Elem. der Op.Theo. # 1 13 - Spektr. u. Resolv.	Elem. der Op. Theo. # 2 13 - Spektr. u. Resolv.
Resolventenmenge, Spektrum und Resolventenfunktion	Zusammenhang λ und $R(\lambda, A)$
Elem. der Op.Theo. # 3 13 - Spektr. u. Resolv.	Elem. der Op.Theo. # 4 13 - Spektr. u. Resolv.
Resolventendarstellung	Resolventengleichung
Elem. der Op.Theo. # 5 13 - Spektr. u. Resolv.	Elem. der Op.Theo. # 6 13 - Spektr. u. Resolv.
Zusammenhang $A \in B(C)$ und $\sigma(A)$	Zusammenhang Hanh-Banach und Existenz einer dualen nicht-null Abbildung
Elem. der Op.Theo. # 7 13 - Spektr. u. Resolv.	Elem. der Op.Theo. # 8 13 - Spektr. u. Resolv.
Spektralradius	Berechnung des Spektralraduiuses

A ist abgeschlossen, falls $\lambda \in \rho(A)$, so ist $R(\lambda, A) \in B(X)$ und $R(\lambda, A) \colon X \to (D(A), \|\cdot\|_A)$ ein Isomorphismus.

Sei X ein Banachraum über \mathbb{C} , $A \colon X \supset D(A) \to X$ linear und abgeschlossen.

a) $\lambda \in \mathbb{C}$ gehört zur **Resolventenmenge** von $A, \lambda \in \rho(A)$, falls

$$\lambda I - A \colon D(A) \to X$$
 bijektiv, d.h. $(\lambda I - A)^{-1} \colon X \to D(A)$

- b) $\sigma(A) = \mathbb{C} \setminus \rho(A)$ heißt **Spektrum** von A
- c) $\lambda \in \rho(A) \to R(\lambda, A) = (\lambda A)^{-1}$ heißt Resolventenfunktion von A

4

Antwort

Sei A ein abgeschlossener Operator auf X. Für $\lambda, \mu \in \rho(A)$ gilt:

$$R(\lambda, A) - R(\mu, A) = (\mu - \lambda)R(\lambda, A)R(\mu, A)$$

Insbesondere ist $\lambda \in \rho(A) \to R(\lambda, A) \in B(X)$ eine komplex differenzierbare Abbildung und

$$\frac{d}{d\lambda}R(\lambda, A) = -R(\lambda, A)^2$$

3

Antwort

Sei $X\supset D(A)\xrightarrow{A}X$ abgeschlossen, X ein Banachraum. Für $\lambda_0\in\rho(A)$ und $\lambda\in\mathbb{C}$ mit $|\lambda-\lambda_0|<\frac{1}{\|R(\lambda_0,A)\|}$ ist auch

$$\lambda \in \rho(A)$$
 und $R(\lambda, A) = \sum_{n \ge 0} (\lambda_0 - \lambda)^n R(\lambda_0, A)^{n+1}$.

Insbesondere ist $\rho(A)$ offen und $\sigma(A)$ abgeschlossen.

#6

Antwort

(*) Nach Bemerkung 8.7 bzw. allgemein aus Hahn-Banach gibt es in jedem Banachraum X $x \in X, x' \in X'mitx'(x) \neq 0$

5

Antwor

Falls $A \in B(X)$, dann ist $\sigma(A)$ nichtleer und kompakt mit $\sigma(A) \subset \{\lambda : |\lambda| \leq ||A||\}$

Für
$$\lambda > ||A||$$
 gilt: $R(\lambda, A) = \sum_{n \ge 0} \lambda^{-n-1} A^n$

8

Antwort

Für $A \in B(X)$ ist

$$r(A) = \lim_{n \to \infty} ||A^n||^{\frac{1}{n}} = \inf_{n \in \mathbb{N}} ||A^n||^{\frac{1}{n}}$$

Im Allgemeinen gilt r(A) < ||A||.

