Grundbegriffe der Theoretischen Informatik

Sommersemester 2018 - Thomas Schwentick

Teil A: Reguläre Sprachen

5: Abschlusseigenschaften, Grenzen und Algorithmen

Version von: 26. April 2018 (14:18)

 Das Verhalten von vielen praktischen Systemen kann durch DFAs oder NFAs abstrahiert/beschrieben werden

Kaffeemaschine als DFA

 Oft möchten wir Eigenschaften solcher Systeme automatisch überprüfen

Einleitung (1/2)

Beispiel

- Die Maschine soll nur Kaffee ausgießen, wenn (seit dem letzten Kaffee) eine Münze eingeworfen wurde
- Diese Eigenschaft lässt sich durch einen RE ausdrücken:

$$oldsymbol{-} R \stackrel{ ext{def}}{=} (S^* ext{ m\"unze } S^* ext{ gieße } S^*)^*$$

- ullet Lässt sich automatisch überprüfen, ob der Automat die durch R ausgedrückte Eigenschaft erfüllt?
- ullet Formal führt das zur Frage: Ist $oldsymbol{L}(oldsymbol{A})\subseteq oldsymbol{L}(oldsymbol{R})$?
- ullet Äquivalent: Ist $oldsymbol{L}(oldsymbol{A}) \cap (oldsymbol{\Sigma^*} oldsymbol{L}(oldsymbol{R})) = arnothing$?
- Es wäre also praktisch, eine Toolbox für Automaten zu haben
 - Schnitt, Vereinigung, Komplement, etc.
 - Testalgorithmen...

Einleitung (2/2)

 Wir setzen in diesem Kapitel die Untersuchung der Klasse der regulären Sprachen fort

Wir betrachten

- algorithmische Methoden, mit denen sich reguläre Sprachen kombinieren und modifizieren lassen
- eine weitere, einfache Methode zum Nachweis, dass eine Sprache nicht regulär ist
- Algorithmen zum Testen von Eigenschaften einer durch einen Automaten gegebenen Sprache

Inhalt

- > 5.1 Abschlusseigenschaften und Synthese von Automaten
 - 5.2 Grenzen der Regulären Sprachen
 - 5.3 Weitere Algorithmen für Automaten

Größenmaße für Automaten

- Der Aufwand der in diesem Kapitel betrachteten Algorithmen wird in Abhängigkeit von der Größe der Eingabe beschrieben
- Wenn Die Eingabe aus Automaten besteht, stellt sich also die Frage:
 - Wie "groß" ist ein endlicher Automat ${\cal A}=(Q,\Sigma,\delta,s,F)$?
- Es können verschiedene Größenmaße definiert werden:
 - Anzahl der Zustände: |Q|
 - Anzahl der Transitionen: $|\delta|$
 - Größe der Kodierung des Automaten als Bitstring
- Wir verwenden hier nur die ersten beiden Maße und geben das verwendete Maß jeweils explizit an
- Für reguläre Ausdrücke α bezeichnet $|\alpha|$ einfach die Länge des Strings
 - Also: $|(ab)^*c(d+\epsilon)|=11$

Synthese endlicher Automaten: Boolesche Operationen (1/3)

- Wir betrachten jetzt, auf welche Weisen aus regulären Sprachen neue reguläre Sprachen gewonnen werden können
- Uns interessiert also:
 - Unter welchen Operationen ist die Klasse der regulären Sprachen abgeschlossen ist?
 - Mit welchen Algorithmen lassen sich solche Operationen ausführen?
- Wichtig: es geht im Folgenden nicht um Abschlusseigenschaften von einzelnen Sprachen sondern um Abschlusseigenschaften der Klasse aller regulären Sprachen

- Wir beginnen mit Booleschen Operationen
- Reguläre Ausdrücke haben einen Operator für die Vereinigung
 - ➡ Die Vereinigung zweier regulärer Sprachen ist regulär
- Um reguläre Sprachen algorithmisch gut "verarbeiten" zu können, ist es wichtig, dass auch der Durchschnitt zweier regulärer Sprachen und das Komplement einer regulären Sprache wieder regulär sind
- Außerdem sollten diese Booleschen Operationen auf der Ebene endlicher Automaten möglichst effizient ausgeführt werden können

Synthese endlicher Automaten: Boolesche Operationen (2/3)

Satz 5.1

- ullet Seien ${\cal A}_1=(Q_1,\Sigma,\delta_1,s_1,F_1)$ und ${\cal A}_2=(Q_2,\Sigma,\delta_2,s_2,F_2)$ DFAs
- Dann lassen sich Automaten für die folgenden Sprachen konstruieren:
 - (a) für $L(\mathcal{A}_1)\cap L(\mathcal{A}_2)$ mit $|Q_1||Q_2|$ Zuständen in Zeit $\mathcal{O}(|Q_1||Q_2||\Sigma|)$
 - (b) für $L(\mathcal{A}_1) \cup L(\mathcal{A}_2)$ mit $|Q_1||Q_2|$ Zuständen in Zeit $\mathcal{O}(|Q_1||Q_2||\Sigma|)$
 - (c) für $\Sigma^* L(\mathcal{A}_1)$ mit $|Q_1|$ Zuständen in Zeit $\mathcal{O}(|Q_1|)$

