Теоритический миниум

Содержание

1							
	1.1	Термическое и калорическое уравнения состояния термо-					
	1.2	динамической системы Запись с их помощью 1-го начала термодинамики (для эле-					
	1.2	ментарного и для произвольного термодинамического про-					
		цесса)					
2							
_	2.1	Теплоёмкость					
	2.2	Зависимость теплоёмкостей идеального газа c_p и c_v от типа молекулы, связь между ними (уравнение Майера)					
	2.3	Термическое и калорическое уравнения состояния идеального газа					
3							
J	3.1	Политропический процесс с идеальным газом					
	$\frac{3.1}{3.2}$	Уравнение Пуассона					
	0.2	pasienne Trjaccona I I I I I I I I I I I I I I I I I I I					
4 Скорость звука в идеальном газе							
5	тох	Тоже не готово , как и предыдущее все					
	5.1	±					
	5.2	2-е начало термодинамики для равновесных (обратимых)					
		и неравновесных (необратимых) процессов в термодинами-					
		ческой системе					
	5.3	Изменение энтропии идеального газа в результате перехода					
		между его равновесными состояниями					
6	Пока не сделано						
	6.1	Термодинамические функции					
	6.2	Метод получения соотношений Максвелла					
7	Поп	Пока не сделано					
	7.1						
	7.2	Уравнение Клапейрона-Клаузиса и его физический смысл					

1.1 Термическое и калорическое уравнения состояния термодинамической системы

Что бы из общих термодинамических сооотношений получать конкретные результаты необходимо знать **термическое уравнение состояния:**

$$f(P, V, T) = 0 (1)$$

Так же необходимо знать внутреннюю энергию тела как функцию параметров, определяющих его состояние, – это есть **Калорическое уравнение состояния:**

$$f(P, V, T) = 0 (2)$$

1.2 Запись с их помощью 1-го начала термодинамики (для элементарного и для произвольного термодинамического процесса)

я хз как записать термическое и калорическое, надо посмотреть у алексашиной

2

2.1 Теплоёмкость

Обозначается обычно C и есть отношение бесконечно малого количества теплоты δQ , полученного телом к соответствующему приращению dT его температуры:

$$C = \frac{\delta Q}{dT} \tag{3}$$

Также сразу отметим связь между молярной $c_{\nu}=C/\nu$ и удельной $c_{m}=C/m$ теплоёмкостями.

2.2 Зависимость теплоёмкостей идеального газа c_p и c_v от типа молекулы, связь между ними (уравнение Майера)

Молекулы можно охарактеризовать степенями свободы – характеристики движения механической системы. Число степеней свободы определя-

ет минимальное количество независимых переменных (обобщённых координат), необходимых для полного описания движения механической системы. Обозначим это число за i. Тогда: $c_p = \frac{i+2}{2} \cdot R$ и $c_v = \frac{i}{2} \cdot R$. Отметим сразу, что показатель адиабаты (коэффицент Пуасона есть – $\gamma = \frac{c_p}{c_v} = \frac{i+2}{i}.$ Уравнение Майера: $c_p = c_v + R$

2.3Термическое и калорическое уравнения состояния идеального газа

Итак, записав первое начало термодинамики $Q = \Delta U + A$, получим, что для одного моля идеального газа термическим уравнением будет являться PV = RT – уравнение Менделеева-Клайперона.

как записать калоическое - я хз

3

Политропический процесс с идеальным газом 3.1

Политропический процесс – процесс протекающей при постоянной теплоемкости: C=const. В случае идеального газа имеем:

$$CdT = c_v dT + \frac{\nu RT}{V} dV \tag{4}$$

$$PV^n = const$$

Где $n=rac{C-c_p}{C-c_v}$ и называется показателе политропы.

