PROJECT REPORT

1. <u>INTRODUCTION</u>:

1.1 Project Overview

- This project is based on Internet Of Things (IoT), that can measure soil moisture, Humidity
 and temperature conditions for agriculture and crop protection using Watson IoT services.
 IoT is network that connects physical objects or things embedded with electronics, software
 and sensorsthrough network connectivity that collects and transfers data using cloud for
 communication. Data is transferred throughinternet without human or human to
 computer interaction.
- In this project we have not used any hardware. Instead of real soil moisture, Humidity and Temperature data obtained from sensors we make use of IBM IoT Simulator which can transmitthese parameters as required.

2.2 Purpose

- An intelligent crop protection system helps the farmers in protecting the crop from the animals and birds which destroythe crop.
- This system also helps farmers to monitor the soil moisture levels in the field and also the temperature and humidity values near the field. The motors and sprinklers in the field can be controlled using the mobile application.

2. <u>LITERATURE SURVEY</u>:

2.1 Existing Problem

- Agriculture is a field which forms the basis of our economy. Yet it faces alot of problems in terms of availability of resources, Irrigation, increasing rate of Pesticides, Climatic disasters, Insects which ruin the crops and makes a huge lossthis sector.
- In agriculture water is needed for the crops for their growth. If the Soil getsdry it is necessary to supply water. But sometime if the farmerdoesn't visit the field it isnot possible know the condition of soil.
- Sometimes over supply of water or less supply of wateraffects the growth of crops.
- Sometimes if the weather/temperature changessuddenly it is necessary to takecertain actions.
- Specific crops grow better in specific conditions, they may get damaged due to badweather.

2.2 References

- https://smartinternz.com/assets/docs/Smart%20Home% 20Automation%20using%20IBM%20cloud%20Service s%20(1).pdf
- https://smartinternz.com/assets/docs/Smart%20Home% 20Automation%20using%20IBM%20cloud%20Service s%20(1).pdf
- https://openweathermap.org/
- https://smartinternz.com/assets/docs/Sending%2 0Http% 20request%20to%20Open%20weather%20map%20web site%20to%20get%20the%20weather%20forecast.p df
- https://www.youtube.com/watch?v=cicTw4SEdxk
- https://smartinternz.com/assets/docs/Smart%20Home% 20Automation%20using%20IBM%20cloud%20Service s%20(1).pdf
- https://github.com/rachuriharish23/ibmsubscribe

2.3 Problem Statement Definition

- Smart Crop Protection System based on IoT can monitor soil moisture and climatic conditions to grow and yield a good crop.
- The farmer can also get the realtimeweather forecasting data by using external platforms like Open Weather API.
- Farmer is provided mobile app using whichhe can monitor the temperature, humidity and soil moisture parameters along with weatherfore casting details.
- Based on all the parameters he can water his crop by controlling themotors using the mobile application.
- Even if the farmer is not present near his crop he can water his cropby controllingthe motors using the mobile application from anywhere.
- Here we are using the Online IoT simulator for getting the Temperature, Humidityand Soil Moisture values.

3. IDEATION & PROPOSED SOLUTION:

3.1 Empathy Map Canvas

3.2 Ideation & Brain Storming

What do they think and feel?

As its name may imply, smart farming is the use of technology in animal agriculture, and it's something that's been around since the Industrial Revolution. The biggest difference between then and now, though? "Motorized devices are being replaced with IOT".

What do they hear?

Smart farming is about using the new technologies which have arisen at the dawn of the Fourth Industrial Revolution in the areas of agriculture and cattle production to increase production quantity and quality, by making maximum use of resources and minimizing the environmental impact.

What do they see?

Smart farming is a management concept focused on providing the agricultural industry with the infrastructure to leverage advanced technology – including big data, the cloud and the internet of things (IoT) – for tracking, monitoring, automating and analyzing operations.

What do they say and do?

smartphone

tools by conventing them into mal coverage of information in order to them define ways
tools, by converting them into real sources of information in order to then define ways
of simplifying agricultural work. It also allows for accurate and predictive analysis
of all situations that may affect the farms, such as weather conditions (temperature,
humidity, etc.) and sanitary or economic situations, for example. This makes it easier to
organize the supply of energy, water, livestock feed and fertilizer.
☐ In its most advanced form, smart farming facilitates the exchange of information
between different farms, creating a real network of connected farms accessible from a

