

infoShareAcademy.com

- 1 Struktura sieci: neuron, warstwa
- Pojęcie wagi, biasu, funkcji aktywacji i propagacji
- 3 Narzędzia: Google Colab, Tensorflow, Keras

- 1 Struktura sieci: neuron, warstwa
- Pojęcie wagi, biasu, funkcji aktywacji i propagacji
- 3 Narzędzia: Google Colab, Tensorflow, Keras

- 1 Struktura sieci: neuron, warstwa
- Pojęcie wagi, biasu, funkcji aktywacji i propagacji
- 3 Narzędzia: Google Colab, Tensorflow, Keras

Figure 1: artificial intelligence, machine leaning and deep learning Source: Nadia BERCHANE (M2 IESCI, 2018)

Czym jest Deep Learning?

Machine Learning

Deep Learning

- Posiada "uczący się feature extractor".
- Modele bywają ogromne.
- Na ogół potrzebuje ogromną ilość danych.
- Oraz mocny sprzęt do obliczeń;)
- Do niemal każdego problemu można dostosować odpowiednią architekturę sieci neuronowej.

Rodzaje głębokiego uczenia

- Predykcja wartości danych "tabelkowych".
- Rozpoznawanie obrazów.
- Detekcja obiektów.
- Klasyfikacja tekstu.
- Translacja.
- Wiele wiele innych...

Optymalizacja kosztów zużycia energii

Generowanie tekstu – rekurencyjne sieci neuronowe

SYSTEM PROMPT (HUMAN-WRITTEN) In a shocking finding, scientist discovered a herd of unicorns living in a remote, previously unexplored valley, in the Andes Mountains. Even more surprising to the researchers was the fact that the unicorns spoke perfect English.

COMPLETION (MACHINE-WRITTEN, 10 TRIES) The scientist named the population, after their distinctive horn, Ovid's Unicorn. These four-horned, silver-white unicorns were previously unknown to science.

Now, after almost two centuries, the mystery of what sparked this odd phenomenon is finally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La Paz, and several companions, were exploring the Andes Mountains when they found a small valley, with no other animals or humans. Pérez noticed that the valley had what appeared to be a natural fountain, surrounded by two peaks of rock and silver snow.

Magenta tensorflow

And this is what that sample sounds like:

Generowanie rzeczywistego obrazu

Uczenie ze wzmocnieniem

Sieć neuronowa

Koncepcja sieci neuronowej

Perceptron Model (Minsky-Papert in 1969)

Sigmoid

$$\phi(z) = \frac{1}{1 + e^{-z}}$$

Hyperbolic Tangent

$$\phi(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

Rectified Linear

$$\phi(z) = \begin{cases} 0 & if \ z < 0 \\ z & if \ z \ge 0 \end{cases}$$

Funkcje aktywacji

Nane	Plot	Equation	Derivative
Identity	/	f(x) = x	f'(x) = 1
Binary step		$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x \neq 0 \\ ? & \text{for } x = 0 \end{cases}$
Logistic (a.k.a Soft step)		$f(x) = \frac{1}{1 + e^{-x}}$	f'(x) = f(x)(1 - f(x))
TanH		$f(x) = \tanh(x) = \frac{2}{1 + e^{-2x}} - 1$	$f'(x) = 1 - f(x)^2$
ArcTan		$f(x) = \tan^{-1}(x)$	$f'(x) = \frac{1}{x^2 + 1}$
Rectified Linear Unit (ReLU)		$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
Parameteric Rectified Linear Unit (PReLU) ^[2]	/	$f(x) = \begin{cases} \alpha x & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
Exponential Linear Unit (ELU) ^[3]	/	$f(x) = \begin{cases} \alpha(e^x - 1) & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} f(x) + \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
SoftPlus	/	$f(x) = \log_e(1 + e^x)$	$f'(x) = \frac{1}{1 + e^{-x}}$

infoShareAcademy.com

Zadanie 18.1 (instrukcja)

Napisz poniższe funkcje aktywacji w języku Python i zobrazuj na wykresach ich funkcjonowanie:

$$egin{aligned} ext{sig}(x) &= rac{1}{1+ ext{exp}^{-x}} \ ext{relu}(x) &= egin{cases} 0, x \leq 0 \ x, x > 0 \end{cases} \end{aligned}$$

Warstwy

Warstwy

Modyfikowalność

Optymalizacja. Funkcja kosztu

$$E_{\rm total} = \sum \frac{1}{2} (\text{ target } - \text{ output })^2$$

Optymalizacja. Wsteczna propagacja

Optymalizacja. Gradient descent

Wnew = Wcurr - Ir*(dErr/Wcurr)

(dErr/Wcurr) – pochodna błędu po danej wadze, w tensorflow będzie to tzw. gradient.

