STAT 330: Lecture 13

2024 Spring

June 25, 2024

Last Lecture

• One-to-one transformation method

This Lecture

- Continue on one-to-one transformation method
- MGF method

Review
$$X,Y$$
 tus. $SU = h_1(X,Y)$ find poly of (U,V) . $V = h_2(X,Y)$

If the transformation is one-to-one,

 $\frac{\partial X}{\partial x} = \frac{\partial X}{\partial x} \frac{\partial X}{\partial x}$

Jacobian (oleterminant):
$$J = \frac{\partial(x,y)}{\partial(u,v)} = \begin{bmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{bmatrix}$$

Examples: one-to-one bivariate transformation

Example 1 Suppose X and Y are continuous random variables with joint pdf $\overline{p(x,y)} = \exp(-x-y), x \in (0,\infty), y \in (0,\infty).$ Letting U = X+Y and V = X, find the joint pdf of U and V and the marginal pdf of U.

Su=X+Y Some (x.4) from the equations
$$V = X$$

Given
$$v$$
, $v \in (v, +\infty)$
Step 3: $\begin{cases} X = V \\ Y = u - V \end{cases}$

$$\int_{-\infty}^{\infty} \left[\frac{\partial x}{\partial u} \frac{\partial x}{\partial v} \right] = \begin{bmatrix} 0 & 1 \\ \frac{\partial y}{\partial u} \frac{\partial y}{\partial v} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ \frac{\partial y}{\partial u} \frac{\partial y}{\partial v} \end{bmatrix}$$

$$Clet(J) = 0 * (-1) - |\cdot| = -1$$

$$g(u,v) = f(x,y) | det(y) = f(x,y)$$
, replace, x, y with $= f(v, u-v)$

$$g(u) = \int_{0}^{u} g(u,v)dv = \int_{0}^{u} \exp(-u)dv = u \exp(-u)$$

U=X+Y, V=X-Y find the joint pdf of CU.V) Example 2. XIY ~ Norm (0.1)

Step 1.
$$|U=X+Y| \Rightarrow |X=\frac{U+V}{2}$$

 $|V=X+Y| \Rightarrow |X=\frac{U+V}{2}$

Step 3:
$$J = \begin{bmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{bmatrix}$$
 , $det(J) = \frac{1}{2}(-\frac{1}{2}) - \frac{1}{2}(\frac{1}{2}) = -\frac{1}{2}$

MGF Technique

- 1. Find the mgf of a random variable.
- 2. Use the uniqueness of mgf to find the distribution of the new random variable.

A Useful Result: Suppose $X_1, ..., X_n$ are independent, then $T = \sum_{i=1}^n X_i$ has mgf $M_T(t) = \mathbb{E} \left\{ \exp\left(t \sum_{i=1}^n X_i\right) \right\} = \prod_{i=1}^n \mathbb{E} \left\{ \exp\left(t X_i\right) \right\}$ $= \prod_{i=1}^n M_{X_i}(t)$

Furthermore, if X_1, \ldots, X_n are i.i.d., then $T = \sum_{i=1}^n X_i$ has mgf.

$$M_T(t) = \prod_{i=1}^n M_{X_i}(t) = \left[M(t)\right]^n$$
, X has same observe as X_i .

Normal Distribution

1. If
$$X \sim \text{Norm}(\mu, \sigma^2)$$
, then $aX + b \sim \text{Norm}(a\mu + b, a^2\sigma^2)$.

Proof: $M_{aX+b} = \text{Exp(aX+b)} + \text{Exp(aX+b)} = \text{exp(bt)} \cdot \text{Exp(atX)}$

$$= \text{exp(bt)} \cdot \text{exp} \cdot \text{aut} + \frac{1}{2} \cdot \text{6} \cdot \text{a}^2 t^2 \cdot \text{exp(atX)}$$

$$= \text{exp(bt)} \cdot \text{exp} \cdot \text{aut} + \frac{1}{2} \cdot \text{6} \cdot \text{a}^2 t^2 \cdot \text{exp(atX)}$$

$$= \text{exp(bt)} \cdot \text{exp} \cdot \text{aut} + \frac{1}{2} \cdot \text{6} \cdot \text{a}^2 t^2 \cdot \text{exp(atX)}$$

$$\sim \text{Norm}(\text{b+au}, a^2 b^2)$$

$$= \text{E(aX+b)} = \text{autb}$$

$$\text{Var}(\text{aX+b}) = \text{autb}$$

$$\text{Var}(\text{aX+b}) = \text{autb}$$

$$\text{Norm}(\sum_{i=1}^{n} a_i \mu_i, \sum_{i=1}^{n} a_i^2 \sigma_i^2)).$$

$$= \text{If } X_i \sim \text{Norm}(x_i) = \text{If } X_i = \text{If } X_i$$

 $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i} \sim Norm \left(u, \frac{6^{2}}{n} \right)$

Some Important Distributions

Chi-square Distribution

1. $Z \sim \text{Norm}(0,1)$, the distribution of Z^2 .

3. if $X_1, \ldots, X_n \sim \text{Norm}(\mu, \sigma^2)$ are iid, then

$$\frac{\chi_{i-\mu}}{6} \sim \text{Norm(oi)} \quad \sum_{i=1}^{n} \left(\frac{X_i - \mu}{\sigma}\right)^2 \sim \chi_n^2$$

$$\left(\frac{\chi_{i-\mu}}{6}\right)^2 \sim \chi_1^2$$

t Distribution

Def:
$$0 \neq \infty$$
 Norm(0.1)
$$0 \neq 0 \neq 0$$

$$0 \neq 0$$

$$0 \neq 0 \neq 0$$

F Distribution

Def:
$$\langle O | \chi \sim \chi_n \rangle$$
 $\langle X | \chi \sim \chi_m \rangle$
 $\langle X | \chi \sim \chi_m \rangle$

If $\chi \sim \chi_m \sim$