

(18)

Europäisches Patentamt
European Patent Office
Office européen des brevets

(11)

EP 0 735 530 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention
of the grant of the patent:
24.11.1999 Bulletin 1999/47

(51) Int Cl. 6: G11B 7/26, B32B 31/00,
B29C 65/54, B29D 17/00

(21) Application number: 96105238.8

(22) Date of filing: 01.04.1996

(54) Method and apparatus for manufacturing bonded disks

Verfahren und Gerät zur Herstellung von verklebten Platten

Procédé et appareil de fabrication des disques liés

(84) Designated Contracting States:
DE FR GB

(30) Priority: 31.03.1995 JP 7608095

(43) Date of publication of application:
02.10.1996 Bulletin 1996/40

(73) Proprietor: TOSHIBA-EMI LIMITED
Tokyo 107 (JP)

(72) Inventor: Kakinuma, Keiji ,Toshiba-Emi Limited
Gotenbe-shi, Shizuka 412 (JP)

(74) Representative:
Reinhard - Skuhra - Weise & Partner
Postfach 44 01 51
80750 München (DE)

(56) References cited:

EP-A- 0 443 797 EP-A- 0 586 032
DE-A- 4 235 178 DE-A- 4 302 384
DE-U- 9 418 356

- PATENT ABSTRACTS OF JAPAN vol. 012, no. 086 (P-677), 18 March 1988 & JP-A-62 219250 (FUJI PHOTO FILM CO LTD), 26 September 1987,
- PATENT ABSTRACTS OF JAPAN vol. 015, no. 020 (P-1154), 17 January 1991 & JP-A-02 263343 (TOSHIBA CORP;OTHERS: 01), 26 October 1990,
- PATENT ABSTRACTS OF JAPAN vol. 015, no. 020 (P-1154), 17 January 1991 & JP-A-02 263343 (TOSHIBA CORP;OTHERS: 01), 26 October 1990,
- PATENT ABSTRACTS OF JAPAN vol. 013, no. 506 (M-892), 14 November 1989 & JP-A-01 204727 (SUNSTAR GIKEN KK), 17 August 1989,

EP 0 735 530 B1

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description**BACKGROUND OF THE INVENTION****Field of the Invention**

[0001] The present invention relates to a method and an apparatus for manufacturing a bonded disk, such as a laser disk and a bonding type digital video disk (DVD), by bonding two one-sided disks together.

Description of the Prior Art

[0002] Some optical disks, whose recorded information is read by using laser beams, are made by bonding together two disk substrates, one of which offers the first side of the finished disk and the other the second side. EP-A-0 586 032 discloses such a double-sided disk, which is bonded by hot-melt coating. The substrates show recesses for the hub. Further examples include laser disks and DVDs. A laser disk is taken for example in describing the method of manufacturing such optical disks.

[0003] First, a die (called a stamper) formed beforehand with pits representing information to be recorded is mounted to a resin molding machine such as an injection molding machine. A transparent plastic resin such as polycarbonate and acrylics is injection-molded or pressure-molded by the stamper to form a transparent plastic disk (one-sided disk) that is stamped with pits (substrate forming process). Next, the surface of the disk formed with pits is deposited with a metal such as aluminum by sputtering or vacuum vapor deposition to form a reflection film (reflection film forming process). Then, the surface of the reflection film is coated with an ultraviolet-setting resin as by a spinner, and is irradiated with ultraviolet ray to form a protective film for protection against scores and corrosion (protective film coating process).

[0004] A pair of one-sided disks, which will form the A side and B side of a finished disk, are produced separately in this way. The surfaces of the one-sided disks to be bonded together are applied with a thermoplastic bonding agent called a hot melt as by a roll coater (bonding agent coating process). Then, the paired one-sided disks are stacked together so that the surfaces to be bonded which are applied with the bonding agent contact each other, and then pressed together to form a single laser disk (bonding process).

[0005] In recent years, small digital video disks (DVDs) 12 cm in diameter capable of high-density, double-sided recording has been under development. In such small disks, a large part of the flat disk surface ranging from the center hole of the disk to the recording start region is used as a clamp zone of the player. Hence, when the disk is placed on the turntable of the player and held by a clasper, the flat clamp zone works as a reference surface for an optical system. Further, in

such a small, double-sided recording disk, there is no alternative but to use the flat clamp zone as a title display area of the disk.

[0006] When a title is printed, or a seal is stuck, on the outer surface of the clamp zone of a small disk such as DVD, however, the following problem arises.

[0007] In a small, double-sided, recording disk such as DVD, the allowable range of disk tilt angle for reproduction is significantly small compared with that of the laser disk, so that even a slight tilt can degrade the reproduced signal substantially. When the clamp zone is used as a title display area, surface undulations caused by a seal or printed ink applied to the outer surface of the clamp zone result in an increased tilt of the disk.

[0008] To avoid this problem requires the title to be printed, or the seal to be stuck, on the inner bonding side of the disk, rather than on the outer side, in the clamp zone. When the title is displayed on the inner bonding surface, it is necessary to ensure that the printed ink and the stuck seal do not affect the overall thickness of the bonded disk. For this purpose, some steps should be taken, such as cutting the title display area to a depth equal to the thickness of the printed ink or stuck seal (for example, 0.1 mm) to form a recess 1 as shown in Figure 7A.

