MATEMATIKA

EMELT SZINTŰ ÍRÁSBELI VIZSGA

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Fontos tudnivalók

Formai előírások:

- 1. Kérjük, hogy a dolgozatot a vizsgázó által használt színűtől **eltérő színű tollal, olvas-hatóan** javítsa ki.
- 2. A feladatok mellett található szürke téglalapok közül az elsőben a feladatra adható maximális pontszám van, a javító által adott **pontszám a** mellette levő **téglalapba** kerüljön.
- 3. **Kifogástalan megoldás** esetén kérjük, hogy a maximális pontszám feltüntetése mellett kipipálással jelezze, hogy az adott gondolati egységet látta, és jónak minősítette.
- 4. Hiányos/hibás megoldás esetén kérjük, hogy a hiba jelzése mellett az egyes részpontszámokat is írja rá a dolgozatra. Ha a dolgozat javítását jobban követhetővé teszi, akkor a vizsgázó által elvesztett részpontszámok jelzése is elfogadható. Ne maradjon olyan részlet a megoldásban, amelyről a javítás után nem nyilvánvaló, hogy helyes, hibás vagy fölösleges.
- 5. A javítás során alkalmazza az alábbi jelöléseket.
 - helyes lépés: kipipálás
 - elvi hiba: kétszeres aláhúzás
 - számolási hiba vagy más, nem elvi hiba: egyszeres aláhúzás
 - rossz kiinduló adattal végzett helyes lépés: szaggatott vagy áthúzott kipipálás
 - hiányos indoklás, hiányos felsorolás vagy más hiány: hiányiel
 - nem érthető rész: kérdőjel és/vagy hullámvonal
- 6. Az ábrán kívül **ceruzával** írt részeket ne értékelje.

Tartalmi kérések:

- Egyes feladatoknál több megoldás pontozását is megadtuk. Amennyiben azoktól eltérő megoldás születik, keresse meg ezen megoldásoknak az útmutató egyes részleteivel egyenértékű részeit, és ennek alapján pontozzon.
- 2. A pontozási útmutató pontjai tovább **bonthatók, hacsak az útmutató másképp nem rendelkezik**. Az adható pontszámok azonban csak egész pontok lehetnek.
- 3. Ha a megoldásban **számolási hiba**, pontatlanság van, akkor csak arra a részre nem jár pont, ahol a tanuló a hibát elkövette. Ha a hibás részeredménnyel helyes gondolatmenet alapján tovább dolgozik, és a megoldandó probléma lényegében nem változik meg, akkor a következő részpontszámokat meg kell adni.
- 4. **Elvi hibát** követően egy gondolati egységen belül (ezeket az útmutatóban kettős vonal jelzi) a formálisan helyes matematikai lépésekre sem jár pont. Ha azonban a tanuló az elvi hibával kapott rossz eredménnyel mint kiinduló adattal helyesen számol tovább a következő gondolati egységekben vagy részkérdésekben, akkor ezekre a részekre kapja meg a maximális pontot, ha a megoldandó probléma lényegében nem változott meg.
- 5. Ha a megoldási útmutatóban zárójelben szerepel egy **megjegyzés** vagy **mértékegység**, akkor ennek hiánya esetén is teljes értékű a megoldás.

- 6. Egy feladatra adott többféle megoldási próbálkozás közül a vizsgázó által megjelölt változat értékelhető. A javítás során egyértelműen jelezze, hogy melyik változatot értékelte, és melyiket nem.
- 7. A megoldásokért **jutalompont** (az adott feladatra vagy feladatrészre előírt maximális pontszámot meghaladó pont) **nem adható**.
- 8. Egy feladatra vagy részfeladatra adott összpontszám nem lehet negatív.
- 9. Az olyan részszámításokért, részlépésekért **nem jár pontlevonás**, melyek hibásak, de amelyeket a feladat megoldásához a vizsgázó ténylegesen nem használ fel.

lázatban fellelhető táblázatok helyettesítése (sin, cos, tg, log és ezek inverzei), a π és az e szám közelítő értékének megadása, nullára rendezett másodfokú egyenlet gyökeinek meghatározása. További matematikai indoklás nélkül használhatók a számológépek az átlag és a szórás kiszámítására abban az esetben, ha a feladat szövege kifejezetten nem követeli meg az ezzel kapcsolatos részletszámítások bemutatását is. **Egyéb esetekben a géppel elvégzett számítások indoklás nélküli lépéseknek számítanak, így azokért nem jár pont.**

- 11. Az **ábrák** bizonyító erejű felhasználása (például adatok leolvasása méréssel) nem elfogadható.
- 12. **Valószínűségek** megadásánál (ha a feladat szövege másképp nem rendelkezik) a százalékban megadott helyes válasz is elfogadható.
- 13. Ha egy feladat szövege nem ír elő kerekítési kötelezettséget, akkor az útmutatóban megadottól eltérő, **észszerű és helyes kerekítésekkel** kapott rész- és végeredmény is elfogadható.
- 14. A vizsgafeladatsor II. részében kitűzött 5 feladat közül csak 4 feladat megoldása értékelhető. A vizsgázó az erre a célra szolgáló négyzetben feltehetőleg megjelölte annak a feladatnak a sorszámát, amelynek értékelése nem fog beszámítani az összpontszámába. Ennek megfelelően a megjelölt feladatra esetlegesen adott megoldást nem is kell javítani. Ha a vizsgázó nem jelölte meg, hogy melyik feladat értékelését nem kéri, és a választás ténye a dolgozatból sem derül ki egyértelműen, akkor a nem értékelendő feladat automatikusan a kitűzött sorrend szerinti utolsó feladat lesz.

1711 írásbeli vizsga 3 / 21 2017. május 9.

I.

1. a) első megoldás		
Az első egyenletből $x = 0, 2 - y$,		
ezt a másodikba helyettesítve	1	
$\frac{\lg(0,2-y) + \lg y}{2} = \lg 0,1.$	1 pont	
$\lg((0,2-y)y) = -2$	1 pont	$\lg\sqrt{(0,2-y)y} = -1$
(A logaritmus definíciója miatt) $(0,2-y)y = 0,01$,	1 pont	
azaz $y^2 - 0.2y + 0.01 = 0$.	1 pont	
Innen $y = 0.1$ és (visszahelyettesítve) $x = 0.1$.	1 pont	
Ellenőrzés például behelyettesítéssel: (az első egyenlet nyilván igaz) a második egyenlet bal oldala: $\frac{2 \lg 0,1}{2} = -1, \text{ jobb oldala: } \lg \frac{2 \cdot 0,1}{2} = -1.$	1 pont	
Összesen:	6 pont	

1. a) második megoldás		
A második egyenlet bal oldalát átalakítjuk:		
$\frac{\lg x + \lg y}{2} = \frac{\lg xy}{2} = \lg \sqrt{xy} .$	2 pont	
(A logaritmusfüggvény kölcsönösen egyértelmű,		
ezért) $\sqrt{xy} = \frac{x+y}{2}$.	1 pont	
A (pozitív) x és y számokra vonatkozó mértani és	1 ,	
számtani közepek közötti egyenlőtlenség miatt	1 pont	
egyenlőség csak $x = y = 0,1$ esetén lehetséges.	1 pont	
Ellenőrzés például behelyettesítéssel: (az első egyen-		
let nyilván igaz) a második egyenlet bal oldala:	4 .	
$\frac{2 \lg 0,1}{2} = -1$, jobb oldala: $\lg \frac{2 \cdot 0,1}{2} = -1$.	l pont	
Összesen:	6 pont	

1. b)		
$2(1-\cos^2 x) - \cos x = 2$	1 pont	
$2\cos^2 x + \cos x = 0$	1 pont	
$\cos x = 0 \text{ vagy } \cos x = -\frac{1}{2}$	1 pont	
$\cos x = 0$ a $[-\pi; \pi]$ alaphalmazon pontosan akkor teljesül, ha $x = -\frac{\pi}{2}$ vagy $x = \frac{\pi}{2}$.	1 pont	
$\cos x = -\frac{1}{2}$ a $[-\pi; \pi]$ alaphalmazon pontosan akkor teljesül, ha $x = -\frac{2\pi}{3}$ vagy $x = \frac{2\pi}{3}$.	1 pont	
Ellenőrzés behelyettesítéssel vagy ekvivalens átalakításokra hivatkozással.	1 pont	
Összesen:	6 pont	

- 1. Ha a vizsgázó a valós számok halmazán oldja meg az egyenletet, akkor legfeljebb 5 pontot kaphat.
- 2. Ha a vizsgázó a $\cos x = 0$, illetve a $\cos x = -\frac{1}{2}$ egyenletnek csak a pozitív megoldását adja meg, akkor legfeljebb 4 pontot kaphat.
- 3. Ha a vizsgázó a [-180°; 180°] halmazon (fokokban) oldja meg az egyenletet, akkor legfeljebb 4 pontot kaphat.

2. a) első megoldás		
Ha (km/h-ban mérve) a személyvonat átlagsebessége		
v, akkor a gyorsvonat átlagsebessége $v + 18$ ($v > 0$).		
A személyvonat menetideje (órában mérve) $\frac{195}{v}$,	1 pont	
a gyorsvonat menetideje $\frac{195}{v+18}$.		
A feladat szövege szerint: $\frac{195}{v} = \frac{195}{v+18} + 0.75.$	1 pont	
$195v + 3510 = 195v + 0.75v^2 + 13.5v$	1 pont	
$0,75v^2 + 13,5v - 3510 = 0$	1 pont	$v^2 + 18v - 4680 = 0$
v = 60 (vagy $v = -78$, de) a negatív gyök nem megoldása a feladatnak.	1 pont	
A személyvonat átlagsebessége 60 km/h, a gyorsvonat átlagsebessége (60 + 18 =) 78 km/h.	1 pont	
Ellenőrzés: A gyorsvonat menetideje (195:78=) 2,5		
óra, a személyvonat menetideje (195:60=) 3,25 óra.	1 pont	
Ez valóban 45 perccel több, mint a 2,5 óra.		
Összesen:	7 pont	

2. a) második megoldás		
Ha (órában mérve) a gyorsvonat menetideje t,		
akkor a személyvonat menetideje $t + 0.75$ ($t > 0$).		
A gyorsvonat átlagsebessége (km/h-ban mérve) $\frac{195}{t}$,	1 pont	
a személyvonat átlagsebessége $\frac{195}{t+0.75}$.		
A feladat szövege szerint: $\frac{195}{t} = \frac{195}{t + 0.75} + 18.$	1 pont	
$195t + 146,25 = 195t + 18t^2 + 13,5t$	1 pont	
$18t^2 + 13,5t - 146,25 = 0$	1 pont	$8t^2 + 6t - 65 = 0$
t = 2.5 (vagy $t = -3.25$, de) a negatív gyök nem megoldása a feladatnak.	1 pont	
A gyorsvonat átlagsebessége (195:2,5 =) 78 km/h, a személyvonat átlagsebessége (78 – 18 =) 60 km/h.	1 pont	
Ellenőrzés: A személyvonat (195 : 60 =) 3,25 óra		
alatt teszi meg a 195 km-es távolságot.	1 pont	
Ez valóban 45 perccel több, mint a 2,5 óra.		
Összesen:	7 pont	

2. a) harmadik megoldás		
(Ha a menetidőt órában, az átlagsebességet km/h-ban mérjük, és) a gyorsvonat menetideje t , átlagsebessége pedig v , akkor a személyvonat menetideje $t + 0.75$, átlagsebessége pedig $v - 18$ ($t > 0$ és $v > 18$).	1 pont	
A feladat szövege szerint: $ vt = 195 $ $(v-18)(t+0.75) = 195 $	1 pont	
vt = 195	4 .	vt = 195
vt = 195 -18t + 0.75v = 13.5	1 pont	vt = 195 $-24t + v = 18$
Behelyettesítő módszerrel: $24t^2 + 18t - 195 = 0$.	1 pont	$v^2 - 18v - 4680 = 0$
t = 2.5 és $v = 78$ (vagy $t = -3.25$ és $v = -60$, de) a negatív gyök nem megoldása a feladatnak.	1 pont	
A gyorsvonat átlagsebessége 78 km/h, a személyvonat átlagsebessége (78 – 18 =) 60 km/h.	1 pont	
Ellenőrzés: A személyvonat (195 : 60 =) 3,25 óra		
alatt teszi meg a 195 km-es távolságot.	1 pont	
Ez valóban 45 perccel több, mint a 2,5 óra.		
Összesen:	7 pont	

