ML-AIM Lab

AutoPrognosis

Ahmed M. Alaa Mihaela van der Schaar

Method

- Imputation algorithms \mathcal{A}_d Hyperparameters Θ_d
- Classification algorithms \mathcal{A}_c Hyperparameters Θ_c
- Feature process. algorithms \mathcal{A}_f Hyperparameters Θ_f
- Calibration algorithms \mathcal{A}_a Hyperparameters Θ_a
- ullet Set of all pipelines $\mathcal{P} = \mathcal{A}_d imes \mathcal{A}_f imes \mathcal{A}_c imes \mathcal{A}_a$
- Set of all hyperparameters $\Theta = \Theta_d imes \Theta_f imes \Theta_c imes \Theta_a$
- ullet Set of all pipeline configurations $\,\mathcal{P}_{\Theta}$
- Combined Pipeline Selection and Hyperparameter optimization problem (CPSH)

$$P_{\theta^*}^* \in \arg\max_{P_{\theta} \in \mathcal{P}_{\Theta}} \frac{1}{K} \sum_{i=1}^K \mathcal{L}(P_{\theta}; \mathcal{D}_{\text{train}}^{(i)}, \mathcal{D}_{\text{valid}}^{(i)})$$

Automated Pipeline Configuration

- The CPSH problem $\arg \max_{P_{\theta} \in \mathcal{P}_{\Theta}} \frac{1}{K} \sum_{i=1}^{K} \mathcal{L}(P_{\theta}; \mathcal{D}_{\text{train}}^{(i)}, \mathcal{D}_{\text{valid}}^{(i)})$
- Bayesian optimization

Gaussian process prior

$$f \sim \mathcal{GP}(\mu(P_{\theta}), k(P_{\theta}, P'_{\theta}))$$

Gaussian process posterior

$$f \mid \{P_{\theta}^t\}_t$$

Select new pipeline via acquisition function

$$P_{\theta}^{t+1} = \arg\max_{P_{\theta}} A(P_{\theta}; f \mid \{P_{\theta}^t\}_t)$$

$$f(P_{\theta}) = \frac{1}{K} \sum_{i=1}^{K} \mathcal{L}(P_{\theta}; \mathcal{D}_{\text{train}}^{(i)}, \mathcal{D}_{\text{valid}}^{(i)}) + \varepsilon$$

$$f(P_{\theta}) = \frac{1}{K} \sum_{i=1}^{K} \mathcal{L}(P_{\theta}; \mathcal{D}_{\text{train}}^{(i)}, \mathcal{D}_{\text{valid}}^{(i)}) + \varepsilon$$

$$f(P_{\theta}) = \frac{1}{K} \sum_{i=1}^{K} \mathcal{L}(P_{\theta}; \mathcal{D}_{\text{train}}^{(i)}, \mathcal{D}_{\text{valid}}^{(i)}) + \varepsilon$$

$$f(P_{\theta}) = \frac{1}{K} \sum_{i=1}^{K} \mathcal{L}(P_{\theta}; \mathcal{D}_{\text{train}}^{(i)}, \mathcal{D}_{\text{valid}}^{(i)}) + \varepsilon$$

$$f(P_{\theta}) = \frac{1}{K} \sum_{i=1}^{K} \mathcal{L}(P_{\theta}; \mathcal{D}_{\text{train}}^{(i)}, \mathcal{D}_{\text{valid}}^{(i)}) + \varepsilon$$

$$f(P_{\theta}) = \frac{1}{K} \sum_{i=1}^{K} \mathcal{L}(P_{\theta}; \mathcal{D}_{\text{train}}^{(i)}, \mathcal{D}_{\text{valid}}^{(i)}) + \varepsilon$$

$$f(P_{\theta}) = \frac{1}{K} \sum_{i=1}^{K} \mathcal{L}(P_{\theta}; \mathcal{D}_{\text{train}}^{(i)}, \mathcal{D}_{\text{valid}}^{(i)}) + \varepsilon$$

$$f(P_{\theta}) = \frac{1}{K} \sum_{i=1}^{K} \mathcal{L}(P_{\theta}; \mathcal{D}_{\text{train}}^{(i)}, \mathcal{D}_{\text{valid}}^{(i)}) + \varepsilon$$

$$f(P_{\theta}) = \frac{1}{K} \sum_{i=1}^{K} \mathcal{L}(P_{\theta}; \mathcal{D}_{\text{valid}}^{(i)}, \mathcal{D}_{\text{valid}}^{(i)}) + \varepsilon$$

