18.022 Recitation Handout (with solutions) 10 September 2014

1. For each of the following pairs of vectors \mathbf{a} and \mathbf{b} , calculate $\mathbf{a} \cdot \mathbf{b}$ and $\|\mathbf{a}\| \|\mathbf{b}\|$.

(a)
$$\mathbf{a} = (1, 5)$$
 and $\mathbf{b} = (-2, 3)$

Solution.
$$\mathbf{a} \cdot \mathbf{b} = 1 \cdot -2 + 5 \cdot 3 = 13$$
, and $\|\mathbf{a}\| \|\mathbf{b}\| = \sqrt{1^2 + 5^2} \sqrt{(-2)^2 + 3^2} = \sqrt{26 \cdot 13} = 13\sqrt{2}$

(b)
$$\mathbf{a} = (3, -5)$$
 and $\mathbf{b} = (2, 0)$

Solution.
$$\mathbf{a} \cdot \mathbf{b} = 3 \cdot 2 + -5 \cdot 0 = 6$$
, and $\|\mathbf{a}\| \|\mathbf{b}\| = 2\sqrt{17}$

(c)
$$\mathbf{a} = (-2, 4, 1)$$
 and $\mathbf{b} = (4, 1, 2)$

Solution.
$$\mathbf{a} \cdot \mathbf{b} = -2 \cdot 4 + 4 \cdot 1 + 1 \cdot 2 = -2$$
, and $\|\mathbf{a}\| \|\mathbf{b}\| = 21$.

(d) Conjecture an inequality relating $|\mathbf{a} \cdot \mathbf{b}|$ and $||\mathbf{a}|| ||\mathbf{b}||$ for $\mathbf{a}, \mathbf{b} \in \mathbb{R}^n$.

Solution. In all three cases above, we see that $|\mathbf{a} \cdot \mathbf{b}| \le ||\mathbf{a}|| ||\mathbf{b}||$.

(e) (Fun/Challenge problem) To prove the inequality conjectured in (d) (called the *Cauchy-Schwarz inequality*), expand the left-hand side of the inequality $\|\mathbf{a} + \lambda \mathbf{b}\|^2 \ge 0$, where λ is any real number.

Solution. Expanding $\|\mathbf{a} + \lambda \mathbf{b}\|^2 \ge 0$ gives $\|\mathbf{a}\|^2 + 2\lambda \mathbf{a} \cdot \mathbf{b} + \lambda^2 \|\mathbf{b}\|^2 \ge 0$. Since we want to get the strongest possible inequality, we choose λ to minimize the quadratic expression on the left-hand side. Substituting $\lambda = -\mathbf{a} \cdot \mathbf{b} / \|\mathbf{b}\|^2$, the resulting inequality simplifies to $\|\mathbf{a} \cdot \mathbf{b}\| \le \|\mathbf{a}\| \|\mathbf{b}\|$.

2. (1.3.20 in *Colley*) Suppose that a force $\mathbf{F} = (1, -2)$ is acting on an object moving parallel to the vector (4,1). Decompose \mathbf{F} into a sum of vectors \mathbf{F}_1 and \mathbf{F}_2 , where \mathbf{F}_1 points along the direction of motion and \mathbf{F}_2 is perpendicular to the direction of motion.

Solution. We project (1, -2) onto (4, 1) using the formula $\operatorname{proj}_{\mathbf{b}} \mathbf{a} = \left(\frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}}\right) \mathbf{b}$. We obtain $F_1 = \frac{2}{17}(4, 1) = \left(\frac{8}{17}, \frac{2}{17}\right)$ and $F_2 = F_- F_2 = (1, -2) - \left(\frac{8}{17}, \frac{2}{17}\right) = \left(\frac{9}{17}, -\frac{36}{17}\right)$.

3. (1.3.17 in Colley) Is it ever the case that the projection of **a** onto **b** and the projection of **b** onto **a** are the same vector? If so, under what conditions?

