

28 December 1967

RSIC-740

LUNAR-SOLAR PERTURBATIONS OF A 24-HOUR SATELLITE

by

B. K. Martynenko

Institut Teoreticheskoi Astronomii, Biulleten', 11,
No. 1, 33-47 (1967)

THIS DOCUMENT HAS BEEN APPROVED FOR PUBLIC RELEASE
AND SALE; ITS DISTRIBUTION IS UNLIMITED

Translation Branch
Redstone Scientific Information Center
Research and Development Directorate
U. S. Army Missile Command
Redstone Arsenal, Alabama 35809

LUNAR-SOLAR PERTURBATIONS
OF A 24-HOUR SATELLITE

by

B. K. Martynenko

The lunar-solar gravitational perturbations for two hypothetical artificial Earth satellites with a sidereal period of revolution of $23^{\text{h}}\ 56^{\text{m}}\ 04^{\text{s}}$ are analyzed.

ABSTRACT

Study of the lunar-solar gravitational perturbations of two hypothetical earth satellites having a sidereal period of $23^{\text{h}}\ 56^{\text{m}}\ 04^{\text{s}}$. The orbit of the first satellite lies in the equatorial plane while that of the second is perpendicular to the ecliptic plane. At the initial moment (12^h E.T., January 0, 1950), the nodes of the orbits of the two satellites and the moon coincide. The perigee distance of the first satellite is chosen so as to minimize the secular excitations of the orbital eccentricity at fixed values of all the remaining elements. The orbital parameters of the second satellite are chosen according to the condition of maximum secular perturbations of the orbital eccentricity. The orbital eccentricity of the first satellite is 0.1, while that of the second is 0.6. Results show that the orbit of the first satellite is stable and orbital eccentricity decreases at the rate of 0.00127 per year. Rapid increase in the eccentricity of the second satellite limits its lifetime to 5.5 years. Secular and periodic first order perturbations are calculated.

INTRODUCTION

A study is made of the lunar-solar gravitational perturbations of two hypothetical artificial Earth satellites having a sidereal period of revolution of $23^{\text{h}}\ 56^{\text{m}}\ 04^{\text{s}}$, i.e., one sidereal day.

The orbit of one of these satellites (we will call it for reference AES-1) lies in the equatorial plane while that of the second (AES-2) lies in a plane perpendicular to the ecliptic plane.

The eccentricity of the orbit of the equatorial satellite is equal to 0.1 and that of the orbit of the second satellite is equal to 0.6, i.e., slightly less than Laplace limit.

At the initial instant (12^h E.T., January 0, 1950) the nodes of the orbits of both satellites and of the Moon coincide while the satellites themselves are in the ascending nodes of their orbits. The longitude of the perigee of the AES-1 was chosen so as to minimize the secular perturbations of the eccentricity of its orbit at fixed values of all of the remaining elements.

The orbital parameters of the AES-2 were chosen in accordance with the condition of maximum secular perturbations of the eccentricity of its orbit. Being connected with the perigee distance by the relation

$$p = a(1 - e),$$

this element is the most important one in the evolution of the orbit since the lifetime of the satellite depends on the character of its variation.

As shown by the calculations carried out, the orbit of the equatorial satellite is stable. Because of a decrease in the eccentricity of its orbit by 0.00127 per year attributable to the combined action of the Moon and the Sun, a rise of the perigee altitude takes place at the rate of 53 km per year. In the course of time, as the satellite's orbit approaches a circular orbit, the rate of this rise decreases.

A rapid increase in the eccentricity of the orbit of the AES-2 (by 0.046 per year) leads to the termination of the existence of this satellite in only 5.5 years.

The calculation of the lunar-solar perturbations of the first order relative to the parameter

$$\mu_0 = \frac{m_2}{m_0} \alpha^3$$

(m_0 — the Earth's mass; m_2 — the mass of the perturbing body; α — the ratio of the major half-axes of the orbits of the satellite and the perturbing body) was carried out on the basis of the procedure described in the author's article (Martynenko, 1966) on the assumption that the elements of the Moon's orbit are constant.

The influence of the effects of the noncentrality of the Earth's gravitational field, atmospheric resistance, and solar radiation pressure on the magnitude of the perturbations attributable to the Moon and the Sun was not taken into account. The mutual influence of the lunar and solar perturbations also was not taken into consideration.

The elements of the orbits of the satellites, the Moon, and the Sun are shown in Table 1.

TABLE 1

THE ELEMENTS OF THE ORBITS OF THE
AES-1, AES-2, THE MOON AND THE SUN*

	AES-1	AES-2	The Moon	The Sun
a	6.61066874a _e	6.661066874a _e	60.323a _e	23370.1532a _e
e	0.1	0.6	0.054900489	0.016751
i	23° 445788	90°	5° 14538864	0
Ω	12.139268	12.139268	12.139268	0
π	57.139268	147.139267	208.788281	282.08039
ε	12.139268	12.139268	57.786764	279.588317
n	360.985649	360.985649	13.1760685	0.985647344

* Here a_e is the equatorial radius of the Earth.

1. The First-Order Secular Perturbations

On the basis of the differential equations for the osculating elements of a satellite's orbit (Lyakh, 1960) :

$$\frac{da}{dt} = 2\mu_0 n a \frac{\partial R_1}{\partial L},$$

$$\frac{de}{dt} = -\mu_0 n \left(\cot \varphi \frac{\partial R_1}{\partial II} + \tan \frac{\varphi}{2} \cos \varphi \frac{\partial R_1}{\partial L} \right),$$

$$\frac{di}{dt} = \mu_0 n \sec \varphi \left[\cos(\tau - \Omega) \cot I \left(\frac{\partial R_1}{\partial L} + \frac{\partial R_1}{\partial II} \right) \right.$$

$$\left. + \frac{\cos(\tau - \Omega)}{\sin I} \left(\frac{\partial R_1}{\partial L'} + \frac{\partial R_1}{\partial II'} \right) - \frac{1}{2} \sin I \sin(\tau - \Omega) \left(\frac{\partial R_1}{\partial \nu} - \frac{\partial R_1}{\partial \mu} \right) \right],$$

$$\begin{aligned}\sin i \frac{d\Omega}{dt} = & \mu_0 n \sec \varphi \left[\cot I \sin(\tau - \Omega) \left(\frac{\partial R_1}{\partial L} + \frac{\partial R_1}{\partial II} \right) \right. \\ & + \frac{\sin(\tau - \Omega)}{\sin I} \left(\frac{\partial R_1}{\partial L'} + \frac{\partial R_1}{\partial II'} \right) \\ & \left. + \frac{1}{2} \sin I \cos(\tau - \Omega) \left(\frac{\partial R_1}{\partial \nu} - \frac{\partial R_1}{\partial \mu} \right) \right],\end{aligned}$$

$$\frac{d\pi}{dt} = \tan \frac{i}{2} \sin i \frac{d\Omega}{dt} + \mu_0 n \cot \varphi \frac{\partial R_1}{\partial e},$$

$$\frac{d\epsilon}{dt} = -2\mu_0 n \frac{1}{\alpha} \frac{\partial(\alpha^2 R_1)}{\partial \alpha} + \tan \frac{i}{2} \sin i \frac{d\Omega}{dt}$$

$$+ \mu_0 n \tan \frac{\varphi}{2} \cos \varphi \frac{\partial R_1}{\partial e},$$

$$\frac{dn}{dt} = -3\mu_0 n^2 \frac{\partial R_1}{\partial L},$$

where

$$R_1 = \sum_{m=2}^{\infty} \alpha^{m-2} \sum_{s=0}^{\infty} e^s \sum_{s'=0}^{\infty} e^{s'} \sum_{q=0(1)}^m \sum_{j=-m}^{+m} \sum_{k=-s'}^{+s'} \sum_{l=-s}^{+s}$$

$$A_{q,j,k,l}^{m,s,s'}(\nu,\mu) \cos [(q+k)L' + (j+l)L - kII' - lIII],$$

$$q \equiv |j| \equiv m \pmod{2}, \quad |k| \equiv s' \pmod{2}, \quad |l| \equiv s \pmod{2},$$

