Numerical Methods

Haefne

- Number storage in computers
- Computation errors
 - fault of computer
 - fault of numerical methods
- Numerical methods for solving population DEs

Model Solutions (mathematical models)

A) Analytical

Symbolic manipulation of equations

$$y = x^2$$

, want to know x

$$x = \sqrt{y}$$

B) Numerical

Equations not manipulated symbolically Solution provided as numerical data

$$y = x^2$$

What is x if y = 5? Repeated guessing, interval halving

Storage of numbers in computers

Integers – exact values maintained

Type	Bits	Range
char	8	±128
short	16	±32768
long	32	±2E9

Floating point numbers

Туре	Bits	Digits	Range	
Float	32	6	±'	10 ±38
Double	64	15	±10 ±308	

Stores very large and very small numbers – What's the problem ??

The problem - All numbers cannot be represented

Why do we care?

$$y = a + b$$

$$\begin{array}{c} 1.500 \\ +2.000 \\ \hline 3.500 \end{array}$$

Remember, the number line has infinite points between 0 and 1.

Simplified example in base 10:

Can store 4 digits : ___ __

Allows for 0 to 9999 Want to store bigger numbers?

Divide up storage space :		-
	mantissa 0-999	exponent 0-9

number = mantissa * 10 exponent

Hamber – manussa * 10			
exponent	range	resolution	
0	0-999	1	
1	0-9990	10 -	
2	0-99900	100	9985 is not possible !!
9	0 - 999 billion	1 billion	

More complicated with floats, but same idea...

#include <stdheaders.h>
int main(void)
{
 int i;
 float y, a, b;
 a = 3e10;
 b = 1.0;
 y = a + b;
 printf(*\n\n a = %14.2f\n b = %5.2f\n y = %14.2f\n*, a, b, y);
 return 0;
}

Critcribin\rundos.exe

a = 30000001024.00

b = 1.00
 y = 30000001024.00

B = 1.00
 y = 30000001024.00

Return code

Return

Numerical solution of DEs Exponential population model : $\frac{dN}{dt} = kN \qquad \qquad \text{What is N for future t?}$ Simplest numerical solution – Euler's method $\frac{\Delta N}{\Delta t} \approx kN \\ \Delta N \approx kN\Delta t \\ N_{t+1} = N_t + \Delta N$

Logistic Model and DE solutions

$$N_{t+1} = N_t + rN_t \left(1 - \frac{N_t}{K}\right)$$

$$\frac{dN}{dt} = rN\left(1 - \frac{N}{K}\right)$$

Can modify exponential program by substituting the RHS parts.

$$\frac{dN}{dt} = kN \longrightarrow dN = k * N[i] * dt;$$

-		