[0009] Even this measure cannot solve the above problem because the thickness of the printed ink and seal may not always be constant. Particularly when letters are printed with ink, the ink 2 forms into bulges or projections, as shown in Figure 7B. If a hot melt as the bonding agent is applied over these projections by the roll coater, the entire recess 1 in the title display area cannot be filled with the bonding agent, with the hot melt 3 coated only over the projections of the ink 2, as shown in Figure 7C. Therefore, the area of the recess 1 is bonded only partially and therefore with a reduced bonding force.

[0010] In the case of the laser disk, the paired disk substrates to be bonded together are each 1.2 mm thick and have high rigidity (mechanical strength) so that the aforementioned deformation will not result. In the case of the DVD, however, each of the paired disk substrates measures 0.6 mm in thickness and does not have a sufficient rigidity. Hence, when a thin disk such as DVD is stored or left at elevated temperatures for a long period, it is likely to develop deformations. Particularly when a disk is left mounted on the reproduction player for a long period, the disk held horizontal by the clasper is subjected to high temperatures due to internal heating of the player, so that the hot melt, the thermoplastic bonding agent, becomes soft allowing the disk outer periphery to droop by its own weight, making the whole disk look like a bowl turned upside down.

[0011] Further, the actual plastic disk (one-sided disk) formed during the substrate forming process has a ring groove d (hereinafter called a stamper clamp groove) for receiving the stamper clamp that fixes the stamper to the resin molding machine. The part of the disk where

there is the stamper clamp groove has a smaller thickness than other areas and therefore a smaller strength. The reduced strength due to the stamper clamp groove d, combined with the recess 1 formed on the bonding inner surfaces of the one-sided disks, makes the bonded disk more likely to be deformed.

[0012] The present invention has been accomplished to solve the above problem and its major objective is to provide a method and an apparatus for manufacturing a bonded disk, which can be mass-produced inexpensively, which prevents the bonding strength from being reduced even when the bonding inner surfaces are formed with a recess for title display, and which is not easily deformed even when it is stored or left at elevated temperatures for a long period.

SUMMARY OF THE INVENTION

[0013] To achieve the above objective, the present invention offers a method of making a bonded disk, which comprises the steps of: preparing a one-sided disk which has a recess for title display connecting to a stamper clamp groove as at least one disk of paired one-sided disks to be bonded together; applying a thermoplastic bonding agent to a bonding surface of at least one disk of the paired one-sided disks to be bonded together after displaying a title having a desired characters and patterns on the recess of the one-sided disk; applying a liquid type reaction setting bonding agent to the stamper clamp groove and the recess of the one-sided disk; stacking the paired one-sided disks so that their bonding surfaces applied with the thermoplastic bonding agent and the reaction setting bonding agent are in contact with each other; and pressing the paired one-sided disks together to form a bonded disk.

[0014] It is desired that the pressing be performed in a vacuum. Further, it is also preferred that the title display on the recess be done by printing or by sticking a seal.

[0015] When the liquid type reaction setting bonding agent is an ultraviolet-setting bonding agent, the pressing is preferably done while irradiating the ultraviolet to the ultraviolet-setting bonding agent. When the liquid type reaction setting bonding agent is a cationic polymerized, ultraviolet-setting bonding agent, the pressing is done after irradiating the ultraviolet to the cationic polymerized, ultraviolet-setting bonding agent.

[0016] Further, to achieve the above objective, this invention offers an apparatus for making a bonded disk, which comprises: a title display means for displaying a title having desired characters and patterns on a recess for title display communicating with a stamper clamp groove of at least one of paired one-sided disks to be bonded together; a first bonding agent application means for applying a thermoplastic bonding agent to a bonding surface of at least one of the paired one-sided disks to be bonded together; a second bonding agent application means for applying a liquid type reaction set-

ting bonding agent to the stamper clamp groove and the recess of the one-sided disk; and a disk bonding means for stacking the paired one-sided disks so that their bonding surfaces applied with the thermoplastic bonding agent and the reaction setting bonding agent contact each other and then pressing them together.

[0017] It is desired that the apparatus have a vacuum creating means which encloses the disk bonding means and creates a vacuum therein. It is also preferable that the title display means be a printing device or a seal sticking device.

[0018] Further, when the liquid type reaction setting bonding agent is an ultraviolet-setting bonding agent, the disk bonding means should preferably have an ultraviolet irradiating mechanism. When the liquid reaction setting bonding agent is a cationic polymerized, ultraviolet-setting bonding agent, the second bonding agent application means should preferably have an ultraviolet irradiating mechanism.

[0019] In this invention, at least one of the paired one-sided disks to be bonded together uses the one-sided disk a which is formed in the clamp zone with a recess 1 for title display that has specified depth and width (in the case of DVD, 0.1 mm in depth and 5 mm in width) and communicates with a stamper clamp groove d, as shown in Figure 1A.

[0020] On the recess 1 of the one-sided disk a, a title having desired characters and patterns is printed with ink 2, as shown in Figure 1B, or a seal showing the title is pasted. Next, as shown in Figure 1C, at least one of the paired one-sided disks to be bonded together, for example, the one-sided disk a, is applied with a thermoplastic bonding agent 3 over its bonding surface.

