Obliczenia naukowe - Lista 2

Jonasz Wiącek Grupa: poniedziałek 7:30

11 listopada 2018

1 Cel ćwiczeń

Celem ćwiczeń jest zapoznanie się z uwarunkowaniem zadań i stablinością algorytmów.

2 Wykonanie zadań.

2.1 Zadanie 1

Zadanie ma na celu sprawdzenie jak niewielkie zmiany w danych testowych wpływają na wyniki. Po usunięciu najmniej znaczących cyfr znacząco wpłynęło na wyniki. Widoczne jest to szczególnie przy arytmetyce Float64 i sumowaniu w przód i w tył - wartość obliczona na liście pierwszej jest rzędu 10^{-10} , a po małej zmianie wartości stała się rzędu 10^{-3} . Jeżeli tak mała zmiana danych wejściowych spowodowała tak duże zmiany w wynikach to zadanie jest źle uwarunkowane.

Metoda		Wynik z listy 1	Wynik z listy 2
Forward	Float32	-0.4999443	-0.4999443
	Float64	1.0251881368296672e-10	-0.004296342739891585
Backwards	Float32	-0.4543457	-0.4543457
	Float64	-1.5643308870494366e-10	-0.004296342998713953
Biggest to lowest	Float32	-0.5	-0.5
	Float64	0.0	-0.004296342842280865
Lowest to biggest	Float32	-0.5	-0.5
	Float64	0.0	-0.004296342842280865

Table 1: Wyniki zadania 1.

2.2 Zadanie 2

Ćwiczenie ma na celu narysowanie wykresu funkcji $f(x) = e^x ln(1+e^{-x})$ i porównanie wynikowych wykresów z granicą funkcji przy $x \to \infty$. Wykresy wynikowe widoczne są na Figure 1. Granica f(x) gdy $x \to \infty$ wynosi:

$$\lim_{x \to \infty} e^x * \ln(1 + e^{-x}) = 1$$

Błąd w wykresach jest spowodowany niedokładnością obliczeń w arytmetyce zmiennoprzecinkowej. Dla odpowiednio dużych wartości x, $1 + e^{-x}$ zaokrąglane jest do 1.

Figure 1: Wykres z WolframAlpha (z lewej strony) i z desmos(z prawej)

2.3 Zadanie 3

Zadanie polega na rowiązywaniu układu równań liniowych Ax = b dla dwóch sposobów generowania macierzy A - macierz Hilberta stopnia n oraz losowa macierz stopnia n z zadanym wskaźnikiem uwarunkowania c. Układ równań liniowych będzie rozwiązywany na dwa sposoby - eliminacji Gausa oraz $x = A^{-1}b$. Dla każdego sposobu obliczone zostaną błędy względne. Wyniki błędów względnych dla macierzy Hilberta zaprezentowane są na $Table\ 2$.. Wyniki błędów względnych dla losowych macierzy zaprezentowane są na $Table\ 3$.. Eliminacja Gaussa jest podatna na błędy związane z zaokrągleniem liczb w arytmetyce zmiennoprzecinkowej. W pierwszym kroku eliminacji Gaussa tworzony jest mnożnik $m_{i,j}=a_{j,i}/a_{i,i}$. W drugim kroku wiersz A_j zastępowany jest przez różnicę $A_j-m_{j,i}A_i$. Jeżeli mnożnik będzie znacząco duży lub bardzo mały to błąd związany z zaokrągleniem będzie duży. Rozwiązywanie układu za pomocą odwrotności macierzy jest szybsze pod względem złożoności czasowej oraz mniej podatne na błędy związane z zaokrąglaniem.

Przy 50 iteracji dla macierzy Hilberta błędy względne wynoszą odpowiednio:

1 Gaussian Error: 0.0010744056497719652
2 Inverse Error: 0.0011061552696830005

Dla losowej macierzy, błędy względne wynoszą:

Gaussian Error: 0.0023271775574827997 Inverse Error: 0.002328866577148439

Oznacza to, że obie metody powodują podobne błędy.

