- n = 3,01,a) m = 3,
- b) $m = \frac{1}{3}$,
- n = 1,5,c) $m = \sqrt{2}$, n = 1,5d) m = 3,14, $n = \pi$.

Ile takich liczb możesz wskazać?

- 2.57. Mając dane liczby m, n wskaż trzy liczby k1, k2, k3 takie, że $m < k_1 < k_2 < k_3 < n$
- a) $m = 2\frac{1}{2}$; n = 2,75, c) $m = -\sqrt{3}$, $n = -\frac{1}{2}$,
- b) $m = -\frac{3}{8}$; n = 0, d) m = 10, n = 10,0001.

Ile takich trójek możesz wskazać?

- 2.58. Wyznacz wszystkie elementy zbiorów:
- a) $A = \{x: |x| = 2$ b) $B = \{x : |x| = 3$
- $x \in N^{1},$ $x < 10 \quad i \quad x \in N^{1},$ c) $D = \{x: |x| > 2$
- i $x \in C$. d) $E = \{x : |x| < 3\frac{1}{2}$
- 2.59. Dla jakich liczb (par liczb) prawdziwe są równości:
 - 0 |x| + |x + 1| = 3.d) |2x+1|=1, e) |3-x|=4, a) |x|+5 = |x+5|, b) $|x| \cdot |y| = |xy|$, c) |x| - |y| = 0,
 - 2.60. Uprość wyrażenia:
- gdy 1 < x < 2, gdy x < -1, a) x+(1-x)+2|x-2|,
- b) |x|+|x+1|+|x-2|,
- c) $|x-1| + \frac{x}{|x|} |x+1|$, gdy x < -2. Z definicji pierwiastka arytmetycznego wynika, że: 2.61.
- - $\sqrt{x^2} = |x|$. Korzystając z tego wzoru uprość:
 - a) $\sqrt{x^2 + x}$,
- b) $\sqrt{(x-5)^2 + \sqrt{x^2}}$,
- $\sqrt{\frac{a^2}{b^2}}$ gdy $b \neq 0$. \overline{v}
- d) $\sqrt{x^2-6x+9+x}$.

- 2.62. Zapisz podane wyrażenia bez symbolu wartości bezwzglę-
- a) $|m^2|$ b) |m-n|, gdy c) |m-n|, gdy d) |-m|, gdy
- # < #,
- 2.63. Jakie wartości przyjmuje wyrażenie 12.9
- 2.64. Do jakiego przedziału liczbowego należy x, jeśli:
 - a) |x-3|=x-3,
- c) |2x-6|=6-2x,
 - b) |x+2| = -x-2,
- d) $\sqrt{(x-4)^2} = x-4$?
- 2.65. Wykaż, że dla każdej pary liczb rzeczywistych x, y prawdziwe są związki:
- a) $|xy| = |x| \cdot |y|$,
- c) $|x-y| \le |x| + |y|$,
- b) $|x+y| \le |x| + |y|$,
- d) $(y \neq 0) \Rightarrow \frac{|x|}{|y|} \Rightarrow \frac{|x|}{|y|}$
- 2.66. Korzystając ze wzoru podanego w zadaniu 2.61, oblicz:
- b) $\sqrt{0.16a^2y^2}$, a) $\sqrt{9a^2}$,
- c) $\sqrt{\frac{9a^2b^2}{25x^4y^2}}$,
- f) $\sqrt{a^2-2ab+b^2}$.

e) $\sqrt{a^2 + 4b^2 + 4ab}$.

d) $\sqrt{1,44a^8b^{12}c^4}$,

- 2.67. Wyłącz czynnik przed pierwiastek i przeprowadź redukcję:
 - a) $3\sqrt{20}+5\sqrt{45}-2\sqrt{80}$,
- b) $0.5\sqrt{50}+0.8\sqrt{72}-0.2\sqrt{32}$
- c) $\sqrt{x^3} + \frac{1}{2} \sqrt{36x^3} \frac{2x}{3} \sqrt{9x}$, gdy x > 0,
- d) $(0.5\sqrt{24} 3\sqrt{40}) (\sqrt{150} + \sqrt{54} \sqrt{1000})$.
- 2.68. Wykonaj mnożenie:
- a) $(\sqrt{3}+2\sqrt{2}) (2\sqrt{3}-\sqrt{2})$, b) $(3\sqrt{5}-2\sqrt{6}) (2\sqrt{6}-\sqrt{5})$, c) $(a-\sqrt{b}) (2a+2\sqrt{b})$.
- 2.69. Dane są liczby x i y. Oblicz: x-y, x+y, xy i $\frac{x}{y}$. Otrzymane wyniki przedstaw w postaci $a+b\sqrt{c}$.

27