Mathematical Induction

Shirley Chu

De La Salle University

Mar 11, 2020

Introduction

Mathematical induction

- proof technique
- proves that the formula P(n) is true for the specified set of numbers.

- **■** Basis Step
- Inductive Step

- **■** Basis Step
- Inductive Step

- Basis Step

 Prove that P(n) is true for the smallest/largest possible value of n.
- Inductive Step

- Basis Step

 Prove that P(n) is true for the smallest/largest possible value of n.
- Inductive Step

- Basis Step

 Prove that P(n) is true for the smallest/largest possible value of n.
- Inductive Step
 - 1 Assume that the given P(n) is true.

- Basis Step
 - Prove that P(n) is true for the smallest/largest possible value of n.
- Inductive Step
 - **1** Assume that the given P(n) is true.
 - 2 Prove that it is also true for the next value of n, i.e. n+1

Proof Template

```
by Mathematical Induction:
Basis Step: Show P(\_\_\_)

solution here

Inductive Step:
Assume P(n):

Show P(n+1):

solution here
```

Prove that $1+2+3+\cdots+n=rac{n^2+n}{2}$ for all $n\in\mathbb{Z}^+$

Prove that $1+2+3+\cdots+n=\frac{n^2+n}{2}$ for all $n\in\mathbb{Z}^+$ by Mathematical Induction: Basis Step: Show $P(\underline{\hspace{1cm}})$

Inductive Step:
Assume P(n):
Show P(n+1):

Prove that $1+2+3+\cdots+n=\frac{n^2+n}{2}$ for all $n\in\mathbb{Z}^+$ by Mathematical Induction: Basis Step: Show $P(\underline{\hspace{1cm}})$

Inductive Step:
Assume P(n):
Show P(n+1):

```
Prove that 1+2+3+\cdots+n=\frac{n^2+n}{2} for all n\in\mathbb{Z}^+ by Mathematical Induction:
Basis Step: Show P(\underline{\hspace{1cm}})
```

```
Inductive Step:
Assume P(n):
Show P(n+1):
```

```
Prove that 1+2+3+\cdots+n=\frac{n^2+n}{2} for all n\in\mathbb{Z}^+ by Mathematical Induction:
```

Basis Step: Show P(1)

```
Inductive Step:
Assume P(n):
Show P(n + 1):
```

```
Prove that 1+2+3+\cdots+n=\frac{n^2+n}{2} for all n\in\mathbb{Z}^+ by Mathematical Induction:
Basis Step: Show P(1)
```

Inductive Step:
Assume P(n):
Show P(n+1):

```
Prove that 1+2+3+\cdots+n=\frac{n^2+n}{2} for all n\in\mathbb{Z}^+ by Mathematical Induction: Basis Step: Show P(1)
```

```
Inductive Step:
Assume P(n):
Show P(n+1):
```

```
Prove that 1+2+3+\cdots+n=\frac{n^2+n}{2} for all n\in\mathbb{Z}^+ by Mathematical Induction: Basis Step: Show P(1)
```

```
Inductive Step:
Assume P(n):
Show P(n+1):
```

Prove that
$$1+2+3+\cdots+n=\frac{n^2+n}{2}$$
 for all $n\in\mathbb{Z}^+$

by Mathematical Induction:

Basis Step: Show P(1)

$$1 = \frac{1^2 + 1}{2}$$

Inductive Step:

Assume P(n):

Show P(n+1): _____

Prove that
$$1+2+3+\cdots+n=\frac{n^2+n}{2}$$
 for all $n\in\mathbb{Z}^+$

by Mathematical Induction:

Basis Step: Show
$$P(1)$$

$$1 = \frac{1^2 + 1}{2}$$
$$1 = \frac{2}{2}$$

Inductive Step:

Assume P(n):

Show P(n + 1): ___

```
Prove that 1+2+3+\cdots+n=\frac{n^2+n}{2} for all n\in\mathbb{Z}^+ by Mathematical Induction: Basis Step: Show P(1) 1=\frac{1^2+1}{2} 1=\frac{2}{2} Inductive Step: 1=1 \qquad \checkmark
```

Assume P(n): _____ Show P(n+1):

```
Prove that 1+2+3+\cdots+n=\frac{n^2+n}{2} for all n\in\mathbb{Z}^+ by Mathematical Induction:
```

