问题2

```
In [1]: import numpy as np
        import pandas as pd
        import cufflinks as cf
        import scipv
        import scipy.cluster.hierarchy as sch
        from sklearn.metrics import *
        from sklearn.cluster import DBSCAN
        import plotly
        import plotly.express as px
        import plotly.graph objects as go
        import plotly.figure_factory as ff
        import matplotlib.pyplot as plt
        plt.rcParams['font.sans-serif'] = ['SimHei']
        plt.rcParams['axes.unicode_minus'] = False
        from IPython.display import HTML
        from IPython.core.interactiveshell import InteractiveShell
        # InteractiveShell.ast node interactivity = 'all'
        InteractiveShell.ast node interactivity = 'last'
        import pylatex
        import latexify
```

层次聚类

DMA 1 日期 漏水聚类 (unfin,最终未使用)

```
In [2]: # DMA1 data

user_DMA1 = pd.read_excel("按照日期处理后的数据.xlsx", sheet_name='DMA1的用户用水量', index_col=0)

user_DMA1 = pd.concat([user_DMA1.iloc[:43, :], user_DMA1.iloc[44:, :]])

index = list(user_DMA1.index.strftime("%Y-%m-%d"))

columns = list(user_DMA1.columns)
```

```
# distance matrix
n, m = user_DMA1.shape
dismat = []
for i in range(n):
    dis = []
    for j in range(n):
        d = ((user_DMA1.iloc[i, :] - user_DMA1.iloc[j, :])**2).sum()**0.5
        dis.append(d)
    dismat.append(dis)
pd.DataFrame(dismat, index=index, columns=index).head(10)
```

Out	[2]	:
-----	-----	---

:		2014-04- 15	2014-04- 16	2014-04- 17	2014-04- 18	2014-04- 19	2014-04- 20	2014-04- 21	2014-04- 22	2014-04- 23	2014-04- 24	•••	2014-06- 02	2014-06- 03	2014-06- 04	2014
	2014- 04-15	0.000000	44.970736	43.790481	79.645601	57.201260	44.092741	30.180593	37.291196	34.615235	34.022864		118.995703	102.396775	127.063951	126.829
	2014- 04-16	44.970736	0.000000	33.023548	55.413570	37.121144	36.250196	33.376436	35.664262	35.836445	39.711072		92.234241	77.074228	105.571553	100.810
	2014- 04-17	43.790481	33.023548	0.000000	68.089377	47.576177	44.180373	37.139529	32.447618	35.771979	43.281593		100.635740	87.967622	115.433542	111.88(
	2014- 04-18	79.645601	55.413570	68.089377	0.000000	54.301897	68.279117	71.790516	72.613009	71.801586	70.443402		76.492624	65.070479	73.933231	73.588
	2014- 04-19	57.201260	37.121144	47.576177	54.301897	0.000000	48.539913	45.224504	45.056550	47.722960	49.241252		89.843496	76.965555	100.527011	98.646
	2014- 04-20	44.092741	36.250196	44.180373	68.279117	48.539913	0.000000	35.322639	42.349185	40.425280	47.044807		107.103153	96.373283	121.390342	120.296
	2014- 04-21	30.180593	33.376436	37.139529	71.790516	45.224504	35.322639	0.000000	27.670524	26.865951	33.109831		111.999281	95.362131	124.815657	121.487
	2014- 04-22	37.291196	35.664262	32.447618	72.613009	45.056550	42.349185	27.670524	0.000000	30.816616	38.591046		108.408107	90.196483	121.974247	118.356
	2014- 04-23	34.615235	35.836445	35.771979	71.801586	47.722960	40.425280	26.865951	30.816616	0.000000	35.298564		113.966121	94.098119	124.265710	119.680
	2014- 04-24	34.022864	39.711072	43.281593	70.443402	49.241252	47.044807	33.109831	38.591046	35.298564	0.000000		114.483158	94.866750	120.205077	117.145

