

# Processamento Digital de Sinais

2016/17 © ISEL-DEETC André Lourenço GonçaloMarques Isabel Rodrigues



#### Alguns sinais mais comuns em PDS

| Name                       | Continuous                                                                                                                   | Discrete                                                                                                |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Unit Step function         | $u(t) = \begin{cases} 1, & t \geq 0 \\ 0, & t < 0 \end{cases}$                                                               | $u[n] = \begin{cases} 1, n \ge 0 \\ 0, n < 0 \end{cases}$                                               |
| Ramp signal                | $r(t) = \begin{cases} t, & t \ge 0 \\ 0, & t < 0 \end{cases}$                                                                | $r[n]=nu(n) = \begin{cases} n, n \ge 0 \\ 0, n < 0 \end{cases}$                                         |
| Impulse function           | $\delta(t)=0, t\neq 0$                                                                                                       | $\delta[n] = \begin{cases} 1, n = 0 \\ 0, otherwise \end{cases}$                                        |
| Rectangular pulse function | $rect\left(\frac{t}{\tau}\right) = \begin{cases} 1,  t  \le \tau/2\\ 0,  t  > \tau/2 \end{cases}$                            | $rect\left[\frac{n}{2N}\right] = \begin{cases} 1,  n  \le N \\ 0,  n  > N \end{cases}$                  |
| Triangular pulse           | $tri\left(\frac{t}{\tau}\right) = \begin{cases} 1 - \left \frac{t}{\tau}\right , t \leq  \tau  \\ 0, t >  \tau  \end{cases}$ | $tri\left[\frac{n}{N}\right] = \begin{cases} 1 - \frac{ n }{N},  n  \leq N \\ 0, elsewhere \end{cases}$ |
| Signum signal              | $Sgn(t) = \begin{cases} 1, t > 0 \\ -1, t < 0 \end{cases}$                                                                   | $Sgn[n] = \begin{cases} 1, n > 0 \\ -1, n < 0 \end{cases}$                                              |
| Sinusoidal signal          | $x(t) = \sin(2\pi f_0 t + \theta)$                                                                                           | $X[n] = \sin(2\pi f_0 n + \theta)$                                                                      |
| Sinc function              | $\operatorname{sinc} (\omega_0 t) = \frac{\sin(\pi \omega_0 t)}{\pi \omega_0 t}$                                             | sinc $[\omega_0 n] = \frac{\sin(\pi \omega_0 n)}{\pi \omega_0 n}$                                       |





sinusoidal functions.







sinc functions.







## M

# **Algumas**

### Tabelas úteis



### **Definições**

$$\operatorname{sinc}(t) = \frac{\sin(\pi t)}{\pi t}$$

$$\omega_0 = \frac{2\pi}{T_0} = 2\pi f_0$$

$$X_{k} = \frac{1}{T_{0}} \int_{T_{0}} x(t) e^{-jk\omega_{0}t} dt$$

$$x(t) = \sum_{k=-\infty}^{\infty} X_k e^{j2\pi k f_0 t} = \sum_{k=-\infty}^{\infty} X_k e^{jk\omega_0 t}$$



| Sinal Periódico                                         | Coeficientes da série de Fourier                                  |
|---------------------------------------------------------|-------------------------------------------------------------------|
| $x(t) = \sum_{k=-\infty}^{\infty} X_k e^{jk\omega_0 t}$ | $X_{k} = \frac{1}{T_{0}} \int_{T_{0}} x(t) e^{-jk\omega_{0}t} dt$ |
| $x(t), y(t)$ periódicos período $T_0$                   | $X_{k}, Y_{k}$                                                    |
| ax(t)+by(t)                                             | $\mathbf{a}X_k + \mathbf{b}Y_k$                                   |
| $x(t-t_0)$                                              | $X_k e^{-j\omega_0 kt_0}$                                         |
| $e^{j\omega_0 k_0 t} x(t)$                              | $X_{k-k_0}$                                                       |
| x(-t)                                                   | $X_{-k}$                                                          |
| x(t)*y(t)                                               | $X_k Y_k$                                                         |
| x(t)y(t)                                                | $X_k * Y_k$                                                       |
| $\frac{dx}{dt}$                                         | $jk\omega_0 X_k$                                                  |
| A N C C C C C C C C C C C C C C C C C C                 |                                                                   |



x(t) sinal real

$$\begin{cases} X_k = X_{-k}^* \\ \operatorname{Re}\{X_k\} = \operatorname{Re}\{X_{-k}\} \\ \operatorname{Im}\{X_k\} = -\operatorname{Im}\{X_{-k}\} \\ |X_k| = |X_{-k}| \\ \operatorname{arg}\{X_k\} = -\operatorname{arg}\{X_{-k}\} \end{cases}$$

### Potência de um sinal periódico

Teorema de Parseval

$$P_x = \frac{1}{T_0} \int_0^{T_0} \left| x(t) \right|^2 dt$$

$$P_{x} = \frac{1}{T_{0}} \int_{0}^{T_{0}} |x(t)|^{2} dt$$

$$\frac{1}{T_{0}} \int_{0}^{T_{0}} |x(t)|^{2} dt = \sum_{k=-\infty}^{\infty} |X_{k}|^{2}$$