Basis Step: Show P(1)

$$1 = \frac{1^2 + 1}{2}$$

$$1 = \frac{2}{2}$$

Inductive Step:

Assume *P*(*n*): _____

Show P(n + 1): ___

Prove that
$$1+2+3+\cdots+n=\frac{n^2+n}{2}$$
 for all $n\in\mathbb{Z}^+$

by Mathematical Induction:

Basis Step: Show
$$P(1)$$

$$1 = \frac{1^2 + 1}{2}$$
$$1 = \frac{2}{2}$$

$$1 = \frac{1}{2}$$

$$1=1$$

Inductive Step:

Assume *P*(*n*): _____

Show P(n + 1): ___

Show P(n+1):

```
Prove that 1+2+3+\cdots+n=\frac{n^2+n}{2} for all n\in\mathbb{Z}^+ by Mathematical Induction: Basis Step: Show P(1) 1=\frac{1^2+1}{2} 1=\frac{2}{2} Inductive Step: Assume P(n):
```

```
Prove that 1+2+3+\cdots+n=\frac{n^2+n}{2} for all n\in\mathbb{Z}^+ by Mathematical Induction: Basis Step: Show P(1) 1=\frac{1^2+1}{2} 1=\frac{2}{2} Inductive Step: 1=1 \qquad \checkmark Assume P(n): 1+2+3+\cdots+n=\frac{n^2+n}{2} Show P(n+1):
```

Show P(n+1):

```
Prove that 1+2+3+\cdots+n=\frac{n^2+n}{2} for all n\in\mathbb{Z}^+ by Mathematical Induction: Basis Step: Show P(1) 1=\frac{1^2+1}{2} 1=\frac{2}{2} Inductive Step: 1=1 \quad \checkmark Assume P(n): 1+2+3+\cdots+n=\frac{n^2+n}{2}
```

```
Prove that 1 + 2 + 3 + \cdots + n = \frac{n^2 + n}{2} for all n \in \mathbb{Z}^+
```

by Mathematical Induction:

Basis Step: Show
$$P(1)$$

$$1 = \frac{1^2 + 1}{2}$$
$$1 = \frac{2}{2}$$

$$1 = \frac{2}{2}$$

Inductive Step:

Assume
$$P(n)$$
: $1 + 2 + 3 + \cdots + n = \frac{n^2 + n}{2}$

Show P(n+1):

Inductive Step:

```
Prove that 1+2+3+\cdots+n=\frac{n^2+n}{2} for all n\in\mathbb{Z}^+ by Mathematical Induction: Basis Step: Show P(1) 1=\frac{1^2+1}{2} 1=\frac{2}{2}
```

Assume P(n): $1 + 2 + 3 + \cdots + n = \frac{n^2 + n}{2}$ Show P(n+1): $1 + 2 + 3 + \cdots + n$

```
Prove that 1+2+3+\cdots+n=\frac{n^2+n}{2} for all n\in\mathbb{Z}^+
```

by Mathematical Induction:

Basis Step: Show
$$P(1)$$

$$1 = \frac{1^2 + 1}{2}$$
$$1 = \frac{2}{2}$$

Inductive Step:

