

Conditional forecasting of bus travel time and passenger occupancy with Bayesian Markov regime-switching vector autoregression

Xiaoxu Chen 1 Zhanhong Cheng 1 Alexandra Schmidt 2 Lijun Sun 1

¹Department of Civil Engineering, McGill University
²Department of Epidemiology, Biostatistics and Occupational Health, McGill University

September 6, 2024

Motivation

- Bus travel time/passenger occupancy forecasting:
 - Deterministic models vs. Probabilistic models
- Why probabilistic forecasting models? reliability/uncertainty

Research question

 Make probabilistic forecasting of travel time and passenger occupancy of buses on their downstream links at any time.

Empirical data analysis

- Bus time-space trajectories with passenger occupancy.
 - Temporal patterns, e.g., peak hours and off-peak hours.
 - Interactions between adjacent buses, e.g., bus bunching.

Empirical data analysis

Link 24

• Distributions of link travel time and passenger occupancy.

Link 26

(b) Passenger occupancy distributions of some links.

Link 27

Empirical data analysis

• Correlation and cross-correlation matrices of associated variables.

- 1. Most previous studies focus on deterministic forecasting.
- 2. Complex distributions of travel time and passenger occupancy.
- 3. Strong interactions between travel time and passenger occupancy
- 4. Complex link correlations of travel time/passenger occupancy
- 5. Interactions/correlations between adjacent buses along a bus route

- 1. Most previous studies focus on deterministic forecasting.
- 2. Complex distributions of travel time and passenger occupancy.
- 3. Strong interactions between travel time and passenger occupancy.
- 4. Complex link correlations of travel time/passenger occupancy
- Interactions/correlations between adjacent buses along a bus route.

- 1. Most previous studies focus on deterministic forecasting.
- 2. Complex distributions of travel time and passenger occupancy.
- 3. Strong interactions between travel time and passenger occupancy.
- 4. Complex link correlations of travel time/passenger occupancy
- Interactions/correlations between adjacent buses along a bus route.

- 1. Most previous studies focus on deterministic forecasting.
- 2. Complex distributions of travel time and passenger occupancy.
- 3. Strong interactions between travel time and passenger occupancy.
- 4. Complex link correlations of travel time/passenger occupancy.
- 5. Interactions/correlations between adjacent buses along a bus route

- 1. Most previous studies focus on deterministic forecasting.
- 2. Complex distributions of travel time and passenger occupancy.
- 3. Strong interactions between travel time and passenger occupancy.
- 4. Complex link correlations of travel time/passenger occupancy.
- 5. Interactions/correlations between adjacent buses along a bus route.

Methodology

- $\ell_{i,m}^{(d)}$: travel time of the *i*-th bus on the *m*-th link on the *d*-th day.
- $\bullet \ \, \text{Link travel time vector of bus } i : \, \boldsymbol{\ell}_i^{(d)} = \left[\ell_{i,1}^{(d)}, \ell_{i,2}^{(d)}, \cdots, \ell_{i,n}^{(d)}\right]^\top \in \mathbb{R}^n.$
- $f_{i,m}^{(d)}$: occupancy of the *i*-th bus on the *m*-th link on the *d*-th day.
- Link occupancy vector of bus i: $\boldsymbol{f}_i^{(d)} = \left[f_{i,1}^{(d)}, f_{i,2}^{(d)}, \cdots, f_{i,n}^{(d)}\right]^{\top} \in \mathbb{R}^n$.
- $h_i^{(d)}$: headway of *i*-th bus pair at origin stop on *d*-th day.
- Define a random variable, $y_i^{(d)}$ as

$$\boldsymbol{y}_i^{(d)} = \left[\boldsymbol{\ell}_i^{(d)^{\top}}, \boldsymbol{f}_i^{(d)^{\top}}, h_i^{(d)}\right]^{\top} \in \mathbb{R}^{2n+1}.$$

