$ALGORITMOS\ E\ ESTRUTURAS\ DE\ DADOS\ III$ - Anotações de aula

$\rm fpk07@c3sl.ufpr.br$

15/12/2010

Sumário

1	Introdução	1
2	Árvores	1
3	Árvores binárias de Busca3.1 Links de referência para estudo3.2 Árvores binárias quase completas3.3 Árvore completa3.4 Árvores binárias: Inserção3.5 Árvores binárias: Remoção	1 1 2 3 3 3
4	Árvores AVL 4.1 Links de referência para estudo 4.2 Inserção e remoção 4.3 Rebalanceamento	4 4 4
5	Árvore B 5.1 Busca em Árvore B 5.2 Inserção em Árvore B 5.3 Remoção em Árvore B	4 7 7 9
6	Árvore Trie:	10
7	Trie n-aria:	12
8	Trie existencial:	12
9	Trie Ternária 9.1 Inserção na ternária:	12 13
10	Неар	15
11	Ordenação externa 11.1 Intercalação balanceada de vários caminhos	18 18 18
12	Hash12.1 Tratamento de colisões12.2 Funções Hash	19 19
13	Compressão de dados 13.1 Codificação de Huffman	20 20 23
14	Árvore B+	24
15	Método de Acesso Sequencial Indexado (ISAM)	2 5
16	Árvore Patrícia	2 6

17 .	Árvore Rubro-Negra	27
-	17.1 Rubro-negra semelhante a 2-3-4	28
-	17.2	29

1 Introdução

Essa apostila tem como finalidade ajudar os alunos de ALG III do curso B.C.C. da UFPR. Os capítulos não seguirão o fluxo das aulas ministradas em ALG III, contudo abrangerão todos os temas cobrados em prova e dados em aula. Essa apostila foi baseada nas aulas da turma 2010-2-B.

Essa apostila tem ênfase em dar dicas de estudo e comenta dicas importantes para bom andamento do estudo; A maior parte do conteúdo será referenciado em apostilas e applets.

IMPORTANTE: O autor não se responsabiliza por nenhuma questão respondida erroneamente ou informação errada. A apostila sempre estará aberta a sugestões e modificações. É responsabilidade do leitor verificar TODAS as respostas em bons livros, principalmente nos das referências de estudo que os professores passam. Wikipedia e sites semelhantes, embora contenham boa fonte de conteúdo com qualidade, não podem ser usados no meio acadêmico como qualquer tipo de referência.

2 Árvores

Algumas definições importantes:

- Pai: Um nó que possui descendentes (filhos);
- Filho: Descendentes de alguém bem óbvio; :)
- Avô/tio: óbvios;
- Nós: São os nós que podem ou não conter as chaves (dados);
- Raíz: Nó extremo superior da árvore;
- Folhas: extremos inferiores da árvore;
- Nível: Começa em 0 (zero) na raíz;
- Altura: Nível máximo;

3 Árvores binárias de Busca

Cada pai possui dois filhos, o esquerdo e o direito.

3.1 Links de referência para estudo

- Árvores binárias
- Inserção: Java Applet
- Remoção

3.2 Árvores binárias quase completas

É uma árvore no qual todas as folhas estão no nível d ou d-1. Se um nodo na árvore tem algum descendente direito no nível d, então todos os nodos esquerdos desse nodo direita também estão no nível d.

Para facilitar o entendimento, imagine que nessa árvore você só tem dois níveis incompletos: o último e o penúltimo. O que você deve verificar é se no último nível é o seguinte: procure for uma folha que esteja a mais direita possível; Verifique agora se a esquerda dela todas as folhas (no mesmo nível dela) existem. Se existem, então esta é uma árvore quase completa.

Uma árvore binária quase completa pode ser usada para representar expressões aritméticas.

Figura 1: Cable 1

3.3 Árvore completa

É uma árvore em que todas as folhas estão no nível d (último nível). Essa é uma árvore "cheia". Possui 2(h-1) nós; De uma maneira mais simples, todos os nós que são

Figura 2: Cable 1

3.4 Árvores binárias: Inserção

Quando você insere o primeiro elemento, ele passa a ser a raíz da nova árvore binária; Na próxima inserção, ela verifica se existe uma raíz e se ela existe, verifica se esse novo elemento é maior ou menor que a raíz. Se for maior, você sobe um nível à esquerda da raíz, ou, se menor, sobe um nível à direita da raiz.