Assume
$$P(n)$$
: $1 + 2 + 3 + \cdots + n = \frac{n^2 + n}{2}$

Show
$$P(n+1)$$
: $1+2+3+\cdots+n$

```
Prove that 1+2+3+\cdots+n=\frac{n^2+n}{2} for all n\in\mathbb{Z}^+ by Mathematical Induction: Basis Step: Show P(1) 1=\frac{1^2+1}{2} 1=\frac{2}{2} Inductive Step: 1=1 \qquad \checkmark Assume P(n): 1+2+3+\cdots+n=\frac{n^2+n}{2} Show P(n+1): 1+2+3+\cdots+n+(n+1)
```

```
Prove that 1+2+3+\cdots+n=\frac{n^2+n}{2} for all n\in\mathbb{Z}^+ by Mathematical Induction: Basis Step: Show P(1) 1=\frac{1^2+1}{2} 1=\frac{2}{2} Inductive Step: 1=1 \qquad \checkmark Assume P(n): 1+2+3+\cdots+n=\frac{n^2+n}{2} Show P(n+1): 1+2+3+\cdots+n+(n+1)
```

```
Prove that 1+2+3+\cdots+n=\frac{n^2+n}{2} for all n\in\mathbb{Z}^+ by Mathematical Induction: Basis Step: Show P(1) 1=\frac{1^2+1}{2} 1=\frac{2}{2} Inductive Step: 1=1 \quad \checkmark Assume P(n): 1+2+3+\cdots+n=\frac{n^2+n}{2} Show P(n+1): 1+2+3+\cdots+n+(n+1)=\frac{(n+1)^2+(n+1)}{2}
```

```
Prove that 1+2+3+\cdots+n=\frac{n^2+n}{2} for all n\in\mathbb{Z}^+ by Mathematical Induction: Basis Step: Show P(1) 1=\frac{1^2+1}{2} 1=\frac{2}{2} Inductive Step: 1=1 \quad \checkmark Assume P(n): 1+2+3+\cdots+n=\frac{n^2+n}{2} Show P(n+1): 1+2+3+\cdots+n+(n+1)=\frac{(n+1)^2+(n+1)}{2}
```

```
Prove that 1+2+3+\cdots+n=\frac{n^2+n}{2} for all n\in\mathbb{Z}^+
by Mathematical Induction:
Basis Step: Show P(1)
                                 1 = \frac{1^2 + 1}{2}
                                 1 = \frac{2}{2}
                                  1=1
Inductive Step:
  Assume P(n): 1 + 2 + 3 + \cdots + n = \frac{n^2 + n}{2}
  Show P(n+1): 1+2+3+\cdots+n+(n+1)=\frac{(n+1)^2+(n+1)}{2}
```

Prove that
$$1+2+3+\cdots+n=\frac{n^2+n}{2}$$
 for all $n\in\mathbb{Z}^+$ by Mathematical Induction: Basis Step: Show $P(1)$
$$1=\frac{1^2+1}{2}$$

$$1=\frac{2}{2}$$
 Inductive Step:
$$1=1 \quad \checkmark$$
 Assume $P(n)$: $1+2+3+\cdots+n=\frac{n^2+n}{2}$ Show $P(n+1)$: $1+2+3+\cdots+n+(n+1)=\frac{(n+1)^2+(n+1)}{2}$
$$\frac{n^2+n}{2}+(n+1)=$$

Prove that
$$1+2+3+\cdots+n=\frac{n^2+n}{2}$$
 for all $n\in\mathbb{Z}^+$ by Mathematical Induction: Basis Step: Show $P(1)$
$$1=\frac{1^2+1}{2}$$

$$1=\frac{2}{2}$$
 Inductive Step:
$$1=1 \quad \checkmark$$
 Assume $P(n)$: $1+2+3+\cdots+n=\frac{n^2+n}{2}$ Show $P(n+1)$: $1+2+3+\cdots+n+(n+1)=\frac{(n+1)^2+(n+1)}{2}$
$$\frac{n^2+n}{2}+(n+1)=\frac{n^2+2n+1+n+1}{2}$$

Prove that
$$1+2+3+\cdots+n=\frac{n^2+n}{2}$$
 for all $n\in\mathbb{Z}^+$ by Mathematical Induction: Basis Step: Show $P(1)$
$$1=\frac{1^2+1}{2}$$

$$1=\frac{2}{2}$$
 Inductive Step:
$$1=1 \quad \checkmark$$
 Assume $P(n)$: $1+2+3+\cdots+n=\frac{n^2+n}{2}$ Show $P(n+1)$: $1+2+3+\cdots+n+(n+1)=\frac{(n+1)^2+(n+1)}{2}$
$$\frac{n^2+n}{2}+(n+1)=\frac{n^2+2n+1+n+1}{2}$$

$$\frac{n^2+n+2n+2}{2}=$$

Prove that
$$1+2+3+\cdots + n = \frac{n^2+n}{2}$$
 for all $n \in \mathbb{Z}^+$ by Mathematical Induction: Basis Step: Show $P(1)$
$$1 = \frac{1^2+1}{2}$$

$$1 = \frac{2}{2}$$
 Inductive Step:
$$1 = 1 \quad \checkmark$$
 Assume $P(n)$: $1+2+3+\cdots + n = \frac{n^2+n}{2}$ Show $P(n+1)$: $1+2+3+\cdots + n + (n+1) = \frac{(n+1)^2+(n+1)}{2}$
$$\frac{n^2+n}{2} + (n+1) = \frac{n^2+2n+1+n+1}{2}$$

$$\frac{n^2+n+2n+2}{2} = \frac{n^2+3n+2}{2}$$

Prove that
$$1+2+3+\cdots+n=\frac{n^2+n}{2}$$
 for all $n\in\mathbb{Z}^+$ by Mathematical Induction: Basis Step: Show $P(1)$
$$1=\frac{1^2+1}{2}$$

$$1 = \frac{1 + \frac{1}{2}}{2}$$

$$1 = \frac{2}{2}$$

$$1 = 1$$

Assume
$$P(n)$$
: $1 + 2 + 3 + \cdots + n = \frac{n^2 + n}{2}$

Show
$$P(n+1)$$
: $1+2+3+\cdots+n+(n+1)=\frac{(n+1)^2+(n+1)}{2}$

$$\frac{n^2+n}{2}+(n+1)=\frac{n^2+2n+1+n+1}{2}$$

$$\frac{n^2+n+2n+2}{2}=\frac{n^2+3n+2}{2}$$

$$\frac{n^2+3n+2}{2}=\frac{n^2+3n+2}{2}$$

Prove that
$$1+2+3+\cdots+n=\frac{n^2+n}{2}$$
 for all $n\in\mathbb{Z}^+$ by Mathematical Induction: Basis Step: Show $P(1)$ 1^2+1

Basis Step: Show
$$P(1)$$

$$1 = \frac{1^2 + 1}{2}$$

$$1 = \frac{2}{2}$$

$$1 = 1$$

Assume
$$P(n)$$
: $1 + 2 + 3 + \cdots + n = \frac{n^2 + n}{2}$

Show
$$P(n+1)$$
: $1+2+3+\cdots+n+(n+1)=\frac{(n+1)^2+(n+1)}{2}$

$$\frac{n^2+n}{2}+(n+1)=\frac{n^2+2n+1+n+1}{2}$$

$$\frac{n^2+n+2n+2}{2}=\frac{n^2+3n+2}{2}$$

$$\frac{n^2+3n+2}{2}=\frac{n^2+3n+2}{2} \qquad \checkmark$$

Show that the sum of the first n positive odd integers is n^2 .

Show that the sum of the first n positive odd integers is n^2 .

Show that the sum of the first n positive odd integers is n^2 .

P(n): sum of first n positive odd int $= n^2$

 $n n^{th}$ odd

Show that the sum of the first n positive odd integers is n^2 .

n	n th odd
1	
2	
3	
:	
n	

Show that the sum of the first n positive odd integers is n^2 .

n	n^{th} odd
1	1
2	
2 3	
:	
n	

Show that the sum of the first n positive odd integers is n^2 .

n	n^{th} odd
1	1
2	3
3	
:	
n	

Show that the sum of the first n positive odd integers is n^2 .

n	n^{th} odd
1	1
2	3 5
3	5
:	
n	

Show that the sum of the first n positive odd integers is n^2 .

n	n th odd
1	1
2	3
3	5
÷	
n	2n - 1

Show that the sum of the first n positive odd integers is n^2 .

n	n^{th} odd	Note that:
1	1	
2	3	
3	5	
:		
n	2n - 1	

Show that the sum of the first n positive odd integers is n^2 .

n	n^{th} odd	Note that:
1	1	 P(1) means sum of the first odd integer
2	3	()
3	5	
:		
•		
n	2n - 1	

Show that the sum of the first n positive odd integers is n^2 .

P(n): sum of first n positive odd int $= n^2$

п	n oaa
1	1
2	3 5
3	5
: n	2n – 1

n^{th} odd Note that:

■ P(1) means sum of the first odd integer thus, $P(1): 1 = 1^2$

Show that the sum of the first n positive odd integers is n^2 .

P(n): sum of first n positive odd int $= n^2$

11	11	ouu
1		1
2		3 5
3		5
: n	21	n-1

n nth odd Note that:

- P(1) means sum of the first odd integer thus, $P(1): 1 = 1^2$
- P(2) means sum of the first two odd integers

Show that the sum of the first n positive odd integers is n^2 .

