

Mortgage Default Scorecard

A report submitted to Dr. Thomas Mayock

Cross Section and Time Series Econometrics

Fall 2018

Author: Akshay D Patil

Abstract:

The goal of the project is to build up a "scorecard" to predict mortgage defaults. The task is to build up an econometric model that predicts the probability that given loan defaults. In this case, a logistic regression model is used since the dependent variable, BAD_OVER_48_60 is a categorical variable. After selecting the model, independent variables are stepwise selected and added to the model to increase the predictive performance of the model. After developing the final model, an analysis is performed on out-of-sample data and is compared against in-sample data.

Table of Contents

1		Intro	oduction	3
2		Data	a Description	3
	2.1	Ĺ	Variable Description:	3
		2.1.1	1 Summary Statistics of Categorical Variable:	6
		2.1.2	2 Summary Statistics of Continuous Variable:	6
	2.2	2	Data Partition:	7
3		Mod	del Description:	7
	3.1	L	Logistic Regression Description:	7
	3.2	2	Purpose of the model:	7
	3.3	3	Expected Economic Relationship of Independent variables with Dependent Variable	7
	3.4	ı	Initial Model Specification:	8
4		Mod	del Output	8
	4.1	L	Logistic Regression Output	8
	4.2	2	Average Marginal Effects	9
	4.3	3	Interpretation of regression Output:	9
5		Mod	del Performance Testing	11
	5.1	L	KS of Development vs Holdout	11
	5.2	2	Results from Out of Sample testing	11
	5.3	3	Predictive accuracy assessment table	11
6		Cond	clusion	12
7		Refe	erence	12
8		Арр	endix	13

1 Introduction

The Great Recession of 2007 resulted in dramatic economic and political changes and its effects are still being felt all over the world. Since then mortgage lending companies are meticulously evaluating the underlying default risk to avoid a future recession. It is in this sense important to comprehend the fundamental drivers in the market and how they are connected to the risk of default. Considering this situation our client who is a mortgage lender wishes to engage in risk-based pricing for its mortgage loans. The first step for this is to construct a mortgage scorecard using a loan-level dataset that will predict the probability that a loan defaults.

2 Data Description

The data used is from the *Freddie Mac Single-Family Loan-Level Dataset*. The loans included in the dataset are fully amortizing and fixed-rate Single Family mortgages. To create a simple random sample, loans were selected at random, so that each loan in the full Dataset had an equal probability of being selected [1]. The dataset is split in calendar quarters and for each quarter there is loan-level origination data and monthly loan performance data. Each loan in origination data is assigned with unique Loan Sequence Number and this is used to merge the two transformed datasets. No other exterior data is used while developing the model.

2.1 Variable Description:

This segment talks about the attributes of the variables in the Loan-level dataset and the thinking to incorporate them in the model. The information for each variable was obtained from the User Guide and the command codebook in STATA. The variables described are the independent variables.

2.1.1 LTV Combined Orig:

The ratio is obtained by dividing the original mortgage loan amount on the note date plus any secondary mortgage loan amount disclosed by the Seller by the lesser of the mortgaged appraised value on the note date or its purchase price [2].

2.1.1.1 Missing Observations Treatment:

There are 2 missing observations for LTV_Combined_Orig which are not reported. These observations can be deleted without losing the attributes of the dataset.

2.1.1.2 Grouping:

As seen from the histogram plot 1, uniform groups of LTV_Combined_Orig cannot be formed since the data is not uniformly distributed. So, LTV_Combined_Orig is divided into 15 groups starting from 30 to 105 with a difference of 5 percentage points in combined LTV and then each group is assigned to a new variable LTV_Group enumerated from 1 to 15. The data is then set to be a time series data. It can be clearly seen from the TS 1 graph that a non-linear relationship is present. The graph is analyzed to find appropriate groups that will help understand the relationship between combined LTV and default better and also the impact of combined LTV on the likelihood of default. The adjusted groups of LTV_Group are mentioned in Table 1.

2.1.2 CreditScore:

A credit score is a statistical number that assesses a purchaser's financial creditworthiness and depends on credit history. Credit score ranges from 300-850, and the higher score, indicates that the borrower has timely repaid his obligations in past. A credit score plays a vital role in loan specialist's choice to offer credit.

2.1.2.1 Missing Observations Treatment:

There are 29 missing observations for which CreditScore are not reported which records to under 0.1% of the aggregate number of observations. These observations can be deleted without losing the attributes of the dataset.

2.1.2.2 Grouping:

A new group Credit_Group is created and similar grouping procedure was carried out as mentioned before, for CreditScore also. The TS 2 graph is analyzed to find appropriate groups that will help understand the relationship between CreditScore and default better and also the impact of credit scores on the likelihood of default. The adjusted groups of credit scores are mentioned in Table 2.

