Tu 多様体 回答

tRue

2025年10月27日

節末問題

- §1 ユークリッド空間上の滑らかな関数
 - $1.1 C^2$ 級だが C^3 級でない関数

$$g(x) = \int_0^x f(t)dt = \int_0^x t^{1/3}dt = \frac{3}{4}x^{4/3}$$

とする. 関数 $h(x)=\int_0^x g(t)dt$ は C^2 級だが x=0 で C^3 級ではないことを示せ.

Proof. h(x) の 1 階微分, 2 階微分, 3 階微分を計算する.

$$h'(x) = g(x) = \frac{3}{4}x^{4/3},$$

$$h''(x) = g'(x) = f(x) = x^{1/3},$$

$$h'''(x) = f'(x) = \frac{1}{3}x^{-2/3}.$$

したがって,h''(x) は全ての x で定義されるが,h'''(x) は x=0 で定義されない.よって,h(x) は C^2 級だが x=0 で C^3 級ではない.

§8 接空間

8.10 極大値

多様体上の実数値関数 $f: M \to \mathbb{R}$ が $p \in M$ において極大値をもつとは, $f(p) \geq f(q)$ がすべての $q \in U$ について成り立つような p の近傍 U が存在することである.

(a) 開区間 I 上で定義されている微分可能な関数 $f\colon I\to\mathbb{R}$ が $p\in I$ において極大値をもつならば, f'(p)=0 であることを示せ.

Proof. $f(p) \geq f(q)$ がすべての $q \in I$ について成り立つように I として取り直しても良い.

q < p で f(q) が増加,p < q で f(q) が減少することを踏まえると以下 2 つが成り立つ.

$$\lim_{q \to p^{-}} \frac{f(q) - f(p)}{q - p} \le 0$$

$$\lim_{q \to p^{+}} \frac{f(q) - f(p)}{q - p} \ge 0$$

f が微分可能であるため、左極限と右極限は等しくなければならず、f'(p)=0 が従う.

(b) C^{∞} 級関数 $f: M \to \mathbb{R}$ が極大値をとる点は f の臨界点であることを証明せよ.

Proof. $p \in M$ を f が極大値をとる点とし, $X_p \in T_pM$ を接べクトルとする.c(t) を始点 p における速度ベクトルが X_p であるような M 上の曲線とすると, $f \circ c: \mathbb{R} \to \mathbb{R}$ は 0 において極大値をもち,(a) より

$$(f \circ c)'(0) = 0$$

$$\Longrightarrow (f \circ c)_* \left(\frac{d}{dt}\right) = f_{*,p}(X_p) = 0$$

となる.これは任意の $X_p \in T_pM$ について成り立つため, $f_{*,p}$ は零写像であり,p は f の臨界点である.

§11 滑らかな写像の階数

11.1 球面の接ベクトル

 \mathbb{R}^{n+1} における単位球面 S^n は,方程式 $\sum_{i=1}^{n+1} (x^i)^2 = 1$ によって定義される. $p=(p^1,\ldots,p^{n+1})\in S^n$ に対して,

$$X_p = \sum a^i \partial / \partial x^i \Big|_{p} \in T_p \mathbb{R}^{n+1}$$

が点 p で S^n に接するための必要十分条件は, $\sum a^i p^i = 0$ であることを示せ.

Proof. $f: \mathbb{R}^{n+1} \to \mathbb{R}$ &

$$f(x^1, \dots, x^{n+1}) = \sum_{i=1}^{n+1} (x^i)^2 - 1$$

とすると, $S^n = f^{-1}(0)$ である.

 X_p が点 p で S^n に接するなら、ある曲線 $c\colon \mathbb{R}\to S^n$ が存在して、 $c(0)=p,\,c'(0)=X_p$ を満たす (命題 8.16) *1 . $i\colon S^n\to\mathbb{R}^{n+1}$ を包含写像とすると、このような曲線 c(t) につい

 $^{^{*1}}$ ここは必要十分条件だと思うが、Tu 多様体の回答では必要性のみを用いていたのでそれに沿った.一般には十分ではないのかもしれないが、私はよくわかっていない.

