Московский Государственный Университет им. М.В. Ломоносова Факультет Вычислительной Математики и Кибернетики Кафедра Суперкомпьютеров и Квантовой Информатики

Спецкурс: системы и средства параллельного программирования.

Отчёт № 4. Параллельный алгоритм перемножения матриц(DNS).

Работу выполнил **Тимачев А. А.**

Постановка задачи и формат данных.

Задача: Разработать параллельную программу с использованием технологии MPI, реализующую алгоритм перемножения плотных матриц AxB = C. Тип данных – double. Провести исследование эффективности разработанной программы на системе Blue Gene/P. **Формат командной строки:** <имя файла матрицы A > <имя файла матрицы B > <имя файла матрицы C >.

Формат файла-матрицы/вектора: Матрица представляются в виде бинарного файла следующего формата:

Тип	Значение	Описание
Число типа char	T – d (double)	Тип элементов
Число типа uint64_t	N – натуральное число	Число строк матрицы
Число типа uint64_t	М – натуральное число	Число столбцов матрицы
Массив чисел типа Т	N ×M элементов	Массив элементов матрицы

Элементы матрицы хранятся построчно.

Результаты выполнения.

Результаты:

Максимальное время вычислений (в секундах)					
Размеры матриц	Количество процессов				
	1	8	27	125	125 mapped
1024x1024	24.341995	2.960859	0.886583	0.190751	0.192739
2048x2048	206.715922	24.382247	7.17451	1.536643	1.543615
4096x4096	1800.914218	206.876599	58.937458	12.696672	12.716703

Ускорение вычислений					
Размеры матриц	Количество процессов				
	1	8	27	125	125 mapped
1024x1024	1	8.221261127	27.45596859	127.6113625	126.2951193
2048x2048	1	8.478132553	28.81254915	134.5243638	133.9167616
4096x4096	1	8.705258239	30.55636057	141.8414383	141.6180136

Эффективность вычислений					
Размеры матриц	Количество процессов				
	1	8	27	125	125 mapped
1024x1024	1	1.027657641	1.016887726	1.0208909	1.010360954
2048x2048	1	1.059766569	1.06713145	1.076194911	1.071334093
4096x4096	1	1.08815728	1.131717058	1.134731506	1.132944109

Максимум среди накладных расходов на каждый процесс (в секундах)					
Размеры матриц	Количество процессов				
	1	8	27	125	125 mapped
1024x1024	0.32187	0.229334	0.164046	0.495332	0.446581
2048x2048	1.325738	1.046939	0.795536	0.622216	0.613686
4096x4096	3.171339	3.807953	2.706676	1.606182	1.575676

Проводилось перемножение матриц с размерами 1024x1024, 2048x2048, 4096x4096. Время, ускорение, эффективность, а также накладные расходы в зависимости от числа процессов и размеров матриц указаны в таблицах выше.

Основные выводы.

Исследования показывают, что стадия вычислений очень хорошо распараллеливается даже при относительно малых размерах матриц. Причем ускорение на одном и том же количестве процессов растет при увеличении размеров матриц, хоть и незначительно. Накладные расходы на каждый процесс немного сокращаются при увеличении числа процессов, однако суммарные накладные расходы, конечно же, растут. Произвольный мэппинг совсем не влияет на скорость вычислений, а максимум среди накладных расходов на каждый процесс даже немного падает.