See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/244455884

An Improved Potentiometric p CO 2 Microelectrode

ARTICLE in ANALYTICAL CHEMISTRY DECEMBER 19	97	
Impact Factor: 5.64 · DOI: 10.1021/ac970747g		
CITATIONS	READS	
38	16	

2 AUTHORS, INCLUDING:

Wei-Jun Cai

University of Delaware

145 PUBLICATIONS 3,578 CITATIONS

SEE PROFILE

An Improved Potentiometric pCO₂ Microelectrode

Pingsan Zhao and Wei-Jun Cai*

Department of Marine Sciences, The University of Georgia, Athens, Georgia 30602

The classic Severinghaus pCO₂ microelectrodes have been greatly improved. The drift is reduced from $\sim \! 10$ to 0.4 mV/h, and the lifetime has been extended from hours or days to one month. The detection limit has been lowered to 200 μ atm, and the t_{98} for low pCO_2 response is 2 min. Therefore, the microelectrodes can be extended to low pCO₂ measurements. In addition, the microelectrodes can be fabricated more easily. The major problems with the classic pCO2 microelectrodes are caused by Pyrex and the reference electrode used for constructing the microelectrodes. Pyrex can release chemicals into the internal bicarbonate solution and cause serious drift and a short lifetime. Pyrex has been replaced by aluminosilicate glass, and appropriate Ag/AgCl reference electrodes have been used. The enzyme carbonic anhydrase has been added to the internal bicarbonate solution to accelerate the hydration reaction, which greatly enhances the response rate and improves the detection limit. The internal pH glass microelectrodes have been replaced by pH liquid membrane microelectrodes, which makes fabrication easier and further improves response rate. The theory of the electrode's response characteristics at low pCO₂ is presented as well as a discussion on the effects of glass materials, the enzyme and pH electrodes.

The first potentiometric pCO_2 electrode was introduced by Stow et al. in 1957,¹ and considerable improvements were made to it by Severinghaus and Bradley in 1958.² The Severinghaus-type pCO_2 electrode was miniaturized by Caflisch et al. in 1974.³ Since then, much effort has been made to improve the performance of pCO_2 microelectrodes.^{4–13} Although some progress has been made, the pCO_2 microelectrode still needs improvement in several important areas including stability, construction, response time, and detection limit.

The pCO_2 microelectrodes are notoriously unstable and short-lived. The best performance results for pCO_2 macroelectrodes

- * Corresponding author: (phone) 706-542-1285; (e-mail) wcai@uga.cc.uga.edu. (1) Stow, R. W.; Bear, R. F.; Randell, B. F. *Arch. Phys. Med. Rehab.* **1957**, *38*,
- (2) Severinghaus, J. W.; Bradley, A. F. J. *Appl. Physiol.* **1958**, *13*, 515–520.
- (3) Caflisch, C. R.; Carter, N. W. Anal. Biochem. 1974, 60, 252-257.
- (4) Cai, W.-J.; Reimers, C. E. Limnol. Oceanogr. 1993, 38, 1762-1773.
- Collany, H. T.; Schumacher, T. E.; Rue, R. R.; Liu, S. Y. Microchem. J. 1993, 48, 42-49.
- (6) Pucacco, L. R.; Carter, N. W. Anal. Biochem. 1978, 90,427-434.
- (7) Olieveier, C. N.; Berkenbosch, A.; Quanjer, PH. H. Pflügers Arch. 1978, 373, 269–272.
- (8) Lai, N. C.; Liu, C. C.; Brown, E. G.; Neuman, M. R.; Ko, W. H. Med. Biol. Eng. 1975, 876–881.
- (9) Sohtell, M.; Karlmark, B. Pflügers Arch. 1976, 363, 179-180.
- (10) Coon, R. L.; Lai, N. C. J.; Kampine, J. P. J. Appl. Physiol. 1976, 640, 625–629
- (11) Ma, Y. Anal. Biochem. 1990, 186, 74-77.
- (12) Voipio, J.; Kaila, K. Pflügers Arch. 1993, 423, 193–201.
- (13) Bomsztyk, K.; Calalb, M. K. Am. J. Physiol. 1986, 251, F933-F937.

were obtained by Siesjö, ¹⁴ who reported a 0.2 mV/h drift and a very long lifetime. All published microelectrode works did not perform at this level. The drift from a few to 20 mV/h and a lifetime from several hours to as long as one week were reported for $p\text{CO}_2$ microelectrodes.^{3–13} Precise measurements cannot be made with such microelectrodes. It was not reported why $p\text{CO}_2$ microelectrodes had a severe drift and a short lifetime.

pH glass electrodes were used as internal pH-sensitive electrodes in most potentiometric pCO₂ electrodes¹⁻⁸ while metal oxide pH electrodes were used in the others.9-10 pH glass microelectrodes have excellent selectivity and cover a wide dynamic range, but they are difficult to fabricate and have very high resistance and short lifetimes.¹⁵ The advantage of metal oxide pH electrodes is their very low inner resistance, but they may be subject to severe interference by redox pairs. 6,15 Ionselective liquid membrane microelectrodes (LMM) based on neutral carriers are now the most advanced microelectrode technology.16 The neutral carrier-based pH LMM has similar dynamic response characteristics to pH glass electrodes, but unlike a pH glass microelectrode, it can be constructed easily and its inner resistance is not very high. In fact, pH glass microelectrodes have been replaced to a large extent by pH LMMs in physiological studies^{16–18} and they have been used as the internal pH microelectrodes in pCO₂ microelectrodes.¹¹

It is well-known that the CO_2 hydration reaction in the living body is accelerated by the enzyme carbonic anhydrase (CA).¹⁹ Some studies have shown that adding CA to the bicarbonate solution in pCO_2 electrodes could substantially reduce response times and hysteresis (the response curve for an increase in pCO_2 differs significantly from that of a decrease in pCO_2). Severinghaus initially found that the enzyme had no effect on response rate² but later reported that adding 1 mg/mL CA might accelerate the response.²⁰ Donaldson confirmed that CA could improve the response and hysteresis of Severinghaus' pCO_2 electrodes.^{21,22} CA was also used in the pCO_2 microelectrodes based on PVC membrane¹² and in the optical fiber pCO_2 sensor.²³ Botrè even used a pCO_2 electrode to measure the concentration of the carbonic anhydrase.²⁴

- (14) Siesjö, B. K. Acta Physiol. Scand. 1961, 51, 297-313.
- (15) Opdycke, W. N.; Parks, S. J.; Meyerhoff, M. E. Anal. Chim. Acta 1983, 155, 11-20
- (16) Ammann, D. Ion-Selective Microelectrodes Principles, Design and Application; Springer-Verlag: Berlin, Heiderberg, New York, Tokyo, 1986.
- (17) Zhao, P.; Ammann, D.; Oesch, U.; Simon, W.; Lang, F. Pflügers Arch. 1988, 411, 216–219.
- (18) Ammann, D; Lanter, F.; Steiner, R A.; Schulthess, P.; Shijo, Y.; Simon, W. Anal. Chem. 1981, 53, 2267–2269.
- (19) Bauer, C.; Gros, G.; Bartels, H. Biophysics and Physiology of Carbon Dioxide, Springer-Verlag: Berlin, Heidelberg, New York, 1980; pp 3–63, 133–150.
- (20) Severinghaus, J. W. Ann. N. Y. Acad. Sci. 1968, 148, 115–132.
 (21) Donaldson, T. L.; Palmer, H. J. AIChE J. 1979, 25, 143–151.
- (22) Donaldson, T. L.; Ho, S. P. *Chem. Eng. Commun.* **1985**, *37*, 223–231.
- (23) Marazuela, M. D.; Bondi, M. C. M.; Orellana, G. Sens. Actuators B 1995, 29, 126-131.

Figure 1. Schematic representation of a *p*CO₂ microelectrode. It is not drawn proportionately.

Nearly all $p\mathrm{CO}_2$ electrodes were developed for physiological applications. $^{1-3,5-13}$ Occasionally, however, they have been used in aquatic applications. 4,25 The major difference between aquatic and physiological environments is that the $p\mathrm{CO}_2$ is much higher in the latter (e.g., $\sim 5\%$ in blood) than in the former (e.g., ~ 350 μ atm in the waters equilibrated with the air and 0.1% to a few percent in sediment interstitial waters). Until now, the $p\mathrm{CO}_2$ electrode's response characteristics at low $p\mathrm{CO}_2$ have not yet been characterized completely nor has the possibility for low CO_2 measurements been fully explored.

This paper details important modifications made to the pCO_2 microelectrode which have improved its performance greatly, particularly at low pCO_2 . The theory of response characteristics at low pCO_2 is presented, and the effects of glass materials, enzyme, and Ag/AgCl reference electrodes are discussed. An application of the electrodes to natural environments is given.

THEORETICAL SECTION

Response Characteristic at low pCO_2 . The response behaviors in the steady state^{26,27} and in the transient state^{21,22} have been studied and are reasonably well understood at high pCO_2 . But the response behavior under low pCO_2 , especially the detection limit of the pCO_2 microelectrodes, has not been reported. The potentiometric pCO_2 microelectrode is shown schematically in Figure 1. The response mechanism is as follows: First, CO_2 in the gas state $(CO_{2(g)})$ diffuses through the membrane and reaches a thin film of bicarbonate solution where part of it dissolves in water and forms the dissolved CO_2 $(CO_{2(aq)})$:

$$CO_{2(g)} = CO_{2(aq)} \tag{1}$$

Second, the $CO_{2(aq)}$ undergoes a hydration reaction and forms H_2CO_3 . The H_2CO_3 then undergoes two steps of dissociation reactions:

$$CO_{2(aq)} + H_2O = \frac{k_1}{k_{-1}} H_2CO_3$$
 (2)

$$H_2CO_3 \stackrel{k_2}{\rightleftharpoons} H^+ + HCO_3^-$$
 (3)

$$HCO_3^{-} = \frac{k_3}{k_{-3}} H^+ + CO_3^{2-}$$
 (4)

where k is the respective kinetic rate constant. In the meantime, all the components including $CO_{2(g)}$ diffuse through the thin film and result in a pH change in the film. If we neglect the dissociation of HCO_3^- and water, the equilibrium pH in the film is as follows:

$$[H^{+}] = \frac{K_{1}[H_{2}CO_{3}]}{[HCO_{3}^{-}]} = \frac{K_{1}K_{H}pCO_{2}}{[NaHCO_{3}]}$$
(5)

