

Modeling of a 2 DOF robot arm

Marzieh Ghayour Najafabadi - مرضیه غیور نجف آبادی 98242112

استاد درس: دکتر آرش صادق زاده

Modern Control 401-402

• سیستم مورد نظر، یک بازوی دو لینکه می باشد، که ورودی سیستم ما، نیرو های وارده به هریک از بازوها می باشد و خروجی مکان نهایی آن هارا تعیین میکند.

1. معادلات دینامیکی سیستم

فرض میگیریم که جرم و طول هر بازو یکسان است و برابرند با:

$$\bullet \quad m_1 = m_2 = m$$

•
$$l_1 = l_2 = l$$

$$1 = 1;$$

m = 1;

$$\begin{aligned} x_1 &= l\cos\theta_1 & & \dot{x}_1 &= -l\sin\theta_1\dot{\theta}_1 \\ y_1 &= l\sin\theta_1 & & \dot{y}_1 &= l\cos\theta_1\dot{\theta}_1 \end{aligned}$$

$$\begin{split} x_2 &= l\cos(\theta_1 + \theta_2) + l\cos\theta_1 \\ y_2 &= l\sin(\theta_1 + \theta_2) + l\sin\theta_1 \end{split} \qquad \qquad \dot{x}_2 = -l\left[(\sin\theta_1\dot{\theta}_1) + (\sin(\theta_1 + \theta_2)\,(\dot{\theta}_1 + \dot{\theta}_2) \right] \\ \dot{y}_2 &= l\left[(\cos\theta_1\dot{\theta}_1) + (\cos(\theta_1 + \theta_2)\,(\dot{\theta}_1 + \dot{\theta}_2) \right] \end{split}$$

از رابطه لاگرانژین برای به دست آوردن دو ترم نیرو استفاده میکنیم:

$$\bullet \quad KE = \frac{1}{2} m {v_1}^2 \ + \ \frac{1}{2} m {v_2}^2 \ + \ \frac{1}{2} I \omega^2_{\ 1} + \ \frac{1}{2} I \omega^2_{\ 2} = \ m l^2 [(3.5 + \cos\theta_2) \dot{\theta}_1^{\ 2} + \frac{3}{2} \dot{\theta}_2^{\ 2} + (3 + \cos\theta_2) \dot{\theta}_1 \dot{\theta}_2]$$

$$\bullet \quad PE = mgh_1 + mgh_2 = \ mgl[cos(\theta_1 + \theta_2) + 2cos\ \theta_1]$$

•
$$L = KE - PE =$$

$$ml^2[(3.5+\cos\theta_2)\dot{\theta_1}^2+\frac{3}{2}\dot{\theta_2}^2+(3+\cos\theta_2)\dot{\theta_1}\dot{\theta_2}]-\ mgl[\cos(\theta_1+\theta_2)+2\cos\theta_1]$$

$$T_{1} = \frac{d}{dt} \frac{\partial L}{\partial \theta_{1}} - \frac{\partial L}{\partial \dot{\theta}_{1}}$$
$$T_{2} = \frac{d}{dt} \frac{\partial L}{\partial \theta_{2}} - \frac{\partial L}{\partial \dot{\theta}_{2}}$$

$$\mathbf{F} = \mathbf{H}(\ddot{\mathbf{\theta}}) + \mathbf{C}(\dot{\mathbf{\theta}}, \mathbf{\theta}) + \mathbf{g}(\mathbf{\theta})$$

$$\begin{split} \begin{bmatrix} T_1 \\ T_2 \end{bmatrix} &= \begin{bmatrix} ml^2(7+2\cos\theta_1) & ml^2(3+\cos\theta_2) \\ ml^2(3+\cos\theta_2) & 3ml^2 \end{bmatrix} \begin{bmatrix} \ddot{\theta}_1 \\ \ddot{\theta}_2 \end{bmatrix} + \begin{bmatrix} ml^2(-\sin\theta_2)\dot{\theta}_2 & ml^2(-\sin\theta_2)\dot{\theta}_2 \\ ml^2(\sin\theta_2)\dot{\theta}_1 & 0 \end{bmatrix} \begin{bmatrix} \dot{\theta}_1 \\ \dot{\theta}_2 \end{bmatrix} \\ &+ \begin{bmatrix} -mlg(\cos(\theta_1+\theta_2)+\cos\theta_1) \\ mlg\cos(\theta_1+\theta_2) \end{bmatrix} \end{split}$$

معادلات به دست آمده، یک سیستم غیرخطی چند ورودی چند خروجی(MIMO) را توصیف میکند، برای تحلیل این سیستم باید آن را خطی سازی کنیم.

