Project 1

Sahir

July 10, 2018

Abstract

this is an abstract

1 Linear Regression fit

This is a demo for including R code in an knitr document. This model was given by (Breiman, 1996). And also by (Yang et al., 2017). He can also be referred to as (Breiman, 1999).

This is a demo for including R code in an knitr document. This model was given by Breiman (1996). And also by Yang et al. (2017). He can also be referred to as Breiman (1999).

$$y = \beta_0 + \beta_1 * X_1 + \epsilon \tag{1}$$

```
##
## Call:
## lm(formula = mpg ~ ., data = mtcars)
##
##
  Residuals:
##
       Min
                 1Q Median
                                  3Q
                                          Max
##
   -3.4506 -1.6044 -0.1196
                              1.2193
                                      4.6271
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
##
  (Intercept) 12.30337
                            18.71788
                                        0.657
                                                0.5181
##
  cyl
                -0.11144
                             1.04502
                                      -0.107
                                                0.9161
                 0.01334
                             0.01786
                                        0.747
                                                0.4635
## disp
                -0.02148
                             0.02177
                                       -0.987
                                                0.3350
## hp
## drat
                 0.78711
                             1.63537
                                        0.481
                                                0.6353
## wt
                -3.71530
                             1.89441
                                       -1.961
                                                0.0633
## qsec
                 0.82104
                             0.73084
                                        1.123
                                                0.2739
## vs
                 0.31776
                             2.10451
                                        0.151
                                                0.8814
## am
                 2.52023
                             2.05665
                                       1.225
                                                0.2340
```

```
## gear     0.65541    1.49326    0.439    0.6652
## carb     -0.19942    0.82875    -0.241    0.8122
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.65 on 21 degrees of freedom
## Multiple R-squared: 0.869,Adjusted R-squared: 0.8066
## F-statistic: 13.93 on 10 and 21 DF, p-value: 3.793e-07
```

(Intercept)	12.30
	(18.72)
cyl	-0.11
	(1.05)
disp	0.01
	(0.02)
hp	-0.02
	(0.02)
drat	0.79
	(1.64)
wt	-3.72
	(1.89)
qsec	0.82
	(0.73)
vs	0.32
	(2.10)
am	2.52
	(2.06)
gear	0.66
	(1.49)
carb	-0.20
	(0.83)
\mathbb{R}^2	0.87
$Adj. R^2$	0.81
Num. obs.	32
RMSE	2.65

^{***}p < 0.001, **p < 0.01, *p < 0.05

Table 1: Statistical models

texreg::texreg(fit)

References

Breiman, L. (1996). Bagging predictors. Machine learning, 24(2):123–140.

Breiman, L. (1999). Prediction games and arcing algorithms. Neural computation, 11(7):1493-1517.

Yang, Y., Qian, W., and Zou, H. (2017). Insurance premium prediction via gradient tree-boosted tweedie compound poisson models. *Journal of Business & Economic Statistics*, pages 1–15.