

CURVAS CARACTERÍSTICAS DE UNA BOMBA CENTRÍFUGA

ICM 557 LABORATORIO DE MÁQUINAS

DINO ARATA HERRERA ESCUELA INGENIERÍA MECÁNICA PUCV Profesores Cristóbal Galleguillos Ketterer Tomás Herrera Muñoz

Resumen

Durante el presente laboratorio, se realizaron una serie de mediciones en una bomba centrifuga como lo son: Velocidad de ensayo, velocidad de la bomba, presión de aspiración, presión en la descarga, caudal de la bomba, fuerza medida en la balanza, temperatura de agua en el estanque y presión atmosférica. Todas estas mediciones se obtuvieron para elaborar un completo análisis del comportamiento de la bomba centrífuga a través de sus curvas características. Todas estas mediciones se realizan a distintas velocidades (3070 [rpm], 2900[rpm] y 2700[rpm]).

Índice

Resumen	1
Introducción	3
Objetivos	4
Simbología	5
Metodología/ procedimiento	
Tabla de valores medidos	7
Fórmulas	9
Tablas de valores calculados	11
Gráficos	14
Conclusión	17
Referencias	18

Introducción

La bomba centrifuga es una máquina encargada de transformar la energía mecánica del motor en energía hidráulica, principalmente son utilizadas para movilizar fluidos, por lo cual, se complementan de un sistema de distribución para dirigir el liquido o fluido al lugar deseado. Lo antes mencionado hace de la bomba centrifuga un elemento muy útil para diversas industrias como pueden ser: La alimentaria, petroquímica, cosmética y farmacéutica, distribución de agua potable, plantas depuradoras, agrícola y ganadera, etc.

Debido a la gran importancia de las bombas centrifugas en la industria, se realizan una serie de mediciones para determinar las respectivas curvas características asociadas, estas curvas nos permiten observar cuanto será la altura hidráulica que consigue levantar la bomba según el caudal al cual trabaja.

Objetivos

- Determinar las curvas características de la bomba centrífuga.
- Analizar el comportamiento de una bomba centrífuga mediante la observación de sus curvas características.

Simbología

n: velocidad de ensayo [rpm]

nx: velocidad de la bomba [rpm]

pax%: presión de aspiración [%]

pdx%: presión de descarga [%]

 Δhx : caudal de la bomba, presión diferencial en el venturímetro $[mm_{hg}]$

Fx: fuerza medida en la balanza [kp]

 t_a : temperatura de agua en el estanque [°C]

 P_{atm} : presión atmosférica $[mm_{hg}]$

cpax: altura piezométrica del manómetro de aspiración respecto del eje de la bomba [mm]

cpdx: altura piezométrica del manómetro de descarga respecto del eje de la bomba [mm]

Metodología/ procedimiento

Revisar y poner en marcha la instalación, con las válvulas de aspiración y descarga totalmente abiertas, a continuación, regular la velocidad del motor de la bomba a las indicada por el profesor, en nuestro caso se realizan distintas mediciones a tres velocidades (3070 [rpm], 2900[rpm] y 2700[rpm]).

Antes de realizar las mediciones se realiza una inspección de los instrumentos y su correcta operación, se espera un tiempo para que se estabilice el funcionamiento.

Una vez estabilizado se realizaron las siguientes mediciones:

- Velocidad de ensayo.
- Velocidad de la bomba.
- Presión de aspiración.
- Presión de descarga.
- Caudal de la bomba.
- Fuerza medida en la balanza.
- Temperatura del agua en el estanque.
- Presión atmosférica.
- Altura piezométrica del manómetro de aspiración respecto del eje de la bomba.
- Altura piezométrica del manómetro de descarga respecto del eje de la bomba.

Manteniendo una velocidad constante, se repiten las mediciones hasta obtener los datos necesarios para recorrer completamente la curva característica de la bomba y trazar la gráfica de forma correcta. Para obtener las distintas condiciones de operación, se modifica la curva característica del sistema estrangulando la descarga de la bomba.