て、ここで、 $f \circ i \circ c: \mathbb{R} \to \mathbb{R}$ は全ての t で 0 となるため、

$$0 = \frac{d}{dt} (f \circ i \circ c)(t)$$

$$= (f \circ i \circ c)_* \left(\frac{d}{dt} \Big|_t \right)$$

$$= f_{*,c(t)}(c'(t))$$

$$= \sum_{i=1}^{n+1} \frac{\partial f}{\partial x^i} \Big|_{c(t)} \dot{c}^i(t)$$

 $2 \times 3^{*2}$. t = 0 0×5 ,

$$\sum_{i=1}^{n+1} \frac{\partial f}{\partial x^i}(p) \cdot a^i = 0$$

$$\iff \sum_{i=1}^{n+1} 2p^i \cdot a^i = 0$$

$$\iff \sum_{i=1}^{n+1} a^i p^i = 0$$

となる.

 T_pS^n と $\sum_{i=1}^{n+1} a^i p^i = 0$ を満たす $T_p\mathbb{R}^{n+1}$ の部分集合はどちらも同じ次元をもつベクトル空間で,上述の議論から前者は後者に含まれるため,同型である.

11.2 平面曲線の接ベクトル

(a) $i\colon S^1\hookrightarrow\mathbb{R}^2$ を単位円周の包含写像とする.この問題では,x,y を \mathbb{R}^2 の標準座標とし, $\overline{x},\overline{y}$ をその S^1 への制限とする.よって, $\overline{x}=i^*x,\overline{y}=i^*y$ である.上半円周 $U=\{(a,b)\in S^1\mid b>0\}$ においては, \overline{x} は局所座標であり,ゆえに $\partial/\partial\overline{x}$ が定義されている. $p\in U$ に対して

$$i_* \left(\frac{\partial}{\partial \overline{x}} \Big|_p \right) = \left(\frac{\partial}{\partial x} + \frac{\partial \overline{y}}{\partial \overline{x}} \frac{\partial}{\partial y} \right) \Big|_p$$

を証明せよ. したがって, $i:T_pS^1\to T_p\mathbb{R}^2$ は単射であるが, $\partial/\partial\overline{x}|_p$ は $\partial/\partial x|_p$ と同一視することはできない.

^{*2} 本来は終域の接空間の基底 $\frac{\partial}{\partial z}$ を掛ける必要があるが、ここでは省略している.

Proof.

$$i_* \left(\frac{\partial}{\partial \overline{x}} \Big|_p \right) = \left(\frac{\partial x \circ i}{\partial \overline{x}} \frac{\partial}{\partial x} + \frac{\partial y \circ i}{\partial \overline{x}} \frac{\partial}{\partial y} \right) \Big|_p$$
$$= \left(\frac{\partial \overline{x}}{\partial \overline{x}} \frac{\partial}{\partial x} + \frac{\partial \overline{y}}{\partial \overline{x}} \frac{\partial}{\partial y} \right) \Big|_p$$
$$= \left(\frac{\partial}{\partial x} + \frac{\partial \overline{y}}{\partial \overline{x}} \frac{\partial}{\partial y} \right) \Big|_p$$

(b) \mathbb{R}^2 における滑らかな曲線 C について, x の C への制限である \overline{x} が局所座標になるような C のチャート U をとり, (a) の結果を一般化せよ.

Proof. (a) の変形は曲線の方程式に依らない. 適切にチャートが取れていれば結果は同様.

11.3 コンパクトな多様体上の滑らかな写像の臨界点

コンパクトな多様体 N から \mathbb{R}^m への滑らかな写像 f は臨界点をもつことを示せ.

