

(19)

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11)

EP 0 787 547 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:
06.08.1997 Bulletin 1997/32(51) Int. Cl.⁶: B22C 9/04

(21) Application number: 96309402.4

(22) Date of filing: 23.12.1996

(84) Designated Contracting States:
DE FR(71) Applicant: ROLLS-ROYCE plc
London, SW1E 6AT (GB)

(30) Priority: 31.01.1996 GB 9601910

(72) Inventor: Horwood, Dominic James
Etwall, Derbyshire DE65 6LP (GB)

(54) A method of investment casting and a method of making an investment casting mould

(57) A method of making an investment casting mould comprises producing a CAD definition of a turbine blade (100), and determining the distribution of isosurfaces of constant temperature (112) around the CAD definition of the at least one article (100) if the external surface (108) of the CAD definition of the at least one article (100) was at a high temperature (T_{high}). One of the isosurfaces of constant temperature (112) is selected to define the external shape and the thickness of an investment casting mould (114). A pattern (10,12)

of the turbine blade is produced from the CAD definition of the turbine blade (100). The investment casting mould (70) is made with an internal shape defined by the pattern (10,12) of the turbine blade and an external shape and thickness distribution defined by the selected isosurface of constant temperature (112). The pattern (10,12) is then removed from the investment casting mould (70).

Fig.7.

Description

The present invention relates to a method of investment casting, and to a method of making an investment casting mould. The invention is particularly relevant to the casting of articles by directional solidification, and more particularly to the casting of single crystal articles.

In the investment casting process, or lost wax casting process as it is sometimes called, a wax pattern of an article, or component, is produced. The wax pattern is produced by injecting wax into an accurately formed die. The wax pattern is a replica of the article to be produced. Usually a number of wax patterns are assembled together on a wax gating tree to form a cluster or wax mould assembly. The wax mould assembly is immersed in a liquid ceramic slurry which quickly gels after draining. Strengthening refractory granules are sprinkled over the ceramic slurry covered wax mould assembly and the refractory granules bond to the slurry coating to produce a ceramic layer on the wax mould assembly. This process is repeated several times to produce many ceramic layers which have a total thickness of about 1/4 inch (6mm) to 1/2 inch (12mm) on the wax mould assembly. The wax is then melted out leaving a ceramic shell mould having an internal cavity identical in shape to that of the original wax mould assembly. This ceramic shell mould is called an investment casting mould. The mould is fired at a high temperature between 950°C and 1100°C to remove all traces of residual wax, and cure the ceramic shell mould. The ceramic shell mould is then transferred to a casting furnace, which may be operated at either vacuum conditions or at atmospheric conditions. A charge of molten metal is poured into the ceramic shell mould and the mould is allowed to cool to room temperature, after which the ceramic shell mould is removed leaving the cast article or articles. The ceramic shell mould may be cooled by applying a temperature gradient across the ceramic shell mould to directionally solidify the metal in order to produce columnar grains, or single crystals in the finished article or articles.

It is also known to produce resin patterns using stereolithography, rather than making wax patterns in a die. The advantage of using stereolithography is that it enables the patterns to be produced quickly for development purposes. The resin patterns are produced by directing a beam of focused radiation into a bath of liquid resin which is locally cured and solidified by the radiation. The beam of radiation is moved under computerised control to produce a resin pattern of the article to be produced. The resin pattern is then coated with ceramic slurry as discussed above to produce the ceramic shell mould. However, for production purposes resin patterns are not smooth enough for production quality articles and stereolithographic production of resin patterns is slow and expensive compared to the production of wax patterns by wax injection into a die.

The immersing, or dipping, of the wax mould assembly in the ceramic slurry is a relatively uncon-

trolled process. The build up of ceramic material is governed by the adhesion of the ceramic material onto the wax mould assembly. Random features such as drips and runs are common. In particular, the ceramic shell is thicker on concave external surfaces than on convex external surfaces of the wax mould assembly. In general the article features are blurred, sharp edges are blunted, fillet radii are enlarged, surfaces are smoothed and bridges may form between completely separate areas of the wax mould assembly. The thickness and external shape of the ceramic shell mould control the heat transfer out of the molten metal during the casting process.

It is necessary to have a mathematical description of the external surface of the ceramic shell mould. This description may be derived by running a mathematical model that simulates the build-up of ceramic on the article, for use in process models of the investment casting process to produce defect free cast articles.

There is currently no mathematical model of the external surface of the ceramic shell mould which simulates variation in the ceramic shell thickness with variations in the curvature of the external surface of the article. Furthermore there is currently no mathematical model of the external surface of the ceramic shell mould which simulates bridging between completely separate areas of the ceramic shell mould.

The present invention seeks to provide a mathematical model that may be used to generate a mathematical description of the external surface of an investment casting mould which more closely resembles real life than currently available mathematical models.

The present invention seeks to provide a method of investment casting which uses the mathematical description of the external surface of an investment casting mould.

The present invention provides a method of investment casting comprising the steps of:-

- (a) producing a CAD definition of at least one article to be produced,
- (b) determining the distribution of isosurfaces of a constant physical property around the CAD definition of the at least one article if the external surface of the CAD definition of the at least one article was held at a predetermined physical property value,
- (c) selecting one isosurface of a constant physical property value to define the external shape and the thickness of an investment casting mould,
- (d) making a pattern of the at least one article to be produced from the CAD definition of the at least one article,
- (e) making the investment casting mould with an internal shape defined by the pattern of the at least one article to be produced and an external shape and thickness distribution defined by the selected isosurface of constant physical property value,
- (f) removing the pattern from the investment casting

mould,

- (g) pouring molten metal into the investment casting mould,
- (h) solidifying the molten metal in the investment casting mould to produce the at least one article,
- (i) removing the at least one article from the investment casting mould.

Preferably the physical property is temperature.

Preferably step (b) comprises performing a heat transfer analysis by analysing the transfer of heat between the external surface of the CAD definition of the at least one article and a nominal boundary surface spaced from and enclosing the CAD definition of the at least one article.

Preferably step (d) comprises producing the pattern by injecting wax into a die.

Alternatively step (d) may comprise producing the pattern by stereolithography from a resin.

Preferably the CAD definition comprises a plurality of articles to be produced interconnected by a runner system.

Preferably step (e) comprises producing the investment casting mould by repeatedly dipping the pattern in a ceramic slurry.

Alternatively step (e) comprises producing the investment casting mould by making a mould to define the external shape of the investment casting mould and injecting a ceramic slurry into a space between the pattern and the mould. The mould may be made by stereolithography from a resin.

Preferably step (h) comprises producing a temperature gradient across the investment casting mould to directionally solidify the molten metal.

Preferably step (h) comprises selecting a single crystal of metal to grow into the investment casting mould.