$$L = nt + s - \tau, \quad L' = n't + \epsilon' - \tau',$$

$$\tau = \Omega + N, \quad \tau' = \Omega' + N',$$

$$II = \pi - \tau, \quad II' = \pi' - \tau',$$

$$\sin N = \frac{\sin i' \sin(\Omega - \Omega')}{2\sqrt{\nu\mu}},$$

$$\sin N' = \frac{\sin i \sin (\Omega - \Omega')}{2\sqrt{\nu\mu}},$$

$$\cos N = \frac{\sin i \cos i' - \cos i \sin i' \cos (\Omega - \Omega')}{2\sqrt{\nu\mu}},$$

$$\cos N' = \frac{-\sin i' \cos i + \cos i' \sin i \cos (\Omega - \Omega')}{2\sqrt{\nu\mu}},$$

$$\nu = \sin^2 \frac{I}{2} = \sin^2 \frac{\Omega - \Omega'}{2} \sin^2 \frac{i + i'}{2} + \cos^2 \frac{\Omega - \Omega'}{2} \sin^2 \frac{i - i'}{2},$$

$$\mu = \cos^2 \frac{I}{2} = \sin^2 \frac{\Omega - \Omega'}{2} \cos^2 \frac{i + i'}{2} + \cos^2 \frac{\Omega - \Omega'}{2} \cos^2 \frac{i - i'}{2},$$

$$\alpha = \frac{a}{a'}, \quad \varphi = \arcsin e,$$

a, e, i, Ω, π , and ϵ are the elements of the satellite's orbit,

a, e', Ω', π' , and ϵ' are elements of the orbit of the perturbing body,

n and n' are the mean motions of the satellite and the perturbing body

and also on the basis of the tables of the coefficients $A_{q,j,k,l}^{m,s,s'}(\nu, \mu)$ and $a_{k',k}^{(m)}(\nu, \mu)$ (Martynenko, 1965) it is easy to obtain expressions for the first-order secular perturbations of the elements of the satellite's orbit relative to the parameter μ_0 . Indeed, taking into account that the secular terms in the perturbations of the elements are generated only by those terms of the expansion of the function of R_i which explicitly do not contain the time, we obtain the following with accuracy to the sixth-order terms relative to the parameters α, e, e'

$$[\delta a] = 0;$$

$$[\delta e] = t \times q_2 \sum_{\substack{q+k=0 \\ j+l=0}} \alpha^{m-2} e^s e'^{s'} l A_{q,j,k,l}^{m,s,s'}(\nu, \mu) \times \sin(-kII' - lIII)$$

$$= t \times q_2 \{-7.5e^2(1 + 1.5e'^2 + 1.875e'^4)\nu\mu \sin 2II$$

$$\begin{aligned}
& - 3.75 \alpha e e' (1 + 2.5e'^2) [(1.25\mu^2 + 2.5\nu^2 - 1)\mu \sin(\text{II}' - \text{II}) \\
& \quad - (1.25\nu^2 + 2.5\mu^2 - 1)\nu \sin(\text{II}' + \text{II})] \\
& - 2.8125 \alpha e^3 e' [8.75\nu\mu^2 \sin(\text{II}' - 3\text{II}) \\
& \quad + (1.25\mu^2 + 2.5\nu^2 - 1)\mu \sin(\text{II}' - \text{II}) \\
& \quad - 8.75\nu^2\mu \sin(\text{II}' + 3\text{II}) \\
& \quad - (1.25\nu^2 + 2.5\mu^2 - 1)\nu \sin(\text{II}' + \text{II})] \\
& - 19.6875 \alpha^2 e^2 [1.75(\nu^2 + \mu^2) - 1] \nu\mu \sin 2\text{II} \\
& - 14.765625 \alpha^2 e^2 e'^2 \left[\frac{40}{3} (1.75(\mu^2 + \nu^2) - 1) \nu\mu \sin 2\text{II} \right. \\
& \quad - \left(\frac{105}{90} \mu^2 + 3.5\nu^2 - 1 \right) \mu^2 \sin(2\text{II}' - 2\text{II}) \\
& \quad + \left. \left(\frac{105}{90} \nu^2 + 3.5\mu^2 - 1 \right) \nu^2 \sin(2\text{II}' + 2\text{II}) \right] \\
& - 57.6796875 \alpha^2 e^4 \nu^2 \mu^2 \sin 4\text{II} \\
& - 13.125 \alpha^3 e e' [(2.625\mu^4 + 15.75\nu^2\mu^2 \\
& \quad + 7.875\nu^4 - 3.5\mu^2 - 7\nu^2 + 1) \mu \sin(\text{II}' - \text{II}) \\
& \quad - (2.625\nu^4 + 15.75\nu^2\mu^2 + 7.875\mu^4 - 3.5\nu^2 \\
& \quad - 7\mu^2 + 1)\nu \sin(\text{II}' + \text{II})] \\
& - 118.125 \alpha^4 e^2 [4.125(\nu^4 + \mu^4) + 12.375\nu^2\mu^2 \\
& \quad - 4.5(\nu^2 + \mu^2) + 1] \nu\mu \sin 2\text{II} \}; \\
[\delta i] & = t \times q_3 \sum_{\substack{q+k=0 \\ j+l=0}} \alpha^{m-2} e^s e'^{s'} [A_{q,j,k,l}^{m,s,s'} (\nu, \mu) (lp_2 + kp_3) \sin(-k\text{II}' - l\text{III}) \\
& \quad - p_4 (A\nu - A\mu) \cos(-k\text{II}' - l\text{III})]
\end{aligned}$$

$$\begin{aligned}
&= t \times q_3 \left\{ -1.5p_4(1 + 1.5e^{12} + 1.875e^{14} - 2.1875e^{16} + 1.5e^2 + 2.25e^2e^{12} \right. \\
&\quad \left. + 2.8125e^2e^{14}) (\nu - \mu) \right. \\
&\quad \left. - 3.75e^2(1 + 1.5e^{12} + 1.875e^{14}) [2p_2\nu\mu \sin 2II + p_4(\mu - \nu) \cos 2II] \right. \\
&\quad \left. - 3.75\alpha ee'(1 + 2.5e^{12} + 0.75e^2) [(p_2 - p_3)\mu(1.25\mu^2 \right. \\
&\quad \left. + 2.5\nu^2 - 1) \sin(II' - II) \right. \\
&\quad \left. - p_4(5\nu\mu - 3.75\mu^2 - 2.5\nu^2 + 1) \cos(II' - II) \right. \\
&\quad \left. - (p_2 + p_3)\nu(1.25\nu^2 + 2.5\mu^2 - 1) \sin(II' + II) \right. \\
&\quad \left. - p_4(3.75\nu^2 + 2.5\mu^2 - 5\nu\mu - 1) \cos(II' + II)] \right. \\
&\quad \left. - 8.203125\alpha e^3 e' [(3p_2 - p_3)\nu\mu^2 \sin(II' - 3II) - p_4\mu(\mu - 2\nu) \cos(II' - 3II) \right. \\
&\quad \left. - (3p_2 + p_3)\nu^2\mu \sin(3II' + II) + p_4\nu(\nu - 2\mu) \cos(3II' + II)] \right. \\
&\quad \left. - 3.75\alpha^2(1 + 5e^{12} + 13.125e^{14} + 5e^2 + 25e^2e^{12} + 1.875e^{14}) p_4 \right. \\
&\quad \left. \times (1.75\nu^3 + 3.5\nu\mu^2 - 3.5\nu^2\mu - 1.75\mu^3 + \mu - \nu) \right. \\
&\quad \left. - 2.8125\alpha^2 e^{12}(1 + 3.5e^{12} + 5e^2) [2p_3\nu\mu(1.75\nu^2 + 1.75\mu^2 - 1) \sin 2II' \right. \\
&\quad \left. + p_4(5.25\nu^2\mu + 1.75\mu^3 - \mu - 1.75\nu^3 - 5.25\nu\mu^2 + \nu) \cos 2II'] \right. \\
&\quad \left. - 19.6875\alpha^2 e^2(1 + 5e^{12} + 0.5e^2) [2p_2\nu\mu(1.75\nu^2 + 1.75\mu^2 - 1) \sin 2II \right. \\
&\quad \left. + p_4(1.75\mu^3 - 5.25\nu\mu^2 + 5.25\nu^2\mu - \mu - 1.75\nu^3 + \nu) \cos 2II] \right. \\
&\quad \left. + 3.9375\alpha^2 e^2 e'^2 [2(p_2 - p_3)\mu^2 (2.1875\mu^2 + 6.5625\nu^2 - 1.875) \sin(2II' - 2II) \right. \\
&\quad \left. - p_4\mu(13.125\nu\mu - 8.75\mu^2 - 13.125\nu^2 + 3.75) \cos(2II' - 2II) \right. \\
&\quad \left. - 2(p_2 + p_3)\nu^2 (2.1875\nu^2 + 6.5625\mu^2 - 1.875) \sin(2II' + 2II) \right. \\
&\quad \left. - p_4\nu(8.75\nu^2 + 13.125\mu^2 - 13.125\nu\mu - 3.75) \cos(2II' + 2II)] \right. \\
&\quad \left. - 51.6796875\alpha^2 e^4 \nu\mu [2p_2\nu\mu \sin 4II + p_4(\mu - \nu) \cos 4II] \right\}
\end{aligned}$$

