

密训资料

离散数学(上海)

1904

微信扫码关注

最新资料尽在最快学自考 30%知识点覆盖70%分数

MI XUN ZI LIAO

目录

第1章	命题与命题公式	2
第2章	命题逻辑的推理理论	4
第3章	谓词逻辑	5
第4章	集合	7
第5章	关系与函数	<u>S</u>
第6章	代数系统的一般概念	12
第7章	格与布尔代数	14
第8章	图	14
第9章	图的应用	16

第1章 命题与命题公式

1.1 命题与命题联结词★★

真值	陈述句成立时,真值为真,记为T或1;陈述句不成立,真值为假,记为F或0。				
判断命题的	①语句本身是个陈述句(疑问句、感叹句、祈使句等都不能是命题);②有				
条件	唯一的真值。				
原子命题	不能再分解的命题。				
复合命题	由原子命题通过联结词联结而成的命题。如"今天天气炎热,有雷阵雨"。				
	① 否定 :P 的否定记为¬P。若 P 为 T , ¬P 则为 F ; 反之亦然。				
	② 合取 :P和Q的合取记为P^Q。当且仅当P、Q同时为T时,P^Q的真值为				
	T, 其余情况为 P^Q 的真值 F。				
联结词	③析取:P和Q的析取记为PVQ。当且仅当P、Q同时为F时,PAQ的真值为				
(设P,Q为	F,其余情况为P^Q的真值T。				
两个命题)	④条件: P和Q组成的条件命题记为P→Q。当旦仅当P的真值为T,Q的真值				
	为 F 时,P→Q 的真值为 F,其余情况 P→Q 的真值为 T。				
	⑤ 双条件 :P和Q组成的双条件命题记为P↔Q。当P、Q的真值 相同 时,P↔				
	Q 的真值为 T, 否则 P↔Q 的真值为 F。				

1.2 命题公式的等值演算★★★

	①找出公式中所含的全体命题变元,从 FF 开始写依次写出每个赋值,直到 T
真值表	T 为止;②按从简到繁的顺序写出公式的各个子公式;③对于各个赋值计算出各
	子公式的真值,直到最后计算出公式的真值。
	命题公式 A 和 B ,设 P_1 ,… , P_n 为 A 和 B 的原子变元,若给 P_1 ,… , P_n 任一组
等价	真值指派,A和B 真值 都相同,称A和B是 等值的 或 等价的 ,记为A \Leftrightarrow B。若
	至少 存在一组真值指派 使其 真值不同 称 A 和 B 不等值 或 不等价 记为 A ⇔ B 。

例:用列真值表的方法说明下列等价式成立: $(P \lor Q) \to R \Leftrightarrow (P \to R) \land (Q \to R)$

解:根据题给等式列出如下真值表,其中 T和 F用 1和 0表示。

Р	Q	R	P√Q	$(P \lor Q) \rightarrow R$	P→R	Q→R	$(P \rightarrow R) \land (Q \rightarrow R)$
0	0	0	0	1	1	1	1
0	0	1	0	1	1	1	1
0	1	0	1	0	1	0	0
0	1	1	1	1	1	1	1
1	0	0	1	0	0	1	0
1	0	1	1	1	1	1	1
1	1	0	1	0	0	0	0
1	1	1	1	1	1	1	1

由真值表可知,对于 PQR 的任意指派, $(P\lorQ)\to R$ 和 $(P\to R)$ 人 $(Q\to R)$ 真值都相同,所以 $(P\lorQ)\to R\Leftrightarrow (P\to R)$ 人 $(Q\to R)$

永真式	命题公式 A , 若在它的各指派情况下 , 取值均为真 , 称 A 为 重言式 或 永真式 。
永假式	命题公式 A, 若在它的各指派情况下, 取值均为假, 称 A为 矛盾式 或 永假式 。
可满足式	命题公式 A , 若在它的各指派情况下 , 至少存在一组成真指派 , 称 A 是可满足
	式。若可满足式 A 至少存在一个成假赋值,则称 A 为非重言式的可满足式。

	の合式公式 D 是	可满足式,等价于 P 至少存在一个成真赋值;				
结论	②重言式一定是可满足式, 每777了,至少存在 T.成真赋值,					
3D 10	③若两个命题公式 P和 Q 等价,则 P↔Q是重言式。					
	双重否定律					
	<u></u>	$A \Leftrightarrow \neg \neg A$ $A \Leftrightarrow A \lor A, A \Leftrightarrow A \land A$				
	结合律 结合律	$(A \lor B) \lor C \Leftrightarrow A \lor (B \lor C) ; (A \land B) \land C \Leftrightarrow A \land (B \land C)$				
		$A \lor B \Leftrightarrow B \lor A$				
	交换律	$A \land B \Leftrightarrow B \land A$				
	() T7 (+	$A \lor (B \land C) \Leftrightarrow (A \lor B) \land (A \lor C) (\lor 对 \land 的分配律)$				
	分配律	$A \wedge (B \vee C) \Leftrightarrow (A \wedge B) \vee (A \wedge C) (\wedge 对 \vee 的分配律)$				
	吸收律	$A \lor (A \land B) \Leftrightarrow A$, $A \land (A \lor B) \Leftrightarrow A$				
命题定律		$\neg (A \lor B) \Leftrightarrow \neg A \land \neg B$, $\neg (A \land B) \Leftrightarrow \neg A \lor \neg B$				
叩赵是律	同一律	$A \lor F \Leftrightarrow A$, $A \land T \Leftrightarrow A$				
	零律	$A \lor T \Leftrightarrow T$, $A \land F \Leftrightarrow F$				
	排中律	$A \lor \neg A \Leftrightarrow T$				
	否定律	$A \land \neg A \Leftrightarrow F$				
	蕴涵等值式	$A \to B \Leftrightarrow \neg A \lor B$				
	等价等值式	$A \leftrightarrow B \Leftrightarrow (A \to B) \land (B \to A)$				
	假言易位	$A \to B \Leftrightarrow \neg B \to \neg A$				
	等价否定等值式	$A \leftrightarrow B \Leftrightarrow \neg A \leftrightarrow \neg B$				
	归谬论	$(A \to B) \land (A \to \neg B) \Leftrightarrow \neg A$				
	化简律	$P \wedge Q \Rightarrow P$				
	化简律	$P \wedge Q \Rightarrow Q$				
	附加律	$P \Rightarrow (P \vee Q)$				
	变形附加律	$\neg P \Rightarrow P \to Q$				
	变形附加律	$Q \Rightarrow P \rightarrow Q$				
	变形简化律	$\neg (P \rightarrow Q) \Rightarrow P$				
	变形简化律	$\neg (P \rightarrow Q) \Rightarrow \neg Q$				
10- mm -t- /da	假言推理	$P \wedge (P \to Q) \Rightarrow Q$				
推理定律	拒取式	$(P \to Q) \land \neg Q \Rightarrow \neg P$				
	析取三段论	$(P \lor Q) \land \neg Q \Rightarrow P$				
	条件三段论	$(P \to Q) \land (Q \to R) \Rightarrow (P \to R)$				
	等价三段论	$(P \leftrightarrow Q) \land (Q \leftrightarrow R) \Rightarrow (P \leftrightarrow R)$				
	合取构造二难	$(P \to Q) \land (R \to S) \land (P \land R) \Rightarrow Q \land S$				
	析取构造二难	$(P \to Q) \land (R \to S) \land (P \lor R) \Rightarrow Q \lor S$				
	前后件附加	$P \to Q \Rightarrow (P \lor R) \to (Q \lor R)$				
	前后件附加	$P \to Q \Rightarrow (P \land R) \to (Q \land R)$				
	אנו כוץ דו בו ענו	· / \(\rightarrow \(\lambda \) / \(\lambda				

