Lista 6

César A. Galvão - 1900 11572

Gabriela Carneiro - 180120816

João Vitor Vasconcelos - 170126064

Kevyn Andrade de Souza - 1900 15853

${\bf \acute{I}ndice}$

Questão 14	2
Questão 15	2
Método do Histograma	2
Estimação baseada em Núcleos	7
k-Vizinhos mais Próximos (KNN)	9
Questão 16	12
Questão 17	12

Questão 14

Estudar o pacote rsample em https://rsample.tidymodels.org/ e apresentar um exemplo utilizando validação cruzada e Bootstrap.

Questão 15

Selecionar ou gerar um conjunto de dados e comparar a classificação após estimação de densidades utilizando os seguintes métodos:

- 1. Método do Histograma
- 2. Estimação baseada em Núcleos
- 3. k-Vizinhos mais Próximos

Como nas notas de aula o exemplo usado para a classificação foi o conjunto de dados faithful, vamos usar o conjunto iris para comparar a classificação após estimação de densidades utilizando os métodos citados.

Método do Histograma

Com o método do histograma, pretende-se agregar $\mathbf{X} = \{X_1, \dots, X_n\}, X_i \stackrel{iid}{\sim} f(x)$ em intervalos da forma $[x_0, x_0 + h)$ e usar a frequência relativa de $\{x_n\}$ para aproximar a densidade f(x). A estimativa é feita por

$$f(x_0) = F'(x_0) = \lim_{h \to 0^+} \frac{F(x_0 + h) - F(x_0)}{h} = \lim_{h \to 0^+} \frac{P[x_0 < X < x_0 + h]}{h},\tag{1}$$

estabelecida a partir de uma origem t_0 e um comprimento (binwidth) h>0. O histograma é então construído contando o número de pontos em intervalos chamados de bins, definidos por $\{I_k: [t_k, t_{k+1}); t_k = t_0 + hk, k \in \mathcal{Z}\}$. O histograma de densidade no ponto x é definido como

$$\hat{f}_H(x; t_0, h) = \frac{1}{nh} \sum_{i=1}^n \mathbf{1}_{\{x_i \in I_k\}}.$$

Fica evidente a dependência em t_0 , que pode ser evitada com um estimador $na\"{i}ve$ dado por

$$f(x) = F'(x) = \lim_{h \to 0^+} \frac{F(x+h) - F(x-h)}{2h} = \lim_{h \to 0^+} \frac{P[x-h < X < x+h]}{2h}.$$

Dessa forma, o histograma no ponto x é definido como

$$\hat{f}_N(x;h) = \frac{1}{2nh} \sum_{i=1}^n \mathbf{1}_{\{x-h < X_i < x+h\}}.$$

Para comparação, vamos usar o pacote ggplot2 para gerar o histograma da variável Petal.Length do conjunto de dados iris, considerando h = 0, 2.

Figura 1: Histograma de Petal Length do conjunto de dados iris.

Os histogramas na Figura 2 foram criados manualmente com o mesmo binwidth, porém com origens variando entre $t_0=0$ e $t_0=1$ para ilustrar a limitação da dependência deste termo. Depreende-se portanto que está sendo usada a equação 1.

Figura 2: Histograma manual de Petal Length do conjunto de dados iris utilizando h=0,2.

Para a classificação, será determinada uma fronteira entre as espécies. Além disso, serão reservados pontos para treino e alguns para teste, que serão usados nos demais itens desta questão.

```
# iris com as variáveis selectionadas
iris2 <- iris %>% dplyr::select(Petal.Length, Petal.Width, Species)

# separação arbitrária de treino e teste
iris2 <- iris2 %>%
  mutate(partition = case_when(
    Petal.Length == 5.1 & Petal.Width %in% c(1.5, 1.6) ~ "teste",
    Petal.Length == 5 & Petal.Width %in% c(1.7, 1.5) ~ "teste",
    Petal.Length == 1.9 & Petal.Width == 0.4 ~ "teste",
    TRUE ~ "treino"
))
```

