# Visual Speech Recognition for Seamless Communication with Hearing Impaired Persons

Md. Laraib Ahmad , Scholar ID: 2322207

Supervisor

Dr. Debbrota Paul Chowdhury



Department of Computer Science and Engineering National Institute of Technology Silchar

December 13, 2024

#### Index

- Introduction
- Research Advancement
- Motivation
- 4 Literature Review
- 6 Research Gap
- 6 Problem Statement
- Objective
- 8 Available Datasets
- O Dataset Preparation for Visual Speech Recognition System
- Generalised Block Diagram
- Methodology
- conclusion
- Future Work
- References

## What is Lip Reading:



 $fig\ no\ -\ 1:\ https://livingwithhearingloss.com/2016/04/19/lipreading-in-paradise/$ 

## Why Lip Reading is important?

Communication aid for the deaf and hard-of-hearing

- Primary Communication Tool
- Complement to hearing aids and cochlear implants







https://www.inc.com/john-boitnott/this-entrepreneur-is-solving-one-of-the-biggest-problems-all-deaf-people-face.html

https://www.connecthear.org/post/all-about-cochlear-implants

### Laryngeal cancer

• laryngeal cancer can result in loss of speech or changes in the voice, especially if the cancer or its treatment affects the vocal cords or requires the removal of parts of the larynx. In such case speaker can only move their lips to communicate.



https://utswmed.org/medblog/cold-flu-allergy-hurt-your-voice/

## Research Advancement

| Time Period        | Advancement                                                                |
|--------------------|----------------------------------------------------------------------------|
|                    |                                                                            |
| Early 20th century | The concept of lip reading as a skill for the deaf and hard-of-hearing     |
|                    | began to be formally studied and taught. Schools for the deaf often        |
|                    | included lip reading in their curricula.                                   |
| 1970s              | Early research in automated lip reading began. Initial efforts focused     |
|                    | on understanding the visual aspects of speech and how they could be        |
|                    | captured and analyzed by computers.                                        |
| 1980s and 1990s    | Advances in computer vision and pattern recognition led to more sophis-    |
|                    | ticated experiments with automated lip reading systems. Algorithms to      |
|                    | recognize visual speech elements were developed.                           |
| 2000s              | Deep learning and AI started to significantly improve automated lip read-  |
|                    | ing accuracy. Researchers used statistical models like Hidden Markov       |
|                    | Models (HMMs) to analyze visual speech data.                               |
| 2010-              | , , , , , , , , , , , , , , , , , , , ,                                    |
| 2010s              | Deep learning techniques, especially CNNs and RNNs, began to be ap-        |
|                    | plied to lip reading, leading to substantial improvements. Large datasets  |
|                    | and improved computational power also contributed to advancements.         |
| 2016               | Google DeepMind's LipNet model demonstrated high accuracy in lip read-     |
|                    | ing by leveraging deep learning techniques.                                |
| 2020s              | Ongoing research continues to refine and improve lip reading technologies, |
|                    | which are now applied in fields such as assistive technology for the deaf  |
|                    | and hard-of-hearing, security, and human-computer interaction.             |

#### Motivation

- Accessibility for Hearing-Impaired Individuals
- Speech Enhancement in Noisy Environments
- Multimodal Systems
- Advances in AI and Machine Learning

## Literature Review

| Author, year                        | Methodology                                                                     | Dataset Used                   | Findings                                                                                                                                                              |
|-------------------------------------|---------------------------------------------------------------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Siddiqui <i>et al.</i> , [2022] [1] | A Multi-SVM classifier categorizes the lip movements to recognize spoken words. | custom-made<br>by the authors. | <ul> <li>The proposed lip<br/>reading system,<br/>based on visual<br/>cues alone, can<br/>effectively<br/>recognize words<br/>with an accuracy<br/>of 75%.</li> </ul> |

| Author, year                        | Methodology                                                                                                                                                                                                                                                                                                                           | Dataset Used | Findings                                                                                                                                                                                                                                                                                              |
|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Freitas <i>et al.</i> , 2016<br>[2] | LipNet model: spatiotemporal convolutional neural networks (STCNNs) to extract spatial and temporal features, followed by Bidirectional Gated Recurrent Units (Bi-GRUs) to capture temporal dependencies, and employs Connectionist Temporal Classification (CTC) loss for end-toend training without the need for pre-segmented data | GRID corpus  | Achieving a 95.2% sentence-level accuracy on the GRID corpus. The study highlights the effectiveness of combining spatiotemporal convolutions, recurrent networks, and Connectionist Temporal Classification (CTC) for sentence-level prediction, marking a major improvement in automated lipreading |

