DMML, 21 Feb 2019

Support vector machines

tind a maximum margin separatry hyperplane

Minimize:
$$\frac{\langle \mathbf{w} \cdot \mathbf{w} \rangle}{2} + \sum_{i=1}^{n} \xi_i$$

Subject to:
$$y_i(\langle \mathbf{w} \cdot \mathbf{x}_i \rangle + b) \ge 1 - \xi_i$$
, $i = 1, 2, ..., n$
 $\xi_i \ge 0$, $i = 1, 2, ..., n$.

Why is there a separating hyperplane.

Solution - transform the space n > \P(n)

$$(1,1,+\sqrt{2},-\sqrt{2},-\sqrt{2},1) \qquad (1,1,+\sqrt{2},+\sqrt{2},+\sqrt{2},1)$$

$$(1,1,-\sqrt{2},-\sqrt{2},+\sqrt{2},1) \qquad (1,1,-\sqrt{2},+\sqrt{2},-\sqrt{2},1)$$

$$(x_{1},x_{2}) \qquad (x_{1},x_{2},x_{2},\sqrt{2},1) \qquad (x_{2},x_{2},\sqrt{2},1)$$

$$(x_{1},x_{2}) \qquad (x_{2},x_{2},\sqrt{2},1) \qquad (x_{3},x_{2},\sqrt{2},1)$$

- 1. How to find the transformation?
- 2. How to solve the problem in terms of more complex $\varphi(n)$?
- 3. Will 4 always went?

Subject to:
$$\sum_{i=1}^{n} y_i \alpha_i = 0$$

$$0 \le \alpha_i \le C, \quad i = 1, 2, ..., n.$$

< \psi(\psi) \psi \psi(\psi) >

Back from dual to printel
$$\langle \mathbf{w} \cdot \mathbf{x} \rangle + b = \sum_{i=1}^{n} y_i \alpha_i \langle \mathbf{x}_i \cdot \mathbf{x} \rangle + b = 0.$$

$$\varphi((x_1,x_2)) = (x_1^2, x_2^2, \sqrt{2}x_1, \sqrt{2}x_2, \sqrt{2}x_1x_2, 1)
\varphi((x_1,x_2)) \cdot \varphi((z_1,z_2))
(z_1^2, z_2^2, \sqrt{2}z_1, \sqrt{2}z_1, \sqrt{2}z_1z_1, 1)$$

$$x_{1}^{2}z_{1}^{2} + x_{2}^{2}z_{2}^{2} + 2x_{1}z_{1} + 2x_{1}z_{2} + 2x_{1}x_{2}z_{1}z_{2} + 1$$

$$= \left(1 + x_{1}z_{1} + x_{2}z_{2}\right)^{2}$$

Can express $\varphi(x) \cdot \varphi(z)$ ao a function K(x,z)

Such a funchon K is called the kernel Je transformation

Dual uses only dot products

Maximize: $L_D(\mathbf{a}) = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n y_i y_j \alpha_i \alpha_j \langle \mathbf{x}_i \cdot \mathbf{x}_j \rangle$ $\sum_{i=1}^n v_i \alpha_i = 0$ Instant

Subject to: $\sum_{i=1}^{n} y_i \alpha_i = 0$

 $0 \le \alpha_i \le C, \quad i = 1, 2, ..., n.$

(x) p, (ix) P>

Percephon Cance is true for W = X, -x2+ +3 -la perception: In each iteration, XT.W = xT(x,-x2+--) Burch of dot products Apply Perceptore to P(x1), P(x2) --, (Q(xn) Replace each $\mathcal{C}(x_i) \cdot \mathcal{C}(x_j)$ by $\mathcal{K}(x_i, x_j)$ Reversiy the argumet

 $K(x,z) = (1 + x_1z_1 + x_2z_1)^2$

 $= (1 + x \cdot z)^2$

is the benul for $\varphi(n) = ---$

In general, (1+x·z)d will be the kend for some transformation

Have a	kernel,	ignore the	achial trans	frmat
Polynom	ial kem	els		
	L Expand	stre# of	dinensions	
When is	Kal	cend?	K nxh matinx	7
Mercer's	Theorm		Marvix	J
If Valid	K is pol	ositive defin	nte trun Ki	o a

K positive definite - Symmetric atka 20 - For all vectors a Equivalenty, all eigenvalues 30 Mercer's theorem is not constructive

Gwen valid K, we need not be able to determin In particular, $\mathcal{C}(n)$ may be infinite dimension! Exponential kund $e^{-\|x-z\|^2/2\sigma}$ How to find a good kennel? Empirical - Try a kernel and see of it works - Some types of kends work well for Some categories of data (mages, text, --)

Similarly as a hernel seems to work ((x,y) = conilarly 1 22 y

Algebraic properties of kernels K, & Kz are kernels

- -> Ki+Kz is a kernel
- -> cki is a kent
- -> Ki. Kz vo a kernet