

第9章入侵检测系统

第9章 内容概要

- 9.1 基本概念
- 9.2 网检和机检
- 9.3 特征检测
- 9.4 统计分析
- 9.5 行为推理
- 9.6 诱饵系统

什么是入侵?

- 例如,入侵者获取Alice的用户名 和密码来假冒 Alice
- 入侵者为黑客,获取合法用户登录信息并且假冒他们

- 观测 (始于1980's中期)
 - □ 入侵者行为与合法用户具有不同的行为
 - □ 这些行为可以通过定量的方法测量出来
- 入侵检测:
 - □ 尽快的识别出已发生或正在发生的入侵者行为
 - □ 收集入侵证据
 - □ 常用手段: 检测不正常行为
- 怎样构造一个自动检测工具去发现这些入侵行为?→ 入侵检测系统(IDS)

基本方法

- 设立系统日志并分析之
 - □ 如果日志文件较小,可以手动完成。但是如果日志文件很大,可能需要复 杂的工具
 - □ 基于通过跟踪用户用户使用主机行为和上网行为构造用户表征
 - 网检(NBD)
 - 机检(HBD)
 - 二者结合 (混检)

《计算机网络安全的理论与实践(第2版)》.【美】王杰,高等教育出版社,2011年

基本方法

- 安全审查
 - □ 分析日志常指审查
 - □ 两种审查
 - 安全表征实例: 静态配置信息

	参数	值
登录密码	最小长度 (字节) 有效期 (天) 过期警告 (天)	8 90 14
登录阶段	允许登录失败的次数 下一次允许登录时间间隔 (秒) 登录后什么也不做保持登录的时间(小时)	3 20 12

• 动态事件: 动态用户事件

主体	操作	对象	意外事件	资源使用情 况	时间戳
Alice	运行	cp	无	CPU:00001	Tue 11/06/07 20:18:33 EST
Alice	开启	./myprog	无	byte-r: 0	Tue 11/06/07 20:18:33 EST
Alice	写入	etc/myprog	写入失败	byte-w: 0	Tue 11/06/07 20:18:34 EST

IDS 组成

- 三部分:
 - □ 评估
 - 对系统的安全需求做出整体评价,并作出系统安全表征
 - □ 检测
 - 收集系统使用的事件并分析他们来找出入侵行为
 - 用户表征,可允许误差
 - □警报
 - 通知用户或系统管理员反常用机行为
 - 为警报分类并指示系统如何回应

IDS 体系结构

- 指令控制台
 - 控制管理目标主机
 - 与外网断绝关系

- 监视对象
 - 监视设备上的入侵行为

检测政策

- IDP用来识别入侵行为
- 规定哪些数据必须保护以及受保护的程度
- 定义哪些是入侵行为并且在识别出后的应对
 - □ 错判和漏判
 - □ 行为分类
 - 绿灯行为: 可接受的正常行为
 - 红灯行为: 必须拒绝的不正常行为
 - 黄灯行为:基于当前信息无法判断的行为
 - 对于红灯行为和黄灯行为的应对政策:
 - 如果是黄灯行为,则收集更多信息作判断依据
 - 如果是红灯行为,终止用户登录
 - 如果是红灯行为,切断用户网络连接
 - 停机

不可接受行为

- 行为:
 - □ 一系列事件或者多系列事件的集合
- 可接受行为:
 - □ 遵循系统安全政策的一系列事件
- 不可接受行为:
 - □ 一系列违反系统安全政策的行为
- 问题:
 - □ 如何定义可接受行为和不可接受行为?
 - □ 怎样用定量的方法去描述和分析行为

第九章 内容概要

- 9.1 基本概念
- 9.2 网检和机检
- 9.3 特征检测
- 9.4 统计分析
- 9.5 行为推理
- 9.6 诱饵系统

网检(NBD)

