

Agenda

- Bayes rule, K-nearest neighbors for classification and regression
- Unsupervised learning, clustering
 - K-means clustering
 - Hierarchical clustering
 - Clustering quality using mutual information
- Dimensionality reduction
 - Principal component analysis (PCA)
 - t-SNE

Conditional Probability

$$P(A) = 1/4$$

 $P(A|B)=\frac{2}{3}$

Product Rule

$$P(A,B) = P(A/B)P(B) = P(B/A)P(A)$$

$$P(B|A) = P(A|B)P(B) / P(A)$$

Sum Rule

$$p(A) = \sum_{B} p(A,B)$$

$$\sum_{j=1}^{8} \rho(A=j) = 1 \quad \rho(A)$$

$$P(B_1|A) = P(A|B_1)P(B_1) / P(A)$$

$$P(B_2/A) = P(A/B_2)P(B_2) / P(A)$$

$$\frac{P(B_1/A)}{P(B_2/A)} = \frac{P(A/B_1)}{P(A/B_2)} \times \frac{P(B_1)}{P(B_2)}$$

posterior odds ratio is likelihood ratio times prior ratio

Observe twin girls and know that 1/3 of twin births are identical. Question: What is the probability that the twin girls are identical?

_	same gender	different gender	_
identical	V 3	o	P(identical) = V3
fraternal	?		P(fraternal) = 4⁄3
L	twin girls		J

_	same gender	different gender	1
identical	1/3	o	P(identical) = V3
fraternal	1/3	1/3	P(fraternal) = ¾
L	twin girls		

 $P(identical/same\ gender) = P(same\ gender/identical)P(identical)/P(same\ gender) = 1 \times 1/3 / P(same\ gender)$ $P(fraternal/same\ gender) = P(same\ gender/fraternal)P(fraternal)/P(same\ gender) = 1/2 \times 1/3 / P(same\ gender)$

_	same gender	different gender	1
identical	<i>V</i> 3	o	P(identical) = V3
fraternal	1/3	1/3	P(fraternal) = ¾
L	twin girls		

$$\frac{P(\text{identical/same gender})}{P(\text{fraternal/same gender})} = \frac{1/3}{1/2 \times 2/3} = 1$$

_	same gender	different gender	1
identical	1 ⁄3	o	P(identical) = V3
fraternal	1/3	1/3	P(fraternal) = ¾
L	twin girls		

P(identical/same gender) = P(fraternal/same gender) Answer: probability that twin girls are identical is 1/2

Supervised Learning Classification and Regression K-Nearest Neighbors

K-Nearest Neighbors

Simple and efficient algorithm

Requires definition of distance function or similarity between samples

Select class based on majority vote of k closest points

Choice of k determines smoothness of classifier

Probabilistic view: approximate Bayes rule on subset

Bayes Rule: K-Nearest Neighbors

x new data point to classify

y class

V selected ball

P probability that random point is in V

N total number of samples (11)

K number of nearest neighbors (3)

 N_1 total number of samples from class 1 (5)

 K_1 number of samples from class 1 in V(2)

$$p(x|y = 1) = \frac{K_1}{N_1}$$

 $p(y = 1) = \frac{N_1}{N_1}$

$$p(x) = \frac{K}{N}$$

Bayes rule:
$$p(y = 1|x) = \frac{p(x|y = 1)p(y = 1)}{p(x)} = \frac{p(x|y =$$

K-Nearest Neighbors

Used both for classification and regression

Explainability: show k-NN

No training, testing computation.

Larger k results in higher bias

Smaller *k* results in higher variance

Similarity and Distance

- Data as points in high dimensional space
- Distance between points:

$$\circ$$
 Euclidean $\sqrt{\sum (x_i - y_i)^2}$

$$\circ \quad \text{Manhattan} \quad \sum |x_i - y_i|$$

o Cosine
$$d_{C}(X,Y) = 1 - C(X,Y) = 1 - \cos(\theta) = 1 - \frac{X \cdot Y}{||X||_{2} ||Y||_{2}}$$

Similarity and Distance

- Feature ranges for similarity: scaling, bins, different metrics
- Irrelevant features: selection

L2 and L1 Distances

• Euclidean distance $\sqrt{\sum (x_i - y_i)^2}$

$$\sqrt{\sum (x_i - y_i)^2}$$

• Manhattan distance
$$\sum |x_i - y_i| = \sum |x_i - y_i| = \sum |x_i - y_i|$$

Jaccard Index

loU: 0.4034

Cosine Distance

- Used in text classification
- Coefficients can be word counts

$$d_{cosine}(\mathbf{X}, \mathbf{Y}) = 1 - \frac{\mathbf{X} \cdot \mathbf{Y}}{\parallel \mathbf{X} \parallel_{2} \cdot \parallel \mathbf{Y} \parallel_{2}}$$

