# CSE2006 Microprocessor & Interfacing

#### Module - 4

### Introduction to Peripheral Interfacing I

#### Dr. E. Konguvel

Assistant Professor (Sr. Gr. 1),
Dept. of Embedded Technology,
School of Electronics Engineering (SENSE),
konguvel.e@vit.ac.in
9597812810



| CSE2006       | MICROPROCESSOR AND INTERFACING                 | L T P J C        |
|---------------|------------------------------------------------|------------------|
|               |                                                | 2 0 2 4 4        |
| Pre-requisite | CSE2001-Computer Architecture and Organization | Syllabus version |
|               |                                                |                  |

#### Course Objectives:

- Students will gain knowledge on architecture, accessing data and instruction from memory for processing.
- Ability to do programs with instruction set and control the external devices through I/O interface
- Generate a system model for real world problems with data acquisition, processing and decision making with aid of micro controllers and advanced processors.

#### **Expected Course Outcome:**

- 1. Recall the basics of processor, its ways of addressing data for operation by instruction set.
- 2. Execute basic and advanced assembly language programs.
- 3. Learn the ways to interface I/O devices with processor for task sharing.
- 4. Recall the basics of co-processor and its ways to handle float values by its instruction set.
- Recognize the functionality of micro controller, latest version processors and its applications.
- Acquire design thinking capability, ability to design a component with realistic constraints, to solve real world engineering problems and analyze the results.

| -                                                                                           |                                          |              |                |                                    |  |  |  |  |
|---------------------------------------------------------------------------------------------|------------------------------------------|--------------|----------------|------------------------------------|--|--|--|--|
| Student Le                                                                                  | Student Learning Outcomes (SLO): 2, 5, 9 |              |                |                                    |  |  |  |  |
| Module:1                                                                                    | INTRODUCTION                             | TO           | 8086           | 6 hours                            |  |  |  |  |
|                                                                                             | MICROPROCESSOR                           |              |                |                                    |  |  |  |  |
| Introduction                                                                                | to 8086, Pin diagram, Arch               | itecture, ac | ddressing mo   | de and Instruction set             |  |  |  |  |
|                                                                                             |                                          |              |                |                                    |  |  |  |  |
| Module:2                                                                                    | INTRODUCTION TO AI                       | LP           |                | 5 hours                            |  |  |  |  |
| Tools- Asse                                                                                 | embler Directives, Editor, a             | assembler,   | debugger, si   | imulator and emulator. E.g., ALP   |  |  |  |  |
| 1                                                                                           |                                          |              |                | ons, Programs using Loops, If then |  |  |  |  |
| else, for loo                                                                               | <b>±</b>                                 | •            |                |                                    |  |  |  |  |
|                                                                                             | •                                        |              |                |                                    |  |  |  |  |
| Module:3                                                                                    | Advanced ALP                             |              |                | 2 hours                            |  |  |  |  |
| Interrupt pro                                                                               | ogramming using DOS BIOS                 | Sfunction    | calls, File Ma | anagement                          |  |  |  |  |
|                                                                                             |                                          |              |                | Ü                                  |  |  |  |  |
| Module:4                                                                                    | Introduction to Periph                   | eral Inte    | rfacing-I      | 5 hours                            |  |  |  |  |
| PPI 8255, Timer 8253, Interrupt controller-8259                                             |                                          |              |                |                                    |  |  |  |  |
|                                                                                             |                                          |              |                |                                    |  |  |  |  |
| Module:5                                                                                    | Introduction to Periph                   | eral Inte    | rfacing-       | 4 hours                            |  |  |  |  |
|                                                                                             | II                                       |              | Ü              |                                    |  |  |  |  |
| IC 8251 UART, Data converters (A/D and D/A Converter), seven segment display and key- board |                                          |              |                |                                    |  |  |  |  |
| interfacing                                                                                 |                                          |              |                |                                    |  |  |  |  |
|                                                                                             |                                          |              |                |                                    |  |  |  |  |