7

Antwort

Für $A \in B(X)$ heißt $r(A) := \sup\{|\lambda| : \lambda \in \sigma(A)\}$ der **Spektralradius** von A.

Elem. der Op.Theo	<u># 9</u> <u>14 -</u>	Spektr. komp. Op.	Elem. der Op.Theo.	<u># 10</u> <u>14</u>	- Spektr. komp. Op.
K	$\in K(X)$ vs. I	-K	Zerlegung voi	n X zu eine	m Operator F
Elem. der Op.Theo	o. <u># 11</u> <u>14 -</u>	Spektr. komp. Op.	Elem. der Op.Theo.	<u># 12</u> <u>14</u>	- Spektr. komp. Op.
Zusammenha	ang kompakter Spektrum	Operator und		nhang abges ator und Spe	
Op. auf HR	<u># 13</u>	15 -Hilberträume	Op. auf HR	<u># 14</u>	15 -Hilberträume
	Skalarproduk	t	Cauchy-	Schwarz-Un	gleichung
Op. auf HR	<u># 15</u>	15 -Hilberträume	Op. auf HR	<u># 16</u>	15 -Hilberträume
Aus Skala	rprodukt induz	zierte Norm	Verallgei	meinerter Py	ythagoras

Antwort

9

Antwort

Zu jedem endlich dimensionalen $F \in B(X)$ (dim $F(X) < \infty$) gibt es eine Zerlegung

$$X = X_0 \oplus X_1$$
, dim $X_1 < \infty$ und $F(X_1) \subset X_1$, $F|_{X_0} = 0$

Sei X ein Banchraum, $K \in K(X)$ (d.h. $K \in B(X)$ kompakt bzw. $K(U_X)$ ist relativ kompakt in X), dann hat I-K ein abgeschlossenen Bildraum und

$$\dim \operatorname{Kern}(I-K) = \operatorname{codim}(I-K)(X) \left[= \dim^X / (I-K)(X) \right] < \infty$$

Insbesondere: I - K injektiv $\iff I - K$ surjektiv

12

Antwort

11

Antwort

Sei $X \supset D(A) \xrightarrow{A} X$ ein abgeschlossener, linearer Operator, $\rho(A) \neq \emptyset$, $(D(A), \|\cdot\|_A) \hookrightarrow X$ kompakt.

Dann besteht $\sigma(A)$ aus endlich vielen Eigenwerten oder einer Folge von Eigenwerten mit $|\lambda_n| \to \infty$ und die zugehörigen Eigenräume sind endlich dimensional.

Sei $dim X = \infty$, $K \in B(X)$ kompakt, dann ist $0 \in \sigma(K)$ und $\sigma(K)$ ist endlich oder besteht aus einer Nullfolge. Jedes $\lambda \in \sigma(K), \lambda \neq 0$ ist ein Eigenwert mit endlich dimensionalem Eigenraum.

14

Antwort

13

Antwort

Sei X ein Vektor mit Skalarprodukt $\langle \cdot, \cdot \rangle$

Für $x,y\in X$ gilt die Cauchy-Schwarz-Ungleichung

$$|\langle x, y \rangle|^2 \le \langle x, x \rangle \cdot \langle y, y \rangle$$

Sei X ein Vektorraum über \mathbb{K} . Eine Abbildung $\langle \cdot, \cdot \rangle \colon X \times X \to \mathbb{K}$ heißt **Skalarprodukt**, falls für $x, y \in X, \lambda \in \mathbb{K}$ gilt:

$$(S1) \langle x_1 + x_2, y \rangle = \langle x_1, y \rangle + \langle x_2, y \rangle, \langle x, y_1 + y_2 \rangle = \langle x, y_1 \rangle + \langle x, y_2 \rangle$$

$$(S2) \quad \langle \lambda x, y \rangle = \lambda \langle x, y \rangle, \ \langle x, \lambda y \rangle = \overline{\lambda} \langle x, y \rangle$$

$$(S3) \quad \langle x, y \rangle = \overline{\langle y, x \rangle}$$

$$(S4)$$
 $\langle x, y \rangle \ge 0$, $\langle x, x \rangle = 0 \iff x = 0$

16

Antwort

15

Antwort

 $\langle x + y, x + y \rangle = ||x||^2 + 2 \operatorname{Re}\langle x, y \rangle + ||y||^2 \quad (*)$