Será muito mais fácil entender isso inserindo a seguinte sequência no link de referência para estudo. Insira, no applet citado, a sequência abaixo e procure entender como funciona na prática. 50, 65, 63, 45, 47, 71, 55 e 46

3.5 Árvores binárias: Remoção

O mais importante aqui é manter um padrão de remoção; Escolha um deles e use sempre o mesmo; Você, quando remover um nó qualquer, X por exemplo, você deve substituí-lo pelo nó de maior nível e mais a esquerda do filho direito de X. Ou você pode escolher o nó direito de maior nível e mais a esquerda do filho esquerdo de X. Se o nó X não tem filhos, não faça nada.

Difícil de entender? Olhe os desenhos dos links de referência para estudo. :)

4 Árvores AVL

O grande problema das árvores binárias de busca é que, embora elas sejam estruturas mais eficientes que listas, no pior caso elas podem virar uma lista; Suas alturas também costumam ser grandes, com pouco aproveitamento dos diversos níveis que ela pode ter.

Dica: Insira, em uma árvore binária de busca, a seguinte sequência: 1, 2, 3, 4 e 5. Você terá uma árvore no formato de lista, o que é ineficiente; A grande sacada das árvores AVL é prover uma técnica que faça o balanceamento da árvore binária de busca, aproveitando melhor sua estrutura.

4.1 Links de referência para estudo

• Árvores AVL: o básico

Árvores AVL: Inserção, remoção etc

• Árvores AVL: Rebalanceamento

Inserção na AVL, applet Java

• Remoção na AVL

4.2 Inserção e remoção

Igual as árvores binárias de busca. Só deve-se tomar cuidado com o balanceamento dos nós.

4.3 Rebalanceamento

Após inserirmos ou removermos um nó, poderemos desbalancear a árvore AVL. Aqui entra a ideia do Fator de Balanceamento (FB); Não pretendo explicá-lo com detalhes (leia os links de referência), mas você deve saber cálculá-lo, e bem.

Exemplo de cálculo: Escolha um nó qualquer (X, por exemplo) e verifique quantos nós ele tem a partir do seu filho direito até a folha, no maior caminho possível até essa folha. Faça a mesma coisa com o filho esquerdo. Agora subtraia-os. Pronto, o valor obtido é o valor do FB.

IMPORTANTE: Sempre assuma uma regra de subtração e continue com ela para sempre, desde que exercício não diga o contrário; Por exemplo: Escolho sempre subtrair a quantidade de nós do filho direito da quantidade de nós do filho esquerdo. Sempre fazendo da mesma maneira, não tem erro.

A árvore está desbalanceada sempre que você encontrar um —FB— ; 1; O FB pode ser qualquer valor dentro do conjunto dos inteiros, mas acima de 1, do módulo de FB, indica um desbalanceamento. Exemplos: FB=-2, FB=3 etc indicam uma árvore desbalanceada. FB=1, FB=-1 e FB=0 não indicam desbalanceamento.

Rotações serão necessárias para corrigir o desbalanceamento, uma para cada caso; Os links de referência explicam muito bem, então deixo essa responsabilidade a eles, contudo é MUITO IMPORTANTE que nunca você continue inserindo se a árvore ficar desbalanceada. Se ela ficar faça o rebalanceamento e SOMENTE DEPOIS DE BALANCEADA continue inserindo ou removendo.

5 Árvore B

Links usados como referência:

• http://www.lcad.icmc.usp.br/ nonato/ED/B_arvore/btree.htm

Usada para indexar páginas em um disco rígido. A memória principal é dividida em "molduras de páginas" e cada moldura contém exatamente uma página.

Algumas características da Árvore B:

- Generalização da árvore 2-3-4;
- Todos os caminhos da raíz a folha tem o mesmo comprimento;
- Os blocos de chaves são organizados para estarem pelo menos meio cheios até cheios;
- Um bloco tem n chaves e n+1 ponteiros:
- Existe um número máximo e mínimo de filhos em um nó. Este número pode ser descrito em termos de um inteiro fixo t maior ou igual a 2 chamado grau mínimo;

