Aprenentatge Computacional

Pràctica 2: Clasificación

Grup GPA603-1530

Mario González 1566235 Ferran Bernabé 1564845 Daniel Gutiérrez 1563389

Índice de contenidos

- Explicación de la BBDD a analizar
- Análisis de los datos
- Clasificación
- Conclusiones

Explicación de la BBDD a analizar

Correlación de los atributos

Etiquetado desbalanceado

No: 0.7797

Yes: 0.2202

Apartado A

Comparativa de Modelos

En esta sección hemos aplicado diferentes modelos y métricas para ver cual de ellos da un mejor/peor rendimiento.

Modelos de selección

	Logistic Regression	SVM	KNN	Perceptron
50% test 50% validation	0.7892	0.792	0.7644	0.7636
80% test 20% validation	0.794	0.7895	0.772	0.7885
70% test 30% validation	0.7873	0.791	0.7616	0.6683

Resultado de las curvas ROC y PR

Resultado de las curvas ROC y PR

Últimos resultados de los modelos de clasificación

Apartado B

Clasificación numérica

En esta sección analizaremos nuestra base de datos para conocer el modelo más adecuado para clasificar nuestro atributo objetivo

Preprocesado, normalización y outliers

Normalización de los datos

- Valores de órdenes de magnitud parecidos
- Escalar los datos → dar la misma importancia a todos los atributos

	MinTemp	Max Temp	Rainfall	Evaporation	Sunshine	WindGustSpeed	Wind Speed 9am	Win
count	56420.000000	56420.000000	56420.000000	56420.000000	56420.000000	56420.000000	56420.000000	5
mean	13.464770	24.219206	2.130397	5.503135	7.735626	40.877366	15.667228	
std	6.416689	6.970676	7.014822	3.696282	3.758153	13.335232	8.317005	
min	-6.700000	4.100000	0.000000	0.000000	0.000000	9.000000	2.000000	
25%	8.600000	18.700000	0.000000	2.800000	5.000000	31.000000	9.000000	

Limpiado del dataset

- Borrar filas con algún NaN, al disponer de filas de sobra

- Borrar / convertir atributos no numéricos, para poder clasificar

Date	(
Location	(
MinTemp	148
MaxTemp	1263
Rainfall	3263
Evaporation	62790
Sunshine	6983
WindGustDir	10326
WindGustSpeed	1026
WindDir9am	1056
WindDir3pm	4228
WindSpeed9am	176
WindSpeed3pm	306
Humidity9am	2654
Humidity3pm	450
Pressure9am	1506
Pressure3pm	15028
Cloud9am	55888
Cloud3pm	59358
Temp9am	176
Temp3pm	3609
RainToday	3263
RainTomorrow	326

Modelo de Selección

Modelo de selección

- Ejecución de diferentes conjuntos de **test validation** en los datos
- Modelos utilizados:
 - KNN
 - Perceptrón
 - SVM
 - Linear Regression

Regressió Logística	Precisió	С	fit_intercept	penalty	tolerance
Bàsica					
50% test 50%val	85,38	2.0	True	None	0.001
80% test 20% val	85,31	2.0	True	None	0.001
70% test 30% val	85,31	2.0	True	None	0.001
K-Fold					
K = 2	0,8507	2.0	True	None	0.001
K = 3	0,8517	2.0	True	None	0.001
K = 4	0,8530	2.0	True	None	0.001
K = 5	0,8532	2.0	True	None	0.001
K = 6	0,8518	2.0	True	None	0.001
LOOVC	0,8532	2.0	True	None	0.001

KNN	Precisió	leaf_size	n_neighbors	metric	р
Bàsica					
50% test 50%val	83,91	30	5	minkowski	2
80% test 20% val	84,45	30	5	minkowski	2
70% test 30% val	84,45	30	5	minkowski	2
K-Fold					
K = 2	0.8270	30	5	minkowski	2
K = 3	0.8258	30	5	minkowski	2
K = 4	0.8325	30	5	minkowski	2
K = 5	0.8305	30	5	minkowski	2
K = 6	0.8315	30	5	minkowski	2
LOOVC	0,8445	2.0	True	None	0.001

