Elements Of Statistical Learning Solutions

Solutions to select exercises

Krishan Bhalla

June 1, 2020

CONTENTS

1	INTRODUCTION	3	
2	CHAPTER 2 - OVERVIE	W OF SUPERVISED LEARNING	4
3	CHAPTER 3 - LINEAR	METHODS FOR REGRESSION	7

INTRODUCTION

A selection of solutions to Elements of Statistical Learning by Hastie, Tibshirani, and Friedman. This will be continually updated as I work through the book.

I will not answer all exercises, but will endeavour to solve many. This chapter largely exists to align latex chapter labels with those of the book.

CHAPTER 2 - OVERVIEW OF SUPERVISED LEARNING

2.1 Suppose each of K-classes has an associated target t_k which is a vector of all zeros except one in the kth position. Show that classifying to the largest element of \hat{y} amounts to choosing the closest target $\min_k \|t_k - \hat{y}\|$ if the elements of y sum to one.

Our norm here is the L^2 norm.

$$\begin{aligned} argmin_k & \|t_k - \hat{y}\| = argmin_k \|t_k - \hat{y}\|^2 \\ &= argmin_k \sum_i (\hat{y}_i - (t_k)_i)^2 \\ &= argmin_k \sum_i (\hat{y}_i - \delta_{i,k})^2 \\ &= argmin_k \left(1 - 2\hat{y}_k + \sum_i \hat{y}_i^2\right) \\ &= argmin_k \left(-2\hat{y}_k\right) \end{aligned}$$

Where the last line follows as it is the only term dependant on k. argmin is independent of scale, so the above states that the k corresponding to the minimum value of the norm is exactly the largest element of \hat{y}

2.2 Show how to compute the Bayes decision boundary for the example in Figure 2.5.

Setup: There are 10 means m_k from a bivariate guassian distribution $N((1,0)^T,I)$ and we label this class blue. We take 10 n_k from $N((0,1)^T,I)$ and label this class orange. For each class there were 100 observations, where each observation was generated by picking one of the m_k (n_k resp) each with equal probability, and taking a point randomly from a $N(m_k,I/5)$ distribution.

Let x be an observation. We equate posteriors for x being blue or yellow, and note that in our setup $\mathbb{P}(blue) = \mathbb{P}(orange)$ (priors are equal) to simplify to:

$$\sum_{k} exp(-5 \|m_k - x\|^2) = \sum_{k} exp(-5 \|n_k - x\|^2)$$

This defines a curve in the plane separating the two classes.

2.3 Derive equation 2.24.

Setup: Consider N data points uniformly distributed in a p-dimensional unit ball around the origin. Consider a nearest neighbour estimate at the origin. The median distance from the origin to the closest point is given by:

$$d(p_N) = \left(1 - \frac{1}{2}^{1/N}\right)^{1/p}$$

Solution: Let x be a point and let y = ||x||. y has cdf equal to the ratio of a ball of radius y to a ball of radius 1, i.e. $F(y) = y^p$. The minimum over all x then has cdf $F_{ymin}(y) = 1 - (1 - F(y))^N$ (a general fact for order statistics). Thus $F_{ymin} = 1 - (1 - y^p)^N$.

The median distance for *ymin* is when $F_{ymin}(y) = 1/2$. Solving for this yields the result.

2.4 Setup as in book. Projection in direction a.

Pick an orthonormal basis of \mathbb{R}^p which includes the vector a, say a_1, \ldots, a_p with $a_1 = a$. Then each $x_i = \sum_j X_{i,j} a_j$, and so $z_i = X_{i,1}$ where X is the matrix with rows x_i

The x_i have distribution $N(0, I_p)$, and under such a distribution each component of x_i has distribution N(0, 1).

In particular this means that each $X_{i,j}$ has distribution N(0,1) and so the z_i do.

The squared distance from the origin is just z_i^2 , with distribution χ_1^2 , and this has mean 1.

2.6 Consider a regression problem with inputs x_i and outputs y_i , and a parameters model $f_{\theta}(x)$ to be fit by least squares. Show that if there are observations with tied or identical values of x then the fir can be obtained from a reduced weighted least squares problem.