| Module:                                                                 | 6                                           | Co-Processor                                                  | 4 ho                            | ours |  |  |  |
|-------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------|---------------------------------|------|--|--|--|
| Introduction to 8087, Architecture, Instruction set and ALP Programming |                                             |                                                               |                                 |      |  |  |  |
|                                                                         |                                             |                                                               |                                 |      |  |  |  |
| Module:                                                                 | Module:7 Introduction to Arduino Boards 2 h |                                                               |                                 |      |  |  |  |
| Introduct                                                               | ion                                         | to Microcontroller- Quark SOC processor, pro                  | gramming, Arduino Boards u      | sing |  |  |  |
|                                                                         |                                             | , LCD, Keypad, Motor control and sensor), System              |                                 |      |  |  |  |
| Module:8                                                                | 8                                           | Contemporary issues                                           | 2 hou                           | rs   |  |  |  |
| Architect                                                               | ure                                         | of one of the advanced processors such as Multicor            | e, Snapdragon, ARM processor    | in   |  |  |  |
| iPad                                                                    |                                             | •                                                             |                                 |      |  |  |  |
| 7                                                                       | Tex                                         | tt Book(s)                                                    | 1                               |      |  |  |  |
|                                                                         | 1.                                          | A.K. Ray and K.M. Bhurchandi Advanced Microprocessors         | and Peripherals, third Edition, |      |  |  |  |
|                                                                         |                                             | Tata McGraw Hill, 2012.                                       |                                 |      |  |  |  |
| 2                                                                       | 2.                                          | Barry B Bray, The Intel Microprocessor 8086/8088, 801         |                                 |      |  |  |  |
|                                                                         |                                             | Arcitecture, programming and interfacing, PHI, 8th Edition, 2 | 2009.                           |      |  |  |  |
| _1                                                                      | Ref                                         | erence Books                                                  |                                 |      |  |  |  |
| 1                                                                       | 1.                                          | Douglas V. Hall, SSSP Rao Microprocessors and Interfacing     | Programming and Hardware.       |      |  |  |  |
|                                                                         |                                             | Tata McGraw Hill, Third edition, 2012.                        |                                 |      |  |  |  |
| 2                                                                       | 2.                                          | Mohamed Rafiquazzaman, Microprocessor and Microco             | imputer based system design,    |      |  |  |  |
|                                                                         |                                             | Universal Book stall, New Delhi, Second edition, 1995         |                                 |      |  |  |  |
| 3                                                                       | 3.                                          |                                                               |                                 |      |  |  |  |
|                                                                         |                                             | Programming, Tata McGraw Hill, 2002.                          |                                 |      |  |  |  |
| <u> </u>                                                                | 4.                                          | Massimo Banzi, Getting Started with Arduino, First Edition,   |                                 |      |  |  |  |
| 5                                                                       | 5.                                          | John Uffenbeck and 8088 Family. 1997. The 80x86 Family.       |                                 |      |  |  |  |
|                                                                         |                                             | Interfacing (2nd ed.). Prentice Hall PTR, Upper Saddle River  | , NJ, USA.                      |      |  |  |  |
| 1                                                                       | Mo                                          | de of Evaluation: CAT / Assignment / Quiz / FAT / Project / S | eminar                          |      |  |  |  |

| List | of Challenging Experiments (Indicative)                                        |           |  |  |  |  |
|------|--------------------------------------------------------------------------------|-----------|--|--|--|--|
| 1.   | Arithmetic operations 8/16 bit using different addressing modes.               | 2.5 hours |  |  |  |  |
| 2.   | Finding the factorial of an 8 /16 bit number.                                  | 2.5 hours |  |  |  |  |
| 3.   | (a) Solving nCr and nPr (b) Compute nCr and nPr using recursive                | 2.5 hours |  |  |  |  |
|      | procedure. Assume that n and r are non-negative integers                       |           |  |  |  |  |
| 4.   | Assembly language program to display Fibonacci series                          | 2.5 hours |  |  |  |  |
| 5.   | Sorting in ascending and descending order                                      | 2.5 hours |  |  |  |  |
| 6.   | (a) Search a given number or a word in an array of given numbers. (b)          | 2.5 hours |  |  |  |  |
|      | Search a key element in a list of n 16-bit numbers using the Binary search     |           |  |  |  |  |
|      | algorithm.                                                                     |           |  |  |  |  |
| 7.   | <ol> <li>To find the smallest and biggest numbers in a given array.</li> </ol> |           |  |  |  |  |
| 8.   | 8. ALP for number system conversions.                                          |           |  |  |  |  |
| 9.   | 9. (a) String operations(String length, reverse, comparison, concatenation,    |           |  |  |  |  |
|      | palindrome)                                                                    |           |  |  |  |  |
| 10.  | ALP for Password checking                                                      | 2.5 hours |  |  |  |  |
| 11.  | Convert a 16-bit binary value (assumed to be an unsigned integer) to BCD       | 2.5 hours |  |  |  |  |
|      | and display it from left to right and right to left for specified number of    |           |  |  |  |  |
|      | times                                                                          |           |  |  |  |  |
| 12.  | ALP to interface Stepper motor using 8086/ Intel Galileo Board                 | 2.5 hours |  |  |  |  |
|      | Total Laboratory Hours                                                         | 30 hours  |  |  |  |  |

### Module 4: Introduction Peripheral Interfacing I

- Introduction
- Programmable Peripheral Interface 8255
- Programmable Counter/Interval Timer 8253
- Programmable Interrupt controller 8259

#### Introduction

- Microprocessor performs various ALU functions with the help of data from the environment.
- The technique of connection among input/output devices is known as interfacing.
- Special attention: Memory ICs and input/output devices are selected as per requirement and then interfaced.
- Address, data and control lines are used for connecting peripherals.
- When a program is executed, the microprocessor communicates with input/output devices and performs system operations.

