H.P. WILLIAMS

LONDON SCHOOL OF ECONOMICS

MODELS FOR SOLVING

THE

TRAVELLING SALESMAN PROBLEM

h.p.williams@lse.ac.uk

STANDARD FORMULATION OF THE (ASYMMETRIC) TRAVELLING SALESMAN PROBLEM

Conventional Formulation:

(cities 1,2, ..., n) (Dantzig, Fulkerson, Johnson) (1954). x_{ij} is a link in tour

Minimise:

$$\sum_{i,j} C_{ij} X_{ij}$$

subject to:

$$\sum_{i} x_{ij} = 1 \quad \text{all } j$$

$$\sum_{i} x_{ij} = 1 \quad \text{all } i$$

$$\sum_{i,j \in S} x_{ij} \le |S| - 1 \text{ all } S \subset \{2...,n\}$$

e.g.

$$x_{32} + x_{26} + x_{63}$$

$$+ x_{23} + x_{62} + x_{36} \le 2$$

$$0(2^n)$$
 Constraints

$$=(2^{n-1}+n-2)$$

$$0(n^2)$$
 Variables

$$= n(n-1)$$

EQUIVALENT FORMULATION

Replace subtour elimination constraints with

$$\sum_{i \in \underline{S} \atop j \in \overline{S}} x_{ij} \ge 1 \text{ all } S \subset \{1, 2, ..., n\}$$

Add second set of constraints for all *i* in S and subtract from subtour elimination constraints for S

OPTIMAL SOLUTON TO A 10 CITY TRAVELLING SALESMAN PROBLEM

Cost = 881

FRACTIONAL SOLUTION FROM CONVENTIONAL (EXPONENTIAL) FORMULATION)

Sequential Formulation (Miller, Tucker, Zemlin (1960))

 u_i = Sequence Number in which city i visited Defined for i = 2,3, ..., n

Subtour elimination constraints replaced by

S:
$$u_i - u_j + nx_{ij} \le n - 1$$
 $i, j = 2, 3, ..., n$

Avoids subtours but allows total tours (containing city 1)

$$u_{2} - u_{6} + nx_{26} \le n-1$$
 $u_{6} - u_{3} + nx_{63} \le n-1$
 $u_{3} - u_{2} + nx_{32} \le n-1$

$$\downarrow$$
 $3n \le 3(n-1)$

$$0(n^2)$$
 Constraints = $(n^2 - n + 2)$
 $0(n^2)$ Variables = $(n-1)(n+1)$

Weak but can add 'Logic Cuts'

e.g.
$$u_k \ge 1 + x_{ij} + x_{jk} - x_{1j}$$

FRACTIONAL SOLUTION FROM SEQUENTIAL FORMULATION

Subtour Constraints Violated: e.g. $x_{27} + x_{72} \le 1$

Logic Cuts Violated: e.g. $u_9 \ge 1 + x_{27} + x_{79} - x_{17}$

Cost = $773^{3}/_{5}$ (Optimal Cost = 881)

Flow Formulations

Single Commodity (Gavish & Graves (1978))

Introduce extra variables ('Flow' in an arc)

Replace subtour elimination constraints by

F1:
$$y_{ij} \le (n-1)x_{ij} \text{ all } i, j$$

$$\sum_{j} y_{ij} = n-1$$

$$\sum_{j} y_{ij} - \sum_{k} y_{jk} = 1 \text{ all } j \ne 1$$

Can improve (F1') by amended constraints:

$$y_{ij} \le (n-2)x_{ij}$$
 all $i, j \ne 1$

Network Flow formulation in \mathcal{Y}_{ij} variables over complete graph

Graph must be connected. Hence no subtours possible.

$$0(n^2)$$
 Constraints = $n(n+2)$

$$0(n^2)$$
 Variables $= 2n(n-1)$

FRACTIONAL SOLUTION FROM SINGLE COMMODITY FLOW FORMULATION

Cost =
$$794\frac{2}{9}$$
 (Optimal solution = 881)

