Borel quantifiers

Fredrik Engström

2010-05-21

Logical constants

An operator (function/predicate) is a logical constant if it is **topic** neutral.

- Examples: \exists , \forall , \neg , and \rightarrow .
- Non-example: "for all even numbers"
- Debatable: "for infinitely many", =

Mautner, Tarski, Mostowski, Lindenbaum: Logic is the the study of the invariants under the most general transformations (=permutations). (Klein's Erlangen program)

Definition (Lindström/Mostowski)

A (global) generalized quantifier Q of type $\langle n_1, \ldots, n_k \rangle$ is a (class) of structures in the language $\{R_1, \ldots, R_k\}$ where R_i is of arity n_i .

Examples:

- $\exists = \{ (M, A) \mid A \subseteq M, A \neq \emptyset \}$
- $\forall = \{ (M, M) \mid M \}$
- $Q_0 = \{ (M, A) \mid A \subseteq M, |A| \ge \aleph_0 \}$
- $\exists^{=\kappa} = \{ (M, A) \mid A \subseteq M, |A| = \kappa \}$
- $I = \{ (M, A, B) \mid A, B \subseteq M, |A| = |B| \}$
- $W = \{ (M, R) \mid R \subseteq M^2, R \text{ is well-founded } \}$
- $Q^A = \{ (M, B) | A \subset B \}$

- $\varphi(M) = \{ \bar{a} \in M^k \mid M \models \varphi(\bar{a}) \}$
- $M \models Qx_0 \dots x_{k-1} \varphi(x_0, \dots, x_{k-1})$ iff $(M, \varphi(M)) \in Q$ $(Q \text{ of type } \langle k \rangle)$

Local versions: For a given domain M, let (for Q of type $(\langle k \rangle)$

$$Q_M = \left\{ R \subseteq M^k \mid (M, A) \in Q \right\}.$$

A (local) quantifier Q_M of type $\langle k \rangle$ is definable in the logic $\mathcal L$ if there is φ of $\mathcal L$, such that

$$(M,R) \models \varphi \text{ iff } R \in Q_M.$$

Tarski's thesis

A (local) quantifier on a domain M is a logical constant iff it is invariant under all **permutations** of M.

Examples: $\exists, \forall, Q_0, \exists^{=\kappa}, I$

Non-examples: Q^A

Mostowski's thesis

A quantifier Q is a logical constant iff it is invariant under all bijections (across domains).

Theorem (McGee -91 / Krasner -38)

Q is bijection invariant iff for each κ there is a formula in $\mathscr{L}_{\infty\infty}$ defining Q_{κ} .

Fix a domain Ω . Quantifier means local quantifier on Ω .

 ${\mathcal Q}$ is a set of quantifiers.

G subgroup of the full symmetric group S_{Ω} .

Definition

• Let $\operatorname{Aut}(\mathcal{Q})$ be the group of all permutations of Ω fixing all quantifiers in \mathcal{Q} :

$$\mathsf{Aut}(\mathscr{Q}) = \{ \ g \in \mathcal{S}_{\Omega} \mid g(Q) = Q \ \textit{for all} \ Q \in \mathscr{Q} \ \}.$$

• Let Inv(G) be the set of quantifiers fixed by G: $Inv(G) = \{ Q \mid g(Q) = Q \text{ for all } g \in G \}.$

Theorem (Krasner/Bonnay/E)

- Aut(Inv(G)) = G
- Inv(Aut(2)) is the set of quantifiers definable in $\mathcal{L}_{\infty\infty}(2)$

Proof

Aut(Inv(G)) = G: Let \leq well-order Ω , and $Q = \{ g(\leq) \mid g \in G \}$ of type $\langle 2 \rangle$. If $h \in \text{Aut}(\text{Inv}(G))$ then $h(\leq) \in Q$ and so there is $g \in G$ such that $h(\leq) = g(\leq)$, implying h = g.

Inv(Aut(\mathcal{Q})) is the set of Qs definable in $\mathcal{L}_{\infty\infty}(\mathcal{Q})$: We assume all quantifiers of type $\langle 1 \rangle$ and $\Omega = \omega$. $Q' \in \text{Inv}(\text{Aut}(\mathcal{Q}))$ is defined by

$$\forall x_0, x_1, \dots \left[\bigwedge_{i \neq j} x_i \neq x_j \land \forall y \bigvee_i y = x_i \land \left(\left(\bigwedge_{A \in Q} Qy \bigvee_{i \in A} y = x_i \right) \land \left(\bigwedge_{A \notin Q} \neg Qy \bigvee_{i \in A} y = x_i \right) \right) \rightarrow \bigvee_{A \in Q'} \left(\bigwedge_{i \in A} Px_i \land \bigwedge_{i \notin A} \neg Px_i \right) \right]$$

Borel sets

Definition

The sets generated by sets of the form $A_k = \{ X \subseteq \omega \mid k \in X \}$ by complements, finite unions and finite intersections are the basic open sets. The sets generated from the basic open ones by arbitrary unions are the open sets.

Definition

The sets generated by the open sets by countable unions, complements and countable intersections are the **Borel sets**.

Assume now all quantifiers are local quantifiers on ω .

Theorem (Lopez-Escobar)

A quantifier is **Borel** and **permutation invariant** iff it is definable in $\mathcal{L}_{\omega_1\omega}$.

Indicates a strong connection between $\mathscr{L}_{\omega_1\omega}$ and Borel quantifiers.

FALSE

Q is Borel and $\operatorname{Aut}(\mathcal{Q})$ invariant iff Q is definable in $\mathcal{L}_{\omega_1\omega}(\mathcal{Q})$.

Let $A \subseteq \omega$ be infinite and coinfinite and $Q' = \{A\}$ then Q^A is $\operatorname{Aut}(Q')$ invariant, but not definable in $\mathscr{L}_{\omega_1\omega}(Q')$.

The full symmetric group S_{∞} on ω is naturally equipped with a topology: $G_{\bar{a},\bar{b}}=\left\{\left.g\mid g\,\bar{a}=\bar{b}\right.\right\}$ as basic open sets.

Theorem (Vaught and E/Schlicht)

If F is the the family of orbits of a closed subgroup G then every G-invariant quantifier is $\mathcal{L}_{\omega_1\omega}(F)$ -definable.

Theorem (E/Schlicht)

Let G be closed, then there is a closed binary quantifier Q such that G = Aut(Q). Thus Aut(BInv(G)) = G for closed groups G.

Theorem (E/Schlicht)

Let Q_0 be a clopen quantifier. Then Q is Borel and $\operatorname{Aut}(Q_0)$ invariant iff it is definable in $\mathcal{L}_{\omega_1\omega}(Q_0)$.

Thanks