(1) Veröffentlichungsnummer:

0 019 589

A1

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 80810155.4

(51) Int. Cl.³: C 07 C 103/52 C 12 Q 1/36

(22) Anmeldetag: 08.05.80

(30) Priorität: 11.05.79 CH 4412/79

06.05.80 CH 3515/80

(43) Veröffentlichungstag der Anmeldung: 26.11.80 Patentblatt 80/24

(84) Benannte Vertragsstaaten: AT BE CH DE FR GB IT LI LU NL SE (71) Anmelder: Pentapharm A.G. Engelgasse 109 CH-4052 Basel(CH)

(72) Erfinder: Gundro, Svendsen Lars Reichensteinerstrasse 15 GH-4153 Reinach BL(CH)

(54) Tripeptidderivate und Verfahren zur Bestimmung von Enzymen mittels derselben.

(57) Es werden Tripeptidderivate beschrieben, die zur quantitativen Bestimmung von proteolytischen Enzymen, insbesondere Enzymen der Enzymklasse E.C. 3.4.21., verwendet werden. Diese Tripeptidderivate sind Verbindungen der Formel

H-D-X-Y-Z-R

in welcher

eine Cyclohexylglycyl-, Cyclohexylalanyl-, p-Hydroxyhexylalanyl, Phenylglycyl-, Phenylalanyl-, Tyrosyl-, Leucyl-, Isoleucyl-, Norleucyl-, Valyl-, Norvalyl-, α-Aminobutyryl-, Alanyl-, Prolyl- oder Pipecolinoyl-

Gruppe darstellt,

eine cyclohexylglycyl-, Cyclohexylalanyl-, p-Hydroxycyclohexylalanyi-, Phenylglycyl-, Phenylalanyl- oder Tyrosyl- Gruppe und, falls die Bedeutung von X auf Cyclohexylglycyl, Cyclohexylalanyi, p-Hydroxycyclohexylalanyi, Phenyigiycyi, Phenylalanyl oder Tyrosyl beschränkt ist, zusätzlich eine Leucyl-, Isoleucyl-, Norteucyl-, Valyl-, Norvalyl-, α-Aminobutyryl-, Alanyl-, Prolyl- oder Pipecolinoyl-Gruppe darsteilt,

eine Arginyl- oder Lysylgruppe darstellt und

eine chromogene Gruppe darstellt, welche durch enzymatische Hydrolyse abspaltbar ist und eine farbige oder fluoreszierende Verbindung zu bilden vermag. Die genannten Tripeptidderivate werden vorzugsweise in Form ihrer Salze mit Säuren verwendet.

Crowdon Printing Company Ltd.

"Tripeptidderivate und Verfahren zur Bestimmung von Enzymen mittels derselben"

Die vorliegende Erfindung betrifft neue Tripeptidderivate, die als Substrate zur quantitativen Bestimmung von proteolytischen Enzymen, insbesondere Enzymen, der Enzymklasse
3.4.21, z.B. von Organ- oder Glandulärkallikreinen, Thrombin
und Plasmin, verwendbar sind.

Sogenanntes Organkallikrein oder Glandulärkallikrein wird von verschiedenen Organen und Drüsen, z.B. Pankreasdrüse, Speicheldrüse, Niere, Schleimhaut des Verdauungstraktes, etc., erzeugt und in Form von Proenzym oder in aktiver Form ausge-10 schieden. Diese Organ- oder Glandulärkallikreine sind in chemischer und physiologischer Hinsicht von Plasmakallikrein verschieden. Bei gewissen pathologischen Zuständen sinkt oder steigt der Organkallikrein-Sekretspiegel unter bzw. über den Normalwert. So sinkt beispielsweise die Kallikreinausscheidung im Harn von Nierenkranken wesentlich unter den Normalwert. Bei Kranken mit Schrumpfnieren ist die Kallikreinausscheidung nahezu vollständig unterbunden. Bei Kranken mit essentiellem Bluthochdruck ist die Ausscheidung von Kallikrein im 24-Stunden-Harn signifikant, durchschnittlich um 50% des Normalwertes, 20 herabgesetzt (siehe z.B. H.S. Margolius in "Chemistry and Biology of the Kallikrein-Kinin System in Health and Disease", 1974, S. 399-409). Es ist deshalb wichtig, über einfache Methoden zur raschen quantitativen Bestimmung der Organkallikreine zu verfügen. Es ist bekannt, z.B. Harnkallikrein durch 25 Esterolyse von gewissen Argininestern, z.B. Tosyl-argininmethylester (TAME), zu bestimmen. Bei einer verbesserten este-

rolytischen Methode wird mit Tritium markierter Tosyl-argininmethylester verwendet und die Radioaktivität des esterolytisch . freigesetzten markierten Methanols gemessen. Diese esterolytischen Methoden besitzen den Nachteil, dass sie unbiologisch sind, insofern als die Kallikreine proteolytische Enzyme sind, die natürliche Peptidketten amidolytisch und nicht esterolytisch spalten. Estersubstrate besitzen ferner den Nachteil. dass sie durch zahlreiche andere Enzyme unspezifisch, d.h. durch Kallikrein nicht spezifisch gespalten werden. Die unter 10 Verwendung von mit Tritium markiertem TAME durchgeführte Bestimmungsmethode ist insofern umständlich, als vor der Messung der Radioaktivität des mit Tritium markierten Methanols das letztere aus dem Esterolysegemisch mit einer mit Wasser nicht mischbaren Flüssigkeit extrahiert werden muss, da sonst der 15 noch im Esterolysegemisch vorhandene markierte TAME die Messung verunmöglichen würde.

In der deutschen Offenlegungsschrift Nr. 25 27 932 sind Substrate der Formel R¹-Pro-X-Arg-NH-R² beschrieben, in welcher R¹ eine blockierende Gruppe, -NH-R² eine chromogene 20 Gruppe und X eine Phenylalanyl-, β-Cyclohexylalanyl-, Phenylglycyl- oder Tyrosylgruppe darstellen. Diese Substrate werden durch Plasmakallikrein sehr leicht gespalten und liefern ein farbiges Spaltprodukt R²-NH₂, dessen Menge durch photometrische, spektrophotometrische oder fluoreszenzphotometrische Me-25 thoden gemessen werden kann. Man hat versucht, diese Substrate auch zur Bestimmung von Organ- oder Glandulärkallikreinen zu verwenden. Es hat sich Jedoch gezeigt, dass die genannten

Substrate überraschenderweise gegenüber Organ- oder Glandulärkallikreinen unempfindlich sind, d.h. von den letzteren nicht oder nur in geringem Ausmass gespalten werden.

In der deutschen Offenlegungsschrift Nr. 26 29 067 sind Tripeptidderivate beschrieben, die als Substrate zur Bescimmung von gewissen proteolytischen Enzymen, z.B. Glandulärkallikreinen und Plasmin, verwendbar sind. Zwei Beispiele sind dort genannt, nämlich H-D-Valyl-leucyl-arginyl-p-nitroanilid.dihydrochlorid und H-D-Valyl-leucyl-lysyl-p-nitroani-10 lid.dihydrochlorid. Das erste Tripeptidderivat ist ein Substrat für Glandulärkallikrein, während das zweite Tripeptidderivat ein Substrat für Plasmin darstellt. Die beiden Verbindungen werden durch die genannten Enzyme gespalten, wobei sich p-Nitroanilin bildet, dessen Menge photometrisch oder spektro-15 photometrisch gemessen werden kann. Die Suszeptibilität des H-D-Valyl-leucyl-arginyl-p-nitroanilid.dihydrochlorids erreicht jedoch gerade knapp den Grenzwert, der für die genaue Bestimmung des Urinkallikreins in unkonzentriertem Urin erforderlich ist. Verwendet man jedoch das genannte Amidsubstrat

Die beiden ersten Aminosäuren der Tripeptidkette der in der oben genannten Auslegeschrift beschriebenen zwei Tripeptidderivate tragen hydrophobe Isopropylgruppen in α - bzw.

20 in konzentriertem Urin, so wird die photometrische Messung des

p-Nitroanilins durch die Eigenfarbe des Urins stark gestört.

25 β-Stellung. Man hat versucht, durch Ersetzen der Isopropylgruppen durch aromatische Gruppen, z.B. Phenylreste, jedoch unter Beibehaltung der Grundstruktur der Dipeptidkette, die

Hydrophobizität des Substrates und damit dessen Suszeptibilität gegenüber Glandulärkallikrein zu erhöhen. Dieser Versuch ist jedoch fehlgeschlagen. Die durch Einführung von aromatischen Gruppen erhaltenen Tripeptidsubstrate werden durch Glandulärkallikreine überhaupt nicht oder höchstens in sehr geringem Ausmass gespalten. Es hat sich jedoch gezeigt, dass diese aromatische Gruppen tragenden Tripeptidsubstrate eine überraschend hohe Suszeptibilität gegenüber Plasmin aufweisen. Es wurde ferner unerwarteterweise gefunden, dass man durch 10 Hydrierung der aromatischen Reste in den genannten Tripeptid-Plasminsubstraten zu neuen Tripeptidsubstraten gelangt, die eine erstaunlich hohe Suszeptibilität gegenüber Organ- oder Glandulärkallikreinen aufweisen. Man hatte bis jetzt geglaubt, dass man zum Aufbau der Tripeptidketten nur natürlich vorkom-15 mende Aminosäuren verwenden könne, um Substrate zu erhalten, die von proteolytischen Enzymen gespalten würden. Es war deshalb überraschend, dass man durch Verwendung von Cyclohexylreste enthaltenden Aminosäuren, die in der Natur nicht vorkommen, chromogene Substrate erhalten kann, die durch Organ-20 oder Glandulärkallikreine und andere proteolytische Enzyme, z.B. Plasmakallikrein, leicht gespalten werden.

Die Erfindung betrifft neue chromogene Substrate, die eine hohe Suszeptibilität gegenüber gewissen proteolytischen Enzymen, insbesondere Enzymen der Enzymklasse E.C. 3.4.21.,

25 z.B. Organ- oder Glandulärkallikreinen, Plasmin und Thrombin, aufweisen und somit zur quantitativen Bestimmung dieser Enzyme verwendbar sind. Diese Substrate sind Tripeptidderivate der

Forme 1

H-D-X-Y-Z-R

I

in welcher

X eine Cyclohexylglycyl-, Cyclohexylalanyl-, p-Hydroxycyclohexylalanyl-, Phenylglycyl-, Phenylalanyl-, Tyrosyl-, Leucyl-,

- Isoleucyl-, Norleucyl-, Valyl-, Norvalyl-, α-Aminobutyryl-, Alanyl-, Prolyl- oder Pipecolimyl-Gruppe darstellt,
 - Y eine Cyclohexylglycyl-, Cyclohexylalanyl-, p-Hydroxycyclohexylalanyl-, Phenylglycyl-, Phenylalanyl- oder Tyrosyl-Gruppe und, falls die Bedeutung von X auf Cyclohexylglycyl,
- Cyclohexylalanyl, p-Hydroxycyclohexylalanyl, Phenylglycyl,
 Phenylalanyl oder Tyrosyl beschränkt ist, zusätzlich eine
 Leucyl-, Isoleucyl-, Norleucyl-, Valyl-, Norvalyl-, α-Aminobutyryl-, Alanyl-, Prolyl- oder Pipecolinoyl-Gruppe darstellt,
- 15 Z eine Arginyl- oder Lysylgruppe darstellt und
 R eine chromogene Gruppe darstellt, welche durch enzymatische
 Hydrolyse abspaltbar ist und eine farbige oder fluoreszierende Verbindung R-NH, zu bilden vermag.

Die in Formel I mit R bezeichnete chromogene Gruppe

20 kann beispielsweise eine p-Nitrophenylamino-, 2-Naphthylamino-, 4-Methoxy-2-naphthylamino-, 4-Methyl-cumaryl-(7)-amino-,
l,3-Di(methoxycarbonyl)-phenyl-(5)-amino-, Chinonyl- oder
Nitrochinonyl-Gruppe sein.

Die Tripeptidderivate der Formel I sind als solche in 25 wässrigen Medien schwer löslich und werden deshalb vorzugs-weise in Form ihrer Salze mit Säuren verwendet, insbesondere ihre Salze mit Mineralsäuren, z.B. HCl, HBr, H₂SO₄, H₃PO₄,

oder mit organischen Säuren, zB. Ameisensäure, Essigsäure, Propionsäure, Trimethylessigsäure, Methoxyessigsäure, halogenierte Essigsäuren, wie Trichlor- oder Trifluoressigsäure, Glykokollsäure, Milchsäure, Oxalsäure, Malonsäure, Zitronensäure, Benzoesäure, im Kern substituierte aromatische Säuren, wie Toluylsäuren, Chlor- oder Brombenzoesäuren, Methoxybenzoesäuren und Aminobenzoesäuren, Phthalsäure, etc. Die Art der verwendeten Säure ist nicht kritisch, da sie an der Reaktion zwischen den Substraten und den Enzymen nicht teilnimmt.

Die Substrate der Formel I bzw. deren Salze mit Säu-10 ren werden unter der Einwirkung von gewissen proteolytischen Enzymen, insbesondere Enzymen der Enzymklasse E.C. 3.4.21. (s. "Enzyme Nomenclature", Elsevier Scientific Publishing Company, Amsterdam 1973, S. 238 u.f.), z.B. Organ- und Glan-15 dulärkallikreinen, Plasmin und Thrombin, hydrolytisch gespalten, wobei ein farbiges oder fluoreszierendes Spaltprodukt der Formel R-NH, entsteht, dessen Menge durch photometrische, spektrophotometrische, fluoreszenzspektrophotometrische oder elektrochemische Methoden gemessen werden kann. Die neuen 20 Substrate sind somit zur quantitativen Bestimmung von proteolytischen Enzymen, insbesondere Enzymen der Enzymklasse E.C. 3.4.21., welche natürliche Peptidketten an der Carboxylseite. sowohl von Arginin als auch Lysin spalten, z.B. Organ- oder Glandulärkallikreinen, Plasmin, Plasmakallikrein, Thrombin -25 sowie deren Inhibitoren und Proenzyme und auch anderer Faktoren, die an der Bildung oder Inhibition der genannten Enzyme beteiligt sind, geeignet.

Eine bevorzugte Gruppe von Tripeptidderivaten beinhaltet Verbindungen der Formel I, in welcher

- a) X eine Cyclohexylglycyl-, Cyclohexylalanyl- oder Cyclohe. xyltyrosyl-Gruppe und
- 5 "eine Alanyl-, α-Aminobutyryl-, Valyl-, Norvalyl-, Leucyl-, Norleucyl-, Isoleucyl-, Prolyl- oder Pipecolyl-Gruppe dar-stellen.

oder

b) Y eine Phenylalanyl-, Phenylglycyl- oder Tyrosyl-Gruppe 10 und X eine Cyclohexylglycyl-, Cyclohexylalanyl-, Cyclohexyltyrosyl-, Phenylalanyl- oder Phenylglycyl-Gruppe darstellen,

oder

- 20 d) X eine Phenylalanyl-, Phenylglycyl- oder Cyclohexylglycyl- Gruppe und

Y eine Cyclohexylalanyl-, Cyclohexylglycyl- oder Cyclohexyltyrosyl-Gruppe darstellen.

Die Tripeptidderivate, die in den nachfolgenden Aus25 führungsbeispielen 3, 5, 7, 9, 12, 13, 14, 15, 16, 19, 23,
24, 34, 36, 37, 38, 39, 40, 41, 65, 71, 72 und 73 beschrie-

ben sind, eignen sich besonders als Substrate zur Bestimmung von Urinkallikrein.

Zur Bestimmung von Kallikrein in menschlichem Sputum kann man die in den nachfolgenden Ausführungsbeispielen 1, 3, 5, 7, 9, 12, 13, 15, 16, 23, 27, 34, 36, 37, 38, 39, 40, 41, 53, 54, 55, 56, 57, 58, 65, 67, 68, 69, 70, 71, 72, 73, 75, 76 und 77 beschriebenen Tripeptidderivate verwenden.

4, 6, 8, 10, 16, 17, 18, 19, 23, 29, 32, 33, 35, 36, 37, 39, 10 41, 42, 43, 44, 45, 46, 47, 51, 57, 63, 64, 67, 68, 71, 73 und 74 beschriebenen Tripeptidderivate bilden eine Gruppe von Substraten, die zur Bestimmung von Plasmin eingesetzt werden können.

Die in den nachfolgenden Ausführungsbeispielen 1, 2,

Die in den nachfolgenden Ausführungsbeispielen 19, 15 23, 27, 28, 48, 49, 51, 52, 56, 57, 58, 65, 66, 68, 69, 70, 75, 76 und 77 beschriebenen Tripeptidderivate stellen sehr empfindliche Substrate für die Bestimmung von Thrombin dar.

Die Erfindung bezieht sich ferner auf ein Verfahren zur quantitativen Bestimmung von proteolytischen Enzymen der Enzymklasse E.C. 3.4.21., welche natürliche Peptidketten auf der Carboxylseite sowohl von Arginin als auch von Lysin spal-5 ten, z.B. von Organ- oder Glandulärkallikreinen, Plasmin und Thrombin. Das erfindungsgemässe Verfahren ist dadurch gekennzeichnet, dass man Materialien, welche die oben genannten Enzyme enthalten oder in welchen die letzteren gebildet oder verbraucht werden, mit einem Tripeptidderivat der Formel I zur Re-10 aktion bringt und die Menge des durch die hydrolytische Einwirkung des Enzyms auf das Tripeptidderivat gebildeten farbigen oder fluoreszierenden Spaltproduktes R-NH2 durch photometrische, spektrophotometrische, fluoreszenzspektrophotometrische oder elektrochemische Methoden misst. Man kann nach 15 diesem Verfahren beispielsweise den Enzymgehalt von Enzympräparaten oder den Enzymspiegel in Körperflüssigkeiten des Menschen, z.B. in Urin, Pankreassaft, Darmschleim, Milchdrüsensekret, Schweissdrüsensekret, Sputum und Blut, und der Säugetiere bestimmen. Das erfindungsgemässe Verfahren eignet sich 20 insbesondere zur quantitativen Bestimmung von Organ- oder Glandulärkallikreinen in den oben genannten Körperflüssigkeiten und von Plasmakallikrein. Mittels dieses Verfahrens können freie Organkallikreine und Schleimkallikreine sowie die sich aus Präkallikreinen bildenden Kallikreine und ferner physiologische oder nicht-physiologische Inhibitoren der Kallikreine und physiologische oder nicht-physiologische Aktivatoren der Präkallikreine bestimmt werden.

Folgenden beschriebenen Methoden hergestellt werden:

- 1) Die chromogene Gruppe R wird an die Carboxylgruppe des C-terminalen Arginins oder Lysins angehängt, wobei deren α -Aminogruppe durch eine Schutzgruppe, z.B. eine Carbobenzoxy- oder tert.-Butoxycarbonylgruppe, die &-Guanidylgruppe im Fall des Arginins durch Protonisierung, z.B. mit HCl, Nitrierung oder Tosylierung, und die E-Aminogruppe im Fall des Lysins mit einer Carbobenzoxygruppe oder einer p-Methyl-, p-Methoxyoder p-Chlor-benzyloxycarbonylgruppe oder einer tert.-Butoxy-10 carbonylgruppe geschützt werden. Die C-terminale R-NH-Gruppe dient während des stufenweisen Aufbaus der Peptidkette ebenfalls als Schutzgruppe. Die anderen Schutzgruppen können je nach Bedarf selektiv abgespalten werden, um die weiteren Aminosäurederivate anzuknüpfen, bis die gewünschte Peptidkette 15 vollständig aufgebaut ist. Zum Schluss können die verbleibenden Schutzgruppen vollständig abgespalten werden, ohne dass die R-NH-Gruppe in Mitleidenschaft gezogen wird (siehe z.B. Miklos Bodansky et al., "Peptide Synthesis", Interscience Publishers, 1966, S. 163-165).
- 2) Zuerst wird die Peptidkette (nach Bodansky, loc.
 cit.) aufgebaut, wobei jedoch die C-terminale Carboxylgruppe
 des Arginins bzw. Lysins mit einer üblichen Estergruppe, z.B.
 einer Methoxy-, Aethoxy- oder Benzyloxygruppe im Fall des Arginins oder einer tert.-Butoxygruppe im Fall des Lysins, ge25 schützt wird. Die Estergruppen können durch alkalische Hydrolyse abgespalten werden, mit Ausnahme der tert.-Butoxygruppe,
 die selektiv mittels Trifluor ssigsäure abgespalten werden

muss. Falls die δ-Guanidylgruppe des Arginins protonisiert ist, wird die genannte Estergruppe mittels Trypsin enzymatisch abgespalten, wobei keine Racemisierung eintritt. Hierauf wird die chromogene Gruppe R-NH- angeknüpft. Wenn die δ -Guanidinogruppe des Arginins durch eine Nitro- oder Tosylgruppe bzw. 5 die {-Aminogruppe des Lysins durch eine Carbobenzoxy- oder tert.-Butoxygruppe und die N-terminale α -Aminogruppe des Tripeptidderivates durch eine Carbobenzoxygruppe oder eine p-Methyl-, p-Methoxy- oder p-Chlor-benzyloxycarbonylgruppe oder 10 eine tert.-Butoxygruppe geschützt sind, so werden diese Schutzgruppen gleichzeitig abgespalten. Die Abspaltung kann durch Behandlung des geschützten Tripeptidderivats mit wasserfreiem HF bei Raumtemperatur durchgeführt werden, wobei alle oben genannten Amino- bzw. δ -Guanidino-Schutzgruppen abgespalten wer-15 den. Die Abspaltung kann auch durch Behandlung mit 2N HBr in Eisessig bei Raumtemperatur durchgeführt werden, wenn das geschützte Tripeptidderivat keine Nitro- oder Tosyl-Schutzgruppe enthält.

Die Herstellung der erfindungsgemässen Tripeptidderi20 vate ist in den nachfolgenden Ausführungsbeispielen ausführlich beschrieben.

Die Analysen der gemäss den Beispielen erhaltenen Eluate und Produkte wurden durch Dünnschichtchromatographie unter Verwendung von mit Siliciumdioxidgel überzogenen Glasplatten (Merck, F 254) durchgeführt. Die Dünnschichtchromatogramme wurden mittels der folgenden Lösungsmittelsysteme entwickelt:

```
Chloroform/Methanol (9:1)
    A
        n-Propanol/Essigsäureäthylester/Wasser (7:1:2)
    В
        n-Butanol/Essigsäure/Wasser (3:1:1)
            Es werden die folgenden Abkürzungen verwendet:
                 = Essigsäure
    AcOH
5
                  = Alanin
    Ala
                  = Arginin
    Arg
                  = tert.-Butoxycarbonyl
    BOC
                  = α-Aminobuttersäure
    But
                  = Carbobenzoxy
10
    Cbo
                  = Cyclohexylalanin
     CHA
                  = Cyclohexylglycin
     CHG
                  = Cyclohexyltyrosin = p-Hydroxycyclohexylalanin
     CHT
                  = Dimethylformamid
     DMF
                  = 1,3-Di(methoxycarbonyl)-phenyl-(5)-amid
     DPA
 15
                  = Dünnschichtchromatogramm
     DSC
                  = Triäthylamin
     Et3N
                  = N,N,N',N',N',N"-Hexamethyl-phosphorsaure-
     HMPTA
                                                        triamid
                   = Isoleucin
     Ile
                   = Leucin
 20
     Leu
                   = Lösungsmittelsystem
     LMS
                   = Lysin
     Lys
                   = 4-Methyl-cumaryl-(7)-amid
     MCA
                   = Methanol
     MeOH
                   = 4-Methoxy-2-naphthylamid
  25 4-MeO-2-NA
                   = Norleucin
      NLeu
                   = Norvalin
      NVal
```

OpNP = p-Nitrophenoxy

Phe = Phenylalanin

Ph'Gly = Phenylglycin

Pip = Pipecolinsäure

5 pNA = p-Nitroanilid

Pro = Prolin

THF = Tetrahydrofuran

Tyr = Tyrosin

Val = Valin

Wenn nichts anderes vermerkt ist, besitzen die Aminosäuren in den Peptidketten die L-Form.

