Homework 10 (Written Section)

- 1. (For review; see the next problem.) Consider the regression model $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{e}$, where the *n* errors in the error vector \mathbf{e} are independent and identically distributed.
 - (a) Derive the estimate $\hat{\beta} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$ found by minimizing the residual sum of squares.
 - (b) Show that $\hat{\beta}$ is unbiased for the parameter vector $\boldsymbol{\beta}$.
 - (c) Calculate the variance matrix of $\hat{\beta}$.
- 2. Consider the model $Y_t = \beta_0 + \beta_1 x_t + e_t$, where $e_t = \rho e_{t-1} + \nu_t$ and $\nu_t \sim \text{iid } N(0, \sigma_{\nu}^2)$.
 - (a) Use the log-likelihood function given on page 312 to show (using matrix notation) that

$$\hat{eta}_{GLS} = (\mathbf{X}' \Sigma^{-1} \mathbf{X})^{-1} \mathbf{X}' \Sigma^{-1} \mathbf{Y}$$

- (b) Explain why the estimate $\hat{\beta}_{GLS}$ is not defined when $\rho = 1$. Describe the resulting covariance matrix of the errors Σ .
- (c) Show that for $\rho < 1$, $Corr(e_t, e_{t-3}) = \rho^3$.
- (d) Show that $\hat{\beta}_{GLS}$ is unbiased for β .
- (e) Calculate the variance matrix of $\hat{\beta}_{GLS}$.
- (f) How are the answers to 1 (b) and 1(c) similar to or different from the answers to 2(d) and 2(e) above?
- 3. Question 3, page 329.