[0021] Next, as shown in Figure 1D, a liquid type reaction setting bonding agent 4, such as ultraviolet-setting bonding agent or cationic polymerized, ultraviolet-setting bonding agent, is applied to the recess 1 and the stamper clamp groove d of the one-sided disk a. After this, the paired one-sided disks a, b are stacked together so that their bonding surfaces coated with the thermoplastic bonding agent 3 and the reaction setting bonding agent 4 contact each other, and then pressed together, as shown in Figure 1E or 1F.

[0022] Because the disk bonded in this manner has the title displayed on the bonding inner surface, there are no undulations on the surface of the clamer zone, reducing the tilt angle of the disk, contributing to improved reproduction.

[0023] Further, the paired one-sided disks are bonded together with the stamper clamp groove d and the title display recess 1 filled with the reaction setting bonding agent 4. Because the filling bonding agent has the ability to harden, it does not soften even when subjected to heat once the bonding has been completed. This prevents the strength of the stamper clamp groove d and the recess 1 from deteriorating due to heat, which in turn minimizes deformations of the stamper clamp groove d and the recess 1 and therefore the deformation of the

entire disk.

[0024] If the bonding, illustrated in Figure 1E or 1F, is performed in a vacuum, no air will remain between the bonded surfaces. This prevents the strength of the stamper clamp groove d and the recess 1 from decreasing and makes the disk deformation unlikely. Furthermore, the conventional trouble is eliminated that the transparent part of the disk is clouded by trapped air bubbles.

[0025] When the liquid type reaction setting bonding agent 4 is an ultraviolet-setting bonding agent, the ultraviolet is irradiated to the stamper clamp groove d and the recess 1 at the same time that the pressing, illustrated in Figure 1E or 1F, is done. When the liquid type reaction setting bonding agent 4 is a cationic polymerized, ultraviolet-setting bonding agent, the ultraviolet is irradiated to the bonding agent for a predetermined time after the application of the bonding agent as shown in Figure 1D is completed, to cause the cationic polymerized, ultraviolet-setting bonding agent to start hardening.

BRIEF DESCRIPTION OF THE DRAWINGS

[0026]

Figure 1A to 1F are schematic cross sections showing the process of making a bonded disk according to this invention;

Figure 2 is a schematic plan view showing the overall configuration of a first embodiment;

Figure 3 is a schematic diagram showing the structure of a liquid bonding agent delivery portion and a liquid type bonding agent application table;

Figure 4 is a schematic cross section showing the structure of a bonding press portion of the first embodiment;

Figure 5 is a schematic plan view showing the overall configuration of a second embodiment;

Figure 6 is a schematic diagram showing the structure of a liquid bonding agent application device and an ultraviolet irradiation device in the second embodiment;

Figure 7A to 7C are schematic cross sections showing a problem encountered during the process of forming a title display on the inner bonding surface; and

Figure 8 is an enlarged schematic cross section of a one-sided disk for DVD.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENT

[0027] Preferred embodiments of this invention will now be described by referring to the accompanying drawings.

[0028] Figure 2 is a schematic plan view showing the overall configuration of the first embodiment of the bond-

ed disk manufacturing apparatus according to this invention.

[0029] This embodiment represents a case where an ultraviolet-setting bonding agent is used as a liquid type reaction setting bonding agent 4 to be applied to the stamper clamp groove d and the recess 1 for the title display in the one-sided disk a. The ultraviolet-setting bonding agent is the one that is liquid at normal temperature and, when irradiated with ultraviolet ray, hardens.

[0030] In Figure 2, reference symbol a represents a one-sided disk for the A side before being bonded; b a one-sided disk for the B side before being bonded; and D a finished disk after the paired one-sided disks a, b are bonded together. The one-sided disks a, b has a cross section shown in Figure 1A. In the following description, members having a or b in their reference symbols are those for the one-sided disk a or one-sided disk b. Designated 8a and 8b are disk supply arms; 9a, 9b index tables for printing a title; 10a, 10b screen printing portions; 11a, 11b ultraviolet irradiation portions; 12a, 12b disk transfer arms; 13 a hot melt coater table; 14 a roll coater for applying a hot melt; 15a, 15b disk transfer arms; 16 a liquid type bonding agent delivery portion for applying a liquid ultraviolet-setting bonding agent to the stamper clamp groove d and the recess 1 in the one-sided disk a; 17 a liquid bonding agent application table; 18 a disk turning device; 19 a disk transfer arm; 20 a bonding press portion; and 21 a disk takeup arm.

[0031] Two sets of the bonding press portions 20 are provided and operated alternately so as to be able to synchronize with the overall processing speed.

[0032] The one-sided disk a and the one-sided disk b are placed on a stand (not shown) and carried to the positions of the disk supply arms 8a, 8b. These one-sided disks a, b are transferred by the disk supply arms 8a, 8b onto the index tables 9a, 9b.

[0033] The index tables 9a, 9b are rotated one pitch at a time in a direction of arrow at predetermined intervals. The one-sided disks a, b mounted on the index tables 9a, 9b are transferred to the screen printing portions 10a, 10b, each of which screen-prints a title such as characters and patterns on the surface of the title display recess 1 of the one-sided disk by using an ultraviolet-setting ink, as shown in Figure 1(B). Next, the one-sided disks a, b are irradiated with ultraviolet at the ultraviolet irradiation portions 11a, 11b to harden the printed ink.

