

Getting to Know Your Data

Presented by Asep Muhidin, S.Kom., M.Kom.,

START

Topic

Data type

Data on Google Colaboratory

Asal, Jenis, dan Tipe Data.

Tipe Data Terstruktur

Kategorik/
Kualitatif/ NonMetric

Numerik/ Kuantitatif/ Metric

Tipe Data Terstruktur

		Penjelasan	Contoh	Operasi	Visualisasi	Pengukuran
Kategorik/	Nominal	Pemetaan/label, bukan pengukuran yang sesungguhnya dan tidak bermakna kuantitas, hanya pembeda	Jenis kelamin, agama, Negara, kode pos, warna	Modus, entropy	Pie, bar, bubble chart	Count/ Frekuensi
Kualitatif/ Non- Metric	Ordinal	Memiliki cukup informasi di data untuk mengurutkan, tapi tidak memiliki sifat selisih/interval dan perbandingan	Tingkat pendidikan, pangkat militer, rangking, nilai huruf	Rank correlation, run test, sign test	Bar, line chart dan mossaic plot	Frekuensi, Median, percintiles
Numerik/ Kuantitatif/	Interval	Numerik, tidak memiliki nol mutlak, memiliki sifat selisih, namun tidak memiliki sifat perbandingan	IQ/ EQ/ SQ, Nilai Toefl/ GRE/ TPA, Suhu (C&F)	Anova, regresi, uji T, korelasi pearson	Bar, line chart	Variance/ Std. Deviasi, median, percentiles, freq.distribution
Metric	Rasio	Numerik, memiliki nol mutlak, dan dapat diperbandingkan	Berat, tinggi badan, gaji, umur	Uji F,T, anova, regresi, clustering	Scatter plot, line chart, histogram	Variance/ Std. Deviasi, median, percentiles, freq.distribution

Time Series Data (Runtun Waktu)

Beberapa data tertentu bergantung terhadap waktu, sebut saja pergerakan nilai mata uang (**kurs**)/harga **saham**, **suhu**/temperature udara di suatu daerah tertentu, atau data **logs** suatu website.

Saat nilai data di masa depan lebih banyak (dominan) hanya dipengaruhi dari nilai-nilainya di masa lalu, maka model-model runtun waktu **univariate** (satu peubah/variabel) seperti ARIMA (<u>Autoregressive</u> <u>Integrated Moving Average</u>) dapat digunakan.

Namun bila satu atau beberapa peubah yang bergantung waktu dipengaruhi juga oleh variable lain selain nilai-nilainya di masa lalu, maka model runtun waktu peubah ganda (multivariate) seperti VaR (<u>Vector</u> <u>autoRegression</u>) dapat digunakan.

	Date	Time	CO(GT)	PT08.S1(CO)
-	3/10/2004	18:00:00	2.6	1360
	3/10/2004	19:00:00	2	1292
	3/10/2004	20:00:00	2.2	1402
	3/10/2004	21:00:00	2.2	1376
	3/10/2004	22:00:00	1.6	1272
	3/10/2004	23:00:00	1.2	1197
	3/11/2004	0:00:00	1.2	1185
	3/11/2004	1:00:00	1	1136
	3/11/2004	2:00:00	0.9	1094
	3/11/2004	3:00:00	0.6	1010
	3/11/2004	4:00:00	-200	1011
	3/11/2004	5:00:00	0.7	1066
	3/11/2004	6:00:00	0.7	1052
	3/11/2004	7:00:00	1.1	1144
	3/11/2004	8:00:00	2	1333

Time Series Data (Runtun Waktu)

Beberapa data tertentu bergantung terhadap waktu, sebut saja pergerakan nilai mata uang (**kurs**)/harga **saham**, **suhu**/temperature udara di suatu daerah tertentu, atau data **logs** suatu website.

Saat nilai data di masa depan lebih banyak (dominan) hanya dipengaruhi dari nilai-nilainya di masa lalu, maka model-model runtun waktu **univariate** (satu peubah/variabel) seperti ARIMA (<u>Autoregressive</u> <u>Integrated Moving Average</u>) dapat digunakan.

Namun bila satu atau beberapa peubah yang bergantung waktu dipengaruhi juga oleh variable lain selain nilai-nilainya di masa lalu, maka model runtun waktu peubah ganda (multivariate) seperti VaR (<u>Vector</u> <u>autoRegression</u>) dapat digunakan.

	Date	Time	CO(GT)	PT08.S1(CO)
-	3/10/2004	18:00:00	2.6	1360
	3/10/2004	19:00:00	2	1292
	3/10/2004	20:00:00	2.2	1402
	3/10/2004	21:00:00	2.2	1376
	3/10/2004	22:00:00	1.6	1272
	3/10/2004	23:00:00	1.2	1197
	3/11/2004	0:00:00	1.2	1185
	3/11/2004	1:00:00	1	1136
	3/11/2004	2:00:00	0.9	1094
	3/11/2004	3:00:00	0.6	1010
	3/11/2004	4:00:00	-200	1011
	3/11/2004	5:00:00	0.7	1066
	3/11/2004	6:00:00	0.7	1052
	3/11/2004	7:00:00	1.1	1144
	3/11/2004	8:00:00	2	1333

(Geo) Spatial Data

Ada kalanya penelitian yang dilakukan bergantung pada lokasi/tempat, sebut saja penelitian yang berkenaan dengan kadar mineral/gas di suatu daerah tertentu, penelitian tentang penyebaran suatu penyakit menular tertentu (misal: flu burung dan HIV/AIDS), gempa bumi, atau penelitan tentang dukungan politik di suatu daerah tertentu.

