CS171: Cryptography

Lecture 19

Sanjam Garg

▶ Bind to a secret value that cannot be later explained with an alternate value.

► Correctness: An sender should be able to convince an honest receiver of the correct opening with *overwhelming* probability. (Easy to see)

- Correctness: An sender should be able to convince an honest receiver of the correct opening with overwhelming probability. (Easy to see)
- ▶ Binding: No PPT cheating prover can find two openings for the same commitment. That is, \forall PPT \mathcal{A} we have that

$$\Pr[(x, r, x', r') \leftarrow \mathcal{A}(1^{\lambda}, \text{srs}) \text{ such that } \mathsf{Com}(\text{srs}, x, r) = \mathsf{Com}(\text{srs}, x', r')] = \mathsf{neg}(\lambda)$$

Bind to a secret value that cannot be later explained with an alternate value.

- Correctness: An sender should be able to convince an honest receiver of the correct opening with overwhelming probability. (Easy to see)
- **Binding**: No PPT cheating prover can find two openings for the same commitment. That is, \forall PPT \mathcal{A} we have that

$$\Pr[(x, r, x', r') \leftarrow \mathcal{A}(1^{\lambda}, \text{srs}) \text{ such that } \mathsf{Com}(\text{srs}, x, r) = \mathsf{Com}(\text{srs}, x', r')] = \mathsf{neg}(\lambda)$$

▶ Hiding: The committemnt doesn't leak any information about the committed value x. That is, \forall PPT \mathcal{A}, x, x' we have that

$$\left| \Pr[\mathcal{A}(1^{\lambda}, \mathsf{srs}, \mathsf{Com}(\mathsf{srs}, x; r)) = 1] - \Pr[\mathcal{A}(1^{\lambda}, \mathsf{srs}, \mathsf{Com}(\mathsf{srs}, x'; r')) = 1] \right| \leq \frac{1}{2} + \mathsf{neg}(\lambda)$$

 $f:\{0,1\}^n o \{0,1\}^n$ be a one-way permutation

 $x \in \{0, 1\}$

Sender

Receiver

 $f: \{0,1\}^n \to \{0,1\}^n$ be a one-way permutation

 $r,s \leftarrow \{0,1\}^n$ $c_1,c_2,c_3) = (f(r),s,\langle r,s\rangle \oplus x)$ $c_1 \stackrel{?}{=} f(r) \text{ and } c_3 \stackrel{?}{=} \langle r,c_2\rangle \oplus x).$ Sender ReceiverReceiver

 $f: \{0,1\}^n \to \{0,1\}^n$ be a one-way permutation

 $f:\{0,1\}^n o \{0,1\}^n$ be a one-way permutation

▶ Binding: Because f is a permutation, given c there is a unique value of r, x such that $c_1 = f(r)$ and $c_3 = \langle r, c_2 \rangle \oplus x$).

 $f:\{0,1\}^n o \{0,1\}^n$ be a one-way permutation

- ▶ Binding: Because f is a permutation, given c there is a unique value of r, x such that $c_1 = f(r)$ and $c_3 = \langle r, c_2 \rangle \oplus x$).
- ▶ Hiding: Follows from the hardness concentration property.

▶ Given $\Pi = (Gen, Enc, Dec)$ let sender execute Com(x; r) as follows. Use randomness r to execute Gen and then encrypt x using Enc and the obtained key k.

- ▶ Given $\Pi = (Gen, Enc, Dec)$ let sender execute Com(x; r) as follows. Use randomness r to execute Gen and then encrypt x using Enc and the obtained key k.
- ► No!
- While this commitment offers hinding, it doesn't give binding.

- ▶ Given $\Pi = (Gen, Enc, Dec)$ let sender execute Com(x; r) as follows. Use randomness r to execute Gen and then encrypt x using Enc and the obtained key k.
- ► No!
- ▶ While this commitment offers hinding, it doesn't give binding.
- Shouldn't binding come from the correctness of encryption?

- ▶ Given $\Pi = (Gen, Enc, Dec)$ let sender execute Com(x; r) as follows. Use randomness r to execute Gen and then encrypt x using Enc and the obtained key k.
- ► No!
- ▶ While this commitment offers hinding, it doesn't give binding.
- Shouldn't binding come from the correctness of encryption?
- ▶ The encrypter may not choose their random coins honestly.

$$srs = (G, g, q, h)$$

▶ Binding: Given x, x', r, r' such that $g^x \cdot h^r = c = g^{x'} \cdot h^{r'}$ we can compute $dlog_g(h)$.