Beispiel 1

H-D-CHG-CHA-Arg-pNA.2HBr

la. Cbo-Arg-pNA.HCl

In einem Dreihalsrundkolben von 250 ml Inhalt wurden 16,0 g (47,0 mMol) über P₂O₅ im Vakuum getrocknetes Cbo-Arg-OH. HCl in 90 ml absolutem HMPTA unter Feuchtigkeitsausschluss bei 20°C gelöst. Bei Zimmertemperatur wurden der erhaltenen Lösung zuerst eine Lösung von 4,74 g (47,0 mMol) Et3N in 10 ml HMPTA und dann 16,4 g (100 mMol) p-Nitrophenylisocyanat 10 (100%iger Ueberschuss) portionenweise zugesetzt. Nach 24 Stunden Reaktionszeit bei 20°C wurde das HMPTA im Vakuum grösstenteils abdestilliert. Der Rückstand wurde mehrmals mit 30%iger AcOH extrahiert. Der Rückstand wurde verworfen. Die vereinigten Essigsäureextrakte wurden zur weiteren Reinigung auf eine 15 mit 30%iger AcOH aquilibrierte "Sephadex G-15"-Saule aufgetragen und mit 30% iger AcOH eluiert. Diejenige Fraktion des AcOH-Eluates, die sich durch Trypsinbehandlung unter Freisetzung von p-Nitroanilin spalten liess, wurde gefriergetrocknet. - - Man erhielt 12,6 g eines amorphen Pulvers, das im DSC im LMS 20 C einheitlich war. Elementaranalyse und Berechnung aus der Bruttoformel C20H25N6O5Cl ergaben die folgenden Werte (die aus der Bruttoformel ermittelten Werte sind in Klammern ges tzt): C = 51,29% (51,67%), H = 5,48% (5,42%), N = 17,92% (18,08%),

25 lb. 2HBr.H.Arg-pNA

C1 = 7,50% (7,63%).

Unt r F uchtigkeitsausschluss wurden 4,65 g (10 mMol) der Verbindung la mit 40 ml 2N HBr in Eis ssig unter Rühren

45 Min. bei 20°C behandelt. Das Aminosäurederivat löste sich dabei unter CO2-Entwicklung. Die Reaktionslösung wurde unter intensivem Rühren zu 250 ml absolutem Aether zugetropft, wobei 2HBr.H-Arg-pNA ausfiel. Die Aetherphase wurde abgesaugt, worauf die feste Phase noch viermal mit je 100 ml absolutem Aether gewaschen wurde, um das als Nebenprodukt gebildete Benzylbromid sowie den Ueberschuss an HBr und AcOH weitgehend zu entfernen. Der Rückstand wurde in 50 ml Methanol gelöst, mit $\text{Et}_{3}N$ auf pH 4,5 eingestellt und zur Trocknung im Vakuum bei 30°C eingeengt. Dieses so erhaltene Produkt wurde in 75 ml MeOH gelöst und durch eine mit MeOH äquilibrierte Säule von "Sephadex LH-20" (vernetztes Dextrangel) laufen gelassen. Aus einer Fraktion des Eluates erhielt man 4,18 g (91,6% der Theorie) der amorphen Verbindung lb, die im DSC im LMS C einheit-15 lich war. Elementaranalyse und Berechnung aus der Bruttoformel $C_{12}H_{20}N_{6}O_{3}Br_{2}$ ergaben die folgenden Werte: C = 31,15% (31,60%), H = 4,35% (4,42%), N = 18,84% (18,43%) und Br = 34,81%(35,03%).

lc. Cbo-CHA-Arg-pNA.HBr

4,56 g (10 mMol) der Verbindung 1b wurden in 30 ml frisch destilliertem DMF gelöst und nach Kühlung auf -10°C unter Rühren mit 1,40 ml (10 mMol) Et N versetzt. Das gebildete Et N.HBr wurde abfiltriert und mit wenig kaltem DMF gewaschen. Zum Filtrat wurden unter Rühren bei -10°C 4,69 g (11 mMol) Cbo-CHA-OpNP gegeben und unter Feuchtigkeitsausschluss 2-3 Stunden lang reagieren gelassen, wobei die Temperatur der Reaktionslösung allmählich auf etwa 20°C stieg. Die Lösung

wurde wieder auf -10°C gekühlt, mit 0,70 ml (5 mMol) Et_N gepuffert und etwa 2 Stunden bei -10°C und 3 Stunden bei Raumtemperatur reagieren gelassen. Diese Prozedur wurde nochmals : mit 0,70 ml Et3N wiederholt, und nach weiteren 16 Stunden wur-5 de die Reaktionslösung im Vakuum bei 50°C zur Trockne eingeengt. Der Rückstand wurde in 75 ml 50%iger AcOH gelöst und durch Gelfiltration auf einer mit 50%iger AcOH äquilibrierten Säule von "Sephadex G-15" gereinigt. Diejenige Hauptfraktion des AcOH-Eluates, die sich durch Trypsinbehandlung unter Frei-10 setzung von p-Nitroanilin spalten liess, wurde im Vakuum bei 40°C zur Trockne eingeengt. Der Rückstand wurde in 150 ml MeOH gelöst und nochmals zur Trockne eingeengt. Nach Trocknung des erhaltenen Rückstandes im Vakuumtrockenschrank bei 60°C über P_{005} erhielt man 5,85 g (88,3% der Theorie) der amorphen Ver-15 bindung lc, die im DSC im LMS C einheitlich war. Elementaranalyse und Berechnung aus der Bruttoformel C29H40N7O6Br ergaben die folgenden Werte: C = 52,28% (52,57%), H = 6,16% (6,09%), N = 15,09% (14,80%) und Br = 11,85% (12,06%).

ld. 2HBr.H-CHA-Arg-pNA

5,30 g (8 mMol) der Verbindung le wurden unter Feuchtigkeitsausschluss mit 32 ml 2N HBr in Eisessig unter Rühren 40 Min. lang bei 20°C behandelt. Das Dipeptidderivat löste sich dabei allmählich unter CO₂-Entwicklung. Die Reaktionslösung wurde unter intensivem Rühren zu 250 ml absolutem Aether zu-25 g tropft, wobei 2HBr.H-CHA-Arg-pNA ausfiel. Die Aetherphase wurde abgesaugt, worauf die fest Phase noch viermal mit je 100 ml absolutem Aeth r gewaschen wurde, um das als Nebenpro-

dukt gebildete Benzylbromid sowie den Ueberschuss an HBr und AcOH weitgehend zu entfernen. Der Rückstand wurde in 50 ml MeOH gelöst. Nach Einstellung des pH auf 4,5 mit Et₃N wurde die Lösung im Vakuum bei 30°C zur Trockne eingeengt. Der so erhaltene Rückstand wurde in 50 ml MeOH gelöst und auf einer mit MeOH äquilibrierten Säule von "Sephadex LH-20" gereinigt. Disjenige Fraktion des MeOH-Eluates, die sich durch Trypsinbehandlung unter Freisetzung von p-Nitroanilin spalten liess, wurde im Vakuum bei 30°C zur Trockne eingeengt. Nach Trocknung des erhaltenen Rückstandes im Vakuumtrockenschrank bei 40°C über P₂O₅ erhielt man 4,48 g (91,9% der Theorie) der amorphen Verbindung 1d, die im DSC im LMS C einheitlich war. Elementaranalyse und Berechnung aus der Bruttoformel C₂₁H₃₅N₇O₄Br ergaben die folgenden Werte: C = 41,80% (41,39%), H = 5,86%

le. Cbo-D-CHG-CHA-Arg-pNA.HBr

3,05 g (5 mMol) der Verbindung 1d wurden in 20 ml frisch destilliertem DMF gelöst und nach Kühlung auf -10°C unter Rühren mit 0,70 ml (5 mMol) Et_N versetzt. Das gebildete 20 Et_N.HBr wurde abfiltriert und mit wenig kaltem DMF gewaschen. Zum Filtrat wurden unter Rühren bei -10°C 2,27 g (5,5 mMol) Cbo-D-CHG.OpNP gegeben. Man liess das Reaktionsgemisch unter Feuchtigkeitsausschluss 2-3 Stunden lang reagieren, worauf die Temperatur der Reaktionslösung allmählich auf etwa 20°C stieg. 25 Die Lösung wurde wieder auf -10°C gekühlt, mit 0,35 ml (2,5 mMol) Et_N gepuffert und etwa 2 Stunden bei -10°C und weitere 3 Stunden bei Raumtemperatur reagieren gelassen. Diese Proze-

dur wurde nochmals mit 0,35 ml Et3N wiederholt, und nach weiteren 16 Stunden wurde die Reaktionslösung im Vakuum bei 50°C zur Trockne eingeengt. Der Rückstand wurde in 50 ml 50%iger AcOH gelöst und durch Gelfiltrierung auf einer mit 50%iger AcOH aquilibrierten Saule von "Sephadex G-15" gereinigt. Diejenige Hauptfraktion des AcOH-Eluates, die sich durch Trypsinbehandlung unter Fresetzung von p-Nitroanilin spalten liess, wurde im Vakuum bei 40°C zur Trockne eingeengt. Der Rückstand wurde in 100 ml MeOH gelöst, worauf die Lösung nochmals zur 10 Trockne eingeengt wurde. Nach Trocknung des erhaltenen Rückstandes im Vakuumtrockenschrank bei 60°C über Po05 erhielt man 3,24 g (80,8% der Theorie) der amorphen Verbindung le, die im DSC im LMS C einheitlich war. Elementaranalyse und Berechnung aus der Bruttoformel $C_{37}H_{53}N_8O_7Br$ ergaben die folgenden Werte: C = 55,72% (55,43%), H = 6,73% (6,66%), N = 14,25%(13,98%) und Br = 9,86% (9,97%).

1f. 2HBr.H-D-CHG-CHA-Arg-pNA

2,41 g (3 mMol) der Verbindung le wurden unter Feuchtigkeitsausschluss mit 12 ml 2N HBr in Eisessig unter Rühren 40 Minuten lang bei 20°C behandelt. Das Tripeptidderivat löste sich dabei allmählich unter Decarboxylierung und gleichzeitiger CO2-Entwicklung. Die Reaktionslösung wurde unter kräftigem Rühren zu 120 ml absolutem Aether zugetropft, wobei 2HBr.H-D-CHG-CHA-Arg-pNA ausfiel. Die Aetherphase wurde mit einem Filtrierstab abgesaugt, und danach wurde die feste Phase noch viermal mit je 50 ml absolutem Aether gewaschen. Der so erhaltene Rückstand wurde in 40 ml MeOH gelöst. Nach Einstellung des

20

25

5

pH auf 4,5 mit Et, N wurde die Lösung im Vakuum bei 30°C zur Trockne eingeengt. Der Rückstand wurde in 30 ml MeOH gelöst und auf einer mit MeOH äquilibrierten Säule von "Sephadex LH-20" gereinigt. Diejenige Fraktion des MeOH-Eluates, die sich durch Trypsinbehandlung unter Freisetzung von p-Nitroanilin spalten liess, wurde im Vakuum bei 30°C zur Trockne eingeengt. Zur weiteren Reinigung wurde der vorgereinigte Rückstand in 30 ml 33%iger AcOH gelöst und durch Gelfiltrierung auf einer mit 33%iger AcOH aquilibrierten Saule von "Sephadex G-15" ge-10 reinigt. Die Hauptfraktion des AcOH-Eluates, die sich durch Trypsinbehandlung unter Freisetzung von p-Nitroanilin spalten liess, wurde im Vakuum bei 40°C zur Trockne eingeengt. Nach Trocknung des so erhaltenen Rückstandes im Vakuumtrockenschrank bei 40°C über P₂O₅ erhielt man 1,68 g (74,8% der Theorie) der amorphen Verbindung lf, die im DSC im LMS C einheitlich war. 15 Elementaranalyse und Berechnung aus der Bruttoformel $^{\text{C}}_{29}^{\text{H}}_{48}^{\text{N}}_{80}^{\text{DE}}_{2}^{\text{ergaben}}$ ergaben die folgenden Werte: C = 46,18% (46,53%), H = 6,55% (6,46%), N = 15,18% (14,97%) und Br = 21,12% (21,35%).

Die Aminosäureanalyse ergab die zu erwartenden Amino-20 säuren im richtigen Verhältnis:

Arg: 1,00 - CHA: 0,96 - D-CHG: 0,98.

Beispiel 2

2HBr.H-D-CHG-Phe-Lys-pNA

2a. BOC-Lys(£-Cbo)-pNA

In einem Dreihalsrundkolben von 500 ml Inhalt wurden 38,05 g (0,1 Mol) getrocknetes Oel von BOC-Lys(&-Cbo)-OH in 150 ml absolutem HMPTA unter Feuchtigkeitsausschluss bei 20°C

gelöst. Bei Raumtemperatur wurden der erhaltenen Lösung zuerst eine Lösung von 10,12 g (0,1 Mol) Et3N in 25 ml HMPTA und dann 24,62 g (0,15 Mol) p-Nitrophenylisocyanat (50%iger Ueberschuss) portionenweise zugesetzt, wobei jedesmal eine heftige CO2-Entwicklung auftrat. Nach 24 Stunden Reaktionszeit 5 bei 20°C wurde das HMPTA im Vakuum grösstenteils abdestilliert. Der Rückstand wurde mehrmals mit 2%iger NaHCO_-Lösung und anschliessend mit dest. HoO digeriert. Der so erhaltene Rückstand wurde im Vakuum bei 40°C getrocknet und danach mit warmem MeOH mehrmals extrahiert, bis der Rückstand nur noch das 10 schwerlösliche Nebenprodukt N, N'-bis(p-Nitrophenyl)-harnstoff enthielt. Die MeOH-Extrakte wurden auf 300 ml konzentriert, wobei einige Verunreinigungen flockig aufielen. Nach Filtration wurde das Filtrat (330 ml) auf einer mit MeOH aquilibrierten Saule von "Sephadex LH-20" gereinigt. Die Hauptfraktion des 15 MeOH-Eluates wurde im Vakuum bei 30°C auf ein kleines Volumen eingeengt, wobei eine nadelförmige Substanz auskristallisierte. Die erhaltenen Kristalle wurden abfiltriert und mit 50 ml eiskaltem MeOH portionenweise gewaschen. Nach Trocknung im Vakuumtrockenschrank über P205 bei 40°C erhielt man 31,1 g (62,1% 20 der Theorie) der kristallinen Verbindung 2a mit Smp. die im DSC in den LMS A und B einheitlich war. Die Mutterlauge lieferte noch 5,8 g (11,6% der Theorie) der Substanz 2a mit , die im DSC in den LMS A und B einheitlich war. Elementaranalyse und Berechnung aus der Bruttoformel $C_{25}H_{32}N_{4}O_{7}$ ergaben die folgenden Werte: C = 60,23% (59,99%), H = 6,50% (6,44%) und N = 11,38% (11,19%).

2b. CF_COOH.H-Lys(E-Cbo)-pNA

25,03 g (50 mMol) der Verbindung 2a wurden unter Feuchtigkeitsausschluss unter intensivem Rühren 60 Minuten bei 20°C mit 50 ml frisch destillierter wasserfreier Trifluoressigsäure behandelt, wobei die BOC-Gruppe unter CO2-Entwicklung und Freisetzung von Isobutylen selektiv abgespalten wurde. Die Reaktionslösung wurde unter kräftigem Rühren zu 750 ml absolutem Aether zugetropft, wobei CF_COOH.H-Lys(&-Cbo)-pNA flockig ausfiel. Die Aetherphase wurde mit einem Filtrierstab abge-10 saugt. Die feste Phase wurde noch viermal mit je 100 ml absolutem Aether behandelt. Der erhaltene Rückstand wurde in 200 ml MeOH gelöst. Nach Einstellung des pH auf 4,5 mit Et N wurde die Lösung im Vakuum bei 30°C zur Trockne eingeengt. Der Rückstand wurde in 200 ml MeOH gelöst und auf einer mit MeOH äquilibrierten Säule von "Sephadex LH-20" gereinigt. Die Hauptfraktion des MeOH-Eluates, die sich im DSC im LMS C einheitlich verhielt, wurde im Vakuum bei 30°C eingeengt. Nach Trocknung des so erhaltenen Rückstandes im Vakuumtrockenschrank bei 40°C über P205 erhielt man 22,64 g (88,0% der Theorie) der 20 amorphen Verbindung 2b. Elementaranalyse und Berechnung aus der Bruttoformel C22H25N4O7F3 ergaben die folgenden Werte: C = 51,66% (51,36%), H = 4,88% (4,90%) und N = 11,08% (10,89%). 2c. BOC-Phe-Lys(E-Cbo)-pNA

7,72 g (15 mMol) der Verbindung 2b wurden in 50 ml
25 frisch destilliertem DMF gelöst und nach Kühlung auf -10°C unter Rühren mit 6,38 g (16,5 mMol) BOC-Phe-OpNP und 2,09 ml (15
mMol) Et₃N versetzt. Man liess das Gemisch unter Feuchtigkeitsausschluss

3 Stunden reagieren, wobei die Reaktionstemperatur allmählich auf Raumtemperatur stieg. Die Lösung wurde erneut auf -10°C gekühlt und mit 1,05 ml (7,5 mMol) Et3N gepuffert. Nach 5 Stunden Reaktionszeit wurde diese Prozedur nochmals mit 1,05 ml Et3N wiederholt. Nach 16 Stunden Reaktionszeit bei 20°C wurde die Reaktionslösung im Vakuum bei 50°C zur Trockne eingeengt. Der Rückstand wurde in 150 ml MeOH gelöst und durch Gelfiltrierung auf einer mit MeOH äquilibrierten Säule von "Sephadex LH-20" gereinigt. Die erste Hauptfraktion des MeOH-Eluates, die sich im DSC in den LMS A und B einheitlich verhielt, wurde im Vakuum bei 30°C auf ein kleines Volumen eingeengt, wobei die gewünschte Substanz auskristallisierte. Die Kristalle wurden abfiltriert und mit 30 ml eiskaltem MeOH portionenweise nachgewaschen. Aus der Mutterlauge liess sich. eine zusätzliche Menge von 1,0 g kristalliner Substanz gewinnen. Nach Trocknung im Vakuumtrockenschrank bei 40°C über P205 erhielt man 7,72 g (79,5% der Theorie) der Verbindung 2c mit , die im DSC in den LMS A und B einheitlich war. Smp. Elementaranalyse und Berechnung aus der Bruttoformel $C_{34}H_{41}N_{5}O_{8}$ ergaben die folgenden Werte: C = 62,88% (63,05%), H = 6,42% (6,38%) und N = 11,06% (10,81%).

2d. CF_COOH.Phe-Lys(E-Cbo)-pNA

3,24 g (5 mMol) der Verbindung 2c wurden unter Feuchtigkeitsausschluss mit 10 ml frisch destillierter wasserfreier Trifluoressigsäure unter intensivem Rühren 60 Minuten bei 20°C behandelt. Di Reaktionslösung wurde unter kräftigem Rühren zu 100 ml absolutem Aether zugetropft, wobei CF_COOH.H-PheLys(&-Cbo)-pNA amorph ausfiel. Die Aetherphase wurde abgesaugt.

Der feste Rückstand wurde noch dreimal mit je 30 ml absolutem

Aether gewaschen. Der so erhaltene Rückstand wurde in 50 ml

MeOH gelöst. Nach Einstellung des pH auf 4,5 mit Et₃N wurde

5 die Lösung im Vakuum bei 30°C zur Trockne eingeengt. Der Rückstand wurde in 75 ml MeOH gelöst und auf einer mit MeOH äquilibrierten Säule von "Sephadex LH-20" gereinigt. Die Hauptfraktion des MeOH-Eluates, die sich im DSC im LMS C einheitlich verhielt, wurde im Vakuum bei 30°C eingeengt. Nach Trocknung des Rückstandes im Vakuumtrockenschrank bei 40°C über

P₂O₅ erhielt man 2,95 g (89,2% der Theorie) der amorphen Verbindung 2d. Elementaranalyse und Berechnung aus der Bruttoformel C₃₁H₃₄N₅O₈F₃ ergaben die folgenden Werte: C = 56,82% (56,27%), H = 5,16% (5,18%) und N = 10,63% (10,59%).

15 2e. Cbo-D-CHG-Phe-Lys(&-Cbo)-pNA

1,99 g (3 mMol) der Verbindung 2d wurden in 15 ml frisch destilliertem DMF gelöst und nach Kühlung auf -10°C unter Rühren mit 1,36 g (3,3 mMol) Cbo-D-CHG-OpNP und 0,42 ml (3 mMol) Et_N versetzt. Man liess das Gemisch unter Feuchtig-20 keitsausschluss während 3 Stunden reagieren, wobei die Temperatur allmählich auf 20°C stieg. Die Reaktionslösung wurde erneut auf -10°C gekühlt und mit 0,21 ml (1,5 mMol) Et_N gepuffert. Nach einer Reaktionszeit von 5 Stunden bei -10°C liess man die Temperatur des Reaktionsgemisches allmählich auf Zimmertemperatur steigen. Diese Prozedur wurde nochmals mit 0,21 ml Et_N durchgeführt, wobei die Reaktionszeit etwa 16 Stunden betrug. Das Reaktionsgemisch wurde im Vakuum bei

50°C zur Trockne eingeengt, worauf der Rückstand in 50 ml MeOH gelöst und durch Gelfiltrierung auf einer mit MeOH äquilibrierten Säule von "Sephadex LH-20" gereinigt wurde. Die erste Hauptfraktion des MeOH-Eluates, die sich im DSC in den LMS A und B einheitlich verhielt, wurde im Vakuum bei 30°C zur Trockne eingeengt. Nach Trocknung des Rückstandes im Vakuumtrockenschrank bei 40°C über P₂O₅ erhielt man 2,03 g (82,4% der Theorie) der teilweise kristallinen Verbindung 2e. Elementaranalyse und Berechnung aus der Bruttoformel C₄₅H₅₂N₆O₉ ergaben die folgenden Werte: C = 66,22% (65,84%), H = 6,32% (6,38%) und N = 10,49% (10,24%).