Therefore, pH will change with log pCO_2 linearly. This is the basis by which pCO_2 electrodes are used to measure pCO_2 . The true equilibrium pH in the film can be obtained by considering all reactions above, the water dissociation reaction, and the charge balance equation. The pH is governed by the following equation:²⁶

$$[H^{+}]^{3} + [NaHCO_{3}][H^{+}]^{2} - (K_{1}K_{H}pCO_{2} + K_{w})[H^{+}] - 2K_{1}K_{2}K_{H}pCO_{2} = 0$$
 (6)

In eqs 5 and 6, $K_{\rm H}$ is Henry's law constant, $K_{\rm 1}$ and $K_{\rm 2}$ are the first and second dissociation constants of ${\rm H_2CO_3}$, and $K_{\rm w}$ is the water dissociation constant. We define

$$\Delta pH = (pH)_t - pH \tag{7}$$

where $(pH)_t$ is governed by eq 6 and pH by eq 5. Apparently, ΔpH is the function of sample pCO_2 and the internal [NaHCO₃]. Figure 2 and Table 1 show the dependence of ΔpH (or $\Delta E =$ $59\Delta pH$ in mV) on pCO₂ under different [NaHCO₃]. It can be seen from Figure 2 and Table 1 that considerable deviation from linearity can occur at low [NaHCO₃] and high pCO₂ or at high [NaHCO₃] and low pCO₂. For example, ΔE is 38.8 mV when pCO₂ =10% and [NaHCO₃] = 0.01 mM and -26.7 mV when pCO_2 = 0.01% and [NaHCO₃] = 0.1 M (see Table 1). Siesjö mentioned that there was a small deviation from linearity with 0.1 mM NaHCO₃ at ~10% pCO₂.²⁵ Table 1 indicates a 3.4 mV error under these conditions. Therefore, the high [NaHCO₃] should be used for high pCO₂ measurement (e.g., in blood) and low [NaHCO₃] for low pCO₂ measurements. Table 1 also shows the lowest pCO₂ the electrodes can detect when the deviation ΔE is set to 1 mV. It is apparent that pCO_2 electrodes may be applied to very low pCO₂ measurements.

There are two compartments of the internal bicarbonate solution in the $p\mathrm{CO}_2$ microelectrodes: the thin film and the reservoir of bicarbonate.⁴ Between these two compartments there is exchange of CO_2 and other carbon species if there is a concentration difference in the two compartments.²⁶ Usually we neglect the CO_2 exchange between the two compartments. The bicarbonate solution itself can produce a certain amount of CO_2 , depending on its initial concentration.^{4,26} The $p\mathrm{CO}_2$ is $\sim 700~\mu\mathrm{atm}$

⁽²⁴⁾ Botrè, C.; Botrè, F. Anal. Biochem. 1990, 185, 254-264.

⁽²⁵⁾ Midgley, D. Analyst 1975, 100, 386–389.

⁽²⁶⁾ Jenson, M. A.; Rechnitz, G. A. Anal. Chem. 1979, 51, 1972–1977.

⁽²⁷⁾ Ross, J. W.; Riseman, J. H.; Krueger, J. A. *Pure Appl. Chem.* **1973**, *36*, 473–487

Figure 2. Theoretical dependence of the deviation from linearity (ΔpH) of a pCO_2 electrode on sample pCO_2 and the initial concentration of the internal bicarbonate solution.

Table 1. Theoretical Deviation from Linearity (ΔE) of pCO₂ Microelectrodes on Sample pCO₂ and the Concentration of the Internal Bicarbonate Solution [NaHCO₃]

[NaHCO ₃] (mM)	0.01	0.1	1	2	10	100
$[CO_2] (\mu M)^a$	0.47	1.81	11.31	21.60	103.8	1028
$pCO_2 (\mu atm)^b$	14	54	334	637	3062	30336
$\Delta E (\mathrm{mV})$						
$0.001\%^c$	-1.61	-2.64	-9.09	-13.29	-27.01	-52.48
0.01%	0.24	-0.28	-1.38	-2.45	-8.28	-26.71
0.04%	1.47	-0.06	-0.37	-0.68	-2.86	-14.30
0.1%	3.38	0.01	-0.15	-0.28	-1.25	-8.20
1%	15.99	0.40	-0.01	-0.03	-0.13	-1.24
10%	38.84	3.40	0.04	0.01	-0.01	-0.13
100%	66.17	16.00	0.41	0.10	0.00	-0.01
$(pCO_2)_L (\mu atm)^d$	16	25	150	251	1200	12000

 a [CO₂] here is produced by the NaHCO₃ solution itself. [CO₂] is calculated by the equation [NaHCO₃]/ K_1 ((K_2 [NaHCO₃] + $K_{\rm w}$)/(1 + [NaHCO₃]/ K_1))) $^{1/2}$. K_1 , K_2 , and $K_{\rm w}$ in the infinitely diluted solution at 25 °C are used. b $p{\rm CO}_2$ = [CO₂]/ $K_{\rm H}$ and 0.034 is used for $K_{\rm H}$. c Sample $p{\rm CO}_2$ in atm. d The lowest sample $p{\rm CO}_2$ that the electrodes can detect when $\Delta E=1$ mV. The numbers in italices show that the deviation is less than 1% within the $p{\rm CO}_2$ range of interest when 2 mM NaHCO₃ solution is used as the internal solution.

