Stanislas Faire varier les constantes?! H.P.

PSI

La méthode de la variation des constantes permet, connaissant des solutions de l'équation homogène d'une équation différentielle linéaires, d'en trouver des solutions particulières.

I. Les équations différentielles linéaires d'ordre 1

Soit a, b deux fonctions continues sur un intervalle I de \mathbb{R} et à valeurs dans \mathbb{K} (où \mathbb{K} vaut \mathbb{R} ou \mathbb{C}). On considère l'ensemble des solutions de l'équation différentielle y'=ay+b.

Comme a est continue, elle possède une primitive A. Ainsi, en considérant l'équation homogène, y'-ay=0 si et seulement si $e^A y'-a e^A y=0$ si et seulement si $(e^A y)'=0$ si et seulement s'il existe $\lambda \in \mathbb{K}$ tel que

$$y: t \mapsto \lambda e^{-A(t)}$$
.

On cherche une solution particulière y_p de l'équation y'=ay+b en déterminant une fonction dérivable λ telle que $y_p:t\mapsto \lambda(t)\,\mathrm{e}^{-A(t)}$.

$$y_p = \lambda e^{-A}$$

$$y'_p = \lambda' e^{-A} - a\lambda e^{-A}$$

$$y'_p - ay = \lambda' e^{-A}$$

$$\lambda' = b e^{A}$$

Ainsi, si $t_0 \in I$, on peut choisir $\lambda: t \mapsto \int_{t_0}^t b(s) e^{A(s)} ds$ et une solution particulière sera donnée par

$$y_p: t \mapsto e^{-A(t)} \int_{t_0}^t b(s) e^{A(s)} ds$$

L'ensemble des solutions de l'équation sera donc

$$\left\{ t \mapsto \lambda e^{-A(t)} + e^{-A(t)} \int_{t_0}^t b(s) e^{-A(s)} ds \right\}.$$

II. Les équations différentielles linéaires d'ordre 2

Soit a, b, c trois fonctions continues sur un intervalle I de \mathbb{R} et à valeurs dans \mathbb{K} (où \mathbb{K} vaut \mathbb{R} ou \mathbb{C}). On considère l'ensemble des solutions de l'équation différentielle y'' + ay' + by = c. Le réel t_0 désigne un élément de I.

Remarque. Lorsque a et b sont des fonctions constantes, les résultats sur les systèmes différentiels à coefficients constants permettent de trouver des solutions de l'équation homogène.

On suppose connues deux solutions y_1 , y_2 de l'équation homogène qui soient linéairement indépendantes, i.e.

$$(\exists (\lambda, \mu) \in \mathbb{R}^2 ; \forall t \in I, \lambda y_1(t) + \mu y_2(t) = 0) \Rightarrow \lambda = \mu = 0.$$

II.1 Mise en équation

On cherche une solution particulière y_p de l'équation y'' + ay' + by = c en déterminant deux fonctions dérivables λ et μ telles que $y_p : t \mapsto \lambda(t)y_1(t) + \mu(t)y_2(t)$.

On suppose de plus que

$$\lambda'(t)y_1(t) + \mu'(t)y_2(t) = 0.$$

Alors,

$$y_{p} = \lambda y_{1} + \mu y_{2}$$

$$y'_{p} = \lambda' y_{1} + \lambda y'_{1} + \mu' y_{2} + \mu y'_{2}$$

$$= \lambda y'_{1} + \mu y'_{2}$$

$$y''_{p} = \lambda' y'_{1} + \lambda y''_{1} + \mu' y'_{2} + \mu y''_{2}$$

$$y''_{p} + a y'_{p} + b y_{p} = \lambda' y'_{1} + \mu' y'_{2}$$

Ainsi, le couple (λ', μ') est solution du système (\mathscr{C})

$$\forall t \in I, \begin{cases} \lambda'(t)y_1(t) + \mu'(t)y_2(t) &= 0\\ \lambda'(t)y_1'(t) + \mu'(t)y_2'(t) &= c(t) \end{cases}$$

$$\Leftrightarrow \forall t \in I, \begin{pmatrix} y_1(t) & y_2(t)\\ y_1'(t) & y_2'(t) \end{pmatrix} \cdot \begin{pmatrix} \lambda'(t)\\ \mu'(t) \end{pmatrix} = \begin{pmatrix} 0\\ c(t) \end{pmatrix}.$$

H.P. V

Ce système possède une unique solution si et seulement si

$$W(t) = \begin{vmatrix} y_1(t) & y_2(t) \\ y'_1(t) & y'_2(t) \end{vmatrix} \neq 0.$$

Remarque. W est le Wronskien de (y_1, y_2) .

