

Повторение

Виды выпуклости

Рис. 1: Примеры выпуклых функций

Определение: Будем говорить, что функция $f: \mathbb{R}^n \to \mathbb{R}$ является L -гладкой, если $\forall x,y \in \mathbb{R}^n$ выполнено:

$$\|\nabla f(y) - \nabla f(x)\| \leqslant L\|y - x\|$$

Рис. 2: Иллюстрация Липшицевых парабол, между которыми зажата гладкая функция. Чаще нас интересует мажорирующая из них.

Рис. 2: Иллюстрация Липшицевых парабол,

между которыми зажата гладкая функция. Чаще

нас интересует мажорирующая из них.

Определение: Будем говорить, что функция $f:\mathbb{R}^n o \mathbb{R}$ является L -гладкой, если $\forall x,y \in \mathbb{R}^n$ выполнено:

$$\|\nabla f(y) - \nabla f(x)\| \leqslant L\|y - x\|$$

Обратим внимание, что значение константы гладкости (Липшицевости градиента) зависит от выбора нормы. Если $f:\mathbb{R}^n \to \mathbb{R}$ - непрерывно дифференцируема и градиент Липшицев с константой L, то $\forall x,y\in\mathbb{R}^n$:

$$\|f(y)-f(x)-\langle\nabla f(x),y-x\rangle\|\leqslant \frac{L}{2}\|y-x\|^2$$

Рис. 2: Иллюстрация Липшицевых парабол, между которыми зажата гладкая функция. Чаще нас интересует мажорирующая из них.

Определение: Будем говорить, что функция $f:\mathbb{R}^n o \mathbb{R}$ является L -гладкой, если $\forall x,y \in \mathbb{R}^n$ выполнено:

$$\|\nabla f(y) - \nabla f(x)\| \leqslant L\|y - x\|$$

Обратим внимание, что значение константы гладкости (Липшицевости градиента) зависит от выбора нормы. Если $f:\mathbb{R}^n o \mathbb{R}$ - непрерывно дифференцируема и градиент Липшицев с константой L, то $\forall x,y\in\mathbb{R}^n$:

$$\|f(y)-f(x)-\langle\nabla f(x),y-x\rangle\|\leqslant \frac{L}{2}\|y-x\|^2$$

Если зафиксируем $x_0 \in \mathbb{R}^n$, то:

$$\varphi_1(x) = f(x_0) + \langle f(x_0), x - x_0 \rangle - \frac{L}{2} \|x - x_0\|^2$$

$$\varphi_2(x) = f(x_0) + \langle f(x_0), x - x_0 \rangle + \frac{L}{2} \|x - x_0\|^2$$

Рис. 2: Иллюстрация Липшицевых парабол, между которыми зажата гладкая функция. Чаще нас интересует мажорирующая из них.

Определение: Будем говорить, что функция $f:\mathbb{R}^n o \mathbb{R}$ является L -гладкой, если $\forall x,y \in \mathbb{R}^n$ выполнено:

$$\|\nabla f(y) - \nabla f(x)\| \leqslant L\|y - x\|$$

Обратим внимание, что значение константы гладкости (Липшицевости градиента) зависит от выбора нормы. Если $f:\mathbb{R}^n o \mathbb{R}$ - непрерывно дифференцируема и градиент Липшицев с константой L, то $\forall x,y\in\mathbb{R}^n$:

$$\|f(y)-f(x)-\langle\nabla f(x),y-x\rangle\|\leqslant \frac{L}{2}\|y-x\|^2$$

Если зафиксируем $x_0 \in \mathbb{R}^n$, то:

$$\varphi_1(x) = f(x_0) + \langle f(x_0), x - x_0 \rangle - \frac{L}{2} \|x - x_0\|^2$$

$$\varphi_2(x) = f(x_0) + \langle f(x_0), x - x_0 \rangle + \frac{L}{2} \|x - x_0\|^2$$

Это две параболы, и для них верно, что

$$\varphi_1(x) \leqslant f(x) \leqslant \varphi_2(x) \; \forall x$$

Гладкость и сильная выпуклость

Гладкость и сильная выпуклость

Гладкая Выпуклая

Гладкая μ - сильно выпуклая

Негладкая Выпуклая

Негладкая μ - сильно выпуклая

Градиентный спуск

Рассмотрим линейное приближение дифференцируемой функции f вдоль направления h, где $||h||_2 = 1$:

