Solving Linear Equations

Mitaxi Mehta: Lectures 13and14

• The equation $Ax \uparrow = b \uparrow$ can have no solutions, a unique solution or infinitely many solutions.

- The equation $Ax \uparrow = b \uparrow$ can have no solutions, a unique solution or infinitely many solutions.
- When there are are infinitely many solutions, the general solution can be written as,

$$x^* \uparrow = x_p \uparrow + x_n \uparrow$$

- The equation $Ax \uparrow = b \uparrow$ can have no solutions, a unique solution or infinitely many solutions.
- When there are are infinitely many solutions, the general solution can be written as,

$$X^* \uparrow = X_D \uparrow + X_D \uparrow$$

• $x_p \uparrow$ is a vector in the row space that solves the equation and $x_n \uparrow$ is any vector in the null space.

- The equation $Ax \uparrow = b \uparrow$ can have no solutions, a unique solution or infinitely many solutions.
- When there are are infinitely many solutions, the general solution can be written as,

$$X^* \uparrow = X_D \uparrow + X_D \uparrow$$

- $x_p \uparrow$ is a vector in the row space that solves the equation and $x_n \uparrow$ is any vector in the null space.
- The transformation A takes the row space vector $x_p \uparrow$ to the column space vector $b \uparrow$ and maps any null space vector x_p to the zero vector.

• Consider two vectors $a \uparrow$ and $b \uparrow$, $a \uparrow$ defines displacement from (0,0) to (1,0) and $b \uparrow$ defines displacement from (1,1) to (2,1).

- Consider two vectors $a \uparrow$ and $b \uparrow$, $a \uparrow$ defines displacement from (0,0) to (1,0) and $b \uparrow$ defines displacement from (1,1) to (2,1).
- What is the difference between a ↑ and b ↑?

- Consider two vectors $a \uparrow$ and $b \uparrow$, $a \uparrow$ defines displacement from (0,0) to (1,0) and $b \uparrow$ defines displacement from (1,1) to (2,1).
- What is the difference between a ↑ and b ↑?
- Shrey Patel: $a \uparrow = b \uparrow$.

- Consider two vectors $a \uparrow$ and $b \uparrow$, $a \uparrow$ defines displacement from (0,0) to (1,0) and $b \uparrow$ defines displacement from (1,1) to (2,1).
- What is the difference between a ↑ and b ↑?
- Shrey Patel: $a \uparrow = b \uparrow$.
- In Euclidean geometry location of a vector is unimportant.
 The unit vectors are independent of position.

 Read the definition of a vector space from Strang (Ed. 4), page 74 problem 6.

- Read the definition of a vector space from Strang (Ed. 4), page 74 problem 6.
- To define a vector space, one needs two objects. A collection of vectors V, with v_j ↑∈ V and a collection of numbers A with members a, b, ... ∈ A and a number of properties satisfied by the elements of V and A.

- Read the definition of a vector space from Strang (Ed. 4), page 74 problem 6.
- To define a vector space, one needs two objects. A collection of vectors V, with v_j ↑∈ V and a collection of numbers A with members a, b, ... ∈ A and a number of properties satisfied by the elements of V and A.
- Please note that different properties apply to numbers and vectors. In this course A = R, the real line, unless stated otherwise.

• Question: Consider $V = Z^2$ that contains all two dimensional vectors with integer entries and A = R, the set of real numbers, do they define a vector space?

- Question: Consider $V = Z^2$ that contains all two dimensional vectors with integer entries and A = R, the set of real numbers, do they define a vector space?
- No, because a member of V, when multiplied by a fraction, ceases to be a member of V.

• Consider V to be a set of all 2×2 matrices,

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

with $a, b, c, d \in R$.

• Consider V to be a set of all 2×2 matrices,

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

with $a, b, c, d \in R$.

• Is V a vector space?