Os histogramas para cada espécie são estimados a seguir:

```
#setosa
hist_setosa <- iris2 %>%
  dplyr::filter(Species == "setosa", partition == "treino") %$%
  hist(Petal.Length, probability = T, breaks = bk1)

#virginica
hist_virginica <- iris2 %>%
  dplyr::filter(Species == "virginica", partition == "treino") %$%
  hist(Petal.Length, probability = T, breaks = bk1)
```

```
#versicolor
hist_versicolor <- iris2 %>%
  dplyr::filter(Species == "versicolor", partition == "treino") %$%
  hist(Petal.Length, probability = T, breaks = bk1)
```

Finalmente, são acessados os resultados dos histogramas para construir a Tabela 1 a seguir, em que apenas as bins com contagens superiores a zero são exibidas. As colunas da tabela correspondem ao valor inicial de cada bin, a contagem de observações, a densidade e a espécie.

Pode-se observar que a espécie Setosa está em uma região de comprimento de pétala bem separada das demais, então, para a classificação, basta verificar se uma nova observação se encontra na mesma região que as demais. Para as espécies Virginica e Versicolor, a separação não é tão clara, então é necessário adotar uma regra. Como a densidade do bin com início em 4.5 é maior para Versicolor e o inverso ocorre para o bin com início em 4.7, a fronteira entre esses bins será a regra de decisão. Isso implica em prováveis 2% de erro de classificação das Virgínica, quando se classifica em Versicolor, e 8.4% de erro de classificação das Versicolor, quando se classifica em Virginica.

```
options(knitr.kable.NA = '-')
#monta a tabela com dados dos histogramas
tibble(
 ti = hist_setosa$breaks[-34],
 cont.setosa = hist_setosa$counts,
 dens.setosa = hist_setosa$density,
 cont.virginica = hist_virginica$counts,
 dens.virginica = hist_virginica$density,
 cont.versicolor = hist_versicolor$counts,
 dens.versicolor = hist_versicolor$density
) %>%
  # seleciona linhas com valores maiores que zero
 dplyr::filter(if_any(-ti, ~ . > 0)) %>%
 # ajusta decimais para arrumar o tamanho da tabela
 mutate(across(everything(), ~ round(., 2)),
         across(everything(), ~ if_else(. == 0, NA, .))) %>%
  # gera tabela tex
 knitr::kable(
    align = "c"
```

Tabela 1: Histogramas de Petal Length do conjunto de dados iris.

ti	cont.setosa	dens.setosa	cont.virginica	dens.virginica	cont.versicolor	dens.versicolor
0.9	2	0.20	-	-	-	-
1.1	9	0.92	-	-	-	-
1.3	26	2.65	-	-	-	-
1.5	11	1.12	-	-	-	-

¹Erros calculados a partir da sobreposição dos histogramas, considerando a fronteira de decisão.

Tabela 1: Histogramas de Petal Length do conjunto de dados iris.

ti	cont.setosa	dens.setosa	cont.virginica	dens.virginica	cont.versicolor	dens.versicolor
1.7	1	0.10	-	-	-	
2.9	-	-	-	-	1	0.10
3.1	-	-	-	-	2	0.21
3.3	-	-	-	-	2	0.21
3.5	-	-	-	-	2	0.21
3.7	-	-	-	-	4	0.42
3.9	-	-	-	-	8	0.83
4.1	-	-	-	-	6	0.62
4.3	-	-	1	0.10	11	1.15
4.5	-	-	-	-	8	0.83
4.7	-	-	5	0.52	4	0.42
4.9	-	-	8	0.83	-	-
5.1	-	-	4	0.42	-	-
5.3	-	-	5	0.52	-	-
5.5	-	-	9	0.94	-	-
5.7	-	-	5	0.52	-	-
5.9	-	-	5	0.52	-	-
6.1	-	-	1	0.10	-	-
6.3	-	-	1	0.10	-	-
6.5	-	-	3	0.31	-	-
6.7	-	-	1	0.10	-	-

Em posse das regras de decisão, classifica-se os pontos de teste e se obtém a Tabela 2 a seguir.

```
iris2 %>%
  dplyr::filter(partition == "teste") %>%
  dplyr::select(-Petal.Width, -partition) %>%
  mutate(`Classificação` = c("setosa", rep("virginica", 4))) %>%
  knitr::kable(align = "cll")
```

Tabela 2: Classificação dos pontos de teste do conjunto de dados iris via histograma.

