

Politechnika Wrocławska

Podstawy Techniki Mikroprocesorowej wykład 4: DMA, pamięć

Dr inż. Jacek Mazurkiewicz Katedra Informatyki Technicznej e-mail: Jacek.Mazurkiewicz@pwr.edu.pl

DMA (1)

Communication rate

- procesor z powodzeniem obsłuży sam transmisję I/O <-> pamięć
- ale to bywa męczące!

- DMA lepszy niż SuperES!
- DMA jak TurboDymoMan!

DMA - gdy transmisja omija procesor

DMA (2)

- DMA inteligencją nie grzeszy
- ale uczciwy z niego robotnik
 - gdy ma sprecyzowane zadanie
- "zamówienie-wykonanie-honoracja"
- niestety rywal do magistrali
- upomina się gdy tylko zadanie dostanie

Politechnika Wrocławska

DMA (3)

Tryby pracy:

- blokowy:
 - cały blok przesyłany jednym ciągiem
 - dobre jak czas krytyczny
 - procesor jak pies w studni

- z wykradaniem taktów:

- transmisja "poszarpana"
- procesor panuje nad magistralą
- procesor pracuje w zasadzie bez przeszkód

- zgodnie z zapotrzebowaniem:

- ustalone maksymalne bloki danych
- ile będzie okazuje się na bieżąco

Zamówienie:

- DMA jak układ I/O rejestry:
- adresowe:
 - początek obszaru pamięci
 - mogą być dwa: pamięć pamięć
- licznikowe:
 - ile słów przyjąć, podać, przepisać
- sterujące:
 - tryb pracy i kierunek transmisji

DMA (5)

DMA (6)

- Wykonanie:
 - jak tylko I/O gotowe walka o magistralę
 - transmisja zgodnie z wybranym trybem
 - jak zrobione meldunek przerwanie
 - szczegóły wykonania rejestry stanu

DMA (8)

Trywiałki

pamięć programu i danych

- zadania nie zawsze całe natychmiast
- argumenty i rezultaty dla potrzebnego fragmentu

parametry bardzo podstawowe

- pojemność liczba pamiętanych słów
 określonej szerokości, magistrala adresowa
- organizacja dopasowanie do magistrali danych
- czas dostępu ile czasu trzeba by dane otrzymać
- wiele innych w katalogach!

Klasyfikacja (1)

ROM

- Read Only Memory za chwilę się osłabi
- PROM: Programmable ROM
- EPROM: Erasable Programmable ROM
- EEPROM: Electrically Erasable Programmable ROM
- EAPROM: Electrically Alterable PROM

RAM

- Random Access Memory podział też będzie:
- DRAM Dynamic RAM
- SRAM Static RAM

ROM - cechy

- różne typy organizacji
- szybkie
- różne pojemności
- "wsegda gotowa!"
- nieulotna
- fonty drukarek
- BIOS-y (kiedyś)
- technologia MOS i pokrewne

PROM - cechy

- różne typy organizacji
- bardzo szybkie
- różne pojemności małe
- "wsegda gotowa!"
- raz programowalna
- programowanie off-line
- kodery, dekodery
- translatory
- szyfrowanie
- technologia bipolarna

EPROM - cechy

- różne typy organizacji
- wolne
- duże pojemności
- "wsegda gotowa!"
- programowalna wiele razy
- tranzystory z pływającą bramką
- programowanie off-line ultrafiolet
- zjawisko fotoelektryczne zewnętrzne
- gdzie dane się zmieniają

EEPROM - cechy

- różne typy organizacji
- wolne
- duże pojemności
- "wsegda gotowa!"
- programowalna wiele razy
- programowanie on-line
- kasowanie
 i programowanie
 elektryczne
- gdzie dane się zmieniają
- kasowanie blokowe

EAPROM - cechy

- różne typy organizacji
- wolne
- duże pojemności
- "wsegda gotowa!"
- programowalna wiele razy
- programowanie on-line
- kasowanie i programowanie elektryczne
- gdzie dane się zmieniają
- kasowanie wybiórcze

SRAM - cechy

- różne typy organizacji
- szybkie
- pojemności różne
- przerzutnik bistabilny!
- jest prąd = pamiętamy

- brak prądu = brak pamiętania
- nie trzeba odświeżać!
- pamięć półprzewodnikowa
- małe systemy zamknięte

DRAM - cechy

- różne typy organizacji
- szybkie
- pojemności różne
- kondensator!
- jest prąd = pamiętamy
- brak prądu = brak pamiętania
- trzeba odświeżać!
- pamięć półprzewodnikowa
- duże systemy otwarte

Cechy rodzin pamięci - podsumowanie

Rodzaj pamięci	Zalety	Wady
ROM	niska cena przy dużej liczbie egzemplarzy, duże pojemności, zachowuje informacje po odłączeniu zasilania, mały pobór mocy, proste układy aplikacyjne	brak możliwości modyfikacji zawartości, wysoki koszt opracowania pamięci o nowej zawartości informacji
PROM	łatwość wprowadzania informacji przez użytkownika, duża szybkość, zachowuje informacje po odłączeniu zasilania, proste układy aplikacyjne	bardzo ograniczone możliwości modyfikacji wprowadzonej informacji, duży pobór mocy, raczej małe pojemności, wysoka cena
EPROM	łatwość wielokrotnego wprowadzania informacji, możliwość kasowania informacji, mały pobór mocy, umiarkowana cena, zachowuje informacje po odłączeniu zasilania, duże pojemności, proste układy aplikacyjne	możliwość przypadkowego kasowania światłem rozproszo- nym, konieczność kasowania i wprowadzania informacji za pomocą specjalnych urządzeń, ograniczona liczba kasowań
EEPROM	możliwość wprowadzania i modyfikacji informacji w układzie aplikacyjnym, mały pobór mocy, zachowuje informacje po odłączeniu zasilania	wysoka cena, dość długi czas zapisu informacji, ograniczona liczba zmian informacji, średnie pojemności
SRAM	bardzo łatwe i szybkie zapisywanie informacji, duże szyb- kości, proste układy aplikacyjne, dość duże pojemności	dla zachowania informacji wymaga ciągłego zasilania, raczej wysoka cena
DRAM	bardzo łatwe i szybkie zapisywanie informacji, niskie ceny, duże pojemności	dla zachowania informacji wymaga ciągłego zasilania i okresowego odświeżania, skomplikowane układy aplikacyjne

Cykl odczytu ROM / SRAM

Cykl zapisu SRAM

Cykl odczytu DRAM

