This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

REMARKS:

Claims 15-19 and 22 are in the case and are presented for consideration.

Claim 15 has been amended to further emphasize the resistance the one-piece silicon tray has to deformation under load and also resistance to temperatures of ovens which are set to make confectionery and breads. The temperature and deformation resistance characteristics are set forth in the specification and have been added to help better distinguish the silicone of the tray in the claims from so-called RTV or room temperature vulcanization silicones of the type disclosed in the patent to Maurino et al.

Turning to the official action, the subject matter objected to by the examiner as containing new matter has been canceled from the specification. Claims 20 and 21 which have not been considered have also been canceled.

The specification and claims are now, therefore, believed to be in proper form under 35 U.S.C. 112.

No new matter has been added in claim 15 as now amended since the specification clearly supports the deformation resistance characteristic of the silicone and also the fact that the silicone must be capable of resisting temperatures of ovens that are meant to make confectionery and breads. See, for example, the specification as page 1, line 18 and page 3, lines 15-17.

Claims 15-19 have been rejected as being fully anticipated by

Maurino.

In the mid-70s when Maurino was filed and granted, RTV silicones were available, but did not have the deformation or temperature resistance of the silicone of the present invention which is vulcanized at elevated temperatures. Please note that Maurino gives silistic RTV silicone rubber as an example of its material (Maurino at col. 3, lines 1-3) and no other type of silicone.

Attached to this amendment, please find a letter with attachments from a silicone manufacturer (Exhibit A) explaining some of the attributes of RTV silicones and the fact that they are generally fiberglass supported or have metal frames for support since they are not hard enough to resist deformation on their own.

Attached also find Exhibit B which is a set of photographs of various trays made in accordance with the present invention showing how they can be deformed under force to dislodge breads or confectionery baked within their receptacles, but then pop back to shape.

Their self-supporting nature is also disclosed in some of the photographs.

RTV silicones, such as those disclosed in Maurino, have the following characteristics:

- 1. A very low hardness (15-50 shorA);
- 2. A very low mechanical resistance; and

3. A very high elongation.

Because of these characteristics, it is necessary to provide a rigid support structure such as box P in Fig. 2 of Maurino as well as a bottom restraining ring 11, to avoid deformation of the mould when it is filled with a product. It is also necessary to provide the support box P to suspend the mould above the bottom of the box to allow the mould to expand when the vacuum is applied so as to allow the extraction of a product (see Fig. 3 of Maurino).

Because of the poor mechanical characteristics of the RTV silicone product cannot simply be extracted by deforming the bottom of a mould upwardly as shown in some of the Exhibit B photographs.

Claim 15 has also been amended to explain that no other reinforcement is provided in any other sections of the tray other than the wing. This is currently shown in all embodiments of the invention and no new matter has been added in this regard either.

Turning to Maurino, the metallic ring 7 at the upper flange of Maurino is provided to help fasten the mould to the top of the support box P only and not to make the tray self-supporting or capable of extracting its contents without some special mechanism, namely, the box P and a vacuum system.

The present invention provides the following advantages:

- Better handling of the mould which is not deformed when handled;
- 2. No need for an external support box that would

increase the dimension of the hole with problems when the mould is to be inserted into an oven; and

3. Easy extraction of product by simply pushing up on the bottom of the reservoirs in the mould as shown in the photographs.

In fact, Maurino discloses a mould which is not a sheet-like mould. The Maurino mould is made of distensible material and has thick walls which can be stretched, expanded and distended. This mould necessitates two annular restraining members, one upper restraining member 7 embedded in flange 5 and a lower restraining ring 11 embedded in the periphery of the bottom wall.

Evidently, and in spite of these two retraining members, the mould of Maurino does not resist deformation; on the contrary, the mould by Maurino is specially construction so as to be adapted to be distended.

Summarizing, Maurino does not anticipate amended claim 15.

New claim 22 also better distinguished the invention over the prior art.

The Commissioner is hereby authorized to charge Deposit Account No. 14-1431 for any additional fees which may be due under 37 C.F.R. 1.16 or 1.17.

