Лабораторная работа №7 по курсу «Численные методы»

Выполнил студент группы M8O-408Б-20 Блинов Максим. Преподаватель: Пивоваров Д. Е.

Цель

Решить краевую задачу для дифференциального уравнения эллиптического типа. Аппроксимацию уравнения произвести с использованием центрально-разностной схемы. Для решения дискретного аналога применить следующие методы: метод простых итераций (метод Либмана), метод Зейделя, метод простых итераций с верхней релаксацией. Вычислить погрешность численного решения путем сравнения результатов с приведенным в задании аналитическим решением . Исследовать зависимость погрешности от сеточных параметров .

Вариант 3

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0,$$

$$u(0, y) = \cos y,$$

$$u(1, y) = e \cos y,$$

$$u_y(x, 0) = 0,$$

$$u_y\left(x, \frac{\pi}{2}\right) = -\exp(x).$$

Аналитическое решение:

$$U(x, y) = \exp(x) \cos y.$$

О программе

Программа была реализована на языке программирования Go и включает в себя три численных метода для решения дифференциальных уравнений: метод Либмана, метод Зейделя и метод простых итераций с верхней релаксацией. Для визуализации результатов использовалась библиотека Gonum, которая предоставляет широкие возможности для построения графиков в среде Go. Результаты вычислений иллюстрируют поведение решений в зависимости от времени и начальных условий, а также позволяют оценить точность численных методов путём сравнения с аналитическим решением задачи. Графики ошибок демонстрируют различия между аналитическими и численными решениями на протяжении всего временного интервала. Все вычислительные эксперименты и генерация графиков проводились в рамках данной программы.

Инструкция к запуску

Для запуска программы на Go, решающей гиперболические дифференциальные уравнения, убедитесь, что у вас установлена последняя версия Go (на данный момент 1.21, проверьте на официальном сайте). Создайте рабочее пространство, затем установите необходимые зависимости go mod tidy.

Метод Либмана

Метод Либмана, также известный как метод Гаусса — Зейделя или метод последовательных замещений, является итерационным методом для решения систем линейных уравнений. Он работает путем последовательного приближения к решению, используя предыдущие оценки для вычисления текущей. Этот метод особенно полезен, когда решается большая система уравнений, так как может быть более эффективным по сравнению с другими методами, такими как прямое решение.

Метод Зейделя

Метод простых итераций с верхней релаксацией

Вывод

В ходе выполнения лабораторной работы мной была успешно решена задача с начальными и граничными условиями для уравнения эллиптического типа. Я применил три разнообразных метода для решения соответствующих систем линейных алгебраических уравнений и осуществил анализ точности полученных результатов, сопоставив их с заданными параметрами точности.