

Disponibilidade e Robustez a Falhas de Redes e Serviços

Modelação e Desempenho de Redes e Serviços Prof. Amaro de Sousa (asou@ua.pt) DETI-UA, 2021/2022

Noção de disponibilidade

- A disponibilidade de um elemento é a probabilidade de o elemento estar operacional em qualquer instante de tempo.
- Para um dado elemento i, seja:
 - MTBF_i (Mean Time Between Failures): tempo médio entre falhas do elemento i
 - MTTR; (Mean Time To Repair): tempo médio de reparação do elemento i
- então, a disponibilidade a_i do elemento i é dada por:

$$a_i = \frac{MTBF_i}{MTBF_i + MTTR_i}$$

- Exemplos:
 - se uma ligação falha em média ao fim de 1 ano ($MTBF = 365.25 \times 24 = 8766$ horas) e demora em média 2 dias a ser reparada e voltar a estar operacional ($MTTR = 2 \times 24 = 48$ horas), então a sua disponibilidade é 0.99455 (= 99.455%);
 - se um router falha em média ao fim de 90 dias ($MTBF = 90 \times 24 = 2160$ horas) e demora em média 3 horas a ser reparado (ou substituído) e reconfigurado para ficar operacional (MTTR = 3 horas), então a sua disponibilidade é 0.99862 (= 99.862%).

Noção de disponibilidade

 A medição da disponibilidade de um elemento é definida para um determinado intervalo de tempo

Disponibilidade	Downtime por ano	Downtime por mês
90% (um nove)	36.53 dias	73.05 horas
99% (dois noves)	3.65 dias	7.31 horas
99.9% (três noves)	8.77 horas	43.83 minutos
99.99% (quarto noves)	52.6 minutos	4.38 minutos
99.999% (cinco noves)	5.26 minutos	26.3 segundos
99.9999% (seis noves)	31.56 segundos	2.63 segundos

Downtime: tempo total em que o elemento não está disponível

Disponibilidade de um sistema composto por múltiplos elementos

- A disponibilidade de sistema composto por múltiplos elementos é calculada modelando o sistema como uma interligação de elementos em série ou em paralelo.
- As regras para decidir se os elementos devem ser colocados em série ou em paralelo são:
 - Um conjunto de elementos é colocado em série se a falha de um elemento fizer com que o sistema falhe:

 Um conjunto de elementos é colocado em paralelo se o sistema falha apenas quando todos os elementos falham simultaneamente:

Disponibilidade de um sistema com os elementos em série

- A disponibilidade *A* do sistema é a probabilidade de todos os elementos estarem disponíveis (i.e., a funcionar).
- Sabendo a disponibilidade a_i de cada elemento i (e considerando que as falhas entre diferentes elementos são estatisticamente independentes), a disponibilidade do sistema é dada pelo produto das disponibilidades de todos os elementos:

$$A = a_1 \times a_2 \times \cdots \times a_n$$

Propriedade:

 A disponibilidade do sistema é menor (i.e., pior) ou igual do que a disponibilidade do elemento menos disponível

Exemplo:

Um sistema com 3 elementos em série (com disponibilidade de 99.9% cada) tem uma disponibilidade de 99.7%

Disponibilidade de um sistema com os elementos em paralelo

- A disponibilidade A do sistema é a probabilidade de pelo menos um elemento estar disponível (i.e., a funcionar).
- Sabendo a disponibilidade a_i de cada elemento i (e considerando que as falhas entre os diferentes elementos são estatisticamente independentes), a disponibilidade do sistema é dada por 1 (a probabilidade de todos os elementos estarem indisponíveis):

$$A = 1 - [(1 - a_1) \times (1 - a_2) \times \dots \times (1 - a_n)]$$

- Propriedade:
 - A disponibilidade do sistema é maior (i.e., melhor) ou igual do que a disponibilidade do elemento mais disponível
- Exemplo:
 - Um sistema com 3 elementos em paralelo (com disponibilidade de 99.0% cada) tem uma disponibilidade de 99.9999% (seis noves)

Disponibilidade de um sistema composto por múltiplos elementos

No caso geral, vai-se reduzindo o modelo geral num modelo com menos elementos substituindo um conjunto de elementos (em série ou em paralelo) por um elemento único cuja disponibilidade é calculada de acordo com o tipo de conjunto.

$$A_{234} = 1 - [(1 - A_{23}) \times (1 - a_4)]$$

$$A = a_1 \times A_{234} \times a_5$$

Considere-se o exemplo de uma rede de um operador a suportar um serviço VPN entre dois sites de uma empresa. Todos os routers do operador têm uma disponibilidade de 99.99%. A figura indica a disponibilidade de cada ligação.

