Columbia University: CU Later Team Reference Document

Kevin Yang, Innokentiy Kaurov, Eric Yuang Shao

May 21th 2024

Contents Suffix Array and LCP array Aho Corasick Trie **Templates** Li-Chao Segment Tree 15 Kevin's template Persistent Segment Tree 15 Kevin's Template Extended Miscellaneous 16 Geometry 16 Measuring Execution Time Strings Setting Fixed D.P. Precision Manacher's algorithm Common Bugs and General Advice Flows $O(N^2M)$, on unit networks $O(N^{1/2}M)$ MCMF - maximize flow, then minimize its cost. $O(mn + Fm \log n)$ Graphs Kuhn's algorithm for bipartite matching . . . Hungarian algorithm for Assignment Problem Dijkstra's Algorithm Eulerian Cycle DFS Finding Bridges HLD on Edges DFS Centroid Decomposition Math Binary exponentiation Matrix Exponentiation: $O(n^3 \log b)$ Extended Euclidean Algorithm Gaussian Elimination Calculating k-th term of a linear recurrence . 10 MIT's FFT/NTT, Polynomial mod/log/exp 10 **Data Structures** 13 13 Lazy Propagation SegTree

Templates $vi d4v = \{0, 1, 0, -1\};$ T a, b, c; vi $d8x = \{1, 0, -1, 0, 1, 1, -1, -1\};$ TLine() : a(0), b(0), c(0) {} vi d8y = $\{0, 1, 0, -1, 1, -1, 1, -1\}$; TLine(const T& a_, const T& b_, const T& c_) : a(a_), Ken's template mt19937 \rightarrow b(b), c(c) {} → rng(chrono::steady_clock::now().time_since_epoch()4sount(Dine(const TPoint<T>& p1, const TPoint<T>& p2){ #include <bits/stdc++.h> a = p1.y - p2.y;using namespace std; b = p2.x - p1.x;#define all(v) (v).begin(), (v).end()Geometry c = -a * p1.x - b * p1.y;typedef long long 11: typedef long double ld; 53 #define pb push back • Basic stuff template<typename T> #define sz(x) (int)(x).size()T det(const T& a11, const T& a12, const T& a21, const T& #define fi first template<typename T> #define se second struct TPoint{ return a11 * a22 - a12 * a21: #define endl '\n' T x, v; int id: template<tvpename T> static constexpr T eps = static_cast<T>(1e-9); Kevin's template T sq(const T& a){ TPoint(): x(0), y(0), id(-1) {} return a * a; TPoint(const $T \& x_{-}$, const $T \& y_{-}$) : $x(x_{-})$, $y(y_{-})$, // paste Kaurov's Template, minus last line id(-1) {} typedef vector<int> vi; template<typename T> TPoint(const T& x_, const T& y_, const int id_) : typedef vector<ll> vll; T smul(const TPoint<T>& a, const TPoint<T>& b){ \rightarrow x(x₋), y(y₋), id(id₋) {} typedef pair<int, int> pii; return a.x * b.x + a.y * b.y; typedef pair<11, 11> pll; 65 TPoint operator + (const TPoint& rhs) const { 10 const char nl = '\n'; template<typename T> return TPoint(x + rhs.x, y + rhs.y); 11 #define form(i, n) for (int i = 0; i < int(n); i++) T vmul(const TPoint<T>& a, const TPoint<T>& b){ 12 return det(a.x, a.y, b.x, b.y); ll k, n, m, u, v, w, x, y, z; TPoint operator - (const TPoint& rhs) const { 13 string s, t; return TPoint(x - rhs.x, y - rhs.y); 14 template<typename T> 15 bool multiTest = 1; bool parallel(const TLine<T>& 11, const TLine<T>& 12){ TPoint operator * (const T& rhs) const { 16 void solve(int tt){ return abs(vmul(TPoint<T>(l1.a, l1.b), TPoint<T>(l2.a, return TPoint(x * rhs, y * rhs); 17 12.b))) <= TPoint<T>::eps; 18 73 TPoint operator / (const T& rhs) const { 19 int main(){ template<typename T> return TPoint(x / rhs, y / rhs); 20 ios::sync with stdio(0);cin.tie(0);cout.tie(0); bool equivalent(const TLine<T>& 11, const TLine<T>& 12){ 21 cout<<fixed<< setprecision(14);</pre> return parallel(11, 12) && 22 TPoint ort() const { abs(det(11.b, 11.c, 12.b, 12.c)) <= TPoint<T>::eps && return TPoint(-y, x); 23 abs(det(11.a, 11.c, 12.a, 12.c)) <= TPoint<T>::eps; int t = 1;24 if (multiTest) cin >> t; 79 T abs2() const { 25 forn(ii, t) solve(ii); return x * x + y * y; 26 • Intersection 27 T len() const { 28 template<tvpename T> Kevin's Template Extended return sqrtl(abs2()); TPoint<T> intersection(const TLine<T>& 11, const 30 \hookrightarrow TLine<T>& 12){ TPoint unit() const { • to type after the start of the contest return TPoint<T>(return TPoint(x, y) / len(); det(-11.c, 11.b, -12.c, 12.b) / det(11.a, 11.b, typedef pair < double, double > pdd; 33 \rightarrow 12.a. 12.b). const ld PI = acosl(-1); 34 det(11.a, -11.c, 12.a, -12.c) / det(11.a, 11.b, const $11 \mod 7 = 1e9 + 7$; template<typename T> 35 → 12.a, 12.b) const $11 \mod 9 = 998244353$; bool operator< (TPoint<T>& A, TPoint<T>& B){); const 11 INF = 2*1024*1024*1023; return make_pair(A.x, A.y) < make_pair(B.x, B.y);</pre> 37 #pragma GCC target("avx2,bmi,bmi2,lzcnt,popcnt") 38 template<typename T> 7 #include <ext/pb ds/assoc container.hpp> template<typename T> int sign(const T& x){ #include <ext/pb ds/tree policy.hpp> bool operator == (TPoint < T > & A, TPoint < T > & B) { if (abs(x) <= TPoint<T>::eps) return 0; return abs(A.x - B.x) <= TPoint<T>::eps && abs(A.v - 10 using namespace __gnu_pbds; return x > 0? +1 : -1: template<class T> using ordered_set = tree<T, null_type,</pre> B.y) <= TPoint<T>::eps; 12

14

17

19

21

less<T>, rb_tree_tag,

 $vi d4x = \{1, 0, -1, 0\};$

tree_order_statistics_node_update>;

