MMI – Multi mode interferometer

Capacitação em fotônica

Adolfo Herbster

Part 1

Fundamental properties of vector modes

 Complete basis for the decomposition of the fields E and H:

$$\mathbf{E} = \sum_{j} \mathbf{E}_{j} + \mathbf{E}_{-j} + \mathbf{E}_{rad} \tag{1}$$

$$\mathbf{H} = \sum_{j} \mathbf{H}_{j} + \mathbf{H}_{-j} + \mathbf{H}_{rad} \tag{2}$$

$$\mathbf{E}_{j}(x,y,z) = \mathbf{e}_{j}(x,y) e^{i\beta_{j}z} = (\mathbf{e}_{tj} + \mathbf{\hat{z}}e_{zj}) e^{i\beta_{j}z}$$

$$\mathbf{H}_{j}(x,y,z) = \mathbf{h}_{j}(x,y) e^{i\beta_{j}z} = (\mathbf{h}_{tj} + \mathbf{\hat{z}}h_{zj}) e^{i\beta_{j}z}$$

$$(3)$$

$$\mathbf{H}_{j}(x,y,z) = \mathbf{h}_{j}(x,y) e^{i\beta_{j}z} = (\mathbf{h}_{tj} + \mathbf{\hat{z}}h_{zj}) e^{i\beta_{j}z}$$

$$\tag{4}$$

Propagation constant and phase velocity

• The *j*-th eigenvalue solution of the wave equation:

$$\beta_{j} = \frac{\frac{k}{2} \int_{A_{\infty}} \left[\sqrt{\frac{\mu_{0}}{\varepsilon_{0}}} \mathbf{h}_{j}^{2} + \sqrt{\frac{\varepsilon_{0}}{\mu_{0}}} \left(n^{2} \right)^{*} \mathbf{e}_{j}^{2} \right] dA}{\int_{A_{\infty}} \mathbf{e}_{j} \times \mathbf{h}_{j} \cdot \hat{\mathbf{z}} dA}$$
(1)

Each mode propagates with a phase velocity

$$v_{pj} = \frac{\omega}{\beta_i} \tag{1}$$

Orthonormality of guided modes

 The general orthonormality relation of the forward and backward-propagating guided modes is

$$\frac{1}{2} \int_{A_{\infty}} \hat{\mathbf{e}}_j \times \hat{\mathbf{h}}_k^* \cdot \hat{\mathbf{z}} \, \mathrm{d}A = \begin{cases} 1 & \text{if } j = k, \\ 0 & \text{if } j \neq k. \end{cases}$$

where

$$\hat{\mathbf{e}}_j = \frac{\mathbf{e}_j}{\sqrt{N_j}}, \, \hat{\mathbf{h}}_j = \frac{\mathbf{h}_j}{\sqrt{N_j}} \text{ and } N_j = \frac{1}{2} \left| \int_{A_\infty} \mathbf{e}_j \times \mathbf{h}_j^* \cdot \hat{\mathbf{z}} \, \mathrm{d}A \right|$$

Orthonormality of guided modes

Considering a symmetric dieletric waveguide:

$$\nabla^2 H + k^2 H = 0$$

TE modes
$$H_z, E_y, H_x$$

$$\nabla_T^2 H_z + k_c^2 H_z = 0$$

$$\mathbf{H}_T = -j \frac{\beta}{k_c^2} \nabla_T H_z$$

$$\mathbf{E}_T = \eta_{\mathrm{TE}} \, \mathbf{H}_T \times \hat{\mathbf{z}}.$$

$$\mathbf{E}_T = \eta_{\mathrm{TE}} \, \mathbf{H}_T imes \hat{\mathbf{z}}.$$

TM modes

$$E_z, H_y, E_x$$

$$E_z, H_y, E_x$$
$$\nabla_T^2 E_z + k_c^2 E_z = 0$$

$$\mathbf{E}_T = -j\frac{\beta}{k^2} \nabla_T E_z$$

$$\mathbf{E}_T = -j\frac{\beta}{k_c^2} \nabla_T E_z$$

$$\mathbf{H}_T = \frac{1}{\eta_{\mathrm{TM}}} \hat{\mathbf{z}} \times \mathbf{E}_T.$$

Show the orthonormality of guided modes in this device.

