Analysis and Visualisation of Complex Agro-Environmental Data - 2025

Lesson 01

- Welcome and self-introductions
- Contents, teaching approach and assessment criteria
- Introduction to data analysis and visualization

Pedro Segurado

Lab 2.13 – Forestry building psegurado@isa.ulisboa.pt

(World cloud based on publication titles)

Write up to 3 keywords that best describe your interests

https://www.menti.com/alooozbhn2cg

Contents: what will I learn?

Classes **Contents** Welcome, contents, teaching approach and assessment criteria Data analysis and visualization: introduction to concepts with examples Data visualisation: good design practices Introduction to data analysis and statistics Data and table types Descriptive statistics Data distribution analysis Hypothesis testing Correlation and regression analysis Cluster analysis Ordination analysis 6 ECTS: Interactive data visualization 35 contact hours 133 hours - Autonomous work and assessments Geospatial Data visualization 14

Teaching approach: how will I learn?

• Two Learning components: Numerical analysis Wisualization

 "Learning by doing" approach: practical exercises with real agroenvironmental case studies

Teaching approach: how will I learn?

A typical class

- 1. Solve the exercises of the previous week: 30 min
- 2. Introduction to the topic: 45 min
- 3. Working example (jupiter notebook): 30 min
- 4. Exercise: 30 min

Assessment criteria: How I will be assessed?

3 criteria:

- Two assignments (or one final exam) focused on theoretical-practical knowledge: 40%
- One final project a group work focused on data storytelling: 40%
- Participation deliver of weekly exercises: 10% with an extra bonus of up until 10% depending on how well the exercises were solved.

Final project

Goal: tell a coherent and appealing story from a complex agro-environmental dataset

Steps:

- 1. Problem definition
- 2. Database queries
- 3. Summary statistics
- 4. Exploratory data analysis
- 5. Inferential statistics
- 6. Final visualisation product and storytelling

Assessment:

1. A **live presentation** of your story, a **poster**, or an **interactive dashboard** and a short **written report**, including the code as an Appendix.

Teaching approach: how will I learn?

Programming language

Materials (autonomous work)

Main book:

Wes McKinney. Python for Data Analysis. https://wesmckinney.com/book/

Shared folder with some books

Materials (autonomous work)

Pandas

Python Tutorials by Corey Schafer – Pandas tutorials (parts 1 to 11 – vídeos #120 to #138) https://www.youtube.com/playlist?list=PL-osiE80TeTt2d9bfVyTiXJA-UTHn6WwU

Statistics

- Statistics and probability Khan Academy (in particular units 10, 11, 12, 14 and 16): https://www.khanacademy.org/math/statistics-probability
- Statquest videos:

https://statquest.org/video-index/

Statistics with python

Videos by Shashank Kalanithi based on the book: Practical Statistics for Data Scientists

- Chapter 1 Exploratory Data Analysis: https://www.youtube.com/watch?v=wwsizzg6UjU
- Chapter 2 Data and Sampling Distributions: https://www.youtube.com/watch?v=7mi6cJSTj6Y
- Chapter 3 Statistical Experiments Significance Testing: https://www.youtube.com/watch?v=mzjooX4OyFs

Original book (also available in the google drive): https://www.researchgate.net/profile/Janine-

Zitianellis/post/Can_anyone_please_suggest_a_books_on_machine_learning_using_R_Programming/attachment/613a5b83647f3906fc975a71/AS%3A1066204907204608% 401631214467436/download/Practical+Statistics+for+Data+Scientists+50%2B+Essential+Concepts+Using+R+and+Python+by+Peter+Bruce%2C+Andrew+Bruce%2C+Peter+Ge deck.pdf

Original github repository of the book - Jupiter notebooks: https://github.com/gedeck/practical-statistics-for-data-scientists/tree/master/python/notebooks

Short questionaire - previous skills on data visualization and statistics

Short questionaire - previous skills on data visualization and statistics

1. Popularity

January 2023

Jan 2023	Jan 2022	Change	Progran	nming Language	Ratings	Change
1	1		•	Python	16.36%	+2.78%
2	2		9	С	16.26%	+3.82%
3	4	^	G	C++	12.91%	+4.62%
4	3	•	<u>(</u>	Java	12.21%	+1.55%
5	5		©	C#	5.73%	+0.05%
6	6		VB	Visual Basic	4.64%	-0.10%
7	7		JS	JavaScript	2.87%	+0.78%
8	9	^	SQL	SQL	2.50%	+0.70%
9	8	•	ASM	Assembly language	1.60%	-0.25%
10	11	^	php	РНР	1.39%	-0.00%
11	10	•	<u>a</u>	Swift	1.20%	-0.21%
12	13	^	-GO	Go	1.14%	+0.10%
13	12	•	R	R	1.04%	-0.21%