FRACTIONAL SOLUTION FROM MODIFIED SINGLE COMMODITY FLOW FORMULATION

Cost =
$$794\frac{43}{48}$$
 (Optimal solution = 881) (192=3x64)

Two Commodity Flow (Finke, Claus Gunn (1983))

 y_{ij} is flow of commodity 1 in arc $i \rightarrow j$ z_i is flow of commodity 2 in arc $i \rightarrow j$

$$\sum_{j} y_{ij} - \sum_{j} y_{ji} = -1 \quad i \neq 1$$

$$= n - 1 \quad i = 1$$

F2:
$$\sum_{j} Z_{ij} - \sum_{j} Z_{ji} = 1 \quad i \neq 1$$
$$= -(n-1) \quad i = 1$$

$$\sum_{j} z_{ij} - \sum_{j} z_{ji} = n-1 \text{ all } i$$

$$y_{ij} + z_{ij} = (n-1)x_{ij} \text{ all } i, j$$

Commodity 1

$$0(n^2)$$
 Constraints = $n(n+4)$

$$0(n^2)$$
 Variables = $3n(n-1)$

Multi-Commodity (Wong (1980) Claus (1984))

"Dissaggregate" variables

 y_{ij}^{k} is flow in arc destined for k

$$y_{ij}^{k} \leq x_{ij}$$
 all i, j, k

$$\sum_{i} \mathbf{y}_{ik}^{k} = 1 \qquad \sum_{i} \mathbf{y}_{1i}^{k} = 1 \qquad \sum_{i} \mathbf{y}_{i1}^{k} = 0 \qquad \sum_{j} \mathbf{y}_{kj}^{k} = 0 \quad \text{all k}$$
$$\sum_{i} \mathbf{y}_{ij}^{k} = \sum_{i} \mathbf{y}_{ji}^{k} \quad \text{all } \mathbf{j}, \mathbf{k}, \mathbf{j} \neq 1, \mathbf{j} \neq \mathbf{k}.$$

$$0(n^3)$$
 Constraints $= n^3 - 2n^2 + 6n - 3$

$$0(\mathbf{n}^3)$$
 Variables $= \mathbf{n}^2(\mathbf{n} - 1)$

LP Relaxation of equal strength to Conventional Formulation.

But of polynomial size.

Tight Formulation of Min Cost Spanning Tree + (Tight) Assignment Problem

FRACTIONAL SOLUTION FROM MULTI COMMODITY FLOW FORMULATION (= FRACTIONAL SOLUTION FROM CONVENTIONAL (EXPONENTIAL) FORMULATION)

Stage Dependent Formulations

First (Fox, Gavish, Graves (1980))

- = 1 if arc $i \rightarrow j$ traversed at stage t
- = 0 otherwise

T1:

$$\sum_{i,j,t} y_{ij}^t = n$$

$$\sum_{j=1}^{n} \sum_{t=2}^{n} t y_{ij}^{t} - \sum_{j=1}^{n} \sum_{t=1}^{n} t y_{ji}^{t} = 1 \ i = 2, 3...n$$

(Stage at which i left 1 more than stage at which entered)

$$\boldsymbol{y}_{\scriptscriptstyle i1}^{\scriptscriptstyle t}=0,\,\boldsymbol{t}\neq\boldsymbol{n}$$

$$y_{1j}^{t} = 0, t \neq 1$$

$$\mathbf{y}_{ij}^{\scriptscriptstyle 1}=0,\,\mathbf{i}\neq 1$$

$$O(n)$$
 Constraints = n

$$0(\mathbf{n}^3)$$
 Variables $= \mathbf{n}^2(\mathbf{n} - 1)$

Also convenient to introduce x_y variables with constraints

$$x_{ij} = \sum_{t} y_{ij}^{t}$$

FRACTIONAL SOLUTION FROM 1ST (AGGREGATED) TIME-STAGED FORMULATION

Cost = 364.5 (Optimal solution = 881)
NB 'Lengths' of Arcs can be > 1

Second (Fox, Gavish, Graves (1980))

T2: Disaggregate to give

$$\sum_{i \neq j, t} y_{ij}^{t} = 1 \quad \text{all } j$$

$$\sum_{j \neq i,t} y_{ij}^t = 1 \qquad \text{all i}$$

$$\sum_{i,j,i\neq j} y_{ij}^t = 1$$
 all t

$$\sum_{j=1}^{n} \sum_{t=2}^{n} ty_{ij}^{t} - \sum_{i=1}^{n} \sum_{t=1}^{n} ty_{ji}^{t} = 1 \ i = 2,3,...n$$

Initial conditions no longer necessary

$$O(n)$$
 Constraints = $4n-1$

$$O(n^3)$$
 Variables = $n^2 (n-1)$

FRACTIONAL SOLUTION FROM 2nd TIME-STAGED FORMULATION

$$Cost = 799 \frac{164}{357}$$
 (optimal solution = 881)

Third (Vajda/Hadley (1960))

T3:
$$\mathbf{\mathcal{Y}}_{ij}^{t}$$
 interpreted as before
$$\sum_{i \neq j} y_{ij}^{t} = 1 \quad \text{all j}$$

$$\sum_{j \neq i} y_{ij}^{t} = 1 \quad \text{all i}$$

$$\sum_{j \neq i} y_{ij}^{t} = 1 \quad \text{all t}$$

$$\sum_{i \neq j} y_{ij}^{t} - \sum_{k \neq j} y_{jk}^{t+1} = 0 \quad \text{all j, t}$$

$$\sum_{j \neq 1} y_{1j}^{1} = 1$$

$$\sum_{j \neq 1} y_{i1}^{n} = 1$$

$$0 (n^2)$$
 Constraints = $(2n^2 + 3)$

$$O(n^3)$$
 Variables = $n^2(n-1)$

FRACTIONAL SOLUTION FROM 2nd TIME 2nd TIME-STAGED FORMULATION

 $Cost = 804\frac{1}{2}$ Optimal solution = 881

OBSERVATION

Multicommodity Flow Formulation

$$\sum_{i} \mathbf{y}_{ij}^{\iota} - \sum_{k} \mathbf{y}_{jk}^{\iota} = 0$$

 y_{ij}^{t} is flow $i \rightarrow j$ destined for node t

Time Staged Formulation

$$\sum_{i} \mathbf{y}_{ij}^{t} - \sum_{k} \mathbf{y}_{jk}^{t+1} = 0$$

 $y_{ij}' = 1$ iff go $i \rightarrow j$ at stage t

Are these formulations related?

Can extra variables (y_{ij}) , introduced syntactically, be given different semantic interpretations?

COMPARING FORMULATIONS

Minimise: c x

Subject to: $Ax + By \le b$

 \underline{x} , $y \ge 0$, x integer

$$W = \{ w \mid wB \ge 0, \underline{w} \ge 0 \}$$

W forms a cone which can be characterised by its extreme rays giving matrix Q such that

 $QB \ge 0$

Hence $QAx \le Qb$

This is the projection of formulation into space of original variables x_{ij}

COMPARING FORMULATIONS

Project out variables by Fourier-Motzkin elimination to reduce to space of conventional formulation.

P (r) is polytope of LP relaxation of projection of formulation r.

Formulation S (Sequential)

Project out around each *directed cycle* S by summing

$$u_{i} - u_{j} + nx_{ij} \leq n - 1$$

$$\downarrow$$

$$n \sum_{i \text{ i.e.} S} x_{ij} \leq (n - 1)|S|$$

ie
$$\sum_{i,j\in S} x_{ij} \le |S| - \frac{|S|}{n}$$
 weaker than $|S| - 1$ (for S a subset of nodes)

Hence $P(S) \supset P(C)$

Formulation F1 (1 Commodity Network Flow)

Projects to
$$\sum_{ij \in S} x_{ij} \le |S| - \frac{|S|}{n-1}$$
 stronger than $|S| - \frac{|S|}{n}$

Hence
$$P(S) \supset P(F1) \supset P(C)$$

Formulation F1' (Amended 1 Commodity Network Flow)

Projects to
$$\frac{1}{n-1} \sum_{\substack{j \in \overline{S} - \{1\} \\ j \in S}} x_{ij} + \sum_{i,j \in S} x_{ij} \le |S| - \frac{|S|}{n-1}$$
Hence
$$P(S) \supset P(F1) \supset F(F1') \supset P(C)$$

Formulation F2 (2 Commodity Network Flow)

Projects to
$$\sum_{i,j} x_{ij} \le |S| - \frac{|S|}{n-1}$$

Hence
$$P(F2) = P(F1)$$

Formulation F3 (Multi Commodity Network Flow)

Projects to
$$\sum_{\substack{i,j\\ \in S}} x_{ij} \le |S| - 1$$

Hence
$$P(F3) = P(C)$$

Formulation T1 (First Stage Dependant)

Projects to

$$\sum_{\substack{i \in S \\ j \in \overline{S} - \{1\}}} x_{ij} \geq \frac{|S|}{n-1}$$

$$\sum_{i,j\in N} x_{ij} = n$$

(Cannot convert 1st constraint to $\sum_{i,j\in S} x_{ij} \leq f$ form since Assignment Constraints not present)

Formulation T2 (Second Stage Dependant)

Projects to

$$\frac{1}{n-1} \sum_{\substack{i \in S \\ j \in \overline{S} - \{1\}}} x_{ij} + \frac{1}{n-1} \sum_{\substack{i \in \overline{S} - \{1\} \\ j \in S}} x_{ij} + \sum_{ijj \in S} x_{ij} \le |S| - \frac{|S|}{n-1} + \text{others}$$

Hence $P(T2) \subset P(F1')$

Formulation T3 (Third Stage Dependant)

Projects to

$$\frac{1}{n-1} \sum_{\substack{i \in S \\ j \in \overline{S} - \{1\}}} x_{ij} + \frac{1}{n-1} \sum_{\substack{i \in \overline{S} - \{1\} \\ j \in S}} x_{ij} + \sum_{n,j \in S} x_{ij} \le |S| - \frac{|S|}{n-1}$$

+ others

Can show stronger than T2

Hence $P(T3) \subseteq P(T2)$

Computational Results of a 10-City TSP in order to compare sizes and strengths of LP Relaxations

Model	Size	LP Obj	Its	Secs	IP Obj	Nodes	Secs
С	502x90						
(Conventional							
	(Ass. Relax	766	37	1	766	0	1
	+Subtours (5)	804	40	1	804	0	1
	+Subtours (3)	835	43	1	835	0	1
	+Subtours (2)	878	48	1	881	9	1
S (Sequential)	92x99	773.6	77	3	881	665	16
F1	120x180	794.22	148	1	881	449	13
(Commodity Flow F' (F1 Modified)	120x180	794.89	142	1	881	369	11
FO	140,070	704.00	220	2	0.01	070	10
F2 (2 Commodity Flow)	140x270	794.22	229	2	881	373	12
F3 (Multi Commodity Flow)	857x900	878	1024	7	881	9	13
T1 (1st Stage Dependent)	90x990 (10)x(900)	364.5	63	4	881	∞	∞
T2 (2 nd Stage Dependent)	120x990 (39) x (900)	799.46	246	18	881	483	36
T3 (3 rd Stage Dependent)	193x990 (102)x(900)	804.5	307	5	881	145	27

Solutions obtained using NEW MAGIC and EMSOL

P(TSP) TSP Polytope – not fully known
P(X) Polytope of Projected LP relaxations

Reference

 AJ Orman and HP Williams,
 A Survey of Different Formulations of the Travelling Salesman Problem,

in C Gatu and E Kontoghiorghes (Eds), Advances in Computational Management Science 9 Optimisation, Econometric and Financial Analysis (2006) Springer