A Glossary of Galois Theory

Phil Hazelden

2012-02-04 Sat

1 Notation

 Φ_n The n'th cyclotomic polynomial.

 \mathbb{F}_p The finite field $\mathbb{Z}/(p)$, where p is prime.

 \mathbb{F}_q A finite field of order $q=p^n$. Exists and is unique, but is not $\mathbb{Z}/(p)$ unless n=1.

 f_{α}^{K} The minimal polynomial of α over K; the unique monic polynomial in K[X] of minimal degree such that $f_{\alpha}^{K}(\alpha) = 0$. Usually $\alpha \in L \setminus K$ where L/K is some field extension.

K A field.

 $K(\alpha_1,\ldots,\alpha_n)$ The minimal field containing the subfield K and the elements α_i .

L A field; usually containing K.

L/K A field extension.

 L^H See fixed field.

p A prime.

R A unique factorisation domain.

2 Definitions

Abelian An extension L/K is abelian if it is Galois, and Gal(L/K) is abelian.

Algebraic $\alpha \in L$ is algebraic over K if there is $f \in K[X]$ such that $f(\alpha) = 0$. L/K is algebraic if every $\alpha \in L$ is algebraic over K.

Algebraically closed K is algebraic if all algebraic extensions of K are equal to K; equivalently if all finite extensions of K are equal to K; equivalently if every polynomial $f \in K[X]$ splits in K; equivalently if every nonconstant $f \in K[X]$ has a root in K.

Automorphism A K-automorphism $L \to L$ is an automorphism on L which restricts to the identity on K.

- Automorphism group $\operatorname{Aut}(L/K)$ is the group of all K-automorphisms $L \to L$. If $L^{\operatorname{Aut}(L/K)} = K$, then $\operatorname{Aut}(L/K)$ is also written $\operatorname{Gal}(L/K)$.
- Constructible L/K is constructible if there is a sequence of extensions $K_1/K, K_2/K_1, \ldots, K_n/K_{n-1}$ with $L \subset K_n$ and each $[K_{i+1} : K_i] \in \{1, 2\}$.
- Cyclotomic polynomial $\Phi_n = \prod_{\zeta} (X \zeta) \in \mathbb{Z}[X]$ where ζ are the primitive *n*'th roots of unity. $X^n 1 = \prod_{d|n} \Phi_d$.
- Fixed field For $H \leq \operatorname{Aut}(L/K)$, L^H is the intermediate field $(K \leq L^H \leq L)$ containing those elements of L which are fixed by every element of H. Also written $\operatorname{Fix}(H)$ if L is clear from the context. $L^H = \{\alpha \in L : g \in H \Rightarrow g(\alpha) = \alpha\}$.
- **Frobenius automorphism** when K is a finite field of characteristic p, this is the map F: $K \to K : x \mapsto x^p$.
- Galois extension L/K is Galois if $L^{\operatorname{Aut}(L/K)} = K$. That is, no $\alpha \in L$ is preserved by every K-automorphism $L \to L$.
- Galois group Gal(L/K) is Aut(L/K), when L/K is Galois.
- Normal L/K is normal if for each $\alpha \in L$, f_{α}^{K} splits in L.
 - All Galois extensions are normal, and L/K is normal iff L is the splitting field for some polynomial $f \in K[X]$.
- **Normal closure** A normal closure of a finite extension L/K is a minimal M/L such that M/K is normal. A normal closure always exists, is finite, and any two normal closures are L-isomorphic.
- **Perfect** A field is called perfect if all of its algebraic extensions are separable. All extensions of \mathbb{Q} , algebraically closed fields, and finite fields are perfect.
- **Primitive** A polynomial $f \in R[X]$ is primitive if there is no irreducible $p \in R$ such that p|f. If $g, h \in R[X]$ are primitive then so is gh.
 - If $g', h' \in \operatorname{Frac}(R)[X]$ and f = g'h' is nonconstant primitive, then $\exists a, b \in \operatorname{Frac}(R) : ag', bh' \in R[X]$ are primitive and f = abg'h'.
 - A field extension L/K is primitive if $L = K(\alpha)$ for some α .
 - A primitive n'th root of unity is one which has order n.
- **Radical** A finite extension L/K is radical if we can write $L = K(\alpha_1, \ldots, \alpha_r)$ with integers n_1, \ldots, n_r such that for each $i, \alpha_i^{n_i} \in K(\alpha_1, \ldots, \alpha_{i-1})$.
- Separable polynomial An irreducible polynomial $f \in K[X]$ is separable if its derivative is nonzero; equivalently if f has no repeated root in any larger field L/K; equivalently if f splits into distinct linear factors over its splitting field.
 - Every polynomial is separable over a field of characteristic 0 (an extension of \mathbb{Q}).

