Guía 4: ejercicios

Ejercicio 1

Item A

- Reflexividad (I1):
 - $a s a = |a + a| \neq a \text{ si } a \neq 0 \Rightarrow NO$
 - $a i a = \min\{a, a\} = a \Rightarrow \mathsf{SI}$
- Conmutatividad (I2, I3):
 - $a s b = |a + b| = |b + a| = b s a \Rightarrow SI$
 - $a i s = \min\{a,b\} = \min\{b,a\} = b i a \Rightarrow \mathsf{SI}$
- Asociatividad (I4, I5):
 - $a s (b s c) = |a + |b + c|| \Rightarrow NO$. Contraejemplo con a = 1, b = c = 0.5
 - $a \ i \ (b \ i \ c) = \min\{a \min\{b, c\}\} = \min\{a, b, c\} = \min\{\min\{a, b\}, c\} = (a \ i \ b) \ c \Rightarrow \mathsf{SI}$
- Absorción (I6, I7):
 - $a s (a i b) = |a + \min\{a, b\}| \Rightarrow NO$. Contraejemplo con a = b = 1.
 - $a \ i \ (a \ s \ b) = \min\{a, |a+b|\} \Rightarrow \mathsf{NO}$. Contrajemplo con a=1, b=-1

Item B

Básicamente s es XOR (\oplus) e i es AND (\land) . Con ello, veamos:

- Reflexividad (I1):
 - $a \oplus a = 0 \forall a \Rightarrow NO$ por contraejemplo con a = 1
 - $a \wedge a = a \Rightarrow \mathsf{SI}$
- Conmutatividad (I2, I3): Sabemos que sí
- Asociatividad (I4, I5): Sabemos que sí
- Absorción (I6, I7):
 - $a \oplus (a \land b) \Rightarrow \mathsf{NO}$. Contraejemplo con a = b = 1
 - $a \wedge (a \oplus b) \Rightarrow NO$. Contraejemplo con a = b = 1

Ejercicio 2

Vamos a demostrar de forma completa el **Teorema de Dedekind**, el cual dice que: Sea (L,s,i) un reticulado terna, la relación binaria sobre L definida por $x\leq y\iff x\ s\ y=y$ es un orden parcial sobre L para el cual se cumple que $sup(\{x,y\})=x\ s\ y$ y que $inf(\{x,y\})=x\ i\ y\ \forall x,y\in L.$

Primero, demostremos que \leq es reflexiva, transitiva y antisimétrica, suponiendo $x, y, z \in L$:

- Reflexividad: Por reflexividad de s sabemos que x s x = x. Luego, por def., esto implica que $x \le x$ por lo que se demuestra
- Transitividad: Digamos que x s y = y y que y s z = z. Luego, esto significa que:

```
(x \ s \ y) \ s \ (y \ s \ z) = y \ s \ z x \ s \ (y \ s \ y) \ s \ z = y \ s \ z (Asociatividad) x \ s \ y \ s \ z = y \ s \ z (Reflexividad) x \ s \ (y \ s \ z) = y \ s \ z (Asociatividad) x \ s \ z = z (Por suposición anterior)
```

Ahora, por def. del orden parcial, tenemos que si $x \le y$ y si $y \le z$ entonces $x \le z$, por lo que se cumple la transitividad.

• Antisimetría: Supongamos x s y = y y que y s x = x. Luego, por conmutatividad sabemos que x s y = y s x por lo que x = y. Por def. del orden parcial, esto significa que si $x \le y$ y si $y \le x$, entonces x = y, por lo que se cumple la antisimetría.

Ahora, ya habiendo demostrado por def. que \leq es un orden parcial sobre L, tenemos que demostrar que $\forall x,y$ se cumple que $sup(\{x,y\})=x$ s y y que $inf(\{x,y\})=x$ i y. Veamos ambos casos:

- $sup(\{x,y\}) = x s y$:
 - Notemos que x s y = x s x s y = x s (x s y) por reflexividad y asociatividad. Luego, por def. del orden parcial, tenemos que $x \le x$ s y. Del mismo modo, llegamos también a que $y \le x$ s y. Esto significa, entonces, que x s y es una cota superior de $\{x,y\}$
 - Sea z una cota superior de $\{x,y\}$, entonces $x \le z \land y \le z$, por lo que por def. del orden parcial tenemos que x s $z = z \land y$ s z = z. Ahora, notemos que:

$$(x\ s\ z)\ s\ (y\ s\ z) = z\ s\ z$$
 $(x\ s\ y)\ s\ (z\ s\ z) = z\ s\ z$ Asociatividad y Conmutatividad
 $(x\ s\ y)\ s\ z = z$ Reflexividad

Luego, por def. del orden parcial, x s $y \le z$, por lo que esto significa que es la menor cota superior de $\{x,y\}$

Finalmente, entonces, esto significa por def. de supremo que $sup(\{x,y\}) = x \ s \ y$.

- $inf(\{x,y\}) = x i y$:
 - Notemos que $x \leq y \iff x \ s \ y = y \iff x \ i \ y = x \ i \ (x \ s \ y) = x.$ Entonces, $x \leq y \iff x \ i \ y = x$ o, por conmutatividad, $y \ i \ x = x$ (def. alternativa del orden parcial).
 - Veamos que x i y $\stackrel{Reflexividad}{=}$ (x i x) i y = $\stackrel{Asociatividad}{=}$ x i (x i y). Luego, por def. alternativa del orden parcial, x i y $\leq x$. Del mismo modo, llegamos a que x i y $\leq y$, por lo que por def. x i y es una cota inferior de $\{x,y\}$

• Sea z una cota inferior de $\{x,y\}$, entonces por def. $z \le x \land z \le y$, por lo que por def. alternativa del orden parcial, z i $x = z \land z$ i y = z. Ahora, notemos que:

$$(z\ i\ x)\ i\ (z\ i\ y) = z\ i\ z$$
 $(x\ i\ y)\ i\ (z\ i\ z) = z\ i\ z$ Asocitatividad y Conmutatividad $(x\ i\ y)\ i\ z = z$ Reflexividad

Luego, por def. alternativa del orden parcial, tenemos que $z \le x$ i y, por lo que x i y es la mayor cota inferior de $\{x,y\}$.

Finalmente, entonces, esto significa que por la def. de ínfimo, $inf(\{x,y\}) = x i y$.

Con todo ello, entonces, se demuestra el **Teorema de Dedekind** ■.

Ejercicio 2,5

$$\mathcal{F}: \{(L, \leq): (L, \leq) ext{ es reticulado par} \}
ightarrow \{(L, s, i): (L, s, i) ext{ es reticulado terna} \} \ \mathcal{F}((L, \leq)) = (L, sup, inf)$$

Ejercicio 3

Es ver cuántos reticulados terna hay con universo $\{1, 2, 3\}$. Por el *Teorema de Dedekind*, es equivalente a ver la cantidad de reticulados pares con ese universo.

En total son 6 las posibilidades de reticulados pares para este universo dado que su diagrama de Hasse es un "palito" (es decir, de la forma o-o-o).

Ejercicio 4

Sea (L,s,i) un reticulado terna, entonces su orden parcial asociado es $\leq = \{(x,y): x \ s \ y = y\}$. Ahora, si consideramos $\leq' = \{(x,y): (y,x) \in \leq\} = \{(x,y): x \ s \ y = x\}$, podemos notar que claramente es un orden parcial y se cumple que el supremo y el ínfimo de (L,\leq) son el ínfimo y el supremo de (L,\leq') respectivamente. Teniendo esto en cuenta, entonces (L,\leq') es un reticulado par, de donde se llega a que (L,i,s) es un reticulado terna. \blacksquare

Respecto a la relación entre los órdenes parciales asociados, notar que uno es el contrario del otro (excepto por la reflexividad, obvio).

Ejercicio 5

Item A

Falso. Como s es una función, entonces un elemento de esta es una 2-UPLA.

Item B

Verdadero. En particular no puede ser vacío por def. ya que ni sería un poset. Ahora, si L tuviera más de un elemento, tendríamos que dados $x,y\in L:x< y$, entonces x y=y. Sin embargo, como s también es el ínfimo, tendríamos que x s y=x, por lo que x=y y se llega a un absurdo.

