

A. Course Handout (Version 1.1) | Last updated on 2nd Jan, 2023

Institute/School Name	Chitkara University Institute of Engineering & Technology					
Department Name		Department of Interdisciplinary Courses in Engineering				
Programme Name		Bachelor of Engineering, Computer Science & Engineering				
Course Name	Computer Organisation and	2000 0				
	Architecture					
Course Code	CS157	Semester/Batch	4 th /2021			
L-T-P (Per Week)	3-0-0	Course Credit	03			
Course Coordinator	Dr Jyoti					

1. Objective of the Course

The course provides a wide scope of learning & understanding of the subject. The main objectives of the course are:

- To familiarize the students with the basic understanding of computer system architecture and digital circuits
- Implementation of the machine instructions for the operation of the computer system.
- To Interpret the concept of micro-programmed control, parallel processing and pipelining.
- To Illustrate concepts regarding input-output interfacing and Direct Memory Access.
- To familiarize concepts of Analog to Digital and Digital to Analog convertors.

2. Course Learning Outcome:

Students will be able to:

CL001: To understand and identify the fundamental organization of the computer system architecture.

CL002: To apply the concept of Arithmetic Operations in various applications.

CL003: To conceptualize the micro-programmed control, parallel processing and pipelining.

CL004: To understand I/O organization and Direct Memory Access.

CL005: To understand the concepts of Analog to Digital and Digital to Analog convertors.

CLO-PO mapping grid | Program outcomes (POs) are available as a part of Academic Program Guide (APG) at

Course Learning Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CL001	Н	М								L		L
CL002	Н			L	М							
CL003			М			Н	Н					L
CL004				М			Н					
CL005	Н		М		М							

3. Recommended Books (Reference Books/Text Books):

B01: 'Computer System Architecture' by M. Morris Mano, Pearson Education, 2008

B02: John P Hayes, "Computer Architecture and Organization", Prentice Hall

B03: Malvino Leech, Digital Electronics Fundamentals

B04: David A Patterson, Computer Architecture A Quantitative Approach, Pearson Education

B05: J.P. Hayes, Computer System Architecture, Pearson Education Asia

B06: William Stallings, Computer Organization and Architecture: Designing for Performance, Prentice-Hall India

4. Other readings & relevant websites:

S. No.	Link of Journals, Magazines, websites and Research Papers
	https://nptel.ac.in/courses/106106134
_	https://nptel.ac.in/courses/106104073

5. Recommended Tools and Platforms

- NPTEL
- SWAYAM

6. Course Plan:

Lecture Number.	Topic(s)	Books
1-2	Introduction to Course Handout Introduction to Computer Organization & Architecture, Overview of Digital System	B02, B03, B05, B06
3-5	Introduction to Flip-Flops and its types	B03
6-8	Shift Registers: SIPO, SISO, PISO and PIPO	B03
9-11	Design of Synchronous and Asynchronous counters.	B03
12-14	-14 Basic Computer Organization: Instruction Codes, Computer Registers, Computer Instructions.	
15	Timing and Control, Instruction Cycle	B01, B02, B06
16-17	Memory Reference Instructions, Input-Output and Interrupts	B01, B02, B06
18	Micro-programmed Control: Control Memory, Address Sequencing	B01, B02, B06
19-20	Micro-program Examples and Design of Control Unit	B01, B02
21	Central Processing Unit: Introduction, General Register Organization	B01, B02, B06
22	Stack Organization and Instruction Format	B01, B02, B06
23-25	Addressing Modes, Data Transfer and Manipulation	B01, B06
26-28	Program Control: Status bits, Conditional Branch Instructions, Program Interrupts & Types	B01, B02, B06
29-30	RISC and CISC Characteristics	B01, B04
31-33	Introduction to Parallel Processing, Pipelining	B01, B02, B06
34-35	Input-Output Organization: I/O Interface	B01, B02, B06
36	Asynchronous Data Transfer	B01, B02, B06
37	Modes of Transfer	B01, B02, B06

38-39	Direct Memory Access (DMA), DMA Transfer, Input-Output Processor (IOP), CPU-IOP Communication.	B01, B03
40-42	D/A Converter and A/D converters: Introduction, Digital to Analog Conversion, R2RDAC, Weighted Resistor DAC	В03
43-45	A/D Converter: Analog to Digital Conversion using Successive Approximation Method, Dual Slope Method	В03

7. <u>Delivery/Instructional Resources</u>

Lecture Number	Topic(s)	PPT (Link of ppts on the central server)	Industry Expert Session (If yes: link of ppts on the central server)	Web References	Audio-Video
1-5	Introduction to Computer Organization & Architecture, Overview of Digital System, Introduction to Flip-Flops and its types.		servery	https://nitsri.ac .in/Department /Electronics%20 &%20Communi cation%20Engin eering/Chapter 1- Introduction.pd f https://www.cu emath.com/nu mbers/number- systems/	https://www. youtube.com /watch?v=q6 oiRtKTpX4 https://www. youtube.com /watch?v=jm OPGDSSBkI https://www. youtube.com /watch?v=i- tnQMDdbfc
6-11	Shift Registers: SIPO, SISO, PISO and PIPO, Design of Synchronous and Asynchronous counters.			https://www.tu torialspoint.co m/what-are- computer- registers-in- computer- architecture	https://www. youtube.com /watch?v=Aft 2vPt9tkc https://www. youtube.com /watch?v=Vt 3lFnBwgpo https://www. youtube.com /watch?v=lec j9xmlfXM
12-14	Basic Computer Organization: Instruction Codes, Computer Registers, Computer Instructions.			https://www.tu torialspoint.co m/what-are- computer- registers-in- computer- architecture	https://www. youtube.com /watch?v=Aft 2vPt9tkc https://www. youtube.com /watch?v=Vt 3lFnBwgpo https://www. youtube.com

				/watch?v=lec j9xmlfXM
15	Timing and Control, Instruction Cycle	va	ttps://www.ja atpoint.com/in truction-cycle	https://www. youtube.com /watch?v=Bs h_WYIILXs
16-17	Memory Reference Instructions, Input-Output and Interrupt	ir.	ttps://nptel.ac n/courses/106 103/10610306 8/	https://www. youtube.com /watch?v=0X ybwAbup- w&list=PL59E 5B57A04EAE 09C&index=3
				https://www. youtube.com /watch?v=LT VCbvlZbKU
18	Micro-programmed Control: Control Memory, Address Sequencing	.in /1	tps://nptel.ac n/courses/106 03/10610306 8/	https://www. youtube.com /watch?v=iG HzG5xR_nA
19-20	Micro-program Examples and Design of Control unit	.in /1	tps://nptel.ac n/courses/106 03/10610306 8/	https://www. youtube.com /watch?v=X6 GbaLQUuz8
21	Central Processing Unit: Introduction, General Register Organization	.in	tps://nptel.ac /courses/106 03/10610306 8/	https://www. youtube.com /watch?v=vjq nWn5PdD0
22	Stack Organization and Instruction Format		tp://nptel.ac.i courses/1061 04073/	https://www. youtube.com /watch?v=u- sp4gBAJKI
23-25	Addressing Modes, Data Transfer and Manipulation		:p://nptel.ac.i courses/1061 04073/	https://www. youtube.com /watch?v=p9 wxylx-j-c
26-28	Program Control: Status bits, Conditional Branch Instructions, Program Interrupts & Types		p://nptel.ac.i courses/1061 06092/	https://www. youtube.com /watch?v=oT mpeck2M6M
29-30	RISC and CISC Characteristics	.in, /10	:ps://nptel.ac /courses/106 03/10610306 8/	https://www. youtube.com /watch?v=pt- OOSSGezc
31-33	Introduction to Parallel processing, Pipelining	.in/ /10	ps://nptel.ac /courses/106 03/10610306 8/	https://www.y outube.com/w atch?v=_7Mhz h-bQDU
34-35	Input-Output Organization: I/O Interface	.in/	ps://nptel.ac /courses/106 03/10610306 8/	https://www.y outube.com/w atch?v=Y17TLZ CSe4M

36	Asynchronous Data Transfer			https://nptel.ac	https://www.y
				.in/courses/106	outube.com/w
				/103/10610306	atch?v=-
				8/	gRryttl3lg
37	Modes of Transfer			https://nptel.ac	https://www.
				.in/courses/106	youtube.com
				/103/10610306	/watch?v=-
				8/	gRryttl3lg
38-39	Direct Memory Access			https://nptel.ac	https://www.
	(DMA), DMA Transfer, Input-			.in/courses/106	youtube.com
	Output Processor (IOP), CPU-			/103/10610306	/watch?v=3R
	IOP Communication.			8/	fqkVyvnnc
40-42	D/A Converter and A/D		9	https://nptel.ac	https://www.y
	converters: Introduction,	į.		.in/courses/106	outube.com/w
	Digital to Analog Conversion,			/103/10610306	atch?v=kMGa
	R2RDAC, Weighted Resistor			8/	p-0XwGs
	DAC				https://www.y
					outube.com/w
					atch?v=LUMh
					ObAm1Qs
43-45	A/D Converter: Analog to			https://nptel.ac	https://www.
	Digital Conversion using			.in/courses/106	youtube.com
	Successive Approximation			/103/10610306	/watch?v=Ea
	Method, Dual Slope Method		-	8/	yOCWaiRkw

8. Action plan for different types of learners

Slow Learners	Average Learners	Fast Learners
Remedial Classes on Saturdays	Doubt-sessions	More Practical Assignments

9. Evaluation Scheme & Components:

Evaluation Component	Type of Component		Weightage of Component	Mode of Assessment
Component 1	Formative Assessments (FAs)	02*	10%	Online
Component 2	Subjective Test/Sessional Tests (STs)	02**	30%	Offline
Component 3 End Term Examinations		01	60%	Offline
Total			100%	

^{*}Out of 02FAs, the ERP system automatically picks the best 01 FAs marks for evaluation of the FAs as final marks.

**Out of 02 STs, the ERP system automatically picks the best 01 ST marks for evaluation of the STs as final marks.

10. Details of Evaluation Components:

Evaluation Component	Description	Syllabus Covered (%)	Timeline of Examination	Weightage (%)
Component 1	FA1	Upto 40%	Week 8	10%
Component 1	FA2	41% - 80%	Week 14	10%
6	ST 01	45%	Week 10	30%
Component 2	ST 02	46% - 80%	Week 15	30%
Component 3	End Term Examination*	100%	At the end of the semester	60%
	Total			100%

^{*}As per Academic Guidelines minimum 90% attendance is required to become eligible for appearing in the End Semester Examination.

11. Syllabus of the Course:

S. No.	Topic (s)	No. of Lectures	Weightage %
1	Introduction to Computer Organization & Architecture, Overview of Digital System.	2	4
2	Introduction to Flip-Flops and its types	3	7
3	Shift Registers: SIPO, SISO, PISO and PIPO	3	7
4	Design of Synchronous and Asynchronous counters.	3	7
5	Basic Computer Organization: Instruction Codes, Computer Registers, Computer Instructions, Timing and Control, Memory Reference Instructions, Input-Output and Interrupts.	6	14
6	Micro-programmed Control: Control Memory, Address Sequencing, Micro program Example, General Register Organization, Stack Organization. Instruction Format.	5	11
7	Addressing Modes, Data Transfer and Manipulation.	3	7
8	Program Control: Status bits, Conditional Branch Instructions, Program Interrupts & Types,	3	7
9	RISC/CISC Characteristics.	2	4
10	Introduction to Parallel Processing, Pipelining	3	7

11	Input-Output Organization: I/O Interface, Asynchronous Data Transfer, Modes of Transfer, Direct Memory Access (DMA), DMA Transfer, DMA Controller Input-Output Processor (IOP), CPU-IOP Communication.	6	14
12	D/A Converter and A/D converters: Introduction, Digital to Analog Conversion, R2RDAC, Weighted Resistor DAC, A/D Converter: Analog to Digital Conversion using Successive Approximation Method, Dual Slope Method.	6	11

This Document is approved by:

Designation	Name	Signature
Course Coordinator	Dr Jyoti	24/2
Program In charge	Dr Tajinder Kaur	Plum
Dean	Dr Rajneesh Talwar	RAW
Dean (Academic Affairs)	Dr Rajnish Sharma	(.
Date (DD/MM/YYYY)	02.01.2023	