4 Soundness

We now prove the soundness of liquid types.

Theorem 4.1

Let $iet \in \langle int-exp-type \rangle$ and $exp \in IntExp$. Assume iet : exp can be derived.

Then $\llbracket iet \rrbracket = exp$.

Proof. Let $iet \in \langle int-exp-type \rangle$ and $exp \in IntExp$. Assume iet : exp can be derived.

- Case iet = i for $i \in Int$: Then [iet] = i and therefore the conclusion holds.
- Case $iet = iet_1 + iet_2$ for $iet_1, iet_2 \in \langle int-exp-type \rangle$: From the premise of the inference rule, we assume that $iet_1 : exp_1$ and $iet_2 : exp_2$ hold. By induction hypothesis $[iet_1] = exp_1$ and $[iet_2] = exp_2$. Thus $[iet] = exp_1 + exp_2$ and therefore the conclusion holds.
- Case $iet = iet_1 * i$ for $iet_1 \in \{int-exp-type\}$ and $i \in Int$: From the premise of the inference rule, we assume that $iet_1 : exp_1$ holds. By induction hypothesis $[iet_1] = exp_1$. Thus $[iet] = exp_1 \cdot i$ and therefore the conclusion holds.

• Case iet = a for $a \in \mathcal{A}$: Then [a] = a and therefore the conclusion holds.

Theorem 4.2

Let $qt \in \text{qualifier-type} \text{ and } q \in \mathcal{Q}$. Assume qt: q can be derived.

Then [qt] = q.

Proof. Let $qt \in \text{qualifier-type}$ and $q \in \mathcal{Q}$. Assume qt : q can be derived.

- Case qt = True: Then [qt] = True and therefore the conclusion holds.
- Case qt = False: Then $[\![qt]\!] = False$ and therefore the conclusion holds.
- Case qt = (<) iet v: From the premise of the inference rule, we assume that
 iet: exp. By Theorem 4.1 [iet] = exp for exp ∈ IntExp. Then [qt] = exp < ν
 and therefore the conclusion holds.
- Case qt = (<) v iet: From the premise of the inference rule, we assume that iet : exp. By Theorem 4.1 [iet] = exp for $exp \in IntExp$. Then $[qt] = \nu < exp$ and therefore the conclusion holds.
- Case qt = (=) v iet: From the premise of the inference rule, we assume that iet : exp. By Theorem 4.1 $\llbracket iet \rrbracket = exp$ for $exp \in IntExp$. Then $\llbracket qt \rrbracket = (\nu = exp)$ and therefore the conclusion holds.

- Case $qt = (\&\&) \ qt_1 \ qt_2$ for $qt_1, qt_2 \in \text{-qualifier-type-}$: From the premise of the inference rule, we assume that $qt_1 : q_1$ and $qt_2 : q_2$ hold for $q_1, q_2 \in \mathcal{Q}$. By induction hypothesis $[\![qt_1]\!] = q_1$ and $[\![qt_2]\!] = q_2$. Thus $[\![qt]\!] = q_1 \land q_2$ and therefore the conclusion holds.
- Case qt = (| |) qt_1 qt_2 for $qt_1, qt_2 \in \text{qualifier-type}$: From the premise of the inference rule, we assume that $qt_1 : q_1$ and $qt_2 : q_2$ hold for $q_1, q_2 \in \mathcal{Q}$. By induction hypothesis $[\![qt_1]\!] = q_1$ and $[\![qt_2]\!] = q_2$. Thus $[\![qt]\!] = q_1 \vee q_2$ and therefore the conclusion holds.
- Case $qt = \text{not } qt_1$ for $qt_1 \in \text{-qualifier--type--}$: From the premise of the inference rule, we assume that $qt_1 : q_1$ holds for $q_1 \in \mathcal{Q}$. By induction hypothesis $||qt_1|| = q_1$. Thus $||qt|| = \neg q_1$ and therefore the conclusion holds.

Theorem 4.3

Let $\Theta: \mathcal{V} \nrightarrow \mathcal{T}$. Let $lt \in \text{liquid-type} \text{ and } \hat{T} \in \mathcal{T}$. Assume $lt :_{\Theta} \hat{T}$ can be derived.

Then $[lt] = \hat{T}$.

Proof. Let $\Theta: \mathcal{V} \to \mathcal{T}$. Let $lt \in \text{liquid-type} \text{ and } \hat{T} \in \mathcal{T}$. Assume $lt :_{\Theta} \hat{T}$ can be derived.

- Case $lt = "\{v: Int \mid "qt"\}" \text{ for } qt \in \text{qualifier-type} >: From the premise of the inference rule, we assume that <math>qt: q \text{ for } q \in \mathcal{Q} \text{ holds. By Theorem 4.2}$ $[\![qt]\!] = q$. Then $[\![tt]\!] = \{\nu: Int \mid q\}$ and therefore the conclusion holds.
- Case lt = a ":" "{v:Int|" qt "}" "->" lt_2 for $a \in \mathcal{V}, qt \in \text{qualifier-type}$ and $lt \in \text{liquid-type}$: From the premise of the inference rule, we assume that "{v:Int|" qt "}" : Θ \hat{T}_1 and $lt_2 :_{\Theta \cup \{(a,\hat{T}_1)\}} \hat{T}_2$ for liquid types \hat{T}_1, \hat{T}_2 . By induction hypothesis $[\![lt_2]\!] = \hat{T}_2$. Then $[\![lt]\!] = a : \hat{T}_1 \to \hat{T}_2$ and therefore the conclusion holds.

Theorem 4.4

Let Γ be a type context, $t \in \mathsf{<type>}$ and $T \in \mathcal{T}$. Assume $\Gamma \vdash t : T$ can be derived.

Then $[t]_{\Gamma} = T$.

Proof. Let Γ be a type context, $t \in \mathsf{<type>}$ and $T \in \mathcal{T}$. Assume $\Gamma \vdash t : T$ can be derived.

•	Case $t = lt$ for $lt \in \text{\em cliquid-type}$: From the premise of the inference rule,
	we assume that $lt :_{\Theta} \hat{T}$ for liquid type \hat{T} holds. By Theorem 4.3 $\llbracket tt \rrbracket = \hat{T}$.
	Then $[t] = \hat{T}$ and therefore the conclusion holds.

All other cases have been proven in Theorem ??.