§8.6 多元函数的极值

2016-2017 **学年** II

Outline

1. 多元函数的极值点

2. 条件极值及拉格朗日乘数法

We are here now...

1. 多元函数的极值点

2. 条件极值及拉格朗日乘数法

		极值点	驻点	最值点
	а			
	<i>x</i> ₁			
<	x_2			
	<i>x</i> ₃			
	X4			
	b			

		极值点	驻点	最值点
	а			
	<i>x</i> ₁	极小值点		
	x_2			
	<i>X</i> ₃			
	X 4			
	b			

		极值点	驻点	最值点
	а			
	<i>x</i> ₁	极小值点		
	<i>x</i> ₂	极大值点		
	<i>X</i> ₃			
	X 4			
	b			

		极值点	驻点	最值点
	а			
	<i>x</i> ₁	极小值点		
	<i>x</i> ₂	极大值点		
<	<i>x</i> ₃	极小值点		
	X 4			
	b			

		极值点	驻点	最值点
	а			
	<i>x</i> ₁	极小值点		
(<i>x</i> ₂	极大值点		
	<i>x</i> ₃	极小值点		
	X4	极大值点		
	b			

		极值点	驻点	最值点
	а			
	<i>x</i> ₁	极小值点	√	
	<i>x</i> ₂	极大值点		
	<i>x</i> ₃	极小值点		
	X 4	极大值点		
	b			

		极值点	驻点	最值点
	а			
	<i>x</i> ₁	极小值点	√	
(<i>x</i> ₂	极大值点	×(不可导)	
	X ₃	极小值点		
	X 4	极大值点		
	b			

		极值点	驻点	最值点
	а			
	<i>x</i> ₁	极小值点	√	
X	<i>x</i> ₂	极大值点	×(不可导)	
	<i>x</i> ₃	极小值点	√	
^	X4	极大值点		
	b			

		极值点	驻点	最值点
	а			
	<i>x</i> ₁	极小值点	√	
	<i>x</i> ₂	极大值点	×(不可导)	
X	<i>x</i> ₃	极小值点	√	
	X4	极大值点	✓	
	b			

		极值点	驻点	最值点
	а			×
	<i>x</i> ₁	极小值点	√	
X	<i>x</i> ₂	极大值点	×(不可导)	
	<i>x</i> ₃	极小值点	√	
,,	X4	极大值点	√	
	b			

		极值点	驻点	最值点
	а			×
	<i>x</i> ₁	极小值点	√	×
	<i>x</i> ₂	极大值点	×(不可导)	
х	<i>x</i> ₃	极小值点	√	
^	X4	极大值点	√	
	b			

		极值点	驻点	最值点
	а			×
	<i>x</i> ₁	极小值点	√	×
	<i>x</i> ₂	极大值点	×(不可导)	×
X	<i>x</i> ₃	极小值点	√	
	X4	极大值点	✓	
	b			

		极值点	驻点	最值点
x	а			×
	<i>x</i> ₁	极小值点	√	×
	<i>x</i> ₂	极大值点	×(不可导)	×
	<i>x</i> ₃	极小值点	√	×
	X4	极大值点	√	
	b			

		极值点	驻点	最值点
X	а			×
	<i>x</i> ₁	极小值点	√	×
	<i>x</i> ₂	极大值点	×(不可导)	×
	<i>x</i> ₃	极小值点	√	×
	X4	极大值点	√	最大值点
	b			

		极值点	驻点	最值点
X	а			×
	<i>x</i> ₁	极小值点	√	×
	<i>x</i> ₂	极大值点	×(不可导)	×
	<i>x</i> ₃	极小值点	√	×
	X 4	极大值点	✓	最大值点
	b			最小值点

定义 在点
$$(x_0, y_0)$$
 的某个邻域内

• 如果总是成立

$$f(x, y) \le f(x_0, y_0), \quad \sharp h(x, y) \ne (x_0, y_0)$$

定义 在点 (x_0, y_0) 的某个邻域内

• 如果总是成立

$$f(x, y) \le f(x_0, y_0), \quad \sharp h(x, y) \ne (x_0, y_0)$$

则称点 (x_0, y_0) 是函数 f(x, y) 极大值点,

定义 在点 (x_0, y_0) 的某个邻域内

• 如果总是成立

$$f(x, y) \le f(x_0, y_0), \quad \sharp h(x, y) \ne (x_0, y_0)$$

则称点 (x_0, y_0) 是函数 f(x, y) 极大值点, $f(x_0, y_0)$ 是极大值

定义 在点 (x_0, y_0) 的某个邻域内

• 如果总是成立

$$f(x, y) \leq f(x_0, y_0)$$
, 其中 $(x, y) \neq (x_0, y_0)$
则称点 (x_0, y_0) 是函数 $f(x, y)$ 极大值点, $f(x_0, y_0)$ 是极大值

• 如果总是成立

$$f(x, y) \ge f(x_0, y_0), \quad \sharp h(x, y) \ne (x_0, y_0)$$

定义 在点 (x_0, y_0) 的某个邻域内

• 如果总是成立

$$f(x, y) \leq f(x_0, y_0)$$
, 其中 $(x, y) \neq (x_0, y_0)$
则称点 (x_0, y_0) 是函数 $f(x, y)$ 极大值点, $f(x_0, y_0)$ 是极大值

• 如果总是成立

$$f(x, y) \ge f(x_0, y_0), \quad \text{ } \sharp \, \Phi(x, y) \ne (x_0, y_0)$$

则称点 (x_0, y_0) 是函数 f(x, y) 极小值点,

定义 在点 (x_0, y_0) 的某个邻域内

• 如果总是成立

$$f(x, y) \leq f(x_0, y_0)$$
, 其中 $(x, y) \neq (x_0, y_0)$
则称点 (x_0, y_0) 是函数 $f(x, y)$ 极大值点, $f(x_0, y_0)$ 是极大值

• 如果总是成立

$$f(x, y) \ge f(x_0, y_0)$$
, 其中 $(x, y) \ne (x_0, y_0)$

则称点 (x_0, y_0) 是函数 f(x, y) 极小值点, $f(x_0, y_0)$ 是极小值

定义 在点 (x_0, y_0) 的某个邻域内

• 如果总是成立

$$f(x, y) \le f(x_0, y_0)$$
, 其中 $(x, y) \ne (x_0, y_0)$
则称点 (x_0, y_0) 是函数 $f(x, y)$ 极大值点, $f(x_0, y_0)$ 是极大值

• 如果总是成立

$$f(x, y) \ge f(x_0, y_0), \quad \text{\'et}(x, y) \ne (x_0, y_0)$$

则称点 (x_0, y_0) 是函数 f(x, y) 极小值点, $f(x_0, y_0)$ 是极小值

• 极大、极小值点统称极值点; 极大、极小值统称极值。

• $z = x^2 + y^2$ 点 $p_0(0, 0)$ 是

• $z = -\sqrt{x^2 + y^2}$ 点 $p_0(0, 0)$ 是

• *z* = *xy* 点 *p*₀(0, 0) 是

• $z = x^2 + y^2$ 点 $p_0(0, 0)$ 是极小值点;

• $z = -\sqrt{x^2 + y^2}$ 点 $p_0(0, 0)$ 是

• *z* = *xy* 点 *p*₀(0, 0) 是

• $z = x^2 + y^2$ 点 $p_0(0, 0)$ 是极小值点;

•
$$z = -\sqrt{x^2 + y^2}$$

点 $p_0(0, 0)$ 是

• $z = x^2 + y^2$ 点 $p_0(0, 0)$ 是极小值点;

•
$$z = -\sqrt{x^2 + y^2}$$

点 $p_0(0, 0)$ 是极大值点;

• $z = x^2 + y^2$ 点 $p_0(0, 0)$ 是极小值点;

• *z* = *xy* 点 *p*₀(0, 0) 是

• $z = x^2 + y^2$ 点 $p_0(0, 0)$ 是极小值点;

• z = xy 点 $p_0(0, 0)$ 不是极值点。

- $z = x^2 + y^2$ 点 $p_0(0, 0)$ 是极小值点;
- $z = -\sqrt{x^2 + y^2}$ 点 $p_0(0, 0)$ 是极大值点;

• z = xy 点 $p_0(0, 0)$ 不是极值点。

例

• $z = x^2 + y^2$ 点 $p_0(0, 0)$ 是极小值点;

问题

z = xy 是否有极值点?

例

• $z = x^2 + y^2$ 点 $p_0(0, 0)$ 是极小值点;

• $z = -\sqrt{x^2 + y^2}$ 点 $p_0(0, 0)$ 是极大值点;

• z = xy点 $p_0(0, 0)$ 不是极值点。

问题

- z = xy 是否有极值点?
- 是否有一般方法求出函数的极值点? 如:

$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$

$$f_X(x_0, y_0) = 0, \quad f_Y(x_0, y_0) = 0.$$

$$f_x(x_0, y_0) = 0, \quad f_y(x_0, y_0) = 0.$$

证明

1. 一元函数 $x \mapsto f(x, y_0)$

$$f_x(x_0, y_0) = 0, \quad f_y(x_0, y_0) = 0.$$

证明

1. 一元函数 $x \mapsto f(x, y_0)$ 具有极值点 $x = x_0$,

$$f_x(x_0,\,y_0)=0,\quad f_y(x_0,\,y_0)=0.$$

证明

1. 一元函数 $x \mapsto f(x, y_0)$ 具有极值点 $x = x_0$,所以

$$\frac{d}{dx}[f(x, y_0)]\Big|_{x=x_0}=0$$

$$f_x(x_0,\,y_0)=0,\quad f_y(x_0,\,y_0)=0.$$

证明

1. 一元函数 $x \mapsto f(x, y_0)$ 具有极值点 $x = x_0$,所以

$$f_x(x_0, y_0) = \frac{d}{dx} [f(x, y_0)] \Big|_{x=x_0} = 0$$

$$f_x(x_0,\,y_0)=0,\quad f_y(x_0,\,y_0)=0.$$

证明

1. 一元函数 $x \mapsto f(x, y_0)$ 具有极值点 $x = x_0$,所以

$$f_x(x_0, y_0) = \frac{d}{dx} [f(x, y_0)] \big|_{x=x_0} = 0$$

2. 一元函数 $y \mapsto f(x_0, y)$ 具有极值点 $y = y_0$,

$$f_x(x_0,\,y_0)=0,\quad f_y(x_0,\,y_0)=0.$$

证明

1. 一元函数 $x \mapsto f(x, y_0)$ 具有极值点 $x = x_0$,所以

$$f_x(x_0, y_0) = \frac{d}{dx} [f(x, y_0)] \big|_{x=x_0} = 0$$

2. 一元函数 $y \mapsto f(x_0, y)$ 具有极值点 $y = y_0$,所以

$$\frac{d}{dy}\left[f(x_0,y)\right]\Big|_{y=y_0}=0$$

$$f_x(x_0, y_0) = 0, \quad f_y(x_0, y_0) = 0.$$

证明

1. 一元函数 $x \mapsto f(x, y_0)$ 具有极值点 $x = x_0$,所以

$$f_x(x_0, y_0) = \frac{d}{dx} [f(x, y_0)] \big|_{x=x_0} = 0$$

2. 一元函数 $y \mapsto f(x_0, y)$ 具有极值点 $y = y_0$,所以

$$f_y(x_0, y_0) = \frac{d}{dy} [f(x_0, y)] \Big|_{y=y_0} = 0$$

$$f_x(x_0, y_0) = 0, \quad f_y(x_0, y_0) = 0.$$

证明

1. 一元函数 $x \mapsto f(x, y_0)$ 具有极值点 $x = x_0$,所以

$$f_x(x_0, y_0) = \frac{d}{dx} [f(x, y_0)] \big|_{x=x_0} = 0$$

2. 一元函数 $y \mapsto f(x_0, y)$ 具有极值点 $y = y_0$,所以

$$f_y(x_0, y_0) = \frac{d}{dy} [f(x_0, y)] \big|_{y=y_0} = 0$$

定义 使偏导数为零的点, 称为驻点

$$f_x(x_0, y_0) = 0, \quad f_y(x_0, y_0) = 0.$$

证明

1. 一元函数 $x \mapsto f(x, y_0)$ 具有极值点 $x = x_0$,所以

$$f_x(x_0, y_0) = \frac{d}{dx} [f(x, y_0)] \big|_{x=x_0} = 0$$

2. 一元函数 $y \mapsto f(x_0, y)$ 具有极值点 $y = y_0$,所以

$$f_y(x_0, y_0) = \frac{d}{dy} [f(x_0, y)] \big|_{y=y_0} = 0$$

定义 使偏导数为零的点, 称为驻点

注 如果函数存在偏导数,则 {极值点} ⊂ {驻点}

例 1 点 (0,0) 是 $z = x^2 + y^2$ 的极小值点,从而也是驻点。

$$z_x = z_y =$$

$$\begin{cases} z_X = 2x \\ z_y = 2y \end{cases}$$

$$\begin{cases} z_x = 2x \\ z_y = 2y \end{cases} \implies \begin{cases} z_x(0, 0) = 0 \\ z_y(0, 0) = 0 \end{cases}$$

$$\begin{cases} z_x = 2x \\ z_y = 2y \end{cases} \implies \begin{cases} z_x(0, 0) = 0 \\ z_y(0, 0) = 0 \end{cases}$$

例 2 点 (0,0) 是 $z = -\sqrt{x^2 + y^2}$ 的极大值点,但不是驻点:

$$\begin{cases} z_x = 2x \\ z_y = 2y \end{cases} \implies \begin{cases} z_x(0, 0) = 0 \\ z_y(0, 0) = 0 \end{cases}$$

例
$$2$$
 点 $(0,0)$ 是 $z=-\sqrt{x^2+y^2}$ 的极大值点,但不是驻点:一阶偏导
$$z_X(0,0),\quad z_Y(0,0)$$

不存在。

$$\begin{cases} z_x = 2x \\ z_y = 2y \end{cases} \implies \begin{cases} z_x(0, 0) = 0 \\ z_y(0, 0) = 0 \end{cases}$$

例
$$2$$
 点 $(0,0)$ 是 $z = -\sqrt{x^2 + y^2}$ 的极大值点,但不是驻点:一阶偏导
$$z_x(0,0), \quad z_y(0,0)$$

不存在。

例 3(驻点不一定是极值点) 设 z = xy。

$$\begin{cases} z_x = 2x \\ z_y = 2y \end{cases} \implies \begin{cases} z_x(0, 0) = 0 \\ z_y(0, 0) = 0 \end{cases}$$

例
$$2$$
 点 $(0,0)$ 是 $z = -\sqrt{x^2 + y^2}$ 的极大值点,但不是驻点:一阶偏导
$$z_x(0,0), \quad z_y(0,0)$$

不存在。

例 3(驻点不一定是极值点) 设 z = xy。点 (0,0) 是驻点:

$$\begin{cases} z_x = 2x \\ z_y = 2y \end{cases} \implies \begin{cases} z_x(0, 0) = 0 \\ z_y(0, 0) = 0 \end{cases}$$

例
$$2$$
 点 $(0,0)$ 是 $z = -\sqrt{x^2 + y^2}$ 的极大值点,但不是驻点:一阶偏导
$$z_x(0,0), \quad z_y(0,0)$$

不存在。

例 3(驻点不一定是极值点) 设 z = xy。点 (0, 0) 是驻点:

$$\begin{cases} z_X = y \\ z_y = x \end{cases}$$

$$\begin{cases} z_x = 2x \\ z_y = 2y \end{cases} \implies \begin{cases} z_x(0, 0) = 0 \\ z_y(0, 0) = 0 \end{cases}$$

例
$$2$$
 点 $(0,0)$ 是 $z = -\sqrt{x^2 + y^2}$ 的极大值点,但不是驻点:一阶偏导
$$z_X(0,0), \quad z_Y(0,0)$$

不存在。

例 3(驻点不一定是极值点) 设 z = xy。点 (0,0) 是驻点:

$$\begin{cases} z_x = y \\ z_y = x \end{cases} \implies \begin{cases} z_x(0, 0) = 0 \\ z_y(0, 0) = 0 \end{cases}$$

$$\begin{cases} z_x = 2x \\ z_y = 2y \end{cases} \implies \begin{cases} z_x(0, 0) = 0 \\ z_y(0, 0) = 0 \end{cases}$$