Finalmente, |L| = 1.

Item C

Impreciso. El orden parcial asociado a s,i depende del tipo de los elementos de L, por lo que no siempre marca una relación entre s e i (solo cuando los elementos de L son conjuntos).

Item D

Impreciso. $s: L^2 \to L$, por lo que no tiene sentido.

Ejercicio 6

Item A

Notemos que, sean $x, y, z \in \mathbb{R}$, $x \ i \ (y \ s \ z) = \min(x, \max(y, z))$. Ahora, es sencillo notar que esto es igual a $\max(\min(x, y), \min(x, z)) = (x \ i \ y) \ s \ (x \ i \ z)$ dado que:

- Si $inf(\{x,y,z\}) = x$, entonces claramente la 1era devuelve x y en la segunda nos queda $\max(x,x) = x$.
- Si $inf(\{x,y,z\})=y$, entonces en la 1era nos queda $\min(x,z)$. Respecto a la segunda, tendríamos $\max(y,\min(x,z))$, pero al ser y el más chico, claramente queda $\min(x,z)$
- Si $inf({x, y, z}) = z$, es análogo a lo anterior.

Con ello, se demuestra que x i (y s z) = (x i y) s (x i z), por lo que (\mathbb{R}, \max, \min) es distributivo \blacksquare .

Item B

Sean $X,Y,Z\in\mathcal{P}(\mathbb{N})$, es trivial ver que X i (Y s Z)=(X i Y) s (X i Z) dado que es lo mismo que $X\cap (Y\cup Z)=(X\cap Y)\cup (X\cap Z)$, lo cual es una propiedad de conjuntos que ya conocemos \blacksquare .

Ejercicio 7

Es claro de ver que $(\{1,2,3,5,30\},s,i)$ no es un reticulado terna distributivo dado que $2\ i\ (3\ s\ 5)=2\ i\ 30=2$ pero $(2\ i\ 3)\ s\ (2\ i\ 5)=1\ s\ 1=1.$

Ejercicio 8

Notemos que $L = \{\emptyset, \{1\}, \{2\}, \{3\}, \{2,3\}, \{1,3\}, \{1,2,3\}\}$

Item A

Item B

Porque tiene esa forma el diagrama de Hasse

Item C

No sé a qué se refiere el enunciado

Item D

No es distributivo dado que $\{2,3\}$ i $(\{1\}$ s $\{2\}) = \{2,3\}$ i $\{1,2,3\} = \{2,3\}$ pero $(\{2,3\}$ i $\{1\})$ s $(\{2,3\}$ i $\{2\}) = \emptyset$ s $\{2\} = \{2\}.$

Ejercicio 9

Item A

Los subuniversos de $(\mathcal{P}(\{1,2\}),\cup,\cap)$ son $\mathcal{P}(\{1,2\})-\{\emptyset\}$

Item B

```
Los subuniversos de (\{1,2,3,6,12\},mcm,mcd) son [\{\{1,2,3,6,12\},\{1,2,3,6\}\} \cup \mathcal{P}(\{1,2,6,12\}) \cup \mathcal{P}(\{1,3,6,12\})] - \{\emptyset\}, siendo 2+2^4+2^3-1=25 en total.
```

Los subreticulados terna correspondientes son

```
egin{aligned} (L,mcm,mcd) orall L &\in \{\{1,2,3,6,12\},\{1,2,3,6\}\} \ \mathsf{y} \ &(L',\max,\min) orall L' &\in [\mathcal{P}(\{1,2,6,12\}) \cup \mathcal{P}(\{1,3,6,12\})] - \{\emptyset\}. \end{aligned}
```

Item C

Los subuniversos de (\mathbb{R}, \max, \min) son $\mathcal{P}(\mathbb{R}) - \{\emptyset\}$.

Ejercicio 9,5

En el caso de los subuniversos de (\mathbb{N}, \cup, \cap) con tres elementos, tenemos que son "palitos" en su diagrama de Hasse. Es decir, sean X, Y, Z los elementos, $X \subset Y \subset Z$.