Separable extension L/K is separable if for each $\alpha \in L$, f_{α}^{K} is separable.

An extension is Galois iff it is normal and separable. (i.e. iff for each $\alpha \in L$, $f_{\alpha}^{K} = c(X - \alpha_{1}) \cdots (X - \alpha_{n})$ where the α_{i} are distinct elements of L.)

Solvable Finite L/K is solvable if it is contained in some radical extension. $f \in K[X]$ is solvable if its splitting field is solvable. A group G is solvable if there is a chain $G = G_0 \trianglerighteq G_1 \trianglerighteq \ldots \trianglerighteq G_n = \{1\}$, such that each G_i/G_{i+1} is abelian.

Split $f \in K[X]$ splits in $L \subset K$ if $f = c(X - \alpha_1) \cdots (X - \alpha_n)$ where $\alpha_i \in L$. (i.e. all roots of f are in L.)

Splitting field L/K is a splitting field for $f \in K[X]$ if

- f splits in L
- $L = K(\alpha_1, \dots, \alpha_n)$ where α_i are roots of f in L (i.e. L is not "too big").

3 Theorems

3.1 Irrecuducibility of polynomials

Remainder theorem If $f \in K[X]$ and $\alpha \in K$, then $(X - \alpha)|f$ iff $f(\alpha) = 0$.

Gauss' lemma If $f \in R[X]$ is nonconstant primitive and irreducible over R, then it is irreducible over Frac(R).

Reduction Suppose $f \in R[X]$ is primitive, $p \in R$ is irreducible and $(f \mod p)$ is irreducible in (R/(p))[X]. Then f is irreducible in R[X].

Eisenstein's criterion Suppose $f \in R[X]$ primitive and $\exists p \in R$ irreducible such that: $p \nmid a_n$; $p \mid a_i$ for $0 \le i < n$; $p \mid a_0^2$. Then f is irreducible over R and Frac(R).

3.2 Field extensions

- If α is algebraic then $K(\alpha) \cong K[X]/(f_{\alpha}^K)$, $\alpha \mapsto X$. If $n = \deg_K(\alpha)$ then $[K(\alpha) : K] = n$ and $1, \alpha, \ldots, \alpha^{n-1}$ is a basis of the K-vector space $K(\alpha)$.
- If α is transcendental then $K(\alpha) \cong K(X)$, $\alpha \mapsto X$.
- Finite field extensions are algebraic.
- If $K(\alpha)$ is an algebraic extension and L/K is any extension, there is a bijection

$$\{K$$
-homomorphisms $K(\alpha) \to L\} \to \{\text{roots of } f_{\alpha}^K \text{ in } L\}$

mapping $\varphi \mapsto \varphi(\alpha)$. (Note, α need not be in L.)

- Tower law [M:K] = [M:L][L:K]
- If L/K is a finite field extension, then every K-homomorphism $L \to L$ is a K-automorphism.

