Problem Of The Day 2022

1. **(27 Jun)** If y varies inversely as x and can be represented by the equation $y = (m-1)x^{m^2-2}$, find the value of constant m.

Solution:

$$y = (m-1)x^{m^2-2} = \frac{k}{x}$$
$$k = (m-1)x^{m^2-1}$$
$$= (m-1)x^{(m+1)(m-1)} \ (x \neq 0)$$

By definition, $y \neq 0$ as well, hence

$$(m-1)x^{(m+1)(m-1)} \neq 0$$
$$\therefore m \neq 1$$

2. **(28 Jun)** Which of the following is a possible plot of y = x + m and $y = \frac{m}{x}$ on the same axes? (The graphs are not drawn to scale.)

Figure 1:
$$y = x + m$$
 and $y = \frac{m}{x}$.

Solution: B.

- The straight line should be increasing, since the coefficient of x is positive. C and
 D are eliminated.
- If m > 0, the y-intercept of the straight line could not be negative. A is eliminated,
 since the hyperbola in the same graph shows that m > 0.
- 3. **(29 Jun)** Given that points $A(-2,y_1)$, $B(-1,y_2)$, $C(1,y_3)$ are all on the graph of $y=-\frac{1}{x}$, arrange y_1,y_2 and y_3 in ascending order.

Solution: $y_3 < y_1 < y_2$.

Subst. x = -2 into $y = -\frac{1}{x}$:

$$y_1 = -\frac{1}{-2}$$
$$= \frac{1}{2}$$

Subst. x = -1 into $y = -\frac{1}{x}$:

$$y_2 = -\frac{1}{-1}$$
$$= 1$$

Subst x = 1 into $y = -\frac{1}{x}$:

$$y_3 = -\frac{1}{1}$$
$$= -1$$

4. **(30 Jun)** Given that points (x_1, y_1) , (x_2, y_2) and (x_3, y_3) are all on the graph of $y = \frac{3}{x}$, also $x_1 < x_2 < 0 < x_3$, arrange y_1, y_2 and y_3 in ascending order.

Solution: $y_2 < y_1 < y_3$.

- $y_3 > 0$ since $x_3 > 0$. Hence, y_3 is the greatest.
- $0 > x_2 > x_1$, hence $y_2 < y_1 < 0$.
- 5. (1 Jul) Given that y varies inversely as x such that $y = (a-2)x^{a^2-5}$, also when x > 0, as x increases, y increases. Find the equation of the hyperbola.

Solution:

$$\frac{k}{x} = (a-2)x^{a^2-5}$$

$$k = (a-2)x^{a^2-4}$$

$$= (a-2)x^{(a+2)(a-2)}$$

$$y = \frac{(a-2)x^{(a+2)(a-2)}}{x}$$

$$(a-2)x^{(a+2)(a-2)} < 0$$

$$a-2 < 0 \text{ and } (a+2)(a-2) \ge 0$$

$$a+2 = 0$$

$$a=-2$$

$$y = -\frac{(-2-2) \times x^{(-2+2) \times (-2-2)}}{x}$$

$$= -\frac{4}{x}$$

6. **(5 Jul)** If a straight line y = (2m-1)x and a hyperbola $y = \frac{3-m}{x}$ has an intersection point each in Quadrant 1 and 3, what is the range of values of the constant m?

Solution:

$$y = \frac{3 - m}{x}$$

$$m < 3$$

$$y = x(2m - 1)$$

$$2m - 1 > 0$$

$$0.5 < m < 3$$

7. Points *A* and *B* are on the hyperbola $y = \frac{k}{x}$. Right $\triangle AOC$ and $\triangle BOD$ are drawn by perpendicular lines drawn from the two points and connecting the points with the origin. Compare the sizes of the areas of the two triangles.

Figure 2: $\triangle AOC$ and $\triangle BOD$.

Solution: $S_{\triangle AOC} < S_{\triangle BOD}$.

As Point *B*'s *y*-coordinate approaches 0, its *x*-coordinate approaches infinity, resulting in a triangle which approaches an infinite area. Point *A* is further from $(\infty, 0)$ than Point *B*, so $S_{\triangle AOC} < S_{\triangle BOD}$.

8. **(7 Jul)** Points *A* and *B* are on the hyperbola $y = \frac{3}{x}$. Rectangles are drawn from the two points as shown. The areas bounded by the two rectangles are labelled S_1 and S_2 . If the shaded area is 1 sq. unit, find the sum $S_1 + S_2$.

Figure 3: The shaded areas, S_1 and S_2 .

Solution:

$$S_1 = (1 - 0) \times \left(\frac{3}{1} - 1\right)$$

$$= 2 \text{ sq. units}$$

$$S_2 = \left(\frac{3}{3} - 0\right) \times (3 - 1)$$

$$= 2 \text{ sq. units}$$

$$S_1 + S_2 = 2 + 2$$

= 4 sq. units