Website:-https://www.arjun00.com.np

COUNCIL FOR TECHNICAL EDUCATION AND VOCATION TRAINING Office of the Controller of Examinations Sanothimi, Bhaktapur

Model Question Set | New Course (2080)

Program: Diploma in Engineering All

Year/Part: I/II (New) Website: - https://www.arjun00.com.np

Subject: Enginerring Mathematics-II

Complex numbers:-

- Define complex number. Express (2+5i)+ (1-i) in the form of x+iy (AM: 3+4i)
- 2. Express: $Z = \frac{6+3i}{3-4i}$ in the form of x+iy also separate real and imaginary part. [Re(z)= $\frac{6}{25}$, Im (2)=
- State and prove that De-Moivre's theorem for any positive integer n.
- 4. Evaluate using De'movre's theorem $\left(\frac{1}{2} + i \frac{\sqrt{3}}{2}\right)^7$ [Ans: $\frac{1}{2} + i \frac{\sqrt{3}}{2}$]
- 5. Evaluate: (1+i)²⁰ by using De- Moivre's theorem [(-2)¹⁰= 1024
- 6. Find the cube roots of unity by using De-moivre's theoem $[1, \frac{-1+i\sqrt{3}}{2}, \frac{-1-i\sqrt{3}}{2}]$
- 7. State De'moivre's theorem and use it to find the cube roots of i. $\left[\cos\frac{4k\pi+\pi}{0} + i\sin\frac{4k\pi+\pi}{6}\right]$ what k= 0₁.
- 8. Find the square roots of the following
- a) (-5-5i)

$$4\sqrt{50} \left(\cos\frac{3\pi}{8} - i\sin\frac{3\pi}{8}, 4\sqrt{50} \left(\cos\frac{5\pi}{8} + i\sin\frac{5\pi}{8}\right)\right)$$

b) $(4+4\sqrt{3} i)$

$$(\sqrt{2}(\sqrt{3}+i))$$
 and $-\sqrt{2}(\sqrt{3}+i)$

- 9. If z_1 and z_2 are two complex numbers show that $|z_1+z_2| \le |z_1|+|z_2|$
- If w is complex cube root of unity then prove the
 - a) $(1-w-w^2)^5+(1+w-w^2)^5=32$
 - b) $(1-w+w^2)^3+(1-w^2+w)^3=64$
 - c) $(1-w-w^2)^3+(1+w-w^2)^4=16$

- Matrix transpose of a matrix. If $A = \begin{bmatrix} 1 & 2 \\ 3 & 0 \end{bmatrix} B = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$ verify that 1. $(AB)^{\mathsf{T}} = B^{\mathsf{T}} A^{\mathsf{T}}$.
- 2. Show that: $\begin{vmatrix} a+b+c & c & c \\ a & b+c+2a & a \\ b & b & c+a+2b \end{vmatrix} = 2(a+b+c)^3$
 - When will two matrices be inverse to each other? Show that matrices 3. $\begin{pmatrix} 3 & -1 \\ 5 & -2 \end{pmatrix}$ and $\begin{pmatrix} 2 & -1 \\ 5 & -3 \end{pmatrix}$ are inverse of each other and verify that their transposes are also inverse of each other.
 - 4. Prove that: $\begin{vmatrix} a & b & ax + by \\ b & c & bx + cy \\ ax + by & bx + cy \end{vmatrix} = (b^2 ac) (ax^2 + zxy + cy^2)$
 - 5. Define cofactor of a matrix A. Prove that

$$\begin{vmatrix} a+x & b & c \\ a & b+y & c \\ a & b & c+z \end{vmatrix} = xyz \left(1 + \frac{a}{x} + \frac{b}{y} + \frac{c}{z}\right)$$

$$Ans \begin{pmatrix} -3 & 2 & 6 \\ -1 & -1 & -3 \\ 2 & -3 & -4 \end{pmatrix}$$
6. If $A = \frac{-1}{5} \begin{pmatrix} 1 & 2 & -1 \\ 2 & 0 & -1 \\ 0 & 3 & -1 \end{pmatrix}$ then find A^{-1} .

