

Priority Queues - HeapSort Algorithmen und Datenstrukturen 2

Grüne Farbe: Bitte im Script nachtragen

Repetition Heaps

1. Ansatz: Heap-Sort basierend auf Min-Heap


```
public int[] sort(int[] values) {
   int[] sorted = new int[values.length];

MinPQ minPQ = new MinPQ(values);

for (int i=0; i < values.length; i++){
    sorted[i] = minPQ.removeMin();
   }
   return sorted;
}</pre>
```


1. Ansatz: Komplexitätsanalyse: Heap-Sort basierend auf Min-Heap

```
public int[] sort(int[] values) {
   int[] sorted = new int[values.length];

MinPQ minPQ = new MinPQ(values);

for (int i=0; i < values.length; i++){
     sorted[i] = minPQ.removeMin();
   }
   return sorted;
}</pre>
```


1. Ansatz: Komplexitätsanalyse: Heap-Sort basierend auf Min-Heap

```
public int[] sort(int[] values) {
   int[] sorted = new int[values.length];

MinPQ minPQ = new MinPQ(values);

for (int i=0; i < values.length; i++){
        Sorted[i] = minPQ.removeMin();
    }
    return sorted;
}</pre>
O(n log n)
O(log n)
```

Insgesamt: $O(n \log n) + O(n \log n) = 2 (O(n \log n) \in O(n \log n) (Worst und Best Case)$

1. Ansatz: Komplexitätsanalyse: Heap-Sort basierend auf Min-Heap

```
public int[] sort(int[] values) {
   int[] sorted = new int[values.length];

MinPQ minPQ = new MinPQ(values);

for (int i=0; i < values.length; i++){
        sorted[i] = minPQ.removeMin();
   }
   return sorted;
}</pre>
O(n log n)

O(n log n)
```

Insgesamt: $O(n \log n) + O(n \log n) = 2 (O(n \log n) \in O(n \log n) (Worst und Best Case)$

1. Schritt: Anstatt removeMax() wird swap() ausgeführt:

2. Schritt: Heap verkleinern

3. Schritt: Ordnungs-Relation wiederherstellen (siftDown)

Und diese 3 Schritte für alle Elemente...

Heap-Sort: Phase 1: Ergänzungen im Script (Kap. 5.8, Seite 6)

Heap-Wurzel liegt bei Index: 0

Heap-Bereich: [0...i]

An der Wurzel sollte das grösste Element zu finden sein, d.h es wird ein Max-Heap benötigt.

Heap-Sort: Phase 2: Ergänzungen im Script (Kap. 5.8, Seite 7)

Heap-Sort Zusammenfassung

- O(n log n) (optimal)
- In-Place
- Nicht stabil!
- Obwohl O(n log n) in Praxis langsamer als Quicksort
 - Quicksort hat bessere Avg-Performance
 - HeapSort nutzt Caches schlecht
 - Quicksort Worst Case Wahrscheinlichkeit kann auf Minimum reduziert werden (median-of-3)
- Optional: Introsort (Hybrid-Ansatz Quicksort HeapSort)

Effizienter Heap-Aufbau (Phase 1) nach Floyd

- Input-Array nehmen und direkt als (Max-)Heap abbilden
 - 2 Invarianten bereits erfüllt (Binärer Suchbaum, Struktur-Relation)
 - Verletzt: Ordnungsrelation

Effizienter Heap-Aufbau (Phase 1) nach Floyd

- Ordnungsrelation korrigieren (Max-Heap)
- Blattknoten erfüllen bereits automatisch Bedingung
- Für alle inneren Knoten:
 - Rückwärts die inneren Knoten durchlaufen und siftDown ausführen

Floyd Heap-Aufbau Beispiel (1)

Floyd Heap-Aufbau Beispiel (2)

Floyd Heap-Aufbau Beispiel (3)

Floyd Heap-Aufbau Beispiel (4)

Floyd Heap-Aufbau Beispiel (5)

Floyd Heap-Aufbau Beispiel (6)

Floyd Heap-Aufbau Beispiel (7) - Schlussbild

Selbststudium

1. Gegeben sei ein Array mit den folgenden Zahlen:

- Führen Sie den Heap-Aufbau nach Floyd aus, um aus den Daten ein Max-Heap zu erzeugen
- 2. Führen Sie auf dem erzeugten Heap einen HeapSort aus
- 2. Vervollständigen Sie im Script auf der letzten Seite die beiden Abschnitte:
 - 1. Array-Indizes der Blätter (abhängig von n) ergänzen
 - 2. Programmcode am Ende des Scripts unter «Nimmt man nun schrittweise die…» Achtung, max. 3 Zeilen Code (siftUp, siftDown bereits vorhanden)
- 3. Machen Sie Programmierübung 2 HeapSort (Beschreiben in «Anleitung für Selbststudium»)

Lösung Aufgabe 1:

Lösung Aufgabe 2:

Wurzelelement an Index: 0

In einem Array mit n Elementen haben die Blätter die Indizes

von
$$(n-1-1)/2+1 = n/2$$

bis $n-1$ Vorgänger des letzten Elementes ist letzter innerer Unoten

Nimmt man nun schrittweise rückwärts die restlichen Knoten dazu, muss die Ordnungs-Eigenschaft ggf. mittels eines *siftDown* des jeweils neu betrachteten Knoten etabliert werden.

Wurzelelement an Index: 1

Blätter von: (n/2) + 1

Blätter bis: n

Schleife: for (i = n/2; i >= 1; i--) siftDown(i)