Otimização de Centrais Hidroelétricas

Cecília Eduarda Coelho Machado da Cruz Martins 21 de novembro de 2020

Resumo

O presente relatório tem como objetivo a discussão e análise de resultados de um projeto, elaborado para as Unidades Curriculares (UCs) de Algoritmos Genéticos e Evolucionários (AGE) e Otimização Sem Derivadas (OSD), com auxilio do MATLAB. Este aborda o problema de maximização da potência gerada por uma central hidroelétrica (ou hídrica), com reservatório, minimizando a água não aproveitada e evitando uma diminuição drástica do caudal do rio, na qual esta se insere, para evitar perturbações ao habitat das espécies que neste habitam. Este relatório encontra-se dividido em cinco secções: uma primeira onde será descrito o problema de otimização a tratar; na secção seguinte será apresentada a sua formulação matemática; segue-se uma pequena discussão de qual a melhor estratégia para o abordar; posteriormente serão apresentadas, e discutidas, as várias abordagens utilizadas, e os seus resultados, para encontrar a solução ótima; para finalizar, as conclusões retiradas serão brevemente descritas.

1 Introdução

Segundo a Redes Energéticas Nacionais (REN), 61% da geração total de eletricidade, correspondente a setembro de 2020, teve origem renovável. O tipo de energia renovável com maior contribuição foi a hídrica, perfazendo 28.20% [1]. O facto de esta ser uma das formas, renováveis mais eficientes de produzir eletricidade, e também uma das que emite menos poluentes, pode explicar o domínio da produção [2]. A energia hídrica é produzida em centrais hidroelétricas, neste projeto serão abordadas aquelas que possuem capacidade de armazenamento (reservatório), usualmente denominadas por barragens. Este tipo de central faz proveito da energia potencial, E_p , gerada pela diferença de nível entre o reservatório e a continuação do curso de água, equação 1.

$$E_p = m * g * \Delta h \tag{1}$$

onde:

m é a taxa de fluxo de massa em kg/sg é a constante de aceleração gravítica ($\approx 9.81 m/s^2$) Δh é a diferença entre a altura inicial e final (neste trabalho foi considerado um valor de -110)

Esta energia é convertida em energia mecânica por uma turbina que, por sua vez é convertida em energia elétrica por um gerador conectado a esta. A potência gerada pode ser calculada, em watts (W), pela equação 2.

$$P = -\eta * E_p \Leftrightarrow -\eta * m * g * \Delta h \tag{2}$$

onde:

 η é o coeficiente de eficiência (escalar entre 0 e 1, sendo que um valor de 1 corresponde a uma eficiência perfeita)

 E_p é a energia potencial em $kg.m^2.s^{-2}$

A taxa de fluxo de massa, m, pode ser relacionada com a taxa de fluxo de fluído, Q, equação 3.

$$Q = \frac{m}{\rho} \tag{3}$$

onde:

 ρ é a densidade da água ($\approx 997kg/m^3$)

Substituindo na equação 2 é obtida a equação 4:

$$P = -\eta * \rho * Q * g * \Delta h \tag{4}$$

Em que Q pode ser calculado através da equação 5.

$$Q = A * v \tag{5}$$

onde:

Aé a área da secção em m^2 vé a velocidade em m/s

Como a água é transportada por condutas com secção circular, a equação 5 pode ser escrita da forma da equação 6.

$$Q = \pi * r^2 * v \tag{6}$$

onde:

r é o raio da conduta em m

Na figura 1 encontra-se representada a central hidroelétrica em estudo neste projeto.

Figura 1: Representação da central hidroelétrica em estudo.

