Multisample Inference

Outline

- 1. One-Way ANOVA--- Fixed Effects
 - ① One-Way ANOVA
 - 2 Post-hoc Test After One-Way ANOVA
- 2. Two-Way ANOVA
- 3. The Kruskal-Wallis Test
- 4. One-Way ANOVA--- Random Eeffects
- 5. Meta Analysis
- 6. Mixed Model

One-Way ANOVA

Qualitative Factor
Fixed Effects

Example:

Pulmonary disease

- A topic of public-health interest is whether *passive smoking* (exposure among nonsmokers to cigarette smoke in the atmosphere) has a measurable effect on pulmonary (肺部) health.
 - Endpoint: Forced Mid-expiratory flow (FEF) in L/s
 - 6 groups:
 - nonsmokers (NS),
 - passive smokers (PS),
 - noninhaling smokers (NI),
 - light smokers (LS),
 - moderate smokers (MS),
 - heavy smokers (HS)

FEF data for smoking and nonsmoking males

Group name	Mean FEF	SD FEF	n
NS	3.78	0.79	200
PS	3.30	0.77	200
NI	3.32	0.86	50
LS	3.23	0.78	200
MS	2.73	0.81	200
HS	2.59	0.82	200

One-Way ANOVA--- Fixed Effects

- Can be viewed in two different ways:
 - Extension of "two-sample" t-test to more than two groups.
 - Extension of simple linear regression to case
 where X is qualitative. => multiple regression

One-way ANOVA model

- k groups and n_i observations in the ith group
- y_{ij} : the jth observation in the ith group

$$y_{ij} = \mu + \alpha_i + e_{ij}, e_{ij} \sim N(o, \sigma^2).$$

- Constraint needed for "identifiability"
 - $-\sum_{i=1}^{k} \alpha_i = 0$ (we use this approach here)
 - $-\alpha_k = 0$

Interpretation

$$y_{ij} = \mu + \alpha_i + e_{ij}, e_{ij} \sim N(o, \sigma^2).$$

- μ: the underlying mean of all groups taken together.
- α_i : the difference between the mean of the *i*th group and the overall mean.
- e_{ij} : random error about the mean $\mu + \alpha_i$ for an individual observation from the ith group.

Multiple linear regression

Recall: One-way ANOVA

$$y_{ij} = \mu + \alpha_i + e_{ij}, e_{ij} \sim N(o, \sigma^2).$$

This is equivalent to:

$$y = \alpha + \sum_{j=1}^{k-1} \beta_j x_j + e$$

- where $x_j = I(\text{subject is in group } (j+1))$ is dummy variable. And group 1 is referred to as the reference group.
- β_j : the difference between the average value of y for subjects in group (j+1) vs. the average value of y for subjects in the reference group.

. One-way ANOVA(fixed effect) Multiple linear regression

Overall comparison

•
$$H_0$$
: $\alpha_1 = \cdots = \alpha_k = 0$

•
$$H_1$$
: at least one of the $\alpha_i \neq 0$

•
$$H_0: \beta_1 = \cdots = \beta_k = 0$$

•
$$H_1$$
: at least one of the $\alpha_j \neq 0$ • H_1 : at least one of the $\beta_j \neq 0$

- Regression SS
- Residual SS

The F statistic and p-values are the same

Testing in One-way ANOVA

1. Simplest question: is there any group (main) effect?

$$H_0$$
: $\alpha_1 = \cdots = \alpha_k = 0$?

2. Other questions: is the effect the same in groups 1 and 2?

$$H_0$$
: $\alpha_1 = \alpha_2$?

Partitioning the variance

• Let
$$\overline{y_i} = \frac{\sum_{j=1}^{n_i} y_{ij}}{n_i}$$
, and $\overline{\overline{y}} = \frac{\sum_{i=1}^k \sum_{j=1}^{n_i} y_{ij}}{n}$, $n = \sum_{i=1}^k n_i$.