Tabla de valores medidos

	Tabla 1										
	3070 [rpm]										
	n	срах	cpdx	nx	pax	pdx	∆hx	Fx	Т	Patm	
	[rpm]	[m]	[m]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]	
1	3070	115	165	3075	89,5	6,5	146	1,54	16	758,7	
2	3070	115	165	3076	92	13,6	133	1,68	16	758,7	
3	3070	115	165	3076	94,8	19,4	118	1,79	16	758,7	
4	3070	115	165	3076	97	24,5	104	1,85	16	758,7	
5	3070	115	165	3077	99,4	29,1	91	1,89	16	758,7	
6	3070	115	165	3078	101,7	34,4	76	1,91	16	758,7	
7	3070	115	165	3078	105,2	41,3	59	1,92	16	758,7	
8	3070	115	165	3078	107,6	46,2	45	1,89	16	758,7	
9	3070	115	165	3078	110	49,2	32	1,83	16	758,7	
10	3070	115	165	3077	112,5	54,4	17	1,69	16	758,7	
11	3070	115	165	3078	114,3	56,9	9	1,55	16	758,7	
12	3070	115	165	3078	120,5	62,1	0	1,13	16	758,7	

	Tabla 2										
	2900 [rpm]										
	n	срах	cpdx	nx	pax	pdx	∆hx	Fx	Т	Patm	
	[rpm]	[m]	[m]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]	
1	2900	115	165	2903	91,5	6,2	134	1,37	16	758,7	
2	2900	115	165	2903	93,9	12,7	121	1,47	16,5	758,7	
3	2900	115	165	2903	96,3	16,4	109	1,55	16,5	758,7	
4	2900	115	165	2903	98,7	21,4	95	1,62	17	758,7	
5	2900	115	165	2903	100,5	26,1	82	1,65	17	758,7	
6	2900	115	165	2902	103,4	30,5	70	1,68	17	758,7	
7	2900	115	165	2904	105,6	35,5	56	1,69	17	758,7	
8	2900	115	165	2902	108,1	40,2	43	1,68	17	758,7	
9	2900	115	165	2903	110	44,3	30	1,6	17	758,7	
10	2900	115	165	2903	112,3	48,1	17	1,49	17	758,7	
11	2900	115	165	2904	114,6	51,2	8	1,37	17	758,7	
12	2900	115	165	2904	119,5	56,1	0	0,94	17	758,7	

	Tabla 3											
	n	срах	cpdx	nx	pax	pdx	∆hx	Fx	Т	Patm		
	[rpm]	[mm]	[mm]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]		
1	2700	115	165	2702	94,3	5,8	118	1,16	17	758,7		
2	2700	115	165	2703	96,8	10,5	106	1,24	17	758,7		
3	2700	115	165	2703	98,5	14,5	95	1,3	17	758,7		
4	2700	115	165	2703	100	18,1	84	1,34	17	758,7		
5	2700	115	165	2702	102,4	22,6	72	1,38	17	758,7		
6	2700	115	165	2703	104,8	26,9	60	1,4	17	758,7		
7	2700	115	165	2703	107,1	32,1	47	1,4	17	758,7		
8	2700	115	165	2702	109,1	36,1	35	1,38	17	758,7		
9	2700	115	165	2702	111,3	39,9	23	1,3	17	758,7		
10	2700	115	165	2703	113,6	43,5	11	1,18	17	758,7		
11	2700	115	165	2703	114,9	45,3	5	1,05	17	758,7		
12	2700	115	165	2703	119,6	49,1	0	0,78	17	758,7		

Fórmulas

Caudal:

De gráfico del venturímetro adjunto en el PPT de la clase se determina el caudal para cada línea de mediciones:

Qx

Caudal corregido:

$$Q = Qx \cdot \left(\frac{n}{nx}\right) \left[\frac{m^3}{h}\right]$$

Presión de aspiración:

$$pax = 0.1pax\% - 10 - \frac{cpax}{1000} [m_{ca}]$$

cpax= 115[mm]

Presión de descarga:

$$pdx = 0.4pdx\% + \frac{cpdx}{1000} [m_{ca}]$$

cpdx = 165[mm]