• Consider V to be a set of all 2×2 matrices,

$$\left(\begin{array}{cc}a&b\\c&d\end{array}\right)$$

with $a, b, c, d \in R$.

- Is V a vector space ?
- Yes, because all the vector space properties are satisfied.

• For a given matrix A, consider the row space R(A), the column space C(A) and the null space N(A).

- For a given matrix A, consider the row space R(A), the column space C(A) and the null space N(A).
- To prove that each of the above spaces is a vector space, show that any linear combination of two vectors of a space also belongs to that space.

• Consider the plane 2x + 3y + z = 10 and the set of vectors with components (x, y, z) that satisfy the above equation. Is that a vector space ?

- Consider the plane 2x + 3y + z = 10 and the set of vectors with components (x, y, z) that satisfy the above equation. Is that a vector space ?
- Shubham Pujara: No because zero vector does not belong to the space, i.e., x = y = z = 0 does not satisfy the plane equation.

- Consider the plane 2x + 3y + z = 10 and the set of vectors with components (x, y, z) that satisfy the above equation. Is that a vector space ?
- Shubham Pujara: No because zero vector does not belong to the space, i.e., x = y = z = 0 does not satisfy the plane equation.
- Negative vectors also don't belong to the set, for example (0,0,10) satisfies the plane equation but (0,0,-10) does not.

Exercise: What is the null space of,

$$A = \left(\begin{array}{cc} 1 & 2 \\ 2 & 1 \end{array}\right)$$

Exercise: What is the null space of,

$$A = \left(\begin{array}{cc} 1 & 2 \\ 2 & 1 \end{array}\right)$$

Dhruv Parikh: Only the zero vector.

Exercise: What is the null space of,

$$A = \left(\begin{array}{cc} 1 & 2 \\ 2 & 1 \end{array}\right)$$

- Dhruv Parikh: Only the zero vector.
- For the given matrix, N(A) contains only one vector (0,0), it is a zero dimensional space.

Echelon form of a matrix

 Echelon form of a matrix is a special form, brought about using row operations and row exchange.

Echelon form of a matrix

- Echelon form of a matrix is a special form, brought about using row operations and row exchange.
- In this form, in every row, the first leading entry (nonzero entry) is such that all elements in the column below it are zero (An upper diagonal form).

Echelon form: example

Calculate the Echelon form of the following matrix.

Echelon form: example

Calculate the Echelon form of the following matrix.

$$A = \left(\begin{array}{rrrr} 1 & 3 & 3 & 2 \\ 2 & 6 & 9 & 7 \\ -1 & -3 & 3 & 4 \end{array}\right)$$

Echelon form: example

• The row operation $R_3 = R_3 + R_1$ brings the matrix in the form

$$A = \left(\begin{array}{rrrr} 1 & 3 & 3 & 2 \\ 2 & 6 & 9 & 7 \\ 0 & 0 & 6 & 6 \end{array}\right)$$

• Proceeding in a manner similar to Gauss elimination using $R_2 = R_2 - (-2)R_1$ and $R_3 = R_3 + (-2)R_2$, the matrix comes into the following form,

$$B = \left(\begin{array}{cccc} 1 & 3 & 3 & 2 \\ 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

• The entries B_{11} and B_{23} are the first nonzero entries in the row, they are called pivots.

- The entries B_{11} and B_{23} are the first nonzero entries in the row, they are called pivots.
- The number of pivots in the Echelon form gives the rank of the matrix.

- The entries B_{11} and B_{23} are the first nonzero entries in the row, they are called pivots.
- The number of pivots in the Echelon form gives the rank of the matrix.
- Rank of the matrix also equals the dimensions of R(A) and C(A).

- The entries B_{11} and B_{23} are the first nonzero entries in the row, they are called pivots.
- The number of pivots in the Echelon form gives the rank of the matrix.
- Rank of the matrix also equals the dimensions of R(A) and C(A).
- The calculation of N(A) becomes easy using the Echelon form of A.

