Q1: You have been asked to design a Butterworth filter with the following specifications:

$$G_{p,dB} = -3$$
; $\omega_p = 20$; $G_{s,dB} = -25$; $\omega_s = 50$.

Part 1:

Find *n*, the order of the filter. If needed, you should round up the value of *n* to the nearest higher integer.

Part 2:

Find the filter cut-off frequency, ω_c . Use both equations for cut-off frequency (given in the hints) and report both ω_c .

Part 3:

For the *n*-value you obtained in **Part 1**, find s_k values.

Part 4:

Find the *normalized* transfer function, $H_n(s)$.

Part 5:

Use the ω_c you obtained in **Part 2** that matches the passband specifications exactly, and find the *final* transfer function, H(s).

Part 6:

Use MATLAB and graph the frequency response of the filter, i.e., |H(s)|, for **both** ω_c you obtained in **Part 2**.

Part 7:

Using the frequency response graphs obtained in **Part 6**, explain the difference between the two designs (i.e., between the two ω_c) from a practical design perspective.

Use the following hints and concepts:

A Butterworth Filter Is A Low-Pass Filter With Amplitude Response Of

$$|H(j\omega)| = rac{1}{\sqrt{1+\left(rac{\omega}{\omega_c}
ight)^{2n}}},$$

where ω_c is the filter cutoff frequency and n is the filter order.

 The Transfer Function of the Normalized Butterworth Filter As

$$H_n(s) = \frac{1}{(s-s_1)(s-s_2)\cdots(s-s_n)}$$

$$= \frac{1}{s^n + a_{n-1}s_{n-1} + \cdots + a_1s + 1}$$

$$= \frac{1}{B_n(s)}$$

where $B_n(s)$ is the *n*th Order Butterworth Polynomial

$$s_k = e^{\frac{j\pi}{2n}(2k+n-1)}$$
 for $k = 1, \dots, n$.

- When Specifying a Low-Pass Filter, Typically Specify 4 Different Numbers
- Passband
 - lacksquare Passband Gain G_p At Passband Frequency ω_p
- Stopband
 - Stopband Gain G_s At Stopband Frequency ω_s

Filter Order Equation

$$n = \frac{\log_{10} \left[\left(10^{-G_{s,dB}/10} - 1 \right) / \left(10^{-G_{p,dB}/10} - 1 \right) \right]}{2 \log_{10} (\omega_s / \omega_p)}$$

Filter Cutoff Equation

$$\omega_c = \frac{\omega_p}{\left(10^{-G_{p,dB}/10} - 1\right)^{1/2n}}$$

$$\omega_c = rac{\omega_s}{\left(10^{-G_{s,dB}/10} - 1
ight)^{1/2n}}$$

- \blacksquare We Obtain the Final Transfer Function By Replacing s in $H_n(s)$ With s/ω_c
- The Normalized Amplitude Response Is

$$|H_n(j\omega)|=\frac{1}{\sqrt{1+\omega^{2n}}}.$$

Q2: You have been tasked with investigating the design of a digital second-order lowpass Butterworth filter with a cut-off frequency of 3.4 kHz at a sampling frequency of 8000 Hz.

Part 1:

Use bilinear transformation and compute H(z), the final transfer function.

Part 2:

Draw Direct form II structure of this filter.

Part 3:

Plot frequency response of the filter (both magnitude and phase plot) using MATLAB. Use Normalized Frequency ($\times \pi$ rad/sample) as the x-axis.