浙江工业大学 2022/2023 学年第二学期 概率论与数理统计A(48学时)期末考试试卷

	学号:	挂名:
	班级: 任调	! 教师:
分	分位点数据 :	
	$\chi^2_{0.025}(9) = 19.022, \chi^2_{0.025}(10) = 20.483,$ $\chi^2_{0.975}(9) = 2.700, \chi^2_{0.975}(10) = 3.247,$	$\chi^2_{0.05}(9) = 16.919, \chi^2_{0.05}(10) = 18.307$ $, \chi^2_{0.95}(9) = 3.325, \chi^2_{0.95}(10) = 3.940$
- , ;	选择题 (共 24 分, 每题 3 分)	
1.	为 5 ", C 表示"两枚骰子点数之和为 7 ",	,
	(A) A, B 不独立, A, C 不独立(B) (C) A, B, C 两两独立, 但不相互独立(D) (D) (D) (D) (D) (D) (D) (D) (D) (D)	,
2.	从 5 个数 1,2,3,4,5 中任取 3 个数再按从小 (A) $P(X=2) = \frac{1}{5}, EX = \frac{5}{2}$ (B (C) $P(X=2) = \frac{3}{10}, EX = \frac{5}{2}$ (D	
3.	10 2]概率为 0.8,超过 30 年的概率为 0.6,设 X 表
	(A) $\frac{1}{4}$ (B) $\frac{3}{4}$ (C)	(D) 0.6
4.	设随机变量 $X \sim N(0,2)$, 则 $Y = 2X$ 的概率	
	(A) $\frac{1}{2\sqrt{\pi}}e^{-\frac{y^2}{16}}$ (B) $\frac{1}{4\sqrt{\pi}}e^{-\frac{y^2}{16}}$ (C)	(b) $\frac{1}{2\sqrt{\pi}}e^{-\frac{y^2}{8}}$ (D) $\frac{1}{2\sqrt{2\pi}}e^{-\frac{y^2}{8}}$
5.	设总体 $X \sim B(m,p)$, X_1, X_2, \cdots, X_n 为来自	$ $ 该总体的简单随机样本, 则 $E[\sum_{i=1}^{n}(X_i-\overline{X})^2]=$
		m(n-1)p(1-p) $mnp(1-p)$
6.	设随机变量 X 服从指数分布,均值为 $\frac{1}{2}$,则 (A) $E(X^2) = \frac{1}{2}$, $Cov(X^2, X - 2) = \frac{1}{2}$ (B) (C) $E(X^2) = 8$, $Cov(X^2, X - 2) = \frac{1}{2}$ (D)	-

7	己知随机亦是 V	Y的联合分布律为:
ί.	广州阴州,安重人,	Y的联合分相佳 <i>州</i> :

$$P(X = 1, Y = -1) = 0.3, P(X = 2, Y = 5) = 0.3,$$

 $P(X = 1, Y = 5) = 0.2, P(X = 2, Y = -1) = 0.2,$

则以下结论正确的是 ()

- (A) $\min\{X,Y\}$ 与 $\min\{X,Y-1\}$ 同分布 (B) $\min\{X,Y\}$ 与 $\min\{X,\frac{Y-1}{2}\}$ 同分布
- (C) $\max\{X,Y\}$ 与 $\max\{X,Y-1\}$ 同分布 (D) $\max\{X,Y\}$ 与 $\max\{X,\frac{Y-1}{2}\}$ 同分布
- 8. 设总体 $X \sim N(\mu, \sigma^2)$, X_1, X_2, \cdots, X_n 为来自该总体的简单随机样本, \overline{X} 和 S^2 分别是样本均值和样本方差, 若方差 σ^2 已知, 则总体均值 μ 的置信度为 $1-\alpha$ 的单侧置信下限为 (
 - (A) $\overline{X} \frac{\sigma}{\sqrt{n}} z_{\alpha/2}$

(B) $\overline{X} - \frac{\sigma}{\sqrt{n}} z_{\alpha}$

- (C) $\overline{X} \frac{S}{\sqrt{n}} t_{\alpha/2}(n-1)$
- (D) $\overline{X} \frac{S}{\sqrt{n}} t_{\alpha}(n-1)$

