Learning from Label Proportions with Generative Adversarial Network

Jiabin Liu¹, Bo Wang², Zhiquan Qi¹, Yingjie Tian¹, and Yong Shi¹

¹University of Chinese Academy of Sciences

²University of International Business and Economics

October 25, 2019

Outline

- Introduction
 - Problem Description
 - Challenges
 - Motivation & Contribution
- Preliminaries
 - Problem Settings
 - Deep LLP Appoach
- Adversarial Learning for LLP
 - The Discriminator
 - The Generator
 - LLP-GAN Algorithm
- Experimental Results
 - Algorithm Justification
 - Model Performance
- Conclusion & Future Work

2/31

Outline

- Introduction
 - Problem Description
 - Challenges
 - Motivation & Contribution
- Preliminaries
 - Problem Settings
 - Deep LLP Appoach
- Adversarial Learning for LLP
 - The Discriminator
 - The Generator
 - LLP-GAN Algorithm
- Experimental Results
 - Algorithm Justification
 - Model Performance
- 5 Conclusion & Future Work

3/31

October 25, 2019

Problem Description (1)

From supervised learning to weakly supervised learning:

- Combating over-fitting issue: e.g., big data
- The lack of fully supervised data: infeasible or labor-intensive¹
- Certain constraints: e.g., privacy²
- The ubiquity of weakly labeled learning (WeLL): Semi-supervised learning (SSL) and Multi-instance Learning (MIL)
- Learning with bags: MIL and learning from label proportions (LLP)

(UCAS & UIBE) LLP-GAN October 25, 2019 4 / 31

¹Z. Wang and J. Feng. "Multi-class learning from class proportions". In: Neurocomputing 119.16 (2013).

2Z. Qi, B. Wang, F. Meng, et al. "Learning with label proportions via NPSVM". In: IEEE Transactions on Communications (2017), pp. 3293–3305.

Problem Description (2)

Figure: An illustration of multi-class LLP.

- The data belongs to three categories and is partitioned into four non-overlapping groups.
- The sizes of green, blue, and orange rectangles respectively denote available label proportions in different categories.
- We only know feature information and class proportions.

Challenges

- The uncertainty in label inference (proportional information in bags)
- Strict assumption on data distribution (statistical approaches, e.g., MeanMap³ and Laplacian MeanMap⁴)
- NP-hard combinatorial optimization issue (SVM-based methods, e.g., $InvCal^5$ and $alter-\infty SVM^6$)
- The lack of scalability (shallow models)

(UCAS & UIBE) LLP-GAN October 25, 2019 6 / 31

³N. Quadrianto, A. J. Smola, T. S. Caetano, et al. "Estimating labels from label proportions". In: *Journal of Machine Learning Research* 10.Oct (2009), pp. 2349–2374.

⁴G. Patrini et al. "(Almost) no label no cry". In: Advances in Neural Information Processing Systems. 2014

⁵S. Rueping. "SVM classifier estimation from group probabilities". In: *International Conference on Machine* pp. 911–918.

⁶F. X. Yu, D. Liu, S. Kumar, et al. "∝-SVM for learning with label proportions". In: *International Conference Learning*, 2013, pp. 504–512.

Motivations

In this paper, we apply GANs to LLP in large scale scenarios.

- GAN is an elegant recipe for solving WeLL problem⁷.
- Generative models offer explicit or implicit representations for WeLL⁸.
- LLP-GAN is free of strict assumptions through the adversarial scheme.

(UCAS & UIBE) LLP-GAN October 25, 2019 7/31

⁷T. Salimans, I. Goodfellow, W. Zaremba, et al. "Improved techniques for training GANs". In: Advances Information Processing Systems. 2016, pp. 2234–2242.

⁸D. P. Kingma and M. Welling. "Auto-encoding variational bayes". In: arXiv preprint arXiv:1312.6114 (2013).

