{x_1 + x_2 + ... + x_k} \ge 0$$

$$\text{sign} \frac{{a_1}^2}{{x_1}} + \frac{{a_2}^2}{{x_2}} + \ldots + \frac{{a_k}^2}{{x_k}} \geq \frac{(a_1 + a_2 + \ldots + a_k)^2}{{x_1 + x_2 + \ldots + x_k}}$$

ថែមអង្គទាំងពីវនឹង $rac{a_{k+1}^2}{x_{k+1}}$ គេបាន :

$$\frac{{a_1}^2}{x_1} + \frac{{a_2}^2}{x_2} + \ldots + \frac{{a_k}^2}{x_k} + \frac{{a_{k+1}}^2}{x_{k+1}} \ge \frac{(a_1 + a_2 + \ldots + a_k)^2}{x_1 + x_2 + \ldots + x_k} + \frac{{a_{k+1}}^2}{x_{k+1}}$$
 where
$$\frac{(a_1 + a_2 + \ldots + a_k)^2}{x_1 + x_2 + \ldots + x_k} + \frac{{a_{k+1}}^2}{x_{k+1}} \ge \frac{(a_1 + a_2 + \ldots + a_{k+1})^2}{x_1 + x_2 + \ldots + x_{k+1}}$$

គេទាញជាន:

$$\frac{{a_1}^2}{x_1} + \frac{{a_2}^2}{x_2} + \dots + \frac{{a_k}^2}{x_k} + \frac{{a_{k+1}}^2}{x_k} \ge \frac{(a_1 + a_2 + \dots + a_k + a_{k+1})^2}{x_1 + x_2 + \dots + x_k + x_{k+1}}$$

នាំឱ្យ $T_{k+1} \geq 0$ ពិត ។

ដូចនេះ
$$\frac{{a_1}^2}{x_1} + \frac{{a_2}^2}{x_2} + \dots + \frac{{a_n}^2}{x_n} \ge \frac{(a_1 + a_2 + \dots + a_n)^2}{x_1 + x_2 + \dots + x_n}$$
 ។

លំហាត់ទី៥៥

គេឱ្យ a ; b ; c ជាបីចំនួនពិតវិជ្ជមានដែល abc=1 ។ ចូរបង្ហាញថា

$$\frac{1}{a^3(b+c)} + \frac{1}{b^3(c+a)} + \frac{1}{c^3(a+b)} \ge \frac{3}{2}$$

ដំណោះស្រាយ

ស្រាយថា
$$\frac{1}{a^3(b+c)} + \frac{1}{b^3(c+a)} + \frac{1}{c^3(a+b)} \ge \frac{3}{2}$$

ពេមាន:

$$T = \frac{1}{a^{3}(b+c)} + \frac{1}{b^{3}(c+a)} + \frac{1}{c^{3}(a+b)}$$

$$T = \frac{\left(\frac{1}{a}\right)^2}{a(b+c)} + \frac{\left(\frac{1}{b}\right)^2}{b(c+a)} + \frac{\left(\frac{1}{c}\right)^2}{c(a+b)} \ge \frac{\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right)^2}{a(b+c) + b(c+a) + c(a+b)}$$

ដោយ
$$\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right)^2 = \left(\frac{ab + bc + ca}{abc}\right)^2 = (ab + bc + ca)^2$$

ហើយ
$$a(b+c)+b(c+a)+c(a+b)=2(ab+bc+ca)$$

គេទាញ
$$T \ge \frac{ab + bc + ca}{2} \ge \frac{3\sqrt[3]{(abc)^2}}{2} = \frac{3}{2}$$

ដូចនេះ
$$\frac{1}{a^3(b+c)} + \frac{1}{b^3(c+a)} + \frac{1}{c^3(a+b)} \ge \frac{3}{2}$$
 ។

លំហាត់ទីដ៦

គេឱ្យ x ; y ; z > 0 ។ ចូរស្រាយបញ្ជាក់ថា :

$$\frac{x}{x + 2y + 3z} + \frac{y}{y + 2z + 3x} + \frac{z}{z + 2x + 3y} \ge \frac{1}{2}$$

$$\text{shows} \ \frac{x}{x+2y+3z} + \frac{y}{y+2z+3x} + \frac{z}{z+2x+3y} \geq \frac{1}{2}$$

$$\text{wh} \ T = \frac{x}{x+2y+3z} + \frac{y}{y+2z+3x} + \frac{z}{z+2x+3y}$$

$$T = \frac{x^2}{x^2+2xy+3xz} + \frac{y^2}{y^2+2yz+3xy} + \frac{z^2}{z^2+2xz+3yz}$$

$$T \geq \frac{(x+y+z)^2}{x^2+y^2+z^2+5(xy+yz+zx)}$$

$$\text{then } \ T - \frac{1}{2} \geq \frac{(x+y+z)^2}{x^2+y^2+z^2+5(xy+yz+zx)} - \frac{1}{2}$$

$$T - \frac{1}{2} \geq \frac{1}{2} \frac{(x-y)^2+(y-z)^2+(z-x)^2}{x^2+y^2+z^2+5(xy+yz+zx)^2} \geq 0$$

$$\text{then mas } \ T \geq \frac{1}{2} \ \text{4}$$

$$\text{then } \ \frac{x}{x+2y+3z} + \frac{y}{y+2z+3x} + \frac{z}{z+2x+3y} \geq \frac{1}{2} \ \text{4}$$

លំហាត់ទី៥៧

ពេឌ្យិស្តីត
$$a_1;a_2;....;a_n$$
 ផ្ទៀងផ្ទាត់លក្ខខណ្ឌ :
$$a_1=0;|a_2|\!=\!|a_1+1|;...$$
 និង $|a_n|\!=\!|a_{n-1}+1|$ ។ បង្ហាញថា
$$\frac{a_1+a_2+...+a_n}{n}\!\geq\!-\frac{1}{2}$$

លំហាត់ទី៥៨

គេឱ្យ a; b; c ជាបីចំនួនពិតវិជ្ជមាន ។ ចូរបង្ហាញថា :

$$\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right) \ge 2\left(1+\frac{a+b+c}{\sqrt[3]{abc}}\right)$$

ស្រាយថា
$$\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right) \geq 2(1+\frac{a+b+c}{\sqrt[3]{abc}})$$