A central considerada possuí quatro componentes:

- Reservatório local elevado onde a água do rio é armazenada, a taxa de fluxo de fluído de entrada é representada por Q_{in} . Este reservatório possuí uma conduta, que permite a passagem de água, com abertura regulável permitindo o controlo da velocidade do fluído;
- Turbina as pás da turbina rodam com a força exercida pela água, transformando energia potencial em energia mecânica, a taxa de fluxo de fluído de passagem é representado por Q;
- Gerador encontra-se conectado à turbina sendo que este move-se com a mesma, convertendo assim energia mecânica em energia elétrica;
- Descarregador estrutura que permite controlar a quantidade de água presente no reservatório de forma a evitar transbordo, a taxa de fluxo de fluído de saída é representado por Q_{spill} . É de notar que este não contribui para a produção de energia;

2 Formulação do Problema

Neste projeto propõe-se otimizar a abertura das condutas, que encaminham o fluído para a turbina e descarregador assim como a velocidade de libertação da água existente no reservatório, de forma a maximizar a energia elétrica produzida e minimizar a taxa de fluxo do descarregador. Estes objetivos devem ainda ter em conta a manutenção de um caudal mínimo do curso de água, no qual a central se insere, de forma a preservar o habitat. Sendo assim, este é um problema multiobjetivo cuja função a maximizar é a equação 4, que substituindo Q com a equação 6, origina a equação 7.

$$f_1(x) = -\eta * \rho * \pi * x_1^2 * x_2 * g * \Delta h \tag{7}$$

onde:

 x_1 é o raio da conduta para a turbina em m x_2 é a velocidade da água nas condutas em m/s

Já a função a minimizar é a equação 8.

$$f_2(x) = \pi * x_3^2 * x_2 \tag{8}$$

onde:

 x_3 é o raio da conduta para o descarregador em m

Pretende-se maximizar a função $f_1(x)$, descrita na equação 7 e representada na figura 2, sabendo que a variável x_1 , que representa o raio da conduta que encaminha a água para a turbina, é não negativa e não pode exceder 3 m, $0 \le x_1 \le 3$. Já a variável x_2 , que representa a velocidade da água nas condutas, é superior a 6 m/s e não pode exceder os $20 \,\mathrm{m/s}, \ 6 \le x_2 \le 20^{-1}$. Além disso, a taxa de fluxo de fluído na turbina (Q) não pode exceder $400 \,\mathrm{m}^3/\mathrm{s}$ com o intuito de evitar danificar o equipamento, $Q \le 400$.

Também se pretende, igualmente, minimizar a função $f_2(x)$, descrita na equação 8 e representada na figura 2, sabendo que a variável x_3 , que representa o raio da conduta que encaminha a água para o descarregador, é não negativa e não pode exceder 5 m, $0 \le x_3 \le 5$.

Figura 2: Gráfico das funções objetivo, $f_1(x)$, que corresponde à potência gerada pela central, à esquerda e $f_2(x)$, que corresponde à taxa de fluxo no descarregador, à direita.

¹A velocidade do fluído pode ser alterada através do controlo da abertura da conduta que sai do reservatório e leva a água até à turbina ou descarregador. É importante referir que a velocidade de um fluído aumenta com a diminuição do raio da secção, esta relação pode ser obtida através da equação Hagen-Poiseuille [3].

A existência de restrições que se aplicam às duas funções objetivo tornam o problema mais interessante. A taxa de fluxo do curso de água, na qual a central hidroelétrica se insere, não poderá ser menor do que $400\,\mathrm{m}^3/\mathrm{s},\ Q+Q_{spill}\geq 400$. Por último, o volume armazenado no reservatório (V_i) não poderá exceder $55\times 10^6\,\mathrm{m}^3,\ V_i\leq 55\times 10^6\,\mathrm{e}$ nunca pode ser menor do que 70% do volume inicial $(V_{init}),\ V_i\geq 0.7*V_{init}^2$. O volume de água no reservatório ao longo do tempo pode ser calculado através da soma do volume de água que entra, ao volume existente, e a subtração do volume que sai para as condutas da turbina e do descarregador³, equação 9.

