Laboratory Work **Numeric Differenciation**

1. Given function (variant – function number):

Function	Reference point	First derivate at x_0	Second derivate at x_0
$f_1(x) = x^3 - 2x$	$x_0 = 1$	1.0	6.0
$f_2(x) = \sin x$	$x_0 = \pi/3$	0.5	-0.8660254037
$f_3(x) = e^x$	$x_0 = 0$	1.0	1.0

Using MATLAB function difapx(), fill table with calculation errors:

Using Will Line in all april (), in those with calculation circle.			
f'(x)	h	$\frac{f_1 - f_{-1}}{2h}$	$\frac{-f_2 + 8f_1 - 8f_{-1} + f_{-2}}{12h}$
	0.1		
	0.01		
f''(x)	h	$\frac{f_1 - 2f_0 + f_{-1}}{h^2}$	$\frac{-f_2 + 16f_1 - 30f_0 + 16f_{-1} - f_{-2}}{12h}$
	0.1		
	0.01		

2. Given function by data points (variant – function number)::

x	$f_1(x)$	x	$f_2(x)$	x	$f_3(x)$
0.8	-1.0880	0.8472	0.7494	-0.2	1.2214
0.9	-1.0710	0.9472	0.8118	-0.1	1.1052
1.0	-1.0000	1.0472	0.8660	0.0	1.0000
1.1	-0.8690	1.1472	0.9116	0.1	0.9048
1.2	-0.6720	1.2472	0.9481	0.2	0.8187

Fill tables

Find derivates at point x_3 :

Aproximate given data points using Newtons polynomial and find derivates at middle point:

Fi	rst derivate $l_2(x)$		
Fi	rst derivate $l_4(x)$		
Se	econd derivate $l_2(x)$		
Se	econd derivate $l_4(x)$		

Numerical Integration

1. Given integral:

Variant	Integralas	
1.	$\int\limits_{0}^{2} \left(x^{3}-2x\right) dx = 0$	
2.	$\int_{0}^{\pi/2} \sin x dx = 1$	
3.	$\int_{0}^{1} e^{-x} dx = 0.63212055883$	

Fill table with integration errors:

-				
	N	Trapezoidal method	Simpsons method	Rombergs method
	4	0.2499999999999986	1.3877787807814457e-16	2.216617274837823e-14
	8	0.0624999999999986	1.3877787807814456e-16	2.216617274837823e-14

2. Given integral:

Variant	Integralas	
1.	$\int_{0}^{\infty} \frac{\sin x}{x} dx \cong \int_{0}^{100} \frac{\sin x}{x} dx$	
2.	$\int_{0}^{\infty} e^{-x^{2}} dx \cong \int_{0}^{100} e^{-x^{2}} dx$	

Calculate that integral using symbolic method, and fill table with integration errors. N = 200, tol = 1e-4, number of grid points IGL = 20:

Simpsonos method	Integral 1 - 1.75588506881041e-5 Integral 2 - 0.675980982585610
Adaptive quadrature	Integral 1 - 6.66133814775094e-16 Integral 2 - 0
quadl()	Integral 1 - 6.66133814775094e-16 Integral 2 - 0
Gauss–Hermite method	Integral 1 - 1.56222546688906 Integral 2 - 0.367087211385694

Present MATLAB script file.