# R로 배우는 데이터사이언스 - Lecture 8: 분류 Classification and Discrimination

서울대학교 통계연구소

이권상

서울대학교 통계연구소

#### 이번 강좌에서 다룰 내용

- ▶ 분류 소개
- ▶ 분류 방법 (Algorithms, models, classifiers)
  - ▶ k-Nearest neighbors
  - ▶ Fisher의 선형분류판별분석 (Linear discriminant analysis)
  - Quadratic discriminant analysis
  - ▶ 로지스틱회귀모형 (Logistic regression model)
- ▶ 분류 모형의 평가
  - Confusion matrix, sensitivity, specificity, ROC curve
  - Training and testing data, generalization error, cross validation
- ▶ 실습 (R package caret)

서울대학교 통계연구소 2/64

#### 시작하기 전에…

- ▶ 실습시간에 사용할 R script와 자료를 통계연구소 강좌자료실에서 download 받고, working directory 설정하기.
- ▶ R 패키지 caret, pROC, GGally, ggplot2, dplyr를 설치하자.

```
install.packages("caret") # for classification
install.packages("pROC") #
install.packages("dplyr") # data manipulation
install.packages("ggplot2")
install.packages("GGally") # Graphing supplement

library(MASS)
library(caret)
library(dplyr)
library(ggplot2)
library(gGally)
library(pROC)
```

서울대학교 통계연구소 3/64

# Windows에서 한글 깨짐 현상 해결방법

#### RStudio에서

- 1. Tools > Global Options > Code > Saving > Default text encoding을 UTF-8으로 변경하고 Apply
- 2. Practice.R 파일을 RStudio에 불러온 후에 File > Save with Encoding > UTF-8을 선택하고 아래 Set as default encoding for source files를 체크
- 3. RStudio에서 Practice.R를 닫고 Practice.R 를 다시 불러오기

서울대학교 통계연구소 4/64

소개: 분류, 분류기준, 분류기준의 평가

#### 분류

▶ 분류기준에 따라 분류하기



source: EBS 수학이 야호 https://clipbank.ebs.co.kr/clip/view?clipId=VOD\_20171006\_00444

#### 질문

- ▶ 색이 같은 세 그룹으로 분류할 때, 빨간 세모는 어디로 분류할까?
- ▶ 모양이 같은 세 그룹으로 분류할 때, 빨간 세모는 어디로 분류할까?

서울대학교 통계연구소 6/64

#### 분류

- ▶ 분류기준에 따라 분류하기
- ▶ 분류기준이 주어지지 않은 경우, (데이터로부터) 분류기준을 추론하여 분류법을 만들기
- ▶ 예: 타이타닉 생존여부 분류



(image source: github/grantmlong)

| 변수       | 뜻     |                           |
|----------|-------|---------------------------|
| Survival | 생존 여부 | 0 = No, 1 = Yes           |
| Pclass   | 좌석등급  | 1 = 1등석, 2 = 2등석, 3 = 3등석 |
| Sex      | 성별    |                           |

#### 질문

- ▶ 3등석 여자 손님은 살아남을까?
- ▶ 이 대답을 하기 위해서 자료를 참조하여 분류기준을 도출해야 한다

서울대학교 통계연구소 7/64

#### 타이타닉 자료

- 여기에 소개하는 자료는 호화여객선 타이타닉에 탑승한 891명들에 대한 기록으로 개인별로 14개의 변수가 있다.
- ▶ 개인별 변수는 pclass(좌석등급), survived (1: 생존, 0:사망), name (이름), sex(성별), age (나이), sibsp (동승한 형제자매/배우자 수), parch (동승한 부모/자녀 숫자), ticket (티켓번호), fare(티켓가격), cabin (방번호), embarked (승선항), boat(구명보트 번호), body (사망자 인식번호), home.dest (목적지) 로 구성되어 있다.
- ▶ 다음과 같이 자료를 살펴본다.

titan <-read.csv("train.csv")
View(titan)</pre>

서울대학교 통계연구소 8/64

#### 타이타닉 자료: 성별과 좌석등급으로 생존여부 예측

- ▶ 성별, 좌석 등급별로 Survived의 분포를 보고 분류기준 도출
- ▶ 두 개 (이상)의 범주형 변수로 다른 범주형 변수의 값을 예측

```
library(tidyverse)
titan <- titan %>% dplyr::select(Sex, Pclass, Survived) %>%
  mutate(Survived = as.factor(ifelse(Survived == 1, "Yes", "No")))
titan %>% ggplot(aes(x = Sex)) +
  geom_bar(aes(fill = Survived), position = "fill") + facet_wrap(~Pclass)
```



서울대학교 통계연구소 9/64

## 타이타닉 자료: 성별과 좌석등급으로 생존여부 예측

- ▶ 아래의 표에 의하면
- ▶ 여자는 생존, 남자는 비생존으로 분류하는것이 최선

| Pclass | Surv.Rate             |
|--------|-----------------------|
| 1      | 0.9680851             |
| 2      | 0.9210526             |
| 3      | 0.5000000             |
| 1      | 0.3688525             |
| 2      | 0.1574074             |
| 3      | 0.1354467             |
|        | 1<br>2<br>3<br>1<br>2 |

- ▶ 더 많은 변수 (예: 나이) 가 있으면 더 좋은 분류 가능
- ▶ 이 분류 기준이 왜 최선인가?

