Matemática 4 - 2024

TP5 - Estructuras Algebraicas - Teoría de Grupos

1. Determinar cuales de las siguientes operaciones están bien definidas sobre el conjunto A dado. Analizar las propiedades en los casos afirmativos

(a)
$$A = N, a * b = 3ab$$

(b)
$$A = Z$$
, $a * b = \frac{a+b}{3+ab}$

(c)
$$A = R$$
, $x * y = x + y - xy$

(d)
$$A = \{0, 1, 2, 3\},\$$

*	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	1	2	0	2
3	2	3	1	1

- 2. Demostrar que:
 - (a) Dado $M = \{m \in \mathbb{N} : m > 0\}, (M, +)$ es un semigrupo pero no es un monoide
 - (b) El conjunto de un solo elemento $M=\{e\}$ con la operación definida por e*e=e es un monoide
 - (c) Dado un conjunto no vacío A, el conjunto de las partes de AP(A) con la operación intersección de conjuntos es un monoide conmutativo
- 3. Demostrar que si para una operación asociativa * en A existe un elemento neutro e y un elemento del conjunto, a, tiene inverso entonces éste es único.
- 4. Sea R una relación de congruencia sobre un semigrupo (S,*) demostrar que $(S/R,\circledast)$ (el conjunto cociente y la operación inducida por * sobre las clases de equivalencia) es un semigrupo llamado Semigrupo Cociente

- 5. Analizar si las siguientes son estructuras de grupo:
 - (a) (Z, +), los enteros con la suma usual
 - (b) (Z, \cdot) , los enteros con el producto usual
 - (c) $(R^2, +)$, los pares ordenados de reales con la suma usual
 - (d) $(M_{2x2}, +)$ las matrices de 2x2 con la suma usual de matrices
 - (e) $(P(A), \cup)$, A cualquier conjunto y P(A) indica el conjunto de partes de A
- 6. Probar que en todo Grupo el único elemento *idempotente* es el neutro
- 7. Mostrar que en todo grupo vale la propiedad cancelativa
- 8. Sea (G,*) un grupo tal que todo elemento es su propio inverso, probar que G es abeliano
- 9. Dado un grupo (G,*), probar que G es abeliano si y sólo si para cualquier x,y en G vale que: $(x*y)^2 = x^2*y^2$
- 10. Dados los Grupos (G,*) y (F,\diamondsuit) se define en el conjunto $G\times F$ la ley tal que $(x,y) \bullet (z,t) = (x*z,y\diamondsuit t)$. Probar que $(G\times F,\bullet)$ es Grupo $(\textbf{\textit{Grupo Producto}})$
- 11. Estudiar si son Subgrupos de los grupos indicados:
 - (a) Los enteros pares de (Z, +)
 - (b) Las matrices simétricas de 2x2
- 12. Demostrar que si H y K son subgrupos de (G,*) entonces $H\cap K$ es un subgrupo de (G,*)
- 13. Sea (G, *) un grupo, sea $a \in G$ y sea H un subgrupo de G. Demostrar que el conjunto $aHa^{+1} = \{a * h * a^{-1} : h \in H\}$ es un subgrupo de G.
- 14. Probar que todo grupo cíclico es abeliano
- 15. Sea G un grupo cíclico de orden n, Si m es divisor de n entonces el elemento a^m y sus potencias generan un subgrupo
- 16. Sea (G, *) un grupo, sea $a \in G$ y sea H un subgrupo de G. Si $a, b \in G$, probar que la relación dada por $a \equiv b \mod(H)$ si $a * b^{-1} \in H$ es una relación de equivalencia

Ejercicios Adicionales

- 1. Determinar si a*b=mcm[a,b] está bien definida en A=N, y en caso afirmativo analizar las propiedades
- 2. Probar que $GL(n,K) = \{A \in K^{n \times n}; det(A) \neq 0, con K cuerpo\}$ (conjunto de las matrices de orden n invertibles) es un grupo con el producto usual
- 3. Demostrar que si (G, *) es un grupo abeliano, entonces $(a * b)^n = a^n * b^n$ para todo n entero
- 4. Dado un grupo (G,*) y sea $a \in G$, se considera el conjunto **normalizador** $N(a) = \{x \in G | \forall a \in G : a*x = x*a\}$. Probar que N(a) es un Subgrupo de G.