Statistics 565 Applied Time Series Analysis

Spring 2019

Homework 5

Due: Mon 03/04/19 @ 6:00pm rutgers.instructure.com/courses/21204

- 1. Problem 5.2 (a) and (b). Hint: start by identifying the ARMA process that ∇Y_t follows. Then derive/use what you know about the mean and variance of the ARMA process. Make sure the ARMA process is stationary/invertible, when applicable.
- 2. Problem 5.13
- 3. Problem 5.14
- 4. Using Bartlett's Theorem discussed in class (also page 110 of the textbook), show that for a white noise process,
 - (i) The sample autocorrelation r_k , $k \ge 1$, is approximately distributed as N(0, 1/n) for large n,
 - (ii) For all $k \neq j$, r_k and r_j are uncorrelated.
- 5. Simulate a time series of length n=100 from the MA(3) process $Y_t=e_t-0.7e_{t-1}-0.5e_{t-2}-0.6e_{t-3}$. Display the data on your output. Next,
 - (i) Compute the sample autocorrelation r_4 from the observed data.
 - (ii) What is $Var(r_4)$, the theoretical variance of r_4 under the true model?
 - (iii) Simulate the time series 500 times, computing r_4 on each occasion. Plot a histogram for r_4 and compute the variance of r_4 from these simulations. Does the variance match the theoretical variance?
 - (iv) Obtain $\hat{Var}(r_4)$, an estimate of the variance from the data you originally generated (the observed data).
 - (v) Compute the 95% confidence interval for the true autocorrelation ρ_4 based on your original data.
 - (vi) Are the results consistent with a model in which $\rho_4 = 0$?