Preferably step (e) comprises making a restriction in the investment casting mould to select a single crystal.

Preferably the CAD definition comprises a definition of a blade or a vane.

The present invention also seeks to provide a method of producing an investment casting mould which uses the mathematical description of the external surface of an investment casting mould.

The present invention also provides a method of making an investment casting mould comprising the steps of:-

- (a) producing a CAD definition of at least one article to be produced,
- (b) determining the distribution of isosurfaces of a constant physical property around the CAD definition of the at least one article if the external surface of the CAD definition of the at least one article was held at a predetermined physical property value,
- (c) selecting one isosurface of constant physical property value to define the external shape and the

thickness of an investment casting mould,

- (d) making a pattern of the at least one article to be produced from the CAD definition of the at least one article,
- (e) making the investment casting mould with an internal shape defined by the pattern of the at least one article to be produced and an external shape and thickness distribution defined by the selected isosurface of constant physical property value,
- (f) removing the pattern from the investment casting mould.

Preferably the physical property is temperature.

Preferably step (b) comprises performing a heat transfer analysis by analysing the transfer of heat between the external surface of the CAD definition of the at least one article and a nominal boundary surface spaced from and enclosing the CAD definition of the at least one article.

Preferably step (d) comprises producing the pattern by injecting wax into a die.

Alternatively step (d) comprises producing the pattern by stereolithography from a resin.

Preferably the CAD definition comprises a plurality of articles to be produced interconnected by a runner system.

Preferably step (e) comprises producing the investment casting mould by repeatedly dipping the pattern in a ceramic slurry.

Alternatively step (e) comprises producing the investment casting mould by making a mould to define the external shape of the investment casting mould and injecting a ceramic slurry into a space between the pattern and the mould. The mould may be made by stereolithography from a resin.

Preferably the CAD definition comprises a definition of a blade or a vane.

Preferably the external surface of the CAD definition of the at least one article is at a first temperature and the nominal boundary surface is at a temperature less than the first temperature.

The present invention also provides a method of investment casting comprising the steps of:-

- (a) producing a CAD definition of a casting furnace,
- (b) producing a process model of the solidification of molten metal within an investment casting mould in the casting furnace,
- (c) producing a CAD definition of at least one article to be produced,
- (d) determining the distribution of isosurfaces of a constant physical property around the CAD definition of the at least one article if the external surface of the CAD definition of the at least one article was at a predetermined physical property value,
- (e) selecting one isosurface of a constant physical property value to define the external shape and the thickness of an investment casting mould,
- (f) supplying the CAD definition of the at least one

article, the CAD definition of the casting furnace and the definition of the investment casting mould to the process model of the solidification of molten metal within an investment casting mould within the casting furnace.

(g) using the process model to determine whether the solidification of molten metal within the definition of the investment casting mould in the CAD definition of the casting furnace will produce at least one cast article substantially without defects,

(h) making a pattern of the at least one article to be produced from the CAD definition of the at least one article,

(i) making the investment casting mould with an internal shape defined by the pattern of the at least one article to be produced and an external shape and thickness distribution defined by the selected isosurface of constant temperature,

(j) removing the pattern from the investment casting mould,

(k) pouring molten metal into the investment casting mould,

(l) solidifying the molten metal in the investment casting mould to produce the at least one article,

(m) removing the at least one article from the investment casting mould.

Preferably step (b) comprises providing a finite element thermal model of the casting process and solidification behaviour.

Preferably the physical property is temperature.

Preferably step (d) comprises performing a heat transfer analysis by analysing the transfer of heat between the external surface of the CAD definition of the at least one article and a nominal boundary surface spaced from and enclosing the CAD definition of the at least one article.

Preferably step (h) comprises producing the pattern by injecting wax into a die.

Step (h) may comprise producing the pattern by stereolithography from a resin.

Preferably the CAD definition comprises a plurality of articles to be produced interconnected by a runner system.

Preferably step (i) comprises producing the investment casting mould by repeatedly dipping the pattern in a ceramic slurry.

Alternatively step (i) comprises producing the investment casting mould by making a mould to define the external shape of the investment casting mould and injecting a ceramic slurry into a space between the pattern and the mould. The mould may be made by stereolithography from a resin.

Preferably step (l) comprises producing a temperature gradient across the investment casting mould to directionally solidify the molten metal.

Preferably step (l) comprises selecting a single crystal of metal to grow into the investment casting mould.

Preferably step (i) comprises making a restriction in the investment casting mould to select a single crystal.

Preferably the CAD definition comprises a definition of a blade or a vane.

The present invention will be more fully described by way of example with reference to the accompanying drawings, in which:-

Figure 1 is a view of a wax mould assembly.

Figure 2 is a cross-sectional view through a ceramic shell mould according to the present invention.

Figure 3 is a cross-sectional view in the direction of arrows A-A in figure 2.

Figure 4 is a block diagram of a method according to the present invention.

Figure 5 is a perspective view of an article with isosurfaces of constant temperature shown around the article.

Figure 6 shows perspective views of a wax mould assembly with ceramic shell moulds having thicknesses corresponding to different isosurfaces of constant temperature.

Figure 7 shows perspective views of stages in the production and selection of isosurfaces of constant temperature.

Figure 8 is a block diagram of another method according to the present invention.

Figure 9 is a cross-sectional view through a resin mould and resin pattern used to make a ceramic shell mould according to the present invention.

Figure 10 is a block diagram of a further method according to the present invention.

A wax mould assembly 10, shown in figure 1, comprises a plurality of wax patterns 12 suitable for making turbine vanes or turbine blades for a gas turbine engine. Each of the wax patterns 12 has a first part 14, which defines the shape of the root of the resulting cast turbine blade, a second part 16, which defines the shape of the platform of the cast turbine blade and a third part 18, which define the shape of the aerofoil portion of the cast turbine blade. The turbine blades to be cast in this example are single crystal turbine blades and therefore an associated wax selector part 20 and wax starter part 22 are connected to each wax pattern 12. The wax selector part 20 is a wax helix, although other suitable wax selectors may be used.

The wax patterns 12 and associated wax selectors 20 and wax starters 22 are arranged together on a wax gating tree 24 to form the wax mould assembly 10. The wax gating tree 24 comprises a wax runner which includes a central downpole 26 and a plurality of feeders 28. The wax patterns 12 are arranged generally parallel to the central downpole 26 and the feeders extend generally radially from the central downpole 26 to the wax patterns 12. There are also filters 30 in the feeders 28.

As discussed previously the wax mould assembly 10, including the wax patterns 12 is immersed in liquid

ceramic slurry and has refractory granules sprinkled on the gelling liquid ceramic slurry to produce a layer of ceramic. The process of immersing in liquid ceramic slurry and sprinkling with refractory granules is repeated until the thickness of ceramic is sufficient for the particular application. Thereafter the ceramic shell mould is dried and heated to remove the wax and then fired to purify and cure the ceramic shell mould.