- NBD 分析网络数据包
- NBD:
 - 定义黄灯行为,红灯行为
 - 向控制台管理员发送警报信息
 - 将警报行为保存在系统目志中供日后分析用
- 主要有两种:
 - 网端检测:
 - 在特定的端点收集信息,检测网络
 - 引擎检测:
 - 分析数据包,发送警告消息

NBD 体系结构

- 网端检测
 - •检测系统设在主机内

- 网段检测
 - •网络上选定的点
 - •需要网络端点

NBD 的优缺点

- 优点:
 - □成本低
 - □无干扰
 - □抗入侵
- 缺点:
 - □无法分析加密包
 - □网络流量大时,会无法分析数据而产生漏判
 - □某些入侵行为难以定义
 - □难以判断入侵行为是否成功

机检系统(HBD)

- HBD 分析系统事件和用户行为并且向管理员发出警告
 - □ 检查事件日志去定义可疑行为
 - □ 检查系统日志,保存系统文件记录
 - □ 检查系统配置
 - □ 为事件日志保存拷贝以防攻击者修改

《计算机网络安全的理论与实践(第2版)》.【美】王杰,高等教育出版社,2011年

- 优点:
 - □不会因为数据在传输过程中被加密而受影响
 - □不需要特殊的硬件设备
 - □通过检查系统日志,更精确的分析系统行为
- 缺点:
 - □需要使用更多的系统管理资源
 - □消耗更多的计算资源
 - □直接危害主机操作系统的攻击会影响机检系统的执行
 - □不能安装在路由器和交换器等设备上

第九章 内容概要

- 9.1 基本概念
- 9.2 网检和机检
- 9.3 特征检测
- 9.4 统计分析
- 9.5 行为推理
- 9.6 诱饵系统

特征检测

- 也称操作检测或规则检测
- 检查当前事件是否可以接受
- 两种特征检测:
 - □ 网络特征
 - 分析数据包的行为
 - □ 行为特征
 - 分析事件的用机行为

- 一系列行为规则:
 - □ 普通用户不能拷贝系统文件
 - □ 用户不能直接读写硬盘
 - □ 用户不应该访问其他用户的个 人目录
 - □ 连续三次登录失败后用户不应 该继续尝试登录
 - □ ...

特征分类

混合特征实例

网络特征	- 行为特征	混合特征
用户用 FTP登录后使用 cd 和 ls 指令	用户浏览\etc目录和 passwd文件	用户从远程浏览系统文件
用户用FTP登录后使用 put 指令	上传到系统的文件有病毒和 木马特征	用户从远程将可疑文件上传 到主机系统
用户用FTP登录后使用 put 指令	用户修改系统文件和注册表	用户从远程修改系统文件
某种万维网攻击	读系统可执行文件	网络攻击成功

混合特征实例

《计算机网络安全的理论与实践(第2版)》. 【美】王杰, 高等教育出版社, 2011年

- 局内人:系统中具有登录权限的用户
- 局外人:没有登录权限的用户
- 利用局外人行为的检测:
 - □ 攻击者可能在目标系统中安装特洛伊木马,劫持TCP连接或 尝试扫荡攻击
- 利用局内人滥用权限的检测:
 - □ 攻击者做通常的合法用户不会做的事

- 内置系统
 - □ 在系统内部存储检测规则
 - □ 给用户提供IDS编辑器
 - □ 用户基于自身需要选取规则
- 程序系统
 - □ 有默认规则,提供程序语言
 - □ 允许用户选择规则和编写新规则
- 专家系统
 - □ 更专业更完整
 - □ 需领域内专家

第九章 内容概要

- 9.1 基本概念
- 9.2 网检和机检
- 9.3 特征检测
- 9.4 统计分析
- 9.5 行为推理
- 9.6 诱饵系统

《计算机网络安全的理论与实践(第2版)》. 【美】王杰, 高等教育出版社, 2011年

两种方法

- 当可以用定量方法描述出不可接受行为与正仓 行为的差别时,通常用大两种统计方法:
 - □依据临界值分析
 - 简单但不精确
 - 统计在一段时间内某种类型的事件出现的次数
 - □用户表征
 - 更精确
 - 基于定量方法收集用户用机行为,建立用户表征

