

(19) BUNDESREPUBLIK DEUTSCHLAND

Off nlegungsschrift [®] DE 195 07 546 A 1

PATENTAMT

Aktenzeichen:

195 07 546.3

Anmeldetag: 43 Offenlegungstag:

3. 3.95

12. 9.96

(51) Int. Cl.6:

C 12 N 15/81

C 12 P 7/42 C12 P 7/44 C12 P 7/02 C 07 C 59/105 C 07 C 55/02 C 07 C 51/367 C 07 C 31/125 C 07 C 29/48 // (C12N 15/81,C12F 1:865) (C12N 9/02, C12R 1:72)

(71) Anmelder:

Max-Delbrück-Centrum für Molekulare Medizin, 13125 Berlin, DE

(72) Erfinder:

Zimmer, Thomas, 12435 Berlin, DE; Kaminski, Kristina, 10117 Berlin, DE; Schunck, Wolf-Hagen, Dr., 13125 Berlin, DE; Kärgel, Eva, Dr., 13125 Berlin, DE; Scheller, Ulrich, 10405 Berlin, DE; Mauersberger, Stephan, Dr., 13086 Berlin, DE

(56) Entgegenhaltungen:

DD 2 92 022 A5

Prüfungsantrag gem. § 44 PatG ist gestellt

- 🚱 Verfahren zur Hydroxylierung von langkettigen Alkanen, Fettsäuren und anderen Alkylverbindungen
- Die Erfindung hat das Ziel, ein mikrobielles Hydroxylierungsverfahren zur regioselektiven Oxidation von langkettigen Alkanen, Fettsäuren und anderen Alkylverbindungen zur Verfügung zu stellen. Es soll in einfacher Verfahrensführung in guten Ausbeuten zu den Oxydationsprodukten, insbesondere Hydroxyfettsäuren und langkettigen Dicarbonsäuren, führen. Der Erfindung liegt die Aufgabe zugrunde, Hefen gentechnisch so zu verändern, daß sie bei Kultivierung die notwendigen Enzyme exprimieren.

Das erfindungsgemäße Verfahren ist dadurch gekennzeichnet, daß die langkettigen Alkane, Fettsäuren und anderen Alkylverbindungen mit Monooxygenase-Systemen, bestehend aus Cytochrom P450 und NADPH-Cytochrom P450-Reduktase, behandelt und die Hydroxylierungsprodukte abgetrennt werden. Die Monooxygenase-Systeme werden in der Reaktionsmischung durch gleichzeitige Expression ihrer Bestandteile in Hefen, vorzugsweise in Saccharomyces cerevisiae, hergestellt.

Kernpunkt der Erfindung ist ein Vektor zur gentechnischen Veränd rung von Saccharomyces, der aufbauend auf dem Grundgerüst YEp 51

- Reduktase cDNA zwischen den Restriktionsorten Sall und BamH!
- und eine 2. Expressionskassette, einligiert in den Restriktionsort Nrul und bestehend aus dem GAL10-Promotor, der kodierenden Sequenz von Cytochrom P450 und dem ADH1-Terminator enthält.

DE 195 07 546 A1

Beschr ibung

Die Erfindung betrifft ein Verfahren zur Hydroxylierung von langkettigen Alkanen und Alkylverbindungen, insbesondere von Fettsäuren. Sie betrifft ferner einen Vektor zur Realisierung dieses Verfahrens. Anwendungsgebiet der Erfindung ist die Biotechnologie, insbesondere die Gewinnung von Fettsäure-Oxidationsprodukten wie Hydroxy-Fettsäuren und langkettigen Dicarbonsäuren.

Monooxygenasen vom Cytochrom P450-Typ sind in Organismen der gesamten phylogenetischen Skala verbreitet. Sie katalysieren NAD(P)H- und O₂-abhängige Reaktionen in verschiedenen biosynthetischen und katabolen Stoffwechselwegen. Zur Zeit sind die Primärsequenzen von mehr als 220 verschiedenen P450-Formen bekannt. Diese werden aufgrund charakteristischer Sequenzmerkmale zu einer Superfamilie zusammengefaßt (Übersicht bei Nelson et al., DNA Cell Biol. 12 [1993] 1).

