BIT 1st Semester

Subject: Mathematics-I

Answer all the questions.

- 1. Transform to polar coordinates: $(\sqrt{3}, -1)$.
- 2. Find the distance between the polar points $\left(4, \frac{\pi}{2}\right)$ and $\left(5, \frac{7\pi}{6}\right)$.
- 3. Transform the equation $x^2 + y^2 + z^2 = 2z$ by spherical polar coordinates.
- 4. Define conic? When does it become Parabola?
- 5. If the equation of a hyperbola is $4x^2 9y^2 = 36$, find its eccentricity and length of latus rectum.
- 6. Transform the equation $y^2 x^2 = 4$ by rotating the coordinate axes x and y through an angle of 45° .
- 7. Define Scalar (or dot) product of two non-zero vectors. If $\vec{a} = \vec{\iota} + \vec{j} + 3\vec{k} & \vec{b} = 3\vec{\iota} 3\vec{j} + \vec{k}$ then show that $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$.
- 8. Find the parametric equations of the line joining the points $P_1(1, 1, 0)$ and $P_2(0, 2, 3)$.
- 9. Define symmetric and skew-symmetric matrices with example.

10.If
$$A = \begin{pmatrix} 1 & 3 \\ -5 & 2 \end{pmatrix}$$
 & $B = \begin{pmatrix} 3 & 2 \\ 1 & -1 \end{pmatrix}$ compute $(AB)^T$.

- 11. Transform the equation $x^2 + y^2 = x$ to Cylindrical coordinates.
- 12.Prove that the distance between two points in a plane with polar coordinates (r_1, θ_1) and (r_2, θ_2) is given by $d^2 = r_1^2 + r_2^2 2r_1r_2\cos(\theta_2 \theta_1)$.
- 13. Find the equation of the plane passing through the point (1, 2, -1) and perpendicular to the planes x + y 2z = 5 and 3x y + 4z = 12.
- 14. Find the shortest distance between the two skew lines $\frac{x-8}{3} = \frac{y+9}{-16} = \frac{z-10}{7}$ and $\frac{x-15}{3} = \frac{y-29}{8} = \frac{z-5}{-5}$
- 15. Find the volume of the parallelepiped whose concurrent edges are represented by $3\vec{\iota} 3\vec{j} + 3\vec{k}$, $\vec{\iota} + 2\vec{j} \vec{k}$, and $3\vec{\iota} \vec{j} + 2\vec{k}$.

- 16. Find the centre, eccentricity, foci and directories of the hyperbola $9x^2 16y^2 + 72x 32y 16 = 0$.
- 17. Find the value of c so that the lines $\frac{x-1}{-3} = \frac{y-1}{2c} = \frac{z-3}{2}$ and $\frac{x-1}{3c} = \frac{y-5}{1} = \frac{z-6}{-5}$ are perpendicular to each other.
- 18. Find the equation of the plane through the points A(2,2,1), B(3,4,2) and C(7,0,6).
- 19.If $\vec{a} + \vec{b} + \vec{c} = 0$, prove that $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a}$.
- 20. Find the centre and eccentricity of the ellipse $9x^2 + 25y^2 18x 100y 116 = 0$.
- 21. Transform the equation $x^2 z^2 = 4$ by using Spherical polar coordinates.
- 22. Given $\vec{a}=\vec{\iota}-2\vec{j}+3\vec{k}$ and $\vec{b}=2\vec{\iota}+\vec{j}-\vec{k}$, find $\vec{a}\cdot\vec{b}$, $\vec{a}\times\vec{b}$ and $\vec{b}\times\vec{a}$.
- 23. Given A(-1,1,2), B(0,1,3), C(2,3,4) & D(-1,3,3), find the volume of the parallelepiped with \overrightarrow{AB} , \overrightarrow{AC} and \overrightarrow{AD} as three of its edge.
- 24. State Generalized Mean Value Theorem.
- 25. Show that at any point of the parabola $y^2 = 4ax$, the subnormal is constant and the subtangent varies as the abscissa of the point of contact.