Folgerung 5.2

- Die regulären Sprachen sind unter Durchschnitt, Vereinigung und Komplementbildung abgeschlossen
- (a) und (b) gelten auch für NFAs
 - Für den Beweis von (a) und (b) verwenden wir das Konzept des Produktautomaten

Produktautomat: Beispiel

• Ein DFA für die Menge aller Strings, die 010 als Teilstring enthalten und gerade viele Nullen haben:

• Um einen DFA für die oben genannte Sprache zu erhalten, muss af als akzeptierender Zustand gewählt werden

Synthese endlicher Automaten: Boolesche Operationen (3/3)

Definition (Produktautomat)

- ullet Seien $oldsymbol{\mathcal{A}_1}=(oldsymbol{Q_1},oldsymbol{\Sigma},oldsymbol{\delta_1},oldsymbol{s_2},oldsymbol{s_1},oldsymbol{s_2},oldsymbol{s_1},oldsymbol{s_2},oldsymbol{s_2},oldsymbol{s_2},oldsymbol{s_2},oldsymbol{s_2},oldsymbol{s_2},oldsymbol{s_2},oldsymbol{s_2},oldsymbol{s_2},oldsymbol{s_2},oldsymbol{s_2},oldsymbol{s_2},oldsymbol{s_2},oldsymbol{s_2},oldsymbol{s_2},oldsymbol{s_2},oldsymbol{$
- ullet Sei $F\subseteq Q_1 imes Q_2$

ist. d.h.:

- $\begin{array}{l} \bullet \ \, \text{Der Produktautomat zu } \mathcal{A}_1 \ \, \text{und } \mathcal{A}_2 \\ \text{mit akzeptierender Menge } F \ \, \text{ist der} \\ \text{DFA } \mathcal{B} \stackrel{\text{\tiny def}}{=} \\ (Q_1 \times Q_2, \Sigma, \delta_{\mathcal{B}}, (s_1, s_2), F), \\ \text{wobei } \delta_{\mathcal{B}} \ \, \text{komponentenweise definiert} \\ \end{array}$
 - Für $q_1 \in Q_1$ und $q_2 \in Q_2$ sei $\delta_{\mathcal{B}}((q_1,q_2),\sigma) \stackrel{ ext{def}}{=} (\delta_1(q_1,\sigma),\delta_2(q_2,\sigma))$
- Wir schreiben manchmal $\mathcal{A}_1 \times \mathcal{A}_2$ für den Produktautomaten, ohne eine akzeptierende Zustandsmenge zu spezifizieren

Beweis von Satz 5.1

- Wir beweisen zunächst Teil (a): Durchschnitt
- ullet Sei ${\mathcal B}$ der Produktautomat zu ${\mathcal A}_1$ und ${\mathcal A}_2$ mit akzeptierender Menge $F_1 imes F_2$
- ullet Durch Induktion lässt sich leicht zeigen, dass für alle $w\in \Sigma^*$ gilt:

$$\begin{array}{l} \pmb{\delta_{\mathcal{B}}^*((s_1,s_2),w)} = \\ & (\pmb{\delta_1^*(s_1,w)}, \pmb{\delta_2^*(s_2,w)}) \end{array}$$

• Es folgt:

$$egin{aligned} w \in L(\mathcal{A}_1) \cap L(\mathcal{A}_2) \ &\iff \delta_1^*(s_1,w) \in F_1 ext{ und } \delta_2^*(s_2,w) \in F_2 \ &\iff (\delta_1^*(s_1,w),\delta_2^*(s_2,w)) \in F_1 imes F_2 \ &\iff \delta_\mathcal{B}^*((s_1,s_2),w) \in F_1 imes F_2 \ &\iff w \in L(\mathcal{B}) \end{aligned}$$

- ullet Teil (b) ist analog, mit akzeptierender Menge $(oldsymbol{F_1} imesoldsymbol{Q_2}) \cup (oldsymbol{Q_1} imesoldsymbol{F_2})$
- ullet Teil (c) ist noch einfacher: Wähle $(Q_1, \Sigma, \delta_1, s_1, Q_1 F_1)$ als DFA

Zum Verständnis des Produktautomaten

PINGO-Frage: pingo.upb.de

• Wie muss die akzeptierende Menge F des Produktautomaten gewählt werden, damit er die Menge aller Strings akzeptiert, die von einem der DFAs \mathcal{A}_1 und \mathcal{A}_2 akzeptiert wird, aber nicht vom anderen?

