## **Linear Machine Learning model to predict Concrete Strength**

Team 7:

Mohamed Eraky, Mahmoud Nassar, Anish Khilani

#### Contents

- Problem Description & Data analysis.
- Handling outliers.
- Machine learning model.
- PCA analysis.

Team collaboration (Live share on VS code)



```
| Demonstration | Description | Description
```

```
## (Based on Standardization) Calculating the RMS

print(The model RMS -', np.sqrt(mean_squared_erro
print('The Model interception =', model.intercept
print('The Model accuracy -', r2_score(y_test, y_f
print('The Model coefficients =', model.coef_)
pringsyleMotion ------')
pri
## Plot the predicter results vs. testing result
plt.figure(figsize = (8, 8))
pit.satise(y_pred, y_test, s = 50, c = 'i', edged
plt.xlabel("Predectied Value", fontsize = 20, family :
plt.show()
```

### Problem description

Target: Concrete Strength

Number of Features: 8

Least-square – Machine learning model, PCA

#### Concrete\_Strength

| Cement | Blast Furnace Slag | Fly Ash | Water | Superplasticizer | Coarse Aggregate | Fine Aggregate | Age | Strength |
|--------|--------------------|---------|-------|------------------|------------------|----------------|-----|----------|
| 540    | 0                  | 0       | 162   | 2.5              | 1040             | 676            | 28  | 79.99    |
| 540    | 0                  | 0       | 162   | 2.5              | 1055             | 676            | 28  | 61.89    |
| 332.5  | 142.5              | 0       | 228   | 0                | 932              | 594            | 270 | 40.27    |
| 332.5  | 142.5              | 0       | 228   | 0                | 932              | 594            | 365 | 41.05    |
| 198.6  | 132.4              | 0       | 192   | 0                | 978.4            | 825.5          | 360 | 44.3     |
| 266    | 114                | 0       | 228   | 0                | 932              | 670            | 90  | 47.03    |
| 380    | 95                 | 0       | 228   | 0                | 932              | 594            | 365 | 43.7     |
| 380    | 95                 | 0       | 228   | 0                | 932              | 594            | 28  | 36.45    |
| 266    | 114                | 0       | 228   | 0                | 932              | 670            | 28  | 45.85    |
| 475    | 0                  | 0       | 228   | 0                | 932              | 594            | 28  | 39.29    |
| 198.6  | 132.4              | 0       | 192   | 0                | 978.4            | 825.5          | 90  | 38.07    |

### Data Analysis: Checking missing data

- Data frame shape (raw): 1030 x 9
- Data frame after removing Duplicates :1005 x 9
- Find if any missing data using heatmap.
- Used library by seaborn, and PyPlot to visualize the heatmap.



### Finding correlation Matrix for Data frame

Features: Cement,
 Superplasticizer, Age have the highest correlation with strength.

 Water has highest –Ve correlation with strength.

 Fly Ash has the lowest correlation with Strength.



-1.0

- 0.8

- 0.6

- 0.2

- -0.2

- -0.4

# • Data Analysis : Data Distribution



### Data Analysis: Plotting data distribution and box plot



|       |             |                       |             | 0           | 200 400          | 600                 | 800               | 1000        | 1200        |
|-------|-------------|-----------------------|-------------|-------------|------------------|---------------------|-------------------|-------------|-------------|
|       |             |                       |             |             |                  |                     |                   |             |             |
|       | Cement      | Blast Furnace<br>Slag | Fly Ash     | Water       | Superplasticizer | Coarse<br>Aggregate | Fine<br>Aggregate | Age         | Strength    |
| count | 1005.000000 | 1005.000000           | 1005.000000 | 1005.000000 | 1005.000000      | 1005.000000         | 1005.000000       | 1005.000000 | 1005.000000 |
| mean  | 278.631343  | 72.043483             | 55.536318   | 182.075323  | 6.033234         | 974.376816          | 772.688259        | 45.856716   | 35.250378   |
| std   | 104.344261  | 86.170807             | 64.207969   | 21.339334   | 5.919967         | 77.579667           | 80.340435         | 63.734692   | 16.284815   |
| min   | 102.000000  | 0.000000              | 0.000000    | 121.800000  | 0.000000         | 801.000000          | 594.000000        | 1.000000    | 2.330000    |
| 25%   | 190.700000  | 0.000000              | 0.000000    | 166.600000  | 0.000000         | 932.000000          | 724.300000        | 7.000000    | 23.520000   |
| 50%   | 265.000000  | 20.000000             | 0.000000    | 185.700000  | 6.100000         | 968.000000          | 780.000000        | 28.000000   | 33.800000   |
| 75%   | 349.000000  | 142.500000            | 118.300000  | 192.900000  | 10.000000        | 1031.000000         | 822.200000        | 56.000000   | 44.870000   |
| max   | 540.000000  | 359.400000            | 200.100000  | 247.000000  | 32.200000        | 1145.000000         | 992.600000        | 365.000000  | 82.600000   |