2f. 2HBr.H-D-CHG-Phe-Lys-pNA

1,64 g (2 mMol) der Verbindung 2e wurden unter Feuchtigkeitsausschluss unter Rühren 40 Minuten bei 20°C mit 12 ml
15 2N HBr in Eisessig behandelt. Das Tripeptidderivat löste sich allmählich unter gleichzeitiger Abspaltung der beiden Schutzgruppen Cbo und EOC, wobei CO2-Entwicklung auftrat. Die Reaktionslösung wurde unter kräftigem Rühren zu 100 ml absolutem Aether getropft, wobei 2HBr.H-D-CHG-Phe-Lys-pNA flockig
20 ausfiel. Die Aetherphase wurde nach 30 Minuten abgesaugt, worauf die feste Phase noch viermal mit je 25 ml abs. Aether gewaschen wurde. Der erhaltene Rückstand wurde in 40 ml MeOH gelöst. Nach Einstellung des pH auf 4,5 mit Et3N wurde die Lösung im Vakuum bei 30°C zur Trockne eingeengt. Der Rückstand wurde in 30 ml MeOH gelöst und auf einer mit MeOH äquilibrierten Säule von "Sephadex LH-20" gereinigt. Diejenige Hauptfraktion des MeOH-Eluates, die sich durch Trypsinbehandlung unter

Freisetzung von p-Nitroanilin spalten liess, wurde im Vakuum bei 30°C zur Trockne eingeengt. Zur weiteren Reinigung wurde das vorgereinigte Produkt in 25 ml 33%iger AcOH gelöst und durch Gelfiltrierung auf einer mit 33%iger AcOH äquilibrierten Säule von "Sephadex G-15" gereinigt. Diejenige Fraktion des AcOH-Eluates, die sich durch Trypsinbehandlung unter Freisetzung von p-Nitroanilin spalten liess, wurde im Vakuum bei 40°C zur Trockne eingeengt. Nach Trocknung des so erhaltenen Rückstandes im Vakuumtrockenschrank bei 40°C über P₂O₅ erhielt man 1,15 g (79,1% der Theorie) der amorphen Verbindung 2f, die im DSC im LMS C einheitlich war. Elementaranalyse und Berechnung aus der Bruttoformel C₂₉H₄₂N₆O₅Br₂ ergaben die folgenden Werte: C = 48,41% (48,75%), H = 6,02% (5,93%), N = 12,11% (11,76%) und Br = 22,02% (22,37%).

Die Aminosäureanalyse ergab die zu erwartenden Aminosäuren im richtigen Verhältnis:

Phe: 1,00 - Lys: 0,98 - D-CHG: 1,02.

Beispiel 3

2HBr.H-D-Val-CHA-Arg-MCA

20 3b. 2HBr.H-Arg-MCA

13,0 g (25,9 mHol) käufliches Cbo-Arg-MCA.HCl wurden mit 104 ml (208 mMol) einer Lösung von 2N HBr in Eisessig gemäss Beispiel 1b deblockiert. Der trockene Rückstand wurde in 400 ml MeOH gelöst und auf einer Säule von "Sephadex LH-20" 25 gereinigt. Diejenige Fraktion des MeOH-Eluates, die sich durch Trypsinbehandlung unter Freisetzung von 4-Methyl-7-amino-cumarin spalten liess, wurde im Vakuum bei 30°C zur Trockne

eingeengt. Nach Trocknung des erhaltenen Rückstandes im Vakuumtrockenschrank bei 40° C über P_2O_5 erhielt man 11,2 g (87,7% der Theorie) der amorphen Verbindung 3b, die im DSC im LMS C einheitlich war. Elementaranalyse und Berechnung aus der Bruttoformel $C_{16}^{\rm H}_{23}^{\rm N}_{5}^{\rm O}_{3}^{\rm Br}_{2}$ ergaben die folgenden Werte: C = 39,40% (38,96%), H = 4,61% (4,70%), N = 14,48% (14,20%) und $P_{10}^{\rm R}_{10}^{\rm R}_{1$

3c. Cbo-CHA-Arg-MCA.HBr

4,93 g (10 mMol) der Verbindung 3b und 4,69 g (11 10 mMol) Cbo-CHA-OpNP wurden zu 75 ml frisch destilliertem DMF gegeben. Nach Kühlung auf -10°C wurden unter Rühren zuerst 1,40 ml (10 mMol) und anschliessend 0,70 ml (5 mMol) $Et_{3}N$ zugegeben. Man liess das Gemisch unter Feuchtigkeitsausschluss zuerst 3 Stunden bei -10°C und dann weitere 4 Stunden bei 15 Raumtemperatur reagieren. Die Reaktionslösung wurde erneut auf -10°C gekühlt, mit 0,70 ml Et N gepuffert und über Nacht bei 20°C gerührt. Das Reaktionsgemisch wurde im Vakuum bei 50°C zur Trockne eingeengt, worauf der Rückstand in 200 ml 50%iger AcOH gelöst und auf einer Säule von "Sephadex G-15" 20 gereinigt wurde. Diejenige Fraktion des AcOH-Eluates, die sich durch Trypsinbehandlung unter Freisetzung von 4-Methyl-7-amino-cumarin spalten liess, wurde im Vakuum bei 40°C zur Trockne eingeengt. Nach Trocknung des erhaltenen Rückstandes im Vakuumtrockenschrank bei 60°C über Poog erhielt man 5,95 g 25 (85,0% der Theorie) der kristallinen Verbindung 3c mit Smp.

analyse und Berechnung aus der Bruttoformel C 33 43 N6 06 Br er-

, die im DSC im LMS C einheitlich war. Elementar

gaben die folgenden Werte: C = 56,33% (56,65%), H = 6,28% (6,19%), N = 12,25% (12,01%) und Br = 11,30% (11,42%). 3d. 2HBr.H-CHA-Arg-MCA

5,60 g (8 mMol) der Verbindung 3c wurden gemäss Bei
spiel 1d mit 32 ml 2N HBr in Eisessig deblockiert. Das erhaltene Rohprodukt wurde in 100 ml MeOH gelöst und auf einer Säule von "Sephadex LH-20" gereinigt. Diejenige Fraktion des MeOH-Eluates, die sich durch Trypsinbehandlung unter Freisetzung von 4-Methyl-7-amino-cumarin spalten liess, wurde im Vakuum bei 30°C zur Trockne eingeengt. Nach Trocknung des erhaltenen Rückstandes im Vakuumtrockenschrank bei 40°C über P₂O₅ erhielt man 4,76 g (92,1% der Theorie) der amorphen Verbindung 3d, die im DSC im LMS C einheitlich war. Elementaranalyse und Berechmung aus der Bruttoformel C₂₅H₃₈N₆O₄Br₂ ergaben die folgenden

Werte: C = 47,02% (46,45%), H = 6,02% (5,93%), N = 13,21% (13,00%) und Br = 24,48% (24,72%).

3e. Cbo-D-Val-CHA-Arg-MCA.HBr

3,23 g (5 mMol) der Verbindung 3d wurden gemäss Beispiel le mit 2,05 g (5,5 mMol) Cbo-D-Val-OpNP umgesetzt. Das erhaltene Rohprodukt wurde in 75 ml 50%iger AcOH gelöst und auf einer Säule von "Sephadex G-15" gereinigt. Diejenige Fraktion des AcOH-Eluates, die sich durch Trypsinbehandlung unter Freisetzung von 4-Methyl-7-amino-cumarin spalten liess, wurde im Vakuum bei 40°C zur Trockne eingeengt. Nach Trocknung des Rückstandes im Vakuumtrockenschrank bei 60°C über P₂O₅ erhielt man 3,21 g (80,4% der Theorie) der amorphen Verbindung 3e, die im DSC im LMS C einheitlich war. Elementaranalyse und Berechnung aus der Bruttoformel C₃₈H₅₂N₇O₇Br ergaben die

25

folgenden Werte: C = 57,05% (57,14%), H = 6,61% (6,56%), N = 12,49% (12,28%) und Br = 9,82% (10,00%).

3f. 2HBr.H-D-Val-CHA-Arg-MCA

2.40 g (3 mMol) der Verbindung 3d wurden gemäss Beispiel lf mit 12 ml 2N HBr in Eisessig deblockiert. Das erhaltene Rohprodukt wurde in 50 ml MeOH gelöst und auf einer Säule von "Sephadex LH-20" gereinigt. Diejenige Fraktion des MeOH-Eluates, die sich durch Trypsinbehandlung unter Freisetzung von 4-Methyl-7-amino-cumarin spalten liess, wurde im Vakuum bei 30°C zur Trockne eingeengt. Zur weiteren Reinigung wurde das vorgereinigte Produkt in 40 ml 50%iger AcOH gelöst und durch Gelfiltrierung an einer Säule von "Sephadex G-15" gereinigt. Die Hauptfraktion des AcOH-Eluates, die sich durch Trypsinbehandlung unter Freisetzung von 4-Methyl-7-aminocumarin spalten liess, wurde im Vakuum bei 40°C zur Trockne 15 eingeengt. Nach Trocknung des Rückstandes im Vakuumtrockenschrank bei 40°C über P₂O₅ erhielt man 1,73 g (77,3% der Theorie) der amorphen Verbindung 3f, die im DSC im LMS C einheitlich war. Elementaranalyse und Berechnung aus der Bruttoformel C30H47N705Br2 ergaben die folgenden Werte: C = 48,12% (48,33%), H = 6,43% (6,35%), N = 13,38% (13,15%) und Br = 21.18% (21,44%).

Die Aminosäureanalyse ergab die zu erwartenden Aminosäuren im richtigen Verhältnis:

25 Val: 1,00 - Arg: 1,02 - D-CHA: 0,97.

Beispiel 4

2HBr.H-D-CHG-Ph -Lys-MCA

4a. BOC-Lys(€-Cbo)-MCA

In einem Dreihalskolben von 1000 ml Inhalt wurden 38,05 g (0,1 Mol) getrocknetes BOC-Lys(€-Cbo)-OH in einem Gemisch von 50 ml frisch destilliertem wasserfreiem DMF und 300 ml absolutem THF bei 20°C gelöst. Der auf -10°C gekühlten Lösung wurde unter Feuchtigkeitsausschluss und unter Rühren eine Lösung von 10,2 g (0,1 Mol) Et3N in 75 ml THF zugesetzt. Dann wurde innerhalb von 20 Minuten eine Lösung von 13,65 g (0,1 Mol) Chlorameisensäure-isobutylester in 50 ml THF zugetropft, wobei man die Reaktionstemperatur nie über -5°C steigen liess. Nach einer Reaktionszeit von etwa 10 Minuten bei einer Temperatur von -10°C bis -5°C wurde eine Lösung von 17,52 g (0,1 Mol) 4-Methyl-7-amino-cumarin in 75 ml DMF innerhalb von 25. Minuten zugetropft, wobei man die Temperatur nie über -5°C steigen liess. Das Reaktionsgemisch wurde anschliessend 1 Stunde bei -5°C und über Nacht bei Raumtemperatur gerührt und dann wieder auf -10°C gekühlt. Das auskristallisierte Et_N.HCl wurde abfiltriert. Das Filtrat wurde im Vakuum bei 50°G zur Trockne eingeengt. Der Rückstand wurde in 500 ml MeOH gelöst und durch Gelfiltrierung auf einer Säule von "Sephadex LH-20" gereinigt. Das MeOH-Eluat lieferte ausser dem gewünschten Produkt BOC-Lys(E-Cbo)-MCA noch drei weitere Fraktionen, welche das Nebenprodukt N-[4-Methyl-cumaryl-(7)]-karbaminsäureisobutylester und die Ausgangsprodukte BOC-Lys(E-Cho)-OH bzw. 7-Amino-4-methyl-cumarin enthielten. Die das Produkt BOC-Lys-(E-Cbo) MCA enthaltende Fraktion wurde im Vakuum bei 30 C zur Trockne eingeengt. Nach Trocknung des Rückstandes im Vakuum -

20

5

trockenschrank bei 50°C über P_2O_5 erhielt man 26,3 g (48,9% der Theorie) der teilweise kristallinen Verbindung 4a, die im DSC in den LMS A und B einheitlich war. Elementaranalyse und Berechnung aus der Bruttoformel $C_{29}H_{35}N_3O_7$ ergaben die folgenden Werte: C = 64,90% (64,79%), H = 6,52% (6,56%) und N = 7,88% (7,82%).

4b. CF_COOH.H-Lys(&-Cbo)-MCA

21,5 g (40 mMol) der Verbindung 4a wurden gemäss Beispiel 2b mit 60 ml Trifluoressigsäure deblockiert. Das nach

10 Aufarbeitung erhaltene Rohprodukt wurde in 250 ml MeOH gelöst

und durch Gelfiltrierung auf einer Säule von "Sephadex LH-20"

gereinigt. Die erste Hauptfraktion des MeOH-Eluates, die sich im

DSC im LMS C einheitlich verhielt, wurde im Vakuum bei 30°C

zur Trockne eingeengt. Nach Trocknung des Rückstandes im Va
15 kuumtrockenschrank bei 40°C über P₂O₅ erhielt man 19,5 g (88,4%

der Theorie) der amorphen Verbindung 4b. Elementaranalyse und

Berechnung aus der Bfuttoformel C₂₆H₂₈N₃O₇F₃ ergaben die folgenden Werte: C = 57,02% (56,62%), H = 5,20% (5,12%) und N =

7,58% (7,62%).

20 4c. BOC-Phe-Lys(E-Cbo)-MCA

5,52 g (10 mMol) der Verbindung 4b wurden gemäss Beispiel 2c mit 4,25 g (11 mMol) BOC-Phe-OpNP umgesetzt. Das nach Aufarbeitung erhaltene Rohprodukt wurde in 100 ml MeOH gelöst und durch Gelfiltrierung auf einer Säule von "Sephadex LH-20" 25 gereinigt. Die Hauptfraktion des MeOH-Eluates, die sich im DSC in den LMS A und B einheitlich verhielt, wurde im Vakuum bei 30°C zur Trockne eingeengt. Nach Trocknung des Rückstandes im

Vakuumtrockenschrank bei 50° C über P_2O_5 erhielt man 5,78 g (84,4% der Theorie) der teilweise kristallinen Verbindung 4c. Elementaranalyse und Berechnung aus der Bruttoformel $C_{38}H_{44}N_{4}O_8$ ergaben die folgenden Werte: C = 66,09% (66,65%), H = 6,44% (6,48%) und N = 8,32% (8,18%).

4d. CF_COOH.H-Phe-Lys(E-Cbo)-MCA

3,42 g (5 mMol) der Verbindung 4c wurden gemäss Beispiel 2d mit 15 ml Trifluoressigsäure deblockiert. Das nach Aufarbeitung erhaltene Rohprodukt wurde in 75 ml MeOH gelöst und durch Gelfiltrierung auf einer Säule von "Sephadex LH-20" gereinigt. Die Hauptfraktion des MeOH-Eluates, die sich im DSC im LMS C einheitlich verhielt, wurde im Vakuum bei 30°C zur Trockne eingeengt. Nach Trocknung des Rückstandes im Vakuumtrockenschrank bei 40°C über P₂O₅ erhielt man 3,41 g (97,6% der Theorie) der amorphen Verbindung 4d. Elementaranalyse und Berechnung aus der Bruttoformel C₃₅H₃₇N₄O₈F₃ ergaben die folgenden Werte: C = 59,54% (60,16%), H = 5,31% (5,34%) und N = 8,33% (8,02%).

4e. Cbo-D-CHG-Phe-Lys(E-Cbo)-MCA

2,10 g (3 mMol) der Verbindung 4d wurden gemäss Beispiel 2e mit 1,36 g (3,3 mMol) Cbo-D-CHG-OpNP umgesetzt. Das nach Aufarbeitung erhaltene Rehprodukt wurde in 40 ml MeOH gelöst und durch Gelfiltrierung auf einer Säule von "Sephadex LH-20" gereinigt. Die erste Hauptfraktion des MeOH-Eluates, die sich im DSC in den LMS A and B einheitlich verhielt, wurde im Vakuum bei 30°C zur Trockne eingeengt. Nach Trocknung des Rückstandes im Vakuumtrockenschrank bei 60°C über P₂O₅

erhielt man 2,12 g (82,4% der Theorie) der amorphen Verbindung 4e. Elementaranalyse und Berechnung aus der Bruttoformel $C_{49}^{H}_{55}^{N}_{50}^{0}_{9}$ ergaben die folgenden Werte: C = 69,03% (68,59%), H = 6,49% (6,46%) und N = 8,32% (8,16%).

5 4f. 2HBr.H-D-CHG-Phe-Lys-MCA

1,72 g (2 mMol) der Verbindung 4e wurden gemäss Beispiel 2f mit 12 ml 2N HBr in Eisessig deblockiert. Das nach Aufarbeitung erhaltene Rohprodukt wurde in 30 ml MeOH gelöst und auf einer Säule von "Sephadex LH-20" gereinigt. Diejenige 10 Fraktion des MeOH-Eluates, die sich durch Trypsinbehandlung unter Freisetzung von 4-Methyl-7-amino-cumarin spalten liess, wurde im Vakuum bei 30°C zur Trockne eingeengt. Zur weiteren Reinigung wurde das vorgereinigte Produkt in 40 ml 50%iger AcOH gelöst und durch Gelfiltrierung auf einer Säule von "Se-15 phadex G-15" gereinigt. Die Hauptfraktion des AcOH-Eluates, die sich durch Trypsinbehandlung unter Freisetzung von 4-Methyl-7-amino-cumarin spalten liess, wurde im Vakuum bei 40°C zur Trockne eingeengt. Nach Trocknung des Rückstandes im Vakuumtrockenschrank bei 40°C über P₂0₅ erhielt man 1,10 g (73,2% der Theorie) der amorphen Verbindung 4f, die im DSC im LMS C einheitlich war. Elementaranalyse und Berechnung aus der Bruttoformel C33H45N5O5Br2 ergaben die folgenden Werte: C = 53,20% (52,74%), H = 6,12% (6,04%), N = 9,18% (9,32%) und Br = 21.16% (21.26%).

Die Aminosäureanalyse ergab die zu erwartenden Aminosäuren im richtigen Verhältnis:

Ph: 1,00 - Lys: 0,99 - D-CHG: 0,97.

Beispiel 5

2HBr.H-D-Val-CHA-Arg-DPA

5a. Cbo-Arg-DPA.HCl

In einem Dreihalsrundkolben von 1000 ml Inhalt wurden 34,48 g (0,1 Mol) getrocknetes Cbo-Arg-OH.HCl in einem Gemisch 5 von 150 ml frisch destilliertem wasserfreiem DMF und 300 ml absolutem THF bei 20°C gelöst. Der auf -10°C gekühlten Lösung wurden unter Rühren und Feuchtigkeitsausschluss 10,2 g (0,1 Mol) Et N zugesetzt. Dann wurde dem Gemisch innerhalb von 20 Minuten eine Lösung von 13,65 g (0,1 Mol) Chlorameisensäure-10 isobutylester in 50 ml THF tropfenweise zugesetzt, wobei man die Reaktionstemperatur nie über -5°C steigen liess. Nach einer zusätzlichen Reaktionszeit von 10 Minuten bei einer Temperatur von -10°C bis -5°C wurde dem Reaktionsgemisch eine Lösung von 20,92 g (0,1 Mol) 5-Amino-isophthalsäure-dimethylester in 75 ml DMF innerhalb von 30 Minuten tropfenweise zugesetzt, wobei man die Reaktionstemperatur immer unterhalb -5°C hielt. Man liess das Reaktionsgemisch noch 1 Stunde bei -5°C weiterreagieren. Es wurde über Nacht bei 20°C gerührt und dann auf -15°C gekühlt, um das Et_N.HCl auskristallisieren zu lassen. Das gebildete Et N. HCl wurde abfiltriert und mit wenig kaltem DMF nachgewaschen. Das Filtrat zusammen mit der Waschlösung wurde im Vakuum bei 50°C zur Trockne eingeengt. Der Rückstand wurde in 1000 ml 50%iger AcOH gelöst und durch Gelfiltrierung auf einer mit 50%iger AcoH äquilibrierten Säule von "Sephadex G-15" gereinigt. Diejenige Hauptfraktion des AcOH-Eluates, die sich durch Trypsinbehandlung unter Freisetzung von 5-Amino-isophthalsäure-dimethylester spalten liess, wurde im Vakuum bei 40° C zur Trockne eingeengt. Nach Trocknung des Rückstandes im Vakuumtrockenschrank bei 50° C über P_2O_5 erhielt man 24,6 g (45,9% der Theorie) der amorphen Verbindung 5a, die im DSC im LMS C einheitlich war. Elementaranalyse und Berechnung aus der Bruttoformel $C_{24}H_{30}N_5O_7Cl$ ergaben die folgenden Werte: C = 53,21% (53,78%), H = 5,71% (5,64%), N = 13,20% (13,07%) und Cl = 6,52% (6,62%).

5b. 2HBr.H-Arg-DPA

21,44 g (40 mMol) der Verbindung 5a wurden gemäss Beispiel 1b deblockiert. Nach Aufarbeitung wurde das erhaltene Rohprodukt in 250 ml MeOH gelöst und durch Gelfiltrierung auf einer Säule von "Sephadex LH-20" gereinigt. Diejenige Fraktion des MeOH-Eluates, die sich durch Trypsinbehandlung unter Freisetzung von 5-Amino-isophthalsäure-dimethylester spalten liess, wurde im Vakuum zur Trockne eingeengt. Nach Trocknung des Rückstandes im Vakuumtrockenschrank bei 40°C über P₂O₅ erhielt man 19,63 g (93,1% der Theorie) der amorphen Verbindung 5b, die im DSC im LMS C einheitlich war. Elementaranalyse und Berechnung aus der Bruttoformel C₁₆H₂₅N₅O₅Br₂ ergaben die folgenden Werte: C = 36,82% (36,45%), H = 4,67% (4,78%), N = 13,45% (13,28%) und Br = 29,85% (30,31%).

5c. Cbo-CHA-Arg-DPA.HBr

5,27 g (10 mMol) der Verbindung 5b wurden gemäss Bei25 spiel lc mit 4,69 g (11 mMol) Cbo-CHA-OpNP umgesetzt. Das nach
Aufarbeitung erhaltene Rohprodukt wurde in 200 ml 50%iger AcOH
gelöst und auf einer Säule von "Sephadex G-15" ger inigt. Die-

jenige Fraktion des AcOH-Eluates, die sich durch Trypsinbehandlung unter Freisetzung von 5-Amino-isophthalsäure-dimethylester spalten liess, wurde im Vakuum bei 40°C zur Trockne eingeengt. Nach Trocknung des Rückstandes im Vakuumtrockenschrank bei 60°C über P₂O₅ erhielt man 6,06 g (82,6% der Theorie) der amorphen Verbindung 5c, die im DSC im LMS C einheitlich war. Elementaranalyse und Berechnung aus der Bruttoformel C₃₃H₄₅N₆O₈Br ergaben die folgenden Werte: C = 53,74% (54,02%), H = 6,28% (6,18%), N = 11,90% (11,46%) und Br = 10,68% (10,89%).

