CS325 - Project 4

Group #6
William Jernigan, Alexander Merrill, Sean Rettig

December 1, 2014

Problem 1: mmmm ... tofu

Mathematical Representation

Variables:

 u_f = working day flavored blocks of tofu

 m_f = working day flavored bags of edamame

 p_f = working day flavored blocks of tempeh

 u_o = overtime flavored blocks of tofu

 m_o = overtime flavored bags of edamame

 p_o = overtime flavored blocks of tempeh

 $u_p = \text{plain blocks of tofu}$

 m_p = plain bags of edamame

 $p_p = \text{plain blocks of tempeh}$

Objective: $\max \{4u_p + 12u_f + 7u_o + 8m_p + 14m_f + 11m_o + 4p_p + 13p_f + 9p_o\}$

Set of Constraints:

 $u_f + u_o + u_p \le 480$

 $m_f + m_o + m_p \le 400$

 $p_f + p_o + p_p \le 230$

 $u_f + m_f + p_f \le 420$

 $u_o + m_o + p_o \le 250$

 $-u_f \le 0$

 $-m_f \leq 0$

 $-p_f \le 0$

 $-u_o \le 0$

 $-m_o \le 0$

 $-p_o \le 0$

 $-u_p \le 0$

 $-m_p \le 0$

 $-p_p \le 0$

Matrix Representation

Optimal Solution

```
The maximum profit that can be made is $10,610 with the following plan: to
fur plain = 60 to
fur flavored on regular time = 420 to
fur flavored on overtime = 0 edamame plain = 380 edamame flavored on regular time = 0 edamame flavored on overtime = 20 tempeh plain = 0 tempeh flavored on regular time = 0 tempeh flavored on overtime = 230
```

Environment Used to Solve

GUSEK is an open source Windows GUI which provides a SciTE editor for describing LPs and solves them with GLPK, a standalone tool usable in command line.

Code

```
Maximize
obj: 4up + 12uf + 7uo + 8mp + 14mf + 11mo + 4pp + 13pf + 9po
Subject To
c1: uf + uo + up <= 480
c2: mf + mo + mp <= 400
c3: pf + po + pp <= 230
c4: uf + mf + pf <= 420
c5: uo + mo + po <= 250
Bounds
uf >= 0
mf >= 0
pf >= 0
uo >= 0
mo >= 0
```

po >= 0 up >= 0 mp >= 0 pp >= 0 End

Problem 2: least squares isn't good enough for me

Linear Program for General Problem

Objective: min t $\begin{aligned} \textbf{Subject to:} \\ -t + ax_i + by_i - c &\leq 0 \text{ for } 1 \leq i \leq n \\ t + ax_i + by_i - c &\leq 0 \text{ for } 1 \leq i \leq n \\ t &\geq 0 \end{aligned}$

Best Solution for Specific Problem

Objective: min t

Subject to:

 $t - a1 - b3 + c \le 0$ $-t + a + 3b - c \le 0$ $t + a + 3b - c \le 0$ $-t + 2a + 5b - c \le 0$ $t + 2a + 5b - c \le 0$ $-t + 3a + 7b - c \le 0$ $t + 3a + 7b - c \le 0$ $-t + 5a + 11b - c \le 0$ $t + 5a + 11b - c \le 0$ $-t + 7a + 14b - c \le 0$ $t + 7a + 14b - c \le 0$ $-t + 8a + 15b - c \le 0$ $t + 8a + 15b - c \le 0$ $-t + 10a + 19b - c \le 0$ $t+10a+19b-c \leq 0$ $-t \leq 0$

Solution:

0 = 1.741x - 1y + 1.615 a = 1.741 b = 1 c = 1.615

Plot and Solution

0 = 1.741x - 1y + 1.615

Code

```
Minimize
obj: t
Subject To
-t + a + 3b - c <= 0
t + a + 3b - c \le 0
-t + 2a + 5b - c \le 0
t + 2a + 5b - c \le 0
-t + 3a + 7b - c <= 0
t + 3a + 7b - c \le 0
-t + 5a + 11b - c \le 0
t + 5a + 11b - c \le 0
-t + 7a + 14b - c \le 0
t + 7a + 14b - c \le 0
-t + 8a + 15b - c <= 0
t + 8a + 15b - c <= 0
 -t + 10a + 19b - c \le 0
t + 10a + 19b - c \le 0
 -t <= 0
Bounds
End
```

Work Shown

Attached are copies of our work and scratch paper.