

Negative voltage regulators

Features

- Output current up to 1.5 A
- Output voltages of -5; -8; -12; -15; -20 V
- Thermal overload protection
- Short circuit protection
- Output transition SOA protection

Description

The L79XXC series of three-terminal negative regulators is available in TO-220, TO-220FP and D²PAK packages and several fixed output voltages, making it useful in a wide range of applications. These regulators can provide local on-card regulation, eliminating the distribution problems associated with single point regulation; furthermore, having the same voltage option as the L78XX positive standard series, they are particularly suited for split power supplies. If adequate heat sinking is provided, they can deliver over 1.5 A output current.

Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltages and currents.

Table 1. Device summary

Part numbers		Output		
	TO-220 (A type)	D ² PAK	TO-220FP	Output voltages
L7905C	L7905CV	L7905CD2T-TR	L7905CP	-5 V
L7908C	L7908CV			-8 V
L7912C	L7912CV	L7912CD2T-TR	L7912CP	-12 V
L7915C	L7915CV	L7915CD2T-TR	L7915CP	-15 V
L7920C		L7920CD2T-TR (1)		-20 V

^{1.} Available on request.

L79xxC Maximum ratings

3 Maximum ratings

Table 2. Absolute maximum ratings

Symbol	Parameter		Value	Unit	
VI	DO increte valta as	for V _O = 5 to 18V	-35	V	
	DC input voltage	for V _O = 20, 24V	-40		
Io	Output current	Internally limited			
P _D	Power dissipation		Internally limited		
T _{STG}	Storage temperature range		-65 to 150	°C	
T _{OP}	Operating junction temperature range		0 to 150	°C	

Note:

Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

Table 3. Thermal data

Symbol	Parameter	D ² PAK	TO-220	TO-220FP	Unit
R _{thJC}	Thermal resistance junction-case	3	3	5	°C/W
R _{thJA}	R _{thJA} Thermal resistance junction-ambient		50	60	°C/W

5 Electrical characteristics

Table 4. Electrical characteristics of L7905C (refer to the test circuits, $T_J = 0$ to 125 °C, $V_I = -10$ V, $I_O = 500$ mA, $C_I = 2.2$ μ F, $C_O = 1$ μ F unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
Vo	Output voltage	T _J = 25°C	-4.8	-5	-5.2	V	
V _O	Output voltage	$I_O = -5$ mA to -1 A, $P_O \le 15$ W $V_I = -8$ to -20 V	-4.75	-5	-5.25	V	
ΔV _O ⁽¹⁾	Line regulation	V _I = -7 to -25 V, T _J = 25°C			100	- mV	
700	Line regulation	$V_I = -8 \text{ to } -12 \text{ V}, T_J = 25^{\circ}\text{C}$			50		
ΔV _O ⁽¹⁾	Load regulation	$I_{O} = 5$ mA to 1.5 A, $T_{J} = 25^{\circ}$ C			100	mV	
Δνο, ,	Load regulation	I_{O} = 250 to 750 mA, T_{J} = 25°C			50	IIIV	
I _d	Quiescent current	T _J = 25°C			3	mA	
Al	Quiescent current change	I _O = 5 mA to 1 A			0.5	mA	
Δl _d	Quiescent current change	V _I = -8 to -25 V			1.3	IIIA	
$\Delta V_{O}/\Delta T$	Output voltage drift	I _O = 5 mA		-0.4		mV/°C	
eN	Output noise voltage	B = 10Hz to 100kHz, $T_J = 25$ °C		100		μV	
SVR	Supply voltage rejection	$\Delta V_{I} = 10 \text{ V, f} = 120 \text{Hz}$	54	60		dB	
V _d	Dropout voltage	$I_O = 1 \text{ A}, T_J = 25^{\circ}\text{C}, \Delta V_O = 100 \text{ mV}$		1.4		٧	
I _{sc}	Short circuit current			2.1		Α	

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

TO-220	(A	type)	mechanical	data
--------	----	-------	------------	------

Dim.		mm. inch.				
	Min.	Тур.	Max.	Min.	Тур.	Max.
А	4.40		4.60	0.173		0.181
b	0.61		0.88	0.024		0.035
b1	1.15		1.70	0.045		0.067
С	0.49		0.70	0.019		0.028
D	15.25		15.75	0.600		0.620
E	10.0		10.40	0.394		0.409
е	2.4		2.7	0.094		0.106
e1	4.95		5.15	0.195		0.203
F	1.23		1.32	0.048		0.052
H1	6.2		6.6	0.244		0.260
J1	2.40		2.72	0.094		0.107
L	13.0		14.0	0.512		0.551
L1	3.5		3.93	0.138		0.155
L20		16.4			0.646	
L30		28.9			1.138	
φР	3.75		3.85	0.148		0.152
Q	2.65		2.95	0.104		0.116

