Department of
Computer Science
& Engineering



# 计算机组成实验指导书-LAB4

|                                         | 标题              | 文档编号            | 版本  | 页                |
|-----------------------------------------|-----------------|-----------------|-----|------------------|
| —————————————————————————————————————   | 计算机组成实验指导书 LAB1 | CSE-COA-LAB-004 | 0.3 | 1 of 18          |
| 计算机科字与上程系                               | 作者              | 修改日期            |     | /\ <del></del> * |
| Dept. of Computer Science & Engineering | WnSN Lab        | 9/21/2012       |     | 公廾               |

### 1. OVERVIEW

## 1.1 实验名称

#### 简单的类 MIPS 单周期处理器实现 -寄存器与内存

# 1.2 实验目的

- 1. 理解 CPU 的寄存器与内存
- 2. 使用 Verilog 语言设计存储器件
- 3. 使用 ISim 进行行为仿真

# 1.3 实验范围

本次实验将覆盖以下范围

- 1. ISE 的使用
- 2. Register 的实现
- 3. Data Memory 的实现
- 4. 有符号扩展的实现

# 1.4 实验预计时间

150~180 分钟

# 1.5 实验报告与验收办法

# 1.6 注意事项

1. 本实验的逻辑设计工具为 Xilinx ISE13.4,但不仅限于此,学生可以使用自己喜欢的逻辑设计工具,如 Snyplify等。

|                                         | 标题              | 文档编号            | 版本  | 页       |
|-----------------------------------------|-----------------|-----------------|-----|---------|
| ——— 上海交通大学 ———<br>计算机科学与工程系             | 计算机组成实验指导书 LAB1 | CSE-COA-LAB-004 | 0.3 | 2 of 18 |
|                                         | 作者              | 修改日期            |     | 41      |
| Dept. of Computer Science & Engineering | WnSN Lab        | 9/21/2012       |     | 公升      |

# 2. 新建工程

1 2 3

# 2.1 实验描述

## 2.1.1 新建工程

1. 打开 ISE 工具,新建工程



2. 选择 FPGA 型号、综合和仿真工具、推荐描述语言等配置。

|                                         | 标题              | 文档编号            | 版本  | 页       |
|-----------------------------------------|-----------------|-----------------|-----|---------|
| ——— 上海交通大学 ———<br>计算机科学与工程系             | 计算机组成实验指导书 LAB1 | CSE-COA-LAB-004 | 0.3 | 3 of 18 |
| Dant of Computer Science & Socience in  | 作者              | 修改日期            |     | /\ T*   |
| cept of composer science at Engineering | WnSN Lab        | 9/21/2012       |     | 公开      |

# 3.1 实验描述

## 3.1.1 模块描述

寄存器是指令操作的主要对象, MIPS中一共有32个32位的寄存器。



(MIPS 处理器基本架构图寄存器和存储器单元)

### 3.1.2 新建模块源文件

1. 创建 Register.v 模块

|                                         | 标题              | 文档编号            | 版本  | 页              |
|-----------------------------------------|-----------------|-----------------|-----|----------------|
| ——— 上海交通大学 ———<br>计算机科学与工程系             | 计算机组成实验指导书 LAB1 | CSE-COA-LAB-004 | 0.3 | 4 of 18        |
| 月子加竹子可工性示                               | 作者              | 修改日期            |     | 41 <del></del> |
| Dept. of Computer Science & Engineering | WnSN Lab        | 9/21/2012       | 1   | 公升             |

Copyright © 2012 SJTU Department of Computer Science & Engineering. All rights reserved.



2. 设置输入输出,这里加入了时钟信号 clock\_in,参考如下截图:



|                                         | 标题              | 文档编号            | 版本  | 页       |
|-----------------------------------------|-----------------|-----------------|-----|---------|
| ——— 上海交通大学 ———<br>计算机科学与工程系             | 计算机组成实验指导书 LAB1 | CSE-COA-LAB-004 | 0.3 | 5 of 18 |
|                                         | 作者              | 修改日期            |     | 1 T     |
| Dept. of Computer Science & Engineering | WnSN Lab        | 9/21/2012       |     | 公升      |

Copyright © 2012 SJTU Department of Computer Science & Engineering. All rights reserved.

```
6
7
8
9
10
11
12
```

```
14
15
16
17
18
```

```
2324252627
```

这里需要注意的是,由于不确定 WriteReg, WriteData, RegWrite 信号的先后次序,我们采用时钟的下降沿作为写操作的同步信号,防止发生错误。

```
module register ( clock in, readReg1, readReg2, writeReg,.....
21
        input clock in;
22
        //......
23
24
25
26
27
        reg [31:0] regFile[31:0]; //registers space: 32*32bits
28
29
        //..................
30
31
        always @(readReg1 or readReg2 or .....)
32
        begin
33
             //HOW TO DO
34
35
        end
36
        always @ (negedge clock in)
37
        begin
38
             //HOW TO DO
39
        end
40
41
42
    endmodule
43
```

写完代码后在综合选项中,如图运行语法检查:



|                                         | 标题              | 文档编号            | 版本  | 页             |
|-----------------------------------------|-----------------|-----------------|-----|---------------|
| ——— 上海交通大学 ———<br>计算机科学与工程系             | 计算机组成实验指导书 LAB1 | CSE-COA-LAB-004 | 0.3 | 6 of 18       |
| 月子加竹子可工性示                               | 作者              | 修改日期            |     | / <del></del> |
| Dept. of Computer Science & Engineering | WnSN Lab        | 9/21/2012       |     | 公升            |

Copyright © 2012 SJTU Department of Computer Science & Engineering. All rights reserved.

 2. 添加激励信号如下图,进行行为仿真。使用 clock\_in 作为时钟输入,仿真运行周期自定,至少仿真 3 个周期,这里设为 3000ns。时钟周期暂设为 200ns。

```
initial begin
72
73
       //...................
74
       #285; //---- Current Time: 285ns
75
       reqWrite = 1'b1;
76
       writeReg = 5'b10101;
77
       78
       //...................
79
80
       #200; //---- Current Time:
81
       writeReg = 5'b01010;
82
       writeData = 32'b000000000000001111111111111111;
83
84
85
       #200; //---- Current Time: 685ns
86
       regWrite = 1'b0;
87
       writeReg = 5'b00000;
88
       89
90
91
       #50; //----
                              Current Time: 735ns
92
       readReg1 = 5'b10101;
93
       readReg2 = 5'b01010;
94
       //...................
95
     end
96
```

3. 写完代码后在综合选项中,如图运行语法检查:



|                                         | 标题              | 文档编号            | 版本  | 页       |
|-----------------------------------------|-----------------|-----------------|-----|---------|
| ——— 上海交通大学 ———<br>计算机科学与工程系             | 计算机组成实验指导书 LAB1 | CSE-COA-LAB-004 | 0.3 | 7 of 18 |
|                                         | 作者              | 修改日期            |     | 41      |
| Dept. of Computer Science & Engineering | WnSN Lab        | 9/21/2012       |     | 公开      |

- 4. ISim 仿真中,观察波形,查看仿真结果,是否满足当初的设计。如果有错,检查修改代码,重新仿真(操作小技巧:小键盘-,+,快速缩放波形视野)。
- 5. 下面给出二个仿真样例:

观察仿真波形时,可依据个人喜好调整信号的查看顺序。



|                 |            |      |        | 285.000 ns |        |      |        |               |        |              |          |
|-----------------|------------|------|--------|------------|--------|------|--------|---------------|--------|--------------|----------|
| Hame            | Value      | 0 ns | 200 ns |            | 400 ns |      | 600 ns |               | 800 ns | <br>1,000 ns | 1,200 ns |
| 🌆 clock_in      | 1          |      |        |            |        |      |        |               |        |              |          |
| readReg1[25:21] | 0          |      |        | 0          |        |      |        |               |        | 21           |          |
| readReg2[20:16] | 0          |      |        | 0          |        |      |        |               |        | 10           |          |
| writeReg[4:0]   | 21         | 0    |        | 21         | Х      | 10   | Х      |               |        | 0            |          |
| writeData[31:0] | 4294901760 | 0    |        | 429490:    | .760 X | 6553 | 5 X    |               |        | 0            |          |
| 1∰ regWrite     | 1          |      |        |            |        |      |        |               |        |              |          |
| TeadData1[31:0] | 0          |      |        | 0          |        |      |        | $\overline{}$ |        | 4294901760   |          |
| readData2[31:0] | 0          |      |        | 0          |        |      |        | $\overline{}$ |        | 65535        |          |
|                 |            |      |        |            |        |      |        |               |        |              |          |

# 3.2 实验报告

|                                         | 标题              | 文档编号            | 版本  | 页              |
|-----------------------------------------|-----------------|-----------------|-----|----------------|
| ——— 上海交通大学 ———<br>计算机科学与工程系             | 计算机组成实验指导书 LAB1 | CSE-COA-LAB-004 | 0.3 | 8 of 18        |
|                                         | 作者              | 修改日期            |     | /\ <del></del> |
| Dept. of Computer Science & Engineering | WnSN Lab        | 9/21/2012       |     | 公开             |

# 4. 内存单元模块 MEMORY

# 4.1 实验描述

### 4.1.1 模块描述

内存本模块与 register 类似,由于写数据也要考虑信号同步,因此也需要 clock\_in。 内存单元的实现,也可用系统 Block Memory 来生成。可参见本实验指导最后附录的部分图示。

#### 4.1.2 新建模块源文件



|                                         | 标题              | 文档编号            | 版本  | 页       |
|-----------------------------------------|-----------------|-----------------|-----|---------|
| ——— 上海交通大学 ———<br>计算机科学与工程系             | 计算机组成实验指导书 LAB1 | CSE-COA-LAB-004 | 0.3 | 9 of 18 |
| 1 异机件子司工性於                              | 作者              | 修改日期            |     | 41      |
| Dept. of Computer Science & Engineering | WnSN Lab        | 9/21/2012       |     | 公开      |

3

5

8

9

10

11

12

13

14

15

16171819

20

212223

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

**4.1.3** 编写功能 (从这个模块起,可采用 Verilog 关于模块端口定义的另一种精练的编写方式)

```
module data memory(
21
      input clock in,
22
      input [31:0] ?,
23
      input ?,
24
      input ?,
25
      input ?,
26
27
      output reg[31:0] ?
      );
28
29
      reg [31:0] memFile[0:127]; //memory space: 128*32bits
30
31
      7/......
32
33
       always @( /* conditions? */ )
34
       begin
35
          //HOW TO DO
36
37
       end
38
       always @(/* which edge? */)
39
       begin
40
          //HOW TO DO
41
42
43
44 endmodule
```

|                                         | 标题              | 文档编号            | 版本  | 页             |
|-----------------------------------------|-----------------|-----------------|-----|---------------|
| —————————————————————————————————————   | 计算机组成实验指导书 LAB1 | CSE-COA-LAB-004 | 0.3 | 10 of 18      |
|                                         | 作者              | 修改日期            |     | / <del></del> |
| Dept. of Computer Science & Engineering | WnSN Lab        | 9/21/2012       |     | 公升            |

Copyright © 2012 SJTU Department of Computer Science & Engineering. All rights reserved.

### 4.1.4 仿真

 1. 根据之前叙述的方法创建 test\_for\_datamem.v 测试文件,添加激励信号,进行仿真。





2. 添加激励信号如下图,修改代码进行行为仿真。在 testBench 中设定不同的输入。请覆盖所有的情况,以保证逻辑的正确。

|                                         | 标题              | 文档编号            | 版本  | 页                |
|-----------------------------------------|-----------------|-----------------|-----|------------------|
| ——— 上海交通大学 ———<br>计算机科学与工程系             | 计算机组成实验指导书 LAB1 | CSE-COA-LAB-004 | 0.3 | 11 of 18         |
|                                         | 作者              | 修改日期            |     | ۲ <del>- ۲</del> |
| Dept. of Computer Science & Engineering | WnSN Lab        | 9/21/2012       |     | 公升               |

```
initial begin
47
       //.....
48
                               Current Time: 185ns
       #185;
49
       memWrite = 1'b1;
50
       address = 32'b000000000000000000000000001111;
51
       52
       //.........
53
       #250;
54
       memRead = 1'b1;
55
       memWrite = 1'b0;
56
    end
57
```

- 3. 观察波形是否满足逻辑,如果有错,检查代码,重新仿真。
- 4. 下面给出二个参考样例:





# 4.2 实验报告

|                                         | 标题              | 文档编号            | 版本  | 页                |
|-----------------------------------------|-----------------|-----------------|-----|------------------|
| —————————————————————————————————————   | 计算机组成实验指导书 LAB1 | CSE-COA-LAB-004 | 0.3 | 12 of 18         |
| 计算机科字与上程系                               | 作者              | 修改日期            |     | /\ <del></del> * |
| Dept. of Computer Science & Engineering | WnSN Lab        | 9/21/2012       |     | 公升               |

Copyright © 2012 SJTU Department of Computer Science & Engineering. All rights reserved.

# 5. 带符号扩展

### 5.1 实验描述

#### 5.1.1 模块描述

将 16 位有符号数扩展为 32 位有符号数。

#### 补码:

1 2 3

- (1) 正数的补码: 与原码相同。
  - +9的补码是00001001。
- (2) 负数的补码:符号位为1,其余位为该数绝对值的原码按位取反;然后整个数加1。 求-7的补码。

因为给定数是负数,则符号位为"1"。

后七位: +7 的原码 (0000111)  $\rightarrow$  按位取反 (1111000)  $\rightarrow$  加 1 (1111001) 所以-7 的补码是 11111001。

带符号扩展只需要在前面补足符号即可。

### 5.1.2 新建模块源文件



## 5.1.3 实现功能

将符号补齐。

|                                                          | 标题              | 文档编号            | 版本  | 页             |
|----------------------------------------------------------|-----------------|-----------------|-----|---------------|
| 上海交通大学 计算机科学与工程系 Dept. of Computer Science & Engineering | 计算机组成实验指导书 LAB1 | CSE-COA-LAB-004 | 0.3 | 13 of 18      |
|                                                          | 作者              | 修改日期            |     | / <del></del> |
|                                                          | WnSN Lab        | 9/21/2012       |     | 公升            |

## 5.1.4 仿真

- 1. 可创建 test\_for\_ signext.v 测试文件。
- 2. 选取几个输入数据,覆盖不同的情况,保证逻辑正确。
- 3. 观察波形是否满足设计逻辑。

# 5.2 实验报告

|                                         | 标题              | 文档编号            | 版本  | 页              |
|-----------------------------------------|-----------------|-----------------|-----|----------------|
| —————————————————————————————————————   | 计算机组成实验指导书 LAB1 | CSE-COA-LAB-004 | 0.3 | 14 of 18       |
| Out of Comment School & Controller      | 作者              | 修改日期            |     | /\ <del></del> |
| Dept. of Computer Science & Engineering | WnSN Lab        | 9/21/2012       |     | 公升             |

内存既可用类似寄存器的方法来实现,也可用 Block Memory 实现。采用 BRAM 来设计 Data memory 是较方便和有效的。

1. 在 new source 对话框中选择选择 IP(CORE Generator & Architecture Wizard)



|                                         | 标题              | 文档编号            | 版本  | 页        |
|-----------------------------------------|-----------------|-----------------|-----|----------|
| ——上海交通大学 ———<br>计管切到学片工程系               | 计算机组成实验指导书 LAB1 | CSE-COA-LAB-004 | 0.3 | 15 of 18 |
| Date of Comments Colored & Coloreda     | 作者              | 修改日期            |     | /\ TT    |
| Dept. of Compoter Science & Engineering | WnSN Lab        | 9/21/2012       |     | 公廾       |



3. 配置 Block Memory 的参数,选择 RAM 的端口



|                                                          | 标题              | 文档编号            | 版本  | 页        |
|----------------------------------------------------------|-----------------|-----------------|-----|----------|
| 上海交通大学 计算机科学与工程系 Dept. of Computer Science & Engineering | 计算机组成实验指导书 LAB1 | CSE-COA-LAB-004 | 0.3 | 16 of 18 |
|                                                          | 作者              | 修改日期            |     | 41       |
|                                                          | WnSN Lab        | 9/21/2012       |     | 公开       |

Copyright © 2012 SJTU Department of Computer Science & Engineering. All rights reserved.



装载 Block Memory 初始化文件以及 coe 文件格式



|                                             | 标题              | 文档编号            | 版本  | 页                |
|---------------------------------------------|-----------------|-----------------|-----|------------------|
| 上海交通大学 ———————————————————————————————————— | 计算机组成实验指导书 LAB1 | CSE-COA-LAB-004 | 0.3 | 17 of 18         |
|                                             | 作者              | 修改日期            |     | 41 <del></del> - |
|                                             | WnSN Lab        | 9/21/2012       |     | 公升               |

6. COE 文件的编写格式头两句严格必须,如下:

```
memory_initialization_radix=16;
memory_initialization_vector=
00000001,
00000005,
00000008,
00000000,
00000000,
00000000,
00000000.
00000000,
00000000,
00000000.
00000000,
00000000,
00000000,
00000000
```



7. 点击 Generate,建立 IP 内存。

|                                         | 标题              | 文档编号            | 版本  | 页                |
|-----------------------------------------|-----------------|-----------------|-----|------------------|
| —————————————————————————————————————   | 计算机组成实验指导书 LAB1 | CSE-COA-LAB-004 | 0.3 | 18 of 18         |
| 计算机科字与上程系                               | 作者              | 修改日期            |     | /\ <del></del> * |
| Dept. of Computer Science & Engineering | WnSN Lab        | 9/21/2012       |     | 公升               |