En el caso de cuatro elementos, tenemos los "palitos" y también el rombo. Este último se describe de la siguiente forma: sean X,Y,W,Z los elementos, entonces $X\subset Y\subset W, X\subset Z\subset W.$

Ejercicio 9,7

Es la misma idea que los anteriores para resolverlo.

Ejercicio 10

Item A

Verdadero

Item B

Falso. Ya que no es cerrado en s porque $2 s 3 = 6 \notin \{1, 2, 3, 12\}$

Item C

Falso. Ti(S) = CONJUNTO

Item D

Verdadero. Como S_1, S_2 son subuniversos de (L, s, i), entonces son cerrados por s, i. Luego, esto significa que:

- $ullet \ \ orall x,y\in S_1, x\ s\ y\in S_1$
- $ullet \ orall x,y\in S_2, x\ s\ y\in S_2$

Ahora, si tenemos $x, y \in S_1 \cap S_2$, por lo anterior sabemos que $x \ s \ y \in S_1$ y que $x \ s \ y \in S_2$, por lo que $x \ s \ y \in S_1 \cap S_2$. Luego, $S_1 \cap S_2$ es cerrado bajo s, i, por lo que es un subuniverso de este reticulado terna.

Item E

Falso. Por contraejemplo considerando $(\{1,2,3,6\},|)$, $S_1=\{2\}$ y $S_2=\{3\}$, ya que claramente $\{2,3\}$ no es cerrado por mcm ni mcd.

Item F

Verdadero. Porque $L \subseteq L'$ en particular.

Item G

Falso. Simplemente tomar un ejemplo de los anteriores que no sea distributivo, y considerar un subreticulado con universo $\{x\}: x \in L'$, el cual sí es distributivo siempre.

Item H

Impreciso. No está definida la intersección para 3-UPLAS. Eso es para elementos de tipo CONJUNTO.

Item I

Verdadero. Como \leq es el orden asociado de (L, s, i), por def. $x \leq y \iff x \ s \ y = y \iff x \ i \ y = x$.

Ahora, $\leq \cap S^2 = \{(x,y): x \ s \ y = y \land x, y \in S\}$. Como $(S, \leq \cap S^2)$ es un reticulado par, entonces está definido el supremo y el ínfimo para todo par de elementos de S. Luego, es claro ver que $x \ \hat{s} \ y \in S$ y que $x \ \hat{i} \ y \in S$ para $x, y \in S$, por lo que es cerrado en S bajo \hat{s}, \hat{i} . Luego, por def. (S, \hat{s}, \hat{i}) es subreticulado terna de (L, s, i).

Ejercicio 11

Vamos a probar el lema que dice que: Si $F:(L,s,i)\to (L',s',i')$ es un homomorfismo biyectivo, entonces F es un isomorfismo.

Como F es un homomorfismo biyectivo, entonces solo tenemos que demostrar que F^{-1} es un homomorfismo para ver que F es un isomorfismo.

Por ello mismo, entonces, notemos que por def. de homomorfismo, sean $x,y\in L$ se cumple que $F(x\ s\ y)=F(x)\ s'\ F(y)$. Si aplicamos la inversa a ambos lados tenemos $F^{-1}(F(x\ s\ y))=x\ s\ y=F^{-1}(F(x))\ s\ F^{-1}(F(y))=F^{-1}(F(x)\ s'\ F(y))$. Ahora, sean $a=F(x),b=F(y)\in L'$, entonces es lo mismo que $F^{-1}(a\ s'\ b)=F^{-1}(a)\ s\ F^{-1}(b)$.

Teniendo esto último en cuenta, como F es biyectiva, esto implica que existe una relación uno-a-uno entre los elementos de los reticulados terna, por lo que $\forall a,b\in L', F^{-1}(a\ s'\ b)=F^{-1}(a)\ s\ F^{-1}(b).$ De forma análoga llegamos a lo mismo pero con los ínfimos. Luego, entonces, por def. F^{-1} es un homomorfismo.

Finalmente, al ser F un homomorfismo biyectivo con F^{-1} homomorfismo, por def. F es un isomorfismo, por lo que $(L, s, i) \cong (L', s', i')$.

