Appunti Elettrotecnica

1 Lezione del 25-09-24

1.1 Introduzione

Il corso di elettrotecnica riguarda lo studio dei circuiti elettrici e dei macchinari elettrici.

1.1.1 Analisi dei circuiti elettrici

Le leggi di Maxwell vanno a descrivere come si evolvono, nel tempo e nello spazio, i campi elettrici e magnetici. Purtroppo, le equazioni di Maxwell sono equazioni differenziali e legate fra di loro, ergo si possono spesso avere solo soluzioni numeriche. Esistono però casì particolari in cui si possono fare semplificazioni considerevoli.

Un **circuito elettrico** è formato da fili conduttori e **componenti circuitali**. All'interno di un circuito si va a descrivere un'onda elettrica:

$$\psi(s,t)$$

rappresentata come una funzione di spazio e tempo. Poniamo ad esempio la funzione, sulla sola posizione x:

$$\psi(x,t) = y \sin\left(\frac{2\pi}{\lambda}x - \frac{2\pi}{T}t\right)$$

Questa funzione ha comunque due variabili: la posizione x e il tempo t. Immaginiamo di prendere un punto x_0 sul circuito elettrico:

$$\psi(t) = y \sin\left(\frac{2\pi}{\lambda}x_0 - \frac{2\pi}{T}t\right)$$

Con $x_0 = 0$, annulliamo il primo termine. A questo punto abbiamo ottenuto una funzione in una sola variabile:

$$\psi(x_0, t) = y \sin\left(-\frac{2\pi}{T}t\right)$$

ovvero una sinusoide invertita che oscilla fra un massimo di y e un minimo di -y.

Questo significa che, mettendoci sul punto $x_0 = 0$ del circuito elettrico, notiamo che il valore dell'onda elettrica varia nel tempo seguendo questa funzione sinousidale.

Possiamo fare il processo invrso: fissiamo il tempo t, e vediamo come varia l'onda elettrica su diverse posizioni x nel circuito. Abbiamo, simbolicamente:

$$\psi(x) = y \sin\left(\frac{2\pi}{\lambda}x - \frac{2\pi}{T}t_0\right)$$

da cui ricaviamo l'equazione in una sola variabile *t*:

$$\psi(x) = y \sin\left(\frac{2\pi}{\lambda}x\right)$$

ovvero una sinusoide che, come prima, oscilla fra un massimo di y e un minimo di -y. Si riporta un grafico:

Questo significa che, all'istante $t_0=0$ notiamo che il valore dell'onda elettrica varia sulla lunghezza del circuito seguendo ancora questa funzione sinousidale.

Possiamo provare a calcolare lunghezza d'onda e periodo di questa oscillazione: visto che il periodo del seno è 2π , abbiamo che nello spazio la lunghezza d'onda è λ e nel tempo il periodo è T.

Proviamo a calcolare λ : sappiamo che la lunghezza d'onda equivale alla velocità di propagazione sulla frequenza dell'oscillazione, ovvero:

$$\lambda = \frac{v}{f}$$

Posti i valori $300 \cdot 10^6 \text{ m/s per } v$ e 50 Hz per f (la frequenza della rete elettrica), abbiamo:

$$\lambda = \frac{3.00 \cdot 10^6 \text{ m/s}}{50 \text{ Hz}} = 6000 \text{ km}$$

Questa lunghezza d'onda diventa rilevante in trasmissioni elettriche su larga scala. Possiamo fare considerazioni diverse se prendiamo in esempio le comunicazioni radio: lì si parla di frequenze $f>>50\,\mathrm{Hz}$, nell'ordine dei megahertz o gigahertz.

L'elevata velocità della corrente ci permette di fare un'importante approssimazione e considerare **circuiti a parametri concetrati**. Quest'ipotesi, in inglese *lumped element model*, ci permette di ignorare l'estensione fisica del circuito, e quindi le variazioni delle funzioni d'onda sulla variabille spazio s, concentradosi sulla variabile tempo t.

1.2 Grandezze

Si usano le seguenti grandezze:

1.2.1 Intensità di corrente

1.1: Corrente elettrica

Si indica con *I* la corrente elettrica, misurata in Ampere [A], e definita come la variazione di carica:

$$I = \frac{dq}{dt}$$

Si prende come positivo il verso in cui si muovono i portatori di carica positive, anche se sappiamo nella stragrande maggioranza dei casi i portatori di carica essere negativi, e quindi il movimento vero e proprio degli elettroni in direzione opposta.

