

## R61505V

# 262,144-color, 240RGB x 320 dot graphics liquid crystal controller driver for Amorphous-Silicon TFT Panel

REJxxxxxxx-xxxx Rev. 0.10 February 15, 2008

| Description                                                          | 6        |
|----------------------------------------------------------------------|----------|
| Features                                                             | 7        |
| Power supply specifications  Differences between R61505U and R61505V |          |
| Block Diagram                                                        | 13       |
| Block Function  1. System Interface                                  |          |
| Pin Function                                                         | 18       |
| PAD Arrangement                                                      | 24       |
| PAD Coordinates                                                      | 26       |
| Bump Arrangement                                                     | 40       |
| Wiring Example & Recommended Wiring Resistance                       | 41       |
| GRAM Address Map                                                     | 42       |
| Instruction  Outline  Instruction Data Format  Index (IR)            | 44<br>44 |

| Display Control                                                                                                                                                                                                     | 45                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Device Code Read (R00h)                                                                                                                                                                                             | 45                   |
| Driver Output Control (R01h)                                                                                                                                                                                        | 46                   |
| LCD Driving Wave Control (R02h)                                                                                                                                                                                     | 47                   |
| Entry Mode (R03h)                                                                                                                                                                                                   | 48                   |
| Display Control 1 (R07h)                                                                                                                                                                                            | 51                   |
| Display Control 2 (R08h)                                                                                                                                                                                            | 52                   |
| Display Control 3 (R09h)                                                                                                                                                                                            | 54                   |
| Display Control 4 (R0Ah)                                                                                                                                                                                            | 56                   |
| External Display Interface Control 1 (R0Ch)                                                                                                                                                                         | 57                   |
| Frame Marker Position (R0Dh)                                                                                                                                                                                        | 59                   |
| VCOM Low Power Control (R0Eh)                                                                                                                                                                                       | 60                   |
| External Display Interface Control 2 (R0Fh)                                                                                                                                                                         | 61                   |
| Power Control                                                                                                                                                                                                       | 62                   |
| Power Control 1 (R10h)                                                                                                                                                                                              | 62                   |
| Power Control 2 (R11h)                                                                                                                                                                                              | 64                   |
| Power Control 3 (R12h)                                                                                                                                                                                              | 67                   |
| Power Control 4 (R13h)                                                                                                                                                                                              | 69                   |
| RAM Access Control                                                                                                                                                                                                  | 70                   |
| RAM Address Set (Horizontal Address) (R20h) RAM Address Set (Vertical Address) (R21h)                                                                                                                               | 70                   |
| GRAM Data Write (R22h)                                                                                                                                                                                              | 71                   |
| GRAM Data Read (R22h)                                                                                                                                                                                               | 72                   |
| NVM(NON-VOLATILE MEMORY) Write Control                                                                                                                                                                              | 73                   |
| NVM Data Read 1 (R28), NVM Data Read 2 (R29h), NVM Data Read 3 (R2Ah)                                                                                                                                               | 73                   |
| γ Control                                                                                                                                                                                                           | 75                   |
| γ Control 1 ~ 10 (R30h ~ R39h)                                                                                                                                                                                      | 75                   |
| Window Address Control                                                                                                                                                                                              | 77                   |
| Window Horizontal RAM Address (Start Address) (R50h)                                                                                                                                                                | 77                   |
| Window Horizontal RAM Address (End Address) (R51h)                                                                                                                                                                  | 77                   |
| Window Vertical RAM Address (Start Address) (R52h)                                                                                                                                                                  | 77                   |
| Window Vertical RAM Address (End Address) (R53h)                                                                                                                                                                    | 77                   |
| Base Image Display Control                                                                                                                                                                                          | <i>7</i> 9           |
| Driver Output Control (R60h),                                                                                                                                                                                       | 79                   |
| Base Image Display Control (R61h)                                                                                                                                                                                   | 79                   |
| Vertical Scroll Control (R6Ah)                                                                                                                                                                                      | 79                   |
| Partial Display Control Instruction                                                                                                                                                                                 | 82                   |
| Partial Image Display Position (R80h)                                                                                                                                                                               | 82                   |
|                                                                                                                                                                                                                     | 82                   |
| Partial Image RAM Address (Start Line Address) (R81h)                                                                                                                                                               | 82                   |
| Partial Image RAM Address (Start Line Address) (R81h)<br>Partial Image RAM Address (End Line Address) (R82h)                                                                                                        | 83                   |
|                                                                                                                                                                                                                     |                      |
| Partial Image RAM Address (End Line Address) (R82h)                                                                                                                                                                 |                      |
| Partial Image RAM Address (End Line Address) (R82h)                                                                                                                                                                 | 83                   |
| Partial Image RAM Address (End Line Address) (R82h)                                                                                                                                                                 | 82<br>85             |
| Partial Image RAM Address (End Line Address) (R82h)                                                                                                                                                                 | 83<br>85             |
| Partial Image RAM Address (End Line Address) (R82h)  Panel Interface Control  Panel Interface Control 1(R90h)  Panel Interface Control 1-1 (R91h)  Panel Interface Control 2(R92h)                                  | 85<br>86<br>86       |
| Partial Image RAM Address (End Line Address) (R82h)  Panel Interface Control  Panel Interface Control 1(R90h)  Panel Interface Control 1-1 (R91h)  Panel Interface Control 2(R92h)  Panel Interface Control 3(R93h) | 85<br>86<br>87<br>88 |
| Partial Image RAM Address (End Line Address) (R82h)                                                                                                                                                                 |                      |

| Panel Interface Control 7 (R98h)                                    | 93   |
|---------------------------------------------------------------------|------|
| Panel Interface Control 8 (R99h)                                    | 94   |
| Panel Interface Control 9 (R9Ch)                                    | 95   |
| NVM (NON-VOLATILE MEMORY) Control                                   | 96   |
| NVM Control 1 (RA0h), NVM Control 2 (RA1h)                          | 96   |
| NVM Control 3 (RA3h), NVM Control 4 (RA4h)                          | 97   |
| Instruction List                                                    | 98   |
| Reset Function                                                      | 99   |
| Basic Operation                                                     | 100  |
| Interface and Data Format                                           | 101  |
| System Interface                                                    | 104  |
| 80-system 18-bit Bus Interface                                      | 105  |
| 80-system 16-bit Bus Interface                                      | 106  |
| Data Transfer Synchronization in 16-bit Bus Interface operation     | 108  |
| 80-system 9-bit Bus Interface                                       | 109  |
| Data Transfer Synchronization in 9-bit Bus Interface operation      | 110  |
| 80-system 8-bit Bus Interface                                       | 111  |
| Data Transfer Synchronization in 8-bit Bus Interface operation      | 113  |
| Serial Interface                                                    | 114  |
| VSYNC Interface                                                     | 117  |
| Notes to VSYNC Interface operation                                  |      |
| Notes to VSINC Interface operation                                  | 119  |
| FMARK Interface                                                     | 121  |
| FMP setting example                                                 |      |
|                                                                     |      |
| External Display Interface                                          | 125  |
| RGB Interface                                                       |      |
| Polarities of VSYNC, HSYNC, ENABLE, and DOTCLK Signals              |      |
| RGB Interface Timing                                                |      |
| Setting Example of Display Control Clock in RGB Interface Operation |      |
| RGB Interface Timing                                                |      |
| 16-/18-bit RGB Interface Timing                                     | 129  |
| RAM access via system interface in RGB interface operation          | 130  |
| 18-bit RGB interface                                                | 133  |
| Notes to RGB interface operation                                    | 134  |
| RAM Address and Display Position on the Panel                       | 135  |
| Restrictions in setting display control instruction                 |      |
| Instruction setting example                                         |      |
| W. 1 A.11 E. C                                                      | 4.40 |
| Window Address Function                                             | 140  |

| Scan Mode Setting                                                                       | 141 |
|-----------------------------------------------------------------------------------------|-----|
| 8-color Display Mode                                                                    | 142 |
| Line Inversion AC Drive                                                                 |     |
| Frame-Frequency Adjustment Function                                                     | 145 |
| Relationship between liquid crystal drive duty and frame frequency                      | 145 |
| Partial Display Function                                                                | 146 |
| Liquid Crystal Panel Interface Timing                                                   | 147 |
| Internal clock operation                                                                |     |
| RGB interface operation                                                                 | 148 |
| γ Correction Function                                                                   | 149 |
| γCorrection Function                                                                    | 149 |
| γCorrection Circuit                                                                     |     |
| γCorrection Registers                                                                   |     |
| Reference level adjustment registers  Interpolation Registers                           |     |
| Power-supply Generating Circuit                                                         | 156 |
| Power supply circuit connection example 1                                               |     |
| Power supply circuit connection example 2 (VCI voltage is directly applied to VCII pin) | 157 |
| Specifications of Power-supply Circuit External Elements                                | 158 |
| Voltage Setting Pattern Diagram                                                         | 159 |
| VCOMH Voltage Adjustment Sequence                                                       | 160 |
| NVM Control Sequence                                                                    | 162 |
| R61505U Compatible Sequence                                                             | 166 |
| R61505V Setting Sequence                                                                | 168 |
| Instruction Setting Sequence                                                            | 170 |
| R61505U Compatible Sequence                                                             | 170 |
| R61505V Setting Sequence                                                                |     |
| Other Mode Transition Setting Sequences                                                 |     |
| Deep Standby Mode IN/EXIT Sequences                                                     |     |
| 8-color Mode Setting<br>Partial Display Setting                                         |     |
| Absolute Maximum Ratings                                                                | 176 |
| Electrical Characteristics                                                              | 177 |

| DC Characteristics                                                     |     |
|------------------------------------------------------------------------|-----|
| AC Characteristics                                                     | 181 |
| Clock Characteristics                                                  | 181 |
| 80-System Bus Interface Timing Characteristics (18-/ 16-bit Interface) | 181 |
| 80-System Bus Interface Timing Characteristics (9-/8-bit Interface)    | 182 |
| Clock-synchronized Serial Interface Timing Characteristics             | 183 |
| Reset Timing Characteristics                                           | 183 |
| RGB Interface Timing Characteristics                                   | 184 |
| LCD Driver Output Characteristics                                      | 185 |
| Notes on Electrical Characteristics                                    | 186 |
| Test Circuits                                                          | 188 |
| Timing Characteristics                                                 | 189 |
| 80-System Bus Interface                                                | 189 |
| Clock Synchronous Serial Interface                                     | 190 |
| Reset Operation                                                        | 191 |
| RGB Interface                                                          | 192 |
| LCD Driver Output and VCOM Output                                      | 192 |
| vision Record                                                          | 194 |

#### **Description**

The R61505V is a single-chip liquid crystal controller driver LSI for a-Si TFT panel, comprising RAM for a maximum 240 RGB x 320 dot graphics display, source driver, gate driver and power supply circuit. For efficient data transfer, the R61505V supports high-speed interface via 8-/9-/16-/18-bit ports as system interface to the host processor. The R61505V supports also RGB interface (VSYNC, HSYNC, DOTCLK, ENABLE and DB17-0) to display moving images.

The power supply circuit incorporates step-up circuits and voltage follower circuits to voltage levels to drive TFT liquid crystal panel.

The R61505V's power management functions i.e. 8-color display, the deep standby mode and so on make this LSI an ideal driver for the medium or small sized portable devices with color display systems such as digital cellular phones or small PDAs, where long battery life is a major concern.

#### **Features**

- A single-chip controller driver incorporating a gate circuit and a power supply circuit for a maximum 240RGB x 320dots graphics display on amorphous TFT panel in 262k colors
- System interface
  - High-speed interfaces via 8-, 9-, 16-, 18-bit parallel ports
  - Clock synchronous serial interface
- Moving picture display interface Note
  - 16-/18-bit RGB interface (VSYNC, HSYNC, DOTCLK, ENABLE, DB17-0)
  - VSYNC interface (System interface + VSYNC)
  - FMARK interface (System interface + FMARK)
- Window address function to specify a rectangular area in the internal RAM to write data
- Write data within a rectangular area in the internal RAM via moving picture interface
- Reduce data transfer by specifying the area in the RAM to rewrite data
- Enable displaying the data in the still picture RAM area with a moving picture simultaneously
- Abundant color display and drawing functions
  - Programmable γ-correction function for 262k-color display
  - Partial display function
- Low -power consumption architecture (enables to supply power directly to interface I/O)
  - Deep standby function
  - 8-color display function
  - Input power supply voltages: IOVCC (power supply for interface I/O)

VCC (power supply for logic regulator)

VCI (power supply for liquid crystal analog circuit)

- Incorporates a liquid crystal drive power supply circuit
  - Source driver liquid crystal drive/VCOM power supply: DDVDH, VREG1OUT, VCL, VCI
  - Gate drive power supply: VGH, VGL
  - VCOM drive (VCOM power supply): VCOMH

**VCOML** 

Liquid crystal power supply startup sequencer

- TFT storage capacitance: Cst only (common VCOM formula)
- 172,800-byte internal RAM
- Internal 720-channel source driver and 320-channel gate driver
- Single-chip solution for COG module with the arrangement of gate circuits on both sides of the glass substrate
- Internal NVM: User identification code, 4 bits, VCOM level adjustment, 7 bits x 2 sets. Deleting data is guaranteed up to 5 times.
- Internal reference voltage to generate VREG1OUT

Note: Patent of moving picture display interface is granted.

United States Patent No. 7,176,870 Japanese Patent No. 3,826,159 Korean Patent No.747,636

## **Power supply specifications**

Table 1

| No. | Item                 |                                                       | R61505V                                                                                                     |
|-----|----------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| 1   | TFT data lines       |                                                       | 720                                                                                                         |
| 2   | TFT gate lines       |                                                       | 320                                                                                                         |
| 3   | TFT display sto      | orage capacitance                                     | Cst only (Common VCOM formula)                                                                              |
| 4   | Liquid crystal       | S1~S720                                               | Grayscale levels V0 ~ V63                                                                                   |
|     | drive output         | G1~320                                                | VGH-VGL                                                                                                     |
|     |                      | VCOM                                                  | VCOMH=3.0 ~ (DDVDH-0.5)V                                                                                    |
|     |                      |                                                       | VCOML=(VCL+0.5) ~ 0V                                                                                        |
|     |                      |                                                       | Amplitude between VCOMH and VCOML=max. 6V                                                                   |
|     |                      |                                                       | Change VCOMH with either electronic volume or from VCOMR                                                    |
|     |                      |                                                       | Change VCOMH-VCOML amplitude with electronic volume                                                         |
| 5   | Input voltage        | IOVCC                                                 | 1.65V ~ 3.3V                                                                                                |
|     |                      | (interface voltage)                                   | Power supply to IM0-3, RESETX, DB17-0, RDX, SDI, SDO, WRX/SCL, RS, CSX, VSYNC, HSYNC, DOTCLK, ENABLE, FMARK |
|     |                      |                                                       | Connect to VCC and VCI on the FPC when the electrical potentials are the same.                              |
|     |                      | VCC<br>(logic regulator power<br>supply)              | 2.5V ~ 3.3V                                                                                                 |
|     |                      |                                                       | Connect to IOVCC and VCI on the FPC when the electrical potentials are the same.                            |
|     |                      | VCI<br>(liquid crystal drive<br>power supply voltage) | 2.5V ~ 3.3V                                                                                                 |
|     |                      |                                                       | Connect to IOVCC and VCC on the FPC when the electrical potentials are the same.                            |
|     |                      |                                                       | (Write) VPP1: 9.2±0.3V                                                                                      |
|     |                      |                                                       | VPP2: 9.2±0.3V                                                                                              |
|     |                      | VPP1, 2, 3A, 3B, 3C<br>(Power supply for<br>the NVM)  | VPP3A, 3B, 3C: Fix to GND                                                                                   |
|     |                      |                                                       | (Erase) VPP1: 9.2±0.3V                                                                                      |
|     |                      |                                                       | VPP2: 9.2±0.3V                                                                                              |
|     |                      |                                                       | VPP3A : -9.2±0.3V                                                                                           |
|     |                      |                                                       | VPP3B, 3C: Fix to GND                                                                                       |
| 6   | Liquid crystal drive | DDVDH                                                 | 4.5V ~ 6.0V                                                                                                 |
|     | voltages             | VGH                                                   | 10.0V ~ 18.0V                                                                                               |
|     |                      | VGL                                                   | -4.5V ~ -13.5V                                                                                              |
|     |                      | VGH-VGL                                               | Max. 28.0V                                                                                                  |
|     |                      | VCL                                                   | -1.9V ~ -3.0V                                                                                               |
|     |                      | VCI-VCL                                               | Max. 6.0V                                                                                                   |

| 7 Internal | DDVDH               | VCI1 x 2 |                       |
|------------|---------------------|----------|-----------------------|
|            | step-up<br>circuits | VGH      | VCI1 x 5, x 6         |
|            | onound              | VGL      | VCI1 x -3, x -4, x -5 |
|            |                     | VCL      | VCI1 x –1             |

#### Differences between R61505U and R61505V

**Table 2 Functions** 

|                    | R61505U                 | R61505V                    |
|--------------------|-------------------------|----------------------------|
| FRC                | 32 grayscales, with FRC | 64 grayscales, without FRC |
| RGB I/F            | 6/16/18 bits            | 16/18 bits                 |
| High speed write   | Supported               | Not supported              |
| Resizing           | Supported               | Not supported              |
| Partial display    | 2 images                | 1 image                    |
| Sequencer          | Semi-automatic          | Automatic                  |
| γ correction       | 84 bits                 | 100 bits                   |
| VCM                | 5 bits                  | 7 bits                     |
| NVM erase function | Not supported           | Supported                  |
| DDVDH level        | VCI1 x 2, x 3           | VCI1 x 2                   |
| VGH level          | VCI1 x 6, x 7, x 8      | VCI1 x 5, x 6              |
| Serial interface   | 2 chip address          | 1 chip address only        |

### **Table 3 Voltage**

|     | R61505U      | R61505V      |
|-----|--------------|--------------|
| VGH | 10.0 ~ 20.0V | 10.0 ~ 18.0V |

#### C23 is omitted.

**Table 4 Notations** 

| R61505U | R61505V |
|---------|---------|
| CS*     | CSX     |
| WR*     | WRX     |
| RESET*  | RESETX  |
| RD*     | RDX     |

**Table 5 Registers** 

| Address | Register Name       | Contents of changes   |                                                                                       |
|---------|---------------------|-----------------------|---------------------------------------------------------------------------------------|
| R00h    | Device Code<br>Read | Changed               | 1505 → B505 (to identify the differences between the R61505U and R61505V)             |
| R02h    | EOR                 | Deleted               | The R61505V does not support the function.                                            |
| R03h    | HMW                 | Deleted               | The R61505V does not support the function.                                            |
| R04h    | RCV [1:0]           | Deleted               | The R61505V does not support the function.                                            |
|         | RCH [1:0]           | Deleted               | The R61505V does not support the function.                                            |
|         | RCZ [1:0]           | Deleted               | The R61505V does not support the function.                                            |
| R07h    | VON                 | Deleted               | Power supply sequence of the R61505V is automated.                                    |
|         | GON                 | Deleted               | Power supply sequence of the R61505V is automated.                                    |
|         | DTE                 | Deleted               | Power supply sequence of the R61505V is automated.                                    |
|         | D [1:0]             | Deleted               | Power supply sequence of the R61505V is automated.                                    |
| R08h    | FP[7:0]<br>BP[7:0]  | Specification changed | Number of bits is increased from 4 to 8 to enable wider front and back porch periods. |
| R09h    | PTG                 | Specification changed | Simplified                                                                            |
| R10h    | APE                 | Deleted               | Power supply sequence of the R61505V has been automated.                              |
|         | SAP [1:0]           | Deleted               | Grayscale output method changed.                                                      |
|         | AP [1:0]            | Specification changed | Setting changed.                                                                      |
|         | BT[2:0]             | Specification changed | Step-up factors changed.                                                              |
| R11h    | DC0 [2:0]           | Specification changed | Specification of step-up clock frequency for Step-up circuit 1 changed.               |
|         | DC1 [2:0]           | Specification changed | Specification of step-up clock frequency for Step-up circuit 2 changed.               |
|         | VC [2:0]            | Specification changed | Specification of VCI voltage changed.                                                 |
| R12h    | VRH [4:0]           | Specification changed | Factors changed.                                                                      |
|         |                     | Specification changed | Sequence changed.                                                                     |
|         | VREG1R              | Deleted               | The R61505V internally generates VREG1OUT from VCIR.                                  |
|         | VCMR                | Specification changed | Internal electronic volume is selected as default in the R61505V.                     |
| R13h    | VDV [4:0]           | Specification changed | Factors changed.                                                                      |
| R17h    | PSE                 | Deleted               | Power supply sequence of the R61505V is automated.                                    |
| R19h    | TBT                 | Deleted               | Power supply sequence of the R61505V is automated.                                    |
| R0Eh    | VEM [1:0]           | Specification changed | The R61505V is capable of equalizing both VCOMH and VCOML.                            |

| R28h    | UID [3:0]    | Specification changed | Default value changed.                                                                                                                            |
|---------|--------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| R29h    | VCM1 [6:0]   | Specification changed | Number of VCM1 bit and default value are changed. The R61505V is capable of finer voltage level setting.                                          |
| R2Ah    | VCM2 [6:0]   | Specification changed | Number of VCM2 bit and default value are changed. The R61505V is capable of finer voltage level setting.                                          |
|         | VCMSEL       | Specification changed | New specification of NVM (130nm)                                                                                                                  |
| R30~39h | γ Control    | Specification changed | Control method changed.                                                                                                                           |
| R60h    | SCN [5:0]    | Specification changed | Setting changed.                                                                                                                                  |
| R83h    | PTDP1        | Deleted               | The R61505V does not support the function.                                                                                                        |
| R84h    | PTSA1        | Deleted               | The R61505V does not support the function.                                                                                                        |
| R85h    | PTEA1        | Deleted               | The R61505V does not support the function.                                                                                                        |
| R93h    | MCPI [2:0]   | Specification changed | Sets VCOM alternating position. (The R61505V is capable of controlling source output position and VCOM alternating position separately.)          |
| R94h    | SDTI [2:0]   | Added                 | Sets source output alternating position. (The R61505V is capable of controlling source output position and VCOM alternating position separately.) |
| R97h    | NOWE[2:0]    | Specification changed | Specification of non-overlap period changed.                                                                                                      |
| R98h    | MCPE [2:0]   | Specification changed | Sets VCOM alternating position. (The R61505V is capable of controlling source output position and VCOM alternating position separately.)          |
| R99h    | SDTE [2:0]   | Added                 | Sets source output alternating position. (The R61505V is capable of controlling source output position and VCOM alternating position separately.) |
| RA0h    | NVAD [1:0]   | Added                 | New specification of NVM (130nm)                                                                                                                  |
|         | EAD[1:0]     | Deleted               | The R61505V does not support the function.                                                                                                        |
| RA1h    | NVDAT [15:0] | Added                 | New specification of NVM (130nm)                                                                                                                  |
|         | ED[7:0]      | Deleted               | The R61505V does not support the function.                                                                                                        |
| RA3h    | NVVREF       | Added                 | New specification of NVM (130nm)                                                                                                                  |

#### **Block Diagram**



Figure 1

#### **Block Function**

#### 1. System Interface

The R61505V supports 80-system high-speed interface via 8-, 9-, 16-, 18-bit parallel ports and a clock synchronous serial interface. The interface is selected by setting the IM3-0 pins.

The R61505V has a 16-bit index register (IR), an 18-bit write-data register (WDR), and an 18-bit read-data register (RDR). The IR is the register to store index information from control register and internal GRAM. The WDR is the register to temporarily store data to be written to control register and internal GRAM. The RDR is the register to temporarily store the data read from the GRAM. The data from the HOST PROCESSOR to be written to the internal GRAM is first written to the WDR and then automatically written to the internal GRAM in internal operation. The data is read via RDR from the internal GRAM. Therefore, invalid data is sent to the data bus when the R61505V performs the first read operation from the internal GRAM. Valid data is read out when the R61505V performs the second and subsequent read operation.

The instruction execution time except that of starting oscillation takes 0 clock cycle to allow writing instructions consecutively.

Table 6 Register Selection (80-system 8/9/16/18-bit Parallel Interface)

| WRX | RDX | RS | Function                                           |
|-----|-----|----|----------------------------------------------------|
| 0   | 1   | 0  | Write index to IR                                  |
| 1   | 0   | 0  | Setting disabled                                   |
| 0   | 1   | 1  | Write to control register or internal GRAM via WDR |
| 1   | 0   | 1  | Read from internal GRAM and register via RDR       |

**Table 7 Register Selection (Clock synchronous serial interface) Start byte** 

| RW | RS | Function                                           |
|----|----|----------------------------------------------------|
| 0  | 0  | Write index to IR                                  |
| 1  | 0  | Setting disabled                                   |
| 0  | 1  | Write to control register or internal GRAM via WDR |
| 1  | 1  | Read from internal GRAM and register via RDR       |

Table 8

| IM3 | IM2 | IM1 | IM0 | System interface                   | DB pins           | RAM write data                                                                                            | Instruction write transfer                |
|-----|-----|-----|-----|------------------------------------|-------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------|
| 0   | 0   | 0   | 0   | Setting disabled                   | -                 | -                                                                                                         | -                                         |
| 0   | 0   | 0   | 1   | Setting disabled                   | -                 | -                                                                                                         | -                                         |
| 0   | 0   | 1   | 0   | 80-system 16-bit interface         | DB17-10,<br>DB8-1 | Single transfer (16 bits) 2 transfers (1st: 2 bits, 2nd: 16 bits) 2 transfers (1st: 16 bits, 2nd: 2 bits) | Single transfer (16 bits)                 |
| 0   | 0   | 1   | 1   | 80-system 8-bit interface          | DB17-10           | 2 transfers (1st: 8 bits, 2nd: 8 bits)<br>3 transfers (1st: 6 bits, 2nd: 6 bits, 3rd: 6 bits)             | 2 transfers<br>(1st: 8 bits, 2nd: 8 bits) |
| 0   | 1   | 0   | 0   | Clock synchronous serial interface | -<br>(SDI, SDO)   | 2 transfers (1st: 8 bits, 2nd: 8 bits)                                                                    | 2 transfers<br>(1st: 8 bits, 2nd: 8 bits) |
| 0   | 1   | 0   | 1   | Setting disabled                   | -                 | -                                                                                                         | -                                         |
| 0   | 1   | 1   | 0   | Setting disabled                   | -                 | -                                                                                                         | -                                         |
| 0   | 1   | 1   | 1   | Setting disabled                   | -                 | -                                                                                                         | -                                         |
| 1   | 0   | 0   | 0   | Setting disabled                   | -                 | -                                                                                                         | -                                         |
| 1   | 0   | 0   | 1   | Setting disabled                   | -                 | -                                                                                                         | -                                         |
| 1   | 0   | 1   | 0   | 80-system 18-bit interface         | DB17-0            | Single transfer (18 bits)                                                                                 | Single transfer (16 bits)                 |
| 1   | 0   | 1   | 1   | 80-system 9-bit interface          | DB17-9            | 2 transfers (1st: 9 bits, 2nd: 9 bits)                                                                    | 2 transfers<br>(1st: 8 bits, 2nd: 8 bits) |
| 1   | 1   | 0   | 0   | Setting disabled                   | -                 | -                                                                                                         | -                                         |
| 1   | 1   | 0   | 1   | Setting disabled                   | -                 | -                                                                                                         |                                           |
| 1   | 1   | 1   | 0   | Setting disabled                   | -                 | -                                                                                                         | -                                         |
| 1   | 1   | 1   | 1   | Setting disabled                   | -                 | -                                                                                                         | -                                         |

#### 2. External Display Interface (RGB, VSYNC interfaces)

The R61505V supports RGB interface and VSYNC interface as the external interface to display moving picture. When the RGB interface is selected, the display operation is synchronized with externally supplied signals, VSYNC, HSYNC, and DOTCLK. In RGB interface operation, data (DB17-0) is written in synchronization with these signals when the polarity of enable signal (ENABLE) allows write operation in order to prevent flicker while updating display data.

In VSYNC interface operation, the display operation is synchronized with the internal clock except frame synchronization, which synchronizes the display operation with the VSYNC signal. The display data is written to the internal GRAM via system interface. When writing data via VSYNC interface, there are constraints in speed and method in writing data to the internal RAM. For details, see the "VSYNC interface" section.

The R61505V allows switching interface by instruction according to the display, i.e. still and/or moving picture(s) in order to transfer data only when the data is updated and thereby reduce the data transfer and power consumption for moving picture display.

#### 3. Address Counter (AC)

The address counter (AC) gives an address to the internal GRAM. When the index of the register to set a RAM address in the AC is written to the IR, the address information is sent from the IR to the AC. As the R61505V writes data to the internal GRAM, the address in the AC is automatically updated plus or minus 1. The window address function enables writing data only within the rectangular area specified in the GRAM.

#### 4. Graphics RAM (GRAM)

GRAM is graphics RAM, which can store bit-pattern data of 172,800 (240RGB x 320 (dots) x 18(bits)) bytes at maximum, using 18 bits per pixel.

#### 5. Grayscale Voltage Generating Circuit

The grayscale voltage generating circuit generates liquid crystal drive voltages according to the grayscale data in the  $\gamma$ -correction registers to enable 262k-color display. For details, see the  $\gamma$ -Correction Register section.

#### 6. Liquid crystal drive power supply circuit

The liquid crystal drive power supply circuit generates DDVDH, VGH, VGL and VCOM levels to drive liquid crystal.

#### 7. Timing Generator

The timing generator generates a timing signal for the operation of internal circuit such as the internal GRAM. The timing signal for display operation such as RAM read operation and the timing signal for internal operation such as RAM access from the HOST PROCESSOR are generated separately in order to avoid mutual interference.

#### 8. Oscillator (OSC)

Internal oscillator generates clock signal used to operate the R61505V.

The R61505V generates the Internal oscillation clock using internal oscillator. Adjusting the frequency by external resistance is impossible. Adjust the oscillation frequency and line numbers by Frame-Frequency Adjustment Function. During the deep standby mode, Internal oscillation halts to reduce power consumption. See "Oscillator" for details.

#### 9. Liquid crystal driver Circuit

The liquid crystal driver circuit of the R61505V consists of a 720-output source driver (S1  $\sim$  S720) and a 320-output gate driver (G1 $\sim$ G320). The display pattern data is latched when 720 bits of data are inputted. The latched data control the source driver and output drive waveforms. The gate driver for scanning gate lines outputs either VGH or VGL level. The shift direction of 720-bit source output from the source driver can be changed by setting the SS bit and the shift direction of gate output from the gate driver can be

changed by setting the GS bit. The scan mode by the gate driver can be changed by setting the SM bit. Sets the gate driver pin arrangement in combination with the GS bit to select the optimal scan mode for the module.

#### 10. Internal logic power supply regulator

The internal logic power supply regulator generates internal logic power supply VDD.

## **Pin Function**

Table 9 Interface

| Signal  | I/O | Connect to        | Functio                        | n                                                                                                                                       |          |        |                                                                        |                            |                       | When not in use       |
|---------|-----|-------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------|--------|------------------------------------------------------------------------|----------------------------|-----------------------|-----------------------|
| IM3-0   | I   | GND or IOVCC      | Select a                       | mode                                                                                                                                    | e to int | erface | e to host processor. (A                                                | mplitude: I                | OVCC ~                | -                     |
|         |     |                   | IM3                            | IM2                                                                                                                                     | IM1      | IMO    | Interface Mode                                                         | DB Pin                     | Colors                |                       |
|         |     |                   | 0                              | 0                                                                                                                                       | 0        | 0      | Setting disabled                                                       | -                          | -                     |                       |
|         |     |                   | 0                              | 0                                                                                                                                       | 0        | 1      | Setting disabled                                                       | -                          | -                     |                       |
|         |     |                   |                                | 0                                                                                                                                       | 0        | 1      | 0                                                                      | 80-system 16-bit interface | DB17-10,<br>DB8-1     | 262,144<br>see Note 1 |
|         |     |                   | 0                              | 0                                                                                                                                       | 1        | 1      | 80-system 8-bit interface                                              | DB17-10                    | 262,144<br>see Note 2 |                       |
|         |     |                   | 0                              | 1                                                                                                                                       | 0        | 0      | Clock synchronous serial interface                                     | =                          | 65,536                |                       |
|         |     |                   | 0                              | 1                                                                                                                                       | 0        | 1      | Setting disabled                                                       |                            |                       |                       |
|         |     |                   | 0                              | 1                                                                                                                                       | 1        | 0      | Setting disabled                                                       | -                          | -                     |                       |
|         |     |                   | 0                              | 1                                                                                                                                       | 1        | 1      | Setting disabled                                                       | -                          | -                     |                       |
|         |     |                   | 1                              | 0                                                                                                                                       | 0        | 0      | Setting disabled                                                       | -                          | -                     |                       |
|         |     |                   | 1                              | 0                                                                                                                                       | 0        | 1      | Setting disabled                                                       | -                          | -                     |                       |
|         |     |                   | 1                              | 0                                                                                                                                       | 1        | 0      | 80-system 18-bit interface                                             | DB17-0                     | 262,144               |                       |
|         |     |                   | 1                              | 0                                                                                                                                       | 1        | 1      | 80-system 9-bit interface                                              | DB17-9                     | 262,144               |                       |
|         |     |                   | 1                              | 1                                                                                                                                       | 0        | 0      | Setting disabled                                                       | -                          | -                     |                       |
|         |     |                   | 1                              | 1                                                                                                                                       | 0        | 1      | Setting disabled                                                       | -                          | -                     |                       |
|         |     |                   | 1                              | 1                                                                                                                                       | 1        | 0      | Setting disabled                                                       | -                          | -                     |                       |
|         |     |                   | 1                              | 1                                                                                                                                       | 1        | 1      | Setting disabled                                                       | -                          | -                     |                       |
|         |     |                   |                                | ,                                                                                                                                       |          |        | ne transfer mode<br>o transfers mode                                   |                            |                       |                       |
| CSX     | I   | Host<br>processor | Low: the                       | R61                                                                                                                                     | 505V i   | s sele | tude: IOVCC-GND<br>cted and accessible<br>selected and not acce        | ssible.                    |                       | IOVCC                 |
| RS      | I   | Host<br>processor | Registe<br>Low: se<br>High: se | lect In                                                                                                                                 | dex re   | gister |                                                                        |                            |                       | IOVCC                 |
| WRX/SCL | I   | Host<br>processor | write op                       | eratio                                                                                                                                  | n whe    | n WR   | system bus interface of<br>X is low. Synchronous<br>Amplitude: IOVCC-G | clock sign                 |                       | IOVCC                 |
| RDX     | I   | Host processor    |                                |                                                                                                                                         |          |        | system bus interface o<br>( is low. Amplitude: IO                      |                            |                       | IOVCC                 |
| SDI     | I   | Host<br>processor |                                | Serial data input (SDI) pin in serial interface operation. The data is inputted on the rising edge of the SCL signal. Amplitude: IOVCC- |          |        |                                                                        | GND or<br>IOVCC            |                       |                       |
| SDO     | 0   | Host<br>processor | Serial d                       | d on t                                                                                                                                  | he fall  | ing ec | pin in serial interface o<br>lge of the SCL signal.                    | peration. <sup>-</sup>     | The data is           | Open                  |

| Signal   | I/O | Connect to     | Function                                                                                                                              | When not in use |
|----------|-----|----------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| DB0-DB17 | I/O | Host processor | 18-bit parallel bi-directional data bus for 80-system interface operation (Amplitude: IOVCC-GND).                                     | GND or<br>IOVCC |
|          |     |                | 8-bit I/F: DB17-DB10 are used. 9-bit I/F: DB17-DB9 are used. 16-bit I/F: DB17-DB10 and DB8-1 are used. 18-bit I/F: DB17-DB0 are used. |                 |
|          |     |                | 18-bit parallel bi-directional data bus for RGB interface operation (Amplitude: IOVCC-GND).                                           |                 |
|          |     |                | 16-bit I/F: DB17-DB13 and DB11-1 are used. 18-bit I/F: DB17-DB0 are used.                                                             |                 |
| ENABLE   | I   | Host processor | Data enable signal for RGB interface operation. (Amplitude: IOVCC-GND).                                                               | GND or<br>IOVCC |
|          |     |                | Low: accessible (select) High: Not accessible (Not select)                                                                            |                 |
|          |     |                | The polarity of ENABLE signal can be inverted by setting the EPL bit.                                                                 |                 |
|          |     |                | (Amplitude: IOVCC-GND) .                                                                                                              |                 |
| VSYNC    | I   | Host processor | Frame synchronous signal for RGB interface operation. Low active. (Amplitude: IOVCC-GND).                                             | GND or<br>IOVCC |
| HSYNC    | I   | Host processor | Line synchronous signal for RGB interface operation. Low active. ssor (Amplitude: IOVCC-GND).                                         |                 |
| DOTCLK   | I   | Host processor | Dot clock signal for RGB interface operation. The data input timing is on the rising edge of DOTCLK. (Amplitude: IOVCC-GND).          |                 |
| FMARK    | 0   | Host processor | Frame head pulse signal, which is used when writing data to the internal RAM. (Amplitude: IOVCC-GND).                                 | Open            |

#### **Table 10 Reset, Internal oscillation**

| Signal | 1/0 | Connect to | Function                                                                                                                                                              | When not in use |
|--------|-----|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| RESETX |     | •          | Reset signal. The R61505V is initialized when this signal is at low level. Make sure to execute a power-on reset when turning on power supply (Amplitude: IOVCC-GND). | -               |

#### **Table 11 Power supply**

| Signal | I/O | Connect<br>to          | Function                                                                                                                                                                       | When not in use |  |  |
|--------|-----|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--|--|
| VCC    | -   | Power supply           | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                        |                 |  |  |
| GND    | -   | Power supply           | Internal logic GND.                                                                                                                                                            | -               |  |  |
| VDD    | 0   | Stabilizing capacitor  | Internal logic regulator output, which is used as the power supply to internal logic. Connect a stabilizing capacitor.                                                         | -               |  |  |
| IOVCC  | -   | Power supply           | Power supply to the interface pins: RESETX, CSX, WRX, RDX, RS, DB17-0, VSYNC, HSYNC, DOTCLK, ENABLE. In case of COG, connect to VCC on the FPC if IOVCC=VCC, to prevent noise. | -               |  |  |
| AGND   | -   | Power supply           | Analog GND (for logic regulator and liquid crystal power supply circuit). In case of COG, connect to GND on the FPC to prevent noise.                                          | -               |  |  |
| VCI    | ı   | Power supply           | Power supply to the liquid crystal power supply analog circuit.  Connect to an external power supply VCI.                                                                      | -               |  |  |
| VCILVL | I   | Reference power supply | VCILVL must be at the same electrical potential as VCI. Connect to external power supply. In case of COG, connect to VCI on the FPC to prevent noise.                          | -               |  |  |
| VPP1   | I   | Power supply or open   | Internal NVM power supply. See "NVM Control Sequence" for voltages applied to VPP1, 2 and 3A pins.                                                                             | Open            |  |  |
| VPP2   | I   | Power supply or open   |                                                                                                                                                                                | Open            |  |  |
| VPP3A  | I   | Power supply or open   |                                                                                                                                                                                | AGND            |  |  |

Table 12 Step-up circuit

| Signal                                   | I/O     | Connect to                       | Function                                                                                                                                                                                                                     | When not in use |  |
|------------------------------------------|---------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--|
| VCI1                                     | I/O     | Stabilizing capacitor            | • • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                      |                 |  |
| DDVDH                                    | 0       | Stabilizing capacitor            | Power supply for the source driver liquid crystal drive unit and VCOM drive which is generated from VCI1 and output from internal step-up circuit 1. The step-up factor is 2. Make sure to connect to stabilizing capacitor. | -               |  |
| VGH                                      | 0       | Stabilizing capacitor, LCD panel | Liquid crystal drive power supply which is generated from VCI1 and DDVDH and output from internal step-up circuit 2. The step-up factor is set by BT bit. Make cure to connect to stabilizing capacitor.                     | -               |  |
| VGL                                      | 0       | Stabilizing capacitor, LCD panel | Liquid crystal drive power supply which is generated from VCI1 and DDVDH and output from internal step-up circuit 2. The step-up factor is set by BT bit. Make cure to connect to stabilizing capacitor.                     | -               |  |
| VCL                                      | 0       | Stabilizing capacitor            | VCOML drive power supply. Make sure to connect to stabilizing capacitor.                                                                                                                                                     | -               |  |
| C11P, C11M<br>C12P, C12M                 | I/<br>O | Step-up capacitor                | Capacitor connection pins for the step-up circuit 1.                                                                                                                                                                         |                 |  |
| C13P, C13M,<br>C21P, C21M,<br>C22P, C22M | I/<br>O | Step-up capacitor                | Capacitor connection pins for the step-up circuit 2.                                                                                                                                                                         | -               |  |

#### Table 13 LCD drive

| Signal       | I/O | Connect<br>to              | Function                                                                                                                                                                                                       | When not in use |
|--------------|-----|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| VREG1<br>OUT | 0   | Stabilizing capacitor      |                                                                                                                                                                                                                |                 |
|              |     |                            | VREG1OUT is used for (1) source driver grayscale reference voltage, (2) VCOMH level reference voltage, and (3) VCOM amplitude reference voltage. Make sure to connect to a stabilizing capacitor when in use.  | -               |
| VCOM         | 0   | TFT panel common electrode | Power supply to TFT panel's common electrode. VCOM alternates between VCOMH and VCOML. The alternating cycle is set by internal register. Also, the VCOM output can be started and halted by register setting. | -               |
| VCOMH        | 0   | Stabilizing capacitor      | The High level of VCOM amplitude. The output level can be adjusted by either external resistor (VCOMR) or electronic volume. Make sure to connect to stabilizing capacitor.                                    | -               |
| VCOML        | 0   | Stabilizing capacitor      | The Low level of VCOM amplitude. The output level can be adjusted by instruction (VDV bits). Make sure to connect to stabilizing capacitor.                                                                    | -               |
| VCOMR        | I   | Variable resistor or open  | Connect a variable resistor when adjusting the VCOMH level between VREG1OUT and GND.                                                                                                                           | Open            |
| VGS          | I   | GND                        | Reference level for the grayscale voltage generating circuit.                                                                                                                                                  | -               |
| S1~S720      | 0   | LCD                        | Liquid crystal application voltages. To change the shift direction of segment signal output, set the SS bit as follows.                                                                                        |                 |
|              |     |                            | When SS = 0, the data in the RAM address h00000 is output from S1. When SS = 1, the data in the RAM address h00000 is output from S720.                                                                        | -               |
| G1~G320      | 0   | LCD                        | Gate line output signals.  VGH: gate line select level                                                                                                                                                         | -               |
|              |     |                            | VGL: gate line non-select level                                                                                                                                                                                |                 |

Table 14 Others (test and dummy pins)

| Signal                                  | I/O | Connect to        | Function                                                                                                                                                                         | When not in use |
|-----------------------------------------|-----|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| VTEST                                   | 0   | Open              | Test pin. Leave open.                                                                                                                                                            | Open            |
| VREFC                                   | I   | GND               | Test pin. Make sure to fix to the GND level.                                                                                                                                     | -               |
| VREFD                                   | 0   | Open              | Test pin. Leave open.                                                                                                                                                            | Open            |
| VREF                                    | 0   | Open              | Test pin. Leave open.                                                                                                                                                            | Open            |
| VDDTEST                                 | I   | GND               | Test pin. Make sure to fix to the GND level.                                                                                                                                     | -               |
| VMON                                    | 0   | Open              | Test pin. Leave open.                                                                                                                                                            | Open            |
| VCIR                                    | 0   | Open              | Test pin. Leave open.                                                                                                                                                            | Open            |
| GNDDUM 1-6,<br>AGNDDUM 1-7,<br>IOVCCDUM | 0   | -                 | Connect unused interface and test pins to these pins on the glass to fix voltage levels. Leave open when not used.                                                               | Open            |
| DUMMYR 1-6                              | -   | -                 | Short-circuited within the chip for COG contact resistance measurement. DUMMYR pins are short-circuited as below:  DUMMYR1 and DUMMYR6  DUMMYR2 and DUMMYR5  DUMMYR3 and DUMMYR4 | Open            |
| VGLDMY 1-4                              | 0   | Unused gate lines | Connect unused gate lines to fix the level at VGL.                                                                                                                               | Open            |
| TESTO 1-14                              | 0   | -                 | Dummy pads. Leave open.                                                                                                                                                          | Open            |
| TEST 1~5                                | I   | GND               | Test pin. Connect to GND.                                                                                                                                                        | GND             |
| TSC                                     | I   | GND               | Test pin. Connect to GND.                                                                                                                                                        | GND             |
| TS0-8                                   | 0   | Open              | Test pin. Leave open.                                                                                                                                                            | Open            |
| VPP3B, VPP3C                            | I   | AGND              | Test pin. Connect to AGND.                                                                                                                                                       | AGND            |
| TEVCI2                                  | 0   | Open              | Test pin. Leave open.                                                                                                                                                            | Open            |

Patents of dummy pins used to fix pin to VCC or GND are granted as below:

PATENT ISSUED: United States Patent No. 6,323,930 No. 6,924,868

Korean Patent No. 401,270 Taiwanese Patent No. 175,413 Japanese Patent No. 3,980,066







● Chip size: 18.80mm x 0.77mm

●Chip thickness: 280µm (typ.)

