REDE DE FIBRA ÓPTICA ALTER-DO--CHÃO

11/04/2024

Autor: Jheickson Felipe Sousa Santos

Memorial descritivo:

Este projeto apresenta o modelo de rede óptica para acesso a internet de algumas regiões de Altamira PA. A área possui 5,7 km², conforme a figura 1.

Figura 1. Área inicial para implantação da rede óptica em Altamira

Premissas de projeto:

- Tipo de rede: MISTA, com ramais balanceados e desbalanceados
- Residências da área afetada: +1000 residências
- Projeto deve utilizar tecnologia GPON
- Deve ser especificado para uma OLT EPON de 8 portas, com sensibilidade de até -32 dbm. <u>Especificações</u>
- Deve utilizar uma taxa de penetração de 50% da área afetada
- As CTOs planejadas variam de 1x2 até 1x8, nos casos balanceados.
 E 30/70 nos casos desbalanceados.
- A distância máxima entre o assinante e a CTO deve ser especificada em 200 metros;

Organização dos divisores ópticos por porta PON:

Para distribuição de sinal óptico os divisores ópticos estão organizados conforme figura 2, Sendo distribuídos em 3 níveis (1x2, 1x4 e 1x8). Foi utilizada esta distribuição pois julgou-se adequado às características do local.

Cálculo de potência

- Tabela de perdas por divisores ópticos balanceados
 Tabela de perdas por divisores ópticos desbalanceados

Nº	Porta	F ~	Comov	Splitters			Distân	Atenuaçã	Sinal	Cinal na	
da CTO	PON	Fusõ es	Conex ões	1x2	1x4	1x8	1x16	cia da OLT	o Total	da OLT	Sinal na ONU
CTO-	01							0,55		2,50	-22,19
01		7	4	1	1	1	0	km	24,69 dB	dBm	dBm
СТО-								0,39		2,50	-22,14
02		7	4	1	1	1	0	km	24,64 dB	dBm	dBm
СТО-								0,62		2,50	-22,22
03		7	4	1	1	1	0	km	24,72 dB	dBm	dBm
CTO-								0,81		2,50	-22,28
04		7	4	1	1	1	0	km	24,78 dB	dBm	dBm
CTO-	01							0,89		2,50	-22,31
05		7	4	1	1	1	0	km	24,81 dB	dBm	dBm
CTO-								0,69		2,50	-22,24
06		7	4	1	1	1	0	km	24,74 dB	dBm	dBm
CTO-								0,92		2,50	-22,32
07		7	4	1	1	1	0	km	24,82 dB	dBm	dBm
CTO-								1,15		2,50	-22,40
08		7	4	1	1	1	0	km	24,90 dB	dBm	dBm
CTO-								0,71		2,50	-22,15
09		6	4	1	1	1	0	km	24,65 dB	dBm	dBm
CTO-								0,49		2,50	-22,07
10		6	4	1	1	1	0	km	24,57 dB	dBm	dBm
СТО-								0,71		2,50	-22,15
11		6	4	1	1	1	0	km	24,65 dB	dBm	dBm
СТО-								0,95		2,50	-22,23
12	02	6	4	1	1	1	0	km	24,73 dB	dBm	dBm
СТО-	02							0,49		2,50	-22,07
13		6	4	1	1	1	0	km	24,57 dB	dBm	dBm
CTO-								0,26		2,50	-21,99
14		6	4	1	1	1	0	km	24,49 dB	dBm	dBm
CTO-								0,50		2,50	-22,08
15		6	4	1	1	1	0	km	24,58 dB	dBm	dBm
CTO-								0,75		2,50	-22,16
16		6	4	1	1	1	0	km	24,66 dB	dBm	dBm
CTO-								0,45		2,50	-22,16
17		7	4	1	1	1	0	km	24,66 dB	dBm	dBm
CTO-								0,45		2,50	-22,16
18		7	4	1	1	1	0	km	24,66 dB	dBm	dBm
CTO-								0,45		2,50	-22,16
19		7	4	1	1	1	0	km	24,66 dB	dBm	dBm
CTO-								0,70		2,50	-22,25
20	03	7	4	1	1	1	0	km	24,75 dB	dBm	dBm
СТО-	03							0,46		2,50	-22,16
21		7	4	1	1	1	0	km	24,66 dB	dBm	dBm
СТО-								0,65		2,50	-22,23
22		7	4	1	1	1	0	km	24,73 dB	dBm	dBm
СТО-								0,84		2,50	-22,29
23		7	4	1	1	1	0	km	24,79 dB	dBm	dBm
CTO- 24		7	4	1	1	1	0	0,99 km	24,85 dB	2,50 dBm	-22,35 dBm
	04										
СТО-	04	8	4	1	1	1	0	0,75	24,86 dB	2,50	-22,36

_						<u> </u>				
25							km		dBm	dBm
CTO-							0,97		2,50	-22,54
26	9	4	1	1	1	0	k <mark>m</mark>	25,04 dB	dBm	dBm
CTO-							0,75		2,50	-22,36
27	8	4	1	1	1	0	km	24,86 dB	dBm	dBm
CTO-							0,78		2,50	-22,37
28	8	4	1	1	1	0	km	24,87 dB	dBm	dBm
CTO-							0,76		2,50	-22,47
29	9	4	1	1	1	0	km	24,97 dB	dBm	dBm
CTO-							1,01		2,50	-22,55
30	9	4	1	1	1	0	km	25,05 dB	dBm	dBm
CTO-							1,00		2,50	-22,55
31	9	4	1	1	1	0	km	25,05 dB	dBm	dBm
CTO-							1,23		2,50	-22,63
32	9	4	1	1	1	0	km	25,13 dB	dBm	dBm

Diagramas de emendas

OLT-01 e DIO

