#### **Unsupervised Learning**

# Jayanta Mukhopadhyay Dept. of Computer Science and Engg. IIT Kharagpur

### Supervised learning

- Learning with labeled data.
  - To learn a mapping from the input to an output
    - labels provided by a supervisor.
- Classification
  - Classify digits from hand written numerals.
- Regression
  - Predict the price of a car given a set of its attributes (brand, year, mileage, engine capacity, etc.).

### Unsupervised learning

- Learning from only input data.
  - No labels of instances available.
  - no supervisor to provide mapping between input and output.
- The aim is to find the regularities / structures / patterns in the input.
  - Number of clusters?
  - Any hierarchy present among them?
  - How to attribute them with semantics?

#### Clustering

Clustering: the task of organizing objects into groups whose members are *similar in some way*.

Cluster: a collection of objects similar to each other, but dissimilar to the objects belonging to other clusters.

- Regions of homogeneity in an image.
  - o Segments.
- Grouping of similar components.





#### Class and cluster

A class: well studied group of objects identified by their common properties or characteristics.

A cluster: a group with 'loosely' defined similarity among the objects.

Potential to form a class.

#### Clustering: Motivation

- finding representatives for homogeneous groups
  - to reduce data.
- discovering natural groups or categories.
  - to describe by their unknown properties.
- finding relevant groups.
  - major groups in the given context.
    - segments of an image.
- detecting unusual data objects
  - o outliers.

#### K-means clustering

- Given N d-dimensional data points,
  - compute K partitions (clusters) in them
    - so that it minimizes the sum of square of distances between a data point and the center of its respective partition (cluster).

#### **Optimization problem**

Minimization of Sum of Squared Errors (SSE)

$$E = \sum_{k} \sum_{\forall x \in c_k} ||x - c_k||^2 \quad \text{where} \quad c_k = \frac{1}{|C_k|} \sum_{\forall x \in C_k} x$$

$$c_k = \frac{1}{|C_k|} \sum_{\forall x \in C_k} x$$

#### **Exhaustive K-Means!**

The number of ways a set of N objects partitioned into K non-empty groups?

$$S(N,K) = \frac{1}{K!} \sum_{i=0}^{K} (-1)^{K-i} {K \choose i} i^{N}$$

Stirling numbers of the second kind.

$$\approx K^N/K!$$

- Checking all possible combinations prohibitive!
  - Of exponential order with input size

An NP-hard problem 
$$(K>1)$$
.

# The Lloyd algorithm (1957) (Batch K-Means)

- Given *K* initial centers, assign a point to the cluster represented by its center, if it is the closest among them.
- Update the centers.
- Iterate above two steps, till the centers do not change their positions.



### K-means: example (k=2)



Choose initial centers.

Compute partitions.



### K-means: example (k=2)



Compute partitions.

Update centers.

#### K-means: example (k=2)



Compute new partitions with updated centers.

### K-means: example (k=2)



Update centers.

### K-means: example (k=2)



#### K-means: example (k=2)



Compute new partitions with updated centers.



### K-means: example (k=2)



Update centers.

#### K-means: example (k=2)



Stop at no change (or a very little change in cluster centers).



#### A more conservative approach

- Lloyd algorithm fast but not necessarily causing better convergence.
- A more conservative approach to move one data point at a time provided overall cost gets reduced.
- A greedy approach by choosing the transfer of a data point from a class (say, i) to another class (say, j), which causes the best (maximal) cost reduction at that step.

#### Strength

Trying to minimize the energy function SSE defined by the sum of divergences of each cluster from its center.

$$E = \sum_{k} \sum_{\forall x \in c_k} ||x - c_k||^2$$

- Convergence guaranteed at a quadratic rate.
- Linear time complexity in N, d and K.
- Versatile, simple, and invariant to data ordering.

