

OpenCRP4机器人控制器 开发指南

V1.0

烟台塔克电子科技有限公司

版权申明

本手册版权归属塔克创新所有,并保留一切权力。非经(书面形式)同意,任何单位及个人不得擅自摘录或修改本手册部分或全部内容,违者我们将追究其法律责任。

塔克媒体

塔克官网	www.xtark.cn
淘宝店铺	https://shop246676508.taobao.com
塔克哔哩	https://space.bilibili.com/511052131
商务电话	18660035816 (微信同号)
销售邮箱	sales@xtark.cn

塔克淘宝,微信公众号二维码:

更多精品・欢迎关注塔克淘宝店铺

更多资讯・欢迎关注塔克创新微信号

1.目录

1. 产品介绍	5
1.1. 产品概述	5
2. 硬件说明	6
2.1. 板载资源与接口	6
2.2. 电源系统	7
2.3. SWD 调试接口	7
2.4. USB 通信接口	8
2.5. 与树莓派连接	8
2.6. 直流电机接口	8
2.7. 舵机编码器接口	9
2.8. 扩展接口	9
2.9. 其它板载资源	10
3. 开发调试说明	11
3.1. 开发环境 MDK5	11
3.2. SWD 仿真调试	11
3.3. USB 程序下载	14
3.4. 串口调试软件介绍	16

	3.5. 通信协议介绍		18
4.	. 程序例程		19
	4.1. 程序示例说明		
	4.2. 产品程序说明	. 1	20

本手册为塔克创新出品的 OpenCRP4 机器人控制器开发指导手册。

温馨提示,使用 OpenCRP 开发机器人控制程序前,请仔细阅读该手册,以免盲目使用导致控制器烧。

1. 产品介绍

1.1. 产品概述

OpenCRP (Open-source Control Module for ROS on Pi) 为专用于树莓派的开源 ROS 控制模组,可直接安插在树莓派上,通过插针接口可实现对树莓派供电和串口通信,支持树莓派 4B,OpenCRP4 中的 4 代表可以连接两路编码器直流电机。

OpenCRP4 控制器提供原理示意图,具有 SWD 调试接口,可实现 STM32 编程二次 开发,提供板载资源及外设示例代码,方便用户学习使用。

另外还有一款支持 2 路编码器直流电机的 OpenCRP2, 如下图所示。

2. 硬件说明

本章节对 OpenCRP4 硬件进行说明。

2.1. 板载资源与接口

OpenCRP2 控制器具体资源和接口如下图所示。

控制器采用 ST 公司 STM32F103RCT6, ARM Cortex-M3 内核, 72M 主频, 48KRAM, 256KFLASH, 片上资源丰富。

2.2. 电源系统

电源输入接口采用大电流 2P 接线端子,输入电压范围 9~13V,适合 3S 锂电池。电源正负标识明确,具有 3组电源输入输出口,方便用户扩展使用。

供电系统具有电压检测功能,通过 STM32 检测输入电压,可实现简易电量计功能。

2.3. SWD 调试接口

SWD调试接口,控制器硬件接口示意图开源,用户可根据硬件原理图,自行设计运动控制器代码,使用SWD调试接口进行程序下载和调试,支持主流仿真器,可使用杜邦线进行连接。

2.4. USB 通信接口

OpenCRP 具有一路 USB 串口,USB 接口为 USB-TypeC 类型。USB 串口可实现 IPS 程序下载,与上位机串口通信功能。具体电路如下图所示。

2.5. 与树莓派连接

树莓派接口,直接与树莓派 40PIN 接口相连,实现 5V 供电,最大电流 3A。另外连接树莓派串口,考虑到用户扩展树莓派 IIC 外设,将树莓派 IIC 引出到了控制器上,如下图。

2.6. 直流电机接口

板载 4 路直流电机驱动,采用东芝 TB6612 驱动芯片,单路平均电流 1.2A,峰值电流 3.2A。接口为 A,B,C,D 四路。

2.7. 舵机编码器接口

PWM 接口定义如下,定时器通道和 IO 口均标明,可接 4 路编码器或者 8 路舵机。 红框接口为 5V 开关接口,使用板载 5V 电源为 PWM 供电时,需连接跳线帽。考虑到外接大功率舵机,可单独为 PWM 供电,通过红框位置跳线帽断开与板载 5V 连接。