Contributions

- We propose a simple improvement based on entropy regularization for the existing deep LLP solver.
- We reveal relationship between prior class proportions and posterior class likelihoods.
- We offer a decomposition representation of the class likelihood with respect to the prior class proportions, which verifies the existence of the final classifier.
- We empirically show that our method can achieve SOTA performance on large-scale LLP problems with a low computational complexity.

Outline

- Introduction
 - Problem Description
 - Challenges
 - Motivation & Contribution
- Preliminaries
 - Problem Settings
 - Deep LLP Appoach
- Adversarial Learning for LLP
 - The Discriminator
 - The Generator
 - LLP-GAN Algorithm
- 4 Experimental Results
 - Algorithm Justification
 - Model Performance
- Conclusion & Future Work

9/31

Problem Settings

- All the bags are disjoint and let $\mathcal{B}_i = \{\mathbf{x}_i^1, \mathbf{x}_i^2, \dots, \mathbf{x}_i^{N_i}\}, i = 1, 2, \dots, n$ be the bags in training set.
- Training data is $\mathcal{D} = \mathcal{B}_1 \cup \mathcal{B}_2 \cup \cdots \cup \mathcal{B}_n$, $\mathcal{B}_i \cap \mathcal{B}_j = \emptyset$, $\forall i \neq j$, where the total number of bags is n.
- Assuming we have K classes, for \mathcal{B}_i , let \mathbf{p}_i be a K-element vector, where the k^{th} element p_i^k is the proportion of instances belonging to the class k, with the constraint $\sum_{k=1}^K p_i^k = 1$, i.e.,

$$\rho_i^k := \frac{|\{j \in [1:N_i] | \mathbf{x}_i^j \in \mathcal{B}_i, y_i^{j*} = k\}|}{|\mathcal{B}_i|}.$$
 (1)

Here, $[1:N_i] = \{1, 2, \dots, N_i\}$ and y_i^{j*} is the unaccessible ground-truth instance-level label of \mathbf{x}_i^j .

Deep LLP Appoach

- Suppose that $\tilde{\mathbf{p}}_{i}^{j} = p_{\theta}(\mathbf{y}|\mathbf{x}_{i}^{j})$ is the vector-valued DNNs output for \mathbf{x}_{i}^{j} , where θ is the network parameter.
- The bag-level label proportion in the *i*th bag is to incorporate the element-wise posterior probability:

$$\overline{\mathbf{p}}_i = \frac{1}{N_i} \bigoplus_{j=1}^{N_i} \widetilde{\mathbf{p}}_i^j = \frac{1}{N_i} \bigoplus_{j=1}^{N_i} p_{\theta}(\mathbf{y} | \mathbf{x}_i^j).$$
 (2)

Entropy Regularization for DLLP⁹:

$$L = L_{prop} + \lambda E_{in} = -\sum_{i=1}^{n} \mathbf{p}_{i}^{\mathsf{T}} log(\overline{\mathbf{p}}_{i}) - \lambda \sum_{i=1}^{n} \sum_{j=1}^{N_{i}} (\widetilde{\mathbf{p}}_{i}^{j})^{\mathsf{T}} log(\widetilde{\mathbf{p}}_{i}^{j}).$$
(3)

⁹E. M. Ardehaly and A. Culotta. "Co-training for demographic classification using deep learning from label proportions." M91

International Conference on Data Mining Workshops. IEEE, 2017, pp. 1017–1024.

(UCAS & UIBE) LLP-GAN October 25, 2019 11/31

Outline

- Introduction
 - Problem Description
 - Challenges
 - Motivation & Contribution
- Preliminaries
 - Problem Settings
 - Deep LLP Appoach
- Adversarial Learning for LLP
 - The Discriminator
 - The Generator
 - LLP-GAN Algorithm
- 4 Experimental Results
 - Algorithm Justification
 - Model Performance
- 5 Conclusion & Future Work

12 / 31

Adversarial Learning for LLP

We illustrate the LLP-GAN framework as follows.

