(9) 日本国特許庁 (JP)

⑩特許出願公開

⑫公開特許公報(A)

昭58—151371

f)Int. Cl.³C 04 B 35/58

識別記号 102 庁内整理番号 7158—4G 砂公開 昭和58年(1983)9月8日

発明の数 1 審査請求 未請求

(全 3 頁)

❷窒化珪素焼結体の製造法

创特

願 昭57-30196

22H

願 昭57(1982)2月25日

⑩発 明 者 樋口松夫

伊丹市昆陽北1丁目1番1号住 友電気工業株式会社伊丹製作所 士

内

⑫発 明 者 塚田博

伊丹市昆陽北1丁目1番1号住 友電気工業株式会社伊丹製作所 内

⑪出 願 人 住友電気工業株式会社

大阪市東区北浜 5 丁目15番地

四代 理 人 弁理士 上代哲司

明 細 書

1.発明の名称

窒化珪素焼結体の製造法

2.特許請求の範囲

(1) α型結晶構造を有する窒化珪素粉末を窒素 囲気下で熱処理し、β型結晶構造に変態させた粉末かよび/またはβ型結晶構造の粉末を、窒化柱 素原料粉末中に60体積光以上含有させ、焼結助剤 あるいはさらに分散強化剤と混合あるいは混合・ 粉砕し、その後成形し、1 atm 以上、100 atm 以 下の窒素雰囲気下1700℃以上1900℃以下の温度で少なくとも2時間保持して焼結する事を特徴 とする窒化珪素焼結体の製造法。

(2) 機結助剤としてMgO, AL,O, Y,O, SiO, CaO, ZrO, TiO, Ta,O, HfO, CeO, BeO, Cr,O, Li,O, ALN, TaN, TiN, Mg, N, YN など1種または2種以上を1~20体積%含有させる事を特徴とする特許請求の範囲第(1)項記載の窒化珪素焼結体の製造法。

(3) 分散強化剤としてWC, MO·C, TaC, AL·C·,

TiC, CroCo, NbC, VC, SiC などを1種または2種以上を80体積光以下含有させる事を特徴とする特許請求の範囲第(1)項または第(2)項記載の窒化珪素焼結体の製造法。

8.発明の詳細な説明

本発明は、窒化珪素焼結体特性の改良に関する ものである。

「また、β型結晶構造を有する粉末を用いても、その安定性により一般的に強度が低い焼結体しか得られなかった。

本発明者らは、従来の上配欠点を解消すべく検 討を行った結果本発明に至ったものである。

本発明を詳細に説明すると、まず A 型結晶構造 を有する粉末を得る方法について述べる。 窒化珪

好ましくは80体積%以上である。このように限定 するのは、60体積%以下では結晶粒形が粗大化す るとともに、重量減少も多く緻密な焼結体が得ら れないからである。

β型結晶構造を多く有する窒化珪素は、その安 定法により α/β 体積化が増加するに したがい高温 度および/または長時間焼結させる事が重要であ ることを見いだしたのである。この点に着目し、 上記条件のβ型結晶構造を有する窒化珪素粉末に 焼桔助剤あるいは、さらに分散強化剤と混合ある いは混合粉砕した後に成形し、1気圧以上100気 圧以下の窒素雰囲気下で1700℃~1900℃の温 度で少なくとも 2 H、 好ましくは 4 H 保持して焼 結する。このように限定するのは1気圧以下では SiaNaの分解反応が起こり、1650℃以下では焼 結が進行せず、1900℃以上ではいくら加圧して も SiaNaの分解は抑えられるものの高い雰囲気圧 を有する気孔が残存するため飯密な焼結体が得ら れないためである。1900℃における窒化珪素の 分解圧力が 100 気圧であるため圧力の限定となる。 素の粉末は、(i)シリコン粉末を窒化する(2)シリカ粉末とカーポン粉末を窒素雰囲気下で選元窒化する(3)四塩化珪素とアンモニア(あるいは窒素、水素)から合成するなどの方法で得られるが、いずれの方法からも粉末合成条件をコントロールすることによりβ型結晶構造の粉末を得ることができる。

現在、α型結晶構造を多く含有する窒化注素粉末が作られているが、この粉末を1550℃以上好ましくは1650℃以上で、2気圧以上好ましくは5気圧以上の窒素雰囲気に関連することができる。このように限定すするのでは変態が起こりにくな素がいる。このかはなが、これができなが、これは分解を抑えることができない。