#### **Programmable Peripheral Interface - 8255**

- Features
- Architecture
- Group A and B Controls
- Operating Modes
- Single Bit Set/Reset mode
- Control Word
- Applications

#### 8255 – Features

- 8255 is a programmable peripheral interface IC and is a multiport input/output device.
- General purpose programmable I/O device
- 24 I/O pins, which may be individually programmed in 2 groups of 12, in 3 major modes of operation
- Fully TTL compatible
- High speed, no 'Wait State' operation with 5 MHz 8085, 8 MHz 80C86 and 80C88
- Direct bit set/reset capability
- Enhanced control word read capability
- 2.5 mA drive capability on all I/O ports

Low standby power static CMOS circuit design insures low operating power

### 8255 – Architecture



#### 8255 – Architecture

- Operates on a single +5 V dc supply.
- The 8255A has 24 I/O pins, which may be individually programmed in two groups of twelve input/output lines or three groups of eight lines.
- The two groups of I/O pins are called Group A and Group B.
- Each group contains a subgroup of eight bits known as 8-bit port and a subgroup of four bits known as 4-bit port.
- Three eight-bit ports: Port A (PA7–PA0), Port B (PB7–PB0), and Port C (PC7–PC0), divided into subgroups Port C upper (PC7– PC4) & Port C lower (PC3–PC0).
- Group A consists of Port A and Port C upper.

· Group B consists of Port B and Port C lower.

### 8255 – Architecture (Functional Block)



### 8255 – Architecture

#### **Functional Description**

| Symbol                           | Туре | Description                                                                            |
|----------------------------------|------|----------------------------------------------------------------------------------------|
| PA <sub>0</sub> -PA <sub>7</sub> | I/O  | PORT A: 8-bit input and output port. Depending upon the control words bus hold         |
|                                  |      | highs and bus hold low which are present on this port.                                 |
| PB <sub>0</sub> -PB <sub>7</sub> | I/O  | PORT B: 8-bit input and output port. This port is used to hold high or low in          |
|                                  |      | the same way as Port A.                                                                |
| PC <sub>0</sub> -PC <sub>7</sub> | I/O  | PORT C: 8-bit input and output port. This port may be used as output latch or          |
|                                  |      | input buffer.                                                                          |
| $D_0 - D_7$                      | I/O  | DATA BUS: The data bus lines are bi-directional three-state pins connected to the      |
|                                  |      | system data bus. This three-state bi-directional 8-bit buffer is used to interface the |
|                                  |      | 82C55A to the system data bus. Data is transmitted or received by the buffer upon      |
|                                  |      | execution of input or output instructions by the microprocessor. Control words and     |
|                                  |      | status information are also transferred through the data bus buffer.                   |
| RESET                            | I    | RESET: A'high' on this input initialises the control register to 9BH and all ports     |
|                                  |      | (A, B, C) are set to the input mode. 'Bus hold' devices internal to the 82C55A will    |
|                                  |      | hold the I/O port inputs to a logic '1' state with a maximum hold current of 400 µA.   |
| <del>CS</del>                    | Ι    | CHIP SELECT: Chip select is an active low input used to enable the 82C55A on to        |
|                                  |      | the data bus for CPU communications.                                                   |

### 8255 – Architecture

#### **Functional Description**

| Symbol                         | Туре | Description                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RD (Read)                      | Ι    | READ: Read is an active low input control signal used by the CPU to read status information or data via the data bus. When $\overline{RD}$ is LOW, the 8255 sends output data or status information to the microprocessor on the data bus or the microprocessor can read data from the input port of 8255.                                                    |
| WR                             | Ι    | WRITE: Write is an active low input control signal used by the CPU to load control words and data into the 82C55A. When $\overline{WR}$ is LOW, the CPU writes data into the output port of 8255 or writes control word into the control word register of 8255.                                                                                               |
| A <sub>0</sub> -A <sub>1</sub> | Ι    | ADDRESS: These input signals, in conjunction with the $\overline{RD}$ and $\overline{WR}$ inputs, control the selection of one of the three ports or the control word register, $A_0$ and $A_1$ are normally connected to the least significant bits of the address bus $A_0$ , $A_1$ . These lines are used to select input ports and control word register. |

