

Tamaño: 6, 8, 12, 15, 20, 25

- » Alta rigidez y precisión
- » Diseño compacto y ligero
- » Longitud de carrera ajustable
- » Amortiguación hidráulica de fin de carrera

Las mesas deslizantes neumáticas de la Serie MST son la solución ideal para aplicaciones que requieren un alto nivel de fuerza y un posicionamiento extremadamente preciso, como en el sector del ensamblaje y el embalaje.

La combinación de un cilindro neumático de doble pistón y una guía de rodillos de precisión permite un posicionamiento extremadamente preciso, reduciendo al mínimo los errores de posicionamiento y mejorando al mismo tiempo la eficacia global del sistema.

La Serie MST está disponible en seis tamaños diferentes y carreras estándar. Esta Serie ha sido diseñada para satisfacer las necesidades de aplicación más específicas y con accesorios especiales es posible ajustar la longitud de carrera en ambas posiciones; extendida y retraída, aumentando la flexibilidad y versatilidad del producto.

Además, esta Serie es compatible con interruptores magnéticos para la detección de posición, lo que la hace especialmente adecuada para aplicaciones que requieren un posicionamiento rápido y preciso.

Su fiabilidad y dimensiones compactas, hacen de la Serie MST la opción adecuada para optimizar el rendimiento de cualquier sistema, garantizando resultados muy precisos y fiables.

DATOS GENERALES

 Funcionamiento
 doble efecto

 Carreras mín. y máx.
 ver tabla

 Temperatura de funcionamiento
 5°C ÷ 60°C (con aire seco - 20°C)

 Velocidad
 50 ÷ 500 mm/s

Presión de funcionamiento 1.5 ÷ 7 bar

Fluido aire filtrado de la clase 7.8.4 según la norma ISO 8573-1. Si se utiliza aire lubricado, se recomienda utilizar aceite ISOVG32.

Una vez aplicada la lubricación no debe interrumpirse nunca.

Sensores CSD

CARRERAS ESTÁNDAR

■ = doble efecto

CARRERAS ESTÁNDAR												
Ø	10	20	30	40	50	75	100	125	150			
6		•	•	•	•							
8		•	•	•	•	•						
12				•	•	•	•					
16												
20				•	•	•	•	•				
25					-							

EJEMPLO DE CODIFICACIÓN

MST	12	-	40
MST	SERIE		
12	TAMAÑO: 6 8 12 16 20 25		
40	CARRERA: (ver la tabla de carreras estándar)		

SÍMBOLOS NEUMÁTICOS

A continuación se indican los símbolos neumáticos que se han indicado en el EJEMPLO DE CODIFICACIÓN.

1. Condiciones de funcionamiento

- 1.1 Modelo utilizado (tamaño del orificio)
- 1.2 Tipo de amortiguador (parachoques, amortiguador)
- 1.3 Posición de montaje de trabajo (superior, frontal)
- 1.4 Posición de montaje (axial, vertical) 1.5 Velocidad media Va (mm/s)
- 1.6 Carga aplicada W(N)
- 1.7 Voladizo L1, L2, L3 (mm)

2. Comprobación de la energía cinética

- 2.1 Calcular la energía cinética de la carga E (J)
- 2.2 Calcular la energía cinética admisible Ea (J)
- 2.3 Comprobar que la energía cinética de la carga no supera la energía cinética admisible

$$E = \frac{1}{2} \cdot \frac{W}{g} \cdot \left(\frac{1.4 \cdot V_a}{1000}\right)^2$$

$$E_a = K \cdot E_{max}$$

$$E \leq E_a$$

K=0.6

3. Comprobación de carga

- 3.1 Calcular la carga aplicada admisible Wa (N)
- 3.2 Comprobar que la carga (W) no supera la carga aplicada admisible (Wa)

Coeficiente de trabajo de montaje (K) Coeficiente de carga aplicada (B)

$$W_a = K \cdot \beta \cdot W_{max}$$

$$W \leq W_a$$

4. Comprobación de momento (horizontal)

Calcular el momento real: Mp, Mpo, My, Myo, Mr, Mro (Nm)

*Comprobar

$$M_p = W \cdot \frac{(L1+A)}{1000} \qquad M_{p0} = W \cdot \frac{(L1+A)}{1000} + W \cdot \frac{a}{g} \cdot \frac{(L2+B)}{1000}$$

$$M_{y0} = W \cdot \frac{a}{g} \cdot \frac{(L3+C)}{1000}$$
 $M_y = 0$

$$M_r = W \cdot \frac{(L3+C)}{1000}$$
 $M_{r0} = W \cdot \frac{a}{g} \cdot \frac{(L3+C)}{1000}$

$$\frac{M_p}{M_{p,max}} + \frac{M_y}{M_{y,max}} + \frac{M_r}{M_{r,max}} \le 1$$

$$\frac{M_{p0}}{M_{p0,max}} + \frac{M_{y0}}{M_{y0,max}} + \frac{M_{r0}}{M_{r0,max}} \le 1$$

MINI MESAS DESLIZANTES NEUMÁTICAS SERIE MST

5. Comprobación de momento (vertical)

Calcular el momento real: Mp, Mpo, My, Myo, Mr, Mro (Nm)

*Comprobar

$$M_p = W \cdot \frac{(L2+B)}{1000}$$

$$M_{p0} = W \cdot \frac{(L2+B)}{1000} + W \cdot \frac{a}{g} \cdot \frac{(L2+B)}{1000}$$

L1, L2, L3: la distancia del centro de carga al plano de montaje A,B,C: valor de corrección de la distancia de posición central del momento

Mp, My, Mr: momento dinámico, durante el movimiento de la mesa

Mpo, Myo, Mro: momento estático, durante el impacto con el final de carrera

Mpomax, Mymax, Mromax: momento máximo admisible

w: peso de la carga

g: aceleración de la gravedad

a: aceleración de la inercia

Estándar:

$$a = 1600 \cdot \left(\frac{V_a}{1000}\right)^2$$

Amortiguador:

$$a = 400 \cdot \left(\frac{V_a}{1000}\right)^2$$

Potencia teórica

Diámetro (mm)	Tamaño del vástago (mm)	Tipo de actuación	Área de presión (mm2)	2 bar	3 bar	4 bar	5 bar	6 bar	7 bar
6	3	OUT	57	11	17	23	29	34	40
		IN	42	8	13	17	21	25	29
8	4	OUT	101	20	30	40	51	61	71
		IN	75	15	23	30	38	45	53
12	6	OUT	226	45	68	90	113	136	158
		IN	170	34	51	68	85	102	119
16	8	OUT	402	80	121	161	201	241	281
		IN	302	60	91	121	151	181	211
20	10	OUT	628	126	188	251	314	377	440
		IN	471	94	141	188	236	283	330
25	12	OUT	982	194	295	393	491	589	687
		IN	756	151	227	302	378	454	529

Pesos

El peso que figura en la tabla siguiente es el peso estándar del producto sin ajustador.

Carrera	10	20	30	40	50	75	100	125
Ø (mm)								
6	73	90	103	146	163	-	-	-
8	143	156	178	225	269	-	-	-
12	345	350	355	403	470	651	-	-
16	542	551	560	623	708	973	1245	1523
20	988	995	1002	1111	1226	1617	2081	2482
25	1462	1480	1498	1638	1785	2314	2845	3437

Símbolo y unidad

Símbolo	Descripción	Unidad
A,B,C	Valor de corrección de la distancia de posición central del movimiento	mm
a	Aceleración de inercia	m/s2
E	Energía cinética	J
Ea	Energía cinética permitida	J
Emax	Energía cinética máxima permitida	J
g	Aceleración de la gravedad g=9.81	m/s2
К	Coeficiente de trabajo de montaje	-
L1,L2,L3	Voladizo	mm
Мр,Му,Мг	Momento dinámico(ángulos de rotación)	Nm
Mpmax,Mymax,Mrmax	Momento dinámico máximo admisible (ángulos de rotación)	Nm
Мро,Муо,Мго	Momento estático (ángulos de rotación)	Nm
Mpomax,Myomax,Mromax	Momento estático máximo admisible (ángulos de rotación)	Nm
Va	Velocidad media	mm/s
w	Carga aplicada	N
Wmax	Carga aplicada máxima admisible	N
В	Coeficiente de carga aplicada	-

Energía cinética máxima admisible (Emax), Carga aplicada máxima admisible (Wmax)

Mod.	Estándar	Amortiguador	Carga máxima aplicada admisible Wmax (N)
MST6	0.01	-	4
MST8	0.024	0.048	8
MST12	0.05	0.1	15
MST16	0.1	0.2	30
MST20	0.13	0.26	40
MST25	0.22	0.44	70

Momento máximo admisible

Momento estático: Mpo, Myo, Mro Momento dinámico: Mp, My, Mr Valor de corrección: A, B, C

Mod.	Carrera	Mpo _{max}	Myo _{max}	Mro _{max}	Mp_{max}	My _{max}	Mr _{max}	Α	В	С
MST6	10	3.3	3.8	2.6	0.7	0.7	0.6	27	7.3	15
MST6	20	3.3	3.8	2.6	0.7	0.7	0.6	42	7.3	15
MST6	30	3.3	3.8	2.6	0.7	0.7	0.6	52	7.3	15
MST6	40	7.2	7.9	3.6	1.3	1.3	0.6	72	7.3	15
MST6	50	12.4	12.7	4.7	1.8	1.8	0.6	87	8.5	20
MST8	10	10.1	9.1	8.8	2.5	2.5	2.0	32	8.5	20
MST8	20	10.1	9.1	8.8	2.6	2.6	2.0	42	8.5	20
MST8	30	10.1	9.1	8.8	2.8	2.8	2.0	57	8.5	20
MST8	40	12.4	10.8	10.1	3.4	3.4	2.3	72	8.5	20
MST8	50	23.6	24.8	13.9	4.4	4.4	2.1	92	8.5	20
MST8	75	32.8	35.3	16.4	4.6	4.6	1.8	132	8.5	20
MST12	10	33	34.3	30.9	7.3	7.3	5.8	48	10	25
MST12	20	33	34.3	30.9	7.6	7.6	5.8	58	10	25
MST12	30	33	34.3	30.9	7.8	7.8	5.8	68	10	25
MST12	40	33	34.3	30.9	8.0	8.0	5.8	78	10	25
MST12	50	53.4	49.6	39.7	9.8	9.8	5.8	88	10	25
MST12	75	78.8	71.9	48.6	14.2	14.2	6.8	125	10	25
MST12	100	78.8	71.9	48.6	14.7	14.7	6.8	160	10	25
MST16	10	33	34.3	30.9	8.8	8.8	7.6	43	11	31
MST16	20	33	34.3	30.9	9.2	9.2	7.6	53	11	31
MST16	30	33	34.3	30.9	9.5	9.5	7.6	63	11	31
MST16	40	33	34.3	30.9	10.0	10.0	7.6	78	11	31
MST16	50	53.4	49.6	39.7	12.2	12.2	7.6	93	11	31
MST16	75	78.8	71.9	48.6	17.6	17.6	8.9	130	11	31
MST16	100	78.8	71.9	48.6	18.2	18.2	8.9	165	11	31
MST16	125	143.7	144.5	53.3	24.8	24.8	7.8	204	11	31
MST20	10	60.1	50.5	72.8	14.5	14.5	15.2	47	16,5	38
MST20	20	60.1	50.5	72.8	15.2	15.2	15.2	57	16,5	38
MST20	30	60.1	50.5	72.8	15.7	15.7	15.2	67	16,5	38
MST20	40	60.1	50.5	72.8	16.3	16.3	15.2	82	16,5	38
MST20	50	60.1	50.5	72.8	16.6	16.6	15.2	92	16,5	38
MST20	75	169.3	154.3	114.4	41.2	41.2	22.0	136	16,5	38
MST20	100	169.3	154.3	114.4	42.8	42.8	22.0	176	16,5	38
MST20	125	169.3	154.3	114.4	43.6	43.6	22.0	205	16,5	38
MST20	150	267.5	286.6	145.6	49.0	49.0	20.5	249	16,5	38
MST25	10	60.1	50.5	72.8	16.3	16.3	17.6	52	20,3	43
MST25	20	60.1	50.5	72.8	17.0	17.0	17.6	62	20,3	43
MST25	30	60.1	50.5	72.8	17.4	17.4	17.6	72	20,3	43
MST25	40	60.1	50.5	72.8	17.8	17.8	17.6	82	20,3	43
MST25	50	60.1	50.5	72.8	18.2	18.2	17.6	96	20,3	43
MST25	75	169.3	154.3	114.4	45.2	45.2	25.3	141	20,3	43
MST25	100	169.3	154.3	114.4	46.2	46.2	25.3	165	20,3	43
MST25	125	169.3	154.3	114.4	48.0	48.0	25.3	210	20,3	43
MST25	150	267.5	286.6	145.6	65.0	65.0	28.3	254	20.3	43

Flexión de la mesa debida al momento Mp

Desviación de la mesa (flecha) cuando una carga actúa sobre la sección marcada con la flecha en la carrera completa de la mesa deslizante.

MST25

MST16

Desviación de la mesa debida al momento My

Desviación de la mesa (flecha) cuando una carga actúa sobre la sección marcada con la flecha en la carrera completa de la mini mesa deslizante.

Deformación de la mesa debida al momento Mr

Desviación de la mesa (flecha) cuando una carga actúa sobre la sección marcada con la flecha en la carrera completa de la mini mesa deslizante.

COMPONENT	COMPONENTES												
Mod	M2	М	F	F2	R	G	Н	Р	N1+	N+	N	К	
MST6-10	20	11	6	25	20	26.5	42	9.5	48	41.5	4	2	
MST6-20	20	21	6	35	30	36.5	52	9.5	58	51.5	4	2	
MST6-30	20	31	11	20	20	46.5	62	8	68	61.5	6	3	
MST6-40	30	43	13	30	28	56.5	84	18	90	83.5	6	3	
MST6-50	48	41	17	24	38	66.5	100	24	106	99.5	6	4	

C₹ CAMOZZI

COMPONENT	TES											
Mod	M2	М	F	F2	R	G	Н	Р	N1+	N+	N	K
MST8-10	20	17	9	28	25	29.5	49	13	56	48.5	4	2
MST8-20	30	12	12	30	25	39.5	54	8	61	53.5	4	2
MST8-30	20	33	13	20	40	49.5	65	8	72	64.5	4	3
MST8-40	28	43	15	28	50	59.5	83	8	90	82.5	4	3
MST8-50	46	43	20	23	38	69.5	101	8	108	100.5	6	4
MST8-75	56	83	27	28	50	94.5	151	8	158	150.5	6	5

M5

COMPONENTES	COMPONENTES													
Mod	M2	М	F	F2	R	G	Н	N1+	N+	N	К			
MST12-10	40	15	15	40	35	34.5	71	80	70	4	2			
MST12-20	40	15	15	40	35	44.5	71	80	70	4	2			
MST12-30	40	15	15	40	35	54.5	71	80	70	4	2			
MST12-40	25	42	17	25	50	64.5	83	92	82	4	3			
MST12-50	36	51	15	36	35	74.5	103	112	102	6	3			
MST12-75	72	61	25	36	55	99.5	149	158	148	6	4			
MST12-100	76	111	35	38	65	124.5	203	212	202	6	5			

COMPONENTES											
Mod	M2	М	F	F2	R	G	Н	N1+	N+	N	K
MST16-10	40	16	16	40	35	39	76	87	75	4	2
MST16-20	40	16	16	40	35	49	76	87	75	4	2
MST16-30	40	16	16	40	35	59	76	87	75	4	2
MST16-40	50	16	16	50	40	69	86	97	85	4	3
MST16-50	30	21	21	30	30	79	101	112	100	6	3
MST16-75	70	26	26	35	55	104	151	162	150	6	4
MST16-100	70	109	39	35	65	129	199	210	198	6	5
MST16-125	70	159	19	35	70	154	249	260	248	6	7

COMPONENTES	;											
Mod	M2	М	F	F2	R	R2	G	Н	N1+	N+	N	K
MST20-10	35	25	15	45	50	40	44	83	97	81.5	4	1
MST2020	35	25	15	45	50	40	54	83	97	81.5	4	1
MST2030	35	25	15	45	50	40	64	83	97	81.5	4	1
MST2040	35	35	15	55	60	50	74	93	107	91.5	4	1
MST2050	35	50	15	35	35	35	84	108	122	106.5	6	2
MST20-75	70	54	19	35	60	60	109	147	161	145.5	6	3
MST20-100	70	107	37	35	70	70	134	200	214	198.5	6	4
MST20-125	76	155	41	38	70	70	159	254	268	252.5	8	5
MST20-150	88	195	19	44	80	80	184	306	320	304.5	8	6

<u>n2 M6√13</u>

70

 $\overline{\lozenge}$

_ 31

0

COMPONENTES												
Mod	M2	М	F	F2	R	R2	G	Н	N1+	N+	N	K
MST25-10	45	22	22	45	50	40	50	92	108	90.5	4	2
MST25-20	45	22	22	45	50	40	60	92	108	90.5	4	2
MST25-30	45	22	22	45	50	40	70	92	108	90.5	4	2
MST25-40	55	22	22	55	60	50	80	102	118	100.5	4	2
MST25-50	35	55	20	35	35	35	90	115	131	113.5	6	3
MST25-75	70	61	26	35	60	60	115	156	172	154.5	6	4
MST25-100	70	102	32	35	70	70	140	197	213	195.5	6	5
MST25-125	76	154	40	38	75	75	165	255	271	253.5	8	6
MST25-150	80	190	30	40	80	80	190	295	311	293.5	8	7

Detectores de proximidad magnéticos, cable de 3 hilos, ranura en D

Mod.	Funcionamiento	Conexión	Tensión	Salida	Corriente máx.	Carga máx.	Protección	L = longitud cable
CSD-D-334	Magnetorresistivo	3 wires	10 ÷ 27 V DC	PNP	200 mA	6W	Contra inversión de polaridad y sobretensión	2 m
CSD-D-334-5	Magnetorresistivo	3 wires	10 ÷ 27 V DC	PNP	200 mA	6W	Contra inversión de polaridad y sobretensión	5 m
CSD-D-374	Magnetorresistivo	3 wires	10 ÷ 27 V DC	NPN	200 mA	6W	Contra inversión de polaridad y sobretensión	2 m
CSD-D-374-5	Magnetorresistivo	3 wires	10 ÷ 27 V DC	NPN	200 mA	6W	Contra inversión de polaridad y sobretensión	5 m

Detectores de proximidad magnéticos, cable de 3 hilos, ranura en D con cable de 90°

Mod.	Funcionamiento	Conexión	Tensión	Salida	Corriente máx.	Carga máx.	Protección	L = longitud cable
CSD-H-334	Magnetorresistivo	3 wires	10 ÷ 27 V DC	PNP	200 mA	6 W	Contra inversión de polaridad y sobretensión	2 m
CSD-H-334-5	Magnetorresistivo	3 wires	10 ÷ 27 V DC	PNP	200 mA	6 W	Contra inversión de polaridad y sobretensión	5 m
CSD-H-374	Magnetorresistivo	3 wires	10 ÷ 27 V DC	NPN	200 mA	6 W	Contra inversión de polaridad y sobretensión	2 m
CSD-H-374-5	Magnetorresistivo	3 wires	10 ÷ 27 V DC	NPN	200 mA	6 W	Contra inversión de polaridad y sobretensión	5 m

Detectores de proximidad magnéticos, conector macho M8 de 3 pines, ranura en D, recto

Longitud del cable: 0.3 m

Mod.	Funcionamiento	Conexión	Tensión	Salida	Corriente máx.	Carga máx.	Protección
CSD-D-364	Magnetorresistivo	3 hilos con conector M8	10 ÷ 27 V DC	PNP	200 mA	6 W	Contra inversión de polaridad y sobretensión
CSD-D-384	Magnetorresistivo	3 hilos con conector M8	10 ÷ 27 V DC	NPN	200 mA	6 W	Contra inversión de polaridad y sobretensión

