						1,1			e i)	()	100	nc nc	<u>nti</u>	COV		<u></u>	Cl	'sr	SO	-,-	ri	Pa	7-	to	hi	7) 	. 4	3
						10						1	2/	(+	y.	C	,	la	in	- l	on	n		W			110			S	P.	P	
	-		A.							s i	1	1	ρ	0,			ign	/	-				SI	ur	P	2	le	P	Ca	nr	F		
- 0			1)) <u>(</u>	1	D	74	+	<i>*</i>	a l	(.	X	ħ	И	H	7	1:	de	104	m		oli	no	- <i>p</i>	gle	n.	12				3
)	be	Ur	-n	C	- W	×	- >) -	- 0		n	ho	Q	m	X	10	DP	α	,	mp	U	P	d	le	rle	lep	-a	On	N				34
	<u>L</u>	3	(=	ihi	4	OV	rV	lva	, Ihl		-6	,	<i>></i>), a	10	ħ	15,	-11	e	Profits Profits	>	nif	14		C	avt	St.	ia	ut ut,	pi	U1 (2	0	
	. 16										x k	۵ (2 1 2	2	/			DN	A.	16	PA	X	10	00	a.		le				2r		
ol	<i>)</i>	b (29	+	bi	5C	d (+10		b (d				the state of	1/	T	H	-	h	ī/	H	i	1-	×	C	ħ	YT,	-{ i	e			51
	-2		i.										/>	, 3	11	C	K	X ?	i	-	>	, 0	10	\$ C	>	et.	Vo	> }	=}		21 21		1
						4	-	3)	0)	O,	2.	α	+.	>	, 2	12	χ ²	20	_2	2 [12							X				27 14
	D	7		12,		T	Kχ	- (c	> -	1,	11,	T	X	I X	-		0)	Ò,)/	र स्ट्र	d	-2	(/	II .		- 0			<u> </u>		1.		
	, _	7	to	Er			ı		70)	۷ (T	X.	α		n	Uh	M	4	na	ar		-)	KT	a:		=	P		er	1	
						>	, 2	12	p.	t	>	1	11,	p ¹	1		0)	O,)	P	1/2	/-	(,	198227	>	ou	14	Þ	-				+1

= 1+5 p2 =1

02.06 2016 Correlation Junctions: (b+b+bb) = 2p2 (b+b) = p+2p2 same for (CC)... like themal sah (btctcb) = p.4p2 strong for pul => mostly vacuum. Single pair with prob. Exact solution: Two-made squeezed state $|\psi_{out}\rangle = \cosh(\alpha x \tau) \sum_{n=1}^{\infty} \tanh^n(\alpha x \tau) |n,n\rangle$ VI-p 2 pm/n/n) with p=tanh2 (ax E) idle sparately an in themal Signal and Sa = To (Vout X Vout) = E (vin) in In Xn1 u= (n)= (2) = 1 + = 900 Non-classical according to Cauchy-Schwartz

02.06.2016 herafold single photons: P(ada (b) / Pb P(od)) Paalb Palls Palls Conditional 2rd-proly correlation ~ (a) a as as as as (a) as 20 (40)2 2 properties of collinear Spectral SPDC realish situation now a y(2) Classical vave equation: $\frac{1}{c}\frac{\partial}{\partial t}\vec{E}(\vec{r},t) = \frac{\partial}{\partial t}\vec{P}(\vec{r},t)$ Taylor expansion of P = Ex x = + 20 = = 20 = = order-fineer susceptibility tensors (classical 3- was mixing Example: Input helds: F = Agos (4, +) + COS (42 +) Mon-linea golaniation to lower order Frag. Dodling P = x (2) A2 (2 + 2 cos (2 w, t) + 2 + 2 cos (2 w, t) + cos[(w,-v2)t] + cos[(w,+c2)t] SAG DFG

