Rappel de cours:

- On appelle extraction toute application $\varphi: \mathbb{N} \to \mathbb{N}$ strictement croissante.
- On appelle suite extraite (ou sous-suite) d'une suite $(x_n)_{n\in\mathbb{N}}$, toute suite de la forme $(x_n)_{\varphi(n)\in\mathbb{N}}$ où φ est une extraction. Une suite extraite de $(x_n)_{n\in\mathbb{N}}$ est une suite obtenue partir de celle-ci en nen gardant que les lments $\varphi(n)$, mais en nombre infini.
- On appelle valeur d'adhérence d'une suite $(x_n)_{n\in\mathbb{N}}$ toute limite finie d'une suite extraite de $(x_n)_{n\in\mathbb{N}}$.

Soit la fonction $f(n) = 2\pi n$, la suite extraite $(\cos_{f(n)})_{n \in \mathbb{N}}$ est une suite constante qui admet une valeur d'adhérence 1.

Donc la proposition est fausse.

Exercice 2

Soit les fonctions $f_1(n) = 2\pi n$ et $f_2(n) = \frac{\pi}{2} + 2\pi n$, les suites $(\cos f_1(n))_{n \in \mathbb{N}}$ et $(\cos f_2(n))_{n \in \mathbb{N}}$ convergent respectivement vers les valeurs 1 et 0. La suite $(\cos n)_{n \in \mathbb{N}}$ n'est pas convergente car elle admet 2 valeurs d'adhérence distinctes.

Donc la proposition est fausse.

Exercice 3

Rappel de cours:

Deux suites réelles $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ sont dites adjacentes si

- 1. l'une est croissante et l'autre décroissante,
- $2. \lim_{n\to\infty} (b_n a_n) = 0$
- (a) $(S_n)_{n\in\mathbb{N}^*}$ est croissante?

$$S_{n+1} - S_n = \sum_{k=1}^{n+1} \frac{1}{k^2} - \sum_{k=1}^n \frac{1}{k^2} = \frac{1}{(n+1)^2} > 0$$

La suite S_n est croissante.

(b) $(S_n + \frac{1}{n})_{n \in \mathbb{N}^*}$ est décroissante?

$$(S_{n+1} + \frac{1}{n+1}) - (S_n + \frac{1}{n})) = \sum_{k=1}^{n+1} \frac{1}{k^2} - \sum_{k=1}^{n} \frac{1}{k^2} + \frac{1}{n+1} - \frac{1}{n} = \frac{1}{(n+1)^2} + \frac{1}{n+1} - \frac{1}{n}$$
$$= \frac{n + n(n+1) - (n+1)^2}{n(n+1)^2} = \frac{n + n^2 + n - n^2 - 2n - 1}{n(n+1)^2} = \frac{-1}{n(n+1)^2} < 0$$

La suite $(S_n + \frac{1}{n})_{n \in \mathbb{N}^*}$ est décroissante.

(c) $\lim_{n\to\infty} ((S_n + \frac{1}{n}) - S_n) = 0$?

$$\lim_{n \to \infty} \left(\left(S_n + \frac{1}{n} \right) - S_n \right) = \lim_{n \to \infty} \frac{1}{n} = 0$$

Les suites $(S_n)_{n\in\mathbb{N}^*}$ et $(S_n+\frac{1}{n})_{n\in\mathbb{N}^*}$ sont adjacentes.

Donc la proposition est vraie.

$$\lim_{n\to +\infty}\frac{u_{n+1}}{u_n}=l\in]-1,1[$$

alors $\forall \epsilon > 0, \exists N_0 \in \mathbb{N}$ tel que $\forall n > N_0, \left| \frac{u_{n+1}}{u_n} - l \right| < \epsilon$.

Soit $a = u_{N_0}$ alors $u_{N_0+1} \approx l.a, u_{N_0+2} \approx l^2.a, \dots, u_{N_0+m} \approx l^m.a$.

Par consequent, la suite u_n converge vers 0 car |l| < 1.

Donc la proposition est vraie.

