

Iluminación y materiales

Ecuación general

Fuentes

Modelos

Sombreado

Materiales

Texturas

Ecuación general de trasporte

Iluminación

- Objetivo: Conocer la luz que llega al observador desde cada dirección
- Fuentes de luz: emisión
- Objetos: reflexión, refracción y absorción
- Observador: percepción

Magnitudes fotométricas

- Función de eficacia $V(\lambda)$
- Correspondencia energía->luz
 - Flujo o potencia luminosa (lumen):
 Flujo radiante visible.
 - Intensidad luminosa direccional de una fuente (candela): Intensidad luminosa visible en una dirección
 - Luminancia (candela/m2):
 Radiancia visible
 - Densidad superficial de flujo luminoso (lux)
 - Luminosidad o brillo de una fuente: Radiosidad visible
 - Iluminación: Irradiación visible

Curva de rendimiento luminoso del flujo radiante monocromático $V(\lambda)$. k=684 lúmenes/watt para $\lambda=555$ nm máxima sensibilidad

$$F = k \int_{visible} V(\lambda) \Phi(\lambda) d\lambda$$

potencia espectral de la fuente

Ecuación general de la iluminación (rflx)

 La radiancia L observada en un punto desde una dirección es la suma de la radiancia emitida propia más la reflejada en esa dirección

$$L_r(\dot{p},\omega_r) = L_e(\dot{p},\omega_r) + \int_{\Omega_i} BRDF(\dot{p},\omega_r,\omega_i) L_i(\dot{p},\omega_i) \cos\phi_i d\omega_i$$

Simplificaciones

- Fuentes de luz simples
- Solo algunas direcciones de entrada
- BRDF simulada

$$L_r(\dot{p},\omega_r) = L_e(\dot{p},\omega_r) + \int_{\Omega_i} BRDF(\dot{p},\omega_r,\omega_i) L_i(\dot{p},\omega_i) \cos\phi_i d\omega_i$$

Fuentes de luz

Cuerpos radiantes

- Una fuente de luz es un cuerpo que radia energía dentro del espectro visible
 - Temperatura alta
 - Luminiscencia
- La fuente se caracteriza por
 - Su geometría (extensa o puntual)
 - Su energía espectral direccional (candelas) condicionada usualmente por la luminaria
- Modelo mínimo para GpC
 - "Intensidad" de la fuente (I_r,I_g,I_b) en una dirección dada -radiancia-
 - ightharpoonup El **vector de iluminación** \overrightarrow{l} es el vector unitario en el sentido contrario al que viajan los fotones

Fuentes direccionales

- Se supone suficientemente alejada para considerar que todos los fotones viajan en la misma dirección (caso del sol)
- ullet Se caracteriza por una única dirección de iluminación $ec{l}$ independiente del punto observado

Fuentes puntuales uniformes

- Los fotones parte de un punto único -posición de la luz-
- La distribución espacial de la energía espectral es radial y uniforme desde ese punto. Puede atenuarse con la distancia
- ightharpoonup El vector de iluminación $ec{l}$ se calcula como el vector unitario desde el punto observado a la posición de la luz

Fuentes puntuales focalizadas

- Los fotones parten de un punto único -posición de la luz-
- Se define una dirección central de iluminación -vector unitario \vec{p} -
- ightharpoonup El vector de iluminación \vec{l} se calcula como el vector unitario desde el punto observado a la posición de la luz
- La distribución espacial de la energía espectral es función del ángulo entre los vectores $-\vec{l}$ y \vec{p} . Suele definirse un ángulo máximo a partir del cuál no hay emisión

Fuentes semiesféricas

- Simulan la iluminación del cielo
- Geometría
 - Semiesfera emisora
 - El vector \vec{l} varía a lo largo de toda la semiesfera visible (integral) según la normal
 - La energía espectral tiene distribución radial uniforme
 - Se puede considerar la iluminación de la semiesfera inferior (suelo)

Fuentes extensas

- Generalmente suelen ser fuentes lineales, cuadriláteros o esferas
- ightharpoonup El vector $ec{l}$ varía a lo largo de la fuente de luz
- La distribución espectral de la energía se suele considerar hemiesféricamente uniforme en cada punto de la fuente de luz
- La irradiación sobre el punto observado es la integral de las radiancias a lo largo de la superficie de la fuente

Modelos de iluminación

¿Qué es?

