```
In [1]:
             import numpy as np
           2
              import pandas as pd
              import matplotlib.pyplot as plt
 In [2]:
              array= np.arange(10)
           2 array
 Out[2]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
In [12]:
             #plot 1d array...
             plt.plot(array)
           2
              plt.show()
           8
           6
           4
           2
           0
                             2
                                                       6
                0
                                                                    8
```


1d-array graph


```
In [52]:
              import numpy as np
           2
              import pandas as pd
           3
              import matplotlib.pyplot as plt
           4
           5
              array= np.array([[1,2,3,4,5,6,7],
           6
                               [8,9,10,11,12,13,14]])
           7
           8
              plt.plot(array, label="crazy lines")
              plt.xlabel("x-axis")
           9
              plt.ylabel("y-axis")
          10
              plt.title("2d-array graph")
          11
              plt.legend(['1','2','3','4','5','6','7'])
          12
              plt.show()
          13
          14
          15
          16
```



```
In [51]:
              import numpy as np
           2
              import pandas as pd
           3
              import matplotlib.pyplot as plt
           4
           5
              array= np.array([[10,20,30,40,50,60,70],
           6
                               [56,43,100,10,21,31,41]])
           7
           8
              plt.plot(array)
             plt.xlabel("x-axis")
           9
             plt.ylabel("y-axis")
          10
             plt.title("2d-array graph")
          11
             plt.legend(['10','20','30','40','50','60','70'])
          12
          13
              plt.show()
```



```
x values
    0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1. 1.1 1.2 1.3 1.4 1.5 1.6 1.7
 1.8 1.9 2. 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3. 3.1 3.2 3.3 3.4 3.5
 3.6 3.7 3.8 3.9 4. 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9]
y values
[ 0.
             0.09983342
                         0.19866933 0.29552021 0.38941834
                                                             0.47942554
  0.56464247
             0.64421769
                         0.71735609
                                     0.78332691
                                                 0.84147098
                                                             0.89120736
  0.93203909
             0.96355819
                                     0.99749499
                                                 0.9995736
                                                             0.99166481
                         0.98544973
  0.97384763
             0.94630009
                         0.90929743
                                     0.86320937
                                                             0.74570521
                                                 0.8084964
                                     0.42737988
  0.67546318 0.59847214
                         0.51550137
                                                 0.33498815
                                                            0.23924933
  0.14112001 0.04158066 -0.05837414 -0.15774569 -0.2555411 -0.35078323
 -0.44252044 -0.52983614 -0.61185789 -0.68776616 -0.7568025
                                                           -0.81827711
 -0.87157577 -0.91616594 -0.95160207 -0.97753012 -0.993691
                                                            -0.99992326
 -0.99616461 -0.98245261]
```

In [39]: 1 plt.plot(x,y)

Out[39]: [<matplotlib.lines.Line2D at 0x20fe39a7c50>]


```
In [50]:
              (x1,y1)=([1,2,3,4], [1, 4, 9, 16])
              (x2,y2) = ([0,1,1.5,7], [1,4,12,16])
           2
           3
              (x3,y3)=([0,1,3,5], [3,4.5,7,18])
           4
           5
           6
              # plot the data
           7
              plt.figure(figsize=(10, 5))
           8
              plt.plot(x1,y1)
           9
              plt.plot(x2,y2)
          10
          11
              plt.plot(x3,y3)
          12
              plt.xlabel('x-axis')
          13
              plt.ylabel('y-axis')
          14
              plt.title("multiple values combine graph")
          15
          16
          17
              plt.show()
```



```
In [47]:
              (x1,y1)=([1,2,3,4], [1, 4, 9, 16])
              (x2,y2) = ([0,1,1.5,7], [1,4,12,16])
              (x3,y3)=([0,1,3,5], [3,4.5,7,18])
           3
           4
              # plot the data
           5
             plt.figure(figsize=(10, 5))
           6
              plt.plot(x1,y1,x2,y2,x3,y3)
           8
           9
              plt.xlabel('x-axis')
          10
          11
              plt.ylabel('y-axis')
              plt.title("multiple values combine graph")
          12
          13
          14
              plt.show()
```



```
In [53]:
              import numpy as np
              import pandas as pd
           2
              import matplotlib.pyplot as plt
           3
           4
           5
           6
             x = np.arange(0, 3 * np.pi, 0.1)
           7
              y_sin = np.sin(x)
           8
              y_{cos} = np.cos(x)
           9
             # Plot the points using matplotlib
          10
          11
             plt.plot(x, y_sin)
          12
              plt.plot(x, y_cos)
          13 plt.xlabel('x axis label')
             plt.ylabel('y axis label')
          14
             plt.title('Sine and Cosine')
          15
          16 plt.legend(['Sine', 'Cosine'])
          17
              plt.show()
```



```
In [77]:
              import math
              import numpy as np
           2
              import pandas as pd
           3
           4
              import matplotlib.pyplot as plt
           5
              array= np.arange(0, 5*np.pi, 0.01)
           7
              x_sin= np.sin(array)
           8
              y_cos= np.cos(array)
           9
          10
          11
              plt.plot(array,x_sin)
              plt.plot(array,y_cos)
          12
          13
             plt.xlabel('x-axis')
             plt.ylabel('y-axis')
          14
          15
              plt.title('Sine and Cosine graph')
          16 plt.legend(["sine","cosine"])
          17
              plt.show()
```



```
In [75]:
              (x1_vals, y1_vals) = ([1,2,3,4], [4,5,6,7])
              (x2_{vals}, y2_{vals}) = ([1,2,3,4], [7,6,5,4])
           2
           3
           4
           5
              line1 = plt.plot(x1_vals, y1_vals)
              line2 = plt.plot(x2_vals, y2_vals)
           6
              plt.setp(line1, color='r', linewidth=2.0, marker='D', alpha=0.5)
              plt.setp(line2, color='b', linewidth=2.0, marker='X', alpha=0.5)
           9
          10
          11
              plt.show()
```



```
In [90]: 1   import matplotlib.pyplot as plt
2   import pandas as pd

data=pd.read_csv("nba.csv")
6   data
7
```