### 8255 – Group A & B Controls

- The functional configuration of each port can be programmed by the instruction.
- For this, the CPU stores a control word to the 82C55A.
- The control word contains information about the mode of operation, bit set, bit reset, etc.
- Each of the control blocks, Group A and Group B, receive 'commands' from the control logic signals; RD and WR receive 'control words' from the internal data bus and issue the proper commands to their associated ports.
- Control Group A—Port A and Port C upper (PC7–PC4)
- Control Group B—Port B and Port C lower (PC3–PC0)

### 8255 – Group A & B Controls



### 8255 – Group A & B Controls

#### **Basic Input Operation:**

| $A_I$ | $A_{	heta}$ | $\overline{RD}$ | WR | <del>CS</del> | Input Operation (READ Cycle) |
|-------|-------------|-----------------|----|---------------|------------------------------|
| 0     | 0           | 0               | 1  | 0             | Port A to data bus           |
| 0     | 1           | 0               | 1  | 0             | Port B to data bus           |
| 1     | 0           | 0               | 1  | 0             | Port C to data bus           |
| 1     | 1           | 0               | 1  | 0             | Control word to data bus     |

#### **Basic Output Operation:**

| $A_1$ | $A_0$ | $\overline{RD}$ | $\overline{WR}$ | <del>CS</del> | Output Operation (WRITE) |
|-------|-------|-----------------|-----------------|---------------|--------------------------|
| 0     | 0     | 1               | 0               | 0             | Data bus to Port A       |
| 0     | 1     | 1               | 0               | 0             | Data bus to Port B       |
| 1     | 0     | 1               | 0               | 0             | Data bus to Port C       |
| 1     | 1     | 1               | 0               | 0             | Data bus to control      |

#### **Disable Operation:**

| $A_1$ | $A_0$ | $\overline{RD}$ | WR | <del>CS</del> | Disable Function        |
|-------|-------|-----------------|----|---------------|-------------------------|
| X     | X     | X               | X  | 1             | Data bus to three-state |
| X     | X     | 1               | 1  | 0             | Data bus to three-state |

- Mode 0 Basic input/output
- Mode 1 Strobed input/output
- Mode 2 Bi-directional bus
- The system software can select the mode of operation.
- When the reset input becomes 'high', all ports will be set to the input mode with all 24-port lines held at logic 'one' level by internal bus hold devices.
- When the reset is removed, the 82C55A can remain in the input mode with no additional initialization required.
- This eliminates the need to pull up or pull down resistors in all CMOS designs.

• Then the control word register will contain 9BH.

- During the execution of the system program, any of the other modes may be selected using a single output instruction.
- This allows a single 82C55A to service a variety of peripheral devices with a simple software maintenance routine.
- Any port programmed as an output port is initialized to all zeros when the control word is written.
- The 8255A has two 8-bit ports (Port A and Port B) and two 4-bit ports (Port C upper and Port C lower).
- The modes for Port A and Port B can be separately defined, though Port C is divided into two portions as required by the Group A and Group B definitions.

#### **Mode 0 – Basic Input/Output:**

- This functional configuration provides simple input and output operations for each of the three ports.
- Each of the four ports of 8255 can be programmed to be either an input or output port.
- No handshaking is required; data is simply written to or read from a specific port.
- Basic functional definitions of Mode 0 are as follows:
- Two 8-bit ports and two 4-bit ports
- Any port can be input or output
- Outputs are latched
- Inputs are not latched
- 16 different input/output configurations possible

#### **Mode 0 – Basic Input/Output:**



#### **Mode 1 – Strobed Input/Output:**

- Only Port A and Port B both can be operating in this mode of operation.
- In Mode 1, six pins from Port C are used as control signals for handshaking.
- PC<sub>0</sub>, PC<sub>1</sub> and PC<sub>2</sub> of PC lower are used to control Port B and PC<sub>3</sub>, PC<sub>4</sub>, and PC<sub>5</sub> of PC upper are used to control Port A and PC<sub>6</sub> and PC<sub>7</sub>, are used as either input or output.
- While Port A is operated as an output port, pins PC<sub>3</sub>, PC<sub>6</sub> and PC<sub>7</sub> are used for its control.
- The pins PC4 and PC5 can be used either as input or output.

• The combination of Mode 0 and Mode 1 operation is also possible, When Port A is programmed to operate in Mode 1, Port B can also be operated in Mode 0.

#### **Mode 1 – Strobed Input/Output:**

- This functional configuration provides a means for transferring I/O data to or from a specified port in conjunction with strobes or handshaking signals.
- In Mode 1, Port A and Port B use the lines on Port C to generate or accept these handshaking signals.
- In Mode 1, the 8255A has two functional groups, namely, Group A and Group B.
- Each group contains one 8-bit port and a 4-bit control/data port.
- The 8-bit data port can be either input or output. Both inputs and outputs are latched.
- The 4-bit port can be used for control and status of the 8-bit port.

