

An Economy Wide Deep Decarbonization Pathways Study November 2019

Clean and Affordable Energy Conference Agenda

- Clean Energy Transition Institute
- NW Deep Decarbonization Pathways Study
- Key Findings
- Implementation Opportunities and Challenges

Clean Energy Transition Institute

Independent, nonpartisan Northwest research and analysis nonprofit organization with a mission to accelerate the transition to a clean energy economy

- Identify deep decarbonization strategies
- Provide analytics, data, best practices
- Offer information clearinghouse
- Convene stakeholders to facilitate solutions

Why a Northwest Deep Decarbonization Study?

Common set of assumptions to inform decisions about how the clean energy transition could unfold over the coming decades

- Unbiased, analytical baseline for the region
- Variety of pathways to lower carbon emissions
- Surface trade-offs, challenges, and practical implications of achieving midcentury targets
- Broaden conversations about actions needed

Comparison to Prior Decarbonization Studies

			WA	OR	ID	MT
2016	State of Washington Office of the Governor	All sectors				
2017	Public Generating Pool	Electricity sector only				
2018	Portland General Electric	All sectors				
	Climate Solutions	Electricity sector only				
	Northwest Natural Gas Company	All sectors; optimized decisions limited to electricity sector only				
2019	Public Generating Pool	Electricity sector only; reliability study				
	Clean Energy Transition Institute	All sectors; optimized decisions across entire energy supply side				

Scope: Northwest Regional Energy Sector

- > Scope: WA, OR, ID, MT
- > All Energy Sectors Represented:
 - Residential and commercial buildings
 - Industry
 - Transportation
 - Electricity generation

Evaluating holistically provides an understanding of cross-sectoral impacts and trade-offs

Study Questions Posed

- How does the energy sector need to transform in the most technologically and economically efficient way?
- How does electricity generation need to be decarbonized to achieve economy-wide carbon reduction goals?
- What if we can't achieve high electrification rates?
- What is the most cost-effective use for biomass? What if biomass estimates are wrong?
- What would increased electricity grid transmission between the NW and CA yield?

Approach to Decarbonizing Energy Supply

- Uses conservative assumptions about existing technology from public sources
- Explores how four NW states can achieve deep decarbonization in all energy sectors
- Modeling determines optimal investment in resources with least-cost
- Decarbonizing energy supply—electricity, pipeline gas, liquid fuels
- Accounts for California systems impact on the region

Study Emissions Target

86% reduction in energy-related CO₂ below 1990 levels by 2050

- Applied to each Northwest state independently
- Consistent with economy-wide reduction of 80% below 1990 levels by 2050
- Allows for reductions below 80% for nonenergy CO₂ and non-CO₂ GHG emissions, where mitigation feasibility is less understood relative to energy

Northwest Deep Decarbonization Target

Key Findings: Deep Decarbonization Achievable

- > Electricity generation must be ~96% clean
- A highly efficient built environment powered by clean electricity
- Aggressive vehicle electrification powered largely by clean electricity
- Thermal generation (natural gas) important for reliability but operates at low capacity factor in 2050
- Significant cost savings if the Northwest and California grids are better integrated
- > Biomass allocated to replace jet and diesel fuel
- > Electric fuels play an important role

Five Decarbonization Strategies Deployed

Clean Electricity

Per capita 96% Clean by 2050 decreases 50%

Low Carbon Fuels

Electrification

Doubles from 23% to 55%

Carbon Capture

1/2 fuel; 1/2 sequestered

Buildings: Deep Efficiency & Electrification

 Building energy intensity declines by 30% for commercial and 60% for residential sector from 2020 to 2050

Building Energy Intensity (2020=1.0)

Transportation: Massive Shift to Electric Vehicles

By 2050:

- Cars, SUVs, and light trucks fully electrified
- Medium and heavy-duty trucks partially electrified
- Results in a 60% reduction in final transportation sector energy demand from light, medium, and heavy-duty vehicles

Fuels: Decarbonized Diesel, Jet, and Pipeline Gas

By 2050:

- Diesel and jet fuel fully decarbonized, primarily using biofuels
- 25% of pipeline fuels partially decarbonized
- Synthetic fuels play a key role

Electricity: 96% Carbon Free

Generation increases 53%, with fossil fuel use at 4%, emissions decline by 86%.

Electricity: Expands to Serve 55% of Energy Demand

- By 2050, 95 GW of generation capacity added
- > 44 GW wind, 35 GW solar
- > 14 GW gas, primarily for reliability, capacity value in times of low hydro, wind, solar combined with high demand
- > 2 GW storage

Final Energy Demand Declines, Even as Region Grows

- In the Central Case energy demand is down 34% and electricity consumption is up more than 50% in 2050
- Even as population increases from 14.7 million people in 2020 to 19 million in 2050 and economy grows

State-Level Energy CO₂ Emissions in 2050

In three of four states, majority of remaining emissions in the Central Case in 2050 are from natural gas combustion.

Estimated Net Cost to Achieve Target Roughly 1% of GDP

- Cumulative costs of decarbonizing the energy system in the Central Case are 9.5% higher than the capital and operating expenses of the Business as Usual energy system
- Represents roughly 1% of region's GDP
- Does not include benefits from avoiding climate change, reducing air pollution, improved health

Alternative Pathway Results

100% Clean Electricity Grid

Limited Electrification & Efficiency

No New Gas Plants for Electricity

Limited Biomass for Liquid Fuels

Increased NW-CA Transmission

- Easier with economy-wide approach; electric fuels achieves additional 4%
- Enormous supply/cost implications; scale of facilities prohibitive; imports likely
- More energy storage & renewables for reliability; approximately double the cost
- Similar energy system impacts to the No New Gas, though not as costly
- Saves \$11.1B; avoid development of low-quality renewables in CA & in NW

Electricity Resources All Cases in 2050

Annual Net Energy System Costs, Six Cases

Equity Implications and Implementation

Equity implications must be explored and addressed

Deep Decarbonization Implementation Challenges:

Implementing widespread transportation electrification

Limiting natural gas in buildings, transport, and the grid

Achieving deep energy efficiency

- Grid storage, grid readiness
- Improving/expanding Northwest-California grid integration
- Assessing actual biomass in the Northwest
- Determining the role power-to-X, electrolysis, direct air capture in the Northwest

Institute Next Steps

- Develop Policy, Innovation, Investment& Equity Frameworks to Accelerate Deep Decarbonization
 - Role of Natural Gas in Buildings, Transport, Grid
 - Transportation Electrification
 - Northwest-California Grid Integration
- Potential Additional Runs of the Model
 - Change assumptions about hydroelectricity, nuclear availability, coal plant retirements, natural gas pricing and carbon intensity.
- Project: Building Decarbonization with an Equity Focus

Clean Energy Transition Institute

Thank you

Eileen V. Quigley
Executive Director
Clean Energy Transition Institute
eileen@cleanenergytransition.org

JOIN by texting 66866 and typing CLEANENERGY