In Hefen, wie beispielsweise der alkanverwertenden Species Candida maltosa (Vogel et al., Eur. J. Cell Biol. 57 [1992] 285) und in höheren Eukaryoten ist die Mehrzahl der P450-Formen im Endoplasmatischen Retikulum lokalisiert. Der im Reaktionszyklus erforderliche Elektronentransfer erfolgt über eine ebenfalls membranständige NADPH-Cytochrom P450-Reduktase. P450- und Reduktase-Komponente bilden zusammen das aktive Monooxygenasesystem. Zur funktionellen heterologen Expression derartiger Zwei-Komponenten-Systeme sind in wissenschaftlichen Publikationen und in der Patentliteratur verschiedene Strategien beschrieben worden (Murakami et al., DNA 5 [1986] 1; Urban et al., Biochem. Soc. Trans. 21 [1993] 1028; Pompon et al., FR-PS-2 679 249).

Die enorme Vielfalt der P450-Formen verbunden mit einer jeweils individuellen Chemoselektivität bildet ein großes Potential für zukünftige Anwendungen bei der Synthese von Feinchemikalien. Dabei ist die von einigen P450-Formen erreichte hohe Regio- und Stereoselektivität der Substrathydroxylierung von besonderem Interesse, da vergleichbare Spezifitäten mit Methoden der organischen Chemie kaum bzw. nur mit hohem Synthese- und Präparationsaufwand zu erreichen sind.

Ein Beispiel dafür stellt die regioselektive Oxygenierung langkettiger Alkane, Fettsäuren und anderer Alkylverbindungen dar. Während bei der chemischen Oxidation bekannterweise der Angriff an tertiären und sekundären C-Atomen stark bevorzugt abläuft und zu einem Gemisch von Oxidationsprodukten führt, sind einige P450-Formen in der Lage, mit nahezu absoluter Selektivität eine Hydroxylierung von Fettsäuren in ω-Position, d. h. am primären C-Atom, zu katalysieren. P450-Formen mit dieser Spezifität kommen vor allem in alkanverwertenden Hefen wie C. maltosa und C. tropicalis vor und gehören zur Familie CYP52 innerhalb der P450-Superfamilie (Übersicht bei Müller et al., In Frontier in Biotransformation 4. K. Ruckpaul, H. Rein, eds., Akademieverlag, Berlin [1991] 87).

Nach bisherigen Kenntnissen ist die Familie CYP52 die umfangreichste P450-Familie bei Mikroorganismen. So wurden für die Hefe C. maltosa bereits 8 verschiedene alkaninduzierbare P450-Formen identifiziert, die sich in ihrer Substratspezifität gegenüber verschiedenen Alkylverbindungen signifikant unterscheiden (Schunck et al., DD-WP 2 71 339; Schunck et al., DD-WP 2 92 022). Kürzlich gelang auch die Klonierung der zugehörigen Reduktase-Komponente aus diesem Organismus.

Bisherige Versuche, die besondere Chemoselektivität von P450-Formen der CYP52-Familie zur Produktion von Alkan- und Fettsäure-Oxidationsprodukten insbesondere von Dicarbonsäuren zu nutzen, beruhen auf ihrer indirekten Nutzung in genetisch (Übersicht bei J. Schindler et al., Forum Mikrobiol. 5 [1990] 274) bzw. auch gentechnisch (Picataggio et al., Bio/Technology 10 [1992] 894) veränderten CandidaStämmen.

Das Problem einer direkten Nutzung, nämlich hochaktive P450-Systeme zur regioselektiven Hydroxylierung von Fettsäuren und anderen Alkylverbindungen durch heterologe Expression in einem geeigneten Mikroorganismus zu etablieren, ist dagegen weitgehend ungelöst.