$$V_{i(t)} = V_{i(t-1)} + \Delta t * (Q_{in} - Q_{spill} - Q)$$
(9)

onde:

 $V_{i(t-1)}$ é o volume de água no reservatório, no instante de tempo anterior, em m^3 Δt é o intervalo de tempo decorrido entre o instante atual e o anterior, em s

Usando a equação 6 para Q e Q_{spill} , é possível formular o problema de otimização representado em 10.

$$\max f_1(x) \\
\min f_2(x) \\
s.a \quad 0 \le x_1 \le 3 \\
6 \le x_2 \le 20 \\
0 \le x_3 \le 5 \\
\pi * x_1^2 * x_2 \ge 400 \\
\pi * x_1^2 * x_2 + \pi * x_3^2 * x_2 \ge 400 \\
0.7 * V_{init} < V_i < 55 \times 10^6$$
(10)

3 Estratégia de Resolução

Visto que o problema proposto possuí duas funções objetivo, seria mais adequado a utilização de um solver com capacidade de resolver este tipo de problemas, como por exemplo um algoritmo genético multiobjetivo, (gamultiobj do MATLAB). Além disso, estão presentes restrições do tipo simples e não lineares de desigualdade, o que indica que será necessário usar um solver que permita a resolução de problemas com restrições não lineares, como por exemplo, que use o método de Programação Quadrática Sequencial (SQP) (fmincon do MATLAB) ou um algoritmo genético. Com isto, é possível concluir que o uso de um algoritmo genético do tipo multiobjetivo seria a escolha acertada para atingir os objetivos propostos.

 $^{^2 \}mathrm{Para}$ a realização deste projeto foi utilizado um volume inicial, $V_{init},$ de $50 \times 10^6 \, \mathrm{m}^3.$

³Note-se que, na realização deste trabalho, foi considerado que não há perdas de água, no reservatório, por evaporação.

O problema foi resolvido, utilizando MATLAB, com granularidade horária ($\Delta t = 3600$) para um período temporal de 50 h. A taxa de fluxo de água que entra no reservatório, Q_{in} , tem valores aleatórios entre 100 e $1000 \,\mathrm{m}^3/\mathrm{s}$. As variáveis com carácter aleatório permitem simular diversos cenários, tais como as situações limite, em que a taxa de fluxo de entrada é maior do que a de saída podendo provocar o transbordo do reservatório⁴.

4 Procura pela Solução Ótima

Como este projeto foi elaborado para duas UCs, foram utilizados os *solvers* lecionados nas mesmas para encontrar uma solução ótima para o problema em estudo, apesar de, a maior parte, não se adequarem.

4.1 Otimização Sem Derivadas (OSD)

Para encontrar a solução ótima para o problema proposto neste projeto foram utilizados os algoritmos fminsearch, *Pattern Search* e *Particle Swarm*.

4.1.1 fminsearch

O comando fminsearch encontra o mínimo de uma função sem restrições. Como o problema em estudo possuí diversas restrições, e de vários tipos, foi necessário ignorá-las. Além disso, a função que modela o problema é do tipo multiobjetivo e, pelas características deste comando, apenas a equação 7 será considerada. Sendo assim, o problema de otimização passa a ser representado por 11.

$$\max f_1(x) \tag{11}$$

Como ponto inicial de procura foi utilizado $x_0 = (0,0)^T$. Apesar de o número máximo de avaliações da função e de o número máximo de iterações terem sido aumentados, o fminsearch não conseguiu encontrar o ponto que minimiza a função objetivo. Isto pode ter sido causado pelo facto de ser necessário ignorar as restrições o que faz com que o problema deixe de ter solução finita.

