Лабораторная работа № 1 «Проверка статистических гипотез»

студента Моисеенко О.И. группы	<u>Б20-514</u> . Дата сд	įачи:
Ведущий преподаватель: Трофимов	<u>А.Г.</u> оценка:	_ подпись:

Вариант №15

Цель работы: изучение функций Statistics and Machine Learning ToolboxTM MATLAB / Python SciPy.stats для проверки статистических гипотез.

1. Исходные данные

Характеристики наблюдаемых случайных величин:

СВ	Распределение	Параметры	Математическое ожидание, m_i	Дисперсия, σ_i^2
X_1	χ^2	15	15	30
X_2	R	5, 25	(5+25)/2=15	$(25-5)^2 / 12 =$ 33,(3) = 100/3

Указание: для генерации случайных чисел использовать функции rand, randn, chi2rnd (scipy.stats: uniform.rvs, norm.rvs, chi2.rvs)

Выборочные характеристики:

СВ	Среднее, \bar{x}_i	Оценка дисперсии, s_i^2	Оценка с.к.о., s_i	Объем выборки, <i>n</i> _i
X_1	15.124385	25.014042	5.001404	100
X_2	14.851133	36.878963	6.072805	100
Pooled	14.987759	30.965169	5.564636	

Указание: для расчета использовать функции **mean, var, std** (scipy.stats: describe)

2. Однопараметрические критерии

Для случайной величины X_1 :

Тест	Стат. гипотеза, H_0	Выборочное значение статистики критерия	p-value	Стат. решение при α =0.05	Ошибка стат. решения
z-test	m ₁ =15	0.2474535993 268442	0.80455719 73480057	H ₀ принимается	нет
t-test	m ₁ =15	0.2474535993 268442	0.80506967 16182391	H ₀ принимается	нет
χ²-test (m – изв)	$\sigma = 5.477226$	83.431711622 50556	0.23189681 682241764	H ₀ принимается	нет
χ²-test (m – не изв)	$\sigma = 5.477226$	83.380139503 84718	0.06499655 778255227	H ₀ принимается	нет

Указание: для проверки гипотез использовать функции ztest, ttest, vartest (scipy.stats: ttest_1samp, chisquare)

3. Двухвыборочные критерии

Для случайных величин X_1, X_2 :

1 /	1/				
Тест	Стат. гипотеза, H_0	Выборочное значение статистики критерия	p-value	Стат. решение при $\alpha = 0.05$	Ошибка стат. решения
2-sample t-test	$m_1 = m_2$	0.3455887363 152111	0.73001870 11064814	H ₀ принимается	нет
2-sample F-test (m – изв)	$\sigma 1 = \sigma 2$	0.6782859375 489307	0.01339942 9742594738	H ₀ отклоняется	нет
2-sample F-test (m – не изв)	$\sigma 1 = \sigma 2$	0.6782740076 869322	0.01370067 7212369387	H ₀ отклоняется	нет

Указание: для проверки гипотез использовать функции ttest2, vartest2 (scipy.stats: ttest_ind, chisquare)

4. Исследование распределений статистик критерия

Статистическая гипотеза: H_0 : $m_1 = 15$ (σ_1 – известна)

Формула расчёта статистики критерия Z: $\frac{\bar{X}-m_0}{\sigma/\sqrt{n}}$

Формула расчёта статистики P-value: $\min(F_Z(z), 1 - F_Z(z)) / 2$ Число серий экспериментов N = 1000

Теоретические характеристики:

СВ	Распределение в условиях H_0	Параметры	Математическое ожидание	Дисперсия	С.к.о.
Z	N(0,1)	$m = 0$ $\sigma^2 = 1$	0	1	1
P-value	R(0,1)	a = 0 b = 1	0.5	0.0833	0.2887

Выборочные характеристики:

СВ	Среднее	Оценка дисперсии	Оценка с.к.о.
Z	0.034713191568054344	1.0509120563751322	1.0251400179366388
P- value	0.12099650636525473	0.0052127261673303015	0.07219921168080924

Указание: при расчете выборочных значений статистики критерия использовать функции **norminv**, tinv, chi2inf, finv (scipy.stats: norm.ppf, t.ppf, chi2.ppf, f.ppf)

Гистограмма частот статистики Z и теоретическая функция $f_{z}(z|H_{0})$:

Гистограмма частот статистики P-value и теоретическая функция $f_P(p \mid H_0)$:

Указание: для построения гистограмм и теоретических функций плотности использовать функции hist, normpdf, tpdf, chi2pdf, fpdf (scipy.stats: norm.pdf, t.pdf, chi2.pdf, f.pdf, histogram; matplotlib.pyplot: hist)