2.8. 扩展接口

OpenCPR4 具有扩展接口 EX,接口定义如下。

接口实际图片如下图所示。

2.9. 其它板载资源

OpenCRP2 还具有 2 路 LED 指示灯, 1 路按键, MPU6050 加速度陀螺仪传感器, 具体连接方式,可参考原理示意图。

3. 开发调试说明

OpenCRP 控制器是一款基于 STM32 的机器人控制器,可以使用 IDE 对控制器进行编程。本小结以 MDK5 为例进行说明,控制器既可以通过标准的 SWD 仿真调试接口调试,又可以通过 USB 串口进行 ISP 程序下载,使用非常方便。

3.1. 开发环境 MDK5

参考示例代码使用 ARM 公司 MDK5 开发,MDK 目前是嵌入式开发最流行的专业开发软件,应用版本为 MDKV5.23,具有代码提示功能和语法动态检测功能。

MDK5 由两部分组成 MDK Core 和 Software Packs。MDK Core 包括编辑器 (uVision IDE with Editor)、编译器(ARM C/C++ Compiler)、包安装器(Pack Installer)、调试跟踪器(uVision Debugger with Trace)。Software Packs 包括 Device(芯片支持),CMSIS(Cortex 微控制器软件接口标准)和 Mdidleware(中间库)三部分,通过包安装器可以不升级 MDK 软件实现对新器件、新驱动、新例程的支持,使用配置更加灵活。

完成 MDK5 安装后,需要再安装 STM32F1 器件支持包,DMK5 软件及 STM32F1 器件支持包见软件工具。

3.2. SWD 仿真调试

OpenCRP可以通过 SWD 下载程序和跟踪调试,支持 J-Link、ST-LINK、ULINK等具有 SWD 功能主流仿真器。具有 3 线 SWD 调试接口,每个引脚有丝印标识,接口定义如下。

专用仿真器连接

为了方便用户使用,塔克创新为 OpenCRP 配套了专用的 J-Link OB 仿真器,仿真下载性能对比 ST-LinkV2 有大幅提升。通过我们专用的接口用户可以进行盲插,不用每次一根一根插拔杜邦线,使用很方便。连接如下图所示,仿真器本店有售,欢迎选购。

通用仿真器杜邦线连接

可通过杜邦线直接连接各种仿真器,默认为 3 线连接 GND、CLK、DIO, VCC3.3V 悬空。常用仿真器及接口定义,如下图所示,可连接控制器如下 SWD 引脚,GND、 VCC、SWDIO、SWCLK。

温馨提示,VCC 引脚请务必注意悬空,不要为 OpenCRP 供电。OpenCRP 上电后,再进行调试,否则会因为交叉供电导致仿真器或控制器烧坏。

下载调试说明

驱动程序安装完毕后,仿真器插入 PC 机,PC 机可进行自动识别和配置,配置完毕用 户即可使用。是否配置完成,用户可查看电脑设备管理器,如下图所示。

仿真器硬件连接完毕,还需要在 MDK 中做相应的软件设置,具体参考下图,选择正确的仿真器后,软件会自动识别,具体参考下图。软件设置正确后,按下载按钮可进行程序下载,按硬件仿真按钮可进行程序跟踪调试。

仿真器硬件连接完毕,还需要在 MDK 中做相应的软件设置,具体参考下图,选择正确的仿真器后,软件会自动识别,具体参考下图。软件设置正确后,按下载按钮可进行程序下载,按硬件仿真按钮可进行程序跟踪调试。

3.3. USB 程序下载

通过控制器 USB 口,可实现控制器程序更新下载。控制器 BOOT1 固定连接到低电平,BOOT0 可通过 BOOT0 按键设置高低电平,默认为低电平,即控制器默认状态下为 FALSH 启动。按住 BOOT0 按键,上电或按复位按键即可进入 ISP 下载模式,可以使用第三方 ISP 下载软件进行 ISP 串口更新程序,例如 RamIsp、flymcu等。下载步骤如下。

