

Gymnázium, Brno, Vídeňská 47 Cvičení z fyziky 2014/2015 1. seminární práce

"Neptejte se, k čemu to je, vždyť je to krásné."

Vláďa Sedláček

6.2.2015 Jan Horáček 1

Bude to především legrace se vší vážností

- 1. motivace
- 2. experiment
 - aparatura
 - výsledky
- 3. teorie
 - "Kdo nebude dávat pozor, po tom střelím parciální derivaci!"
- 4. funguje to?

Co ale vůbec budeme dělat?

$$c=\frac{c_0}{n}$$

Vlnovou optiku

1. laserová dioda 2. dvojice spojných čoček 3. krystal 4. polopropustné zrcadlo 5. stínítko 6. kamera s filtrem

"Narušování symetrie v laserovém rezonátorů"

Naměřená data

Proč?

- Odpověď nám dá vlnová optika.
- Pojďme na to tedy od základů.

Postuláty vlnové optiky

- 1. vlnová funkce
- 2. vztahy mezi hustotou optické energie a vlnové funkce

Obecná vlnová rovnice

$$\nabla^2 u - \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2} = 0$$

- vlnová rovnice platí pro vlnovou funkci $u({m r},t)$
- funkce polohy r = (x, y, z)
- čas t
- $abla^2$ je Laplaceův operátor
 - a to je v podstatě jen obecné vyjádření polohy skrze parciální derivace

•
$$\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

Monochromatická vlna

$$u(\mathbf{r},t) = a(\mathbf{r}) * \cos[2\pi + \varphi(\mathbf{r})]$$

- $a(\mathbf{r})$ je amplitude závislá na poloze v prostoru
- $\varphi({m r})$ je fáze závislá na poloze v prostoru
- v je frekvence (Hz)
- $\omega = 2\pi v$ je úhlová frekvence (rad/s)

"K čemu využiju komplexní čísla v každodenním životě?!"

Ke komplexní vlnové funkci!

$$u(\mathbf{r},t) = a(\mathbf{r}) * \cos[2\pi + \varphi(\mathbf{r})]$$

$$\rightarrow$$

$$U(\mathbf{r},t) = a(\mathbf{r}) * \exp[j\varphi(\mathbf{r})] * \exp[j2\pi vt]$$

"Do nekonečna a ještě dál."

 Dosazením komplexní vlnové funkce do vlnové rovnice dostaneme Helmholtzovu diferenciální rovnici.

$$(\nabla^2 + k^2) U(\mathbf{r}) = 0$$

Vlnové číslo k

$$k = \frac{2\pi v}{c} = \frac{\omega}{c}$$

Pojďme řešit Helmholtzovu vlnovou rovnici

- 1. rovinné vlny
- 2. sférické vlny
- 3. paraxiální vlny

Paraxiální Helmholtzova rovnice

$$\nabla_T^2 A - j2k \frac{\partial A}{\partial z} = 0$$

- komplexní obálka A (její kvadrát měříme jako intenzitu)
- transverzální Laplaceův operátor $\nabla_T^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$

• řešme ji!

Řešení jsou poměrně zajímavá

- 1. Hermitteovské-Gaussovské svazky (kartézský systém souřadnic)
- 2. Laguerreovské-Gaussovské svazky (polární systém sousřadnic)
- 3. Inceovské-Gaussovské svazky (obecný eliptický systém)

Hermieova-Gaussova funkce

- Platí pro Hermitteovské-Gaussovské svazky.
- Kořeny HG-rovnice je nekonečně mnoho HG-funkcí, které jsou definovány různými polynomy.

A to je ono!

Právě jsme objevili příčné mody laseru

Nalezli jsme takové samoobnovující se vlny, které se beze změny svého tvaru mohou postupně odrážet od dvou sférických zrcadel tvořících rezonátor. Ostatní se neudržely.

Na závěr pár faktů...

- Výkon našeho laseru byl < 5mW.
- Vlnová délka laseru byla 1064 nm.
- Pro čerpání laseru jsme použili PIN laserovou diodu $\lambda = 810~nm$.
- $\alpha = 6^{\circ}$
- Před kamerou byl umístěn filtr dolní propusť $1000 \ nm$.
- Laser byl IV. třídy.

Poděkování & Závěr

- ČVUT za TV@J.
- Ing. Josefu Blažejovi za podnětné vedení při realizaci projektu.
- Mgr. Dagmar Nešporové za uzavření známky za první pololetí bez prezentování seminární práce v termínu.
- Publiku za pozornost a aktivitu ©.

Jeďte na Týden vědy na Jaderce, naučíte se spoustu zajímavých věcí! http://tydenvedy.fjfi.cvut.cz/