By this Amendment thus the application and claims are believed to be in condition for allowance and favorable action is

respectfully requested.

Respectfully submitted,

Peter C. Michalos

Reg. No. 28,643

Attorney for Applicants (845) 359-7700

Dated: December 10, 2002

NOTARO & MICHALOS P.C. 100 Dutch Hill Road, Suite 110 Orangeburg, NY 10962-2100

Page 3, before the paragraph beginning on line 3, insert the heading --BRIEF DESCRIPTION OF THE DRAWINGS--; and on page 3, before the paragraph beginning on line 9, insert the heading --DESCRIPTION OF THE PREFERRED EMBODIMENTS--.

Page 3, please correct the paragraph beginning on line 9, to read as follows:

--With reference to the attached figures, 1 indicates in its whole, a mould according to the invention, essentially consisting of a tray 2 made of walls with substantially consistent thickness and in which the product to be cooked or heated is inserted and that is provided, on the upper side of its diverging side walls, with an edge 3 essentially consisting of a wing projecting outwards and which projects by a greater extent than its width. The bottom wall of tray 2 is flat.--

IN THE CLAIMS:

DEC 1 7 2002

Cancel claims 1-8 inclusive and substitute therefore the following claims:

--9. A flexible mould for confectionary and bread-making, comprising:

a silicone tray comprising a bottom wall and side walls extending upwardly from the bottom wall, each side wall having an upper edge;

the silicone tray including a silicone wing extending

WordPerfect Document Compare Summary

Version with markings/t sh wehanges made

U.S. Appin No. 09

Original document: M:\PAT-AMD\J118-104-15.wpd
Revised document: M:\PAT-AMD\J118-104-15Amd.wpd
Deletions are shown with the following attributes and color

Deletions are shown with the following attributes and color:

Strikeout, Blue RGB(0,0,255). Deleted text is shown as full text.

Insertions are shown with the following attributes and color:

Double Underline, Redline, Red RGB(255,0,0).

The document was marked with 5 Deletions, 9 Insertions, 0 Moves.

-- 15 _-15. <u>(Amended)</u> A flexible mould for confectionery and bread-making, comprising:

a one-piece silicone sheet-like self-supporting tray comprising a bottom wall, side walls extending upwardly from the bottom wall, each side wall having an upper edge and including a silicone peripheral wing extending outwardly from the upper edge of each of the side walls around the perimeter of the side walls, said wing having a peripheral edge, the silicone being of the type that has resistance and flexibility and resists temperatures of an oven for making confectionery and breads; and

<u>a stiffening element in the form of</u> a wing stiffening element fixed to the wing near the peripheral edge of said wing and extending entirely around said wing,

to stiffen said wingmould in order to give the mould the

resistance required to carry weight of a product in the mould

without being deformed while keeping the flexible features and in

order to make it possible to lift the mould by the wing so that

the wingmould resists deformation under strain caused by content of the mould.——

الرامية

Wacker-Chemie GmbH Johannes-Hess-Str. 24 D-84489 Burghausen

Tel. +49-8677-83-2085 Fax +49-8677-83-4142 juergen.weidinger@wacker.com

FAX

21. Oktober 2002

Mr. Dott. Bruno Meroni

FaJCo. SILITAL SPA

Fax 0039 -02 - 0039-02-95939099

8 Seite(n) Incl. Deckbiatt

RTV and heat curing allicone rubbers -differences in stiffness and nervousity

Dear Dott. Meroni,

please find attached some copies of data sheets of some typical representants of RTV (room temperature vulcanizable) and heat curing silicone rubber (taken from our brochures).

As you can clearly see the RTV silicones (e.g. typically ELASTOSIL® M 1470) are much less stiffer than the heat curing one (e.g. ELASTOSIL® LR 3003) which one can see from the hardness as well as from the general mechanical strength. Both are obviously higher at the heat curing rubbers indicating higher stiffness and nervousity and thus meaning that parts made of these materials do not or not necessarily need a support in shaping appplications as parts made of RTV normally do.