2.1.3 DTI_Backened_Orig:

Debt to Income ratio is defined as the ratio of the total debt owed by the purchaser with the total income of the purchaser. It is referred to as DTI Backened Orig in our dataset.

2.1.3.1 Missing Observations:

There are 1224 missing observations for DTI_Backened_Orig which records to less than 2% of the of the aggregate number of observations. These observations can be deleted without losing the attributes of the dataset.

2.1.3.2 Grouping:

A new group DTI_Group is created and similar grouping procedure was carried out as mentioned before, for DTI_Backened_Orig also. The TS 3 graph is analyzed to find appropriate groups that will help understand the relationship between DTI ratio and Default better and also the impact of DTI ratio on the likelihood of default. The adjusted groups of DTI_Group are mentioned in Table 3.

2.1.4 Rate Orig:

The Interest rate or note rate referred to as Rate_orig in our data is rate offered to the borrower as indicated on the mortgage rate. This rate determines the interest the borrower has to pay on their loan balance.

2.1.4.1 Missing Observations and Outliers Treatment:

There are no missing observations for Rate_Orig. So, no treatment is required. Also, no outliers were present.

2.1.4.2 Grouping:

A new group Rate_Group is created and similar grouping procedure was carried out as mentioned before, for Rate_Orig also. The TS 4 graph is analyzed to find appropriate groups that will help understand the relationship between Interest Rate and Default better and also the impact of Interest rate on the likelihood of default. The adjusted groups of Rate_Group are mentioned in Table 4.

2.1.5 NumBorrowers:

NumBorrowers represent the number of borrowers who are obliged to pay a particular loan. A new binary variable NumBorrower 2 is generated and it is set to 0 if the number of borrowers is one and 1 otherwise.

2.1.5.1 Missing Observations Treatment:

There are 23 missing observations for NumBorrowers. These observations can be deleted without losing the attributes of the dataset.

2.1.6 FirstTimeBuyer:

FirstTimeBuyer, as the name suggests, is a self-explanatory categorical variable. According to the data, a borrower who is purchasing a mortgaged property to reside in that property as a residence and has not bought any other property during the three-year period before the purchase of mortgaged property [1] will be considered as the first-time buyer.

2.1.6.1 Grouping:

A new variable NEWBUYER is created which contains a value 1 if the purchaser is first time buyer for a particular observation and 0 otherwise.

2.1.7 STATECODE:

The variable STATECODE is created using metropolitan statistical area (MSA). The value of STATECODE is 1 if the borrower belongs to that particular state otherwise zero for the rest of the states.

2.1.1 Summary Statistics of Categorical Variable:

Categorical Variable	Missing Observation	Tab	ulation
NumBorrowers	23	Value=1- 21886 obs	Value=2- 25654 obs
NEWBUYER	3330	Value=Y- 38804 obs	Value=N- 5429 obs

Obs - Observations

2.1.2 Summary Statistics of Continuous Variable:

Continuous Variables	Missing	Mean	Median	Std. Dev	Min	Max
CreditScore	29	724.887	731	57.7894	333	844
LTV_Combined_Orig	2	74.0047	80	18.8969	6	115
DTI_Backend_Orig	1224	36.6369	37	12.4546	1	65
Rate_Orig	0	6.36524	6.375	.426158	3.375	8.875

2.2 Data Partition:

The data used is divided into two parts i.e. Development (70%) and Holdout (30%), using random uniform distribution. The Development sample is used to build the model and Holdout sample is used to validate the performance of the model built ^[2].

3 Model Description:

3.1 Logistic Regression Description:

The dependent variable of the model is BAD_OVER_48_60. This variable is a categorical variable which takes value 1 that is the loan is considered as default when it is 60 days-past-due or entering foreclosure at any point within 4 years of origination or value 0 that is the purchaser of the loan does not default.

Categorical Variable	Missing Observation	Tabı	ulation
BAD_OVER_48_60	0	Value=1- 4889 obs	Value=0- 42674 obs

Obs denotes Observations

So, for this dataset logistic regression model is better suitable since the dependent variable, BAD_OVER_48_60 is a categorical variable. Approximately 10% of the borrowers default in our sample.

3.2 Purpose of the model:

The purpose of the model is to build a Mortgage default scorecard to predict the probability that the loan defaults at the time of origination ^[2].

3.3 Expected Economic Relationship of Independent variables with Dependent Variable

Variable	Expected	Economic Explanation
	Relation	
CreditScore	Negative	A person with higher credit score timely repays his obligations and hence
		is less likely to default.
LTV_Combined_Orig	Positive	If liabilities of the borrower are more than his assets, he is more likely to
		skip the payments and hence more likely to default.
DTI_Backend_Orig	Positive	A borrower with high income and less debt is more likely to pay his
		mortgage payments and hence less likely to default.
Rate_Orig	Positive	Higher interest rate causes higher mortgage payments, which in turn may
		lead the borrower to skip the payment and increase his chances to default.
NumBorrowers	Negative	The income stream is expected to be more consistent as the number of
		borrowers goes up and hence they are less likely to default.
NEWBUYER	Positive	A borrower with more than one property has to pay multiple mortgage
		payments and hence is more likely to skip the payment.