Optymalizacja. Wsteczna propagacja. Chain rule

$$F(x) = f(g(x))$$

$$F'(x) = f'(g(x))g'(x)$$

Tensorflow

Tworzenie modeli DL.

Bazuje na tensorach.

Tworzy z operacji graf modelu.

• Zoptymalizowane pod gpu.

info Share

Praca z modelem sieci w locie.
Oznacza to, że definiując konkretne
zmienne wchodzące w skład modelu,
tensorflow sam dołącza je do reszty.

import tensorflow as tf

Sprawdzenie dostępnych GPU gpus = tf.config.list_physical_devices('GPU')

print("Num GPUs Available: ", len(gpus))

Num GPUs Available: 1

Stała: wartość której zmienić nie możemy w trakcie jej istnienia.

tf_const = tf.constant(1)

tf_const

<tf.Tensor: shape=(), dtype=int32, numpy=1>

type(tf_const)

tensor flow. python. framework. ops. Eager Tensor

Tensorflow - Eager execution

```
# Tworzenie stałej w TensorFlow
  someConst = tf.constant([[1,2],[3,4],[5,6]], dtype="float64")
  someConst
     <tf.Tensor: shape=(3, 2), dtype=float64, numpy=
     array([[1., 2.],
            [3., 4.],
            [5., 6.]])>
# Konwersja stałej do tablicy NumPy
  np_array=someConst.numpy()
  np_array
     array([[1., 2.],
            [3., 4.],
            [5., 6.]])
  someConst.shape.as_list()
            [3, 2]
                         infoShareAcademy.com
```


Tensorflow - Eager execution

Zmienna: możemy ją modyfikować. Mogą to być na przykład wagi danego modelu.

```
np.arange(6).reshape(2,3)
array([[0, 1, 2],
[3, 4, 5]])
```

someVar = tf.Variable(np.arange(6).reshape(2,3), dtype="float", name="wagi") someVar

```
<tf.Variable 'wagi:0' shape=(2, 3) dtype=float32, numpy=
array([[0., 1., 2.],
[3., 4., 5.]], dtype=float32)>
```


Tensorflow - Eager execution

someVar.dtype

tf.float32

someVar.numpy()

array([[0., 1., 2.], [3., 4., 5.]], dtype=float32)

Tensorflow - Eager execution

```
someVar.assign(np.arange(6,12).reshape(2,3))
someVar
         <tf.Variable 'wagi:0' shape=(2, 3) dtype=float32, numpy=
         array([[ 6., 7., 8.],
             [ 9., 10., 11.]], dtype=float32)>
np.ones(shape=(2,3))
         array([[1., 1., 1.],
             [1., 1., 1.]])
someVar.assign_add(np.ones(shape=(2,3)))
someVar
   <tf.Variable 'wagi:0' shape=(2, 3) dtype=float32, numpy=
   array([[14., 16., 18.],
       [20., 22., 24.]], dtype=float32)>
```

info Share

Tensorflow - obliczenia macierzowe

Obliczenia macierzowe:

```
a = tf.constant(np.arange(10))
b = tf.constant(np.arange(10))
c = tf.add(a, b)
С
<tf.Tensor: shape=(10,), dtype=int32, numpy=array([ 0, 2, 4, 6, 8, 10, 12, 14, 16, 18])>
  print(f''\{a\}\n+\n\{b\}\n=\n\{c\}'')
 [0123456789]
 [0123456789]
  0 2 4 6 8 10 12 14 16 18
```

info Share

Tensorflow - obliczenia macierzowe

[[0] [1]

a = np.arange(10).reshape(10,1)
b = np.arange(10).reshape(1,10)
d = tf.matmul(a,b)
print(f*{a}\n*\n{b}\n=\n{d.numpy()}*)

[0 7 14 21 28 35 42 49 56 63] [0 8 16 24 32 40 48 56 64 72] [0 9 18 27 36 45 54 63 72 81]] info Share ACADEMY

Tensorflow - obliczenia macierzowe

```
a = np.arange(10)

b = np.arange(10)

d = tf.multiply(a,b)

print(f"{a}\n*\n{b}\n=\n{d}")

[0123456789]

*

[0123456789]

=

[0149162536496481]
```

type(d)

tensor flow. python. framework. ops. Eager Tensor

Mechanizm automatycznego wyznaczania gradientów z podanego fragmentu modelu.