- ▶ Binding: Given x, x', r, r' such that $g^x \cdot h^r = c = g^{x'} \cdot h^{r'}$ we can compute $dlog_g(h)$.
- ▶ Hiding: For every $c = g^x h^r$ and x' there exists $r' = r + \frac{x' x}{d \log_g(h)}$.

Commitment to a vector $\mathbf{x} = (\mathbf{x_0}, \dots \mathbf{x_{n-1}})$

Commitment to a vector
$$\mathbf{x} = (\mathbf{x_0}, \dots \mathbf{x_{n-1}})$$

Send $c_i = \text{Com}(x_i; r_i)$ for each i .

Commitment to a vector
$$\mathbf{x} = (\mathbf{x_0}, \dots \mathbf{x_{n-1}})$$

Send $c_i = \text{Com}(x_i; r_i)$ for each i .
Can we do it succinctly?

▶ Hashing in More Detail $(n = 2^{\ell})$: For every $i \in \{0, n - 1\}, c_i^0 = g^{x_i} h^{r_i}$. For all $j \in \{0, \dots \ell - 1\}, i \in \{0 \dots 2^j - 1\}$ set $c_{i/2}^{j+1} = H(c_i^j || c_{i+1}^j)$. Finally, $c = c_0^{\ell}$.

- ▶ Hashing in More Detail $(n = 2^{\ell})$: For every $i \in \{0, n 1\}$, $c_i^0 = g^{x_i} h^{r_i}$. For all $j \in \{0, \dots \ell 1\}$, $i \in \{0 \dots 2^j 1\}$ set $c_{i/2}^{j+1} = H(c_i^j || c_{i+1}^j)$. Finally, $c = c_0^{\ell}$.
- ▶ Binding: An attacker that outputs distinct $x_1, r_0, \ldots x_{n-1}, r_{n-1}$ and $x'_1, r'_1, \ldots x'_n, r'_n$ such that the receiver check pass on both either (i) break CRHF, or (ii) can comute $dlog_g(h)$.

- ▶ Hashing in More Detail $(n = 2^{\ell})$: For every $i \in \{0, n 1\}$, $c_i^0 = g^{x_i} h^{r_i}$. For all $j \in \{0, \dots \ell 1\}$, $i \in \{0 \dots 2^j 1\}$ set $c_{i/2}^{j+1} = H(c_i^j || c_{i+1}^j)$. Finally, $c = c_0^{\ell}$.
- ▶ Binding: An attacker that outputs distinct $x_1, r_0, \dots x_{n-1}, r_{n-1}$ and $x_1', r_1', \dots x_n', r_n'$ such that the receiver check pass on both either (i) break CRHF, or (ii) can comute $dlog_g(h)$.
- ▶ Hiding: For every $c_i^0 = g^{x_i} h^{r_i}$ that is hashed and x_i' there exists $r_i' = r_i + \frac{x_i' x_i}{d \log_g(h)}$.

- ▶ Hashing in More Detail $(n = 2^{\ell})$: For every $i \in \{0, n 1\}$, $c_i^0 = g^{x_i}h^{r_i}$. For all $j \in \{0, \dots \ell 1\}$, $i \in \{0 \dots 2^j 1\}$ set $c_{i/2}^{j+1} = H(c_i^j||c_{i+1}^j)$. Finally, $c = c_0^{\ell}$.
- ▶ Binding: An attacker that outputs distinct $x_1, r_0, \dots x_{n-1}, r_{n-1}$ and $x_1', r_1', \dots x_n', r_n'$ such that the receiver check pass on both either (i) break CRHF, or (ii) can comute $dlog_g(h)$.
- \blacktriangleright Hiding: For every $c_i^0 = g^{x_i} h^{r_i}$ that is hashed and x_i' there exists $r_i' = r_i + \frac{x_i' x_i}{d \log_g(h)}$.
- ▶ Partial Opening (Location k): Opening c_k^0, x_k, r_k and

- ▶ Hashing in More Detail $(n = 2^{\ell})$: For every $i \in \{0, n 1\}$, $c_i^0 = g^{x_i}h^{r_i}$. For all $j \in \{0, \dots \ell 1\}$, $i \in \{0 \dots 2^j 1\}$ set $c_{i/2}^{j+1} = H(c_i^j||c_{i+1}^j)$. Finally, $c = c_0^{\ell}$.
- ▶ Binding: An attacker that outputs distinct $x_1, r_0, \dots x_{n-1}, r_{n-1}$ and $x_1', r_1', \dots x_n', r_n'$ such that the receiver check pass on both either (i) break CRHF, or (ii) can comute $dlog_g(h)$.
- \blacktriangleright Hiding: For every $c_i^0 = g^{x_i} h^{r_i}$ that is hashed and x_i' there exists $r_i' = r_i + \frac{x_i' x_i}{d \log_g(h)}$.
- ▶ Partial Opening (Location k): Opening c_k^0, x_k, r_k and