Ejercicio 12

Vamos a probar el lema que dice que: Sean (L,s,i),(L',s',i') reticulados terna, $(L,\leq),(L',\leq')$ los posets asociados y $F:L\to L'$ una función, entonces F es un isomorfismo de (L,s,i) en $(L',s',i')\iff F$ es un isomorfismo de (L,\leq) en (L',\leq') .

Veamos que F isomorfismo de (L,s,i) en $(L',s',i')^{\text{def. isomorfismo}} F$ es homomorfismo biyectivo y F^{-1} es un homomorfismo

$$\overset{ ext{def. homomorfismo}}{\Longleftrightarrow} orall x, y \in L, F(x \ s \ y) = F(x) \ s' \ F(y) \wedge F(x \ i \ y) = F(x) \ i' \ F(y).$$

Ahora, con esto en cuenta, notemos que sean $x,y\in L$, entonces $x\leq y\iff x\ s\ y=y\land x\ i\ y=x\iff F(y)=F(x)\ s'\ F(y)\land F(x)=F(x)\ i'\ F(y)\iff x\leq' y$. Luego, por def. llegamos a que F es un isomorfismo de (L,\leq) en (L',\leq') por def. dado que es biyectiva y F,F^{-1} son homomorfismos. \blacksquare

Ejercicio 12,3

Vamos a demostrar que si $F:(L,s,i)\to (L',s',i')$ es un homomorfismo suryectivo y (L,s,i) es distributivo, entonces (L',s',i') es distributivo.

Para ver esto, digamos que tenemos $x, y, z \in L'$. Como F es suryectiva,

 $\exists a,b,c \in L: x = F(a), y = F(b), z = F(c)$. Luego, notemos que:

$$egin{aligned} x \ i' \ (y \ s' \ z) &= F(a) \ i' \ (F(b) \ s' \ F(c)) \ &= F(a) \ i' \ F(b \ s \ c) \ &= F(a \ i \ (b \ s \ c)) \end{aligned} \qquad ext{(def. homomorfismo)}$$

$$\begin{array}{l} (x\ i'\ y)\ s'\ (x\ i'\ z) = (F(a)\ i'\ F(b))\ s'\ (F(a)\ i'\ F(c)) \\ = F(a\ i\ b)\ s'\ F(a\ i\ c) & (\text{def. homomorfismo}) \\ = F((a\ i\ b)\ s\ (a\ i\ c)) & (\text{def. homomorfismo}) \end{array}$$

Con ello, entonces, tenemos que si (L, s, i) es distributivo, entonces $a\ i\ (b\ s\ c) = (a\ i\ b)\ s\ (a\ i\ c)$, por lo que $x\ i'\ (y\ s'\ z) = (x\ i'\ y)\ s'\ (x\ i'\ z)$, por lo que por def. (L', s', i') es distributivo. \blacksquare

Respecto al caso del isomorfismo, como F, F^{-1} son homomorfismos suryectivos, entonces tenemos que:

$$(L,s,i)$$
 distributivo $\Rightarrow (L',s',i')$ distributivo (L',s',i') distributivo $\Rightarrow (L,s,i)$ distributivo

Por lo que (L,s,i) distributivo $\iff (L',s',i')$ distributivo \blacksquare .

Ejercicio 12,6

Notemos que si F es un homomorfismo suryectivo entre los reticulados terna, entonces con la misma idea del lema 4 llegamos a que F es un homomorfismo suryectivo de los posets asociados. Luego, como los posets asociados $(L, \leq), (L', \leq')$ cumplen que si a es máximo de (L, \leq) entonces F(a) es máximo de (L', s', i'), podemos demostrar esta propiedad. \blacksquare

Ejercicio 13

Entre (a) y (b).

Ejercicio 14

Notemos que \tilde{s} no es ambigua dado que tenemos:

$$\begin{array}{ll} x/\theta \stackrel{\sim}{s} y/\theta = \{x' \in L : x\theta x'\} \stackrel{\sim}{s} \{y' \in L : y\theta y'\} & \text{por def.} \\ &= \{x' \stackrel{\sim}{s} y' : x', y' \in L \wedge x\theta x' \wedge y\theta y'\} \\ &= \{x' \stackrel{\sim}{s} y' : x', y' \in L \wedge (x \ s \ y)\theta (x' \ s \ y)\} & \text{por prop. (1)} \\ &= (x \ s \ y)/\theta & \text{por def.} \end{array}$$

Del mismo modo, mostramos que $\stackrel{\sim}{i}$ tampoco es ambigua.