$$\begin{aligned}
& - 13.125 \alpha^3 e e' [(p_2 - p_3) \mu (2.625 \mu^4 + 15.75 \nu^2 \mu^2 + 7.875 \nu^4 \\
& \quad - 3.5 \mu^2 - 7 \nu^2 + 1) \sin(\Pi' - \Pi) \\
& \quad - p_4 (31.5 \nu \mu^3 + 31.5 \nu^3 \mu - 13.125 \mu^4 - 47.25 \nu^2 \mu^2 \\
& \quad - 7.875 \nu^4 - 14 \nu \mu \\
& \quad + 10.5 \mu^2 + 7 \nu^2 - 1) \cos(\Pi' - \Pi) \\
& \quad - (p_2 + p_3) \nu (2.625 \nu^4 + 15.75 \nu^2 \mu^2 + 7.875 \mu^4 \\
& \quad - 3.5 \nu^2 - 7 \mu^2 + 1) \sin(\Pi' + \Pi) \\
& \quad - p_4 (13.125 \nu^4 + 47.25 \nu^2 \mu^2 + 7.875 \mu^4 - 10.5 \nu^2 - 7 \mu^2 - 31.5 \nu^3 \mu \\
& \quad - 31.5 \nu \mu^3 + 14 \nu \mu + 1) \cos(\Pi' + \Pi)] \\
& - 6.5625 \alpha^4 (1 + 10.5 e'^2 + 10.5 e^2) p_4 (4.125 \nu^5 + 24.75 \nu^3 \mu^2 \\
& \quad + 12.375 \nu \mu^4 - 4.5 \nu^3 \\
& \quad - 9 \nu \mu^2 + \nu - 12.375 \nu^4 \mu - 24.75 \nu^2 \mu^3 - 4.125 \mu^5 \\
& \quad + 9 \nu^2 \mu + 4.5 \mu^3 - \mu) \\
& - 16.40625 \alpha^4 e'^2 [2 p_3 \nu \mu (4.125 \nu^4 + 12.375 \nu^2 \mu^2 + 4.125 \mu^4 - 4.5 \nu^2 \\
& \quad - 4.5 \mu^2 + 1) \sin 2\Pi' \\
& \quad + p_4 (20.625 \nu^4 \mu + 37.125 \nu^2 \mu^3 + 4.125 \mu^5 - 13.5 \nu^2 \mu - 4.5 \mu^3 + \mu \\
& \quad - 4.125 \nu^5 - 37.125 \nu^3 \mu^2 - 20.625 \nu \mu^4 + 4.5 \nu^3 \\
& \quad + 13.5 \nu \mu^2 - \nu) \cos 2\Pi'] \\
& - 59.0625 \alpha^4 e^2 [2 p_2 \mu \nu (4.125 \nu^4 + 12.375 \nu^2 \mu^2 + 4.125 \mu^4 - 4.5 \nu^2 \\
& \quad - 4.5 \mu^2 + 1) \sin 2\Pi \\
& \quad + p_4 (20.625 \nu^4 \mu + 37.125 \nu^2 \mu^3 + 4.125 \mu^5 - 13.5 \nu^2 \mu \\
& \quad - 4.5 \mu^3 + \mu - 4.125 \nu^5
\end{aligned}$$

$$\begin{aligned}
& - 37.125\nu^3\mu^2 - 20.625\nu\mu^4 + 4.5\nu^3 + 13.5\nu\mu^2 - \nu) \cos 2\text{II}] \\
& - 9.84375\alpha^6 p_4(11.171875\nu^7 + 134.0625\nu^5\mu^2 + 201.09375\nu^3\mu^4 \\
& + 44.6875\nu\mu^6 \\
& - 17.875\nu^5 - 107.25\nu^3\mu^2 - 53.625\nu\mu^4 + 8.25\nu^3 + 16.5\nu\mu^2 - \nu \\
& - 44.6875\nu^6\mu - 201.09375\nu^4\mu^3 - 134.0625\nu^2\mu^5 - 11.171875\mu^7 \\
& + 53.625\nu^4\mu + 107.25\nu^2\mu^3 + 17.875\mu^5 - 16.5\nu^2\mu \\
& - 8.25\mu^3 + \mu) \};
\end{aligned}$$

$$\begin{aligned}
[\delta\Omega] &= t \times q_4 \sum_{\substack{q+k=0 \\ j+1=0}} \alpha^{m-2} e^s e^{s'} [A_{q,j,k,1}^{m,s,s'}(\nu, \mu) (l p_5 + k p_6) \sin(-k\text{II}' - l\text{III}) \\
&\quad + p_7(A\nu - A\mu) \cos(-k\text{II}' - l\text{III})] \\
&= t \times q_4 \{ 1.5(1 + 1.5e'^2 + 1.875e'^4 - 2.1875e'^6 + 1.5e^2 + 2.25e^2e'^2 \\
&\quad + 2.8125e^2e'^4) \times p_7(\nu - \mu) \\
&\quad - 3.75e^2(1 + 1.5e'^2 + 1.875e'^4) [2p_5\nu\mu \sin 2\text{II} - p_7(\mu - \nu) \cos 2\text{II}] \\
&\quad - 3.75\alpha ee'(1 + 2.5e'^2 + 0.75e^2) [(p_5 - p_6)\mu(1.25\mu^2 + 2.5\nu^2 - 1) \sin(\text{II}' - \text{II}) \\
&\quad + p_7(5\nu\mu - 3.75\mu^2 - 2.5\nu^2 + 1) \cos(\text{II}' - \text{II}) \\
&\quad - (p_5 + p_6)\nu(1.25\nu^2 + 2.5\mu^2 - 1) \sin(\text{II}' + \text{II}) \\
&\quad + p_7(3.75\nu^2 + 2.5\mu^2 - 5\nu\mu - 1) \cos(\text{II}' + \text{II})] \\
&\quad - 8.203125\alpha e^3 e' [(3p_5 - p_6)\nu\mu^2 \sin(\text{II}' - 3\text{II}) + p_7\mu(\mu - 2\nu) \cos(\text{II}' - 3\text{II}) \\
&\quad - (3p_5 + p_6)\nu^2\mu \sin(3\text{II}' + \text{II}) - p_7\nu(\nu - 2\mu) \cos(3\text{II}' + \text{II})] \\
&\quad + 3.75\alpha^2(1 + 5e'^2 + 13.125e'^4 + 5e^2 + 25e^2e'^2 + 1.875e^4)p_7 \\
&\quad \times (1.75\nu^3 + 3.5\nu\mu^2 - 3.5\nu^2\mu - 1.75\mu^3 + \mu - \nu)
\end{aligned}$$

