Geometric Quantisation of Hypertoric Manifolds by Symplectic Cutting

GENERAL NOTES

ABSTRACT

Lorem ipsum.

1 Introduction

Lorem ipsum.

2 Background

- 2.1 Hypertoric Geometry
- 2.2 Localisation and Symplectic Cutting

3 Hypertoric Manifolds

3.1 Introduction and Definitions

A hyperkähler manifold is a Riemannian manifold (M,g) equipped with three orthogonal, parallel complex structures J_1, J_2, J_3 , satisfying the usual quaternion relations. These three complex structures give rise to three symplectic forms

$$\omega_1(v, w) = g(J_1v, w), \quad \omega_2(v, w) = (J_2v, w), \quad \omega_3(v, w) = g(J_3v, w),$$

so that each (g, J_i, w_i) is in its own right a Kähler structure on M for i = 1, 2, 3. The complex-valued two-form $\omega_2 + \sqrt{-1}\omega_3$ is a closed, non-degenerate, and holomorphic two-form with respect to the complex structure J_1 . Thus any hyperkähler manifold can be considered as a holomorphic symplectic manifold with complex structure J_1 , real symplectic form $\omega_{\mathbb{C}} := \omega_1$, and holomorphic symplectic form $\omega_{\mathbb{C}} := \omega_2 + \sqrt{-1}\omega_3$.

An action of a Lie group G on a hyperkähler manifold M is called *hyperhamiltonian* if it is hamiltonian with respect to $\omega_{\mathbb{R}}$, and holomorphic hamiltonian with respect to $\omega_{\mathbb{C}}$, with a G-equivariant moment map

$$\mu_{HK} := \mu_{\mathbb{R}} \oplus \mu_{\mathbb{C}} \longrightarrow \mathfrak{g}^* \oplus \mathfrak{g}_{\mathbb{C}}^*.$$

The following theorem describes the *hyperkähler quotient* construction, which is the quaternionic analogue of a Kähler quotient:

Theorem 3.1 ([1]). Let M be a hyperkähler manifold equipped with a hyperhamiltonian action of a compact Lie group G, with moment maps μ_1, μ_2, μ_3 . Suppose that $\xi = \xi_{\mathbb{R}} \oplus \xi_{\mathbb{C}}$ is a central regular value for μ_{HK} , and that G acts freely on $\mu_{HK}^{-1}(\xi)/G$. Then there is a unique hyperkähler structure on the hyperkähler quotient $\mathfrak{M} = M$ $/\!\!//\!\!/_{\xi} G := \mu_{HK}^{-1}(\xi)/G$, with associated symplectic and holomorphic symplectic forms $\omega_{\mathbb{R}}^{\xi}$ and $\omega_{\mathbb{C}}^{\xi}$, such that $\omega_{\mathbb{R}}^{\xi}$ and $\omega_{\mathbb{C}}^{\xi}$ pull-back to the restrictions of $\omega_{\mathbb{R}}$ and $\omega_{\mathbb{C}}$ on $\mu_{HK}^{-1}(\xi)$.

In general, the action of G on $\mu_{HK}^{-1}(\xi)$ will not be free, but only locally free. In this situation, we would end up with a *hyperkähler orbifold*. However in the sequel, we shall only concern ourselves when the action is free, and that $\mathfrak M$ is smooth, *i.e.* a manifold.

Let us specialise to the case when $M = T^*\mathbb{C}^n$, and let G act on $T^*\mathbb{C}^n$ with the induced action from a linear action of G on \mathbb{C}^n , with moment map $\mu : \mathbb{C}^n \to \mathfrak{g}^*$. We can identify \mathbb{H}^n with $T^*\mathbb{C}^n$ such that the complex structure J_1 on \mathbb{H}^n is given by right multiplication by i, and that J_1 corresponds to the natural complex structure on $T^*\mathbb{C}^n$. With

this identification in mind, $T^*\mathbb{C}^n$ inherits a hyperkähler structure. The real symplectic form $\omega_{\mathbb{R}}$ is obtained from the sum of the pull-backs of the standard Kähler forms on \mathbb{C}^n and $(\mathbb{C}^n)^*$, and the holomorphic symplectic form $\omega_{\mathbb{C}}$ is $\omega_{\mathbb{C}} = d\eta$, where η is the canonical holomorphic one-form on $T^*\mathbb{C}^n$.

