```
In [1]: from functions import *
```

Reading the future price file, naming the futures as per month, extracting the price information

```
In [2]: filename = "new_file.xlsx"
    initial_investment = 1000000
    bid_ask = 0

file = preprocess_future_data(filename,initial_investment, bid_ask)
```

Finding the expiry date for each future

```
In [3]: roll_start_day = 5
    expiry = create_expiry_schedule(file, roll_start_day)
```

Creating a futures df, assigning price to each future

```
In [4]: future = create_future_df(file,expiry)
In [5]: future = fill_future_current_value(future, file, expiry)
```

Out[6]:

In [6]: future.head(5)

	Dates	Future	Current Future	Next Future	Next Future current val	Number of contracts	Contract Value
0	2000-01- 03	SPH00 index	1466.8	1466.8	1485.7	NaN	NaN
1	2000-01- 04	SPH00 index	1411.8	1411.8	1430.0	NaN	NaN
2	2000-01- 05	SPH00 index	1413.5	1413.5	1431.8	NaN	NaN
3	2000-01- 06	SPH00 index	1404	1404	1422.1	NaN	NaN
4	2000-01- 07	SPH00 index	1460.5	1460.5	1479.3	NaN	NaN

Finding the number of contracts and contract value for each future (observe change in contract value at future expiry)

```
In [7]: future = fill_future_contract_value(future, initial_investment, bid_ask)
In [8]: future.to_csv("Outputs/Futures_pre_logic.csv")
```

Futures Roll Logic

```
In [4]: future = pd.read_csv("Outputs/Futures_pre_logic.csv").drop(columns = 'Unnam
In [9]: weights = [0.2,0.2,0.2,0.2,1]

for i in range(len(expiry)):
    if expiry.loc[i,"Expiry_date"] != expiry.loc[i,"roll_start_date"]:
        roll_start_index = future[future.Dates == expiry.loc[i,"roll_start_roll_df = future[roll_start_index:roll_start_index+5]
        roll(roll_df, future, weights)
```

In [10]: future

Out[10]:

	Dates	Future	Current Future	Next Future	Next Future current val	Number of contracts	Contract Value
0	2000- 01-03	SPH00 index	1466.8	1466.8	1485.7	2.72702	1000000
1	2000- 01-04	SPH00 index	1411.8	1411.8	1430.0	2.72702	962503
2	2000- 01-05	SPH00 index	1413.5	1413.5	1431.8	2.72702	963662
3	2000- 01-06	SPH00 index	1404	1404	1422.1	2.72702	957186
4	2000- 01-07	SPH00 index	1460.5	1460.5	1479.3	2.72702	995705
5257	2020- 09-21	SPZ20 index	3275.1	3275.1	3275.1	2.63406	2.15671e+06
5258	2020- 09-22	SPZ20 index	3299.3	3299.3	3299.3	2.63406	2.17264e+06
5259	2020- 09-23	SPZ20 index	3231.2	3231.2	3231.2	2.63406	2.1278e+06
5260	2020- 09-24	SPZ20 index	3238	3238	3238.0	2.63406	2.13227e+06
5261	2020- 09-25	SPZ20 index	NaN	NaN	0.0	2.63406	NaN

5262 rows × 7 columns

```
In [89]: roll_df
```

Out[89]:

	Unnamed: 0	Dates	Future	Current Future	Next Future	Next Future current val	Number of contracts	Contract Value
5250	5250	2020- 09-10	SPU20 index	3340.6	3340.6	3330.1	2.626137	2.193218e+06
5251	5251	2020- 09-11	SPU20 index	3333.7	3333.7	3323.3	2.626137	2.188698e+06
5252	5252	2020- 09-14	SPU20 index	3382.4	3382.4	3372.2	2.626137	2.220755e+06
5253	5253	2020- 09-15	SPU20 index	3405.3	3405.3	3395.0	2.626137	2.235781e+06
5254	5254	2020- 09-16	SPU20 index	3389.6	3379.4	3379.4	2.626137	2.225493e+06

```
In [10]: # Before
         future[5251:]["Contract Value"]
Out[10]: 5251
                  2.18869e+06
         5252
                  2.22066e+06
         5253
                   2.2357e+06
                  2.22539e+06
         5254
         5255
                  2.20669e+06
         5256
                  2.18377e+06
         5257
                  2.15671e+06
         5258
                  2.17264e+06
         5259
                   2.1278e+06
         5260
                  2.13227e+06
         5261
                          NaN
         Name: Contract Value, dtype: object
In [11]: # After
         future[5251:]["Contract Value"]
Out[11]: 5251
                   2.1887e+06
         5252
                  2.22076e+06
         5253
                  2.23578e+06
         5254
                  2.22549e+06
         5255
                  2.20669e+06
         5256
                  2.18377e+06
         5257
                  2.15671e+06
         5258
                  2.17264e+06
         5259
                   2.1278e+06
         5260
                  2.13227e+06
         5261
                          NaN
         Name: Contract Value, dtype: object
```

