COMPUTATIONALLY EFFICIENT METHODS FOR UNCERTAINTY QUANTIFICATION IN SEISMIC INVERSION

Georgia K. Stuart

The Department of Mathematical Sciences
The University of Texas at Dallas

28 September 2020

OUTLINE

EXPLORATION SEISMOLOGY

FULL WAVEFORM INVERSION (FWI)

UNCERTAINTY QUANTIFICATION AND FWI

BAYES' RULE

MARKOV CHAIN MONTE CARLO (MCMC)

MARKOV CHAIN MONTE CARLO (MCMC)

THE PROBLEM WITH MCMC

HOW CAN WE REDUCE THE COMPUTATIONAL COST OF MCMC METHODS FOR FWI?

STRATEGIES

TWO-STAGE MCMC

CHOICE OF FILTERS

OPERATOR UPSCALING

- Modeling wave propagation can be computationally expensive.
- We use the 2D constant-density acoustic wave equation

$$rac{1}{c^2(x,z)}rac{\partial^2 p}{\partial t^2} -
abla p = f$$

- Operator upscaling¹ decomposes the solution into two parts:
 - 1. Fine grid problem on independent subdomains
 - 2. Small coarse grid problem over the whole domain
- In this upscaling technique we do NOT upscale the model.

OPERATOR UPSCALING

1. Write the acoustic wave equation as a system in space by introducing acceleration, \vec{v}

$$egin{aligned} ec{v} &= -
abla p \ rac{1}{c^2} rac{\partial^2 p}{\partial t^2} &= -
abla \cdot ec{v} + f \end{aligned}$$

- 2. Solve in parallel for fine grid pressure and acceleration over each independent coarse block. No communication is required at this stage.
- 3. Solve for coarse grid acceleration over the whole domain.

UPSCALING AND FINE GRID CORRELATION

- We see a strong linear relationship between the fine grid relative residuals and the upscaled relative residuals for a layered velocity model.
- This indicates that the upscaling filter is a good surrogate for the fine grid solver.

RESULTS: TWO-STAGE MCMC WITH UPSCALING

RESULTS: TWO-STAGE MCMC WITH UPSCALING

A comparison between one-stage MCMC highest posterior density (HPD) intervals and two-stage MCMC HPD intervals.

- Acceptance rate increases from 10% to 40%.
- Time per sample decreases by 22% (40% in other experiments).
- Time per rejection decreases by 33%.

RESULTS: TWO-STAGE MCMC WITH UPSCALING

NEURAL NETWORK FILTER

RESULTS: TWO-STAGE MCMC WITH NEURAL NET

Well log from the Midland, TX basin (blue, courtesy of Pioneer Natural Resources and 9-layer block (orange).

Flat layered experimental setup (Stuart et al. 2019a)

RESULTS: TWO-STAGE MCMC WITH NEURAL NET

TROUBLE: THE RANDOM WALK SAMPLER

- In theory, MCMC will converge to the target distribution.
- In practice, methods based on random walk sampling (RWS) can handle a limited number of unknowns (< 100 in our experience)
- RWS produces samples that are highly correlated.

Neal (2011)

THE RANDOM WALK SAMPLER PRACTICALLY LIMITS THE NUMBER OF UNKNOWNS WE CAN USE

HAMILTONIAN MONTE CARLO (HMC)

HMC FLOWCHART

PROBLEM: GRADIENT COMPUTATION IS EXPENSIVE!

TWO-STAGE HAMILTONIAN MONTE CARLO

NEURAL NETWORK-ENHANCED TWO-STAGE HMC (NNHMC)

NUMERICAL EXPERIMENTS: NNHMC

NUMERICAL EXPERIMENTS: NNHMC

NUMERICAL EXPERIMENTS: NNHMC

HMC REQUIRES USERSPECIFIED PARAMETERS TO DISCRETIZE THE HAMILTONIAN DYNAMICS

THE NO-U-TURN SAMPLER (NUTS)

THE NO-U-TURN SAMPLER

NUMERICAL EXPERIMENT: NUTS

NUMERICAL EXPERIMENT: NUTS

Vertical slices with HPD intervals

NUMERICAL EXPERIMENT: NUTS

Posterior Distributions

CONCLUSIONS

FUTURE WORK

ACKNOWLEDGEMENTS