Równanie wielomianu:

Tensorflow - gradient type

```
with tf.GradientTape() as tape:
```

```
part1 = 4*w2**3

poly = 3*w1**2 + part1

#poly = create_poly(w1, w2)

# 3*w1^2 + 4*w2^3
```

```
grad = tape.gradient(poly, [w1, w2])

# po w1 -> 3*2*w1^1 + 0 -> 3*2*2 = 12

# po w2 -> 0 + 4*3*w2^2 -> 4*3*3^2 = 108

print(f"grad = {grad[0].numpy()}, {grad[1].numpy()}")
```

$$grad = [12.], [108.]$$

Tensorflow – gradient type

```
s = 3
x_init = [1,2,3]
tf_vars = []
for i in range(s):
   tf_vars.append(tf.Variable([x_init[i]]))
tf_vars

[<tf.Variable 'Variable:0' shape=(1,) dtype=int32, numpy=array([1])>,
   <tf.Variable 'Variable:0' shape=(1,) dtype=int32, numpy=array([2])>,
   <tf.Variable 'Variable:0' shape=(1,) dtype=int32, numpy=array([3])>]
```


Zadanie 18.2 (instrukcja)

Napisz funkcję która przyjmuje jako parametr:

- stopień wielomianu,
- wartość inicjalizującą X,
- wektor stałych współczynników przy X.

Zwracać funkcja powinna wartość gradientu.

Przykładowo dla wielomianu trzeciego rzędu: a+bx+cx^2 pochodna po x zwrócić powinna wynik z: 0+b+2cx.

Wskazówki:

- x to zmienne tensorflowa,
- współczynniki (a, b, c, ...) to stałe tensorflowa.

info Share

Implementacja sieci neuronowej: dwuwarstwowa

Implementacja sieci neuronowej: dwuwarstwowa

Forward:

$$Z = input * W$$

 $y = f_{activation}(Z)$

Implementacja sieci neuronowej: dwuwarstwowa

Backward:

$$\begin{split} W_{new} &= W_{current} - lr * \frac{dError}{dW} \\ \frac{dError}{dW} &= \frac{dError}{dActivationOut} * \frac{dActivationOut}{dZ} * \frac{dZ}{dW} \\ \frac{dError}{dActivationOut} &= activationOut - y_{reference} \\ \frac{dActivationOut}{dZ} &= ActivationFunctionDerivaive(Z) \\ \frac{dZ}{dW} &= activationOut_{previousLayer} \end{split}$$

Implementacja sieci neuronowej: trójwarstwowa

Implementacja sieci neuronowej: trójwarstwowa

Forward:

$$Z_{1} = input * W_{0}$$

$$activationOut_{1} = f_{activation}(Z_{1})$$

$$Z_{2} = activationOut_{1} * W_{1}$$

$$y = f_{activation}(Z_{2})$$

Implementacja sieci neuronowej: trójwarstwowa

Backward:

third layer/output(2)

$$\begin{split} \boldsymbol{W}_{1new} &= \boldsymbol{W}_{1current} - lr * \frac{dError}{dW_1} \\ \frac{dError}{dW_1} &= \frac{dError}{dActivationOut_2} * \frac{dActivationOut}{dZ_2} * \frac{dZ_2}{dW_1} \\ \frac{dError}{dActivationOut_2} &= activationOut_2 - y_{reference} \\ \frac{dActivationOut}{dZ_2} &= ActivationFunctionDerivaive(Z_2) \\ \frac{dZ_2}{dW_1} &= activationOut_1^T \end{split}$$

