Таблица 4 – Варианты заданий

задание	NK	NO	NT	задание	NK	NO	NT
вариант				вариант			
1	5	4	1	13	5	4	8
2	6	6	2	14	6	6	4
3	7	8	4	15	7	8	2
4	8	5	8	16	8	5	1
5	9	6	1	17	9	6	8
6	10	8	2	18	10	8	4
7	5	8	4	19	5	8	2
8	6	6	8	20	6	6	1
9	7	5	1	21	7	5	8
10	8	4	2	22	8	4	4
11	9	6	4	23	9	6	2
12	10	8	8	24	10	8	1

NK - число команд

NO - число операций

NT - число тактов в операции

4.3 Контрольные вопросы

- 1. При каком соотношении длительностей операций производительность наиболее эффективна?
- 2. Как влияет количество выполняемых операций (команд) на эффективность работы конвейера?
- 3. Как распределение по длительности и количеству операций влияет на общее быстродействие, и какие рекомендации здесь можно дать?
- 4. Назовите 3 класса конфликтов в работе конвейера и методы их разрешения?
- 5. Какие конфликты наиболее существенны для производительности конвейера?

5 Лабораторная работа № **5**. Распределение стоимостных затрат на построение вычислительных систем

Цель работы: освоить метод распределения затрат на построение вычислительной системы с одинаковыми техническими характеристиками

5.1 Теоретическая часть

Актуальность рассматриваемой задачи обусловлена необходимостью построения вычислительной системы (ВС) с одинаковыми техническими характеристиками подсистем, например: производительностью, сроком службы, надежностными и точностными характеристиками и другими.

Предположим, что BC содержит N подсистем контроля доступа к управляющим каналам. Известна величина допустимых затрат Z_S на реализацию BC. Целью задачи является нахождение варианта распределения стоимостных затрат $Z^* = \{z_1^*, z_2^*, ..., z_n^*\}$, для которого сроки службы всех подсистем P_i^* (i = 1, 2, ..., n), а соответственно, и всей BC P^* , максимальны и одинаковы:

$$Z^* = \{z_1^*, z_2^*, ..., z_n^*\} : P^* = f(z_1^*, z_2^*, ..., z_n^*) \to \max; \sum_{i=1}^n z_i \le Z,$$
 (5.1)

Эта задача может быть решена одним из специализированных методов математического программирования. Однако данный подход сопряжен с необходимостью достаточно глубокого знания методов математического программирования и наличием соответствующих программных средств. Одним из альтернативных подходов к решению данной задачи является создание унифицированных методов, основанных на комбинаторном анализе вариантов и использовании высоких технических характеристиках современных компьютеров. В основе разработанного в работе метода последовательного увеличения параметра P с учетом ограничений по затратам лежит следующий алгоритм, представленный на рисунке 5.1:

- на основе известных аналитических выражений зависимостей $P_i = f(z_i)$ при последовательном увеличении P от некоторого минимального значения, например, нулевого, с шагом ΔP рассчитываются соответствующие затраты (z1-z3) для обеспечения выбранного P;
- по нижней оси ординат производится контроль общей суммы затрат Z_j ;
- при достижении условия $Z_j > Z_{max}$ увеличение параметра P прекращается, оптимальным считается вариант, полученный на предыдущем шаге.

Для реализации алгоритма написана программа, производящая необходимые расчеты и выводящая результаты распределения ресурсов в числовом виде и в виде анимационной номограммы. В качестве примера на рисунке представлены модельные кривые P(z) для трех подсистем (кривые 1,2 и 3).

Рисунок 5.1 – Номограмма распределения затрат в ВС

В качестве модельных, для демонстрации работы программы выбраны функции вида:

$$P(z) = P_B(1 - e^{-kz}), P(z) = kz,$$

где величина P_B – характеризует некоторую базовую величину параметра и может быть равна 1,

k – коэффициент пропорциональности.

Инструкция по работе с программой

Данный алгоритм и программа позволяют:

- рассчитать отдельно затраты на каждую подсистему ВС при заданном сроке службы средств подсистемы;
- распределять стоимостные затраты на 4 подсистемы вычислительной системы таким образом, чтобы при заданных модельных функциях зависимостей сроков службы подсистем, эти сроки были одинаковы, а общие затраты разработку подсистем были не больше заданных.

После запуска программы, на экране появляется график, ось I — это ось износа средств подсистем (по ней откладывается базовый срок службы, т.е. максимальный срок службы средств подсистем), ось Z — ось затрат, изменяется в тыс. рублей (в программе заложен предел, соответствующий 50 тыс. рублей). На рисунке 5.2 представлен скриншот программы.

На панели управления находятся следующие элементы:

- поле ввода "Масштаб" для изменения масштаба рисунка;
- поле ввода "Базовый срок службы" для установки базового срока службы средств подсистем;
 - поле ввода "Нахождение затрат", для определения затрат на подсистемы;
- кнопка "Найти" для определения результатов расчета затрат;
- поле ввода "Распределение затрат"— позволяет при заданных общих затратах распределить их на все 4 подсистемы;
 - кнопка "Обновить" для очистки области графика после какой-либо операции;
- кнопка "Отчёт" для вывода результата распределения затрат в виде отчёта в MS Excel.

Рисунок 5.2 - Скриншот программы распределения затрат

5.2 Постановка задачи

- 1. Построить схему алгоритма распределения затрат для подсистем ВС, имеющих равный срок службы оборудования с учетом заданной предельной суммы затрат;
- 2. На основе программы распределения затрат (предложенную преподавателем) рассчитать отдельно необходимые затраты для обеспечения требуемого срока службы подсистем *Тзадан*; коэффициент масштабирования графика принять равным 200;
- 3. Распределить затраты на подсистемы с учетом заданной общей суммы затрат на вычислительную систему **Zs**;
- 4. Сделать выводы по работе.

Таблица 5 – Варианты заданий на работу

Задание	Тбаз	Тзадан	Zs	Задание	Тбаз	Тза- дан	Zs
Вариант	лет	лет	тыс.р.	Вариант	лет	лет	тыс.р.
1	6	2	15	13	6	6	20
2	8	3	16	14	8	4	19
3	10	4	17	15	10	3	18
4	6	5	18	16	6	2	17
5	8	6	19	17	8	6	16
6	10	2	20	18	10	4	15
7	6	3	15	19	6	3	20
8	8	4	16	20	8	2	19
9	10	5	17	21	10	6	18
10	6	6	18	22	6	4	17
11	8	2	19	23	8	3	16
12	10	3	20	24	10	2	15

5.3 Контрольные вопросы

- 1. Объяснить порядок вычисления затрат по номограмме 5.1.
- 2. От чего зависит быстродействие рассмотренного в работе алгоритма распределения затрат.
 - 3. В чем суть закона Гроша для вычислительных систем.