このようにして得られたβ型結晶構造の粉末を 窒化珪素原料粉末中に60体積%以上含有させる。

焼結時間を2 H以上に限定するのは、2 H未満では十分な焼結が進行しないためである。焼結助剤としてMgO, AL,O,, Y,O,, SiO,, CaO, ZrO,, TiO,, Ta,O,, HfO,, CeO,, BeO, Cr,O,, Li,O, ALN, TaN, TiN, Mg,N,, YNなどが適当である。好ましくは窒化物を用いる場合には、酸化物と同時に添加する方がより級密な焼結体が得られる。

更に、分散強化剤としてWC, MO* C, TaC, AL·C·, TiC, Cr··C·, NbC, VC, SiC などを添加する事により、焼結体の特性の強度、硬度等の向上を計ることができる。

焼結助剤を 1~20体積%に限定するのは、1体 積%以下では焼結が進行せず、20体積%以上の添 加は、その効果が20体積%までと同等あるいは減 少するためである。

分散強化剤は添加しなくても良いが、30体積% までに限定するのは、30体積%以上では焼結を阻 害するためである。

本発明は、ホットプレス法ではないが、ホット プレスによっても効果は同じである。

表 1

本発明の製造法により作成した焼結体を更に高 温静圧プレスによって、特性を向上させることも できる。

以下本発明を実施例によって詳細に説明する。 実施例は

市版 (α/β=90/10 体徴比) Si, N, 粉末を1700 ℃×3 H 10 気圧窒素雰囲気下で熱処理した。この粉末をX線回折した結果β型に100%変態していた。この粉末と熱処理しなかった粉末を各種割合で混合し、更に焼結助剤 5 体積% AL,O。、さらには分散強化剤10体積% WCを添加し、ボールミルで30H混合し1ton/cm² で試験片形状に型押し、5atm N₁下1750℃×5 Hで焼結した。本焼結体の特性を調べた結果、表1に示すように本発明の焼結体特性は優れていることがわかった。

	Bis Nea/B比 (体體多)	密度 9/cm²	曲げ強さ	ワイブル係数	IV(Kg/fm²)
	99/10	220	6 0	В	1800
比	40/20	8.2.1	5 5	1 0	1850
較	10/80	8.2.4	5 6	9	1800
Ø	60/40	8.2 7	5 8	8	1900
	50/50	8.80	5 8	7	1900
	0.0/80	340	7 0	1 2	2000
*	30/70	8 4 8	7 8	1.8	2100
発	8 0 / B 0	8 6 5	78	1 2	2300
明	10/90	2.46	7 5	1 5	2200
77	0/100	8.48	7. 9	17	2400

実施例2

実施例 1 と同様に β型の窒化珪素粉末を用いてα/βの体積比 10/90 にした Sie Ne 原料粉末を用いて各種焼結助剤を添加し、1750 °C×8 H 4 a tanNe 下で焼結した。本焼結体の特性を開べた結果を表2 に示す。

また、合成粉末 (例えば Cerac α/β=10/80) で βが66 Vol %以上ある場合にも同様になる。

表 2

	組成(体積比)	密 · 民	硬度	曲げ強さ
	9091 .N10AL:O:	8.1.5	2100	6 5
*	9 0 Si a Na4A4 a Ou6Y a Oa	219	2 2 0 0	7 5
£	959is N 5MgO	118	2200	7 0
朝	859i sNa-5YsOs-10WO	8.45	8 4 0 0	7 8
比	905isNa-25ALaOs	8.10	1800	5 0
.62	7651 N4AL, O10MgO	800	1700	4 8
615	709is N-5Y +Os-25WC	3 2 0	1000	8 5

実施例8

実施例 2 と同様にして、焼結助剤 4 Vo1% A L₁O₄、6 Vod % Y₁O₄添加し、1600°C-1900°C、0~30 atm N₁ 0.5~5 H の各種条件で焼結した。得られた結果を表3に示す。

蹇 3

	a c	時間	Ns 圧力 a t 四	图 度	曲げ強さ
比较多	1600	8	2	2.75	4.0
*	1650	5.0	6	8.00	6.8
発	1750	8. 5	9	8.1 9	8 0
明	1850	8	8.0	8.17	9 9
比	1900	-8	8.0	8.10	5 5
較	1 7 5 0	0.5	9	8.08	5 1
91	1750	3	8 0	298	4.8