The finished ceramic shell mould 70 for casting a single crystal turbine blade made from the wax mould assembly is shown in figure 2. The ceramic shell mould comprises a plurality of article portions 72 each of which has an article chamber 74 to define the turbine blade. Each of the article portions also has an associated selector portion 76, which has a selector passage 78, and an associated starter portion 80 which has a starter chamber 82. The ceramic shell mould 70 also comprises a runner portion 84 to convey molten metal to the article portions 72 via the starter and selector portions 80 and 76. The runner portion 84 includes a single central portion 86 which has a main passage 88 and radial portions 90 which have passages 92 connecting with the starter portions 80. The ceramic shell mould has a recess 94 which is arranged to fit on a chill plate during the single crystal casting process.

It may be seen from figure 3 that the portion of the ceramic shell mould 70 corresponding to the aerofoil portion of the turbine blade has a variation in the thickness of the ceramic shell mould 70. More specifically the ceramic shell mould 70 is thicker on the concave shaped surface than on the convex shaped surface.

When molten metal is poured into the ceramic shell mould 70, the molten metal flows through the main passage 88, the ceramic filters and the radial passages 92 to the starter chambers 82. The molten metal then flows upwardly through the starter chambers 82 and the selector passages 78 into the article chambers 74. In the single crystal casting process the open ends of the starter chambers 82 of the ceramic shell mould 70 are placed onto a chill plates located in the recess 94 of the ceramic shell mould 70. The chill plate causes solidification of the molten metal to occur, and the chill plate and ceramic shell mould 70 are withdrawn slowly from the casting furnace to produce directional solidification of the molten metal within the starter chambers 82 of the ceramic shell mould 70. The selector passages 78 select a single crystal from a plurality of directionally solidifying crystals in the starter chambers 82 of the ceramic shell mould 70.

In one embodiment of the present invention, as shown with reference to figure 4, a three dimensional CAD (computer aided design) definition of an article to be produced, for example a turbine blade, is produced. The CAD definition of the turbine blade is used as an input to a mathematical model which is used to determine the external shape and the thickness of the ceramic shell mould used for investment casting of the turbine blade.

More specifically, as shown in figures 5, 6 and 7, we

5 perform a thermal heat transfer analysis using finite element technology. We simulate heat conduction from the external surface of the CAD definition of the article to some nominal surface spaced from and enclosing the CAD definition of the article, where the external surface of the CAD definition of the article is at a predetermined temperature and the nominal surface is at a temperature significantly cooler than the temperature at the external surface of the CAD definition of the article.

10 We then say that the external surface of the ceramic shell mould is defined by an isosurface of constant temperature, and thus the external shape of the ceramic shell mould is defined together with the thickness distribution of the ceramic shell mould. Thus as we move 15 along a conduction heat flux vector away from the turbine blade, the ceramic shell mould thickness in that direction varies in proportion to the variation of temperature due to the heat flow. There is no process physics based link for this relationship, we have drawn an analogy 20 between thermal conduction and the real ceramic build up behaviour. The concave surface of the turbine blade concentrates conductive heat flux like a lens reducing heat dissipation and causing the isosurfaces of constant temperature to be further apart, whereas 25 the convex surface of the turbine blade causes the conductive heat flux to diverge increasing heat dissipation and causing the isosurfaces to be closer together.

30 It can be seen that the use of the isosurfaces of constant temperature results in the ceramic shell mould being thicker on the concave surface and thinner on the concave surface thus matching the real build up exhibited during the immersing technique. Furthermore it also produces bridging and smoothing out of features. 35 The particular isosurface of constant temperature is selected to produce the required thickness distribution of ceramic.

30 In practice as is shown in figure 7(2), a CAD definition of a cylinder 102 is produced which is larger than, and encloses the CAD definition of the turbine blade 40 100. The CAD definition of the turbine blade 100 is subtracted from the CAD definition of the cylinder 102 to produce a hollowed cylinder CAD definition 104, the internal surface of which corresponds to the external surface of the CAD definition of the turbine blade. A 45 finite element mesh 106 is automatically generated from the CAD definition of the hollowed cylinder 104 as shown in figure 7(3). Tetrahedral linear finite elements are used. This definition completely describes the hollowed cylinder by splitting the hollowed cylinder into a 50 collection of small solid elements.

A high temperature boundary condition is applied to the internal surface 108 of the hollowed cylinder finite element (FE) mesh and a low temperature boundary condition is applied to the external surface 110 of the hollowed cylinder finite element (FE) mesh, as shown in figure 7(4). These conditions are applied to enable and promote conductive heat flow through the hollowed cylinder in a radially outward direction. A finite element thermal conduction analysis is run until steady heat flow

is achieved at which point there are an infinite number of isosurfaces of constant temperature 112 within the domain of the hollowed cylinder, shown more clearly in figure 5.

Here an isosurface of temperature 112 is a set of triangles where each triangle is generated as an intersection of a plane with a tetrahedron element where the plane defines a constant temperature boundary through that tetrahedron element.

One isosurface of temperature 112 is selected which gives the required thickness distribution of the ceramic mould 114, i.e. normal spatial deviation from the CAD definition of the article 100 to the isosurface of temperature 112 as shown in figures 7(5) and 7(6).

The thermal heat transfer analysis, isosurface of temperature selection and extraction are all completed using standard finite element tools.

The CAD definition of the turbine blade 100 is used to produce a pattern of the turbine blade, the CAD definition of the turbine blade 100 may be used to produce the dies used in the wax injection process for making the wax patterns. Alternatively the CAD definition of the turbine blade 100 may be used to produce stereolithography resin patterns by controlling a beam of radiation which cures the resin.

The ceramic shell mould 114 is produced with an internal shape defined by the pattern of the turbine blade 100 and an external shape and thickness defined by the selected isosurface of constant temperature 112. The ceramic shell mould 114 may be produced with the external shape defined by the selected isosurface of constant temperature 112 by controlling the number of times the pattern is immersed in the ceramic slurry. In this case the dipping process is calibrated to correlate the number of dips required to build up the ceramic shell mould to a thickness that approximates to the thickness defined by the isosurface of constant temperature. Alternatively the ceramic shell mould may be produced with an external shape defined by the selected isosurface of constant temperature 112 by machining a ceramic block to the required external shape.

In figure 5 is shown a perspective view of a turbine blade 100 with isosurfaces of constant temperature 112, and figure 6 shows the effect on the thickness and external shape of the ceramic shell mould of selecting isosurfaces of different constant temperatures.

