

Econ 2250: Stats for Econ

Fall 2022

Source for pic stats above.

Announcements

Homework 6 is due on Tuesday

These are still really useful:

- https://www.probabilitycourse.com/chapter3/3 2 2 expectation.php
- https://mixtape.scunning.com/02-probability and regression#variance

What we will do today?

- Quick revisit summary operator, E(X), Variance
- Revisit Covariance
- Introduce Correlation

Summary Operator

 $\sum X = X_1 + X_2 + ... + X_n$

Summary Operator Property 3:

For any constant
$$a$$
 and b : $\sum_{i=1}^n (ax_i + by_i) = a\sum_{i=1}^n x_i + b\sum_{j=1}^n y_i$

$$\Sigma_{i}^{n}(a * x_{i} + b * y_{i}) =$$

$$(a * x_{1} + b * y_{1}) + (a * x_{2} + b * y_{2}) + (a * x_{3} + b * y_{3}) =$$

$$a * x_{1} + b * y_{1} + a * x_{2} + b * y_{2} + a * x_{3} + b * y_{3} =$$

$$a(x_{1} + x_{2} + x_{3}) + b(y_{1} + y_{2} + y_{3}) =$$

$$a\Sigma_{i}^{n} x_{i} + b\Sigma_{i}^{n} y_{i}$$

Show that...using x = (1,2,3)

$$\sum_i^n rac{x_i}{y_i}
eq rac{\sum_{i=1}^n x_i}{\sum_{i=1}^n y_i}$$

And

$$\sum_{i=1}^n x_i^2
eq \left(\sum_{i=1}^n x_i
ight)^2$$

Expected Value Operator

$$E(x) = \sum_{i} x_{i} * Pr(x_{i})$$

Expected Value Operator Property 2:

$$E(aX + b) = E(aX) + E(b) = aE(X) + b$$

```
x = [3,6,2]
p(x) = \frac{1}{3}
a = 5
b = 4
E(aX + b) = E(aX) + E(b)
= ax_{1}*p(x_{1}) + ax_{2}*p(x_{2}) + ax_{3}*p(x_{3}) + b = a(x_{1}*p(x_{1}) + x_{2}*p(x_{2}) + x_{3}*p(x_{3})) + b
= a(E(x)) + b = 5(3*\frac{1}{3} + 6*\frac{1}{3} + 2*\frac{1}{3}) + 4 = 22\frac{1}{3}
```

Variance

$$V(X) = E((X - E(X))^2)$$

Expectation is our best guess of what something will equal, so take the expectation of the squared deviation

$$E[(X - \mu_x)^2] = \sum (x_i - \mu_x)^2 * P(x_i)$$

if $P(x_i)$ is $\frac{1}{n}$ for all $i=1,2,\ldots,n$

$$V(X) = \sum (x_i - \mu_x)^2 * \frac{1}{n} = \frac{1}{n} \sum (x_i - \mu_x)^2$$

Covariance

$$Cov(X, Y) = E[(X-E(X)(Y-E(Y))]$$

Nice correlation app

https://shiny.rit.albany.edu/stat/rectangles/

Covariance

$$Cov(x, y) = E[(X - E(X))(Y - E(Y))]$$

= $\frac{\sum (x_i - \mu_x)(y_i - \mu_y)}{n - 1}$

Example covariance

$$\frac{\sum (x_i - \mu_x)(y_i - \mu_y)}{n-1}$$

x	у		demean_x	demean_y	demean_x*demean_y	
	3	6	-2.4	1.6	-3.84	
	5	9	-0.4	4.6	-1.84	
	2	2	-3.4	-2.4	8.16	
	8	1	2.6	-3.4	-8.84	
	9	4	3.6	-0.4	-1.44	

mean_y 4.4 mean_x 5.4 -7.8 sum -1.95 sum/(n-1)

Correlation

$$=rac{1}{n}\sum_{i=1}^n\left(rac{x_i-\mu_x}{\sigma_x}
ight)\left(rac{y_i-\mu_y}{\sigma_y}
ight)$$

