MLP Report

Name: Xiangyun Ding (丁相允)

Student ID: 2016011361

Overview

In the forward propagation, given input $\mathbf{x} = [x_1, x_2, \dots, x_n]$, the output of Softmax layer is $\mathbf{y} = [y_1, y_2, \dots, y_n]$, where we have:

$$y_i = \frac{e^{x_i}}{\sum_{i=1}^n e^{x_i}}$$

In the backward propagation, we've known $\frac{\partial E}{\partial y_i}$, and we want to calculate $\frac{\partial E}{\partial x_i}$. So we should use the chain rule:

$$\frac{\partial E}{\partial x_i} = \sum_{i=1}^n \frac{\partial E}{\partial y_i} \times \frac{\partial y_j}{\partial x_i}$$

If $j \neq i$, then we have:

$$\frac{\partial y_j}{\partial x_i} = \frac{\partial \frac{e^{x_j}}{\sum_{j=1}^n e^{x_j}}}{\partial x_i} = e^{x_i} \times -\frac{e^{x^j}}{(\sum_{j=1}^n e^{x_j})^2} = -y_i \times y_j$$

If j = i, then we have:

$$\frac{\partial y_j}{\partial x_i} = \frac{\partial \frac{e^{x_i}}{\sum_{j=1}^n e^{x_j}}}{\partial x_i} = \frac{(\sum_{j=1}^n e^{x_j}) \times e^{x_i} - e^{x_i} \times e^{x_i}}{(\sum_{j=1}^n e^{x_j})^2} = y_i \times (1 - y_i)$$

So we can simply use the result of $j \neq i$, then add y_i to the answer. Finally we have:

$$\frac{\partial E}{\partial x_i} = \sum_{j=1}^n \frac{\partial E}{\partial y_j} \times -y_i \times y_j + \frac{\partial E}{\partial y_i} \times y_i$$

This is the forward and backward propagation equation for Softmax layer.

Experiments

Basic Results:

ID	Network Structure	Loss Function	Learning Rate	Train Time(s)	Best Accuracy(%)
0	Linear(784×128)->Relu->Linear(128×10)->Softmax	EuclideanLoss	0.1	179	96.7
1	$\label{eq:linear} \begin{tabular}{ll} Linear(784 \times 128)->Sigmoid->Linear(\\ 128 \times 10)->Softmax \end{tabular}$	EuclideanLoss	0.1	431	95.1

ID	Network Structure	Loss Function	Learning Rate	Train Time(s)	Best Accuracy(%)
2	Linear(784×128)->Relu->Linear(128×10)->Softmax	CrossEntropyLoss	0.1	84.3	97.6
3	Linear(784×128)->Sigmoid->Linear(128×10)->Softmax	CrossEntropyLoss	0.1	326	97.4
4	$\label{eq:linear} $	EuclideanLoss	0.1	162	96.5
5	Linear(784×128)->Relu->Linear(128×128)->Relu->Linear(128×10)->Softmax	CrossEntropyLoss	0.1	101	98.1

Loss-Accuracy Figures:

ID Figure

ID Figure

ID Figure

For higher resolution images, please visit directory codes/images.