Figure: An illustration of our LLP-GAN framework.

The Objective of Discriminator (1)

- We normalize the first K classes in $P_D(\cdot|\mathbf{x})$ as instance-level posterior probability $\tilde{p}_D(\cdot|\mathbf{x})$ and compute $\overline{\mathbf{p}}$ based on (2).
- The ideal optimization problem for the discriminator of LLP-GAN is:

$$\max_{D} V(G, D) = L_{unsup} + L_{sup} = L_{real} + L_{fake} - \lambda CE_{\mathcal{L}}(\mathbf{p}, \overline{\mathbf{p}})$$

$$= \sum_{i=1}^{n} E_{\mathbf{x} \sim p_d^i} \left[log P_D(y \le K | \mathbf{x}) \right] + E_{\mathbf{x} \sim p_g} \left[log P_D(K+1 | \mathbf{x}) \right] + \lambda \sum_{i=1}^{n} \mathbf{p}_i^{\mathsf{T}} log(\overline{\mathbf{p}}_i).$$
(4)

Here, $p_g(\mathbf{x})$ is the distribution of the synthesized data.

(UCAS & UIBE) LLP-GAN October 25, 2019 14 / 31

The Objective of Discriminator (2)

The Lower Bound Approximation:

$$-CE_{\mathcal{L}}(\mathbf{p},\overline{\mathbf{p}}) = \sum_{i=1}^{n} \sum_{k=1}^{K} p_{i}(k) log \left[\frac{1}{N_{i}} \sum_{j=1}^{N_{i}} \tilde{p}_{D}(k|\mathbf{x}_{i}^{j}) \right]$$

$$\simeq \sum_{i=1}^{n} \sum_{k=1}^{K} p_{i}(k) log \left[\int p_{d}^{i}(\mathbf{x}) \tilde{p}_{D}(k|\mathbf{x}) d\mathbf{x} \right] \geqslant \sum_{i=1}^{n} \sum_{k=1}^{K} p_{i}(k) E_{\mathbf{x} \sim p_{d}^{i}} \left[log \tilde{p}_{D}(k|\mathbf{x}) \right].$$
(5)

• The expectation in the last term can be approximated by sampling. Similar to EM mechanism¹⁰ for mixture models, by approximating $-CE_{\mathcal{L}}(\mathbf{p},\overline{\mathbf{p}})$ with its lower bound, we can perform gradient ascend independently on every sample, e.g., SGD.

¹⁰T. K. Moon. "The expectation-maximization algorithm". In: IEEE Signal processing magazine 13.6 (1996), pp. 47–60.

15/31

The Optimity

Lemma

The maximization on lower bound in (5) induces optimal discriminator D^* with a posterior distribution $\tilde{p}_{D^*}(y|\mathbf{x})$, which is consistent with the prior distribution $p_i(y)$ in each bag.

Theorem

For fixed G, the optimal discriminator D^* for $\widetilde{V}(G,D)$ satisfies:

$$P_{D^*}(y=k|\mathbf{x}) = \frac{\sum_{i=1}^n p_i(k) p_d^i(\mathbf{x})}{\sum_{i=1}^n p_d^i(\mathbf{x}) + p_g(\mathbf{x})}, k=1,2,\cdots,K.$$
 (6)

Beyond the Incontinuity of p_g

- The generator is a mapping from a low dimensional space to a high dimensional one.
- The density of $p_g(\mathbf{x})$ is infeasible¹¹.
- Based on the definition of $\tilde{p}_D(y|\mathbf{x})$, we have:

$$\tilde{p}_{D^*}(y|\mathbf{x}) = \frac{\sum_{i=1}^n p_i(y) p_d^i(\mathbf{x})}{\sum_{i=1}^n p_d^i(\mathbf{x})} = \sum_{i=1}^n w_i(\mathbf{x}) p_i(y).$$
(7)

- Our final classifier does not depend on $p_g(\mathbf{x})$.
- (7) explicitly expresses the normalized weights of the aggregation with $w_i(\mathbf{x}) = \frac{p_d^i(\mathbf{x})}{\sum_{i=1}^n p_d^i(\mathbf{x})}$.