#### **Mode 1 – Strobed Input/Output:**



#### **Mode 1 – Strobed Input/Output:** Port A & Port B as input ports:



#### **Mode 1 – Strobed Input/Output: Timing Diagram (input):**



#### **Mode 1 – Strobed Input/Output:** Port A & Port B as output ports:



#### **Mode 1 – Strobed Input/Output: Timing Diagram (output):**



#### **Mode 1 – Strobed Input/Output: Input Control Signals**

- STB: A low on this input loads data into the input latch.
- **IBF (Input Buffer Full):** A high on this output indicates that the data has been loaded into the input latch: in essence, and acknowledgment.
- **INTR:** A 'high' on this output can be used to interrupt the CPU when an input device is requesting service.
- **INTE A:** Controlled by bit set/reset of PC<sub>4</sub>.

• **INTE B:** Controlled by bit set/reset of PC<sub>2</sub>.

#### Mode 1 – Strobed Input/Output: Output Control Signals

- $\overline{OBF}$ : The output will go 'low' to indicate that the CPU has written data out to be specified port.
- $\overline{ACK}$ : A 'low' on this input informs the 82C55A that the data from Port A or Port B is ready to be accepted.
- **INTR:** 'High' on this output can be used to interrupt the CPU when an output device has been accepted by data transmitted by the CPU.
- INTE A: Controlled by bit set/reset of PC<sub>6</sub>.
- **INTE B:** Controlled by bit set/reset of PC<sub>2</sub>.

#### Mode 2 – Bi directional bus:

- This mode is strobed bi-directional of operation of port with input and output capability.
- Mode 2 operation is only feasible for Port A, can be programmed to operate as a bi-directional port.
- If Port A is programmed in Mode 2, Port B can be used in either Mode 1 or Mode 0.
- In this mode of operation, PC<sub>3</sub> to PC<sub>7</sub> pins are used to control signals of Port A.
- The basic functional definitions are:
  - Used in Group A only
  - One 8-bit, bi-directional bus port (port A), and 5-bit control port (port C).
  - Both input and outputs are latched
  - 5-bit control port (port C) is used for control and status for the 8-bit,
     bi directional bus port (port A)

#### Mode 2 – Bi directional bus:



#### Mode 2 – Bi directional bus:

#### **IO Control Signal:**

• **INTR:** A high on this output can be used to interrupt the CPU for both input or output operations.

#### **Output Operations:**

- OBF: will go 'low' to indicate that the CPU has written data out to Port A.
- ACK: A 'low' on this input enables the three-state output buffer of Port A to send out the data.
- INT 1: Controlled by bit set/reset of PC<sub>4</sub>.

#### Input Operations:

- STB: A 'low' on this input loads data into the input latch.
- IBF: A 'high' on this output indicates that data has been loaded into the input latch.

• **INTE 2:** Controlled by bit set/reset of PC<sub>4</sub>.

#### Mode 2 – Bi directional bus: Mode and Timings





### 8255 – Single Bit Set/Reset mode

#### Single Bit Set/Reset Mode:

- In this mode, any of the eight bits of Port C can be set or reset using a single output instruction.
- This feature reduces software requirements in control-based applications.
- When Port C is being used as status/control for Port A or B, these bits can be set or reset by using the bit set/reset operation just as if they were output ports.

### 8255 – Single Bit Set/Reset mode

#### Single Bit Set/Reset Mode:



# CSE2006 Microprocessor & Interfacing

#### Module - 4

### Introduction to Peripheral Interfacing I

### Dr. E. Konguvel

Assistant Professor (Sr. Gr. 1),
Dept. of Embedded Technology,
School of Electronics Engineering (SENSE),
konguvel.e@vit.ac.in
9597812810



### Module 4: Introduction Peripheral Interfacing I

- Introduction
- Programmable Peripheral Interface 8255
- Programmable Counter/Interval Timer 8253
- Programmable Interrupt controller 8259

#### **Control Word:**

- The ports of 8255A can be operating any one mode by programming the internal register of 8255A.
- This internal register of 8255 PPI is known as Control Word Register (CWR).
- To program the ports of 8255, a control word is formed.
- Only write operation of the control word register is permissible and no read operation of the control word register is allowed.
- Writing the control word into control word register, the IC will be configured to operate specified modes of operation.