Se o serviço VPN entre dois sites for encaminhado pelo percurso $A \rightarrow B \rightarrow C$ (do site 1 para o site 2) e pelo mesmo percurso no sentido inverso (do site 2 para o site 1),

então, a disponibilidade da rede para este serviço VPN é:

$$A = a_A \times a_{AB} \times a_B \times a_{BC} \times a_C$$

= 0.9999 \times 0.992 \times 0.9999 \times 0.9999 \times 0.9999 = 0.9818

Se o serviço VPN entre dois sites for encaminhado por um dos percursos $A \to B \to C$ ou $A \to B \to D \to C$ (do site 1 para o site 2) e pelos mesmos percursos no sentido inverso (do site 2 para o site 1),

então, a disponibilidade da rede para este serviço VPN é:

$$A_{BDC//BC} = 1 - [(1 - a_{BD} \times a_D \times a_{DC}) \times (1 - a_{BC})] =$$

$$= 1 - [(1 - 0.995 \times 0.9999 \times 0.989) \times (1 - 0.99)] = 0.99984$$
 $A = a_A \times a_{AB} \times a_B \times A_{BDC//BC} \times a_C$

$$= 0.9999 \times 0.992 \times 0.9999 \times 0.99984 \times 0.9999 = 0.9915$$

Se o serviço VPN entre dois sites for encaminhado por um dos percursos $A \rightarrow B \rightarrow C$ ou $A \rightarrow D \rightarrow C$ (do site 1 para o site 2) e pelos mesmos percursos no sentido inverso (do site 2 para o site 1),

então, a disponibilidade da rede para este serviço VPN é:

$$A_{ADC//ABC} = 1 - [(1 - a_{AD} \times a_D \times a_{DC}) \times (1 - a_{AB} \times a_B \times a_{BC})] =$$

$$= 1 - [(1 - 0.994 \times 0.9999 \times 0.989) \times (1 - 0.992 \times 0.9999 \times 0.99)] = 0.9997$$
 $A = a_A \times A_{ADC//ABC} \times a_C$

$$= 0.9999 \times 0.9997 \times 0.9999 = 0.995$$

Comparando as 3 soluções anteriores:

$$A = 0.9818$$

O serviço falha em média $(1 - 0.9818) \times 365.25$ = 6.65 dias/ano

$$A = 0.9915$$

O serviço falha em média $(1 - 0.9915) \times 365.25$ = 3.1 dias/ano

$$A = 0.995$$

O serviço falha em média $(1 - 0.995) \times 365.25$ = 1.8 dias/ano

Modelo de disponibilidade de ligações em redes de telecomunicações

De acordo com [1], um modelo de disponibilidade das ligações de redes óticas nos EUA no início do século era aproximadamente:

$$\frac{MTBF}{MTBF + MTTR}$$

com: MTTF = 24 horas

$$MTBF = \frac{CC \times 265 \times 24}{\text{comprimento da ligação [Km]}} \bigcirc$$

CC (Cable Cut metric) = 450 Km

[1] J.-P. Vasseur, M. Pickavet and P. Demeester, "Network Recovery: Protection and Restoration of Optical, SONET-SDH, IP, and MPLS", Elsevier (2004)

Cálculo de percursos de maior disponibilidade

Considere-se:

- uma rede de telecomunicações em que a disponibilidade dos nós (routers, switches, optical cross-connects) é 1.0.
- o conjunto P de todos os percursos de encaminhamento possível na rede de um determinado nó origem para um determinado nó destino.
- A disponibilidade a_p de cada percurso $p \in P$ é o produto das disponibilidades dos links que pertencem ao percurso.
- O logaritmo da disponibilidade de um percurso log(a_p) é então a soma dos logaritmos das disponibilidades dos links.
- A função logaritmo é monotonamente crescente. Assim, o k-ésimo percurso mais disponível (com o maior valor de disponibilidade) é também o k-ésimo percurso com o maior valor do logaritmo da sua disponibilidade.
- O valor $log(a_p)$ é negativo. Assim, considerando o "comprimento" de cada ligação como $-log(a_p)$, os k percursos de maior disponibilidade podem ser calculados por um algoritmo de k percursos mais curtos.

