Exercises 3: Precedence and Implication

Exercises

- 1. Insert parentheses in the following Boolean expressions as specified by the precedence rules. Then rewrite them in the alternative notation using "+" and "." for "∨" and "∧". Then simplify them as much as you can using the laws of Boolean algebra.
 - (a) $p \lor q \land r \lor s \land \neg p \lor q \land \neg r \lor s$
 - (b) $\neg \neg p \lor q \land \neg p \lor \neg q \land \neg r \lor \neg \neg s \land p$
 - (c) $p \land q \lor r \Longrightarrow q \lor \neg p \land r$
- 2. Write the following statements in the form $p \Longrightarrow q$ or $p \Leftrightarrow q$ for suitable p and q:
 - (a) If the cap fits, he will wear it.
 - (b) You need to be dedicated to work here.
 - (c) You should not cross the line while the red lights flash.
 - (d) You may cross the line if and only if the light is green.
 - (e) Finding the knife was enough to convict him.
 - (f) You may board the plane only if you arrive before 10 a.m.
 - (g) For the program to compile, it is necessary and sufficient that it is syntactically correct.
- 3. Construct truth tables for the following formulae and then show that two of them are equal:
 - (a) $\neg q \Longrightarrow \neg p$
 - (b) $p \Longrightarrow (q \Longrightarrow r)$
 - (c) $(p \Longrightarrow q) \Longrightarrow r$
 - (d) $p \wedge q \Longrightarrow r$
- 4. (Why is the implication truth table what it is?) It is easy to understand that $p \Longrightarrow q$ must be true when p and q are both true, and false when p is true but q is false. Some people find it harder to accept that $p \Longrightarrow q$ is

always true when p is false. If we are not sure of the correct value in these cases, there are four possibilities for the definition of \Longrightarrow . We'll call these connectives α , β , γ and δ , listed in the following truth table.

p	\overline{q}	$p \alpha q$	$p \beta q$	$p \gamma q$	$p \delta q$
F	F	F	F	T	T
F	T	F	T	F	T
T	F	F	F	F	F
T	T	T	T	T	T

One way to resolve the difficulty is to use the fact that p must imply p OR q whatever q might be, so we want $p \Longrightarrow (p \lor q)$ to be a tautology. Work out the truth table for this statement with the various possible interpretations of \Longrightarrow , or, in other works, complete the following truth table:

I)	q	p	α	$(p \setminus$	/ q)	p	β	$(p \lor q)$	p	γ	$(p \lor q)$	q)	p	δ	$(p \lor q)$	<u>7)</u>
I	7	F															
I	7	T															
7	٦.	F															
7	7	T															

Solutions

1. (a)

$$\begin{array}{l} p \ \lor \ q \ \land \ r \ \lor \ s \ \land \ \neg \ p \ \lor \ q \ \land \ \neg \ r \ \lor \ s \\ = p \ \lor \ (q \ \land \ r) \ \lor \ (s \ \land \ (\neg \ p)) \ \lor \ (q \ \land \ (\neg \ r)) \ \lor \ s \\ = p \ \lor \ (q \ \land \ r) \ \lor \ (q \ \land \ (\neg \ r)) \ \lor \ s \ \lor \ (s \ \land \ (\neg \ p)) \end{array} \quad \text{(commutativity)} \\ = p \ \lor \ (q \ \land \ r) \ \lor \ (q \ \land \ (\neg \ r)) \ \lor \ s \ \lor \ (s \ \land \ (\neg \ p)) \qquad \text{(commutativity)} \\ = p \ \lor \ (q \ \land \ r) \ \lor \ (q \ \land \ (\neg \ r)) \ \lor \ s \qquad \qquad \text{(absorption)} \\ = p \ \lor \ (q \ \land \ (r \ \lor \ (\neg \ r))) \ \lor \ s \qquad \qquad \text{(distributivity)} \\ = p \ \lor \ (q \ \land \ T) \ \lor \ s \qquad \qquad \text{(cancellation)} \\ = p \ \lor \ q \ \lor \ s \qquad \qquad \text{(identity)} \end{array}$$

(b)

$$\neg \neg p \lor q \land \neg p \lor \neg q \land \neg r \lor \neg \neg s \land p$$

$$= (\neg (\neg p)) \lor (q \land (\neg p)) \lor ((\neg q) \land (\neg r)) \lor (\neg (\neg s) \land p)$$

$$= p \lor (q \land (\neg p)) \lor ((\neg q) \land (\neg r)) \lor (s \land p)$$
(involution)
$$= p \lor ((\neg p) \land q) \lor ((\neg q) \land (\neg r)) \lor (p \land s)$$
(commutativity)

$$= p \lor q \lor ((\neg q) \land (\neg r)) \lor (p \land s)$$
 (negative absorption)
$$= p \lor q \lor (\neg r) \lor (p \land s)$$
 (negative absorption)
$$= p \lor q \lor (p \land s) \lor (\neg r)$$
 (commutativity)
$$= p \lor (p \land s) \lor q \lor (\neg r)$$
 (commutativity)
$$= p \lor q \lor (\neg r)$$
 (absorption)
(c)
$$p \land q \lor r \Rightarrow q \lor \neg p \land r$$

$$= ((p \land q) \lor r) \Rightarrow (q \lor ((\neg p) \land r))$$

$$= \neg ((p \land q) \lor r) \lor (q \lor ((\neg p) \land r)))$$
 (de Morgan)
$$= ((\neg p \land \neg r)) \lor (q \lor ((\neg p) \land r)))$$
 (de Morgan)
$$= ((\neg p \land \neg r) \lor (\neg q \land \neg r)) \lor (q \lor ((\neg p \land r)))$$
 (distributivity)
$$= (\neg p \land \neg r) \lor (q \lor (\neg q \land \neg r)) \lor ((\neg p \land r)))$$
 (commutativity)
$$= (\neg p \land \neg r) \lor (q \lor (\neg q \land \neg r)) \lor ((\neg p \land r)))$$
 (negative absorption)

(commutativity)

- 2. (a) p = "the cap fits", q = "he will wear it": $p \Rightarrow q$
 - (b) p = "you are dedicated", q = "you work here": $q \Rightarrow p$

 $= (\neg p \land \neg r) \lor q \lor \neg r \lor (r \land \neg p))$

- (c) p = "do not cross the line", q = "the red lights are flashing": $q \Rightarrow p$
- (d) p = "you may cross the line", q = "the light is green": $p \Leftrightarrow q$
- (e) p= "the knife was found", q= "he was convicted": $p\Rightarrow q$ (It is sufficient to have found the knife in order to convict him but it was not necessary.)
- (f) p= "you may board the plane", q= "you arrive before 10a.m.": $q\Rightarrow p$
- (g) p= "the program compiles", q= "the program is syntactically correct": $p\Leftrightarrow q$
- 3. $p \Rightarrow (q \Rightarrow r) = p \land q \Rightarrow r$
- 4.

p	q	$p \alpha (p \lor q)$	$p \beta (p \lor q)$	$p \ \gamma \ (p \lor q)$	$p \delta (p \lor q)$		
F	F	F	F	T	T		
F	T	F	F	F	T		
T	F	T	T	T	T		
T	T	T	T	T	T		

The column for α is the same as for p, the column for β is the same as $p \vee q$, the column for γ is the same as $p \Rightarrow q$, and the column for δ is a tautology (all T).