Poynting vector and power density

The general definition of the Poyting vector is

$$\mathbf{S} = rac{1}{2}\mathcal{R}\left(\mathbf{E} imes \mathbf{H}^*
ight)$$

• The power density o *j*-th mode is

$$S_{jz} = \mathbf{S}_j \cdot \hat{\mathbf{z}} = \frac{1}{2} |a_j|^2 \hat{\mathbf{e}}_j \times \hat{\mathbf{h}}_j^* \cdot \hat{\mathbf{z}}, \, \mathbf{e}_j = a_j \hat{\mathbf{e}}_j \text{ and } \mathbf{h}_j = a_j \hat{\mathbf{h}}_j$$

• The power carried by the mode *j* is given by the integration of

$$P_j = \frac{1}{2} |a_j|^2 \int_{A_\infty} \hat{\mathbf{e}}_j \times \hat{\mathbf{h}}_j^* \cdot \hat{\mathbf{z}} \, dA = |a_j|^2$$

Poynting vector and power density

 The total power carried by all guided and radiated modes is

$$P_{tot} = \underbrace{P_{gd}}_{\text{guided}} + \underbrace{P_{rad}}_{\text{radiated}}$$

 $P_{gd} = \sum_{j} (P_j + P_{-j}) = \sum_{j} |a_j|^2 - \sum_{j} |a_{-j}|^2$

Expansion of the fields onto the basis of guided modes

- Far from the excitation sources and waveguides perturbations;
- The guided fields can be decomposed on the finite orthonormal basis of forward and backwardpropagating guied modes:

$$\mathbf{E} = \sum_{i} a_{j} \hat{\mathbf{e}}_{j} + a_{-j} \hat{\mathbf{e}}_{-j} \rightarrow a_{j} = \frac{1}{2} \int_{A_{\infty}} \mathbf{E} \times \hat{\mathbf{h}}_{j}^{*} \cdot \hat{\mathbf{z}} \, dA$$

$$\mathbf{H} = \sum_{j} a_{j} \hat{\mathbf{h}}_{j} + a_{-j} \hat{\mathbf{h}}_{-j} \rightarrow a_{-j} = -\frac{1}{2} \int_{A_{\infty}} \mathbf{E} \times \hat{\mathbf{h}}_{-j}^{*} \cdot \hat{\mathbf{z}} \, dA$$

Expansion of the fields

- Suppose that a Gaussian pulse is incident on a slab waveguide;
- A number of supported modes will be excited and propagated in the core region;

Expansion of the fields

- Consider a slab waveguide with width of 1 um and n_s = 1.52, n_f = 1.674 and n_c = 1.0. The structure supports 2 modes at wavelength of 633 nm. Calculate the transmission of the **TE mode** at L = 633 nm.
 - 1) Calculate the field profile and propagation constant of each mode;
 - 2) Check the orthogonality and adjust the amplitude;
 - 3) Generate the Gaussian input pulse;
 - 4) Calculate the amplitude of the propagated pulse and generate the propagated output pulse;
 - 5) Calculate the transmission;

Input signal – Gaussian pulse

$$\Psi\left(y\right) = e^{\left(\frac{y}{\omega_0}\right)^2}$$

```
w_0 = W_m/2
phi_in = np.exp(-(x/w_0)**2)
```

```
plt.figure(figsize=(8,6))
plt.plot(1e6*x, phi_in, linewidth = 2)
plt.grid(True)
plt.xlabel('Thickness of the slab [um]')
plt.ylabel('Amplitude')
plt.xlim([-4,4])
plt.ylim([0,1])
```


Part 2

Multi-mode interference device

- The operation of optical MMI devices is based on the selfimaging principle;
- Self-imaging is a property of multimode waveguides by which an input field profile is reproduced in single or multiple images at periodic intervals along the propagation direction of the guide;

Multimode interference (MMI) coupler

– Font: www.lumerical.com

Multi-mode interference device

- The operation of optical MMI devices is based on the selfimaging principle;
- Self-imaging is a property of multimode waveguides by which an input field profile is reproduced in single or multiple images at periodic intervals along the propagation direction of the guide;

Multimode interference (MMI) coupler – simulated using Lumerical MODE.