5d. 2HBr.H-CHA-Arg-DPA

5,87 g (8 mMol) der Verbindung 5c wurden gemäss Beispiel Id mit 32 ml 2N HBr in Eisessig deblockiert. Das nach Aufarbeitung erhaltene Rohprodukt wurde in 100 ml MeOH gelöst und auf einer Säule von "Sephadex LH-20" gereinigt. Diejenige Fraktion des MeOH-Eluates, die sich durch Trypsinbehandlung unter Freisetzung von 5-Amino-isophthalsäure-dimethylester spalten liess, wurde im Vakuum bei 30°C zur Trockne eingeengt. Nach Trocknung des Rückstandes im Vakuumtrockenschrank bei 40°C über P₂O₅ erhielt man 4,79 g (88,0% der Theorie) der amorphen Verbindung 5d, die im DSC im LMS C einheitlich war. Elementaranalyse und Berechnung aus der Bruttoformel C₂₅H₄₀N₆O₆Br ergaben die folgenden Werte: C = 43,75% (44,13%), H = 5,88% (5,93%), N = 12,69% (12,35%) und Br = 23,22%

5e. Cbo-D-Val-CHA-Arg-DPA.HBr

3,40 g (5 mMol) der Verbindung 5d wurden gemäss Bei-

spiel le mit 2,05 g (5,5 mMol) Cbo-D-Val-OpNP umgesetzt. Das nach Aufarbeitung erhaltene Rohprodukt wurde in 100 ml 50%iger AcOH gelöst und auf einer Säule von "Sephadex G-15" gereinigt. Diejenige Fraktion des AcOH-Eluates, die sich durch Trypsinbehandlung unter Freisetzung von 5-Amino-isophthalsäure-dimethylester spalten liess, wurde im Vakuum bei 40°C zur Trockne eingeengt. Nach Trocknung des Rückstandes im Vakuumtrockenschrank bei 60°C über P₂O₅ erhielt man 3,25 g (78,1% der Theorie) der amorphen Verbindung 5e, die im DSC im LMS C einheitlich war. Elementaranalyse und Berechnung aus der Bruttoformel C₃₈H₅₄N₇O₉Br ergaben die folgenden Werte: C = 53,95% (54,80%), H = 6,65% (6,54%), N = 12,07% (11,77%) und Br = 9,38% (9,59%).

2,50 g (3 mMol) der Verbindung 5e wurden gemäss Beispiel 1f mit 12 ml 2N HBr in Eisessig deblockiert. Das nach
Aufarbeitung erhaltene Rohprodukt wurde in 50 ml MeOH gelöst
und auf einer Säule von "Sephadex LH-20" vorgereinigt. Diejenige Fraktion des MeOH-Eluates, die sich durch Trypsinbehandlung unter Freisetzung von 5-Amino-isophthalsäure-dime20 thylester spalten liess, wurde im Vakuum bei 30°C zur Trockne
eingeengt. Das vorgereinigte Produkt wurde im 50 ml 50%iger
AcOH gelöst und durch Gelfiltrierung auf einer Säule von "Sephadex G-15" gereinigt. Die Hauptfraktion des AcOH-Eluates,
die sich durch Trypsinbehandlung unter Freisetzung von 5-Ami25 no-isophthalsäure-dimethylester spalten liess, wurde im Vakuum bei 40°C zur Trockne eingeengt. Nach Trocknung des Rückstandes im Vakuumtrockenschrank bei 40°C über P₂0₅ erhielt man

1,93 g (82,6% der Theorie) der amorphen Verbindung 5f, die im DSC im LMS C einheitlich war. Elementaranalyse und Berechnung aus der Bruttoformel $C_{30}H_{49}N_{7}O_{7}Br_{2}$ ergaben die folgenden Werte: C = 46,84% (46,22%), H = 6,42% (6,34%), N = 12,16% (12,58%) und Br = 20,22% (20,50%).

Die Aminosäureanalyse ergab die zu erwartenden Aminosäuren im richtigen Verhältnis:

D-Val: 1,00 - Arg: 0,98 - CHA: 1.02.

Beispiel 6

2HBr.H-D-CHG-Phe-Lys-DPA

6a. BOC-Lys (E-Cbo) -DPA

5

10

In einem Dreihalsrundkolben von 1000 ml Inhalt wurden 38,05 g (0,1 Mol) getrocknetes BOC-Lys(&-Cbo)-OH in einem Gemisch von frisch destilliertem wasserfreiem DMF und 300 ml 15 absolutem THF bei 20°C gelöst. Der auf -10°C gekühlten Lösung wurde unter Rühren und Feuchtigkeitsausschluss eine Lösung von 10,2 g (0,1 Mol) Et N in 75 ml THF zugesetzt. Dann wurde innerhalb 20 Minuten eine Lösung von 13,65 g (0,1 Mol) Chlorameisensäure-isobutylester in 50 ml THF zugetropft, wobei man die Reaktionstemperatur nie über -5°C steigen liess. Nach einer Reaktionszeit von etwa 10 Minuten bei -10°C bis -5°C wurde eine Lösung von 20,92 g (0,1 Mol) 5-Amino-isophthalsäure-dimethylester in 75 ml DMF innerhalb 30 Minuten zugetropft. Das Reaktionsgemisch wurde gemäss Beispiel 4a aufgearbeitet. Der erhaltene Rückstand wurde in 500 ml MeOH gelöst und durch Gelfiltrierung auf einer Säule von "Sephadex LH-20" gereinigt. Das MeOH-Eluat enthielt neben dem erwünschten Produkt BOC-Lys(&-Cbo)-DPA drei weitere Produkte, nämlich das Nebenprodukt N-[1,3-Dimethoxycarbonyl-phenyl-(5)]-karb-aminsäure-isobutylester und die beiden Ausgangsprodukte BOC-Lys(&-Cbo)-OH bzw. 5-Amino-isophthalsäure-dimethylester in drei verschiedenen Fraktionen. Die Fraktion, die das Produkt BOC-Lys(&-Cbo)-DPA enthielt, wurde im Vakuum bei 30°C zur Trockne eingeengt. Nach Trocknung des Rückstandes im Vakuum-trockenschrank bei 50°C über P₂O₅ erhielt man 27,4 g (47,9% der Theorie) der kristallinen Verbindung 6a mit Smp.

10 die im DSC in den LMS A und B einheitlich war. Elementaranalyse und Berechnung aus der Bruttoformel $^{\rm C}_{29}^{\rm H}_{37}^{\rm N}_{30}^{\rm O}_{9}$ ergaben die folgenden Werte: C = 60,58% (60,93%), H = 6,53% (6,52%) und N = 7,48% (7,35%).

6b. CF_COOH.H-Lys(E-Cbo)-DPA

6c. BOC-Phe-Lys(E-Cbo) -DPA

spiel 2b mit 70 ml Trifluoressigsäure deblockiert. Das nach Aufarbeitung erhaltene Rohprodukt wurde in 250 ml MeOH gelöst und durch Gelfiltrierung auf einer Säule von "Sephadex LH-20" gereinigt. Die Hauptfraktion des MeOH-Eluates, die sich im 20 DSC im LMS C einheitlich verhielt, wurde im Vakuum bei 30°C zur Trockne eingeengt. Nach Trocknung des Rückstandes im Vakuumtrockenschrank bei 40°C über P₂O₅ erhielt man 20,7 g (88,4% der Theorie) der amorphen Verbindung 6b. Elementaranalyse und Berechnung aus der Bruttoformel C₂₆H₃₀N₃O₉F₃ ergaben 25 die folgenden Werte: C = 52,77% (53,33%), H = 5,25% (5,16%) und N = 7,02% (7,18%).

5,86 g (10 mMol) der Verbindung 6b wurden gemäss Beispiel 2c mit 4,25 g (11 mMol) BOC-Phe-OpNP umgesetzt. Das nach Aufarbeitung erhaltene Rohprodukt wurde in 100 ml MeOH gelöst und durch Gelfiltrierung auf einer Säule von "Sephadex LH-20" gereinigt. Die erste Hauptfraktion des MeOH-Eluates, die sich im DSC in den LMS A und B einheitlich verhielt, wurde im Vakuum bei 30°C zur Trockne eingeengt. Nach Trocknung des Rückstandes im Vakuumtrockenschrank bei 50°C erhielt man 5,87 g (81,7% der Theorie) der kristallinen Verbindung 6c. Elementaranalyse und Berechnung aus der Bruttoformel C38H46N4O10 ergaben die folgenden Werte: C = 63,82% (63,50%), H = 6,49% (6,45%) und N = 7,64% (7,80%).

6d. CF_COOH.Phe-Lys(&-Cbo)-DPA

3,59 g (5 mMol) der Verbindung 6c wurden gemäss Bei
spiel 2d mit 15 ml Trifluoressigsäure deblockiert. Das nach
Aufarbeitung erhaltene Rohprodukt wurde in 60 ml MeOH gelöst
und durch Gelfiltrierung auf einer Säule von "Sephadex LH-20"
gereinigt. Die Hauptfraktion des MeOH-Eluates, die sich im
DSC im LMS C einheitlich verhielt, wurde im Vakuum bei 30°C

zur Trockne eingeengt. Nach Trocknung des Rückstandes im Vakuumtrockenschrank bei 40°C über P₂O₅ erhielt man 3,40 g

(92,8% der Theorie) der amorphen Verbindung 6d. Elementaranalyse und Berechnung aus der Bruttoformel C₃₅H₃₉N₄O₁₀F₃ ergaben die folgenden Werte: C = 57,11% (57,37%), H = 5,40%

6e. Cbo-D-CHG-Phe-Lys(&-Cbo)-DPA

2,20 g (3 mMol) der Verbindung 6d wurden gemäss Bei-

spiel 2e mit 1,36 g (3,3 mMol) Cbo-D-CHG-OpNP umgesetzt. Das nach Aufarbeitung erhaltene Rohprodukt wurde in 60 ml MeOH gelöst und durch Gelfiltrierung auf einer Säule von "Sephadex LH-20" gereinigt. Die erste Hauptfraktion des MeOH-Eluates, die sich im DSC in den LMS A und B einheitlich verhielt, wurde im Vakuum bei 30°C zur Trockne eingeengt. Nach Trocknung des Rückstandes im Vakuumtrockenschrank bei 60°C über P₂O₅ erhielt man 2,07 g (77,4% der Theorie) der teilweise kristallinen Verbindung 6e. Elementaranalyse und Berechnung aus der Bruttoformel C₄₉H₅₇N₅O₁₁ ergaben die folgenden Werte: C = 66,18% (65,98%), H = 6,52% (6,44%) und N = 7,59% (7,85%).

6f. 2HBr.H-D-CHG-Phe-Lys-DPA

spiel 2f mit 6 ml 2N HBr in Eisessig deblockiert. Das nach Aufspiel 2f mit 6 ml 2N HBr in Eisessig deblockiert. Das nach Aufarbeitung erhaltene Rohprodukt wurde in 20 ml MeOH gelöst und
auf einer Säule von "Sephadex LH-20" vorgereinigt. Die Fraktion
des MeOH-Eluates, die sich durch Trypsinbehandlung unter Freisetzung von 5-Amino-isophthalsäure-dimethylester spalten liess,
wurde bei 30°C zur Trockne eingeengt. Zur weiteren Reinigung
vurde das vorgereinigte Produkt in 30 ml 50%iger AcOH gelöst
und durch Gelfiltrierung auf einer Säule von "Sephadex G-15"
gereinigt. Die Hauptfraktion des AcOH-Eluates, die sich durch
Trypsinbehandlung unter Freisetzung von 5-Amino-isophthalsäuredimethylester spalten liess, wurde im Vakuum bei 40°C zur
Trockne eingeengt. Nach Trocknung-des Rückstandes im Vakuumtrockenschrank bei 40°C über P₂O₅ erhielt man 602 mg (76,6%
der Theorie) der amorphen Verbindung 6f, die im DSC im LMS C

einheitlich war. Elementaranalyse und Berechnung aus der Bruttoformel $C_{33}^{H_{47}N_50_7Br_2}$ ergaben die folgenden Werte: C = 49,79% (50,45%), H = 6,10% (6,03%), N = 9,09% (8,92%) und Br = 19,87% (20,34%).

Die Aminosäureanalyse ergab die zu erwartenden Aminosäuren im richtigen Verhältnis:

Phe: 1,00 - Lys: 1,01 - D-CHG: 0,97.

Beispiel 7

2HBr.H-D-Val-CHA-Arg-2-NA

10 7b. 2HBr.H-Arg-2-NA

9,40 g (20 mMol) käufliches Cbo-Arg-2-M. HCl wurden gemäss Beispiel 1b mit einer Lösung von 80 ml 2N HBr in Eisessig deblockiert. Das nach Aufarbeitung erhaltene Produkt wurde in 150 ml MeOH gelöst und auf einer Säule von "Sephadex LH-20" gereinigt. Diejenige Fraktion des MeOH-Eluates, die sich durch Trypsinbehandlung unter Preisetzung von 2-Naphthylamin spalten liess, wurde im Vakuum bei 30°C zur Trockne einegeengt. Nach Trocknung des Rückstandes im Vakuumtrockenschrank bei 40°C über P₂O₅ erhielt man 8,60 g (93,2% der Theorie) der amorphen Verbindung 7b, die im DSC im LMS C einheitlich war. Elementaranalyse und Berechnung aus der Bruttoformel C₁₆H₂₃N₅OBr₂ ergaben die folgenden Werte: C = 42,08% (41,67%), H = 5,12% (5,03%), N = 14,68% (15,19%) und Br = 33,96% (34,65%).

25 7c. Cbo-CHA-Arg-2-NA. HBr

4,6 g (10 mMol) der Verbindung 7b wurden gemäss Beispiel lc mit 4,69 g (11 mMol) Cbo-CHA-OpNP umgesetzt. Das nach Aufarbeitung erhaltene Rohprodukt wurde in 150 ml 50%iger Acoh gelöst und auf einer Säule von "Sephadex G-15" gereinigt. Diejenige Fraktion des AcOH-Eluates, die sich durch Trypsinbehandlung unter Freisetzung von 2-Naphthylamin spalten liess, wurde im Vakuum bei 40°C zur Trockne eingeengt. Nach Trocknung des Rückstandes im Vakuumtrockenschrank bei 60°C über P₂O₅ erhielt man 5,31 g (79,5% der Theorie) der amorphen Verbindung 7c, die im DSC im LMS C einheitlich war. Elementaranalyse und Berechnung aus der Bruttoformel C₃₅H₄₅N₆O₄Br ergaben die folgenden Werte: C = 59,18% (59,37%), H = 6,58% (6,49%), N = 12,87% (12,59%) und Br = 11,55% (11,97%).

7d. 2HBr.H-CHA-Arg-2-NA

4,67 g (7 mMol) der Verbindung 7c wurden gemäss Beispiel 1d mit 28 ml 2N HBr in Eisessig deblockiert. Das nach Aufarbeitung erhaltene Rohprodukt wurde in 100 ml MeOH gelöst und auf einer Säule von "Sephadex LH-20" gereinigt. Diejenige Fraktion des MeOH-Eluates, die sich durch Trypsinbehandlung unter Freisetzung von 2-Naphthylamin spalten liess, wurde im Vakuum bei 30°C zur Trockne eingeengt. Nach Trocknung des Rückstandes im Vakuumtrockenschrank bei 40°C über P₂O₅ erhielt man 3,95 g (91,8% der Theorie) der amorphen Verbindung 7d, die im DSC im LMS C einheitlich war. Elementaranalyse und Berechnung aus der Bruttoformel C₂₅H₃₈N₆O₂Br₂ ergaben die folgenden Werte: C = 49,22% (48,87%), H = 6,30% (6,23%), N = 13,61%

7e. Cbo-D-Val-CHA-Arg-2-NA.HBr

-3,07 g (5 mMol) der Verbindung 7d wurden gemäss Bei-

spiel le mit 2,05 g (5,5 mMol) Cbo-D-Val-OpNP umgesetzt. Das nach Aufarbeitung erhaltene Rohprodukt wurde in 100 ml 50%iger AcOH gelöst und auf einer Säule von "Sephadex G-15" gereinigt. Die erste Hauptfraktion des AcOH-Eluates, die sich durch Trypsinbehandlung unter Freisetzung von 2-Naphthylamin spalten liess, wurde im Vakuum bei 40°C zur Trockne eingeengt und dann im Vakuumtrockenschrank bei 60°C über F₂O₅ getrocknet. Man erhielt 3,14 g (81,9% der Theorie) der amorphen Verbindung 7e, die im DSC im LMS C einheitlich war. Elementaranalyse und Berechnung aus der Bruttoformel C₃₈H₅₂N₇O₅Br ergaben die folgenden Werte: C = 58,92% (59,52%), H = 6,93% (6,84%), N = 13,02% (12,79%) und Br = 10,18% (10,42%).

7f. 2HBr.H-D-Val-CHA.Arg-2-NA

1,53 g (2 mMol) der Verbindung 7e wurden gemäss Beispiel 1f mit 8 ml 2N HBr in Eisessig deblockiert. Das nach
Aufarbeitung erhaltene Rohprodukt wurde in 40 ml MeOH gelöst
und auf einer Säule von "Sephadex LH-20" gereinigt. Die Hauptfraktion des MeOH-Eluates, die sich durch Trypsineinwirkung
unter Bildung von 2-Naphthylamin spalten liess, wurde im Vakuum bei 30°C zur Trockne eingeengt. Dieses Produkt wurde in
50 ml 50%iger AcOH gelöst und auf einer Säule von "Sephadex
G-15" gereinigt. Die Hauptfraktion des AcOH-Eluates, die sich
durch Trypsinbehandlung unter Entstehung von 2-Naphthylamin
spalten liess, wurde bei 40°C im Vakuum zur Trockne eingeengt.
Nach Trocknung des Rückstandes im Vakuumtrockenschrank bei
40°C über P₂0₅ erhielt man 1,05 g (73,6% der Theorie) der amor-

phen Verbindung 7f, die im DSC im LMS C einheitlich war. Ele-

mentaranalyse und Berechnung aus der Bruttoformel ${}^{C}_{30}{}^{H}_{47}{}^{N}_{7}{}^{O}_{3}{}^{Br}_{2}$ ergaben die folgenden Werte: C = 50,16% (50,50%), H = 6,71% (6,64%), N = 14,00% (13,74%) und Br = 22,05% (22,40%).

Die Aminosäureanalyse ergab die zu erwartenden Aminosäuren im richtigen Verhältnis:

D-Val: 1,00 - Arg: 0,98 - CHA: 0,97.

Beispiel 8

2HBr.H-D-CHG-Phe-Lys-2-NA

10 8a. BOC.Lys(ε-Cbo)-2-NA

Gemäss Beispiel 4a wurden 38,05 g (0,1 Mol) BOC-Lys(E-Cbo)-OH mit 14,32 g (0,1 Mol) 2-Naphthylamin zur Reaktion
gebracht. Der nach Aufarbeitung erhaltene Rückstand wurde in
500 ml MeOH gelöst und auf einer Säule von "Sephadex LH-20"
gereinigt. Aus dem MeOH-Eluat wurden neben dem erwünschten
Produkt BOC-Lys(E-Cbo)-2-NA drei weitere Produkte, nämlich
das Nebenprodukt N-[1,3-Dimethoxy-phenyl-(5)]-karbaminsäureisobutylester und die beiden Ausgangsprodukte BOC-Lys(E-Cbo)OH bzw. 2-Naphthylamin in drei verschiedenen Fraktionen erhalten. Die Fraktion, die BOC-Lys(E-Cbo)-2-NA enhielt, wurde im
Vakuum bei 30°C eingeengt. Nach Trocknung des Rückstandes im
Vakuumtrockenschrank bei 50°C über P₂O₅ erhielt man 26,9 g
(53,2% der Theorie) der kristallinen Verbindung 8a mit Smp.

, die im DSC in den LMS A und B einheitlich war.

Elementaranalyse und Berechnung aus der Bruttoformel

C29H35N3O5 ergaben die folgenden Werte: C = 68,23% (68,89%),

H = 7,07% (6,98%) und N = 8,52% (8,31%).

8b. CF_COOH.H-Lys(E-Cbo)-2-NA

20,22 g (40 mMol) der Verbindung 8a wurden gemäss Beispiel 2b mit 75 ml Trifluoressigsäure deblockiert. Das nach Aufarbeitung erhaltene Rohprodukt wurde in 250 ml MeOH geböst und auf einer Säule von "Sephadex LH-20" gereinigt. Die Hauptfraktion des MeOH-Eluates, die sich im DSC im LMS C einheitlich verhielt, wurde im Vakuum bei 30°C zur Trockne eingeengt. Nach Trocknung des Rückstandes im Vakuumtrockenschrank bei 40°C über P₂O₅ erhielt man 18,29 g (88,0% der 10 Theorie) der amorphen Verbindung 8b. Elementaranalyse und Berechnung aus der Bruttoformel C₂₆H₂₈N₃O₅F₃ ergaben die folgenden Werte: C = 59,70% (60,11%), H = 5,38% (5,43%) und N = 8,26% (8,09%).

8c. BOC-Phe-Lys(&-Cbo)-2-NA

- 5,20 g (10 mMol) der Verbindung 8b wurden gemäss Beispiel 2c mit 4,25 g (11 mMol) BOC-Phe-OpNP umgesetzt. Das nach Aufarbeitung erhaltene Rohprodukt wurde in 100 ml MeOH gelöst und auf einer Säule von "Sephadex LH-20" gereinigt.

 Die erste Hauptfraktion des MeOH-Eluates, die sich im DSC in
- 20 den LMS A und B einheitlich verhielt, wurde im Vakuum bei 30°C zur Trockne eingeengt. Der Rückstand wurde im Vakuumtrockenschrank bei 50°C über P₂O₅ getrocknet. Man erhielt 5,48 g (83,9% der Theorie) der teilweise kristallinen Verbindung 8c. Elementaranalyse und Berechnung aus der Bruttoformel
- 25 $C_{38}H_{44}N_{4}O_{6}$ ergaben die folgenden Werte: C = 70,41% (69,92%), H = 6,74% (6,79%) und N = 8,69% (8,58%).
 - 8d. CF_COOH.H-Phe-Lys(&-Cbo)-2-NA

3,26 g (5 mMol) der Verbindung 8c wurden gemäss Beispiel 2d mit 17 ml Trifluoressigsäure deblockiert. Das nach Aufarbeitung erhaltene Rohprodukt wurde in 75 ml MeOH gelöst und auf einer Säule von "Sephadex LH-20" gereinigt. Die Hauptfraktion des MeOH-Eluates, die sich im DSC im LMS C einheitlich verhielt, wurde im Vakuum bei 30°C zur Trockne eingeengt. Nach Trocknung des Rückstandes im Vakuumtrockenschrank bei 40°C über P₂O₅ erhielt man 3,18 g (95,4% der Theorie) der amorphen Verbindung 8d. Elementaranalyse und Berechnung aus 10der Bruttoformel C₃₅H₃₇N₄O₆F₃ ergaben die folgenden Werte: C = 62,63% (63,05%), H = 5,66% (5,59%) und N = 8,19% (8,40%). 8e. Cbo-D-CHG-Phe-Lys(ξ-Cbo)-2-NA

1,67 g (2,5 mMol) der Verbindung 8d wurden gemäss Beispiel 2e mit 1,14 g (2,76 mMol) Cbo-D-CHG-OpNP umgesetzt. Das 15 nach Aufarbeitung erhaltene Rohprodukt wurde in 50 ml MeOH gelöst und auf einer Säule von "Sephadex LH-20" gereinigt. Die erste Hauptfraktion des MeOH-Eluates, die sich im DSC in den LMS A und B einheitlich verhielt, wurde im Vakuum bei 30°C zur Trockne eingeengt. Der Rückstand wurde im Vakuumtrockenschrank 20 bei 60°C über P₂O₅ getrocknet. Man erhielt 1,58 g (76,5% der Theorie) der amorphen Verbindung 8e. Elementaranalyse und Berechnung aus der Bruttoformel C₄₉H₅₅N₅O₇ ergaben die folgenden Werte: C = 70,91% (71,25%), H = 6,66% (6,71%) und N = 8,69% (8,48%).

