MATHEMATICS METHODS

MAWA Semester 1 (Unit 3) Examination 2020 Calculator-assumed

Marking Key

© MAWA, 2020

Licence Agreement

This examination is Copyright but may be freely used within the school that purchases this licence.

- The items that are contained in this examination are to be used solely in the school for which they are purchased.
- They are not to be shared in any manner with a school which has not purchased their own licence.
- The items and the solutions/marking keys are to be kept confidentially and not copied or made available to anyone who is not a teacher at the school. Teachers may give feedback to students in the form of showing them how the work is marked but students are not to retain a copy of the paper or marking guide until the agreed release date stipulated in the purchasing agreement/licence.

The release date for this exam and marking scheme is

June 12th the end of week 7 of term 2, 2020

Section One: Calculator-assumed

Question 8(a) (3 marks)

2

Solution	
$c = Ae^{-kt}$	
$t = 0, c = 0.03 \Rightarrow A = 0.03.$	
$t = 36.5, c = \frac{A}{2} \Rightarrow \frac{A}{2} e^{-k \times 36.5} \Rightarrow 0.5 = e^{-k \times 36.5} \Rightarrow k \approx 0.019.$	
Mathematical behaviours	Marks
uses initial condition to construct equation and solves for A	1
constructs equation related to half life	1
solves for k	1

Question 8(b) (2 marks)

Suestion o(p)	(Z IIIdiks)	
Solution		
For isotope B, $A = 0.02$.		
$0.5 = e^{-k \times 62.9} \Rightarrow k \approx 0.011.$		
Solving		
$0.02e^{-0.011} = 2 \times 0.03e^{-0.019t} \Rightarrow t \approx 137.3$		
Hence approximately 137 years from now.		
Mathematical behaviours	Marks	
states equation to be solved	1	
• solves for <i>t</i> and states time (in years)	1	

Question 9(a) (2 marks)

Solution

$$\frac{dP}{dt} = -5e^{-\frac{t}{5}} + K \Rightarrow P = 25e^{-\frac{t}{5}} + Kt + d$$

$$t = 0, P = 50 \Rightarrow 50 = 25e^{0} + d \Rightarrow d = 25$$

$$\therefore P = 25e^{-\frac{t}{5}} + Kt + 25$$
 as required.

Mathematical behaviours	Marks
anti-differentiates the derivative function correctly	1
uses the initial condition to find the constant of integration and deduces	
the required solution	1

Question 9(b) (4 marks)

Solution

(i)
$$K = 1, P = 25e^{-\frac{t}{5}} + t + 25$$

As $t \to \infty, P \to \infty$

i.e. population of infected people increases indefinitely

(ii)
$$K = 0, P = 25e^{-\frac{t}{5}} + t(0) + 25 = 25e^{-\frac{t}{5}} + 25$$

As $t \to \infty, P \to 25$

i.e. population of infected people stabilises to 25

Mathematical behaviours	Marks
 (i) recognises that when K = 1, and as t→∞, P→∞ ie population of infected people increases indefinitely 	1
 (ii) recognises that when K = 0 and as t→∞, P→ 25 ie population of infected people stabilises to 25 	1
(iii)	1

•	correct graph for $K=0$	1
•	correct graph for $K = 1$	

Question 9(c) (3 marks)

$$t = 1, P = 25 \Rightarrow 25 = 25e^{-\frac{1}{5}} + K + 25$$

$$K = -25e^{-\frac{1}{5}} \approx -20.4683$$

Hence, $P = 25e^{-\frac{t}{5}} - 20.4683t + 25$

From CAS, this is a decreasing function.

$$P = 0 \Rightarrow t = 2.0345$$

ie Population of infected people will reduce to zero after 2.0345 weeks

Mathematical behaviours	Marks
• uses $t = 1$ and $P = 25$ to find the correct value of K	1
• uses $P = 0$ to find the value of t	1
states a valid prediction	1

Question 10(a) (3 marks)