| Author, year                       | Methodology                                                                                                                                                                                                                                                              | Dataset Used    | Findings                                                                                                                                                                                                                                                      |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Zimmermann <i>et al.</i> , 2020[3] | The paper employs two methodsTemporal Conditional GANs (TC-GANs) to generate lip movement videos for unseen utterances and a viseme-concatenation approach to synthesize videos by mapping phonemes to visemesto enable zero-shot learning in visual speech recognition. | OuluVS2 dataset | Using GANs for zero-shot learning significantly improves visual speech recognition accuracy for unseen utterances, effectively addresses the cold-start problem, and generalizes to new languages, with GANs outperforming the viseme-concatenation approach. |

| Author, year         | Methodology                                                                                                                                                                                                                                                                 | Dataset Used      | Findings                                                                                                                                                                                                                                                                                                                           |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| XIAO et al., 2020[4] | The methodology involves preprocessing video frames to extract lip regions, using a spatial-temporal CNN to generate features, applying a transformer-based model to classify visemes, and converting visemes to words through perplexity analysis for sentence prediction. | BBC LRS2 dataset. | The paper finds that the proposed viseme-based lip reading system significantly improves word accuracy with a 15% reduction in Word Error Rate (WER), achieves a Viseme Error Rate (VER) of 4.6%, and demonstrates robustness to varying lighting conditions, though further optimization is needed in converting visemes to words |

| Author, year                | Methodology                                                                                                                                                                                                             | Dataset Used                                                                                                                                                                                           | Findings                                                                                                                                                                                                                                                                       |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Xie <i>et al.</i> , 2024[5] | The methodology involves multi-scale lip motion video extraction, dynamic augmentation, and an end-to-end VSR system with multi-system fusion using diverse encoders for optimal visual speech recognition performance. | The paper uses the **CN-CVS** dataset for training, along with the development sets of **CNVSRC-Single/Multi** datasets from the Chinese Continuous Visual Speech Recognition Challenge (CNVSRC) 2023. | The paper finds that the proposed multisystem VSR approach with E-Branchformer encoder and ROVER fusion achieves leading performance with 34.76% CER in the Single-Speaker Task and 41.06% CER in the Multi-Speaker Task, securing first place in all three CNVSRC 2023 tracks |

| Author, year                      | Methodology                                                                                                                                                                                                              | Dataset Used                                                                                                                                                                                                                                                                                                                            | Findings                                                                                                                                                                                                                                                            |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pantic <i>et al.</i> ,<br>2022[6] | The methodology involves enhancing VSR performance through prediction-based auxiliary tasks, hyperparameter optimization, data augmentation (like time-masking), and pre-training/fine-tuning across multiple languages. | The paper uses the LRS2, LRS3, CMLR (Mandarin), and CMU-MOSEAS (Spanish) datasets for training and evaluation, with a focus on publicly available datasets for achieving state-of-the-art VSR performance across multiple languages. Additionally, the LRW and AVSpeech datasets are used in some experiments for further improvements. | The paper finds that careful model design, including prediction-based auxiliary tasks, data augmentation, and hyperparameter optimization, can significantly improve visual speech recognition performance, even surpassing models trained on much larger datasets. |

| Author, year        | Methodology                                                                                                                                                                                                                                                                        | Dataset Used                                                                                                                                                                                                                                                                                                | Findings                                                                                                                                                                                                                                       |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GUO et al., 2020[7] | The methodology involves using a visemeto-word conversion system with perplexity analysis, where visual speech input is processed through word lookup, chunkification, and iterative beam search to identify the most likely word sequences based on a pre-trained language model. | The paper uses two datasets for experimentation:  OuluVS Dataset: This consists of short phrases like "hello," "excuse me," "I am sorry," etc.  BBC LRS2 Dataset: This contains longer and more varied sentences from BBC videos, making it more challenging due to a wide range of speakers and vocabulary | The findings show that the model effectively predicts short phrases with 100% accuracy and performs reasonably well on longer sentences using perplexity analysis, though it struggles with increased errors when word boundaries are unknown. |