Exercice 5

Rappel de cours:

- La définition d'une suite de Cauchy: $\forall \epsilon \in \mathbb{R}, \epsilon > 0, \exists N_0 \in \mathbb{N} \ t.q. \ \forall n, m > N_0, |U_n U_m| < \epsilon.$
- Une suite est bornée si $\exists (m, M) \in \mathbb{R}^2 \quad \forall n \in \mathbb{N} \quad m \leq u_n \leq M$.
- 1 Soit N_0 , d'après le définition d'une suite de Cauchy, tous les points u_n pour $n > N_0$ sont à une distance ϵ de U_{N_0} . Donc, $\forall n > N_0, U_{N_0} \epsilon < u_n < U_{N_0} + \epsilon$.
- 2 Prenons $V_{max} = max(u_0, u_1, \dots, u_{N_0})$. La valeur V_{max} existe car la suite $u_0, \dots u_{N_0}$ est finie.
- 3 Prenons $V_{min} = min(u_0, u_1, \dots, u_{N_0})$. La valeur V_{min} existe car la suite $u_0, \dots u_{N_0}$ est finie.

Soit $m_1 = min(V_{min}, a - \epsilon)$ et $m_2 = max(V_{max}, a + \epsilon)$, on a $\forall n \in \mathbb{N}$, $m_1 \leq u_n \leq m_2$. Car par [1] et [3], $m_1 \leq u_n$ et par [1] et [2], $u_n \leq m_2$. Ce qui est la définition d'une suite bornée.

La proposition est vraie.

Exercice 6

Soit la fonction

$$f(x) = \begin{cases} x & x \le 0 \\ x + 1 - \sin x & x > 0 \end{cases}$$

Calculons la limite de f en 0^- .

$$\lim_{x \to 0^-} f(x) = x = 0$$

Calculons la limite de f en 0^+ .

$$\lim_{x \to 0^+} f(x) = x = 0$$

$$\lim_{x \to 0^+} f(x) = \sin x = 0$$

$$\lim_{x \to 0^+} f(x) = x + 1 - \sin x = 1$$

Les limites à droite et à gauche de f en 0 sont distinctes, donc la fonction f n'est pas continue en 0 et elle n'admet pas de limite en 0.

Donc la proposition est fausse.

Rappel de cours:

$$\lim_{x \neq x_0, x \to x_0} (g \circ f)(x) = \lim_{x \neq x_0, x \to x_0} g(f(x)) = g(y_0) \ si \ \lim_{x \neq x_0, x \to x_0} f(x) = y_0$$

Prenons $g(x) = \sin x$ et $f(x) = \frac{\pi \cdot x}{|2x|}$.

$$\lim_{x \neq 0, x \to 0} f(x) = \lim_{x \neq 0, x \to 0} \frac{\pi \cdot x}{|2x|}$$

- Lorsque $x > 0, \ f(x) = \frac{\pi . x}{|2x|} = \frac{\pi}{2}, \ \text{donc } \lim_{x \neq 0, x \to 0^+} g(f(x)) = g(\frac{\pi}{2}) = \sin(\frac{\pi}{2}) = 1$
- lorsque x < 0, $f(x) = \frac{\pi \cdot x}{|2x|} = \frac{-\pi}{2}$, donc $\lim_{x \neq 0, x \to 0^-} g(f(x)) = g(\frac{-\pi}{2}) = \sin(\frac{-\pi}{2}) = -1$.

Donc la proposition est fausse.

Exercice 8

$$\lim_{x \to +\infty} \frac{\ln(1+x^2)}{\ln x} = 2 ?$$

Application de la règle de l'Hospital car $\lim_{x\to+\infty} \ln(1+x^2) = +\infty$ et $\lim_{x\to+\infty} \ln x = +\infty$.

On calcule les deux dérivés: $(\ln(1+x^2))' = \frac{(1+x^2)'}{1+x^2} = \frac{2x}{1+x^2}$ et $(\ln x)' = \frac{1}{x}$.

$$\lim_{x \to +\infty} \frac{\ln(1+x^2)}{\ln x} = \lim_{x \to +\infty} \frac{\frac{2x}{1+x^2}}{\frac{1}{x}} = \lim_{x \to +\infty} \frac{2x^2}{1+x^2} = \lim_{x \to +\infty} \frac{2}{\frac{1}{x^2}+1} = 2$$

Donc la proposition est vraie.

Exercice 9

$$\lim_{x \neq 0, x \to 0} \frac{1}{x} \frac{1}{\sqrt{1 + x^{-2}}} = 1 ?$$

$$\lim_{x \neq 0, x \to 0} \frac{1}{x} = \infty$$

et

$$\lim_{x \neq 0, x \to 0} \frac{1}{\sqrt{1 + x^{-2}}} = 0$$

Limite indéterminée.

