CHEATSHEET ANALISI PER RICERCA OPERATIVA

CONTINUITÀ

Sia $f: [a, b] \to \mathbb{R}$ e $\mathbf{x_0} \in [a, b]$ un punto del suo dominio.

$$f$$
 è **continua** in $\mathbf{x_0}$ se $\lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x) = \lim_{x \to x_0} f(x) = f(x_0)$

"Se x si avvicina a x_0 , allora f(x) si avvicina a $f(x_0)$."

PROPRIETÀ

- La somma algebrica di funzioni continue è una funzione continua.
- Il prodotto di funzioni continue è una funzione continua.
- La composizione di funzioni continue è una funzione continua.

DISCONTINUITÀ

- Prima specie $\lim_{x \to x_0^-} f(x) \neq \lim_{x \to x_0^+} f(x)$ entrambi finiti. Seconda specie $\lim_{x \to x_0} f(x) = \infty$ o non esiste.
- ullet Terza specie (*eliminabile*) $\lim_{x o x_0^+}f(x)$ = $\lim_{x o x_0^-}f(x)$ = $\lim_{x o x_0}f(x)
 eq f(x_0)$

DERIVABILITÀ

La *derivata* di f nel punto x_0 è il limite del rapporto incrementale al tendere di h a 0, ovvero:

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

PROPRIETÀ

- $\begin{array}{l} \bullet \quad \frac{df(x_0)}{dx} = 0 \implies \mathsf{x}_0 \text{ è un punto stazionario.} \\ \bullet \quad \frac{df(x_0)}{dx} = 0 \wedge \mathsf{n \ pari} \ \wedge \frac{d^n f(x_0)}{dx^n} > 0 \implies \mathsf{x}_0 \text{ è un punto di minimo.} \\ \bullet \quad \frac{df(x_0)}{dx} = 0 \wedge \mathsf{n \ pari} \ \wedge \frac{d^n f(x_0)}{dx^n} < 0 \implies \mathsf{x}_0 \text{ è un punto di massimo.} \end{array}$

Dove $rac{d^n f(x_0)}{d\sigma^n}$ è la **prima derivata non prima diversa da zero**.

CONVESSITÀ/CONCAVITÀ

Sia $f: \mathbb{R} \to \mathbb{R}$ una funzione due volte differenziabile in tuto \mathbb{R} .

- Se f''(x) > 0 in un intervallo [a, b] $\implies f(x)$ è **convessa** in quell'intervallo. \cup
- Se f''(x) < 0 in un intervallo [a, b] $\implies f(x)$ è **concava** in quell'intervallo. \cap

PROPRIETÀ

- Una funzione f(x) è convessa SSE f(x) è concava e viceversa.
- La somma di funzioni concave/convesse è ancora una funzione concava/convessa.
- Se f(x) è convessa e x^* è un punto di minimo locale, è anche un minimo globale.
- Se f(x) è concava e x^* è un punto di massimo locale, è anche un massimo globale.