Object Protocol

PyObject* Py_NotImplemented

The NotImplemented singleton, used to signal that an operation is not implemented for the given type combination.

Py RETURN NOTIMPLEMENTED

Properly handle returning Py_NotImplemented from within a C function (that is, increment the reference count of NotImplemented and return it).

int **PyObject_Print**(PyObject *o, FILE *fp, int flags)

Print an object o, on file fp. Returns -1 on error. The flags argument is used to enable certain printing options. The only option currently supported is Py PRINT RAW; if given, the str() of the object is written instead of the repr().

int PyObject_HasAttr(PyObject *o, PyObject *attr_name)

Returns 1 if o has the attribute attr_name, and 0 otherwise. This is equivalent to the Python expression hasattr(o, attr_name). This function always succeeds.

int **PyObject_HasAttrString**(PyObject *o, const char *attr_name)

Returns 1 if o has the attribute attr_name, and 0 otherwise. This is equivalent to the Python expression hasattr(o, attr_name). This function always succeeds.

PyObject* PyObject_GetAttr(PyObject *o, PyObject *attr_name)

Return value: New reference.

Retrieve an attribute named *attr_name* from object *o*. Returns the attribute value on success, or *NULL* on failure. This is the equivalent of the Python expression o.attr_name.

PyObject* PyObject_GetAttrString(PyObject *o, const char *attr_name)

Return value: New reference.

Retrieve an attribute named *attr_name* from object *o*. Returns the attribute value on success, or *NULL* on failure. This is the equivalent of the Python expression o.attr_name.

PyObject* PyObject GenericGetAttr(PyObject *o, PyObject *name)

Generic attribute getter function that is meant to be put into a type object's tp_getattro slot. It looks for a descriptor in the dictionary of classes in the object's MRO as well as an attribute in the object's __dict__ (if present). As outlined in Implementing Descriptors, data descriptors take preference over in-

stance attributes, while non-data descriptors don't. Otherwise, an AttributeError is raised.

int **PyObject_SetAttr**(PyObject *o, PyObject *attr_name, PyObject *v)

Set the value of the attribute named $attr_name$, for object o, to the value v. Raise an exception and return -1 on failure; return 0 on success. This is the equivalent of the Python statement $o.attr_name = v$.

If v is NULL, the attribute is deleted, however this feature is deprecated in favour of using PyObject_DelAttr().

int **PyObject_SetAttrString**(PyObject *o, const char *attr_name, PyObject *v)

Set the value of the attribute named $attr_name$, for object o, to the value v. Raise an exception and return -1 on failure; return 0 on success. This is the equivalent of the Python statement $o.attr_name = v$.

If v is NULL, the attribute is deleted, however this feature is deprecated in favour of using Py0bject_DelAttrString().

int **PyObject_GenericSetAttr**(PyObject *o, PyObject *name, PyObject *value)

Generic attribute setter and deleter function that is meant to be put into a type object's tp_setattro slot. It looks for a data descriptor in the dictionary of classes in the object's MRO, and if found it takes preference over setting or deleting the attribute in the instance dictionary. Otherwise, the attribute is set or deleted in the object's __dict__ (if present). On success, 0 is returned, otherwise an AttributeError is raised and -1 is returned.

int PyObject_DelAttr(PyObject *o, PyObject *attr_name)

Delete attribute named *attr_name*, for object *o*. Returns -1 on failure. This is the equivalent of the Python statement del o.attr name.

int PyObject_DelAttrString(PyObject *o, const char *attr_name)

Delete attribute named *attr_name*, for object *o*. Returns -1 on failure. This is the equivalent of the Python statement del o.attr name.

PyObject* PyObject_GenericGetDict(PyObject *o, void *context)

A generic implementation for the getter of a __dict__ descriptor. It creates the dictionary if necessary.

New in version 3.3.

int PyObject_GenericSetDict(PyObject *o, void *context)

A generic implementation for the setter of a __dict__ descriptor. This implementation does not allow the dictionary to be deleted.

New in version 3.3.

PyObject* PyObject RichCompare(PyObject *o1, PyObject *o2, int opid)

Return value: New reference.

Compare the values of *o1* and *o2* using the operation specified by *opid*, which must be one of Py_LT, Py_LE, Py_EQ, Py_NE, Py_GT, or Py_GE, corresponding to <, <=, ==, !=, >, or >= respectively. This is the equivalent of the Python expression o1 op o2, where op is the operator corresponding to *opid*. Returns the value of the comparison on success, or *NULL* on failure.

int **PyObject_RichCompareBool**(PyObject *o1, PyObject *o2, int opid)

Compare the values of o1 and o2 using the operation specified by opid, which must be one of Py_LT, Py_LE, Py_EQ, Py_NE, Py_GT, or Py_GE, corresponding to <, <=, ==, !=, >, or >= respectively. Returns -1 on error, 0 if the result is false, 1 otherwise. This is the equivalent of the Python expression o1 op o2, where op is the operator corresponding to opid.