|       | Cement     | Blast Furnace Slag | Water      | Superplasticizer | <b>Coarse Aggregate</b> | Fine Aggregate | Age        | Strength   |
|-------|------------|--------------------|------------|------------------|-------------------------|----------------|------------|------------|
| count | 928.000000 | 928.000000         | 928.000000 | 928.000000       | 928.000000              | 928.000000     | 928.000000 | 928.000000 |
| mean  | 272.163901 | 73.107328          | 180.971659 | 6.082328         | 976.316164              | 774.576401     | 32.016164  | 34.357187  |
| std   | 101.738846 | 87.165004          | 19.552706  | 5.248805         | 77.672976               | 75.277924      | 28.017038  | 16.313298  |
| min   | 102.000000 | 0.000000           | 121.800000 | 0.000000         | 801.000000              | 594.000000     | 1.000000   | 2.330000   |
| 25%   | 189.050000 | 0.000000           | 165.600000 | 0.000000         | 932.000000              | 734.300000     | 7.000000   | 22.440000  |
| 50%   | 252.200000 | 20.000000          | 184.700000 | 6.700000         | 971.800000              | 779.500000     | 28.000000  | 33.085000  |
| 75%   | 336.125000 | 144.325000         | 192.000000 | 10.000000        | 1040.600000             | 821.000000     | 28.000000  | 44.280000  |
| max   | 540.000000 | 359.400000         | 247.000000 | 22.100000        | 1145.000000             | 945.000000     | 100.000000 | 82.600000  |
|       |            |                    |            |                  |                         |                |            |            |

### Data Standardization & Normalization

- Data Standardization,
  - After standardization,  $\mu = 0$

$$z = rac{x - \mu}{\sigma}$$

|       | Cement        | Blast Furnace<br>Slag | Water         | Superplasticizer | Coarse<br>Aggregate | Fine<br>Aggregate | Age           | Strength      |
|-------|---------------|-----------------------|---------------|------------------|---------------------|-------------------|---------------|---------------|
| count | 9.280000e+02  | 9.280000e+02          | 9.280000e+02  | 9.280000e+02     | 9.280000e+02        | 9.280000e+02      | 9.280000e+02  | 9.280000e+02  |
| mean  | -4.322004e-16 | 6.359257e-16          | -1.001833e-15 | 5.535562e-16     | -1.198754e-16       | -6.713679e-16     | 7.515540e-16  | -1.074631e-16 |
| std   | 1.000539e+00  | 1.000539e+00          | 1.000539e+00  | 1.000539e+00     | 1.000539e+00        | 1.000539e+00      | 1.000539e+00  | 1.000539e+00  |
| min   | -1.673458e+00 | -8.391756e-01         | -3.027896e+00 | -1.159427e+00    | -2.258323e+00       | -2.400090e+00     | -1.107643e+00 | -1.964315e+00 |
| 25%   | -8.173743e-01 | -8.391756e-01         | -7.865892e-01 | -1.159427e+00    | -5.708557e-01       | -5.353245e-01     | -8.933726e-01 | -7.309137e-01 |
| 50%   | -1.963327e-01 | -6.096020e-01         | 1.907844e-01  | 1.177421e-01     | -5.817466e-02       | 6.544089e-02      | -1.434245e-01 | -7.802674e-02 |
| 75%   | 6.290182e-01  | 8.174849e-01          | 5.643356e-01  | 7.467956e-01     | 8.280679e-01        | 6.170286e-01      | -1.434245e-01 | 6.085932e-01  |
| max   | 2.634004e+00  | 3.286262e+00          | 3.378762e+00  | 3.053325e+00     | 2.172890e+00        | 2.265146e+00      | 2.427826e+00  | 2.958864e+00  |

