Klausur zur Vorlesung Grundbegriffe der Informatik 1. März 2011

Klausur-		
nummer		

Name:
Vorname:
MatrNr.:

Aufgabe	1	2	3	4	5	6	7
max. Punkte	6	9	4	9	5	5	9
tats. Punkte							

Gesamtpunktzahl:		Note:
------------------	--	-------

Aufgabe 1 (1,5+1,5+1+2=6 Punkte)

- a) Geben Sie das Hasse-Diagramm einer Halbordnung auf einer dreielementigen Menge an, die genau zwei maximale und zwei minimale Elemente besitzt.
- b) Sei A ein Alphabet und $L \subseteq A^*$ eine **endliche** Menge. Geben Sie die Menge der Produktionen einer rechtslinearen Grammatik an, die L erzeugt.
- c) Geben Sie einen regulären Ausdruck R an, so dass gilt: $\langle R \rangle = \{vw \mid v, w \in \{\mathtt{a}, \mathtt{b}, \mathtt{c}\}^* \wedge N_\mathtt{c}(v) = N_\mathtt{b}(w) = 0\}$ $(N_\mathtt{b}(w)$ ist die Anzahl der Vorkommen des Zeichens b in w).
- d) Geben Sie eine Funktion $f: \mathbb{N}_0 \to \mathbb{R}_0^+$ an, für die gilt: $f(n) \notin O(n^2) \wedge f(n) \notin \Omega(n^2 \log n)$

Name:

Weiterer Platz für Antworten zu Aufgabe 1:

Lösung:

a) Das Hassediagramm sieht z.B. wie folgt aus:

b)
$$P = \{(S, w) \mid w \in L\}$$
 bzw. $P = \{S \rightarrow w \mid w \in L\}$

- c) (a|b)*(a|c)*
- d) Beispiele:
 - $f(n) = n^2 \log(\log n), f(n) = n^2 \sqrt{\log n}, \dots$
 - aber z.B. auch

$$f(n) = \begin{cases} n^2 & \text{falls n gerade} \\ n^2 \log n & \text{falls n ungerade} \end{cases}.$$

Aufgabe 2 (5+2+2=9 Punkte)

Für $n \in \mathbb{N}_0, n \geq 2$ sei ein Graph $U_n = (\mathbb{G}_{2n}, E_n)$ definiert mit Kantenmenge $E_n = \{\{x,y\} \mid ggT(x+y,2n) = 1\}.$

Zur Erinnerung: Für $m \in \mathbb{N}_0$ ist $\mathbb{G}_m = \{i \mid 0 \le i < m\}$ und ggT(x,y) ist der größte gemeinsame Teiler von x und y.

- a) Zeichnen Sie die Graphen U_3, U_4 und U_5 .
- b) Geben Sie für U_4 und U_5 jeweils einen Weg an, bei dem der Anfangsknoten gleich dem Endknoten ist, und jeder andere Knoten des Graphen genau einmal in dem Weg vorkommt.
- c) Geben Sie die Adjazenzmatrix für U_4 an.

Weiterer Platz für Antworten zu Aufgabe 2:

Lösung:

a) U_3 : U_4 :

 U_5 :

b) Weg für U_4 : (0,1,2,3,4,5,6,7,0). Weg für U_5 : (0,1,2,7,6,5,4,3,8,9,0).

c)
$$A = \begin{pmatrix} 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \end{pmatrix}$$

Aufgabe 3 (4 Punkte)

Die Menge $M \subseteq \mathbb{N}_0$ sei definiert durch:

- 5 und 8 liegen in M.
- Für alle m, n gilt: Wenn n und m in M liegen, dann ist auch $n^2 + m^2$ in M.
- ullet Keine anderen Zahlen liegen in M.

Zeigen Sie durch strukturelle Induktion:

 $\forall n \in M : n \mod 3 = 2$.

Weiterer Platz für Antworten zu Aufgabe 3:

Lösung:

Induktionsanfang: $5 \mod 3 = 8 \mod 3 = 2\sqrt{.}$

Induktionsvoraussetzung:

Für beliebige aber feste $n, m \in M$ gelte: $n \mod 3 = 2 \land m \mod 3 = 2$.

Induktionsschritt: Wir zeigen, dass dann auch $(n^2 + m^2) \mod 3 = 2$ gilt.

Da $n \mod 3 = m \mod 3 = 2$ ist, gibt es Zahlen $k_1, k_2 \in \mathbb{N}_0$, so dass $n = 3k_1 + 2$ und $m = 3k_2 + 2$ gilt.

