

Building your own intake-esm datastore

Standardising analysis of climate model datasets

Anton Steketee, Charles Turner, Dougie Squire, Marc White, Romain Beucher

ACCESS-NRI Intake Catalog

A catalog provides functionality for searching, discovering and loading data.

Data can be searched by many attributes, including:

- Experiment name
- Model
- Realm / Model Component
- Data Frequency
- Variable Name
- Variable Standard & Long Names

The ACCESS-NRI Intake Catalog is built upon Intake-ESM, and only shows data stored at the NCI.

ACCESS-NRI Intake Catalog

[1]:	<pre>import intake</pre>	(+	\uparrow	\downarrow	÷	Data	ase
	<pre>catalog = intake.cat.access_nri</pre>						
[2]:	catalog						
	access_nri catalog with 94 source(s) across 2268 rows:						

		model	description	realm	frequency	variab
	name					
01deg_jra55v13_ry	rf9091 ^{{A}	CCESS- OM2}	{0.1 degree ACCESS-OM2 global model configuration with JRA55-do v1.3 RYF9091 repeat year forcing (May 1990 to Apr 1991)}	{ocean, sealce}	{3mon, 1mon, fx, 3hr, 1day}	{ANGLET, buoyfreq2_wt, dyu, fsalt_ai_m, tx_tran sss_m, frazil_r total_ocean_fprec, ke_tc total_ocean_lw_hea bih_fric_v, vocn_r frazil_3d_int_z, sig2_r tx_trans_rho, tau_sfc_hflux_fr
Oddan institut	40 :-4 {A	CCESS-	{Cycle 1 of 0.1 degree ACCESS-OM2 global model	{ocean,	{1day,	{ANGLET, buoyfreq2_w bmf_u, u, dyu, fsalt_ai_r tx_trans, frazil_r total_ocean_fprec, ke_tc

Each experiment is an Intake-ESM Datastore

How do I make my own Intake ESM Datastore?

Example with build-esm-datastore in command line

```
Through the command line: build-esm-datastore:

user@gadi $ mkdir catalog_dir # Change this to whatever you like/seems sensible to you user@gadi $ module load conda/analysis3-25.02

user@gadi $ build-esm-datastore --builder Mom6Builder --expt-dir

/g/data/ik11/outputs/mom6-panan/panant-01-zstar-ACCESSyr2/ --cat-dir catalog_dir
```

In a Jupyter Notebook: use_datastore:

```
from access_nri_intake.experiment import use_datastore
from access_nri_intake.source import builders

expt_datastore = use_datastore(
    experiment_dir = '/g/data/ik11/outputs/mom6-panan/panant-01-zstar-ACCESSyr2/',
    catalog_dir = 'catalog_dir',
    builder=builders.Mom6Builder
)
```

How do I make my own Intake ESM Datastore?

Further info: https://access-nri-intake-

catalog.readthedocs.io/en/latest/datastores/quickstart.html

```
Datastore found in /home/189/ct1163/catalog_dir, verifying datastore integrity...
Parsing experiment dir...
Datastore integrity verified!
Datastore found in /home/189/ct1163/catalog_dir/experiment_datastore.json!
Please note that this has not added the datastore to the access-nri-intake catalog.
To add to catalog, please run 'scaffold_catalog_entry' for help on how to do so.
```

experiment_datastore catalog with 13 dataset(s) from 12325 asset(s):

	unique
filename	12325
file_id	13

```
$ build-esm-datastore --builder Mom6Builder --expt-dir /q/data/ik11/outputs/mom6-panan/panant-01-zstar-ACCESSyr2/ --cat-dir .
Datastore found in current directory, verifying datastore integrity...
Parsing experiment dir...
Experiment directory and datastore do not match (missing files from datastore). Datastore regeneration required...
Building esm-datastore...
Sucessfully built esm-datastore!
Saving esm-datastore to /home/189/ct1163/catalog_dir
/home/189/ct1163/catalog_dir/venv/lib/python3.11/site-packages/intake_esm/cat.py:186: PydanticDeprecatedSince20: The `dict` method is deprecated; use `model_dump` instead.
 data = self.dict().copy()
Successfully wrote ESM catalog json file to: file:///home/189/ct1163/catalog_dir/experiment_datastore.json
Hashing catalog to prevent unnecessary rebuilds.
This may take some time...
Catalog sucessfully hashed!
Datastore sucessfully written to /home/189/ct1163/catalog_dir/experiment_datastore.json!
Please note that this has not added the datastore to the access-nri-intake catalog.
To add to catalog, please run 'scaffold-catalog-entry' for help on how to do so.
To open the datastore, run `intake.open esm datastore('/home/189/ct1163/catalog dir/experiment datastore.json', columns with iterables=['variable'])` in a Python session.
```

