Cours de Mathématiques

Mathilde Andre

Vendredi 18 Juillet 2014

Sommaire

1	Rap	oels du lycée	
	1.1	Multiple et division euclidienne	
	1.2	Congruence	
2	\mathbf{Alg}	bre	
	2.1	Quelques rappels sur $\mathbb N$	
	2.2	Construction de \mathbb{Z}	
	2.3	Les groupes	
		2.3.1 Les sous groupes	
		2.3.2 Morphisme de groupe	
		2.3.3 Noyau	
		2.3.4 Groupe quotient	

Chapitre 1

Rappels du lycée

1.1 Multiple et division euclidienne

Définition 1.1.

Soient a et $b \in \mathbb{Z}$

a est un multiple de b ssi $\exists k \in \mathbb{Z}$ tel que :

a = kb

On dit aussi que:

- → a est divisible par b
- → b est un diviseur a
- → b divise a

Définition 1.2.

Soient $a \in \mathbb{Z}$ et $b \in \mathbb{N}$.

On appele division euclidienne de a par b l'opération qui au couple (a,b) associe un couple (q,r) tel que :

```
a = b \times q + r \text{ avec } 0 \le r < b
```

On appele a le dividende, b le diviseur, q le quotient et r le reste.

1.2 Congruence

Définition 1.3.

Soient $n \in \mathbb{N}, n \geq 2$ et $a, b \in \mathbb{Z}$ On dit que deux entiers a et b sont congru modulo n ssi ils ont même restepar la division euclidienne par n.

On note alors : $a \equiv b \pmod{n}$ ou $a \equiv b \pmod{n}$

Chapitre 2

Algèbre

Cours 1

2.1 Quelques rappels sur $\mathbb N$

Proposition 2.1.

Tout ensemble A non vide $\subset \mathbb{N}$ a un plus petit élément

Définition 2.1.

Majorant: On dit que M est un majorant de A $\subset \mathbb{N}$ ssi $\forall n \in \mathbb{N}$ n< M

On dit aussi que A est majoré

Définition 2.2.

Relation d'équivalence : Soit \mathcal{R} une relation binaire sur $A \subset \mathbb{N}$. \mathcal{R} est une relation d'équivalence ssi elle est :

- 1. reflexive : $\forall x \in A, x\mathcal{R}x$
- 2. symetrique : \forall (a,b) \in A², si a \mathcal{R} b \Rightarrow b \mathcal{R} a
- 3. transitive: \forall (a,b,c) \in A³, si a \mathcal{R} b et b \mathcal{R} c \Rightarrow a \mathcal{R} c

Classe d'équivalence : La classe d'équivalence de x pour \mathcal{R} est tous les y tel que $x\mathcal{R}y$, on la note \overline{x}

2.2Construction de \mathbb{Z}

Comment construire \mathbb{Z} ?

Soit \mathcal{R} une relation d'équivalence sur $\mathbb{N} \times \mathbb{N}$ définit ainsi :

$$\forall (a,b) \in A^2 \text{ et } (a',b') \in A^2$$
, $(a,b)\mathcal{R}(a',b') \text{ ssi } a+b'=a'+b$

Quelles sont les classes d'équivalences de (0, 0) et (0, a)?

1.
$$\overline{(0,0)} = \{(x,y) \in \mathbb{N} \times \mathbb{N}, (x,y)\mathcal{R}(0,0)\} = \{(x,y) \in \mathbb{N} \times \mathbb{N}, x = y\} = \{(x,x), x \in \mathbb{N}\}$$

2.
$$\overline{(0,a)} = \{(x,y) \in \mathbb{N} \times \mathbb{N}, x+a=y\} = \{(x,x+a), x \in \mathbb{N}\}\$$

On a:
$$\overline{(a,b)} + \overline{(c,d)} = \overline{(a+c,b+d)}$$

On a :
$$\overline{(a,b)} + \overline{(c,d)} = \overline{(a+c,b+d)}$$

On a donc : $\underline{(0,a)} + \overline{(a,0)} = \overline{(a,a)} = \overline{(0,0)}$

Et on note : (a,0) = -a

La démonstration par récurrence :

On va montrer que P(n) vraie pour tout $n \in \mathbb{N} \Leftrightarrow$

- 1. P(0) vrai
- 2. Supposons P(n) vrai alors P(n+1) vrai

Supposons $\mathcal{P}(0)$ vrai et

Si $\mathcal{P}(n)$ vrai $\Rightarrow \mathcal{P}(n+1)$ vrai

On va faire une démonstration par l'absurde :

Il existe un $m \in \mathbb{N}$, $\mathcal{P}(m)$ faux

Soit $A = \{n \in \mathbb{N}, \mathcal{P}(n) faux\}$

 $A \subset \mathbb{N} \Rightarrow A$ admet un plus petit element, appelons le i.

