Algebra Practice Exam

M1 MIASHS

September 2025

Exercise 1 : Subspace of symmetric matrices (case n = 3)

Let $\mathcal{M}_3(\mathbb{R})$ be the vector space of real 3×3 matrices and

$$\mathscr{S}_3(\mathbb{R}) = \{ A \in \mathcal{M}_3(\mathbb{R}) : A^\top = A \}$$

the set of real symmetric 3×3 matrices.

- (a) Show that $\mathscr{S}_3(\mathbb{R})$ is a vector subspace of $\mathcal{M}_3(\mathbb{R})$.
- (b) For $1 \leq i \leq 3$, let E_{ii} denote the matrix of $\mathcal{M}_3(\mathbb{R})$ whose only nonzero entry is 1 at position (i,i). For $1 \leq i < j \leq 3$, let $F_{ij} = E_{ij} + E_{ji}$, where E_{ij} has 1 at position (i,j) and 0 elsewhere.

Write explicitly the matrices E_{11} , E_{22} , E_{33} , F_{12} , F_{13} , F_{23} . Show that the family

$$\mathcal{B} = \{E_{11}, E_{22}, E_{33}, F_{12}, F_{13}, F_{23}\}$$

is a basis of $\mathscr{S}_3(\mathbb{R})$ (prove that it spans $\mathscr{S}_3(\mathbb{R})$ and that it is linearly independent).

(c) Deduce the dimension of $\mathcal{S}_3(\mathbb{R})$.

Bonus info (general case n). For $n \ge 1$, define E_{ii} for $1 \le i \le n$ and $F_{ij} = E_{ij} + E_{ji}$ for $1 \le i < j \le n$. Then

$$\mathcal{B}_n = \{E_{11}, \dots, E_{nn}\} \cup \{F_{ij} : 1 \le i < j \le n\}$$

is a basis of $\mathscr{S}_n(\mathbb{R})$, and

$$\dim \left(\mathscr{S}_n(\mathbb{R}) \right) = \frac{n(n+1)}{2}.$$

Exercise 2 : Non-invertible linear map on \mathbb{R}^3

Consider $f: \mathbb{R}^3 \to \mathbb{R}^3$ defined, for $(x, y, z) \in \mathbb{R}^3$, by

$$f(x, y, z) = (x + y - z, 2x + 2y + z, 3x + 3y).$$

- (a) Show that f is a linear map (i.e., $f \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}^3)$).
- (b) Determine the matrix A associated with f in the canonical basis of \mathbb{R}^3 .
- (c) Is the matrix A invertible? Consequently, can we say whether f is injective, surjective, bijective?
- (d) Determine $\ker(f)$ and $\operatorname{Im}(f)$, and show that they are vector subspaces of \mathbb{R}^3 .
- (e) Which equation(s) characterize $(x, y, z) \in \ker(f)$? Show that it is a vector subspace of \mathbb{R}^3 .
- (f) Verify the rank theorem in this example : $\dim \ker(f) + \operatorname{rg}(f) = 3$.

Exercise 3: Diagonalization and spectral theorem

Consider the matrix

$$S = \begin{pmatrix} 3 & 1 & 2 \\ 1 & 1 & 0 \\ 2 & 0 & 4 \end{pmatrix}.$$

(a) Check that S is symmetric.

(b) Verify that
$$S \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} = 2 \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$$
.

- (c) Determine whether S is injective, surjective, bijective (in finite dimension, relate this to invertibility of S).
- (d) Is S necessarily diagonalizable? Justify your answer. Compute the characteristic polynomial of S, its spectrum Sp(S), and bases of each eigenspace E_{λ} .
- (e) Deduce an orthogonal matrix Q (its columns being orthonormal eigenvectors) and a diagonal matrix D such that $S = QDQ^{\top}$.

Exercise 4: Stochastic Chain in Dimension 3

A traveler moves each day between three cities: Paris (P), Lyon (L), and Marseille (M). We model this movement as a random process whose transition probabilities are given by the following rules (read as "from city j to city i"):

- If the traveler is in **Paris**, the next day he stays in Paris with probability $\frac{1}{2}$ and goes to Lyon with probability $\frac{1}{2}$ (never directly to Marseille).
- If the traveler is in **Lyon**, the next day he goes to Paris with probability $\frac{1}{4}$, stays in Lyon with probability $\frac{1}{4}$, and goes to Marseille with probability $\frac{1}{2}$.
- If the traveler is in **Marseille**, the next day he goes to Lyon with probability 1 (never directly to Paris, and he never stays in Marseille).

We denote

$$v_t = \begin{pmatrix} p_t \\ \ell_t \\ m_t \end{pmatrix}$$

the probability vector of being in Paris, Lyon, and Marseille at day t, respectively (with $p_t, \ell_t, m_t \ge 0$ and $p_t + \ell_t + m_t = 1$).

- (a) From the rules above, write the linear system relating v_{t+1} to v_t (component-wise equations for $p_{t+1}, \ell_{t+1}, m_{t+1}$).
- (b) Deduce the transition matrix A (column-stochastic) such that $v_{t+1} = A v_t$.
- (c) Verify that A is indeed column-stochastic (nonnegative coefficients and each column sums to 1).
- (d) Determine the spectrum Sp(A) and, for each eigenvalue, a basis of the associated eigenspace.
- (e) Construct a matrix P of linearly independent eigenvectors and a diagonal matrix D such that $A = PDP^{-1}$.
- (f) Compute P^{-1} by Gaussian elimination on the augmented system $(P \mid I_3) \sim (I_3 \mid P^{-1})$.

(g) Deduce, for the initial state

$$v_0 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix},$$

the limit

$$v_{\infty} = \left(\lim_{t \to \infty} A^t\right) v_0.$$

Interpret this result (stationary distribution in the long run).