Домашнее задание к ЛР №4

1. Домашнее задание №1 по курсу «Линейная ТАУ»

В этой части отчета необходимо представить компьютерную часть Вашего домашнего задания №1 по курсу теории автоматического управления. С подробностями самого домашнего задания обращайтесь к лектору и/или семинаристу.

2. Дополнение к Домашнему заданию №1 по курсу «Линейная ТАУ»

В этой части отчета Вам необходимо дополнить ДЗ №1 по теории автоматического управления, построив для замкнутой системы:

- ФЧХ для четных вариантов;
- АЧХ для нечетных вариантов.

Для построения воспользоваться пакетом Symbolic Math Toolbox.

3. Параметрический синтез регулятора привода подъема люльки

Вам предоставляется файл ConstructionCradleControl.slx, содержащий ссылочную подсистему ControlObject.slx (про них см. следующие ЛР или документацию), состоящую из:

- Модели <u>BLDC-двигателя</u>, хорошо аппроксимируемой моделью двигателя постоянного тока независимого возбуждения;
- Модели механической передачи;
- Модели строительной люльки.

Все необходимые константы уже прописаны в блоке ControlObject, менять их не надо.

Вам предлагается провести параметрический синтез системы, назначение и архитектура которой определяется Вашим вариантом. Для синтеза обязательно использовать какое-либо (или несколько) средств из Control System Toolbox: Control System Designer или Control System Tuner. При

наличии необходимого пакета также можно воспользоваться и Response Optimizer.

Требования к разрабатываемой системе Вам предлагается определить самостоятельно исходя из её эксплуатационных свойств (см. ниже назначение). То есть, необходимо обоснованно задать характеристики переходного процесса (время переходного процесса и перерегулирование), требования по устойчивости (запасы устойчивости на ЛАЧХ или на АФЧХ, или же показатель колебательности), и, наконец, требования по точности (статическая и динамическая ошибки). Оценить возможности системы по достижению данных параметров можно, подав максимальное управляющее воздействие на вход подсистемы (номинальное напряжение двигателя).

Назначение системы: вертикальное перемещение малогабаритных сыпучих грузов, излишние колебания которых могут привести к рассыпанию.

Далее представлена таблица вариантов задания

№	Разрабатываемая	Архитектура контроллера
	система	
1	Система слежения за	Последовательное КУ в виде передаточной функции
	положением	
2	Система стабилизации	Комбинированное управление двумя передаточными
	скорости	функциями
3	Система слежения за	ПИД-регулятор по ошибке
	положением	
4	Система стабилизации	ПИ-регулятор по ошибке
	скорости	
5	Система слежения за	Комбинированное управление: передаточная функция по
	положением	управляющему сигналу и ПИД регулятор по ошибке
6	Система стабилизации	Обратные связи по состоянию
	скорости	
7	Система слежения за	Последовательное КУ в виде передаточной функции
	положением	

8	Система стабилизации	Комбинированное управление двумя передаточными
	скорости	функциями
9	Система слежения за	ПИД-регулятор по ошибке
	положением	
10	Система стабилизации	ПИ-регулятор по ошибке
	скорости	
11	Система слежения за	Комбинированное управление: передаточная функция по
	положением	управляющему сигналу и ПИД регулятор по ошибке
12	Система стабилизации	Обратные связи по состоянию
	скорости	

Вариант рассчитывается по формуле:

$$N^{\underline{o}} = mod(K, 12) + 1$$

Где К – Ваш номер в списке группы.

Требования к отчету

По первому заданию необходимо привести исходные данные в виде модели системы или её передаточной функции, а также все требуемые графики. В остальном руководствоваться требованиями ДЗ.

По второму заданию требуется нормально оформить график. Способ построения может быть любой. Для получения модуля комплексного числа можно воспользоваться функцией abs, для получения аргумента — функцией angle.

По третьему заданию требуется привести схему системы, обосновать выбранные требования к синтезу, описать последовательность проведенных действий по нему, привести результат синтеза в виде графиков, доказывающих выполнение требований к нему, а также параметры настроенного корректирующего устройства.