•Pad coordinates: Pad center

• Pad coordinates: Chip center

#### • Au bump size:

1.  $50\mu m \times 80\mu m \text{ (I/O)}$ 

2. 16μm x 94μm (Output to liquid crystal)

• Au bump pitch: See "Bump Arrangement"

• Au bump height: 12 μm

**Table 15 Alignment Mark** 

| Alignment shape | Mark  | X     | Y    |
|-----------------|-------|-------|------|
| Type A          | (1-a) | -9266 | -251 |
| Туре А          | (1-b) | 9266  | -251 |



Figure 2 Alignment Mark

| Rev | Date        | Contents of modification                         |
|-----|-------------|--------------------------------------------------|
| 0   | 2007.9.14   | First issue                                      |
| 0.1 | 2007.9.20   | Change the pin name (VCI2 $\rightarrow$ TEVCI2). |
| 1.0 | 2007.10.20  | Fix coordinates.                                 |
| 1.1 | 2008. 2. 5. | Pin name changed. IM0/ID> IM0                    |

| pad No | pad name | X     | Υ    | pad No | pad name | Х     | Υ    |
|--------|----------|-------|------|--------|----------|-------|------|
| 1      | AGNDDUM1 | -9065 | -281 | 51     | TS8      | -5565 | -281 |
| 2      | DUMMYR1  | -8995 | -281 | 52     | TS7      | -5495 | -281 |
|        | DUMMYR2  | -8925 | -281 |        | DB14     | -5425 | -281 |
|        | VPP1     | -8855 | -281 | 54     | DB13     | -5355 | -281 |
|        | VPP1     | -8785 | -281 |        | DB12     | -5285 | -281 |
|        | VPP1     | -8715 | -281 |        | TS6      | -5215 | -281 |
| 7      | VPP2     | -8645 | -281 | 57     | TS5      | -5145 | -281 |
| 8      | VPP2     | -8575 | -281 |        | DB11     | -5075 | -281 |
| 9      | VPP2     | -8505 | -281 | 59     | DB10     | -5005 | -281 |
| 10     | VPP2     | -8435 | -281 | 60     | DB9      | -4935 | -281 |
| 11     | VPP2     | -8365 | -281 | 61     | IOVCC    | -4865 | -281 |
| 12     | VPP3A    | -8295 | -281 | 62     | IOVCC    | -4795 | -281 |
| 13     | VPP3A    | -8225 | -281 | 63     | IOVCC    | -4725 | -281 |
|        | VPP3B    | -8155 | -281 |        | IOVCC    | -4655 | -281 |
| 15     | VPP3B    | -8085 | -281 | 65     | IOVCC    | -4585 | -281 |
|        | VPP3C    | -8015 | -281 | 66     | IOVCC    | -4515 | -281 |
| 17     | VPP3C    | -7945 | -281 | 67     | IOVCC    | -4445 | -281 |
| 18     | AGND     | -7875 | -281 | 68     | IOVCC    | -4375 | -281 |
| 19     | AGND     | -7805 | -281 | 69     | DB8      | -4305 | -281 |
| 20     | AGND     | -7735 | -281 | 70     | DB7      | -4235 | -281 |
|        | AGND     | -7665 | -281 |        | DB6      | -4165 | -281 |
| 22     | AGND     | -7595 | -281 | 72     | TS4      | -4095 | -281 |
|        | GND      | -7525 | -281 |        | TS3      | -4025 | -281 |
|        | GND      | -7455 | -281 | 74     |          | -3955 | -281 |
| 25     | GND      | -7385 | -281 | 75     | DB4      | -3885 | -281 |
|        | GND      | -7315 | -281 |        | DB3      | -3815 | -281 |
|        | GND      | -7245 | -281 |        | TS2      | -3745 | -281 |
|        | DUMMYR3  | -7175 | -281 |        | TS1      | -3675 | -281 |
| 29     | DUMMYR4  | -7105 | -281 | 79     | DB2      | -3605 | -281 |
| 30     | GNDDUM1  | -7035 | -281 |        | DB1      | -3535 | -281 |
|        | IM0      | -6965 | -281 | 81     |          | -3465 | -281 |
| 32     | IM1      | -6895 | -281 | 82     | TS0      | -3395 | -281 |
|        | IM2      | -6825 | -281 | 83     | TSC      | -3325 | -281 |
|        | IM3      | -6755 | -281 |        | GNDDUM4  | -3255 | -281 |
|        | IOVCCDUM | -6685 | -281 |        | CSX      | -3185 | -281 |
| 36     | TEST5    | -6615 | -281 |        | RS       | -3115 | -281 |
|        | TEST4    | -6545 | -281 |        | WRX/SCL  | -3045 | -281 |
|        | TEST3    | -6475 | -281 |        | RDX      | -2975 | -281 |
|        | TEST2    | -6405 | -281 | 89     | RESETX   | -2905 | -281 |
| 40     | TEST1    | -6335 | -281 | 90     | SDO      | -2835 | -281 |
|        | GNDDUM2  | -6265 | -281 |        | SDI      | -2765 | -281 |
| 42     | FMARK    | -6195 | -281 |        | GNDDUM5  | -2695 | -281 |
|        | VSYNC    | -6125 | -281 |        | VTEST    | -2625 | -281 |
| 44     | HSYNC    | -6055 | -281 | 94     | VREF     | -2555 | -281 |
| 45     | DOTCLK   | -5985 | -281 | 95     | VREFD    | -2485 | -281 |
|        | ENABLE   | -5915 | -281 |        | VREFC    | -2415 | -281 |
| 47     | GNDDUM3  | -5845 | -281 | 97     | VDDTEST  | -2345 | -281 |
|        | DB17     | -5775 | -281 |        | GNDDUM6  | -2275 | -281 |
|        | DB16     | -5705 | -281 |        | VCC      | -2205 | -281 |
| 50     | DB15     | -5635 | -281 |        | VCC      | -2135 | -281 |

| R01000V PAD | Coordinates (No.2) ( | Unit: $\mu$ m) |      |        |          | 2008.2.5 | revi.i |
|-------------|----------------------|----------------|------|--------|----------|----------|--------|
| pad No      | pad name             | X              | Υ    | pad No | pad name | Х        | Υ      |
| 101         | VCC                  | -2065          | -281 | 151    | C11M     | 1435     | -281   |
| 102         | VCC                  | -1995          | -281 | 152    | C11M     | 1505     | -281   |
| 103         | VCC                  | -1925          | -281 | 153    | C11M     | 1575     | -281   |
| 104         | VCC                  | -1855          | -281 | 154    | C11P     | 1645     | -281   |
| 105         | VDD                  | -1785          | -281 | 155    | C11P     | 1715     | -281   |
| 106         | VDD                  | -1715          | -281 | 156    | C11P     | 1785     | -281   |
| 107         | VDD                  | -1645          | -281 | 157    | C11P     | 1855     | -281   |
| 108         | VDD                  | -1575          | -281 | 158    | C11P     | 1925     | -281   |
| 109         | VDD                  | -1505          | -281 | 159    | C12M     | 1995     | -281   |
| 110         | VDD                  | -1435          | -281 | 160    | C12M     | 2065     | -281   |
| 111         | VDD                  | -1365          | -281 | 161    | C12M     | 2135     | -281   |
| 112         | VDD                  | -1295          | -281 | 162    | C12M     | 2205     | -281   |
| 113         | GND                  | -1225          | -281 | 163    | C12M     | 2275     | -281   |
| 114         | GND                  | -1155          | -281 | 164    | C12P     | 2345     | -281   |
| 115         | GND                  | -1085          | -281 | 165    | C12P     | 2415     | -281   |
| 116         | GND                  | -1015          | -281 |        | C12P     | 2485     | -281   |
| 117         | GND                  | -945           | -281 | 167    | C12P     | 2555     | -281   |
| 118         | GND                  | -875           | -281 | 168    | C12P     | 2625     | -281   |
| 119         | GND                  | -805           | -281 | 169    | DDVDH    | 2695     | -281   |
| 120         | GND                  | -735           | -281 | 170    | DDVDH    | 2765     | -281   |
| 121         | VGS                  | -665           | -281 | 171    | DDVDH    | 2835     | -281   |
| 122         | AGND                 | -595           | -281 | 172    | DDVDH    | 2905     | -281   |
| 123         | AGND                 | -525           | -281 |        | DDVDH    | 2975     | -281   |
| 124         | AGND                 | -455           | -281 | 174    | DDVDH    | 3045     | -281   |
| 125         | AGND                 | -385           | -281 | 175    | DDVDH    | 3115     | -281   |
| 126         | AGND                 | -315           | -281 | 176    | DDVDH    | 3185     | -281   |
|             | AGND                 | -245           | -281 |        | DDVDH    | 3255     | -281   |
| 128         | AGND                 | -175           | -281 | 178    | DDVDH    | 3325     | -281   |
| 129         | AGND                 | -105           | -281 | 179    | VCIR     | 3395     | -281   |
| 130         | VCOMH                | -35            | -281 | 180    | VREG10UT | 3465     | -281   |
|             | VCOMH                | 35             | -281 |        | VCOMR    | 3535     | -281   |
| 132         | VCOMH                | 105            | -281 | 182    | VMON     | 3605     | -281   |
| 133         | VCOMH                | 175            | -281 | 183    | AGNDDUM2 | 3675     | -281   |
| 134         | VCOMH                | 245            | -281 | 184    | AGNDDUM3 | 3745     | -281   |
| 135         | VCOMH                | 315            | -281 | 185    | VCI1     | 3815     | -281   |
|             | VCOM                 | 385            | -281 |        | VCI1     | 3885     | -281   |
|             | VCOM                 | 455            | -281 |        | VCI1     | 3955     | -281   |
|             | VCOM                 | 525            | -281 | 188    |          | 4025     | -281   |
| 139         | VCOM                 | 595            | -281 | 189    | VCI1     | 4095     | -281   |
|             | VCOM                 | 665            | -281 |        | VCI1     | 4165     | -281   |
|             | VCOM                 | 735            | -281 | 191    |          | 4235     | -281   |
| 142         | VCOML                | 805            | -281 | 192    | VCI1     | 4305     | -281   |
| 143         | VCOML                | 875            | -281 | 193    |          | 4375     | -281   |
| 144         | VCOML                | 945            | -281 | 194    |          | 4445     | -281   |
|             | VCOML                | 1015           | -281 | 195    |          | 4515     | -281   |
|             | VCOML                | 1085           | -281 |        | VCI      | 4585     | -281   |
| 147         | VCOML                | 1155           | -281 | 197    | VCI      | 4655     | -281   |
|             | VCOML                | 1225           | -281 | 198    |          | 4725     | -281   |
|             | C11M                 | 1295           | -281 | 199    |          | 4795     | -281   |
|             | C11M                 | 1365           | -281 | 200    | VCI      | 4865     | -281   |
|             |                      |                |      |        |          |          |        |

| pad No | pad name | X    | Υ    | pad No | pad name | X    | Υ    |
|--------|----------|------|------|--------|----------|------|------|
| 201    | VCILVL   | 4935 | -281 |        | C22P     | 8435 | -281 |
|        | AGNDDUM4 | 5005 | -281 |        | C22M     | 8505 | -281 |
|        | VGH      | 5075 | -281 |        | C22M     | 8575 | -281 |
|        | VGH      | 5145 | -281 |        | C22M     | 8645 | -281 |
|        | VGH      | 5215 | -281 |        | TEVCI2   | 8715 | -281 |
|        | VGH      | 5285 | -281 |        | TEVCI2   | 8785 | -281 |
|        | VGH      | 5355 | -281 |        | TEVCI2   | 8855 | -281 |
|        | VGH      | 5425 | -281 |        | TEVCI2   | 8925 | -281 |
|        | AGNDDUM5 | 5495 | -281 |        | TEVCI2   | 8995 | -281 |
|        | VGL      | 5565 | -281 |        | AGNDDUM7 | 9065 | -281 |
|        | VGL      | 5635 | -281 |        | TESTO1   | 9216 | 279  |
|        | VGL      | 5705 | -281 |        | TESTO2   | 9200 | 166  |
|        | VGL      | 5775 | -281 |        | TESTO3   | 9184 | 279  |
|        | VGL      | 5845 | -281 |        | TESTO4   | 9168 | 166  |
|        | VGL      | 5915 | -281 |        | VGLDMY1  | 9152 | 279  |
|        | VGL      | 5985 | -281 | 266    |          | 9136 | 166  |
|        | VGL      | 6055 | -281 | 267    |          | 9120 | 279  |
|        | VGL      | 6125 | -281 | 268    |          | 9104 | 166  |
|        | VGL      | 6195 | -281 | 269    |          | 9088 | 279  |
|        | AGNDDUM6 | 6265 | -281 | 270    |          | 9072 | 166  |
|        | VCL      | 6335 | -281 |        | G11      | 9056 | 279  |
|        | VCL      | 6405 | -281 |        | G13      | 9040 | 166  |
|        | VCL      | 6475 | -281 |        | G15      | 9024 | 279  |
|        | VCL      | 6545 | -281 |        | G17      | 9008 | 166  |
|        | C13P     | 6615 | -281 |        | G19      | 8992 | 279  |
|        | C13P     | 6685 | -281 |        | G21      | 8976 | 166  |
|        | C13P     | 6755 | -281 |        | G23      | 8960 | 279  |
|        | C13P     | 6825 | -281 |        | G25      | 8944 | 166  |
|        | C13M     | 6895 | -281 |        | G27      | 8928 | 279  |
|        | C13M     | 6965 | -281 |        | G29      | 8912 | 166  |
|        | C13M     | 7035 | -281 |        | G31      | 8896 | 279  |
|        | C13M     | 7105 | -281 |        | G33      | 8880 | 166  |
|        | GND      | 7175 | -281 |        | G35      | 8864 | 279  |
|        | GND      | 7245 | -281 |        | G37      | 8848 | 166  |
|        | GND      | 7315 | -281 |        | G39      | 8832 | 279  |
|        | GND      | 7385 | -281 |        | G41      | 8816 | 166  |
|        | GND      | 7455 | -281 |        | G43      | 8800 | 279  |
|        | AGND     | 7525 | -281 |        | G45      | 8784 | 166  |
|        | AGND     | 7595 | -281 |        | G47      | 8768 | 279  |
|        | AGND     | 7665 | -281 |        | G49      | 8752 | 166  |
|        | AGND     | 7735 | -281 |        | G51      | 8736 | 279  |
|        | AGND     | 7805 | -281 |        | G53      | 8720 | 166  |
|        | C21P     | 7875 | -281 |        | G55      | 8704 | 279  |
|        | C21P     | 7945 | -281 |        | G57      | 8688 | 166  |
|        | C21P     | 8015 | -281 |        | G59      | 8672 | 279  |
|        | C21M     | 8085 | -281 |        | G61      | 8656 | 166  |
|        | C21M     | 8155 | -281 |        | G63      | 8640 | 279  |
|        | C21M     | 8225 | -281 |        | G65      | 8624 | 166  |
|        | C22P     | 8295 | -281 |        | G67      | 8608 | 279  |
|        | C22P     | 8365 | -281 |        | G69      | 8592 | 166  |

| R01000V PAD | Coordinates (No.4) (l | Unit: $\mu$ m) |            |            |              | 2008.2.5     | revi.i     |
|-------------|-----------------------|----------------|------------|------------|--------------|--------------|------------|
| pad No      | pad name              | X              | Υ          | pad No     | pad name     | X            | Υ          |
| 301         | G71                   | 8576           | 279        | 351        | G171         | 7776         | 279        |
| 302         | G73                   | 8560           | 166        | 352        | G173         | 7760         | 166        |
| 303         | G75                   | 8544           | 279        | 353        | G175         | 7744         | 279        |
| 304         | G77                   | 8528           | 166        | 354        | G177         | 7728         | 166        |
| 305         | G79                   | 8512           | 279        | 355        | G179         | 7712         | 279        |
| 306         | G81                   | 8496           | 166        | 356        | G181         | 7696         | 166        |
| 307         | G83                   | 8480           | 279        | 357        | G183         | 7680         | 279        |
| 308         | G85                   | 8464           | 166        | 358        | G185         | 7664         | 166        |
| 309         | G87                   | 8448           | 279        | 359        | G187         | 7648         | 279        |
| 310         | G89                   | 8432           | 166        | 360        | G189         | 7632         | 166        |
| 311         | G91                   | 8416           | 279        | 361        | G191         | 7616         | 279        |
| 312         | G93                   | 8400           | 166        | 362        | G193         | 7600         | 166        |
|             | G95                   | 8384           | 279        | 363        | G195         | 7584         | 279        |
| 314         | G97                   | 8368           | 166        | 364        | G197         | 7568         | 166        |
| 315         | G99                   | 8352           | 279        | 365        |              | 7552         | 279        |
| 316         | G101                  | 8336           | 166        | 366        | G201         | 7536         | 166        |
|             | G103                  | 8320           | 279        |            | G203         | 7520         | 279        |
| 318         | G105                  | 8304           | 166        | 368        | G205         | 7504         | 166        |
| 319         | G107                  | 8288           | 279        | 369        | G207         | 7488         | 279        |
| 320         | G109                  | 8272           | 166        | 370        | G209         | 7472         | 166        |
| 321         | G111                  | 8256           | 279        | 371        | G211         | 7456         | 279        |
|             | G113                  | 8240           | 166        | 372        | G213         | 7440         | 166        |
| 323         | G115                  | 8224           | 279        |            | G215         | 7424         | 279        |
|             | G117                  | 8208           | 166        | 374        |              | 7408         | 166        |
|             | G119                  | 8192           | 279        |            | G219         | 7392         | 279        |
|             | G121                  | 8176           | 166        |            | G221         | 7376         | 166        |
|             | G123                  | 8160           | 279        | 377        | G223         | 7360         | 279        |
|             | G125                  | 8144           | 166        |            | G225         | 7344         | 166        |
|             | G127                  | 8128           | 279        | 379        | G227         | 7328         | 279        |
|             | G129                  | 8112           | 166        | 380        |              | 7312         | 166        |
|             | G131                  | 8096           | 279        | 381        | G231         | 7296         | 279        |
|             | G133                  | 8080           | 166        | 382        | G233         | 7280         | 166        |
|             | G135                  | 8064           | 279        | 383        | G235         | 7264         | 279        |
|             | G137                  | 8048           | 166        |            | G237         | 7248         | 166        |
|             | G139                  | 8032           | 279        |            | G239         | 7232         | 279        |
|             | G141                  | 8016           | 166        | 386        | G241         | 7216         | 166        |
|             | G143                  | 8000           | 279        | 387        | G243         | 7200         | 279        |
|             | G145                  | 7984           | 166        | 388        | G245         | 7184         | 166        |
|             | G147                  | 7968           | 279        |            | G247         | 7168         | 279        |
|             | G149                  | 7952<br>7936   | 166        | 390        | G249         | 7152         | 166        |
|             | G151                  | 7936<br>7920   | 279        | 391        | G251         | 7136         | 279        |
|             | G153                  | 7920<br>7904   | 166<br>279 | 392<br>393 | G253         | 7120<br>7104 | 166<br>279 |
|             | G155                  | 7904           |            |            |              | 7104         |            |
|             | G157                  |                | 166        | 394<br>395 |              |              | 166<br>279 |
|             | G159<br>G161          | 7872<br>7856   | 279<br>166 |            | G259<br>G261 | 7072<br>7056 | 166        |
|             | G163                  | 7840           | 279        | 396        | G263         | 7040         | 279        |
|             | G165                  | 7840<br>7824   | 166        | 397        | G265         | 7040         | 166        |
|             | G167                  | 7808           | 279        | 399        | G267         | 7024         | 279        |
|             | G169                  | 7792           | 166        |            | G269         | 6992         | 166        |
| <b>ა</b> ეე | G108                  | 1192           | 100        | 400        | G203         | 0992         | 100        |

| INDIDUST FAD | Coordinates (No.5) (l | onit: μm) |     |        |          | 2008.2.5 | revi.i |
|--------------|-----------------------|-----------|-----|--------|----------|----------|--------|
| pad No       | pad name              | X         | Y   | pad No | pad name | X        | Υ      |
| 401          | G271                  | 6976      | 279 | 451    | S699     | 6000     | 166    |
| 402          | G273                  | 6960      | 166 | 452    | S698     | 5984     | 279    |
| 403          | G275                  | 6944      | 279 | 453    | S697     | 5968     | 166    |
| 404          | G277                  | 6928      | 166 | 454    | S696     | 5952     | 279    |
| 405          | G279                  | 6912      | 279 | 455    | S695     | 5936     | 166    |
| 406          | G281                  | 6896      | 166 | 456    | S694     | 5920     | 279    |
| 407          | G283                  | 6880      | 279 | 457    | S693     | 5904     | 166    |
| 408          | G285                  | 6864      | 166 | 458    | S692     | 5888     | 279    |
| 409          | G287                  | 6848      | 279 | 459    | S691     | 5872     | 166    |
| 410          | G289                  | 6832      | 166 | 460    | S690     | 5856     | 279    |
| 411          | G291                  | 6816      | 279 | 461    | S689     | 5840     | 166    |
| 412          | G293                  | 6800      | 166 | 462    | S688     | 5824     | 279    |
| 413          | G295                  | 6784      | 279 | 463    | S687     | 5808     | 166    |
| 414          | G297                  | 6768      | 166 | 464    | S686     | 5792     | 279    |
| 415          | G299                  | 6752      | 279 | 465    | S685     | 5776     | 166    |
| 416          | G301                  | 6736      | 166 | 466    | S684     | 5760     | 279    |
| 417          | G303                  | 6720      | 279 | 467    | S683     | 5744     | 166    |
| 418          | G305                  | 6704      | 166 | 468    | S682     | 5728     | 279    |
| 419          | G307                  | 6688      | 279 | 469    | S681     | 5712     | 166    |
| 420          | G309                  | 6672      | 166 | 470    | S680     | 5696     | 279    |
| 421          | G311                  | 6656      | 279 | 471    | S679     | 5680     | 166    |
| 422          | G313                  | 6640      | 166 | 472    | S678     | 5664     | 279    |
| 423          | G315                  | 6624      | 279 | 473    | S677     | 5648     | 166    |
| 424          | G317                  | 6608      | 166 | 474    | S676     | 5632     | 279    |
| 425          | G319                  | 6592      | 279 | 475    | S675     | 5616     | 166    |
| 426          | VGLDMY2               | 6576      | 166 | 476    | S674     | 5600     | 279    |
| 427          | TESTO5                | 6560      | 279 | 477    | S673     | 5584     | 166    |
| 428          | TESTO6                | 6368      | 279 | 478    | S672     | 5568     | 279    |
| 429          | TESTO7                | 6352      | 166 | 479    | S671     | 5552     | 166    |
| 430          | S720                  | 6336      | 279 | 480    | S670     | 5536     | 279    |
| 431          | S719                  | 6320      | 166 | 481    | S669     | 5520     | 166    |
| 432          | S718                  | 6304      | 279 | 482    | S668     | 5504     | 279    |
| 433          | S717                  | 6288      | 166 | 483    | S667     | 5488     | 166    |
| 434          | S716                  | 6272      | 279 | 484    | S666     | 5472     | 279    |
| 435          | S715                  | 6256      | 166 | 485    | S665     | 5456     | 166    |
| 436          | S714                  | 6240      | 279 | 486    | S664     | 5440     | 279    |
| 437          | S713                  | 6224      | 166 | 487    | S663     | 5424     | 166    |
| 438          | S712                  | 6208      | 279 | 488    | S662     | 5408     | 279    |
| 439          | S711                  | 6192      | 166 | 489    | S661     | 5392     | 166    |
| 440          | S710                  | 6176      | 279 | 490    | S660     | 5376     | 279    |
| 441          | S709                  | 6160      | 166 | 491    | S659     | 5360     | 166    |
| 442          | S708                  | 6144      | 279 | 492    |          | 5344     | 279    |
| 443          | S707                  | 6128      | 166 | 493    | S657     | 5328     | 166    |
| 444          | S706                  | 6112      | 279 | 494    | S656     | 5312     | 279    |
|              | S705                  | 6096      | 166 | 495    | S655     | 5296     | 166    |
|              | S704                  | 6080      | 279 |        | S654     | 5280     | 279    |
| 447          | S703                  | 6064      | 166 | 497    | S653     | 5264     | 166    |
|              | S702                  | 6048      | 279 | 498    |          | 5248     | 279    |
|              | S701                  | 6032      | 166 | 499    |          | 5232     | 166    |
| 450          | S700                  | 6016      | 279 | 500    | S650     | 5216     | 279    |

| pad No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | R61505V PAL | Coordinates (No.6) ( | Unit: $\mu$ m) |     |        |          | 2008.2.5 | revi.i |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------|----------------|-----|--------|----------|----------|--------|
| 502   S648                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | pad No      | pad name             | X              | Υ   | pad No | pad name | Х        | Υ      |
| 503   S647   5168   166   553   S597   4368   166   504   S646   5152   279   554   S596   4352   279   505   S645   5136   166   555   S595   4336   168   506   S644   5120   279   556   S595   4336   168   506   S644   5120   279   556   S594   4320   279   507   S643   5104   166   557   S593   4304   166   508   S642   5088   279   558   S592   4288   279   509   S641   5072   166   559   S591   4272   166   551   S633   5040   5056   279   560   S590   4256   279   5511   S633   5040   166   561   S6389   4240   166   551   S638   4224   279   5512   S638   4224   279   5512   S638   4224   279   5512   S638   4224   279   5513   S637   4208   166   565   S686   4192   279   5513   S637   4208   166   565   S686   4192   279   5515   S635   4476   166   555   S585   4476   166   565   S686   4479   279   5515   S635   4476   166   556   S585   4476   166   565   S684   44160   279   5517   S633   4494   166   567   S681   S692   4418   279   568   S692   44128   279   570   S680   4604   279   570   S690   4604   279   570  | 501         | S649                 | 5200           | 166 | 551    | S599     | 4400     | 166    |
| 504   S646   5152   279   554   S596   4352   279   550   S645   5136   166   555   S595   4336   166   506   S644   5120   279   556   S594   4320   279   507   S643   5104   166   557   S593   4304   166   508   S642   5088   279   558   S592   4288   279   559   S641   5072   166   559   S591   4272   166   510   S640   5056   279   560   S590   4276   279   560   S590   4276   279   551   S639   5040   166   551   S689   4240   166   511   S639   5040   166   561   S589   5040   166   551   S689   4240   166   512   S638   5024   279   562   S588   4224   279   513   S637   5008   166   553   S587   4208   166   551   S639   4400   166   511   S639   4992   279   564   S586   4192   279   514   S636   4992   279   564   S586   4192   279   515   S635   4404   4160   279   566   S586   4192   279   517   S633   4944   4160   279   566   S584   4160   279   517   S633   4944   4160   279   566   S584   4160   279   518   S631   4912   4028   518   S631   4912   4028   279   566   S582   4128   279   518   S631   4912   4028   279   566   S581   4112   166   520   S630   4496   279   570   S580   4414   566   520   S630   4496   279   570   S580   44128   279   521   S629   4880   166   571   S579   4080   166   522   S628   4484   166   573   S577   4048   166   522   S628   4486   279   570   S580   4496   279   570   S577   4496   4496   4496   570   577   577   4496   4496   4496   4496   4496   4496   4496   4496   4496   4496   4496   4496   4496   4496   4496   4496 | 502         | S648                 | 5184           | 279 | 552    | S598     | 4384     | 279    |
| 505   S645   5136   166   555   5395   4336   166   505   506   504   4320   279   507   5643   5104   166   557   558   5393   4304   166   508   508   5042   5088   279   558   5392   4288   279   509   5641   5072   166   559   5591   4272   166   559   5591   4272   166   559   5591   4272   166   559   5591   4272   166   559   5591   4272   166   559   5591   4272   166   559   5591   4272   166   559   5591   4272   166   559   5591   4272   166   559   5591   4272   166   559   5591   4272   166   559   5591   4276   279   511   5639   5040   166   561   5589   4240   166   551   5383   5024   279   562   5388   4224   279   511   5633   5387   4208   4260   166   511   5387   5008   166   563   5387   4208   166   514   5386   4492   279   564   5386   4492   279   564   5386   4492   279   564   5386   4492   279   566   5584   4476   166   565   5383   4444   166   565   5383   4444   166   567   5383   4444   166   567   5383   44144   166   567   5383   44144   166   550   5383   44144   166   550   5383   44144   166   550   5383   44144   166   550   5383   44144   166   550   5383   44142   166   550   5383   44142   166   550   5383   44142   166   550   5380   4496   279   570   5380   4496   279   523   522   522   4880   166   571   5379   4080   166   522   522   522   4880   166   571   5379   4080   166   522   522   522   4884   166   577   5375   4064   279   522   522   522   4880   166   571   5375   4064   279   523   525   5262   4864   279   576   5375   4064   279   527   528   522   4768   279   576   5375   4064   279   527   528   522   4768   279   576   5374   4000   279   528   528   522   4768   279   578   5370   3984   166   528   528   522   4768   279   578   5370   3984   166   528   528   522   4768   279   578   5375   4064   279   527   528   522   4768   279   578   5375   4064   279   528   528   522   4768   279   586   5564   3320   166   533   5377   4388   166   533   5377   4388   166   533   5377   4388   166   533   5377   3388   166   538   5377   3388   | 503         | S647                 | 5168           | 166 | 553    | S597     | 4368     | 166    |
| 506   5644   5120   279   556   5594   4320   279   507   5643   5104   166   557   5593   4304   166   508   5642   5088   279   558   5592   4288   279   509   5641   5072   166   559   5591   4272   166   510   5640   5056   279   560   5590   4256   279   511   5639   5040   166   561   5889   4240   166   512   5638   5024   279   552   5588   4224   279   513   5637   5008   166   563   5587   4208   166   512   5638   5024   279   564   5586   4122   279   513   5635   4892   279   564   5565   4176   166   565   5585   4176   166   565   5585   4176   166   565   5585   4176   166   565   5585   4176   166   565   5585   4176   166   565   5585   4176   166   565   5585   4176   166   565   5585   4176   166   565   5585   4176   166   565   5583   4144   166   567   5583   4144   166   567   5583   4144   166   567   5583   4144   166   567   5583   4144   166   569   5581   4112   166   569   5581   4112   166   569   5581   4112   166   569   5581   4112   166   569   5581   4112   166   569   5581   4112   166   569   5581   4112   166   569   5581   4112   166   569   5581   4112   166   569   5581   4112   166   569   5581   4112   166   569   5581   4112   166   569   5581   4112   166   569   5581   4112   166   569   5581   4112   166   569   5581   4112   166   569   5581   4112   166   569   5581   4112   166   569   5581   4112   166   569   5581   4112   166   569   5581   4112   166   569   5581   4112   166   569   5581   4112   166   569   5581   4112   166   569   5581   4112   166   569   5581   4112   166   569   5581   4112   166   569   5581   4112   166   569   5581   4112   166   569   5581   4112   166   569   5581   4112   166   569   5581   4112   166   569   5581   4112   166   569   5581   4112   166   569   5581   4112   166   569   5581   4112   166   569   5581   4112   166   569   5581   4112   166   569   5581   4112   166   569   5581   4112   166   569   5581   4112   166   569   5581   4112   166   569   5581   4112   166   569   5581   4112   4160   569   5581   41 | 504         | S646                 | 5152           | 279 | 554    | S596     | 4352     | 279    |
| 507   Se43   5104   166   557   5593   4304   166   508   S642   5088   279   558   S592   4288   279   509   S641   5072   166   559   S591   4272   166   510   S640   5056   279   560   S590   4256   279   511   S639   5040   166   561   S599   4240   166   512   S638   5024   279   562   S588   4224   279   512   S638   5024   279   562   S588   4224   279   513   S637   5008   166   563   S587   4208   166   514   S636   4892   279   564   S566   4192   279   515   S635   4376   166   565   S585   4176   166   516   S635   4376   166   565   S585   4176   166   516   S634   4364   4360   279   566   S584   4140   279   517   S633   4344   166   567   S583   4144   166   518   S632   4328   4328   279   568   S582   4122   279   519   S631   43912   166   569   S581   41112   166   520   S630   4896   279   570   S580   4096   279   571   S630   4396   4396   279   570   S580   4096   279   571   S630   4396   4396   279   570   5580   40064   279   572   S678   4064   279   573   S677   4048   166   576   S674   4000   279   578   S677   4048   166   578   S678   4064   279   572   S678   4064   279   573   S674   4000   279   578   S674   4000   279   578   S674   4000   279   578   S674   4000   279   578   S677   3688   3694   3680   279   578   S674   4000   279   578   S677   3688   3694   3680   279   578   S67 | 505         | S645                 | 5136           | 166 | 555    | S595     | 4336     | 166    |
| 508   5642   5088   279   558   5592   4288   279   509   5641   5072   166   559   5591   4272   166   510   5640   5056   279   560   5590   4256   279   511   5639   5040   166   561   5589   4240   166   512   5638   5024   279   562   5588   4224   279   513   637   5008   166   563   5587   4208   166   512   5635   5635   4992   279   564   5566   4192   279   515   5635   4992   279   564   5566   4192   279   515   5635   4496   4496   279   566   5684   41100   279   515   5635   4496   4496   279   566   5584   41100   279   516   5635   4496   4496   279   566   5584   41100   279   517   5633   4494   166   567   5583   41144   166   518   5632   44928   279   568   5582   4128   279   519   5631   44112   166   569   5581   41112   166   569   5581   41112   166   569   5581   41112   166   569   5581   41112   166   569   5580   4096   279   568   5682   4128   279   568   5682   4128   279   568   5682   4128   279   568   5682   4128   279   568   5682   4128   279   568   5682   4128   279   568   5682   4128   279   568   5682   4128   279   568   5682   4128   279   568   5682   4128   279   568   5682   4128   279   568   5682   4128   279   568   5682   4128   279   568   5682   4128   279   568   5682   4128   279   568   5682   4128   279   578   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579   579 | 506         | S644                 | 5120           | 279 | 556    | S594     | 4320     | 279    |
| 500         \$641         \$072         166         \$550         \$590         4276         279           \$11         \$640         \$5056         279         \$60         \$590         4256         279           \$11         \$633         \$5040         166         \$61         \$588         4240         166           \$12         \$633         \$5024         279         \$62         \$588         4224         219           \$13         \$837         \$500         166         \$63         \$587         4200         166           \$14         \$636         \$492         279         \$56         \$586         \$4192         279           \$515         \$636         \$492         279         \$56         \$585         \$4176         166           \$18         \$633         \$4944         166         \$65         \$584         \$4160         279         \$56         \$584         \$4160         279         \$568         \$584         \$4140         279         \$518         \$631         \$412         279         \$568         \$582         \$4128         279         \$518         \$531         \$4112         166         \$568         \$582         \$4128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 507         | S643                 | 5104           | 166 | 557    | S593     | 4304     | 166    |
| 510         S640         5056         279         560         S590         4256         279           511         S639         5040         166         561         S589         4240         166           512         S633         5004         279         562         S588         4224         279           513         S637         5008         166         563         S587         4208         166           514         S636         4992         279         564         S586         4192         279           515         S635         4976         166         565         S585         4176         166           516         S634         4960         279         566         S584         4100         279           517         S633         4944         166         567         S583         4144         166         567         S583         4144         166         567         S583         4144         166         567         S583         4144         166         567         S583         4142         279         568         S582         4128         279         568         S582         4128         279 <t< td=""><td>508</td><td>S642</td><td>5088</td><td>279</td><td>558</td><td>S592</td><td>4288</td><td>279</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 508         | S642                 | 5088           | 279 | 558    | S592     | 4288     | 279    |
| 511         \$639         \$5040         166         \$561         \$588         4240         166         \$512         \$623         \$888         4224         279         \$562         \$588         4224         279         \$562         \$588         4224         279         \$562         \$588         4224         279         \$564         \$566         \$563         \$587         4208         166         \$563         \$586         4192         279         \$564         \$586         4192         219         \$564         \$586         4176         166         \$563         \$585         4176         166         \$563         \$585         4176         166         \$565         \$585         4176         166         \$565         \$585         41716         166         \$565         \$583         44128         2279         \$566         \$584         4160         2279         \$566         \$582         4128         2279         \$566         \$582         4128         2279         \$560         \$583         41412         266         \$582         4128         2279         \$560         \$6852         4128         2279         \$570         \$580         4064         2279         \$571         \$580         4064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 509         | S641                 | 5072           | 166 | 559    | S591     | 4272     | 166    |
| 511         \$639         \$5040         166         \$561         \$588         4240         166         \$512         \$623         \$888         4224         279         \$562         \$588         4224         279         \$562         \$588         4224         279         \$562         \$588         4224         279         \$564         \$566         \$563         \$587         4208         166         \$563         \$586         4192         279         \$564         \$586         4192         219         \$564         \$586         4176         166         \$563         \$585         4176         166         \$563         \$585         4176         166         \$565         \$585         4176         166         \$565         \$585         41716         166         \$565         \$583         44128         2279         \$566         \$584         4160         2279         \$566         \$582         4128         2279         \$566         \$582         4128         2279         \$560         \$583         41412         266         \$582         4128         2279         \$560         \$6852         4128         2279         \$570         \$580         4064         2279         \$571         \$580         4064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 510         | S640                 | 5056           | 279 | 560    | S590     | 4256     | 279    |
| 513         S637         5008         166         563         S587         4208         166           514         S636         4992         279         564         S586         4192         279           515         S635         4976         166         565         S585         4176         166           516         S634         4960         279         566         S584         4160         279           517         S633         4944         166         567         S583         4144         166           518         S632         4928         279         568         S582         4128         279           519         S631         4912         166         569         S581         4112         166           520         S630         4486         279         570         S580         4096         279           521         S629         4880         166         571         S579         4080         166           522         S628         4864         279         572         S578         4064         279           523         S627         4848         166         573         S577 </td <td>511</td> <td>S639</td> <td>5040</td> <td>166</td> <td>561</td> <td>S589</td> <td>4240</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 511         | S639                 | 5040           | 166 | 561    | S589     | 4240     |        |
| 514         \$636         4992         279         \$64         \$586         4192         279           515         \$6335         4976         166         565         \$585         4176         166           516         \$634         4960         279         \$66         \$584         4160         279           517         \$633         4944         166         567         \$583         4144         166           518         \$632         4928         279         568         \$582         4128         279           519         \$631         4912         166         569         \$581         4112         166           520         \$830         4896         279         570         \$580         4086         279           521         \$629         4880         166         571         \$579         4080         166           522         \$5629         4880         166         571         \$579         4080         166           522         \$5629         4880         166         571         \$579         4048         166           524         \$626         4832         279         574         \$57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 512         | S638                 | 5024           | 279 | 562    | S588     | 4224     | 279    |
| 515         S635         4976         166         565         S585         4176         166           516         S634         4960         279         566         S584         4160         279           517         S633         4944         166         567         S583         4144         166           518         S632         4928         279         568         S582         4128         279           519         S631         4912         166         569         S581         4112         166           520         S630         4896         279         570         S580         4096         279           521         S629         4880         166         571         S579         4080         166           522         S628         4864         279         572         S578         4044         279           523         S627         4848         166         571         S579         4080         166           524         S626         4832         279         574         S576         4032         279           525         S621         4816         166         575         S575 </td <td>513</td> <td>S637</td> <td>5008</td> <td>166</td> <td>563</td> <td>S587</td> <td>4208</td> <td>166</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 513         | S637                 | 5008           | 166 | 563    | S587     | 4208     | 166    |
| 516         S63.4         4960         279         566         S584         4160         279           517         S633         4944         166         567         S583         4144         166           518         S632         4928         279         568         S582         4128         279           519         S631         4912         166         569         S581         4112         166           520         S630         4896         279         570         S580         4096         279           521         S629         4880         166         571         S579         4080         166           522         S628         4864         279         572         S578         4064         279           523         S627         4848         166         573         S577         4048         166           524         S626         4832         279         574         S576         4048         166           525         S625         4816         166         575         S575         4016         166           526         S624         4800         279         576         S574<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 514         | S636                 | 4992           | 279 | 564    | S586     | 4192     | 279    |
| 517         \$633         4944         166         567         \$583         4144         166           518         \$662         4928         279         568         \$582         4128         279           519         \$631         4912         166         569         \$581         4112         166           520         \$630         4896         279         570         \$580         4096         279           521         \$629         4880         166         571         \$579         4080         166           522         \$628         4864         279         572         \$578         4064         279           523         \$627         4848         166         573         \$577         4048         166           524         \$626         4832         279         574         \$576         4032         279           525         \$625         4816         166         575         \$575         4016         166           528         \$624         4800         279         576         \$574         4000         279           527         \$623         4784         166         577         \$573 </td <td>515</td> <td>S635</td> <td>4976</td> <td>166</td> <td>565</td> <td>S585</td> <td>4176</td> <td>166</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 515         | S635                 | 4976           | 166 | 565    | S585     | 4176     | 166    |
| 517         \$633         4944         166         557         \$583         4144         166           518         \$632         4928         279         568         \$582         4112         166           519         \$631         4912         166         569         \$581         4112         166           520         \$630         4896         279         570         \$580         4096         279           521         \$629         4880         166         571         \$579         4080         166           522         \$628         4864         279         572         \$578         4064         279           523         \$627         4848         166         573         \$577         4048         166           524         \$626         4832         279         574         \$576         4032         279           525         \$626         4832         279         576         \$576         4032         279           525         \$624         4800         279         576         \$574         4000         279           527         \$623         4784         166         577         \$573 </td <td>516</td> <td>S634</td> <td>4960</td> <td>279</td> <td>566</td> <td>S584</td> <td>4160</td> <td>279</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 516         | S634                 | 4960           | 279 | 566    | S584     | 4160     | 279    |
| 519         S631         4912         166         569         S581         4112         166           520         S630         4896         279         570         S580         4096         279           521         S629         4880         166         571         S579         4080         166           522         S628         4864         279         572         S578         4064         279           523         S627         4848         166         573         S577         4048         166           524         S626         4832         279         574         S576         4032         279           525         S625         4816         166         573         S575         4016         166           526         S624         4800         279         576         S574         4000         279           527         S623         4784         166         577         S573         3984         166           528         S622         4768         279         578         S572         3988         279           531         S619         4720         166         579         S571 </td <td></td> <td></td> <td>4944</td> <td>166</td> <td>567</td> <td>S583</td> <td>4144</td> <td>166</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |                      | 4944           | 166 | 567    | S583     | 4144     | 166    |
| 520         \$630         4896         279         570         \$580         4096         279           521         \$629         4880         166         571         \$579         4080         166           522         \$628         4864         279         572         \$578         4064         279           523         \$627         4848         166         573         \$577         4048         166           524         \$626         4832         279         574         \$576         4032         279           525         \$625         4816         166         575         \$575         4016         166           526         \$624         4800         279         576         \$574         4000         279           527         \$623         4784         166         577         \$573         3984         166           528         \$622         4768         279         578         \$571         3952         166           528         \$622         4768         279         578         \$570         3936         279           531         \$619         4720         166         581         \$589 </td <td>518</td> <td>S632</td> <td>4928</td> <td>279</td> <td>568</td> <td></td> <td>4128</td> <td>279</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 518         | S632                 | 4928           | 279 | 568    |          | 4128     | 279    |
| 521         \$629         4880         166         571         \$579         4080         166           522         \$628         4864         279         572         \$578         4064         279           523         \$627         4848         166         573         \$577         4048         166           524         \$626         4832         279         574         \$576         4032         279           525         \$625         4816         166         575         \$575         4016         166           526         \$624         4800         279         576         \$574         4000         279           527         \$623         4784         166         577         \$573         3984         166           528         \$622         4768         279         578         \$572         3968         279           529         \$621         4752         166         579         \$571         3952         166           530         \$620         4736         279         580         \$570         3936         279           531         \$619         4720         166         581         \$569 </td <td>519</td> <td>S631</td> <td>4912</td> <td>166</td> <td>569</td> <td>S581</td> <td>4112</td> <td>166</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 519         | S631                 | 4912           | 166 | 569    | S581     | 4112     | 166    |
| 522         S628         4864         279         572         S578         4064         279           523         S627         4848         166         573         S577         4048         166           524         S626         4832         279         574         S576         4032         279           525         S625         4816         166         575         S575         4016         166           526         S624         4800         279         576         S574         4000         279           527         S623         4784         166         577         S573         3984         166           528         S622         4768         279         578         S572         3968         279           529         S621         4752         166         579         S571         3952         166           530         S620         4736         279         580         S570         3936         279           531         S618         4704         279         582         S568         3904         279           531         S618         4704         279         582         S568 </td <td>520</td> <td>S630</td> <td>4896</td> <td>279</td> <td>570</td> <td>S580</td> <td>4096</td> <td>279</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 520         | S630                 | 4896           | 279 | 570    | S580     | 4096     | 279    |
| 523         \$627         4848         166         573         \$577         4048         166           524         \$626         4832         279         574         \$576         4032         279           525         \$625         4816         166         575         \$575         4016         166           526         \$624         4800         279         576         \$574         4000         279           527         \$623         4784         166         577         \$573         3984         166           528         \$622         4768         279         578         \$572         3968         279           529         \$621         4752         166         579         \$571         3952         166           530         \$620         4736         279         580         \$570         3936         279           531         \$619         4720         166         581         \$569         3920         166           532         \$618         4704         279         582         \$568         3904         279           533         \$617         4688         166         583         \$567 </td <td>521</td> <td>S629</td> <td>4880</td> <td>166</td> <td>571</td> <td>S579</td> <td>4080</td> <td>166</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 521         | S629                 | 4880           | 166 | 571    | S579     | 4080     | 166    |
| 524         \$626         4832         279         574         \$576         4032         279           525         \$625         4816         166         575         \$575         4016         166           526         \$624         4800         279         576         \$574         4000         279           527         \$623         4784         166         577         \$573         3984         166           528         \$622         4768         279         578         \$572         3968         279           529         \$621         4752         166         579         \$571         3932         166           530         \$620         4736         279         580         \$570         3936         279           531         \$619         4720         166         581         \$569         3920         166           532         \$618         4704         279         582         \$568         3904         279           533         \$617         4688         166         583         \$567         3888         166           534         \$616         4672         279         584         \$566 </td <td>522</td> <td>S628</td> <td>4864</td> <td>279</td> <td>572</td> <td>S578</td> <td>4064</td> <td>279</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 522         | S628                 | 4864           | 279 | 572    | S578     | 4064     | 279    |
| 525         5625         4816         166         575         5575         4016         166           526         5624         4800         279         576         5574         4000         279           527         5623         4784         166         577         5573         3984         166           528         5622         4768         279         578         5572         3968         279           529         5621         4752         166         579         5571         3952         166           530         5620         4736         279         580         5570         3936         279           531         5619         4720         166         581         5569         3920         166           532         5618         4704         279         582         5568         3904         279           533         5617         4688         166         583         5567         3888         166           534         5616         4672         279         584         5566         3872         279           535         5615         4656         166         585         5565 </td <td>523</td> <td>S627</td> <td>4848</td> <td>166</td> <td>573</td> <td>S577</td> <td>4048</td> <td>166</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 523         | S627                 | 4848           | 166 | 573    | S577     | 4048     | 166    |
| 526         \$624         4800         279         576         \$574         4000         279           527         \$623         4784         166         577         \$573         3984         166           528         \$622         4768         279         578         \$572         3968         279           529         \$621         4752         166         579         \$571         3952         166           530         \$620         4736         279         580         \$570         3936         279           531         \$619         4720         166         581         \$569         3920         166           532         \$618         4704         279         582         \$568         3904         279           533         \$617         4688         166         583         \$567         3888         166           534         \$616         4672         279         584         \$566         3872         279           535         \$615         4656         166         583         \$566         3872         279           534         \$616         4672         279         586         \$564 </td <td>524</td> <td>S626</td> <td>4832</td> <td>279</td> <td>574</td> <td>S576</td> <td>4032</td> <td>279</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 524         | S626                 | 4832           | 279 | 574    | S576     | 4032     | 279    |
| 527         \$623         4784         166         577         \$573         3984         166           528         \$622         4768         279         578         \$572         3968         279           529         \$621         4752         166         579         \$571         3952         166           530         \$620         4736         279         580         \$570         3936         279           531         \$619         4720         166         581         \$569         3920         166           532         \$618         4704         279         582         \$568         3904         279           533         \$617         4688         166         583         \$567         3888         166           534         \$616         4672         279         584         \$566         3872         279           535         \$615         4656         166         585         \$565         3856         166           534         \$616         4672         279         584         \$566         3872         279           535         \$615         4686         166         585         \$565 </td <td>525</td> <td>S625</td> <td>4816</td> <td>166</td> <td>575</td> <td>S575</td> <td>4016</td> <td>166</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 525         | S625                 | 4816           | 166 | 575    | S575     | 4016     | 166    |
| 528         \$622         4768         279         578         \$572         3968         279           529         \$621         4752         166         579         \$571         3952         166           530         \$620         4736         279         580         \$570         3936         279           531         \$619         4720         166         581         \$569         3920         166           532         \$618         4704         279         582         \$568         3904         279           533         \$617         4688         166         583         \$567         3888         166           534         \$616         4672         279         584         \$566         3872         279           535         \$615         4656         166         585         \$565         3856         166           536         \$614         4640         279         586         \$564         3840         279           537         \$613         4624         166         587         \$563         3824         166           538         \$612         4608         279         588         \$562 </td <td>526</td> <td>S624</td> <td>4800</td> <td>279</td> <td>576</td> <td>S574</td> <td>4000</td> <td>279</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 526         | S624                 | 4800           | 279 | 576    | S574     | 4000     | 279    |
| 529         S621         4752         166         579         S571         3952         166           530         S620         4736         279         580         S570         3936         279           531         S619         4720         166         581         S569         3920         166           532         S618         4704         279         582         S568         3904         279           533         S617         4688         166         583         S567         3888         166           534         S616         4672         279         584         S566         3872         279           535         S615         4656         166         585         S565         3856         166           536         S614         4640         279         586         S564         3840         279           537         S613         4624         166         587         S563         3824         166           538         S612         4608         279         588         S562         3808         279           539         S611         4592         166         589         S561 </td <td>527</td> <td>S623</td> <td>4784</td> <td>166</td> <td>577</td> <td>S573</td> <td>3984</td> <td>166</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 527         | S623                 | 4784           | 166 | 577    | S573     | 3984     | 166    |
| 529         S621         4752         166         579         S571         3952         166           530         S620         4736         279         580         S570         3936         279           531         S619         4720         166         581         S569         3920         166           532         S618         4704         279         582         S568         3904         279           533         S617         4688         166         583         S567         3888         166           534         S616         4672         279         584         S566         3872         279           535         S615         4656         166         585         S565         3856         166           536         S614         4640         279         586         S564         3840         279           537         S613         4624         166         587         S563         3824         166           538         S612         4608         279         588         S562         3808         279           539         S611         4592         166         589         S561 </td <td>528</td> <td>S622</td> <td>4768</td> <td>279</td> <td>578</td> <td>S572</td> <td>3968</td> <td>279</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 528         | S622                 | 4768           | 279 | 578    | S572     | 3968     | 279    |
| 531         S619         4720         166         581         S569         3920         166           532         S618         4704         279         582         S568         3904         279           533         S617         4688         166         583         S567         3888         166           534         S616         4672         279         584         S566         3872         279           535         S615         4656         166         585         S565         3856         166           536         S614         4640         279         586         S564         3840         279           537         S613         4624         166         587         S563         3824         166           538         S612         4608         279         588         S562         3808         279           539         S611         4592         166         589         S561         3792         166           540         S610         4576         279         590         S560         3776         279           541         S609         4560         166         591         S559 </td <td>529</td> <td>S621</td> <td>4752</td> <td>166</td> <td>579</td> <td>S571</td> <td>3952</td> <td>166</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 529         | S621                 | 4752           | 166 | 579    | S571     | 3952     | 166    |
| 532         S618         4704         279         582         S568         3904         279           533         S617         4688         166         583         S567         3888         166           534         S616         4672         279         584         S566         3872         279           535         S615         4656         166         585         S565         3856         166           536         S614         4640         279         586         S564         3840         279           537         S613         4624         166         587         S563         3824         166           538         S612         4608         279         588         S562         3808         279           539         S611         4592         166         589         S561         3792         166           540         S610         4576         279         590         S560         3776         279           541         S609         4560         166         591         S559         3760         166           542         S608         4544         279         592         S558 </td <td>530</td> <td>S620</td> <td>4736</td> <td>279</td> <td>580</td> <td>S570</td> <td>3936</td> <td>279</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 530         | S620                 | 4736           | 279 | 580    | S570     | 3936     | 279    |
| 533         S617         4688         166         583         S567         3888         166           534         S616         4672         279         584         S566         3872         279           535         S615         4656         166         585         S565         3856         166           536         S614         4640         279         586         S564         3840         279           537         S613         4624         166         587         S563         3824         166           538         S612         4608         279         588         S562         3808         279           539         S611         4592         166         589         S561         3792         166           540         S610         4576         279         590         S560         3776         279           541         S609         4560         166         591         S559         3760         166           542         S608         4544         279         592         S558         3744         279           543         S607         4528         166         593         S557 </td <td>531</td> <td>S619</td> <td>4720</td> <td>166</td> <td>581</td> <td>S569</td> <td>3920</td> <td>166</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 531         | S619                 | 4720           | 166 | 581    | S569     | 3920     | 166    |
| 533         \$617         4688         166         583         \$567         3888         166           534         \$616         4672         279         584         \$566         3872         279           535         \$615         4656         166         585         \$565         3856         166           536         \$614         4640         279         586         \$564         3840         279           537         \$613         4624         166         587         \$563         3824         166           538         \$612         4608         279         588         \$562         3808         279           539         \$611         4592         166         589         \$561         3792         166           540         \$610         4576         279         590         \$560         3776         279           541         \$609         4560         166         591         \$559         3760         166           542         \$608         4544         279         592         \$558         3744         279           543         \$607         4528         166         593         \$557 </td <td>532</td> <td>S618</td> <td>4704</td> <td>279</td> <td>582</td> <td>S568</td> <td>3904</td> <td>279</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 532         | S618                 | 4704           | 279 | 582    | S568     | 3904     | 279    |
| 535         S615         4656         166         585         S565         3856         166           536         S614         4640         279         586         S564         3840         279           537         S613         4624         166         587         S563         3824         166           538         S612         4608         279         588         S562         3808         279           539         S611         4592         166         589         S561         3792         166           540         S610         4576         279         590         S560         3776         279           541         S609         4560         166         591         S559         3760         166           542         S608         4544         279         592         S558         3744         279           543         S607         4528         166         593         S557         3728         166           544         S606         4512         279         594         S556         3712         279           545         S605         4496         166         595         S555 </td <td>533</td> <td>S617</td> <td>4688</td> <td></td> <td>583</td> <td>S567</td> <td>3888</td> <td>166</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 533         | S617                 | 4688           |     | 583    | S567     | 3888     | 166    |
| 536         S614         4640         279         586         S564         3840         279           537         S613         4624         166         587         S563         3824         166           538         S612         4608         279         588         S562         3808         279           539         S611         4592         166         589         S561         3792         166           540         S610         4576         279         590         S560         3776         279           541         S609         4560         166         591         S559         3760         166           542         S608         4544         279         592         S558         3744         279           543         S607         4528         166         593         S557         3728         166           544         S606         4512         279         594         S556         3712         279           545         S605         4496         166         595         S555         3696         166           546         S604         4480         279         596         S554 </td <td>534</td> <td>S616</td> <td>4672</td> <td>279</td> <td>584</td> <td>S566</td> <td>3872</td> <td>279</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 534         | S616                 | 4672           | 279 | 584    | S566     | 3872     | 279    |
| 537         \$613         4624         166         587         \$563         3824         166           538         \$612         4608         279         588         \$562         3808         279           539         \$611         4592         166         589         \$561         3792         166           540         \$610         4576         279         590         \$560         3776         279           541         \$609         4560         166         591         \$559         3760         166           542         \$608         4544         279         592         \$558         3744         279           543         \$607         4528         166         593         \$557         3728         166           544         \$606         4512         279         594         \$556         3712         279           545         \$605         4496         166         595         \$555         3696         166           546         \$604         4480         279         596         \$554         3680         279           547         \$603         4464         166         597         \$553 </td <td>535</td> <td>S615</td> <td>4656</td> <td>166</td> <td>585</td> <td>S565</td> <td>3856</td> <td>166</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 535         | S615                 | 4656           | 166 | 585    | S565     | 3856     | 166    |
| 537         \$613         4624         166         587         \$563         3824         166           538         \$612         4608         279         588         \$562         3808         279           539         \$611         4592         166         589         \$561         3792         166           540         \$610         4576         279         590         \$560         3776         279           541         \$609         4560         166         591         \$559         3760         166           542         \$608         4544         279         592         \$558         3744         279           543         \$607         4528         166         593         \$557         3728         166           544         \$606         4512         279         594         \$556         3712         279           545         \$605         4496         166         595         \$555         3696         166           546         \$604         4480         279         596         \$554         3680         279           547         \$603         4464         166         597         \$553 </td <td>536</td> <td>S614</td> <td>4640</td> <td>279</td> <td>586</td> <td>S564</td> <td>3840</td> <td>279</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 536         | S614                 | 4640           | 279 | 586    | S564     | 3840     | 279    |
| 539         S611         4592         166         589         S561         3792         166           540         S610         4576         279         590         S560         3776         279           541         S609         4560         166         591         S559         3760         166           542         S608         4544         279         592         S558         3744         279           543         S607         4528         166         593         S557         3728         166           544         S606         4512         279         594         S556         3712         279           545         S605         4496         166         595         S555         3696         166           546         S604         4480         279         596         S554         3680         279           547         S603         4464         166         597         S553         3664         166           548         S602         4448         279         598         S552         3648         279                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 537         | S613                 | 4624           |     | 587    | S563     | 3824     | 166    |
| 540         S610         4576         279         590         S560         3776         279           541         S609         4560         166         591         S559         3760         166           542         S608         4544         279         592         S558         3744         279           543         S607         4528         166         593         S557         3728         166           544         S606         4512         279         594         S556         3712         279           545         S605         4496         166         595         S555         3696         166           546         S604         4480         279         596         S554         3680         279           547         S603         4464         166         597         S553         3664         166           548         S602         4448         279         598         S552         3648         279                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 538         | S612                 | 4608           | 279 | 588    | S562     | 3808     | 279    |
| 541         \$609         4560         166         591         \$559         3760         166           542         \$608         4544         279         592         \$558         3744         279           543         \$607         4528         166         593         \$557         3728         166           544         \$606         4512         279         594         \$556         3712         279           545         \$605         4496         166         595         \$555         3696         166           546         \$604         4480         279         596         \$554         3680         279           547         \$603         4464         166         597         \$553         3664         166           548         \$602         4448         279         598         \$552         3648         279                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 539         | S611                 | 4592           | 166 | 589    | S561     | 3792     | 166    |
| 542         \$608         4544         279         592         \$558         3744         279           543         \$607         4528         166         593         \$557         3728         166           544         \$606         4512         279         594         \$556         3712         279           545         \$605         4496         166         595         \$555         3696         166           546         \$604         4480         279         596         \$554         3680         279           547         \$603         4464         166         597         \$553         3664         166           548         \$602         4448         279         598         \$552         3648         279                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 540         | S610                 | 4576           | 279 | 590    | S560     | 3776     |        |
| 543     \$607     4528     166     593     \$557     3728     166       544     \$606     4512     279     594     \$556     3712     279       545     \$605     4496     166     595     \$555     3696     166       546     \$604     4480     279     596     \$554     3680     279       547     \$603     4464     166     597     \$553     3664     166       548     \$602     4448     279     598     \$552     3648     279                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 541         | S609                 | 4560           | 166 | 591    | S559     | 3760     | 166    |
| 544     \$606     4512     279     594     \$556     3712     279       545     \$605     4496     166     595     \$555     3696     166       546     \$604     4480     279     596     \$554     3680     279       547     \$603     4464     166     597     \$553     3664     166       548     \$602     4448     279     598     \$552     3648     279                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 542         | S608                 | 4544           | 279 | 592    | S558     | 3744     | 279    |
| 545     S605     4496     166     595     S555     3696     166       546     S604     4480     279     596     S554     3680     279       547     S603     4464     166     597     S553     3664     166       548     S602     4448     279     598     S552     3648     279                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 543         | S607                 | 4528           | 166 | 593    | S557     | 3728     | 166    |
| 546     S604     4480     279     596     S554     3680     279       547     S603     4464     166     597     S553     3664     166       548     S602     4448     279     598     S552     3648     279                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 544         | S606                 | 4512           | 279 | 594    | S556     | 3712     | 279    |
| 547     S603     4464     166     597     S553     3664     166       548     S602     4448     279     598     S552     3648     279                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 545         | S605                 | 4496           | 166 | 595    | S555     | 3696     | 166    |
| 548         S602         4448         279         598         S552         3648         279                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 546         | S604                 | 4480           | 279 | 596    | S554     | 3680     | 279    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 547         | S603                 | 4464           | 166 | 597    | S553     | 3664     |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 548         | S602                 | 4448           | 279 | 598    | S552     | 3648     | 279    |
| 549 S601         4432         166         599 S551         3632         166                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 549         |                      |                |     |        |          |          |        |
| 550 S600 4416 279 600 S550 3616 279                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             | S601                 | 4432           | 166 | 599    | S551     | 3632     | 166    |

| ROTOUSV PAD | Coordinates (No.7) ( | Unit: $\mu$ m) |            |        |              | 2008.2.5     | revi.i     |
|-------------|----------------------|----------------|------------|--------|--------------|--------------|------------|
| pad No      | pad name             | X              | Υ          | pad No | pad name     | X            | Υ          |
| 601         | S549                 | 3600           | 166        | 651    | S499         | 2800         | 166        |
| 602         | S548                 | 3584           | 279        | 652    | S498         | 2784         | 279        |
| 603         | S547                 | 3568           | 166        | 653    | S497         | 2768         | 166        |
| 604         | S546                 | 3552           | 279        | 654    | S496         | 2752         | 279        |
| 605         | S545                 | 3536           | 166        | 655    | S495         | 2736         | 166        |
| 606         | S544                 | 3520           | 279        | 656    | S494         | 2720         | 279        |
| 607         | S543                 | 3504           | 166        | 657    | S493         | 2704         | 166        |
| 608         | S542                 | 3488           | 279        | 658    | S492         | 2688         | 279        |
| 609         | S541                 | 3472           | 166        | 659    | S491         | 2672         | 166        |
| 610         | S540                 | 3456           | 279        | 660    | S490         | 2656         | 279        |
| 611         | S539                 | 3440           | 166        | 661    | S489         | 2640         | 166        |
| 612         | S538                 | 3424           | 279        | 662    | S488         | 2624         | 279        |
| 613         | S537                 | 3408           | 166        | 663    | S487         | 2608         | 166        |
| 614         | S536                 | 3392           | 279        | 664    | S486         | 2592         | 279        |
|             | S535                 | 3376           | 166        |        | S485         | 2576         | 166        |
| 616         | S534                 | 3360           | 279        | 666    | S484         | 2560         | 279        |
|             | S533                 | 3344           | 166        | 667    |              | 2544         | 166        |
|             | S532                 | 3328           | 279        | 668    |              | 2528         | 279        |
|             | S531                 | 3312           | 166        | 669    |              | 2512         | 166        |
|             | S530                 | 3296           | 279        | 670    |              | 2496         | 279        |
| 621         |                      | 3280           | 166        | 671    | S479         | 2480         | 166        |
| 622         |                      | 3264           | 279        | 672    |              | 2464         | 279        |
|             | S527                 | 3248           | 166        |        | S477         | 2448         | 166        |
|             | S526                 | 3232           | 279        |        | S476         | 2432         | 279        |
|             | S525                 | 3216           | 166        |        | S475         | 2416         | 166        |
|             | S524                 | 3200           | 279        |        | S474         | 2400         | 279        |
|             | S523                 | 3184           | 166        | 677    |              | 2384         | 166        |
|             | S522                 | 3168           | 279        |        | S472         | 2368         | 279        |
|             | S521                 | 3152           | 166        | 679    |              | 2352         | 166        |
|             | S520                 | 3136           | 279        |        | S470         | 2336         | 279        |
|             | S519                 | 3120           | 166        | 681    | S469         | 2320         | 166        |
|             | S518                 | 3104           | 279        |        | S468         | 2304         | 279        |
|             | S517                 | 3088           | 166        | 683    |              | 2288         | 166        |
|             | S516                 | 3072           | 279        |        | S466         | 2272         | 279        |
|             | S515                 | 3056           | 166        |        | S465         | 2256         | 166        |
|             | S514                 | 3040           | 279        |        | S464         | 2240         | 279        |
|             | S513                 | 3024           | 166        | 687    |              | 2224         | 166        |
|             | S512                 | 3008           | 279        | 688    |              | 2208         | 279        |
|             | S511                 | 2992           | 166        |        | S461         | 2192         | 166<br>279 |
|             | S510<br>S509         | 2976<br>2960   | 279<br>166 |        | S460<br>S459 | 2176<br>2160 | 166        |
|             |                      | 2960           | 279        | 692    |              | 2160         | 279        |
| 643         | S508<br>S507         | 2944           | 166        | 693    |              | 2144         | 166        |
|             | S507                 | 2928           | 279        | 694    |              | 2128         | 279        |
| 645         |                      | 2896           | 166        | 695    |              | 2096         | 166        |
|             | S504                 | 2890           | 279        |        | S454         | 2080         | 279        |
| 647         | S503                 | 2864           | 166        | 697    | S453         | 2064         | 166        |
|             | S502                 | 2848           | 279        |        | S452         | 2048         | 279        |
|             | S501                 | 2832           | 166        |        | S451         | 2032         | 166        |
|             | S500                 | 2816           | 279        |        | S450         | 2032         | 279        |
| 030         | 5555                 | 2010           | 2/3        | 700    | 0 100        | 2010         | 2/3        |

| pad No | pad name     | X            | Υ          | pad No     | pad name     | X            | Υ          |
|--------|--------------|--------------|------------|------------|--------------|--------------|------------|
| 701    | S449         | 2000         | 166        | 751        | S399         | 1200         | 166        |
|        | S448         | 1984         | 279        |            | S398         | 1184         | 279        |
|        | S447         | 1968         | 166        |            | S397         | 1168         | 166        |
|        | S446         | 1952         | 279        |            |              | 1152         | 279        |
| 705    | S445         | 1936         | 166        | 755        | S395         | 1136         | 166        |
| 706    | S444         | 1920         | 279        | 756        | S394         | 1120         | 279        |
| 707    | S443         | 1904         | 166        | 757        | S393         | 1104         | 166        |
| 708    | S442         | 1888         | 279        | 758        | S392         | 1088         | 279        |
| 709    | S441         | 1872         | 166        | 759        | S391         | 1072         | 166        |
| 710    | S440         | 1856         | 279        | 760        | S390         | 1056         | 279        |
| 711    | S439         | 1840         | 166        | 761        | S389         | 1040         | 166        |
| 712    | S438         | 1824         | 279        | 762        | S388         | 1024         | 279        |
| 713    | S437         | 1808         | 166        | 763        | S387         | 1008         | 166        |
| 714    | S436         | 1792         | 279        | 764        | S386         | 992          | 279        |
| 715    | S435         | 1776         | 166        | 765        | S385         | 976          | 166        |
| 716    | S434         | 1760         | 279        | 766        | S384         | 960          | 279        |
| 717    | S433         | 1744         | 166        | 767        | S383         | 944          | 166        |
| 718    | S432         | 1728         | 279        | 768        | S382         | 928          | 279        |
| 719    | S431         | 1712         | 166        | 769        | S381         | 912          | 166        |
|        | S430         | 1696         | 279        | 770        | S380         | 896          | 279        |
| 721    | S429         | 1680         | 166        | 771        | S379         | 880          | 166        |
|        | S428         | 1664         | 279        |            | S378         | 864          | 279        |
|        | S427         | 1648         | 166        | 773        | S377         | 848          | 166        |
|        | S426         | 1632         | 279        |            | S376         | 832          | 279        |
|        | S425         | 1616         | 166        |            | S375         | 816          | 166        |
|        | S424         | 1600         | 279        |            | S374         | 800          | 279        |
|        | S423         | 1584         | 166        |            | S373         | 784          | 166        |
|        | S422         | 1568         | 279        | 778        | S372         | 768          | 279        |
|        | S421         | 1552         | 166        |            | S371         | 752          | 166        |
|        | S420         | 1536         | 279        | 780        | S370         | 736          | 279        |
|        | S419         | 1520         | 166        |            | S369         | 720          | 166        |
|        | S418         | 1504         | 279        |            | S368         | 704          | 279        |
|        | S417         | 1488         | 166        |            |              | 688          | 166        |
|        | S416         | 1472         | 279        |            | S366         | 672          | 279        |
|        | S415         | 1456         | 166        | 785        | S365         | 656          | 166        |
|        | S414         | 1440         | 279        |            | S364         | 640          | 279        |
|        | S413         | 1424         | 166        | 787        | S363         | 624          | 166        |
|        | S412         | 1408         | 279        |            | S362         | 608          | 279        |
|        | S411         | 1392         | 166        |            | S361         | 592          | 166        |
|        | S410         | 1376         | 279        |            | TESTO8       | 576          | 279<br>166 |
|        | S409         | 1360         | 166        |            | TESTO9       | -576         | 279        |
|        | S408<br>S407 | 1344<br>1328 | 279<br>166 | 792<br>793 | S360<br>S359 | -592<br>-608 | 166        |
|        | S407         | 1328         | 279        | 793        | S358         | -608<br>-624 | 279        |
|        | S405         |              |            |            |              | -624<br>-640 |            |
|        | S404         | 1296<br>1280 | 166<br>279 |            | S357<br>S356 | -640<br>-656 | 166<br>279 |
|        | S403         | 1280         | 166        |            | S355         | -656<br>-672 | 166        |
|        | S402         | 1204         | 279        |            |              | -672<br>-688 | 279        |
|        | S401         | 1232         | 166        |            | S353         | -704         | 166        |
|        | S400         | 1216         | 279        |            | S352         | -704<br>-720 | 279        |
| 750    | U100         | 1210         | 2/9        | 800        | JJJ2         | -720         | 219        |

| NOTSOSV FAD | Coordinates (No.9) (l | Jnit. μ iii) |     |        |          | 2008.2.5 | TEVI.I |
|-------------|-----------------------|--------------|-----|--------|----------|----------|--------|
| pad No      | pad name              | Χ            | Y   | pad No | pad name | X        | Υ      |
| 801         | S351                  | -736         | 166 | 851    | S301     | -1536    | 166    |
| 802         | S350                  | -752         | 279 | 852    | S300     | -1552    | 279    |
| 803         | S349                  | -768         | 166 | 853    | S299     | -1568    | 166    |
| 804         | S348                  | -784         | 279 | 854    | S298     | -1584    | 279    |
| 805         | S347                  | -800         | 166 | 855    | S297     | -1600    | 166    |
| 806         | S346                  | -816         | 279 | 856    | S296     | -1616    | 279    |
| 807         | S345                  | -832         | 166 | 857    | S295     | -1632    | 166    |
| 808         | S344                  | -848         | 279 | 858    |          | -1648    | 279    |
| 809         | S343                  | -864         | 166 | 859    | S293     | -1664    | 166    |
| 810         | S342                  | -880         | 279 | 860    | S292     | -1680    | 279    |
| 811         | S341                  | -896         | 166 | 861    | S291     | -1696    | 166    |
| 812         | S340                  | -912         | 279 | 862    | S290     | -1712    | 279    |
| 813         | S339                  | -928         | 166 | 863    | S289     | -1728    | 166    |
| 814         | S338                  | -944         | 279 | 864    | S288     | -1744    | 279    |
| 815         | S337                  | -960         | 166 | 865    | S287     | -1760    | 166    |
| 816         | S336                  | -976         | 279 | 866    | S286     | -1776    | 279    |
| 817         | S335                  | -992         | 166 | 867    | S285     | -1792    | 166    |
| 818         | S334                  | -1008        | 279 | 868    | S284     | -1808    | 279    |
| 819         | S333                  | -1024        | 166 | 869    | S283     | -1824    | 166    |
| 820         | S332                  | -1040        | 279 | 870    | S282     | -1840    | 279    |
| 821         | S331                  | -1056        | 166 | 871    | S281     | -1856    | 166    |
| 822         | S330                  | -1072        | 279 | 872    | S280     | -1872    | 279    |
| 823         | S329                  | -1088        | 166 | 873    | S279     | -1888    | 166    |
| 824         | S328                  | -1104        | 279 | 874    | S278     | -1904    | 279    |
| 825         | S327                  | -1120        | 166 | 875    | S277     | -1920    | 166    |
| 826         | S326                  | -1136        | 279 | 876    | S276     | -1936    | 279    |
| 827         | S325                  | -1152        | 166 | 877    | S275     | -1952    | 166    |
| 828         | S324                  | -1168        | 279 | 878    | S274     | -1968    | 279    |
| 829         | S323                  | -1184        | 166 | 879    | S273     | -1984    | 166    |
| 830         | S322                  | -1200        | 279 | 880    | S272     | -2000    | 279    |
| 831         | S321                  | -1216        | 166 |        | S271     | -2016    | 166    |
| 832         | S320                  | -1232        | 279 | 882    | S270     | -2032    | 279    |
| 833         | S319                  | -1248        | 166 | 883    | S269     | -2048    | 166    |
| 834         | S318                  | -1264        | 279 | 884    | S268     | -2064    | 279    |
|             | S317                  | -1280        | 166 |        | S267     | -2080    | 166    |
|             | S316                  | -1296        | 279 | 886    |          | -2096    | 279    |
|             | S315                  | -1312        | 166 | 887    | S265     | -2112    | 166    |
|             | S314                  | -1328        | 279 |        |          | -2128    | 279    |
|             | S313                  | -1344        | 166 |        | S263     | -2144    | 166    |
|             | S312                  | -1360        | 279 |        | S262     | -2160    | 279    |
|             | S311                  | -1376        | 166 |        |          | -2176    | 166    |
|             | S310                  | -1392        | 279 | 892    |          | -2192    | 279    |
|             | S309                  | -1408        | 166 |        |          | -2208    | 166    |
|             | S308                  | -1424        | 279 |        | S258     | -2224    | 279    |
|             | S307                  | -1440        | 166 | 895    |          | -2240    | 166    |
|             | S306                  | -1456        | 279 |        | S256     | -2256    | 279    |
|             | S305                  | -1472        | 166 | 897    | S255     | -2272    | 166    |
|             | S304                  | -1488        | 279 |        | S254     | -2288    | 279    |
|             | S303                  | -1504        | 166 |        | S253     | -2304    | 166    |
| 850         | S302                  | -1520        | 279 | 900    | S252     | -2320    | 279    |

| pad No   | pad name | X     | Υ   | pad No | pad name | X X   | Υ   |
|----------|----------|-------|-----|--------|----------|-------|-----|
| <u> </u> | S251     | -2336 | 166 |        | S201     | -3136 | 166 |
|          | S250     | -2352 | 279 |        | S200     | -3152 | 279 |
|          | S249     | -2368 | 166 |        | S199     | -3168 | 166 |
|          | S248     | -2384 | 279 |        | S198     | -3184 | 279 |
|          | S247     | -2400 | 166 |        | S197     | -3200 | 166 |
|          | S246     | -2416 | 279 |        | S196     | -3216 | 279 |
|          | S245     | -2432 | 166 |        | S195     | -3232 | 166 |
|          | S244     | -2448 | 279 |        | S194     | -3248 | 279 |
|          | S243     | -2464 | 166 |        | S193     | -3264 | 166 |
|          | S242     | -2480 | 279 |        | S192     | -3280 | 279 |
|          | S241     | -2496 | 166 |        | S191     | -3296 | 166 |
|          | S240     | -2512 | 279 |        | S190     | -3312 | 279 |
|          | S239     | -2528 | 166 |        | S189     | -3328 | 166 |
|          | S238     | -2544 | 279 |        | S188     | -3344 | 279 |
|          | S237     | -2560 | 166 |        | S187     | -3360 | 166 |
|          | S236     | -2576 | 279 |        | S186     | -3376 | 279 |
|          | S235     | -2592 | 166 |        | S185     | -3392 | 166 |
|          | S234     | -2608 | 279 |        | S184     | -3408 | 279 |
|          | S233     | -2624 | 166 |        | S183     | -3424 | 166 |
|          | S232     | -2640 | 279 |        | S182     | -3440 | 279 |
|          | S231     | -2656 | 166 |        | S181     | -3456 | 166 |
|          | S230     | -2672 | 279 |        | S180     | -3472 | 279 |
|          | S229     | -2688 | 166 |        | S179     | -3488 | 166 |
|          | S228     | -2704 | 279 |        | S178     | -3504 | 279 |
|          | S227     | -2720 | 166 |        | S177     | -3520 | 166 |
|          | S226     | -2736 | 279 |        | S176     | -3536 | 279 |
|          | S225     | -2752 | 166 |        | S175     | -3552 | 166 |
|          | S224     | -2768 | 279 |        | S174     | -3568 | 279 |
|          | S223     | -2784 | 166 |        | S173     | -3584 | 166 |
|          | S222     | -2800 | 279 |        | S172     | -3600 | 279 |
|          | S221     | -2816 | 166 |        | S171     | -3616 | 166 |
|          | S220     | -2832 | 279 | 982    |          | -3632 | 279 |
|          | S219     | -2848 | 166 |        | S169     | -3648 | 166 |
|          | S218     | -2864 | 279 |        | S168     | -3664 | 279 |
|          | S217     | -2880 | 166 |        | S167     | -3680 | 166 |
|          | S216     | -2896 | 279 |        | S166     | -3696 | 279 |
|          | S215     | -2912 | 166 |        | S165     | -3712 | 166 |
|          | S214     | -2928 | 279 |        | S164     | -3728 | 279 |
|          | S213     | -2944 | 166 |        | S163     | -3744 | 166 |
|          | S212     | -2960 | 279 |        | S162     | -3760 | 279 |
|          | S211     | -2976 | 166 | 991    |          | -3776 | 166 |
|          | S210     | -2992 | 279 |        | S160     | -3792 | 279 |
|          | S209     | -3008 | 166 |        | S159     | -3808 | 166 |
|          | S208     | -3024 | 279 |        | S158     | -3824 | 279 |
|          | S207     | -3040 | 166 |        | S157     | -3840 | 166 |
|          | S206     | -3056 | 279 |        | S156     | -3856 | 279 |
|          | S205     | -3072 | 166 |        | S155     | -3872 | 166 |
|          | S204     | -3088 | 279 |        | S154     | -3888 | 279 |
|          | S203     | -3104 | 166 |        | S153     | -3904 | 166 |
|          | S202     | -3120 | 279 |        | S152     | -3920 | 279 |
| 550      |          | 0120  | 273 | 1000   | VL       | 5520  | 213 |

| pad No | pad name | X             | Υ   | pad No | pad name | X X   | Υ   |
|--------|----------|---------------|-----|--------|----------|-------|-----|
|        | S151     | -3936         | 166 |        | S101     | -4736 | 166 |
|        | S150     | -3952         | 279 |        | S100     | -4752 | 279 |
|        | S149     | -3968         | 166 | 1053   |          | -4768 | 166 |
|        | S148     | -3984         | 279 | 1054   |          | -4784 | 279 |
|        | S147     | -4000         | 166 | 1055   |          | -4800 | 166 |
|        | S146     | -4016         | 279 | 1056   |          | -4816 | 279 |
|        | S145     | -4032         | 166 | 1057   |          | -4832 | 166 |
|        | S144     | -4048         | 279 | 1058   |          | -4848 | 279 |
|        | S143     | -4064         | 166 | 1059   |          | -4864 | 166 |
|        | S142     | -4080         | 279 | 1060   |          | -4880 | 279 |
|        | S141     | -4096         | 166 | 1061   |          | -4896 | 166 |
|        | S140     | -4112         | 279 | 1062   |          | -4912 | 279 |
|        | S139     | -4128         | 166 | 1063   |          | -4928 | 166 |
|        | S138     | -4144         | 279 | 1064   |          | -4944 | 279 |
|        | S137     | -4160         | 166 | 1065   |          | -4960 | 166 |
|        | S136     | -4176         | 279 | 1066   |          | -4976 | 279 |
|        | S135     | -4192         | 166 | 1067   |          | -4992 | 166 |
|        | S134     | -4208         | 279 | 1068   |          | -5008 | 279 |
|        | S133     | -4224         | 166 | 1069   |          | -5024 | 166 |
|        | S132     | -4240         | 279 | 1070   |          | -5040 | 279 |
|        | S131     | -4256         | 166 | 1071   |          | -5056 | 166 |
|        | S130     | -4272         | 279 | 1072   |          | -5072 | 279 |
|        | S129     | -4288         | 166 | 1073   |          | -5088 | 166 |
| 1024   | S128     | -4304         | 279 | 1074   | S78      | -5104 | 279 |
|        | S127     | -4320         | 166 | 1075   |          | -5120 | 166 |
| 1026   | S126     | -4336         | 279 | 1076   | S76      | -5136 | 279 |
| 1027   | S125     | -4352         | 166 | 1077   | S75      | -5152 | 166 |
| 1028   | S124     | -4368         | 279 | 1078   | S74      | -5168 | 279 |
| 1029   | S123     | -4384         | 166 | 1079   | S73      | -5184 | 166 |
| 1030   | S122     | -4400         | 279 | 1080   | S72      | -5200 | 279 |
| 1031   | S121     | -4416         | 166 | 1081   | S71      | -5216 | 166 |
| 1032   | S120     | -4432         | 279 | 1082   | S70      | -5232 | 279 |
| 1033   | S119     | -4448         | 166 | 1083   | S69      | -5248 | 166 |
|        | S118     | -4464         | 279 | 1084   | S68      | -5264 | 279 |
| 1035   | S117     | -4480         | 166 | 1085   |          | -5280 | 166 |
|        | S116     | -4496         | 279 | 1086   |          | -5296 | 279 |
|        | S115     | -4512         | 166 | 1087   |          | -5312 | 166 |
|        | S114     | -4528         | 279 | 1088   |          | -5328 | 279 |
|        | S113     | -4544         | 166 | 1089   |          | -5344 | 166 |
|        | S112     | -4560         | 279 | 1090   |          | -5360 | 279 |
|        | S111     | -4576         | 166 | 1091   |          | -5376 | 166 |
|        | S110     | -4592         | 279 | 1092   |          | -5392 | 279 |
|        | S109     | -4608         | 166 | 1093   |          | -5408 | 166 |
|        | S108     | -4624         | 279 | 1094   |          | -5424 | 279 |
|        | S107     | -4640         | 166 | 1095   |          | -5440 | 166 |
|        | S106     | -4656         | 279 | 1096   |          | -5456 | 279 |
|        | S105     | -4672         | 166 | 1097   |          | -5472 | 166 |
|        | S104     | -4688         | 279 | 1098   |          | -5488 | 279 |
|        | S103     | -4704<br>4700 | 166 | 1099   |          | -5504 | 166 |
| 1050   | S102     | -4720         | 279 | 1100   | 202      | -5520 | 279 |

| R01000V PAD | Coordinates (No.12) | (Unit: $\mu$ m) |            |        |              | 2008.2.5       | revi.i     |
|-------------|---------------------|-----------------|------------|--------|--------------|----------------|------------|
| pad No      | pad name            | X               | Υ          | pad No | pad name     | X              | Υ          |
| 1101        | S51                 | -5536           | 166        | 1151   | S1           | -6336          | 166        |
| 1102        | S50                 | -5552           | 279        | 1152   | TESTO10      | -6352          | 279        |
| 1103        | S49                 | -5568           | 166        | 1153   | TESTO11      | -6368          | 166        |
| 1104        | S48                 | -5584           | 279        | 1154   | TESTO12      | -6560          | 279        |
| 1105        | S47                 | -5600           | 166        | 1155   | VGLDMY3      | -6576          | 166        |
| 1106        | S46                 | -5616           | 279        | 1156   | G320         | -6592          | 279        |
| 1107        | S45                 | -5632           | 166        | 1157   | G318         | -6608          | 166        |
| 1108        | S44                 | -5648           | 279        | 1158   | G316         | -6624          | 279        |
| 1109        | S43                 | -5664           | 166        | 1159   | G314         | -6640          | 166        |
| 1110        | S42                 | -5680           | 279        | 1160   | G312         | -6656          | 279        |
| 1111        | S41                 | -5696           | 166        | 1161   | G310         | -6672          | 166        |
| 1112        | S40                 | -5712           | 279        | 1162   | G308         | -6688          | 279        |
| 1113        | S39                 | -5728           | 166        | 1163   | G306         | -6704          | 166        |
| 1114        | S38                 | -5744           | 279        | 1164   | G304         | -6720          | 279        |
| 1115        | S37                 | -5760           | 166        |        | G302         | -6736          | 166        |
| 1116        | S36                 | -5776           | 279        | 1166   | G300         | -6752          | 279        |
| 1117        | S35                 | -5792           | 166        | 1167   | G298         | -6768          | 166        |
| 1118        | S34                 | -5808           | 279        | 1168   | G296         | -6784          | 279        |
| 1119        | S33                 | -5824           | 166        | 1169   | G294         | -6800          | 166        |
| 1120        | S32                 | -5840           | 279        | 1170   | G292         | -6816          | 279        |
| 1121        | S31                 | -5856           | 166        | 1171   | G290         | -6832          | 166        |
| 1122        | S30                 | -5872           | 279        | 1172   | G288         | -6848          | 279        |
| 1123        | S29                 | -5888           | 166        | 1173   | G286         | -6864          | 166        |
| 1124        | S28                 | -5904           | 279        | 1174   | G284         | -6880          | 279        |
| 1125        | S27                 | -5920           | 166        | 1175   | G282         | -6896          | 166        |
| 1126        | S26                 | -5936           | 279        | 1176   | G280         | -6912          | 279        |
| 1127        | S25                 | -5952           | 166        | 1177   | G278         | -6928          | 166        |
| 1128        |                     | -5968           | 279        | 1178   | G276         | -6944          | 279        |
| 1129        |                     | -5984           | 166        | 1179   |              | -6960          | 166        |
| 1130        |                     | -6000           | 279        |        | G272         | -6976          | 279        |
| 1131        |                     | -6016           | 166        | 1181   | G270         | -6992          | 166        |
| 1132        |                     | -6032           | 279        |        | G268         | -7008          | 279        |
| 1133        |                     | -6048           | 166        | 1183   |              | -7024          | 166        |
| 1134        |                     | -6064           | 279        |        | G264         | -7040          | 279        |
| 1135        |                     | -6080           | 166        |        | G262         | -7056          | 166        |
| 1136        |                     | -6096           | 279        |        | G260         | -7072          | 279        |
| 1137        |                     | -6112           | 166        | 1187   | G258         | -7088          | 166        |
| 1138        |                     | -6128           | 279        | 1188   |              | -7104          | 279        |
| 1139        |                     | -6144           | 166        |        | G254         | -7120          | 166        |
| 1140        |                     | -6160           | 279        | 1190   |              | -7136          | 279        |
| 1141        |                     | -6176           | 166        | 1191   |              | -7152          | 166        |
| 1142        |                     | -6192           | 279        |        | G248         | -7168          | 279        |
| 1143        |                     | -6208           | 166        | 1193   |              | -7184          | 166        |
| 1144        |                     | -6224           | 279        | 1194   |              | -7200<br>7010  | 279        |
| 1145        |                     | -6240           | 166        |        | G242         | -7216          | 166        |
| 1146        |                     | -6256           | 279        |        | G240         | -7232          | 279        |
| 1147        |                     | -6272<br>-6299  | 166        | 1197   | G238         | -7248<br>-7264 | 166<br>279 |
| 1148        |                     | -6288<br>-6304  | 279<br>166 |        | G236<br>G234 | -7264<br>-7280 |            |
| 1149        |                     | -6304<br>-6320  |            |        |              | -7280<br>-7296 | 166<br>279 |
| 1150        | <b>0</b> 2          | -0320           | 279        | 1200   | G232         | -/296          | 2/9        |

| ROTOUSV PAD | Coordinates (No.13) | (Unit: μm)     |            |              |          | 2008.2.5       | revi.i     |
|-------------|---------------------|----------------|------------|--------------|----------|----------------|------------|
| pad No      | pad name            | X              | Υ          | pad No       | pad name | X              | Υ          |
| 1201        | G230                | -7312          | 166        | 1251         | G130     | -8112          | 166        |
| 1202        | G228                | -7328          | 279        | 1252         | G128     | -8128          | 279        |
| 1203        | G226                | -7344          | 166        | 1253         | G126     | -8144          | 166        |
| 1204        | G224                | -7360          | 279        | 1254         | G124     | -8160          | 279        |
| 1205        | G222                | -7376          | 166        | 1255         | G122     | -8176          | 166        |
| 1206        | G220                | -7392          | 279        | 1256         | G120     | -8192          | 279        |
| 1207        | G218                | -7408          | 166        | 1257         | G118     | -8208          | 166        |
| 1208        | G216                | -7424          | 279        | 1258         | G116     | -8224          | 279        |
| 1209        | G214                | -7440          | 166        | 1259         | G114     | -8240          | 166        |
| 1210        | G212                | -7456          | 279        | 1260         | G112     | -8256          | 279        |
| 1211        | G210                | -7472          | 166        | 1261         | G110     | -8272          | 166        |
| 1212        | G208                | -7488          | 279        | 1262         | G108     | -8288          | 279        |
| 1213        | G206                | -7504          | 166        | 1263         | G106     | -8304          | 166        |
| 1214        | G204                | -7520          | 279        | 1264         | G104     | -8320          | 279        |
|             | G202                | -7536          | 166        |              | G102     | -8336          | 166        |
|             | G200                | -7552          | 279        | 1266         | G100     | -8352          | 279        |
|             | G198                | -7568          | 166        | 1267         |          | -8368          | 166        |
| 1218        | G196                | -7584          | 279        | 1268         |          | -8384          | 279        |
| 1219        | G194                | -7600          | 166        | 1269         | G94      | -8400          | 166        |
|             | G192                | -7616          | 279        | 1270         |          | -8416          | 279        |
|             | G190                | -7632          | 166        | 1271         | G90      | -8432          | 166        |
|             | G188                | -7648          | 279        | 1272         |          | -8448          | 279        |
|             | G186                | -7664          | 166        | 1273         |          | -8464          | 166        |
|             | G184                | -7680          | 279        | 1274         |          | -8480          | 279        |
|             | G182                | -7696          | 166        | 1275         |          | -8496          | 166        |
|             | G180                | -7712          | 279        | 1276         |          | -8512          | 279        |
|             | G178                | -7728          | 166        | 1277         |          | -8528          | 166        |
|             | G176                | -7744          | 279        | 1278         |          | -8544          | 279        |
|             | G174                | -7760          | 166        | 1279         |          | -8560          | 166        |
|             | G172                | -7776          | 279        | 1280         |          | -8576          | 279        |
|             | G170                | -7792<br>7000  | 166        | 1281         | G70      | -8592          | 166        |
|             | G168                | -7808<br>-7804 | 279        | 1282         |          | -8608          | 279        |
|             | G166                | -7824          | 166        | 1283         |          | -8624          | 166        |
|             | G164                | -7840          | 279        | 1284         |          | -8640          | 279        |
|             | G162                | -7856<br>-7872 | 166        | 1285         |          | -8656<br>-8672 | 166<br>279 |
|             | G160<br>G158        | -7872<br>-7888 | 279<br>166 | 1286         |          | -8672<br>-8688 | 166        |
|             | G158                | -7888<br>-7904 | 279        | 1287<br>1288 |          | -8688<br>-8704 | 279        |
|             | G154                | -7904<br>-7920 | 166        | 1288         |          | -8704<br>-8720 | 166        |
|             | G154<br>G152        | -7920<br>-7936 | 279        | 1289         |          | -8720<br>-8736 | 279        |
|             | G152<br>G150        | -7936<br>-7952 | 166        | 1290         |          | -8752          | 166        |
|             | G130                | -7952<br>-7968 | 279        | 1291         |          | -8768          | 279        |
|             | G148                | -7968<br>-7984 | 166        | 1292         |          | -8784          | 166        |
|             | G144                | -8000          | 279        | 1293         |          | -8800          | 279        |
|             | G142                | -8016          | 166        | 1294         |          | -8816          | 166        |
|             | G142                | -8032          | 279        | 1295         |          | -8832          | 279        |
|             | G138                | -8048          | 166        | 1297         | G38      | -8848          | 166        |
|             | G136                | -8064          | 279        | 1298         |          | -8864          | 279        |
|             | G134                | -8080          | 166        | 1299         |          | -8880          | 166        |
|             | G132                | -8096          | 279        | 1300         |          | -8896          | 279        |
| 1230        | JL                  | 0000           | 270        | 1000         |          | 5550           | 210        |

| pad No | pad name | X     | Υ   |
|--------|----------|-------|-----|
| 1301   | G30      | -8912 | 166 |
| 1302   | G28      | -8928 | 279 |
| 1303   | G26      | -8944 | 166 |
| 1304   | G24      | -8960 | 279 |
| 1305   | G22      | -8976 | 166 |
| 1306   | G20      | -8992 | 279 |
| 1307   | G18      | -9008 | 166 |
| 1308   | G16      | -9024 | 279 |
| 1309   | G14      | -9040 | 166 |
| 1310   | G12      | -9056 | 279 |
| 1311   | G10      | -9072 | 166 |
| 1312   | G8       | -9088 | 279 |
| 1313   | G6       | -9104 | 166 |
| 1314   | G4       | -9120 | 279 |
| 1315   | G2       | -9136 | 166 |
| 1316   | VGLDUMY4 | -9152 | 279 |
| 1317   | DUMMYR5  | -9168 | 166 |
| 1318   | DUMMYR6  | -9184 | 279 |
| 1319   | TESTO13  | -9200 | 166 |
| 1320   | TESTO14  | -9216 | 279 |

### **Bump Arrangement**



Figure 3



### **GRAM Address Map**

Table 16 GRAM address and display position on the panel (SS = 0, BGR = 0)

|      |       |    |      |     | -  |      |     | Ĥ                |                  | _   | _    |       |     | _  |                   | `    |      | <u> </u> |      |      | _    |      |      | _     |              |
|------|-------|----|------|-----|----|------|-----|------------------|------------------|-----|------|-------|-----|----|-------------------|------|------|----------|------|------|------|------|------|-------|--------------|
| S/G  | i pin | S1 | S2   | S3  | S4 | S5   | 98  | S7               | 88               | 68  | S10  | S11   | S12 |    | 8 <sup>2</sup> 00 | S710 | S711 | S712     | S713 | S714 | S715 | S716 | S717 | S718  | S719<br>S720 |
| GS=0 | GS=1  | W  | D[17 | :0] | W  | D[17 | :0] | W                | D[17             | :0] | W    | D[17: | :0] |    | W                 | D[17 | :0]  | W        | D[17 | 7:0] | W    | D[17 | :0]  | WI    | D[17:0]      |
| G1   | G320  | h  | 0000 | 0   | h  | 0000 | 1   | h                | 0000             | 2   | h    | 0000  | 3   |    | h(                | 000E | С    | h(       | 000E | ED.  | h    | 000E | E    | h(    | 000EF        |
| G2   | G319  | h  | 0010 | 0   | h  | 0010 | 1   | h                | 0010             | 2   | h    | 0010  | 3   |    | h(                | 001E | С    | h(       | 001E | ED   | h    | 001E | E    | h(    | 001EF        |
| G3   | G318  | h  | 0020 | 0   | h  | 0020 | 1   | h                | 0020             | 2   | h    | 0020  | 3   |    | h(                | 002E | С    | h(       | 002E | ED   | h    | 002E | E    | h(    | 002EF        |
| G4   | G317  | h  | 0030 | 0   | h  | 0030 | 1   | h                | 0030             | )2  | h    | 0030  | 3   |    | h(                | 003E | С    | h(       | 003E | ED   | h    | 003E | E    | h(    | 003EF        |
| G5   | G316  | h  | 0040 | 0   | h  | 0040 | 1   | h                | 0040             | 2   | h    | 0040  | 3   |    | h(                | 004E | С    | h(       | 004E | ΞD   | h    | 004E | E    | h(    | 004EF        |
| G6   | G315  | h  | 0050 | 0   | h  | 0050 | 1   | h                | 0050             | )2  | h    | 0050  | 3   |    | h(                | 005E | С    | h(       | 005E | ΕD   | h    | 005E | E    | h(    | 005EF        |
| G7   | G314  | h  | 0060 | 0   | h  | 0060 | 1   | h                | 0060             | 2   | h    | 0060  | 3   |    | h(                | 006E | С    | h(       | 006E | ED   | h    | 006E | Ε    | h(    | 006EF        |
| G8   | G313  | h  | 0070 | 0   | h  | 0070 | 1   | h                | 0070             | 2   | h    | 0070  | 3   |    | h(                | 007E | С    | h(       | 007E | ΞD   | h    | 007E | Ε    | h(    | 007EF        |
| G9   | G312  | h  | 0800 | 0   | h  | 0800 | 1   | h                | 0080             | 2   | h    | 0800  | 3   |    | h(                | 008E | С    | h(       | 008E | ΞD   | h    | 008E | Ε    | h(    | 008EF        |
| G10  | G311  | h  | 0090 | 0   | h  | 0090 | 1   | h                | 0090             | 2   | h    | 0090  | 3   |    | h(                | 009E | С    | h(       | 009E | ED   | h    | 009E | E    | h(    | 009EF        |
| G11  | G310  | h  | 00A0 | 00  | h  | 00A0 | )1  | h                | 00A0             | )2  | h    | 00A0  | 3   |    | h(                | 00AE | С    | h(       | OOA  | ΕD   | h    | 00AE | Ε    | h(    | 00AEF        |
| G12  | G309  | h  | 00B0 | 00  | h  | 00B0 | )1  | h                | 00B0             | )2  | h    | 00B0  | 3   |    | h(                | OBE  | С    | h(       | OOB! | ΕD   | h    | 00BE | Ε    | h(    | 00BEF        |
| G13  | G308  | h  | 00C0 | 00  | h  | 00C0 | )1  | h                | h00C02<br>h00D02 |     | h    | 00C0  | 3   |    | hC                | OCE  | C    | h(       | OOCI | ΞD   | h    | 00CE | E    | h(    | 00CEF        |
| G14  | G307  | h  | 00D0 | 00  | h  | 00D0 | )1  | h00D02<br>h00E02 |                  | h   | 00D0 | 3     |     | hC | )0DE              | С    | h(   | DOD!     | ΞD   | h    | 00DE | Ε    | h(   | 00DEF |              |
| G15  | G306  | h  | 00E0 | 00  | h  | 00E0 | )1  |                  |                  | h   | 00E0 | 3     |     | h( | 00EE              | С    | h(   | OOE!     | ΞD   | h    | 00EE | Ε    | h(   | 00EEF |              |
| G16  | G305  | h  | 00F0 | 0   | h  | 00F0 | 1   | h00F02           |                  | h   | 00F0 | 3     |     | h( | 00FE              | С    | h(   | 00FE     | ED   | h    | 00FE | Ε    | h(   | 00FEF |              |
| G17  | G304  | h  | 0100 | 0   | h  | 0100 | 1   | h                | 0100             | )2  | h    | 0100  | 3   |    | h(                | )10E | С    | h(       | 010E | ED   | h    | 010E | E    | h(    | )10EF        |
| G18  | G303  | h  | 0110 | 0   | h  | 0110 | 1   | h                | 0110             | )2  | h    | 0110  | 3   |    | h(                | )11E | С    | h(       | 011E | ED   | h    | 011E | E    | h(    | )11EF        |
| G19  | G302  |    | 0120 |     | h  | 0120 | 1   | h                | 0120             | )2  | h    | 0120  | 3   |    |                   | )12E |      | h(       | 012E | ED   | +    | 012E |      |       | )12EF        |
| G20  | G301  | h  | 0130 | 0   | h  | 0130 | 1   | h                | 0130             | )2  | h    | 0130  | 3   |    | h(                | )13E | С    | h(       | 013E | ED   | h    | 013E | E    | h(    | )13EF        |
| :    | :     |    | :    |     |    | :    |     |                  | :                |     |      | :     |     | :  |                   | :    |      |          | :    |      |      | :    |      |       | :            |
| G305 | G16   |    | 1300 |     |    | 1300 |     |                  | 1300             |     |      | 1300  |     |    |                   | 130E |      |          | 130E |      | 1    | 130E |      |       | 130EF        |
| G306 | G15   |    | 1310 |     |    | 1310 |     |                  | 1310             |     |      | 1310  |     |    |                   | 131E |      |          | 131E |      | +    | 131E |      |       | I31EF        |
| G307 | G14   |    | 1320 |     |    | 1320 |     |                  | 1320             |     |      | 1320  |     |    |                   | 132E |      |          | 132E |      | +    | 132E |      |       | 132EF        |
| G308 | G13   | _  | 1330 |     |    | 1330 |     |                  | 1330             |     | _    | 1330  |     |    |                   | 133E |      |          | 133E |      | 1    | 133E |      |       | 133EF        |
| G309 | G12   |    | 1340 |     |    | 1340 |     |                  | 1340             |     |      | 1340  |     |    |                   | 134E |      |          | 134E |      | +    | 134E |      |       | 134EF        |
| G310 | G11   |    | 1350 | _   |    | 1350 |     |                  | 1350             |     |      | 1350  | _   |    |                   | 135E | _    |          | 135E |      | 1    | 135E |      |       | 135EF        |
| G311 | G10   |    | 1360 |     |    | 1360 |     |                  | 1360             |     |      | 1360  |     |    |                   | 136E |      |          | 136E |      | 1    | 136E |      |       | 136EF        |
| G312 | G9    |    | 1370 |     |    | 1370 |     |                  | 1370             |     |      | 1370  |     |    |                   | 137E |      |          | 137E |      | 1    | 137E |      |       | 137EF        |
| G313 | G8    |    | 1380 |     |    | 1380 |     |                  | 1380             |     |      | 1380  |     |    |                   | 138E |      |          | 138E |      | +    | 138E |      |       | 138EF        |
| G314 | G7    |    | 1390 |     |    | 1390 |     |                  | 1390             |     |      | 1390  |     |    |                   | 139E |      |          | 139E |      | 1    | 139E |      |       | 139EF        |
| G315 | G6    |    | 13A0 |     |    | 13A0 |     |                  | 13A0             |     |      | 13A0  |     |    |                   | 13AE |      |          | 13AE |      | 1    | 13AE |      |       | I3AEF        |
| G316 | G5    |    | 13B0 |     |    | 13B0 |     |                  | 13B0             |     |      | 13B0  |     |    |                   | 13BE |      |          | 13BI |      | +    | 13BE |      |       | 13BEF        |
| G317 | G4    |    | 13C0 |     |    | 13C0 |     |                  | 13C(             |     |      | 13C0  |     |    |                   | 13CE |      |          | 13CI |      | 1    | 13CE |      |       | 3CEF         |
| G318 | G3    |    | 13D0 |     |    | 13D0 |     |                  | 13D(             |     |      | 13D0  |     |    |                   | 13DE |      |          | 13DI |      |      | 13DE |      |       | 3DEF         |
| G319 | G2    |    | 13E0 |     |    | 13E0 |     |                  | 13E0             |     |      | 13E0  |     |    |                   | 13EE |      |          | 13E  |      | 1    | 13EE |      |       | 3EEF         |
| G320 | G1    | h  | 13F0 | IU  | h  | 13F0 | 17  | h                | 13F0             | 12  |      |       | 3   |    | h'                | 13FE | C.   | h'       | 13FE | בט   | h    | 13FE | E    | h'    | 13FEF        |

