Použití ustalovacích algoritmů k návrhu oscilátorů, základní druhy vysokofrekvenčních oscilátorů

Josef Dobeš

18. října 2021

Architektura rádiových přijímačů a vysílačů

Implicitní numerická integrace soustav obvodových rovnic

1. Časově vážené diference

System obvodových nelineárních diferenciálně-algebraických rovnic je obecně definován implicitní formě

$$f(x(t),\dot{x}(t),t)=\mathbf{0}.$$

Implicitní numerická integrace soustav obvodových rovnic

1. Časově vážené diference

System obvodových nelineárních diferenciálně-algebraických rovnic je obecně definován implicitní formě

$$f(\mathbf{x}(t), \dot{\mathbf{x}}(t), t) = \mathbf{0}. \tag{1}$$

Označme $x(t_n)$ symbolem x_n , n = 1, ... a definujme zpětné časově-vážené diference (podle T. Rübner-Petersena, analýza stability podle A. I. Petrenka)

$$\delta^{(0)} x_n = x_n, \quad \delta^{(k)} x_n = \delta^{(k-1)} x_n - \alpha_n^{(k-1)} \delta^{(k-1)} x_{n-1}, \quad k = 1, \dots, k_n + 2,$$

Časově vážené diference

Prediktor

Korektor

Procedura s ϵ -algoritmem

Necitlivost ∈-algoritmu

Collpittsův oscilátor

Obvody s rozprostřeným...

- Zesilovač s . . .
- Oscilátor s . . .

Zpětnovazební...

Oscilátor s tunelovou...

Strana 2 z 30

Zpět

Celá obrazovka

Zavřít

Implicitní numerická integrace soustav obvodových rovnic

1. Časově vážené diference

System obvodových nelineárních diferenciálně-algebraických rovnic je obecně definován implicitní formě

$$f(x(t), \dot{x}(t), t) = \mathbf{0}. \tag{1}$$

Označme $x(t_n)$ symbolem x_n , n = 1, ... a definujme zpětné časově-vážené diference (podle T. Rübner-Petersena, analýza stability podle A. I. Petrenka)

$$\delta^{(0)} x_n = x_n, \quad \delta^{(k)} x_n = \delta^{(k-1)} x_n - \alpha_n^{(k-1)} \delta^{(k-1)} x_{n-1}, \quad k = 1, \dots, k_n + 2,$$

kde k_n je řád interpolačního polynomu použitého v posledním integračním kroku a činitelé α_n jsou rovněž určeny rekurentním vztahem:

$$\alpha_n^{(0)} = 1, \quad \alpha_n^{(k)} = \alpha_n^{(k-1)} \frac{t_n - t_{n-k}}{t_{n-1} - t_{n-1-k}}, \quad k = 1, \dots, k_n + 1.$$

Časově vážené diference

Prediktor

Korektor

Procedura s ϵ -algoritmem

Necitlivost ∈-algoritmu

Collpittsův oscilátor

Obvody s rozprostřeným...

- Zesilovač s...
- Oscilátor s...

Zpětnovazební...

Oscilátor s tunelovou...

Domovská stránka

Strana 2 z 30

Zpět

Celá obrazovka

Zavřít

2. Prediktor

Extrapolace obvodových proměnných do času t_{n+1} označené $\boldsymbol{x}_{n+1}^{(0)}$ lze provést dříve definovanými faktory $\alpha_{n+1}^{(...)}$ a diferencemi $\delta^{(...)}\boldsymbol{x}_n$ v následující explicitní formě:

$$x_{n+1}^{(0)} = \alpha_{n+1}^{(0)} \, \delta^{(0)} x_n + \alpha_{n+1}^{(1)} \, \delta^{(1)} x_n + \dots = \sum_{k=0}^{k_{n+1}} \alpha_{n+1}^{(k)} \, \delta^{(k)} x_n.$$

(Lze ukázat, že jde o sofistikovanější formu Newtonova interpolačního mnohočlenu¹.)

Časově vážené diference

Prediktor

Korektor

Procedura s ϵ -algoritmem

Necitlivost ϵ -algoritmu

Collpittsův oscilátor

Obvody s rozprostřeným...

- Zesilovač s . . .
- Oscilátor s...

Zpětnovazební...

Oscilátor s tunelovou...

Zpět

Celá obrazovka

Zavřít

2. Prediktor

Extrapolace obvodových proměnných do času t_{n+1} označené $\boldsymbol{x}_{n+1}^{(0)}$ lze provést dříve definovanými faktory $\alpha_{n+1}^{(...)}$ a diferencemi $\delta^{(...)}\boldsymbol{x}_n$ v následující explicitní formě:

$$\boldsymbol{x}_{n+1}^{(0)} = \alpha_{n+1}^{(0)} \, \delta^{(0)} \boldsymbol{x}_n + \alpha_{n+1}^{(1)} \, \delta^{(1)} \boldsymbol{x}_n + \dots = \sum_{k=0}^{k_{n+1}} \alpha_{n+1}^{(k)} \, \delta^{(k)} \boldsymbol{x}_n.$$

(Lze ukázat, že jde o sofistikovanější formu Newtonova interpolačního mnohočlenu¹.)

