Difference Between Logistic Regression and Naive Bayes (Simplified)		
1. Purpose:		
Both Logistic Regression and Naive Bayes are used for Classification tasks.		
2. How They Approach Probability:		
Logistic Regression:		
- Directly models the probability of a class given the features.		
- Uses the sigmoid function to produce probabilities.		
- Example: "What is the probability this email is spam?"		
Naive Bayes:		
- Uses Bayes Theorem to flip the problem.		
- Calculates how likely the features are given a class.		
- Example: "How likely are these words to appear in spam emails?"		
3. Feature Assumptions:		
Logistic Regression:		
- Assumes a linear relationship between features and the log-odds of the outcome.		
- Does NOT assume features are independent.		
Naive Bayes:		
- Assumes all features are independent of each other given the class (naive assumption).		
- Simplifies calculations but is often not true in reality.		
4. Model Type:		
Logistic Regression:		
- A discriminative model Focuses on finding the boundary between classes.		

5. Use Cases:		
Logistic Regression:		
- Works well when features interact or are correlated.		
- Often better with numerical data.		
Naive Bayes:		
- Works well for text data (e	g., spam detection, sentiment analysis).	
- Fast and performs well even with small datasets.		
Summary Table:		
Aspect Logistic I	Regression Naive Bayes	
Type Discrimin	ative Generative	
Probability Approach Mod	dels P(Class Features) Models P(Features Class)	
Feature Assumptions No	independence assumed Assumes feature independence	
Typical Data Numer	c, mixed Text, categorical	
Speed Slower to	train Very fast	

- A generative model Focuses on modeling how the data was generated.

Naive Bayes: