EL-6303: Probability Theory and Stochastic Processes

Midterm Exam. Fall 2014. (Answer all four problems.)

Use the first answer book for Problems 1 and 2.

- 1. Consider the following functions of two random variables X and Y:
 - (i) 2X; (ii) Y^2 ; (iii) X + Y; (iv) X Y; (v) $\min(X, Y)$; (vi) $\max(X, Y)$.
 - a). Suppose X and Y above are independent Poisson random variables with common parameter λ . Which among the above functions represent a Poisson random variable? Determine its parameter. (To show that something is *not* Poisson, for example, you can simply check its moment properties etc.)
 - b). Suppose X and Y above are jointly Gaussian random variables. Which among the above functions represent a Gaussian random variable? Can you identify two random variables from the above set [(i)-(vi)] that are jointly Gaussian? Justify your answers.

(25)

2. X and Y are independent exponential random variables with common parameter $\lambda = 1$. Thus

$$f_{X,Y}(x,y) = \begin{cases} e^{-(x+y)}, & x > 0, y > 0 \\ 0, & \text{Otherwise} \end{cases}$$

Let $Z = X + \max(X, Y)$. Find the p.d.f of Z.

(25)

See next sheet for Problems 3 and 4.

EL6303: Use the second answer book for Problems 3 and 4.

3. X and Y are zero mean jointly Gaussian random variables with equal variance σ^2 and correlation coefficient ρ . Thus the joint p.d.f. of X and Y is given by

$$f_{X,Y}(x,y) = \frac{1}{2\pi\sigma^2 \sqrt{1-\rho^2}} e^{-\frac{1}{2\sigma^2(1-\rho^2)}(x^2-2\rho xy+y^2)}, \quad -\infty < x, \ y < \infty, \ \left|\rho\right| < 1.$$

Define $\theta = \tan^{-1} \left(\frac{Y}{X} \right)$.

- a) Find the p.d.f $f_{\theta}(\theta)$ of θ and plot it. (Make sure the area under $f_{\theta}(\theta)$ is unity). Hint: Set up an auxiliary random variable such as $R = \sqrt{X^2 + Y^2}$ or R = X and proceed.
- b) Discuss the special case when $\rho = 0$. (25)
- 4. $f_{X,Y}(x,y) = \begin{cases} \frac{3}{2}x, & \text{shaded area} \\ 0, & \text{otherwise} \end{cases}$

- a) Find the conditional p.d.f. $f_{X|Y}(x \mid y)$ of X given Y and plot it.
- b) Find $E\{X \mid Y = y\}$
- c) Find the correlation coefficient ρ_{xy} between X and Y.

or

Write MATLAB code to generate n-dimensional vectors X and Y, such that for every i, [x(i), y(i)] are distributed with the above distribution. Hint: Generate Y from $f_{Y}(y)$ and then generate X from $f_{X|Y}(x|y)$.

Prof. Pillai/Prof. Rangan