¹¹M. Arjovsky and L. Bottou. "Towards principled methods for training generative adversarial networks". I Conference on Learning Representations, 2016.

(UCAS & UIBE) LLP-GAN October 25, 2019 17/31

The Objective Function of Generator

• Normally, we should solve the following optimization problem with respect to p_g for the generator.

$$\min_{G} \widetilde{V}(G, D^*) = \min_{G} E_{\mathbf{x} \sim p_g} log P_{D^*}(K+1|\mathbf{x}).$$
 (8)

- However, a well-trained generator would lead to the inefficiency of supervised information.
- Hence, we apply feature matching (FM) to the generator and obtain its alternative objective by matching the expected value of features (statistics) on an intermediate layer of the discriminator:

$$L(G) = \|E_{\mathbf{x} \sim \frac{1}{n} p_d} f(\mathbf{x}) - E_{\mathbf{x} \sim p_g} f(\mathbf{x})\|_2^2$$
(9)

LLP-GAN Algorithm

Algorithm 1: LLP-GAN Training Algorithm

Input: The training set $\mathcal{L} = \{(\mathcal{B}_i, \mathbf{p}_i)\}_{i=1}^n$; L: number of total iterations; λ : weight parameter.

Output: The parameters of the final discriminator D.

Set m to the total number of training data points.

for i=1:L do

Draw m samples $\{\mathbf{z}^{(1)}, \mathbf{z}^{(2)}, \dots, \mathbf{z}^{(m)}\}$ from a simple-to-sample noise prior $p(\mathbf{z})$ (e.g., N(0, I)).

Compute $\{G(\mathbf{z}^{(1)}), G(\mathbf{z}^{(2)}), \cdots, G(\mathbf{z}^{(m)})\}$ as sampling from $p_g(\mathbf{x})$.

Fix the generator G and perform gradient ascent on parameters of D in $\widetilde{V}(G,D)$ for one step.

Fix the discriminator D and perform gradient descent on parameters of G in L(G) for one step.

end

Return parameters of the discriminator D in the last step.

Outline

- Introduction
 - Problem Description
 - Challenges
 - Motivation & Contribution
- Preliminaries
 - Problem Settings
 - Deep LLP Appoach
- Adversarial Learning for LLP
 - The Discriminator
 - The Generator
 - LLP-GAN Algorithm
- Experimental Results
 - Algorithm Justification
 - Model Performance
- Conclusion & Future Work

20 / 31

Convergence Analysis

DLLP v.s. LLP-GAN (proposed)

Figure: The convergence curves on CIFAR-10 w/ different bag sizes.

(UCAS & UIBE) LLP-GAN October 25, 2019 21/31

Generated Samples

To validate the effectiveness of generator in LLP-GAN, we compare the generated samples of our model with that of the standard GAN with feature matching.

Figure: Generated samples on CIFAR-10.

(UCAS & UIBE) LLP-GAN October 25, 2019 22 / 31

Hyperparameter Analysis

Figure: Analysis on hyperparameter.

(UCAS & UIBE) LLP-GAN October 25, 2019 23 / 31

Error Rates Comparison(1)

The results are the average performances of four datasets: MNIST, SVHN, CIFAR-10, and CIFAR-100.

Figure: The average error rates w/ different bag sizes.

Error Rates Comparison (2)

Table: Test error rates (%) on benchmark datasets w/ different bag sizes.