(A)
$$(oldsymbol{F_1}-oldsymbol{F_2}) \cup (oldsymbol{F_2}-oldsymbol{F_1})$$

(B)
$$(oldsymbol{Q_1} imesoldsymbol{Q_2})-(oldsymbol{F_1} imesoldsymbol{F_2})$$

(C)
$$(oldsymbol{Q_1} imes oldsymbol{F_2}) \cup (oldsymbol{F_1} imes oldsymbol{Q_2})$$

(D)
$$(oldsymbol{Q_1} imes (oldsymbol{Q_2} - oldsymbol{F_2})) \cup ((oldsymbol{Q_1} - oldsymbol{F_1}) imes oldsymbol{Q_2})$$

(E)
$$(oldsymbol{F_1} imes (oldsymbol{Q_2} - oldsymbol{F_2})) \cup ((oldsymbol{Q_1} - oldsymbol{F_1}) imes oldsymbol{F_2})$$

Synthese endlicher Automaten: Konkatenation und Iteration

 Die Definition regulärer Ausdrücke garantiert auch den Abschluss der Klasse der regulären Sprachen unter Konkatenation und Stern

Satz 5.3

- ullet Seien ${\cal A}_1$ und ${\cal A}_2$ DFAs (oder NFAs) für Sprachen L_1 und L_2
- ullet Dann lassen sich NFAs (oder DFAs) für $L_1\circ L_2$ und L_1^* konstruieren

Beweisidee

- ullet Ein DFA für $L_1 \circ L_2$ kann in zwei Schritten gewonnen werden:
 - 1. Verknüpfung von \mathcal{A}_1 und \mathcal{A}_2 durch ϵ Übergänge von der akzeptierenden Zuständen von \mathcal{A}_1 zum Startzustand von \mathcal{A}_2
 - Wie bei der Umwandlung von REs in ϵ -NFAs
 - 2. Determinisierung des entstandenen ϵ -NFAs
- ullet L_1^* : analog

Abschlusseigenschaften: Homomorphismen (1/3)

- Wir betrachten nun weitere Abschlusseigenschaften der Klasse der regulären Sprachen, die vor allem für theoretische Zwecke hilfreich sind:
 - Abschluss unter Homomorphismen
 - Abschluss unter inversen Homomorphismen

Definition (Homomorphismus)

- ullet Eine Funktion $h:\Sigma^* o \Gamma^*$ ist ein **Homomorphismus**, wenn für alle Strings $u,v\in\Sigma^*$ gilt: h(uv)=h(u)h(v)
- ullet Aus der Definition folgt: $oldsymbol{h}(oldsymbol{\epsilon}) = oldsymbol{\epsilon}$
- ullet Zur Definition eines Homomorphismus von Σ^* nach Γ^* genügt es, $h(\sigma)$ für alle $\sigma \in \Sigma$ festzulegen
- $m{ullet}$ Dadurch ist $m{h}(m{w})$ auch für beliebige Strings $m{w} = m{\sigma_1} \cdots m{\sigma_n}$ eindeutig festgelegt: $m{h}(m{w}) = m{h}(m{\sigma_1}) \cdots m{h}(m{\sigma_n})$

Beispiel

- $h: \{a, b, c, d\}^* \to \{0, 1\}^*$
- Definiert durch:
 - $m{-}m{h}(m{a})\stackrel{ ext{def}}{=}m{0}m{0}$
 - $h(b) \stackrel{\mathsf{def}}{=} 1$
 - $h(c) \stackrel{ ext{def}}{=} \epsilon$
 - $-h(d)\stackrel{ ext{def}}{=} 0110$
- ullet Dann: h(abdc)=0010110
- ullet Für $L\subseteq oldsymbol{\Sigma}^*$ sei $oldsymbol{h(L)}\stackrel{ ext{def}}{=}\{oldsymbol{h(w)}\mid oldsymbol{w}\in L\}$
- ullet Für $L\subseteq \Gamma^*$ sei $m{h^{-1}(L)}\stackrel{ ext{def}}{=} \{m{w}\mid m{h}(m{w})\in L\}$
- ullet Wir werden sehen: aus einem DFA für L lassen sich leicht konstruieren:
 - ein DFA für $oldsymbol{h^{-1}(L)}$ und
 - ein NFA für $oldsymbol{h}(oldsymbol{L})$
- ightharpoonup h(L) und $h^{-1}(L)$ regulär

Abschlusseigenschaften: Homomorphismen (2/3)

DFA für $oldsymbol{h_1^{-1}(L)}$

DFA für $m{L}$

Abschlusseigenschaften: Homomorphismen (3/3)

Satz 5.4

- ullet Ist L eine reguläre Sprache über Σ und ist Γ ein Alphabet, so sind die folgenden Sprachen regulär:
 - (a) h(L), für jeden Homomorphismus $h:\Sigma^* o \Gamma^*$,
 - (b) $h^{-1}(L)$, für jeden Homomorphismus $h:\Gamma^* o\Sigma^*$,

Beweisidee

- (b) Sei $\mathcal{A} = (Q, \Sigma, \delta, s, F)$ DFA für L
 - Wir definieren $\mathcal{A}'\stackrel{ ext{ iny def}}{=}(Q,\Gamma,\delta',s,F)$ durch:

$$oldsymbol{\delta'(q,\sigma)} \stackrel{ ext{ iny def}}{=} oldsymbol{\delta^*(q,h(\sigma))}$$

- Dann gilt: $oldsymbol{\delta'^*}(s, oldsymbol{w}) = oldsymbol{\delta^*}(s, oldsymbol{h}(oldsymbol{w}))$
- Also: $oldsymbol{w} \in oldsymbol{L}(\mathcal{A}') \iff oldsymbol{h}(oldsymbol{w}) \in oldsymbol{L}(\mathcal{A})$
- (a) Idee:
 - Ersetze die Transition $oldsymbol{\delta}(oldsymbol{q},oldsymbol{\sigma})$ durch eine Folge von Transitionen für $oldsymbol{h}(oldsymbol{\sigma})$
 - → neue Zustände einfügen

