Диаграммы отношений компонентов данных

Предназначены для определения спецификаций:

- **с**труктур **входных** данных;
- **с**труктур **промежуточных** данных;
- **с**труктур **выходных** данных.

Используют модели:

- 🌣 иерархические;
- **сетевые**;
- **ф** реляционные.

Иерархические модели

Описывают отношения вхождения

(компонентов нижнего уровня в компонент более высокого уровня);

К иерархическим моделям относят модель **Джексона-Орра**. (для представления используют диаграммы Джексона и Орра)

Диаграмма Джексона.

Основное:

- **Ч** Используют **три** конструкции.
- ↓ Каждая конструкция представляется в виде двухуровневой иерархии, где:
 - верхний уровень блок конструкции;
 - нижний блоки элементов.
- Нотации конструкций различаются специальными символами в правом верхнем углу блоков элементов.

1. Последовательность

(Конструкция A состоит из элементов B, C и D, следующих в указанном порядке)

2. Выбор

(Конструкция S состоит **либо** из элемента **P**, **либо** из **Q**, **либо** из **R**)

В изображении выбора **ставится символ** «**o**» (латинское) - сокращение английского «или» (**o**r).

3. Повторение (Конструкция I состоит из **0 или более** элементов **X.** Ставится символ «*»)

∇ Конструкции последовательности и выбора должны содержать по два или более элементов второго уровня.

Модель Орра.

- ✓ Идея и конструкции **те же**, что и в модели **Джексона**.
- ✓ Для представления используют фигурные скобки.

Пример диаграммы Джексона

Описание структуры файла «Электронная ведомость»

Пример скобочной диаграммы Орра

Сетевая модель данных

Позволяет описывать связность взаимодействующих компонентов независимо от вида отношения.

Нотация Баркера

Базовыми понятиями являются:

∇ Сущность

∇ Ampubym

∇ Связь

Сущность — реальный или абстрактный объект, имеющий существенное значение для рассматриваемой предметной области.

Каждая сущность должна:

- иметь уникальное имя (должно отражать тип или класс объекта, а не его экземпляр);
- *** обладать** одним или несколькими **атрибутами**, которые:
 - ✓ либо принадлежат сущности, либо наследуются;
 - ✓ однозначно идентифицируют каждый экземпляр сущности.

Обозначения:

имя ^{сущности} без атрибутов

> Имя сущности
> Атрибут 1 Атрибут 2 Атрибут 3
>
> С УКАЗАНИЕМ
>
> атрибутов

> > Умя сущности
> >
> > #Атрибут 1
> > *Атрибут 2 ОАтрибут 3
> >
> > где # - ключевой,
> >
> > * - обязательный,
> >
> > о - необязательный

Атрибут

Это важное свойство сущности предметной области. Которое выражает:

- **✓** количественную характеристику;
- ✓ или состояние сущности.

Ключевые атрибуты - входят в состав уникального идентификатора, их называют первичным ключом.

Первичный ключ — это атрибут (или совокупность атрибутов и/или связей), предназначенных для уникальной идентификации каждого экземпляра сущности.

(Т.е. совокупность признаков, позволяющих идентифицировать объект. Если экземпляр сущности полностью идентифицируется своими ключевыми атрибутами, то говорят о *полной идентификации сущности*.).

Для сущностей определены понятия:

 ∇ cynepmun; ∇ nodmun.

Супертип – сущность обобщающая некую группу сущностей (подтипов).

Например, супертип **«учащийся»** обобщает подтипы **«школьник»** и **«студент»**.

Обозначение в нотации Баркера

Связь — поименованная ассоциация между двумя или более сущностями.

Условие: сущности должны быть значимыми для рассматриваемой предметной области.

Обозначение связи в нотации Баркера

Отношения в нотации Баркера:

Сущности бывают:

- ***** Независимая;
- **Зависимая**;
- ***** Ассоциированная.

Независимая - представляет **независимые данные**, которые всегда присутствуют в системе.

(Они с другими сущностями могут как связаны, так и не связаны).

Зависимая - представляет данные, зависящие от других сущностей системы.

(Поэтому она всегда должна быть связана с другими сущностями).

Ассоциированная

- представляет данные, которые ассоциируются с отношениями между двумя и более сущностями.

(Обычно данный вид сущностей появляется в модели с отношениями «многие-ко-многим»).

Пример

Реляционная модель данных

Это связанная информация, представленная в виде двумерных таблиц. В основе лежит теория отношений (множеств) и теория предикатов.

Основные аспекты:

- *Структурный аспект* данные в БД представляют собой набор отношений.
- **Аспект целостности** поддерживает декларативные ограничения целостности уровня домена (типа данных), уровня отношения и уровня базы данных.
- **Аспект обработки** поддерживает операторы манипулирования отношениями (реляционная алгебра, реляционное исчисление).

В состав реляционной модели данных включают теорию нормализации.

Каждая реляционная таблица представляет собой двумерный массив.

Свойства реляционной таблицы:

- * Каждый элемент таблицы соответствует одному элементу данных.
- ❖ Все столбцы в таблице однородные, т.е. все элементы в столбце имеют одинаковый тип и длину.
- Каждый столбец имеет уникальное имя.
- Одинаковые строки в таблице отсутствуют;
- Порядок следования строк и столбцов может быть произвольным.

Постреляционные модели данных:

Объектно-ориентированная - базируется на основных понятиях и методах, разработанных в объектно-ориентированном программировании (ОПП) и представленных в широко используемых языках объектно-ориентированного программирования, таких как С++, Java и др.

Объектно-реляционная - являются развитием предшествующих им реляционным СУБД.

Примеры нарушения целостности данных:

- > в базу могут быть внесены неправильные данные;
- » в результате изменения имеющихся данных им могут быть присвоены некорректные значения (несуществующие данные);

изменения, внесенные в базу данных, могут быть утеряны изза системной ошибки или сбоя в электропитании;

 изменения, внесенные в базу данных, могут быть внесены не полностью.

Другие модели данных:

Инфологические модели данных используются на ранних стадиях

проектирования для описания структур данных в процессе разработки приложения, а даталогические модели уже поддерживаются уже конкретными СУБД.

Нотации **ER-диаграмм**:

- **♣** Классическая нотация П. Чена.
- **↓** Нотация IDEFIX (Integration Definition for Information Modeling).
- **4** Нотация Ч. Бахмана.
- ♣ Нотация Ж.-Р. Абриаля (мин-макс).

Пример представления модели «сущность-связь»