Apprentissage Par Projet [APP] Comprendre et utiliser le Machine learning

Jean-Luc.Charles@ENSAM.EU

avril 2022

000

(crédit : developer.nvidia.com/deep-learning)

avril 2022 – V2.1 2/24

Intelligence Artificielle?

Intelligence Artificielle ¹ : reste un terme ambigu aux définitions multiples :

avril 2022 – V2.1 3/24

¹ utilisé la première fois en 1956 par John McCarthy, chercheur à Stanford lors de la conférence de Dartmouth

000

Intelligence Artificielle?

Intelligence Artificielle 1: reste un terme ambigu aux définitions multiples:

- "...the science of making computers do things that require intelligence when done by humans." Alan Turing, 1940
- "the field of study that gives computers the ability to learn without being explicitly programmed." Arthur Samuel, 1960
- "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P. if its performance at tasks in T, as measured by P, improves with experience E." Tom Mitchell, 1997
- Notion d'agent intelligent ou d'agent rationnel "...agent qui agit de manière à atteindre la meilleure solution ou, dans un environnement incertain, la meilleure solution prévisible."

avril 2022 - V2.1 3/24

utilisé la première fois en 1956 par John McCarthy, chercheur à Stanford lors de la conférence de Dartmouth

IA Forte (Strong AI)

IA Faible (Weak AI)

4/24 avril 2022 - V2.1

000

- IA Forte (Strong AI)
 - Vise à concevoir des systèmes qui pensent exactement comme les humains.
 - Peut contribuer à expliquer comment les humains pensent...
 - On en est encore loin... veut-on vraimment aller jusque là?

IA Faible (Weak Al)

avril 2022 - V2.1 4/24

IA Forte (Strong AI)

- Vise à concevoir des systèmes qui pensent exactement comme les humains.
- Peut contribuer à expliquer comment les humains pensent...
- On en est encore loin... veut-on vraimment aller jusque là?

IA Faible (Weak Al)

- Vise à concevoir des systèmes qui peuvent "se comporter" comme des humains.
- Ne nous dit rien sur la façon dont les humains pensent.
- On y est déjà... On l'utilise tous les jours! reconnaissance faciale, vocale, anti-spam, traduction...

avril 2022 - V2.1 4/24

Machine Learning et IA

Page extraite de medium.com/machine-learning-for-humans/...

Machine learning ⊆ artificial intelligence

ARTIFICIAL INTELLIGENCE

Design an intelligent agent that perceives its environment and makes decisions to maximize chances of achieving its goal. Subfields: vision, robotics, machine learning, natural language processing, planning, ...

MACHINE LEARNING

Gives "computers the ability to learn without being explicitly programmed" (Arthur Samuel, 1959)

SUPERVISED LEARNING

Classification, regression

UNSUPERVISE LEARNING

Clustering, dimensionality reduction, recommendation

REINFORCEMENT

Reward maximization

Machine Learning for Humans 🖮 🐽

avril 2022 – V2.1 5/24

Les branches du Machine Learning

Supervised learning Apprentissage supervisé

Requiert des données labelisées...

- Classification
 - Classification d'images
 - Détection d'objet sdans des images
 - Reconnaissance de la parole...
- Régression
 - Prédiction d'une valeur (continue)...
- Détection d'Anomalies
 - Détection de Spam
 - Manufacturing: reconnaissance de défauts (appris)
 - Prévision du temps
 - Classification de maladies...

avril 2022 – V2.1 6/24

Les branches du Machine Learning

Unsupervised learning Apprentissage non-supervisé

Ne requiert que des données (non labelisées)...

- Clustering Regroupement de données non labelisées
 - Data mining, regroupement de données du web, de news...
 - Regroupement ADN
 - Traitement de données d'astronomie...

Detection d'Anomalie

- Détection de fraude
- Manufacturing : détection de défauts (même nouveaux)
- Monitoring: détéction d'activité anormale (panne, hacker, fraude...)
- Fake account sur Internet...
- Réduction de dimension

Compression de données...

avril 2022 – V2.1 7/24

Les branches du Machine Learning

Reinforcement learning Apprentissage par renforcement

Un agent (le réseau de neurones) apprend à piloter un environnement (jeu, système mécatronique...)

