

ΟΡΓΑΝΩΣΗ ΚΑΙ ΣΧΕΔΙΑΣΗ ΥΠΟΛΟΓΙΣΤΩΝ

Εκδοση Ε

Η διασύνδεση υλικού και λογισμικού

Κεφάλαιο 3

Αριθμητική για υπολογιστές

Αριθμητική για υπολογιστές

- Πράξεις με ακέραιους αριθμούς
 - Πρόσθεση και αφαίρεση
 - Πολλαπλασιασμός και διαίρεση
 - Πώς αντιμετωπίζεται η υπερχείλιση
- Πραγματικοί αριθμοί κινητής υποδιαστολής
 - Αναπαράσταση και πράξεις

Πρόσθεση ακεραίων

Παράδειγμα: 7 + 6

- Αν το αποτέλεσμα είναι εκτός εύρους, υπερχείλιση
 - Στην πρόσθεση ενός θετικού και ενός αρνητικού τελεστέου: δεν παρατηρείται υπερχείλιση
 - Στην πρόσθεση δύο θετικών τελεστέων
 - Υπερχείλιση αν το πρόσημο του αποτελέσματος είναι 1
 - Στην πρόσθεση δύο αρνητικών τελεστέων
 - Υπερχείλιση αν το πρόσημο του αποτελέσματος είναι 0

Αφαίρεση ακεραίων

- Πρόσθεση του αντιθέτου του δεύτερου τελεστέου
- Παράδειγμα: 7 6 = 7 + (–6)
 - +7: 0000 0000 ... 0000 0111
 - <u>-6: 1111 1111 ... 1111 1010</u>
 - +1: 0000 0000 ... 0000 0001
- Αν το αποτέλεσμα είναι εκτός εύρους, υπερχείλιση
 - Στην αφαίρεση δύο θετικών ή δύο αρνητικών τελεστέων: δεν παρατηρείται υπερχείλιση
 - Στην πρόσθεση ενός θετικού από έναν αρνητικό τελεστέο
 - Υπερχείλιση αν το πρόσημο του αποτελέσματος είναι 0
 - Στην αφαίρεση ενός αρνητικού από έναν θετικό τελεστέο
 - Υπερχείλιση αν το πρόσημο του αποτελέσματος είναι 1

Αριθμητική για πολυμέσα

- Τα γραφικά και η επεξεργασία πολυμέσων γίνεται σε διανύσματα δεδομένων των 8 bit και των 16 bit
 - Χρήση αθροιστή 64 bit, με διαμέριση των αλυσίδων των κρατουμένων
 - Πράξεις σε διανύσματα 8×8 bit, 4×16 bit, ή 2×32 bit
 - SIMD (single-instruction, multiple-data –μία εντολή, πολλά δεδομένα)
- Λειτουργίες κορεσμού
 - Στην υπερχείλιση, το αποτέλεσμα είναι η μεγαλύτερη τιμή που μπορεί να αναπαρασταθεί
 - πρβλ. αριθμητική modulo συμπληρώματος ως προς δύο
 - π.χ. περικοπή ηχητικών αποσπασμάτων, κορεσμός σε βίντεο

Πολλαπλασιασμός

Πολλαπλασιασμός αριθμών με το χέρι

Το μήκος του γινομένου είναι το άθροισμα των μηκών των τελεστέων

Υλικό πολλαπλασιασμού

Βελτιστοποιημένος πολλαπλασιασμός

Παράλληλη εκτέλεση των βημάτων: πρόσθεση/ολίσθηση

- Ενας κύκλος για την πρόσθεση κάθε μερικού γινομένου
 - Αποδεκτό αν γίνονται λίγες πράξεις πολλαπλασιασμού

Ταχύτερος πολλαπλασιασμός

- Χρήση περισσότερων του ενός αθροιστών
 - Συμβιβασμός ανάμεσα σε κόστος και απόδοση

- Υλοποιείται και με διοχέτευση
 - Παράλληλη εκτέλεση πολλών πράξεων πολλαπλασιασμού

Πολλαπλασιασμός RISC-V

- Τέσσερις εντολές multiply:
 - mul: multiply
 - Δίνει τα 32 χαμηλότερα bit του γινομένου
 - mulh: multiply high
 - Δίνει τα 32 υψηλότερα bit του γινομένου, εφόσον οι τελεστέοι είναι προσημασμένοι
 - mulhu: multiply high unsigned
 - Δίνει τα 32 υψηλότερα bit του γινομένου, εφόσον οι τελεστέοι είναι μη προσημασμένοι
 - mulhsu: multiply high signed/unsigned
 - Δίνει τα 32 υψηλότερα bit του γινομένου, εφόσον ο ένας τελεστέος είναι προσημασμένος και ο άλλος μη προσημασμένος
 - Χρήση του αποτελέσματος της mulh για έλεγχο υπερχείλισης από τον πολλαπλασιασμό των 32 bit

Διαίρεση

τελεστέοι των *n* bit δίνουν πηλίκο και υπόλοιπο των *n*-bit

- Έλεγχος για διαίρεση με το 0
- Διαίρεση αριθμών με το χέρι
 - Av bit διαιρέτη ≤ bit διαιρετέου
 - 1 bit στο πηλίκο, αφαίρεση
 - Ειδάλλως
 - 0 bit στο πηλίκο, κατέβασμα του επόμενου bit του διαιρετέου