Sei X ein Vektor mit Skalarprodukt $\langle \cdot, \cdot \rangle$

 $||x|| = \langle x, x \rangle^{\frac{1}{2}}$ definiert eine Norm auf X Insbesondere:

$$\langle x, y \rangle \le ||x|| \cdot ||y||$$

Op. auf HR	<u># 17</u>	15 -Hilberträume	Op. auf HR	<u># 18</u>	15 -Hilberträume
Aus Norn	n induziertes Sk	kalarprodukt	Prä-Hilb	pertraum und F	Hilbertraum
Op. auf HR	<u># 19</u>	15 -Hilberträume	Op. auf HR	<u># 20</u>	15 -Hilberträume
	L^p Hilbertraur	n?	Para	allelogramm-Gl	eichung
Op. auf HR	<u># 21</u>	15 -Hilberträume	Op. auf HR	# 22	15 -Hilberträume
В	este Approxima	ation	Win	kel zwischen V	ektoren
Op. auf HR	<u># 23</u>	<u>16 - OGS u. ONB</u>	Op. auf HR	<u># 24</u>	<u>16 - OGS u. ONB</u>
	e Vektoren, Me nogonale Kompl		3x Eigen	nschaften des o Komplement	

Ein metrischer Raum $(X, \|\cdot\|)$ heißt **Prä-Hilbertraum**, falls es ein Skalarprodukt $\langle \cdot, \cdot \rangle$ auf $X \times X$ gibt mit

$$||x|| = \langle x, x \rangle^{\frac{1}{2}}$$

Falls $(X, \|\cdot\|)$ außerdem noch vollständig ist, dann heißt X ein **Hilbertraum**.

Man kann aus der in b) definierten Norm das Skalarprodukt zurückgewinnen durch:

Falls
$$\mathbb{K} = \mathbb{R} : \langle x, y \rangle = \frac{1}{4} (\|x + y\|^2 - \|x - y\|^2)$$

Falls $\mathbb{K} = \mathbb{C} : \langle x, y \rangle = \frac{1}{4} (\|x + y\|^2 - \|x - y\|^2 + i\|x + iy\|^2 - \|x - y\|^2)$

20

Antwort

Ein normierter Raum $(X, \|\cdot\|)$ ist genau dann ein Prä-Hilbertraum, falls die sogenannte

Prallelogramm-Gleichung gilt, d.h.

$$\forall x, y \in X: \|x + y\|^2 + \|x - y\|^2 = 2\|x\|^2 + 2\|y\|^2$$
 (P)

19

Antwort

 $L^p(\Omega)$ ist kein Hilbertraum für $n \neq 2$.

Antwort

Seien $u, v \in H \setminus \{0\}$ und definiere entsprechend $u_1 =$ $\frac{u}{\|u\|}, v_1 = \frac{v}{\|v\|}.$

$$\Rightarrow 1 \ge \frac{|\langle u, v \rangle|}{\|u\| \cdot \|v\|} = |\langle u_1, v_1 \rangle| = \cos(\alpha)$$

wobei $\alpha \in [0, \pi)$ eindeutig gewählt.

21

Antwort

Sei X ein Hilbertraum und K eine konvexe und abgeschlossene Teilmenge von X.