25 8f. 2HBr.H-D-CHG-Phe-Lys-2-NA

1,24 g (1,5 mMol) der Verbindung 8e wurden gemäss Beispi 1 2f mit 9 ml 2N HBr in Eisessig deblockiert. Das nach Auf-

arbeitung erhaltene Rohprodukt wurde in 25 ml MeOH gelöst und auf einer Säule von "Sephadex LH-20" vorgereinigt. Die Hauptfraktion des MeOH-Eluates, die sich durch Trypsineinwirkung unter Freisetzung von 2-Naphthylamin spalten liess, wurde bei 30°C zur Trockne eingeengt. Das vorgereinigte Produkt wurde 5 in 40 ml 50%iger AcOH gelöst und auf einer Säule von "Sephadex G-15" weitergereinigt. Die Hauptfraktion des AcOH-Eluates, die unter der Einwirkung von Trypsin 2-Naphthylamin bildete, wurde im Vakuum bei 40°C zur Trockne eingeengt. Nach Trocknung des Rückstandes im Vakuumtrockenschrank bei 40°C über P₂0₅ erhielt man 805 mg (74,6% der Theorie) der amorphen Verbindung 8f, die im DSC im LMS C einheitlich war. Elementaranalyse und Berechnung aus der Bruttoformel C33H45N503Br2 ergaben die folgenden Werte: C = 54,73% (55,08%), H = 6,38% (6,30%), N =10,05% (9,73%) und Br = 21,88% (22,21%).

Die Aminosaureanalyse ergab die zu erwartenden Aminosauren im richtigen Verhältnis:

Phe: 1,00 - Lys: 0,99 - D-CHG: 0,98.

Beispiel 9

9b. 2HBr.H-Arg-4-Me0-2-NA

2HBr.H-D-Val-CHA-Arg-4-Me0-2-NA

10,0 g (20 mMol) käufliches Cbo-Arg-4-MeO-2-NA.HCl wurden gemäss Beispiel 1b mit 80 ml 2N HBr in Eisessig deblockiert. Das nach Aufarbeitung erhaltene Rohprodukt wurde in 150 ml MeOH gelöst und auf einer Säule von "Sephadex LH-20" gereinigt. Die Hauptfraktion des MeOH-Eluates, die sich durch Trypsinbehandlung unter Freisetzung von 4-Methoxy-2-naphthyl-

20

amin spalten liess, wurde im Vakuum bei 30°C zur Trockne eingeengt. Nach Trocknung des Rückstandes im Vakuumtrockenschrank bei 40°C über P₂O₅ erhielt man 8,98 g (91,4% der Theorie) der amorphen Verbindung 9b, die im DSC im LMS C einheitlich war. Elementaranalyse und Berechnung aus der Bruttoformel C₁₇H₂₅N₅O₂Br₂ ergaben die folgenden Werte: C = 41,22% (41,57%), H = 5,19% (5,13%), N = 14,40% (14,26%) und Br = 32,01% (32,53%).

9c. Cbo-CHA-Arg-4-MeO-2-NA.HBr

- 4,91 g (10 mMol) der Verbindung 9b wurden gemäss Beispiel 1c mit 4,69 g (11 mMol) Cbo-CHA-OpNP umgesetzt. Das nach Aufarbeitung erhaltene Rohprodukt wurde in 150 ml 50%iger AcOH gelöst und auf einer Säule von "Sephadex G-15" gereinigt. Die erste Hauptfraktion des AcOH-Eluates, die sich durch Trypsin-
- behandlung unter Freisetzung von 4-Methoxy-2-naphthylamin spalten liess, wurde im Vakuum bei 40°C zur Trockne einge-engt. Nach Trocknung des Rückstandes im Vakuumtrockenschrank bei 60°C über P₂0₅ erhielt man 5,36 g (76,8% der Theorie) der amorphen Verbindung 9c, die im DSC im LMS C einheitlich war.
- Elementaranalyse und Berechnung aus der Bruttoformel $C_{34}H_{45}N_{6}O_{5}Br$ ergaben die folgenden Werte: C = 58,85% (58,53%), H = 6,59% (6,50%), N = 11,91% (12,05%) und Br = 11,32% (11,45%).

9d. 2HBr.H-CHA-Arg-4-MeO-2-NA

4,88 g (7 mMol) der Verbindung 9c wurden gemäss Beispiel 1d mit 28 ml 2N HBr in Eisessig deblockiert. Das nach
Aufarbeitung erhaltene Rohprodukt wurde in 100 ml MeOH gelöst

und auf einer Säule von "Sephadex LH-20" gereinigt. Die Hauptfraktion des MeOH-Eluates, die sich durch Trypsinbehandlung unter Bildung von 4-Methoxy-2-naphthylamin spalten liess, wurde im Vakuum bei 30°C zur Trockne eingeengt. Nach Trocknung des Rückstandes im Vakuumtrockenschrank bei 40°C über P₂O₅ erhielt man 4,12 g (91,3% der Theorie) der amorphen Verbindung 9d, die im DSC im LMS C einheitlich war. Elementaranalyse und Berechnung aus der Bruttoformel C₂₆H₄₀N₆O₃Br₂ ergaben die folgenden Werte: C = 48,92% (48,46%), H = 6,36% (6,26%), N = 10 12,84% (13,04%) und Br = 24,33% (24,80%).

9e. Cbo-D-Val-CHA-Arg-4-MeO-2-NA.HBr

3,22 g (5 mMol) der Verbindung 9d wurden gemäss Beispiel le mit 2,05 g (5,5 mMol) Cbo-D-Val-OpNP umgesetzt. Das nach Aufarbeitung erhaltene Rohprodukt wurde in 125 ml 50%iger AcOH gelöst und auf einer Säule von "Sephadex G-15" gereinigt. Die erste Hauptfraktion des AcOH-Eluates, die sich durch Trypsinbehandlung unter Freisetzung von 4-Methoxy-2-naphthylamin spalten liess, wurde im Vakuum bei 40°C zur Trockne eingeengt. Nach Trocknung des Rückstandes im Vakuumtrockenschrank bei 60°C über P₂O₅ erhielt man 3,15 g (79,1% der Theorie) der amorphen Verbindung 9e, die im DSC im LMS C einheitlich war. Elementaranalyse und Berechnung aus der Bruttoformel C39H54N7O6Br ergaben die folgenden Werte: C = 58,35% (58,79%), H = 6,78% (6,83%), N = 12,68% (12,31%) und Br = 9,82% (10,03%).

25 9f. 2HBr.H-D-Val-CHA-Arg-4-MeO-2-NA

1,59 g (2 mMol) der Verbindung 9e wurden gemäss Beispiel 1f mit 8 ml 2N HBr in Eisessig deblockiert. Das nach

Aufarbeitung erhaltene Rohprodukt wurde in 40 ml MeOH gelöst und auf einer Säule von "Sephadex LH-20" vorgereinigt. Die Hauptfraktion des MeOH-Eluates, die sich durch Trypsinbehandlung unter Bildung von 4-Methoxy-2-naphthylamin spalten liess, wurde bei 30°C zur Trockne eingeengt. Dieses vorge-5 reinigte Produkt wurde in 60 ml 50%iger AcOH gelöst und auf einer Säule von "Sephadex G-15" gereinigt. Die Hauptfraktion des AcOH-Eluates, die sich durch Trypsinbehandlung unter Entstehung von 4-Methoxy-2-naphthylamin spalten liess, wurde bei 40°C im Vakuum zur Trockne eingeengt. Nach Trocknung des Rückstandes im Vakuumtrockenschrank bei 40°C über Poo5 erhielt man 1,09 g (73,3% der Theorie) der amorphen Verbindung 9f, die im DSC im LMS C einheitlich war. Elementaranalyse und Berechnung aus der Bruttoformel $^{\mathrm{C}_{31}\mathrm{H}_{49}\mathrm{N}_{7}^{\mathrm{O}_{4}\mathrm{Br}_{2}}}$ ergaben die folgenden Wer-15 te: C = 49,63% (50,07%), H = 6,70% (6,64%), N = 13,42%(13,19%) und Br = 21,22% (21,49%).

Die Aminosäureanalyse ergab die zu erwartenden Aminosäuren im richtigen Verhältnis:

D-Val: 1,00 - Arg: 1,01 - D-CHA: 0.98.

Beispiel 10

20

2HBr.H-D-CHG-Phe-Lys-4-MeO-2-NA

10a. BOC-Lys(E-Cbo)-4-MeO-2-NA

Gemäss Beispiel 4a wurden 9,51 g (25 mMol) BOC-Lys(E-Cbo)-OH mit 4,33 g (25 mMol) 4-Methoxy-2-naphthylamin zur

Reaktion gebracht. Der nach Aufarbeitung erhaltene Rückstand wurde in 175 ml MeOH gelöst und auf einer Säule von "Sephadex LH-20" gereinigt. Aus dem Me OH-Eluat wurden n ben dem er-

wünschten Produkt BOC-Lys(&-Cbo)-4-MeO-2-NA drei weitere Produkte, nämlich das Nebenprodukt N-(4-Methoxy-2-naphthyl)- karbaminsäure-isobutylester sowie die beiden Ausgangsprodukte BOC-Lys(&-Cbo)-OH bzw. 4-Methoxy-2-naphthylamin in drei verschiedenen Fraktionen erhalten. Die das gewünschte Produkt enthaltende Fraktion wurde im Vakuum bei 30°C eingeengt. Nach Trocknung des Rückstandes im Vakuumtrockenschrank bei 50°C über P₂O₅ erhielt man 6,28 g (46,9% der Theorie) der teilweise kristallinen Verbindung 10a, die im DSC in den LMS A und B einheitlich war. Elementaranalyse und Berechnung aus der Bruttoformel C₃₀H₃₇N₃O₆ ergaben die folgenden Werte: C = 66,83% (67,27%), H = 7,04% (6,96%) und N = 8,09% (7,85%).

5,36 g (10 mMol) der Verbindung 10a wurden gemäss Beispiel 2b mit 20 ml Trifluoressigsäure deblockiert. Das nach
Aufarbeitung erhaltene Rohprodukt wurde in 75 ml MeOH gelöst
und auf einer Säule von "Sephadex LH-20" gereinigt. Die
Hauptfraktion des MeOH-Eluates, die sich im DSC im LMS C einheitlich verhielt, wurde im Vakuum bei 30°C zur Trockne eingeengt. Nach Trocknung des Rückstandes im Vakuumtrockenschrank
bei 40°C über P₂0₅ erhielt man 5,10 g (92,8% der Theorie) der
amorphen Verbindung 10b. Elementaranalyse und Berechnung aus
der Bruttoformel C₂₇H₃₀N₃0₆F ergaben die folgenden Werte: C =
58,66% (59,01%), H = 5,61% (5,50%) und N = 7,92% (7,65%).

25 loc. BOC-Phe-Lys(ε -Cbo)-4-MeO-2-NA

4,40 g (8 mMol) der Verbindung 10b wurden gemäss Beispiel 2c mit 3,40 g (8,8 mMol) BOC-Phe-OpNP umgesetzt. Das nach Aufarbeitung erhaltene Rohprodukt wurde in 75 ml MeOH gelöst und auf einer Säule von "Sephadex LH-20" gereinigt. Die erste Hauptfraktion des MeOH-Eluates, die sich im DSC in den LMS A und B einheitlich verhielt, wurde im Vakuum bei 30° C zur Trockne eingeengt. Nach Trocknung des Rückstandes im Vakuumtrockenschrank bei 50° C über P_2O_5 erhielt man 4,54 g (83,1% der Theorie) der amorphen Verbindung loc. Elementaranalyse und Berechnung aus der Bruttoformel $C_{39}H_{46}N_{4}O_7$ ergaben die folgenden Werte: C = 68,24% (68,60%), C = 68,85% (6,79%) und C = 8,41% (8,21%).

10d. CF_COOH.H-Phe-Lys(E-Cbo)-4-MeO-2-NA

3,41 g (5 mMol) der Verbindung loc wurden gemäss Beispiel 2d mit 20 ml Trifluoressigsäure deblockiert. Das nach Aufarbeitung erhaltene Rohprodukt wurde in 80 ml MeOH gelöst und auf einer Säule von "Sephadex LH-20" gereinigt. Die Hauptfraktion des MeOH-Eluates, die sich im DSC im LMS C einheitlich verhielt, wurde im Vakuum bei 30°C zur Trockne eingeengt. Nach Trocknung des Rückstandes im Vakuumtrockenschrank bei 40°C über P₂O₅ erhielt man 3,29 g (94,4% der Theorie) der amorphen Verbindung lod. Elementaranalyse und Berechnung aus der Bruttoformel C₃₆H₃₉N₄O₇F₃ ergaben die folgenden Werte: C = 61,82% (62,06%), H = 5,63% (5,64%) und N = 8,21% (8,04%). loe. Cbo-D-CHG-Phe-Lys(ε-Cbo)-4-MeO-2-NA

1,74 g (2,5 mMol) der Verbindung 10d wurden gemäss Beispiel 2e mit 1,14 g (2,76 mMol) Cbo-D-CHG-OpNP umgesetzt. Das
nach Aufarbeitung erhaltene Rohprodukt wurde in 60 ml MeOH
gelöst und auf einer Säule von "Sephadex LH-20" gereinigt.

10

Die erste Hauptfraktion des MeOH-Eluates, die sich im DSC in den LMS A und B einheitlich verhielt, wurde im.Vakuum bei 30°C zur Trockne eingeengt. Nach Trocknung des Rückstandes im Vakuumtrockenschrank bei 60°C über P_2O_5 erhielt man 1,76 g (82,2% der Theorie) der amorphen Verbindung 10e. Elementaranalyse und Berechnung aus der Bruttoformel $C_{50}H_{57}N_{5}O_8$ ergaben die folgenden Werte: C = 69,75% (70,15%), H = 6,82% (6,71%) und N = 8,28% (8,18%).

10f. 2HBr.H-D-CHG-Phe-Lys-4-MeO-2-NA

856 mg (1 mMol) der Verbindung 10e wurden gemäss Bei-10 spiel 2f mit 6 ml 2N HBr in Eisessig deblockiert. Das nach Aufarbeitung erhaltene Rohprodukt wurde in 20 ml AcOH gelöst und auf einer Säule von "Sephadex LH-20" vorgereinigt. Die Hauptfraktion des AcOH-Eluates, die sich durch Trypsinbehandlung unter Freisetzung von 4-Methoxy-2-naphthylamin spalten liess, wurde bei 30°C zur Trockne eingeengt. Das vorgereinigte Produkt wurde in 30 ml 50%iger AcOH gelöst und auf einer Säule von "Sephadex G-15" gereinigt. Die Hauptfraktion des AcOH-Eluates, die unter der Einwirkung von Trypsin 4-Methoxy-2naphthylamin bildete, wurde im Vakuum bei 40°C zur Trockne eingeengt. Nach Trocknung des Rückstandes im Vakuumtrockenschrank bei 40°C über Poos erhielt man 553 mg (73,8% der Theorie) der amorphen Verbindung 10f, die im DSC im LMS C einheitlich war. Elementaranalyse und Berechnung aus der Bruttoformel $C_{34}H_{47}N_5O_4Br_2$ ergaben die folgenden Werte: C = 54,09%(54,48%), H = 6,31% (6,32%), N = 9,52% (9,34%) und Br = 20,86% (21.32%).

Die Aminosäureanalyse ergab die zu erwartenden Aminosäuren im richtigen Verhältnis:

Phe: 1,00 - Lys: 1,02 - D-CHG: 0,99.

Nach den in den vorangehenden Beispielen beschriebenen Methoden wurde eine Reihe weiterer Tripeptidderivate hergestellt, welche in der Tabelle l zusammengestellt sind.

Die zur Herstellung der in Tabelle 1 aufgeführten Tripeptidderivate verwendeten Di- und Tripeptidzwischenprodukte
sind in den Tabellen 2 und 3 zusammengestellt.

	Aminosäure- analyse	CHG : Leu : Arg 0,97: 1,00: 0,98	Val : CHA : Arg 1,00: 0,96: 1,02	Ile : CHA : Arg 1,00: 0,98: 0,99	Val : CHA : Lys 1,00: 1,03: 0,99	Ile : CHA : Lys 1,00: 0,98: 1,02	CHG: Phe: Arg 0,97: 1,00: 1,01	CHT : Phe : Arg 0,96: 1,00: 1,03
	r- ber.	44,08 6,26 15,82	44,08 6,26 15,82 22.56	4 9 5 6	32,00	3500	46,91 5,70 15,09 21,52	
	Elementar- analyse gef.% b	C 43,72 H 6,31 N 16,28 Br 22,33	16	44 6 16 21	45 6 12 23	46,10 6,75 11,81 22,75		45, 5, 14, 20,
Tabelle 1	Methode (Beispiel) Ausbeute	(1f) 88,2	(1f) 86,4	(1f) 88,9	(2f) 91,0	- e	(1f) 85,6	79,4
TE	Ausgangs- produkte (mMol)	lle (1 mMol) 2N HBr/AcOH	12e (1 mMol) 2N HBr/AcOH	13e (1,5mMol) 2N HBr/AcOH	14e (0,8mMol) 2N HBr/Acon	(1, HBr/	16e (1 mMol) 2N HBr/AcOH	17e (1,25mMol) 2N HBr/AcOH
	Bei- Endprodukt spiel	11 2HBr.H-D-CHG-Leu-Arg-pNA C ₂₆ H ₄ M ₈ O ₅ Br ₂	12 2HBr.H-D-Val-CHA-Arg-pNA $c_{26}^{H}_{44}^{N}_{8}^{O}_{5}^{Br}_{2}$	13 $2HBr.H-D-Ile-CHA-Arg-pNA$ $C_{27}^{H}_{46}^{N}_{8}^{O_5}^{B}_{F_2}$	1	15 $2 \text{HBr.H-D-Ile-CHA-Lys-pNA}$ $C_2 7^{\text{H}}_4 6^{\text{N}}_6 0_5^{\text{Br}}_2$	į.	17 2HBr.H-D-CHT-Phe-Arg-pNA C ₃₀ H ₄₄ N ₈ O ₆ Br ₂

	Ph'Gly:CHA: Arg	•		CHA: Pro	0,98: 0,99: 1			CHG : CHA	1,02; 0,99: 1,			CHG : Leu : Lys	0,99: 1,00:			Pro : CHA :	0,98: 1,01: 1,		5	CHT: Pro:	1,00: 1,02: 1,		2	Pro : CHG :	0,98: 0,97: 1		8	Pro : CHT	6: 1,	rel		
	6	15,09	S	~	5	ထ	2,6	8,3	~	9		8	n.	(1)	1		•	5,	22,62	3,	8	5	2,1	3	•	•	23,08	3	æ	5	2,1	İ
g)	46,5	15,	21,2	44,1	0,9	16,1	22,4	C 47,81	6,7	11,5	21,8	45,3	9'9	12,6	23,1	43,7	0'9	16,1	22,4	C 43,05	5,9	15,7	21,8	42,9	5,9	16,3	22,7	C 42,85	5,9	15,8	r 21,8	
(Fortsetzung	(1f) C 82.6 H		B	£)	86,4 H			(2f) C			Д	£)	92,5 H	Z	Д	£)	88,8 H	Z		(1f) C		-	Щ	(1f) C	44	Z	ш.		8	Z	В	
Tabelle 1 (F	18e (1,1mMol)			19e (1 mMo1)	HBr/				HBr/AcOH			21e (0,9mMol)	HBr			22e (1,1mMol)	2N HBr/AcoH		-	23e (0,75mMol)	2N HBr/AcOH			24e (1 mMol)	2N HBr/AcoH	. .		25e (0,9mMol)	2N HBr/AcOH			
	18 ZHBr.H-D-Ph'Gly-CHA-Arg-pNA	C29H42N8U5BL2		19 2HBr. H-D-CHA-Pro-Arg-pNA		26.42.85-2		20 2HBr H-D-CHG-CHA-LVS-DNA		29-48-6-5-2		21 2HBr.H-D-CHG-Leu-Lys-pNA		26.44.6-5-2		22 2HBr. H-D-Pro-CHA-Arg-DNA		26-42-8-5-2		23 2HBr.H-D-CHT-Pro-Arg-pNA	•	26-42-8-6-2		24 2HBr.H-D-Pro-CHG-Arg-pNA		25-40-8-5-2		25 2HBr. H-D-Pro-CHT-Arg-pNA		26 42 8 6 2		

7,02

7,09

2HBr.H-D-Ph'Gly-Leu-Arg-pNA	Tabelle 1	(Fortsetzung (1f) C	c	I) 43,60	•	Ph'Gly:Leu : Arg
	Æ	79,5	HZ	5,0	່ນ້ຳ	0
	- 1		Hr	7/7	21,3	
2HBr.H-D-CHG-Pro-Arg-pNA	O.	—	ပ	ω	E,	G : Pro : Ar
$c_{j_{\epsilon}H_{A}\cap N_{\mathbf{A}}O_{\mathbf{c}}\mathbf{B}\mathbf{r}_{j}}$	2N HBr/AcoH	84,8	Ή	-	5,82	1,01: 1,02: 1,00
			Z	16,44	T,	
			Br	22,70	23,08	
2HBr.H-D-CHT-Pip-Arg-pNA	O)		ပ	6,	١ -	: Ar
$C_{27}H_{44}N_{8}O_{\xi}Br_{2}$	2N HBr/AcoH	82,6	皿	~	0	0,99: 0,96: 1,00
			z	17	7	
			Br	2	21,70	
2AcOH.H-D-CHA-Pro-Lys-pNA	U	(2£)	ပ		56,59	CHA : Pro : Lys
$C_{30}H_{48}N_{609}$	2N HBr/AcoH	87,5	H	ശ	7,60	0,99: 0,98: 1,00
			Z	₹	13,20	
2AcOH.H-D-Val-CHG-Lys-pNA	യ	7	ပ	56,02	55,75	al : CHG :
$C_{29}H_{48}N_{60}$	2N HBr/AcOH	88,8	Ħ	\sim	7,74	0: 0,98: 1,
	- 1		Z	5	3	•
2AcOH.H-D-CHG-Pro-Lys-pNA	O)	(2f)	၁	5,4	55,93	CHG : Pro : Lys
$C_{29}H_46N_6O_9$	2N HBr/Acoh	85,4	H	7,55	•	,99: 1,
			N	13,78	13,50	
2AcOH.H-D-CHT-Pro-Lys-pNA	O)	2£	ပ	55,01	55,20	CHT : Pro : Lys
$C_{30}H_{48}N_{6}O_{10}$	2N HBr/AcOH	79,8	H	7,44	7	0,96: 0,99: 1,00
) 	Į			13,18	12,88	
Ph'Gly-CHA-Lys-	0 e	2£		59,25	58,91	Ph'Gly:CHA: Lys
C ₂₃ H _{4R} N ₆ O ₉ pNA	2N HBr/AcoH	75,5	ж	-	•	0,99:0,98:1,00
			N	12,66		•
al-CHT-Lys-pna	w	(2£)		_	55,03	Val : CHT : Lys
$C_{30}H_{50}N_{6010}$	2N HBr/Acoh	84,4	H	•	.02'2	1,00: 0,98: 1,01
	- 1	-	Z		2,	•
h'Gly-CHT-Lys-	w	7				h'Gly:C
$c_{33}^{H}_{48}^{N}_{60}^{O}_{10}$ pna	2N HBr/Acon	73,8	Ξ	7,09	7,02	: 0,96: 1,
, ,				~		•