• Area

template<tvpename T>

struct TLine{

```
• prep convex poly
    template<typename T>
    T area(const vector<TPoint<T>>& pts){
                                                                template<typename T>
                                                                T dist pr(const TPoint<T>& P. const TRav<T>& R){
       int n = sz(pts):
                                                                                                                            template<typename T>
                                                            35
                                                                  auto H = projection(P, R.1);
                                                                                                                            void prep convex poly(vector<TPoint<T>>& pts){
      T ans = 0;
                                                            36
      for (int i = 0; i < n; i++){
                                                                                                                              rotate(pts.begin(), min_element(all(pts)), pts.end());
                                                                  return is_on_ray(H, R)? dist_pp(P, H) : dist_pp(P,
        ans += vmul(pts[i], pts[(i + 1) % n]);
                                                                 38
      return abs(ans) / 2;
                                                                template<typename T>
                                                            39
                                                                                                                                • in convex poly:
                                                                T dist_ps(const TPoint<T>& P, const TPoint<T>& A, const
    template<typename T>

    TPoint<T>& B){
                                                                                                                            // 0 - Outside, 1 - Exclusively Inside, 2 - On the
    T dist_pp(const TPoint<T>& a, const TPoint<T>& b){
                                                                  auto H = projection(P, TLine<T>(A, B));
                                                                                                                             \hookrightarrow Border
      return sqrt(sq(a.x - b.x) + sq(a.y - b.y));
                                                                  if (is_on_seg(H, A, B)) return dist_pp(P, H);
                                                                                                                            template<typename T>
                                                                  else return min(dist_pp(P, A), dist_pp(P, B));
13
                                                            43
                                                                                                                            int in convex poly(TPoint<T>& p, vector<TPoint<T>>&
    template<tvpename T>
                                                                }
                                                            44

   pts){
    TLine<T> perp_line(const TLine<T>& 1, const TPoint<T>&
                                                                                                                              int n = sz(pts):

    acw

                                                                                                                              if (!n) return 0;
      T na = -1.b, nb = 1.a, nc = - na * p.x - nb * p.y;
                                                                                                                              if (n <= 2) return is_on_seg(p, pts[0], pts.back());</pre>
                                                                template<typename T>
      return TLine<T>(na, nb, nc);
                                                                                                                              int 1 = 1, r = n - 1;
                                                                bool acw(const TPoint<T>& A, const TPoint<T>& B){
18
                                                                                                                              while (r - 1 > 1){
                                                                  T mul = vmul(A, B):
                                                                                                                                int mid = (1 + r) / 2:
                                                                  return mul > 0 || abs(mul) <= TPoint<T>::eps;
        • Projection
                                                                                                                                if (acw(pts[mid] - pts[0], p - pts[0])) 1 = mid;
                                                                                                                                else r = mid:
                                                                                                                        11
    template<typename T>
                                                                                                                        12
    TPoint<T> projection(const TPoint<T>& p, const TLine<T>&
                                                                                                                              if (!in_triangle(p, pts[0], pts[1], pts[1 + 1]))
                                                                template<typename T>
                                                                                                                             → return 0:
      return intersection(1, perp line(1, p));
                                                                bool cw(const TPoint<T>& A, const TPoint<T>& B){
                                                                                                                              if (is_on_seg(p, pts[1], pts[1 + 1]) ||
                                                                  T \text{ mul} = \text{vmul}(A, B):
                                                                                                                                is_on_seg(p, pts[0], pts.back()) ||
    template<typename T>
                                                                  return mul < 0 || abs(mul) <= TPoint<T>::eps;
                                                                                                                                is_on_seg(p, pts[0], pts[1])
                                                                                                                        16
    T dist_pl(const TPoint<T>& p, const TLine<T>& 1){
                                                                                                                              ) return 2:
      return dist_pp(p, projection(p, 1));
                                                                                                                              return 1:
                                                                    • Convex Hull
                                                                                                                            }
                                                                                                                        19
    template<typename T>
                                                                template<typename T>
    struct TRay{
10
                                                                                                                                • in simple poly
                                                                vector<TPoint<T>> convex_hull(vector<TPoint<T>> pts){
      TLine<T> 1:
                                                                  sort(all(pts));
      TPoint<T> start, dirvec:
                                                                                                                            // 0 - Outside, 1 - Exclusively Inside, 2 - On the
                                                                  pts.erase(unique(all(pts)), pts.end());
      TRay() : 1(), start(), dirvec() {}
13
                                                                                                                             → Border
                                                                  vector<TPoint<T>> up, down;
      TRay(const TPoint<T>& p1, const TPoint<T>& p2){
                                                                                                                            template<tvpename T>
                                                                  for (auto p : pts){
        1 = TLine < T > (p1, p2);
                                                                                                                            int in_simple_poly(TPoint<T> p, vector<TPoint<T>>& pts){
                                                                    while (sz(up) > 1 \&\& acw(up.end()[-1] -
        start = p1, dirvec = p2 - p1;
16
                                                                                                                              int n = sz(pts);
                                                                 \rightarrow up.end()[-2], p - up.end()[-2])) up.pop back();
      }
17
                                                                                                                              bool res = 0:
                                                                    while (sz(down) > 1 && cw(down.end()[-1] -
18
                                                                                                                              for (int i = 0; i < n; i++){
                                                                 \rightarrow down.end()[-2], p - down.end()[-2]))
    template<typename T>
                                                                                                                                auto a = pts[i], b = pts[(i + 1) \% n];
    bool is_on_line(const TPoint<T>& p, const TLine<T>& 1){

→ down.pop back();
                                                                                                                                if (is_on_seg(p, a, b)) return 2;
                                                                    up.pb(p), down.pb(p);
      return abs(1.a * p.x + 1.b * p.y + 1.c) <=
                                                                                                                                if (((a.v > p.v) - (b.v > p.v)) * vmul(b - p, a - p)

→ TPoint<T>::eps;

                                                            10
                                                                                                                             for (int i = sz(up) - 2; i >= 1; i--) down.pb(up[i]);
                                                            11
                                                                                                                                  res ^= 1;
                                                                  return down:
    template<typename T>
    bool is_on_ray(const TPoint<T>& p, const TRay<T>& r){ 13
                                                                                                                              }
                                                                                                                        12
      if (is_on_line(p, r.l)){
                                                                    • in triangle
                                                                                                                        13
                                                                                                                              return res;
        return sign(smul(r.dirvec, TPoint<T>(p - r.start)))
                                                                template<typename T>
     }
27
                                                                bool in triangle(TPoint<T>& P, TPoint<T>& A, TPoint<T>&
                                                                                                                                • minkowski rotate
      else return false:
28
                                                                 \rightarrow B. TPoint<T>& C){
                                                                  if (is on seg(P, A, B) || is on seg(P, B, C) ||
                                                                                                                            template<typename T>
    template<typename T>

    is_on_seg(P, C, A)) return true;

                                                                                                                            void minkowski_rotate(vector<TPoint<T>>& P){
    bool is_on_seg(const TPoint<T>& P, const TPoint<T>& A,
                                                                  return cw(P - A, B - A) == cw(P - B, C - B) &&
                                                                                                                              int pos = 0:

    const TPoint<T>& B){
                                                                  cw(P - A, B - A) == cw(P - C, A - C);
                                                                                                                              for (int i = 1; i < sz(P); i++){
      return is_on_ray(P, TRay<T>(A, B)) && is_on_ray(P,
                                                                                                                                if (abs(P[i].y - P[pos].y) <= TPoint<T>::eps){
     \hookrightarrow TRay<T>(B, A));
```

```
if (P[i].x < P[pos].x) pos = i;</pre>
                                                            21
                                                            22
        else if (P[i].y < P[pos].y) pos = i;</pre>
                                                            23
                                                            24
      rotate(P.begin(), P.begin() + pos, P.end());
10
                                                            27
        • minkowski sum
                                                            28
                                                            29
1 // P and Q are strictly convex, points given in
                                                            30
     template<typename T>
    vector<TPoint<T>> minkowski_sum(vector<TPoint<T>> P,

    vector<TPoint<T>> Q){
      minkowski rotate(P);
      minkowski_rotate(Q);
                                                            36
      P.pb(P[0]);
                                                            37
      Q.pb(Q[0]);
      vector<TPoint<T>> ans;
      int i = 0, j = 0;
      while (i < sz(P) - 1 || j < sz(Q) - 1){
        ans.pb(P[i] + Q[j]);
        T curmul:
12
        if (i == sz(P) - 1) curmul = -1:
        else if (j == sz(Q) - 1) curmul = +1;
        else curmul = vmul(P[i + 1] - P[i], Q[i + 1] -
        if (abs(curmul) < TPoint<T>::eps || curmul > 0) i++6
16
        if (abs(curmul) < TPoint<T>::eps || curmul < 0) j++?</pre>
17
      return ans:
19
20
    using Point = TPoint<ll>; using Line = TLine<ll>; using<sup>1</sup>

→ Ray = TRay<11>; const ld PI = acos(-1);

                                                            14
                                                            15
    Strings
                                                            16
                                                            17
    vector<int> prefix_function(string s){
                                                            18
      int n = sz(s):
                                                            19
      vector<int> pi(n);
                                                            20
      for (int i = 1; i < n; i++){
        int k = pi[i - 1];
        while (k > 0 \&\& s[i] != s[k])
          k = pi[k - 1];
        pi[i] = k + (s[i] == s[k]);
10
11
      return pi;
     vector<int> kmp(string s, string k){
      string st = k + "#" + s;
14
      vector<int> res:
15
      auto pi = prefix function(st);
16
      for (int i = 0; i < sz(st); i++){
        if (pi[i] == sz(k)){
18
          res.pb(i - 2 * sz(k));
19
                                                             8
```

```
10
  return res;
                                                       11
vector<int> z function(string s){
                                                       13
  int n = sz(s):
  vector<int> z(n);
                                                       15
  int 1 = 0, r = 0;
                                                       16
  for (int i = 1; i < n; i++){
                                                       17
    if (r >= i) z[i] = min(z[i - 1], r - i + 1);
                                                       18
    while (i + z[i] < n \&\& s[z[i]] == s[i + z[i]]){
                                                       19
      z[i]++:
                                                       20
                                                       21
    if (i + z[i] - 1 > r){
                                                       22
      1 = i, r = i + z[i] - 1:
                                                       23
                                                       24
 }
                                                       25
  return z;
                                                       26
                                                       27
                                                       28
                                                       29
Manacher's algorithm
                                                       30
string longest palindrome(string& s) {
                                                       32
  // init "abc" -> "^$a#b#c$"
                                                       33
  vector<char> t{'^', '#'};
  for (char c : s) t.push back(c), t.push back('#');
  t.push back('$');
                                                       36
  // manacher
  int n = t.size(), r = 0, c = 0;
  vector<int> p(n, 0);
  for (int i = 1: i < n - 1: i++) {
    if (i < r + c) p[i] = min(p[2 * c - i], r + c - i);
    while (t[i + p[i] + 1] == t[i - p[i] - 1]) p[i] ++;
    if (i + p[i] > r + c) r = p[i], c = i;
 }
    // s[i] \rightarrow p[2 * i + 2] (even), p[2 * i + 2] (odd)
  // output answer
  int index = 0:
  for (int i = 0; i < n; i++)
                                                       47
    if (p[index] < p[i]) index = i;</pre>
  return s.substr((index - p[index]) / 2, p[index]);
                                                       50
                                                       51
Flows
                                                       52
O(N^2M), on unit networks O(N^{1/2}M)
                                                       54
                                                       55
struct FlowEdge {
    int v. u:
                                                       57
    11 cap, flow = 0;
                                                       58
    FlowEdge(int v, int u, ll cap) : v(v), u(u),

    cap(cap) {}
                                                       60
}:
struct Dinic {
                                                       62
    const 11 flow inf = 1e18;
                                                       63
    vector<FlowEdge> edges:
    vector<vector<int>> adj;
```

```
int n, m = 0;
   int s, t;
   vector<int> level. ptr:
   aueue<int> q;
   Dinic(int n, int s, int t) : n(n), s(s), t(t) {
       adj.resize(n);
       level.resize(n);
       ptr.resize(n);
   void add_edge(int v, int u, ll cap) {
       edges.emplace_back(v, u, cap);
       edges.emplace_back(u, v, 0);
       adi[v].push back(m):
       adj[u].push_back(m + 1);
       m += 2;
  }
   bool bfs() {
       while (!q.empty()) {
           int v = q.front();
           q.pop();
           for (int id : adi[v]) {
               if (edges[id].cap - edges[id].flow < 1)</pre>
                    continue;
               if (level[edges[id].u] != -1)
                   continue;
               level[edges[id].u] = level[v] + 1;
               q.push(edges[id].u);
           }
       return level[t] != -1;
  11 dfs(int v, ll pushed) {
       if (pushed == 0)
           return 0:
       if (v == t)
           return pushed;
       for (int& cid = ptr[v]; cid <</pre>

    (int)adj[v].size(); cid++) {
           int id = adj[v][cid];
           int u = edges[id].u;
           if (level[v] + 1 != level[u] ||

    edges[id].cap - edges[id].flow < 1)
</pre>
               continue:
           11 tr = dfs(u, min(pushed, edges[id].cap -

→ edges[id].flow));
           if (tr == 0)
               continue:
           edges[id].flow += tr;
           edges[id ^ 1].flow -= tr;
           return tr:
       return 0;
  11 flow() {
      11 f = 0:
       while (true) {
           fill(level.begin(), level.end(), -1);
```

```
level[s] = 0;
                                                              34
                 q.push(s);
                 if (!bfs())
                                                              35
                     break:
                                                              36
                 fill(ptr.begin(), ptr.end(), 0);
68
                                                              37
                 while (ll pushed = dfs(s, flow_inf)) {
                                                               38
                     f += pushed;
                                                               39
70
                 }
71
                                                               40
72
                                                               41
             return f;
73
                                                               42
         }
74
                                                               43
75
    // To recover flow through original edges: iterate over45

→ even indices in edges.

   // To recover minimum cut: DFS from s using ALL of the 47
     \leftrightarrow edges in the Dinic.edges vector for which flow < 48
     \hookrightarrow cap.
                                                               50
    MCMF - maximize flow, then minimize
    its cost. O(mn + Fm \log n).
                                                               55
     #include <ext/pb_ds/priority_queue.hpp>
                                                               56
     template <typename T, typename C>
                                                               57
     class MCMF {
                                                               58
      public:
                                                               59
        static constexpr T eps = (T) 1e-9;
                                                               60
                                                               61
        struct edge {
                                                               62
          int from;
                                                               63
          int to;
                                                               64
          T c:
                                                               65
          Tf;
11
                                                               66
          C cost;
12
                                                               67
13
       };
                                                               68
                                                               69
15
                                                               70
        vector<vector<int>> g;
16
       vector<edge> edges;
17
                                                              71
       vector<C> d;
18
                                                              72
       vector<C> pot;
19
                                                               73
        __gnu_pbds::priority_queue<pair<C, int>> q;
20
                                                               74
        vector<typename decltype(q)::point_iterator> its;
21
       vector<int> pe:
22
       const C INF_C = numeric_limits<C>::max() / 2;
23
                                                               77
24
       explicit MCMF(int n_) : n(n_), g(n), d(n), pot(n, 0)_{79}
     \rightarrow its(n), pe(n) {}
26
       int add(int from, int to, T forward_cap, C edge_cost,
27
     \hookrightarrow T backward cap = 0) {
          assert(0 <= from && from < n && 0 <= to && to < n);
28
          assert(forward_cap >= 0 && backward_cap >= 0);
29
                                                               85
          int id = static_cast<int>(edges.size());
30
                                                               86
          g[from].push_back(id);
31
                                                               87
          edges.push_back({from, to, forward_cap, 0,
32
                                                               88
         edge cost}):
                                                               89
          g[to].push_back(id + 1);
```

```
edges.push_back({to, from, backward_cap, 0,
                                                       90
  -edge cost});
                                                       91
    return id:
                                                       92
                                                       93
                                                       94
  void expath(int st) {
    fill(d.begin(), d.end(), INF C);
                                                       96
    g.clear():
                                                       97
    fill(its.begin(), its.end(), q.end());
                                                       98
    its[st] = q.push({pot[st], st});
                                                       99
    d[st] = 0:
                                                       100
    while (!q.empty()) {
                                                      101
     int i = q.top().second;
                                                      102
      q.pop();
                                                      103
      its[i] = q.end();
                                                      104
      for (int id : g[i]) {
                                                      105
        const edge &e = edges[id];
                                                      106
        int j = e.to;
        if (e.c - e.f > eps && d[i] + e.cost < d[j]) 168
          d[i] = d[i] + e.cost;
          pe[j] = id;
                                                      110
          if (its[j] == q.end()) {
            its[j] = q.push({pot[j] - d[j], j});
                                                      112
                                                      113
            q.modify(its[j], {pot[j] - d[j], j});
                                                      115
       }
                                                      116
     }
                                                      117
   }
                                                      118
    swap(d, pot);
                                                      119
                                                      121
  pair<T, C> max flow(int st, int fin) {
                                                      122
   T flow = 0:
                                                      123
    C cost = 0:
                                                      124
    bool ok = true;
                                                      125
    for (auto& e : edges) {
      if (e.c - e.f > eps && e.cost + pot[e.from] -
→ pot[e.to] < 0) {</pre>
                                                      128
        ok = false:
                                                      129
        break;
     }
                                                      130
                                                      131
    if (ok) {
                                                      132
      expath(st);
                                                      133
    } else {
                                                      134
      vector<int> deg(n, 0);
      for (int i = 0; i < n; i++) {
                                                      136
        for (int eid : g[i]) {
                                                      137
          auto& e = edges[eid];
          if (e.c - e.f > eps) {
                                                      139
            deg[e.to] += 1;
                                                      140
          }
       }
                                                      142
                                                      143
      vector<int> que;
                                                      144
      for (int i = 0; i < n; i++) {
                                                      145
        if (deg[i] == 0) {
```

```
que.push_back(i);
      }
      for (int b = 0; b < (int) que.size(); b++) {</pre>
        for (int eid : g[que[b]]) {
          auto& e = edges[eid];
          if (e.c - e.f > eps) {
            deg[e.to] -= 1;
            if (deg[e.to] == 0) {
              que.push_back(e.to);
        }
      fill(pot.begin(), pot.end(), INF_C);
      pot[st] = 0:
      if (static_cast<int>(que.size()) == n) {
        for (int v : que) {
          if (pot[v] < INF_C) {</pre>
            for (int eid : g[v]) {
              auto& e = edges[eid];
              if (e.c - e.f > eps) {
                if (pot[v] + e.cost < pot[e.to]) {</pre>
                  pot[e.to] = pot[v] + e.cost;
                  pe[e.to] = eid;
            }
          }
        }
      } else {
        que.assign(1, st);
        vector<bool> in queue(n, false);
        in_queue[st] = true;
        for (int b = 0; b < (int) que.size(); b++) {</pre>
          int i = que[b];
          in_queue[i] = false;
          for (int id : g[i]) {
            const edge &e = edges[id];
            if (e.c - e.f > eps && pot[i] + e.cost <
→ pot[e.to]) {
              pot[e.to] = pot[i] + e.cost;
              pe[e.to] = id;
              if (!in_queue[e.to]) {
                que.push_back(e.to);
                in_queue[e.to] = true;
            }
        }
     }
    while (pot[fin] < INF_C) {</pre>
      T push = numeric limits<T>::max();
      int v = fin;
      while (v != st) {
        const edge &e = edges[pe[v]];
```

```
push = min(push, e.c - e.f);
                                                                25
               v = e.from;
                                                                 26
147
                                                                 27
             v = fin;
                                                                 28
149
             while (v != st) {
150
                                                                 29
               edge &e = edges[pe[v]];
151
               e.f += push;
                                                                 31
152
               edge &back = edges[pe[v] ^ 1];
153
                                                                 32
               back.f -= push;
                                                                 33
               v = e.from;
                                                                 34
155
156
                                                                 35
             flow += push;
157
                                                                 36
             cost += push * pot[fin];
158
                                                                 37
             expath(st);
159
160
           return {flow. cost}:
161
162
     };
163
164
     // Examples: MCMF < int, int > q(n); q.add(u,v,c,w,0);
      \rightarrow q.max flow(s,t).
     // To recover flow through original edges: iterate over

→ even indices in edges.
```