2. معادلات فضاى حالت

متغیرهای حالت سیستم به شکل زیر تعریف شده اند:

$$x_1 = \theta_1$$
 $\dot{x}_1 = \dot{\theta}_1$ $x_2 = \dot{\theta}_2$ $\dot{x}_2 = \dot{\theta}_2$ $x_3 = \dot{\theta}_1$ $\dot{x}_3 = \ddot{\theta}_1$ $x_4 = \ddot{\theta}_2$ $\dot{x}_4 = \ddot{\theta}_2$

ابتدا باید نقطه کار سیستم را پیدا کنیم تا بتوانیم با استفاده از ماتریس ژاکوبین، معادلات را هول نقطه کار، نقطه خطی سازی کنیم:

$$T_1=0$$
 , $T_2=0$ $ightarrow$

$$\begin{cases} x_1 = \frac{\pi}{2}, \\ x_2 = \frac{\pi}{2}, \\ x_3 = 0, \\ x_4 = 0 \end{cases}$$

ماتریس ژاکوبین را برای A,B,C,D تشکیل میدهیم و مقادیر نقطه کار را در آن قرار میدهیم:

$$J_{u} = \begin{bmatrix} \frac{\partial f_{1}}{\partial u_{1}} & \frac{\partial f_{1}}{\partial u_{2}} \\ \frac{\partial f_{2}}{\partial u_{1}} & \frac{\partial f_{2}}{\partial u_{2}} \\ \frac{\partial f_{3}}{\partial u_{1}} & \frac{\partial f_{3}}{\partial u_{2}} \\ \frac{\partial f_{4}}{\partial u_{1}} & \frac{\partial f_{4}}{\partial u_{2}} \end{bmatrix} \quad J_{x} = \begin{bmatrix} \frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \frac{\partial f_{1}}{\partial x_{3}} & \frac{\partial f_{1}}{\partial x_{4}} \\ \frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \frac{\partial f_{2}}{\partial x_{3}} & \frac{\partial f_{2}}{\partial x_{4}} \\ \frac{\partial f_{3}}{\partial x_{1}} & \frac{\partial f_{3}}{\partial x_{2}} & \frac{\partial f_{3}}{\partial x_{3}} & \frac{\partial f_{3}}{\partial x_{4}} \\ \frac{\partial f_{4}}{\partial x_{1}} & \frac{\partial f_{4}}{\partial x_{2}} & \frac{\partial f_{4}}{\partial x_{3}} & \frac{\partial f_{4}}{\partial x_{4}} \end{bmatrix}$$

$$A = \left[\begin{array}{cccc} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -0.4568 & -0.6196 & 0 & 0 \\ 0.2485 & -6.6174 & 0 & 0 \end{array} \right]$$

$$\mathbf{B} = \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \\ \mathbf{0}.7870 & -0.0426 \\ \mathbf{0}.0426 & \mathbf{0}.1349 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad D = 0$$

% State space ----- $A = [0 \ 0 \ 1 \ 0; 0 \ 0 \ 0 \ 1; -0.4568 \ -0.6196 \ 0 \ 0; 0.2485 \ -6.6174 \ 0 \ 0];$ $B = [0 \ 0; 0 \ 0; 0.7870 \ -0.0426; 0.0426 \ 0.1349];$ $C = [1 \ 0 \ 0 \ 0; 0 \ 1 \ 0 \ 0; 0 \ 0 \ 1 \ 0; 0 \ 0 \ 0 \ 1];$ robotarm = ss(A,B,C,0);

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix} = C \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

3. نمایش کانونیکال جردن ماتریس های فضای حالت:

%Jordan canonical form matrix----canon(robotarm, "Modal");

```
%Eigenvalues----
eigA_o = eig(A);
```

