Economics 6400: Econometrics

Lecture 7: Multiple Regression Analysis with Qualitative Information – Binary (or Dummy) Variables

CSU, East Bay

November 14, 2017

In the past few weeks...

- Our left- and right-hand side variables have been quantitative
 - Hourly wage rate, years of education, college GPA, air pollution, firm sales, birth weight
 - Magnitude of the variable conveys interpretable information
- Often we want to include qualitative factors
 - Gender or race, industry of a firm (financial versus consumer product), state in the U.S. (CA, IL, etc.)
 - We will use binary (0/1) variables to incorporate qualitative factors

Describing qualitative information

- Qualitative factors are usually described by a binary (yes/no or 0/1) relationship
 - A person is male or female; a person does or does not smoke;
 a state administers capital punishment or not
- Relevant information can be coded as a 1 (if true) or 0 if otherwise
 - E.g. the variable *female* = 1 if the person is female and *female* = 0 if the person is not female (i.e. male)
- It would not be incorrect to define a dummy variable with values other than 0 and 1 but it would make the interpretation more difficult with no apparent benefit

female and married are dummy variables

. list wage educ exper female married

	wage	educ	exper	female	married
1.	3.1	11	2	1	0
2.	3.2	12	22	1	1
3.	3	11	2	0	0
4.	6	8	44	0	1
5.	5.3	12	7	0	1
6.	8.8	16	9	0	1
7.	11	18	15	0	0
8.	5	12	5	1	0
9.	3.6	12	26	1	0
10.	18	17	22	0	1

Single dummy independent variable

Consider the hourly wage equation:

$$wage = \beta_0 + \beta_1 female + \beta_2 educ + u$$

- $m{\beta}_1$ is the difference in hourly wage between females and males, given the same amount of education and same error term u
- If β_1 < 0 then there is evidence for discrimination
- Given the zero conditional mean assumption and same level of education:

$$\beta_1 = E(wage|female = 1, educ) - E(wage|female = 0, educ)$$

 \blacksquare Situation can be illustrated graphically by an intercept shift equal to β_1

wage = $\beta_0 + \beta_1$ female + β_2 educ + u assuming $\beta_1 < 0$

Why no dummy variable for male?

- The intercept for males is β_0 , and the intercept for females is $\beta_0 + \beta_1$
- Since there are only two groups, we need only need two different intercepts
- Using two dummy variables would introduce perfect collinearity as male = 1 female
 - When using dummy variables, one category has to be omitted
- If we had chosen females to be the base group or benchmark group instead then the model would be:

$$wage = \beta_0 + \beta_1 male + \beta_2 educ + u$$

Testing for discrimination

Consider the hourly wage equation:

$$wage = \beta_0 + \beta_1 female + \beta_2 educ + \beta_3 exper + \beta_4 tenure + u$$

Estimating this equation using data from 1976:

wage	Coef.	Std. Err.	t	P> t	[95% Conf. Interval]				
female	-1.810852	.2648252	-6.84	0.000	-2.331109	-1.290596			
educ	.5715048	.0493373	11.58	0.000	.4745802	.6684293			
exper	.0253959	.0115694	2.20	0.029	.0026674	.0481243			
tenure	.1410051	.0211617	6.66	0.000	.0994323	.1825778			
_cons	-1.567939	.7245511	-2.16	0.031	-2.991339	144538			

- All else equal, women earn \$1.81 less per hour than men
- Coefficient is very statistically significant $(|t_{female}| \approx 7)$

Effect of training grants on hours of training

- A special case of policy analysis is program evaluation, in which we seek to determine the effect of economic or social programs
- In the simplest case there are two groups:
 - 1 Control group: does not participate in the program
 - 2 Experimental (or treatment) group: does take part in the program
- Consider the effect of a training grant:

$$hrsemp = \beta_0 + \beta_1 grant + \beta_2 \log(sales) + \beta_3 \log(employ) + u$$

where hrsmp is hours of training per employee and grant=1 if the firm received a grant

Effect of training grants on hours of training

Estimating this equation using data from 1988:

hrsemp	Coef.	Coef. Std. Err.		P> t	[95% Conf. Interval]			
grant	26.2545	5.591765	4.70	0.000	15.16194	37.34705		
lsales	9845809	3.539903	-0.28	0.781	-8.006797	6.037635		
lemploy	-6.069871	3.882893	-1.56	0.121	-13.77249	1.632744		
_cons	46.66508	43.4121	1.07	0.285	-39.45284	132.783		

- The variable grant is very statistically significant $(t_{grant} \approx 5)$
- A firm that received a grant trained each worker 26.25 hours on average more than firms who did not receive a grant, controlling for sales and employment