- Contrôle/commande
 - Contrôle de robots, drones...
 - Financial (stock) trading...
- Prise de décision
 - jeux (video games)
 - analyse financière...

avril 2022 – V2.1 8/24

Plusieurs approches permettent de concevoir des algorithmes de Machine Learning:

- Programmation Génétique (Genetic programming)
- Inférence bayésienne (Bayesian inference)
- Logique Floue (Fuzzy logic)
- Réseaux de neurones (Neural Networks)

avril 2022 - V2.1 9/24

Machine Learning et IA

Plusieurs approches permettent de concevoir des algorithmes de Machine Learning:

- Programmation Génétique (Genetic programming)
- Inférence bayésienne (Bayesian inference)
- Logique Floue (Fuzzy logic)
- Réseaux de neurones (Neural Networks)

La suite traite uniquement des Réseaux de neurones artificiels.

avril 2022 - V2.1 9/24

Le modèle informatique du neurone artificiel

avril 2022 – V2.1 10/24

Le modèle informatique du neurone artificiel input bias activation output function b $\rightarrow |f| \longrightarrow y = f(\sum_i w_i x_i - b)$ $\sum_i w_i x_i - b$ \widetilde{w}_n

Un neurone artificiel:

reçoit les données d'entrée $(x_i)_{i=1..n}$ affectées des **poids** $(w_i)_{i=1..n}$ (weights)

avril 2022 - V2.1 10/24

NN

Le modèle informatique du neurone artificiel

Un neurone artificiel:

- reçoit les données d'entrée $(x_i)_{i=1..n}$ affectées des **poids** $(w_i)_{i=1..n}$ (weights)
- calcule la somme pondérée de ses entrées moins le biais $\sum_i w_i x_i - b$

avril 2022 - V2.1 10/24

Le modèle informatique du neurone artificiel

Un neurone artificiel:

- reçoit les données d'entrée $(x_i)_{i=1..n}$ affectées des **poids** $(w_i)_{i=1..n}$ (weights)
- calcule la **somme pondérée** de ses entrées moins le biais $\sum_i w_i x_i b$

• produit en sortie une **activation** $f(\sum_i w_i x_i - b)$, calculée avec une fonction d'activation f (en général non-linéaire).

avril 2022 – V2.1 10/24

La fonction d'activation d'un neurone :

- indroduit un comportement non-linéaire,
- fixe la plage de la sortie du neurone, par exemple [-1,1], [0,1] ou encore $[0,\infty[$.

Le biais b fixe le seuil d'activation du neurone.

avril 2022 – V2.1 11/24

Réseaux de neurones

Les réseaux de neurones sont des assemblages plus ou moins complexes de neurones artificiels organisés en couches.

Deux architecture sont très souvent utilisées :

- Réseau de Neurones Dense (Dense Neural Network, RND) simple, généraliste, peut atteindre des scores de réussite importants.
- Réseau de Neurones Convolutif (Convolutional Neural Network, CNN) plus complexe, spécialisé dans le traitement des images, peut atteindre des scores supérieurs à 99% dans la reconnaissance d'images.

avril 2022 - V2.1 12/24 MNIST banque de 70000 images labellisées (60000 images d'entraînement – 10000 images de test.

000000000000

- Images en ton de gris de 28×28 pixels
- Réseau dense → scores pouvant atteindre 98 % de succès...
- État de l'art pour la reconnaissance d'image : réseau convolutifs

avril 2022 - V2.1 13/24

Chaque matrice $28 \times 28 \rightarrow$ vecteur normalisé de 784 composantes float $\in [0; 1]$.

