$22238_MDSC_201_Assignment~4$

```
print("Experimenting with the plots in R")
## [1] "Experimenting with the plots in R"
plot(cars)
```



```
vol <- c(21, 62, 10, 53)
lab <- c("Strawberry", "Chocolate", "Orange", "Vanilla")
colo <- c("pink", "brown", "orange", "grey")
pie(x=vol,labels = lab, radius = 1, col = colo)
legend("topright", c("Strawberry", "Chocolate", "Orange", "Vanilla"), cex = 0.7, fill = colo)</pre>
```


Total Revenue


```
dat <- read.table(text = "A B C D E F G
1 10 80 30 90 70 60 90
2 20 50 70 50 40 10 40
3 60 80 80 60 60 30 160
4 20 40 70 80 20 10 70", header = TRUE)
barplot(as.matrix(dat),col = c("darkcyan", "cadetblue4", "cadetblue4", "cadetblue1"))</pre>
```


print(airquality)

##		Ozone	Solar.R	Wind	Temp	Month	Day
##	1	41	190	7.4	67	5	1
##	2	36	118	8.0	72	5	2
##	3	12	149	12.6	74	5	3
##	4	18	313	11.5	62	5	4
##	5	NA	NA	14.3	56	5	5
##	6	28	NA	14.9	66	5	6
##	7	23	299	8.6	65	5	7
##	8	19	99	13.8	59	5	8
##	9	8	19	20.1	61	5	9
##	10	NA	194	8.6	69	5	10
##	11	7	NA	6.9	74	5	11
##	12	16	256	9.7	69	5	12
##	13	11	290	9.2	66	5	13
##	14	14	274	10.9	68	5	14
##	15	18	65	13.2	58	5	15
##	16	14	334	11.5	64	5	16
##	17	34	307	12.0	66	5	17
##	18	6	78	18.4	57	5	18
##	19	30	322	11.5	68	5	19
##	20	11	44	9.7	62	5	20
##	21	1	8	9.7	59	5	21
##	22	11	320	16.6	73	5	22

##	23	4	25	9.7	61	5	23
##	24	32	92	12.0	61	5	24
##	25	NA	66	16.6	57	5	25
##	26	NA	266	14.9	58	5	26
##	27	NA	NA	8.0	57	5	27
##	28	23	13	12.0	67	5	28
##	29	45	252	14.9	81	5	29
##	30	115	223	5.7	79	5	30
##	31	37	279	7.4	76	5	31
##	32	NA	286	8.6	78	6	1
##	33	NA	287	9.7	74	6	2
##	34	NA	242	16.1	67	6	3
##	35	NA	186	9.2	84	6	4
##	36	NA	220	8.6	85	6	5
##	37	NA	264	14.3	79	6	6
##	38	29	127	9.7	82	6	7
##	39	NA	273	6.9	87	6	8
##	40	71	291	13.8	90	6	9
##	41	39	323	11.5	87	6	10
##	42	NA	259	10.9	93	6	11
##	43	NA	250	9.2	92	6	12
##	44	23	148	8.0	82	6	13
##	45	NA	332	13.8	80	6	14
##	46	NA	322	11.5	79	6	15
##	47	21	191	14.9	77	6	16
##	48	37	284	20.7	72	6	17
##	49	20	37	9.2	65	6	18
##	50	12	120	11.5	73	6	19
##	51	13	137	10.3	76	6	20
##	52	NA	150	6.3	77	6	21
##	53	NA	59	1.7	76	6	22
##	54	NA	91	4.6	76	6	23
##	55	NA	250	6.3	76	6	24
##	56	NA	135	8.0	75	6	25
##	57	NA NA	127	8.0	78	6	26
##	58	NA NA	47	10.3	73	6	27
##	59	NA	98	11.5	80	6	28
	60	NA NA	31		77	6	29
##	61		138	8.0	83	6	
##	62	NA 135	269	4.1	84	7	30 1
##		49		9.2		7	2
##	63		248 236		85 01		3
	64	32 NA		9.2	81	7	
##	65	NA C4	101	10.9	84	7	4
##	66	64	175	4.6	83	7	5
##	67	40	314	10.9	83	7	6
##	68	77	276	5.1	88	7	7
##	69	97	267	6.3	92	7	8
##	70	97	272	5.7	92	7	9
##	71	85	175	7.4	89	7	10
##	72	NA	139	8.6	82	7	11
##	73	10	264		73	7	12
##	74	27	175		81	7	13
##	75	NA	291		91	7	14
##	76	7	48	14.3	80	7	15

