REFERENCES

- [1] Abel Cain. Sets and relations. 2:255, 2012.
- [2] Marie John. The hunting handicap: costly signaling in human foraging strategies. Behavioral Ecology and Sociobiology, 50:9-19, 2008.
- [3] Langley Kate. Hobbit: Battle of the five armies. 6:585, 2003.
- [4] Jane Mary. A quick take on today's world. 7:295, 2015.
- [5] Maite Taboada. Discourse markers as signals (or not) of rhetorical relations. Journal of Pragmatics, 38:567-592, 2006.

Theorem : $a^2 + b^2 =$ c^2 Pythagoras

Data: A set $C = \{c_1, c_2, \dots, c_r\}$ of denominations of coins, where $c_i > c_2 > \ldots > c_r$ and a positive ${\rm number}\,\,n$

Result: A list of coins d_1, d_2, \ldots, d_k , such that $\sum_{i=1}^k d_i = n$ and k is minimized

 $C \leftarrow \emptyset$;

for $i \leftarrow 1$ to r do

$$\begin{vmatrix} \textbf{while } n \geq c_i \textbf{ do} \\ C \leftarrow C \cap \{c_i\}; \\ n \leftarrow n - c_i; \\ \textbf{end} \end{vmatrix}$$

end

return C; Algorithm 1: CHANGE Makes change using the smallest number of coins

Col1	Col2	Col2	Col3
1	6	87837	787
2	7	78	5415

