

IN THE SPECIFICATION

Please replace the paragraph beginning at page 8, line 6, with the following rewritten paragraph:

On the other hand, a correction factor for the outer side of the spring, A_2 , is expressed by the following formula (2). According to this formula, when a spring index is 2.0, the corrected stress acting on the outer side of the spring is $0.443 \frac{0.514}{0.443}$ times of that acting on the inner side of the spring.

Please replace the paragraph beginning at page 9, line 10, with the following rewritten paragraph:

In addition, the above shot peening treatment is effective in giving a compressive residual stress in the surface of a spring to suppress the growth of fatigue cracks. Springs to be subjected to the shot peening treatment require a high compressive residual stress because they are used, particularly, under high-stress conditions. Thus, the residual stress difference as above has to be further strictly managed. In view of this need, it is preferable to set the above residual stress difference ~~material~~ at 300 MPa or less.

Please replace the Table 4 at page 15, with the following amended Table 4:

Table 4

No.	Kind of Steel	D/d	Tensile Strength (MPa)		Temperature for Stress relief annealing (°C)	$(R_+) - (R_-)$ (MPa)	Surface Roughness Ry (μm)	Fatigue Life ($\times 10^6$ cycles) ($\times 10^6$ cycles)
			After Drawing	After Stress relief annealing				
16	L	6.81	1942	1960	350	954	2.7	1.8
17	L	6.81	1942	1963	380	764	3.6	2.7
18	L	6.81	1942	1949	410	253	3.1	8.7
19	M	6.81	1856	1881	410	108	2.4	10.0
20	N	6.81	1832	1854	410	333	2.2	7.9