Edit Distance: Levenshtein Metric

- Count minimum number of edit operations converting between strings
- Operations: insert, delete, replace
- Sequences where order is important

K-Nearest Neighbors

Classification

Regression

Source: DSB

Balance

K-Nearest Neighbors Classification

Majority vote

$$c(x) = \arg\max_{c} \sum_{y \in KNN(x)} \left[class(y) = c \right]$$

K-Nearest Neighbors

Source: DSB

26

K-Nearest Neighbors

Source: DSB

K-Nearest Neighbors Classification

Weighted by similarity

Name	Distance	Similarity weight	Contribution	Class
Rachael	15.0	0.004444	0.344	No
John	15.2	0.004348	0.336	Yes
Norah	15.7	0.004032	0.312	Yes
Jefferson	122.0	0.000067	0.005	No
Ruth	152.2	0.000043	0.003	No

$$w(x,y) = \frac{1}{dist(x,y)^2}$$

$$p(c \mid x) = \frac{\sum_{y \in KNN(x)} w(x, y) \cdot \left[class(y) = c \right]}{\sum_{y \in KNN(x)} w(x, y)}$$

Source: DSB

K-Nearest Neighbors Regression

Weighted by similarity

$$w(x,y) = \frac{1}{dist(x,y)^2}$$

$$f(x) = \frac{\sum_{y \in KNN(x)} w(x, y) \cdot t(y)}{\sum_{y \in KNN(x)} w(x, y)}$$

Unsupervised Learning Clustering K-Means, Hierarchical

Clustering Goals

- Reliably achieve high accuracy across domains
- Handle high data dimensionality
- Scale to large datasets

Source: DSB

Source: DSB

- Choose k
- Initialize cluster centroids as k random examples
- Repeat until convergence
 - 1. For each example: find its nearest cluster centroid and label example as belonging to that cluster.
 - 2. For each cluster centroid: update to mean of its labeled examples.

K-Means Clustering

Objective

$$\min_{c(x_i)} \frac{1}{n} \sum_{i=1}^{n} \left(x_i - \mu_{c(x_i)} \right)^2$$

K-Means Clustering

- Choose number of clusters k
- Choose number of experiments t
- For each experiment run K-means
- Select best clustering among t experiments minimizing objective

K-Means Clustering

Choosing k

Hierarchical Clustering

- Bottom up: agglomerative
- Each sample starts in its own cluster, and pairs of clusters are merged
- Top down: divisive
- All samples start in one cluster, and splits are performed recursively

Hierarchical Clustering: Dendrogram

Source: DSB

Phylogenetic Tree of Life: Hierarchical clustering of species

Source: DSB

- Normalized mutual information
- Adjusted mutual information
- Rand index

Information and Entropy

Information: $-\log_2(p)$ where $p \in [0, 1]$

Entropy: $-p \log_2(p) - (1-p) \log_2(1-p)$ where $p \in [0, 1]$

Mutual Information

- Reduction in uncertainty of X due to knowledge of Y
- I(X;Y) = H(X) H(X|Y)

- Normalized mutual information
- Between class labels Y and cluster labels C

$$\frac{I(Y;C)}{\sqrt{H(Y)H(C)}}$$

• Probability () =
$$5/20 = 1/4$$

• Probability () =
$$5/20 = 1/4$$

- Probability () = $10/20 = \frac{1}{2}$
- $H(Y) = -\frac{1}{4}\log(\frac{1}{4}) \frac{1}{4}\log(\frac{1}{4}) \frac{1}{2}\log(\frac{1}{2}) = \frac{3}{2}$

• Probability () = 10/20 = 1/2

•
$$H(C) = -1/2\log(1/2) - 1/2\log(1/2) = 1$$

• Probability () = 3/10

• Probability () = 4/10 = 2/5

- Probability () = 3/10
- $H(Y|C=1) = -P(C=1) sum_y P(Y=y|C=1)log(P(Y=y|C=1))$

• Probability () = 2/10 = 1/5

• Probability () = 1/10

- Probability () = 7/10
- $H(Y|C=2) = -P(C=2) sum_y P(Y=y|C=2)log(P(Y=y|C=2))$

•
$$H(Y|C) = H(Y|C=1) + H(Y|C=2)$$

•
$$I(Y;C) = H(Y) - H(Y|C)$$

Clustering Explainability

Cluster

Classify based on cluster labels using tree model

Unsupervised Learning Dimensionality Reduction Principal Component Analysis

Dimensionality Reduction

- Storage
- Computation
- Visualization

Dimensionality Reduction

- Principal component analysis (PCA)
 - Maximize variance
 - Minimize mean squared error
- Find new basis in which vectors maximize variance
- Orthogonal linear transformation of data to new coordinate system such that greatest variance by projection of data is on 1st coordinate (first principal component), 2nd greatest variance is on 2nd coordinate, and so on

