F21T1A3

Seien $a, b \in R$. Wir betrachten die skalare gewöhnliche Differentialgleichung

$$x''(t) + ax'(t) + bx(t) = 0 (1)$$

- a) Bestimmen Sie alle Lösungen von (1) und bestimmen Sie für alle Lösungen das maximale Existenzintervall.
- b) Bestimmen Sie alle Paare $(a, b) \in \mathbb{R}^2$, für die es eine nicht konstante periodische Lösung von (1) gibt.
- c) Bestimmen Sie nun die Menge aller maximalen Lösungen von $x''(t) x(t) = te^{-t}$ (2) Hinweis: Verwenden Sie den Ansatz $x(t) = p(t)e^{-t}$ mit einem Polynom höchstens zweiten Grades p, um eine spezielle Lösung zu finden.

Zu a)

(1) ist eine homogene lineare Differentialgleichung zweiter Ordnung mit konstanten Koeffizienten, deshalb lassen sich die Lösungen auf \mathbb{R} definieren und bilden einen zweidimensionalen Unterraum von $C^2(\mathbb{R}, \mathbb{R})$.

Das charakteristische Polynom $z^2 + az + b$ hat die Nullstellen $\frac{-a \pm \sqrt{a^2 - 4b}}{2}$, somit sind die Lösungen von (1) gegeben durch:

i) Für $a^2 - 4b > 0$:

 $\lambda_1: \mathbb{R} \to \mathbb{R}$; $t \to \exp\left(\frac{-a+\sqrt{a^2-4b}}{2}t\right)$ und $\lambda_2: \mathbb{R} \to \mathbb{R}$; $t \to \exp\left(\frac{-a-\sqrt{a^2-4b}}{2}t\right)$, denn diese sind linear unabhängig.

ii)
$$F\ddot{u}r \, a^2 - 4b = 0$$

$$\lambda_1: \mathbb{R} \to \mathbb{R}$$
; $t \to \exp\left(\frac{-a}{2}t\right)$ und $\lambda_2: \mathbb{R} \to \mathbb{R}$; $t \to \exp\left(\frac{-a}{2}t\right)$

iii) Für
$$a^2 - 4b < 0$$

$$\begin{array}{l} \nu_1 \colon \mathbb{R} \to \mathbb{R} \ ; t \to \exp\left(\frac{-a+i\sqrt{4b-a^2}}{2}t\right) \ \text{und} \ \nu_2 \colon \mathbb{R} \to \mathbb{R} \ ; t \to \exp\left(\frac{-a-i\sqrt{4b-a^2}}{2}t\right) \ \text{sind linear} \\ \text{unabhängige, komplexwertige Lösungen von (1), aus denen sich die reellwertigen Lösungen} \\ \lambda_1 \colon \mathbb{R} \to \mathbb{R} \ ; t \to \exp\left(\frac{-a}{2}t\right) \cos\left(\frac{\sqrt{4b-a^2}}{2}t\right) \ \text{und} \ \lambda_2 \colon \mathbb{R} \to \mathbb{R} \ ; t \to \exp\left(\frac{-a}{2}t\right) \sin\left(\frac{\sqrt{4b-a^2}}{2}t\right) \ \text{bilden} \\ \text{lassen.} \end{array}$$

Zub)

- i) Im Falle $a \neq 0$ enthalten alle Lösungen den streng monotonen Faktor $\exp\left(\frac{-a}{2}t\right)$, sind also nicht periodisch.
- ii) Im Falle a = 0, b < 0 sind $\lambda_1(t) = \exp(\sqrt{-b} t)$ und $\lambda_2(t) = \exp(-\sqrt{-b} t)$; deren Linearkombinationen sind nicht periodisch.
- iii) Im Falle $a = 0 = b \text{ sind } \lambda_1(t) = \exp(0 * t) = 1 \text{ und } \lambda_2(t) = t \exp(0 * t) = t$; deren Linearkombinationen sind nicht periodisch.

iv) Im Falle a=0, b>0 sind $\lambda_1(t)=\cos(\sqrt{b}\ t)$ und $\lambda_2(t)=\sin(\sqrt{b}\ t)$; beide sind periodisch mit Periode $\frac{2\pi}{\sqrt{b}}$.

Zu c)

Für a = 0, b = -1 vereinfacht sich die Differentialgleichung (1) zu x''(t) - x(t) = 0; diese hat nach Aufgabe (a.i) die Lösungen $\lambda_1(t) = \exp\left(\frac{-0 + \sqrt{0^2 + 4}}{2}t\right) = e^t$ und $\lambda_2(t) = \exp\left(\frac{-0 - \sqrt{0^2 + 4}}{2}t\right) = e^{-t}$.

Der Lösungsraum der inhomogenen linearen Differentialgleichung (2) hat daher folgende Form: $\mathcal{L} = \{\mu + c_1\lambda_1 + c_2\lambda_2 : c_1, c_2 \in \mathbb{R}\}$, wobei $\mu: \mathbb{R} \to \mathbb{R}$ eine spezielle Lösung von (2) ist.

Mit dem Ansatz
$$\mu(t) = p(t)e^{-t}$$
 ist $\mu'(t) = e^{-t}(p'(t) - p(t))$ und $\mu''(t) = e^{-t}(p''(t) - p'(t) - p'(t))$ und $\mu''(t) = e^{-t}(p''(t) - p'(t))$.

Für $p(t) = qt^2 + rt + s$ ein Polynom vom Grad ≤ 2 ist $\mu''(t) - \mu(t) = e^{-t} (2q - 2(2qt + r)) = e^{-t} (-4qt + (2q - 2r)) = te^{-t} \Leftrightarrow -4qt + (2q - 2r) = t \Leftrightarrow -4q = 1 \text{ und } 2q - 2r = 0, \text{ also } q = -\frac{1}{4} = r.$

Somit ist $\mu: \mathbb{R} \to \mathbb{R}$; $t \to e^{-t} \left(-\frac{1}{4} t^2 - \frac{1}{4} t \right) = -\frac{1}{4} t^2 e^{-t} - \frac{1}{4} t e^{-t}$ eine Lösung von (2).