

### **Automatic Image Colorization**



Ahmed Nasrallah, Touseef Ali, Hitesh Kumar Team #8 EEE 511 Final Project















### **Outline**

- Introduction
  - Motivation
  - Problem Definition
- Background
  - Color spaces
    - From RGB to Lab
  - Methods
    - Parametric and Non-Parametric
- Model Architecture
- Evaluation
  - Results, Performance, and Discussion
- Limitations and Challenges
- Conclusions and Recommendations



### Introduction

#### **Challenge**

Specific objects can take on many different valid and "good" colors



Luminance, L





### "L-ab" Color space







### **Problem Description**



Grayscale image: L channel

$$\mathbf{X} \in \mathbb{R}^{H \times W \times 1}$$





Color information: ab channels

$$\hat{\mathbf{Y}} \in \mathbb{R}^{H \times W \times 2}$$





### **Loss Function**

- Learning a mapping function  $\mathcal{F}$  which predicts  $\hat{\mathbf{Y}}$
- Loss Function:

$$\mathbf{L}_{2}(\widehat{\mathbf{Y}}, \mathbf{Y}) = \frac{1}{2} \sum_{h,w} \|\mathbf{Y}_{h,w} - \widehat{\mathbf{Y}}_{h,w}\|_{2}^{2}$$
$$\widehat{\mathbf{Y}} \in \mathbb{R}^{H \times W \times 2}$$

$$\widehat{\mathbf{Y}} \in \mathbb{R}^{H \times W \times 2}$$



### Methods

# parametric

Parametric

Hertzmann et al. In SIGGRAPH, 2001. Welsh et al. In TOG, 2002. Irony et al. In Eurographics, 2005. Liu et al. In TOG, 2008. Chia et al. In ACM 2011.

Gupta et al. In ACM, 2012.

Input gray image

User input

Input background Internet backgrounds

Diverse variety of colorized results



Image colorization Candidate image selection

#### **Hand-engineered Features**

L2 Regression



Deshpande et al. Cheng et al. In ICCV 2015.

#### **Deep Networks**



Dahl. Jan 2016. lizuka et al. In SIGGRAPH, 2016.

Classification



Charpiat et al. In ECCV 2008.





### Framework/Model Summary



 $\underline{https://blog.floydhub.com/colorizing-b-w-photos-with-neural-networks/}$ 



### **Evaluation**





### **Results and Discussion**









Grayscale





**Ground Truth** 

Output Image

- Image Quality reduction
  - Down sampling
  - Dimensionality reduction
- Training set of Landscape images (924 images)



MSE loss during each epoch with 10% validation test set



Input

### Results and Discussion Cont.



Ground Truth

Output Image

- Image Quality reduction
  - Down sampling
  - Dimensionality reduction
- Training set of **Animal** images (539 images)



MSE loss during each epoch with 10% validation test set



### Results and Discussion Cont.













Input Ground Truth

Output Image

- Image Quality reduction
  - Down sampling
  - Dimensionality reduction
- Training set of **Faces** images (996 images)



MSE loss during each epoch with 10% validation test set



Input

### Results and Discussion Cont.



Ground Truth

Output Image

Training set of **All** images (2500 images)



MSE loss during each epoch with 10% validation test set



10% validation test set



### Limitations and Challenges

- The main limitation is the test set given
  - Larger and more diverse set → better feature extractor → better results in determining ab spaces
  - Model can learn "too" well (overfit) data set
    - Skin tone foreground color on background objects (e.g., sky, blue background)
- VGG16 pretrained on RGB images
- Two color channel (Lab) estimation lowers performance overhead but reduces vibrancy of output
- Longer training time does not necessary corresponds to better results
  - Accuracy drops under validation set
- Quality and performance
  - Inverse relationship trade-off



## Conclusions and Recommendations

- Image colorization using CNN with auto encoder
- Trained using Keras with TensorFlow backend
- Different test cases and conditions are evaluated
  - Animal
  - Faces
  - Landscapes
- Evaluation based on subjective user inspection and MSE and accuracy quantification
- Only maximum of 2500 images were used
  - Typically, need around 50K images for reasonable colorization
  - Model underperformed in some images given as input
  - More testing and training
  - Using custom encoder with training instead of VGG16 feature extractor



### Thank you

Questions and Suggestions!