Directed networks

NETWORK ANALYSIS IN R

James Curley

Associate Professor, University of Texas at Austin

Directionality

Undirected

Directed

Examining the igraph object

Undirected:

```
IGRAPH UN-- 7 7 --
+ attr: name (v/c)
+ edges (vertex names):
[1] A--B A--C A--D A--E A--F E--F F--G
```

Directed:

```
IGRAPH DN-- 7 7 --
+ attr: name (v/c)
+ edges (vertex names):
[1] A->E B->A C->A D->A F->E F->G
```

Checking igraph objects

is.directed(g)

[1] TRUE

is.weighted(g)

[1] FALSE

In-degree and out-degree

	out-degree	in-degree
Α	1	4
В	1	0
C	1	0
D	1	0
E	0	2
F	3	0
G	0	1

Is there an edge between A & Show all edges to or from A: E?

```
g['A','E']
```

```
incident(g,'A', mode=c("all"))
```

```
+ 5/7 edges (vertex names):
[1] A->E B->A C->A D->A F->A
```

Find the starting vertex of all edges:

```
head_of(g, E(g))
```

```
+ 7/7 vertices, named:
[1] A B C D F F F
```


Let's practice!

NETWORK ANALYSIS IN R

Relationships between vertices

NETWORK ANALYSIS IN R

James Curley

Associate Professor, University of Texas at Austin

Identifying neighbors


```
neighbors(g, "F", mode = c("all"))
+ 5/12 vertices, named:
```

[1] A E G H I

Identifying neighbors in common


```
x <- neighbors(
  g, "F", mode = c("all")
)

y <- neighbors(
  g, "D", mode = c("all")
)

intersection(x,y)</pre>
```

A

Paths


```
farthest_vertices(g)
```

```
$vertices
+ 2/12 vertices, named:
[1] J G

$distance
[1] 6
```

```
get_diameter(g)
```

```
+ 7/12 vertices, named:
[1] J D A E H F G
```

Identifying vertices reachable in N steps


```
ego(g, 2, 'F', mode=c('out'))
```

```
+ 5/12 vertices, named:
[1] F A E G H
```

Let's practice!

NETWORK ANALYSIS IN R

Important and influential vertices

NETWORK ANALYSIS IN R

James Curley

Associate Professor, University of Texas at Austin

Measures of vertex importance

- degree
- betweenness
- eigenvector centrality
- closeness centrality
- pagerank centrality

Out-degree and in-degree

	out-degree	in-degree
Α	1	4
В	1	0
С	1	1
D	1	2
E	1	2
F	3	2
G	0	1
Н	1	1
I	0	1
J	1	0
K	1	0

```
degree(g, mode = c("out"))
```

```
A B C D E F G H I J K L
1 1 1 1 3 0 1 1 1 1 1
```


Betweenness

I to H:

K to E:

B to G:

$$B \rightarrow A \rightarrow E \rightarrow H \rightarrow F \rightarrow G$$

Betweenness


```
betweenness(g, directed = TRUE)
```

```
A B C D E F G H I J K L
24 0 5 10 23 16 0 17 0 0 0 0
```

```
A B C D E F
0.22 0.00 0.05 0.09 0.21 0.15
G H I J K L
0.00 0.15 0.00 0.00 0.00
```

Let's practice!

NETWORK ANALYSIS IN R