In general, molds made of RTV are supported by glass fiber, metal frame etc. Molds made of heat curing silicone are usually made of material with a hardness of 60 shore A and higher (as you can see 60 shore is the hardest possible in RTV at special grades), preferably of 70 Shore A. Molds of e.g. ELASTOSIL® LR 3003/70 are much more stiffer and thus can stand and keep their shape without further support or inlay. When inlays are used within these silicones this is mostly not for stabilizing but more or less for better handling e.g. in cleaning and storage.

With best regards

Dr. Juerger Weidinger

Sitz München Amtsgericht München HRB 3499 Geschäftsführung: Peter-Alexander Wacker (Sprecher) Joschim Rauhut Wilhelm Sittenthaler Rudolf Staudigi Vorsitzender des Aufsichtsrata: Karl Heinz Weiss

Heat Curing Stocare

ELASTOSIL* LR 3004/20 ELASTOSIL* LR 3004/30 ELASTOSIL* LR 3004/40 ELASTOSIL* LR 3004/50 ELASTOSIL* LR 3004/70 ELASTOSIL* LR 3004/70 ELASTOSIL° LR 3003/10 ELASTOSIL° LR 3003/20 ELASTOSIL® LR 3003/30 ELASTOSIL® LR 3003/40 ELASTOSIL® LR 3003/50 ELASTOSIL® LR 3003/60 FLASTOSIE LR 3003/70 ELASTOSIL LR 3003/80

ELASTOSILº ER 3043/40 ELASTOSIL LR 3044/5 ELASTOSIL LB 3044/6 ELASTUSIL LR 3043/50

Transparent	Transparent		·
	Dushar Auf	Transparent	Transparent
1.08 - 1.19	1.19 - 1.17	1.11/1.14	1.13/1.14
100,000 - 3,000,000	200.000 - 3.000,000	750,000 / 1,600,000	750,000 / 1,400,000
15 - 78	20 - 70	37/50	50/60
3.0 - 10.0	7.0 - 10.0	8.5/9.8	9.0
300 - 700	300 - 700	470/690	450/470
. 9 - 35	15 - 36	30/45	38/40
44 - 65	45 - 65	45/60	59/60
10 - 25	10 - 25	18/25	20/25
23	23	23	23
לי0ָ5 - 1	5 - 1014	5 · 1014	5 - 10%
3.1	3.1	3.1	3.1
30 - 10 -	30 101	30 · 10 •	30 - 10~
. 27	27	27	27
tin sut com	to the particle of distance in the property of the least	the control of the control of the species of the control of	the state of the state of the original and the state of t

