

SLIP: Spoof-Aware One-Class Face Anti-Spoofing with Language Image Pretraining

Pei-Kai Huang¹, Jun-Xiong Chong¹, Cheng-Hsuan Chiang¹, Tzu-Hsien Chen¹, Tyng-Luh Liu², and Chiou-Ting Hsu¹

¹National Tsing Hua University, Taiwan ²Academia Sinica, Taiwan

One-class face anti-spoofing (FAS)

EAAI-25

☐ Face Anti-Spoofing (FAS)

AAAI-25 / IAAI-25 /

- To detect facial spoof attacks
 - Print attack, replay attack, 3D mask

☐ Challenges in one-class FAS

- Absence of training spoof images
- Similar visual characteristics between live and spoof faces
- Unseen spoof attacks
- Domain-entangled features

Goals

 To learn domain-disentangled and live/spoof discriminative features in one-class FAS

☐ Ideas

Simulating spoof attacks via prompt learning

This is a spoof face modified by covering a live face with a photo.

 Disentangling domain information from live/spoof-discriminative features

Augmenting spoof-like features

Spoof-aware one class face anti-spoofing with Language Image Pretraining

☐ Language-guided spoof cue map (SCM) estimation

• Zero SCM estimation from live Images \mathbf{x} and live prompts \mathbf{t}_l

$$\mathcal{L}_{L} = \mathcal{L}_{I} + \mathcal{L}_{T} = \left(\sum_{\mathbf{x} \in X} \|D(\mathbf{z}) - \mathbf{0}\|_{2}^{2}\right) + \left(\sum_{\mathbf{t}_{l} \in T_{l}} \|D(\mathbf{l}) - \mathbf{0}\|_{2}^{2}\right)$$
$$= \left(\sum_{\mathbf{x} \in X} \|D(E_{I}(\mathbf{x})) - \mathbf{0}\|_{2}^{2}\right) + \left(\sum_{\mathbf{t}_{l} \in T_{l}} \|D(E_{T}(\mathbf{t}_{l})) - \mathbf{0}\|_{2}^{2}\right)$$

Nonzero SCM estimation from spoof prompts t_s

$$\mathcal{L}_{S} = \sum_{\mathbf{t}_{S} \in T_{S}, \widetilde{\mathbf{m}} \in \mathcal{M}} ||D(\mathbf{s}) - \widetilde{\mathbf{m}}||_{2}^{2} = \sum_{\mathbf{t}_{S} \in T_{S}, \widetilde{\mathbf{m}} \in \mathcal{M}} ||D(E_{T}(\mathbf{t}_{S})) - \widetilde{\mathbf{m}}||_{2}^{2}$$

☐ Prompt-driven feature disentanglement

• Separation of live/spoof prompt features **l**, **s** from content prompt features **c**

$$\mathcal{L}_{FD} = -\sum_{i=1}^{N_c} \sum_{j,j\neq i}^{N_c} \left(\log \frac{\exp(\cos(\mathbf{c}_i, \mathbf{c}_j))}{\sum_{p=1}^{N_l} \exp(\cos(\mathbf{c}_i, \mathbf{l}_p)) + \sum_{q=1}^{N_s} \exp(\cos(\mathbf{c}_i, \mathbf{s}_q))} \right) - \sum_{i=1}^{N_l} \sum_{j\neq i}^{N_l} \left(\log \frac{\exp(\cos(\mathbf{l}_i, \mathbf{l}_j))}{\sum_{k=1}^{N_s} \exp(\cos(\mathbf{l}_i, \mathbf{s}_k))} \right)$$

• Alignment between live prompt features I and live image features z

$$\mathcal{L}_{FA} = -\sum_{i=1}^{N_{\mathbf{l}}} \sum_{j=1}^{N_{\mathbf{z}}} \left(\log \frac{\exp(\cos(\mathbf{l}_i, \mathbf{z}_j))}{\sum_{k=1}^{N_{\mathbf{s}}} \exp(\cos(\mathbf{l}_i, \mathbf{s}_k))} \right)$$