[0034] With the printed ink hardened, the one-sided disks a, b are transferred by the disk transfer arms 12a, 12b onto the coater table 13, on which they are passed under the roll coater 14 to apply the hot melt 3 to the bonding surfaces of the one-sided disks a, b, as shown in Figure 1C.

[0035] Next, the one-sided disk a coated with the hot melt 3 is transferred onto the liquid bonding agent application table 17 by the disk transfer arm 15a. The other one-sided disk b coated with the hot melt 3 is transferred onto the disk turning device 18 by the disk transfer arm

15b.

[0036] When the one-sided disk a is mounted on the liquid type bonding agent application table 17, the liquid type bonding agent delivery portion 16 applies the liquid type ultraviolet-setting bonding agent 4 to the stamper clamp groove d and the title display recess 1 in the one-sided disk a, as shown in Figure 1D. The disk turning device 18 turns the one-sided disk b transferred through 180x so that the surface to which the hot melt 3 was applied faces down, and then stacks it on the one-sided disk a mounted on the liquid type bonding agent application table 17.

[0037] The one-sided disks a, b stacked on the liquid type bonding agent application table 17 are transferred by the disk transfer arm 19 onto one of the bonding press portions 20 where they are irradiated with ultraviolet from a lamp while being pressed together, as described later, into a single bonded disk. Then, the finished disk D is taken out by the disk takeup arm 21 and carried onto the later process (e.g., inspection process).

[0038] Figure 3 shows the structure of the liquid bonding agent delivery portion 16 and the liquid bonding agent application table 17 of Figure 2. In the figure, denoted 22 is a cylinder; 23 a cylinder rod driven by the cylinder 22; 24 a bonding agent delivery nozzle attached to the front end of the cylinder rod 23; 25 a bonding agent supply pressure tank for supplying the liquid type ultraviolet-setting bonding agent to the bonding agent delivery nozzle 24; and 26 a motor to rotate the liquid type bonding agent application table 17.

[0039] When the one-sided disk a coated with the hot melt 3 is transferred onto the liquid type bonding agent application table 17, the motor 26 is rotated. At the same time, the bonding agent delivery nozzle 24 is driven back and forth by the cylinder 22 to align with the position of the stamper clamp groove d and the title display recess 1 of the one-sided disk a, as illustrated by the dotted line.

[0040] At this position, the valve of the bonding agent delivery nozzle 24 is opened to apply the liquid type ultraviolet-setting bonding agent 4 in circle to the stamper clamp groove d and the recess 1 of the rotating one-sided disk a, as shown in Figure 1D.

[0041] The amount of liquid type ultraviolet-setting bonding agent 4 is desirably set slightly more than the volume of the space formed by the stamper clamp groove d and the recess 1 when the two one-sided disks a, b are stacked together. This amount of bonding agent can fill the space completely without forming any gap between it and the hot melt 3 when the two one-sided disks a, b are bonded together, as shown in Figure 1E, producing the maximum bonding effect.

[0042] Figure 4 shows the construction of the bonding press portion 20 of Figure 2. In the figure, designated 30 is a lower press plate and 31 an upper press plate. A disk of quartz glass 32, which is larger in diameter than the position of the stamper clamp groove d and recess 1 of the stacked one-sided disks a, b, is embedded in the lower press plate 30 at the center so that it is flush

5 with the surface of the lower press plate 30. Through this quartz glass 32, the stamper clamp groove d and recess 1 of the one-sided disks a, b can be applied with ultraviolet radiation from the ultraviolet lamp 33 provided under the quartz glass 32. The lower press plate 30 is connected through a valve 34 to a vacuum pump 35 so that a vacuum chamber 36 is evacuated during the bonding press process. Denoted 37 is a leak valve that opens the vacuum tank 36 to the atmosphere.

[0043] The upper press plate 31, which is paired with the lower press plate 30, is vertically movable by a pressure cylinder 38. The vacuum tank 36 enclosing the entire upper press plate 31 is slidably mounted to a piston rod 39 of the pressure cylinder 38.

[0044] When a pair of the one-sided disks a, b are mounted in stack on the lower press plate 30, as shown, the pressure cylinder 38 lowers the upper press plate 31 and the vacuum tank 36. When the lower end of the vacuum tank 36 contacts the lower press plate 30, the 10 vacuum tank 36 stops there on the lower press plate 30 hermetically sealing its inside by a packing not shown. The upper press plate 31 continues moving down until it is at a predetermined distance from the one-sided disks a, b mounted on the lower press plate 30, at which time the upper press plate 31 stops.

[0045] After the upper press plate 31 stops, the vacuum tank 36 is evacuated by the vacuum pump 35 so that air remaining between the stacked one-sided disks a, b is drawn out, leaving no air bubbles between the 15 disks.

[0046] When the interior of the vacuum tank 36 reaches a vacuum level below a predetermined pressure, the pressure cylinder 38 is pressurized to further lower the upper press plate 31 pressing the stacked one-sided disks a, b against the lower press plate 30. At the same time that the pressing operation is performed, the stamper clamp groove d and recess 1 of the stacked one-sided disks a, b are irradiated by the ultraviolet lamp 33 to harden the liquid type ultraviolet-setting bonding agent 4 applied to the stamper clamp groove d and recess 1.

