

INFORME VI: COMPORTAMIENTO DEL COMPRESOR RECIPROCO

Por:

Franco Araya Saavedra

Profesores:

Cristóbal Galleguillos

Tomas Herrera

Escuela de ingeniería Mecánica

Pontificia Universidad Católica de Valparaíso

2020

Índice de contenido

Índice de contenido	2
Índice de gráficos	3
1 Introducción	4
1.1 objetivos Generales	4
1.1.1 Objetivos específicos	4
2 Trabajo en Laboratorio	4
3 Valores obtenidos experimentalmente y cálculos	5
3.1 Capacidad o caudal de aire libre	5
3.2 Calculo de Cilindrada	6
3.3 3.3 Presión de descarga y absorción de los cilindros	7
5 Graficas	
5 Conclusión	9
6 Anexo	10

Índice de gráficos

Tabla 1: Datos obtenidos de la experiencia de laboratorio	5
Tabla 2: Caudal de aire libre medido en m3/h	6
Tabla 3: Cilindrada en m3 por presión	
Tabla 4: Calculo de variables del Laboratorio	7
Tabla 5: Presiones de descarga y absorción	7
Gráfico 1: Rendimiento en función de la presión	8
Gráfico 1: Temperaturas de descarga y absorción	
Gráfico 1: Potencias y corrientes del compresor	9

1 introducción

En el presente informe se trabajará con un compresor Reciproco para su análisis de funcionamiento y los cálculos prácticos para su comparación con las medidas de fabricación del mismo.

1.1 Objetivo general

Analizar el comportamiento del compresor recíproco sometido a distintas condiciones de operación.

1.1.1 Objetivos específicos

 Analizar y graficar las distintas variables a estudiar para su comparación con los datos de fabricación otorgados.

2 Trabajo en laboratorio

Para el trabajo en laboratorio se debe seguir los siguientes pasos:

- Instalar y preparar los instrumentos para medir: temperaturas, potencia indicada y eléctrica, tensión y corriente, flujos de aire y agua.
- Poner en marcha el compresor y esperar un tiempo para que se estabilice su operación.

Con la presión manométrica de descarga nominal, 7 [kp/cm2], tome las siguientes mediciones:

- Presión de descarga, [kp/cm2].
- Velocidad del compresor, [rpm].
- Temperatura de aspiración y de descarga de ambos cilindros, [□C].
- Diagramas indicados para cada cilindro.
- Temperatura del estanque de baja presión, [□C].
- Presión en el estanque de baja presión, [cmca].
- Temperaturas de entrada y salida del agua de refrigeración, $[\Box C]$.
- Tiempo en llenarse el recipiente de volumen conocido, [s].
- Tensión y corriente eléctrica, [V] y [A] respectivamente.
- Potencia eléctrica, método de los dos Wattmetros, [kW].

Se vuelve a repetir las mediciones para presiones de 6,5,4,3,2, y 1[kp/cm³] Respectivamente

3 Valores obtenidos experimentalmente y cálculos

Hecho el trabajo en laboratorio para la obtención de datos, se obtiene la siguiente tabla de valores experimentales medidos.

	DATOS MEDIDOS																	
	Compresor							Estanque de Agua de refrigeración			Motor Eléctrico							
	Presión	Velocid		Tempe	eratura		baja p	resión	Tempe	eratura	tiempo	Tensión	(Corriente	S	Pote	encia	
	Pd	n	tecbp	tsebp	tecap	tecap	tebp	ΔΡ	tea	tsa	10	V	I1	12	13	W1	W2	Patm.
	[kp/cm2]	[rpm]	[°C]	[°C]	[°C]	[°C]	[°C]	[mmca]	[°C]	[°C]	[s]	[V]	[A]	[A]	[A]	[kW]	[kW]	[mmHg]
1	7,0	499,3	23	48	27	89	39	514	18	26,5	78	375	17,2	15,9	16	6,53	3,28	760,1
2	6,0	498,7	23	49	27	87	40	544	18,5	26,5	75	375	16,5	15,3	15,4	6,53	3,06	760,1
3	4,9	500,8	23	49	27	77	41	532	18,5	26,5	77	376	15,2	13,9	13,8	5,73	2,7	760,1
4	3,9	503,0	23	50	27	67	40	552	18,5	26,5	76	376	14,1	13,2	13,1	5,33	2,6	760,1
5	2,8	503,4	24	56	27	56	39	562	18,5	26,5	76	376	13,2	12,6	12,1	5	2,4	760,1
6	1,8	505,2	24	56	27	42	37	576	18,5	26,5	74	376	11,9	11,4	11	4,69	2,12	760,1
7	1,0	507,0	23	54	27	31	39	584	18,5	26,5	77	376	10,4	9,9	9,5	4,1	1,64	760,1

TABLA 1 DATOS OBTENIDOS DE LA EXPERIENCIA EN LABORATORIO

3.1 Capacidad o caudal de aire libre

Para el cálculo del caudal de aire libre medido en [m³/h] debemos resolver la siguiente ecuación:

$$V = 8.62 * a * S * T_a * \sqrt{\frac{H}{T*Pa}}$$

De donde sabemos que:

A = 0,600 coeficiente de caudal del diafragma

S=sección del orificio del diafragma en [cm2] =3.8[cm³]

Ta= temperatura absoluta de aspiración del compresor [K]=Tamb

T= Temperatura absoluta del estanque de baja presión [K]=Tebp

H= presión en el manómetro diferencial [cm agua]

Pa: presión barométrica [cm agua]

Para las consideraciones necesarias de las fórmulas planteadas, se hace la conversión directa de unidades en el Excel, por lo cual los resultados están convertidos en las unidades solicitadas.