- a) Zu jedem $x \in X$ gibt es genau ein $y_0 \in K$ so, dass $||x - y_0|| = \inf\{||x - y|| : y \in K\}$
- b) Dieses $y_0 \in K$ ist charakterisiert durch die Ungleichung

$$\operatorname{Re}\langle x - y_0, y - y_0 \rangle \le 0$$
 (w)

- a) $A \subseteq B \Rightarrow B^{\perp} \subseteq A^{\perp}$
- b) A^{\perp} ist stets ein abgeschlossener Unterraum von X
- c) $A \subseteq (A^{\perp})^{\perp}$, $A^{\perp} = \overline{\operatorname{span}(A)}^{\perp}$

Antwort

Sei X ein Prähilbertraum

- a) $x, y \in X$ heißen **orthogonal**, falls $\langle x, y \rangle = 0$. Schreibweise: $x \perp y$
- b) $A, B \subseteq X$ sind orthogonal, falls $\langle x, y \rangle = 0$ für alle $x \in A, y \in B$. Schreibweise $A \perp B$
- c) Sei $A \subset X$. $A^{\perp} = \{ y \in X : \langle y, x \rangle = 0 \ \forall x \in A \}$ ist das **orthogonale Komplement** von A in X.

Op. auf HR	<u># 25</u>	<u>16 - OGS u. ONB</u>	Op. auf HR	<u># 26</u>	<u>16 - OGS u. ONB</u>
	Orthogonalzerle	gung	O	rthogonoalproj	ektion
Op. auf HR	<u># 27</u>	16 - OGS u. ONB	Op. auf HR	<u># 28</u>	<u>16 - OGS u. ONB</u>
Op. auf HR	3x Eigenschafter Orthogonoalproje # 29		Orthogona Op. auf HR	alsystem, Orthound ONB	onormalsystem <u>16 - OGS u. ONB</u>
	Besselsche Unglei	chung		Parseval	
Op. auf HR	<u># 31</u>	<u>16 - OGS u. ONB</u>	Op. auf HR	<u># 32</u>	<u>16 - OGS u. ONB</u>
	$ONS \iff OI$	NB	Gr	am-Schmidt-Ve	rfahren

Sei X ein Hilbertraum, $U \subseteq X$ abgeschlossen und X = $U \oplus U^{\perp}$. Für $X \ni x = x_1 + x_2$, mit $x_1 \in U, x_2 \in U^{\perp}$ definiere

$$P_U \colon X \to U, \ Px = x_1$$

 P_U heißt **Orthogonalprojektion** von X auf U.

Sei X ein Hilbertraum und U ein abgeschlossener Teilraum von X.

Dann gilt:
$$X = U \oplus U^{\perp}$$

28

Antwort

Sei X ein Hilbertraum.

- Eine Folge $(h_n)_{n\geq 1}\subseteq X$ heißt **Orthogonalsystem**, falls $h_n \perp h_m$ für $m \neq n$.
- $(h_n)_{n\geq 1}$ heißt Orthonormalsystem, falls zusätzlich $||h_n|| = 1$ für alle $n \in \mathbb{N}$ gilt.
- Ein Orthonormalsystem $(h_n)_{n\geq 1}\subseteq X$ heißt **Ortho**normalbasis von X falls

$$\overline{\operatorname{span}(h_n)} = X$$

#27

Antwort

Die Orthogonalprojektion hat folgende Eigenschaften:

- a) Bild $P_U = U$, Kern $P_U = U^{\perp}$
- b) $||P_U|| = 1$, denn $||x||^2 = ||P_U x||^2 + ||x_2||^2 \ge ||P_U x||^2$
- c) $P_U + P_{U^{\perp}} = Id_X$

30

Antwort

Antwort

Sei (h_n) eine Orthonormalbasis von X, dann ist $x = \sum_n \langle x, h_n \rangle h_n$ Sei (h_n) eine Orthonormalbasis. Für $U = \text{span}(h_n)$ gilt $||x||^2 = \sum_n |\langle x, h_n \rangle|^2$ (Parseval) und

$$\langle x, y \rangle = \sum_{n} \langle x, h_n \rangle \overline{\langle y, h_n \rangle}$$

dann

$$P_{U}x = \sum_{n} \langle x, h_{n} \rangle h_{n} \quad \forall x \in X$$

Weiter ist $||P_U x||^2 = \sum_n |\langle x, h_n \rangle|^2 \le ||x||^2 \ \forall x \in X$ (Besselsche Ungleichung)