- Una solución a la ecuación general de iluminación
- Necesitamos simplificar
- Simplificación de la integral de las direcciones de entrada
 - Modelos locales: Sólo consideran la iluminación directa (procedente de las fuentes de luz)
 - Modelos globales o semiglobales: Consideran además otras direcciones
- Simplificación de la BDRF
 - Modelos empíricos: Asumen factores constantes -inventados- para cada tipo de reflexión
 - Modelos físicos: Intentan aproximar la reflexión a la respuesta real del material (dependencia de ángulos, rugosidad, anisotropía, etc)
- Simplificación de la visibilidad de la fuente

Vectores

 $ec{l}$: vector de iluminación

 \vec{n} : normal

v: vector de observación

$$\vec{r} = 2(\vec{n} \cdot \vec{l})\vec{n} - \vec{l}$$

$$\vec{h} = \frac{\vec{l} + \vec{v}}{|\vec{l} + \vec{v}|}$$

$$\vec{t} = \left(\frac{\eta_i}{\eta_t}(\vec{n} \cdot \vec{l}) - \sqrt{1 - \frac{\eta_i^2}{\eta_t^2} \left(1 - \left(\vec{n} \cdot \vec{l}\right)^2\right)}\right) \vec{n} - \frac{\eta_i}{\eta_t} \vec{l}$$

Modelos locales

- Sólo se consideran iluminación directa, el resto se aproxima por iluminación ambiente
- La reflexión se descompone en difusa (ley de Lambert) y lóbulo especular
- La BRDF se simplifica a funciones ctes. o dependientes de la rugosidad

$$I_{RGB} = I_{aRGB} k_{dRGB} + \sum_{i=1}^{m} f_{att_i} I_{L_i RGB} \left[k_{dRGB} \left(\vec{n} \cdot \vec{l}_i \right) + k_{sRGB} \left(\vec{n}_i \cdot \vec{h} \right)^n \right]$$
 ambiental
$$\begin{aligned} & \text{difusa} \\ & \vec{n} \cdot \vec{l} > 0 \end{aligned} \end{aligned} \quad \text{especular}$$

Modelos globales

- Otras direcciones de entrada de luz
 - Reflexión y transmisión ideales: Trazado de rayos
 - Interreflexión difusa: Radiosidad

Atenuación con la distancia al observador

- Debemos tener en cuenta la distancia de los objetos al observador.
- Suponiendo que el observador en el origen podemos considerar la distancia como el valor absoluto de z.
- Se pueden conseguir efectos de atmósfera tomando una intensidad de fondo I_F e interpolando con la I obtenida por el modelo de iluminación
- $|z| < d_A$
 - La atmósfera siempre ofrece la misma atenuación mínima: s_A
- $d_A < |z| < d_B$
 - Atenuación lineal con la distancia:

$$s = s_A + \frac{s_B - s_A}{d_{B - d_A}} (|z| - d_A)$$

- $|z|>d_B$
 - Atenuación máxima constante: s_B

$$I' = s \cdot I_F + (1 - s) \cdot I$$

Modelos de sombreado

Algoritmo de sombreado (coloreado)

- ¿Cómo se calcula el color de un fragmento?
- Dos posibilidades
 - A partir del color de los vértices
 - Constante
 - Gouraud
 - Directamente en el fragmento
 - Interpolando normales (Phong)
 - Normales reales

Algoritmo fundamental de sombreado para cada polígono proyectar vértices calcular fragmentos interiores al polígono para cada fragmento calcular el punto 3D sobre el polígono calcular el modelo de iluminación en ese punto colorear el fragmento

Tipos de algoritmos

- El sombreado <u>usa el modelo de</u> <u>iluminación</u> para conseguir colorear el pixel
- El algoritmo fundamental de sombreado es demasiado costoso
 - Un cálculo (al menos) del m.i. Para cada pixel ocupado.
- Algoritmo de sombreado constante.
 Una vez por polígono.
 - Luz en el infinito (N.L=cte)
 - Observador en el infinito (N.V=cte)
 - El polígono representa una superficie plana
- Algoritmos de sombreado por interpolación
 - Cálculos de iluminación en los vértices e interpolación

Algoritmo fundamental de sombreado
para cada polígono
convertir el polígono al raster
para cada pixel (visible) del polígono
calcular el punto 3D sobre el polígono
calcular el modelo de iluminación en ese punto
colorear el pixel