The problem can of finding θ amounts to solving the following:

$$argmin_{\theta} (y - f_{\theta}(x))^{T} (y - f_{\theta}(x))$$

Denote by $z_1, ..., z_M$ the unique values of x in our training set, denote by n_j the number of occurrences of value z_j . Then let $t_j = \frac{1}{n_j} \sum_{i=1}^{n_j} y_i$ If we can get to the following, we're done (as it is in the form of weighted regression).

$$argmin_{\theta} \sum_{j} n_{j} (t_{j} - f_{\theta}(z_{j}))^{2}$$

Expanding the initial expression we get (denoting by $y_{i,j}$ the *i*th value of *y* corresponding to input z_i):

$$(y - f_{\theta}(x))^{T} (y - f_{\theta}(x)) = \sum_{i} (y_{i} - f_{\theta}(x_{i}))^{2}$$

$$= \sum_{i} (y_{i}^{2} + f_{\theta}(x_{i})^{2} - 2y_{i}f_{\theta}(x_{i}))$$

$$= \sum_{i} (y_{i}^{2} + f_{\theta}(x_{i})^{2} - 2y_{i}f_{\theta}(x_{i}))$$

$$= \sum_{j=1}^{M} \sum_{i=1}^{n_{j}} y_{i,j}^{2} - 2f_{\theta}(z_{j})y_{i,j} + f_{\theta}(z_{j})^{2}$$

$$= \sum_{j=1}^{M} \left(\sum_{i} y_{i,j}^{2}\right) - 2n_{j}f_{\theta}(z_{j})t_{j} + n_{j}f_{\theta}(z_{j})^{2}$$

$$= \sum_{j=1}^{M} n_{j}(t_{j} - f_{\theta}(z_{j}))^{2} - \sum_{j=1}^{M} n_{j}t_{j}^{2} + \sum_{j=1}^{M} \left(\sum_{i} y_{i,j}^{2}\right)$$

This last trick of adding 0 leaves us with an expression where only the first sum is dependant on θ Thus when taking $argmin_{\theta}$ we can ignore the last two terms.

This leaves us with the required equivalence.:

$$argmin_{\theta} (y - f_{\theta}(x))^{T} (y - f_{\theta}(x)) = argmin_{\theta} \sum_{j} n_{j} (t_{j} - f_{\theta}(z_{j}))^{2}$$

CHAPTER 3 - LINEAR METHODS FOR REGRESSION

3.1 Show that the F-statistic for dropping a single coefficient of a model is equivalent to the square of the corresponding z score

Let X be our data, and let $v_{j,j}$ be the jth diagonal element of $V = (X^T X)^{-1}$. $z_j = \hat{\beta}_j / \hat{\sigma} \sqrt{v_{j,j}}$ is the z score.

The F statistic is

$$F = \frac{(RSS_0 - RSS_1)/(p1 - p0)}{RSS_1/(N - p_1 - 1)}$$

Where the regression models are have $p_1 + 1$ and $p_0 + 1$ degrees of freedom respectively. We also know that $\hat{\sigma}^2$ is equivalent to the denominator. In the case of dropping a single variable, this simplifies to:

$$F = \frac{RSS_0 - RSS_1}{\hat{\sigma}^2}$$

Where $\hat{\sigma}$ is derived from the bigger model.

Thus our question can be simplifed to showing that:

$$RSS_0 - RSS_1 = \hat{\beta}_n^2 / v_{j,j}$$

We know $\hat{\beta} N(\beta, \sigma^2 V)$ and so $\hat{\beta}_j N(\beta_j, \sigma^2 v_{j,j})$.

Under the null-hypothesis $\beta_j = 0$ and so: $\hat{\beta}_j = \sigma \sqrt{v_{j,j}} Z$ where $Z \sim N(0,1)$ Thus $\hat{\beta}_j^2 = \sigma^2 v_{j,j} Z^2 = \sigma^2 v_{j,j} Q$ where $Q \sim \chi_1^2$

Similarly RSS_0 , RSS_1 have distribution $\sigma^2 \chi^2_{N_i}$ where N_i is the number of degrees of freedom. Thus $RSS_0 - RSS_1 \sim \sigma^2 \chi^2_1$

Hence $\hat{\beta}_j/v_{j,j}$ and $RSS_0 - RSS_1$ have the same distribution. They further test the same hypothesis and thus must be identical.