Synthese endlicher Automaten: Größe

- Die folgende Tabelle gibt eine Übersicht über die Größe der Zielautomaten (Anzahl Zustände) für die betrachteten Operationen
- Dabei spielt es eine Rolle, ob die gegebenen Automaten und der Zielautomat
 DFAs oder NFAs sind
- ullet Q_1 und Q_2 bezeichnen jeweils die Zustandsmengen für Automaten für L_1 und L_2
- ullet |h| und |S| bezeichnen jeweils die Größe der Repräsentation von h und S

	DFA → DFA	DFA → NFA	$NFA \rightarrow NFA$
$L_1 \cap L_2$	$oxed{\mathcal{O}(oldsymbol{Q_1} imes oldsymbol{Q_2})}$	$oxed{\mathcal{O}(oldsymbol{Q_1} imes oldsymbol{Q_2})}$	$\mathcal{O}(oldsymbol{Q_1} imes oldsymbol{Q_2})$
$ig oldsymbol{L_1} \cup oldsymbol{L_2}$	$ig \mathcal{O}(oldsymbol{Q_1} imes oldsymbol{Q_2}) $	$ig \mathcal{O}(oldsymbol{Q_1} + oldsymbol{Q_2}) $	$\mathcal{O}(oldsymbol{Q_1} + oldsymbol{Q_2})$
$ig L_1 - L_2$	$ig \mathcal{O}(oldsymbol{Q_1} imes oldsymbol{Q_2})$	$ig \mathcal{O}(oldsymbol{Q_1} imes oldsymbol{Q_2})$	$ Q_1 imes 2^{\mathcal{O}(Q_2)}$
$oldsymbol{L_1} \circ oldsymbol{L_2}$	$ig Q_1 imes 2^{\mathcal{O}(Q_2)}$	$oxed{\mathcal{O}(oldsymbol{Q_1} + oldsymbol{Q_2})}$	$\mathcal{O}(oldsymbol{Q_1} + oldsymbol{Q_2})$
$oldsymbol{L_1^*}$	$\mathbf{2^{\mathcal{O}(Q_1)}}$	$\mathcal{O}(oldsymbol{Q_1})$	$\mathcal{O}(oldsymbol{Q_1})$
$oldsymbol{h}(oldsymbol{L_1})$	$2^{\mathcal{O}(oldsymbol{Q_1} + oldsymbol{h})}$	$oldsymbol{\mathcal{O}}(oldsymbol{Q_1} + oldsymbol{h})$	$\mathcal{O}(oldsymbol{Q_1} + oldsymbol{h})$
$h^{-1}(L_1)$	$\mathcal{O}(oldsymbol{Q_1})$	$\mathcal{O}(oldsymbol{Q_1})$	$\mathcal{O}(oldsymbol{Q_1})$

Inhalt

- 5.1 Abschlusseigenschaften und Synthese von Automaten
- > 5.2 Grenzen der Regulären Sprachen
 - 5.3 Weitere Algorithmen für Automaten

Pumping-Lemma: Einleitung

- Wir haben mit dem Satz von Myhill und Nerode bereits eine Methode kennen gelernt, mit der wir überprüfen können, ob eine Sprache regulär ist
- $oldsymbol{oldsymbol{\Phi}}$ Damit haben wir gezeigt, dass die Sprache $oldsymbol{L_{ab}} = \{oldsymbol{a^mb^m} \mid oldsymbol{m} \geqslant oldsymbol{0}\}$ nicht regulär ist
- Wir werden jetzt mit dem Pumping-Lemma eine weitere Methode kennen lernen, mit der sich nachweisen lässt, dass eine gegebene Sprache nicht regulär ist

Vorteile:

- Recht einfach und anschaulich
- Lässt sich verallgemeinern für kontextfreie Sprachen
- Liefert interessante Einsicht über reguläre Sprachen

• Nachteile:

- Funktioniert nicht immer
- Lässt sich nicht zum Nachweis von Regularität verwenden

Pumping-Lemma: Grundidee (1/2)

- **Beobachtung:** Ein "Kreis" in einer akzeptierenden Berechnung lässt sich beliebig oft wiederholen
- Der akzeptierte String wird dabei "aufgepumpt" (oder "abgepumpt")

Pumping-Lemma: Grundidee (2/2)

- Etwas formaler:
 - Wenn $|w|\geqslant |Q|$ gilt, muss es einen Zustand geben, den der DFA beim Lesen von w (mindestens) zweimal besucht
 - Wenn der DFA beim Lesen eines Strings $w \in L(\mathcal{A})$ einen Zustand zweimal besucht, lässt w sich so in xyz zerlegen, dass gelten:
 - $*~y
 eq \epsilon$ und
 - st für alle $k\geqslant 0$ ist $xy^kz\in L(\mathcal{A})$
- Wenn L regulär ist, gibt es ein n, so dass sich jedes $w \in L$ mit $|w| \geqslant n$ in xyz zerlegen lässt, so dass gelten:
 - $y
 eq \epsilon$ und
 - für alle $k\geqslant 0$ ist $xy^kz\in L(\mathcal{A})$
- n ergibt sich hier als Größe |Q| der Zustandsmenge eines DFAs für L