32

Antwort

31

Antwort

Sei $(X, \langle \cdot, \cdot \rangle)$ ein Hilbertraum und $(y_n) \subset X$ linear unabhängig. Definiere

$$h_1 := \frac{y_1}{\|y_1\|}, U_1 = \operatorname{span}\{h_1\} = \operatorname{span}\{y_1\}$$

$$h_2 = \frac{\hat{h}_2}{\|\hat{h}_2\|}, \ \hat{h}_2 := y_2 - P_{U_1}y_2 = y_2 - \langle y_2, h_1 \rangle h_1$$

$$\hat{h}_{n+1} := y_{n+1} - P_{U_n} y_{n+1} = y_{n+1} + \sum_{j=1}^n \langle y_{n+1}, h_j \rangle h_j,$$
$$h_{n+1} := \frac{\hat{h}_{n+1}}{\|\hat{h}_{n+1}\|}$$

Am Ende: $\overline{\operatorname{span}}\{h_i\} = \overline{\operatorname{span}}\{y_i\}$

Ein Orthonormalsystem $(h_n)_{n\in J}$ ist genau dann eine Orthonormalbasis, wenn $\langle x, h_n \rangle = 0$ für alle $n \in J$ bedeutet

Op. auf HR	<u># 33</u>	<u>16 - OGS u. ONB</u>	Op. auf HR	<u># 34</u>	<u> 17 - Riesz</u>
_	e, unendlich d bertraum und		Einbettun	g von X in den da Dualraum	zugehörigen
Op. auf HR	<u># 35</u>	<u> 17 - Riesz</u>	Op. auf HR	<u># 36</u>	17 - Riesz
	Riesz			ing eines linearen I von Untervektorrai	
Op. auf HR	# 37 Scl	hw. Konv. u. Komp.	Op. auf HR	# 38 Schw.	Konv. u. Komp.
Sc	hwache Konve	rgenz	Eindeu	tigkeit des schwach	nen Limes
Op. auf HR	<u># 39</u> <u>Scl</u>	hw. Konv. u. Komp.	Op. auf HR	<u># 40</u> Schw.	Konv. u. Komp.
Vgl. vo	on Norm- und s Konvergenz		Schwad	ch konvergente For Beschränktheit	men und

Sei $(X, \langle \cdot, \cdot \rangle)$ ein Hilbertraum. $X \hookrightarrow X'$

Für jedes $x \in X$ erhält man ein stetiges, lineares Funktional $x' \colon X \to \mathbb{K}$ durch

$$x'(y) = \langle y, x \rangle$$
 für $y \in X$

$$mit ||x'|| = \sup\{x'(y) : ||y|| = 1\} = ||x||_X$$

Jeder separable, unendlich dimensionale Hilbertraum X hat eine Orthonormalbasis $(h_n)_{n\in\mathbb{N}}$.

Diese Orthonormalbasis definiert eine Isometrie $\phi \colon \ell^2 \to X, \phi((\alpha_n)) = \sum_{n \in \mathbb{N}} \alpha_n h_n, \quad (\alpha_n) \in \ell^2 \text{ mit}$

- $\phi(e_j) = h_j$
- $\|\phi((\alpha_j))\|_X = \langle (\alpha_j), (\beta_j) \rangle_{\ell^2} = \sum_{j \in \mathbb{N}} \alpha_j \overline{\beta_j}$
- $\phi^{-1} \colon X \to \ell^2, \phi^{-1}(x) = (\langle x, h_j \rangle_X)_{j \in \mathbb{N}} \in \ell^2$

36

Antwort

Sei X ein Hilbertraum, $M \subseteq X$ ein Untervektorraum und

 $y' \in M'$. Dann existiert ein $x' \in X'$ mit $x'|_M = y'$ und ||y'|| = ||x'||.

35

Antwort

Zu jedem $x' \in X'$ gibt es genau ein $x \in X$ mit

$$x'(y) = \langle y, x \rangle$$
 für $y \in X$.

und $||x'||_{X'} = ||x||_X$. Kurz: $X' \cong X$.