for 2 mM bicarbonate solution (see Table 1). If this solution is used as the internal solution and if the pCO2 of the sample is higher than 700 μatm, the CO₂ in the reservoir does not diffuse to the film and the effect from the CO2 in the reservoir is negligible. When the pCO_2 of the sample is less than 700 μ atm, however, the CO₂ in the reservoir will diffuse to the film and will cause an increase in response time and detection limit. Usually the pCO₂ of bicarbonate solution decreases as its concentration decreases (see Table 1). Therefore, for low CO₂ measurements, low concentrations of internal bicarbonate solution should be used. However, diluted solution can be more easily contaminated. Thus, a compromise should be reached. We recommend the use of 2 mM NaHCO₃ solution. As can be seen from the italic values in Table 1, within the pCO₂ range of interest $(0.04\% < pCO_2 < 10\%)$, deviation (ΔE) is less than 1 mV and the lowest pCO₂ the electrodes can detect is less than 250 μ atm for 2 mM internal bicarbonate solution. Cai and Reimer⁴ have recommended the use of 1-3 mM NaHCO₃ solution.

EXPERIMENTAL SECTION

Reagents. The reagents used for the liquid membrane solution were tridodecylamine (TDDA), 2-nitrophenyl octyl ether

(2-NPOE), potassium tetrakis(4-chlorophenyl) borate (KT₄ClPB), and poly(vinyl chloride) (PVC). The silanization reagent was N,N-dimethyl(trimethylsilyl)amine. They were all acquired from Fluka. The gas-permeable membrane was made from a Silastic medical adhesive (Silicone Type A, Dow Corning). The glass material for inner pH microelectrodes is Pyrex (1.5 mm o.d., Fisher). Glass materials for the outer pipet of the pCO_2 microelectrodes were aluminosilicate (Al) glass (1720), Pyrex (7740), and lead glass (0120) from Houde Glass, Inc. (4 mm o.d., 3.2 mm i.d.). CO_2 gas standards, 0.099, 0.48, and 2.6% CO_2 and 100% nitrogen gas (N_2) are from BOC Group, Inc. Tetrahydrofuran (THF) was from Fluka, and carbonic anhydrase II was from bovine erythrocytes (activity, 3000 W-A units/mg of protein, Sigma). All other reagents used are analytical grade.

pH Microelectrodes. The preparation and properties of pH liquid membrane microelectrodes based on neutral carriers for this study will be reported elsewhere in detail.²⁸ A brief description is given here. The liquid membrane solution for the pH electrode consists of 67% membrane solution (10% TDDA, 1% KT₄-ClPB, and 89% 2-NPOE)¹⁷ and 33% PVC that was dissolved in the excess THF. When a homogeneous membrane solution formed, THF was then allowed to evaporate until the membrane solution had a viscosity suitable for filling the microelectrode. The micropipets were prepared from Pyrex or Al glass by a microelectrode puller (Sutter Instrument Co.). The pipet tips were broken at $5-50~\mu m$ diameter, and the pipets were silanized to make the glass wall hydrophobic before they were filled. 17,18,29 At first, the silanized micropipets were filled with a pH 7 phosphate buffer and then with a PVC membrane solution. Finally, a Ag/ AgCl wire was inserted into the shank of the micropipet as a reference electrode and sealed with Parafilm. The electrodes were conditioned overnight before use.

pCO₂ Microelectrode. A pCO₂ microelectrode based on the above pH microelectrode is shown in Figure 1. It mainly consists of an outer pipet with a gas-permeable membrane in the very tip and an inner pH microelectrode as described above. The outer pipet was pulled by a micropipet puller in two steps, first to \sim 2 mm and then to $\sim 1 \,\mu \text{m}$. The temperature selected for the pulling depended on the hardness of the glass used. Temperatures were highest for alumina glass and lowest for lead glass. The tip of the outer pipet was cut at $50-300 \mu m$. The silicone membrane was formed in the tip by dipping the tip into the silicon liquid while the process was observed under a microscope. The original silicone material for gas-permeable membrane was too viscous for dipping and had to be diluted by THF to a suitable viscosity in order to prepare a very thin membrane. The silicone membrane was cured in air for at least 24 h. The micropipet, with silicone membrane, was then filled with internal solution (2 mM NaHCO₃, 0.5 M NaCl). An air gap was formed between the silicone membrane and the bicarbonate solution and it was dispelled by several methods. If the volume of the air gap was very small, pressure was applied to the other end to compress the air in the tip and expel it through the membrane. The air in the tip could also be expelled by supersonic wave or in a vacuum oven.

