Обзор угроз безопасности Интернета вещей

 $X.X.\ \Pi$ ахаев 1 , $T.\Gamma.\ A$ йгумов 2 , $Э.М.\ A$ бдулмукминова 2

 1 ФГБОУ ВО «Чеченский государственный университет им. А.А. Кадырова»

Аннотация: Концепция Интернета вещей (IoT) была представлена Кевином Эштоном в Массачусетском технологическом институте в 1998 году. Видение концепта состоит в том, что объекты, «вещи», связаны друг с другом и, следовательно, создают IoT, в котором каждый объект имеет свою индивидуальную идентичность и может взаимодействовать с другими объектами. Объекты Интернета вещей могут значительно различаться по размеру от малых до самых крупных. Интернет вещей превращает обычные продукты, такие, как автомобили, здания и машины, в интеллектуальные устройства, подключенные объекты, которые могут общаться с людьми, приложениями и друг с другом. В статье мы рассматриваем распространенность Интернета вещей в современном мире и его влияние на различные отрасли. В документе обсуждается угроза безопасности Интернета вещей, в результате чего будут даны рекомендации по безопасности.

Ключевые слова: Интернет вещей, NB-IoT, кибербезопасность, угрозы безопасности, компьютерная безопасность.

Устройства, подключенные Интернету вещей (IoT), К стали неотъемлемой частью повседневной жизни. Интернет вещей быстро растет, поскольку все больше и больше устройств подключаются к глобальной сети. Данные и приложения многих устройств ІоТ конфиденциальны и должны быть доступны только авторизованным лицам. Эти приложения представляют собой компьютерные программы, использующие условия реального или близкого к реальному времени. Это гарантирует стабильность работы. Приложения используют потребителей данные ДЛЯ анализа И прогнозирования будущего помощью алгоритмов искусственного интеллекта [1].

В 2014 году Объединенный технический комитет Международной организации по стандартизации (ISO) и Международной электротехнической комиссии (IEC) определил ІоТ как инфраструктуру объектов, людей, систем и информационных ресурсов, связанных между собой интеллектуальными

² ФГБОУ ВО «Дагестанский государственный технический университет»

услугами, которые позволяют им обрабатывать информацию из физического и виртуального мира и реагировать. На уровне приема ІоТ датчики, размещенные внутри устройств, объектов и оборудования, собирают, измеряют и записывают информацию о физической среде, такую, как температура, влажность, давление газа и движение. Эту информацию можно читать, интегрировать и анализировать на верхних уровнях ІоТ [2].

NIST использует два акронима: IoT и NoT (так называемая Сеть вещей). IoT считается подмножеством NoT, поскольку IoT имеет свои «вещи», подключенные к Интернету [3]. Напротив, некоторые типы NoT используют только локальные сети (LAN), при этом ни одна из ваших «вещей» не должна быть подключена к Интернету напрямую.

Рост Интернета вещей обусловлен потребностями бизнеса в рамках цифровой трансформации бизнеса. Общее количество подключений к Интернету вещей вырастет с шести миллиардов в 2015 году до 27 миллиардов к 2025 году. Это означает совокупный годовой темп роста (CAGR) в 16%. Что касается роста рынка, то в отчете Berg Insight прогнозируется увеличение мирового рынка сторонних платформ Интернета вещей с 610 миллионов евро в 2015 году до 3,05 миллиарда евро в 2021 году [4].

Решения ІоТ не только включают несколько технологических областей, таких, как мобильная связь, облако, данные, безопасность, телекоммуникации и сети, но также ведут к межотраслевому использованию данных, например, данные, созданные в умных домашних и промышленных приложениях, используются в автомобильной отрасли, как показано на рис. 1 [5]. Это открывает возможность создания торговых ассоциаций между горизонтальными отраслями, такими, как операторы связи, и вертикальными отраслями, такими, как производители автомобилей, в качестве новых бизнес-моделей. Цифровая трансформация бизнеса, доступная для Интернета

вещей, — это гораздо больше, чем просто использование подключенных объектов: она позволяет разрабатывать инновационные бизнес-модели, которые ранее были невозможны [6].

Рис. 1. – Связь Интернета Вещей с отраслями производства [5]

Безопасность Интернета вещей должна включать не только само устройство Интернета вещей. Устройства Интернета вещей обладают минимальной безопасностью и множеством дефектов. Многие считают, что производители Интернета вещей не ставят во главу угла безопасность и конфиденциальность. Но, несмотря на проблемы безопасности, распространение Интернета вещей не прекращается. Поэтому совершенно необходимо, чтобы профессионалы в области безопасности и пользователи научились обеспечивать большую безопасность.

Угрозы безопасности ІоТ

А. Угрозы и проблемы безопасности Интернета вещей

К трем категориям угроз Интернета вещей относятся:

- 1. Типичные риски в любой интернет-системе.
- 2. Специфические риски ІоТ-устройств.
- 3. Безопасность для предотвращения повреждений, например, из-за неправильного использования приводов [7].

Традиционные методы обеспечения безопасности, такие, как блокирование открытых портов на устройствах, относятся к первой категории (например, холодильник, подключенный к Интернету для отправки информации о товарах и температуре, может использовать незащищенный SMTP-сервер и может быть скомпрометирован ботнетом).

Ко второй категории относятся проблемы, конкретно связанные с оборудованием IoT, например, подключённое устройство может поставить информацию. устройства защищенную Некоторые ПОД угрозу вашу Интернета вещей чтобы поддерживать СЛИШКОМ малы, правильное асимметричное шифрование. Кроме того, любое устройство, которое может подключаться к Интернету, имеет встроенную операционную систему, реализованную в его прошивке, и многие из этих интегрированных операционных систем не разрабатываются с учетом безопасности в качестве основного соображения [8].

IoT — это набор устройств, подключенных к Интернету, которые собирают и обмениваются данными с помощью узлов и контроллеров. Интернет вещей можно определить, как сеть идентифицируемых физических объектов или «вещей», которые могут взаимодействовать между собой, со внешней средой, или и тем, и другим. Благодаря контроллерам и облачной обработке эти устройства могут «думать» и действовать автономно, а также собирать информацию по нескольким причинам. Свойством многих «вещей» является полная интеграция с операционной системой (ОС) или без нее.

ІоТ, в основном, собирает данные в режиме реального времени, используя все типы сетей (локальная сеть (LAN), глобальная сеть с низким энергопотреблением (LPWAN), сотовая LPWAN (узкополосный ІоТ и LTE-M) и сотовая связь) с постоянными или прерывистыми подключениями к облаку. Поэтому необходимо хранить данные с отметкой времени, измерять физические параметры, иметь возможность принимать решения на основе данных, собранных этими устройствами. Это необходимо для достижения автоматизированного принятия решений централизованным способом [9].

Б. Угрозы и атаки безопасности Интернета вещей

Существует четыре возможных способа возникновения угрозы безопасности в Интернете вещей:

- Физические атаки,
- Атаки на окружающую среду,
- Программные атаки,
- Атаки с помощью криптоанализа.

Современные платформы Интернета вещей создаются \mathbf{c} использованием технологических решений от самых разных поставщиков. Некоторые из этих платформ представляют собой эклектичное сочетание повторно используемых компонентов из существующих решений для использования на специально разработанных платформах с надеждой на безопасную совместную работу компонентов. Меры безопасности компонентах ІоТ, если они существуют, не были разработаны с учетом зависимостей, возникающих подсчета результате возможностей подключения ІоТ. Например, промышленные устройства часто не имеют надлежащих механизмов аутентификации, поскольку они разработаны для использования в физически защищенных и изолированных средах. Другой обновлений пример проблема своевременного предоставления

программного обеспечения или исправлений безопасности для конечных узлов без снижения функциональной безопасности [10].

Требуются полные методы анализа рисков и угроз, а также инструменты администрирования платформ Интернета вещей. Разработка планов смягчения последствий атак Интернета вещей требует понимания типов атак и последовательности действий, которые происходят при их возникновении. Начнем с рассмотрения классификации атак Интернета вещей. Анализ атак на безопасность помогает понять реальное представление о том, как Интернет вещей создает сети, и это позволяет нам определять планы смягчения.

В. Категоризация атак на этапах ІоТ-процесса

В целом, процесс IoT можно рассматривать как пятиэтапную последовательность: от сбора данных до доставки данных конечным пользователям. Разнообразие атак подразделяется на пять фаз IoT:

- восприятие данных,
- место хранения,
- интеллектуальная обработка,
- передача информации,
- сквозная доставка.

Г. Требования безопасности ІоТ

Безопасность необходимо решать на протяжении всего жизненного цикла IoT, от первоначального проектирования до запуска сервисов. Например, внедрение функций безопасности следует начинать во время изготовления устройства. Подпись кода и обфускация кода — это некоторые шаги, которым производители могут следовать, чтобы гарантировать, что ваше устройство не взломано или злоумышленник не вставит нежелательный код. Основные требования безопасности в сценариях Интернета вещей включают конфиденциальность и доверие к данным.

