

Introduction

Importance of coastal flood estimation

Economic Impacts

- More than half of the U.S. economic productivity is located in coastal areas [NOAA, 2014]
- Major roads, railroads, and airports have been constructed on low-lying lands
- Hurricane Katrina 2005; \$125 billion damage
- Hurricane Ike 2008; \$30 billion
- Hurricane Sandy 2012, \$65 billion
- Hurricane Harvey 2017; \$125 billion

Life Threat

- About half the world's population lives within 100km of the coast [World resources, 1996-97]
- Much of the Gulf Coast and Atlantic coastline lies less than 3m above mean sea level [CCSP, 2008]
- Deadliest phenomenon associated with hurricanes in coastal regions [Ludlam, 1963]
- Hurricane Katrina, 2005; 1800 deaths; Hurricane Sandy, 2012; 170 deaths

Motivation

- Rising sea levels are changing the way people think about real estate and insurance policy.
- We hear more questions like:
 - How close the home is to the water's edge?
 - How many feet above sea level?
 - Is it fortified against storm surges and recurrent nuisance flooding?
- Studies found that current modelling underestimates the future risks of Sea Level Rise (SLR) to property

Goal

 Revisiting flood insurance policies and producing new and innovative fast data analysis techniques to provide important information to businesses

Research design and methods

- Hampton Roads region is experiencing a high and increasing rate of flood as well as the highest rate of RSLR in the U.S. East Coast
- Light Detection and Ranging (LiDAR) dataset consists of 1400 terrain files
- Compound flooding:
 - Consider different sea-level rise scenarios
 - Use the Hurricane Databases (HURDAT)