Die Erfindung hat das Ziel, ein mikrobielles Hydroxylierungsverfahren zur regioselektiven Oxidation von langkettigen Alkanen, Fettsäuren und anderen Alkylverbindungen zur Verfügung zu stellen. Es soll in einfacher Verfahrensführung in guten Ausbeuten zu den Oxidationsprodukten, insbesondere Hydroxyfettsäuren und langkettigen Dicarbonsäuren, führen. Der Erfindung liegt die Aufgabe zugrunde, Hefen gentechnisch so zu verändern, daß sie bei Kultivierung die notwendigen Enzyme exprimieren.

Die Aufgabe der Erfindung wird durch Monooxygenase-Systeme gelöst, die aus Cytochrom P450 und NADPH-Cytochrom P450 Reduktase bestehen, welche in Saccharomyces gleichzeitig exprimiert werden. Die langkettigen Alkane, Fettsäuren bzw. Alkylverbindungen werden in Kultivierungslösungen von derart gentechnisch veränderten Saccharomyces gebracht, wobei die exprimierten Enzyme eine regioselektive Hydroxylierung bewirken. Nach der Umsetzung werden die Hydroxylierungsprodukte abgetrennt. Eine für die Erfindung bevorzugte Hefe-Spezies ist Saccharomyces cerevisiae, ein bevorzugtes Enzymsystem sind Cytochrom P450-Formen der CYP52-Familie und Candida maltosa NADPH-Cytochrom P450-Reduktase.

Die langkettigen Alkylverbindungen, insbesondere die Fettsäuren, werden erfindungsgemäß in Kulturen intakter Zellen (Zellsuspensionen) behandelt. Zur Hydroxylierung von Alkanen müssen dagegen Zellhomogenate der Hefekulturen hergestellt werden, weil die Alkane von den Zellen nicht aufgenommen werden können.

Die zu hydroxylierenden Stoffe werden den Zellkulturen in organischen Lösungsmitteln, bevorzugt in alkoholischer Lösung zugesetzt. In Falle von Fettsäuren können auch deren Salze in wäßriger Lösung zugesetzt werden.

Das Verfahr n wird bei niedriger Temperatur (30—40°C) durchgeführt, die Hydroxylierung ist im Regelfall nach einer Stunde weitgehend abgeschlossen. Zunächst tritt in allen Fällen eine regioselektive Monohydroxylierung, überwiegend am terminalen oder subterminalen C-Atom, ein. Der Eintrittsort der OH-Gruppe wird von der eingesetzten P450-Form und von der Reaktionsdauer bestimmt.

Das monohydroxylierte Produkt wird bei weiterer Kultivierung weiter hydroxyliert. So werden je nach Verfahrensführung Hydroxyverbindungen, Hydroxycarbonsäuren oder Dicarbonsäuren erhalten. Bei maximaler Oxidation erhält man beispielsweise aus einem Alkan eine ω,ω'-Dicarbonsäure. Die Prüfung des jeweiligen

DE 195 07 546 A1

Umsatzes wird mittels Dünnschichtchromatographie vorgenommen, ein Abbruch der Reaktion erfolgt bevorzugt mit Säuren, beispielsweise mit verdünnter Schwefelsäure, sobald das gewünschte Produkt in ausreichender

Menge gebildet ist.

Kernpunkt der Erfindung ist der Vektor gemäß Anspruch 7. Er ist auf der Basis des YEp51-Vektors aufgebaut und enthält Reduktase cDNA zwischen den Restriktionsorten Sal I und BamH I. Eine zweite Expressionskassette, bestehend aus dem GAL10-Promotor, der kodierenden Sequenz von Cytochrom P450 und dem ADH1-Terminator, ist in den Restriktionsort Nru I dieses Vektors einligiert. Ausgangsmaterialien und der Aufbau des Vektors sind in Abb. 1 dargestellt.

Eine für die Durchführung der Erfindung wichtige Besonderheit des Vektors besteht darin, daß beide einligierten Gene unter der Kontrolle des gleichen Promotors stehen. Gegen die Erwartung werden P450 und Reduktase bei der Expression in einem Verhältnis von ungefähr 1:3 gebildet ("Überexpression"), ein Verhältnis, was bei der

Hydroxylierung überraschenderweise zur optimalen Ausbeute führt.

