

Método da Bissecção

Disciplina: Métodos Numéricos Professor: Gibson Barbosa

Email: gibson.barbosa@unicap.br

- Localização de raízes
- Método da bissecção
- Método da falsa posição
- Método de Newton-Raphson
- Método da secante

- Entender que na resolução de muitos problemas das ciências exatas se faz uso de diversos tipos de equações
- Resolver equações algébricas e transcendentais usando métodos numéricos.
- Encontrar aproximações para raízes das equações usando o processo gráfico
- Fazer uso de recursos computacionais, como softwares e calculadoras gráficas, para resolver equações
- Analisar as respostas obtidas para equações quando se faz uso das ferramentas computacionais

Método da Bissecção

- Descrição do método:
 - reduzir a amplitude do intervalo [a,b] que contém a raiz a até que a precisão requerida seja atingida.
- Dividir o intervalo em duas partes iguais e verificar em qual das partes a raiz se encontra.
- Repetir o processo até que a precisão desejada seja alcançada.

Etapas

- 1. Dividir o intervalo em duas partes iguais
- 2. Verificar em qual das partes a raiz se encontra
- 3. Descartar a outra parte do intervalo
- 4. Repetir o processo até que a precisão desejada seja alcançada.

 Encontrar uma única raiz de uma equação f(x)=0 em um intervalo [a,b] contínuo, onde f(a) * f(b) < 0. Para isso, devemos dividir ao meio o intervalo inicial, em dois subintervalos [a,c] e [c,b] a serem considerados. Se f (a)·f (c) < 0, então α ∈ [a,c]; caso contrário, α ∈ [c,b].

 Este processo se repete até que se obtenha uma aproximação da raiz exata a que atenda a tolerância ε estabelecida.

As iterações x_k, k = 0,1,2,3,...,n serão realizadas da seguinte maneira:

$$x_0 = \frac{a+b}{2} = x \Rightarrow \begin{cases} f(a) < 0 \\ f(b) > 0 \Rightarrow x_0 \in (a,c) \\ f(c) > 0 \end{cases}$$

Critério de parada (CP): se CP = $|c - a| < e \Rightarrow x_0 = c é a raiz$ aproximada de a que atende a tolerância e. Entretanto, se CP = |c - a| > e, significa que a aproximação da raiz $x_0 = c$ não atende a tolerância e e, portanto, deve-se fazer uma nova iteração para gerar uma nova aproximação x₁. Segue-se este raciocínio até que o critério de parada seja atendido.

$$x_1 = \frac{a+c}{2} = d \Rightarrow \begin{cases} f(a) < 0 \\ f(c) > 0 \Rightarrow x_1 \in (a,d) \\ f(d) > 0 \end{cases}$$

$$x_2 = \frac{a+d}{2} = e \Rightarrow \begin{cases} f(a) < 0 \\ f(d) > 0 \Rightarrow x_2 \in (e,d) \\ f(e) < 0 \end{cases}$$

Exercício 1

A raiz ou zero da equação $x^2 + \ln(x) = 0$ está no intervalo [0,5; 1]. Determinar uma aproximação para essa raiz que atenda a tolerância e $\leq 10^{-2}$.

- Arredondar em 2 casas decimais

Exercício 2

Determinar uma aproximação para a raiz real da equação $x^5 + 2x^3 + 2x + 1 = 0$ que atenda a precisão e $\leq 10^{-2}$.

Utilizar o método de truncamento.

k	a _i	b _i	X _k	СР
0	-1,00	0,00	-0,50	5,00×10 ⁻¹
1	-0,50	0,00	-0,25	$2,50\times10^{-1}$
2	-0,25	-0,50	-0,37	$1,30\times10^{-1}$
3	-0,37	-0,50	-0,43	$6,00\times10^{-2}$
4	-0,43	-0,37	-0,40	$3,00\times10^{-2}$
5	-0,43	-0,40	-0,41	$2,00\times10^{-2}$
6	-0,43	-0,41	-0,42	$1,00\times10^{-2}$

Notas:

k = interação

CP = critério de parada

1

Raiz da equação

Exercício 3

Determinar a raiz da equação sen (x) – In (x) = 0 que atenda uma tolerância e $\leq 10^{-5}$. Nos cálculos, usar o método do arredondamento.

k	a _i	b _i	X _k	СР
0	2,00000	2,50000	2,25000	2,50000×10 ⁻¹
1	2,00000	2,50000	2,12500	$1,25000\times10^{-1}$
2	2,12500	2,50000	2,18750	$6,25000\times10^{-2}$
3	2,18750	2,50000	2,21875	$3,12500\times10^{-2}$
4	2,21875	2,50000	2,23438	1,56300×10 ⁻²
5	2,21875	2,23438	2,22657	$7,82000\times10^{-3}$
6	2,21875	2,22657	2,22266	$3,91000\times10^{-3}$
7	2,21875	2,22266	2,22071	$1,96000\times10^{-3}$
8	2,21875	2,22071	2,21973	9,80000×10 ⁻⁴
9	2,21875	2,21973	2,21294	4,90000×10 ⁻⁴
10	2,21875	2,21294	2,21900	2,40000×10 ⁻⁴
11	2,21900	2,21294	2,21912	1,20000×10 ⁻⁴
12	2,21900	2,21912	2,21910	$2,00000\times10^{-5}$
13	2,21910	2,21912	2,21911	1,00000×10 ⁻⁵

Notas:

k = interação

CP = critério de parada

Raiz da equação

Obrigado!

Passo a passo	Ação a ser realizada
Estimativa inicial	Iniciar a execução do método a partir da aproximação inicial.
Geração de aproximações	Aplicar os mais diversos métodos iterativos para gerar uma sequência x_k ; $k = 0,1,2,3,,n$ de aproximações da raiz.
Critério de parada	Estabelecer um critério que indica quando o processo iterativo deve parar, por exemplo, o critério $ x^* - \alpha \le e$ ou $ f(x^*) \le e$, onde $e = tolerância$.
Tolerância ou estimativa de exatidão	Estimar o erro cometido em associação com o critério de parada.

