Getting Started with Freescale MQX™ RTOS

PRODUCT:	Freescale MQX™ RTOS
PRODUCT VERSION:	3.7.0
DESCRIPTION:	Getting Started with the Freescale MQX™ RTOS, version 3.7.0
RELEASE DATE:	March 31 st , 2011

How to Reach Us:

Home Page:

www.freescale.com

Web Support:

http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or +1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale ™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. ARC, the ARC logo, ARCangel, ARCform, ARChitect, ARCompact, ARCtangent, BlueForm, CASSEIA, High C/C++, High C++, iCon186, MetaDeveloper, MQX, Precise Solution, Precise/BlazeNet, Precise/EDS, Precise/MFS, Precise/MQX, Precise/MQX Test Suites, Precise/RTCS, RTCS, SeeCode, TotalCore, Turbo186, Turbo86, V8 µ RISC, V8 microRISC, and VAutomation are trademarks of ARC International. High C and MetaWare are registered under ARC International.

All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2009. All rights reserved.

Rev. 03 03/2011

Table of Contents

Getting Started with Freescale MQX™ RTOS	i
1 Read Me First	2
2 Building the MQX Libraries	3
2.1 Compile-time Configuration	
2.2 Build Targets	
2.3 Freescale CodeWarrior Development Studio "Classic"	
2.4 Freescale CodeWarrior Development Studio version 10.1	6
2.5 IAR Embedded Workbench for ARM and ColdFire	7
2.6 CodeSourcery G++ Development Environment Support	
3 Creating new MQX Project	
3.1 Freescale CodeWarrior Development Studio "Classic"	8
3.2 Freescale CodeWarrior Development Studio version 10.1	8
3.3 Other Development Tools	9
4 Task Aware Debugging Plug-in	10
4.1 CodeWarrior Development Studio "Classic"	
4.2 CodeWarrior Development Studio version 10.1	14
4.3 IAR Embedded Workbench for ARM and ColdFire	18
5 Integrating Processor Expert Drivers into MQX BSP	19
5.1 Introduction	19
5.2 Processor Expert-Ready BSPs	
5.3 Processor Expert MQX Demo Application	20
6 Board-specific Information Related to MQX	21
6.1 TWR-K60N512	21
6.2 TWR-K40X256	23
6.3 M52223EVB	
6.4 M52233DEMO	
6.5 M52235EVB	
6.6 M52259EVB	
6.7 M52259DEMO	
6.8 M52277EVB	_
6.9 M54455EVB	
6.11 TWR-MCF51CN-KIT	32
6.12 DEMOEM Board	
6.13 TWR-MPC5125-KIT	
6.14 EVB51JM128 Board	
6.15 DEMOAC Board with MCF51AC256	40 41
6.16 TWR- MCF51MM-KIT	
6.17 M53015EVB	
6.18 TWR-MCF54418-KIT	
6.19 TWR-MCF51AG	
6.20 TWR-MCF51JE	
6.21 M5208EVB(E)	
6.22 M5329EVB	55

1 Read Me First

This document describes steps required to configure the CodeWarrior development tool and use it to build, run and debug applications of the Freescale MQX™ RTOS operating system. This document also provides board-specific information related to the MQX RTOS.

2 Building the MQX Libraries

2.1 Compile-time Configuration

Major compile-time configuration options are centralized in a single user configuration file located in

```
<install dir>/config/<board>/user config.h
```

This user configuration file is included internally by private configuration files in MQX PSP and BSP projects.

To share configuration settings between different boards, the user_config.h file may include other header files with common settings. The header files may only be located in the same *<boxesis* directory or in the "common" directory:

```
<install dir>/config/common
```

All MQX configuration files are also *indirectly* used by other core components like RTCS, MFS, etc. "Indirectly" means that the MQX PSP and BSP must be build first, which causes the configuration file being copied into the output (lib) directory. The other components then include the configuration file from the /lib output directory.

Caution: Until the PSP or BSP libraries are rebuilt, configuration changes made in the user_config.h file are not used by any other MQX component. On the other hand, after the PSP and BSP libraries are re-compiled with a new configuration, it is important to recompile the other libraries so the compiled code is consistent with the configuration file. See the next section for more details.

2.1.1 Build Process

After any change to the compile-time user configuration file or MQX kernel source files, the MQX libraries need to be re-built. The build process is similar with all core components:

- The output directory is <install_dir>/lib/<board>.<compiler>/<component>. For example the MQX PSP and BSP libraries for M52259EVB board are built into the /lib/m52259evb.cw/bsp and /lib/m52259evb.cw/psp directories. The BSP and PSP library output path was changed in MQX 3.7.0, in previous version both these libraries were built into one folder: /lib/m52259evb.cw/mqx. See the "Freescale MQXTM 3.7 Porting Guide" FSL_MQX_3_7_Porting_Guide.pdf document for instructions how to port old MQX projects to MQX 3.7.0. This document is a part of the MQX 3.7.0 installation package.
- All public header files needed by application are automatically copied from internal include folders to the same output directory as the library itself.
- During PSP or BSP build process, also the user_config.h file and other header files from the config/<board> and config/common directories are copied into the lib/<board>.<comp> output directory (where <comp> is a name of build tool).
- Other components like RTCS, MFS, etc. use the copied configuration files only.
- Similarly as the PSP and BSP, the other libraries build into the output directories inside /lib/<board>.<comp>

To summarize the points above, there are simple **rules to obey** when re-building the MQX libraries.

- After any change to the /config/common/user_config.h file, all MQX libraries should be re-built.
- The PSP and BSP libraries must be build first, before the MFS, RTCS and other libraries.

Important: No changes should be made to header files in the output build directory (/lib). The files get overwritten any time the libraries are built.

2.2 Build Targets

Each build project in Freescale MQX™ RTOS contains multiple compiler/linker configurations (so called build "targets").

Two different types of build targets exist for different compiler optimization settings:

- **Debug** the compiler optimizations are turned off or set to low. The compiled code is easy to debug but may be less effective and much larger than the Release build. All output libraries (or executables) have _d postfix in the file name (e.g. rtcs d.a).
- Release the compiler optimizations are set to maximum. The compiled code is very hard to debug and should be used for final applications only. There is no postfix in the output file name (e.g. rtcs.a).

Similarly, different types of build targets exist for different application binary interface (ABI) settings. In MQX version 3.6, the StdABI targets are no-longer available as they are not supported by the latest versions build tools.

- **StdABI** the compiler is set to generate functions calls with standard parameter (on-stack) passing interface. This was the only available option in the MQX versions prior 3.4.
- RegABI starting in MQX release 3.4, the register parameter passing is enabled and is set as default in all example and stationery projects. The output libraries for the CodeWarrior builds have the "_regabi" postfix in the file name (e.g. rtcs_regabi.a). Register parameter passing option gives generally smaller and faster code.

Considering the naming convention stated above, the following build targets exist in MQX library build projects:

- **Debug RegABI** register parameter passing ABI, easy to debug code
- Release RegABI register parameter passing ABI, optimization set to maximum
- Build all this target contains all other targets for convenient mass-build.

Note: Build configurations of tools which only support one ABI do not contain this postfix in the configuration name, nor in the output library name.

Build target name of any MQX application project makes a reference either to **Debug** or **Release** builds of the core libraries. On top of that the target names also specify board memory configuration which gets built. For example:

- Devices with internal Flash memory (e.g. MCF522xx):
 - Int. Flash Release this target is suitable for final application deployment. When
 programmed to Flash, the application starts immediately after reset. Variables are
 allocated in internal SRAM memory.

- Int. Flash Debug same as above, only the Debug-compiled libraries are used. This
 target is suitable for debugging before deployment. On boards without external
 memory, this is the only target suitable for debugging larger applications.
- Boards with external MRAM memory (M52259EVB etc.):
 - Ext. MRAM Debug solely for debugging purposes with code located in external MRAM memory (available e.g. on the M52259EVB). Variables are located in internal SRAM. Part of the external MRAM memory may also be used for additional RAM memory pools. Application executable is loaded to MRAM automatically by the debugger.
- Boards with external RAM memory (M54455EVB etc.):
 - Ext. Ram Debug solely for debugging purposes with code located in external RAM memory (available as SDRAM e.g. on the M54455EVB). Both code and variables are located in this external memory. Application executable is loaded to RAM automatically by the debugger.

2.3 Freescale CodeWarrior Development Studio "Classic"

Currently supported CW "Classic" versions:

- CodeWarrior for ColdFire V7.2 (ColdFire V2-V4 families)
- CodeWarrior for Microcontrollers V6.3 (ColdFire V2-V4 families)
- CodeWarrior for MobileGT V9.2 (PowerPC)

The support of the following CodeWarrior tools was discontinued in MQX 3.6.0

- CodeWarrior for Microcontrollers V6.2 (ColdFire V2-V4 families)
- CodeWarrior for ColdFire V7.1 (ColdFire V2-V4 families)

If you upgrade your toolset to the latest CodeWarrior version or if you upgrade MQX applications developed in older MQX versions to version 3.5.0 or later, you should be aware of the following facts:

- Starting from the MQX version 3.5.0 the support for register parameter passing (RegABI) was introduced and was made the default option for all precompiled libraries. MQX version 3.6.0 has discontinued the support for the StdABI targets at all, as it is no longer supported by the latest CodeWarrior tools.
- If an older application project is upgraded to the latest MQX version, it should be changed to reference the new libraries with the *_regabi* suffix.
- The user's code written in assembly language has to be reviewed in case the parameter passing option has been changed in application project. See CodeWarrior documentation for more details.
- Remember the MQX libraries and user applications always have to use the same parameter passing option.
- In transition to versions 7.2 and 6.3, the CodeWarrior has also changed its runtime libraries.
 The new EWL libraries have been introduced, replacing the former MSL libraries. The EWL
 libraries are implicitly liked to the target application according to project configuration
 options. All old MSL libraries should be removed from project. The libraries are API level
 compatible.

To rebuild the MQX libraries open and build the following CodeWarrior project:

```
<install dir>/config/<board>/<compiler>/build libs.mcp
```

The output directory is:

```
<install dir>/lib/<board>.<compiler>/<component>
```

Caution: Pay attention to use correct CodeWarrior Development Studio when opening any MQX projects. There are different CodeWarrior Studios for ColdFire V1 family (MCF51xx), ColdFire V2-V4 families (MCF52xx-MCF54xx) and PowerPC (MPC5125) processors.

2.4 Freescale CodeWarrior Development Studio version 10.1

In order to recompile the MQX core libraries the library projects have to be imported (opened) into the CodeWarrior 10.1 workspace. Select menu *File/Import/General/Existing Projects into Workspace* and navigate to your MQX 3.7 installation directory. Select and import the following projects (note that some of the projects may not be available for all supported boards):

- BSP project <mqx_path>\mqx\build\cw10\bsp_<board>_library
- PSP project <mqx_path>\mqx\build\cw10\psp_<board>_library
- MFS project <mqx_path>\mfs\build\cw10\mfs_<board>_library
- RTCS project <mqx_path>\rtcs\build\cw10\rtcs_<board>_library
- Shell project <mqx path>\shell\build\cw10\shell <board> library
- USB DDK project <mqx path>\usb\device\build\cw10\usb ddk <board> library
- **USB HDK project** <mqx path>\usb\host\build\cw10\usb hdk <board> library

Warning: The "Copy projects into workspace" check box the in the file importer must be **unchecked**. Accidental leaving this option enabled will corrupt the project and the libraries will not be able to build.

When all library projects are imported in your workspace, use mouse to select all project items and go to menu *Project/Build all*. The libraries have to be built in correct order:

- PSP and BSP
- RTCS and MFS
- Shell and USB libraries

CodeWarrior compiles all MQX libraries in the build configuration which is currently selected (build configuration is also referred as "build target"). By default, the Debug build target is selected in all projects. In order to compile libraries in a Release configuration switch all libraries to Release target and build all again. See picture bellow.

See FSL_MQX_3_7_in_CW_10_1.pdf document for detailed information about importing and building MQX libraries and debugging MQX 3.7 application in CodeWarrior 10.1. This document is a part of the MQX 3.7.0 installation package.

2.5 IAR Embedded Workbench for ARM and ColdFire

IAR Embedded Workbench versions currently supported are:

- IAR EWARM version 6.10 (Kinetis ARM Cortex® M4)
- IAR EWCF version 5.3 (ColdFire M52259EVB, build projects are not part of release contact IAR Systems for more information)

The support of the IAR EWARM version 5.50.6 tools was discontinued in MQX 3.7.0

See more information about the MQX support in IAR tools in a separate document distributed within the Embedded Workbench distribution: "Getting Started with Freescale MQX™ RTOS and IAR Embedded Workbench"

2.6 CodeSourcery G++ Development Environment Support

MQX support for GNU C and C++ based build tools is provided by CodeSourcery.

3 Creating new MQX Project

3.1 Freescale CodeWarrior Development Studio "Classic"

The Freescale MQX™ RTOS setup installs the MQX "New Project Stationeries" into CodeWarrior installation directory. New project stationeries are project templates which help you to create your application project.

Follow the steps bellow to create new MQX project:

- Open CodeWarrior Development Studio and select the File/New Project... menu
- Select "Freescale MQX 3.X Stationery" and specify a name of your project
- Select Target platform and type of application you are developing for
- New application will be created for you. Note: All application projects (even the "MQX Only" one) includes the whole set of MQX libraries. This allows convenient usage of all MQX API functions without the need of changing project. The unused library code is stripped during final application linking. In case you do not need a certain library in your application, simply delete the library reference from the project.

3.2 Freescale CodeWarrior Development Studio version 10.1

The Freescale MQX™ RTOS setup installs the MQX "New Project Wizard" plug-in into CodeWarrior 10.1 installation directory. The Project Wizard helps to select one of the supported evaluation boards, include appropriate MQX libraries and create initial application project.

The project wizard is available in the File/New/MQX 3.7 Projects menu in the CodeWarrior 10.1 IDE.

Follow the steps displayed by the Wizard, select evaluation board and MQX libraries to be included in your project.

The Wizard offers two types of project:

- Empty application a simple "Hello world" application with selected MQX libraries included
- Basic application an application showing basic code to initialize selected MQX components

- If the "Basic" application is selected, the Wizard continues by several other steps to gather information about what initialization code to generate:
 - RTCS option RTCS TCP IP stack is initialized and set to static or dynamic IP address based on user selection.
 - USB Device or Host option Stack and selected class drivers are initialized based on user selection.
 - o MFS option the RAM-disk initialization code can be enabled

3.3 Other Development Tools

Process of creating new projects typically heavily depends on the development environment being used. Describing this process for tools other than Freescale CodeWarrior is out of scope of this document. For more information, refer to MQX support documentation provided by the tool vendor.

A general recommendation for starting a new MQX project in any environment is to clone one of the existing example applications, save it under a custom name and modify it to meet your specific needs. In this case, please be aware that there may be relative paths to support files referred in the project. This may apply for example to include search paths, linker command files, debugger configuration files etc. Make sure, you update the relative paths in the newly cloned project.