•
$$y_{ij} - \overline{\overline{y}} = (y_{ij} - \overline{y_i}) + (\overline{y_i} - \overline{\overline{y}})$$

$$\sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \overline{\overline{y}})^2 = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \overline{y_i})^2 + \sum_{i=1}^{k} \sum_{j=1}^{n_i} (\overline{y_i} - \overline{\overline{y}})^2$$
Total SS = Within SS + Between SS

In shorthand:

SSTO = SSW + SSB

$$\sim \sigma^2 \chi^2 (n-1) \qquad \sim \sigma^2 \chi^2 (n-k) \sim \sigma^2 \chi^2 (k-1,\lambda)$$

•
$$MSB = \hat{\sigma}_B^2 = \frac{SSB}{k-1}$$
, $MSW = \hat{\sigma}_W^2 = \frac{SSW}{n-k}$

One-way ANOVA: the picture

Comparison of between-group and within-group variability

Back to the hypothesis testing

Is there any group (main) effect? (overall comparison)

$$H_0$$
: $\alpha_1 = \cdots = \alpha_r = 0$
 H_1 : at least one $\alpha_i \neq 0$

- The null hypothesis specifies a global relationship between the means.
- Our test statistic is

$$F = \frac{MSB}{MSW} = \frac{\hat{\sigma}_B^2}{\hat{\sigma}_W^2} = \frac{\text{variance between the groups}}{\text{variance within the groups}}$$

The F-statistic

• Under H_0

$$F \sim F_{k-1,n-k}$$

- Thus
 - Reject H_0 if $F > F_{\alpha,k-1,n-k}$
 - Fail to reject H_0 if $F \leq F_{\alpha,k-1,n-k}$
- $F_{\alpha,k-1,n-k}$ is the value on the $F_{k-1,n-k}$ distribution that, used as a cutoff, gives an area in the upper tail $= \alpha$
- And the exact p-value is given by the area to the right of F under an the $F_{k-1,n-k}$ distribution = $\Pr(F_{k-1,n-k} > F)$

A one-way ANOVA table

The results from the ANOVA are typically displayed in an ANOVA table, as in the following table:

Source of variation	SS	df	MS	F statistic	p-value
Between	$\sum_{i=1}^{k} \sum_{j=1}^{n_i} (\bar{y} - \bar{\bar{y}})^2 = SSB$	k-1	$\frac{SSB}{k-1} = MSB$	MSB MSW	$\Pr(F_{k-1,n-k} > F)$
Within	$\sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \bar{y})^2 = SSW$	n-k	$\frac{SSW}{k-1} = MSW$		
Total	SST = SSB + SSW	n-1			

Example: ANOVA for Pulmonary disease

Outcomes: Mid-expiratory flow (FEF) in L/s

Group name	Mean FEF	SD FEF	n
NS	3.78	0.79	200
PS	3.30	0.77	200
NI	3.32	0.86	50
LS	3.23	0.78	200
MS	2.73	0.81	200
HS	2.59	0.82	200

Pulmonary disease ANOVA result

We obtain the following result from Pulmonary disease example

	SS	df	MS	F statistic	P-value
Between	184.38	5	36.875	58.0	<0.001
Within	663.87	1044	0.636		
Total	848.25				

Conclusions

- Since $F = 58.0 > F_{0.001,5,1044} = 4.14$, we reject H_0
- There is a significant difference in the mean FEF among the groups(P-value<0.001).

Testing in One-way ANOVA

1. Simplest question: is there any group (main) effect?

$$H_0$$
: $\alpha_1 = \cdots = \alpha_k = 0$?

2. Other questions: is the effect the same in groups 1 and 2?

$$H_0$$
: $\alpha_1 = \alpha_2$?

Which groups are different?

We might proceed to make individual comparisons.
 E.g., is the effect the same in groups 1 and 2?

$$H_0: \alpha_1 = \alpha_2$$
?

 Conduct two-sample t-tests to test for a difference in means for each pair of groups (assuming equal variance):

$$t = \frac{\bar{y}_1 - \bar{y}_2}{s\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

• Recall: $s = \hat{\sigma}_W^2 = MSW$ is the 'pooled' sample estimate of the common variance

The t-statistic

• Under H_0

$$t \sim t_{n-k}$$

- Thus
 - Reject H_0 if $t > t_{\alpha/2, n-k}$ or $t < t_{1-\alpha/2, n-k}$
 - Fail to reject H_0 if $t_{1-\alpha/2, n-k} \le t \le t_{\alpha/2, n-k}$
- And the exact p-value is given by

$$p = \begin{cases} 2 \times \Pr(t_{n-k} < t), & \text{if } t < 0 \\ 2 \times \Pr(t_{n-k} > t), & \text{if } t \ge 0 \end{cases}$$

This test is often referred to as the least significant difference (LSD)
method

Multiple Comparisons

- Performing individual comparisons require multiple hypothesis tests
- If $\alpha = 0.05$ for each comparison, there is a 5% chance that each comparison will falsely be called significant
- Overall, the probability of Type I error is elevated above 5%
- For n independent tests, the probability of making a Type I error at least once is $1 (1 0.05)^n$
 - Example: For n = 10 tests, the probability of at least one Type I error is 0.40!
- Question: How can we address this multiple comparisons issue?

