Cette étude nous permettre de comparer les trois méthodes des moindres carrés, de Newton et de Gauss-Newton et ainsi trancher pour choisir celle qui donnera le moins d'erreur quant à la prédiction d'un échantillon empirique.

Introduisons les fonction logit et logistique définies respectivement par:

$$logit(p) = ln(p/1-p)$$

$$y(x) = \kappa/(1 + exp(\alpha - \rho x))$$

avec $\ x$ une variable temporelles et les trois lettres grecques $\ \kappa, \ \alpha, \ \rho$ des paramètres.

Le code python pour ces deux fonction nous donne:

```
def logit(p):
    return math.log(p/(1-p))
def s(p,x):
    return p[0]/(1 + math.exp(p[1]-p[2]*x))
```

Méthode des moindres carrés

Supposons que le paramètre κ , cette méthode nous permettra d'estimer les parametres α et ρ .

à partir de la fonction logit on a:

$$\kappa/y = (1 + exp(\alpha - \rho x)) et donc logit (y/\kappa) = \rho x - \alpha$$

La courbe des moindres carrés est alors données par la somme des carrés des différences tel que :

$$\sum_{i=1}^{m} (logit(y_i/\kappa) - \rho x_i - \alpha)^2$$

en code cela nous donne :

```
#Méthode des moindres carrés

videf OLS(f,x,y,kappa): #Fonction pour trouver alpha et rho sachant kappa = 30.54

a = np.array([[-1]*10,x]).T # (.T) transopsé

b = np.array([f(y[i]/kappa) for i in range(len(y))])

Q, R = np.linalg.qr(a)

alpha_rho = nla.solve_triangular(R,Q.T.dot(b)) # matrice nxn et vecteur

return alpha_rho

param = np.append(param,OLS(logit,x,y,param[0]))#Ajout des nouveaux paramètres trouvés
```

On utilise la méthode QR pour résoudre l'équation : a * v = b et $b = logit (v/\kappa)$

ou a est une matrice 10 x 2 avec une première colonne composée de -1 et deuxième colonne composée de 0 à 9, v un vecteur contenant α et ρ les paramètres inconnus et y le vecteur (.53 , .53 , 1.53 , 2.53 , 12.53 , 21.53 , 24.53 , 28.53 , 28.53 , 30.53). on trouve alors α = 5.16 et ρ = 1.18.

Cette méthode n'est pas optimale car on à estimer κ visuellement, on a donc une grande source d'erreur.

Méthode de Newton

Cette méthode utilise la matrice hessienne qui sera expliquée plus tard, on alors une estimation des trois paramètres κ = 28.75 α = 5.95 et ρ = 1.39

On trouve le graphique ci dessus avec une asymptote verticale qui est égale à la valeur de κ

Méthode de Gauss-Newton

On troque l'utilisation de la matrice hessienne par la matrice jacobienne et on a l'estimation suivante : κ = 29.24 α = 5.65 et ρ = 1.30

On trouve le graphique ci dessus avec une asymptote verticale qui est égale à la valeur de κ

Question 2

La matrice hessienne servant à la méthode de Newton se construit comme tel :

$$H(\kappa, \alpha, \rho, x) = \begin{pmatrix} s_{\kappa,1} & s_{\alpha,1} & s_{\rho,1} \\ s_{\kappa,2} & s_{\alpha,2} & s_{\rho,2} \\ \vdots & \vdots & \vdots \\ s_{\kappa,m} & s_{\alpha,m} & s_{\rho,m} \end{pmatrix}$$

où $S_{\kappa,i}$, $S_{\alpha,i}$ et $S_{\rho,i}$ désignent les dérivées partielles seconde de f(κ , α , ρ , x_i) par rapport à κ , α et ρ et x en x = xi, cela donne :

$$\begin{split} S_{\kappa,i} &= \sum_{i=1}^{m} \frac{1 + \rho exp(\alpha - \rho x_{i})}{(1 + exp(\alpha - \rho x_{i}))^{2}} \times \left(s(\kappa, \alpha, \rho, x_{i}) - y_{i} \right) \\ S_{\alpha,i} &= \sum_{i=1}^{m} \kappa \frac{\rho exp(\alpha - \rho x_{i}) * (1 + exp(\alpha - \rho x_{i}))^{2} + \rho exp(\alpha - \rho x_{i}) * (1 + exp(\alpha - \rho x_{i})) * exp(\alpha - \rho x_{i})}{(1 + exp(\alpha - \rho x_{i}))^{4}} \times \left(s(\kappa, \alpha, \rho, x_{i}) - y_{i} \right) \\ S_{\rho,i} &= \sum_{i=1}^{m} (\kappa \frac{exp(\alpha - \rho x_{i})}{(1 + exp(\alpha - \rho x_{i}))^{2}} - x_{i} S_{\alpha,i}) \times \left(s(\kappa, \alpha, \rho, x_{i}) - y_{i} \right) \end{split}$$

Comme expliqué dans la méthode Gauss-Newton supposons que ℓ est une itération connues et que $v\ell$ soit calculé. la méthode de newton consiste à calculer alors $tr(v\ell)^*H(\kappa\ell$, $\alpha\ell$, $\rho\ell)^*v\ell$.

Puis trouver les minimas liés à la fonction étudiée.

Question 3

L'utilisation de gauss-newton est plus simple car ne nécessite pas le calcul de la matrice hessienne. ci dessous les courbes des deux méthodes:

On remarque une légère différence au niveau de l'asymptote horizontale et donc pour la valeur de kappa, mais les deux méthode semble être une bonne approximation de la courbe originelle.

Question 4

Nous allons privilégier la méthode gauss-newton car plus simple à utiliser. On trouve alors les résultats suivant : κ = 29.29 α = 5.55 ρ = 1.29 et λ = 50.40 avec la courbe suivante:

Remarque : On pourrait améliorer les valeurs obtenues en réitérons les méthodes (Newton / Gauss-Newton) pour avoir des valeurs plus optimales et plus précises.