Podobný vztah lze odvodit pro extrapolaci vektoru derivací podle času

$$\dot{\boldsymbol{x}}_{n+1}^{(0)} = \beta_{n+1}^{(0)} \delta^{(0)} \boldsymbol{x}_n + \beta_{n+1}^{(1)} \delta^{(1)} \boldsymbol{x}_n + \dots = \sum_{k=0}^{k_{n+1}} \beta_{n+1}^{(k)} \delta^{(k)} \boldsymbol{x}_n,$$

Časově vážené diference

Prediktor

Korektor

Procedura s ϵ -algoritmem

Necitlivost ϵ -algoritmu

Collpittsův oscilátor

Obvody s rozprostřeným...

- Zesilovač s...
- Oscilátor s...

Zpětnovazební...

Oscilátor s tunelovou...

Strana 3 z 30

Zpět

Celá obrazovka

Zavřít

2. Prediktor

Extrapolace obvodových proměnných do času t_{n+1} označené $\boldsymbol{x}_{n+1}^{(0)}$ lze provést dříve definovanými faktory $\alpha_{n+1}^{(...)}$ a diferencemi $\delta^{(...)}\boldsymbol{x}_n$ v následující explicitní formě:

$$\boldsymbol{x}_{n+1}^{(0)} = \alpha_{n+1}^{(0)} \, \delta^{(0)} \boldsymbol{x}_n + \alpha_{n+1}^{(1)} \, \delta^{(1)} \boldsymbol{x}_n + \dots = \sum_{k=0}^{k_{n+1}} \alpha_{n+1}^{(k)} \, \delta^{(k)} \boldsymbol{x}_n.$$

(Lze ukázat, že jde o sofistikovanější formu Newtonova interpolačního mnohočlenu¹.)

Podobný vztah lze odvodit pro extrapolaci vektoru derivací podle času

$$\dot{x}_{n+1}^{(0)} = \beta_{n+1}^{(0)} \delta^{(0)} x_n + \beta_{n+1}^{(1)} \delta^{(1)} x_n + \dots = \sum_{k=0}^{k_{n+1}} \beta_{n+1}^{(k)} \delta^{(k)} x_n,$$

kde faktory $\beta_{n+1}^{(...)}$ jsou opět dané rekurentní rovnicí, která také obsahuje dříve definované násobitele $\alpha_{n+1}^{(...)}$:

$$\beta_{n+1}^{(0)} = 0$$
, $\beta_{n+1}^{(k)} = \frac{\alpha_{n+1}^{(k-1)} + (t_{n+1} - t_{n+1-k})\beta_{n+1}^{(k-1)}}{t_n - t_{n-k}}$, $k = 1, \dots, k_{n+1}$.

Časově vážené diference

Prediktor

Korektor

Procedura s ϵ -algoritmem

Necitlivost ϵ -algoritmu

Collpittsův oscilátor

Obvody s rozprostřeným...

- Zesilovač s . . .
- Oscilátor s . . .

Zpětnovazební...

Oscilátor s tunelovou...

Strana 3 z 30

Zpět

Celá obrazovka

Zavřít

¹J. Dobeš, Reliable CAD analyses of CMOS RF and microwave circuits using smoothed gate capacitance models, AEÜ–Int. Jour. Electr. Comm., no. 6, 2003.

3. Korektor

Finální hodnoty $x_{n+1} := x_{n+1}^{(j_{\max,n+1})}$ v čase t_{n+1} se získají iteračním procesem podobným Newtonově-Raphsonově methodě (\dot{x} označuje \dot{t} -tý prvek vektoru x)

$$\left[\left(\frac{\partial \mathbf{f}}{\partial \mathbf{x}}\right)_{n+1}^{(j)} + \left(\frac{\partial \mathbf{f}}{\partial \dot{\mathbf{x}}}\right)_{n+1}^{(j)} \underbrace{\left(\frac{\mathrm{d}^{i}\dot{\mathbf{x}}}{\mathrm{d}^{i}\mathbf{x}}\right)_{n+1}}_{\gamma_{n+1}}\right] \Delta \mathbf{x}_{n+1}^{(j)} = -\mathbf{f}_{n+1}^{(j)}, \quad j = 0, \dots, j_{\max, n+1} < j_{\max, n+1},$$

Časově vážené diference Prediktor

Korektor

Procedura s ϵ -algoritmem

Necitlivost ∈-algoritmu Collpittsův oscilátor

Obvody s rozprostřeným...

- Zesilovač s . . .
- Oscilátor s . . .

Zpětnovazební...

Oscilátor s tunelovou...