Note: If *o1* and *o2* are the same object, PyObject_RichCompareBool() will always return 1 for Py_EQ and 0 for Py_NE.

PyObject* PyObject_Repr(PyObject *o)

Return value: New reference.

Compute a string representation of object o. Returns the string representation on success, *NULL* on failure. This is the equivalent of the Python expression repr(o). Called by the repr() built-in function.

Changed in version 3.4: This function now includes a debug assertion to help ensure that it does not silently discard an active exception.

PyObject* PyObject_ASCII(PyObject *o)

As PyObject_Repr(), compute a string representation of object o, but escape the non-ASCII characters in the string returned by PyObject_Repr() with \x , \u or \U escapes. This generates a string similar to that returned by PyObject_Repr() in Python 2. Called by the ascii() built-in function.

PyObject* PyObject_Str(PyObject *o)

Return value: New reference.

Compute a string representation of object o. Returns the string representation on success, *NULL* on failure. This is the equivalent of the Python expression str(o). Called by the str() built-in function and, therefore, by the print() function.

Changed in version 3.4: This function now includes a debug assertion to help ensure that it does not silently discard an active exception.

PyObject* PyObject_Bytes(PyObject *o)

Compute a bytes representation of object o. NULL is returned on failure and a bytes object on success. This is equivalent to the Python expression bytes(o), when o is not an integer. Unlike bytes(o), a TypeError is raised when o is an integer instead of a zero-initialized bytes object.

int PyObject_IsSubclass(PyObject *derived, PyObject *cls)

Return 1 if the class *derived* is identical to or derived from the class *cls*, otherwise return 0. In case of an error, return -1.

If *cls* is a tuple, the check will be done against every entry in *cls*. The result will be 1 when at least one of the checks returns 1, otherwise it will be 0.

If *cls* has a __subclasscheck__() method, it will be called to determine the subclass status as described in **PEP 3119**. Otherwise, *derived* is a subclass of *cls* if it is a direct or indirect subclass, i.e. contained in cls.__mro__.

Normally only class objects, i.e. instances of type or a derived class, are considered classes. However, objects can override this by having a __bases__ attribute (which must be a tuple of base classes).

int PyObject_IsInstance(PyObject *inst, PyObject *c/s)

Return 1 if *inst* is an instance of the class *cls* or a subclass of *cls*, or 0 if not. On error, returns -1 and sets an exception.

If *cls* is a tuple, the check will be done against every entry in *cls*. The result will be 1 when at least one of the checks returns 1, otherwise it will be 0.

If *cls* has a __instancecheck__() method, it will be called to determine the subclass status as described in **PEP 3119**. Otherwise, *inst* is an instance of *cls* if its class is a subclass of *cls*.

An instance *inst* can override what is considered its class by having a __class__ attribute.

An object *cls* can override if it is considered a class, and what its base classes are, by having a __bases__ attribute (which must be a tuple of base classes).

int **PyCallable_Check**(PyObject *o)

Determine if the object *o* is callable. Return 1 if the object is callable and 0 otherwise. This function always succeeds.

PyObject* **PyObject_Call**(PyObject *callable_object, PyObject *args, PyObject *kw)

Return value: New reference.

Call a callable Python object *callable_object*, with arguments given by the tuple *args*, and named arguments given by the dictionary *kw*. If no named arguments are needed, *kw* may be *NULL*. *args* must not be *NULL*, use an empty tuple if no arguments are needed. Returns the result of the call on success, or *NULL* on failure. This is the equivalent of the Python expression callable_object (*args, **kw).

PyObject* PyObject_CallObject(PyObject *callable_object, PyObject *args)

Return value: New reference.

Call a callable Python object *callable_object*, with arguments given by the tuple *args*. If no arguments are needed, then *args* may be *NULL*. Returns the result of the call on success, or *NULL* on failure. This is the equivalent of the Python expression callable_object(*args).

PyObject* PyObject_CallFunction(PyObject *callable, const char *format, ...)

Return value: New reference.

Call a callable Python object *callable*, with a variable number of C arguments. The C arguments are described using a Py_BuildValue() style format string. The format may be *NULL*, indicating that no arguments are provided. Returns the result of the call on success, or *NULL* on failure. This is the equivalent of the Python expression callable(*args). Note that if you only pass PyObject * args, PyObject CallFunctionObjArgs() is a faster alternative.

Changed in version 3.4: The type of format was changed from char *.

PyObject* PyObject_CallMethod(PyObject *o, const char *method, const char *format, ...)

Return value: New reference.

Call the method named *method* of object *o* with a variable number of C arguments. The C arguments are described by a Py_BuildValue() format string that should produce a tuple. The format may be *NULL*, indicating that no arguments are provided. Returns the result of the call on success, or *NULL* on failure. This is the equivalent of the Python expression o.method(args). Note that if you only pass PyObject * args, PyObject_CallMethodObjArgs() is a faster alternative.

Changed in version 3.4: The types of method and format were changed from char *.

PyObject* PyObject_CallFunctionObjArgs(PyObject *callable, ..., NULL)

Return value: New reference.

Call a callable Python object *callable*, with a variable number of Py0bject* arguments. The arguments are provided as a variable number of parameters followed by *NULL*. Returns the result of the call on success, or *NULL* on failure.

PyObject* **PyObject_CallMethodObjArgs**(PyObject *o, PyObject *name, ..., NULL)

Return value: New reference.

Calls a method of the object o, where the name of the method is given as a Python string object in name. It is called with a variable number of Py0bject* arguments. The arguments are provided as a variable number of parameters followed by NULL. Returns the result of the call on success, or NULL on failure.

Py_hash_t **PyObject_Hash**(PyObject *o)

Compute and return the hash value of an object o. On failure, return -1. This is the equivalent of the Python expression hash(o).

Changed in version 3.2: The return type is now Py_hash_t. This is a signed integer the same size as Py_ssize_t.

Py_hash_t **PyObject_HashNotImplemented**(PyObject *o)

Set a TypeError indicating that type(o) is not hashable and return -1. This function receives special treatment when stored in a tp_hash slot, allowing a type to explicitly indicate to the interpreter that it is not hashable.

int PyObject_IsTrue(PyObject *o)

Returns 1 if the object o is considered to be true, and 0 otherwise. This is equivalent to the Python expression not not o. On failure, return -1.

int PyObject_Not(PyObject *o)

Returns 0 if the object o is considered to be true, and 1 otherwise. This is equivalent to the Python expression not o. On failure, return -1.

PyObject* PyObject_Type(PyObject *o)

Return value: New reference.

When o is non-NULL, returns a type object corresponding to the object type of object o. On failure, raises SystemError and returns NULL. This is equivalent to the Python expression type(o). This function increments the reference count of the return value. There's really no reason to use this function instead of the common expression o->ob_type, which returns a pointer of type PyTypeObject*, except when the incremented reference count is needed.

int PyObject_TypeCheck(PyObject *o, PyTypeObject *type)

Return true if the object *o* is of type or a subtype of *type*. Both parameters must be non-*NULL*.

Py_ssize_t **PyObject_Size**(PyObject *o) Py_ssize_t **PyObject_Length**(PyObject *o)

Return the length of object *o*. If the object *o* provides either the sequence and mapping protocols, the sequence length is returned. On error, -1 is returned. This is the equivalent to the Python expression len(o).

Py_ssize_t **PyObject_LengthHint**(PyObject *o, Py_ssize_t default)

Return an estimated length for the object o. First try to return its actual length, then an estimate using <u>length_hint</u>(), and finally return the default value. On error return -1. This is the equivalent to the Python expression operator.length_hint(o, default).

New in version 3.4.

PyObject* PyObject_GetItem(PyObject *o, PyObject *key)

Return value: New reference.

Return element of *o* corresponding to the object *key* or *NULL* on failure. This is the equivalent of the Python expression o[key].

int **PyObject_SetItem**(PyObject *o, PyObject *key, PyObject *v)

Map the object key to the value v. Raise an exception and return -1 on failure; return 0 on success. This is the equivalent of the Python statement o[key] = v.

int PyObject_DelItem(PyObject *o, PyObject *key)

Remove the mapping for the object *key* from the object *o*. Return -1 on failure. This is equivalent to the Python statement del o[key].

PyObject* PyObject_Dir(PyObject *o)

Return value: New reference.

This is equivalent to the Python expression dir(o), returning a (possibly empty) list of strings appropriate for the object argument, or *NULL* if there was an error. If the argument is *NULL*, this is like the Python dir(), returning the names of the current locals; in this case, if no execution frame is active then *NULL* is returned but PyErr_Occurred() will return false.

PyObject* PyObject_GetIter(PyObject *o)

Return value: New reference.

This is equivalent to the Python expression iter(o). It returns a new iterator for the object argument, or the object itself if the object is already an iterator. Raises TypeError and returns *NULL* if the object cannot be iterated.