NP-completeness

a glimpse into Structural Complexity

Polynomial-time algorithms

- All algorithms we have seen so far (and more) run in $O(n^c)$ time
 - paths, minimum spanning trees, minimum flow
 - interval scheduling, LCS, edit distance, sequence alignment
 - Viterbi algorithm in HMM
 - ...

Polynomial-time algorithms

- All algorithms we have seen so far (and more) run in $O(n^c)$ time
 - graph traversals, Dijkstra, Bellman-Ford, all-pairs shortest paths, minimum spanning trees, minimum flow
 - interval scheduling, LCS, edit distance, sequence alignment
 - Viterbi algorithm in HMM
 - **...**
- but also
 - solving systems of linear equations over reals (Gauss elimination)
 - linear programming over reals (ellipsoid method by L.Khachiyan, 70s)
 - primality testing (Agrawal-Kayal-Saxena, 2002)
 - ...

"Efficiency assumption"

- Practical algorithms = polynomial-time algorithms
- Tractable problems = those which admit polynomial-time algorithms (Cobham-Edmonds thesis)
- Corollary: untractable problems = those for which there is no polynomial-time algorithm

"Efficiency assumption"

- Practical algorithms = polynomial-time algorithms
- Tractable problems = those which admit polynomial-time algorithms (Cobham-Edmonds thesis)
- Corollary: untractable problems = those for which there is no polynomial-time algorithm
- There are many problems for which we not to know polynomialtime algorithms, but for many of them, we cannot prove that there is none
- Provably untractable time problems exist, e.g. (generalized) chess, checkers or GO ($n \times n$ board)
- ... up to *undecidable problems* (e.g. Halting problem, Post correspondence problem, ...)

Polynomial vs exponential

		Size n						
	Time complexity function	10	20	30	40	50	60	
in milliseconds	n	.00001 second	.00002 second	.00003 second	.00004 second	.00005 second	.00006 second	
	n²	.0001 second	.0004 second	.0009 second	.0016 second	.0025 second	.0036 second	
	n ³	.001 second	.008 second	.027 second	.064 second	.125 second	.216 second	
	n 5	.1 second	3.2 seconds	24.3 seconds	1.7 minutes	5.2 minutes	13.0 minutes	
	2"	.001 second	1.0 second	17.9 minutes	12.7 days	35.7 years	366 centuries	
	3*	.059 second	58 minutes	6.5 years	3855 centuries	2×10 ⁸ centuries	1.3×10 ¹³ centuries	

Figure 1.2 Comparison of several polynomial and exponential time complexity functions.

Taken from : Garey&Johnson, Computers and Intractability, 1979

Measuring the complexity of algorithms

- ▶ RAM = Random Access Machine (unit-cost or log-cost)
- ► TM = Turing machine

Measuring the complexity of algorithms

- RAM = Random Access Machine (unit-cost or log-cost)
- ► TM = Turing machine
- RAM and TM are "polynomially equivalent"

	Simulating machine A					
Simulated machine B	1TM	kTM	RAM			
1-Tape Turing Machine (1TM)		O(T(n))	$O(T(n)\log T(n))$			
k-Tape Turing Machine (kTM)	$O(T^2(n))$		$O(T(n)\log T(n))$			
Random Access Machine (RAM)	$O(T^3(n))$	$O(T^2(n))$	_			

from : Garey&Johnson, Computers and Intractability, 1979

Figure 1.6 Time required by machine A to simulate the execution of an algorithm of time complexity T(n) on Machine B (for example, see [Hopcroft and Ullman, 1969] and [Aho, Hopcroft, and Ullman, 1974]).