$$f(P_{\theta}) = \frac{1}{K} \sum_{i=1}^{K} \mathcal{L}(P_{\theta}; \mathcal{D}_{\text{valid}}^{(i)}, \mathcal{D}_{\text{valid}}^{(i)}) + \varepsilon$$

$$f(P_{\theta}) = \frac{1}{K} \sum_{i=1}^{K} \mathcal{L}(P_{\theta}; \mathcal{D}_{\text{valid}}^{(i)}, \mathcal{D}_{\text{valid}}^{(i)}) + \varepsilon$$

$$f(P_{\theta}) = \frac{1}{K} \sum_{i=1}^{K} \mathcal{L}(P_{\theta}; \mathcal{D}_{\text{valid}}^{(i)}, \mathcal{D}_{\text{valid}}^{(i)}) + \varepsilon$$

$$f(P_{\theta}) = \frac{1}{K} \sum_{i=1}^{K} \mathcal{L}(P_{\theta}; \mathcal{D}_{\text{valid}}^{(i)}, \mathcal{D}_{\text{valid}}^{(i)}) + \varepsilon$$

$$f(P_{\theta}) = \frac{1}{K} \sum_{i=1}^{K} \mathcal{L}(P_{\theta}; \mathcal{D}_{\text{valid}}^{(i)}, \mathcal{D}_{\text{valid}}^{(i)}) + \varepsilon$$

$$f(P_{\theta}) = \frac{1}{K} \sum_{i=1}^{K} \mathcal{L}(P_{\theta}; \mathcal{D}_{\text{valid}}^{(i)}, \mathcal{D}_{\text{valid}}^{(i)}) + \varepsilon$$

$$f(P_{\theta}) = \frac{1}{K} \sum_{i=1}^{K} \mathcal{L}(P_{\theta}; \mathcal{D}_{\text{valid}}^{(i)}, \mathcal{D}_{\text{valid}}^{(i)}) + \varepsilon$$

$$f(P_{\theta}) = \frac{1}{K} \sum_{i=1}^{K} \mathcal{L}(P_{\theta}; \mathcal{D}_{\text{valid}}^{(i)}, \mathcal{D}_{\text{valid}}^{(i)}) + \varepsilon$$

$$f(P_{\theta}) = \frac{1}{K} \sum_{i=1}^{K} \mathcal{L}(P_{\theta}; \mathcal{D}_{\text{valid}}^{(i)}, \mathcal{D}_{\text{valid}}^{(i)}) + \varepsilon$$

$$f(P_{\theta}) = \frac{1}{K} \sum_{i=1}^{K} \mathcal{L}(P_{\theta}; \mathcal{D}_{\text{valid}}^{(i)}, \mathcal{D}_{\text{valid}}^{(i)}) + \varepsilon$$

$$f(P_{\theta}) = \frac{1}{K} \sum_{i=1}^{K} \mathcal{L}(P_{\theta}; \mathcal{D}_{\text{valid}}^{(i)}, \mathcal{D}_{\text{valid}}^{(i)}) + \varepsilon$$

$$f(P_{\theta}) = \frac{1}{K} \sum_{i=1}^{K} \mathcal{L}(P_{\theta}; \mathcal{D}_{\text{valid}}^{(i)}, \mathcal{D}_{\text{valid}}^{(i)}) + \varepsilon$$

$$f(P_{\theta}) = \frac{1}{K} \sum_{i=1}^{K} \mathcal{L}(P_{\theta}; \mathcal{D}_{$$

The Curse of Dimensionality

- Statistical and computational complexity of the CPSH problem
- High-dimensional pipeline space (D)

Gaussian process prior

$$\Theta(t^{-\frac{\alpha}{2\alpha+D}})$$

Exponentially many iterations!

 $f \sim \mathcal{GP}(\mu(P_{\theta}), k(P_{\theta}, P'_{\theta}))$

Gaussian process posterior

$$f \mid \{P_{\theta}^t\}_t$$

Computational complexity of GP posterior After *t* iterations [Rasmussen & Williams, 2006]

$$\mathcal{O}(t^3)$$

Select new pipeline via acquisition function

Computational complexity of maximizing acquisition [Snoek, 2015]

$$P_{\theta}^{t+1} = \arg\max_{P_{\theta}} A(P_{\theta}; f \mid \{P_{\theta}^t\}_t)$$

$$\mathcal{O}(n^D)$$

Two Extremes

- Low-dimensional
- No information sharing

Almost manual tuning!

- High-dimensional
- Full information sharing

Optimal, fully automated!

