Metody numeryczne

Szymon Gołaś Paweł Kwiatkowski

Zadanie

IPP Adam Piechna, materiały (odręczne szkice) doc. dr inż. Jerzy Pułaczewski

Znana jest wartość ciśnienia (ciśnienie atmosferyczne) oraz skład mieszaniny benzenu i toluenu (50/50). Znaleźć temperaturę wrzenia oraz skład par mieszaniny.

$$P = xP_1^s + (1 - x)P_2^s$$
$$y = \frac{xP_1^s}{P}$$

Porównać metody bisekcji, N-R i falsi.

Równanie Antoine'a dla toluenu (zakres temperatur 303 – 343 [K])

$$log_{10}(P_1^s) = A - (B / (T + C))$$

Równanie Antoine'a dla benzenu

$$\log_{10}(P_2^s) = A - (B / (T + C))$$

Wzory

$$log_{10}(P_1^s) = A - (B / (T + C))$$
 Równanie Antoine'a

$$P = \sum_{i=1}^n x_i^1 P_i^*$$
 Równanie Raoult'a

$$p = \sum_{i=1}^k p_i$$
 Równanie Daltona

$$P = *P_1^s + (1-*)P_2^s$$

$$y = *P_1^s$$

$$P = *P_1^s$$

Założenia

- Ciecze: benzen i toluen
- Mieszanina ciekła w stosunku 50/50 (x=0,5)
- Ciśnienie P=1 bar
- Zakres temperatur (353-383)K
- Benzen A,B,C

Α	В	С
4.72583	1660.652	-1.461

Toluen A,B,C

4.07827 1343.943 -53.773

(współczynniki dla ciśnienia w barach)

• Pary są gazami doskonałymi

Reprezentacja

$$log_{10}(P_1^s) = A - (B / (T + C))$$

Benzen A,B,C

Α	В	С
4.72583	1660.652	-1.461

Toluen A,B,C

4.07827	1343.943	-53.773
---------	----------	---------

Zakres temperatur (353-383)K

$$P = \sum_{i=1}^n x_i^{
m l} P_i^*$$

Wyznaczanie T wrzenia

$$P = xP_1^s + (1 - x)P_2^s$$

 $\log_{10}(P_1^s) = A - (B / (T + C))$

Ciśnienie P=1 bar

Metody numeryczne

- Bisekcja
- Metoda Newtona-Raphsona
- Regula Falsi

Warunkami początkowymi dla metod jest cały zadany zakres temperatur i dokładność wyznaczenia ciśnienia 0,01 Pa

Bisekcja

Bisekcja C.D.

Metoda Newtona-Raphsona

Metoda Newtona-Raphsona C.D.

Regula Falsi

$$T_2 = T_1 - \frac{f_{(T_1)}(T_1 - T_0)}{f_{(T_1)} - f_{(T_0)}}$$

Regula Falsi C.D.

Regula Falsi ze współczynnikiem Wyraźnej zbieżności

Otrzymane wyniki

```
Temperatura wrzenia mieszanki: 364.771K
zawartość toluenu w parach: 28.5661%
zawartość benzenu w parach: 71.4339%
```

Porównanie

	Iteracje	Czas
 Bisekcja 	19	2,59ms
• N-R	4	1,23ms
 Regula Falsi 	11	2,66ms
 Regula Falsi z wsp W.Z. 	6	2,55ms

Wszystkie metody doprowadziły do tego samego wyniku

Porównanie dla przedziału (300-400)K

	Iteracje	Czas
 Bisekcja 	22	2,55ms
• N-R	5	0,96ms
 Regula Falsi 	18	2,41ms
 Regula Falsi z wsp W.Z. 	12	2,59ms

Wszystkie metody doprowadziły do tego samego wyniku

Źródła

- Materiały z wykładu dr inż. Adama Piechny
- https://webbook.nist.gov/cgi/cbook.cgi?ID=C108883&Mask=4&Type=ANTOINE&Plot=on
- https://webbook.nist.gov/cgi/cbook.cgi?ID=C71432&Mask=4&Type=ANTOINE&Plot=on