		Tabelle 1	(Fortsetzung	(bunz						
,	KNV-Sout-KHO to the state of the	360 (1 mMol)	(1£)		14,55	44,88	Leu:	CHA:	Arg	
36	36 -ZHBr.H-D-Leu-ChA-Arg-pwa	HBr/	85,2	H	6,53	6,42	1,00:	0,98:	66′0	
	C27n46N8C5L2				15,85	12,51				
				Br ,	21,92	22,12				
2	JUBY H-D-NIGHA-Arg-DNA	37e (1 mMol)	(1£)	υ υ	14,75	44,88	Nleu:	Ξ	Arg	
<u></u>	Zubi, ii. D-naca ciiii ii. B Frie	2N HBr/AcoH	86,0		6,49	6,42	1,00:	0,97:		
	C27"46"8"5" 2				15,79	15,51				
		•	. !		21,82	22,12				
000	our H-n-Nyal-CHA-Arg-DNA	38e (1 mMol)	(1f)		44,39	44,08	val	ٔ مے	rg	
0	ZILLI IN O BY	2N HBr/AcoH	87,1		6,28	6,26	1,00:	0,98:	0,98	
	26444855-2				16,09	15,82				
					22,33	22,56				
5	Jun- H-n-Dha-CHA-Ard-nNA	39e (1 mMol)	(1f)		47,47	47,63		CHA	Arg	
J.		HBr/			5,92	2,86	1,00:	0,98;	1,01	
	C30"44"8"5"+2				15,08	14,81				
					20,85	21,12				
10	PHR H-D-Ala-CHA-Ard-DNA	40e (1 mMol)	(1f)		41,97	42,36		HA	rg	
r		H	0'98		5,92	5,93	1,00;	0,97:	66'0	
	C24"40"8"5"-2				16,59	16,47				
			•		23,11	23,49				
=	SUBY H-D-But-CHA-Ard-DNA	41e (1 mMo1)	(1f)		43,18	43,24	But:	CHA	Arg	
t.		2N HBr/AcoH	81,9		91'9	6,10	1,00;	0,98:	ر ا	
	C25"42"8"5" 2				16,27	16,14				
					22,73	23,01				•
5	2HRr H-D-CHG-TVr-Arg-DNA	42e (0,5mMol)	(1f)		45,77	45,92	CHG	Tyr	rg	
7		Ħ	77,8		5,64	5,58	0,97:	٦.	0,99	
	~29.45.8~6 ⁻²				15,01	14,77				
		-			20,84	21,07				
43	2HBr. H-D-CHA-Tyr-Arg-pNA	43e (0,5mMol)	(1£)	၁	46,39	46,64	A S	Tyr	•	
י י		2N HBr/AcoH	72,1		5,73	5,74	0,98:	1,	Τ,	
	30 44 8 6 2		•		14,60	14,51				
				Br	20,50	20,69				

		Tabelle 1	(Fortsetzung	tzun	g)			
44	2HBr.H-D-Nval-Tyr-Arg-pNA	44e (0,5mMol)	(1f)	ပ	43,29	43,47	Tyr:	
	$C_{2k}H_{2k}N_{R}O_{k}Br_{2k}$	2N HBr/AcoH	70,5	H	5,31	5,33	1,02: 1,00: 0,98	
	1, 5, 1,			z	8	5,6		
1				Br	22,07	\sim	į	
45	2HBr. H-D-CHT-Tyr-Arg-pNA	w	Ţ	ပ	45,20	9,	r: Ar	
	$C_{10}H_{4a}N_{8}O_{7}Br_{2}$	2N HBr/AcOH	6,69	H	5,68	5,6	0,96: 1,00: 0,99	
	1			Z	14,39			
				Βr	20,05	20		
46	2HBr.H-D-Phe-Tyr-Arg-pNA	w	_	ပ	47,51	47	Tyr : Ar	
	c_{30} H ₃₈ N ₈ O ₆ Br ₂	2N HBr/AcoH	73,0	H	5,07	S	1,00: 1,01: 0,98	
				Z	4	14		
		- 1		Br	20,46	20		
47	2HBr.H-D-Ph'Gly-Tyr-Arg-pNA	œ.	Ţ	ပ	46,57	4	'Gly: Tyr: Ar	
	$C_{29}^{H36}^{N80}_{6}^{Br_2}$	2N HBr/AcoH	67,8	H	4	4	_	
				z	5	14		
				Br	20,98	21,		
48	2HBr.H-D-CHG-Ala-Arg-pNA	O)	(1£).	ပ	-	41,	G: Ala: Ar	
	c_{23} $^{\mathrm{H}}_{38}$ $^{\mathrm{N}}_{8}$ $^{\mathrm{S}}_{5}$ $^{\mathrm{B}}$ $^{\mathrm{Z}}_{2}$	2N HBr/Acoh	83,4	H	5,74	ທັ	5: 1,00:	
				×	~	16,		
				Br		23,		
49	ZHBr.H-D-CHA-Ala-Arg-pNA	O)	(1£)	ပ	42,54	42,	CHA : Ala : Arg	
	c_{24}^{H}	2N HBr/Acoh	88,1	Ħ		.rJ	0,98: 1,00: 1,00	
_				z	9	16,		
ļ				Br		23,		
20	2HBr.H-D-Phe-Leu-Arg-pNA	w.	(1f)	ပ		45,	: Leu : Ar	
•	$C_27^H_40^N_80_5^Br_2$	2N HBr/Acoh	84,4	H		5,	1,01: 1,00: 0,99	
				z		15,		
.				Br		22,	•	
21	2HBr.H-D-CHT-Leu-Arg-pNA	O)	(1f)	ပ		7	T : Leu : Ar	
	$^{\mathrm{C}_{2}}$ $^{\mathrm{H}_{4}}$ $^{\mathrm{N}_{8}}$ $^{\mathrm{GBr}_{2}}$	2N HBr/Acoh	80,7	×	6,33	6,28	0,96: 1,00: 0,99	-
		-			5,4	15,17		
				Br	21,37	21,64		

		Tabelle 1	(Fortsetzung)	(bunz			
52	2HBr.H-D-CHA-Leu-Arg-pNA	52e (1 mMol)	(1f)	44,	3 4	CHA	: Arg
l I	C.H. N.O.Br.	2N HBr/AcoH	84,5	н 6,4	_	2 0,97:	
	27 46 8 5 2	•		N 15,7	5 15,	51	
				21,	2	2	
53	2HBr. H-D-Leu-Ph'Gly-Arg-pNA	53e (0,5mMol)	(lf)	C 44,1	18 44,	- ابر:	y: Arg
	C, H, N, O, Br,	2N HBr/AcoH	82,3	5,		1,00: 0,	94: 0,98
	26 38 8 5 2			N 16,1	.8 15,		
				22,	3 2		
54	2HBr.H-D-Nval-Ph'Gly-Arg-	54e (0,5mMol)	(1f)	C 43,2	43,	Nval:Ph'	ly:Arg
	C, H, N, O, Br, pNA	2N HBr/Acoh	79,8		υ,	27 1,00:0,98	: 1,01
		-			16,	. 82	
				3	23,	21	
55	2HBr.H-D-Ala-Ph'Gly-Arg-pNA	55e (0,5mMol)	(1£)		41,	83 Ala :Ph'G	ly: Arg
		Ξ	82,1		4,	88 1,00: 0,9	66'0 : 8
	73 25 8 25 75				16,		
					24,	20	
56	2HBr.H-D-CHA-Ph'Gly-Arg-pNA	56e (0,5mMol)	(1f)	C 46,75	46,	91 CHA iPh'	: Arg
	C, H, N, O, Br,	2N HBr/AcOH	77,6		5,	70 0,97: 0,98	. 1,
	7 C 0 74 67				15,	60	
					21,	52	
57	2HBr. H-D-CHT-Ph'Gly-Arg-pNA	w	(1f)		4 45	Ph '	••
	C,H,NO,Br,	2N HBr/AcOH	76,4			58 0,96; 0,99	: T,
	23 42 0 0 2					11	•
				. 1	7		
28	2HBr.H-D-CHG-Ph'Gly-Arg-pNA		(1f)		₹.	CHG : Ph'G	 >-
		2N HBr/AcoH	75,9			0'086'0	8:1,00
	2 C 0 04 07				_	38	
	•	•	•		2	94	
59	2HBr.H-D-CHG-CHG-Arg-pNA	59e (1 mMol)	_	C 45,65	5 45,	ЭНЭ	••
	C, gH, kNgOkBr,	2N HBr/AcoH	84,6			31 1,93	3: 1,00
	1			N 15,4		56	
į		-		21,	2 21,	76	

		Tabelle 1	(Fortsetzung	zanz	<u>_</u>			
9	60 2HBr.H-D-P1p-CHG-Arg-pNA	60e (l mMol)	(1£)	ပ		-	G: Ar	
	C, H, NO Br,	2N HBr/AcoH	80,1	H		-	0,97: 0,99: 1,00	
	7 C 0 74 07			z	9	Ŋ		
	-			Br		-		1
61	L 2HBr.H-D-Phe-CHG-Arg-pNA	61e (1 mMo1)	(lf)	ပ		9	e : CHG : Ar	l
	C, H, N, O, Br,	2N HBr/AcoH	88,4	Ħ		_	1,00: 0,98: 1,01	
	7 6 9 7 6 6 7			z		_		
	-			Br		_		
62	2HBr.H-D-Ph'Gly-CHG-Arg-pNA	שו	(1f)	U	46,18	9	Ч.	ı
	C, gH, NROLBr,	2N HBr/AcOH	82,7	H	Ŋ	Ω.	0,98:	0
	¥ C O O+ O7			Z	ຂ	ທ		
	-			Br	21,77	_		1
63	2HBr.H-D-Ph'Gly-Phe-Arg-pNA	63e (0,5mMol)	(1f)	ပ	47,08	7	'Gly:Phe : Ar	i
-	C, H, K, N, O, Br,		80,0	Ħ	2	-	0,97 : 1,00: 0,99	σ,
	2 2 0 0 5 62		•	z	Ŋ	S		•
				Br	21,61	-		1
64	2HBr.H-D-CHA-Phe-Arg-pNA	64e (0,5mMol)	1£	ວ	47,32	•	A : Phe : Ar	
	C ₂ hH ₁ N ₀ O _E Br ₂	2N HBr/Acoh	82,5	H	5,84	•	0,96: 1,00: 0,99	
	7 6 9 5 6 00			z	4	•		
				Br	20,88	1,		1
65	2HBr.H-D-CHG-Pip-Arg-pNA	65e (0,5mMol)	(1£)	ວ	43,87	44,20	HG : Pip : Ar	
	C2,H,3NoOEBr,	2N HBr/Acoh	77,77	H	6,04	6615	0,98: 0,96: 1,00	
	7 6 0 74 07			z	9	15,86		
				ы	22,40	7		
99	2HBr.H-D-CHA-Pip-Arg-pNA	66e (0,5mMol)	(1f)	ပ	44,76	45,01	HA: Pip: Ar	ı
	C,H,NOEBE,	2N HBr/AcoH			6,18		0,98: 0,95: 1,00	
	7 6 0 44 17				15,73	5		
				Br	-	22,18		
67		67e (1 mMol)	(1f)	ن ن	•	44,08	:Nleu : Ar	
	C_{2} $_{6}$ H_{4} $_{4}$ $_{N}$ $_{9}$ $_{5}$ $_{B}$ $_{2}$	2N HBr/AcoH	82,8		6,30	6,26	97:	
	1			z	9	15,82		
				ы	-	22,56		

	Tabelle l	(Fortsetzung	(Bunz	_				
Charles In and a way and	68e (1 mMo1)	(1f)		44,59	44,88	Ø	: ne	Arg
- STU-nate	HBr/	87,4	H	4	6,42	0,98:	1,00:	86'0
C27H46N8U5B+2			z	9	3			
			ы	21,87				
Comment of the Nural - Ard-nNA	69e (0,5mMol)	(1f)			44,08	Z:	:Nval :	Arg
F + 1 > 2	HBr/	90,2	Ħ	•	~ 1	0,97:	1,00:	66'0
C26H44N8U5D+2				_	5,			
				22,39	7	١		
AND HELCHG-Nuel-Arg-DNA	70e (0,5mMol)	(1f)	ບ		43,24	_O	al	Arg
	Ξ	88,5		6,15	9	.96'0	1,00:	1,01
C25n42n855-2			Z	9	6,1			
			Br	22,78	3			
THE THE HENNEST -CHA-TWA-DNA	71e (1 mMol)	(2f)	ပ	45,73	45,89	Nval:	-	rg
	HBr/		H	6,61	6,52	1,00:	0,98:	0,99
C26n44N6U5H2			Z	12,48	ď			
			Br	23,18	23,49			
AND THE TOTAL CHA-TWE-DNA	72e (1 mMol)	(2£)	ပ	44,75	45,05	\Box	HA	Lys
/2 ZhBI,n=D=buc=cma-zys p.m.	HBr/	74,6	H	6,39	9	1,02:	0,98:	1,00
$C_{25}^{H}42^{N}6^{U_{5}^{BL}}2$			Z	12,67	12,61		-	
		٠	Br	23,68	23,98			
AND THE TOTAL TOTAL	73e (1 mMol)	(2£)	ပ	46,39	46,69	Leu:	K	Lys
/3 Zhbr.n=n=n=n=12 E	HBz/	78,0	Н	6,63	6,68	1,00;	0,97:	1,01
C27"46"6"5" 2			Z	12,27	12,10			•
			Br	22,81	23,01			
74 Jun H-n-Nlen-CHA-Lvs-DNA	74e (1 mMol)	(2f)	ပ	46,88	46,69]e	CHA:	Lys
Zubini Dinica Ciri Li	2N HBr/AcoH	17,6	H	6,72	6,68	:66'0	0,97:	1,00
27*46*655.2			z	12,33	12,10			
			Br	22,75	23,01			
76 JUBY H-D-CHG-But-Ard-DNA	75e (1 mMol)	(1£)	၁	42,18	42,36	CHG:	ut	Arg
	2N HBr/AcOH	84,7	Ħ	00'9	6	0,97:	:66'0	1,00
C24"40"8"5""2			z	16,52	16,47			
			Br	23,18	23,49			
			•		•			

		Tabelle 1 (Fortsetzung)	(Fortset	zanc	(1				
. 92	2HBr.H-D-CHA-But-Arg-pNA	76e (1 mMol)	(1f)	ပ	42,96	43,24	CHA:	But : Arg	Arg
	C, rH, N, O, Br,	2N HBr/AcoH	88,5	Ħ	6,12	6,10	0,98:	0,98: 0,98:	1,00
ĺ	7 2 8 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		•	z	16,25	16,14			
				Br	22,69	23,01	i		
17	2HBr.H-D-CHT-But-Arg-pNA	77e (1 mMol)	(1£)	ပ	C 41,89	42,26	CHT:	But:	Arg
	C, H, N, O, Br,	2N HBr/AcoH	82,3	H	6,01	2,96	96'0	0,96: 0,99: 1,00	1,00
	7 9 8 75 67			z	15,96	15,77			
				Br	22,15	22,49			

Bei- spiel	Dipeptid- Zwischenprodukt	Tabelle 2 Ausgangsprodukt (mMol)	Methode (Beispiel) Ausbeute %	Elementaranalyse gef.%ber.%	nnalyse ber.%
110	Cbo-Leu-Arg-pNA.HBr C26 ^{H36} N7 ^O 6 ^{Br}	1b (5 m Mol) Cbo-LeuOpNP (5,5 m Mol)	(1c) 82,4	50,7 5,9 16,1 12,6	~ ~ ~ +
114	2HBr.H.Leu-Arg-pNA $c_{18}^{H_{31}}$ $r_{7}^{O_4}$ Br $_2$	11c (3 m Mo1) 2N HBr/AcOH	(1d) 90,3	38, 5, 17, r 27,	1
14c	BOC-CHA-Lys $(\xi$ -Cbo)-pNA $C_{34}H_{47}N_5^0$ 8	2b (5 m Mol) BOC-CHA-OpNP (5.5 m Mol)	(2c) 84,2	63, 7, 10,	62,46 7,25 10,71
14d	CF3COOH.H-CHA-Lys(E-Cbo)-pNA C31H40N5O8F3	14c (3	(2d) 91,6	56, 6, 11,	0 4
16c	Cbo-Phe-Arg-pNA.HBr C ₂₉ H ₃₄ N ₇ O ₆ Br	(5 m Phe 5 m l	(1c) 84,8	54	
16d	$^{2\text{HBr,H-Phe-Arg-pNA}}_{^{2_1}\text{H}_{29}^{N_7}^{0_4}\text{Br}_2}$	16c (3 m Mol) 2N HBr/AcOH	(1d) 93,5	41, 16,	5 6 5 4
19e	Cbo-Pro-Arg-pNA.HBr C25H32N7O6Br	1b (5 m Mol) Cbo-Pro-OpNP (5,5 m Mol)	(1c) 88,1		2,6 2,7 1,0 1,1
19d	2HBr.H-Pro-Arg-pNA Cl7H27N7O4Br2	19c (3 m Mol) 2N HBr/AcOH	(1d) 92,0	C 37,41 H 5,03 N 18,15 Br 28,50	36,91 4,92 17,72 28,88
21c	BOC-Leu-Lys (£-Cbo) -pNA C ₃₁ 1143 ^N 5 ^O 8	2b (5 m Mol) BOC-Leu-OpNP (5,5 m Mol)	(2c) (87,3	C 61,10 II 7,15 N 11,88	60,67

	Tabelle 2 (Fortsetzung)	ng)		
21d CF3COOH.H-Leu-Lys (£-Cbo) -pNA	21c	(2q)	C 53,4	53,5
$C_{2}B^{H}36^{N}5^{O}B^{F}3$		6'06	н 5,85	
	ľ		$\frac{11}{1}$	11,1
	lb (5m Mol)	(1c)	52,	51,8
$C_{28}^{H_{38}}$	CDO-CHG-OPNP	9,67	0'9 н	5,9
	(5,5 m Mol)		15,	15,1
2110 11 - 0110			r 12,	
zau znbr.n-chG-Arg-pNA	24c (3 m Mol)	(1d)		
$c_{20^{\text{H}}33^{\text{N}}7}$	2N HBr/AcOH	88,4	່ວ	
			17,	16,4
250 Cho_Cum_hwa_nh mb_	1		r 26,	26,8
	TD (5 m MOI)	(1c)	c 52,0	51,
29"40"7 ⁰ 7 ⁵¹	CDO-CH'I'-ODNP	75,7	9	5,9
	(TOWW C'C)		N 14,9(14,4
ofd outs if our and			11,	11,7
		(14)	C 40,87	40,3
C21n35N7U5Br2	2N HBr/Acoh	88,9	່ວ	พ
	•		16,	15,
280 Chantana and Time			25,	25,
ZOC CEO-FILT-ALG-PNA. HBT	Ib (5 m Mol)	(1c)	c 50,80	50,
26"34"706BL	CDO-P1P-OPNP	82,3	ນ້	S
	(5,5 m Mol)		N 16,19	
28d OHRY H-Direnter	,		r 12,	12,
	28c (2,5 m MoI)	(1d)	C 38,49	38,
~18"29"7~4"-2	ZN HBY/ACOH	91,0	5,	
				\sim
290 BOC-Bro-Tue (6-0he) -N3	١		27,	28,17
	2b (5 m Mol)	(2c)	_	60,29
30.39.628	BOC-Pro-OpNP	88,5	9	6,58
29d CRACON Haby Strains	E		11,	11,72
	Zyc (3 m Mol)	(2d)	•	53,03
27.32.58.3	omt cr.3coon	93,0	5,	5,27
			N 11,66	11,45

		Tabelle 2 (Fortsetzung)				
	ANa- (od)- 3) an I-DHO-20a	2b (5 mMol)	(2c)	ပ	61,50	61,95
၁/ ၁/		, ; ;	84,6	H	7,08	7,09
	33.45.58	(5,5 mMol)		Z	11,18	10,95
30 d	CF2COOH. H-CHG-LVS (6-Cbo) -pNA	30c (3 mMol)	(2d)	ပ	54,75	55,12
3	T N O N		90,5	Ħ	5,93	_
	30-38-5-8-3	1		Z	11,08	10,71
340	BOC-CHT-Lys (£-Cbo) -pNA	2b (5 mMol)	(2c)	ပ		26,09
•	CINIT	BOC-CHT-OPNP	84,3	H	7,11	•
	34 47 5 9	(5,5 mMol)		Z	10,76	10,46
34d	CF 2COOH. H-CHT-Lys (£-Cbo) -pNA	34c (3 mMol)	(24)	ບ	54,08	54,46
		6ml сғ ₃ соон	8,06	H	00,9	5,90
	31 40 5 9 3		•	Z	10,18	10,24
42c	Cbo-Tyr (OBzl) -Arg-pNA. HBr	1b (5 mMol)	(1c)	ບ	56,08	l .
		Cbo-Tyr (OBz1)-OpNP	77,6	Ή	5,35	5,29
	36 40 7 7	(5,5 mMol)		z	12,95	
				Br	10,15	10,48
42d	2HBr.H-Tyr-Arg-pNA	42c (5 mMol)	(14)	ပ	40,63	
	C,1H,N,OEBr,	2N HBr/AcOH	83,7	Ħ		4,72
	7 6 / 67 17			Z	•	-
	-			Br	25,38	25,80
48c	Cbo-Ala-Arg-pNA.HBr	lb (5 mMol)	(1c)	ບ	47,19	47,59
	C. H. N.O.Br	Cbo-Ala-OpNP	88,5	H	_	5, 21
	23 30 / 6	(5,5 m Mol)		z	17,18	16,89
:				Br	13,60	13,77
48d	2HBr.H-Ala-Arg-pNA	48c (3 mMol)	(1q)	ບ	34,01	34,17
	C, H, N, O, Br,	. 2N HBr/Acoh.	8,06	H	4,76	4,78
	T2 72 / 4 7			Z	18,85	18,60
				Br	29,88	30,31
530	Cbo-Ph'Gly-Arg-pNA.HBr	1b (5 m Mol)	(lc)	ပ	52,00	52,34
	C, H, N, O, Br	Cbo-Ph Gly-OpNP	86,7	Ħ	4,99	5,02
	0 7 7 0 0 7	(5,5 m Mol)		z	15,17	15,26
				Br	12,23	12,44
				İ		

		Tabelle 2 (Fortsetzung)				
53d	53d 2HBr.H-Ph'Gly-Arg-pNA	U	(1d)		40,38	40,76
1	C, H, N, O, Br	2N HBr/AcOH	93,4		4,66	•
	20 21 / 4 2				6,92	16,64
		•		Br 2	6,84	27,12
6.70	67c Cbo-Nleu-Arg-pNA.HBr	1b (5 m Mol)	(1c)	C 4	9,82	50,16
! !	C, H, N, O, Br	Cbo-Nleu-OpNP	0,06		5,88	5,83
	26 36 / 6	(5,5 mMol)		N		7
				Br 1		12,84
67d	67d 2HBr.H-Nleu-Arg-pNA	67c (3mMol)	(1q)	C 4	8,52	48,78
	C, H, N, O, Br,	2N HBr/AcOH	94,6		4,57	5
	28 31 / 4 Z			~	•	14,22
				Br 2.	2,91	23,18
269		1b (5 m Mol)	(1c)	C 49,	9,13	49,35
	C, H, N,O, Br	Cbo-Nval-OpNP	8,06		_	9
	25 34 / b	(5,5 m Mol)			_	16,11
				ы	!	13, 13
69d	69d 2HBr.H-Nval-Arg-pNA	69c (3 m Mol)	(14)	c 36,	5,45	36,77
	C, H, N,O,Br,	2N HBr/AcOH	0 • 96		_	_
	7 4 / 67 / 1					9
				Br 28	1	28, 78
75c	Cbo-But-Arg-pNA.HBr	1b (5 m Mol)	(1c)	C 48,	_	48,49
	C, H, N,O, Br	O-E	91,6		5,46	4
	24 32 / 0	(5,5 m Mol)	•			16,49
				Br 13	3,22	13,44
75d	75d 2HBr.H-But-Arg-pNA	75c (3 m Mol)	(14)		20	35,51
	C, H,,N,O,Br,	2N HBr/AcoH	94,2	н 5,	08	5,03
	7 h / /7 OT			N 18	40	18, 12
				Br 29	80%	29,53