Graphs

Kuhn's algorithm for bipartite matching

```
The graph is split into 2 halves of n1 and n2 vertices.
    Complexity: O(n1 * m). Usually runs much faster. MUCH 1

→ FASTER!!!

     const int N = 305;
    vector<int> g[N]; // Stores edges from left half to
    bool used[N]; // Stores if vertex from left half is
    int mt[N]; // For every vertex in right half, stores to 9
     \hookrightarrow which vertex in left half it's matched (-1 if not 10
     \rightarrow matched).
                                                               12
    bool try_dfs(int v){
                                                               13
       if (used[v]) return false;
12
                                                               14
      used[v] = 1;
                                                               15
       for (auto u : g[v]){
                                                               16
         if (mt[u] == -1 || try dfs(mt[u])){
                                                               17
15
           mt[u] = v;
                                                               18
           return true;
17
                                                               19
18
         }
                                                               20
      }
19
                                                               21
       return false;
                                                               22
20
21
                                                               23
                                                               ^{24}
    int main(){
                                                               25
    // .....
```

```
for (int i = 1; i \le n2; i++) mt[i] = -1;
  for (int i = 1; i <= n1; i++) used[i] = 0;
                                                       28
  for (int i = 1: i <= n1: i++){
   if (try dfs(i)){
      for (int j = 1; j <= n1; j++) used[j] = 0;
  vector<pair<int, int>> ans;
  for (int i = 1; i <= n2; i++){
   if (mt[i] != -1) ans.pb({mt[i], i});
// Finding maximal independent set: size = # of nodes -

→ # of edges in matching.

// To construct: launch Kuhn-like DFS from unmatched

→ nodes in the left half.

// Independent set = visited nodes in left half +

→ unvisited in right half.

// Finding minimal vertex cover: complement of maximal =
\rightarrow independent set.
```

Hungarian algorithm for Assignment Problem

Given a 1-indexed (n×m) matrix A, select a number in each row such that each column has at most
 1 number selected, and the sum of the selected
 numbers is minimized.

```
int INF = 1e9: // constant greater than any number in
\hookrightarrow the matrix
vector<int> u(n+1), v(m+1), p(m+1), way(m+1);
for (int i=1; i<=n; ++i) {
    p[0] = i;
    int j0 = 0;
    vector<int> minv (m+1, INF);
    vector<bool> used (m+1, false);
        used[j0] = true;
        int i0 = p[j0], delta = INF, j1;
        for (int j=1; j<=m; ++j)
            if (!used[j]) {
                int cur = A[i0][j]-u[i0]-v[j];
                if (cur < minv[j])</pre>
                    minv[j] = cur, way[j] = j0;
                if (minv[j] < delta)</pre>
                    delta = minv[j], j1 = j;
            }
        for (int j=0; j<=m; ++j)
            if (used[j])
                u[p[j]] += delta, v[j] -= delta;
                minv[j] -= delta;
        j0 = j1;
                                                        11
    } while (p[j0] != 0);
                                                        12
    do {
                                                        13
```

```
int j1 = way[j0];
    p[j0] = p[j1];
    j0 = j1;
    } while (j0);
}
vector<int> ans (n+1); // ans[i] stores the column
    selected for row i
for (int j=1; j<=m; ++j)
    ans[p[j]] = j;
int cost = -v[0]; // the total cost of the matching</pre>
```

Dijkstra's Algorithm

Eulerian Cycle DFS

```
void dfs(int v){
  while (!g[v].empty()){
    int u = g[v].back();
    g[v].pop_back();
    dfs(u);
    ans.pb(v);
}
```

