PCT WELTORGANISATION FÜR GEISTIGES EIGENTUM Internationales Büro
INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

| HILLIAN III CON HINNER III                                                                                                                                                                                                                |                  |                                                                                                                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (51) Internationale Patentklassifikation 6:                                                                                                                                                                                               |                  | (11) Internationale Veröffentlichungsnummer: WO 98/34482                                                                                                                                  |
| A01N 47/36                                                                                                                                                                                                                                | A1               | (43) Internationales Veröffentlichungsdatum: 13. August 1998 (13.08.98)                                                                                                                   |
| (21) Internationales Aktenzelchen: PCT/EP  (22) Internationales Anmeldedatum: 4. Februar 1998 (                                                                                                                                           |                  | EE, GE, HU, ID, IL, JP, KR, KZ, LT, LV, MD, MX, NO, NZ, PL, RO, RU, SG, SI, SK, TM, TR, UA, US, UZ, curasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ,                                   |
| (30) Prioritätsdaten:<br>197 04 276.7 5. Februar 1997 (05.02.97)                                                                                                                                                                          | I                | TM), europäisches Patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).                                                                                            |
| (71) Anmelder (für alle Bestimmungsstaaten ausser US): B TIENGESELLSCHAFT [DE/DE]; D-67056 Ludv (DE).                                                                                                                                     | ASF A<br>wigshat | Veröffentlicht  K-  Mit internationalem Recherchenbericht.  vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist. Veröffentlichung wird wiederholt falls Änderungen eintreffen. |
| (72) Erfinder; und (75) Erfinder/Anmelder (nur für US): BRATZ, Matthias Sachsenweg 10, D-67117 Limburgerhof (DE). Karl-Friedrich [DE/DE]; Weinbietstrasse 18, Limburgerhof (DE). BERGHAUS, Rainer Rotkehlchenweg 25, D-67346 Speyer (DE). | JĀGE<br>D-671    | ER,   17                                                                                                                                                                                  |
| (74) Gemeinsamer Vertreter: BASF AKTIENGESELL. D-67056 Ludwigshafen (DE).                                                                                                                                                                 | SCHAI            | ₹T;                                                                                                                                                                                       |
|                                                                                                                                                                                                                                           |                  |                                                                                                                                                                                           |
| (54) Title: SULPHONYLUREA AND/ADJUVANT BAS                                                                                                                                                                                                | SED SO           | DLID MIXTURES                                                                                                                                                                             |
|                                                                                                                                                                                                                                           |                  | VON SULFONYLHARNSTOFFEN UND ADJUVANTIEN                                                                                                                                                   |
| (57) Abstract                                                                                                                                                                                                                             |                  |                                                                                                                                                                                           |
| The invention relates to solid mixtures containing containing sulphate or sulphonate.                                                                                                                                                     | a) an            | active substance from the group of sulphonylureas and b) a surfactant                                                                                                                     |
| (57) Zusammenfassung                                                                                                                                                                                                                      |                  |                                                                                                                                                                                           |
| Feste Mischungen, enthaltend a) einen Wirkstoff a Tensid.                                                                                                                                                                                 | aus der          | Gruppe der Sulfonylhamstoffe, und b) ein sulfat- oder sulfonathaltiges                                                                                                                    |
|                                                                                                                                                                                                                                           | •                |                                                                                                                                                                                           |
|                                                                                                                                                                                                                                           |                  | ·                                                                                                                                                                                         |
|                                                                                                                                                                                                                                           |                  | •                                                                                                                                                                                         |
|                                                                                                                                                                                                                                           |                  | ·                                                                                                                                                                                         |
| }                                                                                                                                                                                                                                         |                  |                                                                                                                                                                                           |

# LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

| AL | Albanien                     | ES   | Spanien                     | LS | Lesotho                     | SI | Slowenien              |
|----|------------------------------|------|-----------------------------|----|-----------------------------|----|------------------------|
| AM | Armenica                     | FI   | Finnland                    | LT | Litauen                     | SK | Slowakei               |
| ΔT | Österreich                   | FR   | Frankreich                  | LU | Luxemburg                   | SN | Senega)                |
| AU | Australien                   | GA   | Gabun                       | LV | Lettland                    | SZ | Swasiland              |
| AZ | Aserbaidschan                | GB   | Vereinigtes Königreich      | MC | Monaco                      | TD | Tschad                 |
| BA | Bosnien-Herzegowina          | GE   | Georgien                    | MD | Republik Moldau             | TG | Togo                   |
| BB | Barbados                     | GH   | Ghana                       | MG | Madagaskar                  | TJ | Tedschikistan          |
| BR | Belgien                      | GN   | Guinea                      | MK | Die ehemalige jugoslawische | TM | Turkmen istan          |
| BF | Burkina Faso                 | GR   | Griechenland                |    | Republik Mazedonien         | TR | Türkei                 |
| BG | Bulgarien                    | HU   | Ungam                       | ML | Mali                        | TT | Trinidad und Tobago    |
| BJ | Benin                        | LE   | frland                      | MN | Mongolei                    | UA | Ukraine                |
| BR | Brasilien                    | IL.  | Israel                      | MR | Mauretanien                 | UG | Uganda                 |
| BY | Belarus                      | IS . | Island                      | MW | Malawi                      | US | Vereinigte Staaten von |
| CA | Kanada                       | · IT | Italien                     | MX | Mexiko                      |    | Amerika                |
| CF | Zentralafrikanische Republik | JP   | Japan                       | NB | Niger                       | U2 | Usbekistan             |
| CG | Kongo                        | KE   | Kenia                       | NL | Niederlande                 | VN | Vietnam                |
| CH | Schweiz                      | KG   | Kirgisistan                 | NO | Norwegen                    | YU | Jugoslawien            |
| CI | Côte d'Ivoire                | KP   | Demokratische Volksrepublik | NZ | Neusceland                  | ZW | Zimbabwe               |
| CM | Kamerun                      |      | Korea                       | PL | Polen                       |    |                        |
| CN | China                        | KR   | Republik Korea              | PT | Portugal                    |    |                        |
| CU | Kuba                         | KZ   | Kasachstan                  | RO | Rumanica                    |    |                        |
| CZ | Tschechische Republik        | LC   | St. Lucia                   | RU | Russische Föderation        |    |                        |
| DB | Deutschland                  | LI   | Liechtenstein               | SD | Sudan                       |    |                        |
| DK | Dänemark                     | LK   | Sri Lanka                   | SB | Schweden                    |    |                        |
| EB | Estland                      | LR   | Liberia                     | SG | Singapur                    |    |                        |

Feste Mischungen auf der Basis von Sulfonylharnstoffen und Adjuvantien

### 5 Beschreibung

Die vorliegende Erfindung betrifft feste Mischungen auf der Basis von Sulfonylharnstoffen und Adjuvantien.

10 Sulfonylharnstoffe (im folgenden mit "SU" bezeichnet) sind eine Gruppe von hochaktiven Herbiziden, die in weiten Bereichen des Pflanzenschutzes Anwendung finden.

Bedingt durch den Mechanismus der Wirkstoffaufnahme über das
15 Blatt kann die Wirkung von SU durch Zusatz oberflächenaktiver
Stoffe wie Netzmittel zur Spritzbrühe verbessert werden (vgl.
Green et al., ANPP, Seizieme conference du columa – Journees internationales sur la lutte contre les mauvaises herbes 1995,
S. 469-474; "DPX-KG 691 – A new surfactant for sulfonyl urea herbicides").

In der Literatur werden als geeignete Netzmittel u.a. Öl-Adjuvantien (Nalejewa et al., Weed Technol. 1995, 9, S. 689-695) oder Alkoholethoxylate (s.o. sowie Dunne et al., Weed Science 1994,

- 25 42, S. 82-85; Green, Weed Technol. 1993, 7, S. 633-640) als besonders geeignet beschrieben. Diese Stoffe werden in der landwirtschaftlichen Praxis als Tank-Mix-Additive vom Landwirt der Spritzbrühe zugesetzt. Dabei wird die Mischung aus SU-Herbizid und oberflächenaktivem Stoff erst kurz vor der Anwendung im 30 Spritztank hergestellt.
- Kommerziell erhältlich ist z.B. ein Doppelpack mit dem Handelsnamen CATO® (Du Pont de Nemours), welcher aus einem 25 %igen
  wasserdispergierbaren Granulat des Wirkstoffs Rimsulfuron (Kompo35 nente A) und einem separat abgepackten Netzmittel (Komponente B)
  bestehend aus einer Mischung aus 2-Butoxyethanol, polyethoxyliertem Tallowamin und Nonylphenylpolyethylenglykolether besteht. Zur
  Anwendung werden beide Komponenten wie oben beschrieben im
  Spritztank gemischt.

In der Praxis wäre es wünschenswert, Fertigformulierungen einsetzen zu können, in denen ein wirkungssteigerndes Netzmittel bereits enthalten ist, um die problematische Mischung unmittelbar vor der Anwendung zu vermeiden. Auf diese Weise könnten logistische Probleme und Mischungsfehler beim Ansetzen der Spritzbrühe vermieden werden. Ferner sind Festformulierungen generell

2

aus anwendungstechnischer Sicht bei der Gestaltung und Entsorgung der Verpackungen vorteilhaft.

Aus der Literatur ist weiterhin bekannt, daß Formulierungen, die 5 Sulfonylharnstoffe enthalten, bezüglich der Stabilität der Wirkstoffe problematisch sind, da der Wirkstoff sich unter ungünstigen Bedingungen im Lauf der Zeit zersetzen kann. Die gewünschte herbizide Wirkung ist dann nicht mehr gegeben. Die Tendenz zur Zersetzung ist auch hinsichtlich der Registrierungsanforderungen problematisch, da bei der Registrierung bestimmte Mindestanforderungen an die Stabilität von PS-Wirkstoffen in Formulierungen gestellt werden.

In der JP-A 62/084004 wird die Verwendung von Calciumcarbonat und 15 Natrium-tripolyphosphat zur Stabilisierung von SU-haltigen Formulierungen beschrieben.

Die JP-A 63/023806 beschreibt eine Problemlösung durch Verwendung spezieller Trägerstoffe und Pflanzenöle zur Herstellung fester

20 SU-haltiger Formulierungen. Die JP-A 08/104603 beschreibt ähnliche Effekte bei der Verwendung von epoxydierten natürlichen Ölen. Beide vorstehend genannten Anmeldungen haben als gemeinsames Merkmal die Inkorporation von Pflanzenölen in der Festformulierung, um neben einer verbesserten Stabilität die wirkungssteigernden Effekte dieser als Adjuvantien wirksamen Stoffe zu nutzen.

Bei der Einarbeitung von Pflanzenölen in flüssige Formulierungen (in der Regel Suspensionskonzentrate) werden ähnliche Effekte 30 ausgenutzt (vgl. EP-A 313317 und EP-A 554015).

Aus dem Stand der Technik ist auch bekannt, daß sulfat- oder sulfonathaltige Tenside als Netzmittel/Adjuvantien verwendet werden können.

In der EP-A 378 895 und der WO92/12637 sind sulfat- oder sulfonathaltige Tenside mit dem Wirkstoff N-Phosphono-Methylglycin in Feststoffformulierungen beschrieben.

40 In der EP-A 413 267 wird die Verwendung von sulfat- oder sulfonathaltigen Tensiden mit den Wirkstoffen Glufosinate-Ammonium und Fenoxaprop-Ethyl beschrieben.

3

Aufgabe der vorliegenden Erfindung war es daher, Festformulierungen mit Sulfonylharnstoffen als Wirkstoffen zur Verfügung zu stellen, die Adjuvantien bereits in der Festformulierung enthalten und bisher bekannten Festformulierungen überlegen sind.

Diese Aufgabe wird erfindungsgemäß durch feste Mischungen gelöst, die enthalten

a) einen Sulfonylharnstoff und

10

b) ein Adjuvant aus der Gruppe der sulfat- oder sulfonathaltigen Tenside.

Überraschenderweise wurde gefunden, daß bei Verwendung von sul15 fat- oder sulfonathaltigen Tensiden als Netzmittel in SU-haltigen
Feststoffformulierungen eine ausgeprägte Stabilisierung des Wirkstoffs im Vergleich zu anderen Netzmitteln (z.B. ethoxylierten
Fettaminen oder Alkoholethoxylaten) auftritt. Dieser Effekt ist
vor allem dann zu beobachten, wenn neben herbiziden Wirkstoffen
20 wasserlösliche anorganische Salze wie Ammoniumsulfat oder Kaliumsulfat vorhanden sind. Besonders deutlich wird die Stabilisierung
wenn das Netzmittel in der für die biologische Wirkung erforderlichen Konzentration eingesetzt wird.

- 25 Durch Mischung der SU mit anderen Wirkstoffen, sulfat- oder sulfonathaltigen Tensiden und Ammoniumsulfat lassen sich lagerstabile Fertigformulierungen mit guter biologischer Wirkung erhalten.
- 30 Weiterhin wurden Verfahren zur Herstellung der erfindungsgemäßen festen Mischungen gefunden sowie deren Verwendung als Pflanzenschutzmittel zur Bekämpfung unerwünschter Schadpflanzen.

Als Sulfonylharnstoff a) kommen generell Verbindungen mit der 35 Struktureinheit



40

in Betracht.

Bevorzugt werden SU der folgenden Strukturen I:

wobei J folgende Bedeutung hat:

wobei die Substituenten R bis  $R^{18}$  folgende Bedeutung haben:

R: H oder CH3;

R<sup>1</sup>: F, Cl, Br, NO<sub>2</sub>, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Haloalkyl, C<sub>3</sub>-C<sub>4</sub>-Cycloalkyl, C<sub>2</sub>-C<sub>4</sub> Haloalkenyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy, C<sub>1</sub>-C<sub>4</sub>-Haloalkoxy, C<sub>2</sub>-C<sub>4</sub>-Alkoxyalkoxy, CO<sub>2</sub>R<sup>12</sup>, C(0)NR<sup>13</sup>R<sup>14</sup>, SO<sub>2</sub>NR<sup>15</sup>R<sup>16</sup>, S(0)<sub>n</sub>R<sup>17</sup>, C(0)R<sup>18</sup>, CH<sub>2</sub>CN oder L;

R2: H, F, C1, Br, CN, CH3, OCH3, SCH3, CF3 oder OCF2H;

10 R<sup>3</sup>: C1, NO<sub>2</sub>, CO<sub>2</sub>CH<sub>3</sub>, CO<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>, SO<sub>2</sub>N(CH<sub>3</sub>)<sub>2</sub>, SO<sub>2</sub>CH<sub>3</sub>, SO<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>, OCH<sub>3</sub>, or OCH<sub>2</sub>CH<sub>3</sub>;

R4:  $C_1-C_3$ -Alkyl,  $C_1-C_4$ -Haloalkyl,  $C_1-C_4$ -Alkoxy,  $C_2-C_4$ -Haloalkenyl, F, C1, Br, NO<sub>2</sub>, CO<sub>2</sub>R<sup>12</sup>, C(O)NR<sup>13</sup>R<sup>14</sup>, SO<sub>2</sub>NR<sup>15</sup>R<sup>16</sup>, S(O)<sub>n</sub>R<sup>17</sup>, C(O)R<sup>18</sup> or L;

R5: H, F, C1, Br oder CH3;

R<sup>6</sup>: C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy, C<sub>2</sub>-C<sub>4</sub>-Haloalkenyl, F, Cl, Br, CO<sub>2</sub>R<sup>12</sup>, C(O)NR<sup>13</sup>R<sup>14</sup>, SO<sub>2</sub>NR<sup>15</sup>R<sup>16</sup>, S(O)<sub>n</sub>R<sup>17</sup>, C(O)R<sup>18</sup> or L;

R7: H, F, C1, CH3 oder CF3;

R8: H, C1-C4-Alkyl oder Pyridyl;