• ... provided (for unit-cost RAM) that all operands of arithmetic operations are polynomially bounded (i.e. fit a const number of computer words)

Measuring the complexity: input encoding

- ▶ Time complexity is a *function* of input data size
- For the Turing machine:
 - size of input = number of tape cells of the input encoding
 - time = number of steps (transitions)
- Inside the "polynomial world" the way of encoding the input is important
- Here we assume that all encodings are "polynomially equivalent" ⇒ numbers are not encoded in unary and the encoding of data is "compact »
 - Ex I: O(kN)-time algorithm for coin changing is **not** polynomial
 - **Ex 2**: primality testing can be done in $O((\log N)^c)$

Decision vs optimization problems

- Computational problems can be of different nature
- Description problem: Compute an object of optimum (minimum or maximum) "size" (e.g. minimum spanning tree, shortest path, etc.)
- ▶ Decision problem: Does there exist an object of "size" $\leq k$?
- Decision problems are formalized as language membership problem
- Deviously, solving an optimization problem implies solving the corresponding decision problem
- Very often, the inverse is true: an opimization problem is "polynomially reducible" (cf below) to the decision problem
- Decision and optimization problems are usually "polynomially equivalent". We focus on decision problems.

Example: minimum vertex cover

- ▶ Definition: Given a graph G = (V, E), a vertex cover of G is a subset of vertices $S ext{ } extstyle exts$
- MINIMUM VERTEX COVER (decision problem): Given a graph G = (V, E) and an integer k, is there a vertex cover S such that $|S| \le k$?
- MINIMUM VERTEX COVER (optimization problem): Given a graph G=(V,E), find a vertex cover S of minimum cardinality.
 - To find min vertex cover:
 - (Binary) search for cardinality k^* of min vertex cover
 - Find a vertex v such that $G \{v\}$ has a vertex cover of size $\leq k^* 1$ (any vertex in any min vertex cover will have this property)
 - Include v in the vertex cover
 - Recursively find a min vertex cover in $G \{v\}$
 - $T_{opt}(n) = \log n \cdot T_{dec}(n) + n^2 \cdot T_{dec}(n)$

vertex cover

Classes P and NP

Class P:

- formal definition: class of decision problems (languages) that can be solved on Turing machine in time $\leq p(n)$ for a fixed polynome p (n size of the problem)
- Informal: Class of problems that have polynomial time algorithms solving them

Class NP ("Non-deterministic P"):

- formal definition: class of decision problems that can be solved on a non-deterministic Turing machine in time $\leq p(n)$ for a fixed polynome p (n size of the problem)
- equivalent definition: class of decision problems for which a solution can be verified in polynomial time (insures brute-force ('περεδορ') solutions)

A Survey of Russian Approaches to Perebor (Brute-Force Search) Algorithms

B. A. TRAKHTENBROT

Concerns about computational problems requiring brute-force or exhaustive search methods have gained particular attention in recent years because of the widespread research on the "P = NP?" question. The Russian word for "brute-force search" is "perebor." It has been an active research area in the Soviet Union for several decades. Disputes about approaches to perebor had a certain influence on the development, and developers, of complexity theory in the Soviet Union. This paper is a personal account of some events, ideas, and academic controversies that surrounded this topic and to which the author was a witness and—to some extent—a participant. It covers a period that started in the 1950s and culminated with the discovery and investigation of nondeterministic polynomial (NP)-complete problems independently by S. Cook and R. Karp in the United States and L. Levin in the Soviet Union.

Categories and Subject Descriptors: I.2.8 [Artificial Intelligence]—graph and tree search strategies; K.2 [History of Computing]—people, software General Terms: Algorithms, Theory, Verification Additional Key Words and Phrases: brute-force search algorithms, perebor

Introduction

A perebor algorithm, or perebor for short, is Russian for what is called in English a "brute-force" or "exhaustive" search method. Other combinations of words also occur in translations from Russian, such as "successive trials," "sequential searching," and "thorough searching." To keep the historical flavor, I

case of an affirmative answer to (1), an n-tuple should be produced.

The obvious *perebor* algorithm that solves both the existential and constructive versions of the problem considers all the *n*-tuples of truth values in some order (say, lexicographical order). The first time an *n*-tuple

- Minimum vertex cover
 - easy to verify if a given subset $S \subseteq V$ is a vertex cover

Minimum vertex cover

• easy to verify if a given subset $S \subseteq V$ is a vertex cover

More examples:

- ▶ Hamiltonian circuit in a graph
- largest clique in a graph
- ▶ integer factorization 437669=541·809
- longest common subsequence of multiple strings
- multiset partition {3,1,1,2,2,1} → {2,1,1,1}∪{3,2}
 (NB: numbers are encoded in binary! otherwise a pseudopolynomial dynamic programming algorithm exists!)
- ...