Dada esta fórmula se calcula el Valor del Caudal de aire libre sin corregir las condiciones iniciales dadas por el fabricante, obtendremos la siguiente tabla:

TABLA 2 CAUDAL DE AIRE LIBRE MEDIDO EN [M3/H]

P.Des	Caudal	Veloc.
$p_{ m d}$	V	n
[bar]	[m3/h]	[rpm]
7,0	72,23151	499,3
6,0	74,31820	498,7
4,9	73,37688	500,8
3,9	74,86267	503,0
2,8	75,65863	503,4
1,8	76,84176	505,2
1,0	77,12527	507,0

3.2 Calculo de Cilindrada

Para el calculo de cilindrada debemos considerar los siguientes parámetros:

$$Cl = 14 * \pi * D_{CBP}^{2} * L$$

En donde:

• Cl: Cilindrada [m3]

• DCBP: Diámetro cilindro de baja presión [m]

• L: Carrera [m]

De ello tenemos que la cilindrada por cada caso será:

presión	Dia. de cilindro	Carrera	Cl
7,0	0,17000	0,13	0,003
6,0	0,17000	0,13	0,003
4,9	0,17000	0,13	0,003
3,9	0,17000	0,13	0,003
2,8	0,17000	0,13	0,003
1,8	0,17000	0,13	0,003
1,0	0,17000	0,13	0,003

TABLA 3CILINDRADA EN M3 POR PRESIÓN

Para los siguientes cálculos se resumirá en una tabla de valores calculados en la cual se especificará las variables medidas:

TABLA 4 CALCULO DE VARIABLES DEL LABORATORIO

Presión	Cilindr	desplaz	Capaci	R.V.R	R.V.C	RVCI		Potencia	Corr. M	Pot. El	Caudal	Calor transf.
Pd	Cl	DI	٧	ηr	ηVC	ηVCI	Pmi	NiCXP	I	NElec	Vagua	Q
[kp/cm2]	[m3]	m3/min	[m3/h]	%	%	%	[kp/cm2]	[kW]	[A]	[kW]	[l/min]	[A]
7,0	0,003	1,47	72,232	81,711	83,6361	86,092	2,359	0,139	16,37	9,81	461,5	16372734000
6,0	0,003	1,47	74,318	84,173	83,6361	87,145	2,041	0,111	15,73	9,59	480,0	16026017280
4,9	0,003	1,48	73,377	82,758	83,6361	88,066	2,252	0,107	14,30	8,43	467,5	15609757091
3,9	0,003	1,48	74,863	84,065	83,6361	86,880	2,147	0,085	13,47	7,93	473,7	15815148632
2,8	0,003	1,49	75,659	84,891	83,6361	87,890	2,224	0,063	12,63	7,4	473,7	15815148632
1,8	0,003	1,49	76,842	85,912	83,6361	87,941	2,157	0,033	11,43	6,81	486,5	16242585081
1,0	0,003	1,50	77,125	85,922	83,6361	90,557	2,002	0,011	9,93	5,74	467,5	15609757091

De donde

R.V. R=rendimiento volumétrico real

R.V.C= Rendimiento volumétrico convencional

R.C.V. I=Rendimiento volumétrico convencional indicado

3.3 Presión de descarga y absorción de los cilindros:

Dado los gráficos medidos del indicador de diagrama instalado en el compresor estudiado, se puede hacer el calculo de presiones de descarga y absorción con las dimensiones que este nos arroja (Ver anexo A). Dado estos valores se calcula las presiones de ambos cilindros de la siguiente manera:

$$PA = \frac{\textit{Altura1*largo de la carrera}}{\textit{cte del resorte}} \big[\frac{\textit{kp}}{\textit{cm}^2} \big]$$

$$Pd = \frac{\textit{Altura2*largo de la carrera}}{\textit{cte del resorte}} \big[\frac{\textit{kp}}{\textit{cm}^2} \big]$$

De esta forma se obtienen los siguientes valores:

presión	PDA	PDA PAA PDB		PAB							
[KP/CM2]											
7,0	8,7	2,5	4,5	0							
6,0	7,68	1,92	4,2	0							
4,9	6,23	1,54	3,92	0							
3,9	4,93	1,82	3,88	0							
2,8	3,41	1,3	4,3	0							
1,8	2,42	1,7	4	0							
1,0	1,41	1,11	3,47	0							

TABLA 5 PRESIONES DE DESCARGA Y ABSORCIÓN

4 Graficas comparativas:

Gráfico de Rendimientos:

GRAFICA **1** RENDIMIENTO EN FUNCION DE LA PRESION

Grafica de temperaturas:

GRAFICA **2T**EMPERATURAS DE DESCARGA Y **A**BSORCIÓN

GRAFICA 3 POTENCIAS Y CORRIENTE DEL COMPRESOR

5 Conclusiones

Dado los resultados obtenidos en la experiencia de laboratorio con el compresor reciproco de la Escuela, se puede concluir que, dado los años de funcionamiento, los parámetros tienen gran variación dentro de sus valores generales con los esperado y que, por esta condición existe cierta perdida en la funcionalidad de este.

Dentro de los aspectos importantes a considerar es que el mismo compresor ha sufrido problemas anteriores que han complicado su funcionamiento óptimo, que aun dados estos acontecimientos su funcionamiento es bueno dentro de los parámetros de estudio.

Por último, es importante recordar que las condiciones ambientales no eran las optimas para conseguir con mayor precisión los datos y dado la falta de estandarización posterior de los cálculos, los valores pueden tener una variación propia del medio en el cual se trabajó.

6 Anexo A

Gráficos Indicados, extraídos de los cilindros al momento de las mediciones

