Assignment On

Data Mining (MCSE 642)

Assignment – 01

Submitted to

Dr. Md Tauhid Bin Iqbal

Submitted by:

Mohammed Morad Hossen

Student ID: MCE 079 055 32

Dept of Computer Science and Engineering

Stamford University Bangladesh

" Name! Wohammed World a TOT PEN ID: MCE 079 05532

Income in a nominal feature. It can be High, median Low. I will nummarize the final decision for Income feature

Income	Yen	No	Number of Instances
High	2	2	4
Medium	4	2	6
Low	3	١	4

Then we will calculate weighted num of Chini index for Income feature

S.TUDENT

Student in a nominal feature. It can be yes, No. g will nummanite the final decinion for student teature

Ten	No	Number of Instances
6	增1	7
3	4	7
		(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

Then we will calculate weighted sum of himi Enden for Income feature

$$= \frac{7}{1} \frac{1}{10.25} + \frac{1}{11}$$

$$= \frac{7}{14} \frac{1}{10.25} + \frac{7}{14} \frac{1}{14} = 0.245$$

$$= 0.125 + 0.245 = 0.37$$

Age is a nominal feature . 9t can be <=30, 31.40, >40

Age is a nominal feature . 9t can be <=30, 31.40, >40

A will numerite the final tecinion for Age feature.

Age	tes	No	Number of Instances
∠=30	2	3	5
31.40	4	0	4
740	3	2	5

contre lating enedit hating to a nominal scalure. It

Then we will calculate nom of GINI Index for Age feature = (5/14) x0.48 + (4/14) x0 + (5/14) 0.48 = 0.171 + 0.171 = 0.34 chedit-Rating in a nominal feature. It can be fain, Excellent. I will nummarite the final decision for enedit rating.

Cnedit-Rating	700	но	Number of Instances.
Fain	6	2	8
Excellent	3	3	6

Then we will calculate weighted sum of GINI
inden for credit Rating

$$= (8/14) \times 0.28 + (4/14) (0.5)$$

$$= 0.22 + 0.21 = 0.43$$

Feature	WINJ INGER
Age	0.34
Income	0.443
Student	0.37
Credit-Ruting	0.43

Hene Age in the winner feature because its cont in lowest (0.34). The Age attribute will be considered as the root node. Calculating Entropy

$$E(s) = \frac{c}{s} - P_{i}(log_{i}P)$$

Buy Computer Yes NO 9 5

Entropy (Buy-Computer)

$$= -\left(\frac{9}{14}\right) \log_{1}\left(\frac{9}{14}\right) - \frac{5}{14}\left(\log_{1}\frac{5}{14}\right)$$

$$= -0.64 \times (-0.64) - 0.36\left(-1.44\right)$$

$$= 0.41 + 0.53 = 0.94$$

1	Buyes		
Income	Byn Co	moster	Numbe of
-nome	Yes		Intances
Hoh	2	2	4
Medium	7	2	6
low	3	1	4

Entropy (Income, H8th) = -
$$\frac{2}{7} \log_2(\frac{1}{7}) - (\frac{2}{7}) \log(\frac{1}{7})$$

= -0.5(-1) - (0.5)(-1)
= 0.5 + 0.5 = 1

Entropy (Buy Computer, Income)

= P(High) E(2,2) + P(medium) E(4,2) + P(low) E(3,1)

= 44 × 1 + 44 × 0.92 + 4/14 × 0.82

= 0.29 + 0.4 + 0.23 = 0.92

Information Gain (Buy Computer, Income)

= E(Buy Computer) - E(Buy Computer, Incom)

= 0.94 - 0.92

= 0.02

student

1 A	Buy Computer		Number of Interco
student	Yes	00	
Yes	6	1	7
No	3	4	7

Information Crain (Buy Computer, Student) (6) (6)

ZE (Buy Computer) - E (Buy Computer, Student)

± 0.94 - 0.79 = 0.15

AGE

1	by Computer_		Wimber of
rige	yes	100	Imparces
<230	2	3	5
31.40	4	0	4
>40	3	2	5

Enthopy (Age, 740) =
$$-\frac{3}{5}\log\frac{3}{5}$$
 - $\frac{2}{5}\log\frac{2}{5}$
= $-0.6(-0.74)$ - $0.4(-1.32)$
= $0.44 + 0.53 = 0.97$

chedit_Rating

Credit-Rating	Bay Con	poter	Number of Instances
d	Yes	No	Instances
fair	Ь	2	8
Excellent	3	3	6

Enthopy (c.R, fain) =
$$-\frac{6}{8}\log_{1}\frac{6}{8} - \frac{2}{8}\log_{1}\frac{2}{8}$$

= $-0.75(-0.72) - 0.25(-1)$
= $6.33 + 0.5 = 0.83$

Entropy (c.R, Excellend) =
$$-3/\log_2 3/6 - 3/6 \log_2 3/6$$

= $-0.5(-1) - (0.5)(-1)$
= $0.5 + 0.5 = 1$

Entropy (C.R. Buy computer)

$$=\frac{8}{14}(0.83)+\frac{6}{14}(1)$$

 $=\frac{20.53}{14}=20.47+0.43=0.9$

feature	Intermation (nain	
Age	0.24	
Income	0.02	
Student	0.15	
Cnedit-Kating	0.04	-

Age feature produce highest score. So Age will be considered on the root node.

Gain Rations (Decinion, Income)

= T.G (Decinion, Income)

Spliting (Decinion, Income)

= 0.02

- 0.92 = 0.02

Gain Ratio = (Decinion, Student)

- 1.G (Decinion, Student)

- Spliting (Decinion, Student)

- O.15

- 0.15

- 0.19

Grain Patio 2 (Decinion, enedit-Ration) = 1.6 (Decinion, C.R) Spliting (Decinion, CR) 2 0.04 2 0.09 2 0.04

reature /	Gain Ratio
Age	0.34
Income	0.02
Student	0.19
Credit Rating	0.04

there age feature has highest gain Rotto and has been selected as noot wode.