Proof. 第 1 成分への射影 $\pi: \mathbb{R}^m \to \mathbb{R}$ を用いて, $\pi \circ f: N \to \mathbb{R}$ を考える.N はコンパクトで,f と π は連続であるから $\pi \circ f(N)$ はコンパクトで,そのため有界閉集合.よって, $\pi \circ f$ は最大値 (と最小値) をもつ.

 $p\in N$ を $\pi\circ f$ の最大値を与える点とし, (U,x^1,\ldots,x^n) を p を含むチャートとする.以下 を考える.

$$(\pi \circ f)_* \left(\frac{\partial}{\partial x^i} \Big|_p \right) = \frac{\partial f^1}{\partial x^i} (p) \cdot \frac{\partial}{\partial f^1} \Big|_{f(p)}$$

= 0

したがって、 $f_*(\partial/\partial x^i|_p)$ の第 1 成分は全ての i について 0 であり、そのため f_* は p で全射でない.つまり、p は臨界点である.

別解 1*3

 $Proof.\ f$ が臨界点をもたないと仮定すると、f は沈め込み (つまり、適切なチャートを取れば f は射影). ここで $\pi\colon\mathbb{R}^m\to\mathbb{R}$ を第 1 成分への射影とすると、 $\pi\circ f\colon N\to\mathbb{R}$ も沈め込みである (つまり、適切なチャートを取れば $\pi\circ f$ は x^1). しかし、 $\pi\circ f(N)$ はコンパクトであるから最大値を持ち、その点で臨界点となってしまう*4ため矛盾.

別解 2*5

^{*3} Tu 多様体の回答

^{*4 8.10} 参照.

^{*&}lt;sup>5</sup> Tu 多様体の別解

 $Proof.\ f$ が臨界点をもたないと仮定すると,f は沈めこみ.系 11.6 より f は開写像,滑らかという仮定も踏まえて同相写像となる.しかし,N はコンパクトであるから f(N) は開なコンパクト集合となるが, \mathbb{R}^m の部分集合でその条件を満たすものは空集合のみで,矛盾する.

11.4 包含写像の微分

単位球面 S^2 の上半球面においては,

$$u(a,b,c) = a$$
 および $v(a,b,c) = b$

で与えられる座標写像 $\phi=(u,v)$ がある。ゆえに、半球面上の任意の点 p=(a,b,c) において、偏導関数 $\partial/\partial u|_p,\partial/\partial v|_p$ は S^2 の接ベクトルである。 $i\colon S^2\hookrightarrow\mathbb{R}^3$ を包含写像とし、x,y,z を \mathbb{R}^3 の標準座標とする。微分 $i_*\colon T_pS^2\to T_p\mathbb{R}^3$ は $\partial/\partial u|_p,\partial/\partial v|_p$ を $T_p\mathbb{R}^3$ に写す。したがって、定数 $\alpha^i,\beta^i,\gamma^i$ を用いて

$$i_* \left(\frac{\partial}{\partial u} \Big|_p \right) = \alpha^1 \frac{\partial}{\partial x} \Big|_p + \beta^1 \frac{\partial}{\partial y} \Big|_p + \gamma^1 \frac{\partial}{\partial z} \Big|_p,$$

$$i_* \left(\frac{\partial}{\partial v} \Big|_p \right) = \alpha^2 \frac{\partial}{\partial x} \Big|_p + \beta^2 \frac{\partial}{\partial y} \Big|_p + \gamma^2 \frac{\partial}{\partial z} \Big|_p$$

と書ける. i=1,2 について, $(\alpha^i,\beta^i,\gamma^i)$ を求めよ.