4 Task Aware Debugging Plug-in

MQX Task Aware Debugging plug-in (TAD) is an optional extension to a debugger tool which enables easy debugging of multi-tasking applications. It helps to visualize internal MQX data structures, task-specific information, I/O device drivers and other MQX context data.

The MQX TAD is available for the following platforms:

- Freescale CodeWarrior "Classic" which includes Development Studio for ColdFire version
 7.x and Development Studio for PowerPC/mobileGT version 9.x.
- Eclipse-based CodeWarrior Development Studio version 10.1.
- IAR Embedded Workbench for ARM versions 5 and 6 and for ColdFire version 5

4.1 CodeWarrior Development Studio "Classic"

4.1.1 Installing CodeWarrior TAD

TAD plug-in DLL is installed into the selected CodeWarrior tool automatically during Freescale MQX™ RTOS setup process. In case plug-in was not properly installed (for example to a newly installed CodeWarrior studio, perform the following steps to install TAD manually:

- Locate the tools\codewarrior_extensions\<compiler> directory in Freescale MQX™
 RTOS installation folder (by default C:\Program Files\Freescale\Freescale MQX x.y)
- Copy the entire content of tools\codewarrior_extensions\<compiler> directory to the CodeWarrior installation folder (e.g. C:\Program Files\Freescale\CodeWarrior for ColdFire V7.2)
- After the steps above are done, verify the TAD dll file exists at the new location: <CodeWarrior>\bin\Plugins\Debugger\rtos\CFrtos MQX.dll
- Re-start the CodeWarrior Development Studio.
- In the CodeWarrior environment, you should be now able to enable MQX TAD by selecting
 "MQX" as "Target OS" in the "CF Debugger Settings" panel of project settings. All example
 applications coming with Freescale MQX™ RTOS are already configured so.

Freescale MQX Getting Started

4.1.2 CodeWarrior TAD Features

The TAD plug-in enables more advanced and user-friendly debugging of MQX-based applications.

Using the MQX or RTCS menu in CodeWarrior IDE, several TAD "screens" may be opened during the debugging session. The most helpful and frequently used screens are shown in the picture below:

- Task Summary overview about all tasks created in the MQX application.
- Stack Usage Summary displays information about interrupt and task stacks. Typically, stack overflow is a root cause of vast majority of problems in MQX user applications.
- Memory Block Summary displays address, size and type information about each memory block allocated in the default memory pool by the MQX system or applications. Additional memory pools (if used) may be displayed using "Memory Pools" screen.

TAD also provides native debugger support for multi-tasking MQX environment. When an application is stopped at breakpoint or by pressing the (red-square) "Break" button, the name of active task is displayed in the drop-down list in the debugger window. You also have a chance to use the drop-down list to see current execution point of any other task.

Note: This CodeWarrior feature needs to be enabled in general Debugger settings first. Go to the *Edit / Preferences* menu in the CodeWarrior main window and select "Debugger / Window Settings" panel. In the "Debugging Windows" section, enable the "Show Processes in Separate Windows" option and disable the "Show Threads in Separate Windows" option.

Freescale MQX Getting Started

4.1.3 Backward Compatibility in TAD

Each release of Freescale MQX™ RTOS brings an updated version of the TAD plugin and installs it into the CodeWarrior Development Studio selected by user. In the case that older version of MQX RTOS is installed on the same computer the older TAD plugin gets overwritten by the latest version.

Debugging different MQX versions on the same host

In some cases you may want to develop and debug different applications in different versions of the MQX. For example when a development starts and continues with MQX 3.1 while other applications are developed with MQX 3.3. This should never cause a problem because different MQX versions are completely independent one on each other. The only common resource between different versions is the latest TAD plugin installed in the CodeWarrior Studio.

TAD plugins are designed to be backward compatible, so updating to the latest MQX version should not cause any issue. In case of a problem with compatibility, old TAD plugin versions are available and you can switch to them manually. In project settings (for the selected build target), go to the *CF Debugger Settings* panel and select the TAD version from the *Target OS* drop down list.

4.2 CodeWarrior Development Studio version 10.1

4.2.1 Debugging in CodeWarrior Development Studio version 10.1

Debugging in RAM & Flash:

The most convenient debugging of any MQX application can be done in external RAM memory. If external RAM is not available on the selected board, application code needs to be programmed into the on-chip or external Flash memory prior to debugging. This is done automatically in the CodeWarrior 10.1 IDE.

Follow the steps bellow to debug MQX application:

- Import (open) the application project in to CodeWarrior workspace using the File\Import\General\Existing Project menu.
- Build project using the Project/Build Project menu.
- Open "Debug Configurations" settings using the *Run/Debug Configurations* menu and select target you want to debug in the *CodeWarrior Download* tree.

- Select connection type you want to use in the *Remote system* list. If your connection is not available in the list define new one using *New...* menu
 - Select Hardware and Simulator, Connection name and System type.

- o In System tab specify Initialize target: as
 \lib\<board>\bsp\dbg\init_kinetis.tcl and Memory configuration: as \lib\
 <board>\bsp\dbg\<board>.mem
- Press the "Debug" button in Debug configuration Window. The CodeWarrior will be switched to a debug perspective and will stop the program in the main() function.

4.2.2 CodeWarrior 10.1 Task Aware Debugging plug-in

Freescale MQX™ RTOS introduces a new version of Task Aware Debugging Plug-in (TAD) for CodeWarrior 10.1 Development Studio.

Installing CodeWarrior 10.1 TAD and New Project Wizard Plug-in

TAD plug-in DLL is installed into the selected CodeWarrior tool automatically during Freescale MQX™ RTOS setup process. In case plug-in was not properly installed (for example to a newly installed CodeWarrior studio, perform the following steps to install TAD manually:

- Close The CodeWarrior 10.1 IDE
- Locate the tools\codewarrior_extensions\CW MCU v10.1 directory in the Freescale MQX™ RTOS installation folder (by default C:\Program Files\Freescale\Freescale MQX x.y)
- Navigate to <MQX install dir>\tools\codewarrior_extensions\CW MCU v10.1 directory
- Execute the following command: install cw10 plugin.bat <CW10.1 install dir>
 - The CodeWarrior installation folder is typically C:\Program Files\Freescale\CW MCU v10.1.
- Re-start the CodeWarrior 10.1 IDE.
- Open "Debug Configurations" settings of your application project by selecting the Run\Debug Configurations menu. In the Debugger Configuration panel, select proper Launch Configuration
- For selected Launch Configuration, go to the "Debugger" tab and then activate the "OS Awareness" sub-tab.
- In the "Target OS" drop-down list box, select MQX OS.

15

 All example applications coming with Freescale MQX™ RTOS are already configured for the MQX OS Awareness.

CodeWarrior 10.1 TAD Features

The TAD plug-in for CodeWarrior 10.1 provides the same set of features as the "Classic" CodeWarrior. Only the visual aspect of the TAD screens is different. In CodeWarrior 10.1, the TAD screens are displayed as Eclipse tabbed views.

The MQX plug-in implements the *System Browser window* showing all running MQX tasks. Open the "Show View" dialog by selecting the *Window/Show View/Other…* menu. In the "Show View" tree view select the "System Browser" item in Debug tree. You can double-click any task entry in this view to activate the task in the CodeWarrior 10.1 debugger.

The MQX Task Summary screen is available in the MQX/Task Summary menu

The MQX Stack Usage screen is available in the MQX/Stack Usage menu.

The MQX Memory Block Summary screen is available in the MQX/Lightweight Memory Blocks menu.

