Association Rule Mining

Name: Deepak Yadav

Roll No.: 14075020

Scenario

1.	milk, bread, cereal
2.	milk, bread, sugar, eggs
3.	milk, bread, butter
n.	sugar, eggs

Transaction database

Scenario

- 1. milk, bread, cereal
- 2. milk, bread, sugar, eggs
- 3. milk, bread, butter
-
- n. sugar, eggs

(milk, bread) \rightarrow (eggs)

 $(bread) \rightarrow (butter)$

sales goes up

How to find useful patterns?

Itemset (I)

- A collection of one or more items.
- Examples: {milk, bread}, {eggs, bread, milk}

Support count (σ)

- Frequency of occurrence of an itemset
- Example: σ({milk, bread}) = 3

Support (s)

- Fraction of transactions that contains an itemset
- $s(I) = \sigma(I) / |T|$
- Example: s({milk, bread}) = 3 / 5

Confidence (c)

- $c(A \rightarrow B) = \sigma(A \cup B) / \sigma(A)$
- $c(\{milk, bread\} \rightarrow \{eggs\}) = \sigma(\{milk, bread, eggs\}) / \sigma(\{milk, bread\})$ = 1 / 3

1.	milk, bread, cereal
2.	milk, bread, sugar, eggs
3.	milk, bread, butter
4.	milk, sugar
5.	sugar, eggs

Useful Patterns

A pattern $\mathbf{A} \to \mathbf{B}$ is useful if and only if

- A and B are non-empty itemset
- $A \cap B = \Phi$
- $s(A \cup B) >= Ts (Threshold support) (Ts \in [0, 1])$
- $c(A \rightarrow B) \ge Tc$ (Threshold confidence) ($Tc \in [0, 1]$)

Useful Patterns

Given Ts = 0.5 and Tc = 0.6. Is ($\{milk\} \rightarrow \{bread\}$) a useful pattern?

$$s(\{milk, bread\}) = 3 / 5 = 0.6 (>= Ts)$$

$$c(\{milk\} \rightarrow \{bread\}) = \sigma(\{milk, bread\}) / \sigma(\{milk\}) = 3 / 4 = 0.75 (>= Tc)$$

Hence, $(\{milk\} \rightarrow \{bread\})$ is a useful pattern

1.	milk, bread, cereal
2.	milk, bread, sugar, eggs
3.	milk, bread, butter
4.	milk, sugar
5.	sugar, eggs

Problem Statement

Given a transaction database(\mathbf{T}), threshold support(\mathbf{Ts}) and threshold confidence(\mathbf{Tc}), our objective is to find all association rules(useful patterns).

1.	milk, bread, cereal
2.	milk, bread, sugar, eggs
3.	milk, bread, butter
n.	sugar, eggs

(milk, bread) \rightarrow (eggs)

 $(bread) \rightarrow (butter)$

Frequent Itemset

An itemset I is said to be frequent iff s(I) >= Ts

1.	milk, bread, cereal
2.	milk, bread, sugar, eggs
3.	milk, bread, butter
4.	milk, sugar
5.	sugar, eggs

```
Ts = 0.6 min_support_count = 0.6*|T| = 0.6 * 5 = 3  

{milk, bread} is frequent, since, \sigma(\{\text{milk, bread}\}) = 3  

{sugar} is frequent, since, \sigma(\{\text{sugar}\}) = 3  

{milk, butter} is not frequent, since, \sigma(\{\text{milk, butter}\}) = 1  

{milk} is frequent, since, \sigma(\{\text{milk}\}) = 4
```

Association Rule Mining

Association Rule Mining is done in 2 steps

- 1) Find all frequent itemsets
- 2) Generate association rules from the frequent itemsets

Step 1: Find all frequent itemsets

- 1) Brute Force approach
- 2) Apriori algorithm
- 3) FP-Growth algorithm

Brute Force Approach

- Given P items, there are 2^P possible candidate itemsets
- Count the support of each candidate by scanning the database
- Complexity ~ O(2^P * Q)
 - Q is the cost of scanning the database

Expensive approach

The Apriori Principle: If an itemset is frequent, then all of its subsets must also be frequent. Conversely, if an itemset is infrequent, then all of its supersets must be infrequent, too.