#### **Control Word:**

- D<sub>0</sub>: The D<sub>0</sub> bit is used to set Port C lower. When this bit is set to 1, Port C lower is an input port. If the bit is set to 0, Port C lower is an output port.
- **D**<sub>1</sub>: This bit is used for Port B. When this bit is set to 1, Port B is an input port. If the bit is set to 0, Port B is an output port.
- **D**<sub>2</sub>: The bit D<sub>2</sub> is used for the selection of the mode operation of Port B. If this bit is set to 0, Port B can be operating in Mode 0. For Mode 1 operation, D2 is set 1.
- **D**<sub>3</sub>: It is used for the Port C upper If the bit is set to 1, Port C upper is an input port. When the bit is set to 0, Port C upper is an output port.

#### **Control Word:**

- D<sub>4</sub>: The bit D<sub>4</sub> sets Port A for input or output operation. When this bit is 1, Port A can be used as input port. When it is 0, Port A becomes output port.
- D<sub>5</sub>: These bits are used to select the operating mode of Port A, for Port A can be operate in Mode 0, Mode 1 and Mode 2. The mode of operation is selected by D<sub>5</sub> and D<sub>6</sub> as given below:

| Mode of Port A | Bit No. $D_6$ | Bit No. $D_5$ |
|----------------|---------------|---------------|
| Mode 0         | 0             | 0             |
| Mode 1         | 0             | 1             |
| Mode 2         | 1             | 0 or 1        |

For Mode 2, bit No. 5 is set to either 0 or 1; it is immaterial.

• **D**<sub>7</sub>: This bit selects the I/O mode or bit set/reset mode. When it is 1 ports A, B and C are defined as input/output port. If it is set to 0, bit set/reset mode is selected.

#### **Control Words for Mode 0 operation:**

| Control word bits |       |       |       |       |       |       |       | Control word Port A Port Clower Port B Port Clowe |        |              |        |             |  |  |
|-------------------|-------|-------|-------|-------|-------|-------|-------|---------------------------------------------------|--------|--------------|--------|-------------|--|--|
|                   |       |       |       |       |       |       | ,     |                                                   | Ton A  | Tori C tower | Ton B  | rort Clower |  |  |
| $D_7$             | $D_6$ | $D_5$ | $D_4$ | $D_3$ | $D_2$ | $D_1$ | $D_0$ | <br>                                              | <br>   | L            | <br>   | <br>        |  |  |
| 1                 | 0     | 0     | 1     | 1     | 0     | 1     | 1     | 9B                                                | input  | input        | input  | input       |  |  |
| 1                 | 0     | 0     | 1     | 1     | 0     | 1     | 0     | 9A                                                | input  | input        | input  | output      |  |  |
| 1                 | 0     | 0     | 1     | 1     | 0     | 0     | 1     | 99                                                | input  | input        | output | input       |  |  |
| 1                 | 0     | 0     | 1     | 1     | 0     | 0     | 0     | 98                                                | input  | input        | output | output      |  |  |
| 1                 | 0     | 0     | 1     | 0     | 0     | 1     | 1     | 93                                                | input  | output       | input  | input       |  |  |
| 1                 | 0     | 0     | 1     | 0     | 0     | 1     | 0     | 92                                                | input  | output       | input  | output      |  |  |
| 1                 | 0     | 0     | 1     | 0     | 0     | 0     | 1     | 91                                                | input  | output       | output | input       |  |  |
| 1                 | 0     | 0     | 1     | 0     | 0     | 0     | 0     | 90                                                | input  | output       | output | output      |  |  |
| 1                 | 0     | 0     | 0     | 1     | 0     | 1     | 1     | 8B                                                | output | input        | input  | input       |  |  |
| 1                 | 0     | 0     | 0     | 1     | 0     | 1     | 0     | 8A                                                | output | input        | input  | output      |  |  |
| 1                 | 0     | 0     | 0     | 1     | 0     | 0     | 1     | 89                                                | output | input        | output | input       |  |  |
| 1                 | 0     | 0     | 0     | 1     | 0     | 0     | 0     | 88                                                | output | input        | output | output      |  |  |
| 1                 | 0     | 0     | 0     | 0     | 0     | 1     | 1     | 83                                                | output | output       | input  | input       |  |  |
| 1                 | 0     | 0     | 0     | 0     | 0     | 1     | 0     | 82                                                | output | output       | input  | output      |  |  |
| 1                 | 0     | 0     | 0     | 0     | 0     | 0     | 1     | 81                                                | output | output       | output | input       |  |  |
| 1                 | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 80                                                | output | output       | output | output      |  |  |

#### **Example 1:**

Determine control words when the ports of Intel 8255 are defined as follows:

Port A as an input port. Mode of the Port A is Mode 0.

Port B as an input port. Mode of the Port B is Mode 0.

Port C upper and C lower are input ports.

Bit. No.  $D_0$  is set to 1, as the Port C lower is an input port.

Bit No.  $D_1$  is set to 1, as the Port B is an input port.