- Todo o nó diferente da raiz deve possuir pelo menos t-1 chaves. Todo o nó interno diferente da raiz deve possuir pelo menos t filhos. Se a árvore não é vazia, então a raiz possui pelo menos uma chave;
- Todo o nó pode conter no máximo 2t 1 chaves. Logo um nó interno pode ter no máximo 2t filhos. Dizemos que um nó é cheio se ele contém 2t 1 chaves;
- A árvore B mais simples ocorre quando t=2. Neste caso todo o nó diferente da raíz possui 2, 3 ou 4 filhos. Esta árvore também é conhecida por árvore 2-3-4.
- A altura máxima de um nó é $\log_{-t}((n+1)/2)$;
- Dizemos que uma árvore B é de ordem n quando n representa o número máximo de filhos de um nó, exceto a raiz. Por exemplo, uma árvore B de ordem 4 pode conter no máximo oito e no mínimo quatro filhos em cada nó. Porém a palavra "ordem" é usada de formas diferentes pelos autores, podendo indicar o número máximo de chaves em cada nó, ou até mesmo a ocupação mínima em cada nó.

Exemplo de um nodo de grau t=2:

Figura 3: Cable 1

Exemplo de um nodo:

Figura 4: Cable 1

5.1 Busca em Árvore B

A busca em uma árvore B é uma função parecida com a de busca em uma árvore de busca binária, exceto o fato de que se deve decidir entre vários caminhos. Como as chaves estão ordenadas, basta realizar uma busca binária nos elementos de cada nó. Isso levará tempo $O(\lg(t))$. Se a chave não for encontrada no nó em questão, continua-se a busca nos filhos deste nó, realizando-se novamente a busca binária. Caso o nó não esteja contido na árvore a busca terminará ao encontrar um ponteiro igual a NULL, ou de forma equivalente, verificando-se que o nó é uma folha. A busca completa pode ser realizada em tempo $O(\lg(t)\log t(n))$.

5.2 Inserção em Árvore B

Para inserir um novo elemento em uma árvore B, basta localizar o nó folha X onde o novo elemento deva ser inserido. Se o nó X estiver cheio, será necessário realizar uma subdivisão de nós que consiste em passar o elemento mediano de X para seu pai e subdividir X em dois novos nós com t - 1 elementos e depois inserir a nova chave.

Figura 5: Cable 1

Se o pai de X também estiver cheio, repete-se recursivamente a subdivisão acima para o pai de X. No pior caso terá que aumentar a altura da árvore B para poder inserir o novo elemento. Note que diferentemente das árvores binárias, as árvores B crescem para cima. A figura abaixo ilustra a inclusão de novos elementos em uma árvore B com t=3.

Figura 6: Cable 1

Mais um exemplo de inserção:

Figura 7: Cable 1

5.3 Remoção em Árvore B

A remoção de um elemento de uma árvore B pode ser dividida em dois casos:

- 1. O elemento que será removido está em uma folha;
- 2. O elemento que será removido está em um nó interno;

Se o elemento estiver sendo removido de um nó não folha, seu sucessor, que deve estar em uma folha, será movido para a posição eliminada e o processo de eliminação procede como se o elemento sucessor fosse removido do nó folha. Quando um elemento for removido de uma folha X e o número de elementos no nó folha diminui para menos que t -1, deve-se reorganizar a árvore B. A solução mais simples é analisarmos os irmãos da direita ou esquerda de X. Se um dos irmãos (da direita ou esquerda) de X possui mais de t - 1 elementos, a chave k do pai que separa os irmãos pode ser incluída no nó X e a última ou primeira chave do irmão (última se o irmão for da esquerda e primeira se o irmão for da direita) pode ser inserida no pai no lugar de k.

Figura 8: Cable 1

Se os dois irmãos de X contiverem exatamente t - 1 elementos (ocupação mínima), nenhum elemento poderá ser emprestado. Neste caso, o nó X e um de seus irmãos são concatenados em um único nó que também contém a chave separadora do pai.

Figura 9: Cable 1

Se o pai também contiver apenas t - 1 elementos, deve-se considerar os irmãos do pai como no caso anterior e proceder recursivamente. No pior caso, quando todos os ancestrais de um nó e seus irmãos contiverem exatamente t - 1 elementos, uma chave será tomada da raiz e no caso da raiz possuir apenas um elemento a árvore B sofrerá uma redução de altura.

A figura abaixo ilustra a remoção de elementos em uma árvore B com t=3.

Figura 10: Cable 1

6 Árvore Trie:

Vatangens sobre as árvores binárias:

- A busca é mais rápida;
- Árvore Trie requer menos espaço quando contém um grande número de cadeias curtas, porque as chaves não são armazenadas de forma explícita e os nodos das chaves iniciais comuns são compartilhados.

Informações importantes sobre a árvore Trie:

- Similar as árvores de busca digitais, mas mantém as chaves em ordem e armazena chaves somente nas folhas;
- Definição: Uma trie é uma árvore binária que possui chaves associadas aos nodos folhas e definida recursivamente da seguinte forma:
 - 1. A trie para um conjunto vazio de chaves é apenas um apontador NULL;
 - 2. A trie para apenas uma chave é composta apenas por um nodo folha que contém esta chave;
 - 3. A trie para um conjunto de chaves maior que um é composta por um nodo interno, sendo o filho esquerdo uma trie contendo chaves cujo bit inicial é 0 e o filho direito uma trie contendo chaves cujo bit inicial é 1. O primeiro bit é então removido para a construção das subarvores direita e esquerda.
 - 4. Se isso tudo não ficou muito claro, fique tranquilo e continue lendo essa apostila...

Algumas características das árvores Tries:

- Chaves só nas folhas;
- Mantém árvore em ordem;
- Independe da ordem de inserção: Uma única Trie para determinadas chaves.

As Tries são boas para suportar tarefas de tratamento lexicográfico, tais como:

- Manuseamento de dicionários;
- Pesquisas em textos de grande dimensão;
- Construção de índices de documentos;
- Expressões regulares (padrões de pesquisa).

Cada chave é codificado por uma certa quantidade de bits. Por exemplo:

A 00001

S 10011

E 00101

R 10010

C 00011

H 01000

I 01001

N 01110

G 00111

X 11000

M 01101

P 10000 L 01100

A inserção se dá justamente analisando esses bits.

Se quisessemos inserir A, a raíz seria a novo com a chave A. Ao inserirmos S, devemos localizar qual bit diferencia A de S. Nesse caso, teríamos:

Figura 11: Cable 1

Observe que A foi para a esquerda, pois o bit que o diferencia de S é o bit zero. Como o bit zero de A é zero, ele vai para a esquerda. Como o bit zero de S é 1, ele vai para a direita.

Agora se inseríssemos E, observe que ele só se diferencia de A no bit número 2, então teríamos:

Figura 12: Cable 1

Observe que E vai para a direita porque seu bit dois é 1 e A para a esquerda porque seu bit dois é 0. E assim por diante nós construímos uma árvore Trie.

Problema das árvores Tries: Requer a criação de múltiplos nodos quando as chaves diferem apenas nos bits no final da chave. Solução: Árvore Patrícia.

7 Trie n-aria:

Generalizacao de tries, na qual chaves sao codificadas em uma base qualquer, não necessariamente binária.

Uma trie n-aria possui chaves armazenadas nas folhas. Ela é definida da seguinte forma: uma trie para um conjunto vazio de chaves corresponde ao apontador nulo; Uma trie com uma única chave corresponde a uma folha contendo esta chave; Uma trie com cardinalidade maior que um é um nodo interno com apontadores referentes a trie com chaves começando com cada um dos digitos possíveis, com este digito desconsiderado na construção das subarvores.

Exemplo: Números na base decimal com 5 digitos

```
39646
39555 \ \(2) \(3) 44477 \(5) ....
21745 21745 23745 ....\(9)
23745 39646 39555
44477
```

Figura 13: Cable 1

8 Trie existencial:

Não guarda informação sobre o registro, apenas se uma determinada chave está presente ou não na trie (n-aria). Uma trie existencial para um conjunto de chaves é definida da seguinte forma: uma trie para um conjunto vazio de chaves corresponde ao apontador nulo; Uma trie para um conjunto não vazio de chaves corresponde a um nodo interno com apontadores para nodos filhos contendo valores para cada valor de dígito possível. Nestas subárvores o primeiro digito é removido para sua construção, de forma recursiva.

9 Trie Ternária

Similar as árvores de busca binárias, mas que utiliza caracteres (dígitos) como chave do nodo. Cada nodo tem 3 apontadores: para chaves que comecam com o digito menor que o corrente, iguais e maiores.

Características:

- Tempo de busca: tamanho da chave;
- Número de links: no máximo 3 vezes o tamanho total do conjunto de chaves.

Vantagens da árvore:

- Adapta-se as irregularidades (desbalanceamento dos caracteres que parecem) nas chaves de pesquisa;
- Não dependem da quantidade de digitos (caracteres) possíveis;
- Quando a chave n\(\tilde{a}\) est\(\tilde{a}\) armazenada na \(\tilde{a}\)rvore, a quantidade de d\(\tilde{g}\)itos comparados tende a ser pequena (mesmo quando a chave de busca \(\tilde{e}\) longa);
- Ela é flexível:
 - Pode ser usada para obter chaves que casam com digitos específicos da chave de pesquisa;
 - Pode ser usada para obter chaves que diferem em no máximo uma posição da chave de pesquisa;
 - Árvore Patrícia oferece vantagens similares, mas comparando bits ao inves de bytes.

Uma vantagem em relação a árvore existencial: Sem dependências em relação ao alfabeto. Um problema: De acordo com a forma da inserção, ela poderá ter um forte desbalanceamento.

9.1 Inserção na ternária:

Inserindo a palavra CASA:

Figura 14: Cable 1

Apenas para a primeira palavra denotarei os ponteiros: esquerda, meio e direita. Esquerdo para quando a chave for menor, meio para quando a chave casou com a chave do nodo, e direita para quando for maior.

Agora a palavra BELA:

Figura 15: Cable 1

Agora a palavra CARA:

Figura 16: Cable 1

Observe que ele andou por: C, A e quando chegou em S, como R é menor que S, vai a esquerda de S.

Agora a palavra RUA:

Figura 17: Cable 1

Agora a palavra CASAMENTO:

Figura 18: Cable 1

Note que para separar duas palavras diferentes (CASA e CASAMENTO), haverá um nodo "." sempre ao final de cada palara.

Infelizmente antes do ponto que separa "MENTO" de "CASA" o A ficou um pouquinho a esquerda, apenas um erro gráfico. Ele deveria estar abaixo de S.

Melhoramentos possíveis para essa árvore:

- 1. Como a maioria dos nodos proximos das folhas possuem apenas um único filho, utilizar a mesma ideia das árvores trie n-arias de manter a chave na folha no nível que a distingue das demais chaves. Isso tornará a árvore *independente* do tamanho das chaves;
- 2. Utilizar a ideia das árvore Patricia de manter as chaves nos nodos internos, usando os apontadores "para cima";
- 3. Usar um vetor com N elementos, um para cada dígito possível somente na raiz (busca similar a um catálogo telefônico). O objetivo é diminuir a altura da árvore e o número de comparações em uma busca.

10 Heap

Existem dois tipos de heaps:

- 1. Os heaps de máximo (max heap), em que o valor de todos os nós são menores que os de seus respectivos pais;
- 2. E os heaps de mínimo (min heap), em que o valor todos os nós são maiores que os de seus respectivos pais.

Assim, em um heap de máximo, o maior valor do conjunto está na raíz da árvore, enquanto no heap de mínimo a raíz armazena o menor valor existente.

A árvore binária do heap deve estar completa até pelo menos seu penúltimo nível e, se o seu último nível não estiver completo, todos os nós do último nível deverão estar agrupados à esquerda.

Exemplo de uma Heap sort máximo a partir de um vetor desordenado:

Primeiro inserimos o vetor na Heap (esquerda para a direita, de cima para baixo). Depois passamos a identificar os problemas. Na heap maxima, todos os filhos devem ser menor que seus pais, e não maiores.

Veja que 16 é maior que 1 e além disso 14 e 8 são maiores que 2:

Figura 19: Cable 1

Note ainda que 3 é menor que 9 e 10. Permutamos 14 e 2 para resolver o problema anterior (vamos resolvendo de baixo pra cima). Permutamos sempre o filho maior com o nodo pai (por isso escolhemos 14 e não 8).

Figura 20: Cable 1

Subimos o 10 no lugar do 3. Pronto, essa subárvore ficou arrumada.

Figura 21: Cable 1

Agora subimos 16, para que ele seja pai de 14 e 1. Como 1 será menor que 7, já aproveitamos e baixamos 1 e subimos 7. Observe agora que 4 é maior que seus dois filhos. Então subimos 16 para o lugar de 4 e 14 para o seu lugar. Mas onde irá parar 4? Como 14 subiu para o local anterior de 16, 8 ficará no local anterior de 14 e, portanto, 4 tomará o local anterior de 8. Pronto, a max heap está pronta.

Figura 22: Cable 1

Figura 23: Cable 1

Embora o custo do heapsort seja o mesmo do quicksort, na prática o quicksort em geral é mais rápido. Mas uma das aplicações para o heap é a implementação de uma lista de prioridades.

Que tal agora construir um vetor na ordem decrescente? Vá removendo as raízes! Por exemplo: Remova o 16 e guarde em v[0]. Arrume a heap. Guarde 14 em v[1]. Arrume a heap. E assim até que a heap não mais tenha nodos.

E como inserir na heap? Insira como se fosse uma árvore binária. Depois vá arrumando de acordo com sua heap (max ou min) de baixo para cima.

11 Ordenação externa

Necessária quando a quantidade a ser ordenada não cabe na memória principal.

Algumas considerações:

- O custo para acessar um item é algumas ordens de grandeza maior que o os custos de processamento na memória interna. Assim, o custo de um algoritmo de ordenação externa considera apenas a quantidade de leituras e escritas em memória secundaria, ignorando o custo de processamento em memória principal;
- Podem existir restrições quanto ao acesso aos dados (sequencial/randômico);
- O desenvolvimento de algoritmos é muito dependente do estado atual da tecnologia.

Estratégia principal para ordenação: 2 passos:

- 1. A primeira passada sobre o arquivo quebrando em blocos do tamanho da memória interna disponível. Cada bloco é ordenado na memória interna;
- 2. Os blocos ordenados são intercalados, fazendo várias passadas sobre o arquivo até que ele esteja completamente ordenado.

Entrada:

- N registros para serem ordenados;
- Espaço em memória principal para armazenar M registros;
- 2P dispositivos externos.

11.1 Intercalação balanceada de vários caminhos

Exemplo: INTERCALACAOBALANCEADA (n=22)

Considerando M=3 (3 registros) e P=3 (intercalação de 3 caminhos).

Etapa 1: O arquivo é lido do dispositivo 0 de 3 em 3 (M) registros e armazenados em blocos de 3 nos dispositivos P a 2P-1

Resultado: N/M blocos de M registros ordenados (22/3)

Etapa 2: Intercalação dos blocos ordenados, escrevendo o resultado nos dispositivos 0 a P-1, repetindo até que todos os registros estejam ordenados.

/textbfNúmero de passos: $1 + \log_P (N/M)$ Exemplo: N (numero de registros) = 1.000.000.000, M (espaco para M registros)=1.000.000 e P=3 (3 caminhos): Precisa de apenas 9 passos ($1 + \log_3 (1.000.000.000/1.000.000)$

11.2 Seleção por substituição

- A implementação do método de intercalação balanceada pode ser realizada utilizando filas de prioridades;
- As duas fases do método podem ser implementadas de forma eficiente e elegante;
- Operações básicas para formar blocos ordenados: Obter o menor dentre os registros presentes na memória interna. Substituí-lo pelo próximo registro da fita de entrada;
- Estrutura ideal para implementar as operações: heap.
- Operação de substituição: Retirar o menor item da fila de prioridades; Colocar um novo item no seu lugar.
 Reconstituir a propriedade do heap.

Objetivo: Obtenção de sequências maiores que M no primeiro passo utilizando uma lista de prioridades.

Para números randômicos, o tamanho da sequência gerada é, em média, igual a 2M.

Exemplo com heap size = 3: O heap pode também ser utilizado para fazer as intercalações, mas só é vantajoso quando a quantidade de blocos gerados na primeira fase for grande (maior ou igual a 8). Neste caso, será necessário log_2(8) comparações para obter o menor elemento.

12 Hash

O que é endereçamento direto? Se eu quero endereçar [0,n] chaves, então alocar um vetor de n+1 posições. Problema: n pode ser muito grande e a minha busca por n provavelmente sairá caro.

Motivação da hashing: Através de uma função posso calcular um local para armazenar minha chave em minha estrutura. Problema: Podem haver colisões de dados (a função f pode gerar dois endereços iguais para chaves diferentes).

A função hash ideal é aquela que é simples de ser computada e oferece a menor quantidade de colisões possível.

12.1 Tratamento de colisões

Enderecamento fechado: Lista encadeada:

Dada uma função Hash, se ocorre uma colisão, as chaves são inseridas em uma lista encadeada naquela posição da estrutura usada. E assim toda colisão para aquela posição, inserirá linearmente a chave naquela lista encadeada. Obviamente que essa lista poderá inclusive ser maior que a sua própria estrutura de armazenamento, não sendo a melhor opção para vários casos.

