Этакое большое ничего и матстат

Белкин Дмитрий, U-1152 Бертыш Вадим, СПБГЭТУ «ЛЭТИ» 4373

15 июня 2016

Основные определения

Определение 1 (Статистический эксперимент). Тройка $(\mathfrak{X}, \mathfrak{F}, \mathcal{P})$ называется статистическим экспериментом

- 🕱 Множество результатов эксперимента
- 👸 Совокупность наблюдаемых событий
- $\mathcal{P} = \{P_{\theta}, \theta \in \Theta\}$ Семейство вероятностных распределений

Дальше положим $\mathfrak{X} = \mathbb{R}^n$, $\mathfrak{F} = \sigma(\mathfrak{F}_1 \times \cdots \times \mathfrak{F}_n) = \mathfrak{B}_n$

Определение 2 (Статистика). Измеримая функция $T:\mathfrak{X}\to E$ называется статистикой

Определение 3 (Подчиненная статистика). Статистика T называется подчиненной, если её распределение не зависит от параметра

$$P_{\theta}(T \in A) = P_{T}(A)$$

Определение 4 (Достаточная статистика). Статистика T назвается достаточной, если условное распределение X при условии T не зависит от параметра

$$P_{\theta}(X \in A|T) = P_{X|T}(A), \forall \theta \in \Theta$$

Подчиненная не содержит информации о параметре, достаточная содержит всю информацию о параметре

Определение 5 (Минимальная достаточная статистика). Достаточная статистика T называется минимальной, если, $\forall T_1$ достаточной $\exists g: T = g(T_1)$

Использование МДС максимально редуцирует имеющиеся данные

Основные типы задач статистики

- Точечное оценивание (статистики $\delta: \mathfrak{X} \to \Theta$)
- Доверительное оценивание с уровнем доверия $1-\alpha$ (${\cal Y}$ семейство подмножеств Θ)

$$\Delta: \mathfrak{X} \to \mathcal{Y}$$

такие, что
$$P_{\theta}(\theta \in \Delta(\vec{X})) \ge 1 - \alpha, \forall \theta \in \Theta$$

• Проверка гипотез (принятие решений) $H:\theta\in\Theta_*,\Theta_*\subset\Theta$ - Гипотеза. Выдвигают $H_0:\theta\in\Theta_0$ и $H_A:\theta\in\Theta$ Решающее правило - критерий

$$\phi: \mathfrak{X} \to [0;1]$$

 $\phi(\vec{X})$ - вероятность выбрать альтернативу (отвергнуть H_0)

Асимптотический подход Пусть $(\mathfrak{X}^{(n)},\mathfrak{F}^{(n)},\mathcal{P}^{(n)})$ последовательность статистических экспериментов $\mathcal{P}^{(n)}=\{p_{\theta}^{(n)},\theta\in\Theta\}$

Определение 6 (Состоятельность оценки). Точечная оценка $\delta^{(n)}(\vec{X})$ называется состоятельной, если

$$\delta^{(n)}(\vec{X}) \xrightarrow{p_{\theta}} \theta, \forall \theta \in \Theta$$

Определение 7 (Сильная состоятельность оценки). *Точечная оценка* $\delta^{(n)}(\vec{X})$ называется сильно состоятельной, если

$$\delta^{(n)}(\vec{X}) \xrightarrow[n \to \infty]{p_{\theta} = 1} \theta, \forall \theta \in \Theta$$

Определение 8 (Асимптотическая нормальность). *Точечная оценка* $\delta^{(n)}(\vec{X})$ называется асимптотически нормальной, если

$$\sqrt{n}(\delta^{(n)}(\vec{X}) - \theta) \underset{P_a}{\Rightarrow} \mathcal{N}(0, \sigma^2(\theta))$$

Методы накопления статистической информации

• Выборочный метод

Определение 9 (Выборка). набор НОРСВ $\vec{X} = (x_1, \dots, x_n)$ наызывается выборкой

Совместное распределение задается распрелелением x_1, Θ не меняется с ростом n

• Группировка

Разбиваем наблюдения на k групп. Наблюдаемые величины: $(x_1, z_1), \ldots, (x_n, z_n) \in \mathfrak{X}$, где x_i - наблюдаемое значение, а $z_i \in \{1, \ldots, k\}$ - принадлежность его к какой-либо группе. Распределения в пределах группы совпадают. Совместное распределение определяется распределением при каждом z_i - F_s , $s=1,\ldots,k$

• Регрессия

Определение 10 (Регрессия). Регрессией величины Y по X называют $\mathrm{E}[Y|X]=f(x)$