事件计量器

- 例子:
 - □特定事件发生的时间
 - □一段时间内特定事件发生的次数
 - □系统变量当前的值
 - □系统资源的利用率

事件计数器

- 事件计数
 - □ 一个整形变量记录在一个指定的时间内同一类型数据出现的次数
- 事件表
 - □ 一个整形变量为系统里的每一个测试对象一个当前值
- 事件计时器
 - 为系统中两个相关事件赋予一个整数变量,用来表示从第一个事件到 第二个事件的发生之间的时间间隔
- 资源利用率
 - □ 为每一个资源赋予一个变量,用来记录在一个指定时间段中的资源利用率

统计学方法

- □均值和方差
 - 与正常值比较
- □多变量分析
 - 同时分析两个或更多相关值,识别异常行为
- □马尔可夫过程
 - 计算系统从一种形态到另一种形态转换的概率
- □时间序列分析
 - 研究事件序列,查找异常

第九章 内容概要

- 9.1 基本概念
- 9.2 网检和机检
- 9.3 特征检测
- 9.4 统计分析
- 9.5 行为推理
- 9.6 诱饵系统

行为推理

- 行为推理研究怎样运用数据挖掘技术分析事件日志并寻求有用信息
- 数据挖掘技术
 - □ 数据提炼
 - □ 上下文演绎
 - □ 来源组合
 - □ 外围数据
 - 」 深挖细掘
- 行为推理实例 (p295)

第九章 内容概要

- 9.1 基本概念
- 9.2 网检和机检
- 9.3 特征检测
- 9.4 统计分析
- 9.5 行为推理
- 9.6 诱饵系统

诱饵系统

- 定义:
 - □ 用设备,系统,目录或文件作为诱饵,引诱攻击者,使真 正重要的主机和系统免于攻击并收集入侵者行为
 - □帮助用户找到敌人
 - □ 牺牲自己,保全真正主机系统不受攻击
- IDS = 守卫
- Decoy System = 蜜罐

- 1990开发出来
 - □ 连在局域网内的主机,有真正的 IP 地址
 - □ 需要与操作系统进行高层互动并且用相当的精力去 维护
- 1990's后期,软件技术逐渐成熟,
 - □容易配置
 - □ 需要低层互动
 - 常用的虚拟诱饵系统Honeyd, KFSensor, CyberCop Sting ...

互动层次

- 低层互动:
 - □ 运行诱饵主机的服务端程序只能往主机的硬盘上写 入信息
- 中层互动:
 - □ 运行诱饵主机的服务端程序只能往主机的硬盘上读 出和写入信息
- 高层互动:
 - □ 运行诱饵主机的服务端程序可以和主机的操作系统 互动,并通过操作系统与主机硬盘和其他系统资源 互动

诱饵系统的功能和刻画

《计算机网络安全的理论与实践(第2版)》.【美】王杰,高等教育出版社,2011年

Honeyd

- 时并行运行虚拟IP协议集和的软件引擎
- 在网络层上建构虚拟诱饵系统提供了结构简易的 框架
- 能够模拟标准网络服务在不同的虚拟主机系统上 运行不同的操作系统
- 能监测并清除蠕虫,分散入侵者注意力,组织垃圾邮件的传播

Honeyd 结构示意图

MAC Linux Windows FreeBSD NetBSD 129.63.8.3 129.63.8.4 129.63.8.5 129.63.8.6 129.63.8.7

Honeyd 个性化引擎 Internet Configuration personality Packet dispatcher 🗲 Personality engine **ICMP SMTP** Service **⊀**

A block diagram of Honeyd architecture 《计算机网络安全的理论与实践(第2版)》. 【美】王杰, 高等教育出版社, 2011年

- MWCollect 计划
- Honeynet计划
 - Honeywall CDROM
 - Sebek
 - □ 高层互动分析工具包 (HIHAT)
 - HoneyBow