Positive denotes as the value of independent variables increases the probability that the loan default increases and negative denotes inverse relationship

3.4 Initial Model Specification:

The Logit model was selected since the dependent variable was a categorical variable. Next step was to carefully select independent variables. At the inception stage, CreditScore, LTV_Combined_Orig, DTI_Backened_Orig were considered as independent variables and the logistic regression was ran using these independent variables. KS Statistics was noted. Later, other independent variables were stepwise added to model to increase the predictive accuracy. In each step, the variables were tested for significance. Even though some variables such as the number of units, loan purpose etc. increased the KS statistics, they were dropped since they were found insignificant. Groups were made for certain variables to better understand the effect of variables on the probability of default.

4 Model Output

4.1 Logistic Regression Output

Log likelihood =	8852.1381			Prob > Pseudo	chi2	= = =	0.0000 0.1802
BAD_OVER_48_60	Coef.	Std. Err.	z	P> z	l [95%	Conf.	Interva

BAD_OVER_48_60	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
1.NEWBUYER	3487702	.0671723	-5.19	0.000	4804255	2171149
LTV Group						
_ 2	.5586081	.1053921	5.30	0.000	.3520434	.7651729
3	1.045069	.0996455	10.49	0.000	.8497679	1.240371
4	1.263453	.1055089	11.97	0.000	1.056659	1.470246
5	1.224007	.0976542	12.53	0.000	1.032608	1.415406
6	1.456165	.118349	12.30	0.000	1.224206	1.688125
7	1.538756	.1044093	14.74	0.000	1.334117	1.743394
8	1.570543	.102275	15.36	0.000	1.370088	1.770998
Credit_Group						
_ 2	.716624	.1166723	6.14	0.000	.4879505	.9452976
3	1.021519	.1458134	7.01	0.000	.7357301	1.307308
4	1.453467	.1223714	11.88	0.000	1.213623	1.69331
5	1.379328	.136473	10.11	0.000	1.111846	1.646811
6	1.800896	.1157235	15.56	0.000	1.574082	2.02771
7	2.148142	.1207421	17.79	0.000	1.911492	2.384792
8	2.328102	.1357144	17.15	0.000	2.062107	2.594097
9	2.760305	.1232957	22.39	0.000	2.51865	3.00196
10	2.846663	.1528144	18.63	0.000	2.547152	3.146173
11	3.111465	.1316321	23.64	0.000	2.853471	3.369459
Rate_Group						
_ 2	.7806827	.6174531	1.26	0.206	4295032	1.990869
3	1.007474	.6162365	1.63	0.102	200327	2.215276
4	1.35389	.6196301	2.18	0.029	.1394373	2.568343
DTI Group						
_ 2	. 2327686	.0676039	3.44	0.001	.1002674	.3652697
3	.5559271	.0762825	7.29	0.000	.406416	.7054381
4	.6978661	.0786309	8.88	0.000	.5437524	.8519798
5	. 5575902	.0901235	6.19	0.000	.3809514	.734229
6	.6636928	.1007613	6.59	0.000	.4662042	.8611813
7	.8385467	.1117454	7.50	0.000	.6195298	1.057564
NumBorrowers_2	5563816	.0402613	-13.82	0.000	6352923	4774709
STATECODE AK	8734223	.8051104	-1.08	0.278	-2.45141	.7045651

