Amendments to the Claims:

The following listing of claims will replace all prior versions, and listings, of claims in the application:

1. (Currently Amended) A display, comprising:

a carrier body that defines at least one channel, the at least one channel extending in a direction of extension;

at least one particle disposed in the at least one channel; and

a controller that moves the at least one particle along the direction of extension of the at least one channel;

wherein the carrier body defines a planar surface, the direction of the extension of the at least one channel being substantially perpendicular to the planar surface.

- 2. (Previously Presented) The display according to claim 1, further including a first cover disposed at a first end of the at least one channel, and a second cover disposed at a second end of the at least one channel, the first and second covers preventing the at least one particle from exiting the at least one channel.
- 3. (Previously Presented) The display according to claim 2, further including a lens disposed at a surface of the second cover.
- 4. (Previously Presented) The display according to claim 2, wherein the second cover includes structure so as to operate as a lens to enhance optical characteristics of the display.
- 5. (Previously Presented) The display according to claim 2, further including a fluid disposed in the at least one channel, and the first and second covers being affixed at the first and second ends of the at least one channel to prevent the fluid from exiting the at least one channel.

- 6. (Previously Presented) The display according to claim 1, wherein the at least one particle includes multiple particles.
- 7. (Previously Presented) The display according to claim 6, wherein the at least one channel includes multiple channels that define an array.
- 8. (Original) The display according to claim 1, wherein the at least one particle is a solid.
- 9. (Original) The display according to claim 1, wherein the at least one particle is a liquid.
- 10. (Original) The display according to claim 1, wherein the at least one particle is micro-encapsulated.
- 11. (Original) The display according to claim 1, wherein the carrier body is at least partially made of silicon, and the at least one particle is charged.
- 12. (Currently Amended) The display according to claim 11, A display, comprising:

extending in a direction of extension;
at least one particle disposed in the at least one channel; and
a controller that moves the at least one particle along the direction of extension
of the at least one channel;
wherein the carrier body is least partially made of silicon, and the at least one
particle is charged;
wherein the controller includes a MOS gate terminal provided at a surface of
the carrier body at one end of the at least one channel.

a carrier body that defines at least one channel, the at least one channel

- 13. (Previously Presented) The display according to claim 12, wherein the MOS gate terminal includes an oxide layer disposed on the surface of the carrier body and a metal layer disposed on the oxide layer.
- 14. (Previously Presented) The display according to claim 13, wherein the controller includes a Si bulk connection that is connected to the MOS gate terminal via a signal line, to provide gate bias voltage.

15.	(Currently Amended) The display according to claim 1, A display, comprising:
	a carrier body that defines at least one channel, the at least one channel
extending in a	a direction of extension;
	at least one particle disposed in the at least one channel; and
	a controller that moves the at least one particle along the direction of extension
of the at least	one channel;
	_wherein the controller performs electrical bias of a gate terminal provided at a
surface of the	carrier body at one end of the at least one channel in order to generate an
electric field i	n order to move the at least one particle along the direction of extension of the
at least one ch	nannel.

- 16. (Previously Presented) The display according to claim 1, wherein the controller includes an electrode ring disposed at one of a first end of the at least one channel and a second end of the at least one channel.
- 17. (Previously Presented) The display according to claim 16, wherein the controller includes another electrode ring disposed at the other of the first end of the at least one channel and the second end of the at least one channel.
- 18. (Previously Presented) The display according to claim 17, wherein at least one of the one and other electrode rings is connected to a supply of control voltage, such that the at least one particle moves within the at least one channel along the direction of extension of

the at least one channel when control voltage is supplied to at least one of the one and other electrode rings.

- 21-35. (Canceled)
- 36. (Previously Presented) The display according to claim 1, wherein the at least one particle provides maximum color reflection when disposed at a second end of the at least

one channel, and provides minimum color reflection when disposed at a first end of the at least one channel.

- 37. (Previously Presented) The display according to claim 36, wherein the minimum color reflection is not appreciably visible to the human eye.
- 38. (Previously Presented) The display according to claim 6, the multiple particles including at least one cyan particle, at least one yellow particle and at least one magenta particle.
- 39. (Previously Presented) The display according to claim 6, the multiple particles including at least one red particle, at least one green particle and at least one blue particle.
- 40. (Previously Presented) The display according to claim 38, the multiple particles further including at least one of a black particle and a white particle.
- 41. (Previously Presented) The display according to claim 39, the multiple particles further including at least one of a black particle and a white particle.
- 42. (Previously Presented) The display according to claim 6, the multiple particles including at least two single-color colorant particles in the same channel, the at least two single-color colorant particles having different colors.
- 43. (Previously Presented) The display according to claim 7, each of the multiple channels only housing one particle selected from the group consisting of cyan particles, yellow particles, magenta particles, red particles, green particles, blue particles, black particles and white particles.
- 44. (Previously Presented) The display according to claim 7, each of the multiple channels housing at least two particles.
- 45. (Previously Presented) The display according to claim 44, the at least two particles including at least two single-color colorant particles that have different colors.

