LF03 - 01.12.23

3.4.4 Netzwerkkomponenten unterscheiden

- aktive Geräte in Verteilern, verbinden Netzwerkleitungen
- nicht dazu gehört die Verkabelung: Leitungen, Anscchlussdosen (TAs), Patchfelder

Typische Netzwerkgeräte:

- Repeater und Hub:
 - bidirektionaler Verstärker
 - arbeitet auf OSI-Layer 1 (Bitübertragungsschicht bzw. physical layer)
 - werten keine Adressen aus
 - Repeater = Hub mit nur zwei Anschlüssen
 - Einsatz in Sternverkabelungen
- Bridge und Switch
 - verbindet zwei Netzwerksegmente
 - Netzwerksegmente enthalten Geräte/Knoten mit ihrer MAC-Adresse
 - leitet Pakete nur weiter, wenn Empfänger am anderen Bridge-Port angemeldet
 - bildet dazu eine "Bridge-Table" (aka. Forwarding Table oder Switching Table) der angemeldeten Geräte
 - Switch = Multiport-Bridge
 - arbeitet auf OSI-Layer 2
 - Ports haben Input- und Output-FiFos (First In First Out) als Puffer
 - Zugriffssteuerung verhindert Datenkollision, z.B. bei gleichzeitigem Datenein- und Ausgang
 - Switching Fabric verwaltet Ports mithilfe der Tabelle

- verwaltet Datenübertragungsrate je Port entsprechend angeschlossenem Gerät
- bei unterschiedlichen Übertragungsraten oder sehr hoher Empfangsrate kann der Puffer überlaufen, weitere Daten gehen dann verloren

Router

- verbindet zwei oder mehr Netze
- wertet Netzwerk-Anteil der IP-Adresse aus
- verfügen über ähnlichen Aufbau wie Switches

- in Routing-Table sind aber ganze Adressbereiche hinterlegt (sog. Netzkennungen)
- kann Netzwerke in Subnetze unterteilen
- arbeitet auf OSI-Layer 3
- WLAN-/WiFi-Access-Point, Hotspot
 - Mittelpunkt einer Funkzelle, mit LAN verbunden
 - Mobilgeräte können sich darüber verbinden

Switchtypen

Präambel	Ethernet-Header			Date	Trailer
1010101010 011	Ziel-MAC- Adr.	Quell-MAC- Adr.	Тур	Nutzdaten	FCS
8 Byte	6 Byte	6 Byte	2 Byte	46 Byte 1500 Byte	4 Byte

- Cut-Through-Switch (1)
 - Weiterleitung direkt nach Empfang der Zieladresse
 - sehr schnell, Verzögerung nur 14 Byte
 - sehr wenig Eingangspuffer-Bedarf
 - fehlerhafte und unvollständige Pakete werden trotzdem weitergeleitet
- Store-and-Forward-Switch (2)
 - Empfang des gesamten Pakets, Rahmenprüfsumme (FCS) im Trailer wird gecheckt
 - fehlerhafte Frames werden aus dem Puffer gelöscht und nicht weitergeleitet
 - geringeres Datenaufkommen im Output-Puffer und der Leitung
 - enormer Speicherbedarf im Input-Puffer
 - hohe Latenz, bis zu 1518 Byte plus 8-Byte Präambel
- Fast-Forward-Switch oder Fragment-free-Switch (3)
 - fehlerhafte Frames brechen meist am Anfang ab
 - wartet die ersten 64 Byte ab und schaltet dann durch
 - relativ schnell und wenig Speicherbedarf
 - fängt die meisten fehlerhaften Frames ab

Managebare Switches

- die meisten Switches sind Plug-and-Play-Geräte für Heimnetze und Kleinunternehmen
- für größere Netze gibt es konfigurierbare Switches mit aus dem eigenen Netz zugreifbaren Web-Oberflächen
- individuelle Einstellung von Ports
- Statistiken über Netzaufkommen

Arbeitsweise von Routern

- Routing = Weiterleitung von Datenpaketen von einem Netzwerk in ein anderes
- Auswertung der Netzadresse (OSI-Layer 3)
- verbindet mehrere Netzwerke
- Routing-Tabelle mit Netzkennungen
 - Ziel nicht gefunden: Weiterleitung an Default-Gateway
- Zusammenfassung von mehreren Subnetzen in ein großes Netzwerk
- Prüfung aller Pakete, Auslesen der Zieladresse und TTL-Feld (Time to Life)
 - 8-bit-Feld
 - wird jeweils um 1 dekrementiert
 - wenn Ergebnis gleich null -> Rückmeldung: "Ziel nicht erreichbar"

(Bildquellen: IT-Berufe Grundstufe Lernfelder 1-5, 1. Auflage, von J. Gratzke, B. Hauser, I. Patett und

Dr. K. Ringhand, westermann Verlag, S.318ff)