Solutions to Final Exam for Math 3131, Spring 2022, Version 1

Problem 1.(10 points) Find group homomorphisms satisfying the required conditions (no need to give reasons).

- (1). $\Phi: \mathbb{R}^{\times} \to \mathbb{R}^{\times}$, $\Phi(\mathbb{R}^{\times})$ has two elements.
- (2). $\Phi: GL_{10}(\mathbb{R}) \to \mathbb{Z}_2 = \{0,1\}, \Phi \text{ is surjective.}$
- (3). $\Phi: \mathbb{C}^{\times} \to \mathbb{C}^{\times}$, $\Phi(t) = t$ for |t| = 1 and $\Phi(2) = 4$.
- (4). $\Phi: S_3 \to GL_3(\mathbb{R}), \Phi$ is injective.
- (5). $\Phi: U_{30} \to U_5$, Φ is surjective.

Answer: (1)
$$\Phi(x) = \begin{cases} 1 & \text{for } x > 0 \\ -1 & \text{for } x < 0 \end{cases}$$
 (2) $\Phi(A) = \begin{cases} 0 & \text{for det } A > 0 \\ 1 & \text{for det } A < 0 \end{cases}$

- (3) $\Phi(z) = |z|^2$.
- (4) The idea is that every $\sigma \in S_3$ gives a linear isomorphism of \mathbb{R}^3 by permuting the 3 coordinates. For $\sigma \in S_3$, $\Phi(\sigma)$ is the unique isomorphism of \mathbb{R}^3 that maps to e_i to $e_{\sigma(i)}$, where e_1, e_2, e_3 is the standard basis for \mathbb{R}^3 .
- (5) $\sigma(z) = z^6$.

Problem 2. (10 points) Find ring homomorphisms satisfying the required conditions (no need to give reasons).

- (1). $\Phi: \mathbb{R}[x] \to \mathbb{R}[x]$, Φ is injective but NOT surjective.
- (2). $\Phi: \mathbb{Z}[x] \to \mathbb{Z}[i]$, Φ is surjective.
- (3). $\Phi: \mathbb{C} \to \mathbb{C}$, Φ is NOT the identity map.
- (4). $\Phi: \mathbb{Q}[x] \to \mathbb{R}$, Φ is injective.
- (5). Let F_{49} be a finite field with 49 elements, find a ring homomorphism $\Phi: F_{49} \to F_{49}$ such that Φ is NOT the identity map.

Answer: (1). $\Phi(f(x)) = f(x^2)$. Many other answers are possible. (2). $\Phi(f(x)) = f(i)$. Many other answers are possible. (3). $\Phi(z) = \bar{z}$. (4) $\Phi(f(x)) = f(\pi)$. (5) $\Phi(a) = a^7$.

Problem 3 (15 points) Give a brief answer to each of the following problems

(no reasons needed)

- (1) Determines if each of the rings \mathbb{Z} , $\mathbb{C}[x]$, C[2,7] is an integral domain.
- (2) If a in a group G has order 100, what is the order of a^6 ?
- (3) Give an infinite chain of ideals I_1, I_2, \ldots in C[2, 7] such that for each i, $I_i \subseteq I_{i+1}$.
- (4) List all the finite abelian groups of order 196 up to isomorphism.
- (5) Give an example of $\mathbb{R}[x]$ -module M such that M has dimension 10 as a vector space over \mathbb{R} .

Answer: (1) \mathbb{Z} and $\mathbb{C}[x]$ integral domains, C[2,7] is not. (2) a^6 has order 50. (3) Let S_n be the following subset of [2,7], $S_n = [2,2+\frac{1}{n}]$, let

$$I_n = \{ f \in C[2,7] \mid f(x) = 0 \text{ for all } x \in S_n \}$$

Since $S_{n+1} \subset S_n$, so $I_n \subset I_{n+1}$. It is easy to find $f(x) \in I_n$ but $f(x) \notin I_{n+1}$. (4) $196 = 2^2 \times 7^2$, there are 4 groups:

$$\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_7 \times \mathbb{Z}_7, \ \mathbb{Z}_4 \times \mathbb{Z}_7 \times \mathbb{Z}_7, \ \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_{49}, \ \mathbb{Z}_4 \times \mathbb{Z}_{49}$$

(5) $\mathbb{R}[x]/(x^{10})$, Many other answers are possible.

Problem 4.(10 points) Let G be a group, $N \subset G$ be a normal subgroup. Suppose the quotient group G/N has finite order n, prove that for all $a \in G$, $a^n \in N$.

Proof. Let $\pi: G \to G/N$ be the canonical homomorphism, that is, $\pi(a) = aN$. $Ker(\pi) = N$. Since |G/N| = n, so $(aN)^n = 1$, that is, $a^nN = 1$, so $a^n \in Ker(\pi) = N$.

Problem 5.(10 points) Let $I = \{f(x) \in \mathbb{R}[x] \mid f(1) = f(2) = 0\}$, it is clear that I is an ideal of $\mathbb{R}[x]$, prove that the quotient ring $\mathbb{R}[x]/I$ is isomorphic to $\mathbb{R} \times \mathbb{R}$.

Proof. Let $\Phi : \mathbb{R}[x] \to \mathbb{R} \times \mathbb{R}$ be the map given by $\Phi(f) = (f(1), f(2))$. It is clear that Φ is a ring homomorphism and $Ker(\Phi) = I$. The map Φ is a \mathbb{R} -linear map, $\Phi(x-1) = (0,1)$, $\Phi(2-x) = (1,0)$. Since (0,1), (1,0) is a basis for \mathbb{R}^2 , so Φ is onto. We apply the homomorphism theorem to have $\mathbb{R}[x]/I = \mathbb{R}[x]/Ker(\Phi)$ is isomorphic to $Im(\Phi) = \mathbb{R}^2$.

Problem 6.(15 points) Let R be a commutative ring, $a \in R$ is called a nilpotent element if $a^n = 0$ for some positive integer n. Let N be the set of all nilpotent elements in R.

- (1) Prove that N is an ideal of R.
- (2) Prove that 1 + N given by

$$1 + N = \{1 + a \mid a \in N\}$$

is a group under the multiplication.

(3) Suppose R is finite, prove that |N| is a common divisor of |R| and $|R^{\times}|$, where R^{\times} is the set of all units in R.

Proof. (1). Obviously $0 \in N$. If $a \in N$, it is clear that $-a \in N$. For $a, b \in N$, so $a^m = 0, b^n = 0$ for some positive integers m, n.

$$(a+b)^{m+n} = \sum_{j=0}^{m+n} {m+n \choose j} a^j b^{m+n-j}$$
 (1)

For any $0 \le j \le m+n$, either $j \ge m$ or $m+n-j \ge n$. If $j \ge m$, $a^j = 0$ since $a^m = 0$, if $m+n-j \ge n$, $b^{m+n-j} \ge 0$ since $b^n = 0$. So all the terms in the right hand side of (1) are 0. This proves $a+b \in N$. So N is a subgroup of the additive group R.

If $a \in N$, $b \in R$, so $a^m = 0$ for some positive integer m, $(ab)^m = a^m b^m = 0b^m = 0$, so $ab \in N$. This proves N is an ideal.

(2). Since $0 \in N$, so $1 = 1 + 0 \in 1 + N$. If $1 + a, 1 + b \in 1 + N$, $a, b \in N$, (1 + a)(1 + b) = 1 + (a + b + ab), by (1), $a + b + ab \in N$, so 1 + N is closed under the multiplication. For $1 + a \in N$, $a^m = 0$,

$$(1+a)(1-a+a^2+\cdots+(-1)^{m-1}a^{m-1})=1-(-a)^m=1.$$

By (1), $-a+a^2+\cdots+(-1)^{m-1}a^{m-1} \in N$, so $1-a+a^2+\cdots+(-1)^{m-1}a^{m-1} \in 1+N$. This proves every element in 1+N has a multiplicative inverse in 1+N. This completes the proof that 1+N is a group under the multiplication.

(3). Since N is an additive subgroup of R, by Lagrangian theorem, |N| is a divisor of |R|. By (2), 1 + N is a subgroup of R^{\times} , by Lagrangian theorem, |1 + N| is a divisor of $|R^{\times}|$. Since the map $N \to 1 + N$, $a \mapsto 1 + a$ is a bijection, so |N| = |1 + N| is a divisor of $|R^{\times}|$.

Problem 7.(15 points) Let n be a positive integer, G be the group of $n \times n$ upper triangular invertible real matrices (so G is a subgroup of $GL_n(\mathbb{R})$), let G operate on \mathbb{R}^n by the matrix multiplication, how many orbits does this group operation have? write a detailed proof for your answer.

Proof. An element $g \in GL_n(\mathbb{R})$ is upper triangular iff $g_{ij} = 0$ for all i > j, where g_{ij} denotes the (i, j)-entry of g.

For each non-zero vector $a = (a_1, a_2, ..., a_n)^T \in \mathbb{R}^n$, let L(a) be the largest index i such that $a_i \neq 0$. Since the k-th component of ga is

$$(ga)_k = \sum_{j=1}^n g_{kj} a_j = \sum_{j \ge k} g_{kj} a_j$$

This formula implies that L(ga) = L(a) for all $g \in GL_n(\mathbb{R})$ and $a \neq 0$. Next we verify that for L(a) = k, a is in the orbit of e_k . Pick $g \in G$ which has k-the column a, $ge_k = a$.

In summary, we have proved that all the non-zero vectors a with L(a) = k form the orbit Ge_k . So we have n + 1 orbits: $\{0\}, Ge_1, Ge_2, \ldots, Ge_n$.

Problem 8.(15 points) Let F be a field, K is a finite extension of F with degree [K:F]=d. Suppose $f(x)\in F[x]$ is an irreducible polynomial with $\deg(f)$ relatively prime to d. Prove f(x) is also an irreducible polynomial over K.

Proof. Let p(x) be an irreducible factor of f(x) in K[x]. Then L = K[x]/(p(x)) is a field extension of K, $\alpha = x + (p(x)) \in L$ is a root of p(x). We have the chain of field extensions

$$F \subset K \subset L$$

So we have

$$[L:F] = [L:K][K:F] = d\deg(p).$$

Since α is a root of p(x), so it is also a root of f(x), $F[\alpha]$ is isomorphic to F[x]/(f(x)), so $[F[\alpha]:F]=\deg(f)$. The chain $F\subset F[\alpha]\subset L$ implies that $\deg(f)=[F[\alpha]:F]$ is a divisor of $[L:F]=d\deg(p)$, since $\deg(f)$ and d are relatively prime, so $\deg(f)$ is a divisor of $\deg(p)$, but $\deg(p)\leq \deg(f)$, so $\deg(p)=\deg(f)$. So p(x)=f(x) up to a non-zero scalar. It is proves f(x) is irreducible over K.