- - Solve the following systems by using cramer's or tow equivalent's method:

a) x-2y-z=7, 2x+y+z=0, 3x-5y+8z=13
$$\left(x=\frac{3}{2},y=\frac{-5}{2},\ z=\frac{-1}{2}\right)$$
 b) x+y-z=3, 2y+z=10, 5x-y-22-3

the convex polygonal region given by the in equalities: $2x+y\leq 20$, $2x+3y\leq 24$, $x\geq 0$, $y\geq 0$ [F_{Max.}= 11 at (9,2) Website :- https://www.arjun00.com.np [F_{Min}=0 at (0,0)

 A baker has 90 80 and 50 units of ingredients A, B and C respectively. A loaf requires 2, 1 and 1 units of A, B and C respectidy and Cake requires 1, 2, 1 units of A, B and C respectively. If a loaf sells for a profit of 5.60 and cake for Rs. 41

Find the extreme values of the function F(x,y) defined by F(x,y) = x+y on

formulate the above linear programming.

Problem for maximum profit. [Z=5.60x+4y]
2x+y<90
x+2y<80
x+y<50
x,y<0

4.

3.

Website :- https://www.arjun00.com.np

Conic section

- Find the equation of the parbola whose vertex is at (3, 2) and focus (5,2). [y²-4x-8x+28-0)
- Find the co-ordinate of focus, the vertes, the equation of directrix, the length of latus rectum of the parabola.

a. y²=6y-12x+45

[Vetex (4-1), dire.x=5, 4]

b. $y^24x+2y-15=0$

[Focus: (3/2, 3), vert. (9/2, 3)

c (x+1)2+8y-16=0 [(-1,0) (-1,2), y-4=0,8]

- Find the eccentricity, coordirectes of the vertices and foci and alsothe length of the major axis and minor axis of the ellipse x²/25 + y²/10 = 1 [e=3/5, vertices (±5,0), Foci (±3,0) length of m.. axis =10 [Min axis=8]
- 4. Find the eceuity and co-ordinates of the vertice and foci of the ellipse:

$$\frac{(x-1)^2}{16} + \frac{(y-2)^2}{4} = 1$$

 $A=\pi r^2$ 5. Find the equation of the ellipse whose foci (±2,0) and length of latus rectum is 6.

 $\left[\frac{x^2}{16} + \frac{y^2}{12} = 1\right].$

Website :- https://www.arjun00.com.np

5. Find the equation of the ellipse whose foci cube (±2, 0) and length of latus rectum is 6.

$$\left[\frac{x^2}{16} + \frac{y^2}{12} \right] = 1$$

Find the ecnricity, the co-ordinates of the centre and the foci of the ellipse.

 $X^2+4y^2-4x+24y+24=0$

$$\left[\frac{\sqrt{3}}{2},(2,-3),(2\pm2\sqrt{3},-3]\right]$$

Find the vertices, centre, eccertnity, foci of the hyperbola: 7. 9x2-16y2-18x-64y-199=0

[vertices:
$$(1\pm 4, -2)$$
, cere $(1, -2)$, $e = \frac{5}{4}$, foci $(1\pm 5, = 2)$]

Construct the equation of hyperbola in its standarded form with focous 8. at (-5,0) and vertex (2,0)

Co-ordinate in space:

- Find the equation of the plane through the points (2,2,1) and (3,1,2) and 1. perpendicular to the plane x+2y+3z=5.
- Find the point where the line through (1,5,11) and (-1,-1,-1) meets yz-2. plane. Website :- https://www.arjun00.com.np
- Find the equation of the plane through the intersection of the planes 3. x+y+z=6 and 2x+3y+4z=5=0 and perpendicular to the plane 4x+5y-3z=8.
- Find the direction cosines, I, m, n of two lines which satiesfiay the 4. equations:

L+m+n=0 and 2lm-mn+2nl=0.

$$\left(\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{-2}{\sqrt{6}}\right)$$
 and $\left(\frac{1}{\sqrt{6}}, \frac{-2}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)$

- Find the equation of plane containing the lines through the origin with direction cosines proportional to 2, 1, -2 and 5, 2, -3.
- Define direction cosines and direction ratio's of a line. Show that: l²+m²+n²=1, where I, m, n have their usual meaning.
 - Find the direction cosines I, m, n of two lines which satistrg the equations 7. 2l+2m-n=0 and lm+mn+nl=0.Also fin dthe angle between those lines.