Table 17 GRAM address and display position on the panel (SS = 1, BGR = 1)

| 0.10 |      | 02   | 6    | 8    | 17   | 9    | 15  | 4    | 2    | 12  | _    | 01    | 60   |    | 2    | _    | 0   |      |       |      |      |      |     |      |      |     |
|------|------|------|------|------|------|------|-----|------|------|-----|------|-------|------|----|------|------|-----|------|-------|------|------|------|-----|------|------|-----|
| S/G  | pin  | S720 | S719 | S718 | S717 | S716 | .Y. | S714 | S713 | .Z  | S711 | S710  | S709 |    | S12  | S11  | S1( | 89   | 88    | S7   | Se   | SS   | S4  | S3   | S2   | S   |
| GS=0 | GS=1 | W    | D[17 | :0]  | W    | D[17 | :0] | W    | D[17 | :0] | W    | D[17: | 0]   |    | W    | D[17 | :0] | W    | D[17  | ':0] | W    | D[17 | :0] | WI   | D[17 | :0] |
| G1   | G320 | h    | 0000 | 00   | h    | 0000 | )1  | h    | 0000 | )2  | h    | 0000  | 3    |    | h(   | 000E | С   | h(   | 000E  | D    | h    | 000E | E   | h(   | 000E | F   |
| G2   | G319 | h    | 0010 | 00   | h    | 0010 | )1  | h    | 0010 | )2  | h    | 0010  | 3    |    | h(   | 001E | С   | h(   | 001E  | D    | h    | 001E | E   | hC   | 001E | F   |
| G3   | G318 | h    | 0020 | 00   | h    | 0020 | )1  | h    | 0020 | )2  | h    | 0020  | 3    |    | h(   | 002E | С   | h(   | 002E  | D    | h    | 002E | E   | hC   | )02E | F   |
| G4   | G317 | h    | 0030 | 00   | h    | 0030 | )1  | h    | 0030 | )2  | h    | 0030  | 3    |    | h(   | 003E | С   | h(   | 003E  | D    | h    | 003E | E   | hC   | 003E | F   |
| G5   | G316 | h    | 0040 | 00   | h    | 0040 | )1  | h    | 0040 | )2  | h    | 0040  | 3    |    | h(   | 004E | С   | h(   | 004E  | D    | h    | 004E | E   | hC   | 004E | F   |
| G6   | G315 | h    | 0050 | 00   | h    | 0050 | )1  | h    | 0050 | )2  | h    | 0050  | 3    |    | h(   | 005E | С   | h(   | 005E  | D    | h    | 005E | E   | hC   | )05E | :F  |
| G7   | G314 | h    | 0060 | 00   | h    | 0060 | )1  | h    | 0060 | )2  | h    | 0060  | 3    |    | h(   | 006E | С   | h(   | 006E  | D    | h    | 006E | E   | hC   | 006E | :F  |
| G8   | G313 | h    | 0070 | 00   | h    | 0070 | )1  | h    | 0070 | )2  | h    | 0070  | 3    |    | h(   | 007E | С   | h(   | 007E  | Đ    | h    | 007E | Ε   | hC   | )07E | F   |
| G9   | G312 | h    | 0080 | 00   | h    | 0800 | )1  | h    | 0800 | )2  | h    | 0800  | 3    |    | h(   | 008E | С   | h(   | 008E  | D    | h    | 008E | E   | hC   | 008E | :F  |
| G10  | G311 | h    | 0090 | 00   | h    | 0090 | )1  | h    | 0090 | )2  | h    | 0090  | 3    |    | h(   | 009E | С   | h(   | 009E  | D    | h    | 009E | E   | hC   | 009E | ΞF  |
| G11  | G310 | h    | 00A0 | 00   | h    | 00A0 | )1  | h    | 00A0 | )2  | h    | 00A0  | 3    |    | h(   | 00AE | C   | h(   | OAE   | D    | h(   | OOAE | E   | hC   | 00AE | ΞF  |
| G12  | G309 | h    | 00B0 | 00   | h    | 00B0 | )1  | h    | 00B0 | )2  | h    | 00B0  | 3    |    | h(   | 00BE | C   | h(   | OBE   | ED   | h(   | 00BE | Ε   | hC   | )0BE | ≟F  |
| G13  | G308 | h    | 00C0 | 00   | h    | 00C0 | )1  | h    | 00C0 | )2  | h    | 00C0  | 3    |    | hC   | OCE  | C.  | hC   | OCE   | ED   | h(   | OOCE | Ε   | hC   | OCE  | ΞF  |
| G14  | G307 | h    | 00D0 | 00   | h    | 00D0 | )1  | h    | 00D0 |     |      | 3     |      | hC | )0DE | C    | hC  | )ODE | D     | h(   | OODE | E    | hC  | )ODE | ΞF   |     |
| G15  | G306 | h    | 00E0 | 00   | h    | 00E0 | )1  | h    | 00E0 | )2  | h    | 00E0  | 3    |    | h(   | 0EE  | C.  | h(   | OOEE  | ED   | h(   | 00EE | Ε   | hC   | 0EE  | ΞF  |
| G16  | G305 | h    | 00F0 | 00   | h    | 00F0 | )1  | h    | 00F0 | )2  | h    | 00F0  | 3    |    | h(   | 0FE  | C   | h(   | OOF E | D    | h(   | 00FE | Ε   | hC   | 0FE  | ΞF  |
| G17  | G304 | h    | 0100 | 00   | h    | 0100 | )1  | h    | 0100 | )2  | h    | 0100  | 3    |    | h(   | )10E | С   | h(   | )10E  | D    | h(   | 010E | E   | hC   | )10E | :F  |
| G18  | G303 | h    | 0110 | 00   | h    | 0110 | )1  | h    | 0110 | )2  | h    | 0110  | 3    |    | h(   | )11E | С   | h(   | )11E  | D    | h(   | 011E | E   | hC   | )11E | :F  |
| G19  | G302 | h    | 0120 | 00   | h    | 0120 | )1  | h    | 0120 | )2  | h    | 0120  | 3    |    | h(   | )12E | С   | h(   | )12E  | D    | h(   | 012E | E   | hC   | )12E | :F  |
| G20  | G301 | h    | 0130 | 00   | h    | 0130 | )1  | h    | 0130 | )2  | h    | 0130  | 3    |    | h(   | )13E | С   | h(   | )13E  | D    | h(   | 013E | E   | hC   | )13E | :F  |
| :    | :    |      | :    |      |      | :    |     |      | :    |     |      | :     |      | :  |      | :    |     |      | :     |      |      | :    |     |      | :    |     |
| G305 | G16  | h    | 1300 | 00   | h    | 1300 | )1  | h    | 1300 | )2  | h    | 1300  | 3    |    | h′   | 130E | С   | h′   | 130E  | D    | h'   | 130E | E   | h1   | 130E | :F  |
| G306 | G15  | h    | 1310 | 00   | h    | 1310 | )1  | h    | 1310 | )2  | h    | 1310  | 3    |    | h′   | 131E | С   | h'   | 131E  | D    | h'   | 131E | E   | h1   | 131E | ΞF  |
| G307 | G14  | h    | 1320 | 00   | h    | 1320 | )1  | h    | 1320 | )2  | h    | 1320  | 3    |    | h′   | 132E | С   | h′   | 132E  | D    | h'   | 132E | E   | h1   | 132E | :F  |
| G308 | G13  | h    | 1330 | 00   | h    | 1330 | )1  | h    | 1330 | )2  | h    | 1330  | 3    |    | h′   | 133E | С   |      | 133E  |      | h'   | 133E | E   | h1   | 133E | iF. |
| G309 | G12  | _    | 1340 |      | h    | 1340 | )1  | h    | 1340 | )2  | h    | 1340  | 3    |    |      | 134E |     | h'   | 134E  | D    | h'   | 134E | E   |      | 134E |     |
| G310 | G11  | h    | 1350 | 00   | h    | 1350 | )1  | h    | 1350 | )2  | h    | 1350  | 3    |    | h′   | 135E | С   | h'   | 135E  | D    | h'   | 135E | E   | h1   | 135E | :F  |
| G311 | G10  |      | 1360 |      |      | 1360 |     |      | 1360 |     |      | 1360  |      |    |      | 136E |     |      | 136E  |      |      | 136E |     |      | 136E | _   |
| G312 | G9   | h    | 1370 | 00   | h    | 1370 | )1  | h    | 1370 | )2  | h    | 1370  | 3    |    | h′   | 137E | С   | h'   | 137E  | D    | h'   | 137E | E   | h1   | 137E | :F  |
| G313 | G8   |      | 1380 |      |      | 1380 |     |      | 1380 |     |      | 1380  |      |    |      | 138E |     |      | 138E  |      |      | 138E |     |      | 138E |     |
| G314 | G7   |      | 1390 |      |      | 1390 |     |      | 1390 |     |      | 1390  |      |    |      | 139E |     |      | 139E  |      |      | 139E |     |      | 139E | _   |
| G315 | G6   |      | 13A0 |      |      | 13A0 |     |      | 13A0 |     |      | 13A0  |      |    |      | I3AE |     |      | 13AE  |      |      | 13AE |     |      | 3AE  | _   |
| G316 | G5   |      | 13B0 |      |      | 13B0 |     |      | 13B0 |     |      | 13B0  |      |    |      | I3BE |     |      | 13BE  |      |      | 13BE |     |      | 3BE  | _   |
| G317 | G4   |      | 13C( |      |      | 13C0 |     |      | 13C0 |     |      | 13C0  |      |    |      | 3CE  |     |      | 13CE  |      |      | 13CE |     |      | 3CE  |     |
| G318 | G3   |      | 13D0 |      |      | 13D0 |     |      | 13D0 |     |      | 13D0  |      |    |      | 3DE  |     |      | 13DE  |      |      | 13DE |     |      | 3DE  |     |
| G319 | G2   |      | 13E0 |      |      | 13E0 |     | _    | 13E0 |     |      | 13E0  |      |    |      | 13EE |     |      | 13EE  |      |      | 13EE |     |      | 3EE  |     |
| G320 | G1   | h    | 13F0 | 00   | h    | 13F0 | )1  | h    | 13F0 | )2  | h    | 13F0  | 3    |    | h′   | 13FE | C   | h′   | 13FE  | D    | h'   | 13FE | E   | h1   | 13FE | ΞF  |

### Instruction

### Outline

The R61505V adopts 18-bit bus architecture in order to interface to high-performance host processor in high speed. The R61505V starts internal processing after storing 16-/8-/1-bit control information sent from the host processor, in the instruction register (IR) and the data register (DR). Since the internal operation of the R61505V is controlled by the signals sent from the host processor, the register selection signal (RS), the read/write signal (R/W), and the internal 16-bit data bus signals (IB15  $\sim$  IB0) are called instruction. The following are the kinds of instruction of the R61505V.

- 1. Specify index
- 2. Display control
- 3. Power management control
- 4. Set internal GRAM address
- 5. Transfer data to and from the internal GRAM
- 6. γ-correction
- 7. Window address control
- 8. Panel Display Control

Normally, the instruction to write data is used the most often. The internal GRAM address is updated automatically as data is written to the internal GRAM, which, in combination with the window address function, contributes to minimizing data transfer and thereby lessens the load on the host processor. The R61505V writes instructions consecutively by executing the instruction within the cycle when it is written (instruction execution time: 0 cycle).

### Instruction Data Format

As the following figure shows, the data bus used to transfer 16 instruction bits (IB[15:0]) is different according to the interface format. Make sure to transfer the instruction bits according to the format of the selected interface.

The following are detail descriptions of instruction bits (IB15-0). Note that the instruction bits IB[15:0] in the following figures are transferred according to the format of the selected interface.

### Index (IR)



The index register specifies the index R00h to RFFh of the control register or RAM control to be accessed using a binary number from "0000\_0000" to "1111\_1111". The access to the register and instruction bits in it is prohibited unless the index is specified in the index register.

### **Display Control**

### Device Code Read (R00h)

| R/W | RS | IB15 | IB14 | IB13 | IB12 | IB11 | IB10 | IB9 | IB8 | IB7 | IB6 | IB5 | IB4 | IB3 | IB2 | IB1 | IB0 |
|-----|----|------|------|------|------|------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| R   | 1  | 1    | 0    | 1    | 1    | 0    | 1    | 0   | 1   | 0   | 0   | 0   | 0   | 0   | 1   | 0   | 1   |

The device code "B505"H is read out when reading out this register forcibly.

### **Driver Output Control (R01h)**

| R/W     | RS      | IB15 | IB14 | IB13 | IB12 | IB11 | IB10 | IB9 | IB8 | IB7 | IB6 | IB5 | IB4 | IB3 | IB2 | IB1 | IB0 |
|---------|---------|------|------|------|------|------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| W       | 1       | 0    | 0    | 0    | 0    | 0    | SM   | 0   | SS  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| Default | t value | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |

**SS:** Sets the shift direction of output from the source driver.

When SS = "0", the source driver output shifts from S1 to S720. When SS = "1", the source driver output shifts from S720 to S1.

The combination of SS and BGR settings determines the RGB assignment to the source driver pins S1  $\sim$  S720.

When SS = "0" and BGR = "0", color data is output in the order of R, G and then B. When SS = "1" and BGR = "1", color data is output in the order of B, G and then R.

When changing the SS and the BGR bit settings, RAM data must be rewritten.

SM: Controls the scan mode in combination with GS setting. See "Scan mode setting".

### LCD Driving Wave Control (R02h)

| R/W    | RS      | IB15 | IB14 | IB13 | IB12 | IB11 | IB10 | IB9 | IB8 | IB7 | IB6 | IB5 | IB4 | IB3 | IB2 | IB1 | IB0 |
|--------|---------|------|------|------|------|------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| W      | 1       | 0    | 0    | 0    | 0    | 0    | 0    | BC0 | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | NW0 |
| Defaul | t value | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |

**NW0:** When line inversion waveform is selected (BC0=1), NW0 bit sets number of line, N, as alternating cycle of line inversion. Line inversion is operated every N+1 line cycle. NW0 bit can be set to 1 or 2.

Table 18

| NW[0] | Alternating cycle |
|-------|-------------------|
| 0     | Every line        |
| 1     | Every 2 lines     |

**BC0:** Selects the liquid crystal drive waveform VCOM. See "Line Inversion AC Drive" for details.

BC0 = 0: frame inversion waveform is selected.

BC0 = 1: line inversion waveform is selected.

In either liquid crystal drive method; the polarity inversion is halted in blank period (back and front porch periods).

### Entry Mode (R03h)

| R/W    | RS      | IB15       | IB14 | IB13 | IB12 | IB11 | IB10 | IB9 | IB8 | IB7 | IB6 | IB5        | IB4        | IB3 | IB2 | IB1 | IB0 | _ |
|--------|---------|------------|------|------|------|------|------|-----|-----|-----|-----|------------|------------|-----|-----|-----|-----|---|
| W      | 1       | TRIR<br>EG | DFM  | 0    | BGR  | 0    | 0    | 0   | 0   | ORG | 0   | I/D<br>[1] | I/D<br>[0] | AM  | 0   | 0   | 0   |   |
| Defaul | t value | 0          | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 1          | 1          | 0   | 0   | 0   | 0   |   |

The entry mode register includes instruction bits for setting how to write data from the host processor to the GRAM in the R61505V.

**AM:** Sets either horizontal or vertical direction in updating the address counter automatically as the R61505V writes data to the internal GRAM.

AM = "0", sets the horizontal direction.

AM = "1", sets the vertical direction.

When making a window address area, the data is written only within the area in the direction determined by I/D1-0, AM bits.

**I/D[1:0]:** Either increments (+1) or decrements (-1) the address counter (AC) automatically as the data is written to the GRAM. The I/D[0] bit sets either increment or decrement in horizontal direction (updates the address AD[7:0]). The I/D[1] bit sets either increment or decrement in vertical direction (updates the address AD[8:16]). The AM bit sets either horizontal or vertical direction in updating RAM address counter automatically when writing data to the internal RAM.

**ORG:** Moves the origin address according to the I/D setting when a window address area is made. This function is enabled when writing data within the window address area using high-speed RAM write function. Also see Figure 4 and Figure 5.

ORG = 0: The origin address is not moved. In this case, specify the address to start write operation according to the GRAM address map within the window address area. ORG = 1: The origin address "h00000" is moved according to the I/D[1:0] setting.

Notes: 1. When ORG = 1, only the origin address "h00000" can be set.

2. In RAM read operation, make sure to set ORG = 0.

**BGR:** Reverses the order from RGB to BGR in writing 18-bit pixel data in the GRAM.

BGR = 0: Write data in the order of RGB to the GRAM.

BGR = 1: Reverse the order from RGB to BGR in writing data to the GRAM.

### BGR = 0

| D17 | D16 | D15 | D14 | D13 | D12 | D11 | D10 | D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
|-----|-----|-----|-----|-----|-----|-----|-----|----|----|----|----|----|----|----|----|----|----|
| R5  | R4  | R3  | R2  | R1  | R0  | G5  | G4  | G3 | G2 | G1 | G0 | В5 | В4 | В3 | B2 | В1 | В0 |

### BGR = 1

| D17 | D16 | D15 | D14 | D13 | D12 | D11 | D10 | D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
|-----|-----|-----|-----|-----|-----|-----|-----|----|----|----|----|----|----|----|----|----|----|
| В5  | В4  | В3  | B2  | B1  | В0  | G5  | G4  | G3 | G2 | G1 | G0 | R5 | R4 | R3 | R2 | R1 | R0 |

**DFM:** In combination with the TRIREG setting, sets the format to develop 16-/8-bit data to 18-bit data when using either 16-bit or 8-bit bus interface. Make sure to set DFM = 0 when not transferring data via 16-bit or 8-bit interface.

**TRIREG:** Selects the format to transfer data bits via 16-bit or 8-bit interface.

In 80-system 8-bit interface operation,

TRIREG = 0: 16-bit RAM data is transferred in two transfers.

TRIREG = 1: 18-bit RAM data is transferred in three transfers.

In 80-system 16-bit bus interface operation,

TRIREG = 0: 16-bit RAM data is transferred in one transfer.

TRIREG = 1: 18-bit RAM data is transferred in two transfers.

Make sure TRIREG = 0 when not transferring data via 16-bit or 8-bit interface. Also, set TRIREG = 0 during read operation.



Figure 4 Automatic address update (ORG = 0, AM, I/D)

Note: When writing data within the window address area with ORG = 0, any address within the window address area can be designated as the starting point of RAM write operation.



Figure 5 Automatic address update (ORG = 1, AM, I/D)

- Note 1: When ORG = 1, the starting point of writing data within the window address area can be set at either corner of the window address area ("S" in circle in the above figure).
- Note 2: When ORG = 1, make sure to set the address "h00000" in the RAM address set registers (R210h, R21h). Setting other addresses is inhibited.

### Display Control 1 (R07h)

| R/W    | RS      | IB15 | IB14 | IB13 | IB12 | IB11 | IB10 | IB9 | IB8       | IB7 | IB6 | IB5 | IB4 | IB3 | IB2 | IB1 | IB0 |
|--------|---------|------|------|------|------|------|------|-----|-----------|-----|-----|-----|-----|-----|-----|-----|-----|
| W      | 1       | 0    | 0    | 0    | PTDE | 0    | 0    | 0   | BASE<br>E | 0   | 0   | 0   | 0   | COL | 0   | 0   | 0   |
| Defaul | t value | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0         | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |

**COL:** When COL = 1, grayscale amplifiers other than V0 and V63 halt displaying images so that power consumption is reduced. Also, only 8 colors are available. See "8-color Display Mode" in "Instruction Setting Sequence" for details.

Table 19

| COL | Display color |
|-----|---------------|
| 0   | 262,144       |
| 1   | 8             |

Note: When COL = 1, do not write the data corresponding to the grayscales, for which the operation of amplifier is halted.

**BASEE:** Base image display enable bit.

BASEE = 0: No base image is displayed. The R61505V drives liquid crystal with non-lit display level or drives only partial image display area.

BASEE = 1: A base image is displayed on the panel.

**PTDE:** PTDE is the display enable bit of a partial image.

PTDE=0: Partial image is not displayed. Only base image is displayed.

PTDE=1: Partial image is displayed. Write BASEE=0 to turn off a base image.

Table 20

| BASEE | PTDE | VLE | COL | State                                                     |
|-------|------|-----|-----|-----------------------------------------------------------|
| 0     | 0    | *   | *   | Halt display operation                                    |
| 1     | 0    | 0   | 0   | 260k color display operation                              |
| 1     | 0    | 0   | 1   | 8-color display operation                                 |
| 1     | 0    | 1   | 0   | 260k color display operation with scroll function enabled |
| 0     | 1    | *   | 0   | 260k color partial display operation                      |
| 0     | 1    | *   | 1   | 8 color partial display operation                         |

### Display Control 2 (R08h)

| R/W    | RS       | IB15 | IB14 | IB13 | IB12 | IB11 | IB10 | IB9 | IB8 | IB7 | IB6 | IB5 | IB4 | IB3 | IB2 | IB1 | IB0 |
|--------|----------|------|------|------|------|------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| W      | 1        | FP   | FP   | FP   | FP   | FP   | FP   | FP  | FP  | BP  |
| W      | 1        | [7]  | [6]  | [5]  | [4]  | [3]  | [2]  | [1] | [0] | [7] | [6] | [5] | [4] | [3] | [2] | [1] | [0] |
| Defaul | lt value | 0    | 0    | 0    | 0    | 1    | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 1   | 0   | 0   | 0   |

FP [7:0]: Sets the number of lines for a front porch period (a blank period following the end of display).

**BP** [7:0]: Sets the number of lines for a back porch period (a blank period made before the beginning of display).

In external display interface operation, a back porch (BP) period starts on the falling edge of the VSYNC signal and the display operation starts after the back porch period. A blank period will start after a front porch (FP) period and it will continue until next VSYNC input is detected.

Table 21

| FP[7:0] | Frant wards wariad | Dook worsh world  |
|---------|--------------------|-------------------|
| BP[7:0] | Front porch period | Back porch period |
| 8'h00   | Setting inhibited  | Setting inhibited |
| 8'h01   | Setting inhibited  | Setting inhibited |
| 8'h02   | Setting inhibited  | 2 lines           |
| 8'h03   | 3 lines            | 3 lines           |
| 8'h04   | 4 lines            | 4 lines           |
| 8'h05   | 5 lines            | 5 lines           |
| 8'h06   | 6 lines            | 6 lines           |
| 8'h07   | 7 lines            | 7 lines           |
| 8'h08   | 8 lines            | 8 lines           |
| 8'h09   | 9 lines            | 9 lines           |
| 8'h0A   | 10 lines           | 10 lines          |
| 8'h0B   | 11 lines           | 11 lines          |
| 8'h0C   | 12 lines           | 12 lines          |
| 8'h0D   | 13 lines           | 13 lines          |
| 8'h0E   | 14 lines           | 14 lines          |
| 8'h0F   | 15 lines           | 15 lines          |
| :       | :                  | :                 |
| 8'h7F   | 127 lines          | 127 lines         |
| 8'h80   | 128 lines          | 128 lines         |
| 8'h81   | Setting inhibited  | Setting inhibited |
| :       | :                  | :                 |
| 8'hFF   | Setting inhibited  | Setting inhibited |



Figure 6 Front and Back Porch periods

Note to Setting BP and FP

Set the BP and FP bits as follows:

| $BP \ge 2$ lines $FP + BP \le 256$ lines | $BP \geq 2 \ lines$ | FP ≥ 3 lines | $FP + BP \le 256$ lines |  |
|------------------------------------------|---------------------|--------------|-------------------------|--|
|------------------------------------------|---------------------|--------------|-------------------------|--|

### **Display Control 3 (R09h)**

| R/W    | RS      | IB15 | IB14 | IB13 | IB12 | IB11 | IB10       | IB9        | IB8        | IB7 | IB6 | IB5 | IB4 | IB3        | IB2        | IB1        | IB0        |
|--------|---------|------|------|------|------|------|------------|------------|------------|-----|-----|-----|-----|------------|------------|------------|------------|
| W      | 1       | 0    | 0    | 0    | 0    | 0    | PTS<br>[2] | PTS<br>[1] | PTS<br>[0] | 0   | 0   | PTG | 0   | ISC<br>[3] | ISC<br>[2] | ISC<br>[1] | ISC<br>[0] |
| Defaul | t value | 0    | 0    | 0    | 0    | 0    | 0          | 0          | 0          | 0   | 0   | 0   | 0   | 0          | 0          | 0          | 1          |

**ISC** [3:0]: Set the scan cycle when PTG[1:0] selects interval scan in non-display area drive period. The scan cycle is defined by n frame periods, where n is an odd number from 3 to 31. The polarity of liquid crystal drive voltage from the gate driver is inverted in the same timing as the interval scan cycle.

Table 22

| ISC[3:0] | Scan cycle        |
|----------|-------------------|
| 4'h0     | Setting inhibited |
| 4'h1     | 3 frames          |
| 4'h2     | 5 frames          |
| 4'h3     | 7 frames          |
| 4'h4     | 9 frames          |
| 4'h5     | 11 frames         |
| 4'h6     | 13 frames         |
| 4'h7     | 15 frames         |
| 4'h8     | 17 frames         |
| 4'h9     | 19 frames         |
| 4'hA     | 21 frames         |
| 4'hB     | 23 frames         |
| 4'hC     | 25 frames         |
| 4'hD     | 27 frames         |
| 4'hE     | 29 frames         |
| 4'hF     | 31 frames         |
|          |                   |

PTG: Sets the scan mode in non-display area

Table 23

| PTG | Scan mode in non-display area |
|-----|-------------------------------|
| 0   | Normal scan                   |
| 1   | Interval scan                 |

Note: Select frame-inversion AC drive when interval scan is selected.

**PTS[2:0]:** Sets the source output level in non-display area drive period. When PTS[2] = 1, the operation of amplifiers which generates the grayscales other than V0 and V31 are halted and the step-up clock frequency becomes half the normal frequency in non-display drive period in order to reduce power consumption.

Table 24 Source output level and voltage generating operation in non-display drive period

|   | <b>DT0</b> 14.01 | Source outp         | ut level in non<br>ea | Grayscale amplifier                    | Step-up clock                    |  |  |
|---|------------------|---------------------|-----------------------|----------------------------------------|----------------------------------|--|--|
|   | PTS[1:0]         | Positive polarity   | Negative polarity     | operation in<br>non lit display<br>are | frequency in non lit display are |  |  |
| 0 | 00               | V63                 | V0                    | V0 to V63                              | Register setting                 |  |  |
| U | 00               | V03                 | VO                    | VO 10 VO3                              | (DC0, DC1)                       |  |  |
|   | 01               | (Setting inhibited) | (Setting inhibited)   | (Setting inhibited)                    | (Setting inhibited)              |  |  |
|   | 10               | GND                 | GND                   | V0 to V63                              | Register setting                 |  |  |
|   | 10               | GND                 | GND                   | VU 10 V03                              | (DC0, DC1)                       |  |  |
|   | 11               | Hi-z                | Hi-z                  | V0 to V63                              | Register setting                 |  |  |
|   | 11               | ПІ-Z                | ПІ-2                  | VU 10 V03                              | (DC0, DC1)                       |  |  |
| 1 | 00               | V63                 | V0                    | V0,V63                                 | DC0 setting x 1/2                |  |  |
|   | 01               | (Setting inhibited) | (Setting inhibited)   | (Setting inhibited)                    | (Setting inhibited)              |  |  |
|   | 10               | GND                 | GND                   | V0, V63                                | DC0 setting x 1/2                |  |  |
|   | 11               | Hi-z                | Hi-z                  | V0, V63                                | DC0 setting x 1/2                |  |  |

Note: Define source polarity in non lit display area by NDL bit. Note that if PTS[2]=1, step-up operation may not be executed successfully depending on DC0 and RTN\* values.

### Display Control 4 (R0Ah)

| R/W    | RS      | IB15 | IB14 | IB13 | IB12 | IB11 | IB10 | IB9 | IB8 | IB7 | IB6 | IB5 | IB4 | IB3         | IB2        | IB1        | IB0        |
|--------|---------|------|------|------|------|------|------|-----|-----|-----|-----|-----|-----|-------------|------------|------------|------------|
| W      | 1       | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0   | FMAR<br>KOE | FMI<br>[2] | FMI<br>[1] | FMI<br>[0] |
| Defaul | t value | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0           | 0          | 0          | 0          |

**FMI[2:0]:** Sets the output interval of FMARK signal according to the display data rewrite cycle and data transfer rate.

**FMARKOE:** When FMARKOE = 1, the R61505V starts outputting FMARK signal from the FMARK pin in the output interval set by FMI[2:0] bits. See <u>FMARK Interface</u>" for details.

Table 25

| FMI[2]   | FMI[1]  | FMI[0] | Output interval  |
|----------|---------|--------|------------------|
| 0        | 0       | 0      | 1 frame          |
| 0        | 0       | 1      | 2 frames         |
| 0        | 1       | 1      | 4 frames         |
| 1        | 0       | 1      | 6 frames         |
| Other se | ettings |        | Setting disabled |

### **External Display Interface Control 1 (R0Ch)**

| R/W     | RS      | IB15 | IB14       | IB13       | IB12       | IB11 | IB10 | IB9 | IB8 | IB7 | IB6 | IB5       | IB4       | IB3 | IB2 | IB1        | IB0        | _ |
|---------|---------|------|------------|------------|------------|------|------|-----|-----|-----|-----|-----------|-----------|-----|-----|------------|------------|---|
| W       | 1       | 0    | ENC<br>[2] | ENC<br>[1] | ENC<br>[0] | 0    | 0    | 0   | RM  | 0   | 0   | DM<br>[1] | DM<br>[0] | 0   | 0   | RIM<br>[1] | RIM<br>[0] |   |
| Default | t value | 0    | 0          | 0          | 0          | 0    | 0    | 0   | 0   | 0   | 0   | 0         | 0         | 0   | 0   | 0          | 0          |   |

**RIM[1:0]:** Sets the interface format when RGB interface is selected by RM and DM bits. Set RIM[1:0] bits before starting display operation via RGB interface. Do not change the setting while the R61505V performs display operation.

Table 26 RGB interface operation

| RIM[1] | RIM[0] | Bus width                               | Colors  | Used pins     |
|--------|--------|-----------------------------------------|---------|---------------|
| 0      | 0      | 18-bit RGB interface (1 transfer/pixel) | 262,144 | DB17-0        |
| 0      | 1      | 16-bit RGB interface (1 transfer/pixel) | 65,536  | DB17-13, 11-1 |
| 1      | 0      | Setting inhibited                       | -       | -             |
| 1      | 1      | Setting inhibited                       | -       | -             |

Note: Instruction bits are set only via system interface.

**DM[1:0]:** Selects the interface for the display operation. The DM[1:0] setting allows switching between internal clock operation mode and external display interface operation mode. However, switching between the RGB interface operation mode and the VSYNC interface operation mode is prohibited.

**Table 27 Display Interface** 

| DM[1:0] | Display Interface         |
|---------|---------------------------|
| 2'h0    | Internal clock operations |
| 2'h1    | RGB interface             |
| 2'h2    | VSYNC interface           |
| 2'h3    | Setting inhibited         |

**RM:** Selects the interface for RAM access operation. RAM access is possible only via the interface selected by the RM bit. Set RM = 1 when writing display data via RGB interface. When RM = 0, it is possible to write data via system interface while performing display operation via RGB interface.

**Table 28 RAM Access Interface** 

| RM | RAM Access Interface             |
|----|----------------------------------|
| 0  | System interface/VSYNC interface |
| 1  | RGB interface                    |

**ENC[2:0]:** Sets the RAM write cycle via RGB interface.

Table 25 RAM Write Cycle

| ENC[2:0] | RAM Write Cycle (frame periods) |
|----------|---------------------------------|
| 3'h0     | 1 frame                         |
| 3'h1     | 2 frames                        |
| 3'h2     | 3 frames                        |
| 3'h3     | 4 frames                        |
| 3'h4     | 5 frames                        |
| 3'h5     | 6 frames                        |
| 3'h6     | 7 frames                        |
| 3'h7     | 8 frames                        |

### Frame Marker Position (R0Dh)

| R/W    | RS      | IB15 | IB14 | IB13 | IB12 | IB11 | IB10 | IB9 | IB8        | IB7        | IB6        | IB5        | IB4        | IB3        | IB2        | IB1        | IB0        |
|--------|---------|------|------|------|------|------|------|-----|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| W      | 1       | 0    | 0    | 0    | 0    | 0    | 0    | 0   | FMP<br>[8] | FMP<br>[7] | FMP<br>[6] | FMP<br>[5] | FMP<br>[4] | FMP<br>[3] | FMP<br>[2] | FMP<br>[1] | FMP<br>[0] |
| Defaul | t value | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          |

**FMP[8:0]:** Sets the output position of frame cycle signal (frame marker). When FMP[8:0] = 9'h000, a high-active pulse FMARK is outputted at the start of back porch period for 1H period (IOVCC-GND amplitude signal). FMARK can be used as the trigger signal for frame synchronous write operation. See <u>FMARK Interface</u> for details.

Make sure the setting restriction  $9\text{'h}000 \le \text{FMP} \le \text{BP+NL+FP}$ .

Table 29

| FMP[8:0]   | FMARK output position  |
|------------|------------------------|
| 9"h000     | 0 <sup>th</sup> line   |
| 9'h001     | 1 <sup>st</sup> line   |
| 9"h002     | 2 <sup>nd</sup> line   |
| :          | :                      |
| 9"h14E     | 334 <sup>th</sup> line |
| 9'h14F     | 335 <sup>th</sup> line |
| 9"h150~1FF | Setting disabled       |
|            |                        |

### **VCOM Low Power Control (R0Eh)**

| R/W     | RS    | IB15 | IB14 | IB13 | IB12 | IB11 | IB10 | IB9 | IB8 | IB7 | IB6 | IB5        | IB4        | IB3 | IB2 | IB1 | IB0 |
|---------|-------|------|------|------|------|------|------|-----|-----|-----|-----|------------|------------|-----|-----|-----|-----|
| W       | 1     | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0   | 0   | VEM<br>[1] | VEM<br>[0] | 0   | 0   | 0   | 0   |
| Default | value | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0          | 0          | 0   | 0   | 0   | 0   |

**VEM** [1:0]: VCOM equalize function control bit.

When VEM [0]="1", VCOM falls to GND level when switching to VCOMH to VCOML (VCOMH  $\rightarrow$  GND  $\rightarrow$  VCOML).

When VEM [1] = "1", VCOM rises to VCI level when switching to VCOML to VCOMH (VCOML  $\rightarrow$  VCI  $\rightarrow$  VCOMH).

Make sure that VCI<VCOMH and GND>VCOML.

Table 30

| VEM[1:0] | Operation                                   |
|----------|---------------------------------------------|
| 2'h0     | Normal VCOM drive (No equalizing operation) |
| 2'h1     | Equalize VCOMH (VCOMH→VCOML)                |
| 2'h2     | Equalize VCOML (VCOML→VCOMH)                |
| 2'h3     | Equalize VCOMH/VCOML                        |

Note: Check the trade-off between the quality of display on the panel and the power efficiency before use.



Figure 7

Note: See R93h and R98h for VEQWI and VEQWE descriptions.

### External Display Interface Control 2 (R0Fh)

| R/W    | RS      | IB15 | IB14 | IB13 | IB12 | IB11 | IB10 | IB9 | IB8 | IB7 | IB6 | IB5 | IB4  | IB3  | IB2 | IB1 | IB0 |
|--------|---------|------|------|------|------|------|------|-----|-----|-----|-----|-----|------|------|-----|-----|-----|
| W      | 1       | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | VSPL | HSPL | 0   | EPL | DPL |
| Defaul | t value | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0    | 0    | 0   | 0   | 0   |

**DPL:** Sets the signal polarity of DOTCLK pin.

DPL = 0: input data on the rising edge of DOTCLK

DPL = 1: input data on the falling edge of DOTCLK

**EPL:** Sets the signal polarity of ENABLE pin.

EPL = 0: writes data DB17-0 when ENABLE = "0" and disables data write operation when ENABLE = "1".

EPL = 1: writes data DB17-0 when ENABLE = "1" and disables data write operation when ENABLE = "0".

**HSPL:** Sets the signal polarity of HSYNC pin.

HSPL = 0: low active HSPL = 1: high active

**VSPL:** Sets the signal polarity of VSYNC pin.

VSPL = 0: low active VSPL = 1: high active

### **Power Control**

### Power Control 1 (R10h)

| R/W    | RS      | IB15 | IB14 | IB13 | IB12 | IB11 | IB10      | IB9       | IB8       | IB7 | IB6 | IB5       | IB4       | IB3 | IB2  | IB1 | IB0 |
|--------|---------|------|------|------|------|------|-----------|-----------|-----------|-----|-----|-----------|-----------|-----|------|-----|-----|
| W      | 1       | 0    | 0    | 0    | 0    | 0    | BT<br>[2] | BT<br>[1] | BT<br>[0] | 0   | 0   | AP<br>[1] | AP<br>[0] | 0   | DSTB | 0   | 0   |
| Defaul | t value | 0    | 0    | 0    | 0    | 0    | 1         | 0         | 1         | 0   | 0   | 1         | 1         | 0   | 0    | 0   | 0   |

**DSTB:** When DSTB = 1, the R61505V enters the deep standby mode. In deep standby mode, the internal logic power supply is turned off to reduce power consumption. The GRAM data and instruction setting are not maintained when the R61505V enters the deep standby mode, and they must be reset after exiting deep standby mode.

**AP[1:0]:** Adjusts the constant current in the operational amplifier circuit in the LCD power supply circuit. The larger constant current enhances the drivability of the LCD, but it also increases the current consumption. Adjust the constant current taking the trade-off into account between the display quality and the current consumption. In no-display period, set AP[1:0] = 2'h0 to halt the operational amplifier circuits and the step-up circuits to reduce current consumption.

Table 31 Constant current in amplifier in LCD power supply

| AP[1:0] | LCD power supply circuits |  |  |  |  |  |  |  |
|---------|---------------------------|--|--|--|--|--|--|--|
| 2'h0    | Halt operation            |  |  |  |  |  |  |  |
| 2'h1    | 0.5                       |  |  |  |  |  |  |  |
| 2'h2    | 0.75                      |  |  |  |  |  |  |  |
| 2'h3    | 1                         |  |  |  |  |  |  |  |

Note: In this table, the constant current in operational amplifiers is the ratio to the constant current when AP[1:0] is set to 2'h3.

**BT[2:0]:** Sets the factor used in the step-up circuits. Select the optimal step-up factor for the operating voltage. To reduce power consumption, set a smaller factor.

Table 32 Step up factor and output voltage level

| BT[2:0]   | DDVDH      | VCL     | VGH               | VGL               |
|-----------|------------|---------|-------------------|-------------------|
| 3'h0      |            |         |                   |                   |
| 3'h1      | Setting in | hibited |                   |                   |
| 3'h2      |            |         |                   |                   |
| 3'h3      |            |         |                   | -(VCI1+DDVDH x 2) |
| 3113      |            |         |                   | [x -5]            |
| 3'h4      |            |         | DDVDH x 3         | -(DDVDH x 2)      |
| 3114      |            |         | [x 6]             | [x -4]            |
| 3'h5      | VCI1 x2    | -VCI1   |                   | -(VCI1+DDVDH)     |
| (Default) | [x 2]      | [x -1]  |                   | [x -3]            |
| 3'h6      |            |         | ) (OI4 - DD) (DII | -(VCI1+DDVDH x 2) |
| 3110      |            |         | VCI1+DDVDH<br>x 2 | [x -5]            |
| 3'h7      |            |         | [x 5]             | -(DDVDH x 2)      |
| 311/      |            |         | []                | [x -4]            |

Notes: 1. The step-up factor from VCI1 is shown in the brackets [].

2. Set the following voltages within the respective ranges:

DDVDH = 6.0V (max.)

VGH = 18.0V (max.)

VGL = -13.5V (max.)

VGH-VGL= 28.0V (max.)

VCL=-3.0V(max.)

### Power Control 2 (R11h)

| R/W    | RS      | IB15 | IB14 | IB13 | IB12 | IB11 | IB10       | IB9        | IB8        | IB7 | IB6        | IB5        | IB4        | IB3 | IB2       | IB1       | IB0       |
|--------|---------|------|------|------|------|------|------------|------------|------------|-----|------------|------------|------------|-----|-----------|-----------|-----------|
| W      | 1       | 0    | 0    | 0    | 0    | 0    | DC1<br>[2] | DC1<br>[1] | DC1<br>[0] | 0   | DC0<br>[2] | DC0<br>[1] | DC0<br>[0] | 0   | VC<br>[2] | VC<br>[1] | VC<br>[0] |
| Defaul | t value | 0    | 0    | 0    | 0    | 0    | 0          | 1          | 0          | 0   | 1          | 0          | 0          | 0   | 1         | 1         | 1         |

**DC1[2:0**]: Defines step-up clock frequency for the step-up circuit 2. The step-up clock is synchronized with internal clock.

Table 33

| DC1[2:0] | Step-up clock frequency for the step-up circuit 2 (f <sub>DCDC2</sub> ) |
|----------|-------------------------------------------------------------------------|
| 3'h0     | Setting inhibited                                                       |
| 3'h1     | Setting inhibited                                                       |
| 3'h2     | Line frequency / 4                                                      |
| 3'h3     | Line frequency / 8                                                      |
| 3'h4     | Line frequency / 16                                                     |
| 3'h5     | Setting inhibited                                                       |
| 3'h6     | Halt step-up circuit 2                                                  |
| 3'h7     | Setting inhibited                                                       |

### To calculate step-up clock frequency for the step-up circuit 2

Step-up clock frequency ( $f_{DCDC2}$ ) = line frequency /  $2^{(N)}$  [Hz]

= Clock frequency internal operation fosc / number of clock per line x division ratio x  $2^{(N)}$  [Hz]

fosc: Clock frequency internal operation

Number of clock per line: RTNI [4:0] or RTNE [4:0]

Division ratio: DIVI [1:0] or DIVE [1:0]

N: DC1[2:0] value

**DC0[2:0]**: Defines step-up clock frequency for the step-up circuit 1. The step-up clock is synchronized with internal clock.

Table 34

| DC0[2:0] | Step-up clock frequency for the step-up circuit 1 (f <sub>DCDC1</sub> ) |
|----------|-------------------------------------------------------------------------|
| 3'h0     | Setting inhibited                                                       |
| 3'h1     | Setting inhibited                                                       |
| 3'h2     | Setting inhibited                                                       |
| 3'h3     | fosc / 8                                                                |
| 3'h4     | f <sub>OSC</sub> / 16                                                   |
| 3'h5     | f <sub>OSC</sub> / 32                                                   |
| 3'h6     | Halt step-up circuit 1                                                  |
| 3'h7     | Setting inhibited                                                       |

Note 1: Make sure that  $f_{DCDC1} \ge f_{DCDC2}$ .

Note 2: Make sure to set DC0 and RTN\* bits so that

Step-up cycle of the Step-up circuit  $1 \le 1$  line cycle.

Otherwise the step-up operation may fail.

To calculate step-up clock frequency for the step-up circuit 1

Step-up clock frequency ( $f_{DCDC1}$ ) = Reference clock frequency /  $2^{N}$  [Hz]

= Clock frequency for internal operation fosc / division ratio x  $2^{N}$  [Hz]

fose: Clock frequency internal operation Division ratio: DIVI [1:0] or DIVE [1:0]

N: DC1[2:0] value

VC [2:0]: Defines VCI1 level.

Table 35

| VC[2:0] | VCI1 (Reference for step-up operation) |
|---------|----------------------------------------|
| 3'h0    | Setting inhibited                      |
| 3'h1    | 0.94 x VCILVL                          |
| 3'h2    | 0.89 x VCILVL                          |
| 3'h3    | Setting inhibited                      |
| 3'h4    | Setting inhibited                      |
| 3'h5    | 0.76 x VCIVLV                          |
| 3'h6    | Setting inhibited                      |
| 3'h7    | 1.00 x VCILVL                          |

### ■Examples of DC0 values and Step-up clock for DC DC converter 1

DCDC Converter 1 charges and boosts voltage level in synchronization with step-up clock generated in the timing generator circuit. Step-up clock frequency for DC DC Converter 1 is decided by DCO bit which determines division ratio for the reference clock. (In order to prevent flicker, the ste-up clock for DC DC Converter 1 synchronizes with display operation's reference points every line.) Note) Set DCO and RTNx so that (Step-up frequency for DC DC converter 1) ≧ (Line frequency).

for the restriction is not followed, duty ratio becomes less than 50% during the boosting operation causing the step-up circuit's malfunction.

# Example: DIVn=2'h1, RTN=5'h11 (Reference clock period=internal operation clock / 2, 1H period=17 clocks)



## ■Examples of DC1x values and Step-up clock for DC DC converter 2

DCDC Converter 2 charges and boosts voltage level in synchronization with step-up clock generated in the timing generator circuit. Step-up clock frequency for DC DC Converter 2 is decided by DC1x bit which determines division ratio for the reference clock. (In order to prevent flicker, the ste-up clock for DC DC converter 2 synchronizes with the start of BP every frame.)

## Example: BP=FP=8'h08, NL=7'h4F (Front porch=back porch=8 lines, liquid crystal drive line=320 lines)



### Power Control 3 (R12h)

|   | R/W    | RS      | IB15 | IB14 | IB13 | IB12       | IB11 | IB10 | IB9 | IB8      | IB7 | IB6 | IB5  | IB4 | IB3        | IB2        | IB1        | IB0        |
|---|--------|---------|------|------|------|------------|------|------|-----|----------|-----|-----|------|-----|------------|------------|------------|------------|
|   | W      | 1       | 0    | 0    | 0    | VRH<br>[0] | 0    | 0    | 0   | VCM<br>R | 1   | 0   | PSON | PON | VRH<br>[4] | VRH<br>[3] | VRH<br>[2] | VRH<br>[1] |
| Γ | Defaul | t value | 0    | 0    | 0    | 0          | 0    | 0    | 0   | 1        | 1   | 0   | 0    | 0   | 1          | 1          | 1          | 1          |

**VRH[4:0]:** Sets the factor to generate VREG1OUT

Table 36

| VRH[4:0]    | VREG1OUT          |
|-------------|-------------------|
| 5'h00       | Halt (Hi-z)       |
| 5'h01-5'h0F | Setting inhibited |
| 5'h10       | VCIR × 1.600      |
| 5'h11       | VCIR × 1.625      |
| 5'h12       | VCIR × 1.650      |
| 5'h13       | VCIR × 1.675      |
| 5'h14       | VCIR × 1.700      |
| 5'h15       | VCIR × 1.725      |
| 5'h16       | VCIR × 1.750      |
| 5'h17       | VCIR × 1.775      |
| 5'h18       | VCIR × 1.800      |
| 5'h19       | VCIR × 1.825      |
| 5'h1A       | VCIR × 1.850      |
| 5'h1B       | VCIR × 1.875      |
| 5'h1C       | VCIR × 1.900      |
| 5'h1D       | VCIR × 1.925      |
| 5'h1E       | VCIR × 1.950      |
| 5'h1F       | VCIR × 1.975      |

Note: Make sure that  $VREG1OUT \le (DDVDH-0.5)V$  in setting VC and VRH bits.

**PON, PSON:** Turns power supply on. Write PON and PSON to turn power supply on. Internal power supply operation starts. Follow the Power On sequences.