The next step involved matching the inner pH microelectrode and the outer pipet while observing them under a microscope. The relative positions of the outer pipet and the pH microelectrode were adjusted carefully in order to set the pH electrode in the

⁽²⁸⁾ Zhao, P.; Cai, W.-J., in preparation.

⁽²⁹⁾ Ammann, D.; Zhao, P.; Simon, W. Neurosci. Lett. 1987, 74, 221-226.

center of the outer pipet at a distance $\sim 5-30~\mu m$ from the silicone membrane. Then UV-curable epoxy was used to fix the inner and outer pipets. An Ag/AgCl reference electrode was inserted into the internal solution in the outer pipet. The pCO_2 microelectrode was then ready for use.

Measurement and Calibration Methods. The following cell was employed for the EMF measurements:

Ag,AgCl; 0.5 M NaCl + 2mM NaHCO $_3$ |pH membrane|pH 7 buffer + 0.4 M KCl; AgCl,Ag

An Accumet pH meter (inner impedance, $> 10^{12} \Omega$) was used to measure EMF, and a Compaq computer was connected to the pH meter for data acquisition. The response time was defined as the time when 98% response was reached (t_{98}). The calibration apparatus consisted of a 140 mL bottle with a rubber cap in which a pCO2 microelectrode and two glass pipes, one for introducing CO2 gas or for adding bicarbonate solution and the other for balancing inner and outer gas pressure, were mounted. Two methods were employed for the calibration. In the first one, the bottle was empty and different gas standards (saturated by water vapor) were introduced from the inlet pipe. Usually, three CO₂ gas standards (0.1, 0.5, and 2.5% atm) as well as laboratory air (\sim 500 μ atm) and N₂ were used for calibration. Other CO₂ standards were prepared by mixing the 0.5% CO₂ gas with N₂. The CO₂ concentration was measured by a Li-Cor CO₂ Analyzer (Model LI-6252). In the second method, the bottle was filled with 120 mL of 0.1 M HCl and the pCO2 microelectrode was immersed into the solution. A known amount of CO2 gas was produced by adding bicarbonate solution using a micrometer burette (Gilmont) with a resolution of 0.0001 mL. In this way, we could also check as to whether the gas-permeable membrane leaked.

Sediment Measurements. Sediment samples were taken from the Savannah River estuary on the Georgia coast. The sediments were incubated in the laboratory at room temperature (22 °C) for one month to allow the sediment to develop vertical CO_2 concentration gradients similar to those of real sediments. The pCO_2 microelectrodes were mounted onto a manipulator. Before profiling, the pCO_2 microelectrodes were kept in the overlying water for more than 10 min. Before and after measurements, the pCO_2 microelectrodes were calibrated with CO_2 gas standards.

RESULTS AND DISCUSSION

Typical response and calibration curves for the new $p\mathrm{CO}_2$ microelectrodes are shown in Figure 3. The microelectrodes were prepared from Al glass and contained the enzyme CA in the internal bicarbonate solution. Compared with previous $p\mathrm{CO}_2$ microelectrodes, several significant improvements have been made with this new one: (a) The new microelectrode is very stable. The drift is only 0.4 mV/h compared to 6-10 mV/h for previous models.^{5,6} The new microelectrode has a lifetime of more than one month while the older models lasted only hours or days.^{4-6,13} (b) It can be seen from Figure 3 that the new electrodes have a Nernstian slope from $\sim 500~\mu$ atm to $5\%~p\mathrm{CO}_2$ and that the detection limit of the new $p\mathrm{CO}_2$ microelectrodes is $\sim 200~\mu$ atm $p\mathrm{CO}_2$. Therefore, the new electrodes can be extended to low $p\mathrm{CO}_2$ measurements. Most previous electrodes are only used for very

Figure 3. The response (E-t) and calibration ($E-\log p\mathrm{CO}_2$) curves of a typical $p\mathrm{CO}_2$ microelectrode. The internal solution contains 2 mM NaHCO₃ and 0.75 mg/mL CA. The outer pipet was made from alumina glass with a tip diameter of 130 μ m. The inner pH microelectrode was made from Pyrex and the thickness of the gaspermeable silicone membrane was 35 μ m. The numbers by the curve indicate partial pressure (%) for curve (\bullet) and concentration (μ M) for curve (\bigcirc) of CO₂. Laboratory air contains \sim 400 μ atm CO₂.

high $p\text{CO}_2$ measurements in physiological studies.^{5–13} Midgley tested the possibility of using commercial macroelectrodes for the routine analysis of power station water and found that the detection limits of the commercial electrodes were too high to do so.²⁵ Cai and Reimers' $p\text{CO}_2$ microelectrode was able to detect as low as 0.1% $p\text{CO}_2$ for the study of a marine CO_2 system.⁴ (c) The response of the new electrode is relatively fast. It can be seen from Figure 3 that t_{98} is \sim 2 min, even at low $p\text{CO}_2$. (d) The construction of the new electrodes is easier and the success rate of fabricating the new electrodes is very high because of the use of PVC liquid membrane microelectrodes based on neutral carriers. In addition, the resistance of the $p\text{CO}_2$ microelectrode is \sim 10° Ω . More details about the performance of $p\text{CO}_2$ microelectrodes are given in Table 2.