As G acts \mathbb{H}^n -linearly on $T^*\mathbb{C}^n \cong \mathbb{H}^n$ from the left, the action is hyperhamiltonian with moment map $\mu_{HK} = \mu_{\mathbb{R}} \oplus \mu_{\mathbb{C}}$, where

$$\mu_{\mathbb{R}}(z, w) = \mu(z) - \mu(w), \quad \text{and} \quad \mu_{\mathbb{C}}(z, w)(\hat{v}_z),$$

where $w \in T_z^*\mathbb{C}^n$, $v \in \mathfrak{g}_\mathbb{C}$, and \hat{v}_z is the vector field in $T_z\mathbb{C}^n$ induced by v. For a central element $\alpha \in \mathfrak{g}^*$, we call the specialised hyperkähler quotient

$$\mathfrak{M} = T^* \mathbb{C}^n /\!\!/\!/_{(\alpha,0)} G := \left(\mu_{\mathbb{R}}^{-1}(\alpha) \cap \mu_{\mathbb{C}}^{-1}(0)\right)/G$$

the hyperkähler analogue of the corresponding Kähler quotient,

$$\mathfrak{X}=\mathbb{C}^n \mathbin{/\!/}_\alpha G=\mu^{-1}(\alpha)/G.$$

We quote the following propositions without proof:

Proposition 3.2. Suppose that α and $(\alpha, 0)$ are regular values for μ and μ_{HK} , respectively. Then the cotangent bundle $T^*\mathfrak{X}$ is isomorphic to an open subset of \mathfrak{M} , and is dense if it is non-empty.

3.2 The C*-Action and the Core of a Hyperkähler Analogue

Consider the action of \mathbb{C}^* on $T^*\mathbb{C}^n$ given by

$$\hbar \cdot (z, w) = (z, \hbar w),$$

i.e. by scalar multiplication of the cotangent fibre. The holomorphic moment map $\mu_{\mathbb{C}}: T^*\mathbb{C}^n \to \mathfrak{g}_{\mathbb{C}}^*$ is \mathbb{C}^* -equivariant with respect to the scalar action on $\mathfrak{g}_{\mathbb{C}}^*$, and hence the \mathbb{C}^* -action descends to $\mu_{\mathbb{C}}^{-1}(0)$. Further, this \mathbb{C}^* -action commutes with the linear action of G on \mathbb{C}^n , and consequently the action of \mathbb{C}^* is J_1 -holomorphic on $\mathfrak{M} = (\mu_{\mathbb{R}}^{-1}(\alpha) \cap \mu_{\mathbb{C}}^{-1}(0))/G$. However, the \mathbb{C}^* -action does not preserve the holomorphic symplectic form nor the hyperkähler structure on \mathfrak{M} ; rather it scales $\mu_{\mathbb{C}}$ with "homogeneity one", i.e. $\hbar^*\omega_{\mathbb{C}} = \hbar\omega_{\mathbb{C}}$ for any $\hbar \in \mathbb{C}^*$.

Given that \mathfrak{M} is smooth, the action of the compact subgroup $S^1 \subset \mathbb{C}^*$ is hamiltonian with respect to the real symplectic two-form $\omega_{\mathbb{R}}$, with corresponding moment map $\Phi[z,w]=\frac{1}{2}\|w\|^2$. This map is a perfect Morse-Bott function, and its image is contained in $\mathbb{R}_{\geq 0}$. Further, we note that $\Phi^{-1}(0)=\mathfrak{X}\subset \mathfrak{M}$. The following proposition will be instrumental in the sequel, though again we quote it without proof:

Proposition 3.3. If the original moment map for the G-action on \mathbb{C}^n , $\mu: \mathbb{C}^n \to \mathfrak{g}^*$, if proper, then so is the moment map for the S^1 action, $\Phi: \mathfrak{M} \to \mathbb{R}_{\geq 0}$.

Next we shall define what is known as the *core* of a hyperkähler analogue, which will be essential in describing the fixed points of the \mathbb{C}^* -action of \mathfrak{M} .

Definition 3.4. Suppose that \mathfrak{M} is smooth and Φ is proper. The core $\mathcal{L} \subset \mathfrak{M}$ of the hypertoric variety is defined to be the union of the \mathbb{C}^* orbits whose closures are compact.

