Colle 24 - MPSI Applications linéaires

Exercice 1 (Questions de cours)

Démontrer les points suivants :

- 1. f est injective si, et seulement si, $ker(f) = \{0\}$.
- 2. Soit $f \in \mathcal{L}(E, F)$ injective et soit $(x_1, ..., x_n)$ une famille libre de vecteurs de E. Alors $(f(x_1), ..., f(x_n))$ est une famille libre de vecteurs de F.
- 3. Soit $f \in \mathcal{L}(E, F)$ et soit $(x_1, ..., x_n)$ une famille génératrice de E. Alors Im $f = \text{Vect}(f(x_1), ..., f(x_n))$: ie $(f(x_1), ..., f(x_n))$ est une famille génératrice de Im f.
- 4. Soit $p \in \mathcal{L}(E)$ tel que $p^2 = p$. Alors $\ker(p) \oplus \operatorname{Im}(p) = E$, et p est la projection sur $\operatorname{Im}(p)$ parallèlement à $\ker(p)$

Exercice 2

Soit $f: \mathbb{R}^2 \to \mathbb{R}^2$ définie par f(x,y) = (x+y,x-y).

Montrer que f est un automorphisme de \mathbb{R}^2 et déterminer son automorphisme réciproque.

Exercice 3

Soit $\varphi: \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R}) \to \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$ définie par

$$\varphi(f) = f'' - 3f' + 2f.$$

Montrer que φ est un endomorphisme et préciser sont noyau.

Exercice 4

Soient a un élément d'un ensemble X non vide et E un \mathbb{K} -espace vectoriel.

- 1. Montrer que $E_a: \mathcal{F}(X,E) \to E$ définie par $E_a(f) = f(a)$ est une application linéaire.
- 2. Déterminer l'image et le noyau de l'application E_a .

Exercice 5

Montre que l'application partie entière $\operatorname{Ent}:\mathbb{K}(X)\to\mathbb{K}[X]$ est linéaire et déterminer son noyau.

Exercice 6

Soient f et g deux endomorphismes d'un \mathbb{K} -espace vectoriel E.

- 1. Comparer $\ker f \cap \ker g$ et $\ker(f+g)$.
- 2. Comparer Im f + Im q et Im (f + q).
- 3. Comparer $\ker f$ et $\ker f^2$.
- 4. Comparer Im f et Im f^2 .

Exercice 7

Soient E et F deux \mathbb{K} -espaces vectoriels, $f \in \mathcal{L}(E, F)$ et A, B deux sous-espaces vectoriels de E. Montrer

$$f(A) \subset f(B) \Leftrightarrow A + \ker f \subset B + \ker f$$
.

Exercice 8 (MINES MP)

Caractériser les sous-espaces F d'un espace vectoriel E tels que

$$h^{-1}(h(F)) = h(h^{-1}(F)).$$

Exercice 9 (MINES MP)

Soient E et F des \mathbb{K} -espaces vectoriels. On se donne $f \in \mathcal{L}(E, F)$, une famille $(E_i)_{1 \leq i \leq n}$ de sous-espaces vectoriels de E et une famille $(F_j)_{1 \leq j \leq p}$ de sous-espaces vectoriels de F.

1. Montrer

$$f\left(\sum_{i=1}^{n} E_i\right) = \sum_{i=1}^{n} f(E_i)$$

2. Montrer que si f est injective et si la somme des E_i est directe alors la somme des $f(E_i)$ est directe.

3. Montrer

$$f^{-1}\left(\sum_{j=1}^{p} F_j\right) \supset \sum_{j=1}^{p} f^{-1}(F_j).$$

Montrer que cette inclusion peut être stricte.

Donner une condition suffisante pour qu'il y ait égalité.

Exercice 10 (CCP MP)

Soient f et g deux endomorphismes d'un espace vectoriel E sur $\mathbb R$ ou $\mathbb C$ vérifiant $f\circ g=Id$.