នាង $T = \left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)$
 $= 2+\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{b}{a}+\frac{a}{c}+\frac{c}{b}$
 $= \left(\frac{a}{a}+\frac{a}{b}+\frac{a}{c}\right)+\left(\frac{b}{a}+\frac{b}{b}+\frac{b}{c}\right)+\left(\frac{c}{a}+\frac{c}{b}+\frac{c}{c}\right)-1$
 $\geq \frac{3a}{\sqrt[3]{abc}}+\frac{3b}{\sqrt[3]{abc}}+\frac{3c}{\sqrt[3]{abc}}-1$
 $\geq \frac{3(a+b+c)}{\sqrt[3]{abc}}-1=\frac{2(a+b+c)}{\sqrt[3]{abc}}+\frac{a+b+c}{\sqrt[3]{abc}}-1$
 $\geq \frac{2(a+b+c)}{\sqrt[3]{abc}}+3-1=2(1+\frac{a+b+c}{\sqrt[3]{abc}})$

ដូចនេះ $\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right) \geq 2(1+\frac{a+b+c}{\sqrt[3]{abc}})$ ។

វិសមភាព

លំហាត់ទី៥៩

គេឱ្យ a ; b ; c ជាប្រវែងជ្រុងរបស់ត្រីកោណមួយ ។ ចូរបង្ហាញថា :

$$\sqrt{\mathbf{a} + \mathbf{b} - \mathbf{c}} + \sqrt{\mathbf{b} + \mathbf{c} - \mathbf{a}} + \sqrt{\mathbf{c} + \mathbf{a} - \mathbf{b}} \le \sqrt{\mathbf{a}} + \sqrt{\mathbf{b}} + \sqrt{\mathbf{c}}$$

ដំណោះស្រាយ ស្រាយថា :

 $\sqrt{\mathbf{a} + \mathbf{b} - \mathbf{c}} + \sqrt{\mathbf{b} + \mathbf{c} - \mathbf{a}} + \sqrt{\mathbf{c} + \mathbf{a} - \mathbf{b}} \le \sqrt{\mathbf{a}} + \sqrt{\mathbf{b}} + \sqrt{\mathbf{c}}$

ដោយ a; b; c ជាប្រវែងជ្រុងរបស់ត្រីកោណនោះគេបាន:

$$a+b-c>0$$
; $b+c-a>0$; $c+a-b>0$

តាមវិសមភាព Cauchy – Schwartz គេបាន:

$$\sqrt{a+b-c} + \sqrt{b+c-a} \le 2\sqrt{b} \quad (1)$$

$$\sqrt{a+b-c} + \sqrt{c+a-b} \le 2\sqrt{a} \quad (2)$$

$$\sqrt{b+c-a} + \sqrt{c+a-b} \le 2\sqrt{c} \quad (3)$$

បូកវិសមភាព (1); (2) និង (3) គេទទួលបាន:

$$2(\sqrt{a+b-c}+\sqrt{b+c-a}+\sqrt{c+a-b}) \le 2(\sqrt{a}+\sqrt{b}+\sqrt{c})$$

ដូចនេះ

$$\sqrt{a+b-c} + \sqrt{b+c-a} + \sqrt{c+a-b} \le \sqrt{a} + \sqrt{b} + \sqrt{c}$$
 4

លំហាត់ទី៦០

គេឱ្យត្រីកោណ ABC មួយមានមុំក្នុងជាមុំស្រួច ។ ចូរបង្ហាញថា :

 $\sin^2 A + \sin^2 B + \sin^2 C \ge 2\sqrt{3} \sin A \sin B \sin C$

ដំណោះស្រាយ

បង្ហាញថា :

 $\sin^2 A + \sin^2 B + \sin^2 C \ge 2\sqrt{3} \sin A \sin B \sin C$ តាមទ្រឹស្តីបទស៊ីនូស

តាមទ្រឹស្តីបទកូស៊ីនូស

$$a^2 = b^2 + c^2 - 2bc\cos A \quad (II)$$

យក (I) ជួសក្នុង (II) គេបាន:

$$4R^2 \sin^2 A = 4R^2 \sin^2 B + 4R^2 \sin^2 C - 8R^2 \sin B \sin C \cos A$$

$$\sin^2 A = \sin^2 B + \sin^2 C - 2\sin B \sin C \cos A$$

$$\tan \Omega \cos A = \frac{\sin^2 B + \sin^2 C - \sin^2 A}{2\sin B \sin C}$$

ហេតុនេះ
$$\cot A = \frac{\sin^2 B + \sin^2 C - \sin^2 A}{2\sin B \sin C \sin A}$$
 (1)

ដូចគ្នាដែរ
$$\cot B = \frac{\sin^2 C + \sin^2 A - \sin^2 B}{2\sin C \sin A \sin B}$$
 (2)

ហើយនឹង
$$\cot C = \frac{\sin^2 A + \sin^2 B - \sin^2 C}{2\sin A \sin B \sin C}$$
 (3)

បូកទំនាក់ទំនង (1); (2) និង (3) គេទទូលបាន:

$$\cot A + \cot B + \cot C = \frac{\sin^2 A + \sin^2 B + \sin^2 C}{2\sin A \sin B \sin C}$$
 (4)

ម្យ៉ាងទ្យេតគេមាន $\mathbf{A} + \mathbf{B} + \mathbf{C} = \pi$ ឬ $\mathbf{A} + \mathbf{B} = \pi - \mathbf{C}$

ពេយន
$$tan(A + B) = tan(\pi - C)$$

$$\frac{\tan A + \tan B}{1 - \tan A \tan B} = -\tan C$$

គេទាញ tan A + tan B + tan C = tan A tan B tan C គុណអង្គទាំងពីរនឹង cot A cot B cot C គេបាន :

កេមាន
$$\begin{cases} x^2+y^2 \geq 2xy \\ y^2+z^2 \geq 2yz \\ z^2+x^2 \geq 2zx \end{cases}$$

ពេធន
$$2(x^2 + y^2 + z^2) \ge 2(xy + yz + zx)$$

$$y = x^2 + y^2 + z^2 \ge xy + yz + zx$$

ថែមអង្គទាំងពីរនឹង 2xy + 2yz + 2zx គេបាន:

$$(x + y + z)^2 \ge 3(xy + yz + zx)$$

ដោយយក $x = \cot A$; $y = \cot B$; $z = \cot C$

ក្ខេង $(\cot A + \cot B + \cot C)^2 \ge 3$

នាំឱ្យ $\cot A + \cot B + \cot C \ge \sqrt{3}$ (5)