Pumping-Lemma: Aussage und Beweis

Satz 5.5

- ullet Sei L regulär
- ullet Dann gibt es ein $m{n}$, so dass jeder String $m{w} \in m{L}$ mit $|m{w}| \geqslant m{n}$ auf mindestens eine Weise als $m{w} = m{x}m{y}m{z}$ geschrieben werden kann, so dass die folgenden Aussagen gelten:
 - (1) $y \neq \epsilon$
 - (2) $|xy| \leqslant n$
 - (3) für alle $k\geqslant 0$ ist $xy^kz\in L$
- Die Aussage des Pumping-Lemmas gilt auch in der Form:

$$w \notin L \ldots \Rightarrow \ldots xy^kz \notin L$$

Beweisskizze

ullet L regulär \Rightarrow

$$oldsymbol{L} = oldsymbol{L}(oldsymbol{\mathcal{A}})$$
 für einen DFA $oldsymbol{\mathcal{A}}$

- ullet Sei n die Anzahl der Zustände von ${\mathcal A}$
- ullet Sei $w\in L$ mit $|w|\geqslant n$
- ightharpoonup Beim Lesen der ersten n Zeichen von w muss sich ein Zustand wiederholen
- $lack \delta^*(s,x) = \delta^*(s,xy)$ für gewisse x,y,z mit w=xyz und (1) und (2)
- ullet Sei $oldsymbol{q} \stackrel{ ext{ iny def}}{=} oldsymbol{\delta}^*(oldsymbol{s},oldsymbol{x})$
- $ightharpoonup \delta^*(q,y) = q$
- $lackbox{lack} \delta^*(s,xy^kz) = \delta^*(s,xyz) \in \emph{\emph{F}}, \ ext{ für alle } \emph{\emph{k}} \geqslant \emph{\emph{0}}$
- **→** (3)

Pumping-Lemma: Anwendung (1/2)

 Für den Nachweis, dass eine gegebene Sprache nicht regulär ist, ist die folgende äquivalente Formulierung des Pumping-Lemmas besser geeignet

Korollar 5.6

- Sei L eine Sprache
- ullet Angenommen, für jedes n>0 gibt es einen String $w\in L$ mit $|w|\geqslant n$, so dass für jede Zerlegung w=xyz mit

(1)
$$y \neq \epsilon$$
 und

(2)
$$|xy| \leqslant n$$

ein $k\geqslant 0$ existiert, so dass $xy^kz\notin L$

- ullet Dann ist $oldsymbol{L}$ nicht regulär
- Da Korollar 5.6 die Kontraposition von Satz
 5.5 ist, folgt es direkt aus Satz 5.5

Beispiel

- ullet Sei wieder $L_{ab}\stackrel{ ext{ iny def}}{=} \{a^{oldsymbol{m}}b^{oldsymbol{m}}\mid m\geqslant 0\}$
- Sei n beliebig
- ullet Wir wählen $w=a^nb^n\in L_{ab}$

lacksquare w hängt von n ab!

- $ightharpoonup |w| = 2n \geqslant n$
 - ullet Seien nun x,y,z beliebige Strings mit w=xyz und für die gilt:

(1)
$$y + \epsilon$$

(2)
$$|xy| \leqslant n$$

- ullet Wegen (2) enthält $oldsymbol{y}$ kein $oldsymbol{b}$
- ullet Wegen (1) enthält $oldsymbol{y}$ mindestens ein $oldsymbol{a}$
- ullet Wähle k=0: $xy^0z=xz$
- Aber: xz hat mehr b als a
- $\Rightarrow xy^0z = xz \notin L_{ab}$
- $ightharpoonup L_{ab}$ ist nicht regulär

Pumping-Lemma: Anwendung (2/2)

Beispiel

- ullet Sei $L_{ab}\stackrel{ ext{def}}{=} \{a^mb^m\mid m\geqslant 0\}$
- Sei n beliebig
- ullet Sei $w=a^nb^n\in L_{ab}$
- $ightharpoonup |w| = 2n \geqslant n$
 - ullet Seien nun x,y,z beliebig mit w=xyz und:
 - (1) $y \neq \epsilon$
 - (2) $|xy| \leqslant n$
 - ullet Wegen (2) enthält $oldsymbol{y}$ kein $oldsymbol{b}$
 - ullet Wegen (1) enthält $oldsymbol{y}$ mindestens ein $oldsymbol{a}$
 - ullet Wähle k=0: $xy^0z=xz$
 - ullet Aber: xz hat mehr b als a
- $\Rightarrow xy^0z = xz \notin L_{ab}$
- $ightharpoonup L_{ab}$ ist nicht regulär