	0171 0201	
ELASTOSIL	Prop	erties
	_	

ELASTOSIL® Consistency Colour of the cured rubber		Golour of the	Properties fithe cured rubber	Special features	Viscosity the ready-t	
	M 1470	Kneadable	Hard:	AMAZ HERIOR	ithPa a]	
		plnk	high mechanical strength	General-purpose grade	> 1 000 000	
	M 2471	Spreadable pale grey	Hard; ' high mechanical strength	General-purpose grade	> 250 000	
	M 3500	Spreadable, non-sag translupent	Soft; outstanding extensibility and mechanical strength	For skin moulds	> 1 000 000	
	M 3502	Spreadable, non-sag white	Soft; high extensibility and mechanical strength	For skin moulds; outstanding resistance to polyaster and polyurathane resins	> 1 000 000	
	M 4400	Pourable pale yellow	Soft; high extensibility	General-purpose grade	25 000	
	M 4440	Pourable beige	Moderately hard	General-purpose grade	20 000	
	M 4441	Pourable white	Moderately hard	High resistance to polyurethane resins	7 000	
	M 4470	Fourable reddish brown	Hard	High thermostability and thermal conductivity	10 000	
	M 4500	Pourable white	Very soft; excellent extensibility and high mechanical strength	High resistance to polyeater resins	20 000	
	M 4502	Pourable beige	Soft; high extensibility and mechanical strength	High resistance to polyester resins	30 000	
	M 4503	Pourable white	Soft; high extensibility and mechanical strength	General-purpose grade	40 000	
7	M 4511	Pourable white	Very soft; excellent extensibility and mechanical strength	Outstanding resistance to poly- eater and polyurethane resins	20 000	
	M 4512	Fourable white	Soft, excellent extensibility and mechanical strength	Outstanding resistance to poly- ester and polyurathane resins	25 000	
	M 4514	Pourable white	Soft; excellent extensibility and mechanical strength	Outstanding resistance to poly- ester and polyurethane regins	25 000	
	M 4540	Pourable white	Moderately hard; high extensibility and mechanical strength	High resistance to polyurethane resins	55 000	
	M 4541	Pourable white	Moderately hard; high extensibility and excellent mechanical strength	Outstanding resistance to poly- ester and polyurethane resins	25 000	
	M 4545	Pourable white	Moderately hard; high extensibility and excellent mechanical strength	Outstanding resistance to polyester and polyurethane resins	35 000	
	M 4370 A/B	Pourable reddish brown	Hard	High thermostability and thermal conductivity	8 000	
	M 4600 A/B	Pourable translucent	Soft, excellent extensibility and mechanical strength	General-purpose grade	15 000	
	M 4501 A/B	Pourable reddish brown	Soft, excellent extensibility and mechanical strength	General-purpose grade	15 000	
5	M 4640 A/B	Pourable transparent	Moderately hard; high mechanical strength	High resistance to polyurethane and apoxy resins	70 000	
Addition cure	M 4642 A/B	Pourable dark md	Moderately hard; high extensibility and excellent mechanical strength	General-purpose grade	15 000	
dditi	M 4843 A/B	, Pourable grey	Moderately hard: high mechanical strength	High resistance to polyurethane and epoxy resins	25 000	
∢	M 4644 A/B	Pourable transparent	Moderately hard; high mechanical attength; self-releasing	Excellent resistance to polyurethane and epoxy resins	50 000	
	M 4847 A/B	Pourable Crystal-clear	Moderately hard; high mechanical strength	Excellent recistence to polyurethane and epoxy resins	70 000	
	M 4648 A/B	Pourable translucent	Moderately hard; high mechanical strength; self-releasing	Excellent resistance to	15 000	
	M, 4670 A/B	Pourabl beige	Hard: high mechanical strength	polyurethane and spoxy resins High resistance to polyurethane and epoxy resins	80 000	
		•		. —		

202 678

	Viscosity of	Density	Hardness	. .				res ar intended a be used in prepar	VIII SOocifi
•	the ready-to use mix [mPa s]	(DIN 53478A)	Shore A (DIN 53505)	Tensile strength (DIN 53504 S3A)	Tensile strength (ASS POSS NICK)	(DIN 53504 \$3 A)	Tear strength (ASTM D824 B)	Tear strength (ASTM DB24 B)	
ade	> 1 000 000	1.28	50	4.5	650	. [%] 230	[N/mm]	[iqq]	1%
	· · · > 250 000			• • • • • • • • • • • • • • • • • • • •			> 10	> 57	٥.
	> 1 000 000	1.20	55	4.5	650	170	> 7	> 40	0.
inding			20	4.0	580 	700	> 30	> 170	. 0.€
r and	> 1 000 000	1,25	26	4.5	650	450	> 23	 > 130	 0. ₄
3de 	25 000	1,30	23	2.0	290	250		> 17	0.7
3de 	20 000	1. 22 	37	2.5	360	200	·· ·· ·· ·· · · · · · · · · · · · · ·	 >17	0.4
) is	7 000	1.22	45	2.0	290	130	> 3	> 17	0.3
ty ivity	10 000	1.44	60	4.5	650	120	· ·		0.8
3 	20 000	1.20	14	3,0	435	450	- ,	> 65	0.6
,	30 000	1.28	22	3.5	510	350	 > 16	 > 90	0,5
ade	40 000	1,16	25	5.0	725	350	···· > 20	> 115	0,5
.o poly- reains	20 000	1.22	12	3.5		600	:, ., > 18	> 105	0,4
:o poly~ resins	25 000	1.19	20	3.5	510	 500	 > 24	> 140	
resins	25 000	1.25	25	4.5	 850	450	> 25	> 145	0.4
) (8	55 000	1.19	33	5.0	725	300	> 18	> 105	0.4
o poly- resins	25 000	1.16	30	5.0	725	 400	> 30	······································	0.5
o poly-	35 000	1.20	35	5.5	800		> 25		0.5
and	8.000	,				******		> 14 5	0.5
ly ade	8 000	1.43	55	3.0 ··· · ,	435	130	> 4	> 23	< 0.1
	15 000	1,10	20	7.0	1015	800	> 20	> 115	< 0. 1
3de)	15 000	1.13	28	6.5	945	700	> 30		 < 0.1
'resins	70 000 	1.10 	43 	6.Q 	870	400	> 20	> 115	< 0.1
₃de , `	15 000	1.14	37	7.0	1015	550	> 30	 > 170	< 0.1
resins	25 000	1.35	48	5.0	725	300	 > 10	> 57	< 0.1
resins	50 000	1.07	40	5.5	800	400	> 25	> 145	< 0.1
' resins	70 000 	1.02	45	4.5	650	250	> 10	> 57	
to resins	15 000	1.11	36	6.0	870	400	> 20	> 115	< 0.1
, Lastuz ,	80 000	1.34	55	5.5	 800	300	> 12		< 0.1
	~	• ••						> 70	< 0.1

