GUJARAT TECHNOLOGICAL UNIVERSITY (GTU)

Competency-focused Outcome-based Green Curriculum-2022 (COGC-2022) Semester-IV

Course Title: Surface Mining (Course Code: 4342204)

Diploma Programme in which this course is offered	Semester in which offered
Mining Engineering	Fourth

1. RATIONALE

The mining engineers are involved in the mine development, supervision of mining operations, etc. Being mining diploma graduate, he/she should be able to select suitable method of working starting from feasibility study, development, production, reclamation and post mining rehabilitation techniques for the socio – economic sustainability of surface mining projects. After completing this course, the student will select suitable machines and design a perfect layout with high degree of accuracy as intended in this course.

2. COMPETENCY

The course content should be taught and curriculum should be implemented with the aim to develop required skills so that student is able to acquire following competency.

 Adopt suitable technique and procedure for justifying the selection of methods and machines for achieving required socio-economic benefit from surface mining.

3. COURSE OUTCOMES

The theory should be taught and practical should be carried out in such a manner that students are able to acquire different learning out comes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- **CO1:** Describe various points to be considered for selection of applicability, feasibility, planning and designing of a suitable surface mining method.
- **CO2:** Explain all geotechnical and economical parameters considered during development operation of a surface mine.
- **CO3:** Design a suitable pattern of blast holes to achieve the required blasting result.
- **CO4:** Justify a sustainable mode of excavation and transportation system suitable for a particular condition.
- **CO5:** Describe various environmental impact parameters considered for a surface mine.

4. TEACHING AND EXAMINATION SCHEME

Teach	ing Scl	neme	Total Credits	Examination Scheme				
(In	Hour	s)	(L+T/2+P/2)	Theory Marks Practical Marks			Total	
L	T	Р	С	CA*	ESE	CA	ESE	Marks
3	-	-	3	30	70	00	00	100

(*): Out of 30 marks under the theory CA, 10 marks are for assessment of the microproject to facilitate integration of COs and the remaining 20 marks is the average of 2 tests to be taken during the semester for the assessing the attainment of the cognitive domain UOs required for the attainment of the Cos.

Legends: L - Lecture; T -Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; ESE -End Semester Examination; PA - Progressive Assessment

5. AFFECTIVE DOMAIN OUTCOMES

The following *sample* Affective Domain Outcomes (ADOs) are embedded in many of the abovementioned COs. More could be added to fulfill the development of this competency.

- a) Work as a team member/individual.
- b) Follow ethical practices.
- c) Follow safe practice on site.
- d) Practice of environmental friendly methods and processes.

6. UNDERPINNING THEORY

Only the major Underpinning Theory is formulated as higher level UOs of *Revised Bloom's taxonomy* in order development of the COs and competency is not missed out by the students and teachers. If required, more such higher level UOs could be included by the course teacher to focus on attainment of COs and competency.

Unit	Unit Outcomes(UOs)	Topics and Sub-topics
Unit – I SurfaceMining	 1a. Describe various applicability condition and types of surface mining methods with its advantage and disadvantage. 1b. Explain the points considered for feasibility study of surface mine. 1c. Explain the factors considered for designing and planning of surface mine. 	1.1.1 Applicable conditions for surface mining methods (i) Stripping ratio (ii) Break even stripping ratio 1.1.2 Types of Surface mining methods (i) Strip mining (ii) Open-pit mining (iii) Mountain top removal (iv) Dredging (v) High wall mining 1.1.3 Advantages & disadvantages of surface mining methods 1.2 Preliminary investigation of surface mining — Feasibility study — Various points considered in feasibility report (i) Type of reserve (ii) Market value and cost (iii) Transport facilities (iv) Power supplying facilities (v) Availability of water resources (vi) Environmental conditions (vii) Presence of nearby township (viii) Availability of skilled labor (ix) Local Topography

		(x) Geotechnical parameters
		(xi) Control of environmental pollution
		(xii) Aspect of giving compensation due to
		damage
		(xiii) Raising funds
		(xiv) Government policies for
		investment/taxation
		(xv) Socio-economic and political situation
		(xvi) Communication system
		1.3 Factors considered for designing and
		planning a surface mine:-
		(i) Dip of the deposit
		(ii) Form of the deposit
		(iii) Size of the deposit
		(iv) Depth of the deposit
		(v) Surface topography
		(vi) Geo-technical parameter of rock
		(vii) Production target, Degree of
		mechanization, Availability of capital
		(viii) Environmental condition and town
		sheep
		(ix) Land reclamation, Sub-soil
		management, Environmental
		management
		(x) Availability of power
		(xi) Cost economic analysis
Unit – II	2a. Explain the factors	2.1 Opening out surface deposits by box cut
	considered for locating	- it's location, geometry & technical
Mine Development	a box cut.	parameters.
The Botton of Marie 1	2b. Describe the factors	2.2 Overburden removal
	considered before	2.2.1 Main factors considered
	overburden removal	(i) Thickness
	process.	(ii) Dip and depth of the overburden
	2c. Select suitable machine	(iii) Manner of occurrence of deposit
	for particular volume	(iv) Surface topography
	and type of	(v) Ground conditions
	overburden material	(vi) Environmental conditions
	for it's removal.	(vii) Production requirement
	2d. Describe various	(viii) Geo-technical parameters
	methods of	(ix) Geological disturbance
	overburden removal.	(x) Watery conditions
	2e. Explain various factors	(xi) Stability of overburden benches
	considered for	2.2.2 Selection of Machines for overburden
	designing a haul road.	removal
	2f. Describe various bench	(i) Geotechnical parameters of rock like
	designing parameters.	compressive strength, shear strength, tensile
		strength and modulus of elasticity