Das erfindungsgemäße Verfahren zeichnet sich durch hohe Hydroxylierungsraten aus. So wird Laurinsäure um ca. das 20fache schneller hydroxyliert als bei der Einzelexpression von natürlichen P450-Formen, bei denen infolge der geringen Expression der endogenen Reduktase nur ein molares Verhältnis P450:Reduktase von ca 15 32:1 gegeben ist (vgl. Tabelle 2).

1. Verwendete DNA-Sequenzen

Für die heterologe Koexpression von P450-Formen und Reduktase werden folgende cDNAs benutzt: 20 CYP52A3 — P450Cm1 (Schunck et al., Biochem. Biophys. Res. Commun. 161 [1989] 843) CYP52A4 — P450Cm2 (Schunck et al., Eur. J. Cell Biol. 55 [1991] 336; modifiziert nach Zimmer and Schunck, Yeast 11 [1995] 33) CPR — NADPH-Cytochr. P450-Reduktase aus Candida maltosa (Kärgel et al., 1993 — EMBL accession number X76226).

2. Konstruktion eines geeigneten Vektors zur heterologen Koexpression von Cytochrom P450 und Reduktase

Die verwendeten Vektoren und wesentliche Schritte zur Konstruktion des Koexpressionsvektors sind in Abb. 1 dargestellt.

In einem ersten Schritt werden in den Ausgangsvektor YEp51 (Broach et al., In Experimental Manipulation of Gene Expression. M. Inoye, ed., Academic Press, NY, [1983], pp. 83—117), in welchen die cDNA der NADPH-Cytochrom P450-Reduktase unter Nutzung der Restriktionsorte Sal I und BamH I integriert ist, ein Linker bestehend aus den beiden Oligonucleotiden

35

45

5'-CGAGGCGCGCTCGAGCGGCCGCTCG-3' und 3'-GCTCCGCGCGAGCTCGCCGGCGAGC-5'

in den Nru I-Ort einligiert. Diese Modifikation ist für den Einbau zweier unikaler Restriktionsorte zur Integration einer zweiten Expressionskassette notwendig (Asc I und Not I).

Zur Konstruktion dieser zweiten Expressionseinheit bestehend aus dem GAL10-Promotor, der P450-Sequenz und dem ADH1-Terminator werden zunächst PCR-Reaktionen durchgeführt, um den GAL10-Promotor und den ADH1-Terminator zu erhalten. Der GAL10-Promotor wird dabei aus dem Vektor YEp51 mit den beiden Primern

5'-GGGGTACCGGCGCGCCTTACGACGTAGGATC-3' und 5'-CGGGATCCAAGGGAGAGCGTCGAC-3'

amplifiziert, mittels Restriktasen Kpn I und BamH I verdaut und in die Restriktionsorte Kpn I und BamH I des Vektors pUCBM21 (Boehringer Mannheim) einligiert. Der resultierende Vektor wird genutzt, um das ADH1 50 -Terminatorfragment, welches mittels Primer

5'-CGCGGATCCGCTTTGGACTTCTTCGCC-3' und 5'-CGGAATTCGCGGCCGCCCGTGTGGAAGAACGATTAC-3'

aus dem Vektor pAAH5 (Ammerer, Meth. Enzym. 101 [1983] 192) amplifiziert wird, in den BamH I/EcoR I-Ort einzusetzen. In dem neu entstandenen Vektor muß schließlich der Sal I-Ort mittels Verdau mit EcoR V, Behandlung mit T4 DNA Polymerase und Religation zerstört werden. Nun werden unter Nutzung der Restriktionsorte Sal I und BamH I die cDNAs von P450Cm1 bzw. P450Cm2 zwischen den GAL10-Promotor und den ADH1-Terminator integriert.

Als letzter Schritt erfolgt die Umklonierung der jeweiligen P450-Expressionseinheit in den Vektor YEp51 R unter Nutzung der Restriktionsorte Asc I und Not I.

