Consider the following Python dictionary data and Python list labels:

```
data = {'birds': ['Cranes', 'Cranes', 'plovers', 'spoonbills', 'spoonbills', 'Cranes', 'plovers', 'Cranes', 'spoonbills', 'spoonbills', 'age': [3.5, 4, 1.5, np.nan, 6, 3, 5.5, np.nan, 8, 4], 'visits': [2, 4, 3, 4, 3, 4, 2, 2, 3, 2], 'priority': ['yes', 'yes', 'no', 'yes', 'no', 'no', 'no', 'no', 'no']}

labels = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j']
```

1. Create a DataFrame birds from this dictionary data which has the index labels.

In [1]:

```
import pandas as pd
import numpy as np

data = {'birds': ['Cranes', 'Cranes', 'plovers', 'spoonbills', 'spoonbills', 'Cranes',
'plovers', 'Cranes', 'spoonbills', 'spoonbills'], 'age': [3.5, 4, 1.5, np.nan, 6, 3, 5.
5, np.nan, 8, 4], 'visits': [2, 4, 3, 4, 3, 4, 2, 2, 3, 2], 'priority': ['yes', 'yes', 'no', 'yes', 'no', 'no', 'no', 'no', 'no', 'no']}

labels = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j']

birds=pd.DataFrame(data,index=labels)
```

2. Display a summary of the basic information about birds DataFrame and its data.

In [2]:

```
print(birds.columns)
print(birds.shape)
birds.describe()
```

```
Index(['birds', 'age', 'visits', 'priority'], dtype='object')
(10, 4)
```

Out[2]:

	age	visits
count	8.000000	10.000000
mean	4.437500	2.900000
std	2.007797	0.875595
min	1.500000	2.000000
25%	3.375000	2.000000
50%	4.000000	3.000000
75%	5.625000	3.750000
max	8.000000	4.000000

```
In [3]:
```

```
birds.info()
<class 'pandas.core.frame.DataFrame'>
Index: 10 entries, a to j
Data columns (total 4 columns):
   Column
             Non-Null Count Dtype
   ----
             -----
0
   birds
            10 non-null
                            object
           8 non-null
                            float64
1 age
   visits 10 non-null
2
                            int64
    priority 10 non-null
3
                           object
dtypes: float64(1), int64(1), object(2)
memory usage: 400.0+ bytes
```

3. Print the first 2 rows of the birds dataframe

In [4]:

```
birds.head(2)
```

Out[4]:

	birds	age	visits	priority
а	Cranes	3.5	2	yes
b	Cranes	4.0	4	yes

4. Print all the rows with only 'birds' and 'age' columns from the dataframe

In [5]:

```
birds[['birds','age']]
```

Out[5]:

	birds	age
а	Cranes	3.5
b	Cranes	4.0
С	plovers	1.5
d	spoonbills	NaN
е	spoonbills	6.0
f	Cranes	3.0
g	plovers	5.5
h	Cranes	NaN
i	spoonbills	8.0
j	spoonbills	4.0

5. select [2, 3, 7] rows and in columns ['birds', 'age', 'visits']

In [6]:

```
birds[['birds', 'age', 'visits']].iloc[[1,2,6]]
```

Out[6]:

	birds	age	visits
b	Cranes	4.0	4
С	plovers	1.5	3
g	plovers	5.5	2

6. select the rows where the number of visits is less than 4

In [7]:

```
birds[birds.visits<4]
```

Out[7]:

	birds	age	visits	priority
а	Cranes	3.5	2	yes
С	plovers	1.5	3	no
е	spoonbills	6.0	3	no
g	plovers	5.5	2	no
h	Cranes	NaN	2	yes
i	spoonbills	8.0	3	no
j	spoonbills	4.0	2	no

7. select the rows with columns ['birds', 'visits'] where the age is missing i.e NaN

In [8]:

```
birds[birds['age'].isnull()][['birds', 'visits']]
```

Out[8]:

	birds	visits
d	spoonbills	4
h	Cranes	2

8. Select the rows where the birds is a Cranes and the age is less than 4

In [9]:

```
birds[birds']=='Cranes'][birds.age<4]</pre>
```

C:\Softwares\Anaconda\lib\site-packages\ipykernel_launcher.py:1: UserWarni
ng: Boolean Series key will be reindexed to match DataFrame index.
 """Entry point for launching an IPython kernel.