- 1. Montrer que $\ker(g \circ f) = \ker f$ et $\operatorname{Im} (g \circ f) = \operatorname{Im} g$.
- 2. Montrer

$$E = \ker f \oplus \operatorname{Im} g$$

- 3. Dans quel cas peut-on conclure $g = f^{-1}$?
- 4. Calculer $(g \circ f) \circ (g \circ f)$ et caractériser $g \circ f.$

Correction de l'exercice 1 (Questions de cours)

Correction de l'exercice 2

Soient $\lambda, \mu \in \mathbb{R}$ et $\vec{u} = (x, y), \vec{v} = (x', y') \in \mathbb{R}^2$.

$$f(\lambda \vec{u} + \mu \vec{v}) = \lambda f(\vec{u}) + \mu f(\vec{v})$$

De plus $f: \mathbb{R}^2 \to \mathbb{R}^2$ donc f est un endomorphisme de \mathbb{R}^2 .

Pour tout $(x, y) \in \mathbb{R}^2$ et tout $(x', y') \in \mathbb{R}^2$

$$\begin{cases} x' = x + y \\ y' = x - y \end{cases} \Leftrightarrow \begin{cases} x = (x' + y')/2 \\ y = (x' - y')/2 \end{cases}$$

f est donc bijective. Finalement f est un automorphisme de \mathbb{R}^2 et

$$f^{-1}: (x', y') \mapsto \left(\frac{(x'+y')}{2}, \frac{(x'-y')}{2}\right).$$

Correction de l'exercice 3

Soient $\lambda, \mu \in \mathbb{R}$ et $f, g \in \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$.

$$\varphi(\lambda f + \mu g) = \dots = \lambda \varphi(f) + \mu \varphi(g).$$

De plus $\varphi: \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R}) \to \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$ donc φ est un endomorphisme $\mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$.

$$f \in \ker \varphi \Leftrightarrow f'' - 3f' + 2f = 0$$

C'est une équation différentielle linéaire d'ordre 2 à coefficients constants d'équation caractéristique $r^2 - 3r + 2 = 0$ de racines 1 et 2. La solution générale est

$$f(x) = C_1 e^x + C_2 e^{2x}$$

Par suite

$$\ker \varphi = \{C_1 e^x + C_2 e^{2x} | C_1, C_2 \in \mathbb{R}\}.$$

Correction de l'exercice 4

1. Soient $\lambda, \mu \in \mathbb{K}$ et $f, g \in \mathcal{F}(X, E)$.

$$E_a(\lambda f + \mu q) = \dots = \lambda E_a(f) + \mu E_a(q)$$

Par suite E_a est une application linéaire.

2. $f \in \ker E_a \Leftrightarrow f(a) = 0$.

$$\ker E_a = \{ f \in \mathcal{F}(X, E) | f(a) = 0 \}$$

Im $E_a \subset E$ et $\forall \vec{x} \in E$, en considérant $f: X \to E$ la fonction constante égale à \vec{x} , on a $E_a(f) = \vec{x}$. Par suite $\vec{x} \in \text{Im } E_a$ et donc $E \subset \text{Im } E_a$.

Par double inclusion Im $E_a = E$.

Correction de l'exercice 5

Soient $\lambda, \mu \in \mathbb{K}$ et $F, G \in \mathbb{K}(X)$. On peur écrire

$$F = \operatorname{Ent}(F) + \widehat{F}$$
 et $G = \operatorname{Ent}(G) + \widehat{G}$

avec $\deg \widehat{F}, \deg \widehat{G} < 0$. Puisque

$$\lambda F + \mu G = \lambda \text{Ent}(F) + \lambda \widehat{F} + \mu \text{Ent}(G) + \mu \widehat{G}$$

avec $deg(\lambda \hat{F} + \mu \hat{G}) < 0$ on a

$$\operatorname{Ent}(\lambda F + \mu G) = \lambda \operatorname{Ent}(F) + \mu \operatorname{Ent}(G).$$

Ainsi Ent est linéaire.

$$\ker \operatorname{Ent} = \{ F \in \mathbb{K}(X) | \operatorname{deg} F < 0 \}.$$

Correction de l'exercice 6

1. Soit $x \in \ker f \cap \ker g$ on a $(f+g)(x) = f(x) + g(x) = 0_E$. Ainsi

$$\ker f \cap \ker g \subset \ker(f+g)$$
.