[0047] After a predetermined time, the leak valve 37 is opened to open the vacuum tank 36 to the atmosphere, the upper press plate 31 is lifted, and the ultraviolet irradiation from the ultraviolet lamp 33 is stopped. Now, the bonding of the paired one-sided disks a, b is completed.

[0048] The finished disk D bonded in this way has its space defined by the stamper clamp groove d and recess 1 filled with the ultraviolet-setting bonding agent 4, as shown in Figure 1E. This construction greatly enhances the strength compared with the conventional disks.

[0049] Figure 5 shows a second embodiment of this invention.

[0050] The second embodiment represents a case where a cationic polymerized, ultraviolet-setting bonding agent is used as the liquid type ultraviolet-setting

bonding agent 4 is applied to the stamper clamp groove d and the title display recess 1 of the one-sided disk a. The cationic polymerized, ultraviolet-setting bonding agent is a bonding agent which is liquid at normal temperature and, when irradiated with ultraviolet, produces cations that trigger a hardening reaction, resulting in the liquid type bonding agent being hardened in several seconds to several minutes. Therefore, when this cationic polymerized, ultraviolet-setting bonding agent is used, there is no need to irradiate ultraviolet while at the same time pressing the stacked one-sided disks as does the first embodiment. What is needed is to irradiate ultraviolet for a certain period of time after the cationic polymerized, ultraviolet-setting bonding agent was applied, to trigger the hardening reaction.

[0051] The points in which the second embodiment differs from the first embodiment are that an ultraviolet irradiator 40 to trigger the hardening reaction in the cationic polymerized, ultraviolet-setting bonding agent is installed near the liquid bonding agent delivery portion 16 and that the ultraviolet lamp 33 for the bonding press portion 20 (see Figure 4) is obviated. The construction and operations of other members are identical with those of the first embodiment, so that identical members are given the same reference numerals and their explanations omitted.

[0052] In Figure 5, when the one-sided disk a is transferred onto the liquid type bonding agent application table 17, the liquid type bonding agent delivery portion 16 applies the liquid type cationic polymerized, ultraviolet-setting bonding agent 4 to the stamper clamp groove d and the title display recess 1 of the one-sided disk a, as shown in Figure 1D. After the cationic polymerized ultraviolet-setting bonding agent 4 is applied, the one-sided disk a is fed to the ultraviolet irradiator 40 where it is irradiated with ultraviolet for a predetermined time.

[0053] The application of ultraviolet generates cations that triggers a hardening reaction in the cationic polymerized ultraviolet-setting bonding agent 4, promoting the hardening of the bonding agent by the polymerization reaction without further requiring ultraviolet irradiation.

[0054] The disk turning device 18 turns the one-sided disk b through 180° to cause the surface applied with the hot melt 3 to face down and stack it on the one-sided disk a that was irradiated with ultraviolet. The stacked one-sided disks a, b are transferred by the disk transfer arm 19 to one of the bonding press portions 20 where they are pressed together and bonded into a single disk, as shown in Figure 1E. The completed disk D is then taken out by the disk takeup arm 21 and transferred to the later process (such as inspection process).

[0055] Figure 6 shows the construction of the liquid bonding agent application device 16 and the ultraviolet irradiator 40 of Figure 5. In the figure, denoted 22 is a cylinder, 23 a cylinder rod driven by the cylinder 22; 24 a bonding agent delivery nozzle attached to the front end of the cylinder rod 23; 25 a bonding agent supply pressure tank for supplying the liquid cationic polymer-

ized, ultraviolet-setting bonding agent to the bonding agent delivery nozzle 24; 26 a motor for driving the liquid type bonding agent application table 17; 41 a feeding device for moving the liquid bonding agent application table 17; 42 a feed guide; and 43 an ultraviolet lamp.

When the one-sided disk a applied with the hot melt is transferred onto the liquid type bonding agent application table 17, the motor 26 is started. At the same time, the bonding agent delivery nozzle 24 is driven back and forth by the cylinder 22 to align with the position of the stamper clamp groove d and the title display recess 1 of the one-sided disk a, as illustrated by the dotted line.

At this position, the valve of the bonding agent delivery nozzle 24 is opened to apply the liquid type cationic polymerized, ultraviolet-setting bonding agent 4 in circle to the stamper clamp groove d and the title display recess 1 of the rotating one-sided disk a, as shown in Figure 1D. [0056] After the cationic polymerized, ultraviolet-setting bonding agent 4 is applied, the liquid type bonding agent application table 17 is moved under the ultraviolet lamp 43 to the position shown by a dotted line by the feeding device 41 and the feed guide 42. While the table 17 is moved, ultraviolet is emitted from the ultraviolet lamp 43 initiating the hardening reaction in the cationic polymerized, ultraviolet-setting bonding agent 4.

[0057] In the preceding embodiments, the liquid type reaction hardening bonding agent uses an ultraviolet-setting bonding agent and a cationic polymerized, ultraviolet-setting bonding agent 4. In addition to these, other bonding agents, such as two-liquid type reaction-setting bonding agent may be used. The only requirement is that the bonding agent used does not soften even when subjected to heat once it has hardened.

[0058] Although in the above embodiments the title display recess 1 is formed in both the one-sided disks a, b, it may be formed only in the one-sided disk a, as shown in Figure 1F.

[0059] In the preceding embodiments, the title is displayed by printing. The title display may be accomplished by sticking a seal printed with a title.