- Step-index multimode waveguide;
- Width W_M , refractive index n_r and cladding refractive index n_c ;

Fig. 1. Two-dimensional representation of a step-index multimode wave-guide; (effective) index lateral profile (left), and top view of ridge boundaries and coordinate system (right).

- Step-index multimode waveguide;
- Width W_M , refractive index n_r and cladding refractive index n_c ;
- Supports m lateral modes $\upsilon=0,\,1,\,\ldots,\,(m\text{-}1)$ at free-space wavelength λ_0 ;
- The wavenumber k_c and the propagation constant β_v are related with

$$k_c^2 + \beta_\nu^2 = k_0^2 n_r^2, k_0 = \frac{2\pi}{\lambda_0}, k_c = \frac{(\nu+1)\pi}{W_{e\nu}}$$

Fig. 2. Example of amplitude-normalized lateral field profiles $\psi_{\nu}(y)$, corresponding to the first 9 guided modes in a step-index multimode waveguide.

$$W_{e\nu} \simeq W_e = W_M + \left(\frac{\lambda_0}{\pi}\right) \left(\frac{n_c}{n_r}\right)^{2\sigma} \left(n_r^2 - n_c^2\right)^{-\frac{1}{2}}$$

More details about W_{ev} , see Lucas & Erik [1].

```
n c = 1.5
n r = 3.5
lambda 0 = 1550e-9
k 0 = 2*np.pi/lambda 0
W m = 1e-6
c0 = 299792458
sigma = 0 #TE mode
We = W m + (lambda \ 0/np.pi)*((n \ c/n \ r)**(2*sigma))*(n \ r**2 - n \ c**2)**(-0.5)
for i in range(5):
    neff_app = n_r - ((i+1)**2 * np.pi * lambda 0)/(We**2*4*n r*k 0)
    k c = (i + 1)*np.pi/We
    print("neff app = %4.3f" %(neff app))
neff app = 3.436
neff app = 3.243
neff app = 2.922
neff app = 2.473
neff app = 1.895
```

Rohan D. Kekatpure, Aaron C. Hryciw, Edward S. Barnard, and Mark L. Brongersma, "Solving dielectric and plasmonic waveguide dispersion relations on a pocket calculator," Opt. Express 17 (2009)

	beta	neff	kf	als	alc
TE					
0	1.391856e+07	3.433571	2.751090e+06	1.252013e+07	1.252013e+07
1	1.310526e+07	3.232939	5.435704e+06	1.160928e+07	1.160928e+07
2	1.166455e+07	2.877530	8.076693e+06	9.954359e+06	9.954359e+06
3	9.409787e+06	2.321302	1.061841e+07	7.181337e+06	7.181337e+06
4	6.204527e+06	1.530596	1.275926e+07	1.234361e+06	1.234361e+06

$$\beta_{\nu} \simeq k_0 n_r - \frac{(\nu+1)^2 \pi \lambda_0}{4n_r W_e^2}, \text{ if } k_c^2 \ll (k_0 n_r)^2$$

tpure, Aaron C. Hryciw, Edward S. Barnard, . Brongersma, "Solving dielectric and veguide dispersion relations on a pocket tt. Express 17 (2009)