Row operations as Matrix multiplication

 Each row operation is equivalent to multiplying the given matrix on the right with another matrix.

Row operations as Matrix multiplication

- Each row operation is equivalent to multiplying the given matrix on the right with another matrix.
- For example, row exchange is equivalent to the following matrix multiplication,

$$\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right) \left(\begin{array}{cc} a & b \\ c & d \end{array}\right) = \left(\begin{array}{cc} c & d \\ a & b \end{array}\right)$$

• The operation $R_2 = R_2 + (g)R_1$ can be written as,

• The operation $R_2 = R_2 + (g)R_1$ can be written as,

$$\left(\begin{array}{cc} 1 & 0 \\ g & 1 \end{array}\right) \left(\begin{array}{cc} a & b \\ c & d \end{array}\right) = \left(\begin{array}{cc} a & b \\ g \ a+c & g \ b+d \end{array}\right)$$

• Suppose that one wants to find N(A), i.e. all vectors $x \uparrow$ such that,

$$Ax \uparrow = 0 \uparrow$$
.

• Suppose that one wants to find N(A), i.e. all vectors $x \uparrow$ such that,

$$Ax \uparrow = 0 \uparrow$$
.

 Multiplication by a row operation B on both the sides leads to

$$BAx \uparrow = 0 \uparrow$$
.

• Suppose that one wants to find N(A), i.e. all vectors $x \uparrow$ such that,

$$Ax \uparrow = 0 \uparrow$$
.

 Multiplication by a row operation B on both the sides leads to

$$BAx \uparrow = 0 \uparrow$$
.

• Finally when the matrix is brought to the Echelon form,

$$A_{echelon}x \uparrow = 0 \uparrow$$

• If A is taken to be matrix of our previous Echelon example,

$$A = \left(\begin{array}{cccc} 1 & 3 & 3 & 2 \\ 2 & 6 & 9 & 7 \\ 0 & 0 & 6 & 6 \end{array}\right)$$

• The equation defining the Null space vectors becomes,

The equation defining the Null space vectors becomes,

$$\left(\begin{array}{cccc} 1 & 3 & 3 & 2 \\ 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 0 \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \\ x_4 \end{array}\right) = \left(\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \end{array}\right)$$

• The pivot entries multiply the variables x_1 and x_3 , x_1 and x_3 are called pivot variables.

- The pivot entries multiply the variables x_1 and x_3 , x_1 and x_3 are called pivot variables.
- x_2 and x_4 are called the free variables.

- The pivot entries multiply the variables x_1 and x_3 , x_1 and x_3 are called pivot variables.
- x_2 and x_4 are called the free variables.
- The pivot variables can be solved for in terms of the free variables.

- The pivot entries multiply the variables x_1 and x_3 , x_1 and x_3 are called pivot variables.
- x_2 and x_4 are called the free variables.
- The pivot variables can be solved for in terms of the free variables.
- The free variables can be assigned any value in R.

Writing out the two equations in

$$\left(\begin{array}{cccc} 1 & 3 & 3 & 2 \\ 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 0 \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \\ x_4 \end{array}\right) = \left(\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \end{array}\right)$$

and solving for the pivot variables gives,

•
$$x_3 = -x_4$$
 and $x_1 = -3x_2 + x_4$

A general null vector can thus be rewritten as,

$$x \uparrow = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} -3x_2 + x_4 \\ x_2 \\ -x_4 \\ x_4 \end{pmatrix} = x_2 \begin{pmatrix} -3 \\ 1 \\ 0 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} 1 \\ 0 \\ -1 \\ 1 \end{pmatrix}$$

 The previous equation describes the general form of vectors in the Null space of A. The dimension of the Null space is 2.

- The previous equation describes the general form of vectors in the Null space of A. The dimension of the Null space is 2.
- The dimension of N(A) = Number of columns in A Rank of A.