Disjoint Sets

Shusen Wang

Disjoint Sets (Math)

- Disjoint sets are those whose pairwise intersections are empty sets.
- Disjoint sets:

•
$$S_1 = \{0, 3\},$$

•
$$S_2 = \{1, 2, 7\},$$

•
$$S_3 = \{4, 5, 6\}.$$

Disjoint Sets (Math)

- Disjoint sets are those whose pairwise intersections are empty sets.
- Not disjoint sets:
 - $S_1 = \{0, 3\},$
 - $S_2 = \{1, 2, 3\},$
 - $S_3 = \{4, 5, 6\}.$
 - Because the intersection is not empty: $S_1 \cap S_2 = \{3\}$.

Data Structure

Initialization

Element: 0 1 2 3 4 5 6 7

Initialization

Element: 0 1 2 3 4 5 6 7

Parent: -1 -1 -1 -1 -1 -1

Element: 0 1 2 3 4 5 6 7

Parent:

Representing sets $S_1 = \{0, 3\}$ $S_2 = \{1, 2, 7\}$, and $S_3 = \{4, 5, 6\}$.

Representing sets
$$S_1 = \{0, 3\}$$
 $S_2 = \{1, 2, 7\}$, and $S_3 = \{4, 5, 6\}$.

 Element:
 0
 1
 2
 3
 4
 5
 6
 7

 Parent:
 3
 2
 -1
 -1
 6
 6
 -1
 2

Representing sets $S_1 = \{0, 3\}$, $S_2 = \{1, 2, 7\}$, and $S_3 = \{4, 5, 6\}$.

Representing sets $S_1 = \{0, 3\}$, $S_2 = \{1, 2, 7\}$, and $S_3 = \{4, 5, 6\}$.

Element: 0 1 2 3 4 5 6 7

Parent:

Representing sets $S_1 = \{0, 3\}$ $S_2 = \{1, 2, 7\}$, and $S_3 = \{4, 5, 6\}$.

Element: 0 1 2 3 4 5 6 7

Parent:

Representing sets $S_1 = \{0, 3\}, S_2 = \{1, 2, 7\}, \text{ and } S_3 = \{4, 5, 6\}.$

Operations

Element: 0 1 2 3 4 5 6 7

Parent: -1 2 -1 0 6 6 -1 2

Operation 1: Are elements *i* and *j* belong to the same set?

- Find the roots of *i* and *j*.
- If they have the same root, then return TRUE.
- Otherwise, return False.

Operations

Element: 0 1 2 3 4 5 6 7

Parent:

 -1
 2
 -1
 0
 6
 -1
 2

Operation 1: Are elements *i* and *j* belong to the same set?

Operation 2: Merge (union) sets S_1 and S_2 .

- Find the root of S_1 ; denote it by r_1 .
- Find the root of S_2 ; denote it by r_2 .
- Make r_1 a child of r_2 .

Find Root

Current State

Current State

What is the root of 2?

The root of 2 is 2 itself.

The root of 2 is 2 itself.

Element: 0 Parent:

What is the root of 4?

What is the root of 4?

What is the root of 4?

The root of 4 is 2.

The root of 4 is 2.

Element: 0 Parent:

Are two elements in the same set?

- **Inputs:** two elements (indices) *i* and *j*.
- Question: Are they in the same set?
- Solution:
 - 1. $r_i \leftarrow$ the root of i.
 - 2. $r_i \leftarrow \text{the root of } i$.
 - 3. If r_i and r_i are the same, then i and j are in the same set.
 - 4. Otherwise, *i* and *j* are in different sets.

Union Operation

Initial State

Element: 0 1 2 3 4 5 6 7

Parent: | -1 | -1 | -1 | -1 | -1 | -1 | -1

1. Find the root of 1: $r_1 = 1$.

1. Find the root of 1: $r_1 = 1$.

Element: 0 1 ← 2 ← 3 4 5 6 7

Parent: -1 -1 -1 -1 -1 -1 -1

- 1. Find the root of 1: $r_1 = 1$.
- 2. Find the root of 2: $r_2 = 2$.

Element: 0 1 **4** 2 **4** 5 6 7

Parent:

- 1. Find the root of 1: $r_1 = 1$.
- 2. Find the root of 2: $r_2 = 2$.

Element: 0 1 - 2 - 3 4 5 6 7

Parent:

- 1. Find the root of 1: $r_1 = 1$.
- 2. Find the root of 2: $r_2 = 2$.
- 3. Make r_2 the parent of r_1 .

- 1. Find the root of 1: $r_1 = 1$.
- 2. Find the root of 2: $r_2 = 2$.
- 3. Make r_2 the parent of r_1 : parent $[r_1] = r_2$.

After many unions...