តាមទំនាក់ទំនង (4) និង (5) គេបាន:

$$\frac{\sin^2 A + \sin^2 B + \sin^2 C}{2\sin A \sin B \sin C} \ge \sqrt{3}$$

ដូចនេះ $\sin^2 A + \sin^2 B + \sin^2 C \ge 2\sqrt{3} \sin A \sin B \sin C$

លំហាត់ទី៦១

គេឱ្យ \mathbf{z}_1 ; \mathbf{z}_2 ; \mathbf{z}_3 ;; \mathbf{z}_n ជាចំនួនកុំផ្លិចដែលមានម៉ូឌុលស្មើ $\mathbf{1}$ ។

គេតាង
$$\mathbf{Z} = \left(\sum_{k=1}^{n} (\mathbf{z}_k)\right) \times \left(\sum_{k=1}^{n} (\frac{1}{\mathbf{z}_k})\right)$$
 ។

ចូរបង្ហាញថា $0 \le Z \le n^2$

ដំណោះស្រាយ

បង្ហាញថា $0 \le Z \le n^2$

ដោយ \mathbf{z}_1 ; \mathbf{z}_2 ; \mathbf{z}_3 ;; \mathbf{z}_n ជាចំនួនកុំផ្ចិចដែលមានម៉ូឌុលស្មើ 1

នោះគេអាចតាង $z_k = \cos x_k + i.\sin x_k$

ដែល $x_k \in IR$; k = 1, 2, 3,, n

$$\begin{aligned} &\text{spns} \quad Z = \left(\sum_{k=1}^n (z_k)\right) \times \left(\sum_{k=1}^n (\frac{1}{z_k})\right) \\ &= \sum_{k=1}^n \left(\cos x_k + i.\sin x_k\right) \times \sum_{k=1}^n \left(\cos x_k - i\sin x_k\right) \\ &= \left(\sum_{k=1}^n \cos x_k\right)^2 + \left(\sum_{k=1}^n \sin x_k\right)^2 \geq 0 \end{aligned}$$

ពេបាន $Z \ge 0$

ម្យ៉ាងទ្យេតតាមវិសមភាព Cauchy – Schwartz

$$\left(\sum_{k=1}^{n} \cos x_{k}\right)^{2} \leq n \sum_{k=1}^{n} \left(\cos^{2} x_{k}\right)$$

 $\emph{\emph{birniv}}$: គេអាចស្រាយ $\mathbf{Z} \leq \mathbf{n}^2$ តាមមួយរប្បើបឡើតដូចខាងក្រោម

ដោយ
$$|\mathbf{z}_k| = 1$$
 នោះ $\overline{\mathbf{z}}_k = \frac{1}{\mathbf{z}_k}$ ត្របំ $k = 1$; 2 ;.....; n តែមាន $\mathbf{Z} = \left(\sum_{k=1}^n (\mathbf{z}_k)\right) \times \left(\sum_{k=1}^n (\frac{1}{\mathbf{z}_k})\right)$
$$= \left(\sum_{k=1}^n \mathbf{z}_k\right) \times \left(\sum_{k=1}^n \overline{\mathbf{z}}_k\right) = \left(\sum_{k=1}^n \mathbf{z}_k\right) \times \left(\sum_{k=1}^n \overline{\mathbf{z}}_k\right)$$

$$= \left|\sum_{k=1}^n (\mathbf{z}_k)\right|^2 \le \left(\sum_{k=1}^n |\mathbf{z}_k|\right)^2 = \mathbf{n}^2$$

គេទាញជាន $Z \le n^2$ ។

លំហាត់ទី៦២

គេឱ្យចំនួនកុំផ្លិច z ដែល | z |= 1 ។ ចូរបង្ហាញថា :

$$\sqrt{2} \le |1-z| + |1+z^2| \le 4$$

លំហាត់ទី៦៣

គេឱ្យ A ; B ; C ជាមុំក្នុងរបស់ត្រីកោណ ABC មួយ ។ ចូរបង្ហាញថា $\cot\frac{A}{2}+\cot\frac{B}{2}+\cot\frac{C}{2}\geq 3\sqrt{3}$

បង្ហាញថា
$$\cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2} \ge 3\sqrt{3}$$
 ដោម $A + B + C = \pi$ នាំឱ្យ $\frac{A}{2} + \frac{B}{2} = \frac{\pi}{2} - \frac{C}{2}$ ដោម $\tan \left(\frac{A}{2} + \frac{B}{2}\right) = \tan \left(\frac{\pi}{2} - \frac{C}{2}\right)$
$$\frac{\tan \frac{A}{2} + \tan \frac{B}{2}}{1 - \tan \frac{A}{2} \tan \frac{B}{2}} = \cot \frac{C}{2}$$

$$\frac{\tan \frac{A}{2} + \tan \frac{B}{2}}{1 - \tan \frac{A}{2} \tan \frac{B}{2}} = \frac{1}{\tan \frac{C}{2}}$$

$$\tan \frac{C}{2} (\tan \frac{A}{2} + \tan \frac{B}{2}) = 1 - \tan \frac{A}{2} \tan \frac{B}{2}$$

$$\tan \frac{A}{2} \tan \frac{B}{2} + \tan \frac{B}{2} \tan \frac{C}{2} + \tan \frac{C}{2} \tan \frac{A}{2} = 1$$

$$\pi M$$
 អង្គទាំងពីរនឹង $\cot \frac{A}{2} \cot \frac{B}{2} \cot \frac{C}{2}$ ដោម :
$$\cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2} = \cot \frac{A}{2} \cot \frac{B}{2} \cot \frac{C}{2}$$

ដោយ
$$0 < A \; ; B \; ; C < \pi$$
 នោ៖ $0 < \frac{A}{2} \; ; \frac{B}{2} \; ; \frac{C}{2} < \frac{\pi}{2}$ គេមាន $\cot \frac{A}{2} > 0 \; ; \cot \frac{B}{2} > 0 \; ; \cot \frac{C}{2} > 0$

តាមវិសមភាព AM – GM គេបាន:

$$\cot\frac{A}{2} + \cot\frac{B}{2} + \cot\frac{C}{2} \ge 3\sqrt[3]{\cot\frac{A}{2}\cot\frac{B}{2}\cot\frac{C}{2}}$$

$$\cot\frac{A}{2} + \cot\frac{B}{2} + \cot\frac{C}{2} \ge 3\sqrt[3]{\cot\frac{A}{2} + \cot\frac{B}{2} + \cot\frac{C}{2}}$$

$$\left(\cot\frac{A}{2} + \cot\frac{B}{2} + \cot\frac{C}{2}\right)^3 \ge 27\left(\cot\frac{A}{2} + \cot\frac{B}{2} + \cot\frac{C}{2}\right)$$

$$\text{Hiss} \cot\frac{A}{2} + \cot\frac{B}{2} + \cot\frac{C}{2} \ge 3\sqrt{3} \quad \text{T}$$