2. b) első megoldás		
Mivel az öt adatnak egyetlen módusza van, ezért az ötödik adat csak a négy ismert adat valamelyike lehet (90, 150, 160 vagy 200).	1 pont	

Az ötödik adat nem lehet 150 vagy 160, mert akkor a módusz és a medián megegyezne.	1 pont	
Az ötödik adat nem lehet a 90 sem, mert akkor az átlag $(690:5=138)$ nem szerepelne az adatok között.	1 pont	
Ha az ötödik adat (a pénteki utasok száma) a 200, akkor az öt adat átlaga (800:5 =) 160,	1 pont	
ami minden feltételnek megfelel: a módusz 200, a medián pedig 160 (ami egyben az öt adat átlaga is). (Pénteken tehát 200 utast számláltak.)	1 pont	
Összesen:	5 pont	

2. b) második megoldás		
Mivel az öt adatnak egyetlen módusza van, ezért az ötödik adat csak a négy ismert adat valamelyike lehet (90, 150, 160 vagy 200).	1 pont	
Az öt adat átlaga nagyobb 90-nél és kisebb 200-nál, tehát az átlag 150 vagy 160 lehet.	1 pont	
Az átlag nem lehet 150, mert akkor az ötödik adat (5·150-600=) 150 lenne, ekkor pedig a módusz és a medián megegyezne.	1 pont	
Ha az átlag 160, akkor az ötödik adat (a pénteki utasok száma) $(5.160-600=)200$,	1 pont	
ami minden feltételnek megfelel: a módusz 200, a medián pedig 160. (Pénteken tehát 200 utast számláltak.)	1 pont	
Összesen:	5 pont	

Megjegyzés: Ha a vizsgázó helyesen válaszol a feladat kérdésére, és válaszát a feladat szövege alapján ellenőrzi, de nem mutatja meg, hogy más megoldás nincs, akkor legfeljebb 2 pontot kaphat.

3. a)		
(AC, illetve BD a kör egy- egy átmérője, ezért) a Thalész-tétel miatt $APC \angle = 90^{\circ} \text{ és}$ $BPD \angle = 90^{\circ}.$	2 pont	
(A körülírt kör sugarát r -rel jelölve, a Pitagorasz-tétel miatt) $AP^2 + CP^2 = AC^2 = (2r)^2 \text{ és}$ $BP^2 + DP^2 = BD^2 = (2r)^2.$	1 pont	
Tehát $AP^2 + CP^2 = BP^2 + DP^2$, ami a bizonyítandó volt.	1 pont	
Összesen:	4 pont	

3. b) első megoldás		
(A forgásszimmetria miatt) a négy pohár alapkörének négy középpontja egy négyzet négy csúcsa.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
(Az érintkező körök középpontjai és az érintési pont egy egyenesre esnek, így) a négyzet oldala ugyanakkora, mint egy pohár átmérője: 2r.	1 pont	
A négyzet AC átlójának hossza $2r\sqrt{2}$.	1 pont	
A PQ átmérőre igaz, hogy $20 = 2r + 2r\sqrt{2}$,	1 pont	
ahonnan $r = \frac{10}{1+\sqrt{2}} = 10(\sqrt{2}-1) > 4,1 \text{ (cm)},$	1 pont	
tehát az állítás igaz.	_	
Osszesen:	5 pont	

3. b) második megoldás		
Helyezzünk el négy darab 4,1 cm alapkör sugarú po-		
harat egy négyzet csúcsaiban úgy, hogy az alapkörök	1 pont	Ez a pont egy megfelelő
középpontja négyzetcsúcs legyen, és a szomszédos	1 point	ábra esetén is jár.
csúcsokban elhelyezett poharak érintsék egymást.		
A négyzet oldala $(2 \cdot 4, 1 =) 8,2$ cm,	1 4	
átlója pedig ($8,2 \cdot \sqrt{2} \approx 11,597 <$) 11,6 cm hosszú.	1 pont	
$11,6+2\cdot4,1=19,8$, ezért a négyzet középpontja kö-		
rül 9,9 cm-es sugárral megrajzolt körön belül lesz	1 pont	
mind a négy pohár alapköre.		
Ezért ha a 4,1 cm sugarú poharakat egy 20 cm átmé-		
rőjű tálcára helyezzük, akkor azok nem érinthetik	1 pont	
egymást és a tálca oldalfalát is a feladat szövegében	1 pont	
leírt módon.		
Ehhez a poharak alapkörének sugarát növelni kell,	1 pont	
tehát az állítás igaz.	1 pont	
Összesen:	5 pont	

3. c)		
Mivel a pohár fala 2,5 mm vastag, így a belső sugara nagyobb, mint $(4,1-0,25=)$ 3,85 cm.	1 pont	
A pohár térfogata: $V_{\text{pohár}} > 3,85^2 \cdot \pi \cdot 11 \approx 512 \text{ cm}^3$.	1 pont	
$1 dl = 100 cm^3$	1 pont	$512 \text{ cm}^3 = 5,12 \text{ dl}$
tehát igaz, hogy belefér 5 dl üdítő a pohárba.	1 pont	
Összesen:	4 pont	

^{1.} A sugárra a b) részben kapott pontos értéket használva V_{pohár} > 523 cm³ adódik.

^{2.} Ha a vizsgázó egyenlőtlenség helyett egyenlőséggel számol, akkor teljes pontszámot kaphat.

4. a)		
A függvény zérushelyeinek kiszámítása: $x^2 - 12x + 27 = 0$, innen $x_1 = 3$, $x_2 = 9$.	1 pont	
(A függvényértékek a két zérushely között negatívak, ezért a kérdezett T területre fennáll:) $-T = \int_{3}^{9} (x^2 - 12x + 27) dx =$ $= \left[\frac{x^3}{3} - 12 \frac{x^2}{2} + 27x \right]_{3}^{9} =$	1 pont	3 9 7
$= \left(\frac{9^3}{3} - 6 \cdot 9^2 + 27 \cdot 9\right) - \left(\frac{3^3}{3} - 6 \cdot 3^2 + 27 \cdot 3\right) =$	1 pont	
=(0-36=)-36.	1 pont	
A kérdezett terület nagysága tehát 36 (területegység).	1 pont	
Összesen:	5 pont	

4. b)		
Az E -ben húzott érintő meredekségét az f deriváltfüggvényének az $x = 5$ helyen felvett helyettesítési értéke adja meg.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
f'(x) = 2x - 12	1 pont	
f'(5) = -2	1 pont	
Az érintő egyenlete: $y + 8 = -2(x - 5)$.	2 pont	y = -2x + 2
Összesen:	5 pont	

Megjegyzés: Ha a vizsgázó az érintő egyenletét koordinátageometriai módszerrel határozza meg, akkor 1 pontot kapjon annak megállapításáért, hogy a keresett érintő egyenlete felírható y = m(x - 5) - 8 alakban (mert az x = 5 egyenes nem érintő).

További 2 pontot kapjon azért, ha az egyenes és a parabola egyenletéből alkotott egyenletrendszerből eljut annak megállapításáig, hogy az $x^2 - (12 + m)x + 5m + 35 = 0$ egyenlet diszkriminánsa, az $m^2 + 4m + 4$ összeg, nullával egyenlő.

Ebből az m = -2 meghatározásáért 1 pontot,

a keresett érintő egyenletének felírásáért pedig további 1 pontot kapjon.

4. c)		
A parabola $y = x^2 - 12x + 27$ alakú egyenletét	1	0 ((()2
$y = (x-6)^2 - 9$ alakban írva adódik, hogy	1 pont	$y+9=(x-6)^2$
a tengelypontja <i>T</i> (6; −9),	1 pont	
paramétere $p = 0.5$.	1 pont	
(Mivel $\frac{p}{2}$ = 0,25, ezért) a fókuszpont: $F(6; -8,75)$.	1 pont	
Összesen:	4 pont	

II.

5. a)		
c kezdőszámjegy (a $\overline{c3c5}$ -ben), ezért $c \neq 0$.	1 pont	$c \in \{1; 2; 3; 4; 5; 6; 7; 8; 9\}$
$\overline{1c28}$ (mindig páros, ezért) 6-tal akkor nem osztható, ha 3-mal nem osztható, tehát ha a számjegyeinek öszszege nem osztható 3-mal: $c \notin \{1; 4; 7\}$.	1 pont	$c \in \{2; 3; 5; 6; 8; 9\}$
93c6 akkor osztható 36-tal, ha 4-gyel és 9-cel is osztható.	1 pont	
9-cel akkor osztható, ha a számjegyek összege osztható 9-cel, ez ($c=0$ kizárása után csak) $c=9$ esetén teljesül.	1 pont	
Ekkor azonban 9396 osztható 4-gyel is, ezért $c \neq 9$.	1 pont	$c \in \{2; 3; 5; 6; 8\}$
$\overline{c3c5}$ mindig osztható 5-tel, ezért 15-tel akkor nem osztható, ha 3-mal nem osztható, tehát ha a számjegyeinek összege nem osztható 3-mal: $c \notin \{2; 5; 8\}$.	1 pont	
Így a megfelelő értékek: $c = 3$ és $c = 6$.	1 pont	$c \in \{3; 6\}$
Összesen:	7 pont	

- 1. Ha a vizsgázó a megoldásában nem említi a 3-mal, illetve a 9-cel való oszthatóság szabályát, akkor ezért összesen 1 pontot veszítsen.
- 2. Ha a vizsgázó a c számjegy 10 lehetséges értékét szisztematikusan végigpróbálja, és ezt dokumentálja, akkor a két helyes érték (a 3 és a 6) azonosításáért 1-1 pontot, a 0 számjegy kizárásáért pedig további 1 pontot kapjon. Összesen 4 pont jár a maradék hét számjegy kizárásáért. Ha ebben egy hibát követ el, akkor ebből a 4 pontból 2 pontot, ha egynél több hibát követ el, akkor pedig 0 pontot kapjon.

5. b)		
A $4^n + 6n - 1$ összeg minden pozitív egész n esetén páratlan (mert az összegnek egy páratlan tagja van),	1 pont	
tehát sohasem osztható 8-cal.	1 pont	
Összesen:	2 pont	

5. c) első megoldás		
(Teljes indukciót alkalmazunk.) Ha $n = 1$, akkor az állítás igaz, mert a 9 osztható 9-cel.	1 pont	
Tegyük fel, hogy az állítás igaz egy k pozitív egész számra, azaz $4^k + 6k - 1$ osztható 9-cel.	1 pont	
Ekkor igazolnunk kell, hogy az állítás igaz $k + 1$ -re is, azaz $4^{k+1} + 6(k+1) - 1$ is osztható 9-cel.	1 pont	
$4^{k+1} + 6(k+1) - 1 = 4 \cdot 4^k + 6k + 5 =$ $= 4 \cdot (4^k + 6k - 1) - 18k + 9$	2 pont*	
$4 \cdot (4^k + 6k - 1)$ az indukciós feltevés szerint, a $-18k$, illetve a 9 pedig nyilvánvalóan osztható 9-cel,	1 pont*	
ezért ezek összege (azaz a $4^{k+1} + 6(k+1) - 1$) is osztható 9-cel. (Ezzel az állítást igazoltuk.)	1 pont*	
Összesen:	7 pont	

Megjegyzés: A *-gal jelölt 4 pontot az alábbi gondolatmenetért is megkaphatja a vizsgázó:

Tekintsük a két szám különbségét: $(4^{k+1} + 6(k+1) - 1) - (4^k + 6k - 1) = 3 \cdot 4^k + 6 = 3 \cdot (4^k + 2)$.	1 pont	
4^k maradéka 3-mal osztva 1, ezért $4^k + 2$ osztható 3-mal, így $3 \cdot (4^k + 2)$ osztható 9-cel.	1 pont	
Ha $4^{k+1} + 6(k+1) - 1$ és $4^k + 6k - 1$ számok különbsége is és (az indukciós feltevés miatt) $4^k + 6k - 1$ is osztható 9-cel, akkor $4^{k+1} + 6(k+1) - 1$ is osztható 9-cel. (Ezzel az állítást igazoltuk.)	2 pont	

5. c) második megoldás		
(Esetszétválasztást végzünk az n 3-mal való osztási		
maradéka alapján.)		
Ha <i>n</i> maradéka 3-mal osztva 0 ($n = 3k, k \in \mathbb{N}^+$),	2 pont	
akkor 9-cel osztva $(4^{3k} = 64^k = (9 \cdot 7 + 1)^k \text{ miatt})$	_	
4 ⁿ maradéka 1; 6 <i>n</i> maradéka 0.		
Ha n maradéka 3-mal osztva 1 ($n = 3k + 1, k \in \mathbb{N}$),		
akkor 9-cel osztva ($4^{3k+1} = 4 \cdot 64^k$ miatt)	2 pont	
4 ⁿ maradéka 4; 6 <i>n</i> maradéka 6.		
Ha n maradéka 3-mal osztva 2 ($n = 3k + 2, k \in \mathbb{N}$),		
akkor 9-cel osztva $(4^{3k+2} = 16 \cdot 64^k = (9+7) \cdot 64 \text{ miatt})$	2 pont	
4 ⁿ maradéka 7; 6 <i>n</i> maradéka 3.		
Mindhárom esetben $4^n + 6n - 1$ maradéka 9-cel	1 pont	
osztva 0. (Ezzel az állítást beláttuk.)	т ропі	
Összesen:	7 pont	

5. c) harmadik megoldás		
A binomiális tételt alkalmazzuk:		
$4^{n} = (3+1)^{n} = 3^{n} + {n \choose 1} \cdot 3^{n-1} + \dots + {n \choose n-1} \cdot 3 + 1.$	2 pont	
A felírásban az utolsó két tag kivételével mindegyik	1 nont	
tag osztható 9-cel,	1 pont	
elegendő tehát az $\binom{n}{n-1}$ · 3+1+6n-1 kifejezés 9-cel	1 pont	
való oszthatóságát vizsgálni.		
$\binom{n}{n-1} \cdot 3 + 1 + 6n - 1 = n \cdot 3 + 6n = 9n,$	1 pont	
ez a kifejezés tehát mindig osztható 9-cel.	1 pont	
Tehát $4^n + 6n - 1$ maradéka 9-cel osztva 0. (Ezzel az állítást beláttuk.)	1 pont	
Összesen:	7 pont	

5. c) negyedik megoldás		
$4^{n}-1=4^{n}-1^{n}=(4-1)(4^{n-1}+4^{n-2}++1)=$	1 nont	
$= 3 \cdot (4^{n-1} + 4^{n-2} + \dots + 1).$	1 pont	
Mivel $4^n + 6n - 1 = 3 \cdot (4^{n-1} + 4^{n-2} + + 1) + 6n =$	1 mont	
$=3\cdot (4^{n-1}+4^{n-2}++1+2n),$	1 pont	
ezért elegendő bizonyítani, hogy	1 pont	
$4^{n-1} + 4^{n-2} + \dots + 1 + 2n$ osztható 3-mal.	Тропс	
A $4^q = (3+1)^q \ (q \in \mathbb{N})$ hatvány 3-mal való osztási		
maradéka mindig 1 (hatvány maradéka megegyezik a maradék hatványával, illetve annak a maradékával),	1 pont	
ezért a 4 ⁿ⁻¹ + 4 ⁿ⁻² + + 1 (n tagú) kifejezés 3-mal való osztási maradéka n. (Összeg maradéka megegyezik a maradékok összegével, illetve annak a maradékával.)	1 pont	
$4^{n-1} + 4^{n-2} + + 1 + 2n$ maradéka tehát $n + 2n = 3n$ maradékával egyezik meg (vagyis 0).	1 pont	
Tehát $4^{n-1} + 4^{n-2} + + 1 + 2n$ osztható 3-mal. (Ezzel az állítást beláttuk.)	1 pont	
Összesen:	7 pont	

6. a)		
$200 \text{ liter} = 200 \text{ dm}^3$	1 pont	
A hordó alapterülete $\left(\frac{200}{8}\right) = 25 \text{ dm}^2$,	1 pont	
a sugara pedig $\left(\sqrt{\frac{25}{\pi}} \approx\right) 2,82 \text{ dm.}$	1 pont	
A palást területe $(2\pi \cdot 2.82 \cdot 8 \approx) 142 \text{ dm}^2$,	1 pont	
a hordó körülbelül 167 dm² területű lemezből áll.	1 pont	
A hordó gyártásához $\frac{167}{0.88} \approx 190 \text{ dm}^2 \text{ lemezre van}$	1 pont	
szükség. Összesen:	6 pont	
USSZESCII.	o pont	

6. b)		
(Minden hosszúságot dm-ben mérünk,		
r a henger sugara, m pedig a magassága.)		
A felül nyitott henger térfogata: $r^2 \pi m = 200$,	1 pont	
felszíne: $r^2\pi + 2r\pi m$.		
$m = \frac{200}{r^2 \pi}$, ezzel a 200 literes henger felszíne	2	
$A(r) = \left(r^2\pi + 2r\pi \cdot \frac{200}{r^2\pi}\right) + r^2\pi + \frac{400}{r}.$	2 pont	
Az $A(r) = r^2 \pi + \frac{400}{r}$ ($r > 0$) függvény deriválható,	1 pont*	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
és ott lehet minimuma, ahol a deriváltja 0.		oldasbol aerul ki.
$A'(r) = 2r\pi - \frac{400}{r^2}$	1 pont*	
$2\pi r - \frac{400}{r^2} = 0$, amiből $r = \sqrt[3]{\frac{200}{\pi}} \approx 3,99$.	2 pont*	
Az A függvény második deriváltja mindenhol pozitív,		
tehát a $\sqrt[3]{\frac{200}{\pi}}$ ennek a függvénynek (abszolút) mini-	1 pont*	$A''(r) = 2\pi + \frac{800}{r^3}$
mumhelye.		
A legkisebb felszínű, felül nyitott forgáshenger sugara körülbelül 3,99 dm,	1 pont	
magassága $\frac{200}{r^2\pi} \approx 3,99 \text{ dm.}$	1 pont	$m^3 = \frac{200^3}{\frac{200^2}{\pi^2} \cdot \pi^3} = \frac{200}{\pi} = r^3,$
(A legkisebb felszín $3 \cdot \sqrt[3]{40000\pi} \approx 150 \text{ dm}^2$.)		π^2 tehát $m = r$.
Összesen:	10 pont	

Megjegyzés: A *-gal jelölt 5 pontot az alábbi gondolatmenetért is megkaphatja a vizsgázó:

$A(r) = r^2 \pi + \frac{400}{r} = r^2 \pi + \frac{200}{r} + \frac{200}{r}.$	1 pont	
A számtani és mértani közép közötti egyenlőtlenség alapján: $A(r) \ge 3 \cdot \sqrt[3]{r^2 \pi \cdot \frac{200}{r} \cdot \frac{200}{r}} = 3 \cdot \sqrt[3]{40000 \pi}.$	2 pont	
Egyenlőség pontosan akkor lehet, ha $r^2\pi = \frac{200}{r}$,	1 pont	
vagyis $r = \sqrt[3]{\frac{200}{\pi}} (\approx 3.99).$	1 pont	

7. a) első megoldás		
A megfigyelt szabályszerűség azt jelenti, hogy a har-		Ez a pont akkor is jár, ha
madik órától kezdve minden órában megduplázódik	1 pont	
az addigi összes megfertőződött cellák száma.		oldásból derül ki.
Így (mivel a második órában 7 fertőzött cella van) az		
n -edik órában ($n \ge 2$) az összes fertőzött cella száma	2 pont	
$7\cdot 2^{n-2}$.		
Megoldandó ezért a	1 4	
$7 \cdot 2^{n-2} > 10\ 000\ 000\ \text{egyenlőtlenség.}$	1 pont	
A lg függvény szigorúan monoton növekedő, ezért		
(a 7-tel való osztás után az egyenlőtlenség mindkét	1 pont	
oldalának 10-es alapú logaritmusát véve)		
$(n-2) \log 2 > \log 10000000$	1	
$(n-2) \cdot \lg 2 > \lg \frac{10\ 000\ 000}{7}$.	1 pont	
$n > \frac{\lg \frac{10000000}{7}}{\lg 2} + 2 \approx 22,4$		10,000,000
$\frac{19}{7}$	1 pont	$n > 2 + \log_2 \frac{100000000}{7}$
$\frac{n}{\log 2} + 2 \sim 22,4$	-	-2 //
Azaz a fertőzött cellák száma a 23. órában haladná	1 nont	
meg a tízmilliót.	1 pont	
Összesen:	8 pont	

7. a) második megoldás		
A megfigyelt szabályszerűség azt jelenti, hogy a ne-		Ez a pont akkor is jár, ha
gyedik órától kezdve minden órában kétszer annyi	1 pont	ez a gondolat csak a meg-
cella fertőződik meg, mint a megelőző órában.	-	oldásból derül ki.
Megoldandó ezért az alábbi egyenlőtlenség:		
$3+4+7+14++7\cdot 2^k > 10\ 000\ 000$	1 pont	
(ahol k a harmadik óra után eltelt órák számát jelöli).		
A mértani sorozat összegképletét alkalmazva:		
$\frac{1}{2}$, $\frac{2^{k+1}-1}{2}$	1 pont	
$7 + 7 \cdot \frac{2^{k+1} - 1}{2 - 1} > 10\ 000\ 000.$	1	
Rendezve:		
$2^{k+1} > \frac{10\ 000\ 000}{7} .$	1 pont	
$\frac{2}{7}$.		
A 2-es alapú exponenciális függvény szigorúan	1 nont	
monoton növekedő, ezért	1 pont	
10 000 000		10,000,000
$\frac{19}{7}$	1 pont	$k+1 > \log_2 \frac{10000000}{7}$
$k+1 > \frac{\lg \frac{10000000}{7}}{\lg 2} \approx 20,4.$	1	7
k+3>22,4	1 pont	
Azaz a fertőzött cellák száma a 23. órában haladná	1 nont	
meg a tízmilliót.	1 pont	
Összesen:	8 pont	

- 1. Ha a vizsgázó egyenlőtlenség helyett egyenletet old meg, majd a baktériumok számának monoton növekedésére hivatkozva jó választ ad, akkor teljes pontszámot kapjon. Ha egyenletet old meg, de a megoldás után indoklás nélkül ad választ a feladat kérdésére, akkor legfeljebb 7 pontot kaphat.
- 2. Ha a vizsgázó óráról órára jól kiszámítja a fertőzött cellák számát, ezt dokumentálja, és ez alapján helyes választ ad, akkor teljes pontszámot kapjon.

7. b)		
A modell szerint mindegyik dobásnál vagy $\frac{1}{2}$ valószínűséggel elpusztul egymillió baktérium, vagy $\frac{1}{6}$ valószínűséggel egymillióval nő, vagy $\frac{1}{3}$ valószínűséggel változatlan marad a baktériumok száma.	1 pont	
Legfeljebb ötmillió baktérium akkor marad a hetedik dobás után, ha a hét dobás közül legalább öt alkalommal 1-et, 2-t vagy 3-at dobtak (azaz csökkent a baktériumok száma).	2 pont	Ezek a pontok akkor is járnak, ha ez a gondolat csak a megoldásból derül ki.

Ha pontosan öt alkalommal dobtak 1-et, 2-t vagy 3-at, akkor a másik két alkalommal 4-et vagy 5-öt dobtak (azaz mindkétszer változatlan maradt a baktériumszám). Ennek a valószínűsége: $\binom{7}{5} \cdot \left(\frac{1}{2}\right)^5 \cdot \left(\frac{1}{3}\right)^2 \ (\approx 0,073).$	1 pont	
Ha pontosan hat alkalommal dobtak 1-et, 2-t vagy 3-at, akkor a maradék egy alkalommal 4-et vagy 5-öt dobtak (azaz nem történt változás), vagy egy alkalommal 6-ot dobtak (azaz növekedett a baktériumok száma). Ennek a valószínűsége: $\binom{7}{6} \cdot \left(\frac{1}{2}\right)^6 \cdot \frac{1}{3} + \binom{7}{6} \cdot \left(\frac{1}{2}\right)^6 \cdot \frac{1}{6} \ (\approx 0.055).$	2 pont	Ha pontosan hat alkalommal dobtak 1-et, 2-t vagy 3-at, akkor a maradék egy alkalommal 4-et, 5-öt vagy 6-ot dobtak. Ennek a valószínűsége: $\binom{7}{6} \cdot \left(\frac{1}{2}\right)^6 \cdot \frac{1}{2}.$
Annak a valószínűsége, hogy pontosan hétszer dobtak 1-et, 2-t vagy 3-at: $\left(\frac{1}{2}\right)^7 (\approx 0,008)$.	1 pont	
A kérdezett valószínűség (a három egymást páron- ként kizáró lehetőség valószínűségének összege, azaz) körülbelül (0,073 + 0,055 + 0,008 =) 0,136.	1 pont	A valószínűség pontos értéke $\frac{13}{96}$ ($\approx 0,135$).
Összesen:	8 pont	

8. a) első megoldás		
Az állítás megfordítása: <i>Ha egy háromszög körülírt</i> körének középpontja megegyezik a beírt körének középpontjával, akkor a háromszög szabályos.	1 pont	
A beírt kör középpontja (a háromszög belső pontja) a belső szögfelezők közös pontja, amely most egyenlő távolságra van a háromszög csúcsaitól (mert a körülírt körnek is középpontja),	1 pont	
ezért a két kör közös középpontját a háromszög csúcsaival összekötő szakaszok három egyenlő szárú háromszögre bontják az eredeti háromszöget. A szögfelezők miatt ezeknek a háromszögeknek az alapon fekvő szögeik mind ugyanakkorák.	1 pont	$A \xrightarrow{\mathcal{E}} B$
Ezért az eredeti háromszög három belső szöge egyen- lő nagyságú, tehát az eredeti háromszög szabályos.	1 pont	
Összesen	4 pont	

8. a) második megoldás		
Az állítás megfordítása: Ha egy háromszög körülírt körének középpontja megegyezik a beírt körének kö- zéppontjával, akkor a háromszög szabályos.	1 pont	
A beírt kör középpontja (a háromszög belső pontja) a körülírt körnek is középpontja, ezért egyenlő távolságra van a háromszög csúcsaitól. Tehát (az ábra jelölései szerint) az AOB háromszög egyenlő szárú (ezért $OAB \angle = OBA \angle = \varepsilon$).	1 pont	C C C C C C C C C C
A beírt kör középpontja az AO és BO belső szögfelezők közös pontja, ezért az ABC háromszög AB oldalán fekvő két belső szöge egyenlő (2 ϵ). Az ABC háromszög tehát egyenlő szárú: $AC = BC$.	1 pont	
A gondolatmenetet (pl. a BOC háromszögre) megismételve kapjuk, hogy $AB = BC = CA$, tehát a háromszög szabályos.	1 pont	
Összesen	4 pont	

8. b) első megoldás		
Az ABQ háromszög szögei 20°, 40° és 120°.	1 pont	
(Az ABQ háromszögből szinusztétellel:)	14	
$\frac{BQ}{1} = \frac{\sin 20^{\circ}}{\sin 120^{\circ}},$	1 pont	
ahonnan $BQ \approx 0.395$.	1 pont	
$AQ = \sin 40^{\circ}$	1 pont	
$\frac{1}{1} = \frac{1}{\sin 120^{\circ}},$	1 point	
ahonnan $AQ \approx 0,742$.	1 pont	
BQ = AP (mert az ábra forgásszimmetrikus)	1 pont	
$fgy PQ = AQ - AP \approx 0.347.$	1 pont	
Összesen	7 pont	

8. b) második megoldás		
Az ABQ háromszög szögei 20°, 40° és 120°.	1 pont	
(Az ABQ háromszögből szinusztétellel:)		Ez a 3 pont jár, ha a vizs-
$\frac{AQ}{1} = \frac{\sin 40^{\circ}}{\sin 120^{\circ}}$	1 pont	gázó (az AQ szakasz
$\frac{1}{1} - \frac{1}{\sin 120^{\circ}}$		hosszának kiszámítása
ahonnan $AQ \approx 0.742$.	1 pont	nélkül) az
Az ABQ háromszög területe: $\frac{AB \cdot AQ \cdot \sin 20^{\circ}}{2} = \frac{1 \cdot \sin 40^{\circ} \cdot \sin 20^{\circ}}{2 \cdot \sin 120^{\circ}} \approx 0,127.$	1 pont	AB ² ·sin 20°·sin 40° 2·sin 120° képlet alkalmazásával számítja ki az ABQ há- romszög területét.
(Az ABQ, BCR és CAP háromszögek egybevágók, ezért) a PQR szabályos háromszög területe $T_{PQR} = T_{ABC} - 3T_{ABQ} =$ $= \frac{\sqrt{3}}{4} - \frac{3 \cdot \sin 40^{\circ} \cdot \sin 20^{\circ}}{2 \cdot \sin 120^{\circ}} \approx 0,433 - 0,381 = 0,052.$	1 pont	
Így $PQ = \sqrt{\frac{4 \cdot T_{PQR}}{\sqrt{3}}} \approx \sqrt{\frac{0,208}{1,732}} \approx$	1 pont	
≈ 0,347.	1 pont	
Összesen	7 pont	

8. b) harmadik megoldás		
Az ábra szerinti jelöléseket alkalmazzuk: a PQR szabályos háromszög oldalának hossza a , az APD háromszög oldalai b , c és d . $CR = AP = c \text{ (mert az ábra forgásszimmetrikus)}.$	1 pont	
Az ADC háromszög szögei 20°, 100° és 60°. (Ebből a háromszögből szinusztétellel:) $\frac{CD}{1} = \frac{\sin 60^{\circ}}{\sin 100^{\circ}}, \text{ azaz } CD = \frac{\sin 60^{\circ}}{\sin 100^{\circ}},$	1 pont	

illetve $\frac{d}{1} = \frac{\sin 20^{\circ}}{\sin 100^{\circ}}$, azaz $d = \frac{\sin 20^{\circ}}{\sin 100^{\circ}}$.	1 pont	
(Az ADP háromszögből szinusztétellel:) $\frac{c}{d} = \frac{\sin 100^{\circ}}{\sin 60^{\circ}}, \text{ azaz } c = d \cdot \frac{\sin 100^{\circ}}{\sin 60^{\circ}} = \frac{\sin 20^{\circ}}{\sin 60^{\circ}}, \text{ és}$	1 pont	
$\frac{b}{d} = \frac{\sin 20^{\circ}}{\sin 60^{\circ}}, \text{ azaz } b = d \cdot \frac{\sin 20^{\circ}}{\sin 60^{\circ}} = \frac{\sin^2 20^{\circ}}{\sin 60^{\circ} \cdot \sin 100^{\circ}}.$	1 pont	
A PQR szabályos háromszög oldala $(a = CD - c - b)$: $a = \frac{\sin 60^{\circ}}{\sin 100^{\circ}} - \frac{\sin 20^{\circ}}{\sin 60^{\circ}} - \frac{\sin^2 20^{\circ}}{\sin 60^{\circ} \cdot \sin 100^{\circ}} \approx$	1 pont	
≈ 0,347.	1 pont	
Összesen	7 pont	

- 1. Az ábra jelöléseivel: $CD \approx 0,879, d \approx 0,347, c \approx 0,395, b \approx 0,137.$
- 2. Addíciós tételek felhasználásával bizonyítható, hogy $a = d = 2 \cdot \sin 10^{\circ}$.