SCC and 2-SAT

```
void scc(vector<vector<int>>& g, int* idx) {
  int n = g.size(), ct = 0;
  int out[n];
  vector<int>> ginv[n];
  memset(out, -1, sizeof out);
  memset(idx, -1, n * sizeof(int));
  function<void(int)> dfs = [&](int cur) {
    out[cur] = INT_MAX;
    for(int v : g[cur]) {
        ginv[v].push_back(cur);
        if(out[v] == -1) dfs(v);
    }
    ct++; out[cur] = ct;
```

```
};
      vector<int> order;
15
      for(int i = 0: i < n: i++) {
        order.push back(i);
17
        if(out[i] == -1) dfs(i);
18
      sort(order.begin(), order.end(), [&](int& u, int& v) 1{
20
        return out[u] > out[v]:
21
      });
                                                            13
      ct = 0;
                                                            14
23
24
      stack<int> s:
                                                            15
       auto dfs2 = [&](int start) {
25
                                                            16
        s.push(start):
26
                                                            17
        while(!s.empty()) {
27
                                                            18
          int cur = s.top();
                                                            19
          s.pop():
                                                            20
          idx[cur] = ct;
                                                            21
          for(int v : ginv[cur])
                                                            22
31
            if(idx[v] == -1) s.push(v):
32
        }
                                                            24
33
      };
34
      for(int v : order) {
        if(idx[v] == -1) {
                                                            27
36
          dfs2(v):
37
          ct++;
        }
39
40
41
    // 0 => impossible, 1 => possible
    pair<int, vector<int>> sat2(int n, vector<pair<int,int>>&

    clauses) {
      vector<int> ans(n);
      vector<vector<int>>> g(2*n + 1);
      for(auto [x, v] : clauses) {
47
       x = x < 0 ? -x + n : x;
        y = y < 0 ? -y + n : y;
        int nx = x \le n ? x + n : x - n;
50
        int ny = y \le n ? y + n : y - n;
51
                                                            11
        g[nx].push_back(y);
                                                            12
        g[ny].push_back(x);
                                                            13
54
                                                            14
      int idx[2*n + 1];
      scc(g, idx);
                                                            15
56
      for(int i = 1; i <= n; i++) {
                                                            16
57
        if(idx[i] == idx[i + n]) return {0, {}};
        ans[i - 1] = idx[i + n] < idx[i]:
      return {1, ans};
61
    Finding Bridges
   Results are stored in a map "is bridge".
4 For each connected component, call "dfs(starting vertex,9

⇒ starting vertex)".
```

```
const int N = 2e5 + 10; // Careful with the constant! 12
vector<int> g[N];
                                                       14
int tin[N], fup[N], timer;
map<pair<int, int>, bool> is_bridge;
                                                       16
void dfs(int v, int p){
                                                       17
 tin[v] = ++timer;
  fup[v] = tin[v];
  for (auto u : g[v]){
    if (!tin[u]){
      dfs(u, v):
      if (fup[u] > tin[v]){
        is_bridge[{u, v}] = is_bridge[{v, u}] = true; 24
      fup[v] = min(fup[v], fup[u]);
                                                       26
                                                       27
                                                       28
      if (u != p) fup[v] = min(fup[v], tin[u]);
                                                       32
Virtual Tree
// order stores the nodes in the queried set
sort(all(order), [&] (int u, int v){return tin[u] <</pre>

    tin[v]:}):
int m = sz(order):
for (int i = 1; i < m; i++){
    order.pb(lca(order[i], order[i - 1]));
sort(all(order), [&] (int u, int v){return tin[u] <</pre>

    tin[v]:}):
order.erase(unique(all(order)), order.end());
vector<int> stk{order[0]}:
for (int i = 1; i < sz(order); i++){
    int v = order[i]:
    while (tout[stk.back()] < tout[v]) stk.pop_back(); 7</pre>
    int u = stk.back();
    vg[u].pb({v, dep[v] - dep[u]});
    stk.pb(v):
HLD on Edges DFS
  par[v] = p;
```

```
for (auto [u, c] : g[v]){
   dfs1(u, v, d + 1);
   sz[v] += sz[u]:
  if (!g[v].empty()) iter_swap(g[v].begin(),

→ max_element(all(g[v]), comp));
void dfs2(int v, int rt, int c){
  pos[v] = sz(a);
  a.pb(c);
  root[v] = rt;
  for (int i = 0; i < sz(g[v]); i++){</pre>
   auto [u, c] = g[v][i];
   if (!i) dfs2(u, rt, c);
   else dfs2(u, u, c);
int getans(int u, int v){
 int res = 0:
  for (; root[u] != root[v]; v = par[root[v]]){
   if (dep[root[u]] > dep[root[v]]) swap(u, v);
   res = \max(\text{res, rmq}(0, 0, n - 1, pos[root[v]],

    pos[v]));
 if (pos[u] > pos[v]) swap(u, v);
  return max(res, rmq(0, 0, n - 1, pos[u] + 1, pos[v]);
Centroid Decomposition
vector<char> res(n), seen(n), sz(n);
function < int(int, int) > get size = [%](int node, int fa)
  sz[node] = 1;
  for (auto& ne : g[node]) {
   if (ne == fa || seen[ne]) continue;
   sz[node] += get_size(ne, node);
 return sz[node]:
function<int(int, int, int)> find centroid = [&](int

→ node, int fa, int t) {
 for (auto& ne : g[node])
   if (ne != fa && !seen[ne] && sz[ne] > t / 2) return
```

```
void dfs1(int v, int p, int d){
 for (auto e : g[v]){
   if (e.fi == p){
      g[v].erase(find(all(g[v]), e));
     break:
   }
 dep[v] = d:
  sz[v] = 1:
```

```
    find_centroid(ne, node, t);

 return node:
function < void (int, char) > solve = [&] (int node, char
 get size(node, -1); auto c = find centroid(node, -1,

    sz[node]);
 seen[c] = 1, res[c] = cur;
 for (auto& ne : g[c]) {
    if (seen[ne]) continue;
    solve(ne, char(cur + 1)); // we can pass c here to

→ build tree
```

```
21 }
22 };
```

Math

Binary exponentiation

```
1  ll power(ll a, ll b){
2    ll res = 1;
3    for (; b; a = a * a % MOD, b >>= 1){
4       if (b & 1) res = res * a % MOD;
5    }
6    return res;
7  }
```

Matrix Exponentiation: $O(n^3 \log b)$

```
const int N = 100, MOD = 1e9 + 7:
     struct matrix{
      11 m[N][N]:
      int n;
      matrix(){
         memset(m, 0, sizeof(m));
       matrix(int n ){
        n = n_{\cdot};
         memset(m, 0, sizeof(m)):
13
      matrix(int n_, ll val){
14
15
        memset(m, 0, sizeof(m));
        for (int i = 0; i < n; i++) m[i][i] = val;</pre>
18
19
       matrix operator* (matrix oth){
20
         matrix res(n);
21
         for (int i = 0; i < n; i++){
          for (int j = 0; j < n; j++){
23
             for (int k = 0: k < n: k++){
24
              res.m[i][j] = (res.m[i][j] + m[i][k] *

    oth.m[k][i]) % MOD;

             }
          }
         return res;
30
31
32
    matrix power(matrix a, ll b){
      matrix res(a.n. 1):
      for (; b; a = a * a, b >>= 1){
        if (b & 1) res = res * a:
```

```
return res;
    Extended Euclidean Algorithm
    // gives (x, y) for ax + by = g
    // solutions given (x0, y0): a(x0 + kb/g) + b(y0 - ka/g)^{13}
    int gcd(int a, int b, int& x, int& y) {
     x = 1, v = 0; int sum1 = a:
      int x2 = 0, y2 = 1, sum2 = b;
      while (sum2) {
       int q = sum1 / sum2;
        tie(x, x2) = make_tuple(x2, x - q * x2);
        tie(y, y2) = make_tuple(y2, y - q * y2);
10
        tie(sum1, sum2) = make_tuple(sum2, sum1 - q * sum2);
11
12
      return sum1:
```

Linear Sieve

10

11

15

16

17

18

19

22

23

Mobius Function

```
vector<int> prime;
bool is_composite[MAX_N];
int mu[MAX N];
void sieve(int n){
 fill(is composite, is composite + n, 0);
  for (int i = 2; i < n; i++){
   if (!is composite[i]){
      prime.push_back(i);
      mu[i] = -1; //i is prime
 for (int j = 0; j < prime.size() && i * prime[i] < n; '11</pre>
    is composite[i * prime[j]] = true;
    if (i % prime[j] == 0){
                                                       14
      mu[i * prime[j]] = 0; //prime[j] divides i
      break:
                                                       16
      mu[i * prime[j]] = -mu[i]; //prime[j] does not
 ⇔ dinide i
 }
                                                       24
   • Euler's Totient Function
vector<int> prime;
bool is_composite[MAX_N];
int phi[MAX_N];
                                                       29
void sieve(int n){
 fill(is_composite, is_composite + n, 0);
```

```
phi[1] = 1;
for (int i = 2; i < n; i++){
    if (!is_composite[i]){
        prime.push_back (i);
        phi[i] = i - 1; //i is prime
    }
for (int j = 0; j < prime.size () && i * prime[j] < n;
        j++){
        is_composite[i * prime[j]] = true;
        if (i % prime[j] == 0){
            phi[i * prime[j]] = phi[i] * prime[j]; //prime[j]
        divides i
            break;
        } else {
        phi[i * prime[j]] = phi[i] * phi[prime[j]];
        //prime[j] does not divide i
        }
    }
}</pre>
```

Gaussian Elimination

23

```
bool is O(Z v) { return v.x == 0; }
Z abs(Z v) { return v: }
bool is O(double v) { return abs(v) < 1e-9; }</pre>
// 1 => unique solution. 0 => no solution. -1 =>
template <typename T>
int gaussian elimination(vector<vector<T>> &a. int
 if (a.empty() || a[0].empty()) return -1;
  int h = (int)a.size(), w = (int)a[0].size(), r = 0;
  for (int c = 0; c < limit; c++) {
   int id = -1:
    for (int i = r; i < h; i++) {
      if (!is O(a[i][c]) && (id == -1 || abs(a[id][c]) <

   abs(a[i][c]))) {

       id = i;
    if (id == -1) continue:
    if (id > r) {
      swap(a[r], a[id]);
      for (int j = c; j < w; j++) a[id][j] = -a[id][j];</pre>
    vector<int> nonzero;
    for (int j = c; j < w; j++) {
      if (!is_0(a[r][j])) nonzero.push_back(j);
   T inv_a = 1 / a[r][c];
    for (int i = r + 1; i < h; i++) {
      if (is_0(a[i][c])) continue;
      T coeff = -a[i][c] * inv a;
      for (int j : nonzero) a[i][j] += coeff * a[r][j];
```

```
++r;
                                                             14
                                                             15
33
      for (int row = h - 1; row >= 0; row--) {
        for (int c = 0; c < limit; c++) {
                                                             17
35
          if (!is_0(a[row][c])) {
36
                                                             18
            T inv_a = 1 / a[row][c];
                                                              19
             for (int i = row - 1; i >= 0; i--) {
                                                             20
38
               if (is_0(a[i][c])) continue;
39
              T coeff = -a[i][c] * inv_a;
              for (int j = c; j < w; j++) a[i][j] += coeff_{2}
41

→ a[row][j];

42
43
             break:
                                                             26
44
                                                              27
      } // not-free variables: only it on its line
46
      for(int i = r; i < h; i++) if(!is 0(a[i][limit]))</pre>
47

→ return 0;

      return (r == limit) ? 1 : -1:
48
49
50
    template <typename T>
    pair<int, vector<T>> solve linear(vector<vector<T>> a,

    const vector<T> &b, int w) {

      int h = (int)a.size();
      for (int i = 0; i < h; i++) a[i].push_back(b[i]);</pre>
      int sol = gaussian_elimination(a, w);
                                                              10
      if(!sol) return {0, vector<T>()};
                                                             11
                                                             12
      vector < T > x(w, 0):
                                                             13
      for (int i = 0; i < h; i++) {
        for (int j = 0; j < w; j++) {
                                                             14
          if (!is_0(a[i][j])) {
                                                              15
             x[i] = a[i][w] / a[i][i];
                                                              16
61
             break:
                                                             17
                                                              18
                                                             19
                                                             20
      return {sol, x};
                                                             21
                                                             22
                                                             23
                                                             24
    is prime
                                                             25
        • (Miller–Rabin primality test)
                                                             27
    typedef __int128_t i128;
    i128 power(i128 a, i128 b, i128 MOD = 1, i128 res = 1)_{3}
      for (; b; b /= 2, (a *= a) \%= MOD)
        if (b & 1) (res *= a) %= MOD;
      return res;
                                                              35
    bool is_prime(ll n) {
      if (n < 2) return false;
      static constexpr int A[] = \{2, 3, 5, 7, 11, 13, 17,
      int s = __builtin_ctzll(n - 1);
      11 d = (n - 1) >> s:
```

```
for (auto a : A) {
    if (a == n) return true;
    11 x = (11)power(a, d, n):
    if (x == 1 | | x == n - 1) continue;
    bool ok = false;
    for (int i = 0; i < s - 1; ++i) {
      x = 11((i128)x * x % n); // potential overflow!
      if (x == n - 1) {
        ok = true;
        break;
    if (!ok) return false:
  return true;
typedef __int128_t i128;
11 pollard rho(11 x) {
 11 s = 0, t = 0, c = rng() \% (x - 1) + 1;
  11 \text{ stp} = 0, \text{ goal} = 1, \text{ val} = 1;
  for (goal = 1; goal *= 2, s = t, val = 1) {
    for (stp = 1; stp <= goal; ++stp) {
      t = 11(((i128)t * t + c) \% x);
      val = 11((i128)val * abs(t - s) % x);
      if ((stp \% 127) == 0) {
                                                         13
        ll d = gcd(val, x);
        if (d > 1) return d;
      }
    11 d = gcd(val, x);
    if (d > 1) return d:
                                                         20
11 get max factor(11 x) {
  11 max factor = 0:
  function \langle void(11) \rangle fac = [\&](11 x) {
    if (x <= max_factor || x < 2) return;</pre>
    if (is_prime(x)) {
      max factor = max factor > x ? max factor : x;
      return:
    while (p >= x) p = pollard_rho(x);
    while ((x \% p) == 0) x /= p;
    fac(x), fac(p);
  fac(_x);
  return max_factor;
```