Zpět

Celá obrazovka

Zavřít

3. Korektor

Finální hodnoty $x_{n+1} := x_{n+1}^{(j_{\max,n+1})}$ v čase t_{n+1} se získají iteračním procesem podobným Newtonově-Raphsonově methodě (\dot{x} označuje \dot{t} -tý prvek vektoru x)

$$\left[\left(\frac{\partial f}{\partial x}\right)_{n+1}^{(j)} + \left(\frac{\partial f}{\partial \dot{x}}\right)_{n+1}^{(j)} \underbrace{\left(\frac{d^{i}\dot{x}}{d^{i}x}\right)_{n+1}}_{\gamma_{n+1}}\right] \Delta x_{n+1}^{(j)} = -f_{n+1}^{(j)}, \quad j = 0, \dots, j_{\max, n+1} < j_{\max, n+1},$$

 $n=0,\ldots$, tj. opakovaným řešením soustavy lineárních rovnic při aplikování implicitní formy aproximace derivací:

$$\dot{x}_{n+1}^{(j)} = \lim_{t_{n+2} \to t_{n+1}} \frac{x_{n+2}^{(j)} - x_{n+1}}{t_{n+2} - t_{n+1}} = \sum_{k=1}^{k_{n+1}} \frac{1}{t_{n+1} - t_{n+1-k}} \, \delta^{(k)} x_{n+1}^{(j)}$$

$$\Rightarrow \gamma_{n+1} = \sum_{k=1}^{k_{n+1}} \frac{1}{t_{n+1} - t_{n+1-k}} \, \forall \, i x \in x.$$

Časově vážené diference Prediktor

Korektor

Procedura s ϵ -algoritmem

Necitlivost ∈-algoritmu

Collpittsův oscilátor

Obvody s rozprostřeným...

- Zesilovač s . . .
- Oscilátor s...

Zpětnovazební...

Oscilátor s tunelovou...

Domovská stránka

Strana 4 z 30

Zpět

Celá obrazovka

Zavřít

3. Korektor

Finální hodnoty $x_{n+1} := x_{n+1}^{(j_{\max,n+1})}$ v čase t_{n+1} se získají iteračním procesem podobným Newtonově-Raphsonově methodě (i_x označuje i-tý prvek vektoru x)

$$\left[\left(\frac{\partial f}{\partial x}\right)_{n+1}^{(j)} + \left(\frac{\partial f}{\partial \dot{x}}\right)_{n+1}^{(j)} \underbrace{\left(\frac{\mathrm{d}^{i}\dot{x}}{\mathrm{d}^{i}x}\right)_{n+1}}_{\gamma_{n+1}}\right] \Delta x_{n+1}^{(j)} = -f_{n+1}^{(j)}, \quad j = 0, \dots, j_{\max, n+1} < j_{\max, n+1},$$

 $n = 0, \dots$, tj. opakovaným řešením soustavy lineárních rovnic při aplikování implicitní formy aproximace derivací:

$$\dot{x}_{n+1}^{(j)} = \lim_{t_{n+2} \to t_{n+1}} \frac{x_{n+2}^{(j)} - x_{n+1}}{t_{n+2} - t_{n+1}} = \sum_{k=1}^{k_{n+1}} \frac{1}{t_{n+1} - t_{n+1-k}} \, \delta^{(k)} x_{n+1}^{(j)}$$

$$\Rightarrow \gamma_{n+1} = \sum_{k=1}^{k_{n+1}} \frac{1}{t_{n+1} - t_{n+1-k}} \, \forall \, ix \in x.$$

Vektory $\mathbf{x}_{n+1}^{(...)}$ a $\dot{\mathbf{x}}_{n+1}^{(...)}$ získají nové hodnoty po vyřešení soustavy lineárních rovnic korektoru:

$$\boldsymbol{x}_{n+1}^{(j+1)} = \boldsymbol{x}_{n+1}^{(j)} + \Delta \boldsymbol{x}_{n+1}^{(j)}, \quad \dot{\boldsymbol{x}}_{n+1}^{(j+1)} = \dot{\boldsymbol{x}}_{n+1}^{(j)} + \gamma_{n+1} \Delta \boldsymbol{x}_{n+1}^{(j)}.$$

Časově vážené diference Prediktor

Korektor

Procedura s ϵ -algoritmem

Necitlivost ∈-algoritmu

Collpittsův oscilátor

Obvody s rozprostřeným...

- Zesilovač s . . .
- Oscilátor s . . .

Zpětnovazební...

Oscilátor s tunelovou...

Strana 4 z 30

Zpět

Celá obrazovka

Zavřít

K potlačení možné divergence je možné použít novou proceduru pro práci s diferencemi $\Delta x_{n+1}^{(j)}$ během každé iterace:

if
$$j=0$$
 then
$$x^*\coloneqq x_{n+1}^{(0)},\ \dot{x}^*\coloneqq \dot{x}_{n+1}^{(0)},$$

$$\Delta x^*\coloneqq \Delta x_{n+1}^{(0)},$$
 $f^*\coloneqq f_{n+1}^{(0)},\ \mathrm{a}\ (\mathrm{prvn}\hat{\imath})\ \mathrm{iterace}\ \mathrm{je}\ \mathrm{akceptov\'ana},$

