ESERCIZI 12-II

- 1. Cosa vuol dire che un endomorfismo è diagonalizzabile? Cosa vuol dire che una matrice quadrata è diagonalizzabile? Cosa è una base spettrale per un endomorfismo?
- 2. Le seguenti matrici sono diagonalizzabili?

$$\begin{pmatrix} 3 & 1 \\ 4 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & k \\ 0 & k & 1 \end{pmatrix}, \text{per ogni } k \in \mathbb{R}.$$

In caso di risposta affermativa determinare una base spettrale e una matrice che diagonalizza.

3. Determinare autovalori e autospazi della matrice $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ e dire se A è diagonalizzabile. In caso di risposta affermativa determinare una base spettrale e una matrice che diagonalizza.

4. Sia F_A l'endomorfismo di $\mathbb{R}^3 \to \mathbb{R}^3$ determinato dalla matrice $A = \begin{pmatrix} 1 & 1 & -2 \\ -1 & 0 & 1 \\ 0 & 1 & -1 \end{pmatrix}$.

- (i) Dire se F_A è iniettiva e suriettiva.
- (ii) Determinare gli autovalori e gli autovettori di F_A .
- (iii) La matrice A è diagonalizzabile? In caso di risposta affermativa determinare una base spettrale e una matrice che diagonalizza.