This improved performance is the result of several design modifications. The Pyrex glass used in Severinghaus $p\text{CO}_2$ microelectrodes for several decades was replaced by Al glass, and glass (or metal oxide) pH microelectrodes have been replaced by pH LMM microelectrodes based on a neutral carrier. CA and specifically prepared reference electrodes have been used in the new microelectrodes. A discussion of the major factors that affect the performance of $p\text{CO}_2$ microelectrodes follows.

Effect of Glass Materials. The glass materials used for constructing the $p\text{CO}_2$ microelectrodes have a great effect on the performance of the microelectrodes. Previously, almost all $p\text{CO}_2$ microelectrodes were constructed using Pyrex glass. However, we discovered that the drift and short lifetime of $p\text{CO}_2$ microelectrodes were mainly caused by Pyrex. Satisfactory results were obtained after Al glass was substituted for Pyrex. The reason is that Pyrex can release a significant amount of chemicals into the internal bicarbonate solution, which changes the pH value of the solution. The chemical durability of Pyrex is not sufficient for constructing the $p\text{CO}_2$ microelectrodes. The tests for chemical durability showed that the weight loss in 5% NaOH at 100 °C for 6 h was 1.4 mg/cm² for Pyrex and only 0.35 mg/cm² for Al glass, 30

⁽³⁰⁾ Bansal, N. P.; Doremus, R. H. Handbook of Glass Properties, Academic Press: Orlando, FL, 1986; pp 31–45, 647–656.

Table 2. Effects of the Enzyme and the Thickness of Gas-Permeable Membrane and Tip Diameter on the Performance of pCO_2 Microelectrodes

	response time (t_{98}) (min)			response amplitude (mV)			hysteresis (mV) ^a				
	0.5→2.5%	2.5→0.5%	air→0.1%	0.1% → air	N ₂ →air	air→0.1%	0.1→0.5% ^b	0.5→2.5% ^b	0.5%	0.1%	air
no enzyme Tip 170–260 μ m ^d Mem 20–50 μ m ^d	3.6 ± 0.6^{c} $(n = 7)$	$8.0 \pm 1.9 \ (n=6)$	$4.7 \pm 0.6 \ (n=3)$		$10.1 \pm 1.3 \ (n=2)$	$8.5 \pm 3.3 \ (n = 6)$	55.4 ± 3.8 $(n = 6)$	56.4 ± 3.1 ($n = 6$)	$3.2 \pm 0.7 \ (n=6)$	$7.8 \pm 2.4 \ (n=6)$	
enzyme Tip $50-220 \mu m$ Mem $15-35 \mu m$	2.0 ± 0.0^{c} $(n=4)$	$3.6 \pm 0.8 \ (n=4)$	$3.3 \pm 0.4 \ (n=4)$	$2.7 \pm 0.4 \ (n=4)$	$30.5 \pm 6.0 \ (n=4)$	$18.1 \pm 1.8 \ (n=4)$	56.2 ± 2.0 $(n=4)$		$0.3 \pm 0.4 \ (n=4)$	$1.8 \pm 0.4 \ (n=4)$	$2.0 \pm 0.8 \ (n=4)$
Mem 85 μ m Mem 360 μ m Tip 310 μ m Tip 50 μ m	3.0 5.0 2.0 2.0	6.0 >10 5.0 3.0	3.0 >10 3.0 3.0	4.0 >10 3.0 2.0	18.1 7.2 13.8 39.0	17.2 17 15.9 20.0	54.1 55.7 ^e 49.0 55.1	56.3 40.8 55.0 58.0	1.3 6.4 1.2 0.	3.4 24.7 2.7 2.0	5.4 25.1 4.3 2.0

^a Hysteresis here means potential difference in equilibrium caused by opposite direction in concentration change. ^b The data for the column has been converted to the slope (mV/log pCO₂). ^c The data form is mean value \pm standard deviation. n is the number of measurements. ^d Tip and Mem signify the tip diameter and membrane thickness, respectively. ^e The ΔE value must be larger than it should be because the reading at 0.1% pCO₂ was not at equilibrium yet (lower than it should be) due to slow response.

Table 3. Kinetic Parameters of a CO_2 System and their Damköhler Numbers (N_k)

	k_1	k_{-1}	$k_{\rm cat}$	k_2	k_{-2}
$k (s^{-1})^a$ $N_k(S)^b$	$0.04 \\ 8.6 \times 10^{-3}$	28 6.1	110 23.8	$1.5 imes 10^7 \ 3.2 imes 10^6$	4.7×10^{10} 1.0×10^{10}
$N_k(\mathbf{M})^c$	6.7×10^{-3}	4.7	18.3	2.5×10^6	7.8×10^{10}

 a The data are from ref 19. b $N_k(\rm S)$ and $N_k(\rm M)$ signify N_k in solution and N_k in membrane, respectively. $D_{\rm CO_2}$ in solution, 1.85 \times 10^{-5} cm²/s, and L, 0.002 cm, are used for calculating $N_k(\rm S)$. c The product of diffusion and distribution coefficients of CO₂ in membrane, 2.4 \times 10^{-5} 27 is used for calculating $N_k(\rm M)$.

which indicates that the chemical durability of Al glass is much better than that of Pyrex. We also used lead glass which has a weight loss of 3.6 mg/cm 2 , however, it produced the worst results, which further confirms the effect of glass materials on pCO_2 microelectrodes.