Anwendung des Pumping Lemmas

- n dürfen Sie nicht wählen
 - Der Beweis muss für beliebiges $oldsymbol{n}$ funktionieren
- ullet $w\in L$ dürfen Sie selbst (geschickt) wählen
 - Es muss in Abhängigigkeit von n gewählt werden ($|w|\geqslant n$)
 - st Dabei ist $m{n}$ für den Beweis eine Variable
- ullet x,y,z dürfen Sie **nicht** wählen
 - Wir wissen aber (und verwenden), dass
 (1) und (2) gelten
- ullet Zuletzt muss ein $oldsymbol{k}$ gefunden werden, für das $oldsymbol{x} oldsymbol{y}^{oldsymbol{k}} oldsymbol{z} \notin oldsymbol{L}$ gilt
 - Sehr oft ist hier eine Fallunterscheidung nötig:
 - st nach den Möglichkeiten, wie x,y,z den String w unterteilen

Das Pumping-Lemma als Spiel

- Das Pumping-Lemma ist zwar im Kern recht anschaulich, der Wechsel zwischen Existenz- und Allquantoren kann jedoch durchaus zu Verwirrung führen
- Es kann deshalb hilfreich sein, die Aussage des Pumping-Lemmas in ein 2-Personen-Spiel zu fassen

• Spiel für Sprache *L*:

- Person 1 wählt n
- Person 2 wählt ein $w \in L$ mit $|w| \geqslant n$
- Person 1 wählt x, y, z mit

$$w=xyz,y+\epsilon,|xy|\leqslant n$$

- Person 2 wählt $oldsymbol{k}$
- ullet Falls $xy^kz\notin L$, hat Person 2 gewonnen, andernfalls Person 1
- ullet Es gilt: falls Person 2 eine Gewinnstrategie hat, ist L nicht regulär
- ullet Wenn Sie nachweisen wollen, dass L nicht regulär ist, sind Sie Person 2

Grenzen des Pumping-Lemmas

- ullet Sei L die Sprache $\{a^mb^nc^n\mid m,n\geqslant 1\}\cup \{b^mc^n\mid m,n\geqslant 0\}$
- ullet Klar: $oldsymbol{L}$ ist nicht regulär
 - Das lässt sich durch eine leichte Abwandlung des Beweises aus Kapitel 4 für L_{ab} zeigen
- Aber: L erfüllt die Aussage des Pumping-Lemmas:
 - Jeder String w, lässt sich als xyz zerlegen, mit $x=\epsilon$ und |y|=1
 - ightharpoonup dann lässt sich y beliebig wiederholen:
 - st falls y=a: klar, dann ist das Wort in der ersten Menge und es dürfen beliebig viele a's kommen
 - st falls $y \neq a$: klar, dann ist das Wort in der zweiten Menge und das Zeichen darf beliebig wiederholt werden

 Es gilt aber die folgende Verallgemeinerung des Pumping-Lemmas

Satz 5.7 (Jaffe, 78)

- ullet Eine Sprache L ist **genau dann** regulär **wenn** es ein n gibt, so dass jeder String $w\in L$ mit $|w|\geqslant n$ auf mindestens eine Weise als w=xyz geschrieben werden kann, so dass die folgenden Aussagen gelten:
 - (1) $y \neq \epsilon$
 - (2) $|xy| \leqslant n$
- (3') für alle $k\geqslant 0$ gilt: $xy^kz\sim_L xyz$

Reguläre Sprachen: Grenzen

- Woran lässt sich erkennen, ob eine Sprache regular ist?
- Intuitiv: wenn es genügt, sich beim Lesen eines Eingabewortes nur konstant viel Information zu merken, unabhängig von der Eingabelänge
- ullet Beispiel: $L_{ab}=\{a^mb^m\mid m\geqslant 0\}$ ist nicht regulär, da nach Lesen von a^i "das i gemerkt sein muss"
- Insbesondere darf der Wertebereich, in dem gezählt wird, nicht mit der Eingabelänge größer werden
- ullet Aber: es gibt auch reguläre Sprachen, die mit Zahlen zu tun haben, zum Beispiel: $m{L}_{ ext{drei}} \stackrel{ ext{def}}{=} \{m{w} \mid m{w} ext{ ist die Binärdarstellung}$ einer Zahl, die durch drei teilbar ist $\}$

Reguläre Sprachen: Zählen modulo ...

- ullet Ziel: DFA für $oldsymbol{L}_{ ext{drei}}=\{oldsymbol{w}\midoldsymbol{w} ext{ ist die}$ Binärdarstellung einer Zahl, die durch drei teilbar ist $\}$
- Ansatz: was passiert, wenn an eine Binärzahl eine 0 oder 1 angehängt wird?
- Notation:
 - Für $m{w} \in \{m{0}, m{1}\}^*$ sei $m{B}(m{w})$ die Zahl, die von $m{w}$ repräsentiert wird
 - Also: B(1100)=12

- Es gelten:
 - -B(u0) = 2B(u)
 - -B(u1) = 2B(u) + 1
- ullet Also: wenn $B(oldsymbol{u})\equiv_{oldsymbol{3}} oldsymbol{0}$, dann $B(oldsymbol{u}oldsymbol{0})\equiv_{oldsymbol{3}} oldsymbol{0}$ und $B(oldsymbol{u}oldsymbol{1})\equiv_{oldsymbol{3}} oldsymbol{1}$
- → Grundidee des Automaten: der Zustand (0,1, oder 2) gibt den Rest der bisher gelesenen Binärzahl bei Division durch 3 an

Inhalt

- 5.1 Abschlusseigenschaften und Synthese von Automaten
- 5.2 Grenzen der Regulären Sprachen
- > 5.3 Weitere Algorithmen für Automaten

Umwandlungsalgorithmen (Wdh.)