4. مقادير ويژه ماتريس A:

```
-0.0000 + 0.6942i
-0.0000 - 0.6942i
0.0000 + 2.5675i
0.0000 - 2.5675i
```

5. كنترل پذيرى:

برای بررسی کنترل پذیری سیستم، ماتریس کنترل پذیری را تشکیل داده و رنک آن را حساب میکنیم. درصورت رنک کامل نبودن، مودهای کنترل پذیر و کنترل ناپذیر سیستم را پیدا کرده و فرم کانونیکال کنترل پذیر آن را میسازیم.

```
%Controllability-----
phi_c = ctrb(A,B);
rank(phi_c);
```

```
phi c =
                  0.7870 -0.0426
                                    0
                                             0 -0.3859 -0.0641
                  0.0426 0.1349
       0
             0
                                    0
                                            0 -0.0863
                                                      -0.9033
   0.7870 -0.0426
                      0
                             0 -0.3859 -0.0641
                                                    0
                                                             0
                              0 -0.0863 -0.9033
   0.0426
         0.1349
                      0
                                                     0
                                                             0
```

```
ans =
```

رنک سیستم کامل است بنابراین، مود کنترل ناپذیر ندارد و همه مودها کنترل پذیر هستند.

6. رویت پذیری:

برای بررسی رویت پذیری سیستم، ماتریس رویت پذیری را تشکیل داده و رنک آن را حساب میکنیم. درصورت رنک کامل نبودن، مودهای رویت پذیر و رویت ناپذیر سیستم را پیدا کرده و فرم کانونیکال رویت پذیر آن را میسازیم.

```
% Observability-----
phi_o = obsv(A,C);
rank(phi_o);
```

```
phi_o =
          0
   1.0000
                     0
         1.0000
          0
                  1.0000
              0
                   0
                           1.0000
              0
                   1.0000
       0
              0
                      0
                           1.0000
  -0.4568
         -0.6196
                      0
                              0
  0.2485
         -6.6174
                      0
                               0
  -0.4568
         -0.6196
                      0
                              0
   0.2485
         -6.6174
                      0
                              0
      0
              0
                 -0.4568
                         -0.6196
      0
              0
                  0.2485 -6.6174
                 -0.4568 -0.6196
      0
              0
                 0.2485 -6.6174
      0
              0
                   0
   0.0547
                               0
          4.3832
  -1.7579 43.6360
                      0
                               0
```


رنک سیستم کامل است بنابراین، مود رویت ناپذیر ندارد و همه مودها رویت پذیر هستند.

7. تحقق

x3 x1 x2 0 -3.177 0 0 **x**1 x21 0 х3 0 0 B = u1 u2 x1 1 -1.082 0 0 x2 x3 0 -2.097 x4 C = x3 x2 x1 x4 0 0.787 0 -0.3859 0 0.0426 0 -0.08633 **y**1 y2 0 -0.3859 у3 0.787 0 0 -0.08633 0.0426 0 y4

A =						
	x1	x2	2	κ3	x4	l
x1	0	1		0	C)
x2	0	0		1	C)
x3	0	0		0	1	
x4	-3.177	0	-7.0	74	C)
B =						
	u1		u2		u3	u4
x1	0		0	0	.787	0.0426
x2	0.787	0.0426		0		C
x3	0		0	-0.3859		-0.08633
x4	-0.3859	-0.086	533		0	C
C =						
	x1	x2	2	3	x4	1
у1	1	0		0	C)
y2		0	-2.09	97	C)
2 -						

7.1. تحقق كانونيكال كنترل پذيرى:

```
% Realization-----
canon(robotarm,"Companion");
```

با استفاده از دستورات متلب تنها میتوان تحقق کانونیکال کنترل پذیری را نمایش داد.

7.2. تحقق كانونيكال رويت پذيرى:

```
% Realization-----
canon_cont = canon(robotarm, "Companion");
transpose(canon_cont);
```

با transpose گرفتن از تحقق کنترل پذیری، میتوانیم تحقق رویت پذیری را نیز به دست بیاوریم.