$$\begin{aligned}
& - 2.8125 \alpha^2 e'^2 (1 + 3.5e'^2 + 5e^2) [2p_6\nu\mu(1.75\nu^2 + 1.75\mu^2 - 1) \sin 2II' \\
& \quad - p_7(5.25\nu^2\mu + 1.75\mu^3 - \mu - 1.75\nu^3 - 5.25\nu\mu^2 + \nu) \cos 2II'] \\
& - 19.6875 \alpha^2 e^2 (1 + 5e'^2 + 0.5e^2) [2p_5\nu\mu(1.75\nu^2 + 1.75\mu^2 - 1) \sin 2II \\
& \quad - p_7(1.75\mu^3 - 5.25\nu\mu^2 + 5.25\nu^2\mu - \mu - 1.75\nu^3 + \nu) \cos 2II] \\
& + 3.9375 \alpha^2 e^2 e'^2 [2(p_5 - p_6)\mu^2(2.1875\mu^2 + 6.5625\nu^2 - 1.875) \sin(2II' - 2II) \\
& \quad + p_7\mu(13.125\nu\mu - 8.75\mu^2 - 13.125\nu^2 + 3.75) \cos(2II' - 2II) \\
& \quad - 2(p_5 + p_6)\nu^2(2.1875\nu^2 + 6.5625\mu^2 - 1.875) \sin(2II' + 2II)] \\
& \quad + p_7\nu(8.75\nu^2 + 13.125\mu^2 - 13.125\nu\mu - 3.75) \cos(2II' + 2II) \\
& - 51.6796875 \alpha^2 e^4 \nu\mu [2p_5\nu\mu \sin 4II - p_7(\mu - \nu) \cos 4II] \\
& \quad - 13.125 \alpha^3 ee' [(p_5 - p_6)\mu(2.625\mu^4 + 15.75\nu^2\mu^2 + 7.875\nu^4 - 3.5\mu^2 \\
& \quad - 7\nu^2 + 1) \sin(II' - II) \\
& \quad + p_7(31.5\nu\mu^3 + 31.5\nu^3\mu - 13.125\mu^4 - 47.25\nu^2\mu^2 \\
& \quad - 7.875\nu^4 - 14\nu\mu \\
& \quad + 10.5\mu^2 + 7\nu^2 - 1) \cos(II' - II) \\
& \quad - (p_5 + p_6)\nu(2.625\nu^4 + 15.75\nu^2\mu^2 + 7.875\mu^4 - 3.5\nu^2 \\
& \quad - 7\mu^2 + 1) \sin(II' + II) \\
& \quad + p_7(13.125\nu^4 + 47.25\nu^2\mu^2 + 7.875\mu^4 - 10.5\nu^2 \\
& \quad - 7\mu^2 - 31.5\nu^3\mu - 31.5\nu\mu^3 \\
& \quad + 14\nu\mu + 1) \cos(II' + II)] \\
& + 6.5625 \alpha^4 (1 + 10.5e'^2 + 10.5e^2) p_7(4.125\nu^5 + 24.75\nu^3\mu^2 \\
& \quad + 12.375\nu\mu^4 - 4.5\nu^3 \\
& \quad - 9\nu\mu^2 + \nu - 12.375\nu^4\mu - 24.75\nu^2\mu^3 - 4.125\mu^5 \\
& \quad + 9\nu^2\mu + 4.5\mu^3 - \mu)
\end{aligned}$$

$$\begin{aligned}
& - 16.40625 \alpha^4 e'^2 [2p_6 \nu \mu (4.125 \nu^4 + 12.375 \nu^2 \mu^2 + 4.125 \mu^4 - 4.5 \nu^2 \\
& - 4.5 \mu^2 + 1) \sin 2II' \\
& - p_7 (20.625 \nu^4 \mu + 37.125 \nu^2 \mu^3 + 4.125 \mu^5 - 13.5 \nu^2 \mu - 4.5 \mu^3 + \mu \\
& - 4.125 \nu^5 - 37.125 \nu^3 \mu^2 - 20.625 \nu \mu^4 + 4.5 \nu^3 \\
& + 13.5 \nu \mu^2 - \nu) \cos 2II'] \\
& - 59.0625 \alpha^4 e^2 [2p_5 \mu \nu (4.125 \nu^4 + 12.375 \nu^2 \mu^2 + 4.125 \mu^4 - 4.5 \nu^2 \\
& - 4.5 \mu^2 + 1) \sin 2II \\
& - p_7 (20.625 \nu^4 \mu + 37.125 \nu^2 \mu^3 + 4.125 \mu^5 - 13.5 \nu^2 \mu \\
& - 4.5 \mu^3 + \mu \\
& - 4.125 \nu^5 - 37.125 \nu^3 \mu^2 - 20.625 \nu \mu^4 + 4.5 \nu^3 \\
& + 13.5 \nu \mu^2 - \nu) \cos 2II] \\
& + 9.84375 \alpha^6 p_7 (11.171875 \nu^7 + 134.0625 \nu^5 \mu^2 + 201.09375 \nu^3 \mu^4 \\
& + 44.6875 \nu \mu^6 \\
& - 17.875 \nu^5 - 107.25 \nu^3 \mu^2 - 53.625 \nu \mu^4 + 8.25 \nu^3 + 16.5 \nu \mu^2 - \nu \\
& - 44.6875 \nu^6 \mu - 201.09375 \nu^4 \mu^3 - 134.0625 \nu^2 \mu^5 - 11.171875 \mu^7 \\
& + 53.625 \nu^4 \mu + 107.25 \nu^2 \mu^3 + 17.875 \mu^5 - 16.5 \nu^2 \mu \\
& - 8.25 \mu^3 + \mu) ;
\end{aligned}$$

$$\begin{aligned}
[\delta \pi] &= q_5 [\delta \Omega] + t + q_2 \sum_{\substack{q: k=0 \\ j: l=0}} s \alpha^{m-2} e^{s-1} e'^{s'} \\
A_{q,j,k,l}^{m,s,s'}(\nu, \mu) &\cos(-kII' - lIII)
\end{aligned}$$

$$\begin{aligned}
&= q_5[\delta\Omega] + t \times q_2\{1.5e[5(1 + 1.5e^2 + 1.875e^4)\nu\mu \cos 2II \\
&\quad + (1 + 1.5e^2 + 1.875e^4)(1.5\nu^2 + 1.5\mu^2 - 1)] \\
&\quad - 3.75\alpha e[(1 + 2.5e^2 + 2.25e^2)(1.25\mu^2 + 2.5\nu^2 \\
&\quad - 1)\mu \cos (II' - II) \\
&\quad + (1 + 2.5e^2 + 2.25e^2)(1.25\nu^2 + 2.5\mu^2 - 1)\nu \cos (II' + II)] \\
&\quad - 24.609375\alpha e^2e'[\mu \cos (II' - 3II) + \nu \cos (II' + 3II)]\nu\mu \\
&\quad + 3.75\alpha^2e[(1 + 5e^2 + 0.75e^2)(4.375\nu^4 + 17.5\nu^2\mu^2 \\
&\quad + 4.375\mu^4 - 5\nu^2 - 5\mu^2 + 1) \\
&\quad + 10.5(1 + 5e^2 + e^2)(1.75\nu^2 + 1.75\mu^2 - 1)\nu\mu \cos 2II] \\
&\quad + \alpha^2ee'^2\left[14.765625\left(\frac{105}{90}\mu^2 + 3.5\nu^2 - 1\right)\mu^2 \cos (2II' - 2II) \right. \\
&\quad \left.+ 28.125(1.75\nu^2 + 1.75\mu^2 - 1)\nu\mu \cos 2II'\right. \\
&\quad \left.+ 14.765625\left(\frac{105}{90}\nu^2 + 3.5\mu^2 - 1\right)\nu^2 \cos (2II' + 2II)\right] \\
&\quad + 103.359375\alpha^2e^3\nu^2\mu^2 \cos 4II \\
&\quad - 13.125\alpha^3e'[(2.625\mu^4 + 15.75\nu^2\mu^2 + 7.875\nu^4 - 3.5\mu^2 \\
&\quad - 7\nu^2 + 1)\mu \cos (II' - II) \\
&\quad + (2.625\nu^4 + 15.75\nu^2\mu^2 + 7.875\mu^4 - 3.5\nu^2 \\
&\quad - 7\mu^2 + 1)\nu \cos (II' + II)] \\
&\quad + 6.5625\alpha^4e[18(4.125\mu^4 + 12.375\nu^2\mu^2 + 4.125\nu^4 - 4.5\mu^2 \\
&\quad - 4.5\nu^2 + 1)\nu\mu \cos 2II \\
&\quad + 14.4375\nu^6 + 129.9375\nu^4\mu^2 + 129.9375\nu^2\mu^4 + 14.4375\mu^6 \\
&\quad - 23.625\nu^4 - 94.5\nu^2\mu^2 - 23.625\mu^4 + 10.5\nu^2 + 10.5\mu^2 - 1]\};
\end{aligned}$$