Ejercicio 15

La idea es hacerlo con los diagramas de Hasse y luego darlos de forma explícita:

Con ello, podemos ver las siguientes congruencias (dadas por la partición):

- $\{\{\emptyset\}, \{\{a\}\}, \{\{b\}\}, \{\{a,b\}\}\}\}$ cuyo reticulado terna cociente es isomorfo a $(\{1,2,3,6\}, mcm, mcd)$.
- $\{\{\emptyset\}, \{\{a\}, \{b\}\}, \{\{a, b\}\}\}\}$ cuyo reticulado terna cociente es isomorfo a $(\{1, 2, 3\}, \max, \min)$
- $\{\{\emptyset\}, \{\{a\}, \{b\}, \{a,b\}\}\}\$ cuyo reticulado terna cociente es isomorfo a $(\{1,2\}, \max, \min)$
- $\{\{\emptyset,\{a\}\},\{\{b\},\{a,b\}\}\}$ cuyo reticulado terna cociente es isomorfo a $(\{1,2\},\max,\min)$
- $\{\{\emptyset, \{a\}, \{b\}\}, \{\{a,b\}\}\}\}$ cuyo reticulado terna cociente es isomorfo a $(\{1,2\}, \max, \min)$
- $\{\{\emptyset, \{a\}, \{b\}, \{a, b\}\}\}\}$ cuyo reticulado terna cociente es isomorfo a $(\{1\}, \max, \min)$

Ejercicio 15,5

Item A

Item B

Tiene sentido porque el diagrama de Hasse con la congruencia nos queda así:

Item C

 $(L,mcm,mcd)/ heta=(\{\{1,2\},\{3,6\},\{9,18\}\},\stackrel{\sim}{s},\stackrel{\sim}{i})$ donde:

•
$$\{1,2\}\stackrel{\sim}{s}\{3,6\}=\{3,6\}$$
 y $\{1,2\}\stackrel{\sim}{i}\{3,6\}=\{1,2\}$

•
$$\{1,2\}\stackrel{\sim}{s}\{9,18\}=\{9,18\}$$
 y $\{1,2\}\stackrel{\sim}{i}\{9,18\}=\{1,2\}$

•
$$\{3,6\}\stackrel{\sim}{s}\{9,18\}=\{9,18\}$$
 y $\{3,6\}\stackrel{\sim}{i}\{9,18\}=\{3,6\}$

Item D

$$\stackrel{\simeq}{\leq} = \{(\{1,2\},\{1,2\}), (\{1,2\},\{3,6\}), (\{1,2\},\{9,18\}),\\ (\{3,6\},\{3,6\}), (\{3,6\},\{9,18\}), (\{9,18\},\{9,18\})\}$$

Item E

El isomorfismo está dado por:

$$egin{array}{l} \{1,2\} \leftrightarrow 0 \ \{3,6\} \leftrightarrow 1 \ \{9,18\} \leftrightarrow 2 \end{array}$$

Item F

La congruencia δ está dada por la partición $\{\{1,2,3\},\{6\},\{9\},\{18\}\}$ cuyo diagrama de Hasse es:

Y que, claramente, es isomorfo al rombo de $(\mathcal{P}(\{a,b\}), \cup, \cap)$.

Ejercicio 16

Queremos demostrar la siguiente propiedad: Sea (L, s, i) un reticulado terna cuyo máximo es 1, entonces si θ es una congruencia sobre (L, s, i), $1/\theta$ es el máximo de $(L, s, i)/\theta$.

Para ver esto, notemos que como 1 es el máximo de (L,s,i), entonces significa que $x \le 1 \forall x \in L$. Ahora, por def. del orden asociado, sabemos que eso implica que $x \le 1 = 1 \forall x \in L$.