- ▶ Hashing in More Detail $(n = 2^{\ell})$: For every $i \in \{0, n 1\}$, $c_i^0 = g^{x_i}h^{r_i}$. For all $j \in \{0, \dots \ell 1\}$, $i \in \{0 \dots 2^j 1\}$ set $c_{i/2}^{j+1} = H(c_i^j||c_{i+1}^j)$. Finally, $c = c_0^{\ell}$.
- ▶ Binding: An attacker that outputs distinct $x_1, r_0, \dots x_{n-1}, r_{n-1}$ and $x_1', r_1', \dots x_n', r_n'$ such that the receiver check pass on both either (i) break CRHF, or (ii) can comute $dlog_g(h)$.
- ▶ Hiding: For every $c_i^0 = g^{x_i} h^{r_i}$ that is hashed and x_i' there exists $r_i' = r_i + \frac{x_i' x_i}{d \log_{\kappa}(h)}$.
- ▶ Partial Opening (Location k): Opening c_k^0, x_k, r_k and $\forall j \in \{0, \ell\}$ send $c_{\frac{k}{2^j}}^j$ and $c_{\frac{k}{2^j}+1}^j$.

Commitment to a Polynomial f(x) of degree n-1Succinctly

Problem: Given $a_0...a_{n-1}$ (evaluation representation) find the degree-n-1 polynomial $f(x) = b_0 + b_1 x + ...b_{n-1} x^{n-1}$ (coefficient representation), i.e. $b_0, b_1...b_{n-1}$, such that for all $i \in H = \{0, ...n-1\}$ we have $f(i) = a_i$.

Problem: Given $a_0...a_{n-1}$ (evaluation representation) find the degree-n-1 polynomial $f(x) = b_0 + b_1 x + ...b_{n-1} x^{n-1}$ (coefficient representation), i.e. $b_0, b_1...b_{n-1}$, such that for all $i \in H = \{0, ...n-1\}$ we have $f(i) = a_i$.

Let $L_i(x)$ be the degree-n-1 polynomial such that $L_i(i)=1$ and for all $j\in H\setminus\{i\}$ $L_i(j)=0$

$$L_i(x) = \frac{\prod_{j \in H \setminus \{i\}} (x - j)}{\prod_{j \in H \setminus \{i\}} (i - j)}.$$

Problem: Given $a_0...a_{n-1}$ (evaluation representation) find the degree-n-1 polynomial $f(x) = b_0 + b_1 x + ...b_{n-1} x^{n-1}$ (coefficient representation), i.e. $b_0, b_1...b_{n-1}$, such that for all $i \in H = \{0, ...n-1\}$ we have $f(i) = a_i$.

Let $L_i(x)$ be the degree-n-1 polynomial such that $L_i(i)=1$ and for all $j\in H\setminus\{i\}$ $L_i(j)=0$

$$L_i(x) = \frac{\prod_{j \in H \setminus \{i\}} (x - j)}{\prod_{j \in H \setminus \{i\}} (i - j)}.$$

Next, we have

$$f(x) = \sum_{i \in H} a_i \cdot L_i(x)$$

Problem: Given $a_0...a_{n-1}$ (evaluation representation) find the degree-n-1 polynomial $f(x) = b_0 + b_1 x + ...b_{n-1} x^{n-1}$ (coefficient representation), i.e. $b_0, b_1...b_{n-1}$, such that for all $i \in H = \{0, ...n-1\}$ we have $f(i) = a_i$.

Let $L_i(x)$ be the degree-n-1 polynomial such that $L_i(i)=1$ and for all $j\in H\setminus\{i\}$ $L_i(j)=0$

$$L_i(x) = \frac{\prod_{j \in H \setminus \{i\}} (x - j)}{\prod_{j \in H \setminus \{i\}} (i - j)}.$$

Next, we have

$$f(x) = \sum_{i \in H} a_i \cdot L_i(x)$$

 $ightharpoonup L_i$ s can be cached for efficiency. DIY: Prove that the constructed polynomials are correct and unique.

- ▶ Gives groups $G_1 = \langle g_1 \rangle$, $G_2 = \langle g_2 \rangle$ and G_T (of the same prime order p) along with a bilinear pairing operation e.
- ▶ For every $\alpha, \beta \in \mathbb{Z}_p^*$, we have that $e(g_1^{\alpha}, g_2^{\beta}) = e(g_1, g_2)^{\alpha\beta}$.