25

15

R<sup>9</sup>: ist C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy, F, Cl, Br, NO<sub>2</sub>, CO<sub>2</sub>R<sup>12</sup>,  $SO_2NR^{15}R^{16}$ ,  $S(O)_nR^{17}$ , OCF<sub>2</sub>H, C(O)R<sup>18</sup>, C<sub>2</sub>-C<sub>4</sub>-Haloalkenyl oder L;

 $R^{10}$ : H, Cl, F, Br,  $C_1$ - $C_4$ -Alkyl or  $C_1$ - $C_4$ -Alkoxy;

R<sup>11</sup>: H, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Alkoxy, C<sub>2</sub>-C<sub>4</sub>-Alkoxy; Haloalkenyl, F, Cl, Br,  $CO_2R^{12}$  C(O)NR<sup>13</sup>R<sup>14</sup>,  $SO_2NR^{15}R^{16}$ , S(O)<sub>n</sub>R<sup>17</sup>, C(O)R<sup>18</sup> oder L;

 $R^{12}$ :  $C_1$ - $C_4$ -Alkyl, ggf. substituiert durch Halogen,  $C_1$ - $C_4$ -Alkoxy or CN, Allyl oder Propargyl;

 $R^{13}$ : H,  $C_1 \cdot C_4 \cdot Alkyl$  oder  $C_1 \cdot C_4 \cdot Alkoxy$ ;

R14: C1-C4-Alky1;

40

R15: H, C1-C4-Alkyl, C1-C4-Alkoxy, Allyl oder Cyclopropyl;

R16: H oder C1-C4-Alkyl;

45 R17: C1-C4-Alkyl, C1-C4 Haloalkyl, Allyl oder Propargyl;

6

R<sup>18</sup>: C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Haloalkyl or C<sub>3</sub>-C<sub>5</sub>-Cycloalkyl, ggf. substituiert durch Halogen;

n 0,1 oder 2 ist;

5

L die Struktur II

10

$$\begin{array}{c|c} N & & R_j \\ \hline | & | & \\ N & & N \end{array} \tag{II)}$$

hat, wobei

15

R<sub>1</sub>: H oder C<sub>1</sub>-C<sub>3</sub> Alkyl;

W: O oder S;

- 20 X: H,  $C_1$ - $C_4$ -Alkyl,  $C_1$ - $C_4$ -Alkoxy,  $C_1$ - $C_4$ -Haloalkoxy,  $C_1$ - $C_4$ -Haloalkylthio,  $C_1$ - $C_4$ -Alkylthio, Halogen,  $C_2$ - $C_5$ -Alkoxyalkyl,  $C_2$ - $C_5$ -Alkoxyalkoxy, Amino,  $C_1$ - $C_3$ -Alkylamino oder Di( $C_1$ - $C_3$  alkyl)-Amino;
- 30 C<sub>1</sub>-C<sub>4</sub>-Haloalkyl, C<sub>2</sub>-C<sub>4</sub>-Alkenyl, C<sub>3</sub>-C<sub>5</sub>-Cycloalkyl, Azido, Fluor oder Cyano;
  - Z: CH oder N; ist,
- 35 und deren landwirtschaftlich brauchbaren Salze.

Nachstehend seien einige geeignete SU mit ihrem INN (International Nonproprietary Name) gemäß Pesticide Manual erwähnt:

40 ACC 322140;

Amidosulfuron;

Azimsulfuron (N-[[(4,6-dimethoxy-2-pyrimidinyl)amino]-carbonyl]-1-methyl-4- (2-methyl-2H-tetrazol-5-yl)-1H-pyra-zol-5-sulfonamid);

```
Bensulfuron-methyl (Methyl 2-[[[[[(4,6-dimethoxy-2-pyrimidinyl)-
  amino] -carbonyl] amino] sulfonyl] methyl] benzoat);
Ethyl 2-[[[(4-chloro-6-methoxy-2-pyrimidinyl)-amino]car-
  bonyl]amino]sulfonyl]benzoat(Chlorimuron ethyl);
5 2-Chloro-N-[[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)amino]car-
  bonyl|benzolsulfonamid(Chlorsulfuron);
  Chlorsulfoxim;
  Cinosulfuron;
   Cyclosulfamuron;
10 Ethametsulfuron-methyl (Methyl 2-[[[[[4-ethoxy-6-(methyl-
   amino) -1,3,5-triazin-2-yl] amino] carbonyl] amino] sulfonyl] -
   benzoat);
   Ethoxysulfuron;
   Flazasulfuron;
15 Flupyrsulfuron (Methyl 2-[[[[(4,6-dimethoxy-2-pyrimidinyl)-
   amino] -carbonyl] amino] sulfonyl] -6-(trifluormethyl) -3-pyridin-
   carboxylat);
   Halosulfuron-methyl ;
   Imazosulfuron;
20 Methyl 2-[[[{(4-methoxy-6-methyl-1,3,5-triazin-2-yl)amino]car-
   bonyl]amino]sulfonyl]benzoat(Metsulfuron methyl);
   Nicosulfuron (2-[[[[(4,6-dimethoxy-2-pyrimidinyl)amino]-car-
   bony1] amino] sulfony1] -N, N-dimethy1-3-pyridincarboxamid);
   Oxasulfuron;
25 Primisulfuron (Methyl 2-[[[[[4,6-bis(difluormethoxy)-2-pyrimi-
   dinyl]amino]carbonyl]amino]sulfonyl]benzoat);
  Prosulfuron;
   Pyrazosulfuron-ethyl (Ethyl 5-[[[(4,6-dimethoxy-2-pyrimidinyl)-
   amino] -carbonyl] amino] sulfonyl] -1-methyl-1H-pyrazol-4-carboxy-
30 lat);
   Rimsulfuron (N-[[(4,6-dimethoxy-2-pyrimidinyla-
   mino]carbony1]-3-(ethylsulfony1)-2-pyridinsulfonamid);
   Sulfosulfuron;
   Sulfometuron-methyl (Methyl 2-[[[((4,6-dimethyl-2-pyrimidinyl)-
35 amino] -carbonyl] amino] sulfonyl] benzoat();
  Thifensulfuron-methyl (Methyl-3-[[[[(4-methoxy-6-methyl-
   1,3,5-triazin-2-yl)amino]carbonyl]amino]sulfonyl]-2-thiophen-
   carboxylat);
    2-(2-Chlorethoxy)-N-{{(4-methoxy-6-methyl-1,3,5-triazin-2-yl)-
40 amino)carbonyl)benzolsulfonamid (Triasulfuron);
   Tribenuron-methyl (Methyl 2-[[[N-(4-methoxy-6-methyl-1,3,5-tri-
    azin-2-y1)-N-methylamino]carbonyl]amino]sulfonyl]benzoat);
   und
    Triflusulfuron-methyl (Methyl 2-[[[[[4-(dimethylamino)-6-
45 (2,2,2-trifluoroethoxy)-1,3,5-triazin-2-yl]amino]-carbonyl]-
    amino]sulfonyl]-3-methylbenzoat);
```

Besonders bevorzugt sind Sulfonylharnstoffe der allgemeinen Formel III (entspricht der Formel I mit  $J=J_1$ ), wie sie z.B aus der EP-A 388 873, der EP-A 559 814, der EP-A 291 851 und der EP-A 446 743 bekannt sind :

5

10

wobei die Substituenten folgende Bedeutung haben:

R<sup>1</sup> C<sub>1</sub>-C<sub>4</sub>-Alkyl, das eine bis fünf der folgenden Gruppen tragen kann: Methoxy, Ethoxy, SO<sub>2</sub>CH<sub>3</sub>, Cyano, Chlor, Fluor, SCH<sub>3</sub>, S(O)CH<sub>3</sub>;

Halogen;

eine Gruppe ER19, in der E O, S oder NR20 bedeutet;

20

COOR12;

NO2;

25  $S(0)_{n}R^{17}$ ,  $SO_{2}NR^{15}R^{16}$ ,  $CONR^{13}R^{14}$ ;

R<sup>2</sup> Wasserstoff, Methyl, Halogen, Methoxy, Nitro, Cyano, Trifluormethyl, Trifluormethoxy, Difluormethoxy oder Methylthio,

30 y F, CF<sub>3</sub>, CF<sub>2</sub>Cl, CF<sub>2</sub>H, OCF<sub>3</sub>, OCF<sub>2</sub>Cl, C<sub>1</sub>-C<sub>4</sub>-Alkyl oder  $C_1$ -C<sub>4</sub>-Alkoxy;

X  $C_1-C_2-Alkoxy$ ,  $C_1-C_2-Alkyl$ ,  $C_1-C_2-Alkyl$ thio,  $C_1-C_2-Alkyl$ amino,  $Di-C_1-C_2-Alkyl$ amino, Halogen,  $C_1-C_2-Halogen$ alkyl,

35 C<sub>1</sub>-C<sub>2</sub>-Halogenalkoxy,

R Wasserstoff oder Methyl;

R<sup>19</sup> C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>2</sub>-C<sub>4</sub>-Alkenyl, C<sub>2</sub>-C<sub>4</sub>-Alkinyl oder C<sub>3</sub>-C<sub>6</sub>Cycloalkyl, welche 1 bis 5 Halogenatome tragen können. Ferner bedeutet R<sup>19</sup> im Falle, daß E für O oder NR<sup>20</sup> steht, noch Methylsulfonyl, Ethylsulfonyl, Trifluormethylsulfonyl, Allylsulfonyl, Propargylsulfonyl oder Dimethylsulfamoyl;

45 R<sup>20</sup> Wasserstoff, Methyl oder Ethyl

 $R^{12}$  eine  $C_1-C_4-Alkylgruppe$ , welche bis zu drei der folgenden Reste tragen kann: Halogen,  $C_1-C_4-Alkoxy$ , Allyl oder Propargyl;

- $R^{17}$  eine  $C_1$ - $C_4$ -Alkylgruppe, welche einen bis drei der folgenden Reste tragen kann: Halogen,  $C_1$ - $C_4$ -Alkoxy, Allyl oder Propargyl;
  - R<sup>15</sup> Wasserstoff, eine C<sub>1</sub>-C<sub>2</sub>-Alkoxygruppe oder eine C<sub>1</sub>-C<sub>4</sub>-Alkyl-gruppe;

10

- R16 Wasserstoff oder eine C1-C4-Alkylgruppe,
- n 1 oder 2

15 Z N, CH

Insbesondere bevorzugte Sulfonylharnstoffe der Formel III sind solche der allgemeinen Formel I, in denen J für  $J_1$  steht und die restlichen Substituenten die folgende Bedeutung haben :

20

- R<sup>1</sup>  $CO_2CH_3$ ,  $CO_2C_2H_5$ ,  $CO_2iC_3H_7$ ,  $CF_3$ ,  $CF_2H$ ;  $OSO_2CH_3$ ,  $OSO_2N(CH_3)_2$ , C1,  $NO_2$ ,  $SO_2N(CH_3)_2$ ,  $SO_2CH_3$  und  $N(CH_3)SO_2CH_3$ ,
- R2 Wasserstoff, Cl, F oder C1-C2-Alkyl,

25

- Y CF<sub>2</sub>H, OCF<sub>3</sub>, OCF<sub>2</sub>Cl, CF<sub>2</sub>Cl, CF<sub>3</sub> oder F,
- $\rm X$  OCH<sub>3</sub>, OC<sub>2</sub>H<sub>5</sub>, OCF<sub>3</sub>, OCF<sub>2</sub>Cl; CF<sub>3</sub>, Cl, F, NH(CH<sub>3</sub>), N(CH<sub>3</sub>)<sub>2</sub> oder C<sub>1</sub>-C<sub>2</sub>-Alkyl,

30

- R5 Wasserstoff, und
- Z N oder CH.
- 35 Ganz besonders bevorzugte Verbindungen der Formel III sind in der folgenden Tabelle zusammengestellt.

Tabelle

40

|     |      |                                                     | 10             |     |                     |                  |    |
|-----|------|-----------------------------------------------------|----------------|-----|---------------------|------------------|----|
|     | Nr.  | R <sup>1</sup>                                      | R <sup>2</sup> | R   | Y                   | х                | Z  |
|     | 1    | CO <sub>2</sub> CH <sub>3</sub>                     | Н              | Н   | OCF <sub>2</sub> C1 | OCH <sub>3</sub> | СН |
|     | 2    | CO <sub>2</sub> C <sub>2</sub> H <sub>5</sub>       | н              | Н   | OCF <sub>2</sub> C1 | OCH <sub>3</sub> | СН |
| 5   | 3    | CO2iC3H7                                            | н              | Н   | OCF <sub>2</sub> C1 | OCH <sub>3</sub> | СН |
|     | 4    | NO <sub>2</sub>                                     | Н              | H   | OCF <sub>2</sub> C1 | OCH <sub>3</sub> | СН |
| 1   | 5    | SO <sub>2</sub> CH <sub>3</sub>                     | Н              | Н   | OCF <sub>2</sub> Cl | OCH <sub>3</sub> | СН |
| 10  | 6    | SO <sub>2</sub> N (CH <sub>3</sub> ) <sub>2</sub>   | н              | Н   | OCF <sub>2</sub> Cl | ОСH <sub>3</sub> | СН |
| . [ | 7    | C1                                                  | н              | н   | OCF <sub>2</sub> Cl | осн3             | СН |
|     | 8    | N(CH <sub>3</sub> ) SO <sub>2</sub> CH <sub>3</sub> | н.             | н   | OCF <sub>2</sub> Cl | OCH <sub>3</sub> | СН |
|     | 9    | OSO <sub>2</sub> CH <sub>3</sub>                    | н              | н . | OCF <sub>2</sub> C1 | OCH <sub>3</sub> | СН |
| 15  | 10   | OSO <sub>2</sub> N(CH <sub>3</sub> ) <sub>2</sub>   | н              | н   | OCF <sub>2</sub> Cl | OCH <sub>3</sub> | СН |
|     | 11   | CF <sub>3</sub>                                     | н              | H   | OCF <sub>2</sub> Cl | OCH <sub>3</sub> | СН |
|     | 12   | CF <sub>2</sub> H                                   | н              | Н   | OCF <sub>2</sub> C1 | OCH <sub>3</sub> | СН |
| 20  | 13   | CO <sub>2</sub> CH <sub>3</sub>                     | Н              | н   | OCF <sub>3</sub>    | OCH <sub>3</sub> | СН |
|     | 14   | CO <sub>2</sub> C <sub>2</sub> H <sub>5</sub>       | н              | н   | OCF3                | OCH <sub>3</sub> | СН |
|     | 15   | CO2iC3H7                                            | Н              | H   | OCF3                | OCH <sub>3</sub> | СН |
| 2-  | 16   | NO <sub>2</sub>                                     | H              | Н   | OCF <sub>3</sub>    | OCH <sub>3</sub> | СН |
| 25  | 17   | SO <sub>2</sub> CH <sub>3</sub>                     | н              | Н   | OCF3                | OCH <sub>3</sub> | СН |
|     | 18   | SO <sub>2</sub> N (CH <sub>3</sub> ) <sub>2</sub>   | н              | н   | OCF <sub>3</sub>    | OCH <sub>3</sub> | СН |
|     | 19   | Cl                                                  | н              | Н   | OCF3                | OCH3             | СН |
| 30  | 20   | N(CH <sub>3</sub> )SO <sub>2</sub> CH <sub>3</sub>  | Н              | Н   | OCF <sub>3</sub>    | OCH <sub>3</sub> | СН |
|     | 21   | OSO <sub>2</sub> CH <sub>3</sub>                    | н              | н   | OCF <sub>3</sub>    | OCH <sub>3</sub> | СН |
|     | 22   | OSO <sub>2</sub> N (CH <sub>3</sub> ) <sub>2</sub>  | н              | Н   | OCF <sub>3</sub>    | OCH <sub>3</sub> | СН |
| 35  | 23   | CF <sub>3</sub>                                     | Н              | Н   | OCF <sub>3</sub>    | OCH <sub>3</sub> | СН |
| 35  | 24   | CF <sub>2</sub> H                                   | Н              | Н   | OCF <sub>3</sub>    | OCH <sub>3</sub> | СН |
|     | 25   | CO <sub>2</sub> CH <sub>3</sub>                     | н              | н   | F                   | OCH <sub>3</sub> | СН |
|     | 26 . | ĊO <sub>2</sub> C <sub>2</sub> H <sub>5</sub>       | Н              | Н   | F                   | OCH <sub>3</sub> | СН |
| 40  | 27   | CO2iC3H7                                            | Н              | Н   | F                   | OCH <sub>3</sub> | СН |
|     | 28   | NO <sub>2</sub>                                     | н              | Н   | F                   | осн3             | СН |
|     | 29   | SO <sub>2</sub> CH <sub>3</sub>                     | Н              | Н   | F                   | ОСН3             | СН |
| 4-  | 30   | SO <sub>2</sub> N (CH <sub>3</sub> ) <sub>2</sub>   | н              | н   | F                   | OCH <sub>3</sub> | СН |
| 45  | 31   | Cl                                                  | н              | н   | F                   | OCH <sub>3</sub> | СН |
|     | 32   | N(CH <sub>3</sub> )SO <sub>2</sub> CH <sub>3</sub>  | Н              | Н   | F                   | OCH <sub>3</sub> | СН |