Luego, sea θ la congruencia y sea $y \in L$, por def. de congruencia sabemos que $y/\theta \ s \ 1/\theta = (y \ s \ 1)/\theta = 1/\theta$ (por lo visto antes). Ahora, por def. del orden asociado a un reticulado terna, esto claramente implica que $y/\theta \stackrel{\sim}{\le} 1/\theta$. Como esto se hizo $\forall y \in L$, quiere decir por def. que $1/\theta$ es el máximo del cociente. \blacksquare

Ejercicio 17

Por el ejercicio anterior, y haciéndolo de forma análoga para el ínfimo, tenemos que $1/\theta$ y $0/\theta$ son el máximo y el mínimo, respectivamente, del cociente de (L,s,i). Con ello, por def. de congruencia, como $(0,1)\in\theta$, entonces $0/\theta=1/\theta$.

Ahora, como son mínimo y máximo, tenemos que $\forall x \in L, 0/\theta \stackrel{\sim}{\leq} x/\theta \stackrel{\sim}{\leq} 1/\theta$, pero como $0/\theta = 1/\theta$, entonces $x/\theta = 0/\theta = 1/\theta \forall x \in L$. Luego, esto quiere decir que $x\theta y \forall x,y \in L$, por lo que $\theta = L^2$ y se demuestra. \blacksquare

Ejercicio 18

Vamos a demostrar el lema que dice que: Si $F:(L,s,i)\to (L',s',i')$ es un homomorfismo, entonces ker(F) es una congruencia sobre (L,s,i).

Para demostrar que $\theta = ker(F)$, tenemos que demostrar que dados $x, x', y, y' \in L$, entonces $x\theta x' \wedge y\theta y' \Rightarrow (x\ s\ y)\theta(x'\ s\ y')$. Por ello, digamos que tenemos estos $x, x', y, y' \in L$ que cumplen la precondición y veamos que, como $ker(F) = \{(a,b) \in L^2 : F(a) = F(b)\}$, entonces F(x) = F(x') y F(y) = F(y').

Teniendo esto último en cuenta, entonces:

$$F(x \ s \ y) = F(x) \ s' \ F(y)$$
 def. de homomorfismo
$$= F(x') \ s' \ F(y')$$
 lo visto antes
$$= F(x' \ s \ y')$$
 def. de homomorfismo

Luego, como F(x s y) = F(x' s y'), entonces $(x s y)\theta(x' s y')$ por lo que se demuestra que $\theta = ker(F)$ es una congruencia de (L, s, i).

Ejercicio 19

Las posibles congruencias de este reticulado terna las podemos ver gráficamente como particiones en el diagrama de Hass:

Ejercicio 20

Las posibles congruencias del diamante las obtenemos del ejercicio anterior sin considerar el elemento 12.

Ejercicio 21

Vamos a demostrar la propiedad que dice que: Sea θ una congruencia del reticulado terna (L,s,i), entonces:

- Si $c \in L/ heta$, entonces c es un subuniverso de (L,s,i)
- Si $c \in L/\theta$, entonces c es un subconjunto convexo de (L,s,i). Es decir, que $\forall x,y,z \in L$, $((x,y \in c \land x \leq z \leq y) \Rightarrow z \in c)$.

Item A

Digamos $x,y \in c$. Como $c \in L/\theta$ y θ es una congruencia de (L,s,i), entonces $x\theta y$. Ahora, como obviamente $x\theta x$, por definición de congruencia tenemos que $(x\ s\ x)\theta(x\ s\ y)$ y que $(x\ i\ x)\theta(x\ i\ y)$ por lo que por reflexividad de s,i llegamos a que $x\theta(x\ s\ y)$ y $x\theta(x\ i\ y)$. Finalmente, esto implica que $(x\ s\ y), (x\ i\ y) \in c$, por lo que c es cerrado por s,i y por def. es un subuniverso de (L,s,i). Con esto, se demuestra. \blacksquare

Item B

Teniendo esto en cuenta, como $x\theta y \wedge z\theta z$, como θ es una congruencia de (L,s,i), entonces por def. se cumple que $(x\ s\ z)\theta(y\ s\ z)$. Luego, tomando el resultado anterior, esto es lo mismo que $z\theta y$, por lo que $z/\theta=y/\theta=x/\theta$ y, por ende, $z\in c$ demostrándose, así, que c es un subconjunto convexo de (L,s,i).