第2章 命题逻辑的推理理论

2.1.2 小项与大项★★

小项	n 个命题变元的简单合取式,称作 布尔合取 或极 小项 ,简称为 小项 ,其中每个命题
	变元与它的否定 不能同时存在 ,但该命题变元必须出现且仅出现一次,或以变元的
	形式,或以变元的否定形式。n个命题变元有2 ⁿ 个小项。例如:两个命题变元P和
	Q的小项共有 4 个, 分别是: P ^ Q、 P ^ ¬ Q、 ¬ P ^ Q和 ¬ P ^ ¬ Q。
	n 个命题变元的简单析取式,称作 布尔析取 或极大项,简称为大项,其中每个命题
大 项	变元与它的否定不能同时存在,但该命题变元必须出现且仅出现一次,或以变元的
7 -2	形式,或以变元的否定形式。例如:由两个命题变元 P和 Q 构成的大项共有 4 个,
	分别是: P∨Q、P∨¬Q、¬P∨Q和¬P∨¬Q,
	小项 :以 m 加下标来表示,其下标是一个 n 位的二进制数。在小项中,若出现命题
	变元 P_i ,对应小项编码的第 i 位为 1 ,若出现命题变元 P_i 的否定,则第 i 位为 0 ,小
二进制编	项¬P∧Q∧R 的编码是 011,所以表示为 m ₀₁₁ 。 为了简单起见,有时也用位二进制
	对应的十进制数 i 来表示小项的编码,如也可表示为 m_3 。
码	大项:以 M 加下标来表示,其下标是一个 n 位的二进制数。与小项的表示相反,
	若出现的是命题变元 P_i ,则对应该大项编码的第 i 位为 0 ,若出现的是命题变元 P_i 的
	否定,则对应的第 i 位为 1。例如:大项 $\neg P \lor Q$ 的编码为 M_{10} ,也可表示为 M_2

2.2 主范式★★★

主析取范	对于约	合定的	向起	公式,女	□果有一个等	等价 公式	,它仅由	日 小项的析取 所组成,则该等价
	式称为	为原式	的主	析取范ェ	忧。在公式的	的真值表明	中,所有	直 直估为 T 的指派所对应的 小项
式	的析	双,艮	内构成	该公式的	勺 主析取范 式	t.		
主合取范	对于约	对于给定的命题公式,如果有一个 等价 公式,它仅由 大项的合取 所组成,则该等价						
	式称为	カ原式	的主	合取范式	忧。在公式的	的真值表的	中,所有	真值为 F 的指派所对应的大项
式	的合即	仅, 即	7为此	公式的	E合取范式。			
例:写出公	式A:	¬(P -	→ Q) /	$\neg Q \land \neg F$? 的主析取范	 	合取范式	t.
	①构i	造该公	式的	真值表。				
	P	Q	R	$P \rightarrow Q$	$\neg (P \rightarrow Q)$	$\neg Q$	$\neg R$	$\neg (P \to Q) \land \neg Q \land \neg R$
	0	0	0	1	0	1	1	0
	0	0	1	1	0	1	0	0
	0	1	0	1	0	0	1	0
	0	1	1	1	0	0	0	0
古法士法	1	0	0	0	1	1	1	1
真值表法	1	0	1	0	1	1	0	0
	1	1	0	1	0	0	1	0
	1	1 1	1	1	0 + 1+ 1+ 1+ 1+	0	<u> </u>	
	②找出真值为0的大项和真值为1的小项。右图可知,真值为1的小项只有 m_{100} ,							
	即A自	即 A 的 主析取范式 为 (P ^ ¬Q ^ ¬R); 真值为 0 的大项共有 7 项, M ₀₀₀ , M ₀₀₁ , M ₀₁₀ ,						
	M ₀₁₁ ,	M ₀₁₁ , M ₁₀₁ , M ₁₁₀ , M ₁₁₁ , 因此 A 的 主合取范式 为:						
	(P∨Q	∨ R)∧($P \vee Q \vee$	$(\neg R) \wedge (P \vee \neg R)$	$\neg Q \lor R) \land (P \lor Q) \land (P $	$\neg Q \lor \neg R)$	$(\neg P \lor Q \lor$	$(\neg R) \land (\neg P \lor \neg Q \lor R) \land (\neg P \lor \neg Q \lor \neg R)$
	主析耳	取范式	::					
等值演算	¬(P -:	→ Q) ∧ -	$\neg Q \land \neg$	¬R ⇔ ¬(−	$P \lor Q) \land \neg Q \land$	$\neg R \Leftrightarrow (P \rightarrow P)$	∨¬Q)∧−	$Q \land \neg R \Leftrightarrow P \land \neg Q \land \neg R$
	主合耳	取范式	₹: 根	据上述等		$) \land \neg Q \land \neg$	$R \Leftrightarrow P \wedge \overline{}$	¬Q∧¬R,分别将P和¬Q,¬R
法	拼成。	未出现	见的变	元, 得到	1 :			
		•		, ,	•	$\neg Q \lor \neg R)$	$(\neg P \lor Q \lor$	$(\neg R) \land (\neg P \lor \neg Q \lor R) \land (\neg P \lor \neg Q \lor \neg R)$

①如果有→;用 P→Q ⇔¬P∨Q 消去→

②如果有¬在括号前;用**德摩根律**:¬ $(A \lor B) \Leftrightarrow ¬A \land ¬B$ 或 ¬ $(A \land B) \Leftrightarrow ¬A \lor ¬B$,

③如果不是析取、合取形式;用分配律:

等值演算 法

 $\mathsf{A} \wedge (\mathsf{B} \vee \mathsf{C}) \Leftrightarrow (\mathsf{A} \wedge \mathsf{B}) \vee (\mathsf{A} \wedge \mathsf{C}) \not \Leftrightarrow \mathsf{A} \vee (\mathsf{B} \wedge \mathsf{C}) \Leftrightarrow (\mathsf{A} \vee \mathsf{B}) \wedge (\mathsf{A} \vee \mathsf{C})$

④第③步结束后,可得到简单析取式,若简单析取式 A 中缺少变元 P,通过如下变换增加变元 P:A \Leftrightarrow (A \land P) \lor (A \lor P) \land (A \lor P) , 再使用分配律,去掉重复的小项即可得到主析取范式。

2.3 自然推理系统★★★

①**前提引入规则**:在证明的任何步骤上,都可以引入前提,简称 P 规则。

②结论引入规则:在证明的任何步骤上,所证明的结论都可作为后续证明的前提,

推理法 称为 T 规则。

③**转换规则**:在证明的任何步骤上,命题公式中的任何子命题公式都可以用与之等值的命题公式置换,如用 $\neg P \lor Q$ 置换 $P \to Q$ 。它亦记为 **T 规则**。

例:构造下列推理的证明:如果他训练刻苦,他必赢得比赛;如果他赢得比赛,他必得到总理的接见;总理没有接见他;所以他训练不刻苦。

解: P: 他训练刻苦; Q: 他赢得比赛; R: 他得到总理的接见

前提: P →Q; Q →R; ¬R

结论: ¬P

证明: (1) P → Q P 规则 (2) Q → R P 规则

 $(3) P \rightarrow R \qquad T (1) (2)$

 $(4) \neg R \rightarrow \neg P \qquad T (3)$

(5) ¬R P 规则

(6) ¬P T (4) (5)

第3章 谓词逻辑

3.1 谓词的概念与表示★

谓词	谓词 A 表示"是大学生", w 表示"王强",则"王强是大学生"可表示为 A(w)例:设 a:小华, P(x):x 是教授, f(x):x 的父亲,则语句"小华的父亲是教授"可符号化为:P(f(a))
	$P(x)$ 的全称量化是命题 " $P(x)$ 对 x 在其论域的所有值为真"。符号 $\forall x P(x)$ 表示 $P(x)$
全称量词	的 全称量化 ,其中∀ 称为全称量词 。
,,,,	例: 令 F(x): x 是实数, G(x): x 是有理数。命题"实数不全是有理数"的符号化 形式为:¬∀x(F(x)→G(x))
++=	$P(x)$ 的存在量化是命题 "论域中存在一个元素 x 使 $P(x)$ 为真"。符号 $\exists x P(x)$ 表示
存在量词	P(x)的 存在量化 ,其中∃称为 存在量词。
	论域中的所有值都使 $P(x)$ 为真时, $\forall x P(x)$ 才为真;而只需要有一个值使得 $P(x)$ 为
真假判断	真时 , ∃xP(x) 即为真。反过来 , 有一个值使得 P(x) 为假 , ∀xP(x) 即为假 ; 而所有
	的值均使 P(x) 为假,则∃xP(x) 为假。
复合谓词	由一个或几个原子谓词公式以及逻辑联结词组合而成的表达式称为复合谓词公式。
公式	公式中使用的逻辑联结词包括: $¬$ 、 $∧$ 、 $∨$ 、 $→$ 和 $↔$ 。 $合式公式$ $∧$ 记为 W ff $∧$ 。

