מודלים חישוביים, חישוביות וסיבוכיות | 67521

הרצאות | פרופ' אורנה קופרמן

כתיבה | נמרוד רק

'תשפ"ג סמסטר א

תוכן העניינים

3	מבוא לאוטומטים	I
3	 הרצאה	
4	 אוטומטים	

שבוע \mathbb{I} ו מבוא לאוטומטים

הרצאה

דוגמה נקפוץ לחלק האחרון של הקורס (סיבוכיות). בהינתן גרף לא מכוון $G=\langle V,E \rangle$, נרצה לדעת האם יש בו מעגל אוילר (כזה שעובר בכל צלע בדיוק פעם אחת).

אוילר הוכיח שיש מעגל כזה אם"ם דרגת כל הקודקודים זוגית, ולכן ניתן להכריע את הבעיה בזמן לינארית כי יש לבעיה אפיון מתמטי. מעגל המילטון הוא מעגל שעובר בכל קודקוד בדיוק פעם אחת. לבעיה הזו אין אפיון מתמטי, והוכח שאין אלג' יותר טוב מאשר מעבר על כל האפשרויות, בסיבוכיות אקספוננציאלי.

דוגמה בהינתן p,q, למצוא את p,q דורש זמן חישוב אקספוננציאלי באורך הייצוג, אפע"פ שהאלג' הוא לינארי במספר עצמו. זה משום , $n=p\cdot q$ שהפרמטר שלנו במקרה הזה הוא לא המספר אלא הייצוג (אנחנו מקבלים $\log n$ ספרות/אחדים ואפסים, לא את המספר במלואו).

דוגמה (למטה, ימינה ושמאלה בהתאמה) $\{u_i\}$, $\{d_i\}$, $\{f_i\}$, $\{l_i\}$ מהם יש צלעות בהתאמה) כאשר הצלעות הכיבים $\{t_i\}$ למעלה, למטה, ימינה ושמאלה בהתאמה) כאשר הצלעות הם צבעים (אדום, צהוב, ירוק).

. פלט: האם ניתן לרצף באופן חוקי ריבוע n imes n לכל n imes n, כאשר "חוקיות" מתבטאת בכך שצלעות סמוכות מסכימות על הצבע.

דוגמת ריצה באופן אינטואיטיבי, במקרים מסוימים, נוכל להציב אחד מהאריכים בפינה, למצוא אילו אריכים מתאימים לו מבחינת הצלעות הסמוכות, להציב אריכים חוקיים נוספים, וכך לחזור חלילה. לעתים (כמו זה שבתמונה), נוצרת תבנית של אריכים חוקיים על האלכסון (כלומר אריך א' בפינה השמאלית התחתונה, ואז ב' מימינו ומעליו, ואז ג' מימין ומעל כל ב') ואז אפשר לגדום את התבנית האינסופית הזו לריבוע $n \times n$ כל פעם שצריך ולהחזיר ריבוע חוקי. במקרה כזה הפלט יהיה כן.

איור 1: דוגמה לתבנית שנוצרת, אפשר להמשיך לצייר את האלכסון בכיוון דרום-מזרח ולחזור על התבנית החוצה עוד ועוד

הבעיה היא שאין שום ערובה לכך שהתבנית באמת קיימת במקרה הכללי, או שהיא נשמרת, ואי אפשר לרוץ עד ∞ . לכן התשובה היא שאין שום ערובה לכך שהתבנית באמת קיימת אמאר שפותר את הבעיה.

x וקלט וקלט רכנית מחשב P וקלט תכנית העצירה

.x עוצרת על פלט: האם P

אין לבעיה זו אלג' שפותר אותה בכל המקרים (תחת הנחות מסוימות, אפשר לפעמים לתת תשובה).

אוטומטים

הגדרה אוטומט הוא מחשב עם זכרון מוגבל.

ON, סדרת פקודות היא חוקית אם היא מתחילה ב-ON, OFF, U,D,L,R, סדרת פקודות היא חוקית אם היא מתחילה ב-ON, OFF, ON מסתיימת ב-OFF ומייצרת קו רקיע משמאל לימין.