3.3 a. Prove the Gauss-Markov theorem: the least squares estimate of a parameter $a^T \beta$ has a variance no bigger than that of any other linear unbiased estimate of $a^T \beta$.

b. Secondly, show that if \hat{V} is the variance-covariance matrix of the least squares estimate of β and \tilde{V} is the variance covariance matrix of any other linear unbiased estimate, then $\hat{V} \leq \tilde{V}$, where $B \leq A$ if A - B is positive semidefinite.

First note that part b implies part a. If β has dimension 1, then V is just the variance of beta, and \leq is equivalent to the normal \leq operator. Taking the inner product with a is just a linear operation. We thus only need to show b.

Suppose $\hat{\beta}$ is the OLS estimate of β and that $\tilde{\beta}$ is another linear unbiased estimate. The the variance-covariance matrices be \hat{V} and \tilde{V} resp. $\hat{\beta} = (X^TX)^{-1}X^Ty$ so $\hat{\beta} = Cy$ say, and write $\tilde{\beta} = (C+D)y$ for some non-zero mxn matrix D.

$$\mathbb{E}(\tilde{\beta}) = \mathbb{E}((C+D)(X\beta+\epsilon))$$

$$= \mathbb{E}\left(\left(X^TX\right)^{-1}X^T + D\right)(X\beta+\epsilon)$$

$$= \mathbb{E}((\beta+DX\beta)) + \zeta\mathbb{E}(\epsilon)$$

$$= \mathbb{E}((\beta+DX\beta))$$

$$= \beta+DX\beta$$

$$= \beta$$

Where the last lines follow as $\tilde{\beta}$ is unbiased. In particular $DX\beta = 0$ and so DX = 0 as beta is an unobserved parameter to be estimated.

$$\begin{split} \tilde{V} &= Var\left(\tilde{\beta}\right) \\ &= Var\left(\left(C + D\right)y\right) \\ &= \left(C + D\right)\left(C + D\right)^{T}Var\left(y\right) \\ &= \sigma^{2}\left(C + D\right)\left(C + D\right)^{T} \\ &= \sigma^{2}\left(CC^{T} + CD^{T} + DC^{T} + DD^{T}\right) \\ &= \sigma^{2}\left(CC^{T} + CD^{T} + DC^{T} + DD^{T}\right) \\ &= \hat{V} + \sigma^{2}\left(+CD^{T} + DC^{T} + DD^{T}\right) \\ &= \hat{V} + \sigma^{2}\left(\left(X^{T}X\right)^{-1}X^{T}D^{T} + DX\left(X^{T}X\right)^{-1} + D^{T}D\right) \\ &= \hat{V} + \sigma^{2}DD^{T} \end{split}$$

Where we know that DD^T is positive semi-definite¹ and so are done.

1
$$\overline{v^T D D^T v = \|D^T v\|} >= 0 \ \forall v$$

3.4 Show how the vector of least squares coefficients can be obtained from a single pass of the Gram–Schmidt procedure (Algorithm 3.1). Represent your solution in terms of the QR decomposition of X.

Let X = QR be the QR decomposition of X. This can be attained via Gram-Schmidt. We assume that R has no zeros on the diagonal (i.e. the variables are linearly independent). Then

$$\hat{\beta} = (X^T X)^{-1} X^T y$$

$$= (R^T R)^{-1} R^T Q^T y$$

$$= R^{-1} Q^T y$$

We can invert R via backpropogation, and Q^Ty is easily calculable.