Es folgt mit den binomischen Formeln:

$$n^2 + m^2 = 9k_1^2 + 12k_1 + 4 + 9k_2^2 + 12k_2 + 4 = 3(3k_1^2 + 3k_2^2 + 4k_1 + 4k_2) + 8 = 3(3k_1^2 + 3k_2^2 + 4k_1 + 4k_2 + 2) + 2$$
, und es gilt $(n^2 + m^2)$ mod $3 = 2$.

Damit ist die Behauptung bewiesen.

(Alternativ: Aus $n \mod 3 = 2$ folgt $n^2 \mod 3 = 2^2 \mod 3 = 4 \mod 3 = 1$; ebenso gilt $m^2 \mod 3 = 1$, und es folgt $(n^2 + m^2) \mod 3 = 1 + 1 = 2$.)

Aufgabe 4 (3+2+2+2=9 Punkte)

Gegeben sei das Alphabet $A = \{a, b\}.$

Wir betrachten die Sprache $L=\{\mathtt{a}^k\mathtt{b}^m\mathtt{a}^{m-k}\mid m,k\in\mathbb{N}_0\wedge m\geq k\}$ über A.

- a) Geben Sie eine kontextfreie Grammatik G an, so dass gilt: L(G) = L.
- b) Geben Sie für Ihre Grammatik aus Teilaufgabe a) einen Ableitungsbaum für das Wort aabbba an.
- c) Geben Sie alle $n \in \mathbb{N}_0$ an, für die gilt: $L \cap A^n \neq \{ \}$
- d) Sei $n \in \mathbb{N}_0$ so gewählt, dass $L \cap A^n \neq \{\}$ gilt. Wie viele Elemente enthält $L \cap A^n$?

Weiterer Platz für Antworten zu Aufgabe 4:

Lösung:

$$\begin{array}{ll} \mathbf{a}) \ \ G = (\{S,X,Y\},\{\mathtt{a},\mathtt{b}\},S,P\} \ \mathrm{mit} \\ P = \{S \to XY,X \to aXb \mid \epsilon, \ Y \to bYa \mid \epsilon\}. \end{array}$$

b) Der Ableitunsbaum sieht wie folgt aus:

- c) Es gilt $L \cap A^n \neq \{\}$ genau dann, wenn n gerade ist.
- d) $L \cap A^n = \{ \mathbf{a}^k \mathbf{b}^{n/2} \mathbf{a}^{n/2-k} \mid 0 \le k \le n/2 \}.$ Es folgt $|L \cap A^n| = n/2 + 1.$

Aufgabe 5 (1+2+2=5 Punkte)

Für eine Relation $R\subseteq M\times M$ auf einer Menge M definieren wir die Relation R^{-1} wie folgt:

$$R^{-1} = \{(x, y) \mid (y, x) \in R\} .$$

Außerdem hatten wir in der Vorlesung festgelegt:

$$R^0 = \{(x, x) \mid x \in M\} \ .$$

Widerlegen Sie durch Gegenbeispiel oder beweisen Sie:

- a) Wenn $R \cap R^{-1} = R^0$ gilt, ist R reflexiv.
- b) Wenn $R \cap R^{-1} = R^0$ gilt, ist R symmetrisch.
- c) Wenn $R \cap R^{-1} = R^0$ gilt, ist R antisymmetrisch.

Weiterer Platz für Antworten zu Aufgabe 5:

Lösung:

a) Die Aussage ist korrekt:

Wenn $R \cap R^{-1} = R^0$ gilt, gilt für alle $x \in M : (x, x) \in R^0 = R \cap R^{-1} \subseteq R$. Somit ist R reflexiv.

b) Die Aussage ist falsch:

Sei
$$M = \{1, 2\}$$
 und $R = \{(1, 1), (1, 2), (2, 2)\}.$

Dann gilt $R \cap R^{-1} = \{(1,1),(2,2)\} = R^0$, aber R ist nicht symmetrisch, da $(1,2) \in R$ aber $(2,1) \notin R$ gilt.

c) Die Aussage ist korrekt:

Es gelte $R \cap R^{-1} = R^0$.

Wir betrachten $x,y\in M$ mit $(x,y)\in R$ und $(y,x)\in R$. Dann gilt nach Definition von $R^{-1}\colon (y,x)\in R^{-1}$ und $(x,y)\in R^{-1}$.

Somit folgt $(x, y) \in R \cap R^{-1} = R^0 = \{(z, z) \mid z \in M\}$, und somit muss x = y gelten, was die Antisymmetrie beweist.

