2021 级 电路分析基础(全英文) 课程试卷 B

开课学院:	集成电	路与电子学	任课教师:邓/			<u>小英</u>		
试卷用途:	□期中	☑期末	□补考	□重修				
考试形式:	□开卷	□半开卷	☑闭卷					
考试日期:	2022	年5月29日			所需即	寸间:_	120	_分钟
考试允许带	带:计	算器和必要[的文具				<u></u> \	.场
班级:		学号:		姓:	名:			

在线考试诚信承诺书

考试是对知识与能力的检验,也是对道德素质的检验。在线考试也必须恪守诚信原则。

我已成功下载本次《电路分析基础(全英文)》课程期末考试试卷,并承诺在考试过程中严于律己,自觉遵守以上考试规则,诚信考试。

承诺人 (签字):

年 月 日

题序	1	2	3	4	5	6	7	8	9	总分
满分	8	8	7	8	7	8	8	8	8	70
得分										

注意:

- 1. 试题共9题,共4页(包含此页);
- 2. 所有试题都要写清过程(用英文),结果保留1位小数即可。

1. (8 points) For the circuit shown in Fig.1, (1) find V_o ; (2) calculate the power developed by the dependent source, and determine whether the power is supplied or absorbed.

- 2. (8 points) In the steady-state circuit shown in Fig.2, $R=4\Omega$, L=1H, $v_s(t)=\cos \omega t$ V.
- (1) Determine the value of C that will cause the resonance at ω_0 =100rad/s for the circuit;
- (2) Calculate the quality factor Q at resonance and the half-power frequencies ω_1 , ω_2 ;
- (3) Find the transfer function $\mathbf{H}(\omega) = \dot{\mathbf{V}}_0 / \dot{\mathbf{V}}_s$, draw the sketch plot of $|\mathbf{H}(\omega)|$ and determine the type of filter (lowpass/highpass/bandpass/bandstop).

- 3. (7 points) The switch in Fig.3 has been open for a long time, and is closed at t = 0.
- (1) Determine $v(0^+)$ and $i(0^+)$, $\frac{dv(0^+)}{dt}$ and $\frac{di(0^+)}{dt}$;
- (2) For t > 0, write the second-order circuit equation about v(t) and determine what type of damping this circuit exhibits (over-damped/under-damped/critically-damped).

4. (8 points) Find the value of *R* that enables the circuit shown in Fig.4 to deliver the maximum power to terminals a-b. Then calculate the power delivered to *R*.

5. (7 points) Caculate the current I_0 when $R=28k\Omega$ and $R=100k\Omega$, respectively.

6. (8 points) For the steady-state circuit shown in Fig.6, find $i_0(t)$.

- 7. (8 points) The sinusoidal circuit is shown in Fig. 7.
- (1) Find the total average power *P* developed by load 1 and load 2.
- (2) Find the total reactive power *Q* developed by load 1 and load 2.
- (3) Calculate the power factor of the parallel combination.
- (4) What element should be connected with the load 1 and load 2 that will raise the power factor to 1? Calculate the value of the capacitance (if the element is a capacitor) or the inductance (if the element is an inductor).

8. (8 points) Simplify the following circuits in Fig.8.

9. (8 points) In the circuit shown in Fig.9, $U_S=10\mathrm{V}$, $R_1=6\Omega$, $R_2=R_3=4\Omega$, $L=1\mathrm{H}$, $C=2\mathrm{F}$, the switch has been open for a long time, and is closed at t=0. Find the current i(t) for t>0.