Implementacja sieci neuronowej: trójwarstwowa

Second layer(1)

$$\begin{split} W_{0new} &= W_{0current} - lr * \frac{dError}{dW_0} \\ \frac{dError}{dW_0} &= \frac{dError}{dActivationOut_1} * \frac{dActivationOut}{dZ_1} * \frac{dZ_1}{dW_0} \\ \frac{dError}{dActivationOut_1} &= \frac{dError}{dActivationOut_2} * \frac{dActivationOut}{dZ_2} * W_1^T \\ \frac{dActivationOut}{dZ_1} &= ActivationFunctionDerivaive(Z_1) \\ \frac{dZ_1}{dW_0} &= input^T \end{split}$$

Co możemy do sieci dołączyć? Człon momentum

$$\Delta w_{ij} = (\eta * \frac{\partial E}{\partial w_{ij}}) + (\gamma * \Delta w_{ij}^{t-1})$$
momentum
factor
weight increment,
previous iteration

info Share

- Teoretycznie do każdego problemu można dostosować odpowiednią sieć neuronową.
- Radzi sobie z dużą ilością danych.
- Dowolne wejście/wyjście.
- Skuteczne zarówno dla regresji jak i klasyfikacji.

- Zanikający gradient.
- Eksplodujący gradient.
- Złożoność obliczeniowa.
- Wielkość.

Głęboka sieć neuronowa

- Zadaniem będzie rozwiązanie problemu klasyfikacji raka: sklearn.datasets.load_breast_cancer()
- Model sieci będzie wielowarstwowy.
- Ustawiać będziemy mogli dowolną liczbę warstw ukrytych.
- Funkcja błędu dla klasyfikacji softmax_cross_entropy_with_logits.
- Dodamy optymalizator.
- Dodajemy warstwę (mechanizm) dropout.

from sklearn.datasets import load_breast_cancer data = load_breast_cancer()

data.feature_names

array(['mean radius', 'mean texture', 'mean perimeter', 'mean area', 'mean smoothness', 'mean compactness', 'mean concavity', 'mean concave points', 'mean symmetry', 'mean fractal dimension',

'radius error', 'texture error', 'perimeter error', 'area error', 'smoothness error', 'compactness error', 'concavity error', 'concave points error', 'symmetry error', 'fractal dimension error', 'worst radius', 'worst texture', 'worst perimeter', 'worst area', 'worst smoothness', 'worst compactness', 'worst concavity', 'worst concave points', 'worst symmetry', 'worst fractal dimension'], dtype='<U23')

data.target_names

array(['malignant', 'benign'], dtype='<U9')

x = data.data.astype(np.float32)

y = data.target.astype(np.float32)

classVals, classCnts = np.unique(y, return_counts=True)

for oneName, oneVal, oneCnt in zip(data.target_names, classVals, classCnts):

print(f"{oneName} {oneVal}: {oneCnt}")

malignant 0.0: 212 benign 1.0: 357

from sklearn.preprocessing import MinMaxScaler

 $x = MinMaxScaler().fit_transform(x)$

for i in range(x.shape[1]): print(f"{i} mean: {x[:,i].mean():.2} std: {x[:,i].std():.2}")

0 mean: 0.34 std: 0.17 1 mean: 0.32 std: 0.15 2 mean: 0.33 std: 0.17 3 mean: 0.22 std: 0.15 4 mean: 0.39 std: 0.13 5 mean: 0.26 std: 0.16 6 mean: 0.21 std: 0.19 7 mean: 0.24 std: 0.19 8 mean: 0.38 std: 0.14

9 mean: 0.27 std: 0.15

from sklearn.preprocessing import OneHotEncoder

from sklearn.model_selection import train_test_split

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42)

x_train.shape

(455, 30)

x_test.shape

(114, 30)

