

LES TRANSISTORS ET
LES IMPERFECTIONS
DE L'AMPLIFICATEUR
OPÉRATIONNEL

Évaluation formative – Transistors Solutionnaire

S2 APP5GE GEL213 Hiver 2022

Pr Serge Charlebois Pr Jean-François Pratte

Département de génie électrique et de génie informatique

Faculté de génie Université de Sherbrooke

2. a) NMOS $K=0.4 \text{ mA/V}^2$ $V_{to}=1V$ en saturation à $\tilde{c}_D=0.1 \text{ mA}$ Le couront obéit donc à 10=k(vas-160)² ce qui permet de déterminer ves VES = 10 + VED = 1.5V Ves est contraint à une valeur unique en saturation, donc par de gamme de Mais pour saturation los > 165-Veo = 0.5 V Ok, saturation On de vrait a jouter une valeur l'inite titée de la fiche technique, mais ça c'est une autre histoine... 2. 6) Posent l'hypothèse de saturation le courant ip=0.5mt permet off 15
100052 Sachant is, on trouve aussi K = LOR = 0.5 V. On trouve ensuite vos=5V-vs = 4.5V Ce qui permet de confirmer vos Ves-Veo et donc, l'hypothèse du régime de Finalement, V= Vs + V5 = 2.62V.

2. c) Cette fois K=0.2m/1/2 et R=4ksl. Posous comme hypothèse l'opération du transistor en régime de satulation. On trouve comme on 6): Or, vos & vos- 40 ce qui contredit Chypothèse de saturation: le transistor On reprend le calcul avec la bonne éguation de is:

Lo= K/2(Vas-Vto) Vos - Vos] arec Nos = Voo - RLD = 1.8V

Cette équation n'a gulune seule inconnue, soit ves.

On trouve: Ves = 40 + Vps + 10 = 3.01 On confirme l'hypothèse triode: vos < vos-Voo

3.0) (suite) Connaissant Ipp, on trouve VDSQ = VDD - IpQ R = 12.5 V On valide ainsi l'hypothèse de saturation Vosa > Vesa - 40 (Ca complète l'analyse DC) 3.c) Pour trouver le gain Av=-gmRi on doit calculer gm à partir ce IDQ: gm = 2/KIDQ = 1.5 mS Avec R'= RD//RL= RORL = 5KSL, on trouve Av = -gm R' = -7.5. L'impédance d'entrée est celle rue par la générateur (idéal dans ce problème) soit R, 1/Rz (voir shéma équivalent en b) De même, sons générateur à l'entrée vin(t), la source contrôlée De ne génère aucun courant et l'impédance de sortie se résume à Ro=RD.

3 c) (suite) Note: on exclue toujours la charge Re du circuit équivalent pour calculer Ro 4. a) On procède comme en 3 a) pour une analyse. $V_{60} = \frac{R_2}{R_1 + R_2} = 10.6 \text{ V}$ Mais VsQ # 0 à cause de Rs. On peut ce pendant poses l'hypothèse de saturation en explicitant Vesq = Veq - VsQ = Veq - Rs I po IDQ = K VOQ - RSIDQ - VO On déve loppe ensuite pour obtenir:

Rs² Ioà + -[2(Voq-Vo)Rs+1/k]Ioa + 1/k(Voq-Vo)² don't une des racines est Im=5.7 m A.

On détermine vose = 2.1 V et Vose = 11.5 V ce qui valide l'hypothèse. C'est toujours la racine de courant plus faible qui est la bonne pour cette configuration (voir fig. 11.14)

4. e) Comme on traite encore du signal (AC),
on analyse a partir du shéma 46
Le courant qui soit de la source
se partage dans Re et Re.
Ce partage va comme:
To = I RL et In = Is Rs
IRS = IS RL et IRL = Is Rs RS+RL RS+RL
Les 3/4 den signal de courant sont utilisés par la charge. Ce la dit, Rs et Re voient la mêne tension:
Les 3/ de signal de courant
sont utilisés par la charge.
Ce la dit, Re et R, voient la mênse
tension!
4-f) La branche Drain-Source utilise Joq Voo = 114 mW
Ino. Van = 114 mW
4.9) Et le transistor
4.9) Et le transistor Ipo · VDSO = 65.2 mW 57% de

5. (suite 1)

R1 = 15970 Ohms, R2 = 26050 Ohms

5. b) (VDSQ = 9.2V) > (V65Q-40=0.6V) L'hypothèse du régime de saturation est donc vérifiée. c) Comme en 3.c), on obtient l'impédance d'entrée en analysant le schéma petit signal fait en 4.6 (même circuit!) R: = R, //R, = 9900 et on Ro de la femille d'équation Ro = am 1/Rs/1/rd = 812 qui est très faible car dominé par = 832

d) $V_{DD} \cdot I_{DQ} = 72 \, \text{mW} \implies \text{a limentation}$ $V_{DD} \cdot I_{R1R2} = 9.5 \, \text{mW}$ Donc: 82 mW dissipé au total $V_{DSQ} \cdot I_{DQ} = 31 \, \text{mW} \implies \text{transitor}$

Complément sur l'agencement d'impédance On a souvent le nême problème à résondre exercise: que sont A et B... Une dé simple au problème n'ent du fait En isolant R,//R, de B (R,//R) = B R $A = \frac{B}{I - B} \frac{R}{R_i} \Rightarrow R_i = R \left(\frac{B}{I - B} \right) \frac{I}{A}$ Puis pour obtenis R2, je vous laisse compléter!