1

Control Systems

G V V Sharma*

1

CONTENTS

1 Compensator Designing

Abstract—This manual is an introduction to control systems based on GATE problems.Links to sample Python codes are available in the text.

Download python codes using

svn co https://github.com/gadepall/school/trunk/control/codes

1 Compensator Designing

1.1. For a unity feedback system

$$G(s) = \frac{K}{(s)(s+2)(s+4)(s+6)}$$
 (1.1.1)

Design a lag compensator to yield a $K_{\nu} = 2$ and Phase Margin of 30°

Solution: Fig.1.1 models the equivalent of compensated closed loop system.

Fig. 1.1

Static Velocity Error Constant K_{ν} is the steadystate error of a system for a unit-ramp input i.e.,

$$K_{\nu} = \lim_{s \to 0} sG(s)G_{c}(s)$$
 (1.1.2)

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

Therefore,

$$K_{\nu} = \lim_{s \to 0} s \frac{K}{s(s+2)(s+4)(s+6)} \frac{Ts+1}{\beta Ts+1}$$

$$\implies 2 = \frac{K}{(0+2)(0+4)(0+6)} \frac{T(0)+1}{\beta T(0)+1}$$

$$K = 96, (1.1.3)$$

$$G(s) = \frac{96}{s(s+2)(s+4)(s+6)}$$
 (1.1.4)

1.2. The Magnitude and Phase response of G(s). **Solution:** Substituting $s = j\omega$ in (1.1.4),

$$G(j\omega) = \frac{96}{(j\omega)(j\omega+2)(j\omega+4)(j\omega+6)}$$
(1.2.1)

$$|G(j\omega)| = \frac{|96|}{\omega \sqrt{4 + \omega^2} \sqrt{16 + \omega^2} \sqrt{36 + \omega^2}}$$
(1.2.2)

$$\angle G(j\omega) = -90^{\circ} - \tan^{-1}\left(\frac{\omega}{2}\right) - \tan^{-1}\left(\frac{\omega}{4}\right)$$
$$- \tan^{-1}\left(\frac{\omega}{6}\right) \quad (1.2.3)$$

1.3. The standard Transfer equation of Lag Compensator and its Phase and Gain Solution:

$$G_c(s) = \frac{Ts+1}{\beta Ts+1}$$
 (1.3.1)

$$|G_c(s)| = \frac{1}{\beta} \frac{1 + \left(\frac{\omega}{T}\right)^2}{1 + \left(\frac{\omega}{\beta T}\right)^2} \quad (1.3.2)$$

$$\angle G_c(s) = \tan^{-1}(\omega T) - \tan^{-1}(\omega \beta T) \quad (1.3.3)$$

Where $\beta > 1$.

It can be approximated that for $\omega > \frac{1}{T}$

$$|G_c(s)| = \frac{1}{\beta} \tag{1.3.4}$$

and Phase to be very small(< 12°).

1.4. The Phase Margin(PM) of the Transfer function G(s)

Solution: From (1.2.2) and (1.2.2)

At Gain Crossover,

$$|G(s)| = 1$$
 (1.4.1)

$$\implies \omega_{gc} = 1.47 rad/sec$$
 (1.4.2)

$$\implies \angle G(j\omega_{gc}) = -160.26^{\circ}$$
 (1.4.3)

$$PM = 180^{\circ} + \angle G\left(\jmath\omega_{gc}\right) \tag{1.4.4}$$

$$\implies PM = 19.74^{\circ}$$
 (1.4.5)

The following are the Bode plots of uncompensated system

Fig. 1.4

The code for Bode plots of uncompensated system

1.5. Design a lag compansator such that the Phase Margin becomes 30°

Solution: The lag compansator form is given in (1.3.1), Let

$$G'(s) = G(s)G_c(s)$$
 (1.5.1)

The $PM = 30^{\circ}$ when $\angle G'(\omega) = -150^{\circ}$

Since the addition of compensator reduces Gain of system, thereby reducing Gain Crossover frequency which increases Phase Margin(PM) of system.

Since, Compansator also has small negative

phase(say ϵ), let $\epsilon = 5^{\circ}$.i.e, $\angle G_c(s) = 5$

$$\angle G'(s) = \angle G(s) + \angle G_c(s) \tag{1.5.2}$$

$$\implies -150^{\circ} = \angle G(s) - 5^{\circ} \tag{1.5.3}$$

$$\implies \angle G(s) = -145^{\circ}$$
 (1.5.4)

The value of ω where $\angle G(s) = -145^{\circ}$ is

$$\angle G(s) = -145^{\circ}$$
 (1.5.5)

$$\implies \omega_{req} = 1.10953 rad/sec$$
 (1.5.6)

The value $\frac{1}{T}$ is exactly 2 octaves below ω_{req} obtained in (1.5.6)

$$\frac{1}{T} = \frac{\omega_{req}}{4} \tag{1.5.7}$$

$$\implies T = 3.605 \tag{1.5.8}$$

Now we should take β such that Gain Crossover frequency occurs at ω_{req} i.e., to make $|G'(j\omega)| = 1$ From (1.3.4),

$$\left| G' \left(j \omega_{gc} \right) \right| = \left| G \left(j \omega_{gc} \right) \right| \left| G_c \left(j \omega_{gc} \right) \right| = 1 \quad (1.5.9)$$

$$\implies 1.4936 \times \frac{1}{\beta} = 1 \quad (1.5.10)$$

$$\implies \beta = 1.4936 \quad (1.5.11)$$

Substituting values of T and β obtained from (1.5.8) and (1.5.11) in (1.3.1) The required Compensator Transfer is

$$G_c(s) = \frac{3.605s + 1}{5.384s + 1} \tag{1.5.12}$$

The following are the Bode plots of compensated system

The code for Bode plots of compensated system

Fig. 1.5