Lecture 11: Support Vector Machines

Statistical Learning and Data Mining

Xingye Qiao

Department of Mathematical Sciences
Binghamton University

E-mail: qiao@math.binghamton.edu

Read: ELSII Chs. 4.5 and 12, ISLR Ch. 9, and SLS Ch. 3.6

Outline

- 1 Separable Data: Maximum Margin Classifiers
- 2 Linear SVM
- 3 Hinge Loss + Penalty
- 4 SVM Dual Problem
- 5 Non-Linear SVMs and the Kernel Trick

What's the Problem?

- Training Data: $\{(y_i, x_i), i = 1 \cdots n, y_i \in \mathcal{Y}, x_i \in \mathcal{S} \subset \mathbb{R}^d\}$.
- Goal: a mapping $\phi: \mathcal{S} \mapsto \mathcal{Y}$
 - Inputs: $x \in S$.
 - Outputs: $y \in \mathcal{Y}$.

Regression Setting

- $\mathbf{V} \subset \mathbb{R}$.
- Predict y_i as $\widehat{y_i} = \phi(x_i)$, so that $\sum_i (y_i \widehat{y_i})^2$ is as small as possible.

(Binary) Classification Setting

- $\mathcal{Y} = \{-1, +1\}.$
- Predict y_i as $\widehat{y_i} = \phi(x_i)$, so that $\sum_i \mathbb{1}\{y_i \neq \widehat{y_i}\}$ is as small as possible.

0-1 Loss or other Loss

- Goal: a mapping ϕ : $\mathcal{S} \mapsto \mathcal{Y}$, which predicts y_i as $\widehat{y}_i = \phi(\mathbf{x}_i)$, so that $y_i \neq \widehat{y}_i$ as few as possible.
- Introduce a function of x, f(x): let $\phi(x) = \text{sign}(f(x))$.
 - $f(x) > 0 \Rightarrow +1$ (positive class; case),
 - $f(x) < 0 \Rightarrow -1$ (negative class; control).
- $lacktriangleq \min_f \sum_i \mathbb{1}\{y_i \neq \phi(x_i)\}, \text{ or equivalently }$

$$\min_{f} \sum_{i} \mathbb{1}\{y_i f(\boldsymbol{x}_i) \leq 0\}$$

- 0-1 loss function: $\mathbb{1}\{u \leq 0\}$, where $u = y_i f(\mathbf{x}_i)$.
 - may not work: not convex !!!
- What function looks similar to 0-1 loss, but is convex?
 - One answer: Hinge loss, $[1 u]_+$.

Linear Discrimination

- If $f(x) = x'\omega + \beta$ is linear, then f(x) = 0 is a hyperplane.
- Want: a hyperplane in the middle of two classes.

The next section would be

- 1 Separable Data: Maximum Margin Classifiers
- 2 Linear SVM
- 3 Hinge Loss + Penalty
- 4 SVM Dual Problem
- 5 Non-Linear SVMs and the Kernel Trick

Linear Discrimination

- If $f(x) = x'\omega + \beta$ is linear, then f(x) = 0 is a hyperplane.
- Want: a hyperplane in the middle of two classes.
- Want: the margin induced by the hyperplane between these two classes to be large.

Illustration Plot of SVM

Three hyperplanes

- The separating hyperplane: $\{x : f(x) = 0\}$. It has dimension (p-1).
- The + plane: $\{x : f(x) = A\}$ for some A > 0
- The plane: $\{x : f(x) = -A\}$
- The support vectors: those points which the \pm planes go through. Denoted as \mathbf{x}_{SV} . Clearly

$$A = |f(x_{SV})|$$

■ The margin := the distance between the \pm planes

$$=\frac{2A}{\|\boldsymbol{\omega}\|}$$

We want to maximize it.

By the definition of support vectors, also need to make sure that non-SVs are farther away:

$$f(m{x}_i) \geq A$$
 for all $y_i = 1$ and $f(m{x}_i) \leq -A$ for all $y_i = -1$ $orall i, \ y_i f(m{x}_i) \geq A$

- $\|\omega\|$ can be arbitrary, making $y_i f(x_i)$ hard to control.
 - Rescale $\|\omega\|$, so that $A = |f(x_{SV})| = 1$.
- So we try to

$$\max_{\boldsymbol{\omega},\beta} \frac{2}{\|\boldsymbol{\omega}\|},$$
s.t. $y_i f(\boldsymbol{x}_i) \geq 1.$

Equivalently,

$$\min_{\boldsymbol{\omega},\beta} \frac{\|\boldsymbol{\omega}\|^2}{2},$$
s.t. $y_i f(\boldsymbol{x}_i) \geq 1.$

Maximum Margin Classifiers

$$\min_{\boldsymbol{\omega},\beta} \frac{\|\boldsymbol{\omega}\|^2}{2}$$
, s.t. $y_i(\boldsymbol{\omega}^T \boldsymbol{x}_i + b) \geq 1$.

Can be convert to primal form optimization problem

$$\min_{\boldsymbol{\omega},\beta} \frac{\|\boldsymbol{\omega}\|^2}{2} - \sum_{i=1}^n \alpha_i y_i (\boldsymbol{\omega}^T \boldsymbol{x}_i + b) + \sum_{i=1}^n \alpha_i,$$

- Gradient equation: $-\sum_{i=1}^{n} \alpha_i y_i x_i + \omega = 0$
- That is the solution is $\omega = \sum_{i=1}^{n} \alpha_i y_i x_i$
- As will be shown later for the SVM, $\alpha > 0$ when x_i is a support vector, or = 0 otherwise.
- In other words, ω is defined by support vectors only.

The next section would be

- 1 Separable Data: Maximum Margin Classifiers
- 2 Linear SVM
- 3 Hinge Loss + Penalty
- 4 SVM Dual Problem
- 5 Non-Linear SVMs and the Kernel Trick

Non-separable Case

$$\min_{\boldsymbol{\omega},\beta} \frac{\|\boldsymbol{\omega}\|^2}{2}$$
, s.t. $y_i(\boldsymbol{\omega}^T \boldsymbol{x}_i + b) \geq 1$.

- If " $\forall i, y_i f(\mathbf{x}_i) \ge 1$ " is absolutely impossible, introduce a slack variable $\xi_i \ge 0$ for each data vector \mathbf{x}_i .
- $y_i f(\mathbf{x}_i) \ge 1$ is relaxed to $y_i f(\mathbf{x}_i) \ge 1 \xi_i$.
- \bullet ξ_i represents the violation of 'correct classification'.
- We want $\sum_i \xi_i$ to be small. Add it to the objective function, rescaled by a constant C.

$$\min_{oldsymbol{\omega},eta,oldsymbol{\xi}} \left(rac{\|oldsymbol{\omega}\|^2}{2} + C \sum_i \xi_i
ight),$$
s.t. $y_i f(oldsymbol{x}_i) \geq 1 - \xi_i,$
 $\xi_i \geq 0.$

Regularization Framework

Equivalent to,

$$\min_{\boldsymbol{\omega},\beta} \left(\frac{\|\boldsymbol{\omega}\|^2}{2} + C \sum_{i} [1 - y_i f(\boldsymbol{x}_i)]_+ \right).$$

Or,

$$\min_{\boldsymbol{\omega},\beta} \left(\frac{1}{n} \sum_{i} [1 - y_i f(\boldsymbol{x}_i)]_+ + \lambda \frac{\|\boldsymbol{\omega}\|^2}{2} \right).$$

Or,

$$\min_{\boldsymbol{\omega},\beta} \frac{1}{n} \sum_{i} [1 - y_i f(\boldsymbol{x}_i)]_+,$$
s.t. $\|\boldsymbol{\omega}\|^2 \le L$.

Interpretations

- Solved by Quadratic Programming (QP) of the duality problem. Details to come.
- Final solution is

$$\boldsymbol{\omega} = \sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i}.$$

- For support vectors, $\alpha_i > 0$; otherwise $\alpha_i = 0$
- Important observation: determined / influenced by the support vectors only.
- Points in the margin? $|f(x_i)| < 1$
- Misclassified points? $f(x_i) < 0$

The next section would be

- 1 Separable Data: Maximum Margin Classifiers
- 2 Linear SVM
- 3 Hinge Loss + Penalty
- 4 SVM Dual Problem
- 5 Non-Linear SVMs and the Kernel Trick

Hinge Loss + Penalty

- The maximum margin classifier for the linearly separable case is called hard-margin SVM.
- 2 The non-(linearly separable) case SVM with slack variables is called (1-norm) soft-margin SVM, which can be expressed as

$$\min_{\boldsymbol{\omega},\beta} \sum_{i=1}^{n} [1 - y_i(\beta + \boldsymbol{\omega}^T \boldsymbol{x}_i)]_+ + \lambda \|\boldsymbol{\omega}\|_2$$

which is the sum of the Hinge loss functions over the sample plus a ℓ_2 penalty term.

Hinge Loss:

$$H(u) = [1 - u]_+$$
, where $u = y_i f(\mathbf{x}_i) = y_i (\beta + \omega^T \mathbf{x}_i)$

Figure: Blue is the 0-1 indicator function. Green is the square loss function. Purple is the hinge loss function. Yellow is the logistic loss function.

Hinge Loss:

$$H(u) = [1 - u]_+$$

Logistic Loss:

$$L(u) = \log(\exp(-u) + 1)$$

- Logistic loss is almost linear for very negatively large u, like the Hinge loss.
- Logistic loss is never exactly zero, while Hinge loss is 0 for large u.
- Logistic regression and the support vector classifier often give very similar results.
- When the classes are well separated, SVMs tend to behave better than logistic regression; in more overlapping regimes, logistic regression is often preferred.

Some extensions of SVM

Recall: (1-norm) soft-margin SVM

$$\min_{\boldsymbol{\omega}, \beta} \sum_{i=1}^{n} [1 - y_i(\beta + \boldsymbol{\omega}^T \boldsymbol{x}_i)]_+ + \lambda \|\boldsymbol{\omega}\|_2$$

2-norm soft-margin SVM

$$\min_{\boldsymbol{\omega},\beta} \sum_{i=1}^{n} \left\{ [1 - y_i(\beta + \boldsymbol{\omega}^T \boldsymbol{x}_i)]_+ \right\}^2 + \lambda \|\boldsymbol{\omega}\|_2$$

 ℓ_1 (Sparse) SVM

$$\min_{\boldsymbol{\omega},\beta} \sum_{i=1}^{n} [1 - y_i(\beta + \boldsymbol{\omega}^T \boldsymbol{x}_i)]_+ + \lambda \|\boldsymbol{\omega}\|_1$$

Support vector regression (omitted).

Multiclass SVM

For multiclass-classification with k levels, k > 2, libsvm uses the one-against-one-approach, in which k(k-1)/2 binary classifiers are trained; the appropriate class is found by a voting scheme.

There are proposals for multiclass SVM using a single optimization. But this is beyond the scope of this class.

The next section would be

- 1 Separable Data: Maximum Margin Classifiers
- 2 Linear SVM
- 3 Hinge Loss + Penalty
- 4 SVM Dual Problem
- 5 Non-Linear SVMs and the Kernel Trick

Solution

- How to solve SVM?
- Take the following formulation as an example:

Primal:
$$\min_{\boldsymbol{\omega}, \beta, \boldsymbol{\xi}} \left(\frac{\|\boldsymbol{\omega}\|^2}{2} + C \sum_i \xi_i \right),$$

s.t. $y_i f(\boldsymbol{x}_i) \geq 1 - \xi_i,$
 $\xi_i \geq 0.$

- The primal problem is Quadratic Programming (QP) with d + 1 + n variables.
- However, often solve the duality problem, which is a QP problem with fewer variables.
- Can use a standard QP package to solve it.