Let F be a connected component of $\mathfrak{M}^{S^1} = \mathfrak{M}^{\mathbb{C}^*}$, and let U_F be the closure of the set of points $p \in \mathfrak{M}$ such that $\lim_{h \to \infty} h \cdot p \in F$.

Proposition 3.5 ([?]; Proposition 2.8). *The core* $\mathcal{L} \subset \mathfrak{M}$ *has the following properties:*

- 1. \mathcal{L} is an S^1 -equivariant deformation retract of M;
- 2. U_F is isotropic with respect to the holomorphic symplectic form $\omega_{\mathbb{C}}$;
- 3. Provided that \mathfrak{M} is smooth at F, then $\dim U_F = \frac{1}{2} \dim \mathfrak{M}$.

4 Hypertoric Manifolds

4.1 Definition

In this section, we shall specialise further now to when a hyperkähler analogue \mathfrak{M} is the analogue to a toric symplectic manifold $\mathfrak{X} = \mu^{-1}(\alpha)/N$, i.e. we replace the compact Lie group G with the torus $N = \ker(\pi: T^n \to T^d)$, using the same notation as in the second chapter.

Recall the short exact sequence of tori:

$$1 \longrightarrow N \stackrel{i}{\longleftrightarrow} T^n \stackrel{\pi}{\longrightarrow} T^d \longrightarrow 1.$$

and extend the linear action of the torus N on \mathbb{C}^n to $T^*\mathbb{C}^n$. This action is trihamiltonian and we obtain the following hyperkähler moment map

$$\mu_{HK} = \mu_{\mathbb{R}} \oplus \mu_{\mathbb{C}} : T^* \mathbb{C}^n \longrightarrow \mathfrak{n}^* \oplus \mathfrak{n}_{\mathbb{C}}^*,$$

where

$$\mu_{\mathbb{R}}(z,w)=i^*\bigg(\frac{1}{2}\sum_{i=1}^n(|z_i|^2-|w_i|^2)\partial_i\bigg),\quad\text{and}\quad\mu_{\mathbb{C}}(z,w)=i^*_{\mathbb{C}}\bigg(\sum_{i=1}^n(z_iw_i)\partial_i\bigg).$$

Given an element $\alpha \in \mathfrak{n}^*$ with a corresponding lift $\lambda = (\lambda_1, \dots, \lambda_n) \in (\mathbb{R}^n)^*$, the Kähler quotient

$$\mathfrak{X} = \mathbb{C}^n /\!\!/_{\alpha} N = \mu^{-1}(\alpha)/N$$

is our usual toric symplectic manifold with residual T^d -action from before, and moreover its hyperkähler analogue

$$\mathfrak{M} = T^* \mathbb{C}^n /\!\!/\!/_{(\alpha,0)} N = (\mu_{\mathbb{R}}^{-1}(\alpha) \cap \mu_{\mathbb{C}}^{-1}(0))/N$$

is what we shall call a *hypertoric manifold*¹. The hypertoric manifold \mathfrak{M} also admits a residual action of the torus T^d , which is hyperhamiltonian with hyperkähler moment map

$$\phi_{HK} := \phi_{\mathbb{R}} \oplus \phi_{\mathbb{C}} : \mathfrak{M} \longrightarrow (\mathbb{R}^d)^* \oplus (\mathbb{C}^d)^*,$$

where

$$\phi_{\mathbb{R}}[z,w] = \frac{1}{2} \sum_{i=1}^{n} (|z_i|^2 - |w_i|^2 - \lambda_i) \partial_i \in \ker(i^*) = (\mathbb{R}^d)^*,$$

$$\phi_{\mathbb{C}}[z,w] = \sum_{i=1}^{n} (z_i w_i) \partial_i \in \ker(i_{\mathbb{C}}^*) = (\mathbb{C}^d)^*.$$

