GENCODE V42 reference preparation for proteogenomics data processing and downstream analysis

Yongchao Dou, Bing Zhang, and the reference working group

1. Structure of the ENCODE V42 reference v1.1.1 folder

2. Reference files

Reference files were download from GENCODE and the human release 42 basic and CHR only annotation was selected. Links of reference files used in reference preparation are listed below.

GENCODE V42

https://www.gencodegenes.org/human/release 42.html

Genome sequence: GRCh38 primary assembly

https://ftp.ebi.ac.uk/pub/databases/gencode/Gencode human/release 42/GRCh38.primary a ssembly.genome.fa.gz

Gene annotation: GENCODE V42, basic, CHR only

https://ftp.ebi.ac.uk/pub/databases/gencode/Gencode human/release 42/gencode.v42.basic. annotation.gtf.gz

- 1. It contains the basic gene annotation on the reference chromosomes only
- 2. This is a subset of the corresponding comprehensive annotation, including only those transcripts tagged as 'basic' in every gene

Entrez gene ids mapping

https://ftp.ebi.ac.uk/pub/databases/gencode/Gencode human/release 42/gencode.v42.meta data.EntrezGene.gz

Entrez gene ids mapping

https://ftp.ebi.ac.uk/pub/databases/gencode/Gencode human/release 42/gencode.v42.metadata.EntrezGene.gz

Gene symbol mapping

https://ftp.ebi.ac.uk/pub/databases/gencode/Gencode human/release 42/gencode.v42.metadata.HGNC.gz

RefSeq mapping

https://ftp.ebi.ac.uk/pub/databases/gencode/Gencode human/release 42/gencode.v42.meta data.RefSeq.gz

SwissProt mapping

https://ftp.ebi.ac.uk/pub/databases/gencode/Gencode human/release 42/gencode.v42.metadata.SwissProt.gz

Protein sequence

https://ftp.ebi.ac.uk/pub/databases/gencode/Gencode human/release 42/gencode.v42.pc tr anslations.fa.gz

HGNC gene description

Download on 11/15/2022 from https://www.genenames.org/download/custom/, approved symbols only.

3. Statistics of GENCODE Release 42 Basic, CHR

This annotation includes 62,696 genes and 117,681 transcripts. Statistics of biotypes at gene and transcript levels are shown in Table 1.

Table 1: Statistics of biotypes at gene and transcript levels

idx	Gene	Transcript		
protein_coding	20030	63723		
IncRNA	18879	29132		
processed_pseudogene	10149	10150		
unprocessed_pseudogene	2607	2608		
misc_RNA	2212	2212		
snRNA	1901	1901		
miRNA	1879	1879		
TEC	1054	1056		
transcribed_unprocessed_pseudogene	961	961		
snoRNA	942	942		
transcribed_processed_pseudogene	512	512		
rRNA_pseudogene	497	497		
IG_V_pseudogene	187	187		
transcribed_unitary_pseudogene	153	154		
IG_V_gene	145	145		
TR_V_gene	107	107		
unitary_pseudogene	99	98		
TR_J_gene	79	79		
scaRNA	49	49		
rRNA	47	47		
IG_D_gene	37	37		
TR_V_pseudogene	33	33		
Mt_trna	22	22		
artifact	19	19		
IG_J_gene	18	18		
pseudogene	15	15		
IG_C_gene	14	14		
IG_C_pseudogene	9	9		
ribozyme	8	8		
TR_C_gene	6	6		
sRNA	5	5		
TR_D_gene	4	4		
TR_J_pseudogene	4	4		
IG_J_pseudogene	3	3		
translated_unprocessed_pseudogene	3	3		
Mt_rRNA	2	2		
translated_processed_pseudogene	2	2		
IG_pseudogene	1	1		
scRNA	1	1		
vault_RNA	1	1		
nonsense_mediated_decay	NA	305		
processed_transcript	NA	601		
protein_coding_LoF	NA	71		
retained_intron	NA	58		

4. Representative isoform selection for protein coding genes

Swiss-Prot and MANE Select are two major efforts that aim to select one high-quality representative transcript for each protein-coding gene. Leveraging these two resources, we developed a workflow (Figure 1) and selected one representative primary isoform for each protein coding gene (see section 6. Comprehensive mapping table). Moreover, 28 genes are associated with multiple Swiss-Prot proteins, and all non-primary proteins and their longest transcripts were designated as secondary isoforms for these genes. The MANE Plus Clinical isoforms were added as supplements of MANE Selects for clinical variant reporting. If a MANE Plus Clinical and a secondary isoform from Swiss-Prot correspond to the same proteins but different transcripts of a gene, the MANE Plus Clinical selected isoform was used as the secondary selected isoform.