Cálculo de percursos de maior disponibilidade

Considere-se o exemplo de um serviço VPN entre dois sites de uma empresa. A figura indica a disponibilidade de cada ligação.

Considere-se uma rede com n ligações em que cada ligação tem uma disponibilidade a (igual para todas as ligações). O número i de ligações indisponíveis é uma variável aleatória binomial com probabilidade p = 1 - a.

Assim, a probabilidade de haver *i* ligações indisponíveis é:

$$f(i) = {n \choose i} p^i (1-p)^{n-i}, i = 0, 1, 2, ..., n$$

A probabilidade P de estarem 2 ou mais ligações indisponíveis é:

CONCLUSÃO: a esmagadora maioria das vezes que há falhas de ligações, apenas está uma ligação indisponível.

a	n	P
0.995	10	0.110%
0.995	20	0.447%
0.995	40	1.719%
0.999	10	0.004%
0.999	20	0.019%
0.999	40	0.076%

Robustez de serviços a falhas da rede

- A robustez de uma rede de telecomunicações é genericamente definida como a capacidade da rede em manter os serviços que suporta quando um ou mais dos seus elementos (nós e/ou ligações) falham.
- A robustez de uma rede pode ser melhorada com dois tipos de mecanismos.
- Mecanismos de restauro: os serviços são suportados assumindo que não há falhas; quando uma falha acontece, a rede tenta reencaminhar o mais possível os fluxos dos serviços afetados pelos recursos (nós e ligações) que se mantêm disponíveis (i.e., dos elementos que não falharam).
 - Exemplos: as redes IP com protocolos tais como o RIP e o OSPF
- Mecanismos de proteção: os recursos da rede são atribuídos (aos diferentes fluxos dos diferentes serviços) não só para o caso de nenhuma falha mas também para um subconjunto de casos de possíveis falhas; se acontecer uma das falhas do subconjunto considerado, é garantido que os serviços podem continuar a ser suportados.

Mecanismos de proteção baseados em pares de percursos disjuntos (1)

 Cada fluxo (de um nó origem para um nó destino) é suportado por dois percursos disjuntos (ambos a iniciar no nó origem e a terminar no nó destino do fluxo):

 disjuntos nas ligações (i.e., sem ligações comuns) se os nós exibirem alta disponibilidade

 disjuntos nos nós e ligações (i.e., sem ligações nem nós intermédios comuns) se a probabilidade dos nós falharem não for residual.

Mecanismos de proteção baseados em pares de percursos disjuntos (2)

- Um par de percursos disjuntos nas ligações protege o fluxo para todas as falhas individuais de ligação.
- Um par de percursos disjuntos nos nós e nas ligações protege o fluxo para todas as falhas individuais de um elemento (nó ou ligação) exceto a falha do nó origem ou do nó destino do fluxo.
- Distinguem-se 2 casos:
- Proteção 1+1 (um mais um): o fluxo é enviado duplicado pelos 2 percursos.
 - O tempo de recuperação a falhas é muito curto.
 - Exige muitos recursos da rede.
- **Proteção 1:1** (um para um): o fluxo é enviado por um dos percursos (designado por percurso de serviço) e o outro percurso (designado por percurso de proteção) só é usado em caso de falha do primeiro.
 - O tempo de recuperação a falhas é pior (o nó origem tem de ser notificado da falha do percurso de serviço para passar a transmitir o fluxo pelo percurso de proteção.
 - Os recursos do percurso de proteção podem ser partilhados entre diferentes fluxos.

Mecanismos de proteção baseados em pares de percursos disjuntos (3)

Considere-se dois fluxos: fluxo 1 de O_1 para D_1 de 10 Gbps e fluxo 2 de O_2 para D_2 de 20 Gbps com proteção baseada em pares de percursos disjuntos nas ligações:

