Linear algebra done my way

Reblax

Contents

Preface					
1	Pre	requisites: what even is abstract algebra?	7		
2	Vector spaces		9		
	2.1	The definition of vector spaces	9		
	2.2	Constructing new vector spaces out of old	9		
	2.3	Family of vectors: linear independence and span	9		
3	Linear maps				
	3.1	Linear maps, kernels, images	11		
	3.2	Special kinds of maps: projectors, symmetries, nilpotents	11		
	3.3	Linear forms and duality	11		
4	Dimension				
	4.1	Technicalities: defining dimension	13		
	4.2	Finite-dimensional vector spaces and their consequences	13		
5	Mat	trices	15		
	5.1	Matrices done right	15		
	5.2	Change of basis, equivalence, similarity, trace	15		
6	Mu	Itilinearity and Determinants	17		
	6.1	Just enough about the symmetric group	17		
	6.2	Multilinear maps	17		
	6.3	Determinants and their applications	17		
	6.4	Tensor products and trace revisited	17		
7	Inner product Spaces				
	7.1	Inner products and norms	19		
	7.2	Orthogonality	19		
	7.3	Orthogonal complements, and minimisation problems	19		

8	Eige	envalues and Eigenvectors	21	
	8.1	Why eigen-stuff is interesting	21	
	8.2	Interlude on polynomials	21	
	8.3	Polynomials of endomorphisms and the minimal polynomial	21	
	8.4	Diagonalisation and trigonalisation	21	
	8.5	The characteristic polynomial	21	
	8.6	Jordan normal form	21	
9	Adjoints and Spectral Theorems			
	9.1	Adjoints, self-adjoint and normal operators	23	
	9.2	Spectral theorems	23	
	9.3	Isometries and unitary operators	23	
Еp	ilogu	ne: what next?	25	
A	Spo	oky scary set-theoretic stuff	27	

Preface

This book is intended to enable motivated students to self-study linear algebra. The point of view on the subject adopted here is the one a pure mathematician would have: computations are shunned to leave room for proofs, and the aim is to make the student feel the power of mathematical abstraction and abstract algebra as well as learning how to use them as tools. The only assumed background is familiarity with proofs, proof methods, naive set theory, and a bit of real analysis is sometimes useful. In particular, no prior knowledge of abstract algebra is necessary. Thus, this book is intended to be an introduction to using abstract machinery in math. It is written in the author's usual style, giving lots of details in proofs and often taking a break from formal mathematical discussion to underline the intuition behind results, tell historical anecdotes, or little jokes. Read at your own risk.

6 CONTENTS

Prerequisites: what even is abstract algebra?

Abstract algebra, broadly speaking, is the study of algebraic structures.

Vector spaces

- 2.1 The definition of vector spaces
- 2.2 Constructing new vector spaces out of old
- 2.3 Family of vectors: linear independence and span

Linear maps

- 3.1 Linear maps, kernels, images
- 3.2 Special kinds of maps: projectors, symmetries, nilpotents
- 3.3 Linear forms and duality

Dimension

- 4.1 Technicalities: defining dimension
- 4.2 Finite-dimensional vector spaces and their consequences

Matrices

- 5.1 Matrices done right
- 5.2 Change of basis, equivalence, similarity, trace

Multilinearity and Determinants

- 6.1 Just enough about the symmetric group
- 6.2 Multilinear maps
- 6.3 Determinants and their applications
- 6.4 Tensor products and trace revisited

Inner product Spaces

- 7.1 Inner products and norms
- 7.2 Orthogonality
- 7.3 Orthogonal complements, and minimisation problems

Eigenvalues and Eigenvectors

- 8.1 Why eigen-stuff is interesting
- 8.2 Interlude on polynomials
- 8.3 Polynomials of endomorphisms and the minimal polynomial
- 8.4 Diagonalisation and trigonalisation
- 8.5 The characteristic polynomial
- 8.6 Jordan normal form

Adjoints and Spectral Theorems

- 9.1 Adjoints, self-adjoint and normal operators
- 9.2 Spectral theorems
- 9.3 Isometries and unitary operators

Epilogue: what next?

Appendix A

Spooky scary set-theoretic stuff