លំហាត់ទី៦៤

គេឱ្យ A ; B ; C ជាមុំស្រូចក្នុងរបស់ត្រីកោណ ABC មួយ ។ ចូរបង្ហាញថា $(1+\tan A)(1+\tan B)(1+\tan C) \geq (1+\sqrt{3})^3$

ដំណោះស្រាយ

បង្ហាញថា $(1+\tan A)(1+\tan B)(1+\tan C) \ge (1+\sqrt{3})^3$ ដោយ A; B; C ជាមុំស្រូចនោះ $\tan A>0$; $\tan B>0$; $\tan C>0$ ពាមវិសមភាព AM-GM គ្រប់ x>0; y>0; z>0 គេមាន: (1+x)(1+y)(1+z)=1+(x+y+z)+(xy+yz+zx)+xyz $(1+x)(1+y)(1+z)\ge 1+3\sqrt[3]{xyz}+3\sqrt[3]{x^2y^2z^2}+xyz$

 $(1+x)(1+y)(1+z) \ge (1+\sqrt[3]{xyz})^3$

យ័ា x = tan A; y = tan B; z = tan C កេហ្គន:

 $(1 + \tan A)(1 + \tan B)(1 + \tan C) \ge (1 + \sqrt{\tan A \tan B \tan C})^3$

គេមាន $tan(A + B) = tan(\pi - C)$

 $\frac{\tan A + \tan B}{1 - \tan A \tan B} = -\tan C$

កេទាញ tan A + tan B + tan B = tan A tan B tan C

$$x + y + z = xyz$$

តាមវិសមភាព AM – GM គេបាន:

$$x + y + z \ge 3\sqrt[3]{xyz}$$
$$xyz \ge 3\sqrt[3]{xyz}$$

កេឡា $xyz \ge 3\sqrt{3}$ ឬ $tan A tan B tan C \ge 3\sqrt{3}$

ក្ដេង
$$(1 + \tan A)(1 + \tan B)(1 + \tan B) \ge (1 + \sqrt[3]{3\sqrt{3}})^3$$

ដូចនេះ
$$(1 + \tan A)(1 + \tan B)(1 + \tan C) \ge (1 + \sqrt{3})^3$$
 ។

លំហាត់ទី៦៥

គេឱ្យត្រីកោណ ABC មួយមានមុំក្នុងជាមុំស្រួច ។

ក.បង្ហាញថា
$$\cos A + \cos B + \cos C \le \frac{3}{2}$$

ខ.បង្ហាញថា
$$\cos A \cos B \cos C \le \frac{1}{8}$$

គ.បង្ហាញថា
$$\sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2} \le \frac{1}{8}$$

ក.បង្ហាញថា
$$\cos A + \cos B + \cos C \le \frac{3}{2}$$

តេមាន
$$A + B + C = \pi$$

ពេលន
$$\cos(A+B) = \cos(\pi-C)$$

គាដ
$$T = 3 - 2(\cos A + \cos B + \cos C)$$

= $3 - 2(\cos A + \cos B + \sin A \sin B - \cos A \cos B)$
= $(\sin A - \sin B)^2 + (\cos A + \cos B - 1)^2 \ge 0$

ដូចនេះ
$$\cos A + \cos B + \cos C \le \frac{3}{2}$$

2.បង្ហាញថា $\cos A \cos B \cos C \le \frac{1}{8}$

ដោយ A; B; C ជាមុំស្រួចនោះ $\cos A; \cos B; \cos C > 0$ តាមវិសមភាព AM - GM គេបាន :

 $\cos A + \cos B + \cos C \ge 3\sqrt[3]{\cos A \cos B \cos C}$

$$\cos A \cos B \cos C \le \left(\frac{\cos A + \cos B + \cos C}{3}\right)^3$$

ដោយ $\cos A + \cos B + \cos C \le \frac{3}{2}$ (សម្រាយខាងលើ)

គេទាញ
$$\cos A \cos B \cos C \le \left(\frac{3}{2}\right)^3 = \frac{1}{8}$$

ដូចនេះ $\cos A \cos B \cos C \le \frac{1}{8}$ ។

គ.បង្ហាញថា
$$\sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2} \le \frac{1}{8}$$

កេមាន
$$\cos A + \cos B = 2\cos \frac{A+B}{2}\cos \frac{A-B}{2}$$

ដោយ
$$\cos \frac{A+B}{2} = \cos \left(\frac{\pi}{2} - \frac{C}{2}\right) = \sin \frac{C}{2}$$

និង
$$\cos C = 1 - 2\sin^2\frac{C}{2}$$
 គេបាន:

$$\cos A + \cos B + \cos C = 1 + 2\sin\frac{C}{2}\cos\frac{A - B}{2} - 2\sin^2\frac{C}{2}$$

$$=1+2\sin\frac{C}{2}\left(\cos\frac{A-B}{2}-\sin\frac{C}{2}\right)$$

$$=1+2\sin\frac{C}{2}\left(\cos\frac{A-B}{2}-\cos\frac{A+B}{2}\right)$$

$$=1+4\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}$$
 ដោយ $\cos A + \cos B + \cos C \leq \frac{3}{2}$ (សម្រាយខាងលើ) គេទាញ $1+4\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2} \leq \frac{3}{2}$ ដូចនេះ $\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2} \leq \frac{1}{8}$ ។

លំហាត់ទី៦៦

គេឱ្យត្រីកោណ ABC មួយ ។ តាង r និង R រ្យេងតា្នជាកាំរង្វង់ ចារឹកក្នុង និង ចារឹកក្រៅត្រីកោណ ។

ក. ចូរបង្ហាញថា :

$$\cos A + \cos B + \cos C = 1 + \frac{r}{R}$$

ខ. បើ ABC ជាត្រីកោណកែងនោះចូរស្រាយថា :

$$R \ge (\sqrt{2} + 1)r$$

មីវិហិឃ ក. បង្ហាញថា
$$\cos A + \cos B + \cos C = 1 + \frac{r}{R}$$
 តែមាន $\cos A + \cos B = 2\cos\frac{A+B}{2}\cos\frac{A-B}{2}$ ដោយ $\cos\frac{A+B}{2} = \cos\left(\frac{\pi}{2} - \frac{C}{2}\right) = \sin\frac{C}{2}$ និង $\cos C = 1 - 2\sin^2\frac{C}{2}$ តែមាន :
$$\cos A + \cos B + \cos C = 1 + 2\sin\frac{C}{2}\cos\frac{A-B}{2} - 2\sin^2\frac{C}{2}$$

$$= 1 + 2\sin\frac{C}{2}\left(\cos\frac{A-B}{2} - \sin\frac{C}{2}\right)$$

$$= 1 + 2\sin\frac{C}{2}\left(\cos\frac{A-B}{2} - \cos\frac{A+B}{2}\right)$$

$$= 1 + 4\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}$$

កេឃុន $\cos A + \cos B + \cos C = 1 + 4\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}$

