

Introduction

1st Run

2nd Run 3rd Run

EDA

Data Pulling Feature Engineering

MODELING

What Models? How it failed

ARIMA

Failed Results

EDA

What was different?

MODELING

What was the results?

TABLE OF CONTENTS

Locations Selected

Cheung Chau Hong Kong Airport King's Park

How I selected? - Looks nice on Google maps

Maximum Temperature
Minimum Temperature
Mean Temperature
Sunshine Values
Wind Speed
Wind Angles
Dates in float format

Date Transformation

Date were in float. Changes were made to change to datetime

Seasons

One-hot encoding of season, Spring, Summer, Autumn, Winter

Scaling

Max-min Standard Scaling

	Year	Month	Day	Temperature	Day_Mm	Day_\$\$	Wind	Temp_Diff	Sun	Wind_log	Spring	Summer	Autumn	Winter	Month_str	Day_str	Date
258	2018	9	16	26.266668	0.517241	0.057767	74.699997	8.166668	0.0	4.313480	0	0	1	0	09	16	2018- 09-16
259	2018	9	17	27.266668	0.551724	0.173301	42.250000	3.866665	1.3	3.743604	0	0	1	0	09	17	2018- 09-17
577	2019	8	1	26.199999	0.000000	-1.677051	43.450001	2.633331	0.0	3.771611	0	1	0	0	08	01	2019- 08-01

Engineering

Failed Results

Best score for Ridge Regression on no scaling is - 0.13836111614135033 , and test score is - 0.15358482114740568 , arameters are - {'alpha': 20, 'max_iter': 10000}

Best score for Random Forest on no scaling is - 0.08997277161300025 , and test score is - 0.13256196614653915 meters are - {'n_estimators': 20}

NOPE! Didn't work!

Wind Values can be converted from Speed + Angle to X and Y Vector

Datetime can be converted into a cosine and sine wave for periodicity

Normalize data with (x-mean)/std

Windowing for time steps

Model

Baseline

LSTM

Results

Multistep Model

LSTM

Conclusion and Drawbacks

Due to the lack of feature variables, more could be done to enhance the data model to achieve a better fit.

For the current project, I am using a basic LSTM model, more can be done to include more layers to enhance the parameters further.

Stronger LSTM models can be explored upon to increase better fitting.

Wind measurements in coastal areas might not be a good fit because of the data varies too much on a single time step