Minimum vertex cover

• easy to verify if a given subset $S \subseteq V$ is a vertex cover

More examples:

- ▶ Hamiltonian circuit in a graph
- largest clique in a graph
- ▶ integer factorization 437669=541·809
- longest common subsequence of multiple strings
- multiset partition {3,1,1,2,2,1} → {2,1,1,1}∪{3,2}
 (NB: numbers are encoded in binary! otherwise a pseudopolynomial dynamic programming algorithm exists!)
-

Minimum vertex cover

• easy to verify if a given subset $S \subseteq V$ is a vertex cover

More examples:

- ▶ Hamiltonian circuit in a graph
- largest clique in a graph
- ▶ integer factorization 437669=541·809
- longest common subsequence of multiple strings
- multiset partition {3,1,1,2,2,1} → {2,1,1,1}∪{3,2}
 (NB: numbers are encoded in binary! otherwise a pseudopolynomial dynamic programming algorithm exists!)
- ...

P⊆NP

\$1,000,000 question

P=NP?

(or can 'περεδορ' be eliminated?)

one of Millennium Prize Problems, Clay Mathematics Institute

Why is it so important?

would break RSA cryptography (and potentially collapse economy)

- ▶ If yes: Efficient algorithms for 3-COLOR, TSP, FACTOR, SAT, ...
- ▶ If no: No efficient algorithms possible for 3-COLOR, TSP, SAT, . . .

Consensus opinion on P = NP? Probably no.

about consequences of P=NP read L.Fortnow, Golden ticket

Polynomial-Time Reduction

Idea: formalize "problem X is at least as hard as problem Y"

Suppose we could solve a problem X in polynomial-time. What else could we solve in polynomial time?

Reduction*: Problem Y is polynomial-time reducible to problem X if arbitrary instances of problem Y can be solved using:

- Polynomial number of standard computational steps, and
- Polynomial number of calls to oracle that solves problem X

Notation: $Y \leq_P X$

computational model supplemented by special piece of hardware that solves instances of Y in a single step

That is, if we have a code for X, we can obtain a code for Y with only polynomial overhead

(*) called "polynomial-time Turing reduction", or "Cook reduction" (as opposed to "Karp(-Levin) reduction" or "many-to-one reduction" or "polynomial transformation" which is more restricted)

Polynomial-Time Reduction

Goal: Classify problems according to relative difficulty.

Design algorithms: If $Y \leq_P X$ and X can be solved in polynomial-time, then Y can also be solved in polynomial time. That is, if X is tractable, so is Y.

Establish intractability: If $Y \leq_P X$ and Y cannot be solved in polynomial-time, then X cannot be solved in polynomial time. That is, if Y is hard, so is X.

Establish (polynomial-time) equivalence: If $X \leq_P Y$ and $Y \leq_P X$, we write $X \equiv_P Y$

Reduction strategies

- Reduction by simple equivalence
- Reduction from special case to general case
- Reduction by encoding with gadgets

Independent set

MAXIMUM INDEPENDENT SET: Given a graph G = (V, E) and an integer k, is there a subset of vertices $S \subseteq V$ such that $|S| \ge k$, and for each edge at most one of its endpoints is in S?

- **Example:** Is there an independent set of size ≥ 6 ? Yes.
- **Example:** Is there an independent set of size ≥ 7 ? No.

Vertex cover

MINIMUM VERTEX COVER: Given a graph G = (V, E) and an integer k, is there a subset of vertices $S \subseteq V$ such that $|S| \le k$, and for each edge, at least one of its endpoints is in S?

- **Example:** Is there a vertex cover of size ≤ 4 ? Yes.
- **Example:** Is there a vertex cover of size ≤ 3 ? No.

