# Inclusive Jet Cross Section Measurement from 8TeV (SMP-12-012)

Sanmay Ganguly
Tata Institute Of Fundamental Research
On Behalf Of Inclusive Jet Team

October 4, 2013

#### Outline

JES Study

2 Alpha\_S(Mz) Determination

# **Experimental Uncertainty**

The Jet energy scale uncertainty has several independent components. They are as following

- Absolute, HighPtExtra, SinglePion(ECAL,HCAL), QCDFlavor, Time, RelativeJER(EC1,EC2,HF), RelativePt(BB,EC1,EC2,HF), RelativeFSR, RelativeStat(EC2,HF), PileUpDataMC, PileUpPt(BB,EC,HF), PileUpBias, FlavorZJet, FlavorPhotonJet, FlavorPureGluon, FlavorPureQuark, FlavorPureCharm, FlavorPureBottom.
- The total Jet Energy Scale uncertainty is obtained by summing the independent components in quadrature.

# **Experimental Uncertainty Total**



# JES factor vs |y|



The JES factor as function of |y| is shown for the range  $74~{\rm GeV} < p_{\rm T} < 114~{\rm GeV}$ . The JES-NoFlavor component is falling for the last rapidity bin.

# JES factor vs $p_T$



The JES factor as function of  $p_T$  for the last rapidity bin.

# Data Over Theory



Data Over Theory compared to ratio with other PDF sets for CT10

# $\alpha_s(M_z)$ Determination

From the obtained double differential crosss section, we aim to extract the strong coupling contact at  $\alpha_s(M_z)$ .

The  $\alpha_s(M_z)$  is extracted from the minimum of  $\chi^2(\alpha_s(M_z))$  which is defined as

$$\chi^2 = \sum_{i,j=1}^{N_{BIN}} (\mathcal{O}_{Th}^i - \mathcal{O}_{Data}^i) C_{ij}^{-1} (\mathcal{O}_{Th}^j - \mathcal{O}_{Data}^j)$$

where  $\mathcal{O}=\frac{d^2\sigma}{dp_Tdy}$  and C is the covariance matrix which includes statistical and JES systematics.

$$C = Cov^{Unfolding} + \sum Cov^{JES} + Cov^{LUMI} + Cov^{Theo}$$

- The obtained  $\chi^2$  distribution as a function of  $\alpha_s(M_Z)$  is fitted with a 4th order polynomial.
- The PDF and JES uncertainty are evaluated by removing the components in the covariance matrix.

# NLO $\chi^2$ Plots



Basic  $\chi^2$  plots for two extreme rapidity bins using NLO CT10 PDF.





# NNLO $\chi^2$ Plots



Basic  $\chi^2$  plots for two extreme rapidity bins using NNLO NNPDF2.1 PDF.





## JES Uncertainty for CT10-NLO



October 4, 2013

## PDF Uncertainty for CT10-NLO



## JES Uncertainty for NNPDF



# PDF Uncertainty for NNPDF



# Uncertainty Table for CT10-NLO

| YBin      | JES                  | PDF                  | SCALE        |
|-----------|----------------------|----------------------|--------------|
| 0.0 - 0.5 | $+0.0030 \\ -0.0040$ | $+0.0020 \\ -0.0022$ | $\pm 0.0014$ |
| 0.5 - 1.0 | +0.0035 $-0.0038$    | $+0.0022 \\ -0.0029$ | $\pm 0.0012$ |
| 1.0 - 1.5 | +0.0037 $-0.0039$    | +0.0021 $-0.0025$    | $\pm 0.0015$ |
| 1.5 - 2.0 | +0.0036 $-0.0040$    | +0.0025 $-0.0031$    | $\pm 0.0019$ |
| 2.0 - 2.5 | +0.0034 $-0.0036$    | +0.0023 $-0.0032$    | $\pm 0.0028$ |
| 2.5 - 3.0 | +0.0025 $-0.0029$    | +0.0026 $-0.0028$    | $\pm 0.0030$ |

#### Remarks

#### **Summary**

- A re-evaluation of experimental uncertainty on measured cross-section carried out.
- The uncertainty band looks reasonable except last y bin for low  $p_T$  region.
- The JES factor found to be dicontinuous for the last y bin for low  $p_T$  region.
- An evaluation of JES, PDF and SCALE uncertainty is determined for the  $\alpha_s(M_z)$  fitting.

#### **Future Plans:**

- The correlation of new flavor components of uncertainty has to be evaluated.
- The uncertainty on  $\alpha_s(M_z)$  for other PDF sets has to be determined.
- We will proceed to study the  $\alpha_s(Q)$  evolution with scale.