Out[90]:

	Name	Team	Number	Position	Age	Height	Weight	College	Salary
0	Avery Brad l ey	Boston Celtics	0.0	PG	25.0	6-2	180.0	Texas	7730337.0
1	Jae Crowder	Boston Celtics	99.0	SF	25.0	6-6	235.0	Marquette	6796117.0
2	John Holland	Boston Celtics	30.0	SG	27.0	6-5	205.0	Boston University	NaN
3	R.J. Hunter	Boston Celtics	28.0	SG	22.0	6-5	185.0	Georgia State	1148640.0
4	Jonas Jerebko	Boston Celtics	8.0	PF	29.0	6-10	231.0	NaN	5000000.0
453	Shelvin Mack	Utah Jazz	8.0	PG	26.0	6-3	203.0	Butler	2433333.0
454	Raul Neto	Utah Jazz	25.0	PG	24.0	6-1	179.0	NaN	900000.0
455	Tibor Pleiss	Utah Jazz	21.0	С	26.0	7 - 3	256.0	NaN	2900000.0
456	Jeff Withey	Utah Jazz	24.0	С	26.0	7 - 0	231.0	Kansas	947276.0
457	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN

458 rows × 9 columns

```
In [92]: 1 plt.plot(data)
2 plt.show()
```

Traceback (most recent call last) Cell In[92], line 1 ----> 1 plt.plot(data, x="Number", y="Weight") 2 plt.show() File ~\anaconda3\Lib\site-packages\matplotlib\pyplot.py:2812, in plot(scale x, scaley, data, *args, **kwargs) 2810 @ copy docstring and deprecators(Axes.plot) 2811 def plot(*args, scalex=True, scaley=True, data=None, **kwargs): **->** 2812 return gca().plot(2813 *args, scalex=scalex, scaley=scaley, 2814 **({"data": data} if data is not None else {}), **kwargs) File ~\anaconda3\Lib\site-packages\matplotlib\axes_axes.py:1688, in Axes.pl ot(self, scalex, scaley, data, *args, **kwargs) 1445 """ 1446 Plot y versus x as lines and/or markers. 1447 *(...)* 1685 (``'green'``) or hex strings (``'#008000'``). 1686 """ 1687 kwargs = cbook.normalize kwargs(kwargs, mlines.Line2D) -> 1688 lines = [*self._get_lines(*args, data=data, **kwargs)] 1689 for line in lines: 1690 self.add line(line) File ~\anaconda3\Lib\site-packages\matplotlib\axes_base.py:246, in _process _plot_var_args.__call__(self, data, *args, **kwargs) 244 for pos_only in "xy": if pos_only in kwargs: 245 --> 246 raise api.kwarg error(self.command, pos only) 248 **if not** args: 249 return

TypeError: plot() got an unexpected keyword argument 'x'

In []: 1