P(n): sum of first n positive odd int $= n^2$

n	$n^{\rm th}$ odd
1	1
2	3
2 3	5
: n	2n - 1

- P(1) means sum of the first odd integer thus, $P(1): 1 = 1^2$
- P(2) means sum of the first two odd integers thus, $P(2): 1+3=2^2$

Show that the sum of the first n positive odd integers is n^2 .

P(n): sum of first n positive odd int $= n^2$

n	n th odd
1	1
2	3
3	5
: n	2n - 1

- P(1) means sum of the first odd integer thus, $P(1): 1 = 1^2$
- P(2) means sum of the first two odd integers thus, $P(2): 1+3=2^2$
- P(n) means sum of the first n odd integers

Show that the sum of the first n positive odd integers is n^2 .

P(n): sum of first n positive odd int $= n^2$

n	n™ odd
1	1
2	3
3	5
: n	2n - 1

- P(1) means sum of the first odd integer thus, $P(1): 1 = 1^2$
- P(2) means sum of the first two odd integers thus, $P(2): 1+3=2^2$
- P(n) means sum of the first n odd integers thus, $P(n): 1+3+5+\cdots+(2n-1)=n^2$

Show that the sum of the first n positive odd integers is n^2 .

$$P(n)$$
: sum of first n positive odd int $= n^2$

$$P(n): 1+3+5+\cdots+(2n-1)=n^2$$

n	n''' odd
1	1
2	3 5
3	5
:	
n	2n - 1

- P(1) means sum of the first odd integer thus, $P(1): 1 = 1^2$
- P(2) means sum of the first two odd integers thus, $P(2): 1+3=2^2$
- P(n) means sum of the first n odd integers thus, $P(n): 1+3+5+\cdots+(2n-1)=n^2$

Show that the sum of the first n positive odd integers is n^2 .

$$P(n): 1+3+5+\cdots+(2n-1)=n^2$$

Show that the sum of the first n positive odd integers is n^2 .

$$P(n): 1+3+5+\cdots+(2n-1)=n^2$$

by Mathematical Induction:

Basis Step: Show $P(\underline{\hspace{1cm}})$

Inductive Step:

Assume P(n):

Show that the sum of the first n positive odd integers is n^2 .

$$P(n): 1+3+5+\cdots+(2n-1)=n^2$$

by Mathematical Induction:

Basis Step: Show P(1)

Inductive Step:

Assume P(n):

Show that the sum of the first n positive odd integers is n^2 .

$$P(n): 1+3+5+\cdots+(2n-1)=n^2$$

by Mathematical Induction:

Basis Step: Show P(1)

Inductive Step:

Assume P(n):

Show that the sum of the first n positive odd integers is n^2 .

$$P(n): 1+3+5+\cdots+(2n-1)=n^2$$

by Mathematical Induction:

Basis Step: Show P(1)

$$1 = 1^2$$

Inductive Step:

Assume P(n):

Show that the sum of the first n positive odd integers is n^2 .

$$P(n): 1+3+5+\cdots+(2n-1)=n^2$$

by Mathematical Induction:

Basis Step: Show P(1)

$$1 = 1^2$$

Inductive Step:

Assume P(n):

Show P(n + 1): _____

Show that the sum of the first n positive odd integers is n^2 .

$$P(n): 1+3+5+\cdots+(2n-1)=n^2$$

by Mathematical Induction:

Basis Step: Show P(1)

$$1 = 1^2$$

Inductive Step:

Assume P(n):

Show that the sum of the first n positive odd integers is n^2 .

$$P(n): 1+3+5+\cdots+(2n-1)=n^2$$

by Mathematical Induction:

Basis Step: Show
$$P(1)$$

$$1 = 1^2$$

$$1 = 1$$

Assume
$$P(n)$$
: $1+3+5+\cdots+(2n-1)=n^2$

Show
$$P(n + 1)$$
:

Show that the sum of the first n positive odd integers is n^2 .

$$P(n): 1+3+5+\cdots+(2n-1)=n^2$$

by Mathematical Induction:

Basis Step: Show
$$P(1)$$

$$1 = 1^2$$

$$1 = 1$$

Assume
$$P(n)$$
: $1+3+5+\cdots+(2n-1)=n^2$

Show
$$P(n+1)$$
: _____

Show that the sum of the first n positive odd integers is n^2 .