|    | -    |                                                    | 17             |     |                   |                  |    |
|----|------|----------------------------------------------------|----------------|-----|-------------------|------------------|----|
|    | Nr.  | R <sup>1</sup>                                     | R <sup>2</sup> | R   | Y                 | Х                | Z  |
|    | 33   | OSO <sub>2</sub> CH <sub>3</sub>                   | Н              | н   | F                 | OCH <sub>3</sub> | СН |
|    | 34   | OSO <sub>2</sub> N (CH <sub>3</sub> ) <sub>2</sub> | н              | н   | F                 | OCH <sub>3</sub> | СН |
| 5  | 35   | CF <sub>3</sub>                                    | н              | Н   | F                 | OCH <sub>3</sub> | СН |
|    | 36   | CF <sub>2</sub> H                                  | H              | H   | F                 | OCH <sub>3</sub> | СН |
|    | 37   | CO <sub>2</sub> CH <sub>3</sub>                    | н              | н   | CF3               | OCH <sub>3</sub> | N  |
| 10 | 38   | CO <sub>2</sub> C <sub>2</sub> H <sub>5</sub>      | Н              | н   | CF <sub>3</sub>   | OCH <sub>3</sub> | N  |
| Ţ  | 39   | CO <sub>2</sub> iC <sub>3</sub> H <sub>7</sub>     | Н              | н   | CF <sub>3</sub>   | OCH <sub>3</sub> | N  |
|    | 40   | NO <sub>2</sub>                                    | Н              | Н   | CF <sub>3</sub>   | OCH <sub>3</sub> | N  |
|    | 41   | SO <sub>2</sub> CH <sub>3</sub>                    | н              | Н   | CF <sub>3</sub>   | OCH <sub>3</sub> | N  |
| 15 | 42   | SO <sub>2</sub> N (CH <sub>3</sub> ) <sub>2</sub>  | Н              | H   | CF3               | OCH <sub>3</sub> | N  |
|    | 43   | C1                                                 | Н              | Н   | CF <sub>3</sub>   | OCH <sub>3</sub> | N  |
|    | 44   | N(CH <sub>3</sub> )SO <sub>2</sub> CH <sub>3</sub> | Н              | H   | CF <sub>3</sub>   | OCH <sub>3</sub> | N  |
| 20 | 45 · | OSO <sub>2</sub> CH <sub>3</sub>                   | н              | Н   | CF <sub>3</sub>   | OCH <sub>3</sub> | N  |
|    | 46   | OSO <sub>2</sub> N(CH <sub>3</sub> ) <sub>2</sub>  | н              | н   | CF <sub>3</sub>   | OCH <sub>3</sub> | N  |
|    | 47   | CF <sub>3</sub>                                    | Н              | Н   | CF <sub>3</sub>   | OCH <sub>3</sub> | N  |
| 25 | 48   | CF <sub>2</sub> H                                  | H .            | н   | CF3               | OCH <sub>3</sub> | N  |
| 25 | 49   | CO <sub>2</sub> CH <sub>3</sub>                    | н              | н   | CF <sub>3</sub>   | OCH <sub>3</sub> | СН |
|    | 50   | CO <sub>2</sub> C <sub>2</sub> H <sub>5</sub>      | Н              | Н   | CF <sub>3</sub>   | OCH <sub>3</sub> | СН |
|    | 51   | CO21C3H7                                           | Н              | н   | CF <sub>3</sub>   | OCH <sub>3</sub> | СН |
| 30 | 52   | NO <sub>2</sub>                                    | н              | н   | CF <sub>3</sub>   | OCH <sub>3</sub> | СН |
|    | 53   | SO <sub>2</sub> CH <sub>3</sub>                    | Н              | Н   | CF <sub>3</sub>   | OCH <sub>3</sub> | СН |
|    | 54   | SO <sub>2</sub> N (CH <sub>3</sub> ) <sub>2</sub>  | Н              | н . | CF <sub>3</sub>   | OCH <sub>3</sub> | СН |
| 35 | 55   | Cl                                                 | Н              | Н   | CF <sub>3</sub>   | OCH <sub>3</sub> | СН |
| 33 | 56   | N(CH <sub>3</sub> )SO <sub>2</sub> CH <sub>3</sub> | н              | Н   | CF <sub>3</sub>   | OCH <sub>3</sub> | СН |
| ·  | 57   | OSO <sub>2</sub> CH <sub>3</sub>                   | Н              | Н   | CF <sub>3</sub>   | OCH <sub>3</sub> | СН |
|    | 58   | OSO <sub>2</sub> N(CH <sub>3</sub> ) <sub>2</sub>  | Н              | Н   | CF <sub>3</sub>   | OCH <sub>3</sub> | СН |
| 40 | 59   | CF <sub>3</sub>                                    | H              | Н   | CF <sub>3</sub>   | OCH <sub>3</sub> | СН |
|    | 60   | CF₂H                                               | Н              | Н   | CF <sub>3</sub>   | OCH <sub>3</sub> | СН |
|    | 61   | CO <sub>2</sub> CH <sub>3</sub>                    | Н              | н   | CF <sub>2</sub> H | осн3             | N  |
| 45 | 62   | CO <sub>2</sub> C <sub>2</sub> H <sub>5</sub>      | Н              | Н   | CF <sub>2</sub> H | OCH <sub>3</sub> | N  |
| 43 | 63   | CO2iC3H7                                           | Н              | Н   | CF <sub>2</sub> H | OCH <sub>3</sub> | N  |
|    | 64   | NO <sub>2</sub>                                    | Н              | н   | CF <sub>2</sub> H | OCH <sub>3</sub> | N  |

| 65 SO <sub>2</sub> CH <sub>3</sub> H H CF <sub>2</sub> H OCH <sub>3</sub> 66 SO <sub>2</sub> N (CH <sub>3</sub> ) <sub>2</sub> H H H CF <sub>2</sub> H OCH <sub>3</sub> 67 C1 H H CF <sub>2</sub> H OCH <sub>3</sub> 68 N (CH <sub>3</sub> ) SO <sub>2</sub> CH <sub>3</sub> H H CF <sub>2</sub> H OCH <sub>3</sub> 69 OSO <sub>2</sub> CH <sub>3</sub> H H CF <sub>2</sub> H OCH <sub>3</sub> 70 OSO <sub>2</sub> N (CH <sub>3</sub> ) <sub>2</sub> H H CF <sub>2</sub> H OCH <sub>3</sub> 71 CF <sub>3</sub> H H CF <sub>2</sub> H OCH <sub>3</sub> 72 CF <sub>2</sub> H H H CF <sub>2</sub> H OCH <sub>3</sub> 73 CO <sub>2</sub> CH <sub>3</sub> H H CF <sub>2</sub> H OCH <sub>3</sub> 74 CO <sub>2</sub> C <sub>2</sub> HS H H CF <sub>2</sub> H OCH <sub>3</sub> 75 CO <sub>2</sub> iC <sub>3</sub> H <sub>7</sub> H H CF <sub>2</sub> H OCH <sub>3</sub> 76 NO <sub>2</sub> H H H CF <sub>2</sub> H OCH <sub>3</sub> 77 SO <sub>2</sub> CH <sub>3</sub> H H CF <sub>2</sub> H OCH <sub>3</sub> 78 SO <sub>2</sub> N (CH <sub>3</sub> ) <sub>2</sub> H H CF <sub>2</sub> H OCH <sub>3</sub> 79 C1 H H CF <sub>2</sub> H OCH <sub>3</sub>                        | Z N N N N N N N CH CH |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| 5 66 SO <sub>2</sub> N (CH <sub>3</sub> ) <sub>2</sub> H H H CF <sub>2</sub> H OCH <sub>3</sub> 67 C1 H H H CF <sub>2</sub> H OCH <sub>3</sub> 68 N (CH <sub>3</sub> ) SO <sub>2</sub> CH <sub>3</sub> H H CF <sub>2</sub> H OCH <sub>3</sub> 69 OSO <sub>2</sub> CH <sub>3</sub> H H CF <sub>2</sub> H OCH <sub>3</sub> 70 OSO <sub>2</sub> N (CH <sub>3</sub> ) <sub>2</sub> H H CF <sub>2</sub> H OCH <sub>3</sub> 71 CF <sub>3</sub> H H CF <sub>2</sub> H OCH <sub>3</sub> 72 CF <sub>2</sub> H H H CF <sub>2</sub> H OCH <sub>3</sub> 73 CO <sub>2</sub> CH <sub>3</sub> H H CF <sub>2</sub> H OCH <sub>3</sub> 74 CO <sub>2</sub> C <sub>2</sub> H5 H H CF <sub>2</sub> H OCH <sub>3</sub> 75 CO <sub>2</sub> iC <sub>3</sub> H <sub>7</sub> H H CF <sub>2</sub> H OCH <sub>3</sub> 76 NO <sub>2</sub> H H CF <sub>2</sub> H OCH <sub>3</sub> 77 SO <sub>2</sub> CH <sub>3</sub> H H CF <sub>2</sub> H OCH <sub>3</sub> 78 SO <sub>2</sub> N (CH <sub>3</sub> ) <sub>2</sub> H H CF <sub>2</sub> H OCH <sub>3</sub> 79 C1 H H CF <sub>2</sub> H OCH <sub>3</sub> 80 N (CH <sub>3</sub> ) SO <sub>2</sub> CH <sub>3</sub> H H CF <sub>2</sub> H OCH <sub>3</sub> | N N N N N N CH        |
| 5 67 C1 H H H CF <sub>2</sub> H OCH <sub>3</sub> 68 N(CH <sub>3</sub> ) SO <sub>2</sub> CH <sub>3</sub> H H CF <sub>2</sub> H OCH <sub>3</sub> 69 OSO <sub>2</sub> CH <sub>3</sub> H H CF <sub>2</sub> H OCH <sub>3</sub> 70 OSO <sub>2</sub> N(CH <sub>3</sub> ) <sub>2</sub> H H CF <sub>2</sub> H OCH <sub>3</sub> 71 CF <sub>3</sub> H H CF <sub>2</sub> H OCH <sub>3</sub> 72 CF <sub>2</sub> H H H CF <sub>2</sub> H OCH <sub>3</sub> 73 CO <sub>2</sub> CH <sub>3</sub> H H CF <sub>2</sub> H OCH <sub>3</sub> 74 CO <sub>2</sub> C <sub>2</sub> H5 H H CF <sub>2</sub> H OCH <sub>3</sub> 75 CO <sub>2</sub> iC <sub>3</sub> H <sub>7</sub> H H CF <sub>2</sub> H OCH <sub>3</sub> 76 NO <sub>2</sub> H H CF <sub>2</sub> H OCH <sub>3</sub> 77 SO <sub>2</sub> CH <sub>3</sub> H H CF <sub>2</sub> H OCH <sub>3</sub> 78 SO <sub>2</sub> N(CH <sub>3</sub> ) <sub>2</sub> H H CF <sub>2</sub> H OCH <sub>3</sub> 79 C1 H H CF <sub>2</sub> H OCH <sub>3</sub> 80 N(CH <sub>3</sub> ) SO <sub>2</sub> CH <sub>3</sub> H H CF <sub>2</sub> H OCH <sub>3</sub>                                                                                                   | N N N N N CH          |
| 67 C1 H H H CF <sub>2</sub> H OCH <sub>3</sub> 68 N(CH <sub>3</sub> ) SO <sub>2</sub> CH <sub>3</sub> H H H CF <sub>2</sub> H OCH <sub>3</sub> 69 OSO <sub>2</sub> CH <sub>3</sub> H H CF <sub>2</sub> H OCH <sub>3</sub> 70 OSO <sub>2</sub> N(CH <sub>3</sub> ) <sub>2</sub> H H CF <sub>2</sub> H OCH <sub>3</sub> 71 CF <sub>3</sub> H H CF <sub>2</sub> H OCH <sub>3</sub> 72 CF <sub>2</sub> H H H CF <sub>2</sub> H OCH <sub>3</sub> 73 CO <sub>2</sub> CH <sub>3</sub> H H CF <sub>2</sub> H OCH <sub>3</sub> 74 CO <sub>2</sub> C <sub>2</sub> HS H H CF <sub>2</sub> H OCH <sub>3</sub> 75 CO <sub>2</sub> iC <sub>3</sub> H <sub>7</sub> H H CF <sub>2</sub> H OCH <sub>3</sub> 76 NO <sub>2</sub> H H CF <sub>2</sub> H OCH <sub>3</sub> 77 SO <sub>2</sub> CH <sub>3</sub> H H CF <sub>2</sub> H OCH <sub>3</sub> 78 SO <sub>2</sub> N(CH <sub>3</sub> ) <sub>2</sub> H H CF <sub>2</sub> H OCH <sub>3</sub> 79 C1 H H CF <sub>2</sub> H OCH <sub>3</sub> 80 N(CH <sub>3</sub> ) SO <sub>2</sub> CH <sub>3</sub> H H CF <sub>2</sub> H OCH <sub>3</sub>                                                                                                   | N N N N CH            |
| 69 OSO <sub>2</sub> CH <sub>3</sub> H H CF <sub>2</sub> H OCH <sub>3</sub> 70 OSO <sub>2</sub> N(CH <sub>3</sub> ) <sub>2</sub> H H CF <sub>2</sub> H OCH <sub>3</sub> 71 CF <sub>3</sub> H H CF <sub>2</sub> H OCH <sub>3</sub> 72 CF <sub>2</sub> H H H CF <sub>2</sub> H OCH <sub>3</sub> 73 CO <sub>2</sub> CH <sub>3</sub> H H CF <sub>2</sub> H OCH <sub>3</sub> 74 CO <sub>2</sub> C <sub>2</sub> H5 H H CF <sub>2</sub> H OCH <sub>3</sub> 75 CO <sub>2</sub> iC <sub>3</sub> H <sub>7</sub> H H CF <sub>2</sub> H OCH <sub>3</sub> 76 NO <sub>2</sub> H H CF <sub>2</sub> H OCH <sub>3</sub> 77 SO <sub>2</sub> CH <sub>3</sub> H H CF <sub>2</sub> H OCH <sub>3</sub> 78 SO <sub>2</sub> N(CH <sub>3</sub> ) <sub>2</sub> H H CF <sub>2</sub> H OCH <sub>3</sub> 79 C1 H H CF <sub>2</sub> H OCH <sub>3</sub> 80 N(CH <sub>3</sub> ) SO <sub>2</sub> CH <sub>3</sub> H H CF <sub>2</sub> H OCH <sub>3</sub>                                                                                                                                                                                                                                                  | N<br>N<br>N<br>N      |
| 10 70 OSO <sub>2</sub> N(CH <sub>3</sub> ) <sub>2</sub> H H CF <sub>2</sub> H OCH <sub>3</sub> 71 CF <sub>3</sub> H H CF <sub>2</sub> H OCH <sub>3</sub> 72 CF <sub>2</sub> H H H CF <sub>2</sub> H OCH <sub>3</sub> 73 CO <sub>2</sub> CH <sub>3</sub> H H CF <sub>2</sub> H OCH <sub>3</sub> 74 CO <sub>2</sub> C <sub>2</sub> H5 H H CF <sub>2</sub> H OCH <sub>3</sub> 75 CO <sub>2</sub> iC <sub>3</sub> H <sub>7</sub> H H CF <sub>2</sub> H OCH <sub>3</sub> 76 NO <sub>2</sub> H H CF <sub>2</sub> H OCH <sub>3</sub> 77 SO <sub>2</sub> CH <sub>3</sub> H H CF <sub>2</sub> H OCH <sub>3</sub> 78 SO <sub>2</sub> N(CH <sub>3</sub> ) <sub>2</sub> H H CF <sub>2</sub> H OCH <sub>3</sub> 79 C1 H H CF <sub>2</sub> H OCH <sub>3</sub> 80 N(CH <sub>3</sub> ) SO <sub>2</sub> CH <sub>3</sub> H H CF <sub>2</sub> H OCH <sub>3</sub>                                                                                                                                                                                                                                                                                                                          | N<br>N<br>N<br>CH     |
| 71 CF <sub>3</sub> H H H CF <sub>2</sub> H OCH <sub>3</sub> 72 CF <sub>2</sub> H H H H CF <sub>2</sub> H OCH <sub>3</sub> 73 CO <sub>2</sub> CH <sub>3</sub> H H H CF <sub>2</sub> H OCH <sub>3</sub> 74 CO <sub>2</sub> C <sub>2</sub> H5 H H CF <sub>2</sub> H OCH <sub>3</sub> 75 CO <sub>2</sub> 1C <sub>3</sub> H <sub>7</sub> H H CF <sub>2</sub> H OCH <sub>3</sub> 76 NO <sub>2</sub> H H H CF <sub>2</sub> H OCH <sub>3</sub> 77 SO <sub>2</sub> CH <sub>3</sub> H H CF <sub>2</sub> H OCH <sub>3</sub> 78 SO <sub>2</sub> N(CH <sub>3</sub> ) <sub>2</sub> H H CF <sub>2</sub> H OCH <sub>3</sub> 79 Cl H H CF <sub>2</sub> H OCH <sub>3</sub> 80 N(CH <sub>3</sub> ) SO <sub>2</sub> CH <sub>3</sub> H H CF <sub>2</sub> H OCH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                 | N<br>N<br>CH          |
| 72 CF <sub>2</sub> H H H H CF <sub>2</sub> H OCH <sub>3</sub> 73 CO <sub>2</sub> CH <sub>3</sub> H H CF <sub>2</sub> H OCH <sub>3</sub> 74 CO <sub>2</sub> C <sub>2</sub> H5 H H CF <sub>2</sub> H OCH <sub>3</sub> 75 CO <sub>2</sub> iC <sub>3</sub> H <sub>7</sub> H H CF <sub>2</sub> H OCH <sub>3</sub> 76 NO <sub>2</sub> H H CF <sub>2</sub> H OCH <sub>3</sub> 77 SO <sub>2</sub> CH <sub>3</sub> H H CF <sub>2</sub> H OCH <sub>3</sub> 78 SO <sub>2</sub> N(CH <sub>3</sub> ) <sub>2</sub> H H CF <sub>2</sub> H OCH <sub>3</sub> 79 Cl H H CF <sub>2</sub> H OCH <sub>3</sub> 80 N(CH <sub>3</sub> ) SO <sub>2</sub> CH <sub>3</sub> H H CF <sub>2</sub> H OCH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N<br>CH               |
| 73 CO <sub>2</sub> CH <sub>3</sub> H H CF <sub>2</sub> H OCH <sub>3</sub> 74 CO <sub>2</sub> C <sub>2</sub> H5 H H CF <sub>2</sub> H OCH <sub>3</sub> 75 CO <sub>2</sub> iC <sub>3</sub> H <sub>7</sub> H H CF <sub>2</sub> H OCH <sub>3</sub> 76 NO <sub>2</sub> H H CF <sub>2</sub> H OCH <sub>3</sub> 77 SO <sub>2</sub> CH <sub>3</sub> H H CF <sub>2</sub> H OCH <sub>3</sub> 78 SO <sub>2</sub> N(CH <sub>3</sub> ) <sub>2</sub> H H CF <sub>2</sub> H OCH <sub>3</sub> 79 Cl H H CF <sub>2</sub> H OCH <sub>3</sub> 80 N(CH <sub>3</sub> ) SO <sub>2</sub> CH <sub>3</sub> H H CF <sub>2</sub> H OCH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | СН                    |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |
| 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | СН                    |
| 76 NO <sub>2</sub> H H CF <sub>2</sub> H OCH <sub>3</sub> 77 SO <sub>2</sub> CH <sub>3</sub> H H CF <sub>2</sub> H OCH <sub>3</sub> 78 SO <sub>2</sub> N(CH <sub>3</sub> ) <sub>2</sub> H H CF <sub>2</sub> H OCH <sub>3</sub> 79 Cl H H CF <sub>2</sub> H OCH <sub>3</sub> 80 N(CH <sub>3</sub> ) SO <sub>2</sub> CH <sub>3</sub> H H CF <sub>2</sub> H OCH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | , ,                   |
| 20 77 SO <sub>2</sub> CH <sub>3</sub> H H CF <sub>2</sub> H OCH <sub>3</sub> 78 SO <sub>2</sub> N (CH <sub>3</sub> ) <sub>2</sub> H H CF <sub>2</sub> H OCH <sub>3</sub> 79 C1 H H CF <sub>2</sub> H OCH <sub>3</sub> 80 N (CH <sub>3</sub> ) SO <sub>2</sub> CH <sub>3</sub> H H CF <sub>2</sub> H OCH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | СН                    |
| 78 SO <sub>2</sub> N (CH <sub>3</sub> ) <sub>2</sub> H H CF <sub>2</sub> H OCH <sub>3</sub> 79 Cl H H CF <sub>2</sub> H OCH <sub>3</sub> 80 N (CH <sub>3</sub> ) SO <sub>2</sub> CH <sub>3</sub> H H CF <sub>2</sub> H OCH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | СН                    |
| 79 C1 H H CF <sub>2</sub> H OCH <sub>3</sub> 80 N(CH <sub>3</sub> ) SO <sub>2</sub> CH <sub>3</sub> H H CF <sub>2</sub> H OCH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | СН                    |
| 80 N(CH <sub>3</sub> ) SO <sub>2</sub> CH <sub>3</sub> H H CF <sub>2</sub> H OCH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | СН                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | СН                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | СН                    |
| B1 OSO <sub>2</sub> CH <sub>3</sub> H H CF <sub>2</sub> H OCH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | СН                    |
| 82 OSO <sub>2</sub> N(CH <sub>3</sub> ) <sub>2</sub> H H CF <sub>2</sub> H OCH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | СН                    |
| 83 CF <sub>3</sub> H H CF <sub>2</sub> H OCH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | СН                    |
| 30 84 CF <sub>2</sub> H H H CF <sub>2</sub> H OCH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | СН                    |
| 85 CO <sub>2</sub> CH <sub>3</sub> H H CF <sub>2</sub> Cl OCH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N                     |
| 86 CO <sub>2</sub> C2H <sub>5</sub> H H CF <sub>2</sub> Cl OCH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N                     |
| 87 CO <sub>2</sub> iC <sub>3</sub> H <sub>7</sub> H H CF <sub>2</sub> C1 OCH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N                     |
| 88 NO <sub>2</sub> H H CF <sub>2</sub> Cl OCH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | И                     |
| 89 SO <sub>2</sub> CH <sub>3</sub> H H CF <sub>2</sub> Cl OCH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N                     |
| 90 SO <sub>2</sub> N(CH <sub>3</sub> ) <sub>2</sub> H H CF <sub>2</sub> Cl OCH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N                     |
| 40 91 C1 H H CF <sub>2</sub> C1 OCH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | И                     |
| 92 N(CH <sub>3</sub> ) SO <sub>2</sub> CH <sub>3</sub> H H CF <sub>2</sub> C1 OCH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | И                     |
| 93 OSO <sub>2</sub> CH <sub>3</sub> H H CF <sub>2</sub> C1 OCH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N                     |
| 45 95 CF <sub>3</sub> H H CF <sub>2</sub> Cl OCH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N                     |
| 96 CF <sub>2</sub> H H H CF <sub>2</sub> Cl OCH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |

13

| 1     | Nr. | R1                                            | R <sup>2</sup> | R | Y               | х                | Z  |
|-------|-----|-----------------------------------------------|----------------|---|-----------------|------------------|----|
| 9     | 97  | CO <sub>2</sub> CH <sub>3</sub>               | 3-F            | Н | Cl              | OCH <sub>3</sub> | СН |
| 111 - | 98  | CF <sub>2</sub> CF <sub>3</sub>               | н              | Н | CH <sub>3</sub> | OCH <sub>3</sub> | N  |
| 5     | 99  | CF <sub>2</sub> CF <sub>3</sub>               | H .            | н | CH3             | OCH <sub>3</sub> | N  |
| 1     | 100 | SO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> | Н              | н | F               | осн3             | СН |

10 Selbstverständlich können als Komponente a) auch Mischungen mehrerer Sulfonylharnstoffe eingesetzt werden.

Als Komponente b) enthalten die erfindungsgemäßen Festformulierungen eines oder mehrere sulfat- oder sulfonathaltige Tenside.

15

Entsprechende Produkte sind beispielsweise beschrieben in McCutheon's, Emulsifiers and Detergents, Volume 1 1994, North American Edition, McCutheson Division, Glen Rock, NJ, USA, oder in Volume 2 des entsprechenden Werks (International Edition). Weiterhin sei genannt "Surfactants in Europe", A Directory of surface active agents available in Europe, 2. Auflage, 1989, Terg Data, Darlington, England.

Beispielhaft seien hier Alkylsulfate (Texapon®), Alkylsulfonate

25 (Lutensit® A-PS, Hostapur® SAS, Witconate® NAS, Texapon®SCO) Alkylbenzolsulfonate (Lutensit® ALB-N - BASF, Rhodacal® - American Cyanamid), alpha-Olefinsulfonate (Witconate® AOS, Hostapur® OSB), Alkylpolyglykolethersulfonate, Alkylethersulfate (Witcolate®, Lutensit® A-ES) Alkylpolyglykolethersulfate, Polyoxyalkylen-alkylarylether-sulfate, Polyoxyalkylen-styrylethersulfate und Dialkylsulfosuccinate (Lutensit® ABO - BASF, Aerosol® OT - American Cyanamid, Emcol® - Witco, Geropon® - Rhone Poulenc) sowie deren Na-, K-, Ca und Ammoniumsalze oder deren Mischungen genannt.

35 Besonders bevorzugt werden Alkylsulfonate, Paraffinsulfonate und Olefinsulfonate, die einen C<sub>8</sub>-C<sub>25</sub>, vorzugsweise einen C<sub>10</sub>-C<sub>20</sub> - Alkylrest tragen. Entsprechende Produkte sind unter den Bezeichnungen Lutensit<sup>®</sup> A-PS (BASF AG), Hostapur<sup>®</sup> SAS 60, Hostapur<sup>®</sup> OS (beide Hoechst AG), Witconate<sup>®</sup> NAS 8, Witconate<sup>®</sup> AOS, Witconate<sup>®</sup> 3203, Witconate<sup>®</sup> 1840-X (alle Witco Corporation) oder Texapon<sup>®</sup> SCO (Henkel KGaA) kommerziell erhältlich.

Der Anteil der Komponente a) an den erfindungsgemäßen festen Mischungen liegt im allgemeinen im Bereich von 0,5 bis 45 75 Gew.%, vorzugsweise von 1 bis 25 Gew.%, bezogen auf das Gesamtgewicht der Formulierung.

14

Der Anteil der sulfat oder sulfonathaltigen Tenside (Komponente b) liegt im allgemeinen im Bereich von 1 bis 75, insbesondere 1 bis 50 und besonders bevorzugt 5 bis 25 Gew.%, bezogen auf das Gesamtgewicht der Formulierung.

5

Neben den Komponenten a) und b) können die erfindungsgemäßen festen Mischungen noch weitere, mit Sulfonylharnstoffen mischbare bzw. synergistisch wirksame andere Wirkstoffe enthalten. Entsprechende Produkte sind dem Fachmann bekannt und in der

- 10 Literatur beschrieben. Die folgenden Gruppen von weiteren Wirkstoffen seien beispielhaft unter Verwendung ihrer INN (in englischer Sprache) genannt:
- c1: 1,3,4-Thiadiazole :
  15 buthidazole, cyprazole;
  - c2: Amide:

allidochlor (CDAA), Benzoylprop-ethyl, Bromobutide, chlorthiamid, dimepiperate, dimethenamid, diphenamid, etobenzanid (benzchlomet), 20 flamprop-methyl, fosamin, isoxaben, monalide, naptalame, pronamid

c3: Aminophosphorsäuren:

bilanafos (bialaphos), buminafos, glufosinate-ammonium, glypho-`
25 sate, sulfosate

c4: Aminotriazole:
Amitrol;

30 c5: Anilide:

anilofos, mefenacet, thiafluamide;

c6: Aryloxyalkansäuren

2,4-D, 2,4-DB, clomeprop, dichlorprop, dichlorprop-P, (2.,4-DP-P),

35 fenoprop (2,4,5-TP), fluoroxypyr, MCPA, MCPB, mecoprop, mecoprop-P, napropamide, napropanilide, triclopyr;

c7: Benzoesäuren:

chloramben, dicamba;

40

c8: Benziothiadiazinone:

c9: Bleacher:

Bentazon:

45 clomazone (dimethazone), diflufenican, fluorochloridone, flupoxam, fluridone, pyrazolate, sulcotrione (chlor-mesulone) isoxa-

15

flutol, 2-(2'-Chlor-3'-Ethoxy-4'-ethylsulfonyl-benzoyl)-4-methyl-cyclohexan-1,3-dion;

c10: Carbamate:asulam, barban, butylate, carbetamide, chlorbufam, 5 chlorpropham, cycloate, desmedipham, diallate, EPTC, esprocarb, molinate, orbencarb, pebulate, phenisopham, phenmedipham, propham, prosulfocarb, pyributicarb, sulfallate (CDEC), terbucarb, thiobencarb (benthiocarb), tiocarbazil, triallate, vernolate;

10 cl1: Chinolinsauren:
 quinclorac, quinmerac;

c12: Chloracetanilide:

acetochlor, alachlor, butachlor, butenachlor, diethatyl ethyl, 15 dimethachlor, dimethenamide (vgl. auch unter Kategorie c2) metazachlor, metolachlor, pretilachlor, propachlor, prynachlor, terbuchlor, thenylchlor, xylachlor;

c13:Cyclohexenone:

- 20 alloxydim, caloxydim, clethodim, cloproxydim, cycloxydim, sethoxydim, tralkoxydim, 2-{1-[2-(4-Chlor-phenoxy) propyloxyimino] butyl}-3-hydroxy-5-(2H-tetrahydrothiopyran-3-yl)-2-cyclohexen-l-on;
- 25 c14: Dichlorpropionsauren:
   dalapon;

c15: Dihydrobenzofurane:
ethofumesate;

30

c16: Dihydrofuran-1-one:
flurtamone;

c17: Dinitroaniline:

35 benefin, butralin, dinitramin, ethalfluralin, fluchloralin, isopropalin, nitralin, oryzalin, pendimethalin, prodiamine, profluralin, trifluralin;

c18: Dinitrophenole:

