

Quantum Machine Learning Seminar

Método Kernel, Maquinas de Soporte Vectorial (SVM) y Mapa Cuántico de Características

Quantum Machine Learning Seminar

Cristian E. Bello, May 31, 2025

Mapa Cuántico de Características

Evolución unitaria

Codificación cuántica Medición del observable $\begin{array}{c} \mathbf{X} \\ \downarrow \\ \downarrow \\ |\phi(\mathbf{X})\rangle \end{array} \rightarrow \hat{U}(\boldsymbol{\theta}) \, |\phi(\mathbf{X})\rangle \\ \rightarrow \langle \phi(\mathbf{X}) \, |\, \hat{U}^{\dagger}(\boldsymbol{\theta}) \hat{f} \hat{U}(\boldsymbol{\theta}) \, |\, \phi(\mathbf{X})\rangle \\ \end{array}$

QNN como aproximadores universales si se diseñan correctamente.

Mapa Cuántico de Características

Table 2.1 Examples of supervised pattern classification tasks in real-life applications

Input	Output
Regression tasks	
Last month's oil price	Tomorrow's oil price
Search history of a user	Chance to click on a car ad
Insurance customer details	Chance of claiming
Multi-label classification tasks	·
Images	Cat, dog or plane?
Recording of speech	Words contained in speech
Text segment	Prediction of next word to follow
Binary classification tasks	
Text	Links to terrorism?
Video	Contains a cat?
Email	Is spam?
Spectrum of cancer cell	Malicious?

Representación del Estado Cuántico

Kets vs matrices de densidad

Pros y Contras de las Redes Neuronales Cuánticas

Las redes neuronales cuánticas pueden considerarse una implementación de paradigmas de computación clásica.

Pros:

Ejemplo: para d #qúbits, el espacio de Hilbert tiene una dimensión $N=2^d$. Para d=100, tenemos N=1030 órdenes de magnitud mayores que el número de estrellas en el universo. https://research.ibm.com/blog/127-qubit-quantum-processor-eagle

Contras:

- El entrelazamiento a gran escala es difícil de soportar al interactuar con el mundo clásico. Los estados más amigables abarcan un espacio más pequeño 2D.
- Las mediciones cuánticas son probabilísticas.
- Limitaciones intrínsecas (no-clonación, no podemos acceder a un registro cuántico sin 3. colapsar su estado).

Método Kernel

En los métodos kernel, el objetivo es aproximar una función desconocida $f(\mathbf{X})$ mediante el uso de un conjunto de datos $[\mathbf{X}^{(i)}, y_i]$ determinado por las observaciones $\mathbf{X}^{(i)}$ (es decir, los datos de entrada) y las etiquetas y_i , con $i=0,1,\ldots N_x-1$

$$f(\mathbf{X}) = \sum_{i=0}^{N_X-1} \alpha_i y_i K\left[\mathbf{X}, \mathbf{X}^{(i)}\right]$$

Propiedades: Simétrica K(X, Y) = K(Y, X), definida positivamente.

Método Kernel

Mapeo a funciones etiquetadas por datos.

SVM: La Calle Más Ancha

Un algoritmo para clasificar datos linealmente separables.

$$f(\mathbf{X}) = \sum_{i=0}^{N_X-1} \alpha_i y_i K\left[\mathbf{X}, \mathbf{X}^{(i)}\right]$$

Consideramos el caso en el que la medida de similitud es simplemente el producto escalar, es decir,

$$K_{ij} = \mathbf{X}^{(i)} \cdot \mathbf{X}^{(j)}$$

SVM: La Calle Más Ancha

Maximización del margen:
$$y_i \left(X^{(i)} \cdot w + b \right) \ge 1$$
 $w = \sum_i \alpha_i y_i X^{(i)}$

Kernel Machines vs Perceptron

El perceptron es la red neuronal de una capa más simple.

$$f(\mathbf{X}) = g(\mathbf{w} \cdot \mathbf{X}) = g\left(\sum_{q=0}^{D-1} w^q X^q\right)$$
 Función de activación

Vector de pesos

La SVM es un perceptron tal que w es una combinación lineal de los vectores de entrada $\mathbf{X}^{(j)}$.

Mapeo Cuántico de Características y Kernels Cuánticos

Mapa de características cuánticas

$$X \mapsto |\phi(X)\rangle \circ \rho(X)$$

Kernel

$$K_{Q}(X, X') = \left| \langle \phi(X) \mid \phi(X') \rangle \right|^{2}$$

Para Quantum Machine Learning, necesitamos encontrar un mapa de características que permita representar y entrenar funciones arbitrarias.

Mapeo Cuántico de Características y Kernels Cuánticos

Modelo:

- 1. Mape todos los puntos en los conjuntos de datos en estados cuánticos.
- 2. Calcule los productos escalar utilizando el dispositivo cuántico.
- 3. Invierta la matriz de gram para determinar los pesos.

La inversión de la matriz de gram se puede hacer clásica o cuántica.

Este método es la versión cuántica del kernel clásico: B. Schölkopf, A. Smola, Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond (The MIT Press, Cambridge, 2018)

Implementaciones físicas, Xanadu

quantum optical processors specialized for boson sampling

Thank you!

crbellor@unal.edu.co

Notebook

https://github.com/QUANTA-Research-Group/QML-Seminar

kernelexample.ipynb

Fecha	Charla
Mayo 10, 2025	Data-Driven Quantum Mechanics
Mayo 31, 2025	Kernel Method, Support Vector Machines (SVM) and
	Quantum Feature Map
	Practice with TensorFlow
	Keynote Luis Serrano