Statistical Decision Theory STAT3023

Rachel Wang

School of Mathematics and Statistics, USyd

5 Oct, 2022

Full decision theory framework

In the full framework, we have

- ▶ A family of distributions $\mathcal{F} = \{f_{\theta}(\cdot) : \theta \in \Theta\}$ for a random vector **X** taking values in \mathcal{X} ;
- A decision space \mathcal{D} , where each decision $d(\cdot)$ is a **function** mapping a possible value $\mathbf{x} \in \mathcal{X}$ into \mathcal{D}
- A non-negative-valued loss funciton such that when a decision d is made and the true distribution generating \mathbf{X} is $f_{\theta}(\cdot)$, a loss of $L(d|\theta)$ is suffered.
- ▶ The risk funciton associated with decision function $d(\cdot)$ is:

$$R(\theta|d(\cdot)) = E_{\theta}(L(d(x)|\theta))$$

$$\times \sim f_{\theta}$$

Full decision theory framework

Example: Suppose we have 2 independent observations X_1, X_2 from an exponential distribution with mean θ . Take the loss as $L(d|\theta) = (d-\theta)^2$.

- We already know that the CRLB for unbiased estimation of θ is $\theta^2/2$, attained by $\bar{X} = \frac{X_1 + X_2}{2} = d_{\text{MVU}}(\mathbf{X})$.
- Consider the family of decisions $\{d_c(\cdot):c>0\}$ given by $d_c(\mathbf{X})=c\bar{X}$.
- ▶ The risk of $d_c(\cdot)$ is:

$$P(\theta|dc) = \#_{\theta} \left\{ (c\overline{x} - \theta)^{2} \right\}$$

$$= \#_{\theta} \left(c^{2}\overline{x}^{2} - 2c\theta\overline{x} + \theta^{2} \right)$$

$$= c^{2} \#_{\theta}(\overline{x}^{2}) - 2c\theta \#_{\theta}(\overline{x}) + \theta^{2}$$

$$\#_{\theta}(\overline{x}) = \theta$$

$$V_{cr}(\overline{x}) = \frac{1}{2} \cdot V_{cr}(x_{i}) = \frac{\theta^{2}}{2}$$

$$\mathbb{E}_{\theta}(\mathbb{Z}^2) = \frac{\theta^2}{2} + \theta^2$$

$$= c^{2} \left(\frac{3}{2} \theta^{2} \right) - 2c\theta^{2} + 6^{2}$$

$$= \theta^{2} \left(\frac{3}{2} c^{2} - 2c + 1 \right)$$

$$\frac{1}{3c}R(\theta|d_c) = \theta^2(3c-2) = 0 \qquad c = \frac{2}{3}$$

The best decision is
$$d_{\frac{3}{3}}(X) = \frac{2}{3}X$$

$$R(\theta(d_{\frac{3}{3}}) = -- = \frac{\theta^2}{3}$$

Although $\frac{2}{3}\bar{\chi}$ is biased, it has a smaller MSE (risk) than $\bar{\chi}$ and this is true for all $\theta > 0$

\frac{2}{7}\times is uniformly better than \times \text{ (under the squerred -error (css)}

$$d_o(X) = 1$$
, $P(\theta|d_0) = (\theta - 1)^2 = \theta^2 - 2\theta + 1$

Full decision theory framework

- The above example shows neither d_0 nor $d_{2/3}$ is uniformly better than the other. Rather, there are ranges of θ for which each is better.
- It is not very useful to compare risk functions in a pointwise sense. In fact we need some "overall" measure of risk to encompass all θ values.

Overall risk measure

Bayes (or integrated) risk: For a given non-negative weight function $w(\cdot)$: \leftarrow weight function $(prior B_w(d)) = \int_{\omega} w(\theta) \cdot R(\theta|d) d\theta$ If $\widetilde{d}(\cdot)$ is s.t. $B_w(\widetilde{d}) \in B_w(d)$ for any other decision function $d(\cdot)$, then \widetilde{d} is said to be a <u>Bayes procedure</u> (or Bayes aleasian rule) w.r.t. weight (a + b) prior (a + b) prior (a + b) w.r.t. weight (a + b)

Overall risk measure

Maximum risk: For a given subset $\Theta_0 \subseteq \Theta$, a decision rule $\hat{d}(\cdot)$ is said to be minimax (over Θ_0) if

max
$$R(\theta|\hat{d}) \leq \max_{\theta \in \Theta_{0}} R(\theta|d)$$

 $\theta \in \Theta_{0}$ $\theta \in \Theta_{0}$
best decision in werst case scenario.

Finding Bayes procedures

- ▶ Bayes procedures can be found by reducing the problem to a simple prediction problem.
- ▶ Recall the **Bayes risk** of a decision rule $d(\cdot)$ (w.r.t. to a weight function/prior $w(\cdot)$) is

weight function/prior
$$w(\cdot)$$
) is

$$R(\theta|d) = \mathbb{E}\left(L(d|x)|\theta\right)$$

$$= \int_{\Omega} w(\theta) \left(\int_{-\infty}^{\infty} L(d|x)|\theta\right) f_{\theta}(x) dx dx d\theta$$

$$= \int_{\Omega} w(\theta) \left(\int_{-\infty}^{\infty} L(d|x)|\theta\right) w(\theta) f_{\theta}(x) dx d\theta$$

$$= \int_{\Omega} L(d|x)|\theta w(\theta) f_{\theta}(x) d\theta dx$$

$$\int_{\Omega} L(d|x)|\theta w(\theta) f_{\theta}(x) d\theta dx$$

$$\int_{\Omega} L(d|x)|\theta w(\theta) f_{\theta}(x) d\theta dx d\theta$$

$$\int_{\Omega} L(d|x)|\theta w(\theta) f_{\theta}(x) d\theta dx d\theta$$

Eθ|x(L(d(x)|θ))

conditional Boyes risk

(α) = ∫ ω(θ) f (z) dθ $=\int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}} m(x) \left| \int_{\mathbb{R}^{n}} L(d(x)(\theta) - \frac{\omega(\theta)f_{\theta}(x)}{m(x)}) d\theta \right| dx$ $p(\theta|x) = \frac{\omega(\theta)f_{\theta}(x)}{m(x)}, \quad \int_{\theta} p(\theta|x) d\theta = 1$ p(6/x) can be viewed as a polf of B. This is known as the posterior density of A. (conditional density of 0 given x = 2) The inner integral is a simple possible problem, based on a single draw of & from p(0/x) with (055 L(d(6) If we know decision d(x) minimises the risk this simple prediction problem, (d(x)/0) p(0/x) de = In L(d(x) | B) p(B/x)do for any other decision d. then we also have Bw (d) & Bw (d).

Finding Bayes procedures

Example 1. Suppose X_1, \ldots, X_n are iid $N(\theta, 1)$, $\theta \in \Theta = \mathbb{R}$ with deicision space \mathcal{D} and loss $L(d|\theta)$.

(a)
$$\mathcal{D} = \mathbb{R}$$
, $L(d|\theta) = (d - \theta)^2$

(b)
$$\mathcal{D} = \mathbb{R}$$
, $L(d|\theta) = |d - \theta|$

(c)
$$\mathcal{D} = \mathbb{R}$$
, $L(d|\theta) = 1\{|d - \theta| > 1.96/\sqrt{n}\}$

(d)
$$\mathcal{D} = \{0, 1\},\$$

$$L(d|\theta) = \begin{cases} L_0 & \text{if } d = 1, \theta \in \Theta_0 \text{ choose d that} \\ L_1 & \text{if } d = 0, \theta \in \Theta_1 \text{ navinises}, \\ 0 & \text{otherwise.} \end{cases}$$

Find Bayes procedures of the above with $w(\theta) = 1$, the "flat prior".

Fino	d the po	ostesion a	fθ. (α		g of B given	
	Polx ~	~ _I V (X	((() () () ()	see tut	e this week	•
(A)	d(X)	is the m (Examp	ean of po le on squar	steries, red - error	d(x) = x (oss from Tu	nes day
ه رمل	d(X) is	the me	dian of po	esterior.	$d(x) = \overline{x}$	
ر) ے	0-c 0	N d+c	(Z, h) c = 1.96 Nh	d (≥) = ;		