4.2 Hyperplane Arrangements

A fundamental difference between the toric manifold $\mathfrak X$ and the hypertoric manifold $\mathfrak M$ is that the hyperkähler moment map for $\mathfrak M$ is surjective, and that $\mathfrak M$ is non-compact. Despite this, we can still describe the image of the real moment map $\phi_{\mathbb R}: \mathfrak M \to (\mathbb R^d)^*$ combinatorially by means of a hyperplane arrangement. To describe this arrangement, recall that the map $\pi: \mathbb R^n \to \mathbb R^d$ was defined by $\pi(e_i) = u_i$, for $i = 1, \ldots, n$, where the u_i were the primitive, integral, inward-pointing normal vectors to the hyperplanes that determined our Delzant polytope. In the hypertoric case, they instead now describe a collection of affine hyperplanes $H_i \subset (\mathbb R^d)^*$ as follows: consider

$$H_i = \{ v \in (\mathbb{R}^d)^* : v \cdot u_i + \lambda_i = 0 \},$$

so that the $u_i \in \mathbb{Z}^d$ is the normal vector to the hyperplane H_i . The hyperplane H_i divides $(\mathbb{R}^d)^*$ into two half-spaces

$$F_i = \{ v \in (\mathbb{R}^d)^* : v \cdot u_i + \lambda_i \ge 0 \}$$

$$G_i = \{ v \in (\mathbb{R}^d)^* : v \cdot u_i + \lambda_i < 0 \}.$$

Let

$$\Delta = \bigcap_{i=1}^{n} F_i = \{ v \in (\mathbb{R}^d)^* : v \cdot u_i + \lambda_i \ge 0, \text{ for all } i = 1, \dots, n \}$$

be the (possibly empty) polyhedron in $(\mathbb{R}^d)^*$ defined by the affine hyperplane arrangement $\mathcal{A} = \{H_1, \dots, H_n\}$. We note that choosing a different lift λ' of α corresponds combinatorially to translating the arrangement \mathcal{A} inside of $(\mathbb{R}^d)^*$, and geometrically to shifting the Kähler and hyperkähler moment maps for the residual T^d -action by $\lambda' - \lambda \in \ker(i^*) = (\mathbb{R}^d)^*$.

We shall call that the arrangement A simple if every subset of m hyperplanes with non-empty intersection intersects with codimension m, and call A smooth if every collection of d linearly-independent vector $\{u_{i_1}, \ldots, u_{i_d}\}$ spans $(\mathbb{R}^d)^*$. The reason for this terminology is the following proposition.

Proposition 4.1. The hypertoric variety \mathfrak{M} is an orbifold if and only if A is simple, and \mathfrak{M} is smooth if and only if A is smooth.

As we wish to restrict our attention to the case where \mathfrak{M} is a manifold, we shall assume in the sequel that \mathcal{A} is a smooth arrangement of hyperplanes.

 $^{^{1}}$ More generally, \mathfrak{M} should be called a hypertoric variety, and only call \mathfrak{M} a manifold when it is smooth. However, we shall restrict our attention to the smooth case for simplicity.

4.3 The Core of a Hypertoric Manifold

The holomorphic moment map $\phi_{\mathbb{C}}: \mathfrak{M} \to (\mathbb{C}^d)^*$ is \mathbb{C}^* -equivariant with respect to the scalar action of \mathbb{C}^* on $(\mathbb{C}^d)^*$, hence both the core \mathcal{L} and the fixed-point set $M^{\mathbb{C}^*}$ will be contained in

$$\mathcal{E} := \phi_{\mathbb{C}}^{-1}(0) = \left\{ [z, w] \in \mathfrak{M} : z_i w_i = 0, \ 1 \le i \le n \right\}.$$

Definition 4.2. We shall call \mathcal{E} the extended core of \mathfrak{M} .

The restriction of $\phi_{\mathbb{R}}|_{\mathcal{E}}: \mathcal{E} \to (\mathbb{R}^d)^*$ is surjective from the defining equations, and further the extended core naturally breaks up into components

$$\mathcal{E}_A := \Big\{ [z,w] \in \mathcal{E} : w_i = 0 \text{ for all } i \in A \text{ and } z_i = 0 \text{ for all } i
ot \in A \Big\},$$

where $A \subseteq \{1, ..., n\}$ is an indexing set. The hyperplanes $\{H_i\}_{i=1}^n$ divide $(\mathbb{R}^d)^*$ into a union of convex polyhedra

$$\Delta_A = \left(\bigcap_{i \in A} F_i\right) \cap \left(\bigcap_{i \notin A} G_i\right),$$

some of which may be empty. Note that $\mathcal{E}_{\emptyset} = \mathfrak{X}$ and that in general, each variety \mathcal{E}_A is a d-dimensional Kähler subvariety of \mathfrak{M} with an effective Hamiltonian T^d -action, so is itself a toric variety.

Lemma 4.3. If $w_i = 0$ then $\operatorname{Im}(\phi_{\mathbb{R}}) \subseteq F_i$, and if $z_i = 0$ then $\operatorname{Im}(\phi_{\mathbb{R}}) \subseteq G_i$.

Proof. Let $y \in (\mathbb{R}^d)^*$ be the image of the moment map $\phi_{\mathbb{R}}$ for a point $[z, w] \in \mathcal{E}$, then

$$y \cdot u_i + r_i = \mu_{\mathbb{R}}(z, w) \cdot e_i = \frac{1}{2} (|z_i|^2 - |w_i|^2),$$

and hence $y \ge 0$ if $i \in A$, and $y \le 0$ if $i \notin A$.

Lemma 4.4. The component \mathcal{E}_A of the extended core is isomorphic to the toric variety corresponding to the polytope Δ_A .

The S^1 -action does not act as a subtorus of T^d on $\mathfrak M$ globally, but does when restricted to each individual component $\mathcal E_A$ of the extended core. Consider a component $\mathcal E_A\subset \mathcal E$, then for some $[z,w]\in \mathcal E_A$ and $\tau\in S^1$,

$$\tau \cdot [z, w] = [z, \tau w] = [\tau_1 z_1, \dots, \tau_n z_n | \tau_i^{-1} w_1, \dots, \tau_n^{-1} w_n], \quad \text{where } \tau_i = \begin{cases} \tau^{-1} & \text{if } i \in A, \\ 1 & \text{if } i \notin A, \end{cases}$$

since for each pair (z_i, w_i) , if $i \in A$ then $(\tau z_i, \tau^{-1} w_i) = (0, \tau w_i)$, and if $i \notin A$, then $(\tau z_i, \tau^{-1} w_i) = (z_i, 0)$.

Thus when restricting our attention to each individual component \mathcal{E}_A of the extended core, the S^1 -action acts on \mathcal{E}_A via an inclusion homomorphism onto a one-parameter subgroup of T^n , which consequently then descends to a T^d -action after taking the quotient of T^n by K.

Let us denote the restricted action of the image of S^1 in T^d to \mathcal{E}_A by S^1_A ,

$$S^1 \xrightarrow{j_A} T^n \xrightarrow{\pi} S^1_A < T^d$$

$$\tau \longmapsto (\tau_1^{-1}, \dots, \tau_n^{-1}) \longmapsto v_A := \sum_{i \in A} u_i$$

where we have denoted the generator of the one-parameter subgroup S_A^1 in T^d by $v_A = \sum_{i \in A} u_i$.

Example 1. For $\mathfrak{M} = T^*\mathbb{CP}^2$,

Example 2. For \mathfrak{M} whose core consists of two \mathbb{CP}^2 intersecting at a point, so that the image of the real moment map is non-convex (todo)

Figure 1: Combinatorics of the action of the residual S^1 -action on the extended core \mathcal{E}_A of $T^*\mathbb{CP}^2$, represented by each generator v_A of S^1_A in T^2 .

Figure 2: Combinatorics of the action of the residual S^1 -action when the core consists of two non-convex components.

4.4 Compactification via Symplectic Cutting

We will use the S^1 -action to perform a symplectic cut of the toric hyperkähler manifold \mathfrak{M} to compactify it, which has the effect of bounding the $||w||^2$ -norm component of the real moment map $\bar{\mu}_{\mathbb{R}}$ by above, and discarding the rest

that lies above this bound. Consider the product $\mathfrak{M} \times \mathbb{C}$, and let S^1 act on $\mathfrak{M} \times \mathbb{C}$ via the diagonal product action, i.e. S^1 acts on M by rotating the cotangent fibre coordinates, and on \mathbb{C} in the standard way:

$$e^{i\theta} \cdot ([z, w], \xi) = (e^{i\theta} \cdot [z, w], e^{i\theta} \xi) = ([z, e^{i\theta} w], e^{i\theta} \xi).$$

