

Discrete Codebook World Models for Continuous Control

Aidan Scannell, Mohammadreza Nakhaei, Kalle Kujanpää, Yi Zhao, Kevin Luck, Arno Solin, Joni Pajarinen

University of Edinburgh
Finnish Center for Artificial Intelligence (FCAI)
Aalto University

$$p(s_{t+1}, r_t \mid s_t, a_t)$$

$$p(S_{t+1}, r_t \mid S_t, a_t)$$

$$p(S_{t+1}, r_t | S_t, a_t)$$

$$p(s_{t+1}, r_t \mid s_t, a_t)$$

$$p(S_{t+1}, r_t \mid S_t, a_t)$$

$$p(s_{t+1}, r_t \mid s_t, a_t)$$

FCAI

fcai.fi

	Discrete Latent States?	Discrete Encoding Type	Stochastic Dynamics?	Reconstruction?
DreamerV3		One-hot		
TD-MPC2		N/A		×

Danijar Hafner, et al. Mastering diverse domains through world models. arXiv preprint arXiv:2301.04104, 2023.

Nicklas Hansen, et al. TD-MPC2: Scalable, Robust World Models for Continuous Control. In The Twelfth International Conference on Learning Representations, October 2023.

1. Do discrete latent spaces offer benefits over continuous ones?

- 1. Do discrete latent spaces offer benefits over continuous ones?
- 2. How does the choice of discrete encoding (e.g., one-hot, label, or codebook encodings) affect performance?

- 1. Do discrete latent spaces offer benefits over continuous ones?
- 2. How does the choice of discrete encoding (e.g., one-hot, label, or codebook encodings) affect performance?
- 3. Are there advantages to modelling the latent dynamics stochastically rather than deterministically?

	Discrete Latent States?	Discrete Encoding Type	Stochastic Dynamics?	Reconstruction?
DreamerV3		One-hot		
TD-MPC2		N/A		×

Danijar Hafner, et al. Mastering diverse domains through world models. arXiv preprint arXiv:2301.04104, 2023.

Nicklas Hansen, et al. TD-MPC2: Scalable, Robust World Models for Continuous Control. In The Twelfth International Conference on Learning Representations, October 2023.

	Discrete Latent States?	Discrete Encoding Type	Stochastic Dynamics?	Reconstruction?
DreamerV3		One-hot		
TD-MPC2	×	N/A	×	×
DC-MPC (ours)		Codebook		×

Danijar Hafner, et al. Mastering diverse domains through world models. arXiv preprint arXiv:2301.04104, 2023.

Nicklas Hansen, et al. TD-MPC2: Scalable, Robust World Models for Continuous Control. In The Twelfth International Conference on Learning Representations, October 2023.

FCAI

FCAI

FCAI

FCAI

Why Does DC-MPC Work So Well?

Combination of Discrete Codebook and Stochastic Dynamics

FCAI

Codebook > One-hot > Label

FCAI

Codebook > One-hot > Label

FCAI

Time (hours)

Humanoid Walk

Codebook > One-hot > Label

$$\mathbf{e}_{code} = \mathbf{c}^{(2)} = \{-0.5, 1\}$$

FCAI

Time (hours)

Humanoid Walk

Codebook > One-hot > Label

$$\mathbf{e}_{code} = \mathbf{c}^{(2)} = \{-0.5, 1\}$$

$$e_{label} = 2$$

Codebook > One-hot > Label

$$e_{code} = e^{(2)} = \{-0.5, 1\}$$
 $e_{label} = 2$

Email: ascannel@ed.ac.uk

Website: www.aidanscannell.com/dcmpc

Poster 28506:

Wednesday 23rd April 10 am - 12.30 pm (GMT+8)

FCAI