Interpreting coefficients on dummy right-hand side variables when dependent variable is log(y)

When the dependent variable appears in logarithmic form, such as in the house price equation:

$$\widehat{\log(\textit{price})} = -1.35 + 0.168 \log(\textit{lotsize}) + 0.707 \log(\textit{sqrft}) \\ + 0.027 \textit{bdrms} + 0.054 \textit{colonial}$$

then the coefficient on the dummy has a % interpretation

- In the above example, the dummy variable *colonial* (=1 if the house has a colonial style) implies that a house with a colonial style is predicted to sell for about 5.4% more, holding other factors fixed
- For larger coefficients, the exact percentage difference is: $100 \cdot [exp(\hat{\beta}_j) 1]$

Using dummy variables for multiple categories

- Suppose we wanted to add a dummy variable for married to the log(wage) equation
 - The coefficient would indicate the percentage change in salary from being married all else equal, including gender
- If we wanted to allow the effect from being married to differ for females and males we could add three dummy variables:
 - 1 marrmale
 - 2 marrfem
 - 3 singfem
- The excluded/base group is single men
- lacksquare General rule: if the regression model includes g groups, then we need to include g-1 dummy variables in the model along with an intercept

Estimating the model

- . gen marrmale=(1-female)*married
- . gen marrfem=female*married
- . gen singfem=female*(1-married)
- . reg lwage marrmale marrfem singfem educ exper expersq tenure tenursq

lwage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]	
marrmale	.2126757	.0553572	3.84	0.000	.103923	.3214284	
marrfem	1982676	.0578355	-3.43	0.001	311889	0846462	
singfem	1103502	.0557421	-1.98	0.048	219859	0008414	
educ	.0789103	.0066945	11.79	0.000	.0657585	.092062	
exper	.0268006	.0052428	5.11	0.000	.0165007	.0371005	
expersq	0005352	.0001104	-4.85	0.000	0007522	0003183	
tenure	.0290875	.006762	4.30	0.000	.0158031	.0423719	
tenursq	0005331	.0002312	-2.31	0.022	0009874	0000789	
_cons	.3213781	.100009	3.21	0.001	.1249041	.5178521	

Using dummy variables for multiple categories

- All of the coefficients are statistically significant
- To interpret the coefficients on the dummy variable, note that the base group is single men
 - Married men, all else equal, earn 21.3% more than single men
 - Married women, all else equal, earn 19.8% less than single men
 - Single women, all else equal, earn 11.0% less than single men
- Single women earn -11.0 (-19.8) = 8.8% more than married women
 - To check if this is a statistically significant difference, it is easiest to re-run the regression with married women as the excluded/base group and see if the coefficient on *singfem* is statistically significant

Incorporating ordinal information by using dummy variables

- We can also use dummy variables to deal with ordinal variables such as rankings or ratings, in which one unit increases are difficult to interpret quantitatively
- Example: Credit ratings for local government debt, which can be one of 5 ratings: $CR \in \{0, 1, 2, 3, 4\}$
 - Denote 0 credit rating as the base group and create four dummy variables, e.g. $CR_1=1$ if rating is 1, and 0 if otherwise
- Consider the following equation for the municipal bond rate:

$$MBR = \beta_0 + \delta_1 CR_1 + \delta_2 CR_2 + \delta_3 CR_3 + \delta_4 CR_4 + other$$
 factors

- Movement between different ratings is allowed to have a different effect
 - Difference between 3 and 2 credit rating is $\delta_3 \delta_2$

Grouping ordinal values

- In some cases the ordinal values take on too many values (e.g. law school rankings)
- One option is to categorize the ordinal values (e.g. top 10 law schools, schools ranked 11-25, schools ranked 26-40 etc.)
- Example: Effect of physical attractiveness on wage
 - Each person is ranked for physical attractiveness (homely, quite plain, average, good looking, strikingly beautiful or handsome)
 - Group bottom and top two categories
 - Results from Hamermesh and Biddle (1994) for men:

$$\widehat{\log(wage)} = \hat{eta}_0 - 0.164 \textit{belavg} + 0.016 \textit{abvavg} + \textit{other factors}$$

- Below average looking men earn 16.4% less than average looking men
- Above average men earn 1.6% more than average looking men (but not statistically significant)

Interactions involving dummy variables

We can recast the wage model using interactions between female and married:

$$\widehat{\log(wage)} = 0.321 - 0.110$$
 female $+ 0.213$ married $- 0.301$ female \cdot married $+ \dots$

