UBC MATH CIRCLE 2024 PROBLEM SET 5 SOLUTIONS

Problem 1. Basketball star Shanille OKeal's team statistician keeps track of the number, S(N), of successful free throws she has made in her first N attempts of the season. Early in the season, S(N) was less than 80% of N, but by the end of the season, S(N) was more than 80% of N. Was there necessarily a moment in between when S(N) was exactly 80% of N?

Solution. We prove that this is true by contradiction. Suppose that there is an $N \in \mathbb{N}$ such that S(N) < 4N/5 and S(N+1) > 4(N+1)/5. Such an N exists since S(N) starts below 80% of N and ends above 80% of N without ever being exactly 80%. Suppose that she makes m of her first N free throws. $S(N) < S(N+1) \le S(N) + 1$ for otherwise $S(N+1) < 4N/5 \le 4(N+1)/5$. In other words, she must make m+1 of her first N+1 free throws. This implies that m/N < 4/5 while (m+1)/(N+1) > 4/5. In other words 5m < 4N and 5(m+1) > 4(N+1). Rearranging gives that 5m < 4N < 5m+1. But this is impossible since 4N is an integer between the consecutive integers 5m and 5m+1.

Problem 2. Recall that a regular icosahedron is a convex polyhedron having 12 vertices and 20 faces; the faces are congruent equilateral triangles. On each face of a regular icosahedron is written a nonnegative integer such that the sum of all 20 integers is 39. Show that there are two faces that share a vertex and have the same integer written on them.

Solution. Suppose otherwise. Each vertex is a vertex for five faces, all of which have different labels, and so the sum of the labels of the five faces incident to v is at least 0+1+2+3+4=10. Adding this sum over all vertices gives at least $12 \times 10 = 120$. Note however that every face is incident to exactly three vertices, hence this sum is precisely three times the sum of all the faces $= 3 \times 39 = 117$. But 120 > 117 which is a contradiction.

Problem 3. Let $f(x) = 3x^2 + 1$. Prove that for any positive integer n, the product $f(1)f(2) \dots f(n)$ has at most n prime divisors. (Bonus: Show that for $n \ge 4$ it has at most n-1 prime divisors).

Solution. We prove a stronger statement. Namely, suppose that $n \geq 2$ and that $f(1)f(2) \dots f(n-1)$ has k prime divisors. Then $f(1)f(2) \dots f(n)$ has at most k+1 prime divisors. Indeed any prime divisor p of $f(1)f(2) \dots f(n)$ which is not a divisor of $f(1)f(2) \dots f(n-1)$ must satisfy $p \mid f(n)$ and $p \nmid f(i)$ for all 0 < i < n. Since $p \mid f(n) = 3n^2 + 1$, we have $p \nmid n$. Moreover, $p \nmid f(n) - f(i) = 3n^2 - 3i^2 = 3(n-i)(n+i)$ for all 0 < i < n. But this implies that $p \geq 2n$ since any integer < 2n which is not n will be of the form $n \pm i$ for some 0 < i < n. Suppose now that there are two distinct prime divisors p, q dividing $f(1)f(2) \dots f(n)$ but not $f(1)f(2) \dots f(n-1)$. Then $p, q \mid f(n)$ and $p, q \geq 2n$. But this implies that $pq \geq 4n^2 > 3n^2 + 1$ which contradicts the fact that $pq \mid 3n^2 + 1$.

To conclude the proof, note that f(1) = 4 has one prime divisor. We then proceed by induction using the induction step proved above to conclude that f(1)f(2)...f(n) has at most n prime divisors. We can also note that $f(1)f(2)f(3)f(4) = 2^4 \cdot 7^3 \cdot 13$ has 3 prime divisors, which proves the bonus problem.

Date: March 3, 2024.