Διαίρεση με επαναφορά

Γίνεται η αφαίρεση· αν υπόλοιπο < 0,
 πρόσθεση ξανά του διαιρέτη

Προσημασμένη διαίρεση

- Διαίρεση με απόλυτες τιμές
- Κατάλληλη προσαρμογή του προσήμου του πηλίκου και του υπολοίπου

Υλικό διαίρεσης

Βελτιστοποιημένη διαίρεση

- Ενας κύκλος για την αφαίρεση κάθε μερικού υπολοίπου
- Μοιάζει πολύ με πολλαπλασιασμό!
 - Μπορεί να χρησιμοποιηθεί το ίδιο υλικό τόσο για πολλαπλασιασμό όσο και για διαίρεση

Ταχύτερη διαίρεση

- Δεν μπορεί να χρησιμοποιηθεί υλικό παράλληλης εκτέλεσης όπως στον πολλαπλασιασμό
 - Η αφαίρεση εξαρτάται από το πρόσημο του υπολοίπου
- Στις ταχύτερες τεχνικές διαίρεσης (π.χ. διαίρεση SRT) παράγονται περισσότερα από ένα bit του πηλίκου σε κάθε βήμα
 - Αλλά, και πάλι, απαιτούνται περισσότερα από ένα βήματα

Διαίρεση RISC-V

- Τέσσερις εντολές:
 - div, rem: διαίρεση προσημασμένων ακεραίων με υπόλοιπο
 - divu, remu: διαίρεση μη προσημασμένων ακεραίων με υπόλοιπο
- Η υπερχείλιση και η διαίρεση με το μηδέν δεν προκαλούν σφάλμα
 - Επιστρέφουν καθορισμένα αποτελέσματα
 - Ταχύτερη εκτέλεση για την πιο κοινή (συνηθισμένη)
 περίπτωση της διαίρεσης χωρίς σφάλμα

Κινητή υποδιαστολή

- Αναπαράσταση αριθμών με κλασματικά μέρη
 - Τόσο πολύ μικρών όσο και πολύ μεγάλων αριθμών
- Μοιάζει με την επιστημονική σημειογραφία
 - -2.34 × 10⁵⁶ **★** κανονικοποιημένος
 - +0.002 × 10⁻⁴ μη κανονικοποιημένοι
 - +987.02 × 10⁹
- Σε δυαδική αναπαράσταση
 - \bullet ±1. $xxxxxxxx_2 \times 2^{yyyy}$
- Oι τύποι float και double στη γλώσσα C

Το πρότυπο της κινητής υποδιαστολής

- Ορίστηκε στο πρότυπο 754-1985 της ΙΕΕΕ
- Αναπτύχθηκε λόγω της διαφοροποίησης των αναπαραστάσεων
 - Ζητήματα φορητότητας του κώδικα επιστημονικών εφαρμογών
- Πλέον, σχεδόν καθολικά καθιερωμένο
- Δύο αναπαραστάσεις
 - Απλής ακρίβειας (32 bit)
 - Διπλής ακρίβειας (64 bit)

Μορφή κινητής υποδιαστολής κατά ΙΕΕΕ

απλή ακρίβεια: 8 bit απλή ακρίβεια: 23 bit διπλή ακρίβεια: 11 bit διπλή ακρίβεια: 52 bit

S Εκθέτης Κλάσμα

$$(-1)^{πρόσημο} \times (1 + κλάσμα) \times 2^{(εκθέτης - πόλωση)}$$

- S: bit προσήμου (0 \Rightarrow μη αρνητικό, 1 \Rightarrow αρνητικό)
- Κανονικοποίηση σημαντικού: 1.0 ≤ |σημαντικό| < 2.0
 - Το αρχικό 1 bit υπονοείται πάντα στο σημαντικό, οπότε δεν είναι ανάγκη να αναπαρασταθεί ρητά (κρυφό bit)
 - Το σημαντικό είναι το κλάσμα αφού γίνει η επαναφορά του "1."
- Εκθέτης: αναπαράσταση με μορφή υπέρβασης: ο πραγματικός εκθέτης + πόλωση
 - Διασφαλίζει ότι ο εκθέτης είναι μη προσημασμένος
 - απλή ακρίβεια: πόλωση = 127, διπλή ακρίβεια: πόλωση = 1203

Εύρος τιμών απλής ακρίβειας

- Οι εκθέτες 00000000 και 11111111 είναι δεσμευμένοι
- Η μικρότερη τιμή
 - Εκθέτης: 00000001
 ⇒ πραγματικός εκθέτης = 1 − 127 = -126
 - Κλάσμα: 000...00 ⇒ σημαντικό = 1.0
 - $\pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$
- Η μεγαλύτερη τιμή
 - Εκθέτης: 111111110
 ⇒ πραγματικός εκθέτης = 254 127 = +127
 - Κλάσμα: 111...11 ⇒ σημαντικό ≈ 2.0
 - $\pm 2.0 \times 2^{+127} \approx \pm 3.4 \times 10^{+38}$