- Interpreting the coefficients:
 - log(wage) is 0.321+0.213=0.534 for married men
 - \bullet Estimated wage is 11% less for single women compared to single men
 - Estimated wage is -0.11+0.213-0.301=19.8% less for married women compared to single men

Allowing for different slopes: Interactions between dummy with non-dummy explanatory variables

- Suppose we seek to test whether the returns to education are different from women and men:
- We can accomplish this with an interaction between female and education:

$$\log(wage) = \beta_0 + \beta_1 female + \beta_2 educ + \beta_3 female \cdot educ + u$$

- If female = 0 then intercept for males is β_0 and the slope on education is β_2
- If $\mathit{female} = 1$ then intercept for females is $\beta_0 + \beta_1$ and the slope is $\beta_2 + \beta_3$

Different slopes: Left panel: $\beta_1 < 0$, $\beta_3 < 0$, Right panel: $\beta_1 < 0$, $\beta_3 > 0$

 In the right panel, women earn less than men at low levels of education but the gap narrows as both men and women obtain more education

Testing for differential returns

- Two interesting hypotheses to test:
 - **11** H_0 : $\beta_3 = 0$ (return to education same for both sexes)
 - **2** H_0 : $\beta_1 = 0$ and $\beta_3 = 0$ (whole equation same for both sexes)

lwage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
female	2267886	.1675394	-1.35	0.176	5559289	.1023517
educ	.0823692	.0084699	9.72	0.000	.0657296	.0990088
female_educ	0055645	.0130618	-0.43	0.670	0312252	.0200962
exper	.0293366	.0049842	5.89	0.000	.019545	.0391283
expersq	0005804	.0001075	-5.40	0.000	0007916	0003691
tenure	.0318967	.006864	4.65	0.000	.018412	.0453814
tenursq	00059	.0002352	-2.51	0.012	001052	000128
_cons	.388806	.1186871	3.28	0.001	.1556388	.6219732

- Coefficient on *female_educ* is not statistically significant
- Coefficient on female now insignificant due to multicollinearity

Testing for differences in regression functions across groups

- Often we want to test whether two populations follow the same regression function
- Consider the model of GPAs for college athletes:

$$cumgpa = \beta_0 + \beta_1 sat + \beta_2 hsperc + \beta_3 tothrs + u$$

where *hsperc* is high school rank percentile, and *tothrs* is total hours on college courses

- We want to see if there are any differences between sexes
- One option is to create a series of interactions:

$$\begin{aligned} \textit{cumgpa} = & \beta_0 + \beta_1 \textit{female} + \beta_2 \textit{sat} + \beta_3 \textit{female} \cdot \textit{sat} \\ & + \beta_4 \textit{hsperc} + \beta_5 \textit{female} \cdot \textit{hsperc} + \beta_6 \textit{tothrs} \\ & + \beta_7 \textit{female} \cdot \textit{tothrs} + \textit{u} \end{aligned}$$

Unrestricted model results

Source	SS	df	MS		Number of obs	= 366
Source	33	ui	1113			
Model Residual	53.5391808 78.3545052		184544 367333		F(7, 358) Prob > F R-squared	= 0.0000 = 0.4059
Total	131.893686	365 .3613	352564		Adj R-squared Root MSE	= 0.3943 = .46783
cumgpa	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
female sat	3534862 .0010516	.4105293 .0001811	-0.86 5.81	0.390	-1.160838 .0006955	.4538659 .0014078
female_sat	.0007506	.0003852	1.95	0.052	-6.88e-06	.0015081
hsperc female_hsperc	0084516 0005498	.0013704 .0031617	-6.17 -0.17	0.000 0.862	0111465 0067676	0057566 .0056681
tothrs	.0023441	.0008624	2.72	0.007	.0006482	.0040401
female_tothrs _cons	0001158 1.480812	.0016277 .2073336	-0.07 7.14	0.943 0.000	0033169 1.073067	.0030852 1.888557

Testing for differences in regression functions across groups

Null hypothesis that cumgpa follows the same model for males and females:

$$H_0: \beta_1 = 0, \beta_3 = 0, \beta_5 = 0, \beta_7 = 0$$

- t statistics for female and the interactions are not large
- But these variables are highly correlated so an F test is required
- $SSR_{UR} = 78.354$, $SSR_R = 85.515$ (next slide), q = 4
- F statistic is:

$$F = \frac{(SSR_R - SSR_{UR})/q}{SSR_{UR}/(n-k-1)} = \frac{(85.515 - 78.354)/4}{78.354/(366 - 7 - 1)} = 8.175$$