Altura:

$$Hx = -pax + pdx [m_{ca}]$$

Altura corregida:

$$H = Hx \cdot \left(\frac{n}{nx}\right)^2 [m_{ca}]$$

Potencia en el eje de la bomba:

$$Nex = 0.0007355 Fxnx [kW]$$

Potencia en el eje de la bomba corregida:

$$Ne = Nex \cdot \left(\frac{n}{nx}\right)^3 [kW]$$

Potencia hidráulica:

$$Nh = \gamma \cdot \frac{QH}{3600}[kW]$$

$$\gamma = peso \ espec \'afico \ del \ agua \ en \ \left[rac{N}{m^3}
ight]$$

Rendimiento global:

$$\eta_{gl} = \frac{Nh}{Ne} 100 \, [\%]$$

Velocidad tangencial del rodete en la descarga:

$$U_2 = \frac{\pi}{60} n D_2 \left[\frac{m}{s} \right]$$

Velocidad meridional de descarga:

$$cm_2 = \frac{Q}{3600\pi D_2 B_2} \left[\frac{m}{s} \right]$$

 $D_2 = 0.135 [mm]: diametro\ exterior\ del\ rodete$

 $B_2 = 0.0243 [mm] : ancho\ exterior\ del\ rodete$

Phi:
$$\emptyset = \frac{cm_2}{U_2}[-]$$

$$\mathsf{Psi:}\psi = \frac{2gH}{U_2^2}[-]$$

Tablas de valores calculados

Tabla 1 valores calculados 3070[rpm]

	Qx	Q	pax	pdx	Нх	Н	Nex	Ne	Nh	ηgl	U2	cm2	ф	Ψ
	[m3/h]	[m3/h]	mca	mca	mca	mca	kW	kW	kW	-	m/s	m/s	-	-
muestra														
			-											
1	113,4	113,216	1,165	2,765	3,93	3,917	3,483	3,466	1,207	34,832	21,690	3,053	0,141	0,163
			-											
2	106,2	105,993	0,915	5,605	6,52	6,495	3,801	3,779	1,874	49,593	21,690	2,858	0,132	0,271
			-											
3	100,8	100,603	0,635	7,925	8,56	8,527	4,050	4,026	2,335	58,001	21,690	2,713	0,125	0,355
			-											
4	93,6	93,417	0,415	9,965	10,38	10,340	4,185	4,161	2,629	63,191	21,690	2,519	0,116	0,431
			-											
5	86,4	86,203	0,175	11,805	11,98	11,926	4,277	4,248	2,799	65,875	21,690	2,325	0,107	0,497
6	82,8	82,585	0,055	13,925	13,87	13,798	4,324	4,290	3,102	72,301	21,690	2,227	0,103	0,575
7	72	71,813	0,405	16,685	16,28	16,195	4,347	4,313	3,166	73,410	21,690	1,937	0,089	0,675
8	61,2	61,041	0,645	18,645	18	17,907	4,279	4,245	2,975	70,087	21,690	1,646	0,076	0,746
9	52,2	52,064	0,885	19,845	18,96	18,862	4,143	4,111	2,673	65,032	21,690	1,404	0,065	0,786
10	32,4	32,326	1,135	21,925	20,79	20,696	3,825	3,799	1,821	47,943	21,690	0,872	0,040	0,862
11	25,2	25,135	1,315	22,925	21,61	21,498	3,509	3,482	1,471	42,247	21,690	0,678	0,031	0,896
12	0	0,000	1,935	25,005	23,07	22,950	2,558	2,538	0,000	0,000	21,690	0,000	0,000	0,956

Tabla 2 valores calculados 2900[rpm]

