Real Variables Homework 2 Final

wongx565

September 2018

- 1.) Let $f: A \to B$ be a function. That is, f is some rule or device which, when presented with any element $a \in A$, produces an element b = f(a) of B. The **graph** of f is the set S of all pairs $(a, b) \in A \times B$ such that b = f(a).
- (a) If you are given a subest $S \subset A \times B$, how can you tell if it is the graph of some function? (What are the set theoretic properties of a graph?).
- Let $s \in S$, then $s = (s_1, s_2)$. It is known that $(a, b) \in A \times B$, then b = f(a). Thus $s_2 = f(s_1)$. S is a graph of the function iff for each $(s_1, s_2) \in S$, s_1 is the only value for which the function f returns s_2 .
- (b) Let $g: B \to C$ be a second function and consider the composed function $g \circ f: A \to C$. Assume that A = B = C = [0,1], draw $A \times B \times C$ as the unit cube in 3-space, and try to relate the graphs of f, g, and $g \circ f$ in the cube.

2.) Prove: Every 'box' of the form $[a_1, b_1] \times \cdots \times [a_m, b_m]$ is a convex subset of \mathbb{R}^m .

We shall define the box as $\mathbb{B}: I_i \times \cdots \times I_m$, where $I_i = [a_i, b_i] \subset \mathbb{R}$ for $i = 1, 2, \cdots, m$. Let $x, y \in \mathbb{B}, x \neq y$, then $x_i \in [a_i, b_i]$ and $y_i \in [a_i, b_i]$, this can also be written as $a_i \leq x \leq b_i$ and $a_i \leq y \leq b_i$ for $i = 1, 2, \cdots, m$. We shall define a transformation z = (1 - t)x + ty, where t : [0, 1]. This transformation is known as a convex combination. It includes all points between x and y so z(t), t : [0, 1] is the equation for the line between x and y. Let $z_i = (1 - t)x_i + ty_i$, where t : [0, 1] is the ith component of z. If we can show that $z_i \in I_i$ for $i = 1, 2, \cdots$ then the line lies inside the box. We shall show this in two parts, first giving an upper bound:

$$z_i \leq (1-t)b_i + tb_i = b_i - tb_i + tb_i = b_i$$

so $z_i \leq b_i$. Next we show the lower bound:

$$z_i \ge (1-t)a_i + ta_i = a_i - ta_i + ta_i = a_i$$

so $z_i \ge a_i$. Therefore $a_i \le z_i \le b_i$ for all $i = 1, 2, \cdots$ thus every point between x and y is inside \mathbb{B} . This proves a box is convex.

3.) Prove: The unit sphere $S^{m-1} = \{x \in \mathbb{R}^m : |x| = 1\}$ is not convex.

Let $x \in S^{m-1}$ where $x = \{x_1, x_2, \dots, x_m\}$ and |x| = 1. So

$$\sqrt{x_1^2 + x_2^2 + \dots + x_m^2} = 1,$$

by definition of magnitude. Let $y = \{-x_1, -x_2, \cdots, -x_m\}$ then we can show that this point is on the unit sphere,

$$|y| = \sqrt{(-x_1)^2 + (-x_2)^2 + \dots + (-x_m)^2},$$

$$|y| = \sqrt{x_1^2 + x_2^2 + \dots + x_m^2},$$

$$|y| = 1.$$

Thus $y \in S^{m-1}$. Define the convex combination as the transformation z = (t-1)x + ty where $t \in [0,1]$. So z includes all points between x and y. We shall define a point m between x and y when t = 0.5 and m_n as the nth component of m then,

$$m_n = (0.5 - 1)x_n - 0.5y_n,$$

 $m_n = -0.5x_n - 0.5(-x_n),$
 $m_n = 0.$

Thus m=0, the zero vector and |m|=0 so $m\not\in S$ which implies the unit sphere is not convex.

4.) A function $f:(a,b)\to\mathbb{R}$ is a **convex function** if for all $x,y\in(a,b)$ and all $s,t\in[0,1]$ with s+t=1 we have

$$f(sx + ty) \le sf(x) + tf(y).$$

(a) Prove that f is convex iff the set S of points above its graph is convex in \mathbb{R}^2 . The set S is $\{(x,y): f(x) \leq y\}$.

The conjecture we need to prove is an if and only if statement so we will break this into 2 cases.

Case 1: Assume S is convex, prove f is convex. Let $a=(x_1,y_1)$ and $b=(x_2,y_2)$ such that $a\neq b$ be points on f so $f(x_1)=y_1$ and $f(x_2)=y_2$. Since a,b are also in S, the points between a and b are in S (since S is convex). Define the transformation z=sx+ty where s+t=1 as the convex combination so $z\in S$ when t+s=1. Then

$$z = sa + tb,$$

$$z = s(x_1, y_1) + t(x_2, y_2),$$

$$z = (sx_1 + tx_2, sy_1 + ty_2).$$

Since $z \in S$,

$$f(sx_1 + tx_1) \le sy_1 + ty_2,$$

 $f(sx_1 + tx_1) \le sf(x_1) + tf(x_2),$

from our assumptions above. Therefore f is a convex function.