3.3 Proposed Solution

S.No.	Parameter	Description
1.	Problem Statement (Problem to be solved)	Crops in farms are many times ravaged by local animals like buffaloes, cows, goats, birds, and fire etc. This leads to huge losses for the farmers. It is not possible for farmers to barricade entire fields or stay on field 24 hours and guard it.
2.	Idea / Solution description	Here we propose an automatic crop protection system from animals and fire. This is an arduino Uno based system using microcontroller. This system uses a motion sensor to detect wild animals approaching near the field and smoke sensor to detect the fire.
3.	Novelty / Uniqueness	Fastest alert to the farmers through SMS.
4.	Social Impact / Customer Satisfaction	Real time data and production insight. Remote monitoring.
5.	Business Model (Revenue Model)	Help farmers in protecting their orchards and fields and save them from significant financial losses and will save them from the unproductive efforts that they endure for the protection their fields. This will also help them in achieving better crop yields thus leading to their economic wellbeing.
6.	Scalability of the Solution	Alerts the farmers immediately through an SMS.

3.4 Problem Solution Fit

4. REQUIREMENT ANALYSIS:

4.1 Functional Requirements

Functional Requirements:

Following are the functional requirements of the proposed solution.

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	User Registration	Install the app.
		Signing up with Gmail or phone numbers.
		Creating a new profile.
		Understand the guidelines which we given
FR-2	User Confirmation	Email or phone number verification
		required via OTP.
FR-3	Accessing datasets	The data like values of temperature, data
		sensor, humidity, soil moisture are received
		by alert SMS.
FR-4	Interface sensor	Connect the sensor and the application
		When animals enter the field, the alarm is
		generated.
FR-5	User action	The user needs to take action like detecting
		through crop rotation, fertilizer, strip
		cropping.

4.2 Non Functional Requirements

▲ Non-functional Requirements:

Following are the non-functional requirements of the proposed solution.

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	This project's contributors to the farm protection through the smart protection system and use new technologies and also increase the quality of its crop.

NFR-2	Security	It was created to protect the crops from
		animals.
NFR-3	Reliability	Farmers are able to safeguard their lands
		by help of this technology. They get
		some good benefits from higher crop
		yields.
NFR-4	Performance	When animals attempt to enter the crop
		field, IOT devices and sensors alert the
		farmer via message and maintain good yields.
NFR-5	Availability	Agriculture fences are quite an effective
		wild animal protection system.
NFR-6	Scalability	The develop system will not harmful and
		injurious to animals as well as human
		beings through the system.

5. **PROJECT DESIGN**:

5.1 Data Flow Diagram

5.2 Solution & Technical Architecture

5.3 User Stories

er Typ e	Functional requireme nt(Epic)	User Story numb e r	User Story/Task	Acceptan	Priority	Release
Custom er (Mobil user)	Registration	USN-1	User can enter into the web application	I can accessmy account /dashboard	High	Sprint 1
		USN-2	User can register their credentials likeemail id and password	I can receive confirmati on email & click confirm	High	Sprint 1
	Login	USN-3	User can log into theapplication by entering email & password	I can login tomy account	High	Sprint 1
	Dashboard	USN-4	User can view the temperature	I can view the data given by the device	High	Sprint 2
		USN-5	User can view thelevel of sensor monitoring value	I can view the data given by the device	High	Sprint 2
Custom er(Web user)	Usage	USN-1	User can view the web page and get theinformation	I can view the data given by the device	High	Sprint 3
Custome r	Working	USN-1	User act according to the alert given by thedevice	I can get thedata work according to it	High	Sprint 3
		USN-2	User turns ON Buzzer/Sound Alarm when the disturbancewill occur on field.	I can get thedata work according toit		Sprint 4
Admini st ration	Administrat ion	USN-1	User store every information	I can store the gained informati on	High	Sprint 4

