CLUSTERING

Algorithms Used in Clustering:

- 1. Affinity Propagation
- 2. DBSCAN
- 3. HDBSCAN
- 4. Mean Shift
- 5. Spectral
- 6. Optics
- 7. BIRCH

- Affinity Propagation is a clustering method that groups similar data points together.
- Unlike other methods like K-Means it doesn't need you to set the number of clusters.
- Instead it figures out the number of clusters on its own.
- It allows data points to communicate with each other by sending messages.
- These messages help them decide which points should act as leaders.

Flow Diagram for Affinity Propagation

Sending responsibilities

Data point i

Sending availabilities

Data point i

Estimated number of clusters: 3

- from sklearn.cluster import AffinityPropagation clustering = AffinityPropagation().fit(x) clustering
-]: clustering.labels_

- ■DBSCAN is a density-based clustering algorithm that groups data points that are closely packed together and marks outliers as noise based on their density in the feature space.
- It identifies clusters as dense regions in the data space separated by areas of lower density.
- Key Parameters : Epsilon(eps), MinPts

DBSCAN works by categorizing data points into three types:

- Core points which have a sufficient number of neighbors within a specified radius (eplison)
- Border points which are near core points but lack enough neighbors to be core points themselves
- Noise points which do not belong to any cluster.

Steps involved:

- Identify Core Points
- Form Clusters
- Density Connectivity
- Label Noise Points

DBScan Clustering


```
from sklearn.preprocessing import StandardScaler
sc= StandardScaler()
x = sc.fit_transform(x)

from sklearn.cluster import DBSCAN
dbscan = DBSCAN(eps=0.5,min_samples=5)
y_dbscan = dbscan.fit_predict(x)
```

```
# plot
plt.figure(figsize=(8,6))
plt.scatter(x[:, 0], x[:, 1], c=y_dbscan, cmap="viridis", s=50, alpha=0.7)
# Highlight outliers (label = -1)
outliers = (y dbscan == -1)
plt.scatter(x[outliers, 0], x[outliers, 1],c="red", s=50, alpha=0.9, label="Outliers
plt.title("DBSCAN Clustering (Mall Customers)")
plt.xlabel("Annual Income (scaled)")
plt.ylabel("Spending Score (scaled)")
plt.legend()
plt.show()
```


Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN)

- HDBSCAN is a <u>clustering</u> algorithm that is designed to uncover clusters in datasets based on the density distribution of data points.
- Unlike some other clustering methods, it doesn't requires specifying the number of clusters in advance, making it more adaptable to different datasets.
- ► It uses high-density regions to identify clusters and views isolated or low-density points as noise.
- ► HDBSCAN is especially helpful for datasets with complex structures or varying.
- ► Important Parameters: 'min_cluster_size', 'min_samples', 'cluster_selection_epsilon', 'metric', 'cluster_selection_method', 'alpha, 'gen_min_span_tree, metric_params, algorithm, core_distance_n_jobs, allow_single_cluster

Libraries used:

The necessary libraries that includes <u>numpy</u>, <u>matplolib</u>, hdbscan and metrics like <u>silhouette_score</u>, <u>adjusted rand index</u> for evaluating the metrics.

Differences between DB & HDB:

- **♣** Automatic cluster Discovery
- Handling Cluster Shapes
- Robust to noise and outliers
- **S**calability

No Cluster Definition

Density and Noise Handling

Hierarchical Clusters

Anomaly Detection

HDBSCAN Clustering Benefits

Disadvantages:

- Computationally Intensive
- Sensitive to Distance metric
- **P**arameter Sensitivity

- Mean-shift clustering is a non-parametric, density-based clustering algorithm that can be used to identify clusters in a dataset.
- The basic idea behind mean-shift clustering is to shift each data point towards the mode (i.e., the highest density) of the distribution of points within a certain radius.
- The algorithm iteratively performs these shifts until the points converge to a local maximum of the density function. These local maxima represent the clusters in the data.

