诚信应考,考试作弊将带来严重后果!

华南理工大学本科生期末考试 《电路》试卷A

注意事项: 1. 开考前请将密封线内各项信息填写清楚:

- 2. 所有答案请直接答在试卷上;
- 3. 考试形式: 闭卷:
- 4. 考试日期: 2015年1月7号
- 5. 本试卷共 九 大题, 满分100分, 考试时间120分钟

题号		=	Ξ	Д	1 i.	六	七	八	九	总分
分值	20	10	10	10	10	10	10	10	10	100
得分										-
评阅人										

得 分

- 一、选择题(选择正确答案填入空内,只需填入A、B、C、D。本大题共20分,每空2分)
- 1. 在图示电容电路中, 电压与电流的正确关系式应是

A.
$$i = C \frac{du}{dt}$$
 B. $u = C \frac{di}{dt}$ C. $i = -C \frac{du}{dt}$ D. $u = -C \frac{di}{dt}$

题 2 图

- 2. 图示电路中, 当 R₁增加时, 电流 I₂将_
- A. 变大 B. 变小

C. 不变

- 3. 图示电路的输出电压U。应为

A. 0 V

B. -10 V

C. 10 V

D. 以上皆非

《电路》试卷 A 第 1 页 共 6 页

4. 图示电路中, $i_S = [2 + 4\cos 1000t] \text{m A,}则电阻中电流的有效值应为_$

B. 2 mA

C. 4 mA

D. 6 mA

5. 以下哪一组方程是二端口网络的 Z 参数方程:

B. $\begin{cases} u_1 = 2i_1 + 3i_2 \\ i_1 = 4u_2 + 5i_2 \end{cases}$ C. $\begin{cases} i_1 = 2u_1 + 3i_2 \\ i_2 = 4i_1 + 5u_1 \end{cases}$

D. 以上皆非

6. 电路如图所示, 若 $R \times U_{\rm S} \times I_{\rm S}$ 均大于零, ,则电路的功率情况为__

- A.电阻吸收功率, 电压源与电流源供出功率
- B.电阻与电压源吸收功率, 电流源供出功率
- C.电阻与电流源吸收功率, 电压源供出功率
- D.电阻吸收功率, 电流源供出功率, 电压源无法确定

7. 图示电路中 N 为线性含源网络, 当 $U_s = 10$ V 时, 测得I = 2 A; $U_s = 20$ V 时, 测得I = 6 A; 则当 $U_S = -20$ V时,I应为_____

A.-6 A

B.-10 A

C.8 A

D.-8 A

8. 图示电路在换路前处于稳态,当t=0时开关断开,则 $i(0_{+})$ 等于_____。

A.0.4 A

B.1.4 A

C.2.4 A

D.3.4 A

9. 某非正弦周期电流电路的电压为 $u=120+100\sqrt{2} \sin \omega t+30\sqrt{2} \sin(3\omega t+30^{\circ})V$, 电流 $i = 13.9 + 10\sqrt{2}\sin(\omega t + 30^{\circ}) + 1.73\sqrt{2}\sin(3\omega t - 30^{\circ})$ A,则其三次谐波的功率 P_3 为_____。

A.25.95W B.45W

C.51.9W

10. 对称三相电路的有功功率 $P = \sqrt{3}U$, I, λ , 功率因数角 φ 为__

A. 相电压与相电流的相位差角

B.线电压与线电流的相位差角

C.阻抗角与30°之差

D.相电压与线电流的相位差角

得分

二. (10分) 在图示电路中, 当电阻 R 获得最大功率时, 电阻 R 的值? 并求此最大功率。

得 分

三. (10分) 将电路适当化简后, 试用节点分析法求解 I。

得 分

四. (10 分) 图示含受控源电路中 $i(0_) = 3A$ 。求t > 0时的i(t)。

得 分

五. (10 分) 图示电路中,已知理想变压器的变比 n=10,求负载 $Z_{\rm L}$ 为何值时可获得最大功率,并求此 $P_{\rm max}$ 。

得 分

六. (10 分) 图示电路中, $I_2=10A$, $I_3=10\sqrt{2}A$, U=200V , $R_1=5\Omega$, $R_2=X_L$, 试求: I_1 , X_L , R_2 , X_C 。