In another embodiment of the present invention, as shown in figure 7, a method of investment casting is shown where a process model of investment casting process is used to ensure production of defect free cast articles. The process model is an advanced finite element thermal computer model that can be used to predict the casting process and solidification behaviour. A three dimensional CAD (computer aided design) definition of a casting furnace to be used for the investment casting process is produced. A three dimensional CAD (computer aided design) definition of an article to be produced, for example a turbine blade, is produced. The CAD definition of the turbine blade is used as an input to

a mathematical model which is used to determine the external shape and the thickness of the ceramic shell mould used for investment casting of the turbine blade. A process model of molten metal solidification, particularly during directional solidification or single crystal formation, is produced. The three dimensional CAD definition of the casting furnace, the three dimensional CAD definition of the turbine blade and the definition of the external shape and thickness of the ceramic shell mould are used as inputs to the process model of the molten metal solidification process.

In order to determine the external shape and thickness of the ceramic shell mould we perform a thermal heat transfer analysis using finite element technology.

15 We simulate heat conduction from the external surface of the CAD definition of the article to some nominal surface spaced from and enclosing the CAD definition of the article, where the external surface of the CAD definition of the article is at a predetermined temperature and the nominal surface is at a temperature significantly cooler than the temperature at the external surface of the CAD definition of the article.

We then say that the external surface of the ceramic shell mould is defined by an isosurface of constant temperature, and thus the external shape of the ceramic shell mould is defined together with the thickness distribution of the ceramic shell mould. The concave surface of the turbine blade concentrates conductive heat flux like a lens reducing heat dissipation and causing the isosurfaces of constant temperature to be further apart, whereas the convex surface of the turbine blade causes the conductive heat flux to diverge increasing heat dissipation and causing the isosurfaces to be closer together.

35 It can be seen that the use of the isosurfaces of constant temperature results in the ceramic shell mould being thicker on the concave surface and thinner on the concave surface thus matching the real build up exhibited during the immersing technique. Furthermore it also produces bridging and smoothing out of features. The particular isosurface of constant temperature is selected to produce the required thickness distribution of ceramic.

Again in practice, as discussed above with reference to figure 5, 6 and 7, a CAD definition of a cylinder 102 is produced which is larger than, and encloses the CAD definition of the turbine blade 100. The CAD definition of the turbine blade 100 is subtracted from the CAD definition of the cylinder 102 to produce a hollowed cylinder CAD definition 104, the internal surface of which corresponds to the external surface of the CAD definition of the turbine blade 100. A finite element mesh is automatically generated from the CAD definition of the hollowed cylinder 106. Tetrahedral linear finite elements are used. This definition completely describes the hollowed cylinder 106 by splitting the hollowed cylinder 106 into a collection of small solid elements.

55 A high temperature boundary condition is applied to

the internal surface 108 of the hollowed cylinder finite element (FE) mesh 106 and a low temperature boundary condition is applied to the external surface 110 of the hollowed cylinder finite element (FE) mesh 106. These conditions are applied to enable and promote conductive heat flow through the hollowed cylinder 106 in a radially outward direction. A finite element thermal conduction analysis is run until steady heat flow is achieved at which point there are an infinite number of isosurfaces of constant temperature 112.

An isosurface of temperature 112 is a set of triangles where each triangle is generated as an intersection of a plane with a tetrahedron element where the plane defines a constant temperature boundary through that tetrahedron element.

One isosurface of constant temperature 112 is selected which gives a certain thickness distribution of the ceramic mould 114 i.e. normal spatial deviation from the CAD definition of the turbine blade 100 to the isosurface of constant temperature 112.

The thermal heat transfer analysis, isosurface selection and extraction are all completed using standard finite element tools.

The temperatures of the isosurfaces of constant temperature are calibrated to correspond to the number of times that the wax pattern of the turbine blade is dipped into the ceramic slurry and hence the thickness of the ceramic shell mould.

The process model of the molten metal solidification process then uses the CAD definition of the furnace, the CAD definition of the turbine blade and the definition of the external shape and thickness of the ceramic shell mould as inputs and then determines if the selected definition of the external shape and thickness of the ceramic shell mould in conjunction with the shape of the turbine blade and the casting furnace will result in cast turbine blade substantially without defects.

If the process model of the molten metal solidification process determines that the cast turbine blade will be free from defects then the CAD definition of the turbine blade is used to produce a pattern of the turbine blade, the wax pattern is dipped in the ceramic slurry the appropriate number of times, corresponding to the selected isosurface of constant temperature, to produce the selected definition of the external shape and thickness of the ceramic shell mould. Then the wax pattern is removed from the ceramic shell mould, and the ceramic shell mould is fired to strengthen the ceramic shell mould. The ceramic shell mould is then placed in the casting furnace, the molten metal is poured into the ceramic shell mould and the molten metal is solidified in the ceramic shell mould to produce the cast turbine blade. The turbine blade is then removed from the ceramic shell mould.

The CAD definition of the turbine blade may be used to produce the dies used in the wax injection process for making the wax patterns. Alternatively the CAD definition may be used to produce stereolithography resin patterns by controlling a beam of radiation which

cures the resin.

The ceramic shell mould is produced with an internal shape defined by the pattern of the turbine blade and an external shape and thickness defined by the selected isosurface of constant temperature. The ceramic shell mould may be produced with the external shape defined by the selected isosurface of constant temperature by controlling the number of times the pattern is immersed in the ceramic slurry. In this case the dipping process is calibrated to correlate the number of dips required to build up the ceramic shell mould to a thickness that approximates the thickness defined by the selected isosurface of constant temperature. Alternatively the ceramic shell mould may be produced with an external shape defined by the selected isosurface of constant temperature by machining a ceramic block to the required external shape.

If the process model of the molten metal solidification process determines that the cast turbine blade will not be free from defects then during the determination of the external shape and thickness of the ceramic shell mould another isosurface of constant temperature is selected corresponding to a ceramic shell mould thickness either one dip thicker or one dip thinner. The process model of the molten metal solidification process is rerun to determine if the newly selected definition of the external shape and thickness of the ceramic shell mould in conjunction with the shape of the turbine blade and the casting furnace will result in cast turbine blade substantially without defects.

If a cast turbine blade without defects is produced the wax patterns and ceramic shell mould with the newly selected thickness is produced and the metal is cast in the mould. If a cast turbine blade with defects is produced then a new isosurface is selected and the process model is rerun to determine if the newly selected external shape and thickness of the ceramic shell mould will produce cast turbine blades substantially without defects.

The solidification process preferably includes providing a temperature gradient across the turbine blade to produce a directionally solidified, or single crystal, turbine blade. The temperature gradient may be produced by placing the ceramic shell mould on a cooled chill plate, and moving the chill plate so that the ceramic shell mould is gradually removed from the casting furnace.

A resin pattern assembly 210, shown in figure 9, comprises a plurality of resin patterns 212 suitable for making turbine vanes or turbine blades for a gas turbine engine. Each of the resin patterns 212 has a first part 214, which defines the shape of the root of the resulting cast turbine blade, a second part 216, which defines the shape of the platform of the cast turbine blade and a third part 218, which defines the shape of the aerofoil portion of the cast turbine blade. The turbine blades to be cast in this example are single crystal turbine blades and therefore an associated resin selector part 220 and resin starter part 222 are connected to each resin pat-

tern 212. The resin selector part 220 is a resin helix, although other suitable resin selectors may be used.

The resin patterns 212 and associated resin selectors 220 and resin starters 222 are arranged together on a resin gating tree 224 to form a resin pattern assembly 210. The resin gating tree 224 comprises a resin runner which includes a central downpole 226 and a plurality of feeders 228. The resin patterns 212 are arranged generally parallel to the central downpole 226 and the feeders 228 extend generally radially from the central downpole 226 to the resin patterns 212.

A resin mould assembly 230, shown in figure 9, comprises a first resin mould part 232 and a second resin mould part 234. The resin mould assembly 230 is arranged around the resin pattern assembly 210 and is spaced from the resin pattern assembly 210 to form a chamber 240. A ceramic shell mould 70 similar to that shown in figure 2 is produced by injecting a ceramic slurry into the chamber 240 using a binderless, low pressure, low viscosity injection moulding process. The ceramic slurry comprises a mono sized particulate ceramic system highly dispersed in a relatively volatile dispersant fluid. The dispersant fluid is then sublimated and the injected ceramic is allowed to cure and solidify. A ceramic slurry which is suitable for such an injection moulding process is commercially available under the name 'CPS Quickset' (Trade Mark), and has the property of isotropic shrinkage on sintering, resulting in mechanical properties and dimensional consistency superior to that of conventional injection moulding.

When curing of the ceramic is complete, the resin mould assembly 230 is removed together with the inserts leaving a ceramic shell mould surrounding the resin pattern assembly 210. The ceramic shell mould is then dried. The resin pattern assembly 210 is then removed from the ceramic shell mould and the ceramic shell mould is fired. The ceramic shell mould is then tested for cracks before it is used for casting.

The resin pattern assembly 210 and the resin mould assembly 230 are produced by controlling a beam of radiation which cures the resin, ie the resin pattern assembly 210 and resin mould assembly 230 are produced by stereolithography. The resin pattern assembly 210 and resin pattern assembly 230 may be integral.

The CAD definition of the turbine blade 100 is used to produce the resin pattern assembly 210 by stereolithography by controlling the beam of radiation which cures the resin, and thus the internal shape 236 of the chamber 240 is defined by the CAD definition of the turbine blade. The external shape 238 and thickness of the chamber 240 is defined by the selected isosurface of constant temperature 112 and the selected isosurface of constant temperature 112 is used to produce the resin mould assembly 230 by stereolithography by controlling the beam of radiation which cures the resin. The ceramic shell mould 114 thus has an internal shape 236 defined by the pattern of the turbine blade 100 and an external shape and thickness defined by the selected

isosurface of constant temperature 112.

The use of stereolithography to produce a resin pattern assembly and resin mould assembly for producing a ceramic shell mould for investment casting has the advantage that it enables a substantial saving in development time and costs compared to the long development time and high costs involved in producing dies for wax patterns, and enables castings to be made in six days or less compared to about twenty weeks or more for conventional lost wax casting and the ceramic shell mould produced by this method mimics the ceramic shell mould produced by dipping so that the lessons learnt during the development can be applied to the dipped ceramic shell moulds. The resin pattern moulds are not sufficiently smooth and accurate to be used in production but provide sufficient accuracy for development purposes. The ceramic shell mould produced from the resin pattern assembly and resin mould assembly may be used in the method disclosed with reference to figure 8 but instead of producing the ceramic shell mould by dipping the ceramic shell mould is produced by injecting into a resin pattern and resin mould assembly and the thickness of the ceramic shell mould is varied accordingly to produce satisfactory castings.

Although the description has referred to turbine blades and turbine vanes it is equally applicable to other articles or components.

The novel and inventive feature of the present invention is the selection of the isosurface of constant temperature to define the external shape and thickness of the ceramic shell mould in order to produce a ceramic shell mould which more closely resembles those produced by dipping a wax pattern into a ceramic slurry.

Although we have used isosurfaces of constant temperature produced by heat conduction, it is equally possible to use isosurfaces of constant temperature produced by heat radiation or heat convection.

Similarly it is also within the scope of this invention to use other physical properties instead of temperature to select the shape and thickness of the ceramic shell mould. For example it may be possible instead of producing a thermal gradient across the hollow cylinder to produce a pressure gradient across the hollow cylinder and to determine where the isosurfaces of constant stress are, and to select one of the isosurfaces of constant stress to define the outer surface of the ceramic shell mould. It is possible to use any other suitable physical property which is directional and has a flux and to determine isosurfaces of constant physical property values, and select one of the isosurfaces of constant physical property value.

Claims

1. A method of investment casting comprising the steps of:-
 (a) producing a CAD definition of at least one article (100) to be produced,

- (b) making a pattern (10,12) of at least one article to be produced from the CAD definition of the at least one article (100).
 (c) making the investment casting mould (70,114) with an internal shape defined by the pattern of the at least one article (10,12) to be produced.
 (d) removing the pattern (10,12) from the investment casting mould (70,114).
 (e) pouring molten metal into the investment casting mould (70,114).
 (f) solidifying the molten metal in the investment casting mould (70,114) to produce the at least one article
 (g) removing the at least one article from the investing casing mould (70,114).
 characterised by
 (h) determining the distribution of isosurfaces of a constant physical property (112) around the CAD definition of the at least one article (100) if the external surface (108) of the CAD definition of the at least one article (100) was held at a predetermined physical property value,
 (i) selecting one isosurface of a constant physical property value (112) to define the external shape and the thickness of the investment casting mould (70,114).
 (j) making the investment casting mould (70,114) with an external shape and thickness distribution defined by the selected isosurface of constant physical property value (112).
2. A method as claimed in claim 1 wherein the physical property is temperature. 35
3. A method as claimed in claim 2 wherein step (h) comprises performing heat transfer analysis by analysing the transfer of heat between the external surface (108) of the CAD definition of the at least one article (100) and a nominal boundary surface (110) spaced from and enclosing the CAD definition of the at least one article (100). 40
4. A method as claimed in claim 1, claim 2 or claim 3 wherein step (b) comprises producing the pattern (10,12) by injecting wax into a die or by producing the pattern (10,12) by stereolithography from a resin. 45
5. A method as claimed in claim 1, claim 2, claim 3 or claim 4 wherein the CAD definition comprises a plurality of articles (12) to be produced interconnected by a runner system (24). 50
6. A method as claimed in any preceding claim wherein step (c) comprises producing the investment casting mould (70,114) by repeatedly dipping the pattern (10,12) in a ceramic slurry. 55
7. A method as claimed in any of claims 1 to 5 wherein step (c) comprises producing the investment casting mould (70,114) by making a mould (230) to define the external shape of the investment casting mould (70,114) and injecting a ceramic slurry into a space (240) defined between the pattern (210,212) and the mould (230).
 5
8. A method as claimed in claim 7 comprising making the mould (23) by stereolithography from a resin.
9. A method as claimed in any of claims 1 to 8 wherein step (f) comprises producing a temperature gradient across the investment casting mould (70,114) to directionally solidify the molten metal.
10. A method of making an investment casting mould comprising the steps of:-
 15
 (a) producing a CAD definition of at least one article (100) to be produced,
 (b) making a pattern (10,12) of at least one article to be produced from the CAD definition of the at least one article (100),
 (c) making the investment casting mould (70,114) with an internal shape defined by the pattern of the at least one article (100) to be produced,
 (d) removing the pattern (10,12) from the investment casting mould (70,114),
 characterised by
 (e) determining the distribution of isosurfaces of a constant physical property (112) around the CAD definition of the at least one article (100) if the external surface (108) of the CAD definition of the at least one article (100) was held at a predetermined physical property value,
 (f) selecting on isosurface of constant physical property value (112) to define the external shape and the thickness of the investment casting mould (70,114),
 (g) making the investment casting mould (70,114) with an external shape and thickness distribution defined by the selected isosurface of constant physical property value (112).
 20
 30
 40
 50
 60
 70
 80
 90
 100
 110
 120
 130
 140
 150
 160
 170
 180
 190
 200
 210
 220
 230
 240
 250
 260
 270
 280
 290
 300
 310
 320
 330
 340
 350
 360
 370
 380
 390
 400
 410
 420
 430
 440
 450
 460
 470
 480
 490
 500
 510
 520
 530
 540
 550
 560
 570
 580
 590
 600
 610
 620
 630
 640
 650
 660
 670
 680
 690
 700
 710
 720
 730
 740
 750
 760
 770
 780
 790
 800
 810
 820
 830
 840
 850
 860
 870
 880
 890
 900
 910
 920
 930
 940
 950
 960
 970
 980
 990
 1000
 1010
 1020
 1030
 1040
 1050
 1060
 1070
 1080
 1090
 1100
 1110
 1120
 1130
 1140
 1150
 1160
 1170
 1180
 1190
 1200
 1210
 1220
 1230
 1240
 1250
 1260
 1270
 1280
 1290
 1300
 1310
 1320
 1330
 1340
 1350
 1360
 1370
 1380
 1390
 1400
 1410
 1420
 1430
 1440
 1450
 1460
 1470
 1480
 1490
 1500
 1510
 1520
 1530
 1540
 1550
 1560
 1570
 1580
 1590
 1600
 1610
 1620
 1630
 1640
 1650
 1660
 1670
 1680
 1690
 1700
 1710
 1720
 1730
 1740
 1750
 1760
 1770
 1780
 1790
 1800
 1810
 1820
 1830
 1840
 1850
 1860
 1870
 1880
 1890
 1900
 1910
 1920
 1930
 1940
 1950
 1960
 1970
 1980
 1990
 2000
 2010
 2020
 2030
 2040
 2050
 2060
 2070
 2080
 2090
 2100
 2110
 2120
 2130
 2140
 2150
 2160
 2170
 2180
 2190
 2200
 2210
 2220
 2230
 2240
 2250
 2260
 2270
 2280
 2290
 2300
 2310
 2320
 2330
 2340
 2350
 2360
 2370
 2380
 2390
 2400
 2410
 2420
 2430
 2440
 2450
 2460
 2470
 2480
 2490
 2500
 2510
 2520
 2530
 2540
 2550
 2560
 2570
 2580
 2590
 2600
 2610
 2620
 2630
 2640
 2650
 2660
 2670
 2680
 2690
 2700
 2710
 2720
 2730
 2740
 2750
 2760
 2770
 2780
 2790
 2800
 2810
 2820
 2830
 2840
 2850
 2860
 2870
 2880
 2890
 2900
 2910
 2920
 2930
 2940
 2950
 2960
 2970
 2980
 2990
 3000
 3010
 3020
 3030
 3040
 3050
 3060
 3070
 3080
 3090
 3100
 3110
 3120
 3130
 3140
 3150
 3160
 3170
 3180
 3190
 3200
 3210
 3220
 3230
 3240
 3250
 3260
 3270
 3280
 3290
 3300
 3310
 3320
 3330
 3340
 3350
 3360
 3370
 3380
 3390
 3400
 3410
 3420
 3430
 3440
 3450
 3460
 3470
 3480
 3490
 3500
 3510
 3520
 3530
 3540
 3550
 3560
 3570
 3580
 3590
 3600
 3610
 3620
 3630
 3640
 3650
 3660
 3670
 3680
 3690
 3700
 3710
 3720
 3730
 3740
 3750
 3760
 3770
 3780
 3790
 3800
 3810
 3820
 3830
 3840
 3850
 3860
 3870
 3880
 3890
 3900
 3910
 3920
 3930
 3940
 3950
 3960
 3970
 3980
 3990
 4000
 4010
 4020
 4030
 4040
 4050
 4060
 4070
 4080
 4090
 4100
 4110
 4120
 4130
 4140
 4150
 4160
 4170
 4180
 4190
 4200
 4210
 4220
 4230
 4240
 4250
 4260
 4270
 4280
 4290
 4300
 4310
 4320
 4330
 4340
 4350
 4360
 4370
 4380
 4390
 4400
 4410
 4420
 4430
 4440
 4450
 4460
 4470
 4480
 4490
 4500
 4510
 4520
 4530
 4540
 4550
 4560
 4570
 4580
 4590
 4600
 4610
 4620
 4630
 4640
 4650
 4660
 4670
 4680
 4690
 4700
 4710
 4720
 4730
 4740
 4750
 4760
 4770
 4780
 4790
 4800
 4810
 4820
 4830
 4840
 4850
 4860
 4870
 4880
 4890
 4900
 4910
 4920
 4930
 4940
 4950
 4960
 4970
 4980
 4990
 5000
 5010
 5020
 5030
 5040
 5050
 5060
 5070
 5080
 5090
 5100
 5110
 5120
 5130
 5140
 5150
 5160
 5170
 5180
 5190
 5200
 5210
 5220
 5230
 5240
 5250
 5260
 5270
 5280
 5290
 5300
 5310
 5320
 5330
 5340
 5350
 5360
 5370
 5380
 5390
 5400
 5410
 5420
 5430
 5440
 5450
 5460
 5470
 5480
 5490
 5500
 5510
 5520
 5530
 5540
 5550
 5560
 5570
 5580
 5590
 5600
 5610
 5620
 5630
 5640
 5650
 5660
 5670
 5680
 5690
 5700
 5710
 5720
 5730
 5740
 5750
 5760
 5770
 5780
 5790
 5800
 5810
 5820
 5830
 5840
 5850
 5860
 5870
 5880
 5890
 5900
 5910
 5920
 5930
 5940
 5950
 5960
 5970
 5980
 5990
 6000
 6010
 6020
 6030
 6040
 6050
 6060
 6070
 6080
 6090
 6100
 6110
 6120
 6130
 6140
 6150
 6160
 6170
 6180
 6190
 6200
 6210
 6220
 6230
 6240
 6250
 6260
 6270
 6280
 6290
 6300
 6310
 6320
 6330
 6340
 6350
 6360
 6370
 6380
 6390
 6400
 6410
 6420
 6430
 6440
 6450
 6460
 6470
 6480
 6490
 6500
 6510
 6520
 6530
 6540
 6550
 6560
 6570
 6580
 6590
 6600
 6610
 6620
 6630
 6640
 6650
 6660
 6670
 6680
 6690
 6700
 6710
 6720
 6730
 6740
 6750
 6760
 6770
 6780
 6790
 6800
 6810
 6820
 6830
 6840
 6850
 6860
 6870
 6880
 6890
 6900
 6910
 6920
 6930
 6940
 6950
 6960
 6970
 6980
 6990
 7000
 7010
 7020
 7030
 7040
 7050
 7060
 7070
 7080
 7090
 7100
 7110
 7120
 7130
 7140
 7150
 7160
 7170
 7180
 7190
 7200
 7210
 7220
 7230
 7240
 7250
 7260
 7270
 7280
 7290
 7300
 7310
 7320
 7330
 7340
 7350
 7360
 7370
 7380
 7390
 7400
 7410
 7420
 7430
 7440
 7450
 7460
 7470
 7480
 7490
 7500
 7510
 7520
 7530
 7540
 7550
 7560
 7570
 7580
 7590
 7600
 7610
 7620
 7630
 7640
 7650
 7660
 7670
 7680
 7690
 7700
 7710
 7720
 7730
 7740
 7750
 7760
 7770
 7780
 7790
 7800
 7810
 7820
 7830
 7840
 7850
 7860
 7870
 7880
 7890
 7900
 7910
 7920
 7930
 7940
 7950
 7960
 7970
 7980
 7990
 8000
 8010
 8020
 8030
 8040
 8050
 8060
 8070
 8080
 8090
 8100
 8110
 8120
 8130
 8140
 8150
 8160
 8170
 8180
 8190
 8200
 8210
 8220
 8230
 8240
 8250
 8260
 8270
 8280
 8290
 8300
 8310
 8320
 8330
 8340
 8350
 8360
 8370
 8380
 8390
 8400
 8410
 8420
 8430
 8440
 8450
 8460
 8470
 8480
 8490
 8500
 8510
 8520
 8530
 8540
 8550
 8560
 8570
 8580
 8590
 8600
 8610
 8620
 8630
 8640
 8650
 8660
 8670
 8680
 8690
 8700
 8710
 8720
 8730
 8740
 8750
 8760
 8770
 8780
 8790
 8800
 8810
 8820
 8830
 8840
 8850
 8860
 8870
 8880
 8890
 8900
 8910
 8920
 8930
 8940
 8950
 8960
 8970
 8980
 8990
 9000
 9010
 9020
 9030
 9040
 9050
 9060
 9070
 9080
 9090
 9100
 9110
 9120
 9130
 9140
 9150
 9160
 9170
 9180
 9190
 9200
 9210
 9220
 9230
 9240
 9250
 9260
 9270
 9280
 9290
 9300
 9310
 9320
 9330
 9340
 9350
 9360
 9370
 9380
 9390
 9400
 9410
 9420
 9430
 9440
 9450
 9460
 9470
 9480
 9490
 9500
 9510
 9520
 9530
 9540
 9550
 9560
 9570
 9580
 9590
 9600
 9610
 9620
 9630
 9640
 9650
 9660
 9670
 9680
 9690
 9700
 9710
 9720
 9730
 9740
 9750
 9760
 9770
 9780
 9790
 9800
 9810
 9820
 9830
 9840
 9850
 9860
 9870
 9880
 9890
 9900
 9910
 9920
 9930
 9940
 9950
 9960
 9970
 9980
 9990
 10000
 10010
 10020
 10030
 10040
 10050
 10060
 10070
 10080
 10090
 10100
 10110
 10120
 10130
 10140
 10150
 10160
 10170
 10180
 10190
 10200
 10210
 10220
 10230
 10240
 10250
 10260
 10270
 10280
 10290
 10300
 10310
 10320
 10330
 10340
 10350
 10360
 10370
 10380
 10390
 10400
 10410
 10420
 10430
 10440
 10450
 10460
 10470
 10480
 10490
 10500
 10510
 10520
 10530
 10540
 10550
 10560
 10570
 10580
 10590
 10600
 10610
 10620
 10630
 10640
 10650
 10660
 10670
 10680
 10690
 10700
 10710
 10720
 10730
 10740
 10750
 10760
 10770
 10780
 10790
 10800
 10810
 10820
 10830
 10840
 10850
 10860
 10870
 10880
 10890
 10900
 10910
 10920
 10930
 10940
 10950
 10960
 10970
 10980
 10990
 11000
 11010
 11020
 11030
 11040
 11050
 11060
 11070
 11080
 11090
 11100
 11110
 11120
 11130
 11140
 11150
 11160
 11170
 11180
 11190
 11200
 11210
 11220
 11230
 11240
 11250
 11260
 11270
 11280
 11290
 11300
 11310
 11320
 11330
 11340
 11350
 11360
 11370
 11380
 11390
 11400
 11410
 11420
 11430
 11440
 11450
 11460
 11470
 11480
 11490
 11500
 11510
 11520
 11530
 11540
 11550
 11560
 11570
 11580
 11590
 11600
 11610
 11620
 11630
 11640
 11650
 11660
 11670
 11680
 11690
 11700
 11710
 11720
 11730
 11740
 11750
 11760
 11770
 11780
 11790
 11800
 11810
 11820
 11830
 11840
 11850
 11860
 11870
 11880
 11890
 11900
 11910
 11920
 11930
 11940
 11950
 11960
 11970
 11980
 11990
 12000
 12010
 12020
 12030
 12040
 12050
 12060
 12070
 12080
 12090
 12100
 12110
 12120
 12130
 12140
 12150
 12160
 12170
 12180
 12190
 12200
 12210
 12220
 12230
 12240
 12250
 12260
 12270
 12280
 12290
 12300
 12310
 12320
 12330
 12340
 12350
 12360
 12370
 12380
 12390
 12400
 12410
 12420
 12430
 12440
 12450

