Типы и Структуры Данных

Отчет

<u>Работа № 1 «Длинная» арифметика. Тип данных – массив</u>

Студент: Нгуен Фыок Санг

Группа: ИУ7И-36Б

І. Описание условия задачи:

Составить программу деления двух чисел, порядок которых находится в диапазоне от –99999 до +99999 (т.е. имеет не более 5 разрядов), а длина мантиссы не превышает 30 разрядов.

Смоделировать операцию деления действительного числа в форме \pm m.n E \pm K, где суммарная длина мантиссы (m+n) - до 30 значащих цифр, а величина порядка K - до 5 цифр, на действительное число. Результат выдать в форме \pm 0.m1 E \pm K1, где m1 - до 30 значащих цифр, а K1 - до 5 цифр.

II. Описание ТЗ:

- 1. **Исходные данные**: 2 строки, содержащие два действительных числа вида: [+/-]m.nE[+/-]k, где:
 - Суммарная длина мантиссы m+n до 30 цифр.
 - Порядка k до 5 цифр.
 - Допускается отсутствие точек, е, знаков.
- 2. **Результат**: действительное число в форме ±0.m1 е ±k1, где:
 - m1 до 30 значащих цифр.
 - k1 до 5 цифр.
- 3. Задачи, реализуемой программой: деление действительного числа на действительное число.

III. Описание СД:

- 1. Для ввода:
 - Использовать два массива символов размером 40.
- 2. Для обработки:
 - Использовать статический массив размером 30 для сложения, вычитания, умножения и деления двух натуральных чисел.
 - Использовать статический массив размера 40, чтобы разделить два действительных числа.
- 3. Для результата:
 - Использовать статический массив размера 40.

Действительное число хранится в массиве из 40 элементов следующим образом:

	НТИССА			порядок	
Знак маг	нтиссы	Поле мантиссы	Знак	порядка	Поле порядка
	1		32	33	3 40

Конец мантиссы и порядка обозначен цифрой -2.

(Pic1)

Знак равен 1, если оно неотрицательное, в противном случае равен -1.

IV. Описание алгоритма:

1. Передача данных от пользователя в форму хранения:

- а. Проверьте правильность данных.
- b. Преобразуйте данные в форму: MEk, где M целое число, k целое число.
 - Разделяться части мантиссы и порядка буквой Е.
 - Хранить порядок
 - Хранить мантисса

2. Найти знак деления:

• Если тот же знак, положительный (+1), в противном случае он отрицательный (-1).

3. Найти мантиссу:

- а. Деление двух целых чисел:
 - Получить число m, включая первые цифры a (если возможно, чуть больше b).
 - Умножьте b на i (i = 1..10), пока произведение не станет больше m, получите (i 1), добавьте (i 1) к массиву результатов.
 - Вычтите m из (i 1) * b, сохраните в m, затем добавьте следующую цифру от а до m (если не добавить 0, и увеличьте счет на 1).

- Повторяйте до:
 - 1. Возьмите все цифры а и получите m = 0, или
 - 2. Получите 31 цифру
- Результатом является действительное число, в котором хранится количество цифр после десятичной точки (счет).
- b. Округление(если есть более 30 цифр):
 - Взять 31-ю цифру, если больше 5, добавить предыдущее число к 1 единице.

4. Найти степени:

• Сложите номер из двух степени, затем добавьте счет.

V. Набор тестов:

a	b	Результат (a / b)	Описание
0	0	ERR_DEVIDE	делится на ноль
00	1	+0.0E+0	
999999	2	+0.4999995E+6	
99999 (30)	2	+0.5E+30	округление
0.1E99999	0.1	ERR: TOO BIG	Порядка $k > 5$ цифр.
		NUMBER	
0.1e99999	0.01	+0.1E+99999	проверка предела
-1.02.01		ERR_INPUT	иметь более точки
1.2345	+-89	ERR_INPUT	иметь более знака
15.E1.23		ERR_INPUT	Порядка - действительное число
15e100000		ERR_INPUT	проверка предела
12e1	6	+0.2E+2	
0.1000e99998	000.100e0	+0.1E+99999	Цифры не имеют значения
-2	3e5	-0.667E+5	Округление
-1	9	-0.1111E+0	
0.12	1	+0.12E+0	
7+2		ERR_INPUT	
1e 25		ERR_INPUT	пробелы
abcdf		ERR_INPUT	содержит символы
11	2222 (31)	ERR_INPUT	длина мантиссы > 30 цифр
125	5a2	ERR_INPUT	содержит символы
1e-999999		ERR_INPUT	Порядка k > 5 цифр.

VI. Ответы на вопросы

1. Каков возможный диапазон чисел, представляемых в ПК?

- Для целых чисел: Для 64 разрядов максимально возможное значение числа равно
 - **2**⁶⁴ **1**=**18 446 744 073 709 551 615** (невозможно использовать больше 20 десятичных разрядов для представления числа)
- Для вещественных чисел: возможные значения чисел находятся в диапазоне от 3.6 E –4951 до 1.1 E +4932.
- 2. Какова возможная точность представления чисел, чем она определяется?
 - Максимально под представление мантиссы отводится 52 разряда.
- 3. Какие стандартные операции возможны над числами?
 - Сложение двух чисел.
 - Вычитание с двумя числами.
 - Умножение на два числа.
 - Деление двух чисел.
 - Сравнение двух чисел.
- 4. Какой тип данных может выбрать программист, если обрабатываемые числа превышают возможный диапазон представления чисел в ПК?
 - Массив
 - Строка
 - ...
- 5. Как можно осуществить операции над числами, выходящими за рамки машинного представления?
 - Обеспечить их представление, используя поля структуры, и реализовать операцию по тому же алгоритму, как она делается вручную на бумаге.