6. PROJECT PLANNING& SCHEDULING:

6.1 Sprint Planning & Estimation

TITLE	DESCRIPTION	DATE
Literature Survey on The	A Literature Survey is a compilation	20 September 2022
Selected Project and	summary of research done previously	
Information Gathering	in the given topic. Literature survey	
	can be taken from books, research	
	paper online or from any source.	
Prepare Empathy Map	Empathy Map is a visualization tool	22 September 2022
	which can be used to get a better	
	insight of the customer	
Ideation-Brainstorming	Brainstorming is a group problem	28 September 2022
	solving session where ideas are	
	shared, discussed and organized	
	among the team members.	
Define Problem Statement	A Problem Statement is a concise	20 September 2022
	description of the problem or issues a	
	project seeks to address. The problem	
	statement identifies the current state,	
	the desired future state and any gaps	
Problem Solution Fit	between the two. This helps us to understand the	01 October 2022
Problem Solution Fit	thoughts of the customer their likes,	01 October 2022
	behaviour, emotions etc.	
Proposed Solution	Proposed solution shows the current	18 October 2022
Proposed Solution	solution and it helps is going towards	18 October 2022
	the desired result until it is achieved.	
Solution Architecture	Solution Architecture is a very	18 October 2022
30idtion Architecture	complex process <u>l.e</u> it has a lot of sub-	18 October 2022
	processes and branches. It helps in	
	understanding the components and	
	features to complete our project.	
Customer Journey	It helps us to analyse from the	01 November 2022
castomer source,	perspective of a customer, who uses	
	our project.	
Functional Requirement	Here functional and nonfunctional	01 November 2022
	requirements are briefed. It has	
	specific features like usability,	
	security, reliability, performance,	
	availability and scalability.	
Data Flow Diagrams	Data Flow Diagram is a graphical or	03 November 2022
Data Flow Diagrams		03 November 2022
	visual representation using a	
	standardized set of symbols and	
	notations to describe a business's	
	operations through data movement.	
Technology Architecture	Technology Architecture is a more	03 November 2022
	well defined version of solution	
	architecture. It helps us analyze and	
	understand various technologies that	
	needs to be implemented in the	
	project.	
Prepare Milestone & Activity	It helps us to understand and	06 November 2022
List	evaluate our own progress and	OU NOVELLIDEL 2022
LISC	9 5 5	
	accuracy so far.	
Spring Delivery Plan	Sprint planning is an event in scrum	06 November 2022
	that kicks off the sprint. The purpose	
	of sprint planning is to define what	
	can be delivered in the sprint and	
	how that work will be achieved.	

6.2 Sprint Delivery Schedule

7. CODING & SOLUTIONING:

7.1 Feature 1

7.2 Feature 2

MIT APP inventor to design the APP

Customize the App interface to Display the Values

8. TESTING:

■ Defect Analysis

This report shows the number of resolved or closed bugs at each severity level, and how they were resolved

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Subtotal
By Design	11	4	2	2	19
Duplicate	1	1	2	0	4
External	2	3	0	1	6
Fixed	10	2	3	20	35
Not Reproduced	0	0	2	0	2
Skipped	0	0	2	1	3
Won't Fix	0	5	2	1	8
Totals	24	15	13	25	77

Test Case Analysis

This report shows the number of test cases that have passed, failed, and untested

	Section	Total Cases	Not Tested	Fail	Pass
	Print Engine	5	0	1	4
	Client Application	47	0	2	45
}					
	Security	3	0	0	3
	Outsource Shipping	2	0	0	2
	Exception Reporting	11	0	2	9
	Final Report Output	5	0	0	5
	Version Control	3	0	1	2

9. RESULT:

We have successfully built an IOT Based Smart Crop Protection System for Agriculture and integrated all the services using Node-RED.

10. ADVANTAGES & DISADVANTAGES:

10.1 Advantages

- All the data like climatic conditions and changes in them, soil or cropconditions everything can be easily monitored.
- Risk of crop damage can be lowered to a greater extent.
- Many difficult challenges can be avoidedmaking the processautomated and the quality of crops can be maintained.
- The process included in farming can be controlled using the web applications from anywhere, anytime.

10.2 Disadvantages

- Smart Crop Protection requires internet connectivity continuously, butrural partscan not fulfill this requirement.
- 1. Any faults in the sensors can cause great loss in the agriculture, due towrong records and the actions of automated processes.
- 2. IoT devices need much money to implement.

11. **CONCLUSION**:

IoT based smart Crop Monitoring System for Agriculture for Live Monitoring of Temperature

and Soil Moisture and to control motor and light remotely has been proposed using Node Red and

IBM CloudPlatform. The Systemhas high efficiency and accuracy in fetching the live data of

temperature and soil moisture. The IoT based smart farming System being proposed via this

project will assist farmers in increasing theagriculture yield and take efficient care of food

production as the System will always provide helpinghand to farmers for gettingaccurate live

feed of environmental temperature and soil moisture with more than 99% accurate results.

Therefore, the project proposes athought of consolidating the most recentinnovation into the

agrarian field to turn the customary techniques for water system to current strategies in this way

making simple profitable and temperate trimming.

12. <u>FUTURE SCOPE</u>:

In future due to more demand of good and more farming in less time, for betterment of the crops

and reducing the usage of extravagant resources like electricity and water IoT can be implemented

in most of the places.

13. APPENDIX:

GITHUB LINK: https://github.com/IBM-EPBL/IBM-Project-43615-1660718462

SOURCE CODE: https://github.com/IBM-EPBL/IBM-Project-43615-

1660718462/tree/main/Final%20Deliverables