Greedy Subspace Clustering

Dohyung Park, Constantine Caramanis and Sujay Sanghavi

Subspace Clustering

Approximating data points with unions of low-dimensional subspaces

Unions of subspaces model: Mixed datasets with latent labels, each label representing a linear subspace model.

Task: Jointly find subspaces and cluster the points near each subspace

Motion Segmentation

Feature points of a moving rigid object lie on a low-dimensional subspace

(Ref.: Hopkins155 dataset)

Face Clustering

Face images of a person under varying illumination conditions lie on a low-dimensional subspace

(Ref.: Extended Yale B dataset)

Our contribution

Simple algorithms with

- Provable exact clustering guarantee without any subspace conditions
- Competitive performance and fast running time in practice

Related work & Comparison

Algorithms with theoretical guarantees involve two steps:

1. Neighborhood construction 2. Clustering/Subspace recovery

Algorithm	Neighborhood construction	Clustering	Sufficier Fully random model	nt conditions for: Semi-random model
SSC [1,2]	ℓ_1 -minimization	Spectral	$\frac{d}{p} = O(\frac{\log(n/d)}{\log(nL)})$	$\max \operatorname{aff} = O(\frac{\sqrt{\log(n/d)}}{\log(nL)})$
LRR [3]	Nuclear norm min.	Spectral	_	_
SSC-OMP [4]	OMP	Spectral	_	_
TSC [5]	Thersholding	Spectral	$\frac{d}{p} = O(\frac{1}{\log(nL)})$	$\max \operatorname{aff} = O(\frac{1}{\log(nL)})$
LRSSC [6]	Hybrid $\ell_1 + \cdot _*$	Spectral	$\frac{d}{p} = O(\frac{1}{\log(nL)})$ $\frac{d}{p} = O(\frac{1}{\log(nL)})$	_
NSN+GSR	NSN	GSR	$\frac{d}{p} = O(\frac{\log n}{\log(ndL)})$	$\max \operatorname{aff} = O(\sqrt{\frac{\log n}{(\log dL) \cdot \log(ndL)}})$
NSN+Spectral	NSN	Spectral	$\frac{d}{p} = O(\frac{\log n}{\log(ndL)})$	_

References

- 1. E. Elhamifar and R. Vidal. Sparse subspace clustering: Algorithm, theory, and applications. IEEE TPAMI, 2013.
- 2. M. Soltanolkotabi and E. J. Candes. A geometric analysis of subspace clustering with outliers. The Annals of Statistics, 2012.
- 3. G. Liu, Z. Lin, S. Yan, J. Sun, Y. Yu, and Y. Ma. Robust recovery of subspace structures by low-rank representation. IEEE TPAMI, 2013. 4. E. L. Dyer, A. C. Sankaranarayanan, and R. G. Baraniuk. Greedy feature selection for subspace clustering. JMLR, 2013.

Problem Formulation

- ▶ Subspaces are represented by their orthogonal bases $D_1, \ldots, D_L \in \mathbb{R}^{p \times d}$.
- ▶ Data points y_1, \ldots, y_N have their own labels $w_1, \ldots, w_N \in [L]$ where y_i lies on subspace w_i . $y_i = D_{w_i} x_i, \quad x_i \sim \text{Unif}(\mathbb{S}^{d-1}), \quad \forall i \in [N].$
- ▶ Task: Recover the labels $\{w_i : i \in [n]\}$.