Solution

Area of triangle =
$$\frac{1}{2} \times x \times x \times \sin 60^{\circ} = \frac{\sqrt{3}x^2}{4}$$

Hence,

$$A = xy + \frac{\sqrt{3}x^2}{4}$$

$$= x \left(\frac{10 - 3x}{2} \right) + \frac{\sqrt{3}x^2}{4}$$

$$ie A = 5x - \frac{3x^2}{2} + \frac{\sqrt{3}x^2}{4} = \frac{(\sqrt{3} - 6)}{4}x^2 + 5x$$

$$y = \frac{10 - 3x}{2}$$

Mathematical behaviours	Marks
determines area of triangle as an exact value	1
states formula for total area in terms of <i>x</i>	1
clearly demonstrates rearrangement of formulae to achieve required	1
result.	

1

1

Question 10(b)

Question 11(a) (4 marks)

determines dx^2 or otherwise justifies maximum

calculates maximum area

Solution		
$\frac{1}{10} + b + \frac{1}{5} + \frac{1}{5} + \frac{2}{5} = 1 \Rightarrow b = \frac{1}{10}$		
$E(X) = 1 \times b + 3 \times \frac{1}{5} + 4 \times \frac{1}{5} + a \times \frac{2}{5} = 3.5$		
<i>ie</i> $\frac{1}{10} + \frac{3}{5} + \frac{4}{5} + \frac{2a}{5} = 3.5 \Rightarrow a = 5$		
Mathematical behaviours	Marks	
equates the sum of probabilities to 1	1	
• evaluates <i>b</i>	1	
• states expression for $E(X)$	1 1	
• evaluates <i>a</i>		

Question 11(b)

Solution		
(i)		
$\sigma^2 = \Sigma (x - \mu)^2 p(x) = (0 - 3.5)^2 (0.1) + (1 - 3.5)^2 (0.1) + (3 - 3.5)^2 (0.2) + (4 - 3.5)^2 (0.2)$		
$+(5-3.5)^2(0.4) = 2.85 \Rightarrow std \ dev = \sqrt{2.85} \approx 1.69$		
(ii)		
Standard deviation of $3-2X=2\times_{\text{standard deviation of }} X=2\times 1.69=3.38$		
Mathematical behaviours	Marks	
(i)		
states expression to determine the variance of <i>X</i>		
evaluates variance		

Mathematical behaviours	Marks
(i)	
states expression to determine the variance of <i>X</i>	1
evaluates variance	1
evaluates standard deviation	1
(ii)	
states correct result	1

Question 12(a) (2 marks)

Solution				
	h	а	a^h-1	
			h	
	0.1	2	0.7177	
	0.01	2	0.6956	
	0.001	2	0.6934	
	0.0001	2	0.6932	
Mathematical behaviours				Marks
completes two rows of the table correctly				1
• cor	completes all rows of the table correctly			

Question 12(b) (1 mark)

Solution $\lim_{h \to 0} \frac{2^h - 1}{h} = 0.693 \text{,correct to 3 decimal places.}$	
evaluates limit correctly	1

Question 12(c)

Solution		
(i)		
$\lim_{h \to 0} \frac{a^h - 1}{h} = 3 \Rightarrow a \approx 20.1$		
(ii)		
$\lim_{h \to 0} \frac{a^h - 1}{h} = 1 \Rightarrow a = e$		
Mathematical behaviours	Marks	
(i)		
states solution	1	
(ii)		
states exact solution	1	

Question 13(a) (1 mark)

Solution						
X	1	2	3	4		
у	2	$2\frac{1}{4}$	$3\frac{1}{9}$	$4\frac{1}{16}$		
		Mathen	natical			Marks
states all	three correct	values				1

Question 13(b) (4 marks)

Solution

(i)
$$= 2 + 2\frac{1}{4} + 3\frac{1}{9}$$
Area of lower rectangles
$$= \frac{265}{36}$$

(ii) Area of upper rectangles $=2\frac{1}{4}+3\frac{1}{9}+4\frac{1}{16}$ $=\frac{5428}{576}=\frac{1357}{144}$

