Course 10

인공신경망

사람을 본따 만든 컴퓨터만의 신경망

인간의 뇌는 어떻게 동작할까요?

인공신경망은 인간의 뇌가 동작하는 방식에

영감을얻어만들어진모델입니다.

인공신경망

다음중인공신경망을응용한 딥러닝모델이아닌것은?

다음중인공신경망을응용한 딥러닝모델이아닌것은?

컴퓨터는이데이터가올바른데이터인지판단하기위해서

데이터에 여러가지 값을 더하고 곱해보며 정답을 찾아 학습해 나갑니다.

데이터에 <u>여러가지 값을 더하고 곱해보며</u> 정답을 찾아 학습해 나갑니다. 가중치(Weight)

 x=데이터 w=가중치 a=합계 f(a)=활성화 함수 y=타깃(정답)
 x2

 w1
 y

 a=합계 f(a)=a가 0보다 크면 1, 0보다 작으면 0 고로, y=f(a)=0 or 1

활성화함수(Activation Function)

컴퓨터가 결과를 쉽게 판단할 수 있도록 데이터를 변환시켜주는 함수 (예) 계단 함수(Step Function): 'a가 0보다 크면 1, 0보다 작으면 0')

컴퓨터는데이터를학습하는 과정에서 스스로 가중치를 수정하고,

중요성이 떨어진다 판단되는 노드들과의 **연결은 해제**하며

최적의 값을 찾아나갑니다.

인공신경망

출력데이터가 자꾸만 **0을 출력하는 것을 막기 위해 입력 데이터를 임의로 조정**하는 역할 입력 데이터와 가중치를 곱한 다른 데이터의 **결괏값들과 편향을 합산**하여 진행

인공신경망을계산해보자!

아래 주어진 입력 데이터 X_1 과 X_2 와 가중치(W)를 계산해 출력 데이터 Y를 알아내 봅시다!

- W_{1x}, W_{2x} 의 값은 0과 가까운 임의의 숫자가 주어진다.
- 히든 레이어로 향하면서 입력값(X)과 가중치(W)의 연산이 이루어진다. (히든 레이어 $1=X_1W_{11}+X_2W_{12}+b_1$)
- 히든레이어에서 활성화 함수를 통해 a가 0보다 작으면 0,0보다 크면 1을 반환한다

X 1	X 2	Y 1
0	0	
0	1	
1	0	
1	1	

인공신경망을계산해보자!

아래 주어진 입력 데이터 X_1 과 X_2 와 가중치(W)를 계산해 출력 데이터 Y를 알아내 봅시다!

- W_{1x}, W_{2x} 의 값은 0과 가까운 임의의 숫자가 주어진다.
- 히든 레이어로 향하면서 입력값(X)과 가중치(W)의 연산이 이루어진다. (히든 레이어 $1=X_1W_{11}+X_2W_{12}+b_1$)
- 히든레이어에서 활성화 함수를 통해 a가 0보다 작으면 0,0보다 크면 1을 반환한다

X 1	X 2	Y 1
0	0	0
0	1	1
1	0	1
1	1	0

손실함수(Loss Function)

출력 데이터와 정답과의 차이를 계산하는 함수 **손실 함수가 계산된 결괏값을 손실 점수**라고 하며, **손실 점수를 최소화**하는 것이 인공신경망의 목표

초기신경망에는히든레이어가없이

각각의 입력 데이터에 가중치를 곱해 합산한 데이터만으로 결과를 판단하는 형태였습니다.

초기 인공신경망의 형태

초기신경망의형태로는**XOR문제**와 같은 생각보다 단순한 문제를 해결하지 못했지만, 히든레이어의 등장으로레이어에서 **데이터의 수정이 가능**해지면서 이는 인공신경망의 또 다른 발전으로 이어졌습니다.

회로문제를풀어봅시다!

회로 문제를 풀어봅시다. 입력 데이터인 A와 B는 각각 값이 존재한다면 1을, 존재하지 않으면 0을 표시할 것 입니다. 입력되는 두 데이터가 회로의 조건을 충족한다면 1을, 충족하지 않으면 0을 우측 표에 기입해 봅시다.

입력		출력		
Α	В	F		
		AND	OR	NAND
0	0			
1	0			
0	1			
1	1			

회로문제를풀어봅시다!

회로 문제를 풀어봅시다. 입력 데이터인 A와 B는 각각 값이 존재한다면 1을, 존재하지 않으면 0을 표시할 것 입니다. 입력되는 두 데이터가 회로의 조건을 충족한다면 1을, 충족하지 않으면 0을 우측 표에 기입해 봅시다.

입력		출력		
Α	В	F		
		AND	OR	NAND
0	0	0	0	1
1	0	0	1	1
0	1	0	1	1
1	1	1	1	0

회로를 좀더 복잡하게 만들어봅시다!

회로를 조합해서 정답과 같은 결과를 출력하는 회로를 만들어봅시다.

회로를 좀 더 복잡하게 만들어봅시다!

회로를 조합해서 정답과 같은 결과를 출력하는 회로를 만들어봅시다.

레이어의 수가 많을수록 어떤 가중치가 부적절한 결과를 초래했는지 찾기 어렵기 때문에 입력 레이어에서 출력 레이어의 방향으로 거쳐온 경로를 **다시 역으로 거슬러 올라가면서** 최적의 값이 나올 수 있도록 **가중치를 수정**해 나가는 방법 학습데이터를 무리하여 **일정 수준 이상으로 학습**시킬 경우에는 새로운데이터에 대해 오차가 증가하는 **과적합이 발생**할 수 있습니다.

Dropout

전체 신경망에서 일정 비율의 노드를 임의로 잘라내 학습하는 방법

신경망을 분할하여 **각 부분마다 먼저 학습**을 마친 후, 이 결과 데이터로 **다시 전체 신경망을 학습**

초매개변수 조정 **에폭(Epoch, 학습 횟수)**, **레이어의 수**와 같은 **초매개변수를 조정**하는 방법

수고하셨습니다.