VISEDU-SIMULA 1.0: VISUALIZADOR DE MATERIAL EDUCACIONAL, MÓDULO DE ANIMAÇÃO COMPORTAMENTAL

Gustavo Rufino Feltrin Orientador: Dalton Solano dos Reis

FURB - Universidade Regional de Blumenau DSC - Departamento de Sistemas e Computação Grupo de Pesquisa em Computação Gráfica, Processamento de Imagens e Entretenimento Digital www.inf.furb.br/gcg

Roteiro

- Introdução
- Objetivos
- Fundamentação Teórica
- Trabalhos Correlatos
- Requisitos / Especificação
- Implementação
- Resultados e Discussões
- Conclusão / Extensões

Introdução

- Animação Comportamental
 - Pesquisas
 - Entretenimento
 - Creatures (Redes Neurais)
 - The Sims (Seres Humanos Virtuais)
- Simulador
 - Ambiente
 - Regras
 - Personagens

Objetivos

Criar um simulador 2D para geração de Animações Comportamentais

- Estender o projeto VisEdu-Engine para permitir criar Animações Comportamentais
- Proporcionar controle mínimo da percepção, do raciocínio e da atuação do personagem de forma desacoplada da inteligência utilizada
- Utilizar um modelo clássico de Inteligência Artificial (reativo, rede neural, sistema especialista, Belief—Desire—Intention (BDI), entre outros) para poder testar o simulador

Fundamentação Teórica

- Animação Comportamental
- Simuladores Jogos
- HTML5 e Javascript
- Trabalhos Correlatos

Animação Comportamental

- Percepção
- Raciocínio
- Atuação

Percepção

- Reconhecimento
- Informações
- Sensores

Raciocínio

- Crenças
- Fatos
- Aceita verdades

- Aufere conclusões
- Hipóteses
 - Próprias
 - Alheias

Atuação

- Comportamento
- Resposta
- Estimulo externo

Plataforma Jason

- Modelo BDI
- Linguagem AgentSpeak
- Interpretador

Simuladores – Jogos

- Estudos de Von Neumann e Ulan
 - Análise ou técnica de Monte Carlo

- Características de Jogos
 - ambiente aberto/fechado
 - possui personagens
 - qualidades gráficas

Jogos sérios

- Utilizam tecnologias de jogos
- Propósito Profissional
 - treinamentos
 - obtenção de dados
 - simulações de fenômenos
- Não entretenimento
 - e-learning
 - simulação militar
 - treinamento médico

HTML5 e Javascript

- HTML5
 - Conteúdo
 - Aplicações complexas para web
 - Especificação finalizada
 - WebSocket
- Javascript
 - Linguagem para Web
 - Curva de aprendizagem baixa
 - Comportamento

Trabalhos Correlatos

- Unity 3D
- Mattedi (2007)
- Massive

- Motor de Jogos (2D, 3D)
- Multiplataforma (implantação)
- Asset Store
 - Repositório de recursos
 - Com/sem custo
 - Explora uso de Inteligência Artificial

Mattedi (2007)

- Aperfeiçoamento de Reações Comportamentais de Non-Player Character (NPC) no Jogo Doom
- Percepção do ambiente
- Instinto de Autopreservação

MASSIVE

- Multiple Agent Simulation System In Virtual Environment (MASSIVE)
- Simulador de Multiagentes
- Número de agentes ilimitados

Batalha dos campos de Pelennor (O Senhor do Anéis – O Retorno do Rei)

Requisito Funcional

- Adicionar funcionalidades que permitam gerar Animações Comportamentais para os personagens
 - percepção do ambiente
 - raciocínio baseado nas percepções
 - execução da ação determinada pelo raciocínio

Requisitos Não Funcionais

- Ser desenvolvido de forma fortemente desacoplada
- Proporcionar o controle mínimo da percepção, do raciocínio e da atuação do personagem
- Utilizar a plataforma Jason (modelo BDI) no desenvolvimento de um "Raciocinador" que proporcione raciocínio para os personagens
- Ser compatível com os mesmos navegadores que o Motor de Jogos desenvolvido por Harbs (2013)
- Estender o Motor de Jogos utilizando HTML5 e Javascript
- Desenvolver um "Raciocinador" utilizando a linguagem Java e a plataforma Jason

Especificação

- Diagramas de Caso de Uso
- Diagramas de Pacote
- Diagrama Sequência
- Diagrama da Arquitetura

