El problema de segmentación Lección 02.1

Dr. Pablo Alvarado Moya

MP6127 Visión por Computadora Programa de Maestría en Electrónica Énfasis en Procesamiento Digital de Señales Escuela de Ingeniería Electrónica Tecnológico de Costa Rica

I Cuatrimestre 2013

Contenido

- Modelo de visión
- Segmentación
- Operation of the second of

Modelo de Visión

Modelo General de Visión de Marr-Palmer Nivel computacional

Segmentación

Definición

Segmentación es el proceso de separar una imagen en regiones *de interés para la aplicación*.

Definición

Segmentación es el proceso de separar una imagen en regiones *de interés para la aplicación*.

Definición

Segmentación es el proceso de separar una imagen en regiones *de interés para la aplicación*.

Niveles de segmentación

- Segmentación a nivel de imagen
- Segmentación a nivel de superficies
- Segmentación a nivel de objetos

Ejemplo Ning et al., 2010

¿Qué viene primero? Segmentación o reconocimiento

Paradoja

Para segmentar *objetos* es necesario reconocerlos, para reconocerlos, es necesario segmentarlos

⇒ Dos caras de un mismo problema

Métodos supervisados y no supervisados

- Similar a métodos de reconocimiento de patrones
- Supervisados: un usuario interactúa con proceso
 Típicamente usados en medicina
- No supervisado: 100 % automatizados

Definiciones preliminares

Pixel

Definición (Pixel)

Un pixel e es un par ordenado $e = \langle \underline{\mathbf{p}}, \underline{\mathbf{c}} \rangle$ con vector de posición $\underline{\mathbf{p}}$ y vector de características $\underline{\mathbf{c}}$.

- Vector d-dimensional $\underline{\mathbf{c}} \in \mathbb{R}^d$ describe diferentes características de bajo nivel como color, textura, bordicidad, etc.
- Aquí $\underline{\mathbf{p}} \in \mathbb{G}^2 \subset \mathbb{N}^2$. Rejilla $\mathbb{G}^2 = [0 \dots a_1 1] \times [0 \dots a_2 1]$, with $a_i \in \mathbb{N}$.

Imagen como conjunto

Definición (Image)

Una imagen $\mathcal I$ es un conjunto finito, no vacío de píxeles con las siguientes propiedades:

- Para $e_i = \left\langle \underline{\mathbf{p}}_i, \underline{\mathbf{c}}_i \right\rangle \in \mathcal{I}$ y $e_j = \left\langle \underline{\mathbf{p}}_j, \underline{\mathbf{c}}_j \right\rangle \in \mathcal{I}$, $\underline{\mathbf{p}}_i = \underline{\mathbf{p}}_j \Rightarrow \underline{\mathbf{c}}_i = \underline{\mathbf{c}}_j$;
- $\mathbf{\underline{p}}_{i} \in \mathbb{G}^{2};$
- **3** $|\mathcal{I}| = |\mathbb{G}^2|$.

Imagen como función

Definición (Imagen como función)

La representación funcional de la imagen \mathcal{I} es $\underline{\mathbf{f}}_{\mathcal{I}}: \mathbb{G}^2 \to \mathbb{R}^d$, de modo que $e_i \in \mathcal{I} \Longleftrightarrow e_i = \left\langle \underline{\mathbf{p}}_i, \underline{\mathbf{f}}_{\mathcal{I}}(\underline{\mathbf{p}}_i) \right\rangle$.

- La función vectorial $\underline{\mathbf{f}}_{\mathcal{I}}$ mapea la posición del pixel $\underline{\mathbf{p}}_i \in \mathbb{G}^2$ en su vector d-dimensional de características $\underline{\mathbf{c}}_i \in \mathbb{R}^d$.
- Sea $\underline{\mathbf{f}}_{\mathcal{I}}(\underline{\mathbf{p}}) = [f_1(\underline{\mathbf{p}}), \dots, f_d(\underline{\mathbf{p}})]^T$. Las funciones escalares $f_i(\underline{\mathbf{p}})$ definen los *canales* de la imagen \mathcal{I} .

Región

Definición (Región de imagen)

Una región $\mathcal R$ es un subconjunto no vacío de la imagen $\mathcal I\colon \mathcal R\subseteq \mathcal I,$ $\mathcal R\neq \emptyset.$

 Una región no necesita ser topológicamente conexa. Esto implica que dos partes visiblemente independientes de un objeto pueden ser asignadas a una única región.

Partición

Definición (Partición de imagen)

Una partición \mathcal{P} de la imagen \mathcal{I} es un conjunto de n regiones $\{\mathcal{R}_i; i=1\dots n\}$ tales que $\bigcup_{i=1}^n \mathcal{R}_i = \mathcal{I}$ y $\mathcal{R}_i \cap \mathcal{R}_j = \emptyset$ para $i \neq j$.

• Una partición se dice ser *más fina* que otra si particiona una imagen en regiones más pequeñas.

Objetos

Definición (Objeto y conjunto de objetos)

Un objeto es una entidad del mundo real con significado específico en el contexto de una aplicación. Se identifica inequívocamente con una etiqueta o_i . El conjunto de todos los objetos se define para la aplicación y se denota con Ω .

• La restricción de la definición de objeto al contexto de la aplicación permite asignar una única etiqueta de *fondo* a todas las entidades reales que no interesan en escenas complejas.

Operador de reconocimiento

Definición (Operador de reconocimiento)

El operador de reconocimiento L asigna a una región de imagen \mathcal{R}_i el subconjunto $\mathcal{O}_i \subseteq \Omega$ de etiquetas correspondientes a todos los objetos mostrados o parcialmente mostrados en ella.

Segmentación

Definición (Segmentación)

La segmentation ${\mathcal S}$ de la imagen ${\mathcal I}$ es una partición de la imagen ${\mathcal I}$ que satisface

- $|L(\mathcal{R}_i)| = 1$ para $\mathcal{R}_i \in \mathcal{S}$, $i = 1 \dots n_{opt}$, y
- $oldsymbol{0}$ $n_{opt} = |\mathcal{S}|$ es mínimo
 - La condición 1. asegura la correspondencia de cada región a un objeto.
 - La condición 2. asegura que cada objeto corresponde a una región.
 - Paradoja: la implementación de L requiere en la práctica la segmentación de la imagen, pero esta está definida en términos de L.

Sobresegmentación y subsegmentación

- Un algoritmo sobresegmenta si encuentra una partición S_o tal que $|S_o| > n_{opt}$. En este caso la condición $|L(\mathcal{R}_i)| = 1$ puede mantenerse.
- Un algoritmo subsegmenta si S_u típicamente contiene menos regiones que el óptimo ($|S_u| < n_{opt}$); lo que implica que al menos para una región \mathcal{R}_k ocurre que $|L(\mathcal{R}_k)| > 1$.

Resumen

- Modelo de visión
- 2 Segmentación
- Operation of the second of

Este documento ha sido elaborado con software libre incluyendo LATEX, Beamer, GNUPlot, GNU/Octave, XFig, Inkscape, LTI-Lib-2, GNU-Make, Kazam, Xournal y Subversion en GNU/Linux

Este trabajo se encuentra bajo una Licencia Creative Commons Atribución-NoComercial-LicenciarIgual 3.0 Unported. Para ver una copia de esta Licencia, visite http://creativecommons.org/licenses/by-nc-sa/3.0/ o envíe una carta a Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

© 2013 Pablo Alvarado-Moya Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica