STREAMLINE. FAST

RI. SE

Approximate Standing Queries on Apache Flink

@tobiaslindener

lindener@kth.se

This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No. 688191.

Overview

- Introduction
- Background
- 3. Design & Implementation
- 4. Results

It is better to use a crude approximation and know the truth, plus or minus 10 percent, than demand an exact solution and know nothing at all

In Arthur Bloch, The Complete Murphy's Law: A Definitive Collection (1991), 126

Time

ID_A P_A

Key	Count
Α	1

Infinite Growth

Time

ID_A ID_B P_A P_A

Key	Count
Α	1
В	1

Infinite Growth

Time

Key	Count
Α	1
В	1
С	1

Infinite Growth

04.09.2018

P_A

Time

Key	Count
Α	1
В	1
С	1
D	1

Infinite Growth

04.09.2018

7

Time

Key	Count
Α	1
В	1
С	2
D	1

Infinite Growth

04.09.2018

9

Approximation Algorithms

Use-cases

- Identify heavy hitters (Count)
- Cardinality Estimation (Count Distinct)

Algorithms

- Frequent Item Estimation
- HyperLogLog
- Quantile Estimation

Processing

Flink Architecture (Apache Software Foundation, 2018)

Processing

Flink Architecture (Apache Software Foundation, 2018)

Approximate Query API (1)

Approximate Query API (2)

Sketch Capacity

Input of the dataset from file or external system

Distribute data over multiple worker using consistent hashing Update sketch with incoming stream elements Persist the result of the updated sketch on disk

Estimate Deviation - Frequent Items

WIKITRACE DATASET TOP 6000 URL

AMAZON DATASET TOP 1000 REVIEWER

Estimate Deviation - HyperLogLog

: SELECT COUNT(DISTINCT(Reviewer)) FROM ratings GROUP BY

→ Rating

Future Work

Queryable State

Queryable State

Conclusion

CHALLENGES

- Efficient Grouping (HLL)
- Stateful Native Implementation
- Skewed Datasets

LEARNINGS

- Importance of Data Distribution
- Performance Advantages
- Algorithm Parameters

STREAMLINE.

Team

Theodore Vasiloudis
Researcher @ RISE

Tobias Lindener Consultant @ Netlight

Slides bit.ly/2LULyoZ

Paris Carbone
PhD candidate @ KTH

References & Links

- https://github.com/tlindener/ApproximateQueries
- https://datasketches.github.io/
- Daniel Anderson, Pryce Bevan, Kevin Lang, Edo Liberty, Lee Rhodes, Justin Thaler. A High-Performance Algorithm for Identifying Frequent Items in Data Streams.
- Kevin Lang, Back to the Future: an Even More Nearly Optimal Cardinality Estimation Algorithm.

Evaluation Environment

- WikiTrace Dataset (9 GB)
 - Address (6,708,723 distinct urls)
- Amazon Rating Dataset (3 GB)
 - ProductId (9,874,210 distinct items)
 - Reviewerld (21,176,521 distinct users)

- Ryzen 1600 (6C/12T)
- 16GB RAM
- Ubuntu 18.04
- OpenJDK 8
 - JVM tuned for max 10 GB heap
- Flink 1.4.2
 - Standalone mode
 - Evaluation through python scripts