Рассмотрим линейное приближение дифференцируемой функции f вдоль направления h, где $||h||_2 = 1$:

$$f(x+\alpha h) = f(x) + \alpha \langle \nabla f(x), h \rangle + o(\alpha)$$

Рассмотрим линейное приближение дифференцируемой функции f вдоль направления h, где $||h||_2 = 1$:

$$f(x + \alpha h) = f(x) + \alpha \langle \nabla f(x), h \rangle + o(\alpha)$$

Хотим, чтобы h было направлением убывания:

$$f(x + \alpha h) - f(x) < 0$$

$$\alpha \langle \nabla f(x), h \rangle + o(\alpha) < 0$$

Рассмотрим линейное приближение дифференцируемой функции f вдоль направления h, где $||h||_2 = 1$:

$$f(x + \alpha h) = f(x) + \alpha \langle \nabla f(x), h \rangle + o(\alpha)$$

Хотим, чтобы h было направлением убывания:

$$f(x + \alpha h) - f(x) < 0$$

$$\alpha \langle \nabla f(x), h \rangle + o(\alpha) < 0$$

Переходя к пределу при $\alpha \to 0$:

$$\langle \nabla f(x), h \rangle < 0$$

Рассмотрим линейное приближение дифференцируемой функции f вдоль направления h, где $||h||_2 = 1$:

$$f(x + \alpha h) = f(x) + \alpha \langle \nabla f(x), h \rangle + o(\alpha)$$

Хотим, чтобы h было направлением vбывания:

$$f(x + \alpha h) - f(x) < 0$$
$$\alpha \langle \nabla f(x), h \rangle + o(\alpha) < 0$$

Переходя к пределу при $\alpha \to 0$:

$$\langle \nabla f(x), h \rangle < 0$$

Более того, мы хотим, чтобы разница $f(x) - f(x + \alpha h)$ была максимальна:

$$h = \arg \max_h \left(- \langle \nabla f(x), h \rangle \right) = \arg \min_h \langle \nabla f(x), h \rangle.$$

Также из неравенства Коши-Буняковского получаем:

$$\begin{split} |\langle \nabla f(x), h \rangle| &\leq \|\nabla f(x)\|_2 \|h\|_2 \\ \langle \nabla f(x), h \rangle &\geq -\|\nabla f(x)\|_2 \|h\|_2 = -\|\nabla f(x)\|_2 \end{split}$$

Рассмотрим линейное приближение дифференцируемой функции f вдоль направления h, где $||h||_2 = 1$:

$$f(x + \alpha h) = f(x) + \alpha \langle \nabla f(x), h \rangle + o(\alpha)$$

Хотим, чтобы h было направлением vбывания:

$$f(x + \alpha h) - f(x) < 0$$

$$\alpha \langle \nabla f(x), h \rangle + o(\alpha) < 0$$

Переходя к пределу при $\alpha \to 0$:

$$\langle \nabla f(x), h \rangle < 0$$

Более того, мы хотим, чтобы разница $f(x) - f(x + \alpha h)$ была максимальна:

$$h = \arg\max_h \left(-\langle \nabla f(x), h \rangle \right) = \arg\min_h \langle \nabla f(x), h \rangle.$$

Также из неравенства Коши-Буняковского получаем:

$$\begin{split} |\langle \nabla f(x), h \rangle| &\leq \|\nabla f(x)\|_2 \|h\|_2 \\ \langle \nabla f(x), h \rangle &\geq -\|\nabla f(x)\|_2 \|h\|_2 = -\|\nabla f(x)\|_2 \end{split}$$

Таким образом, направление антиградиента

$$h = \arg\min_{h} \langle \nabla f(x), h \rangle = -\frac{\nabla f(x)}{\|\nabla f(x)\|_2}$$

представляет собой направление наискорейшего локального убывания функции f.

Рассмотрим линейное приближение дифференцируемой функции f вдоль направления h, где $||h||_2 = 1$:

$$f(x + \alpha h) = f(x) + \alpha \langle \nabla f(x), h \rangle + o(\alpha)$$

Хотим, чтобы h было направлением vбывания:

$$f(x + \alpha h) - f(x) < 0$$

$$\alpha \langle \nabla f(x), h \rangle + o(\alpha) < 0$$

Переходя к пределу при $\alpha \to 0$:

$$\langle \nabla f(x), h \rangle < 0$$

Более того, мы хотим, чтобы разница $f(x) - f(x + \alpha h)$ была максимальна:

$$h = \arg\max_h \left(-\langle \nabla f(x), h \rangle \right) = \arg\min_h \langle \nabla f(x), h \rangle.$$

Также из неравенства Коши-Буняковского получаем:

$$\begin{split} &|\langle \nabla f(x), h \rangle| \leq \|\nabla f(x)\|_2 \|h\|_2 \\ &\langle \nabla f(x), h \rangle \geq -\|\nabla f(x)\|_2 \|h\|_2 = -\|\nabla f(x)\|_2 \end{split}$$

