- 一、填空题(每空3分,共18分)
- 1. 已知 4 阶行列式的第 1 行元素以此为 1, 2, 2, -1; 第 4 行元素的余子式依次为 8, k, -6, 10; 则 k = ().
- 2. 设 $\alpha = (1, 2, 1)^{\mathrm{T}}$, $\beta = (1, 0, 1)$, $A = \alpha \beta$, 则 $A^3 = ($).

$$\left| \left(\frac{1}{2} \mathbf{A} \right)^* - \mathbf{I} \right| = ().$$

- 4. 设 A 为 n 阶矩阵,且 $3A^2 + 2A 10I = 0$,则 $(A 2I)^{-1} = ($).
- 5. 四元线性方程组 Ax = b, r(A) = r(A, b) = 3, α_1 , α_2 , α_3 为 Ax = b 的 3 个解, $\alpha_1 = (4, -1, 0, 3)^T, \ \alpha_2 + 2\alpha_3 = (3, 0, -3, 6)^T, \ \text{则 } Ax = b \text{ 的全部解为(} \ \).$
- 二、选择题(共 6 题, 每题 3 分, 共 18 分)
- 1. 向量组 $\alpha_1, \alpha_2, \cdots, \alpha_m$ (m > 2) 线性相关的充要条件是().
 - A. $\alpha_1, \alpha_2, \cdots, \alpha_m$ 中至少有两个向量成正比;
 - B. $\alpha_1, \alpha_2, \cdots, \alpha_m$ 中至少有一个零向量;
 - C. $\alpha_1, \alpha_2, \cdots, \alpha_m$ 中至少有一个向量可由其余向量线性表示;
 - D. $\alpha_1, \alpha_2, \cdots, \alpha_m$ 的任一部分向量组线性相关.
- 2. 设 P,Q 均为 n 阶可逆矩阵,A 是 n 阶矩阵,且 PAQ = E,则 A^{-1} = ().
 - A. PQ B. $P^{-1}Q^{-1}$ C. QP D. $Q^{-1}P^{-1}$
- 3. 对于非齐次线性方程组 Ax = b 和对应的齐次线性方程组 Ax = 0,下列结论正确的是().
 - A. 若 Ax = 0 只有零解,则 Ax = b 有唯一解;
 - B. 若 Ax = 0 有非零解,则 Ax = b 有无穷多解;
 - C. 若 Ax = b 有无穷多解,则 Ax = 0 只有零解;
 - D. 若 Ax = b 有无穷多解,则 Ax = 0 有非零解.

$$4. n 阶矩阵 A = \begin{pmatrix} 1 & a & a & \cdots & a \\ a & 1 & a & \cdots & a \\ a & a & 1 & \cdots & a \\ \vdots & \vdots & \vdots & & \vdots \\ a & a & a & \cdots & 1 \end{pmatrix} 的秩为 n - 1, 且 n \ge 3, 则 a = ().$$

- A. 1 B. $\frac{1}{1-n}$ C. -1 D. $\frac{1}{n-1}$
- 5. 设 A 是 3 阶矩阵,将 A 的第 2 列加到第 1 列得矩阵 B,再交换 B 的第 2 行与

第 3 行得单位矩阵
$$I$$
,记 $P_1 = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, $P_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$,则 $A = ()$.

- A. P_1P_2 B. $P_1^{-1}P_2$ C. P_2P_1 D. $P_2P_1^{-1}$
- 6. 设矩阵 $A = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$,矩阵 B 满足 $E + 2BA^* = ABA^*$, E 是 3 阶单位矩阵,则 |B| = ().
 - A. $\frac{1}{9}$ B. 9 C. $\frac{1}{3}$ D. 3
- 三、计算题(每题8分,共24分)

1. 计算行列式
$$D = \begin{vmatrix} a_1 & 1 & 1 & \cdots & 1 \\ 1 & a_2 & 0 & \cdots & 0 \\ 1 & 0 & a_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & 0 & \cdots & a_n \end{vmatrix}$$
 的值,其中 a_1 , a_2 , \cdots , a_n 均不为 0 .

2. 设
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 3 & -1 & 1 \\ 2 & 1 & 8 \end{pmatrix}$$
, $B = \begin{pmatrix} 2 & 1 \\ -1 & 3 \\ 9 & 1 \end{pmatrix}$ 满足方程 $AX = B$,求矩阵 X .

3. 设 α_1 , α_2 , α_3 是 R^3 的一组基,求基 α_1 , $\frac{1}{2}\alpha_2$, $\frac{1}{3}\alpha_3$ 到基 $\alpha_1 + \alpha_2$, $\alpha_2 + \alpha_3$, $\alpha_3 + \alpha_1$ 的过渡矩阵.

四、证明题(共 1 题, 共 12 分)

设 A, B 均为 n 阶非零矩阵, 且满足 $A^2 + A = 0$, $B^2 + B = 0$; 证明:

- (1)-1 是 A, B 的特征值;
- (2) 若 AB = BA = 0, ξ_1 和 ξ_2 分别是 A, B 的属于特征值 -1 的特征向量,则 ξ_1 , ξ_2 线性无关.

五、解方程组(14分)

讨论
$$p,q$$
 取何值时,方程组
$$\begin{cases} x_1 & +x_2+x_3+x_4+x_5=1\\ 3x_1+2x_2+x_3+x_4-3x_5=p\\ x_2+2x_3+2x_4+6x_5=3\\ 5x_1+4x_2+3x_3+3x_4-x_5=q \end{cases}$$

有解、无解;有解时求解.

六、二次型(14分)

设二次型 $f(x_1,x_2,x_3) = ax_1^2 + 2x_2^2 - 2x_3^2 + 2bx_1x_3$,且 b > 0;二次型对应矩阵的特征值之和为 1,特征值的乘积为 -12;

- (1) 求 a, b 的值;
- (2)用正交变换化二次型为标准形,写出所用的正交变换和对应的正交矩阵.