Petal.Length	Species	Classificação	
1.9	setosa	setosa	
5.0	versicolor	virginica	
5.1	versicolor	virginica	
5.0	virginica	virginica	
5.1	virginica	virginica	

Estimação baseada em Núcleos

Soliciona outro problema do Método do Histograma, que é a necessidade de se utilizar intervalos pequenos e n grande para se obter uma boa aproximação da densidade alvo. O estimador de densidade no caso univariado é dado por

$$\hat{f}(x;h) = \frac{1}{n} \sum_{i=1}^{n} k h(x - X_i),$$

enquanto no caso multivariado é dado por

$$\hat{f}(x;h) = \frac{1}{n|\mathbf{H}|^{1/2}} \sum_{i=1}^{n} k(\mathbf{H}^{-1/2}(\mathbf{x} - \mathbf{X}_i)).$$

Nas expressões k é o núcleo de uma função densidade arbitrária. Um problema que surge é a seleção do bandwidth h, que será demonstrado a seguir utilizando o pacote ks para a obtenção da matriz $\mathbf{H}_{p \times p}$ de intervalos².

A seguir é estimada a densidade conjunta para as variáveis Petal.Length e Petal.Width com o conjunto de teste, seguida da Figura 3 ilustrando-a. Os pontos de cor azul correspondem aos pontos de teste.

```
# obtenção da matriz H
He <- iris2 %>%
    dplyr::filter(partition == "treino") %>%
    dplyr::select(Petal.Length, Petal.Width) %>%
    ks::Hpi()

# kernel density estimation com a H estimada
kdeHe <- iris2 %>%
    dplyr::filter(partition == "treino") %>%
    dplyr::select(Petal.Length, Petal.Width) %>%
    ks::kde(., H=He)
```

²Para o caso unidimensional, i.e. p = 1, $\mathbf{H} = h^2$.

```
points(kdeHe$x, col = alpha("black", 0.3))
points(pteste, col = "blue", pch = 8)
```


Figura 3: Densidade estimada do conjunto de dados de treino iris para comprimento e largura da pétala.

Como a classificação da espécia Setosa é novamente óbvia, apenas a classificação para as demais espécies será feita. As densidades para Virgínica e Versicolor são estimadas a seguir.

```
# H versicolor
He_versi <- iris2 %>%
  dplyr::filter(partition == "treino", Species == "versicolor") %>%
  dplyr::select(Petal.Length, Petal.Width) %>%
  ks::Hpi()
# kde versi
kdeHe_versi <- iris2 %>%
  dplyr::filter(partition == "treino", Species == "versicolor") %>%
  dplyr::select(Petal.Length, Petal.Width) %>%
  ks::kde(., H=He_versi)
# H virginica
He_virg <- iris2 %>%
  dplyr::filter(partition == "treino", Species == "virginica") %>%
  dplyr::select(Petal.Length, Petal.Width) %>%
  ks::Hpi()
# kde virginica
```

```
kdeHe_virg <- iris2 %>%
  dplyr::filter(partition == "treino", Species == "virginica") %>%
  dplyr::select(Petal.Length, Petal.Width) %>%
  ks::kde(., H=He_virg)
```

Os valores das densidades para os pontos de teste são dados na Tabela 3 a seguir, assim como as suas classificações.

Tabela 3: Classificação dos pontos de teste com densidades estimadas para Virgínica e Versicolor.

