8 General-purpose I/Os (GPIO)

This section applies to the whole STM32F4xx family, unless otherwise specified.

8.1 GPIO introduction

Each general-purpose I/O port has four 32-bit configuration registers (GPIOx_MODER, GPIOx_OTYPER, GPIOx_OSPEEDR and GPIOx_PUPDR), two 32-bit data registers (GPIOx_IDR and GPIOx_ODR), a 32-bit set/reset register (GPIOx_BSRR), a 32-bit locking register (GPIOx_LCKR) and two 32-bit alternate function selection register (GPIOx_AFRH and GPIOx_AFRL).

8.2 **GPIO** main features

- Up to 16 I/Os under control
- Output states: push-pull or open drain + pull-up/down
- Output data from output data register (GPIOx_ODR) or peripheral (alternate function output)
- Speed selection for each I/O
- Input states: floating, pull-up/down, analog
- Input data to input data register (GPIOx_IDR) or peripheral (alternate function input)
- Bit set and reset register (GPIOx BSRR) for bitwise write access to GPIOx ODR
- Locking mechanism (GPIOx_LCKR) provided to freeze the I/O configuration
- Analog function
- Alternate function input/output selection registers (at most 16 AFs per I/O)
- Fast toggle capable of changing every two clock cycles
- Highly flexible pin multiplexing allows the use of I/O pins as GPIOs or as one of several peripheral functions

8.3 GPIO functional description

Subject to the specific hardware characteristics of each I/O port listed in the datasheet, each port bit of the general-purpose I/O (GPIO) ports can be individually configured by software in several modes:

- Input floating
- Input pull-up
- Input-pull-down
- Analog
- Output open-drain with pull-up or pull-down capability
- Output push-pull with pull-up or pull-down capability
- Alternate function push-pull with pull-up or pull-down capability
- Alternate function open-drain with pull-up or pull-down capability

RM0090 Rev 18 267/1749

Each I/O port bit is freely programmable, however the I/O port registers have to be accessed as 32-bit words, half-words or bytes. The purpose of the GPIOx_BSRR register is to allow atomic read/modify accesses to any of the GPIO registers. In this way, there is no risk of an IRQ occurring between the read and the modify access.

Figure 25 shows the basic structure of a 5 V tolerant I/O port bit. *Table 39* gives the possible port bit configurations.

Figure 25. Basic structure of a five-volt tolerant I/O port bit

1. V_{DD_FT} is a potential specific to five-volt tolerant I/Os and different from V_{DD} .

Table 35. Port bit configuration table⁽¹⁾

MODER(i) [1:0]	OTYPER(i)	OSPEEDR(i) [B:A]		DR(i) :0]	I/O conf	guration
	0		0	0	GP output	PP
	0		0	1	GP output	PP + PU
	0		1	0	GP output	PP + PD
01	0	SPEED	1	1	Reserved	
01	1	[B:A]	0	0	GP output	OD
	1		0	1	GP output	OD + PU
	1		1	0	GP output	OD + PD
	1		1	1	Reserved (GP ou	tput OD)

MODER(i) [1:0]	OTYPER(i)		EEDR(i) B:A]		DR(i) :0]	I/O con	figuration
	0			0	0	AF	PP
	0			0	1	AF	PP + PU
	0			1	0	AF	PP + PD
10	0	SP	EED	1	1	Reserved	
10	1	[E	3:A]	0	0	AF	OD
	1			0	1	AF	OD + PU
	1			1	0	AF	OD + PD
	1			1	1	Reserved	•
	Х	х	Х	0	0	Input	Floating
00	Х	х	х	0	1	Input	PU
00	Х	х	Х	1	0	Input	PD
	Х	х	Х	1	1	Reserved (input	floating)
	Х	х	Х	0	0	Input/output	Analog
11	Х	х	Х	0	1		
''	Х	х	Х	1	0	Reserved	
	Х	Х	Х	1	1		

Table 35. Port bit configuration table⁽¹⁾ (continued)

8.3.1 General-purpose I/O (GPIO)

During and just after reset, the alternate functions are not active and the I/O ports are configured in input floating mode.

The debug pins are in AF pull-up/pull-down after reset:

- PA15: JTDI in pull-up
- PA14: JTCK/SWCLK in pull-down
- PA13: JTMS/SWDAT in pull-up
- PB4: NJTRST in pull-up
- PB3: JTDO in floating state

When the pin is configured as output, the value written to the output data register (GPIOx_ODR) is output on the I/O pin. It is possible to use the output driver in push-pull mode or open-drain mode (only the N-MOS is activated when 0 is output).

The input data register (GPIOx_IDR) captures the data present on the I/O pin at every AHB1 clock cycle.

All GPIO pins have weak internal pull-up and pull-down resistors, which can be activated or not depending on the value in the GPIOx_PUPDR register.