How do I make my own Intake ESM Datastore?

Further info: https://access-nri-intake-catalog.readthedocs.io/en/latest/datastores/quickstart.html

If building a catalog from the terminal, we recommend you do so from an ARE instance terminal, not by SSH'ing into a Gadi login node

Datastore keys define different datasets

[36]: datastore

intake_esm_ds catalog with 95 dataset(s) from 95 asset(s):

	unique
path	95
realm	2
variable	235
frequency	3
start_date	1
end_date	2
variable_long_name	216
variable_standard_name	51
variable_cell_methods	20
variable_units	25
filename	95
file_id	95
derived variable	0

[28]: datastore.keys_info()

[28]: file_id frequency

		key
XX 1day	access_om3_cice_XXXX_XX	access_om3_cice_XXXX_XX.1day
_01 1mon	access_om3_cicem_1900_01	access_om3_cicem_1900_01.1mon
XX 1mon	access_om3_mom6_2d_Heat_PmE_1mon_mean_XXXX_XX	access_om3_mom6_2d_Heat_PmE_1mon_mean_XXXX_XX.1mon
XX 1mon	access_om3_mom6_2d_Rd_dx_1mon_mean_XXXX_XX	access_om3_mom6_2d_Rd_dx_1mon_mean_XXXX_XX.1mon
XX 1mon	access_om3_mom6_2d_SSH_1mon_mean_XXXX_XX	access_om3_mom6_2d_SSH_1mon_mean_XXXX_XX.1mon
XX 1mon	access_om3_mom6_3d_vmo_1mon_mean_XXXX_XX	access_om3_mom6_3d_vmo_1mon_mean_XXXX_XX.1mon
XX 1mon	access_om3_mom6_3d_vo_1mon_mean_XXXX_XX	access_om3_mom6_3d_vo_1mon_mean_XXXX_XX.1mon
XX 1mon	access_om3_mom6_3d_vo_1mon_pow02_XXXX_XX	access_om3_mom6_3d_vo_1mon_pow02_XXXX_XX.1mon
XX 1day	access_om3_mom6_scalar_1day_XXXX_XX	access_om3_mom6_scalar_1day_XXXX_XX.1day
atic fx	access_om3_mom6_static	access_om3_mom6_static.fx