3. Transformation von Saccharomyces cerevisiae, Kultivierung und Expression

Mit den für die heterologe Koexpression konstruierten Plasmiden wird der Stamm Saccharomyces cerevisiae GRF18 (α, his 3-11 his 3-15, leu 2-3, leu 2-112, can^r) nach der Methode von Keszenman-Pereyra und Hieda (Curr. Genet. 13 [1988] 21) transformiert. Die erhaltenen Transformanten werden in 500-ml-Schüttelkolben in Hefe-Mi-

DE 195 07 546 A1

nimalmedium (1,34% YNB- yeast nitrogen base) mit Zusätzen von 1 mg/l FeCl₃, 100 mg/l Histidin und 2% Raffinose bei einer Schüttelfrequenz von 240 rpm und einer Temperatur von 28—30°C kultiviert. Nach Erreichen einer Zellzahl von 0,5 bis 1,0 × 108 Zellen pro ml erfolgt durch die Zugabe von 2% Galactose die Induktion des GAL10-Promotors und somit die simultane Expression von P450 und Reduktase. Eine Erniedrigung der Schüttelfrequenz und somit eine Verringerung des Sauerstoff-Gehaltes der Kultur wirkt sich positiv sowohl auf den P450 als auch auf den Reduktase-Gehalt aus. Unter optimierten Kultivierungsbedingungen (semianaerobes Wachstum bei einer Schüttelfrequenz von ca. 60 bis 80 rpm) können für beide Komponenten des P450-Monooxygenase-Systems die in Tabelle 1 dargestellten Expressionsraten erreicht werden (Werte in Klammern).

Das angegebene Kultivierungsregime kann auch dahingehend modifiziert werden daß als kostengünstigere Kohlenstoffquelle Glucose verwendet wird (siehe Scheller et al., J. Biol. Chem. 269 [1994] 12779). Allerdings ist hierbei eine Induktion mit Galactose erst nach vollständigem Glucose-Verbrauch effektiv.

4. Bestimmung der Hydroxylaseaktivität der mikrosomalen Membranfraktionen

Zwecks Anreicherung von P450 und NADPH-Cytochrom P450 Reduktase in der mikrosomalen Membranfraktion wird zunächst die gewonnene Zell-Biomasse abzentrifugiert und daraus die mikrosomale Membranfraktion durch mechanischen Zellaufschluß im Homogenisator (Dyno-Mühle), differentielle Zentrifugation und anschließende Kalziumchloridfällung gewonnen. Der spezifische mikrosomale P450-bzw. Reduktase-Gehalt für die verschiedenen S. cerevisiae-Transformanten beträgt 260—760 pmol/mg Protein und ist in Tabelle 2 dargestellt.

Die katalytische Aktivität bei der Hydroxylierung von radioaktiv-markierter Laurinsäure (C12:0) und n-Hexadekan durch mikrosomales P450Cm1 und P450Cm2 wird in einem Kaliumphosphat-Puffersystem (200 mM, pH 7.4) bestimmt, welches jeweils 1 µmol des entsprechenden Substrates, 0.2—0.5 nmol mikrosomales P450 pro ml Reaktionsansatz und die Komponenten eines NADPH-regenerierenden Systems (MgCl₂, KCl, Glucose-6-phosphat und Glucose-6-phosphat-Dehydrogenase) beinhaltet. Die Enzymreaktion wird durch Zugabe von NADPH gestartet und je nach gewünschter Produktmenge/Produktprofil nach 5—30 minütiger Inkubation bei 30°C durch Zugabe von verdünnter Schwefelsäure gestoppt. Der Nachweis der durch Chloroform/Methanol-Extraktion gewonnenen und durch anschließende Dünnschicht-Chromatographie getrennten Produkte kann durch computergestützte Auswertung der Dünnschicht-Radiogramme in einem TLC-Linear-Analyzer-System erfolgen.

Gegenüber den mikrosomalen Membranfraktionen aus Transformanten, in denen P450Cm1 und P450Cm2 heterolog ohne den Redoxpartner Reduktase exprimiert wird, kann in den nach P450- und Reduktase-Koexpression gewonnenen Mikrosomen eine bis zu 20fache Steigerung der Laurinsäurehydroxylase-Aktivität und eine bis zu 10fache Erhöhung der n-Hexadekanhydroxylase-Aktivität gemessen werden. Wie aus Tabelle 2 ersichtlich, ist die Erhöhung der Reaktionsgeschwindigkeit auf ein optimiertes molares P450: Reduktase-Verhältnis zurückzuführen, welches bei Koexpression 1:3, bei Einzelexpression jedoch nur 32:1 (YEp51Cm1) bzw. 14:1 (YEp51Cm2) beträgt.