4.2 Average Marginal Effects

	Delta-method					
	dy/dx	Std. Err.	z	P> z	[95% Conf.	Interval]
	ay, an			17151	[50, 00111.	
1.NEWBUYER	0254663	.0045045	-5.65	0.000	0342948	0166377
LTV Group						
_ 2	.0250031	.0045701	5.47	0.000	.0160459	.0339603
3	.0565023	.0049242	11.47	0.000	.046851	.0661536
4	.0741711	.0060676	12.22	0.000	.0622788	.0860633
5	.0708052	.0048557	14.58	0.000	.0612881	.0803222
6	.0917629	.0082861	11.07	0.000	.0755224	.1080033
7	.0998994	.0064615	15.46	0.000	.087235	.1125638
8	.1031284	.0060572	17.03	0.000	.0912566	.1150003
Credit Group						
2	.0244384	.0033946	7.20	0.000	.0177851	.0310916
3	.0401821	.0063429	6.33	0.000	.0277502	.0526139
4	.0698614	.0054666	12.78	0.000	.0591471	.0805757
5	.0640769	.0069745	9.19	0.000	.0504071	.0777467
6	.1012477	.0052103	19.43	0.000	.0910358	.1114597
7	.1402964	.0074351	18.87	0.000	.1257239	.1548689
8	.1637575	.0117199	13.97	0.000	.1407869	.186728
9	. 2292327	.0104674	21.90	0.000	.208717	.2497484
10	.2438157	.0189061	12.90	0.000	.2067604	.280871
11	.2913889	.0145261	20.06	0.000	.2629183	.3198595
Rate_Group						
_ 2	.0420905	.0247963	1.70	0.090	0065093	.0906903
3	.0591213	.024655	2.40	0.016	.0107984	.1074441
4	.0900469	.0255222	3.53	0.000	.0400243	.1400694
DTI Group						
_ 2	.015607	.0043607	3.58	0.000	.0070601	.0241539
3	.041528	.0056078	7.41	0.000	.0305369	.0525191
4	.0545962	.0061609	8.86	0.000	.0425211	.0666713
5	.041675	.0070393	5.92	0.000	.0278783	.0554717
6	.0513525	.0085006	6.04	0.000	.0346916	.0680133
7	.0686129	.0104713	6.55	0.000	.0480896	.0891362
NumBorrowers_2	0440391	.0031804	-13.85	0.000	0502727	0378056
STATECODE_AK	0691337	.0637282	-1.08	0.278	1940387	.0557712
STATECODE_AL	.0049668	.0441744	0.11	0.910	0816134	.091547
STATECODE_AR	.0164592	.0455506	0.36	0.718	0728184	.1057367
STATECODE_AZ	.1314255	.0426851	3.08	0.002	.0477642	.2150868
STATECODE_CA	.1322582	.0423481	3.12	0.002	.0492575	.215259

4.3 Interpretation of regression Output:

The output of logistic regression was as expected. All the variables are significant even at 1% level of confidence. The coefficients of logistic regression are difficult to interpret so the coefficients are interpreted by calculating the marginal effects.

❖ NEWBUYER

The non-first-time buyer is the reference group. The marginal effect for NEWBUYER is negative which explains that a first-time home buyer is 2.5% less likely to default as compared to a purchaser who is not a first-time buyer.

❖ LTV_Group

Group 1, for which the combined LTV is less than equal to 50% is the reference group. The marginal effect is positive which explains that the purchaser is more likely to default as his Loan-to-Value ratio increases. If a

purchaser's combined LTV lies between 50% and 65% (group 2) then he is 2.5% more likely to default as compared to a purchaser whose Combined LTV is less than 50%. Similarly, the marginal effect of six other groups can be interpreted with group 1 (combined LTV < 50%) as the reference group.

Credit Group

Group 1, for which the credit score is more than 790 is the reference group. The marginal effect is positive which explains that as the purchaser's credit score decreases he is more likely to default. A person with a credit less than 610 (group 11) is approximately 29% more likely to default than a person whose credit score is more than 790. Similarly, the marginal effect of 9 other groups can be interpreted with group 1 as the reference group.

* Rate Group

Group 1, for which the interest rate is less than equal to 5% is the reference group. The marginal effect is positive which explains that as the interest rate on a loan increases the purchaser is more likely to default. A loan with an interest rate of more than 7% is 9% more likely to default than a loan with an interest rate of less than 5%. Similarly, the marginal effect of two other groups can be interpreted with group 1 as the reference group.

❖ DTI Group

Group 1, for which the DTI rate is less than equal to 25% is the reference group. The marginal effect is positive which explains that as the Debt to Income ratio increases the purchaser is more likely to default. A borrower whose DTI rate lies between 60% to 65% is approximately 7% more likely to default than a borrower whose DTI rate is less than 25%. Similarly, the marginal effect of five other groups can be interpreted with group 1 as the reference group.

❖ NumBorrowers_2

The Number of borrowers equal to 1 is the reference group. The marginal effect is negative which explains that if more than one borrower is obligated to pay back for a particular loan then they are 4.4% less likely to default as compared to the loan being purchased by a single borrower.

***** STATECODE

The reference group for STATECODE changes randomly for each particular state. Thus, a borrower from Alabama State is 0.4% more likely to default than a borrower from the reference state. A Similar interpretation can be done for the rest of the states.

5 Model Performance Testing

5.1 KS of Development vs Holdout

The Kolmogorov-Smirnov (K-S) statistic for the development sample is 0.4603 and the K-S statistic for the holdout sample is 0.4548. There is a very small difference between this two values and hence can be neglected.

5.2 Results from Out of Sample testing

The K-S statistic for the out of sample data is 0.4583 which is very close to the K-S statistic for the development sample. Thus, the model is working well on out of sample data in terms of distinguishing between default and nodefault.

5.3 Predictive accuracy assessment table

The table of deciles with Hosmer Lemeshow test for development and holdout sample is as follows.

Development Sample

Logistic model for BAD OVER 48 60, goodness-of-fit test

(Table collapsed on quantiles of estimated probabilities)

Group	Prob	0bs_1	Exp_1	0bs_0	Ехр_0	Total
1	0.0119	17	23.8	3231	3224.2	3248
2	0.0208	42	52.9	3206	3195.1	3248
3	0.0310	65	83.0	3183	3165.0	3248
4	0.0438	129	120.0	3118	3127.0	3247
5	0.0603	151	167.2	3097	3080.8	3248
6	0.0826	240	231.0	3009	3018.0	3249
7	0.1144	338	317.8	2909	2929.2	3247
8	0.1642	455	447.3	2792	2799.7	3247
9	0.2561	718	664.9	2530	2583.1	3248
10	0.8452	1203	1250.1	2044	1996.9	3247

 number of observations =
 32477

 number of groups =
 10

 Hosmer-Lemeshow chi2(8) =
 20.81

 Prob > chi2 =
 0.0077

Holdout Sample

Logistic model for BAD OVER 48 60, goodness-of-fit test

(Table collapsed on quantiles of estimated probabilities)

Group	Prob	0bs_1	Exp_1	0bs_0	Ехр_0	Total
1	0.0126	7	10.6	1374	1370.4	1381
2	0.0213	10	23.2	1370	1356.8	1380
3	0.0314	32	36.1	1349	1344.9	1381
4	0.0441	45	51.9	1335	1328.1	1380
5	0.0603	70	71.7	1311	1309.3	1381
6	0.0824	105	97.6	1275	1282.4	1380
7	0.1151	147	135.0	1234	1246.0	1381
8	0.1629	194	187.7	1186	1192.3	1380
9	0.2530	292	278.4	1089	1102.6	1381
10	0.7874	483	526.0	897	854.0	1380

| number of observations = 13805 | number of groups = 10 | Hosmer-Lemeshow chi2(10) = 18.93 | Prob > chi2 = 0.0412 The null hypothesis for development sample can be rejected at 1% level and the null hypothesis for holdout sample can be rejected at 5% level. Rejecting the null hypothesis for the HL test shows that there are significant differences between the fitted and observed values. But since our dataset is large, there is a trivial difference between the number of observed good's and expected good's for both the sample. Also, the difference between the number of observed bad's and expected bad's for both the sample is not that significant.

6 Conclusion

A logistic model has the adaptability of incorporating both the qualitative and quantitative variables and hence is better suited to build the Mortgage Default Scorecard. The independent variables used to build the model are statistically significant. The logit models are non-linear and hence Maximum Likelihood Estimation (MLE) is used to estimate the parameters. Interpreting the output of Logit model is complicated, so it's better to calculate the marginal effects and then interpret the coefficients. The K-S Statistic of Development sample and the Out of sample data is almost similar which suggests that the model is working well in distinguishing whether the loan defaults or does not default. The results of the model are economically meaningful.

7 Reference

- [1] http://www.freddiemac.com/research/pdf/faq.pdf
- [2] http://www.freddiemac.com/research/pdf/release_notes.pdf

8 Appendix

8.1 LTV_Group

8.1.1 Histogram Plot 1

8.1.2 Adjusted Groups of LTV_Group

LTV_Group	Combined LTV Range (%)
Group 1	<50
Group 2	50-65
Group 3	65-75
Group 4	75-80
Group 5	80-85
Group 6	85-90
Group 7	90-95
Group 8	>=90

8.1.3 Distribution of LTV_Group with respect to the ratio of defaults to the total number of defaults (TS 1)

8.2 Credit_Group

8.2.1 Histogram Plot 2

8.2.2 Adjusted Groups of Credit_Group

Credit_Group	CreditScore Range
Group 1	>790
Group 2	740-790
Group 3	730-740
Group 4	710-730
Group 5	700-710
Group 6	670-700
Group 7	650-670
Group 8	640-650
Group 9	620-640
Group 10	610-620
Group 11	<=610

8.2.3 Distribution of Credit_Group with respect to the ratio of defaults to the total number of defaults (TS 2)

8.3 DTI_Group

8.3.1 Histogram Plot 3

8.3.2 Adjusted Groups of DTI_Group

DTI_Group	DTI Range (%)
Group 1	<=25
Group 2	25-40
Group 3	40-45
Group 4	45-50
Group 5	50-55
Group6	55-60
Group 7	60-65

