14.380: Statistics

Problem Set 3 due Tuesday, October 1, 2019

You should hand in the solution for problem 4 to David. Problems 1- 3 are for practice.

1. Let X_1, \ldots, X_n be a random sample from a Poisson distribution with parameter λ

$$P\{X=j\} = \frac{e^{-\lambda}\lambda^j}{j!} \quad j=0,1,\dots$$

- (a) Find the MLE of λ and its asymptotic distribution.
- (b) Assume that we are interested in estimating the probability of a count of zero $\theta = P\{X = 0\} = \exp\{-\lambda\}$. Find the MLE of θ and its asymptotic distribution. *Hint:* you may use the delta-method.
- (c) Is the MLE of θ you derived in (b) unbiased? Derive a theoretical formula for the first order bias. Describe a bootstrap bias-correction you may do here.
- (d) (Computer exercise). Simulate a sample of size n=20 from a population with $\lambda=1$. Implement your initial estimator $\widehat{\theta}$. Perform a bias correction you described with the number of bootstrapped samples B=20,50,100. Call the bias-corrected estimator $\widetilde{\theta}$. Store the results. Repeat the whole procedure 1000 times. Average $\widehat{\theta}$ and $\widetilde{\theta}$ over repetitions. What can you say about biases of the two estimators?
- (e) Now consider a question of variance estimation. Find the asymptotic distribution of estimator $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i \bar{X})^2$. You may use the following facts about Poisson distribution: $EX = \lambda, Var(X) = \lambda, E(X EX)^3 = \lambda, E(X EX)^4 = \lambda(1 + 3\lambda)$.

- (f) Notice that since $Var(X) = \lambda$, the estimator in (a) is the MLE for variance in this model. How would you compare asymptotic efficiency of estimators in (a) and (d)?
- 2. Assume one observes random variables $\{X_{i,t}, t = 1, 2, i = 1, ..., n\}$ which are independent of each other and come from the following model:

$$X_{i,t} = \mu_i + \varepsilon_{i,t}$$
, where $\varepsilon_{i,t} \sim N(0, \sigma^2)$

The unknown parameter here is $(\sigma^2, \mu_1, \mu_2,, \mu_n)$. This is the simplest panel data, and you can treat this situation as you observe each entity (i) for two periods t = 1 and t = 2, keeping in mind that each entity has its own unknown mean μ_i . This is also known as fixed effects model.

- (a) Write down the likelihood function.
- (b) Find MLE for the unknown parameters.
- (c) Is the estimator for μ_i unbiased? Consistent as $n \to \infty$?
- (d) Is the MLE for σ^2 unbiased? Consistent as $n \to \infty$?
- (e) Why does asymptotic MLE theory fail to work in this case?

The described problem is known as the incidental parameter problem and is extremely important for panel data analysis.

- 3. Let X_1, \ldots, X_n be a sample from the following distributions. In each case find the asymptotic variance of the MLE.
 - (a) $f(x \mid \theta) = \theta x^{\theta-1}$, 0 < x < 1, $0 < \theta < \infty$.
 - (b) $f(x \mid \theta) = \frac{1}{\theta} \exp\left\{-\frac{x}{\theta}\right\}, \quad 0 < x < \infty, \quad 0 < \theta < \infty.$
- 4. (Required problem) Suppose that income Y is distributed as a Pareto distribution: $f(y) = \alpha y^{-(\alpha+1)}$ for $1 \le y$, with $\alpha > 1$.

- (a) It is quite common to not observe all incomes, but only those that are higher than some threshold (so-called truncated variables). Assume that you observe only those individuals with an income greater than or equal to \$9,000, and their income is described by a random variable Y^* . How is Y^* distributed?
- (b) Your have a sample of size N drawn from the population of persons with incomes greater than or equal to \$9,000. What is the MLE of α ?
- (c) What is asymptotic distribution of the estimator in (b)?
- (d) Suppose you believe that the mean of the Pareto distribution out of which you draw an observation is affected linearly by a variable w, that is, $E(Y_i|w_i) = \beta_1 + \beta_2 w_i$. Assume that you have a sample of (Y_i^*, w_i) of size N. Explain how you would estimate the parameters β_1 and β_2 (it is enough to set out the optimization problem that the parameters should solve, you do not need to solve for them directly). Hint: calculate the mean of the Pareto distribution. How is it related to α ?