Figure 1: Workflow for the selection of representative isoforms for each protein coding gene.

5. Representative isoform selection for non-coding genes

Longest isoform was selected as primary isoform for noncoding genes. There are 5 non-coding genes with multiple isoforms with the same length which are ELOA3CP, LINC02277, ENSG00000256916, ENSG00000284719, and ENSG00000291232. These isoforms were alphabetically ordered to select primary isoform for each gene.

6. Unique gene name assignment for display

To facilitate human understanding of the Ensembl gene IDs, we used corresponding HUGO gene symbols as display names. When multiple Ensembl gene IDs are mapped to the same gene symbol, each ID was assigned a unique gene name for display using the following method. First, all primary selected isoforms were ordered by presence of a SwissProt ID that mapped to the

Ensembl protein ID, transcript ID listed in the MANE plus Clinical annotation, longer CCDS length, longer transcript length, and finally, alphabetic order of the Ensembl gene ID. The first Ensembl gene ID was assigned the gene symbol (e.g., MATR3 for ENSG0000015479) and all following had the Ensembl gene ID appended (e.g., MATR3_ENSG00000280987 for ENSG00000280987). For PAY_Y genes (e.g., ENSG00000002586_PAR_Y), a tag "_PAR_Y" was added to the end of gene names (e.g., CD99_PAR_Y).

7. Comprehensive mapping table

A comprehensive mapping table was generated for use's convenience. The table is based on selected gene annotation and matched mapping files. Details of each column are shown here.

- Gene_id: ensembl gene id from GENCODE V42 Basic (CHR)
- 2. Transcript id: ensembl transcript id from GENCODE V42 Basic (CHR)
- 3. Protein id: ensembl protein id from GENCODE V42 Basic (CHR)
- Gene_name: gene name from GENCODE V42 Basic (CHR)
- 5. Unique gene name for display: curated unique gene name for display
- 6. Gene_type: biotype of gene from GENCODE V42 Basic (CHR)
- 7. Transcript type: biotype of transcript from GENCODE V42 Basic (CHR)
- 8. CCDS id: CCDS id from GENCODE V42 Basic (CHR)
- 9. MANE select: MANE selected transcript from GENCODE V42 Basic (CHR)
- 10. MANE Plus Clinical: MANE Plus Clinical transcript from GENCODE V42 Basic (CHR)
- 11. EntrezGene: matched gene Entrez gene ID from Entrez gene ids mapping table
- 12. RefSeq RNA: matched RefSeq transcript ID from RefSeq mapping table
- 13. RefSeq protein: matched RefSeq protein ID from RefSeq mapping table
- 14. SwissProt: matched SwissProt protein ID from SwissProt mapping table
- 15. Transcript length: length of transcript
- 16. CCDS length: length of CCDS
- 17. Primary select: primary representative isoforms for each gene
- 18. Secondary select: secondary representative isoforms for each gene
- 19. Gene_id_versioned: ensembl gene id with version number
- 20. Transcript id versioned: ensembl transcript id with version number
- 21. Protein_id_versioned: ensembl protein id with version number
- 22. Gene description: gene description from HGNC

8. Matched Gistic2 reference

A rg table of transcripts, except transcripts from chrM, were extracted from GENCODE V42 Basic (CHR) annotation (Figure 2). Hg38 cytoBand were downloaded from UCSC. Then rg and cytoBand tables were reformat following Gistic2 reference format by inhouse Matlab script.

