8. Részletes tervek

54 – Override

Konzulens:

dr. László Zoltán

Csapattagok:

Kriván Bálint	CBVOEN	balint@krivan.hu
Jákli Gábor	ONZ5G1	j_gab666@hotmail.com
Dévényi Attila	L1YRH0	devenyiat@gmail.com
Apagyi Gábor	X8SG3T	apagyi.gabooo@gmail.com
Péter Tamás Pál	N5ZLEG	falconsaglevlist@gmail.com

Tartalomjegyzék

8 Rés		szletes tervek				
	8.1.	Osztály	yok és metódusok tervei	4		
		8.1.1.	Osztály1	4		
		8.1.2.	Osztály2	4		
	8.2.	A teszt	ek részletes tervei, leírásuk a teszt nyelvén	5		
			Áramkörök betöltése	5		
		8.2.2.	Alap áramkör	5		
		8.2.3.	MPX-es áramkör	5		
		8.2.4.	Visszacsatolt stabil áramkör	6		
		8.2.5.	Visszacsatolt nem stabil áramkör	7		
		8.2.6.	Flip-flop-os áramkör	7		
		8.2.7.	Kompozitos áramkör	8		
		8.2.8.	Kompoziton belüli kompozitos áramkör	9		
	8.3.	A teszt	elést támogató programok tervei	10		
	8.4.	Napló		10		

Ábrák jegyzéke

8. Részletes tervek

8.1. Osztályok és metódusok tervei

8.1.1. Osztály1

• Felelősség

[Mi az osztály felelőssége. Kb 1 bekezdés. Ha szükséges, akkor state-chart is.]

Ősosztályok

[Mely osztályokból származik (öröklési hierarchia) Legősebb osztály → Ősosztály2 → Ősosztály3...]

Interfészek

[Mely interfészeket valósítja meg.]

• Attribútumok

[Milyen attribútumai vannak]

- attribútum1: attribútum jellemzése: mire való, láthatósága (UML jelöléssel), típusa
- attribútum2: attribútum jellemzése: mire való, láthatósága (UML jelöléssel), típusa
- Metódusok

[Milyen publikus, protected és privát metódusokkal rendelkezik. Metódusonként precíz leírás, ha szükséges, activity diagram is a metódusban megvalósítandó algoritmusról.]

- int foo(Osztály3 o1, Osztály4 o2): metódus leírása, láthatósága (UML jelöléssel)
- int bar(Osztály5 o1): metódus leírása, láthatósága (UML jelöléssel)

8.1.2. Osztály2

• Felelősség

[Mi az osztály felelőssége. Kb 1 bekezdés. Ha szükséges, akkor state-chart is.]

Ősosztályok

[Mely osztályokból származik (öröklési hierarchia) Legősebb osztály \to Ősosztály $2 \to$ Ősosztály3...]

Interfészek

[Mely interfészeket valósítja meg.]

Attribútumok

[Milyen attribútumai vannak]

- attribútum1: attribútum jellemzése: mire való, láthatósága (UML jelöléssel), típusa
- attribútum2: attribútum jellemzése: mire való, láthatósága (UML jelöléssel), típusa
- Metódusok

[Milyen publikus, protected és privát metódusokkal rendelkezik. Metódusonként precíz leírás, ha szükséges, activity diagram is a metódusban megvalósítandó algoritmusról.]

- int foo(Osztály3 o1, Osztály4 o2): metódus leírása, láthatósága (UML jelöléssel)
- int bar(Osztály5 o1): metódus leírása, láthatósága (UML jelöléssel)

8.2. A tesztek részletes tervei, leírásuk a teszt nyelvén

[A tesztek részletes tervei alatt meg kell adni azokat a bemeneti adatsorozatokat, amelyekkel a program mű-ködése ellenőrizhető. Minden bemenő adatsorozathoz definiálni kell, hogy az adatsorozat végrehajtásától a program mely részeinek, funkcióinak ellenőrzését várjuk és konkrétan milyen eredményekre számítunk, ezek az eredmények hogyan vethetők össze a bemenetekkel.]

8.2.1. Áramkörök betöltése

Minden teszteset elején betöltjük a megfelelő fájból az áramkört. Ezt mindig meg kell tenni, azonban csak egy esetben mutatjuk meg az egyszerűség és átláthatóság kedvéért.

Alap áramkör

loadCircuit test1.ovr

load successful

8.2.2. Alap áramkör

Leírás

Olyan áramkör, melyben 2 kapcsolóval állíthatjuk egy ÉS kapu bemeneteit, melyet egy LED jelenít meg.

