- 、問題定義

給定一組 linearly ordered people set " $P = \{P_1 \cdot P_2 \cdot ... \cdot P_n\}$ " · 其 中可能依年齡身高來做排序的依據,得到 $P_1 < P_2 < ... < P_n$ 。

- 給定一組 partially ordered jobs set " $J = \{J_1, J_2, ..., J_n\}$ "。
- 定義一指派工作函數 " $f: P \rightarrow J$ ", 其具有以下性質, 若 $f(P_i) \le f(P_i)$, 則 P_i ≤ P_i,且保證若 i ≠ j,則 f(P_i) ≠ f(P_i)。
- 指派工作的過程中會產生一成本,這邊定義 C_{ii} 表示 $P_i \rightarrow J_i$ 所產生的 成本,並定義 X_{ij} ,若 $P_i \rightarrow J_j$,則 $X_{ij} = 1$,否則 $X_{ij} = 0$ 。
- 解 min $\Sigma C_{ii}X_{ii} \cdot i,j \in \{1,2,...,n\}$ · 也就是求解指派工作的過程中 · 所產 生的做小成本。
- 這一問題為最佳化問題,經過證明得出這問題屬於 NP-hard。

二、解法敘述

先回顧 Topological Sorting,下圖為一 Partial ordering of jobs 和 topologically sorted sequences •

$$J_{1}, J_{2}, J_{3}, J_{4}$$

$$J_{1}, J_{2}, J_{4}, J_{3}$$

$$J_{1}, J_{3}, J_{2}, J_{4}$$

$$J_{2}, J_{1}, J_{3}, J_{4}$$

$$J_{2}, J_{1}, J_{4}, J_{3}$$

A partial ordering of jobs

Topologically sorted sequences

每一組 sequence 表示一個可行的工作指派順序,以 J_1 , J_2 , J_3 , J_4 來說,也 就是 $P_1 \rightarrow J_1 \cdot P_2 \rightarrow J_2 \cdot P_3 \rightarrow J_3 \cdot P_4 \rightarrow J_4 \cdot$ 我們可以將所有 topologically sorted sequences 經由以下步驟:

- (1) 選取一個 in-degree 為零的節點,代表這個工作沒有前繼的工作
- (2) 將此節點選為所有拓樸排序結果的元素
- (3) 自工作集合中將此元素刪去,剩下的工作集合依然為部分排序狀態 畫成一顆 tree 來表示他,若下圖所示。

A tree of all topologically sorted sequences

之後我們對這棵樹採取 branch-and-bound 策略找出最佳解,步驟如下:

(1) 給定一個 $cost\ matrix$,對每一 $row\$ 與 $col\$ 減去該行和該列的最小值,

使得每一行和每一列至少有一個 0,得到 reduced cost matrix,之後便將 矩陣中所有元素加總,即為給定工作排序的 lower bound ,如下圖所示。

Job Person	1	2	3	4
1	29	19	17	12
2	32	30	26	28
3	3	21	7	9
4	18	13	10	15

A cost matrix for a personnel assignment problem

	1			1	1
	Job Person	1	2	3	4
→	1	29-12=17	19-12=7	17-12=5	12-12=0
→	2	32-26=6	30-26=4	26-26 =0	28-26=2
→	3	3-3= <mark>0</mark>	21-3=18	7-3=4	9-3=6
→	4	18-10=8	13-10=3	10-10=0	15-10=5

After row operation

Date: 20th Nov., 2020

		1	1	1	1
	Job Person	1	2	3	4
\Rightarrow	1	17	7-3=4	5	0
\Rightarrow	2	6	4-3=1	0	2
\rightarrow	3	0	18-3=15	4	6
\Rightarrow	4	8	3-3= <mark>0</mark>	0	5

資工所 r08922123

Author: 王韻豪

After col operation

Job Person	1	2	3	4
1	17	4	5	0
2	6	1	0	2
3	0	15	4	6
4	8	0	0	5

Total Cost = 17+4+5+...+8+5 = 54 A reduced cost matrix

(2) 根據 reduced cost matrix,將剩下的 cost 補上並畫出一棵樹,如下 圖。

之後我們先找尋一組解,例如 J_2 , J_1 , J_3 , J_4 , 經過 reduced cost matrix 計算得到的 Total cost 為 70,接著找尋其他分支如 $J_2 \cdot J_1 \cdot J_4 \cdot J_3$ 或是 $J_1 \cdot$ $J_3 \cdot J_2 \cdot J_4 \cdot$ 在選擇某些節點時發現總體成本已經超過一開始所找到的成本 \cdot 代表此分支可以被刪去,若發現另外一組解的成本小於一開始的,則更新最 低成本。

三、讀後心得

讀完後發現其實這樣的問題在很多場合都適用,例如飛機排班,或是礦場 排班都符合條件需求,藉由 topologically sorted 後找到可能的解,再由 分支接界定法(branch-and-bound)來找出最佳解,我認為是一個非常實

資工所 r08922123 Date: 20th Nov., 2020 Author: 王韻豪

用的方法,希望在未來的生活裡,遇到一些類似的難題,我也能運用此方 式來最佳化。