str. 1/2 Seria: 6

1 Zadanie

1.1 Część a

1.1.1 Uogólniona składowa wyznaczona przez λi.0

Niech $r \in [0,\infty)$. Zauważmy, że na mocy zasady Archimedesa istnieje takie $n \in \mathbb{N}$, że 2n+1 > r. Stąd jednak $r \in C_n$, skąd $r \notin U \setminus C_n$, skąd $r \notin \bigcap_{i \in i} U \setminus C_i = \bigcap_{i \in \mathbb{N}} C_i^0$.

Mamy więc, że $\bigcap_{i\in\mathbb{N}} C_i^0 = \varnothing$.

1.1.2 Uogólniona składowa wyznaczona przez λ i. 1

Zauważmy, że chcemy znaleźć iloczyn $\bigcap_{i\in\mathbb{N}}C_i^1=\bigcap_{i\in\mathbb{N}}C_i$. Jednak łatwo widzimy, że $C_i\subseteq C_{i+1}$. Stąd $\bigcap_{i\in\mathbb{N}}C_i=C_0$, a więc $\bigcap_{i\in\mathbb{N}}C_i=[0,1)$.

1.2 Część b

Wprowadźmy tzw. nawias Iversona, tj. funkcje $[\cdot]$: {prawda, fałsz} \rightarrow {0, 1} dana jako:

$$[P] = \begin{cases} 1 & \text{gdy P} \\ 0 & \text{gdy } \neg P \end{cases}$$

1.2.1 Niestała funkcja wyznaczająca pustą uogólnioną składową

Niech $f = \lambda x \cdot [x = 0]$.

Znowu jednak działa rozumowanie z części 1.1.1: dla każdego $r \in [0, \infty)$ istnieje liczba $n \in \mathbb{N}_+$, że 2n+1>r. Wtedy $r \in C_n$, ale wtedy $r \not\in C_n^0 = U \setminus C_n$, a więc $r \not\in \bigcap_{i \in \mathbb{N}} C_i^{f(i)}$, bo w tym przecięciu C_n wystąpi z 0 w górnym indeksie, bo f(n) = 0.

indeksie, bo f(n) = 0. Stąd $\bigcap_{i \in \mathbb{N}} C_i^{f(i)} = \emptyset$.

1.2.2 Niestała funkcja wyznaczająca niepustą uogólnioną składową

Niech $f = \lambda x.[x \neq 0]$. Zauważmy, że $1 \in C_0^0 = [1, \infty)$ oraz dla n > 0 mamy $1 \in C_n^1 = [0, 2n + 1)$, a więc $1 \in \bigcap_{i \in \mathbb{N}} C_i^{f(i)}$, więc w szczególności nie jest to zbiór pusty.

1.3 Część c

Zastanówmy się, jakie warunki musi spełniać $f: \mathbb{N} \to \{0,1\}$, aby odpowiednia uogólniona składowa była niepusta. Powiemy, że funkcja jest dobra, gdy $f = \lambda(x:\mathbb{N}).[x \geqslant c]$ dla pewnego $c \in \mathbb{N}$.

1.3.1 Niepuste uogólnione składowe są wyznaczone przez funkcje dobre

 $\begin{array}{l} \textit{Dow\'od}. \ \ \textit{Oczywiście}, \ \textit{gdyby} \ \ \textit{dla} \ \ \textit{pewnych} \ \ \textit{i}, \textit{j} \in \mathbb{N} \ \ \textit{takich}, \ \dot{\textit{ze}} \ \ \textit{i} < \textit{j} \ \ \textit{zachodziło} \ \ \textit{f}(\textit{i}) = 1, \textit{f}(\textit{j}) = 0, \ \ \textit{to} \ \ \textit{gdyby} \\ r \in \bigcap_{i \in \mathbb{N}} C_i^{f(\textit{i})}, \ \textit{to} \ \ \textit{mieliby\'smy} \ \ \textit{w} \ \ \textit{szczeg\'olno\'sci} \ \ r \in C_i^1 \cap C_j^0 = [0, 2i+1) \cap [2j+1, \infty) = \varnothing, \ \ \textit{co} \ \ \textit{jest} \ \ \textit{sprzeczno\'scią}. \end{array}$

Stąd mamy, że jeśli f(i)=1, f(j)=0, to $i\geqslant j$. Niech $A_f=\{n|f(n)=1\}$. Przypadek $A_f=\varnothing$ daje $A_f=\lambda x.0$, rozważony w 1.1.1, więc aby mieć niepustą uogólnioną składową, musimy mieć $A_f\neq 0$. Niech teraz $m_f=\min A_f$.