Process of mean-shift clustering algorithm

Mean Shift Clustering Process

- It doesn't requires number of cluster to be specified.
- It doesn't make any assumptions about distribution of data.
- Model-free, doesn't assume any prior shape like spherical, elliptical, etc. on data clusters

- Output depends on window size
- Computationally (relatively) expensive (approx 2s/image)
- Doesn't scale well with dimension of


```
from sklearn.preprocessing import StandardScaler
 sc= StandardScaler()
 x scaler = sc.fit transform(x)
 from sklearn.cluster import MeanShift
 ms = MeanShift()
 y ms = ms.fit predict(x scaler)
# Plot clusters
plt.figure(figsize=(8,6))
plt.scatter(x_scaler[:,0], x_scaler[:,1], c=y_ms, cmap='plasma', s=50, alpha=0.7)
# Plot cluster centers
plt.scatter(ms.cluster centers [:,0], ms.cluster centers [:,1],
            c='red', marker='X', s=200, label='Cluster Centers')
plt.title("Mean Shift Clustering (Mall Customers)")
plt.xlabel("Annual Income (scaled)")
                                                     Mean Shift Clustering (Mall Customers)
plt.ylabel("Spending Score (scaled)")
                                                                         Cluster Centers
plt.legend()
plt.show()
                                           1.5
                                         Spending Score (scaled)
                                          0.0
                                          -1.0
                                          -1.5
                                          -2.0
```

-1

Annual Income (scaled)

OPTICS (Ordering Points To Identify the Clustering

- Structure)
 •OPTICS (Ordering Points To Identify the Clustering Structure) is a density-based clustering algorithm similar to **DBSCAN** clustering.
 - Unlike DBSCAN which struggles with varying densities.
 - OPTICS does not directly assign clusters but instead creates a reachability plot which visually represents clusters.

Reachability Plot

- A reachability plot is a graph that helps visualize clustering structures.
- It shows the reachability distance of each point in the dataset. It makes it ordered way based on how OPTICS processes them.

Key concepts in OPTICS:

- Core Distance Minimum distance needed for a point
- Reachability Distance It is a measure of how difficult it is to reach from one point to another

OPTICS Algorithm Process

Determine points with sufficient neighbors Calculate distances to nearest core points Find points on the edge of clusters

Identify points not belonging to any cluster Visualize the reachability distances

OPTICS Clustering Overview

OPTICS Clustering

Pros

Cons

o o No cluster count

Varying densities

Noise detection

Diverse shapes

Reachability plots

High computation

Distance sensitivity

Large data issues

Parameter tuning

j: from sklearn.cluster import OPTICS optics = OPTICS(min_samples=5, xi=0.05, min_cluster_size=0.05) y_optics = optics.fit_predict(x_scaler)

```
# Plot clusters
plt.figure(figsize=(8,6))
plt.scatter(x_scaler[:,0], x_scaler[:,1], c=y_optics, cmap='viridis', s=50, alpha=0.7)

# Highlight outliers (label = -1)
outliers = (y_optics == -1)
plt.scatter(x_scaler[outliers,0], x_scaler[outliers,1], c='red', s=50, alpha=0.7, label='Outliers')

plt.title("OPTICS Clustering (Mall Customers)")
plt.xlabel("Annual Income")
plt.ylabel("Spending Score")
plt.legend()
plt.show()
```


- BIRCH is a clustering algorithm that can cluster large datasets by first generating a small and compact summary of the large dataset that retains as much information as possible.
- This smaller summary is then clustered instead of clustering the larger dataset.
- BIRCH is often used to complement other clustering algorithms by creating a summary of the dataset that the other clustering algorithm can now use.

Drawback:

■ BIRCH has one major drawback - it can only process metric attributes.

Two important terms:

- Clustering Feature (CF): BIRCH summarizes large datasets into smaller, dense regions called Clustering Feature (CF) entries.
- **CF** − **Tree** : A CF tree is a tree where each leaf node contains a sub-cluster.

Parameters of BIRCH Algorithm:

- 1. Threshold
- 2. branching_factor
- 3. n_clusters

BIRCH Algorithm Process:

First Stage

Initial Scanning

Second Stage

Tree Condensing (optional)

Third Stage

Global Clustering

Forth Stage

Clustering Refinement (optional)


```
from sklearn.cluster import Birch
 birch = Birch(n clusters =4)
 y birch = birch.fit predict(x scaler)
# Plot clusters
plt.figure(figsize=(8,6))
plt.scatter(x_scaler[:,0], x_scaler[:,1], c=y_birch, cmap='viridis', s=50, alpha=0.7)
# Subclusters plot
if hasattr(birch, 'subcluster_centers_'): #hasattr = allows us to check whether it has specific attributes or not.
    plt.scatter(birch.subcluster_centers [:,0], birch.subcluster_centers [:,1], c='red', marker='X', s=200, label='Cluster_Centers [:,0]
plt.title("BIRCH Clustering (Mall Customers)")
plt.xlabel("Annual Income")
plt.ylabel("Spending Score")
plt.legend()
plt.show()
                                                                               Cluster Centers
                      Spending Score
                        -0.5
                        -1.0
                        -1.5
                        -2.0
                                                       Annual Income
```


- Gaussian Mixture Model is a probabilistic model that assumes all data points are generated from a mixture of several Gaussian distributions with unknown parameters.
- GMMs perform soft clustering meaning each data point belongs to multiple clusters with certain probabilities.
- **Each** Gaussian in the mixture is defined by:
 - **Mean** (μ): The center of the distribution.
 - Covariance (Σ): Describes the spread and orientation.
 - Mixing coefficient (π): Represents the proportion of each Gaussian in the mixture.

