

Introduction to Business Analytics: Case Study

강필성 고려대학교 산업경영공학부 pilsung_kang@korea.ac.kr

AGENDA

- 01 빅데이터 분석 개요 및 주요 개념
- 02 데이터 과학 프로젝트 절차
- 03 기계 학습 방법론
- 04 제조업 활용 사례: 가상 계측 모델 개발

• 문제 인식

- ✓ 반도체 공정은 I00개 이상의 세부 공정으로 이루어져 있으며, FAB-IN에서 FAB-OUT 까지 평균 45일 가까운 시간이 소요 (자동차 72시간, 철강 48시간 이내)
- ✓ 주요 공정 이후에 품질관리를 위해 계측을 수행
 - 샘플링 기반의 검사이므로 Type I/II 오류 발생
 - 계측 검사 기간에 소요되는 시간만큼의 Delay 발생

• 시도 I:FDC 데이터를 사용한 가상계측 모델 개발

Kang et. al. (2009) A virtual metrology system for semiconductor manufacturing, Expert Systems with Applications 36(10): 12554-12561.

• 데이터 탐색 및 전처리

✔ 대상 공정: Etching

FDC Summary variables

Etching process	Machine-chamber	Equipment sensors	Available variables
Etching1	8	48	192
Etching2	18	56	224

Target variables

System	Target	UCL	Mean	LCL
VM1	Target1	1.052	1.000	0.948
	Target2	1.060	1.000	0.970
VM2	Target3	1.056	1.000	0.972
	Target1	1.200	1.000	0.800

- 데이터 탐색 및 전처리
 - √ FDC data transformation
 - 참고: 최근에는 시간 정보를 반영하여 CNN 또는 RNN 구조를 사용하기도 함
 - (a) Before Reconstruction(Matrix Form)

LotID	WaferID	StepID
1	10	1
1	10	2
1	10	3
1	10	4
1	10	5
1	10	6
1	10	7
1	10	8

V ₁	V_2	• • •	V _n
xxx	xxx		xxx
xxx	xxx		xxx
xxx	xxx	• • •	xxx
xxx	xxx		xxx
xxx	xxx	• • •	xxx
xxx	xxx		xxx
xxx	xxx	• • •	xxx
xxx	xxx	• • •	xxx

(b) After Reconstruction(Vector Form)

Prediction Models

Multiple Linear Regression (MLR)

Support Vector Regression (SVR)

- 차원 축소: Dimensionality Reduction
 - ✓ VMI Model: II8 wafers with 1,536 variables
 - ✓ VM2 Model: 241 wafers with 1,792 variables
 - ✔ 가용한 웨이퍼 수에 비해 FDC Sensor 변수 수가 너무 많음
- 차원 축소 방법론
 - ✓ 변수 선택

Multiple Linear Regression (MLR)

GA-SVR

Principal Component Analysis (PCA)

• 차원 축소 결과

✓ 실질적으로 VM 모델을 구축하는데 사용된 FDC 변수의 수는 최소 8개, 최대 239개

Table 6

The number of input variables derived from each dimensionality reduction method for each target (A(B + C), A: total number of variables, B: the number of variables from equipment sensors, C: the number of variables from metrology data).

Method	VM1	VM1				
	Target1	Target2	Target3	Target1		
LR-A LR-S GASVR-A GASVR-S PCA-A-70 PCA-S-70 KPCA-A-70	34 (24 + 10) 10 (9 + 1) 106 (96 + 10) 72 (69 + 3) 30 (20 + 10) 20 30 (20 + 10)	22 (12 + 10) 8 (7 + 1) 239 (229 + 10) 48 (47 + 1) 30 (20 + 10) 20 30 (20 + 10)	34 (24 + 10) 12 (11 + 1) 219 (209 + 10) 90 (86 + 4) 30 (20 + 10) 20 30 (20 + 10)	21 (20 + 1) 21 (20 + 1) 154 (153 + 1) 122 (122 + 0) 23 (22 + 1) 22 24 (23 + 1)		
KPCA-S-70	21	21	21	23		

• VM 예측 오차

✔ 당시 산학과제 의뢰 기업에서 제시했던 허용 오차의 50%를 넘지 않음

VM1 Target1	Regression	Regression model						
Dim. reduction	LR	LR k-NN RT NN SVR						
LR-A	0.0297	0.0333	0.0345	0.0342	0.0254			
LR-S	0.0145	0.0365	0.0375	0.0184	0.0156			
GASVR-A	71.458	0.0464	0.0352	0.0365	0.0314			
GASVR-S	28.827	0.0366	0.0332	0.0389	0.0243			
PCA-A-70	0.0458	0.0468	0.0436	0.0436	0.0291			
PCA-S-70	0.0669	0.0637	0.0927	0.0457	0.0565			
KPCA-A-70	0.0460	0.0476	0.0425	0.0328	0.0291			
KPCA-S-70	0.0649	0.0661	0.1064	0.0587	0.0565			

VM1 Target2	Regression	Regression model						
Dim. reduction	LR	LR k-NN RT NN SVR						
LR-A	0.0121	0.0114	0.0174	0.0132	0.0093			
LR-S	0.0053	0.0111	0.0123	0.0148	0.0063			
GASVR-A	0.0351	0.0201	0.0139	0.0508	0.0150			
GASVR-S	5.5767	0.0175	0.0113	0.0133	0.0089			
PCA-A-70	0.0153	0.0146	0.0145	0.0180	0.0088			
PCA-S-70	0.0289	0.0263	0.0455	0.0248	0.0208			
KPCA-A-70	0.0153	0.0145	0.0141	0.0134	0.0087			
KPCA-S-70	0.0268	0.0244	0.0369	0.0226	0.0208			

