MATH 213 - TEST 3 REVIEW

- (1) Let A be an $m \times n$ matrix and let B be its reduced row echelon form.
 - (a) If rank A = r, then any r columns of A form a basis of C(A).
 - (b) If m > n then $\dim R(A) > \dim C(A)$.
 - (c) If rank A = n then the rows of A form a basis of \mathbb{R}^n .
 - (d) If the rows of A span \mathbb{R}^n then the columns of A span \mathbb{R}^m .
 - (e) If the columns of A are linearly independent and the rows of A span \mathbb{R}^n , then $m = n = \operatorname{rank} A$.
 - (f) A and B have the same column space.
 - (g) If $N(A) \neq \{0\}$ then $C(A) \neq \mathbf{R}^m$.
 - (h) If the columns of A are linearly independent and the rows of A are linearly independent, then $N(A) = \{0\}$ and $N(A^T) = \{0\}$.
 - (i) $\operatorname{rank} A = \operatorname{rank} A^T$
 - (j) The columns of A satisfy the same linear dependence relations as the columns of B.
 - (k) If the columns of A are linearly independent then $A\mathbf{x} = \mathbf{0}$ has a unique solution.
 - (l) If the columns of A are linearly independent then $A\mathbf{x} = \mathbf{b}$ has a unique solution for all $\mathbf{b} \in \mathbf{R}^m$.
 - (m) If $A\mathbf{x} = \mathbf{b}$ has a solution for all $\mathbf{b} \in \mathbf{R}^n$, then $N(A^T) = \{0\}$.
 - (n) rank $(A \ A) = \operatorname{rank} A$.
- (2) Explain why there is **no** 3×3 matrix A such that

$$R(A) = \operatorname{span}\left\{\begin{pmatrix} 1 & 2 & 1 \end{pmatrix}, \ \begin{pmatrix} 2 & 1 & 2 \end{pmatrix}\right\} \quad \text{and} \quad N(A) = \operatorname{span}\left\{\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}\right\}.$$

(Hint: Consider products of basis elements of R(A) with basis elements of N(A).)

(3) Find a basis for the vector space

$$W = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbf{R}^3 : x + 2y + z = 0 \right\}.$$

(Hint: Find a matrix whose nullspace is W.)

Find a basis for the vector space

$$W = \left\{ \begin{pmatrix} x+y\\x\\x-y \end{pmatrix} : x, y \in \mathbf{R} \right\}$$

(Hint: Find a matrix whose column space is W.)

(4) Let $\mathbf{e}_1, \mathbf{e}_2$ be the standard basis of $\mathbf{R}^{2\times 1}$. Show that

$$\begin{pmatrix} \mathbf{e}_1 \\ \mathbf{e}_1 \end{pmatrix}, \ \begin{pmatrix} \mathbf{e}_1 \\ \mathbf{e}_2 \end{pmatrix}, \ \begin{pmatrix} \mathbf{e}_2 \\ \mathbf{e}_1 \end{pmatrix}, \ \begin{pmatrix} \mathbf{e}_2 \\ \mathbf{e}_2 \end{pmatrix}$$

is not a basis of $\mathbf{R}^{4\times 1}$ and that

$$\begin{pmatrix} \mathbf{e}_1 & \mathbf{e}_1 \end{pmatrix}, \begin{pmatrix} \mathbf{e}_1 & \mathbf{e}_2 \end{pmatrix}, \begin{pmatrix} \mathbf{e}_2 & \mathbf{e}_1 \end{pmatrix}, \begin{pmatrix} \mathbf{e}_2 & \mathbf{e}_2 \end{pmatrix}$$

is a basis of $\mathbf{R}^{2\times 2}$.

(5) Let P_2 be the space of polynomials of degree ≤ 2 and consider the transformation

$$T: P_2 \longrightarrow \mathbf{R}^3$$
 given by $T(f) = \begin{pmatrix} f(2) \\ f'(2) \\ f''(2) \end{pmatrix}$

(The ' means derivative.)

- (a) Show that T is linear. Feel free to invoke properties of the derivative that you know from calculus.
- (b) Let $B = (1, x, x^2)$ be the standard basis of P_2 . Find a 3×3 matrix A such that $T(f) = A[f]_B$ for all $f \in P_2$.

[Linear transformations are *not* on Friday's test.]