Notiamo che se un segmento di circuito da A a B si ha una corrente I_{AB} , vale:

$$I_{AB} = -I_{BA}$$

1.2.2 Differenza di potenziale

1.2: Differenza di potenziale

Si indica con V la differenza di potenziale o *tensione*, misurata in Volt [V], e definita come il lavoro necessario a spostare una carica elementare positiva da un punto A ad un punto B sulla carica:

$$V_{AB}(t) = \frac{L_{AB}(t)}{q(t)}$$

Il segno del potenziale è definito come *positivo* quando si deve vincere il campo magnetico per spingere la carica, ergo il campo elettrico svolge lavoro *negativo* sulla carica. Come prima, su segmenti di circuito da A a B vale:

$$V_{AB} = -V_{BA}$$

1.2.3 Nota sul dipolo elettrico

I componenti circuitali, presi a sé, vengono detti **dipoli elettrici**, dal fatto che hanno 2 poli. Di un dipolo elettrico si può misurare la differenza di potenziale ai capi e la corrente che vi scorre attraverso.

Quando si parla di tensione, o si parla di differenze di potenziale, o si assume un riferimento (lo zero del potenziale). Non possiamo sapere a priori se il potenziale al capo di un dipolo è maggiore del potenziale all'altro capo: bisogna prima scegliere una direzione e poi vedere se il segno ricavato è concorde o meno con la nostra scelta.

Lo stesso vale per la corrente. I riferimenti concordi al verso della corrente si dicono **associati**, quelli discordi si dicono **non associati**.

1.2.4 Potenza elettrica

1.3: Potenza elettrica

Si indica con P la potenza elettrica, misurata in Watt [W] e definita come il prodotto:

$$P = IV$$

fra corrente e tensione.

Anche la potenza ha un segno, che in questo caso si riferisce a potenza *erogata* o *dissipata*. La potenza calcolata sui riferimenti associati positiva è dissipata, quella negativa è erogata. Viceversa, la potenza calcolata sui riferimenti non associati positiva è erogata, quella negativa è dissipata.

1.2.5 Energia

1.4: Energia

Si indica con W (non Watt!) l'energia, misurata in Joule [J], o in Kilowatt/ora (KW/h), e definita come l'integrale sul tempo della potenza:

$$W = \int_{-\infty}^{t} P \, dt$$

1.3 Leggi di Kirchoff

Iniziamo col dare dei nomi a particolari punti del circuito elettrico: i punti di incontro di più fili prendono il nome di **nodi**, e i fili che collegano i dipoli ai nodi prendono il nome di **rami**. Da questo abbiamo che nei nodi si incontrano 3 o più rami.

Da qui possiamo definire la legge:

1.1: Prima legge di Kirchoff

La somma algebrica delle correnti dei rami tagliati da una linea chiusa è uguale a 0. In particolare, la somma algebrica delle correnti entranti e uscenti da un nodo è uguale a 0.

Definiamo quindi il concetto di **maglia**: una maglia è un percorso chiuso di nodi e rami, ovvero un sottoinsieme di rami tali per cui spostandosi da un nodo all'altro si percorre ogni ramo una sola volta. Sulle maglie si ha:

1.2: Seconda legge di Kirchoff

La somma algebrica delle cadute di potenziale lungo una maglia è uguale a 0.

2 Lezione del 26-09-24

2.1 Dipolo elettrico

Abbiamo introdotto i componenti circuitali come **dipoli elettrici**. In particolare, diciamo che un dipolo elettrico è un componente, con una certa differenza di potenziale V_{AB} ai suoi capi e una corrente $i_{AB}(t)$ che vi scorre all'interno, tale per cui si può definire una funzione del tipo:

$$V_{AB} = f(i_{AB}(t))$$

Possiamo individuare alcune caratteristiche importanti dei dipoli:

- Linearità: un dipolo si dice lineare se la funzione che lega voltaggio e corrente è lineare. Tutti i dipoli che studieremo sono lineari (resistenze, capacitori, ecc...). Esistono però svariati dipoli che hanno risposte non lineari ai voltaggi/correnti a cui vengono sottoposti (diodi (risposte diverse a direzioni diverse della corrente), amplificatori operazionali, ecc...).
- **Tempo invarianza:** un dipolo si dice tempo invariante quando le sue caratteristiche non variano nel tempo.