Εύρος τιμών διπλής ακρίβειας

- Οι εκθέτες 0000...00 και 1111...1111 είναι δεσμευμένοι
- Η μικρότερη τιμή
 - Εκθέτης: 0000000001
 ⇒ πραγματικός εκθέτης = 1 − 1023 = -1022
 - Κλάσμα: 000...00 ⇒ σημαντικό = 1.0
 - $\pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$
- Η μεγαλύτερη τιμή
 - Εκθέτης: 11111111110
 ⇒ πραγματικός εκθέτης = 2046 1023 = +1023
 - Κλάσμα: 111...11 ⇒ σημαντικό ≈ 2.0
 - $\pm 2.0 \times 2^{+1023} \approx \pm 1.8 \times 10^{+308}$

Ακρίβεια τιμών κινητής υποδιαστολής

- Σχετική ακρίβεια
 - Όλα τα κλασματικά bit είναι σημαντικά
 - Απλής ακρίβειας: ~ 2^{−23}
 - Ισοδυναμούν με 23 × log₁₀2 ≈ 23 × 0.3 ≈ ακρίβεια 6 δεκαδικών ψηφίων
 - Διπλής ακρίβειας: ~ 2⁻⁵²
 - Ισοδυναμούν με 52 × log₁₀2 ≈ 52 × 0.3 ≈ ακρίβεια 16 δεκαδικών ψηφίων

Ένα παράδειγμα με αριθμούς κινητής υποδιαστολής

- Να αναπαρασταθεί ο –0.75
 - $-0.75 = (-1)^1 \times 1.1_2 \times 2^{-1}$

 - κλάσμα = 1000...00₂
 - Εκθέτης = −1 + πόλωση
 - απλή ακρίβεια: -1 + 127 = 126 = 011111110₂
 - διπλή ακρίβεια: -1 + 1023 = 1022 = 011111111110₂
- απλή ακρίβεια: 10111111101000...00
- διπλή ακρίβεια: 101111111111101000...00

Ένα παράδειγμα με αριθμούς κινητής υποδιαστολής

 Ποιος δεκαδικός αριθμός αναπαρίσταται από τον παρακάτω αριθμό κινητής υποδιαστολής απλής ακρίβειας;

11000000101000...00

- S = 1
- κλάσμα = 01000...00₂
- Eκθέτης = 10000001_2 = 129
- $x = (-1)^{1} \times (1 + 01_{2}) \times 2^{(129 127)}$ $= (-1) \times 1.25 \times 2^{2}$ = -5.0

Μη κανονικοποιημένοι αριθμοί

■ $Eκθέτης = 000...0 \Rightarrow$ το κρυφό bit είναι το 0

$$(-1)^{πρόσημο} \times (0 + κλάσμα) \times 2^{-πόλωση}$$

- Μικρότεροι από τους κανονικούς αριθμούς
 - Επιτρέπεται η βαθμιαία ανεπάρκεια, με φθίνουσα ακρίβεια
- Μη κανονικοποιημένοι με κλάσμα = 000...0

$$(-1)^{\pi\rho\delta\sigma\eta\mu\sigma} \times (0+0) \times 2^{-\pi\delta\lambda\omega\sigma\eta} = \pm 0.0$$

Δύο αναπαραστάσεις του 0.0!

Θετικό/αρνητικό άπειρο και NaN

- Εκθέτης = 111...1, Κλάσμα = 000...0
 - ±άπειρο
 - Μπορεί να χρησιμοποιηθεί σε επόμενους υπολογισμούς, οπότε δεν υπάρχει ανάγκη για έλεγχο υπερχείλισης
- Εκθέτης = 111...1, Κλάσμα ≠ 000...0
 - Σύμβολο Not-a-Number (NaN)
 - Υποδεικνύει μη έγκυρο ή μη ορισμένο αποτέλεσμα
 π.χ. 0.0 / 0.0
 - Μπορεί να χρησιμοποιηθεί σε επόμενους υπολογισμούς

Εύρος & ακρίβεια κινητής υποδιαστολής

- Συζητούμε για το εύρος αναπαραστάσεων και την ακρίβεια της αναπαράστασης κινητής υποδιαστολής με βάση το πρότυπο IEEE 754.
- Συγκρίνουμε με τους ακεραίους.

Εύρος αναπαράστασης (1)

Στα 32 bit μπορούμε να αναπαραστήσουμε ακεραίους (προσημασμένους και απρόσημους) και πραγματικούς απλής ακρίβειας.

