1. Маленький шарик массой m висит неподвижно на невесомой нерастяжимой нити длиной l. Шарику толчком сообщают такую горизонтальную скорость, что он в итоге поднимается над начальной точкой на максимальную высоту $h_0 < l$. Найдите силу натяжения нити в момент, когда шарик находился на высоте $h = h_0/2$

Решение (рисунок – 1, выкладки (з-н Ньютона, ЗСЭ) – 2, правильный ответ – 2):

Пусть φ — угол отклонения нити от вертикали. Тогда второй закон Ньютона для шарика имеет вид: $T-mg \cos \varphi = m v^2 / l$; а закон сохранения энергии $m v^2 / 2 = mg (h_0 - h)$; $\cos \varphi = (l - h) / l$. Из этих уравнений получаем зависимость силы натяжения нити T от высоты h:

$$T = mg (l + 2 h_0 - 3 h)/l;$$

При $h=h_0/2$ имеем $T = mg (1 + h_0/2l).$

2. С помощью тонкой линзы на экране получено увеличенное изображение предмета, расположенного перпендикулярно главной оптической оси линзы. Расстояние между предметом и экраном в 4.5 раза больше фокусного расстояния линзы. С каким увеличением изображается предмет?

Решение(рисунок – 1, формулы (линзы) – 1, выкладки – 1, правильный ответ – 2):

Расстояние от предмета до экрана равно $f+d=4.5\ F=>F=(f+d)/4.5$. По формуле линзы $\frac{1}{d}+\frac{1}{f}=\frac{1}{F}$, подставляя в которую выражение для F, получим $\frac{1}{d}+\frac{1}{f}=\frac{4.5}{f+d}$

$$(1 + \frac{d}{f})(1 + \frac{f}{d}) = 4.5$$

$$X = \frac{f}{d}$$

$$X^{2}-2.5 X + 1 = 0$$

$$X_{1} = 0.5$$

$$X_{2} = 2$$

Из подобия треугольников 1'/1 = f/d = 2. Предмет изображается увеличенным в 2 раза.

3. Проводник с сопротивлением R=3000 Ом состоит из двух последовательно соединенных частей: угольного стержня и проволоки, имеющих температурные коэффициенты сопротивления $\alpha_1=-10$ * 10^{-3} K $^{-1}$ и

 $\alpha_2 = 2 * 10^{-3} \text{ K}^{-1}$. Какими следует выбрать сопротивления этих частей, чтобы общее сопротивление проводника R не зависело от температуры.

Решение(формулы(для сопротивления) — 1, рассуждение и выкладки — 2, правильный ответ — 2):

При последовательном соединении $R=R_1+R_2=R_{01}(1+\alpha_1t)+R_{02}(1+\alpha_2t)$ Чтобы общее сопротивление проводника R не зависело от температуры необходимо

$$\begin{cases} R_{01} \alpha_1 t + R_{02} \alpha_2 t = 0 \\ R_{01} + R_{02} = R \end{cases}$$

$$R_{01}$$
= -R α_2 /(α_1 - α_2) = 500 (O_M)
 R_{02} = R α_1 /(α_1 - α_2) = 2500 (O_M)

4. В расположенном горизонтально цилиндре слева от закрепленного поршня находится 1 моль идеального газа. В правой части цилиндра вакуум, а пружина, расположенная между поршнем и стенкой цилиндра, находится в недеформированном состоянии. Цилиндр теплоизолирован от окружающей среды. Когда поршень освободили, объем, занимаемый газом, увеличился вдвое. Как изменится температура газа и его давление? Теплоемкости цилиндра, поршня и пружины пренебрежимо малы.

Решение(формулы -1, рассуждения и обоснование -2, ответ -2 (для температуры и давления по 1)):

Второе начало термодинамики:

$$Q = \Delta U + A \qquad (1)$$

Q = 0 – поскольку сосуд теплоизолирован

Пусть вначале температура газа была T_1 давление p_1 и объем V_1 , а после того, как поршень освободили и установилось равновесие, параметры газа приняли значения T_2 , p_2 и V_2 , причем $V_2 = 2V_1$. Внутренняя энергия идеального газа пропорциональна его температуре, то ее изменение пропорционально изменению температуры газа: $\Delta U = C (T_2 - T_1)$. Работа, совершенная газом, равна изменению потенциальной энергии деформированной пружины: $A = k x^2/2$, где x – смещение поршня.

Сила упругости пружины F = kx равна силе давления газа p_2S : $kx = p_2S$, где S — площадь поверхности поршня.

Давление газа связано с его температурой уравнением состояния:

$$p_2V_2 = RT_2 \qquad (2)$$

$$\Delta V = V_1 = S x => V_2 = 2 S x$$

$$p_2 = kx / S$$

Подставляя в (2) получим $kx^2 = RT_2/2$, т.е. $A = RT_2/4$

Теперь из (1) , которое перепишется в виде $C(T_2-T_1)+RT_2/4=0$ находим $T_2=T_1/(1+R/4C)$, т.е. температура уменьшится.

