Analiza matematyczna 2

dr Joanna Jureczko

Zestaw 2

Równanie różniczkowe liniowe.

Przykłady równań różniczkowych nieliniowych.

ZADANIA

- 2.1. Rozwiązać równania różniczkowe liniowe jednorodne z warunkami początkowymi
- a) $y' = \frac{2x-1}{x^2}y$, y(1) = 1,
- b) $y' = y \operatorname{tg} x$, y(0) = 1,
- c) $y' = \frac{-1}{x^2}y$, y(1) = 1.
- 2.2. Rozwiązać równania różniczkowe linowe niejednorodne z warunkami początkowymi, jeżeli są podane

- a) $\frac{dy}{dx} 3y = 2$, b) $\frac{dy}{dx} 2xy = x x^3$, c) $\frac{dy}{dx} + 2xy = xe^{-x^2}$, y(0) = 0, d) y' y = 1, y(3) = 3,
- e) xy' + y = x + 1, y(1) = 0.
- 2.3. Rozwiązać równania różniczkowe Bernoulliego z warunkami początkowymi, jeżeli są podane
- a) $y' + y + y^2 \sin x = 0$,
- b) $y' + y + x\sqrt{y} = 0$,
- c) $xy' + y = y^2 \ln x$, y(1) = 1.
- 2.4. Sprawdzić, że następujace równania różniczkowe są zupełne, a następnie scałko-
- a) $(\frac{1}{y} \frac{y}{x^2})dx + (1 + \frac{1}{x} \frac{x}{y^2})dy = 0$,
- b) $(\cos x + y)dx (\sin y x)dy = 0$.
- 2.5. Rozwiązać równania różniczkowe z warunkami początkowymi
- a) (2x + y)dx + (x 2y + 1)dy = 0, y(0) = 1,
- b) $(2e^{2x}y + y^2)dx + (e^{2x} + 2yx)dy = 0$, $y(0) = \pi$.
- 2.6 Wyznaczyć czynnik całkujący zależny od jednej zmiennej oraz rozwiązać równania różniczkowe
- a) $x^2 + y x \frac{dy}{dx} = 0$, b) $x^2 + y^2 + 2x + 2y \frac{dy}{dx} = 0$,
- c) $e^{2x} y^2 + y \frac{dy}{dx} = 0$, d) $y^2 + (yx 1) \frac{dy}{dx} = 0$,
- e) $\sin x + e^y + \cos x \frac{dy}{dx} = 0$.

ODPOWIEDZI

- **ODPOWIEDZI**2.1. a) $y = x^2 e^{\frac{1}{x}} \cdot e^{-1}$, b) $y = \frac{1}{\cos x}$, c) $y = e^{\frac{1}{x}} \cdot e^{-1}$.

 2.2. a) $y = -\frac{2}{3} + Ce^{3x}$, b) $y = Ce^{x^2} + \frac{1}{2}x^2$, c) $ye^{x^2} \frac{1}{2}x^2 = 0$, d) $y = 4e^{x-3} 1$, e) $y = \frac{1}{2}x + 1 \frac{3}{2x}$.

 2.3. a) $y = \frac{2}{Ce^x \sin x \cos x}$, b) $y = (-x + 2 + Ce^{-\frac{x}{2}})^2$, c) $y = \frac{1}{1 + \ln x}$, x > 0. $x \neq \frac{1}{e}$.

 2.4. a) $\frac{y}{x} + \frac{x}{y} + y = C$, b) $\sin x + \cos y + xy = C$.

 2.5. a) $x^2 + xy y^2 + y = 0$, b) $e^{2x}y + xy^2 = \pi$.

 2.6. a) $x^2 y = Cx$, b) $x^2 + y^2 = \frac{C}{e^x}$, c) $y^2 = (C 2x)e^{2x}$, d) $xy \ln|y| = C$, o) $e^{-y}\cos x = x + C$

- e) $e^{-y}\cos x = x + C$.