AMENDMENT TO CLAIMS

1. (Original) A system comprising:

means for comparing the number of data packets (WPC) temporarily stored

within a buffer to a predefined threshold value (WPCth);

means (410) for storing the packet sequence number (PSNr) of a last received in-

sequence data packet, and each highest packet sequence number (HPSNj) respectively

received through a plurality of switching planes; and

means (275) coupled to the comparing means and to the storing means for

determining at least one switching plane among a plurality of switching planes on which

to unstop a flow of data packets by comparing the last-received in-sequence packet

sequence number (PSNr) to each highest packet sequence number (HPSNj) when the

number of data packets (WPC) exceeds the predefined threshold value (WPCth).

2. (Original) The system of claim 1 further comprising at least one ingress adapter

(200) coupled to the plurality of switching planes, the at least one ingress adapter

comprising means (210) to sequentially number the data packets within each flow and

means to identify each data packet within each flow by an ingress adapter identifier (Sn)

and by a priority level identifier (Pn).

3. (Original) The system of claims 1 or 2 wherein the determining means further

comprises means for pointing to the storing means using the ingress adapter identifier

(Sn) and the priority level identifier (Pn) of each data packet flow.

Page 3 of 19

Appl. No.: 10/723,503 FR920020046US1

4. (Original) The system of claim 2 wherein the at least one ingress adapter further

comprises means (205) for load balancing the data packets within each flow among the

plurality of switching planes.

5. (Original) The system of claim 1 further comprising at least one egress adapter

having an egress buffer in which packets are temporarily stored.

6. (Original) The system of claim 5 wherein the at least one egress adapter further

comprises means (270) for resequencing the data packets temporarily stored within the

egress buffer for each flow of data packets.

7. (Original) The system of claim 6 wherein the at least one egress adapter further

comprises means (280) for outputting the resequenced data packets from the egress

buffer.

8. (Original) The system of claims 1 or 2 wherein the comparing means further

comprises means for counting the number of data packets (WPC) temporarily stored

within the egress buffer for each flow of data packets.

9. (Original) The system of claim 8 wherein the counting means further comprises

means for decrementing the number of data packets (WPC) temporarily stored within the

egress buffer when a resequenced data packet is output from the egress buffer.

Page 4 of 19

10. (Original) The system of claims 1 or 2 wherein the data packets are numbered with an increasing sequence of data packets numbers.

## 11. (Currently Amended) A method comprising:

- a) receiving packets through a plurality of switching planes;
- $\underline{b}$ ) identifying a packet sequence number for a last received in-sequence packet;
- (c) [b)] identifying highest packet sequence number for packets received through each of the plurality of switching planes; and
- d) [c)] determining at least one of the plurality of switching planes to unstop based upon the packet sequence number for the last received in-sequence packet number and the highest sequence number for at least one of the plurality of switching planes.

## 12. (Currently Amended) The method of claim 11 further including

- e) [d)] comparing number of packets temporarily stored in a buffer with a predefined threshold value.
- 13. (Original) The method of claim 12 wherein the at least one of the plurality of switching planes is determined only if the number of packets stored in the buffer is equal or greater than a predefined threshold value.

14. (Original) The method of claim 13 wherein c) includes comparing the last received in-sequence packet number with the highest sequence number for each of the

plurality of switching planes.

15. (Original) A program product comprising:

a computer readable medium on which a computer program is embedded, said computer program including a first module of instructions that examine packets in a flow and recording a packet sequence number for a last received in-sequence packet;

a second module of instructions that examine packets received through a plurality of

switching planes and record highest sequence number for packets received through each

of the plurality of switching planes; and

a third module of instructions using the packet sequence number for last received in-sequence packet number and the highest sequence number for each of the plurality of

switching planes to identify at least one plane to unstop.

16. (Original) The program product of claim 15 further including fourth module of instructions to determine number of packets in a buffer associated with said flow; and

to compare said determined number with a threshold value.

17. (New) The system of clam 1 wherein the at least one switching plane so

determined include means to release an in-sequence data packet whose packet sequence

number is next to the packet sequence number of said last received in-sequence data

packet.

Page 6 of 19

Appl. No.: 10/723,503 FR920020046US1

18. (New) The method of Claim 11 further including releasing from the at least one of the plurality of switching planes so determined, at least one packet whose sequence number is next to the last received in-sequence packet number.