Αναπαράσταση	Εύρος τιμών
Απρόσημοι ακέραιοι	0 +4 294 967 295
	4 δισεκατομύρια +
Προσημασμένοι ακέραιοι	-2 147 483 648 +2 147 483 647
(συμπλήρωμα ως προς 2)	2 δισεκατομύρια +
Πραγματικοί (απλή ακρίβεια) – μέγιστος	± 340 282 346 638 528 859 811 704 183 484 516 925 440
	340 ενδεκάκις εκατομμύρια
Πραγματικοί (απλή ακρίβεια) – ελάχιστος	0.000000000000000000000000000000000002350988561514 7285834557659820715330266457179855179808553659262368 50006129930346077117064851336181163787841796875

Εύρος αναπαράστασης (2)

Στα 32 bit μπορούμε να αναπαραστήσουμε ακεραίους
 (προσημασμένους και απρόσημους) και πραγματικούς απλής ακρίβειας. Στα 64 bit πραγματικούς αριθμούς διπλής ακρίβειας

Αναπαράσταση Εύρος τιμών ± 340 282 346 638 528 859 811 704 183 484 516 925 440 Απλή ακρίβεια – μέγιστος 340 ενδεκάκις εκατομμύρια ... Απλή ακρίβεια – ελάχιστος 7285834557659820715330266457179855179808553659262368 50006129930346077117064851336181163787841796875 Διπλή ακρίβεια – μέγιστος 1.79769313486231570814527423732 x 10³⁰⁸ Διπλή ακρίβεια – ελάχιστος 4.45014771701440227211481959342 x 10⁻³⁰⁸

Απόσταση μεταξύ αριθμών (1)

Στην αναπαράσταση κινητής υποδιαστολής απλής ή διπλής ακρίβειας, η απόσταση μεταξύ διαδοχικών πραγματικών αριθμών που αναπαρίστανται εξαρτάται από τον εκθέτη τους. Όσο μεγαλύτερος ο εκθέτης τόσο μεγαλύτερη η απόσταση μεταξύ διαδοχικών αριθμών.

Αναπαράσταση κινητής υποδιαστολής Αριθμός 442 721 857 769 029 238 784 S=1 (+) Exponent = 195 - 127 (68), Fraction = 0.1_2 (= 0.5_{10}), 442+ πεντάκις εκατομ. Significant = 1.1_2 (= 1.5_{10}) 442 721 892 953 401 327 616 S=1 (+) Exponent = 195 - 127 (68), Fraction = $0.1000000000000000000001_2$ (=0.5000001192092896₁₀), «απόσταση» 35 τρις! 📗 $(=1.5000001192092896_{10})$ Διαφορά (απόσταση) +35 184 372 088 832

Απόσταση μεταξύ αριθμών (2)

Ας μικρύνουμε τον εκθέτη.

Αναπαράσταση κινητής υποδιαστολής	Αριθμός
0 10011111 1000000000000000000000	6 442 450 944
S=1 (+) Exponent = 159– 127 (32), Fraction = 0.1_2 (= 0.5_{10}), Significant = 1.1_2 (= 1.5_{10})	
0 10011111 1000000000000000000000000000	6 442 451 456
S=1 (+) Exponent = $159 - 127$ (32), Fraction = $0.100000000000000000000000000000000000$	«απόσταση» μόνο λίγες εκατοντάδες ↓
Διαφορά (απόσταση)	+512
0 10011111 1000000000000000000000000000	6 442 451 968
	+512

Απόσταση μεταξύ αριθμών (3)

Ας μικρύνουμε κι άλλο τον εκθέτη.

Αναπαράσταση κινητής υποδιαστολής	Αριθμός
0 11000011 1000000000000000000000000000	442 721 857 769 029 238 784
S=1 (+) Exponent = $195 - 127$ (68), Fraction = 0.1_2 (= 0.5_{10}), Significant = 1.1_2 (= 1.5_{10})	442+ πεντάκις εκατομ.
0 11000011 1000000000000000000000000000	442 721 892 953 401 327 616
S=1 (+) Exponent = $195 - 127$ (68), Fraction = $0.100000000000000000000000000000000000$	«απόσταση» 35 τρις! ↓
Διαφορά (απόσταση)	+35 184 372 088 832

Πρόσθεση κινητής υποδιαστολής

- Θεωρήστε, για παράδειγμα, τους 4ψήφιους δεκαδικούς
 - \bullet 9.999 × 10¹ + 1.610 × 10⁻¹
- 1. Ευθυγράμμιση υποδιαστολών δεκαδικών μερών
 - Ολίσθηση του αριθμού με τον μικρότερο εκθέτη
 - \bullet 9.999 × 10¹ + 0.016 × 10¹
- 2. Πρόσθεση των σημαντικών
 - \bullet 9.999 × 10¹ + 0.016 × 10¹ = 10.015 × 10¹
- 3. Κανονικοποίηση του αποτελέσματος και έλεγχος για υπερχείλιση ή ανεπάρκεια
 - 1.0015 × 10²
- 4. Στρογγυλοποίηση και, αν είναι απαραίτητο, εκ νέου κανονικοποίηση
 - 1.002×10^{2}

Πρόσθεση κινητής υποδιαστολής

- Τώρα θεωρήστε, για παράδειγμα, τους 4ψήφιους δυαδικούς
 - $1.000_2 \times 2^{-1} + -1.110_2 \times 2^{-2} (0.5 + -0.4375)$
- 1. Ευθυγράμμιση υποδιαστολών δυαδικών μερών
 - Ολίσθηση του αριθμού με τον μικρότερο εκθέτη
 - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1}$
- 2. Πρόσθεση των σημαντικών
 - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1} = 0.001_2 \times 2^{-1}$
- 3. Κανονικοποίηση του αποτελέσματος και έλεγχος για υπερχείλιση ή ανεπάρκεια
 - 1.000₂ × 2⁻⁴, χωρίς υπερχείλιση ή ανεπάρκεια
- 4. Στρογγυλοποίηση και, αν είναι απαραίτητο, εκ νέου κανονικοποίηση
 - $1.000_2 \times 2^{-4}$ (καμία αλλαγή) = 0.0625