- ▶ Gives groups $G_1 = \langle g_1 \rangle$, $G_2 = \langle g_2 \rangle$ and G_T (of the same prime order p) along with a bilinear pairing operation e.
- ▶ For every $\alpha, \beta \in \mathbb{Z}_p^*$, we have that $e(g_1^{\alpha}, g_2^{\beta}) = e(g_1, g_2)^{\alpha\beta}$.
- **Setup:** srs generation that supports committing to degree d-1 polynomials:
 - ▶ Sample $\tau \leftarrow \mathbb{Z}_p^*$.
 - $ightharpoonup ext{srs} = (h_0 = g_1, h_1 = g_1^{\tau}, g_1^{\tau^2}, h_d = g_1^{\tau^{d-1}}, g_2, h' = g_2^{\tau})$

- ▶ Gives groups $G_1 = \langle g_1 \rangle$, $G_2 = \langle g_2 \rangle$ and G_T (of the same prime order p) along with a bilinear pairing operation e.
- $lackbox{ For every } lpha,eta\in\mathbb{Z}_p^*, ext{ we have that } e(g_1^lpha,g_2^eta)=e(g_1,g_2)^{lphaeta}.$
- **Setup:** srs generation that supports committing to degree d-1 polynomials:
 - ▶ Sample $\tau \leftarrow \mathbb{Z}_p^*$.
 - ightharpoonup srs = $(h_0 = g_1, h_1 = g_1^{\tau}, g_1^{\tau^2}, h_d = g_1^{\tau^{d-1}}, g_2, h' = g_2^{\tau})$
- ▶ **Homomorphic Commitment:** Given srs and a polynomial $f(x) = c_0 + c_1x + ... + c_{d-1}x^{d-1}$ of degree d-1, we can compute Com(f) as:

$$F = \mathsf{Com}(f) = g_1^{f(au)} = \prod_{i=0}^{d-1} h_i^{c_i}$$

- ▶ Gives groups $G_1 = \langle g_1 \rangle$, $G_2 = \langle g_2 \rangle$ and G_T (of the same prime order p) along with a bilinear pairing operation e.
- $lackbox{ For every } lpha,eta\in\mathbb{Z}_p^*, ext{ we have that } e(g_1^lpha,g_2^eta)=e(g_1,g_2)^{lphaeta}.$
- **Setup:** srs generation that supports committing to degree d-1 polynomials:
 - ▶ Sample $\tau \leftarrow \mathbb{Z}_p^*$.
 - ightharpoonup srs = $(h_0 = g_1, h_1 = g_1^{\tau}, g_1^{\tau^2}, h_d = g_1^{\tau^{d-1}}, g_2, h' = g_2^{\tau})$
- ▶ **Homomorphic Commitment:** Given srs and a polynomial $f(x) = c_0 + c_1x + ... + c_{d-1}x^{d-1}$ of degree d-1, we can compute Com(f) as:

$$F = \mathsf{Com}(f) = g_1^{f(au)} = \prod_{i=0}^{d-1} h_i^{c_i}$$

▶ **Opening:** Show that f(z) = s. In this case, g(x) = f(x) - s is such that g(z) = 0. Or, x - z divides f(x) - s.

- ▶ Gives groups $G_1 = \langle g_1 \rangle$, $G_2 = \langle g_2 \rangle$ and G_T (of the same prime order p) along with a bilinear pairing operation e.
- $lackbox{ For every } lpha,eta\in\mathbb{Z}_p^*, ext{ we have that } e(g_1^lpha,g_2^eta)=e(g_1,g_2)^{lphaeta}.$
- **Setup:** srs generation that supports committing to degree d-1 polynomials:
 - ▶ Sample $\tau \leftarrow \mathbb{Z}_p^*$.
 - ightharpoonup srs = $(h_0 = g_1, h_1 = g_1^{\tau}, g_1^{\tau^2}, h_d = g_1^{\tau^{d-1}}, g_2, h' = g_2^{\tau})$
- ► Homomorphic Commitment: Given srs and a polynomial $f(x) = c_0 + c_1x + ... c_{d-1}x^{d-1}$ of degree d-1, we can compute Com(f) as:

$$F = \mathsf{Com}(f) = g_1^{f(au)} = \prod_{i=0}^{d-1} h_i^{c_i}$$

- ▶ **Opening:** Show that f(z) = s. In this case, g(x) = f(x) s is such that g(z) = 0. Or, x z divides f(x) s.
- ▶ Sender computes $T(x) = \frac{f(x) f(z)}{x z}$ and sends W = Com(T).