Diagrama de casos de uso do Motor de Jogos

Classes criadas ou que sofreram alterações dispostas em seus pacotes do Motor de Jogos

Diagrama de casos de uso do Editor de Jogos

Classes criadas ou que sofreram alteração dispostas em seus pacotes do Editor de Jogos

Diagrama de casos de uso do Raciocinador

Diagrama de pacotes do Raciocinador

Implementação

- Técnicas
 - Orientação a Agentes
 - Orientação a Componentes
 - Orientação a Objetos
- Linguagens
 - AgentSpeak
 - HTML5
 - Java 7
 - Javascript
- Biblioteca
 - Jason
- Servidores de aplicação
 - Apache Tomcat
 - JBoss

- Ferramentas
 - Eclipse IDE for Java EE Developers
 - Sublime Text 2
- Plugins
 - Jasonide
 - JBoss Tools
- Navegadores
 - Google Chrome 38
 - Internet Explorer 11
 - Mozilla Firefox 33
 - Opera 25

Implementação

- Módulo de Animação Comportamental
 - Raciocinador
 - Motor de Jogos
 - Editor de Jogos


```
@WebServlet("/jason")
 2 public class ReasonerJasonServlet extends WebSocketServlet {
 3
 4
      private static final long serialVersionUID = 1L;
 5
      protected StreamInbound createWebSocketInbound(String
 6
 7
                      subProtocol, HttpServletRequest request) {
 8
          String agent = request.getParameter("agent");
 9
          String assetsDir = request.getParameter("assetsDir");
10
          String aslDir = null;
11
          if (!assetsDir.contains("html5-2d-game-editor")) {
12
             try {
13
                Log.info( String.format("Start download of"
14
                   + " \"%s\" @ %s", agent, assetsDir) );
15
                aslDir = downloadAgentMind(agent, assetsDir);
16
                Log.info( String.format("Download complete of"
                    + " \"%s\" @ %s", agent, assetsDir) );
17
             } catch (IOException e) {
18
19
                Log.err( String.format("Download error. File:"
20
                   + " \"%s\" @ %s", agent, assetsDir) );
21
                e.printStackTrace();
22
             }
23
24
          return new ReasonerJasonWebSocket ( agent, aslDir );
25
26
27
      private static String downloadAgentMind(String name, String dir)
28
                                                       throws IOException {
29
          File tmpAsl = File.createTempFile(name, ".asl");
30
          URL urlFile = new URL( String.format("%s%s.asl", dir,
31
                                     name));
32
          ReadableByteChannel rbc =
33
                Channels.newChannel(urlFile.openStream());
34
          FileOutputStream fos = new FileOutputStream( tmpAsl );
35
          fos.getChannel().transferFrom(rbc, 0, Long.MAX VALUE);
36
         return tmpAsl.getAbsolutePath();
37
38
39
```

```
@WebServlet("/jason")
 2 public class ReasonerJasonServlet extends WebSocketServlet {
 3
 4
      private static final long serialVersionUID = 1L;
 5
 6
      protected StreamInbound createWebSocketInbound(String
                      subProtocol, HttpServletRequest request)
 8
          String agent = request.getParameter("agent");
 9
          String assetsDir = request.getParameter("assetsDir");
10
          String aslDir = null;
11
          if ( !assetsDir.contains( "html5-2d-game-editor" ) ) {
12
             try {
13
                Log.info( String.format("Start download of"
14
                   + " \"%s\" @ %s", agent, assetsDir) );
15
                aslDir = downloadAgentMind(agent, assetsDir);
16
                Log.info( String.format("Download complete of"
                    + " \"%s\" @ %s", agent, assetsDir) );
17
18
             } catch (IOException e) {
19
                Log.err( String.format("Download error. File:"
20
                   + " \"%s\" @ %s", agent, assetsDir) );
21
                e.printStackTrace();
22
23
24
          return new ReasonerJasonWebSocket ( agent, aslDir );
25
26
27
      private static String downloadAgentMind(String name, String dir)
28
                                                       throws IOException {
29
          File tmpAsl = File.createTempFile(name, ".asl");
          URL urlFile = new URL( String.format("%s%s.asl", dir,
30
31
                                     name));
32
