	MW-4
	Consider Nicid ramples drawn hour a Poisson
	Consider Niid sampler drawn from a Poisson dietribution. The PMF is defined as follows: Poisson (x/x) = e -> 2xx for x E (0,1, 2,)
	2 From (x (1)) = 2 - 1 Ax x x x x x x x x x x x x x x x x x
	Tourse of the second
	where 2 > 0 is the vate farameter. Find 2mie
\rightarrow	Likelihood fundion +
	L'ékelihood function f $L(\lambda; X_n) = \frac{n}{n} e^{-\lambda}$
	l(2/x) = log (,-n) 1 2 = x;
	$l(\lambda/x_n) = log(e^{-n\lambda} \underbrace{\lambda \sum_{i=1}^{n} x_i}_{i=1}^{n} x_i)$
	$= \log(n-n\lambda) + \log(n^{\frac{n}{2}}x) - \log(n^{\frac{n}{2}}x)$
	= log(e-n2) + log(2=xi) - log(n x.1)
	= 2002 + 51 r. loo2 - loo (11 x.)
	$= -\frac{1}{2}\ln 2 + \frac{1}{2}x^{2} \cdot \log 2 - \log \left(\frac{\pi}{1-1}x^{2}\right)$
	Tobe Antal description want 2
	Taking fastial derivative writh, \[\frac{1}{2} \left(\lambda_{\infty} \right) \frac{1}{2} \left(\lambda_{\infty} \right) \frac{1}{2} \left(\lambda_{\infty} \right) \]
	7(2)
	1 3 x, - N = 0
	2 1-1
	A I A Y.
	$N = \frac{1}{N} $
	0 1 5 v 0
	MLE = 1 1 1 1