- Ellenőrzött funkcionalitás, várható hibahelyek Ellenőrízzük a kapcsoló helyes váltását,az ÉS kapu kimenetének helyes kiszámítását és a LED működését
- Áramkör létrehozása

```
kapcs1=TOGGLE()
kapcs2=TOGGLE()
es=AND(kapcs1,kapcs2)
led=LED(es)
```

• Bemenet és kimenet

Bemenet	Kimenet
step switch kapcs1 step check -all switch kapcs2 step	<pre>kapcs1: 1 simulation successful kapcs1: 1 kapcs2: 0 led: 0 kapcs2: 1 simulation successful kapcs1: 1 kapcs2: 1 led: 1</pre>

8.2.3. MPX-es áramkör

Leírás

Olyan áramkört hozunk létre, melyben egy 7 szegmenses kijelzőt hajtunk meg kapcsolókkal és egy MPX-xel. A 7szegmenses kijelző [2]-[7] bemeneteire kapcsolókat kötünk, a [1] bemenetét egy MPX adja, mely 4 kapcsolóból választja ki az egyiket, tehát egy 4/1 es MPX.

• Ellenőrzött funkcionalitás, várható hibahelyek Ellenőrízzük a MPX helyes működését, és a 7 szegmenses kijelzőt. Hiba a MPX kiválasztása során történhet, hogy rossz jelet juttat a kimenetére.

• Áramkör létrehozása

```
inmpx1=TOGGLE()
inmpx2=TOGGLE()
inmpx3=TOGGLE()
inmpx4=TOGGLE()
selmpx1=TOGGLE()
selmpx2=TOGGLE()
mux=MPX(inmpx1,inmpx2,inmpx3,inmpx4,selmpx1,selmpx2)
seg7=TOGGLE()
seg6=TOGGLE()
seg5=TOGGLE()
seg4=TOGGLE()
seg3=TOGGLE()
seg2=TOGGLE()
display=7SEG(mux,seg2,seg3,seg4,seg5,seg6, seg7)
```

• Bemenet és kimenet

Bemenet	Kimenet
switch inmpx1	copy-paste from netbeans
switch inmpx3	
step	
switch selmpx2	
switch seg2	
step	
switch selmpx2	
switch selmpx1	
step	

8.2.4. Visszacsatolt stabil áramkör

Leírás

Egy olyan áramkört hozunk létre, melyben egy VAGY kapu szerepel, aminek egyik bemenete egy kapcsoló, kimenetét pedig visszakötjük a második bemenetére, illetve egy csomóponton keresztül egy LEDre is eljuttatjuk.

Ellenőrzött funkcionalitás, várható hibahelyek
 Ellenőrízzük, hogy az áramkör helyesen stabilnak érzékeli e a kapcsolást, illetve a VAGY kapu helyes működését is ellenőrízzük. Hibát a visszakötés okozhat.

• Áramkör létrehozása

```
kapcs=TOGGLE()
vagy=OR(kapcs, node[2])
node=NODE(vagy, 2)
led=LED(node[1])
```

• Bemenet és kimenet

Bemenet	Kimenet	
step switch kapcs step	copy-paste from netbear	ns

8.2.5. Visszacsatolt nem stabil áramkör

Leírás

Egy olyan áramkört hozunk létre, melyben egy ÉS kapu szerepel, aminek egyik bemenete egy kapcsoló, kimenetét pedig visszakötjük egy inverteren keresztül a második bemenetére, illetve egy csomóponton keresztül egy LED-re is eljuttatjuk.

• Ellenőrzött funkcionalitás, várható hibahelyek

Ellenőrízzük, hogy az áramkör helyesen instabilnak érzékeli e a kapcsolást. Továbbá, hogy a hálózat helyesen egy bizonyos lépésszám után instabillá nyilvánítja e a hálózatot. Hibás működést ez okozhat, tehát ha az áramkör ezt rosszul állapítja meg, és nem jelzi.

• Áramkör létrehozása

```
kapcs=TOGGLE()
inv=INV(node[2])
es=AND(kapcs,inv)
node=NODE(es,2)
led=LED(node[1])
```

• Bemenet és kimenet

Bemenet	Kimenet	
switch kapcs step	copy-paste from netbear	ıs

8.2.6. Flip-flop-os áramkör

Leírás

Egy olyan áramkört hozunk létre, melyben egy JK flipflop szerepel, J és K bemenetére kapcsolókat kötünk, órajelét egy jelgenerátorból kapja, és a kimenetét egy oszcilloszkóp kapja meg.

• Ellenőrzött funkcionalitás, várható hibahelyek

Ellenőrízzük a jelgenerátort, hogy megfelelő jelet ad e ciklikusan, ellenőrízzük a JK flipflop működését, illetve, hogy megfelelelően lép e az órajelre, továbbá ellenőrízzük az oszcilloszkóp helyes működését. Hiba lehetséges a jelgenerátor működésében, a JK flipflop működésében illetve számolásában, és az oszcilloszkóp működésében.