$$\begin{aligned}
[\delta \epsilon] &= q_5 [\delta \Omega] + t \times q_6 \sum_{\substack{\mathbf{q} + \mathbf{k} = 0 \\ j + l = 0}} \alpha^{m-2} (sp_0 - 2me) e^{s-1} e^s \\
&\quad A_{q, j, k, l}^{m, s, s'} (\nu, \mu) \cos (-kII' - lIII) \\
&= q_5 [\delta \Omega] + t \times q_6 \{ [1.5e(p_0 - 2e)(1 + 1.5e'^2 + 1.875e'^4) - 2 - 3e'^2 \\
&\quad - 3.75e'^4 - 4.375e'^6] \\
&\quad \times (1.5\nu^2 + 1.5\mu^2 - 1) + 7.5e(p_0 - 2e)(1 + 1.5e'^2 \\
&\quad + 1.875e'^4) \nu \mu \cos 2II \\
&\quad - 3.75\alpha e'^l \{ (p_0 - 6e)(1 + 2.5e'^2) + 2.25(p_0 - 2e)e^2 \} ((1.25\mu^2 + 2.5\nu^2 \\
&\quad - 1)\mu \cos (II' - II) \\
&\quad + (1.25\nu^2 + 2.5\mu^2 - 1)\nu \cos (II' + II) \} \\
&\quad + 6.5625(p_0 - 2e)e^2 \nu \mu (\mu \cos (II' - 3II) + \nu \cos (II' + 3II)) \} \\
&+ 3.75\alpha^2 \{ (-0.8 - 4e'^2 - 10.5e'^4 + e(p_0 - 4e)(1 + 5e'^2) \\
&\quad + 0.75e^3(p_0 - 2e)) \\
&\quad \times (4.375\nu^4 + 17.5\nu^2\mu^2 + 4.375\mu^4 - 5\nu^2 - 5\mu^2 + 1) \\
&\quad + 10.5e((p_0 - 4e)(1 + 5e'^2) + (p_0 - 2e)e^2)(1.75\mu^2 \\
&\quad + 1.75\nu^2 - 1)\nu \mu \cos 2II \\
&\quad + e'^2 (-4.5 - 21e'^2 + 7.5e(p_0 - 4e)) (1.75\nu^2 + 1.75\mu^2 \\
&\quad - 1)\nu \mu \cos 2II' \} \\
&+ 2.1ee'^2(p_0 - 4e) [(2.1875\mu^2 + 6.5625\nu^2 - 1.875)\mu^2 \cos (2II' - 2II) \\
&\quad + (2.1875\nu^2 + 6.5625\mu^2 - 1.875)\nu^2 \cos (2II' + 2II)] \\
&+ 27.5625e^3(p_0 - 2e)\nu^2\mu^3 \cos 4II \}
\end{aligned}$$

$$\begin{aligned}
& - 13.125 \alpha^3 e^i (p_0 - 10e) [(2.625\mu^4 + 15.75\nu^2\mu^2 + 7.875\nu^4 - 3.5\mu^2 \\
& \quad - 7\nu^2 + 1) \mu \cos (\text{II}' - \text{II}) \\
& \quad + (2.625\nu^4 + 15.75\nu^2\mu^2 + 7.875\mu^4 - 3.5\nu^2 \\
& \quad - 7\mu^2 + 1) \nu \cos (\text{II}' + \text{II})] \\
& - 3.75\alpha^4 [(1 + 10.5e^i{}^2 - 1.75e(p_0 - 6e)) (14.4375\nu^6 + 129.9375\nu^4\mu^2 \\
& \quad + 129.9375\nu^2\mu^4 \\
& \quad + 14.4375\mu^6 - 23.625\nu^4 - 94.5\nu^2\mu^2 - 23.625\mu^4 \\
& \quad + 10.5\nu^2 + 10.5\mu^2 - 1) \\
& \quad + (52.5e^i{}^2 \cos 2\text{II}' - 31.5e(p_0 - 6e) \cos 2\text{II}) (4.125\nu^4 \\
& \quad + 12.375\nu^2\mu^2 \\
& \quad + 4.125\mu^4 - 4.5\nu^2 - 4.5\mu^2 + 1) \nu\mu] \\
& - 16\alpha^6 (13.746643\nu^8 + 219.946289\nu^6\mu^2 + 494.87915\nu^4\mu^4 \\
& \quad + 219.946289\nu^2\mu^6 \\
& \quad + 13.746643\mu^8 - 29.3261718\nu^6 - 263.935546\nu^4\mu^2 \\
& \quad - 263.935546\nu^2\mu^4 \\
& \quad - 29.3261718\mu^6 + 20.3027343\nu^4 + 81.2109375\nu^2\mu^2 \\
& \quad + 20.3027343\mu^4 \\
& \quad - 4.921875\nu^2 - 4.921875\mu^2 + 0.2734375) ;
\end{aligned}$$

$$[\delta n] = 0.$$

Here

$$\begin{aligned}
q_2 &= \mu_0 n \sqrt{1 - e^2/e}; & p_0 &= e \sqrt{1 - e^2/(1 + \sqrt{1 - e^2})}; \\
q_3 &= \mu_0 n / \sqrt{1 - e^2}; & p_2 &= \cos N(\mu - \nu) / 2\sqrt{\nu\mu};
\end{aligned}$$

$$\begin{aligned}
q_4 &= \mu_0 n / (\sqrt{1 - e^2} \sin i); & p_3 &= \cos N / 2\sqrt{\nu\mu}; \\
q_5 &= \tan \frac{i}{2} \sin i; & p_4 &= \sqrt{\nu\mu} \sin N; \\
q_6 &= \mu_0 n; & p_5 &= \sin N (\mu - \nu) / 2\sqrt{\nu\mu}; \\
&& p_6 &= \sin N / 2\sqrt{\nu\mu}; \\
&& p_7 &= \sqrt{\nu\mu} \cos N.
\end{aligned}$$

The values of the parameters contained in these expressions are shown in Table 2.

TABLE 2

ELEMENTS OF THE RELATIVE POSITION OF THE
ORBITS OF THE SATELLITES, THE MOON AND THE SUN

Per-turbing Body	AES-1		AES-2	
	The Moon	The Sun	The Moon	The Sun
a	0.109587864	0.000282868	0.109587864	0.000282868
μ_0	0.000016173	0.000007455	0.000016173	0.000007455
ν	0.025288355	0.041281524	0.455158342	0.5
μ	0.974711645	0.958718475	0.544841658	0.5
N	0	0	0	0
N'	0	12°139268	0	12°139268
τ, τ'	12°139268	12°139268	12°139268	12°139268
II	45°	45°	135°	135°
II'	196°649013	269°941122	196°649013	269°941122
p_0	0.049874371	0.049874371	0.266666666	0.266666666
p_2	3.02364997	2.3058063	0.090046172	0
p_3	3.18472277	2.51331309	1.00404597	1
p_4, p_5, p_6	0	0	0	0
p_7	0.156999536	0.198940594	0.497985166	0.5
q_2	0.0010138	0.000467355	0.000135863	0.000062628
q_3	0.0001024	0.000047208	0.000127372	0.000058714
q_4	0.00025739	0.000118647	0.000127372	0.000058714
q_5	0.082563048	0.082563048	1	1
q_6	0.000101897	0.000046971	0.000101897	0.000046971

Table 3 contains numerical values of the secular changes in the elements of the orbits of the satellites AES-1 and AES-2 attributable to the Moon, the Sun, and the Earth's oblateness after 1 year. The last were calculated by the following formulas (Proskurin, Batrakov, 1960):

$$[\Omega] = -J \left(\frac{a_e}{a} \right)^2 \frac{\cos i}{(1 - e^2)^2} n \times 365.25,$$

$$[\pi] = \frac{1}{2} J \left(\frac{a_e}{a} \right)^2 \frac{5 \cos^2 i - 2 \cos i - 1}{(1 - e^2)^2} n \times 365.25,$$

$$[\epsilon] = \frac{t}{2} J \left(\frac{a_e}{a} \right)^2 \frac{(5 + 3\sqrt{1 - e^2}) \cos^2 i - 2 \cos i - 1 - \sqrt{1 - e^2}}{(1 - e^2)^2} n \times 365.25$$

with $a_e = 6,378.39$ km and $J = 0.00164147$.