K potlačení možné divergence je možné použít novou proceduru pro práci s diferencemi $\Delta x_{n+1}^{(j)}$ během každé iterace:

if
$$j=0$$
 then
$$\boldsymbol{x}^*\coloneqq \boldsymbol{x}_{n+1}^{(0)},\ \dot{\boldsymbol{x}}^*\coloneqq \dot{\boldsymbol{x}}_{n+1}^{(0)},$$

$$\Delta \boldsymbol{x}^*\coloneqq \Delta \boldsymbol{x}_{n+1}^{(0)},$$

$$\boldsymbol{f}^*\coloneqq \boldsymbol{f}_{n+1}^{(0)},\ \mathrm{a}\ (\mathrm{prvn}\hat{\mathrm{i}})\ \mathrm{iterace}\ \mathrm{je}\ \mathrm{akceptov}\hat{\mathrm{ana}},$$
 else

else

K potlačení možné divergence je možné použít novou proceduru pro práci s diferencemi $\Delta x_{n+1}^{(j)}$ během každé iterace:

if
$$j=0$$
 then
$$\boldsymbol{x}^* \coloneqq \boldsymbol{x}_{n+1}^{(0)}, \ \dot{\boldsymbol{x}}^* \coloneqq \dot{\boldsymbol{x}}_{n+1}^{(0)},$$

$$\Delta \boldsymbol{x}^* \coloneqq \Delta \boldsymbol{x}_{n+1}^{(0)},$$

$$\boldsymbol{f}^* \coloneqq \boldsymbol{f}_{n+1}^{(0)}, \text{ a (první) iterace je akceptována, }$$

else

$$\begin{array}{ll} \text{if} & \frac{1}{l}\sum_{i=1}^{l}\frac{\left|{}^{i}f_{n+1}^{(j)}\right|}{\left|{}^{i}f^{*}\right|+\left|{}^{i}f_{\text{null}}\right|}<1 \quad \text{then} \\ & x^{*}\coloneqq x_{n+1}^{(j)}, \ \dot{x}^{*}\coloneqq \dot{x}_{n+1}^{(j)}, \\ & \Delta x^{*}\coloneqq \Delta x_{n+1}^{(j)}, \\ & f^{*}\coloneqq f_{n+1}^{(j)}, \ \text{a iterace je akceptována,} \end{array}$$

else

$$\Delta x^* := \frac{\Delta x^*}{2},$$

$$x_{n+1}^{(j)} := x^*, \ \dot{x}_{n+1}^{(j)} := \dot{x}^*,$$

$$\Delta x_{n+1}^{(j)} := \Delta x^*, \ \text{a iterace je zamítnuta.}$$

Časově vážené diference Prediktor

. .

Korektor

Procedura s ϵ -algoritmem

Necitlivost ∈-algoritmu

Collpittsův oscilátor

Obvody s rozprostřeným...

- Zesilovač s . . .
- Oscilátor s . . .

Zpětnovazební...

Oscilátor s tunelovou...

Strana 5 z 30

Zpět

Celá obrazovka

Zavřít

Ustalovací algoritmus

4. Procedura s ϵ -algoritmem

Pro implicitní systém diferenciálně-algebraických rovnic, problém výpočtu periodického ustáleného stavu může být jednoduše formulován jako řešení nonlineární symbolické rovnice

$$\mathbf{x}_{\text{steady}} = \mathcal{I}\left(\mathbf{x}_{\text{steady}}, t_0, t_0 + T_{\text{steady}}\right),$$

kde $I\left(x_{\text{initcond}}, t_0, t_0 + T_{\text{interval}}\right)$ symbolizuje hodnoty po numerickém řešení implicitního nelineárního systému diferenciálně-algebraických rovnic na intervalu T_{interval} při použití počáteční podmínky x_{initcond} .

Ustalovací algoritmus

4. Procedura s ϵ -algoritmem

Pro implicitní systém diferenciálně-algebraických rovnic, problém výpočtu periodického ustáleného stavu může být jednoduše formulován jako řešení nonlineární symbolické rovnice

$$\mathbf{x}_{\text{steady}} = \mathcal{I}\left(\mathbf{x}_{\text{steady}}, t_0, t_0 + T_{\text{steady}}\right),$$

kde $I\left(x_{\text{initcond}}, t_0, t_0 + T_{\text{interval}}\right)$ symbolizuje hodnoty po numerickém řešení implicitního nelineárního systému diferenciálně-algebraických rovnic na intervalu T_{interval} při použití počáteční podmínky x_{initcond} .

Místo (často velmi dlouhé) numerické integrace lze provést mnohem kratší integraci. Vzorky řešení jsou bezprostředně zaznamenány po každé z period. Tyto vzorky se stávají vstupem pro skalární ϵ -algoritmus, který je schopen odhadnout stav systému v budoucnosti. Výstup algoritmu se stane novou počáteční podmínkou pro (1) a celý proces se opakuje.

