

Estimating Policy Effects in a Social Network with Independent Set Sampling

Eugene Ang¹

Prasanta Bhattacharya²

Andrew Lim^{1,2}

¹ Institute of Operations Research and Analytics (IORA), National University of Singapore (NUS)

² Department of Analytics and Operations (DAO), NUS Business School

Social Media Platforms

Offline & Online Communities

Policy Evaluation Approaches

- Use (quasi) experimental approaches or conduct RCT on a group of people in the population (Coly 2017, White 2017)
 - Affected by network interference and other network-related confounders, such as homophily
- Require appropriate and efficient sampling methods (Olsen 2013)
 - Risk of network interference "within" the treatment and non treatment groups

Network Interference

- Network interference could affect how policies influence the behaviors of the people in the communities, and how their relationships could influence the effect of the policies.
 - Isolate the "direct" effect of the policy change from any "indirect" effect of the policy change via network influence

2. Find the "net" treatment effect of a policy change in the presence of homophily and network influence in the population.

Current Approaches

- 1. Random Selection with Naïve linear regression (e.g., Porter 1981)
 - Regress on observable covariates to explain the policy effects
- 2. Linear-in-means model (e.g., Manski 1993, Kline 2012)
 - Use aggregated values of nodes' neighbors as instrumental variables to explain peer effect
- 3. Graph clustering selection (e.g., Ugander 2013)
 - Sample random clusters in network for external test exposure
- 4. ERGM / Co evolution model (e.g., Wasserman 1996, Snijders 2007)
 - Model social network structures through specified statistics and properties
- 5. Contagion model (e.g., Carrington 2005, Rogers 2019)
 - Treat the exposed respondents 'infectious', and model the spread of the policy-linked behavior to subsequent contacts of these initial respondents

Why should we care?

- 1. Presence of network interference within treatment groups and across groups within network
- 2. Bias could over / under correct the policy effect
 - Estimation of policy influence is generally confounded with homophily
 - Better manage the resources for the policy implementation
- 3. Current approaches have certain limitations
 - Econometric approaches: Cannot guarantee the strength of IVs, and might fail for certain network structures
 - Cluster sampling: Vulnerable to network interference "within" sampled clusters

Proposed Methodology

Combines existing work in stochastic actor-oriented models (SAOM) & diffusion contagion models with *independent set sampling technique*

So, what is an independent set?

Independent Set

Definition: A set of vertices S is called an independent set if no two vertices in this set S are adjacent to each other

Let's call this graph G, technically it's C₆. Let construct some independent set S

Independent Set

Definition: A set of vertices S is called an independent set if no two vertices in this set S are adjacent to each other

This is one possible S. It is a **maximal** independent set.

This is another possible S. It is a **maximum** independent set.

Bounds

Let G = (V, E), |V| = n, |E| = e, d_v be degree of vertex v, Δ is the maximum degree, $\alpha(G)$ is the size of the maximum independent size

Theorem (Kwok):
$$\alpha(G) \leq n - \frac{e}{\Delta}$$

Theorem (Caro – Wei):
$$\alpha(G) \geq \sum_{v \in V} \frac{1}{1+d_v}$$

Guarantee on the size of the largest independent set sample

• Flexible to choose a suitable sample size given their resource constraints and objective

Why use independent set sampling?

- Social networks are known to be sparse and have bounded degree
 - Independent sets can be used to sample large numbers of nodes relatively efficiently
- Obtain a more representative sample of a network
 - Ensure that the sample is not overly influenced by the presence of dense subgraphs in the original network
- Eliminate interactions within sample groups and isolate policy effects
 - Through such construction, it avoids selecting connected groups of nodes, so it reduces the chances of treatment spill-over in any such sample from the network
- Better identification of network formation within sample (due to policy change)
 - Since the sample is isolated by construction, any network formation can be attributed to homophily of being exposed to treatment (or due to chance)

So, the plan is...