	给定谓词合式公式 A ,一部分公式为 $\forall xB(x)$ 或 $\exists xB(x)$,称 \forall 、 \exists 后面的 x 为指导
变元	变元,或作用变元。B(x)为相应量词的辖域(或作用域)。辖域中,x的一切出现
	称为约束出现。在 B(x) 中除去约束出现的其他变元的出现称为自由出现。
	(1) 约束变元改名规则 :将量词辖域中,量词的 指导变元 及其辖域中该变元的 所
变元改名	有约束出现 均改为本辖域中 未曾出现过 的个体变元,其余不变。
规则	(2) 自由变元代入规则 :把公式中的某一 自由变元 ,用该公式中没有出现的个体
	变元符号替代,且要替换该自由变元在公式中的所有出现处。

3.3 谓词演算的等价式与蕴涵式★★★

	给定任何两个谓词公式 WffA 和 WffB ,该	设它们有共同的论域 E , 若对 A 和 B 的任						
定义 3.7	一组个体变元进行赋值 "所得命题的真值标	目同 称谓词公式 A 和 B 在 E 上是等价的,						
	记作 A ⇔ B。例:论域为 {2,3},则∀x∀yF	$P(x, y) \Leftrightarrow P(2, 2) \land P(2, 3) \land P(3, 2) \land P(3, 3)$						
	给定任意谓词公式 WffA 其论域为 E 对于 A的所有赋值 WffA都为真 则称 WffA							
定义 3.8	在 E 上是 有效的 (或永真的) 。如果在所有	有赋值下 WffA 都为 假 ,则称 WffA 为 不可						
	满足的 。如果 至少 在一种赋值下为 真 ,则	称该 WffA 为 可满足的 。						
	前面所学到的所有等价公式和蕴含式都可	以推广到谓词演算中使用。						
	$\exists x (A(x) \lor B(x)) \Leftrightarrow \exists x A(x) \lor \exists x B(x) \qquad \exists x A(x) \to B \Leftrightarrow \forall x (A(x) \to B)$							
	$\forall x (A(x) \land B(x)) \Leftrightarrow \forall x A(x) \land \forall x B(x) \qquad A \to \forall x B(x) \Leftrightarrow \forall x (A \to B(x))$							
常见谓词	$\neg \exists x A(x) \Leftrightarrow \forall x \neg A(x)$	$A \to \exists x B(x) \Leftrightarrow \exists x (A \to B(x))$						
等值式与	$\neg \forall x A(x) \Leftrightarrow \exists x \neg A(x)$	$\forall x A(x) \lor \forall x B(x) \Rightarrow \forall x (A(x) \lor B(x))$						
蕴涵式	$\forall x (A \lor B(x)) \Leftrightarrow A \lor \forall x B(x) \qquad \qquad \exists x (A(x) \land B(x)) \Rightarrow \exists x A(x) \land \exists x B(x)$							
	$\exists x (A \land B(x)) \Leftrightarrow A \land \exists x B(x) \qquad \exists x A(x) \rightarrow \forall x B(x) \Rightarrow \forall x (A(x) \rightarrow B(x))$							
	$\exists x (A(x) \to B(x)) \Leftrightarrow \forall x A(x) \to \exists x B(x)$	$\forall x A(x) \rightarrow \exists x B(x) \Leftrightarrow \neg \forall x A(x) \lor \exists x B(x)$						
	$\forall x A(x) \to B \Leftrightarrow \exists x (A(x) \to B)$							

例 1: 证明下列谓词公式为永真式 $\forall y(\forall x A(x) \rightarrow A(y))$

证明: $\forall y(\forall xA(x)\rightarrow A(y))$

 $\Leftrightarrow \forall \ y (\neg \ \forall \ x A(x) \lor A(y)) \Leftrightarrow \neg \ \forall \ x A(x) \lor \ \forall \ y \ A(y) \Leftrightarrow \neg \ \forall \ x A(x) \lor \ \forall \ x \ A(x) \Leftrightarrow T$

例 2: 设解释 I 如下: D={2,3}, 已知 F(2,2)=F(3,3)=0, F(2,3)=F(3,2)=1, f(2,2)=f(2,3)=2, f(3,2)=f(3,3)=3。求谓词公式 $\forall x \forall y (F(x,y) \rightarrow F(f(x,y),x))$ 在 I 下的真值。

解: $\forall x \forall y (F(x,y) \rightarrow F(f(x,y),x))$

 \Leftrightarrow $(F(2,2) \to F(f(2,2),2)) \land (F(2,3) \to F(f(2,3),2)) \land (F(3,2) \to F(f(3,2),3)) \land (F(3,3) \to F(f(3,3),3))$

 $\Leftrightarrow (0 \to F(2,2)) \land (1 \to F(2,2)) \land (1 \to F(3,3)) \land (0 \to F(3,3))$

 $\Leftrightarrow (0 \rightarrow 0) \land (1 \rightarrow 0) \land (1 \rightarrow 0) \land (0 \rightarrow 0)$

 $\Leftrightarrow 1 \land 0 \land 0 \land 1$

 $\Leftrightarrow 0$

3.4 前束范式★

一个公式,如果量词均在全式的开头,它们的作用域,延伸到整个公式的末尾,则该公式称为**前束范式。**例: $\forall y \forall x \exists z (Q(x,y) \to R(z))$ 是前束范式, $\forall x R(x) \land \exists y S(x)$ 则不是前束范式。

3.5 谓词演算的推理理论★★★

全称量词	P 是谓词,而 c 是论域中的任意一个个体,如果论域中全部个体都有 $P(x)$,那么对
消去 规则	某个具体的个体 c 亦有 P(x) ,即可得到结论 P(c)。(简记为 ∀ -)
全称量词	如果能够证明对论域中任一个体 c 谓词 P(c) 都成立 ,则可得到 ∀xP(x) 为真。这里的
引入规则	个体 c 必须是论域中的任意一个元素,而不能是某个特定的元素。(简记为 ∀ +)
	如果已知 ∃xP(x) 成立,则在论域中存在一个个体c使得P(c)为真。这里只知存在个
存在量词	体 c,但不能选择任意的 c,通常并不知道 c的具体值。例如 ∃xP(x)和 ∃xQ(x)都为
消去 规则	真,则对某些 c 和某些 d ,可以断定 $P(c) \wedge Q(d)$ 为真,但是不能断定 $P(c) \wedge Q(c)$ 为
	真,也不能断定 P(d)∧Q(d) 为真。 (简记为∃-)
存在量词	
引入规则	如果已知论域中某个个体 c 使得 P(c) 为真 ,则可得出 ∃xP(x) 为真。(简记为 ∃+)

例:符号化下列命题,并构造推理证明。任何人如果他是素食者,他就不喜欢吃肉;每一个人或者喜欢吃肉或者喜欢吃蔬菜;有的人不爱吃蔬菜。因而不是所有的人都是素食者。

P(x): x 是素食者; Q(x): x 喜欢吃肉; R(x): x 喜欢吃蔬菜

前提: $\forall x (P(x) \rightarrow \neg Q(x))$; $\forall x (Q(x) \lor R(x))$; $\exists x \neg R(x)$

结论: ¬∀xP(x)

证明:

(1) $\exists x \neg R(x)$	P 规则
$(2) \neg R(c)$	∃- (1)
$(3) \ \forall x \ (P(x) \rightarrow \neg Q(x))$	P 规则
$(4) P(c) \rightarrow \neg Q(c)$	∀- (3)
(5) $\forall x \in Q(x) \vee R(x)$	P 规则
(6) $Q(c) \vee R(c)$	∀- (5)
$(7) \neg Q(c) \rightarrow R(c)$	T (6)
(8) $P(c) \rightarrow R(c)$	T (4) (7)
$(9) \neg R(c) \rightarrow \neg P(c)$	T (8)
$(10) \neg P(c)$	T (2) (9)
$(11) \exists x \neg P(x)$	∃+ (10)
$(12) \rightarrow \forall \mathbf{x} \mathbf{P}(\mathbf{x})$	T (11)

第4章集合

4.1 集合的基本概念★★

属于	若元素 a 是集合 A 中的元素 、称 a 属于 A ,记 a ∈ A ,否则称 a 不属于 A ,记为 a ∉ A 。
∔ □ <i>6/</i> 5	设 A 、B 是任意两个集合, 称这两个集合是相等的, 当且仅当它们含有相同的元素。
相等	集合 A 与 B 相等 记为 A = B ,集合 A 与 B 不相等 记为 A ≠ B
拉佳	不包含任何元素的集合称为 空集 ,记为 $∅$ 或 $\{\}$ 。 空集的基数 为 0 , $∅$ = 0 。
空集	对于任意集合 A 必有∅ ⊆ A 。
包含	设 A 、 B 是任意两个集合 , 若 A 的每一个元素都属于 B , 则称 A 为 B 的子集 , 也称
	B 包含 A或A 包含在 B内。记作A⊆B或B⊇A。
	对任意集合 $A \setminus B \setminus C$,必有 $A \subseteq B \wedge B \subseteq C \Rightarrow A \subseteq C$
基数	集合 A 中的元素个数称为集合的 基数或势 ,表示为 A 。
幂集	设 A 为任意集合 以 A 的子集为元素所组成的集合 称为集合 A 的 幂集 记为 $\mathcal{G}(A)$ 。
	若 A 是具有 n 个元素的有限集,则 A 的 幂集 𝒯(A)有 2 ⁿ 个元素

4.1 集合的运算★★★★ 设任意两个集合 A 和 B :

жын	烂 并 ^ ^ ^ ^	及任意內「朱白五伯」.
交集		B 的所有 共同元素 组成的集合 S 称为 A 和 B 的 交集 ,记为 A \cap B。 $\{x (x\in A)\land (x\in B)\}$
并集	l .	或属于 B 的元素组成的集合 S 称为 A 和 B 的 并集 ,记作 A U B。 (x (x ∈ A)∨(x ∈ B)}
补集		不属于 B 的所有元素组成的集合 S ,称为 A 与 B 的 差集 ,也称为 B 对于或 相对补 ,记作 A – B 。 S = A – B = $\{x x \in A \land x \notin B\}$ 。
绝对补		, 对任─集合 A , 关于 E 的补 E – A , 称为集合 A 的 绝对补 , 记作: ~ A = E – A = {x x ∈ E ∧ x ∉ A} , 即所有不属于 A 的元素组成 ~ A
对称差	A和B的 对称差 为集合S,其元素或属于A,或属于B,但不能既属于A,又属于B,记作A \oplus B。 有定理 :A \oplus B=B \oplus A;A \oplus Ø=A;A \oplus A=Ø; A \oplus B=(A \cap ~B) \cup (~A \cap B);(A \oplus B) \oplus C=A \oplus (B \oplus C)。	
定理	$A - B = A \cap A$	$\sim B$; $A - B = A - (A \cap B)$
集合运算的恒等式	幂结交分包同零中盾收 根 雷斯 不吸 摩 否定	$A \cap A = A ; A \cup A = A$ $(A \cap B) \cap C = A \cap (B \cap C) ; (A \cup B) \cup C = A \cup (B \cup C)$ $A \cap B = B \cap A ; A \cup B = B \cup A$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C) ; A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap B \subseteq A ; A \cap B \subseteq B ; A \subseteq A \cup B ; B \subseteq A \cup B$ $A \cap E = A ; A \cup \emptyset = A ;$ $A \cap \emptyset = \emptyset ; A \cup E = E$ $A \cup \sim A = E$ $A \cap \sim A = \emptyset$ $A \cap (A \cup B) = A ; A \cup (A \cap B) = A$ $A - (B \cup C) = (A - B) \cap (A - C) ; A - (B \cap C) = (A - B) \cup (A - C)$ $\sim (A \cup B) = \sim A \cap \sim B ; \sim (A \cap B) = \sim A \cup \sim B ; \sim \emptyset = E ; \sim E = \emptyset$
Itil A D		~ (~ A) = A エ明 (A D) C A (D) C (左次五八地宮ルナ部 ルルよか答析)

例: A, B, C 是集合,证明: (A-B)-C=A-(B∪C)(考试可分排写出过程,此处为省篇幅)证明: (A-B)-C=(A∩~B) ∩~C=A∩(~B∩~C)=A∩~(B∪C)=A-(B∪C)

4.3 有序对与笛卡儿积★★

有序对	由两个元素 x 和 y(允许 x = y)按一定顺序排列成的二元组称为一个 有序对 或 序偶 ,
	记作 $<$ x $,$ y $>$ 或 (x,y) ,其中 x 是该有序对的第一元素 $,$ y 是该有序对的第二元素。
	设 A 、 B 为集合。用 A 中元素 x 为第一元素 , B 中元素 y 为第二元素构成有序对 ,
笛卡尔积	所有这样的有序对组成的集合叫做 A 和 B 的 笛卡儿积 ,记作 A × B 。也称为 直积 。
	$A \times B = \left\{ \langle x, y \rangle \middle x \in A \land y \in B \right\}$
	若集合 A 有 m 个元素,集合 B 有 n 个元素,则 A×B 有 m×n 个元素。
定理	例: 设集合 A={1,2,3}, 集合 B={a, b, c, d, e}, 则 A×B =(), 而 P(A)×B =
	() 。 $M: A \times B = 3 \times 5 = 15; P(A) \times B = 2^3 \times 5 = 40.$

第5章 关系与函数

5.1 关系及关系的性质★★★

J. = /\/\/\/\	大宗的任烦***
关系	设 A、B是任意两个集合,A×B的子集 R 称为从 A 到 B 的二元关系,简称为关系。 特别地,当 A=B 时,称 R 为 A 上的关系。如果 < x , y > \in R ,可记为 xRy ,称 x 与 y 有关系 R ;如果 < x , y > \notin R ,则记为 xRy ,称 x 与 y 没有关系 R 。
定义域	R 中所有有序对的 第一元素 构成的集合称为 R 的定义域,记为 dom R ,表示为 dom R = $\left\{x \mid \exists y (< x, y > \in R)\right\}$
值域	R 中所有有序对的 第二元素 构成的集合称为 R 的值域 , 记为 ranR , $ranR = \left\{ y \middle \exists x (< x,y> \in R) \right\} \; ;$
域	R 的定义域和值域的并集称为 R 的域 , 记为 fldR , fldR = domR ∪ ranR
	<1, b>, <2, a>, <2, d>, <4, b>}是集合 A={1, 2, 3, 4}到集合 B={a, b, c, d} ranR={a, b, d}, domR={1,2,4}。
关系矩阵	设给定两个有限集合 $X = \left\{x_1, x_2, x_m\right\}$, $Y = \left\{y_1, y_2,, y_n\right\}$, R 为 X 到 R 的一个二元 关系,称矩阵 $M_R = (r_{ij})_{m \times n}$ 对应于 R 的关系矩阵 , 其中 $r_{ij} = \begin{cases} 1 \ , \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
关系图	设集合 $X = \{x_1, x_2,, x_m\}$ 到 $Y = \{y_1, y_2,, y_n\}$ 的二元关系为 R,在平面上作出两组顶点,其中一组顶点对应 X 中的元素,另一组顶点对应 Y 中的元素,两组顶点分别记作 $x_1, x_2,, x_m$ 和 $y_1, y_2,, y_n$ 。如果 x_i 与 y_j 有关系,则自顶点 x_i 至顶点 y_j 画一条有向边(带方向的线段),边上的方向由 x_i 指向 y_j ;如果 x_i 与 y_j 没有关系,则 x_i 与 y_j 间没有边相连,由此得到 x_i 的关系图。
关系的性 质	 (1)如果对∀a∈A,必有aRa,则称关系R在A上是自反的; (2)如果对∀a∈A,必有aRa,则称关系R在A上是反自反的; (3)对∀a,b∈A,若aRb必有bRa,则称关系R在A上是对称的; (4)对∀a,b∈A,若aRb且bRa必有a=b,则称关系R在A上是反对称的; (5)对∀a,b,c∈A,若aRb且bRc必有aRc,则称关系R在A上是传递的。 例:给定A: {1, 2, 3, 4},考虑A上的关系R,若R={(1, 3), (1, 4), (2, 3), (2, 4), (3, 4), (4, 4)},则R是(传递的)。 解析:R中不存在(1,1)所以不是自反的;R中存在(1,3)不存在(3,1)所以不是对称的;R中存在(4,4)所以不是反自反的。根据定义验证,(1, 3)和(3, 4)、(1, 4)都存在,R是传递的。
的关系矩阵	(1, 4) 都行在,R 及传递的。