Duality of SVM

Lagrangian:

$$L_{S} = \frac{\omega'\omega}{2} + \sum_{i=1}^{n} \left\{ C\xi_{i} - \alpha_{i} [y_{i}(\mathbf{x}'_{i}\omega + \beta) + \xi_{i} - 1] - \mu_{i}\xi_{i} \right\}.$$

Here $\alpha_i \geq 0$, $\mu_i \geq 0$ are KKT multipliers.

KKT Condition for Optimality

■ KKT stationary conditions say $\frac{\partial L_S}{\partial \omega}$, $\frac{\partial L_S}{\partial \beta}$ and $\frac{\partial L_S}{\partial \xi_i}$ all need to equal to 0.

$$\omega - \sum_{i} \alpha_{i} y_{i} x_{i} = \mathbf{0},$$

$$\sum_{i} \alpha_{i} y_{i} = 0,$$

$$C - \alpha_{i} - \mu_{i} = 0.$$

KKT complementary slackness condition says that,

$$lpha_i[y_i(m{x}_i'm{\omega}+eta)+\xi_i-1]\equiv 0$$
 and $\mu_i\xi_i\equiv 0$

Solve the dual form

■ KKT conditions combined with $\alpha_i \ge 0$, $\mu_i \ge 0$, lead to the dual problem:

Dual:
$$\max_{\alpha_i} \left(-\frac{1}{2} \sum_i \sum_j \alpha_i \alpha_j y_i y_j \mathbf{x}_i' \mathbf{x}_j + \sum_i \alpha_i \right)$$

s.t. $\sum_i \alpha_i y_i = 0, \ 0 \le \alpha_i \le C.$

- This is a standard QP problem with α_i 's as the unknowns.
- There are n unknown variables instead of d + 1 + n as in the primal problem.

From Dual Solution to Primal Solution

■ The ω can be found by the first KKT condition:

$$\boldsymbol{\omega} = \sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i}.$$

- Also note that $\alpha_i[y_i(\mathbf{x}_i'\boldsymbol{\omega}+\boldsymbol{\beta})+\xi_i-1]\equiv 0$ and $\mu_i\xi_i\equiv 0$, and $C-\alpha_i-\mu_i=0$.
- Thus

$$\alpha_i > 0 \Rightarrow y_i(\mathbf{x}_i'\boldsymbol{\omega} + \beta) + \xi_i - 1 = 0,$$

 $\alpha_i < C \Rightarrow \mu_i \neq 0 \Rightarrow \xi_i = 0.$

■ In order to find out β , we find a data vector (\mathbf{x}_i, y_i) where $0 < \alpha_i < C$, and calculate $\beta = -(\mathbf{x}_i'\boldsymbol{\omega}) + 1/y_i$. (Or take an average of such estimators.)

Support vectors and α_i

We call the data vectors with $0 < \alpha_i \le C$ the support vectors

- Since $\alpha > 0$, $y_i(\mathbf{x}_i'\boldsymbol{\omega} + \beta) + \xi_i 1 = 0$ holds exactly. Support vectors are either on one of the \pm planes, or fall into the middle, or are completely misclassified.
- Among those which are on the planes $(\xi_i = 0)$, we have points with $0 < \alpha_i < C$. This is because if $\alpha_i < C$, then $\mu_i \neq 0$, then ξ_i must = 0.
- The reminders of the support vectors ($\xi_i > 0$) have $\alpha_i = C$ If $\alpha_i = 0$ (not a support vectors), then the data i corresponds to $y_i f(\mathbf{x}_i) > 1$.

The next section would be

- 1 Separable Data: Maximum Margin Classifiers
- 2 Linear SVM
- 3 Hinge Loss + Penalty
- 4 SVM Dual Problem
- 5 Non-Linear SVMs and the Kernel Trick

Dual Problem of SVM

For training:

$$\max_{\alpha_i} \left(-\frac{1}{2} \sum_i \sum_j \alpha_i \alpha_j y_i y_j \mathbf{x}_i' \mathbf{x}_j + \sum_i \alpha_i \right)$$
s.t.
$$\sum_i \alpha_i y_i = 0, \ 0 \le \alpha_i \le C.$$

For prediction:

$$f(\mathbf{x}) = \mathbf{x}^T \boldsymbol{\omega} + b = \sum_i \alpha_i y_i \mathbf{x}^T \mathbf{x}_i + b.$$

since $\omega = \sum_{i} \alpha_{i} y_{i} x_{i}$

- training depends on inner products $\mathbf{x}_i^T \mathbf{x}_j$, for i, j = 1, ..., n only.
- prediction depends on inner products $\mathbf{x}^T \mathbf{x}_i$, for i = 1, ..., n only.