De forma a introduzir as restrições de limite simples, foram usadas funções de penalidade. Assim, o problema de otimização considerado está representado em 12.

$$\max f_1(x)
s.a 0 \le x_1 \le 3
6 \le x_2 \le 20$$
(12)

Como ponto inicial foi utilizado $x_0 = (-10, -10)^T$. Contudo, apesar de várias tentativas com diferentes parâmetros, não foi possível encontrar o ponto que minimiza a função

⁴É de notar que os valores descritos neste parágrafo podem não corresponder, na totalidade, com a realidade e são meramente ilustrativos.

objetivo. Apesar disso, verificou-se que o uso de apenas os limites simples associados a x_1 produz um problema com solução finita mas o valor de x_2 será inferior a 0, o que fica muito distante das restrições associadas a esta variável.

4.1.2 Pattern Search

O método *Pattern Search* é um método de procura do mínimo de uma função sendo que, ao contrário do método anterior, esta pode estar sujeita a todos os tipos de restrições definidos para este problema. Novamente, foi necessário considerar, apenas, a função objetivo 7 devido a este método não ser compatível com funções multiobjetivo⁵. Sendo assim, o problema de otimização passa a ser representado por 13.

$$\max f_1(x)$$

$$s.a \ 0 \le x_1 \le 3$$

$$6 \le x_2 \le 20$$

$$\pi * x_1^2 * x_2 \ge 400$$

$$0.7 * V_{init} \le V_i \le 55 \times 10^6$$
(13)

Como ponto inicial de procura foi utilizado $x_0 = (0,0)^T$.

Para as condições hidrológicas verificadas no intervalo em estudo, $50\,\mathrm{h}$, foi possível obter a solução para o problema para as primeiras $26\,\mathrm{h}$, sendo que os valores das variáveis que minimizam a função, nessas primeiras horas, foram sempre os mesmos $x=(3.0000,14.1471)^T$. Isto significa que, para as condições verificadas, nesse intervalo, o raio da conduta que leva a água para a turbina, x_1 , deve ter $3\,\mathrm{m}$ e a velocidade de saída do fluído do reservatório, x_2 , deverá ser de $14.1471\,\mathrm{m/s}$. Estes valores maximizam a produção de energia elétrica, equação 7, sendo possível obter uma potência de $3.2308\times10^8\,\mathrm{W}$. Para as restantes $24\,\mathrm{h}$, não foi possível obter uma solução para o problema que satisfizesse todas as restrições. Nomeadamente, à 27^{a} hora, o reservatório atingiu o seu limite máximo de capacidade e não foi possível corrigir isto nos instantes seguintes devido ao facto de a taxa de fluxo de entrada de fluído, no reservatório, ser superior à de saída. Para prevenir acontecimentos deste tipo, as centrais hidroelétricas recorrem a descarregadores mas estes apenas são tidos em conta na versão que usa a função multiobjetivo do problema.

4.1.3 Particle Swarm

Para usar o método *Particle Swarm*, foi apenas considerada a equação 7 como função objetivo e os limites simples como restrições. Sendo assim, o problema em estudo pode ser

⁵Aliado ao comando patternsearch, do MATLAB, existe o paretosearch que pode ser usado para avaliar funções multiobjetivo. Como este não foi abordado nas aulas então não foi usado na resolução do problema proposto.

representado por 14.

$$\max f_1(x)
s.a 0 \le x_1 \le 3
6 \le x_2 \le 20$$
(14)

Foram utilizados dois algoritmos que implementam este método, o primeiro é disponibilizado pelo MATLAB através do comando particleswarm, enquanto que o segundo foi disponibilizado pelo professor docente de OSD, *PSwarm* [4].

• particleswarm

Foram utilizadas várias opções: número de partículas no enxame de 300; parâmetro 'MaxStallIterations' de 500; número máximo de iterações de 1000.

Para o intervalo de tempo em estudo, 50 h, foi encontrada a mesma solução para o problema para todos os instantes. De forma a gerar a potência máxima, é necessário um raio de abertura da conduta da turbina, x_1 , de 3 m e uma velocidade da água, x_2 , de $20 \,\text{m/s}$. Estes valores maximizam a função objetivo, $f_1(x)$, que toma um valor de $4.5675 \times 10^8 \,\text{W}$.