Vertex cover and independent set

Claim: $VERTEX-COVER \equiv_P INDEPENDENT-SET$

Proof: S is an independent set iff $V \setminus S$ is a vertex cover.

Clique

CLIQUE: Given a graph G = (V, E) and an integer k, is there a subset of vertices $S \subseteq V$ such that $|S| \ge k$, and for each pair $x, y \in S$, (x, y) is an edge of E?

Claim: CLIQUE \equiv_{P} INDEPENDENT-SET.

Proof: S is an independent set of G iff S is a clique of G', where G' is the complement of $G: G' = (V, V^2 - E)$.

Reduction strategies

- Reduction by simple equivalence
- Reduction from special case to general case
- Reduction by encoding with gadgets

Set cover

MINIMUM SET COVER: Given a set U of elements, a collection S_1, S_2, \ldots, S_m of subsets of U, and an integer k, does there exist a collection of $\leq k$ of these sets whose union is equal to U?

▶ Sample application:

- ▶ *m* available pieces of software.
- ▶ Set *U* of *n* functionalities that we would like our system to have.
- ▶ The i^{th} piece of software provides the set $S_i \subseteq U$ of functionalities.
- lacktriangle Goal: achieve all n functionalities using fewest pieces of software.

Example:

$$U = \{1, 2, 3, 4, 5, 6, 7\}$$

 $k = 2$
 $S_1 = \{3, 7\}$ $S_4 = \{2, 4\}$
 $S_2 = \{3, 4, 5, 6\}$ $S_5 = \{5\}$
 $S_3 = \{1\}$ $S_6 = \{1, 2, 6, 7\}$

VERTEX-COVER ≤ P SET COVER

Claim: VERTEX-COVER ≤ P SET-COVER

Proof: Given a VERTEX-COVER instance < G = (V, E), k >, we construct a SET-COVER instance $< U, S_1, S_2, \ldots, S_m, k' >$ such that the first instance is true **iff** the second instance is true.

Construction:

- Create SET-COVER instance:
 - U = E, $S_v = \{e \in E : e \text{ incident to } v \}, k' = k$
- ▶ Set-cover of size $\leq k'$ iff vertex cover of size $\leq k$. ■

SET COVER $U = \{1, 2, 3, 4, 5, 6, 7\}$ k' = 2 $S_a = \{3, 7\}$ $S_b = \{2, 4\}$ $S_c = \{3, 4, 5, 6\}$ $S_d = \{5\}$ $S_e = \{1\}$ $S_f = \{1, 2, 6, 7\}$

Reduction strategies

- Reduction by simple equivalence
- Reduction from special case to general case
- Reduction by encoding with gadgets wait a moment :)

NP-hard and NP-complete

NP-hard: A problem X is NP-hard if, for every problem Y in NP, $Y \le_p X$. NP-complete: A problem X is NP-complete, if it is NP-hard and in NP.

Theorem: Suppose X is an NP-complete problem. Then X is solvable in poly-time iff P = NP.

Proof: ← If P = NP then X can be solved in poly-time since X is in P
 ⇒ Suppose X can be solved in poly-time.

- Let Y be any problem in NP. Since $Y \leq_p X$, we can solve Y in poly-time. This implies NP \subseteq P.
- ▶ We already know $P \subseteq NP$. Thus P = NP. ■

Fundamental question

Do there exist "natural" NP-complete problems?

The "First" NP-Complete Problem

Theorem [Cook 71, Levin 73]: CIRCUIT-SAT is NP-complete.

CIRCUIT-SAT: Given a Boolean circuit built out of AND, OR, and NOT gates, is there a way to set the circuit inputs so that the output is 1?

How this was proved?

- from the definition of NP, that is
- by encoding an execution of a non-deterministic Turing machine by a boolean circuit
 - the input problem is solved by YES iff the circuit outputs 1
 - if the execution is polynomial-length then the circuit is polynomial-size

Establishing NP-Completeness

Remark: Once we established the first NP-complete problem, we can "bootstrap" and prove other problems NP-complete by reduction

Universal recipe to establish NP-completeness of problem X

- ▶ Step I. Show that X is in NP.
- Step 2. Choose an NP-complete problem Y.
- ▶ Step 3. Prove that $Y \leq_p X$.

