Machine Learning Models Comparisons

April 2023

1 Linear SVM

1.1 Hyperparameters

1.1.1 Possible Hyperparameters

Parameter	Description	Used	Comment
penalty	Specifies the norm used in the	Yes	
	penalty term		
loss	Specifies the loss function to use	Yes	
dual	Controls the formulation of the	No	We have $n_samples > n_features$
	optimization problem		
tol	Specifies the tolerance for stop-	Yes	
	ping criterion		
С	Controls the penalty for misclas-	Yes	
	sification		
fit_intercept	Controls whether to include the	Yes	
	bias term in the model		
intercept_scaling	Scales the bias term	No	Features are scaled using Stan-
			dardScaler
max_iter	Specifies the maximum number	No	Excluded for performance rea-
	of iterations for the solver		sons
class_weight	Balances the classes in the train-	No	We handle class balancing by us-
	ing data		ing undersampling
multi_class	Specifies how to handle multi-	No	Our problem is binary classifica-
	class classification problems.		tion

Table 1: Usage of LinearSVC hyperparameters in the model, their descriptions, and justification for their inclusion or exclusion.

1.1.2 Comparison of Best Hyperparameters with Different Sample Sizes

Since our dataset is so large, we tuned the hyperparameters of the LinearSVC classifier using a random search on four different sample sizes: 10.000, 100.000, 500.000, and 1.000.000 transactions. For each sample size, we evaluated the performance of the classifier using the AUC-ROC score. From these metrics, we can decide the hyperparameters to use on the full dataset of 6.362.620 transactions.

- 10.000
- 100.000
- 500.000
- 1.000.000

Sample Size	penalty	loss	toll	\mathbf{C}	$fit_intercept$	ROC-AUC
10.000	12	hinge	0.01	3792.69	false	0.789
100.000	12	squared_hinge	0.001	545.56	true	0.918
500.000	12	squared_hinge	0.0001	29.76	true	0.930
1.000.000	12	hinge	0.01	29.76	true	0.939

Table 2: Comparison of the best found hyperparameters and ROC-AUC score for the LinearSVC model with different sample sizes.

1.2 K-best Feature Selection

Using the hyperparameters found before, we can use K-best feature selection on the entire dataset.

K-best	Accuracy	Precision	Recall	F1 Score	ROC AUC	Selected Features
3	0.5596	0.0029	1.0000	0.0058	0.7795	nameDest
4	0.5596	0.0029	1.0000	0.0058	0.7795	type, nameDest
5	0.5662	0.0030	1.0000	0.0059	0.7828	type, nameDest, oldbalanceDest
6	0.5662	0.0030	1.0000	0.0059	0.7828	type, nameOrig, nameDest, oldbal-
						anceDest
7	0.9393	0.0194	0.9276	0.0380	0.9334	type, amount, nameOrig, nameDest, old-
						balanceDest
8	0.9431	0.0205	0.9221	0.0402	0.9326	type, amount, nameOrig, oldbalanceOrg,
						nameDest, oldbalanceDest
9	0.9393	0.0194	0.9282	0.0380	0.9337	type, amount, nameOrig, oldbalance-
						Org, nameDest, oldbalanceDest, newbal-
						anceDest
10	0.9394	0.0194	0.9257	0.0379	0.9326	type, amount, nameOrig, oldbalance-
						Org, nameDest, oldbalanceDest, newbal-
						anceDest

Table 3: Comparison of the different metrics on an increasing number of K in K-best feature selection.

Figure 1: Figure 1: Metrics scores compared to K values

Figure 2: Figure 2: Most picked features when testing multiple K values

1.3 Metrics on Samples

For these samples, we use hyperparameters found in the 1.000.000 sample and k=8

Sample	Accuracy	Precision	Recall	F1 Score	ROC AUC
1	0.8950	0.0118	0.9767	0.0233	0.9358
2	0.9430	0.0208	0.9719	0.0407	0.9574
3	0.9373	0.0199	1.0000	0.0391	0.9686
4	0.9475	0.0219	0.8935	0.0428	0.9205
5	0.9363	0.0181	0.9000	0.0354	0.9182
6	0.9444	0.0199	0.9036	0.0389	0.9240
7	0.9636	0.0297	0.9061	0.0575	0.9349
8	0.9343	0.0177	0.9147	0.0347	0.9245
9	0.9325	0.0161	0.8594	0.0315	0.8960
10	0.9493	0.0228	0.9183	0.0445	0.9338