Case 2: Assume f is convex prove S is convex. Start by defining two points in S, $x, y \in S$ such that $x \neq y$ so $x = (x_1, y_1)$ and $y = (x_2, y_2)$. Then by the definition of S, $f(x_1) \leq y_1$ and $f(x_2) \leq y_2$. Define the convex combination as the transformation z = sx + sy where s + t = 1. Then

$$z = s(x_1, y_1) + t(x_2, y_2),$$

$$z = (sx_1 + tx_2, sy_1 + ty_2).$$

Then let z_x and z_y be the coordinates of z, then $f(z_x) = f(sx_1 + tx_2) \le sy_1 + ty_2 = f(z_y)$. So $z \in S$, therefore S is convex.

(c) Suppose that f is convex and a < x < u < b. The slope σ of the line through (x, f(x)) and (u, f(u)) depends on x and u, say $\sigma = \sigma(x, u)$. Prove that σ increases when x increases, and σ increases when u increases.

We shall split this problem into two distinct parts. Part 1: Define $\hat{u} > u$

we can show that the slope between \hat{u} and x is greater than or equal to the slope between u and x. Start by writing u as a convex combination of x and \hat{u} as $u = sx + t\hat{u}$ where s + t = 1. Then we can rearrange $\hat{u} = \frac{u - sx}{t}$. Since f is a convex function,

$$\begin{split} f(u) & \leq sf(x) + tf(\hat{u}), \\ \frac{f(u) - sf(x)}{t} & \leq f(\hat{u}), \\ \frac{\frac{f(u) - sf(x)}{t} - f(x)}{\hat{u} - x} & \leq \frac{f(\hat{u}) - f(x)}{\hat{u} - x}, \\ \frac{\frac{f(u) - sf(x)}{t} - f(x)}{\frac{u - sx}{t} - x} & \leq \frac{f(\hat{u}) - f(x)}{\hat{u} - x}, \\ \frac{f(u) - sf(x) - tf(x)}{u - sx - tx} & \leq \frac{f(\hat{u}) - f(x)}{\hat{u} - x}, \\ \frac{f(u) - (s + t)f(x)}{u - (s + t)x} & \leq \frac{f(\hat{u}) - f(x)}{\hat{u} - x}, \end{split}$$

since t + s = 1,

$$\frac{f(u) - f(x)}{u - x} \le \frac{f(\hat{u}) - f(x)}{\hat{u} - x}.$$

Therefore the slope will increase or remain constant as u increases.

Part 2: Define a point \hat{x} , such that $u > \hat{x} > x$, we will show that the slope between \hat{x} and u is greater or equal to than the slope at between u and x. Write \hat{x} as the convex combination of x and u, $\hat{x} = sx + tu$ when s + t = 0. f is convex which results in

$$f(\hat{x}) \le sf(x) + tf(u),$$

$$f(\hat{x}) - f(u) \le sf(x) + tf(u) - f(u).$$

The next steps involves dividing both sides by $\hat{x} - u$, since $u > \hat{x}$, $\hat{x} - u < 0$, thus,

$$\begin{split} \frac{f(\hat{x}) - f(u)}{\hat{x} - u} &\geq \frac{sf(x) + tf(u) - f(u)}{\hat{x} - u}, \\ \frac{f(\hat{x}) - f(u)}{\hat{x} - u} &\geq \frac{sf(x) + f(u)(t - 1)}{sx + tu - u}, \\ \frac{f(\hat{x}) - f(u)}{\hat{x} - u} &\geq \frac{sf(x) + f(u)(t - 1)}{sx + u(t - 1)}. \end{split}$$

From our assumptions on convex combination s + t = 1 implies t - 1 = -s,

so

$$\frac{f(\hat{x}) - f(u)}{\hat{x} - u} \ge \frac{sf(x) - sf(u)}{sx - su},$$

$$\frac{f(\hat{x}) - f(u)}{\hat{x} - u} \ge \frac{f(x) - f(u)}{x - u}.$$

Thus the slope increases or remains constant as x increases.

5.) The proof of Corollary 11 (p.33) states without proof:

There are bijections from (a,b) onto (-1,1) onto the unit semicircle onto \mathbb{R} shown in Figure 15.

Give these bijections explicitly and prove they are bijections.

