Universität Potsdam SS2020: Übung 05 Institut für Physik und Astronomie V: Feldmeier Abgabe am 21. Mai 2020, 24 Uhr Schwarz¹

Übungsaufgaben zur theoretischen Mechanik²

20 Punkte

<u>1.</u> Flächen-Satz 4 Punkte

a) Beweisen Sie: Sei

$$x = x(t), \qquad y = y(t)$$

die kartesische Parameterdarstellung einer geschlossenen ebenen Kurve. Dann ist die von der Kurve umschlossene Fläche gegeben durch

$$A = \frac{1}{2} \oint (x\dot{y} - y\dot{x}) \,\mathrm{d}t,\tag{1}$$

wobei $\dot{x} = \mathrm{d}x/\mathrm{d}t$ und $\dot{y} = \mathrm{d}y/\mathrm{d}t$. Das Ringintegral bedeutet $t_{\mathrm{Anfang}} = t_{\mathrm{Ende}}$ für den beliebigen Kurvenparameter t. Welcher Umlaufsinn wird in Glg (1) verwendet? Betrachten Sie auch nicht-konvexe Kurven (mit "Einbuchtungen"). Anleitung: Elementare Integral-Definition. Skizzen.

b) Transformieren Sie Glg (1) auf Polarkoordinaten und erklären Sie anhand einer Skizze erneut, dass A die von der Kurve umschlossene Fläche ist.

<u>2.</u> Ellipsengleichung

4 Punkte

Leiten Sie die Gleichung der Ellipse in Polarkoordinaten aus der geometrischen Definition der Ellipse her: Die Ellipse ist der geometrische Ort aller Punkte, für die die Summe der Abstände von zwei gegebenen festen Punkten (Brennpunkte) konstant ist (=2a). Der Koordinatenursprung soll sich in einem der Brennpunkte befinden.

3. Potentialtopf und Stabilität von Kreisbahnen

8 Punkte

Kreisbahnen sind in allen anziehenden, rotationssymmetrischen Zentralkraft-Feldern möglich. Von großer Wichtigkeit für z.B. Planeten- und Satelliten-Bahnen ist die Stabilität von Kreisbahnen.

- a) Suchen Sie die Bedingungen für die Stabilität von Kreisbahnen in einem beliebigen, rotationssymmetrischen Zentralkraft-Feld!

 (Hinweis: Verwenden Sie das effektive Potential/Potentialtopf)
- b) Für welche Potenzen n hat ein Potential $V(r) = -\frac{\alpha}{r^n}$ stabile Kreisbahnen?

¹udo.schwarz@uni-potsdam.de

 $^{^2} http://www.agnld.uni-potsdam.de/~shw/Lehre/lehrangebot/2020SSMechanik/2020SSMechanik.html~http://www.astro.physik.uni-potsdam.de/~afeld/$

c) Und für welche Parameter r_0 existieren bei dem Potential $V(r)=-\frac{\alpha}{r}e^{-r/r_0}$ stabile Kreisbahnen?

<u>4.</u> Freier Fall aus gestoppter Kreisbahn

4 Punkte

Sei T die Umlaufzeit um den Zentralkörper. Zeigen Sie, dass für die Fallzeit τ eines Körpers aus gestoppter Kreisbahn gilt: $\tau=\frac{T}{\sqrt{32}}$.