Kernel Trick

Replace $x_i^T x_j$ with $k(x_i, x_j)$ for a pre-chosen kernel function $k : \mathbb{R}^p \times \mathbb{R}^p \mapsto \mathbb{R}$.

- $x_i^T x_j$ is the dot product between x_i and x_j in the Euclidean space.
- What really happens in kernel trick:
 - **1** each input vector x_i is mapped to a feature first before applying SVM:

$$\mathbf{x}_i \mapsto \phi(\mathbf{x}_i) \in \mathbb{R}^Q$$

- 2 only the inner products of the mapped features $\langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle$ are needed in computation.
- **3** It so happens that $\langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle = k(\mathbf{x}_i, \mathbf{x}_j)$

Training

$$\begin{aligned} \max_{\alpha_i} \left(-\frac{1}{2} \sum_i \sum_j \alpha_i \alpha_j y_i y_j \mathbf{x}_i' \mathbf{x}_j + \sum_i \alpha_i \right) \\ \text{s.t. } \sum_i \alpha_i y_i = 0, \ 0 \leq \alpha_i \leq C \end{aligned}$$

becomes

$$\max_{\alpha_i} \left(-\frac{1}{2} \sum_{i} \sum_{j} \alpha_i \alpha_j y_i y_j k(\mathbf{x}_i, \mathbf{x}_j) + \sum_{i} \alpha_i \right)$$
s.t.
$$\sum_{i} \alpha_i y_i = 0, \ 0 \le \alpha_i \le C$$

Prediction

$$f(\mathbf{x}) = \mathbf{x}'\boldsymbol{\omega} + \boldsymbol{\beta} = \mathbf{x}'\sum_{i}\alpha_{i}y_{i}\mathbf{x}_{i} + \boldsymbol{\beta} = \sum_{i}\alpha_{i}y_{i}\mathbf{x}'\mathbf{x}_{i} + \boldsymbol{\beta}$$

where $\omega = \sum_{i} \alpha_{i} y_{i} x_{i}$. has become

$$f(\mathbf{x}) = \sum_{i} \alpha_{i} y_{i} \mathbf{k}(\mathbf{x}, \mathbf{x}_{i}) + \beta$$

Note that for fixed x_i , $k(x, x_i)$ is usually not a linear function of x. Hence instead of a flat separating <u>hyperplane</u>, the kernel SVM has a <u>curved</u> separating boundary

$$\{\mathbf{x}: \sum_{i} \alpha_{i} y_{i} \mathbf{k}(\mathbf{x}, \mathbf{x}_{i}) + \beta = 0\}$$

Why kernel trick works?

- Replacing $x_i'x_j$ by $k(x_i, x_j)$ is a wonderful idea that can extend linear SVM to nonlinear situations.
- Kernel SVM = "linear" SVM conducted in a feature space with transformed training data $(\phi(x_i), y_i)$
- Example of a more general methods called *embedding*.
- Example: $\phi(x): x \mapsto (x, x^2)^T$. Then instead of a linear SVM in the \mathbb{R} space, do it in the \mathbb{R}^2 space, with the transformed $((x_i, x_i^2)^T, y_i)$ as training data.

- It was hopeless to find a 'good' cut-off point in \mathbb{R} ; it is easy to find a separating line in \mathbb{R}^2 . When the data is 'bend' back to \mathbb{R}^1 , the separating line becomes two cut-off points.
- Imagine that now ϕ is much more sophisticated and it can map to a richer feature space.