RM0090 Rev 18 269/1749

^{1.} GP = general-purpose, PP = push-pull, PU = pull-up, PD = pull-down, OD = open-drain, AF = alternate function

8.3.2 I/O pin multiplexer and mapping

The microcontroller I/O pins are connected to onboard peripherals/modules through a multiplexer that allows only one peripheral's alternate function (AF) connected to an I/O pin at a time. In this way, there can be no conflict between peripherals sharing the same I/O pin.

Each I/O pin has a multiplexer with sixteen alternate function inputs (AF0 to AF15) that can be configured through the GPIOx_AFRL (for pin 0 to 7) and GPIOx_AFRH (for pin 8 to 15) registers:

- After reset all I/Os are connected to the system's alternate function 0 (AF0)
- The peripherals' alternate functions are mapped from AF1 to AF13
- Cortex[®]-M4 with FPU EVENTOUT is mapped on AF15

This structure is shown in Figure 26 below.

In addition to this flexible I/O multiplexing architecture, each peripheral has alternate functions mapped onto different I/O pins to optimize the number of peripherals available in smaller packages.

To use an I/O in a given configuration, proceed as follows:

System function

Connect the I/O to AF0 and configure it depending on the function used:

- JTAG/SWD, after each device reset these pins are assigned as dedicated pins immediately usable by the debugger host (not controlled by the GPIO controller)
- RTC_REFIN: this pin should be configured in Input floating mode
- MCO1 and MCO2: these pins have to be configured in alternate function mode.

Note: The user can disable some or all of the JTAG/SWD pins and so release the associated pins for GPIO usage (released pins highlighted in gray in the table).

For more details please refer to Section 7.2.10: Clock-out capability and Section 6.2.10: Clock-out capability.

270/1749 RM0090 Rev 18

		SWJ I/	O pin as:	signed	
Available debug ports	PA13 / JTMS/ SWDIO	PA14 / JTCK/ SWCLK	PA15 / JTDI	PB3 / JTDO	PB4/ NJTRST
Full SWJ (JTAG-DP + SW-DP) - Reset state	X	Х	Χ	X	Х
Full SWJ (JTAG-DP + SW-DP) but without NJTRST	Х	Х	Х	Х	
JTAG-DP Disabled and SW-DP Enabled	Х	Х			•
JTAG-DP Disabled and SW-DP Disabled			Rele	ased	

Table 36. Flexible SWJ-DP pin assignment

GPIO

Configure the desired I/O as output or input in the GPIOx_MODER register.

Peripheral alternate function

For the ADC and DAC, configure the desired I/O as analog in the GPIOx_MODER register.

For other peripherals:

- Configure the desired I/O as an alternate function in the GPIOx_MODER register
- Select the type, pull-up/pull-down and output speed via the GPIOx_OTYPER, GPIOx_PUPDR and GPIOx_OSPEEDR registers, respectively
- Connect the I/O to the desired AFx in the GPIOx_AFRL or GPIOx_AFRH register

EVENTOUT

Configure the I/O pin used to output the Cortex[®]-M4 with FPU EVENTOUT signal by connecting it to AF15

Note:

EVENTOUT is not mapped onto the following I/O pins: PC13, PC14, PC15, PH0, PH1 and PI8.

Please refer to the "Alternate function mapping" table in the datasheets for the detailed mapping of the system and peripherals' alternate function I/O pins.

RM0090 Rev 18

271/1749

For pins 0 to 7, the GPIOx_AFRL[31:0] register selects the dedicated alternate function AF0 (system) AF1 (TIM1/TIM2) AF2 (TIM3..5) AF3 (TIM8..11) AF4 (I2C1..3) AF5 (SPI1/SPI2) AF6 (SPI3) Pin x (x = 0..7)AF7 (USART1..3) AF8 (USART4..6) AF9 (CAN1/CAN2, TIM12..14) AF10 (OTG_FS, OTG_HS) AF11 (ETH) AF12 (FSMC, SDIO, OTG_HS⁽¹⁾) AF13 (DCMI) AF14 AF15 (EVENTOUT) AFRL[31:0] For pins 8 to 15, the GPIOx_AFRH[31:0] register selects the dedicated alternate function AF0 (system) AF1 (TIM1/TIM2) AF2 (TIM3..5) AF3 (TIM8..11) AF4 (I2C1..3) AF5 (SPI1/SPI2) AF6 (SPI3) Pin x (x = 8..15)AF7 (USART1..3) AF8 (USART4..6) AF9 (CAN1/CAN2, TIM12..14) AF10 (OTG_FS, OTG_HS) AF11 (ETH) AF12 (FSMC, SDIO, OTG_HS⁽¹⁾) AF13 (DCMI) AF14 -AF15 (EVENTOUT) AFRH[31:0] ai17538

Figure 26. Selecting an alternate function on STM32F405xx/07xx and STM32F415xx/17xx

1. Configured in FS.

For pins 0 to 7, the GPIOx_AFRL[31:0] register selects the dedicated alternate function AF0 (system) AF1 (TIM1/TIM2) AF2 (TIM3..5) AF3 (TIM8..11) AF4 (I2C1..3) AF5 (SPI1/2/3/4/5/6) AF6 (SPI2/3/SAI1) Pin x (x = 0..7)AF7 (USART1..3) AF8 (USART4..8) AF9 (CAN1/CAN2, LTDC, TIM12..14) AF10 (OTG_FS, OTG_HS) AF11 (ETH) AF12 (FMC, SDIO, OTG_HS(1)) AF13 (DCMI) AF14 (LTDC) AF15 (EVENTOUT) AFRL[31:0] For pins 8 to 15, the GPIOx_AFRH[31:0] register selects the dedicated alternate function AF0 (system) AF1 (TIM1/TIM2) AF2 (TIM3..5) AF3 (TIM8..11) AF4 (I2C1..3) AF5 (SPI1/2/4/5/6) AF6 (SPI2/3/SAI1) Pin x (x = 8..15)AF7 (USART1..3) AF8 (USART4..8) AF9 (CAN1/CAN2, TIM12..14) AF10 (OTG_FS, OTG_HS) AF11 (ETH) AF12 (FMC, SDIO, OTG_HS⁽¹⁾) AF13 (DCMI) AF14 (LTDC) AF15 (EVENTOUT) AFRH[31:0] MS60208V1

Figure 27. Selecting an alternate function on STM32F42xxx and STM32F43xxx

1. Configured in FS.

RM0090 Rev 18 273/1749

8.3.3 I/O port control registers

Each of the GPIOs has four 32-bit memory-mapped control registers (GPIOx_MODER, GPIOx_OTYPER, GPIOx_OSPEEDR, GPIOx_PUPDR) to configure up to 16 I/Os.

The GPIOx_MODER register is used to select the I/O direction (input, output, AF, analog). The GPIOx_OTYPER and GPIOx_OSPEEDR registers are used to select the output type (push-pull or open-drain) and speed (the I/O speed pins are directly connected to the corresponding GPIOx_OSPEEDR register bits whatever the I/O direction). The GPIOx_PUPDR register is used to select the pull-up/pull-down whatever the I/O direction.

8.3.4 I/O port data registers

Each GPIO has two 16-bit memory-mapped data registers: input and output data registers (GPIOx_IDR and GPIOx_ODR). GPIOx_ODR stores the data to be output, it is read/write accessible. The data input through the I/O are stored into the input data register (GPIOx_IDR), a read-only register.

See Section 8.4.5: GPIO port input data register (GPIOx_IDR) (x = A...I/J/K) and Section 8.4.6: GPIO port output data register (GPIOx_ODR) (x = A...I/J/K) for the register descriptions.

8.3.5 I/O data bitwise handling

The bit set reset register (GPIOx_BSRR) is a 32-bit register which allows the application to set and reset each individual bit in the output data register (GPIOx_ODR). The bit set reset register has twice the size of GPIOx_ODR.

To each bit in GPIOx_ODR, correspond two control bits in GPIOx_BSRR: BSRR(i) and BSRR(i+SIZE). When written to 1, bit BSRR(i) sets the corresponding ODR(i) bit. When written to 1, bit BSRR(i+SIZE) resets the ODR(i) corresponding bit.

Writing any bit to 0 in GPIOx_BSRR does not have any effect on the corresponding bit in GPIOx_ODR. If there is an attempt to both set and reset a bit in GPIOx_BSRR, the set action takes priority.

Using the GPIOx_BSRR register to change the values of individual bits in GPIOx_ODR is a "one-shot" effect that does not lock the GPIOx_ODR bits. The GPIOx_ODR bits can always be accessed directly. The GPIOx_BSRR register provides a way of performing atomic bitwise handling.

There is no need for the software to disable interrupts when programming the GPIOx_ODR at bit level: it is possible to modify one or more bits in a single atomic AHB1 write access.

8.3.6 GPIO locking mechanism

It is possible to freeze the GPIO control registers by applying a specific write sequence to the GPIOx_LCKR register. The frozen registers are GPIOx_MODER, GPIOx_OTYPER, GPIOx_OSPEEDR, GPIOx_PUPDR, GPIOx_AFRL and GPIOx_AFRH.

To write the GPIOx_LCKR register, a specific write / read sequence has to be applied. When the right LOCK sequence is applied to bit 16 in this register, the value of LCKR[15:0] is used to lock the configuration of the I/Os (during the write sequence the LCKR[15:0] value must be the same). When the LOCK sequence has been applied to a port bit, the value of the port bit can no longer be modified until the next MCU or peripheral reset. Each GPIOx_LCKR bit

274/1749 RM0090 Rev 18

freezes the corresponding bit in the control registers (GPIOx_MODER, GPIOx_OTYPER, GPIOx_OSPEEDR, GPIOx_PUPDR, GPIOx_AFRL and GPIOx_AFRH).

The LOCK sequence (refer to Section 8.4.8: GPIO port configuration lock register (GPIOx_LCKR) (x = A...I/J/K)) can only be performed using a word (32-bit long) access to the GPIOx_LCKR register due to the fact that GPIOx_LCKR bit 16 has to be set at the same time as the [15:0] bits.

For more details please refer to LCKR register description in Section 8.4.8: GPIO port configuration lock register (GPIOx_LCKR) (x = A...I/J/K).

8.3.7 I/O alternate function input/output

Two registers are provided to select one out of the sixteen alternate function inputs/outputs available for each I/O. With these registers, you can connect an alternate function to some other pin as required by your application.

This means that a number of possible peripheral functions are multiplexed on each GPIO using the GPIOx_AFRL and GPIOx_AFRH alternate function registers. The application can thus select any one of the possible functions for each I/O. The AF selection signal being common to the alternate function input and alternate function output, a single channel is selected for the alternate function input/output of one I/O.

To know which functions are multiplexed on each GPIO pin, refer to the datasheets.

Note:

The application is allowed to select one of the possible peripheral functions for each I/O at a time

8.3.8 External interrupt/wakeup lines

All ports have external interrupt capability. To use external interrupt lines, the port must be configured in input mode, refer to Section 12.2: External interrupt/event controller (EXTI) and Section 12.2.3: Wakeup event management.

8.3.9 Input configuration

When the I/O port is programmed as Input:

- · the output buffer is disabled
- the Schmitt trigger input is activated
- the pull-up and pull-down resistors are activated depending on the value in the GPIOx PUPDR register
- The data present on the I/O pin are sampled into the input data register every AHB1 clock cycle
- A read access to the input data register provides the I/O State

Figure 28 shows the input configuration of the I/O port bit.

RM0090 Rev 18 275/1749

Figure 28. Input floating/pull up/pull down configurations

8.3.10 Output configuration

When the I/O port is programmed as output:

- The output buffer is enabled:
 - Open drain mode: A "0" in the Output register activates the N-MOS whereas a "1" in the Output register leaves the port in Hi-Z (the P-MOS is never activated)
 - Push-pull mode: A "0" in the Output register activates the N-MOS whereas a "1" in the Output register activates the P-MOS
- The Schmitt trigger input is activated
- The weak pull-up and pull-down resistors are activated or not depending on the value in the GPIOx_PUPDR register
- The data present on the I/O pin are sampled into the input data register every AHB1 clock cycle
- A read access to the input data register gets the I/O state
- A read access to the output data register gets the last written value

Figure 29 shows the output configuration of the I/O port bit.

Figure 29. Output configuration

8.3.11 Alternate function configuration

When the I/O port is programmed as alternate function:

- The output buffer can be configured as open-drain or push-pull
- The output buffer is driven by the signal coming from the peripheral (transmitter enable and data)
- The Schmitt trigger input is activated
- The weak pull-up and pull-down resistors are activated or not depending on the value in the GPIOx PUPDR register
- The data present on the I/O pin are sampled into the input data register every AHB1 clock cycle
- A read access to the input data register gets the I/O state

Figure 30 shows the Alternate function configuration of the I/O port bit.

5/

RM0090 Rev 18 277/1749

8.3.12 Analog configuration

When the I/O port is programmed as analog configuration:

- The output buffer is disabled
- The Schmitt trigger input is deactivated, providing zero consumption for every analog value of the I/O pin. The output of the Schmitt trigger is forced to a constant value (0).
- The weak pull-up and pull-down resistors are disabled
- Read access to the input data register gets the value "0"

Note: In the analog configuration, the I/O pins cannot be 5 Volt tolerant.

Figure 31 shows the high-impedance, analog-input configuration of the I/O port bit.

8.3.13 Using the OSC32_IN/OSC32_OUT pins as GPIO PC14/PC15 port pins

The LSE oscillator pins OSC32_IN and OSC32_OUT can be used as general-purpose PC14 and PC15 I/Os, respectively, when the LSE oscillator is off. The PC14 and PC15 I/Os are only configured as LSE oscillator pins OSC32_IN and OSC32_OUT when the LSE oscillator is ON. This is done by setting the LSEON bit in the RCC_BDCR register. The LSE has priority over the GPIO function.

Note:

The PC14/PC15 GPIO functionality is lost when the 1.2 V domain is powered off (by the device entering the standby mode) or when the backup domain is supplied by V_{BAT} (V_{DD} no more supplied). In this case the I/Os are set in analog input mode.

8.3.14 Using the OSC_IN/OSC_OUT pins as GPIO PH0/PH1 port pins

The HSE oscillator pins OSC_IN/OSC_OUT can be used as general-purpose PH0/PH1 I/Os, respectively, when the HSE oscillator is OFF. (after reset, the HSE oscillator is off). The PH0/PH1 I/Os are only configured as OSC_IN/OSC_OUT HSE oscillator pins when the HSE oscillator is ON. This is done by setting the HSEON bit in the RCC_CR register. The HSE has priority over the GPIO function.

278/1749 RM0090 Rev 18

8.3.15 Selection of RTC_AF1 and RTC_AF2 alternate functions

The STM32F4xx feature two GPIO pins RTC_AF1 and RTC_AF2 that can be used for the detection of a tamper or time stamp event, or RTC_ALARM, or RTC_CALIB RTC outputs.