40 bromofenoxim, dinoseb, dinoseb-acetat, dinoterb, DNOC;

16

c19: Diphenylether:

acifluorfen-sodium, aclonifen, bifenox, chlornitrofen (CNP), difenoxuron, ethoxyfen, fluorodifen, fluoroglycofen-ethyl, fomesafen, furyloxyfen, lactofen, nitrofen, nitrofluorfen, oxyfluorfen;

5

c20: Dipyridylene:

cyperquat, difenzoquat-methylsulfat, diquat, paraquat-dichlorid;

c21: Harnstoffe:

10 benzthiazuron, buturon, chlorbromuron, chloroxuron, chlortoluron, cumyluron, dibenzyluron, cycluron, dimefuron, diuron, dymron, ethidimuron, fenuron, fluormeturon, isoproturon, isouron, karbutilat, linuron, methabenzthiazuron, metobenzuron, metoxuron, monolinuron, monuron, neburon, siduron, tebuthiuron, trimeturon;

15

c22: Imidazole:

iscarbamide;

c23: Imidazolinone:

20 imazamethapyr, imazapyr, imazaquin, imazethabenz-methyl (imazame), imazethapyr, imazamox;

c24: Oxadiazole:

methazole, oxadiargyl, oxadiazone;

25

c25: Oxirane:

tridiphane

c26: Phenole:

30 bromoxynil, ioxynil;

c27: Phenoxypropionsäureester

clodinafop, cyhalofop-butyl, diclofop-methyl, fenoxaprop-ethyl, fenoxaprop-p-ethyl, fenthiapropethyl, fluazifop-butyl, fluazi-

35 fop-p-butyl, haloxyfop-ethoxyethyl, haloxyfop-methyl, haloxyfop-p-methyl, isoxapyrifop, propaquizafop, quizalofop-ethyl,
guizalofop-p-ethyl, quizalofoptefuryl;

c28: Phenylessigsäuren:

40 chlorfenac (fenac);

c29: Phenylpropionsauren:
chlorophenprop-methyl;

PCT/EP98/00413

17

c30: Protoporphyrinogen-IX-Oxydase-Hemmer: benzofenap, cinidon-ethyl, flumiclorac-pentyl, flumioxazin, flumipropyn, flupropacil, fluthiacet-methyl, pyrazoxyfen, sulfentrazone, thidiazimine, carfentrazone, azafenidin;

5

c31: Pyrazole:
nipyraclofen;

c32: Pyridazine:

10 chloridazon, maleic hydrazide, norflurazon, pyridate;

c33: Pyridincarbonsauren:
clopyralid, dithippyr, picloram, thaizopyr;

15 c34: Pyrimidylether:

pyrithiobac-acid, pyrithiobac-sodium, pyriminobac-methyl, bispyribenzoxim, bispyribac-sodium;

c35: Sulfonamide:

20 flumetsulam, metosulam, cloransulam-methyl, diclosulam;

c36: Triazine:

ametryn, atrazin, aziprotryn, cyanazine, cyprazine, desmetryn, dimethamethryn, dipropetryn, eglinazin-ethyl, hexazinon, procya-

25 zine, prometon, prometryn, propazin, secbumeton, simazin, simetryn, terbumeton, terbutryn, terbutylazin, trietazin, dimesyflam;

c37: Triazinone:

ethiozin, metamitron, metribuzin;

30

c38: Triazolcarboxamide:
triazofenamid;

c39: Uracile:

35 bromacil, lenacil, terbacil;

c40: Verschiedene :

benazolin, benfuresate, bensulide, benzofluor, butamifos, cafenstrole, chlorthal-dimethyl (DCPA), cinmethylin, dichlobenil,

40 endothall, fluorbentranil, mefluidide, perfluidone, piperophos, diflufenzopyr, diflufenzopyr-natrium

oder die umweltverträglichen Salze der vorstehend genannten Wirkstoffgruppen.

45

Bevorzugte weitere Wirkstoffe c) sind z.B. bromobutide, dimethenamide, isoxaben, propanil,

glufosinate-ammonium, glyphosate, sulfosate,
mefenacet,thiafluamide,

2,4-D, 2,4-DB, dichlorprop, dichlorprop-P,

dichlorprop-P(2,4-DP-P), fluoroxopyr, MCPA, mecoprop, mecoprop-P,

5 dicamba,

Bentazon,

clomazone, diflufenican, sulcotrione, isoxaflutole, phenmedipham, thiobencarb.

quinclorac, quinmerac,

10 acetochlor, alachlor, butachlor, metazachlor, metolachlor, pretilachlor,

butroxydim, caloxydim, clethodim, cycloxydim, sethoxydim, tralko-xydim, 2-{1-[2-(4-Chlor-phenoxy) propyloxyimino] butyl}-3-hydroxy-5-(2H-tetrahydrothiopyran-3-yl)-2-cyclohexen-1-on,

15 pendimethalin,

acifluorfen-sodium, bifenox, fluoroglycofen-ethyl, fomesafen, lactofen,

chlortoluron, cycluron, dymron, isoproturon, metabenzthiazuron, imazaquin, imazamox, imazethabenz-methyl, imazethapyr,

20 bromoxynil, ioxynil,

clodinafop, cyhlaofop-butyl, fenoxyprop-ethyl, fenoxaprop-p-ethyl, haloxyfop-p-methyl,

cinidon-ethyl, flumiclorac-pentyl, carfentrazone, flumipropyn, fluthiacet-methyl,

25 pyridate,

clopyralid,

bispyribac-sodium, pyriminobac-methyl,

flumetsulam, metosulam,

atrazin, cyanazine, terbutylazine,

30 benazolin, benfuresate, cafenstrole, cinemthylin, ammonium-bentazon, cloquintocet, diflufenzopyr, diflufenzopyr-Natrium, pyraflufen-ethyl.

Insbesondere bevorzugt sind folgende Verbindungen c):

35

2,4-D, Dichlorprop-P, MCPA, mecoprop-P,

dicamba,

bentazon,

diflufenican, sulcotrione,

40 quinclorac,

caloxydim, cycloxydim, sethoxydim, 2-{1-[2-(-(4-Chlor-phenoxy) propyloxyimino) butyl}-3-hydroxy-5-(2H-tetrahydrothiopy-ran-3-y1)-2-cyclohexen-1-on,

acifluorfen-sodium, fluoroglycofen-ethyl,

45 bromoxynil,

fenoxyprop-ethyl,

cinidon-ethyl,

19

Atrazin, terbutylazin, ammonium-bentazon, cloquintocet, thiafluamid, isoxaflutole, diflufenzopyr, diflufenzopyr-Na, carfentrazone, imazamox.

5

Ganz besonders bevorzugt sind folgende Verbindungen c):

2,4-D, dichlorprop-P, Mecoprop-P, MCPA, ammonium-bentazon, Bentazon, diflufenican, quinclorac, 2-{1-[2-(-(4-Chlor-phenoxy) propy-10 loxyimino] butyl}-3-hydroxy-5-(2H-tetrahydrothiopyran-3-yl)-2-cy-clohexen-l-on, caloxydim, cycloxydim, sethoxydim, fluoroglycofenethyl, cinidon-ethyl, atrazin, terbutylazine, dicamba, diflufenzopyr und diflufenzopyr-Na.

15 Der Anteil der weiteren Wirkstoffe c), wenn solche vorhanden sind, liegt im allgemeinen im Bereich von 0,5 bis 75, vorzugsweise von 1 bis 60 Gew.% der Formulierung.

Neben den vorstehend beschriebenen Komponenten a), b) und c)
20 können die erfindungsgemäßen festen Mischungen noch an sich
bekannte Formulierungshilfsmittel enthalten.

Als oberflächenaktive Stoffe kommen dabei die Alkali-, Erdalkalioder Ammoniumsalze von aromatischen Sulfonsäuren, z.B. Lignin-,

- 25 Phenol-, Naphthalin- und Dibutylnaphthalinsulfonsäure, sowie von Fettsäuren, Alkylpolyglykoside, Kondensationsprodukte von sulfoniertem Naphthalin und seiner Derivate mit Formaldehyd, Kondensationsprodukte des Naphtalins bzw. der Naphthalinsulfonsäuren mit Phenol und Formaldehyd, Kondensationsprodukte des Phenols oder
- 30 der Phenolsulfonsäure mit Formaldehyd, Kondensationsprodukte des Phenols mit Formaldehyd und Natriumsulfit, Polyoxyethylenoctylphenolether, ethoxyliertes Isooctyl-, Octyl- oder Nonylphenol, Tributylphenylpolyglykolether, Alkylarylpolyetheralkonole, Isotridecylalkohol, Fettalkohol/Ethylenoxid-Kondensate, ethoxylier-
- 35 tes Rizinusöl, Polyoxyethylenalkylether, ethoxylierte Triarylphenole, Salze phosphatierter Triarylphenolethoxylate Polyoxypropylenalkylether, Laurylalkoholpolyglykoletheracetat, Sorbitester, Ligninsulfit-Ablaugen oder Methylcellulose oder deren Mischungen in Betracht.

40

Bei Mitverwendung oberflächenaktiver Stoffe liegt deren Anteil im allgemeinen im Bereich von 0,5 bis 25 Gew.%, bezogen auf das Gesamtgewicht der festen Mischung.

20

Die erfindungsgemäßen festen Mischungen können auch zusammen mit Trägermaterialien verwendet werden. Beispielhaft seien als Trägerstoffe erwähnt:

- 5 Mineralerden wie Kieselsäuren, Kieselgele, Silikate, Talkum, Kaolin, Attaclay, Kalkstein, Kreide, Löß, Ton, Dolomit, Diatome-enerde, Calciumsulfat, Magnesiumsulfat, Magnesiumoxid, gemahlene Kunststoffe, Düngemittel wie Ammoniumsulfat, Ammoniumphosphat, Ammoniumnitrat, Thioharnstoff und Harnstoff, pflanzliche Produkte
- 10 wie Getreidemehle, Baumrinden-, Holz- und Nußschalenmehl, Cellulosepulver, Attapulgite, Montmorillonite, Glimmer, Vermiculite, synthetische Kieselsäuren und synthetische Calciumsilicate oder deren Mischungen.
- 15 Als weitere Zusatzstoffe in an sich üblichen Mengen können ferner eingesetzt werden:

Wasserlösliche Verbindungen oder Salze wie:

- 20 Natriumsulfat, Kaliumsulfat, Natriumchlorid, Kaliumchlorid, Natriumcetat, Ammoniumhydrogensulfat, Ammoniumchlorid, Ammoniumacetat, Ammoniumformiat, Ammoniumoxalat, Ammoniumcarbonat, Ammoniumhydrogencarbonat, Ammoniumthiosulfat, Ammoniumhydrogendiphosphat, Ammoniumdihydrogenmonophosphat, Ammoniumnatriumhydro-
- 25 genphosphat, Ammoniumthiocyanat, Ammoniumsulfamat oder Ammonium-carbamat;

Bindemittel, wie:

30 Polyvinylpyrrolidon, Polyvinylalkohol, partiell hydrolysiertes Polyvinylacetat, Carboxymethylcellulose, Stärke, Vinylpyrrolidon/ Vinylacetat-Copolymere und Polyvinylacetat oder deren Mischungen;

Schmiermittel, wie:

35

Mg-Stearat, Na-Stearat, Talkum oder Polyethylenglykol oder deren Mischungen;

Entschäumer, wie:

40

Silikonemulsionen, langkettige Alkohole, Phosphorsäureester, Acetylendiole, Fettsäuren oder fluororganische Verbindungen,

und .

45

Komplexbildner, wie:

Salze der Ethylendiamintetraessigsäure (EDTA), Salze der Trinitrilotriessigsäure oder Salze von Polyphosphorsäuren oder deren Mischungen.

5 Die erfindungsgemäßen festen Mischungen können in Form von Pulver, Granulat, Briketts, Tabletten und ähnliche Formulierungsvarianten hergestellt werden. Neben Pulvern sind dabei Granulate besonders bevorzugt. Bei den Pulvern kann es sich um wasserlösliche oder wasserdispergierbare Pulver handeln. Bei den Granulaten kann es sich um wasserlösliche oder wasserdispergierbare Granulate zum Einsatz in der Spritzapplikation oder um sog. Streugranulate zur Direktapplikation handeln. Die mittlere Teil-

chengröße der Granulate liegt im allgemeinen zwischen 200 µm und

Die erhaltenen Granulatformulierungen sind staubfreie, freifließende, nicht verbackende Produkte, die in kaltem Wasser gut löslich bzw. dispergierbar sind.

2 mm.

- 20 Aufgrund ihrer Eigenschaften können die Produkte leicht in größeren Mengen abgefüllt werden. Neben Gebinden wie Kunststoff-, Papier-, Laminatsäcken oder Beuteln können sie in Kartons oder anderen Bulk-Containern gehandhabt werden. Um eine Exposition des Anwenders weiter zu vermeiden, ist es möglich, die Produkte in
- 25 wasserlöslichen Folienbeuteln, wie z.B. Polyvinylalkohol-Folienbeuteln, zu verpacken, die direkt in den Spritztank gegeben werden und sich dort auflösen. Für solche wasserlöslichen Folien können eingesetzt werden u.a. Polyvinylalkohol oder Cellulose-Derivaten wie Methylcellulose, Methyl-hydroxypropyl-cellulose
- 30 oder Carboxymethylcellulose. Durch Portionierung in anwendungsgerechter Größe kommt der Anwender nicht mehr mit dem Produkt in Berührung. Vorzugsweise werden die wasserlöslichen Beutel in einer wasserdampfundurchlässigen äußeren Hülle wie Polyethylen-Folie, polyethylen-laminiertes Papier oder Alufolie verpackt.

Die erfindungsgemäßen Festformulierungen lassen sich nach verschiedenen, dem Fachmann bekannten Verfahren herstellen.

Als bevorzugte Herstellverfahren für die genannten Formulierungen 40 sind die Extrudergranulation, Sprühtrocknung, Wirbelschichtagglomeration, Mischergranulation und die Tellergranulation zu nennen.

Besonders geeignet ist die Wirbelschichtgranulation (WSG). Je 45 nach gewünschter Zusammensetzung der Formulierung wird eine wässrige Lösung, Emulsion oder Suspension, die alle Rezeptur-

22

bestandteile enthält, in einer WSG-Apparatur versprüht und agglomeriert.

Wahlweise können aber auch Wirkstoffsalze und/oder anorganische
5 Ammoniumsalze in der Apparatur vorgelegt werden und mit einer
Lösung oder Emulsion/Suspension der restlichen Rezepturbestandteile besprüht und dabei agglomeriert werden. Ferner ist es
möglich, wässrige Lösungen, Emulsionen oder Suspensionen, die
bestimmte Rezepturbestandteile enthalten, nacheinander auf ein
10 Wirkstoffgranulat, ein Wirkstoffsalz und/oder ein anorganisches
Ammoniumsalz aufzutragen und so verschiedene umhüllende Schichten
zu erhalten.

Im allgemeinen erfolgt im Zuge der Wirbelschichtgranulierung eine 15 ausreichende Trocknung des Granulats. Es kann jedoch vorteilhaft sein, der Granulation einen separaten Trocknungsschritt im gleichen oder in einem separaten Trockner nachzuschalten. Im Anschluß an die Granulation/Trocknung wird das Produkt abgekühlt und gesiebt.

20

Ein weiteres besonders geeignetes Verfahren ist die Extrudergranulation. Zur Extrudergranulierung eignen sich vorzugsweise Korb-, Radial- oder Dome-Extruder mit geringer Verdichtung des Granulatkorns.