95 rows × 2 columns

Dataframe view shows assets

	path	realm	variable	frequency	start_date	end_date	variable_long_name	variable_standard_name	varial
0	/g/data/tm70/as2285/ payu/ epbl_1_lower_tintalgo	sealce	[time_bounds, NCAT, VGRDi, VGRDs, VGRDb, VGRDa	1day	1900-01-01, 00:00:00	1900-02-01, 00:00:00	[time interval endpoints, category maximum thi	[1	['tin
1	/g/data/tm70/as2285/ payu/ epbl_1_lower_tintalgo	sealce	[time_bounds, NCAT, VGRDi, VGRDs, VGRDb, VGRDa	1mon	1900-01-01, 00:00:00	1900-02-01, 00:00:00	[time interval endpoints, category maximum thi	[['
2	/g/data/tm70/as2285/ payu/ epbl_1_lower_tintalgo	ocean	[Heat_PmE, average_T1, average_T2, average_DT,	1mon	1900-01-01, 00:00:00	1900-02-01, 00:00:00	[Heat flux into ocean from mass flux into ocea	[]	'] xh:n
3	/g/data/tm70/as2285/ payu/ epbl_1_lower_tintalgo	ocean	[Rd_dx, average_T1, average_T2, average_DT, ti	1mon	1900-01-01, 00:00:00	1900-02-01, 00:00:00	[Ratio between deformation radius and grid spa	£1	'] xh:n
4	/g/data/tm70/as2285/ payu/ epbl_1_lower_tintalgo	ocean	[SSH, average_T1, average_T2, average_DT, time	1mon	1900-01-01, 00:00:00	1900-02-01, 00:00:00	[Sea Surface Height, Start time for average pe	L1	'] xh:n
	•••			***				***	
90	/g/data/tm70/as2285/ payu/ epbl_1_lower_tintalgo	ocean	[vmo, average_T1, average_T2, average_DT, time	1mon	1900-01-01, 00:00:00	1900-02-01, 00:00:00	[Ocean Mass Y Transport, Start time for averag	[ocean_mass_y_transport, , , , , , ,]	xh:
91	/g/data/tm70/as2285/ payu/ epbl_1_lower_tintalgo	ocean	[vo, average_T1, average_T2, average_DT, time	1mon	1900-01-01, 00:00:00	1900-02-01, 00:00:00	[Sea Water Y Velocity, Start time for average	[sea_water_y_velocity, , , ,]	xh:n
92	/g/data/tm70/as2285/ payu/ epbl_1_lower_tintalgo	ocean	[vo, average_T1, average_T2, average_DT, time	1mon	1900-01-01, 00:00:00	1900-02-01, 00:00:00	[Sea Water Y Velocity, Start time for average	[sea_water_y_velocity, , , ,]	
93	/g/data/tm70/as2285/ payu/ epbl_1_lower_tintalgo	ocean	[soga, thetaoga, tosga, sosga, total_salt_Flux	1day	1900-01-01, 00:00:00	1900-02-01, 00:00:00	[Global Mean Ocean Salinity, Global Mean Ocean	[sea_water_salinity, sea_water_potential_tempe	
94	/g/data/tm70/as2285/ payu/ epbl_1_lower_tintalgo	ocean	[areacello, areacello_cu, areacello_cv, areace	fx	1900-01-01, 00:00:00	1900-01-01, 00:00:00	[Ocean Grid-Cell Area, Ocean Grid- Cell Area, O	[cell_area, cell_area, cell_area, ,	

Finding a variable by name

Finding a dataset by attribute


```
[53]: datastore.search(realm='seaIce', frequency='1mon')
     intake_esm_ds catalog with 1 dataset(s) from 1 asset(s):
                               unique
                        path
                        realm
                     variable
                   frequency
                   start_date
                    end_date
           variable_long_name
      variable_standard_name
        variable_cell_methods
                variable_units
                     filename
                       file_id
             derived_variable
```

Opening a dataset with multiple variables

Intake-ESM

Datastore

Dataset(s)

Datasets can have more than one variable

Related variables are often in different datasets

```
[60]: search = datastore.search(variable=['sos','tos'])
      search
     intake_esm_ds catalog with 2 dataset(s) from 2 asset(s):
                              unique
                        path
                       realm
                     variable
                   frequency
                   start_date
                    end date
          variable_long_name
      variable_standard_name
        variable_cell_methods
                variable_units
                     filename
                       file_id
             derived_variable
[61]: search.keys()
[61]: ['access_om3_mom6_2d_sos_1mon_mean_XXXX_XX.1mon',
        'access_om3_mom6_2d_tos_1mon_mean_XXXX_XX.1mon']
```

Related variables on the same grid can be merged

```
[74]: search = datastore.search(variable=['sos','tos'])
[75]: mom_dict = search.to_dataset_dict()
       --> The keys in the returned dictionary of datasets are constructed as follows:
                'file_id.frequency'
                                               100.00% [2/2 00:00<00:00]
[76]: import xarray as xr
      mom_ds = xr.merge(mom_dict.values())
[78]: mom_ds
[78]: xarray.Dataset
      ▶ Dimensions:
                          (time: 1, yh: 1142, xh: 1440)
      ▼ Coordinates:
         xh
                          (xh)
                                        float64 -279.9 -279.6 ... 79.62 79.88
                          (yh)
         yh
                                        float64 -80.94 -80.87 ... 89.84 89.95
         time
                           (time)
                                        object 1900-01-16 12:00:00
      ▼ Data variables:
                          (time, yh, xh) float32 dask.array<chunksize=(1, 1142, 1440), meta=np.nda...
         tos
         sos
                          (time, yh, xh) float32 dask.array<chunksize=(1, 1142, 1440), meta=np.nda...
      ▶ Indexes: (3)
      ► Attributes: (20)
```

