고추잠자리

음성인식 자율비행 드론

목차

- 1.업무
- 2.일정
- 3.개인 일정 및 피드백

Personal task

1 010	orial taon					
업무/이름	김은수	김치호 양종원		윤종운	이명중	한승민
	가속도/자이로 센서	I2C 기반 AIC 시	·운드 드라이버	MPU6050 가속/자이로 센서	STM32F (Cortex M4) 펌웨어	쿼드콥터 모델링
	WIFI 모듈	TI DSP 기반 마	이크 드라이버	MS5611 대기압 센서	Stepper Motor 제어	모터 및 PWM
	센서 전원 설계	FFT, High-Pass Low-Pass Filter		고도제어 S/W	PWM	비행제어s/w
	RTOS	OpenCL 기반 병 프로그래밍	병렬	Low-Pass 센서 필터링	WIFI	자세제어s/w
	조종기 설계	음성 정보 DB회 솔루션 개발	- 및 음성 인식			칼만필터
	하드웨어 설계	Wi-Fi 모듈 제어				자율비행

1st. 김은수

	1 주 (5.30~6.5)	2 주 (6.6~6.12)	3 주 (6.13~6.19)	4 주 (6.20~6.26)	5 주 (6.27~7.3)	6주 (7.4~7.10)	7 주 (7.11~7.17)	8주 (7.18~7.24)	9 주 (7.25~7.31)
가속도/자이 로 센서									
WIFI 모듈									
센서 전원 설계									
RTOS									
조종기 설계									
하드웨어 설계									

2016/06/02	MPU-6050의 잦은 사망 원인 파악 : 점퍼 선의 겹침(간섭)이 원인 + SCL/SDA에 저항 220옴을 달아주었다.
2016/06/09	SafeRTOS의 잦은 사망 원인 파악 : 각 태스트에 기본적으로 할당하는 스택의 사이즈를 벗어나는 크기를 사용하면서 발생하는 문제로 파악되었다. SafeRTOS는 상용화 제품이며 구글에도 정보가 많지 않아서 과감히 포기하고 FreeRTOS로 전향했다.
2016/06/13	WIFI 모듈과 주고 받는 시리얼 데이터에 대해서 폴링 방식으로는 데이터를 놓칠 수 있다는 결론을 내리고, 인터럽트 방식으로 데이터를 수신 받는 방법을 채택했다. WIFI로부터 수신되는 데이터가 시스템 처리량에 비교하면 극히 작은 양이라고 판단했기 때문. 송신은 폴링 방식으로 진행한다. 또한, 데이터 수신 버퍼는 환형 큐 방식을 채택하였다.
2016/06/14	FreeRTOS의 스케줄링이 안되는 원인 파악: 올바른 원인을 알 수 없으나, 각 태스크의 우선순위를 다르게 했을 때 올바른 스케줄링이 이뤄지지 않는다. 예를 들어 3개의 태스크가 각각 3, 3, 1의 우선순위를 가졌다면 우선순위가 높은 값인 3을 가진 태스크만 스케줄링 되고, 1 값을 가진 태스크는 영원히 스케줄링 되지 않는다. 그래서 태스크를 모두 같은 우선순위 값을 주고 라운드-로빈 방식으로 사용하도록 결정했다.
2016/06/21	RTOS 상에서 동작시 인터럽트 또는 스케줄링에 의하여 MPU-6050의 I2C 통신이 한번이라도 끊여지면 영엉 Bus Busy 상태에서 빠져 나오지 못한다. 이를 해결하기 위해 I2C 버스에서 MPU-6050이 일정 시간 이상 응답이 없다면 버스를 초기화 하고 다시 데이터를 받아오도록설정하는 것으로 문제를 해결했다.
2016/06/30	레귤레이터를 사용해 3.3V 전압을 만들고 WIFI 모듈에 사용하였더니 TX/RX 선에 엄청난 노이즈가 합성된다. 이유를 몰라서 맥류, 리플현상까지 생각해 봤는데, 알고보니 회로상에 그라운드를 모두 하나로 연결하여 폐회로로 만들어야 하는 문제가 있었다. 그라운드를 전부 하나로 이어줌으로 해결했다.

2nd. 김치호 양종원

	1 주 (5.30~6.5)	2 주 (6.6~6.12)	3 주 (6.13~6.19)	4 주 (6.20~6.26)	5주 (6.27~7.3)	6주 (7.4~7.10)	7 주 (7.11~7.17)	8주 (7.18~7.24)	9 주 (7.25~7.31)
sound driver									
mic driver									
FFT & Filter									
OpenCL									
음성 인식									
Wi-Fi 모듈									

sound driver	일반적인 RTOS 기반의 I2C 제어가 아닌 리눅스 기반의 I2C 제어로 write 함수를 연속해서 쓰면 값이 제대로 들어가지 않는 문제 발생->리눅스내에서 제공하는 linux/i2c-dev.h> 헤더파일을 추가하여 관련 구조체 사용하여 해결.
mic driver	상용 리눅스 드라이버를 사용해도 마이크가 동작하지 않는 문제 발견 -> 회로도를 보면 Mic Bias가 끊어져 있음. 전원이 들어가지 않기 때문인 것으로 파악. 전력이 거의 필요없고 전자기장 기반으로 동작하는 다이나믹 마이크를 구입하여 해결. ADC를 통과한 데이터의 값이 의미 없이 중복되는 문제 발견 -> 버퍼상의 값을 DMA 방식으로 메모리에 옮겨 담은 뒤 필요한 데이터 양이 들어올 때마다 인터럽트를 통해 알려주는 방식으로 해결
FFT & Filter	FFT의 사이즈가 매우 커서 (8192개) 버터플라이 연산의 하드 코딩이 불가능한 문제 발생 -> twiddle 값을 미리 구해놓고 반복 연산을 통해 해결
OpenCL	OpenCL 커널에 접근 시 데이터가 입력되지 않는 문제 발생 -> 커널 데이터에 group id를 붙여서 해결 버퍼에 담은 데이터가 정상적으로 읽혀지지 않는 문제 발생 ->enqueueReadBuffer 함수를 이용하여 해결
음성 인식	각각의 음성 데이터가 지나치게 유사하여 길이가 비슷한 음성은 잘 인식되지 않는 문제 발생
Wi-Fi 모듈	