• Áramkör létrehozása

```
j=TOGGLE()
k=TOGGLE()
```

```
seqgen=SEQGEN()
jk=FFJK(seqgen,j,k)
scope=SCOPE(jk)
```

• Bemenet és kimenet

Bemenet	Kimenet
switch k	copy-paste from netbean
step	
step	
switch j	
step	
step	
switch j	
switch k	
step	
step	

8.2.7. Kompozitos áramkör

Leírás

Egy olyan áramkört valósítunk meg, melyben egy kompozit szerepel. Ez a kompozit egy 2 bites balról tölthető shiftregisztert valósít meg. A kompozitnak két bemenete van egy kapcsoló ami a balról bejövő értéket adja, és egy jelgenerátor, amely az órajelet. Belül 2 D flipflop található összekötve. Az első flipflop kimenetét kiadja a kompozit kimenetén is, és a 2-ik flipflop bemenetére is adja, ezért NODE is kell. Kompozit kimenete a 2 bit és a carry.

• Ellenőrzött funkcionalitás, várható hibahelyek Kompozit helyes működését ellenőrízzük.

• Áramkör létrehozása

```
input=TOGGLE()
seqgen=SEQGEN()
composite SHR(clk,in) {
    nodeclk=NODE(clk,2)
    d1=FFD(nodeclk[1],in)
    node1=NODE(d1,2)
    d2=FFD(nodeclk[2],node1[2])
    node2=NODE(d2,2)
} (node1[1],node2[2],node2[2])
myshr=SHR(seqgen,input)
led1=LED(myshr[1])
led2=LED(myshr[2])
ledcarry=LED(myshr[3])
```

• Bemenet és kimenet

Bemenet	Kimenet
switch input	copy-paste from netbeans
step	
step	
switch input	
step	
step	
step	
step	

8.2.8. Kompoziton belüli kompozitos áramkör

Leírás

Egy olyan áramkört hozunk létre melyben egy kompozit szerepel ami egy 4bites shiftregiszter. Ezt shiftregisztert úgy hozzuk létre, hogy a kompoziton belül 2db 2 bites shiftregiszter szerepel mint kompozitok. Kívülről csak a 4 bites shiftregisztert látjuk, ami belül 4 kompozittal jön létre. 4 bit és carry kimeneteket leden jelezzük, míg az input és órajel bemenetét kapcsolóval és jelgenerátorral adjuk.

Ellenőrzött funkcionalitás, várható hibahelyek
 Leteszteljük, hogy működik e a kompozit elem, ha belül bonyolultabb áramköri hálózat szerepel, egy kompozit, illetve jelen esetben több kompozit.

Áramkör létrehozása

```
composite SHR2BIT(clk,in) {
    nodeclk=NODE(clk,2)
    d1=FFD (nodeclk[1], in)
    node1=NODE(d1,2)
    d2=FFD (nodeclk[2], node1[2])
    node2 = NODE(d2, 2)
} (node1[1], node2[2], node2[2])
input=TOGGLE() \newline
seqgen=SEQGEN()
composite SHR4BIT(clk,in) {
    nodeclk=NODE(clk,2)
    shr2bit_1=SHR2BIT (nodeclk[1],in)
    shr2bit_2=SHR2BIT(nodeclk[2], shr2bit[3])
} (shr2bit_2[2], shr2bit_2[1], shr2bit_1[2], shr2bit_1[1], shr2bit_2[3])
my4bitshr=SHR4BIT(clk,in)
ledbit1=LED (my4bitshr[1])
ledbit2=LED (my4bitshr[2])
ledbit3=LED (my4bitshr[3])
ledbit4=LED (my4bitshr[4])
ledcarry=LED (my4bitshr[5])
```

• Bemenet és kimenet

Bemenet		Kimenet		
switch	input	copy-paste	from netbea	ηs
step				
switch	input			
step				
step				
switch	input			
step				
step				

8.3. A tesztelést támogató programok tervei

[A tesztadatok előállítására, a tesztek eredményeinek kiértékelésére szolgáló segédprogramok részletes terveit kell elkészíteni.]

8.4. Napló

Kezdet	Időtartam	Résztvevők	Leírás
2011.04.01. 15:00	2,5 óra	Péter T.	Tesztesetek megtervezése, leírása, felépítésük
			megadása a bemeneti nyelvnek megfelelően
2011.04.02. 10:00	3 óra	Apagyi G.	Tesztesetek felhasználói interakciójának, il-
			letve várt kimeneteinek megtervezése.
		•••	