**Table 37 Power supply sequences (PSON, PON)** 

| PSON | PON | Operation                 |
|------|-----|---------------------------|
| 0    | 0   | Power supply OFF sequence |
| 0    | 1   | Power supply OFF sequence |
| 1    | 0   | Power supply OFF sequence |
| 1    | 1   | Power supply ON sequence  |

**VCMR**: Select VCOMH voltage level from external resistance (VCOMR), internal electronic volumes VCM1 and VCM2.

Table 38

| VCMR        | VCOMH level                |
|-------------|----------------------------|
| 0           | VCOMR                      |
| 1 (Default) | Internal electronic volume |

Note: Internal electronic volume is adjusted by VCM1 and VCM2 bits.

### Power Control 4 (R13h)

| R/W    | RS      | IB15 | IB14 | IB13 | IB12       | IB11       | IB10       | IB9        | IB8        | IB7 | IB6 | IB5 | IB4 | IB3 | IB2 | IB1 | IB0 |
|--------|---------|------|------|------|------------|------------|------------|------------|------------|-----|-----|-----|-----|-----|-----|-----|-----|
| W      | 1       | 0    | 0    | 0    | VDV<br>[4] | VDV<br>[3] | VDV<br>[2] | VDV<br>[1] | VDV<br>[0] | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| Defaul | t value | 0    | 0    | 0    | 0          | 0          | 0          | 0          | 0          | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |

**VDV[4:0]:** Set VCOM alternating amplitude in the range of VREG1OUTx0.70 to VREG1OUTx1.32.

**Table 39 VDV Setting** 

| Table 37 | DV Setting     |  |  |  |  |  |  |
|----------|----------------|--|--|--|--|--|--|
| VDV[4:0] | VCOM Amplitude |  |  |  |  |  |  |
| 5'h0     | VREG10UT×0.70  |  |  |  |  |  |  |
| 5'h1     | VREG10UT×0.72  |  |  |  |  |  |  |
| 5'h2     | VREG10UT×0.74  |  |  |  |  |  |  |
| 5'h3     | VREG10UT×0.76  |  |  |  |  |  |  |
| 5'h4     | VREG10UT×0.78  |  |  |  |  |  |  |
| 5'h5     | VREG10UT×0.80  |  |  |  |  |  |  |
| 5'h6     | VREG10UT×0.82  |  |  |  |  |  |  |
| 5'h7     | VREG10UT×0.84  |  |  |  |  |  |  |
| 5'h8     | VREG10UT×0.86  |  |  |  |  |  |  |
| 5'h9     | VREG10UT×0.88  |  |  |  |  |  |  |
| 5'hA     | VREG10UT×0.90  |  |  |  |  |  |  |
| 5'hB     | VREG10UT×0.92  |  |  |  |  |  |  |
| 5'hC     | VREG10UT×0.94  |  |  |  |  |  |  |
| 5'hD     | VREG10UT×0.96  |  |  |  |  |  |  |
| 5'hE     | VREG10UT×0.98  |  |  |  |  |  |  |
| 5'hF     | VREG10UT×1.00  |  |  |  |  |  |  |

| VDV[4:0] | VCOM Amplitude |
|----------|----------------|
| 5'h10    | VREG1OUT×1.02  |
| 5'h11    | VREG1OUT×1.04  |
| 5'h12    | VREG1OUT×1.06  |
| 5'h13    | VREG1OUT×1.08  |
| 5'h14    | VREG1OUT×1.10  |
| 5'h15    | VREG1OUT×1.12  |
| 5'h16    | VREG1OUT×1.14  |
| 5'h17    | VREG1OUT×1.16  |
| 5'h18    | VREG1OUT×1.18  |
| 5'h19    | VREG1OUT×1.20  |
| 5'h1A    | VREG10UT×1.22  |
| 5'h1B    | VREG1OUT×1.24  |
| 5'h1C    | VREG1OUT×1.26  |
| 5'h1D    | VREG1OUT×1.28  |
| 5'h1E    | VREG1OUT×1.30  |
| 5'h1F    | VREG1OUT×1.32  |

Note: Set VDV[4:0] so that VCOM amplitude becomes 6.0V or smaller.

### **RAM Access Control**

### RAM Address Set (Horizontal Address) (R20h) RAM Address Set (Vertical Address) (R21h)

|         | R/W           | RS | IB15 | IB14 | IB13 | IB12 | IB11 | IB10 | IB9 | IB8  | IB7  | IB6  | IB5  | IB4  | IB3  | IB2  | IB1 | IB0 |
|---------|---------------|----|------|------|------|------|------|------|-----|------|------|------|------|------|------|------|-----|-----|
| R       | W             | 1  | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0    | AD   | AD   | AD   | AD   | AD   | AD   | AD  | AD  |
| 20      | ,,            | 1  | Ü    | · ·  | · ·  | · ·  | O    | O    | O   | · ·  | [7]  | [6]  | [5]  | [4]  | [3]  | [2]  | [1] | [0] |
|         | Default value |    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   |
| R<br>21 | W             | 1  | 0    | 0    | 0    | 0    | 0    | 0    | 0   | AD   | AD  | AD  |
|         |               |    |      |      |      |      |      |      |     | [16] | [15] | [14] | [13] | [12] | [11] | [10] | [9] | [8] |
|         | Default value |    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   |

**AD[16:0]:** A GRAM address set initially in the AC (Address Counter). The address in the AC is automatically updated according to the combination of AM, I/D[1:0] settings as the R61505V writes data to the internal GRAM so that data can be written consecutively without resetting the address in the AC. The address is not automatically updated when reading data from the internal GRAM.

Note 1: In RGB interface operation (RM = "1"), the address AD16-0 is set in the address counter every frame on the falling edge of VSYNC.

Note 2: In internal clock operation and VSYNC interface operation (RM = "0"), the address AD16-0 is set when executing the instruction.

Table 40 GRAM Address setting range

| AD[16:0]              | GRAM Data Setting                         |
|-----------------------|-------------------------------------------|
| 17'h00000 – 17'h000EF | Bitmap data on the 1 <sup>st</sup> line   |
| 17'h00100 - 17'h001EF | Bitmap data on the 2 <sup>nd</sup> line   |
| 17'h00200 – 17'h002EF | Bitmap data on the 3 <sup>rd</sup> line   |
| 17'h00300 - 17'h003EF | Bitmap data on the 4 <sup>th</sup> line   |
| 17'h00400 – 17'h004EF | Bitmap data on the 5 <sup>th</sup> line   |
| :                     | · ·                                       |
| 17'h13C00 – 17'h13CEF | Bitmap data on the 317 <sup>th</sup> line |
| 17'h13D00 – 17'h13DEF | Bitmap data on the 318 <sup>th</sup> line |
| 17'h13E00 – 17'h13EEF | Bitmap data on the 319 <sup>th</sup> line |
| 17'h13F00 – 17'h13FEF | Bitmap data on the 320 <sup>th</sup> line |

### **GRAM Data Write (R22h)**

| R/W                  | RS |                                                                                                  |
|----------------------|----|--------------------------------------------------------------------------------------------------|
| W                    | 1  | RAM write data WD[17:0] is transferred via different data bus in different interface operations. |
| RGB i/f<br>operation |    | RAM write data WD[17:0] is transferred via different data bus in different interface operations. |

**WD[17:0]:** The R61505V develops data into 18 bits internally in write operation. The format to develop data into 18 bits is different in different interface operation.

The GRAM data represents the grayscale level. The R61505V automatically updates the address according to AM and I/D[1:0] settings as it writes data in the GRAM. The DFM bit sets the format to develop 16-bit data into the 18-bit data in 16-bit or 8-bit interface operation.

Note: When writing data in the GRAM via system interface while using the RGB interface, make sure that write operations via two interfaces do not conflict one another.

### **GRAM Data Read (R22h)**

| R/W | RS |                                                                                                 |
|-----|----|-------------------------------------------------------------------------------------------------|
| R   | 1  | RAM read data RD[17:0] is transferred via different data bus in different interface operations. |

**RD**[17:0]: 18-bit data read from the GRAM. RAM read data RD[17:0] is transferred via different data bus in different interface operation.

When the R61505V reads data from the GRAM to the host processor, the first word read immediately after RAM address set is not outputted, so that it is invalid. Valid data is sent to the data bus when the R61505V reads out the second and subsequent words.

When either 8-bit or 16-bit interface is selected, the LSBs of R and B dot data are not read out.

Note: This register is disabled in RGB interface operation.



Figure 8 GRAM Read Sequence

#### **NVM(NON-VOLATILE MEMORY) Write Control**

#### NVM Data Read 1 (R28), NVM Data Read 2 (R29h), NVM Data Read 3 (R2Ah)

|     | R/W    | RS   | IB15 | IB14 | IB13 | IB12 | IB11 | IB10 | IB9 | IB8 | IB7            | IB6             | IB5             | IB4             | IB3             | IB2             | IB1             | IB0             |
|-----|--------|------|------|------|------|------|------|------|-----|-----|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| R28 | R/W    | 1    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0              | 0               | 0               | 0               | UID             | UID             | UID             | UID             |
| K20 | IX/ VV | 1    | U    | U    | U    | U    | U    | U    | U   | U   | U              | U               | U               | U               | [3]             | [2]             | [1]             | [0]             |
|     | Def    | ault | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0              | 0               | 0               | 0               | 1               | 1               | 1               | 1               |
| R29 | R/W    | 1    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0              | VC<br>M1<br>[6] | VC<br>M1<br>[5] | VC<br>M1<br>[4] | VC<br>M1<br>[3] | VC<br>M1<br>[2] | VC<br>M1<br>[1] | VC<br>M1<br>[0] |
|     | Def    | ault | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 1              | 1               | 1               | 1               | 1               | 1               | 1               | 1               |
| R2A | R/W    | 1    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | VC<br>MSE<br>L | VC<br>M2<br>[6] | VC<br>M2<br>[5] | VC<br>M2<br>[4] | VC<br>M2<br>[3] | VC<br>M2<br>[2] | VC<br>M2<br>[1] | VC<br>M2<br>[0] |
|     | Def    | ault | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 1              | 1               | 1               | 1               | 1               | 1               | 1               | 1               |

**UID[3:0]:** The data bits UID[3:0] are written to the designated address in NVM and the written data can be read out from NVM by instruction setting (CALB) to this register. UID[3:0] can be used to write and read user identification code in NVM.

The setting value in UID[3:0] bits is enabled when not reading out the setting value from NVM via CALB setting.

**VCM1[6:0]:** Selects the factor of VREG1OUT to generate VCOMH. When enabling the setting valued in VCM1[6:0], make sure to set VCMSEL = 1.

When using the data written in NVM for setting the VCOMH level, the data bits VCM1[6:0] are written to the designated address in NVM and the written data can be read out from NVM by instruction setting (CALB) to this register. When the data bits VCM2[6:0] are written in NVM before writing the data bits VCM1[6:0] to NVM, the VCM1[6:0] setting value written in NVM cannot be used for setting the VCOMH level.

**VCM2[6:0]:** Selects the factor of VREG1OUT to generate VCOMH. When enabling the setting valued in VCM2[6:0], make sure to set VCMSEL = 0. The function of VCM2[6:0] instruction is the same as that of VCM1[6:0].

Write the setting value in VCM2[6:0] bits and VCMSEL = 0 in the designated addresses of NVM, when reading out the setting value written in NVM for VCOMH level setting and the data is already written in the designated address of VCM1[6:0] in the NVM. The VCM2[6:0] data bits written in NVM can be read out via CALB setting for setting the VCOMH level.

Note: When R2A register is read after setting CALB=1 (RA4h), data in IB6-5, R2Ah, is not always 0 and different data may be read out from different die.

**VCMSEL:** When VCMSEL = 1, VCM1 is selected. When VCMSEL = 0, VCM2 is selected.

Table 41

| VCM1[6:0]<br>VCM2[6:0] | VCO      | ИΗ |       | VCM1[6:0]<br>VCM2[6:0] | VCO      | ЛΗ |       | VCM1[6:0]<br>VCM2[6:0] |          |   |       |  |  |
|------------------------|----------|----|-------|------------------------|----------|----|-------|------------------------|----------|---|-------|--|--|
| 7'h 00                 | VREG10UT | Χ  | 0.492 | 7'h2B                  | VREG10UT | Χ  | 0.664 | 7'h56                  | VREG10UT | Χ | 0.836 |  |  |
| 7'h 01                 | VREG10UT | Χ  | 0.496 | 7'h2C                  | VREG10UT | Χ  | 0.668 | 7'h57                  | VREG10UT | Χ | 0.840 |  |  |
| 7'h 02                 | VREG10UT | Χ  | 0.500 | 7'h2D                  | VREG10UT | Χ  | 0.672 | 7'h58                  | VREG10UT | Χ | 0.844 |  |  |
| 7'h03                  | VREG10UT | Χ  | 0.504 | 7'h2E                  | VREG10UT | Χ  | 0.676 | 7'h59                  | VREG10UT | Χ | 0.848 |  |  |
| 7'h04                  | VREG10UT | Χ  | 0.508 | 7'h2F                  | VREG10UT | Χ  | 0.680 | 7'h5A                  | VREG10UT | Χ | 0.852 |  |  |
| 7'h05                  | VREG10UT | Χ  | 0.512 | 7'h30                  | VREG10UT | Χ  | 0.684 | 7'h5B                  | VREG10UT | Χ | 0.856 |  |  |
| 7'h06                  | VREG10UT | Χ  | 0.516 | 7'h31                  | VREG10UT | Χ  | 0.688 | 7'h5C                  | VREG10UT | Χ | 0.860 |  |  |
| 7'h07                  | VREG10UT | Χ  | 0.520 | 7'h32                  | VREG10UT | Χ  | 0.692 | 7'h5D                  | VREG10UT | Χ | 0.864 |  |  |
| 7'h08                  | VREG10UT | Х  | 0.524 | 7'h33                  | VREG10UT | Х  | 0.696 | 7'h5E                  | VREG10UT | Χ | 0.868 |  |  |
| 7'h09                  | VREG10UT | Х  | 0.528 | 7'h34                  | VREG10UT | Х  | 0.700 | 7'h5F                  | VREG10UT | Χ | 0.872 |  |  |
| 7'h0A                  | VREG10UT | Х  | 0.532 | 7'h35                  | VREG10UT | Х  | 0.704 | 7'h60                  | VREG10UT | Χ | 0.876 |  |  |
| 7'h0B                  | VREG10UT | Χ  | 0.536 | 7'h36                  | VREG10UT | Χ  | 0.708 | 7'h61                  | VREG10UT | Χ | 0.880 |  |  |
| 7'h0C                  | VREG10UT | Χ  | 0.540 | 7'h37                  | VREG10UT | Χ  | 0.712 | 7'h62                  | VREG10UT | Χ | 0.884 |  |  |
| 7'h0D                  | VREG10UT | Х  | 0.544 | 7'h38                  | VREG10UT | Х  | 0.716 | 7'h63                  | VREG10UT | Χ | 0.888 |  |  |
| 7'h0E                  | VREG10UT | Χ  | 0.548 | 7'h39                  | VREG10UT | Χ  | 0.720 | 7'h64                  | VREG10UT | Χ | 0.892 |  |  |
| 7'h0F                  | VREG10UT | Χ  | 0.552 | 7'h3A                  | VREG10UT | Χ  | 0.724 | 7'h65                  | VREG10UT | Χ | 0.896 |  |  |
| 7'h10                  | VREG10UT | Χ  | 0.556 | 7'h3B                  | VREG10UT | Χ  | 0.728 | 7'h66                  | VREG10UT | Χ | 0.900 |  |  |
| 7'h11                  | VREG10UT | Χ  | 0.560 | 7'h3C                  | VREG10UT | Χ  | 0.732 | 7'h67                  | VREG10UT | Χ | 0.904 |  |  |
| 7'h12                  | VREG10UT | Χ  | 0.564 | 7'h3D                  | VREG10UT | Χ  | 0.736 | 7'h68                  | VREG10UT | Χ | 0.908 |  |  |
| 7'h13                  | VREG10UT | Х  | 0.568 | 7'h3E                  | VREG10UT | Х  | 0.740 | 7'h69                  | VREG10UT | Χ | 0.912 |  |  |
| 7'h14                  | VREG10UT | Χ  | 0.572 | 7'h3F                  | VREG10UT | Χ  | 0.744 | 7'h6A                  | VREG10UT | Χ | 0.916 |  |  |
| 7'h15                  | VREG10UT | Χ  | 0.576 | 7'h40                  | VREG10UT | Χ  | 0.748 | 7'h6B                  | VREG10UT | Χ | 0.920 |  |  |
| 7'h16                  | VREG10UT | Χ  | 0.580 | 7'h41                  | VREG10UT | Χ  | 0.752 | 7'h6C                  | VREG10UT | Χ | 0.924 |  |  |
| 7'h17                  | VREG10UT | Χ  | 0.584 | 7'h42                  | VREG10UT | Χ  | 0.756 | 7'h6D                  | VREG10UT | Χ | 0.928 |  |  |
| 7'h18                  | VREG10UT | Χ  | 0.588 | 7'h43                  | VREG10UT | Χ  | 0.760 | 7'h6E                  | VREG10UT | Χ | 0.932 |  |  |
| 7'h19                  | VREG10UT | Χ  | 0.592 | 7'h44                  | VREG10UT | Χ  | 0.764 | 7'h6F                  | VREG10UT | Χ | 0.936 |  |  |
| 7'h1A                  | VREG10UT | Χ  | 0.596 | 7'h45                  | VREG10UT | Χ  | 0.768 | 7'h70                  | VREG10UT | Χ | 0.940 |  |  |
| 7'h1B                  | VREG10UT | Χ  | 0.600 | 7'h46                  | VREG10UT | Χ  | 0.772 | 7'h71                  | VREG10UT | Χ | 0.944 |  |  |
| 7'h1C                  | VREG10UT | Χ  | 0.604 | 7'h47                  | VREG10UT | Χ  | 0.776 | 7'h72                  | VREG10UT | Χ | 0.948 |  |  |
| 7'h1D                  | VREG10UT | Χ  | 0.608 | 7'h48                  | VREG10UT | Χ  | 0.780 | 7'h73                  | VREG10UT | Χ | 0.952 |  |  |
| 7'h1E                  | VREG10UT | Χ  | 0.612 | 7'h49                  | VREG10UT | Χ  | 0.784 | 7'h74                  | VREG10UT | Χ | 0.956 |  |  |
| 7'h1F                  | VREG10UT | Χ  | 0.616 | 7'h4A                  | VREG10UT | Χ  | 0.788 | 7'h75                  | VREG10UT | Χ | 0.960 |  |  |
| 7'h20                  | VREG10UT | Χ  | 0.620 | 7'h4B                  | VREG10UT | Χ  | 0.792 | 7'h76                  | VREG10UT | Χ | 0.964 |  |  |
| 7'h21                  | VREG10UT | Χ  | 0.624 | 7'h4C                  | VREG10UT | Χ  | 0.796 | 7'h77                  | VREG10UT | Χ | 0.968 |  |  |
| 7'h22                  | VREG10UT | Χ  | 0.628 | 7'h4D                  | VREG10UT | Χ  | 0.800 | 7'h78                  | VREG10UT | Χ | 0.972 |  |  |
| 7'h23                  | VREG10UT | Χ  | 0.632 | 7'h4E                  | VREG10UT | Χ  | 0.804 | 7'h79                  | VREG10UT | Χ | 0.976 |  |  |
| 7'h24                  | VREG10UT | Χ  | 0.636 | 7'h4F                  | VREG10UT | Χ  | 0.808 | 7'h7A                  | VREG10UT | Χ | 0.980 |  |  |
| 7'h25                  | VREG10UT | Χ  | 0.640 | 7'h50                  | VREG10UT | Χ  | 0.812 | 7'h7B                  | VREG10UT | Χ | 0.984 |  |  |
| 7'h26                  | VREG10UT | Χ  | 0.644 | 7'h51                  | VREG10UT | Χ  | 0.816 | 7'h7C                  | VREG10UT | Χ | 0.988 |  |  |
| 7'h27                  | VREG10UT | Χ  | 0.648 | 7'h52                  | VREG10UT | Χ  | 0.820 | 7'h7D                  | VREG10UT | Χ | 0.992 |  |  |
| 7'h28                  | VREG10UT | Χ  | 0.652 | 7'h53                  | VREG10UT | Χ  | 0.824 | 7'h7E                  | VREG10UT | Χ | 0.996 |  |  |
| 7'h29                  | VREG10UT | Χ  | 0.656 | 7'h54                  | VREG10UT | Χ  | 0.828 | 7'h7F                  | VREG10UT | Χ | 1.000 |  |  |
| 7'h2A                  | VREG10UT | Χ  | 0.660 | 7'h55                  | VREG10UT | Χ  | 0.832 |                        |          |   |       |  |  |

# γ Control

# γ Control 1 ~ 10 (R30h ~ R39h)

|         |       |      |      |      |      |            |      |            |            |            |     | IB |     |            |            |            |            |            |
|---------|-------|------|------|------|------|------------|------|------------|------------|------------|-----|----|-----|------------|------------|------------|------------|------------|
|         | R/W   | RS   | IB15 | IB14 | IB13 | IB12       | IB11 | IB10       | IB9        | IB8        | IB7 | 6  | IB5 | IB4        | IB3        | IB2        | IB1        | IB0        |
| R       | ***   |      |      |      |      | PR0        | PR0  | PR0        | PR0        | PR0        |     |    |     | PR0        | PR0        | PR0        | PR0        | PR0        |
| 30      | W     | 1    | 0    | 0    | 0    | P01<br>[4] | P01  | P01<br>[2] | P01<br>[1] | P01<br>[0] | 0   | 0  | 0   | P00<br>[4] | P00<br>[3] | P00<br>[2] | P00<br>[1] | P00<br>[0] |
|         | Def   | ault | 0    | 0    | 0    | 0          | 0    | 0          | 0          | 0          | 0   | 0  | 0   | 0          | 0          | 0          | 0          | 0          |
| _       |       |      | PR0  | PR0  | PR0  | PR0        | PR0  | PR0        | PR0        | PR0        |     | -  |     | PR0        | PR0        | PR0        | PR0        | PR0        |
| R<br>31 | W     | 1    | P04  | P04  | P04  | P04        | P03  | P03        | P03        | P03        | 0   | 0  | 0   | P02        | P02        | P02        | P02        | P02        |
| 31      |       |      | [3]  | [2]  | [1]  | [0]        | [3]  | [2]        | [1]        | [0]        |     |    |     | [4]        | [3]        | [2]        | [1]        | [0]        |
|         | Def   | ault | 0    | 0    | 0    | 0          | 0    | 0          | 0          | 0          | 0   | 0  | 0   | 0          | 0          | 0          | 0          | 0          |
| R       |       |      |      |      |      | PR0        | PR0  | PR0        | PR0        | PR0        |     |    |     |            | PR0P       | PR0P       | PR0        | PR0        |
| 32      | W     | 1    | 0    | 0    | 0    | P06        | P06  | P06        | P06        | P06        | 0   | 0  | 0   | 0          | 05         | 05         | P05        | P05        |
|         |       |      |      |      |      | [4]        | [3]  | [2]        | [1]        | [0]        |     |    |     |            | [3]        | [2]        | [1]        | [0]        |
|         | Def   | ault | 0    | 0    | 0    | 0          | 0    | 0          | 0          | 0          | 0   | 0  | 0   | 0          | 0          | 0          | 0          | 0          |
| R       | ***   | 1    | _    | _    | 0    | PR0        | PR0  | PR0        | PR0        | PR0        | 0   | _  | 0   | PR0        | PR0        | PR0        | PR0        | PR0        |
| 33      | W     | 1    | 0    | 0    | 0    | P08<br>[4] | P08  | P08        | P08<br>[1] | P08<br>[0] | 0   | 0  | 0   | P07<br>[4] | P07<br>[3] | P07<br>[2] | P07<br>[1] | P07<br>[0] |
|         | Def   | oult | 0    | 0    | 0    | 0          | 0    | 0          | 0          | 0          | 0   | 0  | 0   | 0          | 0          | 0          | 0          | 0          |
|         | Del   | aun  | U    | U    | PIO  | PIO        | U    | U          | PIO        | PIO        | U   | U  | PIO | PIO        | U          | U          | PIO        | PIO        |
| R       | W     | 1    | 0    | 0    | P3   | P3         | 0    | 0          | P2         | P2         | 0   | 0  | P1  | P1         | 0          | 0          | P0         | P0         |
| 34      | ''    | •    |      |      | [1]  | [0]        | Ů    | Ů          | [1]        | [0]        | Ů   |    | [1] | [0]        |            | Ů          | [1]        | [0]        |
|         | Def   | ault | 0    | 0    | 0    | 0          | 0    | 0          | 0          | 0          | 0   | 0  | 0   | 0          | 0          | 0          | 0          | 0          |
|         |       |      |      |      |      | PR0        | PR0  | PR0        | PR0        | PR0        |     |    |     | PR0        | PR0        | PR0        | PR0        | PR0        |
| R<br>35 | W     | 1    | 0    | 0    | 0    | N01        | N01  | N01        | N01        | N01        | 0   | 0  | 0   | N00        | N00        | N00        | N00        | N00        |
| 33      |       |      |      |      |      | [4]        | [3]  | [2]        | [1]        | [0]        |     |    |     | [4]        | [3]        | [2]        | [1]        | [0]        |
|         | Def   | ault | 0    | 0    | 0    | 0          | 0    | 0          | 0          | 0          | 0   | 0  | 0   | 0          | 0          | 0          | 0          | 0          |
| R       |       |      | PR0  | PR0  | PR0  | PR0        | PR0  | PR0        | PR0        | PR0        |     |    |     | PR0        | PR0        | PR0        | PR0        | PR0        |
| 36      | W     | 1    | N04  | N04  | N04  | N04        | N03  | N03        | N03        | N03        | 0   | 0  | 0   | N02        | N02        | N02        | N02        | N02        |
| 50      |       |      | [3]  | [2]  | [1]  | [0]        | [3]  | [2]        | [1]        | [0]        |     |    |     | [4]        | [3]        | [2]        | [1]        | [0]        |
|         | Def   | ault | 0    | 0    | 0    | 0          | 0    | 0          | 0          | 0          | 0   | 0  | 0   | 0          | 0          | 0          | 0          | 0          |
| R       |       |      |      |      |      | PR0        | PR0  | PR0        | PR0        | PR0        |     |    | _   |            | PR0        | PR0        | PR0        | PR0        |
| 37      | W     | 1    | 0    | 0    | 0    | N06        | N06  | N06        | N06        | N06        | 0   | 0  | 0   | 0          | N05        | N05        | N05        | N05        |
|         | - D ( | 1.   |      | 0    |      | [4]        | [3]  | [2]        | [1]        | [0]        | 0   | _  | 0   | _          | [3]        | [2]        | [1]        | [0]        |
|         | Def   | ault | 0    | 0    | 0    | 0          | 0    | 0          | 0          | 0          | 0   | 0  | 0   | 0          | 0          | 0          | 0          | 0          |
| R       | W     | 1    | _    | 0    | 0    | PR0        | PR0  | PR0        | PR0<br>N08 | PR0        | 0   | 0  | 0   | PR0        | PR0        | PR0        | PR0<br>N07 | PR0        |
| 38      | W     | 1    | 0    | 0    | 0    | N08<br>[4] | N08  | N08<br>[2] | [1]        | N08<br>[0] | 0   | 0  | 0   | N07<br>[4] | N07<br>[3] | N07<br>[2] | [1]        | N07<br>[0] |
|         | Def   | oult | 0    | 0    | 0    | 0          | 0    | 0          | 0          | 0          | 0   | 0  | 0   | 0          | 0          | 0          | 0          | 0          |
|         | Del   | aun  | U    | U    | PIO  | PIO        | U    | U          | PIO        | PIO        | U   | U  | PIO | PIO        | U          | U          | PIO        | PIO        |
| R       | W     | 1    | 0    | 0    | N3   | N3         | 0    | 0          | N2         | N2         | 0   | 0  | N1  | N1         | 0          | 0          | N0         | N0         |
| 39      | ''    |      |      |      | [1]  | [0]        |      |            | [1]        | [0]        |     |    | [1] | [0]        |            |            | [1]        | [0]        |
|         | Def   | ault | 0    | 0    | 0    | 0          | 0    | 0          | 0          | 0          | 0   | 0  | 0   | 0          | 0          | 0          | 0          | 0          |
|         |       |      | -    | •    |      |            |      |            |            |            |     |    |     |            | •          |            |            |            |

| PR0P00[4:0] | R0 reference level adjustment register for positive polarity |
|-------------|--------------------------------------------------------------|
| PR0N00[4:0] | R0 reference level adjustment register for negative polarity |
| PR0P01[4:0] | R1 reference level adjustment register for positive polarity |
| PR0N01[4:0] | R1 reference level adjustment register for negative polarity |
| PR0P02[4:0] | R2 reference level adjustment register for positive polarity |
| PR0N02[4:0] | R2 reference level adjustment register for negative polarity |
| PR0P03[3:0] | R3 reference level adjustment register for positive polarity |

| PR0N03[3:0]  | R3 reference level adjustment register for negative polarity      |
|--------------|-------------------------------------------------------------------|
| PR0P04[3:0]  | R4 reference level adjustment register for positive polarity      |
| PR0N04[3:0]  | R4 reference level adjustment register for negative polarity      |
| PR0P05[3:0]  | R5 reference level adjustment register for positive polarity      |
| PR0N05[3:0]  | R5 reference level adjustment register for negative polarity      |
| PR0P06[4:0]  | R6 reference level adjustment register for positive polarity      |
| PR0N06[4:0]  | R6 reference level adjustment register for negative polarity      |
| PR0P07[4:0]  | R7 reference level adjustment register for positive polarity      |
| PR0N07[4:0]  | R7 reference level adjustment register for negative polarity      |
| PR0P08[4:0]  | R8 reference level adjustment register for positive polarity      |
| PR0N08[4:0]  | R8 reference level adjustment register for negative polarity      |
| PI0P0~1[1:0] | Interpolation adjustment register for positive polarity (V2~V7)   |
| PI0N0~1[1:0] | Interpolation adjustment register for negative polarity (V2~V7)   |
| PI0P2~3[1:0] | Interpolation adjustment register for positive polarity (V56~61)  |
| PI0N2~3[1:0] | Interpolation adjustment register for negative polarity (V56~V61) |

#### **Window Address Control**

Window Horizontal RAM Address (Start Address) (R50h)

Window Horizontal RAM Address (End Address) (R51h)

Window Vertical RAM Address (Start Address) (R52h)

Window Vertical RAM Address (End Address) (R53h)

|    | R/W | RS   | IB15 | IB14 | IB13 | IB12 | IB11 | IB10 | IB9 | IB8 | IB7 | IB6 | IB5 | IB4 | IB3 | IB2 | IB1 | IB0 |
|----|-----|------|------|------|------|------|------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| R  | W   | 1    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | HSA |
| 50 | **  | 1    | 0    | 0    | 0    | 0    | 0    | Ü    | Ů   | 0   | [7] | [6] | [5] | [4] | [3] | [2] | [1] | [0] |
|    | Def | ault | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| R  | W   | 1    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | HEA |
| 51 | **  | 1    | V    | O    | O    | O    | Ü    | Ü    | Ü   |     | [7] | [6] | [5] | [4] | [3] | [2] | [1] | [0] |
|    | Def | ault | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 1   | 1   | 1   | 0   | 1   | 1   | 1   | 1   |
| R  | W   | 1    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | VSA |
| 52 | **  | 1    | V    | O    | O    | O    | Ü    | Ü    | Ü   | [8] | [7] | [6] | [5] | [4] | [3] | [2] | [1] | [0] |
|    | Def | ault | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| R  | W   | 1    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | VEA |
| 53 | VV  | 1    | U    | U    | U    | U    | U    | U    | U   | [8] | [7] | [6] | [5] | [4] | [3] | [2] | [1] | [0] |
|    | Def | ault | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 1   | 0   | 0   | 1   | 1   | 1   | 1   | 1   | 1   |

**HSA[7:0], HEA[7:0]:** HSA[7:0] and HEA[7:0] are the start and end addresses of the window address area in horizontal direction, respectively. HSA[7:0] and HEA[7:0] specify the horizontal range to write data. Set HSA[7:0] and HEA[7:0] before starting RAM write operation.

In setting, make sure that  $8\text{'h}00 \le \text{HSA} < \text{HEA} \le 8\text{'h}\text{EF}$  and  $8\text{'h}04 \le \text{HEA} - \text{HSA}$ .

**VSA[8:0], VEA[8:0]:** VSA[8:0] and VEA[8:0] are the start and end addresses of the window address area in vertical direction, respectively. VSA[8:0] and VEA[8:0] specify the vertical range to write data. Set VSA[8:0] and VEA[8:0] before starting RAM write operation.

In setting, make sure that  $9'h000 \le VSA \le VEA \le 9'h13F$ .



Figure 9 GRAM Address Map and Window Address Area

## **Base Image Display Control**

Driver Output Control (R60h),

**Base Image Display Control (R61h)** 

Vertical Scroll Control (R6Ah)

|         | R/W | RS   | IB15 | IB14 | IB13      | IB12      | IB11      | IB10      | IB9       | IB8       | IB7 | IB6 | IB5        | IB4        | IB3        | IB2        | IB1        | IB0        |
|---------|-----|------|------|------|-----------|-----------|-----------|-----------|-----------|-----------|-----|-----|------------|------------|------------|------------|------------|------------|
| R60     | W   | 1    | GS   | 0    | NL<br>[5] | NL<br>[4] | NL<br>[3] | NL<br>[2] | NL<br>[1] | NL<br>[0] | 0   | 0   | SCN<br>[5] | SCN<br>[4] | SCN<br>[3] | SCN<br>[2] | SCN<br>[1] | SCN<br>[0] |
|         | Def | ault | 0    | 0    | 1         | 0         | 1         | 1         | 1         | 1         | 0   | 0   | 0          | 0          | 0          | 0          | 0          | 0          |
| R<br>61 | W   | 1    | 0    | 0    | 0         | 0         | 0         | 0         | 0         | 0         | 0   | 0   | 0          | 0          | 0          | NDL        | VLE        | REV        |
|         | Def | ault | 0    | 0    | 0         | 0         | 0         | 0         | 0         | 0         | 0   | 0   | 0          | 0          | 0          | 0          | 0          | 0          |
| R       | W   | 1    | 0    | 0    | 0         | 0         | 0         | 0         | 0         | VL        | VL  | VL  | VL         | VL         | VL         | VL         | VL         | VL         |
| 6A      | **  | 1    | •    | O    | 0         | 0         | 0         | Ü         | Ū         | [8]       | [7] | [6] | [5]        | [4]        | [3]        | [2]        | [1]        | [0]        |
|         | Def | ault | 0    | 0    | 0         | 0         | 0         | 0         | 0         | 0         | 0   | 0   | 0          | 0          | 0          | 0          | 0          | 0          |

**NL[5:0]:** Sets the number of lines to drive the LCD at an interval of 8 lines. The GRAM address mapping is not affected by the number of lines set by NL[5:0]. The number of lines must be the same or more than the number of lines necessary for the size of the liquid crystal panel.

Table 42

| NL[5:0]     | Number of drive lines |
|-------------|-----------------------|
| 6'h00-6'h1C | Setting inhibited     |
| 6'h1D       | 240 lines             |
| 6'h1E       | 248 lines             |
| 6'h1F       | 256 lines             |
| 6'h20       | 264 lines             |
| 6'h21       | 272 lines             |
| 6'h22       | 280 lines             |
| 6'h23       | 288 lines             |
| 6'h24       | 296 lines             |
| 6'h25       | 304 lines             |
| 6'h26       | 312 lines             |
| 6'h27       | 320 lines             |
| 6'h28-6'h3F | Setting inhibited     |

**GS:** Sets the direction of scan by the gate driver. Set GS bit in combination with SM and SS bits for the convenience of the display module configuration and the display direction.

**REV:** Enables the grayscale inversion of the image by setting REV = 1. This enables the R61505V to display the same image from the same set of data whether the liquid crystal panel is normally black or white. The source output level during front, back porch periods and blank periods is determined by register setting (PTS).

Table 43 GRAM Data-grayscale level inversion

| REV   | GRAM Data    | Source Output Le  | Source Output Level in Display Area |  |  |  |  |  |  |  |  |  |
|-------|--------------|-------------------|-------------------------------------|--|--|--|--|--|--|--|--|--|
| IXL V | GIVAINI Data | Positive Polarity | Negative Polarity                   |  |  |  |  |  |  |  |  |  |
|       | 18'h00000    | V63               | V0                                  |  |  |  |  |  |  |  |  |  |
| 0     | :            | :                 | :                                   |  |  |  |  |  |  |  |  |  |
|       | 18'h3FFFF    | V0                | V63                                 |  |  |  |  |  |  |  |  |  |
|       | 18'h00000    | V0                | V63                                 |  |  |  |  |  |  |  |  |  |
| 1     | :            | :                 | :                                   |  |  |  |  |  |  |  |  |  |
|       | 18'h3FFFF    | V63               | V0                                  |  |  |  |  |  |  |  |  |  |

**VLE:** Vertical scroll display enable bit. When VLE = 1, the R61505V starts displaying the base image from the line (of the physical display) determined by VL[8:0] bits. VL[8:0] sets the amount of scrolling, which is the number of lines to shift the start line of the display from the first line of the physical display. Note that the partial image display position is not affected by the base image scrolling.

The vertical scrolling is not available in external display interface operation. In this case, make sure to set VLE = "0".

Table 44

| VLE | Base image       |
|-----|------------------|
| 0   | Fixed            |
| 1   | Enable scrolling |

NDL: Sets the source output level in non-lit display area. NDL bit can keep the non-display area lit on.

Table 45

| NDL | Non-display area |          |  |  |  |  |  |  |
|-----|------------------|----------|--|--|--|--|--|--|
|     | Positive         | Negative |  |  |  |  |  |  |
| 0   | V63              | V0       |  |  |  |  |  |  |
| 1   | V0               | V63      |  |  |  |  |  |  |

**VL[8:0]:** Sets the amount of scrolling of the base image. The base image is scrolled in vertical direction and displayed from the line which is determined by VL[8:0]. Make sure VL[8:0]  $\leq$  320.

**SCN[5:0]:** Specifies the gate line where the gate driver starts scan.

Table 46

|             | Gate Line No (S   | Gate Line No (Scan start position) |                   |                   |  |  |  |  |  |  |  |  |
|-------------|-------------------|------------------------------------|-------------------|-------------------|--|--|--|--|--|--|--|--|
| SCN[5:0]    | SM=0              |                                    | SM=1              |                   |  |  |  |  |  |  |  |  |
|             | GS=0              | GS=1                               | GS=0              | GS=1              |  |  |  |  |  |  |  |  |
| 6'h00       | G1                | G(N)                               | G1                | G(2N-320)         |  |  |  |  |  |  |  |  |
| 6'h01       | G9                | G(N+8)                             | G16               | G(2N-304)         |  |  |  |  |  |  |  |  |
| 6'h02       | G17               | G(N+16)                            | G33               | G(2N-288)         |  |  |  |  |  |  |  |  |
| 6'h03       | G25               | G(N+24)                            | G49               | G(2N-272)         |  |  |  |  |  |  |  |  |
| 6'h04       | G33               | G(N+32)                            | G65               | G(2N-256)         |  |  |  |  |  |  |  |  |
| 6'h05       | G41               | G(N+40)                            | G81               | G(2N-240)         |  |  |  |  |  |  |  |  |
| 6'h06       | G49               | G(N+48)                            | G97               | G(2N-224)         |  |  |  |  |  |  |  |  |
| 6'h07       | G57               | G(N+56)                            | G113              | G(2N-208)         |  |  |  |  |  |  |  |  |
| 6'h08       | G65               | G(N+64)                            | G129              | G(2N-192)         |  |  |  |  |  |  |  |  |
| 6'h09       | G73               | G(N+72)                            | G145              | G(2N-176)         |  |  |  |  |  |  |  |  |
| 6'h0A       | G81               | G(N+80)                            | G161              | G(2N-160)         |  |  |  |  |  |  |  |  |
| 6'h0B-6'h2F | Setting inhibited | Setting inhibited                  | Setting inhibited | Setting inhibited |  |  |  |  |  |  |  |  |

When setting the SCN bit, make sure to satisfy the restriction below:

Table 47

| SM | GS | Restriction                                                  |
|----|----|--------------------------------------------------------------|
| 0  | 0  | (Scan start position-1) + (Number of line (NL bit)) ≤ 320    |
| 0  | 1  | Scan start position ≤ 320                                    |
| 1  | 0  | (Scan start position -1)/2 + (Number of line (NL bit)) ≤ 320 |
| 1  | 1  | Scan start position ≤ 320                                    |

### **Partial Display Control Instruction**

Partial Image Display Position (R80h)

Partial Image RAM Address (Start Line Address) (R81h)

Partial Image RAM Address (End Line Address) (R82h)

|         | R/W    | RS      | IB15 | IB14 | IB13 | IB12 | IB11 | IB10 | IB9 | IB8         | IB7         | IB6         | IB5         | IB4         | IB3         | IB2         | IB1         | IB0         |
|---------|--------|---------|------|------|------|------|------|------|-----|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| R<br>80 | W      | 1       | 0    | 0    | 0    | 0    | 0    | 0    | 0   | PTDP<br>[8] | PTDP<br>[7] | PTDP<br>[6] | PTDP<br>[5] | PTDP<br>[4] | PTDP<br>[3] | PTDP<br>[2] | PTDP<br>[1] | PTDP<br>[0] |
|         | Defaul | t value | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0           |
| R<br>81 | W      | 1       | 0    | 0    | 0    | 0    | 0    | 0    | 0   | PTSA<br>[8] | PTSA<br>[7] | PTSA<br>[6] | PTSA<br>[5] | PTSA<br>[4] | PTSA<br>[3] | PTSA<br>[2] | PTSA<br>[1] | PTSA<br>[0] |
|         | Defaul | t value | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0           |
| R<br>82 | W      | 1       | 0    | 0    | 0    | 0    | 0    | 0    | 0   | PTE<br>A[8] | PTE<br>A[7] | PTE<br>A[6] | PTE<br>A[5] | PTE<br>A[4] | PTE<br>A[3] | PTE<br>A[2] | PTE<br>A[1] | PTE<br>A[0] |
|         | Defaul | t value | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0           |

**PTDP[8:0]:** Sets the display position of partial image.

If PTDP0 = "9'h000", the partial image is displayed from the first line of the base image.

**PTSA[8:0], PTEA[8:0]:** Sets the start line and end line addresses of the RAM area, respectively for the partial image. In setting, make sure that PTSA  $\leq$  PTEA.

#### **Panel Interface Control**

#### Panel Interface Control 1(R90h)

| R/W    | RS      | IB15 | IB14 | IB13 | IB12 | IB11 | IB10 | IB9         | IB8         | IB7 | IB6 | IB5 | IB4         | IB3         | IB2         | IB1         | IB0         |
|--------|---------|------|------|------|------|------|------|-------------|-------------|-----|-----|-----|-------------|-------------|-------------|-------------|-------------|
| W      | 1       | 0    | 0    | 0    | 0    | 0    | 0    | DIVI<br>[1] | DIVI<br>[0] | 0   | 0   | 0   | RTNI<br>[4] | RTNI<br>[3] | RTNI<br>[2] | RTNI<br>[1] | RTNI<br>[0] |
| Defaul | t value | 0    | 0    | 0    | 0    | 0    | 0    | 0           | 1           | 0   | 0   | 0   | 1           | 0           | 0           | 0           | 1           |

**RTNI[4:0]:** Sets 1H (line) period. This setting is enabled while the R61505V's display operation is synchronized with internal clock.

**Table 48 Clocks per line (internal clock operation: 1 clock = 1 OSC)** 

| RTNI[4:0]   | Clocks per Line   | RTNI[4:0] | Clocks per Line | RTNI[4:0] | Clocks per Line |
|-------------|-------------------|-----------|-----------------|-----------|-----------------|
| 5'h00-5'h0F | Setting inhibited | 5'h15     | 21 clocks       | 5'h1B     | 27 clocks       |
| 5'h10       | 16 clocks         | 5'h16     | 22 clocks       | 5'h1C     | 28 clocks       |
| 5'h11       | 17 clocks         | 5'h17     | 23 clocks       | 5'h1D     | 29 clocks       |
| 5'h12       | 18 clocks         | 5'h18     | 24 clocks       | 5'h1E     | 30 clocks       |
| 5'h13       | 19 clocks         | 5'h19     | 25 clocks       | 5'h1F     | 31 clocks       |
| 5'h14       | 20 clocks         | 5'h1A     | 26 clocks       |           |                 |

Note: In Power Supply Instruction Setting, Deep Standby Exit Sequence and Sleep Mode Exit Sequence, RTNI bit must be set at the "Initial instruction setting" stage.

**DIVI[1:0]:** Sets the division ratio of the internal clock frequency. The R61505V's internal operation is synchronized with the frequency divided internal clock. When DIVI[1:0] setting is changed, the width of the reference clock for liquid crystal panel control signals is changed.

The frame frequency can be adjusted by register setting (RTNI and DIVI bits). When changing the number of lines to drive the liquid crystal panel, adjust the frame frequency too. For details, see "Frame-Frequency Adjustment Function".

The setting in DIVI[1:0] is disabled in RGB interface operation. Setting DIVI  $\neq$  2'h0 is inhibited.

Table 49 Division ratio of the internal clock

| DIVI[1:0] | <b>Division Ratio</b> |
|-----------|-----------------------|
| 2'h0      | 1/1                   |
| 2'h1      | 1/2                   |
| 2'h2      | 1/4                   |
| 2'h3      | 1/8                   |

Note: In Power Supply Instruction Setting, Deep Standby Exit Sequence and Sleep Mode Exit Sequence, DIVI bit must be set at the "Initial instruction setting" stage.

## **Frame Frequency Calculation**

Frame frequency =  $\frac{fosc}{Clocks per line x division ratio x (line + BP + FP)}$ [Hz]

fosc : Internal oscillation frequency

Line: Number of lines to drive the LCD (NL bits)

Division ratio: DIVI Clocks per line: RTNI

## Panel Interface Control 1-1 (R91h)

| R/W | RS   | IB15 | IB14 | IB13 | IB12 | IB11 | IB10 | IB9 | IB8 | IB7 | IB6 | IB5 | IB4 | IB3          | IB2          | IB1          | IB0          |
|-----|------|------|------|------|------|------|------|-----|-----|-----|-----|-----|-----|--------------|--------------|--------------|--------------|
| W   | 1    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0   | SPC<br>WI[3] | SPC<br>WI[2] | SPC<br>WI[1] | SPC<br>WI[0] |
| Def | ault | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0            | 0            | 0            | 1            |

**SPCWI** [3:0]: The bit is used to set source VCI pre-charge period. Pre-charge period is set by SPCWI[3:0] starting from the source output alternating position defined by SPCWI [3:0]. This bit is disabled when RGB interface is selected.

Table 50

| Table 50  |                                 |
|-----------|---------------------------------|
| SPCWI [3: | 0] Source VCI pre-charge period |
| 3'h0      | 0 clocks                        |
| 3'h1      | 1 clock                         |
| 3'h2      | 2 clocks                        |
| 3'h3      | 3 clocks                        |
| 3'h4      | 4 clocks                        |
| 3'h5      | 5 clocks                        |
| 3'h6      | 6 clocks                        |
| 3'h7      | 7 clocks                        |
| 3'h8      | 8 clocks                        |
| 3'h9      | 9 clocks                        |
| 3'hA      | 10 clocks                       |
| 3'hB      | 11 clocks                       |
| 3'hC      | 12 clocks                       |
| 3'hD      | 13 clocks                       |
| 3'hE      | 14 clocks                       |
| 3'hF      | 15 clocks                       |
|           |                                 |

Note: The unit clock here is the frequency divided clock, which is set according to the division ratio set by DIVI (R90h).

## Panel Interface Control 2(R92h)

| R/W    | RS      | IB15 | IB14 | IB13 | IB12 | IB11 | IB10        | IB9         | IB8         | IB7 | IB6 | IB5 | IB4 | IB3 | IB2 | IB1 | IB0 |
|--------|---------|------|------|------|------|------|-------------|-------------|-------------|-----|-----|-----|-----|-----|-----|-----|-----|
| W      | 1       | 0    | 0    | 0    | 0    | 0    | NOW<br>I[2] | NOW<br>I[1] | NOW<br>I[0] | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| Defaul | t value | 0    | 0    | 0    | 0    | 0    | 0           | 0           | 1           | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |

**NOWI[2:0]:** Sets the non-overlap period of adjacent gate outputs. The setting is enabled in display operation synchronizing with the internal clock.

Table 51

| NOWI[2:0] | Non-overlap period | NOWI[2:0] | Non-overlap period |
|-----------|--------------------|-----------|--------------------|
| 3'h0      | Setting inhibited  | 3'h4      | 4 clocks           |
| 3'h1      | 1 clock            | 3'h5      | 5 clocks           |
| 3'h2      | 2 clocks           | 3'h6      | 6 clocks           |
| 3'h3      | 3 clocks           | 3'h7      | 7 clocks           |

Note: The internal clock is the frequency divided clock, which is set by DIVI (R90h) bits.