Berlekamp-Massey

• Recovers any n-order linear recurrence relation from the first 2n terms of the sequence.

- \bullet Input s is the sequence to be analyzed.
- Output c is the shortest sequence $c_1, ..., c_n$, such that

$$s_m = \sum_{i=1}^n c_i \cdot s_{m-i}, \text{ for all } m \ge n.$$

- Be careful since c is returned in 0-based indexation.
- Complexity: $O(N^2)$

```
vector<11> berlekamp massey(vector<11> s) {
 int n = sz(s), l = 0, m = 1:
 vector<ll> b(n), c(n);
 11 \ 1dd = b[0] = c[0] = 1;
 for (int i = 0; i < n; i++, m++) {
   11 d = s[i];
   for (int j = 1; j \le 1; j ++) d = (d + c[j] * s[i -

→ il) % MOD:

   if (d == 0) continue;
   vector<11> temp = c;
   11 coef = d * power(ldd, MOD - 2) % MOD;
   for (int j = m; j < n; j++){
     c[j] = (c[j] + MOD - coef * b[j - m]) % MOD;
     if (c[j] < 0) c[j] += MOD;
   if (2 * 1 <= i) {
     1 = i + 1 - 1;
     b = temp:
     1dd = d:
 c.resize(1 + 1):
 c.erase(c.begin());
 for (11 &x : c)
     x = (MOD - x) \% MOD;
 return c;
```

Calculating k-th term of a linear recurrence

• Given the first n terms $s_0, s_1, ..., s_{n-1}$ and the sequence $c_1, c_2, ..., c_n$ such that

$$s_m = \sum_{i=1}^n c_i \cdot s_{m-i}$$
, for all $m \ge n$,

the function calc_kth computes s_k .

• Complexity: $O(n^2 \log k)$

```
vector<11> poly mult mod(vector<11> p, vector<11> q,

  vector<11>& c){
      vector<11> ans(sz(p) + sz(q) - 1):
      for (int i = 0; i < sz(p); i++){
       for (int j = 0; j < sz(q); j++){
          ans[i + j] = (ans[i + j] + p[i] * q[j]) % MOD;
     }
      int n = sz(ans), m = sz(c);
      for (int i = n - 1; i >= m; i--){
       for (int j = 0; j < m; j++){
          ans[i - 1 - j] = (ans[i - 1 - j] + c[j] * ans[i])_2
        }
                                                          15
      ans.resize(m):
      return ans;
                                                          16
17
    ll calc kth(vector<ll> s, vector<ll> c, ll k){
      assert(sz(s) \ge sz(c)); // size of s can be greater 19
     if (k < sz(s)) return s[k];
      vector<ll> res{1}:
                                                          22
     for (vector<11> poly = \{0, 1\}; k; poly =

    poly_mult_mod(poly, poly, c), k >>= 1){
                                                          24
        if (k & 1) res = poly_mult_mod(res, poly, c);
      for (int i = 0; i < min(sz(res), sz(c)); i++) ans = 28
     \rightarrow (ans + s[i] * res[i]) % MOD;
```

Partition Function

• Returns number of partitions of n in $O(n^{1.5})$

```
int partition(int n) {
  int dp[n + 1];
  dp[0] = 1;
  for (int i = 1: i <= n: i++) {
    for (int j = 1, r = 1; i - (3 * j * j - j) / 2 >= 0;
 \leftrightarrow ++i, r *= -1) {
      dp[i] += dp[i - (3 * j * j - j) / 2] * r;
      if (i - (3 * j * j + j) / 2 >= 0) dp[i] += dp[i -6]
 \leftrightarrow (3 * i * i + i) / 2] * r:
  return dp[n];
}
                                                          11
NTT
                                                          14
void ntt(vector<ll>& a. int f) {
  int n = int(a.size());
```

```
vector<ll> w(n);
  vector<int> rev(n);
 for (int i = 0; i < n; i++) rev[i] = (rev[i / 2] / 2) i < n
 \rightarrow | ((i & 1) * (n / 2));
 for (int i = 0; i < n; i++) {
    if (i < rev[i]) swap(a[i], a[rev[i]]);</pre>
 11 wn = power(f ? (MOD + 1) / 3 : 3, (MOD - 1) / n); 23
  for (int i = 1; i < n; i++) w[i] = w[i - 1] * wn \% 25
  for (int mid = 1; mid < n; mid *= 2) {
    for (int i = 0: i < n: i += 2 * mid) {
                                                        27
      for (int j = 0; j < mid; j++) {</pre>
        11 x = a[i + j], y = a[i + j + mid] * w[n / (22*)
        a[i + j] = (x + y) \% MOD, a[i + j + mid] = (x *1)

→ MOD - y) % MOD;

    11 iv = power(n, MOD - 2);
    for (auto& x : a) x = x * iv % MOD;
vector<11> mul(vector<11> a. vector<11> b) {
 int n = 1, m = (int)a.size() + (int)b.size() - 1;
  while (n < m) n *= 2:
  a.resize(n), b.resize(n);
 ntt(a, 0), ntt(b, 0); // if squaring, you can save one
 for (int i = 0; i < n; i++) a[i] = a[i] * b[i] % MOD;
 ntt(a, 1):
 a.resize(m):
  return a;
```

FFT

```
const ld PI = acosl(-1):
auto mul = [\&] (const vector<ld>& aa, const vector<ld>& 5
 int n = (int)aa.size(), m = (int)bb.size(), bit = 1; 7
  while ((1 << bit) < n + m - 1) bit++;
  int len = 1 << bit:</pre>
  vector<complex<ld>> a(len). b(len):
  vector<int> rev(len):
  for (int i = 0; i < n; i++) a[i].real(aa[i]):
 for (int i = 0; i < m; i++) b[i].real(bb[i]);
 for (int i = 0; i < len; i++) rev[i] = (rev[i >> 1] 3?

→ 1) | ((i & 1) << (bit - 1));
</p>
 auto fft = [&] (vector<complex<ld>>& p, int inv) {
  for (int i = 0; i < len; i++)
      if (i < rev[i]) swap(p[i], p[rev[i]]);</pre>
    for (int mid = 1; mid < len; mid *= 2) {</pre>
      auto w1 = complex<ld>(cos(PI / mid), (inv ? -1 : 18
→ 1) * sin(PI / mid));
```

```
for (int i = 0; i < len; i += mid * 2) {
       auto wk = complex<ld>(1, 0);
       for (int i = 0; i < mid; i++, wk = wk * w1) {
         auto x = p[i + j], y = wk * p[i + j + mid];
         p[i + j] = x + y, p[i + j + mid] = x - y;
     }
   if (inv == 1) {
     for (int i = 0; i < len; i++)

    p[i].real(p[i].real() / len);
 }:
 fft(a, 0), fft(b, 0):
 for (int i = 0; i < len; i++) a[i] = a[i] * b[i];</pre>
 a.resize(n + m - 1);
 vector<ld> res(n + m - 1);
for (int i = 0; i < n + m - 1; i++) res[i] =
→ a[i].real();
return res:
```