neff	kf	als	alc
3.433571	2.751090e+06	1.252013e+07	1.252013e+07
3.232939	5.435704e+06	1.160928e+07	1.160928e+07
2.877530	8.076693e+06	9.954359e+06	9.954359e+06
2.321302	1.061841e+07	7.181337e+06	7.181337e+06
1.530596	1.275926e+07	1.234361e+06	1.234361e+06

```
n c = 1.5
n r = 3.5
lambda 0 = 1550e-9
k 0 = 2*np.pi/lambda 0
W m = 5e-6
c0 = 299792458
sigma = 0 #TE mode
We = W m + (lambda @/np.pi)*((n_c/n_r)**(2*sigma))*(n_r**2 - n_c**2)**(-0.5)
for i in range(5):
    neff app = n r - ((i+1)**2 * np.pi * lambda 0)/(We**2*4*n r*k 0)
    k c = (i + 1)*np.pi/We
    print("neff_app = %4.3f" %(neff_app))
neff app = 3.497
neff app = 3.487
neff app = 3.471
neff app = 3.448
neff app = 3.419
```

Rohan D. Kekatpure, Aaron C. Hryciw, Edward S. Barnard, and Mark L. Brongersma, "Solving dielectric and plasmonic waveguide dispersion relations on a pocket calculator," Opt. Express 17 (2009)

	beta	neff	kf	als	alc
TE					
0	1.417475e+07	3.496771	6.092989e+05	1.280433e+07	1.280433e+07
1	1.413541e+07	3.487067	1.218556e+06	1.276077e+07	1.276077e+07
2	1.406962e+07	3.470836	1.827728e+06	1.268785e+07	1.268785e+07
3	1.397701e+07	3.447992	2.436771e+06	1.258509e+07	1.258509e+07
4	1.385709e+07	3.418407	3.045639e+06	1.245176e+07	1.245176e+07
5	1.370916e+07	3.381914	3.654279e+06	1.228692e+07	1.228692e+07
6	1.353236e+07	3.338299	4.262636e+06	1.208934e+07	1.208934e+07
7	1.332560e+07	3.287294	4.870647e+06	1.185745e+07	1.185745e+07
8	1.308754e+07	3.228567	5.478239e+06	1.158927e+07	1.158927e+07
9	1.281653e+07	3.161713	6.085328e+06	1.128233e+07	1.128233e+07
10	1.251057e+07	3.086235	6.691812e+06	1.093352e+07	1.093352e+07

Input signal

• A input field profile imposed at z=0 and totally contained within W_e will be decomposed into the modal field distributions of all modes (including guided as well as radiative modes):

$$\underbrace{\Psi(y,0)}_{\text{input field}} = \sum_{\nu} c_{\nu} \underbrace{\psi_{\nu}(y)}_{\text{modal field}} \rightarrow \Psi(y,0) = \sum_{\nu=0}^{m-1} c_{\nu} \psi_{\nu}(y)$$

$$c_{\nu} = \int \Psi(y,0) \psi_{\nu}(y) dy$$

Input signal – example: gaussian pulse

$$\Psi\left(y,0\right) = e^{\left(\frac{y}{\omega_0}\right)^2}$$

```
w_0 = W_m/2
phi_in = np.exp(-(x/w_0)**2)
```

```
plt.figure(figsize=(8,6))
plt.plot(1e6*x, phi_in, linewidth = 2)
plt.grid(True)
plt.xlabel('Thickness of the slab [um]')
plt.ylabel('Amplitude')
plt.xlim([-4,4])
plt.ylim([0,1])
```


Field profile

• The field profile at z can be written as a superposition

$$\Psi(y,z) = \sum_{\nu=0}^{m-1} c_{\nu} \psi_{\nu}(y) \exp \left[j \left(\omega t - \beta_{\nu} z \right) \right]$$

$$= \sum_{\nu=0}^{m-1} c_{\nu} \psi_{\nu}(y) \exp \left[j \left(\beta_{0} - \beta_{\nu} \right) z \right]$$

$$\Psi(y,L) = \sum_{\nu=0}^{m-1} c_{\nu} \psi_{\nu}(y) \exp \left[j \frac{\nu(\nu+2)\pi}{3L_{\pi}} L \right]$$

All depends on the modal excitation c_v and the properties of the mode phase factor.