Constitution du réseau :

- La couche d'entrée (Input layer) fixe la dimension des entrées du réseau à 784 valeurs. Elle ne comporte aucun neurone!
- Une couche "cachée" (Hidden layer) de 784 neurone (on pourrait en avoir plus, ou moins...), reçoit les données d'entrées. Elle est connectée à la couche suivante.
- La couche de sortie (Output layer) contient 10 neurones (1 neurone pour chaque chiffre à reconnaître).

avril 2022 - V2.1 14/24

- Dans les couches intermédiaires ("cachées") la fonction d'activation relu favorise souvent l'apprentissage du réseau².
- La classification (dernière couche) utilise la fonction softmax :

Fonction d'activation softmax

$$\begin{array}{c|c} \mathbf{1} & \mathbf{y_1} & \mathbf{Softmax} & \mathbf{Y_1} & \mathbf{[0\,;\,1]} & Y_1 = \frac{e^{y_1}}{\sum_i e^{y_i}} \\ \mathbf{2} & \mathbf{y_2} & \mathbf{Softmax} & \mathbf{Y_2} & \mathbf{[0\,;\,1]} & Y_2 = \frac{e^{y_2}}{\sum_i e^{y_1}} \\ \end{array}$$

9 Softmax
$$Y_9$$
 [0;1] $Y_9 = \frac{e^{y_9}}{\sum e^{y_9}}$

10
$$Y_{10}$$
 Softmax Y_{10} [0;1] $Y_{10} = \frac{e^{y_{10}}}{\sum_{i} e^{y_{ij}}}$

- L'activation du neurone k est $Y_k = e^{y_k}/\sum_i e^{y_i}$ avec $y_k = \sum_i \omega_i x_i b$ calculé par le neurone k.
- Les sorties des neurones s'interprêtent comme des probabilités dans l'intervalle [0,1].

La réponse du réseau est le label associé au neurone de plus grande probabilité (activation).

avril 2022 – V2.1 15/24

² évite le *vanishing gradient* qui apparaît dans l'algorithme de *back propagation*

Codage *One-hot* des labels

But : mettre les label des images au format de la sortie du réseau

- Labels des images : **nombres entiers** de 0 à 9.
- Sortie du réseau : **vecteur de 10** float dans l'intervalle [0,1] calculés par les fonctions softmax des 10 neurones de sortie.
- Codage *one-hot* d'une collection ordonnée de N éléments uniques:
 - chaque élément est codé par un vecteur de N composantes toutes nulles sauf une.
 - le ième élément → vecteur avec un 1 pour ième composante.

avril 2022 - V2.1 16/24

Codage *One-hot* des labels

But : mettre les label des images au format de la sortie du réseau

- Labels des images : **nombres entiers** de 0 à 9.
- Sortie du réseau : **vecteur de 10** float dans l'intervalle [0,1] calculés par les fonctions softmax des 10 neurones de sortie.

chiffre	vecteur one-hot	ונ
0	[1 0 0 0 0 0 0 0 0 0]	é
1	[0 1 0 0 0 0 0 0 0 0]	II
2	[0 0 1 0 0 0 0 0 0 0]	é
3	[0 0 0 1 0 0 0 0 0 0]	٠
4	[0 0 0 0 1 0 0 0 0 0]	
5	[0 0 0 0 0 1 0 0 0 0]	
6	[0 0 0 0 0 0 1 0 0 0]	
7	[0 0 0 0 0 0 0 1 0 0]	
8	[0 0 0 0 0 0 0 0 1 0]	

[0 0 0 0 0 0 0 0 0 1]

Codago *one-hot* d'une collection ordonnée de N éléments

élément est codé par un vecteur de N composantes es sauf une.

élément → vecteur avec un 1 pour *i ème* composante.

Le codage *one-hot* des labels '0' à '9' donne un vecteur à 10 composantes, comme celui calculé par le réseau de neurones.

avril 2022 - V2.1 16/24

Fonction d'erreur : *Cross entropy error*

- Une image traitée par le réseau \sim vecteur \hat{Y} de 10 float à comparer au codage *hot-one* Y du label de l'image.
- On utilise la fonction d'erreur (ou de perte) cross entropy adaptée au codage *one-hot* : $e(Y, \hat{Y}) = -\sum_{i} Y_{i} log(\hat{Y}_{i})$

avril 2022 - V2.1 17/24

Optimisation et Back Propagation

 Pendant la phase d'apprentissage un algorithme d'optimisation calcule le gradient de la fonction d'erreur par rapport aux poids du réseau.