Saat datanya bergantung pada lokasi (**Spatial**) maka model-model statistik <u>Spatial Data Analysis</u> seperti *spatial autocorrelation, spatial interpolation, spatial regression, spatial interaction, dan multiple-point geostatistics* dapat digunakan. Terkait dengan data Spatial dan data mining (machine learning) akhir-akhir ini terdapat topik baru yang cukup menarik: "<u>Geospatial Intelligence</u>".

publicid eventtype	origintime modificat	longitude	latitude	magnitude	depth
2015p717507	2015-09-2 2015-09-2	176.0944492	-38.50245621	2.459332875	149.375
2015p717354	2015-09-2 2015-09-2	178.4734322	-38.25412784	1.987484953	28.90625
2015p717280	2015-09-2 2015-09-2	176.1695696	-38.46475897	2.456398653	153.125
2015p717262	2015-09-2 2015-09-2	177.4477559	-37.69434544	2.172615393	52.8125
2015p717174	2015-09-2 2015-09-2	172.4038845	-43.61736644	2.221402972	9.921875
2015p717142	2015-09-2 2015-09-2	176.5673243	-37.85364822	2.381214887	90.3125
2015p7171 earthquak	2015-09-2 2015-09-2	175.6586602	-39.26602063	0.784917104	67.8125
2015p717090	2015-09-2 2015-09-2	174.8915884	-41.11647523	2.882207598	30.07813
2015p717068	2015-09-2 2015-09-2	176.0801814	-39.96313712	1.609327328	24.45313
2015p717018	2015-09-2 2015-09-2	175.7615368	-38.67061338	3.457217946	142.3438
2015p716785	2015-09-2 2015-09-2	174.6997467	-39.30605315	2.33739074	24.92188
2015p716768	2015-09-2 2015-09-2	174.6949536	-39.29756737	2.807979919	24.92188
2015p716752	2015-09-2 2015-09-2	174.773634	-39.17986966	2.502129961	27.73438
2015p716720	2015-09-2 2015-09-2	174.8950946	-41.11324348	2.818673726	29.60938
2015p716649	2015-09-2 2015-09-2	176.9622346	-39.76140542	1.781550321	8.515625
2015p716596	2015-09-2 2015-09-2	174.7270089	-41.17664948	1.834855653	27.26563
2015p716! earthquak	2015-09-2 2015-09-2	175.9976775	-39.27133327	1.024882054	43.90625
2015p716366	2015-09-2 2015-09-2	176.1486309	-39.05088715	1.315958386	48.125
2015p716; earthquak	2015-09-2 2015-09-2	176.0763517	-38.63151112	1.911692052	5.820313
2015n716257	2015-09-7 2015-09-7	170 3671879	-45 28312548	2 628057845	6.40625

Data Terstruktur vs Data Tidak Terstruktur

https://lawtomated.com/structured-data-vs-unstructured-datawhat-are-they-and-why-care/

- Data Terstruktur biasanya mengacu pada data dalam format Baris-Kolom dan memiliki dimensi yang tetap.
 - Data ini biasanya disimpan dalam format table-table yang saling berelasi/hubungan (biasa disebut relational database).
 - Berbentuk numerik, atau kategorik yang dapat di "encode" dengan mudah melalui pemasangan satu-satu. Misal Pria:1, dan Wanita:0.
- Data Tidak Terstruktur adalah negasi dari definisi diatas.

Colab Workshop

- Buat notebook baru di google colab
- Akses dataset yang ada di repo import pandas as pd dataset="https://raw.githubusercontent.com/asepmuhidin/MK-Data-Mining-UPB/main/dataset/cereal.csv" df=pd_read_csv(dataset)
- Lihat 10 data pertama : df.head(10)
- Lihat 10 data terakhir :df.tail(10)
- lihat 10 data acak : df.sample(10)
- Sebutkan mana yang termasuk data categorical atau data numeric

Field/Attribute/Fiture	Tipe Data

Colab Workshop

- Menampilkan nama kolom : df.columns
- Lihat nama kolom dan tipe data df.info()
- Melihat tipe data tiap kolom : df[col].dtype
- Lakukan kembali dengan menggunakan looping: for col in df.columns:print(df[col].dtype)
- Merubah tipe data object menjadi category: df[cols] = df[cols].astype('category')
- Lihat kembali tipe data yang sudah dirubah : df.info()
- Kelompokkan kolom menjadi features /attributes dan label/kelas/target: X,y
 X=df.drop(columns='rating')
 y=df.rating

• Dari kolom fitur Kelompokkan menjadi 2 kelompok data yaitu data numeric dan kategori