Multiple Testing

Differentially expressed genes detection

```
Case Control  
Gene 1 X_{11} X_{12} ... X_{1n_1} Y_{11} Y_{12} ... Y_{1n_1} ... Y_{11} ... Y_
```

- Different genes may have different gene expression levels
- For each gene, two-sample t-test ...
 - → Multiple testing problem

FWER

• Type I error, $\alpha=0.05$ in the ordinary hypothesis testing

Multiple hypothesis testing:

$$H_{i0}$$
: $\mu_{i1} = \mu_{i2}$, $i = 1, 2, ..., n$

Family wise type I error rate (FWER)

FWER=
$$P(\bigcup_{i=1}^{n} A_i) = 1 - \prod_{i=1}^{n} (1 - \alpha_i)$$

 A_i : type I error occurs in the *i*-th hypothesis testing

Bonferroni Adjustment

- A possible correction for multiple comparisons
- Test each hypothesis at level $\alpha^* = \alpha / \binom{k}{2}$
- Basic idea: ensures overall Type I error rate does not exceed α = 0.05
 - For example, for our Pulmonary disease, k=6, given $\alpha=.05$, thus $\alpha^*=.05/\binom{6}{2}=0.0033$
- However, this adjustment may be too conservative

False-Discovery Rate

- Control of FWER may result great loss in detection power
- ⇒An alternative approach based on the falsediscovery rate (FDR)

	Null hypothesis is true (H ₀)	Alternative hypothesis is true (H _A)	Total
Test is declared significant	V	S	R
Test is declared non-significant	U	T	m-R
Total	m_0	$m-m_0$	m

 Basic idea: attempts to control the proportion of false positive results among reported statistically significant results.

FDR vs. FWER

	Null hypothesis is true (H ₀)	Alternative hypothesis is true (H _A)	Total
Test is declared significant	V	S	R
Test is declared non-significant	U	T	m-R
Total	m_0	$m-m_0$	m

•
$$Q = \begin{cases} V/R, & R > 0 \\ 0, & R = 0 \end{cases}$$

- FDR=E(Q)=E(V/R|R>0)P(R>0)
- FWER=P(V≥1)
- If $m=m_0$, FDR=E(1|R>0)P(R>0)=P(R>0)=P(V>0)=FWER;
- If m> m_0 , $0 < V/R \le 1 \Rightarrow V/R \le I(V > 0) \Rightarrow FDR \le FWER$
- Controlling FDR may gain power comparing to controlling

FDR Testing Procedure (BH, 1995)

Procedure:

- 1. For a given α , find the largest k such that $p_k \leq \frac{k}{m}\alpha$,
- 2. Reject the null hypothesis for all H_i for i = 1,2,...,k.

which ensures that
$$E(Q) \le \frac{m_0}{m} \alpha \le \alpha$$

R function: p.adjust

BH Procedure in textbook

- ① Suppose we have conducted k separate tests with p-values = p_1 , ..., p_k .
- ② For convenience we will renumber the tests so that $p_1 \leq p_2 \leq ... \leq p_k$.
- ① Define $q_i = kp_i/i$, i = 1,...,k, where i = rank of the p-values among the k tests.
- 4 Let FDR_i = false-discovery rate for the ith test be defined by $min(q_i, ..., q_k)$.
- 5 Find the largest i such that $FDR_i < FDR_0 = critical level for the FDR (usually .05).$
- 6 Reject H_0 for the hypotheses 1, . . . , i, and accept H_0 for the remaining hypotheses.