Ustalovací algoritmus

4. Procedura s ϵ -algoritmem

Pro implicitní systém diferenciálně-algebraických rovnic, problém výpočtu periodického ustáleného stavu může být jednoduše formulován jako řešení nonlineární symbolické rovnice

$$\mathbf{x}_{\text{steady}} = \mathcal{I} \left(\mathbf{x}_{\text{steady}}, t_0, t_0 + T_{\text{steady}} \right),$$

kde $I\left(x_{\text{initcond}}, t_0, t_0 + T_{\text{interval}}\right)$ symbolizuje hodnoty po numerickém řešení implicitního nelineárního systému diferenciálně-algebraických rovnic na intervalu T_{interval} při použití počáteční podmínky x_{initcond} .

Místo (často velmi dlouhé) numerické integrace lze provést mnohem kratší integraci. Vzorky řešení jsou bezprostředně zaznamenány po každé z period. Tyto vzorky se stávají vstupem pro skalární ϵ -algoritmus, který je schopen odhadnout stav systému v budoucnosti. Výstup algoritmu se stane novou počáteční podmínkou pro (1) a celý proces se opakuje.

Počet period potřebný pro extrapolační smyčku závisí na počtu pomalu odeznívajících přechodných dějů. Tento počet lze redukovat (numerickou) filtrací – dolní propustí provedenou numerickou integrací

$$\boldsymbol{x}_{j}^{(0)} \coloneqq \boldsymbol{x}_{j} \left(t_{0} + \Delta t_{\text{extpol}} \right) = \int_{t_{0}}^{t_{0} + \Delta t_{\text{extpol}}} \mathcal{F} \left(\boldsymbol{x}(t), t \right) dt, \quad j = 1, \dots, j_{\text{max}_{\text{epsalg}}}, \tag{2}$$

kde $j=1,\ldots,j_{\max_{\text{epsalg}}}$ reprezentuje číslo iterace ϵ -algoritmu a $\dot{\boldsymbol{x}}(t)=\mathcal{F}(\boldsymbol{x}(t),t)$ symbolizuje vector numericky integrovaných funkcí.

Celá posloupnost vzorků je pak získána pokračující implicitní numerickou integrací

$$\boldsymbol{x}_{j}^{(k)} \coloneqq \boldsymbol{x}_{j} \left(t_{0} + \Delta t_{\text{extpol}} + \sum_{i=1}^{k} T_{j}^{(i)} \right) = \int_{t_{0} + \Delta t_{\text{extpol}}}^{t_{0} + \Delta t_{\text{extpol}}} \mathcal{F} \left(\boldsymbol{x}(t), t \right) dt, \tag{3}$$

kde $j=1,\ldots,j_{\max_{\text{epsalg}}}, k=1,\ldots,2k_{\text{extpol}}$ a $T_j^{(i)}$ označuje periody, které musí být pro autonomní obvody (např. oscilátory) určeny iteracemi (4).

Celá posloupnost vzorků je pak získána pokračující implicitní numerickou integrací

$$\boldsymbol{x}_{j}^{(k)} \coloneqq \boldsymbol{x}_{j} \left(t_{0} + \Delta t_{\text{extpol}} + \sum_{i=1}^{k} T_{j}^{(i)} \right) = \int_{t_{0} + \Delta t_{\text{extpol}}}^{t_{0} + \Delta t_{\text{extpol}}} \mathcal{F} \left(\boldsymbol{x}(t), t \right) dt, \tag{3}$$

kde $j = 1, ..., j_{\text{max}_{\text{epsalg}}}, k = 1, ..., 2k_{\text{extpol}}$ a $T_j^{(i)}$ označuje periody, které musí být pro autonomní obvody (např. oscilátory) určeny iteracemi (4).

4.1. Scalární ϵ -algoritmus

Po získání všech hodnot vypočtených procesy (2) a (3), ϵ -algoritmus se inicializuje vztahy

$$\begin{aligned}
&i \epsilon_{-1}^{(k)} \coloneqq 0, & k = 1, \dots, 2k_{\text{extpol}}, \\
&i \epsilon_{0}^{(k)} \coloneqq i x_{j}^{(k)}, & k = 0, \dots, 2k_{\text{extpol}},
\end{aligned} \qquad i = 1, \dots, l,$$

Celá posloupnost vzorků je pak získána pokračující implicitní numerickou integrací

$$\boldsymbol{x}_{j}^{(k)} \coloneqq \boldsymbol{x}_{j} \left(t_{0} + \Delta t_{\text{extpol}} + \sum_{i=1}^{k} T_{j}^{(i)} \right) = \int_{t_{0} + \Delta t_{\text{extpol}}}^{t_{0} + \Delta t_{\text{extpol}} + \sum_{i=1}^{k} T_{j}^{(i)}} \mathcal{F} \left(\boldsymbol{x}(t), t \right) dt, \tag{3}$$

kde $j = 1, ..., j_{\text{max}_{\text{epsalg}}}, k = 1, ..., 2k_{\text{extpol}}$ a $T_j^{(i)}$ označuje periody, které musí být pro autonomní obvody (např. oscilátory) určeny iteracemi (4).