4.3 IAR Embedded Workbench for ARM and ColdFire

TAD is currently available for following IAR Embedded Workbench versions:

- IAR EWARM version 6.10 (Kinetis ARM Cortex® M4)
- IAR EWCF version 5.3

For more information about TAD see a separate document distributed within the IAR Embedded Workbench distribution: "Getting Started with Freescale MQX™ RTOS and IAR Embedded Workbench"

5 Integrating Processor Expert Drivers into MQX BSP

5.1 Introduction

The Processor Expert tool which is available in CodeWarrior 10.1 allows configuration and driver code generation by using graphical user interface. The special RTOS Adapter component in Processor Expert and updated BSP code coming in MQX 3.7 enables to integrate the Processor Expert drivers into the BSP library. The Processor Expert drivers can be used by the MQX application just like other drivers from the BSP. Currently, this integration is supported only for Freescale Kinetis platform, MK60N512 and MK40X256 BSPs.

Processor Expert Logical Device Drivers (LDD) available for Kinetis family can be added into "PE ready" BSPs and used in the end user application.

For more details about Processor Expert refer to Processor Expert User Manual which can be found in:

```
<CW_MCU_10.1_Install_Directory>/MCU/Help/PDF/ProcessorExpertHelp.pdf
```

5.2 Processor Expert-Ready BSPs

There are two BSP's which were modified to enable hosting of Processor Expert components.

For TWR-K40X256 board it is

```
<install_dir>/mqx/build/cw10/bsp_twrk40x256_pe/.project
```

For TWR-K60N512 board it is

```
<install dir>/mqx/build/cw10/bsp twrk60n512 pe/.project
```

Freescale MQX Getting Started

Both BSPs contains:

- 1. Pre-configured CPU component.
- 2. MQX RTOS Adapter component which influences the code generated by CPU component and other peripheral components.
- 3. Set of peripheral components (GPIO_LDD, TimerUnit_LDD, DAC_LDD and WatchDog_LDD) which are used in pe_demo application. Other components may be added to the BSP project as needed.

5.3 Processor Expert MQX Demo Application

The Demo application which demonstrates the integration of Processor Expert drivers is available here:

For TWR-K40X256 board it is

```
<install_dir>/demo/pe_demo/cw10/pe_demo_twrk40x256/.project
```

For TWR-K60N512 board it is

```
<install dir>/demo/pe demo/cw10/pe demo twrk60n512/.project
```

The application executes the following tasks.

- 1. The sine signal of specified period is generated on DAC0 pin. The signal amplitude sweeps between minimal to maximal value. It can be observed by scope on DAC0_OUT A32 pin on TWR-ELEV FUNCTIONAL or TWR-PROTO board.
- 2. The PWM signal is generated using FlexTimer FTM0 Channel 0. It can be observed by scope on PWM0 A40 pin on TWR-ELEV FUNCTIONAL or TWR-PROTO board.
- 3. To signalize that application is running it toggles LEDs (D9-D11) on board using GPIO driver
- 4. The ewm_task task is periodically refreshing watchdog within a time-out period at which watchdog can be refreshed.

See *FSL_MQX_3_7_in_CW_10_1.pdf* **document** for detailed information about demo application, importing and building MQX library projects and debugging MQX 3.7 application in CodeWarrior 10.1. This document is a part of the MQX 3.7.0 installation package.

6 Board-specific Information Related to MQX

This section provides more details about all boards and BSPs supported by current MQX distribution.

All jumper and other hardware switches not specifically described below are expected in factory-default positions. Please refer to the board User's Guide for the default settings.

6.1 TWR-K60N512

Core Clock	96 MHz	
Bus Clock	48 MHz	
Default Console	ttyf:	OSJTAG- USB mini connector
BSP Timer	Systick	

Important jumper settings (board REV C)

- For standalone operation
 - TWR-K60N512 Jumper J6 on position 1-2
- To enable Ethernet communication (use with TWR-SER):
 - TWR-K60N512 Jumper J6 on position 2-3 processor clock taken from the TWR-SER board
 - o TWR-SER CLK SEL 3-4
 - o TWR-SER CLKIN-SEL 2-3 (processor clock is taken from PHY)

- TWR-SER ETH-CONFIG J12 9-10 to select RMII communication mode
- Important: Both processor and serial board (TWR-SER) has to be plugged in the Tower. Processor is using external clock from Ethernet PHY on the serial card.

Known Issues:

- The FlexBus FB_AD9 (PTC6) signal on the TWR-K60N512 REV C board is directly connected to IRDA sensor. This prevents using FlexBus for communication with MRAM and CF-CARD on TWR-MEM card.
- Example projects contain different build configurations for code execution from Flash or RAM memory. The RAM-based execution may be faster to debug but not all examples fit into RAM and may fail to link.

Other Notes:

- The default console interface (ttyf:) is routed to OSBDM-COM (USB mini connector J13). Use the P&E Micro OSJTAG terminal to access board serial line.
- To enable TWR-SER RS232 interface change the BSP_DEFAULT_IO_CHANNEL configuration option to "ttyd:" in the mqx\source\bsp\twrk60n512\twrk60n512.h file.

6.2 TWR-K40X256

Core Clock	96 MHz	
Bus Clock	48 MHz	
Default Console	ttya:	OSJTAG- USB mini connector
BSP Timer	Systick	

Known Issues:

- The FlexBus FB_OE_B signal is directly connected to OE pin of the address latch on the TWR-MEM card. This prevents using FlexBus for communication with MRAM and CF-CARD on TWR-MEM card.
- Example projects contain different build configurations for code execution from Flash or RAM memory. The RAM-based execution may be faster to debug but not all examples fit into RAM and may fail to link.

Other Notes:

- The default console interface (ttya:) is routed to OSBDM-COM (USB mini connector). Use the P&E Micro OSJTAG terminal to access board serial line.
- To enable the TWR-SER RS232 interface change the BSP_DEFAULT_IO_CHANNEL configuration option to "ttyd:" in the mqx\source\bsp\twrk40x256\twrk40x256.h file.

6.3 M52223EVB

Important jumper settings:

• None.

Board-specific build targets:

• None. See for more details about standard build targets.

6.4 M52233DEMO

Core Clock	60 MHz	
Bus Clock	30 MHz	
Default Console	ttya:	RS232
BSP Timer	PIT0	

Important jumper settings:

None

Board-specific build targets:

• None. See chapter 2.2 Build Targets for more details about standard build targets.

Known issues:

- A problem of BDM communication loss was occasionally observed when debugging M52235DEMO applications. This issue is not related to MQX RTOS.
 - Workaround: This issue may be solved by decreasing the BDM communication speed by factor 2 or higher in the "Remote Debugging" settings panel for PEMICRO_USB connection. Press the "Edit Connection" button and specify the Speed factor value "2". See the screenshot bellow in the M52235EVB section.

6.5 M52235EVB

Core Clock	60 MHz	
Bus Clock	30 MHz	
Default Console	ttya:	RS232
BSP Timer	PIT0	

Important jumper settings:

- To enable CAN demo operation (disables UART2)
 - o COM_SELA at position 2-3
 - o COM_SELB at position 2-3
 - o COM_SELC at position 2-3

Board-specific build targets:

None. See 2.2 Build Targets for more details about standard build targets.

Known issues:

- A problem of BDM communication loss was occasionally observed when debugging M52235EVB applications. This issue is not related to MQX RTOS.
 - Workaround: This issue may be solved by decreasing the BDM communication speed by factor 2 or higher in the "Remote Debugging" settings panel for PEMICRO_USB connection. Press the "Edit Connection" button and specify the Speed factor value "2"

6.6 M52259EVB

Core Clock	80 MHz	
Bus Clock	40 MHz	
Default Console	ttya:	RS232
BSP Timer	PIT0	

Important jumper settings:

- To enable MDIO/MDC communication between processor and Ethernet PHY device (needed in RTCS applications to detect Ethernet link status)
 - J9 at position 2-3 (FEC_MDC)
 - J10 at position 2-3 (FEC_MDIO)
- To enable RTC operation from external crystal
 - o H2 at position 1-2
- To enable RTC sourced from battery
 - o J17 at position 1-2

Board-specific build targets:

None. See chapter 2.2 Build Targets for more details about standard build targets.

