Lanthanides and Actinides Series Elements' Level Table

Pranav Nalamwar and Dr.Jaideep Singh

October 22, 2020

ElementAbbr.	Element Name	Electron Config	Longest Lived Isotope	Half-Life(yr)	I	II	III	IV	V	VI	VII	VIII	IX	X
La	Lanthanum	$[Xe]5d^{1}6s^{2}$	La-138	$1.05 * 10^{11}$	343	119	42	52	37	2	2	2	2	2
Ce	Cerium	$[Xe]4f^15d^16s^2$	Ce-144	$7.7999*10^{-1}$	953	491	227	17	12	4	2	2	2	2
Pr	Praseodymium	$[Xe]4f^36s^2$	Pr-143	$3.71526 * 10^{-1}$	430	201	430	104	9	2	2	2	2	2
Nd	Neodymium	$[Xe]4f^46s^2$	Nd-150	$6.7 * 10^{18}$	739	840	31	19	2	2	2	2	2	2
Pm	Promethium	$[Xe]4f^56s^2$	Pm-147	2.6234	222	182	2	12	2	2	2	2	2	2
Sm	Samarium	$[Xe]4f^{6}6s^{2}$	Sm-148	$7*10^{15}$	501	377	58	24	2	2	2	2	2	2
Eu	Europium	$[Xe]4f^{7}6s^{2}$	Eu-151	$5*10^{18}$	592	163	118	13	2	2	2	2	2	2
Gd	Gadolinium	$[Xe]4f^75d^16s^2$	Gd-152	$1.8 * 10^{14}$	634	321	28	5	2	2	2	2	2	2
Tb	Terbium	$[Xe]4f^{9}6s^{2}$	Tb-158	$1.80*10^{1}$	600	154	125	26	2	2	2	2	2	2
Dy	Dysprosium	$[Xe]4f^{10}6s^2$	Dy-154	$3*10^{6}$	740	576	2	13	2	2	2	2	2	2
Но	Holmium	$[Xe]4f^{11}6s^2$	Ho-163	$4.570*10^{1}$	234	55	126	21	2	2	2	2	2	2
Er	Erbium	$[Xe]4f^{12}6s^2$	Er-169	$2.7535 * 10^{-2}$	634	362	53	10	2	2	2	2	2	2
Tm	Thulium	$[Xe]4f^{13}6s^2$	Tm-171	$1.91*10^{0}$	631	367	128	8	2	2	2	2	2	2
Yb	Ytterbium	$[Xe]4f^{14}6s^2$	Yb-169	$8.7682 * 10^{-2}$	250	349	55	121	2	2	2	2	2	2
Lu	Lutetium	$[Xe]4f^{14}5d^16s^2$	Lu-176	$3.78 * 10^{10}$	234	40	29	62	40	2	2	2	2	2
Ac	Actinium	$[Rn]6d^{1}7s^{2}$	Ac-227	$2.1772 * 10^{1}$	45	67	8	2	2	2	2	2	2	2
Th	Thorium	$[\operatorname{Rn}]6d^27s^2$	Th-232	$1.405 * 10^{10}$	788	517	176	2	2	2	2	2	2	2
Pa	Protactinium	$[\text{Rn}]5f^26d^17s^2$	Pa-231	$3.276 * 10^4$	2	2	2	2	2	2	2	2	2	2
U	Uranium	$[Rn]5f^36d^17s^2$	U-238	$4.468 * 10^9$	2	2	2	2	2	2	2	2	2	2
Np	Neptunium	$[\text{Rn}]5f^46d^17s^2$	Np-236	$1.54 * 10^5$	2	2	2	2	2	2	2	2	2	2
Pu	Plutonium	$[Rn]5f^67s^2$	Pu-244	$8.08 * 10^7$	2	2	2	2	2	2	2	2	2	2
Am	Americium	$[Rn]5f^{7}7s^{2}$	Am-243	$7.370*10^{3}$	2	2	2	2	2	2	2	2	2	2
Cm	Curium	$[Rn]5f^76d^17s^2$	Cm-247	$1.56 * 10^7$	2	2	2	2	2	2	2	2	2	2
Bk	Berkelium	$[Rn]5f^97s^2$	Bk-247	$1.380*10^{3}$	2	2	2	2	2	2	2	2	2	2
Cf	Californium	$[\text{Rn}]5f^{10}7s^2$	Cf-251	$8.98 * 10^{2}$	2	2	2	2	2	2	2	2	2	2
Es	Einsteinium	$[Rn]5f^{11}7s^2$	Es-252	$1.2944*10^{0}$	2	2	2	2	2	2	2	2	2	2
Fm	Fermium	$[Rn]5f^{12}7s^2$	Fm-257	$2.752 * 10^{-1}$	2	2	2	2	2	2	2	2	2	2
Md	Mendelevium	$[\text{Rn}]5f^{13}7s^2$	Md-258	$1.4099*10^{-1}$	2	2	2	2	2	2	2	2	2	2
No	Nobelium	$[Rn]5f^{14}7s^2$	No-258	$1.1035*10^{-4}$	2	2	2	2	2	2	2	2	2	2
Lr	Lawrencium	$[\text{Rn}]5f^{14}7s^27p^1$	Lr-266	$1.14155*10^{-3}$	2	2	2	2	2	2	2	2	2	2

This table details the lanthanides and actinides, information regarding 10 of their charge states from NIST, electron configuration, and half-life. (Kramida, Yu. Ralchenko, Reader, & and NIST ASD Team, 2018)

References

Kramida, A., Yu. Ralchenko, Reader, J., & and NIST ASD Team. (2018). NIST Atomic Spectra Database (ver. 5.6.1), [Online]. Available: https://physics.nist.gov/asd [2018, December 22]. National Institute of Standards and Technology, Gaithersburg, MD.