

Presentation Layout

Where We Started

Initially started with looking at Videogames

Developer/Publisher/Genre

Then we began exploring potential movie franchises (Fast and Furious, James Bond, Star Wars, etc.)

Franchise performance

Finally, we landed on Marvel/DC – Good/Bad

Characteristics define morality?

Where We Started

Initially started with looking at Videogames

Developer/Publisher/Genre

Then we began exploring potential movie franchises (Fast and Furious, James Bond, Star Wars, etc.)

Franchise performance

Finally, we landed on Marvel/DC – Good/Bad

Characteristics define morality?

Where We Started

Initially started with looking at Videogames

Developer/Publisher/Genre

Then we began exploring potential movie franchises (Fast and Furious, James Bond, Star Wars, etc.)

Franchise performance

Finally, we landed on Marvel/DC – Good/Bad

Characteristics define morality?

Project Focus

Can character traits be an indicator of whether a character is morally "Good" or "Bad"?

Identity

Hair Color

Sex (biological)

Gender/Sexual Preference

Eye Color

Studio

Data Sources

We utilized 2 datasets found on Kaggle

- Marvel-wikia-data.csv
- DC-wikia-data.csv

Extract, Load, Transform

Jupyter Notebook

- Loaded Marvel and DC Kaggle CSVs
- Cleaned datasets
- 3. Added Studio column to differentiate between Marvel vs DC datasets
- 4. Concatenated both datasets into one
- 5. Created SQLAlchemy engine to link pandas dataframe with PostGreSQL

Extract, Load, Transform

Tableau

- Loaded Cleaned CSV
- 2. Edited some of the dimensions
 - 1. Groups, Sets, Re-naming, etc.
- 3. Created Visualizations
- 4. Developed three Dashboards
- 5. Constructed a Story

Data Model Implementation

- Used Google Collab script to:
 - read CSVs
 - convert categorical data to numeric
 - develop ML models
 - Target was 75%
 - Started at 50/50
 - Ended up with ~68%

Data Model Optimization

Predictive Model underperformed on our first attempt.

Predicting Good, Bad and Neutral Characters									
ML Models	•	Score	T	Scaled	Score2 ✓				
Logistic Regression Trainin	g	56.22	%	Logistic Regression Training Scaled	56.36%				
Logistic Regression Test		54.99	%	Logistic Regression Test Scaled	54.97%				
Random Forest Training		59.60	%	Random Forest Training Scaled	59.60%				
Random Forest Test		54.90	%	Random Forest Test Scaled	54.90%				
Decision Tree Training		59.60	%	Decision Tree Training Scaled	59.60%				
Decision Tree Test		54.62	%	Decision Tree Test Scaled	54.62%				
Extra Trees Training		59.60	%	Extra Trees Training Scaled	59.60%				
Extra Trees Test		54.75	%	Extra Trees Test Scaled	54.75%				
Ada Boost Training		47.86	%	Ada Boost Training Scaled	47.86%				
Ada Boost Test		46.87	%	Ada Boost Test Scaled	46.87%				

Data Model Optimization

On our second attempt, the model provided much stronger Predictive Validity.

Predicting Only Good and Bad Characters										
ML Models	~	Score	~	Scaled	•	Score2				
Logistic Regression Training		65.18	3%	Logistic Regression Training Scaled		65.1	9%			
Logistic Regression Test		64.60)%	Logistic Regression Test Scaled		64.5	7%			
Random Forest Training		68.22	2%	Random Forest Training Scaled		68.2	2%			
Random Forest Test		63.96	5%	Random Forest Test Scaled		63.9	6%			
Decision Tree Training		68.22	2%	Decision Tree Training Scaled		68.2	2%			
Decision Tree Test		63.98	3%	Decision Tree Test Scaled		63.9	8%			
Extra Trees Training		68.22	2%	Extra Trees Training Scaled		68.2	2%			
Extra Trees Test		63.85	5%	Extra Trees Test Scaled		63.8	5%			
Ada Boost Training		59.00	0%	Ada Boost Training Scaled		59.0	0%			
Ada Boost Test		58.52	2%	Ada Boost Test Scaled		58.5	2%			

Results

- We can conclude that certain characteristics are somewhat (68%) predictive of a comicbook character's moral compass
- Specific traits lean one way or another
- GSM was the most important feature within the Random Forest model

```
features = sorted(zip(X.columns, rfclf.feature_importances_), key = lambda x: x[1])
cols = [f[0] for f in features]
width = [f[1] for f in features]
fig, ax = plt.subplots()
ax.barh(y=cols, width=width)
plt.show()
   GSM
   SEX
   HAIR
    EYE :
 STUDIO
             0.02
                      0.04
     0.00
                              0.06
                                      0.08
                                              0.10
```


Are you a good or bad character in the Marvel / DC Universe?

Make your selections below, then press the button to find out.

Web Form Using Flask

- Create API from the Postgres database
- Pass form inputs through app using for loop
- Pickle ML model

Limitations

TIME

ACCESS TO SPECIFIC DATASETS

PREDICTIVE
MODELLING BASED ON
STRING DATA
PROVIDES ADDITIONAL
CHALLENGES

NEW SOFTWARE/PACKAGES WE WERE PREVIOUSLY UNAWARE OF (.PKL)

Questions?