# NCAA Men's Basketball March Madness Predictions with Machine Learning

Yvon Kadeoua



# THE TOURNAMENT

### MARCH MADNESS

The tournament consist of several rounds

- 68 teams
- The first 4(teams with the lowest seeds)
- The first round( the round of 64)
- The second round (The round of 32)
- Sweet 16
- Elite 8
- Final 4
- 4 regions, 16 teams each
- Each team seeded 1-16

2017 Champion: **North Carolina Tar Heels** (#1 seed in the South Region)





- 19 millions brackets were submitted to ESPN 9.2 quintillion possible brackets
- The majority of fans submit 2 different brackets
- Nobody has ever submitted a perfect bracket

- The approximate retail value of all prizes on ESPN is \$22,950
- Warren Buffett offers \$1 million for life for a perfect Sweet 16 field



# Overview of March Madness Project And Questions of Interest

- Can we use NCAA historical data and Machine Learning to predict the games outcome?
- Based on the probabilities can we predict what team will move forward?
- How accurate can these statistical results be compared to the brackets?

#### PREVIOUS WORK

- Most previous work have been developed in the context of Statistical Modeling rather than Machine learning
- Existing work which employs machine learning suffered from poor feature selection
- Models built based on Efficiency metrics and Las Vegas Point Spreads

#### **HOW I PLAN TO FIX THIS:**

- Compute moving averages and the "4 factors"
- Analyze a wide range of feature selection methods
- Pick relevant features
- Analyze a broad range of Machine Learning techniques
- Select the model with the best accuracy scores



#### THE DATA

- field goals made
- field goals attempted
- three pointers made
- three pointers attempted
- free throws made
- free throws attempted
- offensive rebounds
- defensive rebounds
- Assists
- turnovers committed
  - Steals
- Blocks
- personal fouls committed
- offensive and defensive efficiencies
- Effective field goal percentage
- Turnover percentage
- Offensive Rebound Percentage
- Free throw rate



#### SELECTED FEATURES

- Defensive efficiencies
- Effective field goal percentage
- Free throw rate
- free throws attempted
- defensive rebounds
- turnovers committed
- Steals
- personal fouls committed

#### MODELS

- Adaptative Boosting
- Gradient Boosting
- Neural Network
- Support Vector Machine
- Random Forest

### LEARNING TECHNIQUES

Trained model for classification for picking loser and winner for each matchup and determining the likelihood for each outcome



#### METHOD OF EVALUATION

Accuracy scores Create Brackets Bracket scores

### ACCURACY SCORE

| Model               | Acc  | AUC  |
|---------------------|------|------|
| Random Forest       | 0.87 | 0.94 |
| Neural Network      | 0.87 | 0.93 |
| Gradient Boosting   | 0.87 | 0.93 |
| Adaptative Boosting | 0.85 | 0.92 |
| SVM                 | 0.79 | 0.82 |

# BRACKET SCORES

| Neural Network      | 270 |
|---------------------|-----|
| Gradient Boosting   | 230 |
| Adaptative Boosting | 210 |
| Random Forest       | 200 |
| SVM                 | 200 |





# Conclusion

- Can we use NCAA historical data to predict the games outcome?
  - From my analyses, we can still attempt to predict the outcome
- Can we predict what team will move forward?
  - Yes, we can predict the likelihood that a team will move forward
- How accurate can these results be used to create brackets?
  - These results can be used to create brackets. But, as we all know, March Madness is essentially madness, and we can never be confident in our selections

# Obstacles and Future Work

- Poor model performance due to poor feature selection
- Other successful work have used rolling averages
- Time constraint

#### Reference

- Andrew Lavandoski and Jonathan Lobo, "Predicting the Men's Basketball Tournament with Machine Learning", CS 2750: Machine Learning, April 2017
- Z. Shi, S. Moorthy, A. Zimmermann, "Predicting NCAAB match outcomes using ML techniques – some results and lessons learned", October 2017
- Trevor Hastie, Robert Tibshirani and Jerome Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction., 2nd edition, Springer, 2009