Solution. Suppose $\operatorname{proj}_{\mathbf{b}}\mathbf{a} = \operatorname{proj}_{\mathbf{a}}\mathbf{b}$. Since a projection onto \mathbf{a} is either 0 or parallel to \mathbf{a} , we see that either both projections are zero (which happens if and only if \mathbf{a} and \mathbf{b} are orthogonal), or they are parallel. Moreover, if they are parallel, then in order to be equal they have to have the same length and direction. So $\operatorname{proj}_{\mathbf{b}}\mathbf{a} = \operatorname{proj}_{\mathbf{a}}\mathbf{b}$ if and only if $\mathbf{a} \cdot \mathbf{b} = 0$ or $\mathbf{a} = \mathbf{b}$.

4. (1.3.25 in *Colley*) Use vectors to show that the diagonals of a parallelogram have the same length if and only if the parallelogram is a rectangle. (Hint: let **a** and **b** be vectors along two sides of the parallelogram, and express vectors running along the diagonals in terms of **a** and **b**.)

Solution. The diagonal vectors are $\mathbf{a} + \mathbf{b}$ and $\mathbf{a} - \mathbf{b}$. The lengths of these vectors are equal if and only if $\|\mathbf{a} + \mathbf{b}\|^2 = \|\mathbf{a} - \mathbf{b}\|^2$. The left-hand side simplifies to $(\mathbf{a} + \mathbf{b}) \cdot (\mathbf{a} + \mathbf{b}) = \mathbf{a} \cdot \mathbf{a} + 2\mathbf{a} \cdot \mathbf{b} + \mathbf{b} \cdot \mathbf{b}$. Simplifying the right-hand side similarly and canceling terms, we are left with $\mathbf{a} \cdot \mathbf{b} = 0$, which says that the two sides of the parallelogram are perpendicular.

5. (1.3.23 in *Colley*) Let A, B, and C denote the vertices of a triangle. Let 0 < r < 1. If P_1 is the point on \overline{AB} located P_2 is the point on \overline{AC} located P_3 to P_4 to P_4 is the point on \overline{AC} located P_4 times the distance from P_4 to P_4 is parallel to \overline{BC} and has P_4 times the length of \overline{BC} .

Solution. This is an application of the distributive property of scalar multiplication across vector addition. Let \mathbf{u} be the vector from A to B, and let \mathbf{v} be the vector from A to C. Then the vector from B to C is $\mathbf{u} - \mathbf{v}$, and the vector from P_1 to P_2 is $r\mathbf{u} - r\mathbf{v}$. Reverse distributing, we write this as $r(\mathbf{u} - \mathbf{v})$, which says that $\overline{P_1P_2}$ is parallel to \overline{BC} and has r times the length of \overline{BC} .

6. (1975 USAMO) Let A, B, C, and D be four points in \mathbb{R}^3 . Use vectors to show that

$$AB^2 + BC^2 + CD^2 + DA^2 \ge AC^2 + BD^2$$
.

(This generalizes the fact that the sum of the squares of the sides of a quadrilateral is at least the sum of the squares of its diagonals.) Make a statement about when equality holds.

Solution. Let \mathbf{u} be the vector from A to B, let \mathbf{v} be the vector from A to D, and Let \mathbf{w} be the vector from B to C. Then we have been asked to prove

$$\mathbf{u} \cdot \mathbf{u} + \mathbf{v} \cdot \mathbf{v} + \mathbf{w} \cdot \mathbf{w} + (\mathbf{u} + \mathbf{w} - \mathbf{v}) \cdot (\mathbf{u} + \mathbf{w} - \mathbf{v}) \ge (\mathbf{u} + \mathbf{w}) \cdot (\mathbf{u} + \mathbf{w}) + (\mathbf{u} - \mathbf{v}) \cdot (\mathbf{u} - \mathbf{v})$$

Distributing and simplifying, we see that this inequality is equivalent to $\|\mathbf{w} - \mathbf{v}\|^2 \ge 0$. This holds with equality if and only if $\mathbf{w} = \mathbf{v}$, i.e., if and only if the four points form a parallelogram.