Casey Levy - CS 325 - HW 1

Problem 1

- $\frac{2}{N}$ < 37 < \sqrt{N} < N < N log(log N) < N log N ≤ N log(N²) < N log²N < N^{1.5} < N² < N² log N < N³ < N^{N/2} < 2^N
- N log N and N log(N2) are the only functions that grow at the same rate

$$\circ$$
 N log(N²) = 2N log N = O(N log N)

Problem 2

- claim that N log N < N $^{(1+}\frac{\mathcal{E}}{\sqrt{logN}})$

$$\mathsf{N}^{(1+\frac{\mathcal{E}}{\sqrt{\log N}})} \ = \ \mathsf{N} \ * \ \mathsf{N} \frac{\mathcal{E}}{\sqrt{\log N}}$$

$$N * N \frac{\mathcal{E}}{\sqrt{log N}} < N \log N$$

$$N \frac{\mathcal{E}}{\sqrt{log N}} < \log N$$

$$\frac{\mathcal{E}}{\sqrt{log N}} \log N < \log \log N$$

Simplified gives us $\frac{\mathcal{E}}{\sqrt{logN}}$ which then shows us that $\frac{\mathcal{E}}{\sqrt{logN}}$ < $\log \log N$

Problem 3

a) sum = 0;
$$O(1)$$

$$O(1) + O(n) + O(1)$$

Fragment runs in O(n)

b) sum =
$$0$$
; **O(1)**

for(i = 0; i < n; ++i)
$$O(n)$$

for(j = 0; j < n; ++j)
$$O(n)$$

$$O(1) + O(n * n) + O(1)$$

Fragment runs in O(n2)

c)
$$sum = 0;$$
 $O(1)$
 $for(i = 0; i < n; ++i)$ $O(n)$
 $for(j = 0; j < n*n; ++j)$ $O(n^2)$
 $++sum;$ $O(1)$

$$O(1) + O(n * n^2) + O(1)$$

Fragment runs in $O(n^3)$

d)
$$sum = 0;$$
 O(1)
 $for(i = 0; i < n; ++i)$ O(n)
 $for(j = 0; j < i; ++j)$ O(n)
 $++sum;$ O(1)

$$O(1) + O(n * n) + O(1)$$

Fragment runs in $O(n^2)$

e)
$$sum = 0;$$
 O(1)
 $for(i = 0; i < n; ++i)$ O(n)
 $for(j = 0; j < i * i; ++j)$ O(n²)
 $for(k = 0; k < j; ++k)$ O(n²)
 $++sum;$ O(1)

$$O(1) + O(n * n^2 * n^2) + O(1)$$

Fragment runs in $O(n^5)$

f)
$$sum = 0;$$
 O(1)
 $for(i = 1; i < n; ++i)$ O(n)
 $for(j = 1; j < i*i; ++j)$ O(n²)
 $if(j \% i == 0)$ O(1)
 $for(k = 0; k < j; ++k)$ O(n²)
 $++sum;$ O(1)

$$O(1) + O(n * n^2) + O(1) + O(n^2) + O(1)$$

Fragment runs in $O(n^4)$

Problem 5

b and c)

<u>d)</u>

e)

Based on the theoretical runtime of **Merge Sort**, O (n log(n)), my actual runtimes seem to somewhat follow the trend line of such a function, trending linearly.

Based on the theoretical runtime of **Insert Sort**, $O(n^2)$, my actual runtimes seem to grow a bit faster than the theoretical time. Based on the graph above, my runtimes seem to follow more of a trend line of $O(2^n)$.