- Gaussian works in two main steps:
 - i) Expectation Step (E-step): In this step the algorithm calculates the probability that each data point belongs to each cluster based on the current parameter estimates (mean, covariance, mixing coefficients).
 - ii) Maximization Step (M-step): After estimating the probabilities the algorithm updates the parameters (mean, covariance and mixing coefficients) to better fit the data.

Simple breakdown of the GMM process:

- **Initialization Start** with initial guesses
- **E-step** calculate the probability of each cluster.
- **► M-step -** Update the parameters.
- Repeat Continue alternating between the E-step and M-step

Gaussian Mixture Model Process

Each distribution defined by mean and covariance

Iterative process to estimate parameters

Covariance and Weights

Define shape and contribution of each Gaussian

Unified Applications of Gaussian Mixture Models


```
from sklearn.mixture import GaussianMixture
gmm = GaussianMixture(n_components=4, random_state=42)
y_gmm = gmm.fit_predict(x_scaler)
```

```
# Plot clusters
plt.figure(figsize=(8,6))
plt.scatter(x_scaler[:,0], x_scaler[:,1], c=y_gmm, cmap='coolwarm', s=50, alpha=0.7)
# Highlight Cluster centers
plt.scatter(gmm.means_[:,0], gmm.means_[:,1], c='red', marker='X', s=200, label='Cluster Centers')
plt.title("GMM Clustering (Mall Customers)")
plt.xlabel("Annual Income")
plt.ylabel("Spending Score")
plt.legend()
plt.show()
```


- Fuzzy Clustering also known as soft clustering, is a type of unsupervised machine learning that allows data points belonging to multiple clusters with varying degrees of membership.
- It assigns membership values between 0 and 1 for every cluster.
- It indicates the degree to which a data points belongs to a particular cluster.

Unlike traditional clustering (like K-Means) where each data points belongs to only one cluster.

- Initialize membership values randomly
- 2. Compute cluster centroids
- 3. Calculate distance between Data points and Centroids
- 4. Update membership values
- 5. Repeat until convergence
- 6. Defuzzification(optional)


```
Fuzzy C-Means Clustering
 import skfuzzy as fuzz
                                                                         100
  n clusters = 3
  cntr, u, u0, d, jm, p, fpc = fuzz.cluster.cmeans(
                      # transpose because skfuzzy expects featur
      X scaled.T,
      c=n clusters, # number of clusters
                           # fuzziness parameter
      m=2,
                           # stopping criterion
      error=0.005,
                                                                                                                     Cluster 1
      maxiter=1000.
                           # max iterations
                                                                                                                     Cluster 2
      init=None)
                                                                                                                     Cluster 3
  print("Labels shape:", labels.shape) # should match number of row
                                                                                                                     Centers
  print("Fuzzy Partition Coefficient (FPC):", fpc)
                                                                         20
  Labels shape: (200,)
  Fuzzy Partition Coefficient (FPC): 0.6802115367982321
                                                                                                          100
                                                                                                                 120
                                                                                                                        140
: labels = np.argmax(u, axis=0)
                                                                                              Annual Income (k$)
  plt.figure(figsize=(8,6))
  colors = ['red', 'green', 'blue'] # add more if more clusters
 for j, color in enumerate(colors[:n clusters]):
      plt.scatter(X[labels == j, 0], X[labels == j, 1],c=color,label=f"Cluster {j+1}",s=50, alpha=0.6)
 # Rescale cluster centers back to original space
  centers = scaler.inverse transform(cntr)
  plt.scatter(
      centers[:, 0], centers[:, 1],c='black', marker='X', s=200, label='Centers'
 plt.xlabel("Annual Income (k$)")
  plt.ylabel("Spending Score (1-100)")
  plt.title("Fuzzy C-Means Clustering")
  plt.legend()
  plt.show()
```

GitHub Link:

https://github.com/Geetharani-CodeAI/Clustering-Algorithm