	Qx	Q	pax	Pdx	Нх	Н	Nex	Ne	Nh	ηgl	U2	cm2	ф	Ψ
	[m3/h]	[m3/h]	mca	Mca	mca	mca	kW	kW	kW	-	m/s	m/s	-	-
muestra														
			-											
1	106,92	106,810	0,965	2,645	3,61	3,603	2,925	2,916	1,047	35,920	20,489	2,880	0,141	0,168
			-											
2	104,4	104,292	0,725	5,245	5,97	5,958	3,139	3,129	1,691	54,057	20,489	2,812	0,137	0,278
			-											
3	97,2	97,100	0,485	6,725	7,21	7,195	3,309	3,299	1,902	57,645	20,489	2,618	0,128	0,336
			-											
4	90	89,907	0,245	8,725	8,97	8,951	3,459	3,448	2,191	63,535	20,489	2,424	0,118	0,418
			-											
5	85,32	85,232	0,065	10,605	10,67	10,648	3,523	3,512	2,471	70,344	20,489	2,298	0,112	0,497
6	81	80,944	0,225	12,365	12,14	12,123	3,586	3,578	2,671	74,651	20,489	2,183	0,107	0,566
7	70,56	70,463	0,445	14,365	13,92	13,882	3,610	3,595	2,663	74,072	20,489	1,900	0,093	0,648
8	60,84	60,798	0,695	16,245	15,55	15,529	3,586	3,578	2,570	71,821	20,489	1,640	0,080	0,725
9	51,84	51,786	0,885	17,885	17	16,965	3,416	3,406	2,392	70,224	20,489	1,397	0,068	0,792
10	32,4	32,367	1,115	19,405	18,29	18,252	3,181	3,172	1,608	50,707	20,489	0,873	0,043	0,852
11	24,12	24,087	1,345	20,645	19,3	19,247	2,926	2,914	1,262	43,307	20,489	0,650	0,032	0,899
12	0	0,000	1,835	22,605	20,77	20,713	2,008	1,999	0,000	0,000	20,489	0,000	0,000	0,967

Tabla 3 valores calculados 2700[rpm]

	Qx	Q	pax	pdx	Нх	Н	Nex	Ne	Nh	ηgl	U2	cm2	ф	Ψ
	[m3/h]	[m3/h]	mca	mca	mca	mca	kW	kW	kW	-	m/s	m/s	-	-
muestra														
			-											
1	100,8	100,725	0,685	2,485	3,17	3,165	2,305	2,300	0,868	37,733	19,076	2,716	0,142	0,170
			-											
2	96,84	96,733	0,435	4,365	4,8	4,789	2,465	2,457	1,261	51,330	19,076	2,609	0,137	0,258
			-											
3	90	89,900	0,265	5,965	6,23	6,216	2,584	2,576	1,521	59,058	19,076	2,424	0,127	0,335
			-											
4	86,04	85,945	0,115	7,405	7,52	7,503	2,664	2,655	1,755	66,116	19,076	2,318	0,121	0,404
5	82,44	82,379	0,125	9,205	9,08	9,067	2,743	2,736	2,033	74,302	19,076	2,221	0,116	0,488
6	75,6	75,516	0,365	10,925	10,56	10,537	2,783	2,774	2,166	78,082	19,076	2,036	0,107	0,568
7	57,6	57,536	0,595	13,005	12,41	12,382	2,783	2,774	1,939	69,914	19,076	1,552	0,081	0,667
8	53,64	53,600	0,795	14,605	13,81	13,790	2,743	2,736	2,012	73,529	19,076	1,445	0,076	0,743
9	39,6	39,571	1,015	16,125	15,11	15,088	2,584	2,578	1,625	63,048	19,076	1,067	0,056	0,813
10	28,44	28,408	1,245	17,565	16,32	16,284	2,346	2,338	1,259	53,860	19,076	0,766	0,040	0,877
11	20,16	20,138	1,375	18,285	16,91	16,872	2,087	2,081	0,925	44,457	19,076	0,543	0,028	0,909
12	0	0,000	1,845	19,805	17,96	17,920	1,551	1,546	0,000	0,000	19,076	0,000	0,000	0,965

Gráficos

Ilustración 1

Ilustración 2

¿Cuáles son las condiciones óptimas de operación de esta bomba?

