

TON V1.2

E-mail: contato@ioton.cc Site: ioton.cc

1. Visão Geral

Ton é uma plataforma de desenvolvimento e prototipação baseada no microcontrolador ARM Cortex-M4 32-bit STM32F405. Ele já integra uma unidade de medição inercial com 9 eixos, USB host/device, Bluetooth e Wi-Fi para você implementar suas ideias em eletrônica, robótica e IoT de uma forma simples, porém muito poderosa com um processador de 210 DMIPS (210 milhões de instruções por segundo). São 26 pinos de entradas/saídas, sendo até 12 saídas PWM e até 12 entradas analógicas. Pode ser alimentado pelo conector USB, pelo conector header ou ainda por bateria de uma célula de Li-Po (com carregador integrado). O seu header principal também permite a conexão com os seguintes periféricos: 4 UART, 2 saídas DAC, 1 i²C, 1 SPI e 1 SDIO.

A programação do Ton é realizada a partir do editor de texto *Atom* e do *package* da IOTON que permite a utilização de todos estes recursos com uma abordagem bem prática e intuitiva. Na etapa inicial de criação do projeto, o usuário define as funções dos pinos de entradas/saídas, com isso, é gerado automaticamente todas as configurações e funções de acesso para os respectivos periféricos. Mesmo com poucas noções de programação é possível aproveitar todos os recursos do Ton devido à abstração de alto nível da API desenvolvida em linguagem C/C++ e com o uso de bibliotecas do mbed SDK.

Site: ioton.cc E-mail: contato@ioton.cc

2. Especificações Técnicas

Microcontrolador	STM32F405RGT6				
Memória Flash	1024 KB				
SRAM	192 KB				
Clock	168 MHz (210 DMIPS)				
Tensão de operação	3,3 V ⁽¹⁾				
Tensão de entrada (VIN)	6 a 12 V				
Corrente DC por pino	8 mA				
Corrente DC dos pinos 3V3 e 5V	500 mA				
Corrente DC do carregador Lipo 1S	300 mA				
Bluetooth Low Energy	CC2541				
Botões	Reset e Usuário				
IMU 9DOF	BMX055				
LEDs de usuário	RGB (com PWM)				
USB 2.0 full-speed	Host/device				
Wi-Fi	ESP8266				
Total de pinos I/O	26 (todos com interrupção)				
Saídas PWM	até 12				
Entradas analógicas 12-bit	até 12				
UART	4				
Saídas DAC 12-bit	2				
I ² C	1				
SPI	1				
SDIO (sd card)	1				
Dimensões	60x60x13mm				
1. Os pinos de I/O são 5 V tolerantes, exceto os pinos 20 e 21					

Site: <u>ioton.cc</u> E-mail: <u>contato@ioton.cc</u>

3. Detalhes

Programando

Para programar o **Ton** é utilizado o editor de texto *Atom* em conjunto com um *package* que permite: configurar o projeto, compilar o código, enviar ao dispositivo e comunicar via USB (escrita/leitura). Com isso, tem-se um ambiente de desenvolvimento enxuto, de fácil utilização e com todas as funcionalidades deste ótimo editor.

A tela de configuração do projeto permite ao usuário selecionar a função de cada pino:

De acordo com esta configuração são geradas (automaticamente) todas as funções de configuração do microcontrolador e funções de acesso aos respectivos periféricos selecionados (UART, ADC, DAC, SPI, etc). Isso possibilita uma forma prática de usar todo o poder do microcontrolador ARM 32bit de 168 MHZ.

Site: ioton.cc E-mail: contato@ioton.cc

Alimentação

O Ton pode ser alimentado pelo conector micro USB, externamente pelos conectores EXT-1 e EXT-2 (pinos GND, 3V3 ou VIN), ou ainda por uma bateria Li-Po de uma célula.

Observações quanto aos pinos de alimentação dos conectores EXT-1 e EXT-2:

- GND: pinos de Terra.
- 3V3: saída regulada de até 500 mA.
- VBAT: entrada para bateria Li-Po 1S (3,7V) ou pode ser usada com saída da tensão da bateria, se esta estiver conectada ao J2.
- VIN: entrada de alimentação entre 6 e 12V.
- 5V: saída regulada de até 500 mA para os casos em que o Ton esteja alimentado pela USB ou pelo VIN.

Conectores

Os conectores EXT-1 e EXT-2 possuem 26 pinos de entrada e saída, eles são numerados de 0 a 25, cada um destes pinos tem várias funções diferentes e devem ser configurados de acordo com sua utilização por meio da tela de configuração do ambiente de programação.

Com um hardware externo (ST-LINK ou similares) é possível debugar o código através do conector SWD.

Todos os pinos de I/O têm capacidade para configurar interrupções externas. Com exceção dos pinos 20 e 21, todos são 5 V tolerantes, porém quando configurado como entrada analógica a tensão de 3,3 V não deve ser ultrapassada.

Mapa dos pinos

A seguir são apresentadas as funções de cada pino:

1/0	Funções						
I/O	ADC	PWM	UART	DAC	I2C	SPI	SDIO
0		1A	TX1				
1		1B	RX1				
2		1C					D0
3		1D					D1
4		2A					
5			TX2				D2
6			RX2				D3
7			TX3				CK
8			RX3				CMD
9		2B					
10		3A					
11		4A			SCL		
12		4B			SDA		
13		3B					
14	✓						
15	✓						
16	✓						
17	✓						
18	✓	5A	TX4				
19	✓	5B	RX4				
20	✓			✓		NSS	
21	✓			✓		SCK	
22	✓					MISO	
23	✓					MOSI	
24	✓						
25	✓						

^{*}Todos os pinos podem ser configurados como entrada/saída digitais

Observações:

- ADC: a resolução do conversor é de 12-bit (4096 valores diferentes). Neste modo a tensão do pino não deve exceder 3,3 V.
- PWM: são 12 pinos de PWM com cinco grupos diferentes (alguns grupos possuem mais de um canal e são diferenciados pelas letras A, B, C e D). Cada grupo pode ser configurado com uma frequência diferente.

- UART: cada uma das quatro UART são configuradas separadas e podem ter baudrates diferentes.
- DAC: saídas analógicas de 12-bit, resistência de carga mínima = $5 \text{ k}\Omega$.
- l²C e SPI: barramentos seriais para comunicação com uma infinidade de circuitos integrados.
- SDIO: interface para cartões de multimídia (SD Card e MMC).

IMU 9 DOF

A Unidade de Medição Inercial (*Inertial Measurement Unit* – IMU) utiliza o circuito integrado BMX055 com acelerômetro, giroscópio e magnetômetro de três eixos cada, totalizando nove graus de liberdade (9 DOF).

A partir desta unidade são fornecidos dados que possibilitam obter orientação, posicionamento e velocidade do dispositivo.

Comunicação

Site: ioton.cc

O **Ton** já vem equipado com uma série de periféricos que permitem se conectar com computadores, outro Ton, demais microcontroladores, smartphones, entre outros dispositivos. Suas principais formas de conexão com o mundo tecnológico são: USB, Bluetooth e Wi-Fi.

- USB: é através do conector USB micro que o Ton é programado, ele também pode ser utilizado para enviar e receber dados de um computador ou smartphone.
- Bluetooth (chipset CC2541): o módulo Bluetooth integrado ao Ton permite a comunicação sem fio com computadores e smartphones.
- Wi-Fi (chipset ESP8266): projetos na Internet de maneira simples e rápida para entrar no mundo IoT.

Os conectores EXT-1 e EXT-2 ainda possui outras interfaces (UART, I²C e SPI) para deixar seu projeto ainda mais conectado.

6