#### Panel Interface Control 3(R93h)

| R/W    | RS      | IB15 | IB14 | IB13 | IB12 | IB11 | IB10             | IB9              | IB8              | IB7 | IB6 | IB5 | IB4 | IB3 | IB2         | IB1         | IB0         |
|--------|---------|------|------|------|------|------|------------------|------------------|------------------|-----|-----|-----|-----|-----|-------------|-------------|-------------|
| W      | 1       | 0    | 0    | 0    | 0    | 0    | VEQ<br>WI<br>[2] | VEQ<br>WI<br>[1] | VEQ<br>WI<br>[0] | 0   | 0   | 0   | 0   | 0   | MCP<br>I[2] | MCP<br>I[1] | MCP<br>I[0] |
| Defaul | t value | 0    | 0    | 0    | 0    | 0    | 0                | 0                | 0                | 0   | 0   | 0   | 0   | 0   | 0           | 0           | 1           |

**VEQWI [2:0]**: Sets VCOM equalize period. Equalizing operation continues for the period defined by VEQWI bit starting from the VCOM alternating position defined by MCPI [2:0]. VEQWI setting is enabled when VEM[1:0]=1 or larger (R0Eh) and display operation of the R61505V is synchronized with internal clock.

VEQWI is disabled when RGB interface is selected.

Table 52

| VEQWI | 2:0] VCOM equalize | e period |
|-------|--------------------|----------|
| 3'h0  | 0 clocks           |          |
| 3'h1  | 1 clock            |          |
| 3'h2  | 2 clocks           |          |
| 3'h3  | 3 clocks           |          |
| 3'h4  | 4 clocks           |          |
| 3'h5  | 5 clocks           |          |
| 3'h6  | 6 clocks           |          |
| 3'h7  | 7 clocks           |          |

Note: DIVI (R90h) sets division ratio of clock frequency.

**MCPI[2:0]:** Sets the source output timing by the number of internal clock from the reference point. The setting is enabled display operation of the R61505V is synchronized with internal clock.

The setting is enabled in display operation via RGB interface.

Table 53

Note: DIVI (R90h) sets division ratio of clock frequency.

## Panel Interface Control 4 (R94h)

| R/W | RS   | IB15 | IB14 | IB13 | IB12 | IB11 | IB10 | IB9 | IB8 | IB7 | IB6 | IB5 | IB4 | IB3 | IB2         | IB1         | IB0         |
|-----|------|------|------|------|------|------|------|-----|-----|-----|-----|-----|-----|-----|-------------|-------------|-------------|
| W   | 1    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0   | SDT<br>I[2] | SDT<br>I[1] | SDT<br>I[0] |
| Def | ault | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0           | 0           | 1           |

**SDTI[2:0**]: Defines source output alternating position within 1H period.

SDTI is disabled when RGB interface is selected.

Table 54

| SDTI[2:0] | Source output alternating position |  |  |  |  |  |  |  |
|-----------|------------------------------------|--|--|--|--|--|--|--|
| 3'h0      | Setting inhibited                  |  |  |  |  |  |  |  |
| 3'h1      | 1 clock                            |  |  |  |  |  |  |  |
| 3'h2      | 2 clocks                           |  |  |  |  |  |  |  |
| 3'h3      | 3 clocks                           |  |  |  |  |  |  |  |
| 3'h4      | 4 clocks                           |  |  |  |  |  |  |  |
| 3'h5      | 5 clocks                           |  |  |  |  |  |  |  |
| 3'h6      | 6 clocks                           |  |  |  |  |  |  |  |
| 3'h7      | 7 clocks                           |  |  |  |  |  |  |  |
|           |                                    |  |  |  |  |  |  |  |

Note: DIVI (R90h) sets division ratio of clock frequency.

#### Panel Interface Control 5 (R95h)

| R/W    | RS      | IB15 | IB14 | IB13 | IB12 | IB11 | IB10 | IB9         | IB8         | IB7 | IB6 | IB5         | IB4         | IB3         | IB2         | IB1         | IB0         |
|--------|---------|------|------|------|------|------|------|-------------|-------------|-----|-----|-------------|-------------|-------------|-------------|-------------|-------------|
| W      | 1       | 0    | 0    | 0    | 0    | 0    | 0    | DIVE<br>[1] | DIVE<br>[0] | 0   | 0   | RTN<br>E[5] | RTN<br>E[4] | RTN<br>E[3] | RTN<br>E[2] | RTN<br>E[1] | RTN<br>E[0] |
| Defaul | t value | 0    | 0    | 0    | 0    | 0    | 0    | 1           | 0           | 0   | 0   | 0           | 1           | 1           | 1           | 1           | 0           |

**RTNE[5:0]:** Sets RTNE[5:0] and DIVE[1:0] bits so that the number of DOTCLK calculated from the following formula becomes the number of DOTCLK which should be inputted in 1H period. The RTNE[5:0] setting is enabled in display operation via RGB interface.

(PCDIVH + PCDIVL) x DIVE[1:0] (division ratio) x RTNE[5:0] (Number of DOTCLK) ≤ Number of DOTCLK in 1H period

**DIVE[1:0]:** Sets the division ratio of DOTCLK frequency. The R61505V's internal operation is synchronized with the frequency divided DOTCLK. The setting in DIVE[1:0] is enabled in RGB interface operation.

**Table 55 Division ratio of DOTCLK** 

DIVE[1:0] Division Ratio

| 2'h0 | Setting disabled |
|------|------------------|
| 2'h1 | 1/4              |
| 2'h2 | 1/8              |
| 2'h3 | 1/16             |

Internal clock frequency is calculated by below formula:

DOTCLK / (DIVE x (PCDIVL + PCDIVH))

See also R9Ch.

Table 56 DOTCLK per line (1H period)

| RTNE[5:0] | DOTCLK per line (1H) | RTNE[5:0] | DOTCLK per line (1H) |
|-----------|----------------------|-----------|----------------------|
| 6'h00     | Setting disabled     | 6'h20     | 32 clocks            |
| 6'h01     | Setting disabled     | 6'h21     | 33 clocks            |
| 6'h02     | Setting disabled     | 6'h22     | 34 clocks            |
| 6'h03     | Setting disabled     | 6'h23     | 35 clocks            |
| 6'h04     | Setting disabled     | 6'h24     | 36 clocks            |
| 6'h05     | Setting disabled     | 6'h25     | 37 clocks            |
| 6'h06     | Setting disabled     | 6'h26     | 38 clocks            |
| 6'h07     | Setting disabled     | 6'h27     | 39 clocks            |
| 6'h08     | Setting disabled     | 6'h28     | 40 clocks            |
| 6'h09     | Setting disabled     | 6'h29     | 41 clocks            |
| 6'h0A     | Setting disabled     | 6'h2A     | 42 clocks            |
| 6'h0B     | Setting disabled     | 6'h2B     | 43 clocks            |
| 6'h0C     | Setting disabled     | 6'h2C     | 44 clocks            |
| 6'h0D     | Setting disabled     | 6'h2D     | 45 clocks            |
| 6'h0E     | Setting disabled     | 6'h2E     | 46 clocks            |
| 6'h0F     | Setting disabled     | 6'h2F     | 47 clocks            |
| 6'h10     | 16 clocks            | 6'h30     | 48 clocks            |
| 6'h11     | 17 clocks            | 6'h31     | 49 clocks            |
| 6'h12     | 18 clocks            | 6'h32     | 50 clocks            |
| 6'h13     | 19 clocks            | 6'h33     | 51 clocks            |
| 6'h14     | 20 clocks            | 6'h34     | 52 clocks            |
| 6'h15     | 21 clocks            | 6'h35     | 53 clocks            |
| 6'h16     | 22 clocks            | 6'h36     | 54 clocks            |
| 6'h17     | 23 clocks            | 6'h37     | 55 clocks            |
| 6'h18     | 24 clocks            | 6'h38     | 56 clocks            |
| 6'h19     | 25 clocks            | 6'h39     | 57 clocks            |
| 6'h1A     | 26 clocks            | 6'h3A     | 58 clocks            |
| 6'h1B     | 27 clocks            | 6'h3B     | 59 clocks            |
| 6'h1C     | 28 clocks            | 6'h3C     | 60 clocks            |
| 6'h1D     | 29 clocks            | 6'h3D     | 61 clocks            |
| 6'h1E     | 30 clocks            | 6'h3E     | 62 clocks            |
| 6'h1F     | 31 clocks            | 6'h3F     | 63 clocks            |
| -         |                      |           |                      |

## Panel Interface Control 5-1 (R96h)

|   | R/W | RS   | IB15 | IB14 | IB13 | IB12 | IB11 | IB10 | IB9 | IB8 | IB7 | IB6 | IB5 | IB4 | IB3 | IB2 | IB1 | IB0 |
|---|-----|------|------|------|------|------|------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| ſ |     |      |      |      |      |      |      |      |     |     |     |     |     |     | SPC | SPC | SPC | SPC |
|   | W   | 1    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0   | WE  | WE  | WE  | WE  |
|   |     |      |      |      |      |      |      |      |     |     |     |     |     |     | [3] | [2] | [1] | [0] |
| Ī | Def | ault | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 1   |

**SPCWE** [3:0]: The bit is used to set source VCI pre-charge period. Pre-charge period is set by SPCWE[3:0] starting from the source output alternating position defined by SPCWE [3:0]. This bit is enabled when RGB interface is selected.

Table 57

| Table 57       |                              |
|----------------|------------------------------|
| SPCWE<br>[3:0] | Source VCI pre-charge period |
| 3'h0           | 0 clocks                     |
| 3'h1           | 1 clock                      |
| 3'h2           | 2 clocks                     |
| 3'h3           | 3 clocks                     |
| 3'h4           | 4 clocks                     |
| 3'h5           | 5 clocks                     |
| 3'h6           | 6 clocks                     |
| 3'h7           | 7 clocks                     |
| 3'h8           | 8 clocks                     |
| 3'h9           | 9 clocks                     |
| 3'hA           | 10 clocks                    |
| 3'hB           | 11 clocks                    |
| 3'hC           | 12 clocks                    |
| 3'hD           | 13 clocks                    |
| 3'hE           | 14 clocks                    |
| 3'hF           | 15 clocks                    |
|                |                              |

## Panel Interface Control 6 (R97h)

| _ | R/W    | RS      | IB15 | IB14 | IB13 | IB12 | IB11 | IB10        | IB9         | IB8         | IB7 | IB6 | IB5 | IB4 | IB3 | IB2 | IB1 | IB0 |
|---|--------|---------|------|------|------|------|------|-------------|-------------|-------------|-----|-----|-----|-----|-----|-----|-----|-----|
|   | W      | 1       | 0    | 0    | 0    | 0    | 0    | NOW<br>E[2] | NOW<br>E[1] | NOW<br>E[0] | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
|   | Defaul | t value | 0    | 0    | 0    | 0    | 0    | 0           | 0           | 1           | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |

**NOWE[2:0]:** Sets the non-overlap period of adjacent gate outputs. The setting is enabled in display operation via RGB interface.

Table 58

3'h7

| NOWE [2:0] | Non-overlap period |  |  |  |  |  |  |
|------------|--------------------|--|--|--|--|--|--|
| 3'h0       | Setting disabled   |  |  |  |  |  |  |
| 3'h1       | 1                  |  |  |  |  |  |  |
| 3'h2       | 2                  |  |  |  |  |  |  |
| 3'h3       | 3                  |  |  |  |  |  |  |
| 3'h4       | 4                  |  |  |  |  |  |  |
| 3'h5       | 5                  |  |  |  |  |  |  |
| 3'h6       | 6                  |  |  |  |  |  |  |

Note: 1 clock = (Number of data transfers/pixel) x DIVE (division ratio) x (PCDIVL + PCDIVH)) [DOTCLK].

#### Panel Interface Control 7 (R98h)

| R/W    | RS      | IB15 | IB14 | IB13 | IB12 | IB11 | IB10             | IB9              | IB8              | IB7 | IB6 | IB5 | IB4 | IB3 | IB2             | IB1             | IB0             |
|--------|---------|------|------|------|------|------|------------------|------------------|------------------|-----|-----|-----|-----|-----|-----------------|-----------------|-----------------|
| W      | 1       | 0    | 0    | 0    | 0    | 0    | VEQ<br>WE<br>[2] | VEQ<br>WE<br>[1] | VEQ<br>WE<br>[0] | 0   | 0   | 0   | 0   | 0   | MC<br>PE<br>[2] | MC<br>PE<br>[1] | MC<br>PE<br>[0] |
| Defaul | t value | 0    | 0    | 0    | 0    | 0    | 0                | 0                | 0                | 0   | 0   | 0   | 0   | 0   | 0               | 0               | 1               |

**VEQWE [2:0]**: VEQWE sets VCOM equalize period. Equalizing operation continues for the period defined by VEQWE bit starting from the VCOM alternating position defined by MCPE [2:0]. VEQWE setting is enabled when VEM[1:0]=1 or larger (R0Eh).

Table 59

| VEQWE | [2:0] VCOM equalize period |  |
|-------|----------------------------|--|
| 3'h0  | 0 clocks                   |  |
| 3'h1  | 1 clock                    |  |
| 3'h2  | 2 clocks                   |  |
| 3'h3  | 3 clocks                   |  |
| 3'h4  | 4 clocks                   |  |
| 3'h5  | 5 clocks                   |  |
| 3'h6  | 6 clocks                   |  |
| 3'h7  | 7 clocks                   |  |

**MCPE[2:0]**: Sets the source output timing by the number of internal clock from the reference point. The setting is enabled in display operation via RGB interface.

Table 60

| MCPE[2:0] | Source output position | MCPE[2:0] | Source output position |
|-----------|------------------------|-----------|------------------------|
| 3'h0      | Setting Disabled       | 3'h4      | 4 clocks               |
| 3'h1      | 1 clock                | 3'h5      | 5 clocks               |
| 3'h2      | 2 clocks               | 3'h6      | 6 clocks               |
| 3'h3      | 3 clocks               | 3'h7      | 7 clocks               |

Note: 1 clock = (Number of data transfers/pixel) x DIVE (division ratio) x (PCDIVL + PCDIVH)) [DOTCLK].

## Panel Interface Control 8 (R99h)

|   | R/W     | RS    | IB15 | IB14 | IB13 | IB12 | IB11 | IB10 | IB9 | IB8 | IB7 | IB6 | IB5 | IB4 | IB3 | IB2         | IB1         | IB0         |
|---|---------|-------|------|------|------|------|------|------|-----|-----|-----|-----|-----|-----|-----|-------------|-------------|-------------|
|   | W       | 1     | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0   | SDT<br>E[2] | SDT<br>E[1] | SDT<br>E[0] |
| Ī | Default | value | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0           | 0           | 1           |

**SDTE[2:0]**: Defines source output alternating position within 1H period.

SDTE is enabled when RGB interface is selected.

Table 61

| SDTE[2:0] | Source output alternating position |
|-----------|------------------------------------|
| 3'h0      | Setting inhibited                  |
| 3'h1      | 1 clock                            |
| 3'h2      | 2 clocks                           |
| 3'h3      | 3 clocks                           |
| 3'h4      | 4 clocks                           |
| 3'h5      | 5 clocks                           |
| 3'h6      | 6 clocks                           |
| 3'h7      | 7 clocks                           |

Note: 1 clock = (Number of data transfers/pixel) x DIVE (division ratio) x (PCDIVL + PCDIVH)) [DOTCLK]

#### Panel Interface Control 9 (R9Ch)

| R/W | RS   | IB15 | IB14 | IB13 | IB12 | IB11 | IB10 | IB9 | IB8 | IB7 | IB6               | IB5               | IB4 | IB3 | IB2               | IB1               | IB0               |
|-----|------|------|------|------|------|------|------|-----|-----|-----|-------------------|-------------------|-----|-----|-------------------|-------------------|-------------------|
| W   | 1    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0   | PCD<br>IVH<br>[2] | PCD<br>IVH<br>[1] |     | 0   | PCD<br>IVL<br>[2] | PCD<br>IVL<br>[1] | PCD<br>IVL<br>[0] |
| Def | ault | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0   | 1                 | 0                 | 0   | 0   | 0                 | 1                 | 1                 |

#### PCDIVH[2:0], PCDIVL[2:0]:

Table 62

3'h7

When DM [1:0] =2'h1 and RGB I/F is selected, internal clock used for display operation switches from internal oscillation to DOTCLKD. PCDIVH and PCDIVL bits define division ratio of DOTCLKD to DOTCLK.

**PCDIVH** defines number of DOTCLK during DOTCLKD is high in the units of 1 clock.

**PCDIVL** defines number of DOTCLK during DOTCLKD is low in the units of 1 clock.

Make sure that PCDIVL=PCDIVH or PCDIVH-1.

Also, write PCDIVH and PCDIVL values so that DOTCLKD frequency is the closest to internal oscillation clock frequency 600KHz.

See "Setting Example of Display Control Clock in RGB Interface Operation" for details.

| PCDIVH[2:0] |                   |
|-------------|-------------------|
| 3'h0        | Setting inhibited |
| 3'h1        | 1 clock           |
| 3'h2        | 2 clocks          |
| 3'h3        | 3 clocks          |
| 3'h4        | 4 clocks          |
| 3'h5        | 5 clocks          |
| 3'h6        | 6 clocks          |

7 clocks

| Table 63    |                   |
|-------------|-------------------|
| PCDIVL[2:0] |                   |
| 3'h0        | Setting inhibited |
| 3'h1        | 1 clock           |
| 3'h2        | 2 clocks          |
| 3'h3        | 3 clocks          |
| 3'h4        | 4 clocks          |
| 3'h5        | 5 clocks          |
| 3'h6        | 6 clocks          |
| 3'h7        | 7 clocks          |

### **NVM (NON-VOLATILE MEMORY) Control**

#### NVM Control 1 (RA0h), NVM Control 2 (RA1h)

|         | R/W | RS   | IB15      | IB14      | IB13      | IB12      | IB11      | IB10      | IB9              | IB8       | IB7       | IB6       | IB5        | IB4        | IB3       | IB2       | IB1             | IB0             |
|---------|-----|------|-----------|-----------|-----------|-----------|-----------|-----------|------------------|-----------|-----------|-----------|------------|------------|-----------|-----------|-----------------|-----------------|
| R<br>A0 | R/W | 1    | 0         | 0         | 0         | 0         | 0         | 0         | 0                | 0         | TE        | 0         | EOP<br>[1] | EOP<br>[0] | 0         | 0         | NV<br>AD<br>[1] | NV<br>AD<br>[0] |
|         | Def | ault | 0         | 0         | 0         | 0         | 0         | 0         | 0                | 0         | 0         | 0         | 0          | 0          | 0         | 0         | 0               | 0               |
| R<br>A1 | R/W | 1    | NV<br>DAT | NV<br>DAT | NV<br>DAT | NV<br>DAT | NV<br>DAT | NV<br>DAT | NV<br>DAT<br>[9] | NV<br>DAT | NV<br>DAT | NV<br>DAT | NV<br>DAT  | NV<br>DAT  | NV<br>DAT | NV<br>DAT | NV<br>DAT       | NV<br>DAT       |
|         | Def | ault | [15]      | [14]      | 0         | 0         | 0         | [10]      | 0                | [8]       | 0         | [6]<br>0  | [5]<br>0   | [4]<br>0   | [3]       | 0         | 0               | 0               |

**TE:** Enables access to the NVM when TE=1.

**EOP** [1:0]: Internal NVM control bits to control write and erase operations.

Table 64

| EOP[1:0] | NVM control      |
|----------|------------------|
| 2'h0     | Halt             |
| 2'h1     | Write            |
| 2'h2     | Setting disabled |
| 2'h3     | Erase            |

NVAD: Specifies address to access on the NVM for write and erase operation. An address consists of 16 bits. To write to the NVM, write the data that users wish to write in NVDAT (RA1h) and write EOP=2'h1 to enable the write operation. To erase, define the address users wish to erase data from and write EOP=2'h3 to enable the erase operation. See "NVM Control Sequence" for details.

Table 65

| NIVADI1.01        | NVDAT    | NVDAT       | NVDAT       | NVDAT       | NVDAT       | NVDAT       | NVDAT       | NVDAT       |
|-------------------|----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| NVAD[1:0]         | [15]/[7] | [14]/[6]    | [13]/[5]    | [12]/[4]    | [11]/[3]    | [10]/[2]    | [9]/[1]     | [8]/[0]     |
| 2'h0<br>(MS byte) | VCMSEL   | VCM1<br>[6] | VCM1<br>[5] | VCM1<br>[4] | VCM1<br>[3] | VCM1<br>[2] | VCM1<br>[1] | VCM1<br>[0] |
| 2'h0<br>(LS byte) | 1        | VCM2<br>[6] | VCM2<br>[5] | VCM2<br>[4] | VCM2<br>[3] | VCM2<br>[2] | VCM2<br>[1] | VCM2<br>[0] |
| 2'h1<br>(MS byte) | 1        | 1           | 1           | 1           | UID1<br>[3] | UID1<br>[2] | UID1<br>[1] | UID1<br>[0] |
| 2'h1<br>(LS byte) | 1        | 1           | 1           | 1           | 1           | 1           | 1           | 1           |

MS byte = NVDAT [15:8]. LS byte = NVDAT [7:0].

VCM1[6:0]: Defines factor to adjust VCOMH level when VCMSEL=1.

VCM2[6:0]: Defines factor to adjust VCOMH level when VCMSEL=0.

UID1[3:0]: User ID.

### NVM Control 3 (RA3h), NVM Control 4 (RA4h)

|         | R/W | RS   | IB15 | IB14 | IB13 | IB12 | IB11 | IB10 | IB9 | IB8 | IB7 | IB6 | IB5 | IB4 | IB3 | IB2       | IB1 | IB0      |
|---------|-----|------|------|------|------|------|------|------|-----|-----|-----|-----|-----|-----|-----|-----------|-----|----------|
| R<br>A3 | W   | 1    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0   | NV<br>VRF | 0   | 0        |
|         | Def | ault | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0         | 0   | 0        |
| R<br>A4 | W   | 1    | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0         | 0   | CAL<br>B |
|         | Def | ault | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0         | 0   | 0        |

**NVVRF**: Defines erase verify mode. Used only in the erase sequence. See "NVM Erase Sequence" for details.

**CALB:** When CALB=1, all data in NVM is read out and written to internal registers. When finished, CALB is set to 0.



#### R61505V

■R61505V Instruction List Rev 1.10 2008.02.05 Command
Index
Device Code Read
(Default)
Driver Dutput Control
(Default)
LCD Priving Wave Control
(Default)
Entry Mode
(Default)
Display Control I
(Default)
Display Control I
(Default) Device code "B505" 0 0 BC0 0 0 0 0 0 BGR 0 0 ....0 0 0 ORG 0 0 \_\_\_\_ Display Control 2 (Default) (Default)
Display Control 3
(Default)
Display Control 4 rol 4 play Control (Default) olay Interface Control .... 0 FMP[6] 0 0 FMP[7] 0 0 FMP[2] (Default) Frame Marker Position (Default) FMP[8] FMP[1] FMP[0] 0 0 0 0 0 0 0 0 0 0 U 0 0 0 0 0 Vem[1] Vem[0] 0 0 0 0 Frame Manner Franceson

(Default)

VCOM Low Power Centrol

Oefault)

External Disolar Interface Centrol 2

(Default)

Power Centrol 1

(Default)

Power Centrol 2

(Default)

Power Centrol 2

(Default)

Power Centrol 3 0 0 0 0 0 DC0[2] 0 1 0 0 0 0 0 0 BT[2] BT[1] BT[0] 0 0 AP0[1] AP0[0] 0 ---1 0 1 DC1[2] DC1[1] DC1[0] DC0[1] DC0[0] - 0 0 VRH(0) 0 0 0 USR(2) DCB(1) DCB(0) VC[2] VC[1]
1 0 0 0 1 1
1 PSON PON VHH(4) VHH(3) VHH(2)
0 0 0 1 1
1 1 0 -------(Default)
Power Control 3
(Default)
Power Control 4 12h VCMR VRH[1] (Default)
RAM Address Set (Horizontal Address (Default)
RAM Address Set (Vertical Address)
(Default)
RAM Address Set (Vertical Address)
(Default)
RAM Data Write / RAM Data Read 0 0 AD[7] AD[6] 0 0 0 0 0 AD[5] AD[4] AD[3] AD[2] Data Write / RAM Data R NVM Data Read 1 (Default) NVM Data Read 2 (Default) NVM Data Read 3 (Default) 0 0 29h 0 0 0 0 PROPOZ[4] PROPOZ[3] PROPOZ[2] PROPOZ[1] PROPOZ[0]
0 0 0 0 0 0 0
0 PROPOS[3] PROPOS[2] PROPOS[1] PROPOS[0] 0 (Default) Y Control 4 0 0 PIOPO[1] PIOPO[0] 0 0 0 0 0 PR0N05[3] PR0N05[2] PR0N05[1] PR0N05[0] | PROMOS(4) | PROMOS(3) | PROMOS(2) | PROMOS(2) | PROMOS(4) | PROMOS(4) | PROMOS(5) | PROMOS(7) | PROM | PRINCO[s], | PRI 0 0 0 (Default) Window Horizontal RAM Address (Start Address) 0 0 0 0 0 0 0 \_\_\_\_ (Default)

11h Window Horizontal RAM Address (End Address)
(Default)

12h Window Vertical RAM Address (Start Address) Window Vertical RAM Address (Start Address) (Default) Window Vertical RAM Address (End Address) (Default) 0 .... 0 0 0 Driver Output Control (Default) Base Image Display Control base image Uniphy Coercio

(Default)

Vertical Scoral Coercio

(Default)

Partial Image Display Position

(Default)

Partial Image RAM Address Citart Line Address)

(Default)

Default)

Default)

Default)

Default)

Default) 0 0 0 0 0 0 0 0 VL[8] 0 VL[3] 0 0 VL[7] VL[6] 0 0 VL[5] VL[4] 6Ah VL[2] VL[1] .... 0 Panel Interface Control 1 (Default) Panel Interface Control 1-1 0 Panel Interface Control 1-1 (Default) Panel Interface Control 2 (Default) Panel Interface Control 3 (Default) (Default)
Panel Interface Control 4
(Default)
Panel Interface Control 5 0 0 0 0 .... 0 0 0 (Default)
Panel Interface Control 5-1 0 0 0 0 0 NOWE[2] NOWE[1] NOWE[0] Panel Interface Control 6 (Default) 0 0 0 0 0 Panel Interface Control 7 VEQWEIZ] VEQWEID] VEQWEID] ---<del>-</del> Panel Interface Control 8 (Default) 0 0 0 0 0 0 Panel In ontrol 9 (Default)
NVM Control 1
(Default)
NVM Control 2
(Default) 0 0 0 0 0 0 0 0 A0h 0 0 0

#### **Reset Function**

The R61505V is initialized by the RESET input. During reset period, the R61505V is in a busy state and instruction from the host processor and GRAM access are not accepted. The R61505V's internal power supply circuit unit is initialized also by the RESET input.

### 1. Initial state of instruction bits (default)

See the instruction list. The default values are shown in the parenthesis of each instruction bit cell.

#### 2. RAM Data initialization

The RAM data is not automatically initialized by the RESET input. It must be initialized by software in display-off period.

### 3. Output pin initial state

| Pin name      | After H/W reset |  |  |  |  |
|---------------|-----------------|--|--|--|--|
| DB[17:0]      | Hi-Z            |  |  |  |  |
| SDO           | Hi-Z            |  |  |  |  |
| FMARK         | GND             |  |  |  |  |
| VDD           | 1.5V            |  |  |  |  |
| VCI1          | Hi-Z            |  |  |  |  |
| C11P/C11M     | Hi-Z/Hi-Z       |  |  |  |  |
| C12P/C12M     | Hi-Z/Hi-Z       |  |  |  |  |
| C13P/C13M     | Hi-Z/GND        |  |  |  |  |
| C21P/C21M     | VCI/GND         |  |  |  |  |
| C22P/C22M     | VCI/GND         |  |  |  |  |
| VREG10UT      | GND             |  |  |  |  |
| VCOML         | GND             |  |  |  |  |
| VCOMH         | VCI(DDVDH)      |  |  |  |  |
| VCL           | GND             |  |  |  |  |
| VGL           | GND             |  |  |  |  |
| VGH           | VCI             |  |  |  |  |
| DDVDH         | VCI             |  |  |  |  |
| VCOM          | GND             |  |  |  |  |
| VCOMOL/VCOMOR | GND             |  |  |  |  |
| S1-720        | GND             |  |  |  |  |
| G1-320        | GND             |  |  |  |  |

## **Basic Operation**

The basic operation modes of the R61505V are shown in the following diagram. When making a transition from one mode to another, refer to instruction setting sequence.



Figure 10

#### **Interface and Data Format**

The R61505V supports system interface for making instruction and other settings, and external display interface for displaying a moving picture. The R61505V can select the optimum interface for the display (moving or still picture) in order to transfer data efficiently.

As external display interface, the R61505V supports RGB interface and VSYNC interface, which enables data rewrite operation without flickering the moving picture on display.

In RGB interface operation, the display operation is executed in synchronization with synchronous signals VSYNC, HSYNC, and DOTCLK. In synchronization with these signals, the R61505V writes display data according to data enable signal (ENABLE) via RGB data signal bus (DB17-0). The display data is stored in the R61505V's GRAM so that data is transferred only when rewriting the frames of moving picture and the data transfer required for moving picture display can be minimized. The window address function specifies the RAM area to write data for moving picture display, which enables displaying a moving picture and RAM data in other than the moving picture area simultaneously.

In VSYNC interface operation, the internal display operation is synchronized with the frame synchronization signal (VSYNC). The VSYNC interface enables a moving picture display via system interface by writing the data to the GRAM at faster than the minimum calculated speed in synchronization with the falling edge of VSYNC. In this case, there are restrictions in setting the frequency and the method to write data to the internal RAM.

The R61505V operates in either one of the following four modes according to the state of the display. The operation mode is set in the external display interface control register (R0Ch). When switching from one mode to another, make sure to follow the relevant sequence in setting instruction bits.

**Table 66 Operation Modes** 

| Operation Mode                                                                      | RAM Access Setting (RM)      | Display Operation Mode (DM)              |
|-------------------------------------------------------------------------------------|------------------------------|------------------------------------------|
| Internal clock operation (displaying still pictures)                                | System interface<br>(RM = 0) | Internal clock operation<br>(DM1-0 = 00) |
| RGB interface (1) (displaying moving pictures)                                      | RGB interface<br>(RM = 1)    | RGB interface<br>(DM1-0 = 01)            |
| RGB interface (2)<br>(rewriting still pictures while<br>displaying moving pictures) | System interface<br>(RM = 0) | RGB interface<br>(DM1-0 = 01)            |
| VSYNC interface (displaying moving pictures)                                        | System interface<br>(RM = 0) | VSYNC interface<br>(DM1-0 = 10)          |

Notes:

- 1. Instructions are set only via system interface.
- 2. The RGB and VSYNC interfaces cannot be used simultaneously.
- 3. Do not change RGB interface operation setting (RIM1-0) during RGB interface operation.
- 4. See the "External Display Interface" section for the sequences when switching from one mode to another.



Figure 11

### Internal clock operation

The display operation is synchronized with signals generated from internal oscillator's clock (OSC) in this mode. All input via external display interface is disabled in this operation. The internal RAM can be accessed only via system interface.

#### RGB interface operation (1)

The display operation is synchronized with frame synchronous signal (VSYNC), line synchronous signal (HSYNC), and dot clock signal (DOTCLK) in RGB interface operation. These signals must be supplied during the display operation via RGB interface.

The R61505V transfers display data in units of pixels via DB17-0 pins. The display data is stored in the internal RAM. Window address function can minimize the total number of data transfer for moving picture display because only the moving picture data is transferred to the RAM, enabling the R61505V to display a moving picture and another image stored in the RAM simultaneously.

The front porch (FP), back porch (BP), and the display (NL) periods are automatically calculated inside the R61505V by counting the number of clocks of line synchronous signal (HSYNC) from the falling edge of the frame synchronous signal (VSYNC). Make sure to transfer pixel data via DB17-0 pins in accordance with the setting of these periods.

#### **RGB** interface operation (2)

This mode enables the R61505V to rewrite RAM data via system interface while using RGB interface for display operation. To rewrite RAM data via system interface, make sure that display data is not transferred via RGB interface (ENABLE = high). To return to the RGB interface operation, change the ENABLE setting first. Then set an address in the RAM address set register and R22h in the index register.

#### **VSYNC** interface operation

The internal display operation is synchronized with the frame synchronous signal (VSYNC) in this mode. This mode enables the R61505V to display a moving picture via system interface by writing data in the internal RAM at faster than the calculated minimum speed via system interface from the falling edge of frame synchronous (VSYNC). In this case, there are restrictions in speed and method of writing RAM data. For details, see the "VSYNC Interface" section.

As external input, only VSYNC signal input is valid in this mode. Other input via external display interface becomes disabled.

The front porch (FP), back porch (BP), and the display (NL) periods are automatically calculated from the frame synchronous signal (VSYNC) inside the R61505V according to the instruction settings for these periods.

#### FMARK interface operation

In the FMARK interface operation, data is written to internal RAM via system interface synchronizing with the frame mark signal (FMARK), realizing tearing-less moving picture while using conventional system interface. In this case, there are restrictions in speed and method of writing RAM data. See "FMARK interface" for detail.

# **System Interface**

The following are the kinds of system interfaces available with the R61505V. The interface operation is selected by setting the IM3/2/1/0 pins. The system interface is used for instruction setting and RAM access.

Table 67 IM Bit Settings and System Interface

| IM3 | IM2 | IM1 | IMO | Interfacing Mode with<br>Host processor | DB Pins        | Colors                |
|-----|-----|-----|-----|-----------------------------------------|----------------|-----------------------|
| 0   | 0   | 0   | 0   | Setting inhibited                       | -              | -                     |
| 0   | 0   | 0   | 1   | Setting inhibited                       | -              | -                     |
| 0   | 0   | 1   | 0   | 80-system 16-bit interface              | DB17-10, DB8-1 | 262,144<br>*see Note1 |
| 0   | 0   | 1   | 1   | 80-system 8-bit interface               | DB17-10        | 262,144<br>*see Note2 |
| 0   | 1   | 0   | 0   | Clock synchronous serial interface      | -              | 65,536                |
| 0   | 1   | 0   | 1   | Setting inhibited                       | -              | -                     |
| 0   | 1   | 1   | 0   | Setting inhibited                       | -              | -                     |
| 0   | 1   | 1   | 1   | Setting inhibited                       | -              | -                     |
| 1   | 0   | 0   | 0   | Setting inhibited                       | -              | -                     |
| 1   | 0   | 0   | 1   | Setting inhibited                       | -              | -                     |
| 1   | 0   | 1   | 0   | 80-system 18-bit interface              | DB17-0         | 262,144               |
| 1   | 0   | 1   | 1   | 80-system 9-bit interface               | DB17-9         | 262,144               |
| 1   | 1   | 0   | 0   | Setting inhibited                       | -              | -                     |
| 1   | 1   | 0   | 1   | Setting inhibited                       | -              | -                     |
| 1   | 1   | 1   | 0   | Setting inhibited                       | -              | -                     |
| 1   | 1   | 1   | 1   | Setting inhibited                       | -              | -                     |

Notes: 1. 262,144 colors in 16-bit 2-transfer mode.

2. 262,144 colors in 8-bit 2-transfer mode.

### 80-system 18-bit Bus Interface



Figure 12 18-bit interface



Figure 13 18-bit Interface Data Format (Instruction Write / Device Code Read) (IM[3:0]=1010)



Figure 14 18-bit Interface Data Format (RAM Data Write / RAM Data Read)

### 80-system 16-bit Bus Interface



Figure 15 16-bit interface



Figure 16 16-bit Interface Data Format (Instruction Write / Device Code Read)



Figure 17 16-bit Interface Data Format (RAM data write / RAM data read)

### Data Transfer Synchronization in 16-bit Bus Interface operation

The R61505V supports data transfer synchronization function to reset the counters for upper 16-/2-bit and lower 2-/16-bit transfers in 16-bit 2-transfer mode. When a mismatch occurs in upper and lower data transfers due to noise and so on, the 000H instruction is written four times consecutively to reset the upper and lower counters in order to restart the data transfer from upper 2/16 bits. The data transfer synchronization, when executed periodically, can help the display system recover from runaway.

Make sure to execute data transfer synchronization after reset operation before transferring instruction.



Figure 18 16-bit Data Transfer Synchronization

## 80-system 9-bit Bus Interface

When transferring 16-bit instruction, it is divided into upper and lower 8 bits, and the upper 8 bits are transferred first (the LSB is not used). The RAM write data is also divided into upper and lower 9 bits, and the upper 9 bits are transferred first. The unused DB pins must be fixed at either IOVCC or GND level. When transferring the index register setting, make sure to write upper byte (8 bits).



Figure 19 9-bit interface



Figure 20 9-bit Interface Data Format (Instruction Write / Device Code Read)



Figure 21 9-bit Interface Data Format (RAM Data Write/RAM Data Read)

#### Data Transfer Synchronization in 9-bit Bus Interface operation

The R61505V supports data transfer synchronization function to reset the counters for upper and lower 9-bit transfers in 9-bit bus transfer mode. When a mismatch occurs in upper and lower data transfers due to noise and so on, the 00H instruction is written four times consecutively to reset the upper and lower counters in order to restart the data transfer from upper 9 bits. The data transfer synchronization, when executed periodically, can help the display system recover from runaway.

Make sure to execute data transfer synchronization after reset operation before transferring instruction.



Figure 22 9-bit Data Transfer Synchronization

## 80-system 8-bit Bus Interface

When transferring 16-bit instruction, it is divided into upper and lower 8 bits, and the upper 8 bits are transferred first. The RAM write data is also divided into upper and lower 8 bits, and the upper 8 bits are transferred first. The RAM write data is expanded into 18 bits internally as shown below. The unused DB pins must be fixed at either IOVCC or GND level. When transferring the index register setting, make sure to write upper byte (8 bits).



Figure 23 8-bit interface



Figure 24 8-bit Interface Data Format (Instruction Write / Device Code Read)



Figure 25 8-bit Interface Data Format (RAM Data Write / RAM Data Read)

## Data Transfer Synchronization in 8-bit Bus Interface operation

The R61505V supports data transfer synchronization function to reset the counters for upper and lower 8-bit transfers in 8-bit bus transfer mode. When a mismatch occurs in upper and lower data transfers due to noise and so on, the 00H instruction is written four times consecutively to reset the upper and lower counters in order to restart the data transfer from upper 8 bits. The data transfer synchronization, when executed periodically, can help the display system recover from runaway.

Make sure to execute data transfer synchronization after reset operation before transferring instruction.



Figure 26 8-bit Data Transfer Synchronization

#### **Serial Interface**

The serial interface is selected by setting the IM3/2/1/0 pins to the GND/IOVCC/GND/GND levels, respectively. The data is transferred via chip select line (CSX), serial transfer clock line (SCL), serial data input line (SDI), and serial data output line (SDO). In serial interface operation, unused DB17-0 pins must be fixed at either IOVCC or GND level.

The R61505V recognizes the start of data transfer on the falling edge of CSX input and starts transferring the start byte. It recognizes the end of data transfer on the rising edge of CSX input. The R61505V is selected when the 6-bit chip address in the start byte transferred from the transmission unit and the 6-bit device identification code ("011100") assigned to the R61505V are compared and agreed. Then, the R61505V starts taking in subsequent data. Two different chip addresses must be assigned to the R61505V because the seventh bit of the start byte is register select bit (RS). When RS = 0, index register write operation is executed. When RS = 1, either instruction write operation or RAM read/write operation is executed. The eighth bit of the start byte is R/W bit, which selects either read or write operation. The R61505V receives data when the R/W = 0, and transfers data when the R/W = 1.

When writing data to the GRAM via serial interface, the data is written to the GRAM after it is transferred in two bytes. The R61505V writes data to the GRAM in units of 18 bits by adding the same bits as the MSBs to the LSB of R and B dot data.

After receiving the start byte, the R61505V starts transferring or receiving data in units of bytes. The R61505V transfers data from the MSB. The R61505V's instruction consists of 16 bits and it is executed inside the R61505V after it is transferred in two bytes (16 bits: DB15-0) from the MSB. The R61505V expands RAM write data into 18 bits when writing them to the internal GRAM. The first byte received by the R61505V following the start byte is recognized as the upper eight bits of instruction and the second byte is recognized as the lower 8 bits of instruction.

When reading data from the GRAM, valid data is not transferred to the data bus until first five bytes of data are read from the GRAM following the start byte. The R61505V sends valid data to the data bus when it reads the sixth and subsequent byte data.

**Table 68 Start Byte Format** 

| Transferred Bits  | S              | 1   | 2        | 3    | 4 | 5 | 6 | 7  | 8   |
|-------------------|----------------|-----|----------|------|---|---|---|----|-----|
| Start byte format | Transfer start | Dev | ice ID o | code |   |   |   | RS | R/W |
|                   |                | 0   | 1        | 1    | 1 | 0 | 0 |    |     |

Table 69 Functions of RS, R/W bits

| RS | R/W | Function                           |
|----|-----|------------------------------------|
| 0  | 0   | Set index register                 |
| 0  | 1   | Setting inhibited                  |
| 1  | 0   | Write instruction or RAM data      |
| 1  | 1   | Read register settings or RAM data |



Figure 27 Serial Interface Data Format



Figure 28 Data Transfer in Serial interface

#### **VSYNC** Interface

The R61505V supports VSYNC interface, which enables displaying a moving picture via system interface by synchronizing the display operation with the VSYNC signal. VSYNC interface can realize moving picture display with minimum modification to the conventional system operation.



Figure 29 VSYNC Interface

The VSYNC interface is selected by setting DM1-0 = 10 and RM = 0. In VSYNC interface operation, the internal display operation is synchronized with the VSYNC signal. By writing data to the internal RAM at faster than the calculated minimum speed (internal display operation speed + margin), it becomes possible to rewrite the moving picture data without flickering the display and display a moving picture via system interface.

The display operation is performed in synchronization with the internal clock signal generated from the internal oscillator and the VSYNC signal. The display data is written in the internal RAM so that the R61505V rewrites the data only within the moving picture area and minimize the number of data transfer required for moving picture display.



Figure 30 Moving Picture Data Transfers via VSYNC Interface

The VSYNC interface has the minimum for RAM data write speed and internal clock frequency, which must be more than the values calculated from the following formulas, respectively.

```
Internal\ clock\ frequency\ (fosc)\ [Hz] \\ = FrameFrequency\times (DisplayLines(NL) + FrontPorch(FP) + BackPorch(BP))\times 16(clocks)\times variance
```

$$RAMWriteSpeed (min.)[Hz] > \frac{240 \times DisplayLines (NL)}{((BackPorch(BP) + DisplayLines (NL) - m \arg ins) \times DivisionRatio \times ClockPerlH) \times \frac{1}{fosc}}$$

Note: When RAM write operation does not started right after the falling edge of VSYNC, the time from the falling edge of VSYNC until the start of RAM write operation must also be taken into account.

An example of calculating minimum RAM writing speed and internal clock frequency in VSYNC interface operation is as follows.

### [Example]

Panel size  $240 \text{ RGB} \times 320 \text{ lines (NL} = 6^{\circ}\text{h}27: 320 \text{ lines)}$ 

Total number of lines (NL) 320 lines

Back/front porch 13/3 lines (BP = 8h'D, FP = 8'h3)

Frame frequency 60 Hz

Maximum internal oscillation frequency  $600kHz \times 1.07 = 642kHz$ 

Clock division ratio (DIVE) 1
Number of clock per 1H period (RTNE) 30

RTN\*: RTNI or RTNE. DIV\*: DIVI or DIVE.

- Notes: 1. When setting the internal clock frequency, possible causes of fluctuation must also be taken into consideration. In this example, the internal clock frequency allows for a margin of  $\pm 7\%$  for variances and guarantee that display operation is completed within one VSYNC cycle.
  - 2. This example includes variances attributed to LSI fabrication process and room temperature. Other possible causes of variances, such as differences in external resistors and voltage change are not considered in this example. It is necessary to include a margin for these factors.

# Minimum speed for RAM write [Hz]

 $> 240 \times 320 / \{((13 + 320 - 2) \text{ lines} \times 1 \times 30 \text{ clocks}) \times 1/642 \text{ kHz}\} = 4.97 \text{ MHz}$ 

- Notes: 1. In this example, it is assumed that the R61505V starts writing data in the internal RAM on the falling edge of VSYNC.
  - 2. There must be at least a margin of 2 lines between the line to which the R61505V has just written data and the line where display operation on the LCD is performed.

In this example, the RAM write operation at a speed of 4.97MHz or faster, which starts on the falling edge of VSYNC, guarantees the completion of data write operation in a certain line address before the R61505V

starts the display operation of the data written in that line and can write moving picture data without causing flicker on the display.



Figure 31 Write/Display Operation Timing via VSYNC Interface

### **Notes to VSYNC Interface operation**

- 1. The above example of calculation gives a theoretical value. Possible causes of variances of internal oscillator should be taken into consideration. Make enough margin in setting RAM write speed for VSYNC interface operation.
- 2. The above example shows the values when writing over the full screen. Extra margin will be created if the moving picture display area is smaller than that.



Figure 32 RAM Write Speed Margins

- 3. The front porch period continues from the end of one frame period to the next VSYNC input.
- 4. The instructions to switch from internal clock operation (DM1-0 = 00) to VSYNC interface operation modes and vice versa are enabled from the next frame period.
- 5. The partial display and vertical scroll functions are not available in VSYNC interface operation.
- 6. In VSYNC interface operation, set AM = 0 to transfer display data correctly.



Figure 33 Sequences to Switch between VSYNC and Internal Clock Operation Modes

### **FMARK Interface**

In the FMARK interface operation, data is written to internal RAM via system interface synchronizing with the frame mark signal (FMARK), realizing tearing less video image while using conventional system interface. FMARK output position is set in units of line using FMP bit. Set the bit considering data transfer speed.



Figure 34 Display synchronous data transfer interface

In this operation, moving picture display is enabled via system interface by writing data at higher than the internal display operation frequency to a certain degree, which guarantees rewriting the moving picture RAM area without causing flicker on the display.

The data is written in the internal RAM. Therefore, when moving picture is displayed, data is written only to the moving picture display area without using RGB or VSYNC interface, minimizing number of data transfer required for moving picture display.



Figure 35 Moving Picture Data Transfers via FMARK function

When transferring data in synchronization with FMARK signal, minimum RAM data write speed must be taken into consideration. They must be more than the values calculated from the following equations.

$$RAMWriteSpeed (\min.)[Hz] > \frac{240 \times DisplayLines (NL)}{(FP+BP) + DisplayLines (NL) - m \arg ins) \times DivisionRatio (DIVE) \times ClockPerlH (RTNE) \times \frac{1}{fosc}}$$

Notes: When RAM write operation is not started immediately following the rising edge of FMARK, the time from the rising edge of FMARK until the start of RAM write operation must also be taken into account. RTN\*: RTNI or RTNE. DIV\*: DIVI or DIVE.

Examples of calculating minimum RAM data write speed is as follows. The above calculation shows RAM write speed per 1 pixel and is different from write speed defined by data transfer format of each interface.

### [Example]

Panel size  $240 \text{ RGB} \times 320 \text{ lines}$ 

Total number of lines (NL) 320 lines

Back/front porch 13/3 lines (BP = 8h'D, FP = 8'h3) Frame marker position (FMP) Display end line (320<sup>th</sup> line)

Frame frequency 60 Hz

Maximum internal operation clock  $600kHz \times 1.07 = 642kHz$ 

Clock division ratio (DIVE) 1 Number of clock per 1H period (RTNE) 30

- Notes: 1. When setting the internal clock frequency, possible causes of fluctuation must also be taken into consideration. In this example, the internal clock frequency allows for a margin of ±10% for variances and guarantee that display operation is completed within one FMARK cycle.
  - 2. This example includes variances attributed to LSI fabrication process and room temperature. Other possible causes of variances, such as differences in external resistors and voltage change are not considered in this example. It is necessary to include a margin for these factors.

# Minimum speed for RAM writing [Hz]

 $> 240 \times 320 / \{((13+3+320-2) \text{ lines} \times 1 \times 30 \text{ clocks}) \times 1/642 \text{ kHz}\} = 4.95 \text{ MHz} / \text{pixel}$ 

- Notes: 1. In this example, it is assumed that the R61505V starts writing data in the internal RAM on the rising edge of FMARK.
  - 2. There must be at least a margin of 2 lines between the line to which the R61505V has just written data and the line where display operation on the LCD is performed.
  - 3. The FMARK signal output position is set to the line specified by register.

In this example, RAM write operation at a speed of 4.95MHz/pixel or faster, when starting on the rising edge of FMARK, guarantees the completion of data write operation in a certain line address before the R61505V starts the display operation of the data written in that line and can write moving picture data without causing flicker on the display.



Figure 36

Note to display operation synchronous data transfer using FMARK signal

1. The above example of calculation gives a theoretical value. Possible causes of variances of internal oscillator should be taken into consideration. Make enough margin in setting RAM write speed for this operation.

### **FMP** bit setting

The host processor detects FMARK signal outputted at the position defined by FMP bit. The R61505V outputs an FMARK pulse when the R61505V is driving the line specified by FMP[8:0] bits. The FMARK signal can be used as a trigger signal to write display data in synchronization with display operation by detecting the address where data is read out for display operation.