Start from here

```
In [24]: # future = pd.read_excel("future_post_contract_value_roll.xlsx")
# future = future.drop(columns = ["Unnamed: 0"])
```

In [26]: future[420:440]

Out[26]:

	Dates	Future	Current Future	Next Future	Next Future current val	Number of contracts	Contract Value
420	2001-08- 20	SPU01 index	1175.7	1175.7	1182.5	2.52935	743439
421	2001-08- 21	SPU01 index	1156.3	1156.3	1162.8	2.52935	731172
422	2001-08- 22	SPU01 index	1167.2	1167.2	1173.9	2.52935	738064
423	2001-08- 23	SPU01 index	1163.5	1163.5	1170.1	2.52935	735725
424	2001-08- 24	SPU01 index	1187.5	1187.5	1194.4	2.52935	750901
425	2001-08- 27	SPU01 index	1180.5	1180.5	1187.4	2.52935	746474
426	2001-08- 28	SPU01 index	1163.6	1163.6	1170.3	2.52935	735788
427	2001-08- 29	SPU01 index	1152.4	1152.4	1158.9	2.52935	728706
428	2001-08- 30	SPU01 index	1129.3	1129.3	1135.6	2.52935	714099
429	2001-08- 31	SPU01 index	1135.1	1135.1	1141.5	2.52935	717766
430	2001-09- 03	SPU01 index	1134.7	1134.7	1141.5	2.52935	717513
431	2001-09- 04	SPU01 index	1131	1131	1137.4	2.52935	715174
432	2001-09- 05	SPU01 index	1133.5	1133.5	1140.0	2.52935	716755
433	2001-09- 06	SPU01 index	1103.5	1103.5	1109.6	2.52935	697784
434	2001-09- 07	SPU01 index	1083.3	1083.3	1088.9	2.52935	685011
435	2001-09- 10	SPU01 index	1095.7	1095.7	1101.4	2.52935	692857
436	2001-09- 11	SPU01 index	1095.7	1095.7	1101.4	2.52935	692857
437	2001-09- 17	SPU01 index	1039	1039	1043.1	2.52935	656602
438	2001-09- 18	SPU01 index	1035.5	1039.5	1039.5	2.52935	654358
439	2001-09- 19	SPZ01 index	1016.8	1016.8	1019.8	2.51962	640487

Loading SPX and Tbill data and merging it with futures file(Keeping all dates from SPX)

```
In [14]: spx loc = "SPX.xlsx"
         t_bill_loc = "tbill.xlsx"
         spx = pd.read excel(spx loc)
         spx["Dates"] = pd.to datetime(spx["Dates"])
         future = future.merge(spx,on = "Dates", how = "right")
         tbill = pd.read_excel(t_bill_loc)
         tbill["Dates"] = pd.to datetime(tbill["Dates"])
         future = future.merge(tbill,on = "Dates", how = "left")
         future["SPX return"] = future["SPX return"]/100
         future["Tbill_returns"] = round(future["T-Bill price"].pct_change(),6)
         future["Future_returns"] = round(future["Contract Value"].pct_change(),10)
         # Remove this step if nan values are not there at end.
         future full backup = future
         future = future[0:5211]
         #future = future.fillna(method='ffill')
         future = future.drop(index = future[future.Dates == "2001-09-11"].index)
         future = future.reset index()
         future[future.Dates == "2001-09-11"]
Out[14]:
                                           Next
                                                 Number
```

```
Next Number
index Dates Future Current Next Future of Contract SPX SPX_return T-Bill Tbill
contracts val
```

Calculating the cumulative returns difference of SPX vs (Futures+Tbill) portfolio.

Calculating 1yr rolling returns (Annualized returns)

```
In [21]: title = "One Year Rolling difference of SPX and futures - 5 Day ROLL"
    xlabel = 'Date'
    ylabel = 'Return'
    df = future
    col = ["lyr_rolling_return_Cum_diff"]
    data = []

#get_pyplot(col,title,xlabel,ylabel,df)
get_go_plotly(col,title,xlabel,ylabel,df)
```

One Year Rolling difference of SPX and futures - 5 Day ROLL


```
In [22]: import matplotlib.pyplot as plt
    title = "One year rolling returns - Index vs (Futures+Cash) - 5 Day ROLL"
    xlabel = 'Date'
    ylabel = 'Return'
    df = future
    col = ["lyr_rolling_return_cum_spx", "lyr_rolling_return_Cum_fut_tbill"]

#get_pyplot(col,title,xlabel,ylabel,df)
    get_go_plotly(col,title,xlabel,ylabel,df)
```

One year rolling returns - Index vs (Futures+Cash)- 5 Day ROLL


```
In [23]: title = "Cumulative Returns - Index vs (Futures+Cash) - 5 day ROLL"
    xlabel = 'Date'
    ylabel = 'Return'
    df = future
    col = ["Cum_spx_cash", "Cum_fut_tbill_cash"]
    get_go_plotly(col,title,xlabel,ylabel,df)
```

Cumulative Returns - Index vs (Futures+Cash)- 5 day ROLL


```
In [25]: title = "Cumulative Difference in Returns : (Futures+Cash) - Index : 5 Day R
    xlabel = 'Date'
    ylabel = 'Return'
    df = future
    col = ["Cum_SPX_future_diff"]

    get_go_plotly(col,title,xlabel,ylabel,df)
```

Cumulative Difference in Returns: (Futures+Cash)- Index: 5 Day

3 month rolling difference

```
In [26]: rolling("3m_rolling_return_cum_spx","Cum_spx_cash",1,30)
    rolling("3m_rolling_return_Cum_fut_tbill","Cum_fut_tbill_cash",1,30)
    future["3m_rolling_return_Cum_diff"] = 10000*(future["3m_rolling_return_Cum_diff"])
```

```
In [27]: title = "3-months Rolling difference of SPX and futures - 5 day ROLL"
    xlabel = 'Date'
    ylabel = 'Return'
    df = future
    col = ["3m_rolling_return_Cum_diff"]
    data = []

#get_pyplot(col,title,xlabel,ylabel,df)
    get_go_plotly(col,title,xlabel,ylabel,df)
```

3-months Rolling difference of SPX and futures - 5 day ROLL

3yr rolling difference

```
In [28]: rolling("3year_rolling_return_cum_spx", "Cum_spx_cash",3,252*3)
    rolling("3year_rolling_return_Cum_fut_tbill", "Cum_fut_tbill_cash",3,252*3)
    future["3year_rolling_return_Cum_diff"] = 10000*(future["3year_rolling_retu
In [45]: future[["Dates", "3year_rolling_return_cum_spx", "3year_rolling_return_Cum_fut
```

```
In [30]: title = "3-year Rolling difference of cumulative (futures - index) returns:
    xlabel = 'Date'
    ylabel = 'Return'
    df = future[756:]
    col = ["3year_rolling_return_Cum_diff"]
    data = []

#get_pyplot(col, title, xlabel, ylabel, df)
    get_go_plotly(col, title, xlabel, ylabel, df)
```

3-year Rolling difference of cumulative (futures - index) returns: 5


```
In [33]: future = pd.read_excel("Output_5Day ROLL /futures_post_rolling_diff.xlsx")
    rolling("10d_rolling_return_cum_spx","Cum_spx_cash",1,10)
    rolling("10d_rolling_return_Cum_fut_tbill","Cum_fut_tbill_cash",1,10)
    future["10d_rolling_return_Cum_diff"] = 10000*(future["10d_rolling_return_C

    title = "10 days Rolling difference of futures-SPX : 5 day ROLL"
    xlabel = 'Date'
    ylabel = 'Return'
    df = future
    col = ["10d_rolling_return_Cum_diff"]
    data = []

#get_pyplot(col,title,xlabel,ylabel,df)
    get_go_plotly(col,title,xlabel,ylabel,df)
```

10 days Rolling difference of futures-SPX: 5 day ROLL

Annualized returns table

Annualized lyr Returns - 5 Day ROLL

Out[37]:

	annual_1_yrs	annual_5_yrs	annual_10_yrs	annual_20_yrs
Start Period	2019-09-16	2015-09-17	2010-09-17	2000-09-20
End Period	2020-09-15	2020-09-15	2020-09-15	2020-09-15
No.of yrs	1	5	10	20
SPX return	0.156349	0.135895	0.140286	0.0642439
Futures+Cash return	0.154945	0.131504	0.135663	0.0589201
Diff (bps)	-14.0376	-43.9066	-46.23	-53.2387

Average Rolling returns

Average of Rolling 1yr Returns - 5 Days ROLL

Out[39]:

	Rolling Avg1_yrs	Rolling Avg5_yrs	Rolling Avg10_yrs	Rolling Avg20_yrs
Start Period	2019-09-16	2015-09-17	2010-09-17	2000-09-20
End Period	2020-09-15	2020-09-15	2020-09-15	2020-09-15
No.of yrs	1	5	10	20
SPX return	0.121377	0.110641	0.134545	0.0740629
Futures+Cash return	0.117616	0.105185	0.129589	0.0687599
Diff (bps)	-37.6052	-54.5604	-49.5597	-53.0304

Average of Rolling 3yr Returns - 5 Days ROLL

Out[41]:

	Rolling Avg1_yrs	Rolling Avg5_yrs	Rolling Avg10_yrs	Rolling Avg20_yrs
Start Period	2019-09-16	2015-09-17	2010-09-17	2000-09-20
End Period	2020-09-15	2020-09-15	2020-09-15	2020-09-15
No.of yrs	1	5	10	20
SPX return	0.120433	0.119647	0.124131	0.0677305
Futures+Cash return	0.114415	0.113946	0.118725	0.0628157
Diff (bps)	-60.1753	-57.0026	-54.0606	-49.1485

```
In [ ]:
```