The RTC AF1 (PC13) can be used for the following purposes:

RTC_ALARM output: this output can be RTC Alarm A, RTC Alarm B or RTC Wakeup depending on the OSEL[1:0] bits in the RTC_CR register

- RTC_CALIB output: this feature is enabled by setting the COE[23] in the RTC_CR register
- RTC TAMP1: tamper event detection
- RTC TS: time stamp event detection

The RTC AF2 (PI8) can be used for the following purposes:

- RTC TAMP1: tamper event detection
- RTC_TAMP2: tamper event detection
- RTC_TS: time stamp event detection

The selection of the corresponding pin is performed through the RTC_TAFCR register as follows:

- TAMP1INSEL is used to select which pin is used as the RTC_TAMP1 tamper input
- TSINSEL is used to select which pin is used as the RTC_TS time stamp input
- ALARMOUTTYPE is used to select whether the RTC_ALARM is output in push-pull or open-drain mode

The output mechanism follows the priority order listed in Table 37 and Table 38.

Table 37. RTC_AF1 pin⁽¹⁾

Pin configuration and function	RTC_ALARM enabled	RTC_CALIB enabled	Tamper enabled	Time stamp enabled	TAMP1INSEL TAMPER1 pin selection	TSINSEL TIMESTAMP pin selection	ALARMOUTTYPE RTC_ALARM configuration
Alarm out output OD	1	Don't care	Don't care	Don't care	Don't care	Don't care	0
Alarm out output PP	1	Don't care	Don't care	Don't care	Don't care	Don't care	1
Calibration out output PP	0	1	Don't care	Don't care	Don't care	Don't care	Don't care
TAMPER1 input floating	0	0	1	0	0	Don't care	Don't care
TIMESTAMP and TAMPER1 input floating	0	0	1	1	0	0	Don't care
TIMESTAMP input floating	0	0	0	1	Don't care	0	Don't care
Standard GPIO	0	0	0	0	Don't care	Don't care	Don't care

^{1.} OD: open drain; PP: push-pull.

RM0090 Rev 18 279/1749

Table 38. RTC_AF2 pin

Pin configuration and function	Tamper enabled	Time stamp enabled	TAMP1INSEL TAMPER1 pin selection	TSINSEL TIMESTAMP pin selection	ALARMOUTTYPE RTC_ALARM configuration
TAMPER1 input floating	1	0	1	Don't care	Don't care
TIMESTAMP and TAMPER1 input floating	1	1	1	1	Don't care
TIMESTAMP input floating	0	1	Don't care	1	Don't care
Standard GPIO	0	0	Don't care	Don't care	Don't care

8.4 **GPIO** registers

This section gives a detailed description of the GPIO registers.

For a summary of register bits, register address offsets and reset values, refer to Table 39.

The GPIO registers can be accessed by byte (8 bits), half-words (16 bits) or words (32 bits).

8.4.1 GPIO port mode register (GPIOx_MODER) (x = A..I/J/K)

Address offset: 0x00

Reset values:

0xA800 0000 for port A

0x0000 0280 for port B

0x0000 0000 for other ports

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
MODER	R15[1:0]	MODER	R14[1:0]	MODE	R13[1:0]	MODER	R12[1:0]	MODE	R11[1:0]	MODER	R10[1:0]	MODE	R9[1:0]	MODE	R8[1:0]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
MODE	R7[1:0]	MODE	R6[1:0]	MODE	R5[1:0]	MODE	R4[1:0]	MODE	R3[1:0]	MODE	R2[1:0]	MODE	R1[1:0]	MODE	R0[1:0]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 2y:2y+1 **MODERy[1:0]:** Port x configuration bits (y = 0..15)

These bits are written by software to configure the I/O direction mode.

00: Input (reset state)

01: General purpose output mode

10: Alternate function mode

11: Analog mode

8.4.2 GPIO port output type register (GPIOx_OTYPER) (x = A..I/J/K)

Address offset: 0x04

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Res	served							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
OT15	OT14	OT13	OT12	OT11	OT10	OT9	OT8	OT7	OT6	OT5	OT4	OT3	OT2	OT1	ОТ0
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 **OTy**: Port x configuration bits (y = 0..15)

These bits are written by software to configure the output type of the I/O port.

0: Output push-pull (reset state)

1: Output open-drain

RM0090 Rev 18 281/1749

8.4.3 GPIO port output speed register (GPIOx_OSPEEDR) (x = A..I/J/K)

Address offset: 0x08

Reset values:

0x0C00 0000 for port A

0x0000 00C0 for port B

• 0x0000 0000 for other ports

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	EDR15 :0]		EDR14 :0]		EDR13 :0]	OSPEI [1:	EDR12 :0]		EDR11 :0]		EDR10 :0]		EDR9 :0]	OSPE [1:	EDR8 :0]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
OSPEE	DR7[1:0]	OSPEE	DR6[1:0]	OSPEE	DR5[1:0]	OSPEE	DR4[1:0]	OSPEE	DR3[1:0]	OSPEE	DR2[1:0]		EDR1 :0]		EDR0 0]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 2y:2y+1 **OSPEEDRy[1:0]:** Port x configuration bits (y = 0..15)

These bits are written by software to configure the I/O output speed.