	Tabelle 3		,	
-	Ausgangs-	Methode (Beispiel)	Elementaranalyse	analyse
spiel zwischenprodukt	(mMo1)	Ausbeute 8	gef.%	ber.%
11e Cho-D-CHG-Leu-Arg-DNA.HBr	11d (2 mMol)	(le)		_
C H N.O.Br	Cbo-D-CHG-OpNP	78,6	9	6,48
34-49-8-7	(2,2 mMol)		15,	(,
			T 70	TO , 49
12e Cbo-D-Val-CHA-Arg-pNA.HBr	1d (2 mMo1)	(le)	ω	53,61
C. H. N.O.Br	Cbo-D-Val-OpNP	82,7	6,5	6,48
34-49 8 /	(2,2 mMol)		15,0	7
	1		Br 10,25	7
13e Cbo-D-Ile-CHA-Arg-pNA.HBr	1d (2mMol)	(le)	c 53,80	54,19
	Cbo-D-Ile-OpNP	83,3	9′9	6,63
35-51 8 7	(2,2 mMol)		14,	-
			Br 10,11	10,30
14e Cbo-D-Val-CHA-Lys (£-Cbo) -pNA	14d (2 mMol)	(2e)	C 63,74	64,10
C.H., N.O.	Cbo-D-Val-OpNP	82,8		•
42 54 6 9	(2,2 mMol)		7	vοι
15e Cbo-D-Ile-CHA-Lys (£-Cbo) -pNA	14d (2 mMol)	(2e)	C 64,11	64,48
C.H.NO.	Cbo-D-Ile-OpNP	86,9		oʻ.
43 56 b y	(2,2 mMol)		12	4
16e Cbo-D-CHG-Phe-Arg-pNA.HBr	16d (1,5 mMol)	(le)	c 55,21	ω.
	CDO-D-CHG-OPNP	84,1	H 6,01	5,95
7 4/8 /	(1,65 mMol)		14	14,08
			Br 9,85	0
17e Cbo-D-CHT-Phe-Arg-pNA.HBr	16d (1,5 mMol)	(le)	54,	_
	(Cbo-D-CHT-OpNP	81,0	5,9	5,98
38 49 8 8	(1,65 mMol)		13,7	13,57
	• .		Br 9,39	9,68

		Tabelle 3 (Fortsetzung	a)			
18e	18e Cbo-D-Ph'Glv-CHA-Arg-pNA,HBr	1d (2 mMol)	(le)	C 54,8	6 55	2
1	C. H. N. O. Br	4	82,7		4 5	, 95
	3/4/8/	(2,2 mMol)		N 14,3	8 14,08	Ω
ŀ			•	Br 9,8	1 10,04	4
19e	Cbo-D-CHA-Pro-Arg-pNA.HBr	19d (2 mMol)	(le)	53,	53,7	ارم
		Cbo-D-CHA-OpNP	80,5	н 6,30	6,2	4
	34 4/ 8 /	(2,2 mMol)		15,	14,	ın
				Br 10,2	4 10,52	ا ہ
20e	Cbo-D-CHG-CHA-Lys (£-Cbo) -pNA	14d (1,5 mMol)	(2e)	64,	65,	
	C, H, SN, O,	Cbo-D-CHG-OpNP	88,2		7,	7
	45 58 6 9	(1,65 mMol)		10	10,	
21e	Cbo-D-CHG-Leu-Lys (£ -Cbo) -pNA	21d (2,5 mMol)	(2e)	63,	64,	
		CDO-D-CHG-OPNP	90,2	7	9	\sim 1
	6 0 4C 74	(2,75 mMol)		10,	10,	ام
22e	Cbo-D-Pro-CHA-Arg-pNA, HBr	1d (2 mMol)	(le)	53,	53,	
	C, H, NOO, Br	Cbo-D-Pro-OpNP	85,0	9	9	
	74 4/ 0 /	(2,2 mMol)		15,	14,	
		-		10,	10,	,
23e	Cbo-D-CHT-Pro-Arg-pNA.HBr	19d (1,5 mMol)	(le)	C 51,9	2	
		Cbo-D-CHT-OpNP	83,3	S,	9	
	0 0 /4 40	(1,65 mMol)		14,	14,	
				10,	10,	_!
24e	Cbo-D-Pro-CHG-Arg-pNA.HBr	24d (2 mMol) ,	(le)			l. <u>.</u>
	C, H, ENgO, Br	(Cbo-D-Pro-OpNP	81,4	9	9	
	7. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	(2,2 mMol)		15,		
				r 10,	10,7	1
25e	Cbo-D-Pro-CHT-Arg-pNA.HBr	25d (1,5 mMol)	(le)	C 51,75	52,64	
	C ₂ /H ₁ /N _R O _g Br	Cbo-D-Pro-OpNP	78,6	, 9		
	0 0 ~ " " " " .	(1,65 mMol)		N 14,77		
				Br 10,13	10,30	ĺ
						ı

F 1	Tabelle 3 (Fortsetzung)			
26e Cbo-D-Ph'Gly-Leu-Arg-pNA.HBr	11d (1,5 mMol)	(le)	C 53,44	54,04
C34H43N8O7BI	(1,65 mMol)	- 40	15,	-
			10,	10,57
27e Cbo-D-CHG-Pro-Arg-pNA.HBr	19d (2 mMol)	(le)	C 53,04	53,15
C, H, NO Br	Cbo-D-CHG-OpNP	85,5		80'9
33 45 g /	(2,2 mMol)		15	15,03
			Br 10,45	7
28e Cbo-D-CHT-Pip-Arg-pNA.HBr	32d (1,5 mMol)	(le)	S	7
C, H, NOBr		78,1		6,2
33 47 8 0	(1,65 mMol)		_	
			ᆈ	10,12
29e Cbo-D-CHA-Pro-Lys (£-Cbo) -pNA	29d (2 mMol)	(2e)	C 64,54	9
C.H.N.O.	Cbo-D-CHA-OpNP	82,5		9
42.52.6.9	(2,2 mMol)		N 10,92	10,71
30e Cbo-D-Val-CHG-Lys (£-Cbo) -pNA	30d (1,5 mMol)	(2e)	c 63,88	63,7
C.H.NO	Cbo-D-Val-OpNP	0′98		9
4 7 2 6 9	(1,65 mMol)			위
3le Cbo-D-CHG-Pro-Lys (£-Cbo) -pNA	29d (2 mMol)	(2e)	C 63,73	9
C.H. N.O.	Cbo-D-CHG-OpNP	88,4		9
41.50 6 9	(2,2 mMol)		N 11,18	10,90
32e Cbo-D-CHT-Pro-Lys (£-Cbo) -pNA	29d (2 mMol)	(2e)	C 62,61	9
C.O.H., N.O.		80,8		6,5
42 32 0 10	(2,2 mMol)			10,49
33e Cbo-D-Ph'Gly-CHA-Lys(£-Cbo)-pNA	14d (2 mMol)	(2e)	c 65,59	65,84
CLHINO	Cbo-D-Ph'Gly-OpNP	76,7		6,38
45 52 6 y	(2,2 mMol)			7
34e Cbo-D-Val-CHT-Lys (£-Cbo) -pNA	34d (1,5 mMol)	(2e)	9	æ
C., Hr, N, O,	Cbo-D-Val-OpNP	77,9	9	7
07 0 47 74 D	(1,65 mMol)		N 10,61	10,47
35e Cbo-D-Ph'Gly-CHT-Lys(£-Cbo)-pNA	34d (1,5 mMol)	(2e)	C 64,40	_
C, FHE, NO,		75,4	ف	7
45 52 0 LU	(1,65 mMol)		N 10,28	10,04

		Tabelle 3 (Fortsetzung	<u>1</u> g)				
366	Cbo-D-Leu-CHA-Arg-pNA.HBr	1d (2 mMol)	(le)	ပ	9	-1	
)	C.H.NO.Br	Cbo-D-Leu-OpNP	79,8	Ħ	6,70	6,63	
ļ	35-51 8 7	(2,2 mMol)		Z	9	, 4	
				Br	0	10,30	
37e	Cbo-D-Nleu-CHA-Arg-pNA.HBr	1d (2 mMol)	(le)	ပ	54,08	\vdash	
•		Cbo-D-Nleu-OpNP	80,4	Ħ		6,63	
	35 51 8 7	(2,2 mMol)		z		4	
	-			Br	ol	10,30	
38e	Cbo-D-Nval-CHA-Arg-pNA.HBr	1d (2 mMol)	(le)	ပ	53,28	53,61	•
	C, H, NOO, Br	Cbo-D-Nval-OpNP	. 82,6	H	9	6,48	
	7 0 64 45	(2,2 mMol)		z		4,	
				Br	10,25	10,49	
39e	Cbo-D-Phe-CHA-Arg-pNA.HBr	1d (2 mMol)	(le)	ນ	56,23	56,36	
		Cbo-D-Phe-OpNP	84,5	Ħ	6,18	_	
	38 49 6 /	(2,2 mMol)		z	14,10	_	
				Br	9,75	9,87	
40e	Cbo-D-Ala-CHA-Arg-pNA.HBr	1d (2 mMol)	(le)	ပ	52,01		
		Cbo-D-Ala-OpNP	88,2	H	6,19		
	32 45 B /	(2,2 mMol)		z	15,44	15,27	
	-			Br	10,62		
41e	Cbo-D-But-CHA-Arg-pNA.HBr	1d (2 mMol)	(1e)	၁	52,88	53,01	
	C, H, NO, Br	Cbo-D-But-OpNP	87,6	I	6,40		
	33 4/ 8 :/	(2,2 mMol)		z	15,28	14,99	
					10,53	6	
42e	Cbo-D-CHG-Tyr-Arg-pNA, HBr	42d (1 mMol)	(1e)		54,59	_	
	C,H,NOOBr	6	74,1		5,88	_	
	0 0 /1 /0	(1,1 mMol)		z	14,05	13,81	
				. 1	9,57	9,84	
43e	Cbo-D-CHA-Tyr-Arg-pNA.HBr	42d (1 mMol)	(le)		54,96	55,27	
	$C_{2R}H_{AQ}N_{R}O_{R}Bx$	Cbo-D-CHA-OpNP	9'04		6,04		
		(1,1 mMol)			13,77	2	
				Br	9,51	9,68	

		Tabelle 3 (Fortsetzung)		,	
440	Cho-n-Nyral-Tvr-Arg-DNA.HBr	42d (1 mMol)	(le)	c 52,70	52,92
u r r		. T	8,69	н 5,64	5,62
	C3443.'8°8"=	(1,1 mMol)		N 14,82	14,52
				Br 10,12	10,35
450	Cho-D-CHT-Tvr-Arg-pNA, HBr	42d (1 mMol)	(le)	C 54,18	54,22
•	C H NO BE	Cbo-D-CHT-OpNP	67,8	5,9	5,87
	38-49-8-9	(1,1 mMol)		N 13,29	13,31
				Br 9,35	4
46e	Cbo-D-Phe-Tyr-Arg-pNA.HBr	42d (1 mMol)	(le)	_	55,68
		Cbo-D-Phe-OpNP	70,5	ທີ	5,29
	_38_43_8_B	(1,1 mMol)		13,	9,
				Br 9,60	ં ન
47e	Cbo-D-Ph'Gly-Tyr-Arg-pNA.HBr	42d (1 mMol)	(le)	54,	~
		Cbo-D-Ph'Gly-OpNP	74,0	н 5,19	5,13
	37-41-8-8	(1,1 mMol)		N 14,11	13,91
				Br 9,84	9,92
48e	Cbo-D-CHG-Ala-Arg-pNA.HBr	48d (1,5 mMol)	(le)	c 51,66	_
)		Cbo-D-CHG-OpNP	86,7		6,02
	31 43 8 7	(1,65 mMol)		~	15,57
				Br 10,96	11,10
49e	Cbo-D-CHA-Ala-Arg-pNA.HBr	48d (1,5 mMol)	(le)		ω.
		Cbo-D-CHA-OpNP	88,4	9	_
	32 45 B /	(1,65 mMol)		N 15,55	-
		•		Br 10,70	0
50e	Cbo-D-Phe-Leu-Arg-pNA.HBr	11d (2 mMol)	(le)	C 54,48	_
))		Cbo-D-Phe-OpNP	86,2	. 5,9	5,89
	35 45 8 7	(2,2 mMol)	•	N 14,65	14,56
				Br 10,22	3
51e	Cbo-D-CHT-Leu-Arg-pNA.HBr	11d (2 mMol)	(le)	1	53,09
		Cbo-D-CHT-OpNP	79,4	9	4,
	O TC CS	(2,2 mMol)	•	14,3	7
		-		Br 9,92	10,09
					\

		Tabelle 3 (Fortsetzung	a)		
52e		11d (2 mMol)	(le)	c 53,88	
	C35451 N8 C7 BY	Cbo-D-CHA-OpNP	86,0	9	6,63
!		(2,2 mMol)		14,	
5 20	1 10 1 10 101 101 101 101 101 101 101 1			Br 10,18	3 10,30
2 C		53d (1 mMol)	(1e)	C 53,80	54,04
	C34H43N8U7BI	Cpo-D-ren-OpNP	79,5	5,	5,74
		(1,1 mMol)		15,	-
5/10	Cho-D-N::-1-042			Br 10,41	10,57
ט ר		53d (I mMoI)	(le)	C 53,19	2
	33"41"8"7"L	Cbo-D-Nval-OpNP	80,4	5,	5,57
		(T', T mMOL)			7
14	Oke P 11 - Pt 101			Br 10,65	10,77
ם ה ה		53d (1 mMol)	(le)	C 52,00	5
	31 ¹¹ 37 ¹⁸ 9 ⁷ BT.	Cbo-D-Ala-OpNP	81,6	5,	5,23
		(T, I mMol)			15,
200	ייי ייי ייי ייי יייי יייי יייי יייי יייי			Br 11,03	11,
บ ค ก	CDO-D-CHA-FN'GLY-Arg-pNA.HBr	53d (1 mMol)	(le)	55,	55,
	C37n47'807BT	Cbo-D-CHA-OpNP	78,5	н 6,01	5,95
		(1,1 mMol)			
27.3	ייי ייי "ייי "ייי ייי			Br 9,88	10,04
บ ก	Cho-b-chi-rn GIY-Arg-pNA.HBr	53d (1 mMol)	(le)	C 54,85	54,75
	C37H47N8U8BI	Cbo-D-CHT-OpNP	74,6		ω,
		(1,1 mMol)		14,	_
5 RA	LACHT-HIG-BH (C) 40-5HU-H-OHU			ار	9,84
)	COURT NO BY	Cow (T mwot)	(le)	C 55,39	55,31
:	36"45"8"7"L	Cbo-D-CHG-OpNP	77,0	5,	5,80
		(T) mWOL)		N 14,53	14,34
500	Though our and see a see and our	,		10,	10,22
))	CDC-D-CHG-ALY-PNA: ABE	24d (1,5 mMol)	(le)	C 54,99	54,89
	36518~7~1		82,6	9	6,53
		(TOWN CQ'T)		N 14,41	14,23
				Br 9,89	10,14

	Tabelle 3 (Fortsetzung)			٠
THE KING-PARK OND THE RESERVED	24d (1.5 mMol)	(1e)	c 53,66	
FINIS	PIE	80,1	9	6,24
34"47"877	(1,65 mMol)			14,75
			r 10,	10,52
610 Cho-D-Dhe-CHG-Ard-DNA.HBr	24d (1,5 mMol)	(1e)	C 55,78	_
		88,7	9	_
C37"47"8"7"±	(1,65 mMol)		14,	•
			r 9,	10,04
626 Cho-h-ph'Glv-CHG-Ard-pNA, HBr	24d (1,5 mMol)	(le)	•	ພ້
	Cbo-D-Ph'Gly-OpNP	83,5	5,	Φ.
~36"45"8~7"=	(1,65 mMol)		14,	س ٰ
			Br · 10,09	10,22
636 Cha-n-ph Glv-phe-Arg-pNA, HBr	16d (1 mMol)	(le)		7
	Cbo-D-Ph'Gly-OpNP	86,0	5	ω
37.41.87	(1,1 mMol)		N 14,33	14,1
	•		r 9,	10,
645 Cho-h-CHA-Dho-Arg-DNA.HBr	16d (1 mMol)	(1e)		
	Cbo-D-CHA-OpNP	85,6	ဖ	6,10
38,49,87	(1,1 mMol)		14,	
			r 9,	8
CES Cho-n-CHG-Din-Arg-DNA.HBr	28d (1 mMol)	(le)	S	7
	Cbo-D-CHG-OpNP	42,1	6,2	
34.47.87.	(1,1 mMol)		14,9	,
			ы	
669 Cho-D-CHA-Pip-Arg-pNA, HBr	28d (1 mMol)	(le)	-	54,33
	Cbo-D-CHA-OpNP	44,8	9	•
35.49.8~7	(1,1 mMol)		91	14,48
			7	9
67e Cho-D-CHG-Nleu-Ard-pNA.HBr	67d (2 mMol)	(le)		53,61
	CDO-D-CHG-OPNP	86,7	9	6,48
34-49 8 7	(2,2 mMol)			1
			Br 10,28	10,49

		Tabelle 3 (Fortsetzung	(Bur			
68e	Cbo-D-CHA-Nleu-Arg-pNA.HBr	67d (2mMol)	(le)	ပ	53,88	54,19
	C _{2E} H _{E1} N ₈ O ₇ Br	Cbo-D-CHA-OpNP	83,5	Ħ	6,71	6,63
i	ם זר רר	(2,2 mMol)		z	•	, 4
				Br	10,21	10,30
969	Cbo-D-CHA-Nval-Arg-pNA, HBr	69d (1 mMol)	(le)	ပ	4	53,61
	C ₂₄ H _{4Q} N ₈ O ₇ Br	Cbo-D-CHA-OpNP	86,0	H	6,46	6,48
	- 0 1	(1,1 mMol)		z	8	~
				Br	10,31	10,49
70e	Cbo-D-CHG-Nval-Arg-pNA.HBr	69d (1 mMol)	(le)	ນ	52,88	53,01
	$C_{23}H_{A7}N_{B}O_{7}Br$	Cbo-D-CHG-OpNP	88,8	H	6,35	6,34
	,	(1,1 mMol)		z	15,18	14,99
				Br	10,49	10,69
71e	Cbo-D-Nval-CHA-Lys (£-Cbo) -pNA	14d (1,5 mMol)	(2e)	ပ	-	
	C_{4}		9006	н	86′9	6,92
		(1,65 mMol)			10,82	10,68
72e	Cbo-D-But-CHA-Lys (E-Cbo) -pNA	14d (1,5 mMol)	(2e)		63,48	63,71
	$C_{41}H_{52}N_{6}O_{9}$		91,4	Ħ	6,82	6,78
		(1,65 mMol)			10,99	10,87
73e	Cbo-D-Leu-CHA-Lys (£-Cbo) -pNA	14d (1,5 mMol)	(2e)	ပ	64,28	64,48
	c_{43} H $_{5}$ K o_{9}		88,5	H	7,11	7,05
-		വ			10,75	10,49
74e	Cbo-D-Nleu-CHA-Lys (£-Cbo) -pNA	14d (1,5 mMol)	(2e)	ပ	64,18	64,48
	C43H56N6O9	Cbo-D-Nleu-OpNP	88,9		7,08	7,05
		65 п			10,60	10,49
75e	Cbo-D-CHG-But-Arg-pNA. HBr	75d (2 mMo.l.)	(le)		52,19	1 .
	$C_{32}H_5N_8O_7Br$		84,7		6,17	٠.
		(2,2 mMol)			15,35	15,27
				Br .	10,70	10,89
16e	Cbo-D-CHA-But-Arg-pNA.HBr	75d (2 mMol)	(le)	<u> </u>	52,87	53,01
	$C_{33}H_4T^N8U_7BT$	Cbo-D-CHA-OpNP	9'08	H	6,41	6,34
		(2,2 mMol)		,	15,17	14,99
				Br]	10,55	10,69

Tabelle 3 (Fortsetzung) 5-D-CHT-But-Arg-pNA.HBr 75d (2 mMol) (1e) Cbo-D-CHT-OpNP 83,3 (2,2 mMol)		C 51,72 51,90 H 6,25 6,20 N 14,88 14,67 Br 10,37 10,46	
-pNA.HBr		(1e) 83,3	
5-D-CHT-But-Arg-pNA.HBr 3 ^H 47 ^N 8 ^O 8 ^{Br}	Tabelle 3 (Fortsetzung)	75d (2 mMol) Cbo-D-CHT-OpNP (2,2 mMol)	
Ω Ω. 		T-But-Arg O ₈ Br	

Example 78

2AcOH.H-D-Nval-CHA-Arg-DNA

7,09 g (10 mMol) 2HBr. H-D-Nval-CHA-Arg-pNA (hergestellt gemäss Beispiel 38) wurden in 75 ml 60%igem wässrigem MeOH gelöst. Die Lösung wurde auf eine Säule von "Amberlite"

5 JRA-401 in der Acetatform gegeben. Die Säule wurde mittels 60%igem wässrigem MeOH eluiert, wobei durch Ionenaustausch HBr durch AcOH ersetzt wurde. Das Eluat wurde im Vakuum bei 40°C zur Trockne eingeengt. Nach dem Trocknen im Vakuumtrokkenschrank bei 40°C über P₂O₅ erhielt man 6,33 g bromidfreies 2AcOH.H-D-Nval-CHA-Arg-pNA (98,5% der Theorie).

Nach dieser Methode kann man aus dem oben genannten Tripeptidderivat entsprechend andere Salze mit organischen Säuren, z.B. Ameisen-, Propion-, Oxal-, Wein-, Zitronen-, Milch-, Benzoe-, Chlorbenzoe-, Salicyl- oder Phthalsäure, herstellen. Man kann als Ionenaustauscher z.B. "Amberlite" JRA-401 in der Hydrochloridform verwenden und in die gewünschte Säuresalzform überführen, indem man den genannten Ionen-austauscher durch Behandlung mit Natronlauge in die basische OH-Form überführt und dann mit einer Lösung eines 1:1-Ge20 misches der gewünschten organischen Säure und deren Natriumsalz in 60%igem wässrigem MeOH behandelt.

Die quantitativen Enzymbestimmungen mittels der erfindungsgemässen Tripeptidsubstrate können folgendermassen durchgeführt werden:

1. Bestimmung von Urinkallikrein.

l ml Urin und l ml TRIS-Imidazol-Puffer mit pH 7,9 und Ionenstärke 1,0 werden 5 Min. bei 37°C inkubiert und dann zentrifugiert, um Sedimente zu entfernen.