L(k) : set of frequent itemsets of length k

C(k): set of candidate itemsets (may or may not be frequent) of length k

Important observations

- If a k-itemset is frequent then all its subset of length k-1 will be frequent
- C(k) can be obtained from L(k-1)
- L(k) can be obtained from C(k)

How C(k) can be obtained from L(k-1)?

C(k) is generated by joining L(k-1) with itself

```
Join L_{k-1} p with L_{k-1}q, as follows:

insert into C_k

select p.item_1, p.item_2, . . . , p.item_{k-1}, q.item_{k-1}

from L_{k-1} p, L_{k-1} q

where p.item_1 = q.item_1, . . . p.item_{k-2} = q.item_{k-2}, p.item_{k-1} < q.item_{k-1}
```

How C(k) can be obtained from L(k-1)?

Join L_{k-1} p with L_{k-1} q, as follows: **insert into** C_k **select** p.item₁, p.item₂, . . . , p.item_{k-1}, q.item_{k-1} **from** L_{k-1} p, L_{k-1} q **where** p.item₁ = q.item₁, . . . p.item_{k-2} = q.item_{k-2}, p.item_{k-1} < q.item_{k-1}

- L(3) = {{a, b, c}, {a, b, d}, {a, c, d}, {a, c, e}}
- {a, b, c} and {a, b, d} can be merged to obtain
 {a, b, c, d} which is then added to C(4)
- {a, b, d} and {a, c, d} cannot be merged
- {a, c, d} and {a, c, e} can be merged.{a, c, d, e} is added to C(4)
- $C(4) = \{\{a, b, c, d\}, \{a, c, d, e\}\}$

How L(k) can be obtained from C(k)?

- 1. Scan the transaction database to determine the support for each candidate itemset in C_k
- 2. Save the frequent itemsets in L_k

Pass 1

- 1. Generate the candidate itemsets in C₁
- 2. Save the frequent itemsets in L_1

Pass k

- 1. Generate the candidate itemsets in C_k from the frequent
- 2. itemsets in L_{k-1}
 - 1. Join $L_{k-1} p$ with $L_{k-1} q$, as follows:
 - 2. insert into C_{ν}
 - 3. **select** $p.item_1$, $p.item_2$, . . . , $p.item_{k-1}$, $q.item_{k-1}$
 - 4. **from** $L_{k-1} p$, $L_{k-1} q$
 - 5. **where** p.item₁ = q.item₁, ... p.item_{k-2} = q.item_{k-2}, p.item_{k-1} < q.item_{k-1}
- 3. Scan the transaction database to determine the support for each candidate itemset in C_{k}
- 4. Save the frequent itemsets in L_k

min_support_count = 3

Pass 1

- 1. Generate the candidate itemsets in C_1
- 2. Save the frequent itemsets in L_1

- 1. Generate the candidate itemsets in C_k from the frequent
- 2. itemsets in L_{k-1}
 - 1. Join $L_{k-1} p$ with $L_{k-1} q$, as follows:
 - 2. insert into C_{ν}
 - 3. **select** p.item₁, p.item₂, . . . , p.item_{k-1}, q.item_{k-1}
 - 4. **from** $L_{k-1} p, L_{k-1} q$
 - 5. **where** p.item₁ = q.item₁, ... p.item_{k-2} = q.item_{k-2}, p.item_{k-1} < q.item_{k-1}
- 3. Scan the transaction database to determine the support for each candidate itemset in C_{k}
- 4. Save the frequent itemsets in L_{ν}

Transaction No.	Items
T1	1, 2, 3, 4, 5, 6
T2	7, 2, 3, 4, 5, 6
T3	1, 8, 4, 5
T4	1, 9, 0, 4, 6
T5	0, 9, 2, 4, 5

	Item	Occurrence / Frequency
	1	3
	2	3
	3	2
	4	5
C(1) =	5	4
	6	3
	7	1
	8	1
	9	2
	0	2

Pass 1

- 1. Generate the candidate itemsets in C_1
- 2. Save the frequent itemsets in L_1

- 1. Generate the candidate itemsets in C_k from the frequent
- 2. itemsets in L_{k-1}
 - 1. Join $L_{k-1} p$ with $L_{k-1} q$, as follows:
 - 2. insert into C_{ν}
 - 3. **select** p.item₁, p.item₂, . . . , p.item_{k-1}, q.item_{k-1}
 - 4. **from** $L_{k-1} p, L_{k-1} q$
 - 5. **where** p.item₁ = q.item₁, ... p.item_{k-2} = q.item_{k-2}, p.item_{k-1} < q.item_{k-1}
- 3. Scan the transaction database to determine the support for each candidate itemset in C_{k}
- 4. Save the frequent itemsets in L_{ν}

