

<u>E×.</u>	y (t) :	= x(-t)	non-causal	system $\{t=-1\}$ y(-1)=x(1)
<u> </u>	h(t)	= 5/2-17		$\frac{4(-1)}{3} = 2(1)$
	11 (0)	* y(t) =	x(t) * 5(t-1) =	2 (t-1) causal 545 tem
		-		
		y(t) = [x(z) S(t-z-1) d-	Z = 2 (t-1)
	In	general: xl+	=) * S(t-to) =	ス(も- た。)
(3)	y (t)	= x(t-1)	causal	chz yesu
4	h(t	$\rangle = S(t+1)$	7 (4)	
		non	-causal system	
note:	ス(t) *	$\frac{3(b-to)}{-\infty} = \frac{1}{2}$	2(2)3(1-6-2	=) dT = x (t-to)
		h(f)	h (to - c)	
				C .
*	mon-co	aus al systems	can also be us	etu).
G 3	Stable s	systems		
	* 0 -		1 1111- 1	
	- A S	15 tcm 15 3914	TO DE STADLE IL	for bounded inputs
	the a	obput is also	bom ded.	
			1 1 1	1 (850) 1111
		i.e Bounded in	put bounded c	whyot (BIBO) stability
		7/4		
		7(4)	H y (+	
	i.e. if	\x(t) \ \	B < 100 7	t, then for BI30

Stability =) y(t) < M < 00 + t
Ex.	$y(t) = e \qquad x(t) \leq B$ $\Rightarrow y(t) \leq e^{B} = M : Stable$
2	$y(t) = t x(t)$ $ x(t) \le B$
	y(t) cannot be bounded: unstable
3	7(4) JA) y (+)
	$y(t) = \int z(\tau) d\tau \qquad \text{unstable}$
Lapla ce	
recall	FS: basis signals - Sinusoids comple. Finusoids. $z(t) \stackrel{FS}{\longleftrightarrow} \{a_x, b_x\} \stackrel{C}{\smile} \{c_x, 0_x\} \stackrel{C}{\smile} \{d_x\}$
coefficients -	-> find by comparing a(t) with basis signals i.e. analysis equation
*Laplace trans	sform is for any general signals (not restricted
to period	dic signols)

																			t							
Ex.	L		L	Gr	, }	70-1	, ?			ч	(±)	=	ر :	لم في	7 (t	,	=		ſ	a (r),	d٦				
7		∼	~					'		◁				. (_		_	⟨ ०							
							J	inc	ar		V	^		,-	j.	ntes	747	ion	zí	line	POY					
																O							ļ			
						tin	7C	-in1	eenia B	nce	V	•	∵ (<u>@</u> 2	((-t-	· to) –	\rightarrow	91	(4)	=	7	2 (7-	to')	d)
									\sim				1			t-7	של	<i>.</i> .			7	- (X) 7				1
								((b)	(J (+	ا – د	50)	=			ス	(v)	dr		~	Sa	me	in-	legr.	el
															-	CO										
					.:	5)	ste	רונר	iς	L	1 7	•														