(ולהפך) איור 2: דוגמה לקו רקיע חוקי, אסור ללכת שמאלה ואסור לעלות מיד אחרי שיורדים

נכתוב אוטומט שמחליט האם סדרת פקודות היא חוקית. אם נצליח לעבור בין המצבים (העיגולים), החל מהמצב הראשון (זה עם חץ ללא מקור) ועד למצב המקבל (עם העיגול הכפול) על קשתות קיימות, הרי שהסדרה חוקית.

איור 3: אוטומט חוקי

אינטואיטיבית, המצב האמצעי הוא זה שממנו אפשר לעשות מה שרוצים, העליון הוא אחרי עלייה והתחתון הוא אחרי ירידה. נשים לב כי מכולם אפשר לפנות ימינה. התחלתי המצבים, הא"ב, פונקציית המעברים, המצבים, הא"ב, פונקציית המעברים, המצבים, האדרה (automaton, DFA) הגדרה אוטומט (Q. ב-Q.

- $.Q imes \Sigma \mapsto Q$ 'היא פ δ •
- . וכו'. $\Sigma = \{0,1\}\,, \{0,1\}^4$ וכו'. אותיות, לדוגמה בוצה סופית של אותיות, לדוגמה ב
- . הריקה המילה היא ϵ ו של אותיות, של סדרה סופית $w=w_1,\dots,w_n$ מילה היא
- $\Sigma^* = \{w: \Sigma : \Sigma$ מילה סופית מעל מילים, ער כאשר בא מילים, בא מילים, ער מילים $L \subseteq \Sigma^*$

. ופ' המעברים היא $F=\{q_0\}$, $Q=\{q_0,q_1\}$, $\Sigma=\{0,1\}$ הזה במקרה במיור. במקרה הוא האוטומט בציור.

יכך ש: $r=r_0\dots r_n$ כך של מצבים היא סדרה של מעל $w=w_1\dots w_n$ כך ש

- $r_0 = q_0$ (הריצה מתחילה ב- $r_0 = q_0$).
- $r_{i+1}=\delta\left(r_i,w_{i+1}
 ight)$, הריצה מכבדת את $i\geq 0$ לכל •

 $q_0q_0q_1q_0$ עבור A_1 והמילה A_1 , הריצה היא

(rejecting) אם מרכון אחרת, אחרת, מקבלו. אחרת, היא ריצה מקבלת (accepting) אם אחרת היא ריצה הוא מקבלו. אחרת, r הוא דוחה היא ריצה מקבלת (מרכיבות מרכיבות מרכי

. מקבל את w אם הריצה של A על את אם הריצה A

. מקבל עליהן. A מקבל עליהן. השפה של האוטומט היא אוסף המילים שA

. (אפשר להוכיח באינדוקציה) אוגי (אבשר להוכיח ב-1-ים ב-1-ים להוכיח עבור עבור אוגי (מספר ה-1-ים להוכיח אוגי

הערה אם לא קיים מעבר עבור אות ומצב, אפשר או להחליט ש- δ לא מוגדרת על כל $Q imes \Sigma$ או להחליט שכל קשת לא קיימת מובילה לבור אות ומצב, אפשר או לאת ממנו.

. ונחשב את השפה שלו. A_2 , ונחשב את השפה שלו.

 A_2 איור 4: האוטומט

0.000, 0.000, 0.00000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.00000, 0.00000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.

אם נחשוב עוד קצת, נגלה ש-

 $L\left(A_{2}
ight)=\left\{ w:$ יש ב- w לפחות 1 אחד, ואחרי ה-1 האחרון יש מספר זוגי (או אפס) של w-ים w

בתרגול נוכיח את זה באופן פורמלי.

 $L_3 = \{w: 001 \;$ את הרצף מכילה את השפה היא מנסה לחשב את האוטומט. השפה היא $w\}$

 L_3 -איור פינגזר מ-נגזר איור פינגזר איור