MODULE – 2 PROJECT REVIEW

PS NO: 99007697

Name: Ajay Bhat

AUTOMATIC PARKING SYSTEM

Automated Car Parking system

Description

Automated Car Parking system is capable of finding empty slots that are available for parking automatically. if the slot is empty in the automated Car parking the new vehicles are allowed to enter the parking else the entrance is blocked by using servo in case no empty slot is found by system. The visitors availability of the free space outside parking on 16*2 LCD.

Identifying Features

- Shows Availability of empty slots that are available for parking automatically.
- Block the entry by servo motor if space is not available.
- Display of slot is full if no space for parking.

Components Required

- Atmega328
- LCD display
- Servo Motor
- IR sensor
- Switch
- Buzzer
- Power Supply
- Resistor

Atmega328

Atmega328 microcontroller is 8-bit AVR RISC -based microcontroller, 32KB Flash memory, 2KB SRAM, 23 GPIO lines, internal and external interrupt, 10-bit A/D converter, serial programmable USART ,The device operates between 1.8-5.5 volts.

LCD Display

LCD stands for Liquid Crystal Display , It includes 2 rows where each produce 16-characters, opearting voltage of LCD is 4.7-5.3V. Display can work in 2 -modes like 4 and 8 bit.

Servo Motor

It is a motor that can rotate in great precision. It is a closed loop system where it uses a positive feedback system to control motion and final position of the shaft .The device is controlled by a signal generated by comparing output signal and reference input signal.

IR sensor

It is used to detect the obstacle in front of the signal. It is digital output.

Buzzer

It is a audio signlling device. It converts audio signal into sound signals.

Switch

It is a device used for making and breaking of electric current in a circuit.

SWOT Analysis

SWOT ANALYSIS

5W and 1H

High level Requirement

ID HIGH LEVEL REQUIREMENT

HLR1 LCD to display the parking slot and its availability

HLR2 Detection of car through sensor

HLR3 Barrier for vehicle entry using servo

LOW level Requirement

ID REQUIREMENT FOR HLR1

ID REQUIREMENT FOR HLR2

ID	LOW LEVEL REQUIREMENT FOR HLR1	ID	LOW LEVEL REQUIREMENT FOR HLR2
LLR1.1	LCD should display the parking system	LLR2.1	Sensor should detect car in entrance
LLR1.2	LCD Should display parking full if no space	LLR2.2	Sensor should detect the car during exit
LLR1.3	LCD should display slot empty		
ID	LOW LEVEL REQUIREMNT FOR HLR3		
LLR3.1	Servo rotate 90 degree when car slot available for entry		
LLR3.2	Servo will rotate when vehicle want to exit		
LLR3.3	Servo will not rotate if space is full		

Block Diagram and its explanation

Block Diagram

Sensors

IR sensor

There are 2 IR sensor used for entry and exit level of the system .For parking slot availability and exit of vehicle. IR sensor used to detect the vehicle .

Switch

-To control servo open and close gate for vehicle entry.

Actuator

LCD Display

-Display the parking availability and slot is full in the system.

Servo motor

• Block the vehcle and opening gate for vehicle entry

Buzzer

Intimate if slot is full.

MICRO CONTROLLER AND MEMORY

EEPROM

It is inside CONTROLLER

Microcontroller

• This will control all the part of our system. This has all interface of LCD, sensors, Actuators.

FLOWCHART OF SYSTEM

Behavioural Diagram

Circuit Diagram

Test Plan And Output

High level Test Case

Test ID	Description	Expected i/p	Expected o/p	Actual O/p	status
HLR1	LCD Display On	Program execution	LCD should Display "Parking System"	Display "Parking System"	

Test ID	Description	Expected i/p	Expected o/p	Actual O/p	status
HLR2	IR SENSOR1 Detect Vehicle entry	User execution	Check for slot availability and Open barricade	Check the availability and open barricade	Ø
HLR3	IR SENSOR2 Detect Vehicle entry	User execution	Check for slot availability and Open barricade	Check the availability and open barricade	Ø
HLR4	Servo rotation when ir sensor detect vehicle and made to allow	Program Execution	Servo rotate 90 degree	Servo rotate 90 degree	Ø

Low level Test case

Test ID	Description	Expected i/p	Expected o/p	Actual O/p	status
HLR1					
LLR1	LCD Display Slot availability	user input	Display welcome slot avaialble	welcome slot available	Ø
LLR2	LCD Display Slot full	user input	Display Sorry no slot	sorry no slot	V
HLR2					
LLR1	IR Sensor1 detect vehicle but slot is full	user input	led blink	led blink	Ø

Test ID	Description	Expected i/p	Expected o/p	Actual O/p	status
	led on				
LLR2	IR Sensor1 detect vehicle no slot available	program execution	BUZZER sound	Buzzer Sound	Ø
HLR3					
LLR1	SERVO Rotation for entry of vehicle	program execution	Servo rotate	Servo rotate	
LLR2	Servo Rotation for exit of vehicle	program execution	Servo Rotate	Servo Rotate	

Test Output

For LCD

For Servo

For iR Sensor and LED

For Buzzer

