# SC4021 Information Retrieval

Sentimental Analysis on Electric Vehicles (EVs)

### Group 24

Ong Zhi Ying, Adrian
Takesawa Saori
Cheong Yong Wen
Kwok Zong Heng
Mandfred Leow Hong Jie
Mao Yiyun

### Roles

# Adrian

- Data Crawling
- Solr Indexing

### YiYun

- Classification
- Test set selection
- Roberta classification
- Innovation-majority voting

# Saori

- UI design
- UI implementation

# **Zong Heng**

- Annotation
- BERT Classification
- Innovation

# Casper

- Annotation
- Vader Classification
- Textblob Classification

### Mandfred

Innovation

# Background



- 60,000 EV Charging Points
- Electrification of half our public bus and taxi fleet

Reduce land transport emissions in support of Singapore's net-zero goal











#### Incentive for early EV adopt 2025 but lower rebate co



Every HDB Town to be An EV-Ready Town 400 diesel buses will be replaced with electric buses (60 buses have already been deployed as of end 2021)



#### 21 Sep 2023 02:13PM (Updated: 21 Sep 2023 10:35PM)









**EV Adoption Incentive** 

### LTA EV Vision

By 2040, consumers will soon be required to make a decision on which electric vehicle to purchase.

# Objective & Intended Impacts

### **Objective**

 Design a Information Retrieval System by curating, processing, analysing and presenting data and sentimental insights

### **Intended Impacts**

- Well equipped consumers to select the best EV brand for them
  - Public sentiment of popular EV brands
  - Features of an EV brand
  - Pros and cons of each EV brand

### **Overview Architecture**













Backend



Searched results



**Apply NLP** Techniques



Classification <u>Insights</u>





Frontend UI

Models

Classification

# **Data Crawling**

#### **Data source**

- Posts & Comments from
  - EV Brand subreddits in Reddit
  - General EV discussion subreddits

### **Crawling method**

- Reddit PRAW
  - Extract the top 100 post per subreddit
  - Crawl all comments for those posts
- Removal of Bots, Mods posts & Comments
- Only consider top-level comments





### **Crawled Data statistics**

### **Basic Data pre-preprocessing**

- Microtext/slang mapping (LOL -> Laugh Out Loud)
- Emoji handling (c) -> :Smiling\_face:)

| Subreddits crawled                          | 13        |
|---------------------------------------------|-----------|
| Number of crawled posts                     | 1,229     |
| Number of crawled comments                  | 48,194    |
| Total number of tokens in the corpus        | 1,176,272 |
| Total number of unique tokens in the corpus | 74,055    |

# **Data Indexing Innovations**

Solr

- Spell Checking
- Custom filters
  - Synonyms for mapping model to brand names (I3 -> BMW I3)



# **Classification Approaches**

- VADER
- Textblob
- BERT
- Twitter-roBERTa-base
- roberta-large-mnli

### Classification

### **Lexicon and rule-based**

#### **VADER**

- Specifically attuned to sentiments expressed in social media
- Pre-built lexicon that contains words and phrases
- Grammatical and syntactical rules

### **Machine Learning algorithm**

#### **Textblob**

- Pre-trained on labeled dataset
- Flexibility and adaptability

### Classification

### RoBERTa architecture

### Twitter-roBERTa-base

- Remove the NSP objective
- Dynamic masking during pre-training
- Training on a large corput
- Around 124 million tweets

### **RoBERTa architecture**

#### RoBERTa-mnli

- Fine-tuned on MNLI corpus
- Exposed to various linguistic styles

### Classification

### **Bidirectional approach**

#### **BERT**

- Analyzes text by considering both left and right of every word simultaneously
- Process words in batches, enabling faster and more efficient analysis



|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| negative     | 0.72      | 0.51   | 0.60     | 333     |
| neutral      | 0.53      | 0.69   | 0.60     | 350     |
| positive     | 0.72      | 0.70   | 0.71     | 351     |
| accuracy     |           |        | 0.63     | 1034    |
| macro avg    | 0.65      | 0.63   | 0.63     | 1034    |
| weighted avg | 0.65      | 0.63   | 0.63     | 1034    |

### **Classification Results**



#### **VADER**



Twitter-roBERTa-base



### **TextBlob**



roBERTa-mnli



Bert

Bright yellow means more true positives

# Innovation (Stack Ensemble)

### **BERT, Logistic Regression and Random Forest**

- Split the annotated data of train to test at a ratio of 75/25
- Fine Tuning BERT pre-train model with own dataset
- Integrate BERT model prediction with Logistic Regression and Random Forest
- Predictions of BERT,Logistic Regression and Random Forest were used as input feature for logistic regression model
- Trained on combined prediction to learn final judgements on the sentiments.

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| negative     | 0.83      | 0.58   | 0.68     | 83      |
| neutral      | 0.65      | 0.77   | 0.70     | 94      |
| positive     | 0.74      | 0.81   | 0.77     | 79      |
| accuracy     |           |        | 0.72     | 256     |
| macro avg    | 0.74      | 0.72   | 0.72     | 256     |
| weighted avg | 0.73      | 0.72   | 0.72     | 256     |

Bert Model only

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| negative     | 0.76      | 0.63   | 0.69     | 83      |
| neutral      | 0.65      | 0.73   | 0.69     | 94      |
| positive     | 0.78      | 0.81   | 0.80     | 79      |
| accuracy     |           |        | 0.72     | 256     |
| macro avg    | 0.73      | 0.72   | 0.72     | 256     |
| weighted avg | 0.73      | 0.72   | 0.72     | 256     |

Stacked

# **Innovation (Voting Ensemble)**

### VADER, BERT, and roBERTa-MNLI for majority voting

Accuracy: 0.5560928433268859 Precision: 0.5560928433268859 Recall: 0.5560928433268859

F1 Score: 0.5560928433268859

VADER

Accuracy: 0.6334622823984526 Precision: 0.6334622823984526 Recall: 0.6334622823984526 F1 Score: 0.6334622823984526

**BERT** 

Accuracy: 0.6760154738878144 Precision: 0.6760154738878144 Recall: 0.6760154738878144 F1 Score: 0.6760154738878144

Majority Voting Model

Accuracy: 0.6537717601547389 Precision: 0.6937598452290512 Recall: 0.6537717601547389 F1 Score: 0.6537717601547389

roBERTa-mnli