Dimensionality Reduction

Subtract mean, so new mean is 0

• Variance is then $\sigma^2 = \frac{1}{n} \sum_{i=1}^n x_i^2$

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^n x_i^2$$

• Compute covariance matrix
$$\Sigma = \frac{1}{m} M^T M$$

Compute eigenvectors of covariance matrix by singular value decomposition

$$U, S, V^T = SVD(\Sigma)$$

$$Z = MU_{1\cdots k}$$

$$mxk \quad mxn \quad nxk$$

low dimensional representation of dimension k in rows of Z

examples in rows of M in dimension n eigenvectors in columns of U

$$M = \left[egin{array}{ccc} 1 & 2 \ 2 & 1 \ 3 & 4 \ 4 & 3 \end{array}
ight]$$

$$M^{\mathrm{T}}M = \left[egin{array}{cccc} 1 & 2 & 3 & 4 \ 2 & 1 & 4 & 3 \end{array}
ight] \left[egin{array}{cccc} 1 & 2 \ 2 & 1 \ 3 & 4 \ 4 & 3 \end{array}
ight] = \left[egin{array}{cccc} 30 & 28 \ 28 & 30 \end{array}
ight]$$

$$(30 - \lambda)(30 - \lambda) - 28 \times 28 = 0$$

$$\lambda = 58$$
 and $\lambda = 2$

$$\begin{bmatrix} 30 & 28 \\ 28 & 30 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 58 \begin{bmatrix} x \\ y \end{bmatrix} \qquad \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$$

$$E = \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$$

$$\begin{bmatrix} 30 & 28 \\ 28 & 30 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 2 \begin{bmatrix} x \\ y \end{bmatrix} \qquad \begin{bmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$$

$$(3/\sqrt{2}, 1/\sqrt{2}) \qquad (7/\sqrt{2}, 1/\sqrt{2})$$

$$0 \qquad 0$$

$$(3/\sqrt{2}, -1/\sqrt{2}) \qquad (7/\sqrt{2}, -1/\sqrt{2})$$

$$ME = \begin{bmatrix} 1 & 2 \\ 2 & 1 \\ 3 & 4 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix} = \begin{bmatrix} 3/\sqrt{2} & 1/\sqrt{2} \\ 3/\sqrt{2} & -1/\sqrt{2} \\ 7/\sqrt{2} & 1/\sqrt{2} \\ 7/\sqrt{2} & -1/\sqrt{2} \end{bmatrix}$$

 E_k be the first k columns of E

 ME_k is a k-dimensional representation of M

$$ME_1 = \begin{bmatrix} 1 & 2 \\ 2 & 1 \\ 3 & 4 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} = \begin{bmatrix} 3/\sqrt{2} \\ 3/\sqrt{2} \\ 7/\sqrt{2} \\ 7/\sqrt{2} \end{bmatrix}$$

Choose k such that

$$\frac{\sum_{i=1}^{k} S_{ii}}{\sum_{i=1}^{n} S_{ii}} \ge 0.99$$

- Computation speedup
- Dataset $\{x^{(i)}, y^{(i)}\}$
- Examples $\{x^{(1)}, ..., x^{(m)}\}$
- PCA of examples $\{z^{(1)}, ..., z^{(m)}\}$
- Train on low dimensional representation $\{z^{(i)}, y^{(i)}\}$

Dimensionality Reduction: t-SNE

- t-Distributed Stochastic Neighbor Embedding (t-SNE)
- Map high-dimensional points to 2D/3D points such that:
 - Similar points map to nearby points
 - Dissimilar points map to distant points

http://projector.tensorflow.org

Dimensionality Reduction: t-SNE

- t-Distributed Stochastic Neighbor Embedding (t-SNE)
- pij measures similarity between xi and xj
- qij measures similarity between yi and yj
- Minimize Kullback Leibler divergence between p and q.
- Low dimensional map reflects similarities between high dimensional points.