ពាមទ្រឹស្តីបទស៊ីនូស :

$$\begin{aligned} a^2 &= b^2 + c^2 - 2bc\cos A & \text{ thus } \cos A = 1 - 2\sin^2\frac{A}{2} \\ a^2 &= b^2 + c^2 - 2bc(1 - 2\sin^2\frac{A}{2}) \\ \text{thus } \sin^2\frac{A}{2} &= \frac{a^2 - (b - c)^2}{4bc} = \frac{(a + b - c)(a - b + c)}{4bc} \\ &= \frac{(2p - 2c)(2p - 2b)}{4bc} = \frac{(p - b)(p - c)}{bc} \end{aligned}$$

នាំឱ្យ
$$\sin \frac{A}{2} = \sqrt{\frac{(p-b)(p-c)}{bc}}$$

ស្រាយដូចគ្នាដែរ :

$$\sin \frac{B}{2} = \sqrt{\frac{(p-a)(p-c)}{ac}}$$
; $\sin \frac{C}{2} = \sqrt{\frac{(p-a)(p-b)}{ab}}$

កេបាន:

$$\cos A + \cos B + \cos C = 1 + \frac{4(p-a)(p-b)(p-c)}{abc}$$
 when $S = pr = \frac{abc}{4P} = \sqrt{p(p-a)(p-b)(p-c)}$

ពេទាញ
$$\begin{cases} (p-a)(p-b)(p-c) = \frac{S^2}{p} = \frac{prS}{p} = Sr \\ abc = 4SR \\ \text{នាំឱ្យ} \; \frac{(p-a)(p-b)(p-c)}{abc} = \frac{r}{4R} \\ \text{ដូចនេះ } \cos A + \cos B + \cos C = 1 + \frac{r}{R} \\ \text{2. } \ \text{1V} \; ABC \; \text{ this immodifications griphouth } \; R \geq (\sqrt{2}+1)r \\ \text{2Uthin } \; ABC \; \text{ this immodifications griphouth } \; R \geq (\sqrt{2}+1)r \\ \text{2Uthin } \; \cos A + \cos B + \cos C = 1 + \frac{r}{R} \\ \text{1Sin } \; \cos A + \cos B + \cos C = 1 + \frac{r}{R} \\ \sin C + \cos C = 1 + \frac{r}{R} \\ \sin C + \cos C = 1 + \frac{r}{R} \\ \text{1Sin } \; C + \cos C = 1 + \frac{r}{R} \\ \text{1Sin } \; C + \cos C = 1 + \frac{r}{R} \\ \text{1Sin } \; Sin \; C + \cos C = 1 + \frac{r}{R} \\ \text{1Sin$$

លំហាត់ទី៦៧

គេឱ្យ ABC ជាត្រីកោណមួយ ។ ចូរបង្ហាញថា :

$$\text{fi. } \tan\frac{A}{2}\tan\frac{B}{2}+\tan\frac{B}{2}\tan\frac{C}{2}+\tan\frac{C}{2}\tan\frac{A}{2}=1$$

$$2. \tan \frac{A}{2} \tan \frac{B}{2} \tan \frac{C}{2} \le \frac{\sqrt{3}}{9}$$

ដំណោះស្រាយ ចង្ហាញថា

ក.
$$an rac{A}{2} an rac{B}{2} + an rac{B}{2} an rac{C}{2} + an rac{C}{2} an rac{A}{2} = 1$$

តាមរូបមន្ត $an(a+b) = rac{ an a + an b}{1- an a an b}$

តោមរូបមន្ត $an \left(rac{A+B}{2}
ight) = an \left(rac{\pi}{2} - rac{C}{2}
ight)$

$$rac{ an rac{A}{2} + an rac{B}{2}}{1- an rac{A}{2} an rac{B}{2}} = \cot rac{C}{2} = rac{1}{ an rac{C}{2}}$$

$$an rac{C}{2} (an rac{A}{2} + an rac{B}{2}) = 1 - an rac{A}{2} an rac{B}{2}$$

$$an rac{A}{2} an rac{B}{2} + an rac{B}{2} an rac{C}{2} + an rac{C}{2} an rac{A}{2} = 1$$

8. $an rac{A}{2} an rac{B}{2} an rac{C}{2} \le rac{\sqrt{3}}{9}$

តាមវិសភាព $an AM - GM$ តេហុន :

លំហាត់ទី៦៨

ចូរបង្ហាញថា:

$$(\sin x + a\cos x)(\sin x + b\cos x) \le 1 + \left(\frac{a+b}{2}\right)^2$$

ដំណោះស្រាយ

បង្ហាញថា :

$$(\sin x + a\cos x)(\sin x + b\cos x) \le 1 + \left(\frac{a+b}{2}\right)^2$$
 (1)

-ហើ
$$\cos x = 0$$
 នោះ $\sin^2 x \le 1 + \left(\frac{a+b}{2}\right)^2$ ពិត

-បើ $\cos x \neq 0$ យើងចែកអង្គទាំងពីរ នៃ (1) នឹង $\cos^2 x$

$$(\tan x + a)(\tan x + b) \le \left[1 + \left(\frac{a+b}{2}\right)^2\right] \frac{1}{\cos^2 x}$$

តាង
$$t = \tan x$$
 នោះ $\frac{1}{\cos^2 x} = 1 + \tan^2 x = 1 + t^2$

ពេលន
$$(t+a)(t+b) = \left[1 + \left(\frac{a+b}{2}\right)^2\right] \left(1+t^2\right)$$

$$(t^2 + (a+b)t + ab \le 1 + t^2 + \left(\frac{a+b}{2}\right)^2 + \left(\frac{a+b}{2}\right)^2 t^2$$

$$\left(\frac{a+b}{2}\right)^2 t^2 - (a+b)t + 1 + \left(\frac{a+b}{2}\right)^2 - ab \ge 0$$

$$\left(\frac{a+b}{2}t - 1\right)^2 + \left(\frac{a-b}{2}\right)^2 \ge 0 \ \widehat{\mathfrak{N}} \widehat{\mathfrak{N}}$$

$$\sharp \widehat{\mathfrak{MSS}} \ (\sin x + a\cos x)(\sin x + b\cos x) \le 1 + \left(\frac{a+b}{2}\right)^2 \quad \mathsf{4}$$