2.4 Zadanie 4

Zadanie ma na celu wykonanie eksperymentu Wilkinsona. Dany jest wielomian postaci p(x) = (x-20)(x-19)...(x-2)(x-1) i jego postać naturalna P(x). Wielomian Wilkinsona znany jest ze względu na swoją wysoką niestabilność. Dla wielomianu $p(x) = \prod (x-\alpha_j)$ z zerami α_j zaobserwować można, że niestabilność jest większa im większa jest pochodna wielomianu.

a) Przy użyciu funkcji roots z pakietu Polynomials obliczone zera wielomianu wynoszą:

[19.9998, 19.0019, 17.9909, 17.0254, 15.9463, 15.0755, 13.9148, 13.0743, 11.9533, 11.025, 9.99041, 9.00292, 7.99936, 7.0001, 5.99999, 5.0, 4.0, 3.0, 2.0, 1.0]

Wartości funkcji dla tych obliczonych zer po obliczeniu ich za pomocą funkcji polyval wynosiła zero. W $Table\ 2$. widoczna jest różnica pomiędzy zerem obliczonym przez pakiet Polynomials, a zerem rzeczywistym wielomianu.

W tabeli Table 3. widoczne są różnice w wynikach dla niewielkiej zmiany wartości danych wejściowych.

k	$ z_k - k $
1	3.0109248427834245e-13
2	2.8318236644508943e-11
3	4.0790348876384996e-10
4	1.626246826091915e-8
5	6.657697912970661e-7
6	1.0754175226779239e-5
7	0.00010200279300764947
8	0.0006441703922384079
9	0.002915294362052734
10	0.009586957518274986
11	0.025022932909317674
12	0.04671674615314281
13	0.07431403244734014
14	0.08524440819787316
15	0.07549379969947623
16	0.05371328339202819
17	0.025427146237412046
18	0.009078647283519814
19	0.0019098182994383706
20	0.00019070876336257925

Table 2: Rożnica $|z_k - k|$

k	P(zk)	p(zk)	zk - k
1	-8388608	0	2.778763885658009e-10
2	-4398046511104	0	0.000692699312875078
3	-9749755840167936	0	0.4270255492438997
4	-2305843009213693952	0	1.4947332449063782
5	-1600000000000000000000	0	2.436672969079466
6	-5111679989929966829568	0	3.60756932847359
7	-95620863343182630354944	0	4.5457398207358946
8	-1208925819614629174706176	0	5.943197413875156
9	-11331765525685402821722112	0	6.875243541060189
10	-838860800000000000000000000	0	8.61554614628055
11	-513039635408293850333052928	0	9.54226714642765
12	-2679992478560402449140547584	0	11.823850127273202
13	-12263476243205790247593967616	0	12.748643746478507
14	-50132871200470534903532879872	0	15.902116949318328
15	-1859618347200000000000000000000	0	16.83360427105404
16	-633825300114114700748351602688	0	21.240876036555537
17	-2005484946567945884823426433024	0	22.196174060705914
18	-5941108683930548474595042656256	0	27.08064097166224
19	-16596186950829351856234123231232	0	28.07298800126643
20	-43980465111040000000000000000000000000000000	0	8.388797997542582e6

Table 3: Wyniki programu 4. po niewielkiej zmianie danych wejściowych.

2.5 Zadanie 5

Zadanie polega na wykonaniu 20 iteracji równania rekurencyjnego $p_{n+1} := p_n + rp_n(1 - p_n)$. Wyniki te będą porównane z wynikami przy wykonaniu tych samych kroków, ale zaokrągleniem 10 kroku do 3 miejsc po przecinku. Wyniki tego eksperymentu przedstawione są na lewym obrazku na Figure 2.. Z wykresu można zaobserwować wpływ zaokrąglenia na wyniki kolejnych iteracji. Przy kolejnych iteracjach, błąd ten jest coraz większy. Przy 40 iteracji błąd względny wynosi aż 80%.

2.6 Zadanie 6

Zadanie polega na przedstawieniu wyników 40 iteracji równania rekurencyjnego $x_{n+1} := x_n^2 + c$. Podobnie jak w zadaniu poprzednim, małe zmiany w danych wejściowych mogą powodować niestabilność algorytmu. Takie zachowanie widzimy na przykład dla c = 1.999999. Po 20 iteracji zauważalne jest znaczne zaburzenie w wynikach w stosunku do iteracji dla c = 2. Początkowo małe błędy w zaokrągleniach liczb na początku moga znaczaco wpływać na wyniki dla dalszych iteracji.

Figure 3: Wykresy