Endereçamento aberto: Hash linear e duplo.

O Hash Linear consiste em:

- Exemplo: $h(k,i) = (h'(k) + i) \mod m$
- Dada uma função Hash, ocorre uma colisão;
- Se ocorreu uma colisão, o algoritmo irá procurar o próximo endereço livre da sua estrutura e usá-lo para guardar a chave que colidiu;
- Problema: Agrupamento de endereços ocupados. Se numa busca você tiver de procurar essa chave e não encontrála na resposta da sua função Hash, então você terá de fazer uma busca linear a partir do endereço resultado da sua função Hash;

O Hash duplo consiste em:

- Exemplo: $h(k,i) = (h1(k) + i*h2(k)) \mod m$
- Utiliza-se duas funções de Hash para resolver a colisão;
- Se a primeira função Hash colide, utilizamos então a segunda função.
- Se a segunda função colide, basta incrementar uma variável (no exemplo, i) que fará um deslocamento simples computacionalmente e que, se bem feita, poderá garantir que a sequência de endereços dada a uma chave pela função de hash dupla será diferente de outras chaves que colidiriam já na primeira função, diminuindo a possibilidade de novas colisões;
- Exemplo prático: m=13; $h1(k) = k \mod 13$, $h2(k) = 1 + (k \mod 11)$, sendo k uma chave m um número primo (um primo não próximo da uma potência de dois).

12.2 Funções Hash

Segue alguns tipos de funções Hash.

Método da divisão:

 $\bullet \ h(k) = k \ mod \ m,$ sendo k a chave e m um número primo não próximo a uma potência de dois.

Método da multiplicação:

- h(k) = floor(m * (k*A mod 1), sendo m um número primo não próximo a uma potência de dois, k uma chave e A uma constante que varia entre 0 e 1;
- Vantagem: Método não muito dependente de m.

Hashing Universal:

- Escolha de uma função Hash randomicamente que seja independente do valor da chave;
- Algoritmo poderá ter comportantemente distinto em cada execução e nem sempre há como prever se será uma função Hash bem espalhada em seus resultados ou não.

13 Compressão de dados

Motivação: comprimir dados hehehe...

13.1 Codificação de Huffman

Ideia de Huffman: Códigos menores são gerados para caracteres que aparecem no texto com maior frequência. Entendase por códigos as representações das palavras em binário.

Um preview de uma condificação de Huffman resolvida:

Figura 24: Cable 1

Vou explicar esse preview passo-a-passo de tal maneira que resolver a codificação e a decodificação seja como tirar doce de criança (ok, nem sempre é tão fácil tirar o doce de um pivete).

Agora devemos pegar nosso texto a ser comprimido e analisar as tuplas (LETRA,FREQUENCIA DAS LETRAS). Exemplo: (A,22), ou seja, há 22 caracteres "A"). Devemos conhecer quais são as letras mais usadas e as menos usadas. Lembre-se que espaço também é caracter. O ignorarei aqui.

Figura 25: Cable 1

Basicamente devemos começar pegando as duas letras com menores frequências e criando uma árvore cujo único nodo é a raíz, e essa raíz contém a soma das frequências dessas letras.

Figura 26: Cable 1

Para continuar, devemos agora somar os dois outros caracteres com menor frequência.

Importante: Se somar o conteúdo de duas raízes, sendo uma delas a de uma árvore já existente, e for menor que qualquer outra possibilidade de soma, faça sempre a menor soma possível.

Figura 27: Cable 1

Figura 28: Cable 1

Figura 29: Cable 1

Terminamos com duas árvores, agora basta somar as suas raízes e obteremos a árvore de huffman já previamente apresentada.

13.2 Codificação de Huffman

E conhecemos a codificação dos caracteres:

A é representado por 10 (olhe a árvore de Huffman, veja que A está no caminho 10 (uma vez a esquerda e outra vez a direita).

B: 011, C: 110, D: 111, E: 00, R: 010.