លំហាត់ទី៦៩

គេឱ្យ a; b; c ជាប្រវែងជ្រុងរបស់ត្រីកោណមួយដែលមាន បរិមាត្រស្នើ 2 ។ ចូរស្រាយថា :

$$\frac{3}{2} < a^2 + b^2 + c^2 + 2abc < 2$$

ដំណោះស្រាយ

បង្ហាញថា
$$\frac{3}{2} < a^2 + b^2 + c^2 + 2abc < 2$$

ដោយបរិមាត្ររបស់ត្រីកោណនេះស្លើ 2 នោះជ្រុងទាំងបីa; b; c

របស់ត្រីកោណសុទ្ធតែតូចជាង 1 ។

យើងបាន
$$S = \frac{1}{2}bc\sin A < \frac{1}{2}$$

តាមរូបមន្តហេរុង $S=\sqrt{p(p-a)(p-b)(p-c)}\,$ ដោយ p=1

ទោះ
$$S = \sqrt{(1-a)(1-b)(1-c)} < \frac{1}{2}$$

គេទាញ
$$0 < (1-a)(1-b)(1-c) < \frac{1}{4}$$

$$\mathfrak{V}$$
 0 < 1 - (a + b + c) + (ab + bc + ca) - abc < $\frac{1}{4}$

$$\mathfrak{U} = 0 < 1 - 2 + (ab + bc + ca) - abc < \frac{1}{4}$$

$$y 1 < (ab + bc + ca) - abc < \frac{5}{4}$$

$$\mathfrak{U} 2 < 2(ab + bc + ca) - 2abc < \frac{5}{2}$$

កេមាន
$$(a+b+c)^2 = a^2 + b^2 + c^2 + 2(ab+bc+ca)$$

គេទាញ:

$$a^{2} + b^{2} + c^{2} + 2abc = (a + b + c)^{2} + 2abc - 2(ab + bc + ca)$$

$$a^{2} + b^{2} + c^{2} + 2abc = 4 - [2(ab + bc + ca) - 2abc]$$

ដោយ
$$2 < 2(ab + bc + ca) - 2abc < \frac{5}{2}$$

កេឃុន
$$4 - \frac{5}{2} < a^2 + b^2 + c^2 + 2abc < 4 - 2$$

ដូចនេះ
$$\frac{3}{2}$$
 < $a^2 + b^2 + c^2 + 2abc$ < 2

លំហាត់ទី៧០

ប្រសិនបើ
$$xyx = (1-x)(1-y)(1-z)$$
 ដែល $0 \le x;y;z \le 1$

ចូរបង្ហាញថា
$$x(1-z) + y(1-x) + z(1-y) \ge \frac{3}{4}$$

ដំណោះស្រាយ

បង្ហាញថា :

$$x(1-z) + y(1-x) + z(1-y) \ge \frac{3}{4}$$

គេមាន
$$(x-\frac{1}{2})^2 = x^2 - x + \frac{1}{4} \ge 0$$
 ចំពោះគ្រប់ x

គេទាញ $x(1-x) \le \frac{1}{4}$ ដោយ $0 \le x \le 1$ នោះគេទាញជាន :

$$0 \le x(1-x) \le \frac{1}{4}$$
 ។ ស្រាយដូចគ្នាដែរគេបាន :

$$0 \le y(1-y) \le \frac{1}{4}$$
 និង $0 \le z(1-z) \le \frac{1}{4}$

លើងឋាន
$$xyz(1-x)(1-y)(1-z) \le \frac{1}{64}$$

ដោយ xyz = (1-x)(1-y)(1-z) នោះគេទាញ :

$$(xyz)^2 \le \frac{1}{64}$$
 នាំឱ្យ $xyz \le \frac{1}{8}$ ។

តាង
$$T = x(1-z) + y(1-x) + z(1-y)$$

$$= (x + y + z) - (xy + yz + xz)$$

ដោយ
$$xyz = (1-x)(1-y)(1-z)$$

$$y = xyz = 1 - (x + y + z) + (xy + yz + zx) - xyz$$

គេទាញ
$$T = 1 - 2xyz \ge 1 - 2\left(\frac{1}{8}\right) = \frac{3}{4}$$

ដូចនេះ
$$x(1-z) + y(1-x) + z(1-y) \ge \frac{3}{4}$$
 ។

លំហាត់ទី៧១

គេឱ្យ
$$x$$
 ; y ; z ជាបីចំនួនពិតវិជ្ជមានដែល $x+y+z=1$ ។ ចូរស្រាយបញ្ជាក់ថា $\left(\frac{1}{x}-1\right)\left(\frac{1}{y}-1\right)\left(\frac{1}{z}-1\right)\geq 8$

ដំណោះស្រាយ

ស្រាយបញ្ជាក់ថា
$$\left(\frac{1}{x}-1\right)\left(\frac{1}{y}-1\right)\left(\frac{1}{z}-1\right)\geq 8$$
 គេមាន $\left(\frac{1}{x}-1\right)\left(\frac{1}{y}-1\right)\left(\frac{1}{z}-1\right)=\frac{(1-x)(1-y)(1-z)}{xyz}$ ដោយ $x+y+z=1$ នាំឱ្យ $\begin{cases} 1-x=y+z\\ 1-y=x+z\\ 1-z=x+y \end{cases}$ គេមាន $\left(\frac{1}{x}-1\right)\left(\frac{1}{y}-1\right)\left(\frac{1}{z}-1\right)=\frac{(y+z)(z+x)(x+y)}{xyz}$ តាមវិសមភាព AM – GM គេមាន :

តាមវិសមភាព AM - GM គេមាន:

$$\begin{array}{l} y+z\geq 2\sqrt{yz} \quad ; \quad z+x\geq 2\sqrt{zx} \quad \mbox{Sh} \ x+y\geq 2\sqrt{xy} \\ \mbox{ faths } (y+z)(z+x)(x+y)\geq 8xyz \\ \mbox{ siaj} \quad \frac{(y+z)(z+x)(x+y)}{xyz}\geq 8 \\ \mbox{ Hrss} \quad \left(\frac{1}{x}-1\right)\!\left(\frac{1}{y}-1\right)\!\left(\frac{1}{z}-1\right)\!\geq 8 \quad \mbox{ 4} \end{array}$$