This action is Hamiltonian, and the corresponding moment map $\Phi: \mathfrak{M} \times \mathbb{C} \to \mathbb{R}_{>0}$ for the S^1 -action is

$$\Phi([z, w], \xi) = \phi[z, w] + |\xi|^2 = ||w||^2 + |\xi|^2.$$

Then we have

$$\begin{split} \Phi^{-1}(\epsilon) &= \left\{ ([z,w],\xi) \in M \times \mathbb{C} : \|w\|^2 + |\xi|^2 = \epsilon \right\} \\ &= \left\{ [z,w] \in M : \|w\|^2 = \epsilon \right\} \bigsqcup \left\{ ([z,w],\xi) \in M \times \mathbb{C} : |\xi| = \pm \sqrt{\epsilon - \|w\|^2} \right\} \\ &= \left\{ [z,w] \in M : \|w\|^2 = \epsilon \right\} \bigsqcup \left\{ ([z,w],\xi) \in M \times \mathbb{C} : \xi = e^{i\arg(\xi)} \sqrt{\epsilon - \|w\|^2} \right\} \\ &= \phi^{-1}(\epsilon) \bigsqcup \left(\mathfrak{M} \times S^1 \right) \\ &=: \Sigma_1 \sqcup \Sigma_2, \end{split}$$

where we denote the level-set $\phi^{-1}(\epsilon) \subseteq \mathfrak{M}$ by Σ_1 , and $\Sigma_2 \cong \mathfrak{M} \times S^1$ is the trivial S^1 -bundle over Σ_2 given by the globally defined section

$$\mathfrak{M} \to \mathfrak{M} \times S^1$$
, $[z, w] \longmapsto ([z, w], e^{i\theta} \sqrt{\epsilon - \|w\|^2})$, $e^{i\theta} \in S^1$.

Finally, taking the symplectic reduction of $\Phi^{-1}(\epsilon)$ with respect to the S^1 -action, we obtain the symplectic cut of $\mathfrak M$ at level- ϵ ,

$$M_{\leq \epsilon} := \Phi^{-1}(\epsilon)/S^1 = \Sigma_1/S^1 \mid \Sigma_2/S^1,$$

where $\Sigma_1/S^1 \cong \phi^{-1}(\epsilon)/S^1$ is just the usual symplectic reduction, and where Σ_2/S^1 is diffeomorphic to \mathfrak{M} for $||w||^2 < \epsilon$, which we will denote by $\mathfrak{M}_{<\epsilon}$.

4.5 The Combinatorics of the Cut Space, $\mathfrak{M}_{<\epsilon}$

Since the residual circle S^1 -action acts as a subtorus S^1_A of the residual torus T^d on each component \mathcal{E}_A of the extended core, the hyperplane arrangement determined in $(\mathfrak{t}^d)^*$ by the real moment map $\bar{\mu}_{\mathbb{R}}$ is compactified by dropping in half-spaces with an inwards-pointing normal vector, given by v_A when taking the cut.

Recall from the previous section that $j_A: S_1 \hookrightarrow T^n$ denoted the inclusion homomorphism of S^1 into the original torus T^n . If we let $j_{A,*}: \mathfrak{s}^1 \to \mathfrak{t}^n$ represent the differential of this inclusion, then

$$j_{A,*}(1) = \sum_{i \in A} e_i \in \mathfrak{t}^n,$$

and the generator $\exp(v_A)$ of the one-parameter subgroup S_A^1 in T^d is

$$\exp(v_A) = \exp\left(\pi_* \circ j_{A,*}(1)\right),\,$$

or to be more concise,

$$S_A^1 = \left\{ \exp \left(r \cdot \sum_{i \in A} u_i \right) \mid r \in \mathbb{R} \right\}.$$

Then the moment map for the restricted S^1 -action to \mathcal{E}_A is

$$\phi_A[z,w] := \phi \Big|_{\mathcal{E}_A}[z,w] = (j_A^* \circ \mu_\mathbb{R})[z,w] = \left\langle \bar{\mu}_\mathbb{R}[z,w], \sum_{i \in A} u_i \right\rangle,$$

where $j_A^*: (\mathfrak{t}^n)^* \to \mathbb{R}^*$ is the transposed differential of the inclusion, $j_{A,*}$.

As the S_A^1 -action depends combinatorially on the component \mathcal{E}_A , the image of the real moment map in $(\mathfrak{t}^d)^*$ is compactified by inserting a half-space Z_A with inwards-pointing normal $v_A = \sum_{i \notin A} u_i$ determining the orientation, on each component Δ_A .