Taking the phase of the fundamental mode as a common factor out of the sum, dropping it and assuming the time dependence $\exp(jwt)$ implicit hereafter.

$$z = L$$

Field profile

The field profile at z can be written as a superposition

$$\Psi(y,z) = \sum_{\nu=0}^{m-1} c_{\nu} \psi_{\nu}(y) \exp\left[j\left(\omega t - \beta_{\nu} z\right)\right] \qquad \nu(\nu+2) = \begin{cases} \text{even for } \nu \text{ even} \\ \text{odd for } \nu \text{ odd} \end{cases}$$

$$= \sum_{\nu=0}^{m-1} c_{\nu} \psi_{\nu}(y) \exp\left[j\left(\beta_{0} - \beta_{\nu}\right) z\right] \qquad \psi_{\nu}(-y) = \begin{cases} \psi_{\nu}(y) & \text{for } \nu \text{ even} \\ -\psi_{\nu}(y) & \text{for } \nu \text{ odd} \end{cases}$$

$$\Psi(y,L) = \sum_{\nu=0}^{m-1} c_{\nu} \psi_{\nu}(y) \exp\left[j\frac{\nu(\nu+2)\pi}{3L_{\pi}}L\right] \qquad \text{properties}$$

- General interference: independent of the modal excitation (all modes):
 - Single images;
 - Multiples images;
- Restricted interference: obtained by exciting certain modes alone:
 - Paired interference;
 - Symmetric interference;

General interference

- General interference: independent of the modal excitation (all modes):
 - Single images;
 - Multiples images;
- Restricted interference: obtained by exciting certain modes alone:
 - Paired interference;
 - Symmetric interference;

Fig. 3. Multimode waveguide showing the input field $\Psi(y,0)$, a mirrored single image at $(3L_\pi)$, a direct single image at $2(3L_\pi)$, and two-fold images at $\frac{1}{2}(3L_\pi)$ and $\frac{3}{2}(3L_\pi)$.

General interference

- General interference: independent of the modal excitation (all modes):
 - Single images;

$$\exp\left[j\frac{\nu(\nu+2)\pi}{3L_{\pi}}L\right] = 1 \text{ or } (-1)^{\nu}$$

Phase changes of all modes must differ by integer multiples of 2π Phase changes must be alternatively even and odd multiples of π (mirrored)

Solution:

$$L = p(3L_{\pi})$$
 with $p = 0, 1, 2, ...$

For p even (single image) and p odd (single image mirrored);

Fig. 3. Multimode waveguide showing the input field $\Psi(y,0)$, a mirrored single image at $(3L_{\pi})$, a direct single image at $2(3L_{\pi})$, and two-fold images at $\frac{1}{\pi}(3L_{\pi})$ and $\frac{3}{\pi}(3L_{\pi})$.

General interference

- General interference: independent of the modal excitation (all modes):
 - Multiples images;
- Consider that (why not even p?)

$$L = \frac{p}{2} (3L_{\pi})$$
 with $p = 1, 3, 5, \dots$

The total field at these lengths is

$$\Psi\left(y, \frac{p}{2} 3L_{\pi}\right) = \sum_{\nu=0}^{m-1} c_{\nu} \psi_{\nu}(y) \exp\left[j\nu(\nu+2)p\left(\frac{\pi}{2}\right)L\right]
= \sum_{\nu \text{ even}} c_{\nu} \psi_{\nu}(y) + \sum_{\nu \text{ odd}} (-j)^{p} c_{\nu} \psi_{\nu}(y)
= \frac{1 + (-j)^{p}}{2} \Psi(y, 0) + \frac{1 - (-j)^{p}}{2} \Psi(-y, 0)$$

Fig. 3. Multimode waveguide showing the input field $\Psi(y,0)$, a mirrored single image at $(3L_{\pi})$, a direct single image at $2(3L_{\pi})$, and two-fold images at $\frac{1}{2}(3L_{\pi})$ and $\frac{3}{2}(3L_{\pi})$.