% Transfer function tf(robotarm);

8. تابع تبدیل (transfer function):

ماتریس(G(s) ، شامل دو ستون و چهار سطر می باشد. 4 تابع تبدیل به ازای ورودی اول:

4 تابع تبدیل به ازای ورودی دوم:

9. پایداری

9.1. ليايانوف:

با توجه به بخش 4 (مقادیر ویژه A)، قسمت حقیقی هر 4 مقدار ویژه، صفر می باشد، بنابراین، سیستم به دلیل داشتن بیشتر از یک صفر، پایدار لیاپانوف نمی باشد.

9.2. مجانبي:

با توجه به مقادیر ویژه A، قسما حقیقی هر 4 مقدار، صفر می باشد و به دلیل داشتن مقدار ویژه نامنفی، سیستم پایدار مجانبی نمی باشد.

9.3. پايداري **BIBO**:

قطب های تابع تبدیل با توجه به اینکه سیستم هم رویت پذیر و هم کنترل پذیر میباشد با مقادیر ویژه سیستم یکسان هستند. با توجه به اینکه هر4 تای این مقادیر، قسمت حقیقی صفر دارند، پس سیستم پایدار BIBO هم نمیباشد(پایداری مرزی BIBO دارد.)

%Poles and zeros----pole(tf_o);
tzero(tf(robotarm))

%Step response of the open loop system--figure(1)
step(robotarm)

10. طراحي فيدبك حالت

• پاسخ پله سیستم در حالت حلقه باز: این پاسخ کاملا ناپایدار و نامیرا می باشد.

برای پایدار کردن این سیستم میتوانیم فیدبک حالت بسته و Pole assignment انجام بدهیم و پاسخ های آن ها را بررسی کنیم. یک بار قطب هایی را نزدیک به محور $j\omega$ انتخاب میکنیم و بار دیگر دور از آن. با توجه به اینکه تمامی مودهای این سیستم کنترل پذیر می باشند، میتوان همه آن ها را با فیدبک حالت پایدار کرد.

$oldsymbol{\omega}$ نزدیک به محور $oldsymbol{\omega}$:

%Step response of the closed loop system%Pole assignment
p = [-1,-2,-3,-4]; %near to zero
k = place(A,B,p);
Acl = A-B*k;
syscl = ss(Acl,B,C,0);
figure(2)
step(syscl)

$oldsymbol{\cdot}$ دور از محور $oldsymbol{\omega}$:

هرچقدر قطب هارا دورتر از محور به سمت منفی بی نهایت قرار دهیم، پاسخ ما سریع تر پایدار میشود.

```
p = 1000*[-1,-2,-3,-4]; %far from zero
k = place(A,B,p);
Acl = A-B*k;
syscl = ss(Acl,B,C,0);
figure(3)
step(syscl)
```


Root Locus .11

12. طراحی رویتگر

```
sysObserver =
     x1 x2 x3 x4
    -1 0 0 0
  x1
     0 -2 0 0
  x2
     0 0 -3 0
  x3
  x4
 B =
  x1
        0
               0
                     1
                             0
                                   1
                                          0
                0
                      0
                             2
  x2
         0
                                    0
                                           1
                                   3
     0.787 -0.0426 -0.4568 -0.6196
                                           0
  x3
  x4 0.0426 0.1349 0.2485 -6.617
 C =
     x1 x2 x3 x4
  y1
  y2
  у3
  у4
  у5
        0
           0
  у6
        1
           0
  у7
        0
           1 0
  y8 0 0 0
```

```
%Observer designing
p3 = [-1, -2, -3, -4];
L = place(A',C',p3)';
A_obs = A-L*C;
B_obs = [B, L];
C_obs = [C;eye(4)];
sysObserver = ss(A_obs,B_obs,C_obs,0);
```

```
%Time response
%openloop
[y,t] = step(tf_o,8);
opts = timeoptions;
opts.Grid = 'on';
impulseplot(tf_o,opts);
```

13. پاسخ زمانی

13.1. پاسخ زمانی سیستم حلقه باز

13.2. پاسخ زمانی سیستم حلقه بسته با قطب های دور از مبدا

```
%closedloop
[y,t] = step(syscl,8);
opts = timeoptions;
opts.Grid = 'on';
impulseplot(syscl,opts);
```

