

THESIS SEMINAR MEETING

Philip Georgis
July 12, 2021

TASKS FROM LAST TIME

COMMON CONCEPT SET

Different datasets use different labels for same concepts:

MEAT Arabic, Balto-Slavic, Dravidian, Hokan, Turkic

• FLESH Sinitic

MEAT OR FLESH Italic, Polynesian, Uralic

- Other examples: "STONE" vs. "ROCK", "WOMAN" vs. "FEMALE PERSON", "WARM" vs. "HOT" vs. "WARM (OF WEATHER)", etc.
- Matched each concept with "base concept", e.g. "MEAT" for all label variations
- >1000 unique concepts so couldn't inspect all, but I found the main "culprits"

COMMON CONCEPT SET

- Identified base concepts appearing in at least 7 out of 9 datasets (i.e. missing from maximum 2 datasets)
 - 110 concepts: includes all concepts from Swadesh 100 list

Dataset	Number of Concepts Included	Average Mutual Coverage
Arabic	110	0.96
Balto-Slavic	109	0.76
Dravidian	100	0.86
Hokan	110	0.82
Italic	110	1.00
Polynesian	97*	0.91
Sinitic	110	1.00
Turkic	108	0.88
Uralic	110	0.79

^{*} Polynesian dataset oddly missing some very common concepts for some reason, incl. basic Swadesh list items, e.g. SUN, HEART, FINGERNAIL, TREE, etc.

URALIC DATASET: VÕRO LANGUAGE

- Previously: excluded Võro because only 1 transcription was available in UraLex
- Looked into Võro data in more detail
- Orthographic data is available, but the Võro orthography has a nearly 1:1 correspondence with phonemes
- Instead wrote a G2P tool to automatically transcribe Võro lexical data into IPA
- Võro is the sole representative of a separate branch of Finnic languages, good to include it if possible
- Fun fact: Võro distinguishes 3 degrees of length in consonants and vowels, e.g. /k, k, k.

ADDITIONAL SLAVIC DATA

- Started manually correcting the LexStat-organized cognate sets, but quickly noticed that there was a problem with many NorthEuraLex transcriptions
- Many transcriptions had errors...

- Started manually correcting the LexStat-organized cognate sets, but quickly noticed that there was a problem with many NorthEuraLex transcriptions
- Many transcriptions had errors...

```
e.g. Croatian <ije> represents /je:/, the long version of <je> <zvijezda> /zvje:zda/ */zvijezda/ phantom <i>!
  <pijesak> /pje:sak/ */pije:sak/
  <korijen> /korje:n/ */korien/
```

- Started manually correcting the LexStat-organized cognate sets, but quickly noticed that there was a problem with many NorthEuraLex transcriptions
- Many transcriptions had errors...

e.g. Russian

```
      <имя>
      /im³ə/
      */jɨ'm³ɪ/

      <гладкий>
      /głatk³ɪɪ/
      */gła'dkij/

      <шесть>
      /şɛs³t³/
      */ʃəst³/

      <далёкий>
      /dɐl³ək³ɪɪ/
      */dɐlokij/

      <считать>
      /c:ɪtat³/
      */st͡ʃ³ita't³/
```

- Started manually correcting the LexStat-organized cognate sets, but quickly noticed that there was a problem with many NorthEuraLex transcriptions
- Many transcriptions had errors...
 - e.g. Polish, Czech, Slovak, Ukrainian, Belarusian, Bulgarian...

PL	<śnieg>	/e n ek/	*/cniek/
CZ	<stříbro></stříbro>	/ st riːbro/	*/zdri:bro/
SK	<sedem></sedem>	/se j em/	*/sedem/
UK	<ягода>	/j'ahəd v /	*/jahod a /
BE	<блізкі>	/bljisjkji/	*/blizki/
BG	<лежа>	/183'8/	*/le3 a /

- Started manually correcting the LexStat-organized cognate sets, but quickly noticed that there was a problem with many NorthEuraLex transcriptions
- In some cases even the words were incorrect translations:

e.g. 'WHITE' translated into Ukrainian as <сивий> (actually means 'gray')
 'HAND' translated into Polish as <dłoń> (actually means 'palm of the hand')
 'DOG' translated into Croatian as <pseto> (actually a derogatory term for a dog or a person)

etc...