서울대학교 통계연구소 10/64

# 대학원 입학 자료

▶ 미국 대학원 입학 자료: 400명의 TOEFL.score (영어 점수)와 CGPA (대학교 학점)으로 대학원 입학 허가/불가 (Admit/No) 예측

| TOEFL.Score | CGPA | Class |
|-------------|------|-------|
| 118         | 9.65 | Admit |
| 107         | 8.87 | Admit |
| 104         | 8.00 | Admit |
| 110         | 8.67 | Admit |
| 103         | 8.21 | No    |
| 115         | 9.34 | Admit |
|             |      |       |

서울대학교 통계연구소 11/64

- ▶ TOEFL.score, CGPA, 그리고 Class의 분포를 보고 분류기준 도출
- ▶ 두 개 (이상)의 연속형 변수로 범주형 변수의 값 예측

library(GGally) # for pairwise scatterplot
ggpairs(data, mapping = aes(color = Class))



서울대학교 통계연구소 12/64

#### 분류 분석

- ▶ 목적: p개의 입력변수  $(X_1, \ldots, X_p) = (x_1, \ldots, x_p)$ 의 값으로부터 J개의 값을 가지는 범주형 변수 Y의 값을 예측
- ▶ 자료: n개의 입력 출력 변수 값 쌍

▶ 분류 함수: 입력변수  $x=(x_1,\ldots,x_p)$ 를 받아 Y의 범주 중 하나를 출력하는 함수 y=f(x).

서울대학교 통계연구소 13/64

# 분류 함수의 예

ightharpoonup 타이타닉 자료 ( $X_1$  = 성별,  $X_2$  = 좌석등급)

$$f(X_1, X_2) = \begin{cases} ext{ 생존, } x_1 = ext{ 여자일때;} \\ ext{ 사망, } x_1 = ext{ 남자일때.} \end{cases}$$

ightharpoonup 대학원 자료 ( $X_1$  = 토플 점수,  $X_2$  = 대학 학점)

$$f(X_1, X_2) = \begin{cases}$$
 합격, 만약  $x_1 > 100, x_2 > 8;$  불합격, 만약  $x_1 \le 100$  또는  $x_2 \le 8.$ 

서울대학교 통계연구소 14/64

#### 용어 정리

- ▶ 분류: 반응변수 Y가 범주형인 회귀분석
- ▶ 분류법은 지도학습이다 추론하여 도출된 분류기준의 품질평가 가능 (주어진 반응변수 (또는 출력변수)의 값을 이용해 평가).
- ▶ Classification (분류)와 Discrimination (판별)은 같은 뜻
- Y의 범주가 2개인 경우: 이항분류 (Binary classification)
  - ightharpoonup 때로는 Y = 0, 1로 코딩함
  - ▶ 예: Survived = Yes (1), No (0); Class = Admit (1), No (0)
- ▶ Y의 범주가 2개 이상인 경우: 다항분류 (Multi-category classification)
  - ▶ 범주의 순서가 있는 경우: Ordinal (multicategory) classification
  - ▶ 범주의 순서가 없는 경우: Multicategory classification
- ▶ 분류기 (Classifier): 자료로부터 분류기준 "f(x)" 을 만드는 방법 또는 만들어진 분류함수 f(x)
  - ▶ 예: LDA, kNN, Random Forest 등은 다른 자료에 적용하면 다른 분류기준을 만드는 방법이면서,
  - 한 자료로 국한시키면, 서로 다르게 만들어진 분류함수들을 지칭.

서울대학교 통계연구소 15/64

## 최선의 분류기준?

- ▶ 분류기준 또는 분류기로 분류 후 분류기  $\hat{y}=f(x)$ 의 값과 실제 y값을 비교
- ▶ 분류기 f(x)의 오분류율  $Pr(\hat{y} \neq y) = Pr(f(x) \neq y)$
- 주어진 자료에서의 오분류율을 가장 작게 만드는 분류기가 가장 좋은 분류기
- ▶ 만약 입력변수  $x=(x_1,\ldots,x_p)$ 에서의 y=1 (또는 y=0)의 발생확률을 알 수 있다면, 다음의 분류기가 가장 좋음이 알려져 있다.

$$f(x) = \begin{cases} 1, & \text{만약 } P(Y=1 \mid X=x) > P(Y=0 \mid X=x); \\ 0, & \text{만약 } P(Y=1 \mid X=x) \le P(Y=0 \mid X=x). \end{cases}$$

▶ 베이즈 정리를 이용하여 증명할 수 있으므로, 때로는 베이즈분류기로 불리운다.

