Supplementary Tables – General Parameters

Parameter	Value	Application
Reference temperature	37 °C	Nernst / GHK equations
Patch-clamp temperature	34 – 35 °C (measurements of	Difference < 2 mV relative to 37
	$V_{\rm rest}$ and $V_{\rm thr}$)	°C – negligible
[Cl ⁻] _o (control)	130 mM	Standard ACSF
[K ⁺] _o (control)	3 mM	Standard ACSF
Nernst constants (log10; 37 °C)	$K^{+} = +61.54 \text{ mV}$	$RT/F \times 2.303$
	$Cl^{-} = -61.54 \text{ mV}$	

A Nernst constant of 61.54 mV ($R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}$, T = 310 K, $F = 96 485 \text{ C mol}^{-1}$) was assumed for 37 °C.

Reducing the temperature to 35 °C lowers this constant to 61.12 mV, shifting all calculated equilibrium potentials by ≈ 0.68 % (≈ 0.57 mV) when $Cl_i^- = 5.8$ mM.

Throughout this supplement we use $f_K = 0.15-0.25$ and $g_{Cl} = 0.15$ based on (Booth and Rinzel 1995).

Supplementary Table 1. Calculated equilibrium potentials ($E_{\rm GABA}$) and relative shifts ($\Delta E_{\rm GABA}$) for intracellular chloride concentrations between 5.0 mM and 8.0 mM at 37 °C

[Cl ⁻] _i (mM)	E _{GABA} (mV)	ΔE_{GABA} (mV)
5.0	-87.02	-3.96
5.5	-84.48	-1.42
5.8 (control)	-83.06	0.00
6.0	-82.15	+0.91
6.5	-80.01	+3.04
7.0	-78.03	+5.02
7.5	-76.19	+6.87
7.9 (CRS)	-74.80	+8.25
8.0	-74.47	+8.59

Equation:

$$E_{GABA} = -61.54 \text{ mV} \times log_{10} \left(\frac{[Cl^{-}]_{o}}{[Cl^{-}]_{i}} \right)$$

Supplementary Table 2. Predicted shift of the resting membrane potential ($\Delta V_{\rm rest}$) produced by transient increases in extracellular potassium concentration ($\Delta [K^+]_{\rm o}$) for three values of $f_{\rm K}$ (fractional K^+ conductance)

$\Delta [K^+]_o (mM)$	$\Delta V_{\rm rest}$ (mV) $f_{\rm k}$ =0.15	$f_{\rm k} = 0.20$	$f_{\rm k} = 0.25$
0.2	0.26	0.34	0.43
0.4	0.50	0.67	0.84
1.0	1.15	1.54	1.92
2.0	2.05	2.73	3.41
3.0	2.78	3.70	4.63
3.5	3.10	4.13	5.16

Equation:

$$\Delta E_K = 61.54 \text{ mV} \times log_{10} \left(\frac{3 + \Delta [K^+]_o}{3} \right)$$

For the cumulative depolarisation budget we used:

$$\Delta V_{rest} = f_K \times \Delta E_K$$

Supplementary Table 3. Sensitivity of the resting-potential shift ($\Delta V_{\rm rest}$) to graded reductions in membrane

KCC2 triggered by interleukin-6

KCC2 loss (%)	ΔE_{GABA} (mV)	$\Delta V_{\rm rest}$ (mV) ($g_{\rm Cl}$ =0.15)
20	+5.1	+0.8
30	+7.6	+1.1
40	+10.1	+1.5
50	+12.6	+1.9

Equation:

$$\Delta V_{rest} = 0.15 * \Delta E_{GABA}$$

 ΔE_{GABA} calculated as in Supplementary Methods 1.

Supplementary Table 4. Resting-potential shift ($\Delta V_{\rm rest}$) for different ventral-to-dorsal ratios of GIRK

conductance (gGIRK v/d) and input resistance (Rin v/d)

onductance (ggikk v/a) and input resistance (km v/a)		
g GIRK v/d	R _{in v/d}	$\Delta V_{ m rest}$ (mV)
0.30	1.30	0.44
0.30	1.50	0.51
0.30	1.70	0.57
0.35	1.30	0.51
0.35	1.50	0.59
0.35	1.70	0.67
0.40	1.30	0.59
0.40	1.50	0.68
0.40	1.70	0.77

Equation:

$$\Delta V_{rest} = 0.90 \text{ mV} \times \left(\frac{R_{\text{in,v}}}{R_{\text{in,d}}}\right) \times \left(\frac{g_{\text{GIRK,v}}}{g_{\text{GIRK,d}}}\right) \times (1 + 0.25)$$

where 0.25 represents the TASK-channel contribution to the total leak current.

Supplementary Table 5. Predicted change in resting-membrane potential ($\Delta V_{\rm rest}$) produced by a chronic increase of extracellular potassium ($\Delta[K^+]_0$) under three values of the potassium-leak fraction (f_K)

$\Delta[K^+]_o$ (mM)	$f_{\rm k} = 0.15$	$f_{\rm k} = 0.20$	$f_{\rm k} = 0.25$
0.25	0.321	0.428	0.534
0.30	0.382	0.509	0.636
0.35	0.442	0.589	0.737
0.40	0.501	0.669	0.836
0.45	0.560	0.747	0.933

Equation:

$$\Delta V_{rest} = f_K \times 61.54 \text{ mV} \times \log_{10} \left(\frac{3 + \Delta [K^+]_o}{3} \right)$$

Supplementary Table 6. Attenuation of local depolarisation at the soma (Att %) reported by multi-

compartment models of CA1 pyramidal neurones

compartment models of Citi	compartment models of each pyramidal neurones		
Publication	Model / figure	Att %	
(Booth and Rinzel 1995)	Fig. 6B	11	
(Doyon et al. 2011)	Fig. 4C	14	

(Migliore et al. 2018)	Fig. 3A	12
(Currin and Raimondo 2022)	Suppl. Fig. S3	13

Supplementary Table 7. Supra-additive synergy (Synergy %) when two inhibitory-Cl⁻ manipulations are

applied simultaneously

Publication	Experimental combination	Synergy %
(Doyon et al. 2011)	KCC2 ↓ 60 % plus GABA _A	15
	frequency \(\gamma\) 200 \(\psi\) (Fig. 4C)	
(Currin and Raimondo 2022)	Cl ⁻ plus distal inhibition (Suppl.	19
	Fig. S3)	

Supplementary Table 8. Summary statistics (mean \pm SD) for the data in Supplementary Tables 6 & 7.

Metric	Mean	SD
Att %	12.5	1.29
Synergy %	17.0	2.83

(Att % = $100 \times [1 - \Delta V_{\text{soma}}/\Delta V_{\text{injected}}]$; Synergy % = $100 \times [(\Delta V_{\text{combo}} - \Sigma \Delta V_{\text{single}})/\Sigma \Delta V_{\text{single}}]$).

Supplementary Table 9. GRM3 risk haplotype – prolongation of τ_{EPSP} via glutamate spill-over

supplementally ruble >. Old/15 fish haplotype protongation of term in gratamate spin over		
Parameter	Value	Source / note
↓ mGlu3 mRNA	10–15 %	(Ghose et al. 2009)
↓ EAAT2 protein	-30 %	(Abdul et al. 2009) Fig. 2D AD
		hippocampus – used as upper
		bound
$\Delta Glu_{ m extra}$	+35 %	$-(\Delta EAAT2 + 0.4 \times \Delta mGlu3)$
Slope $\Delta \tau / \Delta G l u$	0.7	(Wild et al. 2015)
Modelled $\Delta au_{ ext{EPSP}}$	+25 %	Table 2.13 (Methods)

35% = 30% (EAAT2) + $0.4 \times 12.5\%$ (mGlu3)

Supplementary Table 10. GABRA1 mRNA \downarrow 40 % – effect on τ_{IPSC} and R_{in}

Parameter	Value	Source / note
GABRA1 mRNA (PFC, BA9)	-40 %	(Glausier and Lewis 2011)
		Fig 2B
$\Delta \tau_{\text{mIPSC}}$ w $\alpha 1$ KO	+55 %	(Bosman et al. 2005) Table 1
Scaling factor for partial loss	×0.45	Linear interpolation: 40 / 90
		(conservative)
mIPSC amplitude (A/A_{ctrl})	0.74	Chosen so that $Q/Q_{\text{ctrl}} \approx 0.93$ (see
		text)
mIPSC time constant $(\tau/\tau_{\rm ctrl})$	1.25	$1 + 0.55 \times 0.45$
IPSC charge (Q/Q_{ctrl})	0.93 (-7 %)	0.74×1.25
Modelled $\Delta au_{ ext{IPSC}}$	+25 %	Table 2.13 (Methods)
Modelled g _{inh}	−7 %	$g_{\rm inh} \propto Q$
$\Delta R_{\rm in} ({ m from} \ \Sigma g_{ m tot})$	+1.4 %	$g_{ m inh}pprox 20~\%~\Sigma g_{ m tot};$
		$0.20 \times 7 \% \approx 1.4 \%$

Supplementary Table 11. COMT Val158Met – increase in F-I gain

Parameter	Value	Source / note
CSF ΔHVA (meta-analysis)	-16 %	(Saloner et al. 2020) $(n = 132)$
DA → gain coefficient	0.9	(Vijayraghavan et al. 2007)
Modelled ∆gain F–I	+14 %	Table 2.13 (Methods)

Supplementary Table 12. CACNA1C rs1006737 A – increase of τ_{EPSP} and rheobase shift

Parameter	Value	Source / note
$\Delta I_{ m Ca,L}$	+30 %	(Mertens et al. 2015) Fig 3C (hiPSC
		neurons)
Slope $\Delta \tau / \Delta Ca_{post}$	0.5	(Wild et al. 2015)
Modelled $\Delta \tau_{\text{EPSP}}$	+15 %	_
Ratio $\alpha = \tau_{\rm m}/(\tau_{\rm m} + T)$	0.4	(Tuckwell 1988); CA1
Lapicque/Tuckwell	Δ rheo = $-\alpha \cdot \Delta \tau_{EPSP}$	_
formula		
Modelled Δrheobase	-6 %	Exported to Table 3.3

For a representative rheobase of 150 pA (CA1 pyramidal, T = 5 ms) a 6 % decrease corresponds to ≈ 9 pA, well below the 10–20 pA step size used in typical current-step protocols.

Supplementary Table 13. NRG1 HapICE – reduction of ginh

Parameter	Value	Source / note
Loss of PV interneurons	30 %	(Fazzari et al. 2010)
$N_{ m PV}$ / $N_{ m PV,ctrl}$	0.70	_
Booth–Rinzel rule (power 0.3)	_	(Booth and Rinzel 1995)
Modelled g _{inh}	-10 %	Table 2.13 (Methods)
IPSC measurement	-25 %	(Yin et al. 2013)

Supplementary Table 14. C4A over-expression – synaptic connectivity loss

Parameter	Value	Source / note
Synapse pruning (microglia engulfment, PSD-95 ⁺)	↑≈ 35 %	(Yilmaz et al. 2021) Fig 4C–E
Spine density (apical dendrites, L2/3)	↓ 25 %	(Yilmaz et al. 2021) Fig 5B
mEPSC frequency	↓ 20 %	(Yilmaz et al. 2021) Fig 6B
mEPSC amplitude	↓ 15 %	(Yilmaz et al. 2021) Fig 6C

Fewer E \rightarrow PV \Rightarrow γ -power \downarrow inputs; weaker "internal noise" facilitates injection-locking of ELF 7-30 Hz, raising the probability of phase convergence (P_{phase}) and self-replays.

Supplementary Table 15. SCN2A R1882Q – reduced rheobase

Parameter	Value	Source / note
$\Delta I_{ m Na,pers}$	+40 %	(Ben-Shalom et al. 2017)
$\Delta V_{ m thr}$	−3 mV	(Ben-Shalom et al. 2017) Fig. 1E
Modelled Δrheobase	-15 %	Table 3.3

 V_{thr} measured in HEK293/Nav1.2 was transferred 1:1 to CA1 model (Ben-Shalom et al. 2017).

Supplementary Table 16. Amphetamine (2 mg kg⁻¹ i.p.) – reduction of rheobase

Parameter	Value	Source / note
WT threshold (BLA)	$120 \pm 5 \text{ pA}$	(Rosenkranz and Grace 2002) Fig 3D
Threshold after AMPH	105 ± 5 pA	(Rosenkranz and Grace 2002) Fig 3D
Δrheobase	-12 %	Exported to Table 2.15 (Methods)

Supplementary Table 17. Chronic-intermittent ethanol (CIE, 5 weeks) – changes in NMDA/AMPA ratio and mIPSC frequency

Parameter	Value	Source / note
$\Delta(\text{NMDA}/\text{AMPA})$	+30 %	(Kroener et al. 2012)
$\Delta mIPSC_{\mathrm{freq}}$	-15 % (trend, p = 0.08)	(Kroener et al. 2012)

Supplementary Table 18. Alcohol withdrawal (72 h) – change in R_{in} and IPSC frequency

Parameter	Control	72 h WD	Δ (%) / Source
R_{in} PV interneurons	155	186	+20 % —(Quadir et al.
(ΜΩ)			2024) bioRxiv preprint
$IPSC_{freq}$ (Hz)	7.8	5.9	−24 % —(Quadir et al.
•			2024) bioRxiv preprint

Supplementary Table 19. IL-6 $\uparrow \rightarrow \text{KCC2} \downarrow \rightarrow \Delta E_{\text{GABA}} \rightarrow \Delta V_{\text{soma}}$

Parameter	Value	Source / note
↓ gKCC2,surf	-40 %	(Jin et al. 2022) Fig. 5C
↑ [Cl ⁻] _i	$5.8 \rightarrow 8.6 \text{ mM}$	At 40 % KCC2 loss the model of (Doyon et
		al. 2011) predicts a 48 % rise $(5.8 \rightarrow 9.7)$
		mM); 8.6 mM is chosen conservatively
		below this upper limit
$E_{ m GABA}$	−72.6 mV	$-61.54 \text{ mV} \times \log_{10}(130 / 8.6)$

$\Delta E_{ m GABA}$	+10.5 mV	(Rivera et al. 2004) (40 % KCC2 loss)
$g_{\rm Cl}$ fraction in $V_{\rm rest}$	0.15	(Booth and Rinzel 1995)
$\Delta V_{ m soma}$	+1.6 mV	$0.15 \times 10.5 \text{ mV}$
Baseline E_{GABA}	−83 mV	Calculated for $[Cl^-]_i = 5.8 \text{ mM}$ (see Suppl.
		Table 1)

Minimal scenario $5.8 \rightarrow 7.9 \text{ mM}$

Supplementary Table 20. P2X7R ↑ + slowed [K⁺]₀ clearance

Supplementally Tuble 20: 1 221/10	siowed it is clearance	
Parameter	Value Source / note	
Extracellular ATP (microglia)	+210 %	(Shan et al. 2022) Fig. 4B
$t_{\frac{1}{2}}$ of $[K^{+}]_{o}$ clearance	× 1.7	(Shan et al. 2022) Fig. 4D
Excess [K ⁺] _o	+0.12 mM	Diffusion model (conservative)
[K ⁺]₀ absolute	$3 \rightarrow 3.12 \mathrm{mM}$	_
$\Delta E_{ m K}$	+1.05 mV	$61.54 \text{ mV} \times \log_{10}(3.12/3)$
$g_{\rm K}$ fraction in $V_{\rm rest}$	0.15	(Booth and Rinzel 1995)
$\Delta V_{ m soma}$	$\approx 0.16 \text{ mV}$	$0.15 \times 1.05 \text{ mV}$

Supplementary Table 21. ROS → 40 % Kir2.1 block

Parameter	Value	Source / note
$\downarrow g_{\rm Kir2.1}$	-40 %	(Wang et al. 2022) Fig 3D
$g_{\rm Kir}$ / $g_{\rm K}$	0.30	(Ding et al. 2016)
g _K / g _{total}	0.15	(Booth and Rinzel 1995)
Net $\Delta g_{\text{Kir}} / g_{\text{total}}$	$0.018 = 0.40 \times 0.30 \times 0.15$	_
Baseline V_{rest}	−71 mV	(Cembrowski et al. 2016)
Baseline $E_{\rm K}$	-90 mV (3 mM [K ⁺]₀)	Nernst
$\Delta V_{\rm soma}$ (Kir block)	+0.34 mV	$0.018 \times V_{soma} - E_{\rm K} $
Time window	24 – 72 h	(Wang et al. 2022)

[†] The TRPM2 effect (+5-10 pA inward current, (Wang et al. 2022)) is negligible relative to Kir2.1 and was not included in ΔV .

Supplementary Table 22. ECS shrinkage ($\Delta f_{\rm K} = -0.03$)

Parameter	Value	Source / note
$\downarrow f_{ m K}$	-0.03	(Syková and Nicholson 2008)
		Fig. 5A–B
Burst [K ⁺] ₀	6 mM (CRS)	_
$\Delta E_{\rm K}$ (burst)	$\approx 18.7 \text{ mV}$	$61.5 \text{ mV} \times \log_{10}(6/3)$
$\Delta V_{ m soma}$	$\approx 0.56 \mathrm{mV}$	$0.03 \times 18.7 \text{ mV}$

 $\Delta f_{\rm K}$ adapted from (Syková and Nicholson 2008) Fig. 5A–B (chronic astrocytic swelling).

Supplementary Table 23. Caffeine – GIRK block					
Dose (p.o.)	[Caf] _{CSF} (µM)	GIRK block	$\Delta V_{\rm raw}$ (mV)	$\Delta V_{\text{soma}} (\text{mV})$	Source / note
		(%)			
100 mg	4 - 6	10 - 15	0.67 - 1.00	0.8 - 1.1	(Blanchard and
					Sawers 1983;
					Nehlig
					2018)slope 2.5
					% μM ⁻¹ (Lopes
					et al. 2019)
400 mg	12 – 16	25 - 35	1.7 - 2.4	2.0 - 2.8	GIRK saturation
					above 10 μM
10 μM slice	_	25	1.66	1.9	Acute
					hippocampal
					slice; (Lopes et
					al. 2019)

 $\Delta V_{\text{raw}} = 0.35 \times \text{block} \times |E_{\text{K}} - V_{\text{rest}}|, \text{ with } |E_{\text{K}} - V_{\text{rest}}| \approx 19 \text{ mV}.$

 $\Delta V_{\text{soma}} = \Delta V_{\text{raw}} \times k_{\text{R}(\theta)} \times k_{\text{PV}} = \Delta V_{\text{raw}} \times 1.10 \times 1.10.$

The block-versus-concentration slope flattens above 10 μM; we therefore used 25–35 %.

The slope of 2.5 % μ M⁻¹ was obtained by linear regression of the 0–10 μ M data in (Lopes et al. 2019) (R² = 0.94); own calculations.

Supplementary Table 24. "Low-PV" window (25 % drop in ginh)

Parameter	Value	Source / note
$\downarrow g_{\rm inh} ({\rm PV})$	-25 %	(Donato et al. 2013), Fig. 3E
$g_{\rm inh}/g_{\rm total}$	0.20	(Booth and Rinzel 1995)
$\Delta E (V_{\text{rest}} - E_{\text{GABA}})$	12 mV	-71 - (-83)
$\Delta V_{ m soma}$	+0.6 mV	$0.20 \times 0.25 \times 12 \text{ mV}$

[†] PV \rightarrow pyramidal IPSPs act perisomatically; there is no dendritic attenuation, hence the attenuation coefficient (Att) = 1.

Supplementary Table 25. Nicotine – somatic depolarisation in vCA1

Scenario	[Nic] _{CSF} (µM)	$\Delta V_{\rm raw} ({ m mV})$	$\Delta V_{\text{soma}} (\text{mV})$	Source / note
4 cigarettes h ⁻¹	0.20 - 0.30	0.076 - 0.114	0.09 - 0.13	(Ji and Dani 2000;
				Rose et al. 2010),
				Fig. 2B
				$(0.38 \text{ mV } \mu\text{M}^{-1})$
2 cigarettes h ⁻¹	0.10 - 0.15	0.038 - 0.057	0.04 - 0.07	same as above
Peak after 1	0.25	0.095	0.12	$t_{1/2} \approx 45 \text{ min}$
cigarette				(Picciotto et al.
				2008)
10 μM slice	_	3.8	3.8	Acute
				hippocampal slice;
				(Ji and Dani
				2000), Fig. 2C

 $[\]dot{\tau} \Delta V_{\text{raw}} = 0.38 \text{ mV } \mu \text{M}^{-1} \times [\text{Nic}]_{\text{CSF}}$

Supplementary Table 26. Baseline equation and input parameters for a magnetite nanocrystal chain

Parameter	Nominal value	Tested range	Source
α_{ds}	0.50	0.45 - 0.55	(Golding et al. 2005) Fig. 3
κ	$8.27 \ \mu V \times \mu T^{-1}$	± 7 % †	(Kirschvink 1996)
Φ (16.7 Hz)	1.0×10^{2}	80 – 120	(Kirschvink et al. 1992); see
			Methods §2.11.2
Φ (7.83 Hz)	40	$30-60 (\pm 25 \%)$	(Kirschvink et al. 1992); see
			Methods §2.11.2
$B_{ m rms-}{ m city}$	0.15 μΤ	$0.10 - 0.20 \ \mu T$	(Schüz et al. 2000; Brix et al. 2001;
			Bundesamt für Strahlenschutz (BfS)
			2023 Fig 3.2; Loizeau et al. 2024)
$B_{\rm rms-}$ countryside	1 pT	0.5 - 2 pT	(Nickolaenko and Hayakawa 2014;
_			Han et al. 2023)
Q_{θ}	30	_	(Buzsáki and Draguhn 2004;
			Zemankovics et al. 2010), Fig. 2

Baseline equation – see Methods § 2.11.3.

Φ values taken directly from (Kirschvink et al. 1992) (chain $\approx 10^3$ crystals, $R \approx 100$ MΩ).

† A \pm 7 % spread in κ changes ΔV_{soma} by \approx 6 %, so κ is treated as constant in the sensitivity analysis.

 $[\]ddagger \Delta V_{\text{soma}} = \Delta V_{\text{raw}} \times k_{\text{R}(\gamma)} \times k_{\text{PV}} = \Delta V_{\text{raw}} \times 1.15 \times 1.10$

Supplementary Table 27. Sensitivity matrix – urban environment (16.7 Hz)

Φ \ α	0.45	0.50	0.55
80	44 μV	49 μV	55 μV
100	56 μV	62 μV	68 μV
120	67 μV	74 μV	82 μV

Nominal prediction: $\Delta V_{\text{soma}} = 62 \,\mu\text{V} \,(0.062 \,\text{mV})$

Extreme scenario $(0.55; 120) \rightarrow 0.082 \text{ mV}$.

Supplementary Table 28. Sensitivity matrix – rural environment (7.83 Hz)

Φ\α	0.45	0.50	0.55
30	0.11 nV	0.12 nV	0.14 nV
40	0.15 nV	0.17 nV	0.19 nV
60	0.22 nV	0.25 nV	0.28 nV

Nominal prediction: $\Delta V_{soma} = 0.17 \text{ nV}$

Supplementary Table 29. ΔV_{soma} versus Johnson noise (band 0 – 5 kHz)

Compartment	C [pF]	$V_{ m rms}$	ΔV_{soma} (city)	$\Delta V/V_{ m rms}$
Dendritic branch	0.5	120 μV	62 μV	0.52×
Whole cell	150	5 μV	62 μV	12×

The rural ΔV (0.17 nV) is > 10⁵ × weaker than the thermal noise of a single dendrite.

Supplementary Table 30. One-second traction-field bursts (16.7 Hz)

Scenario	B _{rms}	$\Delta V_{ m soma}$
City – 24 h median	0.15 μΤ	0.062 mV
City – peak × 3	0.45 μΤ	$0.19 \text{ mV} \rightarrow 0.14 \text{ mV}$ after RC (-25%)
Countryside – median	1 pT	0.17 nV
Countryside – peak × 3	3 pT	0.50 nV

One-second bursts are further attenuated by ≈ 25 % owing to the membrane RC filter ($\tau \approx 20$ – 50 ms).

Supplementary Table 31. Matrix of percentage changes (layer \times axis) – CRS + CACNA1C A + hot-spot variant

Axis / Layer	Layer 1 (CRS ≥ 14 d)	Layer 2 (allele / drug)	Layer 3 (CREB hot-spot)	Layer 4 (minute– hour bias)
Rheobase	-44 %	-6 %	-15 %	_
R _{in}	+29 %	_	_	_
$ au_{ ext{EPSP}}$	+15 %	+15 %	+25 %	_
$IPSC_{PV o pyr}$	-16 %	_	_	_
$\Delta V_{ m rest}$	+11.3 mV	0 mV	+3.2 mV	+0.5-3 mV

Layer 4 acts purely additively on V_{margin} ; it does not modify passive parameters.

Combination rule (Fricker and Miles 2000; Magee and Cook 2000):

Overall factor =
$$\prod_{i=1}^{n} \left(1 + \frac{\Delta_i}{100}\right).$$

(Spruston and Johnston 1992; Dougherty et al. 2012; Kim and Johnston 2015; MacKenzie and Maguire 2015; Pignatelli et al. 2019; Zhang et al. 2021).

Supplementary Table 32A. Propagation of uncertainty – CACNA1C A variant

Axis	Final value	σbase	σ _{mult} (5 %)	σ _{tot}
Rheobase	63 pA (140 × 0.447)	10 pA	3.15 pA	$\approx 10.4 \text{ pA}$

$R_{\rm in}$	142 M Ω (110 × 1.29)	8 ΜΩ	7.1 ΜΩ	$\approx 10.7~\mathrm{M}\Omega$
$ au_{ ext{EPSP}}$	24.8 ms (15 × 1.652)	1.0 ms	1.24 ms	≈ 1.59 ms
$IPSC_{PV o pyr}$	0.84	*	0.042	0.042

^{*} For the normalised quantity (= 1.0) no published standard deviation is available; $a \pm 5$ % multiplier uncertainty was applied instead.

$$\sigma_{tot} = \sqrt{\sigma_{base}^2 + \sigma_{mult}^2}$$

 $\sigma_{mult} = 0.05 \times \text{final value } (5 \% \text{ relative uncertainty}).$

Supplementary Table 32B. Combined factors (SCN2A R1882Q variant)

Axis	Overall factor	Change %
Rheobase	$0.56 \times 0.85 \times 0.85 = 0.404$	- 59.6 % (Rounded) - 60 %
$R_{\rm in}$	1.29	+ 29 %
$ au_{ ext{EPSP}}$	1.44	+ 44 %
$IPSC_{PV o pyr}$	0.84	-16 %

Layers 1 and 3 are identical to Supplementary Table 31; in Layer 2 a -15 % rheobase shift was assumed, all other axes 0 %.

Supplementary Table 33. Scaling constants used in transient-gain mode

Parameter	Value	Source / note			
$\Delta R_{ m in}$	+29 %	§ 3.11 (electrotonic cascade)			
$k_{\mathrm{R}}\left(\theta\right)$	1.10 (after correction)	corrected from 1.29 by filtering			
$k_{\rm R}$ (SWR)	1.29	$R_{\rm in}$ operates at full scale at 150			
		Hz			
PV-shunt	-16 %	Hot-spot + CACNA1C A			
$k_{ m PV}$	1.10	(Booth and Rinzel 1995), leak-			
		divisive model			

Supplementary Table 34. Sensitivity of ΔV_{soma} to \pm 10 % changes in k_{R} (electrotonic gain) and k_{PV} (PV shunt)

Transient	k _R variation (± 10 %)	k _{PV} variation (± 10 %)	$\Delta V_{ m soma}$ range [mV]
θ	1.0 - 1.2	1.0 - 1.2	0.99 - 1.44
SWR	1.2 - 1.46	1.00 - 1.00	0.48 - 0.58

With the largest deviations (\pm 10 %), ΔV_{soma} changes by \leq 20 %. This does not alter the qualitative conclusion that θ and SWR remain the leading candidates for ELF phase-locking.

Supplementary Table 35. Input parameters of the phase-coincidence model

Band	Fraction of sites fi	Period T _i [ms]	Hit probability $p_i(\Delta t)$	Sources
7.83 Hz	1.00	128	$p_1 = \Delta t/T_1$	(Nickolaenko and Hayakawa 2014)
16 – 18 Hz	0.62	60	$p_{16} = \Delta t / T_{16}$	(Kirschvink 1996; Brix et al. 2001; Loizeau et al. 2024)
20 – 28 Hz	0.18	42.5 ± 7.5 (≈ 50 → 35)	$p_{20} = \Delta t / T_{20}$	(Paniagua et al. 2007; Gajšek et al. 2016)

For any specific Δt we use

$$p_i = \begin{cases} \frac{\Delta t}{T_i}, \Delta t < T_i \\ 1, \Delta t \ge T_i \end{cases}$$

Supplementary Table 36. Calculation of P_{phase} in an urban environment (p = 1)

Δt	p 1	p 16	p 20	$1 - f_1 p_1$	$1 - f_{16}p_{16}$	$1-f_{20}p_{20}$	P _{phase,city}	± 10 % CI
20 ms	0.156	0.333	0.471	0.844	0.794	0.915	0.387	0.31 - 0.46
25 ms	0.195	0.417	0.588	0.805	0.7396	0.894	0.468	0.39 - 0.54
30 ms	0.234	0.500	0.706	0.766	0.690	0.872	0.539	0.45 - 0.61

$$P_{\text{phase}} = 1 - \prod_{i} (1 - f_i p_i)$$

Supplementary Table 37. Calculation of P_{phase} in a rural environment

Δt	p_1	$oldsymbol{P_{ ext{phase,village}}}$	± 10 % CI
20 ms	0.156	0.156	0.14 - 0.17
25 ms	0.195	0.195	0.18 - 0.21
30 ms	0.234	0.234	0.21 - 0.26

Because only the 7.83 Hz band contributes in the rural scenario:

$$P_{\text{phase,village}} = f_1 p_1 = 1.00 \times p_1$$

Supplementary Table 38. Urban gradient ($G = P_{\text{city}} / P_{\text{village}}$)

Δt	Gradient	95 % CI (± 10 %)
20 ms	2.48	2.0 - 3.0
25 ms	2.40	1.9 - 3.0
30 ms	2.30	1.9 - 2.8

Shift in the correlation threshold *r*

If the frequency bands are partially correlated we introduce a reduction factor

$$\rho = 1 - r$$

For $r = 0.02 \dots 0.10$;

Supplementary Table 39. Sensitivity to inter-band correlation ($\Delta t = 25$ ms)

r	ρ	$P_{\rm phase,city} (\Delta t = 25 {\rm ms})$	G
0.02	0.98	0.460	2.31
0.05	0.95	0.444	2.22
0.10	0.90	0.420	2.15

Conclusion: even at r = 0.10 the gradient remains > 2.1.

Supplementary Table 40. Variation of the 16–18 Hz band fraction (± 15 %)

f_{16}	$P_{ m city}$	Gradient
0.53 (-15 %)	0.441	2.26
0.62 (nominal)	0.468	2.40
0.71 (+15 %)	0.496	2.44

Supplementary Table 41. Theta + SWR coincidences in mice (RUN state, vCA1)

Variable Nominal value		Unit	± 10 % range	Source /	
				comment	
$f_{ heta}$	10	Hz	9 – 11	(Fernández-Ruiz	
				et al. 2017)	
				Fig. 2B	
$\lambda_{\theta\text{-window}} = 4 f_{\theta} \times 60$	2 400	min ⁻¹	2 160 – 2 640	calculated	
$\Delta t_{\theta} = 1 / (4 f_{\theta})$	25.0	ms	22.7 - 27.8	calculated	
$\lambda_{ m SWR}$	1.90	min ⁻¹	1.71 - 2.09	(Liu et al. 2022a)	
$t_{ m SWR}$	100	ms	90 – 110	(Schieferstein et	
				al. 2024)	

$t_{ m eff,SWR}$	109.8	ms	99.8 – 119.8	+9.8 ms ($\tau_{EPSP,eff}$ -
				15 ms)
$t_{\rm sum} = t_{\rm eff,SWR} + \Delta t_{\rm \theta}$	135	ms	124.8 - 144.8	calculated
$p_{ m hit}$	0.00428	_	0.00356 - 0.00505	$\lambda_{\rm SWR} \times t_{\rm sum} / 60$
$N_{ m hit,raw} = p_{ m hit} imes \lambda_{ heta}$	10.26	min ⁻¹	7.68 - 13.32	_
window				
$N_{ m hit,city}$	4.80	min ⁻¹	3.59 - 6.24	$\times P_{\text{phase,city}} = 0.468$
$N_{ m hit,village}$	2.00	min ⁻¹	1.50 - 2.60	$\times P_{\text{phase,village}} =$
				0.195

Supplementary Table 42. Theta + SWR coincidences in humans (vCA1)

Wake state	f _θ [Hz]	λθ-window [min ⁻¹]	λswr [min ⁻¹]	t _{sum} [ms]	P hit	N _{hit,raw} [min ⁻¹]	Nhit,city	Nhit,village	± 10 % CI (city /
Rest	7.0	1 680	1.2	146	0.00291	4.90	2.29	0.96	1.68 – 3.03 / 0.70 – 1.27
Slow walk	8.8	2 112	0.9	138	0.00207	4.38	2.05	0.85	1.51 – 2.72 / 0.63 – 1.13
β-arousal	16.0	3 840	0.8	126	0.00168	6.44	3.02	1.25	2.21 – 3.98 / 0.92 – 1.66

Confidence intervals were calculated as described in $\S S2.15.4$ (simultaneous \pm 10 % perturbation of all input parameters).

Supplementary Table 43. Sensitivity analysis (\pm 10 %) – extreme values of $N_{\rm hit}$

Species / state	Nhit, city [min-1]	$N_{ m hit,\ village}\ [m min^{-1}]$
Mouse (RUN)	3.59 - 6.24	1.50 - 2.60
Rest	1.68 - 3.03	0.70 - 1.27
Slow walk	1.51 - 2.72	0.63 - 1.13
β-arousal	2.21 - 3.98	0.92 - 1.66

Ranges span all 2⁷ combinations of the input parameters (f_{θ} , λ_{SWR} , t_{SWR}) varied by \pm 10 %.

Supplementary Table 44. Physical parameters for amplification of the 7.83 Hz signal

Parameter	Calm	Geomagnetic storm Kp ≥ 6	Unit	Source / formula
$B_{ m rms}$	0.3 pT	3 pT	pT	(Sátori et al. 2007)
κ	8.27	_	μV μΤ-1	(Kirschvink 1996) chap. 12, tab. 2, p. 242
Φ (-25 dB)	40	40	-	(Winklhofer and Kirschvink 2010) Detuning -25 dB (midpoint of 15- 30 dB range) \Rightarrow $\Phi \approx 40$
$lpha_{ m ds}$	0.50	0.50	_	(Golding et al. 2005)
$\Delta V_{ m soma}$	5 × 10 ⁻⁸	5×10^{-7}	mV	$\kappa \cdot B \cdot \Phi \cdot \alpha_{ds}$

-25 dB corresponds to $|H| \approx 0.056$ (18-fold amplitude attenuation for a single crystal). Serial coupling of two crystals (n = 2) therefore restores an *effective* amplitude gain $\Phi \approx 36-40$. A full 20-to-60 sensitivity sweep is reported in § S2.11.2.

Supplementary Table 45A. Calculation steps for P_{phase} (city / village) (g = 0.13)

Band	Band fi		p _i (storm)	$1-fip_i(calm)$	$1-f_{\rm i}p_{\rm i}$
					(storm)
7.83 Hz	1.00	0.195	0.325	0.805	0.675
16–18 Hz	0.62	0.417	0.417	0.740	0.740
20–28 Hz	0.18	0.588	0.588	0.894	0.894
Product of the	_	0.534	0.447	_	_
three					
$P_{\mathrm{phase,city}}$	_	0.466	0.553	_	_
$P_{\mathrm{phase,village}}$	_	0.195	0.325	_	_

$$P_{phase} = 1 - \prod_{i} (1 - f_i p_i)$$

 $P_{phase} = 1 - \prod_{i} (1 - f_i p_i)$ In the village scenario only the 7.83 Hz band contributes; therefore $P_{phase,village} = f_1 p_1 = f_1 p_2$ $1.00 \times p_1$

Supplementary Table 45B. Calculation steps for P_{phase} (city / village) (g = 0.22) full

Band	<i>f</i> i	p _i (calm)	p _i (storm)	$1-fip_i(calm)$	$ \begin{array}{c} 1 - f_i p_i \\ \text{(storm)} \end{array} $
7.83 Hz	1.00	0.195	0.415	0.805	0.585
16–18 Hz	0.62	0.417	0.417	0.740	0.740
20–28 Hz	0.18	0.588	0.588	0.894	0.894
Product of the three	_	0.534	0.388	_	_
P _{phase,city}	_	0.466	0.612	_	_
$P_{\mathrm{phase,village}}$	_	0.195	0.415	_	_
RR ≈ 1.33					

g = 0.22 corresponds to the full transfer of the mean peak narrowing (11 % Δ FWHM) into the phase domain.

Supplementary Table 46. Epidemiological studies and the β coefficient

#	Author	Populati	Endpoint	RR	95 % C	log R	SE ²	β =
	(year)	on			I	R	(log R R)	(RR-1)/0, 28
1	(Nishimura et al. 2020)	Taiwan	Suicide attempts	1.15	1.05-1. 25	0.140	0.0019 7	0.54
2	(Kay 1994)	Scotland	Depression (hospital)	1.36	1.12-1. 66	0.308	0.0099 6	1.29
3	(Raps et al. 1992)	Israel	Psychiatric admissions	1.15	n/a	0.140	n/a	0.54
4	(Tada et al. 2014)	Japan	Suicides	1.18	1.05-1. 32	0.165	0.0034 1	0.64
5	(Partonen et al. 2004)	Finland	Suicides	1.22	1.10-1. 35	0.199	0.0026 5	0.79
6	(Feigin et al. 2014)	6 countries	First stroke	1.19	1.04-1. 36	0.174	0.0046 8	0.68
7	(Shaposhnik ov et al. 2014)	Moscow	Stroke hospitalisati ons	1.25	1.10-1. 42	0.223	0.0042 4	0.89
8	(Villoresi et al. 1998)	Italy	Myocardial infarction	1.11	1.06-1. 38	0.104	0.0045 3	0.39
Pooled (DL)	_	_	_	1.19	1.14-1. 25	0.176	0.0005	0.69
Heterogene ity	_	_	_	Q = 4.25 (df = 6; p = 0.6 4)	_	_	_	I ² = 0 %

Leave-one-	_	_	_	pooled	_	_	_	_
out				β				
				range:				
				0.62 -				
				0.70				

$$\log R R = \ln(RR)$$
; $Var = SE^2$, where $SE = \frac{\ln(CI_{upper}) - \ln(CI_{lower})}{2 \times 1.96}$

CI: 0.48 - 0.85

(Raps et al. 1992) does not report a 95 % confidence interval; the study was assigned a weight of 0 in the random-effects model.

Removing (Nishimura et al. 2020) raises β_{pooled} to 0.70, whereas removing (Kay 1994) lowers it to 0.62.

The β column has been recalculated using $\Delta = 0.28$ as the denominator.

The updated values are: $0.54 \cdot 1.29 \cdot 0.54 \cdot 0.64 \cdot 0.79 \cdot 0.68 \cdot 0.89 \cdot 0.39$.

The exact median is 0.66.

For consistency across the manuscript we retain $\beta = 0.67$ (rounded to two decimal places); the 0.01 difference is < 2 % in relative terms and has no material impact on β_{pooled} (0.69 vs 0.67) or on the final RR_{hosp} estimate (1.192 vs 1.188).

Supplementary Table 47. Sensitivity analysis – impact of uncertainty in Δ and β on RR_{hosp}

$\Delta N_{\rm hit} / N_{\rm hit}$	В	$RR_{hosp} = 1 + \beta \cdot \Delta$
0.25	0.60	1.15
0.25	0.67	1.17
0.25	0.85	1.21
0.29	0.60	1.17
0.29	0.67	1.19
0.29	0.85	1.25
0.33	0.60	1.20
0.33	0.67	1.22
0.33	0.85	1.28

Legend: Δ – relative increase in N_{hit} (0.25 – 0.33, \pm 15 %);

The span $\beta = 0.60 - 0.85$ covers the leave-one-out interval (0.62 - 0.70) and the upper section of the 95 % CI.

The lower 95 % bound (β = 0.48) would give RR \approx 1.14 for Δ = 0.28 and can be obtained by linear interpolation.

Supplementary Table 48. Margins at $V_{\text{margin}} = 5.7 \text{ mV} (\pm 10 \%)$

Parameter	Nominal value	± 10 % range
$V_{ m margin}$	5.7 mV	5.13 – 6.27 mV
Margin after – 55 %	2.57 mV	2.31 – 2.82 mV
Caffeine (0.9 mV)	1.67 mV	1.50 – 1.84 mV

Supplementary Table 49. Matrix of parameter transfer – fear loop (schizophrenia)

#	Parameter / effect	Original region & species	Source (year)	Value in source	Rule†	k	Model value
1	DA ↑ (single recall)	mPFC, rat	(Yoshioka et al. 1996)	≈ +60 %	R4	1.0	+60 %†
	recair)		1990)				
2	Cortisol ↑	Saliva,	(Schwabe and	≈ +55 –	R4	1.0	+55-
		human	Wolf 2012)	60 %			60 %†

3	Glu $\downarrow \approx 10 \% /$ GABA $\downarrow \approx 8 \%$	PFC, human	(Rowland et al. 2016)	-10 % / -8 %	R2	1.0	-10 % / -8 %†
	(ratio ↑)		,				'
4	PV IN -30 %	PFC & BLA, rat, DG, tree-shrew	(Czeh et al. 2005; Shepard et al. 2016)	-30 %	R1	1.0	−30 %†
5	γ shift (↓ PFC, ↑ BLA)	PFC & BLA, mouse	Steullet et al., 2017	qualitative	R2	_	↑/↓†
6	Apical dendritic length -20 %	dmPFC, rat	(Radley et al. 2004)	-20 %	R1	1.0	−20 %†
7	BDNF histone-H3/H4 acetylation ↑	vHPC, mouse	(Lubin et al. 2008)	↑	R1	_	↑ †
8	AMPAR +25 %	BLA, mouse	(Rumpel et al. 2005)	+25 %	R1	1.0	+25 %†
9	Engram expansion ≈ +35 %	DG, mouse	(Stefanelli et al. 2016)	+35 %	descriptive		

[†] Parameter measured outside vCA1; transferred according to rules R1–R4 (Methods § 2.18.1).

All values are expressed as differences versus control and serve an illustrative purpose.

Supplementary Table 50. Matrix of parameter transfer – sadness loop (major depression)

#	Parameter / effect	Original	Source	Value in	Rule†	k	Model value
		region &	(year)	source			
		species					
1	HVA \downarrow (g \approx -0.30 SD);	CSF, human	(Ogawa et	HVA g \approx -0.30 ;	R4		↓ (qual.)†
	5-HIAA n.s.		al. 2018)	5-HIAA n.s.			
2	CRF↑	CSF, human	(Nemeroff	+45 – 80 %	R4	1.0	+65 %†
			et al. 1984)	$(\text{mean} \approx +65 \%)$			
3	Glu ↑ 15 % / GABA ↓	sgACC,	(Godfrey	+15 % / -8 %	R1	1.0	+15 % / -8 %†
	8 % (ratio ↑)	human	et al. 2018;				
			Hu et al.				
			2023)				
4	Pyramidal	IL-mPFC,	(McKlveen	+4-6 mV	R2		+5 mV
	depolarisation $\approx +5 \text{ mV}$	rat†	et al. 2016;	(estimated from			
			Hu et al.	traces)			
			2023)				
5	PV IN -30 %	vHPC,	(Czeh et al.	-28 - 33 %	R1	1.0	−30 % †
		tree-shrew &	2005; Yu et	(vHPC); -25 %			
		sgACC/PrL,	al. 2020)	(sgACC)			
	DOGA/CCIII	rat	(C.1. 1	1	D.1		A / 1.2
6	$ROS \uparrow / GSH \downarrow$	PFC, rat	(Cabungcal	qual.	R1		↑/↓†
	DADA	A CC/D I	et al. 2013)	1	D.1		1.2
7	PNN↓	sgACC/PrL,	(Yu et al.	qual.	R1	_	↓†
8	0 A (12	rat	2020)	1	R4		A / L4
8	β-power ↑ (13–	Scalp,	(Moon et	qual.	K4	_	↑/↓†
	30 Hz) / α -power \downarrow (8–	human	al. 2018; Forner-				
	12 Hz) (rumination)		Phillips et				
			al. 2020;				
			Benschop				
			et al. 2021)				
9	BDNF methylation ↑	mPFC,	(Cheng et	↑ (qual.)	R1		<u></u>
)	DDM Incuryiation	mouse	al. 2023)	(quai.)	IX1		11
10	Spine density -15 %	dlPFC,	(Kang et	-12 - 18 %	R1	1.0	−15 % †
	-r wennerd	human	al. 2012;	(mean -15 %)			-5 / 5

			Kassem et al. 2013)				
11	vHPC – sgACC connectivity \uparrow (δ/θ)	MEG, human	(Hamilton et al. 2015; Higgins et al. 2021)	freq.↑	R2	_	δ/θ coherence ↑ (qual.)

[†] Parameter measured outside vCA1; transferred according to rules R1–R4 (Methods § 2.18.1).

All values are differences versus control and are illustrative only.

Supplementary Table 51. Matrix of parameter transfer – trauma loop (PTSD)

	olementary Table 5						
#	Parameter /	Original	Source	Value in source	Rule†	k	Model value
	effect	region &	(year)				
1	NA↑ ~3–	species	(McCall et	~3–4 × baseline	R4	1.	~3–4 × baseline†
1	NA ~3– 4 × baseline	BLA, rat;	al. 2015;	\sim 3–4 × baseline	K4	0	$\sim 3-4 \times \text{baseline} \uparrow$
	(fast-scan	LC-NE,	Ronzoni et			U	
	voltammetry)	mouse	al. 2016)				
2	DA ↑ +60 %	BLA, rat	(Rosenkran	+50 – 70 %	R1	1.	+60 %†
2	DA ±00 %	DLA, Iai	z and Grace	+30 - 70 70	K1	0	T00 701
			2002;			0	
			Giustino et				
			al. 2020)				
3	CSF-CRF↑	CSF, human	(Bremner et	+30-40 %	R4	1.	+30-40 % (29 ± 8
	+30-40 %	,	al. 1997)	(29 ± 8)		0	$vs 22 \pm 6 pg ml^{-1}$
	(29 ± 8)		,	$vs 22 \pm 6 pg ml^{-1}$			†
	$vs 22 \pm 6 pg ml^{-1}$)			
)						
4a	Glu ↑ +14 %	right	(Rosso et	+14 % (CI 9–	R1	1.	+14 %†
		hippocampus	al. 2017)	18 %)		0	
		†					
4	GABA↓	anterior	(Rosso et	$-20 \pm 10 \%$	R2 (δ/θ	1.	$-20 \pm 10 \%$ †
b	$-20 \pm 10 \%$	insula†	al. 2014)		coupling	0	
		10.1	/ -)		
5	$\Delta E_{\text{GABA}} + 5 \pm 2$	dCA1, mouse	(Inoue et al.	+7 mV	R2		$+5 \pm 2 \text{ mV}$ †
	mV	DI 1 0	2013)	20.0/	D.1	-	200/1
6	PV IN -30 %	BLA &	(Shepard et	−30 %	R1	1.	−30 %†
		mPFC,	al. 2016)			0	
7	EEG γ ↑ / α ↓	mouse Scalp, human	(Dunkley et	qual.	R4		↑/↓ †
'	EEOγ /α↓	Scarp, Hullian	al. 2015;	(state-dependent	17.4		' ↓ '
			Shaw et al.	(state-dependent			
			2023)	,			
8	BDNF promoter	mPFC, rat	(Roth et al.	↑ (qual.)	R1	_	↑ †
	methyl ↑	(SPS)	2009)	1 (1)			1 1
9	ROS ↑ / GSH ↓	mPFC, rat	(Cabungcal	↑ / ↓ (qual.)	R1		↑/↓(qual.)
	· •		et al. 2013)	* * (1)			' ' ' '
1	LTP threshold ↓	$BLA \rightarrow$	(Kim and	qualitative	R1	_	qualitative
0		vCA1, mouse	Cho 2020)	(facilitated LTP)			-
1	PNN↓	(BLA/PFC)	(Murthy et	↓ (qual.)	R1		↓ (qual.)
1			al. 2019)			_	

[†] Parameter measured outside vCA1; transferred according to rules R1–R4 (Methods § 2.18.1).

Percent changes refer to peak vs same-session baseline unless noted.

[‡] Value expressed as difference versus control; illustrative only.

Supplementary Table 52. Rescue E⁺ protocol (90-min precision window, minimal core)

Time (min)	Activated axes	Intervention	Biophysical / network
			target
$-15 \rightarrow 0$	_	Premedication: ECG,	Cardio-electrolyte
		SpO ₂ , electrolyte panel	safety
		(K^+/Mg^{2+})	
$0 \rightarrow 40$	C (+ partly D)	Ketamine 0.5 mg kg ⁻¹	Peak BDNF release &
		i.v. <i>or</i> esketamine 56–	rapid spine turnover
		84 mg intranasal	
$+10 \rightarrow 30$	D (phenotype-specific)	SZ: iTBS 40 Hz, 600	γ/θ phase-reset; \uparrow PV
		pulses, 80 % RMT	gain
		MDD: rTMS 2 Hz or	
		dTMS α 10 Hz	
		PTSD: dTMS θ 2 Hz	
$+10 \rightarrow 90$	F* (optional)	μ -metal booth $\geq 35 \text{ dB}$	Reduce ELF injection-
		if β-loop 0-1 (+)	locking
+60 → 90	Е	45-min EMDR or CBT-	Extinction of "hot"
		p + propranolol 40 mg	engrams
		p.o. (taken 60 min	
		before session)	
> 90	_	Hydration, light meal	Return to baseline
24 h	_	PET-KCC2 (TOF, ROI	Assess ↑ KCC2 & HRV
		vCA1) + 5-min ECG	

Activation criteria

Protocol is launched **only if** $\Delta V_{margin} \le 3$ mV after 4 weeks (or ≤ 5 mV after 8 weeks) **and** B-loop 0/1+.

Repeat schedule

- One session \rightarrow biomarker check at 4 weeks.
- If $\Delta V_{\text{margin}} < 5 \text{ mV} \rightarrow \text{next session after 4 weeks (max 3 sessions yr}^{-1}$).
- With $\Delta V_{\text{margin}} \ge 5 \text{ mV}$ return to "hygiene" E.

Safety notes

- Exposure per session < 2 h; continuous CO₂ / T / RH monitoring (ISO 14117).
- No prior studies on ketamine + μ -metal shielding \rightarrow full safety assessment in Pilot / RCT required.
- Concept protocol; IRB / Bio-Ethics approval mandatory before any in-vivo start.

Supplementary Table 53. β -loop (ELF \rightarrow clinic): three-stage causal test before activating axis F

Stage	Research question	Data / analysis	Success criterion
0 — Geomagnetic	Does $K_p \ge 6 (\pm 48 \text{ h})$ or	ΔFWHM from global	95 % CI of β_{macro}
storms (retrospective 5–	Δ FWHM 7.83 Hz \geq 13	SRN stations (35°–65°	excludes 0
10 yr)	% increase daily ICD-	N/S); admissions from	
	10 F + I admissions?	WHO / Eurostat /	
		HCUP; quasi-Poisson	
		GAM (nspline DOY +	
		$DOW + T_{max} + RH$).	
1 — Daily noise	Do fluctuations	1–300 Hz	β_{micro} (p < 0.05) with
(prospective 12 mo)	Δ FWHM < 20 pT (lags	magnetometer (≤ 1 pT	the same sign as β_{macro}

	0–7 d) correlate with	RMS); 1-h FFT	
	admissions?	windows; DLNM.	
2 — Bayesian hierarchy	Does $\beta_{\text{pooled}} \neq 0$ after	Hierarchical model	95 % CrI of β _{pooled}
(after 24 mo)	adjusting for season /	(countries / cities); prior	excludes 0
	weather / smog?	$N(0, 1); \hat{R} < 1.1.$	
3 — 48 h alert	Do <i>Kp</i> , ΔFWHM +	GBM (XGBoost) +	$ROCAUC \ge 0.80$
	weather predict	LSTM.	
	admissions?		

^{*} Stage 3 is launched only if stages 0–2 succeed; it is used solely for early warning and does not affect falsification.

Assumptions & quality control

- ELF data: SRN stations within \pm 10° geomagnetic latitude; urban magnetometer calibrated in a μ -metal chamber.
- Hospital admissions: ICD-10 F00–F99 + I00–I99, UTC day 00–24 h.
- Control variables: DOY, DOW, T_{max} , RH; sensitivity analyses include PM_{2.5} (CAMS EU) and a "COVID dummy."
- Statistical power ($\alpha = 0.05$): stage 0 > 0.99; stage $1 \approx 0.85$ ($\beta \approx 0.04$, N = 365).

Supplementary Table 54. PET KCC2 $\rightarrow \Delta E_{\text{GABA}} \rightarrow \Delta V_{\text{margin}}$ (ROI vCA1; SUVR normalised to cerebellum)

Step	Equation / Assumption	Input data	Result (+15 % SUVR)	Sources
1	Δ [Cl ⁻] _i (%) \approx – 0.90 × Δ SUVR (%)	+15 % SUVR	-13.5 %	(Keramidis et al. 2023)
2	$\Delta E_{\rm GABA} \ ({\rm mV}) \approx \ 0.267 \ {\rm mV} \times \ \Delta [{\rm Cl}^-]_{\rm i} \ (\%) \ ({\rm full \ form: 26.7} \ {\rm mV} \times {\rm ln} \ (1 - \ \Delta [{\rm Cl}^-]/100) \ @ \ 37 \ ^{\circ}{\rm C})$	-13.5 %	-3.60 mV	Nernst equation @ 37 °C
3	$\Delta V_{ m margin} \left({ m mV} ight) pprox \ 0.60 imes \Delta E_{ m GABA}$	-3.60 mV	+2.16 mV	§ 2.19

Supplementary Table 55. MEG γ burst $\rightarrow \Delta gain_{dend} \rightarrow \Delta V_{margin}$

Step	Equation / assumption	Input data	Result (-35 % γ burst)	Source / note
1	$\Delta gain_{\text{dend}}$ (%) \approx 0.90 × $\Delta burst$ (%)	-35 %	-31.5 %	NEURON simulation (gamma_gain.hoc)
2	$\Delta V_{\text{effEPSP}}$ (mV) \approx 0.032 mV \times $\Delta gain_{\text{dend}}$ (%)	-31.5 %	-1.0 mV	(Kim and Johnston 2015; Malik and Johnston 2017)
3	$\Delta V_{ m margin} ({ m mV}) pprox - \ \Delta V_{ m effEPSP}$	-1.0 mV	+1.0 mV	Multicompartment model

95 % confidence interval for the coefficient 0.032 mV %⁻¹: 0.028 - 0.036 mV %⁻¹ (patch-clamp, n = 48).

Supplementary Table 56. HRV (rMSSD) $\rightarrow \Delta V_{\text{rest}} \rightarrow \Delta V_{\text{margin}}$

Step	Equation /	Input data	Result (+5 ms	Source / note
	assumption		rMSSD)	
1	$\Delta V_{\rm rest} ({\rm mV}) \approx -$	+5 ms	−0.40 mV	(Rowland et al.
	$0.08\mathrm{mV}\cdot\mathrm{ms}^{-1}$ $ imes$			2016; Keerthy et
	ΔrMSSD			al. 2021)
2	$\Delta V_{\mathrm{margin}} \approx -\Delta V_{\mathrm{rest}}$	$-0.40 \mathrm{mV}$	+0.40 mV	Margin definition

The $-0.08 \text{ mV} \cdot \text{ms}^{-1}$ coefficient was estimated from a meta-regression of HRV versus excitability (patch-clamp n = 54 plus TMS-MEP/MRS studies) and will be re-validated empirically in the pilot phase.

Supplementary Table 57. Projected sensitivity of HRV (rMSSD) and its contribution to ΔV_{margin} in the pilot study

Sub-cohort*	N (planned)	rMSSD baseline (mean ± SD, ms)	Δ rMSSD at $T_{4 \text{ weeks}} \pm \text{SE}$ (ms)‡	p (paired t)	Estimated contribution $\Delta V_{ m margin}$ (mV)§
A - "low stim" (caffeine < 200 mg day ⁻¹ & nicotine < 5 cig day ⁻¹)	17	27.8 ± 7.1	+5.6 ± 1.2	0.001	+0.45
B - "high stim" (caffeine ≥ 200 mg day ⁻¹ or nicotine ≥ 5 cig day ⁻¹)	13	24.2 ± 8.4	+2.1 ± 1.5	0.09	+0.17
Combined (A + B)	30	26.2 ± 7.8	+4.1 ± 1.0	0.002	+0.33

^{*} Split by daily caffeine and nicotine intake; cohort B has lower planned power (~ 0.56) and is considered exploratory.

† Power calculation for $\alpha = 0.05$, expected effect +5 ms, SD = 5 ms: power ≈ 0.82 (package pwr v 1.3, R 4.4).‡ SE = SD / \sqrt{N} ; $SD_{low stim} = 5$ ms, $SD_{high stim} = 7$ ms) (Shaffer and Ginsberg 2017).

§ Conversion uses the coefficient 0.08 mV·ms⁻¹, derived from published data (patch-clamp CA1: (Rowland et al. 2016); HRV-MEP correlation: (Keerthy et al. 2021)).

Supplementary Table 58. Rescue F (ELF screen; 7 + 7 days)

Days	Exposure	Cabin	Parallel	Exit criterion
		parameters	procedures	
1 – 7	24 h day ⁻¹ (≤ 30 min break d ⁻¹)	μ -metal / active compensation DC < 0.05 μ T; attenuation 7 – 30 Hz \geq 35 dB	Fixed-time A–D cycle One EMDR / CBT-p session inside cabin (day 3)	Assessment on day 7 MEG γ -burst $\downarrow \geq$ 35 % or PET KCC2 $\uparrow \geq$ 15 % (if already available) or ΔV_{margin} increase \geq 3 mV

8 – 14	Only if day-7 criterion unmet	μ -metal / active compensation DC < 0.05 μ T; attenuation 7 – 30 Hz ≥ 35 dB	+ MgSO ₄ 1 g i.v. over ≥ 20 min every 48 h + tVNS 2-10 Hz (30 min day ⁻¹ ; frequency phenotype-	Assessment on day 14 Criterion as above
			specific)	

Measurements

- MEG γ -burst and ΔV_{margin} : mandatory on days 7 and 14.
- PET KCC2: day 14 only.

Inclusion criteria for Rescue F

- 1. $\Delta V_{margin} \le 3 \text{ mV despite} \ge 1 \text{ E}^+ \text{ session}.$
- 2. β -loop stages 0-2 positive (95 % CrI $\beta_{pooled} \neq 0$).
- 3. Voluntary consent to 7 14 days in isolation.

Maximum: 1 F-cycle per 6 months.

Safety

Exposure < 2 h day⁻¹ in confined space; HEPA filtration, CO₂ sensor, IR camera, intercom; full AE/SAE monitoring in pilot.

Rescue F is not used in the pilot or RCT II; it will be evaluated in a separate RCT III only if the β -loop is confirmed and the DSMB rules the cabin's logistical cost clinically justified.

Supplementary Table 59. Secondary limitations

Area / module	Technical or secondary limitation
Magnetite parameters (κ, Q)	Variation ± 7 % changes ΔV_{soma} by ≈ 6 %.
ELF–θ coherence	Stability of 7.83 Hz in the human hippocampus
	undocumented (to date only EEG α/θ).
ΔV_{ELF} vs Johnson noise	$\Delta V_{\rm ELF} \approx 0.5 \cdot V_{\rm rms}$ in a dendrite, $\sim 12 \cdot V_{\rm rms}$ at
	whole-cell level (model).
"Low PV window"	Data ($-25 \% g_{inh}$) from P14–P21; in adults the
	TASK/GIRK contribution may differ.
ELF exposure	No personal dosimeters; exposure estimated from
	geomagnetic modelling.
Brain temperature	Slices 34–35 °C → Nernst potentials
	over-estimated by $\approx 0.6 \text{ mV } (2-3 \%)$.
Monte-Carlo propagation	Total error estimated without full MC; 95 % CI
	may be slightly too narrow.
Heterothermia ± 0.3 °C	Regional variance omitted; adds < 0.2 mV.
Linearity of ΔV summation	Additivity assumed up to $\approx 10 \text{ mV}$; above that
	Nav/shunt nonlinearities may appear.
Effect durability > 12 wk	No long-term follow-up yet; scheduled
	checkpoints at 6 and 12 months.
Hormonal variability	Cycle / estradiol not analysed; potential
	differences in KCC2 / $R_{\rm in}$.

Equipment drift	MEG / rTMS re-calibration required every 4 wk;
	procedure in protocol.
Multiple testing	> 50 exploratory hypotheses; FDR / hierarchy
	applied.
Extreme replay	No data for > 50 replays day ⁻¹ or > 1 month burst
	duration.

Supplementary Table 60. Detailed research directions and proposed methods

#	Research goal / knowledge gap	Key methods *
1	ELF biosensor (β +)	μ-metal slice demagnetisation; Cry1/2 KO; nano-SQUID;
		cryo-EM of magnetite chains; TRPC/V blockade +
		patch-clamp; DFT flavin radical ≤ 1 μT
2	Second-generation biomarkers	PET PV, PET Kir4.1, MRI CEST Cl ⁻ , ²³ Na MRI;
		automated MEG burstometry
3	Species / demographic validation	CRS \pm CACNA1C A / SCN2A GoF (\circlearrowleft / \updownarrow , 6 & 18 mo);
		serial PET/MRI 18–80 yr
4	Non-linearities	Calcium imaging + patch-clamp in CREB clusters;
		NEURON / NetPyNE heterogeneity
5	Transient landscape	24 h on-scalp MEG + hippocampal LFP; CWT + ML
	_	clustering
6 Replay limits Optogenetic "rep		Optogenetic "replay trainer" 50× day ⁻¹ , 3 mo; tele-EEG
		12 mo; MRI CA1/BLA every 3 mo
7	Axis A–F deconvolution	Factorial RCT II (2 ⁴ arms); adaptive Bayesian platform
		"drop-the-loser"
8	β-loop harmonisation	Time-series meta-regression; DLNM; ACS vs arrhythmia
		subgroups
9	Phenotype extrapolation	GAD, ChAD/BD, ASD, TLE, addictions, AD/MCI, MS +
		epilepsy, Dravet, Rett, Fragile X, SCN8A EIEE (SCN8A
		GoF), KCNQ2 EE (KCNQ2 LoF), OCD
10	Economic translation	RCT III (n \approx 400, 18 mo); ICER/QALY; adherence analysis

Supplementary Table 61. Hypothetical triggers that may launch the ΔV_{margin} narrowing cascade in clinical phenotypes other than SZ, MDD, and PTSD

Phenotype	Chronic trigger	Dominant neuromod./cytokine axis	Expected network motif	Documentation of four markers*
GAD	"Worry loop" without extinction phase	CRF ↑ + tonic LC-NE	θ with β (15– 25 Hz)	$\sqrt{ au_{ ext{EPSP}}}$, PV, $R_{ ext{in}}$ X $V_{ ext{thr}}$
ChAD / BD	Repeated DA surges in mania	DA↑+ glutamatergic cortex→vHPC	γ 35–50 Hz $\leftrightarrow \theta$	$\checkmark \tau_{\text{EPSP}}, \text{PV} \sim R_{\text{in}}$ $శ V_{\text{thr}}$
ASD (FMR1, MECP2)	Early sensory-social overload	5-HT / OXT ↓, mGluR5 ↑	δ–θ dominant, γ deficit	$\sqrt{ au_{ ext{EPSP}}}$, PV, $R_{ ext{in}}$ X $V_{ ext{thr}}$
TLE	Partial seizures – Glu/K ⁺ re-entry	ACh & NA bursts	δ–θ interictal, high γ ictal	√ (full)
Addictions	Cue-induced craving (NAc↔vCA1)	DA ↑ + Glu potentiation	β–γ "salience burst"	$\sqrt{\tau_{\text{EPSP}}}$, PV $\sim R_{\text{in}}$, V_{thr}
AD / MCI	Aβ-driven "memory wandering"	$A\beta \rightarrow ROS \rightarrow IL-1\beta$	θ –β dominant, γ deficit	√ (full)
MS + epilepsy	Chronic IL-6 / TNFα	NKCC1 ↑, Kir ↓	δ – θ + epileptiform γ	$\checkmark \tau_{\text{EPSP}}, \text{PV}, R_{\text{in}} $ $\sim V_{\text{thr}}$
Dravet (SCN1A LoF)	Febrile seizures, Nav1.1 PV ↓	Homeostatic NA / ACh	high γ / fast ripples	√ (full)
SCN8A EIEE	SCN8A GoF, Nav1.6 hyper	Nav-driven intrinsic burst	very high γ / FR	$\checkmark au_{ ext{EPSP}}, ext{PV}, extit{R}_{ ext{in}}, V_{ ext{thr}}$

KCNQ2 EE	KCNQ2 LoF (M-current ↓)	Intrinsic excitability ↑	broad γ shift	$\sqrt{ au_{ ext{EPSP}}}$, PV χ $R_{ ext{in}}$, $V_{ ext{thr}}$
OCD	"Error loop" cortico-striatal	DA ↑ + 5-HT ↓	high β-γ in CSTC	~ τ_{EPSP} , PV; others weak

^{*} $\sqrt{\ =\ }$ 2 patch-clamp or in vivo study; \sim = partial data; X = gap highlighted in the text.

Although RMH posits that the critical "ignition" $\Delta V_{\text{margin}} < \approx 5 \text{ mV}$ occurs in ventral CA1 for SZ, MDD and PTSD, certain channelopathies or temporal-lobe epilepsies may breach this threshold first in CA3/dorsal CA1 or even in neocortical layer V, before the instability propagates to the wider limbic network.