1: Key Ideas and Issues

John H Maindonald

April 3, 2018

Ideas and issues illustrated by the graphs in this vignette

Ideas and issues that the graphs given here are designed to illustrate can be summarized under the headings:

- Data Issues
 - Data Exploration
 - Source/target issues
 - Data validity, accuracy and relevance
- Models and Model Assumptions
 - Model assumptions
 - Least squares, maximum likelihood and Bayesian estimation
 - Simulation from an assumed model
 - Model diagnostics
 - Weighting biases problems for interpretation of model parameters

1 R Functions for Creating Chapter 1 Figures

```
fig1.1 <-
function (form = depression ~ weight, data = roller, ...)
{
    yvar <- all.vars(form)[1]
    xvar <- all.vars(form)[2]
    x <- data[, xvar]
    y <- data[, yvar]
    maxx <- max(x)
    maxy <- max(y)
    plot(form, data = roller, xlim = c(0, 1.04 * maxx), ylim = c(0,</pre>
```

```
1.04 * maxy), xaxs = "i", yaxs = "i", ...,
         main="1.1: Depression vs weight")
fig1.2 <-
function ()
print("Run the separate functions fig1.2A() and fig1.2B()")
fig1.2A <-
function ()
    plot(brain ~ body, data = MASS::mammals, pty = "s")
    mtext(side = 3, line = 0.5, adj = 0, "1.2A: Unlogged data")
fig1.2B <-
function ()
    plot(brain ~ body, data = MASS::mammals, log = "xy", pty = "s")
    mtext(side = 3, line = 0.5, adj = 0, "1.2B: Log scales on both axes")
fig1.3 <-
function ()
    opar \leftarrow par(mar=rep(0.6,4), oma=c(0,0,2,0))
    pairs(log(MASS::mammals), labels = c("log(body)", "log(brain)"))
    mtext(side=3, line=0.75, outer=TRUE, "1.3: Pairs plot")
fig1.4 <-
function (parset = simpleTheme(pch = 1:10, alpha = 0.6, cex = 1),
    fontsize = list(text = 14, points = 10))
    if (!is.null(parset))
        parset$fontsize <- fontsize</pre>
    library(MASS)
    droplevs <- fgl$type %in% c("Tabl", "Con")</pre>
```

```
fig1.5 <-
function ()
    opar <- par(mar=rep(0.5,4))
   msg <- "As package 'diagram' is not available, cannot do plot."</pre>
    if(!requireNamespace("diagram"))return(msg)
   diagram::openplotmat(xlim = c(-0.1, 1.1))
    diagram::textellipse(mid=c(.5, .8), radx=0.6, rady=0.25,
                lab="Source", adj=c(.5,-2),
                box.col="gray95")
    diagram::textellipse(mid=c(.5, .7), radx=0.3, rady=0.1,
                lab="Source Sample", adj=c(.5,.5),
                box.col="gray90")
    diagram::textellipse(mid=c(.5, .2), radx=0.6, rady=0.25,
                lab="Target", adj=c(.5,-2),
                box.col="gray95")
    diagram::textellipse(mid=c(.5, .1), radx=0.3, rady=0.1,
                lab="Target Sample?", adj=c(.5,.5),
                box.col="gray90")
    par(opar)
```

```
xaxs = "i", yaxs = "i", main="")
    abline(roller.obj)
    b <- summary(roller.obj)$coef</pre>
    topleft <- par()$usr[c(1, 4)]</pre>
    chw <- par()$cxy[1]</pre>
    chh <- par()$cxy[2]
    legend(topleft[1], topleft[2] + 0.25 * chh, pch = c(1, 4),
        legend = c("Fitted values", "Data values"), adj = 0,
        cex = 0.8, x.intersp = 0.8, y.intersp = 0.8, bty = "n")
    df <- cbind(roller, above = as.numeric(roller$depression >
    with(df, segments(weight, depression, weight, yhat, col = c("gray45",
        "black")[above + 1]))
    n <- nrow(roller)</pre>
    ns <- with(roller, min((1:n)[depression - yhat >= 0.75 *
        max(depression - yhat)]))
    ypos <- 0.5 * (roller$depression[ns] + yhat[ns])</pre>
    text(roller$weight[ns], ypos, "+ve residual", pos = 2, cex = 0.8)
    points(roller$weight, yhat, pch = 1)
    ns <- with(roller, (1:n)[depression - yhat == min(depression -
        yhat)][1])
    ypos <- 0.5 * (roller$depression[ns] + yhat[ns])</pre>
    text(roller$weight[ns], ypos, "-ve residual", pos = 4, cex = 0.8)
    mtext(side=3, line=0.75,
          "1.6: Lawn roller plot + line & annotation")
fig1.7 <- function(){</pre>
    obj <- lm(depression ~ weight, data=DAAG::roller)
    gph <- DAAG::plotSimScat(obj, sigma=6.4, layout=c(4,1), aspect=1)</pre>
    gph <- update(gph, xlab="Roller weight (t)", ylab="Depression (mm)",</pre>
                   main="1.7: Lawn roller data")
    gph
fig1.8 <- function(){</pre>
    pset <- lattice::simpleTheme(col.line="gray")</pre>
    gph <- lattice::xyplot(timef~time,</pre>
                   data=nihills,
                   aspect=1,
                   type=c("p","r"),
                   par.settings=pset)
    gph <- update(gph, xlab="Male record times",</pre>
```

```
ylab="Female record times",
                   main="1.8: f vs m times")
    gph
fig1.9 <- function(obj=mftime.lm){</pre>
    gph <- DAAG::plotSimScat(obj, layout=c(4,1), aspect=1)</pre>