38

Antwort

37

Antwort

Der schwache Limes ist eindeutig bestimmt und linear. Sei $x_n \xrightarrow{w} x, x_n \xrightarrow{w} \hat{x}$

Sei X ein Hilbertraum und $x_n, x \in X$. Wir sagen x_n konvergiert schwach gegen x, falls

$$\Rightarrow \langle x - \hat{x}, y \rangle = \lim_{n \to \infty} (\langle x_n, y \rangle - \langle x_n, y \rangle) = 0 \quad \forall y \in X, \text{ insbesondere für } y = x - \hat{x} \ \langle x_n, y \rangle \rightarrow \langle x, y \rangle \quad \forall y \in X$$

Notation: $x_n \xrightarrow{w} x$

40

Antwort

39

Antwort

Jede schwach konvergente Folge ist normbeschränkt.

- a) Normenkonvergenz impliziert schwache Konvergenz
- b) $x_n \xrightarrow{w} x$, dann $||x|| \le \lim_{n \to \infty} ||x_n||$
- c) Falls $x_n \xrightarrow{w} x$ und $||x_n|| \to ||x||$, dann $||x x_n|| \to 0$

Op. auf HR	<u># 41</u> Sc	hw. Konv. u. Komp.	Op. auf HR	# 42 Sc	hw. Konv. u. Komp.
Schwache Konvergenz in ℓ^2			Schwache Konvergenz bei ONBs		
Op. auf HR	<u># 43</u> <u>Sc</u>	hw. Konv. u. Komp.	Op. auf HR	<u># 44</u>	Duale Op. auf HR
(relati	v) schwach k	tompakt		Adjungierter Op	erator
Op. auf HR	<u># 45</u>	Duale Op. auf HR	Op. auf HR	<u># 46</u>	Duale Op. auf HR
4x Eigense	chaften der A	Adjungierten		Kern von S un	$\mathrm{d}\ S^*$
Op. auf HR	<u># 47</u>	Duale Op. auf HR	Op. auf HR	<u># 48</u>	Duale Op. auf HR
unitär, sell	ostadjungiert	und normal	Weld	che Operatoren s	ind normal

43

Sei X ein Hilbertraum mit Orthonormalbasis (h_j) . Dann gilt

$$x_n \xrightarrow{w} x \iff \langle x_n, h_j \rangle \to \langle x, h_j \rangle \ \forall j \in \mathbb{N}$$

Sei $X = \ell^2$, $x_n = (a_{n,j})_j$, $x = (a_j)$. Dann $x_n \xrightarrow{w} x \iff a_{n,j} \to a_j$ für alle $j \in \mathbb{N}$.

44

Antwort

Seien X,Y Hilberträume und $T \in B(X,Y)$. Dann gibt es genau ein $T^* \in B(Y,X)$ mit

- $\langle Tx, y \rangle = \langle x, T^*y \rangle \quad \forall x \in X, y \in Y,$
- $||T^*|| = ||T||$,
- $(T^*)^* = T$.

Eine Teilmenge M eines Hilbertraums X heißt **relativ** schwach kompakt, falls jede Folge $(x_n) \subseteq M$ eine schwach konvergente Teilfolge besitzt.

Antwort

Eine beschränkte Teilmenge eines Hilbertraums ist relativ schwach kompakt.

46

Antwort

45

Antwort

Für $S \in B(X)$ gilt:

 $\operatorname{Kern}(S) = (\operatorname{Bild}(S^*))^{\perp}, \quad \operatorname{Kern}(S^*) = (\operatorname{Bild}(S))^{\perp}$

Sei $S, T \in B(X), \lambda \in \mathbb{K}$

- a) $(S+T)^* = T^* + S^*$
- b) $(\lambda S)^* = \overline{\lambda} S^*$
- c) $(T \cdot S)^* = S^*T^*$
- d) $||S \cdot S^*|| = ||S||^2 = ||S^* \cdot S||$

48

Antwort

47

Antwort

Unitäre und selbstadjungierte Operatoren sind normal.

