

Introduction to Machine Learning

The Perceptron

Perceptron

- Supervised learning algorithm
- Regression or classification
- Allows us to weight features

Biological inspiration

Perceptron neuron

Input to neuron

Impact of weights

$$a = \sum_{d=1}^{D} w_d x_d$$

Activation function

- If a > 0 then output 1 (positive example) $a = \sum_{d=1}^{\nu} w_d x_d$
- Else output -1 (negative example)
- Use non-zero threshold
 - If $a > \theta$ output 1, else output -1
 - Can accomplish the same thing through bias term

$$a = \sum_{d=1}^{D} w_d x_d + b$$

Class labels

- Binary classifier
- Classes are + and –
- Denote by y=+1 and y=-1
- Once activation is computed, output is sign of a

$$a = \sum_{d=1}^{D} w_d x_d + b$$

Training a Perceptron

- Intuition
 - If output -1 but should have output +1, need to increase weights
 - If output +1 but should have output -1, need to decrease weights

Algorithm 5 PerceptronTrain(D, MaxIter)

 $w_d \leftarrow o$, for all $d = 1 \dots D$

// initialize bias

// initialize weights

 $_{3:}$ for iter = 1 ... MaxIter do for all $(x,y) \in D$ do

 $b \leftarrow b + y$

12: **return** $w_0, w_1, ..., w_D, b$

1: $a \leftarrow \sum_{d=\tau}^{D} w_d \hat{x}_d + b$

2: return SIGN(a)

end if

end for

11: end for

10:

 $b \leftarrow 0$

 $a \leftarrow \sum_{d=1}^{D} w_d x_d + b$

if $ya \leq o$ then

Algorithm 6 PerceptronTest($w_0, w_1, \ldots, w_D, b, \hat{x}$)

 $w_d \leftarrow w_d + yx_d$, for all $d = 1 \dots D$

// compute activation for the test example

// update weights

// update bias

// compute activation for this example

Example: Logical AND

У	x1	x2
-1	0	0
-1	0	1
-1	1	0
+1	1	1

if
$$ya \le o$$
 then
$$w_d \leftarrow w_d + yx_d$$

$$b \leftarrow b + y$$