☐ Spoof-like image feature augmentation

Training the fusion model R to reconstruct the hybrid prompt features h

$$\mathcal{L}_R = \sum_{\mathbf{t}_l \in T_l, \mathbf{t}_s \in T_s, \mathbf{t}_h \in T_h} ||R(\mathbf{l}, \mathbf{s}) - \mathbf{h}||_2^2 = \sum_{\mathbf{t}_l \in T_l, \mathbf{t}_s \in T_s, \mathbf{t}_h \in T_h} ||\bar{\mathbf{s}}_l - \mathbf{h}||_2^2$$

• Fusion of live image features z with spoof prompt features s $\bar{s}_z = R(z, s)$

• Consistent SCM between the augmented features $\bar{\mathbf{s}}_Z$ and the spoof prompt features \mathbf{t}_S $\mathcal{L}_A = \sum_{z \in S} \|D(\bar{\mathbf{s}}_z) - \widetilde{\mathbf{m}}\|_2^2$

$$\boldsymbol{\theta}_{E_{I}}^{*}, \boldsymbol{\theta}_{E_{T}}^{*}, \boldsymbol{\theta}_{D}^{*} = \underset{\boldsymbol{\theta}_{E_{I}}, \boldsymbol{\theta}_{E_{T}}, \boldsymbol{\theta}_{D}}{\text{arg min}} \left(\mathcal{L}_{L} \left(\boldsymbol{\theta}_{E_{I}}, \boldsymbol{\theta}_{E_{T}}, \boldsymbol{\theta}_{D} \right) + \mathcal{L}_{S} \left(\boldsymbol{\theta}_{E_{T}}, \boldsymbol{\theta}_{D} \right) + \lambda \mathcal{L}_{FD} \left(\boldsymbol{\theta}_{E_{T}} \right) + \lambda \mathcal{L}_{FA} \left(\boldsymbol{\theta}_{E_{I}} \right) + \mathcal{L}_{A} \left(\boldsymbol{\theta}_{D} \right) \right)$$

Experiments

P. APCER BPCER ACER

Datasets

 OULU-NPU (O), CASIA-MFSD (C), MSU-MFSD (M), Idiap Replay-Attack (I), 3DMAD (D), HKBU-MARs (H), CASIA-SURF (U), and PADISI-Face (P)

Evaluation Metrics

- APCER, BPCER, ACER, and HTER
- AUC ↑

t-SNE visualization

Pretrained CLIP SLIP

Live image featureSpoof image featureSpoof prompt feature

- Live prompt feature
 Content prompt feature
 Hybrid prompt feature
- Augmented spoof-like image feature

Intra-domain testing on Oulu

	IQM-GMM (ICB 18)		75.35	18.56	46.95
,	OC-fPAD (IJCB 20)		38.63	21.85	30.24
	OC-LCFAS (Access 20)	1	43.54	36.5	40.02
	AAE (CCBR 21)		47.13	26.67	36.9
	OC-SCMNet (CVPR 24)		20.83	26.15	23.49
	SLIP (Ours)		12.36	16.8	14.58
	IQM-GMM (ICB 18)		41.56	27.78	34.67
	OC-fPAD (IJCB 20)		51.81	19.83	35.82
	OC-LCFAS (Access 20)	2	72.19	18.5	45.35
	AAE (CCBR 21)		37.28	39.0	38.14
	OC-SCMNet (CVPR 24)		22.05	28.81	25.43
	1-class SLIP (Ours)		22.16	23.18	22.67
	IQM-GMM (ICB 18)		57.17±16.79	16.5±6.95	36.83 ± 5.35
	OC-fPAD (IJCB 20)		45.39 ± 12.82	18.28 ± 16.21	31.83 ± 6.99
	OC-LCFAS (Access 20)	3	38.51 ± 13.08	39.52 ± 11.13	39.02 ± 2.16
	AAE (CCBR 21)		26.62 ± 13.67	52.93 ± 16.09	39.77±3.74
	OC-SCMNet (CVPR 24)		27.10 ± 12.57	20.55 ± 11.12	23.83 ± 3.14
	SLIP (Ours)		26.35±9.76	20.03 ± 5.87	23.19 ± 2.86
	IQM-GMM (ICB 18)		53.42 ± 14.08	16.67±8.38	35.04 ± 3.95
	OC-fPAD (IJCB 20)		60.25 ± 16.49	10.67 ± 10.37	35.46 ± 5.43
	OC-LCFAS (Access 20)	4	36.91 ± 10.24	20.5 ± 8.01	28.07 ± 5.32
	AAE (CCBR 21)		26.33±18.5	40.17±29.04	33.12 ± 8.9
	OC-SCMNet (CVPR 24)		16.41±14.0	11.66 ± 9.42	14.04 ± 4.9
	SLIP (Ours)		15 02+3 84	10 9+4 66	12 96+5 72