Υλικό για την πρόσθεση κινητής υποδιαστολής

- Πολύ πιο σύνθετο από τον αντίστοιχο υλικό πρόσθεσης ακεραίων
- Η εκτέλεση σε έναν κύκλο ρολογιού θα διαρκούσε πάρα πολύ
 - Πολύ περισσότερο σε σχέση με τις πράξεις με ακέραιους αριθμούς
 - Με το πιο αργό ρολόι θα επιβαρύνονταν όλες οι εντολές
- Συνήθως η πρόσθεση κινητής υποδιαστολής χρειάζεται αρκετούς κύκλους
 - Υλοποιείται και με διοχέτευση

Υλικό για την πρόσθεση κινητής υποδιαστολής

Πολλαπλασιασμός κινητής υποδιαστολής

- Θεωρήστε, για παράδειγμα, τους 4ψήφιους δεκαδικούς
 - \bullet 1.110 × 10¹⁰ × 9.200 × 10⁻⁵
- 1. Πρόσθεση εκθετών
 - Όταν έχουμε πολωμένους εκθέτες, αφαιρείται η πόλωση από το άθροισμα
 - Νέος εκθέτης = 10 + –5 = 5
- 2. Πολλαπλασιασμός των σημαντικών
 - $1.110 \times 9.200 = 10.212 \Rightarrow 10.212 \times 10^{5}$
- 3. Κανονικοποίηση του αποτελέσματος και έλεγχος για υπερχείλιση ή ανεπάρκεια
 - 1.0212 × 10⁶
- 4. Στρογγυλοποίηση και, αν είναι απαραίτητο, εκ νέου κανονικοποίηση
 - 1.021 × 10⁶
- 5. Προσδιορισμός του προσήμου του αποτελέσματος από τα πρόσημα των τελεστέων
 - +1.021 × 10⁶

Πολλαπλασιασμός κινητής υποδιαστολής

- Τώρα θεωρήστε, για παράδειγμα, τους 4ψήφιους δυαδικούς
 - $1.000_2 \times 2^{-1} \times -1.110_2 \times 2^{-2} (0.5 \times -0.4375)$
- 1. Πρόσθεση εκθετών
 - Μη πολωμένοι: -1 + -2 = -3
 - Πολωμένοι: (−1 + 127) + (−2 + 127) = −3 + 254 − 127 = −3 + 127
- 2. Πολλαπλασιασμός των σημαντικών
 - $1.000_2 \times 1.110_2 = 1.1102 \implies 1.110_2 \times 2^{-3}$
- 3. Κανονικοποίηση του αποτελέσματος και έλεγχος για υπερχείλιση ή ανεπάρκεια
 - 1.110₂ × 2⁻³ (καμία αλλαγή) χωρίς υπερχείλιση ή ανεπάρκεια
- 4. Στρογγυλοποίηση και, αν είναι απαραίτητο, εκ νέου κανονικοποίηση
 - 1.110₂ × 2⁻³ (καμία αλλαγή)
- 5. Προσδιορισμός προσήμου: (θετικός) × (αρνητικός) ⇒ (αρνητικός)
 - $-1.110_2 \times 2^{-3} = -0.21875$

Υλικό αριθμητικής κινητής υποδιαστολής

- Ο πολλαπλασιασμός κινητής υποδιαστολής είναι παρόμοιας πολυπλοκότητας με την πρόσθεση κινητής υποδιαστολής
 - Αλλά γίνεται πολλαπλασιασμός των σημαντικών, όχι πρόσθεση
- Κατά κανόνα, το υλικό αριθμητικής κινητής υποδιαστολής εκτελεί
 - πρόσθεση, αφαίρεση, πολλαπλασιασμό, διαίρεση, υπολογισμό αντιστρόφων, υπολογισμό τετραγωνικών ριζών
 - Μετατροπή κινητής υποδιαστολής ↔ ακεραίου
- Συνήθως οι πράξεις χρειάζονται αρκετούς κύκλους
 - Υλοποιούνται και με διοχέτευση

Εντολές κινητής υποδιαστολής στον RISC-V

- Ξεχωριστοί καταχωρητές κινητής υποδιαστολής: f0, ...,
 f31
 - διπλής ακρίβειας
 - οι τιμές απλής ακρίβειας περιέχονται στα 32 χαμηλοτερα bit
- Οι εντολές κινητής υποδιαστολής επενεργούν μόνο σε καταχωρητές κινητής υποδιαστολής
 - Γενικώς, τα προγράμματα δεν εκτελούν πράξεις/λειτουργίες ακεραίων σε δεδομένα κινητής υποδιαστολής, ή το αντίθετο
 - Περισσότεροι καταχωρητές με ελάχιστη επίπτωση στο μέγεθος του κώδικα
- Εντολές φόρτωσης (load) και αποθήκευσης (store) κινητής υποδιαστολής
 - flw, fld
 - fsw, fsd