The tip diameter of the outer pipet is also an important factor regulating the performance of the new pCO2 microelectrodes. When Al glass was used as the outer pipet, satisfactory results were obtained if the tip of the microelectrode was larger than 150 μ m. If the tip of the outer pipet was less than 150 μ m, however, the performance of the microelectrodes depended on what type of glass materials were used to construct the inner pH microelectrode. Our work showed poor results (slope, 30-50 mV, lifetime, <1 week) with Pyrex, but better results (similar to those with large outer tip) with Al glass. When the tip of an outer pipet was less than 50 μ m, the stability and lifetime of a pCO₂ microelectrode decreased to some extent, even if Al glass was used for constructing both the outer pipet and the inner pH microelectrode. For a certain glass material, the ratio of the surface area of glass to the volume of solution (S/V), which is inversely proportional to its tip diameter, determines the extent to which the performance of a pCO₂ microelectrode is influenced by chemicals released from a glass wall. The smaller the tip diameter, the larger the S/V and the greater the effect exerted by the glass. The literature data showed a similar trend. A lifetime of several hours for 4-10 μ m tip,¹² of several days for 2–200 μ m tip,⁶ and of two weeks for 300 µm tip⁴ was reported with Pyrex and soda lime glass, which has a weight loss of 1.1 mg/cm². For pCO₂ microelectrodes with a tip diameter of less than 50 μ m, further improvements in stability and lifetime may be obtained by using a material that is chemically more durable than Al glass. Unfortunately, the glasses with high chemical durability seem to have a high softening point and are difficult to handle. Therefore, new types of glass with high durability and a low softening point are needed for this purpose.

Effect of Enzyme. As described in the Theoretical Section, the response of pCO_2 electrodes to a CO_2 sample mainly involves two processes—the diffusion of CO_2 through the silicone membrane and the film of the internal bicarbonate solution and the simultaneous chemical reactions including the hydration of CO_2 and sequential dissociation of H_2CO_3 . The dissociation of H_2CO_3 proved to be very fast, 19 and the response rate of a pCO_2 microelectrode depends on the slowest step of diffusion or hydration. The Damköhler number (N_k) , 31 defined as

$$N_k = kL^2/D \tag{8}$$

where L is the length of the diffusion path and D, the diffusion coefficient, can be used to compare the relative rates of the two processes. When $N_k \gg 1$, diffusion is the rate-limiting step, and when $N_k \ll 1$, the chemical reaction is the rate-limiting step.²² Table 3 gives rate constants and corresponding Damköhler numbers. It can be seen from Table 3 that the hydration and dehydration processes are relatively slow compared to the diffusion through the solution or the silicone membrane. Therefore, the response rate will be governed by hydration and dehydration processes. Therefore, it can be expected that the response rate will increase with the addition of a reagent that can catalyze the hydration reaction. By using the catalytic kinetic rate constant (k_{cat}) , a N_k of 27.4 is obtained (see Table 3). In fact, it has been reported that the hydration rate increased 105 times after the enzyme was added. 32,33 Therefore, we would expect a faster response after adding the enzyme. Figure 4 shows the response curves of a pCO2 microelectrode with and without CA in the internal electrolyte solution. The response is improved greatly after adding the enzyme (also see the second and third rows in Table 2). That is, the response time and hysteresis are reduced and the response slope is enhanced.

It can also be seen from Table 2 that the improvements made by the addition of the enzyme are more pronounced at low pCO_2

⁽³¹⁾ Suchdeo, S. R.; Schultz, J. S. Biochem. Biophys. Acta 1974, 352, 412-440.

⁽³²⁾ Ren, X.; Lindskog, S. Biochim. Biophys. Acta 1992, 1120, 81-86.

⁽³³⁾ Kernohan, J. C. Biochim. Biophys. Acta 1965, 96, 304-317.

Figure 4. Effect of the enzyme CA on the performance of $p\text{CO}_2$ microelectrodes. The electrode without the CA has an outer tip of 170 μm , a gas-permeable membrane with a thickness of 30 μm , and an inner pH electrode with a tip diameter of 25 μm . The electrode with the CA is the same as the one in Figure 3. The numbers by the curve indicate partial pressure (%) of CO₂ gas standards.

than those at high pCO_2 . In other words, the detection limit is lowered after the addition of the enzyme. For example, the response slopes from 0.1 to 2.5% CO_2 are similar with and without the enzyme, but the response amplitude from N_2 to air is 30 mV with the enzyme and only 15 mV without the enzyme. As explained in the Theoretical Section, when the pCO_2 of a sample is very low, the CO_2 in the bicarbonate reservoir will diffuse to the film. The influence caused by the CO_2 in the reservoir depends on the relative flux of the CO_2 from the silicone membrane and that from the reservoir. The larger the flux from the membrane, the less the influence by CO_2 from the reservoir and the lower the detection limit. In the presence of CA, the CO_2 flux from the sample increases, and therefore, lower pCO_2 can be detected.