In einer Plastikküvette werden 1,4 ml dest. Ho0 von 37°C und 0,4 ml des Zentrifugats gut gemischt. Zu dieser Mischung gibt man 0,2 ml einer 2 x 10-3 molaren wässrigen Substratlösung und durchmischt die Komponenten schnell. Dieses Gemisch wird genau 15 Min. bei 37°C inkubiert. Dann wird dem Reaktionsgemisch 0,2 ml Eisessig zugemischt, um die Enzymreaktion zu unterbrechen. Zur Farbmessung verwendet man eine Vergleichsprobe (Blindprobe), die aus den gleichen Komponenten zusammengesetzt ist, wobei jedoch der Eisessig vor Zugabe des Substrates zugesetzt wird, um die Enzymreaktion zu verhindern. Dann wird bei 405 nm photometrisch oder spektrophotometrisch die Menge der gebildeten farbigen Verbindung RNH, aus der Differenz zwischen der Blindprobe und der zu bestimmenden Probe ermittelt. Aus dem ermittelten Wert wird die Urinkallikreinaktivität im Urin nach der folgenden Formel berechnet:

$$\frac{\triangle \text{ OD}_{15 \text{ Min.}} \times \text{V} \times 1000 \times \text{F}}{15 \text{ Min.} \times \text{V} \times \mathcal{E}} = \text{mU/ml Urin}$$

25 \(\triangle OD = \) Zunahme der optischen Dichte bei 405 nm während 15 Min.

5

10

15

V = Totalvolumen des Bestimmungsansatzes = 2,2 ml

1000 = Umrechnungsfaktor zur Umwandlung von U in mU

F = Verdünnungsfaktor des Urins (2)

v = Volumen der Probe = 0,4 ml

5 E = Extinktionskoeffizient dividiert durch 1000 = 10,4

Die Berechnung des Urinkallikreins im Urin kann auch durch eine kontinuierliche Messung des entstehenden Produktes R-NH₂ (z.B. des p-Nitroanilins) durchgeführt werden. Diese Methode ist nachstehend für die Bestimmung von Glandulärkal10 likrein im Sputum beschrieben.

Im Urin ist neben dem Urinkallikrein auch Urokinase als proteolytisches Enzym vorhanden, welches gegebenenfalls die erfindungsgemässen Substrate ebenfalls, wenn auch nur geringfügig spalten kann. Bei der oben beschriebenen Bestim-

- 15 mungsmethode misst man somit die Summe der Aktivitäten von Urinkallikrein und Urokinase. Um die genaue Urinkallikrein-aktivität zu erhalten, muss man die Urokinaseaktivität abziehen, welche dadurch bestimmt werden kann, dass man in einem Vergleichsversuch durch Zugabe von 0,075 Einheiten Trypsinin-
- 20 hibitor (Trypsininhibitor aus Rinderlunge) pro ml Puffer die Urinkallikreinaktivität vollständig hemmt und nur die Urokinaseaktivität misst.
 - 2. Bestimmung des Glandulärkallikreins im Sputum:

Man mischt 0,5 ml Sputum mit 2 ml TRIS-Imidazol-Puf-

25 fer (Ionenstärke 1,0) und präinkubiert die Mischung 5 Min. bei 37°C. Das Inkubat wird zentrifugiert. In eine Testküvette wird 1,5 ml dest. H₂0 von 37°C vorgelegt und mit 0,25 ml des

Zentrifugats versetzt. Die Komponenten werden gut gemischt.

Dann wird 0,2 ml 2 x 10⁻³ molare wässrige Substratlösung zugesetzt und gemischt. Dann wird bei 405 nm die Extinktionsänderung kontinuierlich mittels eines Schreibers während 5-10 Min. verfolgt. Aus dem ermittelten △ OD pro Min. wird mittels der nachstehenden Formel die Kallikreinaktivität pro ml Sputum in mU errechnet:

$$\frac{\triangle \text{ OD}_{\text{Min.}} \times V \times 100 \times F}{\text{v x } \mathcal{E}} = \text{mU/ml Sputum}$$

F = 5

 10 V = 1,95

v = 0.25

1 U (Einheit) = Enzymmenge, die während 1 Min. 1 µMol Substrat unter optimalen oder sonst festgelegten Bedingungen in Bezug auf pH, Ionenstärke, Temperatur und Substratkonzentration zu spalten vermag

In Pankreassaft liegt das Pankreaskallikrein hauptsächlich in Form von Präkallikrein vor und kann erst nach Aktivierung, z.B. mittels Trypsin, bestimmt werden. Das Trypsin
wird dabei nach der Aktivierung des Präkallikreins mittels
Soyabohnentrypsininhibitor (SBTI) gehemmt. In diesem Aktivierungsgemisch lässt sich der Kallikreingehalt nach einer der
oben beschriebenen Methoden bestimmen.

3. Bestimmung von Plasmin:

Man mischt 1,7 ml TRIS-Imidazol-Puffer (pH 7,5, Ionenstärke 0,2) bei 37°C mit 0,1 ml einer Lösung von Plasmin in 25%igem Glycerin und inkubi rt die Mischung während 1 Min. bei 37°C. Dann gibt man der Mischung 0,2 ml einer wässrigen 2 x

10⁻³ molaren Substratlösung von 37°C zu und durchmischt das Ganze schnell. Man ermittelt dann kontinuierlich die pro Zeiteinheit aus dem Substrat freigesetzte Menge des Spaltproduktes R-NH₂. Aus dem pro Min. ermittelten Wert berechnet man dann die Plasminaktivität pro ml Probe in mU nach der folgenden Formel:

$$\frac{\triangle E/Min. \times V \times 1000}{v \times \varepsilon} = mU/ml \text{ Probe}$$

 \triangle E = pro Min. freigesetzte Menge des Spaltproduktes

V = Totalvolumen des Testansatzes

10 v = Volumen der Probe

5

ε = Extinktionskoeffizient dividiert durch 1000

4. Bestimmung von Antiplasmin in Humanplasma:

0,1 ml von mit TRIS-Imidazol-Puffer im Verhältnis 1:20

verdünntem Plasma wird mit 0,02 ml einer Lösung von 1,25 CU .

15 Humanplasmin (Präparat der Firma AB Kabi, Stockholm, Schweden)
und 50 ATU Hirudin (Präparat der Firma Pentapharm AG, Basel,
Schweiz) pro ml in 25%igem Glycerin gemischt. Die Mischung
wird während 90 Sek. bei 37°C inkubiert. Man mischt das Inkubat mit 1,7 ml TRIS-Imidazol-Puffer von 37°C (pH 7,5, Ionen20 stärke 0,2) und dann mit 0,2 ml 2 x 10⁻³ molarer wässriger
Substratlösung. Dann misst man kontinuierlich die pro Zeiteinheit aus dem Substrat freigesetzte Menge des Spaltproduktes
R-NH2. Aus dem ermittelten Wert berechnet man in der oben angegebenen Weise die restliche Plasminaktivität.

In einem Blindversuch wird das Plasma durch die entsprechende Menge Puffer ersetzt, sonst aber in der oben beschriebenen Weise gearbeitet. Die ermittelte Plasminaktivität entspricht der eingesetzten Menge Plasmin. Man ermittelt die Antiplasminaktivität aus der Differenz zwischen der im Blind-versuch bestimmten Plasminaktivität und der im Test mit Plasma bestimmten restlichen Plasminaktivität nach folgender Formel:

(\(\triangle E_{\text{Blindprobe}} - \triangle E_{\text{Plasmaprobe}}\) Min. x V x F x 1000 = mIU/ml Plasma

F = Verdünnungsfaktor des Plasmas (20)

Mit den erfindungsgemässen Substraten kann man ferner Plasminogen in Humanplasma bestimmen, indem man in einem Puffersystem das im Plasma vorhandene Plasminogen mittels Urokirase oder Streptokinase in Plasmin überführt und die Menge des entstandenen Plasmins mittels eines erfindungsgemässen Substrates nach der oben beschriebenen Plasminbestimmungsmethode bestimmt. Aus dem für Plasmin ermittelten Wert ergibt sich die im Plasma ursprünglich vorhandene Menge Plasminogen, da bei der Aktivierung aus 1 Molekül Plasminogen 1 Molekül Plasmin entsteht.

In der nachfolgenden Tabelle 4 ist die Suszeptibilität einiger der erfindungsgemässen Substrate gegenüber Organ- oder Glandulärkallikreinen, Plasmin und Thrombin angegeben.

15

Tabelle 4

Aktivität von Urinkallikrein in 1 ml menschlichem Urin*, Submandibularis-Kallikrein in 1 ml Sputum, Humanplasmin und humanem NIH-Thrombin, gemessen mittels der erfindungsgemässen Substrate bei konstanter Substrat- und Enzymkonzentration. Zum Vergleich (ausgenommen Thrombin) sind die entsprechenden Werte für die vorbekannten, im Handel erhältlichen Substrate 2HCl.H-D-Val-Leu-Arg-pNA (A) und 2HCl.H-D-Val-Leu-Lys-pNA (B) (s. DOS 26 29 067) angeführt. Substratkonzentration 2 x 10 molar.

	Menge des durch 1 ml Humanurin, 1 ml Humansputum, 1 CU-Einheit Humanplasmin und 1 NIH-Einheit Thrombin pro Min. freigesetzten Spaltproduktes R-NH ₂ in Nanomol					
	Urinkallikrein	Submandibu- laris- Kallikrein	Humanplasmin	Human- thrombin		
A	0,90	12,2	83			
В	0,30	5,7	347			
Substrate gem Beispi	•					
1	0,84	12,9	699	8,27		
2	0,80	25,6	1150	, -, -,		
3	2,55	31,2	430			
ļ	0,60	15,7	1120			
5	2,42	28,5	408	•		
·6	0,72	24,8	1215			
7	2,55	31,1	428			
8	0,58	17,6	1180			
9	2,38	25,4	388			
10	0,61	14,9	1165			
11	0,60	11,6	381	33,9		
12	2,75	30,5	421	4,0		
13	2,67	36,6	446	7,44		
14	1,02	6,7	505	0,35		
15	2,50	23,1	440	0,39		
16	3,31	32,2	1200	17,1		
17	0,77	7,4	860	18,7		

	18	0,67	8,5	1200	4,53
	19	1,40	8,1	1200	54,4
	20	0,28	4,4	500	0,99
	21	0,40	2,2	460	1,20
	22	0,63	11,7	250	0,75
	23	1,20	21,4	690	45,8
	24	1,87	5,7	10	0,29
	25	0,52	10,7	390	1,52
	26	0,19	8,3	194	0,8
	27	0,33	12,9	511	96,3
	28	0	9,9	122	80,4
	29	0,71	4,4	639	4,54
	30	0	1,3	61	0,27
	31	O.	1,9	231	3,78
	32	0,20	3,8	613	0,8
	33	0,10	0,9	837	0,4
	34	1,40	16,5	532	0,4
	3 5	0,10	0,9	894	0,5
	36	3,11	35,9	1069	6,8
	37	2,08	28,1	1179	7,3
	. 38	3,12	41,3	969	5,1
	39	2,14	28,5	814	3,9
-	40	1,73	22,4	433	1,5
	41	2,99	31,2	623	2,8
١	42	0,49	3,9	969	2,0
1	43	0,49 -	5,2	1407	8,3
	44	0,42	4,9	1219	1,8
Ì	45	0,59	10,9	1252	9,5
	46	0,26	6,1	843	2,6
	47	0,19	7,0	818	1,0
	48	0,72	9,5	239	158
	49	0,66	10,6	389	163,5
1	50	0,61	6,8	313	14,4
	51	0,33	11,7	596	58,1
				I	. 1

- 85 -

•	<u>Tabelle</u>	4 (Fortsetzung)	<u>.</u>]
52	0,64	8,8	555	57,6
53	0,67	25,8	422	27,4
54	0,58	22,9	382	19,2
55	0,42	23,5	141	4,2
56	0,64	29,4	559	120,2
57	0,45	31,1	591	112,1
58	0,38	22,1	446	63,7
59	0,33	5,9	101	7,5
60	0	1,4	10	1,3
61	0,33	4,9	60	3,7
62	0,25	7,2	26	2,4
63	0,42	7,0	841	2,4
64	0,5	9,7	1261.	25,8
65	1,92	14,2	259	142,5
66	0,53	9,8	228	114,2
67.	0,53	13,5	739	41,0
68	0,45	15,0	899	77,6
69	0,35	14,2	574	97,1
70	0,38	24,2	488	67,4
71	1,87	18,04	655	6,9
72	2,22	21,0	532	3,6
73	1,73	19,3	778	3,4
74	0,77	8,4	695	3,9
75	0,51	14,5	439	102,9
76	0,51	18,1	478	108,9
77	0,64	18,2	463	114,2

^{*} Urinprobe erhalten durch Mischen von je 100 ml Morgenurin gesunder Personen

des Substrates gebildeten Spaltproduktes R-NH₂ geht man von der Voraussetzung aus, dass das Spaltprodukt ein UV-Spektrum besitzt, das von demjenigen des Substrates verschieden und in Richtung höherer Wellenlängen verschoben ist. Die Absorption des Substrates bei 405 nm ist praktisch Null. p-Nitroanilin als Spaltprodukt weist ein Absorptionsmaximum bei 380 nm und einen molaren Extinktionskoeffizienten von 13'200 auf. Bei 405 nm ist der Extinktionskoeffizient nur wenig niedriger, d.h.

10 9650. Der Grad der enzymatischen Hydrolyse des Substrates, welcher der Menge des abgespaltenen p-Nitroanilins proportional ist, lässt sich durch spektrophotometrische Messung bei 405 nm bestimmen. Auch bei Anwesenheit eines Ueberschusses an Substrat wird die Messung bei 405 nm nicht gestört.

Bei den Substraten, die als chromogene Gruppe eine

2-Naphthylamino-, 4-Methoxy-2-naphthylamino-, 4-Methyl-cumaryl
(7)-amino- oder 1,3-Di(methoxycarbonyl)-phenyl-(5)-amino-Gruppe

enthalten, wird die Menge des Spaltproduktes R-NH₂ durch Fluoreszenzspektrophotometrie gemessen. In einem aus Enzym, Puffer und Substrat bestehenden Testsystem misst man kontinuierlich das energieärmere emittierte Licht bei 400-470 nm, nachdem man das gebildete fluoreszierende Spaltprodukt mit energiereicherem Licht erregt hat. Die pro Zeiteinheit gebildete Menge Spaltprodukt ist ein Mass für die vorhandene Enzymaktivität. 1 µMol Spaltprodukt pro Minute entspricht definitionsgemäss 1 Enzym-Einheit, bezogen auf ein gegebenes Substrat.

Patentansprüche

1. Tripeptidderivate der allgemeinen Formel

H - D - X - Y - Z - R

I

in welcher

- 5 X eine Cyclohexylglycyl-, Cyclohexylalanyl-, p-Hydroxycyclohexylalanyl-, Phenylglycyl-, Phenylalanyl-, Tyrosyl-, Leucyl-, Isoleucyl-, Norleucyl-, Valyl-, Norvalyl-, α-Aminobutyryl-, Alanyl-, Prolyl- oder Pipecolimyl-Gruppe darstellt,
- Y eine Cyclohexylglycyl-, Cyclohexylalanyl-, p-Hydroxycyclohexylalanyl-, Phenylglycyl-, Phenylalanyl- oder Tyrosyl-10 Gruppe und, falls die Bedeutung von X auf Cyclohexyiglycyl, Cyclohexylalanyl, p-Hydroxycyclohexylalanyl, Phenylglycyl, Phenylalanyl oder Tyrosyl beschränkt ist, zusätzlich eine Leucyl-, Isoleucyl-, Norleucyl-, Valyl-, Norvalyl-, α-Aminobutyryl-, Alanyl-, Prolyl- oder Pipecolimyl-Gruppe dar-
 - Z eine Arginyl- oder Lysyl-Gruppe darstellt und
 - R eine chromogene Gruppe darstellt, welche durch enzymatische Hydrolyse abspaltbar ist und eine farbige oder fluoreszie-
- rende Verbindung zu bilden vermag, 20

und deren Salze mit Säuren.

- 2. Tripeptidderivate gemäss Patentanspruch 1, dadurch gekennzeichnet, dass
- a) X eine Cyclohexylglycyl-, Cyclohexylalanyl- oder Cyclohe-
- xyltyrosyl-Gruppe und 25

Y eine Alanyl-, α-Aminobutyryl-, Valyl-, Norvalyl-, Leucyl-,

15

stellt,

Norleucyl-, Isoleucyl-, Prolyl- oder Pipecolinoyl-Gruppe darstellen,

oder

5

b) Y eine Phenylalanyl-, Phenylglycyl- oder Tyrosyl-Gruppe und

X eine Cyclohexylglycyl-, Cyclohexylalanyl-, Cyclohexyltyrosyl-, Phenylalanyl- oder Phenylglycyl-Gruppe darstellen,

oder

- 10 c) Y eine Cyclohexylglycyl-, Cyclohexylalanyl-, Cyclohexyltyrosyl-, Phenylglycyl- oder Tyrosyl-Gruppe darstellen und X eine Alanyl-, α-Aminobutyryl-, Valyl-, Nvalyl-, Leucyl-, Norleucyl-, Isoleucyl- oder Prolyl-Gruppe darstellen, oder
- 15 d) X eine Phenylalanyl-, Phenylglycyl- oder CyclohexylglycylGruppe und
 Y eine Cyclohexylalanyl-, Cyclohexylglycyl- oder Cyclohexyltyrosyl-Gruppe darstellen.
- 3. Tripeptidderivate gemäss Patentanspruch 1, da20 durch gekennzeichnet, dass das an Arg oder Lys geknüpfte Dipeptidfragment eine CHG-Ala-, CHG-But-, CHG-Nval-, CHG-Leu-,
 CHG-Nleu-, CHG-Pro-, CHG-Pip-, CHA-Ala-, CHA-But-, CHA-Nval-,
 CHA-Leu-, CHA-Nleu-, CHA-Pro-, CHA-Pip-, CHT-But-, CHT-Leu-,
 CHT-Pro- oder CHT-Pip-Gruppe, oder eine CHG-Phe-, CHG-Ph'Gly-,
 CHG-Tyr-, CHA-Phe-, CHA-Ph'Gly-, CHA-Tyr-, CHT-Phe-, CHTPh'Gly-, CHT-Tyr-, Phe-Tyr-, Ph'Gly-Phe- oder Ph'Gly-Tyr-

in who are

Gruppe, oder eine Ala-CHA-, Ala-Ph'Gly-, But-CHA-, Val-CHG-, Val-CHA-, Val-CHT-, Nval-CHA-, Nval-Ph'Gly-, Nval-Tyr-, Leu-CHA-, Leu-Ph'Gly-, Nleu-CHA-, Ile-CHA-, Pro-CHG-, Pro-CHA- oder Pro-CHT-Gruppe, oder eine Phe-CHA-, Phe-CHG-, Ph'Gly-CHA-, Ph'Gly-CHA-, Ph'Gly-CHA-, CHG-CHA-oder CHG-CHG-Gruppe ist.

- 4. Tripeptidderivate gemäss Patentanspruch 1 bis 3, in welchen R eine p-Nitrophenylamino-, 2-Naphthylamino-, 4-Methoxy-2-naphthylamino-, 4-Methyl-cumaryl-(7)-amino-, 1,3
 10 Di(methoxycarbonyl)-phenyl-(5)-amino-, Chinonylamino- oder Nitrochinonylamino-Gruppe ist.
- 5. Tripeptidderivate gemäss Patentanspruch 1 bis 3, dadurch gekennzeichnet, dass sie mit einer Mineralsäure, z.B. HCl, HBr, H₂SO₄, H₃PO₄ oder einer organischen Säure, z.B.

 15 Ameisensäure, Essigsäure, Propzionsäure, Trimethylessigsäure, Methoxyessigsäure, einer halogenierten Essigsäure, wie Trichlor- oder Trifluoressigsäure, Glykokollsäure, Milchsäure, Oxalsäure, Malonsäure, Zitronensäure, Benzoesäure, eine im Kern substituierte aromatische Säure, wie Toluylsäuren,

 20 Chlor- oder Brombenzoesäuren, Methoxybenzoesäuren und Amino-
- 6. Verfahren zur quantitativen Bestimmung von proteolytischen Enzymen, insbesondere Enzymen der Enzymklasse
 E.C. 3.4.21., welche natürliche Peptidketten an der Carboxylseite sowohl von Arginin als auch von Lysin spalten, in
 Medien, welche die genannten Enzyme enthalten oder in welchen

benzoesäuren, oder Phthalsäure, protonisiert sind.

die letzeren gebildet oder verbraucht werden, dadurch gekennzeichnet, dass man das genannte Medium mit einem Tripeptidderivat der Formel I gemäss Patentanspruch 1 bis 3 zur Reaktion bringt und die Menge des durch die hydrolytische Einwirkung des Enzyms auf das Tripeptidderivat gebildeten farbigen oder fluoreszierenden Spaltproduktes R-NH2 durch photometrische, spektrophotometrische, fluoreszenzspektrophotometrische oder elektrochemische Methoden misst.

- 7. Verfahren gemäss Patentanspruch 6, dadurch gekennzeichnet, dass man Organ- oder Glandulärkallikreine in menschlichen Körperflüssigkeiten, z.B. Urin, Pankreassaft, Darmschleim, Milchdrüsensekret, Schweissdrüsensekret, Sputum oder Blut, bestimmt.
- 15 8. Verfahren gemäss Patentanspruch 6, dadurch gekennzeichnet, dass man Plasmin in Blut oder Blutplasma bestimmt.
- 9. Verfahren gemäss Patentanspruch 6, dadurch gekennzeichnet, dass man Thrombin in Blut oder Blutplasma be-20 stimmt.

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung EP 80 81 0155

	EINSCHLÄGIGE DOKUMENTE		KLASSIFIKATION DER ANMELDUNG (Int.Cl. 3)	
Kategorie	Kennzeichnung des Dokuments mit Angabe, soweit erforde maßgeblichen Teile	erlich, der betrifft Anspruch		
	FR - A - 2 353 063 (PENTAPHA A.G.)		C 07 C 103/52 C 12 Q 1/36	
	* Seiten 21-26; Beispiele XII,XIII,XIV,XVI *	x,xI,		
	- -			
A	FR - A - 2 183 188 (BOFORS A * Insgesamt *	.KT.) 1	·	
	•• ••			
A	<u>US - A - 4 061 625</u> (AF EKENS et al.)	STAM 1		
	* Insgesamt *		RECHERCHIERTE SACHGEBIETE (Int. Ci. ³)	
	pa ess		C 07 C 103/52	
A	$\frac{US - A - 4 147 692}{GATSU et al.}$ (TOSHIHAR	U NA- 1	C 12 Q 1/36	
	* Insgesamt *		,	
			,	
D	<u>DE - A - 2 629 067</u> (AB KABI) * Insgesamt *	1-9		
D	DE - A - 2 527 932 (PENTAPHA A.G.)	.RM 1-9	KATEGORIE DER	
	* Insgesamt *		GENANNTEN DOKUMENTE X: von besonderer Bedeutung	
	***		A: technologischer Hintergrund O: nichtschriftliche Offenbarung	
l			P: Zwischenliteratur T: der Erfindung zugrunde	
			liegende Theorien oder Grundsätze	
			E: kollidierende Anmeldung D: in der Anmeldung angeführte	
			Dokument L: aus andern Grunden	
·			angeführtes Dokument &: Mitglied der gleichen Patent-	
X	Der vorliegende Recherchenbericht wurde für alle Patentans	sprüche erstellt.	famille. Übereinstimmende Dokument	
Recherche	Penor, Den Haag Abschlußdatum der Recherci	he Prufer	GRAMAGLIA	

THIS PAGE BLANK (USPTO)