Algorithmen: Leerheitstest

 Für Anwendungen (nicht nur) im Bereich des Model Checking ist das folgende Problem wichtig:

Definition (Leerheits-Problem für DFAs)

Gegeben: DFA ${\cal A}$

Frage: Ist $L(A) \neq \emptyset$?

Algorithmus:

- 1. Vergiss die Kantenmarkierungen
- 2. Füge einen Zielknoten $m{t}$ ein und Kanten von allen akzeptierenden Knoten zu $m{t}$
- 3. Teste, ob es einen Weg von s nach t gibt
- 4. Falls ja: Ausgabe " $L(\mathcal{A}) \, \neq \, arnothing$ "
 - Das Leerheitsproblem für DFAs lässt sich also auf das Erreichbarkeitsproblem in gerichteten Graphen zurückführen
 - Laufzeit: $\mathcal{O}(|\pmb{\delta}|)$
 - Der Algorithmus funktioniert auch für NFAs
 - ullet Der Leerheitstest für reguläre Ausdrücke lpha ist (fast) trivial:
 - falls kein arnothing vorkommt, ist $oldsymbol{L}(oldsymbol{lpha}) \,
 eq \, arnothing$
 - Ansonsten lässt sich α gemäß der Regeln aus Kapitel 2 vereinfachen
 - $L(lpha) \neq arnothing$ \Longrightarrow am Schluss bleibt $\mathit{nicht} arnothing$ übrig

Algorithmen: Wortproblem

Definition (Wortproblem für Reguläre Sprachen)

Gegeben: Wort $w \in \Sigma^*$, reguläre Sprache L, repräsentiert durch DFA $\mathcal A$, NFA $\mathcal A'$ oder RE lpha

Frage: Ist $w \in L$?

- Der Algorithmus für das Wortproblem und damit der Aufwand hängen von der Repräsentation der Sprache ab:
 - **DFA:** Simuliere den DFA Aufwand: $\mathcal{O}(|oldsymbol{w}|+|oldsymbol{\delta}|)$
 - NFA: Simuliere den Potenzmengenautomaten, ohne ihn explizit zu konstruieren
 * Speichere dabei immer nur die aktuell
 - * Speichere dabei immer nur die aktuell erreichte Zustandsmenge

Aufwand: $\mathcal{O}(|m{w}| imes |m{\delta}|)$

- **RE:** Wandle den RE in einen ϵ -NFA um und simuliere dann den Potenzmengenautomaten Aufwand: $\mathcal{O}(|w| \times |\alpha|)$

Erläuterungen:

- ullet Für die Simulation wird jeweils zuerst die Transitionsfunktion δ in ein Array geschrieben
- ullet Aufwand $\mathcal{O}(|oldsymbol{\delta}|)$
- Die einzelnen Übergänge können dann durch Nachschauen in der Tabelle ausgeführt werden
- Bei der Simulation von NFAs sind die Tabelleneinträge jeweils Mengen von Zuständen

Algorithmen: Äquivalenztest für DFAs (1/3)

Definition (Äquivalenzproblem für DFAs)

Gegeben: DFAs \mathcal{A}_1 und \mathcal{A}_2

Frage: Ist $L(\mathcal{A}_1) = L(\mathcal{A}_2)$?

- Wir betrachten zwei Lösungsmethoden:
 - (1) Mit Minimalautomaten
 - (2) Mit dem Produktautomaten

(1) Mit Minimalautomaten:

- Konstruiere die Minimal-Automaten: \mathcal{A}_1' und \mathcal{A}_2' zu \mathcal{A}_1 und \mathcal{A}_2
- Teste, ob \mathcal{A}_1' und \mathcal{A}_2' isomorph sind:
 - * Konstruiere dazu schrittweise eine Bijektion π von (den Zuständen von) \mathcal{A}_1' auf \mathcal{A}_2'
 - * Initialisierung: π bildet Startzustand auf Startzustand ab
 - * Dann: Setze π gemäß der Transitionen von \mathcal{A}_1' und \mathcal{A}_2' fort
- Aufwand: $\mathcal{O}(|\Sigma|(|Q_1|^2+|Q_2|^2))$

(2) Mit dem Produktautomaten:

- Konstruiere den Produktautomaten $\mathcal{A} = \mathcal{A}_1 imes \mathcal{A}_2$ mit der akzeptierende Menge $F \stackrel{ ext{def}}{=} \{(p_1,p_2) \mid (p_1 \in F_1,p_2 \notin F_2)$
 - oder $(oldsymbol{p_1}
 otin oldsymbol{F_1}, oldsymbol{p_2} \in oldsymbol{F_2})\}$
- $lack \delta_{\mathcal{A}}^*((s_1,s_2),w)\in F$ genau dann, wenn w genau von einem der beiden DFAs akzeptiert wird
 - Also: $oldsymbol{L}(oldsymbol{\mathcal{A}_1}) = oldsymbol{L}(oldsymbol{\mathcal{A}_2})$ genau dann, wenn $oldsymbol{L}(oldsymbol{\mathcal{A}}) = oldsymbol{arnothing}$
 - Die Frage "Ist $L(\mathcal{A}_1) = L(\mathcal{A}_2)$?" kann dann also durch den Leerheitstest für \mathcal{A} entschieden werden
- o Aufwand: $\mathcal{O}(|oldsymbol{Q_1}| imes|oldsymbol{Q_2}| imes|oldsymbol{\Sigma}|)$

Algorithmen: Äquivalenztest für DFAs (2/3)

Beispiel

Sind diese beiden DFAs äquivalent?

- Berechnung des Produktautomaten
- Nicht erreichbare Zustände entfernen
- Die Sprache des Produktautomaten ist leer
- → Die DFAs sind äquivalent

Algorithmen: Äquivalenztest für DFAs (3/3)

Beispiel

Sind diese beiden DFAs äquivalent?

Beispiel (Forts.)

Minimierung des oberen DFAs liefert:

 Beide DFAs sind nun isomorph gemäß

$$-a \mapsto c$$

$$-b \mapsto d$$

- Noch eine weitere Methode:
 - Führe den Markierungsalgorithmus auf " $\mathcal{A}_1 \cup \mathcal{A}_2$ " aus und überprüfe, ob (s_1,s_2) markiert wird

Algorithmen: Äquivalenztest für NFAs und REs

- Äquivalenztests für NFAs und REs sind zwar auch automatisierbar, aber die Komplexität ist erheblich größer
- Genauer: Zu testen, ob zwei reguläre Ausdrücke (oder zwei NFAs) äquivalent sind, ist vollständig für die Komplexitätsklasse PSPACE
 - Das gilt sogar, wenn einer der REs gleich Σ^* ist
 - Intuitiver Grund: Die REs müssen zuerst in DFAs umgewandelt werden
- Was "vollständig für PSPACE" bedeutet, werden wir im letzten Teil der Vorlesung sehen
- Hier lässt sich schon sagen: das Problem ist (wohl) noch schwieriger als NP-vollständige Probleme wie das Traveling Salesman Problem

Algorithmen: Endlichkeitstest

Definition (Endlichkeitsproblem für DFAs)

Gegeben: DFA \mathcal{A}

Frage: Ist L(A) endlich?

 Hier hilft uns die Grundidee des Pumping-Lemmas weiter:

Beispiel

Satz 5.8

- ullet Die Sprache eines DFA ${\cal A}$ ist genau dann unendlich, wenn \mathcal{A} einen Zustand q mit den folgenden Eigenschaften hat:
 - (a) q ist von s aus erreichbar

d.h.:
$$\exists x \in \Sigma^*: \delta^*(s,x) = q$$

(b) q liegt auf einem Kreis

d.h.:
$$\exists y \in \Sigma^* : y \neq \epsilon$$
 und $\delta^*(q,y) = q$

(c) Von q aus ist ein akzeptierender Zustand erreichbar d.h. $\exists z \in \mathbf{\Sigma}^*: \delta^*(q,z) \in F$

Beweisidee

- "←" Dann werden die unendlich vielen Strings $xy^0z, xy^1z, xy^2z, \ldots$ von dem DFA akzeptiert
- " \Rightarrow " Die Existenz eines solchen Zustandes q folgt wie im Beweis des Pumping Lemmas
 - ullet Aufwand: $\mathcal{O}(|\delta|)$ $lacksymbol{oxtimes}$ Doppelte DFS-Suche

Funktioniert auch für NFAs

Zusammenfassung

 Um Automaten und reguläre Ausdrücke anwenden zu können (zum Beispiel im Model Checking), benötigen wir Algorithmen für die Synthese und zum Testen von Eigenschaften regulärer Sprachen

• Synthese:

- Die regulären Sprachen sind unter vielen Operationen abgeschlossen
- In vielen Fällen lassen sich die entsprechenden Zielautomaten effizient berechnen
- Für Boolesche Operationen spielen Produktautomaten eine wichtige Rolle

- Test von Eigenschaften:
 - Leerheit und Endlichkeit der Sprache eines NFA können effizient getestet werden - dabei wird im Wesentlichen ein Erreichbarkeitsproblem für gerichtete Graphen gelöst
 - Äquivalenz zweier DFAs kann ebenfalls effizient getestet werden
 - Äquivalenz von NFAs und REs ist im allgemeinen (wohl) erheblich schwieriger zu testen
- Das Pumping-Lemma liefert ein weiteres Verfahren zum Nachweis, dass eine Sprache nicht regulär ist

Erläuterungen

Bemerkung (5.1)

- Ob Konkatenationssymbole und Klammern für die Größe eines RE gezählt werden, ist für das Folgende nicht so wichtig
 - Wir interessieren uns nur für asymptotische Abschätzungen
 - $|\alpha|$ (nach unserer Definition) ist linear in der Anzahl der Symbolvorkommen und der Vorkommen des *-Operators (sofern doppelte Klammerpaare ((...)) nicht vorkommen)