

- Na Lógica Proposicional (LP) um átomo (p, q, r,...) representa uma sentença declarativa que pode ser V ou F, mas não ambos.
- Um átomo é tratado como uma entidade única. Seus atributos e componentes são desprezados
- Muitas idéias não podem ser tratadas de maneira tão simples. Existem argumentos que são válidos mas que LP garante que não são.

 Exemplo: Representar na Lógica Proposicional Todo homem é mortal Sócrates é um homem Logo, Sócrates é mortal

Se representarmos por:

p: Todo homem é mortal

q: Sócrates é um homem

r: Sócrates é mortal

$$\{p, q\} \mid \neq r$$

 Isso acontece porque os atributos (predicados ou características) de p, q e r não são considerados

Argumentos

A Linguagem de primeira ordem Homem Mortal Todo propriedade objeto de uma classe Predicado ref.

Conjunto

Toda referência ao conjunto dos homens pertence ao conjunto dos mortais.

Conjunto

Toda

Interpretação em aberto...

•Todo elemento pertencente ao conjunto denotado por Homem, pertence ao conjunto denotado por Mortal.

Funções e Relações

O pai de João é colega de Denise

colega(Denise, pai(João))

Formalizando

constantes

símbolos funcionais símbolos predicativos

Interpretação e Semântica

Linguagem = <Lula, FHC, Irmão-de, Pai-de>

I associa os elementos da linguagem aos seus "significados"

/(Lula) =
$$\stackrel{\sim}{\mathcal{X}}$$
 /(FHC) = $\stackrel{\sim}{\mathcal{X}}$ /(Irmão-de) = $\left\{\left\langle \stackrel{\sim}{\mathcal{X}} \stackrel{\sim}{\mathcal{X}} \right\rangle; \left\langle \stackrel{\sim}{\mathcal{X}} \stackrel{\sim}{\mathcal{X}} \right\rangle; \dots \right\}$ /(Pai-de)* = $\left\{\left\langle \stackrel{\sim}{\mathcal{X}} \stackrel{\sim}{\mathcal{X}} \right\rangle; \left\langle \stackrel{\sim}{\mathcal{X}} \stackrel{\sim}{\mathcal{X}} \right\rangle; \dots \right\}$

Ver(I, Irmão(Lula, FHC)) = ∨

 $Ver(I, \exists x.Pai-de(Lula, x)) = V$

^{*} Como predicado (relação).

Interpretação e Semântica

Linguagem = <Lula, FHC, Irmão-de, Pai-de>

I associa os elementos da linguagem aos seus "significados"

$$Ver(I, \exists x. Lula = Pai-de(x)) = V$$

^{*} Como função.

Propriedades dos quantificadores


```
\forall x \ \forall y is the same as \forall y \ \forall x \ (why??)
```

$$\exists x \exists y \text{ is the same as } \exists y \exists x \text{ (why??)}$$

$$\exists x \ \forall y \ \text{is } \underline{\text{not}} \text{ the same as } \forall y \ \exists x$$

$$\exists x \ \forall y \ Loves(x,y)$$

"There is a person who loves everyone in the world"

$$\forall y \; \exists x \; Loves(x,y)$$

"Everyone in the world is loved by at least one person"

Quantifier duality: each can be expressed using the other

$$\forall x \ Likes(x, IceCream) \qquad \neg \exists x \ \neg Likes(x, IceCream)$$

$$\exists x \ Likes(x, Broccoli)$$
 $\neg \forall x \ \neg Likes(x, Broccoli)$

Em Lógica Matemática

Enunciados Categóricos: Universal afirmativo

Todo S é P: $\forall x (S(x) \rightarrow P(x))$

•Estabelece que S é um subconjunto de P

Exemplo:

Sentença....: Todos os homens são mortais

Sintaxe.....: $\forall x [H(x) \rightarrow M(x)]$

Semântica..: para todo x, se $x \in H$ então $x \in M$

Enunciados Categóricos: Universal negativo

Nenhum S é P

$$\forall x (S(x) \rightarrow \neg P(x))$$

•Estabelece que os conjuntos S e P são disjuntos

Exemplo:

Sentença...: Nenhum homem é extra-terrestre

Sintaxe.....: $\forall x [H(x) \rightarrow \neg E(x)]$

Semântica..: para todo x, se x ∈ H então x ∉ E

Enunciados Categóricos: Particular afirmativo

Algum S é P

$$\exists x (S(x) \land P(x))$$

•Estabelece que os conjuntos S e P têm intersecção

não-vazia.

Exemplo:

Sentença...: Alguns homens são cultos.

Sintaxe.....: $\exists x [H(x) \land C(x)]$

Semântica..: existe x tal que $x \in H$ e $x \in C$

Enunciados Categóricos: Particular negativo

Algum S não é P

$$\exists x (S(x) \land \neg P(x))$$

• Estabelece que existem elementos em S que não

estão em P.

Exemplo:

Sentença....: Alguns homens não são cultos.

Sintaxe.....: $\exists x [H(x) \land \neg C(x)]$

Semântica..: existe x tal que x ∈ H e x ∉ C

Exercício:

Para formalizar as sentenças que seguem, Interprete as letras C, R, V e S como:

$$R(x) = x \text{ \'e uma r\~a};$$

$$V(x) = x \in verde;$$

$$S(x) = x \in saltitante;$$

$$\forall x (R(x) \rightarrow V(x))$$

b – Nenhuma rã é verde.

 $\forall x (R(x) \rightarrow \neg V(x))$

c – Algumas rãs são verdes.

 $\exists x (R(x) \land V(x))$

d – Toda coisa é uma rã.

 $\forall x (R(x))$

e – Nada é uma rã.

 $\forall x (\neg R(x)) \text{ ou } \neg \exists x (R(x))$

f – Qualquer coisa é uma rã verde.

 $\forall x (R(x) ^ V(x))$

 g – Está chovendo e algumas rãs estão saltitando. $C ^ 3x (R(x) ^ S(x))$

h - Somente rãs são verdes.

 $\forall x (V(x) \rightarrow R(x))$

Exercício: Para formalizar as sentenças que seguem

considere a interpretação:

Indivíduos: Carlos, João e Maria.

Predicados: Mecânico(x) = x é mecânico, Ama(x, y) = x ama y

Enfermeiro(x) \equiv x é enfermeiro

1)Carlos é mecânico	Mecânico(Carlos)
---------------------	------------------

- 2) Carlos e João são mecânicos Mecânico(Carlos)^ Mecânico(João)
- 3) Carlos é mecânico ou enfermeiro Mecânico(Carlos) v Enfermeiro(Carlos)
- 4) Se Carlos é mecânico então Carlos não Mecânico(Carlos) → ¬ Enfermeiro(Carlos) é enfermeiro
- 5) João ama Maria Ama(João, Maria)
- 6) João ama a si próprio Ama(João, João)
- 7) Todo mundo ama João ∀x(Ama(x, João))
- 8) Existe alguém que Maria não ama ∃x(¬ Ama(Maria, x))
- 9) Todo mundo é amado por alguém ∀x∃y(Ama(y, x))
- 10) Alguém é amado por todos ∃x∀y(Ama(y,x))
- 11) Existe alguém que ama todo mundo ∃x∀y(Ama(x,y))
- 12) Alguém ama alguém ∃x∃y(Ama(x,y))