FDR related concepts

- $Fdr = \frac{E(V)}{E(R)}$, $pFDR = E(\frac{V}{R}|R > 0)$
- Finding the truly alternative hypotheses is regarded as identifying a small component in a mixture, i.e.,

$$p \sim \pi_0 f_0 + (1 - \pi_0) f_1,$$

where $p|H_0 \sim f_0$ and $p|H_1 \sim f_1$, and $\pi_0 \cong 1$

- Empirical Bayes method (ref: Large-scale inference, Bradley Efron, 2010)
- $FDR(x) = \frac{\pi_0 F_0(x)}{F(x)}$ = prob. of being null/prob. of being rejected
- $local \ fdr(x) = \frac{\pi_0 f_0(x)}{f(x)} = P(H_0|x)$ prob. of being null given x/1

Demonstrating example: I

- A subsample of 520 cases of cardiovascular disease (CVD) and 1100 controls was obtained among men in a prospective cohort study.
- Baseline blood samples were analyzed for 50 candidate single nucleotide polymorphisms (SNPs).
- The association of each SNP with CVD was assessed using contingency-table methods.
- A chi-square test for trend was run for each SNP. This yielded 50 separate p-values. => next slide

Demonstrating example: II

Use of the FDR approach to analyzing the CVD data

	SNP	Naïve p-value	Bonferroni p-value	q_i	FDR:
1	gene30	<.0001	.0035	.0035	.0035
2	gene20	.011	.54	.28	.16
3	gene48	.017	.86	.28	.16
4	gene50	.017	.87	.22	.16
5	gene4	.018	.92	.18	.16
6	gene40	.019	.94	.16	.16
7	gene7	.026	1.00	.18	.18
8	gene14	.034	1.00	.21	.21
9	gene26	.042	1.00	.23	.23
10	gene47	.048	1.00	.24	.24

Case study: LEAD

- we analyzed the difference in mean finger-wrist tapping score (MAXFWT) by three lead-exposure groups according to the variable LEAD_TYPE:
 - If LEAD_GRP = 1, then the child had normal blood-lead levels (<40 μg/100 mL) in both 1972 and 1973 (control group).
 - If LEAD_GRP = 2, then the child had elevated blood-lead levels (≥40 µg/100 mL) in 1973 (the currently exposed group).
 - If LEAD_GRP = 3, then the child had elevated blood-lead levels in 1972 and normal blood-lead levels in 1973 (the previously exposed group).

First look at the data

Descriptive statistics by group

Box-plot by group

Group (g)	N	N(no missing)	Mean	Std Dev	· ·		
1	77	63	55.09524	10.93487 8			
2	22	17	47.58824	7.08042 4			
3	21	15	49.40000	10.19664			
					1	2	3

boxplot(maxfwt~Lead_type)

R codes: I LEAD

```
> summary(fit <- aov(maxfwt~g))</pre>
          Df Sum Sq Mean Sq F value Pr(>F)
       2 966.8 483.40 4.5985 0.01249 *
q
Residuals 92 9671.1 105.12
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '
25 observations deleted due to missingness
> pairwise.t.test(maxfwt,Lead_type,p.adjust.method =
'none") # t test
Pairwise comparisons using t tests with pooled SD
data: maxfwt and Lead_type
```

R codes: II

LEAD

```
> pairwise.t.test(maxfwt,Lead_type,p.adjust.method = "bonferroni")
# Bonferroni correction
Pairwise comparisons using t tests with pooled SD
data: maxfwt and Lead_type
 1 2
20.026 -
3 0.169 1.000
P value adjustment method: bonferroni
> pairwise.t.test(maxfwt,Lead_type,p.adjust.method = "BH")
# FDR: False Discovery rate control
Pairwise comparisons using t tests with pooled SD
data: maxfwt and Lead_type
20.026 -
3 0.084 0.619
P value adjustment method: BH
```

Two-Way ANOVA

Two-Way ANOVA

- We have learned the fixed-effects one-way ANOVA, in which groups were defined by only one variable, e.g., cigarette smoking.
- In some instances, the groups being considered can be classified by two different variables and thus can be arranged in the form of an $R \times C$ contingency table.
- We would like to be able to look at the effects of each variable after controlling for the effects of the other variable.
- => the two-way ANOVA.

Example: Kidney

- Recovery time depends on weight gain between treatments and duration of treatment.
- Two levels of duration, three levels of weight gain.