例
$$2$$
 点 $(0,0)$ 是 $z = -\sqrt{x^2 + y^2}$ 的极大值点,但不是驻点:一阶偏导
$$z_x(0,0), \quad z_y(0,0)$$

不存在。

例 3(驻点不一定是极值点) 设 z = xy。点 (0,0) 是驻点:

$$\begin{cases} z_x = y \\ z_y = x \end{cases} \implies \begin{cases} z_x(0, 0) = 0 \\ z_y(0, 0) = 0 \end{cases}$$

但点 (0,0) 不是极值点。

解 求一阶偏导

$$\begin{cases} z_X = \\ z_y = \end{cases}$$

解 求一阶偏导

$$\begin{cases} z_x = 3x^2 + 6x - 9 \\ z_y = \end{cases}$$

解 求一阶偏导

$$\begin{cases} z_x = 3x^2 + 6x - 9 \\ z_y = -3y^2 + 6y \end{cases}$$

例 设
$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
, 求驻点。

$$\begin{cases} z_x = 3x^2 + 6x - 9 \\ z_y = -3y^2 + 6y \end{cases}$$

$$\begin{cases} z_x = 3x^2 + 6x - 9 = 0 \\ z_y = -3y^2 + 6y = 0 \end{cases}$$

例 设
$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
, 求驻点。

$$\begin{cases} z_x = 3x^2 + 6x - 9 \\ z_y = -3y^2 + 6y \end{cases}$$

$$\begin{cases} z_x = 3x^2 + 6x - 9 = 0 \\ z_y = -3y^2 + 6y = 0 \end{cases} \Longrightarrow \begin{cases}$$

例 设
$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
, 求驻点。

$$\begin{cases} z_x = 3x^2 + 6x - 9 \\ z_y = -3y^2 + 6y \end{cases}$$

$$\begin{cases} z_x = 3x^2 + 6x - 9 = 0 \\ z_y = -3y^2 + 6y = 0 \end{cases} \Longrightarrow \begin{cases} 3(x+3)(x-1) = 0 \end{cases}$$

例 设
$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
, 求驻点。

$$\begin{cases} z_X = 3x^2 + 6x - 9 \\ z_y = -3y^2 + 6y \end{cases}$$

$$\begin{cases} z_x = 3x^2 + 6x - 9 = 0 \\ z_y = -3y^2 + 6y = 0 \end{cases} \Longrightarrow \begin{cases} 3(x+3)(x-1) = 0 \\ -3y(y-2) = 0 \end{cases}$$

例 设
$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
, 求驻点。

$$\begin{cases} z_X = 3x^2 + 6x - 9 \\ z_y = -3y^2 + 6y \end{cases}$$

$$\begin{cases} z_x = 3x^2 + 6x - 9 = 0 \\ z_y = -3y^2 + 6y = 0 \end{cases} \Longrightarrow \begin{cases} 3(x+3)(x-1) = 0 \\ -3y(y-2) = 0 \end{cases} \Longrightarrow \begin{cases} x = 0 \\ y = 0 \end{cases}$$

例 设
$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
, 求驻点。

$$\begin{cases} z_x = 3x^2 + 6x - 9 \\ z_y = -3y^2 + 6y \end{cases}$$

$$\begin{cases} z_x = 3x^2 + 6x - 9 = 0 \\ z_y = -3y^2 + 6y = 0 \end{cases} \Longrightarrow \begin{cases} 3(x+3)(x-1) = 0 \\ -3y(y-2) = 0 \end{cases} \Longrightarrow \begin{cases} x = -3, 1 \\ y = 0 \end{cases}$$

例 设
$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
,求驻点。

$$\begin{cases} z_x = 3x^2 + 6x - 9 \\ z_y = -3y^2 + 6y \end{cases}$$

$$\begin{cases} z_x = 3x^2 + 6x - 9 = 0 \\ z_y = -3y^2 + 6y = 0 \end{cases} \Longrightarrow \begin{cases} 3(x+3)(x-1) = 0 \\ -3y(y-2) = 0 \end{cases} \Longrightarrow \begin{cases} x = -3, 1 \\ y = 0, 2 \end{cases}$$

解 求一阶偏导

$$\begin{cases} z_X = 3x^2 + 6x - 9 \\ z_y = -3y^2 + 6y \end{cases}$$

求解方程组

$$\begin{cases} z_x = 3x^2 + 6x - 9 = 0 \\ z_y = -3y^2 + 6y = 0 \end{cases} \Longrightarrow \begin{cases} 3(x+3)(x-1) = 0 \\ -3y(y-2) = 0 \end{cases} \Longrightarrow \begin{cases} x = -3, 1 \\ y = 0, 2 \end{cases}$$

所以驻点为

<i>y</i> = 2		
y = 0		
	x = -3	x = 1

解 求一阶偏导

$$\begin{cases} z_x = 3x^2 + 6x - 9 \\ z_y = -3y^2 + 6y \end{cases}$$

求解方程组

$$\begin{cases} z_x = 3x^2 + 6x - 9 = 0 \\ z_y = -3y^2 + 6y = 0 \end{cases} \Longrightarrow \begin{cases} 3(x+3)(x-1) = 0 \\ -3y(y-2) = 0 \end{cases} \Longrightarrow \begin{cases} x = -3, 1 \\ y = 0, 2 \end{cases}$$

所以驻点为

<i>y</i> = 2		
y = 0	(-3, 0)	
	x = -3	x = 1

例 设
$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
, 求驻点。

$$\begin{cases} z_X = 3x^2 + 6x - 9 \\ z_y = -3y^2 + 6y \end{cases}$$

求解方程组

$$\begin{cases} z_x = 3x^2 + 6x - 9 = 0 \\ z_y = -3y^2 + 6y = 0 \end{cases} \Longrightarrow \begin{cases} 3(x+3)(x-1) = 0 \\ -3y(y-2) = 0 \end{cases} \Longrightarrow \begin{cases} x = -3, 1 \\ y = 0, 2 \end{cases}$$

所以驻点为

<i>y</i> = 2	(-3, 2)	
y = 0	(-3, 0)	
	x = -3	x = 1

例 设
$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
, 求驻点。

$$\begin{cases} z_X = 3x^2 + 6x - 9 \\ z_y = -3y^2 + 6y \end{cases}$$

求解方程组

$$\begin{cases} z_x = 3x^2 + 6x - 9 = 0 \\ z_y = -3y^2 + 6y = 0 \end{cases} \Longrightarrow \begin{cases} 3(x+3)(x-1) = 0 \\ -3y(y-2) = 0 \end{cases} \Longrightarrow \begin{cases} x = -3, 1 \\ y = 0, 2 \end{cases}$$

所以驻点为

y = 2	(-3, 2)	
y = 0	(-3, 0)	(1, 0)
	x = -3	x = 1

例 设
$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
, 求驻点。

$$\begin{cases} z_X = 3x^2 + 6x - 9 \\ z_y = -3y^2 + 6y \end{cases}$$

求解方程组

$$\begin{cases} z_x = 3x^2 + 6x - 9 = 0 \\ z_y = -3y^2 + 6y = 0 \end{cases} \Longrightarrow \begin{cases} 3(x+3)(x-1) = 0 \\ -3y(y-2) = 0 \end{cases} \Longrightarrow \begin{cases} x = -3, 1 \\ y = 0, 2 \end{cases}$$

所以驻点为

y = 2	(-3, 2)	(1, 2)
y = 0	(-3, 0)	(1, 0)
	x = -3	x = 1

例 设
$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
, 求驻点。

$$\begin{cases} z_x = 3x^2 + 6x - 9 \\ z_y = -3y^2 + 6y \end{cases}$$

求解方程组

$$\begin{cases} z_x = 3x^2 + 6x - 9 = 0 \\ z_y = -3y^2 + 6y = 0 \end{cases} \Longrightarrow \begin{cases} 3(x+3)(x-1) = 0 \\ -3y(y-2) = 0 \end{cases} \Longrightarrow \begin{cases} x = -3, 1 \\ y = 0, 2 \end{cases}$$

所以驻点为

y = 2	(-3, 2)	(1, 2)
y = 0	(-3, 0)	(1, 0)
	x = -3	x = 1

例 求 $z = x^3 + y^3 - 3xy$,求驻点。

$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$

例 设
$$z = x^3 + y^3 - 3xy$$
, 求驻点。

$$z_X = z_y =$$

例 设
$$z = x^3 + y^3 - 3xy$$
, 求驻点。

$$\begin{cases} z_x = 3x^2 - 3y \\ z_y = \end{cases}$$

解 求一阶偏导

$$\begin{cases} z_x = 3x^2 - 3y \\ z_y = 3y^2 - 3x \end{cases}$$

解 求一阶偏导

$$\begin{cases} z_x = 3x^2 - 3y \\ z_y = 3y^2 - 3x \end{cases}$$

$$\begin{cases} z_x = 3x^2 - 3y = 0 \\ z_y = 3y^2 - 3x = 0 \end{cases}$$

解 求一阶偏导

$$\begin{cases} z_x = 3x^2 - 3y \\ z_y = 3y^2 - 3x \end{cases}$$

$$\begin{cases} z_x = 3x^2 - 3y = 0 \\ z_y = 3y^2 - 3x = 0 \end{cases} \implies \begin{cases}$$

解 求一阶偏导

$$\begin{cases} z_x = 3x^2 - 3y \\ z_y = 3y^2 - 3x \end{cases}$$

$$\begin{cases} z_x = 3x^2 - 3y = 0 \\ z_y = 3y^2 - 3x = 0 \end{cases} \implies \begin{cases} x^2 = y \end{cases}$$

解 求一阶偏导

$$\begin{cases} z_x = 3x^2 - 3y \\ z_y = 3y^2 - 3x \end{cases}$$

$$\begin{cases} z_x = 3x^2 - 3y = 0 \\ z_y = 3y^2 - 3x = 0 \end{cases} \implies \begin{cases} x^2 = y \\ y^2 = x \end{cases}$$

解 求一阶偏导

$$\begin{cases} z_x = 3x^2 - 3y \\ z_y = 3y^2 - 3x \end{cases}$$

$$\begin{cases} z_x = 3x^2 - 3y = 0 \\ z_y = 3y^2 - 3x = 0 \end{cases} \implies \begin{cases} x^2 = y \\ y^2 = x \end{cases} \implies x^4 = x$$

解 求一阶偏导

$$\begin{cases} z_x = 3x^2 - 3y \\ z_y = 3y^2 - 3x \end{cases}$$

$$\begin{cases} z_x = 3x^2 - 3y = 0 \\ z_y = 3y^2 - 3x = 0 \end{cases} \implies \begin{cases} x^2 = y \\ y^2 = x \end{cases} \implies x^4 = x \implies x = 0, 1$$

解 求一阶偏导

$$\begin{cases} z_x = 3x^2 - 3y \\ z_y = 3y^2 - 3x \end{cases}$$

$$\begin{cases} z_x = 3x^2 - 3y = 0 \\ z_y = 3y^2 - 3x = 0 \end{cases} \implies \begin{cases} x^2 = y \\ y^2 = x \end{cases} \implies x^4 = x \implies x = 0, 1$$
$$\implies \begin{cases} x = 1 \\ y = 1 \end{cases}$$

解 求一阶偏导

$$\begin{cases} z_x = 3x^2 - 3y \\ z_y = 3y^2 - 3x \end{cases}$$

$$\begin{cases} z_x = 3x^2 - 3y = 0 \\ z_y = 3y^2 - 3x = 0 \end{cases} \implies \begin{cases} x^2 = y \\ y^2 = x \end{cases} \implies x^4 = x \implies x = 0, 1$$
$$\implies \begin{cases} x = 1 \\ y = 1 \end{cases} \implies \begin{cases} x = 0 \\ y = 0 \end{cases}$$

解 求一阶偏导

$$\begin{cases} z_x = 3x^2 - 3y \\ z_y = 3y^2 - 3x \end{cases}$$

求解方程组

$$\begin{cases} z_x = 3x^2 - 3y = 0 \\ z_y = 3y^2 - 3x = 0 \end{cases} \implies \begin{cases} x^2 = y \\ y^2 = x \end{cases} \implies x^4 = x \implies x = 0, 1$$
$$\implies \begin{cases} x = 1 \\ y = 1 \end{cases} \implies \begin{cases} x = 0 \\ y = 0 \end{cases}$$

所以驻点为 (1,1), (0,0)

$$z = x^3 + y^3 - 3xy$$

定理(极值的充分条件) 设 z = f(x, y) 具有直到二阶的连续偏导数, (x_0, y_0) 是驻点。

定理(极值的充分条件) 设 z = f(x, y) 具有直到二阶的连续偏导数, (x_0, y_0) 是驻点。定义判别式

$$P(x, y) = f_{xx}(x, y) \cdot f_{yy}(x, y) - f_{xy}(x, y)^2$$

定理(极值的充分条件) 设 z = f(x, y) 具有直到二阶的连续偏导数, (x_0, y_0) 是驻点。定义判别式

$$P(x, y) = f_{xx}(x, y) \cdot f_{yy}(x, y) - f_{xy}(x, y)^2$$

结论是:

3. 若 $P(x_0, y_0) < 0$,则 (x_0, y_0) 一定不是极值点;

定理(极值的充分条件) 设 z = f(x, y) 具有直到二阶的连续偏导数, (x_0, y_0) 是驻点。定义判别式

$$P(x, y) = f_{xx}(x, y) \cdot f_{yy}(x, y) - f_{xy}(x, y)^2$$

- 3. 若 $P(x_0, y_0) < 0$,则 (x_0, y_0) 一定不是极值点;
- 4. 若 $P(x_0, y_0) = 0$,则此判定法失效,结论不确定。

定理(极值的充分条件) 设 z = f(x, y) 具有直到二阶的连续偏导数, (x_0, y_0) 是驻点。定义判别式

$$P(x, y) = f_{xx}(x, y) \cdot f_{yy}(x, y) - f_{xy}(x, y)^2$$

- 1. 若 $P(x_0, y_0) > 0$,
- 2. 若 $P(x_0, y_0) > 0$,
- 3. 若 $P(x_0, y_0) < 0$,则 (x_0, y_0) 一定不是极值点;
- 4. 若 $P(x_0, y_0) = 0$,则此判定法失效,结论不确定。

定理(极值的充分条件) 设 z = f(x, y) 具有直到二阶的连续偏导数, (x_0, y_0) 是驻点。定义判别式

$$P(x, y) = f_{xx}(x, y) \cdot f_{yy}(x, y) - f_{xy}(x, y)^2$$

- 1. 若 $P(x_0, y_0) > 0$, 且 $f_{xx}(x_0, y_0) < 0$, 则 (x_0, y_0) 是极大值点;
- 2. 若 $P(x_0, y_0) > 0$,
- 3. 若 $P(x_0, y_0) < 0$,则 (x_0, y_0) 一定不是极值点;
- 4. 若 $P(x_0, y_0) = 0$,则此判定法失效,结论不确定。

定理(极值的充分条件) 设 z = f(x, y) 具有直到二阶的连续偏导数, (x_0, y_0) 是驻点。定义判别式

$$P(x, y) = f_{xx}(x, y) \cdot f_{yy}(x, y) - f_{xy}(x, y)^2$$

- 1. 若 $P(x_0, y_0) > 0$, 且 $f_{xx}(x_0, y_0) < 0$, 则 (x_0, y_0) 是极大值点;
- 2. 若 $P(x_0, y_0) > 0$, 且 $f_{xx}(x_0, y_0) > 0$, 则 (x_0, y_0) 是极小值点;
- 3. 若 $P(x_0, y_0) < 0$,则 (x_0, y_0) 一定不是极值点;
- 4. 若 $P(x_0, y_0) = 0$,则此判定法失效,结论不确定。