Out[9]:

	birds	age	visits	priority
а	Cranes	3.5	2	yes
f	Cranes	3.0	4	no

9. Select the rows the age is between 2 and 4(inclusive)

In [10]:

```
birds[(birds.age>=2) & (birds.age<=4)]
```

Out[10]:

	birds	age	visits	priority
а	Cranes	3.5	2	yes
b	Cranes	4.0	4	yes
f	Cranes	3.0	4	no
j	spoonbills	4.0	2	no

10. Find the total number of visits of the bird Cranes

In [11]:

```
a=birds.groupby('birds')
df=a.get_group('Cranes')
print(df)
df['visits'].sum()
```

```
birds age visits priority
a Cranes 3.5 2 yes
b Cranes 4.0 4 yes
f Cranes 3.0 4 no
h Cranes NaN 2 yes
```

Out[11]:

12

11. Calculate the mean age for each different birds in dataframe.

```
In [12]:
```

```
a.mean()['age']

Out[12]:
birds
Cranes    3.5
plovers    3.5
spoonbills   6.0
Name: age, dtype: float64
```

12. Append a new row 'k' to dataframe with your choice of values for each column. Then delete that row to return the original DataFrame.

```
In [13]:
```

```
birds.loc['k']=[4,'ab','no',2]
print(birds)
birds=birds.drop('k',axis=0)
print(birds)
```

```
birds age visits priority
       Cranes 3.5
                        2
а
                               yes
b
      Cranes
               4
                        4
                               yes
      plovers 1.5
                        3
C
                                no
  spoonbills NaN
d
                               yes
                        3
   spoonbills
              6
e
                                no
f
      Cranes
                 3
                        4
                                no
                        2
      plovers 5.5
                                no
g
h
      Cranes NaN
                       2
                               yes
                        3
i
   spoonbills
               8
                                no
j
   spoonbills
                4
                        2
                                no
k
              ab
                       no
                                 2
        birds age visits priority
а
      Cranes 3.5
                        2
                               yes
b
      Cranes
              4
                        4
                               yes
      plovers 1.5
                        3
c
                                no
   spoonbills NaN
                        4
d
                               yes
              6
                        3
e
   spoonbills
                                no
f
      Cranes
                3
                        4
                                no
      plovers 5.5
                        2
                                no
g
h
      Cranes NaN
                        2
                               yes
i
  spoonbills
                 8
                        3
                                no
                        2
j
   spoonbills
                 4
                                no
```

13. Find the number of each type of birds in dataframe (Counts)

In [14]:

14. Sort dataframe (birds) first by the values in the 'age' in decending order, then by the value in the 'visits' column in ascending order.

In [15]:

```
birds.sort_values(by=['age','visits'],ascending=[False,True])
```

Out[15]:

	birds	age	visits	priority
i	spoonbills	8	3	no
е	spoonbills	6	3	no
g	plovers	5.5	2	no
j	spoonbills	4	2	no
b	Cranes	4	4	yes
а	Cranes	3.5	2	yes
f	Cranes	3	4	no
С	plovers	1.5	3	no
h	Cranes	NaN	2	yes
d	spoonbills	NaN	4	yes

15. Replace the priority column values with'yes' should be 1 and 'no' should be 0

In [16]:

```
birds['priority'][birds.priority=='yes']=1
birds['priority'][birds.priority=='no']=0
print(birds)
```

```
birds age visits priority
      Cranes 3.5 2
а
      Cranes 4
                    4
                             1
b
                    3
     plovers 1.5
                             0
C
                             1
d spoonbills NaN
                    4
e spoonbills 6
f Cranes 3
                    3
                             0
                     4
                             0
     plovers 5.5
                    2
                             0
g
                    2
                             1
h
     Cranes NaN
                    3
                             0
i spoonbills
             8
                     2
j
  spoonbills
               4
                             0
```

16. In the 'birds' column, change the 'Cranes' entries to 'trumpeters'.

In [17]:

```
birds['birds'][birds.birds=='Cranes']='trumpeters'
```

In [18]:

print(birds)

```
birds age visits priority
a trumpeters 3.5
                     2
                             1
b trumpeters
                             1
             4
                     4
     plovers 1.5
                     3
                             0
С
                             1
d spoonbills NaN
                     4
e spoonbills 6
                     3
                             0
f trumpeters
                     4
                             0
            3
                     2
                             0
     plovers 5.5
g
h trumpeters NaN
                     2
                             1
i spoonbills 8
                     3
                             0
                     2
j spoonbills 4
                             0
```

In []: