Geradlinig, gleichförmige Bewegung

Freitag, 6. September 2024 14:44

Definition:

- Eine Bewegung mit konstanter Geschwindigkeit und gleichbleibender Richtung
- Es wirken keine Kräfte

Standardeinheiten:

- v = m/s
- t = s
- s = m
- m = kg

Zeit-Weg-Diagramm (Graph):

- Aussehen:
 - Gerade/ lineare Funktion
- Zeit-Weg-Gesetz: s(t) = v*t + s(0)
- Die Steigung m entspricht der Geschwindigkeit v:
 - V = Δs / Δt
 - v = Differenz aus s / Differenz aus t
 - Für s(0) = t:
 - v = s/t
 - Für s(0) /= 0 ist v = s/t **nicht möglich**
 - Grund: Bei einer Startzeit 0 wurde schon ein Weg zurückgelegt

Zeit-Geschwindigkeit-Diagramm (Graph):

- Aussehen:
 - Parallele zur t-Achse
- Zeit-Geschwindigkeit-Gesetz: v(t) = v(0)

Zeit - Beschleunigung - Diagramm:

- Aussehen:
 - Identisch zur t-Achse
- Zeit-Beschleunigung-Gesetz: a(t) = 0

geradlinig, gleichmäßig-beschleunigte Bewegung

Freitag, 4. Oktober 2024 13:

Definition - Beschleunigung:

- Anschaulich:
 - o 1m/s^2 ist die Zunahme der Geschwindigkeit um 1m/s pro s
- Formel: $a = a[strich] = \Delta v / \Delta t$
- Durchschnittsbeschleunigung:
 - o durchschnittliche Beschleunigung der gesamten Bewegung
 - Formelzeichen: a[strich]

Standard - Einheit:

- $\mathbf{a} = \Delta \mathbf{v} / \Delta \mathbf{t} => \text{bsp. m/s / s} = \mathbf{m/s^2}$

Definition geradlinig, gleichmäßig beschleunigte Bewegung:

- Bewegung mit konstanter "momentanen" Beschleunigung a bei gleichbleibender Bewegungsrichtung
- Es gilt:
 - \circ a = a [strich] = $\Delta v / \Delta t$ = konst.

Zeit- Geschwindigkeit-Diagramm:

- Zeit Geschwindigkeit Gesetz: v(t) = a * t + v(0)
- Aussehen:
 - o Linienform: Gerade
 - Steigung: a

Zeit-Beschleunigung-Diagramm:

- Zeit Beschleunigungs-Gesetz: a(t) = a(0)
- Aussehen:
 - Gerade parallel zur t-Achse

Zeit-Weg-Diagramm:

- Aussehen:
 - Parabel
- Zeit Weg Gesetz: s(t) = 1/2 * a *t^2
- Herleitung:
 - Aus einer experimentellen s t Tabelle lässt sich eine **Parabel** im Diagramm darstellen
 - Durch Ableitungsmethoden oder Linearisierung entsteht die quadratischen Funktion:
 - s(t) = k * t^2
 - □ s(t): Weg
 - □ t: Zeit
 - ☐ K = unbekannter Streck- und Strauchfaktor
 - o Berechnung k:
 - 1. Äquivalenzumformung:
 - Es lässt sich feststellen:
 - \Box k = 1/2 * a

Freitag, 8. November 2024

Definition:

- Fallbewegung ohne Luftwiderstand/ im luftfreien Raum
- Ohne Luftwiderstand, ist der freie Fall, unabhängig von der Masse, immer gleich schnell für alle Objekte
- gleichmäßig-beschleunigte Bewegung
- -> In einer Umgebung mit Luftwiderstand, muss die Differenz im Luftwiderstand 0 sein, damit die Fallbewegung gleich schnell ist

Bewegung - luftfreier Raum:

- Beschleunigende Kraft F_{Besch} = Gewichtskraft F_a

$$F_{Busch} = F_g$$

$$\rightarrow F_{Busch} = m = q$$

$$\rightarrow F_g = q m$$

$$= > mg = m = q > m$$

$$g = q$$

- \circ g= 9,81 N/kg = 9,81m/s² = a = Erdbeschleunigung
- Freier Fall = Gleichmäßig Beschleunigte Bewegung mit der konstanten Ortsbeschleunigung:
 - \circ g(Erde) = 9,81 m/s²
 - o g(Mond) = 1,62 m/s^2
- die Geschwindigkeit nimmt solange zu, bis Lichtgeschwindigkeit erreicht ist
 - Mit Luftwiderstand erreicht der Körper eine deutlich niedrigere Endgeschwindigkeit

