

Olá, aluno(a)! Seja bem-vindo(a) à aula interativa!

Você entrará na reunião com a câmera e o microfone desligados.

Sua presença será computada através da enquete. Fique atento(a) e não deixe de respondê-la!

 Coleta e Armazenamento de Dados de Renda Fixa

Segunda Aula Interativa

Prof. Joao Paulo Faria

Nesta aula

- Revisão do Conteúdo da 2ª Parte do Módulo
- Correção do Desafio
- Ciência de Dados Aplicada

Dúvidas sobre o conteúdo do módulo

- 5. Fundamentos de Engenharia de Dados
 - a) Tipos de dados e modelos de dados
 - b) Modelos de dados: caso de uso
- 6. Pipeline de Ciência de Dados
 - a) Pipeline de Ciência de Dados

Dúvidas sobre o conteúdo do módulo

- 7. Processamento de Linguagem Natural
 - a) Introdução ao Processamento de Linguagem Natural
 - b) Motivação do Desafio
 - c) Demonstração: aplicando NLP às comunicações do Banco Central
 - d) Revisão e Apresentação do Desafio

Correção do Desafio

Os alunos deverão desempenhar as seguintes atividades:

- Exercitar os seguintes conceitos trabalhados no Módulo:
 - 1. Tipos de dados e modelos de dados
 - 2. Pipeline de Ciência de Dados
 - 3. Processamento de Linguagem Natural

Fundamentos de Aprendizado de Máquina e Datacentric AI

Fundamentos de Aprendizado de Máquina e Data Centric Al

- Fundamentos de Aprendizado de Máquina
 - O que é Aprendizado de Máquina
 - Aprendizado Supervisionado
 - Underfitting e Overfitting
- Data Centric Al
 - Típico sistema de Machine Learning
 - Data Centric AI: exemplo real
 - Model vs Data Centric AI

Parte I: Fundamentos de Aprendizado de Máquina

Tipos de Data Analytics

• Algoritmo capaz de aprender a partir dos dados.

- Algoritmo capaz de aprender a partir dos dados.
 - Mas o que é aprender?

"Se diz que um programa de computador aprende da experiência E com relação a determinada classe de tarefa T e métrica de desempenho P se seu desempenho com relação à tarefa T, mensurado por P, melhora através da experiência E".

- > Tarefa T
 - Classificação
 - Regressão
 - Detecção de Anomalia
- Métrica P
 - Acurácia
 - Erro Quadrático Médio (MSE)
- Experiência E
 - Dataset: conjunto de exemplos

Aprendizado Supervisionado

Target / Label Output Variável resposta

Input Features Variáveis explicativas

Target Vector (y)

 $D = \{(x, y)\}$

Feature Matrix (X)

Objetivo

- Bom desempenho em dados novos, nunca antes vistos.
 - Erro de Treinamento
 - Erro de Generalização (Erro no conjunto de teste)

Objetivo

 Como moderar o desempenho de um modelo em um conjunto de dados não observável?

Disciplina conhecida como "Aprendizado Estatístico"

- Fatores determinarão o desempenho do modelo?
- Minimizar erro de treinamento
- Minimizar diferença entre erro de treinamento e erro de generalização

Underfitting e Overfitting

- Underfitting: modelo n\u00e3o \u00e9 capaz de atingir valor suficiente, baixo de erro de treinamento.
- Overfitting: diferença entre erro de treinamento e de generalização é muito grande (i.e. modelo não é capaz de generalizar).
- Capacidade: métrica para classificarmos o produto do algoritmo.
 - Baixa Capacidade: dificuldade de ajustar-se ao dataset de treino.
 - Alta capacidade: pode sobreajustar, memorizando propriedades do dataset de treino que não serão úteis para outros dados.

Underfitting, Overfitting e Capacity

Underfitting, Overfitting e Capacity

Regularização

Parte II: Data Centric AI

Pipeline de Machine Learning

"Data is Food for AI"

Data Centric AI: Exemplo Real

Data Centric AI: Exemplo Real

Modelo de detecção de defeito	Acurácia
Baseline	76,2%
Model-centric	+0%
Data-centric	+16,9% (93,1%)

Model vs. Data Centric Al

AI = Model + Data

Model vs. Data Centric Al

Model-centric

Coletar dados e desenvolver um modelo bom o suficiente para lidar com o ruído no dado.

Manter o dado fixo e iterativamente melhorar o modelo.

Data-centric

Foco na consistência do dado.

Utilizar ferramentas para
melhorar a qualidade do dado,
permitindo que diversos
modelos desempenhem bem.

Manter o modelo fixo e iterativamente melhorar o dado.

Model vs. Data Centric Al

Referências para seguir aprendendo

Google's <u>Rules of Machine Learning</u>

Contatos

> E-mail: joao.faria.ext@igti.edu.br

LinkedIn: https://www.linkedin.com/in/actsoft