          ReadableByteChannel rbc =
33
                Channels.newChannel(urlFile.openStream());
34
          FileOutputStream fos = new FileOutputStream( tmpAsl );
35
          fos.getChannel().transferFrom(rbc, 0, Long.MAX VALUE);
36
          return tmpAsl.getAbsolutePath();
37
38
39
```

```
@WebServlet("/jason")
 2 public class ReasonerJasonServlet extends WebSocketServlet {
 4
       private static final long serialVersionUID = 1L;
 5
       protected StreamInbound createWebSocketInbound(String
 6
 7
                      subProtocol, HttpServletRequest request) {
 8
          String agent = request.getParameter("agent");
 9
          String assetsDir = request.getParameter("assetsDir");
10
          String aslDir = null;
11
          if (!assetsDir.contains("html5-2d-game-editor")) {
12
             try {
                Log.info( String.format("Start download of"
13
14
                   + " \"%s\" @ %s", agent, assetsDir) );
15
                aslDir = downloadAgentMind(agent, assetsDir);
                Log.info( String.format("Download complete of"
16
                    + " \"%s\" @ %s", agent, assetsDir) );
17
             } catch (IOException e) {
18
19
                Log.err( String.format("Download error. File:"
20
                   + " \"%s\" @ %s", agent, assetsDir) );
21
                e.printStackTrace();
22
23
24
          return new ReasonerJasonWebSocket( agent, aslDir );
25
26
27
       private static String downloadAgentMind(String name, String dir)
28
                                                       throws IOException {
29
          File tmpAsl = File.createTempFile(name, ".asl");
30
          URL urlFile = new URL( String.format("%s%s.asl", dir,
31
                                     name));
32
          ReadableByteChannel rbc =
33
                Channels.newChannel(urlFile.openStream());
34
          FileOutputStream fos = new FileOutputStream( tmpAsl );
35
          fos.getChannel().transferFrom(rbc, 0, Long.MAX VALUE);
36
          return tmpAsl.getAbsolutePath();
37
38 }
39
```

```
5
       private JSONObject json;
 6
       private Agente ag;
 8
       public ReasonerJasonWebSocket(String agentName, String aslDir) {
          Log.info("new Agent: " + agentName + " @ " + aslDir);
10
          ag = new Agente (agentName, aslDir, this);
11
12
13
       @Override
14
       protected void onTextMessage (CharBuffer msg) throws IOException {
15
          Log.info("onTextMessage: " + msg);
16
17
          if ( HAND SHAKE.equalsIgnoreCase(msg.toString()) ) {
18
             sendMessage (HAND SHAKE);
19
            return:
20
21
22
          json = new JSONObject(msg.toString());
          String sPerceptions = (String) json.get("perceptions");
23
24
          JSONArray ja = new JSONArray(sPerceptions);
25
26
         List<Literal> perceptions = new ArrayList<Literal>();
27
          for (int i = 0; i < ja.length(); i++) {
28
             perceptions.add( Literal.parseLiteral(
29
                             ja.getString(i) ) );
30
31
          ag.configureAgent();
32
          ag.setPerceptions(perceptions);
33
          ag.run();
34
```

```
6
       private Agente ag;
8
       public ReasonerJasonWebSocket(String agentName, String aslDir)
          Log.info("new Agent: " + agentName + " @ " + aslDir);
10
          ag = new Agente (agentName, aslDir, this);
11
12
13
       @Override
14
      protected void onTextMessage (CharBuffer msg) throws IOException {
15
          Log.info("onTextMessage: " + msg);
16
17
          if ( HAND SHAKE.equalsIgnoreCase(msg.toString()) ) {
18
             sendMessage (HAND SHAKE);
19
             return:
20
21
22
          json = new JSONObject(msg.toString());
          String sPerceptions = (String) json.get("perceptions");
23
24
          JSONArray ja = new JSONArray(sPerceptions);
25
26
         List<Literal> perceptions = new ArrayList<Literal>();
          for (int i = 0; i < ja.length(); i++) {
27
28
             perceptions.add( Literal.parseLiteral(
29
                            ja.getString(i) ) );
30
31
          ag.configureAgent();
32
          ag.setPerceptions(perceptions);
33
          ag.run();
34
```

