Assignment 2 — Analysis Report

Selection Sort (Student B — Implementation)

Author: Auto-generated report for repository

Overview:

This report contains theoretical analysis, code review and empirical benchmarks for the Select

Algorithm Overview & Complexity Analysis

Selection Sort description and theoretical complexities (best/avg/worst): $\Theta(n^2)$, $\Theta(n^2)$, $\Theta(n^2)$

Key formula: comparisons $\approx n*(n-1)/2$

Code Review & Recommendations

- Ensure metric consistency: count array accesses also on comparisons.
 Simplify early-exit logic: break when no swap (minIndex==i) instead of complex checks.
 Avoid cloning for very large inputs to reduce memory overhead (provide option).

Empirical Results (random input)

Comparisons vs n (random input)

Selection Sort: Comparisons vs n (random input)

Benchmark Summary (random input)

n=100: time=0.759 ms, comparisons=4950, swaps=93 n=1000: time=79.805 ms, comparisons=499500, swaps=995 n=3000: time=626.839 ms, comparisons=4498500, swaps=2994 n=5000: time=1327.056 ms, comparisons=12497500, swaps=4994