##	77	48	260	6.9	81	7	16
##	78	35	274	10.3	82	7	17
##	79	61	285	6.3	84	7	18
##	80	79	187	5.1	87	7	19
##	81	63	220	11.5	85	7	20
##	82	16	7	6.9	74	7	21
##	83	NA	258	9.7	81	7	22
##	84	NA	295	11.5	82	7	23
##	85	80	294	8.6	86	7	24
##	86	108	223	8.0	85	7	25
##	87	20	81	8.6	82	7	26
##	88	52	82	12.0	86	7	27
##	89	82	213	7.4	88	7	28
##	90	50	275	7.4	86	7	29
##	91	64	253	7.4	83	7	30
##	92	59	254	9.2	81	7	31
##	93	39	83	6.9	81	8	1
##	94	9	24	13.8	81	8	2
##	95	16	77	7.4	82	8	3
##	96	78	NA	6.9	86	8	4
##	97	35	NA	7.4	85	8	5
##	98	66	NA	4.6	87	8	6
##	99	122	255	4.0	89	8	7
##	100	89	229	10.3	90	8	8
	100	110	207				9
## ##	101			8.0	90	8	10
		NA NA	222	8.6 11.5	92 86	8	
##	103 104	NA 44	137			8	11
##			192	11.5	86	8	12
##	105	28	273	11.5	82	8	13
##	106	65 NA	157	9.7	80	8	14
##	107	NA	64	11.5	79	8	15
##	108	22	71	10.3	77	8	16
##	109	59	51	6.3	79	8	17
##	110	23	115	7.4	76	8	18
##	111	31	244	10.9	78	8	19
##	112	44	190	10.3	78	8	20
##	113	21	259	15.5	77	8	21
##	114	9	36	14.3	72	8	22
##	115	NA	255	12.6	75	8	23
##	116	45	212	9.7	79	8	24
##	117	168	238	3.4	81	8	25
##	118	73	215	8.0	86	8	26
##	119	NA	153	5.7	88	8	27
##	120	76	203	9.7	97	8	28
##	121	118	225	2.3	94	8	29
##	122	84	237	6.3	96	8	30
##	123	85	188	6.3	94	8	31
##	124	96	167	6.9	91	9	1
##	125	78	197	5.1	92	9	2
##	126	73	183	2.8	93	9	3
##	127	91	189	4.6	93	9	4
##	128	47	95	7.4	87	9	5
##	129	32	92	15.5	84	9	6
##	130	20	252	10.9	80	9	7

```
## 131
          23
                 220 10.3
                             78
                                        8
## 132
                 230 10.9
                            75
                                       9
          21
                                    9
## 133
          24
                 259 9.7
                             73
                                       10
## 134
          44
                 236 14.9
                             81
                                       11
                                    9
## 135
                 259 15.5
                                       12
          21
                            76
                                    9
## 136
          28
                 238 6.3
                            77
                                    9
                                       13
## 137
                  24 10.9
          9
                            71
                                    9
                                       14
## 138
                 112 11.5
          13
                             71
                                    9
                                       15
## 139
          46
                 237 6.9
                             78
                                    9
                                       16
                 224 13.8
## 140
          18
                             67
                                    9
                                       17
## 141
          13
                  27 10.3
                             76
                                    9
                                       18
## 142
          24
                 238 10.3
                             68
                                       19
                                    9
## 143
          16
                 201 8.0
                             82
                                    9
                                       20
## 144
                 238 12.6
                                    9
          13
                             64
                                       21
## 145
          23
                  14 9.2
                            71
                                    9
                                       22
## 146
                 139 10.3
                                       23
          36
                             81
                                    9
## 147
          7
                  49 10.3
                             69
                                    9
                                       24
## 148
                  20 16.6
                             63
                                       25
          14
## 149
                 193 6.9
                                       26
          30
                            70
                                    9
## 150
                 145 13.2
                            77
                                    9
                                       27
          NA
## 151
          14
                 191 14.3
                            75
                                    9
                                       28
## 152
          18
                 131 8.0
                             76
                                    9
                                       29
## 153
          20
                 223 11.5
                             68
                                    9
                                       30
```

```
boxplot(Temp~Month,
data=airquality,
main="Box plot depicting temperature of each month",
xlab="Month",
ylab="Degree Fahrenheit",
col="brown",
border="black"
)
```

