4 Statystyka opisowa

4.1 Miara asymetrii rozkładu

współczynnik asymetrii (skośności)

$$A = \frac{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^3}{s^3}$$

- Współczynnik asymetrii
 - o równy zeru oznacza symetrię rozkładu zmiennej.
 - przyjmujący wartość dodatnią oznacza prawostronną asymetrię. Prawy ogon jest dłuższy, a masa rozkładu jest skoncentrowana po lewej stronie.
 - przyjmujący wartość ujemną oznacza lewostronną asymetrię. Lewy ogon jest dłuższy,
 a masa rozkładu jest skoncentrowana po prawej stronie.

4.2 Miara koncentracji rozkładu

kurtoza

$$K = rac{rac{1}{n} \sum_{i=1}^{n} (x_i - ar{x})^4}{s^4} - 3$$

- Kurtoza jest miarą skupienia wartości zmiennej wokół średniej.
- ullet Porównuje ona badany rozkład empiryczny z rozkładem normalnym i przyjmuje wartości większe niż -2.
- ullet Im większa wartość K, tym większe skupienie wartości zmiennej wokół średniej.
- Kurtoza rozkładu normalnego wynosi zero.
- ullet Jeśli K<0, wówczas rozkład jest bardziej spłaszczony niż rozkład normalny, a jeśli K>0 bardziej smukły.

4.3 Przykłady

Przykład 1. Poniższe dane podają liczbę błędów w grupie 50 osób zdających egzamin testowy. Egzamin składał się z 18 pytań (można popełnić maksymalnie dwa błędy, aby zdać egzamin).

Zmienna X to liczba błędów. Jest to dyskretna zmienna ilościowa.

```
liczebnosc procent
##
## 0
              11
                    0.22
## 1
               8
                    0.16
              14
                    0.28
## 2
## 3
               7
                    0.14
                    0.12
## 4
               6
## 5
               4
                    0.08
```

wykres słupkowy

barplot(table(liczba_bledow),

```
xlab = "Liczba błędów", ylab = "Liczebność",
main = "Rozkład empiryczny liczby błędów")
```

Rozkład empiryczny liczby błędów

barplot(prop.table(table(liczba_bledow)),

```
xlab = "Liczba błędów", ylab = "Prawdopodobieństwo",
main = "Rozkład empiryczny liczby błędów")
```

Rozkład empiryczny liczby błędów

wykres kołowy

pie(table(liczba_bledow))

średnia

mean(liczba_bledow)

[1] 2.02

mediana

median(liczba_bledow)

```
## [1] 2

# odchylenie standardowe
sd(liczba_bledow)

## [1] 1.558256

# współczynnik zmienności
sd(liczba_bledow) / mean(liczba_bledow) * 100
```

[1] 77.14141

Przykład 2. Badano czas oczekiwania na tramwaj, który kursuje w jednakowych odstępach czasu. Plik czas_oczek_tramwaj.RData zawiera dane dotyczące czasu oczekiwania na tramwaj (wyrażonego w minutach) 100 osób wybranych losowo. Zmienna X to czas oczekiwania na tramwaj. Jest to zmienna ilościowa ciągła.

```
liczebnosc procent
##
## (0,2]
                   15
                         0.15
## (2,4]
                   13
                         0.13
## (4,6]
                   15
                         0.15
## (6,8]
                         0.15
                   15
## (8,10]
                   15
                         0.15
## (10,12]
                         0.12
                   12
## (12,14]
                   15
                         0.15
(czas_oczek_tramwaj_hist <- hist(czas_oczek_tramwaj, plot = FALSE)$breaks)</pre>
## [1] 0 2 4 6 8 10 12 14
```

```
##
           liczebnosc procent
## (0,2]
                   15
                         0.15
## (2,4]
                   13
                         0.13
## (4,6]
                   15
                         0.15
## (6,8]
                   15
                         0.15
## (8,10]
                   15
                         0.15
## (10,12]
                         0.12
                   12
## (12,14]
                   15
                         0.15
```

Histogram - zestaw sąsiadujących prostokątów, których podstawy, równe rozpiętości przedziałów klasowych, znajdują się na osi odciętych, a wysokości są liczebnościami przedziałów.

```
# histogram
```

```
hist(czas_oczek_tramwaj,
     xlab = "Czas oczekiwania na tramwaj",
     main = "Rozkład empiryczny czasu oczekiwania na tramwaj")
rug(jitter(czas_oczek_tramwaj))
```

Rozkład empiryczny czasu oczekiwania na tramwaj

Rozkład empiryczny czasu oczekiwania na tramwaj

Wykres ramkowy to metoda graficznego przedstawienia danych liczbowych za pomocą ich kwantyli. Tworzymy go poprzez umieszczenie na osi pionowej wartości niektórych parametrów rozkładu (kwantyli).

