Intelligent Decision Support Systems

Introduction to Multiple Objective Optimization Classical Optimization Methods

Miłosz Kadziński

Institute of Computing Science Poznan University of Technology, Poland

Single vs. Multiple Objective Optimization

Single Objective Optimization

The superiority of a solution over other solutions can be easily determined by comparing their objective function values

Multiple Objective Optimization

- Consider several objective simultaneously
- Objectives are conflicting (good quality is not cheap)
- All objectives cannot be optimized simultaneously
- Need for considering the trade-offs (compromises)
 between objectives

Examples

- Finance: minimize risk and maximize return
- Business: minimize cost and minimize environmental impact
- Health care: maximize X-ray dose to tumor

 and minimize X-ray dose to healthy to

and minimize X-ray dose to healthy tissues

Practical Example of Multiple Objective Optimization (1)

Multi-national company aims to serve a market in the South East Europe

- Selection of entry points
- Choice of transport means
- Location of distribution centers
- Determination of associated flows

- min total costs (transport, operations)
- min amount of emissions of CO₂
- min amount of PM emmissions

Practical Example of Multiple Objective Optimization (2)

Health-care facility location in highly developed city such as Hong Kong

Health-care facilities are essential to all communities

Objectives

- Important in urban planning
- Steady growth of Hong Kong population
- Complex socio-ecological system

- min cost of building new facilities
- min the population that falls outside the coverage range
- max the equity of accessability

Practical Example of Multiple Objective Optimization (3)

Yahoo! Researchers Have Developed A GPS Algorithm To Find 'Emotionally Pleasant' Routes

 $\begin{tabular}{ll} \bf Amit \ Chowdhry \ {\tt Contributor} \ \textcircled{0} \\ \it Tech \ enthusiast, born \ in \ Ann \ Arbor \ and \ educated \ at \ Michigan \ State \end{tabular}$

shortest path

beautiful/scenic path

Important Definitions in MOO (1) - Problem Formulation

A general formulation of multiple objective optimization problems:

Minimize
$$f(x) = (f_1(x), f_2(x), ..., f_M(x))$$
 \longrightarrow multiple (M) objectives

subject to
$$x \in S$$
, \square constraints

where $x=(x_1, x_2, ..., x_N)$ is a solution (represented by decision variables) and $S \subset \mathbb{R}^N$ is called the feasible set

Important Definitions in MOO (2) – Pareto Optimality

In multiple objective optimization, the superiority of a solution over another solutions is determined by the dominance relation (transitive and incomplete)

Vilfredo Pareto

- A feasible solution x∈S is called Pareto optimal (PO) if there does not exist another solution y∈S such that:
 f_i(y) ≤ f_i(x) for all i=1,...,M, and
 f_i(y) < f_i(x) for some i∈{1,...,M}
- A feasible solution x∈S is called weakly Pareto optimal (WPO) if there does not exist another solution y∈S such that f_i(y) < f_i(x) for all i=1,...,M

- a, b, and c are Pareto optimal
- d and e are weakly Pareto optimal, but are not Pareto optimal
- f, g, and h are dominated

Important Definitions in MOO (3) – Pareto Front

- Pareto-optimal set: all Pareto-optimal solutions in the decision space (the non-dominated set of the entire feasible decision space S)
- Pareto-front: all Pareto-optimal solutions in the objective space (the "boundary" in the objective space defined by the set of all points (objective function vectors) mapped from the Pareto-optimal set)
- There can exist infinitely many PO solutions, all of them mathematically incomparable (cannot be compared without additional information)
- Other terms used: efficient/compromise/non-dominated solution

Important Definitions in MOO (4) – Selected Points

- The ideal point (vector) $z^{ideal} \in \mathbb{R}^N$ has: $z_i^{ideal} = \min_{x \in S} f_i(x)$ for all i=1,...,M
 - lower bound of the Pareto front (non-existent)
- The nadir point (vector) $z^{\text{nadir}} \in \mathbb{R}^{\mathbb{N}}$ has: $z_i^{\text{nadir}} = \max_{x \in \mathbb{S} \text{ is PO}} f_i(x)$ for all i=1,...,M
 - upper bound of the Pareto front
- The max point (vector) $z^{max} \in \mathbb{R}^N$ has: $z_i^{max} = max_{x \in S} f_i(x)$ for all i=1,...,M
 - maximum objective function values of the entire objective space
 - often used as an estimate of the nadir point

- Decision Maker (DM) is an expert in the application area able to express preferences related to the objectives (no need to expertize in optim.)
- The reference point z^{ref}∈ R^N (one way for the DM to express preferences): z_i^{ref} indicates an aspiration level (desired value for the objective)

What Means Solving a MOO Problem?