		 (ii) Geophysical characteristics like thickness, stratification, massiveness, scattered condition, friability, hardness, looseness, watery condition, and floor condition 2.2.3 Methods of overburden removal (i) Over Casting or Side casting by dragline (ii) Shovel and conveyer combination (iii) By bucket wheel excavator and bridge conveyer 2.3 Design of haul road – Factors considered for deciding numbers and location of entries/ramps to enter and exit from the mine 2.4 Bench designing parameters - bench, bench height & width, bank width, berm, toe, crest, face angle, overall pit slope angle & ultimate pit slope angle.
Unit – III Drilling & Blasting	 3a. Describe various drilling patterns used for bench blasting. 3b. Explain various technical parameters considered for blast hole design. 3c. Calculate the powder factor for the broken volume of rock by the consumed explosive. 	 3.1 Various drilling patterns used for bench blasting 3.2 Various technical parameters of blast hole design - Hole diameter, Charging length, Stemming length, Sub grade drilling, Spacing, Burden, Free face etc. 3.3 Charging and blasting of holes- (i) Various blast hole charging techniques (ii) Calculation of quantity of explosive required for blasting. (iii) Calculation of volume of broken rock.
Unit – IV Excavation & Transportation	 4a. Describe constructional and working principles of excavation machines. 4b. Describe constructional and working principles of transportation machines. 4c. Calculate required number of excavating and transportation machines to optimize transportation system. 	 4.1 Type of excavation machines used in surface mines - Constructional and Working principles of surface machines - single bucket and multi-bucket excavators, Pay loader, Drag line, Ripper, Scrapper and Surface miner. 4.2 Mode of transportation used in surface mines- Constructional and Working principles of transportation machines – Truck/Dumper, Belt Conveyer, Aerial Ropeway, Railway System. 4.3 Optimization of transportation system in surface mines - Optimization of shovel-dumpercombination – calculation of appropriate number of shovel and dumper to match with required production capacity.

Unit – V	5a. Describe various	5.1 Concept of environment – Main constituents
	environmental factors	considered for analyzing mine environment
Environmental	considered for impacts due	(i) Land
Impacts of	to surface mining.	(ii) Water
Surface Mining	5b. Describe various	(iii) Air
	environmental effects due	(iv) Flora & Fauna
	to surface mining activities.	 5.2 Various effects on these environmental components due to surface mining activities. (i) Land degradation – Non fertile land (ii) Acid mine drainage – Ground/river water pollution (iii) Air born dust pollution – Various Health issues (iv) Deforestation issues

7. SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER DESIGN

Unit	Unit Title		Distribution of Theory Marks				
		Teaching Hours	R Level	U Level	A Level	Total Marks	
I	Surface Mining	08	8	7	0	15	
Ш	Mine Development	10	8	4	2	14	
Ш	Drilling and Blasting	10	6	6	4	16	
IV	Excavation & Transportation	08	8	7	0	15	
V	Environmental Impacts of Surface Mining	06	5	5	0	10	
_	Total	42	35	29	6	70	

Legends: R=Remember, U=Understand, A=Apply and above (Revised Bloom's taxonomy)

<u>Note</u>: This specification table provides general guidelines to assist student for their learning and to teachers to teach and question paper designers/setters to formulate test items/questions assess the attainment of the UOs. The actual distribution of marks at different taxonomy levels (of R, U and A) in the question paper may vary slightly from above table.

8. SUGGESTED STUDENT ACTIVITIES

Other than the classroom and laboratory learning, following are the suggested student-related **co-curricular** activities which can be undertaken to accelerate the attainment of the various outcomes in this course: Students should conduct following activities in group and prepare reports of about 5 pages for each activity, also collect/record physical evidences for their (student's) portfolio which will be useful for their placement interviews:

Following is the list of proposed student activities like:

Student will visit nearby Surface Mines and Submit report consisting basic information of surface mine, type of method used for mining, type of machineries and their specification etc. for the same.