Bit No. D<sub>2</sub> is set to 0, as the Port B has to operate in Mode 0.

Bit No. D<sub>3</sub> is set to 1, as the Port C upper is an input port.

Bit No.  $D_4$  is set to 1, as the Port A is an input port.

Bit No.  $D_5$  and  $D_6$  are set to 00 as the Port A has to operate in Mode 0.

Bit No.  $D_7$  is set to 1, as the Ports A, B and C are used as simple input/output port.

Thus the control word for above operation is 9B H.



#### **Example 2:**

Determine the control word for the following configuration of the ports of Intel 8255 for Mode 1 operation:

Port A is used as input and operation mode of Port A is Mode 1.

Port B can be used as output and operates in Mode 1.

 $PC_6$  and  $PC_7$  act as input.

Six pins of Port C, PC<sub>0</sub>-PC<sub>5</sub> are used to control Port A and Port B in Mode 1 operation. PC<sub>0</sub> PC<sub>2</sub> are used for the control of Port B. Port B can be programmed as an input or output port. When Port A is operated as an input port, PC<sub>3</sub>-PC<sub>5</sub> are used to control this port. In this operat-



ing mode,  $PC_6$  and  $PC_7$  may be used as input or output.

The control word for the above definition of the ports of Intel 8255 is BD H.

## 8255 – Applications

- Very powerful tool.
- Represents the optimum use of available pins and is flexible enough to interface almost any I/O device without the need for additional external logic.
- Each peripheral device in a microprocessor-based system usually has a 'service routine', manages the software interface between the device and the microprocessor.
- Matching information to the tables in the detailed operational description, a control word must be developed and loaded into control word register to initialize the 8255 IC to get a specified operation.

# 8255 – Applications

#### **Typical Applications:**

- Putting on LED as specified by the designer
- Generating a square wave at Port A
- Interfacing A/D converter
- Keyboard operation
- Sequential switching of lights
- Traffic light control
- Interfacing with dc motors and stepper motors

#### Example 3:

Interface an 8255 with 8086 to work as an I/O port. Initialize port A as output port, port B as input port and port C as output port. Port A address should be 0740H. Write a program to sense switch positions SW<sub>0</sub>-SW<sub>7</sub> connected at port B. The sensed pattern is to be displayed on port A, to which 8 LEDs are connected, while the port C lower displays number of on switches out of the total eight switches.

| Solution | The control | word is | decided | upon | as follows: |
|----------|-------------|---------|---------|------|-------------|
|----------|-------------|---------|---------|------|-------------|

| B7     |                 | $B_{\epsilon}$                          | , 1               | B <sub>5</sub>  | B               | $B_4$ $B_3$ |                 | $B_2$           |                 |                 | B <sub>1</sub>  | $B_0$           |                        | Control word    |                 |                 |           |
|--------|-----------------|-----------------------------------------|-------------------|-----------------|-----------------|-------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|------------------------|-----------------|-----------------|-----------------|-----------|
| 1      |                 | 0                                       | (                 | 0               | 0               |             | 0               |                 | 0               |                 |                 | 1               | 0                      | 0               |                 | = 82H           |           |
| 1/0    |                 | Port                                    | Α                 |                 | Port F          |             | Port I          |                 | Port            |                 | F               | Port            | Port                   |                 |                 |                 |           |
| mode   | in r            | mode 0 A,o/p C,o/p B,mode 0 B,i/p C,o/p |                   |                 |                 |             |                 |                 |                 |                 |                 |                 |                        |                 |                 |                 |           |
| 8255   |                 |                                         | I/O Address lines |                 |                 |             |                 |                 |                 |                 |                 |                 | Hex. Port<br>Addresses |                 |                 |                 |           |
| Ports  | A <sub>15</sub> | A <sub>14</sub>                         | A <sub>13</sub>   | A <sub>12</sub> | A <sub>11</sub> | A 10        | A <sub>09</sub> | A <sub>08</sub> | A <sub>07</sub> | A <sub>06</sub> | A <sub>05</sub> | A <sub>04</sub> | A <sub>03</sub>        | A <sub>02</sub> | A <sub>01</sub> | A <sub>00</sub> | , <b></b> |
| PortA  | 0               | 0                                       | 0                 | 0               | 0               | 1           | 1               | 1               | 0               | 1               | 0               | 0               | 0                      | 0               | 0               | 0               | 0740H     |
| Port B | 0               | 0                                       | 0                 | 0               | 0               | 1           | 1               | 1               | 0               | 1               | 0               | 0               | 0                      | 0               | 1               | 0               | 0742H     |
| Port C | 0               | 0                                       | 0                 | 0               | 0               | 1           | 1               | 1               | 0               | 1               | 0               | 0               | 0                      | 1               | 0               | 0               | 0744H     |
| CWR    | 0               | 0                                       | 0                 | 0               | 0               | 1           | 1               | 1               | 0               | 1               | 0               | 0               | 0                      | 1               | 1               | 0               | 0746H     |





```
MOV DX. 0746 H
                              : Initialise CWR with
    MOV AL. 82 H
                              : control word 82H
    OUT DX. AL
    SUB DX.04
                              ; Get address of port B in DX
    IN AL. DX
                              ; Read port B for switch
    SUB DX.02
                              ; positions in to AL and get port A address
                              : in DX.
    OUT DX. AL
                              ; Display switch positions on port A
    MOV BL, OO H
                              : Initialise BL for switch count
    MOV CH. 08H
                              : Initialise CH for total switch number
YY: ROL AL
                              ; Rotate AL through carry to check,
    JNC XX
                              : whether the switches are on or
    INC BL
                              : off. i.e. either 1 or 0
XX : DEC CH
                              : Check for next switch. If
    JNZ YY
                              : all switch are checked. the
    MOV AL. BL
                              : number of on switches are
    ADD DX. 04
                              ; in BL.Display it on port C
    OUT DX.AL
                              : lower.
    HLT
                              ; Stop
```

