E(rasmus) Mundus on Innovative Microwave Electronics and Optics Master

Tutorial (Balanced Mixer SBM)

■The mixer is based on a **nonlinear device N** characterized with the following 3rd order transfer function :

■The following block diagram represents a <u>single balanced mixer SBM</u> consisting of two 180°-couplers and two identical mixers N.

- 1) In the studied case, the input voltages are $V_{\Sigma 1} = (\sqrt{2}.V_{RF})$ and $V_{\Delta 1} = (\sqrt{2}.V_{L0})$. Therefore, express the input control voltages V_{IN1} and V_{IN2} of N as a function of V_{L0} and V_{RF} .
- 2) Deduce the expressions of output voltages ($V_{\rm OUT1}$, $V_{\rm OUT2}$) as a function of $V_{\rm LO}$ and $V_{\rm RF}$.
- 3) The SBM down-converter is designed at an IF angular frequency $\omega_{IF} = \omega_{LO} \omega_{RF}$. What should be the type (Σ or Δ ?) of port 4 in the output coupler?
- 4) Given that $V_{L0}=V_0.cos(\omega_{L0}.t)$ and $V_{RF}=V_1.cos(\omega_{RF}.t)$, express the output voltage spectrum V_4 of the SBM as a function of V_0 and V_1 . What are the remaining frequencies at the IF output port of the SBM?
- 5) What are the advantages of this SBM configuration (LO input at Δ port)?
- 6) Express the voltage conversion gain G_{CV} of the SBM. What is the power conversion gain G_{CP} if all 180° couplers are matched to 50Ω ?
- 7) What are the values of LO-to-RF and LO-to-IF isolations?