- ullet $\ell_{i,m}^{(d)}$: travel time of the i-th bus on the m-th link on the d-th day.
- $\bullet \ \, \text{Link travel time vector of bus } i : \, \boldsymbol{\ell}_i^{(d)} = \left[\ell_{i,1}^{(d)}, \ell_{i,2}^{(d)}, \cdots, \ell_{i,n}^{(d)}\right]^\top \in \mathbb{R}^n.$
- $f_{i,m}^{(d)}$: occupancy of the i-th bus on the m-th link on the d-th day.
- Link occupancy vector of bus i: $\boldsymbol{f}_i^{(d)} = \left[f_{i,1}^{(d)}, f_{i,2}^{(d)}, \cdots, f_{i,n}^{(d)}\right]^{\top} \in \mathbb{R}^n$.
- $h_i^{(d)}$: headway of *i*-th bus pair at origin stop on *d*-th day.
- ullet Define a random variable, $oldsymbol{y}_i^{(d)}$ as

$$\boldsymbol{y}_i^{(d)} = \left[\boldsymbol{\ell}_i^{(d)^{\top}}, \boldsymbol{f}_i^{(d)^{\top}}, h_i^{(d)}\right]^{\top} \in \mathbb{R}^{2n+1}.$$

- $\ell_{i,m}^{(d)}$: travel time of the *i*-th bus on the *m*-th link on the *d*-th day.
- Link travel time vector of bus i: $\boldsymbol{\ell}_i^{(d)} = \left[\ell_{i,1}^{(d)}, \ell_{i,2}^{(d)}, \cdots, \ell_{i,n}^{(d)}\right]^{\top} \in \mathbb{R}^n$.
- $f_{i,m}^{(d)}$: occupancy of the i-th bus on the m-th link on the d-th day.
- Link occupancy vector of bus i: $\boldsymbol{f}_i^{(d)} = \left[f_{i,1}^{(d)}, f_{i,2}^{(d)}, \cdots, f_{i,n}^{(d)}\right]^{\top} \in \mathbb{R}^n$.
- $h_i^{(d)}$: headway of *i*-th bus pair at origin stop on *d*-th day.
- ullet Define a random variable, $y_i^{(d)}$ as

$$\boldsymbol{y}_i^{(d)} = \left[\boldsymbol{\ell}_i^{(d)^{\top}}, \boldsymbol{f}_i^{(d)^{\top}}, h_i^{(d)}\right]^{\top} \in \mathbb{R}^{2n+1}.$$

- $\ell_{i,m}^{(d)}$: travel time of the *i*-th bus on the *m*-th link on the *d*-th day.
- Link travel time vector of bus i: $\boldsymbol{\ell}_i^{(d)} = \left[\ell_{i,1}^{(d)}, \ell_{i,2}^{(d)}, \cdots, \ell_{i,n}^{(d)}\right]^{\top} \in \mathbb{R}^n$.
- $f_{i,m}^{(d)}$: occupancy of the i-th bus on the m-th link on the d-th day.
- Link occupancy vector of bus i: $\boldsymbol{f}_i^{(d)} = \left[f_{i,1}^{(d)}, f_{i,2}^{(d)}, \cdots, f_{i,n}^{(d)}\right]^{\top} \in \mathbb{R}^n$.
- $h_i^{(d)}$: headway of *i*-th bus pair at origin stop on *d*-th day.
- ullet Define a random variable, $oldsymbol{y}_i^{(d)}$ as

$$oldsymbol{y}_i^{(d)} = \left[oldsymbol{\ell}_i^{(d)}^ op, oldsymbol{f}_i^{(d)}^ op, h_i^{(d)}
ight]^ op \in \mathbb{R}^{2n+1}.$$

Problem analysis

• Gaussian mixture model vs. Hidden Markov model

Markov regime-switching vector autoregressive

• Data generation process:

$$egin{aligned} oldsymbol{\pi}_k \mid oldsymbol{lpha} & \sim \mathsf{Dirichlet}\left(oldsymbol{lpha}
ight) & oldsymbol{lpha}_k & \sim \mathcal{W}^{-1}\left(oldsymbol{\Psi}_0,
u_0,
u_0
ight) & oldsymbol{\mu}_0,
u_0 - oldsymbol{\lambda}_0 & oldsymbol{\Delta}_k & oldsymbol{\omega}_0,
u_0 - oldsymbol{\lambda}_0 & oldsymbol{\Delta}_k & oldsymbol{\omega}_0,
u_0 - oldsymbol{\lambda}_0 & oldsymbol{\omega}_0,
u_0 - oldsymbol{\lambda}_0 & oldsymbol{\omega}_0,
u_0 - oldsymbol{\omega}_0,$$