9. SUGGESTED SPECIAL INSTRUCTIONAL STRATEGIES

These are sample strategies, which the teacher can use to accelerate the attainment of the various outcomes in this course:

- a) Massive open online courses (MOOCs) may be used to teach various topics/sub topics.
- b) Guide student(s) in undertaking micro-projects.
- c) Use demonstration, video/animation films field/industry visit for explaining complex/abstract concepts of Hydraulics.
- d) This course requires lot of practice on numerical. Students may be asked to solve the numerical during lecture periods, in addition home assignments may be given. To avoid copying by students each problem must have different parameters for each student or at least there may be five to six sets of problems with different values., In other words each student will get same problem but with varied parameters. (Values of pressure, volume, flow, force, distance, speed etc may be different for each student)
- e) 'L' in section No. 4 means different types of teaching methods that are to be employed by teachers to develop the outcomes.
- f) About **20% of the topics/sub-topics** which are relatively simpler or descriptive in nature is to be given to the students for **self-learning**, but to be assessed using different assessment methods.
- g) With respect to **section No.10**, teachers need to ensure to create opportunities and provisions for **co-curricular activities**.

10. SUGGESTED MICRO-PROJECTS

Only one micro-project is planned to be undertaken by a student that needs to be assigned to him/her in the beginning of the semester. In special situations where groups have to be formed for micro - projects, the number of students in the group should **not exceed three.**

The micro-project could be industry application based, internet-based, workshop-based, laboratory- based or field-based. Each micro-project should encompass two or more COs which are in fact, an integration of PrOs, UOs and ADOs. Each student will have to maintain dated work diary consisting of individual contribution in the project work and give a seminar presentation of it before submission. The total duration of the micro-project should not be less than **16** (sixteen) student engagement hours during the course. The student ought to submit micro-project by the end of the semester to develop the industry oriented COs.

A suggestive list of micro-projects is given here. This has to match the competency and the COs. Similar micro-projects could be added by the concerned course teacher:

- a) Prepare a report on working method of Surface mine visited by you.
- b) Design a flow sheet of mining activities conducted on surface mine with equipment/machines involved.
- c) Calculate number of excavator machines required for a given targeted production.
- d) Design a blasting layout for bench blasting.
- e) Prepare a chart showing applicable condition with transportation method.
- f) Prepare a flowchart showing various impacts of surface mining on environment.

GTU - COGC-2021 Curriculum

11. SUGGESTED LEARNING RESOURCES

• List of Books:

Sr. No.	Title of Books	Author	Publication
1.	Elements of Mining Technology	D. J. Deshmukh	Central techno publication
2.	Surface Mining Technology	Samir kumar Das	Lovely prakashan
3.	U.M.S.		Lovely prakashan
4.	Engineering Rock Blasting Operations	Sushil Bhandari	A.A.Balkema/Rotterdam/Brook Field

12. List of Software/Learning Websites

- 1. http://www.youtube.com/playlist?list=PLkxYmnB5O9sewknllfPPlLy816fs7Z2PQ
- 2. https://www.youtube.com/playlist?list=PLRv9aGFxXwGQqFqfCTuwAKNpy9mxGUdEK
- 3. Surface mining lectures (NPTEL) https://archive.nptel.ac.in/courses/123/105/123105007/
- 4. https://www.mining-journal.com/

13. PO -COMPETENCY - CO MAPPING

Semester IV	Surface Mining (Course Code:4342204)									
Jeniestei iv	POs and PSOs									
Competency & Course Outcomes	PO 1 Basic & Discipline specific knowledge	Problem	_	PO 4 Engineerin g Tools, Experime ntation &Testing	PO 5 Engineerin g practices forsociety, sustainabil ity & environme nt	Manag ement	PO 7 Life- long learnin g	PSO 1 Student will be able to operate flame safety lamp effectively.	PSO 2 Student will be able to test percentag e of inflamma ble gas.	
Competency	-			_			of meth	ods and ma	chines for	
	achieving r	equired soc	io-economic	benefit fro	n surface m	ining.				
Course Outcome CO1: Describe various points to be considered for selection of applicability, feasibility, planning and designing of a suitable surface mining method	3	-	-	-	1	-	-	-	-	
co2: Explain all geotechnical and economical parameters considered during development operation of a surface mine	3	1	-	-	2	-	-	-	-	
co3: Design a suitable pattern of blast holes to achieve the required blasting result.	3	2	2	3	2	2	2	-	-	

CO4: Justify a									
sustainable mode of	2	2	2		1				
excavation and	3	2	2	-	1	-	-	-	-
transportation system									
suitable for a particular									
condition									
CO5: Describe various									
environmental impact	2				2				
parameters considered	3	-	-	-	3	-	-	-	-
for a surface mine									

14. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

Sr. No.	Name and Designation	Institute	Contact No.	Email
1	Shri Jigar K. Patel Lecturer in Mining Engg.	Government Polytechnic, Bhuj	8000776838	Jigar.patel2320@gm ail.com
2	Shri Shivkumar Srivastav Lecturer in Mining Engg.	Government Polytechnic, Bhuj	9998131511	Shivkumarsrivastav1 1@gmail.com