Таким образом, направление антиградиента

$$h = \arg\min_{h} \langle \nabla f(x), h \rangle = -\frac{\nabla f(x)}{\|\nabla f(x)\|_2}$$

представляет собой направление наискорейшего локального убывания функции f. Итерация метода имеет вид:

$$x^{k+1} = x^k - \alpha \nabla f(x^k)$$

Сходимость алгоритма градиентного спуска

lacktrightlacktrightetaКод для построения анимации ниже. Сходимость существенно зависит от выбора шага lpha:

Точный линейный поиск (метод наискорейшего спуска)

$$\alpha_k = \operatorname*{arg\,min}_{\alpha \in \mathbb{R}^+} f\big(x^k - \alpha \, \nabla f(x^k)\big)$$

Подход скорее теоретический, чем практический: он удобен для анализа сходимости, но точный линейный поиск часто затруднён, если вычисление функции занимает слишком много времени или стоит слишком дорого.

Интересное теоретическое свойство этого метода заключается в том, что градиенты на соседних итерациях ортогональны. Условие оптимальности по α_k даёт

$$\left.\frac{d}{d\alpha}\,f\big(x^k-\alpha\,\nabla f(x^k)\big)\right|_{\alpha=\alpha_k}=0.$$

Точный линейный поиск (метод наискорейшего спуска)

$$\alpha_k = \operatorname*{arg\,min}_{\alpha \in \mathbb{R}^+} f\big(x^k - \alpha \, \nabla f(x^k)\big)$$

Подход скорее теоретический, чем практический: он удобен для анализа сходимости, но точный линейный поиск часто затруднён, если вычисление функции занимает слишком много времени или стоит слишком дорого.

Интересное теоретическое свойство этого метода заключается в том, что градиенты на соседних итерациях ортогональны. Условие оптимальности по α_k даёт

$$\left.\frac{d}{d\alpha}\,f\big(x^k-\alpha\,\nabla f(x^k)\big)\right|_{\alpha=\alpha_k}=0.$$

Условия оптимальности:

Точный линейный поиск (метод наискорейшего спуска)

$$\alpha_k = \mathop{\arg\min}_{\alpha \in \mathbb{R}^+} f\big(x^k - \alpha \, \nabla f(x^k)\big)$$

Подход скорее теоретический, чем практический: он удобен для анализа сходимости, но точный линейный поиск часто затруднён, если вычисление функции занимает слишком много времени или стоит слишком дорого.

Интересное теоретическое свойство этого метода заключается в том, что градиенты на соседних итерациях ортогональны. Условие оптимальности по α_k даёт

$$\frac{d}{d\alpha} f(x^k - \alpha \nabla f(x^k)) \Big|_{\alpha = \alpha_k} = 0.$$

Условия оптимальности:

$$\nabla f(x^{k+1})^\top \nabla f(x^k) = 0$$

Рис. 3: Наискорейший спуск

Открыть в Colab 🌲

Рассмотрим дифференциальное уравнение градиентного потока:

$$\frac{dx}{dt} = -\nabla f(x(t)). \tag{GF}$$

Рассмотрим дифференциальное уравнение градиентного потока:

$$\frac{dx}{dt} = -\nabla f(x(t)). \tag{GF}$$

Дискретизируем его на равномерной сетке с шагом lpha:

$$\frac{x^{k+1} - x^k}{\alpha} = -\nabla f(x^k),$$

Рассмотрим дифференциальное уравнение градиентного потока:

$$\frac{dx}{dt} = -\nabla f(x(t)). \tag{GF}$$

Дискретизируем его на равномерной сетке с шагом α :

$$\frac{x^{k+1} - x^k}{\alpha} = -\nabla f(x^k),$$

где $x^k \equiv x(t_k)$ и $\alpha = t_{k+1} - t_k$ — шаг сетки.

Отсюда получаем выражение для x^{k+1} :

$$x^{k+1} = x^k - \alpha \, \nabla f(x^k),$$

являющееся точной формулой обновления градиентного спуска.

Открыть в Colab 🚓

Рассмотрим дифференциальное уравнение градиентного потока:

$$\frac{dx}{dt} = -\nabla f(x(t)).$$

Дискретизируем его на равномерной сетке с шагом α :

$$\frac{x^{k+1} - x^k}{\alpha} = -\nabla f(x^k),$$

где $x^k \equiv x(t_k)$ и $\alpha = t_{k+1} - t_k$ — шаг сетки.

Отсюда получаем выражение для x^{k+1} :

$$x^{k+1} = x^k - \alpha \, \nabla f(x^k),$$

являющееся точной формулой обновления градиентного спуска.

Открыть в Colab 🐥

Trajectories with Contour Plot

(GF)

Рис. 4: Траектория градиентного потока

⊕ ი