1. Är det sant att $A \cup (\bar{A} \cap \bar{B} \cap \bar{C}) = A \cup B \cup \bar{C}$ för alla mängder A, B, C?

Lösning: kan till exempel visas med hjälp av Venndiagram.

Svar: Likheten är inte sann.

- 2. Givet $A = \{\emptyset, \{\emptyset\}\}$ stämmer följande påståenden?
 - a) $\emptyset \in A$?
 - b) $\{\emptyset\} \in A$?
 - c) $\{\{\emptyset\}\}\in A$?
 - d) $\emptyset \subseteq A$?
 - e) $\{\emptyset\} \subseteq A$?
 - f) $\{\{\emptyset\}\}\subseteq A$?
- 3. Låt A, B vara 2 mängder. Vilka av följande påståenden stämmer? Om ett påstående stämmer, bevisa det. Om ett påstående inte stämmer, ge ett exempel på A, B som motbevisar påståendet.
 - a) Om $B\subseteq A$ så måste $\bar{A}\subseteq \bar{B}$
 - b) Om $A \setminus B = \emptyset$ så måste A = B
 - c) $\overline{A \triangle B} = A \cap B$
 - d) $\overline{\left(\bar{A}\setminus B\right)\cup\overline{\left(A\cup B\right)}}\cap \bar{\emptyset}=A\cup B$
- 4. Givet $A=\{x^2+3x-5:x\ \text{ är ett udda positivt heltal och }x\leq 6\}$ och $B=\{\sqrt{-1},\pi,e,\sqrt{5},\pi\}$. Beräkna:
 - a) |A| + |B|
 - b) $|A \cup B|$
 - c) |P(B)| |P(A)|
 - d) $|P(B) \setminus P(A)|$
 - e) $|P(P(A) \cup P(B))|$
 - f) $|P(P(P(A) \cap P(B)))|$
- 5. Lå
t $A = \{1, 2, 3\}, B = \{a, b\}.$ Beräkna:
 - a) $A \times B$
 - b) $|A \times B|$
 - c) $|A| \cdot |B|$
 - d) $|(A \cup B) \times (A \cap B)|$

6. Är $(A \times B) \times C = A \times (B \times C)$ för alla mängder A, B, C? Om sant, bevisa det och om inte ge exempel på A, B, C där likheten inte stämmer.