MIT's FFT/NTT, Polynomial mod/log/exp Template

- For integers rounding works if $(|a| + |b|) \max(a, b) < \sim 10^9$, or in theory maybe 10^6
- $\frac{1}{P(x)}$ in $O(n \log n)$, $e^{P(x)}$ in $O(n \log n)$, $\ln(P(x))$ in $O(n \log n)$, $P(x)^k$ in $O(n \log n)$, Evaluates $P(x_1), \dots, P(x_n)$ in $O(n \log^2 n)$, Lagrange Interpolation in $O(n \log^2 n)$

```
// use #define FFT 1 to use FFT instead of NTT (default)
// Examples:
// poly a(n+1); // constructs degree n poly
// a[0].v = 10; // assigns constant term a 0 = 10
// poly b = exp(a);
// poly is vector<num>
// for NTT, num stores just one int named v
// for FFT, num stores two doubles named x (real), y
\hookrightarrow (imag)
#define sz(x) ((int)x.size())
#define rep(i, j, k) for (int i = int(j); i < int(k);
#define trav(a, x) for (auto \&a: x)
#define per(i, a, b) for (int i = (b)-1; i \ge (a); --i)
using ll = long long;
using vi = vector<int>;
namespace fft {
#if FFT
// FFT
```

```
using dbl = double;
                                                             74
     struct num {
                                                             75
       dbl x, v:
      num(dbl x_ = 0, dbl y_ = 0): x(x_), y(y_) {}
24
     inline num operator+(num a, num b) {
      return num(a.x + b.x, a.y + b.y);
                                                             79
26
27
                                                             80
     inline num operator-(num a, num b) {
                                                             81
       return num(a.x - b.x, a.y - b.y);
                                                             82
29
30
                                                             83
     inline num operator*(num a, num b) {
                                                              84
      return num(a.x * b.x - a.y * b.y, a.x * b.y + a.y *
     \rightarrow b.x):
     inline num coni(num a) { return num(a.x. -a.v); }
                                                             88
34
    inline num inv(num a) {
                                                             89
      dbl n = (a.x * a.x + a.y * a.y);
                                                             90
      return num(a.x / n. -a.v / n):
37
                                                             91
    }
38
                                                             92
                                                             93
39
    #else
    // NTT
                                                             94
    const int mod = 998244353, g = 3:
    // For p < 2^30 there is also (5 << 25, 3), (7 << 26, 96
44 // (179 << 21, 3) and (183 << 21, 5). Last two are >

→ 10^9.

    struct num {
                                                             100
46
      int v:
                                                             101
      num(11 v = 0): v(int(v \% mod)) {
                                                             102
       if (v < 0) v += mod:
                                                             103
48
49
                                                             104
      explicit operator int() const { return v: }
                                                             105
50
51
    inline num operator+(num a, num b) { return num(a.v + 106
     \rightarrow b.v): }
     inline num operator-(num a, num b) {
                                                             108
      return num(a.v + mod - b.v);
                                                             109
54
                                                             110
55
     inline num operator*(num a, num b) {
                                                             111
56
      return num(111 * a.v * b.v):
57
                                                             112
                                                             113
     inline num pow(num a, int b) {
                                                             114
59
      num r = 1:
60
                                                             115
                                                             116
61
        if (b \& 1) r = r * a:
                                                             117
        a = a * a:
                                                             118
      } while (b >>= 1);
64
                                                             119
      return r:
                                                             120
                                                             121
66
     inline num inv(num a) { return pow(a, mod - 2); }
                                                             122
                                                             123
                                                             124
69
     using vn = vector<num>;
                                                             125
    vi rev({0, 1});
                                                             126
     vn rt(2, num(1)), fa, fb;
                                                             127
     inline void init(int n) {
```

```
if (n <= sz(rt)) return;</pre>
  rev.resize(n);
 rep(i, 0, n) rev[i] = (rev[i >> 1] | ((i & 1) * n)) 180
 rt.reserve(n):
 for (int k = sz(rt); k < n; k *= 2) {
                                                      132
   rt.resize(2 * k);
                                                      133
#if FFT
                                                      134
   double a = M PI / k;
                                                      135
    num z(cos(a), sin(a)); // FFT
                                                      136
   num z = pow(num(g), (mod - 1) / (2 * k)); // NTT 138
   rep(i, k / 2, k) rt[2 * i] = rt[i],
                            rt[2 * i + 1] = rt[i] * z_{141}
 }
inline void fft(vector<num>& a, int n) {
 init(n):
 int s = builtin ctz(sz(rev) / n);
 rep(i, 0, n) if (i < rev[i] >> s) swap(a[i], a[rev[i]_{16})
⇔ >> s1):
 for (int k = 1; k < n; k *= 2)
   for (int i = 0; i < n; i += 2 * k) rep(j, 0, k) { 149
       num t = rt[j + k] * a[i + j + k];
       a[i + j + k] = a[i + j] - t;
                                                      151
       a[i + j] = a[i + j] + t;
// Complex/NTT
vn multiply(vn a, vn b) {
 int s = sz(a) + sz(b) - 1:
                                                      156
 if (s <= 0) return {};
 int L = s > 1 ? 32 - builtin clz(s - 1) : 0, n = 1_{158}
 a.resize(n), b.resize(n);
 fft(a. n):
 fft(b, n);
                                                      162
 num d = inv(num(n));
 rep(i, 0, n) a[i] = a[i] * b[i] * d;
 reverse(a.begin() + 1, a.end());
 fft(a, n):
                                                      165
 a.resize(s):
                                                      166
 return a;
                                                      167
                                                      168
// Complex/NTT power-series inverse
// Doubles b as b[:n] = (2 - a[:n] * b[:n/2]) * b[:n/2]_{70}
vn inverse(const vn& a) {
 if (a.empty()) return {};
                                                      172
 vn b({inv(a[0])}):
 b.reserve(2 * a.size());
                                                      174
 while (sz(b) < sz(a)) {
                                                      175
   int n = 2 * sz(b):
   b.resize(2 * n, 0);
                                                      177
   if (sz(fa) < 2 * n) fa.resize(2 * n);
   fill(fa.begin(), fa.begin() + 2 * n, 0);
    copy(a.begin(), a.begin() + min(n, sz(a)),
                                                      180

  fa.begin());
```

```
fft(b, 2 * n);
    fft(fa, 2 * n);
    num d = inv(num(2 * n)):
    rep(i, 0, 2 * n) b[i] = b[i] * (2 - fa[i] * b[i]) *
    reverse(b.begin() + 1, b.end());
    fft(b, 2 * n);
    b.resize(n):
  b.resize(a.size());
  return b:
#if FFT
// Double multiply (num = complex)
using vd = vector<double>;
vd multiply(const vd& a. const vd& b) {
 int s = sz(a) + sz(b) - 1;
  if (s <= 0) return {}:
 int L = s > 1 ? 32 - builtin clz(s - 1) : 0, n = 1
  if (sz(fa) < n) fa.resize(n):</pre>
  if (sz(fb) < n) fb.resize(n);</pre>
  fill(fa.begin(), fa.begin() + n, 0);
  rep(i, 0, sz(a)) fa[i].x = a[i];
  rep(i, 0, sz(b)) fa[i].y = b[i];
 fft(fa. n):
  trav(x, fa) x = x * x:
  rep(i, 0, n) fb[i] = fa[(n - i) & (n - 1)] -

    coni(fa[i]):

 fft(fb, n);
  vd r(s):
  rep(i, 0, s) r[i] = fb[i].v / (4 * n):
 return r;
// Integer multiply mod m (num = complex)
vi multiply mod(const vi& a, const vi& b, int m) {
 int s = sz(a) + sz(b) - 1;
 if (s <= 0) return {};</pre>
 int L = s > 1 ? 32 - builtin clz(s - 1) : 0, n = 1
 if (sz(fa) < n) fa.resize(n);</pre>
  if (sz(fb) < n) fb.resize(n);</pre>
  rep(i, 0, sz(a)) fa[i] =
    num(a[i] & ((1 << 15) - 1), a[i] >> 15);
  fill(fa.begin() + sz(a), fa.begin() + n, 0);
  rep(i, 0, sz(b)) fb[i] =
    num(b[i] & ((1 << 15) - 1), b[i] >> 15);
  fill(fb.begin() + sz(b), fb.begin() + n, 0);
  fft(fa, n);
  fft(fb. n):
  double r0 = 0.5 / n; // 1/2n
  rep(i, 0, n / 2 + 1) {
   int j = (n - i) & (n - 1);
    num g0 = (fb[i] + conj(fb[j])) * r0;
    num g1 = (fb[i] - conj(fb[j])) * r0;
    swap(g1.x, g1.y);
    g1.y *= -1;
```

```
if (j != i) {
                                                                   poly operator*(const poly& a, const num& b) {
                                                                                                                                     int n = min(sz(b) * 2, sz(a));
                                                             236
           swap(fa[i], fa[i]);
                                                                     poly r = a:
                                                                                                                                     b.resize(n);
                                                             237
                                                                                                                           294
182
                                                                                                                                     polv v = polv(a.begin(), a.begin() + n) - log(b):
           fb[j] = fa[j] * g1;
                                                                     r *= b:
                                                                                                                           295
                                                             238
           fa[i] = fa[i] * g0;
                                                                                                                                     v[0] = v[0] + num(1);
                                                                     return r;
                                                                                                                           206
                                                             239
184
                                                                                                                                     b *= v:
185
                                                             240
                                                                   // Polynomial floor division; no leading 0's please
                                                                                                                                     b.resize(n);
         fb[i] = fa[i] * conj(g1);
                                                             241
         fa[i] = fa[i] * conj(g0);
                                                                   poly operator/(poly a, poly b) {
                                                             242
                                                                                                                           200
187
       }
                                                                     if (sz(a) < sz(b)) return {};</pre>
                                                                                                                                   return b:
188
                                                             243
                                                                                                                           300
                                                                     int s = sz(a) - sz(b) + 1;
189
       fft(fa, n);
                                                             244
                                                                                                                           301
       fft(fb, n);
                                                                     reverse(a.begin(), a.end());
                                                                                                                                 poly pow(const poly& a, int m) { // m >= 0
                                                             245
                                                                                                                           302
190
                                                                     reverse(b.begin(), b.end());
                                                                                                                                   polv b(a.size()):
191
       vi r(s):
                                                             246
                                                                                                                           303
       rep(i, 0, s) r[i] =
                                                                     a.resize(s):
                                                                                                                                   if (!m) {
192
        int((11(fa[i].x + 0.5) + (11(fa[i].v + 0.5) \% m < 248)
                                                                     b.resize(s):
                                                                                                                                     b[0] = 1:
193
                                                                                                                           305
      a = a * inverse(move(b)):
                                                                                                                                     return b:
                                                             249
                                                                                                                           306
                (11(fb[i].x + 0.5) \% m << 15) +
                                                             250
                                                                     a.resize(s):
194
                (11(fb[i].v + 0.5) \% m << 30)) \%
                                                                                                                                   int p = 0:
                                                                     reverse(a.begin(), a.end()):
                                                             251
195
           m);
                                                                     return a;
                                                                                                                                   while (p < sz(a) \&\& a[p].v == 0) ++p;
196
                                                             252
                                                                                                                           309
       return r;
                                                                                                                                   if (111 * m * p >= sz(a)) return b;
                                                             253
197
                                                                   polv& operator/=(polv& a, const polv& b) { return a = 3a1
                                                                                                                                   num mu = pow(a[p], m), di = inv(a[p]):
                                                             254
198

→ / b: }

                                                                                                                                   poly c(sz(a) - m * p);
199
     } // namespace fft
                                                                   poly& operator%=(poly& a, const poly& b) {
                                                                                                                                   rep(i, 0, sz(c)) c[i] = a[i + p] * di;
                                                             255
                                                                    if (sz(a) >= sz(b)) {
     // For multiply_mod, use num = modnum, poly =
                                                                                                                                   c = log(c);

→ vector<num>

                                                                       poly c = (a / b) * b;
                                                                                                                                   trav(v, c) v = v * m;
                                                                                                                           315
                                                             257
                                                                       a.resize(sz(b) - 1):
     using fft::num:
                                                                                                                                   c = exp(c):
                                                             258
                                                                                                                           316
     using poly = fft::vn;
                                                                       rep(i, 0, sz(a)) a[i] = a[i] - c[i];
                                                                                                                                   rep(i, 0, sz(c)) b[i + m * p] = c[i] * mu;
                                                                                                                           317
     using fft::multiply;
                                                                                                                                   return b:
204
                                                             260
                                                                                                                           318
     using fft::inverse;
                                                                     return a:
205
                                                             261
                                                                                                                           319
                                                                                                                                 // Multipoint evaluation/interpolation
206
                                                             262
     poly& operator+=(poly& a, const poly& b) {
                                                                   poly operator%(const poly& a, const poly& b) {
                                                             263
                                                                                                                           321
207
       if (sz(a) < sz(b)) a.resize(b.size());</pre>
                                                                     poly r = a:
                                                                                                                                 vector<num> eval(const poly& a, const vector<num>& x) {
208
                                                             264
                                                                                                                           322
       rep(i, 0, sz(b)) a[i] = a[i] + b[i];
                                                                    r %= b:
                                                                                                                                   int n = sz(x);
209
                                                                     return r:
                                                                                                                                   if (!n) return {}:
                                                             266
                                                                                                                           324
210
                                                                                                                                   vector<poly> up(2 * n);
                                                                                                                           325
211
                                                             267
     poly operator+(const poly& a. const poly& b) {
                                                                                                                                   rep(i, 0, n) up[i + n] = poly({0 - x[i], 1});
                                                             268
                                                                   // Log/exp/pow
                                                                                                                           326
212
       poly r = a;
                                                                   polv deriv(const polv& a) {
                                                                                                                                   per(i, 1, n) up[i] = up[2 * i] * up[2 * i + 1];
                                                                                                                           327
                                                             269
213
                                                                                                                                   vector<poly> down(2 * n);
       r += b;
                                                             270
                                                                     if (a.empty()) return {};
                                                                                                                           328
214
                                                                                                                                   down[1] = a \% up[1];
       return r:
                                                             271
                                                                     poly b(sz(a) - 1);
                                                                                                                           329
215
                                                             272
                                                                     rep(i, 1, sz(a)) b[i - 1] = a[i] * i;
                                                                                                                                   rep(i, 2, 2 * n) down[i] = down[i / 2] % up[i];
216
     poly& operator = (poly& a, const poly& b) {
                                                                     return b;
                                                                                                                                   vector<num> v(n);
                                                             273
                                                                                                                           331
217
       if (sz(a) < sz(b)) a.resize(b.size());</pre>
                                                             274
                                                                                                                           332
                                                                                                                                   rep(i, 0, n) y[i] = down[i + n][0];
       rep(i, 0, sz(b)) a[i] = a[i] - b[i];
                                                                   poly integ(const poly& a) {
                                                             275
                                                                                                                           333
                                                                                                                                   return v;
219
       return a:
                                                                     poly b(sz(a) + 1);
220
                                                             276
                                                                                                                           334
                                                                     b[1] = 1: // mod p
221
                                                             277
                                                                                                                           335
     poly operator-(const poly& a, const poly& b) {
                                                                     rep(i, 2, sz(b)) b[i] =
                                                                                                                                 poly interp(const vector<num>& x, const vector<num>& y)
                                                             278
222
                                                                       b[fft::mod % i] * (-fft::mod / i); // mod p
                                                                                                                                  polv r = a:
223
                                                             279
                                                                     rep(i, 1, sz(b)) b[i] = a[i - 1] * b[i]; // mod p
                                                                                                                                   int n = sz(x):
                                                             280
224
                                                                     //rep(i.1.sz(b)) b\lceil i\rceil = a\lceil i-1\rceil * inv(num(i)) : // else
                                                                                                                                   assert(n):
       return r:
                                                             281
                                                                     return b:
                                                                                                                                   vector<polv> up(n * 2):
226
                                                             282
                                                                                                                           339
     poly operator*(const poly& a, const poly& b) {
                                                                                                                                   rep(i, 0, n) up[i + n] = poly({0 - x[i], 1});
227
                                                             283
                                                                                                                           340
       return multiply(a, b):
                                                                   poly log(const poly& a) { // MUST have a[0] == 1
                                                                                                                                   per(i, 1, n) up[i] = up[2 * i] * up[2 * i + 1];
                                                             284
228
                                                                     polv b = integ(deriv(a) * inverse(a));
                                                                                                                                   vector<num> a = eval(deriv(up[1]), x);
                                                             285
                                                                                                                           3/19
229
                                                                                                                                   vector<poly> down(2 * n);
     poly& operator *= (poly& a, const poly& b) { return a = 286
                                                                     b.resize(a.size());
                                                                                                                           343
230
                                                                     return b:
                                                                                                                                   rep(i, 0, n) down[i + n] = poly({y[i] * inv(a[i])});
      \leftrightarrow * b: }
                                                             287
                                                                                                                                   per(i, 1, n) down[i] =
                                                                                                                           345
231
                                                                   poly exp(const poly& a) { // MUST have a[0] == 0
                                                                                                                                     down[i * 2] * up[i * 2 + 1] + down[i * 2 + 1] * up[i
     poly& operator *= (poly& a, const num& b) { // Optional 289
232
                                                                                                                           346

→ * 2];

       trav(x, a) x = x * b;
                                                                     poly b(1, num(1));
       return a;
                                                                     if (a.empty()) return b;
                                                                                                                                   return down[1];
234
                                                             291
                                                                     while (sz(b) < sz(a)) {
235 }
                                                             292
```