Why do I need to know the models name for a variable?

```
[79]: search uatastore.search(
          variable_standard_name=['sea_surface_salinity','sea_surface_temperature'],
[80]: search.keys()
[80]: ['access_om3_mom6_2d_sos_1mon_mean_XXXX_XX.1mon',
        'access_om3_mom6_2d_tos_1mon_mean_XXXX_XX.1mon',
        'access_om3_mom6_2d_tos_1mon_min_XXXX_XX.1mon',
        'access_om3_mom6_scalar_1day_XXXX_XX.1day']
[81]: search = datastore.search(
          variable_standard_name=['sea_surface_salinity','sea_surface_temperature'],
          file_id='access_om3_mom6_scalar_1day_XXXX_XX'
      search
     intake_esm_ds catalog with 1 dataset(s) from 1 asset(s):
                             unique
                       path
                      realm
                                25
                     variable
```

frequency start_date end_date

> 25 12

> > 0

variable_long_name

variable_standard_name

variable_cell_methods

variable_units

derived_variable

filename

file_id

See Model Agnostic Analysis at COSIMA-Recipes

https://cosimarecipes.readthedocs.io/en/latest/Tutorials/Mode l_Agnostic_Analysis.html Why do I need to know the models name for a variable?

Ongoing Work

Panantarctic (GFDL-OM4) results are in xp65 environments, available for testing

Request additional datasets into the main catalog at

- https://github.com/ACCESS-NRI/access-nri-intake-catalog

List of cosima recipes converted to intake and open pull-requests:

- https://github.com/COSIMA/cosima-recipes/issues/313

Updates & change since hh5 (xp65, conda/analysis3-25.02):

- Catalog now indexes grid variables
- use_datastore/build-esm-datastore
- More experiments and datasets indexed

NCI also have and add intake catalogs (e.g. ERA5, BARRA/BARPA, CMIP6)

For ACCESS documentation – see ACCESS-HIVE

For general support – use <u>ACCESS-HIVE FORUM</u>

For intake documentation – see <u>intake-esm website</u>

For bugs—use <u>access-nri-intake-catalog github</u>

Some other resources

https://cosima-recipes.readthedocs.io/en/latest/Tutorials/ACCESS-NRI_Intake_Catalog.html

https://github.com/ACCESS-NRI/intake-training/

Todays exercises can be found here

`use_datastore()` is not in hh5

Test set-up (very similar to a normal session for COSIMA Recipes):

Module directories
/g/data/xp65/public/modules
Modules
openmpi conda/analysis3-25.02

Projects:

gdata/xp65+gdata/\$PROJECT (+gdata/hh5+gdata/ik11+gdata/cj50 +gdata/oi10+gdata/ol01+gdata/fs38+gdata/p73)

Compute Size of large or greater.

Raise issues: https://github.com/ACCESS-NRI/ACCESS-Analysis-Conda

To follow the exercises:

Exercises:

\$ git clone https://github.com/ACCESS-NRI/intake-training/

\$ cd intake-training/2025_02

1. Make a datastore:

```
datastore = use_datastore(...)
```

2. Find a single dataset:

```
search = datastore.search(...)
```

Start a dask cluster

Open the dataset:

```
search.to_dask()
```

3. Try another search which returns two variables.

```
search = datastore.search(variable=[...,...])
search.to dataset dict()
```

4. Try search with CF:

```
datastore.search(variable_standard_name='')
```

5. (Bonus) Run COSIMA recipe with your datastore, e.g:

https://github.com/COSIMA/cosima-recipes/blob/main/Recipes/Compare_SSH_model_obs.ipynb