서울대학교 통계연구소 16/64

#### 타이타닉 자료의 베이즈 분류기

- ▶ 타이타닉 자료는 x (Sex, Pclass)의 값이 6개 중 하나 (성별과 좌석등급이 모두 범주형)
- ightharpoonup 각각의 값 x에 대해 P(Y= 생존  $\mid X=x)$  과 P(Y= 사망  $\mid X=x)$ 를 비교 가능

| Sex    | Pclass | P_survive | P_demise  |
|--------|--------|-----------|-----------|
| female | 1      | 0.9680851 | 0.0319149 |
| female | 2      | 0.9210526 | 0.0789474 |
| female | 3      | 0.5000000 | 0.5000000 |
| male   | 1      | 0.3688525 | 0.6311475 |
| male   | 2      | 0.1574074 | 0.8425926 |
| male   | 3      | 0.1354467 | 0.8645533 |
|        |        |           |           |

P(Y= 생존  $\mid X=x)=P(Y=$  사망  $\mid X=x)$ 일때는 동전던지기(50/50) 또는 전부 생존 또는 전부 사망으로 분류

#### 참조:

- ▶ 대부분의 경우  $P(Y = \text{생존} \mid X = x)$  를 알 수 없고, 자료로부터 추정!
- ▶ 베이즈분류기는 실제 도출 불가능 (자료를 무한히 볼 수 있을 때, 또는 생성과정을 정확히 알 때만 가능)

서울대학교 통계연구소

# 다양한 분류기 (Classifiers)

#### 오늘 다룰 분류기

- ▶ 최근접 이웃 방법 (k-nearest neighbors; k-NN)
- ▶ 선형판별분석 (Linear Discriminant Analysis; LDA)
- ▶ 이차판별분석 (Quadratic Discriminant Analysis; QDA)
- ▶ 로지스틱회귀분석 (Logistic regression)

#### 오늘 다루지 않을 분류기

- ▶ 분류 나무 (Classification Tree)
- Support Vector Machine
- Naive Bayes Classifier
- ▶ Boosting 기법
- ▶ Bagging (Bootstrap aggregating) 기법

서울대학교 통계연구소 19/64

#### 최근접 이웃 방법 (k-nearest neighbors; k-NN)

- ▶ 베이즈분류기를 추정하는 한 방법
- ▶ 입력변수들 모두 연속형임을 가정 (예: 대학원 입시 자료)



- ightharpoonup 연속형 변수이기 때문에 주어진 x에서의 관측값이 많아야 1개.
  - lacktriangle 예를 들어 x=(110,8.5)에서의 관측값은 없음
  - lacktriangle  $\Pr(\operatorname{Admit}|x=(110,8.5))$ 를 추정하기 위해 x주변의 **이웃**을 조사

서울대학교 통계연구소 20/64

## 최근접 이웃 방법 (k-nearest neighbors; k-NN)

주어진 x에서 가장 가까운 k개의 관측치들로 x에서 각 범주의 확률을 추정하고 가장 많이 나온 범주를 k-NN classifier f(x)의 값으로 정한다.

아래 그림에서 k = 50 경우, 검은 점  $(x_0)$ 에서의 파란 범주 확률은 3/5 (60%), 빨간 범주 확률은 2/5 (40%)이므로

5-NN classifier  $f(x_0) =$ 파랑.



(image source: https://www.ednology.co.uk/

서울대학교 통계연구소 21/64

# k-NN 예제 (대학원 입시 자료)

k = 3 k-NN classifier



▶ 불합격과 합격을 나누는 선을 결정 경계 (Decision Boundary)라고 한다

서울대학교 통계연구소 22 / 64

- ▶ 일반적으로, *k*는 홀수로 정한다 (동점 방지).
- ▶ 분류 결과가 *k*의 값에 민감하다.
- $\triangleright$  k의 값이 클 수록 유연성이 떨어진다.



서울대학교 통계연구소 23/64

- ▶ 이웃의 정의(definition)에 따라 분류 결과가 달라진다
  - ▶ 윗 장의 결과에서, TOEFL 점수 10점 차이와 CGPA 10 차이는 상대적으로 매우 다르지만, 모두 같은 거리의 이웃이다.
  - 일반적으로 변수의 scale을 조정하여, 모든 변수의 표준편차가 1이 되도록 변화해 준다.