Other information:

Firmware source code for Altera CPLD is available in

<MQX install dir>\mqx\source\io\pccard\m52259evb pccard cpld directory.

6.7 M52259DEMO

Core Clock	80 MHz	
Bus Clock	40 MHz	
Default Console	ttya:	RS232
BSP Timer	PIT0	

Important jumper settings:

None.

Other notes:

The FEC_MDC pin is shared with GPIO signal used to sense the SW1 button state. The Ethernet link status monitoring is not functional in demos which use SW1 button (all HVAC demos).

The OSBDM Firmware compatibility issue may affect application debugging. See Freescale MQX Release Notes for more details about OSBDM Firmware Compatibility.

Board-specific build targets:

• None. See chapter 2.2 Build Targets for more details about standard build targets.

6.8 M52277EVB

Core Clock	136 MHz	
Bus Clock	68 MHz	
Default Console	ttya:	RS232
BSP Timer	PIT0	

Important jumper settings (board rev B, schematic D1):

- For USB operation
 - o **J7** shunt on position 3-4 (VBUSON)
 - J9 shunt on position 1-2 (USB_VBUC_OC)

Board-specific build targets:

• Ext Flash (Debug and Release) – This target enables a standalone operation from on-board flash memory. External SDRAM memory is used for variables by default. The linker command file can be changed easily to allocate variables in the internal SRAM memory.

See chapter 2.2 Build Targets for more details about standard build targets.

6.9 M54455EVB

Core Clock	266 MHz	
Bus Clock	133 MHz	
Default Console	ttya:	RS232
BSP Timer	PIT0	

Important jumper settings:

- To assure correct external Flash mapping as it is assumed by MQX setup
 - SW1[3] must be ON (default setting) so the FLASH0_CS is mapped to FB_CS0 and FLASH1_CS to FB_CS1
- To enable both Ethernet interfaces
 - o **SW1[5]** set ON to enable PHY1 (disables ATA interface)
- To enable ATA operation
 - SW1[5] set OFF (disables second PHY device)
- For USB Host operation
 - The on-chip transceiver is supported only (external ULPI is not supported).
 Use USB Host connector to connect devices.
- For USB Device operation
 - Use USB Dual connector only to connect to host device.

Board-specific build targets:

 Flash0 Boot (Debug and Release) – On M54455EVB, this target enables to build applications suitable for booting the system up from the Flash0 memory. The initialization code of the application is located in Flash0. After reset, it copies the rest of the application to SDRAM memory and continues execution there.

Configuration file to be used in CodeWarrior FlashProgrammer tool with this target is available as $tools/flash_programmer/config/M54455EVB_EXTFLASH0_512KB.xml$

- Flash1 Image (Debug and Release) This target builds potentially large applications in a form of run-able image. This image can be flashed into Flash1 on M54455EVB and may be started from uBoot or other kind of bootloader. After start, this image copies itself to SDRAM and continues execution there.

 Configuration file to be used in CodeWarrior FlashProgrammer tool with this target is
 - Configuration file to be used in CodeWarrior FlashProgrammer tool with this target is available as tools/flash programmer/config/M54455EVB EXTFLASH1 16MB.xml

See chapter 2.2 Build Targets for more details about standard build targets.

6.10 TWR-MCF51CN-KIT

TWR-MCF51CN-KIT (Rev.A) consists of

- MCF51CN128 microcontroller module board
- TWR-ELEV four-storey elevator boards
- TWR-SER serial board
- [optional] TWR-MEM memory extension board
- [optional] TWR-LCD display board

Core Clock	50 MHz	
Bus Clock	25 MHz	
Default Console	ttyb:	RS232
BSP Timer	MTIM1	

Important jumper settings:

- For a basic operation, make sure the following settings is applied:
 - TWR-SER board, J2 on default position 1-2 (PHY CLK_SEL 25MHz)
 - TWR-SER board, J3 shunt removed (CLKIN_SEL)
 - TWR-SER board, J15 on default position 1-2 (SER SEL enabling RS232 operation)
 - o TWR-SER board, J17 on default position 1-2 (RXD_SEL enabling RS232 operation)
 - TWR-SER board, J18 shunt removed (RTS_SEL no RS232 flow control)
 - TWR-SER board, J19 on default position 1-2 (TXD_SEL enabling RS232 operation)
 - TWR-MCF51CN board, J3 jumpers on position 7-8 and 9-10 to connect UART to the TWR-SER board
- To use 25 MHz clock source (BSPCFG_USE_25MHZ_XTAL must be set 1)
 - o TWR-MCF51CN board, J11 on position 1-2

Freescale MQX Getting Started

- o TWR-MCF51CN board, J12 on position 1-2
- To use 32.768 kHz clock source (BSPCFG_USE_32KHZ_XTAL must be set 1)
 - TWR-MCF51CN board, J11 on position 3-4
 - o TWR-MCF51CN board, J12 on position 2-3
- To enable ADC sensing of the potentiometer in various MQX examples (e.g. security demos)
 - TWR-MCF51CN board, J2 on position 2-3 routes ADP3 to MCU_ADP3
- To enable external MRAM memory (available on Memory Storey board)
 - o TWR-MCF51CN board, J13 on position 2-3 to enable address latch
 - o TWR-MEM board, J10 on position 1-2
 - TWR-MEM board, J11 shunt removed
- To enable CompactFlash Card operation (available on Memory Storey board)
 - TWR-MCF51CN board, J13 on position 2-3 to enable address latch
 - TWR-MEM board, J10 shunt removed
 - o TWR-MEM board, J11 on position 1-2
 - o TWR-MEM board, J16 on position 1-2
- To enable correct Ethernet duplex operation
 - o TWR-SER board, J12 shunt on pins 15-16
- To enable SD Card operation
 - o TWR-MCF51CN board, J5 remove three accelerometer shunts ACCX, ACCY, ACCZ
 - TWR-MCF51CN board, J3 install three SPI shunts to route SPI signals to memory board
 - TWR-MCF51CN board, J2 on position 1-2 to route SPI clock signal to memory board
 - o TWR-MEM board, J3 on position 1-2 to enable SD Card CS signal
 - o TWR-MEM board, J13 on position 1-2 to enable SD Card write protect signal
- To select either CS0 or CS1 for SPI Flash
 - o TWR-MEM board, J14 on position 1-2 (CS0)

Board-specific build targets:

See chapter 2.2 Build Targets for more details about standard build targets. There are two variants of each standard build target in the application projects: one with default debugger setting for onboard OSBDM interface, one for external P&E BDM interface.