10 rows × 57 columns

```
In [3]: InteractiveShell.ast node interactivity = 'last'
        dis arr = np.array(user DMA1)
        disMat = sch.distance.pdist(dis arr, 'euclidean')
        Z = sch.linkage(disMat)
        ch score = []
        b = 1.14
       t = np.linspace(0, b, int(100*(b)+1))
        tt = np.linspace(0, 160, int(100*(b)+1))
        for d in t:
           cluster = sch.fcluster(Z, d, 'inconsistent')
           s = calinski harabasz score(user DMA1, cluster)
           ch score.insert(0, s)
           ch score.insert(0, ch score[0])
           ch score.pop()
        # len(set(sch.fcluster(Z, 0.88, 'inconsistent')))
        trace = go.Scatter(x=tt, y=ch score, mode='lines', name='CH指数')
       fig = go.Figure(data=trace)
       fig.update_layout(
           xaxis=dict(title='分类距离阈值'),
           yaxis=dict(title='Calinski-Harabaz指数'),
           title_text="DMA1用水量-Calinski-Harabaz指数随分类距离阈值的变化情况",
       fig.add trace(go.Scatter(
           x=[121.76], y=[6.46],
           line=dict(color='orange', width=5),
           showlegend=False,
        ))
        # fiq.write image('./img/svq/DMA1用水量-Calinski-Harabaz指数随分类距离阈值的变化情况.svg')
       fig.show()
       fig = ff.create_dendrogram(user_DMA1, orientation='left', labels=index, )
        fig.update layout(
           width=800,
           height=800,
           yaxis=dict(range=[-560, 0]),
           title_text='DMA1用水量-对日期的层次聚类树状图',
       fig.add_trace(go.Scatter(
           x=[121.76] * len(ch_score),
           y=np.linspace(-560, 0, len(ch_score)),
           mode='lines',
           line=dict(color='blue', width=1, dash='dash'),
       ))
        # fig.write_image('./img/svg/DMA1用水量-对日期进行层次聚类结果.svg')
       fig.show()
```


DMA 2 日期漏水量聚类 (unfin,最终未使用)

```
In [4]: # DMA2 data
user_DMA2 = pd.read_excel("按照日期处理后的数据.xlsx", sheet_name='DMA2的用户用水量', index_col=0)
user_DMA2 = pd.concat([user_DMA2.iloc[:43, :], user_DMA2.iloc[44:, :]])
index = list(user_DMA2.index.strftime("%Y-%m-%d"))
columns = list(user_DMA2.columns)

# distance matrix
n, m = user_DMA2.shape
dismat = []
for i in range(n):
    dis = []
    for j in range(n):
        d = ((user_DMA2.iloc[i, :] - user_DMA2.iloc[j, :])**2).sum()**0.5
        dis.append(d)
        dismat.append(dis)
pd.DataFrame(dismat, index=index, columns=index).head(10)
```

Out[4]:		2014-04- 15	2014-04- 16	2014-04- 17	2014-04- 18	2014-04- 19	2014-04- 20	2014-04- 21	2014-04- 22	2014-04- 23	2014-04- 24	 2014-06- 02	2014-06- 03	2014-06- 04	2014-06- 05
	2014- 04-15	0.000000	11.461043	15.414292	16.675269	18.095276	12.817258	13.468589	13.402164	13.389556	16.234152	 63.800942	66.171191	60.720991	56.660274
	2014- 04-16	11.461043	0.000000	14.852747	16.464583	18.824067	12.240082	14.245757	12.662831	14.715125	16.558200	 64.126944	66.156864	60.772986	56.798202
	2014- 04-17	15.414292	14.852747	0.000000	14.418904	13.875518	20.718226	21.165422	13.932645	12.081126	24.310827	 55.911595	58.295387	51.880269	48.980828
	2014- 04-18	16.675269	16.464583	14.418904	0.000000	14.570443	22.013743	21.981545	11.430713	12.348052	24.898219	 55.764494	57.410643	53.100696	48.286303
	2014- 04-19	18.095276	18.824067	13.875518	14.570443	0.000000	24.935900	25.216853	16.192591	11.865547	27.574428	 52.133858	54.378749	48.822121	45.411394
	2014- 04-20	12.817258	12.240082	20.718226	22.013743	24.935900	0.000000	7.118399	17.520214	19.315742	8.860429	 71.509645	73.620038	67.989486	64.033330
	2014- 04-21	13.468589	14.245757	21.165422	21.981545	25.216853	7.118399	0.000000	18.185140	19.397678	8.175842	 72.337190	74.412456	68.851587	64.817167
	2014- 04-22	13.402164	12.662831	13.932645	11.430713	16.192591	17.520214	18.185140	0.000000	12.317622	20.672637	 59.777611	61.722292	56.883225	52.327852
	2014- 04-23	13.389556	14.715125	12.081126	12.348052	11.865547	19.315742	19.397678	12.317622	0.000000	21.949604	 55.451366	57.533617	52.406546	48.231103
	2014- 04-24	16.234152	16.558200	24.310827	24.898219	27.574428	8.860429	8.175842	20.672637	21.949604	0.000000	 73.331474	75.324648	69.885717	65.747867