Donc $i \neq 0$ et $\mathcal{P}(i-1)$ est vrai.

D'après notre supposition on a alors $\mathcal{P}(i)$ vrai : CONTRADICTION

2.3 Les groupes

Définition 2.3.

On dit que (G,*) est un groupe avec G un ensemble et * une loi sur G ssi :

- 1. * est associative cad $\forall x, y, z \in G$ (x * y) * z = x * (y * z)
- 2. G admet un élement neutre : $\exists e \in G, \forall x \in G, x * e = e * x = x$
- 3. Tout élement de G admet un symétrique : $\forall x \in G, \exists x^{-1}, x * x^{-1} = x^{-1} * x = e$

On dit qu'un groupe est abélien ou commutatif si * est commutative.

Exemple 2.1.

Exemple de groupe non abélien : Les permutations $a = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$ $b = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$ $c = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$

Calculer $a \circ b$ puis $b \circ a$

$$b \circ c = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$
$$c \circ b = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$

Donc l'ensembre des permutations muni de la loi de composition n'est pas un groupe abélien.

2.3.1 Les sous groupes

Définition 2.4.

On dit que $(H,*)\subset G$ un ensemble et * est un sous-groupe de G ssi :

- 1. $H \neq \emptyset$
- 2. H admet le même élément neutre que G
- 3. H est stable : $\forall x, y \in G, x * y \in H$

Exemple 2.2.

Quels sont les sous-groupes de \mathbb{Z} ?

Les sous groupes de \mathbb{Z} sont les $k\mathbb{Z}$ $k\mathbb{Z} = \{ \forall x \in \mathbb{Z}, kx \}$

Demo : Soit H un sous groupe de \mathbb{Z} ne contenant pas 0 $H \cap \mathbb{N}^* \in \mathbb{N}$ est non vide donc il admet un plus élément, notons le k Soit $h \in H \cap \mathbb{N}^*$ alors division euclidienne de h par k : $\exists (q,r) \in \mathbb{Z} \times \mathbb{H}$ tel que $h = k^*q + r$ ac $0 \le r < k$ mais k est le plus petit élément de H donc r=0.

2.3.2 Morphisme de groupe

Définition 2.5.

Soient $(G_1, *_1)et(G_2, *_2)$ deux groupes, et $\phi : G_1 \longrightarrow G_2$, ϕ est un morphisme de groupe ssi : $\phi(x_1 *_1 x_2) = \phi(x_1) *_2 \phi(x_2)$ avec $x_1, x_2 \in G_1$

2.3.3 Noyau

Définition 2.6.

Soient $(G_1, *_1)et(G_2, *_2)$ deux groupes, et $\phi : G_1 \longrightarrow G_2$, On note $Ker(\phi) = \{y \in G_1, \phi(y) = e_2\}$

Proposition 2.2.

 $Ker(\phi) = \{\emptyset\} \Leftrightarrow \phi \text{ est injective }$

• Si ϕ injective alors si $x, y \in G_1$ et $\phi(x) = \phi(y) \Rightarrow x = y$

$$\phi(x) = \phi(y)$$

$$\Leftrightarrow \phi(x) * \phi(y)^{-1} = e_2$$

$$\Leftrightarrow \phi(x) * \phi(y^{-1}) = e_2$$

$$\Leftrightarrow \phi(x * y^{-1}) = e_2$$
Or $x = y$

$$x * y^{-1} = e_1$$

Donc
$$\phi(e_1) = e_2$$
 et $Ker(\phi) = \{\emptyset\}$

• Si $Ker(\phi) = \{\emptyset\}$: Soient $x, y \in G_1$ tel que $\phi(x) = \phi(y)$.

Alors
$$\phi(x) * \phi(y)^{-1} = e_2$$

 $\Leftrightarrow \phi(x) * \phi(y^{-1}) = e_2$
 $\Leftrightarrow \phi(x * y^{-1}) = e_2$
 $\Leftrightarrow x * y^{-1} = e_2$
 $\Leftrightarrow x = y$

Donc ϕ est injective.

2.3.4 Groupe quotient

kzkzk