A more advanced example

Consider a less trivial example

- Let $\mathbf{x} = (x_1, x_2)' \in \mathbb{R}^2$, and $\phi(\mathbf{x}) = (x_1^2, x_2^2, \sqrt{2}x_1x_2)'$.
- Then the new features $\phi(\mathbf{x})$ and $\phi(\mathbf{y})$ has inner product

$$\phi(\mathbf{x})'\phi(\mathbf{y}) = (x_1^2, x_2^2, \sqrt{2}x_1x_2)(y_1^2, y_2^2, \sqrt{2}y_1y_2)'$$

= $(x_1y_1 + x_2y_2)^2 = (\mathbf{x}'\mathbf{y})^2$,

which corresponds to the polynomial kernel $k(\mathbf{x}, \mathbf{y}) = (c + \mathbf{x}'\mathbf{y})^d$ with c = 0 and d = 2

Remember in this case:

$$\phi(\mathbf{x})'\phi(\mathbf{y})=k(\mathbf{x},\mathbf{y})$$

• When we conduct linear SVM in the new feature space, with training data $(\phi(\mathbf{x}_i), y_i)_{i=1,\dots,n}$, the resulting classifier would be

$$f(\mathbf{x}) = \phi(\mathbf{x})' \sum_{i} \alpha_{i} y_{i} \phi(\mathbf{x}_{i}) + \beta = \sum_{i} \alpha_{i} y_{i} k(\mathbf{x}, \mathbf{x}_{i}) + \beta$$

■ In both training and in prediction, the precise form of $\phi(x)$ is not needed, only that of $k(\cdot, \cdot)$ is.

ϕ can map to infinite dimensional space

For example, for Gaussian kernel, and assume $x \in \mathbb{R}^1$.

$$k(x_{i}, x_{j}) = e^{-\gamma ||x_{i} - x_{j}||^{2}} = e^{-\gamma (x_{i} - x_{j})^{2}} = e^{-\gamma x_{i}^{2} + 2\gamma x_{i} x_{j} - \gamma x_{j}^{2}}$$

$$= e^{-\gamma x_{i}^{2} - \gamma x_{j}^{2}} \left(1 + \frac{2\gamma x_{i} x_{j}}{1!} + \frac{(2\gamma x_{i} x_{j})^{2}}{2!} + \frac{(2\gamma x_{i} x_{j})^{3}}{3!} + \dots \right)$$

$$= e^{-\gamma x_{i}^{2} - \gamma x_{j}^{2}} \left(1 + \sqrt{\frac{2\gamma}{1!}} x_{i} \cdot \sqrt{\frac{2\gamma}{1!}} x_{j} + \sqrt{\frac{(2\gamma)^{2}}{2!}} x_{i}^{2} \cdot \sqrt{\frac{(2\gamma)^{2}}{2!}} x_{j}^{2} + \dots \right)$$

$$= \phi(x_{i})^{T} \phi(x_{j})$$

where

$$\phi(x) = e^{-\gamma x^2} \left(1, \sqrt{\frac{2\gamma}{1!}} x, \sqrt{\frac{(2\gamma)^2}{2!}} x^2, \dots \right) \in \mathbb{R}^{\infty}$$

Again, don't torture yourself. Only need to know the kernel!

Examples of popular kernels

The linear kernel:

$$k(\mathbf{x},\mathbf{y})=\mathbf{x}'\mathbf{y}.$$

This leads to the original, linear SVM.

■ The polynomial kernel:

$$k(\mathbf{x},\mathbf{y})=(c+\mathbf{x}'\mathbf{y})^d.$$

We can write down the expansion explicitly, so the mapping ϕ can be explicitly expressed.

■ The Gaussian (radial basis function) kernel:

$$k(\mathbf{x}, \mathbf{y}) = \exp\left(-\frac{1}{\sigma^2} \|\mathbf{x} - \mathbf{y}\|^2\right).$$

The feature space where $\phi(\mathbf{x})$ lies is infinite dimensional. (The mapping ϕ is only implicitly defined)