Ejercicio 22

Item A

Verdadero. Trivial de ver si consideramos δ dado por la partición $\{S\} \cup (\bigcup_{x \in L: x \notin S} \{x\})$, la cual claramente es una congruencia de (L, s, i).

Item B

Verdadero. Vamos a hacer la demostración formal a continuación.

Vamos a demostrar la propiedad que dice: Sea (L, s, i) un reticulado terna distributivo y θ una congruencia sobre él, entonces su cociente es distributivo.

Para ello, sean $a,b,c\in L/\theta$, sabemos que $\exists x,y,z\in L: a=x/\theta, b=y/\theta, c=z/\theta$. Luego, veamos que:

$$\begin{array}{ll} a\stackrel{\sim}{i}(b\stackrel{\sim}{s}c)=x/\theta\stackrel{\sim}{i}(y/\theta\stackrel{\sim}{s}z/\theta)\\ &=x/\theta\stackrel{\sim}{i}(y\,s\,z)/\theta & \text{prop. de congruencia}\\ &=(x\,i\,(y\,s\,z))/\theta & \text{prop. de congruencia}\\ &=((x\,i\,y)\,s\,(x\,i\,z))/\theta & \text{distributividad de }(L,s,i)\\ &=(x\,i\,y)/\theta\stackrel{\sim}{s}(x\,i\,z)/\theta & \text{prop. de congruencia}\\ &=(x/\theta\stackrel{\sim}{i}y/\theta)\stackrel{\sim}{s}(x/\theta\stackrel{\sim}{i}z/\theta) & \text{prop. de congruencia}\\ &=(a\stackrel{\sim}{i}b)\stackrel{\sim}{s}(a\stackrel{\sim}{i}c) \end{array}$$

Finalmente, entonces, por def. tenemos que $(L/\theta,\stackrel{\sim}{s},\stackrel{\sim}{i})=(L,s,i)/\theta$ es distributivo, por lo que se demuestra. \blacksquare

Item C

Falso. Es trivial ver que no es cierto si se considera la partición dada por $\{L\}$ y u=0 siendo |L|>1.

Ejercicio 23

Vamos a demostrar la propiedad que dice que: Sea (L,s,i) un reticulado terna y θ una congruencia de (L,s,i), entonces dados $c,c'\in L/\theta$ se cumple que $c\stackrel{\sim}{<} c'\iff \exists x\in c\land y\in c': x\leq y.$

Para demostrarlo, vamos a ver los dos casos del sii:

- Caso \Rightarrow : Sean $c,c' \in L/\theta$: $c \leq c'$, por def. del orden parcial, significa que $c \stackrel{\sim}{s} c' = c'$. Ahora, como $\exists x,y \in L : x/\theta = c \land y/\theta = c'$, es claro notar que $x \in c,y \in c'$. Luego, tenemos que $x/\theta \stackrel{\sim}{s} y/\theta = (x s y)/\theta$ por def. de congruencia, lo que significa que $y/\theta = (x s y)/\theta$. Veamos los posibles casos:
 - Si $x\theta y$, o bien $x\leq y$ o bien $y\leq x$, pero se cumple dado que c=c' y $x,y\in c$.
 - Sino, es claro que y = x s y, lo que implica que $x \le y$.

Con ello, se demuestra la ida. ■

• Caso \Leftarrow : Sean $c,c'\in L: (\exists x,y\in L: c=x/\theta\wedge c'=y/\theta\wedge x\leq y)$, entonces por def. del orden parcial asociado, x s y=y. Luego, claramente significa que (x s $y)/\theta=y/\theta$. Por propiedad de congruencia, llegamos a que $y/\theta=(x$ s $y)/\theta=x/\theta$ s y/θ . Luego, por def. del orden parcial asociado, $x/\theta \leq y/\theta$, por lo que $x \leq x/\theta$ s y/θ .

Habiendo demostrado ida y vuelta, se demuestra la propiedad por completo. ■