서울대학교 통계연구소 24/64

# 최근접 이웃 방법 (k-nearest neighbors; k-NN): 간단한 정리

- ▶ 베이즈분류기를 추정하는 매우 기초적인 방법
- ightharpoonup 이웃의 갯수 k를 정해주어야 한다 (Model validation을 이용; 곧 다룸)
- ▶ 누가 이웃인가(이웃을 정하는 거리의 기준)에 따라 결과가 다르다 (Model Validation을 이용)
- ▶ 출력변수 (또는 반응변수)의 범주의 갯수가 몇 개이든지 사용 가능
- ▶ k-NN 분류기는 모든 자료를 다 저장하고 있어야 함 (비효율적)

서울대학교 통계연구소 25/64

# 선형판별분석 (Linear Discriminant Analysis; LDA)

- ▶ 연속형 변수들이 입력변수
- ▶ 이항분류, 다항분류 문제에 모두 적용가능
- ▶ 두 범주를 선 (3차원 이상이면 면)으로 나누게 됨
- ▶ 자료를 자료공간의 선 위에 정사영 (projection)시킨 뒤 한 점을 기준으로 나눔



(image source: Johnson and Wichern, Applied Multivariate Statistical Analysis, Pearson.)

서울대학교 통계연구소 26/64

#### 다변량 정규분포

▶ 다변량 정규분포: 입력변수  $(X_1, X_2)$ 의 분포를 평균이  $(\mu_1, \mu_2)$ , 분산이  $\sigma_1^2, \sigma_2^2$ , 상관계수가  $\rho$ 인 정규분포로 모형화

아래에서 평균 (101,10), 분산-공분산은 타원의 모양과 크기로 결정



서울대학교 통계연구소 27/64

## 선형판별분석 (Linear Discriminant Analysis; LDA)의 아이디어

- ▶ 그룹 1의 분포 ( X | Y = Admit )와 그룹 2의 분포 ( X | Y = No) 를 정규분포로 모형화
- ► 두 그룹의 **평균은 다르고**, **분산-공분산은 같다**고 가정



서울대학교 통계연구소 28/64

## 선형판별분석 (Linear Discriminant Analysis; LDA)의 아이디어

베이즈 정리를 이용하여, 베이즈분류기에서 쓰이는  $\Pr(Y=j|X=x)$ 를 추정:

$$P(Y = j | X = x) = \frac{\pi_j \phi_j(x)}{\sum_{i=1}^J \pi_j \phi_j(x)} \approx \frac{P(X = x | Y = j) P(Y = j)}{P(X = x)},$$

#### 여기서

- ▶ Y의 범주는  $\{1, ..., J\}$ ,
- $m{\pi}_j = P(Y=j)$  (자료에서 Y=j인 관측값의 비율로 추정),
- $\phi_i(x)$ 은 추정된 다변량정규분포의 x에서의 밀도함수값
- ▶ 모형이 근사적으로 맞을 경우, 베이즈분류기의 P(Y=y|X=x)를 추정하는 효율적인 방법.

서울대학교 통계연구소 29/64

#### 선형판별분석

- ▶ 이항 분류 문제의 경우,
- igwedge X|Y=1의 평균이  $ar{x}_1$ , 공분산 행렬이  $\Sigma$ 이며,
- igwedge X|Y=2의 평균이  $\bar{x}_2$ , 공분산 행렬 또한  $\Sigma$ 라면:
- ► LDA의 방향:

$$\mathbf{a}_{LDA} = \Sigma^{-1}(\bar{x}_2 - \bar{x}_1)$$

(공분산으로 표준화한 뒤)  $ar{x}_1$ 에서  $ar{x}_2$ 를 가리키는 벡터의 방향

LDA 분류기  $f_{LDA}(x)$ 의 값은 다음을 만족할 때 1:

$$\mathbf{a}'_{LDA}(x - \frac{\bar{x}_1 + \bar{x}_2}{2}) < \log(\pi_1/\pi_2)$$



서울대학교 통계연구소 30/64

# 대학원 입시 자료 예



서울대학교 통계연구소 31/64

# 이차판별분석 (Quadratic Discriminant Analysis; QDA)

- ▶ 연속형 변수들이 입력변수
- ▶ 이항분류, 다항분류 문제에 모두 적용가능
- ▶ 선형판별분석과 마찬가지로, 그룹 1의 분포 (X|Y = Admit)와 그룹
   2의 분포 (X|Y = No)를 정규분포로 모형화
- ► 두 그룹의 평균도 다르고, 분산-공분산도 다르다고 가정
- ▶ 이항 분류 문제의 경우,
- ightharpoonup X|Y=1의 평균이  $\mu_1$ , 공분산 행렬이  $\Sigma_1$ 이며,
- $lackbox{X}|Y=2$ 의 평균이  $\mu_2$ , 공분산 행렬이  $\Sigma_2$ 이며,  $\Sigma_1 
  eq \Sigma_2$ 임을 가정.

