Variants of Vision Transformer

DINO

Emerging Properties in **Self-supervised** Vision Transformers

https://arxiv.org/pdf/2104.14294

PyML Studio
Vision Transformers Series

DINO: Self-distillation with no labels

Objective: Self-supervised pre-training

A simplified way to apply self-supervised learning Self-supervised training provides richer learning signal

Emergent Properties of Self-Supervised ViT

- ➤ Self-supervised ViT features contain explicit information for <u>semantic segmentation</u>
- ➤ Self-supervised ViT features are excellent k-NN classifiers

Self-Training vs. Knowledge Distillation

Self-Training

➤ Using an initial set of labeled data, learn features to improve them by incorporating a larger unlabeled dataset

(aka semi-supervised learning)

Knowledge Distillation

Transferring knowledge from a trained model (teacher) to another (student)

Noisy Student

Propagate soft pseudo-labels to an unlabeled dataset using knowledge distillation in a self-training framework

Self-Supervised Learning (SSL) Approaches

Instance Classification

Treats each image as a different class and train a model to discriminate between classes

Drawback: does not scale well with the number of images

BYOL

A metric-learning formulation with two networks: online & target

- Generate two different augmented view of the input image and train the online network to match the target representations
- Refine target network using exponential moving-average of online network

DINO

Inspired by BYOL, but using a different similarity loss, and simultaneous training of student and teacher

BYOL

Online network: encoder f_{θ} , projector g_{θ} , predictor q_{θ}

Target network: encoder f_{ζ} , projector g_{ζ}

Bootstrap Your Own Latent: A New Approach to Self-Supervised Learning, 2020,

https://arxiv.org/pdf/2006.07733.pdf

BYOL

Loss function for the online network:

Mean square error between 12-normalized $\overline{q_{\theta}}(z_{\theta})$ and 12-normalized $\overline{z'_{\zeta}}$ $\mathcal{L}_{\theta,\zeta} = \left\| \overline{q_{\theta}}(z_{\theta}) - \overline{z'_{\zeta}} \right\|_{2}$

Updating the target network:

Slowly moving average of θ $\zeta = \lambda \zeta + (1 - \lambda)\theta$

Bootstrap Your Own Latent: A New Approach to Self-Supervised Learning, 2020, https://arxiv.org/pdf/2006.07733.pdf

Intro to DINO Framework

DINO: Training the Student Network

DINO: SSL with Knowledge Distillation

- \triangleright Generate a set of views \underline{V} of the input image x containing:
 - Two global views x_1^g and x_2^g
 - Several local views with smaller resolutions

Global views:

Crops of 224×224 , covering more than 50% of the original image

Local views:

Crops of 96×96 , covering less than 50% of the original image

- The global views are passed to the teacher network
- The local views are passed to the student network

$$\min_{\theta_{S}} \sum_{x \in \{x_{1}^{g}, x_{2}^{g}\}} \sum_{\substack{x' \in V \\ -\{x_{1}^{g}, x_{2}^{g}\}}} \mathcal{H}\left(P_{t}(x), P_{S}(x)\right)$$

Teacher Network

- > Built from the past iterations of the student network
- \triangleright Freezing g_{θ_t} over the current training epoch
- > Update rule: using momentum encoder

$$\theta_t = \lambda \theta_t + (1 - \lambda)\theta_s$$

- → <u>Mean teacher</u>
- → Model averaging and ensembling effect
- → Better performance than the student

Network Architecture

- Backbone f_{θ} (ViT or ResNet)
- Projection head: h_{θ}
 - 3-layer MLP with hidden dimension 2048
 - 12-normalization
 - Weight-normalized fully connected layer with K dimensions

		4	1 1				
B	0	\sim	7			n	Δ
D	а	C)		U	U	Ш	\mathbf{C}

model	blocks	dim	heads	#tokens	#params	im/s
ResNet-50	_	2048	_	_	23M	1237
ViT-S/16	12	384	6	197	21M	1007
ViT-S/8	12	384	6	785	21M	180
ViT-B/16	12	768	12	197	85M	312
ViT-B/8	12	768	12	785	85M	63

$$\Rightarrow g = h \circ f = h(f(x)) \qquad x \to f_{\theta} \to h_{\theta} \to g_{\theta}(x)$$

- > Student and teacher have the same exact architecture
- > Complete BN-free when using ViT as backbone

Avoiding Collapse

Centering and sharpening

- ➤ Centering prevents one dimension to dominate while encouraging collapse to uniform distribution
- > Sharpening has the opposite effect of centering