[0060] The DVDs were manufactured by the methods of the first and second embodiments under the following conditions. The DVDs fabricated were satisfactory.

- 45 - Protective film
"SK-5000" produced by Sony Chemical K.K.
Film thickness: about 9 µm
- Hot melt
"Alon Melt PPET2009" produced by Toa Gosei K.K.
Application temperature: 150°C
Amount applied: 75 mg/disk (=0.6 mg/cm²)
- Cationic polymerized, ultraviolet-setting bonding agent
"Adeca Optomer KRX-726-1" produced by Asahi Denka Kogyo K.K.
Amount applied: 40-45 mg/2-discs
Amount of ultraviolet radiated: Conveyor speed at 5 m/min under a focused high voltage mercury lamp

of 120 W/cm²

- Two-liquid type reaction-setting bonding agent "30Y-222" produced by Three Bond
Amount applied: 40-45 mg/2-disks

[0061] While, in the preceding embodiments, the DVD has been taken as an example of a bonded disk, the present invention is not limited to the DVD but may be applied to any kind of disk as long as it is of a type in which at least two one-sided disks are bonded together into a single disk. When the title is displayed at the recess by printing, it is of course possible to use color inks in addition to black and white inks.

[0062] As described above, according to this invention, since the title is displayed on the bonding inner surface of the disk, the undulations of the surface of the clamer zone are prevented from causing. Hence, the clamer zone can be used as a reference surface during reproduction of recorded information and also the tilt angle of the disk reduced for improved reproduction.

[0063] Because the mating one-sided disks are bonded together with the space formed by the stamper clamp groove and the title display recess completely filled with the reaction setting bonding agent, the bonding agent filling the space in the completed disk will be not softened even when the disk is heated, preventing the strength of this portion of the disk from decreasing.

[0064] Hence, it is possible to minimize the deformation of the disk and to produce inexpensive bonded disks in large numbers, this results in little deformation even when they are stored or left at an atmosphere of high temperature for long period of time.

[0065] When the pair of one-sided disks are bonded in a vacuum, no air will remain between the bonding surfaces of the disks. This eliminates the conventional problems such that air bubbles remaining in the stamper clamp groove and the recess, on which the liquid type reaction setting bonding agent is applied, weaken the strength of the corresponding portion of the disk or that trapped air bubbles turn the transparent portion of the clamp zone of the disk into a turbid state.

Claims

1. A method of making a bonded disk comprising the steps of:

preparing a one-sided disk (a,b) which has a recess (1) for title (2) display connecting to a stamper clamp groove (d), at least, as one disk of paired one-sided disks to be bonded together;

applying a thermoplastic bonding agent (3) to a bonding surface of at least one disk of the paired one-sided disks to be bonded together after displaying a title having a desired characters and patterns on the recess of the one-sided

disk;

applying a liquid type reaction setting bonding agent (4) to the stamper clamp groove and the recess of the one-sided disk;
stacking the paired one-sided disks so that their bonding surfaces applied with the thermoplastic bonding agent and the reaction setting bonding agent are in contact with each other; and pressing the paired one-sided disks together to form a bonded disk.

2. A method of making a bonded disk according to claim 1, wherein the pressing is performed in a vacuum.

3. A method of making a bonded disk according to claim 1 or 2, wherein the title display on the recess is done by printing.

4. A method of making a bonded disk according to claim 1 or 2, wherein the title display on the recess is implemented by sticking a seal.

5. A method of making a bonded disk according to any one of claim 1 to 4, wherein the liquid type reaction setting bonding agent is an ultraviolet-setting bonding agent, and the pressing is done while irradiating the ultraviolet to the ultraviolet-setting bonding agent.

6. A method of making a bonded disk according to any one of claim 1 to 4, wherein the liquid type reaction setting bonding agent is a cationic polymerized, ultraviolet-setting bonding agent, and the pressing is done after irradiating the ultraviolet to the cationic polymerized, ultraviolet-setting bonding agent.

7. An apparatus for making a bonded disk comprising:

title display means (9a, b ; 10a, b) for displaying a title (2) having desired characters and patterns on a recess (1) for title display communicating with a stamper clamp groove (d) of at least one of paired one-sided disks to be bonded together;
first bonding agent application means (13, 14) for applying a thermoplastic bonding agent (3) to a bonding surface of at least one of the paired one-sided disks to be bonded together;
second bonding agent application means (17) for applying a liquid type reaction setting bonding agent (4) to the stamper clamp groove and the recess of the one-sided disk; and
disk bonding means (20) for stacking the paired one-sided disks so that their bonding surfaces applied with the thermoplastic bonding agent and the reaction setting bonding agent contact with each other and then pressing them together.

er.

B. An apparatus for making a bonded disk according to claim 7, further comprising vacuum creating means (34-36) which encloses the disk bonding means and creates a vacuum therein.

9. An apparatus for making a bonded disk according to claim 7 or 8, wherein the title display means is a printing device.

10. An apparatus for making a bonded disk according to claim 7 or 8, wherein the title display means is a seal sticking device.

11. An apparatus for making a bonded disk according to any one of claim 7 to 10, wherein the liquid type reaction setting bonding agent is an ultraviolet-setting bonding agent, and the disk bonding means has an ultraviolet irradiating mechanism.