서울대학교 통계연구소 32/64

# 대학원 입시 자료 예



서울대학교 통계연구소 33/64

#### LDA와 QDA 간단한 정리

- 범주별 자료가 다변량 정규분포를 따른다는 가정이 맞다면, 베이즈분류기를 추정하는 매우 강력한 방법
- ▶ 변수 변환 (예를 들어 log변환) 등을 이용해 변수의 정규화 뒤 시도 가능
- ▶ 입력변수가 모두 연속형인 경우에만 적용 가능
- ▶ 분류기가 일차함수 (방향벡터, cutoff 값) 또는 이차함수 (행렬, 벡터, cutoff값)의 형태이므로, 계산이 빠르고 분류가 효율적

서울대학교 통계연구소 34/64

## 로지스틱회귀분석 (Logistic regression)

- ▶ 이항분류법.
- ▶ 반응변수 Y의 범주가 단 두 개 (Y=0 또는 Y=1)일 때의 (일반화선형)회귀모형.
- ightharpoonup P(Y=1|X=x)를 로지스틱 함수로 모형화



서울대학교 통계연구소 35/64

#### 로지스틱회귀분석

▶ 하나의 입력변수 x만 있을 때,  $P(Y=1 \mid X=x) = Logistic(a+bx)$ 의 a와 b를 추정



서울대학교 통계연구소 36/64

### 로지스틱회귀분석

ightharpoonup 두 개 이상의 입력변수  $x_1, \ldots, x_p$ 가 있을 때,

$$Pr(Y = 1 | X = x) = Logistic(a + b'x)$$

로 모형,  $\mathbf{b}'\mathbf{x} = b_1x_1 + b_2x_2 + \cdots + b_px_p$ .  $(a, \mathbf{b})$  추정.

▶ 이때, 로지스틱회귀분석의 분류법은

$$f(x) = \left\{ \begin{array}{ll} 1, & \mathbb{C}^{\xi} P(Y=1 \mid X=x) > P(Y=0 \mid X=x), \\ & \text{또는 } P(Y=1 \mid X=x) > 0.5, \\ & \text{또는 } a + \mathbf{b}' \mathbf{x} > 0; \\ 0, & \mathbb{E}' \mathbb{C}^{\xi} = 0.5, \end{array} \right.$$

즉,  $a + \mathbf{b}' \mathbf{x}$ 의 값 만으로 분류기가 작동

서울대학교 통계연구소 37/64



서울대학교 통계연구소 38/64

### 로지스틱회귀분석은 (일반화된) 회귀분석

- ▶ 회귀 계수 b에 대한 가설 검정 가능
- ▶ 각 변수의 유의성 검정 가능
- ▶ 변수 선택 시도 가능 (Deviance, AIC, 가설검정 등을 이용)
  - ▶ LDA, QDA, knn도 가능!
- ▶ 연속형과 범주형 변수 동시에 설명변수가 될 수 있음
- 해석 상의 편리 (회귀계수와 오즈비)
- ▶ 이차항을 만들면 비선형 분류 가능

서울대학교 통계연구소 39/64

### 로지스틱회귀분석 회귀계수의 해석

▶ 입력변수가 두 개인 경우

$$p(x) \equiv P(Y = 1 \mid X = x) = \text{Logistic}(a + b_1x_1 + b_2x_2)$$

- Logistic(z) =  $\frac{\exp(z)}{1+\exp(z)}$ 이므로 Odds $(x) \equiv \frac{p(x)}{1-p(x)} = \exp(a+b_1x_1+b_2x_2)$ .
- ightharpoonup 예를 들어,  $x_1$  = TOEFL.Score,  $x_2$  = CGPA일 때, CGPA가 같을 때 TOEFL.Score가 1점이 오를 때의 오즈비가  $\exp(b_1)$ ;

$$\log \mathsf{OddsRatio}(x_1) = b_1.$$

TOEFL.Score가 1점이 오르면 합격 로그오즈가  $b_1$ 만큼 증가 (또는 합격 오즈가  $e^{b_1}$ 배만큼 증가)

서울대학교 통계연구소 40/64

## 잠깐 쉬어가기

### 최고의 분류법

# 암검사 정확도 90퍼센트!!



THE REAL PROPERTY.

바이오인프라생명과학 김철우 대표 "스마트 암검사 정확도 90%… 8 대암 한번에 검진"

입력 2018-08-12 20:32



서울대학교 통계연구소 42/64

## 비교의 원칙!

• 비교를 위해, 2011년 한겨레 기사의 암 종류별 양성예측도와 비교

http://www.hani.co.kr/arti/society/health/477238.html

90% vs 0.64% ???