refseq	gene	symb	locus_id	chr	strand	start	end	cds_start	cds_end	status	chrn
ENST00000456328	ENSG00000290825	ENSG00000290825	62187	chr1	1	11869	14409	14409	14409	reviewed	1
ENST00000450305	ENSG00000223972	ENSG00000223972	24985	chr1	1	12010	13670	13670	13670	reviewed	1
ENST00000488147	ENSG00000227232	ENSG00000227232	27224	chr1	0	14404	29570	29570	29570	reviewed	1
ENST00000619216	ENSG00000278267	ENSG00000278267	54568	chr1	0	17369	17436	17436	17436	reviewed	1
ENST00000473358	ENSG00000243485	ENSG00000243485	36700	chr1	1	29554	31097	31097	31097	reviewed	1
ENST00000469289	ENSG00000243485	ENSG00000243485	36700	chr1	1	30267	31109	31109	31109	reviewed	1
ENST00000607096	ENSG00000284332	ENSG00000284332	57280	chr1	1	30366	30503	30503	30503	reviewed	1
ENST00000417324	ENSG00000237613	ENSG00000237613	34243	chr1	0	34554	36081	36081	36081	reviewed	1
ENST00000606857	ENSG00000268020	ENSG00000268020	49550	chr1	1	52473	53312	53312	53312	reviewed	1
ENST00000642116	ENSG00000290826	ENSG00000290826	62188	chr1	1	57598	64116	64116	64116	reviewed	1
ENST00000492842	ENSG00000240361	ENSG00000240361	35434	chr1	1	62949	63887	63887	63887	reviewed	1
ENST00000641515	ENSG00000186092	ENSG00000186092	16146	chr1	1	65419	71585	65565	70005	reviewed	1
ENST00000466430	ENSG00000238009	ENSG00000238009	34517	chr1	0	89295	120932	120932	120932	reviewed	1
ENST00000495576	ENSG00000239945	ENSG00000239945	35267	chr1	0	89551	91105	91105	91105	reviewed	1
ENST00000610542	ENSG00000238009	ENSG00000238009	34517	chr1	0	120725	133723	133723	133723	reviewed	1
ENST00000442987	ENSG00000233750	ENSG00000233750	31627	chr1	1	131025	134836	134836	134836	reviewed	1
ENST00000494149	ENSG00000268903	ENSG00000268903	49829	chr1	0	135141	135895	135895	135895	reviewed	1
ENST00000595919	ENSG00000269981	ENSG00000269981	50199	chr1	0	137682	137965	137965	137965	reviewed	1
ENST00000493797	ENSG00000239906	ENSG00000239906	35248	chr1	0	139790	140339	140339	140339	reviewed	1
ENST00000484859	ENSG00000241860	ENSG00000241860	36043	chr1	0	141474	149707	149707	149707	reviewed	1

Figure 2: rg table for all transcripts.

9. Matched protein database

9.1 Redundant protein sequence removal

Matched protein database, gencode.v42.pc_translations.fa, was download from GENCODE. Only proteins from **coding transcripts** in GENCODE V42 Basic (CHR) annotation were retained (63,723 proteins) and others were discarded (47,330 proteins). To remove redundant protein sequences, we developed a transcript guided workflow to pick representable protein IDs for proteins with the same sequences (Figure 3). The coding transcripts were grouped into 50,827 transcript groups with the same protein sequences. If a transcript group has only one transcript, the transcript is selected (43,419). If a transcript group has multiple transcripts, all transcripts were ordered by presence of primary selection, secondary selection, Swissprot mapped, MANE selected, longest transcript and alphabetic order of transcript IDs. If multiple transcripts passed a criterion, the longest transcript will be selected. Then only proteins encoded from selected transcripts were kept.

Figure 3: Transcript guided redundant protein sequence removal.

9.2 Evaluation of contaminants

We evaluated three protein contaminant databases which are GPMDB_cRAp (118), MaxQuant (246), and contaminants for immunopeptidomic from Karl (642), respectively.

The MaxQuant contaminant database has 246 unique IDs and 245 unique seguences. Q8N1N4-2 was removed as it has the same sequence with Q7RTT2. Then we removed 42 contaminant proteins which with the same sequences with regular proteins. There are 203 proteins remained in MaxQuant database after filtering. The GPMDB cRAp contaminant database has 118 unique IDs and 116 unique protein sequences. PODUB6|AMY1A HUMAN, PODTE8|AMY1C HUMAN, PODTE7|AMY1B HUMAN and have same protein sequence the P0DUB6|AMY1A HUMAN was kept. Then we removed 67 contaminant proteins which with the same sequences with regular proteins. The filtered GPMDB cRAp database has 49 protein sequences remained. No proteins were filter out from Karl's database based on above method. While the overlap is still low between the three contaminant databases (Figure 4). Then we generated a combined contaminant database with union protein sequences (817) from the three filtered contaminant databases.