3.3 Automorphism groups and intermediate fields

- There is a map {intermediate fields of L/K} \rightarrow {subgroups of $\mathrm{Aut}(L/K)$ }, given by $L' \rightarrow \mathrm{Aut}(L/L')$.
- L/N/M/K field extensions with N/M finite. Then $[\operatorname{Aut}(L/M):\operatorname{Aut}(L/N)] \leq [N:M]$.
- Corollary: L/K finite $\Rightarrow |\operatorname{Aut}(L/K)| \leq [L:K]$.
- If $H \leq G \leq \operatorname{Aut}(L/K)$ then $[L^H : L^G] \leq [G : H]$.
- Special case: if H is trivial we have $[L:L^G] \leq |G|$.
- Corollary: $[L: L^{\operatorname{Aut}(L/K)}] \le |\operatorname{Aut}(L/K)| \le [L:K].$
- If L/K is finite then it is Galois iff $|\operatorname{Aut}(L/K)| = [L:K]$.
- Special case: if $L = K(\alpha)$ with [L : K] = n, then L/K is Galois iff f_{α}^{K} has precisely n distinct roots in L.
- Fundamental theorem of Galois theory Let L/K be a finite Galois extension. There is an inclusion-reversing bijection

$$\{M: L/M/K\} \leftrightarrow \{H: H \leq \operatorname{Aut}(L/K)\}$$

mapping $M \mapsto \operatorname{Aut}(L/M)$ and $L^H \leftrightarrow H$. Moreover, L/M is Galois; [L:M] = |H| and $[M:K] = [\operatorname{Gal}(L/K):H]$; M/K is Galois iff $H \subseteq \operatorname{Gal}(L/K)$ and these imply $\operatorname{Gal}(M/K) = \operatorname{Gal}(L/K)/H$.

- For L/M/K with L/K Galois, TFAE:
 - $-\operatorname{Gal}(L/M) \triangleleft \operatorname{Gal}(L/K)$
 - For each $\sigma \in \operatorname{Gal}(L/K)$, $\sigma(M) = M$
 - -M/K is Galois
 - -M/K is normal

3.4 Splitting fields

- Given nonzero $f \in K[X]$ of degree n, there is a splitting field L with $[L:K] \leq n!$.
- Isomorphism extension theorem If $\sigma: K \to K'$ is an isomorphism, $f \in K[X]$, L is a splitting field of f and L' is a splitting field of $\sigma(f)$, then there is an isomorphism $L \to L'$ extending σ .
- Corollary: $f \in K[X]$ has a unique splitting field up to K-isomorphism.
- For a finite extension L/K, TFAE:
 - -L/K is normal
 - -L/K is a splitting field for some $f \in K[X]$

- For any extension M/L and K-homomorphism $\sigma: L \to M$, $\sigma(L) = L$.
- Any finite extension L/K has a normal closure N/L which is finite and unique up to L-isomorphism.
- Every field K has an algebraic closure, unique up to K-isomorphism.

3.5 Separability

- $f \in K[X]$ has a repeated root a iff X a divides both f and f'.
- Separable polynomials If $f \in K[X]$ is irreducible, TFAE:
 - f has no repeated roots in any extension L/K
 - f splits into distinct linear factors over its splitting field
 - $-f'\neq 0.$
- If char K = 0, every irreducible polynomial is separable.
- If char K = p > 0, f irreducible, then f is separable iff there is $g \in K[X]$ such that $f = g(X^p)$.
- A finite extension L/K is Galois iff it is normal and separable; iff it is the splitting field of some $f \in K[X]$ such that all irreducible factors of f are separable.
- Primitive extension theorem finite L/K is primitive iff there exist only finitely many intermediate fields.
- Corollary: Finite degree separable extensions are primitive.

3.6 Finite fields

- A finite subgroup of K^* is cyclic.
- If L/K are both finite fields, the extension is primitive.
- $|K| = p^n$ iff K is a splitting field of $X^n X \in \mathbb{F}_p[X]$.
- Corollary: there is a unique finite field of order p^n .
- If $|K| = p^n$ then K/\mathbb{F}_p is Galois, and $Gal(K/\mathbb{F}_p)$ is cyclic of order n, generated by the Frobenius automorphism F.
- Corollary: the subfields of \mathbb{F}_{p^n} are \mathbb{F}_{p^m} for each m|n.
- Corollary: if L is finite then any L/K is Galois, with Gal(L/K) generated by a power of F.