Item	Occurrence / Frequency
1	3
2	3
3	2
4	5
5	4
6	3
7	1
8	1
9	2
0	2
	1 2 3 4 5 6 7 8

Pass 1

- 1. Generate the candidate itemsets in C_1
- Save the frequent itemsets in L₁

- 1. Generate the candidate itemsets in C_k from the frequent
- 2. itemsets in L_{k-1}
 - 1. Join $L_{k-1} p$ with $L_{k-1} q$, as follows:
 - 2. insert into C_{ν}
 - 3. **select** p.item₁, p.item₂, . . . , p.item_{k-1}, q.item_{k-1}
 - 4. **from** $L_{k-1} p, L_{k-1} q$
 - 5. **where** p.item₁ = q.item₁, . . . p.item_{k-2} = q.item_{k-2}, p.item_{k-1} < q.item_{k-1}
- 3. Scan the transaction database to determine the support for each candidate itemset in C_{k}
- 4. Save the frequent itemsets in L_{ν}

	Item	Occurrence / Frequency
_(1) =	1	3
	2	3
	4	5
	5	4
	6	3

	ItemPairs	Occurrence / Frequency
	12	1
	14	3
	15	3
	16	2
C(2) =	24	2 3
()	25	3
	26	2
	45	4
	46	3
	56	2

Pass 1

- Generate the candidate itemsets in C₁
- 2. Save the frequent itemsets in L_1

- 1. Generate the candidate itemsets in C_k from the frequent
- 2. itemsets in L_{k-1}
 - 1. Join $L_{k-1} p$ with $L_{k-1} q$, as follows:
 - 2. insert into C_{ν}
 - 3. **select** p.item₁, p.item₂, . . . , p.item_{k-1}, q.item_{k-1}
 - 4. **from** $L_{k-1} p, L_{k-1} q$
 - 5. where p.item₁ = q.item₁, ... p.item_{k-2} = q.item_{k-2}, p.item_{k-1} < q.item_{k-1}
- 3. Scan the transaction database to determine the support for each candidate itemset in C_{k}
- 4. Save the frequent itemsets in L_k

	ItemPairs	Occurrence / Frequency
	12	1
	14	3
	15	3
	16	2
C(2) =	24	2 3
()	25	3
	26	2
	45	4
	46	3
	56	2

Pass 1

- 1. Generate the candidate itemsets in C_1
- Save the frequent itemsets in L₁

- 1. Generate the candidate itemsets in C_k from the frequent
- 2. itemsets in L_{k-1}
 - 1. Join $L_{k-1} p$ with $L_{k-1} q$, as follows:
 - 2. insert into C_{ν}
 - 3. **select** p.item₁, p.item₂, . . . , p.item_{k-1}, q.item_{k-1}
 - 4. **from** $L_{k-1} p, L_{k-1} q$
 - 5. **where** p.item₁ = q.item₁, . . . p.item_{k-2} = q.item_{k-2}, p.item_{k-1} < q.item_{k-1}
- 3. Scan the transaction database to determine the support for each candidate itemset in C_{ν}
- 4. Save the frequent itemsets in L_{ν}

	ItemPairs	Occurrence / Frequency
L(2) =	14	3
	24	3
	25	3
	45	4
	46	3

	ItemTriples	Occurrence / Frequency
C(3) =	245	3
()	456	2

$$L(3) = \frac{\text{ItemTriples}}{245} \frac{\text{Occurrence / Frequency}}{3}$$

Pass 1

- 1. Generate the candidate itemsets in C_1
- 2. Save the frequent itemsets in L_1

Pass k

- 1. Generate the candidate itemsets in C_{ν} from the frequent
- 2. itemsets in L_{k-1}
 - 1. Join $L_{k-1} p$ with $L_{k-1} q$, as follows:
 - 2. insert into C_{ν}
 - 3. **select** $p.item_1$, $p.item_2$, ..., $p.item_{k-1}$, $q.item_{k-1}$
 - 4. **from** $L_{k-1} p$, $L_{k-1} q$
 - 5. **where** p.item₁ = q.item₁, . . . p.item_{k-2} = q.item_{k-2}, p.item_{k-1} < q.item_{k-1}
- 3. Scan the transaction database to determine the support for each candidate itemset in $C_{\mathbf{k}}$
- 4. Save the frequent itemsets in L_{ν}