- ▶ Gives groups $G_1 = \langle g_1 \rangle$, $G_2 = \langle g_2 \rangle$ and G_T (of the same prime order p) along with a bilinear pairing operation e.
- For every $\alpha, \beta \in \mathbb{Z}_p^*$, we have that $e(g_1^{\alpha}, g_2^{\beta}) = e(g_1, g_2)^{\alpha\beta}$.
- **Setup:** srs generation that supports committing to degree d-1 polynomials:
 - ▶ Sample $\tau \leftarrow \mathbb{Z}_p^*$.
 - ightharpoonup srs = $(h_0 = g_1, h_1 = g_1^{\tau}, g_1^{\tau^2}, h_d = g_1^{\tau^{d-1}}, g_2, h' = g_2^{\tau})$
- ▶ **Homomorphic Commitment:** Given srs and a polynomial $f(x) = c_0 + c_1x + ... + c_{d-1}x^{d-1}$ of degree d-1, we can compute Com(f) as:

$$F = \mathsf{Com}(f) = g_1^{f(au)} = \prod_{i=0}^{d-1} h_i^{c_i}$$

- ▶ **Opening:** Show that f(z) = s. In this case, g(x) = f(x) s is such that g(z) = 0. Or, x z divides f(x) s.
- ▶ Sender computes $T(x) = \frac{f(x) f(z)}{x z}$ and sends W = Com(T).
- ▶ Receiver Accepts if: $e\left(\frac{F}{g_2^5}, g_2\right) = e\left(W, \frac{h'}{g_2^2}\right)$.

Optimizing Opening by Batching — Warmup

Often we want to check multiple pairing equations:

$$e(F_0, g_2) = e(W_0, h_2)$$

 $e(F_1, g_2) = e(W_1, h_2)$
 $e(F_2, g_2) = e(W_2, h_2)$

A faster way to check?

Optimizing Opening by Batching — Warmup

Often we want to check multiple pairing equations:

$$e(F_0, g_2) = e(W_0, h_2)$$

 $e(F_1, g_2) = e(W_1, h_2)$
 $e(F_2, g_2) = e(W_2, h_2)$

A faster way to check? The receiver samples a random γ and checks:

$$e\left(\prod_{i=0}^{2}F_{i}^{\gamma^{i}},g_{2}\right)=e\left(\prod_{i=0}^{2}W_{i}^{\gamma^{i}},h_{2}\right)$$

Need only 2 pairings instead of 6.

Optimizing Opening by Batching

Problem: Consider the setting where sender commits to polynomials $f_1...f_t$ as $F_1...F_t$ and wants to show that for all i we have that $f_i(z) = s_i$.

Optimizing Opening by Batching

- **Problem:** Consider the setting where sender commits to polynomials $f_1...f_t$ as $F_1...F_t$ and wants to show that for all i we have that $f_i(z) = s_i$.
- ▶ **Opening:** Receiver sends random $\gamma \in \mathbb{F}$. Sender computes $T(x) = \sum_{i=1}^{t} \gamma^{i-1} \cdot \frac{f_i(x) f_i(z)}{x z}$ and sends W = Com(T).

Optimizing Opening by Batching

- **Problem:** Consider the setting where sender commits to polynomials $f_1...f_t$ as $F_1...F_t$ and wants to show that for all i we have that $f_i(z) = s_i$.
- ▶ **Opening:** Receiver sends random $\gamma \in \mathbb{F}$. Sender computes $T(x) = \sum_{i=1}^{t} \gamma^{i-1} \cdot \frac{f_i(x) f_i(z)}{x z}$ and sends W = Com(T).
- ▶ Receiver Accepts if: $e\left(\prod_{i=1}^t \left(\frac{F_i}{g_1^{s_i}}\right)^{\gamma^{i-1}}, g_2\right) = e\left(W, \frac{h'}{g_2^{s_2}}\right)$. (only two pairings)

KZG Commitment is Homomorphic

▶ Given commitments c_1 , c_2 to polynomials $f_1(x)$ and $f_2(x)$ find a commitment to the polynomial $g(x) = f_1(x) + f_2(x)$?

KZG Commitment is Homomorphic

▶ Given commitments c_1 , c_2 to polynomials $f_1(x)$ and $f_2(x)$ find a commitment to the polynomial $g(x) = f_1(x) + f_2(x)$?

KZG Commitment is Homomorphic

- Given commitments c_1, c_2 to polynomials $f_1(x)$ and $f_2(x)$ find a commitment to the polynomial $g(x) = f_1(x) + f_2(x)$?
- ▶ Output Commitment as $c_1 \cdot c_2$.