Разделив на уравнение состояния получим

$$p_1 / p_2 = 2 T_1 / T_2 = 2 (1+R/4C)$$

 $p_2 < p_1$

5. В глубинах космоса, вдали от всех других тел, летает жидкая планета из ртути — огромный однородный шар. Ускорение свободного падения на поверхности планеты составляет 1000м/c^2 . Стальной шарик объёмом 1 см³ находится на расстоянии трети радиуса планеты от её центра. Найдите полную силу, которая действует на шарик. Плотность ртути 13,6 г/см³, плотность стали 7,8 г/см³.

Решение (формулы (3-н всемирного тяготения, Архимеда) – 2, выкладки (гравитационное действие сф. слоя) – 2, правильный ответ – 1):

$$\stackrel{\cdot}{mg}$$
 =GMm/R², $\stackrel{\cdot}{M}$ = ρ_{pr} 4/3 π R³ =.> R = 3g / (4 ρ_{pr} G π) R= 3 * 1000 / (4 * 13600 * 6.67 * 10⁻¹¹ *3.14)= 263176 (κм)

Поскольку сферический слой не оказывает гравитационного воздействия на тела внутри него, то сила гравитационного притяжения равна:

$$F_{\scriptscriptstyle T}=m~g'=rac{GmM'}{\left(rac{R}{3}
ight)^2}=rac{4}{9}~G~m~
ho_{\scriptscriptstyle DT}~\pi~R,$$
 учитывая выражение для R получим $~g'=g$

$$F_{\scriptscriptstyle T} = {
m mg'} = {
m g \ m \ / \ 3} = {
ho_{\scriptscriptstyle {
m CT}}} {
m \frac{g}{3}} \ V_{\scriptscriptstyle {
m III}}$$
 Сила Архимеда: $F_A = {
ho_{
m pT}} {
m \frac{g}{3}} \ V_{\scriptscriptstyle {
m III}}$ $F_{\scriptscriptstyle {
m \Sigma}} = \ ({
ho_{
m pT}} - {
ho_{\rm CT}}) {
m \frac{g}{3}} \ V_{\scriptscriptstyle {
m III}} = (13.6 - 7.8)*1*10^{-3}*1000/3 = 1.9 \ ({
m H}) \ ({
m ot \ центра}$

 $F_{\Sigma} = (\rho_{\text{рт}} - \rho_{\text{ст}}) \frac{1}{3} V_{\text{ш}} = (13.6 - 7.8)^* 1^* 10^{-*} 1000/3 = 1.9 (H) (от центра планеты)$

Почему сферический слой не оказывает гравитационного воздействия на тела внутри него

Рассмотрим массивную сферу массой M, радиуса R. Ее центр расположен в точке O.

Поверхностная массовая плотность сферы
$$\lambda = \frac{M}{4\pi R^2}$$

Рассмотрим произвольную точку A внутри сферы. Построим два конуса с малыми углами при вершине. Вершины конусов лежат в точке A, а образующие конусов лежат на одних и тех же прямых. На рисунке изображено сечение сферы, содержащее точку A.

Поскольку углы при вершинах конусов α малы, то можно считать, что основание конусов не часть сферы, а круг.

Расстояние от A до основания первого конуса $r_1=R-AO$, а до второго $r_2=R+AO$.

 $S_1 \sim \pi \cdot \left(r_1 \cdot tg \, \frac{\alpha}{2}\right)^2 \, _{\text{И}} \, S_2 \sim \pi \cdot \left(r_2 \cdot tg \, \frac{\alpha}{2}\right)^2 \, , \, \text{соответственно}.$

Тогда сила, действующая на точку A со стороны основания первого конуса

$$F_{1} = \frac{G\lambda S_{1}m}{r_{1}^{2}} \sim \frac{G\lambda m\pi \left(r_{1}tg\frac{\alpha}{2}\right)^{2}}{r_{1}^{2}} = G\lambda m\pi tg^{2}\frac{\alpha}{2}$$

где m – масса пробного тела, расположенного в точке A.

А сила действующая со стороны основания второго конуса

$$F_{2} = \frac{G\lambda S_{2}m}{r_{2}^{2}} \sim \frac{G\lambda m\pi \left(r_{2}tg\frac{\alpha}{2}\right)^{2}}{r_{2}^{2}} = G\lambda m\pi tg^{2}\frac{\alpha}{2}$$

Очевидно $F_1 = F_2$, т.е. эти силы равны по величине и противоположны по направлению, т.е. их равнодействующая равна нулю.

Поскольку мы выбрали конусы произвольно, для любых двух участков поверхности сферы, удовлетворяющих данным условиям (они «противоположны» и малы), полученный вывод будет правильным.

Т.о. для любой точки, расположенной внутри массивной сферы гравитационное воздействие сферы на точку будет равно нулю.