ELASTOSIL® M is a registered trademark of Wacker-Chemie Gmb

Flüssigsiliconkautschuk / Liquid Silicone Rubber

Wacker Silicone

HEAT GURING SILICONE

ELASTOSIL® LR 3003 / 10 A, B - LR 3003 / 80 A, B

Kennzeichen

Flüssigsiliconkautschuke der Reihe ELASTOSIL® LR 3003 sind pastöse, leicht pigmentierbare Zweikomponentenmischungen mit sehr kurzen Vulkanisationszeiten. Ihre Vulkanisate zeichnen sich durch hohe Transparenz und sehr gute mechanische und elektrische Eigenschaften aus. Bei Zusatz von Hitzestabilisatoren können die Produkte zwischen – 55 °C und +230 °C, kurzzeitig bis +300 °C, eingesetzt werden.

Anwendung

Diese Qualitäten eignen sich besonders zur kostengünstigen Produktion größerer Serien von Formartikeln im Spritzgießverfahren. Teile aus ELASTOSIL® LR 3003 können im technischen, lebensmittelnahen oder pharmazeutischen Bereich eingesetzt werden. Für medizinische Anwendungen eignen sich die Typen ELASTOSIL® LR 3003/20–80.

Nähere Informationen hierzu finden Sie in der Broschüre "ELASTOSIL® LR Flüssigsiliconkautschuk – Eigenschaften und Verarbeitung".

Getemperte Teile eignen sich für Anwendungen im Pharma- und Lebensmittelbereich und entsprechen den Empfehlungen des BgVV "XV. Silicone" und FDA § 177.2600.

Verarbeitung

Die A- und B-Komponenten werden verarbeitungsfertig in 201- und 2001-Fässern angeliefert. Mit gängigen Dosieranlagen kann das Material aus den Originalgebinden direkt in die Spritzgießmaschine gepumpt und über einen statischen Mischer vermischt werden. Das Mischungsverhältnis beträgt 1:1.

Gemische von A- und B-Komponenten weisen bei Raumtemperatur eine Verarbeitungszeit (Topfzeit) von mindestens drei Tagen auf.

Ausführliche Hinweise zur Verarbeitung finden Sie in der Broschüre "ELASTOSIL® LR Flüssigsiliconkautschuk – Eigenschaften und Verarbeitung" und im Merkblatt "Spritzgießverarbeitung von ELASTOSIL® LR".