Element: 0 1 2 3 4 5 6 7

Parent:

Representing sets $S_1 = \{0,3\}$ $S_2 = \{1,2,7\}$, and $S_3 = \{4,5,6\}$.

Union(4, 5)

Element: 0 1 2 3 4 5 6 7

Parent:

 -1
 2
 -1
 0
 6
 6
 -1
 2

1. Find the root of 4: $r_4 = 6$.

Element: 0 1 2 3 4 5 6 7

Parent:

- 1. Find the root of 4: $r_4 = 6$.
- 2. Find the root of 5: $r_5 = 6$.
- 3. They have the same root; thus no operation.

Element: 0 1 2 3 4 ← 5 6 7 ← Parent: -1 2 -1 0 6 6 -1 2

Element: 0 1 2 3 4 ← 5 6 7 ← Parent: -1 2 -1 0 6 6 -1 2

1. Find the root of 4: $r_4 = 6$.

Element: 0 1 2 3 4 5 6

Parent:

-1	2	-1	0	6	6	-1	2

- 1. Find the root of 4: $r_4 = 6$.
- 2. Find the root of 7: $r_7 = 2$.

Element: 0 1 2 3 4 5 6 7 6

Parent:

-1	-1	2	-1	0	6	6	-1	2
----	----	---	----	---	---	---	----	---

- 1. Find the root of 4: $r_4 = 6$.
- 2. Find the root of 7: $r_7 = 2$.
- 3. Make r_7 the parent of r_4 : parent $[r_4] = r_7$.

Element: 0 1 2 3 4 ← 5 6 7 ← Parent: -1 2 -1 0 6 6 -1 2

Element: 0 1 2 3 4 ← 5 6 7 ← Parent: -1 2 -1 0 6 6 -1 2

Element: 0 1 2 3 4 ← 5 6 7 ← Parent: -1 2 -1 0 6 6 2 2

Time Complexities

Time complexity of finding root

Element: 0 1 2 3 4 5 6 7

Parent: -1 2 -1 0 6 2 2

Time complexities

- Time complexity of finding root is the depth of the vertex.
- Time complexity of union is the depth of the tree.
- In the worst case, it can be O(n). (Here, n is the total number of elements.)

Question: How to reduce the time complexity?

Good

 After executing finding root, we know the root of an element:

$$r_i = FindRoot(i)$$
.

 After executing finding root, we know the root of an element:

 $r_i = FindRoot(i)$.

 After executing finding root, we know the root of an element:

$$r_i = FindRoot(i)$$
.

• Let r_i be the parent of index i.

 After executing finding root, we know the root of an element:

$$r_i = FindRoot(i)$$
.

• Let r_i be the parent of index i.

 After executing finding root, we know the root of an element:

$$r_i = FindRoot(i)$$
.

- Let r_i be the parent of index i.
- Path compression reduces the depth without extra cost.

Summary

Disjoint Sets Data Structure

- **Motivation:** Tracking a set of elements partitioned into disjoint (non-overlapping) subsets.
- Operation 1: Union (merge) two sets.
- Operation 2: Given two elements, tell whether they belong to the same set.
- Time complexity: Depths of the trees.
- Path compression: Reduce the depth of trees.

Questions

Q1: Plot the disjoint sets as trees

Element: 0 1 2 3 4 5 6 7

Parent: | -1 | 2 | -1 | 0

Q1: Plot the disjoint sets as trees

Element: Parent:

Q1: Plot the disjoint sets as trees

Element: 0 1 2 3 4 5 6 7 8 9

Parent: 2 -1 7 -1 0 1 3 -1 1

Q2: Find roots

Element: 0 1 2 3 4 5 6 7 8 9

Parent: 2 -1 7 -1 0 1 3 -1 1

- 1. Find the root of element 0.
- 2. Find the root of element 4.
- 3. Find the root of element 8.

Q3: Are elements in the same set?

Element: 0 1 2 3 4 5 6 7 8 9

Parent: 2 -1 7 -1 0 1 3 -1 1

- 1. Are elements 0 and 1 in the same set?
- 2. Are elements 0 and 2 in the same set?
- 3. Are elements 5 and 6 in the same set?
- 4. Are elements 8 and 9 in the same set?

Q4: How many disjoint sets?

Element: 0 1 2 3 4 5 6 7 8 9

Parent: 2 -1 7 -1 0 1 3 -1 1 1

Q5: Graph Connectivity

- A graph is said to be connected if there is a path between every pair of vertex.
- Given an undirected graph, decide whether it is connected.

Q5: Graph Connectivity

- A graph is said to be connected if there is a path between every pair of vertex.
- Given an undirected graph, decide whether it is connected.

Q5: Graph Connectivity

- A graph is said to be connected if there is a path between every pair of vertex.
- Given an undirected graph, decide whether it is connected.

Thank You!