VM1 Target3	Regression model					
Dim. reduction	LR	LR k-NN RT NN				
LR-A	0.0186	0.0259	0.0364	0.0262	0.0200	
LR-S	0.0116	0.0260	0.0346	0.0172	0.0143	
GASVR-A	0.0859	0.0362	0.0556	0.0502	0.0293	
GASVR-S	5.4033	0.0401	0.0575	0.0307	0.0271	
PCA-A-70	0.0283	0.0335	0.0493	0.0283	0.0245	
PCA-S-70	0.0353	0.0406	0.0542	0.0371	0.0307	
KPCA-A-70	0.0282	0.0336	0.0496	0.0359	0.0243	
KPCA-S-70	0.0350	0.0402	0.0662	0.0338	0.0309	

VM2 Target1	Regression	Regression model			
Dim. reduction	LR	k-NN	RT	NN	SVR
LR-A	0.0218	0.0503	0.0496	0.0243	0.0254
LR-S	0.0197	0.0388	0.0532	0.0247	0.0252
GASVR-A	5.9268	0.0321	0.0541	0.0346	0.0277
GASVR-S	0.6150	0.0358	0.0544	0.0388	0.0300
PCA-A-70	0.0375	0.0671	0.0614	0.0369	0.0353
PCA-S-70	0.0375	0.0673	0.0572	0.0374	0.0367
KPCA-A-70	0.0378	0.0727	0.0691	0.0418	0.0353
KPCA-S-70	0.0392	0.0761	0.0596	0.0395	0.0367

• VM 예측 예시

Virtual Metrology with Prediction Reliability

• 시도 I의 문제점

- ✓ 실제 공정에서 PoC를 수행한 결과 False Alarm이 자주 발생
- ✓ 원인: 학습에서 사용했던 FDC 데이터와 예측 모델 적용시 발생하는 FDC 데이터 간의 분포 차이 존재

Virtual Metrology with Prediction Reliability

• 시도 2

- ✔ 대안: 예측 모형의 신뢰도를 함께 제공하자
- ✔ 높은 신뢰도를 갖는 예측 결과는 그대로 사용하고, 아닐 경우 엔지니어가 개입

Model

- Kim et al. (2012). Machine learning-based novelty detection for faulty wafer detection in semiconductor manufacturing. Expert Systems with Applications 39(4): 4075-4083.
- Kang et al. (2011). Virtual metrology for run-torun control in semiconductor manufacturing. Expert Systems with Applications 38(3): 2508-2522.
- Kang et al. (2009). A virtual metrology system for semiconductor manufacturing. Expert Systems likewith university 36(10): 12554-12561.

- 데이터 탐색 및 전처리
 - ✔ 대상 공정: Photolithography
 - 웨이퍼(Wafer)에 빛을 쏘아 반도체 회로를 새기는 공정
 - 하나의 웨이퍼 위에 여러 번에 걸쳐 회로를 새김
 - 확대, 축소, 변형, 회전 등의 어긋남에 의해 최종 수율(yield)이 목표값에 비해 하락

Exposure 2 Exposure 1 2nd exp CoG

• 데이터 탐색 및 전처리

✓ 계측 정보: Overlay misalignment (Target 변수: 8개)

✓ FDC Data: 두 대의 장비로부터 수집된 4개월치 데이터, PM 기준으로 총 8가지 기간 존재, 133개의 FDC 입력 변수와 4개의 출력 변수 사용

	PI	P2	P3	P4	P5	P6	P7	P8
EQI	230	172	137	167	452	818	138	195

■ 참고: PM과 관계 없는 모델을 만들고 싶었으나 PM 전후로 존재하는 급격한 shift 처리 실패

- 이상치 탐지를 통한 학습 데이터 정제 및 신뢰도 추정
 - ✓ 출력 변수의 정상/비정상 여부는 사전 기준이 존재
 - ✔ 입력변수의 정상/비정상 영역은 정해져 있지 않음
 - ✓ 출력변수가 정상인 입력변수 데이터에 대해 데이터의 90%를 설명하고 나머지 10%를 이상치로 판단하는 이상치 탐지 모델 학습

• 이상치 탐지

✔ 총 일곱 가지의 이상치 탐지 알고리즘을 사용하여 노이즈 데이터 판별

• 이상치 탐지

✓ 노이즈 제거 방법

입력변수 이상치 탐지 결과

정상 이상치(비정상)

전상
True Negative False Positive (내부 노이즈)

False Negative (외부 노이즈)

True Positive

분류	사용 데이터	설명
Model A	TN	정상 데이터만 사용
Model B	TN+TP	노이즈를 모두 제거
Model C	TN+TP+FP	전체 데이터에서 외부 노이즈를 제거
Model D	TN+TP+FN	전체 데이터에서 내부 노이즈를 제거
All	TN+TP+FP+FN	모든 데이터 사용
Benchmark	TN+FN	일반적인 노이즈 제거 방법론

• 학습 데이터에서 노이즈 제거 비율(좌) 및 가상계측 성능(우)

✓ 전체 데이터에서 외부 노이즈만 제거한 경우 전체의 93% 데이터를 이용하여 가장 낮은 오류(MAE)값을 보임

• 가상 계측 신뢰도 추정 예시

✓ 검정색 네모: 실제 계측 값, 파란색 다이아몬드: 신뢰도가 높게 부여된 웨이퍼, 붉은색 동그라미: 신뢰도가 낮게 부여된 웨이퍼