Freescale Semiconductor 33

Freescale MQX Getting Started

6.11 TWR-MCF52259-KIT

TWR-MCF52259-KIT (Rev.A) consists of

- MCF52259 microcontroller module board
- o TWR-ELEV four-storey elevator boards
- o TWR-SER serial board
- o [optional] TWR-MEM memory extension board
- o [optional] TWR-LCD display board

Core Clock	80 MHz	
Bus Clock	40 MHz	
Default Console	ttyb:	RS232
BSP Timer	PIT0	

Important jumper settings:

- For a basic operation, make sure the following settings is applied:
 - o TWR-SER board, J2 on default position 1-2 (PHY CLK_SEL 25MHz)
 - o TWR-SER board, J3 shunt removed (CLKIN_SEL)
 - o TWR-SER board, J15 on default position 1-2 (SER_SEL enabling RS232 operation)
 - o TWR-SER board, J17 on default position 1-2 (RXD_SEL enabling RS232 operation)
 - TWR-SER board, J18 shunt removed (RTS_SEL no RS232 flow control)
 - TWR-SER board, J19 on default position 1-2 (TXD_SEL enabling RS232 operation)
- To enable external MRAM memory (available on Memory Storey board)

- o TWR-MEM board, J10 on position 1-2
- TWR-MEM board, J11 shunt removed
- To enable correct Ethernet duplex operation
 - TWR-SER board, J12 shunt on pins 15-16
- To enable USB operation in HOST mode
 - o TWR-SER board, J16 shunt on pins 1-2
 - TWR-SER board, J10 shunt on pins 1-2
- To enable USB operation in DEVICE mode
 - o TWR-SER board, J16 shunt on pins 3-4
 - o TWR-SER board, J10 shunt on pins 2-3
- To enable SD Card operation
 - o TWR-MEM Board, J3 on position 1-2 to route QSPI_PCS0 to SD Card Chip Select
 - TWR-MEM Board, J4 remove shunt on pins 1-2 to disable QSPI_PCS0 routing to serial Flash
 - TWR-MEM board, J13 on position 1-2 to enable SD Card write protect signal
- To enable CompactFlash Card operation (available on Memory Storey board)
 - o TWR-MEM board, J16 on position 2-3
- To use write protect detection signals with SD Card on the Memory Storey board
 - o TWR-MCF52259 board, turn off switch 3 on SW2 dip-switch.
- To select either CS0 or CS1 for SPI Flash
 - o TWR-MEM board, J14 on position 1-2 (CS0)

Board-specific build targets:

• None. See Freescale chapter 2.2 Build Targets for more details about standard build targets. The Ext. **MRAM Debug** target can be used only with Memory Storey Board.

Other notes:

The OSBDM Firmware compatibility issue may affect application debugging. See Freescale MQX Release Notes for more details about OSBDM Firmware Compatibility.

Freescale Semiconductor 35

Freescale MQX Getting Started

6.12 DEMOEM Board

Core Clock	50.332 MHz	32.768 kHz low-frequency crystal Y1 used
Bus Clock	25.166 MHz	
Default Console	ttya:	P&E USB
BSP Timer	MTIM1	

Important jumper settings:

No change to default factory settings is needed.

Board-specific build targets:

See chapter 2.2 Build Targets Notes for more details about standard build targets. The build targets in application projects are configured properly for on-board USB P&E BDM interface.

Other notes:

By default, the UART serial interface of the MCF51EM processor is connected through a virtual communication channel implemented in on-board USB P&E BDM interface. You need to use a *Terminal Window Utility* on the host PC to get access to console and all shell-based applications. The utility is available on the DVD-ROM accompanying the DEMOEM board.

You can choose to use the UART port as a standard RS232 interface. The advantage of this approach is that you can use serial interface during application debugging. You may need to populate the following components:

- DB9F DB9 Female Right Angle .318 D-Sub Connector
- C12,C13,C14,C15,C16 0.1uf Capacitor
- U2 MAX3232CSE+

In order to run MQX SPI example you also need to populate SPI Flash or MRAM memory:

• U4 – for example M95512-RMN6P

6.13 TWR-MPC5125-KIT

TWR-MPC5125 processor board with

- [optional] TWR-SER serial board
- [optional] TWR-ELEV four-storey elevator boards

Core Clock	400 MHz	
Bus Clock	200 MHz	
Default Console	ttya:	RS232
BSP Timer	Decrementer	

The MPC5125 has two integrated Fast Ethernet Controllers (FEC1 & FEC2).

Enabling FEC1

 FEC1 is enabled by default and uses Reduced Media Independent Interface (RMII) mode to communicate to the Ethernet transceiver on the TWR-MPC5125 module itself. The Ethernet port is accessible through the RJ45 jack on the TWR-MPC5125 module.

Enabling FEC2

FEC2 signals are multiplexed with USB1 on the MPC5125. Therefore only one of these functions can be selected at a time. By default, the USB1 function is enabled in order the factory-default Linux image boots up correctly. The TWR-MPC5125 module uses multiplexers to route the signals to the appropriate location depending on what is desired at the time. The path of the signals is selected by jumper J27.

Default console channel

The USB-to-serial port available on the TWR-MPC5125 board (port J19) is installed as ittyb: device and is used as default console channel. The RS232 interface of TWR-SER board is installed as ittyj: device.

Important jumper settings:

- To use msCAN applications
 - o J31, short 1-2 (CAN2 termination ON)
- Enabling both Ethernet controllers (2nd port available on the optional SER board)
 - o TWR-MPC5125 J4, short 1-2, remove 3-4 (Serial-to-USB bridge enabled).
 - o TWR-MPC5125 J27, short 1-2 (Enable second Ethernet port).
 - TWR-MPC5125 SW1 System Config Switch (default): 1-off, 2-on, 3-off, 4-off, 5-on, 6-on
 - TWR-SER J2, short 3-4 (Route the 50MHz clock to the Ethernet PHY).
 - TWR-SER J3, short 2-3 (Route the 50MHz to CLOCKINO).
 - o TWR-SER J12, short 9-10 (Enable RMII mode).
 - TWR-SER J15 on default position 1-2 (SER_SEL enabling RS232 operation)
 - o TWR-SER J17 on default position 1-2 (RXD_SEL enabling RS232 operation)
 - TWR-SER J18 shunt removed (RTS_SEL no RS232 flow control)
 - o TWR-SER J19 on default position 1-2 (TXD_SEL enabling RS232 operation)

System Config Switch setting:

SW1	Position Reset Configuration	Signal Description	Default
6	RST_CONF_ROMLOC0	Boot Device Select	
		0 = LPC Boot, 1 = NAND (NFC) boot	1
5	RST_CONF_BMS	Boot Mode Select	
		0 = boot low, 1 = boot high	1
4	RST_CONF_LPC_DBW0	LPC Data Port Size	
3	RST_CONF_LPC_DBW0	00=8bit, 01=16bit,	
		10=reserved, 11=32bit	00
2	RTC_CONF_LPCWA	LPC Word/Byte Address Mode	
		0 = word address mode,	1
		1 = byte address mode	
1	RTC_CONF_LPCMX LPC	Multiplex Mode	
		0 = Non multiplex mode,	0
		1 = multiplexed mode	

Freescale MQX Getting Started

Board-specific build targets:

- Ext Ram (Debug and Release) The applications built with these targets are intended to run from pre-initialized RAM. There are three ways of how to execute the applications:
 - Use the CodeWarrior "Debug" feature to get the board initialized, to load the application to RAM and start a debugging session.
 - Use MQX NAND Flash bootloader to load an application binary to NAND Flash using TFTP and and execute it. See <mqx_install_dir>/demo/nandbootloader for detailed application description.
 - Use the uBoot firmware to load an application binary (or S-record) to a proper location in RAM and execute it by a "go" command to the base address. These steps can be automated in the uBoot.
- Ext NAND (Debug and Release) these targets have the same memory layout and content as application stored in NAND using Ext NAND Download target. The application can be debugged using this target

Ext NAND Download (Debug and Release) – CodeWarrior 9.2 for MobileGT does not provided the tool for flashing application to the NAND Flash Memory. Ext NAND Download target was developed to enable this functionality for MQX based projects. After executing this target it writes the application into the NAND Flash memory and finishes. The target application cannot be debugged in this mode, the use Ext NAND Target for debugging.

NOTE:

- Ext NAND Download targets always use Block 0 to store boot loader and Block 1 of NAND
 Flash device to store Kernel Code. Make sure these block are not bad before run any
 application. User can check bad block by run nandflash demo in MQX examples.
- The Ext NAND Download targets should be executed on stand-alone board (without TWR-SER and TWR-ELEV modules connected).
- The CodeWarrior 10.1 brings incompatible version of USB TAB drivers please reinstall the CW 9.2 USB drivers using "c:\Program Files\Freescale\CodeWarrior for MobileGT V9.2\ccs\drivers\usb\x32\setup.bat" if you experience difficulties with debugging.

See chapter 2.2 Build Targets for more details about standard build targets.

6.14 EVB51JM128 Board

Core Clock	40 MHz	
Bus Clock	20 MHz	
Default Console	ttyb:	RS232
BSP Timer	TPM1	

Important jumper settings (board rev. E):

- For USB Host operation
 - o VBSEL 1-2 H
 - o HOST_EN both shunts on
 - o OTG_EN all shunts off
 - o USPD shunt removed

Board-specific build targets:

See chapter 2.2 Build Targets for more details about standard build targets. The build targets in application projects are configured properly for on-board USB P&E BDM interface.

6.15 DEMOAC Board with MCF51AC256

Core Clock	40 MHz	
Bus Clock	20 MHz	
Default Console	ttya:	P&E USB
BSP Timer	TPM1	

Important jumper settings:

No change to default factory settings is needed.

Board-specific build targets:

See chapter 2.2 Build Targets for more details about standard build targets. The build targets in application projects are configured properly for on-board USB P&E BDM interface.

6.16 TWR- MCF51MM-KIT

All jumper and other hardware switches not specifically described below are expected in factory-default positions. Please refer to the board User's Guide for the default settings.

Core Clock	48 MHz	16MHz Xtal used
Bus Clock	24 MHz	
Default Console	ttya:	RS232
BSP Timer	TPM1	

The MCF51MM BSP was tested in the following configuration:

- TWR-MCF51MM Rev. B processor board
- TWR-SER Rev. B serial board
- TWR-ELEV Rev. A four-storey elevator boards
- TWR-MEM Rev. B memory extension board

Important jumper settings:

- For a basic operation, make sure the following settings is applied:
 - o TWR-MCF51MM board, J3 jumper on 2-3 (connects VINP0 to GND)
 - o TWR-MCF51MM board, J4 shorted (POT R35 to ADP4)
 - o TWR-MCF51MM board, J5 jumper on 2-3 (DACO to DACO_TEST TP7)

- o TWR-MCF51MM board, J6 opened
- TWR-MCF51MM board, J7, J8 jumper on 2-3
- TWR-MCF51MM board, J9 jumper on 1-2 (IR circuit)
- TWR-MCF51MM board, J10 jumper on 2-3
- TWR-MCF51MM board, J11 jumper on 1-2
- TWR-MCF51MM board, J12 opened
- TWR-MCF51MM board, J14 opened for SD card operation, jumper installed for potentiometer
- TWR-MCF51MM board, J15, J16 both shorted 1-2
- TWR-MCF51MM board, J18 all shorted
- TWR-MCF51MM board, J19 jumper (1-2, 3-4, 5-6)
- TWR-MCF51MM board, J20 jumper 1-2
- TWR-MCF51MM board, J24 opened
- TWR-MCF51MM board, J25 jumper (1-2, 3-4)
- TWR-MCF51MM board, J26 jumper (2-3)
- To enable USB operation in HOST mode
 - o TWR-MCF51MM, J3 1-2 not connected (jumper removed)
 - TWR-SER board, J16 jumper on pins 1-2
 - TWR-SER board, J10 jumper on pins 1-2
- To enable USB operation in DEVICE mode
 - TWR-SER board, J16 jumper on pins 3-4
 - TWR-SER board, J10 jumper on pins 2-3
- To enable SD Card operation
 - TWR-MCF51MM board, J4 opened
 - TWR-MEM board, J3 (SD_CS) jumper on position 1-2 to enable SD Card CS signal
 - TWR-MEM board, J12 (SD_SEL1) remove jumper from 1-2 and insert jumper on 3-4
- To enable CF Card operation
 - o TWR-MEM board, J16 on position 2-3
- To enable external MRAM memory (available on Memory Storey board)
 - TWR-MEM board, J10 on position 1-2
 - o TWR-MEM board, J16 on position 2-3

6.17 M53015EVB

Core Clock	240 MHz	
Bus Clock	80 MHz	
Default Console	ttya:	RS232
BSP Timer	PIT0	

Important jumper settings (board REV A)

- For USB host operation
 - o J44 shunt on position 1-2 (VBUS_OC)
 - o J45 shunt on position 1-2 (VBUS_EN)
- For booting from NOR flash:
 - J33 shunt on position 1-2 (select Top flash boot mode)
- For UART operation
 - o J12 shunt on position 2-3 (select U1RXD)
 - J13 shunt on position 2-3 (select U1TXD)
 - J12 shunt on position 1-2 (select U2RXD)
 - J13 shunt on position 1-2 (select U2TXD)

Board specific build targets:

Ext Flash (Debug and Release) - This target enables a standalone operation from on-board flash memory. External SDRAM memory is used for variables by default. The linker command file can be changed easily to allocate variables in the internal SRAM memory.

6.18 TWR-MCF54418-KIT

The MCF54418 Patch supports the following hardware configuration:

- TWR-MCF54418 Rev. D processor board
- TWR-SER2 Rev. C serial board
- TWR-ELEV Primary and Secondary four-storey elevator boards
- TWR-MEM Rev. B memory extension board

Core Clock	250 MHz	
Bus Clock	125 MHz	
Default Console	ttyd:	RS232
BSP Timer	PIT0	

Important - both processor and serial board (TWR-SER2) has to be plugged into the Elevator bus. The MCF54418 processor is using external clock generated by Ethernet PHY on the Serial card

Jumper settings:

TWR-MCF54418 Rev.D board (use highlighted setting for basic MQX operation)

- **J2 on position 1-2** Input Clock Selection
 - 1-2 external clock (RMII clock from TWR-SER2 board)
 - 2-3 onboard 25MHz clock

Freescale MQX Getting Started

- J8 on position 1-2 TCK/PSTCLK Routing:

1-2 PSCCLK routed to pin 24 of BDM header J11

2-3 PSTCLK routed to pin 6 of BDM header J11

J6 on position 1-2 To enable PE micro debugger

J5 on position 3-4 Boot Mode Selection

1-2 & 3-4 Internal RCON

3-4 External RCON

No Jumper Serial Boot

- **J4 no jumper** 8 Ohm speaker connector

J10 no jumper IRQ active at high level

J12 no jumper MCU Reset In

- **SW4:** Both off

- **SW1:** 1-on, 2-off, 3-on, 4-off, 5-off, 6-on, 7-on, 8-on (booting from NAND)

TWR-SER2 rev C Board: (use highlighted setting for basic MQX operation)

- **J1 on position 2-3** RS232/485 RX Select (UART1)

1-2 RS485 Mode (connects RX to RO)

2-3 RS232 Mode (connects RX to R1OUT)

J2 on position 2-3 RS232/485 TX Select (UART1)

1-2 RS485 Mode (connects TX to DI)

2-3 RS232 Mode (connects TX to T1IN)

J4 no jumper Can Isolation

1-2 Connects CAN_S to S

3-4 Connects CAN_TX to TXD

5-6 Connects CAN_RX to RXD

J7 on positions 1-2, 3-4 JS16 RS232 Isolation (UART0)

1-2 Connects RX to S08JS16 RXD

3-4 Connects TX to S08JS16 TXD

J8 no jumper Power Down Port B

1-2 Disables Ethernet PHY B

J9 no jumper Power Down Port A

1-2 Disables Ethernet PHY A

- **J11 no jumper** RS485 Config (UART1)