Formel - Strecke - Geschwindigkeit - Beschleunigung:

- a = g
 - > Ortfaktor g gilt für alle Körper gleich
 - Alle Körper fallen ohne Luftwiderstand gleich schnell
- s(t) = 1/2 * g * t
- V = g * t
- $g = \Delta v / \Delta t$

1. Newton'sche Gesetz

Dienstag, 17. Dezember 2024 17

Trägheitsgesetzt:

- 1. Ein Körper in Bewegung wird weder beschleunigt noch abgebremst, wenn keine Kräfte auf ihn wirken
 - Dieser bewegt sich geradlinig, bei gleichbleibender Geschwindigkeit
- 2. Ein Körper in Ruhe behält seinen Ruhezustand bei, wenn keine Kräfte auf ihn wirken

Trägheit

Dienstag, 11. Februar 2025 10:06

Definition:

- > Die Eigenschaft, den Bewegungszustand nicht zu ändern
 - Alle Körper sind träge

Maß für Trägheit bei Beschleunigungen:

- Masse des zu beschleunigten Objekts
 - m= Trägheit

Bei der Überwindung der Trägheit muss eine Trägheitwiderstand/ Trägheitskraft überwunden werden

> Weil der Körper eine Masse hat

Beschreibung - Trägheit in Versuchen

Freitag, 25. April 2025 12:20

1. Beobachtung:

> Beschreibung Verhalten von Objekten

2. Erklärung für Objekt 1:

- > "{Objekt 1} ist in {Bewegungszustand} und ist träge."
- > "Da fast keine Kraft auf ihn wirkt, behält er seinen Bewegungszustand bei und bleibt anhähernd in {Bewegungszustand}

2.1. Erklärung für Objekt 2:

> {Objekt 2} erfährt eine Kraft {Richtung} der Bewegungsrichtung. Es wird daher {Reaktion des Objekts}.

2. Newton'sche Gesetz

Dienstag, 11. Februar 2025 10:16

Formel:

- F = m * a = m * v/t
- \rightarrow (F) = kg * m/s^2 = 1 N
- ⇒ F: beschleunigende Kraft in Newton (N)
- \Rightarrow m: Masse in Kg
- ⇒ a: Beschleunigung in m/s²
- ➤ Eine negative Kraft:
 - o Kraft in entgegengesetzte Richtung

3. Newton'sche Gesetz

Dienstag, 11. Februar 2025 10:15

Wechselwirkungsprinzip/ 3. Newton'sche Gesetz:

- 1. Wenn zwei Körper miteinander wechselwirken, treten immer 2 Kräfte auf
 - Aktion -> Reaktion
- 2. Diese beiden Kräfte sind immer entgegengesetzt gerichtet
- 3. Beide Kräfte sind gleich groß

Definition: Beschleunigung/Bremsung

Dienstag, 4. Februar 2025 12:30

Beschleunigung:

- ➤ Ein Körper beschleunigt wenn...
 - Eine Kraft in die Bewegungsrichtung des Körpers, auf den Körper wirkt

Bremsung:

- > Ein Körper bremst ab wenn
 - Eine Kraft entgegen der Bewegungsrichtung, auf den Körper wirkt

Scheinbeschleunigung:

- > Eine Beschleunigung,
 - bei dem die Definition nicht zutrifft
 - die nur durch Änderung des Bezugspunktes wahrgenommen werden kann

Unabhängigkeitsprinzip

Freitag, 7. März 2025 15:19

Regel:

- ➤ Eine Bewegung im 2D-Raum setzt sich aus maximal zwei **unabhängige lineare** Teilbewegungen zusammen
 - o "unabhängig":
 - Teilbewegungen der Bewegung im 2D-Raum haben keinen Einfluss aufeinander
- ➤ Wiederum: Bewegungen im 2D Raum können in zwei unabhängige lineare Teilbewegungen aufgeteilt werden