12. An apparatus for making a bonded disk according to any one of claim 7 to 10, wherein the liquid reaction setting bonding agent is a cationic polymerized, ultraviolet-setting bonding agent, and the second bonding agent application means has an ultraviolet irradiating mechanism.

2. Verfahren zur Herstellung einer Verbundplatte nach Anspruch 1, wobei das Pressen in Vakuum durchgeführt wird.

5 3. Verfahren zur Herstellung einer Verbundplatte nach Anspruch 1 oder 2, wobei die Titelanzeige auf der Eintiefung durch Bedrucken erzeugt wird.

10 4. Verfahren zur Herstellung einer Verbundplatte nach Anspruch 1 oder 2, wobei die Titelanzeige auf der Anzeige durch Auftragen eines Anstrichs erzeugt wird.

15 5. Verfahren zur Herstellung einer Verbundplatte nach einem der Ansprüche 1 bis 4, wobei es sich bei dem flüssigen Reaktionsaushärtklebstoff um ein Ultraviolettaushärtklebstoff handelt und der Preßvorgang erfolgt, während das Ultravioletlicht auf das Ultraviolettaushärtklebstoff ausgestrahlt wird.

20 6. Verfahren zur Herstellung einer Verbundplatte nach einem der Ansprüche 1 bis 4, wobei es sich bei dem flüssigen Reaktionsaushärtklebstoff um ein kationisches polymerisiertes Ultraviolettaushärtklebstoff handelt und der Preßvorgang erfolgt, nachdem das Ultravioletlicht auf das kationische polymerisierte Ultra_violetteaushärtklebstoff ausgestrahlt wurde.

Patentansprüche

30

1. Verfahren zur Herstellung einer Verbundplatte, aufweisend die Schritte:

Zubereiten einer einseitigen Platte (a, b), die eine Eintiefung (1) für eine Titelanzeige (2) aufweist, die in Verbindung mit einer Stempelklemmnut (d) zumindest dann steht, wenn eine Platte aus gepaarten einseitigen Platten miteinander verbunden wird;

Auftragen eines thermoplastischen Klebstoffs (3) auf die Klebefläche von zumindest einer Platte der gepaarten einseitigen Platten, die miteinander verklebt werden sollen, nachdem ein Titel mit gewünschten Zeichen und Mustern auf der Eintiefung der einseitigen Platte zur Anzeige aufgebracht ist;

Auftragen eines flüssigen Reaktionsaushärtklebstoffs (4) auf der Stempelklemmnut und der Eintiefung der einseitigen Platte;

Übereinander Anordnen der gepaarten einseitigen Platten derart, daß ihre mit dem thermoplastischen Klebstoff versehenen Klebeflächen und das Reaktionsaushärtklebstoff in Kontakt miteinander gebracht werden; und Zusammenpressen der gepaarten einseitigen Platten, um eine Verbundplatte zu bilden.

35

40

45

50

55

Eine Titelanzeigeeinrichtung (9a, b; 10a, b) zum Anzeigen eines Titels (2) mit gewünschten Zeichen und Mustern auf einer Eintiefung (1) für die Titelanzeige, die in Verbindung mit einer Stempelklemmnut (d) von zumindest einer von gepaarten einseitigen Platten in Verbindung steht, die miteinander verbunden werden sollen; eine erste Klebstoffauftrageeinrichtung (13, 14) zum Auftragen eines thermoplastischen Klebstoffs (3) auf einer Klebefläche von zumindest einer der gepaarten einseitigen Platten, die miteinander verbunden werden sollen;

eine zweite Klebstoffauftrageeinrichtung (17) zum Auftragen eines flüssigen Reaktionsaushärtklebstoffs (4) auf bzw. in der Stempelklemmnut und der Eintiefung der einseitigen Platte; und

eine Plattenklebeeinrichtung (20) zum Übereinander Anordnen der gepaarten einseitigen Platten derart, daß ihre Klebeflächen, auf welche das thermoplastische Klebstoff und das Reaktionsaushärtklebstoff aufgetragen sind, einander kontaktieren und daraufhin zum Pressen derselben gegeneinander.

8. Vorrichtung zur Herstellung einer Verbundplatte nach Anspruch 7, außerdem aufweisend eine Vakuumerzeugungseinrichtung (34-38), welche die Plattenklebeeinrichtung umschließt bzw. enthält und ein Vakuum im Innern erzeugt.

9. Vorrichtung zur Herstellung einer Verbundplatte nach Anspruch 7 oder 8, wobei die Titelanzeigeeinrichtung eine Druckvorrichtung ist.

10. Vorrichtung zur Herstellung einer Verbundplatte nach Anspruch 7 oder 8, wobei die Titelanzeigeeinrichtung eine Anstrichauftragvorrichtung ist.

11. Vorrichtung zur Herstellung einer Verbundplatte nach einem der Ansprüche 7 bis 10, wobei es sich bei dem flüssigen Reaktionsaushärtetklebemittel um ein Ultraviolettaushärtetklebemittel handelt und die Plattenklebeeinrichtung einen Ultravioletlichtbestrahlungsmechanismus aufweist.

12. Vorrichtung zur Herstellung einer Verbundplatte nach einem der Ansprüche 7 bis 10, wobei es sich bei dem flüssigen Reaktionsaushärtetklebemittel um ein kationisches polymerisiertes Ultraviolettaushärtetklebemittel handelt und die zweite Klebemittelauftrageeinrichtung einen Ultravioletlichtbestrahlungsmechanismus aufweist.

