

PES University, Bengaluru (Established under Karnataka Act 16 of 2013)

UE17PH101

END SEMESTER ASSESSMENT (ESA) MAKEUP EXAM B TECH. I SEMESTER FEB 2018 ENGINEERING PHYSICS

Time:	3 hours Answer all questions Max marks: 100	
1 a)	Consider a plane electric wave and using Maxwell's equations show that the associated magnetic wave is perpendicular to the electric wave and the direction of propagation of the electric wave.	5
b)	In a Compton scattering of electrons with X rays discuss the condition under which the energy gained by the electron is maximum. If the wave length of the incident X ray is 0.1nm calculate the maximum energy gained by the electron.	5
c)	Discuss the Young's double slit experiment to show that photons or electrons can behave as waves.	5
d)	An electron has a life time of 0.5×10^{-9} s in an upper excited state. If the wavelength of the photon emitted is 498.3nm obtain the uncertainty in the wavelength of the photon.	5
2 a)	What are observables and expectation values of a quantum system? Discuss the expectation value of momentum.	4
b)	Discuss the wave functions of a particle with energy E incident on a potential step of height Vo \leq E for $x > 0$ and potential V=0 for $x < 0$. Show that the probability of reflection at the potential step is non zero.	6
c)	Discuss the potential of a harmonic oscillator and energy Eigen values of the system. How does this differ from the energy Eigen values of an infinite potential well?	5
d)	Show that the probability of finding the particle in a infinite potential well of width L in the n^{th} state in an interval L/n is $1/n$	5
3 a)	Discuss the concept of density of states of electrons in a metal. How do find the distribution of occupied states at a temperature >0K. Support your answer with suitable graphs.	5
b)	Determine the free electron concentration, the Fermi velocity for electrons in a metal with Fermi energy of 5.10 eV.	5
3c)	How does the quantum free electron explain the temperature dependence of conductivity of metals?	5
d)	Outline the concepts that lead to the formation of bands in materials.	5
4 a)	Discuss why a two level system cannot be operating as a Laser. What are the characteristics of a three level and four level Laser system?	5
b)	Elaborate on the requirements of a Laser system.	5
c)	The ratio of population between the high energy states to the lower energy state is $5x \cdot 10^{-19}$ at 400K. Find the emission wavelength between two states and the ratio A/B.	4
d)	Discuss the draw backs of a homo junction laser and elaborate on the working of a hetero- junction laser system.	6
5 a)	What is Larmor precession? Obtain an expression for the Larmor frequency. Calculate the Larmor frequency for electrons and protons at B=2T.	5
b)	Discuss Giant Magneto resistance and explain how this is used as the read head of hard disk drives.	5
c)	What the components of the electric fields that prevail in a dielectric and how do they affect the polarization of the material?	5
d)	Explain the behavior of piezo electrics and pyro electrics with suitable examples.	5

END SEMESTER ASSESSMENT (ESA) B TECH. I SEMESTER DEC 2017 ENGINEERING PHYSICS

Max marks: 100 Time: 3 hours Answer all questions

	Time: 3 hours Answer all questions Max marks: 100	
Usefu	I constants: $ m_e = 9.1 \times 10^{-31} Kg$ $ h = 6.63 \times 10^{-34} Js$ $ k_B = 1.38 \times 10^{-23} JK$	
1 a)	From the Maxwell's equation $\nabla \times B$ obtain the wave equation of a transverse magnetic wave in free space. How does this compare with the corresponding transverse electric wave?	5
b)	Briefly discuss how Compton effect proves the particle nature of radiation. What do you life from the	5
c)	expression for the Compton shift? Estimate the energy of an electron if it to confined in a region of width 10 ⁻¹⁴ m and calculate the de Broglie wavelength of the electron with this energy. Comment on the results obtained	5
d)	Starting with the wave function $\psi = e^{i(kx - \omega t)}$ obtain the operators for kinetic energy and total energy?	5
2 a)	Write the Schrodinger's time dependent wave equation and obtain the time independent form of the wave equation.	5
b)	Discuss the wave functions of a particle with energy E incident on a potential barrier of height $Vo > E$ between $x = 0$ to $x = L$ and $V=0$ for all other values of x . Elaborate on the sensitivity of the tunneling probability to the width of the barrier.	6
c)	How do you conclude that the energy levels of a particle in a finite potential well of width L are always lesser than the corresponding energy levels of a particle in an infinite potential well of the same width L?	5
d)	Graphically show that the probability of finding a particle in an infinite potential well in the 2^{nd} and 4^{th} state in an interval = $\frac{L}{4}$ is $\frac{1}{4}$ or 0.25	4
3 a)	Discuss how quantum mechanics describes the valence electrons in a metal. What are the factors that determine the occupancy of the electron states? Which energy state of electron would have an occupation probability of 50% at any temperature > 0 K?	5
b)	A mono valent metal has 5 x 10 ²⁸ valence electrons per m ³ . Estimate the number of electron energy states per unit volume in the metal between 2eV and 2.005eV from the concept of the density of states.	4
3c)	Calculate the ratio of the thermal conductivity of a metal to the electrical conductivity of the metal at 500K.	3
d)	Outline the Kronig Penny model to describe the motion of electrons in a metal and discuss how the band structure evolves from this model.	8
4 a)	Starting from the rate equations for the absorption and emission processes in a two level system show that the coefficients of stimulated emission and the coefficient of induced absorption are equal.	6
b)	Elaborate the round trip gain of a Laser and obtain an expression for the threshold gain	5
c)	The emission wavelength between two states is $532nm$ at $300K$. Estimate the ratio of population between two states N_1 and N_2 and obtain an estimate of the ratio A/B.	3
d)	Discuss with appropriate energy level diagram how the He Ne system works as a continuous wave laser. Suggest an appropriate distance between the mirrors for a characteristic neon red emission for practical He Ne laser.	6
5 a)	Write the expression for the magnetic moments of an atom from quantum mechanical ideas and show that the spin magnetic moment is twice the orbital magnetic moment for electrons.	5
b)	Discuss the Brillouin function for magnetic materials for large values of j and when $j=1/2$. How does this lead to the expression for the paramagnetic susceptibility?	5
c)	Obtain an expression for the dielectric polarization of a linear dielectric when placed in an external field.	5
d)	Discuss the BaTiO3 unit cell in the ferroelectric phase. What is the behavior of the system above the Curie temperature?	5
	*** * ***	