The bijection between from (a, b) onto (-1, 1) is given by the map f:

$$f(x) = \frac{x - \frac{a+b}{2}}{\frac{b-a}{2}}.$$

First we will prove this function is an injection. So let $a_1, a_2 \in (a, b)$ and $a_1 \neq a_2$. We must show that $f(a_1) \neq f(a_2)$, so assume they are equal and show a contradiction

$$f(a_1) = f(a_2),$$

$$\frac{a_1 - \frac{a+b}{2}}{\frac{b-a}{2}} = \frac{a_2 - \frac{a+b}{2}}{\frac{b-a}{2}},$$

$$a_1 - \frac{a+b}{2} = a_2 - \frac{a+b}{2},$$

$$a_1 = a_2$$

. This is a contradiction since we stated earlier that $a_1 \neq a_2$, so $f(a_1) \neq f(a_2)$. Thus the function is injective. Next we must show that f is surjective. Take any $y \in [-1, 1]$ and we can show there exists an $x \in [a, b]$ such that f(x) = y,

$$f(x) = y,$$

$$\frac{x - \frac{a+b}{2}}{\frac{b-a}{2}} = y,$$

$$x - \frac{a+b}{2} = y(\frac{b-a}{2}),$$

$$x = y(\frac{b-a}{2}) + \frac{a+b}{2}.$$

This is the inverse to f. It shows that there exist an $x \in [a, b]$ for every $y \in [-1, 1]$ such that f(x) = y. Thus f is surjective and injective so f is bijective. Next we define the map g from (-1, 1) to the unit semicircle. Denote the unit semicircle as \mathbb{U} , so $g : [-1, 1] \to \mathbb{U}$ is defined as,

$$g(x) = (\cos(\frac{\pi x - \pi}{2}), \sin(\frac{\pi x - \pi}{2})).$$

First we will show that g is injection, so let $a_1, a_2 \in (-1, 1)$ be distinct elements, we must show that $g(a_1) \neq g(a_2)$, so assume they are equal and show a contradiction,

$$g(a_1) = g(a_2),$$

$$(\cos(\frac{\pi a_1 - \pi}{2}), \sin(\frac{\pi a_1 - \pi}{2})) = (\cos(\frac{\pi a_2 - \pi}{2}), \sin(\frac{\pi a_2 - \pi}{2})).$$

Let's inspect the first coordinate of these two ordered pairs,

$$cos(\frac{\pi a_1 - \pi}{2}) = cos(\frac{\pi a_2 - \pi}{2}),$$
$$\frac{\pi a_1 - \pi}{2} = \frac{\pi a_2 - \pi}{2},$$
$$a_1 = a_2.$$

This contradicts the fact that a_1 and a_2 are distinct so g is injective. To prove that g is surjective we must show for any value $y=(y_1,y_2)\in \mathbb{U}$, there exists a $x\in [-1,1]$ such that g(x)=y. So

$$\begin{split} g(x) = & y, \\ (\cos(\frac{\pi x - \pi}{2}), \sin(\frac{\pi x - \pi}{2})) = & (y_1, y_2), \\ & (\frac{\pi x - \pi}{2}, \frac{\pi x - \pi}{2}) = & (\sin^{-1}(y_1), \cos^{-1}(y_2)), \\ & (\pi x, \pi x) = & (2\sin^{-1}(y_1) + \pi, 2\cos^{-1}(y_2) + \pi), \\ & (x, x) = & (\frac{2\sin^{-1}(y_1) + \pi}{\pi}, \frac{2\cos^{-1}(y_1) + \pi}{\pi}). \end{split}$$

This is the inverse of g, it shows that for every $y \in \mathbb{U}$, there exists an $x \in [-1,1]$ such that g(x) = y. So g is surjective and injective which implies its bijective.

6.) The Well-Ordering Principle states that every nonempty subset of \mathbb{N} has a least element. Any set equipped with an order \prec having this property is said to be well-ordered. Use the fact that \mathbb{Q} is countable to prove that there is some order \prec on \mathbb{Q} that makes it well-ordered. Note that \prec will be different than our usual ordering on \mathbb{Q} .

 \mathbb{Q} is countable so $\mathbb{Q} \sim \mathbb{N}$, thus there exists $\phi: \mathbb{Q} \to \mathbb{N}$ which is a bijection. The ordering in \mathbb{Q} works as follows: let $a,b \in \mathbb{Q}$, then $a \prec b$ iff $\phi(a) < \phi(b)$. Then for any nonempty subset of \mathbb{Q} , known as S. Let be S' be the set,

$$S' = \{ s \in S | \phi(s) \}.$$

Then $S' \subseteq \mathbb{N}$ so S' by the well-ordering principle has a least element l. There exists the inverse mapping of $\phi : \phi^{-1} : \mathbb{N} \to \mathbb{Q}$ because ϕ is a bijection. Then $\phi^{-1}(l)$ is the least element in S. Therefore \mathbb{Q} is well-ordered.

7.) Given a set X, the power set of X, denoted $\mathbb{P}(X)$, is the set containing all subsets of X. For example, if $X = \{a, b, c\}$, then

$$\mathbb{P} = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}\$$

The power set has a natural ordering \prec on it: for $A, B \in \mathbb{P}(X), A \prec B$ if and only if $A \subset B$. Note that \subseteq corresponds to \prec .

a.) Explain why, for a finite set X, $\#(\mathbb{P}(X)) = 2^{\#(X)}$.

We will prove this conjecture with induction, any finite set X will have finite cardinality or $n = \#(X), n \in \mathbb{N}$.

Base Case: If n = 0, or X is the empty set than the power set $\mathbb{P} = \{\emptyset\}$ thus $\#(\mathbb{P}(X)) = 1 = 2^0$. Note that the power set in this case is not the empty set, but the set containing the empty set. So the conjecture holds for n = 0.

Induction Step: Assume that for $\#(X_k) = k$, the conjecture holds true, $\#(\mathbb{P}(X_k)) = 2^{\#(X)} = 2^k$. We must prove this is also true for $\#(X_{k+1}) = k+1$. Another way to phrase this is we must prove that the power set of X_k will have twice as many elements as the power set of X_{k+1} , when $\#(X_{k+1}) = k+1$.

Let a be the new element in X_{k+1} that is not in X_k then elements of the power set $p \in \mathbb{P}(X_{k+1})$ will fall into two categories. Either $p \in \mathbb{P}(X_k)$ or $p \in S$ where $S = \{\{a,b\}|b \in \mathbb{P}(X_k)\}$. Since $\{a\} \notin X_k$, the elements in $\mathbb{P}(X_k)$ and S are distinct. We already know that $\#(\mathbb{P}(X_k)) = 2^k$, next we that S and $\mathbb{P}(X_k)$ have equal order. Since each element in $\mathbb{P}(X_k)$ has a corresponding element in S just with an $\{a\}$ element as well. They have the same size. This implies that $\#(\mathbb{P}(X_k)) = \#(S) = 2^k$. Since these sets are distinct

$$\#(\mathbb{P}(X_{k+1})) = \#(\mathbb{P}(X_k)) + \#(S),$$

$$\#(\mathbb{P}(X_{k+1})) = 2^k + 2^k = 2(2^k) = 2^{k+1}.$$

This explain our conjecture.

b.) Prove that \prec is *not* a total order on $\mathbb{P}(X)$. This makes $\mathbb{P}(X)$ a partially ordered set (poset).

Let $\{a\}, \{b\} \in X$ then $\{a\}, \{b\}$ and $\{a, b\} \in \mathbb{P}(x)$ so $\{a\} \prec \{a, b\}$ and $\{b\} \prec \{a, b\}$, but there is no ordering between $\{a\}$ and $\{b\}$ since $\{a\} \not\subset \{b\}$ and

- $\{b\} \not\subset \{a\}$. Therefore this is not a total ordering.
- c.) For which sets X is $\mathbb{P}(X)$ a totally ordered set under \prec ?

The only sets X that have a total ordering under \prec are $X = \emptyset$ and $X = \{a\}$ where X is a singleton set. All other sets will run into the issue described in part (b).

d.) Is $\mathbb{P}(X)$ well-ordered under \prec ?

Yes $\mathbb{P}(X)$ is well-ordered because the least element in every $\mathbb{P}(X)$ is the empty set. Since for $s \in \mathbb{P}(X)$, $s \neq \emptyset$, then $\emptyset \subset s$ thus $\emptyset \prec s$ for every element in $\mathbb{P}(X)$. So \emptyset will always be the least element.

e.) Use a diagonal argument to show that $\mathbb{P}(\mathbb{N})$ is uncountable.

List all element of $\mathbb{P}(\mathbb{N})$ in a row

$$N_1 = \{a_{1,1}, a_{1,2}, a_{1,3}, a_{1,4}, \cdots\}$$

$$N_2 = \{a_{2,1}, a_{2,2}, a_{2,3}, a_{2,4}, \cdots\}$$

$$N_3 = \{a_{3,1}, a_{3,2}, a_{3,3}, a_{3,4}, \cdots\}$$

$$N_4 = \{a_{4,1}, a_{4,2}, a_{4,3}, a_{4,4}, \cdots\}$$

Where $a_{i,j} \in \mathbb{N}$ and the $a_{i,j}$ are ordered and distinct in each row, so $a_{i,j} < a_{i,k}$ if j < k. Choose a new number Y with elements $y_i, i = 1, 2, \cdots$ and $y_i \in \mathbb{N}$. Elements of y_i are distinct and ordered. Choose each y_i so that it is not equal to $a_{i,i}$. Then Y is not in this list, because every value $N_1, N_2 \cdots$ differs from Y at least at one value, so y_i is not in the list N_1, N_2, \cdots