#### **Example 4**

Interface a 4\*4 Keyboard with 8086 using 8255, and write an ALP for detecting a key closure and return the key code in AL. The debouncing period for a key is 10 ms. Use software key debouncing technique. DEBOUNCE is an available 10 ms delay routine.

**Solution** Port A is used as output port for selecting a row of keys while port B is used as an input port for sensing a closed key. Thus the keyboard lines are selected one by one through port A and the port B lines are polled continuously till a key closure is sensed. Then routine DEBOUNCE is called for key debouncing. The key code is decided depending upon the selected row and a low sensed column.

The higher order lines of port A and port B are left unused. The addresses of port A and port B will be respectively 8000 H and 8002 H while the address of CWR will be 8006 H.

The control word for this problem will be 82 H...

#### **Example 4**



#### **Example 4**



```
Example 4
```

```
SEGMENT
CODE
               CS : CODE
START:
               MOV AL. 82H
                                      : Load CWR with
               MOV DX. 8006H
                                   : control word
               OUT DX, AL
                                   ; required
               MOV BL. OOH
                                   : Initialize BL for key code
               XOR AX. AX
                                   : Clear all flags
               MOV DX. 8000H
                                   : Port Address in AX.
                                   : Ground all rows.
               OUT DX. AL
               ADD DX.02
                                   : Port B address in DX.
    WAIT :
               IN AL. DX
                                   : Read all columns.
               AND AL. OF H
                                   : Mask data lines D<sub>2</sub>-D<sub>4</sub>.
               CMP AL, OF H
                                   ; Any key closed?
               JZ WAIT
                                   : If not, wait till key
               CALL DEBOUNCE
                                   : closure else wait for 10 ms
               MOV AL. 7FH
                                   : Load data byte to ground
               MOV BH. 04H
                                   : a row and set row counter.
    NXTROW :
               ROL AL. 01
                                   : Rotate AL to ground next row.
               MOV CH, AL
                                   ; Save data byte to ground next row.
               SUB DX.02
                                   : Output port address is in DX.
               OUT DX. AL
                                   : Ground one of the rows.
               ADD DX.02
                                   : Input port address is in DX.
               IN AL. DX
                                   ; Read input port for key closure.
               AND AL, OFH
                                   ; Mask D<sub>4</sub>-D<sub>7</sub>.
               MOV CL, 04H
                                   ; Set column counter.
    NXTCOL :
              ROR AL. 01
                                   : Move Dn in CF.
               JNC CODEKY
                                   ; Key closure is found, if CF=0.
               INC BL
                                   : Increment BL for next binary
                                   : key code.
               DEC CL
                                   : Decrement column counter.
                                   ; if no key closure found.
               JNZ NXTCOL
                                   ; Check for key closure in next column
               MOV AL.CH
                                   : Load data byte to ground next row.
               DEC BH
                                   ; if no key closer found in column
                                   ; get ready to ground next row.
               JNZ NXTROW
                                   ; Go back to ground next row.
               JMP WAIT
                                   ; Jump back to check for key.
                                   : closure again.
    CODEKY :
              MOV AL, BL
                                   ; Key code is transferred to AL.
                                   : Return to DOS prompt.
               MOV AH. 4CH
```

```
DEBOUNCE PROC NEAR
MOV CL, OE2H
BACK: NOP
DEC CL
JNZ BACK
RET
DEBOUNCE ENDP
CODE ENDS
END START
```

CSE2006 – EK 52

INT 21 H

#### **Example 4**

