SenNet IoT Easy Meter Sigfox

Energy Meter 3PH CT/Rogowski

&

Gateway for remote nodes

General description

SenNet IoT Easy Meter Sigfox is a device that monitors 3PH energy electrical circuits, with two options of current transformer, 0.33Vac or flexible Rogowski. This device has the possibility to create a local RF Network with remote nodes with different features: Pulse Counter / Temperature-Humidity / CO2 / Particulate Matter etc.., and send all this information in one Sigfox message.

The configuration of all these features is possible by three ways:

- Trough APP SenNet IoT (IOS or Android).
- Downlink message on sigfox backend.
- Micro-usb connection and console/terminal.

The end-user can select what kind of energy data and remote device wants to upload to the cloud, must select the type of message (see in the next section).

Power supply

The device uses voltage reference as the power supply (100-265VAC @ 50HZ), <u>it's important just to use Neutral</u> Line Vn and V1. There is an internal fuse to protect the device against surge damages.

Voltage power supply	100-265VAC @ 50HZ
Power	<1W

Basic steps to intall:

- 1. Set the type Current Transformer: CT-0.33Vac: 50A, 100A, 150A, 400A, 800A Flexible-Rogowski: 3500A, 3700A, 5000A
- 2. Set the type of message to use and take note to parse this data on your preferred platform.
- 3. Take note ID / PAC to sign the device on Sigfox Cloud.
- Connect voltage reference (feed internal power supply) and current reference.

Additional steps:

- Define and install remotes devices that will join to Local Network
- Set an univoque ID at each remote device

Easy to set with **SenNet IoT** APP iOS & Android (phones with NFC)

SenNet IoT (iOS version) Link

SenNet IoT (Android version) Link

SenNet ion

Sigfox Ready Certification / Class U0

Power Meter 3 Phase Class 1 (CT's 0.33v -Rogowski)

))

Local RF Network Remotes Nodes

Type Message

SenNet IoT Easy Meter is a powerful Energy Meter, the client must select what kind of data will be uploaded to the platform. For that reason, the devices have been defined by default several types of message what includes the main information from each electricity measurement.

The main interest always is the total Energy accumulated, if your interest is on another parameter you can contact with our technical department to ask for it.

Depending on the type of load to be monitored (triphasic or monofasic) you may choose these types of uplink messages:

A common point in all types of messages is the head (defined with <u>2 bytes</u>) that includes important information embedded in the message (type device/type message/errors.. etc). In the next table are defined the mean of these info-fields.

								Fie	ld Info							
Byte				Byte	1							Ву	rte 2			
	Type	Master I	Device	1	ype N	1essag	<u>e</u>	_			Туре	Remote I	Nodes	ID R	lemote N	odes
					type ((info)	generation e	error	<u>~</u> 5						
	01 - E	asy Mete	er		typ	e 1		ner		SAG / error	0x00 -	No local N	Network	No Rei	mote = 00	00
	02 – F	ulse Cou	nter		typ	oe 2		ge c	e o	e /	0x01 -	PC LongN	et	Remot	e ID = 00	1 _b = 01 _d
	03 – T	H (Temp	/Hum)		typ	e 3		se in g mode	secnence	Itag	0x02 -	TH LongN	et		= 01	$0_{b} = 02_{d}$
	04 - C	O2-TH			typ	e 4		Phase	ge s	Overvoltage /	0x03 -	CO2 Long	Net		= 01	$1_{b} = 03_{d}$
	05 - P	M		typ	e 5 (no	t defi	ned)	Some	Voltage	ng e	0x04 -	PM LongN	let		= 10	$0_b = 04_d$
	06 – 6	W Mod	ous	typ	e 6 (no	t defi	ned)	S	>		0x05 -	GW Mod	bus LN		= 10	1 _b = 05 _d
	07 – N	lot defin	ed								0x06 -	Analog In	put		= 11	$0_{b} = 06_{d}$
				type	15 (n	ot def	ined)	Feed	dback Er	ror	0x07 -	Not defin	ed	(6 nd	odes maxi	imum)
Bit	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
		Byte1			Ву	te1		Byte1	Ву	te2		Byte2			Byte2	
		Bit 7-6-5	5		Bit 4	-3-2-1		Bit 0	Bit	7-6		Bit 5-4-3			Bit 2-1-0	ı

Table 1

		Т	уре	1:4	ctive	e + Re	eacti	ve Er	nergy	+ Rer	note Node	
Field	In	fo	Ac	tive	Ene	rgy	Re	activ	e En	ergy	Data from P	emote node
rieiu	""	10	PH	1+PI	H2+F	НЗ	PI	H1+P	H2+I	РН3	Data IIOIII N	lemote node
Type data	See T	able 1	F	oat	32 bi	ts	F	loat	32 b	its	Depending on R	emote node type
Type data	366 7	ubic 1		unit	kWh	1		unit	kvAı	h	Depending on K	emote node type
Byte	1	2	3	4	5	6	7	8	9	10	11	12

		Туре	2: Active	Energy P	H1 + Activ	e Energy	PH2 + Act	ive Energy	/ PH3		
Field	In	fo	Acti	ve Energy	PH1	Activ	ve Energy	PH2	Activ	ve Energy	PH3
Type data	Se Tab			lution=10 ax. 1.6Mv			lution=10 ax. 1.6Mv			lution=10 ax. 1.6Mv	
Byte	1	2	3	4	5	6	7	8	9	10	11

			Тур	e 3 : A	ctive E	nergy I	PH1 + /	Active	Energy	/ PH2 + R	emote Node Data	
Field	In	fo	Ac	tive En	ergy P	H1	Α	ctive E	nergy	PH2	Data from R	emote Node
Type data		ee le 1		Float	32 bits			Float	32 bit	s	Depending on R	emote node type
Byte	1	2	3	4	5	6	7	8	9	10	11	12

Remote Node Data:															
Type of Remote Node															
			1 by	e te	mpe	ratur	e Pa	yload			1 byte	e hum	idity	Payl	oad
TH LongNet – 868		[-1	0ºC	60ºC	[] cc	nver	sion	funct	tion			[0-1	L00%]	
		Te	mper	atur	e=Pa	ıyloa	d*0.:	2745	-10		Ηι	midit	y=Pa	yloa	d
Pulse Counter LongNet – 868				2 by	tes (integ	ger ty	vpe) -	maxi	mum	value	6553	5		
Puise Counter Longivet – 808						Only	is ei	nable	d inpu	ut 1 "	C1"				
						2	byte	es (in	teger	type)					
			byte	2 -F	ligh	oart-				b	yte 1	-Low	part-	-	
CO2 LongNet - 868	7	6	5	4	3	2	1	0	7	6	5 4	3	2	1	0
		(CO2 P (± 12	,				Temp	eratur (± 1º		oad		Hum. (±	Paylo 6%)	ad
	CO	2=Pa	yload	*12.6	984+	400		T=Pa	yload*	1.111-	10	H	= Payl	oad*	6.66
Particulate Matter - 868	2 b	ytes	(inte	ger	type) - ui	nder	deve	lopme	ent					
Gateway Modbus – 868	2 b	ytes	(cus	tom)	– ur	nder	deve	lopm	ent						
Gateway Custom Protocol – 868	2 b	ytes	(cus	tom)	- un	der d	devel	орт	ent						

Local RF Network & types of Remotes Nodes

SenNet IoT Easy Meter can works like sigfox gateway for up to 6 remotes nodes.

Debug option

It's possible debug on remote this device to enable with downlink message this feature. There are tree types of debug message, Debug 1 (version HW/FW), Debug 2 (internals errors), Debug 3 (instant power meter values). If this feature is enabled one time per day will be update these messages, in this secuence:

			Type 0 : Deb	oug 1 (9 bytes)		
Field	Ir	nfo	HW device	Version FW	Revision FW	Not used
Type data	See To	ble 1				-
Byte	1	2	3	4	5	6-9

				Туре	0 : Deb	ug 2 (11 l	oytes)					
Field	Info	Reset event	Internal error	Wrong voltage frequency	Error PH1	Error PH2	Error PH3	Voltage	event 1	Volta	ge event 2	Gen.
								Bit0	SAG- PH1	Bit0	PH1<50v	
								Bit1	SAG- PH2	Bit1	PH2<50v	
								Bit2	SAG- PH3	Bit2	PH3<50v	
Type data	See Table 1	-	-	Freq =!50Hz	-	-	-	Bit3	OVER- PH1	Bit3	Voltage secuence	-
								Bit4	OVER- PH2	Bit4	-	
								Bit5	OVER- PH3	Bit5	-	
								Bit6	-	Bit6	-	
								Bit7	-	Bit7	-	
Byte	1 2	3	4	5	6	7	8	9	9		10	11

For normal function all fields must be 0.

			Type 0 : Debug	3 (8 bytes)	
Field	Ir	nfo	Active Power PH1	Active Power PH2	Active Power PH3
Type data	See Ta	ble 1	Signed int (Value*100)Watt	Signed int (Value*100)Watt	Signed int (Value*100)Watt
Byte	1	2	3 - 4	5 - 6	7 - 8

With this last one debug message is possible detect wrong installation issues, for example CT with wrong orientation. Use this extra feature to analisys or debug installation.

Downlink Message

It's possible to set the device in the cloud without interacting with it locally, defining this type of downlink message and CT value on the sigfox backend or in your platform. That method is optional but it's not necessary.