8. c) első megoldás		
A kiválasztott három színnel a páronként szomszédos <i>CQR</i> , <i>CAP</i> és <i>PQR</i> háromszögeket (3!) = 6-féleképpen színezhetjük.	1 pont	A P Q
ABQ és CQR háromszög színe megegyezik (mert az ABQ háromszög színe a CAP és a PQR háromszög színétől is különbözik).	1 pont	
BCQ háromszöget kétféle színnel is színezhetjük (úgy mint CAP-t, vagy úgy mint PQR-t),	1 pont	
tehát a kiválasztott három színnel $(6 \cdot 2 =) 12$ színezés lehetséges.	1 pont	
Mivel a három színt a négy közül négyféleképpen választhatjuk ki, ezért (4·6·2 =) 48 különböző színezés van.	1 pont	
Összesen	5 pont	

8. c) második megoldás		
A <i>PQR</i> háromszöget négyféleképpen színezhetjük, és minden egyes színezéshez az <i>RQC</i> háromszög színét háromféleképpen választhatjuk. Ez (4 · 3 =) 12 lehetőség.	1 pont	A P Q B
Ezután a <i>CAP</i> háromszög színe kétféle lehet, tehát eddig 24 különböző színezést adhattunk meg.	1 pont	
Csak három színt használhatunk a színezéshez, ezért az <i>ABQ</i> háromszög színe csak a már kiszínezett <i>RQC</i> háromszög színével egyező lehet (vagyis nem változik a lehetséges színezések száma).	1 pont	
A <i>BQC</i> háromszög színe ismét kétféle lehet (vagy a <i>PQR</i> vagy az <i>APC</i> háromszög színével megegyező).	1 pont	
Összesen tehát (24 · 2 =) 48 különböző színezés van.	1 pont	
Összesen	5 pont	

9. a)		
Az első árcsökkentés után az új ár az eredeti árnak az		
$\left(1-\frac{p}{100}\right)$ -szorosa,	1 pont	
a második árcsökkentés után az eredeti árnak az		
$\left(1 - \frac{p}{100}\right)\left(1 - \frac{p+4,5}{100}\right)$ -szorosa lett.	1 pont	
Ez az eredeti ár 81,4%-a, tehát		$A q = 1 - \frac{p}{100}$ jelölést
$\left(1 - \frac{p}{100}\right)\left(1 - \frac{p+4.5}{100}\right) = 0.814$.	1 pont	100° használva az egyenlet:
100 100 100 100		q(q-0.045) = 0.814.
$p^2 - 195,5 p + 1410 = 0$	2 pont	$q^2 - 0.045q - 0.814 = 0$
p = 7.5 vagy $p = 188$, de ez utóbbi ($p > 100$ miatt) nem felel meg a feladat szövegének.	1 pont	q = 0.925 (vagy $q = -0.88$, de) a negatív gyök nem felel meg a feladat szövegének.
Az első árcsökkentés 7,5%-os, a második 12%-os volt.	1 pont	
Ellenőrzés: A két árcsökkentés után az új ár az erede-		
tinek $0.925 \cdot 0.88$ -szorosa lett. $0.925 \cdot 0.88 = 0.814$,	1 pont	
tehát az új ár valóban 18,6%-kal alacsonyabb az ere-	1 point	
deti árnál.	0 4	
Osszesen:	8 pont	

Megjegyzés: Ha a vizsgázó próbálgatással megtalálja, hogy p = 7.5 megoldás, ezt igazolja, majd ez alapján helyes választ ad, de nem mutatja meg, hogy más megoldása nem lehet a feladatnak, akkor ezért 3 pontot kapjon.

0 b)		
9. b)		
Annak a valószínűsége, hogy pontosan egy húzás szükséges: $P(1) = 0$.	1 pont	
Legfeljebb 4 húzás szükséges ahhoz, hogy legyen két		Ez a pont akkor is jár, ha
azonos színű kesztyű a kihúzottak között,	1 pont	ez a gondolat csak a meg- oldásból derül ki.
ezért a pontosan 5, illetve pontosan 6 szükséges húzás valószínűsége: $P(5) = P(6) = 0$.	1 pont	
A pontosan 2 húzás szükségességének valószínűsége:		
$P(2) = \frac{1}{5}$ (a másodiknak kihúzott kesztyű színe meg-	1 pont	
egyezik az elsőével).		
Pontosan 3 húzás akkor szükséges, ha a második ki-		
húzott kesztyű színe nem egyezik meg az elsőnek ki-		
húzottéval, de a harmadikra húzott kesztyű színe	1 pont	
megegyezik az első kettő közül valamelyiknek a szí-	1 pont	
nével: $P(3) = \frac{4}{5} \cdot \frac{2}{4} = \frac{2}{5}$.		
Pontosan 4 húzás akkor szükséges, ha az első három		
szín mind különböző (ekkor a negyediknek kihúzott		P(4) = 1 - (P(2) + P(3)) =
kesztyű színe már biztosan megegyezik valamelyik	1 nont	P(4) = 1 - (P(2) + P(3)) = = $1 - \frac{3}{2} = \frac{2}{2}$
korábban kihúzott kesztyű színével):	1 pont	$=1-\frac{3}{5}=\frac{2}{5}$.
$P(4) = \frac{4}{5} \cdot \frac{2}{4} \cdot 1 = \frac{2}{5}$.		3 3
5 4 5		
A szükséges húzások számának várható értéke tehát:		
$(0.1+)\frac{1}{5}\cdot 2 + \frac{2}{5}\cdot 3 + \frac{2}{5}\cdot 4(+0.5+0.6) =$	1 pont	
= 3,2.	1 pont	
Összesen:	8 pont	