Εντολές κινητής υποδιαστολής στον RISC-V

- Αριθμητικές πράξεις απλής ακρίβειας
 - fadd.s, fsub.s, fmul.s, fdiv.s, fsqrt.s
 - π.χ. fadds.s f2, f4, f6
- Αριθμητικές πράξεις διπλής ακρίβειας
 - fadd.d, fsub.d, fmul.d, fdiv.d, fsqrt.d
 - π.χ. fadd.d f2, f4, f6
- Σύγκριση πράξεων απλής και διπλής ακρίβειας
 - feq.s, flt.s, fle.s
 - feq.d, flt.d, fle.d
 - Αποτέλεσμα 0 ή 1 στον ακέραιο καταχωρητή προορισμού
 - Χρήση των εντολών beq, bne για διακλάδωση με βάση το αποτέλεσμα της σύγκρισης
- Διακλάδωση με βάση το αν η συνθήκη κινητής υποδιαστολής έχει τιμή true ή false
 - b.cond

Ένα παράδειγμα κινητής υποδιαστολής: Μετατροπή βαθμών °F σε βαθμούς °C

Κώδικας C:

```
float f2c (float fahr) {
  return ((5.0/9.0)*(fahr - 32.0));
}
```

- fahr στον f10, αποτέλεσμα στον f10, λεκτικά στην καθολική μνήμη
- Μεταγλωττισμένος κώδικας RISC-V:

```
f2c: f1w f0,const5(x3) // f0 = 5.0f f1w f1,const9(x3) // f1 = 9.0f fdiv.s f0, f0, f1 // f0 = 5.0f / 9.0f f1w f1,const32(x3) // f1 = 32.0f fsub.s f10,f10,f1 // f10 = fahr - 32.0 fmul.s f10,f0,f10 // f10 = (5.0f/9.0f) * (fahr-32.0f) jalr x0,0(x1) // επιστροφή
```


Ένα παράδειγμα κινητής υποδιαστολής: Πολλαπλασιασμός πινάκων

- $C = C + A \times B$
 - Όλοι είναι πίνακες 32 × 32, με στοιχεία διπλής ακρίβειας 64 bit
- Κώδικας C:

Διευθύνσεις των c, a, b στους x10, x11, x12, και των i, j, k στους x5, x6, x7

Ένα παράδειγμα κινητής υποδιαστολής: Πολλαπλασιασμός πινάκων

Κώδικας RISC-V:

```
mm: . . .
      lί
            x28,32
                        // x28 = 32 (μέγεθος γραμμής/τέλος βρόχου)
      lί
            x5,0
                        // i = 0, αρχικοποίηση 1ου βρόχου for
L1:
      li l
            x6,0
                        // j = 0, αρχικοποίηση 2ου βρόχου for
      li
                        // k = 0; αρχικοποίηση 3ου βρόχου for
L2:
            x7.0
      slli
            x30, x5, 5 // x30 = i * 2**5 (μέγεθος της γραμμής του c)
      add
                        // x30 = i * μέγεθος(γραμμής) + j
            x30,x30,x6
      s11i x30,x30,3
                        // x30 = σχετική απόσταση byte του [i][j]
       add
            x30,x10,x30 // x30 = διεύθυνση byte του c[i][j]
      f1d
            f0.0(x30)
                        // f0 = c[i][i]
      slli
                        // x29 = k * 2**5 (μέγεθος της γραμμής του b)
L3:
           x29.x7.5
                        // x29 = k * μέγεθος(γραμμής) + j
      add
            x29,x29,x6
      slli
           x29.x29.3
                        // x29 = σχετική απόσταση byte του [k][j]
      add
            x29,x12,x29 // x29 = διεύθυνση byte του b[k][j]
      f1d
            f1.0(x29) // f1 = b[k][i]
```


Ένα παράδειγμα κινητής υποδιαστολής: Πολλαπλασιασμός πινάκων

...

```
slli x29,x5,5 // x29 = i * 2**5 (μέγεθος της γραμμής του a)
add x29,x29,x7 // x29 = i * \mu \dot{\epsilon} \gamma \epsilon \theta o \zeta (\gamma \rho \alpha \mu \mu \dot{\eta} \zeta) + k
slli x29,x29,3 // x29 = σχετική απόσταση byte του [i][k]
add x29,x11,x29 // x29 = \delta \iota \epsilon \dot{\upsilon} \theta \upsilon \nu \sigma \eta byte \tau \sigma \upsilon a[i][k]
fld f2,0(x29) // f2 = a[i][k]
fmul.d f1, f2, f1 // f1 = a[i][k] * b[k][j]
fadd.d f0, f0, f1 // f0 = c[i][j] + a[i][k] * b[k][j]
      x7, x7, 1   // k = k + 1
addi
bltu x7,x28,L3 // \alpha v (k < 32), \mu \in \tau \dot{\alpha} \beta \alpha \sigma \eta \sigma \tau \eta v L3
fsd f0.0(x30) // c[i][i] = f0
      x6,x6,1 // j = j + 1
addi
      x6,x28,L2 // αν (j < 32), μετάβαση στην L2
bltu
      x5,x5,1 // i = i + 1
addi
bltu
      x5,x28,L1 // αν (i < 32), μετάβαση στην L1
```


