Introduction

Cluster Expansion

Solvers

Results

Conclusion

Cluster Expansion of Thermal States using Tensor Networks

David Devoogdt

Faculty of Engineering and Architecture
Ghent University

June 16, 2021

Introduction

Problem Statement Tensor Networks

Cluster Expansion

Solvers

Results

 $\mathsf{Conclusion}$

Introduction

Problem Statement

Cluster Expansior

Solvers

Results

Conclusior

Problem Statemer
Tensor Networks

Cluster Expansion

ooivers

Variant A

Introduction
Problem Statemer
Tensor Networks

Cluster Expansion

Solvers

Results

Figure: Figure taken from [1]

Introduction

Cluster Expansion

3D

2D

Solvers

esults

 $\mathsf{Conclusion}$

Cluster Expansion

Cluster Expansion

 $\bigcirc = \exp(-\beta H(\bigcirc))$

 $\bigcirc 1 = \exp{-\beta H(\bigcirc -)}$

←□ → ←□ → ← = → → = → へ

(2)

Introduction

Cluster Expansion

1D

2D

Solvers

Results

Results

<□ > <┛ > < ≧ > < ≧ > ○ ≥ · ○ ○ ○

(3)

Cluster Expansion

←□ → ←□ → ← = → → = → へ 8 / 23

(3)

Cluster Expansion

1D: Variant A

(4a)

(4b)

(4c)

(4d)

(4e)

1D: Variant E

(5a)

(5b)

(5c)

(5d)

1D: Variant F

 $\bigcirc 1 \bigcirc 2 \bigcirc 1 \bigcirc +$

 $\bigcirc \overset{1'}{-}\bigcirc +\bigcirc \overset{1}{-}\bigcirc$

(6a)

(6b)

(6c)

(6d)

(6e)

2D: Linear Blocks

イロト (個)・(量)・(量)・

(7a)

(7b)

2D: Nonlinear Blocks

(8)

(9)

Introduction

Cluster Expansion

Solvers

Solvers

nlinear Solver quential Linear Solv

sults

Conclusion

Solvers

Introduction

Cluster Expansio

Solvers

Linear Solver

Nonlinear Solver
Sequential Linear Solve

Results

Conclusio

(10)

Introduction

Cluster Expansion

Solvers

Linear Solver

Nonlinear Solver

Sequential Linear Solver

Results

Introduction

Cluster Expansion

Solvers

Linear Solver

Manlingar Calvar

Sequential Linear Solver

Results

Introduction

Cluster Expansion

Solvers

Linear Solver

Nonlinear Solve

Sequential Linear Solver

Results

Conclusior

Linear Solver: Inversion Scheme

Introduction

Cluster Expansion

Solvers

Linear Solver

Nonlinear Solver

Sequential Linear Solver

Results

 $\mathsf{Conclusion}$

- Invert A^i separately
 - Fast
 - Numerically unstable

Linear Solver: Inversion Scheme

Introductior

Cluster Expansion

Solvers

Linear Solver

Nonlinear Solvei

Sequential Linear Solver

Results

- Invert *Aⁱ* separately
- Full inversion $A = A^1 \otimes A^2 \cdots \otimes A^m$
 - Slow
 - Stable for pseudoinverse

Linear Solver: Inversion Scheme

Introduction

Cluster Expansion

Solvers

Linear Solver

Nonlinear Solver

Sequential Linear Solver

Results

- Invert Aⁱ separately
- Full inversion $A = A^1 \otimes A^2 \cdots \otimes A^m$
- Sparse full inversion
 - $A^i = U \Sigma V^\dagger$
 - $S = S^1 \otimes S^2 \cdots \otimes S^m$

Introduction

Cluster Expansion

Solvers

Linear Solver

Nonlinear Solver

Results

Conclusion

(11)

ntroductio

Cluster Expansi

Solvers

Linear Solver Nonlinear Solver

Results

Conclusio

(12)

18 / 23

ntroductio

Cluster Expansion

Solvers

Joivers

Linear Solver

uential Linear Solve

Results

Conclusio

(12)

ntroductio

Cluster Expansio

Solvers

Linear Solver

Nonlinear Solver Sequential Linear Solv

Results

Nonlinear Solver

Introduction

Cluster Expansion

Solvers

Linear Solver

Nonlinear Solver

Sequential Linear Solver

Results

 ${\sf Conclusior}$

- Nonlinear least squares
- Jacobian
- Permutations

Sequential Linear Solver

Introduction

Cluster Expansion

Solvers

Linear Solver

Nonlinear Solver

Sequential Linear Solver

Results

- Based on linear solver
- Sweep over unknown tensors
- Permutations

Introduction

Cluster Expansion

Solvers

Results

1D exact

2D exact
2D Transverse Ising

Conclusion

Results

Introduction

Cluster Expansior

Solvers

Results

Conclusion

References I

Introductior

Cluster Expansion

Solvers

Results

Conclusion

S. Hesselmann, S. Wessel, Thermal Ising transitions in the vicinity of two-dimensional quantum critical points, PHYSICAL REVIEW B 93 (2016) 155157.

doi:10.1103/PhysRevB.93.155157.