Box plot depicting temperature of each month


```
hist(airquality$Temp,
main="Maximum daily temperature at La Guardia Airport",
xlab="Temperature in degrees Fahrenheit",
xlim=c(50,100),
col="darkcyan",
freq=FALSE
)
```

Maximum daily temperature at La Guardia Airport

Temperature in degrees Fahrenheit

Line plot in R

Scatterplot in R


```
df <- mtcars
print(df)</pre>
```

```
##
                        mpg cyl disp hp drat
                                                       qsec vs am gear carb
                                                    wt
## Mazda RX4
                        21.0
                               6 160.0 110 3.90 2.620 16.46
## Mazda RX4 Wag
                        21.0
                               6 160.0 110 3.90 2.875 17.02
                                                                            4
                        22.8
                               4 108.0 93 3.85 2.320 18.61
## Datsun 710
                                                                            1
## Hornet 4 Drive
                        21.4
                               6 258.0 110 3.08 3.215 19.44
                                                                            1
                               8 360.0 175 3.15 3.440 17.02
                                                                            2
## Hornet Sportabout
                        18.7
## Valiant
                               6 225.0 105 2.76 3.460 20.22
                                                                            1
                        18.1
## Duster 360
                        14.3
                               8 360.0 245 3.21 3.570 15.84
                                                                            4
## Merc 240D
                        24.4
                                        62 3.69 3.190 20.00
                                                                            2
                               4 146.7
                                                                            2
## Merc 230
                        22.8
                               4 140.8
                                       95 3.92 3.150 22.90
## Merc 280
                        19.2
                               6 167.6 123 3.92 3.440 18.30
## Merc 280C
                        17.8
                               6 167.6 123 3.92 3.440 18.90
                                                                            4
                                                                      3
## Merc 450SE
                        16.4
                               8 275.8 180 3.07 4.070 17.40
                                                                            3
## Merc 450SL
                               8 275.8 180 3.07 3.730 17.60
                                                                            3
                       17.3
## Merc 450SLC
                        15.2
                               8 275.8 180 3.07 3.780 18.00
                                                                      3
                                                                            3
## Cadillac Fleetwood
                       10.4
                               8 472.0 205 2.93 5.250 17.98
                                                                            4
                                                                      3
                                                                            4
## Lincoln Continental 10.4
                               8 460.0 215 3.00 5.424 17.82
## Chrysler Imperial
                        14.7
                               8 440.0 230 3.23 5.345 17.42
## Fiat 128
                        32.4
                                  78.7
                                        66 4.08 2.200 19.47
                                                                            1
## Honda Civic
                       30.4
                                  75.7
                                        52 4.93 1.615 18.52
                                                                      4
                                                                            2
## Toyota Corolla
                        33.9
                                        65 4.22 1.835 19.90
                                                                      4
                                                                            1
                               4 71.1
## Toyota Corona
                        21.5
                               4 120.1
                                        97 3.70 2.465 20.01
                                                                            1
                                                                            2
## Dodge Challenger
                        15.5
                               8 318.0 150 2.76 3.520 16.87
```

```
## AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 ## Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0
                                                                 3
                                                                      4
                                                                      2
## Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0
## Fiat X1-9
                    27.3 4 79.0 66 4.08 1.935 18.90 1 1
                                                                      1
## Porsche 914-2
                    26.0 4 120.3 91 4.43 2.140 16.70 0 1
                                                                      2
                                                                 5
                  30.4 4 95.1 113 3.77 1.513 16.90 1 1
## Lotus Europa
                                                               5
                                                                      2
## Ford Pantera L
                    15.8 8 351.0 264 4.22 3.170 14.50 0 1
## Ferrari Dino
                    19.7 6 145.0 175 3.62 2.770 15.50 0 1 5
                                                                      6
## Maserati Bora
                    15.0 8 301.0 335 3.54 3.570 14.60 0 1
                                                                 5
                                                                      8
## Volvo 142E
                    21.4 4 121.0 109 4.11 2.780 18.60 1 1
                                                                      2
cat("Means of the miles per gallon : ", mean(df$mpg))
## Means of the miles per gallon : 20.09062
cat("\n\n")
cat("Median of weight of the car dataset : ", median(df$wt))
## Median of weight of the car dataset : 3.325
cat("\n\n")
cat("Mode of the weight from the car dataset : ", names(sort(-table(df$wt)))[1])
## Mode of the weight from the car dataset : 3.44
cat("\n\n")
cat("Quantiles of the weight: ",quantile(df$wt))
```