Mathematical behaviours	Marks
(i)	
sums the correct rectangles	1
deduces correct result	1
(ii)	
sums the correct rectangles	1
evaluates correctly	1

CALCULATOR-ASSUMED SEMESTER 1 (UNIT 3) EXAMINATION (1 mark)

Question 13(c)

Solution		
Estimated area $=\frac{1}{2} \left[\frac{265}{36} + \frac{5428}{576} \right] \approx 8.39$		
Mathematical behaviours	Marks	
calculates the average of the lower and upper areas	1	

Question 13(d) (1 mark)

Solution	
$\int_{1}^{4} x + \frac{1}{x^2} dx = \frac{33}{4} = 8.25$ Area under the curve is	
Mathematical behaviours	Marks
states the correct answer	1

Question 14(a) (1 mark)

Solution	
Some people would read both digital and print. If these entries are summed the will be counted twice.	nose people
Mathematical behaviours	Marks
recognises that some people will read both forms of publication	1

Question 14(b) (2 marks)

Solution	
$P(\text{reading print media}) = \frac{6547000}{20289938} = 0.322 \approx 32\%$	
Mathematical behaviours	Marks
uses correct numerator	1
uses correct denominator and deduces result	1

Question 14(c) (3 marks)

Solution	
$X \sim Bin(10, 0.32)$	
$\mu = 10 \times 0.32 = 3.2$	
$\sigma^2 = 10 \times 0.32 \times 0.68 \approx 2.176$	
Mathematical behaviours	Marks
states Binomial	1
calculates mean	1
calculates variance	1

Question 14(d)

Solution	
(i) $P(X = 5) \approx 0.1229$ (ii)	
$P(X > 5) \approx 0.0637$	
(iii)	
$^{3}C_{1}(0.32)(0.68)^{2} \times (0.32) \approx 0.1420$	
Mathematical behaviours	Marks
(i) • states correct probability (ii)	1
 states appropriate probability expression calculates probability (iii) 	1 1
 states correct expression for first three outcomes states fourth outcome and calculates probability 	1 1

Question 14(e) (3 marks)

Solution

Let \overline{Y} be the random variable denoting the number of people in the 200 who read print media.

 $Y \sim Bin(200, 0.32)$

P(less than 75% do not read) = P(25% or more do read)

 $P(Y \ge 50) = 0.9874$

	Mathematical behaviours	Marks
•	changes parameter of distribution	1
•	states appropriate probability statement	1
•	evaluates	1

Question 15(a) (2 marks)

Solution	
$\frac{d}{dx}\left[\int_{0}^{x} f(t)dt + \int_{1}^{x} t^{3} f(t)dt\right]$	
$= \frac{d}{dx} \int_{0}^{x} f(t)dt + \frac{d}{dx} \int_{1}^{x} f^{3} f(t)dt$	
$= f(x) + x^3 f(x)$	
Mathematical behaviours	Marks
applies linearity for derivatives	1
 applies the Fundamental Theorem and evaluates, stating the correct 	
result	1

Question 15(b)

Solution	
$\int_{0}^{x} f(t)dt + \int_{1}^{x} t^{3} f(t)dt = x^{3} + \frac{1}{2}x^{6}$	
$\Rightarrow \frac{d}{dx} \left[\int_{0}^{x} f(t)dt + \int_{1}^{x} t^{3} f(t)dt \right] = \frac{d}{dx} \left[x^{3} + \frac{1}{2} x^{6} \right]$	
ie $f(x) + x^3 f(x) = 3x^2 + 3x^5$	
$ie f(x)(1+x^3) = 3x^2(1+x^3)$	
$ie \ f(x) = 3x^2$	
Mathematical behaviours	Marks
differentiates both sides of the equation (or applies result from part (a))	1
determines result	1

Question 16(a) (1 mark)

Solution	
$a = \frac{dv}{dt} = 0$	
Mathematical behaviours	Marks
states correct answer	1

Question 16(b) (1 mark)