得 分

七.(10 分)如图所示,在 380/220V 三相三线制的电网上,接有两组三相对称电阻性负载,已知: R_1 =38 Ω , R_2 =22 Ω 。试求总的线电流 I_1 和总的有功功率。

得 分

八. (10 分)图示为 A-B-C 相序的三相电路。求证两个功率表的读数之和等于三相有功功率。

得 分

九.(10 分)阻抗 Z_1 =3-j4 Ω , Z_2 =8+j10 Ω 串联于 $\dot{U}=225\angle0^\circ V$ 的电源上工作。求:(1) Z_1 , Z_2 上的电压 u_1 , u_2 ;(2)有功功率 P,无功功率 Q 及功率因数 λ ,该电路呈何性质?

阁

诚信应考,考试作弊将带来严重后果!

华南理工大学本科生期末考试 《电路》试卷 B

注意事项: 1. 开考前请将密封线内各项信息填写清楚;

- 2. 所有答案请直接答在试卷上;
- 3. 考试形式: 闭卷;
- 4. 考试日期: 2015年7月16号
- 5. 本试卷共 九 大题,满分100分,考试时间120分钟

題号		=	=	四	H i.	六	七	八	九	总分
分值	20	10	10	12	10	10	10	8	10	100
得分										
评阅人										-

得分

一、选择题(选择正确答案填入空内,只需填入 A、B、C、D。本大题共 20 分,每空 2 分)

1. 图示电路中,已知: $U_{\rm S}$ =15V,当 $I_{\rm S}$ 单独作用时,3 Ω 电阻中电流 $I_{\rm I}$ =2A,那么当

 $I_{\rm S}$ 、 $U_{\rm S}$ 共同作用时, 2Ω 电阻中电流 I 是(

A.-1A

B.5A

C.6A

D.7A

150 V 300 V 100Ω 2 图

2. 电路如图所示, 其中电阻 R₁ 与 R₂,的值应分别为____

 $\mathbf{A.100}\,\Omega$, $100\,\Omega$;

 $\mathbf{B}.100\,\Omega$, $150\,\Omega$

 $\mathbf{C.60}\Omega$, 150Ω ;

 $\mathbf{D.60}\,\Omega$, $200\,\Omega$

3. 电路如图所示,若 R 、 $U_{\rm S}$ 大于零,而 $I_{\rm S}$ 均小于零,,则电路的功率情况为

A.电阻吸收功率, 电压源与电流源供出功率

B.电阻与电压源吸收功率, 电流源供出功率

C.电阻与电流源吸收功率, 电压源供出功率

D.电阻吸收功率, 电流源供出功率, 电压源无法确定

55.00

颞 4 图

4. 图示电路中 N 为线性含源网络,当 $U_{\rm S}=10~{\rm V}$ 时,测得 $I=2~{\rm A};~U_{\rm S}=20~{\rm V}$ 时,测得 $I=6~{\rm A};$ 则当 $U_{\rm S}=-20~{\rm V}$ 时, I 应为_____

A.-6 A;

B.-10 A

C.8 A;