3.5 Show that the ridge regression problem (using α to denote the constant intercept vector)

$$\hat{\beta} = \operatorname{argmin}_{\beta,\alpha} (y - \alpha - X\beta)^{T} (y - \alpha - X\beta) + \lambda \|\beta\|^{2}$$

is equivalent to the problem:

$$\hat{\beta}^{c} = argmin_{\beta^{c},\alpha^{c}} \left(y - \alpha^{c} - \tilde{X}\beta^{c} \right)^{T} \left(y - \alpha^{c} - \tilde{X}\beta^{c} \right) + \lambda \left\| \beta^{c} \right\|^{2}$$

Where $\tilde{X} = X - \bar{X}$, and bar represents the the Nxp) matrix where each value in the jth column is the mean x_j . Give the correspondence between β^c and the original β . Do the same for the lasso.²

This problem is easier with summation

$$\begin{aligned} &(y - \alpha - X\beta)^{T} (y - \alpha - X\beta) + \lambda \|\beta\|^{2} \\ &= (y - \alpha - \bar{X}\beta - (X - \bar{X})\beta)^{T} (y - \alpha - \bar{X}\beta - (X - \bar{X})\beta) + \lambda \|\beta\|^{2} \\ &= (y - (\alpha + \bar{X}\beta) - (X - \bar{X})\beta)^{T} (y - (\alpha + \bar{X}\beta) - (X - \bar{X})\beta) + \lambda \|\beta\|^{2} \\ &= (y - \alpha^{c} - \tilde{X}\beta^{c})^{T} (y - \alpha^{c} - \tilde{X}\beta^{c}) + \lambda \|\beta^{c}\|^{2} \end{aligned}$$

Where $\alpha_i^c = \alpha_i + \sum_{j=1}^p \bar{x}_j \beta_j$ in all coordinates, and $\beta^c = \beta$. This is an expression of our desired form. This problem is equivalent to demeaning the data and adjusting the intercept. One can do exactly the same for the lasso.

² This is all a tad odd as regression with intercept is desired, but we only penalise the non-intercept terms.

3.6 Show that the ridge regression estimate is the mean (and mode) of the posterior distribution, under a Gaussian prior β $N(0,\tau I)$ and Gaussian sampling model y $N(X\beta,\sigma^2I)$. Find the relationship between the ridge parameter λ and the variances τ and σ^2

This question really states that the pdf of the posterior is proportional to the pdfs of y given β and β . Hence:

$$f(\beta|y) \propto f(\beta)f(y|\beta)$$
 (1)

$$log(f(\beta|y)) = C + log(f(\beta)) + log(f(y|\beta))$$
(2)

$$= C + -\frac{1}{2\tau} \beta^T \beta * log \left(\frac{1}{\sqrt{2 * \pi * \tau}} \right)$$
 (3)

$$-\frac{1}{2\sigma^2} (y - X\beta)^T (y - X\beta) * log \left(\frac{1}{\sqrt{2 * \pi * \sigma^2}}\right)$$
 (4)

$$= C + -\frac{1}{2\tau}\beta^{T}\beta + -\frac{1}{2\sigma^{2}}(y - X\beta)^{T}(y - X\beta)$$
 (5)

Where we absorb terms into the constant as needed. We have recovered that:

$$f(\beta|y) = C_1 e^{-\frac{1}{2\sigma^2} \left(\frac{\sigma^2}{\tau} \beta^T \beta + (y - X\beta)^T (y - X\beta)\right)}$$
(6)

$$= C_1 e^{-\frac{1}{2\sigma^2} \left(\beta^T \left(X^T X + \frac{\sigma^2}{\tau} I\right) \beta + y^T y - y^T X \beta - \beta^T X^T y\right)}$$
(7)

$$= C_1 e^{-\frac{1}{2\sigma^2} \left(\beta^T \Sigma \beta + y^T y - y^T X \beta - \beta^T X^T y\right)}$$
(8)

$$=C_1 e^{-\frac{1}{2\sigma^2} \left(\left(\Sigma \beta - X^T y \right)^T \Sigma^{-1} \left(\Sigma \beta - X^T y \right) + y^T y - y^T X^T X y \right)}$$
 (9)

$$= C_2 e^{-\frac{1}{2\sigma^2} \left(\Sigma \beta - X^T y\right)^T \Sigma^{-1} \left(\Sigma \beta - X^T y\right)}$$
 (10)

(11)

Where $\Sigma = \left(X^TX + \frac{\sigma^2}{\tau}I\right)$ is a (p+1)*(p+1) matrix, and for (11) we absorbed into the constant any terms not dependant on β

Thus the posterior has a multivariate gaussian pdf (up to scaling), so the mean and mode of the distribution are identical, and can be found by maximising (5) over β , which due to the minus sign is sufficient.