Petal.Length	Petal.Width	Species	dens.versi	dens.virg	Classificação
5.0	1.7	versicolor	0.27	0.46	virginica
5.1	1.6	versicolor	0.45	0.15	versicolor
5.0	1.5	virginica	0.84	0.04	versicolor
5.1	1.5	virginica	0.42	0.04	versicolor

k-Vizinhos mais Próximos (KNN)

O método de k-vizinhos mais próximos (k nearest neighbors) pretende classificar um determinado ponto \mathbf{x}_0 a partir dos k pontos mais próximos. A classificação é dada em função da menor distância euclidiana entre \mathbf{x}_0 e os pontos de treinamento e, se houver empate, a escolha é feita aleatoriamente. Enquanto há muitas medidas de distância possíveis, a mais comum é a distância euclidiana, dada por

$$d(\mathbf{x}_i, \mathbf{x}_0) = \sqrt{\sum_{l=1}^{p} (x_{il} - x_{0l})^2} = ||\mathbf{x}_i - \mathbf{x}_0||_2.$$

A Figura 4 apresenta um gráfico de dispersão do conjunto de dados em função das variáveis de interesse, no qual as cores indicam a espécie e as formas indicam a partição de treino ou teste. As unidades de teste foram selecionadas de forma arbitrária visando ilustrar as limitações desse método.

Enquanto é esperado que o ponto de teste de espécie Setosa seja classificado corretamente, não se pode esperar uma classificação correta dos pontos de teste de espécie Versicolor e Virginica, visto que estão numa fronteira difusa entre os grupos.

Figura 4: Gráfico de dispersão do conjunto de dados iris.

A Tabela 4 apresenta a espécie real dos pontos de teste, bem como a classificação utilizando os 3 e cinco vizinhos mais próximos (knn = 3 e knn = 5 respectivamente). O comportamento é exatamente o esperado.

```
treino <- iris2 %>% filter(partition == "treino")
teste <- iris2 %>% filter(partition == "teste")
```

```
knn3 \leftarrow knn(train = treino[, c(1,2)],
   test = teste[, c(1,2)],
    cl = treino$Species,
    k = 3)
knn5 \leftarrow knn(train = treino[, c(1,2)],
    test = teste[, c(1,2)],
    cl = treino$Species,
    k = 5)
data.frame(
  teste$Species,
  knn3,
  knn5
) %>%
  knitr::kable(
    col.names = c("Espécie real", "k = 3", "k = 5")
  )
```

Tabela 4: Classificação dos pontos de teste do conjunto de dados iris.

Espécie real	k = 3	k = 5
setosa versicolor versicolor virginica	setosa virginica versicolor versicolor	setosa virginica virginica versicolor
virginica	versicolor	virginica

Finalmente, projeta-se a classificação dos pontos de acordo com os dois algoritmos KNN utilizados na Figura 5. O conjunto completo é exibido no gráfico central da segunda linha.

Figura 5: Classificação dos pontos de teste do conjunto de dados iris.

Questão 16

Estudar o pacote ks do R e apresentar um exemplo.

Questão 17

Apresentar um exemplo com classificador LDA e QDA.

Como auxiliar, será definido um método <code>is_cov</code>, para garantir que as matrizes de variância-covariância (que serão geradas aleatoriamente) satisfazem as condições necessárias. Será definida também uma

função que calcula a acurácia de um modelo.

```
is_cov <- function(Sigma) {</pre>
  is_square <- nrow(Sigma) == ncol(Sigma)</pre>
  is_symmetric <- all(t(Sigma) == Sigma)</pre>
  positive_diag <- all(diag(Sigma) > 0)
  eigen_greater_zero <- all(with(eigen(Sigma), values) > 0)
  cov_smaller_than_sds <- TRUE</pre>
  for (row in 1:p) {
    for (col in row:p) {
      cov smaller than sds <- cov smaller than sds & (
        abs(Sigma[row, col]) <= sqrt(Sigma[row, row] * Sigma[col, col])
    }
  }
  all(
    is_square, is_symmetric, positive_diag,
    cov_smaller_than_sds, eigen_greater_zero
  )
accuracy <- function(model, data, response) {</pre>
  prediction <- predict(model, data)$class</pre>
  round(sum(prediction == response) / length(response), 3)
}
```

