Autoencoders vs EOF

ML Journal Club / August 6, 2025

Why reduce dimensionality?

Gridded field at 5x5 deg → 2592 grid points for each timestep and variable

For practical part, we want to find the most efficient way to encode the **2592-dimensional** information with just **5 dimensions**

Climate information is redundant since fields often follow coherent patterns and have high spatial autocorrelation (seasonal cycle, ENSO, PDO, ...)

 $a_{0}(\#) \perp a_{1} + a_{2} + a_{3} + a_{4} + a_{5} + a$

m-dim. vector over n times

m-dim. vector

over n times

m-dim. vector

over n times

m-dim. vector

m-dim. vector

over n times

over n times

EOF and PC matrices are unitary (orthonormal)

m-dim. vector

over n times

 $\frac{f_0}{f_0}(+) \perp a_0 = a_1 - (f_1) \perp a_0 = a_1 + b_1$

m-dim. vector over n times

represented by $\tilde{\mathbf{m}}$ vectors

 $\widetilde{fo}(t) + 00 = 01 = (t+1) + 00 = 01 = t+0$

m-dim. vector over n times

represented by $\tilde{\mathbf{m}}$ vectors

Projection to and from latent (EOF) space

Projection to and from latent (EOF) space

Projection to and from latent (EOF) space

Singular values tell you the variance of each EOF/PC pair

$$\delta_i^2 = \delta_i^{jance}$$

Singular values tell you the variance of each EOF/PC pair

EOFs do not necessarily encode "dynamically relevant" info

FIG. 3. Lorenz (1963) attractor $\mathbf{x}(t)$ for standard parameters producing a strange attractor. The colored lines are the projections of $\mathbf{x}(t)$ onto the three EOF modes: $\mathbf{p}_j(t) = [\mathbf{x}(t) \cdot \mathbf{e}_j]\mathbf{e}_j$. Redrafted following Mo and Ghil (1987).

Autoencoders = empirical (non)orthogonal functions (ENOF)

Reconstruct inputs with reduced latent space Similar to EOFs, but not orthogonal or linear

MLPs similar in spirit to EOF mappings

Reconstruct inputs with reduced latent space Similar to EOFs, but not orthogonal or linear

Architecture we will be using: Fully Connected, 4 layers

To train: MSE loss of reproducing input as output

"Latent space" is 5-dimensional "bottleneck" activations

https://github.com/DominikStiller/mljc-autoencoder-workshop