Model

```
class modelDNN(object):
  def __init__(self, inSize, outSize, outAct, hiddenNum, hiddenAct, opt, job_type):
    self.lr = tf.Variable(0.0, dtype="float")
self.W_h = []
    self.b_h = []
#pierwsza ukryta
    self.W_h.append(tf.Variable(tf.random.normal([inSize, hiddenNum[0]])))
    self.b_h.append(tf.Variable(tf.zeros([hiddenNum[0]])))
    # kolejne ukryte
    for i in range(1, len(hiddenNum)):
      self.W_h.append(tf.Variable(tf.random.normal([hiddenNum[i-1], hiddenNum[i]))))
      self.b_h.append(tf.Variable(tf.zeros([hiddenNum[i]])))
# warstwa wyjściowa
    self.W_out = tf.Variable(tf.random.normal([hiddenNum[-1], outSize]))
    self.b_out = tf.Variable(tf.zeros([outSize]))
         self.inSize = inSize
    self.outSize = outSize
    self.outAct = outAct
    self.hiddenAct = hiddenAct
         self.optimizer = opt
self.job_type = job_type
                                infoShareAcademy.com
```



```
def predict(self, x):
    layer_in = x
    # pierwsza warstwa ukryta
    layer_hidden = tf.add(tf.matmul(layer_in, self.W_h[0]), self.b_h[0])
    layer_hidden = self.hiddenAct[0](layer_hidden)
    # kolejne warstwy ukryte
    for i in range(1, len(self.W_h)):
      layer_hidden = tf.add(tf.matmul(layer_hidden, self.W_h[i]), self.b_h[i])
      layer_hidden = self.hiddenAct[i](layer_hidden)
    # warstwa wyjściowa
    layer_out = tf.add(tf.matmul(layer_hidden, self.W_out), self.b_out)
    if self.outAct != None:
      layer_out = self.outAct(layer_out)
    return layer_out
```



```
def lossFun(self, y_pred, y_true):
    y_true = tf.reshape(y_true, (-1, self.outSize))
    if self.job_type == "class":
        return

tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(y_true, y_pred))
    elif self.job_type == "regr":
        return tf.reduce_mean(tf.square(y_pred - y_true))
```



```
def fit(self, x, y_true, lr=None):
    if Ir != None:
       self.optimizer.learning_rate.assign(lr)
    with tf.GradientTape() as t:
      y_pred = self.predict(x)
       current_loss = self.lossFun(y_pred, y_true)
    gradient = t.gradient(
       current_loss,
       [*self.W_h, *self.b_h, self.W_out, self.b_out]
    self.optimizer.apply_gradients(zip(
       gradient,
       [*self.W_h, *self.b_h, self.W_out, self.b_out]
    return current_loss
```


Dobór funkcji kosztu uzależniony jest od rozkładu wartości wyjściowych i typu neuronów wyjściowych

Output Type	Output Distribution	Output Layer	Cost Function
Output Type	Bernoulli	Sigmoid	Binary cross- entropy
Discrete	Multinoulli	Softmax	Binary cross- entropy
Continuous	Gaussian	Linear	Gaussian cross- entropy (MSE)


```
inSize = x.shape[1]
outSize = classNum
outAct = None
hiddenNum = [16, 24, 32]
hiddenAct = [tf.nn.relu for i in range(len(hiddenNum))]
opt = tf.optimizers.Adam()
job_type = "class"
nowyModel = modelDNN(inSize, outSize, outAct, hiddenNum, hiddenAct, opt, job_type)
Ir = None #0.001 - tf.optimizers.Adam().learning_rate
epochsNum = 150
lossList = []
for i in range(epochsNum):
  tmpLoss = nowyModel.fit(
             x_train,
             y_train,
             lr=lr
  #print(f"curr loss: {tmpLoss}")
  lossList.append(tmpLoss)
```

infoShareAcademy.com


```
# prezentacja na mniejszym zbiorze z testu
y_pred = tf.nn.softmax(
      nowyModel.predict(
        x_test[:25]
     ).numpy().argmax(axis=1)
print(f"Wyjścia z sieci:\n{y_pred}")
print(f"Co powinno być:\n{y_test[:25].argmax(axis=1)}")
Wyjścia z sieci:
[1000100001101010111001011]
Co powinno być:
[1001100011101010111001011]
                     infoShareAcademy.com
```


Raport klasyfikacji na zbiorze treningowym

precision recall fl-score support

	ρ, ς	00101011	10001		000			00.0
(0	0.81	0.85		0.83		169	
•	1	0.91	0.88		0.89		286	
acci	urac	У		(0.87	4	455	
mac	ro a	vg	0.86	0.8	86	0.8	36	455
weight	ted c	avg	0.87	0.8	37	0.8	7	455

Raport klasyfikacji na zbiorze testowym

precision		recall	fl-sco	re su	support		
C)	0.73	0.81	0.77	•	43	
1	(3.88	0.82 0.85			71	
accı	ıracı	У		0.82	114		
macro avg		0.80	0.82	0.81	114		
weighted avg		0.82	0.82	0.82	114		