Question 16(d) (1 mark)

Solution
Distance travelled after 12 seconds is 10+40+20+5 =75 m

11

CALCULATOR-ASSUMED SEMESTER 1 (UNIT 3) EXAMINATION

<u> </u>	., .,
Mathematical behaviours	Marks
states correct answer	1

Question 16(e) (1 mark)

Solution		
At $t=11$ both the velocity and the acceleration are negative hence the particle is speeding		
up.		
Mathematical behaviours Marks		
states the particle is speeding up	1	

Question 17(a) (2 marks)

Solution					
	y	0	1		
	P(<i>Y</i> = <i>y</i>)	$\frac{6}{10}$	$\frac{4}{10}$		
Mathematical behaviours					Mark
completes first probability correctly				1	
completes second probability correctly				1	

Question 17(b) (2 marks)

Solution	
4	
It is a Bernoulli distribution with mean = $\frac{10}{10}$.	
Mathematical behaviours	Marks
states the distribution name	1
states the mean	1

Question 17(c) (2 marks)

Solution	
X = 0.1 or 2	
Mathematical behaviours	Marks
states all values	1

Question 17(d) (1 mark)

Solution	
$P(X = 0) = P$ (not prime and not prime) $= \frac{6}{10} \times \frac{6}{10} = \frac{36}{100}$	
Mathematical behaviours	Mark
calculates probability	1

Question 17(e) (3 marks)

Solution	

CALCULATOR-ASSUMED SEMESTER 1 (UNIT 3) EXAMINATION

$P(X = 1) = \frac{4}{10} \times \frac{6}{10} + \frac{6}{10} \times \frac{4}{10} = \frac{48}{100}$	P(.
Hence $X=1$ is the most likely result.	

D(Y	-2)	_ 4	_~ 4	$=\frac{16}{100}$
I (A	-2)	10	$\overline{10}$	100

Tience A-1 is the most likely result.	
Mathematical behaviours	Mark
• calculates $P(X=1)$	1
• calculates $P(X=2)$	1
	1
states correct conclusion	

Question 17(f) (3 marks)

Solution

Let the random variable F represent the operator's financial position for each game.

f	-2	5
P(F = f)	52	48
` ' ' '	100	$\overline{100}$

$$E(F) = -2 \times \frac{52}{100} + 5 \times \frac{48}{100} = 1.36$$

Hence the operator will expect to make a profit of \$1.36 per game in the long term. With 500 contestants he will expect to make $500 \times 1.36 = 680$

	· · · · · · · · · · · · · · · · · · ·	
	Mathematical behaviours	Marks
•	determines expected value for 1 game	1
•	calculates gain for the day	1
•	states final outcome, with unit and explains	1

Question 17(g) (2 marks)

Solution

Let k be the charge to play the game.

f	(k-7)	k
P(F = f)	$\frac{52}{100}$	$\frac{48}{100}$

$$E(F) = (k - 7) \times \frac{52}{100} + k \times \frac{48}{100} = 0 \Rightarrow k - \frac{364}{100} = 0 \Rightarrow k = 3.64.$$

Hence the operator would need to charge \$3.64.

	Mathematical behaviours	Marks
•	constructs equation for expected value	1
•	solves equation to determine k	1

Solution

(i)

Question 18(a)

Since the maximum and minimum values are 14.5 and 9.5

$$a + b = 14.5$$
 and $a - b = 9.5 \Rightarrow a = 12$ and $b = 2.5$.

$$= \frac{14.5 + 9.5}{2} \Rightarrow a = 12$$
 mean line

and amplitude $=b = \frac{14.5 - 9.5}{2} = 2.5$

13

$$c = \frac{2\pi}{12} \approx 0.5236.$$

Since the period of the oscillation is 12,

(ii)

$$S = 12 + 2.5\cos(0.5236t + d),$$

$$\frac{dS}{dt} = -2.5 \times (0.5236) \sin(0.5236t + d)$$

$$\frac{dS}{dt} = 0 \Rightarrow \sin(0.5236t + d) = 0$$

Maximum at t = 11.7

$$\Rightarrow 0.5236 \times 11.7 + d = 2\pi$$

$$d \approx 0.1571$$

	Mathematical behaviours	Marks
(i)		
•	explains exactly one of a and b values	1
•	explains both a and b values	1
•	identifies the period to explain the value of c	1
(ii)		
•	differentiates correctly	1
•	equates to θ and equates angle to 2π	1
•	solves equation to determine d	1