Zauważmy teraz, że $f = \lambda x.[x \geqslant m_f]$. Istotnie, gdyby $x \geqslant m_f$ i f(x) = 0, to mielibyśmy sprzeczność, gdyż $f(m_f) = 1$, zaś gdyby $x < m_f$ i f(x) = 1 znów mielibyśmy sprzeczność. Stąd biorąc $c = m_f$ mamy tezę.

nr albumu: 347208 str. 2/2 Seria: 6

1.3.2 Funkcje dobre jednoznacznie wyznaczają niepuste uogólnione składowe

 $Dow \acute{o}d$. Niech $f = \lambda x.[x \geqslant c]$. Dla c = 0 rozpatrzyliśmy to w części 1.1.2.

 $\begin{aligned} & \text{Twierdze, } \dot{\text{ze}} \text{ dla } c > 0 \text{ zachodzi } \bigcap_{i \in \mathbb{N}} C_i^{f(i)} = (2c-1,2c+1). \text{ W tym celu zauważmy, } \dot{\text{ze}} \bigcap_{i \in \mathbb{N}} C_i^{f(i)} = \left(\bigcap_{i < c} C_i^0\right) \cap \\ & \left(\bigcap_{i \geqslant c} C_i^1\right) = \left(\bigcap_{i < c} (2i+1,\infty)\right) \cap \left(\bigcap_{i \geqslant c} [0,2i+1)\right) = (2(c-1)+1,\infty) \cap [0,2c+1) = (2c-1,2c+1). \end{aligned}$

Stąd istotnie, uogólniona składowa wyznaczana przez funkcję dobrą jest niepusta i dla różnych c otrzymujemy różne składowe.

 $\text{Jednak biorac } \phi(c:\mathbb{N}) = \bigcap_{\mathfrak{i} \in \mathbb{N}} C_{\mathfrak{i}}^{(\lambda x.[x \geqslant c])(\mathfrak{i})} \text{ widzimy, } \\ \\ \text{że mamy bijekcję między } \prod_{\mathbb{C}}^{+} \text{a } \mathbb{N} \text{, na mocy powyższych.} \\$

2 Zadanie

2.1 Część a

Nie, gdyż $(2,6) \in \tau$ oraz $(6,3) \in \tau$, ale $(2,3) \notin \tau$.

2.2 Część b

Niech $C = \{n \in \mathbb{N}_+ | n = 1 \lor n \text{ parzyste}\}$, zaś $D = \bigcup \{B | B \text{ jest kliką oraz } 2 \in B\}$

2.2.1 C ⊆ D

Dowód. Zauważmy, że dla dowolnego $n \in \mathbb{N}_+$ mamy, że $\{2,2n\}$ jest kliką, a więc $2n \in D$. Ponadto $\{1,2\}$ jest kliką, a więc $1 \in D$.

$\mathbf{2.2.2} \quad \mathsf{D} \subseteq \mathsf{C}$

Dowód. Niech $b \in D$. Wtedy istnieje takie B będące kliką, że $2 \in B$ oraz $b \in B$. Stąd b|2 lub 2|b, czyli b = 1 lub b jest parzyste. □

Stąd D=C. Jednak nie jest to klika, gdyż $(4,6) \notin \tau$, lecz $4,6 \in D$.

2.3 Część c

Niech $T = \{2^k | k \in \mathbb{N}\}$. Zauważmy, że jest to klika. Istotnie, dla $2^k, 2^l$ mamy, że k < l i wtedy $2^k | 2^l$ lub też $k \geqslant l$ i wtedy $2^l | 2^k$.

Załóżmy jednak, że istnieje taka klika U, że T \subsetneq U. Wtedy istnieje takie $u \in U$, że $u \not\in T$. Gdyby dla nieskończenie wielu k zachodziło $2^k|u$, to mielibyśmy u=0, a tak nie jest. Stąd istnieje największe k, że $2^k|u$, tj. $2^{k+1} \nmid u$. Stąd ponieważ 2^{k+1} , $u \in U$, to $u|2^{k+1}$, ale jednak to oznacza, że $u=2^l$ dla pewnego $l \in \mathbb{N}$, czyli $u \in T$ — sprzeczność.