Você está achando que é loucura decifrar a mensagem? É fácil, muito fácil. Pegue o primeiro bit da sua mensagem e percorra a árvore de huffman desde a raíz. Quando você cair em uma folha, BAM, você decodificou um caractere. Parece mágica? Parece impossível? É a árvore de Huffman! :)

14 Árvore B+

Ideia: separar nodos de indice de nodos de dados

- Nodos internos contem apenas índices;
- Todos os registros estão nas folhas (sem a necessidade de apontadores);
- Os nodos folha são encadeados (para facilitar a busca ordenada de valores);
- pode ter um grau distinto para nodos índice e folha.

Objetivos:

- Acesso sequencial mais eficiente;
- Facilitar o acesso concorrente as dados.

Acesso concorrente:

- Podem ocorrer problemas se um processo estiver lendo a estrutura e outro inserindo uma nova chave que causa divisão de um nodo;
- Uma pagina é segura se não houver possibilidade de mudança na estrutura da árvore devido a inserção ou remoção na pagina;
- Inserção: Página é segura se número de chaves for menor que 2t-1;
- Remoção: Página é segura de número de chave for maior que t-1.

Protocolo de bloqueio:

- lock-R : bloqueio para leitura;
- lock-W: bloqueio exclusivo para escrita.

Leitura:

- 1. lock-R(raiz)
- 2. read(raiz) e torne-a pagina corrente
- 3. enquanto página corrente não for folha
- 4. lock-R(descendente)
- 5. unlock(pag corrente)
- 6. read(descendente) e torne-a página corrente

Atualização:

- 1. lock-W(raiz)
- 2. read(raiz) e torne-a página corrente
- 3. enquanto pag. corrente não for folha
- 4. lock-W(descendente)
- 5. read(descedente) e torne-a paginal corrente
- 6. se página corrente for segura
- 7. unlock(p) para todos os nodos p antecedentes que tenham sido bloqueados

15 Método de Acesso Sequencial Indexado (ISAM)

Características:

- Parecido com o arvore B+, mas utiliza paginas de overflow;
- ullet Há uma previsão inicial da quantidade de registros do arquivo, deixando cerca de 20% das paginas inicialmente livres;
- vantagem: Não há necessidade de bloqueio nas páginas de índice;
- $\bullet\,$ desvantagem: pode haver um "desequilíbrio" da quantidade de registros em cada intervalo.

16 Árvore Patrícia

Links para estudo:

• Patrícia e árvores digitais

17 Árvore Rubro-Negra

Links para estudo:

- Rubro-Negra I
- Buscas balanceadas: avl, rubro-negra etce

Algumas informações importantes:

- Ela é complexa, mas apresenta um bom pior-caso e o tempo de execução para as suas operações é eficiente na prática (busca, inserção e remoção em tempo O(logn));
- Usada para implementar vetores associativos;
- Tem estrutura similiar a uma árvore 2-3-4 e pode ser permutada para uma árvore 2-3-4. Note que a arvore 2-3-4 é mais genérica. Podemos a pártir de uma árvore rubro negra ter mais de um tipo de árvore B;
- ALtura máxima: $2*\log(n+1)$;

17.1 Rubro-negra semelhante a 2-3-4

Uma árvore rubro-negra tem estrutura similar a uma árvore B de ordem 4, onde cada nó pode conter de 1 até 3 valores e (consequentemente) entre 2 e 4 ponteiros para filhos. Nesta árvore B, cada nó contem apenas um valor associado ao valor de um nó negro da árvore rubro-negra, com um valor opcional antes e/ou depois dele no mesmo nó. Estes valores opcionais são equivalentes a um nós vermelhos na árvore rubro-negra.

Uma maneira de visualizar esta equivalência é "subir" com os nós vermelhos na representação gráfica da árvore rubro-negra de modo a alinhá-los horizontalmente com seus pais negros, assim criando uma lista de nós na horizontal. Tanto na árvore B quanto na representação modificada da árvore rubro-negra, todos as folhas estão no mesmo nível.

Entretanto, esta árvore B é mais geral que uma árvore rubro-negra, já que a árvore B pode ser convertida de mais de uma maneira em uma árvore rubro-negra. Se a lista de valores de um nó da árvore B contém somente 1 valor, então esse valor corresponde a um nó negro com dois filhos. Se a lista contém 3 valores, então o valor central corresponde a um nó negro e os outros dois valores correspondem a filhos vermelhos. Se a lista contém 2 valores, então podemos fazer qualquer um dos valores negro e o outro valor corresponde a seu filho vermelho.

Figura 30: Cable 1

Figura 31: Cable 1