 $oldsymbol{y}_i^{(d)} \mid oldsymbol{y}_{i-1}^{(d)}, z_i^{(d)} = k \sim \mathcal{N}\left(oldsymbol{A}_k oldsymbol{y}_{i-1}^{(d)} + oldsymbol{\mu}_k, oldsymbol{\Sigma}_k
ight)$

• Sample state transition probability π_k from $p(\pi_k \mid z^k, \alpha)$.

$$p\left(\boldsymbol{\pi}_{k} \mid \boldsymbol{z}^{k}, \boldsymbol{\alpha}\right) = \operatorname{Dirichlet}\left(|M_{k,1}| + \alpha_{1}, \cdots, |M_{k,K}| + \alpha_{K}\right).$$

- $\bullet \text{ Sample state sequence } \boldsymbol{z}_{1:I_d}^{(d)} \text{ from } p\left(\boldsymbol{z}_{1:I_d}^{(d)} \mid \boldsymbol{y}_{1:I_d}^{(d)}, \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{A}\right).$
- Sample mean and covariance (μ_k, Σ_k) from $p(\mu_k, \Sigma_k \mid \mathcal{Y}_k, \Theta, A_k)$.

$$p\left(\boldsymbol{\mu}_{k},\boldsymbol{\Sigma}_{k}\mid\mathcal{Y}_{k},\boldsymbol{\Theta},\boldsymbol{A}_{k}\right)=\mathcal{N}\left(\boldsymbol{\mu}_{k}\mid\boldsymbol{\mu}_{0}^{*},\frac{1}{\lambda_{0}^{*}}\boldsymbol{\Sigma}_{k}\right)\mathcal{W}^{-1}\left(\boldsymbol{\Sigma}_{k}\mid\boldsymbol{\Psi}_{0}^{*},\nu_{0}^{*}\right)$$

• Sample coefficient matrix A_k from $p(A_k | \mathcal{Y}_k, \mu_k, \Sigma_k)$.

$$p(\mathbf{A}_k \mid \mathcal{Y}_k, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) = \mathcal{MN}(\mathbf{A}_k \mid \boldsymbol{M}_0^*, \boldsymbol{\Sigma}_k, \boldsymbol{V}_0^*).$$

4日ト4日ト4里ト 星 か90

• Sample state transition probability π_k from $p(\pi_k \mid z^k, \alpha)$.

$$p\left(\boldsymbol{\pi}_{k} \mid \boldsymbol{z}^{k}, \boldsymbol{\alpha}\right) = \operatorname{Dirichlet}\left(|M_{k,1}| + \alpha_{1}, \cdots, |M_{k,K}| + \alpha_{K}\right).$$

- $\bullet \text{ Sample state sequence } \boldsymbol{z}_{1:I_d}^{(d)} \text{ from } p\left(\boldsymbol{z}_{1:I_d}^{(d)} \mid \boldsymbol{y}_{1:I_d}^{(d)}, \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{A}\right).$
- Sample mean and covariance (μ_k, Σ_k) from $p(\mu_k, \Sigma_k \mid \mathcal{Y}_k, \Theta, A_k)$.

$$p\left(\boldsymbol{\mu}_{k},\boldsymbol{\Sigma}_{k}\mid\mathcal{Y}_{k},\boldsymbol{\Theta},\boldsymbol{A}_{k}\right)=\mathcal{N}\left(\boldsymbol{\mu}_{k}\mid\boldsymbol{\mu}_{0}^{*},\frac{1}{\lambda_{0}^{*}}\boldsymbol{\Sigma}_{k}\right)\mathcal{W}^{-1}\left(\boldsymbol{\Sigma}_{k}\mid\boldsymbol{\Psi}_{0}^{*},\nu_{0}^{*}\right)$$

• Sample coefficient matrix A_k from $p(A_k | \mathcal{Y}_k, \mu_k, \Sigma_k)$.