General interference

In general, at

$$L = \frac{p}{N} (3L_{\pi}), p \geq 0 \text{ and } N \geq 0 \text{ (integers with no common divisor)}$$

The field will be

$$\Psi(y,L) = \frac{1}{C} \sum_{q=0}^{N-1} \Psi_{in}(y-y_q) \exp(j\varphi_q) \text{ with } y_q = p(2q-N) \frac{W_e}{N} \text{ and } \varphi_q = p(N-q) q\left(\frac{\pi}{N}\right)$$

- Where C is a complex normalization constant ($|C| = \sqrt{N}$), p indicates the imaging periodicity along z, and q refers to each of the N images along y;
- The above equations show that: at distances z=L, N images are formed of the extended field $\Psi_{\rm in}\left(y\right)$, located at the positions y_q , each wih amplitude $1/\sqrt{N}$ and phase φ_q (p=1 shortest devices).
- For example, N = 2 and p = 1;

General interference

In general, at

$$L = \frac{p}{N} \left(3L_{\pi} \right), \, p \ge$$

The field will be

$$\Psi(y,L) = \frac{1}{C} \sum_{q=0}^{N-1} \Psi_{in}(z)$$

- Where C is a com imaging periodicity
- The above equation the extended field $1/\sqrt{N}$ and phase

Fig. 5. Theoretical light intensity patterns corresponding to general or paired interference mechanisms in two multimode waveguides, leading to a mirrored single image (a), and a 4-fold image (b). Note also the multi-fold images at intermediate distances, non-equally spaced along the lateral axis. Reproduced For example, N = 1 by kind permission of J. M. Heaton, ©British Crown Copyright DRA 1992.

divisor)

$$= p\left(N - q\right) q\left(\frac{\pi}{N}\right)$$

p indicates the nages along *y*;

ges are formed of ı wih amplitude

- General interference: independent of the modal excitation (all modes):
 - Single images;
 - Multiples images;
- Restricted interference: obtained by exciting certain modes alone:
 - Paired interference;
 - Symmetric interference;

Restricted interference - paired

- Only some guided modes in the multimode waveguide are excited by the input fields;
- By lauching an even symmetric input field $\Psi(y,0)$ (e.g. a Gaussian beam) at $y=\pm W_e$, the modes v=2, 5, 8, ... present a zero with odd symmetry and $c_v=0$;
- By the same token, two-fold images are

Fig. 2. Example of amplitude-normalized lateral field profiles $\psi_{\nu}(y)$, corresponding to the first 9 guided modes in a step-index multimode waveguide.

$$L = p(L_{\pi})$$
 with $p = 0, 1, 2, \dots$ (single imagens - direct and inverted)

$$L = \frac{p}{N}(L_{\pi})$$
 with $p = 0, 1, 2, \dots$ (N-fold images where $p \ge 0$ and $N \ge 0$)

- General interference: independent of the modal excitation (all modes):
 - Single images;
 - Multiples images;
- Restricted interference: obtained by exciting certain modes alone:
 - Paired interference;
 - Symmetric interference;

Restricted interference - symmetric

- Exciting only the even symmetric modes;
- For the modes $v = 1, 3, 5, ..., c_v = 0$;
- 1xN beam splitters can be realized with multimode waveguides four times shorter;
- In general, N-fold images are obtained at distances

$$L = \frac{p}{N} \left(\frac{3L_{\pi}}{4} \right)$$

with N images of the input field, symmetrically located along the y-axis with equal spaceings W_e/N .

Fig. 2. Example of amplitude-normalized lateral field profiles $\psi_{\nu}(y)$, corresponding to the first 9 guided modes in a step-index multimode waveguide.

Restricted interference - symmetric

- Exciting only the modes;
- For the modes v = 1, 3
- 1xN beam splitters with multimode waveç shorter;
- In general, N-fold ima at distances

$$L = \frac{p}{N} \left(\frac{3L_{\pi}}{4} \right)$$

with N images of symmetrically located with equal spaceings

1 lateral field profiles $\psi_{\nu}(y)$, correspondex multimode waveguide.

