

Metropolis

Algorithme de Metropolis (Gaussien)

La suite $(X_n)_n$ obtenue admet une distribution stationnaire donnée par la densité f.

Avantages:

1. Il suffit de savoir calculer une densité (même non-normalisée) f pour l'implémenter

Généralisable facilement en dimension >

La variance doit être assez petite pour éviter trop de rejets (random walk behavior)

2. La variance doit être assez grande pour bien explorer l'espace (distributions multimodales)

Le pourcentage d'acceptation tend vers 0 en grande dimension

Inconvénients:

Soit f une densité de probabilité. On suppose que X_n est déjà généré. X_{n+1} est défini par:

1. Générer $\boldsymbol{y} \sim \mathcal{N}(X_n, \sigma^2)$

2. Générer $u \sim \mathcal{U}([0,1])$.

3. Si $u < \min(1, \frac{f(y)}{f(X_n)})$ alors $X_{n+1} = y$, sinon $X_{n+1} = X_n$.

L'algorithme

L'algorithme

Algorithme de Metropolis (Gaussien)

Soit f une densité de probabilité. On suppose que X_n est déjà généré. X_{n+1} est défini par:

- 1. Générer $y \sim \mathcal{N}(X_n, \sigma^2)$
- 2. Générer $\boldsymbol{u} \sim \mathcal{U}([0,1])$.
- 3. Si $\frac{u}{v} < \min(1, \frac{f(y)}{f(X_n)})$ alors $X_{n+1} = y$, sinon $X_{n+1} = X_n$.

La suite $(X_n)_n$ obtenue admet une distribution stationnaire donnée par la densité f.

Avantages:

- 1. Il suffit de savoir calculer une densité (même non-normalisée) f pour l'implémenter
- 2. Généralisable facilement en dimension > 1

1. La variance doit être assez petite pour éviter trop de rejets (random walk behavior)

Inconvénients:

- 2. La variance doit être assez grande pour bien explorer l'espace (distributions multimodales)
- 3. Le pourcentage d'acceptation tend vers 0 en grande dimension

- 1. Pourquoi Monte-Carlo ? (Exemple de modèle hiérarchique)
- 2. Introduction à la méthode Monte-Carlo (historique, PRNG)
- 3. Algorithmes de simulation i.i.d (PRNG, transformation, rejet)
- 4. Méthodes MCMC (Gibbs, Metropolis)
- 5. Diagonstics de convergence MCMC
- 6. Méthodes MCMC avancées (Langevin, HMC, NUTS)

Intro to Metropolis-Hastings

Qu'en est-il d'une densité cible discrète ?