TABLE 3

SECULAR PERTURBATIONS OF THE ELEMENTS OF THE
AES-1 AND AES-2 ORBITS ATTRIBUTABLE TO THE
MOON, THE SUN, AND THE EARTH'S OBLATENESS

	[a]	[e]	[i]	[\Omega]	[\pi]	[\epsilon]
AES-1 {	The Moon	0	-0.00075	-0.016	-1.3	-1.9
	The Sun	0	-0.00052	-0.007	-0.69	0.5
	The Oblateness	0	0	0	-5	4.7
AES-2 {	The Moon	0	0.030	0.15	-0.28	1
	The Sun	0	0.016	0	0	-0.3
	The Oblateness	0	0	0	4.7	3.6
						1.1

In these formulas "i" is the angle of inclination of the satellite's orbit to the plane of the equator.

As may be seen from Table 3, on the average the secular perturbations of the elements of the satellites' orbits attributable to the Moon are two to three times greater than those attributable to the Sun.

In their turn, the aggregate values of the lunar-solar perturbations of the elements are two to three times smaller than the respective values explained by the Earth's oblateness.

In comparing the secular lunar-solar perturbations of the AES-1 with those of the AES-2, in addition to the difference in the magnitude of the perturbations of the eccentricities already mentioned in the Introduction, attention is drawn by the considerable preponderance of the secular perturbations of the inclination of the AES-2 orbit (because of the Moon) over the respective magnitude for the AES-1. The secular changes in the elements Ω , π , and ϵ caused by the influence of the Moon and the Sun are several times smaller for the AES-2 than for the AES-1.

It is interesting to note that the elements "i" and Ω of the AES-2 orbit undergo practically no secular perturbations from the Sun. This is explained by the fact that $p_2 = p_4 = p_5 = p_6 = v - \mu = 0$. Because of this, the greater portion of the addends in the expressions for the secular perturbations of these elements vanish.

2. The First-Order Periodic Perturbations

Graphs shown in Figures 1-24 (Appendix) were constructed using the points with the time intervals of 1 day for the lunar perturbations and 10 days for the solar perturbations in order to secure a general idea of the character of the changes in the elements of the orbits of the satellites being examined, under the effect of the gravitational perturbations attributable to the Moon and the Sun. In addition to evaluating the magnitude of the secular perturbations it was intended to secure information concerning the periodic changes in the elements whose period is comparable in length with the duration of one revolution of the perturbing body. Therefore, the graphs constructed cover the time intervals of 70 days for the lunar perturbations and 700 days for the solar perturbations.

In Figure 25 (Appendix) are shown the secular changes in the elements of the AES-2 orbit during 17 years.

We will examine some of the special characteristics of the periodic perturbations of the elements of the AES-1 and AES-2 attributable to the Moon and the Sun.

AES-1

Perturbations of the major half-axis:

Lunar -- the period is about 30.2 days; $\delta a_{\min} = -1.2$ km,
 $\delta a_{\max} = 2.3$ km;

Solar -- the period is 1 year; during this time, two minima of different level are observed: -90 m and -360 m, and two maxima: -40 m and -45m; the minima correspond to the angular departures of the Sun from the perigee by 90 and 270°.

Perturbations of the eccentricity:

Lunar -- the period is equal to the sidereal lunar month (27-1/3 days); the amplitude is about 20×10^{-5} ;

Solar -- the period is 1 year; the amplitude is 42×10^{-5} ; two minima and two maxima during the period set in respectively when the Sun is at 45, 225, 135, and 315° from the perigee.

Perturbations of the inclination:

Lunar -- the period is 27-1/3 days; the amplitude is 0°003;

Solar -- the period is 1 year; the amplitude is 0°023; the minima correspond to the angular departures of the Sun from the perigee by 0 and 180°; the maxima set in when $v = 90$ and 270° (v is the true anomaly of the Sun).

Perturbations of the longitude of the ascending node:

Lunar -- the period is 27-1/3 days; the amplitude is 0°006;

Solar -- the period is 1 year; the amplitude is 0°05; the $\delta\Omega$ curve has two inflection points corresponding to $v = 90$ and 270°.

Perturbations of the longitude of the perigee:

Lunar -- the period is 27-1/3 days; the amplitude is 0°13;

Solar -- the period is 1 year; the amplitude is 0°38; the maxima are at $v = 0$ and 180°, the minima at $v = 90$ and 270°.

Perturbations of the mean longitude per epoch:

Lunar -- the period is 27-1/3 days; the amplitude is 0°0035;

Solar -- the period is 1 year; the amplitude is 0°015; the maxima are at $v = 60$ and 240°, the minima at $v = 150$ and 330°.

Thus, clearly marked periodic components whose periods coincide with the sidereal periods of the revolution of the perturbing bodies are observed in the osculating elements of the AES-1 orbit in the time intervals examined.

An exception is that of lunar perturbations of the major half-axis whose period is equal to 30.2 days.

And what is more, the extremal values of the solar perturbations of the elements regularly depend on the position of the Sun in relation to the perigee.

The periodic solar perturbations of the elements of the AES-1 orbit are 2 to 10 times greater than the perturbations of the respective elements attributable to the Moon. An exception is that of the perturbations of the major half-axis, which are 6.5 times greater from the Moon than from the Sun.

AES-2

Perturbations of the major half-axis:

Lunar -- the period is 27-1/3 days; $\delta a_{\min} = -1.7 \text{ km}$; $\delta a_{\max} = 3 \text{ km}$;

Solar -- the period is 1 year; during the period, three minima are observed:

$$\begin{array}{ll} \text{at } v = 0 & \delta a = 0, \\ \text{at } v = 120^\circ & \delta a = 0, \\ \text{at } v = 240^\circ & \delta a = -0.5 \text{ km}, \end{array}$$

and three maxima:

$$\begin{array}{ll} \text{at } v = 60^\circ & \delta a = 1.6, \\ \text{at } v = 160^\circ & \delta a = 0.95, \\ \text{at } v = 320^\circ & \delta a = 0.4 \text{ km}. \end{array}$$

Perturbations of the eccentricity:

Lunar -- the period is 27-1/3 days; the amplitude is 0.00025 ;

Solar -- the period is 1 year; the amplitude is 0.001 ; the maxima are at $v = 45$ and 225° , the minima at $v = 135$ and 315° .

Perturbations of the inclination:

Lunar -- the period is 27-1/3 days; the amplitude is $0^{\circ}017$;

Solar -- the period is 1 year; during this period two equal minima of the $\delta i = 0$ are observed at $v = 0$ and 180° , and two equal maxima of the $\delta i = 0^{\circ}23$ at $v = 90$ and 270° .

Perturbations of the longitude of the ascending node:

Lunar -- the period is 27-1/3 days; amplitude is $0^{\circ}0115$;

Solar -- the period is 1 year; two equal maxima of the $\delta\Omega = 0$ correspond to a $v = 0$ and 180° ; two equal minima of the $\delta\Omega = 0.135$ at $v = 90$ and 270° .

Perturbations of the longitude of the perigee:

Lunar -- the period is 27-1/3 days; the amplitude is $0^{\circ}015$;

Solar -- the period is 1 year; the amplitude is $0^{\circ}095$; the minima are at $v = 70$ and 250° , the maxima at $v = 160$ and 340° .

Perturbations of the mean longitude per epoch:

Lunar -- the period is 27-1/3 days; the amplitude is 0.025 ;

Solar -- the period is 1 year; the amplitude is $0^{\circ}17$; the maxima are at $v = 45$ and 225° , the minima at $v = 120$ and 300° .

Thus, for the AES-2, as for the AES-1, in the time intervals of several revolutions of the Moon and the Sun the main role among all periodic perturbations is played by the perturbations whose periods coincide with the sidereal periods of the revolutions of these bodies.

The points corresponding to the extremal values of the solar perturbations of the elements of the AES-2 are regularly located relative to the perigee of the Sun's orbit.

With the exception of the major half-axis all elements of the AES-2 orbit undergo periodic perturbations attributable to the Sun that are several times greater than those attributable to the Moon.