Д. Конфиденциальность Интернета вещей

Сохранение конфиденциальности в ІоТ остается серьезной проблемой. Конфиденциальность подразумевает защищённость личной информации, а также возможность контролировать, что происходит с этой информацией. Проблемы конфиденциальности с системами ІоТ усложняются тем фактом, что система – это больше, чем сумма ее частей. Соображения о конфиденциальности для устройств низкого уровня могут отличаться от проблем, возникающих на уровне анализа данных. В то же время нарушения конфиденциальности на любом уровне системы влияют на всю систему. С устройств собирать интеллектуальных ОНЖОМ множество частной информации. В современных технологиях Интернета вещей контроль над этой информацией осуществляется слабо. Во многих случаях данные собираются пассивно, И из-за ЭТОГО некоторые нарушения конфиденциальности ΜΟΓΥΤ оставаться незамеченными течение длительного времени.

Главный вопрос о праве собственности на данные IoT – кто какими данными владеет и кто контролирует, куда эти данные направляются создает важные проблемы с точки зрения регулирования, этических и финансовых моментов. Конечные пользователи считают, что все данные принадлежат им. Исходные группы производителей считают, что они владеют данными, генерируемыми их конечными точками, или, по крайней мере, имеют права доступа к ним. Во многих случаях поставщики услуг считают, что они владеют данными, как и приложение. Проблемы владения данными поставщиков становятся все более сложными по мере того, как Интернет вещей становится более разнородным. Реализованы системы с большим количеством участников из разных организаций. На старых разобранных и неиспользуемых устройствах все еще может храниться много

конфиденциальной информации, и для них необходимо проводить дезинфекцию данных. [11]

Например, холодильник пользователя сообщает о запасах еды, которую вы едите, а ваш фитнес-браслет передает данные о вашей активности, агрегирование этих потоков данных обеспечивает гораздо более подробное и конфиденциальное описание общего состояния здоровья человека. Этот тип сбора данных становится все более распространенным на потребительских устройствах, таких, как телевизоры с искусственным интеллектом и девайсы с функцией персонального помощника. Эти устройства имеют функции распознавания голоса или «зрение», которые позволяют им постоянно слушать разговоры или наблюдать за деятельностью в комнате и выборочно передавать данные в облачную службу для обработки, в которой иногда участвует третье лицо.

Е. Возможности

Цель Интернета вещей – улучшить качество жизни и предоставить преимущества потребителям и предприятиям. Интернет вещей помогает достичь следующего:

- Снижение потребления энергии
- Улучшения безопасности и защиты
- Улучшения в автоматизации повседневных задач
- Повышение качества жизни

В этом контексте внедрение Интернета вещей можно разделить на пять типов:

1. Промышленный Интернет вещей: способствует улучшению обслуживания клиентов за счет лучшей адаптации продуктов и услуг для клиентов в более короткие сроки. Улучшение связи и коммуникации между сборочной линией и производством, ставшее возможным благодаря IoT, позволяет производителям быть ближе к рыночному спросу и настраивать то,

что они строят, в соответствии с потребностями своих клиентов (например, умный завод) [12].

- 2. Коммерческий Интернет вещей: включает интеллектуальные коммерческие здания.
- 3. Интернет вещей в здравоохранении: улучшение ухода за пациентами. Например, устройства IoT соединяют пациентов с системами здравоохранения для непрерывного мониторинга медицинских данных. Пациенты могут делиться своими данными с врачами, медсестрами и членами семьи, а также с машинами и алгоритмами, которые обеспечивают автоматическую обратную связь по обработанным данным.
- 4. Транспортный Интернет вещей: отслеживает состояние грузового транспорта и при необходимости принимает превентивные меры во время перевозки. Например, устройства ІоТ могут отслеживать пакеты от начала до конца, чтобы определять температуру, местоположение и т.п.
- 5. Потребительский Интернет вещей: подключенные устройства потребителя, в том числе смарт-телевизоры, интеллектуальные колонки, игрушки, портативные устройства и другие интеллектуальные устройства.

Выводы

В этой статье представлен обзор угроз безопасности Интернета вещей с точки зрения последних разработок, решений для их устранения и новых технологий в развитии. Он показывает первостепенное значение безопасности при разработке жизнеспособных решений Интернета вещей. Надеемся, данная статья поможет вам выбрать безопасные технологии Интернета вещей для вашей организации.

Применение технологии IoT создает возможности и риски для безопасности, поэтому проблемы с устройствами IoT в отношении безопасности огромны. Тщательная оценка рисков безопасности должна предшествовать любому внедрению Интернета вещей, чтобы гарантировать

обнаружение всех соответствующих основных проблем. Без достаточной безопасности и защиты данных, IoT не будет успешным в долгосрочной перспективе. Поэтому перед каждым производителем Интернета вещей стоит задача дополнить все этапы процессов разработки, вплоть до эксплуатации оборудования, соответствующими мерами безопасности. В будущей работе важно разработать структуру для выполнения и оценки рисков безопасности в IoT, чтобы гарантировать конфиденциальность, целостность и доступность.