Em seguida, será criada uma matriz de variâncias-covariâncias, a partir da qual será criada uma normal multivariada. Essa matriz será multiplicada pela sua transposta, de modo que satisfaça as condições necessárias para ser uma matriz de variância-covariância.

```
p <- 3
set.seed(exp(1))
Sigma <- rnorm(p ^ 2) %>%
    matrix(p, p) %>%
    (function(mat) t(mat) %*% mat)
round(Sigma, 3)
```

```
[,1] [,2] [,3]
[1,] 3.360 1.209 2.472
```

```
[2,] 1.209 1.302 -0.518

[3,] 2.472 -0.518 4.497

is_cov(Sigma)
```

[1] TRUE

Criando os dados, com mesma variância e vetores de média diferentes (também gerados aleatoriamente), teremos:

```
muA \leftarrow rnorm(p, mean = -2)
muB \leftarrow rnorm(p, mean = 0)
nA <- 169
nB <- 196
linear <- rbind(</pre>
    MASS::mvrnorm(n = nA, mu = muA, Sigma = Sigma) %>%
      as_tibble() %>%
     cbind(Grupo = "A"),
    MASS::mvrnorm(n = nB, mu = muB, Sigma = Sigma) %>%
      as_tibble() %>%
      cbind(Grupo = "B")
)
pct80 <- as.integer(.8 * nrow(linear))</pre>
rows_train <- c(rep(TRUE, pct80), rep(FALSE, nrow(linear) - pct80)) %>%
  sample()
train_linear <- linear %>%
  filter(rows_train)
test_linear <- linear %>%
  filter(!rows_train)
chart.Correlation(train_linear %>% dplyr::select(V1:V3))
```


Figura 6: Correlações e histogramas das variáveis explicativas.

```
with(train_linear, pairs(
  train_linear %>% dplyr::select(V1:V3),
  col = with(train_linear, c(A = "black", B = "pink")[Grupo]),
  upper.panel = function(...) {}
))
                                  -5
                                       -3
                    V1
                                                                           9
                                         V2
         7
         5
                                                              V3
                                                                           ရ
                     -2
                        0
                            2
                                                      -6
                                                           -2 0
                                                                2
                                                                    4
```

Figura 7: Gráficos de dispersão das variáveis explicativas com marcadores por classes linearmente separáveis.

Como esperado, muitos dados estão espalhados e em regiões sobrepostas, com várias delas correlacionadas, o que dá indícios da possibilidade de rotações.

A biblioteca MASS possui um comando pré-implementado que ajusta um LDA.

A principal forma de se definir o modelo é:

- formula: Sintaxe de fórmula análoga a qualquer outra modelagem em R.
- data: Dados a partir dos quais os coeficientes da fórmula serão ajustados. O argumento é opcional, caso cada elemento da fórmula esteja individualmente definido.

Existe também uma forma alternativa não muito usual:

- x: Conjunto de dados com variáveis explicativas;
- grouping: Variável resposta contendo as categorias a serem previstas.

O método também permite selecionar as probabilidades de cada classe, métodos de estimação e se o modelo será treinado com validação cruzada ou não. Por padrão, ele não utiliza validação cruzada.

Ajustando três LDAs com apenas duas variáveis cada (e todos os argumentos default), obtemos:

```
incomplete_ldas <- list(</pre>
  V1V2 = lda(Grupo ~ V1 + V2, train_linear),
  V2V3 = lda(Grupo ~ V2 + V3, train_linear),
  V1V3 = lda(Grupo ~ V1 + V3, train_linear)
with(incomplete_ldas, V1V2)
Call:
lda(Grupo ~ V1 + V2, data = train_linear)
Prior probabilities of groups:
        Α
0.4486301 0.5513699
Group means:
          ۷1
A -2.1953259 -1.737232
B -0.4581957 -1.152510
Coefficients of linear discriminants:
          LD1
V1 0.54269666
V2 0.01850085
```

O resultado do método mostra a probabilidade de ocorrência de cada grupo (quando não definido manualmente, é utilizada a probabilidade nos dados), assim como a média e os coeficientes dos discriminantes. É possível plotar os resultados assim:

Figura 8: Histogramas dos LDAs ajustados com duas variáveis explicativas.