 Critical value at 5% level is 2.37 so we can reject the null hypothesis

Restricted model results

		ı	
	df	SS	Source
15.4	3	46.3786194	Model
.236	362	85.5150666	Residual
.361	365	131.893686	Total
Err.	Std.	Coef.	cumgpa
648	.000	.001185	sat
446	.0012	0099569	hsperc
554	.000	.0023429	tothrs
782	. 1836	1.49085	_cons
2294	.3613525 Err. 1648 7 2446 –8 7554 3	362 .2362294 365 .3613525 Std. Err0001648 7 .0012446 -8 .0007554 3	85.5150666 362 .2362294 131.893686 365 .3613525 Coef. Std. Err. .001185 .0001648 70099569 .0012446 -8 .0023429 .0007554 3

When there are too many independent variables?

- F test can be adapted for cases with two groups but too many independent variables to construct interactions for
- Key insight: the SSR from the unrestricted model can be obtained from two separate regressions, one for each group giving SSR₁ and SSR₂
- $SSR_1 + SSR_2$ can be compared to SSR_P , which is obtained by running a regression on the pooled/combined sample
- Unrestricted model, with a group dummy variable and k interaction terms has n 2(k + 1) degrees of freedom
- F or Chow statistic is:

$$F = \frac{[SSR_P - (SSR_1 + SSR_2)]/(k+1)}{(SSR_1 + SSR_2)/[n-2(k+1)]}$$

Computing the Chow statistic

. reg cumgpa sat hsperc tothrs if spring==1 & female==0

Source	SS	df	MS
Model Residual	27.2497343 58.7517192		9.08324475 .215998968
Total	86.0014535	275	.312732558

. reg cumgpa sat hsperc tothrs if spring==1 & female==1

_	Source	SS	df	MS
	Model Residual	13.1465734 19.602786	3 86	4.38219113 .227939372
	Total	32.7493594	89	.36797033

$$F = \frac{[85.515 - (58.752 + 19.603)]/4}{(58.752 + 19.603)/358} = 8.175$$

Testing for different slopes but same intercept

- Chow test tests for no differences at all between groups
- A similar F statistic can be calculated for this test
 - Replace SSR_P with SSR from a regression with an intercept shift but no interaction terms
 - F statistic becomes:

$$F = \frac{[SSR_P - (SSR_1 + SSR_2)]/k}{(SSR_1 + SSR_2)/[n - 2(k+1)]}$$

• For wage example $SSR_{UR} = 79.362$ so F statistic is:

$$F = \frac{[79.362 - (58.752 + 19.603)]/3}{(58.752 + 19.603)/358} = 1.533$$

- p value ≈ 0.205 so cannot reject null that slopes are the same
- This result combined with the Chow test result suggest the best model allows for a different intercept but no interaction terms (i.e. no differential slopes)

Pooled model with intercept shift but no interaction terms

. reg cumgpa female sat hsperc tothrs if spring==1

Sou	rce	55	ат		MS		Number of obs		366
							F(4, 361)	=	59.74
Mod	del	52.5320205	4	13.1	.330051		Prob > F	=	0.0000
Resido	ual	79.3616656	361	.219	838409		R-squared	=	0.3983
							Adj R-squared	=	0.3916
To	tal	131.893686	365	.361	352564		Root MSE	=	.46887
		I							
cumo	gpa	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
fema	ale	.3100975	. 0586	5128	5.29	0.000	.1948321		4253629
9	sat	.0012144	.000	1591	7.63	0.000	.0009016		0015272
hspe	erc	0084413	.001	2343	-6.84	0.000	0108687		0060139
totl	hrs	.0024638	.000	7291	3.38	0.001	.00103		0038976
	ons	1.328541	. 1798		7.39	0.000	.9748996		.682182
	0113	2.520541		,,,,		0.500	40330	•	· OOLIOL

A binary dependent variable: The Linear Probability Model

- We can also use binary/dummy variables as left-hand side variables
- Predicted or expected value is the probability of "success:"

$$P(y = 1|\mathbf{x}) = \beta_0 + \beta_1 x_1 + \ldots + \beta_k x_k$$

- Multiple linear regression model with a binary dependent variable is called the linear probability model (LPM)
- β_j measures the change in the probability of success when x_j changes, holding other factors fixed:

$$\Delta P(y=1|\mathbf{x}) = \beta_i \Delta x_i$$

Linear probability model of arrests

- Let arr86 be a binary variable equal to 1 if a man was arrested during 1986, and zero if otherwise
- Population is group of young men in CA born 1960 or 1961 who have at least one prior arrest
- LPM for arr86 is:

$$arr86 = \beta_0 + \beta_1 pcnv + \beta_2 avgsen + \beta_3 tottime + \beta_4 ptime86 + \beta_5 qemp86 + u$$

where

- pcnv = proportion of prior arrests that led to a conviction
- avgsen = average sentence served from prior convictions
- tottime = months spent in prison since age 18 prior to 1986
- ptime86 = months spent in prison in 1986
- qemp86 = number of quarters (0 to 4) that the man was legally employed in 1986