• PSwarm

Para este algoritmo foi usada uma população inicial $x = (0,0)^T$ e um tamanho de 30.

Tal como o particleswarm, os valores de x_1 e x_2 encontrados foram de 3 m e $20 \,\mathrm{m/s}$ respetivamente, gerando uma potência de $4.5675 \times 10^8 \,\mathrm{W}$, para todo o intervalo de tempo em estudo. Para o primeiro instante em estudo com uma taxa de fluxo de entrada, Q_{in} de $475 \,\mathrm{m}^3/\mathrm{s}$, este resultado foi obtido com 2000 avaliações da função objetivo e 73 iterações. Na tabela 1 estão representadas as informações relativas às iterações realizadas pelo algoritmo.

Tabela 1: Estatísticas do algoritmo PSwarm para o primeiro instante em estudo.

Iter	Act	Leade	r Obj	jective	Delta
	30	1	Inf	6.0	00000e-01
1	27	11	-2.895910	e+08 6.0	00000e-01
10	26	5	-4.567472	2e+08 1.8	75000e-02
20	26	5	-4.567472	2e+08 1.8	31055e-05
30	26	5	-4.567472	2e+08 9.1	55273e-06
40	26	5	-4.567472	2e+08 9.1	55273e-06
50	26	5	-4.567472	2e+08 9.1	55273e-06
60	26	5	-4.567472	2e+08 9.1	55273e-06
70	26	5	-4.567472	2e+08 9.1	55273e-06

4.2 Algoritmos Genéticos e Evolucionários (AGE)

Além dos métodos já apresentados, para encontrar a solução ótima para este problema foram testados algoritmos genéticos e evolucionários.

4.2.1 Algoritmo Genético

Tendo em conta a formulação do problema proposto, foi usado um algoritmo genético multiobjetivo para a resolução do mesmo. Então, foi possível resolver o problema de otimização representado em 10 sem haver necessidade de ajuste.

Como ponto inicial de procura foi utilizado $x_0 = (0,0,0)^T$. Além disso, foram atribuídas várias opções a este algoritmo: 'PopulationSize' de 100; 'MaxStallGenerations' de 500; 'MaxGenerations' de 1000.

No intervalo de tempo em estudo, 50 h, houve um total de 10 instantes em que não foi possível encontrar a frente de pareto devido à não satisfação das condições de restrição, sendo que a capacidade máxima do reservatório foi excedida. Ao contrário do que aconteceu anteriormente, estes instantes não são consecutivos, ou seja, sempre que a capacidade do reservatório foi excedida, foi possível reverter a situação no instante imediatamente a seguir⁶. Para o intervalo de tempo em estudo foram obtidos, por exemplo, frentes de pareto com 35 pontos e 623 gerações ou 1 ponto e 502 gerações.

Na primeira hora de estudo, para uma taxa de fluxo de entrada, Q_{in} , de $475 \,\mathrm{m}^3/\mathrm{s}$ o resultado apresenta uma frente de pareto com 35 pontos e 623 gerações, sendo que os pontos apenas apresentam 2 valores distintos, x = (2.7179; 17.2354; 0.0571) e x = (2.7406; 16.9525; 0.0657), figura 3.

Figura 3: Frente de pareto para as condições hidrológicas da primeira hora de estudo.