- Wewnątrz prostokąta znajduje się pogrubiona pozioma linia, która określa wartość mediany.
- Nad osią znajduje się prostokąt (ramka), którego dolny bok jest określony przez pierwszy kwartyl, a górny bok przez trzeci kwartyl. Wysokość pudełka odpowiada wartości rozstępu międzykwartylowego (Q_3-Q_1).
- Pudełko jest uzupełnione od góry i od dołu segmentami (wąsami). Dolny koniec dolnego segmentu reprezentuje najmniejszą wartość w zestawie danych, zaś górny koniec górnego segmentu jest obserwacją największą. Wartości te muszą spełniać dodatkowy warunek, a mianowicie dolny koniec nie może być mniejszy niż $Q_1-1,5\cdot(Q_3-Q_1)$, a górny większy niż $Q_3+1,5\cdot(Q_3-Q_1)$. Jeśli istnieją obserwacje poza tym zakresem, są one zaznaczane na wykresie indywidualnie jako osobne punkty i są traktowane jako obserwacje odstające.

Wykres pudełkowy jako wskaźnik tendencji centralnej, dyspersji, symetrii, skośności i wielkości ogona:

- dyspersja odstępy między różnymi częściami pudełka
- symetryczny pogrubiona linia znajduje się blisko środka pudełka, a długości wąsów są takie same
- prawostronnie asymetryczny górny wąs jest znacznie dłuższy niż dolny wąs, a linia jest bliższa dolnej części pudełka.
- lewostronnie asymetryczny dolny wąs jest znacznie dłuższy niż górny wąs, a linia jest bliższa górnej części pudełka
- grube ogony długość wąsów znacznie przekracza długość pudełka
- cieńkie ogony długość wąsów jest krótsza niż długość pudełka
- bardzo krótkie ogony (populacja w kształcie litery U, z zanurzeniem w środku zamiast garbu) - wąsy są nieobecne

Rozkład empiryczny czasu oczekiwania na tramwaj


```
• statystyki opisowe
# średnia
mean(czas_oczek_tramwaj)
## [1] 6.9796
# mediana
median(czas_oczek_tramwaj)
## [1] 6.525
# odchylenie standardowe
sd(czas_oczek_tramwaj)
## [1] 3.989571
# współczynnik zmienności
sd(czas_oczek_tramwaj) / mean(czas_oczek_tramwaj) * 100
```

```
library(e1071)
# współczynnik asymetrii
skewness(czas_oczek_tramwaj)

## [1] 0.03362109

# kurtoza
kurtosis(czas_oczek_tramwaj)

## [1] -1.250899
```

4.4 Zadania

Zadanie 1. Zmienna wynik w pliku ankieta.txt opisuje wyniki badania działalności prezydenta pewnego miasta. Wybrano losowo 100 mieszkańców miasta i zadano im następujące pytanie: Jak oceniasz działalność prezydenta miasta? Dostępne były następujące odpowiedzi: zdecydowanie dobrze (a), dobrze (b), źle (c), zdecydowanie źle (d), nie mam zdania (e). Jakiego typu jest ta zmienna? Jakie są możliwe wartości tej zmiennej?

1. Zaimportuj dane z pliku ankieta.txt do zmiennej ankieta.

```
##
     plec szkola wynik
## 1
        m
                      d
## 2
        m
                      е
## 3
## 4
        m
## 5
                      C
        m
               р
## 6
                      C
        m
## ...
```

2. Przedstaw rozkład empiryczny zmiennej wynik za pomocą szeregu rozdzielczego.

```
liczebnosc procent
##
## a
              10
                    0.10
## b
              23
                    0.23
              29
                    0.29
## C
## d
              17
                    0.17
              21
                    0.21
## e
```

3. Przedstaw rozkład empiryczny zmiennej wynik tylko dla osób z wykształceniem podstawowym za pomocą szeregu rozdzielczego.