25

Zur Granulation wird eine Feststoffmischung in einem geeigneten Mischer mit einer Granulierflüssigkeit angeteigt, bis eine extrudierbare Masse entsteht. Diese wird in einem der genannten Extruder extrudiert. Zur Extrusion werden Lochgrößen zwischen 0,3 und 3 mm verwendet (vorzugsweise 0,5-1,5mm). Als Feststoffmischungen dienen Gemische aus Wirkstoffen, Formulierungshilfsmitteln und ggf. wasserlöslichen Salzen. Diese werden im allgemeinen vorgemahlen. Teilweise ist es ausreichend, wenn nur die wasserunlöslichen Stoffe in geeigneten Mühlen vorgemahlen werden.

35

Als Granulierflüssigkeit eignet sich Wasser, die erfindungsgemäßen sulfat- oder sulfonathaltigen Tenside oder wässrige Lösungen davon. Weiterhin geeignet sind wässrige Lösungen von anorg. Salzen, nichtionischen Tensiden, anionischen Tensiden, 40 Lösungen von Bindemitteln wie Polyvinylpyrrolidon, Polyvinylalkohol, Carboxymethylcellulose, Stärke, Vinylpyrrolidin/Vinylacetat-Copolymere, Zucker, Dextrin oder Polyethylenglykol. Nach Extrudergranulation wird das erhaltene Granulat getrocknet und ggf. gesiebt um von Grob- und Feinanteil abzutrennen.

Vergleichsbeispiel 1:

Eine Vormischung bestehend aus:

5 73,1 g SU 1 (Verbindung Nr. 47 aus Tabelle 1) (techn. 95,7%)

8 g Tamol<sup>R</sup> NH

17,9 g UfoxaneR 3A

wurde gemischt und in einer Rotorschnellmühle vermahlen.

10

Im weiteren wurden:

7,1 g Vormischung1

5 g Extrusil<sup>R</sup> (Degussa)

15 77,9 g Ammoniumsulfat

in einem Moulinette Haushaltsmischer mit 24g Klearfac<sup>R</sup> AA-270 als 50%ige wässrige Lösung vermischt. Die erhaltene Masse wurde mittels eines Extruders (KAR-75, Fitzpatrick Europe) extrudiert.

20 Die erhaltenen feuchten Granulate wurden im Trockenschrank getrocknet.

# Vergleichsbeispiel 2

25 Fine Vormischung bestehend aus:

73,1 g SU 1 (techn. 95,7%)

8 g Tamol<sup>R</sup> NH

17,9 g Ufoxane<sup>R</sup> 3A

30

wurde gemischt und in einer Rotorschnellmühle vermahlen.

Im weiteren wurden:

35 7,1 g Vormischung

15 g Extrusil<sup>R</sup> (Degussa)

77,9 g Ammoniumsulfat

in einem Moulinette Haushaltsmischer mit 23g Armoblem<sup>R</sup> 557 als 40 50%ige wässrige Lösung vermischt. Die erhaltene Masse wurde mittels eines Extruders (KAR-75, Fitzpatrick Europe) extrudiert. Die erhaltenen feuchten Granulate wurden im Trockenschrank getrocknet.

### Vergleichsbeispiel 3

Eine Vormischung bestehend aus:

5 73,1 g SU 1 (techn. 95,7%)

8 g Tamol<sup>R</sup> NH

17,9 g UfoxaneR 3A

wurde gemischt und in einer Rotorschnellmühle vermahlen.

10

Im weiteren wurden:

7,1 g Vormischung

. 15 g Extrusil<sup>R</sup> (Degussa)

15 77,9 g Ammoniumsulfat

in einem Moulinette Haushaltsmischer mit 29g Lutensol<sup>R</sup> ON 80 als 50%ige wässrige Lösung vermischt. Die erhaltene Masse wurde mittels eines Extruders (KAR-75, Fitzpatrick Europe) extrudiert.
20 Die erhaltenen feuchten Granulate wurden im Trockenschrank ge-

trocknet.

### Vergleichsbeispiel 4

## 25 Eine Mischung bestehend aus:

6,9 g Metsulfuron-Methyl (techn. 99%)

3 g Tamol<sup>R</sup> NH

6 g UfoxaneR 3A

30 15 g Extrusil<sup>R</sup>

43,1 g Ammonsulfat

wurde intensiv vermischt und mittels einer Laborrotorschnellmühle vermahlen. Die erhaltene Pulvermischung wurde in ei-35 nem Planetenmischer (Kenwood Chef) mit 17 Teilen Lutensol<sup>R</sup> ON 30 vermischt. Die erhaltene Masse wurde mittels eines Extruders (DGL-1, Fitzpatrick Europe) extrudiert. Die erhaltenen feuchten Granulate wurden in einem Wirbelbetttrockner getrocknet.

### 40 Beispiel 1

Eine Vormischung bestehend aus:

73,1 g SU 1 (techn. 95,7%)

45 8 g Tamol<sup>R</sup> NH

17,9 g Ufoxane<sup>R</sup> 3A

wurde gemischt und in einer Rotorschnellmühle vermahlen.

Im weiteren wurden:

5 7,1 g Vormischung

5 g Tamol<sup>R</sup> NH

58,9 g Ammoniumsulfat

3 g Sipernat<sup>R</sup> 22

25 g Lutensit<sup>R</sup> A-LBN

10 1 g Antischaumemulsion SRE

in einem Moulinette Haushaltsmischer mit 14 ml Wasser angeteigt. Die erhaltene Masse wurde mittels eines Extruders (KAR-75, Fitzpatrick Europe) extrudiert. Die erhaltenen feuchten Granulate wurden im Trockenschrank getrocknet.

## Beispiel 2

Eine Vormischung bestehend aus:

20

73,1 g SU 1 technisch

17,9 g UfoxaneR 3A

8 g Tamol<sup>R</sup> NH

25 wurde gemischt und in einer Rotorschnellmühle vermahlen.

Im weiteren wurden:

7,1 g Vormischung

30 15 g Extrusil<sup>R</sup>

52,9 g Ammoniumsulfat

25 g Lutensit<sup>R</sup> A-PS

in einem Moulinette Haushaltsmischer mit 14 ml Wasser angeteigt. 35 Die erhaltene Masse wurde mittels eines Extruders (KAR-75, Fitzpatrick Europe) extrudiert. Die erhaltenen feuchten Granulate wurden im Trockenschrank getrocknet.

# Beispiel 3

40

Eine Vormischung bestehend aus:

73,1 g SU 1 (techn. 95,7%)

8 g Tamol<sup>R</sup> NH

45 17,9 g Ufoxane<sup>R</sup> 3A

wurde gemischt und in einer Rotorschnellmühle vermahlen.

Im weiteren wurden:

5 7,1 g Vormischung

15 g Extrusil<sup>R</sup> (Degussa)

52,9 g Kaliumsulfat

24 g Lutensit<sup>R</sup> AP-S

10 in einem Moulinette Haushaltsmischer vermischt. Die erhaltene Masse wurde mittels eines Extruders (KAR-75, Fitzpatrick Europe) extrudiert. Die erhaltenen feuchten Granulate wurden im Trockenschrank getrocknet.

#### 15 Beispiel 4

Eine Mischung bestehend aus:

5,1 g SU 1 (techn. 98,54%)

20 3 g Tamol<sup>R</sup> NH

6 g UfoxaneR 3A

15 g Extrusil<sup>R</sup> (Degussa)

44,9g Ammoniumsulfat

25 wurde gemischt und in einer Rotorschnellmühle vermahlen.

Das erhaltene Pulver wurde in einem Moulinette Haushaltsmischer mit 25g Witconate<sup>R</sup> 3203 und 1 g Antischaummittel SRE vermischt. Die erhaltene Masse wurde mittels eines Extruders (KAR-75,

30 Fitzpatrick Europe) extrudiert. Die erhaltenen feuchten Granulate wurden im Trockenschrank getrocknet.

#### Beispiel 5

35 Eine Mischung bestehend aus:

5,1 g SU 1 (techn. 98,54%)

3 g Tamol<sup>R</sup> NH

6 g Ufoxane<sup>R</sup> 3A

40 15 g Extrusil<sup>R</sup> (Degussa)

44.9 g Ammoniumsulfat

wurde gemischt und in einer Rotorschnellmühle vermahlen. Das erhaltene Pulver wurde in einem Moulinette Haushaltsmischer mit 25g 45 Witconate<sup>R</sup> NAS 8 und 1 g Antischaummittel SRE vermischt. Die er-

haltene Masse wurde mittels eines Extruders (KAR-75, Fitz-

27

patrick Europe) extrudiert. Die erhaltenen feuchten Granulate wurden im Trockenschrank getrocknet.

### Beispiel 6

5

Eine Vormischung bestehend aus:

5,1g SU 1 (techn. 98,5%)

3,1g Cinidon-Ethyl (techn. 98%)

10 lg Tamol<sup>R</sup> NH

2g Ufoxane<sup>R</sup> 3A

15g Extrusil<sup>R</sup> (Degussa)

47,8g Ammoniumsulfat

15 wurde gemischt und in einer Strahlmühle vermahlen.

Im weiteren wurden:

74g Vormischung

20 25g Lutensit<sup>R</sup> APS (Alkylsulfonat, BASF AG, techn. 65%)

1g Antischaummittel SRE

in einem Planetenmischer (Kenwood-Chef) vermischt und mit insgesamt 6,5g Wasser (bezogen auf 100g Produkt) versetzt. Die erhal-

25 tene Masse wurde mittels eines Extruders (DGL-1, Fitzpatrick Europe) extrudiert. Die erhaltenen feuchten Granulate wurden in einem Wirbelbetttrockner getrocknet. Man erhielt ein gut dispergierendes Granulat.

#### 30 Beispiel 7

Eine Vormischung bestehend aus:

5,1 g SU 1 (techn. 98,5%)

35 3,1 g .Cinidon-Ethyl (techn. 98%)

1 g Tamol<sup>R</sup> NH

2 g Ufoxane<sup>R</sup> 3A

15 g Extrusil<sup>R</sup> (Degussa)

47,8 g Ammoniumsulfat

40

wurde gemischt und in einer Strahlmühle vermahlen.

Im weiteren wurden:

- 74 g Vormischung
- 22,5 g Lutensit<sup>R</sup> APS (Alkylsulfonat, BASF AG, techn. 65%)
- 1 g Antischaummittel SRE

5 in einem Planetenmischer (Kenwood-Chef) vermischt und mit insgesamt 5 g Wasser (bezogen auf 100 g Produkt) versetzt. Die erhaltene Masse wurde mittels eines Extruders (DGL-1, Fitzpatrick Europe) extrudiert. Die erhaltenen feuchten Granulate wurden in einem Wirbelbetttrockner getrocknet. Man erhielt ein gut dispergierendes Granulat.

#### Beispiel 8

Eine Vormischung bestehend aus:

15

- 6 g SU1
- 10 g Clefoxydim-Lithium
- 10 g Extrusil<sup>R</sup>
- 10 g Harnstoff
- 20 3 g Morwet<sup>R</sup> EFW
  - 1 g Aerosol<sup>R</sup> OT B
  - 40 g Tamol<sup>R</sup> NH

wurde intensiv vermischt und mittels einer Luftstrahlmühle
25 vermahlen. Die so erhaltene Pulvermischung wurde in einem
Planetenmischer (Kenwood Chef) mit 20 Teilen Lutensit<sup>R</sup> APS vermischt. Zur Erzeugung einer extrudierfähigen Masse wurden weiterhin 1,8% Wasser zugegeben. Die erhaltene Masse wurde mittels
eines Extruders (DGL-1, Fitzpatrick Europe) extrudiert. Die er30 haltenen feuchten Granulate wurden in einem Wirbelbetttrockner
getrocknet.

### Beispiel 9

- 35 Eine Mischung bestehend aus:
  - 6,9 g Metsulfuron-Methyl (techn. 99%)
  - 3 g Tamol<sup>R</sup> NH
  - 6 g Ufoxane<sup>R</sup> 3A
- 40 15 g Extrusil<sup>R</sup>
  - 43,1 g Ammonsulfat

wurde intensiv vermischt und mittels einer Laborrotorschnellmühle vermahlen. Die erhaltene Pulvermischung wurde in einem Planeten-

45 mischer (Kenwood Chef) mit 25 Teilen Lutensit<sup>R</sup> APS vermischt. Die erhaltene Masse wurde mittels eines Extruders (DGL-1, Fitzpatrick

29

Europe) extrudiert. Die erhaltenen feuchten Granulate wurden in einem Wirbelbetttrockner getrocknet.

Die nachstehende Tabelle erläutert die in den Beispielen einge-5 setzten Komponenten:

Tabelle 2:

| 10 | Name                         | chem. Bezeichnung                                     | Bezugsquelle      |
|----|------------------------------|-------------------------------------------------------|-------------------|
|    | Tamol <sup>R</sup> NH        | Naphthalinsul-<br>fonsäure-Formalde-<br>hyd-Kondensat | BASF AG           |
|    | Ufoxane <sup>R</sup> 3A      | Na-Ligninsulfonat                                     | Borregaard        |
| 15 | Morwet <sup>R</sup> D425     | Naphthalinsul.<br>fonsäure-Formalde.<br>hyd-Kondensat | BASF AG           |
|    | Wettol <sup>R</sup> NT 1     | Alkyl-Naphthalinsul-<br>fonat                         | BASF AG           |
| 20 | Extrusil <sup>R</sup>        | hochdisperses Cal-<br>ciumsilicat                     | Degussa           |
|    | Sipernat <sup>R</sup> 22     | hochdisperse Kie-<br>selsäure                         | Degussa           |
|    | Antischaummittel SRE         | Silikonõlemulsion                                     | Wacker-Chemie     |
| 25 | Lutensol <sup>R</sup> ON 30  | Fettalkoholethoxylat (3EO)                            | BASF AG           |
|    | Lutensol <sup>R</sup> ON 60  | Fettalkoholethoxylat (6EO)                            | BASF AG           |
|    | Lutensol <sup>R</sup> ON 80  | Fettalkoholethoxylat (8EO)                            | BASF AG           |
| 30 | Lutensit <sup>R</sup> A-PS   | Na-Alkansulfonat                                      | BASF AG           |
|    | Lutensit <sup>R</sup> A-LBN  | Na-Alkylbenzolsulfo-<br>nat                           | BASF AG           |
| 2- | Armoblem <sup>R</sup> 557    | ethoxyliertes Fetta-<br>min                           | Akzo              |
| 35 | Klearfac <sup>R</sup> AA-270 | phosphatiertes Fet-<br>talkoholethoxylat              | BASF Corporation  |
|    | Morwet <sup>R</sup> EFW      | Anionischer Netzmit-<br>tel-Blend                     | Witco             |
| 40 | Witconate 3203               | Na-alpha-Olefinsul-<br>fonat                          | Witco             |
|    | Witconate NAS 8              | Na-Alkansulfonat                                      | Witco             |
|    | Aerosol OT-B                 | Na-Dioctylsulfosuc-<br>cinat                          | American Cyanamid |
| 45 | SU-1                         | Verb. 47 aus Tabelle<br>1                             |                   |

|    | Name          | chem. Bezeichnung                                                                                                       | Bezugsquelle |
|----|---------------|-------------------------------------------------------------------------------------------------------------------------|--------------|
| 5  | Clefoxydim    | 2-{1-[2-(4-Chlorphe-<br>noxy)-propyloxya-<br>mino]-butyl}-5-te-<br>trahydrothiopy-<br>ran-3-yl-cyclo-<br>hexan-1,3-dion | •            |
| 10 | Cinidon-ethyl | Ethyl-(Z)-2-chlor-3-<br>[2-chlor-5-(4,5,6,7-<br>tetrahydro-1,3-diox-<br>oisoindol-<br>dion-2-yl-)-phe-<br>nyl]acrylat   |              |

### Prüfmethoden

. .

15 Der Wirkstoffgehalt an SU der Formulierungen gemäß den vorstehenden Beispielen wurde jeweils mittels quantitativer HPLC bestimmt, und wird in Tabelle 3 in Prozent angegeben.