លំហាត់ទី៧២

គេឱ្យ a ; b ; c ជាបីចំនួនពិតវិជ្ជមានដែល $a^2 + b^2 + c^2 = 1$ បង្ហាញថា $\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} \ge 3 + \frac{2(a^3 + b^3 + c^3)}{abc}$

ដំណោះស្រាយ

បង្ហាញថា
$$\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} \ge 3 + \frac{2(a^3 + b^3 + c^3)}{abc}$$
តាង $T = \frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} - 3 - 2 \cdot \frac{a^3 + b^3 + c^3}{abc}$

ដោយ $a^2 + b^2 + c^2 = 1$ នោះគេទាញ:

$$\frac{1}{a^2} = 1 + \frac{b^2 + c^2}{a^2}; \frac{1}{b^2} = 1 + \frac{a^2 + c^2}{b^2}; \frac{1}{c^2} = 1 + \frac{a^2 + b^2}{c^2}$$

ធ្វើវិធីបូកសមភាពទាំងនេះគេបាន:

$$\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} = 3 + a^2 \left(\frac{1}{b^2} + \frac{1}{c^2} \right) + b^2 \left(\frac{1}{c^2} + \frac{1}{a^2} \right) + c^2 \left(\frac{1}{a^2} + \frac{1}{b^2} \right)$$

កន្សោម T អាចសរសេរ:

ដំណោះស្រាយ

តម្លៃអប្បរមានៃអនុគមន៍

$$y = \cot A + \frac{2\sin A}{\cos A + \cos(B - C)}$$

គេមាន
$$A + B + C = \pi$$

IS1:
$$\cos A = \cos(\pi - B - C) = -\cos(B + C)$$

គេបាន

$$y = \cot A + \frac{2\sin A}{\cos(B-C) - \cos(B+C)}$$

$$= \cot A + \frac{\sin A}{\sin B \sin C}$$

$$= \frac{\cos A \sin B \sin C + \sin^2 A}{\sin A \sin B \sin C}$$
ឃា a , b , c ជាជ្រងរបស់ត្រីកោណនេះ

តាមទ្រឹស្តីបទស៊ីនូសគេមាន

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R \text{ Sign } \begin{cases} a = 2R \sin A \\ b = 2R \sin B \end{cases} (1)$$

$$c = 2R \sin C$$

តាមទ្រឹស្តីបទក្វស៊ីនូសគេមាន

$$a^2 = b^2 + c^2 - 2bc\cos A$$
 (2)

យកទំនាក់ទំនង (1) ជូសក្នុង (2) គេបាន

$$4R^2 \sin^2 A = 4R^2 (\sin^2 B + \sin^2 C - 2\sin B \sin C \cos A)$$

គេទាញ
$$\sin B \sin C \cos A = \frac{\sin^2 B + \sin^2 C - \sin^2 A}{2}$$

ហេតុនេះអនុគមន៍ y អាចសរសេរ

$$y = \frac{\sin^2 A + \sin^2 B + \sin^2 C}{2\sin A \sin B \sin B}$$

តាមវិសមភាព AM-GM គេមាន

$$\sin^2 A + \sin^2 B + \sin^2 C \ge 3\sqrt[3]{(\sin A \sin B \sin C)^2}$$

$$\Rightarrow y \ge \frac{3\sqrt[3]{(\sin A \sin B \sin C)^2}}{2\sin A \sin B \sin C}$$

$$\Rightarrow y \ge \frac{3}{2} \sqrt[3]{\frac{1}{\sin A \sin B \sin C}}$$

តាឯអនុគមន៍ $f(x) = \sin x$ ដែល $0 < x < \pi$

គេមាន
$$f''(x) = -\sin x < 0$$
, $\forall x \in (0;\pi)$

នាំឲ្យ f(x) ជាអនុគមន៍ប៉ោង ។

តាមទ្រឹស្តីបទ Jensen គេបាន
$$\frac{f(A)+f(B)+f(C)}{3} \leq f(\frac{A+B+C}{3})$$
 ឬ $\frac{\sin A + \sin B + \sin C}{3} \leq \sin(\frac{A+B+C}{3}) = \frac{\sqrt{3}}{2}$ តាម វិសមភាព AM – GM គេមាន
$$\frac{\sin A + \sin B + \sin C}{3} \geq \sqrt[3]{\sin A \sin B \sin C}$$
 ថ្ម sin A sin B sin C $\leq \frac{\sqrt{3}}{2}$ ឬ $\sin A \sin B \sin C \leq \frac{\sqrt{3}}{8}$ ហេតុនេះ $y \geq \frac{3}{2}\sqrt[3]{\frac{1}{\sin A \sin B \sin C}} \geq \frac{3}{2}\cdot\frac{2}{\sqrt{3}} = \sqrt{3}$ ដោយ $y = \cot A + \frac{2\sin A}{\cos A + \cos(B-C)} \geq \sqrt{3}$ ដូចនេះ តម្លៃអបុស្រានៃអនុគមន៍គឺ $\sqrt{3}$ ។

លំហាត់ទី៧៤

ក្នុងត្រីកោណ ABC មួយមានមេដ្យាននៃជ្រុង AB និង AC កែងគ្នា ។

ដំណោះស្រាយ

បង្ហាញថា $\cot B + \cot C \ge \frac{2}{3}$

យើងសង់មេដ្យាន AD, BE, CF ហើយតាង G ជា

ទីប្រជុំទម្ងន់នៃត្រីកោណ ABC ។
យក GE = x និង GF = y នោះគេបាន BG = 2GE = 2x និង CG = 2GF = 2y
យើងមាន $\cot B = \cot(\angle GBA + \angle GBC)$ $= \frac{\cot(\angle GBA).\cot(\angle GBC) - 1}{\cot(\angle GBA) + \cot(\angle GBC)}$ $= \frac{(2x)(2x)}{2}$

$$= \frac{\left(\frac{2x}{y}\right)\left(\frac{2x}{2y}\right) - 1}{\frac{2x}{y} + \frac{2x}{2y}} = \frac{2x^2 - y^2}{3xy}$$

ដូចគ្នាដែរ $\cot C = \frac{2y^2 - x^2}{3xy}$ គេបាន $\cot B + \cot C = \frac{2x^2 - y^2}{3xy} + \frac{2y^2 - x^2}{3xy} = \frac{x^2 + y^2}{3xy}$