5.2 关系的运算★★

设 R 是从 X 到 Y 的二元关系,如将 R 中每一个二元组中的元素顺序互换,所的 集 合 称 为 R 的 逆 关 系 ,简 称 为 R 的 逆 ,记 作 R^{-1} 或 R^{C} $R^{-1} = \left\{ < y, x > < x, y > \in R \right\}$ 。	
$R^{-1} = \{ \langle y, x \rangle \langle x, y \rangle \in R \}_{\bullet}$,即
设 R 、 $R_{_1}$ 、 $R_{_2}$ 都是从 A 到 B 的二元关系,则下列各式成立。	
逆关系 (1) $(R^{-1})^{-1} = R$; (2) $(R_1 \cup R_2)^{-1} = R_1^{-1} \cup R_2^{-1}$;	
(3) $(R_1 \cap R_2)^{-1} = R_1^{-1} \cap R_2^{-1}$; (4) $(\tilde{R})^{-1} = \tilde{R}^{-1}$;	
(5) $(A \times B)^{-1} = B \times A$; (6) $(R_1 - R_2)^{-1} = R_1^{-1} - R_2^{-1}$;	
(7) 若 $R_1 \subseteq R_2$,则 $R_1^{-1} \subseteq R_2^{-1}$; (8) dom $R^{-1} = ranR$;	
(9) $ranR^{-1} = domR_{\circ}$	
设 R 为 A 到 B 的关系,S 为 B 到 C 的关系,则 R ∘ S 称为 R 和 S 的复合关系,	, 表示
为 $R \circ S = \{ \langle x, y \rangle \exists t (\langle x, t \rangle \in R \land \langle t, y \rangle \in S) \}$ 。	
例: 设 A={p, q, r, s},B={a,b},C={1,2,3,4},从 A 到 B 的关系 R ₁ 和从 B 到 C 的	勺关系
$R_2 \text{$\mathbb{R}_1$ = {,,,,}, R_2 = {,,}, \tilde{x} $$	A 到 C
的复合关系。	
解: 由于R ₁ ={ <p,a>,<p,b>,<q,b>,<r,a>,<s,a>}</s,a></r,a></q,b></p,b></p,a>	
复合关系 $R_2 = \{\langle a, 1 \rangle, \langle a, 2 \rangle, \langle b, 4 \rangle\}$ 通过观察可得出: $R_1 \circ R_2 = \{\langle p, 1 \rangle, \langle p, 2 \rangle, \langle p, 4 \rangle, \langle q, 4 \rangle, \langle r, 1 \rangle, \langle r, 2 \rangle, \langle s, 1 \rangle, \langle s, 2 \rangle\}$	
设F是X到Y的关系,G是Y到Z的关系,H是Z到W的关系,则	
$ (1) (F \circ G) \circ H = F \circ (G \circ H) ; (2) (F \circ G)^{-1} = G^{-1} \circ F^{-1} . $	
设 R 是集合 A 上的关系,幂 R ⁿ (n = 1,2,) 递归地定义为 R ¹ = R, R ⁿ = R ⁿ⁻¹ ∘ R	•
例: 设集合 A={a, b, c, d}, A 上的关系 R={<1,1>, <2,1>, <3,2>, <4,3>}	
则 R ² =<1,1>, <2,1>, <3,1>, <4,2>, R ⁻¹ =<1,1>, <1,2>, <2,3>, <3,4>。	,
设 R 是非空集合 A 上的二元关系, 若关系 R'满足下列条件:	
(1) R'是 自反的 (对称的或传递的);(2) R ⊆ R'	
(3)对于 A 上的任何包含 R 的自反的(对称的或传递的)关系 R",有 R'	⊆ R";
称 R '为 R 的自反 (对称或传递)闭包,记作 r(R) (s(R)或 t(R))。	
关系的闭 定理:① $r(R) = R \cup I_A$;② $s(R) = R \cup R^{-1}$;	
包 ③ $t(R) = R \cup R^2 \cup \cup R^n$,其中 n 是集合 A 中的元素的数目。	
例: 设集合 A={a, b, c, d}以及 A 上的一个二元关系 R={ <a, b="">, <b, c="">},</b,></a,>	则对
称闭包 s(R)= () , 传递闭包 t(R)= () 。	
解析: 根据对称: <a, b="">→<b, a="">, <b, c="">→<c, b="">, 所以则对称闭包 s(R)={<a, b="">, <b, c="">, <b, a="">, <c, b="">}</c,></b,></b,></a,></c,></b,></b,></a,>	
根据上述运算方法,传递闭包 t(R)={ <a, b="">, <b, c="">, <a, c="">}</a,></b,></a,>	

5.3 等价关系与序关系★★★★

相容关系	给定集合 A 上的关系 ρ ,若 ρ 是 自反的 、 对称的 ,则称 ρ 是 A 上的 相容关系 。
等价关系	设 R 为非空集合 A 上的关系,若 R 是 自反的、对称的 和 传递的 ,则称 R 为 A 上的
	等价关系 。设 R 为等价关系,若 < x, y > ∈ R ,称 x 等价于 y ,记作 x ~ y。

例: 设 $A=\{\langle a,b\rangle|\ a,b$ 为正整数 $\}$,在 A 上定义二元关系 \sim 如下: $\langle a,b\rangle\sim\langle c,d\rangle$ 当且仅当 a+b=c+d。证明: \sim 是一个等价关系。

证明: (1) 自反性: a+b=a+b, 即<a,b>~<a,b>

- (2) 对称性: 若 a+b=c+d, 则必有 c+d=a+b, 即若<a,b>~<c,d>, 则必有<c,d>~<a,b>
- (3) 传递性: 若 a+b=c+d, 且 c+d=e+f, 则必有 a+b=e+f, 即若<a,b>~<c,d>, 且<c,d>~<e,f>, 则必有<a,b>~<e,f>

综上所述,~是一个等价关系。

非空集合 A ,若集合 $S = \{S_1, S_2, ..., S_m\}$,其中 $S_i \subseteq A$, $S_i \neq \emptyset$ ($1 \le i \le m$),且 $S_i \cap S_j = \emptyset$ ($i \ne j$)同时有 $\bigcup_{i=1}^m S_i = A$,称 $S \not\in A$ 的划分,每个 S_i ($1 \le i \le m$)称为 一个分块。

例: 设集合 A 有 3 个元素,则 A 上的等价关系的个数为 (5 个)解析: 不妨设 A={a, b, c};则 A 有 5 个划分{{a}, {b}, {c}}, {{a, b}, c}, {{a, c}, b},

$\{\{b, c\}, a\}$	}, {{a, b, c}}, 所以A上的等价关系有5个
偏序关系	设 A 是一个非空集合,如果 A 上的关系 R 满足 自反性、反对称性 及 传递性 ,则称 R
	是 A 上的一个偏序关系,记作"≤"。集合 A 和 A 上的偏序关系≤一起称为偏序集,
	记为 <a,≤>。若<x,y>∈≤,读为"x小于或等于y",记作x≤y。</x,y></a,≤>
可比	≤是非空集合 A 上的偏序关系 , ∀a , b ∈ A , 若 <a ,="" b=""> ∈ ≤ 且 a ≠ b ,称 a 小于 b ,
טן ניי	记a≺b;若 <a,b>∈≤或<b,a>∈≤,称a与b是可比的,否则a与b是不可比的。</b,a></a,b>
	设 <a,≤>为偏序集,对∀a,b∈A,若a≺b且不存在c∈A使得a≺c≺b,则称b</a,≤>
	覆盖 a。记 COVA = {< a, b > a ∈ A ∧ b ∈ A ∧ b覆盖a}。
覆盖	例:〈A, ≤〉是一个偏序集,其中A是正整数12的正因子的集合, ≤ 为整除关
	系,则能盖住元素 3 的元素是(6) 解: 12 的正整数因子包括 1,2,3,4,6,12。故在 整除关系下,3≤6,3≤12,但由于6≤12,故能盖住3的元素是6.
哈斯图	①A 中每个元素可用顶点表示;② ∀a,b∈A ,若 a ≺ b ,则将 a 画在 b 的下方;③
	∀a,b∈A, 若b覆盖a,则在a与b之间画一条边;④图中省略从顶点到自身的边。
	设 <a,≤>是一个偏序集,B⊆A,y∈B。</a,≤>

(1) 若 ∀x(x ∈ B → y ≤ x) 成立,则称 y 为 B 的**最小元**。

- (2) 若 $\forall x (x \in B \rightarrow x \le y)$ 成立,则称y为B的最大元。
- (3) 若 \forall x(x∈B∧x≤y→x=y)成立,则称y为B的**极小元**。
- (4) 若 $\forall x (x \in B \land y \le x \rightarrow x = y)$ 成立,则称y为B的**极大元**。