Dataset	Algorithm	Bag Size				
		16	32	64	128	CNNs
MNIST	DLLP	1.23 (0.100)	1.33 (0.094)	1.57 (0.088)	3.55 (0.27)	0.36
	LLP-GAN	1.10 (0.026)	1.23 (0.088)	1.40 (0.089)	3.49 (0.27)	
SVHN	DLLP	4.45 (0.069)	5.29 (0.54)	5.80 (0.91)	39.73 (1.60)	2.35
	LLP-GAN	4.03 (0.021)	4.83 (0.51)	5.42 (0.59)	11.17 (1.12)	2.33
CIFAR-10	DLLP	19.70 (0.77)	34.39 (0.82)	68.32 (1.34)	82.89 (2.66)	9.27
	LLP-GAN	13.68 (0.35)	16.23 (0.43)	21.03 (1.82)	27.39 (4.31)	9.21
CIFAR-100	DLLP	53.24(0.77)	98.38(0.11)	98.65(0.09)	98.98(0.08)	35.68
	LLP-GAN	50.95 (0.67)	56.44 (0.78)	64.37 (1.52)	85.01 (1.81)	

Error Rates Comparison (3)

Table: Binary test error rates (%) on benchmark datasets w/ different bag sizes.

		Bag Size				
Dataset	Algorithm	16	32	64	128	
	InvCal	0.50	0.55	1.25	0.1	
NANHOT	alter-pSVM	0.20	0.20	0.25	0.2	
MNIST	DLLP	0.049	0.049	0.049	0.049	
	LLP-GAN	0.047	0.047	0.047	0.047	
	InvCal	28.95	29.16	26.47	31.84	
CIFAR-10	alter-pSVM	24	26.74	30.32	27.95	
CIFAR-10	DLLP	11.31	15.83	18.96	22.59	
	LLP-GAN	1.39	1.61	11.59	18.29	
	InvCal	11.55	13.35	12.95	12.70	
SVHN	alter-pSVM	7.05	7.95	7.95	11.15	
SVIII	DLLP	1.38	1.7	3.77	24.45	
	LLP-GAN	1.49	1.8	3.46	9.23	

Error Rates Comparison (4)

Figure: Multi-class test error rates (%) on benchmark w/ different base

Outline

- Introduction
 - Problem Description
 - Challenges
 - Motivation & Contribution
- Preliminaries
 - Problem Settings
 - Deep LLP Appoach
- Adversarial Learning for LLP
 - The Discriminator
 - The Generator
 - LLP-GAN Algorithm
- 4 Experimental Results
 - Algorithm Justification
 - Model Performance
- Conclusion & Future Work

28 / 31

Conclusion

- This paper proposed a new algorithm LLP-GAN for LLP problem in virtue of the adversarial learning based on GANs.
- Our method is superior to existing methods in three aspects.
 - Nice theoretical properties
 - A probabilistic classifier
 - Scalability: e.g., image data applications

Future Work

- Learning complexity in the sense of PAC is not involved in this study.
- There is no guarantee on algorithm robustness to data perturbations: e.g., imprecise proportions.
- Varying GANs are not considered in our current model and their performance is unknown: e.g. WGAN¹².
- The performance of LLP-GAN on tabular data and structured (non-random) data¹³ is not included.

(UCAS & UIBE) LLP-GAN October 25, 2019 30 / 31

¹² M. Arjovsky, S. Chintala, and L. Bottou. "Wasserstein generative adversarial networks". In: ICML. 2017, 13 G. Patrini et al. "(Almost) no label no cry". In: Advances in Neural Information Processing Systems. 2014, pp. 190–198.

Acknowledgement

- This work is supported by grants from: National Natural Science Foundation of China (No.61702099,71731009, and 61472390), Science and Technology Service Network Program of Chinese Academy of Sciences (STS Program, No.KFJ-STS-ZDTP-060), and the Fundamental Research Funds for the Central Universities in UIBE (No.CXTD10-05).
- Bo Wang would like to acknowledge that this research was conducted during his visit at Texas A&M University and thank Dr. Xia Hu for his hosting and insightful discussions.
- We appreciate the dedicated reviewers and area chair for their valuable insights in the reviews and meta review to help improve this paper.

