

On Timing Process Interventions for Prescriptive Process Monitoring

Hans Weytjens, Wouter Verbeke, Jochen De Weerdt

Introduction

- From predictive to prescriptive process monitoring: optimization, rather than mere prediction, of processes delivers tangible benefits
- Causal inference (CI) and Reinforcement Learning (RL) emerge as state-of-art methods in literature. No comparison exists
- · Nearly all existing research based on work on real, offline data. Lack of counterfactuals prevents accurate evaluation of tested methods
- We compare CI to RL using synthetic datasets

1. Causal Inference (CI) and Reinforcement Learning (RL)

Policy requires threshold

- At the first event, the prediction model for the outcome for non-intervention (Y_{NI}) will observe two different outcomes (5 and 0) and summarize those to 2.5
 - This value depends on the loss function and the samples distribution (% in the graph) in the training set which itself depends on the data-gathering policy

- Q-learning: Q value learned for each state-action combination
- No thresholds required
- At the first event, RL selects the maximum of the two Q values (5 and 0).
- Online learning (exploration) ensures independence of data-gathering policy
- Offline learning requires modifications,
 - e.g.,: process-aware model
 - predictive model
 - synthetic data
 - nearest-neigbor algorithms

2. Experimental Setup

Problem setting

Process interventions: binary, one-off actions

Implementation details

- Deep RL Q-table approximated by neural network
- Perfect policy (manually) computed as well
- Metric used is uplift: difference between the process outcomes implementing the policy and not intervening at all
- Assumption: independent processes

Synthetic data from two generative processes

Process_1:

Process_2:

- Datasets for CI 10,000 samples, largely exceeding state space size to offset offline handicap
- Test set 1,000 samples, with ALL counterfactuals computed

Identical neural network for CI and RL

3. Results

Result

		Uplift		Computational effort		
		Mean	StDev.	Unit	Mean	StDev.
Process_1	CI	1,526	36.8	epochs	188	27.6
	RL	1,616	5.0	transitions	6,000	2,549
	perfect	1,651			351	
	RCT	-515				
Process_2	CI	1,682	203.1	epochs	212	51.7
	RL	1,806	34.7	transitions	26,800	10,628
	perfect	1,845				
	RCT	-50,336				

- RL outperforms CI:
 - 1) Higher scores
 - 2) More robust (lower standard devs)
- RL nearly reaches results perfect policy (within <3%)
- CI also much better than random policy (RCT)
- RL very computing-intensive (epochs similar to transitions)

Discussion

Causal Inference

- Sequential aspect of processes poses problem and leads to results depending on data-gathering policy
- CI limited to problems with few (or only one) successive actions
- Alternative: indirect CI: predict suffixes first, then outcomes: compounds errors but overcomes fallacies above

Reinforcement Learning

- Online RL theoretically converges to optimal policy
- Depends on strong online assumption
- Reward specification: how to include subordinate goals, human intuition, etc?
- Techniques for offline RL exist

Real-World Implemenatation

- Slow (low initial exploration rate) RL implementation should not be riskier
- Reward specification: deviation from proposed policy during implementation is possible (e.g., human factor, danger avoidance)

Conclusion

- Online RL better and more robust than CI; however, requires online environment
- CI viable, simple alternative for problems with few successive actions

Future work

- CI-offline RL comparison (with synthetic data for accurate evaluations)
- RL for more complex problems: successive and multi-class actions
- Lifting independence assumption
- Direct CL