Рассмотрим частные случаи

Название процесса	Теплоёмкость	$\mid n \mid$	Уравнение	
Адиабатический	C = 0	$n = \gamma$	$PV^{\gamma} = const$	
Изобарический	$C = c_p$	n = 0	P = const	
Изохорический	$C = c_v$	n = 1	V = const	
Изотеримический	$C = \infty$	n = 1	T = const	

3.2Уравнение Пуассона

Если теплоёмкости c_p и c_v не проктически не меняются в широком диапозоне температур, то тогда $\gamma=\frac{c_P}{c_V}=const$, и интегрируя несколько преобразованное уравнение Менделеева-Клайперона получаем **уравне**ние Пуассона

$$PV^{\gamma} = const$$

4 Скорость звука в идеальном газе

Так как газы обладают упругостью объёма, а не формы, то в них могут распространяться только продольные волны (но не попереченные и не сдвиговые) волны разрежения-уплотнения. $c_{zvyka} = \sqrt{\partial P/\partial \rho}$. Или же представим в виде.

$$c_{zvyka} = \sqrt{\gamma P/\rho} = \sqrt{\gamma RT/\mu}$$

5 Тоже не готово, как и предыдущее все

Изменение энтропии идеального газа в результате перехода между его равновесными состояниями.

5.1 Энтропия

Допустим, что круговойпроцесс, совершаемы сисистемой – квазистатический. Неравенство Клаузиса

$$\oint \frac{\delta Q}{T} \le 0$$

Теперь температура самоготела равна температуре окружающей среды Т. Для квазистатического процесса неравенство Клаузиуса превращается в равенство

$$\oint \frac{\delta Q}{T} = 0$$

На этом равенстве и введено понятие энтропии S.

Энтропия системы есть функция состояния определенная с точностью до произвольной постоянной. Разность энтропий в двух равновестных состояниях 2 и 1, по определению, равна приведенному количеству, которое надо сообщить системе, чтобы перевести её из состояния 1 в состтояние 2:

$$S_1 - S_2 = \int_{1 \to 2(kvazistat)} \frac{\delta Q}{T}$$

Для дифференциала имеем

$$dS = \left(\frac{\delta Q}{T}\right)_{kvazistat}$$

5.2 2-е начало термодинамики для равновесных (обратимых) и неравновесных (необратимых) процессов в термодинамической системе

Приведем две формулировки, которые эквивалентны.

Формулировка Клаузиуса. Невозможен круговой процесс, единственным результатом которого был бы переход тепла от более холодного тела к более нагретому. (Тупа переход, без какой либо внешней работы).

Формулировка Томпсона. Невозможен круговой процесс, единственным результатом которого было бы совершение работы за счет теплоты, взятой от какого-либо тела. (Короче, невозможна машина Томпсона (машина которая берет тепло из нагревателя и всё нго на работу спихивает, холодильника, вообще, нет)).

тепловая машина — устройство, которое преобразует теплоту в работу или обратно и действует строго периодически, т. е. после завершения цикла возвращается в исходное состояние.

5.3 Изменение энтропии идеального газа в результате перехода между его равновесными состояниями

Из татради овчинкина переписать

6 Пока не сделано

6.1 Термодинамические функции

Объединённое уравнение 1-го и 2-го начал термодинамики для равновесных процессов и последовательная «цепочка» термодинамических функций (внутренняя энергия, энтальпия, свободная энергия Гельмгольца, термодинамический потенциал Гиббса).

6.2 Метод получения соотношений Максвелла

7 Пока не сделано

7.1 Фазовые переходы (I и II родов)

Фазовые превращения, при которых первые производные функции $\mu(T,P)$ (химический потенциал $\mu=\left(\frac{\partial U}{\partial N}\right)_{S,V}$) меняются скачкообразно, называ-

ются фазовыми превращениями **первого рода**. Поскольку $v = \left(\frac{\partial \mu}{\partial P}\right)_T$

Фазовые превращения при которых первые производные одной и той же функции остаются непрерывными, а вторые меняются скачкообразно, называются фазовыми превращениями **второго рода**.

Фазой называется макроскопическая физически однородная часть вещества, отделенная от остальных частей системы границами раздела, так, что она может быть извлечена из системы механическим путём.

Например, если в сосуде находится вода и водяной пар то система двухфазная, и т. д. В системе может быть несколько твердых и жидких фаз. Но не может содержать более одной газообразной фазы, ибо все газы смешиваются между собой.

7.2 Уравнение Клапейрона-Клаузиса и его физический смысл