Byte		1	2 - 5	6	7	8
Field		Easy Meter Setup byte (1byte)	Set time (4bytes)	Type uplink Message (1 byte)	(2 b	alue yte) value)
	Bit 7	1 (by default)				
	Bit 6	1/0 enable/disable set Time				
	Bit 5	1/0 enable/disable set Type uplink Messsage		01		
Value	Bit 4	1/0 enable/disable set value CT	{Time-Epox}	02	High	Low
value	Bit 3	1 (by default)	{IIIIIe-Epox}	03	Part	Part
	Bit 2	1/0 enable/disable Debug 1 (versión HW/FW)				
	Bit 1	1/0 enable/disable Debug 2 (internals errors)				
	Bit 0	1/0 enable/disable Debug 3 (instant power value)				

Example for downlink message:

F8 {time} 01 00 32 → With this downlink message set the remote device on time, with type of message 01 and CT value 50 Amps.

4

An example for sending a message type 1 with 3 remotes devices defined in the local network. The data of each remote device is sent alternatively in this loop. To parse the data from Remote node the client must use the **Info** field (see *table 1*). Pulse Counter value (Node ID=1) Temperature & humidity value CO2 value (Node ID=3) (Node ID=2) CO2 value (Node ID=3) value (Node ID=2)

Power Meter features

These devices include advanced technology for metering power electricity loads, using a current reference and voltage reference. It's possible to use this device like a 3 single-phase meter or 1 three-phase meter, it depends on the client's goal to monitor.

Type of load to monitorized	
3 single-phase loads independient	PH1 PH2 PH3
1 three-phase load	PH1 / PH2 / PH3

Led output pulse		С	urrent F	Reference	•		Vo	ltage Refer Power Sup		
		l1- (2)	12+ (3)	12- (4)	13+ (5)	13- (6)	Vn (19)	V1 (20)	V2 (21)	V3 (22)
Reactive Power Aparent Power Active Power	PH1			H2 nt transfoi	PH	H3		Supply AC @ 50HZ		
1 pulse/seg = 1kw	(CT – 0.3 (Rogows	3vac) 50)A, 100A			DA,				
		Na REAC	APA ACT	는 호 호 CURRENT RI	III O	G REF. & PW	TR.			

Voltage reference

Range	110-220/240VAC (CAT III – 400V)		
Frequency	50-60Hz		
Electrical isolation	2.5Kv @ 60second		
Power supply requirement	0.1 VA per phase		
Accuracy	Class 0.2 (+/-0.2%)		
4	Recommend using electrical protection before connecting this reference.		

Current reference

This device can use current transformers (CT) of two types 0.33Vac and flexible type (Rogowski), depending on each type has a different type of accuracy.

Types	Range of measureament	Output type	Accuracy
	measureament	rype	
CT 50 A	150 A	0.33VAC	+/-1% (5%100% In)
CT 100 A	1100 A	0.33VAC	+/-1% (5%100% In)
CT 150 A	1150 A	0.33VAC	+/-1% (5%100% In)
CT 400 A	1400 A	0.33VAC	+/-1% (5%100% ln)
CT 800 A	1800 A	0.33VAC	+/-1% (5%100% ln)
Flexible 5000 A (7cm Ø) (*)	105000 A	Rogowski	+/-1% (centered)
Flexible 5000 A (12cm Ø) (*)	105000 A	Rogowski	+/-1% (centered)
Flexible 5000 A (20cm Ø) (*)	105000 A	Rogowski	+/-1% (centered)

(*)Must use flexible SenNet Rogowski model to certificate Class 1. (Factory Calibrated)

Accuracy on current measurement		
Easy Meter + SenNet CT 0.33Vac	Class 1	(Class 0.5 under requeriment)
Facy Mater + Flovible Capllet Pegawski	Class 1	Factory Calibrated

Electrical isolation	
SenNet CT 0.33Vac	2.5KV / 0.5mA / 3second
Flexible SenNet Rogowski	600V CAT IV

Holding case

IP Grade	IP-60
Temperature details	
Working temperature	-20ºC+70ºC
Store temperature	-20ºC+75ºC
Holding	
Dimensions	119 x 111 x 53 mm
Type mount	Wall or din rail
Plastic Material	ABS – V0

Warranty

Satel Spain guarantees its products against all manufacturing defects for a period of 1 year.

No return of material will be accepted, nor will any equipment be repaired if it is not accompanied by a report (RMA) indicating the defect observed or the reasons for the return.

The warranty will be void if the equipment has suffered "misuse" or the storage, installation or maintenance instructions in this manual have not been followed. "Misuse" is defined as any use or storage situation contrary to the National Electrical Code or that exceeds the limits indicated in this manual.

Satel Spain declines all responsibility for possible damage to the equipment or to other parts of the installations and will not cover possible penalties derived from a possible breakdown, poor installation or "misuse" of the equipment. Consequently, the guarantee is not applicable to breakdowns produced in the following cases.

- Due to overvoltage and/or electrical disturbances in the supply.
- By water, if the product does not have the appropriate IP rating.
- For exposing the equipment to extreme temperatures, which exceed the operating or storage temperature limit.
- Due to a modification of the product by the client without prior notice to Satel Spain.

Faced with possible errors in this technical sheet, keep it updated in our website.