10 rows × 57 columns

```
In []:
In [5]: InteractiveShell.ast_node_interactivity = 'last'

dis_arr = np.array(user_DMA2)
    disMat = sch.distance.pdist(dis_arr, 'euclidean')
    Z = sch.linkage(disMat)
    # P = sch.dendrogram(Z)
    # plt.show()

ch_score = []
    b = 1.14
```

```
t = np.linspace(0, b, int(100*(b)+1))
tt = np.linspace(0, 93, int(100*(b)+1))
for d in t:
    cluster = sch.fcluster(Z, d, 'inconsistent') # 聚类结果
   s = calinski harabasz score(user DMA2, cluster)
   ch score.append(s)
# len(set(sch.fcluster(Z, 0.97, 'inconsistent')))
trace = go.Scatter(x=tt, y=ch score, mode='lines', name='CH指数')
fig = go.Figure(data=trace)
fig.update layout(
   xaxis=dict(title='分类距离阈值'),
   yaxis=dict(title='Calinski-Harabaz指数'),
   title text="DMA2用水量-Calinski-Harabaz指数随分类距离阈值的变化情况",
fig.add trace(go.Scatter(
   x=[79.83], y=[299.8],
   line=dict(color='orange', width=5),
   showlegend=False,
))
# fig.write_image('./img/svg/DMA2用水量-Calinski-Harabaz指数随分类距离阈值的变化情况.svg')
fig.show()
fig = ff.create_dendrogram(user_DMA2, orientation='left', labels=index)
fig.update_layout(
   width=800,
   height=800,
   yaxis=dict(range=[-560, 0]),
   title_text='DMA2用水量-对日期的层次聚类树状图',
fig.add_trace(go.Scatter(
   x=[79.83] * len(ch_score),
   y=np.linspace(-560, 0, len(ch_score)),
   mode='lines',
   line=dict(color='blue', width=1, dash='dash'),
))
# fig.write_image('./img/svg/DMA2用水量-对日期进行层次聚类结果.svg')
fig.show()
```


基于密度聚类 DBSCAN

漏水量、漏水量占比聚类

```
In [6]: # DMA1
        # InteractiveShell.ast node interactivity = 'all'
        InteractiveShell.ast node interactivity = 'last'
        from sklearn.cluster import DBSCAN
        DMA1 leaking = pd read excel('./问题2数据.xlsx', sheet name='DMA1', index col=0)
        index = list(DMA1 leaking.index)
        columns = list(DMA1 leaking.columns)
        DMA1_leaking
        dbscan = DBSCAN(2)
        predict = dbscan.fit_predict(DMA1_leaking)
        predict
        DMA1_leaking['class'] = [f"class{i}" for i in predict]
        fig = px.scatter_matrix(
           DMA1 leaking,
            dimensions=["漏水量", "漏水量占比"],
            color='class',
           title='DMA1漏水量聚类',
        fig.update_layout(legend_title_text='')
        fig.write_image('./img/svg/DMA1漏水量聚类.svg')
        fig.show()
```

DMA1漏水量聚类


```
In [7]: # DMA2
# InteractiveShell.ast_node_interactivity = 'all'
InteractiveShell.ast_node_interactivity = 'last'

DMA2_leaking = pd.read_excel('./问题2数据.xlsx', sheet_name='DMA2', index_col=0)
index = list(DMA2_leaking.index)
columns = list(DMA2_leaking.columns)
DMA2_leaking

dbscan = DBSCAN(1.5)
predict = dbscan.fit_predict(DMA2_leaking)
predict
```

```
DMA2_leaking['class'] = [f"class{i}" for i in predict]

fig = px.scatter_matrix(
    DMA2_leaking,
    dimensions=["漏水量", "漏水量占比"],
    color='class',
    title='DMA2漏水量聚类',
)

fig.update_layout(legend_title_text='')
fig.write_image('./img/svg/DMA2漏水量聚类.svg')
fig.show()
```

DMA2漏水量聚类

In []: