Self-Supervised Graph Transformer on Large-Scale Molecular Data

Background & Contributions

GNNs are widely adopted for molecular tasks.

Challenges:

- ☐ Insufficient labeled molecules for supervised training
- ☐ Poor generalization capabilities to newly-synthesized molecules

enables

Rich structural and semantic information of molecules from enormous unlabeled data

Proposed: Self-supervised Tasks

supervised tasks in node,

edge & graph levels

Good self-supervision task shall have *reliable* and *cheap* prediction target

Node/edge level task: contextual property prediction

Target reflects contextual property: recurrent statistical properties of local subgraph → A multi-class classification problem

Graph level task:

motif prediction

Motifs: recurrent sub-graphs, such as functional groups → A multi-label classification problem

Yu Rong*, Yatao Bian*, Tingyang Xu, Weiyang Xie, Ying Wei, Wenbing Huang, Junzhou Huang

Proposed: GTransformer Architecture

A transformer based neural network with tailored GNNs as the self-attention building blocks.

- Output for both node embedding and edge embeddings.
- Multi-Head Attention: model global interaction between nodes/edges.
- Long-range Residual Connection: alleviating the vanishing gradient and over-smoothing problem.
- MPNN: Extract local structural
- information of graphs.
- dyMPN: Randomize the message passing hops for the dynamic receptive field modeling.

Experimental Results

GROVER base: 48M parameters

GROVER large: 100M parameters

Pre-training GROVER models on 10M unlabelled molecules Verifying on downstream tasks with fine-tuning Significant improvement over SOTA models on 11 challenging benchmarks

Performance comparison for classification problems (regression results see appendix)

	Classification (Higher is better)						
	Dataset	BBBP	SIDER	ClinTox	BACE	Tox21	ToxCast
250 Nvidia V100	# Molecules	2039	1427	1478	1513	7831	8575
GPUs used	TF_Robust [40]	$0.860_{(0.087)}$	$0.607_{(0.033)}$	$0.765_{(0.085)}$	$0.824_{(0.022)}$	$0.698_{(0.012)}$	$0.585_{(0.031)}$
or os asca	GraphConv [24]	$0.877_{(0.036)}$	$0.593_{(0.035)}$	$0.845_{(0.051)}$	$0.854_{(0.011)}$	$0.772_{(0.041)}$	$0.650_{(0.025)}$
	Weave [23]	$0.837_{(0.065)}$	$0.543_{(0.034)}$	$0.823_{(0.023)}$	$0.791_{(0.008)}$	$0.741_{(0.044)}$	$0.678_{(0.024)}$
	SchNet [45]	$0.847_{(0.024)}$	$0.545_{(0.038)}$	$0.717_{(0.042)}$	$0.750_{(0.033)}$	$0.767_{(0.025)}$	$0.679_{(0.021)}$
	MPNN [13]	$0.913_{(0.041)}$	$0.595_{(0.030)}$	$0.879_{(0.054)}$	$0.815_{(0.044)}$	$0.808_{(0.024)}$	$0.691_{(0.013)}$
	DMPNN [63]	$0.919_{(0.030)}$	$0.632_{(0.023)}$	$0.897_{(0.040)}$	$0.852_{(0.053)}$	$0.826_{(0.023)}$	$0.718_{(0.011)}$
	MGCN [30]	$0.850_{(0.064)}$	$0.552_{(0.018)}$	$0.634_{(0.042)}$	$0.734_{(0.030)}$	$0.707_{(0.016)}$	$0.663_{(0.009)}$
	AttentiveFP [61]	$0.908_{(0.050)}$	$0.605_{(0.060)}$	$0.933_{(0.020)}$	$0.863_{(0.015)}$	$0.807_{(0.020)}$	$0.579_{(0.001)}$
	N-GRAM [29]	$0.912_{(0.013)}$	$0.632_{(0.005)}$	$0.855_{(0.037)}$	$0.876_{(0.035)}$	$0.769_{(0.027)}$	_4
Pre-trained	HU. et.al[18]	$0.915_{(0.040)}$	$0.614_{(0.006)}$	$0.762_{(0.058)}$	$0.851_{(0.027)}$	$0.811_{(0.015)}$	$0.714_{(0.019)}$
methods	GROVER _{base}	$0.936_{(0.008)}$	$0.656_{(0.006)}$	$0.925_{(0.013)}$	$0.878_{(0.016)}$	$0.819_{(0.020)}$	$0.723_{(0.010)}$
	GROVER _{large}	$0.940_{(0.019)}$	$0.658_{(0.023)}$	$0.944_{(0.021)}$	$0.894_{(0.028)}$	$0.831_{(0.025)}$	$0.737_{(0.010)}$

- ☐ GROVER models achieve the best performance
- □ Large model (GROVER large) enjoys high expressive power
- ☐ Larger improvement achieved for dataset with less label info.

Self-supervised pre-training is useful

	GROVER	No Pretrain	Abs. Imp.
BBBP (2039)	0.940	0.911	+0.029
SIDER (1427)	0.658	0.624	+0.034
ClinTox (1478)	0.944	0.884	+0.060
BACE (1513)	0.894	0.858	+0.036
Tox21 (7831)	0.831	0.803	+0.028
ToxCast (8575)	0.737	0.721	+0.016
Average	0.834	0.803	+0.038

GTransformer backbone matters

References