Table 4: Metrics of different data samples 1.000.000 transactions each

1.4 Trained on Complete Dataset

For these samples, we use hyperparameters found in the 1.000.000 sample and k=8

Figure 3: Figure 3: Confusion matrix of the test results on the full dataset

• Accuracy: 0.9431

• Precision: 0.0205

• Recall: 0.9221

• F1 Score: 0.0402

• ROC AUC: 0.9326

2 Logistic Regression

2.1 Hyperparameters

${\bf 2.1.1} \quad {\bf Possible\ Hyperparameters}$

Parameter	Description	Used	Comment
penalty	Specifies the norm used in the	Yes	
	penalty term		
solver	Algorithm to use in the optimiza-	Yes	
	tion problem		
dual	Controls the formulation of the	No	We have n_samples > n_features
	optimization problem		
tol	Specifies the tolerance for stop-	No	Excluded for performance rea-
	ping criterion		sons
С	Controls the penalty for misclas-	Yes	
	sification		
fit_intercept	Controls whether to include the	Yes	
	bias term in the model		
intercept_scaling	Scales the bias term	No	Features are scaled using Stan-
			dardScaler
max_iter	Specifies the maximum number	No	Excluded for performance rea-
	of iterations for the solver		sons
class_weight	Balances the classes in the train-	No	We handle class balancing by us-
	ing data		ing undersampling
multi_class	Specifies how to handle multi-	No	Our problem is binary classifica-
	class classification problems.		tion

Table 5: Usage of Logistic Regression hyperparameters in the model, their descriptions, and justification for their inclusion or exclusion.

2.1.2 Comparison of Best Hyperparameters with Different Sample Sizes

Since our dataset is so large, we tuned the hyperparameters of the LogisticRegression classifier using a random search on four different sample sizes: 10.000, 100.000, 500.000, and 1.000.000 transactions. For each sample size, we evaluated the performance of the classifier using the AUC-ROC score. From these metrics, we can decide the hyperparameters to use on the full dataset of 6.362.620 transactions.

- 10.000
- 100.000
- 500.000
- 1.000.000

Sample Size	solver	penalty	$fit_intercept$	\mathbf{C}	ROC-AUC
10.000	newton-cg	none	true	0.013	0.775
100.000	lbfgs	none	true	1438.45	0.971
500.000	lbfgs	none	false	10000.0	0.957
1.000.000	lbfgs	none	true	0.0002	0.964

Table 6: Comparison of the best found hyperparameters and ROC-AUC score for the LogisticRegression model with different sample sizes.

2.2 K-best Feature Selection

Using the hyperparameters found before, we can use K-best feature selection on the entire dataset.

K-best	Accuracy	Precision	Recall	F1 Score	ROC AUC	Selected Features
3	0.5596	0.0029	1.0000	0.0058	0.7795	nameDest
4	0.7221	0.0041	0.8795	0.0081	0.8007	type, nameDest
5	0.6863	0.0037	0.8947	0.0073	0.7904	type, nameDest, oldbalanceDest
6	0.6914	0.0037	0.8941	0.0074	0.7926	type, nameOrig, nameDest, oldbal-
						anceDest
7	0.9282	0.0158	0.8904	0.0310	0.9093	type, amount, nameOrig, nameDest, old-
						balanceDest
8	0.9289	0.0160	0.8911	0.0313	0.9100	type, amount, nameOrig, oldbalanceOrg,
						nameDest, oldbalanceDest
9	0.9289	0.0160	0.8911	0.0313	0.9100	type, amount, nameOrig, oldbalance-
						Org, nameDest, oldbalanceDest, newbal-
						anceDest
10	0.9289	0.0160	0.8911	0.0313	0.9100	type, amount, nameOrig, oldbalance-
						Org, nameDest, oldbalanceDest, newbal-
						anceDest

Table 7: Comparison of the different metrics on an increasing number of K in K-best feature selection.

Figure 4: Figure 1: Metrics scores compared to K values

Figure 5: Figure 2: Most picked features when testing multiple K values

2.3 Metrics on Samples

For these samples, we use hyperparameters found in the 1.000.000 sample and $k{=}8$

Sample	Accuracy	Precision	Recall	F1 Score	ROC AUC
1	0.8761	0.0096	0.9339	0.0190	0.9050
2	0.9105	0.0121	0.8795	0.0239	0.8951
3	0.9135	0.0125	0.8588	0.0247	0.8862
4	0.9126	0.0129	0.8669	0.0254	0.8898
5	0.8797	0.0095	0.8885	0.0188	0.8841
6	0.8975	0.0110	0.9116	0.0217	0.9046
7	0.9157	0.0126	0.8776	0.0249	0.8966
8	0.8944	0.0107	0.8876	0.0212	0.8910
9	0.8984	0.0105	0.8398	0.0207	0.8691
10	0.9028	0.0119	0.9066	0.0234	0.9047