- 1. For a given network, we find an independent set, cluster sample and random sample to be exposed to the treatment
- 2. Simulate the joint evolution of the network and behavior using a stochastic coevolution model
- 3. Obtain estimates for homophily and influence; compare across the 3 samples
- 4. On top of it, we use a modified diffusion contagion model to detect the spread of the policy onto the network; compare across the 3 samples

Simulation Study

- Want to investigate the effects on focal behavior due to the policy
- Use a popular dataset accessed from the wooldridge package in R (with random assignment on gender)
- Model changes in focal behavior using a logistic regression based on individual covariates (policy – increase price level of goods)
- Create 3 waves (4 stages) to simulate evolution
 - Initialize random scale free network
 - 2. Choose an independent set sample/random sample/cluster sample with small noise
 - 3. Change behavior according to logistic regression (no change in network)
 - 4. Parameterize the evolution based on certain probabilities of change

SAOM

- Assume loss in utility is equal to respondent's earlier gain. No endowment function
- Model rate and objective functions with network statistics such as
 - 1. Degree
 - 2. Transitivity
 - 3. Homophily based on the respondent's covariates (focal behavior and price)

and behavioral statistics such as

- 1. Similarity measure
- 2. Behavioral tendency effect
- 3. Peer influence effect

Note: these are not exhaustive, and exact selection will depend on the specific problem context

Stronger homophilous effect

Estin	nates, standard errors			
Network Dynamics		Independent	Cluster	Random
1	Friendship rate (Period 1)	0.0100** (0.0057)	0.0100** (0.0057)	0.0101** (0.0057)
2	Friendship rate (Period 2)	0.1000 (NA)	0.1000 (NA)	0.1000 (NA)
3	Friendship rate (Period 3)	0.0201*** (0.0081)	0.0134*** (0.0066)	0.0100** (0.0058)
4	Transitivity	-4.9743 (9.8651)	0.0269 (1.0338)	-3.9669 (7.9918)
5	Behavior homophily	1.9260** (1.1031)	1.7064 (1.1838)	1.4226 (1.1266)
6	Policy exposure homophily	6.6035** (3.5597)	5.0359 (3.6011)	2.7138 (3.2889)
Behavior Dynamics				
7	Behavior rate (Period 1)	0.1000 (NA)	0.1000 (NA)	0.1000 (NA)
8	Behavior rate (Period 2)	0.5439*** (0.0880)	0.4409*** (0.0770)	0.5587*** (0.0854)
9	Behavior rate (Period 3)	0.0158 (0.0156)	0.0685*** (0.0283)	0.1000 (NA)
10	Behavior Tendency (Linear Shape)	-11.1635 (14.7546)	-2.5606*** (1.1993)	0.5258 (3.2434)
11	Average Peer Influence	-0.0035 (6.7040)	0.0654 (1.6598)	0.4630 (1.4848)
12	Outdegree	0.9312 (1.4059)	0.0323 (0.1417)	-0.8170 (1.3339)

- A higher price level serves as a proxy for being included in the treatment set
- Observe a higher homophily based on focal behaviour and price level for independent set

Estimating treatment effect

- Compute differences in the proportion of individuals having the focal behavior in both the treatment and non-treatment groups
- Track the difference estimates over 4 time periods
 - (A) Before the policy implementation
 - (B) Right after the policy implementation
 - (C) After one wave of simulated evolution
 - (D) Future epochs of the predicted networks based on SAOM
- Direct effect: B-A, Short-term net treatment effect: C-A, Long-term net treatment effect: D-A

Distinct direct and net treatment effect of policy

Diffusion Contagion Model

- Model the spread of policy linked behavior through a dynamic network as a continuous time Markov process
- Equip each respondent with a behavioral threshold generated from the standard uniform distribution
- Respondent acquires focal behavior if the proportion of alters, who have the same behavior, exceeds the threshold
- Increase the weight of the alters in the treatment group by the difference in probability computed in the earlier logistic regression
- Get an opportunity to change an edge or behavior at each micro-step with equal probability

Larger and faster policy coverage

- Incidence curve to measure the spread of policy effect onto the entire network
- Run a dynamic diffusion contagion model to obtain mean of number of individuals with focal behavior over time
- Observe that independent set sampling brings about lower number of respondents with focal behavior over time

Key findings

- 1. Through independent set sampling, we eliminate any network interference within the treatment group
 - Leads to better estimation of the treatment effect
- 2. By implementing policy on independent sample sets, we attain
 - Higher homophily based on focal behavior and policy exposure
 - Greater and faster coverage of intended policy effects throughout the network
- 3. Encourages network formation through policy implementation
- 4. Policy makers can spend less resources by exposing the policy on an independent sample and let the network do the work

Future Work

- 1. What if we obtain a weakly independent set sample due to incomplete data/unobservable links?
- 2. Do size/certain centrality measures in the independent set affect the speed of influence/coverage?
- 3. Since the construction of independent set is affected by the graph structure, how would different graph structure affect the effectiveness of such sampling?
- 4. Which is the "best" independent set to use, in terms of cost of policy implementation or rate of coverage?

Thank you. Any questions?

Eugene Ang

eugene.ang@u.nus.edu

https://arxiv.org/abs/2306.14142