Multiplexers-Demultiplexers (Mux-Demux)

Öğr. Gör. Gökhan MANAV

Neler Öğreneceğiz?

- Çoklayıcılar-Veri Seçiciler (Multiplexers)
- Çoklayıcı uygulamaları
- Azaltıcılar Veri Dağıtıcılar (Demultiplexers)
- Demultiplexers Uygulamaları

Çoklayıcılar - Veri Seçiciler (Multiplexers - Data Selectors)

Çok sayıdaki giriş bilgisinin zaman paylaşımlı olarak sırayla çıkışa aktarılması olayıdır.

İki Girişli Mux

İki girişten birisini seçerek çıkışa aktaran bu devre 2x1 MUX olarak isimlendirilir.

8x1 MUX Entegresi

GİRİŞLER	ÇIKIŞLAR
$E^{\scriptscriptstyle I} \ S_2 S_1 S_0$	Y' Y
1 X X X	1 0
0 0 0 0	I_0 I_0
0 0 0 1	I_1 I_1
0 0 1 0	I_2 I_2
0 0 1 1	I_3 I_3
0 1 0 0	I_4 I_4
0 1 0 1	I_5 I_5
0 1 1 0	I_6 I_6
0 1 1 1	I_7 I_7

b) 8.1 MUX Doğruluk tablosu

74157 entegresinde dört adet iki girişli çoklayıcı bulunur. Bu çoklayıcılar iki adet 4 girişli çoklayıcı olarak kullanılabilirler. Entegrenin 4 girişli çoklayıcı olarak kullanılması durumunda, çoklayıcının tamamındaki iki hattan birisini seçmek için bir adet 'S' seçme hattı yeterli olur.

Çoklayıcı Uygulamaları

Çoklayıcı devreleri, çeşitli dijital sistemlerde farklı uygulama alanlarında kullanılırlar. Örnek uygulama alanları; veri yönlendirme, işlem sıralama, paralel seri veri donuşumu, lojik bir fonksiyon üretimi, vb. şeklinde sıralanabilir.

Boolean Fonksiyonlarının ve Bileşik Devrelerin Gerçekleştirilmesi

	I_0	I_1	I_2	I_3	
A'	0	1	2	3	
A	4	5	6	7	

onksiyonunun 4x1 eştirilmesine yardım blosunu çıkaralım:

A	В	С	F(A,B,C)		
0	0	0	0 —	0	–
0	0	1	1 —	1	4x1 Mux
0	1	0	0 -	H A	
0	1	1	1		S, S
1	0	0	0 —		—
1	0	1	1 —		
1	1	0	1 -		
1	1	1	0		

ÖRNEK

• F(ABC) = Σ(1,3,5,6) fonksiyonunu 4x1 MUX ile gerçekleştireceğimizi ve S1ve S0 seçme girişleri için A ve B değişkenlerini, çoklayıcı girişleri için C değişkenini kullanacağımızı varsayalım.

Çözüm

Paralel- Seri Veri Dönüşümü

Sayısal sistemlerde bulunan birimler arasında veri iletimi genelde paralel olarak yapılır. Verilerin uzak mesafelerde iletiminde ise, paralel iletimin pahalı olması nedeni ile seri veri iletimi kullanılmaktadır. Bu durum, paralelden seriye veri donuşumu ihtiyacını doğurmaktadır.

Veri Yönlendirme İşleminin Çoklayıcı ile Gerçekleştirilmesi

Veri Yönlendirme İşleminin Çoklayıcı ile Gerçekleştirilmesi

Azlayıcılar - Veri Dağıtıcılar (Demultiplexers - Data Distributors)

 Tek bir girişten aldığı bilgileri, her bir çeşit giriş bilgisi farklı çıkışta olacak şekilde dağıtım yapan devrelerdir.

1x2 Demux Devresi

Seçme	Çıkış
0	$Q_0=D_{in}$
1	$Q_1=D_{in}$

1x8 Demux

Seçme kodu			Çıkışlar							
S_2	S_1	S_0	\mathbf{Q}_7	Q_6	Q_5	\mathbf{Q}_4	\mathbf{Q}_3	Q_2	\mathbf{Q}_1	\mathbf{Q}_0
0	0	0	0	0	0	0	0	0	0	Ι
0	0	1	0	0	0	0	0	0	Ι	0
0	1	0	0	0	0	0	0	Ι	0	0
0	1	1	0	0	0	0	I	0	0	0
1	0	0	0	0	0	Ι	0	0	0	0
1	0	1	0	0	Ι	0	0	0	0	0
1	1	0	0	I	0	0	0	0	0	0
1	1	1	I	0	0	0	0	0	0	0

I: Giriş verisi

Demultipleksır Uygulamaları