Model

```
# testujemy na całości
print("\nRaport klasyfikacji na zbiorze testowym")
y_pred = tf.nn.softmax(
       nowyModel.predict(
         x_test
      ).numpy().argmax(axis=1)
print(classification_report(y_test.argmax(axis=1), y_pred))
print("\n")
fig = plt.figure(figsize=(20,10))
plt.plot(lossList)
plt.show()
Wyjścia z sieci:
[1001100001101010111001011]
Co powinno być:
[1\,0\,0\,11\,0\,0\,0\,11\,1\,0\,1\,0\,1\,0\,1\,1\,1\,1\,0\,0\,1\,0\,1\,1\,]
```


Wyjścia z sieci: [1001100001101010111001011] Co powinno być: [1001100011101010111001011]

Raport klasyfikacji na zbiorze treningowym

precision recall f1-score support 0 0.78 0.82 0.80 169 1 0.89 0.87 0.88 286

accuracy 0.85 455 macro avg 0.84 0.84 0.84 455 weighted avg 0.85 0.85 0.85 455

Raport klasyfikacji na zbiorze testowym

precision recall fl-score support 0 0.79 0.86 0.82 43 1 0.91 0.86 0.88 71

accuracy 0.86 114 macro avg 0.85 0.86 0.85 114 weighted avg 0.86 0.86 0.86 114

- Warstwy
- Modele

Klasa tf.keras.layers.Layer jest podstawową abstrakcją w Keras. Layer zawiera stan (wagi) i niektóre obliczenia (zdefiniowane w metodzie tf.keras.layers.Layer.call).

Ciężary tworzone przez warstwy mogą być trenowane lub nie. Warstwy można komponować rekurencyjnie: jeśli przypiszesz instancję warstwy jako atrybut innej warstwy, warstwa zewnętrzna zacznie śledzić wagi utworzone przez warstwę wewnętrzną.

Warstwy można również używać do obsługi zadań wstępnego przetwarzania danych, takich jak normalizacja i wektoryzacja tekstu. Warstwy przetwarzania wstępnego można włączyć bezpośrednio do modelu podczas szkolenia lub po jego zakończeniu, dzięki czemu model jest przenośny.

Model to obiekt, który grupuje warstwy i którego można uczyć na danych.

Najprostszym typem modelu jest model Sequential , który jest liniowym stosem warstw. W przypadku bardziej złożonych architektur można albo użyć funkcjonalnego interfejsu API Keras , który umożliwia budowanie dowolnych wykresów warstw, albo użyć podklas do napisania modeli od zera.

Klasa tf.keras.Model posiada wbudowane metody uczenia i ewaluacji:

tf.keras.Model.fit: Uczy model dla ustalonej liczby epok. tf.keras.Model.predict: Generuje prognozy wyjściowe dla próbek wejściowych.

tf.keras.Model.evaluate: Zwraca wartości strat i metryk dla modelu; skonfigurowany za pomocą metody tf.keras.Model.compile.

Sequential model jest odpowiedni dla zwykłego stosu warstw, przy czym każda warstwa ma dokładnie jeden tensor tensor wejście i jedno wyjście.

Model sekwencyjny

```
# Define Sequential model with 3 layers
model = keras.Sequential(
    layers.Dense(2, activation="relu", name="layer1"),
    layers.Dense(3, activation="relu", name="layer2"),
    layers.Dense(4, name="layer3"),
# Call model on a test input
x = tf.ones((3, 3))
y = model(x)
# Create 3 layers
layer1 = layers.Dense(2, activation="relu", name="layer1")
layer2 = layers.Dense(3, activation="relu", name="layer2")
layer3 = layers.Dense(4, name="layer3")
# Call layers on a test input
x = tf.ones((3,3))
y = layer3(layer2(layer1(x)))
```

info Share

Model sekwencyjny nie jest odpowiedni, gdy:

- twój model ma wiele wejść lub wiele wyjść,
- każda z twoich warstw ma wiele wejść lub wiele wyjść,
- musisz udostępnić warstwy,
- potrzebujesz nieliniowej topologii (np. połączenie resztkowe, model wielorozgałęziony).