$$\begin{split} i_* \Bigg(\frac{\partial}{\partial u} \bigg|_p \Bigg) &= \left(\frac{\partial x \circ \phi^{-1}}{\partial u} \frac{\partial}{\partial x} + \frac{\partial y \circ \phi^{-1}}{\partial u} \frac{\partial}{\partial y} + \frac{\partial z \circ \phi^{-1}}{\partial u} \frac{\partial}{\partial z} \right) \bigg|_p \\ &= \left(\frac{\partial u}{\partial u} \frac{\partial}{\partial x} + \frac{\partial v}{\partial u} \frac{\partial}{\partial y} + \frac{\partial \sqrt{1 - u^2 - v^2}}{\partial u} \frac{\partial}{\partial z} \right) \bigg|_p \\ &= \left(1 \cdot \frac{\partial}{\partial x} + 0 \cdot \frac{\partial}{\partial y} - \frac{u}{\sqrt{1 - u^2 - v^2}} \cdot \frac{\partial}{\partial z} \right) \bigg|_p \end{split}$$

同様に

$$i_* \left(\frac{\partial}{\partial v} \Big|_p \right) = \left(0 \cdot \frac{\partial}{\partial x} + 1 \cdot \frac{\partial}{\partial y} - \frac{v}{\sqrt{1 - u^2 - v^2}} \cdot \frac{\partial}{\partial z} \right) \Big|_p$$

である. よって,

$$(\alpha^{1}, \beta^{1}, \gamma^{1}) = \left(1, 0, -\frac{u}{\sqrt{1 - u^{2} - v^{2}}}\right),$$
$$(\alpha^{2}, \beta^{2}, \gamma^{2}) = \left(0, 1, -\frac{v}{\sqrt{1 - u^{2} - v^{2}}}\right).$$

11.5 コンパクトな多様体の 1 対 1 のはめ込み

N がコンパクトな多様体のとき,1 対 1 のはめ込み $f\colon N\to M$ は埋め込みであることを証明せよ.

Proof. f(N) に部分空間位相を入れたものが f の下で N が同相であることを示せば良い. 連続であることは $V\in \mathcal{O}_{f(N)}$ に対して $f(N)\cap V'=V$ なる $V'\in \mathcal{O}_M$ が存在し,

$$f^{-1}(V) = f^{-1}(f(N) \cap V') = f^{-1}(V') \in \mathcal{O}_N$$

より従う.

開写像であることを示す.多様体の定義にハウスドルフ性が含まれていたことを踏まえると,f はコンパクト空間からハウスドルフ空間への連続写像であるから,閉写像である*6. さて,任意に $U \in \mathcal{O}_N$ を取ると,以下が成り立つ.

$$U \in \mathcal{O}_N \implies N \setminus U \in \mathcal{C}_N$$
$$\implies f(N \setminus U) \in \mathcal{C}_M$$
$$\implies M \setminus f(N \setminus U) \in \mathcal{O}_M$$

ここで, $M\setminus f(N\setminus U)$ を V とおくと, $f(U)=f(N)\cap V$ である.よって任意の U に対して $f(U)=f(N)\cap V$ なる $V\in\mathcal{O}_M$ が存在し,これはすなわち f(U) が f(N) の部分空間位相に関して開であることを意味する.

以上より $f: N \to f(N)$ は f(N) の部分空間位相に関して同相写像であり、したがって f は埋め込みである.

11.6 *SLn*, ℝ における乗法写像

 $f: \operatorname{GL}(n,\mathbb{R}) \to \mathbb{R}$ を行列式写像 $f(A) = \det A = \det[a_{ij}]$ とする. $A \in \operatorname{SL}(n,\mathbb{R})$ に対して,偏導関数 $\partial f/\partial a_{kl}(A)$ が 0 でないような (k,l) が少なくとも 1 つ存在する. 補題 9.10 と陰 関数定理を用いて,次を証明せよ.