[1] x > 0 alors $x = \sqrt{x^2}$.

$$\lim_{x \neq 0, x \to 0^{+}} \frac{1}{x} \frac{1}{\sqrt{1 + x^{-2}}} = \lim_{x \neq 0, x \to 0^{+}} \frac{1}{\sqrt{x^{2}} \sqrt{1 + x^{-2}}}$$
$$= \lim_{x \neq 0, x \to 0^{+}} \frac{1}{\sqrt{x^{2} + 1}} = 1$$

[12] x < 0 alors $x = -\sqrt{x^2}$.

$$\lim_{x \neq 0, x \to 0^{-}} \frac{1}{x} \frac{1}{\sqrt{1 + x^{-2}}} = \lim_{x \neq 0, x \to 0^{-}} \frac{1}{-\sqrt{x^{2}}\sqrt{1 + x^{-2}}}$$
$$= \lim_{x \neq 0, x \to 0^{-}} \frac{-1}{\sqrt{x^{2} + 1}} = -1$$

Donc la proposition est fausse.

Rappel de cours:

Soit f une fonction définie au voisinage d'un point $x_0 \in \mathbb{R}$ (donc y compris en x_0). On dit que f est continue en x_0 si $x \neq x_0$, $\lim_{x \to x_0} f(x) = f(x_0)$.

$$(H \circ f)(x) = \left\{ \begin{array}{ll} 1 + 1 - \frac{1}{2}cos^2 \, x & 1 - \frac{1}{2}cos^2 \, x \geq 0 \\ 0 & 1 - \frac{1}{2}cos^2 \, x < 0 \end{array} \right.$$

Les fonctions 0 et $2 - \frac{1}{2}cos^2 x$ sont continues car elles sont une combinaison de fonctions continues. Il faut vérifier la continuité de la fonction $(H \circ f)(x)$ en $1 - \frac{1}{2}cos^2 x = 0$.

$$1 - \frac{1}{2}\cos^2 x < 0$$
$$\frac{1}{2}\cos^2 x > 1$$
$$\cos^2 x > 2$$
$$|\cos x| > \sqrt{2}$$

Il n'existe pas de x tel que $|\cos x| > \sqrt{2}$. Donc $(H \circ f)(x) = 2 - \frac{1}{2}\cos^2 x$. Donc la proposition est vraie.

Exercice 11

Montrons un contre-exemple. Soit la fonction

$$f(x) = \begin{cases} x+1 & x \ge 0 \\ x-1 & x < 0 \end{cases}$$

La fonction f(x) est croissante?

 $\cos x \ge 0$:

$$\forall x_1, x_2, tq. x_1 > x_2, f(x_2) - f(x_1) = x_2 - x_1 > 0$$

 $\cos x < 0$:

$$\forall x_1, x_2, tq. x_1 > x_2, f(x_2) - f(x_1) = x_2 - x_1 > 0$$

f n'est pas continue en 0?

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} x + 1 = 1$$
$$\lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} x - 1 = -1$$

Les limites à droite et à gauche de f en 0 sont distinctes, donc la fonction f n'est pas continue en 0. Donc la proposition est fausse.

Exercice 12

La fonction se prolonge par continuité si $\exists l \in \mathbb{R}, \lim_{x \neq 0, x \to 0} g(x) = l$.

$$\lim_{x \neq 0, x \to 0} (e^{\sin x} - 1) = 0$$

$$\lim_{x \neq 0, x \to 0} \cos \frac{1}{x} \in [-1; 1]$$

$$\lim_{x \neq 0, x \to 0} \ln(3 + \cos \frac{1}{x}) \in [\ln 2; \ln 4]$$

Donc

$$\lim_{x \neq 0, x \to 0} g(x) = 0$$

Le prolongement par continuité de la fonction g(x) est:

$$p(x) = \begin{cases} g(x) & x \in \mathbb{R}^* \\ 0 & x = 0 \end{cases}$$

Donc la proposition est vraie.

Exercice 13

f est une fonction f continue alors

$$\forall x_0 \in [2,3], \forall \epsilon > 0, \exists \eta > 0 \text{ tel que } (\forall x \in [2,3] \cap]x_0 - \eta, x_0 + \eta[,|f(x) - f(x_0)| < \epsilon)$$
 [1]

f a pour limite ∞ en $x_0 = \frac{5}{2}$ alors

$$\forall A \in \mathbb{R}, \exists \eta > 0, \ tel \ que \ (]x_0 - \eta, x_0 + \eta[\setminus \{x_0\} \subset [2, 3] \ et \ \forall x \in]x_0 - \eta, x_0 + \eta[\setminus \{x_0\}, \ f(x) > A)$$

$$\forall A \in \mathbb{R}, \exists \eta > 0, \ tel \ que \ (\forall x \in [2,3] \cap]x_0 - \eta, x_0 + \eta[\setminus \{x_0\}, \ f(x) > A) \quad [2]$$