定理(极值的充分条件) 设 z = f(x, y) 具有直到二阶的连续偏导数, (x_0, y_0) 是驻点。定义判别式

$$P(x, y) = f_{xx}(x, y) \cdot f_{yy}(x, y) - f_{xy}(x, y)^2$$

- 1. 若 $P(x_0, y_0) > 0$, 且 $f_{xx}(x_0, y_0) < 0$, 则 (x_0, y_0) 是极大值点;
- 2. 若 $P(x_0, y_0) > 0$, 且 $f_{xx}(x_0, y_0) > 0$, 则 (x_0, y_0) 是极小值点;
- 3. 若 $P(x_0, y_0) < 0$,则 (x_0, y_0) 一定不是极值点;
- 4. 若 $P(x_0, y_0) = 0$,则此判定法失效,结论不确定。
- 总结 求 z = f(x, y) 极值点的步骤:
 - 1. 求驻点:

定理(极值的充分条件) 设 z = f(x, y) 具有直到二阶的连续偏导数, (x_0, y_0) 是驻点。定义判别式

$$P(x, y) = f_{xx}(x, y) \cdot f_{yy}(x, y) - f_{xy}(x, y)^{2}$$

- 1. 若 $P(x_0, y_0) > 0$, 且 $f_{xx}(x_0, y_0) < 0$, 则 (x_0, y_0) 是极大值点;
- 2. 若 $P(x_0, y_0) > 0$, 且 $f_{xx}(x_0, y_0) > 0$, 则 (x_0, y_0) 是极小值点;
- 3. 若 $P(x_0, y_0) < 0$,则 (x_0, y_0) 一定不是极值点;
- 4. 若 $P(x_0, y_0) = 0$,则此判定法失效,结论不确定。
- 总结 求 z = f(x, y) 极值点的步骤:
 - 1. 求驻点: 解方程 $\begin{cases} z_x(x, y) = 0 \\ z_y(x, y) = 0 \end{cases}$, 设解为 (x_0, y_0)

定理(极值的充分条件) 设 z = f(x, y) 具有直到二阶的连续偏导数, (x_0, y_0) 是驻点。定义判别式

$$P(x, y) = f_{xx}(x, y) \cdot f_{yy}(x, y) - f_{xy}(x, y)^{2}$$

- 1. 若 $P(x_0, y_0) > 0$, 且 $f_{xx}(x_0, y_0) < 0$, 则 (x_0, y_0) 是极大值点;
- 2. 若 $P(x_0, y_0) > 0$, 且 $f_{xx}(x_0, y_0) > 0$, 则 (x_0, y_0) 是极小值点;
- 3. 若 $P(x_0, y_0) < 0$,则 (x_0, y_0) 一定不是极值点;
- 4. 若 $P(x_0, y_0) = 0$,则此判定法失效,结论不确定。
 - 总结 求 z = f(x, y) 极值点的步骤:
 - 1. 求驻点: 解方程 $\begin{cases} z_X(x, y) = 0 \\ z_Y(x, y) = 0 \end{cases}$, 设解为 (x_0, y_0)
 - 2. 通过 $P(x_0, y_0)$ 辨别驻点 (x_0, y_0) 是否极值点

例 通过判别式 P(x, y), 验证 (0, 0) 是 $z = x^2 + y^2$ 的极小值点

例 通过判别式
$$P(x, y)$$
, 验证 $(0, 0)$ 是 $z = x^2 + y^2$ 的极小值点

解

$$P(x, y) =$$

例 通过判别式 P(x, y), 验证 (0, 0) 是 $z = x^2 + y^2$ 的极小值点

解

$$\begin{cases} z_{xx} = \\ z_{xy} = \\ z_{yy} = \end{cases} \Longrightarrow P(x, y) =$$

例 通过判别式 P(x, y), 验证 (0, 0) 是 $z = x^2 + y^2$ 的极小值点

解

$$\begin{cases} z_{x} = \\ z_{y} = \end{cases} \Longrightarrow \begin{cases} z_{xx} = \\ z_{xy} = \\ z_{yy} = \end{cases} \Longrightarrow P(x, y) =$$

例 通过判别式 P(x, y), 验证 (0, 0) 是 $z = x^2 + y^2$ 的极小值点

解

$$\begin{cases} z_{x} = 2x \\ z_{y} = \end{cases} \implies \begin{cases} z_{xx} = \\ z_{xy} = \\ z_{yy} = \end{cases} \implies P(x, y) =$$

例 通过判别式 P(x, y), 验证 (0, 0) 是 $z = x^2 + y^2$ 的极小值点

解

$$\begin{cases} z_{x} = 2x \\ z_{y} = 2y \end{cases} \implies \begin{cases} z_{xx} = \\ z_{xy} = \\ z_{yy} = \end{cases} \implies P(x, y) =$$

例 通过判别式 P(x, y), 验证 (0, 0) 是 $z = x^2 + y^2$ 的极小值点

解

$$\begin{cases} z_x = 2x \\ z_y = 2y \end{cases} \implies \begin{cases} z_{xx} = 2 \\ z_{xy} = \\ z_{yy} = \end{cases} \implies P(x, y) =$$

例 通过判别式 P(x, y), 验证 (0, 0) 是 $z = x^2 + y^2$ 的极小值点

解

$$\begin{cases} z_x = 2x \\ z_y = 2y \end{cases} \implies \begin{cases} z_{xx} = 2 \\ z_{xy} = 0 \end{cases} \implies P(x, y) =$$

例 通过判别式 P(x, y), 验证 (0, 0) 是 $z = x^2 + y^2$ 的极小值点

解

$$\begin{cases} z_x = 2x \\ z_y = 2y \end{cases} \implies \begin{cases} z_{xx} = 2 \\ z_{xy} = 0 \\ z_{yy} = 2 \end{cases} \implies P(x, y) = 0$$

例 通过判别式 P(x, y), 验证 (0, 0) 是 $z = x^2 + y^2$ 的极小值点

解

$$\begin{cases} z_x = 2x \\ z_y = 2y \end{cases} \implies \begin{cases} z_{xx} = 2 \\ z_{xy} = 0 \\ z_{yy} = 2 \end{cases} \implies P(x, y) = 4$$

例 通过判别式 P(x, y), 验证 (0, 0) 是 $z = x^2 + y^2$ 的极小值点

解

$$\begin{cases} z_x = 2x \\ z_y = 2y \end{cases} \implies \begin{cases} z_{xx} = 2 \\ z_{xy} = 0 \\ z_{yy} = 2 \end{cases} \implies P(x, y) = 4$$

所以 P(0,0)=4>0

例 通过判别式 P(x, y), 验证 (0, 0) 是 $z = x^2 + y^2$ 的极小值点

解

$$\begin{cases} z_x = 2x \\ z_y = 2y \end{cases} \implies \begin{cases} z_{xx} = 2 \\ z_{xy} = 0 \\ z_{yy} = 2 \end{cases} \implies P(x, y) = 4$$

所以 P(0,0) = 4 > 0且 $z_{xx}(0,0) >$,

例 通过判别式 P(x, y), 验证 (0, 0) 是 $z = x^2 + y^2$ 的极小值点

解

$$\begin{cases} z_x = 2x \\ z_y = 2y \end{cases} \implies \begin{cases} z_{xx} = 2 \\ z_{xy} = 0 \\ z_{yy} = 2 \end{cases} \implies P(x, y) = 4$$

所以 P(0, 0) = 4 > 0且 $z_{xx}(0, 0) > 0$,

例 通过判别式 P(x, y), 验证 (0, 0) 是 $z = x^2 + y^2$ 的极小值点

解

$$\begin{cases} z_x = 2x \\ z_y = 2y \end{cases} \implies \begin{cases} z_{xx} = 2 \\ z_{xy} = 0 \\ z_{yy} = 2 \end{cases} \implies P(x, y) = 4$$

所以 P(0,0) = 4 > 0且 $Z_{xx}(0,0) > 0$, (0,0) 是极小值点。

例 通过判别式 P(x, y), 验证 (0, 0) 是 $z = x^2 + y^2$ 的极小值点

解

$$\begin{cases} z_x = 2x \\ z_y = 2y \end{cases} \implies \begin{cases} z_{xx} = 2 \\ z_{xy} = 0 \\ z_{yy} = 2 \end{cases} \implies P(x, y) = 4$$

所以 P(0,0) = 4 > 0且 $Z_{xx}(0,0) > 0$, (0,0) 是极小值点。

例 通过判别式 P(x, y), 验证 (0, 0) 不是 z = xy 的极值点

$$P(x, y) =$$

例 通过判别式 P(x, y), 验证 (0, 0) 是 $z = x^2 + y^2$ 的极小值点

解

$$\begin{cases} z_x = 2x \\ z_y = 2y \end{cases} \implies \begin{cases} z_{xx} = 2 \\ z_{xy} = 0 \\ z_{yy} = 2 \end{cases} \implies P(x, y) = 4$$

所以 P(0,0) = 4 > 0且 $Z_{xx}(0,0) > 0$, (0,0) 是极小值点。

例 通过判别式 P(x, y), 验证 (0, 0) 不是 z = xy 的极值点

$$\begin{cases} z_{xx} = \\ z_{xy} = \\ z_{yy} = \end{cases} \Longrightarrow P(x, y) =$$

例 通过判别式 P(x, y), 验证 (0, 0) 是 $z = x^2 + y^2$ 的极小值点

解

$$\begin{cases} z_x = 2x \\ z_y = 2y \end{cases} \implies \begin{cases} z_{xx} = 2 \\ z_{xy} = 0 \\ z_{yy} = 2 \end{cases} \implies P(x, y) = 4$$

所以 P(0,0) = 4 > 0且 $Z_{xx}(0,0) > 0$, (0,0) 是极小值点。

例 通过判别式 P(x, y), 验证 (0, 0) 不是 z = xy 的极值点

$$\begin{cases} z_{x} = \\ z_{y} = \end{cases} \Longrightarrow \begin{cases} z_{xx} = \\ z_{xy} = \\ z_{yy} = \end{cases} \Longrightarrow P(x, y) =$$

例 通过判别式 P(x, y), 验证 (0, 0) 是 $z = x^2 + y^2$ 的极小值点

解

$$\begin{cases} z_x = 2x \\ z_y = 2y \end{cases} \implies \begin{cases} z_{xx} = 2 \\ z_{xy} = 0 \\ z_{yy} = 2 \end{cases} \implies P(x, y) = 4$$

所以 P(0,0) = 4 > 0且 $Z_{xx}(0,0) > 0$, (0,0) 是极小值点。

例 通过判别式 P(x, y), 验证 (0, 0) 不是 z = xy 的极值点

$$\begin{cases} z_{x} = y \\ z_{y} = \end{cases} \implies \begin{cases} z_{xx} = \\ z_{xy} = \\ z_{yy} = \end{cases} \implies P(x, y) =$$

例 通过判别式 P(x, y), 验证 (0, 0) 是 $z = x^2 + y^2$ 的极小值点

解

$$\begin{cases} z_x = 2x \\ z_y = 2y \end{cases} \implies \begin{cases} z_{xx} = 2 \\ z_{xy} = 0 \\ z_{yy} = 2 \end{cases} \implies P(x, y) = 4$$

所以 P(0,0) = 4 > 0且 $Z_{xx}(0,0) > 0$, (0,0) 是极小值点。

例 通过判别式 P(x, y), 验证 (0, 0) 不是 z = xy 的极值点

$$\begin{cases} z_{x} = y \\ z_{y} = x \end{cases} \implies \begin{cases} z_{xx} = \\ z_{xy} = \\ z_{yy} = \end{cases} \implies P(x, y) =$$

例 通过判别式 P(x, y), 验证 (0, 0) 是 $z = x^2 + y^2$ 的极小值点

解

$$\begin{cases} z_x = 2x \\ z_y = 2y \end{cases} \implies \begin{cases} z_{xx} = 2 \\ z_{xy} = 0 \\ z_{yy} = 2 \end{cases} \implies P(x, y) = 4$$

所以 P(0,0) = 4 > 0且 $Z_{xx}(0,0) > 0$, (0,0) 是极小值点。

例 通过判别式 P(x, y), 验证 (0, 0) 不是 z = xy 的极值点

$$\begin{cases} z_x = y \\ z_y = x \end{cases} \implies \begin{cases} z_{xx} = 0 \\ z_{xy} = \\ z_{yy} = \end{cases} \implies P(x, y) =$$

例 通过判别式 P(x, y), 验证 (0, 0) 是 $z = x^2 + y^2$ 的极小值点

解

$$\begin{cases} z_x = 2x \\ z_y = 2y \end{cases} \implies \begin{cases} z_{xx} = 2 \\ z_{xy} = 0 \\ z_{yy} = 2 \end{cases} \implies P(x, y) = 4$$

所以 P(0,0) = 4 > 0且 $Z_{xx}(0,0) > 0$, (0,0) 是极小值点。

例 通过判别式 P(x, y), 验证 (0, 0) 不是 z = xy 的极值点

$$\begin{cases} z_x = y \\ z_y = x \end{cases} \implies \begin{cases} z_{xx} = 0 \\ z_{xy} = 1 \end{cases} \implies P(x, y) =$$

例 通过判别式 P(x, y), 验证 (0, 0) 是 $z = x^2 + y^2$ 的极小值点

解

$$\begin{cases} z_x = 2x \\ z_y = 2y \end{cases} \implies \begin{cases} z_{xx} = 2 \\ z_{xy} = 0 \\ z_{yy} = 2 \end{cases} \implies P(x, y) = 4$$

所以 P(0,0) = 4 > 0且 $Z_{xx}(0,0) > 0$, (0,0) 是极小值点。

例 通过判别式 P(x, y), 验证 (0, 0) 不是 z = xy 的极值点

$$\begin{cases} z_x = y \\ z_y = x \end{cases} \implies \begin{cases} z_{xx} = 0 \\ z_{xy} = 1 \\ z_{yy} = 0 \end{cases} \implies P(x, y) = 0$$

例 通过判别式 P(x, y), 验证 (0, 0) 是 $z = x^2 + y^2$ 的极小值点

解

$$\begin{cases} z_x = 2x \\ z_y = 2y \end{cases} \implies \begin{cases} z_{xx} = 2 \\ z_{xy} = 0 \\ z_{yy} = 2 \end{cases} \implies P(x, y) = 4$$

所以 P(0,0) = 4 > 0且 $Z_{xx}(0,0) > 0$, (0,0) 是极小值点。

例 通过判别式 P(x, y), 验证 (0, 0) 不是 z = xy 的极值点

$$\begin{cases} z_x = y \\ z_y = x \end{cases} \implies \begin{cases} z_{xx} = 0 \\ z_{xy} = 1 \\ z_{yy} = 0 \end{cases} \implies P(x, y) = -1$$

例 通过判别式 P(x, y), 验证 (0, 0) 是 $z = x^2 + y^2$ 的极小值点

解

$$\begin{cases} z_x = 2x \\ z_y = 2y \end{cases} \implies \begin{cases} z_{xx} = 2 \\ z_{xy} = 0 \\ z_{yy} = 2 \end{cases} \implies P(x, y) = 4$$

所以 P(0,0) = 4 > 0且 $Z_{xx}(0,0) > 0$, (0,0) 是极小值点。

例 通过判别式 P(x, y), 验证 (0, 0) 不是 z = xy 的极值点

解

$$\begin{cases} z_x = y \\ z_y = x \end{cases} \implies \begin{cases} z_{xx} = 0 \\ z_{xy} = 1 \\ z_{yy} = 0 \end{cases} \implies P(x, y) = -1$$

所以 P(0,0) = -1 < 0,

例 通过判别式 P(x, y), 验证 (0, 0) 是 $z = x^2 + y^2$ 的极小值点

解

$$\begin{cases} z_x = 2x \\ z_y = 2y \end{cases} \implies \begin{cases} z_{xx} = 2 \\ z_{xy} = 0 \\ z_{yy} = 2 \end{cases} \implies P(x, y) = 4$$

所以 P(0,0) = 4 > 0且 $Z_{xx}(0,0) > 0$, (0,0) 是极小值点。

例 通过判别式 P(x, y), 验证 (0, 0) 不是 z = xy 的极值点

解

$$\begin{cases} z_x = y \\ z_y = x \end{cases} \implies \begin{cases} z_{xx} = 0 \\ z_{xy} = 1 \\ z_{yy} = 0 \end{cases} \implies P(x, y) = -1$$