### Versuche zur Lagerstabilität:

20

Zur Untersuchung der Lagerstabilität wurden Proben der jeweiligen Formulierung gemäß den Beispielen 1-9 und den Vergleichsbeispielen 1 bis 4 für eine bestimmte Zeit (14 d oder 42 d) in fest verschlossenen Glasgefäßen bei der jeweils angegebenen Temperatur 25 (40 °C, 50 °C bzw. 54 °C) gelagert. Anschließend werden die Proben untersucht und mit dem Vergleichswert zu Beginn der Lagerung (Nullwert) verglichen. Der Wirkstoffgehalt wird als relativer Anteil des SU, bezogen auf den Nullwert (in Prozent) angegeben. Die Lagerversuche wurden in Anlehnung an die Methode CIPAC MT 46 30 durchgeführt. Dabei wird die Langzeitstabilität eines Produkts durch Kurzlagerung bei erhöhter Temperatur abgeschätzt.

Tabelle 3 gibt die Ergebnisse aus der Bestimmung der Lagerstabilität der hergestellten festen Mischungen aus den Beispielen 1-9 35 und den Vergleichsbeispielen 1-4 wieder.

Die Ergebnisse zeigen die überlegenen Eigenschaften der erfindungsgemäßen festen Mischungen.

Tabelle 3:

| 5  | Bsp<br>Nr. | Adjuvant                     | Wirkstoffgehalt<br>in Gew.% | rel.Wirkstoffge-<br>halt SU nach 14 d,<br>54°C |
|----|------------|------------------------------|-----------------------------|------------------------------------------------|
|    | V1         | Klearfac <sup>R</sup> AA-270 | 4,3                         | 0                                              |
|    | V2         | Armoblem <sup>R</sup> 557    | 3,9                         | 13                                             |
|    | V3         | Lutensit <sup>R</sup> ON 60  | 3,2                         | 14                                             |
| 10 | V4         | Lutensol <sup>R</sup> ON 30  | 7,3                         | 48                                             |
|    | 1          | Lutensit <sup>R</sup> A-LBN  | 5                           | 90                                             |
|    | 2          | Lutensit <sup>R</sup> A-PS   | 5,1                         | . 88                                           |
|    | 3          | Lutensit <sup>R</sup> A-PS   | 5,5                         | 100                                            |
| 15 | 4          | Witconate <sup>R</sup> 3203  | 5,5                         | 93                                             |
| 13 | 5          | Witconate <sup>R</sup> NAS 8 | 5,6                         | 90                                             |
|    | 6          | Lutensit <sup>R</sup> A-PS   | 5,38                        | 95                                             |
|    | 7          | Lutensit <sup>R</sup> A-PS   | 5,57                        | 941                                            |
|    | 8          | Lutensit <sup>R</sup> A-PS   | 6,4                         | 100                                            |
| 20 | 9          | Lutensit <sup>R</sup> A-PS   | 7,3                         | 69                                             |

<sup>1</sup> gemessen nach 30 Tagen Lagerung bei 50 °C

25

30

35

#### Patentansprüche

1. Feste Mischungen, enthaltend

5

- einen Wirkstoff aus der Gruppe der Sulfonylharnstoffe, und
- b) ein sulfat- oder sulfonathaltiges Tensid.

10

 Feste Mischung nach Anspruch 1, enthaltend einen Sulfonylharnstoff der Formel I

20 wobei die Substituenten folgende Bedeutung haben:

 $R^1$   $C_1-C_4-Alkyl$ , das eine bis fünf der folgenden Gruppen tragen kann: Methoxy, Ethoxy,  $SO_2CH_3$ , Cyano, Chlor, Fluor,  $SCH_3$ ,  $S(O)CH_3$ ;

.25

Halogen;

eine Gruppe ER19, in der E O, S oder NR20 bedeutet;

30 COOR<sup>12</sup>;

NO2;

 $S(0)_nR^{17}$ ,  $SO_2NR^{15}R^{16}$ ,  $CONR^{13}R^{14}$ ;

35

- R<sup>2</sup> Wasserstoff, Methyl, Halogen, Methoxy, Nitro, Cyano, Trifluormethyl, Trifluormethoxy, Difluormethoxy oder Methylthio,
- Y F, CF<sub>3</sub>, CF<sub>2</sub>Cl, CF<sub>2</sub>H, OCF<sub>3</sub>, OCF<sub>2</sub>Cl, C<sub>1</sub>-C<sub>4</sub>-Alkyl oder  $C_1$ -C<sub>4</sub>-Alkoxy;
  - X  $C_1-C_2-Alkoxy$ ,  $C_1-C_2-Alkyl$ ,  $C_1-C_2-Alkyl$ thio,  $C_1-C_2-Alkyl$ amino,  $Di-C_1-C_2-Alkyl$ amino, Halogen,  $C_1-C_2-H$ alogenalkyl,  $C_1-C_2-H$ alogenalkoxy,

45

R Wasserstoff oder Methyl;

33

- R<sup>19</sup> C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>2</sub>-C<sub>4</sub>-Alkenyl, C<sub>2</sub>-C<sub>4</sub>-Alkinyl oder C<sub>3</sub>-C<sub>6</sub>-Cycloalkyl, welche 1 bis 5 Halogenatome tragen können. Ferner bedeutet R<sup>19</sup> im Falle, daß E für O oder NR<sup>20</sup> steht, noch Methylsulfonyl, Ethylsulfonyl, Trifluormethylsulfonyl, Allylsulfonyl, Propargylsulfonyl oder Dimethylsulfamoyl;
  - R20 Wasserstoff, Methyl oder Ethyl
- $R^{12}$  eine  $C_1-C_4$ -Alkylgruppe, welche bis zu drei der folgenden Reste tragen kann: Halogen,  $C_1-C_4$ -Alkoxy, Allyl oder Propargyl;
  - $R^{17}$  eine  $C_1$ - $C_4$ -Alkylgruppe, welche einen bis drei der folgenden Reste tragen kann: Halogen,  $C_1$ - $C_4$ -Alkoxy, Allyl oder Propargyl;

15

5

- $R^{15}$  Wasserstoff, eine  $C_1-C_2$ -Alkoxygruppe oder eine  $C_1-C_4$ -Alkylgruppe;
- R16 Wasserstoff oder eine C1-C4-Alkylgruppe,

20

- n 1 2
- Z N, CH

- 3. Feste Mischungen nach Anspruch 1 oder 2, enthaltend einen weiteren herbiziden Wirkstoff c).
- Feste Mischungen nach einem der Ansprüche 1 bis 3, enthaltend
   0,5 bis 75 Gew.% der Komponente a).
  - 5. Feste Mischungen nach einem der Ansprüche 1 bis 4, enthalten 1 bis 50 Gew.% der Komponente b).
- 35 6. Verfahren zur Bekämpfung von unerwünschtem Pflanzenwuchs, dadurch gekennzeichnet, daß man die Pflanzen und/oder die von den Pflanzen freizuhaltende Fläche mit einer herbizid wirksamen Menge einer festen Mischung gemäß Anspruch 1 behandelt.
- 40 7. Verfahren zur Herstellung von Herbizidformulierungen, dadurch gekennzeichnet, daß man einen Sulfonylharnstoff mit einem sulfat- oder sulfonathaltigen Tensid mischt.

34

Feste Mischungen auf der Basis von Sulfonylharnstoffen und Adjuvantien

5 Zusammenfassung

Feste Mischungen, enthaltend

- a) einen Wirkstoff aus der Gruppe der Sulfonylharnstoffe, und 10
  - b) ein sulfat- oder sulfonathaltiges Tensid.

15

20

25

30

35

40

Ir ational Application No PCT/EP 98/00413

| A. CLASSIF                                                                         | A01N47/36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                         |
|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| According to                                                                       | International Patent Classification (IPC) or to both national classifi                                                                                                                                                                                                                                                                                                                                                                                                                                      | cation and IPC                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                         |
| B. FIELDS S                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                         |
| Minimum doo<br>IPC 6                                                               | cumentation searched (dassification system followed by classifica $A01N$                                                                                                                                                                                                                                                                                                                                                                                                                                    | tion symbols)                                                                                                                                                                                                                                                                                                                                                                                                       | ·                                                                                                                                                                                                                                                       |
| Documentati                                                                        | on searched other than minimum documentation to the extent that                                                                                                                                                                                                                                                                                                                                                                                                                                             | such documents are included in the fields                                                                                                                                                                                                                                                                                                                                                                           | searched                                                                                                                                                                                                                                                |
| Electronic da                                                                      | ata base consulted during the international search (name of data t                                                                                                                                                                                                                                                                                                                                                                                                                                          | base and, where practical, search terms us                                                                                                                                                                                                                                                                                                                                                                          | ed)                                                                                                                                                                                                                                                     |
| C. DOCUME                                                                          | ENTS CONSIDERED TO BE RELEVANT                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                         |
| Category *                                                                         | Citation of document, with indication, where appropriate, of the r                                                                                                                                                                                                                                                                                                                                                                                                                                          | relevant passages                                                                                                                                                                                                                                                                                                                                                                                                   | Relevant to claim No.                                                                                                                                                                                                                                   |
| X,P                                                                                | EP 0 764 404 A (ISHIHARA SANGYO<br>March 1997<br>see claims                                                                                                                                                                                                                                                                                                                                                                                                                                                 | KAISHA) 26                                                                                                                                                                                                                                                                                                                                                                                                          | 1-7                                                                                                                                                                                                                                                     |
| X                                                                                  | DATABASE WPI Section Ch, Week 8721 Derwent Publications Ltd., Lond Class CO2, AN 87-146807 XP002067319 & JP 62 084 004 A (KUMIAI CHEM cited in the application see abstract                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                     | 1-7                                                                                                                                                                                                                                                     |
|                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -/                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                         |
| X Fur                                                                              | ther documents are listed in the continuation of box C.                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Patent family members are list                                                                                                                                                                                                                                                                                                                                                                                      | sted in annex.                                                                                                                                                                                                                                          |
| * Special c  "A" docum consi "E" earlier filling "L" docum which citatis "O" docum | rategories of cited documents:  nent defining the general state of the art which is not idered to be of particular relevance or document but published on or after the international date ent which may throw doubts on priority claim(e) or his cited to establish the publication date of another on or other special reason (as specified) ment referring to an oral disclosure, use, exhibition or rimeans entitle published prior to the international filling date but than the priority date claimed | "T" later document published after the or priority date and not in conflict cited to understand the principle invention  "X" document of particular relevance; carnot be considered revet or citivolve an inventive step when the "Y" document of particular relevance; carnot be considered to involve document is combined with one ments, such combined with one in the art.  "&" document member of the same p. | with the application but<br>or theory underlying the<br>the claimed invention<br>armst be considered to<br>ne document is taken alone<br>the claimed invention<br>an inventive step when the<br>or more other such docu-<br>obvious to a person skilled |
|                                                                                    | e actual completion of the international search                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Date of mailing of the internations                                                                                                                                                                                                                                                                                                                                                                                 | al search report                                                                                                                                                                                                                                        |
|                                                                                    | 8 June 1998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 23/06/1998                                                                                                                                                                                                                                                                                                                                                                                                          | ·                                                                                                                                                                                                                                                       |
| Name and                                                                           | d mailing address of the ISA  European Patent Office, P.B. 5818 Patentlaan 2  NL - 2280 HV Rijswijk  Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016                                                                                                                                                                                                                                                                                                                                      | Decorte, D                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                         |

I hattonal Application No
PCT/EP 98/00413

|            |                                                                                                                                                                           | PC1/EP 98/00413       |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
|            | ation) DOCUMENTS CONSIDERED TO BE RELEVANT                                                                                                                                | Relevant to claim No. |
| Category * | Citation of document, with indication, where appropriate, of the relevant passages                                                                                        | Helevant to claim No. |
| X<br>-     | DATABASE WPI Section Ch, Week 9346 Derwent Publications Ltd., London, GB; Class C03, AN 93-365099 XP002067320 & JP 05 271 021 A (ISHIHARA SANGYO KAISHA LTD) see abstract | 1-7                   |
| X          | EP 0 367 887 A (CIBA GEIGY AG) 16 May 1990 see claims 1,8                                                                                                                 | 1-7                   |
| Χ .        | WO 90 00007 A (DU PONT) 11 January 1990<br>see claims 11-15<br>see page 3, line 16 - line 29                                                                              | 1-7                   |
| X          | WO 91 04666 A (HOECHST AG) 18 April 1991<br>see page 13, line 27 - line 34<br>see page 14, line 11 - page 15, line 4                                                      | 1-7                   |
|            |                                                                                                                                                                           |                       |
|            |                                                                                                                                                                           |                       |
|            |                                                                                                                                                                           |                       |
|            |                                                                                                                                                                           |                       |
|            |                                                                                                                                                                           |                       |
|            |                                                                                                                                                                           |                       |
|            |                                                                                                                                                                           |                       |
|            |                                                                                                                                                                           |                       |
|            |                                                                                                                                                                           |                       |
|            |                                                                                                                                                                           |                       |
|            |                                                                                                                                                                           |                       |
|            |                                                                                                                                                                           |                       |
|            |                                                                                                                                                                           |                       |
|            |                                                                                                                                                                           |                       |
|            |                                                                                                                                                                           |                       |
|            |                                                                                                                                                                           |                       |
|            | ·                                                                                                                                                                         |                       |
|            |                                                                                                                                                                           |                       |
|            |                                                                                                                                                                           |                       |
|            |                                                                                                                                                                           |                       |

information on patent family members

li intional Application No PCT/EP 98/00413

| Patent document<br>cited in search report |   | Publication<br>date | Patent family member(s)      | Publication<br>date      |
|-------------------------------------------|---|---------------------|------------------------------|--------------------------|
| EP 0764404                                | Α | 26-03-1997          | JP 9143015 A<br>NZ 299408 A  | 03-06-1997<br>27-07-1997 |
| EP 0367887                                | Α | 16-05-1990          | US 4933000 A                 | <br>12 <b>-</b> 06-1990  |
|                                           |   |                     | AU 625412 B                  | 09-07-1992               |
|                                           |   |                     | AU 2588688 A                 | 08-02-1990               |
|                                           |   |                     | CA 1333225 A                 | 29-11-1994               |
|                                           |   |                     | DE 3888834 D                 | 05-05-1994               |
|                                           |   |                     | ES 2061726 T                 | 16-12-1994               |
|                                           |   |                     | JP 2048506 A                 | 19-02-1990               |
|                                           |   |                     | JP 2519519 B                 | 31-07-1996               |
|                                           |   |                     | KR 9707931 B                 | 19-05-1997               |
|                                           |   |                     | MX 173842 B                  | 30-03-1994               |
| WO 9000007                                | Α | 11-01-1990          | AT 110930 T                  | 15-09-1994               |
|                                           |   |                     | AU 626551 B                  | 06-08-1992               |
|                                           |   |                     | AU 3691189 A                 | 23-01-1990               |
|                                           |   |                     | CA 1337458 A                 | 31-10-1995               |
|                                           |   |                     | CN 1039948 A                 | 28-02-1990               |
|                                           |   |                     | DE 68918098 D                | 13-10-1994               |
|                                           |   |                     | DE 68918098 T                | 16-02-1995               |
|                                           |   |                     | DK 306390 A<br>EP 0422026 A  | 15-02-1991<br>17-04-1991 |
|                                           | • |                     | EP 0422026 A<br>GR 1000769 B | 30-12-1992               |
|                                           |   |                     | HU 208610 B                  | 28-12-1993               |
|                                           |   |                     | IE 65917 B                   | 29-11-1995               |
| •                                         |   |                     | JP 2538084 B                 | 25-09-1996               |
|                                           |   |                     | JP 3505451 T                 | 28-11-1991               |
|                                           |   |                     | LT 685 A,                    |                          |
|                                           |   |                     | LV 10360 A,                  | B 20-02-1995             |
|                                           |   |                     | PT 90991 A,                  | B 29-12-1989             |
|                                           |   |                     | SK 390489 A                  | 14-01-1998               |
|                                           |   |                     | RU 2093028 C                 | 20-10-1997               |
| •                                         |   | •                   | TR 24956 A                   | 01-09-1992               |
|                                           |   |                     | US 5180587 A                 | 19-01-199:               |
| WO 9104666                                | Α | 18-04-1991          | DE 3933543 A                 | 11-04-1991               |
|                                           |   |                     | CN 1051287 A                 | 15-05-1991               |
|                                           |   |                     | EP 0494988 A                 | 22-07-1992               |
|                                           |   |                     | EP. 0809938 A                | 03-12-1997               |

