Regular Expressions

- Formal Definition
- Equivalence with Finite Automaton
- Generalized nondeterministic finite automaton

Fatama Binta Rafiq

Lecturer

Software Engineering Department

Daffodil International University

Regular Expression

- Regular expression describes languages.
- Regular expression can be build up using regular operations.
- Precedence order: * · U
- Example:
 - (0 ∪ 1)0* = ({0} ∪ {1})·{0}* = {0,1}·{0}*
 A = {w | w is a string starting with a 0 or a 1 followed by zero or more 0's}
 - (0 ∪ 1)* = ({0} ∪ {1})* = {0,1}*
 A = {all possible string with 0s and/or 1s}.

Formal Definition of Regular Expression

- R is a regular expression if R is
 - a for some $a \in \Sigma$, represents the language $\{a\}$.
 - ε , represents the language $\{\varepsilon\}$ containing a single string, namely, the empty string.
 - φ , represents the empty language that doesn't contain any string. $L(\varphi^*) = \{\varepsilon\}$.
 - $(R_1 \cup R_2)$, where R_1 and R_2 are regular expressions,
 - $R \cup \varphi = R$, but $R \cup \varepsilon$ may not be equal to R.
 - $(R_1 \cdot R_2)$, where R_1 and R_2 are regular expressions,
 - $R \cdot \varepsilon = R$, but $R \cdot \varphi$ may not be equal to R.
 - (R_1^*) , where R_1 is a regular expressions,

Equivalence with finite automata

- Let convert regular language R into an NFA considering the six cases in the formal definition of regular language.
 - R = a, $a \in \Sigma$. Then $L(R) = \{a\}$, and the NFA that recognizes L(R) is –

- $R = \varepsilon$. Then $L(R) = \{\varepsilon\}$, and the NFA that recognizes L(R) is -
- $R = \varphi$. Then $L(R) = \varphi$, and the NFA that recognizes L(R) is -

Equivalence with finite automata

• $R = R_1 \cup R_2$. Then $L(R) = \{R_1, R_2\}$, and the NFA that recognizes L(R) is –

• $R = R_1 \cdot R_2$. Then $L(R) = \{R_1 R_2\}$, and the NFA that recognizes L(R) is -

• $R = R_1^*$. Then $L(R) = \{R_1\}^*$, and the NFA that recognizes L(R) is -

Converting a regular expression to an NFA

Building an NFA from regular expression: (a∪b)*aba

Converting a DFA to a regular expression

- This can be done in two parts. For this we introduce a new type of finite automata called *generalized nondeterministic automaton*, GNFA.
 - First we will convert a DFA to GNFA, and
 - then GNFA to regular expression.
- GNFA has the following special form
 - Transition labels might be in regular expression form.
 - The start state doesn't have any incoming arrow from any other state.
 - There is only one accept state, and it doesn't have any outgoing arrow to any other state.
 - Start state is never the same as accept state.
 - There is only one outgoing arrow to any other state and to itself, except the start and accept states. We will consider φ labeled outgoing arrows, if no transition exists between any two states.

Converting a DFA to GNFA

- Add a new start state with an ε arrow to the old start state.
- Add new accept state with ε arrows from the old accept states.
- If any arrows have multiple labels, union the previous labels into one label.
- Add arrows with φ label between states where there are no arrows. This won't change the language as φ label arrows can never be used.
 - Even we might ignore adding such arrows, as these are arrows which can be assumed to be there with no use.

Converting a GNFA to a regular expression

- Let consider the GNFA to be with k states.
- We will continuously remove one state from the GNFA until k = 2. These last two states are actually the start and the accept states.
- We do so by selecting a state, ripping it out of the machine, and *repairing* the remainder so that the same language is still recognized.
- Any state will do, provided that the state is not the start or the accept states.

Repairing after removing a state

- Let call the removed state q_{rmv} .
- Repair the machine by altering the regular expressions that label each of the remaining arrows. This change is done for each arrow going from any state q_s to q_d , including the case where $q_s = q_d$.
- The new labels compensate for the absence of $q_{\rm rmv}$ by adding back the lost computations. i.e., The new label going from a state $q_{\rm s}$ to state $q_{\rm d}$ is a regular expression that describes all strings that would take the machine from $q_{\rm s}$ to $q_{\rm d}$ either directly or via $q_{\rm rmv}$.

Example

Converting a two state DFA to an equivalent regular expression

Example

 $(a(aa \cup b)*ab \cup b)((ba \cup a)(aa \cup b)*ab \cup b)*((ba \cup a)(aa \cup b)*)$ $(a(aa \cup b)*)$

Converting a three state DFA to an equivalent regular expression

Theory Of Computation Regular Expression →12

Algorithm Convert(G)

Formally: Add q_{start} and q_{accept} to create GWhere $G = (Q, \Sigma, \delta, q_{\text{start}}, q_{\text{accept}})$ Run CONVERT (G): If #states = 2 return the labeled expression from q_{start} to q_{accept} Else If #states > 2 select $q_{\text{rip}} \in \mathcal{Q}$ different from q_{start} and q_{accept} Let G' be the GNFA (Q', Σ , δ ', q_{start} ' q_{accept}), where = Q - δ ': $f(q_{rip}) = Q' - \{q_{accept}\}$ and q_{j} $= Q' - \{ \delta q_{\text{accept}} q_{\text{j}} \} = \delta (q_{\text{i}}, q_{\text{rip}}) \delta (q_{\text{rip}}, q_{\text{rip}}) * \delta (q_{\text{rip}}, q_{\text{j}}) \cup \delta$ return (q_i, q_i)

REGULAR LANGUAGES ARE COLSED UNDER REGULAR OPERATIONS

- Union: A U B = { $w \mid w \in A \text{ or } w \in B$ }
- Intersection: $A \cap B = \{ w \mid w \in A \text{ and } w \in B \}$
- Reverse: $A^R = \{ w_1 ... w_k \mid w_k ... w_1 \subseteq A \}$
- Negation: $\neg A = \{ w \mid w \notin A \}$
- Concatenation: $A \cdot B = \{ vw \mid v \in A \text{ and } w \in B \}$
- Star: $A^* = \{ w_1 ... w_k \mid k \ge 0 \text{ and each } w_i \in A \}$