Means different things for different people:

- Find all PO solutions
 - Theoretical approach, not feasible in practice
- Approximate PO set
 - As close as possible to Pareto-optimal front
 - Good diversity (representatives in all parts of PO set)
 - Can also be an approximation of some part of PO set
- Find the most preferred PO solution
 - Requires preferences from DM

J. Branke, K. Deb, K. Miettinen, R. Słowiński, Multiobjective Optimization: Interactive and Evolutionary Approaches. *Springer*, Berlin, 2008

Different Types of MOO Methods

Multiple objective optimization methods are *classified w.r.t.* to the role of DM:

No preference methods where the participation of DM is not needed

A priori methods where the DM articulates preferences before optimization and the best solution according to the given preferences is found

- DM can tell what kind of solutions he wants
- Must have understanding about his preferences, method, objectives, feasibility

Interactive methods allow the DM to guide the search by alternating optimization and preference articulation iteratively

- DM guides the search, only solutions that are interesting to him are computed
- Need active participation from the DM (who may be busy)

A posteriori methods aim to generate a representative set of PO solutions and the DM chooses the best one among them

our focus

A Posteriori MOO Methods

A posteriori methods = representative set of all PO solutions + decision making

- Approximating the complete Pareto optimal set may take time
- It may be hard to know beforehand how big a representation is dense enough
- It may be hard to choose from a large representation of Pareto-optimal set
- Visualization is easy only in problems with 2 or 3 objectives

Most a posteriori methods fall into two classes:

 Evolutionary methods evolve a population of solutions simultaneously into a representative set of PO solutions

next lecture

 Classical methods solve multiple single-objective optimization problems that each produce one PO solution at a time

still today

- Usually, multiple runs needed to obtain a set of Pareto optimal solutions
- Usually, problem knowledge is necessary
- Scalarizing methods convert a MOO problem into a single-objective one

Weighted Sum Method (WSM) - A Priori Perspective

Scalarize a set of objectives into a single objective by adding objectives values multiplied by respective weights w_i , i=1,...,M:

Minimize
$$f(x) = (f_1(x),..., f_M(x))$$

subject to $x \in S$

Minimize $F(x) = \sum_{i=1,...,M} w_i \cdot f_i(x)$ subject to $x \in S$

Used as a priori method:

- Objective weight chosen in proportion to the relative importance
- w_i > w_j means that the DM appreciates more the improvement on f_i than on f_j
- Advantage: simple
- Disadvantage: it is difficult to set the weight vector to obtain a solution in a desired region in the objective space

M. Ehrgott, Multicriteria Optimization, 2nd Edition. Springer, 2005

Pareto-optimal solution found with $W=(W_1,W_2)=(2/3,1/3)$

Weighted Sum Method (WSM) - A Posteriori Perspective

- Any a priori method can be turned into an a posteriori method by producing an evenly spaced set in the set of preferences
- WSM involves parameters meaningful for DM
- For each weight, potentially different solution can be obtained
- Weights can be generated from a uniform distribution using, e.g., Hit-And-Run

Properties of the Weighted Sum Method:

- If w_i ≥ 0 for all i=1,...,M and w_j > 0 for some j=1,...,M, then an identified solution is weakly Pareto-optimal (WPO)
- If w_i > 0 for all i=1,...,M, then an identified solution is Pareto-optimal (PO)

Weighted Sum Method (WSM) – Major Weakness

- There may be Pareto-optimal (PO) solutions that do not optimize any weight vector
- WSM cannot find certain PO solutions in case of a non-convex objective space
- Non-supported PO (efficient) solutions

Assume choosing a husband

Objective (max)	Marcin	Kuba	Michał
Appearance	1	5	10
Cooking	10	5	1
House keeping	10	5	1
Cleanliness	10	5	1

Intuitively appealing compromise **Kuba** is not chosen with any given weights

Lexicographic Optimization

Epsilon Constraint Method (ECM) - A Priori Perspective

Optimize one of the objectives f_i for some i=1,...,M and restrict the remaining objectives within specified bounds:

Minimize $f_i(x)$ subject to $x \in S$

 $f_j(x) \le \varepsilon_j$ for j=1,...,M and $j \ne i$

Keep f_2 as the objective: **Minimize** $f_2(x)$ s.t. $x \in S$

Treat f_1 as the constraint: $f_1(x) \le \varepsilon_1$

 Advantage: applicable to convex or non-convex problems

 Disadvantage: the vector ε has to be chosen carefully so that it is within the extreme values of the individual objective function

objective bound ε_1 means that we want a solution x with $f_1(x) \le \varepsilon_1$