5. Biotransformation von Fettsäuren mittels intakter Hefezellen

Zu einem ml einer induzierten Zellkultur (S. cerevisiae transformiert mit Plasmid YEp51Cm2-R), deren P450-Gehalt 0,4 nmol beträgt, werden 200 nmol [1-14C]Laurinsäure (16,7 BMq/mmol) zugesetzt. Nach einer Inkubation von 20 min bzw. 1,5 h bei 30°C (unter Schütteln) erfolgt mittels Zentrifugation (3000 × g für 5 min) die Trennung von Zellpellet und wäßrigem Überstand. Anschließend erfolgt die Extraktion von Pellet und Überstand wie bei Sanglard und Loper (Gene 76 [1989] 121) beschrieben sowie die Analyse der gebildeten Produkte mittels Dünnschicht-Chromatografie (siehe Abb. 2). Die eingesetzte Gesamtmenge an Radioaktivität verteilt sich nach 20 min wie folgt: 35% Hydroxy-Laurinsäure, 15% Dodekandisäure und 50% Laurinsäure. 80% der gebildeten Produkte können im Überstand und 83% des verbliebenen Ausgangssubstrates im Zellpellet nachgewiesen werden.

Nach einer Reaktionszeit von 1,5 h wird ein vollständiger Umsatz der Laurinsäure erreicht. Als hauptsächliches Reaktionsprodukt tritt die Dodekandisäure auf.

Bei der Verwendung eines Kontrollstammes (Sachammyces cerevisiae GRF18 transformiert mit Ausgangsplasmid YEp51) können keine Reaktionsumsätze beobachtet werden.

55

50

40

15

60

65

S. cerevisiae transformiert mit Plasmid	Gebildete Enzyme	P450-Gehalta) (pmol x 10 ⁸ Zellen ⁻¹)	Cytochrom c- Reduktaseaktivitätb) . (nmol x mg ⁻¹ x min ⁻¹)	Molares Verhältnis P450 : Reduktase
YEp51Cm1	P450Cm1	169	29	35:1
YEp51Cm1-R	P450Cm1, Reduktase	68 [110]	1860 [2750]	1:4[1:4]
YEp51Cm2	P450Cm2	110	28	23:1
YEp51Cm2-R	P450Cm2, Reduktase	31 [79]	1830 [2840]	1:911:61

Die Werte in Klammern entsprechen den unter anaeroben Induktionsbedingungen gefundenen P450- bzw. Reduktase-Gehalten. a) Der P450-Gehalt wird durch CO-Differenzspektrum bestimmt (Mol. Extinktionskoeffizient = 91mM-1 x cm-1). b) Die Reduktaseaktivitäten werden mit den entsprechenden Zellhomogenaten ermittelt.

20 Tabelle 2. Einfluß der Reduktase-Koexpression auf mikrosomale Monoogygenaseaktivitäten. 25 30 **3**5 55

5

10

15

S. cerevisiae transformiert mit Plasmid	Mikrosomale Enzyme	P450-Gehalt (pmol x mg ⁻¹)	Cyt. c -Reduk- taseaktivität (nmol x mg x min-1)	Molares Ver- H hältnis von · P450: Redukt. (n	Hydroxyllerungsgeschwindigkeit für Laurinsäure und Hexadekan (nmol Produkt pro nmol P450 und min)	schwindigkeit nd Hexadekan ol P450 und mln)
YEp51 YEp51Cm1	 P450Cm1	n.n. a) 760	90 95	32:1	n.n. a) 0.35	n.n a) 4.1
YEp51Cm1-R	P450Cm1, Reduktase	260	3474	1:3[1:4]b)	6.7 [4.7]	35.0 [22]
YEp51Cm2	P450Cm2	340	86	14:1	2.2	1.3
YEp51Cm2-R	P450Cm2, Reduktase	273	. 3260	1:3[1:4] ^{b)}	39.3 [26.7]	13.0 [10]

a) n.n., nicht nachweisbar.

b) Werte in Klammern entsprechen Daten, die mit einem rekonstitulerten System erzielt sind.