Algorithms

- ▶ NSN+GSR: Run NSN to obtain neighborhood matrix $W \in \{0, 1\}^{N \times N}$ and run GSR for it.
- ▶ NSN+Spectral: Run NSN to obtain W and run spectral clustering for $Z = W + W^{\top}$

Nearest Subspace Neighbor (NSN)

Greedy Subspace Recovery (GSR)

$$y_i \leftarrow y_i/\|y_i\|_2, \, \forall i \in [N]$$
 $\mathcal{W}_i \leftarrow \text{Top-}d\{y_j: W_{ij} = 1\}, \, \forall i \in [N]$
 $\mathcal{I} \leftarrow [N], \, I \leftarrow 1$
while $\mathcal{I} \neq \emptyset$ do
 $i^* \leftarrow \arg\max_{i \in \mathcal{I}} \sum_{j=1}^N \mathbb{I}\{\|\text{Proj}_{\mathcal{W}_i} y_j\|_2 \geq 1 - \epsilon\}$
 $\hat{\mathcal{D}}_l \leftarrow \hat{\mathcal{W}}_{i^*}$
 $\mathcal{I} \leftarrow \mathcal{I} \setminus \{j: \|\text{Proj}_{\mathcal{W}_{i^*}} y_j\|_2 \geq 1 - \epsilon\}$
 $l \leftarrow l + 1$
end while
 $\hat{w}_i \leftarrow \arg\max_{l \in [L]} \|\text{Proj}_{\hat{\mathcal{D}}_i} y_i\|_2, \, \forall i \in [N]$

Statistical Results

Fully random model - Subspaces are generated uniformly at random.

Theorem

Suppose *n* polynomial in *d*. There are constants C_1 , $C_2 > 0$ such that if

$$rac{n}{d} > C_1 \left(\log rac{ne}{d\delta}
ight)^2, \quad rac{d}{p} < rac{C_2 \log n}{\log (ndL\delta^{-1})},$$

then with probability $1 - \frac{3L\delta}{1-\delta}$, NSN+GSR and NSN+Spectral cluster the points exactly.

Semi-random model - Subspaces are fixed with max aff = $\max_{i\neq j} \|D_i^\top D_i\|_F / \sqrt{d}$

Theorem

Suppose *n* polynomial in *d*. There are constants C_1 , $C_2 > 0$ such that if

$$\frac{n}{d} > C_1 \left(\log \frac{ne}{d\delta}\right)^2, \quad \max \text{aff} < \sqrt{\frac{C_2 \log n}{\log(dL\delta^{-1}) \cdot \log(ndL\delta^{-1})}}.$$

then with probability 1 $-\frac{3L\delta}{1-\delta}$, NSN+GSR clusters the points exactly.

Implications

- One needs enough data points (linear in d)
- ► Subspaces should not be too close, but this condition improves as *n* grows.

5. R. Heckel and H. Bölcskei. Robust subspace clustering via thresholding. preprint, 2014.

- 6. Y.-X. Wang, H. Xu, and C. Leng. Provable subspace clustering: When LRR meets SSC. In NIPS, 2013. 7. R. Tron and R. Vidal. A benchmark for the comparison of 3-d motion segmentation algorithms. In CVPR, 2007.
- 8. A. Georghiades, P. Belhumeur, and D. Kriegman. From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE TPAMI, 2001.

Electrical and Computer Engineering

Experimental Results - Synthetic Data

▶ Neighborhood Selection Error in the fully random model (d/p = 3/5)

Average computational time for neighborhood construction

Experimental Results - Motion Segmentation

Hopkins 155 Dataset [7] - 155 video sequences of 2 or 3 motions.

L	Algorithms	K-means	K-flats	SSC	LRR	SCC	SSC-OMP	TSC	NSN+Spectral
	Mean CE (%)	19.80	13.62	1.52	2.13	2.06	16.92	18.44	3.62
	Median CE (%)	17.92	10.65	0.00	0.00	0.00	12.77	16.92	0.00
	Avg. Time (sec)	-	0.80	3.03	3.42	1.28	0.50	0.50	0.25
	Mean CE (%)	26.10	14.07	4.40	4.03	6.37	27.96	28.58	8.28
	Median CE (%)	20.48	14.18	0.56	1.43	0.21	30.98	29.67	2.76
	Avg. Time (sec)	-	1.89	5.39	4.05	2.16	0.82	1.15	0.51

Experimental Results - Face Clustering

Extended Yale B Dataset [8] - 64 images for each of L faces (48 \times 42)