所以 P(0,0) = -1 < 0, (0,0) 不是极值点。

$$z_X =$$
 , $z_Y =$

$$z_x = 3x^2 + 6x - 9, z_y =$$

$$z_x = 3x^2 + 6x - 9$$
, $z_y = -3y^2 + 6y$

$$z_X = 3x^2 + 6x - 9$$
, $z_Y = -3y^2 + 6y$ 求解方程组
$$\begin{cases} z_X(x, y) = 0 \\ z_Y(x, y) = 0 \end{cases}$$

$$z_x = 3x^2 + 6x - 9$$
, $z_y = -3y^2 + 6y$ 求解方程组 $\begin{cases} z_x(x, y) = 0 \\ z_y(x, y) = 0 \end{cases}$ 得: (-3, 0), (-3, 2), (1, 0), (1, 2)

解 1. 求一阶偏导

$$z_x = 3x^2 + 6x - 9$$
, $z_y = -3y^2 + 6y$ 求解方程组
$$\begin{cases} z_x(x, y) = 0 \\ z_y(x, y) = 0 \end{cases}$$
 得: (-3, 0), (-3, 2), (1, 0), (1, 2)

$$P(x, y) =$$

解 1. 求一阶偏导

$$z_x = 3x^2 + 6x - 9$$
, $z_y = -3y^2 + 6y$ 求解方程组
$$\begin{cases} z_x(x, y) = 0 \\ z_y(x, y) = 0 \end{cases}$$
 得: (-3, 0), (-3, 2), (1, 0), (1, 2)

$$\begin{cases} z_{xx} = \\ z_{xy} = \\ z_{yy} = \end{cases} \Longrightarrow P(x, y) =$$

解 1. 求一阶偏导

$$z_x = 3x^2 + 6x - 9$$
, $z_y = -3y^2 + 6y$ 求解方程组 $\begin{cases} z_x(x, y) = 0 \\ z_y(x, y) = 0 \end{cases}$ 得: (-3, 0), (-3, 2), (1, 0), (1, 2)

$$\begin{cases} z_{xx} = 6x + 6 \\ z_{xy} = \\ z_{yy} = \end{cases} \Longrightarrow P(x, y) =$$

解 1. 求一阶偏导

$$z_X = 3x^2 + 6x - 9$$
, $z_y = -3y^2 + 6y$ 求解方程组 $\begin{cases} z_X(x, y) = 0 \\ z_Y(x, y) = 0 \end{cases}$ 得: (-3, 0), (-3, 2), (1, 0), (1, 2)

$$\begin{cases} z_{xx} = 6x + 6 \\ z_{xy} = 0 \\ z_{yy} = \end{cases} \Longrightarrow P(x, y) =$$

解 1. 求一阶偏导

$$z_x = 3x^2 + 6x - 9$$
, $z_y = -3y^2 + 6y$ 求解方程组 $\begin{cases} z_x(x, y) = 0 \\ z_y(x, y) = 0 \end{cases}$ 得: (-3, 0), (-3, 2), (1, 0), (1, 2)

$$\begin{cases} z_{xx} = 6x + 6 \\ z_{xy} = 0 \\ z_{yy} = -6y + 6 \end{cases} \implies P(x, y) =$$

解 1. 求一阶偏导

$$z_X = 3x^2 + 6x - 9$$
, $z_y = -3y^2 + 6y$ 求解方程组 $\begin{cases} z_X(x, y) = 0 \\ z_y(x, y) = 0 \end{cases}$ 得: (-3, 0), (-3, 2), (1, 0), (1, 2)

$$\begin{cases} z_{xx} = 6x + 6 \\ z_{xy} = 0 \\ z_{yy} = -6y + 6 \end{cases} \implies P(x, y) = -36(x+1)(y-1)$$

解 1. 求一阶偏导

$$z_X = 3x^2 + 6x - 9$$
, $z_y = -3y^2 + 6y$ 求解方程组 $\begin{cases} z_X(x, y) = 0 \\ z_y(x, y) = 0 \end{cases}$ 得: (-3, 0), (-3, 2), (1, 0), (1, 2)

$$\begin{cases} z_{xx} = 6x + 6 \\ z_{xy} = 0 \\ z_{yy} = -6y + 6 \end{cases} \implies P(x, y) = -36(x+1)(y-1)$$
3. 结论

	(-3, 0)	(-3, 2)	(1, 0)	(1, 2)
$P(x_0, y_0)$				
$z_{xx}(x_0, y_0)$				
是否极值点				

解 1. 求一阶偏导

$$z_X = 3x^2 + 6x - 9$$
, $z_y = -3y^2 + 6y$ 求解方程组 $\begin{cases} z_X(x, y) = 0 \\ z_y(x, y) = 0 \end{cases}$ 得: (-3, 0), (-3, 2), (1, 0), (1, 2)

$$\begin{cases} z_{xx} = 6x + 6 \\ z_{xy} = 0 \\ z_{yy} = -6y + 6 \end{cases} \implies P(x, y) = -36(x+1)(y-1)$$
3. 结论

	(-3, 0)	(-3, 2)	(1, 0)	(1, 2)
$P(x_0, y_0)$	-72 < 0			
$Z_{XX}(x_0, y_0)$				
是否极值点				

解 1. 求一阶偏导

$$z_X = 3x^2 + 6x - 9$$
, $z_y = -3y^2 + 6y$ 求解方程组 $\begin{cases} z_X(x, y) = 0 \\ z_y(x, y) = 0 \end{cases}$ 得: (-3, 0), (-3, 2), (1, 0), (1, 2)

$$\begin{cases} z_{xx} = 6x + 6 \\ z_{xy} = 0 \\ z_{yy} = -6y + 6 \end{cases} \implies P(x, y) = -36(x+1)(y-1)$$
3. 结论

	(-3, 0)	(-3, 2)	(1, 0)	(1, 2)
$P(x_0, y_0)$	-72 < 0			
$Z_{XX}(x_0, y_0)$				
是否极值点	×			

解 1. 求一阶偏导

$$z_X = 3x^2 + 6x - 9$$
, $z_y = -3y^2 + 6y$ 求解方程组 $\begin{cases} z_X(x, y) = 0 \\ z_y(x, y) = 0 \end{cases}$ 得: (-3, 0), (-3, 2), (1, 0), (1, 2)

$$\begin{cases} z_{xx} = 6x + 6 \\ z_{xy} = 0 \\ z_{yy} = -6y + 6 \end{cases} \implies P(x, y) = -36(x+1)(y-1)$$
3. 结论

	(-3, 0)	(-3, 2)	(1, 0)	(1, 2)
$P(x_0, y_0)$	-72 < 0	72 > 0		
$z_{xx}(x_0, y_0)$				
是否极值点	×			

解 1. 求一阶偏导

$$z_X = 3x^2 + 6x - 9$$
, $z_y = -3y^2 + 6y$ 求解方程组 $\begin{cases} z_X(x, y) = 0 \\ z_y(x, y) = 0 \end{cases}$ 得: (-3, 0), (-3, 2), (1, 0), (1, 2)

$$\begin{cases} z_{xx} = 6x + 6 \\ z_{xy} = 0 \\ z_{yy} = -6y + 6 \end{cases} \implies P(x, y) = -36(x+1)(y-1)$$
3. 结论

	(-3, 0)	(-3, 2)	(1, 0)	(1, 2)
$P(x_0, y_0)$	-72 < 0	72 > 0		
$z_{xx}(x_0, y_0)$		-12 < 0		
是否极值点	×			

解 1. 求一阶偏导

$$z_X = 3x^2 + 6x - 9$$
, $z_y = -3y^2 + 6y$ 求解方程组 $\begin{cases} z_X(x, y) = 0 \\ z_y(x, y) = 0 \end{cases}$ 得: (-3, 0), (-3, 2), (1, 0), (1, 2)

$$\begin{cases} z_{xx} = 6x + 6 \\ z_{xy} = 0 \\ z_{yy} = -6y + 6 \end{cases} \implies P(x, y) = -36(x+1)(y-1)$$
3. 结论

	(-3, 0)	(-3, 2)	(1, 0)	(1, 2)
$P(x_0, y_0)$	-72 < 0	72 > 0		
$z_{xx}(x_0, y_0)$		-12 < 0		
是否极值点	×	极大值点		

解 1. 求一阶偏导

$$z_X = 3x^2 + 6x - 9$$
, $z_y = -3y^2 + 6y$ 求解方程组 $\begin{cases} z_X(x, y) = 0 \\ z_y(x, y) = 0 \end{cases}$ 得: (-3, 0), (-3, 2), (1, 0), (1, 2)

$$\begin{cases} z_{xx} = 6x + 6 \\ z_{xy} = 0 \\ z_{yy} = -6y + 6 \end{cases} \implies P(x, y) = -36(x+1)(y-1)$$
3. 结论

	(-3, 0)	(-3, 2)	(1, 0)	(1, 2)
$P(x_0, y_0)$	-72 < 0	72 > 0	72 > 0	
$z_{xx}(x_0, y_0)$		-12 < 0		
是否极值点	×	极大值点		

解 1. 求一阶偏导

$$z_X = 3x^2 + 6x - 9$$
, $z_y = -3y^2 + 6y$ 求解方程组 $\begin{cases} z_X(x, y) = 0 \\ z_y(x, y) = 0 \end{cases}$ 得: (-3, 0), (-3, 2), (1, 0), (1, 2)

$$\begin{cases} z_{xx} = 6x + 6 \\ z_{xy} = 0 \\ z_{yy} = -6y + 6 \end{cases} \implies P(x, y) = -36(x+1)(y-1)$$
3. 结论

	(-3, 0)	(-3, 2)	(1, 0)	(1, 2)
$P(x_0, y_0)$	-72 < 0	72 > 0	72 > 0	
$z_{xx}(x_0, y_0)$		-12 < 0	12 > 0	
是否极值点	×	极大值点		

解 1. 求一阶偏导

$$z_X = 3x^2 + 6x - 9$$
, $z_y = -3y^2 + 6y$ 求解方程组 $\begin{cases} z_X(x, y) = 0 \\ z_y(x, y) = 0 \end{cases}$ 得: (-3, 0), (-3, 2), (1, 0), (1, 2)

$$\begin{cases} z_{xx} = 6x + 6 \\ z_{xy} = 0 \\ z_{yy} = -6y + 6 \end{cases} \implies P(x, y) = -36(x+1)(y-1)$$
3. 结论

	(-3, 0)	(-3, 2)	(1, 0)	(1, 2)
$P(x_0, y_0)$	-72 < 0	72 > 0	72 > 0	
$z_{xx}(x_0, y_0)$		-12 < 0	12 > 0	
是否极值点	×	极大值点	极小值点	

解 1. 求一阶偏导

$$z_X = 3x^2 + 6x - 9$$
, $z_y = -3y^2 + 6y$ 求解方程组 $\begin{cases} z_X(x, y) = 0 \\ z_y(x, y) = 0 \end{cases}$ 得: $(-3, 0), (-3, 2), (1, 0), (1, 2)$

$$\begin{cases} z_{xx} = 6x + 6 \\ z_{xy} = 0 \\ z_{yy} = -6y + 6 \end{cases} \implies P(x, y) = -36(x+1)(y-1)$$
3. 结论

	(-3, 0)	(-3, 2)	(1, 0)	(1, 2)
$P(x_0, y_0)$	-72 < 0	72 > 0	72 > 0	-72 < 0
$z_{xx}(x_0, y_0)$		-12 < 0	12 > 0	
是否极值点	×	极大值点	极小值点	

解 1. 求一阶偏导

$$z_X = 3x^2 + 6x - 9$$
, $z_y = -3y^2 + 6y$ 求解方程组 $\begin{cases} z_X(x, y) = 0 \\ z_y(x, y) = 0 \end{cases}$ 得: (-3, 0), (-3, 2), (1, 0), (1, 2)

$$\begin{cases} z_{xx} = 6x + 6 \\ z_{xy} = 0 \\ z_{yy} = -6y + 6 \end{cases} \implies P(x, y) = -36(x+1)(y-1)$$
3. 结论

	(-3, 0)	(-3, 2)	(1, 0)	(1, 2)
$P(x_0, y_0)$	-72 < 0	72 > 0	72 > 0	-72 < 0
$z_{xx}(x_0, y_0)$		-12 < 0	12 > 0	
是否极值点	×	极大值点	极小值点	×

$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$

$$z_X =$$
 , $z_y =$

$$z_x = 3x^2 - 3y, \qquad z_y =$$

$$z_x = 3x^2 - 3y$$
, $z_y = 3y^2 - 3x$

$$z_x = 3x^2 - 3y$$
, $z_y = 3y^2 - 3x$

求解方程组
$$\begin{cases} z_X(x, y) = 0 \\ z_Y(x, y) = 0 \end{cases}$$

$$z_x = 3x^2 - 3y$$
, $z_y = 3y^2 - 3x$

求解方程组
$$\begin{cases} z_X(x, y) = 0 \\ z_Y(x, y) = 0 \end{cases}$$
 得: (1, 1), (0, 0)

解 1. 求一阶偏导

$$z_x = 3x^2 - 3y$$
, $z_y = 3y^2 - 3x$

求解方程组 $\begin{cases} z_X(x,y) = 0 \\ z_Y(x,y) = 0 \end{cases}$ 得: (1, 1), (0, 0)

$$P(x, y) =$$

解 1. 求一阶偏导

$$z_x = 3x^2 - 3y$$
, $z_y = 3y^2 - 3x$

求解方程组
$$\begin{cases} z_X(x, y) = 0 \\ z_Y(x, y) = 0 \end{cases}$$
 得: (1, 1), (0, 0)

$$\begin{cases} z_{xx} = \\ z_{xy} = \\ z_{yy} = \end{cases} \Longrightarrow P(x, y) =$$

解 1. 求一阶偏导

$$z_x = 3x^2 - 3y$$
, $z_y = 3y^2 - 3x$

求解方程组
$$\begin{cases} z_x(x,y) = 0 \\ z_y(x,y) = 0 \end{cases}$$
 得: (1, 1), (0, 0)

$$\begin{cases} z_{xx} = 6x \\ z_{xy} = \Longrightarrow P(x, y) = \\ z_{yy} = \end{cases}$$

解 1. 求一阶偏导

$$z_x = 3x^2 - 3y$$
, $z_y = 3y^2 - 3x$

求解方程组 $\begin{cases} z_x(x,y) = 0 \\ z_y(x,y) = 0 \end{cases}$ 得: (1, 1), (0, 0)

$$\begin{cases} z_{xx} = 6x \\ z_{xy} = -3 \implies P(x, y) = \\ z_{yy} = \end{cases}$$

解 1. 求一阶偏导

$$z_x = 3x^2 - 3y$$
, $z_y = 3y^2 - 3x$

求解方程组 $\begin{cases} z_x(x,y) = 0 \\ z_y(x,y) = 0 \end{cases}$ 得: (1, 1), (0, 0)

$$\begin{cases} z_{xx} = 6x \\ z_{xy} = -3 \implies P(x, y) = \\ z_{yy} = 6y \end{cases}$$

解 1. 求一阶偏导

$$z_x = 3x^2 - 3y$$
, $z_y = 3y^2 - 3x$

求解方程组 $\begin{cases} z_x(x,y) = 0 \\ z_y(x,y) = 0 \end{cases}$ 得: (1, 1), (0, 0)

$$\begin{cases} z_{xx} = 6x \\ z_{xy} = -3 & \Longrightarrow P(x, y) = 36xy - 9 \\ z_{yy} = 6y \end{cases}$$

解 1. 求一阶偏导

$$z_x = 3x^2 - 3y$$
, $z_y = 3y^2 - 3x$

求解方程组
$$\begin{cases} z_x(x,y) = 0 \\ z_y(x,y) = 0 \end{cases}$$
 得: (1, 1), (0, 0)

2. 再求判别式 P(x, y)

$$\begin{cases} z_{xx} = 6x \\ z_{xy} = -3 \implies P(x, y) = 36xy - 9 \\ z_{yy} = 6y \end{cases}$$

	(1, 1)	(0, 0)
$P(x_0, y_0)$		
$z_{xx}(x_0, y_0)$		
是否极值点		

解 1. 求一阶偏导

$$z_x = 3x^2 - 3y$$
, $z_y = 3y^2 - 3x$

求解方程组
$$\begin{cases} z_x(x,y) = 0 \\ z_y(x,y) = 0 \end{cases}$$
 得: (1, 1), (0, 0)