4.1. Scalární ϵ -algoritmus

Po získání všech hodnot vypočtených procesy (2) a (3), ϵ -algoritmus se inicializuje vztahy

$$\begin{aligned}
&i \epsilon_{-1}^{(k)} \coloneqq 0, & k = 1, \dots, 2k_{\text{extpol}}, \\
&i \epsilon_{0}^{(k)} \coloneqq i x_{j}^{(k)}, & k = 0, \dots, 2k_{\text{extpol}},
\end{aligned} \qquad i = 1, \dots, l,$$

a proces extrapolace se pak provede rekurentními vztahy:

$$i\epsilon_{m+1}^{(k)} := i\epsilon_{m-1}^{(k+1)} + \frac{1}{i\epsilon_{m}^{(k+1)} - i\epsilon_{m}^{(k)}}, \ m = 0, \dots, 2k_{\text{extpol}} - 1, \ k = 0, \dots, 2k_{\text{extpol}} - 1 - m, \ i = 1, \dots, l,$$

tj. pro celý vektor $\epsilon_{m+1}^{(k)}$. Výsledek ϵ -algoritmu se stane novou počáteční podmínkou pro (1):

$$\boldsymbol{x}_{j+1}\left(t_{0}\right) \coloneqq \boldsymbol{\epsilon}_{2k_{\text{extpol}}}^{(0)}.$$

Časově vážené diference Prediktor

Korektor

Procedura s ϵ -algoritmem

Necitlivost ∈-algoritmu

Collpittsův oscilátor

Obvody s rozprostřeným...

- Zesilovač s . . .
- Oscilátor s . . .

Zpětnovazební...

Oscilátor s tunelovou...

Strana 7 z 30
Zpět

Celá obrazovka

Zavřít

Evoluci ϵ -algoritmu lze znázornit následujícím diagramem (hodnoty v rozích trojúhelníků vytvářejí postupně nové hodnoty ve směru šipek):

Evoluci ϵ -algoritmu lze znázornit následujícím diagramem (hodnoty v rozích trojúhelníků vytvářejí postupně nové hodnoty ve směru šipek):

Procedura se opakuje, dokud není detekována konvergence(ϵ_{extpol} je povolená extrapolační chyba):

$$\text{if} \quad \max_{i=1,\ldots,l} \frac{\left| i x_j^{(k)} - i x_j^{(k-1)} \right|}{\left| i x_j^{(k)} \right| + i x_{\text{null}}} \leq \epsilon_{\text{extpol}} \quad \text{then} \quad \boldsymbol{x}_{\text{steady}} \coloneqq \boldsymbol{x}_j^{(k)}, \quad k \in \langle 1, \ldots, 2k_{\text{extpol}} \rangle.$$

Evoluci ϵ -algoritmu lze znázornit následujícím diagramem (hodnoty v rozích trojúhelníků vytvářejí postupně nové hodnoty ve směru šipek):

Procedura se opakuje, dokud není detekována konvergence(ϵ_{extpol} je povolená extrapolační chyba):

$$\text{if} \quad \max_{i=1,\dots,l} \frac{\left| ix_j^{(k)} - ix_j^{(k-1)} \right|}{\left| ix_j^{(k)} \right| + ix_{\text{null}}} \leq \epsilon_{\text{extpol}} \quad \text{then} \quad \boldsymbol{x}_{\text{steady}} \coloneqq \boldsymbol{x}_j^{(k)}, \quad k \in \langle 1,\dots,2k_{\text{extpol}} \rangle.$$

Určení period autonomních systémů se realizuje nalezením průsečíků vhodně vybrané (i_{fix})-té složky x_i s vhodnou (a realisticky zvolenou!) hodnotou $i_{fix}x_i = x_{fix}$, $i_{fix} \in \langle 1, l \rangle$:

$${}^{i_{\text{fix}}}\dot{x}_{j}\left(t_{\text{period}}^{(\ell)}\right)\Delta t_{\text{period}}^{(\ell)} = x_{\text{fix}} - {}^{i_{\text{fix}}}x_{j}\left(t_{\text{period}}^{(\ell)}\right), \quad t_{\text{period}}^{(\ell+1)} = t_{\text{period}}^{(\ell)} + \Delta t_{\text{period}}^{(\ell)}, \quad \ell = 1, \dots, \ell_{\text{max}}.$$
 (4)

Časově vážené diference

Prediktor Korektor

Procedura s ϵ -algoritmem

Necitlivost *∈* -algoritmu

Collpittsův oscilátor

Obvody s rozprostřeným...

– Zesilovač s . . .

– Oscilátor s . . .

Zpětnovazební...

Oscilátor s tunelovou...

Strana 8 z 30
Zpět

Celá obrazovka

Zavřít

5. Necitlivost ϵ -algoritmu

Necitlivost k řádu algoritmu lze ukázat na nízkošumovém zesilovači pro multi-konstelační přijímač satelitní navigace:

Časově vážené diference

Prediktor

Korektor

Procedura s ϵ -algoritmem

Necitlivost ϵ -algoritmu

Collpittsův oscilátor

Obvody s rozprostřeným...

- Zesilovač s...
- Oscilátor s . . .

Zpětnovazební...

Oscilátor s tunelovou...