    update(gph, xlab="Record times for males (h)",
           ylab="Record times for females (h)",
           main="1.9: f vs m times, simulation")
fig1.10 <- function(obj=mftime.lm){</pre>
    plot(obj, which=1, caption=NULL,
         sub.caption=NULL,
         main="1.10: Diagnostic plot 1")
fig1.11 <- function(obj=mftime.lm){</pre>
    gph <- DAAG::plotSimScat(obj, show="residuals",</pre>
                        type=c("p","smooth"), layout=c(4,1))
    gph <- update(gph, xlab="Time (h) for males", ylab="Residuals",</pre>
                   title="1.11: Diagnostic plot 1; 4 simulations",
                   aspect=1)
    gph
fig1.12 <- function(obj=mftime.lm){</pre>
    plot(obj, which=2, caption=NULL,
         sub.caption=NULL,
         main="1.12: Diagnostic plot 2")
fig1.13 <- function(){</pre>
    gph <- DAAG::plotSimDiags(obj=mftime.lm, which=2, layout=c(4,1),</pre>
                         aspect=1,
                title="1.13: Diagnostic plot 2; 4 simulations")
    gph
```

```
fig1.14 <- function(obj=mftime.lm){</pre>
    plot(obj, which=3, caption=NULL,
         sub.caption=NULL,
         main="1.14: Diagnostic plot 3")
fig1.15 <- function(obj=mftime.lm){</pre>
    gph <- DAAG::plotSimDiags(obj, which=3, layout=c(4,1),</pre>
                         aspect=1,
           title="1.15: Diagnostic plot 3; 4 simulations")
    gph
fig1.16 <- function(){
    plot(mftime.lm, which=5, caption=NULL,
         sub.caption=NULL,
         main="")
    mtext(side=3, line=0.25, "1.16: Leverage plot")
fig1.17 <- function(){
    pset <- lattice::simpleTheme(lty=c(1,2))</pre>
    key <- list(text=c("Males", "Females"), columns=2)</pre>
    gph <- lattice::densityplot(~ time+timef, data=nihills, par.settings=pset,</pre>
                        ylab="Time (h)", auto.key=key,
                        scales=list(tck=0.5),
           main=list("1.17: Overlaid F and M densities", fontface="plain"))
    gph
fig1.18 <- function(){</pre>
    pset <- lattice::simpleTheme(col.line="gray")</pre>
    gph <- lattice::xyplot(timef ~ time,</pre>
                   data=nihills,
                   scales=list(log=10, tck=0.5),
                   aspect=1,
                   type=c("p","r"),
                   par.settings=pset)
    gph <- update(gph, xlab="Male record times",</pre>
                   ylab="Female record times",
           main=list("1.18: F vs M record times; log10 scales",
```

```
fontface="plain"))
    gph
fig1.19 <- function(){
    obj <- lm(log(timef) ~ log(time), data=nihills)</pre>
    opar \leftarrow par(mfrow=c(1,4), mex=0.75, oma=c(0,0,2,0),
                mar=c(4.1,4.1,2.1,0.6), pty="s")
    plot(obj, cex.caption=0.75, cex.main=1.2,
         sub.caption="1.19: F vs M record times, diagnostic plots")
    par(opar)
fig1.20 <- function(){
    parset <- lattice::simpleTheme(cex=1.35, pch=16,</pre>
                           col=c("darkblue","turquoise"))
    gabalong <- data.frame(values=unlist(gaba["30",])[-1],</pre>
                            sex=rep(c("male", "female", "all"), rep(2,3)),
                            trt=rep(c("Baclofen","No baclofen"),3))
    gph <- lattice::stripplot(sex~values, groups=trt, data=gabalong,</pre>
                      par.settings=parset,
                      xlab=list("Average reduction: 30 min vs 0 min",
                      cex=1.0),
                      scales=list(cex=1.0),
                      panel=function(x,y,...){
                          panel.stripplot(x,y,...)
                          ltext(x,y,paste(c(3,9,15,7,22,12)), pos=1,
                                cex=0.8)
                      }, auto.key=list(columns=2, points=TRUE, cex=1.0),
                      title="1.20: Pain reduction scores")
    gph
```

2 Use functions to give figures

```
library("DAAG")

Loading required package: lattice

mftime.lm <- lm(timef ~ time, data=nihills)</pre>
```

fig1.1()

fig1.2()
[1] "Run the separate functions fig1.2A() and fig1.2B()"

fig1.2A() fig1.2B()

fig1.3()

fig1.4() Attaching package: 'MASS' The following object is masked from 'package:DAAG': hills

fig1.5()

Loading required namespace: diagram

fig1.6()

1.6: Lawn roller plot + line & annotation

fig1.7()

1.7: Lawn roller data Simulated data • Actual data 4 6 8 10 12 8 10 12 Simulation1 Simulation2 Simulation3 Simulation4 Depression (mm) 30 20 0 6 8 10 12 2 6 8 10 12 Roller weight (t)

fig1.8()

1.8: f vs m times

fig1.9()

fig1.10()

fig1.11()

fig1.12()

fig1.14()

fig1.15()

fig1.16()

fig1.17()

fig1.18()

1.18: F vs M record times; log10 scales

fig1.19()

1.19: F vs M record times, diagnostic plots

fig1.20()