- **Memoria:** un dipolo si dice dotato di memoria quando i suoi valori di corrente e tensione attuali dipendono da valori di corrente e tensioni ad un'istante *t* precedente. I dipoli dotati di memoria presentano solitamente *cicli di isteresi*.
- Passività/attività: si dice passivo un dipolo che dissipa potenza, e attivo un dipolo
 che la eroga. Più propriamente, si ha che un dipolo e passivo quando l'energia su
 di esso, presa un riferimento associato, è ≥ 0.

2.2 Resistori

Un resistore è un componente circuitale caratterizzato dalla legge di Ohm ($J = \sigma E$), e quindi formato da un materiale *ohmico* che ha risposta lineare in densità di corrente alle variazioni del campo. Si indica come:

2.1: Prima legge di Ohm

Il voltaggio è legato alla corrente, in un resistore, secondo la relazione:

$$V_R(t) = R i_R(t)$$

dove R prende il nome di **resistenza**, misurata in Ohm $[\Omega]$, definita come:

$$R = \frac{V}{i}$$

2.2.1 Resistenza e resistività

Conosciamo la legge di Ohm sui materiali ohmici riportata prima. Da questa legge si ricava:

2.2: Seconda legge di Ohm

La resistenza di un filo di lunghezza l e sezione s è data da:

$$R = \rho \frac{l}{s}$$

dove ρ prende il nome di **resistività**, misurata in Ohm per metro $[\Omega \cdot m]$.

Questo significa che la resistenza cresce con il crescere della lunghezza, e diminuisce con il crescere della sezione.

In verità questa non sono le uniche caratteristiche che influenzano la resistenza: un apporto significativo è dato anche dalla **temperatura**, alla quale la resistenza ha proporzionalità quasi lineare, ma che noi ignoreremo.

2.2.2 Conduttanza e conducibilità

Conviene definire altre due unità di misura: l'inverso della resistenza, detta **conduttanza**, che si misura in Siemens $[\Omega^{-1} = S]$, o in **mho** $[\mho = \Omega^{-1}]$:

$$G = \frac{1}{R}$$

e l'inverso della resistività, detta **conducibilità**, che si misura in $[\Omega^{-1} \cdot m^{-1}]$:

$$\sigma = \frac{1}{\rho}$$

I resistori sono inoltre:

- Tempo invarianti (a patto di trascurare la temperatura);
- Senza memoria;
- Passivi (dissipano potenza per effetto Joule). Ciò si può dimostrare calcolando la potenza dalla prima legge di Ohm:

$$p(t) = v_{AB}(t) \cdot i_{AB}(t) = R i_{AB}^{2}(t) \ge 0$$

e calcolando l'energia come integrale:

$$w(t) = \int_{-\infty}^{t} p(t)dt \Rightarrow w(t) > 0$$

2.2.3 Circuiti aperti/chiusi

Le resistenza, sopratutto nei loro casi limite, aiutano a modellizzare varie parti di un circuito:

• Cortocircuito: indicato da una resistenza nulla, ergo:

$$V_{AB}(t) = 0 \Leftrightarrow R = 0$$

Modellizza il filo ideale, ergo ciò che per noi è un ramo.

• Circuito aperto: indicato da una corrente nulla, ergo:

$$i_{AB} = 0 \Leftrightarrow R = +\infty$$

Modellizza interruzioni nel circuito: si può dimostrare che la corrente attraverso un'interruzione in un circuito è nulla sfruttando la prima legge di Kirchoff: una linea chiusa che comprende il nodo finale di un'interruzione avrà un ramo entrante e 0 uscenti, ovvero corrente entrante nulla.

2.2.4 Resistenze in serie

Poniamo di avere una configurazione di resistenze del tipo:

Vogliamo calcolare una resistenza R_{eq} che valga quando la resistenza cumulativa di tutte e n le resistenze. Abbiamo allora che la corrente lungo ogni resistenza i(t) è costante, mentre ogni resistenza contribuisce al potenziale V_{AB} con una certa caduta di potenziale $V_1(t), V_2(t), ..., V_n(T)$. Si applica quindi la prima legge di Ohm:

$$V_{AB} = V_1 t + V_2 t + ... + V_n t = R_1 \cdot i(t) + R_2 \cdot i(t) + ... + R_n \cdot i(t) = i(t) \cdot (R_1 + R_2 + ... + R_n)$$
quindi, da $V_{AB} = i(t) \ R_{eq}$ si ha:

2.3: Resistenze in serie

$$R_{eq} = R_1 + R_2 + \dots + R_n$$

2.2.5 Resistenze in parallelo

Poniamo di avere le resistenze in parallelo invece che in serie:

Vogliamo ancora calcolare una resistenza R_{eq} che valga quando la resistenza cumulativa di tutte e n le resistenze. Qui abbiamo che la differenza di potenziale lungo ogni resistenza V(t) costante. Si applica ancora la prima legge di Ohm:

$$i = i_1(t) + i_2(t) + \dots + i_n(t) = \frac{V_{AB}(t)}{R_1} + \frac{V_{AB}(t)}{R_2} + \dots + \frac{V_{AB}(t)}{R_n}$$

conviene raccogliere e passare alle conduttanze:

$$G_{eq} = V_{AB}(t)(G_1 + G_2 + ... + G_n) = G_{eq} \cdot V_{AB}(t)$$

Ora, se $G = \frac{1}{R}$:

$$R_{eq} = G_{eq}^{-1} = \left(\frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n}\right)^{-1}$$

quindi, si ha:

2.4: Resistenze in parallelo

$$R_{eq} = \left(\frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n}\right)^{-1}$$

3 Lezione del 27-09-24

3.0.1 Resistenza e cortocircuito in parallelo

Poniamo di avere la configurazione:

Dove un resistore è in parallelo ad un corto circuito. Intuitivamente, tutta la corrente passerà dal cortocircuito, e non dalla resistenza. Possiamo modellizzare questo fatto in due modi:

• Attraverso la formula per le resistenze in parallelo, avremo che:

$$R_{eq} = \left(\frac{1}{R_1} + \frac{1}{R_2}\right)^{-1} = \frac{R_1 R_2}{R_1 + R_2}, \quad R_1 = 0 \Rightarrow R_{eq} = \frac{0}{R_2} = 0$$

ergo resistenza nulla.

La prima trasformazione è necessaria in quanto rimuove i vincoli sul dominio di R_1 e R_2 (che altrimenti non potrebbero essere 0).

• Notiamo che A e B sono effettivamente allo stesso potenziale, ergo abbiamo differenza di potenziale $V_{AB}=0$ ai capi della resistenza. Applicando quindi la prima legge di Ohm $V_{AB}=i(t)R$ si ha i(t)=0, cioè corrente costante nulla sulla resistenza.

3.1 Altre configurazioni di resistenze

Esistono altri modi di configurare le resistenze, che permettono di studiare circuiti su cui i metodi studiati finora non funzionano.

3.1.1 Resistenze a triangolo

Nelle resistenze a triangolo, una singola maglia di 3 nodi forma un triangolo con i lati 3 resistenze:

3.1.2 Resistenze a stella

Nelle resistenze a stella, più resistenze vengono collegate, da un'estremo, ad un singolo nodo centrale:

Si possono trasformare resistenze a triangolo in resistenze a stella aggiungendo un nodo centrale O e collegandovi i 3 nodi già esistenti attraverso le resistenze interne:

3.1: Resistenze da stella a triangolo

$$R_1 = \frac{R_{12}R_{13}}{R_{12} + R_{13} + R_{23}}$$

$$R_2 = \frac{R_{12}R_{23}}{R_{12} + R_{13} + R_{23}}$$

$$R_3 = \frac{R_{22}R_{13}}{R_{12} + R_{13} + R_{23}}$$

Allo stesso modo, si possono trasformare resistenze a stella in resistenze a triangolo unendo i nodi fra di loro attraverso le resistenze esterne:

3.2: Resistenze da triangolo a stella

$$R_{12} = \frac{R_1 R_2 + R_1 R_3 + R_2 R_3}{R_3}$$

$$R_{13} = \frac{R_1 R_2 + R_1 R_3 + R_2 R_3}{R_2}$$

$$R_{22} = \frac{R_1 R_2 + R_1 R_3 + R_2 R_3}{R_1}$$

3.2 Algoritmo per la resistenza equivalente

A questo punto, si possono semplificare circuiti di resistori arbitrari applicando l'algoritmo:

Algoritmo 1 Calcolo della resistenza equivalente

while ci sono > 1 resistenze do

Semplificare le resistenze in serie

Semplificare le resistenze in parallelo

Se non hai semplificato niente, trasforma un triangolo in stella o viceversa.

end while

La resistenza equivalente è a volte detta anche *resistenza vista*. Questo perchè l'intero circuito si comporterà, per una qualsiasi rete esterna, come un singolo resistore di resistenza R_{eq} , ovvero avrà la stessa **risposta** di un singolo resistore di resistenza R_{eq} . Analiticamente, questo significa che la funzione f in v(t)=f(i(t)) (o la sua inversa) sono uguali per i due circuiti.