8.3.3 Distribution of DTI_Group with respect to the ratio of defaults to the total number of defaults (TS 3)

8.4 Rate_Group

8.4.1 Histogram Plot 3

8.4.2 Adjusted Groups of Rate_Group

Rate_Group	Rate Range (%)
Group 1	<=5
Group 2	5-6
Group 3	6-7
Group 4	>7

8.4.3 Distribution of Rate Group with respect to the ratio of defaults to the total number of defaults (TS 4)

8.5 Results

8.5.1 Logistic Regression Output

				211 21112 (00	′	33323
				Prob > chi	2 =	0.0000
Log likelihood =	-8852.1381			Pseudo R2	=	0.1802
BAD_OVER_48_60	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
1.NEWBUYER	3487702	.0671723	-5.19	0.000	4804255	2171149
LTV Group						
202.0.4p	.5586081	.1053921	5.30	0.000	.3520434	.7651729
3	1.045069	.0996455	10.49	0.000	.8497679	1.240371
4	1.263453	.1055089	11.97		1.056659	1.470246
5	1.224007	.0976542	12.53		1.032608	1.415406
6	1.456165	.118349	12.30	0.000	1.224206	1.688125
7	1.538756	.1044093	14.74		1.334117	1.743394
8	1.570543	.102275	15.36	0.000	1.370088	1.770998
Credit Group						
2	.716624	.1166723	6.14	0.000	.4879505	.9452976
3	1.021519	.1458134	7.01		.7357301	1.307308
4	1.453467	.1223714	11.88	0.000	1.213623	1.69331
5	1.379328	.136473	10.11	0.000	1.111846	1.646811
6	1.800896	.1157235	15.56	0.000	1.574082	2.02771
7	2.148142	.1207421	17.79	0.000	1.911492	2.384792
8	2.328102	.1357144	17.15	0.000	2.062107	2.594097
9	2.760305	.1232957	22.39	0.000	2.51865	3.00196
10	2.846663	.1528144	18.63	0.000	2.547152	3.146173
11	3.111465	.1316321	23.64	0.000	2.853471	3.369459
Rate_Group						
_ 2	. 7806827	.6174531	1.26	0.206	4295032	1.990869
3	1.007474	.6162365	1.63	0.102	200327	2.215276
4	1.35389	.6196301	2.18	0.029	.1394373	2.568343
DTI_Group						
_ 2	. 2327686	.0676039	3.44	0.001	.1002674	.3652697
3	.5559271	.0762825	7.29	0.000	.406416	.7054381
4	.6978661	.0786309	8.88	0.000	.5437524	.8519798
5	. 5575902	.0901235	6.19	0.000	.3809514	.734229
6	. 6636928	.1007613	6.59	0.000	.4662042	.8611813
7	.8385467	.1117454	7.50	0.000	.6195298	1.057564
NumBorrowers_2	5563816	.0402613	-13.82	0.000	6352923	4774709
STATECODE AK	8734993	. 8051104	-1.08	N. 278	-2.45141	. 7045651

LR chi2(80) = 3891.75

STATECODE_KY	.010201	.5606602	0.02	0.985		1.109075
STATECODE_LA	.3412477	.5590886	0.61	0.542	7545458	1.437041
STATECODE_MA	.2831578	.5512042	0.51	0.607	7971826	1.363498
STATECODE_MD	.8095642	.5431014	1.49	0.136	254895	1.874023
STATECODE_ME	.3232565	.606417	0.53	0.594	865299	1.511812
STATECODE_MI	.3356414	.5440161	0.62	0.537	7306106	1.401893
STATECODE_MIN	.3677259	.5527344	0.67	0.506	7156136	1.451065
STATECODE_MO	0946493	.551101	-0.17	0.864	-1.174787	.9854888
STATECODE_MS	1514342	.6090066	-0.25	0.804	-1.345065	1.042197
STATECODE_MT	2017382	.6655508	-0.30	0.762	-1.506194	1.102717
STATECODE_NC	.0444966	.5436361	0.08	0.935	-1.02101	1.110004
STATECODE_ND	220613	.8059996	-0.27	0.784	-1.800343	1.359117
STATECODE_NE	2468813	.6217207	-0.40	0.691	-1.465431	.9716688
STATECODE_NH	.6046759	.5945881	1.02	0.309	5606953	1.770047
STATECODE_NJ	.9764537	.5421544	1.80	0.072	0861494	2.039057
STATECODE_NM	3558802	.6016098	-0.59	0.554	-1.535014	.8232534
STATECODE_NV	1.996425	.5513692	3.62	0.000	.9157614	3.077089
STATECODE_NY	.8412137	.5390441	1.56	0.119	2152933	1.897721
STATECODE_OH	088285	.5450045	-0.16	0.871	-1.156474	.9799041
STATECODE_OK	5739606	.5932478	-0.97	0.333	-1.736705	. 5887836
STATECODE_OR	. 4992035	.5556514	0.90	0.369	5898532	1.58826
STATECODE_PA	.0906745	.5429584	0.17	0.867	9735044	1.154853
STATECODE_PR	.9502994	.5814518	1.63	0.102	1893253	2.089924
STATECODE_RI	1.399026	.5880991	2.38	0.017	. 2463725	2.551679
STATECODE_SC	.1830491	.5530196	0.33	0.741	9008495	1.266948
STATECODE_SD	6023902	.9071822	-0.66	0.507	-2.380435	1.175654
STATECODE_TN	.1327014	.5514303	0.24	0.810	9480822	1.213485
STATECODE_TX	3834994	.5402915	-0.71	0.478	-1.442451	.6754524
STATECODE_UT	.2485612	.5545422	0.45	0.654	8383215	1.335444
STATECODE_VA	.21524	.5483231	0.39	0.695	8594534	1.289934
STATECODE_VI	0	(omitted)				
STATECODE_VT	.0536085	.6858908	0.08	0.938	-1.290713	1.39793
STATECODE_WA	.4781146	.5442296	0.88	0.380	5885557	1.544785
STATECODE_WI	1736744	.5535155	-0.31	0.754	-1.258545	.911196
STATECODE_WV	.1233606	.6112299	0.20	0.840	-1.074628	1.321349
STATECODE_WY	0	(omitted)				
_cons	-6.473972	.825825	-7.84	0.000	-8.092559	-4.855384