4.2.2 Algoritmo Evolucionário

Por último, foi utilizado um algoritmo evolucionário na resolução do problema [5]. Este apenas permite a resolução de problemas com restrições do tipo limites simples e por isso

⁶Note-se que, numa situação real, isto não poderia ocorrer em nenhum instante pois os efeitos, de exceder a capacidade do reservatório, levam a danos na central hidroelétrica que podem levar ao colapso da mesma.

foram ignoradas todas as outras restrições associadas. Além disso, apenas a equação 7 foi utilizada como função objetivo sendo o problema de otimização representado por 15:

$$\max_{s.a} f_1(x)
s.a 0 \le x_1 \le 3
6 \le x_2 \le 20$$
(15)

Para este algoritmo foram escolhidos vários parâmetros: população inicial iniciada em x=(0,0); tamanho da população de progenitores de 10; número de progenitores para recombinação de 2 7 .

O algoritmo conseguiu resolver o problema sendo que, para maximizar a potência gerada, equação 7, é necessário um raio de abertura da conduta da turbina, x_1 , de 3 m e uma velocidade de saída da água do reservatório, x_2 , de $20\,\mathrm{m}^3/\mathrm{s}$. Estas variáveis permitem gerar uma potência de $4.5674\times10^8\,\mathrm{W}$. Para obter este resultado foram necessárias 2010 cálculos da função objetivo e 20 gerações, os gráficos obtidos encontram-se representados na figura 4.

Figura 4: Gráfico função objetivo, $f_1(x)$ à esquerda e da população na última geração à direita.

5 Conclusões

O problema proposto, e formulado, para este projeto foi a otimização de uma central hidroelética com reservatório de forma a maximizar a energia produzida e minimizando a quantidade de água desperdiçada. Para atingir estes objetivos é possível regular a abertura das condutas, que encaminham o fluído para a turbina, x_1 , e descarregador, x_3 , assim como

⁷Alterações nos restantes parâmetros resultam em pior performance do algoritmo neste problema.

a velocidade de libertação da água do reservatório, x_2 . O problema foi analisado para um intervalo de tempo de 50 h com granularidade horária.

Depois de estudar o problema e as suas restrições, foi possível concluir que o mais adequado seria o uso de um algoritmo que permita funções multiobjetivo e restrições de todos os tipos. Como este projeto encontra-se inserido em duas unidades curriculares, apenas foi possível aplicar os métodos lecionados nas mesmas.

Todos os métodos analisados, à exceção do algoritmo genético, não se adequam a este problema pelo simples facto de não ser possível utilizar todas as restrições e funções objetivo associadas à sua formulação. Apesar disto, depois de ajustado a cada método, foi possível encontrar soluções para todos exceptuando o fminsearch, em que ao ajustar o problema este deixou de ter solução finita, e o algoritmo pattern search que apenas encontrou solução para as primeiras 26 h.

Utilizando um algoritmo genético, como foi discutido em 4.2.1, não foi possível encontrar uma solução para o problema que satisfizesse as restrições para todas as horas em estudo, sendo que isto não foi verificado para apenas 10 instantes. Isto é causado pelo facto de as decisões relativas às variáveis não terem em conta a taxa de fluxo de entrada, Q_{in} , futura, o que leva à possibilidade de exceder a capacidade do reservatório da central hidroelétrica. Contudo, este foi o único método que permitiu a resolução do problema por inteiro e por isso é possível afirmar que, entre os algoritmos à disposição, este é o mais adequado para resolver o problema descrito neste documento.

Referências

- [1] Associação Portuguesa de Energias Renováveis (APREN). Balanço da produção de eletricidade de portugal continental (setembro de 2020). (online resouce https://www.apren.pt/pt/energias-renovaveis/producao, último acesso a 2020/10/28), 2020.
- [2] Ozan Erdinc. Optimization in renewable energy systems: recent perspectives. 2017.
- [3] Paul Peter Urone, Roger Hinrichs, et al. College physics: Openstax. 2018.
- [4] A Ismael F Vaz and Luís N Vicente. A particle swarm pattern search method for bound constrained global optimization. *Journal of Global Optimization*, 39(2):197–219, 2007.
- [5] L Costa. A new parameter-less evolution strategy for solving unconstrained global optimization problems. 2006.