This amounts to

$$argmin_{\beta}\left(\frac{1}{\tau}\beta^{T}\beta+\frac{1}{\sigma^{2}}\left(y-X\beta\right)^{T}\left(y-X\beta\right)\right)$$

And hence is equivalent to solving:

$$argmin_{\beta} \left(\frac{\sigma^2}{\tau} \beta^T \beta + (y - X\beta)^T (y - X\beta) \right)$$

Hence the ridge regression parameter is σ^2/τ

3.9 Forward stepwise regression: Suppose we have the QR decomposition for the N x q matrix X_1 in a multiple regression problem with response y, and suppose we have an additional p-q predictors in the matrix X_2 . Denote the residual by r. Describe an efficient procedure for establishing which additional variable will reduce the residual sum of squares the most.

Intuition - pick the column \hat{v} such that v has the least angle with r. i.e.

$$\hat{v} = argmax_{v \in \{columnsX_2\}} \frac{|r^T v|}{\|v\|}$$

With this in mind, let $u_j = x_j - \frac{|r^T x_j|}{\|x_j\|}$ where the x_j are the columns of X_2 , and let $v_j = \frac{u_j}{\|u_j\|}$

$$RSS = r^T r$$

$$r = y - \hat{y}$$

$$= y - R^{-1}Q^T y$$
 $let \ r_j = r - \left(r^T u_j\right) u_j$
 $and \ RSS_j = RSS - 2\left(r^T u_j\right)^2 + \left(r^T u_j\right)^2$
 $then \ RSS_j = RSS - \left(r^T u_j\right)^2$

Where RSS_j is the residual sum of squares for our new model. This verifies our intuition, RSS_j is minimised when we pick the column of X_2 with least angle to r. I assume the efficiency in the question comes from the ease of inverting R compared to X^TX (backpropogation will do), and that we can extend our QR decomposition to include the new variable easily via Gram-Schmidt. In particular most of what is needed for Gram-Schmidt is already computed when taking inner product with the residual.

3.10 Backward stepwise regression. Suppose we have the multiple regression fit of y on X along with the standard errors and Z-scores. We wish to establish which variable, when dropped, will increase the RSS the least. How would you do this?

From question 3.1 we know that the F-statistic for dropping a single coefficient of a model is equivalent to the square of the corresponding Z score. Further, we know the F statistic in the case of dropping 1 variable is:

$$\frac{(RSS_0 - RSS_1)}{RSS_1/(N-p1-1)}$$

where N, p_1 and RSS_1 are constant. In particular, the change is RSS is proportional to the F-score with a constant that does not depend

on choice of variable to be dropped, and so the change in RSS is proportional to the square of the z-score in the same manner. Thus the difference will be smallest (smallest increase in RSS) if the variable has minimal z-score in our model.

3.12 Show the ridge regression estimates can be obtained by OLS regression on an augmented data set. Add p rows to the centered matrix X, $\sqrt{\lambda}I_p$, and augment y with p zeros.

Let $X_2 = [X^T, \sqrt{\lambda}I_p]^T$ be our augmented matrix, and let $y_2 = [y^T, 0]^T$ be the augmented response. Under OLS, we have $\beta_2 = (X_2^T X_2)^{-1} X_2^T Y$.

$$X_2^T X_2 = [X^T, \sqrt{\lambda} I_p][X^T, \sqrt{\lambda} I_p]^T$$

$$= X^T X + \lambda I_p$$

$$X_2^T y_2 = [X^T, \sqrt{\lambda} I_p][y^T, 0]^T$$

$$= X^T y$$

Thus $\beta = (X^TX + \lambda I_p) X^Ty$ which is exactly the ridge regression beta for our non-augmented dataset.