

Targeting the Soleus and Quadriceps
Muscles Using Powered
Robotic Rehabilitation Devices and
Neuromuscular Control

Evan Tulsky

Motivation

- Individuals with neurological disorders (NDs) experience partial or total loss of motor and sensory function
- Significantly impacts an individual's independence and quality of life
- Around 800,000 people in the U.S. have a stroke each year

Gait Training for Soleus Muscle Rehabilitation

Soleus Muscle Rehabilitation

- In the mid-late stance phase, soleus muscle triggers propulsion and force generation
- With stroke, the soleus muscle activation patterns and propulsion are diminished

Extremum Seeking Control for Ankle Perturbation Trajectory Generation

Tulsky, ER, Rubino, N, Carter, J, Thompson, A, Duenas, V. (Under Review). "Extremum Seeking Control of a Robotic Ankle-Foot Orthosis Targeting the Soleus Muscle Activation During Walking", CCTA, Newcastle, England.

Ankle Orthosis Setup

Perturbation

Applied force on muscle that elicits response

Gait Phase Detection

Extremum Seeking Control

- Leverages an unknown input-output map
- Adaptive method to characterize the unknown ankle angle to soleus muscle activation map

Block Diagram of Ankle Orthosis System

Raw Soleus Response

$$e(t) = q_d(t) - q(t)$$

$$r(t) = \dot{e}(t) + \alpha e(t)$$

Approach

- 4 able bodied individuals
 - 360 second walking experiment
- Perturbations applied every third walking step
- Treadmill walking at a comfortable 1 m/s
- Participants instructed to follow metronome

Results

Avg. Terminal Error $ar{e}_T$ (deg)					
0.52 ± 0.66 0.89 ± 0.52 1.82 ± 1.08 0.50 ± 0.61 0.93 0.71					

Avg. Desired Angle
$ar{Q}_d$ (deg)
5.40 ± 1.07
6.37 ± 1.19
8.37 ± 2.50
4.09 ± 0.55
6.06
1.83

Percent Terminal Error $\%e_T$ 9.98 ± 12.68 13.95 ± 8.19 20.92 ± 12.60 12.59 ± 15.47 14.3612.23

First 10 Steps	Last 10 Steps							
$ar{S}$ (mV)								
0.0816 ± 0.0089	0.0878 ± 0.0070							
0.0670 ± 0.0056	0.0672 ± 0.0101							
0.0684 ± 0.0012	0.0695 ± 0.0095							
0.0161 ± 0.0012	0.0091 ± 0.0011							
0.0582	0.0584							
0.0042	0.0069							

Average Soleus Muscle Response as a Function of the Step Cycle

Conclusions

- An ESC algorithm updates ankle perturbations to evoke increments in activity of the soleus muscle during treadmill walking
- Suitable tracking performance leveraging the terminal error (error at the peak dorsiflexion angle)
- Preliminary evidence supports muscle activity differences between beginning and ending perturbed steps
- Future work includes the implementation in stroke survivors during walking

Influence of Vibration Stimuli on the Quadriceps Femoris Muscles During FES-Induced Cycling

Tulsky, ER, Casas, J, Cheng-Hao, C, Brose, S, Duenas, V. (September, 2021). "Influence of Vibration Stimuli Applied on the Quadriceps Femoris Muscles During Functional Electrical Stimulation Induced Cycling", International Functional Electrical Stimulation Society, Rovinj, Croatia (Online).

Motivation

- FES induce controlled muscle contractions and facilitate pedaling a cycle
- FES-cycling has restrictions
 - Muscular fatigue develops more rapidly using FES
 - Spasticity from SCI individuals limit duration
- Explore the impact of mechanical vibration during FES contractions

Quadriceps Rehabilitation

Responsible for majority of force in cycling exercise

Contains the largest muscle mass

FES-Cycling Setup

Approach

- 4 able bodied individuals
- Two trials of FES-cycling experiments at 65 rpm cadence for 180 seconds
 - Without vibratory stimuli
 - With vibratory stimuli on quadricep

Results

 For sample fatigue rate for all participants was 5.23% greater for trials with vibration stimuli

Subject	Pulse Width	Avg. Active Torque		Fatigue Time		Fatigue Rate	
		no vib.	vib	no vib.	vib	no vib.	vib
Subject 1	75	0.49	0.57	42	55	-9.4	-9.4
Subject 2	80	0.45	0.39	41	41	-9.5	-11.3
Subject 3	80	0.53	0.50	28	33	-5.8	-7.2
Subject 4	90	0.57	0.53	35	33	-7.2	-6.3
Q1		0.39	0.48	29.5	31.5	-9.4	-9.4
Median		0.44	0.51	43.0	37.0	-8.8	-7.0
Q3		0.39	0.55	52.5	52.5	-7.3	-6.2

Mean Active Torque for All Participants Over Number of Contractions

Conclusions

- Preliminary study on FES-cycling with vibrational stimuli
- Future Work
 - Recruit more participants
 - Study people with spinal cord injuries
 - Further investigate optimal vibration patterns, vibrational frequency, and number of vibrational motors on the muscles.

Evan Tulsky Presenter ertulsky@syr.edu

Dr. Victor H. Duenas Supervisor

Questions and Discussion

