PREMIERE C

Épreuve de Mathématiques

Contexte:

Au cours de la semaine culturelle organisée par ton établissement, divers jeux tiennent les spectateurs en haleine. L'un des jeux consiste à déterminer une valeur du réel x pour que la suite numérique $(u_n)_{n\in\mathbb{N}}$ définie par :

$$\begin{cases} u_0 = 140 \\ u_{n+1} = \frac{3}{2}u_n \cos 2x + 220 \sin^2 x & \forall n \in \mathbb{N}^* \end{cases}$$

avec $x \in \mathbb{R}$ soit géométrique d'une part et d'autre part les propriétés de la suite $(a_n)_{n\in\mathbb{N}}$. Taka élève très brillant en classe de 1^{re} scientifique affirme que pour $x=\frac{\pi}{6}$, la suite $(u_n)_{n\in\mathbb{N}}$ est une géométrique. Affi sa voisine de classe très étonnée décide de vérifier ces affirmations. A la fin des cérémonies et jeux diverses, une planche d'exercice de révision est remise aux élèves afin d'approfondir leurs compétences en mathématique pendant les vacances. Affi sollicite ton aide.

<u>Tâche</u>: Tu vas te servir de tes connaissances pour aider Affi à résoudre les problèmes suivants.

Problème 1

- 1. Montre que $u_1 = 210 200 \sin^2 x$.
- 2. Détermine dans] $-\pi$; π [les valeurs de x pour lesquelles $u_1 = 410 + 400 \sin x$
- 3. On suppose que $x = \frac{\pi}{6}$ et pour tout $n \in \mathbb{N}$, on définie la suite (v_n) par $v_n = \frac{3}{2}u_n 990$.
 - (a) Montre que (v_n) est une suite géométrique dont on précisera le premier terme et la raison.
 - (b) Exprime v_n en fonction de n, puis u_n en fonction de n.
 - (c) On pose $S_n = v_0 + v_1 + \cdots + v_{n+2}$. Calcule S_n en fonction de n, puis $\lim_{n \to +\infty} S_n$

- 4. Soit $(a_n)_{n\in\mathbb{N}}$ une suite arithmétique et croissante définie par : $a_0a_4=260$ et $a_0+a_4=36$
 - (a) calcule a_0 et a_4 puis détermine la raison r de la suite (a_n)
 - (b) Démontre que tous les termes de la suite (a_n) sont strictement positifs
 - (c) On pose $T_n = a_0 + a_1 + a_2 + \cdots + a_n$. Calcul T_n en fonction de n.
- - (a) la variance de X est 13
 - (b) la covariance de cette série est 0, 2
 - (c) La droite de régression de y en x a pour équation y = 0, 2x + 0.4

Problème 2

Une phase du jeu concours consiste à déterminer la valeur exacte du nombre $\tan(\frac{\pi}{8})$. Soit x et y des réels.

- 6. Montre que : $\tan(x+y) = \frac{\tan x + \tan y}{1 \tan x \tan y}$
- 7. Déduis tan(2x) en fonction de tan x
- 8. En déduis que $\tan(3x) = \tan x \times \frac{3-\tan^2 x}{1-3\tan^2 x}$
- 9. Application
 - (a) Établir que $\frac{2\tan(\frac{\pi}{8})}{1-\tan^2(\frac{\pi}{8})} = 1$
 - (b) Démontre que le réel $\tan(\frac{\pi}{8})$ est solution de l'équation $t^2+t-1=0$
 - (c) sans utiliser la calculatrice, détermine la valeur exacte de $\tan(\frac{\pi}{8})$, et interpréter la seconde solution de l'équation .

Problème 3

On considère f la fonction définie sur \mathbb{R} par $f(x) = \frac{x^2+3x-5}{|x+1|-2}$ et \mathcal{C}_f sa représentation graphique dans un repère (0; I, J)

- 10. Étudie la continuité et la dérivabilité de f en $x_0 = -1$
- 11. Étudie les variations de f et dresse son tableau de variation.
- 12. Montre que C_f admet quatre asymptôtes dont on donnera les équations et la nature.
 - (a) Étudie la position de C_f par rapport à ses asymptôtes non-verticales
 - (b) Trace \mathcal{C}_f , ses asymptôtes ainsi que les demi-tangentes éventuelles
- 13. On définit la fonction g telle que g(x) = f(-|x|)
 - (a) Montre que f et g coïncident sur un intervalle que l'on précisera.
 - (b) Étudie la parité de g et en déduis un élément de symétrie .
 - (c) Propose une méthode de construction de la courbe C_g de g
 - (d) Construis \mathcal{C}_g dans le même repère que \mathcal{C}_f