MP*: Probabilités

Coralie RENAULT

19 septembre 2014

Exercice

Soit X et Y deux variables aléatoires discrètes indépendantes.

On suppose que celles-ci suivent une même loi géométrique de paramètre p.

- a) Déterminer P(X > n) pour $n \in \mathbb{N}$.
- b) En déduire la loi de $Z = \min(X, Y)$.
- c) Observer que la loi de Z est géométrique.

Exercice

Soit X et Y deux variables aléatoires indépendantes suivant des lois de Poisson de paramètres λ et μ .

Reconnaître la loi de X sachant X + Y = n.

Exercice

Soient X et Y deux variables aléatoires géométriques de paramètres p et q. Calculer l'espérance de $Z = \max(X, Y)$.

Exercice

Soit X et Y deux variables aléatoires à valeurs dans \mathbb{N} .

On suppose que X suit une loi de Poisson de paramètre $\lambda > 0$ et que la loi de Y sachant X = n est binomiale de paramètres n et $p \in]0,1[$.

- a) Déterminer la loi conjointe de (X, Y).
- b) Reconnaître la loi de Y.

Exercice

Soit X une variable aléatoire à valeurs dans un ensemble fini \mathcal{X} . Pour chaque valeur $x \in \mathcal{X}$, on pose

$$p(x) = P\left(X = x\right)$$

On appelle entropie de la variable X le réel

$$H(X) = -\sum_{x \in \mathcal{X}} p(x) \log (p(x))$$

où l'on convient $0 \log 0 = 0$.

a) Vérifier que H(X) est un réel positif. A quelle condition celui-ci est-il nul? Soient X et Y deux variables aléatoires à valeurs dans des ensembles finis \mathcal{X} et \mathcal{Y} .

b) On appelle entropie conjointe de X et Y , l'entropie de la variable Z=(X,Y) simplement notée H(X,Y).

On suppose les variables X et Y indépendantes, vérifier

$$H(X,Y) = H(X) + H(Y)$$

c) On appelle entropie de X sachant Y la quantité

$$H(X \mid Y) = H(X, Y) - H(Y)$$

Vérifier

$$H(X \mid Y) = \sum_{y \in \mathcal{V}} P(Y = y) H(X \mid Y = y)$$

avec

$$H(X \mid Y = y) = -\sum_{x \in \mathcal{X}} P(X = x \mid Y = y) \log (P(X = x \mid Y = y))$$

Exercice

Soient X et Y deux variables aléatoires à valeurs dans \mathbb{N} .

On suppose que la loi conjointe de X et Y vérifie

$$P(X = j, Y = k) = \frac{a}{j!k!}$$
 avec $a \in \mathbb{R}$

- a) Déterminer la valeur de a.
- b) Les variables X et Y sont elles indépendantes?

Exercice

On vous propose le jeu suivant. Une pièce de monnaie parfaitement équilibrée est lancée plusieurs fois jusqu'à ce qu'elle tombe sur "face". S'il a fallu un seul lancé pour obtenir face vous recevez 2 ducats. Si l'en a fallu 2 vous recevez 4 ducats ect... S'il a fallu k lancé vous recevez 2^k ducats. Pour évaluez les droits d'entré dans le jeu (ou la mise de départ) qui permettront un jeu équilibré (ou juste), on imagine que ceux-ci devront être égaux aux gains moyens, c'est-à-dire à l'espérance du gain. Montrer que la probabilité que l'on reçoive 2^k ducats devient vite très petite dès lors que k grandit, alors que paradoxalement, l'espérance du gain est infinie

Exercice

Exercice (Théorème de Bernstein)

Soit $f:[0,1]\to\mathbb{C}$ une fonction continue, ω son module de continuité, i.e $\omega(h)=\sup\{|f(u)-$ |f(v)|; $|u-v| \leq h$. Pour $n \geq 1$, on considère le polynôme $B_n(f,x) = B_n(x) = \sum_{k=0}^n {n \choose k} x^k (1-x)^k$ $(x)^{n-k}f(\frac{k}{n})$, le *n*-ième polynôme de Bernstein de f. On va montrer que :

1. B_n converge uniformément vers f sur [0,1].

Pour cela:

- Soit $x \in [0,1]$ et soit (X_n) une suite de variables aléatoires indépendantes et identique-
- ment distribuées de loi $\mathcal{B}(x)$. Déterminer la loi de $S_n = \sum_{k=1}^n X_k$. On définit la variance de X, lorsqu'elle existe, par : $Var(X) = \mathbb{E}([X \mathbb{E}(X)]^2)$. Montrer que $Var(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2$
- Montrer l'inégalité de Tchébytchev : Soit X une variable aléatoire réelle alors montrer que:

$$\mathbb{P}(|X - \mathbb{E}(X)| \ge t) \le \frac{Var(X)}{t^2}$$

Soient (X_1, X_2, \ldots, X_n) des variables aléatoires réelles indépendantes et identiquement distribuées tel que $Var(X_1)$ existe. Montrer que :

$$Var(S_n) = nVar(X_1)$$

- Calculer $\mathbb{E}[f(\frac{S_n}{n})]$
- Montrer que $\forall \delta > 0$ on a :

$$|f(x) - B_n(x)| \le \omega(\delta) + 2||f||_{\infty} \mathbb{P}(|x - \frac{S_n}{n}| \ge \delta)$$

Conclure

Exercice

Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé sur lequel sont définies les variables aléatoires indépendantes U et V, à valeurs dans $\{-1,1\}$ et de meme loi définie par les relations :

$$P_U(-1) = \frac{1}{3} \text{ et } P_U(1) = \frac{2}{3}$$

Soient X et Y les variables aléatoires définies par :

$$X = U$$
 et $Y = sign(U)V$

- Quelle est la loi de la variable aléatoire (X,Y)?
- Les variables aléatoires X et Y sont-elles indépendantes ? Et X^2 et Y^2 le sont-elles ?