Comparación visual de algoritmos de sombreado

Fuente: www.cs.cmu.edu

Materiales

Luz percibida

- Al mirar un punto de la superficie de un objeto iluminado percibimos la luz que refleja
- Si conocemos el campo de luz (irradiancia) y la respuesta del material podemos calcular la luz percibida

ecuación de iluminación simplificada

$$L_r = \int_r \sum L_i \cos \theta_i$$

→ respuesta del material

Respuesta del material

Respuesta del material

- Cada material, al ser iluminado, responde dispersando la luz de forma diferente
- La respuesta depende de multitud de variables
- Idealmente, se definen las funciones (BSDF) que, en cada punto, relacionan la irradiación en una dirección con la radiancia emitida en otra:
 - Función de distribución de la reflectancia bidireccional BRDF
 - Función de distribución de la trasmitancia bidireccional BTDF
 - Función de distribución de la reflectancia por dispersión interna bidireccional BSSRDF
- La BSDF caracteriza la respuesta del material

Medición de la BSDF

goniorreflectómetro

BRDF del plástico PVC

Render basado en la BRDF real del oro

Modelado de la BRDF

Materiales mates

- reflexión difusa
- en todas direcciones
- lambertiano (ideal)
 - reflexión uniforme en todas direcciones

Materiales pulidos

- reflejo de brillos
- reflexión preferente en una dirección -lóbulos-
- especular (ideal)
 - reflexión sólo en la dirección de reflexión perfecta

Modelos de la BRDF

Empíricos

 Buscan obtener resultados aceptables con poco cálculo

Físicos

 Buscan aproximarse a lo que sucede en realidad

Texturas

Introducción

¿Qué son?

 Modificaciones al modelo de iluminación para que dependa del punto de la superficie en el que se calcula, en términos no geométricos.

¿Qué consiguen?

- Dotar a los objetos de un detalle superficial (pintado, abultamientos, veteado, etc.) que enriquece el realismo de la imagen, sin aumentar el número de polígonos
- Disminuir la apariencia plástica conferida por el modelo de Phong
- Simular multitud de efectos: sombras, reflejos, transparencia, entornos, ...

Fuente: University of Melbourne

Uso de superficie intermedia

Pasos

▶ 1º: correspondencia de la textura sobre una superficie intermedia

$$S(s,t) \rightarrow u, v$$

 2º: correspondencia de la superficie auxiliar con la superficie del objeto

Mapas de entorno

- Objetivo: Simular reflexión especular del entorno
- Método:
 - Uso de una superficie intermedia texturada con proyección del entorno
 - Correspondencia objeto superficie mediante dirección de reflexión especular perfecta
- La textura depende del punto de vista

Computer Graphics Group NO 1 A POLITÈCNICA DE VALÈNCIA

Mapas de entorno

place a viewer in a scene

generate the environment texture from six view directions

apply the texture to an object at the position of the viewer

UNIVERSITAT POLITÈCNICA DE VALÈNCIA

Mapas de entorno

Fuente: http://tfc.duke.free.fr/

Mapas uv para mallas poligonales

- Se utilizan diferentes proyecciones para los parches que forman la superficie
 - Se minimizan las distorsiones
 - Un vértice puede tener varias coordenadas de textura

Texturas por alteración de la normal

- Objetivo: Modelar abultamientos, abolladuras o rugosidades sin necesidad de modificar la geometría del objeto.
- Lo que se modifica es la normal exterior
- Bump Mapping

Texturas por alteración de la normal

Texturas sólidas

- Objetivo: Utilizar una función directa de correspondencia T(x,y,z)
- Método:
 - Definir una función de textura en el espacio
 - Sumergir el objeto en espacio de la textura
 - Fijar la textura al objeto en escala y posición
- Ventajas
 - Eliminación de la transformación de parametrización
 - Complejidad cualquiera de la superficie del objeto
- Desventajas
 - Son difíciles de definir y ajustar
 - Mayor coste computacional
- Otras características
 - Aplicables tanto al color como a la normal

Billboards

- Un billboard es un polígono con una textura y vector de orientación asociado.
- Cuando la posición y orientación de la cámara cambian, este vector de orientación cambiará.

color texture

alpha texture representing transparency

billboard: simple primitive with color and alpha mapping

Antialiasing en texturas

- Al proyectar la textura es difícil que un texel coincida con el píxel.
 - Aparece el muestreo demasiado bajo
 - Problema magnificación: un téxel cubre más de un píxel
 - Problema de minificación: un píxel cubre más de un téxel
- Soluciones: sobremuestreo, prefiltrado (mipmapping)

Antialiasing en texturas

Antialiasing en texturas Magnificación

- Para eliminar el efecto de magnificación se aplica el filtrado
 - Más cercano
 - Bilineal
 - **...**

Real numbered Texture coordinate (u,v). Distance from the four neighboring textels is used to in a weighed average

Antialiasing en texturas Minificación

La minificación es más difícil de resolver: varios texeles

cubren un píxel

 Una solución es el mipmapping: texturas con múltiples niveles de detalle