The CA concentration, from 0.5 to 1.0 mg/ml, was tested and showed no difference. CA and its solution should be kept at low temperature, but our tests showed that CA solution left at room temperature for one month still worked.

Effect of Reference Electrodes. Unexpectedly, when an Ag/AgCl reference electrode prepared by electroplating was used as the internal reference electrode in the internal bicarbonate solution, the response rate and slope of the *p*CO₂ microelectrodes were reduced and the lifetime was only several days, although all other optimized conditions were employed. However, when an Ag/AgCl prepared by dipping an Ag wire into a molten AgCl was used, the lifetime was governed by other factors and could be extended to more than one month. All satisfactory results above were obtained with the latter reference electrode.

Dark AgCl crystals were often observed on the gas-permeable membrane when the electroplated reference electrodes were used. We suspect that the AgCl crystals dropped from reference electrodes may block the silicone membrane, reduce the CO_2 flux through the membrane, and therefore reduce the response rate and slope of the pCO_2 microelectrodes. Further improvement may be obtained if the reference electrode only contacts the internal bicarbonate solution indirectly.

Effect of Membrane Thickness. According to Ross' theory, 27 if diffusion is the rate-determining step, the response time of a pCO_2 electrode is proportional to the thickness of the membrane and of the bicarbonate film. When hydration is the rate-limiting

Figure 5. Response curve (t-E or $-\log pCO_2$) of a pCO_2 microelectrode in laboratory-incubated sediment and the corresponding pCO_2 profile (Depth-E or $-\log pCO_2$). OLW, overlying water. The numbers by the response curve indicate the measured depth (mm).

step, however, the response time will not be influenced by membrane thickness. In the presence of the enzyme, the response characteristics of $p\mathrm{CO}_2$ microelectrodes with membrane thickness from 15 to 35 $\mu\mathrm{m}$ are similar, which indicates that hydration is the rate-limiting step (see third row in Table 2). But when the membrane thickness is 85 $\mu\mathrm{m}$, the response rate is reduced and the hysteresis becomes more pronounced. This could provide evidence that the rate-limiting step is being switched from hydration to diffusion (see fourth row in Table 2). When the membrane thickness is 365 $\mu\mathrm{m}$, the response is completely governed by the diffusion process (see fifth row in Table 2). Therefore, it is unnecessary to make a silicone membrane thinner than 15–35 $\mu\mathrm{m}$ under our experimental conditions, and membranes thicker than 80 $\mu\mathrm{m}$ should be avoided.

Effect of Tip Diameter. As can be seen from the last two rows in Table 2, a small tip diameter improves the response at low $p\text{CO}_2$. The response amplitude from N₂ to air is only 14 mV for a 310 μ m tip, but 39 mV for a 50 μ m tip; the hysteresis at 0.5% $p\text{CO}_2$ is 1.2 mV for the 310 μ m tip, but only 0.2 mV for the 50 μ m tip.

This can be explained by the effect of the reservoir on the film. The internal pH microelectrodes have ${\sim}20~\mu m$ of tip diameter. When the tip of the outer pipet is slightly larger than the inner pH microelectrode, the outer pipet and the inner pH microelectrode will be matched tightly. The exchange rate of CO_2 between the film and the reservoir will be very slow. That is, the influence of the bicarbonate reservoir is not significant and therefore good results can be obtained. However, when the tip of the outer pipet is much larger than the inner pH microelectrode, the match is loose and the influence of the bicarbonate reservoir is significant. Good results cannot be obtained.

Although a small tip is preferred for pCO_2 microelectrodes from a response point view, it may reduce the stability and the lifetime of pCO_2 microelectrodes as discussed in the section on the effects of glass materials. We recommend using microelectrodes with a tip diameter of $100-200~\mu m$.

Sediment Application. As an example of the application of the new microelectrodes to in situ low pCO_2 measurements, we

use the microelectrode to measure the pCO2 profile of an incubated estuarine sediment. Figure 5 shows the response curve of our pCO2 microelectrode in the sediment and the corresponding curve of pCO2 versus depth. It can be seen that the response time (t_{98}) is about 2-4 min. The pCO_2 profile pattern is similar to that obtained by other methods. Since the microelectrode method is an in situ method and has a millimeter resolution, we expect that the pCO2 profile obtained with this method will be more accurate and will provide more information on diagenetic reactions in sediments than that with other methods. More studies on the application of this microelectrode to sediments (incubated and field) are under investigation in this laboratory.

ACKNOWLEDGMENT

We are most grateful to Dr. Y. Wang for his help on the experiments. We thank M. Hebert of Microelectrode Inc. for providing reference electrodes and G. Davidson, J. Sullivan, and R. Culp for help on the text. Comments by anonymous reviewers helped in preparing this work for publication. Financial support is provided through NSF Grants OCE-9596143 and DEB-961229 to W.J.C.

Received for review July 14, 1997. Accepted September 30, 1997.

AC970747G

[®] Abstract published in Advance ACS Abstracts, November 15, 1997.