Sei $T \in B(X,Y), X, Y$ Hilberträume

- a) T heißt **unitär**, falls T invertierbar ist und $T^{-1} = T^*$ d.h. T ist surjektiv und $\langle Tx, Ty \rangle = \langle x, T^*Ty \rangle = \langle x, y \rangle$ $\forall x, y \in X$
- b) Sei X = Y. T ist **selbstadjungiert**, falls $T^* = T$, d.h. $\langle Tx, y \rangle = \langle x, Ty \rangle$ $\forall x, y \in X$
- c) Sei X = Y. $T \in B(X)$ heißt **normal**, falls $T^*T = TT^*$. d.h. $\langle Tx, Ty \rangle = \langle T^*x, T^*y \rangle \quad \forall x, y \in X$

Op. auf HR # 49 Duale Op. auf HR	Op. auf HR # 50 Duale Op. auf HR
$T \in B(X)$ ist selbstadjungiert genau dann wenn	Norm von T , wenn T selbstadjungiert ist
Op. auf HR # 51 Duale Op. auf HR	Op. auf HR # 52 Duale Op. auf HR
$r(T)$ und $\operatorname{Kern}(T)$ wenn T normal ist	$4x$: Sei X ein Hilbertraum und $T \in B(X)$ kompakt und normal, d.h. $TT^* = T^*T. \text{ Dann gilt}$
	Op. auf HR # 54 Duale Op. auf HR
Spektralsatz für kompakte, normale Operatoren	Seperabel + ONB => Darstellung des Operators

Für $T \in B(X)$ selbstadjungiert, gilt:

$$||T|| = \sup_{\|x\| \le 1} |\langle Tx, x \rangle|$$

Sei X ein Hilbertraum über \mathbb{C} .

 $T \in B(X)$ ist selbstadjungiert $\iff \langle Tx, x \rangle \in \mathbb{R}$ für alle x

52

Antwort

Sei X ein Hilbertraum und $T \in B(X)$ kompakt und normal, d.h. $TT^* = T^*T$. Dann gilt

- a) $Tx = \lambda x \iff T^*x = \overline{\lambda}x$
- b) $Tx = \lambda x, Ty = \mu y$ mit $\mu \neq \lambda$ dann ist $x \perp y$
- c) Falls $\mathbb{K} = \mathbb{C}$, dann gibt es ein $\lambda \in \sigma(T)$ mit $|\lambda| = ||T||$
- d) Falls $\mathbb{K} = \mathbb{R}$, dann ist $\sigma(T) \subset \mathbb{R}$ und $||T|| \in \sigma(T)$ oder $-||T|| \in \sigma(T)$

51

Antwort

Sei $T \in B(X)$ normal

- a) $r(T) = \sup\{|\lambda| : \lambda \in \sigma(T)\} = ||T||$
- b) $\operatorname{Kern} T = \operatorname{Kern} T^*$

54

Antwort

Falls X separabel ist, so gibt es eine Orthonormalbasis (e_n) von X, die diese (h_n) (vom Spektralsatz) und eine orthonormalbasis von Kern(T) so, dass

$$Tx = \sum_{n=0}^{\infty} \mu_n \langle x, e_n \rangle e_n$$

wobei $\mu_n = 0$, falls $e_n \in \text{Kern}(T)$, $\mu_n = \lambda_m$ falls $e_n = h_m$.

53

Antwort

Sei X ein Hilbertraum, $T \in B(X)$ kompakt und normal. Dann gibt es eine Folge $(\lambda_n) \in \mathbb{C} \setminus \{0\}$, die entweder endlich oder eine Nullfolge und es gibt ein Orthonormalsystem (h_n) in X, das endlich ist, falls (λ_n) endlich ist, so dass

$$Tx = \sum_{n} \lambda_n \langle x, h_n \rangle h_n \quad \forall x \in X$$

Insbesondere: 1. $\sigma(T) \setminus \{0\} = \{\lambda_n\}$, $Th_n = \lambda_n h_n$, 2. $X = (\text{Kern } T) \oplus \overline{\text{span}}\{h_n\}$, orthogonale Komplement, 3. $||T|| = \sup_n |\lambda_n|$