Project 8

JONATHAN FENG

Use the probe word data of Table 3.6. Conduct a confirmatory factor analysis of the covariance matrix forthe five variables. Use maximum likelihood to determine if the five word probes can be adequately modeled using a single latent factor. In formulating the model, identifiability can be ensured by letting y1 = f1 + e1, yi = lif1 + ei(i=2,3,4,5).

(a) Assess goodness of fit with the criteria discussed in Section 14.3.3.

Hide

word <- read.csv("C:\\Users\\Taterthot\\Desktop\\da 410\\a9\\words.csv", fileEncoding = 'UTF-8-B
OM')</pre>

Warning message:

R graphics engine version 14 is not supported by this version of RStudio. The Plots tab will be disabled until a newer version of RStudio is installed.

Hide

word

y1 <int></int>	y2 <int></int>	y3 <int></int>	y4 <int></int>	y5 <int></int>
51	36	50	35	42
27	20	26	17	27
37	22	41	37	30
42	36	32	34	27
27	18	33	14	29
43	32	43	35	40
41	22	36	25	38
38	21	31	20	16
36	23	27	25	28
26	31	31	32	36
1-10 of 11 rows			Pre	vious 1 2 Next

Hide

lavaan 0.6-8 ended normally after 17 itera	ntions
Estimator	ML
Optimization method	NLMINB
Number of model parameters	10
Number of observations	11
Model Test User Model:	
Test statistic	7.239
Degrees of freedom	5
P-value (Chi-square)	0.203
Model Test Baseline Model:	
Test statistic	35.158
Degrees of freedom	10
P-value	0.000
User Model versus Baseline Model:	
Comparative Fit Index (CFI)	0.911
Tucker-Lewis Index (TLI)	0.822
Loglikelihood and Information Criteria:	
Loglikelihood user model (H0)	-173.201
Loglikelihood unrestricted model (H1)	-169.581
Akaike (AIC)	366.401
Bayesian (BIC)	370.380
Sample-size adjusted Bayesian (BIC)	340.270
Root Mean Square Error of Approximation:	
RMSEA	0.202
90 Percent confidence interval - lower	0.000
90 Percent confidence interval - upper	0.498
P-value RMSEA <= 0.05	0.217
Standardized Root Mean Square Residual:	
SRMR	0.071
Parameter Estimates:	
Standard errors	Standard
Information	Expected
Information saturated (h1) model	Structured
Latent Variables:	
Estimate Std.Err z-va	alue P(> z)

				,
f =~				
y1	6.092	2.014	3.024	0.002
y2	4.974	1.717	2.897	0.004
у3	6.320	1.878	3.366	0.001
y4	5.878	1.995	2.947	0.003
у5	5.067	2.004	2.529	0.011
Variances:				
	Estimate	Std.Err	z-value	P(> z)
f	1.000			
.y1	22.065	11.942	1.848	0.065
.y2	17.146	8.928	1.921	0.055
.y3	15.229	9.708	1.569	0.117
.y4	22.556	11.913	1.893	0.058
.y5	27.252	13.159	2.071	0.038

The chi squared statistic being 7.239 with a degrees of freedom of 5, based on 11 unique elements in S in our model. Thus, the p value associated with the hypothesis is 0.203, and we determine that we have insufficient evidence to declare lack of fit. The addition diagnostic metrics yield a mixed verdict about the goodness of fit for the proper model. Bentler's CFI is 0.911 less than the recommended cutoff of 0.95, SRMS value being 0.071 is less than but close to the recommended upper cutoff of 0.080, while the RMSEA is 0.202 being less than the cut off of 0.06. All in all the model still has a good fit.