Information on patent family members

Ir ational Application No PCT/EP 98/00413

| Patent document<br>cited in search report | Publication<br>date | Patent family member(s) |                                    | Publication date                       |
|-------------------------------------------|---------------------|-------------------------|------------------------------------|----------------------------------------|
| WO 9104666 A                              |                     | EP<br>JP<br>MX          | 0818146 A<br>5500671 T<br>172850 B | 14-01-1998<br>12-02-1993<br>17-01-1994 |
|                                           |                     |                         |                                    |                                        |

In ationales Aktenzeichen PCT/EP 98/00413

| A. KLASSIF<br>IPK 6 | FIZIERUNG DES ANMELDUNGSGEGENSTANDES<br>A01N47/36                                                                                  |                                                                                       | ,                                                           |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------|
| Nach der Int        | ternationalen Patentklassilikation (IPK) oder nach der nationalen Klass                                                            | iifikation und der iPK                                                                |                                                             |
| B. RECHER           | RCHIERTE GEBIETE                                                                                                                   |                                                                                       |                                                             |
|                     | ter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole                                                             | ə )                                                                                   |                                                             |
| IPK 6               | AOIN                                                                                                                               |                                                                                       |                                                             |
| Recherchler         | te aber nicht zum Mindestprüfstoffgehörende Veröffentlichungen, sow                                                                | veit diese unter die recherchierten Gebiete f                                         | allen                                                       |
| Während de          | er internationalen Recherche konsultierte elektronische Datembank (Na                                                              | ume der Datenbank und evtl. verwendete S                                              | ouchbegriffe)                                               |
| C. ALS WE           | ESENTLICH ANGESEHENE UNTERLAGEN                                                                                                    |                                                                                       |                                                             |
| Kategorie*          | Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe                                                                 | der in Betracht kommenden Teile                                                       | Betr. Anspruch Nr.                                          |
|                     | -                                                                                                                                  |                                                                                       | ·                                                           |
| <u>,</u> X,P        | EP 0 764 404 A (ISHIHARA SANGYO K<br>26.März 1997<br>siehe Ansprüche                                                               | AISHA)                                                                                | 1-7                                                         |
| l x                 | DATABASE WPI                                                                                                                       |                                                                                       | 1-7                                                         |
| ^                   | Section Ch. Week 8721                                                                                                              | ·                                                                                     | 1-7                                                         |
|                     | Derwent Publications Ltd., London                                                                                                  | GR ·                                                                                  |                                                             |
|                     | Class CO2, AN 87-146807                                                                                                            | , <b>GD</b> ,                                                                         |                                                             |
| 1                   | XP002067319                                                                                                                        |                                                                                       |                                                             |
|                     | & JP 62 084 004 A (KUMIAI CHEM IN                                                                                                  | ת בס ו דם )                                                                           |                                                             |
|                     | in der Anmeldung erwähnt<br>siehe Zusammenfassung                                                                                  |                                                                                       |                                                             |
|                     | STETIC Zusandhetti ussurig                                                                                                         |                                                                                       |                                                             |
| 1                   | _                                                                                                                                  | /                                                                                     |                                                             |
|                     |                                                                                                                                    | <b>*</b>                                                                              |                                                             |
|                     |                                                                                                                                    |                                                                                       |                                                             |
|                     |                                                                                                                                    |                                                                                       |                                                             |
|                     | ·                                                                                                                                  | ·                                                                                     |                                                             |
|                     |                                                                                                                                    |                                                                                       |                                                             |
| <u></u>             |                                                                                                                                    |                                                                                       |                                                             |
|                     | itere Veröffentlichungen sind der Fortsetzung von Feld C zu<br>nehmen                                                              | X Siehe Anhang Patentfamilie                                                          |                                                             |
|                     |                                                                                                                                    | To Spätere Veröffentlichung, die nach dem                                             | internationalen Anmeldedatum                                |
| A* Veröns<br>aber   | entlichung, die den aligemeinen Stand der Technik definiert,<br>nicht als besonders bedeutsam anzusehen ist                        | oder dem Prioritätsdatum veröffentlicht<br>Anmeldung nicht kollidiert, sondern nu     | r zum Verständnis des der                                   |
| "E" ālteres         | Dokument, das jedoch erst am oder nach dem internationalen                                                                         | Erlindung zugrundellegenden Prinzips<br>Theorie angegeben ist                         | •                                                           |
|                     | eldedatum veröffentlicht worden ist<br>entlichung, die geeignet ist, einen Prioritätsanspruch zwellelhaft er-                      | "X" Veröffentlichung von besonderer Bodek<br>kann allein aufgrund dieser Veröffentlik | dung; die boanspruchte Erfindung                            |
| a adma k            | man me langan adap di pula dia dan Manifesiah mandah manalah me                                                                    | and had a dealer of \$20 belong to the analysis of the second                         | - b b - B                                                   |
|                     | ren im Recherchenbertcht genannten Veröffentlichung belegt werden<br>der die aus einem anderen besonderen Grund angegeben ist (wie | cann nicht als auf eningenscher Latiox                                                | eu derunend deirachtet                                      |
| O Veròffe           | effihrt)<br>entlichung, die sich auf eine mündliche Offenbarung,                                                                   | werden, wenn die Veröffentlichung mit<br>Veröffentlichungen dieser Kategorie in       | einer oder mehreren anderen<br>Verbindung gebracht wird und |
| eine 8              | Benutzung, eine Ausstellung oder andere Maßnahmen bezieht<br>entlichung, die vor dem internationalen Anmeldedatum, aber nach       | diese Verbindung für einen Fachmann                                                   | naheliegend ist                                             |
| demt                | beanspruchten Prioritätsdatum veröffentlicht worden ist                                                                            | *&* Veröffentlichung, die Mitglied derselber                                          | <del></del>                                                 |
| Datum des           | Abschlusses der internationalen Recherche                                                                                          | Absendedatum des internationalen Re                                                   | cherchenberichts                                            |
| 8                   | 3.Juni 1998                                                                                                                        | 23/06/1998                                                                            |                                                             |
| Name und            | Postanschrift der Internationalen Recherchenbehörde                                                                                | Bevollmächtigter Bediensteter                                                         |                                                             |
|                     | Europäisches Patentamt, P.B. 5818 Patentlaan 2<br>NL · 2280 HV Rijswijk                                                            |                                                                                       |                                                             |
|                     | Tel. (+31-70) 340-2040, Tx. 31 651 epo rd,<br>Fex: (+31-70) 340-3016                                                               | Decorte, D                                                                            |                                                             |

Int tionales Aktenzeichen
PCT/EP 98/00413

|                        | ung) ALS WESENTLICH ANGESEHENE UNTERLAGEN  Bezeichnung der Veröffentlichung, soweit erforderlich unter Angebe der in Betracht kommenden Teile                                      | Betr. Anspruch Nr. |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| (ategorie <sup>2</sup> | Bezeittnung der Veronentlichung, soweit enorderlich unter Angabe der in Betracht kommenden Tede                                                                                    | Beir. Anspruch Nr. |
| X                      | DATABASE WPI Section Ch, Week 9346 Derwent Publications Ltd., London, GB; Class CO3, AN 93-365099 XP002067320 & JP 05 271 021 A (ISHIHARA SANGYO KAISHA LTD) siehe Zusammenfassung | 1-7                |
|                        | EP 0 367 887 A (CIBA GEIGY AG) 16.Mai 1990<br>siehe Ansprüche 1,8                                                                                                                  | 1-7                |
| (                      | WO 90 00007 A (DU PONT) 11.Januar 1990 - siehe Ansprüche 11-15 - siehe Seite 3, Zeile 16 - Zeile 29                                                                                | 1-7                |
| ( <sup>:</sup>         | WO 91 04666 A (HOECHST AG) 18 April 1991<br>siehe Seite 13, Zeile 27 - Zeile 34<br>siehe Seite 14, Zeile 11 - Seite 15, Zeile                                                      | 1-7                |
|                        |                                                                                                                                                                                    |                    |
|                        |                                                                                                                                                                                    |                    |
|                        |                                                                                                                                                                                    |                    |
|                        |                                                                                                                                                                                    |                    |
|                        |                                                                                                                                                                                    |                    |
|                        |                                                                                                                                                                                    |                    |
|                        |                                                                                                                                                                                    |                    |
|                        |                                                                                                                                                                                    |                    |
|                        |                                                                                                                                                                                    | · ·                |
|                        |                                                                                                                                                                                    |                    |
|                        |                                                                                                                                                                                    |                    |
|                        |                                                                                                                                                                                    | •                  |
| •                      |                                                                                                                                                                                    |                    |
|                        |                                                                                                                                                                                    |                    |
|                        |                                                                                                                                                                                    |                    |
|                        | ·                                                                                                                                                                                  |                    |
|                        |                                                                                                                                                                                    |                    |
|                        |                                                                                                                                                                                    |                    |
|                        |                                                                                                                                                                                    |                    |
|                        |                                                                                                                                                                                    |                    |
|                        |                                                                                                                                                                                    |                    |
|                        |                                                                                                                                                                                    |                    |
|                        |                                                                                                                                                                                    |                    |
|                        |                                                                                                                                                                                    |                    |
|                        |                                                                                                                                                                                    |                    |
|                        |                                                                                                                                                                                    |                    |

Angaben zu Veroffentlichungen, die zur selben Patentlamilie gehören

Irr tionales Aktenzeichen PCT/EP 98/00413

|    | echerchenberich<br>rtes Patentdokur |   | Datum der<br>Veröffentlichung |          | tglied(er) der<br>atentfamilie | Datum der<br>Veröffentlichung |
|----|-------------------------------------|---|-------------------------------|----------|--------------------------------|-------------------------------|
| EP | 0764404                             | Α | 26-03-1997                    | JP       | 9143015 A                      | 03-06-1997                    |
|    |                                     |   |                               | NZ       | 299408 A                       | 27-07-1997                    |
| EP | 0367887                             | Α | 16-05-1990                    | · US     | 4933000 <sub>.</sub> A         | 12-06-1990                    |
|    |                                     |   |                               | AU       | 625412 B                       | 09-07-1992                    |
|    |                                     |   |                               | AU       | 2588688 A                      | 08-02-1990                    |
|    |                                     |   |                               | CA       | 1333225 A                      | 29-11-1994                    |
|    |                                     |   |                               | DE       | 3888834 D                      | 05-05-1994                    |
|    |                                     |   |                               | ES       | 2061726 T                      | 16-12-1994                    |
|    |                                     |   |                               | JP       | 2048506 A                      | 19-02-1990                    |
|    |                                     | • |                               | JP       | 2519519 B                      | 31-07-1996                    |
|    |                                     |   |                               | KR       | 9707931 B                      | 19-05-1997                    |
|    |                                     |   |                               | MX       | 173842 B                       | 30-03-1994                    |
| WQ | 9000007                             | Α | 11-01-1990                    | AT       | 110930 T                       | 15-09-1994                    |
|    |                                     |   | •                             | AU       | 626551 B                       | 06-08-1992                    |
|    |                                     |   |                               | AU       | 3691189 A                      | 23-01-1990                    |
|    |                                     |   |                               | CA       | 1337458 A                      | 31-10-1995                    |
|    |                                     |   |                               | CN       | 1039948 A                      | 28-02-1990                    |
|    |                                     |   |                               | DE       | 68918098 D                     | 13-10-1994                    |
|    |                                     |   |                               | DE       | 68918098 T                     | 16-02-1995                    |
|    | •                                   |   |                               | .DK      | 306390 A                       | 15-02-1991                    |
|    |                                     |   |                               | EP       | 0422026 A                      | 17-04-1991                    |
|    |                                     |   |                               | GR       | 1000769 B                      | 30-12-1992                    |
|    |                                     |   |                               | HŪ       | 208610 B                       | 28-12-1993                    |
|    |                                     |   |                               | IE.      | 65917 B                        | 29-11-1995                    |
|    |                                     |   |                               | JP       | 2538084 B                      | 25-09-1996                    |
|    |                                     |   |                               | JP       | 3505451 T                      | 28-11-1991                    |
|    |                                     | • |                               | LT<br>LV | 685 A,B<br>10360 A,B           | 31-01-1995                    |
|    |                                     |   |                               | PT       |                                | 20-02-1995<br>29-12-1989      |
|    |                                     |   |                               | SK       | . 90991 A,B<br>390489 A        | 14-01-1998                    |
|    |                                     |   |                               | RU       | 2093028 C                      | 20-10-1997                    |
|    |                                     |   |                               | TR       | 2093026 C<br>24956 A           | 01-09-1992                    |
|    |                                     |   |                               | US       | 5180587 A                      | 19-01-1993                    |
|    | · <del>-</del>                      |   |                               |          | J100307 K                      | 13 01-1333                    |
| WO | 9104666                             | Α | 18-04-1991                    | DE       | 3933543. A                     | 11-04-1991                    |
|    |                                     |   |                               | CN       | 1051287 A                      | 15-05-1991                    |
|    |                                     |   | •                             | EP       | 0494988 A                      | 22-07-1992                    |
|    |                                     |   |                               | EP.      | 0809938 A                      | 03-12-1997                    |

Angaben zu veronentschungen, die zur selben Patentfamilie gehören

In tionales Aktenzeichen
PCT/EP 98/00413

| Angaben zu veronentschungen, die zur selben Patentfamilie gehören |                               |                | PCT/EP                             | PCT/EP 98/00413                        |  |  |
|-------------------------------------------------------------------|-------------------------------|----------------|------------------------------------|----------------------------------------|--|--|
| Im Recherchenbericht angeführtes Patentdokument                   | Datum der<br>Veröffentlichung | Mitç<br>Pa     | glied(er) der<br>tentfamilie       | Datum der<br>Veröffentlichung          |  |  |
| WO 9104666 A                                                      |                               | EP<br>JP<br>MX | 0818146 A<br>5500671 T<br>172850 B | 14-01-1998<br>12-02-1993<br>17-01-1994 |  |  |
|                                                                   |                               |                |                                    |                                        |  |  |
|                                                                   |                               |                |                                    |                                        |  |  |
|                                                                   |                               |                |                                    |                                        |  |  |
|                                                                   |                               |                |                                    |                                        |  |  |
|                                                                   |                               |                |                                    | •                                      |  |  |
|                                                                   |                               |                |                                    |                                        |  |  |
| ·                                                                 | •                             |                |                                    |                                        |  |  |
|                                                                   |                               |                | •                                  |                                        |  |  |
|                                                                   |                               |                |                                    |                                        |  |  |
|                                                                   |                               | •              |                                    | ,                                      |  |  |
|                                                                   |                               |                |                                    | ٠.                                     |  |  |
| ·<br>-                                                            |                               |                |                                    |                                        |  |  |
|                                                                   |                               |                |                                    |                                        |  |  |
| <del>-</del> ,                                                    |                               |                |                                    |                                        |  |  |
|                                                                   |                               |                |                                    |                                        |  |  |
|                                                                   |                               |                |                                    |                                        |  |  |
|                                                                   |                               |                |                                    |                                        |  |  |
|                                                                   |                               |                |                                    |                                        |  |  |
|                                                                   |                               |                |                                    |                                        |  |  |
|                                                                   |                               |                |                                    |                                        |  |  |
|                                                                   |                               |                |                                    |                                        |  |  |
|                                                                   |                               |                |                                    |                                        |  |  |