

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL
SENIOR CERTIFICATE
NASIONALE
SENIOR SERTIFIKAAT

GRADE/GRAAD 12

PHYSICAL SCIENCES: CHEMISTRY (P2)
FISIESE WETENSKAPPE: CHEMIE (V2)

NOVEMBER 2012

MEMORANDUM

MARKS/PUNTE: 150

This memorandum consists of 11 pages. *Hierdie memorandum bestaan uit 11 bladsye.*

SECTION A/AFDELING A

QUESTION 1/VRAAG 1

1.1	Ketones/ <i>Ketone</i> ✓	(1)
1.2	Ethene/ <i>Eteen</i> ✓	(1)
1.3	Activation (energy)/Aktiverings(energie) ✓	(1)
1.4	Catalyst/ <i>katalistor</i> ✓	(1)
1.5	(saturated) sodium chloride solution ✓ (versadigde) natriumchloried oplossing	(1) [5]
QUEST	TION 2/VRAAG 2	
2.1	B✓✓	(2)
2.2	C✓✓	(2)
2.3	A✓✓	(2)
2.4	A✓✓	(2)
2.5	$D\checkmark\checkmark$	(2)
2.6	$D\checkmark\checkmark$	(2)
2.7	B√√	(2)
2.8	C✓✓	(2)
2.9	$D\checkmark\checkmark$	(2)
2.10	A ✓✓	(2) [20]

TOTAL SECTION A/TOTAAL AFDELING A: 25

SECTION B/AFDELING B

QUESTION 3/VRAAG 3

3.1 3.1.1 A ✓ (1)

3.1.2 D & F $\checkmark \checkmark$ (2)

 $3.1.3 \quad \mathsf{D} \checkmark \tag{1}$

 $3.1.4 \quad \mathsf{E} \checkmark \tag{1}$

3.1.5 B \checkmark (1)

3.2

3.2.1 $\underline{2\text{-methyl}} \checkmark \underline{\text{but-1-ene}} \checkmark$ (2)

3.2.2

3.3

3.3.1 Pleasant odour ✓

Aangename geur (1)

3.3.2 Ethanol $\checkmark\checkmark$ Etanol (2)

3.3.3 Ethyl propanoate ✓√

Etielpropanoaat (2)

[15]

QUESTION 4/VRAAG 4

4.1

4.1.1 Fuels ✓

Brandstowwe ✓

(1)

4.1.2 C_nH_{2n+2} \checkmark (1)

4.2

4.2.1 Boiling point/*Kookpunt* ✓ (1)

4.2.2 Chain length/Molecular size/Molecular mass ✓

Kettinglengte/Molekulêre grootte/Molekulêre massa (1)

4.2.3

Criteria for conclusion/Kriteria vir gevolgtrekking:	Mark/Punt
Dependent and independent variables correctly identified. Afhanklike en onafhanklike veranderlikes korrek geïdentifiseer.	✓
Relationship between the independent and dependent variables correctly stated. Verwantskap tussen die afhanklike en onafhanklike veranderlikes korrek genoem.	√

Examples/Voorbeelde:

- Boiling point increases with increase in chain length/molecular size/molecular mass.
 - Kookpunt neem toe met toename in kettinglengte/molekulêre grootte/molekulêre massa.
- Boiling point decreases with decrease in chain length/ molecular size/molecular mass.
 - Kookpunt neem af met afname in kettinglengte/molekulêre grootte/molekulêre massa.
- Boiling point is proportional to chain length/molecular size/molecular mass.
 - Kookpunt is eweredig aan kettinglengte/molekulêre grootte/molekulêre massa.
- 4.3 Pentane/Pentaan ✓

OR/OF

Hexane/*Heksaan* ✓ (1)

4.4
$$C_3H_8 + 5O_2 \checkmark \rightarrow 3CO_2 + 4H_2O \checkmark$$
 bal \checkmark (3)

4.5 Lower than ✓

• Structure:

Isomers have <u>more branching/ more compact or spherical molecules</u> / <u>smaller surface areas</u> over which the intermolecular forces act. ✓

Intermolecular forces:

Weaker intermolecular forces/less intermolecular forces ✓

Energy:

Less energy needed to overcome intermolecular forces. ✓

Kleiner as √

Struktuur:

Isomere <u>meer vertak</u>/Molekule meer kompak of sferies./ <u>Kleiner</u> <u>oppervlaktes</u> waaroor intermolekulêre kragte werk. ✓

Intermolekulêre kragte

Swakker intermolekulêre kragte/ minder intermolekulêre kragte ✓

• Energie:

<u>Die minder energie benodig</u> om intermolekulêre kragte te oorkom. ✓

(4) **[14]**

(2)

QUESTION 5/VRAAG 5

5.1

5.1.1 Haloalkanes / Haloalkane ✓ (1)

5.1.2

5.2

5.2.1 Substitution/Substitusie ✓

OR/OF

Hydrolysis/*Hidrolise* ✓ (1)

5.2.2

5.3

5.3.2 Elimination/dehydrohalogenation/dehydrobromination ✓ Eliminasie/dehidrohalogenering/dehidrobrominering ✓

5.3.3

5.4 2-methylbut-2-ene √ √ 2-metielbut-2-een

(2) **[12]**

(1)

(2)

(5) **[16]**

QUESTION 6/VRAAG 6

6.1	Carbon dioxide ✓	
	Koolstofdioksied/koolsuurgas	(1)

6.2

6.2.1
$$(6; 3,1) \checkmark$$
 (1)

6.2.3. 4 minutes/
$$minute \checkmark$$
 (1)

6.3 <u>More particles per unit volume</u> √

More effective collisions per unit time/second. ✓

Meer deeltjies per eenheids volume deeltjies.

Meer effektiewe botsings per eenheids tyd/sekonde. (2)

6.4

• Add a <u>catalyst</u>/Voeg 'n <u>katalisator</u> by √

Increase surface area of calcium carbonate./Use calcium carbonate powder./Crush calcium carbonate chips. ✓
 Verhoog die oppervlakarea van kalsiumkarbonaat./Gebruik

kalsiumkarbonaatpoeier./Maak die kalsiumkarbonaatstukkies fyn.

6.6

$$n(CO_2) = \frac{m}{M} \checkmark$$

$$= \frac{4}{44} \checkmark$$

$$= 0.09 \text{ mol}$$

 $n(CaCO_3) = n(CO_2) = 0.09 \text{ mol}$

$$m(CaCO_3) = nM$$

= $(0,09)\checkmark (100) \checkmark$
= 9 g \checkmark

QUESTION 7/VRAAG 7

7.1 The stage in a chemical reaction when the <u>rate of forward reaction equals the</u> rate of reverse reaction. $\checkmark\checkmark$

Die stadium in 'n chemiese reaksie wanneer die <u>tempo van die voorwaartse</u> reaksie is gelyk aan die tempo van die terugwaarste reaksie. ✓ ✓

(2)

7.2 n(B)reacted/ $gereageer = 6 - 4 = 2 mol \checkmark$ n(C)formed/gevorm = n(B)reacted/gereageer $= 2 mol \checkmark$

$$c(C) = \frac{n}{V} = \frac{2}{5} \checkmark = 0.4 \text{ mol·dm}^{-3}$$
 (3)

- 7.3 Increases ✓
 - <u>3 mol/volumes (of gas) produces 2 mol/volumes</u> (of gas)./The reaction which produces the smaller number of moles/volume is favoured. ✓
 - Forward reaction is favoured. ✓

Initial quantity (mol)

Vermeerder √

- <u>3 mol/volumes</u> (gas) produseer <u>2 mol/volumes</u> (gas)./Die reaksie wat die kleiner getal mol /volume vorm, word bevoordeel.
- Voorwaartse reaksie word bevoordeel.
 (3)

Α

3

7.4 **OPTION 1/OPSIE 1**

Use x as the total initial amount of B(g) that must be used.

Gebruik x as die totale aanvanklike hoeveelheid B(g) wat gebruik moet word.