Unseen physical adversarial attack protocols

Trme	Method	Funn	y eye	Paper	grasses	Silicone 3Dmask		
Type	Method	HTER	AUC	HTER	AUC	HTER	AUC	
	IQM-GMM(ICB 18)	30.11	68.82	15.01	88.82	22.53	80.33	
	OC-fPAD(IJCB 20)	45.23	43.19	43.61	45.72	21.65	77.55	
1-class	OC-LCFAS(Access 20)	41.88	55.56	36.23	62.12	29.12	69.68	
1-Class	AAE(CCBR 21)	45.92	46.25	31.20	72.03	27.00	67.26	
	OC-SCMNet(CVPR 24)	28.99	60.46	14.33	92.26	8.40	84.27	
	SLIP(Ours)	19.77	81.56	7.02	97.61	3.86	98.32	

Pseudo spoof cue maps

Upper left Upper Upper right Left Lower left Lower Lower right Right

Activation maps

Unseen attack protocols (print attacks + replay attacks)

Type	Method	OCI→M		OMI→C		OCM→I		ICM→O		#param.	FPS
		HTER	AUC	HTER	AUC	HTER	AUC	HTER	AUC	πparaiii.	113
	IQM-GMM (ICB 18)	41.27	55.43	41.84	57.03	39.93	68.99	44.84	36.53	-	31
	OC-fPAD (IJCB 20)	39.51	60.65	32.64	74.86	38.25	73.01	39.62	69.71	145.03M	210
1-class	OC-LCFAS (Access 20)	39.10	62.03	43.79	58.43	40.95	49.42	43.32	41.04	8.86M	388
1-Class	AAE (CCBR 21)	42.39	57.29	46.44	46.53	45.07	23.28	43.08	47.93	2.42M	816
	OC-SCMNet(CVPR 24)	24.05	75.53	28.02	76.92	21.36	87.29	34.37	69.87	5.92M	373
	SLIP (Ours)	18.81	85.55	23.89	82.73	15.71	89.38	29.15	77.14	171.72M	278

Unseen attack protocols (print attacks + replay attacks + 3D mask attacks)

		Unseen 3D mask attacks				Unseen print attacks				Unseen replay attacks			
Type	Method	\mathbf{OM} \rightarrow	DHU	OCMI	\rightarrow DHU	OMD ·	\rightarrow OCMI	OCMIDHU	→ OCMI	OMD -	→ OCMI	OCMIDHU	→ OCMI
		HTER	AUC	HTER	AUC	HTER	AUC	HTER	AUC	HTER	AUC	HTER	AUC
2-class	IADG (CVPR 23)	32.89	72.51	36.50	69.49	43.98	56.47	38.56	62.14	43.85	55.75	40.04	64.13
	SAFAS (CVPR 23)	38.22	63.75	34.48	65.33	30.85	75.00	40.09	63.16	39.12	64.99	38.45	66.69
	IQM-GMM (ICB 18)	43.58	46.99	43.82	47.18	40.25	62.02	47.56	41.68	37.61	64.66	48.78	41.85
	OC-fPAD (<i>IJCB 20</i>)	39.35	61.86	42.19	57.47	41.59	61.56	40.41	63.83	48.06	42.45	46.87	41.26
1 alone	OC-LCFAS (Access 20)	41.74	56.43	41.64	55.11	46.17	53.45	48.29	50.30	41.32	59.08	46.45	53.71
1-class	AAE (CCBR 21)	42.85	55.97	41.07	55.35	48.50	40.94	42.69	57.21	46.70	53.94	37.60	64.68
	OC-SCMNet (CVPR 24)	24.14	74.81	20.85	85.40	37.44	63.23	28.99	72.21	36.41	63.56	29.61	74.99
	SLIP (Ours)	20.9	86.15	17.66	90.48	31.29	74.85	25.81	78.24	34.54	69.53	27.53	78.2