Литература

- 1. Tanweer A. A Reliable Communication Framework and Its Use in Internet of Things (IoT). 2018. №3. pp. 1-8.
- 2. Ryan P.J., Watson R.B. Research Challenges for the Internet of Things: What Role Can OR Play? Systems. 2017. 5(1). pp. 1-24.
- 3. Куприяновский В.П., Шнепс-Шнеппе М.А., Намиот Д.Е., Селезнев С.П., Синягов С.А., Куприяновская Ю.В. Веб Вещей и Интернет Вещей в цифровой экономике // International Journal of Open Information Technologies. 2017. №5. URL: cyberleninka.ru/article/n/veb-veschey-i-internet-veschey-vtsifrovoy-ekonomike
- 4. Wegner P. Global IoT market size grew 22% in 2021. IoT Analytics. 2022. URL: iot-analytics.com/iot-market-size
- 5. Gloukhovtsev M., IoT Security: Challenges, Solutions & Future Prospects. 2018. C. 1–44.
- 6. Kumar S., Tiwari P., Zymbler M. Internet of Things is a revolutionary approach for future technology enhancement: a review. J Big Data. 2019. 6(111).
- 7. Tawalbeh L., Muheidat F., Tawalbeh M., Quwaider M. IoT Privacy and Security: Challenges and Solutions, Applied Sciences, 2020, pp. 1-17.
- 8. Polat G. Security Issues in IoT: Challenges and Countermeasures. Isaca journal. 2019. pp. 1-7.

- 9. Менциев А.У., Пахаев Х.Х., Айгумов Т.Г. Угрозы безопасности узкополосного Интернета Вещей и меры противодействия // Инженерный вестник Дона, 2021, №10. URL: ivdon.ru/ru/magazine/archive/n10y2021/7249
- 10. Менциев А.У., Чебиева Х.С. Современные угрозы безопасности в сети Интернет и контрмеры (обзор) // Инженерный вестник Дона, 2019, №3. URL: ivdon.ru/ru/magazine/archive/N3y2019/5859
- 11. Халиев С.У., Пахаев Х.Х. Информационная безопасность в робототехнике // Инженерный вестник Дона, 2019, №4. URL: ivdon.ru/ru/magazine/archive/n4y2019/5833
- 12. Тихонова К.В., Гаранова М.В., Бурдова Д.В., Тихонов Д.А. Оптимизация системы управления объектами недвижимости на основе внедрения технологии блокчейн в учетно-регистрационную процедуру // Инженерный вестник Дона, 2019, №3. URL: ivdon.ru/ru/magazine/archive/N7y2019/6078

References

- 1. Tanweer A. A Reliable Communication Framework and Its Use in Internet of Things (IoT). 2018. №3. pp. 1-8.
- 2. Ryan P.J., Watson R.B. Research Challenges for the Internet of Things: What Role Can OR Play? Systems. 2017. 5(1). pp. 1-24.
- 3. Kupriyanovsky V.P., Schneps-Shneppe M.A., Namiot D.E., Seleznev S.P., Sinyagov S.A. International Journal of Open Information Technologies. 2017. No. 5. URL: cyberleninka.ru/article/n/veb-veschey-i-internet-veschey-v-tsifrovoy-ekonomike.
- 4. Wegner P. Global IoT market size grew 22% in 2021. IoT Analytics. 2022. URL: iot-analytics.com/iot-market-size
- 5. Gloukhovtsev M., «IoT Security: Challenges, Solutions & Future Prospects». 2018. C. 1–44.

- 6. Kumar S., Tiwari P., Zymbler M. Internet of Things is a revolutionary approach for future technology enhancement: a review. J Big Data. 2019. 6(111).
- 7. Tawalbeh L., Muheidat F., Tawalbeh M., Quwaider M. IoT Privacy and Security: Challenges and Solutions, Applied Sciences, 2020, C. 1-17
- 8. Polat G. Security Issues in IoT: Challenges and Countermeasures. Isaca journal. 2019. pp. 1-7.
- 9. Mentsiev A.U., Pakhaev Kh.Kh., Aygumov T.G. Inzhenernyj vestnik Dona, 2021, №10. URL: ivdon.ru/ru/magazine/archive/n10y2021/7249
- 10. Mentsiev A.U., Chebieva Kh.S. Inzhenernyj vestnik Dona, 2019, №3. URL: ivdon.ru/ru/magazine/archive/N3y2019/5859
- 11. Khaliev M., Pakhaev Kh. Inzhenernyj vestnik Dona, 2019, №4. URL: ivdon.ru/ru/magazine/archive/n4y2019/5833
- 12. Tikhonova K.V., Garanova M.V., Burdova D.V., Tikhonov D.A. Inzhenernyj vestnik Dona, 2019, №3. URL: ivdon.ru/ru/magazine/archive/N7y2019/6078