Ακριβής αριθμητική

- Στο πρότυπο 754 της ΙΕΕΕ καθορίζονται πρόσθετοι έλεγχοι στρογγυλοποίησης
 - Επιπλέον bit ακρίβειας: bit-φρουρός (guard), bit στρογγύλευσης (round), επίμονο bit (sticky)
 - Επιλογή τρόπων στρογγυλοποίησης
 - Ο προγραμματιστής μπορεί να επιλέξει την επιθυμητή αριθμητική συμπεριφορά ενός υπολογισμού
- Δεν υλοποιούνται όλες οι επιλογές σε όλες τις μονάδες κινητής υποδιαστολής
 - Στις περισσότερες γλώσσες προγραμματισμού και βιβλιοθήκες κινητής υποδιαστολής χρησιμοποιούνται απλώς οι προκαθορισμένες επιλογές
- Αντισταθμίζονται η πολυπλοκότητα και η απόδοση του υλικού με τις απαιτήσεις της αγοράς

Παραλληλία υπολέξης

- Οι εφαρμογές ήχου και γραφικών μπορούν να εκμεταλλευτούν τη δυνατότητα εκτέλεσης ταυτόχρονων λειτουργιών σε μικρά διανύσματα
 - Παράδειγμα: Αθροιστής των 128 bit:
 - Δεκαέξι τελεστέοι των 8 bit
 - Οκτώ τελεστέοι των 16 bit
 - Τέσσερις τελεστέοι των 32 bit
- Γνωστή και ως παραλληλία επιπέδου δεδομένων (data-level parallelism), παραλληλία διανυσμάτων (vector parallelism), ή επεκτάσεις μίας εντολής-πολλών δεδομένων (Single Instruction, Multiple Data –SIMD)

Αρχιτεκτονική x86 κινητής υποδιαστολής

- Βασίστηκε αρχικά στον συνεπεξεργαστή κινητής υποδιαστολής 8087
 - 8 × καταχωρητές επεκταμένης ακρίβειας των 80 bit
 - Χρησιμοποιείται ως στοίβα που επεκτείνεται προς τα κάτω
 - Δεικτοδότηση των καταχωρητών από TOS: ST(0), ST(1), ...
- Οι τιμές κινητής υποδιαστολής είναι 32 bit ή 64 bit στη μνήμη
 - Μετατρέπονται κατά τη φόρτωση/αποθήκευση του τελεστέου μνήμης
 - Αλλά και οι ακέραιοι τελεστέοι μπορούν να μετατρέπονται κατά τη φόρτωση/αποθήκευση
- Δύσκολο να παραχθεί και να βελτιστοποιηθεί ο κώδικας
 - Το αποτέλεσμα: κακές επιδόσεις στις λειτουργίες κινητής υποδιαστολής

Εντολές κινητής υποδιαστολής στην αρχιτεκτονική x86

Μεταφορά	Αριθμητικές	Σύγκριση	Υπερβατικές
δεδομένων	πράξεις		συναρτήσεις
FILD mem/ST(i) FISTP mem/ST(i) FLDPI FLD1 FLDZ	FIADDP mem/ST(i) FISUBRP mem/ST(i) FIMULP mem/ST(i) FIDIVRP mem/ST(i) FSQRT FABS FRNDINT	FICOMP FIUCOMP FSTSW AX/mem	FPATAN F2XMI FCOS FPTAN FPREM FPSIN FYL2X

Προαιρετικές παραλλαγές

- Ι: ακέραιος τελεστέος
- P: εξαγωγή τελεστέου από τη στοίβα
- R: αντίστροφη σειρά τελεστέων
- Δεν επιτρέπονται όλοι οι συνδυασμοί

Επέκταση Streaming SIMD Extension 2 (SSE2)

- Πρόσθεση 4 καταχωρητών των 128 bit
 - Στην αρχιτεκτονική AMD64/EM64T, το πλήθος τους επεκτείνεται στους 8
- Μπορεί να χρησιμοποιηθεί για πολλούς τελεστέους κινητής υποδιαστολής
 - 2 τελεστέους των 64 bit, διπλής ακρίβειας
 - 4 τελεστέους των 32 bit, διπλής ακρίβειας
 - Οι εντολές επενεργούν σε αυτούς ταυτόχρονα
 - Μία εντολή, πολλά δεδομένα (Single-Instruction Multiple-Data)

Πολλαπλασιασμός πινάκων

Μη βελτιστοποιημένος κώδικας:

```
1. void dgemm (int n, double* A, double* B, double* C)
2. {
  for (int i = 0; i < n; ++i)
4.
      for (int j = 0; j < n; ++j)
5.
6.
       double cij = C[i+j*n]; /* cij = C[i][j] */
7.
      for (int k = 0; k < n; k++)
8.
        cij += A[i+k*n] * B[k+j*n]; /* cij += A[i][k]*B[k][j] */
9.
       C[i+j*n] = cij; /* C[i][j] = cij */
10.
11. }
```