$$p(\mathbf{A}_k \mid \mathcal{Y}_k, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) = \mathcal{M} \mathcal{N}(\mathbf{A}_k \mid \boldsymbol{M}_0^*, \boldsymbol{\Sigma}_k, \boldsymbol{V}_0^*).$$

• Sample state transition probability π_k from $p(\pi_k \mid z^k, \alpha)$.

$$p\left(\boldsymbol{\pi}_{k} \mid \boldsymbol{z}^{k}, \boldsymbol{\alpha}\right) = \mathsf{Dirichlet}\left(|M_{k,1}| + \alpha_{1}, \cdots, |M_{k,K}| + \alpha_{K}\right).$$

- $\bullet \text{ Sample state sequence } \boldsymbol{z}_{1:I_d}^{(d)} \text{ from } p\left(\boldsymbol{z}_{1:I_d}^{(d)} \mid \boldsymbol{y}_{1:I_d}^{(d)}, \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{A}\right).$
- Sample mean and covariance (μ_k, Σ_k) from $p(\mu_k, \Sigma_k \mid \mathcal{Y}_k, \Theta, A_k)$.

$$p\left(\boldsymbol{\mu}_{k},\boldsymbol{\Sigma}_{k}\mid\mathcal{Y}_{k},\boldsymbol{\Theta},\boldsymbol{A}_{k}\right)=\mathcal{N}\left(\boldsymbol{\mu}_{k}\mid\boldsymbol{\mu}_{0}^{*},\frac{1}{\lambda_{0}^{*}}\boldsymbol{\Sigma}_{k}\right)\mathcal{W}^{-1}\left(\boldsymbol{\Sigma}_{k}\mid\boldsymbol{\Psi}_{0}^{*},\nu_{0}^{*}\right)$$

• Sample coefficient matrix A_k from $p(A_k | \mathcal{Y}_k, \mu_k, \Sigma_k)$.

$$p\left(\boldsymbol{A}_{k}\mid\mathcal{Y}_{k},\boldsymbol{\mu}_{k},\boldsymbol{\Sigma}_{k}\right)=\mathcal{M}\mathcal{N}\left(\boldsymbol{A}_{k}\mid\boldsymbol{M}_{0}^{*},\boldsymbol{\Sigma}_{k},\boldsymbol{V}_{0}^{*}\right).$$

4ロト 4部ト 4 差ト 4 差ト 差 めのの

• Sample state transition probability π_k from $p(\pi_k \mid z^k, \alpha)$.

$$p\left(\boldsymbol{\pi}_{k} \mid \boldsymbol{z}^{k}, \boldsymbol{\alpha}\right) = \operatorname{Dirichlet}\left(|M_{k,1}| + \alpha_{1}, \cdots, |M_{k,K}| + \alpha_{K}\right).$$

- $\bullet \text{ Sample state sequence } \boldsymbol{z}_{1:I_d}^{(d)} \text{ from } p\left(\boldsymbol{z}_{1:I_d}^{(d)} \mid \boldsymbol{y}_{1:I_d}^{(d)}, \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{A}\right).$
- Sample mean and covariance (μ_k, Σ_k) from $p(\mu_k, \Sigma_k \mid \mathcal{Y}_k, \Theta, A_k)$.

$$p\left(\boldsymbol{\mu}_{k},\boldsymbol{\Sigma}_{k}\mid\mathcal{Y}_{k},\boldsymbol{\Theta},\boldsymbol{A}_{k}\right)=\mathcal{N}\left(\boldsymbol{\mu}_{k}\mid\boldsymbol{\mu}_{0}^{*},\frac{1}{\lambda_{0}^{*}}\boldsymbol{\Sigma}_{k}\right)\mathcal{W}^{-1}\left(\boldsymbol{\Sigma}_{k}\mid\boldsymbol{\Psi}_{0}^{*},\nu_{0}^{*}\right)$$

• Sample coefficient matrix A_k from $p(A_k | \mathcal{Y}_k, \mu_k, \Sigma_k)$.

$$p(\mathbf{A}_k \mid \mathcal{Y}_k, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) = \mathcal{MN}(\mathbf{A}_k \mid \mathbf{M}_0^*, \boldsymbol{\Sigma}_k, \boldsymbol{V}_0^*).$$

◆ロト ◆個ト ◆意ト ◆意ト 意 めなの

Probabilistic forecasting

Experiment settings

- Performance metrics: RMSE, MAE, CRPS
- Models in comparison:
 - Bayesian Gaussian mixture model

• BGMM-S, BGMM-J, MSAR-S, MSAR-J

Forecasting performance

Table 1: Performance of probabilistic forecasting of link travel time, passenger occupancy, and trip travel time.