| Author, year               | Methodology                                                                                                                                                                                                                                                                                                                             | Dataset Used                                                                        | Findings                                                                                                                                                      |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ro <i>et al.</i> , 2024[8] | The methodology used in the paper combines vision-level adaptation (using padding prompts and LoRA for lip appearances, movements, and speaking speed) and language-level adaptation (using input prompt tuning to learn speaker-specific linguistic patterns) to adapt a pre-trained lip-reading model to target speakers effectively. | VoxLRS-SA<br>dataset, which<br>is derived from Vox-<br>Celeb2 and LRS3<br>datasets. | The paper demonstrates that integrating vision and language-level adaptations improves speaker-specific lip reading performance, surpassing previous methods. |

| Author, year                      | Methodology                                                                                                                                                                                                                                   | Dataset Used | Findings                                                                                                                                                                                                                                                                              |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pantic <i>et al.</i> ,<br>2022[9] | The methodology combines advanced temporal models (like DC-TCN), effective data augmentations (Time Masking, mixup), and training strategies (self-distillation, word boundary indicators) to systematically enhance lip-reading performance. | LRW dataset  | The paper finds that combining advanced temporal models (DC-TCN), Time Masking augmentation, and training strategies like self-distillation and word boundary indicators achieves state-of-the-art performance in lip-reading, particularly improving recognition of difficult words. |

## Research Gap

- Accuracy is not very high for word prediction.
- No dataset available for different accents.
- Viseme-based Challenges
- Cross-lingual Transfer Learning

#### Problem Statement

Despite significant progress, visual speech recognition faces challenges such as variability in lip movements, diverse speaking styles, and need for large and labeled datasets for training. Ongoing research aims to address these challenges and further refine technology making it more accurate, reliable and widely applicable.

## Objective

- To create a dataset of different accents.
- To develop an algorithm that can recognize words correctly independent of accents.

### Available Dataset

| Dataset                                        | Туре              | Description                                               |
|------------------------------------------------|-------------------|-----------------------------------------------------------|
| GRID Corpus                                    | Sentence-level    | Contains 34 speakers uttering structured sentences with   |
|                                                |                   | fixed vocabulary (1000 unique sentences).                 |
| LRS2 (Lip Reading                              | Sentence-level    | Contains over 224 hours of data from BBC programs with    |
| Sentences 2)                                   |                   | spoken sentences for audio-visual speech recognition.     |
| LRS3 (Lip Reading                              | Sentence-level    | Larger version of LRS2 with over 475 hours of videos for  |
| Sentences 3)                                   |                   | lip reading in challenging conditions.                    |
| TCD-TIMIT                                      | Continuous Speech | Phonetically balanced dataset with 59 speakers reading    |
|                                                |                   | 98 sentences, suitable for continuous speech recognition. |
| AVLetters Alphabet-level Dataset with speakers |                   | Dataset with speakers uttering letters A-Z multiple times |
|                                                |                   | for isolated letter recognition.                          |
| LRW (Lip Reading in                            | Word-level        | Contains over 500 different words spoken by various       |
| the Wild)                                      |                   | speakers extracted from TV broadcasts.                    |
| OuluVS2                                        | Phrase-level      | Contains 53 speakers saying 10 phrases, repeated 6 times  |
|                                                |                   | per phrase, for small-scale phrase recognition.           |

Table 1: Available Datasets for Visual Speech Recognition by Lip Reading

## Dataset Names and Images for Visual Speech Recognition

| Dataset                        | Image |
|--------------------------------|-------|
| GRID Corpus                    |       |
| LRS2 (Lip Reading Sentences 2) |       |
| LRS3 (Lip Reading Sentences 3) |       |
| TCD-TIMIT                      |       |



## Dataset Preparation for Visual Speech Recognition System

I created dataset by clipping videos from youtube and recodring my own videos. For word pronunciation collins video on youtube is great resource.



## Generalized block diagram of visual speech recognition system



Figure 1: Generalized block diagram of visual speech recognition system

## Methodolog

## **Algorithm 1** Normalize Lip Points

```
Require: A map lipPoints of integers to coordinate pairs (x, y)
Ensure: A normalized map of lip points
 1: if 48 \in lipPoints then
       origin \leftarrow lipPoints[48]
                                                                   Set the origin point
       normalizedPoints ← {}
                                       ▶ Initialize an empty map for normalized points
 3:
       for all (key,(x,y)) \in lipPoints do
                                                                ▶ Iterate over each point
 4:
           normalizedPoints[key] \leftarrow (x - origin.first, y - origin.second)
 5
       end for
 6:
       return normalizedPoints
 7.
 8: else
       return lipPoints
                                          ▶ Return original points if key 48 is not found
10: end if
```

