TIME-ORIENTED DATA

- Data, která se mění v čase, nebo ten časový aspekt hraje hlavní roli
- Různé vlastnosti dat hodně ovlivňují vizualizaci:
 - Typ dat
 - Prostorová data: spatial fields, geografická data
 - Abstraktní data: tabulární, relační, text
 - Typ atribut
 - Kvantitativní, ordinální, nominální
 - Řazení sekvenční, divergenční, cyklické
 - Vlastnosti, které jsou v relaci s časem
 - Časové primitivy, domain, frekvence dat, granularita časových primitiv nebo domainů, sekvence časového domainu
 - Počet atribut

Časové primitivy

- Ukotvená v čase
 - o Instant jediný bod v čase (termín deadlinu)
 - o Interval trvání mezi 2 instancemi body propojené v čase (přednáška je od 11 do 12)
- Neukotvená v čase
 - Span trvání v čase (přednáška trvá 2 hodiny)
- K těm primitivům jsou vázané nějaké informace

Relace mezi primitivy

- Relativní umístění mezi primitivy topologie těchto primitivů
- Pro ukotvená relace jsou dány umístěním v čase
- Pro neukotvená můžeme definovat jejich relace

Pro instants – equals (nastávají ve stejný okamžik) nebo before (dříve)

Pro intervaly a span – **equals**, **meets** (jeden musí následovat kdykoliv za tím druhým), **before**, **during**, **overlaps**, **starts**, **finishes** (společně začínat nebo končit)

Časová doména

- Ordinální domain definujeme relativní vztah (Po obědě bude schůzka)
- Diskrétní domain čas je diskrétní veličina, interpolujeme hodnoty atributů pomocí nearest neighbour (digitální hodiny)

- Spojitý domain – čas je spojitá veličina, hodnoty atributů se interpolují lineárně, mezi dvěma události může být vložena další událost

Granularita

- Ne všechny události jsou měřené stejným způsobem
- Granularita se může během času taky měnit (věk nejdříve měříme podle měsíců a pak podle roků)
- Měříme každou událost s nejvíce relevantní granularitou
 - Když koukáme na data, který jsou více "rozmělněná", tak bychom měli zavést nejednoznačnost

Konverze mezi granularitami

- Máme bod v čase zvolená granularita jsou **minuty**
- Chceme vizualizovat data 15.3.1999 ve 13:37 na dny
 - o Informaci o čase odhodíme a jsme hotový
- Chceme vizualizovat data 15.3.1999 na sekundy
 - o Jaký konkrétní čas zvolit? Zavedeme intervalovou nejednoznačnost
 - Interval 15.3.1999 od 00:00:00 do 15.3.1999 23:59:59
- Ne všechny kvanta (jednotka času) můžou být převeditelná
 - Např. týdny a roky

Struktura časového domainu

- LINEÁRNÍ časový domain je reprezentovaná jako linie
 - o Zleva doprava, pro sledování trendů
- CYKLICKÁ spirála
 - Dobrá pro nějaký repetitivní vzory v datech
 - o Délka cyklu je často nezřejmá
- BRANCHING větvení do budoucnosti
 - Několik možných scénářů

Tasky vzhledem k časovým primitivům

- Existence časových primitivů
 - o Existuje primitiv v nějakém čase?
 - o Bylo měření provedeno v 3.6. 1960?
- Temporalní lokace
 - o Kde primitiv existuje v čase?
 - o Kdy je přednáška z viz?
- Časový interval
 - o Jak dlouhý je interval od začátku do konce?
 - o Jak dlouhá je přednáška?
- Sekvence
 - o V jakém pořadí se objevují primitivy?
 - o Exploze se stala po nebo před nehodou?
- Synchronizace
 - o Jsou primitivy stejné?
 - o Jsou tvoje narozky na velikonoční pondělí tento rok?