Aanvangshoeveelheid (mol)		3	Х	0	
Change (mol) Verandering (mol)		-2	-4	+4	ratio √ verhouding
Quantity at equilibrium (mol) Hoeveelheid by ewewig (mo		1	x-4	<u>4</u> √	
Equilibrium concentration (m Ewewigskonsentrasie (mol·c		$\frac{1}{5} = 0.2$	$\frac{x-4}{5}$	0,8	
$K_{C} = \frac{[C]^{2}}{[A][B]^{2}} \checkmark$			Divide I	oy/gedeel o	deur 5 ✓
$\therefore 0,625 \checkmark = \frac{(0,8)^2}{(0,2)(\frac{x-4}{5})^2}$	No K _C expression, correct substitution/ <i>Geen K</i> _c - <i>uitdrukking</i> , korrekte substitusie: Max./ <i>Maks</i> . $\frac{8}{9}$				-
$\therefore x = 15,3 \text{ mol}$ $\downarrow \qquad \qquad \downarrow$ $\therefore n(B) \text{ added} = 15,3 - 6 \checkmark$	Wrong K_c expression/ <i>Verkeerde K_c-uitdrukking</i> : Max./Maks. $\frac{6}{9}$			kking:	
= <u>9,3</u> (mol) √					

0

Х

OPTION 2/OPSIE 2

Use x as amount to be added to the amount of B(g) present initially i.e. 6 mol of B(g).

Gebruik x as die hoeveelheid wat by die hoeveelheid van B(g) wat aanvanklik teenwoordig was gevoeg moet word d.i. 6 mol B(g).

	Α	В	С	
Initial quantity (mol) Aanvangshoeveelheid (mol)	3	x <u>+ 6</u> ✓	0	
Change (mol) Verandering (mol)	-2	-4	+4	ratio √ <i>verhouding</i>
Quantity at equilibrium (mol)/ Hoeveelheid by ewewig (mol)	1	x + 2) √	4 ✓	
Equilibrium concentration (mol·dm ⁻³) Ewewigskonsentrasie (mol·dm ⁻³)	$\frac{1}{5} = 0.2$	$\frac{x+2}{5}$	0,8	
$K_{C} = \frac{[C]^{2}}{[A][B]^{2}} \checkmark$		Divide by/g	edeel deur	5
$\therefore 0,625 \checkmark = \frac{(0,8)^2}{(0,2)(\frac{x+2}{5})^2}$				
∴ x = 9,31 (mol) ✓				

OPTION 3/OPSIE 3

Use x as amount to be added to the amount of B(g) present after first equilibrium was established i.e. 4 mol of B(g).

Gebruik x as die hoeveelheid wat by die hoeveelheid van B(g) wat teenwoordig is nadat die eerste ewewig ingestel is, gevoeg moet word d.i. 4 mol B(g).

	Α	В	С	
Initial quantity (mol) Aanvangshoeveelheid (mol)	2	x <u>+ 4</u> ✓	2	
Change (mol) Verandering (mol)	-1	-2	+2	ratio ✓ verhouding
Quantity at equilibrium (mol)/ Hoeveelheid by ewewig (mol)	1	x + 2) \(<u>4</u> √	vomodaling
Equilibrium concentration (mol·dm ⁻³) Ewewigskonsentrasie (mol·dm ⁻³)	$\frac{1}{5} = 0.2$	$\frac{x+2}{5}$	0,8	
$K_{C} = \frac{[C]^{2}}{[A][B]^{2}} \checkmark$		Divide by	/gedeel de	eur 5√
$\therefore 0,625 \checkmark = \frac{(0,8)^2}{(0,2)(\frac{x+2}{5})^2}$				
∴ x = 9,31 (mol) ✓				(9)

(2)

QUESTION 8/VRAAG 8

8.1

8.1.1 Increases ✓

The reaction is exothermic./Energy (or heat) is released $\Delta H < 0.$

Vermeerder

Die reaksie is eksotermies./Energie (of hitte) word vrygestel/ $\Delta H < 0$. (2)

8.1.2 Aluminium is a strong reducing agent/stronger reducing agent ✓ than copper and will reduce the copper(II) ions to copper. ✓

Aluminium is 'n sterk reduseermiddel / sterker reduseermiddel ✓ as koper en sal die koper(II)-ione reduseer na koper. ✓

8.1.3 $2Al(s) + 3Cu^{2+}(aq) \checkmark \rightarrow 2Al^{3+}(aq) + 3Cu(s) \checkmark$ bal. \checkmark (3)