2. 再求判别式 P(x, y)

$$\begin{cases} z_{xx} = 6x \\ z_{xy} = -3 \implies P(x, y) = 36xy - 9 \\ z_{yy} = 6y \end{cases}$$

	(1, 1)	(0, 0)
$P(x_0, y_0)$	27 > 0	
$z_{xx}(x_0, y_0)$		
是否极值点		

解 1. 求一阶偏导

$$z_x = 3x^2 - 3y$$
, $z_y = 3y^2 - 3x$

求解方程组
$$\begin{cases} z_x(x,y) = 0 \\ z_y(x,y) = 0 \end{cases}$$
 得: (1, 1), (0, 0)

2. 再求判别式 P(x, y)

$$\begin{cases} z_{xx} = 6x \\ z_{xy} = -3 \implies P(x, y) = 36xy - 9 \\ z_{yy} = 6y \end{cases}$$

	(1, 1)	(0, 0)
$P(x_0, y_0)$	27 > 0	
$z_{xx}(x_0, y_0)$	6 > 0	
是否极值点		

解 1. 求一阶偏导

$$z_x = 3x^2 - 3y$$
, $z_y = 3y^2 - 3x$

求解方程组
$$\begin{cases} z_x(x,y) = 0 \\ z_y(x,y) = 0 \end{cases}$$
 得: (1, 1), (0, 0)

2. 再求判别式 P(x, y)

$$\begin{cases} z_{xx} = 6x \\ z_{xy} = -3 \implies P(x, y) = 36xy - 9 \\ z_{yy} = 6y \end{cases}$$

	(1, 1)	(0, 0)
$P(x_0, y_0)$	27 > 0	
$z_{xx}(x_0, y_0)$	6 > 0	
是否极值点	极小值点	

解 1. 求一阶偏导

$$z_x = 3x^2 - 3y$$
, $z_y = 3y^2 - 3x$

求解方程组
$$\begin{cases} z_x(x,y) = 0 \\ z_y(x,y) = 0 \end{cases}$$
 得: (1, 1), (0, 0)

2. 再求判别式 P(x, y)

$$\begin{cases} z_{xx} = 6x \\ z_{xy} = -3 \implies P(x, y) = 36xy - 9 \\ z_{yy} = 6y \end{cases}$$

	(1, 1)	(0, 0)
$P(x_0, y_0)$	27 > 0	-9 < 0
$z_{xx}(x_0, y_0)$	6 > 0	
是否极值点	极小值点	

解 1. 求一阶偏导

$$z_x = 3x^2 - 3y$$
, $z_y = 3y^2 - 3x$

求解方程组
$$\begin{cases} z_x(x,y) = 0 \\ z_y(x,y) = 0 \end{cases}$$
 得: (1, 1), (0, 0)

2. 再求判别式 P(x, y)

$$\begin{cases} z_{xx} = 6x \\ z_{xy} = -3 \implies P(x, y) = 36xy - 9 \\ z_{yy} = 6y \end{cases}$$

	(1, 1)	(0, 0)
$P(x_0, y_0)$	27 > 0	-9 < 0
$z_{xx}(x_0, y_0)$	6 > 0	
是否极值点	极小值点	×

$$z = x^3 + y^3 - 3xy$$

- 设 u = f(x, y, z)。
- (x₀, y₀, z₀) 是驻点指在该点处偏导数全为零:

$$f_x(x_0, y_0, z_0) = 0$$
, $f_y(x_0, y_0, z_0) = 0$, $f_z(x_0, y_0, z_0) = 0$

- 设 u = f(x, y, z)。
- (x_0, y_0, z_0) 是驻点指在该点处偏导数全为零:

$$f_x(x_0,\,y_0,\,z_0)=0,\quad f_y(x_0,\,y_0,\,z_0)=0,\quad f_z(x_0,\,y_0,\,z_0)=0$$

• 设 (x_0, y_0, z_0) 是 u = f(x, y, z) 的极值点,则 (x_0, y_0, z_0) 一定 是驻点

- 设 u = f(x, y, z)。
- (x₀, y₀, z₀) 是驻点指在该点处偏导数全为零:

$$f_x(x_0, y_0, z_0) = 0, \quad f_y(x_0, y_0, z_0) = 0, \quad f_z(x_0, y_0, z_0) = 0$$

- 设 (x_0, y_0, z_0) 是 u = f(x, y, z) 的极值点,则 (x_0, y_0, z_0) 一定 是驻点
- 如何进一步判别哪些驻点为极值点?

- 设 u = f(x, y, z)。
- (x_0, y_0, z_0) 是驻点指在该点处偏导数全为零:

$$f_x(x_0, y_0, z_0) = 0$$
, $f_y(x_0, y_0, z_0) = 0$, $f_z(x_0, y_0, z_0) = 0$

- 设 (x_0, y_0, z_0) 是 u = f(x, y, z) 的极值点,则 (x_0, y_0, z_0) 一定 是驻点
- 如何进一步判别哪些驻点为极值点? 考虑矩阵

$$\begin{pmatrix} f_{xx} & f_{xy} & f_{xz} \\ f_{yx} & f_{yy} & f_{yz} \\ f_{zx} & f_{zy} & f_{zz} \end{pmatrix}_{(x_0, y_0, z_0)}$$

- 设 u = f(x, y, z)。
- (x₀, y₀, z₀) 是驻点指在该点处偏导数全为零:

$$f_x(x_0, y_0, z_0) = 0, \quad f_y(x_0, y_0, z_0) = 0, \quad f_z(x_0, y_0, z_0) = 0$$

- 设 (x_0, y_0, z_0) 是 u = f(x, y, z) 的极值点,则 (x_0, y_0, z_0) 一定 是驻点
- 如何进一步判别哪些驻点为极值点? 考虑矩阵

$$\begin{pmatrix} f_{xx} & f_{xy} & f_{xz} \\ f_{yx} & f_{yy} & f_{yz} \\ f_{zx} & f_{zy} & f_{zz} \end{pmatrix}_{(x_0, y_0, z_0)}$$

- 如果是正定矩阵,则 (x₀, y₀, z₀) 是极小值点
- 如果是负定矩阵,则 (x₀, y₀, z₀) 是极大值点

• 设二元函数 z = f(x, y) 在有界闭区域 \overline{D} 上连续,则 z = f(x, y) 在 \overline{D} 上取到最大值和最小值。

- 设二元函数 z = f(x, y) 在有界闭区域 \overline{D} 上连续,则 z = f(x, y) 在 \overline{D} 上取到最大值和最小值。
- 最大值点 (x_{min}, y_{min}), 最小值点 (x_{min}, y_{min}) 或者出现在:
 - 区域的内部。

或者出现在:

• 区域的边界。

- 设二元函数 z = f(x, y) 在有界闭区域 \overline{D} 上连续,则 z = f(x, y) 在 \overline{D} 上取到最大值和最小值。
- 最大值点 (x_{min}, y_{min}), 最小值点 (x_{min}, y_{min}) 或者出现在:
 - 区域的内部。此时可通过找极值点,从而找出最值点

或者出现在:

• 区域的边界。

- 设二元函数 z = f(x, y) 在有界闭区域 \overline{D} 上连续,则 z = f(x, y) 在 \overline{D} 上取到最大值和最小值。
- 最大值点 (x_{min}, y_{min}), 最小值点 (x_{min}, y_{min}) 或者出现在:
 - 区域的内部。此时可通过找极值点,从而找出最值点

或者出现在:

- 区域的边界。
- 在实际中,往往根据问题背景判断目标函数 z = f(x, y) 是有最值。

- 设二元函数 z = f(x, y) 在有界闭区域 \overline{D} 上连续,则 z = f(x, y) 在 \overline{D} 上取到最大值和最小值。
- 最大值点 (x_{min}, y_{min}), 最小值点 (x_{min}, y_{min}) 或者出现在:
 - 区域的内部。此时可通过找极值点,从而找出最值点

或者出现在:

- 区域的边界。
- 在实际中,往往根据问题背景判断目标函数 z = f(x, y) 是有最值。若此时计算发现 z = f(x, y) 只有一个极大(小)值点,那么就是最大(小)值点。

$$L(x, y) = x + 2y - 0.01(x^2 + xy + y^2) - 10$$

问两种产品各生产多少时,利润最大?

解

例 设生产甲产品 x 单位,乙产品 y 单位时,公司利润为 $L(x, y) = x + 2y - 0.01(x^2 + xy + y^2) - 10$

问两种产品各生产多少时, 利润最大?

解 1. 求解驻点(一阶偏导数为零):

2. 计算判别式 P(x, y)

$$L(x, y) = x + 2y - 0.01(x^2 + xy + y^2) - 10$$

问两种产品各生产多少时, 利润最大?

解 1. 求解驻点(一阶偏导数为零):

$$\begin{cases} L_x = \\ L_y = \end{cases}$$

2. 计算判别式 P(x, y)

$$L(x, y) = x + 2y - 0.01(x^2 + xy + y^2) - 10$$

问两种产品各生产多少时,利润最大?

解 1. 求解驻点(一阶偏导数为零):

$$\begin{cases} L_x = 1 - 0.02x - 0.01y \\ L_y = \end{cases}$$

2. 计算判别式 P(x, y)

$$L(x, y) = x + 2y - 0.01(x^2 + xy + y^2) - 10$$

问两种产品各生产多少时,利润最大?

解 1. 求解驻点(一阶偏导数为零):

$$\begin{cases} L_x = 1 - 0.02x - 0.01y = 0 \\ L_y = \end{cases}$$

2. 计算判别式 P(x, y)

$$L(x, y) = x + 2y - 0.01(x^2 + xy + y^2) - 10$$

问两种产品各生产多少时,利润最大?

解 1. 求解驻点(一阶偏导数为零):

$$\begin{cases} L_x = 1 - 0.02x - 0.01y = 0 \\ L_y = 2 - 0.01x - 0.02y \end{cases}$$

2. 计算判别式 P(x, y)

$$L(x, y) = x + 2y - 0.01(x^2 + xy + y^2) - 10$$

问两种产品各生产多少时,利润最大?

解 1. 求解驻点(一阶偏导数为零):

$$\begin{cases} L_x = 1 - 0.02x - 0.01y = 0 \\ L_y = 2 - 0.01x - 0.02y = 0 \end{cases}$$

2. 计算判别式 P(x, y)

$$L(x, y) = x + 2y - 0.01(x^2 + xy + y^2) - 10$$

问两种产品各生产多少时,利润最大?

解 1. 求解驻点(一阶偏导数为零):

$$\begin{cases} L_x = 1 - 0.02x - 0.01y = 0 \\ L_y = 2 - 0.01x - 0.02y = 0 \end{cases} \implies (x, y) =$$

2. 计算判别式 P(x, y)

$$L(x, y) = x + 2y - 0.01(x^2 + xy + y^2) - 10$$

问两种产品各生产多少时, 利润最大?

解 1. 求解驻点(一阶偏导数为零):

$$\begin{cases} L_x = 1 - 0.02x - 0.01y = 0 \\ L_y = 2 - 0.01x - 0.02y = 0 \end{cases} \implies (x, y) = (0, 100)$$

2. 计算判别式 P(x, y)

$$L(x, y) = x + 2y - 0.01(x^2 + xy + y^2) - 10$$

问两种产品各生产多少时, 利润最大?

解 1. 求解驻点(一阶偏导数为零):

$$\begin{cases} L_x = 1 - 0.02x - 0.01y = 0 \\ L_y = 2 - 0.01x - 0.02y = 0 \end{cases} \implies (x, y) = (0, 100)$$

2. 计算判别式 P(x, y)

$$P(x, y) =$$

$$L(x, y) = x + 2y - 0.01(x^2 + xy + y^2) - 10$$

问两种产品各生产多少时, 利润最大?

解 1. 求解驻点(一阶偏导数为零):

$$\begin{cases} L_x = 1 - 0.02x - 0.01y = 0 \\ L_y = 2 - 0.01x - 0.02y = 0 \end{cases} \implies (x, y) = (0, 100)$$

2. 计算判别式 P(x, y)

$$\begin{cases} L_{xx} = \\ L_{xy} = \\ L_{yy} = \end{cases} \Longrightarrow P(x, y) =$$

$$L(x, y) = x + 2y - 0.01(x^2 + xy + y^2) - 10$$

问两种产品各生产多少时, 利润最大?

解 1. 求解驻点(一阶偏导数为零):

$$\begin{cases} L_x = 1 - 0.02x - 0.01y = 0 \\ L_y = 2 - 0.01x - 0.02y = 0 \end{cases} \implies (x, y) = (0, 100)$$

2. 计算判别式 P(x, y)

$$\begin{cases} L_{xx} = -0.02 \\ L_{xy} = \Longrightarrow P(x, y) = \\ L_{yy} = \end{cases}$$

$$L(x, y) = x + 2y - 0.01(x^2 + xy + y^2) - 10$$

问两种产品各生产多少时,利润最大?

解 1. 求解驻点(一阶偏导数为零):

$$\begin{cases} L_x = 1 - 0.02x - 0.01y = 0 \\ L_y = 2 - 0.01x - 0.02y = 0 \end{cases} \implies (x, y) = (0, 100)$$

2. 计算判别式 P(x, y)

$$\begin{cases} L_{xx} = -0.02 \\ L_{xy} = -0.01 & \Longrightarrow P(x, y) = \\ L_{yy} = \end{cases}$$

$$L(x, y) = x + 2y - 0.01(x^2 + xy + y^2) - 10$$

问两种产品各生产多少时, 利润最大?

解 1. 求解驻点(一阶偏导数为零):

$$\begin{cases} L_x = 1 - 0.02x - 0.01y = 0 \\ L_y = 2 - 0.01x - 0.02y = 0 \end{cases} \implies (x, y) = (0, 100)$$

2. 计算判别式 P(x, y)

$$\begin{cases} L_{xx} = -0.02 \\ L_{xy} = -0.01 \\ L_{yy} = -0.02 \end{cases} \Longrightarrow P(x, y) =$$

$$L(x, y) = x + 2y - 0.01(x^2 + xy + y^2) - 10$$

问两种产品各生产多少时, 利润最大?

解 1. 求解驻点(一阶偏导数为零):

$$\begin{cases} L_x = 1 - 0.02x - 0.01y = 0 \\ L_y = 2 - 0.01x - 0.02y = 0 \end{cases} \implies (x, y) = (0, 100)$$

2. 计算判别式 P(x, y)

$$\begin{cases} L_{xx} = -0.02 \\ L_{xy} = -0.01 \\ L_{yy} = -0.02 \end{cases} \implies P(x, y) = 3 \times 10^{-4}$$

$$L(x, y) = x + 2y - 0.01(x^2 + xy + y^2) - 10$$

问两种产品各生产多少时,利润最大?

解 1. 求解驻点(一阶偏导数为零):

$$\begin{cases} L_x = 1 - 0.02x - 0.01y = 0 \\ L_y = 2 - 0.01x - 0.02y = 0 \end{cases} \implies (x, y) = (0, 100)$$

2. 计算判别式 P(x,y)

$$\begin{cases} L_{xx} = -0.02 \\ L_{xy} = -0.01 \\ L_{yy} = -0.02 \end{cases} \implies P(x, y) = 3 \times 10^{-4}$$

3. P(0, 100) > 0,

$$L(x, y) = x + 2y - 0.01(x^2 + xy + y^2) - 10$$

问两种产品各生产多少时, 利润最大?

解 1. 求解驻点(一阶偏导数为零):

$$\begin{cases} L_x = 1 - 0.02x - 0.01y = 0 \\ L_y = 2 - 0.01x - 0.02y = 0 \end{cases} \implies (x, y) = (0, 100)$$

2. 计算判别式 P(x,y)

$$\begin{cases} L_{xx} = -0.02 \\ L_{xy} = -0.01 \\ L_{yy} = -0.02 \end{cases} \implies P(x, y) = 3 \times 10^{-4}$$

3. P(0, 100) > 0, $L_{xx}(0, 100) < 0$,

$$L(x, y) = x + 2y - 0.01(x^2 + xy + y^2) - 10$$

问两种产品各生产多少时, 利润最大?