#### Weakness

- Only detects well separated, compact, hyperspherical clusters.
  - Value of K?
- Sensitive to noise and outlier points
  - Due to squared Euclidean distance.
- May get stuck at local minima.
  - Highly sensitive to the selection of the initial centers
- Improper initialization
  - empty clusters,
  - slower convergence, and
  - Slower convergence, and

Use of an adaptive initialization method!

a higher chance of getting stuck in bad local minima

# Various Initialization Approaches

- Each point randomly to one of the clusters (Forgy 1965)
- First K points as the centers. (McQueen 1967)
  - Sensitive to data ordering
  - Choose them randomly
    - Outliers still may get selected.
- Repeated K-means. (Bradley & Fayyad, ICML'98)
  - K-means on J random subsets.
  - Merge all centers and run K-means repeatedly on them
  - Choose the best set of centers minimizing the error, and use them for iterative convergence.

#### K-means++

- The first center  $c_1$  chosen randomly.
- The *i*-th (i=2,3,..,K) center  $c_i$  chosen as x' with a probability proportional to square of the minimum distance from the selected i-1 centers.

$$p(x') = \frac{\min_{j=1,2,...,i-1} ||x'-c_j||^2}{\sum_{x} \min_{j=1,2,...,i-1} ||x-c_j||^2}$$



#### How do you determine K?

- Use of cluster validity index.
  - Maximize or minimize depending upon the nature of metric.
- Check for stable clustering results with random initialization.
  - Use of different measures of stability.

#### Cluster validity indices

- External indices using a reference partitioning information, e.g. class labels.
   NMI=2I(Y;C)/(H(Y)+H(C))
  - Normalized Mutual Information (NMI)

Y: Cluster Label

Fraction of same pairs in same clusters (FM index)

C: Class Label

Set matching measures

I(Y;C)=H(Y)-H(Y|C)

- Finding matching partition pairs and maximal common coverage
- Internal indices by Looking at variance distribution, structure of clusters s(x)=(a(x)-b(x))/max(a(x),b(x)) Avg. of s(x)'s.

a(x): Avg. dist. of points within the cluster from x

- Silhouette index b(x)=Min. avg. dist. of points of other clusters from x.
  - Higher better in [-1,1]
- Calinski-Harabasz(CH) Index  $CH(K) = \frac{(J(1) J(K))/(K 1)}{J(K)/(n K)}$  J(i): SSE with K = i
  - Higher better.



#### Stability check based clustering

- Repeated clustering should have similar partitioning
  - for an appropriate K.
- Wang's method of cross-validation (2010)
  - Permute the input data c times.
  - Each time divide into three parts,
    - $S_1$ ,  $S_2$ , and  $S_3$ , such that  $|S_1| = |S_2| = m$
  - Perform k-means on S<sub>1</sub> and S<sub>2</sub>.
    - Test on S<sub>3</sub> both cases to find the cluster numbers.
  - Compute the number of disagreement
    - a pair being in the same or different clusters.
  - Take the average over c observations

Choose K minimizing avg. number of disagreements.

# Generalizing K-Means: Mixture densities



- $G_i$  defines the *i*th group or cluster.
- K is a hyper-parameter and should be known.
- For multivariate Gaussian distribution:
  - $P(\mathbf{x}|G_i) \sim \mathsf{N}(\boldsymbol{\mu_i}, \Sigma_i)$
- To estimate  $\mu_i$ ,  $\Sigma_i$ , and  $P(G_i)$  for all i. from the set of iid. input samples:  $X = \{x^t\}$ , t = 1, 2, ..., N



- Each cluster center is augmented by a covariance matrix, whose values are reestimated from corresponding samples.
  - Mahalanobis distance function:

$$d(x, \mu_k; \Sigma_k) = (x - \mu_k)^T \Sigma_k^{-1} (x - \mu_k)$$
Cluster center Covariance matrix

Technique could be refined by computing probabilities of belongingness to a cluster.