Ans:
$$\left[\left[\frac{1}{3}, \frac{-2}{3}, \frac{-2}{3} \text{ and } \frac{2}{3}, \frac{-1}{3}, \frac{2}{3} \right]; \frac{\pi}{2} \right]$$

Prove that the lines where direction cosines are given by the relations 8. al+bm+cn=0 and fmn+gnl+hlm=0 are perpendicular if $\frac{f}{a} + \frac{g}{b} + \frac{h}{c} = 0$

Solution: Given relations are

Elliminating n between (1) and (2), we have

$$\operatorname{fm}\left(\frac{-al+bm}{c}\right)g\left(\frac{-al+bm}{c}\right)$$
|+h|m=0

$$ag\left(\frac{l}{m}\right)^2 + (ch - af + bg)\left(\frac{l}{m}\right) + bf = 0$$

Which is quadratic in
$$\left(\frac{l}{m}\right)$$
, Let the two roots be $\frac{l_1}{m_1}$ and $\frac{l_2}{m_2}$

Now, $\frac{l_1}{m_1} \cdot \frac{l_2}{m_2} = \frac{bf}{ag}$ Website: https://www.arjun00.com.np
$$\frac{l_1 l_2}{bf} = \frac{m_1 m_2}{ag}$$

$$\frac{l_1 \, l_2}{f/a} = \frac{m_1 \, m_2}{g/b} \dots (3)$$

Similarly, If are eliminate I between (1) and (2), neget

$$\frac{m_1 m_2}{g/b} = \frac{n_1 n_2}{n/c} \dots (4)$$

From (3) and (4) we,

$$\frac{l_1 l_2}{f/a} = \frac{m_1 m_2}{g/b} = \frac{n_1 n_2}{h/c} = k(say)$$

 $L_1 l_2 = k \frac{f}{a}$, $m_1 m_2 = k \frac{g}{b}$ and $n_1 n_2 = k \frac{h}{c}$ The two lines are parallel if

$$k\frac{f}{a} + k\frac{g}{b} + k\frac{h}{c} = 0$$

i.e. $\frac{f}{c} + \frac{g}{h} + \frac{h}{c} = 0$

Website :- https://www.arjun00.com.np

Website:-https://www.arjun00.com.np

3.By using vector method find the erea of triangle formed by the points: A(1,1,1), B (1,2,3) and C (2,3,4).

[Ans: $\frac{1}{2}\sqrt{6}$ sq. units]

4. Prove that cos (A+B)= CosA.cosB-sinA.sinB by using vector method.

5. Prove that sin (A-B)= sinA.cosB-cosA.sinB by using vector method.

6.Prove by vector method, In any AABC,

$$CosB = \frac{a^2 + c^2 - b^2}{2ac}$$

7.Find the area of the parallelogram determined by vector $\vec{i} + \vec{j} + \vec{k}$ and $-2\vec{i} + 3\vec{j} + \vec{k}$. Website: https://www.arjun00.com.np

8.Show that the vector $5\vec{a} + 6\vec{b} + 7\vec{c}$, $7\vec{a} - 8\vec{b} + 9\vec{c}$ and $3\vec{a} + 20\vec{b} + 5\vec{c}$ are coplanar, where \vec{a} , \vec{b} , \vec{c} are any three vectors.

9. Determine wheather the following vectors are linearly dependent or independent:

i)
$$\vec{i} + \vec{k}$$
, $\vec{i} + \vec{j}$ and $-\vec{i} - \vec{k}$ Website: https://www.arjun00.com.np

ii)
$$2\vec{i} + 3\vec{j} + 4\vec{k}$$
, $\vec{i} - \vec{j} + 2\vec{k}$ and $5\vec{i} + 6\vec{j} + 8\vec{k}$

[Ans: (i) LD (ii) L.Ind]

10.Find the equation of line through (5,6,7) and (3,2,-1) in symmetrical form by vector method.

$$[\mathsf{Ans}: \frac{x-5}{1} = \frac{y-6}{2} = \frac{z-7}{4}]$$

Statistics

Calculate the arithmetic mean and standard deviation from the given data.

Marks	0-4	4-8	8-12	12-16	16-20	29-24
No. students	7	7	10	15	7	6

(Ans= 12, s.d.=6.05)

Calculate quartile deviation and it's coefficient form the following data:

Class	0-20	20-40	40-60	60-80	80-100
Frequency	4	8	12	3	5

Website:-https://www.arjun00.com.np

[Q.D= 15, coefficient of Q.D.= 0.33)

3. Find the standard delvation and coefficient of variation (c.v.) from the following data:

X:	5	10	15	20	25	
F:	2	4	1	6	9	

(s.d.=6.94, c.v.=37.23%)

The distribution of the marks of Automobile students of KNPI college in the 4. paper of mathematics as follows:

Marks:

20-30

30-40 40-50

50-60 34

60-70

70-80

No. of students: 2

5

22

80-100

Find, Medium of this distribution

(Ans: 52.65)

Find the mode form the following data: 5.

Martin Hall Control		g cotta:					
Weight (kg) 2-2.4	2.4-2.8	2.8-3.2	3.2-3.6	3.6-4	4-4.4		
No. of child 5	5	9	4	4	2		
The state of the s	100	3	1 **	14	13		

(Ans: 2.978 kg)

Website :- https://www.arjun00.com.np

Calculate A.M., G.M. and H.M. of the following data. Also prove that A.M.> 6. G.M.> H.M.

Class Interval	0-10	10-20	20-30	30-40	40-50
Frequency	3	7	15	2	3

(Ans: AM= 24.33, G.M.=20.49, H.M.=16.73)

Find median, lower and upper quartiles, 4th deciles and 60th percentiles form 7. the following data: Website:-https://www.arjun00.com.np

Marks:

0-4

4-8

8-12 12-14 14-18 18-20 20-25 25 and above

No. of students:

10

12 18

(Ans: A1=6.5, Md=10.88

Q1=18.125 (D4)=9.33 P60=12.57)

Calculate Karl- Pearson coefficient of skewness from the following data and interpret result.

Size:

30-33 33-66 36-39 39-42 42-45 45-48

Frequency (Ans: S₄(P)=0.018)

9.	Calculate correlation (kan reason s) coemicient from the following and							
X:	12	9	8	10	11	13	7	
Y:	14	8	6	9	11	12	3	

(Ans: y=4.17+0.87x

X=6+7

Probability

A problem of mathematics is given to the three students A, B and C and the chance of solving it are $\frac{1}{3}$, $\frac{1}{4}$ and $\frac{1}{5}$ respectively. Find the probability that the problem will solve. (Ans. 3)

2.A bag contains 5 white, 7 red and 8 black balls. If two balls are drawn one by are without replacement, what is the probability that both are white. (Ans: $\frac{1}{10}$

3. Suppose 3 people are selected at random from a group of 7 men and 6 women. What is the probability that 2 men and 1 women are selected? (Ans: 0.441)

4.The mean and standard deviation of the binomial distribution are 40 and 6 respectively. Find the values of n,p,q.

(Ans: n=400, p=0.1, q=0.9)

5. The probability that a student passes a mathematics test is $\frac{3}{5}$ and the passes both Math and chemistry test is $\frac{1}{5}$. The probability that he passes at least one test is $\frac{19}{20}$. What is the probability that he passes the chemistry test?

 $(Ans: \frac{3}{20})$

6.A binomial distribution consists of 5 independent trials. If probability of 1 and 2 success are respectively $\frac{1}{4}$ and $\frac{1}{3}$, find the probability of successes and failure in trial. Also find P9r-3).