II.2 Intermède avec Wronski

Supposons qu'il existe un réel $t_0 \in I$ tel que $W(t_0) = 0$. Alors, les colonnes de W sont liées et il existe λ_1, λ_2 tel que

$$\lambda_1 \begin{pmatrix} y_1(t_0) \\ y'_1(t_0) \end{pmatrix} + \lambda_2 \begin{pmatrix} y_2(t_0) \\ y'_2(t_0) \end{pmatrix} = 0.$$

Ainsi, en notant $z = \lambda_1 y_1 + \lambda_2 y_2$, alors $z \in \mathscr{S}_H$ et $z(t_0) = z'(t_0) = 0$. D'après le théorème de Cauchy linéaire, z est identiquement nulle. Alors,

$$\forall t \in I, \lambda_1 y_1(t) + \lambda_2 y_2(t) = 0$$

Ainsi, (y_1, y_2) est liée.

On a ainsi montré que

$$\exists t_0 \in I ; W(t_0) \neq 0 \Rightarrow (y_1, y_2) \text{ est liée.}$$

En considérant la contraposée,

$$(y_1, y_2)$$
 est libre $\Rightarrow \forall t \in I, W(t) \neq 0$.

II.3 Conclusion

D'après les deux parties précédentes, le système (\mathscr{C}) possède une unique solution. Ainsi, on peut calculer λ' et μ' puis λ et μ pour construire la solution particulière y_n .

III. Et en dimensions supérieures?

On peut généraliser cette méthode aux équations différentielles linéaires d'ordre n. Soient a_0,\ldots,a_{n-1} et c des fonctions continues. On considère l'équation différentielle :

$$y^{(n)} + \sum_{i=0}^{n-1} a_i y^{(i)} = c$$

On montre en utilisant le théorème de Cauchy linéaire que l'espace vectoriel des solutions de l'équation homogène est de dimension n.

On suppose connues des solutions (y_1, \ldots, y_n) linéairement indépendantes de l'équation homogène.

On cherche alors une solution de l'équation homogène de la forme

$$y_p: t \mapsto \sum_{i=1}^n \lambda_i y_i(t)$$

et on impose

$$\sum_{i=1}^{n} \lambda_i' y_i^{(k)} = 0, \, \forall \, k \in [0, n-2].$$

On obtient alors l'équation supplémentaire

$$\sum_{i=1}^{n} \lambda_i' y_i^{(n-1)} = c.$$

On peut écrire l'ensemble de ces équations sous la forme

$$\begin{pmatrix} y_1 & y_2 & \cdots & y_n \\ \vdots & \vdots & & \vdots \\ y_1^{(n-2)} & y_2^{(n-2)} & \cdots & y_n^{(n-2)} \\ y_1^{(n-1)} & y_2^{(n-1)} & \cdots & y_n^{(n-1)} \end{pmatrix} \cdot \begin{pmatrix} \lambda_1' \\ \vdots \\ \lambda_{n-1}' \\ \lambda_n' \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ c \end{pmatrix}$$

On montre en utilisant le Wronskien que cette matrice est inversible et on peut en déduire les solutions en utilisant les systèmes de CRAMER.

Mathématiciens

CRAMER Gabriel (31 juil. 1704 à Genève-4 jan. 1752 à Bagnols-sur-Cèze).

Wronski Jozef-Maria Hoëné (23 août 1778 à Wolsztyn (Pologne)-8 août 1853 à Neuilly-sur-Seine (France)).