5 Hypertoric Subvarieties

5.1 Universal Modifications

Lemma 5.1. Let $(M, I, \omega, K_{\mathbb{C}}, \mu)$ be a complex-symplectic K-Hamiltonian manifold. Then the complex-symplectic quotient $(M \times T^*K_{\mathbb{C}}) /\!\!/_0 K_{\mathbb{C}}$ is isomorphic to M as complex-symplectic manifolds. Here, the complex-symplectic quotient $(M \times T^*K_{\mathbb{C}}) /\!\!/_0 K_{\mathbb{C}}$ is taken with respect to the diagonal $K_{\mathbb{C}}$ -action, where $K_{\mathbb{C}}$ acts on $T^*K_{\mathbb{C}}$ from the left.

Proof. The $K_{\mathbb{C}}$ -action on $T^*K_{\mathbb{C}}$ is free and proper, and thus so is the diagonal action on the product $M \times T^*K_{\mathbb{C}}$, so we are in the position to apply the holomorphic Marsden-Weinstein reduction theorem. Identifying $T^*K_{\mathbb{C}} \cong K_{\mathbb{C}} \times \mathfrak{k}_{\mathbb{C}}^*$ via polar decomposition, the moment map for the diagonal action is

$$\Phi: M \times K_{\mathbb{C}} \times \mathfrak{t}_{\mathbb{C}}^* \longrightarrow \mathfrak{t}_{\mathbb{C}}^*, \qquad \Phi(m, k, \lambda) = \mu(m) - \mathrm{Ad}_q^*(\lambda),$$

thus

$$(M \times T^*K_{\mathbb{C}}) /\!\!/_{0} K_{\mathbb{C}} = \Phi^{-1}(0)/K_{\mathbb{C}} = \{ (m, k, \lambda) \in M \times T^*K_{\mathbb{C}} \mid \mu(m) = \mathrm{Ad}_{k}^*(\lambda) \} / K_{\mathbb{C}},$$

with $K_{\mathbb{C}}$ acting as

$$g \cdot (m, k, \lambda) = (g \cdot m, gk, \operatorname{Ad}_{g}^{*}(\lambda)).$$

Now define $j:M\to \Phi^{-1}(0)\subset M\times T^*K_{\mathbb C}$ by $j(m)=(m,e,\mu(m))$, which descends to a biholomorphism $\bar{\jmath}:M\to \Phi^{-1}(0)/K_{\mathbb C}$.

By the Marsden-Weinstein reduction theorem, there exists a unique complex-symplectic form η on $(M \times T^*K_{\mathbb{C}})/\!\!/_0 K_{\mathbb{C}}$ such that, if ν denotes the canonical form on $T^*K_{\mathbb{C}}$, $i:\Phi^{-1}(0)\hookrightarrow M\times T^*K_{\mathbb{C}}$ denotes the inclusion, and $q:\Phi^{-1}(0)\to\Phi^{-1}(0)/K_{\mathbb{C}}$ denotes the quotient map, then $q^*\eta=i^*(\omega+\nu)$.

$$(M,\omega) \xrightarrow{j} \left(\Phi^{-1}(0), i^*(\omega + \nu)\right)$$

$$\downarrow^q \qquad \qquad \downarrow^q \qquad$$

To prove that $\bar{\jmath}$ is a symplectomorphism, first observe that the map $m\mapsto (e,\mu(m))$ sends M into the fibre $T_e^*K_\mathbb{C}\cong \mathfrak{k}_\mathbb{C}^*$ which is a Lagrangian submanifold, as any fibre of a cotangent bundle is. Also, $j^*i^*(\omega+\nu)=\omega$, and by the Marsden-Weinstein reduction theorem, we have $q^*\eta=i^*(\omega+\nu)$, implying that $\omega=j^*i^*(\omega+\nu)=j^*q^*\eta=(j\circ q)^*\eta$. However, $\bar{\jmath}=q\circ j$, so $\bar{\jmath}^*\eta=\omega$ and $\bar{\jmath}$ is also a symplectomorphism.

References

[1] N. J. Hitchin, A. Karlhede, U. Lindström, and M. Roček. Hyper-Kähler metrics and supersymmetry. *Comm. Math. Phys.*, 108(4):535–589, 1987.