二. 填空题 (共 16 分, 每空 2 分)

- 9. 设随机事件 A, B 互斥, 且满足 $P(A) = 0.2, P(B|A \cup B) = 0.6, 则 P(B) = _____.$
- 11. 设随机变量 X,Y 不相关, DX = 2, DY = 7, 则 <math>3X Y 和 X + Y 的相关系数为______.
- 12. 设随机变量序列 $X_1, X_2, \cdots, X_n, \cdots$ 独立同分布于U(-1,1), 令 $Y = X_1 + X_2 + \cdots + X_{100}$. 则根据切比雪夫不等式, $P(|Y| \le 10) \ge$ ______. 根据大数定律,有 $\frac{1}{n}(X_1X_2 + X_3X_4 + \cdots + X_{2n-1}X_{2n})$ 依概率收敛到_____.
- 13. 设随机变量 X_1, X_2, X_3 相互独立,且 $X_1 \sim N(0,4), X_2 \sim N(0,4), X_3 \sim N(0,\sigma^2)$. 若 $\frac{1}{4}(X_1^2 + X_2^2) + 2X_3^2 \sim \chi^2(3)$,则 $\sigma^2 =$ _____.
- 14. 设总体 $X \sim B(10, p), X_1, X_2, \dots, X_n$ 是来自总体的样本, \overline{X} 是样本均值, 则 p 的矩估计量是______.

三. 解答题 (共 6 题, 60 分)

- 15. (8分)设第一只盒子中装有3只蓝色球,2只绿色球,2只白色球,第二只盒子中装有2只蓝色球,3只绿色球,4只白色球.独立地在两只盒子中分别随机取一只球.
 - (1) 求至少有一只蓝色球的概率; (2) 已知至少有一只蓝色球,求有一只蓝色球,一只白色球的概率.

16. (8 分) 设连续型随机变量
$$X$$
 的密度函数为 $f(x) = \begin{cases} \frac{x}{2}, & 0 < x < 2, \\ 0, & 其他. \end{cases}$

求: (1) X 的分布函数F(x); (2) $P(F(X) > \frac{1}{3})$.

17. (10 分) 设二维随机变量 (X,Y) 的联合分布律为

Y X	-1	0	1
-1	a	0	0.2
0	0.1	b	0.2
1	0	0.1	c

其中a, b, c为常数, 且满足 $E(X) = -0.2, P(Y \le 0 | X \le 0) = 0.5.$

求: (1) a, b, c 的值; (2) X + Y 的分布列.

18. (12 分)设(X,Y)是二维连续型随机变量, X 的边缘密度函数

$$f_X(x) = \begin{cases} 3x^2, & 0 < x < 1, \\ 0, & \sharp \mathfrak{m}, \end{cases}$$

在给定 X = x(0 < x < 1) 的条件下, Y 的条件概率密度函数为

$$f_{Y|X}(y|x) = \begin{cases} \frac{3y^2}{x^3}, & 0 < y < x, \\ 0, & \sharp \text{ de.} \end{cases}$$

求: (1) (X,Y) 的概率密度函数 f(x,y); (2) Y 的边缘密度函数 $f_Y(y)$; (3) P(X+Y>1).

19. (12 分) 设总体 $X \sim U(0,\theta)$, X_1,X_2,\cdots,X_5 是 X 的样本, \overline{X} 是样本均值. 设

$$\widehat{\theta}_1 = 2\overline{X}, \ \widehat{\theta}_2 = \max\{X_1, X_2, \cdots, X_5\}$$

是 θ 的两个估计量.

- (1) 判断 $\hat{\theta_1}, \hat{\theta_2}$ 是否为无偏估计? 求常数 C_i , 使得 $\tilde{\theta_i} = C_i \hat{\theta_i} (i=1,2)$ 是无偏估计;
- (2) 在无偏-有效性准则下, 分析 $\tilde{\theta_1}$, $\tilde{\theta_2}$ 这两个估计的优劣, 并说明理由.
- 20. (10 分) 从一批保险丝中抽取 10 根, 试验其熔化时间(单位: 秒), 结果为

假设熔化时间服从正态分布, 在显著性水平 $\alpha = 0.05$ 下, 能否认为熔化时间的方差为 100?