$$P(n): 1+3+5+\cdots+(2n-1)=n^2$$

by Mathematical Induction:

Basis Step: Show
$$P(1)$$

$$1 = 1^2$$

$$1 = 1 \qquad \checkmark$$

Assume
$$P(n)$$
: $1+3+5+\cdots+(2n-1)=n^2$
Show $P(n+1)$: $1+3+5+\cdots+(2n-1)+(2n+1)$

Show that the sum of the first n positive odd integers is n^2 .

$$P(n): 1+3+5+\cdots+(2n-1)=n^2$$

by Mathematical Induction:

Basis Step: Show
$$P(1)$$

$$1 = 1^2$$

$$1 = 1 \qquad \checkmark$$

Assume
$$P(n)$$
: $1+3+5+\cdots+(2n-1)=n^2$
Show $P(n+1)$: $1+3+5+\cdots+(2n-1)+(2n+1)=(n+1)^2$

Show that the sum of the first n positive odd integers is n^2 .

$$P(n): 1+3+5+\cdots+(2n-1)=n^2$$

by Mathematical Induction:

Basis Step: Show
$$P(1)$$

$$1 = 1^2$$

$$1 = 1 \qquad \checkmark$$

Assume
$$P(n)$$
: $1+3+5+\cdots+(2n-1)=n^2$
Show $P(n+1)$: $1+3+5+\cdots+(2n-1)+(2n+1)=(n+1)^2$

Show that the sum of the first n positive odd integers is n^2 .

$$P(n): 1+3+5+\cdots+(2n-1)=n^2$$

by Mathematical Induction:

Basis Step: Show
$$P(1)$$

$$1 = 1^2$$

$$1 = 1 \qquad \checkmark$$

Assume
$$P(n)$$
: $1+3+5+\cdots+(2n-1)=n^2$
Show $P(n+1)$: $1+3+5+\cdots+(2n-1)+(2n+1)=(n+1)^2$
 n^2

Show that the sum of the first n positive odd integers is n^2 .

$$P(n): 1+3+5+\cdots+(2n-1)=n^2$$

by Mathematical Induction:

Basis Step: Show
$$P(1)$$

$$1 = 1^2$$

$$1 = 1 \qquad \checkmark$$

Assume
$$P(n)$$
: $1+3+5+\cdots+(2n-1)=n^2$
Show $P(n+1)$: $1+3+5+\cdots+(2n-1)+(2n+1)=(n+1)^2$
 $n^2+(2n+1)$

Show that the sum of the first n positive odd integers is n^2 .

$$P(n): 1+3+5+\cdots+(2n-1)=n^2$$

by Mathematical Induction:

Basis Step: Show
$$P(1)$$

$$1 = 1^2$$

$$1 = 1 \qquad \checkmark$$

Assume
$$P(n)$$
: $1+3+5+\cdots+(2n-1)=n^2$
Show $P(n+1)$: $1+3+5+\cdots+(2n-1)+(2n+1)=(n+1)^2$
 $n^2+(2n+1)=n^2+2n+1$

Show that the sum of the first n positive odd integers is n^2 .

$$P(n): 1+3+5+\cdots+(2n-1)=n^2$$

by Mathematical Induction:

Basis Step: Show
$$P(1)$$

$$1 = 1^2$$

$$1 = 1 \qquad \checkmark$$

Assume
$$P(n)$$
: $1+3+5+\cdots+(2n-1)=n^2$
Show $P(n+1)$: $1+3+5+\cdots+(2n-1)+(2n+1)=(n+1)^2$
 $n^2+(2n+1)=n^2+2n+1$

Exercises

Use Mathematical Induction to prove the following.

- **1** Show that $1+4+7+\cdots+(3n-2)=\frac{n(3n-1)}{2}$, for all n>1.
- 2 Show that for positive integer n,

$$1+3+6+\cdots+\frac{n(n+1)}{2}=\frac{n(n+1)(n+2)}{6}$$

3 Prove that $3 + 3^2 + 3^3 + \dots + 3^{n+1} = \frac{3^{n+2}-3}{2}$, for $n \in \mathbb{Z}^+$