		Link travel time (sec)			Passenger occupancy (pax)			Trip travel time (sec)		
		RMSE	MAE	CRPS	RMSE	MAE	CRPS	RMSE	MAE	CRPS
BGMM-S	K = 1	64.31	51.32	32.44	10.05	8.13	6.20	258.83	215.61	175.18
	K = 5	54.51	42.67	29.60	9.16	7.34	5.87	246.89	201.36	157.85
	K = 10	47.41	36.82	27.44	8.00	6.89	5.21	236.14	189.39	144.83
	K = 20	45.73	35.54	25.91	7.81	6.70	5.43	218.65	176.94	132.44
	K = 30	40.53	31.49	20.59	7.67	6.60	5.37	199.49	161.29	115.78
	K = 40	43.96	33.97	22.28	6.94	5.95	4.95	212.09	172.35	125.93
BGMM-J	K = 1	47.23	35.71	27.25	8.97	7.01	5.45	221.09	184.14	135.29
	K = 5	44.63	34.35	25.69	8.64	6.92	5.28	213.53	174.15	131.21
	K = 10	38.94	30.28	19.96	6.46	5.27	4.26	183.32	149.51	106.41
	K = 20	36.87	28.32	19.65	6.16	5.04	3.96	180.88	143.22	103.60
	K = 30	24.16	17.28	17.63	5.76	4.69	3.84	170.43	112.47	79.89
	K = 40	18.25	13.02	14.35	4.53	3.60	3.57	164.22	102.23	72.36
	K = 50	18.41	13.06	14.64	4.60	3.74	3.75	166.80	105.52	73.99
MSAR-S	K = 1	62.87	49.48	31.15	10.23	8.53	6.32	257.11	214.04	174.87
	K = 5	51.86	40.46	25.32	7.65	6.46	5.25	235.50	194.67	143.99
	K = 10	42.61	32.73	21.74	6.89	5.87	4.73	205.99	169.55	120.36
	K = 20	34.45	25.96	19.59	6.35	5.39	4.27	195.90	156.32	109.32
	K = 30	39.09	30.28	20.01	6.58	5.61	4.53	205.60	157.92	112.60
MSAR-J	K = 1	48.32	35.99	27.45	9.20	7.03	5.48	222.28	184.37	135.60
	K = 5	39.38	30.36	20.39	6.43	5.45	4.82	197.60	157.43	114.00
	K = 10	30.16	22.57	18.25	5.27	4.41	3.90	190.47	141.01	105.90
	K = 20	18.35	13.38	14.36	4.86	4.07	3.79	164.47	103.55	72.60
	K = 30	16.11	11.66	12.14	3.48	2.92	3.07	137.13	83.48	57.98
	K = 40	17.02	12.57	13.37	4.50	3.98	3.71	153.35	95.72	63.06

Best results are highlighted in bold fonts.

Interpreting analysis

• Estimated transition matrix.

Estimated coefficient matrix.

Interpreting analysis

• Estimated **mean vectors** of the random error term.

Estimated covariance matrices of the random error term.

Predicted distribution

17 / 19

Conclusion

- We propose a Bayesian Markov regime-switching vector autoregressive model for probabilistic forecasting of bus travel time and passenger occupancy.
- Our approach can capture/address:
 - correlations between travel time and passenger occupancy
 - relationship between adjacent buses
 - multimodality/skewness of travel time/ occupancy distributions
- The proposed model is evaluated on a real-world dataset and results show it performs well.

Q&A

Thank You!

Contact Email: xiaoxu.chen@mail.mcgill.ca