Detectores de proximidad magnéticos, conector macho M8 de 3 pines, ranura en D, 90°

Mod.	Funcionamiento	Conexión	Tensión	Salida	Corriente máx.	Carga máx.	Protección
CSD-H-364	Magnetorresistivo	3 hilos con conector M8	10 ÷ 27 V DC	PNP	200 mA	6 W	Contra inversión de polaridad y sobretensión
CSD-H-384	Magnetorresistivo	3 hilos con conector M8	10 ÷ 27 V DC	NPN	200 mA	6 W	Contra inversión de polaridad y sobretensión

Tornillo de ajuste de la carrera en el extremo de la extensión

Mod	Rango de carrera ajustable (mm)	Α	В	С	D	E	F	М	Р	Н	I	J	Q
SR-6F	10	7	19	10.5	22.5	8	3	M6x1.0	M2.5 longitud 10	12.5	6.5	10.5	M2.5 longitud 10
SR-8F	10	7	23	15.5	27.5	11	4	M8x1.0	M2.5 longitud 16	16.6	7	15.5	M2.5 longitud 16
SR-12F	10	9.5	31	16	27.5	11	4	M8x1.0	M2.5 longitud 14	20.5	9	15	M2.5 longitud 14
SR-16F	10	11	37	19	30.5	12.7	5	M10x1.0	M2.5 longitud 18	23	11	18.5	M2.5 longitud 18
SR-20F	10	13	47	26	34	19	6	M14x1.5	M2.5 longitud 25	27	12	25.5	M2.5 longitud 25
SR-25F	10	16	54	24	34	19	6	M14x1.5	M2.5 longitud 20	23	17	23	M2.5 longitud 20

Tornillo de ajuste de la carrera en el extremo de retracción

Mod	Rango de carrera ajustable (mm)	Α	В	С	D	E	F	G	Н	J	K
SR-6R	10	18	19	11.2	8	22.5	6	8	3	M2.5 longitud 6	M6x1.0
SR-8R	10	25	23.2	13.2	15	27.5	8	11	4	M3 longitud 8	M8x1.0
SR-12R	10	32	31	18.5	13	27.5	8	11	4	M4 longitud 8	M8x1.0
SR-16R	10	39	38	23	17	30.5	10	12.7	5	M5 longitud 10	M10x1.0
SR-20R	10	48	48	29	20.5	34	12	19	6	M5 longitud 12	M14x1.5
SR-25R	10	51	53.3	34	25	34	15	19	6	M6 longitud 16	M14x1.5

Tornillo del amortiguador en el extremo de la extensión

Mod	Α	В	С	D	E	E1	F	M	Р	Н	I	J	Q
EA-8F	7	23	14	15.5	38	6	11	M8x1.0	M3 longitud 16	16.6	7	15.5	M3 longitud 16
EA-12F	9.5	31	14.5	16	38	6	11	M8x1.0	M4 longitud 14	20.5	9	15	M4 longitud 14
EA-16F	11	37	17.5	19	43	7	12.7	M10x1.0	M5 longitud 18	23	11	18.5	M5 longitud 18
EA-20F	13	47	23.5	26	76	12	19	M14x1.5	M6 longitud 25	27	12	25.5	M6 longitud 25
EA-25F	16	54	22	84	76	12	19	M14x1.5	M6 longitud 20	33	17	23	M6 longitud 20

Tornillo amortiguador en el extremo de retracción

Mod	Α	В	С	D	E		F	G	Н	J	K
EA-8R	25	23.2	13.2	15	38	6	8	11	12.5	M3 longitud 8	M8x1.0
EA-12R	32	31	18.5	13	38	6	8	11	16.6	M4 longitud 8	M8x1.0
EA-16R	39	38	23	17	43	8	10	12.7	20.5	M5 longitud 10	M10x1.0
EA-20R	48	48	29	20.5	76	12	12	19	23	M5 longitud 12	M14x1.5
EA-25R	51	53.3	34	25	76	12	15	19	27	M6 longitud 16	M14x1.5