Assignment #2 Genetic Programming

MECS 4510 Evolutionary Computation Hod Lipson

Symbolic Regression

What function describes this data?

Data

Week 1: Random function

```
equation = cos(cos(cos(x*x))*sin(sin(x))+

x/x*(-9.247776198625752)+

(-8.62238505749605)/(-4.15149813701656))-

sin((1.2185149095292367))

MSE = 1.5227438847355902
```


RMSE vs. Number of Evaluations

https://en.wikipedia.org/wiki/Early_stopping

Diversity

Without singular mating poolWith singular mating pool

Tips

- Plot curves first. Don't leave the curve-plotting to the end.
 - Learning curves can help you debug.
 - Always bring curves to office hours
- You can get max points even if you don't solve the HW
 - Most of the grade is on process, not results
- Learn to use the cloud.
 - You can debug faster and work in parallel
- Develop the EA first (with crossover and mutation)
 - Disable the crossover and you have hill climber
 - Apply mutation to a blank solution and you have random search

Charting in Python

- Matplotlib (https://matplotlib.org/)
 - Example:

https://stackabuse.com/matplotlib-line-plot-tutorial-and-examples/

- Seaborn (https://seaborn.pydata.org/)
 - Example:

https://seaborn.pydata.org/generated/seaborn.lineplot.html

To request your free Google Cloud account contact TA; TA will compile list and contact CRF

GOOGLE CLOUD PLATFORM **GETTING STARTED**

BY PHILIPPE WYDER