设 A={1, 6, 9, 12, 18, 36}, ≤为整除关系。

(1) 画出<A, <>的哈斯图。

定理

- (2) 求子集 B={6, 12, 18}的极大元、极小元、最大元、最小元。解: (1) 画出的哈斯图如右图。
- 6 能整除所有元素,故 6 是最小元; 18 不能被 12 整除,故不存在最大元能整除 6 的只有 6,故 6 是极小元
- 能被 12 整除的只有 12, 能被 18 整除的只有 18, 故 12、18 是极大元。

5.4 函数★★

—	
函数	设 F 为二元关系,若 ∀x ∈ domF 都存在唯一的 y ∈ ranF ,使 xFy 成立,则称 F 为函
	数,也称为 映射。 对于函数 F,如果有 xFy,则记为 y = F(x),称 x 为自变量, y 为
	F 在 x 的值,或在 F 作用下 x 的象。从 x 到 y 的函数 F 记为: F : x → y 或 x → y 。
	①函数 F 要对定义域中的所有元素都有定义;
	②对∀x∈domF,只能有 唯一的 y∈ranF,满足 <x,y>∈F。</x,y>
台台表表	函数 f 为 一对一 的 ,当且仅当对于 f 定义域中的所有 x 和 y , $f(x)=f(y)$ 蕴含着 $x=y$ 。
单射函数	一对一函数 也称为 单射函数 或 入射函数 。
:## 6-4	给定函数 $f: X \to Y$, 当且仅当对 $\forall y \in Y$,都有 $x \in X$ 使得 $f(x) = y$,则函数 f 称为满
满射	射的或映上的。
双射	给定函数 $f: X \to Y$, 函数 f 是满射的又是单射的 , 称 f 为——对应的 , 也称双射的。
	只有 双射函数 才有 反函数 。
复合函数	设 f : X \rightarrow Y , g : Y \rightarrow Z ,函数 f 和 g 的 复合 f \circ g(x)= g(f(x)) ,具体表示为:
	$f \circ g(x) = \{ \langle x, z \rangle (x \in X) \land (z \in Z) \land \exists y (y \in Y \land y = f(x) \land z = g(y)) \}$,也称为 合成函数。
	简单地看 , $f\circ g(x)=g(f(x))$,如果 f 值域不是 g 的定义域的子集 ,则无法定义 $f\circ g$ 。

第6章 代数系统的一般概念

6.1 代数系统★★★

0.1 (奴(示:	3 6^ ^ ^
	设 A 为任意非空集合,*和○是集合 A 上的二元运算,对 ∀a,b,c∈A ,
	(1)若有 a * b ∈ A 则称运算*关于集合是 封闭的 ;
	(2)若a*(b*c)=(a*b)*c,称运算*在集合A上是 可结合的 ,或称运算*在A上
	满足 结合律 ;
≐ ₩ 6 3	(3)若有a*b=b*a,称运算*在A上是可交换的,或运算*在A上满足 交换律 ;
定义 6.3	(4)若有a*a=a,则称运算*在A上是幂等的,或称运算*在A上满足 幂等律 ;
	(5)若有: a ∘ (b * c) = (a ∘ b) * (a ∘ c)和 (b * c) ∘ a = (b ∘ a) * (c ∘ a)成立,则称运算 ∘ 对 * │
	是可分配的,或称运算。对*满足 分配律 ;
	(6)若∘和∗均满足交换律,而且有:a∘(a∗b)=a和a∗(a∘b)=a,则称运算∘和*
	是可吸收的,或称运算°和*满足 吸收律 。
	①设*为集合 A 上二元运算 , 若存在 $e_L \in A$, 使得对于 $\forall x \in A$, 都有 $e_L * x = x$ 则称
	e _L 是 A 中关于*运算的 左幺元 。
幺元	②若有 e _r ∈ A ,使对于 ∀x ∈ A ,都有 x * e _r = x ,称 e _r 是 A 中关于 * 运算的 右幺元 。
	③若存在 e ∈ A ,既是 左幺元 ,又是 右幺元 ,称 e 是 A 中关于*的幺元,也称单位
	元。显然,若 e 是 A 中关于*的幺元,则对 ∀x ∈ A ,都有 e*x = x * e = x 。
	①设*是定义在集合 A 上的二元运算,如果有一个元素 $o_i \in A$,对于任意元素 $x \in A$
零元	都有 O ₁ * x = O ₁ ,则称 O ₁ 为 A 中关于运算 * 的 左零元 ;
	②如果有一个元素 O _r ∈ A ,对于任意元素 x ∈ A ,都有 x * O _r = O _r ,则称 O _r 为 A
	中关于运算*的 右零元 ;
	③如果存在 $O ∈ A$,它既是左零元也是右零元,则称 O 为 A 上关于运算 $*$ 的 零元 。

解:设B是P(A)中任意元素,则 $B\cup\emptyset=B$,所以 \emptyset 是单位元; $B\cup A=A$,所以A为零元。

6.2 群与半群★★

半群	设 $V = < S, * >$ 是代数系统,* 是集合 S 上的二元运算,若运算 * 是 封闭 且是 可结合的 ,
	则称 V 为 半群 。
独异点	若半群 < S,* > 中存在一个幺元,则称 <s *="" ,="">为独异点(或含幺元半群)。</s>
群	设 < G ,* > 是一个独异点,其中 G 是非空集合, * 是 G 上一个二元运算,对
	于 $\forall x \in G$ 都有逆元 x^{-1} 存在,则称 $< G, *>$ 是一个群。群要满足条件: 封闭性 、
	结合律 及 存在幺元 ,同时还要求对集合中的每个元素都要有 逆元 。

例:在整数集 Z 上定义一个二元运算*如下: a*b=a+b+1,证明: < Z, *> 是群。证明: (1) 封闭性: $\forall a,b \in Z$, 必有 $a*b=a+b+1 \in Z$,所以运算是封闭的

(2) 可结合: $\forall a,b,c \in Z$, a*(b*c)=a*(b+c+1)=a+b+c+2, (a*b)*c=(a+b+1)*c=a+b+c+2 所以 a*(b*c)=(a*b)*c, 即运算是可结合的

(3) 存在幺元: 假设存在幺元 e, 则 a*e=a+e+1=a, 可得 e=-1

∀a∈ Z, 必有(-1)*a=a*(-1)=a, 所以-1 是<Z,*>的幺元

(4) Z 的任何元素存在逆元: 假设 a 的逆元 a^{-1} 存在,则 $a*a^{-1}=a+a^{-1}+1=-1$,可得 $a^{-1}=-a-2$ $\forall a \in Z$,必有(-a-2)*a=a*(-a-2)=-1,所以-a-2 是 a 的逆元

综上所述, <Z,*>是一个群

交换群	设 <g, *="">是一个群, 若运算*在G上满足交换律, 称G为交换群或 Abel 群。</g,>
	设 <g, *="">是群,e 是幺元。对于 a ∈ G,使得 a^k = e 成立的最小正整数 k 称</g,>
K 阶元	为 a 的阶,记作 a , a 称 为 k 阶元 。若 不存在 这样的正整数 k ,则 a 称为 无
	限阶元。

例: $\langle Z_n, + \rangle$ 是一个群, 其中 $Z_n = \{0, 1, 2, ..., n-1\}$, $x+y=(x+y) \mod n$, 则在 $\langle Z_{10}, + \rangle$ 中, 1的阶为(10), 9的阶为(10)

解: $(x+y) \mod n$ 表示(x+y)除以 n 的余数, n=10 时, $Z_{10} = \{0,1,2,3,4,5,6,7,8,9\}$, 易知,只有(0+x) $mod10 = (x+0) \mod 10 = x$,所以 0 是幺元;

 $(9+9+9+9+9+9+9+9+9+9) \mod 10=0, |9|=10; (1+1+1+1+1+1+1+1+1+1+1) \mod 10=0, |1|=10.$