SVM	Precisió	С	fit_intercept	penalty	tolerance
Bàsica					
50% test 50%val	85,35	2.0	True	None	1e-5
80% test 20% val	85,32	2.0	True	None	1e-5
70% test 30% val	85,59	2.0	True	None	1e-5
K-Fold					
K = 2	0,8509	1.0	True	None	1e-5
K = 3	0,8520	1.0	True	None	1e-5
K = 4	0,8530	1.0	True	None	1e-5
K = 5	0,8529	1.0	True	None	1e-5
K = 6	0,8522	1.0	True	None	1e-5
LOOVC	0,8530	1.0	True	None	1e-5

Perceptró	Precisió	α	fit_intercept	penalty	tolerance
Bàsica					
50% test 50%val	80,50	0.0001	True	None	0.001
80% test 20% val	78,33	0.0001	True	None	0.001
70% test 30% val	80,74	0.0001	True	None	0.001
K-Fold					
K = 2	0,8522	0.0001	True	None	0.001
K = 3	0,7886	0.0001	True	None	0.001
K = 4	0,7789	0.0001	True	None	0.001
K = 5	0,7981	0.0001	True	None	0.001
K = 6	0,8049	0.0001	True	None	0.001
LOOVC	0,8522	0.0001	True	None	0.001

- Validación del entrenamiento de los modelos, verificar si este ha sido efectivo
- Utiliza accuracy

Test / Validació (%)	Regressió logística	KNN	SVM	Perceptró
50 / 50	85,38	83,91	85,35	80,50
80 / 20	85,31	84,45	85,32	78,33
70 / 30	85,31	84,45	85,59	80,74

70 % Test 30 % Validació

Metric analysis

Metric analysis

- Visualización de diferentes métricas: accuracy, f1_score, average_precision, recall ...
- ROC / PR curves

Metric analysis

Model	Accuracy score	F1 score	Average Precision Score
SVM	0,8336	0,7931	0,3715
Perceptró	0,7132	0,7373	0,4069
KNN	0,8423	0,8347	0,4673
Regressió Logística	0,8521	0,8436	0,4891

ROC / PR curves

ROC / PR curves

ROC / PR curves resultados

Model	ROC	PR
SVM	0.89	0.96 (class 0)
Perceptron	0.85	0.95 (class 0)
KNN	0.86	0.94 (class 0)
Logistic Regression	0.89	0.96 (class 0)

- Todos los modelos dan resultados muy parecidos
- Podemos destacar **ROC** de **SVM** y **Logistic Regression**

- Prueba conjunto de hiperparametros en un modelo de forma exhaustiva para encontrar los mejores
- Métodos más utilizados GridSearchCV y RandomizedSearchCV

- Busqueda de los mejores hiperparametros en nuestro conjunto de datos
- Utilizaremos Exhaustive Grid Search (GridSearchCV)

Perceptron	{ 'penalty': ['l2','l1'],
KNN	{ 'n_neighbors' : [5,7,9,11,13], 'weights' : ['uniform','distance'], 'metric' ['minkowski','euclidean','manhattan'] }
Logistic Regression	{'C': [0.001, 0.01, 0.1, 1, 10, 100, 1000] }
SVM	{'C': [0.1,1, 10, 100, 1000]}

El algoritmo **GridSearchCV** ha escogido los siguientes como mejores hiperparámetros:

Perceptron	{ 'penalty': 'I1', 'alpha': 0.0001, 'fit_intercept': True, 'shuffle': True }
KNN	{ 'n_neighbors' : 13, 'weights' : 'uniform', 'metric': 'manhattan' }
Logistic Regression	{'C': 1000 }
SVM	{'C': 10 }

Mejora de los modelos con los mejores hiperparámetros

Model	Accuracy default parameters	Accuracy with best parameters (GridSearchCV)	Improvement
Perceptron	0.7132	0.8224	15.31%
KNN	0.8423	0.8413	-0.11%
Logistic Regression	0.8521	0.8506	-0.17%
SVM	0.8336	0.8333	-0.03%

Conclusiones

Modelos más destacados: SVM y Logistic Regression

Búsqueda de hiperparámetros mediante $GridSearchCV \rightarrow$ no mejoran todos los métodos (Perceptron)

Los atributos que mas ayudan a predecir la precipitación (RainTomorrow) son aquellos **relacionados con la lluvia**.