Epsilon Constraint Method (ECM) – A Posteriori

Solve iteratively for different values of ε_j for j=1,...,M and $j \neq i$ Minimize $f_i(x)$ s.t. $x \in S$ $f_i(x) \leq \varepsilon_i$ for j=1,...,M and $j \neq i$

- ε_j can be chosen equally spaced within an interval from by the extreme values of objective f_j
- ε_j can be set based on the solution identified in the previous iteration y (ε_j slightly less than f_j(y)) backward loop

Epsilon Constraint Method (ECM) – Properties

Properties of the Epsilon Constraint Method:

- For any ε = (ε₁, ..., ε_{i-1}, ε_{i+1}, ..., ε_M) ∈ R^{M-1}, an identified solution is weakly Pareto-optimal (WPO)
- PO solution can be found by means of lexicographic optimization (or... see next slide)
- Let x∈S be a PO solution; then by setting f_j(x) = ε_j solution x can be identified (each PO solution can be found with ECM)

Y. Haimes, L. Lasdon, D. Wismer, On a bicriterion formulation of the problems of integrated system identification and system optimization. *IEEE Transac. on Systems, Man and Cybernetics*, 1, 296-297, 1971

Augmented Scalarizing Function

- Many methods (e.g., ECM) guarantee only that possibly not unique solutions obtained for a given set of parameters are merely weakly Pareto-optimal (WPO)
- To guarantee Pareto-optimal (PO) solutions, so-called augmentation term is often added to the objective function $\rho \cdot \sum_{i=1}^{N} f_i(x) \text{ or } \rho \cdot \sum_{i=1}^{N} f_i(x) z_i^{\text{ref}})$

where $\rho > 0$ is a small positive constant

More often than not, augmented versions are used in practice

Augmented Scalarizing Function:

Minimize $f_i(x) + \rho \cdot \sum_{i=1,...,M} f_i(x)$ s.t. $x \in S$

 $f_{j}(x) \le \varepsilon_{j}$ for j=1,...,M and $j \ne i$

for \boldsymbol{a} and \boldsymbol{b} : $\rho \cdot \sum_{i=1,...,M} f_i(\boldsymbol{a}) < \rho \cdot \sum_{i=1,...,M} f_i(\boldsymbol{b})$, so in case they both minimize $f_i(x)$, It pays off to return \boldsymbol{a} rather than \boldsymbol{b}

Achievement Scalarizing Function (ASF)

Minimize the weighted Chebyshev distance (i.e., maximal weighted distance on any objective) from the reference point **z**^{ref}:

Minimize $\max_{i=1,...,M} w_i \cdot (f_i(x) - z_i^{ref})$ subject to $x \in S$

- z^{ref} indicates the aspiration levels (desired values that the DM would like to have) for all objectives
- z^{ref} can be set to the ideal point z^{ideal} (no DM's preferences)
- Property: for any z^{ref}∈ R^N and any weight vector w an optimal solution is weakly Pareto-optimal (WPO)
- Advantage: when using the ideal point z^{ideal} all PO solution can be found
- Disadvantage: requires z^{ref} (or z^{ideal})

A. Wierzbicki. On the completeness and constructiveness of parametric characterizations to vector optimiz. problems. *OR Spektrum*, 8, 73-87, 1986

Augmented Achievement Scalarizing Function (ASF)

- Many methods (e.g., ASF or ECM) guarantee only that possibly not unique solutions obtained for a given set of parameters are merely weakly Pareto-optimal (WPO)
- To guarantee Pareto-optimal (PO) solutions, so-called augmentation term is often added to the objective function
 ρ·∑_{i=1} M f_i(x) or ρ·∑_{i=1} M (f_i(x) z_i^{ref})

where $\rho > 0$ is a small positive constant

More often than not, augmented versions are used in practice

Agumented ASF: Minimize $\max_{i=1,...,M} w_i \cdot (f_i(x) - z_i^{ref}) + \rho \cdot \sum_{i=1,...,M} (f_i(x) - z_i^{ref})$ subject to $x \in S$

without augmentation
(a and b - the same distance)
with augmentation
(a is closer to z^{ref} than b)

Multiple Objective Optimization – Summary

Multiple Objective Optimization is area of Multiple Criteria Decision Making:

- Mathematical optimization problems involving more than one objective function to be optimized simultaneously
- Thousands of applications in engineering (optimal control, optimal design, process optimization), economics (monetary policy, portfolio selection, production possibilities frontier), logistics, urban planning, ...
- Basic concepts (objectives, constraints, spaces, solutions, points, ...)
- A priori, interactive, and a posteriori methods
- Classical a posteriori methods (WSM, ECM) for MOO involve multiple runs with various parameters to approximate Pareto frontier
- Evolutionary methods evolve a population of solutions simultaneously