00: Low speed

01: Medium speed

10: High speed

11: Very high speed

Note: Refer to the product datasheets for the values of OSPEEDRy bits versus V_{DD} range and external load.

8.4.4 GPIO port pull-up/pull-down register (GPIOx_PUPDR) (x = A..I/J/K)

Address offset: 0x0C

Reset values:

0x6400 0000 for port A

0x0000 0100 for port B

0x0000 0000 for other ports

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
PUPDF	R15[1:0]	PUPDF	R14[1:0]	PUPDF	R13[1:0]	PUPDF	R12[1:0]	PUPDF	R11[1:0]	PUPDF	R10[1:0]	PUPDI	R9[1:0]	PUPDI	R8[1:0]
rw	rw	rw	rw	rw	rw										
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PUPDI	R7[1:0]	PUPDI	R6[1:0]	PUPDI	R5[1:0]	PUPDI	R4[1:0]	PUPDI	R3[1:0]	PUPDI	R2[1:0]	PUPDI	R1[1:0]	PUPDI	R0[1:0]
rw	rw	rw	rw	rw	rw										

Bits 2y:2y+1 **PUPDRy[1:0]:** Port x configuration bits (y = 0..15)

These bits are written by software to configure the I/O pull-up or pull-down

00: No pull-up, pull-down

01: Pull-up 10: Pull-down 11: Reserved

8.4.5 GPIO port input data register (GPIOx IDR) (x = A..I/J/K)

Address offset: 0x10

Reset value: 0x0000 XXXX (where X means undefined)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Res	served							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
IDR15	IDR14	IDR13	IDR12	IDR11	IDR10	IDR9	IDR8	IDR7	IDR6	IDR5	IDR4	IDR3	IDR2	IDR1	IDR0
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 **IDRy**: Port input data (y = 0..15)

These bits are read-only and can be accessed in word mode only. They contain the input value of the corresponding I/O port.

8.4.6 GPIO port output data register (GPIOx_ODR) (x = A..I/J/K)

Address offset: 0x14

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ODR15	ODR14	ODR13	ODR12	ODR11	ODR10	ODR9	ODR8	ODR7	ODR6	ODR5	ODR4	ODR3	ODR2	ODR1	ODR0
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 **ODRy**: Port output data (y = 0..15)

These bits can be read and written by software.

Note: For atomic bit set/reset, the ODR bits can be individually set and reset by writing to the $GPIOx_BSRR$ register (x = A...I/J/K).

RM0090 Rev 18 283/1749

8.4.7 GPIO port bit set/reset register (GPIOx_BSRR) (x = A..I/J/K)

Address offset: 0x18

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
BR15	BR14	BR13	BR12	BR11	BR10	BR9	BR8	BR7	BR6	BR5	BR4	BR3	BR2	BR1	BR0
w	w	w	w	w	w	w	w	w	w	w	w	w	w	w	w
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
15 BS15	14 BS14	13 BS13	12 BS12	11 BS11	10 BS10	9 BS9	8 BS8	7 BS7	6 BS6	5 BS5	4 BS4	3 BS3	2 BS2	1 BS1	0 BS0

Bits 31:16 **BRy:** Port x reset bit y (y = 0..15)

These bits are write-only and can be accessed in word, half-word or byte mode. A read to these bits returns the value 0x0000.

0: No action on the corresponding ODRx bit

1: Resets the corresponding ODRx bit

Note: If both BSx and BRx are set, BSx has priority.

Bits 15:0 **BSy:** Port x set bit y (y= 0..15)

These bits are write-only and can be accessed in word, half-word or byte mode. A read to these bits returns the value 0x0000.

0: No action on the corresponding ODRx bit

1: Sets the corresponding ODRx bit

8.4.8 GPIO port configuration lock register (GPIOx_LCKR) (x = A..I/J/K)

This register is used to lock the configuration of the port bits when a correct write sequence is applied to bit 16 (LCKK). The value of bits [15:0] is used to lock the configuration of the GPIO. During the write sequence, the value of LCKR[15:0] must not change. When the LOCK sequence has been applied on a port bit, the value of this port bit can no longer be modified until the next MCU or peripheral reset.

Note:

A specific write sequence is used to write to the GPIOx_LCKR register. Only word access (32-bit long) is allowed during this write sequence.

Each lock bit freezes a specific configuration register (control and alternate function registers).

Address offset: 0x1C

Reset value: 0x0000 0000

Access: 32-bit word only, read/write register

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Paganiad														LCKK
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
LCK15	LCK14	LCK13	LCK12	LCK11	LCK10	LCK9	LCK8	LCK7	LCK6	LCK5	LCK4	LCK3	LCK2	LCK1	LCK0
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

284/1749 RM0090 Rev 18

Bits 31:17 Reserved, must be kept at reset value.

Bit 16 LCKK[16]: Lock key

This bit can be read any time. It can only be modified using the lock key write sequence.

