INSTITUTO SUPERIOR DE ENGENHARIA DO PORTO

DEPARTAMENTO DE ENGª INFORMÁTICA

ALGAV – Algoritmia Avançada – 2013/2014

Autores (nº, nome): 1111314, Paulo Oliveira 1111623, Mário Garrido

ÍNDICE

1.	Introdução - Apresentação do problema	.3
2.	Funcionalidades implementadas	.4
3.	Eventuais melhorias	٠5
4.	Análise de complexidade realizada	٠5
5.	Referências Bibliográficas	.6

1. Introdução - Apresentação do problema

Neste trabalho era pedido para desenvolver uma aplicação que simulasse a rede de metro de Paris. Rede esta bastante complexa em diversos pontos e com várias soluções no que respeita à escolha de alguns trajectos. Esta aplicação teria que ser capaz de sugerir trajectos aos turistas em função das suas escolhas de locais a visitar. Para isso o sistema devia possuir a modelação das linhas de metro existentes, das estações de cada linha e dos cruzamentos entre linhas. O horário de funcionamento e tempos de viagem entre estações também deveriam ser incluídos. A aplicação devia ainda possuir a modelação de alguns pontos turísticos de interesse possuindo a informação de horário de funcionamento, tempo de visita desse local e estações de metro mais próximas.

Com esta base de conhecimento construída o sistema devia conseguir fazer o planeamento de visitas a certos locais turísticos, após receber a indicação de locais que se pretendiam visitar.

2. Funcionalidades implementadas

No que toca às funcionalidade implementadas foi construída a base de conhecimento com o conjunto das linhas da rede de metro, criado factos do tipo linha(indicativo_linha,lista_estacoes').

Com isto foi possível gerar as estações de cada linha e respectivos cruzamentos entre linhas. Sendo do tipo cruzamento(linha1,linha2, os cruzamentos lista estações comuns) as ligações entre estações, factos do tipo liga ('estacao1', 'estacao2, tempo viagem). O conjunto de estações, cruzamentos e ligações foram criados definindo regras que o faziam dinamicamente.

Estas ligações devidamente construídas permitiam a construção de métodos capazes de encontrar caminho entre estações.

A funcionalidade de encontrar o caminho mais rápido entre duas estações foi implementada com sucesso usando o método A*, devidamente alterado para o contexto do trabalho.

Para a realização destas tarefas, o grupo baseou-se num exercício realizado nas aulas PL que simulava também uma rede do género mas com um conjunto de informação muito inferior ao que o nosso trabalho apresenta. Tendo corrigido alguns erros da resolução da aula, conseguimos chegar às soluções.

3. Eventuais melhorias

Nas melhorias a realizar no trabalho realizado a primeira coisa a fazer seria implementar os métodos restantes, começando pelo método de caminho com menos cruzamento, algo que não foi implementado com sucesso. E claro, implementar regras capazes de planear visitas a determinados locais turísticos de acordo com diversos parâmetros.

4. Análise de complexidade realizada

Na tabela seguinte são apresentados alguns exemplos dos tempos de resposta para alguns caminhos obtidos, dado o ponto de partida e o destino. Mesmo para um caminho mais longo o tempo de resposta até é bem rápido mostrando que o algoritmo em causa tem bom desempenho.

Origem	Destino	Tempo de geração A* (segundos)	Solução A*
Brochant	Les Agnettes	0.001	['Brochant', 'Porte de Clichy', 'Mairie de Clichy', 'Gabriel Péri', 'Les Agnettes'],
Cade	Pyramids	0.002	['Cadet', 'Le Peletier', 'Chaussée d Antin- La Fayette', 'Opéra', 'Pyramides']
Gare de Lyon	Duroc	0.851	['Gare de Lyon','Bastille','Quai de la Rapée','Gare

т,	\neg	т

	d Austerlitz','St- Michel Notre- Dame','Musée d Orsay','Invalides','Var enne','Saint
	enne','Saint François
	Xavier','Duroc'],

5. Referências Bibliográficas

http://www.plan-metro-paris.fr/

http://www.ratp.fr/horaires/fr/ratp/metro http://www.evous.fr/Metro-Paris.html

http://www.ratp.fr/en/ratp/c 21879/visiting-paris/

https://moodle.isep.ipp.pt/

http://www.swi-prolog.org/pldoc/doc for?object=manual