实验二

一、汇编码

.ORIG X3000

AND RO RO #0;初始化 0

AND R1 R1 #0; 用 R1 来代表符号位,1 为正,-1 为负

LD R6 X00FF ; X3003+X00EB=X3100 R6=N,计数器

LD R5 X0FC ;-4096->R3 X3100

LD R4 X0FC ;4096->R4

ADD R6 R6 #-1; 计数器先-1 方便后续判断

ADD RO RO #3; RO 代表 fn,f1 初始化为 3

ADD R1 R1 #1; R1 初始化为 1, 正数

ADD R6 R6 #0;

BRz #14;如果 N==0,则得到最终结果,可以直接存储->36

AND R7 R0 #7; 判断是否整除,结果为零则可以整除

BRz #19 ;是 0,可以整除,调到反转符号->33

ADD R3 R0 #0; R3==R0 一直减 10 直到为负数

ADD R3 R3 #-10;一直减 10 直到为负数

BRzp #-2;

ADD R3 R3 #10; 得到 R0 的个位数

AND R7 R3 #8;判断是否为 8

BRp #13; 是 8 则转到翻转符号 goto 33

ADD R0 R0 R0 ;fn=2fn

ADD R1 R1 #0; 判断符号位是啥

BRn #2 ;负号则 goto 25 行

ADD R0 R0 #2; fn=2fn+2

BR #1;

ADD R0 R0 #-2;fn=2fn-2

ADD R3 R0 #0; 这里开始判断是否越界

ADD R3 R3 R5;

BRp #-2;

ADD RO R3 R4;

ADD R6 R6 #-1;N=N-1;

BRz #4 ;if N==0,程序结束,得到结果存储 goto36

BR #-21 ;否则继续循环, goto->12

NOT R1 R1;

ADD R1 R1 #1;这里两步完成反转;

BR #-16 ;无条件跳转到 20 行

ST RO XOEO;

TRAP X25;

.END

二、实验结果

			memory
0	ж3100	xF000	61440
0	ж3101	x1000	4096
0	ж3102	x0065	101
0	ж3103	x0FFE	4094
0	ж3104	x0000	
0	x3105	x0000	
0	x3106	x0000	

		ı	lemory
⊕ x3100	xF000	61440	
→ x3101	x1000	4096	
⊕ x3102	x 0050	80	
⊕ x3103	x0FFE	4094	
→ x3104	x0000		
→ x3105	x0000		
⊕ x3106	x0000		
⊕ x3107	x0000		

			Memory
⊕ ×3100	xF000	61440	
⊕ ► x3101	x1000	4096	
⊕ ► x3102	x0008		
⊕ ► x3103	x018A	394	
⊕ ► x3104	x0000		
⊕ ► x3105	x0000		
0 → x3106	x0000		
⊕ ► x3107	x0000		
→ x3108	x0000	0	

	Memory						
0		x3100	xF000	61440			
0		x3101	x1000	4096			
0		ж3102	x0014				
0	٠	ж3103	x07FE	2046			

结果分析可知,最终只要 n 够大,f(n)的值都会是 4094

三、代码思路分析

1. f(n)能否整除8的判断:

利用二进制码,只要后三位都是零即可,又 f(n)>0,可以用 f(n)与 0111 取与来判断;

2. f(n)尾数是否为 8 的判断:

这里我用了一个比较低效率的办法,每一次把 f(n)减 10,直到 f(n)<0,然后加 10 来得到 f(n)的个位数字;

3. f(n)模 4096 的运算:

与上一个类似的判断方法,每一次都把 f(n)减 4096,直到 f(n)<=0,然后加 4096来 完成一个取模运算

- 4. 通过设置一个计数器来判断运算次数
- 5. 符号 flag, 1 代表+,-1 代表-;每次运算之后对这个 flag 进行维护

四、实验总结与收获

- 1. 通过使用汇编码来完成一个数据处理,学习使用 lc3 的一些基本操作指令集和,提高了对课程内容的掌握程度
- 2. 熟悉了 LC3 的编程环境,学会使用监视每一步 pc 指令的移动来进行 bug 发现和解决