Deux cas possibles,

- la fonction f est définie en x_0 , alors $f(x_0) = \infty$ et la proposition [1] est fausse.
- la fonction f n'est pas définie en x_0 , alors il faut trouver un prolongement par continuité de la fonction f en x_0 . Il n'existe pas de valeur $l \in \mathbb{R}$ tel que $\lim_{x \neq x_0, x \to x_0} f(x) = l$ car $\lim_{x \neq x_0, x \to x_0} f(x) = \infty$. Donc, la fonction f n'est pas prolongeable en x_0 .

Donc la proposition est fausse.

Exercice 14

Cherchons un exemple.

Soit la fonction f(x) = x * sin(x).

La fonction f(x) est continue car, elle est la composition de 3 fonctions continues. La fonction f(x) est définie sur $[1, \infty[$.

- Lorsque $x \% 2\pi < \pi$, on a $0 \le sin(x) \le 1$, donc, $x * sin(x) \subset [0, +\infty[$
- Lorsque $x \% 2\pi \ge \pi$, on a $-1 \le sin(x) \le 0$, donc, $x * sin(x) \subset]-\infty, 0$

Donc, $f(x): [1, \infty[\to \mathbb{R}])$.

Donc la proposition est vraie.

Exercice 15

Admettons que la fonction n'est pas constante alors $\exists x_0, \exists \eta > 0 \ t.q. \ f(x_0 - \eta) = Z_1 \ et \ f(x_0 + \eta) = Z_2 \ et Z_1 \neq Z_2$. Donc $|f(x_0 - \eta) - f(x_0 + \eta)| \geq 1$.

Le théorème des valeurs intermdiaires indique que si une fonction continue sur un intervalle prend deux valeurs distinctes m et n, alors elle prend toutes les valeurs intermdiaires entre m et n.

Prenons $\epsilon = 0.5$, $\forall x \in [x_0 - \eta; x_0 + \eta], |f(x) - f(x_0)| \not< \epsilon \text{ car } |f(x_0 - \eta) - f(x_0 + \eta)| \ge 1$. Ceci contredit l'hypothèse de la fonction continue.

Donc la proposition est vraie.

On construit les trois suites a_n et b_n de la manière suivante:

- $c_n = \frac{a_n + b_n}{2}$
- Si $f(c_n) > 0$, $a_{n+1} = a_n$ et $b_{n+1} = c_n$
- Si $f(c_n) < 0$, $a_{n+1} = c_n$ et $b_{n+1} = b_n$

Avec $a_0 = 1$ et $b_0 = 2$.

Comme $a_0 < b_0$, on a toujours la relation $a_n < \frac{a_n + b_n}{2} < b_n$, Donc, $a_n \le c_n \ge b_n$. On a $a_0 < \sqrt{2}$ et $b_0 > \sqrt{2}$.

La suite a_n croit car

- lorsque $f(c_n) \ge 0$, on a $c_n \ge \sqrt{2}$, et $a_{n+1} = a_n$. Donc $a_{n+1} \ge a_n$ et $a_{n+1} \le \sqrt{2}$
- lorsque $f(c_n) < 0$, on a $x < \sqrt{2}$, et $a_{n+1} = c_n$ et $a_n < c_n$ par définition. Donc $a_{n+1} \ge a_n$ et $a_{n+1} \le \sqrt{2}$.

La suite b_n décroit car

- lorsque $f(c_n) \ge 0$, on a $c_n \ge \sqrt{2}$, et $b_{n+1} = c_n$ et $c_n < b_n$ par définition. Donc $b_{n+1} \le b_n$ et $b_{n+1} \ge \sqrt{2}$.
- lorsque $f(c_n) < 0$, on a $x < \sqrt{2}$, et $b_{n+1} = b_n$. Donc $b_{n+1} \le b_n$ et $b_{n+1} \ge \sqrt{2}$.

On a aussi $\forall n \in \mathbb{N}, b_n - a_n = \frac{a+b}{2^n} \to 0$. Donc les deux suites sont adjacentes. Le théorème des suites adjacentes, les suites $(a_n)_{n \in \mathbb{N}}$ et $(b_n)_{n \in \mathbb{N}}$ convergent vers un même réel $x \in [a;b]$. Et , $a_n \leq \sqrt{2} \leq b_n$. Donc, a_n et b_n convergent vers $\sqrt{2}$.

Donc la proposition est vraie. QED