BIOST 527 - HOMEWORK 4

KATIE WOOD

Problem 1

Above we show the result of Kernel Ridge Regression using a Gaussian kernel with the penalty $\lambda = 10^{-10}$. As we expect from a small penalty, \hat{g}_1 provides an excellent fit to the training data. However, we suspect that \hat{g}_1 may be over-fitting to the noise in the data since the true g^* is a hyperbolic paraboloid (degree 2 in each independent variable), meanwhile \hat{g}_1 shows much more texture than degree 2 would allow. Particularly near the boundaries, \hat{g}_1 changes rapidly, which is not reflected in the data.

Above we show the result of Kernel Ridge Regression using a Gaussian kernel with the penalty $\lambda = 10^{-2}$. As we expect from a larger penalty, \hat{g}_2 does not fit the training data as seamlessly as \hat{g}_1 , but may nonetheless provide a more accurate representation of the true underlying g^* . Indeed, \hat{g}_2 displays what looks like degree 2 curvature.

Above we show the result of Kernel Ridge Regression using a Gaussian kernel with the optimal penalty $\lambda^* \approx 0.0091$. According to Generalized Cross-Validation, \hat{g}_3 should provide the most accurate representation of the true underlying g^* . We note that this value of λ^* is only slightly smaller than the $\lambda = 10^{-2}$ we used for \hat{g}_2 . Thus, similar to our remarks for \hat{g}_2 , we notice that \hat{g}_3 displays curvature reminiscient of a hyperbolic paraboloid (which is degree 2 in each independent variable), which fits the training data well without over-fitting to noise.

Lastly, we show the result of Kernel Ridge Regression using a linear kernel with the optimal penalty $\lambda^* \approx 0.086$. Here, \hat{g}_4 under-fits the training data. This makes sense because the linear kernel can only capture behavior up to degree 1 in each independent variable, meanwhile the true g^* is degree 2.