Πολλαπλασιασμός πινάκων

Βελτιστοποιημένος κώδικας σε C:

```
1. #include <x86intrin.h>
2. void dgemm (int n, double* A, double* B, double* C)
3. {
4. for (int i = 0; i < n; i+=8)
5.
      for (int j = 0; j < n; ++j)
6.
7.
          m512d c0 = mm512 load pd(C+i+j*n); // c0 = C[i][j]
8.
             for ( int k = 0; k < n; k++ )
9.
               \{ // c0 += A[i][k]*B[k][i] \}
10.
                m512d bb = mm512 broadcastsd pd(mm load sd(B+j*n+k));
11.
                c0 = mm512 \text{ fmadd pd (} mm512 \text{ load pd (} A+n*k+i), bb, c0);
12.
          _{mm512\_store\_pd(C+i+j*n, c0); // C[i][j] = c0}
13.
14.
15.}
```


Πολλαπλασιασμός πινάκων

 Βελτιστοποιημένος κώδικας συμβολικής γλώσσας για αρχιτεκτονική x86:

```
vmovapd (%r11),%zmm1
                                       # Φόρτωση 8 στοιχείων του C στον %zmm1
                                       # K\alpha \tau \alpha \chi \omega \rho \eta \tau \dot{\eta} c % r c x = % r b x
         %rbx,%rcx
mov
                                       # Καταχωρητής %eax = 0
         %eax, %eax
xor
                                       # Κάνε 8 αντίγραφα του στοιχείου του Β στον %zmm0
vbroadcastsd (%rax, %r8,8), %zmm0
                                       # Καταχωρητής %rax = %rax + 8
add
         $0x8,%rax
                                       # Παράλληλος πολλαπλασιασμός & πρόσθεση %zmm0, %zmm1
vfmadd231pd (%rcx),%zmm0,%zmm1
        %r9,%rcx
                                       # Καταχωρητής %rcx = %rcx
add
                                       # Σύγκρινε τον %r10 με τον %rax
        %r10,%rax
cmp
                                      # άλμα αν δεν ισχύει %r10 != %rax
         50 < dgemm + 0x50 >
jne
         $0x1, %esi
                                      # Καταχωρητής % esi = % esi + 1
add
vmovapd %zmm1, (%r11)
                                       # Αποθήκευση του %zmm1 στα 8 στοιχεία του C
```


Δεξιά ολίσθηση και διαίρεση

- Μια εντολή αριστερής ολίσθησης μπορεί να αντικαταστήσει έναν ακέραιο πολλαπλασιασμό με μια δύναμη του 2
- Μια εντολή δεξιάς ολίσθησης είναι το ίδιο με μια ακέραια διαίρεση με μια δύναμη του 2;
 - Αυτό ισχύει μόνο για μη προσημασμένους ακέραιους
- Για προσημασμένους ακέραιους αριθμούς
 - Αριθμητική δεξιά ολίσθηση: αναπαράγει το bit προσήμου
 - π.χ. –5 / 4
 - 11111011₂ >> 2 = 111111110₂ = -2
 - Στρογγυλοποίηση προς το -∞
 - $\pi \rho \beta \lambda$. 11111011₂ >>> 2 = 001111110₂ = +62

Προσεταιριστικότητα

- Τα προγράμματα που γράφονται με γνώμονα την παράλληλη εκτέλεση ενδέχεται να διαπλέκουν τις λειτουργίες και πράξεις σε απρόβλεπτη σειρά
 - Ενδέχεται να μην ισχύει η παραδοχή της προσεταιριστικότητας

		(x+y)+z	x+(y+z)
X	-1.50E+38		-1.50E+38
У	1.50E+38	0.00E+00	
Z	1.0	1.0	1.50E+38
		1.00E+00	0.00E+00

 Τα προγράμματα παράλληλης εκτέλεσης πρέπει να επικυρώνονται υπό διάφορους βαθμούς παραλληλίας

Ποιοι ενδιαφέρονται για την ακρίβεια των πράξεων κινητής υποδιαστολής;

- Σημαντική για τον κώδικα επιστημονικών εφαρμογών
 - Αλλά όσον αφορά τις καθημερινές εφαρμογές ευρείας χρήσης;
 - «Το υπόλοιπο του τραπεζικού μου λογαριασμού διαφέρει κατά 0.0002 σεντ!» ⊗
- Το σφάλμα FDIV στους επεξεργαστές Pentium της Intel
 - Η καταναλωτική αγορά θεωρεί δεδομένη την ακρίβεια στις πράξεις
 - Παραπομπή σε: Colwell, The Pentium Chronicles

Συμπερασματικές παρατηρήσεις

- Οι σειρές των bit δεν έχουν κάποιο εσωτερικό νόημα
 - Η ερμηνεία εξαρτάται από τις εντολές που εκτελούνται
- Αναπαραστάσεις των αριθμών στους υπολογιστές
 - Πεπερασμένο εύρος, πεπερασμένη ακρίβεια
 - Αυτό πρέπει να λαμβάνεται υπόψη στα προγράμματα

Συμπερασματικές παρατηρήσεις

- Οι αρχιτεκτονικές συνόλου εντολών (ISA) υποστηρίζουν την αριθμητική
 - Προσημασμένοι και μη προσημασμένοι αριθμοί
 - Προσέγγιση των πραγματικών αριθμών με αριθμούς κινητής υποδιαστολής
- Εύρος και ακρίβεια εντός ορίων
 - Ενδεχόμενο υπερχείλισης και ανεπάρκειας στις πράξεις