Модель основана на соотношении

$$E_{\theta}[Y, X(z)] = g_{\theta}(X(z)^T)$$

Распределение Y характеризуется F_z

Параметризация

$$\mathcal{P} = \{ p_{\theta}, \theta \in \Theta \}$$

По типу множества Θ можно выделить

- Параметрические $\Theta \subset \mathbb{R}^d$
- Семипараметрическими $\Theta \subset \Theta_1 \times \Theta_2, \Theta_1 \subset \mathbb{R}^d$
- Непараметрические (остальные)

Непараметрическое оценивание (Выборочный подход) Пусть $X_1, \ldots X_n$ - выборка из распределения $P_{\theta}, \theta \in \Theta$, истиное значение P_{θ} будем называеть *теоретическим распределением.*

Определение 11 (Выборочная функция распределения). Выборочной функцией распределения называют

$$F_n(x)=rac{1}{n}\sum_{i=1}^n\mathbbm{1}_{\{X_i< x\}}=rac{\mathit{Число наблюдений меньших }x}{\mathit{общее число наблюдений}}$$

Теорема 1 (Гливенко-Кантелли).

$$\sup_{x} \{ |F_n(x) - F(x)| \} \xrightarrow[n \to \infty]{P_{\theta} = 1} 0, \forall F$$

Утверждает сильную состочтельность F_n

Теорема 2 (Колмогорова).

$$\sqrt{n} \sup_{x} \{ F_n(x) - F(x) \} \underset{F}{\Rightarrow} \mathcal{K}$$

Где \mathcal{K} - распределение Колмогорова, функция распределения $\mathcal{K}(x) = \sum_{j=-\infty}^{\infty} (-1)^j e^{-2j^2 x^2}$ Даёт возможность строить доверительные области для функции распределения. Пусть α - малое число, x_{α} - квантиль уровня $1-\alpha$, тогда

$$1 - \alpha \approx P_F(\sqrt(n) \sup_{x} |F_n(x) - F(x)| < \alpha) = P_F(F_n(x) - \frac{x_\alpha}{\sqrt{n}} \le F(x) \le F_n(x) + \frac{x_\alpha}{\sqrt{n}})$$

Идея доказательства - преобразование Смирнова

Определение 12 (Преобразование Смирнова). x c непренывной функцией распределения F, Y = F(x), тогда

$$Y \sim \mathcal{U}(0,1)$$

Определение 13 (Порядковые статистики, вариационный ряд и ранги). *Достаточная статистика*

$$X_{(1)} \le X_{(2)} \le \dots X_{(n)}$$

называется вариационным рядом, $X_(k)$ - k-ая порядковая статистика. Ранг R_k - номер x_k в вариационном ряду

Выборочные характеристики

Определение 14 (Выборочные характеристики). Пусть \mathscr{F} - подмножество множество распределений $\alpha:\mathscr{F}\to\mathbb{R}$ - числовая характеристика. Тогда

 $\alpha(F)$ - теоретическая характеристика $\alpha(F_n)$ - выборочная характеристика

Числовые характеристики можно разделить на две вида:

- Характеристики $H(Eg_1(X), \ldots, Eg_n(X))$
- Непрерывный в равномерной метрике функционал G(F)

К первым относятся моментные характеристики, ко вторым квантили.

Теорема 3. Пусть X_1, \ldots, X_n - Выборка из распределения c функцией распределения F, числовая характеристика G(F) первого или второго типа существует, тогда c вероятностью 1

$$G(F_n) \underset{n \to \infty}{\longrightarrow} G(F)$$

Выборочные квантили

Определение 15. ξ_p - квантиль порядка $p,\,\xi_p=x_{([np]+1)},\,$ если $np\in\mathbb{Z}$

Параметрическое оценивание

Определение 16 (Точечная оценка). *Статистика* $\delta(\vec{X}), \, \delta: \mathfrak{X} \to \Theta$ называется точечной оценкой

Определение 17 (Функция потерь). *пусть* θ *реально значение параметра, тогда* $W(\delta(\vec{X}), \theta)$ *функция потерь, если*

- $W(\delta(\vec{X}), \theta) > 0, \forall \vec{X} \in \mathfrak{X}$
- $W(\theta, \theta) = 0$

Используют различные функции потерь (в дальнейшем используем функцию Гаусса)

$$W(\delta, \theta) = |\delta - \theta|$$
 (Лаплас)
 $W(\delta, \theta) = (\delta - \theta)^2$ (Гаусс)

Определение 18 (Риск). Puckom называют $R(\delta,\theta) = \mathrm{E}_{\theta}[W(\delta(\vec{X}),\theta)]$