- 12 wherein step (b) comprises producing the pattern (10,12) by injecting wax into a die or by producing the pattern (10,12) by stereolithography from a resin.
14. A method as claimed in claim 10, claim 11, claim 12, or claim 13 wherein the CAD definition comprises a plurality of articles (12) to be produced interconnected by a runner system (24).
15. A method as claimed in any of claims 10 to 14 wherein step (c) comprises producing the investment casting mould (70,114) by repeatedly dipping the pattern (10,12) in a ceramic slurry.
16. A method as claimed in any of claims 10 to 14 wherein step (c) comprises producing the investment casting mould (70,114) by making a mould (230) to define the external shape of the investment casting mould (70,114) and injecting a ceramic slurry into a space (240) defined between the pattern (210,212) and the mould (230).
17. A method as claimed in claim 16 comprising making the mould (23) by stereolithography from a resin.
18. An investment casting mould having an internal shape defined by the pattern of the at least one article to be produced and an external shape and thickness distribution defined by an isosurface of constant physical property value of the at least one article.
19. A method of investment casting comprising the steps of:-
- (a) producing a CAD definition of a casting furnace,
 - (b) producing a process model of the solidification of molten metal within an investment casting mould (70,114) in the casting furnace,
 - (c) producing a CAD definition of at least one article (100) to be produced,
 - (d) determining the distribution of isosurfaces of a constant physical property (112) around the CAD definition of the at least one article (100) if the external surface (108) of the CAD definition of the at least one article (100) was held at a predetermined physical property value,
 - (e) selecting one isosurface of constant physical property value (112) to define the external shape and the thickness of an investment casting mould (70,114),
 - (f) supplying the CAD definition of the at least one article (100), the CAD definition of the casting furnace and the definition of the investment casting mould (70,114) to the process
- model of the solidification of molten metal within an investment casting mould (70,114) within the casting furnace,
- (g) using the process model to determine whether the solidification of molten metal within the definition of the investment casting mould (70,114) in the CAD definition of the casting furnace will produce at least one cast article substantially without defects,
- (h) making a pattern (10,12) of the at least one article to be produced from the CAD definition of the at least one article (100),
- (i) making the investment casting mould (70,114) with an internal shape defined by the pattern of the at least one article (10,12) to be produced and an external shape and thickness distribution defined by the selected isosurface of constant physical property value (112),
- (j) removing the pattern (10,12) from the investment casting mould (70,114),
- (k) pouring molten metal into the investment casting mould (70,114),
- (l) solidifying the molten metal in the investment casting mould (70,114) to produce the at least one article,
- (m) removing the at least one article from the investment casting mould (70,114).
20. A method as claimed in claim 19 wherein the physical property is temperature.
21. A method as claimed in claim 20 wherein step (d) comprises performing heat transfer analysis by analysing the transfer of heat between the external surface (108) of the CAD definition of the at least one article (100) and a nominal boundary surface (110) spaced from and enclosing the CAD definition of the at least one article (100).
22. A method as claimed in claim 19, claim 20 or claim 21 wherein step (h) comprises producing the pattern (10,12) by injecting wax into a die or by producing the pattern (10,12) by stereolithography from a resin.
23. A method as claimed in claim 19, claim 20, claim 21, or claim 22 wherein the CAD definition comprises a plurality of articles (12) to be produced interconnected by a runner system (24).
24. A method as claimed in any of claims 19 to 23 wherein step (i) comprises producing the investment casting mould (70,114) by repeatedly dipping the pattern (10,12) in a ceramic slurry.
25. A method as claimed in any of claims 19 to 24 wherein step (i) comprises producing the investment casting mould (70,114) by making a mould (230) to define the external shape of the investment

