ADVANCED PLACEMENT CHEMISTRY EQUATIONS AND CONSTANTS

ATOMIC STRUCTURE

$$E = hv c = \lambda v$$

$$\lambda = \frac{h}{mv} p = mv$$

$$E_n = \frac{-2.178 \times 10^{-18}}{n^2} \text{ joule}$$

EQUILIBRIUM

$$K_{a} = \frac{[\mathrm{H}^{+}][\mathrm{A}^{-}]}{[\mathrm{HA}]}$$

$$K_{b} = \frac{[\mathrm{OH}^{-}][\mathrm{HB}^{+}]}{[\mathrm{B}]}$$

$$K_{w} = [\mathrm{OH}^{-}][\mathrm{H}^{+}] = 1.0 \times 10^{-14} @ 25^{\circ}\mathrm{C}$$

$$= K_{a} \times K_{b}$$

$$\mathrm{pH} = -\log[\mathrm{H}^{+}], \ \mathrm{pOH} = -\log[\mathrm{OH}^{-}]$$

$$14 = \mathrm{pH} + \mathrm{pOH}$$

$$\mathrm{pH} = \mathrm{p}K_{a} + \log\frac{[\mathrm{A}^{-}]}{[\mathrm{HA}]}$$

$$\mathrm{pOH} = \mathrm{p}K_{b} + \log\frac{[\mathrm{HB}^{+}]}{[\mathrm{B}]}$$

$$\mathrm{p}K_{a} = -\log K_{a}, \ \mathrm{p}K_{b} = -\log K_{b}$$

$$K_{p} = K_{c}(RT)^{\Delta n},$$
where Δn = moles product gas – moles reactant gas

THERMOCHEMISTRY/KINETICS

$$\Delta S^{\circ} = \sum S^{\circ} \text{ products } -\sum S^{\circ} \text{ reactants}$$

$$\Delta H^{\circ} = \sum \Delta H_{f}^{\circ} \text{ products } -\sum \Delta H_{f}^{\circ} \text{ reactants}$$

$$\Delta G^{\circ} = \sum \Delta G_{f}^{\circ} \text{ products } -\sum \Delta G_{f}^{\circ} \text{ reactants}$$

$$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$$

$$= -RT \ln K = -2.303 RT \log K$$

$$= -n \mathcal{F} E^{\circ}$$

$$\Delta G = \Delta G^{\circ} + RT \ln Q = \Delta G^{\circ} + 2.303 RT \log Q$$

$$q = mc\Delta T$$

$$C_p = \frac{\Delta H}{\Delta T}$$

$$\ln[\mathbf{A}]_t - \ln[\mathbf{A}]_0 = -kt$$
$$\frac{1}{[\mathbf{A}]_t} - \frac{1}{[\mathbf{A}]_0} = kt$$

$$\ln k = \frac{-E_a}{R} \left(\frac{1}{T}\right) + \ln A$$

$$E = \text{energy}$$
 $v = \text{velocity}$
 $v = \text{frequency}$ $n = \text{principal quantum number}$
 $\lambda = \text{wavelength}$ $m = \text{mass}$
 $p = \text{momentum}$

Speed of light,
$$c = 3.0 \times 10^8 \,\mathrm{m\ s^{-1}}$$
Planck's constant, $h = 6.63 \times 10^{-34} \,\mathrm{J\ s}$
Boltzmann's constant, $k = 1.38 \times 10^{-23} \,\mathrm{J\ K^{-1}}$
Avogadro's number $= 6.022 \times 10^{23} \,\mathrm{mol^{-1}}$
Electron charge, $e = -1.602 \times 10^{-19} \,\mathrm{coulomb}$

Equilibrium Constants

1 electron volt per atom = $96.5 \text{ kJ} \text{ mol}^{-1}$

 K_a (weak acid) K_b (weak base) K_w (water) K_p (gas pressure) K_c (molar concentrations)

 S° = standard entropy H° = standard enthalpy G° = standard free energy

 E° = standard reduction potential T = temperaturen = moles

m = massq = heat

c =specific heat capacity

 C_p = molar heat capacity at constant pressure E_a = activation energy k = rate constant

A =frequency factor

Faraday's constant, $\mathcal{F} = 96,500$ coulombs per mole of electrons

> Gas constant, $R = 8.31 \text{ J mol}^{-1} \text{ K}^{-1}$ $= 0.0821 L atm mol^{-1} K^{-1}$ $= 62.4 \text{ L torr mol}^{-1} \text{ K}^{-1}$ $= 8.31 \text{ volt coulomb mol}^{-1} \text{ K}^{-1}$

-4-