Thus, the frequent itemsets are

- L(1) = {{1}, {2}, {4}, {5}, {6}}
- L(2) = {{1, 4}, {2, 4}, {2, 5}, {4, 5}, {4, 6}}
- $L(3) = \{\{2, 4, 5\}\}$

All frequent itemsets = L(1) U L(2) U L(3)

Is Apriori fast enough? - Performance Bottlenecks

- The core of the Apriori algorithm
 - Use frequent (k 1)-itemsets to generate candidate frequent k-itemsets
- The bottleneck of Apriori: candidate generation
 - Huge candidate sets
 - 10⁴ frequent 1-itemset will generate 10⁷ candidate 2-itemsets
 - To discover a frequent pattern of size 100, e.g., {a1, a2, ..., a100}, one needs to generate 2^100 ≈ 10^30 candidates.
 - Multiple scans of database
 - Needs (n +1) scans, where n is the length of the longest pattern

FP-Growth Algorithm (No candidate itemset generation)

FP-Growth allows frequent itemset discovery without candidate itemset generation. Two step approach:

- 1. Build a compact data structure called the FP-tree
 - a. Built using 2 passes over the database
- 2. Extracts frequent itemsets directly from the FP-tree

TID	Items bought
100	{f, a, c, d, g, i, m, p}
200	{a, b, c, f, l, m, o}
300	{b, f, h, j, o}
400	$\{b, c, k, s, p\}$
500	{a, f, c, e, l, p, m, n}
	_

Item	frequency
f	4
C	4
а	3
b	3
m	3
p	3

```
(ordered) frequent items
{f, c, a, m, p}
{f, c, a, b, m}
{f, b}
{c, b, p}
{f, c, a, m, p}
```

min_support_count = 3

```
(ordered) frequent items
{f, c, a, m, p}

{f, c, a, b, m}

{f, b}

{c, b, p}

{f, c, a, m, p}
```

Item	frequency
f	4
C	4
а	3
b	3
m	3
p	3


```
(ordered) frequent items
{f, c, a, m, p}
{f, c, a, b, m}
{f, b}
{c, b, p}
{f, c, a, m, p}
```

Item	frequency
f	4
C	4
а	3
b	3
m	3
p	3


```
(ordered) frequent items
{f, c, a, m, p}
{f, c, a, b, m}
{f, b}
{c, b, p}
{f, c, a, m, p}
```

Item	frequency
f	4
C	4
а	3
b	3
m	3
p	3


```
(ordered) frequent items
{f, c, a, m, p}
{f, c, a, b, m}
{f, b}
{c, b, p}
{f, c, a, m, p}
```

Item	frequency
f	4
C	4
а	3
b	3
m	3
p	3

FP-Growth Algorithm (No candidate itemset generation)

FP-Growth allows frequent itemset discovery without candidate itemset generation. Two step approach:

- 1. Build a compact data structure called the FP-tree
 - a. Built using 2 passes over the database
- 2. Extracts frequent itemsets directly from the FP-tree

Obtain frequent itemsets from FP-Tree

Goal: Find frequent itemsets whose last element is p

Conditional Pattern Base for p

- {f, c, a, m}: 2
- {c, b}:1

Obtain frequent itemsets from FP-Tree

Similarly frequent itemsets ending at item m, b, a, c and f can be obtained.

Why is Frequent Pattern Growth Fast?

- No candidate generation, no candidate test
- Use compact data structure
- Eliminate repeated database scan

References

- Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules. In Proceedings of 20th international conference on VLDB (pp. 487–499).
- Han, J., Pei, J., Yin, Y., & Mao, R. (2004). Mining frequent patterns without candidate generation: A frequent-pattern tree approach. Data Mining and Knowledge Discovery, 8(1), 53–87.
- http://www2.cs.uregina.ca/~dbd/cs831/notes/itemsets/itemset_apriori.html (pseudo code)
- https://chih-ling-hsu.github.io/2017/03/25/apriori (images)