- Read paper introducing NorthEuraLex dataset to investigate sources...
- Turns out it was compiled semi-automatically from dictionaries by non-experts/non-speakers of the languages
- Most transcriptions were done automatically using grapheme-to-phoneme conversion tools based on phonological descriptions of the language
- How to solve this?

Solutions

1) Incorrect translations: replace or remove obviously incorrect translations

PL 'HAND' *dłoń → ręka

UK 'WHITE' *сивий → білий

HR 'DOG' *pseto \rightarrow Ø

2) Incorrect transcriptions: fix transcriptions

Solutions

1) Incorrect translations: replace or remove obviously incorrect translations

2) Incorrect transcriptions: fix transcriptions

- How to fix transcriptions?
 - Modify existing transcriptions: e.g. Croatian <ije> issue is easy to fix automatically
 - Issues in other languages are more complex...

e.g. impossible to fix Czech <přijít>*/bṛɪjiːt/ \rightarrow /pṛ̂ɪjiːt/ without reference to orthography (if the word had been spelled <břijít> this transcription would have been correct)

Solutions

1) Incorrect translations: replace or remove obviously incorrect translations

2) Incorrect transcriptions: fix transcriptions

- How to fix transcriptions?
 - Wrote improved G2P conversion tools for languages where the transcriptions issues were too complex, addressed the shortcomings of the original transcriptions
 - Russian: orthography is not fully phonetic, instead extracted transcriptions from Wiktionary entries
 - Issues and fixes documented in Appendix of thesis proposal

BALTO-SLAVIC DATASET

- Cognate codes from IE-CoR (thank you Cormac! ⊕)
- Haven't had a chance yet to use them to correct the cognate sets
- IE-CoR data provide an additional reference for mistaken transcriptions or translations

ARABIC DATASET

- Checked overlap of Ratcliffe's (2020) dataset and Wiktionary Swadesh lists
- Almost all of Ratcliffe's forms are represented in the Wiktionary dataset, minor differences in transcription
 - Considerations: Arabic dialects are not standardized, may not refer to exact same variety
 - Arabic expert would be needed to verify the details of the transcriptions, but seem close enough
- Wiktionary lists include more words than Ratcliffe's dataset
 no good way to check those

Language	Concept Ratcliffe Wiktionary		Wiktionary	LD	N_LD	
Egyptian Arabic	ALL	kull	kɔll	1	0.25	
Egyptian Arabic	BELLY	bat ^c n	bat ^c n	1	0.2	
Egyptian Arabic	DIE	maat	ma:t	1	0.25	
Egyptian Arabic	DRY	na:ʃif	na:∫ɛf	1	0.167	
Egyptian Arabic	EAR	widn	wεdn	1	0.25	
Egyptian Arabic	EAT	akal	kal	1	0.25	
Egyptian Arabic	FIRE	na:r	na:r	1	0.25	
Egyptian Arabic	FISH	samak	samaka	1	0.2	
Egyptian Arabic	FULL	maljaan	malja:n	1	0.143	
Egyptian Arabic	GIVE	idda	εdda	1	0.25	
Egyptian Arabic	HAND	i:d	?i:d	1	0.25	
Egyptian Arabic	KILL	mawwit	mawwet		0.167	
Egyptian Arabic	KNEE	rukba	rokba	1	0.2	
Egyptian Arabic	LIVER	kibda	kεbda	1	0.2	

ARABIC DATASET

- Checked overlap of Ratcliffe's (2020) dataset and Wiktionary Swadesh lists
- Almost all of Ratcliffe's forms are represented in the Wiktionary dataset, minor differences in transcription
 - Considerations: Arabic dialects are not standardized, may not refer to exact same variety
 - Arabic expert would be needed to verify the details of the transcriptions, but seem close enough
- Wiktionary lists include more words than Ratcliffe's dataset
 → no good way to check those

