Intercepts of the Quadratic

Case1: △>0 $v_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \text{ ac}}}{2a}$ computes the v-intercepts of multiplicity 1. u(0) = c computes the single u-intercept.

Given a quadratic $u(v) = a v^2 + b v + c$ compute its discriminant \triangle :

Example 1.

$u(v) = -2v^2 + 6v + 56$ compute its discriminant \triangle :

 $\triangle = \sqrt{b^2 - 4ac}$

△=484>0

$$v_{1,2}=-4,7$$

 $u(0)=56$ u-intercept.

100 v-intercept 1 v-intercept 2

$u(v) = 2v^2 + 36v + 162$ compute its discriminant \triangle :

Example 2.

 $v_{1,2} = -9, -9$

Case3: △<0

 $\triangle = -3600 < 0$

no v-intercepts.

u(0) = 1000 u-intercept.

 $\sqrt{\,\mathsf{b}^2\,_-\,\!\mathsf{4}\,}$ ac has no value in Real Numbers. Therefore there are

Example 3. $u(v) = 9v^2 + 180v + 1000$ compute its discriminant \triangle :

However there is a u-intercept.