[Hmt: $P(r=1) = \frac{1}{4}$, $P(r=2) = \frac{1}{3}$] Ans: $[P = \frac{2}{3}, q = \frac{3}{5}]$ $P(r=3) = \frac{144}{625}$

Website:-https://www.arjun00.com.np

 Find the vertices, centre, eccertnity, foci of the hyperbola: 9x²-16y²-18x-64y-199=0

[vertices: $(1\pm 4, -2)$, cere (1, -2), $e = \frac{5}{4}$, foci $(1\pm 5, = 2)$]

8. Construct the equation of hyperbola in its standarded form with focous at (-5,0) and vertex (2,0)

Website:-https://www.arjun00.com.np

Website	:-	https://w	ww.arju	n00.com.np
---------	----	-----------	---------	------------

Website:-https://www.arjun00.com.np

Website:-https://www.arjun00.com.np

Website:-https://www.arjun00.com.np

Website:- https://www.arjun00.com.np

- 9. Show that the angle between the diagonals of a cube is $\cos^{-1}(\frac{1}{2})$.
 - A line makes angles $\alpha, \beta, \gamma, \delta$ with four diagonals of a cube, prove that 10. $cso^2\alpha + cos^2\beta + cos^2\gamma + cos^2\delta = \frac{4}{5}$ (CTEVT 2067, 071

solution: consider a cube with one corner at origin O and three mutually perpendicular edges oA, oB and oC along ox, oy and oz respectively so that oA=oB=oC=a. Then its corners are (0(0,0), A(a,0,0) , B(0,a,0), C(0,0,a) P(a,a,a), Q (0,a,a), R(a,o,a) and S(a,a,0) as shown in figure.

The direction ratios of four diagonals OP, Aq, BR and CS are:

Now, drc's of the diagonal OP

similarly, the drc's of diagonal AQ, BR and CS are
$$-\frac{1}{\sqrt{3}}$$
, $\frac{1}{\sqrt{3}}$, $\frac{1}$

respectively. Let a line with dc's I, m,n make angles α,β,γ and δ with diagonals OP,

AQ, BR and CS repectively. Then

$$\cos\alpha=l.\,\frac{1}{\sqrt{3}}+m.\,\frac{1}{\sqrt{3}}+n.\,\frac{1}{\sqrt{3}}=\frac{l+m-n}{\sqrt{3}}$$
 Similarly,
$$\cos\beta=\frac{-l+m+n}{\sqrt{3}},\,\cos\gamma=\frac{l-m+n}{\sqrt{3}},\,\cos\delta=\frac{l+m-n}{\sqrt{3}},$$

Now by L.H.S.

$$=\cos^2\alpha + \cos^2\beta + \cos^2\gamma + \cos^2\delta$$

$$= \frac{1}{3} [(1+m+n)^{2} + (-1+m+n)^{2} + (1-m+n)^{2} + (-1+m-n)^{2}]$$

$$= \frac{1}{3}(1^2 + m^2 + n + 2lm + 2mn + 2nl + 1^2 + m^2 + n^2 - 2lm + 2mn - 2nl + 1^2 + m^2 + n^2 - 2lm - 2nl + 1^2 + m^2 + n^2 - 2lm + 2mn - 2nl + 1^2 + m^2 + n^2 - 2lm - 2nl + 1^2 + m^2 + n^2 - 2lm - 2nl + 1^2 + m^2 + n^2 - 2lm + 2mn - 2nl + 2mn - 2m$$

2mn+2nl+l2+m2+n2+2lm-2mn-2ml]

$$= \frac{4(l^2+m^2+n^2)}{3}$$
$$= \frac{4}{3} [l^2+m^2+n^2=1]$$

Vectors

- Define scalar product of two vector. If \vec{a}, \vec{b} are unit vector and θ is angle between them, then show that $\sin \frac{\theta}{2} = \frac{1}{2} |\vec{a} - \vec{b}|$
- Define collinear vectors. Prove that three points with following vectors are collinear: $\vec{i} + 2\vec{j} + 3\vec{k}$, $-2\vec{i} + 3\vec{j} + 4\vec{k}$, $7\vec{i} + \vec{k}$