MATH 752 NOTES

MARIO L. GUTIERREZ ABED

Some Preliminaries

Definition. If $\pi: X \to Y$ is a map, a subset $U \subseteq X$ is said to be **saturated with respect to** π if U is the entire preimage of its image under π , i.e., if $U = \pi^{-1}(\pi(U))$. Given $y \in Y$, the **fiber of** π **over** y is the set $\pi^{-1}(y)$. (Thus, a subset of X is saturated if and only if it is a union of fibers).

Definition. If X and Y are topological spaces, a map $F: X \to Y$ (continuous or not) is said to be **proper** if for every compact set $K \subseteq Y$, the preimage $F^{-1}(K)$ is compact as well.

Here are some useful sufficient conditions for a map to be proper:

Proposition 1 (Sufficient Conditions for Properness). Suppose X and Y are topological spaces, and $F: X \to Y$ is a continuous map.

- a) If X is compact and Y is Hausdorff, then F is proper.
- b) If F is a closed map with compact fibers, then F is proper.
- c) If F is a topological embedding with closed image, then F is proper.
- d) If Y is Hausdorff and F has a continuous left inverse (i.e., a continuous map $G: Y \to X$ such that $G \circ F = \mathrm{Id}_X$), then F is proper.
- e) If F is proper and $A \subseteq X$ is a subset that is saturated with respect to F, then $F|_A \colon A \to F(A)$ is proper.

Definition. A deformation retraction of a space X onto a subspace A is a family of maps $f_t \colon X \to X$, for $t \in I$, such that f(0) = 1 (the identity map), $f_1(X) = A$, and $f_t|_A = 1$ for all t. The family f_t should be continuous in the sense that the associated map $X \times I \to X$ given by $(x,t) \mapsto f_t(x)$, is continuous.

Definition. For a map $f: X \to Y$, the **mapping cylinder** M_f is the quotient space of the disjoint union $(X \times I) \coprod Y$ obtained by identifying each $(x, 1) \in X \times I$ with $f(x) \in Y$.

Definition. A homotopy is any family of maps $f_t \colon X \to Y$, for $t \in I$, such that the associated map $F \colon X \times I \to Y$ given by $F(x,t) = f_t(x)$ is continuous. One says that two maps $f_0, f_1 \colon X \to Y$ are homotopic if there exists a homotopy f_t connecting them, in which case we write $f_0 \simeq f_1$.

<u>Remark 1</u>: In these terms, a deformation retraction of X onto a subspace A is a homotopy from the identity map of X to a **retraction** of X onto A (a map $r: X \to X$ such that r(X) = A and $r|_A = 1$. Equivalently, we may regard a retraction as a map $X \to A$ restricting to the identity on the subspace $A \subset X$). From a more formal viewpoint a retraction is a map $r: X \to X$ with $r^2 = r$, since this equation says exactly that r is the identity on its image. Retractions are the topological analogs of projection operators in other parts of mathematics.

<u>Remark 2</u>: A homotopy $f_t: X \to X$ that gives a deformation retraction of X onto a subspace A has the property that $f_t|_A = 1$ for all t. In general, a homotopy $f_t: X \to Y$ whose restriction to a subspace $A \subset X$ is independent of t is called a **homotopy relative to** A (or more concisely, a homotopy rel A). Thus, a deformation retraction of X onto A is a homotopy rel A from the identity map of X to a retraction of X onto A.

<u>Remark 3</u>: If a space X deformation retracts onto a subspace A via $f_t: X \to X$, then if $r: X \to A$ denotes the resulting retraction and $\iota: A \to X$ the inclusion, we have $r\iota = 1$ and $\iota r \simeq 1$, the latter homotopy being given by f_t . Generalizing this situation, a map $f: X \to Y$ is called a **homotopy** equivalence if there is a map $g: Y \to X$ such that $fg \simeq 1$ and $gf \simeq 1$. The spaces X and Y are said to be **homotopy** equivalent or to have the same **homotopy** type, which we denote by $X \simeq Y$. It is true in general that two spaces X and Y are homotopy equivalent if and only if there exists a third space Z containing both X and Y as deformation retracts.

Definition. A space having the homotopy type of a point is called **contractible**. This amounts to requiring that the identity map of the space be **nullhomotopic**, that is, homotopic to a constant map.

<u>Remark</u>: In general, this is slightly weaker than saying the space deformation retracts to a point; see the exercises at the end of chapter 0, *Hatcher's*, for an example distinguishing these two notions.

COVERING MAPS

Definition. Suppose E and X are topological spaces. A map $\pi \colon E \to X$ is called a **covering map** if E and X are connected and locally path-connected, π is surjective and continuous, and each point $p \in X$ has a neighborhood U that is **evenly covered by** π , meaning that each component of $\pi^{-1}(U)$ is mapped homeomorphically onto U by π . In this case, X is called the **base of the covering**, and E is called a **covering space of** X. If U is an evenly covered subset of X, the components of $\pi^{-1}(U)$ are called the **sheets of the covering over** U.

Definition. If $\pi: E \to X$ is a covering map and $F: B \to X$ is a continuous map, a **lift of** F is a continuous map $\widetilde{F}: B \to E$ such that $\pi \circ \widetilde{F} = F$:

Proposition 2 (Lifting Properties of Covering Maps). Suppose $\pi: E \to X$ is a covering map.

- a) UNIQUE LIFTING PROPERTY: If B is a connected space and $F: B \to X$ is a continuous map, then any two lifts of F that agree at one point are identical.
- b) PATH LIFTING PROPERTY: If $f: I \to X$ is a path, then for any point $e \in E$ such that $\pi(e) = f(0)$, there exists a unique lift $\widetilde{f}: I \to E$ of f such that $\widetilde{f}(0) = e$.
- c) MONODROMY THEOREM: If $f, g: I \to X$ are path-homotopic paths and $\widetilde{f}_e, \widetilde{g}_e: I \to E$ are their lifts starting at the same point $e \in E$, then \widetilde{f}_e and \widetilde{g}_e are path-homotopic and $\widetilde{f}_e(1) = \widetilde{g}_e(1)$.

Proposition 3 (Lifting Criterion). Suppose $\pi: E \to X$ is a covering map, Y is a connected and locally path-connected space, and $F: Y \to X$ is a continuous map. Let $y \in Y$ and $e \in E$ be such that $\pi(e) = F(y)$. Then there exists a lift $\widetilde{F}: Y \to E$ of F satisfying $\widetilde{F}(y) = e$ if and only if $F_*(\pi_1(Y,y)) \subseteq \pi_*(\pi_1(E,e))$.

Proposition 4 (Coverings of Simply Connected Spaces). If X is a simply connected space, then every covering map $\pi: E \to X$ is a homeomorphism.

Definition. A topological space is said to be **locally simply connected** if it admits a basis of simply connected open subsets. ★

Proposition 5 (Existence of a Universal Covering Space). If X is a connected and locally simply connected topological space, there exists a simply connected topological space \widetilde{X} and a covering map $\pi \colon \widetilde{X} \to X$. If $\widehat{\pi} \colon \widehat{X} \to X$ is any other simply connected covering of X, then there is a homeomorphism $\varphi \colon \widetilde{X} \to \widehat{X}$ such that $\widehat{\pi} \circ \varphi = \pi$.

Definition. The simply connected covering space \widetilde{X} whose existence and uniqueness (up to homeomorphism) are guaranteed by this last proposition is called the **universal covering space of** X.

 \star