The FMARK output interval is set by FMI[2:0] bits. Set FMI[2:0] bits in accordance with display data rewrite cycle and data transfer rate. This setting is enabled when FMARKOE = 1.

Table 70

| FMP[8:0]     | FMARK output position  |
|--------------|------------------------|
| 9'h000       | 0                      |
| 9'h001       | 1 <sup>st</sup> line   |
| 9'h002       | 2 <sup>nd</sup> line   |
| :            | :                      |
| 9'h14D       | 333 <sup>rd</sup> line |
| 9'h14E       | 334 <sup>th</sup> line |
| 9'h14F       | 335 <sup>th</sup> line |
| 9'h150 ~ 1FF | Setting disabled       |

Table 71

| FMI[2]        | FMI[1] | FMI[0] | FMARK Output interval |
|---------------|--------|--------|-----------------------|
| 0             | 0      | 0      | 1 frame period        |
| 0             | 0      | 1      | 2 frame periods       |
| 0             | 1      | 1      | 4 frame periods       |
| 1             | 0      | 1      | 6 frame periods       |
| Other setting |        |        | Setting disabled      |

# FMP setting example



Figure 37

# **External Display Interface**

The R61505V supports the RGB interface. The interface format is set by RM[1:0] bits. The internal RAM is accessible via RGB interface.

Table 72 RGB interface

| RIM1 | RIM0 | RGB Interface        | DB Pin          |
|------|------|----------------------|-----------------|
| 0    | 0    | 18-bit RGB interface | DB17-0          |
| 0    | 1    | 16-bit RGB interface | DB17-13, DB11-1 |
| 1    | 0    | Setting inhibited    | -               |
| 1    | 1    | Setting inhibited    | -               |

Note: Using more than two interfaces at a time is prohibited.

#### **RGB** Interface

The display operation via RGB interface is synchronized with VSYNC, HSYNC, and DOTCLK. The data can be written only within the specified area with low power consumption by using window address function. In RGB interface operation, front and back porch periods must be made before and after the display period.



Figure 38 Display Operation via RGB Interface

## Polarities of VSYNC, HSYNC, ENABLE, and DOTCLK Signals

The polarities of VSYNC, HSYNC, ENABLE, and DOTCLK signals can be changed by setting the DPL, EPL, HSPL, and VSPL bits respectively for convenience of system configuration.

## **RGB Interface Timing**



Figure 39

Table 73

| Parameters                 | Symbols | Min. | Тур. | Max. | Step | Unit      |
|----------------------------|---------|------|------|------|------|-----------|
| Horizontal Synchronization | Hsync   | 2    | 10   | 16   | 1    | DOTCLKCYC |
| Horizontal Back Porch      | HBP     | 2    | 20   | 24   | 1    | DOTCLKCYC |
| Horizontal Address         | HAdr    | _    | 240  | _    | 1    | DOTCLKCYC |
| Horizontal Front Porch     | HFP     | 2    | 10   | 16   | 1    | DOTCLKCYC |
| Vertical Synchronization   | Vsync   | 1    | 2    | 4    | 1    | Line      |
| Vertical Back Porch        | VBP     | 1    | 2    | _    | 1    | Line      |
| Vertical Address           | VAdr    | _    | 320  | _    | 1    | Line      |
| Vertical Front Porch       | VFP     | 3    | 4    | _    | 1    | Line      |

Notes: 1. Typ. is the setting example under the following usage conditions (resolution of the panel = QVGA 240 x 320, clock frequency = 5.64 MHz, frame frequency = about 60 Hz).

2. In case of setting, make sure (Number of DOTCLK in 1H period) ≥ RTNE[5:0] (number of clocks) × DIVE[1:0] (Division ratio) × (PCDIVL + PCDIVH). The setting example is shown in next page.

### **Setting Example of Display Control Clock in RGB Interface Operation**

Register

The display operation is performed by the internal clock (DOTCLKD) generated by dividing the frequency of DOTCLK.

**PCDIVH[2:0]** defines number of DOTCLK during DOTCLKD is high in the units of 1clock. **PCDIVL[2:0]** defines number of DOTCLK during DOTCLKD is low in the units of 1clock.

Also, write PCDIVH and PCDIVL values so that DOTCLKD frequency is the closest to internal oscillation clock frequency (600KHz). Make sure that PCDIVL=PCDIVH or PCDIVH-1. Make sure that (number of DOTCLKs in 1H)  $\geq$  RTNE (number of clocks) \* DIVE (division ratio) \* (PCDIVL + PCDIVH).

Setting example: in case of setting the frame frequency to 60Hz

Internal clock: Internal oscillation clock = 600kHz

DIVE =  $2^{\circ}b0 (1/1)$ RTNE = 30 clocks

FP = 8'h8, BP = 8'h8, NL = 6'h27 (320 lines)

→ 59.52Hz

DOTCLK: Hsync = 10 clocks

HBP = 20 clocks HFP = 10 clocks

 $60Hz \times (8+320+8)$  lines  $\times (10+20+240+10)$  clocks = 5.64MHz

DOTCLK frequency = 5.64MHz

5.64MHz / 600kHz =  $9.4 \rightarrow$  Write PCDIVH and PCDIVL values so that DOTCLK

frequency is divided into 8.

5.64 / 9 = 6.27kHz

(627kHz/1)/30 clocks/336 lines = 62.2Hz

PCDIVH: 3'h4 PCDIVL: 3'h4



Figure 40

## **RGB Interface Timing**

The timing relationship of signals in RGB interface operation is as follows.

# 16-/18-bit RGB Interface Timing



Figure 41

Note: VLW: VSYNC Low period

HLW: HSYNC Low period DTST: Data transfer setup time

Moving Picture Display via RGB Interface

The R61505V supports RGB interface for moving picture display and incorporates RAM for storing display data, which provides the following advantages in displaying a moving picture.

- 1. The window address function enables transferring data only within the moving picture area
- 2. It becomes possible to transfer only the data written over the moving picture area
- 3. By reducing data transfer, it can contribute to lowering the power consumption of the whole system
- 4. The data in still picture area (icons etc.) can be written over via system interface while displaying a moving picture via RGB interface

### RAM access via system interface in RGB interface operation

The R61505V allows RAM access via system interface in RGB interface operation. In RGB interface operation, data is written to the internal RAM in synchronization with DOTCLK while ENABLE is "Low". When writing data to the RAM via system interface, set ENABLE "High" to stop writing data via RGB interface. Then set RM = "0" to enable RAM access via system interface. When reverting to the RGB interface operation, wait for the read/write bus cycle time. Then, set RM = "1" and the index register to R22h to start accessing RAM via RGB interface. If there is a conflict between RAM accesses via two interfaces, there is no guarantee that the data is written in the RAM.

The following is an example of rewriting still picture data via system interface while displaying a moving picture via RGB interface.



Figure 42 Updating the Still Picture Area while Displaying Moving Picture

#### 16-bit RGB interface

The 16-bit RGB interface is selected by setting RIM1-0 = 01. The display operation is synchronized with VSYNC, HSYNC, and DOTCLK signals. The display data is transferred to the internal RAM in synchronization with the display operation via 16-bit ports while data enable signal (ENABLE) allows RAM access via RGB interface.

Instruction bits can be transferred only via system interface.



Figure 43 Example of 16-Bit RGB Interface and Data Format

# 18-bit RGB interface

The 18-bit RGB interface is selected by setting RIM1-0 = 00. The display operation is synchronized with VSYNC, HSYNC, and DOTCLK signals. The display data is transferred to the internal RAM in synchronization with the display operation via 18-bit ports (DB17-0) while data enable signal (ENABLE) allows RAM access via RGB interface.

Instruction bits can be transferred only via system interface.



Figure 44 Example of 18-bit RGB Interface and Data Format

### Notes to RGB interface operation

a. The following functions are not available in external display interface operation.

Table 74 Functions Not Available in External Display Interface operation

| Function        | External Display Interface | Internal Display Operation |
|-----------------|----------------------------|----------------------------|
| Partial display | Not available              | Available                  |
| Scroll function | Not available              | Available                  |

- b. The VSYNC, HSYNC, and DOTCLK signals must be supplied during display period.
- c. The reference clock to generate liquid crystal panel controlling signals in RGB interface operation is DOTCLK, not the internal clock generated from the internal oscillator.
- d. When switching between the internal operation mode and the external display interface operation mode, follow the sequences below in setting instruction.
- e. In RGB interface operation, front porch period continues after the end of frame period until next VSYNC input is detected.
- f. In RGB interface operation, RAM address AD16-0 is set in the address counter every frame on the falling edge of VSYNC.



Figure 45 RGB and Internal Clock Operation Mode switching sequences

## **RAM Address and Display Position on the Panel**

The R61505V has memory to store display data of 240RGB x 320 lines. The R61505V incorporates a circuit to control partial display, which allows switching driving method between full-screen display mode and partial display mode.

The R61505V makes display arrangement setting and panel driving position control setting separately and specifies RAM area for each image displayed on the panel. For this reason, there is no need to take the mounting position of the panel into consideration when designing a display on the panel.

The following is the sequence of setting full-screen and partial display.

- 1. Set PTSA and PTEA bits to specify the RAM area for a partial image
- 2. Set the display position of the partial image on the base image by setting PTDP.
- 3. Set NL to specify the number of lines to drive the liquid crystal panel to display the base image
- 4. After display ON, set display enable bits (BASEE and PTDE) to display images

| Normal display  | BASEE = 1, PTDE=0     |
|-----------------|-----------------------|
| Partial display | BASEE = 0, $PTDE = 1$ |

5. Rewrite BASEE and PTDE bits when switching full display and partial display of the base image.

In driving the liquid crystal panel, the clock signal for gate line scan is supplied consecutively via interface in accordance with the number of lines to drive the liquid crystal panel (NL setting).

When switching the display position in horizontal direction, set SS bit when writing RAM data.

Table 75

|            | Display ENABLE | Numbers of lines | RAM area                      |
|------------|----------------|------------------|-------------------------------|
| Base image | BASEE          | NL               | (BSA, BEA) = (9'h000, 9'h13F) |

Notes 1: The base image is displayed from the first line of the screen.

2: Make sure  $NL \le 320$  (lines) = BEA – BSA when setting a base image RAM area. BSA and BEA are fixed to 9'h000, 9'h13F, respectively.

Table 76

|               | Display ENABLE | Display position | RAM area     |
|---------------|----------------|------------------|--------------|
| Partial image | PTDE           | PTDP             | (PTSA, PTEA) |



Figure 46 RAM Address, display position and drive position

### Restrictions in setting display control instruction

There are restrictions in coordinates setting for display data, display position and partial display.

### (1) Screen setting

In setting the number of lines to drive the liquid crystal panel, make sure that the total number of lines is 320 lines or less ( $NL \le 320$  lines).

### (2) Base image display

- 1. The base image is displayed from the first line of the screen:  $BSA = 1^{st}$  line (of the display panel)
- 2. The base image RAM area (specified by BSA = 000, BEA = 13F) must include the same or more number of lines set by NL bits (liquid crystal panel drive lines): BEA BSA = 320 lines  $\geq$  NL

The following figure shows the relationship among the RAM address, display position, and the lines driven for the display.



Figure 47 Display RAM address and panel display position

Note: This figure shows the relationship between RAM line address and the display position on the panel. In the R61505V's internal operation, the data is written in the RAM area specified by the window address setting registers.

# **Instruction setting example**

The followings are examples of settings for 240 (RGB) x 320 (lines) panel.

## 1. Full screen display with no partial image

The following is an example of settings for full screen display.

Table 77

| Base image display instruction |       |  |
|--------------------------------|-------|--|
| BASEE                          | 1     |  |
| NL[5:0]                        | 6'h27 |  |

| PTDE | 0 |
|------|---|



Figure 48 Full screen display with no partial image

## 2. Partial Display

The following is an example of settings for displaying only partial image and turning off the base image. The partial image is displayed at the designated position.

Table 78

| Base image display instruction |       |
|--------------------------------|-------|
| BASEE                          | 0     |
| NL[5:0]                        | 6'h27 |

| Partial image display instruction |        |
|-----------------------------------|--------|
| PTDE                              | 1      |
| PTSA [8:0]                        | 9'h000 |
| PTEA [8:0]                        | 9'h00F |
| PTDP [8:0]                        | 9'h080 |



Figure 49 Partial Display

#### Window Address Function

The window address function enables writing display data consecutively in a rectangular area (a window address area) made in the internal RAM. The window address area is made by setting the horizontal address register (start: HSA7-0, end: HEA 7-0 bits) and the vertical address register (start: VSA8-0, end: VEA8-0 bits). The AM and I/D bits set the transition direction of RAM address (either increment or decrement, horizontal or vertical, respectively). Setting these bits enables the R61505V to write data including image data consecutively without taking the data wrap position into account.

The window address area must be made within the GRAM address map area. Also, the AD16-0 bits (RAM address set register) must be set to an address within the window address area.

```
[Window address area setting range]

(Horizontal direction) 8 \text{'h}00 \le \text{HSA} < \text{HEA} \le 8 \text{'h}\text{EF}

(Vertical direction) 9 \text{'h}000 \le \text{VSA} < \text{VEA} \le 9 \text{'h}13\text{F}

[RAM Address setting range]

(RAM address) \text{HSA} \le \text{AD} [7:0] \le \text{HEA}

\text{VSA} \le \text{AD} [16:8] \le \text{VEA}
```



Figure 50 Automatic address update within a Window Address Area

# **Scan Mode Setting**

The R61505V can set the gate pin assignment and the scan direction in the following 4 different ways by setting SM and GS bits to realize various connections between the R61505V and the LCD panel.



Figure 51

# 8-color Display Mode

The R61505V has a function to display in eight colors. In this display mode, only V0 and V63 are used and power supplies to other grayscales (V1 to V62) are turned off to reduce power consumption.

In 8-color display mode, the  $\gamma$ -adjustment registers R30h-R39h are disabled and the power supplies to V1 to V62 halt. The R61505V does not require rewriting GRAM data for 8-color display. Only MSBs of red, green and blue data is used to display image on the panel.



Figure 52 8-color Display Mode

### **Line Inversion AC Drive**

The R61505V supports n-line inversion alternating current drive in addition to frame-inversion liquid crystal alternating current drive. The timing to invert the electric current can be set to either every line or every two lines. Set line number of inversion timing checking display quality on liquid crystal display. Note that less number of line leads to higher inversion frequency of liquid crystal and more charge/discharge battery in liquid crystal display.



Figure 53 Example of Alternating Signals for n-line Inversion

Note: Polarity of signals does not invert during blank periods, namely back and front porch periods. N-line inversion operation starts from the first line of a display area.

## **Alternating Timing**

The following figure illustrates the liquid crystal polarity inversion timing in different LCD driving methods. In case of frame-inversion AC drive, the polarity is inverted as the R61505V draws one frame, which is followed by a blank period lasting for (BP+FP) periods. In case of line inversion AC drive, selected by setting BC0=1 (R02h), polarity is inverted as the R61505V draws one line, and a blank period lasting for (BP+FP) periods is inserted when the R61505V draws one frame.



Figure 54 Alternating Timing

Note: Frame inversion AC drive is available only in 8-color display mode. Check the quality of display on the panel.

## Frame-Frequency Adjustment Function

The R61505V supports a function to adjust frame frequency. The frame frequency for driving liquid crystal can be adjusted by setting the DIV, RTN bits without changing the oscillation frequency.

The R61505V allows changing the frame frequency depending on whether moving picture or still picture is displayed on the screen. In this case, set a high oscillation frequency. By changing the DIVI and RTNI settings, the R61505V can operate at high frame frequency when displaying a moving picture, which requires the R61505V to rewrite data in high speed, and it can operate at low frame frequency when displaying a still picture.

#### Relationship between liquid crystal drive duty and frame frequency

The following equation represent the relationship between liquid crystal drive duty and frame frequency. The frame frequency can be changed by setting the 1H period adjustment bit (RTNI) and the operation clock frequency division ratio setting bit (DIVI).

Equation for calculating frame frequency

$$FrameFrequency(f_{\textit{FLM}}) = \frac{fosc}{Number of Clocks / line \times DivisionRatio \times (Line + FP + BP)} [Hz]$$

fosc: clock frequency for internal operation (600kHz)

Number of clocks per line: RTNI bit

Division ratio: DIVI bit

Line: number of lines to drive the LCD panel (NL bit)

Number of lines for front porch : FP Number of lines for back porch: BP

#### Example of Calculation: when maximum frame frequency = 60 Hz

fosc: 600kHz

Number of lines: 320 lines

1H period: 30 clock cycles (RTNI[4:0] = "1E")

Division ratio of operating clock: 1

Front porch: 8 lines Back porch: 8 lines

 $f_{FLM} = 600 \text{kHz}/(30 \text{ clocks x } 1/1 \text{ x } (320 + 8 + 8) \text{ (lines)} = 60 \text{Hz}$ 

## **Partial Display Function**

The partial display function allows the R61505V to drive lines selectively to display partial image by setting partial display control registers. The lines not used for displaying partial images are driven at non-lit display level to reduce power consumption.

The power efficiency can be enhanced in combination with 8-color display mode. Check the display quality when using low power consumption functions.



Figure 55 Partial display example

Note: See the "RAM Address and Display Position on the Panel" for details on the relationship between the display positions of partial images and respective RAM area setting.

# **Liquid Crystal Panel Interface Timing**

The relationships between RGB interface signals and liquid crystal panel control signals in internal operation and RGB interface operations are as follows

## **Internal clock operation**



Figure 56

VCOM alternating position and source output alternating position can be set separately.

#### **RGB** interface operation



Figure 57

## γ Correction Function

#### γ Correction Function

The R61505V supports  $\gamma$ -correction function to make the optimal colors according to the characteristics of the panel. The R61505V has registers for positive and negative polarities to allow different settings.

#### γ Correction Circuit

The following figure shows the  $\gamma$ -correction circuit. According to the settings of variable resistors R0 to R8, the voltage the level of which is the difference is between VREG1OUT and VGS is evenly divided into 8 grayscale reference voltages (V0, V1, V8, V20, V43, V55, V62 and V63). Other 42-grayscale voltages are generated by setting the level at a certain interval between the reference voltages. For grayscale voltage, see "Grayscale Voltage Calculation Formula".



Figure 58

# γ Correction Registers

The  $\gamma$ -correction registers include 42-bit reference level adjustment registers for each of positive polarity and negative polarity and 8-bit interpolation adjustment registers.

## Reference level adjustment registers

Table 79 Reference level adjustment registers

| Resistor | Gamma             |                   |  |  |  |
|----------|-------------------|-------------------|--|--|--|
| Kesisioi | Positive polarity | Negative polarity |  |  |  |
| R0       | PR0P00[4:0]       | PR0N00[4:0]       |  |  |  |
| R1       | PR0P01[4:0]       | PR0N01[4:0]       |  |  |  |
| R2       | PR0P02[4:0]       | PR0N02[4:0]       |  |  |  |
| R3       | PR0P03[3:0]       | PR0N03[3:0]       |  |  |  |
| R4       | PR0P04[3:0]       | PR0N04[3:0]       |  |  |  |
| R5       | PR0P05[3:0]       | PR0N05[3:0]       |  |  |  |
| R6       | PR0P06[4:0]       | PR0N06[4:0]       |  |  |  |
| R7       | PR0P07[4:0]       | PR0N07[4:0]       |  |  |  |
| R8       | PR0P08[4:0]       | PR0N08[4:0]       |  |  |  |

Table 80 Reference level adjustment registers and resistors

| Resistor | Register   |       | Resistance | Resistor  | Registe    | er    | Resistance  |
|----------|------------|-------|------------|-----------|------------|-------|-------------|
| Resistor | Name       | Value | Resistance | IVE212101 | Name       | Value | ivesistance |
|          |            | 5'h00 | 0R         |           |            | 4'h0  | 4R          |
|          |            | 5'h01 | 1R         |           |            | 4'h1  | 5R          |
| R0       | PR**0[4:0] | 5'h02 | 2R         | R5        | PR**5[3:0] | 4'h2  | 6R          |
|          |            |       |            |           |            |       |             |
|          |            | 5'h1F | 31R        |           |            | 4'hF  | 19R         |
|          |            | 5'h00 | 1R         |           |            | 5'h00 | 2R          |
|          |            | 5'h01 | 2R         |           |            | 5'h01 | 3R          |
| R1       | PR**1[4:0] | 5'h02 | 3R         | R6        | PR**6[4:0] | 5'h02 | 4R          |
|          |            |       |            |           |            |       |             |
|          |            | 5'h1F | 32R        |           |            | 5'h1F | 33R         |
|          |            | 5'h00 | 2R         | R7        |            | 5'h00 | 1R          |
|          |            | 5'h01 | 3R         |           |            | 5'h01 | 2R          |
| R2       | PR**2[4:0] | 5'h02 | 4R         |           | PR**7[4:0] | 5'h02 | 3R          |
|          |            |       |            |           |            |       |             |
|          |            | 5'h1F | 33R        |           |            | 5'h1F | 32R         |
|          |            | 4'h0  | 4R         |           | PR**8[4:0] | 5'h00 | 2R          |
|          |            | 4'h1  | 5R         |           |            | 5'h01 | 3R          |
| R3       | PR**3[3:0] | 4'h2  | 6R         | R8        |            | 5'h02 | 4R          |
|          |            |       |            |           |            |       |             |
|          |            | 4'hF  | 19R        |           |            | 5'h1F | 33R         |
|          |            | 4'h0  | 8R         |           |            | •     |             |
|          |            | 4'h1  | 9R         |           |            |       |             |
| R4       | PR**4[3:0] | 4'h2  | 10R        |           |            |       |             |
|          |            |       |            |           |            |       |             |
|          |            | 4'hF  | 23R        |           |            |       |             |

Note: \*\* in the above table represents 0P/0N/1P/1N/2P/2N.

# **Interpolation Registers**

**Table 81 Interpolation Registers** 

| Interpolation | Gamma             |                   |  |  |  |
|---------------|-------------------|-------------------|--|--|--|
| adjustment    | Positive polarity | Negative polarity |  |  |  |
| V2 ~ V7       | PI0P0[1:0]        | PI0N0[1:0]        |  |  |  |
|               | PI0P1[1:0]        | PI0N1[1:0]        |  |  |  |
| V56 ~ V61     | PI0P2[1:0]        | PI0N2[1:0]        |  |  |  |
|               | PI0P3[1:0]        | PI0N3[1:0]        |  |  |  |

Table 82 Interpolation factor for V2 to V7

(See "Grayscale Voltage Calculation Formula" for IPV\* level)

| PI**0[1:0] | PI**1[1:0] | IPV2 | IPV3 | IPV4 | IPV5 | IPV6 | IPV7 |
|------------|------------|------|------|------|------|------|------|
|            | 2'h0       | 81%  | 67%  | 52%  | 39%  | 26%  | 13%  |
| 2'h0       | 2'h1       | 78%  | 61%  | 43%  | 33%  | 22%  | 11%  |
| 2110       | 2'h2       | 73%  | 52%  | 31%  | 23%  | 15%  | 8%   |
|            | 2'h3       | 72%  | 50%  | 28%  | 21%  | 14%  | 7%   |
|            | 2'h0       | 80%  | 68%  | 56%  | 42%  | 28%  | 14%  |
| 2'h1       | 2'h1       | 76%  | 62%  | 48%  | 36%  | 24%  | 12%  |
| 2111       | 2'h2       | 70%  | 52%  | 35%  | 26%  | 17%  | 9%   |
|            | 2'h3       | 69%  | 50%  | 31%  | 23%  | 16%  | 8%   |
|            | 2'h0       | 78%  | 70%  | 61%  | 46%  | 30%  | 15%  |
| 2'h2       | 2'h1       | 74%  | 63%  | 53%  | 39%  | 26%  | 13%  |
| 2112       | 2'h2       | 66%  | 53%  | 39%  | 29%  | 20%  | 10%  |
|            | 2'h3       | 64%  | 50%  | 36%  | 27%  | 18%  | 9%   |
|            | 2'h0       | 78%  | 70%  | 63%  | 47%  | 31%  | 16%  |
| 2'h3       | 2'h1       | 73%  | 64%  | 54%  | 41%  | 27%  | 14%  |
| 2110       | 2'h2       | 65%  | 53%  | 41%  | 31%  | 20%  | 10%  |
|            | 2'h3       | 63%  | 50%  | 37%  | 28%  | 19%  | 9%   |

Table 83 Interpolation factor for V56 to V61

| PI**3[1:0] | PI**2[1:0] | IPV56 | IPV57 | IPV58 | IPV59 | IPV60 | IPV61 |
|------------|------------|-------|-------|-------|-------|-------|-------|
|            | 2'h0       | 87%   | 74%   | 61%   | 48%   | 33%   | 19%   |
| 2'h0       | 2'h1       | 89%   | 78%   | 67%   | 57%   | 39%   | 22%   |
| 2110       | 2'h2       | 92%   | 85%   | 77%   | 69%   | 48%   | 27%   |
|            | 2'h3       | 93%   | 86%   | 79%   | 72%   | 50%   | 28%   |
|            | 2'h0       | 86%   | 72%   | 58%   | 44%   | 32%   | 20%   |
| 2'h1       | 2'h1       | 88%   | 76%   | 64%   | 52%   | 38%   | 24%   |
| 2111       | 2'h2       | 91%   | 83%   | 74%   | 65%   | 48%   | 30%   |
|            | 2'h3       | 92%   | 84%   | 77%   | 69%   | 50%   | 31%   |
|            | 2'h0       | 85%   | 70%   | 54%   | 39%   | 30%   | 22%   |
| 2'h2       | 2'h1       | 87%   | 74%   | 61%   | 47%   | 37%   | 26%   |
| 2112       | 2'h2       | 90%   | 80%   | 71%   | 61%   | 47%   | 34%   |
|            | 2'h3       | 91%   | 82%   | 73%   | 64%   | 50%   | 36%   |
|            | 2'h0       | 84%   | 69%   | 53%   | 38%   | 30%   | 22%   |
| 2'h3       | 2'h1       | 86%   | 73%   | 59%   | 46%   | 36%   | 27%   |
| 2110       | 2'h2       | 90%   | 80%   | 69%   | 59%   | 47%   | 35%   |
|            | 2'h3       | 91%   | 81%   | 72%   | 63%   | 50%   | 37%   |

Note: \*\* in the above tables represents 0P/0N/1P/1N/2P/2N.

**Table 84 Grayscale Voltage Calculation Formula** 

| Grayscale<br>voltage |                                            | Grayscale<br>voltage | Formula                                    |
|----------------------|--------------------------------------------|----------------------|--------------------------------------------|
| V0                   | $\Delta V \times \Sigma (R1 \sim R8)/SUMR$ | V32                  | V43 + (V20 - V43) x 11/23                  |
| V1                   | $\Delta V$ x $\Sigma$ (R2 $\sim$ R8)/SUMR  | V33                  | V43 + (V20 - V43) x 10/23                  |
| V2                   | V8 + (V1 - V8) x IPV2                      | V34                  | V43 + (V20 - V43) x 9/23                   |
| V3                   | V8 + (V1 - V8) x IPV3                      | V35                  | V43 + (V20 - V43) x 8/23                   |
| V4                   | V8 + (V1 - V8) x IPV4                      | V36                  | V43 + (V20 - V43) x 7/23                   |
| V5                   | V8 + (V1 - V8) x IPV5                      | V37                  | V43 + (V20 - V43) x 6/23                   |
| V6                   | V8 + (V1 - V8) x IPV6                      | V38                  | V43 + (V20 - V43) x 5/23                   |
| V7                   | V8 + (V1 - V8) x IPV7                      | V39                  | V43 + (V20 - V43) x 4/23                   |
| V8                   | $\Delta$ V x $\Sigma$ (R3 $\sim$ R8)/SUMR  | V40                  | V43 + (V20 - V43) x 3/23                   |
| V9                   | V20 + (V8 - V20) x 11/12                   | V41                  | V43 + (V20 - V43) x 2/23                   |
| V10                  | V20 + (V8 - V20) x 10/12                   | V42                  | V43 + (V20 - V43) x 1/23                   |
| V11                  | V20 + (V8 - V20) x 9/12                    | V43                  | $\Delta$ V x $\Sigma$ (R5 $\sim$ R8)/SUMR  |
| V12                  | V20 + (V8 - V20) x 8/12                    | V44                  | V55 + (V43 - V55) x 11/12                  |
| V13                  | V20 + (V8 - V20) x 7/12                    | V45                  | V55 + (V43 - V55) x 10/12                  |
| V14                  | V20 + (V8 - V20) x 6/12                    | V46                  | V55 + (V43 - V55) x 9/12                   |
| V15                  | V20 + (V8 - V20) x 5/12                    | V47                  | V55 + (V43 - V55) x 8/12                   |
| V16                  | V20 + (V8 - V20) x 4/12                    | V48                  | V55 + (V43 - V55) x 7/12                   |
| V17                  | V20 + (V8 - V20) x 3/12                    | V49                  | V55 + (V43 - V55) x 6/12                   |
| V18                  | V20 + (V8 - V20) x 2/12                    | V50                  | V55 + (V43 - V55) x 5/12                   |
| V19                  | V20 + (V8 - V20) x 1/12                    | V51                  | V55 + (V43 - V55) x 4/12                   |
| V20                  | $\Delta V \times \Sigma (R4\sim R8)/SUMR$  | V52                  | V55 + (V43 - V55) x 3/12                   |
| V21                  | V43 + (V20 - V43) x 22/23                  | V53                  | V55 + (V43 - V55) x 2/12                   |
| V22                  | V43 + (V20 - V43) x 21/23                  | V54                  | V55 + (V43 - V55) x 1/12                   |
| V23                  | V43 + (V20 - V43) x 20/23                  | V55                  | $\Delta V \times \Sigma (R6 \sim R8)/SUMR$ |
| V24                  | V43 + (V20 - V43) x 19/23                  | V56                  | V62 + (V55 - V62) x IPV56                  |
| V25                  | V43 + (V20 - V43) x 18/23                  | V57                  | V62 + (V55 - V62) x IPV57                  |
| V26                  | V43 + (V20 - V43) x 17/23                  | V58                  | V62 + (V55 - V62) x IPV58                  |
| V27                  | V43 + (V20 - V43) x 16/23                  | V59                  | V62 + (V55 - V62) x IPV59                  |
| V28                  | V43 + (V20 - V43) x 15/23                  | V60                  | V62 + (V55 - V62) x IPV60                  |
| V29                  | V43 + (V20 - V43) x 14/23                  | V61                  | V62 + (V55 - V62) x IPV61                  |
| V30                  | V43 + (V20 - V43) x 13/23                  | V62                  | ΔV x (R7 + R8)/SUMR                        |
| V31                  | V43 + (V20 - V43) x 12/23                  | V63                  | ΔV x R8/SUMR                               |
|                      |                                            |                      |                                            |

Note: Make sure that

$$\begin{split} \Delta V &= VREG1OUT - VGS \\ SUMR &= \ \Sigma \left( R0 \sim R8 \right) \geq \ 70R \end{split}$$

 $V63 \geq \ 0.2V$ 

Table 85 GRAM Data and the Grayscale Voltage

|              |                   | Grayscal          | e voltage         |                   |       | Grayscale voltage |                   |                   |                   |
|--------------|-------------------|-------------------|-------------------|-------------------|-------|-------------------|-------------------|-------------------|-------------------|
| GRAM<br>data | REV = 1           |                   | REV = 0           |                   | GRAM  | REV               | / = 1             | REV = 0           |                   |
|              | Positive polarity | Negative polarity | Positive polarity | Negative polarity | data  | Positive polarity | Negative polarity | Positive polarity | Negative polarity |
| 6'h00        | V0                | V63               | V63               | V0                | 6'h20 | V32               | V31               | V31               | V32               |
| 6'h01        | V1                | V62               | V62               | V1                | 6'h21 | V33               | V30               | V30               | V33               |
| 6'h02        | V2                | V61               | V61               | V2                | 6'h22 | V34               | V29               | V29               | V34               |
| 6'h03        | V3                | V60               | V60               | V3                | 6'h23 | V35               | V28               | V28               | V35               |
| 6'h04        | V4                | V59               | V59               | V4                | 6'h24 | V36               | V27               | V27               | V36               |
| 6'h05        | V5                | V58               | V58               | V5                | 6'h25 | V37               | V26               | V26               | V37               |
| 6'h06        | V6                | V57               | V57               | V6                | 6'h26 | V38               | V25               | V25               | V38               |
| 6'h07        | V7                | V56               | V56               | V7                | 6'h27 | V39               | V24               | V24               | V39               |
| 6'h08        | V8                | V55               | V55               | V8                | 6'h28 | V40               | V23               | V23               | V40               |
| 6'h09        | V9                | V54               | V54               | V9                | 6'h29 | V41               | V22               | V22               | V41               |
| 6'h0A        | V10               | V53               | V53               | V10               | 6'h2A | V42               | V21               | V21               | V42               |
| 6'h0B        | V11               | V52               | V52               | V11               | 6'h2B | V43               | V20               | V20               | V43               |
| 6'h0C        | V12               | V51               | V51               | V12               | 6'h2C | V44               | V19               | V19               | V44               |
| 6'h0D        | V13               | V50               | V50               | V13               | 6'h2D | V45               | V18               | V18               | V45               |
| 6'h0E        | V14               | V49               | V49               | V14               | 6'h2E | V46               | V17               | V17               | V46               |
| 6'h0F        | V15               | V48               | V48               | V15               | 6'h2F | V47               | V16               | V16               | V47               |
| 6'h10        | V16               | V47               | V47               | V16               | 6'h30 | V48               | V15               | V15               | V48               |
| 6'h11        | V17               | V46               | V46               | V17               | 6'h31 | V49               | V14               | V14               | V49               |
| 6'h12        | V18               | V45               | V45               | V18               | 6'h32 | V50               | V13               | V13               | V50               |
| 6'h13        | V19               | V44               | V44               | V19               | 6'h33 | V51               | V12               | V12               | V51               |
| 6'h14        | V20               | V43               | V43               | V20               | 6'h34 | V52               | V11               | V11               | V52               |
| 6'h15        | V21               | V42               | V42               | V21               | 6'h35 | V53               | V10               | V10               | V53               |
| 6'h16        | V22               | V41               | V41               | V22               | 6'h36 | V54               | V9                | V9                | V54               |
| 6'h17        | V23               | V40               | V40               | V23               | 6'h37 | V55               | V8                | V8                | V55               |
| 6'h18        | V24               | V39               | V39               | V24               | 6'h38 | V56               | V7                | V7                | V56               |
| 6'h19        | V25               | V38               | V38               | V25               | 6'h39 | V57               | V6                | V6                | V57               |
| 6'h1A        | V26               | V37               | V37               | V26               | 6'h3A | V58               | V5                | V5                | V58               |
| 6'h1B        | V27               | V36               | V36               | V27               | 6'h3B | V59               | V4                | V4                | V59               |
| 6'h1C        | V28               | V35               | V35               | V28               | 6'h3C | V60               | V3                | V3                | V60               |
| 6'h1D        | V29               | V34               | V34               | V29               | 6'h3D | V61               | V2                | V2                | V61               |
| 6'h1E        | V30               | V33               | V33               | V30               | 6'h3E | V62               | V1                | V1                | V62               |
| 6'h1F        | V31               | V32               | V32               | V31               | 6'h3F | V63               | V0                | V0                | V63               |

# **Power-supply Generating Circuit**

The following figures show the configurations of liquid crystal drive voltage generating circuit of the R61505V.

## Power supply circuit connection example 1

VCI1 voltage level is defined by VC bit (R11h).



Figure 59

Note: The wiring resistances between the schottky diode and GND/VGL must be  $10\Omega$  or less.

## Power supply circuit connection example 2 (VCI voltage is directly applied to VCI1 pin)

In the following example, the electrical potential VCI is directly applied to VCI1. In this case, step-up operation is more effective although VCI1 voltage level cannot be defined by VC bit (R11h).



Figure 60

Notes: 1. The wiring resistances between the schottky diode and GND/VGL must be  $10\Omega$  or less.

2. When directly applying the VCI level to VCI1, set VC = 3'h7. Capacitor connection to VCIOUT is not required.

# **Specifications of Power-supply Circuit External Elements**

The specifications of external elements connected to the power-supply circuit of the R61505V are as follows. The numbers in the parentheses correspond with the numbers of the elements in the section "Power Supply Generating Circuit".

# Table 86 Capacitor

| Capacitance         | Voltage proof | Pin Connection                                                                                           |  |
|---------------------|---------------|----------------------------------------------------------------------------------------------------------|--|
|                     | 6V            | (1) VREG1OUT, (3) VCI1, (4) C11P, C11M, (5) C12P, C12M, (8) C13P, C13M, (15) VCL, (16) VCOMH, (17) VCOML |  |
| 1μF                 | 3V            | (18) VDD                                                                                                 |  |
| (B characteristics) | 10V           | (6) DDVDH, (9) C21P, C21M, (10) C22P, C22M                                                               |  |
|                     | 25V           | (11) VGH, (14) VGL                                                                                       |  |

# Table 87 Schottky Diode

| Specification                            |                                        | Pin Connection                                    |  |
|------------------------------------------|----------------------------------------|---------------------------------------------------|--|
| VF < 0.38V (max<br>≥ 25V<br>(Recommended | k)/ IF=5mA @ 25C, VR<br>diode: HS*226) | (14) GND-VGL,<br>(12) DDVDH-VGH,<br>(7) VCI-DDVDH |  |

#### **Table 88 Variable Resistor**

| Specification | Pin Connection |
|---------------|----------------|
| > 200 kΩ      | (2) VCOMR      |

# **Voltage Setting Pattern Diagram**

The following are the diagrams of voltage generation in the R61505V and the TFT display application voltage waveforms and electrical potential relationship.



Figure 61



Figure 62 Liquid crystal application voltage waveform and electrical potential

# **VCOMH Voltage Adjustment Sequence**

When adjusting the VCOMH voltage by setting VCM1 [6:0] in the R29'h register (internal VCOMH level adjustment circuit), follow the sequence below. The R61505V can retain the VCOMH level adjustment setting values in NVM, which allows erasing 5 times.

To write data onto the NVM, set VCOMH adjusting register VCM1 [6:0] (R29h), VCMSEL and VCM2[6:0] (R2Ah) so that these registers correspond with NVM write data register NVDAT [15:0]. See NVM write, read and erase sequences in the section "NVM Control Sequence".

If data has been erased from the bit, the bit value is set to "1". The bit to which data is not written should be set to 1.

If VCMSEL=1, VCM1 is enabled. If VCMSEL=0, VCM2 is enabled.



Figure 63

# **NVM Control Sequence**

Apply voltages to VPP1, 2, 3A, 3B and 3C pins as the table below when executing NVM write, read and erase.

Table 89

| Operation   | Power supply voltage |             | Time                          | Note                            | Temperature |
|-------------|----------------------|-------------|-------------------------------|---------------------------------|-------------|
|             | VPP1                 | 9.2±0.3V    |                               |                                 |             |
| NVM Write   | VPP2                 | 9.2±0.3V    | Write period: 150ms±50ms      | -                               | +20 ~ +30C  |
|             | VPP3A                | Open or GND |                               | <br> -                          |             |
|             | VPP1                 | 9.2±0.3V    | 0.3V Erase period: 10ms±1ms x |                                 |             |
| NVM Erase   | VPP2                 | 9.2±0.3V    | n time(s) (n = 60 or less,    | erase at intervals of 10ms±1ms. | +20 ~ +30C  |
|             | VPP3A                | -9.2±0.3V   | total = within 300ms)         |                                 |             |
| Except      | VPP1                 | Open or GND |                               |                                 |             |
| NVM         | VPP2                 | Open or GND | -                             | -                               | -40 ~ +85C  |
| Write/Erase | VPP3A                | Open or GND |                               |                                 |             |

Note: NVM data rewrite operation should be performed up to 5 times per address.

Follow the sequences shown in this section to use NVM.



Figure 64



Figure 65



Figure 66

#### **Power Supply Setting Sequence**

Power supply ON/OFF sequences are as follows. Execute these sequences when turning the display on/off, and setting/exiting sleep mode.

#### **R61505U Compatible Sequence**

Execute the following sequences when the software used with the R61505V is compatible with that used with the display module incorporating the R61505U.



Figure 67



Figure 68

## **R61505V Setting Sequence**



Figure 69



Figure 70

## **Instruction Setting Sequence**

The following are the sequences for various instruction settings. When setting instruction in the R61505V, follow the relevant sequence below.

#### **R61505U Compatible Sequence**



Figure 71

## **R61505V Setting Sequence**

To make the R61505V operate according to the following sequence, develop software newly (this software is not compatible with that used with the display module incorporating the R61505U).



Figure 72

## **Other Mode Transition Setting Sequences**

#### **Deep Standby Mode IN/EXIT Sequences**



Figure 73Cancel standby mode by inputting CS="Low" (18-/ 16-/ 9-/ 8- bit interface)



Figure 74 Cancel deep standby mode by inputting CS="Low" and WR="Low" (18-/ 16 bit interface)



Figure 75 Cancel deep standby mode by inputting CS="Low" and WR="Low" (9-/ 8- bit interface)

#### 8-color Mode Setting



Figure 76

## **Partial Display Setting**



Figure 77

# **Absolute Maximum Ratings**

Table 90

| Item                    | Symbol       | Unit         | Value              | Note |
|-------------------------|--------------|--------------|--------------------|------|
| Power Supply Voltage 1  | VCC, IOVCC   | V            | -0.3 ~ +4.6        | 1, 2 |
| Power Supply Voltage 2  | VCI – AGND   | V            | -0.3 ~ +4.6        | 1, 3 |
| Power Supply Voltage 3  | DDVDH – AGND | V            | -0.3 ~ +6.5        | 1, 4 |
| Power Supply Voltage 4  | AGND – VCL   | V            | -0.3 ~ +4.6        | 1    |
| Power Supply Voltage 5  | DDVDH – VCL  | V            | -0.3 ~ +9.0        | 1, 5 |
| Power Supply Voltage 7  | AGND – VGL   | V            | -0.3 ~ +13.0       | 1, 6 |
| Power Supply Voltage 8  | VGH– VGL     | V            | -0.3 ~ +30.0       | 1    |
| Power Supply Voltage 9  | VPP1         | V            | -0.3 ~ +10.0       | 1    |
| Power Supply Voltage 10 | VPP2         | V            | -0.3 ~ +10.0       | 1    |
| Power Supply Voltage 11 | VPP3A        | V            | -10.0 ~ +0.3       | 1    |
| Input Voltage           | Vt           | V            | -0.3 ~ IOVCC + 0.3 | 1    |
| Operating Temperature   | Topr         | $^{\circ}$ C | -40 ~ +85          | 1, 7 |
| NVM Write Temperature   | Twep         | $^{\circ}$ C | +20 ~ +30          | 1    |
| NVM Erase Temperature   | Теер         | $^{\circ}$ C | +20 ~ +30          | 1    |
| Storage Temperature     | Tstg         | $^{\circ}$ C | -55 ~ +110         | 1    |

- Notes 1. If the R61505V is used beyond the absolute maximum ratings, the LSI may be permanently damaged. It is strongly recommended to use the LSI under the condition within the electrical characteristics in normal operation. If exposed to the condition not within the electrical characteristics, it may affect the reliability of the device.
  - 2. Make sure VCC(high)≥GND(low), IOVCC(high)≥GND(low).
  - 3. Make sure VCI(high)≥AGND(low) .
  - 4. Make sure DDVDH(high)≥AGND(low).
  - 5. Make sure DDVDH(high) ≥VCL(low).
  - 6. Make sure AGND(high)≥VGL(low).
  - 7. The DC/AC characteristics of die and wafer products are guaranteed at 85°C.

