Problem Set XIII

Youngduck Choi CIMS

New York University yc1104@nyu.edu

Abstract

This work contains solutions to the exercises of the problem set IX. The chosen problems are 2,3 and 4.

Question 1.

- 1. (a) Give an example of a sub-martingale (X_n) such that (X_n^2) is a super-martingale, and explain why this not contradict the result given in class on $\Phi(X_n)$ for sub-martingale (X_n) and a convex function Φ .
 - (b) Give an example of a martingale (X_n) that converges a.s. to $-\infty$, and explain why this does not contradict Doob's Convergence Theorem.

Solution.

(a) Let $X_n = 0$ for each $n \ge 1$, then ${X_n}^2 = 0$ for each $n \ge 1$. It follows that $\{X_n\}$ is a sub-martingale, and $\{X_n^2\}$ is a super-martingale because they are both martingales trivially, as

$$\mathbb{E}[X_n|\mathscr{F}_{n-1}] = X_n = X_{n-1} = 0$$

and

$$\mathbb{E}[X_n^2|\mathcal{F}_{n-1}] = X_n^2 = X_{n-1}^2 = 0$$

for each $n \ge 1$. This does not contradict the given fact about the convex function, as $\{X_n^2\}$ is a sub-martingale as well, by being a martingale.

(b) Let $\{X_n\}$ i.i.d random variables be defined by

$$\mathbb{P}(X_n = -1) = 1 - \frac{1}{2^n}$$
 and $\mathbb{P}(X_n = 2^n - 1) = \frac{1}{2^n}$

for each $n \ge 1$. Then,

$$\mathbb{E}[X_n] = 0$$

for each $n \ge 1$, so $\{S_n = \sum_{k=1}^n X_k\}$ is a martingale with respect to the canonical filteration. Observe that

$$\sum_{n=1}^{\infty} \mathbb{P}(X_n > -1) = \sum_{n=1}^{\infty} \frac{1}{2^n} < \infty$$

By Borel-Cantelli,

$$\mathbb{P}(X_n > -1 \ i.o.) = 0$$

and hence

$$\mathbb{P}(X_n \le -1 \ a.a.) = 1.$$

Therefore, $S_n \to -\infty$ almost surely and we are done. This does not violate the Martingale convergence theorem, as $\sup_n \mathbb{E}[|S_n|]$ is not bounded.

Question 3.

2. Let (X_n) and (Y_n) be nonnegative, integrable stochastic processes adapted to a filtration (\mathcal{F}_n) such that $\mathbb{E}[X_{n+1}\mid \mathcal{F}_n] \leq (1+Y_n)X_n+Y_n$ for all n and $\sum_{n\geq 1}Y_n<\infty$ a.s. Prove that X_n converges a.s. to a finite limit as $n\to\infty$.

 $({\it Hint: Deduce this from the convergence of a suitable nonnegative super-martingale.})$

Solution.

Question 4.

3. Let $S_n = \sum_{k=1}^n \xi_k$ for i.i.d. random variables ξ_k and let τ be an integrable stopping time for the associated canonical filtration.

(a) Show that if ξ_1 is integrable then $\mathbb{E}S_{\tau} = \mathbb{E}\xi_1\mathbb{E}\tau$ (Wald's identity). (*Hint: Write* $S_{\tau} = \sum_{k=1}^{\infty} \xi_k \mathbf{1}_{\{k \leq \tau\}}$.)

(b) Show that if Eξ²₁ < ∞ then E(S_τ − τEξ₁)² = Var(ξ₁)Eτ (Wald's second identity).
(Hint: argue that Eξ₁ = 0 w.l.o.g. and apply Doob's L²-convergence theorem to S_{n∧τ}.)

(c) Prove that if $\xi_1 \ge 0$ then Wald's identity holds also in case $\mathbb{E}\tau = \infty$ under the convention that $0 \times \infty = 0$

Solution.

(a) Observe that

$$\xi_i$$
 and $1_{\{i \leq \tau\}}$ are independent

for each $i \ge 1$. Now, we first prove for the case when $\xi_i \ge 0$ for all $i \ge 1$.

$$\mathbb{E}[S_{\tau}] = \mathbb{E}[\xi_{1} + \dots + \xi_{\tau}] = \mathbb{E}\left[\sum_{i=1}^{\infty} \xi_{i} 1_{\{i \leq \tau\}}\right]$$

$$= \sum_{i=1}^{\infty} \mathbb{E}[\xi_{i} 1_{\{i \leq \tau\}}] = \sum_{i=1}^{\infty} \mathbb{E}[\xi_{i}] \mathbb{E}[1_{\{i \leq \tau\}}]$$

$$= \mathbb{E}[\xi_{1}] \sum_{i=1}^{\infty} \mathbb{P}(i \leq \tau) = \mathbb{E}[\xi_{1}] \mathbb{E}[\tau]$$
(2)

where (1) holds by MCT (or Tonelli) and independence, and (2) holds as τ being a non-negative integer valued random variable. Now consider a general $\{\xi_i\}$. From the above,

$$\mathbb{E}\big[\sum_{i=1}^{\infty} |\xi_i| \mathbf{1}_{\{i \leq \tau\}}\big] = \mathbb{E}\big[|\xi_1|\big] \mathbb{E}\big[\tau\big] < \infty.$$

Therefore, by Fubini,

$$\mathbb{E}\big[\xi_{\tau}\big] = \mathbb{E}\big[\sum_{i=1}^{\infty} \xi_{i} \mathbf{1}_{\{i \leq \tau\}}\big] \quad = \quad \sum_{i=1}^{\infty} \mathbb{E}\big[\xi_{i} \mathbf{1}_{\{i \leq \tau\}}\big] = \mathbb{E}\big[\xi_{1}\big] \mathbb{E}\big[\tau\big].$$