0: Port configuration lock key not active

1: Port configuration lock key active. The GPIOx_LCKR register is locked until an MCU reset or a peripheral reset occurs.

LOCK key write sequence:

WR LCKR[16] = '1' + LCKR[15:0]

WR LCKR[16] = '0' + LCKR[15:0]

WR LCKR[16] = '1' + LCKR[15:0]

RD LCKR

RD LCKR[16] = '1' (this read operation is optional but it confirms that the lock is active)

Note: During the LOCK key write sequence, the value of LCK[15:0] must not change.

Any error in the lock sequence aborts the lock.

After the first lock sequence on any bit of the port, any read access on the LCKK bit will return '1' until the next CPU reset.

Bits 15:0 **LCKy:** Port x lock bit y (y=0..15)

These bits are read/write but can only be written when the LCKK bit is '0.

0: Port configuration not locked

1: Port configuration locked

8.4.9 GPIO alternate function low register (GPIOx_AFRL) (x = A..I/J/K)

Address offset: 0x20

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16				
	AFRL	7[3:0]			AFRL	6[3:0]			AFRL	.5[3:0]			AFRL4[3:0]						
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw				
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0				
	AFRL3[3:0]				AFRL	2[3:0]			AFRL	.1[3:0]		AFRL0[3:0]							
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw				

Bits 31:0 **AFRLy:** Alternate function selection for port x bit y (y = 0..7)

These bits are written by software to configure alternate function I/Os

AFRLy selection:

· · · · · – , · · · · · · · · · · · · ·	
0000: AF0	1000: AF8
0001: AF1	1001: AF9
0010: AF2	1010: AF10
0011: AF3	1011: AF11
0100: AF4	1100: AF12
0101: AF5	1101: AF13
0110: AF6	1110: AF14
0111: AF7	1111: AF15

RM0090 Rev 18 285/1749

8.4.10 GPIO alternate function high register (GPIOx_AFRH) (x = A..I/J)

Address offset: 0x24

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16			
	AFRH	15[3:0]			AFRH′	14[3:0]			AFRH	13[3:0]		AFRH12[3:0]						
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
	AFRH	11[3:0]			AFRH′	10[3:0]			AFRH	19[3:0]		AFRH8[3:0]						
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw			

Bits 31:0 **AFRHy:** Alternate function selection for port x bit y (y = 8..15)

These bits are written by software to configure alternate function I/Os

AFRHy selection:

0000: AF0	1000: AF8
0001: AF1	1001: AF9
0010: AF2	1010: AF10
0011: AF3	1011: AF11
0100: AF4	1100: AF12
0101: AF5	1101: AF13
0110: AF6	1110: AF14
0111: AF7	1111: AF15

8.4.11 GPIO register map

The following table gives the GPIO register map and the reset values.

Table 39. GPIO register map and reset values

			Iak	16 33			J	Шар	anu	1636	. vaiu						
Offset	Register	31	29	27 26	25 24	23	20	18	17	15	13	1 0	6 ဆ	7	5 4	დ 7	- 0
0x00	GPIOA_ MODER	MODER15[1:0]	MODER14[1:0]	MODER13[1:0]	MODER12[1:0]	MODER11[1:0]	MODER10[1:0]	MODER9[1:0]	MODER8[1:0]	MODER7[1:0]	MODER6[1:0]	MODER5[1:0]	MODER4[1:0]	MODER3[1:0]	MODER2[1:0]	MODER1[1:0]	MODER0[1:0]
	Reset value	1 0	1 0	1 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
0x00	GPIOB_ MODER	. MODER15[1:0]	MODER15[1:0] MODER14[1:0]		. MODER12[1:0]	. MODER11[1:0]	. MODER10[1:0]	MODER9[1:0]	. MODER8[1:0]	MODER7[1:0]	MODER6[1:0]	MODER5[1:0]	. MODER4[1:0]	MODER3[1:0]	. MODER2[1:0]	. MODER1[1:0]	. MODER0[1:0]
	Reset value	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	1 0	1 0	0 0	0 0	0 0
0x00	GPIOx_MODER (where x = CI/J/K)	MODER15[1:0]	MODER14[1:0]	MODER13[1:0]	MODER12[1:0]	MODER11[1:0]	MODER10[1:0]	MODER9[1:0]	MODER8[1:0]	MODER7[1:0]	MODER6[1:0]	MODER5[1:0]	MODER4[1:0]	MODER3[1:0]	MODER2[1:0]	MODER1[1:0]	MODER0[1:0]
	Reset value	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
0x04	GPIOx_ OTYPER (where x = AI/J/K)				Rese	erved				OT15	0T13 0 OT12	OT11	0T9 0T8	0077	, OT5	0T3	OT1
	Reset value				г				I	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
0x08	GPIOx_ OSPEEDR (where x = AI/J/K except B)	OSPEEDR15[1:0] OSPEEDR14[1:0]		OSPEEDR13[1:0]	OSPEEDR12[1:0]	OSPEEDR11[1:0]	OSPEEDR10[1:0]	OSPEEDR9[1:0]	OSPEEDR8[1:0]	OSPEEDR7[1:0]	OSPEEDR6[1:0]	OSPEEDR5[1:0]	OSPEEDR4[1:0]	OSPEEDR3[1:0]	OSPEEDR2[1:0]	OSPEEDR1[1:0]	OSPEEDR0[1:0]
	Reset value	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
0x08	GPIOB_ OSPEEDR	OSPEEDR15[1:0]	OSPEEDR14[1:0]	OSPEEDR13[1:0] OSPEEDR12[1:0]		OSPEEDR11[1:0]	OSPEEDR10[1:0]	OSPEEDR9[1:0]	OSPEEDR8[1:0]	OSPEEDR7[1:0]	OSPEEDR6[1:0]	OSPEEDR5[1:0]	OSPEEDR4[1:0]	OSPEEDR3[1:0]	OSPEEDR2[1:0]	OSPEEDR1[1:0]	OSPEEDR0[1:0]
	Reset value	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	1 1	0 0	0 0	0 0
0x0C	GPIOA_PUPDR	PUPDR15[1:0]	PUPDR14[1:0]	PUPDR13[1:0]	PUPDR12[1:0]	PUPDR11[1:0]	PUPDR10[1:0]	PUPDR9[1:0]	PUPDR8[1:0]	PUPDR7[1:0]	PUPDR6[1:0]	PUPDR5[1:0]	PUPDR4[1:0]	PUPDR3[1:0]	PUPDR2[1:0]	PUPDR1[1:0]	PUPDR0[1:0]
	Reset value	0 1	1 0	0 1	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
0x0C	GPIOB_PUPDR	PUPDR15[1:0]	PUPDR14[1:0]	PUPDR13[1:0]	PUPDR12[1:0]	PUPDR11[1:0]	PUPDR10[1:0]	PUPDR9[1:0]	PUPDR8[1:0]	PUPDR7[1:0]	PUPDR6[1:0]	PUPDR5[1:0]	PUPDR4[1:0]	PUPDR3[1:0]	PUPDR2[1:0]	PUPDR1[1:0]	PUPDR0[1:0]
1	Reset value	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 1	0 0	0 0	0 0	0 0