# **Electrical Characteristics**

## **DC** Characteristics

Table 91 DC Characteristics 1 (VCC= 2.50V~3.30V, IOVCC=1.65V~3.30V, Ta=-40C~+85C) (See note 1)

| Item                                                                                                | Symbol            | Unit | Test Condition                                                                                                                           | Min.           | Тур. | Max.           | Note |
|-----------------------------------------------------------------------------------------------------|-------------------|------|------------------------------------------------------------------------------------------------------------------------------------------|----------------|------|----------------|------|
| Input "High" level voltage 1 Except RESETX pin                                                      | $V_{IH1}$         | V    | IOVCC=1.65V ~ 3.30V                                                                                                                      | 0.80×<br>IOVCC | _    | IOVCC          | 2, 3 |
| Input "Low" level voltage 1 Except RESETX pin                                                       | V <sub>IL1</sub>  | V    | IOVCC=1.65V ~ 3.30V                                                                                                                      | -0.3           | _    | 0.20×<br>IOVCC | 2, 3 |
| Input "High" level voltage 2 RESETX pin                                                             | V <sub>IH2</sub>  | V    | IOVCC=1.65V ~ 3.30V                                                                                                                      | 0.90×<br>IOVCC | _    | IOVCC          | 2, 3 |
| Input "Low" level voltage 2 RESETX pin                                                              | V <sub>IL2</sub>  | V    | IOVCC=1.65V ~ 3.30V                                                                                                                      | -0.3           | _    | 0.10×<br>IOVCC | 2, 3 |
| Output "High" level voltage 1 (DB0-17, FMARK)                                                       | V <sub>OH</sub>   | V    | IOVCC=1.65V ~ 3.30V,<br>IOH=-0.1mA                                                                                                       | 0.8×<br>IOVCC  | _    | _              | 2    |
| Output "Low" level voltage 1 (DB0-17, FMARK)                                                        | V <sub>OL</sub>   | V    | IOVCC=1.65V ~ 3.30V,<br>IOL=0.1mA                                                                                                        |                |      | 0.20×<br>IOVCC | 2    |
| Input / Output leakage current                                                                      | ILI               | μΑ   | Vin=0 ~ IOVCC                                                                                                                            | -1             | _    | 1              | 4    |
| Current Consumption ((IOVCC-GND) + (VCC-GND)) Normal operation mode (260k-color, display operation) | I <sub>OP1</sub>  | μA   | fosc=600kHz (320 line<br>drive),<br>IOVCC=VCC=3.00V,<br>fFLM=70Hz, Ta=25°C,<br>RAM data: 18'h000000                                      | _              | 190  | 400            | 5    |
|                                                                                                     |                   |      | See below for other data.                                                                                                                |                |      |                |      |
| Current Consumption ((IOVCC-GND) + (VCC-GND)) 8-color mode, 64-line partial display operation       | I <sub>op2</sub>  | μA   | fosc=600kHz (64-line,<br>partial display),<br>IOVCC=VCC=3.00V,<br>fFLM=40Hz, Ta=25°C,<br>RAM data: 18h'000000                            | _              | 140  | _              | 5    |
|                                                                                                     |                   |      | See below for other data.                                                                                                                |                |      |                |      |
| Current Consumption ((IOVCC-GND) + (VCC-GND))                                                       | I <sub>DST</sub>  | μΑ   | IOVCC=VCC=3.00V,<br>Ta=25℃                                                                                                               | _              | 0.1  | 1.0            | 5    |
| Deep standby mode                                                                                   |                   |      |                                                                                                                                          |                |      |                |      |
| Current Consumption ((IOVCC-GND) + (VCC-GND)) RAM access mode                                       | I <sub>RAM1</sub> | mA   | IOVCC=2.40V,<br>VCC=3.00V,<br>tCYCW=125ns, Ta=25°C,<br>I80-8bit-I/F, TRIREG=1'h1,<br>Consecutive RAM access<br>during display operation. | -              | 2.0  | -              | 5    |

| LCD Power Supply<br>Current (VCI-GND)<br>260-k color display<br>operation               | Ici1    | mA | IOVCC=1.8V, VCC=VCI=2.8V, 320 line drive, fFLM=60Hz, Ta=25°C, Frame memory data: 18'h00000, REV=0, BC0=0, FP0=8, BP0=8, VC=3'h1, BT=3'h4, VRH=5'h18, VCM=7'h7F, VDV=5'h11, AP0=2'h3, DC00=3'h4, DC10=3'h4, DC10=3'h4, PR*P00=PR*N00=5'h00, PR*P01=PR*N01=5'h02, PR*P02=PR*N02=5'h04, PR*P03=PR*N03=4'h8, PR*P04=PR*N04=4'hF, PR*P05=PR*N05=4'h8, PR*P06=PR*N06=5'h04, PR*P07=PR*N07=5'h02, PR*P08=PR*N08=5'h04, PIR*P09=PIR*P1= PIR*P2= PIR*P3=2'h0 PIR*N1= PIR*N2= PIR*N3=2'h0 (*: 0, 1, 2) No load on the panel, COL=0                            |     | 3.2 | 5.0 | 5 |
|-----------------------------------------------------------------------------------------|---------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|---|
| LCD Power Supply<br>Current (VCI-GND)<br>8-color (64-line partial)<br>display operation | Ici2    | mA | IOVCC=1.8V, VCC=VCI=2.8V, 64 line partial display, fFLM=40Hz, Ta=25°C, Frame memory data: 18'h00000, REV=0, BC2=0, FP2=5, BP2=8, VC=3'h1, BT=3'h4, VRH=5'h18, VCM=7'h7F, VDV=5'h11, AP2=2'h3, DC02=3'h4, DC12=3'h2, PR*P00=PR*N00=5'h00, PR*P01=PR*N01=5'h02, PR*P02=PR*N02=5'h04, PR*P03=PR*N03=4'h8, PR*P04=PR*N04=4'hF, PR*P05=PR*N05=4'h8, PR*P06=PR*N06=5'h04, PR*P07=PR*N07=5'h02, PR*P08=PR*N08=5'h04, PR*P07=PR*N08=5'h04, PIR*P0= PIR*P1= PIR*P2= PIR*P3=2'h0 PIR*N0= PIR*N1= PIR*N2= PIR*N3=2'h0 (*: 0, 1, 2) No load on the panel, COL=1 | _   | 0.8 | _   | 5 |
| Output voltage dispersion                                                               | ΔV<br>O | mV | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _   | 5   | _   | 6 |
| Average output voltage variance                                                         | ΔVΔ     | mV | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -35 | _   | 35  | 7 |

**Table 92 DC Characteristics 2 (Step-Up Circuit Characteristics)** 

| Item                      |       | Unit | Test Condition                                                                                                                                                                                                   | Min. | Тур.  | Max. | Note |
|---------------------------|-------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------|------|------|
| Step-up Output<br>Voltage | DDVDH | V    | IOVCC=VCC=2.8V, VCI =2.8V,<br>Ta=25°C, VC=3'h1, BT=3'h4, AP=2'h3,<br>DC0=3'h4, DC1=3'h2,<br>C11=C12=C13=C21=C22=1[uF]/B<br>characteristics,                                                                      | 4.8  | 5.1   | -    | -    |
|                           |       |      | DDVDH=VGH=VGL=VCL=1[uF]/B characteristics, No load on the panel, lload1= -3 [mA]                                                                                                                                 |      |       |      |      |
|                           |       |      | IOVCC=VCC=2.8V, VCI =2.8V, Ta=25 $^{\circ}$ C,                                                                                                                                                                   |      |       |      |      |
| VGH                       |       |      | VC=3'h1, BT=3'h4, AP=2'h3, DC0=3'h4, DC1=3'h2,                                                                                                                                                                   |      |       |      |      |
|                           | VGH   | V    | C11=C12=C13=C21=C22=1[uF]/B characteristics, DDVDH=VGH=VGL=VCL=1[uF]/B characteristics, Iload2=-100[uA], No load on the panel                                                                                    | 14.4 | 15.1  | -    | -    |
|                           | VGL   | V    | IOVCC=VCC=2.8V, VCI =2.8V, Ta=25°C, VC=3'h1, BT=3'h4, AP=2'h3, DC0=3'h4, DC1=3'h2, C11=C12=C13=C21=C22=1[uF]/B characteristics, DDVDH=VGH=VGL=VCL=1[uF]/B characteristics, Iload3=+100[uA], No load on the panel | -    | -10.0 | -9.6 | -    |
|                           | VCL   | V    | IOVCC=VCC=2.8V, VCI =2.8V, Ta=25°C, VC=3'h1, BT=3'h4, AP=2'h3, DC0=3'h4, DC1=3'h2, C11=C12=C13=C21=C22=1[uF]/B characteristics, DDVDH=VGH=VGL=VCL=1[uF]/B characteristics, lload4=+200[uA], No load on the panel | -    | -2.55 | -2.4 | -    |

**Table 93 DC Characteristics 3 (NVM Control)** 

| Item                                                                                                                                   |                |                     | Symbol              | Unit                      | Test condition        | Min. | Тур. | Max. | Note |
|----------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------|---------------------|---------------------------|-----------------------|------|------|------|------|
| NVM current consumption  Erase  AC  VF  AC  VF |                | VPP1-<br>AGND       | I <sub>VPP1W</sub>  | mA                        | VPP1=9.2V             |      | _    | 1.0  |      |
|                                                                                                                                        | VPP2-<br>AGND  | I <sub>VPP2W</sub>  | mA                  | VPP2=9.2V<br>VPP3A=GND    | _                     | _    | 30.0 |      |      |
|                                                                                                                                        | VPP3A-<br>AGND | I <sub>VPP3AW</sub> | mA                  | (during Write period)     | _                     | _    | 1.0  |      |      |
|                                                                                                                                        |                | VPP1-<br>AGND       | I <sub>VPP1E</sub>  | mA                        | VPP1=9.2V             | _    | _    | 1.0  |      |
|                                                                                                                                        | VPP3A-         | I <sub>VPP2E</sub>  | mA                  | VPP2=9.2V<br>VPP3A= -9.2V | _                     | _    | 1.0  |      |      |
|                                                                                                                                        |                | _                   | I <sub>VPРЗАЕ</sub> | mA                        | (during Erase period) | _    | -    | 1.0  |      |

Table 94 Power supply voltage range for NVM Control

| Item                  | Symbol | Unit | Min.  | Тур. | Max. | Operation |
|-----------------------|--------|------|-------|------|------|-----------|
| Power supply voltage  | VPP1   | V    | 8.9   | 9.2  | 9.5  | Write     |
| 1 ower suppry voltage |        | V    | V 8.9 | 9.2  | 9.5  | Erase     |
| Power supply voltage  | VPP2   | V    | 8.9   | 9.2  | 9.5  | Write     |
|                       |        | V    | 8.9   | 9.2  | 9.5  | Erase     |
| Power supply voltage  | VPP3A  | V    | -0.3  | 0.0  | +0.3 | Write     |
| Power supply voltage  | VPP3A  | V    | -8.9  | -9.2 | -9.5 | Erase     |

Table 95 Internal Reference Voltage (VCC =  $2.50V \sim 3.30V$ , Ta =  $25^{\circ}$ C)

| Item                       | Symbol | Unit | Min. | Тур. | Max. | Note |
|----------------------------|--------|------|------|------|------|------|
| Internal Reference Voltage | VCIR   | V    | -    | 2.50 | -    | 11   |

## **AC Characteristics**

 $(VCC = 2.50V \sim 3.30V, IOVCC = 1.65V \sim 3.30V, Ta = -40C \sim +85C) \stackrel{(See \ note \ 1)}{-}$ 

#### **Clock Characteristics**

Table 96

| Item                       | Symbol | Unit | Test Condition      | Min. | Тур. | Max. |
|----------------------------|--------|------|---------------------|------|------|------|
| Internal oscillation clock | fosc   | kHz  | IOVCC=VCC=3.0V 25°C | 558  | 600  | 642  |

## 80-System Bus Interface Timing Characteristics (18-/ 16-bit Interface)

## **Table 97 (IOVCC=1.65V ~ 3.30V)**

| Item                 |                              |       | Unit     | Timing<br>Diagram | Min. | Тур. | Max. |
|----------------------|------------------------------|-------|----------|-------------------|------|------|------|
| Bus cycle time       | Write                        | tcycw | ns       | Figure A          | 75   | _    | _    |
|                      | Read                         | tcycr | ns       | Figure A          | 450  | _    | _    |
| Write low-level pu   | lse width                    | PWLW  | ns       | Figure A          | 40   | _    | _    |
| Read low-level pu    | Read low-level pulse width   |       |          | Figure A          | 170  | _    | _    |
| Write high-level po  | PWHW                         | ns    | Figure A | 25                | _    | _    |      |
| Read high-level pr   | PWHR                         | ns    | Figure A | 250               | _    | _    |      |
| Write / Read rise/   | Write / Read rise/ fall time |       | ns       | Figure A          | _    | _    | 25   |
| Setup time           | Write<br>(RS to CSX,<br>WRX) | — tas | ns       | Figure A          | 0    | _    | _    |
|                      | Read<br>(RS to CSX,<br>RDX)  | — tas | ns       | Figure A          | 10   | _    | _    |
| Address hold time    | •                            | tah   | ns       | Figure A          | 2    | _    | _    |
| Write data setup t   | Write data setup time        |       | ns       | Figure A          | 25   | _    | _    |
| Write data hold time |                              | tн    | ns       | Figure A          | 10   | _    | _    |
| Read data delay t    | ime                          | todr  | ns       | Figure A          | _    | _    | 150  |
| Read data hold tir   | me                           | tDHR  | ns       | Figure A          | 5    | _    | _    |

# 80-System Bus Interface Timing Characteristics (9-/ 8-bit Interface)

# **Table 98 (IOVCC=1.65V ~ 3.30V)**

| Item                 |                              | Symbol | Unit     | Timing<br>Diagram | Min. | Тур. | Max. |
|----------------------|------------------------------|--------|----------|-------------------|------|------|------|
| Bus cycle time       | Write                        | tcycw  | ns       | Figure A          | 70   | _    | _    |
|                      | Read                         | tcycr  | ns       | Figure A          | 450  | _    | _    |
| Write low-level pu   | Write low-level pulse width  |        | ns       | Figure A          | 30   | _    | _    |
| Read low-level pu    | PWLR                         | ns     | Figure A | 170               | _    | _    |      |
| Write high-level p   | PWHW                         | ns     | Figure A | 25                | _    | _    |      |
| Read high-level p    | PWHR                         | ns     | Figure A | 250               | _    | _    |      |
| Write / Read rise/   | Write / Read rise/ fall time |        | ns       | Figure A          | _    | _    | 25   |
| Setup time           | Write<br>(RS to CSX,<br>WRX) | — tas  | ns       | Figure A          | 0    | _    | _    |
|                      | Read<br>(RS to CSX,<br>RDX)  | — tas  | ns       | Figure A          | 10   | _    | _    |
| Address hold time    | )                            | tah    | ns       | Figure A          | 2    | _    | _    |
| Write data setup t   | Write data setup time        |        | ns       | Figure A          | 25   | _    | _    |
| Write data hold time |                              | tн     | ns       | Figure A          | 10   | _    | _    |
| Read data delay t    | ime                          | tddr   | ns       | Figure A          | _    | _    | 150  |
| Read data hold tir   | ne                           | tdhr   | ns       | Figure A          | 5    | _    | _    |

# **Clock-synchronized Serial Interface Timing Characteristics**

# **Table 99 (IOVCC=1.65V ~ 3.30V)**

| Item                          |                 | Symbol     | Unit | Timign<br>Diagram | Min. | Тур. | Max.   |
|-------------------------------|-----------------|------------|------|-------------------|------|------|--------|
| Serial clock cycle            | Write (receive) | tscyc      | ns   | Figure B          | 100  | _    | 20,000 |
| time                          | Read (transmit) | tscyc      | ns   | Figure B          | 350  | _    | 20,000 |
| Serial clock high-            | Write (receive) | tsch       | ns   | Figure B          | 40   | _    | _      |
| level width                   | Read (transmit) | tsch       | ns   | Figure B          | 150  |      | _      |
| Serial clock low-             | Write (receive) | tscl       | ns   | Figure B          | 40   |      | _      |
| level width                   | Read (transmit) | tscl       | ns   | Figure B          | 150  |      | _      |
| Serial clock rise/fall        | time            | tscr, tscf | ns   | Figure B          | _    | _    | 20     |
| Chip select setup tir         | ne              | tcsu       | ns   | Figure B          | 20   |      | _      |
| Chip select hold tim          | е               | tсн        | ns   | Figure B          | 60   |      | _      |
| Serial input data set         | tup time        | tsisu      | ns   | Figure B          | 30   | _    | _      |
| Serial input data hold time   |                 | tsish      | ns   | Figure B          | 30   | _    | _      |
| Serial output data delay time |                 | tson       | ns   | Figure B          | _    | _    | 130    |
| Serial output data he         | old time        | tsон       | ns   | Figure B          | 5    | _    | _      |

# **Reset Timing Characteristics**

# Table 100 (IOVCC = $1.65V \sim 3.30V$ )

| Item                  | Symbol | Unit | Timing<br>Diagram | Min. | Тур. | Max. |
|-----------------------|--------|------|-------------------|------|------|------|
| Reset wait time       | trw    | ms   | Figure C-1        | 1    | _    | _    |
| Reset low-level width | tres   | ms   | Figure C-2        | 1    | _    | _    |
| Reset rise time       | trRES  | μs   | Figure C-2        | _    | _    | 10   |

# **RGB** Interface Timing Characteristics

Table 101  $\,$  18-/ 16- bit RGB Interface (IOVCC=1.65V ~ 3.30V)

| Item                                   | Symbol          | Unit  | Timing<br>Diagram | Min. | Тур. | Max. |
|----------------------------------------|-----------------|-------|-------------------|------|------|------|
| VSYNC/HSYNC setup time                 | tSYNCS          | clock | Figure D          | 0.5  | _    | 1.5  |
| ENABLE setup time                      | tENS            | ns    | Figure D          | 10   | _    | _    |
| ENABLE hold time                       | tENH            | ns    | Figure D          | 20   | _    | _    |
| DOTCLK low-level pulse width           | PWDL            | ns    | Figure D          | 40   | _    | _    |
| DOTCLK high-level pulse width          | PWDH            | ns    | Figure D          | 40   | _    | _    |
| DOTCLK cycle time                      | tCYCD           | ns    | Figure D          | 100  | _    | _    |
| Data setup time                        | tPDS            | ns    | Figure D          | 10   | _    | _    |
| Data hold time                         | tPDH            | ns    | Figure D          | 40   | _    | _    |
| DOTCLK, VSYNC and HSYNC rise/fall time | trgbr,<br>trgbf | ns    | Figure D          | _    | _    | 25   |

# **LCD Driver Output Characteristics**

Table 102

| Item                                        | Symbol | Unit | Test condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Min. | Тур | Max | Note |
|---------------------------------------------|--------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|-----|------|
| Source<br>driver<br>output<br>delay<br>time | tdds   | μs   | IOVCC=1.80V, VCC=VCI=2.80V, Ta=25°C, REV=0, BC0=0, FP0=5, BP0=8, VC=3'h1, BT=3'h4, VRH=5'h1D, VCM=7'h7F, VDV=5'h11, AP0=2'h3, DC00=3'h4, DC10=3'h2, PR*P00=PR*N00=5'h00, PR*P01=PR*N01=5'h02, PR*P02=PR*N02=5'h04, PR*P03=PR*N03=4'h8, PR*P04=PR*N04=4'hF, PR*P05=PR*N05=4'h8, PR*P06=PR*N06=5'h04, PR*P07=PR*N07=5'h02, PR*P08=PR*N08=5'h04, PIR*P0= PIR*P1= PIR*P2= PIR*P3=2'h0 PIR*N0= PIR*N1= PIR*N2= PIR*N3=2'h0 (*: 0, 1, 2)  Same change from same grayscale at all-time division source output pin.  Time to reach ±35mV when VCOM polarity changes.  Load resistance R=10kohm, Load capacitance C=20pF | _    | 25  | _   | 9    |
| VCOM<br>output                              | tddv   | μs   | IOVCC=1.80V, VCC=VCI=2.80V, Ta=25°C, REV=0, BC0=0, FP0=5, BP0=8, VC=3'h1, BT=3'h4, VRH=5'h1D, VCM=7'h7F, VDV=5'h11, AP0=2'h3, DC00=3'h4, DC10=3'h2, SEPVCM=0                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _    | 25  | _   | 10   |
| delay<br>time                               |        |      | Time to reach $\pm 35 \text{mV}$ when voltages on V0~V63 pins change. Load resistance R=100ohm, Load capacitance C=10nF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |     |     |      |

#### **Notes on Electrical Characteristics**

- 1. DC/AC electrical characteristics of bare die and wafer products are guaranteed at +85°C.
- 2. The followings illustrate the configurations of input, I/O, and output pins.



Figure 78

- 3. Fix pins as follows; TEST1 to TEST5 pins to GND, VDDTEST and VREFC pins to ground (AGND), and IM3/2/1/0 pins to IOVCC or ground (GND).
- 4. This excludes the current in the output-drive MOS.
- 5. This excludes the current in the input/output units. Make sure that the input level is fixed because through current will increase in the input circuit when the CMOS input level takes a middle range level. The current consumption is unaffected by whether the CSX pin is "high" or "low" while not accessing via interface pins.
- 6. The output voltage deviation is the difference in the voltages between output pins that are placed side by side in same display mode.
- 7. The average output voltage dispersion is the variance of average source-output voltage of different chips of the same product. The average source output voltage is measured for one chip with same display data.
- 8. This applies to internal oscillators when using an internal oscillator.
- 9. The liquid crystal driver output delay time depends on the load on the liquid crystal panel. Adjust the frame frequency and the cycle per line by checking the quality on the actual panel in use.
- 10. VCOM output delay time depends on the load on the liquid crystal panel. Adjust the frame frequency and the cycle per line checking the quality on the actual panel in use.
- 11. Internal reference voltage VCIR depends on temperature as shown in following graph.

## **Test Circuits**



Figure 79

## **Timing Characteristics**

## 80-System Bus Interface



Figure A

## **Clock Synchronous Serial Interface**



Figure B

## **Reset Operation**



Figure C-1, C-2

#### **RGB Interface**



Figure D RGB Interface Timing

## **LCD Driver Output and VCOM Output**



Figure E LCD Driver Output and VCOM Output

## Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

Keep safety first in your circuit designs!

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.

Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

- Notes:

  1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property or any arranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property or other rights arising out of the use of any information in this document, including, but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples.

  3. You should not use the products or the technology described in this document for the purpose of military applications such as the development of weapons of mass destruction or for the purpose of any other military use. When exporting the products or technology described herein, ou should follow the applicable export control laws and regulations, and procedures required by such laws and regulations, and procedures required by such laws and regulations and procedures required by such laws and regulations.

  4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date this disclosed by Reneass such as that disclosed through our website. http://www.reneas.com/
  please confirm the lates to product information with a Reneas sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Reneass such as the disclosed through our website. http://www.reneas.com/
  please confirm the lates relying on the information included in this document.

  5. Reneass has used reasonable care in compling the information included in this document.

  6. When using or otherwise relying on the information included in this document.

  6. When using or otherwise relying on the i



#### **RENESAS SALES OFFICES**

http://www.renesas.com

Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500 Fax: <1> (408) 382-7501

Renesas Technology Europe Limited. Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, United Kingdom Tel: <44> (1628) 585 100, Fax: <44> (1628) 585 900

Renesas Technology Europe GmbH Dornacher Str. 3, D-85622 Feldkirchen, Germany Tel: <49> (89) 380 70 0, Fax: <49> (89) 929 30 11

Renesas Technology Hong Kong Ltd. 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2375-6836

Renesas Technology Taiwan Co., Ltd. FL 10, #99, Fu-Hsing N. Rd., Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology (Shanghai) Co., Ltd. 26/F., Ruijin Building, No.205 Maoming Road (S), Shanghai 200020, China Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952

Renesas Technology Singapore Pte. Ltd. 1, Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

| 0.4000 B                                            | D 1 . 11 T       |
|-----------------------------------------------------|------------------|
| © 2008 Renesas Technology Corn. All rights reserved | Printed in Japan |

# **Revision Record**

| Rev. | Date          | Page<br>No.  | Contents of Modification                                                                                                                                      | Drawn by | Approved by |
|------|---------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------|
| 0.01 | Sept.14, 2007 |              | First issue                                                                                                                                                   |          |             |
| 0.02 | Oct.25, 2007  | All<br>pages | RC oscillation → internal oscillation                                                                                                                         |          |             |
|      |               | 6            | Error correction (delete the description of high-speed RAM write function).                                                                                   |          |             |
|      |               | 7            | Source driver liquid crystal drive/VCOM power supply: DDVDH-GND, VCL-GND, VCI-VCL                                                                             |          |             |
|      |               |              | → DDVDH, VREG1OUT, VCL, VCI                                                                                                                                   |          |             |
|      |               |              | Gate drive power supply: VGH-GND, VGL-GND, VGH-VGL                                                                                                            |          |             |
|      |               |              | → VGH, VGL                                                                                                                                                    |          |             |
|      |               |              | Internal reference voltage VCIR to generate VREG10UT                                                                                                          |          |             |
|      |               |              | → Internal reference voltage to generate VREG1OUT                                                                                                             |          |             |
|      |               |              | Note (patent) added.                                                                                                                                          |          |             |
|      |               | 8            | Table 1 Power supply specification                                                                                                                            |          |             |
|      |               |              | VPP1, 2, 3A, 3B, 3C (Power supply for the NVM)                                                                                                                |          |             |
|      |               |              | (Write) VPP1: $9.0V\pm0.1V \rightarrow 9.2\pm0.3V$ (TBD)                                                                                                      |          |             |
|      |               |              | VPP2: $7.5V \pm 0.1V \rightarrow 9.2 \pm 0.3V$ (TBD)                                                                                                          |          |             |
|      |               |              | (Erase) VPP1: $9.0V\pm0.1V \rightarrow 9.2\pm0.3V$ (TBD)                                                                                                      |          |             |
|      |               |              | VPP2: $9.0V\pm0.1V \rightarrow 9.2\pm0.3V$ (TBD)                                                                                                              |          |             |
|      |               |              | VPP3A : $-9.0V \pm 0.1V \rightarrow -8.2 \pm 0.3V$ (TBD)                                                                                                      |          |             |
|      |               | 11-12        | Table 5 (Difference between the R61505U and the R61505V's registers) added.                                                                                   |          |             |
|      |               | 13           | Figure 1 Block diagram:                                                                                                                                       |          |             |
|      |               |              | TEVCI2 inserted.                                                                                                                                              |          |             |
|      |               |              | VCI1: Input → input/output                                                                                                                                    |          |             |
|      |               |              | Liquid crystal drive level generating circuit → Liquid crystal drive level generating circuit (Internal step-up circuit 1, 2)                                 |          |             |
|      |               | 18           | Table 9: Error correction (SDO: I/O $\rightarrow$ O).                                                                                                         |          |             |
|      |               | 20           | Table 11: Error correction (VCC and IOVCC: delete "VCC ≥ IOVCC")                                                                                              |          |             |
|      |               |              | VPP pins: description changed. Voltage table moved to "NVM Control Sequence". VPP3B and 3C pin description moved to Table 14. VPP3A when not used GND → AGND. |          |             |
|      |               | 21           | Table 12, VC1: Added "Define the voltage so that DDVDH, VGH and VGL do not exceed the ratings."                                                               |          |             |
|      |               |              | Error correction (DDVDH, VGH, VGL, VCL: I → O).                                                                                                               |          |             |
|      |               | 22           | Table 13 LCD drive pins: When not in use Open $\rightarrow$ "-                                                                                                |          |             |

| Rev. | Date | Page<br>No. | Contents of Modification                                                                                            | Drawn by | Approved by |
|------|------|-------------|---------------------------------------------------------------------------------------------------------------------|----------|-------------|
|      |      |             | и                                                                                                                   |          |             |
|      |      | 23          | Table 14: VPP3B, VPP3C pins added.                                                                                  |          |             |
|      |      |             | Pin name changed. VCI2→TEVCI2.                                                                                      |          |             |
|      |      |             | DUMMYR description: Added "DUMMYR pins are short-circuited as below:                                                |          |             |
|      |      |             | DUMMYR1 and DUMMYR6<br>DUMMYR2 and DUMMYR5<br>DUMMYR3 and DUMMYR4"                                                  |          |             |
|      |      | 24          | PAD Arrangement inserted. (Rev. 0.10, 2007.09.20)                                                                   |          |             |
|      |      | 25          | Chip size etc. inserted.                                                                                            |          |             |
|      |      | 26-39       | Pad Coordinates inserted (Rev.1.0, 2007.10.20).                                                                     |          |             |
|      |      | 40          | Bump arrangement (Figure 3) inserted.                                                                               |          |             |
|      |      | 47          | R02h IB10 "0"→ "1"                                                                                                  |          |             |
|      |      | 53          | Error correction (FP: 2 lines → 3 lines).                                                                           |          |             |
|      |      | 57          | R0Ch RIM bit description, Table 26: RIM[1:0]="10" "-" Setting inhibited.                                            | -        |             |
|      |      | 60          | R0Eh Figure 7 VEQW, VEM description: Error correction. (VEQW[1:0] → [2:0], correct the note of the table)           |          |             |
|      |      | 62-63       | R10h SLP and SAP bits deleted.                                                                                      |          |             |
|      |      |             | Default of AP bit changed. AP[1:0]="00" → "11"                                                                      |          |             |
|      |      | 63          | Table 32 BT bit table Note 2: VGH-VGL= 28.0V (max.) added.                                                          |          |             |
|      |      | 65          | Error correction (RN* $\rightarrow$ RTN*).                                                                          |          |             |
|      |      |             | Note 2 to Table 34 (DC0 bit) added.                                                                                 |          |             |
|      |      |             | Formula for Step-up circuit 1: $2(N-1) \rightarrow 2N$                                                              |          |             |
|      |      | 66          | Waveform inserted.                                                                                                  |          |             |
|      |      | 67          | R12h VRH's default value changed. VRH [4:1]= "0000" → "1111"                                                        |          |             |
|      |      | 79          | SCN[6] deleted.                                                                                                     |          |             |
|      |      | 81          | Table 46 (SCN bit) changed                                                                                          |          |             |
|      |      | 84          | Error correction (Table 50: 0 clocks → Setting inhibited).                                                          |          |             |
|      |      | 85          | Error correction (R93h MCPI[0]'s default: $0 \rightarrow 1$ , 0 clocks $\rightarrow$ "Setting inhibited").          |          |             |
|      |      | 86          | R94h SDTI[0]'s default: 0 → 1                                                                                       |          |             |
|      |      | 87          | DIVE bit description: Table 54 changed.                                                                             |          |             |
|      |      |             | Added "Internal clock frequency is calculated by below formula: DOTCLK / (DIVE x (PCDIVL + PCDIVH)) See also R9Ch." |          |             |
|      |      | 89          | R97h Note to Table 56                                                                                               |          |             |
|      |      |             | "1 clock = (Number of data transfers/pixel) x DIVE (division ratio) [DOTCLK]." → 1 clock = (Number of               |          |             |

| Rev. | Date                                     | Page | Contents                                              | of Mo             | difica         | tion           |                            |                |                  |               |               | Drawn by | Approved |
|------|------------------------------------------|------|-------------------------------------------------------|-------------------|----------------|----------------|----------------------------|----------------|------------------|---------------|---------------|----------|----------|
|      |                                          | No.  |                                                       |                   |                |                |                            |                |                  |               |               |          | by       |
|      |                                          |      | data trans<br>+ PCDIVH                                |                   |                |                | E (div                     | rision         | ratio)           | x (P(         | CDIVL         |          |          |
|      |                                          | 90   | R98h Note                                             | e to T            | able           | 58             |                            |                |                  |               |               |          |          |
|      |                                          |      | 1 clock = (<br>(division ra<br>data trans<br>+ PCDIVH | atio) [<br>fers/p | DOT(<br>pixel) | CLK].<br>x DIV | " <del>→</del> 1<br>E (div | clock<br>ision | : = (Ń<br>ratio) | umbe<br>x (P0 | r of<br>CDIVL |          |          |
|      |                                          | 91   | R99h No                                               | te to             | Table          | 59             |                            |                |                  |               |               |          |          |
|      |                                          |      | DIVE (R95<br>1 clock = (<br>(division ra              | Num               | ber of         | data           | trans                      | fers/p         | ixel)            | x DIV         | É             |          |          |
|      |                                          | 92   | Panel Inte                                            | rface             | Cont           | rol 9          | (R9Cl                      | n) inse        | erted.           |               |               |          |          |
|      | 93 RA1h Table 63 Bit allocation changed. |      |                                                       |                   |                |                |                            |                |                  |               |               |          |          |
|      |                                          |      | 3'h1<br>(MS byte)                                     | 1                 | 1              | 1              | 1                          | 1              | 1                | 1             | 1             |          |          |
|      |                                          |      | 3'h1<br>(LS byte)                                     | 1                 | 1              | 1              | 1                          | ID1<br>[3]     | ID1<br>[2]       | ID1<br>[1]    | ID1<br>[0]    |          |          |
|      |                                          |      | $\rightarrow$                                         |                   |                |                |                            |                |                  |               |               | -        |          |
|      |                                          |      | 3'h1<br>(MS byte)                                     | 1                 | 1              | 1              | 1                          | ID1<br>[3]     | ID1<br>[2]       | ID1<br>[1]    | ID1<br>[0]    |          |          |
|      |                                          |      | 3'h1<br>(LS byte)                                     | 1                 | 1              | 1              | 1                          | 1              | 1                | 1             | 1             |          |          |
|      |                                          | 95   | Instruction                                           | List              | insert         | ed. (F         | Rev 0                      | .0 200         | 7. 10            | ). 12)        |               |          |          |
|      |                                          | 108  | Error corre                                           | ection            | ı (add         | note           | ).                         |                |                  |               |               |          |          |
|      |                                          | 115  | VSYNC in example: I                                   |                   |                |                | rite sp                    | eed o          | calcul           | ation         |               |          |          |
|      |                                          |      | Back/front<br>13/3 lines                              | •                 |                |                | •                          |                | E, FF            | ) = 4'h       | 12) →         |          |          |
|      |                                          |      | DIV∗ → D                                              | IVE,              | RTN*           | → R            | TNE                        |                |                  |               |               |          |          |
|      |                                          |      | Minimum s<br>> 240 × 32<br>1/642 kHz                  | ·<br>20 / {(      | (14 +          | 320 -          |                            | -              | 1 × 3            | 0 clo         | cks) ×        |          |          |
|      |                                          |      | → Minimu<br>> 240 × 32<br>1/642 kHz                   | 20 / {(           | (13 +          | 320 -          |                            | -              | -                | 0 clo         | cks) ×        |          |          |
|      |                                          |      | Add the de                                            | escrip            | otion c        | of RTI         | N* an                      | d DIV          | *.               |               |               |          |          |
|      |                                          | 116  | Figure 31:                                            | Bacl              | k porc         | h (14          | lines                      | ) <b>→</b> (′  | 13 line          | es)           |               |          |          |
|      |                                          |      | Fror                                                  | nt poi            | ch (2          | lines          | ) <b>→</b> (3              | 3 lines        | s)               |               |               |          |          |
|      |                                          |      | BP=                                                   | =14H              | <b>→</b> 13    | Н              |                            |                |                  |               |               |          |          |
|      |                                          |      | FP=                                                   | FP=2H → 3H        |                |                |                            |                |                  |               |               |          |          |
|      |                                          |      | Figure 32                                             | Back              | porcl          | า (14          | lines)                     | → (1           | 3 line           | es)           |               |          |          |
|      |                                          |      |                                                       | -                 | ch (2          |                | ) <del>→</del> (3          | 3 lines        | s)               |               |               |          |          |
|      |                                          |      | BP=                                                   | =14H              | → 13           | Н              |                            |                |                  |               |               |          |          |

| Rev. | Date | Page<br>No.          | Contents of Modification                                                                                                                                 | Drawn by | Approved by |
|------|------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------|
|      |      |                      | FP=2H → 3H                                                                                                                                               |          |             |
|      |      | 118                  | Error correction (DIV* $\rightarrow$ DIVE, RTN* $\rightarrow$ RTNE), add the description of RTN* and DIV*.                                               |          |             |
|      |      | 119                  | FMARK interface, RAM write speed calculation example: Error correction                                                                                   |          |             |
|      |      |                      | Back/front porch 14/2 lines (BP = 4h'E, FP = 4'h2) → 13/3 lines (BP = 8h'D, FP = 8'h3)                                                                   |          |             |
|      |      |                      | Minimum speed for RAM writing [Hz] $>$ 240 $\times$ 320 / {((8+8 + 320 - 2) lines $\times$ 1 $\times$ 30 clocks) $\times$ 1/642 kHz} = 4.95 MHz / pixel  |          |             |
|      |      |                      | → Minimum speed for RAM writing [Hz] $> 240 \times 320$ / {((13+3 + 320 – 2) lines $\times$ 1 $\times$ 30 clocks) $\times$ 1/642 kHz} = 4.95 MHz / pixel |          |             |
|      |      | 120                  | Figure 36: 280 lines → 320 lines.                                                                                                                        |          |             |
|      |      |                      | Back porch (14 lines) → (13 lines)                                                                                                                       |          |             |
|      |      |                      | Front porch (2 lines) → (3 lines)                                                                                                                        |          |             |
|      |      |                      | Main Panel Moving Picture display (320 lines)  → (280 lines)                                                                                             |          |             |
|      |      | 121                  | Figure 37: Error correction.                                                                                                                             |          |             |
|      |      |                      | FP=4'h8 → 8'h3, BP=4'h8 → 8'hD                                                                                                                           |          |             |
|      |      | 123                  | Figure 38: 2H → 3H (FP)                                                                                                                                  |          |             |
|      |      |                      | Error correction (delete "and high-speed write mode (HWM = 1)").                                                                                         |          |             |
|      |      | 124-<br>125          | Add the description of RGB interface timing.                                                                                                             |          |             |
|      |      | 147                  | Change the description of gamma correction registers.                                                                                                    |          |             |
|      |      | 156                  | Figure 61 Voltage Setting Pattern Diagram                                                                                                                |          |             |
|      |      |                      | VCILVL → VCI/VCILVL                                                                                                                                      |          |             |
|      |      |                      | VCC / VCI → VCC                                                                                                                                          |          |             |
|      |      |                      | Figure 62: Add "VGL"                                                                                                                                     |          |             |
|      |      | 144<br>(Rev<br>0.01) | NVM Write Sequence deleted.                                                                                                                              |          |             |
|      |      | 145<br>(Rev<br>0.01) | NVM Data Read Sequence deleted.                                                                                                                          |          |             |
|      |      | 146<br>(Rev<br>0.01) | NVM Erase Sequence deleted.                                                                                                                              |          |             |
|      |      | 147<br>(Rev<br>0.01) | Verify Sequence deleted.                                                                                                                                 |          |             |
|      |      | 158                  | Figure 63: Error correction (A2'h → 2'Ah).                                                                                                               |          |             |

| Rev. | Date | Page<br>No.          | Contents of Modification                                                                                                                                                                       | Drawn by | Approved by |
|------|------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------|
|      |      | 159                  | NVM Control sequence: Table 87 and description added.                                                                                                                                          |          |             |
|      |      | 160                  | Figure 64: VPP1 = VPP1: $9.0V\pm0.1V \rightarrow 9.2\pm0.3V$ (TBD)                                                                                                                             |          |             |
|      |      |                      | VPP2: $7.5V \pm 0.1V \rightarrow 9.2 \pm 0.3V \text{ (TBD)}$                                                                                                                                   |          |             |
|      |      |                      | 100 ~ 20ms → 150ms $\pm$ 50ms (TBD)                                                                                                                                                            |          |             |
|      |      | 161                  | Figure 65: VPP1: $9.0V\pm0.1V \rightarrow 9.2\pm0.3V$ (TBD)                                                                                                                                    |          |             |
|      |      |                      | VPP2: $7.5V \pm 0.1V \rightarrow 9.2 \pm 0.3V$ (TBD) VPP3A = - $9.0V \pm 0.1V \rightarrow -8.2 \pm 0.3V$ (TBD) Erase period: 3 ~ $10ms \rightarrow 5ms \pm 1ms$ (TBD) $9.0V \rightarrow -8.2V$ |          |             |
|      |      | 162                  | Figure 66: VPP1: $9.0V \pm 0.1V \rightarrow 9.2 \pm 0.3V$ (TBD)                                                                                                                                |          |             |
|      |      |                      | VPP2: $7.5V \pm 0.1V \rightarrow 9.2 \pm 0.3V$ (TBD) VPP3A = - $9.0V \pm 0.1V \rightarrow -8.2 \pm 0.3V$ (TBD)                                                                                 |          |             |
|      |      | 163                  | R61505U compatible sequence Figure 67: Power supply ON sequence                                                                                                                                |          |             |
|      |      |                      | SAP bit added to setting disabled register list.                                                                                                                                               |          |             |
|      |      | 164                  | R61505U compatible sequence Figure 68: Power supply OFF sequence                                                                                                                               |          |             |
|      |      |                      | SAP bit added to setting disabled register list.                                                                                                                                               |          |             |
|      |      |                      | "(C) Liquid crystal power supply ON" and "Display OFF sequence" deleted.                                                                                                                       |          |             |
|      |      | 165                  | R61505V Setting sequence Figure 69: SAP bit deleted from "instruction user setting"                                                                                                            |          |             |
|      |      | 166                  | R61505V Setting sequence Figure 70: Power supply OFF sequence                                                                                                                                  |          |             |
|      |      |                      | SAP bit added to setting disabled register list.                                                                                                                                               |          |             |
|      |      |                      | "(C) Liquid crystal power supply ON" and "Display OFF sequence" deleted.                                                                                                                       |          |             |
|      |      | 154<br>(Rev<br>0.01) | Sleep mode sequence deleted.                                                                                                                                                                   |          |             |
|      |      | 165                  | Figure 69: Delete SAP.                                                                                                                                                                         |          |             |
|      |      | 169                  | Figure 73 Deep standby EXIT sequence, CSX="Low"                                                                                                                                                |          |             |
|      |      |                      | Display OFF Sequence $\rightarrow$ (A) Liquid crystal power supply OFF (DCDC OFF) state, Display OFF state                                                                                     |          |             |
|      |      | 170                  | Figure 74 Deep standby EXIT sequence, CSX="Low" and WRX="Low", 18-/16-bit interface                                                                                                            |          |             |
|      |      |                      | Display OFF Sequence $ ightarrow$ (A) Liquid crystal power supply OFF (DCDC OFF) state, Display OFF state                                                                                      |          |             |
|      |      | 171                  | Figure 75 Deep standby EXIT sequence, CSX="Low" and WRX="Low", 9-/8-bit interface                                                                                                              |          |             |
|      |      |                      | Display OFF Sequence $\rightarrow$ (A) Liquid crystal power supply OFF (DCDC OFF) state, Display OFF state, FFh $\rightarrow$ F0h.                                                             |          |             |

| Rev. | Date          | Page<br>No.                                                                                                        | Contents of Modification                                                                                   | Drawn by | Approved by |  |  |
|------|---------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------|-------------|--|--|
|      |               | 173                                                                                                                | Table 88 Absolute Maximum Ratings: NVM Erase Temperature added.                                            |          |             |  |  |
|      |               | 174                                                                                                                | Table 89 DC Characteristics 1                                                                              |          |             |  |  |
|      |               |                                                                                                                    | Add "(See note)".                                                                                          |          |             |  |  |
|      |               |                                                                                                                    | VIH → VIH1, VIH2                                                                                           |          |             |  |  |
|      |               |                                                                                                                    | VIL → VIL1, VIL2                                                                                           |          |             |  |  |
|      |               |                                                                                                                    | IRAM1 : tCYCW=70ns → tCYCW=125ns                                                                           |          |             |  |  |
|      |               |                                                                                                                    | Typ. 7.2 → 2.0                                                                                             |          |             |  |  |
|      |               | 175                                                                                                                | Table 89 DC Characteristics 1 (Continued)                                                                  |          |             |  |  |
|      |               |                                                                                                                    | Ici1, Ici2: gamma registers' setting added.                                                                |          |             |  |  |
|      |               | 176                                                                                                                | Table 90 DC Characteristics 2 (Step-Up Circuit Characteristics):                                           |          |             |  |  |
|      |               |                                                                                                                    | DDVDH, VGH, VGL, VCL DC0=3'h5 → 3'h4                                                                       |          |             |  |  |
|      |               |                                                                                                                    | Min, Typ and Max values changed.                                                                           |          |             |  |  |
|      |               | 177                                                                                                                | Table 91 and 92 inserted. (Table 91 NVM Control, Table 92 Power supply voltage range for NVM Contro (TBD)) | I        |             |  |  |
|      |               | 178                                                                                                                | Add "(See note)".                                                                                          |          |             |  |  |
|      |               | 180                                                                                                                | Table 98 Reset Timing Characteristics                                                                      |          |             |  |  |
|      |               |                                                                                                                    | Reset wait time added.                                                                                     |          |             |  |  |
|      |               | 181                                                                                                                | Table 99 18-/ 16- bit RGB Interface Timing Characteristics                                                 |          |             |  |  |
|      |               |                                                                                                                    | tSYNCS, Min 0 → 0.5                                                                                        |          |             |  |  |
|      |               |                                                                                                                    | tSYNCS, Max 1 → 1.5                                                                                        |          |             |  |  |
|      |               | 182                                                                                                                | Figure 78: Pin names changed.                                                                              |          |             |  |  |
|      |               |                                                                                                                    |                                                                                                            |          |             |  |  |
| 0.10 | Feb. 15, 2008 | All<br>pages                                                                                                       | Error correction. (Pin name changed. IM0/ID → IM0)                                                         |          |             |  |  |
|      |               | 8 Power Supply Specification Table 1 TBD deleted.                                                                  |                                                                                                            |          |             |  |  |
|      |               |                                                                                                                    | VPP3A:-8.2±0.3V → -9.2±0.3V                                                                                |          |             |  |  |
|      |               | 10                                                                                                                 | Table 2 Serial interface added.                                                                            |          |             |  |  |
|      |               | <ul> <li>13 Figure 1 Block Diagram Error correction. (IM3-1, IM0/ID → IM3-0)</li> <li>15 Block Function</li> </ul> |                                                                                                            |          |             |  |  |
|      |               |                                                                                                                    |                                                                                                            |          |             |  |  |
|      |               | . •                                                                                                                | Table 8 (IM)                                                                                               |          |             |  |  |
|      |               |                                                                                                                    | 0 1 0 * Clock synchronous serial interface                                                                 |          |             |  |  |
|      |               |                                                                                                                    | . Siesk dynamoniae contamientaec                                                                           |          |             |  |  |
|      |               |                                                                                                                    | 0 1 0 0 Clock synchronous serial interface                                                                 |          |             |  |  |
|      |               |                                                                                                                    | 0 1 0 1 Setting disabled                                                                                   |          |             |  |  |
|      |               | 18                                                                                                                 | Pin Function                                                                                               |          |             |  |  |
|      |               |                                                                                                                    |                                                                                                            |          |             |  |  |

| Rev. | Date | Page<br>No. | Conte        | ents of          | Modi   | ificatio | on    |                                               | Drawn by | Approved by |
|------|------|-------------|--------------|------------------|--------|----------|-------|-----------------------------------------------|----------|-------------|
|      |      |             | 0            | 1                | 0      | *(ID     | )     | Clock synchronous serial interface            |          |             |
|      |      |             | $\downarrow$ | •                |        |          |       |                                               |          |             |
|      |      |             | 0            | 1                | 0      | 0        | (     | Clock synchronous serial interface            | 7        |             |
|      |      |             | 0            | 1                | 0      | 1        | 5     | Setting disabled                              |          |             |
|      |      | 24          | PAD          | Arrang           | emei   | nt Re    | v 0.  | 10 → Rev. 0.20                                | _        |             |
|      |      | 25          | Figure       | e 2 Aliç         | gnme   | nt Ma    | ark ( | changed.                                      |          |             |
|      |      | 26~3<br>9   | Pad (        | Coordin          | ates   | Rev      | 1.0   | → Rev. 1.1                                    |          |             |
|      |      | 41          |              | g Exan<br>).00 → | •      |          | lecc  | ommended Wiring Example                       | •        |             |
|      |      | 73          | R29h         | (NVM             | Data   | Rea      | d 2)  | ) IB7 Default "0"→"1"                         |          |             |
|      |      |             | Error        | correc           | tion.  |          |       |                                               |          |             |
|      |      |             |              | M1 des           |        |          | Mal   | ke sure to set VCMSEL = 0                     | "        |             |
|      |      |             |              | M2 des           |        |          | Mal   | ke sure to set VCMSEL = 1                     | n        |             |
|      |      |             |              |                  |        |          |       | in VCM2[6:0] bits and<br>ISEL = 0" .          |          |             |
|      |      | 85          | Pane         | I Interfa        | ace C  | Contro   | ol 1- | 1 (91h) inserted.                             |          |             |
|      |      | 91          | Pane         | I Interfa        | ace C  | Contro   | ol 5- | 1 (R96h) inserted.                            |          |             |
|      |      | 96          | NVM          | Contro           | l 1 (F | RA0h     | ), N  | VM Control 2 (RA1h)                           |          |             |
|      |      |             | Table        | 65 Eri           | or co  | orrect   | ion.  | $(3'h0 \rightarrow 2'h0, ID \rightarrow UID)$ |          |             |
|      |      |             | Bit all      | ocatior          | of \   | /CM1     | an    | d VCM2 changed.                               |          |             |
|      |      | 98          | Instru       | ction L          | ist R  | ev 0.0   | o →   | Rev 1.10                                      |          |             |
|      |      | 104         | Table        | 67 IM            | Bit S  | Setting  | gs a  | and System Interface                          |          |             |
|      |      |             | 0            | 1                | 0      | *        | Clo   | ck synchronous serial interface               |          |             |
|      |      |             | $\downarrow$ |                  |        |          |       |                                               |          |             |
|      |      |             | 0            | 1                | 0      | 0        | Clo   | ck synchronous serial interface               |          |             |
|      |      |             | 0            | 1                | 0      | 1        | Set   | ting inhibited                                |          |             |
|      |      | 114         | Seria        | I Interfa        | ace d  | lescri   | ntio  | n                                             |          |             |

114 Serial Interface description

Delete "the IM0/ID pin functions as the ID pin"

the 6-bit device identification code ("011110")  $\rightarrow$  the 6-bit device identification code ("011100")

Delete "The least significant bit of the device identification code is determined by setting the ID pin. Send "01110" to the five upper bits of the device identification code."

Table 68 ID  $\rightarrow$  0. Note to Table 68 deleted.

116 Figure 28 (a) Device ID code "01110 ID" → "011100"

| Rev. Date | Page<br>No. | Contents of Modification                                                                    | Drawn by | Approved by |
|-----------|-------------|---------------------------------------------------------------------------------------------|----------|-------------|
|           | 158         | Table 87 (Shottky Diode)                                                                    |          |             |
|           |             | VF < 0.4 V/20 mA@25 °C, VR ≥ 25 V                                                           |          |             |
|           |             | $\rightarrow$ VF < 0.38V (max)/ IF=5mA @ 25C, VR $\geq$ 25V                                 |          |             |
|           | 161         | Figure 63 Error correction. (Bit allocation of VCM1 and VCM2)                               |          |             |
|           | 162         | NVM Control Sequence TBD deleted.                                                           |          |             |
|           |             | Table 89: Error correction. (NVM Read → NVM Erase)                                          |          |             |
|           |             | VPP3A = $-8.2$ V $\pm 0.3$ V $\rightarrow -9.2$ V $\pm 0.3$ V                               |          |             |
|           |             | Erase period: 5ms±1ms x n time(s)                                                           |          |             |
|           |             | $\rightarrow$ 10±1ms x n time(s)                                                            |          |             |
|           | 163         | Figure 64 TBD deleted.                                                                      |          |             |
|           | 164         | Figure 65 TBD deleted.                                                                      |          |             |
|           |             | VPP3A = -8.2V → -9.2V                                                                       |          |             |
|           |             | Erase period: 5ms±1ms → 10ms±1ms                                                            |          |             |
|           | 165         | Figure 66 TBD deleted.                                                                      |          |             |
|           |             | Erase address 16'hFFFF → R28h=000F, R29h=00FF, R2Ah=00FF (See R28h=~R2Ah description)       |          |             |
|           |             | VPP3 VPP3A = $-8.2V \pm 0.3V \rightarrow -9.2V \pm 0.3V$                                    |          |             |
|           | 177         | Electrical Characteristics                                                                  |          |             |
|           |             | Table 91 lop1 Max. TBD→400                                                                  |          |             |
|           | 178         | Table 91 (continued)                                                                        |          |             |
|           |             | lci1 Test condition changed. Typ 2.4→3.2, Max. TBD→5.0                                      |          |             |
|           |             | Ici2 Test condition changed.                                                                |          |             |
|           | 177-<br>178 | Table 91: Note numbers changed.                                                             |          |             |
|           | 180         | Table 93 (NVM Control)                                                                      |          |             |
|           |             | $I_{VPP2W}$ 30.0 (TBD) $\rightarrow$ 30.0                                                   |          |             |
|           |             | VPP3A= -8.2V → -9.2V                                                                        |          |             |
|           |             | Table 94 VPP3A Min –7.9 → -8.9V                                                             |          |             |
|           |             | Typ. –8.2 → -9.2V                                                                           |          |             |
|           |             | Max8.5 → -9.5                                                                               |          |             |
|           |             | Table 95 (Internal Reference Voltage)                                                       |          |             |
|           |             | Min TBD→"-" (bar)                                                                           |          |             |
|           |             | Max TBD→ "-" (bar)                                                                          |          |             |
|           |             | Note number changed.                                                                        |          |             |
|           | 183         | Table 99 Error correction. (tsiн → tsish)                                                   |          |             |
|           | 185         | Table 102 (LCD Driver Output Characteristics): Note number changed. Test condition changed. |          |             |
|           |             |                                                                                             |          |             |

| Rev. | Date | Page<br>No. | Contents of Modification                                                                | Drawn by | Approved by |
|------|------|-------------|-----------------------------------------------------------------------------------------|----------|-------------|
|      |      | 177-<br>185 | Deleted "Note: These values are target and subject to change."                          |          |             |
|      |      | 186         | Figure 78 Figure added.                                                                 |          |             |
|      |      | 187         | Note 6 (in rev 0.02) deleted.                                                           |          |             |
|      |      |             | Note 6 (Note 7 in Rev0.02): "The output voltage deviation is reference value." deleted. |          |             |