Language	Concep	t Ratcli	ffe	Wikti	onary	LD	N_L	D
Egyptian Arabic	ALL	kull		kɔll		1	C	.25
Egyptian Arabic	BELLY	bat ^c n		bat ^c n		1		0.2
Egyptian Arabic	DIE	maat		ma:t		1	C	.25
Egyptian Arabic	DRY	na:ʃif		na:ʃεf		1	0.	167
Egyptian Arabic	EAR	widn		wεdn		1	C	.25
Egyptian Arabic	EAT	akal		kal		1	C	.25
Egyptian / Language		Concept	Ratcliff	e	Wiktiona	ry	LD	N_LD
Egyptian / Iraqi Arabic		BIRD	t ^c eer		t°ε:r°		3	0.6
Egyptian / Iraqi Arabic		CLOUD	γeema		уıĕma		3	0.6
Egyptian / Iraqi Arabic		EGG	beeð°a		pīĕg,a		3	0.5
Egyptian / Iraqi Arabic		EYE	Seen		¢ε:n		3	0.75
Egyptian / Iraqi Arabic		HAIR	∫aʕra		∫a⊊ar		3	0.6
Egyptian / Iraqi Arabic		HEART	qalb		dεl		3	0.6
Egyptian / Iraqi Arabic		MOUTH	ħaliq		наІєд		3	0.6
Iraqi Arabic		NAME	?isim		εsm		3	0.6
Iraqi Arabic		NIGHT	leela		līĕl		3	0.6
Iraqi Arabic		RED	?aħmar	•	?антаг		3	0.5
Iraqi Arabic		SIT	giʕad		gε¢ad		3	0.6
Iraqi Arabic		STONE	ħʤaːra		нʤɑːrˁa		3	0.5
Iraqi Arabic		THOU	?inta		εητε		3	0.6
Iraqi Arabic		TONGUE	lisa:n		əlsa:n		3	0.5
Iraqi Arabic		BARK	gi∫ra		gεʃεr		4	0.8
Iraqi Arabic		BONE	۲aðʿma		¢αð°um°		4	0.667

GLOTTOLOG TREES: BUG FIXED

PHONETIC DISTANCE

- Some literature review: see thesis proposal for more details
 - Séguy (1973): dialectometry using lexical, phonetic, and morphological features as binary characters
 - Kessler (1995): clustering Irish Gaelic dialects using phonetic transcriptions
 - Covington (1996): phonetic distance using hand-crafted alignment costs
 - Kondrak's ALINE algorithm (2000-2002): aligning phonetic sequences using feature-based phonetic similarity
 - Features weighted by salience
 - Not distinctive phonological features: multi-valued, ordinal rather than binary features
 - COGIT: cognate-detection using composite phonetic/semantic similarity score

PHONETIC DISTANCE

- Badr's feedback on encoding distinctive features
 - No clear "correct" approach would depend on the needs of the application
 - Ideally would develop a perceptual similarity study to compare against, but this is impractical and would be necessarily biased towards the languages of the participants
 - Sufficient to find a solution which performs as well or better than existing methods
 - Try all of the approaches with some toy data and see if the results make sense

PHONETIC SEQUENCE ALIGNMENT

- Until now, I've used my own implementation of phonetic similarity with Needleman-Wunsch alignment algorithm
 - Find optimal sequence alignment according to similarity of phones (distinctive features + sonority)
 - Seems similar to Kondrak's ALINE tool
 - Also incorporates aspect of information content (next)

PHONETIC SEQUENCE ALIGNMENT

- So far: I've used my previous implementation of phonetic similarity with Needleman-Wunsch alignment algorithm
 - Find optimal sequence alignment according to similarity of phones (distinctive features + sonority)
 - Seems similar to Kondrak's ALINE tool
 - Also incorporates aspect of information content (below)
- Dellert (2018) information content alignment
 - Use trigram frequency within language's transcriptions to determine relative informativity of trigrams
 - Add difference in informativity to whatever other cost (e.g. phonetic distance)
 - Idea: penalize alignments of information-heavy with information-light segments to discourage, e.g. alignment of verb suffix with verb root

PHONETIC SEQUENCE ALIGNMENT

- So far: I've used my previous implementation of phonetic similarity with Needleman-Wunsch alignment algorithm
 - Find optimal sequence alignment according to similarity of phones (distinctive features + sonority)
 - Seems similar to Kondrak's ALINE tool
 - Also incorporates aspect of information content (below)
- Another possibility: alignment informed by historical sound changes
 - Extract all valid alignments for true cognates, get costs for alignment of phonemes or sound classes from correspondence probabilities
 - Might yield more accurate alignments than ones based on phonetic similarity alone
 - e.g. $/s/\rightarrow/h/$ is a common sound change, but not phonetically similar
 - Similar to method used by Jäger (2018)

NEXT STEPS

