2-3 Counting

Hengfeng Wei

hfwei@nju.edu.cn

March 12, 2020

The Analysis of Algorithms

Donald E. Knuth (1938 \sim)

"People who analyze algorithms have double happiness.

First of all they experience the sheer beauty of elegant mathematical patterns that surround elegant computational procedures.

Then they receive a practical payoff when their theories make it possible to get other jobs done more quickly and more economically."

- 1: **procedure** Conundrum(n)
- $r \leftarrow 0$
- 3: **for** $i \leftarrow 1$ **to** n **do**
- 4: for $j \leftarrow i + 1$ to n do
- 5: for $k \leftarrow i + j 1$ to n do
- 6: $r \leftarrow r + 1$
- 7: $\mathbf{return} \ r$

$$\sum_{i=1}^{n} \sum_{j=i+1}^{n} \sum_{k=i+j-1}^{n} 1 = \frac{n^2 - n}{2} = \Theta(n^2)$$

$$\sum_{i=1}^{n} \sum_{j=i+1}^{n} \sum_{k=i+j-1}^{n} 1 = \frac{n^2 - n}{2} = \Theta(n^2)$$

$$\sum_{i=1}^{n} \sum_{j=i+1}^{n} \sum_{k=i+j-1}^{n} 1 = \frac{1}{48} \left(3\left(-1 + (-1)^{n}\right) + 2n(n+2)(2n-1) \right) = \Theta(n^{3})$$

$$\sum_{i=1}^{n} \sum_{j=i+1}^{n} \sum_{k=i+j-1}^{n} 1$$

$$= \sum_{i=1}^{n} \sum_{j=i+1}^{n} (n-i-j+2) \left[j \le n-i+1, i \le \frac{n}{2} \right]$$

$$= \sum_{i=1}^{\lfloor \frac{n}{2} \rfloor} \sum_{j=i+1}^{n-i+1} (n-i-j+2)$$

From Zheng (171860658)

Passing out Apples to Children

width = 0.40 figs/apple-children

k-Permutation (CS: 1.2-5)

We need to pass out k distinct apples (pieces of fruit) to n children such that each child may get at most one apple.

- (a) $k \le n$?
- (b) What if k > n?

$$n^{\underline{k}} \triangleq n(n-1)\cdots(n-k+1)$$

0

Multisets (CS: 1.5-4)

Use multisets to determine the number of ways to pass out k identical apples to n children. Assume that a child may get more than one apple.

$$x_i$$
: the # of apples the *i*-th child gets

$$x_1 + x_2 + \dots + x_n = k, \quad x_i \ge 0$$

Integer composition (The order matters!)

$$y_i \triangleq x_i + 1$$

$$y_1 + y_2 + \dots + y_n = n + k, \qquad y_i \ge 1$$

$$\binom{n+k-1}{n-1} = \binom{n+k-1}{k}$$

Multisets (CS: 1.5-4)

Use **multisets** to determine the number of ways to pass out k identical apples to n children. Assume that a child may get more than one apple.

Q: k-multiset of $[1 \cdots n]$ vs. n-multiset of $[1 \cdots k]$

$$k = 7$$
 $n = 5$

width = 0.50 figs/apple-to-children-multiset

Integer Partition (CS: 1.5-4 Extended)

What is the number of ways to pass out k identical apples to n-. Assume that a child may get more than one apple.

 $\begin{array}{ll} \mbox{width} = & \mbox{width} = 0.95 \mbox{figs/apple-to-children-} \\ 0.95 \mbox{figs/apple-to-children-partition} & \mbox{partition-equiv} \end{array}$

Integer partition of k into $\leq n$ parts (The order does not matter!)

Theorem (G. H. Hardy, Ramanujan (1918))

$$p(k) \triangleq \sum_{x=1}^{x=k} p_x(k) \sim \frac{1}{4\sqrt{3}k} \exp\left(\pi\sqrt{\frac{2k}{3}}\right)$$

Set Partition (CS: 1.5 - 4 Extended)

What is the number of ways to pass out k distinct apples to n-. Assume that a child may get more than one apple.

 $\label{eq:width} \begin{array}{ll} width = 0.40 figs/apple-to-children-set-partition \\ width = 0.85 figs/apple-to-children-set-partition-equiv \\ & set-partition-nonequiv \\ \end{array}$

Set partition of $[1 \cdots k]$ into $\leq n$ parts

Set Partition (CS: 1.5 - 12)

S(n,k) (nk): # of set partitions of $[1 \cdots n]$ into k classes

Stirling number of the second kind

Theorem (Recurrence for S(n,k))

$$S(0,0) = 1, \quad S(n,0) = S(0,n) = 0 \ (n > 0)$$

$$S(n,k) = S(n-1,k-1) + kS(n-1,k), \quad n > 0, k > 0$$

Proof.

$$S(n,k) = \underbrace{S(n-1,k-1)}_{n \text{ is alone}} + \underbrace{kS(n-1,k)}_{n \text{ is not alone}}$$

Bell number:
$$B_n = \sum_{k=0}^{k=n} nk$$

Theorem (Berend & Tassa (2010))

$$B_n < \left(\frac{0.792n}{\ln(n+1)}\right)^n, n \in \mathbb{Z}^+$$

Theorem (de Bruijn (1981))

As $n \to \infty$,

$$\frac{\ln B_n}{n} = \ln n - \ln \ln n - 1 + \frac{\ln \ln n}{\ln n} + \frac{1}{\ln n} + \frac{1}{2} \left(\frac{\ln \ln n}{\ln n} \right)^2 + O\left(\frac{\ln \ln n}{(\ln n)^2} \right)$$

width = 0.85 figs/12-way

Thank You!

Office 302

Mailbox: H016

hfwei@nju.edu.cn