Definition

Main effect

 effect of one treatment variable considered in isolation (ignoring other variables in the study)

Interaction effect

- the effect of one variable depends on the level of the other variable.
- For example:
 - SV males have mean SBP levels that are 10 mm Hg lower than those of normal males, whereas SV females have mean SBP levels identical to those of normal females.
 - => an interaction effect between sex and dietary group

Two-way ANOVA model

General model

$$y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + e_{ijk}$$

- where $e_{ij} \sim N(o, \sigma^2)$.
- · Constraint needed for "identifiability"

$$-\sum_{i=1}^{r} \alpha_i = \sum_{j=1}^{c} \beta_j = 0$$

$$-\sum_{i=1}^{r} \gamma_{ij} = 0$$
, for all j

$$-\sum_{i=1}^{c} \gamma_{ij} = 0$$
, for all i

 Using dummy variables, this is still a multiple regression problem.

Interpretation

$$y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + e_{ijk}$$

- μ: the underlying mean of all groups taken together.
- α_i : the effect of row group
- β_i : the effect of column group
- γ_{ij} : the interaction effect between row group and column group.
- e_{ijk} : random error about the mean $\mu + \alpha_i + \beta_j + \gamma_{ij}$ for an individual observation from the ith group.

Testing in Two-way ANOVA

1. Are there main effects for the grouping variables?

$$H_0$$
: $\alpha_1 = \cdots = \alpha_r = 0$
 H_0 : $\beta_1 = \cdots = \beta_c = 0$

2. Are there interaction effects?

$$H_0: \gamma_{ij} = 0, 1 \le i \le r, 1 \le j \le c.$$

Two-way ANOVA table

Source of variation	$SS(n_{ij}=n)$	df
Row (A)	$nc\sum_{i=1}^{r}(\bar{y}_{i}-\bar{y}_{})^{2}=SSA$	r-1
Column(B)	$\operatorname{nr} \sum_{j=1}^{c} (\bar{y}_{\cdot j} - \bar{y}_{\cdot \cdot \cdot})^{2} = SSB$	<i>c</i> − 1
Interaction(AB)	$n\sum_{i=1}^{r} \sum_{j=1}^{r} (\bar{y}_{ij.} - \bar{y}_{i} + \bar{y}_{.j.} - \bar{y}_{})^{2} = SSAB$	(r-1)(c-1)
Error	$\sum_{i=1}^{r} \sum_{j=1}^{r} (y_{ijk} - \bar{y}_{ij})^{2} = SSE$	(<i>n</i> − 1)rc
Total	SST = SSA + SSB + SSAB + SSE	<i>nc</i> – 1

F-tests for two-way ANOVA

•
$$MS = SS/df$$

• F-test

$$F_A = \frac{MSA}{SSE} \sim F(r-1, (n-1)rc)$$

$$F_B = \frac{MSB}{SSE} \sim F(c-1, (n-1)rc)$$

$$F_{AB} = \frac{MSAB}{SSE} \sim F((r-1)(c-1)$$

R codes: Kidney

- > kidney.lm <- lm(Days ~ Duration * Weight)</pre>
- > summary(kidney.lm)

Coefficients:

	Estimate Std.	Error	t value	Pr(> t)	
(Intercept)	2.700	1.702	1.586	0.1186	
Duration2	-0.500	2.407	-0.208	0.8362	
Weight2	4.600	2.407	1.911	0.0613 .	
Weight3	11.900	2.407	4.943	7.84e-06	***
<pre>Duration2:Weight2</pre>	-3.100	3.405	-0.911	0.3666	
Duration2:Weight3	-6.600	3.405	-1.939	0.0578 .	

Residual standard error: 5.383 on 54 degrees of freedom Multiple R-squared: 0.408, Adjusted R-squared: 0.3532 F-statistic: 7.444 on 5 and 54 DF, p-value: 2.262e-05

```
> print(anova(kidney.lm))
Analysis of Variance Table
Response: Days
              Df Sum Sq Mean Sq F value Pr(>F)
               1 209.07 209.07 7.2147 0.009587 **
Duration
Weight
               2 760.43 380.22 13.1210 2.269e-05 ***
Duration: Weight 2 109.03 54.52 1.8813 0.162240
Residuals 54 1564.80 28.98
> # Another way to look at interactions
> anova(lm(Days ~ Duration + Weight), kidney.lm)
Analysis of Variance Table
Model 1: Days ~ Duration + Weight
Model 2: Days ~ Duration * Weight
 Res.Df
           RSS Df Sum of Sq F
                                      Pr(>F)
    56 1673.8
1
    54 1564.8 2 109.03 1.8813
                                    0.1622
```

The Kruskal-Wallis Test

a nonparametric alternative to the one-way ANOVA

Example:

Ophthalmology

- A study was conducted to compare the anti-inflammatory effects of four different drugs in albino rabbits after administration of arachidonic acid.
- For each animal in a group, one of the four drugs was administered to one eye and a saline solution was administered to the other eye.
- Ten minutes later arachidonic acid was administered to both eyes. Both eyes were evaluated every 15 minutes thereafter for lid closure.
- assessment—a lid-closure score: 0 = eye completely open,
 3 = eye completely closed, and 1, 2 = intermediate states.