5

private JSONObject json;

```
5
       private JSONObject json;
 6
       private Agente ag;
 8
       public ReasonerJasonWebSocket(String agentName, String aslDir) {
          Log.info("new Agent: " + agentName + " @ " + aslDir);
10
          ag = new Agente (agentName, aslDir, this);
11
12
13
       @Override
14
       protected void onTextMessage (CharBuffer msg) throws IOException {
15
          Log.info("onTextMessage: " + msg);
16
17
         if ( HAND SHAKE.equalsIgnoreCase(msg.toString()) ) {
18
             sendMessage (HAND SHAKE);
19
            return:
20
21
22
          json = new JSONObject(msg.toString());
23
          String sPerceptions = (String) json.get("perceptions");
24
          JSONArray ja = new JSONArray(sPerceptions);
25
26
         List<Literal> perceptions = new ArrayList<Literal>();
27
          for (int i = 0; i < ja.length(); i++) {
28
             perceptions.add( Literal.parseLiteral(
29
                            ja.getString(i) ) );
30
31
          ag.configureAgent();
32
          ag.setPerceptions(perceptions);
33
          ag.run();
34
```

```
5
       private JSONObject json;
 6
       private Agente ag;
 8
       public ReasonerJasonWebSocket(String agentName, String aslDir) {
          Log.info("new Agent: " + agentName + " @ " + aslDir);
10
          ag = new Agente (agentName, aslDir, this);
11
12
13
       @Override
14
       protected void onTextMessage (CharBuffer msg) throws IOException {
15
          Log.info("onTextMessage: " + msg);
16
17
          if ( HAND SHAKE.equalsIgnoreCase(msg.toString()) ) {
18
             sendMessage (HAND SHAKE);
19
             return:
20
21
22
          json = new JSONObject(msg.toString());
23
          String sPerceptions = (String) json.get("perceptions");
          JSONArray ja = new JSONArray(sPerceptions);
24
25
26
          List<Literal> perceptions = new ArrayList<Literal>();
          for (int i = 0; i < ja.length(); i++) {
27
28
             perceptions.add( Literal.parseLiteral(
29
                             ja.getString(i) ) );
30
31
          ag.configureAgent();
32
          ag.setPerceptions(perceptions);
33
          ag.run();
34
```

```
6
       private Agente ag;
 8
       public ReasonerJasonWebSocket(String agentName, String aslDir) {
          Log.info("new Agent: " + agentName + " @ " + aslDir);
10
          ag = new Agente (agentName, aslDir, this);
11
12
13
       @Override
14
       protected void onTextMessage (CharBuffer msg) throws IOException {
15
          Log.info("onTextMessage: " + msg);
16
17
          if ( HAND SHAKE.equalsIgnoreCase(msg.toString()) ) {
18
             sendMessage (HAND SHAKE);
19
             return:
20
21
22
          json = new JSONObject(msg.toString());
23
          String sPerceptions = (String) json.get("perceptions");
24
          JSONArray ja = new JSONArray(sPerceptions);
25
26
          List<Literal> perceptions = new ArrayList<Literal>();
27
          for (int i = 0; i < ja.length(); i++) {
28
             perceptions.add( Literal.parseLiteral(
29
                             ja.getString(i) ) );
30
31
          ag.configureAgent();
32
          ag.setPerceptions(perceptions);
33
          ag.run();
34
```

5

private JSONObject json;

```
5
       private JSONObject json;
 6
       private Agente ag;
 7
 8
       public ReasonerJasonWebSocket(String agentName, String aslDir) {
          Log.info("new Agent: " + agentName + " @ " + aslDir);
10
           ag = new Agente (agentName, aslDir, this);
11
12
13
       @Override
14
       protected void onTextMessage (CharBuffer msg) throws IOException {
15
          Log.info("onTextMessage: " + msg);
16
17
          if ( HAND SHAKE.equalsIgnoreCase(msg.toString()) ) {
18
              sendMessage (HAND SHAKE);
19
              return:
20
21
 22
           json = new JSONObject(msg.toString());
23
           String sPerceptions = (String) json.get("perceptions");
24
           JSONArray ja = new JSONArray(sPerceptions);
 25
26
          List<Literal> perceptions = new ArrayList<Literal>();
           for (int i = 0; i < ja.length(); i++) {
27
28
             perceptions.add( Literal.parseLiteral(
29
                             ja.getString(i) ) );
30
31
           ag.configureAgent();
32
           ag.setPerceptions(perceptions);
33
           ag.run();
34
```