Aufgabe 6 (1+2+2=5 Punkte)

Die Sprache $L \subseteq \{a,b\}^*$ sei definiert als die Menge aller Wörter w, die folgende Bedingungen erfüllen:

- $N_{b}(w) > N_{a}(w)$ und
- $\bullet \ \forall v_1,v_2 \in \{\mathtt{a,b}\}^*: w \neq v_1\mathtt{bb}v_2$
- a) Geben Sie alle Wörter aus L an, die genau 4 mal das Zeichen $\mathfrak b$ enthalten.
- b) Geben Sie einen regulären Ausdruck R an, so dass gilt: $\langle R \rangle = L$.
- c) Geben sie einen endlichen Akzeptor an, der L erkennt.

Hinweis: Es muss sich um einen vollständigen deterministischen endlichen Akzeptor handeln wie er in der Vorlesung definiert wurde.

Weiterer Platz für Antworten zu Aufgabe 6:

Lösung:

- a) bababab
- b) R = (ba)*b.
- c) Der Automat sieht folgendermaßen aus:

Aufgabe 7 (4+2+1+2=9 Punkte)

Gegeben sei die folgende Turingmaschine T:

- Zustandsmenge ist $Z = \{r, s, u, d_b, d_a\}$.
- Anfangszustand ist r.
- Bandalphabet ist $X = \{\Box, a, b, 0, 1\}$.
- Die Arbeitsweise ist wie folgt festgelegt:

	r	s	u	$d_{\mathbf{b}}$	$d_{\mathtt{a}}$
0	(r, 0, 1)	(s, 1, -1)	(r, 0, 1)	_	_
1	(r, 1, 1)	(r, 0, 1)	(r, 1, 1)	$(d_{\mathbf{b}}, \square, 1)$	_
a	(s, b, -1)	_	_	_	$(d_{\mathbf{a}}, \square, 1)$
b	$(r,\mathtt{b},1)$	$(s, \mathbf{b}, -1)$	$(u,\mathtt{a},-1)$	$(d_{a}, \square, 1)$	$(d_{\mathtt{a}},\mathtt{b},1)$
	(r, b, 1) $(u, \square, -1)$	$(d_{\mathbf{b}}, \square, 1)$			_

Die Turingmaschine wird im folgenden benutzt für Bandbeschriftungen, bei denen zu Beginn der Berechnung auf dem Band ein Wort $v \in \{0,1\}^+ \cdot \{a\}^+$ steht, das von Blanksymbolen umgeben ist.

Der Kopf der Turingmaschine stehe anfangs auf dem ersten Symbol des Eingabewortes.

- a) Geben Sie für die Eingabe 0100aaa folgende Konfigurationen an:
 - die Anfangskonfiguration;
 - die Endkonfiguration;
 - jede Konfiguration, die in einem Zeitschritt vorliegt, nachdem die Turingmaschine von einem Zustand ungleich r in den Zustand r wechselt.
- b) Am Anfang stehe ein Wort wa^k mit $w \in \{0, 1\}^+$ und $k \in \mathbb{N}_+$ auf dem Band, für das gelte, dass die Turingmaschine während der Berechnung mindestens einmal in den Zustand u übergehen wird.
 - Welches Wort steht auf dem Band, nachdem T zum ersten Mal vom Zustand u in den Zustand r übergegangen ist?
- c) Am Anfang stehe ein Wort wa^k mit $w \in \{0, 1\}^+$ und $k \in \mathbb{N}_+$ auf dem Band. Was muss für w und k gelten, damit T niemals in den Zustand u übergeht?
- d) Am Anfang stehe ein Wort wa^k mit $w \in \{0, 1\}^+$ und $k \in \mathbb{N}_+$ auf dem Band. Welches Wort steht am Ende der Berechnung auf dem Band?

Weiterer Platz für Antworten zu Aufgabe 7:

Lösung:

a) Wir schreiben den Zustand der Turingmaschine immer vor das Zeichen, auf dem sich der Kopf befindet.

Anfangskonfiguration: r0100aaa

Zwischenkonfigurationen:

00r11baa

 $0010r {
m bba}$

000r1bbb

0001raaa

0000rbaa

Endkonfiguration: $b \Box d_a \Box$

- b) $0^{|w|-|Repr_2(Num_2(w)-k)|}Repr_2(Num_2(w)-k)a^k$ (Hinweis: $Repr_2(Num_2(w)-k)a^k$ gibt auch noch viele Punkte.)
- c) $Num_2(w) < k$.
- d) $b^{Num_2(w) \bmod k}$