Justification: If Y is an NP-complete problem, and X is a problem in NP with the property that $Y \leq_P X$ then X is NP-complete.

Boolean satisfiability (SAT)

Literal: A Boolean variable or its negation.

$$x_i$$
 or $\overline{x_i}$

Clause: A disjunction of literals.

$$C_j = x_1 \vee \overline{x_2} \vee x_3$$

Conjunctive normal form: A propositional formula Φ that is the conjunction of clauses.

$$\Phi = C_1 \wedge C_2 \wedge C_3 \wedge C_4$$

SAT: Given CNF formula Φ , does it have a satisfying truth assignment?

3-SAT: SAT where each clause contains exactly 3 literals.

each corresponds to a different variable

Ex:
$$(\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (x_2 \lor x_3) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3})$$

Yes: x_1 = true, x_2 = true x_3 = false.

3-SAT is NP-Complete

Theorem: 3-SAT is NP-complete.

Proof: Suffices to show that CIRCUIT-SAT \leq_P 3-SAT since 3-SAT is in NP.

- Let K be any circuit.
- \triangleright Create a 3-SAT variable x_i for each circuit element i.
- Make circuit compute correct values at each node:

$$\rightarrow$$
 $x_2 = \neg x_3 \Rightarrow add 2 clauses:$

$$x_2 \vee x_3$$
, $x_2 \vee x_3$

$$x_1 = x_4 \lor x_5 \implies \text{add } 3 \text{ clauses:}$$

$$x_1 \vee \overline{x_4}$$
, $x_1 \vee \overline{x_5}$, $\overline{x_1} \vee x_4 \vee x_5$

$$x_0 = x_1 \wedge x_2 \implies \text{add } 3 \text{ clauses:}$$

$$\overline{x_0} \vee x_1, \ \overline{x_0} \vee x_2, \ x_0 \vee \overline{x_1} \vee \overline{x_2}$$

Constant input values and output value (1)

$$\rightarrow$$
 x₅ = 0 \Rightarrow add 1 clause: $\frac{}{\chi_{5}}$

$$\mathbf{x}_0 = 1 \Rightarrow \text{add } 1 \text{ clause: } \mathbf{x}_0$$

Final step: turn clauses of length < 3 into clauses of length exactly 3 by introducing new variables:</p>

replace
$$y \lor z$$
 by $(y \lor z \lor p) \land (y \lor z \lor \bar{p})$

$$\mathsf{replace}\ y\ \mathsf{by}\ (y\lor p\lor q)\land (y\lor \bar{p}\lor q)\land (y\lor p\lor \bar{q})\land (y\lor \bar{p}\lor \bar{q})$$

3-SAT Reduces to Independent Set

Theorem: $3-SAT \le P$ INDEPENDENT-SET.

Proof: Given an instance Φ of 3-SAT, we construct an instance (G, k) of INDEPENDENT-SET that has an independent set of size k iff Φ is satisfiable.

Construction.

k = 3

- ▶ *G* contains 3 vertices for each clause, one for each literal.
- Connect 3 literals in a clause in a triangle.
- Connect literal to each of its negations.

3-SAT Reduces to Independent Set

Claim: G contains independent set of size $k = |\Phi|$ iff Φ is satisfiable.

Proof: \Rightarrow Let S be independent set of size k.

- ▶ *S* must contain exactly one vertex in each triangle.
- ▶ Set these literals to true.
 ← and any other variables in a consistent way
- Truth assignment is consistent and all clauses are satisfied.

 \Leftarrow Given satisfying assignment, select one true literal from each triangle. This is an independent set of size k.

$$k = 3$$

$$\Phi = \left(\overline{x_1} \vee x_2 \vee x_3\right) \wedge \left(x_1 \vee \overline{x_2} \vee x_3\right) \wedge \left(\overline{x_1} \vee x_2 \vee x_4\right)$$

Review

- Basic reduction strategies.
 - ▶ Simple equivalence: INDEPENDENT-SET \equiv PVERTEX-COVER
 - ▶ Special case to general case: VERTEX-COVER ≤ P SET-COVER
 - ▶ Encoding with gadgets: $3-SAT \le P$ INDEPENDENT-SET

Transitivity: If $X \leq_P Y$ and $Y \leq_P Z$, then $X \leq_P Z$.

Proof idea: Compose the two algorithms.

Example: $3-SAT \le P$ INDEPENDENT-SET $\le P$ VERTEX-COVER $\le P$ SET-COVER

What we showed so far

All problems below are NP-complete:

Some more NP-complete problems

- SET-PACKING: max number of mutually disjoint sets
- ▶ INT-PROGRAMMING: linear programming on integers
- HAMILTONIAN-CYCLE
- ▶ TSP: traveling salesman problem
- ▶ 3-COLOR: coloring a graph (even planar!) NB: 2-color is in P
- ▶ SUBGRAPH-ISOMORPHISM: given two graphs, is the first one a subgraph of the second?
- LCS of multiple strings
- ► MULTISET-PARTITION: $\{3,1,1,2,2,1\} \rightarrow \{2,1,1,1\} \cup \{3,2\}$
- ► KNAPSACK: select a subset of "maximal value" fitting a knapsack
 - lacksquare n objects, weights w_1, \cdots, w_n , values v_1, \cdots, v_n , knapsack weight capacity W
 - $\max_{S\subseteq 1..n} \{\sum_{i\in S} v_i \mid \sum_{i\in S} w_i \le W\}$

Are there non-NP-complete problems that are not in P?

- Most of "natural" NP problems are either in P or NPcomplete
- Notable exceptions:
 - INTEGER FACTORIZATION
 - GRAPH-ISOMORPHISM

NP

A slight modification can transform a polynomial-time problem into NP-complete

Polynomial	NP-complete		
Shortest path	Longest path		
2-SAT	3-SAT		
2-colorability	3-colorability		
Bipartite vertex cover	Vertex cover		
Maximum graph matching	3D matching		
Minimum cut	Maximum cut		
Minimum spanning tree	Degree-constrained spanning tree		

NP and co-NP

- **co-NP**: problems whose complement is in NP
- Examples:
 - UNSATISFIABILITY (TAUTOLOGY)
 - NO-HAMILTONIAN-CYCLE

If $P \neq NP$ and NP-complete \neq co-NP-complete

INTEGER FACTORIZATION: in NP∩co-NP but not known to be in P

Coping with NP-completeness

- If a problem is NP-complete, you design an algorithm to do at most two of the following three things:
 - Solve the problem exactly
 - 2. Guarantee to solve the problem in polynomial time
 - 3. Solve arbitrary instances of the problem
- ▶ I+2: solving only small instances (e.g. via pseudo-polynomial algorithms)
 - cf. fixed-parameter tractability
 - e.g. Vertex Cover can be solved in $2^k n^{O(1)}$ by simple exhaustive search, where k is the size of Minimum Vertex Cover. Cf https://pacechallenge.org/2019/vc/
- ▶ I+3: improved exponential-time algorithms, e.g.
 - 3-SAT can be solved in $O(1.48^n)$ instead of $O(2^n)$
 - 3-colorability can be solved in $O(1.3289^n)$
- 2+3: approximation algorithms, heuristics
- Note that NP-completeness has also advantageous consequences (cryptography)

Approximation algorithms: examples

Approximation Algorithms Algorithms Algorithms Algorithms

VERTEX COVER

- has an easy 2-approximation algorithm
- There is no 1.3606-approximation algorithm unless P=NP [Dinur, Safra 2005]
- **SET-COVER** can be $\log n$ -approximated, where n is the size of the set to be covered ("universe")
- **KNAPSACK** with a running time $O(\frac{n^3}{\varepsilon})$ such that the computed solution verifies $V \ge (1 \varepsilon) \cdot V^*$, where V is the computed total value and V^* the optimal total value (FPTAS)