avril 2022 – V2.1 18/24

Optimisation et Back Propagation

- Pendant la phase d'apprentissage un algorithme d'optimisation calcule le gradient de la fonction d'erreur par rapport aux poids du réseau.
- L'algorithme de Back Propagation modifie les poids du réseau couche par couche grâce au gradient de la fonction d'erreur, en itérant de la dernière couche à la première couche.

avril 2022 – V2.1 18/24

Optimisation et *Back Propagation*

- Pendant la phase d'apprentissage un algorithme d'optimisation calcule le gradient de la fonction d'erreur par rapport aux poids du réseau.
- L'algorithme de Back Propagation modifie les poids du réseau couche par couche grâce au gradient de la fonction d'erreur, en itérant de la dernière couche à la première couche.
- Exemples d'algorithme d'optimisation :
 - Descente de Gradient (Gradient Descent (GD))
 - Descente de Gradient Stochastique (Stochastic Gradient Descent (SGD))
 - Adam (version améliorée de descente de gradient)...

Le module tf.keras.optimizers propose l'implémentation Python de plusieurs algorithmes d'optimisation.

avril 2022 - V2.1 18/24

Visualisation des itérations d'algorithmes de descente de gradient pour une fonction de perte ultra-simple à seulement 2 variables :

(source: github.com/Jaewan-Yun/optimizer-visualization)

Vidéo d'explication de l'algorithme de back propagation :

avril 2022 – V2.1 19/24

Mise en oeuvre dans l'APP

1 – Auto-formation/ Réseau dense

- Les trois notebooks ML1_MNIST.ipynb, ML2_DNN.ipynb et ML3_DNN_suite.ipynb visent les savoir-faire:
 - charger et pré-traiter les images du MNIST,
 - construire un réseau de neurones dense,
 - entraîner le réseau à reconnaître les images du MNIST,
 - évaluer et exploiter le réseau entraîné.
- Les modules Python utilisés pour créer les réseaux de neurones et les entraîner : tensorflow et keras.
- Les scores obtenus avec des réseaux denses peuvent atteindre 98% de réussite.

avril 2022 – V2.1 20/24

Mise en oeuvre dans l'APP

Améliorer significativement les scores de réussite → réseau spécialisé dans le traitement des images : réseau de neurones convolutifs Convolutional Neural Network (CNN).

2 – Auto-formation / Réseau convolutif

- Le notebook ML4_CNN.ipynb vise les savoir-faire :
 - construire un réseau de neurones convolutif inspiré du réseau LeNet5 (un des premiers RNC proposé par Yann LeCun et al. dans les années 90),

Yann Lecun et al., 1998, "Gradient-based learning applied to document recognition", Proceedings of the IEEE, 86 (11)

- entraîner le réseau à reconnaître les images du MNIST,
- évaluer et exploiter le réseau entraîné.

avril 2022 - V2.1 21/24

APP 000

Mise en oeuvre dans l'APP

3 – Projet : Entraîner un réseau de neurone avec une banque de données spécifique

Pour ce projet d'équipe, les étapes sont :

- Choix d'une banque de données spécifique à votre projet à trouver sur Internet (images ou autre...).
- Choix du réseau (dense ou convolutif) à entraîner, en utilisant les acquis d'apprentissage de l'auto-formation.
- Entraînement supervisé du réseau de neurones avec la banque de données choisie, évaluation du réseau entraîné.

avril 2022 – V2.1 22/24

Vidéographie

How machines learn

Backpropagation

23/24 avril 2022 - V2.1

Biliographie

Machine Learning

- Intelligence Artificielle, 3e édition, PEARSON Education, 2010, ISBN: 2-7440-7455-4, aima.cs.berkeley.edu
- [2] What is artificial intelligence (AI), and what is the difference between general AI and narrow AI?, Kris Hammond, 2015 www.computerworld.com/article/2906336/what-is-artificial-intelligence.html
- [3] Stanford Encyclopedia of Philosophy, plato.stanford.edu/entries/artificial-intelligence
- [4] Deep Learning., Goodfellow, Ian; Bengio, Yoshua; Courville, Aaron (2016), MIT Pres, ISBN 9780262035613

avril 2022 – V2.1 24/24