- 46. (Previously Presented) The display according to claim 1, wherein the at least one channel includes multiple channels that define an array.
- 47. (Previously Presented) The display according to claim 46, each of the multiple channels only housing one particle selected from the group consisting of cyan particles, yellow particles, magenta particles, red particles, green particles, blue particles, black particles and white particles.
- 48. (Previously Presented) The display according to claim 46, each of the multiple channels housing at least two particles.
- 49. (Previously Presented) The display according to claim 48, the at least two particles including at least two single-color colorant particles that have different colors.
- 50. (Previously Presented) The display according to claim 1, the at least one particle being a single-color colorant particle.
- 51. (Previously Presented) The display according to claim 50, the at least one single-color colorant particle being at least one member selected from the group consisting of at least one cyan particle, at least one yellow particle, at least one magenta particle, at least one red particle, at least one green particle, at least one blue particle, at least one black particle and at least one white particle.
- 52. (Previously Presented) The display according to claim 1, the at least one particle including at least two single-color colorant particles.
- 53. (Previously Presented) The display according to claim 52, the at least two single-color colorant particles having different colors.
- 54. (Previously Presented) The display according to claim 1, the at least one particle having a single charge polarity.
- 55. (Previously Presented) The display according to claim 1, the at least one particle including at least two particles having a single charge polarity.

- 56. (Previously Presented) The display according to claim 55, a first one of the at least two particles having a charge polarity that is different than the charge polarity of a second one of the at least two particles such that the at least two particles can be moved in different directions along the direction of extension of the at least one channel.
- 57. (Previously Presented) The display according to claim 54, the at least one particle having a single charge polarity being movable along the direction of extension of the at least one channel by application of only a single charge voltage.
- 58. (Previously Presented) The display according to claim 1, the at least one channel defining a display pixel.
- 59. (Previously Presented) The display according to claim 58, the at least one particle being a single-color colorant particle.
- 60. (Previously Presented) The display according to claim 58, the at least one particle having a single charge polarity such that the at least one particle is movable along the direction of extension of the at least one channel by application of an electric field.
- 61. (Previously Presented) The display according to claim 58, the at least one particle including at least two single-color colorant particles.
- 62. (Previously Presented) The display according to claim 61, the at least two single-color colorant particles having different colors.
- 63. (Previously Presented) The display according to claim 58, the at least one particle including at least two particles having a single charge polarity.
- 64. (Previously Presented) The display according to claim 63, a first one of the at least two particles having a charge polarity that is different than the charge polarity of a second one of the at least two particles such that the at least two particles can be moved in different directions along the direction of extension of the at least one channel.

- 65. (Previously Presented) The display according to claim 1, the at least one channel including multiple channels.
- 66. (Previously Presented) The display according to claim 65, at least two of the multiple channels defining a display pixel.
- 67. (Previously Presented) The display according to claim 66, the at least one particle including at least two single-color colorant particles.
- 68. (Previously Presented) The display according to claim 67, the at least two single-color colorant particles having different colors.
- 69. (Previously Presented) The display according to claim 67, each one of the at least two single-color colorant particles having a single charge polarity such that each one of the at least two single-color colorant particles is independently movable along the direction of extension of each of the at least two of the multiple channels by application of an electric field.
 - 70. (Canceled)
- 71. (Currently Amended) The display according to claim 1,A display, comprising:

 a carrier body that defines at least one channel, the at least one channel

 extending in a direction of extension;

 at least one particle disposed in the at least one channel; and

 a controller that moves the at least one particle along the direction of extension

 of the at least one channel;

 wherein the at least one channel including includes a plurality of channels

 defined by a single monolithic carrier body such that the carrier body constitutes side walls of the plurality of channels.
- 72. (Previously Presented) The display according to claim 71, the monolithic carrier body further constituting at least one end wall of the plurality of channels.

73-74. (Canceled)

75. (Currently Amended) A display apparatus, comprising:

at least one image display pixel that includes:

at least one cavity disposed between a first electrode and a second electrode, at least one of the first electrode and the second electrode being transparent, the at least one cavity including at least one single-color colorant particle disposed and movable within the at least one cavity, the at least one single-color colorant particle having a single charge polarity, the at least one cavity achieving a display contrast change independent of at least another cavity forming at least another image display pixel;

wherein the at least one cavity includes at least two cavities, one of the at least two cavities achieving a display contrast change independent of another one of the at least two cavities.

- 76. (Canceled)
- 77. (Previously Presented) The display apparatus according to claim 75, further comprising a dielectric fluid disposed in the at least one cavity.
- 78. (Previously Presented) The display apparatus according to claim 75, the at least one single-color colorant particle having a coating that prevents at least one of a charge leakage and a particle agglomeration.
- 79. (Previously Presented) The display apparatus according to claim 78, the coating including a surfactant.
- 80. (Previously Presented) The display apparatus according to claim 75, further comprising a fluid disposed in the at least one cavity that provides a dielectric medium.
- 81. (Previously Presented) The display apparatus according to claim 75, wherein the at least one single-color colorant particle includes at least two colorant particles that are

each single-color and that each have a single charge polarity, the at least two particles being disposed and movable within the same cavity.

- 82. (Previously Presented) The display apparatus according to claim 81, wherein the at least two colorant particles have different colors.
- 83. (Previously Presented) The display apparatus according to claim 82, wherein the at least two colorant particles have different charge polarities.

84-87. (Canceled)