HW1_JingQian_Q2

October 3, 2019

1 Load Spark

```
In [0]: # Install latest version of spark. If error, check the latest and replace "spark-2.4.4"
        !apt-get install openjdk-8-jdk-headless -qq > /dev/null
        !wget -q https://www-us.apache.org/dist/spark/spark-2.4.4/spark-2.4.4-bin-hadoop2.7.tgz
        !tar xf spark-2.4.4-bin-hadoop2.7.tgz
        !pip install -q findspark
        import os
        os.environ["JAVA_HOME"] = "/usr/lib/jvm/java-8-openjdk-amd64"
        os.environ["SPARK_HOME"] = "/content/spark-2.4.4-bin-hadoop2.7"
        import findspark
        findspark.init()
In [0]: #The entry point to using Spark SQL is an object called SparkSession.
        #It initiates a Spark Application which all the code for that Session will run on.
        from pyspark.sql import SparkSession
        spark = SparkSession.builder \
            .master("local[*]") \
            .appName("Learning_Spark") \
            .getOrCreate()
In [0]: import numpy as np
        import pandas as pd
        from google.colab import drive
        drive.mount('/content/gdrive')
Go to this URL in a browser: https://accounts.google.com/o/oauth2/auth?client_id=947318989803-6b
Enter your authorization code:
นំนំนំนំนំนំนំนំนំ
Mounted at /content/gdrive
```

2 Q2. Binary classification with Spark MLlib

2.1 (1). Data loading

Read the csv file into a Dataframe. You could set "inferschema" to true and rename the columns with the following information: "age", "workclass", "fnlwgt", "education", "education_num", "marital_status", "occupation", "relationship", "race", "sex", "capital_gain", "capital_loss", "hours_per_week", "native_country", "income".

```
In [0]: DATA_PATH = "/content/gdrive/My Drive/BigData/q1/adult_data.csv"
In [74]: data = spark.read.csv(DATA_PATH,inferSchema=True, header=False)
      print(data.count(),len(data.columns))
      data.show(5)
32561 15
_c3| _c4|
                                          _c5|
State-gov | 77516.0 | Bachelors | 13.0 | Never-married | Adm-clerical | Not-in-f
| 50| Self-emp-not-inc| 83311.0| Bachelors|13.0| Married-civ-spouse| Exec-managerial|
| 38|
         Private|215646.0|
                       HS-grad | 9.0|
                                       Divorced | Handlers-cleaners | Not-in-f
                          11th | 7.0 | Married-civ-spouse | Handlers-cleaners |
| 53|
         Private|234721.0|
         Private | 338409.0 | Bachelors | 13.0 | Married-civ-spouse | Prof-specialty |
| 28|
only showing top 5 rows
```

15

++-	+	+	+	+	+	+
age		•			marital_status	•
39			Bachelors		Never-married	
50	Self-emp-not-inc	83311.0	Bachelors	13.0	Married-civ-spouse	Exec-managerial
38	Private	215646.0	HS-grad	9.0	Divorced	Handlers-cleaners
53	Private	234721.0	11th	7.0	Married-civ-spouse	Handlers-cleaners
28	Private	338409.0	Bachelors	13.0	Married-civ-spouse	Prof-specialty
++-	+	+	+	+	+	+

only showing top 5 rows

```
In [76]: data.printSchema()
root
 |-- age: integer (nullable = true)
 |-- workclass: string (nullable = true)
 |-- fnlwgt: double (nullable = true)
 |-- education: string (nullable = true)
 |-- education_num: double (nullable = true)
 |-- marital_status: string (nullable = true)
 |-- occupation: string (nullable = true)
 |-- relationship: string (nullable = true)
 |-- race: string (nullable = true)
 |-- sex: string (nullable = true)
 |-- capital_gain: double (nullable = true)
 |-- capital_loss: double (nullable = true)
 |-- hours_per_week: double (nullable = true)
 |-- native_country: string (nullable = true)
 |-- income: string (nullable = true)
```

2.2 (2). Data preprocessing

Convert the categorical variables into numeric variables with ML Pipelines and Feature Transformers . You will probably need OneHotEncoderEstimator, StringIndexer, and VectorAssembler. Split your data into training set and test set with ratio of 70% and 30% and set the seed to 100.

Reference: https://towardsdatascience.com/machine-learning-with-pyspark-and-mllib-solving-a-binary-classification-problem-96396065d2aa

```
In [77]: train, test = data.randomSplit([0.7, 0.3], seed = 100)
         print("Training Dataset Count: " + str(train.count()))
         print("Test Dataset Count: " + str(test.count()))
Training Dataset Count: 22838
Test Dataset Count: 9723
In [0]: from pyspark.ml.feature import OneHotEncoderEstimator, StringIndexer, VectorAssembler
        categoricalColumns = ['workclass', 'education', 'marital_status', 'occupation', 'relationshi
                             'race', 'sex', 'native_country']
        stages = []
        for categoricalCol in categoricalColumns:
            stringIndexer = StringIndexer(inputCol = categoricalCol, outputCol = categoricalCol
            encoder = OneHotEncoderEstimator(inputCols=[stringIndexer.getOutputCol()], outputCol
            stages += [stringIndexer, encoder]
        label_stringIdx = StringIndexer(inputCol = 'income', outputCol = 'label')
        stages += [label_stringIdx]
        numericCols = ['age','fnlwgt','education_num','capital_gain','capital_loss','hours_per_w
        assemblerInputs = [c + "classVec" for c in categoricalColumns] + numericCols
```

```
assembler = VectorAssembler(inputCols=assemblerInputs, outputCol="features")
        stages += [assembler]
In [79]: from pyspark.ml import Pipeline
         pipeline = Pipeline(stages = stages)
         pipelineModel = pipeline.fit(train)
         train = pipelineModel.transform(train)
         selectedCols = ['label', 'features'] + col_names
         train = train.select(selectedCols)
         train.printSchema()
root
 |-- label: double (nullable = false)
 |-- features: vector (nullable = true)
 |-- age: integer (nullable = true)
 |-- workclass: string (nullable = true)
 |-- fnlwgt: double (nullable = true)
 |-- education: string (nullable = true)
 |-- education_num: double (nullable = true)
 |-- marital_status: string (nullable = true)
 |-- occupation: string (nullable = true)
 |-- relationship: string (nullable = true)
 |-- race: string (nullable = true)
 |-- sex: string (nullable = true)
 |-- capital_gain: double (nullable = true)
 |-- capital_loss: double (nullable = true)
 |-- hours_per_week: double (nullable = true)
 |-- native_country: string (nullable = true)
 |-- income: string (nullable = true)
```

2.3 (3). Modelling

Train a logistic regression model with train set. Learn more about models provide in Spark MLlib here. After training, plot ROC curve and Precision-Recall curve of your training process.

```
plt.show()
print('Training set areaUnderROC: ' + str(trainingSummary.areaUnderROC))

pr = trainingSummary.pr.toPandas()
plt.plot(pr['recall'],pr['precision'])
plt.ylabel('Precision')
plt.xlabel('Recall')
plt.show()
```


Training set areaUnderROC: 0.9056654937412549

2.4 (4). Evaluation

Apply your trained model on the test set. Provide the value of area under ROC, accuracy, and confusion matrix. You should expect the accuracy to be around 85%.