정확도 vs 양성예측도

국가 암 검진사업의 암 종류별 양성

|        | 위암   | 간암   | 대장암  | 유방암  |
|--------|------|------|------|------|
| 평균     | 3.28 | 5.65 | 1.69 | 0.64 |
| 30~39살 | -    | -    | -    | -    |
| 40~49살 | 1,33 | 2.90 | -    | 0.5  |
| 50~59살 | 2.68 | 5,23 | 1,14 | 0.7  |
| 60~69살 | 4.87 | 7.4  | 1.97 | 0.94 |
| 70살 이상 | 7,13 | 6,51 | 2,72 | 0,95 |

\*양성예측도: 암 검진에서 암이 의심된다고 람 가운데 최종 검사에서도 암으로 판정되는 칸은 연령별 검진사업 대상이 아닌 항목임.

간은 연령별 검진사업 대상이 아닌 항목임. 자료: (국가암 검진사업의 비용과 효과)(박은철 연세대 의

지표· (국가 다 다근지답니 비용서 표시/(국근을 근계대 학교실 교수)

서울대학교 통계연구소 43/64

• 위 국민일보의 기사에는

"유방암의 경우에서도 83%의 민감도와 90%의 특이도를 나타낸 다"

- 민감도(sensitivity): 실제 질병을 가진 사람 중 검사결과가 양성 인 비율.
- 특이도(specificity): 실제 질병을 가지지 않은 사람 중 검사결과 가 음성인 비율.

서울대학교 통계연구소 44/64

- 국가지표체계의 암 발생 및 사망 현황 자료 (http://www.index.go.kr/potal/main/EachDtlPageDetail.do?idx\_cd=2770)를 보면 2011년 의 유방암 발생율은 100,000명 중 32.3명, 2016년은 42.7명.
- 10만명 당 평균 검사 결과.

|        | 검사결과 양성           | 검사결과 음성                    |         |
|--------|-------------------|----------------------------|---------|
| 유방암 있음 | 42.7 x 83% = 35.4 | 7.3                        | 42.7    |
| 유방암 없음 | 9995.7            | 99957.3 x 90%<br>= 89961.6 | 99957.3 |
|        | 10031.1           | 89968.9                    | 100,000 |

서울대학교 통계연구소 45/64

정확도 = (35.4 + 89961.6) / 100,000 ~ 90%

국민일보ⓒ

바이오인프라생명과학 김철우 대표 "스마트 암검사 정확도 90%... 8 대와 하변에 검지"

|        | 검사결과 양성           | 검사결과 음성                                 |         |
|--------|-------------------|-----------------------------------------|---------|
| 유방암 있음 | 42.7 x 83% = 35.4 | 7.3                                     | 42.7    |
| 유방암 없음 | 9995.7            | 99957.3 x <mark>90%</mark><br>= 89961.6 | 99957.3 |
|        | 10031.1           | 89968.9                                 | 100,000 |

서울대학교 통계연구소 46/64

# 매우 스마트한 검사법을 개발해 보자

질문: 정확도가 더 높은 검사방법을 제시하라 (30초)

|        | 검사결과 양성           | 검사결과 음성                                 |         |
|--------|-------------------|-----------------------------------------|---------|
| 유방암 있음 | 42.7 x 83% = 35.4 | 7.3                                     | 42.7    |
| 유방암 없음 | 9995.7            | 99957.3 x <mark>90%</mark><br>= 89961.6 | 99957.3 |
|        | 10031.1           | 89968.9                                 | 100,000 |

서울대학교 통계연구소 47/64

## 매우 스마트한 검사법을 개발해 보자

답: 검사 결과를 모두 음성으로 만들자! 민감도 0%. 특이도 100%. **정확도 = 99.9573%** 

|        | 검사결과 양성       | 검사결과 음성                        |         |
|--------|---------------|--------------------------------|---------|
| 유방암 있음 | 42.7 x 0% = 0 | 42.7                           | 42.7    |
| 유방암 없음 | 0             | 99957.3 x<br>100% =<br>99957.3 | 99957.3 |
|        | 0             | 100,000                        | 100,000 |

서울대학교 통계연구소 48/64

• 희귀한 질병의 예측에는 분류의 정확도를 쓸 수 없다 (매우 잘 알려진 사실)

|        | 검사결과 양성           | 검사결과 음성                    |         |
|--------|-------------------|----------------------------|---------|
| 유방암 있음 | 42.7 x 83% = 35.4 | 7.3                        | 42.7    |
| 유방암 없음 | 9995.7            | 99957.3 x 90%<br>= 89961.6 | 99957.3 |
|        | 10031.1           | 89968.9                    | 100,000 |

양성예측도 
$$=$$
  $\frac{$ 암판정수} 검사결과양성의수  $=$   $\frac{35.4}{10031.1} = 0.0035 = 0.35\%$ 

서울대학교 통계연구소 49/64

# 공정한 비교의 원칙

- 스마트 암검사 유방암의 양성예측도 = 0.35%
- "정확도 90%", 무엇과 비교해서?
- 암검사 성능의 척도로 부적절한 "정확도"

(Disclaimer) 위암, 간암, 대장암 등 한국인에게 더 많이 나타나는 암의 경우, 스마트 암검사의 양성예측도, 민감도, 특이도가 기존의 방법보다 더 좋을 수가 있다.

