Chaos for Linear Fractal Transformations of Shifts

Lucas Hawk

October 19, 2016

1 Lemma 2

Lemma 1. Let φ be a linear fractional transformation as in (2) and |d| > |c|. Then $\varphi(\mathbb{D})$ is the disc $P + r\mathbb{D}$ with center P and radius r given by

$$P = \frac{b\bar{d} - a\bar{c}}{|d|^2 - |c|^2}, \ r = \frac{bc - ad}{|d|^2 - |c|^2}.$$

asdf

2 Definitions

Definition 1. A metric space (X, d) is a set X and a function d(the distance function) which assigns a real number d(x, y) to every pair $(x, y) \in X$, which satisfies the following properties:

- 1. $d(x,y) \ge 0$
- $2. d(x,y) = 0 \Rightarrow x = y.$
- 3. d(x,y) = d(y,x).
- 4. $d(x,y) + d(y,z) \ge d(x,z)$. This last property is called the triangle inequality.

Definition 2. A function f is topologically transitive iff for all nonempty open subsets U, V of X, there exists $k \in \mathbb{N}$ such that $f^k(U) \cap V$ is nonempty.

Definition 3. Let X be a topological space. A set Q is <u>dense</u> in X if for any point $x \in X$ and for any $\epsilon > 0$, there exists a point in $q \in Q$ such that the distance between x and q is less than ϵ . In other words, a set Q is dense in X if every point in X is either in Q or is a limit point in Q.

Definition 4. A point x is said to be a <u>periodic point</u> of a function f if there exists an integer n such that $f^n(x) = x$. The least positive integer n for which this is true is the period of x.

Definition 5. Let (X,d) be a metric space. A function $f: X \to X$ is said to be <u>chaotic</u> on X if it satisfies the following three conditions:

- 1. f is topologically transitive.
- 2. The set of periodic points in f is dense in X. That is, that every open set in f contains a periodic point.
- 3. f has sensitive dependence on initial conditions. That is, $\exists \delta > 0$ such that for any open set U and for any $x \in U$, there exists a $y \in U$ such that $d(f^{[k]}(x), f^{[k]}(y)) > \delta$ for some k. δ is called a sensitivity constant.

Definition 6. A <u>backward shift operator</u> B operates on an element of a sequence to produce the previous element.

e.g. if
$$X = \{x_1, x_2, \dots\}$$
, then $B(X) = \{x_2, x_3, \dots\}$.

Definition 7. Let $z \in \mathbb{C}$. That is, let z = x + iy, where x and y are real numbers. The <u>absolute value</u> or <u>modulus</u> of z, denoted |z| is given by

$$|z| = \sqrt{x^2 + y^2}.$$

Definition 8. The open unit disc of \mathbb{C} , denoted \mathbb{D} , is the region in the complex plane defined by

$$\mathbb{D} = \{ z \in \mathbb{C} : |z| < 1 \}.$$

Definition 9.