2. Soit $y \in \text{Im } (f+g)$. Il existe $x \in E$, $y = (f+g)(x) = f(x) + g(x) \in \text{Im } f + \text{Im } g$. Ainsi

$$\operatorname{Im} (f+g) \subset \operatorname{Im} f + \operatorname{Im} g.$$

- 3. Soit $x \in \ker f$, $f^2(x) = f(f(x)) = f(0_E) = 0_E$ donc $x \in \ker f^2$. Ainsi $\ker f \subset \ker f^2$.
- 4. Soit $y \in \text{Im } f^2$. Il existe $x \in E$, $y = f^2(x) = f(f(x)) = f(\vec{u})$ avec $\vec{u} = f(x)$ donc $y \in \text{Im } f$. Ainsi Im $f^2 \subset \text{Im } f$.

Correction de l'exercice 7

 \Rightarrow

Supposons $f(A) \subset f(B)$.

Soient $\vec{x} \in A + \ker f$. On peut écrire $\vec{x} = \vec{u} + \vec{v}$ avec $\vec{u} \in A$ et $\vec{v} \in \ker f$.

 $f(\vec{x}) = f(\vec{u}) \in f(A) \subset f(B)$ donc il existe $\vec{w} \in B$ tel que $f(\vec{x}) = f(\vec{w})$.

On a alors $\vec{x} = \vec{w} + (\vec{x} - \vec{w})$ avec $\vec{w} \in B$ et $\vec{x} - \vec{w} \in \ker f$.

Ainsi $\vec{x} \in B + \ker f$.

 \leftarrow

Supposons $A + \ker f \subset B + \ker f$.

Soit $\vec{y} \in f(A)$. Il existe $\vec{x} \in A$ tel que $\vec{y} = f(\vec{x})$. Or $\vec{x} \in A \subset A + \ker f \subset B + \ker f$ donc on peut écrire $\vec{x} = \vec{u} + \vec{v}$ avec $\vec{u} \in B$ et $\vec{v} \in \ker f$.

On a alors $\vec{y} = f(\vec{x}) = f(\vec{u}) \in f(B)$.

Correction de l'exercice 8

Les inclusions suivantes sont toujours vraies

$$F \subset h^{-1}(h(F))$$
 et $h(h^{-}(F)) \subset F$

Si $h^{-1}(h(F)) = h(h^{-1}(F))$ alors

$$h^{-1}((h(F)) = F$$
 et $h(h^{-1}(F)) = F$

Les inclusions $h^{-1}(h(F)) \subset F$ et $F \subset h(h^{-1}(F))$ entraı̂nent respectivement $\ker h \subset F$ et $F \subset \operatorname{Im} h$.

Inversement, supposons

$$\ker h \subset F \subset \operatorname{Im} f$$

Pour $x \in h^{-1}(h(F))$, il existe $a \in F$ tel que h(x) = h(a). On a alors $x - a \in \ker h \subset F$ et donc $x = a + (x - a) \in F$. Ainsi

$$h^{-1}(h(F)) \subset F$$
 puis $h^{-1}(h(F)) = F$

Aussi pour $y \in F \subset \text{Im } h$, il existe $a \in E$ tel que y = h(a) et puisque $y \in F, a \in h^{-1}(F)$. Ainsi $F \subset h(h^{-1}(F))$ puis $F = h(h^{-1}(F))$.