4th. 윤종운

	1 주 (5.30~6.5)	2 주 (6.6~6.12)	3 주 (6.13~6.19)	4 주 (6.20~6.26)	5 주 (6.27~7.3)	6주 (7.4~7.10)	7 주 (7.11~7.17)	8 주 (7.18~7.24)	9 주 (7.25~7.31)
MPU6050 가속도/자이 로 센서									
MS561 1대기압 센서									
Low- pass filter									
고도제 어/ SW									

MPU6050 가속/자이로 센서	1. MPU6050의 레지스터 주소 순서가 가속도, 온도, 자이로 순으로 구성되어 사용하지 않는 온도값은 받지 않고 넘기길 시도해결: I2C의 통신 흐름 구조상 가속도 출력값까지 받고 통신을 종료한 후에다시 자이로값 레지스터 주소 부분부터 통신을 시작해서 온도 부분을 넘길수 있었으나 이럴 경우 스타트신호, 슬레이브 주소,R/W, 레지스터주소선언을 두번 거쳐야 하므로 오히려 시스템 딜레이가 커질 것으로 예상되어 온도 값까지 그대로 사용하기로 함.

5th. 이명중

	1주 (5.30~6.5)	2 주 (6.6~6.12)	3 주 (6.13~6.19)	4주 (6.20~6.26)	5 주 (6.27~7.3)	6주 (7.4~7.10)	7 주 ⑺7.11~7.17)	8 주 (7.18~7.24)	9 주 (7.25~7.31)
모터 학습	모터 이론	DC모터 제어	스텝모터 이론						
STM 펌웨어				UART					
PWM									
WIFI									

2016/06	'23 문제 : UART 통신할 때 한문자씩 받지않고 두문자씩 받는 문제 발생. 해결 : 인터럽트와 폴링 두가지 방식을 동시에 사용하고 있어서 해당문제 발생한 것임을 파악하여 해결.
2016/06	문제: DC 모터 PWM을 이용하여 정방향,역방향 제어하려 시도하였으나실패. 해결: 모터와 MCU의 핀 연결을 잘못하였었고, PWM의 DutyCycle을 적정수준 이상으로 해야 기동이 잘됨을 확인.
2016/07	면 문제 : Step 모터의 기동 및 정,역방향 제어는 성공하였으나 Stop이 안되는 문제 발생. 해결 : 코딩시 레지스터 set, reset의 실수가 있었음.
2016/00	면 문제 : 해결 :

6th. 한승민

	1 주 (5.30~6.5)	2 주 (6.6~6.12)	3 주 (6.13~6.19)	4주 (6.20~6.26)	5주 (6.27~7.3)	6주 (7.4~7.10)	7 주 (7.11~7.17)	8주 (7.18~7.24)	9 주 (7.25~7.31)
쿼드콥터 모델링									
비행제어 s/w									
모터 및 PWM									
자세제어 s/w									
칼만필터									
자율비행, 바람제어, 연산최적화									

2016/06/06	문제 : 피드백 방식을 pid에서 시스템 모델을 진동하는 것으로 바꾸면서 pd 제어로 바꾸려고 하였는데 안정한 값으로 수렴하지 않음 해결 : pd제어에서 p제어만 하도록 피드백을 한 상태였음 그래서 계산된 미분 값을 같이 넣어줌으로 pd제어를 하고 안정한 값으로 수렴되기 시작함
2016/06/08	문제 : .phi,theta,psi의 각도를 같이 안정한 각도로 변경시키려 했지만 수렴이 되지 않고 계속 발산하게 됨 해결 : phi,theta를 안정한 각도록 조절한 후 psi 각도를 안정한 각도로 만들면 발산하지 않게 됨
2016/06/20	문제 : 코딩과정에서 각도값이 radian 이였는데 degree로 인줄 알고 pi/180을 하여 사용하였음. 그것을 고쳐주니 발산이 되기 시작함 해결 : 적분을 단순히 dt*phiDot으로 하지 않고 최대한 그래프에 맞게 바꾸어서 적분을 하였더니 발산을 하지 않게 됨
2016/06/28	문제 : 실제 R5에 코딩하고 센서값을 받아서 자세제어를 시도하였지만 발산하는 문제가 발생 해결 : 계산 과정을 다시 출력하여서 확인한 결과를 본 결과 계산과정중 오타가 있어서 잘 못한 연산을 하고 있었음 그것을 다시 잡아줌
2016/07/04	문제 : R5에서 모터 캘리브레이션할 때 처음 max 값은 들어가는데 min 값이 입력이 한번에 안되고 두번째에 됨 해결 : 모터를 캘리브레이션할 때 들어가야할최소 전압이 있었음. 그것에 맞추어 min 값을 주니깐 한번에 되었음
2016/07/05	문제 : PWM 제어와 자세제어 로직을 합쳤더니 모터가 돌아가지 않았음 해결 : 할코젠에서 주기 생성 시 원래 50000으로 생성되어야 하는데 30000으로 생성되는 에러가 발생. 다시 설정해주니깐 제대로 생성되고 모터 구동과 센서 변경시 모터의 출력이 변화됨(소리를 통해 확인 유관은 힘듬)