Waagerechter Wurf

Samstag, 8. März 2025 05:5

Definition:

- > Überlagerung zweier Teilbewegungen:
 - ➤ Horizontale, gleichförmige Bewegung
 - > Senkrechter Freier Fall
- > Resultierende Bahnkurve ist eine Parabel "Wurfparabel"

Waagerechter Wurf - mathematische Beschreibung

Freitag, 14. März 2025

Zugeordnete Größen:

> Strecke -> Strecke

1. Teilbewegung: horizontale; gleichförmige Bewegung

$$|\overrightarrow{s_x(t)}| = s_x(t) = v_0 * t$$

- Betrag von 1. Ortsvektor
 - ☐ Betrag, weil es soll nicht mit Richtungspfeile gerechnet werden
 - □ Mehr: Ortsvektoren

$$\triangleright |\overrightarrow{v_x(t)}| = v_x(t) = v_0$$

- Geschwindigkeitsvektoren
- 2. Teilbewegung: freier Fall

$$\triangleright \quad \left| \overrightarrow{s_y(t)} \right| = s_y(t) = \frac{1}{2} * g * t^2$$

- $-\frac{1}{2}$ weil $s_y(t)$ = 0 ist beim Koordinatenursprung
- Betrag von 2. Ortsfaktor

$$\triangleright \left| \overrightarrow{v_y(t)} \right| = v_y(t) = g * t$$

- 3. Löse Teilbewegung 1. nach t und Einsetzen in $s_v(t)$:
 - > Funktion für Wurfparabel:

$$s_y(s_x) = -\frac{g}{2 * v_0^2} * s_x^2$$

Resultierender Ortsvektor:

> Satz des Pythagoras:

$$\Rightarrow \left| \overrightarrow{s(t)} \right|^2 = \left| \overrightarrow{s_x(t)} \right|^2 + \left| \overrightarrow{s_y(t)} \right|^2$$

$$\bullet \quad s(t)^2 = s_x(t)^2 + s_y(t)^2$$

$$s(t)^2 = s_x(t)^2 + s_y(t)^2$$

- > /= den zurückgelegten Weg des waagerechten Wurfes
 - Deshalb "Abstandsvektor"; nicht "Wegvektor"

Resultierender Geschwindigkeitsvektor:

> Satz des Pythagoras

$$> v(t)^2 = v_y(t)^2 + v_x(t)^2$$

- > verläuft tagential zur Bahnkurve
 - > $tan^{-1}(m) = tan^{-1}(\frac{v_y(t)}{v_x(t)}) = \alpha$ Steigungswinkel zur x-Achse= Aufprallswinkel

Ortsvektoren

Freitag, 14. März 2025 15:55

Im 2D-Raum:

- Eine Bewegung lässt sich in zwei Ortsvektoren aufteilen
 - o Definition Ortsvektor:
 - Vektor von festen Bezugspunkt zum Punkt P
 - > Zu jeden Zeitpunkt t hat die Bewegung:
 - 1. Ortsvektor in Richtung x : $\xrightarrow{S_X(t)}$
 - 2. Ortsvektor in Richtung y: $\overrightarrow{s_{y}(t)}$
 - > Unterschiedlich für jeden Zeitpunkt
 - > Der Bezugspunkt ist stets der Ausgangspunkt; hier: Koordinatenursprung
- \triangleright Durch Vektoraddition von 1. Ortsvektor und 2. Ortsvektor erhält man den resultierenden Ortsfaktor "Abstandsvektor": $\underset{s(t)}{\longrightarrow}$

Geschwindigkeitsvektoren

Freitag, 28. März 2025

14:50

Definition - Geschwindigkeitsvektor:

- > Vektor mit Bezugspunkt zum momentanen Ort des Körpers
 - o Grund: Geschwindigkeit ist nicht abhängig vom Urpsrung des Körpers; ist momentan

Im 2D-Raum:

- > Eine Bewegung lässt sich in zwei Geschwindigkeitsvektoren aufteilen
 - $\circ v_x(t)$ und $v_y(t)$
- ightharpoonup resultierender Geschwindigkeitsvektor ergibt sich aus der Vektorenaddition von $v_x(t)$ und $v_y(t)$
 - o gibt momentane Geschwindigkeits des Körpers an