Jason determinando ação para a simulação

```
1 @Override
2 public void act(ActionExec action, List<ActionExec> feedback) {
3    showInfo("Agent " + getAgName() + ": doing: " +
4         action.getActionTerm());
5    getWs().sendMessage( action.getActionTerm().toString() );
6    action.setResult(true);
7    feedback.add(action);
8 }
```

Mente reativa implementada em AgentSpeak

```
1 +onPercept(C)
2 <- changeMyFillStyle(C).</pre>
```


Evento para disparo da percepção

```
Component.js ×

220 */
227 Component.prototype.onPercept = function(gameObject){}
```

Loop do jogo com o pipeline de percepção

```
Game.js
          this.gameLoop = function(){
              var deltaTime = (Date.now() - this.lastUpdateTime) / 1000;
117
              if(!Game.paused){
118
                  this.updateGame(deltaTime);
119
120
                  this.stepGame();
121
                  this.perceptGame();
122
                  this.renderGame();
123
124
              this.lastUpdateTime = Date.now();
125
```


Evento para disparo da percepção

```
Component.js ×

220 */
227 Component.prototype.onPercept = function(gameObject){}
```

Loop do jogo com o pipeline de percepção

```
Game.js
          this.gameLoop = function(){
               var deltaTime = (Date.now() - this.lastUpdateTime) / 1000;
117
               if(!Game.paused){
118
                   this.updateGame(deltaTime);
119
120
                   this.stepGame();
121
                   this.perceptGame();
                   this.renderGame();
122
123
              this.lastUpdateTime = Date.now();
124
125
```


Resultados e Discussões

- Arquitetura desenvolvida
- Limitação
- Testes de desempenho
- Trabalhos correlatos

Arquitetura desenvolvida

Limitações

Internet Explorer – Seis conexões

• Editor de Jogos - download asset .asl.

Testes de desempenho

Testes de desempenho

Quantidade de quadros por segundo (FPS) de uma mesma simulação com e sem a presença de raciocínio

Comparativo com correlatos

Característica	Unity 3D	Mattedi	Massive	VisEdu-Simula
Proporciona Animação Comportamental	X*	X	X	X
Desacoplado do modelo de IA	X	12		X
Controle da percepção, raciocínio e ação	120	X	X	X
Utiliza Modelo Clássico de IA	X	X	X	X
Desenvolvido com HTML5 e JavaScript	1-	7.	-	X
Disponível para acesso Web	-	-		X
Permite criar comportamento imprevisível	X*	12	X*	X
Eficiência com grandes quantidades de agentes	2	25	X	2
Interação com o ambiente	X*	X	X	X
Tipos variados de mente	X*		X	X

^{*} Características não propriamente identificadas, porém acredita-se que os correlatos as tenham.

Conclusões

- Atendendo os requisitos o Módulo de Animação Comportamental cumpre os objetivos propostos
- O Motor de Jogos possui dois pontos positivos
 - Orientação a componentes
 - Coesão da estrutura
- O Editor de Jogos possui um ponte negativo
 - Usabilidade
- Plataforma Jason flexível e escalável
- Modelo mental desacoplado ao módulo desenvolvido

Extensões

- Criar mentes Jason mais elaboradas e de capacidades distintas
- Utilizar outras técnicas de IA
- Resolver problemática do Internet Explorer (subdomínios)
- Evitar cálculos de colisão dos sensores
- Utilizar Web Workers para propagação das percepções
- Identificar término de colisão (para uso da percepção) através da Box2DJS
- Estudar formas de campos de visão para novos sentidos
- Evitar colisão do agente com o próprio sensor
- Viabilizar download de assets quando executados pelo Editor de Jogos

Demonstração

Obrigado!

Mensagem enviada pela simulação para o Raciocinador

```
1 {
2    "origin": "1d252436-04b8-4756-b1fd-510d11ea15fe",
3    "target": "467de1a7-a811-4bb2-9ccd-c86003b9408a",
4    "perceptions": "[\"onPercept(\\\"#673dd7\\\")\"]"
5 }
```

Mensagem enviada pelo Raciocinador para a simulação

```
1 {
2    "origin": "1d252436-04b8-4756-b1fd-510d11ea15fe",
3    "target": "467de1a7-a811-4bb2-9ccd-c86003b9408a",
4    "perceptions": "[\"onPercept(\\\"#673dd7\\\")\"]",
5    "action": "changeMyFillStyle(\"#673dd7\")"
6  }
```


