- 1. We call w primitive if it cannot be written as $w = u^k$ for some $k \ge 2$. Show that w is primitive if and only if it occurs exactly twice in ww (once as a prefix and once as a suffix).
- 2. Given a word w, we want to compute, for every i = 1, 2, ..., |w|, the value of $Pref[i] = max\{j : w[1..j] = w[i..(i+j-1)]\}$. Design an O(|w|) time algorithm for this problem.
- 3. To use the good suffix heuristic we need to compute, for every $j=1,2,\ldots,m$, the smallest s>0 such that, for every $k=j+1,\ldots,m$, we have $s\geq k$ or p[k-s]=p[k]. Show how to compute all such values in O(m) time.
- 4. To use the strong good suffix heuristic we need to compute, for every $j=1,2,\ldots,m$, the smallest s>0 such that, for every $k=j+1,\ldots,m$, we have $s\geq k$ or p[k-s]=p[k], and additionally $s\geq j$ or $p[j-s]\neq p[j]$. Show how to compute all such values in O(m) time.