 Las condiciones óptimas de operación para una bomba se encuentran cuando se obtiene el mayor rendimiento posible, analizando el grafico de rendimiento vs caudal podemos observar un mayor rendimiento cuando el motor de la bomba opera a 2700 [rpm], específicamente cuando se mide un caudal aproximado de 75[m³/h] el cual corresponde a un rendimiento aproximado del 80%.

¿Las curvas tienen la forma esperada?

- Según los gráficos teóricos proporcionados por el apunte del profesor, las curvas características obtenidas mediante los cálculos realizados tienen la forma esperada, estas tienen tan solo una mínima diferencia que se debe a la diferencia que podría existir al estimar el valor del caudal Qx desde el gráfico del venturímetro adjunto en el apunte.
- Cabe destacar que, en la curva rendimiento vs caudal, hay una primera parte de valores que van entre caudales de 0 a 20, los cuales son despreciables para el análisis.

¿Cuál es la potencia máxima consumida?

 La potencia máxima consumida, se puede observar según el gráfico potencia vs caudal, se encuentra cuando el motor gira a una velocidad de 3070[rpm], específicamente cuando funciona a un caudal de 71,813 [m³/h], en este punto se observó una potencia máxima consumida de 4,313 [kW].

¿Qué tipo de curvas son?

 En ambos casos se nota que los valores de la curva van aumentando hasta llegar a un punto donde alcanza su valor máximo, luego de ello comienza a descender a medida que avanza.

Ilustración 3

¿La nube de puntos que conforman esta curva son muy dispersos?

- Mediante el gráfico se puede observar que los puntos para las 3 velocidades están bastante concentrados o a estar sobre cierta línea de tendencia, esto nos indica que los valores no están muy dispersos.
- En ciertos puntos se aleja, pero la tendencia general es a que los puntos no están dispersos.

Al observar todas las curvas anteriores ¿Qué tipo de bomba centrifuga es?

Se obtuvo una velocidad específica de 43,34, esto nos indica que corresponde a una bomba Francis de tipo hélice o helicoidal (estas están en un rango de 35-80)

Calcule la velocidad especifica y determine si las características constructivas y operacionales son concordantes con esa velocidad específica y su respuesta.

	3070 rpm	2900 rpm	2700 rpm
	Ns	Ns	Ns
1	30,9728429	30,3059942	30,1422672
2	32,1397213	32,3287477	32,0128836
3	34,2521107	33,7357927	33,5046708
4	36,2853652	35,9878756	35,9267177
5	38,5277656	39,1284545	39,484512
6	43,1650662	42,9359873	<mark>43,3435286</mark>
7	48,6692525	47,3577584	45,4375235
8	54,9786109	53,6285105	54,7079582
9	65,5692482	64,8364482	64,4034112
10	83,0297653	78,4808096	94,8848962
11	117,963004	119,158227	144,309381
12	0	0	0

El valor destacado corresponde al valor de velocidad específica para el máximo rendimiento, el cual fue encontrado para una velocidad de giro de 2700[rpm] en el motor de la bomba centrífuga.

Conclusión

Mediante la realización de esta experiencia de laboratorio se pudo analizar el comportamiento de una bomba centrifuga, a partir de la obtención de sus correspondientes curvas características, que fueron construidas gracias a los datos obtenidos experimentalmente, se determinó que la bomba estudiada corresponde a una bomba centrifuga Francis de tipo hélice o helicoidal basado en la velocidad especifica correspondiente al máximo rendimiento de esta.

Esto nos indica la importancia de los datos obtenidos, ya que gracias a ellos se pudo determinar el tipo de bomba centrifuga que corresponde.

Referencias

- [1] https://tameco.es/aplicaciones-de-las-bombas-centrifugas/
- [2] http://www.eiq.cl/lou/assets/files/LOU%20-%20Curva%20Caracter%C3%ADstica%20Bomba%20Centr%C3%ADfuga.pdf
- [3] https://www.debem.com/es/curva-caracteristica-de-bomba-centrifuga/
- [4] https://www.uv.es/idiqlab/labOBPB/documentos/Bomba_centrifuga_OBPB.pdf