RM0090 Rev 18 287/1749

Table 39. GPIO register map and reset values (continued)

						T																											
Offset	Register	31	30	29	28	27	7 7 7	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	2	4	3	7	1	0
0x0C	GPIOx_PUPDR (where x = Cl/J/K)	PI IPDP15[1:0]			PUPDR14[1:0]	_	PUPDR13[1:0] PUPDR12[1:0]			DI IDDD 4414-01		DI 10004001101		PI IPDR9[1-0]		PUPDR8[1-0]		PUPDR7[1:0]		PUPDR6[1:0]		PUPDR5[1:0]		PI IPDR4[1-0]		011000314-01		PI IPDR211-01		PI IPDR111-01		PUPDR0[1:0]	
	Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x10	GPIOx_IDR (where x = AI/J/K)		Reserved D D R 1 3 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2													IDR10	IDR9	IDR8	IDR7	IDR6	IDR5	IDR4	IDR3	IDR2	IDR1	IDR0							
	Reset value																	Х	Х	Х	Х	Х	Х	Х	х	х	Х	Х	х	х	Х	Х	Х
0x14	GPIOx_ODR (where x = AI/J/K)							F	Rese	erve	ved							ODR15	ODR14	ODR13	ODR12	ODR11	ODR10	ODR9	ODR8	ODR7	ODR6	ODR5	ODR4	ODR3	ODR2	ODR1	ODR0
	Reset value																	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x18	GPIOx_BSRR (where x = AI/J/K)	BR15	BR14	BR13	BR12	BR11	BR10	BR9	BR8	BR7	BR6	BR5	BR4	BR3	BR2	BR1	BRO	BS15	BS14	BS13	BS12	BS11	BS10	BS9	BS8	BS7	BS6	BS5	BS4	BS3	BS2	BS1	BS0
	Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x1C	GPIOx_LCKR (where x = AI/J/K)						•	Re	sen	/ed	,						LCKK	LCK15	LCK14	LCK13	LCK12	LCK11	LCK10	LCK9	LCK8	LCK7	LCK6	LCK5	LCK4	LCK3	LCK2	LCK1	LCK0
	Reset value																0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x20	GPIOx_AFRL (where x = AI/J/K)	А	FRL	.7[3	3:0]	,	AFRL	.6[3:	:0]	A	FRL	.5[3	:0]	AFRL4[0]	AFRL3[3:0]		3:0] AFR		AFRL		:0]	А	FRL	.1[3:	:0]	Al	FRL	0[3:	0]	
	Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x24	GPIOx_AFRH (where x = AI/J)	AF	RH			Α	AFRH14[3:0]				RH	13[3	3:0]	AFRH12[3:0]			:0]	AFRH11[3:0]			:0])] AFRH			3:0]	Al	FRH	19[3	:0]	AFRI		18[3:	0]
	Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Refer to Section 2.3: Memory map for the register boundary addresses.

