Solution for Exercise sheet 9

Yikai Teng, You Zhou

Exercise session: Thu. 8-10

Exercise 9.1 Following the hint, we can attach k-cells $(k \ge n+2)$ to X to get a relative CW-complex (Y, X) such that $\pi_i(Y, x) \cong \pi_i(X, x)$ for $1 \le i \le n$ and $\pi_i(Y, x) = 0$ for $i \ge n+1$. By checking definitions we get the following commutative diagram (The coefficient \mathbb{Z} in homology groups will be omitted for short.)

$$\cdots \longrightarrow \pi_{n+2}(Y,X,x) \longrightarrow \pi_{n+1}(X,x) \longrightarrow \pi_{n+1}(Y,x) \longrightarrow \pi_{n+1}(Y,X,x) \longrightarrow \cdots$$

$$\downarrow^{h_1} \qquad \qquad \downarrow^{h_2} \qquad \qquad \downarrow^{h_3} \qquad \qquad \downarrow^{h_4}$$

$$\cdots \longrightarrow H_{n+2}(Y,X) \longrightarrow H_{n+1}(X) \longrightarrow H_{n+1}(Y) \longrightarrow H_{n+1}(Y,X) \longrightarrow \cdots$$

where the vertical maps are all Hurewicz maps. By our construction and celluar approximation theorem we get $\pi_i(Y, X, x) = 0$ for $1 \le i \le n+1$, so h_4 is injective. Exercise 8.3 shows that $H_{n+1}(Y, X) = 0$, so h_3 is surjective. Since $n \ge 2$ we can use the relative Hurewicz theorem to conclude that h_1 is surjective. So by the five lemma h_2 is surjective.

Exercise 9.2

(a)

Well-definedness Two polynomials $f, g \in \mathbb{C}[x]$ represent a same element in $\mathbb{C}P^{\infty}$ if and only if $f = \lambda g$ for some $\lambda \in \mathbb{C}$. So for $\lambda_1, \lambda_2 \in \mathbb{C}$ we have

$$\mu(\mathbb{C}\lambda_1 f, \mathbb{C}\lambda_2 g) = \mathbb{C}(\lambda_1 \lambda_2 fg) = \mathbb{C}(fg) = \mu(\mathbb{C}f, \mathbb{C}g).$$

Continuity If we set $\mathbb{C}_0^{\infty} := \{(x_i)_{i \in \mathbb{Z}_{>0}} \mid x_i \in \mathbb{C} \text{ for all } i \text{ and only finitely many terms are nonzero} \}$ and give it the usual metric topology, then we have the commutative diagram

$$\mathbb{C}_0^{\infty} \times \mathbb{C}_0^{\infty} \longrightarrow \mathbb{C}_0^{\infty} .$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathbb{C}P^{\infty} \times \mathbb{C}P^{\infty} \stackrel{\mu}{\longrightarrow} \mathbb{C}P^{\infty}$$

The upper map is continuous because every component of it is a polynomial of finitely many variables. The two vertical maps are quotient maps, hence continuous. So μ , as their composition, is also continuous.

Associativity, Commutative and Unital All obvious by the corresponding properties of $\mathbb{C}[x]$.

(b) We need to show that the diagram on the left below commutes. Let $\alpha, \beta \colon (I^2, \partial I^2) \to (\mathbb{C}P^{\infty}, \mathbb{C} \cdot 1)$ be based maps representing elements in $\pi_2(\mathbb{C}P^{\infty}, \mathbb{C} \cdot 1)$. Choose $\varphi \colon \pi_2(\mathbb{C}P^{\infty}, \mathbb{C} \cdot 1)) \xrightarrow{\sim} \mathbb{Z}$. Then it is shown on the right below how an element is mapped in two ways.

$$\pi_{2}(\mathbb{C}P^{\infty} \times \mathbb{C}P^{\infty}, (\mathbb{C} \cdot 1, \mathbb{C} \cdot 1)) \xrightarrow{\mu_{*}} \pi_{2}(\mathbb{C}P^{\infty}, \mathbb{C} \cdot 1) \qquad [(\alpha, \beta)] \longmapsto [\mu \circ (\alpha, \beta)]$$

$$\pi_{2}(\mathbb{C}P^{\infty}, \mathbb{C} \cdot 1) \times \pi_{2}(\mathbb{C}P^{\infty}, \mathbb{C} \cdot 1) \qquad \varphi \qquad ([\alpha], [\beta])$$

$$\mathbb{Z} \times \mathbb{Z} \xrightarrow{+} \mathbb{Z} \qquad (\varphi([\alpha]), \varphi([\beta])) \longmapsto \varphi([\alpha] + [\beta]) = \varphi([\mu \circ (\alpha, \beta)])$$

The equality $\varphi([\alpha] + [\beta]) = \varphi([\mu \circ (\alpha, \beta)])$ can be seen as follows: choose a representative $\gamma: (I^2, \partial I^2) \to (\mathbb{C}P^{\infty}, \mathbb{C} \cdot 1)$ for $[\alpha] + [\beta]$, say

$$\gamma(x,y) = \begin{cases} \alpha(2x,y), & \text{if } 0 \le x \le \frac{1}{2} \\ \beta(2x-1,y), & \text{if } \frac{1}{2} < x \le 1, \end{cases} \text{ for } (x,y) \in I^2.$$

We can construct linear homotopies between each coordinate of γ and $\mu \circ (\alpha, \beta)$, which is constant on ∂I^2 . Then by putting them together we can get a homotopy between γ and $\mu \circ (\alpha, \beta)$.

(d) By definition $[f] + [g] = [\mu \circ (f, g)]$ is sent to

$$[(f,g)^*\mu^*(\gamma)] = [(f,g)^*(p_1^*(\gamma) \otimes p_2^*(\gamma))]$$

= $[(f,g)^*p_1^*(\gamma) \otimes (f,g)^*p_2^*(\gamma)]$
= $[f^*(\gamma) \otimes g^*(\gamma)].$

(e) The well-definedness and continuity of i can be proved in a similar way as in (a). For every $[f] \in \pi_2(\mathbb{C}P^{\infty}, \mathbb{C}\cdot \mathbb{C}P^{\infty})$ we have

$$[f] + i_*([f]) = [\mu(f, \bar{f})] = [\mathbb{C} \cdot 1].$$

so i induces the additive inverse. To construct an isomorphism we denote by E_{γ} the total space of γ and consider the following diagram which commutes without the dashed arrow.

We want to show that there is a unique $\varphi \colon Z \to \bar{\gamma}$ such that the whole diagram commutes. This is clear because the commutativity forces φ to map any $z \in Z$ to the pair $(\mathbb{C}f(z), \overline{g(z)}) \in \mathbb{C}P^{\infty} \times \mathbb{C}[x]$, which is well-defined by the commutativity from our assumption. So $\bar{\gamma}$ is the fiber product $E_{\gamma} \times_{\mathbb{C}P^{\infty}} \mathbb{C}P^{\infty}$ and hence there is an isomorphism $i^*(\gamma) \cong \bar{\gamma}$.