Outcomes: Ophthalmology

The measure of effectiveness (x) is the change in lid-closure score (from baseline to follow-up) in the treated eye minus the change in lid-closure score in the saline eye.

Ocular anti-inflammatory effects of four drugs on lid closure after administration of arachidonic acid

Rabbit Number	Indomethacin		Aspirin		Piroxicam		BW755C	
	Score*	Rank	Score	Rank	Score	Rank	Score	Rank
1	+ 2	13.5	+ 1	9.0	+3	20.0	+ 1	9.0
2	+ 3	20.0	+ 3	20.0	+ 1	9.0	0	4.0
3	+ 3	20.0	+ 1	9.0	+ 2	13.5	0	4.0
4	+ 3	20.0	+ 2	13.5	+1	9.0	0	4.0
5	+ 3	20.0	+ 2	13.5	+ 3	20.0	0	4.0
6	0	4.0	+3	20.0	+3	20.0	- 1	1.0

[&]quot;(Lid-closure score at baseline – lid-closure score at 15 minutes)_{dag sys} – (lid-closure score at baseline – lid-closure score at 15 minutes)_{sales ses}

The Kruskal-Wallis test

- In the last example, the score is ordinal variable => a nonparametric method
- generalize the Wilcoxon rank-sum test to enable us to compare more than two samples.
- Based on ranks
 - If the average ranks are close to each other, then H_0 , that the treatments are equally effective, is accepted.
 - If the average ranks are far apart, then H_0 is rejected and we conclude at least some of the treatments are different.

The Kruskal-Wallis test statistic

If there are no ties,

$$H = H^* = \frac{12}{N(N+1)} \sum_{i=1}^{K} n_i (\bar{R}_i - \bar{\bar{R}})^2$$

If there are ties,

$$H = \frac{H^*}{1 - \frac{1}{N^3 - N} \sum_{j=1}^{g} (t_j^3 - t_j)}$$

- $N = \sum_{i} n_{i}$ and R_{i} : the rank sum for the *i*th group.
- t_j : the number of observations (i.e., the frequency) with the same value in the jth cluster of tied observations
- g is the number of tied groups.

Contd.

- Applicable only if $\min(n_i) \geq 5$. (Otherwise, either the sample should be combined with another sample or special small-sample tables should be used.)
- For a level α test,
 - If $H > \chi^2_{\alpha,k-1}$, then reject H_0
 - If $H \leq \chi^2_{\alpha,k-1}$, then accept H_0
- To assess statistical significance, the p-value is approximate by

$$p = \Pr(\chi_{k-1}^2 > H)$$

Dunn Procedure

- Multiple comparison under the Kruskal-Wallis test
- To compare the ith and jth treatment groups

$$z = \frac{\bar{R}_i - \bar{R}_j}{\sqrt{\frac{N(N+1)}{12} \times \left(\frac{1}{n_i} + \frac{1}{n_j}\right)}}$$

- For a two-sided level α test, denote $\alpha^* = \frac{\alpha}{k(k-1)}$
 - If $|z| \leq z_{\alpha^*}$, then accept H_0
 - If $|z|>z_{\alpha^*}$, then reject H_0

Back to: Ophthalmology

```
> kruskal.test(ocular,g) # Kruskal-Wallis rank sum
test
Kruskal-Wallis rank sum test
data: ocular and g
Kruskal-Wallis chi-squared = 11.8041, df = 3, p-
value = 0.008085
> boxplot(ocular ~ g)
> library("pgirmess")
> kruskalmc(ocular,g)
Multiple comparison test after Kruskal-Wallis
p value: 0.05
```

Comparisons

```
obs.dif critical.dif difference
```

```
10.77064 FALSE
1-2 2.083333
                 10.77064 FA
1-3 1.000000
                 10.77064(TR
1-4 11.916667
2-3 1.083333
                 10.77064 FA
                 10.77064 FA
2-4 9.833333
                 10.77064 TR
3-4 10.916667
```

Box-plot by groups