8.5.2 Average Marginal Effects

	<u> </u>	Delta-method	<u> </u>			
				Ds.1 = 1	FOF* 6	T., 4 11
	dy/dx	Std. Err.	Z	P> z	[95% Conr.	Interval]
1.NEWBUYER	0254663	.0045045	-5.65	0.000	0342948	0166377
LTV_Group						
2	.0250031	.0045701	5.47	0.000	.0160459	.0339603
3	.0565023	.0049242	11.47	0.000	.046851	.0661536
4	.0741711	.0060676	12.22	0.000	.0622788	.0860633
5	.0708052	.0048557	14.58	0.000	.0612881	.0803222
6	.0917629	.0082861	11.07	0.000	.0755224	.1080033
7	.0998994	.0064615	15.46	0.000	.087235	.1125638
8	.1031284	.0060572	17.03	0.000	.0912566	.1150003
Credit Group						
2	.0244384	.0033946	7.20	0.000	.0177851	.0310916
3	.0401821	.0063429	6.33	0.000	.0277502	.0526139
4	.0698614	.0054666	12.78	0.000	.0591471	.0805757
5	.0640769	.0069745	9.19	0.000	.0504071	.0777467
6	.1012477	.0052103	19.43	0.000	.0910358	.1114597
7	.1402964	.0074351	18.87	0.000	.1257239	.1548689
8	.1637575	.0117199	13.97	0.000	.1407869	.186728
9	.2292327	.0104674	21.90	0.000	.208717	.2497484
10	.2438157	.0189061	12.90	0.000	.2067604	.280871
11	.2913889	.0145261	20.06	0.000	.2629183	.3198595
Rate Group						
2	.0420905	.0247963	1.70	0.090	0065093	. 0906903
3	.0591213	.024655	2.40	0.016	.0107984	.1074441
4	.0900469	.0255222	3.53	0.000	.0400243	.1400694
•	.0300103	.0255222	3.33	0.000	.0100213	11100031
DTI_Group	015007	0042507	2 50	0.000	0070504	0044520
2	.015607	.0043607	3.58	0.000	.0070601	.0241539
3	.041528	.0056078	7.41	0.000	.0305369	.0525191
4	.0545962	.0061609	8.86	0.000	.0425211	.0666713
5	.041675	.0070393	5.92	0.000	.0278783	.0554717
6	.0513525	.0085006	6.04	0.000	.0346916	.0680133
7	.0686129	.0104713	6.55	0.000	.0480896	.0891362
NumBorrowers 2	0440391	.0031804	-13.85	0.000	0502727	0378056
STATECODE AK	0691337	.0637282	-1.08	0.278	1940387	.0557712
STATECODE AL	.0049668	.0441744	0.11	0.910	0816134	.091547
STATECODE AR	.0164592	.0455506	0.36	0.718	0728184	.1057367
STATECODE AZ	.1314255	.0426851	3.08	0.002	.0477642	.2150868
STATECODE CA	.1322582	.0423481	3.12	0.002	.0492575	.215259