4 common proteins:

P00761|TRYP_PIG Trypsin P02769|ALBU_BOVIN Albumin P0C1U8|SSPA_STAAU Glutamyl endopeptidase P00766|CTRA_BOVIN Chymotrypsinogen A

Combined contaminant sequences: 817

Figure 4: Protein contaminant database comparisons.

The headers of regular proteins were format as:

> protein_ID|transcript_ID|gene_ID|gene_symbol gene_description.

ENSP00000510254 of KRAS is shown here as an example:

>ENSP00000510254|ENST00000692768|ENSG00000133703|KRAS KRAS proto-oncogene, GTPase

The headers of contaminants for immunopeptidomic from Karl is not changed. While the headers of GPMDB_cRAp, MaxQuant, and combined contaminant proteins were format as:

>Cont|header from contaminant database

P01966 from MaxQuant contaminants and P00761 from GPMDB_cRAp are shown here as examples:

>Cont | P01966 SWISS-PROT: P01966 (Bos taurus) Hemoglobin subunit alpha

>Cont|sp|P00761|TRYP PIG Trypsin OS=Sus scrofa OX=9823 PE=1 SV=1

9.3 Protein selection mapping table

A mapping table of redundant protein sequence removal was generated for use's convenience. Many columns are the same with isoform selection table and only the protein selection part is unique. Details of each column are shown here.

- 1. Gene id: ensembl gene id from GENCODE V42 Basic (CHR)
- 2. Transcript id: ensembl transcript id from GENCODE V42 Basic (CHR)

- 3. Protein id: ensembl protein id from GENCODE V42 Basic (CHR)
- 4. Gene_name: gene name from GENCODE V42 Basic (CHR)
- 5. Unique_gene_name_for_display: curated unique gene name for display
- 6. Gene type: biotype of gene from GENCODE V42 Basic (CHR)
- 7. Transcript type: biotype of transcript from GENCODE V42 Basic (CHR)
- 8. CCDS id: CCDS id from GENCODE V42 Basic (CHR)
- 9. MANE select: MANE selected transcript from GENCODE V42 Basic (CHR)
- 10. MANE Plus Clinical: MANE Plus Clinical transcript from GENCODE V42 Basic (CHR)
- 11. EntrezGene: matched gene Entrez gene ID from Entrez gene ids mapping table
- 12. RefSeg RNA: matched RefSeg transcript ID from RefSeg mapping table
- 13. RefSeq protein: matched RefSeq protein ID from RefSeq mapping table
- 14. SwissProt: matched SwissProt protein ID from SwissProt mapping table
- 15. Transcript length: length of transcript
- 16. CCDS length: length of CCDS
- 17. Primary select: primary representative isoforms for each gene
- 18. Secondary_select: secondary representative isoforms for each gene
- 19. Gene id versioned: ensembl gene id with version number
- 20. Transcript_id_versioned: ensembl transcript id with version number
- 21. Protein id versioned: ensembl protein id with version number
- 22. Protein_group_id: Unique protein sequences were alphabetically ordered, and a unique number was assigned to each protein sequence
- 23. Number_of_proteins: The number of proteins in a protein group
- 24. Protein selection: Selected proteins for each protein group
- 25. Protien sequence: Protein sequences of each protein ID
- 26. Gene description: gene description from HGNC

9.4 Proteins from IG/TR/NMD/LOF transcripts

In GENCODE V42 Basic (CHR) annotation, there are 705 proteins from transcripts labeled as IG_C/D/J/V/_gene (IG), TR_C/J/V/_gene, nonsense_mediated_decay (NMD), and protein_coding_LoF (LOF). There are 674 proteins retained after removing redundant sequences and sequences the same regular proteins. The filtered proteins can be appended to the regular protein database as needed.