Testando a acurácia com apenas duas variáveis explicativas, se obtém:

```
for (mdl in names(incomplete_ldas)) paste(
   "Acurácia:", mdl, accuracy(
   incomplete_ldas[[mdl]],
   test_linear,
   with(test_linear, Grupo)), '\n'
) %>%
   cat()

Acurácia: V1V2 0.589
Acurácia: V2V3 0.671
Acurácia: V1V3 0.644

(lda_full <- lda(Grupo ~ V1 + V2 + V3, train_linear))</pre>
```

Acurácia: 0.904

Com apenas duas variáveis, nenhum dos classificadores atinge acurácia maior que 70%. Utilizando as três, o resultado ultrapassa 90% de acurácia.

Ajustando um modelo QDA para os mesmos dados (que não é o uso mais adequado da técnica, uma vez que as variâncias são iguais e eles são linearmente separáveis), o resultado é:

```
paste("Acurácia:", accuracy(
   qda(Grupo ~ V1 + V2 + V3, train_linear),
   test_linear, with(test_linear, Grupo))
) %>%
   cat()
```

Acurácia: 0.89

Que é um resultado inferior ao modelo LDA completo.

Para uma implementação do QDA, os grupos serão modificados a partir dos mesmos dados, forçando que a separação não-linear seja mais adequada que uma separação linear. Os resultados são expostos a seguir.

```
nonlinear <- linear %>%
  mutate(
    Grupo = ifelse(
        (
            abs(V1 ^ 2 * rgamma(n(), 3) * V3 - V2 ^ 3) >
```

```
mean(-V1 + V2 - V3) / 2 + rnorm(n(), 10)
),
    "A", "B"
)

train_nonlinear <- nonlinear %>%
    filter(rows_train)

test_nonlinear <- nonlinear %>%
    filter(!rows_train)

with(train_nonlinear, pairs(
    train_nonlinear %>% dplyr::select(V1:V3),
    col = with(train_nonlinear, c(A = "black", B = "pink")[Grupo]),
    upper.panel = function(...) {}
))
```


Figura 9: Gráficos de dispersão das variáveis explicativas com marcadores por classes não-linearmente separáveis.

Se observa, em todas as variáveis, regiões curvadas onde seria possível estabelecer limites de classificação. Ainda há algum nível de confusão entre as regiões, de forma que a separçaão não é perfeita.

Ajustando um QDA com as variáveis nessa estrutura, obtemos:

```
incomplete_qdas <- list(
  V1V2 = qda(Grupo ~ V1 + V2, train_linear),</pre>
```

```
V2V3 = qda(Grupo ~ V2 + V3, train_linear),
V1V3 = qda(Grupo ~ V1 + V3, train_linear)
)

for (mdl in names(incomplete_qdas)) paste(
   "Acurácia:", mdl, accuracy(
   incomplete_qdas[[mdl]],
   test_nonlinear,
   with(test_nonlinear, Grupo)), '\n'
) %>%
   cat()
```

Acurácia: V1V2 0.795 Acurácia: V2V3 0.767 Acurácia: V1V3 0.671

```
paste(
  "Acurácia:", accuracy(
    qda(Grupo ~ V1 + V2 + V3, train_nonlinear),
    test_nonlinear,
    with(test_nonlinear, Grupo)), '\n'
) %>%
  cat()
```

Acurácia: 0.932

Para estes dados, uma das classificações com duas variáveis (V1 com V2) já chegou a uma acurácia próxima de 80%. Utilizando as três, mais de 93% dos pontos são classificados corretamente.

Ajustando um LDA para os dados não-lineares, a título de comparação, se obtém:

```
accuracy(
  lda(Grupo ~ V1 + V2 + V3, train_nonlinear),
  test_nonlinear, with(test_nonlinear, Grupo)
)
```

[1] 0.767

Que é uma precisão mais baixa que a precisão do QDA, como esperado pelo fato de a aplicação LDA não ser o uso mais adequado do método para esses dados.

Apesar disso, mesmo não sendo o uso mais adequado, o ajuste LDA ainda acertou mais de 75% das classificações.