Domovská stránka

Strana 9 z 30

Zpět

Celá obrazovka

Zavřít

5.1. Porovnání nezbytného počtu integračních kroků pro získání ustáleného stavu

Utilized	Used integration steps for interpolation orders						
method	1st	2nd	3rd	4th	5th	6th	\sum
1st iteration	3	1	69	170	232	167	642
2nd iteration	5	7	69	147	243	113	584
3rd iteration	6	7	82	167	238	67	567
4th iteration	6	6	71	167	237	74	561
5th iteration	7	5	68	161	227	78	546
6th iteration	7	7	63	125	138	43	383
ϵ : $k_{\text{extpol}} = 2$	34	33	422	937	1315	542	3283
1st iteration	3	1	91	219	315	191	820
2nd iteration	7	9	109	226	290	118	759
3rd iteration	7	6	80	219	294	93	699
4th iteration	7	5	125	256	286	83	762
5th iteration	6	6	51	95	95	41	294
ϵ : $k_{\text{extpol}} = 3$	30	27	456	1015	1280	526	3334
1st iteration	3	1	127	281	390	213	1015
2nd iteration	7	7	123	253	229	84	703
ϵ : $k_{\text{extpol}} = 4$	10	8	250	534	619	297	1718
1st iteration	3	1	150	333	465	239	1191
2nd iteration	7	7	150	327	446	165	1102
ϵ : $k_{\text{extpol}} = 5$	10	8	300	660	911	404	2293

Celá obrazovka

Zavřít

Konec

Porovnání nezbytného počtu integračních kroků pro získání ustáleného stavu (pokrač.)

Utilized	Used integration steps for interpolation orders						
method	1st	2nd	3rd	4th	5th	6th	\sum
1st iteration	3	1	173	373	549	263	1362
2nd iteration	7	7	112	229	249	88	692
ϵ : $k_{\text{extpol}} = 6$	10	8	285	602	798	351	2054
1st iteration	3	1	194	424	629	289	1540
2nd iteration	7	7	81	175	240	73	583
ϵ : $k_{\text{extpol}} = 7$	10	8	275	599	869	362	2123
1st iteration	3	1	221	468	711	314	1718
2nd iteration	7	7	92	216	259	88	669
ϵ : $k_{\text{extpol}} = 8$	10	8	313	684	970	402	2387
1st iteration	3	1	234	512	790	345	1885
2nd iteration	7	7	92	216	259	88	669
ϵ : $k_{\text{extpol}} = 9$	10	8	326	728	1049	433	2554
Transient	3	1	3630	8007	10741	3461	25843

Jak je ukázáno, bylo provedeno 25843 integračních kroků v případě standardní implicitní numerické integrace. Nicméně, pouze 1718 integračních kroků bylo provedeno v případě ϵ -algoritmu čtvrtého řádu (a podobné počty pro další řády interpolace, což potvrzuje necitlivost algoritmu vzhledem k jeho řádu).

5.2. Klasifikace obvodových přechodných dějů z hlediska použitelnosti ϵ -algoritmu

Different responses of the amplifier to the (identical) triangular pulse: long and short transients or chaotic oscillations for three points of Pareto front. The ϵ -algorithm is efficient in the first case, inefficient in the second case (usable, but not too faster than other methods), and unusable in the third case.

6. Collpittsův oscilátor

Simulací – časovou analýzou a ustalovacím algoritmem – ověřené zapojení Colpittsova oscilátoru:

Použitá	Počty integračních kroků							
metoda	1.	2.	3.	4.	5.	6.	Celk.	
1. iterace	22	88	171	182	126	108	697	
2. iterace	19	50	98	91	57	35	350	
Extrapol.	41	138	269	273	183	143	1047	
Klasická	32	159	316	339	219	176	1241	

6.1. Detail přechodného jevu - proud cívkou

6.1. Detail přechodného jevu - proud cívkou

V porovnání s jinými oscilátory (krystalovými apod.) je zde poměrně krátký přechodný děj.

6.2. Ustálená periodická odezva

6.2.1. Proud cívkou

6.2. Ustálená periodická odezva

6.2.1. Proud cívkou

Koeficient harmonického zkreslení: 3.3 %

6.2.2. Výstupní napětí

6.2.2. Výstupní napětí

Koeficient harmonického zkreslení: 7.9 % (!)

7. Obvody s rozprostřeným zesílením

Využívají "simulace" přenosového vedení:

7.1.1. Kmitočtová charakteristika zesilovače s rozprostřeným zesílením

Časově vážené diference

Prediktor

Korektor

Procedura s ϵ -algoritmem

Necitlivost ϵ -algoritmu

Collpittsův oscilátor

Obvody s rozprostřeným...

– Zesilovač s . . .

- Oscilátor s ...

Zpětnovazební...

Oscilátor s tunelovou...

