microstegium_elymus_model_ideas

Amy Kendig 11/14/2019

Summary

Simulation of *Microstegium vimineum* and *Elymus virgincus* over time. *M. vimineum* is an invasive annual grass and *E. virginicus* is a native perennial grass. *E. virginicus* grows by itself for 100 years, and then *M. vimineum* is introduced. Disease effects arise 100 years later. Population dynamics are similar in the absence of disease and when both species are susceptible to disease. In both cases, *M. vimineum* reduces the size of the *E. virginicus* population. *M. vimineum* is able to recover population losses due to disease. *E. virginicus* seedlings are impacted more than adults. When only *M. vimineum* is susceptible to disease, its population crashes.

Parameters

- subscripts follow "."
- p = perennial adult (at least 1 year old)
- s = perennial seedling (germinated that spring)
- a = annual
- L = annual litter

Table 1: Model parameter values

parameter	symbol	value	units	reference
perennial adult survival	m.p	0.9500	year ⁻¹	Malmstrom et al. 2005
annual seed survival	s.a	0.7400	year ⁻¹	Huebner 2011
perennial seed survival	s.s	0.7600	year ⁻¹	Robocker et al. 1953
annual germination	gamma.a	0.7000	year ⁻¹	Warren et al. 2013
perennial germination	gamma.s	0.6600	year ⁻¹	Robocker et al. 1953
litter suppression of annual germination	alpha.aL	-0.0009	$g^{-1} year^{-1}$	Foster and Gross 1998
litter suppression of perennial germination	alpha.sL	-0.0009	$g^{-1} year^{-1}$	Foster and Gross 1998
litter decomposition rate	b	0.5800	year ⁻¹	Kourtev et al. 2002
annual summer survival	h.a	0.9500	year ⁻¹	Warren et al. 2013
perennial seedlingsummer survival	h.s	0.4000	year ⁻¹	Mottl et al. 2006
perennial adult summer survival	h.p	0.8300	year ⁻¹	Mottl et al. 2006
annual seed production	lambda.a	6500.0000	seeds $year^{-1}$	Wilson et al. 2015
perennial seed production	lambda.p	435.0000	seeds $year^{-1}$	Stevens 1957
annual-annual competition	alpha.aa	0.1220	year ⁻¹	Leicht et al. 2005
seedling-annual competition	alpha.as	0.3570	year ⁻¹	Leicht et al. 2005
seedling-seedling competition	alpha.ss	0.0020	year ⁻¹	Leicht et al. 2005
annual-seedling competition	alpha.sa	0.7240	year ⁻¹	Leicht et al. 2005
biomass-seed conversion	c.a	0.0050	g seeds ⁻¹ year ⁻¹	Wilson et al. 2015
disease suppression of annual seed production	tol.a	0.1900	year ⁻¹	Flory et al. 2011
disease suppression of perennial seed production	tol.p	0.1900	year ⁻¹	Flory et al. 2011
annual-adult competition	alpha.pa	0.0724	year ⁻¹	derived
seedling-adult competition	alpha.ps	0.0724	year ⁻¹	derived
adult-annual competition	alpha.ap	3.5700	year ⁻¹	derived
adult-seedling competition	alpha.sp	3.5700	year ⁻¹	derived
adult-adult competition	alpha.pp	3.5700	year ⁻¹	derived

parameter	symbol	value	units	reference
seedling seed production	lambda.s	43.5000	seeds year ⁻¹	derived

Table 2: Alternative model parameter values

parameter	symbol	value	units	reference
annual germination annual intraspecific seed competition annual interspecific competition perennial intraspecific competition perennial interspecific seed competition disease suppression of seed production	gamma.a alpha.aa alpha.as alpha.ss alpha.sa tol	0.29 0.001, 0.015, 0.054 0.054, 0.910, 17.919 0.006, 0.011, 0.049 1.347, 9.574, 23.070 0.6	year ⁻¹ year ⁻¹ year ⁻¹ year ⁻¹ year ⁻¹	Huebner 2011 Leicht et al. 2005 Leicht et al. 2005 Leicht et al. 2005 Leicht et al. 2005 Stricker et al. 2016

Model

Population equations:

Assume counts are being conducted in the fall

N.s[t+1] = s.s * (1-g.s) * N.s[t] + g.s * h.s * f.s * N.s[t] + m.p * f.p * N.p[t]perennial seeds = seed bank survival + seedling seed production + adult seed production seedling survival seems to be density-dependent (intraspecific facilitation, interspecific competition)

$$\begin{split} N.p[t+1] &= m.p * N.p[t] + g.s * h. \ s * N.s[t] \\ perennial \ adults &= survival + seedling \ maturation \end{split}$$

N.a[t+1] = s.a * (1-g.a) * N.a[t] + g.a * h.a * f.a * N.a[t]annual seeds = seed bank survival + seed production seed survival or germination seems to depend on infection

$$\begin{split} L[t+1] &= c.a * g.a * h.a * N.a[t] + L[t] * e^{-b} \\ annual \ litter &= biomass \ from \ previous \ fall + decomposition \\ \textit{c.a is probably a function of density} \\ \textit{different rates of litter decay based on environmental conditions} \end{split}$$

Density-dependence on fecundity

f.s = lam.s / (1 + alpha.ss * g.s * h.s * N.s[t] + alpha.sp * m.p * N.p[t] + alpha.sa * g.a * h.a * N.a[t]) perennial seedling fecundity = fecundity in the absence of competition / (perennial seedling competition + perennial adult competition + annual competition)

 $\begin{array}{l} {\rm f.p = lam.p \; / \; (1 + alpha.ps \; * \; g.s \; * \; h.s \; * \; N.s[t] + alpha.pp \; * \; m.p \; * \; N.p[t] + alpha.pa \; * \; g.a \; * \; h.a \; * \; N.a[t]) } \\ {\rm perennial \; adult \; fecundity = \; fecundity \; in \; the \; absence \; of \; competition \; / \; (perennial \; seedling \; competition \; + \; perennial \; adult \; competition \; + \; annual \; competition) } \\ \end{array}$

 $f.a = lam.a / (1 + alpha.as * g.s * h.s * N.s[t] + alpha.ap * m.p * N.p[t] + alpha.aa * g.a * h.a * N.a[t]) \\ annual fecundity = fecundity in the absence of competition / (perennial seedling competition + perennial adult competition + annual competition)$

we don't currently have good estimates for competition coefficients density-dependence of fecundity changes with infection

Litter suppression

```
g.s = gamma.s + (alpha.sL * L[t]) perennial seed germination = germination in the absence of litter + reduction due to litter (alpha.sL < 0, g.s constrained to >= 0)
```

```
g.a = gamma.a + (alpha.aL * L[t])
```

annual seed germination = germination in the absence of litter + reduction due to litter (alpha.aL < 0, g.a constrained to >= 0)

litter production is correlated with more cleistogamous seeds in the first year

Disease

transmission through the litter

Perspectives on coexistence

effect of a species on the environment and response of the species to the environment relationship between plants and litter is similar to plant-soil feedbacks

Ideas

one species model - would expect fluctuations internal check - make the same diagram as Nick