Correlation

$$ho_{X,Y} = \operatorname{corr}(X,Y) = rac{\operatorname{cov}(X,Y)}{\sigma_X \sigma_Y} = rac{\operatorname{E}[(X - \mu_X)(Y - \mu_Y)]}{\sigma_X \sigma_Y}, \quad ext{if } \sigma_X \sigma_Y > 0$$

$$r_{xy} \ \stackrel{ ext{def}}{=} \ rac{\sum\limits_{i=1}^{n}(x_i-ar{x})(y_i-ar{y})}{(n-1)s_xs_y} = rac{\sum\limits_{i=1}^{n}(x_i-ar{x})(y_i-ar{y})}{\sqrt{\sum\limits_{i=1}^{n}(x_i-ar{x})^2\sum\limits_{i=1}^{n}(y_i-ar{y})^2}}$$

$$= \frac{1}{n} \sum_{i=1}^{n} \left(\frac{x_i - \mu_x}{\sigma_x} \right) \left(\frac{y_i - \mu_y}{\sigma_y} \right)$$

Example

$$\sum_{i=1}^n (x_i - ar{x})(y_i - ar{y})$$

$$\sqrt{\sum\limits_{i=1}^{n}(x_{i}-ar{x})^{2}\sum\limits_{i=1}^{n}(y_{i}-ar{y})^{2}}$$

x	у	demean_x	demean_x_sq	demean_y	demean_y_sq	demean_x*demean_y	
3	6	-2.4	5.76	1.6	2.56	-3.84	
5	9	-0.4	0.16	4.6	21.16	-1.84	
2	2	-3.4	11.56	-2.4	5.76	8.16	
8	1	2.6	6.76	-3.4	11.56	-8.84	
9	4	3.6	12.96	-0.4	0.16	-1.44	
	92	-90	37.2		41.2	-7.8	sum
mean_y	4.4	1				-1.95	sum/(n-1)

mean_y	4.4
mean_x	5.4

numerator denom

-1.95	-1.95	-0.22	correlation	
sqrt(37.2 + 41.2)	8.85		511	

Bounded by [-1,1]

Not always useful

And certainly does **not** imply causation

Possible outcomes

- A causes B (direct causation);
- B causes A (reverse causation);
- A and B are both caused by C (common causation);
- There is no connection between A and B; the correlation is a coincidence.

Spurious Correlation

See https://tylervigen.com/spurious-correlations

Outliers

Outliers con't

Confounders

- Tutors make students worse
- Students who wear uniforms perform better academically
- People who eat vegetables have longer life spans
- Increased ice cream sales cause more drownings

Simpson's paradox: batting averages

Year Batter	1995		1996		Combined	
Derek Jeter	12/48	.250	183/582	.314	195/630	.310
David Justice	104/411	.253	45/140	.321	149/551	.270

Simpson's paradox

Famous Berkeley Graduate Admissions Example

	All		Ме	n	Women		
	Applicants Admitted		Applicants	Admitted	Applicants	Admitted	
Total	12,763	41%	8,442	44%	4,321	35%	

Department	Al	I	Ме	n	Women			
	Applicants	Admitted	Applicants	Admitted	Applicants	Admitted		
Α	933	64%	825	62%	108	82%		
В	585	63%	560	63%	25	68%		
С	918	35%	325	37%	593	34%		
D	792	34%	417	33%	375	35%		
E	584	25%	191	28%	393	24%		
F	714	6%	373	6%	341	7%		
Total	4526	39%	2691	45%	1835	30%		
Legend: greater percentage of successful applicants than the other gender greater number of applicants than the other gender								
bold - the two 'most applied for' departments for each gender								

Correlation = -0.73

Correlations = 0.74 0.65 0.76 0.72 0.71

Survivorship bias

End of class form

https://forms.gle/kgT2w9wPZo3vJcjA8