Domovská stránka

Strana 19 z 30
Zpět

Celá obrazovka

Zavřít

7.1.2. Citlivosti kmitočtové charakteristiky zesilovače s rozprostřeným zesílením

Zavřít Konec

7.2.1. Velmi komplikovaný (a dlouhý) přechodný děj zesilovače s rozprostřeným zesílením

7.2.2. Ustálená periodická odezva detekovaná průchody úrovní $V_{ m outp}$ = 0.5 V:

7.2.3. Porovnání klasické numerické integrace s aplikací ϵ -algoritmu

Použitá	Počty integračních kroků								
metoda	1.	2.	3.	4.	5.	6.	Celkem		
1. iterace	10	42	166	512	1893	9931	12554		
2. iterace	3	2	24	419	2258	11454	14160		
3. iterace	3	2	21	463	2467	11256	14212		
4. iterace	3	2	28	430	2078	8827	11368		
Extrapol.	19	48	239	1824	8696	41468	52294		
Klasická	10	38	254	3631	20172	94829	118934		

8. Zpětnovazební mikrovlnný oscilátor

Utilized	Numbers of integration steps (for orders and total)								
method	1st	2nd 3rd		4th	5th	$6 \mathrm{th}$	Total		
1st iter.	25	285	877	1023	778	723	3711		
2nd iter.	4	84	318	723	1611	3179	5919		
Extrapol.	29	369	1195	1746	2389	3902	9630		
Classical	29	424	1573	3047	7558	16183	28814		

Časově vážené diference

Prediktor

Korektor

Procedura s ϵ -algoritmem

Necitlivost *∈* -algoritmu

Collpittsův oscilátor

Obvody s rozprostřeným...

– Zesilovač s . . .

- Oscilátor s...

Zpětnovazební...

Oscilátor s tunelovou...

Domovská stránka

Strana 25 z 30

Zpět

Celá obrazovka

Zavřít

Konec

9. Oscilátor s tunelovou diodou

Tunelová dioda je reprezentována polynomem jedenáctého řádu

```
"Tunnel diode oscillator
e 2 0 bias(x,t)
1 2 1 2.5uH
c 1 0 100pF
f1^1 0 tunnel
u1,u0,0,
p1 = 1-1(0:1)
p2 = -1 (-1+1:0)
p3 = 1+1(0 : 1+2)
?p4 = -1 + 2(-1 + 3:0)
p5 = 1+3(0:1+4)
?p6 = -1 + 4(-1 + 5:0)
p7 = 1+5(0:1+6)
p8 = -1+5(-1+6:0)
p9 = 1+5(0:1+6)
?p10=-1+5(-1+6:0)
?p11 = 1+5(0:1+6)
```


Časově vážené diference

Prediktor

Korektor

Procedura s ϵ -algoritmem

Necitlivost ϵ -algoritmu

Collpittsův oscilátor

Obvody s rozprostřeným...

- Zesilovač s...
- Oscilátor s . . .

Zpětnovazební...

Oscilátor s tunelovou...

Domovská stránka

Strana 26 z 30

Zpět

Celá obrazovka

Zavřít

Konec

definovaného funkcí (polynom efektivně naprogramovaný Hornerovým schématem):

```
function tunnel(uplus,uminus,
               p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11)
implicit double precision(a-h,o-z)
u=uplus-uminus
q11 = u*(p11)
q10 = u*(p10+q11)
q9 = u*(p9 + q10)
q8 = u*(p8 + q9)
q7 = u*(p7 + q8)
q6 = u*(p6 + q7)
q5 = u*(p5 + q6)
q4 = u*(p4 + q5)
q3 = u*(p3 + q4)
q2 = u*(p2 + q3)
q1 = u*(p1 + q2)
tunnel= (p0 + q1)
```

end

Zpětnovazební...

44

Oscilátor s tunelovou . . .

Domovská stránka

Strana 27 z 30

Zpět

Celá obrazovka

Zavřít

Konec

••

Optimalizace nalezla po (pouhých) sedmi iteracích Levenbergova algoritmu následující hodnoty koeficientů polynomu ("grafické" pole ukazuje polohu nalezeného parametru mezi povoleným minimem a maximem):

P1	.177	[Α.			-]
P2	-2.72	[-	.B]
P3	36.8	[С.		-]
P4	-563	[. D		-]
P5	5800	[Ε.]
P6	-36300	[. F]
P7	142000	[. (ì.]
P8	-351000	[. Н]
P9	534000	[. I	-]
P10	-459000	[. J	-]
P11	170000	[Κ.			-]

Interpolace naměřených bodů identifikovaným polynomem je velmi zdařilá:

Časová analýza prokazuje pravidelné (a netlumené!) kmity oscilátoru:

Časová analýza prokazuje pravidelné (a netlumené!) kmity oscilátoru:

Je zjevné, že kmity jsou velmi neharmonické (což často v učebnicích není zmiňováno) a oscilátor tedy (pro použití v radiotechnice) musí být doprovázen filtrem.

Časová analýza prokazuje pravidelné (a netlumené!) kmity oscilátoru:

Je zjevné, že kmity jsou velmi neharmonické (což často v učebnicích není zmiňováno) a oscilátor tedy (pro použití v radiotechnice) musí být doprovázen filtrem.

Tunelový jev ovšem patří k "nejtišším" v přírodě a oscilátory tohoto typu se tedy vyznačují velmi malým šumem.

