ANALYTIC GEOMETRY, PROBLEM SET 2

More polar coordinates

- 1. Let ABCDEF be a regular hexagon with size length l. Find the polar coordinates of its vertices in each of the following cases:
 - a) The center of the hexagon O is chosen as the pole and the half-line [OA is set as the polar axis.
 - b) The vertex A is chosen as the pole and the half-line [AB] is set as the polar axis.
- **2.** Find the polar equation corresponding to the given Cartesian equation: a) y = 5; b) x + 1 = 0; c) y = 7x; d) 3x + 8y + 6 = 0; e) $y^2 = -4x + 4$; f) $x^2 12y 36 = 0$; g) $x^2 + y^2 = 36$; h) $x^2 y^2 = 25$. Briefly give a geometric interpretation for the solutions to these equations.
- **3.** Find the polar coordinates of the point $P \in \mathcal{E}_2$, whose rectangular (Cartesian) coordinates are $(1 + \cos \alpha, \sin \alpha)$, where $\alpha \in (0, 2\pi)$ is fixed.

Cylindrical and spherical (everything is in 3D here)

Warmp-up 1. In the cylindrical coordinate system, what do the following equations represent in \mathcal{E}_3 ?

- a) $r = r_0$, where $r_0 \in \mathbb{R}_{\geq 0}$ is fixed; b) $\theta = \theta_0$, where $\theta_0 \in [0, 2\pi)$ is fixed;
- c) $z = z_0$, where $z_0 \in \mathbb{R}$ is fixed.

Warm-up 2. In the spherical coordinate system, what do the following equations represent in \mathcal{E}_3 ?

- a) $\rho = \rho_0$, where $\rho_0 \in \mathbb{R}_{\geq 0}$ is fixed; b) $\theta = \theta_0$, where $\theta_0 \in [0, 2\pi)$ is fixed;
- c) $\varphi = \varphi_0$, where $\varphi_0 \in [0, \pi]$ is fixed.
- **4.** Let $P_1(r_1, \theta_1, z_1)$ and $P_2(r_2, \theta_2, z_2)$ be points in \mathcal{E}_3 expressed using their cylindrical coordinates. Find the distance P_1P_2 , as an expression of r_i, θ_i, z_i , where $i \in \{1, 2\}$.
- **5.** Let $P_1(r_1, \theta_1, \varphi_1)$ and $P_2(r_2, \theta_2, \varphi_2)$ be points in \mathcal{E}_3 , expressed using their spherical coordinates. Find the distance P_1P_2 , as an expression of r_i, θ_i, φ_i , where $i \in \{1, 2\}$.
- **6.** Determine, in cylindrical coordinates, the equation of the surface whose equation in rectangular coordinates is $z = x^2 + y^2 2x + y$.
- 7. Find the equation, in rectangular coordinates, of the surface whose equation in cylindrical coordinates is $r = 4\cos(\theta)$. Explain what the equation describes geometrically.
- 8. (Non-examinable) Three spheres are pairwise exterior tangent; a plane is tangent to these spheres at points A, B and C. Find the radii of the spheres in terms of a, b, c, representing the lengths of the sides of triangle ABC.

Date: October 2, 2021.

Time permitting...

9. Let M and N be the midpoints of two opposite sides of a quadrilateral ABCD and let P be the midpoint of [MN]. Prove that $\overline{PA} + \overline{PB} + \overline{PC} + \overline{PD} = \overline{0}$.

10. In the plane determined by the triangle \overrightarrow{ABC} , let us consider the points \overrightarrow{M} , \overrightarrow{N} , \overrightarrow{P} , \overrightarrow{Q} such that $\overrightarrow{AM} = \frac{2}{3}\overrightarrow{AB}$, $2\overrightarrow{NA} + \overrightarrow{NC} = \overrightarrow{0}$, $\overrightarrow{AP} = \frac{2}{5}\overrightarrow{AB}$ and $3\overrightarrow{QA} + 2\overrightarrow{QB} + \overrightarrow{QC} = \overrightarrow{0}$.

(1) Find $\alpha \in \mathbb{R}$ such that $\overrightarrow{QN} = \alpha \cdot \overrightarrow{QM}$. (2) Find $\beta \in \mathbb{R}$ such that $\overrightarrow{CQ} = \beta \cdot \overrightarrow{QP}$. (3) Find the value of the ratio $\frac{QA}{QR}$, where $AQ \cap BC = \{R\}$.