BIBLIOGRAPHY

- R. A. Lyakh, Vozmushchennoye dvizheniye v zvezdnoy zadache trëkh tel (Perturbed Motion in a Sidereal Problem of Three Bodies), Dissertation for the scientific degree of a Candidate of the Physico-Mathematical Sciences, GAO (Central Astronomical Observatory), Leningrad, 1960.
- B. K. Martynenko, ON THE EXPANSION OF A PERTURBATION FUNCTION ACCORDING TO THE DEGREES OF THE ECCENTRICITIES IN AN ELLIPTIC PROBLEM OF THREE BODIES, Byulleten' ITA (Bulletin of the Institute of Theoretical Astronomy), 10, No. 7, 1965, p. 120.
- B. K. Martynenko, SATELLITE MODEL OF A THREE-BODY SYSTEM, Byulletin' ITA (Bulletin of the Institute of Theoretical Astronomy), 10, No. 9, 1966, p. 122.
- V. F. Proskurin and Yu. V. Batrakov, PERTURBATIONS IN THE MOTION OF ARTIFICIAL SATELLITES CAUSED BY THE EARTH'S OBLATENESS, Byulleten' ITA (Bulletin of the Institute of Theoretical Astronomy), 7, No. 7, 1960, p. 90.

Appendix

THE LUNAR-SOLAR GRAVITATIONAL PERTURBATIONS OF TWO HYPOTHETICAL ARTIFICIAL EARTH SATELLITES (THE CURVES)

FIGURE 1. LUNAR PERTURBATIONS OF THE MAJOR HALF-AXIS OF THE AES-2 ORBIT.

FIGURE 3. LUNAR PERTURBATIONS OF THE ECCENTRICITY OF THE AES-1 ORBIT.

FIGURE 5. LUNAR PERTURBATIONS OF THE INCLINATION OF THE AES-1 ORBIT.

FIGURE 2. SOLAR PERTURBATIONS OF THE MAJOR HALF-AXIS OF THE AES-1 ORBITS.

FIGURE 4. SOLAR PERTURBATIONS OF THE ECCENTRICITY OF THE AES-1 ORBIT.

FIGURE 6. SOLAR PERTURBATIONS OF THE INCLINATION OF THE AES-1 ORBIT.

FIGURE 8. SOLAR PERTURBATIONS OF THE LONGITUDE OF THE ASCENDING NODE OF THE AES-1 ORBIT.

FIGURE 10. SOLAR PERTURBATIONS OF THE LONGITUDE OF THE PERIGEE OF THE AES-1 ORBIT.

FIGURE 7. LUNAR PERTURBATIONS OF THE LONGITUDE OF THE ASCENDING NODE OF THE AES-1 ORBIT.

FIGURE 9. LUNAR PERTURBATIONS OF THE LONGITUDE OF THE PERIGEE OF THE AES-1 ORBIT.

FIGURE 11. LUNAR PERTURBATIONS OF THE MEAN LONGITUDE OF THE AES-1 PER EPOCH.

FIGURE 12. SOLAR PERTURBATIONS OF THE MEAN LATITUDE OF THE AES-1 PER EPOCH.

FIGURE 14. SOLAR PERTURBATIONS OF THE MAJOR HALF-AXIS OF THE AES-2 ORBIT.

FIGURE 16. SOLAR PERTURBATIONS OF THE ECCENTRICITY OF THE AES-2 ORBIT.

FIGURE 13. LUNAR PERTURBATIONS OF THE MAJOR HALF-AXIS OF THE AES-2 ORBIT.

FIGURE 15. LUNAR PERTURBATIONS OF THE ECCENTRICITY OF THE AES-2 ORBIT.

FIGURE 17. LUNAR PERTURBATIONS OF THE INCLINATION OF THE AES-2 ORBIT.

FIGURE 18. SOLAR PERTURBATIONS OF THE INCLINATION OF THE AES-2 ORBIT.

FIGURE 19. LUNAR PERTURBATIONS OF THE ASCENDING NODE OF THE AES-2 ORBIT.

FIGURE 20. SOLAR PERTURBATIONS OF THE LONGITUDE OF THE ASCENDING NODE OF THE AES-2 ORBIT.

FIGURE 21. LUNAR PERTURBATIONS OF THE LONGITUDE OF THE PERIGEE OF THE AES-2 ORBIT.

FIGURE 22. SOLAR PERTURBATIONS OF THE LONGITUDE OF THE PERIGEE OF THE AES-2 ORBIT.

FIGURE 23. LUNAR PERTURBATIONS OF THE LONGITUDE OF THE AES-2 PER EPOCH.

FIGURE 24. SOLAR PERTURBATIONS OF THE MEAN LONGITUDE OF THE AES-2 PER EPOCH.

FIGURE 25. SECULAR SOLAR PERTURBATIONS OF THE ELEMENTS OF THE AES-2 ORBIT: ECCENTRICITY, THE LONGITUDE OF THE PERIGEE AND OF THE MEAN LATITUDE PER EPOCH.

A $\delta\pi^\circ \times 10$ IS LAID OFF ON THE LOWER STRAIGHT LINE (THE DOT-AND-DASH LINE).

DISTRIBUTION

	No. of Copies	No. of Copies
<u>EXTERNAL</u>		
Air University Library ATTN: AUL3T Maxwell Air Force Base, Alabama 36112	1	U. S. Atomic Energy Commission ATTN: Reports Library, Room G-017 Washington, D. C. 20545
U. S. Army Electronics Proving Ground ATTN: Technical Library Fort Huachuca, Arizona 85613	1	U. S. Naval Research Laboratory ATTN: Code 2027 Washington, D. C. 20390
Naval Weapons Center ATTN: Technical Library, Code 753 China Lake, California 93555	1	Weapons Systems Evaluation Group Washington, D. C. 20305
Naval Weapons Center, Corona Laboratories ATTN: Documents Librarian Corona, California 91720	1	John F. Kennedy Space Center, NASA ATTN: KSC Library, Documents Section Kennedy Space Center, Florida 32899
Lawrence Radiation Laboratory ATTN: Technical Information Division P. O. Box 808 Livermore, California 94550	1	APGC (PGBPS-12) Eglin Air Force Base, Florida 32542
Sandia Corporation ATTN: Technical Library P. O. Box 969 Livermore, California 94551	1	U. S. Army CDC Infantry Agency Fort Benning, Georgia 31905
U. S. Naval Postgraduate School ATTN: Library Monterey, California 93940	1	Argonne National Laboratory ATTN: Report Section 9700 South Cass Avenue Argonne, Illinois 60440
Electronic Warfare Laboratory, USAECOM Post Office Box 205 Mountain View, California 94042	1	U. S. Army Weapons Command ATTN: AMSWE-RDR Rock Island, Illinois 61201
Jet Propulsion Laboratory ATTN: Library (TDS) 4800 Oak Grove Drive Pasadena, California 91103	2	Rock Island Arsenal ATTN: SWERI-RDI Rock Island, Illinois 61201
U. S. Naval Missile Center ATTN: Technical Library, Code N3022 Point Mugu, California 93041	1	U. S. Army Cmd. & General Staff College ATTN: Acquisitions, Library Division Fort Leavenworth, Kansas 66027
U. S. Army Air Defense Command ATTN: ADSX Ent Air Force Base, Colorado 80912	1	Combined Arms Group, USACDC ATTN: Op. Res., P and P Div. Fort Leavenworth, Kansas 66027
Central Intelligence Agency ATTN: OCR/DD-Standard Distribution Washington, D. C. 20505	4	U. S. Army CDC Armor Agency Fort Knox, Kentucky 40121
Harry Diamond Laboratories ATTN: Library Washington, D. C. 20438	1	Michoud Assembly Facility, NASA ATTN: Library, I-MICH-OSD P. O. Box 29300 New Orleans, Louisiana 70129
Scientific & Tech. Information Div., NASA ATTN: ATS Washington, D. C. 20546	1	Aberdeen Proving Ground ATTN: Technical Library, Bldg. 313 Aberdeen Proving Ground, Maryland 21005
		NASA Sci. & Tech. Information Facility ATTN: Acquisitions Branch (S-AK/DL) P. O. Box 33 College Park, Maryland 20740
		U. S. Army Edgewood Arsenal ATTN: Librarian, Tech. Info. Div. Edgewood Arsenal, Maryland 21010