#### Algorithm 2 Euclidean Distance Calculation

**Require:** x1, y1, x2, y2

**Ensure:**  $dx \leftarrow x2 - x1$ ,

1:  $dy \leftarrow y2 - y1$ 

2:  $distance \leftarrow \sqrt{dx^2 + dy^2}$ 

## Algorithm 3 Calculate Average Lip Point Distance

**Require:** Two maps lipPoints1 and lipPoints2 of integers to coordinate pairs (x,y) **Ensure:** The average Euclidean distance between corresponding points in lipPoints1 and lipPoints2

- 1:  $totalDistance \leftarrow 0.0$
- 2: **for** i = 48 **to** 67 **do**
- 3: **if**  $i \in lipPoints1$  and  $i \in lipPoints2$  **then**
- 4:  $totalDistance \leftarrow totalDistance + euclideanDistance(lipPoints1[i], lipPoints2[i])$
- 5: end if
- 6: end for
- 7: return totalDistance/20

## Algorithm 4 Extract and Normalize Lip Points from a Video

```
Require: videoPath: Path to the video file
   detector: Frontal face detector
   predictor: Shape predictor
Ensure: lipPointsAllFrames: Vector of normalized lip points for each frame
1: Initialize lipPointsAllFrames as an empty vector
2: Open the video using VideoCapture
3: if the video cannot be opened then
       Print error and return lipPointsAllFrames
   end if
   while frames are available do
       Read the current frame and convert to grayscale
       Detect faces using detector
9:
10:
       if at least one face is detected then
            Extract landmarks using predictor
11:
12:
            for each index i from 48 to 67 do
               Store landmarks in lipPoints
13:
14:
            end for
            Normalize lipPoints
15:
            Append lipPoints to lipPointsAllFrames
16:
17:
        else
            Append empty map to lipPointsAllFrames
        end if
     end while
     Release the video resource
    return lipPointsAllFrames
```

## **Algorithm 5** Calculate Average Distance to Reference Videos

```
Require: newVideoLipPoints: Vector of lip points for the new video
    referenceVideosLipPoints: Vector of lip points for the reference videos
Ensure: averageDistance: The average distance to the reference videos

    Initialize minFrames as the size of newVideoLipPoints

2: for each reference video refVideo in referenceVideosLipPoints do
       Update minFrames as the minimum between minFrames and the size of refVideo
4: end for
5: Initialize totalDistances as an empty vector
   for each frame index i from 0 to minFrames - 1 do
       Get the lip points for the current frame from newVideoLipPoints
8:
       if lip points for the current frame are not empty then
9:
          Initialize distancesForFrame as an empty vector
10:
            for each reference video refVideo in referenceVideosLipPoints do
11:
               if i is less than the size of refVideo and lip points for this frame are not empty then
12:
                   Calculate the distance between lipPointsFrame and the corresponding frame in refVideo using calculateLipPointDistance
13:
14:
15:
16:
                   Add the calculated distance to distancesForFrame
               end if
            end for
            if distancesForFrame is not empty then
17:
               Calculate avgDistanceForFrame as the average of distancesForFrame
18:
               Append avgDistanceForFrame to totalDistances
19:
20:
            end if
        end if
    end for
22: Calculate averageDistance as the average of totalDistances
```

## Visual representation of Methodology



## Mathematical Representation

#### Frame-wise Euclidean Distance

For two frames  $F_1$  and  $F_2$ , with n feature points, the average Euclidean distance across all feature points is given by:

$$\Psi_{\text{frame}} = \frac{1}{n} \sum_{j=1}^{n} \sqrt{(x_{j1} - y_{j1})^2 + (x_{j2} - y_{j2})^2}$$

Here:

- $x_{j1}$  and  $x_{j2}$  are the coordinates of the *j*-th feature point in frame  $F_1$ ,
- $y_{j1}$  and  $y_{j2}$  are the coordinates of the j-th feature point in frame  $F_2$ ,
- *n* is the total number of feature points in the frame.

**Video-wise Euclidean Distance** For two videos  $V_1$  and  $V_2$ , each with M frames and n feature points per frame, the average Euclidean distance across all frames and their feature points is given by:

$$\Psi_{\text{video}} = \frac{1}{M} \sum_{i=1}^{M} \frac{1}{n} \sum_{j=1}^{n} \sqrt{(x_{ij1} - y_{ij1})^2 + (x_{ij2} - y_{ij2})^2}$$

#### Here:

- $x_{ij1}$  and  $x_{ij2}$  are the coordinates of the *j*-th feature point in the *i*-th frame of video  $V_1$ .
- $y_{ij1}$  and  $y_{ij2}$  are the coordinates of the *j*-th feature point in the *i*-th frame of video  $V_2$ ,
- *M* is the total number of frames in each video,
- *n* is the total number of feature points per frame.