Revendications

1. Procédé pour fabriquer un disque lié comprenant les étapes consistant à :

préparer un disque simple face (a,b), qui possède un renforcement (1) pour l'affichage d'un titre (2), relié à une rainure (d) pour l'organe de serrage d'un poinçon, au moins, comme un disque faisant partie de disques simple face appariés devant être réunis l'un à l'autre;

appliquer un agent de liaison thermoplastique (3) à une surface de liaison d'au moins un disque faisant partie des disques simple face appariés devant être réunis l'un à l'autre après l'affichage d'un titre possédant des caractères et des motifs désirés dans le renforcement du disque simple face;

appliquer un agent (4) de liaison durcissable sous l'effet d'une réaction de type liquide dans la rainure pour l'organe de serrage du poinçon et dans le renforcement du disque simple face; empiler les disques simple face appariés de telle sorte que les surfaces de liaison, sur lesquelles sont appliqués l'agent de liaison thermoplastique et l'agent de liaison durcissable sous l'effet d'une réaction, sont en contact réciproque; et

serrer les disques simple face appariés l'un contre l'autre pour former un disque lié.

2. Procédé pour fabriquer un disque lié selon la revendication 1, selon lequel le serrage est exécuté sous vide.

3. Procédé pour fabriquer un disque lié selon la revendication 1 ou 2, selon lequel l'affichage du titre dans le renforcement est exécuté par impression.

4. Procédé pour fabriquer un disque lié selon la revendication 1 ou 2, selon lequel l'affichage du titre dans le renforcement est exécuté par collage d'un sceau.

5. Procédé pour fabriquer un disque lié selon l'une quelconque des revendications 1 à 4, selon lequel l'agent de liaison durcissant par réaction du type liquide est un agent de liaison durcissable sous l'action d'un rayonnement ultraviolet, et le serrage est exécuté tout en projetant le rayonnement ultraviolet sur l'agent de liaison durcissant sous l'action d'un rayonnement ultraviolet.

6. Procédé pour fabriquer un disque lié selon l'une quelconque des revendications 1 à 4, selon lequel l'agent de liaison durcissant par réaction, de type liquide est un agent de liaison cationique polymérisé durcissant sous l'action d'un rayonnement ultraviolet, et le serrage est exécuté après projection du rayonnement ultraviolet sur l'agent de liaison polymère cationique durcissant sous l'action d'un rayonnement ultraviolet.

7. Procédé pour fabriquer un disque lié comprenant :

des moyens d'affichage de titre (9a,b;10a,b) pour afficher un titre (2) possédant des caractères et des motifs désirés dans un renforcement (1) pour que l'affichage du titre communique avec une rainure (d) pour l'organe de serrage d'un poinçon d'au moins l'un de disques simple face appariés, devant être réunis l'un à l'autre;

des premiers moyens (13,14) d'application d'un agent de liaison pour appliquer un agent de liaison thermoplastique (3) à une surface de liaison d'au moins l'un des disques simple face appariés devant être réunis l'un à l'autre;

des seconds moyens (17) d'application d'un agent de liaison pour appliquer un agent de liaison de type liquide (4) durcissant par réaction dans la rainure pour l'organe de serrage du poinçon et au renforcement du disque simple face; et

des moyens (20) de liaison des disques pour l'empilage des disques simple face appariés de

telle sorte que leurs surfaces de liaison, sur les-
quelles sont appliqués l'agent de liaison ther-
moplastique et l'agent de liaison durcissant par
réaction, soient en contact réciproque, puis
pour les serrer l'un contre l'autre.

5

8. Dispositif pour fabriquer un disque lié selon la re-
vendication 7, comprenant en outre des moyens de
création de vide (34-38), qui enserrent les moyens
de liaison des disques et créent un vide en leur in-
terior. 10
9. Dispositif pour fabriquer un disque lié selon la re-
vendication 7 ou 8, selon lequel les moyens d'affi-
chage du titre sont un dispositif d'impression. 15
10. Dispositif pour fabriquer un disque lié selon la re-
vendication 7 ou 8, dans lequel les moyens d'affi-
chage du titre sont un dispositif de collage de joint
d'étanchéité. 20
11. Dispositif pour fabriquer un disque lié selon l'une
quelconque des revendications 7 à 10, dans lequel
l'agent de liaison de type liquide durcissant par
réaction est un agent de liaison durcissant sous l'ac-
tion d'un rayonnement ultraviolet et que les moyens
de liaison de disques possèdent un mécanisme d'ir-
radiation avec un rayonnement ultraviolet. 25
12. Dispositif pour fabriquer un disque lié selon l'une
quelconque des revendications 7 à 10, dans lequel
l'agent de liaison liquide durcissant par réaction est
un agent de liaison cationique polymérisé durcis-
sant sous l'effet du rayonnement ultraviolet et que
les seconds moyens d'application d'un agent de
liaison possèdent un mécanisme d'irradiation avec
un rayonnement ultraviolet. 30 35

40

45

50

55

10

FIG. 1A

FIG. 1B

FIG. 1C

FIG. 1D

FIG. 1E

FIG. 1F

FIG. 2

F I G. 3

F I G. 4

FIG. 5

FIG. 6

F I G. 7 A

F I G. 7 B

F I G. 7 C

F I G. 8