Question 18(b) (1 mark)

Solution		
On April 30 th , $t = 4$		
$S = 12 + 2.5\cos(0.5236 \times 4 + 0.1571) \approx 10.4$ hours		
So we can expect 10.4 hours of sunlight on April 30 th .		
Mathematical behaviours	Marks	
states correct answer	1	

Question 18(c)

Solution

$$\int_{4}^{6} 12 + 2.5\cos(0.5236t + 0.1571) dt \approx 19.54$$

So average =
$$\frac{19.54}{2} \approx 9.77$$
.

So the average daily amount in May and June is 9.77 hours

	Mathematical behaviours	Marks
•	uses correct integral	1
•	 states solution 	1

Question 18(d) (3 marks)

Solution

$$S = 12 + 2.5\cos(0.5236t + 0.1571)$$

$$\frac{dS}{dt} = -2.5(0.5236)\sin(0.5236t + 0.1571)$$

Hence the maximum value of \overline{dt} is $2.5 \times 0.5236 \approx 1.31$ hours per month

$$\delta S \approx \frac{dS}{dt} \times \delta t$$

Using the increments formula

 $\delta S \approx \frac{dS}{dt} \times \delta t$, the maximum change in successive days is

$$1.31 \times \frac{1}{30}$$
 approximately 30 hours

i.e. 2.62 minutes (or 3 minutes to the nearest minute).

	Mathematical behaviours	Marks
•	identifies maximum value of $\frac{dS}{ds}$	1
	al	1
•	substitutes into increments formula correctly	1
•	states answer to the nearest minute	

Question 19(a) (3 marks)

Solution

$$A(m) = \int_{0}^{m} f(x) dx$$

represents the area bounded by the curve,

the line x = 0 and the line x = m.

 $1 - \sin \frac{x}{2} = 0$ The function is undefined at $m = \pi$ since area cannot be calculated

Question 19(b)

Solution	
$f(x) = g(x) \Rightarrow \frac{2}{1 - \sin\left(\frac{x}{2}\right)} = -(x - 2)^2 + 6$	Define $f(x) = \frac{2}{1-\sin\frac{x}{2}}$
⇒ <i>x</i> ≈1.4038193	done
Area= $\left[\int_{0}^{1.4038193} \left(-(x-2)^{2}+6\right) - \left(\frac{2}{1-\sin\left(\frac{x}{2}\right)}\right)\right] dx$	Define $g(x)=-(x-2)^2+6$ done solve($f(x)=g(x)$, x) $\{x=0, x=1.40381927\}$ $\int_{0}^{1.40381927} (g(x)-f(x)) dx$
$+ \int_{1.4038193}^{2} \left[\left(\frac{2}{1 - \sin\left(\frac{x}{2}\right)} \right) - \left(-(x-2)^{2} + 6 \right) \right] dx$ $= 1.2064 + 1.5059$	$ \begin{array}{c} 1.206378321 \\ \int_{1.40381927}^{2} (f(x)-g(x)) dx \\ 1.505938757 \\ 1.206378321+1.505938757 \end{array} $
=2.7123 ≈2.71	2.712317078
Mathematical behaviours	Marks

Mathematical behaviours	Marks
ullet determines point of intersection of f and g	1
states appropriate integral to determine first area	1
states appropriate integral to determine second area	1
evaluates one integral correctly	1
determines correct result to two decimal places	1

CALCULATOR-ASSUMED SEMESTER 1 (UNIT 3) EXAMINATION (3 marks)

Question 19(c)