Characteristics

Liquid silicone rubbers of the ELASTOSIL® LR 3003 series are paste-like, easily-pigmentable two-component compounds with very short curing times. Their vulcanizates are noted for their high transparency and excellent mechanical and electrical properties. When heat stabilizers are added, the products can be used within a temperature range of –55°C to +230°C, and for a short time up to 300°C.

Applications

These grades are particularly suitable for the economical production of large series of injection-moulded articles. Parts made from ELASTOSIL® LR 3003 can be used for technical and pharmaceutical applications. These articles are also suitable for use in conjunction with foodstuffs.

For further information, please refer to our brochure "ELASTOSIL® LR Liquid Silicone Rubber - Properties and Processing".

Postcured parts can be used for applications in the pharmaceutical and food industries and comply with the recommendations "XV. Silicone" of the EgVV and FDA § 177.2600.

Processing

The A and B components are delivered ready-to-use in 20-I and 200-I drums. With standard metering equipment, the products can be pumped directly from the original containers into the injection moulding machine and mixed in a static mixer. The mixing ratio is 1:1.

At room temperature, a mixture of A and B components has a pot life of at least three days.

For detailed information, please refer to our brochure "ELASTOSIL® LR Liquid Silicone Rubber – Properties and Processing" and our leaflet "Injection moulding of ELASTOSIL® LR".

ELASTOSIL® ist eine eingetragere Marke der Wacker-Chemle GmbH. ELASTOSIL® is a registered trademark of Wacker-Chemie GmbH.

Tracking resistance

Eigenschaften / Product data

elastosil®			LR 3003 / 10 A, B	LR 3003/20 A. I
Aussehen Appearance			transparent	transparent
Dichte Density	DIN 53 479 A	[g/cm ³]	1.08	1.10
Viskosität (Schergeschwindigkeit 0,9 s-1) Viscosity (shear rate 0.9 s-1)		[mPas]	140 060	200 900
Viskosität (Schergeschwindigkeit 10 s-1) Viscosity (shear rate 10 s-1)		[mPas]	85 00C	90 000
Mechanische Eigenschaften / Mechani zulkanisiert 5 min 165°C, getempert zulcanized for 5 min at 165°C, postcured	Ical properties			
Harte, Shore A Harthess, Shore A	DIN 53 505		12	23
Reißfestigkeit Tensile strength	DIN 53 504-S 1	(N/mm²)	3.0	7.9
Reißdefinung Zongation at break	DIN 53 504-S 1	[%]	620	750
Welterreißwiderstand Tear resistance	ASTM D 624B	[M/mm]	3	21
Rückprallelastizität mpact resilience	DIN 53 512	{%}	41	50
Druckverformungsnest* Compression set**	DIN 53517/ 22 h/175°C	[%]	12	12
Temperung 6 h / 200 °C / ** Postcured for 6 Bektrische Eigenschaften / Electrical etemper / postcured	properties			
ypenreihe ELASTOSIL* LA 3003 / ELAS Durchschlegfestigkeit. 1-mm-Platte Dielectric strength, 1-mm sheet		es VDE 0303	[kV/mm]	23
Spezifischer Durchgangswiderstand Volume resistivity		VDE 0303	[Ω x cm]	5 x 1017
Dielektrizitätskonstante bei 50 Hz Dielectric constant at 50 Hz		VDE 0303		3.1
Dielektrischer Verlustfaktor tan 8 bel 50 Hz Dissipation factor tan 8 at 50 Hz		VDE 0303		30 × 10-4
Kriechstromfestigkeit Fackling resistance		DIN 53 480		ка зс

Diese Angaben stellen Richtwerte der und sind nicht zur Erstellung von Spezifikationen bestimmt. These figures are intended as a guide and should not be used in preparing specifications.

