Hbase schema 表设计教程整理版

近期在互联网上搜集了大量的关于 Hbase Schema 设计相关的教程,现综合在一起,希望给向我一样在摸索 hbase Schema 设计的人一些启发。Hbase、Nutch、Hadoop、Zookeeper 方面相关的讨论希望大家跟我交流, beyiwork@gmail.com。

声明:此文章中涉及的资料部分来源于网上,本自由之精神传播于大众,若有侵权,请及时联系我,即刻删除。

第一部分: Hbase Schema design 总述

HBase 与 RDBMS 的区别在于: HBase 的元 (Cell, 可理解为每条数据记录中的数据项) 是具有版本描述的 (versioned), 行是有序的, 列 (qualifier) 在所属列簇 (Column families) 存在的情况下, 由客户端自由添加。以下的几个因素是Hbase Schema 设计需要考虑的问题:

1. Joins

Hbase 中没有 joins 的概念,但是,大表的结构可以使得不需要 joins 的存在而解决这一问题,你要考虑的是,一条行记录,加上一个特定的行关键字,实现把所有关于 joins 的数据并在一起。

2. Row keys

对你的 Rowkey 要做一番思考,它非常重要。以存储天气数据为例,复合的 Rowkey 由监测站 (station) 作为前缀 (方便把某监测站的天气数据聚在一起),倒置的时间串作为 Rowkey 的后缀可以使温度等天气数据从新到旧排列。

如果你的 Rowkey 是整型的,用二进制的方式应该比用 String 来存储一个数据更节约空间。

第二部分: Case Study

Case1.Locations

#1.数据需求

• China

- Beijing
- Shanghai
- Guangdong
- Shangdong
 - -jinan
 - -Qingdao
- Sichuan

-chengdu

#2. In RDBMS

Loc_id PK	Loc_name	Parent_id	Child_id
1	China		2,3,4,5
2	Beijing	1	
3	Shanghai	1	
4	Guangdong	1	
5	Shangdong	1	7,8
6	Sichuan	1	9
7	Jinan	1,5	

8	Qingdao	1,5	
9	Chengdu	1,6	

#3.In Hbase

row	Column families		
<loc_id></loc_id>	Name:	Parent	child
		parent: <loc_id></loc_id>	child: <loc_id></loc_id>
1	China		child:1=state
			child:2=state
			child:3=state
			child:4=state
			child:5=state
			child:6=state
3	Shangdong	parent:1=nation	child:7=city
			child:8=city
8	Qingdao	parent:1=nation	
		parent:5=state	

Case 2:student-course

#1. 数据需求说明

Student

1 S ~ many C

_	
_	
_	Course
•	Course

1 C ~ many S

#2. RDBMS

Students表
id PK
name
sex
age

SCs表
student_id
course_id
type

Courses表
id PK
title
introduction
teacher_id

row	Column families	
	info:	course:
<student_id></student_id>	info:name	course: <course_id>=type</course_id>
	info:sex	
	info:age	

row	Column families	
	info:	student:
<course_id></course_id>	info:title	student: <student_id>=type</student_id>
	info:introduction	
	info:teacher_id	

Case 3: user-action

#1.数据需求说明

- users performs actions now and then
 - store every events
 - query recent events of a user

#2.RDBMS表设计

Actions表
id PK
user_id IDX

name		
time		

说明: SELECT id, user_id, name, time FROM Action WHERE user_id=XXX ORDER
BY time DESC LIMIT 10 OFFSET 20

加速查询需要对user_id IDX建立索引,但是建立索引的代价是由于索引的重建,插入速度减慢。

#3.Hbase表设计

Row	Column Families
	Name:
<user><long.max_value -<="" td=""><td></td></long.max_value></user>	
System.currentTimeMillis()>	
<event id=""></event>	

Case4. User-friends表

#1.数据需求描述

- 1 user has 1+ friends
- will lookup all friends of a user

#2.in RDBMS

Users表	
id IDX	
name	

sex		
age		

Friendships表
user_id IDX
friend_id
type

#3.In HBase

row	column	
	info:	friend:
<user_id></user_id>	info:name	friend: <user_id>=type</user_id>
	info:sex	
	info:age	

- actually, it is a graph can be represented by a sparse matrix.
- then you can use M/R to find sth interesting.
 e.g. the shortest path from user A to user B.

Case5. Access log

#1.数据需求描述

- each log line contains time, ip, domain, url,referer, rowser_cookie, login_id, etc
- will be analyzed every 5 minutes, every hour, daily, weekly, and monthly

#2.in RDBMS

Accesslog
time
ip IDX
domain
url
referer
browser_cookie IDX
login_id IDX

#3.in Hbase

row	column	
	http:	user
<time><inc_counter></inc_counter></time>	http:ip	user:browser_
	http:domain	cookie
	http:url	user:login_id
	http:referer	

整理 by beyiwork

Isiteam