Fig. 7. Theoretical light intensity patterns corresponding to (single-input) symmetric interference mechanisms in a $20-\mu$ m-wide multimode waveguide, showing "1 × 1" imaging (a); and in a $40-\mu$ m-wide multimode waveguide, showing 1-to-4 way splitting (b). Note also the multi-fold images at intermediate distances, equally spaced along the lateral axis. Reproduced by kind permission of J. M. Heaton *et al.* [34]. ©British Crown Copyright DRA 1992.

- General interference: independent of the modal excitation (all modes):
 - Single images;
 - Multiples images;
- Restricted interference: obtained by exciting certain modes alone:
 - Paired interference;
 - Symmetric interference;

TABLE I
SUMMARY OF CHARACTERISTICS OF THE GENERAL,
PAIRED. AND SYMMETRIC INTERFERENCE MECHANSIMS

Interference mechanism	General	Paired	Symmetric
Inputs × Outputs	$N \times N$	$2\times N$	1×N
First single image distance	$(3 L_{\pi})$	(L_{π})	$(3 L_{\pi})/4$
First N-fold image distance	$(3 L_{\pi})/N$	$(L_{\pi})/N$	$(3 L_{\pi})/4 N$
Excitation	none	$c_{\nu}=0$	$c_{\nu}=0$
requirements		for $\nu = 2, 5, 8$	for $\nu = 1, 3, 5 \dots$
Input(s) location(s)	any	$y = \pm W_{\rm e}/6$	y = 0

Example

MMI:

- Si core (3.47@1550 nm)
- SiO2 cladding (1.444@1550 nm)
- $-W_{d} = 5 \text{ um}$

```
n_c = 1.444

n_r = 3.470

lambda_0 = 1550e-9

k_0 = 2*np.pi/lambda_0

W_m = 5e-6

c0 = 299792458

sigma = 0 #TE mode
```

```
sigma = 0 #TE mode
We = W_m + (lambda_0/np.pi)*((n_c/n_r)**(2*sigma))*(n_r**2 - n_c**2)**(-0.5)
print(We)
```

5.156366792922614e-06

Using numerical methods

Example

- MMI:
 - Si core (3.47@1550 nm)
 - SiO2 cladding (1.444@1550 nm)
 - $W_d = 5 \text{ um}$
 - Heigth = 220 nm

```
n_c = 1.444

n_r = 3.470

lambda_0 = 1550e-9

k_0 = 2*np.pi/lambda_0

W_m = 5e-6

c0 = 299792458
```

```
sigma = 0 #TE mode
We = W_m + (lambda_0/np.pi)*((n_c/n_r)**(2*sigma))*(n_r**2 - n_c**2)**(-0.5)
print(We)
```

5.156366792922614e-06

∃ README.md

CAMFR

Forked from Sourceforge project for maintenance.

Originally written by Peter Bienstman at Ghent University, Belgium.

Introduction

CAMFR (CAvity Modelling FRamework) is a Python module providing a fast, flexible, full-vectorial Maxwell solver for electromagnetics simulations. Its main focus is on applications in the field of nanophotonics, like

Using numerical methods

References

JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 13, NO. 4, APRIL 1995

Optical Multi-Mode Interference Devices Based on Self-Imaging: Principles and Applications

Lucas B. Soldano and Erik C. M. Pennings, Member, IEEE

Invited Paper

Overlapping-image multimode interference couplers with a reduced number of self-images for uniform and nonuniform power splitting

M. Bachmann, P. A. Besse, and H. Melchior

Integrated Power Splitters for Mode-Multiplexed Signals

Yuanhang Zhang¹, Mohammed Al-Mumin², Huiyuan Liu¹, Chi Xu¹, Lin Zhang³, Patrick L. LiKawWa¹ and Guifang Li¹

¹College of Optics and Photonics, CREOL, University of Central Florida, USA
²College of Technological Studies, Kuwait
³College of Precision Instrument and Opto-Electronic Engineering, Tianjin University, China
E-mail address: <u>yuanhangzhang@knights.ucf.edu</u>

Abstract: An on-chip non-center-feed MMI power splitter for mode-multiplexed signals is proposed and experimentally demonstrated for the first time.

OCIS codes: (130.3120) Integrated optics devices; (230.1360) Beam splitters