• Data Normalization

• 
$$x_{norm} = \frac{x - x_{min}}{x_{max} - x_{min}}$$

|       | Cement     | Blast Furnace Slag | Water      | Superplasticizer | <b>Coarse Aggregate</b> | Fine Aggregate | Age        | Strength   |
|-------|------------|--------------------|------------|------------------|-------------------------|----------------|------------|------------|
| count | 928.000000 | 928.000000         | 928.000000 | 928.000000       | 928.000000              | 928.000000     | 928.000000 | 928.000000 |
| mean  | 0.388502   | 0.203415           | 0.472617   | 0.275218         | 0.509640                | 0.514463       | 0.313295   | 0.398993   |
| std   | 0.232280   | 0.242529           | 0.156172   | 0.237503         | 0.225794                | 0.214467       | 0.283000   | 0.203230   |
| min   | 0.000000   | 0.000000           | 0.000000   | 0.000000         | 0.000000                | 0.000000       | 0.000000   | 0.000000   |
| 25%   | 0.198744   | 0.000000           | 0.349840   | 0.000000         | 0.380814                | 0.399715       | 0.060606   | 0.250529   |
| 50%   | 0.342922   | 0.055648           | 0.502396   | 0.303167         | 0.496512                | 0.528490       | 0.272727   | 0.383144   |
| 75%   | 0.534532   | 0.401572           | 0.560703   | 0.452489         | 0.696512                | 0.646724       | 0.272727   | 0.522611   |
| max   | 1.000000   | 1.000000           | 1.000000   | 1.000000         | 1.000000                | 1.000000       | 1.000000   | 1.000000   |

# Machine learning model Results: Test cases

Linear regression model, split the data by 80 (train) – (test) 20%

| Feature removed                                                   | RMS           | Accuracy | Scaling                  |
|-------------------------------------------------------------------|---------------|----------|--------------------------|
| Fly Ash                                                           | 0.473/ 0.0961 | 0.801    | Standardized /Normalized |
| Fly Ash, Water, Blast<br>Furnace Slag, Coarse<br>& Fine Aggregate | 0.622/ 0.126  | 0.657    | Standardized /Normalized |
| Fly Ash, Blast<br>Furnace Slag, Coarse<br>& Fine Aggregate        | 0.606/0.123   | 0.674    | Standardized /Normalized |

## Standardized & Normalized





### Principal Component Analysis: PCA

Copy data frame and applied standardization.

Split them into features and target.

Calculate covariance Matrix.

Calculate the eigen values and Eigen vectors.

Reorder the Eigen vectors in descending order according to Eigen values and

Compute the features weight.

### PCA- CONT.

| Feature            | Eigen Value |
|--------------------|-------------|
| Cement             | 0.289       |
| Water              | 0.1785      |
| Super Plasticizer  | 0.159       |
| Age                | 0.127       |
| Fine Aggregate     | 0.120       |
| Coarse Aggregate   | 0.098       |
| Fly ash            | 0.0229      |
| Blast Furnace slag | 0.003       |

### **PCA-Results**

| K | RMS    | Accuracy |
|---|--------|----------|
| 2 | 15.247 | 0.2279   |
| 6 | 8.1176 | 0.788    |





Cumulative sum

# Conclusion

- Linear regression model produced 0.801 accuracy upon excluding Fly Ash, excluding features gradually decreases model prediction accuracy.
- Considering only two components in PCA reduced the model prediction accuracy to 22.79 %.
- Considering 6 features (same as standard linear regression model) gave acceptable accuracy.