

Shri Vile Parle Kelavani Mandal's DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

(Autonomous College Affiliated to the University of Mumbai) NAAC Accredited with "A" Grade (CGPA: 3.18)

Program: B. Tech. Electronics & Telecommunication

Subject: Digital System Design (DJ19ECC303)

Date:

Max. Marks: 75 Time: 9:00 am to 12:00 noon

Duration: 3 Hours

Instructions: Candidates should read carefully the instructions printed on the question paper and on the cover page of the Answer Book, which is provided for their use.

- (1) This question paper contains two pages.
- (2) All Questions are Compulsory.
- (3) All questions carry equal marks.
- (4) Answer to each new question is to be started on a fresh page.
- (5) Figures in the brackets on the right indicate full marks.
- (6) Assume suitable data wherever required, but justify it.
- (7) Draw the neat labelled diagrams, wherever necessary.

Question No.	v the neat labelled diagrams, wherever necessary.	Max. Marks
Q1 a)	What is self-complimentary property in binary codes explain with an example.	05
	OR Represent the decimal number 432 in equivalent binary, Gray code, BCD code, Excess-3 code.	05
Q1 b)	Add the following decimal numbers in binary using 1's and 2's complement. $(-15)_{10} + (-23)_{10}$	10
Q2 a)	Simplify:	05
	i) A' (A + B) + (B + A.A) (A + B') ii) (A + C). (A.D + A.D') + A.C + C	
Q2 b)	Find the minimum sum of product solution using the Quine-McCluskey method. $f(w, x, y, z) = \sum m(2, 3, 7, 9, 11, 13) + \sum d(1, 10, 15)$	10
	OR Q3 Given function $f(w, x, y, z) = \sum m(0, 2, 7, 12, 13, 14, 15) + \sum d(6, 8)$ (i) Use a Karnaugh map to find the minimized sum of product expression for f. List all the prime implicants and essential prime implicants. (ii) Find the minimized product of sum expression for f using K-Map.	10
Q3 a)	Design a 4-bit binary to Gray code convertor circuit.	05
Q3 b)	Implement the following function using 8:1 multiplexer $f(A, B, C, D) = \sum m(0, 1, 3, 4, 7, 10, 14)$ OR	10
	Implement full adder using 3:8 decoder having active low output lines.	10

Shri Vile Parle Kelavani Mandal's DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

(Autonomous College Affiliated to the University of Mumbai) NAAC Accredited with "A" Grade (CGPA: 3.18)

Q4 a)	Convert D Flip flop to JK Flip flop	05
Q4 b)	Explain 4-bit ring counter with timing diagram.	10
	OR	
	Design an synchronous MOD5 counter using T flip flop.	10
Q5 a)	What are PLDs. Briefly explain different types of PLDs.	05
	OR	
	Compare PAL and PLA	05
Q5 b)	Draw and Explain BCD adder with a neat circuit diagram	10

All the Best!