解 1. 求解驻点(一阶偏导数为零):

$$\begin{cases} L_x = 1 - 0.02x - 0.01y = 0 \\ L_y = 2 - 0.01x - 0.02y = 0 \end{cases} \implies (x, y) = (0, 100)$$

2. 计算判别式 P(x,y)

$$\begin{cases} L_{xx} = -0.02 \\ L_{xy} = -0.01 & \Longrightarrow P(x, y) = 3 \times 10^{-4} \\ L_{yy} = -0.02 \end{cases}$$

3. P(0, 100) > 0, $L_{xx}(0, 100) < 0$, (0, 100) 为极大值点。

$$L(x, y) = x + 2y - 0.01(x^2 + xy + y^2) - 10$$

问两种产品各生产多少时,利润最大?

解 1. 求解驻点(一阶偏导数为零):

$$\begin{cases} L_x = 1 - 0.02x - 0.01y = 0 \\ L_y = 2 - 0.01x - 0.02y = 0 \end{cases} \implies (x, y) = (0, 100)$$

2. 计算判别式 P(x, y)

$$\begin{cases} L_{xx} = -0.02 \\ L_{xy} = -0.01 \implies P(x, y) = 3 \times 10^{-4} \\ L_{yy} = -0.02 \end{cases}$$

3. P(0, 100) > 0, $L_{xx}(0, 100) < 0$, (0, 100) 为极大值点。由唯一

性,(0, 100) 也是最大值点,最大利润为 L(0, 100) = 90

$$L(x, y) = -0.1x^2 - 0.1y^2 + 60x + 50y$$

问两种产品各生产多少时,利润最大?

解

例 设生产甲产品 x 单位,乙产品单位时,公司利润为 $L(x,y) = -0.1x^2 - 0.1y^2 + 60x + 50y$

问两种产品各生产多少时, 利润最大?

解 1. 求解驻点(一阶偏导数为零):

2. 计算判别式 P(x, y)

$$L(x, y) = -0.1x^2 - 0.1y^2 + 60x + 50y$$

问两种产品各生产多少时, 利润最大?

解 1. 求解驻点(一阶偏导数为零):

$$\begin{cases} L_X = \\ L_y = \end{cases}$$

2. 计算判别式 P(x, y)

$$L(x, y) = -0.1x^2 - 0.1y^2 + 60x + 50y$$

问两种产品各生产多少时, 利润最大?

解 1. 求解驻点(一阶偏导数为零):

$$\begin{cases} L_x = -0.2x + 60 \\ L_y = \end{cases}$$

2. 计算判别式 P(x, y)

$$L(x, y) = -0.1x^2 - 0.1y^2 + 60x + 50y$$

问两种产品各生产多少时, 利润最大?

解 1. 求解驻点(一阶偏导数为零):

$$\begin{cases} L_x = -0.2x + 60 = 0 \\ L_y = \end{cases}$$

2. 计算判别式 P(x, y)

$$L(x, y) = -0.1x^2 - 0.1y^2 + 60x + 50y$$

问两种产品各生产多少时, 利润最大?

解 1. 求解驻点(一阶偏导数为零):

$$\begin{cases} L_x = -0.2x + 60 = 0 \\ L_y = -0.2y + 50 \end{cases}$$

2. 计算判别式 P(x, y)

 $\overline{\mathsf{M}}$ 设生产甲产品 x 单位,乙产品单位时,公司利润为

$$L(x, y) = -0.1x^2 - 0.1y^2 + 60x + 50y$$

问两种产品各生产多少时, 利润最大?

解 1. 求解驻点(一阶偏导数为零):

$$\begin{cases} L_x = -0.2x + 60 = 0 \\ L_y = -0.2y + 50 = 0 \end{cases}$$

2. 计算判别式 P(x, y)

$$L(x, y) = -0.1x^2 - 0.1y^2 + 60x + 50y$$

问两种产品各生产多少时,利润最大?

解 1. 求解驻点(一阶偏导数为零):

$$\begin{cases} L_x = -0.2x + 60 = 0 \\ L_y = -0.2y + 50 = 0 \end{cases} \implies (x, y) =$$

2. 计算判别式 P(x, y)

$$L(x, y) = -0.1x^2 - 0.1y^2 + 60x + 50y$$

问两种产品各生产多少时, 利润最大?

解 1. 求解驻点(一阶偏导数为零):

$$\begin{cases} L_x = -0.2x + 60 = 0 \\ L_y = -0.2y + 50 = 0 \end{cases} \implies (x, y) = (300, 250)$$

2. 计算判别式 P(x, y)

$$L(x, y) = -0.1x^2 - 0.1y^2 + 60x + 50y$$

问两种产品各生产多少时, 利润最大?

解 1. 求解驻点(一阶偏导数为零):

$$\begin{cases} L_x = -0.2x + 60 = 0 \\ L_y = -0.2y + 50 = 0 \end{cases} \implies (x, y) = (300, 250)$$

2. 计算判别式 P(x, y)

$$P(x, y) =$$

$$L(x, y) = -0.1x^2 - 0.1y^2 + 60x + 50y$$

问两种产品各生产多少时, 利润最大?

解 1. 求解驻点(一阶偏导数为零):

$$\begin{cases} L_x = -0.2x + 60 = 0 \\ L_y = -0.2y + 50 = 0 \end{cases} \implies (x, y) = (300, 250)$$

2. 计算判别式 P(x, y)

$$\begin{cases} L_{xx} = \\ L_{xy} = \\ L_{yy} = \end{cases} \Longrightarrow P(x, y) =$$

$$L(x, y) = -0.1x^2 - 0.1y^2 + 60x + 50y$$

问两种产品各生产多少时, 利润最大?

解 1. 求解驻点(一阶偏导数为零):

$$\begin{cases} L_x = -0.2x + 60 = 0 \\ L_y = -0.2y + 50 = 0 \end{cases} \implies (x, y) = (300, 250)$$

2. 计算判别式 P(x, y)

$$\begin{cases} L_{xx} = -0.2 \\ L_{xy} = \Longrightarrow P(x, y) = \\ L_{yy} = \end{cases}$$

$$L(x, y) = -0.1x^2 - 0.1y^2 + 60x + 50y$$

问两种产品各生产多少时,利润最大?

解 1. 求解驻点(一阶偏导数为零):

$$\begin{cases} L_x = -0.2x + 60 = 0 \\ L_y = -0.2y + 50 = 0 \end{cases} \implies (x, y) = (300, 250)$$

2. 计算判别式 P(x, y)

$$\begin{cases} L_{xx} = -0.2 \\ L_{xy} = 0 \\ L_{yy} = \end{cases} \Longrightarrow P(x, y) =$$

$$L(x, y) = -0.1x^2 - 0.1y^2 + 60x + 50y$$

问两种产品各生产多少时, 利润最大?

解 1. 求解驻点(一阶偏导数为零):

$$\begin{cases} L_x = -0.2x + 60 = 0 \\ L_y = -0.2y + 50 = 0 \end{cases} \implies (x, y) = (300, 250)$$

2. 计算判别式 P(x, y)

$$\begin{cases} L_{xx} = -0.2 \\ L_{xy} = 0 \\ L_{yy} = -0.2 \end{cases} \Longrightarrow P(x, y) =$$

$$L(x, y) = -0.1x^2 - 0.1y^2 + 60x + 50y$$

问两种产品各生产多少时, 利润最大?

解 1. 求解驻点(一阶偏导数为零):

$$\begin{cases} L_x = -0.2x + 60 = 0 \\ L_y = -0.2y + 50 = 0 \end{cases} \implies (x, y) = (300, 250)$$

2. 计算判别式 P(x,y)

$$\begin{cases} L_{xx} = -0.2 \\ L_{xy} = 0 \\ L_{yy} = -0.2 \end{cases} \implies P(x, y) = (-0.2) \times (-0.2) - 0^2 = 0.04$$

$$L(x, y) = -0.1x^2 - 0.1y^2 + 60x + 50y$$

问两种产品各生产多少时,利润最大?

解 1. 求解驻点(一阶偏导数为零):

$$\begin{cases} L_x = -0.2x + 60 = 0 \\ L_y = -0.2y + 50 = 0 \end{cases} \implies (x, y) = (300, 250)$$

2. 计算判别式 P(x, y)

$$\begin{cases} L_{xx} = -0.2 \\ L_{xy} = 0 \\ L_{yy} = -0.2 \end{cases} \implies P(x, y) = (-0.2) \times (-0.2) - 0^2 = 0.04$$

3. P(300, 250) > 0,

$$L(x, y) = -0.1x^2 - 0.1y^2 + 60x + 50y$$

问两种产品各生产多少时, 利润最大?

解 1. 求解驻点(一阶偏导数为零):

$$\begin{cases} L_x = -0.2x + 60 = 0 \\ L_y = -0.2y + 50 = 0 \end{cases} \implies (x, y) = (300, 250)$$

2. 计算判别式 P(x, y)

$$\begin{cases} L_{xx} = -0.2 \\ L_{xy} = 0 \\ L_{yy} = -0.2 \end{cases} \implies P(x, y) = (-0.2) \times (-0.2) - 0^2 = 0.04$$

3. P(300, 250) > 0, $L_{xx}(300, 250) < 0$,

例 设生产甲产品 x 单位,乙产品单位时,公司利润为

$$L(x, y) = -0.1x^2 - 0.1y^2 + 60x + 50y$$

问两种产品各生产多少时,利润最大?

解 1. 求解驻点(一阶偏导数为零):

$$\begin{cases} L_x = -0.2x + 60 = 0 \\ L_y = -0.2y + 50 = 0 \end{cases} \implies (x, y) = (300, 250)$$

2. 计算判别式 P(x,y)

$$\begin{cases} L_{xx} = -0.2 \\ L_{xy} = 0 \\ L_{yy} = -0.2 \end{cases} \implies P(x, y) = (-0.2) \times (-0.2) - 0^2 = 0.04$$

3. P(300, 250) > 0, $L_{xx}(300, 250) < 0$, (300, 250) 为极大值

点。

例 设生产甲产品 x 单位,乙产品单位时,公司利润为

$$L(x, y) = -0.1x^2 - 0.1y^2 + 60x + 50y$$

问两种产品各生产多少时, 利润最大?

解 1. 求解驻点(一阶偏导数为零):

$$\begin{cases} L_x = -0.2x + 60 = 0 \\ L_y = -0.2y + 50 = 0 \end{cases} \implies (x, y) = (300, 250)$$

2. 计算判别式 P(x, y)

$$\begin{cases} L_{xx} = -0.2 \\ L_{xy} = 0 \\ L_{yy} = -0.2 \end{cases} \implies P(x, y) = (-0.2) \times (-0.2) - 0^2 = 0.04$$

3. P(300, 250) > 0, $L_{xx}(300, 250) < 0$, (300, 250) 为极大值

点。由唯一性,(300, 250) 也是最大值点,此时达到最大利润。 🙆 🛂 🛦 🛧 🕏

§8.6 多元函数的极值

We are here now...

1. 多元函数的极值点

2. 条件极值及拉格朗日乘数法

	エ厂	产量	总成本	总生产任务		
伤川	A	Х	$f(x, y) = x^2 + 2y^2 + 5xy + 700$	500		
ניכו	В	У	, , , , , , , , , , , , , , , , , , , ,			
		如何分配工厂生产任务,使总成本最少?				

	工厂	产量	总成本	总生产任务
例	A	X	$f(x, y) = x^2 + 2y^2 + 5xy + 700$	500
	Ъ	y tı		7

即: 求
$$f(x, y) = x^2 + 2y^2 + 5xy + 700$$

最小

值。

	エ厂	产量	总成本	总生产任务
例	A B	X V	$f(x, y) = x^2 + 2y^2 + 5xy + 700$	500
		如		?

	エ厂	产量	总成本	总生产任务
例	A B	X V	$f(x, y) = x^2 + 2y^2 + 5xy + 700$	500
		如	1何分配工厂生产任务,使总成本最少	?

解法一 将
$$y = 500 - x$$
 代入 f 表达式,减少未知数:
$$f =$$

	エ厂	产量	总成本	总生产任务
例	A	X	$f(x, y) = x^2 + 2y^2 + 5xy + 700$	500
ניצר	В	У	f(x,y) = x + 2y + 3xy + 700	300
	如何分配工厂生产任务,使总成本最少?			

解法一 将
$$y = 500 - x$$
 代入 f 表达式,减少未知数:

$$f = x^2 + 2(500 - x)^2 + 5x(500 - x) + 700$$

	工厂	产量	总成本	总生产任务
例	A	X	$f(x, y) = x^2 + 2y^2 + 5xy + 700$	500
ניצר	В	У	f(x,y) = x + 2y + 3xy + 700	300
	如何分配工厂生产任务,使总成本最少?			

解法一 将
$$y = 500 - x$$
 代入 f 表达式,减少未知数:

$$f = x^2 + 2(500 - x)^2 + 5x(500 - x) + 700$$

$$\frac{df}{dx} =$$

	工厂	产量	总成本	总生产任务	
例	A	X	$f(x, y) = x^2 + 2y^2 + 5xy + 700$	500	
ניפן	В	У	f(x,y) = x + 2y + 3xy + 700	300	
	如何分配工厂生产任务,使总成本最少?				

解法一 将
$$y = 500 - x$$
 代入 f 表达式,减少未知数:

$$f = x^2 + 2(500 - x)^2 + 5x(500 - x) + 700$$

$$\frac{df}{dx} = 500 - 4x$$

	エ厂	产量	总成本	总生产任务
/Eil	A	X	$f(x, y) = x^2 + 2y^2 + 5xy + 700$	500
ניצו	В	У	$\int (\lambda, y) = \lambda + 2y + 3\lambda y + 700$	300
		如	1何分配工厂生产任务,使总成本最少	?

解法一 将
$$y = 500 - x$$
 代入 f 表达式,减少未知数:

$$f = x^2 + 2(500 - x)^2 + 5x(500 - x) + 700$$

$$\frac{df}{dx} = 500 - 4x$$

解
$$\frac{df}{dx} = 0$$
 可得: $x =$

	エ厂	产量	总成本	总生产任务
/Eil	A	X	$f(x, y) = x^2 + 2y^2 + 5xy + 700$	500
ניצו	В	У	$\int (\lambda, y) = \lambda + 2y + 3\lambda y + 700$	300
		如	1何分配工厂生产任务,使总成本最少	?

解法一 将
$$y = 500 - x$$
 代入 f 表达式,减少未知数:

$$f = x^2 + 2(500 - x)^2 + 5x(500 - x) + 700$$

$$\frac{df}{dx} = 500 - 4x$$

	エ厂	产量	总成本	总生产任务
個	A	X	$f(x, y) = x^2 + 2y^2 + 5xy + 700$	500
ניכו	В	У	f(x,y) = x + 2y + 3xy + 700	300
	如何分配工厂生产任务,使总成本最少?			

即: 求 $f(x, y) = x^2 + 2y^2 + 5xy + 700在条件 x + y = 500$ 下的最小值。

解法一 将
$$y = 500 - x$$
 代入 f 表达式,减少未知数:

$$f = x^2 + 2(500 - x)^2 + 5x(500 - x) + 700$$

$$\frac{df}{dx} = 500 - 4x$$

解 $\frac{df}{dx} = 0$ 可得: x = 125, 此时生产成本最小,

	工厂	产量	总成本	总生产任务	
例	A	X	$f(x, y) = x^2 + 2y^2 + 5xy + 700$	500	
ניפו	В	У	f(x,y) = x + 2y + 3xy + 700	300	
	如何分配工厂生产任务,使总成本最少?				

解法一 将
$$y = 500 - x$$
 代入 f 表达式,减少未知数:

$$f = x^2 + 2(500 - x)^2 + 5x(500 - x) + 700$$

$$\frac{df}{dx} = 500 - 4x$$

解
$$\frac{df}{dx} = 0$$
 可得: $x = 125$,此时生产成本最小, $y = 500 - x =$

	工厂	产量	总成本	总生产任务
例	A	X	$f(x, y) = x^2 + 2y^2 + 5xy + 700$	500
נילו	В	У	f(x,y) = x + 2y + 3xy + 700	300
		如	ɪ何分配工厂生产任务,使总成本最少	?