Table 8: Metrics of different data samples 1.000.000 transactions each

2.4 Trained on Complete Dataset

For these samples, we use hyperparameters found in the 1.000.000 sample and k=8

Figure 6: Figure 3: Confusion matrix of the test results on the full dataset

• Accuracy: 0.90276

• Precision: 0.011853283817469603

 \bullet Recall: 0.9066147859922179

F1 Score: 0.023400622677513305
ROC AUC: 0.9046849131094545

3 Random Forest Classifier

3.1 Hyperparameters

3.1.1 Possible Hyperparameters

Parameter	Description	Used	Comment
n_estimators	Number of decision trees in the	Yes	
	random forest term		
max_depth	Maximum depth of each decision	Yes	
	tree		
min_samples_split	Minimum numbers of samples re-	Yes	
	quired to split an internal node in		
	each tree		
min_samples_leaf	Minimum number of samples re-	Yes	
	quired to be a leaf node in each		
	tree		
max_features	Number of features to consider	Yes	
	when looking for the best split at		
	each node in each tree		
criterion	Function used to measure the	No	Excluded for performance rea-
	quality of each split		sons
bootstrap	Whether to sample the data with	No	Excluded for performance rea-
	replacement		sons
class_weight	Balances the classes in the train-	No	We handle class balancing by us-
	ing data		ing undersampling
min_weight_fraction_leaf	Minimum weighted fraction of	No	Excluded for performance rea-
	the input samples required to be		sons
	a leaf node in each tree		

Table 9: Usage of RandomForestClassifier hyperparameters in the model, their descriptions, and justification for their inclusion or exclusion.

3.1.2 Comparison of Best Hyperparameters with Different Sample Sizes

Since our dataset is so large, we tuned the hyperparameters of the Random-ForestClassifier classifier using a random search on four different sample sizes: 10.000, 100.000, 500.000, and 1.000.000 transactions. For each sample size, we evaluated the performance of the classifier using the AUC-ROC score. From these metrics, we can decide the hyperparameters to use on the full dataset of 6.362.620 transactions.

- 10.000
- 100.000
- 500.000
- 1.000.000

Sample Size	$n_{-}estimators$	$min_samples_split$	min_samples_leaf	$max_features$	\max_{-depth}	ROC-AUC
10.000	300	2	1	auto	10	0.833
100.000	300	5	1	auto	20	0.975
500.000	100	10	1	auto	10	0.980
1.000.000	300	2	1	auto	10	0.986

Table 10: Comparison of the best found hyperparameters and ROC-AUC score for the RandomForestClassifier model with different sample sizes.

3.2 K-best Feature Selection

Using the hyperparameters found before, we can use K-best feature selection on the entire dataset.

K-best	Accuracy	Precision	Recall	F1 Score	ROC AUC	Selected Features
3	0.5596	0.0029	1.0000	0.0058	0.7795	nameDest
4	0.8523	0.0070	0.8065	0.0139	0.8294	type, nameDest
5	0.8494	0.0069	0.8131	0.0138	0.8313	type, nameDest, oldbalanceDest
6	0.8350	0.0066	0.8436	0.0130	0.8393	type, nameOrig, nameDest, oldbal-
						anceDest
7	0.9875	0.0932	0.9976	0.1704	0.9925	type, amount, nameOrig, nameDest, old-
						balanceDest
8	0.9824	0.0682	0.9988	0.1276	0.9906	type, amount, nameOrig, oldbalanceOrg,
						nameDest, oldbalanceDest
9	0.9836	0.0728	0.9988	0.1358	0.9912	type, amount, nameOrig, oldbalance-
						Org, nameDest, oldbalanceDest, newbal-
						anceDest
10	0.9826	0.0689	0.9988	0.1290	0.9907	type, amount, nameOrig, oldbalance-
						Org, nameDest, oldbalanceDest, newbal-
						anceDest

Table 11: Comparison of the different metrics on an increasing number of K in K-best feature selection.

Figure 7: Figure 1: Metrics scores compared to K values

Figure 8: Figure 2: Most picked features when testing multiple K values

3.3 Metrics on Samples

For these samples, we use hyperparameters found in the 1.000.000 sample and k=7

Sample	Accuracy	Precision	Recall	F1 Score	ROC AUC
1	0.8862	0.0096	0.8599	0.0190	0.8731
2	0.9792	0.0558	0.9880	0.1056	0.9836
3	0.9576	0.0287	0.9843	0.0558	0.9709
4	0.9775	0.0544	0.9848	0.1031	0.9811
5	0.9771	0.0534	0.9923	0.1013	0.9847
6	0.9028	0.0111	0.8715	0.0218	0.8872
7	0.9522	0.0247	0.9878	0.0482	0.9700
8	0.9799	0.0603	1.0000	0.1137	0.9899
9	0.9791	0.0573	0.9922	0.1083	0.9856
10	0.9785	0.0564	1.0000	0.1069	0.9892

Table 12: Metrics of different data samples with 1,000,000 transactions each and hyperparameters found in the 1,000,000 sample with k=8.

3.4 Trained on Complete Dataset

For these samples, we use hyperparameters found in the 1.000.000 sample and k=7

Figure 9: Figure 3: Confusion matrix of the test results on the full dataset

• Accuracy: 0.9874202765527409

• Precision: 0.09289803321430595

 \bullet Recall: 0.9975654290931223

• F1 Score: 0.16996785232811362

• ROC AUC: 0.9924862949762001