3.7 Cyclotomic fields

- Let L/K be any field extension and $\zeta \in L$ a primitive n'th root of 1. Then $K(\zeta)/K$ is Galois, and there is an injective homomorphism $\operatorname{Gal}(K(\zeta)/K) \to (\mathbb{Z}/n\mathbb{Z})^* : \sigma \mapsto (k \text{ such that } \sigma(\zeta) = \zeta^k)$.
- If $K = \mathbb{Q}$ above, then the homomorphism is an isomorphism, and Φ_n is irreducible.
- Corollary: any subfield of $\mathbb{Q}(\zeta)$, where ζ is any root of unity, is abelian over \mathbb{Q} .
- Any abelian extension of \mathbb{Q} is a subfield of some $\mathbb{Q}(\zeta)$. (Proof nonexaminable.)
- The regular n-gon can be constructed from two points in the plane iff n is of the form $n = 2^m \prod_{i=1}^k p_i$, where the p_i are distinct Fermat primes (primes of the form $2^j + 1$).

3.8 Solvability in radicals

- If x can be written in terms of \times , \div , +, and $\sqrt[n]{(n \in \mathbb{N})}$ applied to elements of K, then K(x)/K is solvable.
- If L/K is radical and N is the normal closure, then N/K is radical.
- A finite extension L/K is radical iff its normal closure N/K is radical.
- Irreducible $f \in K[X]$ is solvable iff there is a solvable extension L/K with some $x \in L$ such that f(x) = 0.
- If $\zeta \in K$ is a primitive n'th root of unity, and $\alpha^n \in K$, then $K(\alpha)/K$ is Galois with $\operatorname{Gal}(K(\alpha)/K)$ cyclic of order dividing n.
- If G is a solvable group and $H \leq G$, then H is solvable; if $H \subseteq G$ then G/H is solvable also.
- Let char K = 0, $f \in K[X]$ be solvable, and L be the splitting field of f. Then Gal(L/K) is solvable.
- If $H \subseteq G$ and G/H is abelian, then $[G, G] \subseteq H$.
- $[A_5, A_5] = A_5$; as a corollary, A_5 is not solvable.
- If p is prime, $H \leq S_p$, and H conains a p-cycle and a 2-cycle, then $H = S_p$.
- If $f \in \mathbb{Q}[X]$ is an irreducible quintic with three real and two complex roots, then f is not solvable.
- Corollary: there is no general formula for solving quintic polynomials in radicals.

3.9 Calculating Galois groups

In this section we let $f \in K[X]$ of degree n, and L be it's splitting field, with f having no repeated roots in L. We write Gal(f) for Gal(L/K), which can be thought of as a subgroup of S_n , as each $\sigma \in Gal(f)$ is defined by a permutation of the roots of f.

We write $f = \sum_{i=0}^{n} a_i X^i = \prod_{i=1}^{n} (X - \alpha_i)$. We also let $\Delta = \prod_{i < j} (\alpha_i - \alpha_j)$ and $D = \Delta^2 = \prod_{i \neq j} |a_i - a_j|$, the discriminant of f.

- f is irreducible iff Gal(f) is transitive (i.e. for every pair α_1, α_2 of roots of f, there is $\sigma \in Gal(f) : \sigma(\alpha_1) = \alpha_2$).
- Any polynomial expression in α_i which is symmetric (invariant under permutation of the α_i) is a polynomial in the a_i (so e.g. D is but Δ isn't).
- Let $\sigma \in \operatorname{Gal}(f)$. Then $\sigma(\Delta) = \pm \Delta$, + if σ is an even permutation and if σ is an odd permutation of roots.
- Corollary: $Gal(f) \leq A_n$ iff $\Delta \in K$.
- Corollary: If f is irreducible and n=3, then $Gal(f)=A_3$ if $\Delta \in K$, S_3 otherwise.