解法一 将
$$y = 500 - x$$
 代入 f 表达式,减少未知数:

$$f = x^2 + 2(500 - x)^2 + 5x(500 - x) + 700$$

$$\frac{df}{dx} = 500 - 4x$$

$$\text{解 } \frac{df}{dx} = 0$$
 可得: $x = 125$,此时生产成本最小, $y = 500 - x = 375$ 。

• 问题 求 $f(x, y) = x^2 + 2y^2 + 5xy + 700$ 在条件 x + y - 500 = 0 下最小值

- 问题 求 $f(x, y) = x^2 + 2y^2 + 5xy + 700$ 在条件 x + y 500 = 0 下最小值
- 更一般问题 求 f(x, y) 在条件 g(x, y) = 0 下的最值 (最优解)

- 问题 求 $f(x, y) = x^2 + 2y^2 + 5xy + 700$ 在条件 x + y 500 = 0 下最小值
- 更一般问题 求 f(x, y) 在条件 g(x, y) = 0 下的最值 (最优解)
- 拉格朗日乘数法 求解:
 - 1. 构造辅助函数(称为拉格朗日函数):

- 问题 求 $f(x, y) = x^2 + 2y^2 + 5xy + 700$ 在条件 x + y 500 = 0 下最小值
- 更一般问题 求 f(x, y) 在条件 g(x, y) = 0 下的最值 (最优解)
- 拉格朗日乘数法 求解:
 - 1. 构造辅助函数(称为拉格朗日函数):

$$F(x, y, \lambda)$$

- 问题 求 $f(x, y) = x^2 + 2y^2 + 5xy + 700$ 在条件 x + y 500 = 0 下最小值
- 更一般问题 求 f(x, y) 在条件 g(x, y) = 0 下的最值 (最优解)
- 拉格朗日乘数法 求解:
 - 1. 构造辅助函数(称为拉格朗日函数):

$$F(x, y, \lambda) = f(x, y) + \lambda g(x, y)$$

- 问题 求 $f(x, y) = x^2 + 2y^2 + 5xy + 700$ 在条件 x + y 500 = 0 下最小值
- 更一般问题 求 f(x, y) 在条件 g(x, y) = 0 下的最值 (最优解)
- 拉格朗日乘数法 求解:
 - 1. 构造辅助函数(称为拉格朗日函数):

$$F(x, y, \lambda) = f(x, y) + \lambda g(x, y)$$

其中 λ 是待定常数,称为拉格朗日乘数

- 问题 求 $f(x, y) = x^2 + 2y^2 + 5xy + 700$ 在条件 x + y 500 = 0 下最小值
- 更一般问题 求 f(x, y) 在条件 g(x, y) = 0 下的最值(最优解)
- 拉格朗日乘数法 求解:
 - 1. 构造辅助函数(称为拉格朗日函数):

$$F(x, y, \lambda) = f(x, y) + \lambda g(x, y)$$

其中 λ 是待定常数,称为拉格朗日乘数

$$\begin{cases} F_X(x, y, \lambda) &= 0\\ F_y(x, y, \lambda) &= 0\\ g(x, y) = 0 \end{cases}$$

- 问题 求 $f(x, y) = x^2 + 2y^2 + 5xy + 700$ 在条件 x + y 500 = 0 下最小值
- 更一般问题 求 f(x, y) 在条件 g(x, y) = 0 下的最值 (最优解)
- 拉格朗日乘数法 求解:
 - 1. 构造辅助函数(称为拉格朗日函数):

$$F(x, y, \lambda) = f(x, y) + \lambda g(x, y)$$

其中 λ 是待定常数,称为拉格朗日乘数

$$\begin{cases} F_X(x, y, \lambda) = f_X(x, y) + \lambda g_X(x, y) = 0 \\ F_Y(x, y, \lambda) = 0 \end{cases} = 0$$

- 问题 求 $f(x, y) = x^2 + 2y^2 + 5xy + 700$ 在条件 x + y 500 = 0 下最小值
- 更一般问题 求 f(x, y) 在条件 g(x, y) = 0 下的最值(最优解)
- 拉格朗日乘数法 求解:
 - 1. 构造辅助函数(称为拉格朗日函数):

$$F(x, y, \lambda) = f(x, y) + \lambda g(x, y)$$

其中 λ 是待定常数,称为拉格朗日乘数

$$\begin{cases} F_X(x, y, \lambda) = f_X(x, y) + \lambda g_X(x, y) = 0 \\ F_Y(x, y, \lambda) = f_Y(x, y) + \lambda g_Y(x, y) = 0 \\ g(x, y) = 0 \end{cases}$$

- 问题 求 $f(x, y) = x^2 + 2y^2 + 5xy + 700$ 在条件 x + y 500 = 0 下最小值
- 更一般问题 求 f(x, y) 在条件 g(x, y) = 0 下的最值(最优解)
- 拉格朗日乘数法 求解:
 - 1. 构造辅助函数(称为拉格朗日函数):

$$F(x, y, \lambda) = f(x, y) + \lambda g(x, y)$$

其中 λ 是待定常数,称为拉格朗日乘数

2. 求解方程组:

$$\begin{cases} F_X(x, y, \lambda) = f_X(x, y) + \lambda g_X(x, y) = 0 \\ F_Y(x, y, \lambda) = f_Y(x, y) + \lambda g_Y(x, y) = 0 \\ g(x, y) = 0 \end{cases}$$

条件极值点(甚至问题的最优解)一般就蕴含在上述方程组的全部解 $\{(x_0, y_0)\}$ 中

 $25/31 \triangleleft \triangleright \triangle \nabla$

用拉格朗日乘数法求解
$$f(x, y) = x^2 + 2y^2 + 5xy + 700$$
 在条件 $x + y - 500 = 0$ 下最小值

解

解. 构造拉格朗日函数:

解. 构造拉格朗日函数:

$$F(x, y, \lambda) =$$

解. 构造拉格朗日函数:

$$F(x, y, \lambda) = f(x, y) + \lambda g(x, y)$$

=

解. 构造拉格朗日函数:

$$F(x, y, \lambda) = f(x, y) + \lambda g(x, y)$$

= $x^2 + 2y^2 + 5xy + 700 + 4xy + 4x$

用拉格朗日乘数法求解
$$f(x, y) = x^2 + 2y^2 + 5xy + 700$$
 在条件 $x + y - 500 = 0$ 下最小值

解. 构造拉格朗日函数:

$$F(x, y, \lambda) = f(x, y) + \lambda g(x, y)$$

= $x^2 + 2y^2 + 5xy + 700 + \lambda(x + y - 500)$

解, 构造拉格朗日函数:

$$F(x, y, \lambda) = f(x, y) + \lambda g(x, y)$$

= $x^2 + 2y^2 + 5xy + 700 + \lambda(x + y - 500)$

$$\begin{cases} F_x(x, y, \lambda) &= 0 \\ F_y(x, y, \lambda) &= 0 \\ g(x, y) = x + y - 500 = 0 \end{cases}$$

用拉格朗日乘数法求解
$$f(x, y) = x^2 + 2y^2 + 5xy + 700$$
 在条件 $x + y - 500 = 0$ 下最小值

解. 构造拉格朗日函数:

$$F(x, y, \lambda) = f(x, y) + \lambda g(x, y)$$

= $x^2 + 2y^2 + 5xy + 700 + \lambda(x + y - 500)$

$$\begin{cases} F_x(x, y, \lambda) = 2x + 5y + \lambda = 0 \\ F_y(x, y, \lambda) = 0 \\ g(x, y) = x + y - 500 = 0 \end{cases}$$

用拉格朗日乘数法求解
$$f(x, y) = x^2 + 2y^2 + 5xy + 700$$
 在条件 $x + y - 500 = 0$ 下最小值

解. 构造拉格朗日函数:

$$F(x, y, \lambda) = f(x, y) + \lambda g(x, y)$$

= $x^2 + 2y^2 + 5xy + 700 + \lambda(x + y - 500)$

$$\begin{cases} F_x(x, y, \lambda) = 2x + 5y + \lambda = 0 \\ F_y(x, y, \lambda) = 4y + 5x + \lambda = 0 \\ g(x, y) = x + y - 500 = 0 \end{cases}$$

鮮. 构造拉格朗日函数:

$$F(x, y, \lambda) = f(x, y) + \lambda g(x, y)$$

= $x^2 + 2y^2 + 5xy + 700 + \lambda(x + y - 500)$

$$\begin{cases} F_X(x, y, \lambda) = 2x + 5y + \lambda = 0 \\ F_Y(x, y, \lambda) = 4y + 5x + \lambda = 0 \\ g(x, y) = x + y - 500 = 0 \end{cases}$$

方程组的解是
$$\begin{cases} x = \\ y = \end{cases}$$

鮮. 构造拉格朗日函数:

$$F(x, y, \lambda) = f(x, y) + \lambda g(x, y)$$

= $x^2 + 2y^2 + 5xy + 700 + \lambda(x + y - 500)$

$$\begin{cases} F_x(x, y, \lambda) = 2x + 5y + \lambda = 0 \\ F_y(x, y, \lambda) = 4y + 5x + \lambda = 0 \\ g(x, y) = x + y - 500 = 0 \end{cases}$$

方程组的解是
$$\begin{cases} x = 125 \\ y = \end{cases}$$
 。

用拉格朗日乘数法求解 $f(x, y) = x^2 + 2y^2 + 5xy + 700$ 在条件 x + y - 500 = 0 下最小值

鮮. 构造拉格朗日函数:

$$F(x, y, \lambda) = f(x, y) + \lambda g(x, y)$$

= $x^2 + 2y^2 + 5xy + 700 + \lambda(x + y - 500)$

$$\begin{cases} F_X(x, y, \lambda) = 2x + 5y + \lambda = 0 \\ F_Y(x, y, \lambda) = 4y + 5x + \lambda = 0 \\ g(x, y) = x + y - 500 = 0 \end{cases}$$

方程组的解是
$$\begin{cases} x = 125 \\ y = 375 \end{cases}$$

用拉格朗日乘数法求解
$$f(x, y) = x^2 + 2y^2 + 5xy + 700$$
 在条件 $x + y - 500 = 0$ 下最小值

鮮. 构造拉格朗日函数:

$$F(x, y, \lambda) = f(x, y) + \lambda g(x, y)$$

= $x^2 + 2y^2 + 5xy + 700 + \lambda(x + y - 500)$

2. 求解方程组:

$$\begin{cases} F_x(x, y, \lambda) = 2x + 5y + \lambda = 0 \\ F_y(x, y, \lambda) = 4y + 5x + \lambda = 0 \\ g(x, y) = x + y - 500 = 0 \end{cases}$$

方程组的解是
$$\begin{cases} x = 125 \\ y = 375 \end{cases}$$

3. 由问题的实际背景, 本条件极值问题有最小值。

用拉格朗日乘数法求解
$$f(x, y) = x^2 + 2y^2 + 5xy + 700$$
 在条件 $x + y - 500 = 0$ 下最小值

斯. 构造拉格朗日函数:

$$F(x, y, \lambda) = f(x, y) + \lambda g(x, y)$$

= $x^2 + 2y^2 + 5xy + 700 + \lambda(x + y - 500)$

2. 求解方程组:

$$\begin{cases} F_X(x, y, \lambda) = 2x + 5y + \lambda = 0 \\ F_Y(x, y, \lambda) = 4y + 5x + \lambda = 0 \\ g(x, y) = x + y - 500 = 0 \end{cases}$$

方程组的解是 $\begin{cases} x = 125 \\ y = 375 \end{cases}$

3. 由问题的实际背景,本条件极值问题有最小值。从而 $\begin{cases} x = 125 \\ y = 375 \end{cases}$

	原料	单价	数量	预算	生产产品数量			
例	A	1	X	120	$f(x, y) = x^2 y$			
	В	2	У	120	$\int (X, Y) - X Y$			
	如何采购原料,使生产量最大?							

	原料	单价	数量	预算	生产产品数量				
列	A	1	X	120	$f(x, y) = x^2 y$				
	В	2	У	120	f(x, y) = x y				
	如何采购原料,使生产量最大?								

即: 求
$$f(x, y) = x^2y$$

最大值。

	原料	单价	数量	预算	生产产品数量
例	A	1	X	120	$f(x, y) = x^2 y$
	В	2	У	120	$\int (X, Y) - X Y$
		产量最大?			

例	原料	单价	数量	预算	生产产品数量			
	A	1	X	120	$f(x, y) = x^2 y$			
	В	2	У	120	f(x, y) = x y			
		如何采购原料,使生产量最大?						

即: 求
$$f(x, y) = x^2y$$
在条件 $x + 2y = 120$ 下的最大值。

- 1. 构造拉格朗日函数:
- 2. 求解方程组:

例	原料	单价	数量	预算	生产产品数量				
	A	1	X	120	$f(x, y) = x^2 y$				
	В	2	У	120	$\int (X, Y) - X Y$				
		如何采购原料,使生产量最大?							

即: 求
$$f(x, y) = x^2y$$
在条件 $x + 2y = 120$ 下的最大值。

1. 构造拉格朗日函数:

$$F(x, y, \lambda) =$$

例	原料	单价	数量	预算	生产产品数量		
	A	1	X	120	$f(x, y) = x^2 y$		
	В	2	У	120	$\int (X, Y) - X Y$		
	如何采购原料,使生产量最大?						

拉格朗日乘数法求解法

1. 构造拉格朗日函数:

$$F(x, y, \lambda) = f(x, y) + \lambda g(x, y) =$$

例	原料	单价	数量	预算	生产产品数量				
	A	1	X	120	$f(x, y) = x^2 y$				
	В	2	У	120	$\int (X, Y) - X Y$				
		如何采购原料,使生产量最大?							

即: 求
$$f(x, y) = x^2y$$
在条件 $x + 2y = 120$ 下的最大值。

1. 构造拉格朗日函数:

$$F(x, y, \lambda) = f(x, y) + \lambda g(x, y) = x^2 y +$$

	原料	单价	数量	预算	生产产品数量
伍山	A	1	X	120	$f(x, y) = x^2 y$
ניצר	В	2	У	120	J(x, y) - x y
	产量最大?				

拉格朗日乘数法求解法

1. 构造拉格朗日函数:

$$F(x, y, \lambda) = f(x, y) + \lambda g(x, y) = x^2 y + \lambda (x + 2y - 120)$$

例	原料	单价	数量	预算	生产产品数量			
	A	1	X	120	$f(x, y) = x^2 y$			
	В	2	У	120	$\int (\lambda, y) - \lambda y$			
		如何采购原料,使生产量最大?						

即: 求
$$f(x, y) = x^2y$$
在条件 $x + 2y = 120$ 下的最大值。

1. 构造拉格朗日函数:

$$F(x, y, \lambda) = f(x, y) + \lambda g(x, y) = x^2 y + \lambda (x + 2y - 120)$$

$$\begin{cases} F_X(x, y, \lambda) &= 0 \\ F_y(x, y, \lambda) &= 0 \\ g(x, y) = x + 2y - 120 = 0 \end{cases},$$

例	原料	单价	数量	预算	生产产品数量				
	A	1	X	120	$f(x, y) = x^2 y$				
	В	2	У	120	$\int (\lambda, y) - \lambda y$				
		如何采购原料,使生产量最大?							

即: 求
$$f(x, y) = x^2y$$
在条件 $x + 2y = 120$ 下的最大值。

1. 构造拉格朗日函数:

$$F(x, y, \lambda) = f(x, y) + \lambda g(x, y) = x^2 y + \lambda (x + 2y - 120)$$

$$\begin{cases} F_X(x, y, \lambda) = 2xy + \lambda = 0 \\ F_y(x, y, \lambda) = 0 \\ g(x, y) = x + 2y - 120 = 0 \end{cases}$$

	原料	单价	数量	预算	生产产品数量			
例	A	1	X	120	$f(x, y) = x^2 y$			
	В	2	У	120	$\int (X, Y) - X Y$			
		如何采购原料,使生产量最大?						

