

GEOMETRÍA Capítulo 20

2st SECONDARY

Área de regiones triangulares

MOTIVATING | STRATEGY

HELICO | TAREAS DE REGIONES TRIANGULARES

ÁREA.- Es un número real positivo que indica la medida de una región.

REGIONES EQUIVALENTES.- Son aquellas regiones que tienen igual área

9u² <> 9u²

$$S_{ABC} = \frac{bh}{2}$$

$$S_{ABC} = \frac{bh}{2}$$

$$S_{ABC} = \frac{bc}{2}$$

$$S_{ABC} = \frac{bc sen\alpha}{2}$$

h

Teorema de Herón

RELACIONES ENTRE ÀREAS

$$\frac{S_1}{S_2} = \frac{m}{n}$$

= S6

01

En un triángulo ABC, se traza la altura \overline{BH} , si m \angle BCA= 37°, AH= 3m y HC= 8m. Calcule el área de la región ABC.

PROBLEMA 2 Calcule el área de la región ABC.

Calcule el área de la región limitada por un triángulo rectángulo, si un cateto mide 5m y la hipotenusa mide 13 m.

RESOLUCIÓN

Piden: S ∆ ABC

PROBLEMA 4 Calcule el área de la región limitada por un triángulo equilátero si la longitud de su lado es 6 m.

PROBLEMA 5 Si la región sombreada mide 24 m², calcule S ∆ABC.

En un triángulo ABC se traza la ceviana BD, AD= 5a, CD=4a y el área de la región ABD es iguala 20 m². Calcule el área de la región BCD.

RESOLUCIÓN

Se cumple:

$$\frac{20}{S_x} = \frac{5 \, \alpha}{4 \, \alpha}$$

$$5.S_{x} = 80$$

Calcule el área de la región sombreada.

2a

Se cumple:

$$\frac{7}{S_x} = \frac{\cancel{a}}{2\cancel{a}}$$

$$S_{x} = 7.2$$

$$S_x = 14 m^2$$

D

Se muestra un letrero de forma de un triángulo equilátero ABC, AB= 80cm, se pinta el borde equidistante, formándose interiormente un triángulo cuyo lado mide 40cm. ¿Cuántos cm se pintó el borde?

RESOLUCIÓN

Piden: = S x

 El Δ ABC y Δ PQR, son equiláteros

$$Sx = SABC - SPQR$$

$$Sx = \frac{80^{2}\sqrt{3}}{4} - \frac{40^{2}\sqrt{3}}{4}$$

$$Sx = 1600\sqrt{3} - 400\sqrt{3}$$

$$S_x = 1200 \sqrt{3} \text{ cm}^2$$