Problem Set 2

Faisal Jayousi

Helpful proposition

Proposition 1. Let $f: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ a convex separable function i.e.

$$f(x) = \sum_{i=1}^{n} f_i(x_i) \tag{1}$$

where $f_i : \mathbb{R} \to \mathbb{R} \cup \{+\infty\}$ is proper and convex for any i = 1, ..., n. Then, the proximal operator of f is given by

$$\operatorname{prox}_{f}(x) = (\operatorname{prox}_{f_{1}}(x_{1}), \cdots, \operatorname{prox}_{f_{n}}(x_{n})). \tag{2}$$

Problem 1

Let $\tau > 0$, and $f: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$. Recall that the proximal operator of τf , $\operatorname{prox}_{\tau f} : \mathbb{R}^n \to \mathbb{R}^n$, is given by

$$\operatorname{prox}_{\tau f}(x) = \underset{u \in \mathbb{R}^n}{\operatorname{argmin}} \frac{1}{2\tau} \|u - x\|_2^2 + f(u)$$
 (3)

- 1. Does the RHS function admit a minimiser? Is it unique?
- 2. Let $f: \mathbb{R} \to \mathbb{R}$, $x \mapsto |x|$. Compute $\operatorname{prox}_{\tau f}(x)$.
- 3. Let $g: \mathbb{R}^n \to \mathbb{R}$, $x \mapsto ||x||_1$. Using proposition 1, compute $\operatorname{prox}_{\tau g}(x)$.
- 4. Plot $\operatorname{prox}_{\tau f}(\cdot)$ and over [-5, 5] with $\tau = 0.7$.
- 5. Observe the impact of τ on the graph of the function.

Problem 2

Let $\varphi \colon x \mapsto ||x||_1 + \langle \alpha, x \rangle + \beta$ where $x, \alpha \in \mathbb{R}^n$ and $\beta > 0$. Show that

$$\operatorname{prox}_{\tau\omega}(x) = \operatorname{prox}_{\tau \|\cdot\|_1}(x - \tau\alpha) \tag{4}$$