(2121212	f = f + f
	设 < A,+,* >是一个代数系统,+和*是二元运算,如果满足
环	(1) <a,+>是 Abel 群;(2)<a,*>是半群;</a,*></a,+>
	(3)运算*对于运算+是可分配的;则称 <a,+,*>是一个环。</a,+,*>
	设 <r *="" +="" ,="">是环 , 对 a, b ∈ R , a ≠ 0 , b ≠ 0 , 但 a * b = 0 , 则称 a 是 R</r>
零因子	中的一个左零因子,b是R中一个右零因子;若一个元素既是左零因子,又
	是右零因子,则称它是一个零因子。
	设 < A,+,* > 是环。(1)若环中乘法 * 满足交换律,则 < A,+,* > 是 可交换环 。
	(2)若环中乘法*存在幺元,即对 ∀a ∈ R ,均有1*a = a *1 = a ,称 <a ,<="" th="">
	+, * >为 含幺元的环 。1 称为环 <a *="" ,+,="">的幺元。
定义	(3)对于 ∀a, b ∈ R ,若 a * b = 0 ,必有 a=0 或 b = 0 ,称 <a,+, *="">是一个</a,+,>
	无零因子环。
	(4)若 <a ,+,*="">既是交换环、含幺环,也是无零因子环,则称<a ,<="" th="">

域

设 < R , + , * > 是一个整环 , 且 $|R| \ge 2$, 若对 $\forall a \in R^* = R - \{0\}$, 都有 $a^{-1} \in R$, 则称 < R , + , * > 是域。因此,域一定是整环,整环不一定是域。

第7章 格与布尔代数

设 < A, \leq >是一个偏序集,对 $\forall a,b \in A$,子集 $\{a,b\}$ 在 A 中都有**最大下界**(也称为下确界,记为 $\inf\{a,b\}$)和**最小上界**(也称为上确界,记为 $\sup\{a,b\}$),则称 < A, \leq >为**格**。

格★★

例:设<A, |>为偏序关系,其中|为整除关系,即a|b当且仅当a整除b。已知 $A=\{1,2,3,5,6,15,30\}$ 。画出这个偏序关系的哈斯图,并判断其是否为格。

解:该偏序关系的哈斯图如右图: 任意两个元素都有上确界和下确界存在, 故为格。

分配格★

有补格

设 < A , \land , \lor , 0 , 1>是一个有界格,若对于 $\forall a \in A$, 在 A 中都有 a 的补元存在,则 A 称为有补格。

例:考虑图 7.3 中的四个格。

图 7.3 格的示例

解: L_1 中,a与c互补,b不存在补元。a是全下界,c是全上界。 L_2 中,a与d互补,b与c互补。a是全下界,d是全上界。 L_3 中,a与e互补。b、c、d三个元素中,对于任意一个,另外两个都是它的补元,即每个元素都存在两个补元。a是全下界,e是全上界。 L_4 中,a与e互补,b的补元是c和d,c和d的补元都是b。a是全下界,e是全上界。综上, L_1 不是有补格,其他三个都是有补格。

第8章图

8.1 图的基本概念★★

8	一个图包含顶点和边两部分。图用 $G=(V,E)$ 来表示,其中 V 是非空有限顶点集,
	E 是边集, E 中的每条边都是 V 中某一对顶点间的连接。当顶点分别是 u , v 时,
	连接这两个顶点的边可以表示为一个二元组(u,v)或是 < u,v > ,有时也将边称为顶
	点的 有序对 。图 $G=ig(V,Eig)$ 中, 顶点总数 记为 $ig Vig $, 边的总数 记为 $ig Eig $ 。
	图中的边均为有向边的图称为 有向图 。如果图中仅含有无向边,称为 无向图 。
度	无向图 $G = \langle V, E \rangle$,顶点 \mathbf{v} 关联的 边数 称作该顶点的 度数 ,简称为度 ,记为 $\deg(\mathbf{v})$ 。

	对图 G 中的顶点 v ,若 $deg(v)=0$,则 v 称为 弧立点 ;若 $deg(v)=1$,则 v 称为 悬挂
	点;若 v 有环,则计算度时使 $\deg(v)$ 增加 2;若 $\deg(v)$ 为 奇数 ,称 v 为 奇顶点 或奇
	点;若 deg(v) 为 偶数 ,称 v 为 偶顶点 或 偶点。
出度和入度	设 $G = \langle V, E \rangle$ 是有向图,以顶点 v 为起点的有向边个数称为 v 的 出度 ,记 $deg^+(v)$;
	以顶点 v 为终点的有向边个数称为 v 的 入度 ,记 $deg^-(v)$ 。 顶点的出度与入度之和就
	是该顶点的度数 ,有向图中所有顶点的入度之和等于所有顶点的出度之和。
n 阶完全	设含 n 个顶点的简单无向图 $G = < V, E > $ 中 若每个顶点都与其余的 $n-1$ 个顶点邻接,
<u>魯</u>	则称 G 为 n 阶 (无向) 完全图 ,记作 K _n 。
n 阶有向	设含 n 个顶点的简单有向图 $G = \langle V, E \rangle$ 中,若每个顶点都邻接到其余的 n -1 个顶
<u>8</u>	点,则称 G 为 n 阶 有向完全图 。
计算	简单无向图的顶点度数总和等于边数的 两倍 ,奇顶点必为 偶数个 。
	n 阶(无向)完全图中共有 $\frac{n(n-1)}{2}$ 条边, n 阶有向完全图中共有 $n(n-1)$ 条边。

例 1: 无向完全图 K_6 的边的条数为(15)解: 根据公式, $6 \times 5 \div 2 = 15$, 故有 15 条。

例 2: 设无向图 G 有 7 个顶点,每个顶点的度数不是 4 就是 5。证明: G 中至少有 5 个度数为 4 的顶点或至少有 4 个度数为 5 的顶点。

证明: 无向图 G 有 7 个顶点, 每个顶点的度数不是 4 就是 5, 则有以下四种情况:

- (1) 图 G 中有 7 个度数为 4 的顶点
- (2) 图 G 中有 5 个度数为 4 的顶点, 2 个度数为 5 的顶点
- (3) 图 G 中有 3 个度数为 4 的顶点, 4 个度数为 5 的顶点
- (4) 图 G 中有 1 个度数为 4 的顶点, 6 个度数为 5 的顶点

综上所述, G中至少有5个度数为4的顶点或至少有4个度数为5的顶点。:

例 3:设图 G有 n 个结点, n+1 条边。证明:图 G 中至少有一个结点度数≥3。

证明: 反证法: 假设图 G 中所有结点度数都小于 3

则图 G 中每个结点度数最大为 2, 图 G 所有结点度数总和最大为 2n, 所以图 G 的边数最大为 n, 这与已知条件矛盾,故假设不成立,即图 G 中至少有一个结点度数≥3

8.2 图的连通性★★

通路	对于简单图来说,只使用顶点序列即可表示一条通路。通路 $\Gamma=v_{i_0},v_{i_1},,v_{i_n}$ 的长度
	为 n 。 若 Γ 的 所有边均不相同 , 则 Γ 称为 简单通路 。当简单通路的 起点与终点相同
	时, Γ 称为 简单回路 。若简单通路 Γ 的所有 顶点不同 (除起点和终点可能相同外),
	则 Γ 称为 初级通路或路径 。若初级通路的起点与终点相同时,称为 初级回路 。
定理	若无向图 G =< V,E > 中每个顶点的度数至少为 2,则 G 包含一条初级回路。
	\mid 设 $G=< V, E>$, $\mid V\mid =n$,若从顶点 u 到 v $(u\neq v)$ 存在通路,则从 u 到 v 必存在长度
	小于或等于 n-1的一条通路。
连通图	在无向图 G中,顶点 u和 v之间若存在通路,则称顶点 u和顶点 v是连通的。若图 G
	中任何两个不同顶点都是连通的,则称 G 为 连通图, 否则称 G 为 不连通图 。

例:根据图 8.5,举出通路、回路、简单通路、初级回路等例子。解:在图 8.5 所示的图中,通路:a,d,e,b,a,e,f,c,b,f,c,d是长度为 11 的通路,但不是简单通路,因为边(f,c)出现两次;a,b,e,d是长度为 3 的通路,且是简单通路;回路:b,c,f,e,b,f,e,b是长度为 7 的回路,但不是简单回路,因为其中含有重复的边;简单通路:a,d,c,f,e是长度为 4 的简单通路,也是初级通路;初级回路:b,c,f,e,b是长度为 4 的初级回路。