#### 국가 암 검진사업의 암 종류별 양성

|        | 위암   | 간암   | 대장암  | 유방임  |
|--------|------|------|------|------|
| 평균     | 3.28 | 5.65 | 1.69 | 0.64 |
| 30~39살 | -    | -    | -    | -    |
| 40~49살 | 1,33 | 2.90 | -    | 0.5  |
| 50~59살 | 2.68 | 5.23 | 1,14 | 0.7  |
| 60~69살 | 4.87 | 7.4  | 1.97 | 0.94 |
| 70살 이상 | 7,13 | 6,51 | 2,72 | 0,95 |

\*양성예측도: 암 검진에서 암이 의심된다고 람 가운데 최종 검사에서도 암으로 판정되는 칸은 연령별 검진사업 대상이 아닌 항목임.

칸은 연령별 검진사업 대상이 아닌 항목임. 자료: (국가암 검진사업의 비용과 효과)(박은철 연세대 의

서표- (독가 참 삼천사업의 비중의 요리/(박근물 천세네 학교실 교수)

서울대학교 통계연구소 50/64

## 분류 모형의 평가

#### 혼동행렬과 오분류율

- lacktriangle 혼동행렬 (Confusion Matrix): 분류기에 의해 분류를 한 뒤, 각 관측값의 실제 Y값과 예측된  $\hat{Y}$ 값으로 만든 분할표
- ▶ 대학원 입학 자료를 LDA에 의해 분류한 결과

| TOEFL.Score | CGPA | Class | predicted.Class |
|-------------|------|-------|-----------------|
| 118         | 9.65 | Admit | Admit           |
| 107         | 8.87 | Admit | Admit           |
| 104         | 8.00 | Admit | No              |
| 110         | 8.67 | Admit | Admit           |
| 103         | 8.21 | No    | No              |
| 115         | 9.34 | Admit | Admit           |
|             |      |       |                 |

▶ 대학원 입학 자료를 LDA에 의해 분류한 뒤의 혼동행렬

| ## | Reference          |     |               |  |
|----|--------------------|-----|---------------|--|
| ## | ${\tt Prediction}$ | No  | ${\tt Admit}$ |  |
| ## | No                 | 132 | 38            |  |
| ## | Admit              | 33  | 197           |  |

서울대학교 통계연구소 52/64

lacktriangle 혼동행렬 (Confusion Matrix): 분류기에 의해 분류를 한 뒤, 각 관측값의 실제 Y값과 예측된  $\hat{Y}$ 값으로 만든 분할표

Y의 두 범주가 Positive, Negative 임을 가정. (병/무병, 합격/불합격 등)

|    |          | 실        |          |            |
|----|----------|----------|----------|------------|
|    |          | Positive | Negative |            |
| 예측 | Positive | TP       | FP       | $P^{pred}$ |
| 에득 | Negative | FN       | TN       | $N^{pred}$ |
|    |          | Р        | N        | Total      |

▶ 오분류율 (Missclassification error rate)

$$=rac{$$
오분류된 자료의 갯수}{전체 자료의 갯수}=rac{FP+FN}{ ext{Total}}

▶ 정확도 (Accuracy) = 1 - 오분류율 =  $\frac{TP+TN}{Total}$ 

서울대학교 통계연구소 53/64

### 양성예측도, 음성예측도

전체적인 오분류율, 정확도도 중요하지만, 각 범주별 오분류율도 중요하다. 암 검사 예제와 같은 불균형자료인 경우 더욱 중요하다.

- 》 양성예측도(Postivie Predictive Value): Positive로 예측분류된 개체가 정말로 Positive인 비율=  $\frac{TP}{TP+FP}$  (Precision)
- Pedalive Predictive Value): Negative로 예측분류된 개체가 정말로 Negative인 비율  $=\frac{TN}{FN+TN}$

|     |          | 실           |             |                   |
|-----|----------|-------------|-------------|-------------------|
|     |          | Positive    | Negative    |                   |
| 예측  | Positive | TP          | FP          | $\rightarrow$ PPV |
| તા= | Negative | FN          | TN          | ightarrow NPV     |
|     |          | Ρ×          | Ν×          |                   |
|     |          | Sensitivity | Specificity |                   |

서울대학교 통계연구소 54/64

### 민감도, 특이도

- ▶ 민감도(sensitivity): 실제 Positive인 개체가 정확히 분류된 비율  $=\frac{TP}{TP+FN}=\frac{TP}{P}$  = 진양성율 (True Positive Rate)
- ▶ 특이도(Specificity): 실제 Negative인 개체가 정확히 분류된 비율  $= \frac{TN}{TN+FP} = \frac{TN}{N}$ 
  - lacktriangle 위양성율(False Positive Rate)  $= \frac{FP}{N} = 1$ —Specificity

|    |          | 실           |             |                   |
|----|----------|-------------|-------------|-------------------|
|    |          | Positive    | Negative    |                   |
| 예측 | Positive | TP          | FP          | $\rightarrow$ PPV |
| 에ㅡ | Negative | FN          | TN          | $\rightarrow$ NPV |
|    |          | P 📐         | Ν×          | •                 |
|    |          | Sensitivity | Specificity |                   |