Tasky vzhledem k hodnotám atributů

- Identifikace
 - Hodnot
 - Jaká byla cena Google akcií v roce XXXX?
 - o Trendů
- Compare
 - Hodnoty datových položek v různé časy
 - o Hodnoty odlišných datových položek v tom samém čase
 - Trendy datových položek v jiných časech
 - Trendy odlišných položek v ten samý čas

Vizuální mapování času

- Dynamické: čas -> čas
 - Nejpřirozenější způsob mapování
 - Žádná konverze
 - O Dobré pro 3D i 2D skalární pole a flow vizualizace
 - Není moc dobré pro analytická a explorační tasky
 - Žádné přímé srovnávání parametrů mezi rozdílnými body v čase není možné
 - o Animace by měla být kontrolovatelná uživatelem (např. slider)
- Statické: čas -> prostor
 - o Mapujeme čas na vizuální kanály
 - Přímé srovnávání parametrů mezi rozdílnými body v čase je možné vidíme je všechny najednou
 - Vizuální kanály
 - Pozice nejvíce časté, funguje nejlépe
 - Délka druhé nejlepší, délka je trvání
 - Úhel/sklon podobné jako hodiny

- Konexe propojení šipek nebo čar (before element, after element)
- Šírka prímky zvětšuje se, nebo zmenšuje s časem
- Barva přímky (všechny 3 složky)
 - Jas je nejlepší v čase mizí
 - Průhlednost

Pro vizualizaci času se často používá Faceting/Trellis/Small multiples

- Pohledy (views) se sharovaným enkódováním
 - o Views, které ukazují jiný data a/nebo atributy s rozlišnými vizualizačními technikami
 - o Překonává se takhle komplexita nebo objem dat
 - To, že musíme rozdělit data nebo atributy mezi těmi pohledy se nazývá faceting, trellis nebo small multiples
- Můžeme data rozdělit:
 - o Na základě **času** např. na porovnání trendů v jiných seasons
 - o Na základě **jiných atribut** porovnat trend v jiných průmyslech

VIZUALIZACE TIME-ORIENTED DATA

Instantní abstraktní data

SPIRÁLOVÝ GRAF

- Data namapována na osu ve tvaru spirály
- Kolik času uběhne po obtočení té spirály
- Identifikace nějakých opakujících se patterns v datech
- Mapování hodnot na barvy

FACETING

- Rozdělení dat po nějaký časový interval
- Mapování na barvy např. jas
- Můžeme vidět nějaké vzory a trendy

CYCLE PLOT

- Vizualizuje trendy takovým způsobem, aby to bylo vizuálně rozeznatelné
- Ukazuje individuální trendy jako line plot, který je embednutý na plot, který ukazuje nějaký patterns přes season

THEMERIVER

- Textový stream
- Pomáhá uživateli identifikovat vzory v čase, trendy a nějaký vztahy přes velkou kolekci dokumentů
- Témata v kolekci jsou reprezentovaný "řekou", která teče zleva doprava během času
- Tématický proud se zužuje nebo zešiřuje, aby indikoval změny v nějakým tématu v bodu v čase
- Chce to propojit jednotlivé "barcharty", abychom mohli sledovat tok

TIARA

- Rozšiřuje se jen na jednu stranu

- Proudy – v nich máme rozmístěné word cloudy v čase

GAPMINDER

- Scatterplot, animace
- Vizualizuje "čas v čase"

Instant spatial data

Lexis pencil

- Využití geometrických objektů, které vypadají jako tužka
- Na jednotlivé strany tužky mapujeme datové atributy
- Tužku zapíchneme na nějakou mapu, aby se ukázal nějaký prostorový kontext
 - o Hrot tužky dovoluje exaktní lokaci, ale problém je zastiňování, protože máme fakin tužku na mapě
- Focus + Context
 - O Na tužce rozmístěním toho mapování
 - Ve 3D prostoru zvětšením tužky na focus

Helix ikony

- Podobná Lexis pencil
- Spirálou můžu otáčet a sledovat glyf z různých stran
- Spirála zdůrazňuje cyklický vzory během času
- Umožnění uživateli řídit délku otáčky

GeoTime/Spacetime cube

- Zobrazení trajektorie na 3D kostce
- Dá nám to nějaký 3D kontext, což se nám může hodit, kdybychom chtěli vizualizovat, jak nás zabíjí ve vzduchu radiace

Intervaly a spans abstraktních dat

RODOKMENY

- Soustředí se na hierarchii
- Nejsou zachyceny časové údaje jednotlivých lidí

FAMILY TREE - TIMENET

- Trackuje lidi rok narození, smrti, manželství, děti, ...
- Ucelenější obrázek toho rodokmenu

Gantt Chart

- Hello KO