02.06.2016

									V		-								¥.										
	No			/						-	,	1-1					1			7/		E		P					
		- 1	In.	Y]. <i>F</i>	2/1	VCL	33	25	ł	VI	M ₂	Y	76	mi	m	tu,	m	C	dn.	S/A	VI	2.K	ÛV)		7.	Е	-
			(pi	40																									
		- 5	211	1	p	ai	tn	ind	9 1	de,	O EA	V.	en	1.	I	7	pC	58	16.	ell	71	-					- 5		
3					0	d	61		Ce.	nti	20	Vir	Vir?	A	70		40	MA	ia.	Ž.	10	. 9	. 1 45	2/4	W.)	2		
		- 2	e (4)	0	1	7-2	1	C 72	6	T	a	006	1	2/24	1~/	100	01	_	in.	eCt	0		7_	*			:-		
					7 0				yo		-					10.74	area.		7	4.			1						
Ha	millor	716	217	Ç,		i.									V									4					
	ula		1	,		R) _	-14	10		\ \ \	-(-7/			_	(-)	,					-				2		0
	H(1)=		1 9	2	R	1	t	P	(2	, t) !	£ ,	-	ℓ,ℓ).	<i>L</i> ;	(7,	t)				Y			U		80	
		2 3	9			P			5												14	7.	- (-	,+)				
		h	nt	h	Ŀ	-11	1/2	,t)	1077A1		de	1	A	14)	a_i	14	()	e	(4)		-						
		_	_	-	-	-	_	_	_		_	_			-	8			R			1							
		6	2111	V	Cl	as	ΔIC	CA	1.9	PL	ch	2.				Į.		1041				j) i			V				
	Cons	1	1 800		2/4	10	N)	121	l las	A		Ŧ)/ a /	1	·	1	ă.o.	is in	Ø	11	17.0	la	1	100	1	6		
	CVIIS	100		1	Pal	21	1	1	V U	AII	1	1.	20	w,	() ()		MA	W # 8	res	1	1	الم	10	0	1	n		7	
	pum	P	1	74	H		15	l			3		(<i>i</i>	U								1		1	1	7,	
	such	7 4	ma	Å	W	l	a	W	1	rp	010	K1	m	Och	\	0	NPP .	U	to	m	W 16	A	1	do	W11	H	į	D	
	infr	nII	ty	į.						-					3:			2 3				k			E			Ĺ	
	1	7	1	-1	,	~		00	//	1	1		ſ.			[/		1	Л				-						
	.0	17	(P)	ali			-0		ŧ	0	ar:	t_{-}	10	W	2/	QU.	15	JO	VW)								9		. 4
		1							× c	v /	. ,	7	t	(1))	O.	(i))·)	,e	i	(6	٠ ير	6		4	,)	t	3	c
Fir	4 Ora	lo), (i)					0	,	11	1	1	2	in		1	1	11	10		E	Y	^		000	n Pa	<i></i>	0	2
	intra	Ohio	, n			M			×	-1 e	1	K _S	1 1	4		K	1	<i>C</i>			U.	us	14	11		- 17		at	- 35
									+	H.	. (1	ph	01	1-	m	al	1	יין	1/2		F	01	10	+6	1	Eq.	P
					8											n	1			·A	V	/_:		1.		1	p.	1	

02.06.2016 MIH) at x) das sole; a(a) + a;) I (as, vi) a; (vi) a; (wi) + H.c. when a (Gs + Ge): pump spectrum E(W, W;) = sincf(K+K: + Kp) L } phase-motching senchin Product: "Joint spectral amplitude" Example: x(4,44) I(4,4.) Bank of the 0.1- 10 THE X 14/3 Qs Entarpled u ellipsis at sengle What about CW pump & Marginais

02.06.2016 May-matching Due to dispersion, k + k, + kp in general Tuning: Polarization: Type 2: SII, Type 1: SIII (0:11P) Temperation: Also T-coefficient of repactive male varies with wavelenoth Angle Periodic poling: lever son of et al period 1 Sources of polaniation-entangled phonons (slides) Overlapping cones Cascaded crystals Post-selection Mach-Echnolis interprets Sagnal intermeter