- 1)Considere uma placa retangular de lados L =1 m e W = 1 m, com espessura desprezível. Nessa placa as cargas elétricas estão distribuídas uniformemente, com ps = 1 C/m^2 . A placa está posicionada em z = 0 e centrada no eixo z. Calcule, numericamente, a intensidade de campo elétrico **E** em qualquer posição do plano xz. Faça uma representação gráfica de E.
- 2)Uma densidade volumétrica de carga uniforme de $0.2~\mu\text{C/m}^3$ está presente em uma casca esférica que se estende de r = 3 cm a r = 7.4~cm. Se p_v = 0 em qualquer outra região, calcule numericamente a carga total presente na casca.
- 3)Considere uma linha de carga, no eixo z, com densidade linear de cargas uniforme $p_L = 1$ C/m, se estendendo de z = -1 m até z = 1 m. Calcule, numericamente, a intensidade de campo elétrico \mathbf{E} em qualquer posição espaço. Faça uma representação gráfica de \mathbf{E} no plano xz e uma no plano xy.
- 4)Determine a intensidade de campo elétrico sobre o eixo z produzido por um anel de densidade superficial uniforme de carga ρ_s no espaço livre. O anel ocupa a região z=0, 1 m \leq ρ \leq 2 m, 0 \leq ϕ \leq 2 π rad, em coordenadas cilíndricas. Calcule, numericamente, a da intensidade de campo elétrico em qualquer posição, considerando ρ_s =1 pC/m². Faça uma representação gráfica de **E** no plano xz.
- 5)No espaço livre, uma distribuição volumétrica de cargas constante $\rho_v = 1 / m^3$ existe dentro da região 1 m \le x \le 1 m, -1m \le y \le 1, e -0,2 m \le z \le 0,2 m. Calcule **E**, numericamente, em qualquer posição.Faça uma representação gráfica de E no plano xz.
- 6)No espaço livre, uma distribuição volumétrica de cargas constante $\rho_v = 1 / m^3$ existe dentro da região $0 \le \rho \le 1$ m, $0 \le \phi \le 2\pi$ rad, e -1 m $\le z \le 1$ m. Calcule E, numericamente, em qualquer posição.Faça uma representação gráfica de E no plano xz.
- 7) Na região do espaço livre que inclui o volume 1,8 m < x < 5 m, 1,8 m < y < 5 m, 1,8 m < z < 5 m, \mathbf{D} = 2(yz \mathbf{a}_x + xz \mathbf{a}_y 2xy \mathbf{a}_z)/z² C/m². Avalie, numericamente, a carga dentro do volume usando dois métodos diferentes.