32 33 **Data Structures** 34 35 Fenwick Tree 36 37 11 sum(int r) { ll ret = 0: for (; $r \ge 0$; r = (r & r + 1) - 1) ret += bit[r]; 40return ret: void add(int idx, ll delta) { for (: idx < n: idx |= idx + 1) bit[idx] += delta: 4447 Lazy Propagation SegTree 49 1 // Clear: clear() or build() 50 const int N = 2e5 + 10: // Change the constant! template<typename T> struct LazySegTree{ T t[4 * N];T lazv[4 * N];int n: // Change these functions, default return, and lazy T default return = 0, lazy mark = → numeric limits<T>::min(): // Lazy mark is how the algorithm will identify that $_{59}$ → no propagation is needed. function $\langle T(T, T) \rangle f = \lceil k \rceil (T a, T b)$ return a + b; // f on seg calculates the function f, knowing the → lazy value on segment, // segment's size and the previous value. // The default is segment modification for RSQ. For increments change to: // return cur seq val + seq size * lazy val; // For RMQ. Modification: return lazy val; □ Increments: return cur seq val + lazy val; function<T(T, int, T)> f_on_seg = [&] (T cur_seg_val_f1) int seg size, T lazy val){ return seg_size * lazy_val; 72 // upd lazy updates the value to be propagated to \hookrightarrow child seaments. // Default: modification. For increments change to: 76 $lazu[v] = (lazu[v] == lazu mark? val : lazu[v]_{77}$ function < void(int, T) > upd_lazy = [&] (int v, T val) {q lazv[v] = val: }; // Tip: for "get element on single index" queries, use → max() on segment: no overflows.

30

31

```
LazySegTree(int n ) : n(n ) {
   clear(n):
}
 void build(int v, int tl, int tr, vector<T>& a){
   if (t1 == tr) {
     t[v] = a[t1]:
     return;
                                                      92
   int tm = (tl + tr) / 2:
                                                      93
   // left child: [tl, tm]
   // right child: [tm + 1, tr]
   build(2 * v + 1, tl, tm, a):
   build(2 * v + 2, tm + 1, tr, a);
   t[v] = f(t[2 * v + 1], t[2 * v + 2]);
 LazvSegTree(vector<T>& a){
   build(a);
 }
 void push(int v, int tl, int tr){
                                                     103
   if (lazy[v] == lazy_mark) return;
   int tm = (tl + tr) / 2;
   t[2 * v + 1] = f_{on_seg}(t[2 * v + 1], tm - tl + 1_{106})
   t[2 * v + 2] = f_{on_seg}(t[2 * v + 2], tr - tm,
   upd lazy(2 * v + 1, lazy[v]), upd lazy(2 * v + 2,
→ lazy[v]);
   lazv[v] = lazv mark:
 void modifv(int v. int tl. int tr. int l. int r. T

  val){
   if (1 > r) return:
   if (t1 == 1 && tr == r){
     t[v] = f \text{ on } seg(t[v], tr - tl + 1, val);
     upd_lazy(v, val);
     return;
   push(v, tl, tr);
   int tm = (tl + tr) / 2;
   modify(2 * v + 1, tl, tm, l, min(r, tm), val);
                                                      11
   modify(2 * v + 2, tm + 1, tr, max(1, tm + 1), r,

    val):

   t[v] = f(t[2 * v + 1], t[2 * v + 2]);
 T query(int v, int tl, int tr, int l, int r) {
                                                      17
   if (1 > r) return default return;
   if (t1 == 1 && tr == r) return t[v];
   push(v, tl, tr);
   int tm = (tl + tr) / 2;
   return f(
     query(2 * v + 1, tl, tm, l, min(r, tm)),
     query(2 * v + 2, tm + 1, tr, max(1, tm + 1), r)
```

```
);
  void modify(int 1, int r, T val){
   modify(0, 0, n - 1, 1, r, val);
  T query(int 1, int r){
   return query(0, 0, n - 1, 1, r);
 T get(int pos){
   return query(pos, pos);
 // Change clear() function to t.clear() if using

    unordered map for SegTree!!!

 void clear(int n ){
   n = n :
   for (int i = 0; i < 4 * n; i++) t[i] = 0, lazy[i] =
  void build(vector<T>& a){
   n = sz(a);
   clear(n):
   build(0, 0, n - 1, a):
Sparse Table
const int N = 2e5 + 10, LOG = 20; // Change the
// Change this function
```

```
template<typename T>
struct SparseTable{
int lg[N]:
T st[N][LOG]:
int n:
function\langle T(T, T) \rangle f = [\&] (T a, T b){
 return min(a, b):
void build(vector<T>& a){
 n = sz(a);
  for (int i = 2; i \le n; i++) lg[i] = lg[i / 2] + 1;
  for (int k = 0; k < LOG; k++){
    for (int i = 0; i < n; i++){
      if (!k) st[i][k] = a[i];
      else st[i][k] = f(st[i][k-1], st[min(n-1, i+
\rightarrow (1 << (k - 1)))][k - 1]):
 }
```

```
44
                                                              45
25
    T querv(int 1, int r){
                                                              46
      int sz = r - 1 + 1;
27
                                                              47
      return f(st[l][lg[sz]], st[r - (1 << lg[sz]) +
                                                              48

    1][lg[sz]]);

                                                             50
29
    };
                                                             51
                                                              52
    Suffix Array and LCP array
                                                              53
                                                              54
        • (uses SparseTable above)
                                                              55
                                                              56
    struct SuffixArray{
                                                              57
       vector<int> p, c, h;
       SparseTable<int> st;
       In the end, array c gives the position of each suffix
       using 1-based indexation!
                                                             62
                                                              63
                                                              64
       SuffixArray() {}
                                                              65
10
       SuffixArray(string s){
11
                                                              67
        buildArrav(s):
12
                                                              68
         buildLCP(s);
13
                                                              69
         buildSparse();
14
                                                              70
15
                                                             71
16
                                                              72
       void buildArray(string s){
17
                                                             73
         int n = sz(s) + 1:
18
                                                             74
         p.resize(n), c.resize(n);
19
                                                             75
         for (int i = 0; i < n; i++) p[i] = i;
20
                                                             76
         sort(all(p), [&] (int a, int b){return s[a] <</pre>
21
     \hookrightarrow s[b];});
         c[p[0]] = 0;
22
         for (int i = 1; i < n; i++){
23
           c[p[i]] = c[p[i-1]] + (s[p[i]] != s[p[i-1]]);
24
25
         vector<int> p2(n), c2(n);
26
         // w is half-length of each string.
27
         for (int w = 1; w < n; w <<= 1){
28
           for (int i = 0: i < n: i++){
             p2[i] = (p[i] - w + n) \% n;
31
           vector<int> cnt(n);
           for (auto i : c) cnt[i]++;
           for (int i = 1; i < n; i++) cnt[i] += cnt[i - 1]; 1
34
           for (int i = n - 1; i >= 0; i--){
             p[--cnt[c[p2[i]]]] = p2[i];
37
           c2[p[0]] = 0;
           for (int i = 1; i < n; i++){
39
             c2[p[i]] = c2[p[i - 1]] +
             (c[p[i]] != c[p[i - 1]] ||
41
             c[(p[i] + w) \% n] != c[(p[i - 1] + w) \% n]);
42
```

```
c.swap(c2);
                                                       11
                                                       12
   p.erase(p.begin());
                                                       13
                                                       14
                                                       15
  void buildLCP(string s){
    // The algorithm assumes that suffix array is
                                                       17

→ already built on the same string.

                                                       18
    int n = sz(s);
   h.resize(n - 1);
    int k = 0:
    for (int i = 0; i < n; i++){
     if (c[i] == n){
       k = 0:
        continue;
      int j = p[c[i]];
      while (i + k < n \&\& j + k < n \&\& s[i + k] == s[j_2 *]
 h[c[i] - 1] = k;
      if (k) k--;
    Then an RMQ Sparse Table can be built on array h
    to calculate LCP of 2 non-consecutive suffixes.
                                                       36
 }
                                                      37
  void buildSparse(){
   st.build(h);
  // l and r must be in O-BASED INDEXATION
  int lcp(int 1, int r){
                                                       43
   1 = c[1] - 1, r = c[r] - 1:
                                                       44
   if (1 > r) swap(1, r);
    return st.query(1, r - 1);
                                                       47
Aho Corasick Trie
   • For each node in the trie, the suffix link points to
      the longest proper suffix of the represented string.
      The terminal-link tree has square-root height (can
     be constructed by DFS).
                                                       58
const int S = 26;
                                                       60
// Function converting char to int.
                                                       61
int ctoi(char c){
                                                       62
 return c - 'a';
                                                       63
// To add terminal links, use DFS
struct Node{
 vector<int> nxt:
```

```
int link;
  bool terminal;
  Node() {
   nxt.assign(S, -1), link = 0, terminal = 0;
};
vector<Node> trie(1);
// add string returns the terminal vertex.
int add_string(string& s){
 int v = 0:
  for (auto c : s){
    int cur = ctoi(c);
   if (trie[v].nxt[cur] == -1){
      trie[v].nxt[cur] = sz(trie);
      trie.emplace back();
    v = trie[v].nxt[cur];
  trie[v].terminal = 1;
  return v;
Suffix links are compressed.
This means that:
 If vertex v has a child by letter x, then:
    trie[v].nxt[x] points to that child.
  If vertex v doesn't have such child, then:
    trie[v].nxt[x] points to the suffix link of that
    if we would actually have it.
void add links(){
  queue<int> q;
  q.push(0);
  while (!q.empty()){
   auto v = q.front();
   int u = trie[v].link;
    q.pop();
    for (int i = 0: i < S: i++){
      int& ch = trie[v].nxt[i];
      if (ch == -1){
        ch = v? trie[u].nxt[i] : 0;
        trie[ch].link = v? trie[u].nxt[i] : 0;
        q.push(ch);
bool is_terminal(int v){
 return trie[v].terminal;
```