1-2 Loopback Mode (connects RE to DE)

3-4 Loopback Mode (connects TX0_P to RX0_P)

5-6 Loopback Mode (connects TX0_N to RX0_N)

7-8 NC

9-10 5V Supply to DB9

J13 on position 1-2 RS232/485 Disable (UART 1)

1-2 Disables RS485

2-3 Disables RS232

J16 no jumper
 VBUS OC Isolation

1-2 Connects USB VBUS OC to Elevator

J19 no jumper
 J20 no jumper
 J21 no jumper
 VBUS EN Isolation

1-2 Connects USB VBUS EN to Elevator

- **J22 no jumper** RS232 (UART2) Isolation

1-2 Connects TX to T1IN

3-4 Connects RX to R1OUT

5-6 Connects RTS to T2IN

7-8 Connect CTS to R2OUT

J23 no jumper RS232 (UART3) Isolation

1-2 Connects TX to T1IN

3-4 Connects RX to R1OUT

5-6 Connects RTS to T2IN

7-8 Connect CTS to R2OUT

- **J24 no jumper** USB Device Mode

1-2 Device Mode (capable of powering Tower System)

SW1 1-on ,2-on (MII MODE pull-up, RXDV) 3,4,5,6,7,8 off

- **SW2** 1-on, 3-on (MII MODE pull-up, 50MHz) 2,4,5,6,7,8 off

TWR-MEM Rev.A – TWR MEM can operate only with TWR-SER2 card in default setting. Use TWR-SER board for SDHC operation

For eSDHC operation:

- J12: (SD-SEL1) on position 1-2 to enable SD Card detect signal
- J12: (SD-SEL1) on position 5-6 to enable SD Card data[1] signal
- J12: (SD-SEL1) on position 7-8 to enable SD Card data[2] signal
- J12: (SD-SEL1) on position 9-10 to enable SD Card cmd pull up
- J12: (SD-SEL1) on position 11-12 to enable SD Card data[0] pull up
- J2: (SD-SEL2) on position 2-3 to enable SD Card data[3] pull down
- J3: (SD-CS) on position 1-2 to enable SD Card data[3] signal

Freescale MQX Getting Started

• J13: on position 1-2 to enable SD Card write protect signal

Board-specific build targets:

Ext Flash (Debug and Release) - these targets enable to build applications suitable for booting the system up from external NAND Flash memory. After the reset the initialization code of the application (bootstrap) is loaded from NAND Flash to SRAM. This initialization code copies the rest of the application to the DDR RAM memory and executes the application there. Note, that this could take a while especially if a large application is started. See NAND Flashing procedure bellow. There are two variants of Ext Flash target in the application projects: one for external P&E BDM interface (PEBDM Ext Flash) and one for on-board OSBDM interface (OSBDM Ext Flash). The OSBDM debugging connection does not work correctly with the old version of the OSBDM firmware. Please update the OSBDM firmware before using this target. Note that when using the OSBDM interface the TWR-MCF54418-KIT still has to be powered by the USB attached to the primary elevator.

See chapter 2.2 Build Targets for more details about standard build targets.

NAND Flashing Procedure:

The CodeWarrior Development Studios for ColdFire V7.2.2 and for MCU v10.1 do not provide NAND Flashing functionality, this functionality is planned for future releases. The MQX release contains standalone CFFlashprog utility which enables NAND Flashing using P&E Micro BDM interface (OSBDM is not supported). The NAND Flashing Procedure is as follows:

- Connect the P&E Micro BDM cable to the board and switch on the power
- Compile the PEBDM Ext Flash target in the selected CodeWarrior project
- Ensure you have SW1 DIP switch set correctly for the NAND booting (see jumper setting above)
- Locate <output_name>.rbin file which should be created in the application output directory
- Open Windows Command Line Prompt (run cmd.exe) and change directory to "<install dir>\tools\flash programmer\CFFlashprog"
- Use cf.exe NAND erase M54418TWR_nand 0 200000 command to erase first 2Mbytes of NAND Flash memory
- Use cf.exe NAND write M54418TWR_nand 0 200000 1 < path_to_rbin_file>" command to write application code to the NAND Flash memory
- For more detailed description of the NAND Flash tool see
 <install dir>/tools/flash programmer/CFFlashprog/ReadMe.txt

Known Issues:

- Some Compact Flash cards does not work correctly with TWR-MEM and MQX CF Card driver. There may be several reasons:
 - o An issue in the TWR-MEM CPLD code REV A causes incorrect communication with some types of cards (e.g. Kingston). A fixed CPLD firmware is available in <install_dir>/mqx/source/io/pccardtwr_mem_pccard_cpld/ folder. The firmware can be loaded to the TWR-MEM CPLD using Altera Quartus II design tool and BLASTER connection cable.
 - M54418 MQX CF card driver incorrectly detects the card in the slot. If you experience this behavior, connect two pull-up resistors between card detect pins (CF_CD1, CF_CD2) and 3.3V VCC.

6.19 TWR-MCF51AG

Core Clock	34 MHz	
Bus Clock	17 MHz	
Default Console	ttya:	RS232
BSP Timer	ТРМ3	

Jumper settings (board REV C)

- SW5 (DIP_SW): 1-on, 2-on, 3-on, 4-on
- J1: on
- J2: on
- J4: 1-2, 3-4, 5-6, 7-8
- J5: on
- J6: on
- J8: off
- J9: off
- J12: 2-3
- J13: 2-3
- J14: on
- J16: off

- J17: 1-2, 3-4, 5-6, 7-8
- J18: on
- J19: on
- Use J3 (TGT_BDM) for connecting the P&E USB Multilink debugger

6.20 TWR-MCF51JE

Core Clock	48 MHz	16MHz Xtal used
Bus Clock	24 MHz	
Default Console	ttya:	RS232
BSP Timer	TPM1	

Jumper settings (board REV C)

- SW3: 1-off, 2-off
- J1: off
- J2: off
- J4: on
- J5: 1-2
- J6: off
- J7: on
- J8: on
- J9: on
- J10: 2-3
- J11: on
- J12: off

• J15: 1-2

• J16: 1-2

• J18: 1-2, 3-4, 5-6, 7-8, 9-10, 11-12, 13-14

• J19: 1-2, 3-4, 5-6

J20: off

J24: off

• J25: 5-6

• J26: 2-3

• J27: 1-2

6.21 M5208EVB(E)

Core Clock	166,666 MHz	
Bus Clock	83,333 MHz	
Default Console	ttya:	RS232
BSP Timer	PIT0	

Jumper settings (M5208EVBE board REV E)

- SW1: 1- off, 2- off, 3-off, 4- off, 5- off, 6- off, 7- off, 8- off (default setting)
- JP1-on, JP2-on, JP3-off, JP4-on, JP5-on, JP6-on, JP7-on, JP8-on, JP9-on
- JP10: 1-2
- JP11: 1-2
- JP12: 1-2
- JP13-on, JP14-on, JP15-on, JP16-on

NOTE:

• The M5208EVBE board is the RoHS compliant version of the M5208EVB board. The M5208 BSP was tested with the M5208EVBE board only.

6.22 M5329EVB

Core Clock	240 MHz	
Bus Clock	80 MHz	
Default Console	ttya:	RS232
BSP Timer	PIT0	

Jumper settings

- For UARTB operation:
 - o Place 3 jumpers on J9 pins 1-2, 3-4, 5-6
- For CAN operation:
 - o Place 3 jumpers on J10 pins 1-2, 3-4, 5-6
- Do no put jumpers simultaneously on J9 and J10