Linear probability model of arrests

. reg arr86 pcnv avgsen tottime ptime qemp86

_	Source	SS		df MS		Number of obs		2725 27.03	
	Model Residual	25.8452455 519.971268	5 2719		904909 236215		Prob > F R-squared	=	0.0000 0.0474
	Total	545.816514	2724	.20	037317		Adj R-squared Root MSE	=	0.0456 .43731
_	arr86	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
	pcnv avgsen tottime ptime86 qemp86 _cons	1624448 .0061127 0022616 0219664 0428294 .4406154	.0212 .006 .0049 .0046 .0054	3452 781 349 946	-7.65 0.95 -0.45 -4.74 -7.92 25.57	0.000 0.344 0.650 0.000 0.000	2040866 0065385 0120229 0310547 0534268 .4068246	-: 	.120803 .018764 0074997 0128781 0322319 4744063

Linear probability model of arrests

Interpreting coefficients:

- avgsen and tottime are insignificant
- Intercept of 0.441 implies that someone who has not been convicted, spent no time in prison, and was unemployed in 1986, has a 44% predicted probability of being arrested
- Coefficient on *pcnv* implies that a 50% increase in proportion of convictions reduces probability by $0.5 \cdot 0.162 = 8.1\%$
- Coefficient on *ptime*86 implies that six more months in prison reduces probability of arrest by $0.022 \cdot 6 = 13.2\%$
- Coefficient on qemp86 implies a man employed all four quarters is $4 \cdot -0.043 = 17.2\%$ less likely to be arrested than a man who is not employed at all, all else equal

Advantages and disadvantages of LPM

Disadvantages

- Predicted probabilities can be larger than 1 and smaller than 0
- Marginal probability effects sometimes logically impossible
- LPM is necessarily heteroskedastic:

$$Var(y|\mathbf{x}) = E(y^{2}|\mathbf{x}) - E(y|\mathbf{x})^{2}$$

$$= P(y = 1|\mathbf{x}) \cdot 1^{2} + (1 - P(y = 1|\mathbf{x})) \cdot 0^{2}$$

$$- (P(y = 1|\mathbf{x}) \cdot 1 + (1 - P(y = 1|\mathbf{x}) \cdot 0)^{2}$$

$$= P(y = 1|\mathbf{x})[1 - P(y = 1|\mathbf{x})]$$

- Need to estimate heteroskedasticity consistent standard errors
- Advantages of the LPM
 - Easy estimation and interpretation
 - Estimated effects and predictions often reasonably good in practice

Policy analysis and program evaluation

Example: Effect of job training grants on worker productivity

$$\widehat{\log(scrap)} = 4.99 - 0.052 grant - 0.455 \log(sales) + 0.639 \log(employ)$$

where *scrap* is the firm's scrap rate (% of failed assemblies or material that cannot be repaired or restored), and *grant* is a dummy variable indicating whether the firm received a grant in 1988 for job training

■ Firms receiving the grant have scrap rates 5.2% lower than firms without grants, all else equal

Self-selection into treatment as a source for endogeneity

- Treatment group: grant receivers, Control group: firms that received no grant
- Concern: grants were not assigned randomly but were given out on a first-come, first-served basis
 - Might be that firms with less productive workers saw an opportunity to improve productivity and applied first
 - Would imply a large effect from the grant since those firms stood the most to gain
 - Unobserved factors affecting productivity such as education, ability, experience, tenure etc. are correlated with the grant
 - In experiments, assignment to treatment is random so causal effects can be inferred using a simple regression:

$$y = \beta_0 + \beta_1 partic + u$$

where partic indicates participation (1) or not (0)

Further example of an endogenous dummy regressor

Are nonwhite customers discriminated against?

approved =
$$\beta_0 + \beta_1$$
 nonwhite + β_2 income + β_3 wealth + β_4 credrate + u

where approved is a dummy indicating whether a mortgage application approved, and nonwhite is a dummy for minorities

- It is important to control for other characteristics that may be important for loan approval (e.g. profession, unemployment)
- Omitting important characteristics that are correlated with the *nonwhite* dummy will produce spurious evidence for discrimination

Next lecture

■ Further Issues and Heteroskedasticity (Chapter 8)