서울대학교 통계연구소 55/64

#### 한계점의 변화

ightharpoonup kNN, LDA, QDA, Logistic regression 모두  $\hat{P}({\sf Y}={\sf Positive}\mid {\sf X}={\sf x})$  >0.5 일때  $\hat{Y}={\sf Positive}$ 로 정하는 분류기

이때, 한계점 (cutoff 또는 threshold) 0.5를 줄이면, 더 많은 개체를 Positive로 예측하게 된다. 이때, 진양성(True Positive)율과 민감도는 증가, 특이도와 진음성(True Negative)율은 감소.



서울대학교 통계연구소 56/64

### 불균형자료에서 한계점의 변화

▶ 예를 들어, "Positive"의 비율이 실제로는 10%였다면, 특이도를 조금 희생하여 민감도를 크게 늘리는게 가능.



서울대학교 통계연구소 57/64

#### **ROC Curve**

- ▶ (특히 불균형자료인 경우) 한계점의 변화에 따른 민감도와 특이도의 변화를 동시에 보는 것이 중요하다
- ▶ 하나의 Threshold에 따라 (민감도, 특이도)의 값이 주어지므로 이를 그래프로 표현 (x축은 1-특이도 = False Positive Rate, y축은 민감도 = True Positive Rate)



서울대학교 통계연구소 58/64

▶ ROC Curve 아래의 면적을 AUC (Area Under the ROC curve)라고 하며 AUC = 0.5 이면 예측력 0. AUC = 1이면 완벽한 예측 가능 (오분류율 0).



서울대학교 통계연구소 59/64

### 분류의 성능 평가

- ▶ 정확도: 전체 자료 중 분류기가 제대로 예측한 개체의 비율
- ▶ 민감도, 특이도: 범주별 정확도
- ▶ 양성예측도: Positive로 예측한 개체 중 진짜 Positive인 비율
- ▶ AUC: ROC Curve를 종합적으로 평가한 값. 1에 가까울수록 좋은 분류법.

균형자료의 경우, 일반적으로 정확도 (또는 오분류율)을 기준으로 성능 평가 불균형자료인 경우, AUC를 이용 (또는 자료를 강제로 균형있게 만들어줌)

서울대학교 통계연구소 60/64

## Training vs Testing

- N료로부터 분류기 f(x)를 추정하고, 같은 자료로 정확도 등을 평가하면, 정확도가 과대평가된다.
- ▶ 분류기 f(x)의 오분류율  $P(\hat{y} \neq y) = P(f(x) \neq y)$ 을 작게 만드는 분류기가 좋은 분류기
- 이때, f(x)를 추정할 때 쓰는 자료 (Training data)와  $P(f(x) \neq y)$ 를 계산할 때 쓰는 자료 (Testing data)를 분리해야 한다
- ▶ 일반적으로, Training data와 Testing data는 같은 모집단에서 샘플된 서로 독립인 자료
- ▶ 분류기 비교 평가의 과정:
  - lacktriangle Training data로부터 분류기 (kNN, LDA, QDA, Logistic, etc) f(x)를 추정
  - lacktriangle Testing data로부터 f(x)의 오분류율, 정확도, AUC 등을 계산

서울대학교 통계연구소 61/64

#### Cross-validation

- 일반적인 자료에는 Training / Testing split이 되어 있지 않다.
- ▶ Testing data를 랜덤하게 선택하게 되므로 f(x)와 AUC 등의 계산에 임의성이 포함됨.
- ▶ Cross-validation: 반복을 이용하여 임의성을 줄여주는 방법



source: https://medium.com/@josephofiowa

서울대학교 통계연구소 62/64

## 실습

#### 실습 Overview

#### 주로 사용하는 R package

- caret (Classification And REgression Training): 여러 방법을 이용하여 예측모형을 만들 때 쉽게 이용
- 2. pROC: ROC Curve와 AUC 계산
- 3. dplyr, GGally, etc

#### 이용할 자료

- Lower Back Pain Symptoms Dataset
- ▶ 310명 개인으로부터 실측된 12개의 척추관련 변수를 이용하여 Y = Abnormal 또는 Normal 예측

#### 분석과정

- 1. 탐색적자료분석
- 2. Training/Testing Split
- 3. 분류기 추정 (kNN, LDA, QDA, Logistic regression)

4. 분류기 성능 계산 및 비교

서울대학교 통계연구소 64/64