8.2

- 8.2.1 Al/Aluminium \checkmark (1)
- 8.2.2 $Al(s) \mid Al^{3+}(1 \text{ mol·dm}^{-3}) \mid Cu^{2+}(1 \text{ mol·dm}^{-3}) \mid Cu(s)$ (3)
- 8.2.3 $E^{\circ}_{cell} = E^{\circ}_{cathode} E^{\circ}_{anode} \checkmark$ = 0,34 \(\sqrt{-} \)(-1, 66) \(\sqrt{-}\) $E^{\circ}_{cell} = 2,(00) \lor \checkmark$ (4)
- 8.2.4 0 (V)/zero/nul √

The circuit is open. ✓

Die stroombaan is oop (2) [17]

QUESTION 9/VRAAG 9

9.1	Electrical energy to <u>chemical</u> energy. ✓ <u>Elektriese</u> energie na <u>chemiese</u> energie ✓	(1)
9.2	The polarity of the electrodes must remain constant during plating. ✓ Die polariteit van die elektrodes moet konstant bly tydens elektroplatering.	(1)
9.3	Reduction/ <i>Reduksie</i> ✓	(1)
9.4 9.4.1	$Ag \rightarrow Ag^+ + e^- \checkmark \checkmark$	(2)
9.4.2	Silver nitrate/Silwernitraat/AgNO₃√	
	OR/OF Silver ethanoate/silver acetate/Silweretanoaat/silwerasetaat ✓ CH₃COOAg/AgC₂H₃O₂/AgCH₃CO₂	(1)
9.5	Rate of oxidation is equal to the rate of reduction. $\checkmark\checkmark$ Tempo van oksidasie is gelyk aan die tempo van reduksie.	(2)
9.6	Protection/Beskerming Protects it from rusting / corrosion./Beskerm dit teen roes/korrosie. ✓	
	OR/OF Appearance/Voorkoms Improve appearance of spoons. / Verbeter voorkoms van die lepels.	(1)
9.7	Cost of electricity/ Koste van elektrisiteit. ✓ Cost of silver/ Koste van silwer ✓	(2) [11]
QUESTI	ON 10/ <i>VRAAG 10</i>	
10.1	Primary (cells)/ <i>Primêre (selle)</i> ✓	(1)
10.2	(Equation/Vergelyking) 2 ✓ Reduction takes place (at the cathode)./Reduksie vind (by die katode) plaas.√	(2)
10.3	 ANY ONE/ENIGE EEN: The cell reaction reaches equilibrium. ✓ Die selreaksie bereik ewewig. ✓ The rates of the forward and reverse reactions become equal. ✓ Die tempo van die voorwaartse en terugwaartse reaksies is gelyk. ✓ Substances reach their equilibrium concentrations. ✓ Stowwe bereik hul ewewigskonsentrasies. 	(1)

10.4

10.4.1 W = qV
$$\checkmark$$

 \therefore 3 x 10⁴ = q(1,5) \checkmark
 \therefore q = 2 x 10⁴ (C)

Cell capacity/Selkapasiteit =
$$\frac{2 \times 10^4}{3600} \checkmark = \frac{5.56 \text{ A} \cdot \text{h}}{3600} \checkmark$$
 (4)

(3) [**11]**

QUESTION 11/VRAAG 11

11.1

- 11.1.1 <u>Fractional distillation</u> (of liquid air) ✓ <u>Fraksionele distillasie</u> (van vloeibare lug) ✓ (1)
- 11.1.2 $N_2 + 3H_2 \checkmark = 2NH_3 \checkmark$ bal. \checkmark (3)
- 11.1.3 Contact (process)/Kontak(proses) √ (1)
- 11.1.4 $H_2SO_4 + 2NH_3 \checkmark \rightarrow (NH_4)_2SO_4 \checkmark bal. \checkmark$ (3)
- 11.1.5 Neutralisation/Acid-base reaction ✓

 Neutralisasie/Suur-basisreaksie ✓

 (1)

11.2

- 11.2.1 Nitric acid/HNO₃/ hydrogen nitrate /salpetersuur/ waterstofnitraat ✓ (1)
- Contains (a high percentage of) nitrogen/N/primary nutrient. ✓
 Bevat ('n hoë persentasie) stikstof/N/primêre voedingstof. (2)
 High solubility /Hoë oplosbaarheid ✓ [12]

TOTAL SECTION B/TOTAAL AFDELING B: 125
GRAND TOTAL/GROOTTOTAAL: 150