即: 求
$$f(x, y) = x^2y$$
在条件 $x + 2y = 120$ 下的最大值。

1. 构造拉格朗日函数:

$$F(x, y, \lambda) = f(x, y) + \lambda g(x, y) = x^2 y + \lambda (x + 2y - 120)$$

$$\begin{cases} F_X(x, y, \lambda) = 2xy + \lambda = 0 \\ F_y(x, y, \lambda) = x^2 + 2\lambda = 0 \\ g(x, y) = x + 2y - 120 = 0 \end{cases}$$

例	原料	单价	数量	预算	生产产品数量				
	A	1	X	120	$f(x, y) = x^2 y$				
	В	2	У	120	$\int (x, y) - x y$				
		如何采购原料,使生产量最大?							

拉格朗日乘数法求解法

1. 构造拉格朗日函数:

$$F(x, y, \lambda) = f(x, y) + \lambda g(x, y) = x^2 y + \lambda (x + 2y - 120)$$

$$\begin{cases} F_x(x, y, \lambda) = 2xy + \lambda = 0 \\ F_y(x, y, \lambda) = x^2 + 2\lambda = 0 \\ g(x, y) = x + 2y - 120 = 0 \end{cases} \implies \begin{cases} x = \\ y = \end{cases},$$

例	原料	单价	数量	预算	生产产品数量		
	A	1	X	120	$f(x, y) = x^2 y$		
	В	2	У	120	$\int (X, Y) - X Y$		
	如何采购原料,使生产量最大?						

拉格朗日乘数法求解法

1. 构造拉格朗日函数:

$$F(x, y, \lambda) = f(x, y) + \lambda g(x, y) = x^2 y + \lambda (x + 2y - 120)$$

$$\begin{cases} F_x(x, y, \lambda) = 2xy + \lambda = 0 \\ F_y(x, y, \lambda) = x^2 + 2\lambda = 0 \\ g(x, y) = x + 2y - 120 = 0 \end{cases} \implies \begin{cases} x = 0 \\ y = 60 \end{cases},$$

例	原料	单价	数量	预算	生产产品数量		
	A	1	X	120	$f(x, y) = x^2 y$		
	В	2	У	120			
	如何采购原料,使生产量最大?						

拉格朗日乘数法求解法

1. 构造拉格朗日函数:

$$F(x, y, \lambda) = f(x, y) + \lambda g(x, y) = x^2 y + \lambda (x + 2y - 120)$$

$$\begin{cases} F_x(x, y, \lambda) = 2xy + \lambda = 0 \\ F_y(x, y, \lambda) = x^2 + 2\lambda = 0 \\ g(x, y) = x + 2y - 120 = 0 \end{cases} \implies \begin{cases} x = 0 \\ y = 60 \end{cases}, \begin{cases} x = 80 \\ y = 20 \end{cases}$$

例	原料	单价	数量	预算	生产产品数量		
	A	1	X	120	$f(x, y) = x^2 y$		
	В	2	У	120			
	如何采购原料,使生产量最大?						

拉格朗日乘数法求解法

1. 构造拉格朗日函数:

$$F(x, y, \lambda) = f(x, y) + \lambda g(x, y) = x^2 y + \lambda (x + 2y - 120)$$

2. 求解方程组:

$$\begin{cases} F_x(x, y, \lambda) = 2xy + \lambda = 0 \\ F_y(x, y, \lambda) = x^2 + 2\lambda = 0 \\ g(x, y) = x + 2y - 120 = 0 \end{cases} \implies \begin{cases} x = 0 \\ y = 60 \end{cases} , \begin{cases} x = 80 \\ y = 20 \end{cases}$$

3. 由问题的实际背景, 本条件极值问题有最大值。

伤山	原料	单价	数量	预算	生产产品数量		
	A	1	X	120	$f(x, y) = x^2 y$		
ניצר	В	2	У	120	$\int (x, y) - x y$		
	如何采购原料,使生产量最大?						

拉格朗日乘数法求解法

1. 构造拉格朗日函数:

$$F(x, y, \lambda) = f(x, y) + \lambda g(x, y) = x^{2}y + \lambda(x + 2y - 120)$$

2. 求解方程组:

$$\begin{cases} F_{x}(x, y, \lambda) = 2xy + \lambda = 0 \\ F_{y}(x, y, \lambda) = x^{2} + 2\lambda = 0 \\ g(x, y) = x + 2y - 120 = 0 \end{cases} \implies \begin{cases} x = 0 \\ y = 60 \end{cases} , \begin{cases} x = 80 \\ y = 20 \end{cases}$$

3. 由问题的实际背景, 本条件极值问题有最大值。而

$$f(0, 60)$$
 $f(80, 20),$

例	原料	单价	数量	预算	生产产品数量		
	A	1	X	120	$f(x, y) = x^2 y$		
	В	2	У	120	$\int (\lambda, y) - \lambda y$		
	如何采购原料,使生产量最大?						

拉格朗日乘数法求解法

1. 构造拉格朗日函数:

$$F(x, y, \lambda) = f(x, y) + \lambda g(x, y) = x^2 y + \lambda (x + 2y - 120)$$

2. 求解方程组:

$$\begin{cases} F_{x}(x, y, \lambda) = 2xy + \lambda = 0 \\ F_{y}(x, y, \lambda) = x^{2} + 2\lambda = 0 \\ g(x, y) = x + 2y - 120 = 0 \end{cases} \implies \begin{cases} x = 0 \\ y = 60 \end{cases} , \begin{cases} x = 80 \\ y = 20 \end{cases}$$

3. 由问题的实际背景, 本条件极值问题有最大值。而

$$f(0, 60) = 0 < f(80, 20),$$

例
 原料
 单价
 数量
 预算
 生产产品数量

 A
 1

$$x$$
 x
 x

拉格朗日乘数法求解法

1. 构造拉格朗日函数:

$$F(x, y, \lambda) = f(x, y) + \lambda g(x, y) = x^2 y + \lambda (x + 2y - 120)$$

2. 求解方程组:

$$\begin{cases} F_{x}(x, y, \lambda) = 2xy + \lambda = 0 \\ F_{y}(x, y, \lambda) = x^{2} + 2\lambda = 0 \\ g(x, y) = x + 2y - 120 = 0 \end{cases} \implies \begin{cases} x = 0 \\ y = 60 \end{cases}, \begin{cases} x = 80 \\ y = 20 \end{cases}$$

3. 由问题的实际背景, 本条件极值问题有最大值。而

$$f(0, 60) = 0 < f(80, 20)$$
,从而 $\begin{cases} x = 80 \\ y = 20 \end{cases}$ 是最优解。

原料	单价	数量	预算	生产产品数量		
A	1	X	120	$f(x, y) = x^2 y$		
В	2	У	120	f(x, y) = x y		
如何采购原料,使生产量最大?						

另解

原料	单价	数量	预算	生产产品数量	
A	1	X	120	$f(x, y) = x^2 y$	
В	2	У	120	$\int (\lambda, y) - \lambda y$	
如何采购原料。使生产量最大?					

另解 将 $y = 60 - \frac{1}{2}x$ 代入 f 表达式,减少未知数:

$$f = x^2y =$$

原料	单价	数量	预算	生产产品数量	
A	1	X	120	$f(x, y) = x^2 y$	
В	2	У	120	$\int (\lambda, y) - \lambda y$	
加何孚购值料 使生产量最大?					

为时况对别时, 区工/ 重取八

即: 求
$$f(x, y) = x^2y$$
 在条件 $x + 2y = 120$ 下的最大值。

$$f = x^2 y = x^2 (60 - \frac{1}{2}x)$$

原料	单价	数量	预算	生产产品数量		
A	1	X	120	$f(x, y) = x^2 y$		
В	2	У	120	$\int (\lambda, y) - \lambda y$		
如何采购原料,使生产量最大?						

另解 将 $y = 60 - \frac{1}{2}x$ 代入 f 表达式,减少未知数:

$$f = x^2y = x^2(60 - \frac{1}{2}x) = -\frac{1}{2}x^3 + 60x^2$$

 原料
 单价
 数量
 预算
 生产产品数量

 A
 1
 x

 B
 2
 y

 如何采购原料。使生产量最大?

如何采购原料,使生产量最大?

即: 求 $f(x, y) = x^2y$ 在条件 x + 2y = 120 下的最大值。

另解 将 $y = 60 - \frac{1}{2}x$ 代入 f 表达式,减少未知数:

$$f = x^2y = x^2(60 - \frac{1}{2}x) = -\frac{1}{2}x^3 + 60x^2$$

$\frac{df}{dx} = -\frac{3}{2}x^2 + 120x = 0$	

 原料
 单价
 数量
 预算
 生产产品数量

 A
 1
 x

 B
 2
 y

 如何采购原料、使生产量最大?

邓凡水场冰村, 区工/ 重取八:

即: 求
$$f(x, y) = x^2y$$
 在条件 $x + 2y = 120$ 下的最大值。

另解 将 $y = 60 - \frac{1}{2}x$ 代入 f 表达式,减少未知数:

$$f = x^2y = x^2(60 - \frac{1}{2}x) = -\frac{1}{2}x^3 + 60x^2$$

$\frac{df}{dx} = -\frac{3}{2}x^2 + 120x = 0$	
x = 0	

即: 求 $f(x, y) = x^2y$ 在条件 x + 2y = 120 下的最大值。

另解 将 $y = 60 - \frac{1}{2}x$ 代入 f 表达式,减少未知数:

$$f = x^2y = x^2(60 - \frac{1}{2}x) = -\frac{1}{2}x^3 + 60x^2$$

$\frac{df}{dx} = -\frac{3}{2}x^2 + 120x = 0$	
x = 0	
x = 80	

 原料
 单价
 数量
 预算
 生产产品数量

 A
 1
 x

 B
 2
 y

 如何采购原料、使生产量最大?

即: 求 $f(x, y) = x^2y$ 在条件 x + 2y = 120 下的最大值。

另解 将 $y = 60 - \frac{1}{2}x$ 代入 f 表达式,减少未知数:

$$f = x^2y = x^2(60 - \frac{1}{2}x) = -\frac{1}{2}x^3 + 60x^2$$

$$\frac{df}{dx} = -\frac{3}{2}x^2 + 120x = 0 \quad \frac{d^2f}{dx^2} = -3x + 120$$

$$x = 0$$

$$x = 80$$

原料 単价 数量 预算 生产产品数量 A 1 x B 2 y 120 $f(x, y) = x^2y$ 如何采购原料、使生产量最大?

即: 求 $f(x, y) = x^2y$ 在条件 x + 2y = 120 下的最大值。

另解 将 $y = 60 - \frac{1}{2}x$ 代入 f 表达式,减少未知数:

$$f = x^2y = x^2(60 - \frac{1}{2}x) = -\frac{1}{2}x^3 + 60x^2$$

$\frac{df}{dx} = -\frac{3}{2}x^2 + 120x = 0$	$\frac{d^2f}{dx^2} = -3x + 120$	
x = 0	> 0	
<i>x</i> = 80		

 原料
 单价
 数量
 预算
 生产产品数量

 A
 1
 x

 B
 2
 y

 如何采购原料、使生产量最大?

即: 求 $f(x, y) = x^2y$ 在条件 x + 2y = 120 下的最大值。

另解 将 $y = 60 - \frac{1}{2}x$ 代入 f 表达式,减少未知数:

$$f = x^2y = x^2(60 - \frac{1}{2}x) = -\frac{1}{2}x^3 + 60x^2$$

$\frac{df}{dx} = -\frac{3}{2}x^2 + 120x = 0$	$\frac{d^2f}{dx^2} = -3x + 120$	
x = 0	> 0	
x = 80	< 0	

 原料
 单价
 数量
 预算
 生产产品数量

 A
 1
 x

 B
 2
 y

 如何采购原料、使生产量最大?

即: 求 $f(x, y) = x^2y$ 在条件 x + 2y = 120 下的最大值。

另解 将 $y = 60 - \frac{1}{2}x$ 代入 f 表达式,减少未知数:

$$f = x^2y = x^2(60 - \frac{1}{2}x) = -\frac{1}{2}x^3 + 60x^2$$

$\frac{df}{dx} = -\frac{3}{2}x^2 + 120x = 0$	$\frac{d^2f}{dx^2} = -3x + 120$	
x = 0	> 0	极小值
<i>x</i> = 80	< 0	

原料	单价	数量	预算	生产产品数量
A	1	X	120	$f(x, y) = x^2 y$
В	2	У	120	$\int (x, y) - x y$
加何采购原料 使生产量最大?				

$$f = x^2y = x^2(60 - \frac{1}{2}x) = -\frac{1}{2}x^3 + 60x^2$$

$\frac{df}{dx} = -\frac{3}{2}x^2 + 120x = 0$	$\frac{d^2f}{dx^2} = -3x + 120$	
x = 0	> 0	极小值
<i>x</i> = 80	< 0	极大值

原料	单价	数量	预算	生产产品数量	
A	1	X	120	$f(x, y) = x^2 y$	
В	2	У	120	f(x, y) = x y	
如何采购原料, 使生产量最大?					

$$f = x^2y = x^2(60 - \frac{1}{2}x) = -\frac{1}{2}x^3 + 60x^2$$

$\frac{df}{dx} = -\frac{3}{2}x^2 + 120x = 0$	$\frac{d^2f}{dx^2} = -3x + 120$	
x = 0	> 0	极小值
x = 80	< 0	极大值

$$\begin{cases} x = 80 \\ y = \end{cases}$$
 时,产量最大。

原料	单价	数量	预算	生产产品数量	
A	1	X	120	$f(x, y) = x^2 y$	
В	2	У	120	f(x, y) = x y	
如何采购原料,使生产量最大?					

$$f = x^2y = x^2(60 - \frac{1}{2}x) = -\frac{1}{2}x^3 + 60x^2$$

$\frac{df}{dx} = -\frac{3}{2}x^2 + 120x = 0$	$\frac{d^2f}{dx^2} = -3x + 120$	
x = 0	> 0	极小值
x = 80	< 0	极大值

$$\begin{cases} x = 80 \\ y = 20 \end{cases}$$
 时,产量最大。

条件极值(二元函数 + 一个附加条件)

问题 求解二元函数 u = f(x, y) 在附加条件 $\varphi(x, y) = 0$ 下的极值点。

求解步骤(拉格朗日乘数法)

- 1. 构造拉格朗日函数 $L = f + \lambda \varphi$, 其中 λ 是待定常数。
- 2. 求解方程组

$$\begin{cases} L_x = f_x + \lambda \varphi_x = 0 \\ L_y = f_y + \lambda \varphi_y = 0 \\ \varphi = 0 \end{cases}$$

3. 条件极值点(如果存在的话)包含在上述解 {(x, y)} 中。 (至于如何判断解是否条件极值点,需具体问题具体分析。)

条件极值(三元函数 + 一个附加条件)

问题 求解三元函数 u = f(x, y, z) 在附加条件 $\varphi(x, y, z) = 0$ 下的极值点。

求解步骤(拉格朗日乘数法)

- 1. 构造拉格朗日函数 $L = f + \lambda \varphi$, 其中 λ 是待定常数。
- 2. 求解方程组

$$\begin{cases} L_X = f_X + \lambda \varphi_X = 0 \\ L_Y = f_Y + \lambda \varphi_Y = 0 \\ L_Z = f_Z + \lambda \varphi_Z = 0 \\ \varphi = 0 \end{cases}$$

3. 条件极值点(如果存在的话)包含在上述解 $\{(x, y, z)\}$ 中。

(至于如何判断解是否条件极值点,需具体问题具体分析。)

条件极值(三元函数 + 两个附加条件)

问题 求解三元函数
$$u = f(x, y, z)$$
 在附加条件
$$\begin{cases} \varphi(x, y, z) = 0 \\ \psi(x, y, z) = 0 \end{cases}$$
 下的

求解步骤(拉格朗日乘数法)

极值点。

- 1. 构造拉格朗日函数 $L = f + \lambda \varphi + \mu \psi$, 其中 λ , μ 是待定常数。
- 2. 求解方程组 $\begin{cases} L_X = f_X + \lambda \varphi_X + \mu \psi_X = 0 \\ L_Y = f_Y + \lambda \varphi_Y + \mu \psi_Y = 0 \\ L_Z = f_Z + \lambda \varphi_Z + \mu \psi_Z = 0 \\ \varphi = 0 \\ \psi = 0 \end{cases}$
- 3. 条件极值点(如果存在的话)包含在上述解 {(x, y, z)} 中。