តាមវិសមភាព AM-GM គេមាន

$$\frac{x^2 + y^2}{2} \ge xy \Rightarrow \frac{x^2 + y^2}{3xy} \ge \frac{2}{3}$$

$$\text{US: } \cot B + \cot C \ge \frac{2}{3} \quad \text{I}$$

លំហាត់ទី៧៥

គេឲ្យ a; b; c ជាបីចំនួនពិតវិជ្ជមាន ។

ច្ចរបង្ហាញថា
$$\frac{a^2+1}{b+c} + \frac{b^2+1}{c+a} + \frac{c^2+1}{a+b} \ge 3$$

(Regional Mathematical Olympiad-India 2006)

ដំណោះស្រាយ

បង្ហាញថា
$$\frac{a^2+1}{b+c}+\frac{b^2+1}{c+a}+\frac{c^2+1}{a+b}\geq 3$$
 តាមវិសមភាព $AM-GM$ គេមាន $a^2+1\geq 2a$

គេទាញ
$$\frac{a^2+1}{b+c} \ge \frac{2a}{b+c}$$

ដូចគ្នាដែរ
$$\frac{b^2+1}{c+a} \ge \frac{2b}{c+a}$$
 និង $\frac{c^2+1}{a+b} \ge \frac{2c}{a+b}$ $\frac{a^2+1}{b+c} + \frac{b^2+1}{c+a} + \frac{c^2+1}{a+b} \ge \frac{2a}{b+c} + \frac{2b}{c+a} + \frac{2c}{a+b}$ គេមាន

$$\frac{2a}{b+c} + \frac{2b}{c+a} + \frac{2c}{a+b} = \frac{2a^2}{a(b+c)} + \frac{2b^2}{b(c+a)} + \frac{2c^2}{c(a+b)}$$

តាមវិសមភាព Cauchy-Schwartz គេបាន

$$\frac{a^2}{a(b+c)} + \frac{b^2}{b(c+a)} + \frac{c^2}{c(a+b)} \ge \frac{(a+b+c)^2}{2(ab+bc+ca)}$$

$$\underbrace{\frac{2a^2}{a(b+c)}} + \frac{2b^2}{b(c+a)} + \frac{2c^2}{c(a+b)} \ge \frac{(a+b+c)^2}{ab+bc+ca}$$

$$\lim \frac{a^2+b^2}{2} + \frac{b^2+c^2}{2} + \frac{c^2+a^2}{2} \ge ab+bc+ca$$

$$\underbrace{\lim \frac{a^2+b^2}{2}}_{ab+bc+ca} + \frac{b^2+c^2}{2} + \frac{c^2+a^2}{2} \ge ab+bc+ca$$

$$\underbrace{\lim \frac{a^2+b^2}{2}}_{ab+bc+ca} + \frac{a^2+b^2}{2} \ge ab+bc+ca$$

$$\underbrace{\lim \frac{a^2+b^2}{2}}_{ab+bc+ca} + \frac{a^2+b^2}{2} \ge ab+bc+ca$$

$$\underbrace{\lim \frac{a^2+b^2}{2}}_{ab+bc+ca} \ge 3$$

$$\underbrace{\lim \frac{(a+b+c)^2}{ab+bc+ca}}_{ab+bc+ca} \ge 3$$

$$\underbrace{\lim \frac{2a^2}{a(b+c)}}_{ab+c} + \frac{2b^2}{b(c+a)} + \frac{2c^2}{c(a+b)} \ge 3$$

$$\underbrace{\lim \frac{a^2+1}{b+c}}_{b+c} + \frac{b^2+1}{c+a} + \frac{c^2+1}{a+b} \ge 3$$

លំហាត់ទី៧៦

សន្មតិថាពីហ៊ុធា
$$\mathbf{x}^{\mathbf{n}} + \mathbf{a}_{\mathbf{n}-1}\mathbf{x}^{\mathbf{n}-1} + ... + \mathbf{a}_{\mathbf{1}}\mathbf{x} + \mathbf{a}_{\mathbf{0}}$$
 អាចដាក់ជាកត្តា $(\mathbf{x} + \mathbf{r}_{\mathbf{1}})(\mathbf{x} + \mathbf{r}_{\mathbf{2}})...(\mathbf{x} + \mathbf{r}_{\mathbf{n}})$ ដែល $\mathbf{r}_{\mathbf{1}}, \mathbf{r}_{\mathbf{2}}, ..., \mathbf{r}_{\mathbf{n}}$ ជាចំនូនពិត ។ ចូរបង្ហាញថា $(\mathbf{n} - \mathbf{1})\mathbf{a}_{\mathbf{n}-1}^2 \geq 2\mathbf{n}\mathbf{a}_{\mathbf{n}-2}$ ។ (Costa Rican Math Olympiad 2009)

ដំណោះស្រាយ

គេមាន

$$\begin{split} &\sum_{1 \leq i < j \leq 1} \left(r_i - r_j \right)^2 = (n-1) \Bigg[\sum_{i=1}^n \left(r_i \right) \Bigg]^2 - 2n \sum_{1 \leq i < j \leq n} \left(r_i . r_j \right) \geq 0 \\ \text{ គេ ទាញ } & (n-1) a_{n-1}^2 - 2n a_{n-2} \geq 0 \\ &\text{ ដូចនេះ } & (n-1) a_{n-1}^2 \geq 2n a_{n-2} \end{aligned}$$

លំហាត់ទី៧៧

មាន x និង y ជាពីរចំនួនពិតវិជ្ជមានដែលផ្ទៀងផ្ទាត់ (1+x)(1+y)=2 ។

ចូរបង្ហាញថា
$$xy + \frac{1}{xy} \ge 6$$
 ។

(Costa Rican Math Olympiad 2009)

ដំណោះស្រាយ

បង្ហាញថា
$$xy + \frac{1}{xy} \ge 6$$

គេមាន

$$(1+x)(1+y)=2$$

$$1 + x + y + xy = 2$$

$$\mathbf{x} + \mathbf{y} = \mathbf{1} - \mathbf{x}\mathbf{y}$$

តាមវិសមភាព AM-GM គេមាន $x+y\geq 2\sqrt{xy}$ គេទាញ $1-xy\geq 2\sqrt{xy}$ $\Leftrightarrow (1-xy)^2\geq 4xy$ សមមូល $1-2xy+(xy)^2\geq 4xy$ ឬ $1+(xy)^2\geq 6xy$

ដោយចែកអង្គទាំងពីវនឹង
$$xy$$
 គេបាន $xy + \frac{1}{xy} \ge 6$