casting mould (70,114) and injecting a ceramic slurry into a space (240) defined between the pattern (210,212) and the mould (230).

26. A method as claimed in claim 25 comprising making the mould (230) by stereolithography from a resin. 5
27. A method as claimed in any of claims 19 to 26 wherein step (l) comprises producing a temperature gradient across the investment casting mould (70,114) to directionally solidify the molten metal. 10
28. A method as claimed in any of claims 19 to 27 wherein step (b) comprises producing a finite element thermal model of the casting process and solidification behaviour. 15

20

25

30

35

40

45

50

55

Fig.1.

Fig.2.

Fig.3.

Fig.4.

Fig.5.

Fig.6.

Fig.8.

Fig.9.

Fig.10.

European Patent
Office

EUROPEAN SEARCH REPORT

Application Number
EP 96 30 9402

DOCUMENTS CONSIDERED TO BE RELEVANT								
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim						
A	<p>DATABASE WPI Section Ch, Week 9209 Derwent Publications Ltd., London, GB; Class A35, AN 92-070046 XP002031163 & JP 04 015 761 A (TOYOTA CENT RES & DEV LAB) , 21 January 1992 * abstract *</p> <p>& PATENT ABSTRACTS OF JAPAN vol. 16, no. 171 (P-1343), 24 April 1992 & JP 04 015761 A (TOYOTA CENTRAL RES & DEV LAB INC), 21 January 1992, * abstract *</p> <p>---</p>	1,10,18, 19						
L	JP 04 015 761 A (TOYOTA CENTRAL RES & DEV LAB INC) 21 January 1992 related patent to citation 1 * figures 7,9 *	1,10,18, 19						
A	US 5 234 047 A (ROSE PETER E) 10 August 1993 * claims *	1-28						
A	<p>PATENT ABSTRACTS OF JAPAN vol. 017, no. 060 (P-1482), 5 February 1993 & JP 04 270467 A (HONDA MOTOR CO LTD; OTHERS: 01), 25 September 1992, * abstract *</p> <p>-----</p>	8,26						
<p>The present search report has been drawn up for all claims</p> <table border="1" style="width: 100%; border-collapse: collapse;"> <tr> <td style="width: 33%;">Place of search</td> <td style="width: 33%;">Date of completion of the search</td> <td style="width: 34%;">Examiner</td> </tr> <tr> <td>THE HAGUE</td> <td>20 May 1997</td> <td>WOUDENBERG, S</td> </tr> </table> <p>CATEGORY OF CITED DOCUMENTS</p> <p>X : particularly relevant if taken alone Y : particularly relevant if combined with another document of the same category A : technological background O : non-written disclosure P : intermediate document</p> <p>T : theory or principle underlying the invention E : earlier patent document, but published on, or after the filing date D : document cited in the application L : document cited for other reasons & : member of the same patent family, corresponding document</p>			Place of search	Date of completion of the search	Examiner	THE HAGUE	20 May 1997	WOUDENBERG, S
Place of search	Date of completion of the search	Examiner						
THE HAGUE	20 May 1997	WOUDENBERG, S						