Bayesian Optimization with Structured Kernel Learning

- Main idea: Not ALL algorithms need to share information! Correlation?
- Example: XGBoost correlated with Random forest, but not with neural networks!
- <u>Learn</u> a structured kernel that groups <u>correlated</u> algorithms together:
 - Low dimensionality for every group
 - Relevant information sharing within a group

Sparse Additive Gaussian Processes

Decompose high-dimensional GP into sum of low-dimensional components

Λ

Space of all pipelines

$$\{{m \Lambda}^{(m)}\}_m$$

Partitions of Λ

Sparse additive GPs:

$$f(\Lambda) = \sum_{m=1}^{M} f_m(\Lambda^{(m)})$$

D-dimensional GP

Low-dimensional GPs

$$k_2(\Lambda^{(2)}, {\Lambda'}^{(2)})$$

Structured kernel:
$$k(\Lambda, \Lambda') = \sum_{m=1}^{M} k_m(\Lambda^{(m)}, {\Lambda'}^{(m)})$$

Big reduction in complexity!

$$\dim(\mathbf{\Lambda}^{(m)}) = d_m$$

Gaussian process prior

$$f \sim \mathcal{GP}(\mu(P_{\theta}), k(P_{\theta}, P'_{\theta}))$$

Sample complexity for non-parametric estimation of additive sparse α-smooth functions [Raskutti, 2009]

$$\Theta(\sum_m t^{-\frac{\alpha}{2\alpha+d_m}})$$

Exponential only in dimension of 1 subgroup!

Gaussian process posterior

$$f \mid \{P_{\theta}^t\}_t$$

Computational complexity of GP posterior Fewer iterations needed, fewer data points in every subgroup!

Select new pipeline via acquisition function

Computational complexity of maximizing acquisition

$$\mathcal{O}(n^{d_m})$$

$$P_{\theta}^{t+1} = \arg \max_{P_{\theta}} A(P_{\theta}; f \mid \{P_{\theta}^t\}_t)$$

Exponential improvement in statistical and computational efficiency!

...but the structure of the kernel is unknown!

- Need to learn the subspace decomposition $\{ {f \Lambda}^{(m)} \}_m$ from the data
- Bayesian approach:

Prior on decompositions

$$\{\boldsymbol{\Lambda}^{(m)}\}_m \sim \Pi(\gamma)$$

Compute posterior in concurrence with BO

$$\{\boldsymbol{\Lambda}^{(m)}\}_m \mid \{P_{\theta}^t\}_t$$

One Gaussian process per group of algorithms

Structured Kernel Learning (I)

- Define the variable $z_{v,i} \in \{1,\ldots,M\}$: indicator for the subspace allocation for algorithm i in \mathcal{A}_v Prior on $z_{v,i}$ = Prior on $\{\Lambda^{(m)}\}_m$
 - Bayesian inference:

Prior on decompositions

 $\alpha \sim \text{Dirichlet}(M, \gamma)$ $z_{v,i} \sim \text{Multinomial}(\alpha)$

Compute posterior in concurrence with BO

$$\mathbb{P}(z,\alpha \mid \{f(P_{\theta}^t)\}_t,\gamma) \propto \mathbb{P}(\{f(P_{\theta}^t)\}_t \mid z) \, \mathbb{P}(z\mid\alpha) \, \mathbb{P}(\alpha,\gamma)$$

Gibbs Sampling

$$\mathbb{P}(z_{v,i} = m \mid z/\{z_{v,i}\}, \mathcal{H}_t) \propto \mathbb{P}(\mathcal{H}_t \mid z) \left(|\mathcal{A}_v^{(m)}| + \gamma_m\right)$$

Gumbel-Max Sampler

$$\omega_m \stackrel{\text{i.i.d}}{\sim} \text{Gumbel}(0,1), m \in \{1, ..., M\},$$

$$z_{v,i} \sim \arg\max_m \mathbb{P}(\mathcal{H}_t \mid z, z_{v,i} = m)(|\mathcal{A}_v^{(m)}| + \gamma_m) + \omega_m.$$

Structured Kernel Learning (II)

Learning structured kernel in concurrence with BO

Posterior over performance

Posterior over decompositions

M=2

What does the algorithm do?

A stochastic search path

Post-hoc Ensemble Construction

• Create an ensemble using the posterior distribution of performances

- Bayesian model averaging
- ullet Create a linear combination of pipelines $\sum_i w_i P_{ heta}^i$
- Weight of every pipeline = empirical probability of it being the best!

$$w_i = \mathbb{P}(P_{\theta}^{i^*} = P_{\theta}^i \mid \mathcal{H}_t)$$
$$= \prod_{j \neq i} \Phi\left((\mu_i - \mu_j) \cdot (\sigma_i^2 + \sigma_j^2)^{-\frac{1}{2}}\right),$$

The AP Algorithm