图 8.5 图中的通路

8.3 图的表示★★★

邻接矩阵	设图 G =< V,E > , V = $\{v_1, v_2,, v_n\}$,则 n 阶方阵 M = (a_{ij}) 称为 G 的 邻接矩阵 ,其
	中, \mathbf{a}_{ij} 为图 \mathbf{G} 中从 \mathbf{v}_i 到 \mathbf{v}_j 的 边的数目 。
计算	由邻接矩阵可以计算任意两顶点之间的通路数目。
	对于布尔矩阵 M , 定义它的幂 $M^2 = M \times M$,其中 "×" 是矩阵乘法。 $M^k = M \times M^{k-1}(k > 1)$ 。
	$\bigcup \mathcal{M} \otimes \mathbb{R}_n$ 个顶点的简单图 G 的邻接矩阵 $\mathcal{M}^k = \left(m_{ij}^{(k)}\right) \otimes \mathbb{R}_n \otimes \mathbb{R}_n$ 则在 \mathcal{M}^k 中的 $\left(m_{ij}^{(k)}\right)$
	等于顶点 v _i 和 v _j 之间长度为 k 的 通路的数目 。

例 1: 在图 8.5 (上页中) 所示的图中, 顶点 a 到顶点 d 之间长度为 3 的通路有多少条?解: 先写出图 8.5 的邻接矩阵 M:

$$\mathbf{M} = \begin{pmatrix} 0 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 & 0 \end{pmatrix}; \quad \mathbf{H} \stackrel{\mathbf{M}}{=} \mathbf{M}^{2} \stackrel{\mathbf{M}}{=} \mathbf{M}^{3} : \mathbf{M}^{2} = \begin{pmatrix} 3 & 1 & 2 & 1 & 2 & 2 \\ 1 & 4 & 1 & 3 & 2 & 2 \\ 2 & 1 & 3 & 0 & 3 & 1 \\ 1 & 3 & 0 & 3 & 1 & 2 \\ 2 & 2 & 3 & 1 & 4 & 1 \\ 2 & 2 & 1 & 2 & 1 & 3 \end{pmatrix}; \quad \mathbf{M}^{3} = \begin{pmatrix} 4 & 9 & 4 & 7 & 7 & 5 \\ 9 & 6 & 9 & 4 & 10 & 7 \\ 4 & 9 & 2 & 8 & 4 & 7 \\ 7 & 4 & 8 & 2 & 9 & 4 \\ 7 & 10 & 4 & 9 & 6 & 9 \\ 5 & 7 & 7 & 4 & 9 & 4 \end{pmatrix}$$

顶点 a 到顶点 d 之间长度为 3 的通路数= $M^3[1][4]=7$,即满足要求的通路有 7 条,分别是: a, b, a, d; a, e, a, d; a, d, a, d; a, b, e, d; a, b, e, d; a, d, c, d; a, d, e, d。

例 2: 设图 G 如下图所示: (1) 写出图 G 的邻接矩阵 M。

(2) G中长为 4 的路有几条? 其中有几条回路?

由邻接矩阵可知 G 中长为 4 路有 1+2+1+2+1+1+1+1+1+1+2+1=15 条。回路有 1+1+1=3 条

第9章 图的应用

9.1 欧拉图与哈密顿图★★

欧拉图	在连通图 G 中,经过 G 中 每条边一次且仅一次 的通路,称为 欧拉通路 或欧拉路;
	若欧拉通路为回路,则称为 欧拉回路 。具有欧拉回路的图称为 欧拉图 ,含有欧拉通
	路但没有欧拉回路的图称为半欧拉图。
定理	无向连通图 G 是 欧拉图 的充分必要条件是 G 是连通的且 无奇点。
	无向图 G 具有一条 欧拉通路 的充分必要条件是 G 是连通的且恰有 两个奇点 。
哈密顿图	给定无向图 G , 若存在一条路 L , 经过图中 每个顶点一次且仅一次 , 则 L 称为哈密
	顿路,简称为 H -路;若存在一条 回路 C,经过图中的每个顶点一次且仅一次,C 称
	作 哈密顿回路 ,简称为 H - 回路。 具有哈密顿回路的图称作 哈密顿图 ,简称为 H - 图。
	判断:含有度为1的顶点的图必不是哈密顿图。
定理	简单图 G 具有 n 个顶点 , 若 G 中每一对顶点度数之和≥ n-1 , 则 G 有一条哈密顿路。

例: 今有 a, b, c, d, e, f, g 7 人, 已知下列事实: a 会讲德语; b 会讲法语和德语; c 会讲俄语和英语; d 会讲日语和汉语; e 会讲德语和汉语; f 会讲法语、日语和俄语; g 会讲英语和汉语。试问: 这 7 人应如何排座位(按圆桌排), 才能使每个人和他身边的人交谈?

解:若两人有共同语言,在两人之间画一条边,则可得到如下连通图 G 将这7人圆桌排座位,使得每个人都能和他身边的人交谈,就是在图 G中 找哈密顿回路。

经观察,图G中有两条哈密顿回路: abfcgdea和 aedgcfba

9.2 平面图★

平面图	若图 G 能画在平面 s 上,且 G 的边仅在端点处相交,称图 G 为可嵌入平面 s , G 称
	为平面图。平面图的子图都是平面图 , 非平面图的母图都是非平面图
欧拉公式	设有一个连通平面图 G, 共有 n 个顶点和 m 条边, 其平面表示中共有 r 个面,则
	n-m+r=2成立。例:某连通平面图有6个顶点,其平面表示中共有8个面,则其
	边有(12)条。解: 6+8-2=12

9.3 树及其遍历★★

树	一个连通且无回路的无向图称为树,也称为自由树。①任何树都是简单图;②树中
	度数为1 的结点称为 叶结点 ,度数大于1的结点称为 分支点 。③一个无回路的无向
	图称为森林,若它的每个连通子图都是树。
定理 9.12	给定图T ,有n个结点,则下列命题是等价的。
	① T 是树;② T 无回路,且 T 的任何两个顶点间有唯一一条路;
	③ T 无回路, 且有 n - 1条边; ④ T 是连通的, 且有 n - 1条边;
	⑤ T 是连通的,但删去任何一条边后便不再连通;
	⑥ T 无回路,但增加任何一条边,将得到唯一的一个回路。
	设 $G = \langle V, E \rangle$ 是无向连通图,若 G 的生成子图 T 是一棵树,则称 T 是 G 的生成树,
生成树	也称为支撑树。G在T中的边称为T的树枝,G不在T中的边称为T的弦。所有弦
	的集合及其导出的子图称为 G 的余树。
例:要从完全图K ₅ 中得到一棵生成树,需要删除的边数为(6)解:5×(5-1)÷2-(5-1)=6	
定理 9.13	若树中结点个数 n ≥ 2 ,则树中至少含有两个叶结点。
	设 G 有 n 个顶点, e 条边, w 个连通分量,则 G 为森林的充要条件是 e = n - w。
定义 9.12	若一棵 有向树 恰有一个结点的入度为0,其余所有结点的入度均为1,则称该有向
	树为 有根树 。入度为0的结点称为树的根,出度为0的结点称为 叶结点 或叶子,出
	度不为 0 的结点称为根树分支点或内点。
权	设图 G =< V,E > , 对 ∀e ∈ E , 指定一个数值 w , 称为边 e 的权。这样的图称为带
	权图 , 记作 G =< V, E, W > , 其中 W 是所有边的权组成的有限集。
最小生成	设无向连通带权图 G =< V, E, W > , T 是 G 的一棵生成树, T 的各边权值之和称为
树	带权图,记作W(T)。G的所有生成树中权值最小的生成树称为最小生成树。
Kruskal	首先构造一个只含 n 个顶点的森林, 然后依权值从小到大从连通网中选择边加入到
算法	森林中,并使森林中不产生回路,直至森林变成一棵树为止。
71 14	

某城市拟在六个城区之间架设有线电视网, 其网点间的距离如下列的 无向有权图矩阵给出, 试给出架设线路的最优方案, 请画出图, 并计算出最优方案下线路的长度。

解: 首先画出邻接矩阵对应的无向有权图:

用 Kruskal 算法求最小生成树:

- ①添加所有顶点②添加权值为 1 的边(v1, v6); **6
- ③添加权值为 2 的边 (v3, v6)
- ④添加权值为 3 的边(v1, v2);
- ⑤添加权值为 5 的边 (v3, v4)
- ⑥添加权值为7的边(v3, v5)。
- 最优线路如最小生成树所示,最优线路长度为1+2+3+5+7=18