No. of Copies		No. of Copies	
National Security Agency ATTN: C3/TDL Fort Meade, Maryland 20755	1	Brookhaven National Laboratory Technical Information Division ATTN: Classified Documents Group Upton, Long Island, New York 11973	1
Goddard Space Flight Center, NASA ATTN: Library, Documents Section Greenbelt, Maryland 20771	1	Watervliet Arsenal ATTN: SWEWV-RD Watervliet, New York 12189	1
U. S. Naval Propellant Plant ATTN: Technical Library Indian Head, Maryland 20640	1	U. S. Army Research Office (ARO-D). ATTN: CRD-AA-IP Box CM, Duke Station Durham, North Carolina 27706	1
U. S. Naval Ordnance Laboratory ATTN: Librarian, Eva Liberman Silver Spring, Maryland 20910	1	Lewis Research Center, NASA ATTN: Library 21000 Brookpark Road Cleveland, Ohio 44135	1
Air Force Cambridge Research Labs. L. G. Hanscom Field ATTN: CRMCLR/Stop 29 Bedford, Massachusetts 01730	1	Foreign Technology Division ATTN: Library Wright Patterson Air Force Base, Ohio 45400	1
U. S. Army Tank Automotive Center ATTN: SMOTA-RTS.1 Warren, Michigan 48090	1	U. S. Army Artillery & Missile School ATTN: Guided Missile Department Fort Sill, Oklahoma 73503	1
U. S. Army Materials Research Agency ATTN: AMXMR-ATL Watertown, Massachusetts 02172	1	U. S. Army CDC Artillery Agency ATTN: Library Fort Sill, Oklahoma 73504	1
Strategic Air Command (OAI) Offutt Air Force Base, Nebraska 68113	1	U. S. Army War College ATTN: Library Carlisle Barracks, Pennsylvania 17013	1
Picatinny Arsenal, USAMUCOM ATTN: SMUPA-VA6 Dover, New Jersey 07801	1	U. S. Naval Air Development Center ATTN: Technical Library Johnsville, Warminster, Pennsylvania 18974	1
U. S. Army Electronics Command ATTN: AMSEL-CB Fort Monmouth, New Jersey 07703	1	Frankford Arsenal ATTN: C-2500-Library Philadelphia, Pennsylvania 19137	1
Sandia Corporation ATTN: Technical Library P. O. Box 5800 Albuquerque, New Mexico 87115	1	Div. of Technical Information Ext., USAEC P. O. Box 62 Oak Ridge, Tennessee 37830	1
ORA(RRRT) Holloman Air Force Base, New Mexico 88330	1	Oak Ridge National Laboratory ATTN: Central Files P. O. Box X Oak Ridge, Tennessee 37830	1
Los Alamos Scientific Laboratory ATTN: Report Library P. O. Box 1663 Los Alamos, New Mexico 87544	1	Air Defense Agency, USACDC ATTN: Library Fort Bliss, Texas 79916	1
White Sands Missile Range ATTN: Technical Library White Sands, New Mexico 88002	1	U. S. Army Air Defense School ATTN: AKBAS-DR-R Fort Bliss, Texas 79906	1
Rome Air Development Center (EMLAL-1) ATTN: Documents Library Griffiss Air Force Base, New York 13440	1		

No. of Copies		No. of Copies
U. S. Army CDC Nuclear Group Fort Bliss, Texas 79916	1	<u>INTERNAL</u>
Manned Spacecraft Center, NASA ATTN: Technical Library, Code BM6 Houston, Texas 77058	1	Headquarters U. S. Army Missile Command Redstone Arsenal, Alabama 35809 ATTN: AMSMI-D 1 AMSMI-XE, Mr. Lowers 1 AMSMI-XS 1 AMSMI-Y 1 AMSMI-R, Mr. McDaniel 1 AMSMI-RAP 1 AMSMI-RBLD 10 USACDC-LnO 1 AMSMI-RBT 8 AMSMI-RB, Mr. Croxton 1
Defense Documentation Center Cameron Station Alexandria, Virginia 22314	20	
U. S. Army Research Office ATTN: STINFO Division 3045 Columbia Pike Arlington, Virginia 22204	1	National Aeronautics & Space Administration Marshall Space Flight Center Marshall Space Flight Center, Ala. 35812 ATTN: MS-T, Mr. Wiggins 5 R-AERO-X, Mr. Wheeler 1
U. S. Naval Weapons Laboratory ATTN: Technical Library Dahlgren, Virginia 22448	1	
U. S. Army Engineer Res. & Dev. Labs. ATTN: Scientific & Technical Info. Br. Fort Belvoir, Virginia 22060	2	
Langley Research Center, NASA ATTN: Library, MS-185 Hampton, Virginia 23365	1	
Research Analysis Corporation ATTN: Library McLean, Virginia 22101	1	
Atomics International, Div. of NAA Liquid Metals Information Center P.O. Box 309 Canoga Park, California 91305	1	
Hughes Aircraft Company Electronic Properties Information Center Florence Ave. & Teale St. Culver City, California 90230	1	
Clearinghouse for Federal Scientific and Technical Information U. S. Department of Commerce Springfield, Virginia 22151	1	
Foreign Science & Technology Center Munitions Building Washington, D. C. 20315	3	
National Aeronautics & Space Administration Code USS-T (Translation Section) Washington, D. C. 20546	2	

UNCLASSIFIED

Security Classification

DOCUMENT CONTROL DATA - R & D

(Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified)

1. ORIGINATING ACTIVITY (Corporate author) Redstone Scientific Information Center Research and Development Directorate U. S. Army Missile Command Redstone Arsenal, Alabama 35809	2a. REPORT SECURITY CLASSIFICATION Unclassified
	2b. GROUP N/A

3. REPORT TITLE

LUNAR-SOLAR PERTURBATIONS OF A 24-HOUR SATELLITE
Institut Teoreticheskoi Astronomii Biulleten', 11, No. 1, 33-47 (1967)

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

Translated from Russian

5. AUTHOR(S) (First name, middle initial, last name)

B. K. Martynenko

6. REPORT DATE 28 December 1967	7a. TOTAL NO. OF PAGES 33	7b. NO. OF REFS 4
8a. CONTRACT OR GRANT NO. N/A	9a. ORIGINATOR'S REPORT NUMBER(S) RSIC-740	
b. PROJECT NO. N/A	9b. OTHER REPORT NO(S) (Any other numbers that may be assigned this report)	
c.		
d.		

10. DISTRIBUTION STATEMENT

This document has been approved for public release and sale; its distribution is unlimited.

11. SUPPLEMENTARY NOTES None	12. SPONSORING MILITARY ACTIVITY Same as No. 1
---------------------------------	---

13. ABSTRACT

Study of the lunar-solar gravitational perturbations of two hypothetical earth satellites having a sidereal period of $23^{\text{h}} 56^{\text{m}} 04^{\text{s}}$. The orbit of the first satellite lies in the equatorial plane while that of the second is perpendicular to the ecliptic plane. At the initial moment (12^{h} E. T., January 0, 1950), the nodes of the orbits of the two satellites and the moon coincide. The perigee distance of the first satellite is chosen so as to minimize the secular excitations of the orbital eccentricity at fixed values of all the remaining elements. The orbital parameters of the second satellite are chosen according to the condition of maximum secular perturbations of the orbital eccentricity. The orbital eccentricity of the first satellite is 0.1, while that of the second is 0.6. Results show that the orbit of the first satellite is stable and orbital eccentricity decreases at the rate of 0.00127 per year. Rapid increase in the eccentricity of the second satellite limits its lifetime to 5.5 years. Secular and periodic first order perturbations are calculated.

DD FORM 1 NOV 1964 1473

REPLACES DD FORM 1473, 1 JAN 64, WHICH IS
OBSOLETE FOR ARMY USE.

UNCLASSIFIED

Security Classification

UNCLASSIFIED

Security Classification

14. KEY WORDS	LINK A		LINK B		LINK C	
	ROLE	WT	ROLE	WT	ROLE	WT
Gravitational perturbations Sidereal period Equatorial plane Secular perturbations Orbital eccentricity						