→ Applying both <u>centering</u> and <u>sharpening</u> effectively prevents collapse

Experiments

Training

- ➤ Pre-train on ImageNet dataset <u>without labels</u> (DINO)
 - AdamW optimizer
 - Learning-rate warmup

Evaluation Protocol

- > Linear evaluation
 - Train with random resize crops and horizontal flip, evaluate on center crop
- \triangleright k-NN evaluation (with k=20)
- Finetuning

Results: linear and k-NN

Method	Arch.	Param.	im/s	Linear	k-NN
Supervised	RN50	23	1237	79.3	79.3
SCLR [12]	RN50	23	1237	69.1	60.7
MoCov2 [15]	RN50	23	1237	71.1	61.9
InfoMin [67]	RN50	23	1237	73.0	65.3
BarlowT [81]	RN50	23	1237	73.2	66.0
OBoW [27]	RN50	23	1237	73.8	61.9
BYOL [30]	RN50	23	1237	74.4	64.8
DCv2 [10]	RN50	23	1237	75.2	67.1
SwAV [10]	RN50	23	1237	75.3	65.7
DINO	RN50	23	1237	75.3	67.5
Supervised	ViT-S	21	1007	79.8	79.8
BYOL* [30]	ViT-S	21	1007	71.4	66.6
MoCov2* [15]	ViT-S	21	1007	72.7	64.4
SwAV* [10]	ViT-S	21	1007	73.5	66.3
DINO	ViT-S	21	1007	77.0	74.5

Comparing across SSL frameworks

- Using ResNet-50: DINO shows on par performance
 - → DINO works in standard settings
- Using ViT-S: DINO outperforms other SSL methods by at least 3.5%

Properties of ViTs Trained with SSL

1. Nearest Neighbor Retrieval

- > Image retrieval
 - Evaluated on Oxford and Paris image retrieval datasets
 - DINO outperforms models trained with labels (supervised)

			$\mathcal{R}Ox$		\mathcal{R} Par	
Pretrain	Arch.	Pretrain	M	Н	M	Н
Sup. [57]	RN101+R-MAC	ImNet	49.8	18.5	74.0	52.1
Sup.	ViT-S/16	ImNet	33.5	8.9	63.0	37.2
DINO	ResNet-50	ImNet	35.4	11.1	55.9	27.5
DINO	ViT-S/16	ImNet	41.8	13.7	63.1	34.4
DINO	ViT-S/16	GLDv2	51.5	24.3	75.3	51.6

- > Copy detection
 - INRIA Copydays dataset

Method	Arch.	Dim.	Resolution	mAP
Multigrain [5] Multigrain [5]	ResNet-50 ResNet-50	2048 2048	224 ² largest side 800	75.1 82.5
Supervised [69]	ViT-B/16	1536	224^{2}	76.4
DINO	ViT-B/16	1536	224^{2}	81.7
DINO	ViT-B/8	1536	320^{2}	85.5

Properties of ViTs Trained with SSL

2. Discovering Semantic Layouts

Probing self-attention maps

Method	Data	Arch.	$(\mathcal{J}\&\mathcal{F})_m$	\mathcal{J}_m	\mathcal{F}_m				
Supervised									
ImageNet	INet	ViT-S/8	66.0	63.9	68.1				
STM [48]	I/D/Y	RN50	81.8	79.2	84.3				
Self-supervise	Self-supervised								
CT [71]	VLOG	RN50	48.7	46.4	50.0				
MAST [40]	YT-VOS	RN18	65.5	63.3	67.6				
STC [37]	Kinetics	RN18	67.6	64.8	70.2				
DINO	INet	ViT-S/16	61.8	60.2	63.4				
DINO	INet	ViT-B/16	62.3	60.7	63.9				
DINO	INet	ViT-S/8	69.9	66.6	73.1				
DINO	INet	ViT-B/8	71.4	67.9	74.9				

- Video instance segmentation
 - DAVIS-2017 dataset
 - Without finetuning

DINO: self-distillation with no labels

- > Pre-train models (ViT or CNN) on unlabeled data
- ➤ Identified two key properties for pre-train ViTs with SSL
 - High quality features for k-NN classification, useful for image retrieval application
 - Discovering semantic layout, useful for weakly supervised semantic segmentation
- ➤ Developing BERT-like model with ViT and SSL pre-trainin

Next Video: CLIP

Thanks for watching