BST 140.751 M	idterm exam
---------------	-------------

Notes:

- $\bullet\,$ You may not use a calculator for this exam.
- Please be neat and write legibly. Use the back of the pages if necessary.
- Good luck!

printed name

- 1. Let $X_{11}\ldots,X_{IJ}$ be iid random variables from a distribution with density $f(x)=\frac{1}{2}\exp(-x/2)$ for x>0 for $i=1,\ldots I$ and $j=1,\ldots J$. Assume J is a very large number. Let $\bar{X}_j=\frac{1}{I}\sum_{i=1}^I X_{ij}$ and $S_j^2=\sum_{i=1}^I (X_{ij}-\bar{X}_j)^2/(I-1)$ Answer the following
 - A. Show that the mean and standard deviation associated with f are both 2.
 - B. Approximately what number will $\frac{1}{J}\sum_{j=1}^J \bar{X}_j$ be? Does your calculation require I to be "large"?
 - C. Approximately what number will $\frac{1}{J}\sum_{j=1}^J S_j^2$ be? Does your calculation require I to be "large"?
 - D. Approximately what number will $\frac{1}{J}\left\{\sum_{j=1}^{J}\left(\bar{X}_{j}-\frac{1}{J}\sum_{k=1}^{J}\bar{X}_{k}\right)^{2}\right\}$ be? Does your calculation require I to be "large"?
 - E. Approximately what number will $\frac{1}{J}\sum_{j=1}^J Y_j$ be, where $Y_j = I\left(\frac{\sqrt{I}(\bar{X}_j-2)}{2}>0\right)$ and I(A) is the indicator that the event A occurred. Does your calculation require I to be "large"?

2. Let f be a continuous density with associated distribution function F. Let $x_0 < x_1$ be points.

$$\tilde{f}(x) = \left\{ \begin{array}{ll} f(x)/\{F(x_1) - F(x_0)\} & \text{For} & x_0 \leq x \leq x_1 \\ 0 & \text{Otherwise} \end{array} \right.$$

- A. Argue that \tilde{f} is a proper density.
- B. What is the distribution function associated with this density?
- C. Symbolically write out the α^{th} quantile of this distribution (using only F, F^{-1} , f, x_0 and x_1).

3. Let X follow a shifted and scaled logistic distribution; i.e. having associated density

$$f(x) = \frac{\beta_1 \exp(-\beta_0 - \beta_1 x)}{\{1 + \exp(-\beta_0 - \beta_1 x)\}^2}$$

for $-\infty < x < \infty$ and $\beta_0, \beta_1 > 0$ are constants.

- A. Argue that f is a proper density function.
- B. Calculate the distribution function associated with f.
- C. Let $Y = I(X \le x_0)$ be an indicator of the event that X is less than x_0 . Argue that the log of the odds that Y = 1 is $\beta_0 + \beta_1 x_0$.

- 4. Let X_1, \dots, X_n be iid from a normal distribution with mean μ and variance σ^2 . (I.e. having density $(2\pi\sigma^2)^{-1/2}\exp\{-(x-\mu)^2/2\sigma^2\}$ for $-\infty < x < \infty$.)
 - A. Argue that the ML estimate of μ is the sample average.
 - B. Argue that the ML estimate of σ is the square root of the biased version of the sample standard variance. (You do not need to demonstrate that it's unbiased.)
 - C. Argue that the least squares estimate of μ , i.e. that point which minimizes $\sum_{i=1}^{n}(x_i-\mu)^2$, is also the sample average.