D.-8 A

5. 图示电路中, $i_s = 2 + 4\sqrt{2}\cos 1000t$ m A,则电阻中电流的有效值应为___

 $A.2\sqrt{2}$ mA

B.5 mA

C.4 mA

D. $2\sqrt{3}$ mA

颜 5 图

颞6图

6.图示电路在换路前处于稳定状态,在 t=0 瞬间将开关 S 闭合,则 $i_C(0_+)$ 为(

. 0.6A

B.OA

C.-0.6A

D.1.0A

7. 以下哪一组方程是二端口网络的 Y 参数方程:___

A.
$$\begin{cases} u_1 = 2i_1 + 3u_2 \\ \vdots \\ u_n = 2i_1 + 3u_2 \end{cases}$$

B.
$$\begin{cases} u_1 = 2i_1 \\ i_1 = 4u_2 \end{cases}$$

C.
$$\begin{cases} i_1 = 2u_1 + 3u \\ i_2 = 4u_1 + 5u \end{cases}$$

D. 以上皆非

8. 把题7图中图1所示的电路用图2所示的等效电压源代替,则等效电压源的参数为_____

A. U_S =4V, R=2 Ω

B. $U_{\rm S}$ =1V, R=0.5 Ω

 $C.U_S=-1V$, $R=0.5\Omega$

D. U_S =2V, R=2 Ω

越/图

题 8 图

9. 将正弦电压 $u=10\cos(314t-30°)$ V 施加于电阻为 5Ω 的电阻元件上,则通过该元件的电流 i=_____

A.2 $\sin 314t$ A B.2 $\sin (314t+30^{\circ})$ A

 $C.2\cos(314t-30^{\circ})A$

D. $2\sqrt{2}\sin(314t+30^{\circ})A$

10. 一个 R_L =8 Ω 的负载,经理想变压器接到信号源上,信号源的内阻 R_0 =800 Ω ,变压器原绕组的匝数 N_1 =1000,若要通过阻抗匹配使负载得到最大功率,则变压器副绕组的匝数 N_2 应为_____。

A.100

B.1000

C.500

D.250

得 分

二.(10 分)图示电路中,已知: $R_1=R_2=R_4=R_5=8\Omega$, $R_3=4\Omega$, $U_s=24V$, $I_S=4A$ 。用结点电压法求各支路电流。

得 分

三. (10 分) 图示电路中,已知: R_1 =6 Ω , R_2 =17 Ω , R_3 =3 Ω , R_4 =30 Ω 。用戴维宁定理求电流 I_1 。

得 分

四. (10 分) 图示电路原已稳定,已知: $R_1=R_2=R_3=100\Omega$, $C=10\mu$ F, $U_S=100$ V,t=0 时将开关 S 闭合。 用三要素法求 S 闭合后的 $i_2(t)$ 和 $u_C(t)$ 。

得 分

五.(10 分)在图示电路中, $\dot{U}_2=200\angle 0^\circ \mathrm{V}$, R_1 =6 Ω , X_{L1} =8 Ω , R_2 = R_3 = X_{L2} = X_C =10 Ω 。求:(1) \dot{I}_1 , \dot{U} ;(2) 电路的功率因数 λ ;(3)电路的无功功率 Q。

得 分

六. $(10 \, f)$ 已知某感性电路,电源频率 f=50Hz,端电压 U=220V,电路有功功率 P=10kW,功率因数 $\cos \varphi_1$ =0.5,要使功率因数提高到 0.9,求并联电容 C 的大小,并联前后电路的总电流各为多少?

得 分

七. $(10\, f)$ — 50Hz 的三相对称电源,向星形连接的对称感性负载提供 30kVA 的视在功率和 15kW 的有功功率,已知负载线电流为 45.6A。求感性负载的参数 R, L。

得 分

八. (10 分) 已知图示电路中, $R_1=R_2=1\Omega$, $\omega L_1=3\Omega$, $\omega L_2=2\Omega$, $\omega M=2\Omega$, $U_1=100V$ 。 试求: (1) 开关打开和闭合时的电流 \dot{I}_1 ; (2) 闭合时各部分的复功率 \dot{S}_{L1} (R1、 L1 支路)、 \dot{S}_{L2} (R2、L2 支路)。

得 分

九. $(10\, f)$ 用电源等效变换法求图示电路中的电流 I_2 。