procent	liczebnosc		##
0.11764706	2	а	##
0.17647059	3	b	##
0.23529412	4	С	##
0.41176471	7	d	##
0.05882353	1	e	##

4. Zilustruj wyniki ankiety za pomocą wykresu słupkowego i kołowego.

Rozkład empiryczny zmiennej wynik

5. Zilustruj wyniki ankiety za pomocą wykresu słupkowego z podziałem na kobiety i mężczyzn.

6. Zinterpretuj powyższe wyniki (tabelaryczne i graficzne).

Zadanie 2. Przebadano 200 losowo wybranych 5-sekundowych okresów pracy centrali telefonicznej. Rejestrowano liczbę zgłoszeń. Wyniki są zawarte w pliku Centrala.RData. Jakiego typu jest ta zmienna? Jakie są możliwe wartości tej zmiennej?

1. Zaimportuj dane z pliku Centrala.RData.

##		Liczba
##	1	0
##	2	0
##	3	5
##	4	1
##	5	1
##	6	2

...

2. Przedstaw rozkład empiryczny liczby zgłoszeń za pomocą szeregu rozdzielczego.

```
##
    liczebnosc procent
## 0
            32
                 0.160
## 1
            67
                 0.335
                 0.245
## 2
            49
               0.155
## 3
            31
            15
                 0.075
## 4
## 5
            6
                 0.030
```

3. Zilustruj liczbę zgłoszeń za pomocą wykresu słupkowego i kołowego.

Rozkład empiryczny liczby zgłoszeń

Rozkład empiryczny liczby zgłoszeń

4. Obliczyć średnią z liczby zgłoszeń, medianę liczby zgłoszeń, odchylenie standardowe liczby zgłoszeń i współczynnik zmienności liczby zgłoszeń.

```
## [1] 2
```

5. Zinterpretuj powyższe wyniki (tabelaryczne, graficzne i liczbowe).

Zadanie 3. Notowano pomiary średniej szybkości wiatru w odstępach 15 minutowych wokół nowo powstającej elektrowni wiatrowej. Wyniki są następujące:

Jakiego typu jest ta zmienna? Jakie są możliwe wartości tej zmiennej?

1. Przedstaw rozkład empiryczny badanej zmiennej za pomocą szeregu rozdzielczego.

##		liczebnosc	procent
##	(0,2]	4	0.16
##	(2,4]	5	0.20
##	(4,6]	7	0.28
##	(6,8]	4	0.16
##	(8,10]	3	0.12
##	(10,12]	1	0.04
##	(12,14]	1	0.04

2. Zilustruj rozkład empiryczny średniej szybkości wiatru za pomocą histogramu i wykresu pudełkowego. Jakie są zalety i wady tych wykresów?

Rozkład empiryczny średniej szybkość wiatru

Rozkład empiryczny średniej szybkość wiatru

Rozkład empiryczny średniej szybkość wiatru

4. Obliczyć średnią, medianę, odchylenie standardowe, współczynnik zmienności, współczynnik asymetrii i kurtozę średniej szybkości wiatru.

```
## [1] 5

## [1] 3.054925

## [1] 59.38812

## [1] 0.3422838
```

5. Zinterpretuj powyższe wyniki (tabelaryczne, graficzne i liczbowe).

Zadanie 4. Napisz funkcję wspolczynnik_zmiennosci(), która oblicza wartość współczynnika zmienności dla danego wektora obserwacji. Funkcja powinna mieć dwa argumenty:

- x wektor zawierający dane,
- na.rm wartość logiczna (domyślnie FALSE), która wskazuje czy braki danych (obiekty NA) mają być zignorowane.

Funkcja zwraca wartość współczynnika zmienności wyrażoną w procentach. Ponadto funkcja sprawdza, czy wektor x jest wektorem numerycznym. W przeciwnym razie zostanie zwrócony błąd z następującym komunikatem: "argument nie jest liczbą". Przykładowe wywołania i wyniki funkcji są następujące:

```
x <- c(1, NA, 3)
wspolczynnik_zmiennosci(x)
## [1] NA
wspolczynnik_zmiennosci(x, na.rm = TRUE)
## [1] 70.71068
wspolczynnik_zmiennosci()
## Error in wspolczynnik_zmiennosci() :
## argument "x" is missing, with no default
wspolczynnik_zmiennosci(c("x", "y"))
## Error in wspolczynnik_zmiennosci(c("x", "y")) : argument nie jest Liczbą</pre>
```