note

TianQi Hou

May 2017

our aim is to eliminate the Lagrangian multipliers of the Lagrangian function, and the get the quadratic form.

For example, in Herry 's thesis, cost function that node $i \to j$ is $\frac{1}{2}a_{ij}(y_{ij} - \tilde{y}_{ij})^2$, combined the constrains of each node, $\Lambda_i + \sum_k y_{ik} = 0$. The Lagrangian function is:

$$\mathcal{L} = \frac{1}{2}y_{ij}^2 + \sum_{k} a_{kj}(y_{kj} - \tilde{y}_{kj})^2 + \mu(\Lambda_j + y_{ij} + \sum_{k \in \partial i/j} y_{kj})$$

then,

$$\frac{\partial \mathcal{L}}{\partial y_{kj}} = a_{kj}(y_{kj} - \tilde{y}_{kj}) + \mu = 0$$

we eliminate μ , the cost function is

$$E_{ij} = \frac{1}{2}y_{ij}^2 + \frac{1}{2}\left(\sum_{k} a_{kj}^{-1}\right)^{-1} (y_{ij} + \Lambda_j + \sum_{k} \tilde{y}_{kj})^2$$

compared with

$$E_{ij} = \frac{1}{2}a_{ij}(y_{ij} - \tilde{y}_{ij})^2$$

we can get

$$\tilde{a}_{ij} = 1 + (\sum_{k} a_{kj}^{-1})^{-1}$$

$$\tilde{y}_{ij} = \frac{\Lambda_j + \sum_k \tilde{y}_{kj}}{1 + \sum_k a_{ik}^{-1}}$$

as for the transport network, we use $Z = C\vec{y}_1 - D\vec{y}_2$,

$$F_{12}(y_1, y_2) = \frac{1}{2}y_1^2 + \frac{1}{2}y_2^2 - \frac{a_1}{2}(y_1 - \tilde{y}_1)^2 - \frac{a_2}{2}(y_2 - \tilde{y}_2)^2 - \frac{1}{2}(C\vec{y_1} - D\vec{y_2})^T A^{-1}(C\vec{y_1} - D\vec{y_2})$$

The quadratic form is

$$F_{12}(y_1, y_2) = \frac{a_{121}}{2}(y - \tilde{y}_{121})^2 + \frac{a_{122}}{2}(y_2 - \tilde{y}_{122})^2 + b_{12}(y_1 - \tilde{y}_{121})(y_2 - \tilde{y}_{122})^2$$

$$\begin{cases} a_{121} = 1 - C^T A^{-1} C - a_1 \\ a_{122} = 1 - D^T A^{-1} D - a_2 \\ b_{12} = D^T A^{-1} D \\ \text{as for the } \tilde{y}_{121}, \tilde{y}_{122}, \end{cases}$$

$$\begin{pmatrix} a_{121} & b_{12} \\ b_{12} & a_{122} \end{pmatrix} \begin{pmatrix} \tilde{y}_{121} \\ \tilde{y}_{122} \end{pmatrix} = - \begin{pmatrix} a_1 \tilde{y}_1 \\ a_2 \tilde{y}_2 \end{pmatrix}$$

,