Legenden

Abb. 1: Konstruktion von Plasmiden zur simultanen Expression von Cytochrom P450-Formen und der NADPH-Cytochrom P450-Reduktase. Jede der vollständigen P450-Expressionskassetten kann unter Nutzung der Restriktionsorte Asc I und Not I aus dem Vektor pUCBM21-P450 herausgespalten und in den Vektor YEp51R einligiert werden. Die angegebenen Restriktionsorte sind: A-Asc I, B-BamH I, N-Not I, S-Sal I.

Abb. 2: Dünnschicht-chromatografische Analyse des Produktmusters bei der Biotransformation von Laurinsäure mittels intakter Hefezellen. Die zur Transformation von Saccharomyces cerevisiae eingesetzten Plasmide sowie die Reaktionszeiten sind: YEp51 — 20 min (Spuren 1 und 2), YEp51Cm2-R — 20 min (Spuren 3 und 4), YEp51Cm2-R — 1,5 h (Spuren 5 und 6). Die Produktanalyse kann getrennt nach Zellpellet (Spuren 1, 3 und 5). und Überstand (Spuren 2, 4 und 6) erfolgen. A-[1-14C]Laurinsäure; B-[1-14C]Dodekandisäure; C-[1-14C]Hydroxy-Laurinsäure.

Patentansprüche

1. Verfahren zur Hydroxylierung von langkettigen Alkanen, Fettsäuren und anderen Alkylverbindungen, dadurch gekennzeichnet, daß die langkettigen Alkane, Fettsäuren oder anderen Alkylverbindungen mit Monooxygenase-Systemen, bestehend aus Cytochrom P450 und NADPH-Cytochrom P450-Reduktase, behandelt und die Hydroxylierungsprodukte abgetrennt werden.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß als Monooxygenase-System Cytochrom 20 P450-Formen der CYP52-Familie und Candida maltosa NADPH-Cytochrom P450-Reduktase eingesetzt

3. Verfahren nach Anspruch 1 und 2, dadurch gekennzeichnet, daß die Monooxygenase-Systeme in der Reaktionsmischung durch gleichzeitige Expression ihrer Bestandteile in Hefen, vorzugsweise in Saccharomyces cerevisiae, hergestellt werden.

4. Verfahren nach Anspruch 1-3, dadurch gekennzeichnet, daß die langkettigen Alkane in Zellhomogenaten von Saccharomyces umgesetzt werden.

5. Verfahren nach Anspruch 1-3, dadurch gekennzeichnet, daß die langkettigen Alkylverbindungen in Zellsuspensionen von Saccharomyces umgesetzt werden.

6. Verfahren nach Anspruch 1-5, dadurch gekennzeichnet, daß die langkettigen Alkane, Fettsäuren oder 30 anderen Alkylverbindungen den Zellhomogenaten bzw. -suspensionen in organischer, vorzugsweise alkoholischer Lösung zugesetzt werden.

7. Vektor zur gentechnischen Veränderung von Saccharomyces, aufbauend auf dem Grundgerüst Yep 51 und gekennzeichnet durch

- Reduktase cDNA zwischen den Restriktionsorten Sal I und BamH I

— und eine 2. Expressionskassette, einligiert in den Restriktionsort Nru I und bestehend aus dem GAL10-Promotor, der kodierenden Sequenz von Cytochrom P450 und dem ADH1-Terminator.

Hierzu 2 Seite(n) Zeichnungen

60

65

15

25

35

40

45

50

55

7

- Leerseite -

Numme Int. Cl.⁶:

Offenlegungstag:

DE 195 07 546 A1 C 12 N 15/81

12. September 1996

A66.1

DE 195 07 546 A1 C 12 N 15/8112. September 1996

Abb. 2