	-					
STATECODE_KS	0442891	.0484676	-0.91	0.361	1392838	.0507056
STATECODE_KY	.0008074	.0443778	0.02	0.985	0861714	.0877863
STATECODE_LA	.0270107	.0442533	0.61	0.542	0597242	.1137456
STATECODE_MA	.0224127	.0436291	0.51	0.607	0630987	.1079241
STATECODE_MD	.0640792	.0429864	1.49	0.136	0201726	.148331
STATECODE_ME	.0255866	.0479994	0.53	0.594	0684905	.1196638
STATECODE_MI	.0265669	.0430601	0.62	0.537	0578293	.1109632
STATECODE_MN	.0291065	.0437501	0.67	0.506	0566421	.1148551
STATECODE_MO	0074918	.0436212	-0.17	0.864	0929877	.0780042
STATECODE_MS	0119864	.0482045	-0.25	0.804	1064656	.0824927
STATECODE_MT	0159681	.0526803	-0.30	0.762	1192196	.0872833
STATECODE_NC	.003522	.0430302	0.08	0.935	0808157	.0878598
STATECODE_ND	0174621	.0637974	-0.27	0.784	1425027	.1075784
STATECODE_NE	0195413	.049211	-0.40	0.691	1159931	.0769105
STATECODE_NH	.0478617	.047063	1.02	0.309	0443801	.1401036
STATECODE_NJ	.077289	.0429105	1.80	0.072	006814	.1613919
STATECODE_NM	0281689	.0476192	-0.59	0.554	1215008	.065163
STATECODE_NV	.1580225	.0436257	3.62	0.000	.0725176	. 2435274
STATECODE_NY	.0665843	.0426652	1.56	0.119	0170379	.1502066
STATECODE_OH	006988	.0431386	-0.16	0.871	0915381	.0775621
STATECODE_OK	0454305	.0469578	-0.97	0.333	1374661	.046605
STATECODE_OR	.0395133	.0439806	0.90	0.369	0466871	.1257137
STATECODE_PA	.0071771	.0429766	0.17	0.867	0770555	.0914098
STATECODE_PR	.0752188	.0460221	1.63	0.102	0149829	.1654204
STATECODE_RI	.1107367	.0465444	2.38	0.017	.0195112	.2019621
STATECODE_SC	.0144888	.0437729	0.33	0.741	0713045	.1002822
STATECODE_SD	0476808	.0718071	-0.66	0.507	1884202	.0930586
STATECODE_TN	.0105037	.0436472	0.24	0.810	0750432	.0960506
STATECODE_TX	030355	.0427657	-0.71	0.478	1141743	.0534643
STATECODE_UT	.0196743	.0438934	0.45	0.654	0663552	.1057038
STATECODE_VA	.0170368	.0434012	0.39	0.695	0680279	.1021015
STATECODE_VI	0	(omitted)				
STATECODE_VT	.0042433	.0542901	0.08	0.938	1021633	.1106499
STATECODE_WA	.0378441	.0430768	0.88	0.380	046585	.1222731
STATECODE_WI	0137468	.0438124	-0.31	0.754	0996174	.0721238
STATECODE_WV	.0097643	.0483805	0.20	0.840	0850597	.1045883
STATECODE_WY	0	(omitted)				

8.5.3 K-S Statistic of Development Sample

Two-sample Kolmogorov-Smirnov test for equality of distribution functions

Smaller group	D	P-value
0:	0.4603	0.000
1:	-0.0000	1.000
Combined K-S:	0.4603	0.000

8.5.4 K-S Statistic of Holdout Sample

Two-sample Kolmogorov-Smirnov test for equality of distribution functions

Smaller group	D	P-value
0:	0.4548	0.000
1:	0.0000	1.000
Combined K-S:	0.4548	0.000

8.5.5 K-S Statistic of Out of Sample data

Two-sample Kolmogorov-Smirnov test for equality of distribution functions

Smaller group	D	P-value	
0:	0.4583	0.000	
1:	-0.0000	1.000	
Combined K-S:	0.4583	0.000	

8.6 Predictive accuracy assessment table

8.6.1 Development Sample

Logistic model for BAD OVER 48 60, goodness-of-fit test

(Table collapsed on quantiles of estimated probabilities)

Group	Prob	0bs_1	Ежр_1	0bs_0	Ежр_0	Total
1	0.0119	17	23.8	3231	3224.2	3248
2	0.0208	42	52.9	3206	3195.1	3248
3	0.0310	65	83.0	3183	3165.0	3248
4	0.0438	129	120.0	3118	3127.0	3247
5	0.0603	151	167.2	3097	3080.8	3248
6	0.0826	240	231.0	3009	3018.0	3249
7	0.1144	338	317.8	2909	2929.2	3247
8	0.1642	455	447.3	2792	2799.7	3247
9	0.2561	718	664.9	2530	2583.1	3248
10	0.8452	1203	1250.1	2044	1996.9	3247

Logistic model for BAD OVER 48 60, goodness-of-fit test

(Table collapsed on quantiles of estimated probabilities)

Group	Prob	0bs_1	Ежр_1	0bs_0	Ежр_0	Total
1	0.0126	7	10.6	1374	1370.4	1381
2	0.0213	10	23.2	1370	1356.8	1380
3	0.0314	32	36.1	1349	1344.9	1381
4	0.0441	45	51.9	1335	1328.1	1380
5	0.0603	70	71.7	1311	1309.3	1381
6	0.0824	105	97.6	1275	1282.4	1380
7	0.1151	147	135.0	1234	1246.0	1381
8	0.1629	194	187.7	1186	1192.3	1380
9	0.2530	292	278.4	1089	1102.6	1381
10	0.7874	483	526.0	897	854.0	1380

number of observations = 13805
 number of groups = 10
Hosmer-Lemeshow chi2(10) = 18.93
 Prob > chi2 = 0.0412