步骤一, USB 驱动

安装 USB 转串口驱动,控制器使用 CH340 芯片,驱动程序见资料软件工具。驱动安装完成后,通过 USB Type-C 数据线与 PC 机连接,可听到有 USB 插入提示音。是否连接完成,可查看电脑设备管理器,如下图所示。

步骤二,进入 ISP 模式

按住 BOOTO 按钮后,给控制器上电或者按复位按键,进入 ISP 下载模式。

步骤三,加载 HEX 文件,配置下载项目

通过图示按钮加载固件文件(hex 文件),注意箭头指示配置项,串口号,波特率默认即可,选择"不使用 RTS 和 DTR",注意选择"编程后执行"选项。

步骤四,下载

点击"开始编程"按钮,进行程序下载。下载过程注意红框编程提示信息,下载完毕后信息框会给出提示。下完完毕后,程序即可执行。

3.4. 串口调试软件介绍

为了方便用户进行机器人智能车调试,塔克研发了几款方便使用的软件调试工具。

X-Assistant 软件

X-Assistant Pro X 串口调试助手软件为塔克创新自主开发的一款用于智能车、机器人制作的串口软件,在一般串口调试助手基础上增加控制和协议发送功能,均使用统一的X-Protocol协议。控制功能可用于机器人智能车控制调试,滑块非常适合机械臂舵机控制。协议发送功能,适合控制命令调试和参数调试。

X-PrintfScope 软件

X-PrintfScope 串口示波器,如其名,软件最大亮点是可以通过 C 语言 Printf 函数 实现波形显示功能,使用简单灵活。另外也支持塔克创新通用串口 X-Protocol 通信协议,实现高效率传输。

X-PrintfScope 串口示波器软件具有八个显示通道,最大特点是可通过 C 标准库函数 printf 增加@标识实现数据波形显示,例如 printf("@%d %f",a,b)可实现一个整形一个浮点类型数据波形显示,使用方便灵活。Printf 协议使用字符编码方式,虽然使用方便灵活,但传输效率相对较低,本软件也支持高效的塔克通用 X-Protocol 协议传输方式。

3.5. 通信协议介绍

串口传输是单片机开发,机器人制作常用输出传输手段,为了方便软件工具和各个产品进行通信,塔克规范了一套通信协议 X-Protocol 协议,塔克产品涉及通信问题,均使用该协议。

串口传输一般包括两种传输方式,一种基于编码器数据传输,例如 printf 函数的传输,这种方式简单直观适合文本传输,传输数据效率较低。另一种是基于 16 进制原始数据传输,适合数据传输。基于 16 进制数据传输,需要制定一定的协议,也就是高速收发双方按照什么格式传输。X-SOFT 软件生态制定通用标准的 X-Protocol 传输协议,协议内容如下。

X-SOFT通用串口传输协议: X-Protocol协议(变帧长)

AA 55 0B 01 00 01 00 02 00 03 55

帧头 帧长度 帧号 数据:高位在前,长度可变,自由组合 校验和

帧头	双帧头,抗干扰强
帧长度	根据数据长度设定
帧号	用户根据功能设定,标识帧的唯一性
数据	高位在前,长度可变,内容自由组合8位,16位,32位数据
校验和	前面数据累加和的低8位

4. 程序例程

4.1. 程序示例说明

示例代码工程为 OpenCRP4_Basis_Demo,基于 ST 标准固件库开发,所有示例程序均在 mian 文件下,用户可通过取消注释,测试不同的例程,具体代码讲解和示例展示,请参考视频教程。

- * LED 闪烁,调试串口 Printf 输出例程
- * VIN 输入电压检测例程,简易电量计
- * KEY 按键检测检测例程,软件消抖
- * 直流电机 PWM 速度控制例程
- * 电机 AB 正交编码器例程
- * 舵机控制例程
- * MPU6050 数据采集例程
- * 直流电机 PID 调速例程
- * STM32 与树莓派通信

4.2. 产品程序说明

您购买的产品如果提供源码,请参考产品资料文件夹下源码资料。产品的工程源码随 产品发布。此处仅做提示。

塔克机器人 淘宝店

塔克创新 微信公众号