Finalement

$$h^{-1}(h(F)) = h(h^{-1}(F)).$$

Correction de l'exercice 9

1. Si $y \in f(\sum_{i=1}^n E_i)$ alors on peut écrire $y = f(x_1 + ... + x_n)$ avec $x_i \in E_i$. On a alors $y = f(x_1) + ... + f(x_n)$ avec $f(x_i) \in f(E_i)$ et ainsi

$$f\left(\sum_{i=1}^{n} E_i\right) \subset \sum_{i=1}^{n} f(E_i).$$

Si $y = f(x_1) + ... + f(x_n)$ avec $x_i \in E_i$. On a alors y = f(x) avec $x = x_1 + ... + x_n \in \sum_{i=1}^n E_i$ donc

$$f\left(\sum_{i=1}^{n} E_i\right) \supset \sum_{i=1}^{n} f(E_i).$$

- 2. Si $f(x_1) + ... + f(x_n) = 0$ avec $x_i \in E_i$ alors $f(x_1 + ... + x_n) = 0$ donc $x_1 + ... + x_n = 0$ car f injective puis $x_1 = ... = x_n = 0$ car les E_i sont en somme directe et enfin $f(x_1) = ... = f(x_n) = 0$. Ainsi les $f(E_i)$ sont en somme directe.
- 3. Soit $x \in \sum_{j=1}^p f^{-1}(F_j)$. On peut écrire $x = x_1 + ... + x_p$ avec $f(x_j) \in F_j$ donc

$$f(x) = f(x_1) + \dots + f(x_p) \in \sum_{j=1}^{p} F_j.$$

Ainsi

$$\sum_{j=1}^{p} f^{-1}(F_j) \subset f^{-1} \left(\sum_{j=1}^{p} F_j \right).$$

On obtient une inclusion stricte en prenant par exemple pour f une projection sur une droite D et en prenant F_1, F_2 deux droites distinctes de D et vérifiant $D \subset F_1 + F_2$.

f=0 ou f=Id sont des conditions suffisantes faciles... Plus finement, supposons chaque F_j inclus dans Im f (et $p \ge 1$). Pour $x \inf -1\left(\sum_{j=1}^p F_j\right)$, on peut écrire $f(x)=y_1+\ldots+y_p$ avec $y_j\in F_j$. Or $F_j\subset \operatorname{Im} f$ donc il existe $x_j\in E$ vérifiant $f(x_j)=y_j$. Evidemment $x_j\inf^{-1}(F_j)$. Considérons alors $x_1'=x-(x_2+\ldots+x_p)$, on a $f(x_1')=y_1$ donc $x_1'\in f^{-1}(F_j)$. Ainsi $f^{-1}(\sum_{j=1}^p F_j)\subset \sum_{j=1}^p f^{-1}(F_j)$ puis l'égalité.

Correction de l'exercice 10

- 1. Evidemment $\ker f \subset \ker(g \circ f)$ et $\operatorname{Im}(g \circ f) \subset \operatorname{Im} g$. Pour $x \in \ker(g \circ f)$, on a f(x) = f(g(f(x))) = f(0) = 0, donc $x \in \ker f$. Pour $y \in \operatorname{Im} g$, il existe $x \in E$ tel que y = g(x) et alors $y = g(f(g(x))) = g(f(y)) \in \operatorname{Im}(g \circ f)$.
- 2. Si $x \in \ker f \cap \operatorname{Im} g$ alors on peut écrire x = g(a) et puisque f(x) = 0, a = f(g(a)) = 0 donc x = 0. Pour $x \in E$, on peut écrire x = (x g(f(x))) + g(f(x)) avec $x g(f(x)) \in \ker f$ et $g(f(x)) \in \operatorname{Im} g$.
- 3. Si f est inversible alors $f \circ g = Id$ entraı̂ne $g = f^{-1}$. Cette condition suffisante est aussi évidemment nécessaire.
- 4. $(g \circ f) \circ (g \circ f) = g \circ (f \circ g) \circ f = g \circ f$ et donc $g \circ f$ est un projecteur.