1. Popularity

January 2025

Feb 2025	Feb 2024	Change	Programi	ming Language	Ratings	Change
1	1		•	Python	23.88%	+8.72%
2	3	^	©	C++	11.37%	+0.84%
3	4	^	<u>«</u> ,	Java	10.66%	+1.79%
4	2	•	9	С	9.84%	-1.14%
5	5		3	C#	4.12%	-3.41%
6	6		JS	JavaScript	3.78%	+0.61%
7	7		SQL	SQL	2.87%	+1.04%
8	8		~GO	Go	2.26%	+0.53%
9	12	^	(3)	Delphi/Object Pascal	2.18%	+0.78%
10	9	•	VB	Visual Basic	2.04%	+0.52%
11	11		F	Fortran	1.75%	+0.35%
12	15	^		Scratch	1.54%	+0.36%
13	18	*	8	Rust	1.47%	+0.42%
14	10	*	php	PHP	1.14%	-0.37%
15	21	*	R	R	1.06%	+0.07%

... but in 2025, R rose again to the 15th position.

2. Loyalty

Source: https://www.datacamp.com/blog/python-vs-r-for-data-science-whats-the-difference

3. Job opportunities

4. Execution time

Example: a code block written in Python and R to obtain prime numbers up to a pre-defined upper bound

Source: https://medium.com/octave-john-keells-group/python-vs-r-for-data-science-320e167ffe90

Summary		R	
Criteria	Python	R	
Popularity	Variety of industries.	Amongst Data Scientists/ Statisticians	
Community	Large	Statisticians and Academia	
Complexity	Depends on your skills	Depends on your skills	
Performance	Excellent	Needs improvement	
Data Analysis	Good	Excellent	
Visualization	Excellent	Excellent	
Learning	Excellent	Good	
Deployment and Production	Excellent	Needs improvement	

Source: https://medium.com/octave-john-keells-group/python-vs-r-for-data-science-320e167ffe90

Python libraries used in the AVDAC course

Data manipulation and analysis

- pandas (data manipulation)
- numpy (mathematical functions)
- scipy (mathematical functions)
- Statsmodels (statistical and modelling funtions)

matpl*tlib

Visualization

- matplotlib (basic plots)
- seaborn (more advance statistical plots)
- bokeh (interactive visualization)
- plotly (interactive Geospatial Data visualization)
- GeoPandas (Geospatial Data visualization)
- Folium (Geospatial Data visualization)

Software/IDEs

Bash/PowerShell (Terminal Command Line Interfaces) – Manipulate directories and files; install software and packages.

Git – to exchange files between local and remote machines (github)

VSCode – running python, git, markdown, editing jupyter notebooks

Jupyter notebook – editing jupyter notebooks

Repositories and platforms

Fenix ISA – classes; documentation

Google drive – other supporting materials

Github – data; exercises; examples; outputs

Discord — interaction among students and the teacher

What is data analysis and visualization

What is data analysis and visualization

03:00

https://www.menti.com/aln2ry6zo3p1

Data analysis is ...

the process of **inspecting**, **cleaning**, **transforming**, and **modeling** data with the goal of **discovering** useful information, **informing** conclusions, and **supporting** decision-making.

(Brown, 2014)

What is data analysis and visualization?

03:00

https://www.menti.com/alaxvjbzdgqt

Data visualization is ...

the process of graphically **representing information** and **data** aiming at placing complex data in a visual format to facilitate real-time interpretation.

or putting it more simply:

"The visual representation and presentation of data to facilitate understanding" (Kirk, 2019).

The Art of Data Visualization

Big names of data visualization and storytelling

Edward Tufte (EUA, 1942-) - https://www.edwardtufte.com/tufte/

Hans Roling (Sweden, 1948-2017) – Author of the best seller Factfullness 200 Countries, 200 Years, 4 Minutes - The Joy of Stats (Trendalyzer software)

https://www.youtube.com/watch?v=jbkSRLYSojo

Exercise 1

https://github.com/isa-ulisboa/greends-avcad-2025/blob/main/exercises/avcd-exerc1-wordcloud.ipynb

Create a personal word cloud with python, using:

- the text from your CV, or ...
- the text of a motivation letter, or ...
- A text with keywords that best describe your background and interests

You may also use a shape of something related with your interests or hobbies.