#### Conclusion

- Successfully developed algorithm which can recongnise the spoken words by reading lip without using Deep Learning.
- My algorithm is only applied on custom dataset which is created by me and accurately predicting 75% words correctly. However, Due to similar lip movements of different words(Homophone) the accuracy is falling.
- This algorithm can reduce the computational overhead as only deep learning is
  used for lip extraction from video not for prediction. For word prediction we are
  using our own developed algorithm.

## Future Work and Proposed Improvements

- Acquire videos of the same word with different accents.
- Extract 3D lip feature so that accuracy can be achieved more
- Apply our algorithm to our dataset as well publicly available dataset.
- Reading lip by using Deep Learning and comparing the result with my Algorithm
- Finding the solution for Homophones
- Compare the results with state-of-the-art.

#### References I

- Kunal Patil 1, Sandesh Patel 2, Harshad Rathod 3, Ashraf Siddiqui4, LIP READING: VISUAL SPEECH RECOGNITION USING LIP READING, International Research Journal of Engineering and Technology (IRJET), Apr 2022.
- [2] Yannis M. Assael, Brendan Shillingford, Shimon Whiteson & Nando de Freitas LIP NET: END-TO-END SENTENCE-LEVEL LIPREADING, Department of Computer Science, University of Oxford, Oxford, UK 1 Google DeepMind, London, UK 2 CIFAR, Canada 3, 16 Dec 2016.
- [3] Yaman Kumar, Dhruva Sahrawat, Shubham Maheshwari, Debanjan Mahata, Amanda Stent, Yifang Yin, Rajiv Ratn Shah, Roger Zimmermann, *Harnessing GANs for Zero-Shot Learning of New Classes in Visual Speech Recognition*, Cornell University, 2 Jan 2020.
- [4] SOUHEIL FENGHOUR, (Associate Member, IEEE), DAQING CHEN, (Member, IEEE), KUN GUO2 AND PERRY XIAO Lip Reading Sentences Using Deep Learning With Only Visual Cues, IEEE Access, 26 November 2020.
- [5] He Wang, Pengcheng Guo, Wei Chen, Pan Zhou, Lei Xie *The NPU-ASLP-LiAuto System Description for Visual Speech Recognition in CNVSRC 2023*,arXiv:29Feb2024.
- [6] Pingchuan Ma Stavros Petridis, Maja Pantic Visual Speech Recognition for Multiple Languages in the Wild, Imperial College London Meta Al, 13 Sep 2022.

#### References II

- [7] SOUHEIL FENGHOUR, (Associate Member, IEEE), DAQING CHEN, (Member, IEEE), KUN GUO AND PERRY XIAO DISENTANGLING HOMOPHEMES IN LIP READING USING PERPLEXITY ANALYSIS, arXiv, 15 Dec 2020.
- [8] Jeong Hun Yeo, Chae Won Kim, Hyunjun Kim, Hyeongseop Rha, Seunghee Han, Wen-Huang Cheng, Yong Man Ro Personalized Lip Reading: Adapting to Your Unique Lip Movements with Vision and Language, arXiv, 2 Sep 2024.
- [9] Pingchuan Ma, Yujiang Wang, Stavros Petridis, Jie Shen, Maja Pantic *Training Strategies for Improved Lip-Reading by Koohestani and Hadfield*, arXiv, 29 Sep 2022.
  - Grid Corpus Dataset MDPI Journal Source: MDPI Applied Sciences, 2021.
  - LRS2 Dataset Oxford VGG Group Source: Visual Geometry Group, University of Oxford.
  - LRS3 Dataset ResearchGate
     Source: ResearchGate, LRS3 Dataset Overview.
  - TCD-TIMIT Dataset ResearchGate Source: ResearchGate, TCD-TIMIT Results Overview.
  - AVLetters Database ResearchGate
     Source: ResearchGate, AVLetters Database Example.

### References III

• LRW Dataset - ResearchGate Source: ResearchGate, LRW Dataset Frames.

 Oulu-VS2 Dataset - ResearchGate Source: ResearchGate, Oulu-VS2 Dataset Examples. Thank you for listening!

Md. Laraib Ahmad

mdlaraib\_pg\_23@cse.nits.ac.in