Convex Hull Trick

- Allows to insert a linear function to the hull in (1) and get the minimum/maximum value of the stored function at a point in O(log n).
- NOTE: The lines must be added in the order of decreasing/increasing gradients. CAREFULLY CHECK THE SETUP BEFORE USING!
- IMPORTANT: THE DEFAULT VERSION SURELY WORKS. IF MODIFIED VERSIONS DON'T WORK, TRY TRANSFORMING THEM TO THE DEFAULT ONE BY CHANGING SIGNS.

```
12
     struct line{
                                                                13
      ll k, b;
                                                                14
      11 f(11 x){
                                                                15
         return k * x + b:
                                                                16
      };
                                                                17
    };
                                                                18
                                                                19
     vector<line> hull:
                                                               20
                                                               21
     void add line(line nl){
10
      if (!hull.empty() && hull.back().k == nl.k){
                                                               22
         nl.b = min(nl.b, hull.back().b); // Default:
                                                               23
     → minimum. For maximum change "min" to "max".
         hull.pop_back();
                                                               25
14
       while (sz(hull) > 1){
                                                               26
         auto& 11 = hull.end()[-2], 12 = hull.back():
         if ((nl.b - l1.b) * (l2.k - nl.k) >= (nl.b - l2.b) 2*
17

    (11.k - nl.k)) hull.pop_back(); // Default:
     \leftrightarrow decreasing gradient k. For increasing k change the 30
     \hookrightarrow sign to <=.
         else break;
19
20
      hull.pb(nl);
                                                               31
    }
21
                                                                32
                                                               33
22
    11 get(11 x){
                                                                34
      int 1 = 0, r = sz(hull);
24
                                                                35
       while (r - 1 > 1){
25
                                                                36
         int mid = (1 + r) / 2:
```

Li-Chao Segment Tree

• allows to add linear functions in any order and query minimum/maximum value of those at a point, all in O(log n).

```
• Clear: clear()
                                                         48
                                                         49
const 11 INF = 1e18; // Change the constant!
                                                         50
struct LiChaoTree{
  struct line{
    11 k, b;
    line(){
      k = b = 0;
    line(ll k_, ll b_){
      k = k_{,} b = b_{;}
    }:
    11 f(11 x){
      return k * x + b;
   }:
                                                         57
 };
  int n:
  bool minimum, on points:
  vector<11> pts;
                                                         61
  vector<line> t:
                                                         62
  void clear(){
    for (auto \& 1 : t) 1.k = 0, 1.b = minimum? INF :
 }
  LiChaoTree(int n , bool min ){ // This is a default
 \hookrightarrow constructor for numbers in range [0, n - 1].
    n = n , minimum = min , on points = false;
    t.resize(4 * n):
    clear():
 };
 LiChaoTree(vector<11> pts , bool min ){ // This
 ⇔ constructor will build LCT on the set of points you 2
 ⇒ pass. The points may be in any order and contain
\rightarrow duplicates.
    pts = pts_, minimum = min_;
    sort(all(pts));
    pts.erase(unique(all(pts)), pts.end());
    on points = true:
    n = sz(pts);
    t.resize(4 * n):
                                                         10
    clear():
                                                         11
```

```
void add line(int v. int l. int r. line nl){
   // Adding on segment [l, r)
   int m = (1 + r) / 2;
   11 lval = on_points? pts[1] : 1, mval = on_points?
\rightarrow pts[m] : m;
   if ((minimum && nl.f(mval) < t[v].f(mval)) ||
\leftrightarrow (!minimum && nl.f(mval) > t[v].f(mval))) swap(t[v],
   if (r - 1 == 1) return:
   if ((minimum && nl.f(lval) < t[v].f(lval)) ||
\leftrightarrow (!minimum && nl.f(lval) > t[v].f(lval))) add line(2
\leftrightarrow * v + 1. l. m. nl):
   else add line(2 * v + 2, m, r, nl);
 11 get(int v, int l, int r, int x){
   int m = (1 + r) / 2:
   if (r - l == 1) return t[v].f(on points? pts[x] :
if (minimum) return min(t[v].f(on points? pts[x] :
\Rightarrow x), x < m? get(2 * v + 1, 1, m, x) : get(2 * v + 2,
\rightarrow m, r, x));
      else return max(t[v].f(on_points? pts[x] : x), x <</pre>
\rightarrow m? get(2 * v + 1, 1, m, x) : get(2 * v + 2, m, r,
\leftrightarrow x));
   }
 }
 void add line(ll k. ll b){
   add line(0, 0, n, line(k, b));
 11 get(11 x){
   return get(0, 0, n, on_points? lower_bound(all(pts),

    x) - pts.begin() : x);
}; // Always pass the actual value of x, even if LCT
⇒ is on points.
```

Persistent Segment Tree

• for RSQ

```
struct Node {
    ll val;
    Node *l, *r;

    Node(ll x) : val(x), l(nullptr), r(nullptr) {}
    Node(Node *ll, Node *rr) {
        l = ll, r = rr;
        val = 0;
        if (l) val += l->val;
        if (r) val += r->val;
}
```

```
Node(Node *cp) : val(cp->val), 1(cp->1), r(cp->r) {}
    };
13
     const int N = 2e5 + 20:
    ll a[N];
    Node *roots[N];
    int n, cnt = 1;
    Node *build(int l = 1, int r = n) {
         if (1 == r) return new Node(a[1]);
19
         int mid = (1 + r) / 2;
         return new Node(build(1, mid), build(mid + 1, r));
21
22
    Node *update(Node *node, int val, int pos, int l = 1,
     \rightarrow int r = n) {
         if (1 == r) return new Node(val);
         int mid = (1 + r) / 2;
         if (pos > mid)
             return new Node(node->1, update(node->r, val,
     \rightarrow pos, mid + 1, r));
         else return new Node(update(node->1, val, pos, 1,
        mid), node->r);
    ll query(Node *node, int a, int b, int l = 1, int r = n)
         if (1 > b \mid \mid r < a) return 0;
         if (1 \ge a \&\& r \le b) return node->val;
         int mid = (1 + r) / 2;
         return query(node->1, a, b, 1, mid) + query(node->r,
     \rightarrow a, b, mid + 1, r);
    }
```

Miscellaneous

Ordered Set

```
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;
typedef tree<int, null_type, less<int>, rb_tree_tag,
tree_order_statistics_node_update> ordered_set;
```

Measuring Execution Time

Setting Fixed D.P. Precision

```
cout << setprecision(d) << fixed;
// Each number is rounded to d digits after the decimal
point, and truncated.</pre>
```

Common Bugs and General Advice

- Check overflow, array bounds
- Check variable overloading
- Check special cases (n=1?)
- Do something instead of nothing, stay organized
- Write stuff down!
- Don't get stuck on one approach!