

AMENDMENTS TO THE SPECIFICATION

Paragraph number notations refer to Applicant's published patent application
US 2004/0186441 A1.

Please replace paragraph [0054] with the following amended paragraph:

[0054] In FIGS. 1 and 2, a piston rod can be seen which protrudes, on an end of the mechanism holder 3 facing away from the reservoir part 1, into the mechanism holder 3 and is coupled to, or mounted or carried by the mechanism holder 3 such that it can shift in an advancing direction pointing in the longitudinal axis L of the piston rod 4, towards a front end of the reservoir part 1 facing away from the mechanism holder 3. The reservoir part 1 is substantially a hollow cylinder which has a circular cross-section and comprises a connecting region at its front end for connecting to a needle holder for an injection needle. The reservoir part 1 serves to accommodate a reservoir container which in the exemplary embodiment is formed by an ampoule 2 which can be seen in the longitudinal section in FIG. 3. An outlet at the front end of the ampoule 2 is sealed fluid-tight by a membrane. When the needle holder is fastened to the front end of the reservoir part 1, a rear portion of the injection needle 18 pierces the membrane, such that a fluid connection between the tip of the hollow injection needle 18 and the reservoir 2 is established.

Please replace paragraph [0055] with the following amended paragraph:

[0055] FIG. 3 shows the injection apparatus in its entirety, in a longitudinal section. A piston 19 is accommodated in the ampoule 2 such that it can shift in the advancing direction towards the outlet formed at the front end of the ampoule 2. Shifting the piston 19 in the advancing direction displaces product out of the ampoule 2 and delivers it through the outlet and the injection needle 18.

Please replace paragraph [0056] with the following amended paragraph:

[0056] The piston 19 is advanced by the piston rod 4 which pushes against the piston 19 via its front end and thus moves the piston 19 in the advancing direction when advanced itself. The piston rod 4 is held by the mechanism holder 3 such that it can be moved in the advancing direction once a certain resistance has been overcome, but not counter to the advancing direction.

The piston rod 4 is prevented from moving backwards, counter to the advancing direction, by a blocking means 8. The blocking means 8 is axially fixed by the mechanism holder 3, i.e. it is held in the mechanism holder 3 such that it cannot be moved in and counter to the advancing direction. It is, however, mounted by the mechanism holder 3 such that it can be rotated about the longitudinal axis L. The blocking means 8 also generates the resistance which has to be overcome in order to move forwards.

Please replace paragraph [0063] with the following amended paragraph:

[0063] The blocking means 8 fulfils a double function. On the one hand, it ensures via its blocking elements 8a that the piston rod 4 cannot be moved back, counter to the advancing direction, relative to the mechanism holder 3 and therefore in particular relative to the piston 19 accommodated in the ampoule 2. In its double function as a brake, the blocking means 8 furthermore prevents the piston rod 4 from moving forwards during the dosing process in which the dosage setting member 9 is moved axially, counter to the advancing direction, towards the dosing and activating element 12.

Please replace paragraph [0064] with the following amended paragraph:

[0064] In the initial position shown in FIGS. 3 and 4, before dosing, the dosage setting member 9 abuts against a delivery stopper 3c (FIG. 5) formed by the mechanism holder 3, in the advancing direction. The piston rod 4 is in permanent touching contact with the piston 19. For the purpose of dosing, the dosage setting member 9 is moved away from the delivery stopper 3c towards the dosing and activating element 12 by the threaded engagement with the piston rod 4 and the linear guide from the mechanism holder 3. This reduces a slight distance between a rear stopper area of the dosage setting member 9 and a front stopper area of the dosing and activating element 12, but on the other hand increases the slight distance between a front stopper area of the dosage setting member 9 and the delivery stopper 3c. The latter distance between the delivery stopper 3c and the dosage setting member 9 is the path length by which the dosage setting member 9 and--due to the threaded engagement--also the piston rod 4 are moved in the advancing direction in the course of the delivery movement of the dosing and activating element 12. The delivery stopper 3c forms a front translational stopper. During the delivery movement, the piston rod 4 pushes via its front end, which is formed by a plunger body connected to the piston rod 4 such that it cannot

move in or counter to the advancing direction, against the piston 19 and pushes the piston forwards in the advancing direction towards the outlet of the ampoule 2. The longitudinal axis L forms the rotational and translational axis of the movements which are performed for the purpose of dosing and delivering the product.

Please replace paragraph [0086] with the following amended paragraph:

[0086] Once the desired product dosage has been selected, the dosing process is completed. The selected product dosage is delivered by means of the delivery movement, pointing in the advancing direction of the piston 19, of the dosing and activating element 12. In the course of its delivery movement, the dosing and activating element 12 abuts against the dosage setting member 9 and slaves it. When the dosage setting member 9 abuts against the delivery stopper 3c of the mechanism holder 3 in the course of the delivery movement, the delivery movements of the dosing and activating element 12 and the delivery of product are completed. Once the user lets go of the dosing and activating element 12, it is preferably moved counter to the advancing direction, back into a new initial position for dosing and delivering the product again, by the restoring means 16. The counting and indicating means 17 is preferably coupled to the dosing and activating element 12 such that it has in the meantime been reset back to zero. It possibly possesses means for counting and indicating the total product amount already delivered and thus the residue product amount remaining in the ampoule 2.