model = keras.Sequential(

DL Sieci neuronowe

Tworzenie modelu sekwencyjnego

```
layers.Dense(2, activation="relu"),
    layers.Dense(3, activation="relu"),
    layers.Dense(4),
            lub
model = keras.Sequential()
model.add(layers.Dense(2, activation="relu"))
model.add(layers.Dense(3, activation="relu"))
model.add(layers.Dense(4))
```

info Share

Tworzenie modelu sekwencyjnego

```
layer = layers.Dense(3)
x = tf.ones((1, 4))
y = layer(x)
layer.weights
<tf.Variable 'dense_6/kernel:0' shape=(4, 3) dtype=float32,</pre>
numpy=
array([[ 0.5319189, -0.8767905, -0.63919735],
     [-0.6276014, 0.1689707, -0.57695866],
     0.6710613 , 0.5354214 , -0.00893992],
     [0.15670097, -0.15280598, 0.8865864]], dtype=float32)>,
<tf.Variable 'dense_6/bias:0' shape=(3,) dtype=float32,
numpy=array([0., 0., 0.], dtype=float32)>]
```


Tworzenie modelu sekwencyjnego

```
model = keras.Sequential(
    [
        layers.Dense(2, activation="relu"),
        layers.Dense(3, activation="relu"),
        layers.Dense(4),
    ]
)
# model.weights

# model.summary()

x = tf.ones((1, 4))
y = model(x)
print("Number of weights after calling the model:", len(model.weights))
```

Number of weights after calling the model: 6

Tworzenie modelu sekwencyjnego

model.summary()

Model: "sequential_3"

Layer (type)	Output Shape	Param #	
dense_7 (Dense)	(1, 2)	10	
dense_8 (Dense)	(1, 3)	9	
dense_9 (Dense)	(1, 4)	 16 	
Total params: 35 Trainable params: 39 Non-trainable paran			

import tensorflow as tf from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler

iris = load_iris()
X_train, X_test, y_train, y_test = train_test_split(iris.data,
iris.target, test_size=0.2, random_state=42)

scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)


```
model = tf.keras.Sequential([
     tf.keras.layers.Dense(8, input_dim=4, activation='relu'),
     tf.keras.layers.Dense(3, activation='softmax')
  model.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
 model.fit(X_train_scaled, y_train, epochs=50, batch_size=10, validation_split=0.1)
test_loss, test_accuracy = model.evaluate(X_test_scaled, y_test)
print(f'Test accuracy: {test_accuracy * 100:.2f}%')
      Test accuracy: 93.33%
```


Zadanie 18.3 (instrukcja)

Zadaniem jest zbudowanie i wytrenowanie modelu sekwencyjnego w Tensorflow do przewidywania wystąpienia cukrzycy na podstawie zbioru danych dostępnego w bibliotece scikit-learn.

from sklearn.datasets import load_diabetes

Google Colab – środowisko pracy

- Dostęp do GPU
- Notatniki Jupyter w Chmurze
- Łatwa Instalacja bibliotek
- Duża Ilość pamięci RAM
- Integracja z Google Drive
- Darmowy dostęp do zasobów obliczeniowych
- Wsparcie dla innych technologii
- Dodatkowe zasoby i tutoriale

Google Colab – Jupyter Notebook

Using Jupyter Notebooks

:label: sec_jupyter

This section describes how to edit and run the code in each section of this book using the Jupyter Notebook. Make sure you have installed Jupyter and downloaded the code as described in :ref: chap_installation. If you want to know more about Jupyter see the excellent tutorial in their documentation.

Editing and Running the Code Locally

Suppose that the local path of the book's code is xx/yy/d21-en/. Use the shell to change the directory to this path (cd xx/yy/d21-en) and run the command jupyter notebook. If your browser does not do this automatically, open http://localhost:8888 and you will see the interface of Jupyter and all the folders containing the code of the book, as shown in :numref: fig jupytere@.

Google Colab – zasoby obliczeniowe

Google Colab – integracja z Google Drive

Google Colab – biblioteki

Google Colab – bezpieczeństwo

Zadanie 18.4 (instrukcja)

Utwórz notatnik w Google Colab, w którym zbudujesz prosty model klasyfikacyjny przy użyciu biblioteki Tensorflow. Wykorzystaj zbiór danych Breast Cancer, aby stworzyć model, który będzie klasyfikował przypadki raka piersi na podstawie cech komórek.

from sklearn.datasets import load_breast_cancer

Podsumowanie

