Chapter 29 Even Answers

2. (a) West

(b) zero deflection

(c) up

(d) down

4. (a) $8.67 \times 10^{-14} \text{ N}$

(b) $5.19 \times 10^{13} \text{ m/s}^2$

6. (a) 7.90×10^{-12} N

(b) zero

8. $\mathbf{F}_B(1.00 \times 10^{-6} \text{ N}) \text{ vertical} + (0.990 \times 10^{-6} \text{ N}) \text{ horizontal}$

10. Can determine that $B_z = 0$ and $B_y = -2.62$ mT. Cannot determine B_x .

12. $(8.29 \times 10^{-14} \text{ k}) \text{ N}$

14. (-2.88 j) N

16. 0.109 A to the right

18. ab: 0, bc: (-40.0 i) mN, cd: (-40.0 k) mN, da: (40.0 i + 40.0 k) mN

 $20. \sqrt{\frac{4IdBL}{3m}}$

22. $2.98 \mu N$ west

24. $18.4 \text{ mA} \cdot \text{m}^2$

26. (a) 3.97°

(b) $3.39 \text{ mN} \cdot \text{m}$

30. (a) $118 \mu \text{N} \cdot \text{m}$

(b) $-118 \mu J \le U \le 118 \mu J$

32. 1.98 cm

34. $6.56 \times 10^{-2} \text{ T}$

36. (a) 5.00 cm

(b) $8.78 \times 10^6 \text{ m/s}$

38. m'/m = 8

40. m = 2.99 u, either ${}_{1}^{3}\text{H}^{+}$ or ${}_{2}^{3}\text{He}^{+}$

42. (a) 8.28 cm

(b) 8.23 cm; ratio is independent of both ΔV and B

44. 0.162 m

48. (a)
$$7.44 \times 10^{28} \text{ m}^{-3}$$

(b) 1.79 T

50.
$$1.28 \times 10^{29} \text{ m}^{-3}, 1.52$$

(b) $4.29 \times 10^{25} \text{ m}^{-3}$

56. (a)
$$-8.00 \times 10^{-21} \text{ kg} \cdot \text{m/s}$$

(b) 8.90°

60.
$$r = 3.13 \times 10^4$$
 m; the proton will not hit the Earth.

62.
$$B \sim 10^{-1} \text{ T}, \quad \tau \sim 10^{-1} \text{ N} \cdot \text{m}, \quad I \sim 10^{0} \text{ A}, \quad A \sim 10^{-3} \text{ m}^{2}, \quad N \sim 10^{3} \text{ turns}$$

64.
$$\frac{\mu g}{I} \tan \theta$$

66. (a)
$$1.04 \times 10^{-4}$$
 m

(b) $1.89 \times 10^{-4} \text{ m}$

68.
$$3.82 \times 10^{-25} \text{ kg}$$

70. (a)
$$\Delta V_H = \left(1.00 \times 10^{-4} \text{ V} \right) B$$

(b) 0.125 mm

72. (a)
$$v = qBh/m$$
. The particle moves in a semicircle of radius h , leaving the field at the point $(2h, 0, 0)$ with velocity $-v\mathbf{j}$.

- (b) The particle moves in a semicircle of radius r = mv/qB < h, leaving the field at the point (2r, 0, 0) with velocity $-v\mathbf{j}$.
- (c) The particle moves in a circular arc of radius r = mv/qB > h, centered at (r, 0, 0). The arc subtends an angle $\theta = \sin^{-1}(h/r)$. The particle leaves the field at the point $[r(1-\cos\theta), h, 0]$ with velocity $\mathbf{v}_f = v\sin\theta \, \mathbf{i} + v\cos\theta \, \mathbf{j}$.