LR 3003/30 A, B	LR 3003/40 A, B	LR 3003/50 A, 8	LR 3003/60 A, B	LR 3003/70 A, B	LR 3003/80 A, B
transparent	transparent	transparent	transparent	transparent	transparent
1,10	1.12	1.12	1.13	1.18	1.19
250 000	850 000	900,000	1 000 000	2 500 000	2600000
100 000	360 000	360 000	380 000	1 300 000	540 000

32	42	52	61	70	78
7. 6	9.5	9.5	9.7	9.8	8.3
620	620	470	370	320	240
20	26	31	29	26	14
60	55	63	68	60	65
12	12	12	12	19	12

Vulkanisationsbedingungen / Cure conditions

Mischungsverhältnis Mixing ratio	A:B = 1:1
Prefivulticants ation Press cure	5 min/165 °C
Temperung (im Umluftofen mit Friechluftzufuhr). Postcure (in circulating air oven with fresh air supply)	4 h/200°C

Lag rbeständigkeit

ELASTOSIL* LR 3003/10 A, B - LR 3003/80 A, B besitzen eine Lagerbeständigkeit von mindestens 6 Monaten, sofern die original verschlossenen Gebinde bei 25°C gelagert werden. Das Mindesthaltbarkeitsdatum der jeweiligen Charge ist auf dem Produktetikett angegeben.

Da der Platinkatalysator insbesondere durch Amine. Schwefel- und Phosphorverbindungen vergiftet werden kann, sollen angebrochene Gebinde stets verschlossen gelagert werden.

Eine Lagerung über den angegebenen Zeitraum hinaus bedeutet nicht notwendigerweise, daß die Ware unbrauchbar ist. Eine Überprüfung der für den jeweitigen Einsatzzweck erforderlichen Eigenschaftswerte ist jedoch in diesem Falte aus Gründen der Qualitätssicherung unerfäßlich.

Sicherheitstechnische Hinweise

Ausführliche Hinweise enthalten die jeweiligen Sicherheitsdatenblätter. Diese können bei unseren Vertriebsgesellschaften angeforden werden.

Storage stability

ELASTOSIL* LR 3003/10 A, B - LR 3003/80 A, B have a shelf life of at least 5 months if stored in originally sealed containers at 25°C. The "Best use before end" date of each lct is shown on the product label.

Once opened, containers should always be resealed after use to prevent the platinum catalyst from being poisoned by amines, sulphur or phosphorus compounds.

If the material is kept beyond the recommended shelf life, it is not necessarily unusable, but a quality control should be performed on the properties relevant to the application.

Safety instructions

Comprehensive instructions are given in the corresponding Material Safety Data Sheets. They are available on request from Wacker subsidiaries.

Die in diesem Merkbist mitgeteilten Deten enteprechen dem derzeitigen Stand. Dir Abnehmer ist von sorglätigen Europangsprufungen im Entwiteil hierdurch nicht ein bunden. Anderungen der Produktkeinrätelten im Rahmen des technischen Fortschilts oder durch betreiblich bedingte Weiterentwicklung behalten wir uns vor. Die in diesem Merkelatt gegebenen Empfenlungen erfordern wegen der durch uns nicht beeinflußbaren Fektoren vrährend der Verarbeitung, insbeschidere ber ihr Verwendung von Rohatchen Oriter, eigene Pröfungen und Versuche, unsere Empfehlungen enbunden zicht von der Verpflichtung, eine eit. Verfetzung von Schulzrechten Dritter seinst zu überprinfen und giff, zu beseitigen. Verwendungsverschälige begründen keine Zusicherung der Eignung für den einplichtenen Empatzeweck.

The data presented in this leafler are in accordance with the present state of our showledge, but do not absolve the user from carefully checking all supplies transhably or receipt. We reserve the right to after product constants within the scape of technical progress or new developments. The recommendations made in this leaflet should be checked by enterthish; these because of conditions disting processing over which we have no control appearance where the companies? New means are also being used. The recommendations do not absolve the user from the obligation of investigating the possibility of intergeneral of third parties, rights and, if necessary inanthing the possibility of intergeneral of third parties, rights and, if necessary insenting the possibility of intergeneral of the do not constitute a scarming, either express or implied, of the fitness or suitability of me product for a particular purpose.

München, Mai 1998

Wacker-Chemie GmbH
Geschäftsbereich Sillcone
Hanns-Seidel-Platz 4
D-81737 München
Telefon 0 89-62 79-01
Fax 0 89-62 79-1771