Language & Logic - Assignment IV

Tom Goodman

1 Question 1

1.1 Brief

$$\forall_x [F_x \to (G_x \to H_x)], \exists_x [F_x \land G_x] : \exists [H_x]$$

1.2 Answer

$$\begin{array}{lllll} 1 & \forall_x [F_x \to (G_x \to H_x)] & \operatorname{Premise} & \{\mathbf{1}\} \\ 2 & F_a \to (G_a \to H_a) & \forall \operatorname{-Elimination} & (1) & \{\mathbf{1}\} \\ 3 & \exists_x [F_x \wedge G_x] & \operatorname{Premise} & \{\mathbf{3}\} \\ 4 & F_a \wedge G_a & \exists \operatorname{-Elimination} & (3) & \{\mathbf{3}\} \\ 5 & F_a & \wedge \operatorname{-Elimination} & (4) & \{\mathbf{3}\} \\ 6 & (G_a - > H_a) & \to \operatorname{Elimination} & (2,5) & \{\mathbf{1},\mathbf{3}\} \\ 7 & G_a & \wedge \operatorname{-Elimination} & (4) & \{\mathbf{3}\} \\ 8 & H_a & \to \operatorname{Elimination} & (6,7) & \{\mathbf{1},\mathbf{3}\} \\ 9 & \exists_x [H_x] & \exists \operatorname{-Introduction} & (8) & \{\mathbf{1},\mathbf{3}\} \end{array}$$

2 Question 2

2.1 Brief

$$: \forall_x [((P_x \to Q_x \to P_x) \to P_x]]$$

2.2 Answer

1	$(P_x \to Q_x) \to P_x$	Hypothesis $\{1\}$
2	$\neg P_x$	${\bf Hypothesis} \{{\bf 1},{\bf 2}\}$
3	P_x	${\bf Hypothesis} \{{\bf 1,2,3}\}$
4		${\bf Hypothesis} \{{\bf 1,2,3,4}\}$
5	P_x	Iteration (3) $\{1, 2, 3, 4\}$
6	$ \ \ \ \neg P_x$	Iteration (2) $\{1, 2, 3, 4\}$
7	Q_x	Reductio Ad Absurdum $(5, 6)$ $\{1, 2, 3\}$
8	$P_x \to Q_x$	\rightarrow Introduction (3, 7) {1,2}
9	P_x	\rightarrow Elimination $(1, 8)$ $\{1\}$
10	$\neg P_x$	Iteration (2) $\{1,2\}$
11	P_x	Reductio Ad Absurdum $(9, 10)$ $\{1\}$
12	$((P_x \to Q_x) \to P_x) \to P_x$	\rightarrow Introduction (1, 11) {}
13	$\forall_x[((P_x \to Q_x) \to P_x) \to P_x]$	\forall -Introduction (12) {}