(a) $\mathrm{SL}(n,\mathbb{R})$ における A の近傍で、 $(i,j)\neq(k,l)$ なる a_{ij} たちが座標系をなし、 a_{kl} はそれ以外の成分 $a_{ij},(i,j)\neq(k,l)$ に関する C^∞ 級関数であるようなものが存在する。 $Proof.\ g=f-1$ とおけば、 $\mathrm{SL}(n,\mathbb{R})=g^{-1}(0)$ である。 $\mathrm{GL}(n,\mathbb{R})$ のチャートとして $(\mathrm{GL}(n,\mathbb{R}),a_{11},a_{12},\ldots,a_{nn})$ を取ることができ、 $\partial g/\partial a_{kl}(A)$ が 0 でないような (k,l) を取れる。補題 9.10 より、A のある近傍において a_{kl} を g で置換して $\mathrm{SL}(n,\mathbb{R})$ に適合する $\mathrm{GL}(n,\mathbb{R})$ のチャート $(U,g,a_{11},\ldots,a_{nn})$ が得られる。この $\mathrm{SL}(n,\mathbb{R})$ への制限 $(U\cap\mathrm{SL}(n,\mathbb{R}),a_{11},\ldots,a_{nn})$ は $(i,j)\neq(k,l)$ なる a_{ij} たちが座標系をなす $\mathrm{SL}(n,\mathbb{R})$ のチャートである。さらに、陰関数定理より $U'\subseteq U\cap\mathrm{SL}(n,\mathbb{R})$ なる A の近傍 U' において

$$g(a_{11},...,a_{nn})=0 \iff a_{kl}=h(\{a_{ij}\}_{(i,j)\neq(k,l)})$$

となる C^{∞} 級関数 h が存在する.この U' が求める近傍である.

^{*6} コンパクト空間の閉部分集合はコンパクトで、コンパクト空間の連続写像による像はコンパクトとなり、ハウスドルフ空間のコンパクト部分集合は閉集合であるため.

(b) 乗法写像

$$\overline{\mu} \colon \mathrm{SL}(n,\mathbb{R}) \times \mathrm{SL}(n,\mathbb{R}) \to \mathrm{SL}(n,\mathbb{R})$$

は C^{∞} 級である.

Proof. (a) のチャート及び関数 h を取ると、成分ごとに C^{∞} 級関数であることが明らか.

丁寧に述べれば, $\overline{\mu}$ は $j: \mathrm{SL}(n,\mathbb{R}) \to \mathrm{GL}(n,\mathbb{R})$ と $\mu: \mathrm{GL}(n,\mathbb{R}) \times \mathrm{GL}(n,\mathbb{R}) \to \mathrm{GL}(n,\mathbb{R})$ とを用いて

$$\overline{\mu} = j^{-1} \circ \mu \circ (j \times j)$$

と書けて, j,j^{-1} が C^{∞} 級であることが (a) より従い, μ も C^{∞} 級であるから, 合成も C^{∞} 級であると言える.

11.7 誘導位相と部分空間位相

N と M を滑らかな多様体とし, $f\colon N\to M$ を 1 対 1 のはめ込みとする.像 f(N) には次の 2 種類の位相を与えることができる.

- (a) <u>誘導位相</u>. 集合 $V \subset f(N)$ が開集合であるための必要十分条件は, $f^{-1}(V)$ が N の開集合となることである.
- (b) <u>部分空間位相</u>. 集合 $V \subset f(N)$ が開集合であるための必要十分条件は, $V = U \cap f(N)$ となる M の開集合 U が存在することである.

誘導位相が部分空間位相より細かいこと, すなわち, 誘導位相がより多くの開集合をもつことを証明せよ.

Proof. 部分空間位相の開集合 V を取ると、誘導位相でも必ず開集合となることを示せば良い。

 $V = U \cap f(N)$ なる $U \in \mathcal{O}_M$ が存在するとする. f の連続性より, $f^{-1}(U) \in \mathcal{O}_N$ である. ここで, $f^{-1}(U) = f^{-1}(U \cap f(N)) = f^{-1}(V)$ であるから, $f^{-1}(V) \in \mathcal{O}_N$ となり, V は誘導位相に関しても開集合である.