Parametric PDF: 
$$p(x|\{\pi_k, \mu_k, \Sigma_k\}) = \sum_k \pi_k N(x|\mu_k, \Sigma_k)$$

## Expectation (EM) $z_{ik} = \frac{1}{Z_i} \pi_k N(x_i | \mu_k, \Sigma_k)$ $Z_i = \sum_{k} \pi_k N(x_i | \mu_k, \Sigma_k)$ **Algorithm**

$$z_{ik} = rac{1}{Z_i} \pi_k N(x_i | \mu_k, \Sigma_k)$$
 $Z_i = \sum_k \pi_k N(x_i | \mu_k, \Sigma_k)$ 
Normalizing

- Start with initial set : $\{\pi_k, \mu_k, \Sigma_k\}$ .
- E-Step (Expectation stage)
  - Compute probability  $(z_{ik})$  of x belonging to kth Gaussian cluster.

factor

- Optional step. Decision to be→ taken at the end.
- Assign x to the mth cluster whose probability is maximum.
- M-Step (Maximization Stage)
  - Re-estimate parameters  $(\{\pi_k, \mu_k, \Sigma_k\})$  from class distribution
- Iterate above two steps till it converges.

#### Parameter re-estimation

$$z_{ik} = \frac{1}{Z_i} \pi_k N(x | \mu_k, \Sigma_k)$$
Normalizing factor

$$\mu_k = \frac{1}{N_k} \sum_i z_{ik} \, x_i$$

$$\Sigma_k = \frac{1}{N_k} \sum_i z_{ik} (x_i - \mu_k) (x_i - \mu_k)^T$$

$$\pi_k = \frac{N_k}{N_k}$$

$$N_k = \sum_i z_{ik}$$

Expected number of pixels in class k.



#### Hierarchical clustering

- Builds hierarchy of groups.
  - Usually a bottom-up approach.
- Uses a distance matrix among the samples.
- Explicit feature representation may not be required.
- A non-probabilistic approach.

### Hierarchical Clustering: An example



# Hierarchical Clustering: An Example





#### Hierarchical Clustering: Example





Courtesy: www.bioalgorithms.info (Pavel Pevzner)

#### Hierarchical Clustering: Example





#### Hierarchical Clustering: Example



#### Hierarchical Clustering:





#### Hierarchical Clustering Algorithm

The algorithm takes a *n*x*n* distance matrix *d* of pairwise distances between points as an input.

#### Hierarchical Clustering (d, n)

Form *n* clusters each with one element.

Initialize a graph T with a vertex for each cluster.

while there is more than one cluster

Find the two closest clusters  $C_1$  and  $C_2$ .

Merge  $C_1$  and  $C_2$  into C with  $|C_1| + |C_2|$  elements.

Compute distance from C to all other clusters.

Add a new vertex C to T and connect to vertices  $C_1$  and  $C_2$ .

Remove rows and columns of **d** corresponding to  $C_1$  and  $C_2$ .

Add a row and column to d corresponding to the new cluster C.

#### return *T*

Different ways to define distances between clusters may lead to different clustering.

Courtesy: www.bioalgorithms.info (Pavel Pevzner)

# Computing distance between a pair of clusters.

$$d_{min}(C, C^*) = \min d(x,y)$$
  
for all elements x in C and y in  $C^*$ 

 Distance between two clusters is the smallest distance between any pair of their elements.

$$d_{avg}(C, C^*) = (1 / (|C^*|/C|)) \sum d(x,y)$$
  
for all elements  $x$  in  $C$  and  $y$  in  $C^*$ 

 Distance between two clusters is the average distance between all pairs of their elements.

### Graph based approaches

- Form a graph from the input data.
  - May not be explicit.
- Compute cliques, connected components, etc.



- A clique is a graph with every vertex connected to every other vertex.
- A clique graph is a graph where each connected component is a clique.



## Transforming an Arbitrary Graph into a Clique Graphs

A graph can be transformed into a clique graph by adding or removing edges.





### Corrupted Cliques Problem

**Input**: A graph *G* 

**Output**: The smallest number of additions and removals of edges that will transform *G* into a clique graph.

Courtesy: <u>www.bioalgorithms.info</u> (Pavel Pevzner)



### Distance Graphs

- Feature vectors represented as vertices in the graph.
- Choose a distance threshold  $\theta_{i}$
- If the distance between two vertices is below  $\theta$ , draw an edge between them.
- The resulting graph may contain cliques.
- These cliques represent clusters of closely located data points!

### Transforming into Clique Graph

The distance graph (threshold  $\theta$ =7) is transformed into a clique graph after removing the two highlighted edges

|       | $g_1$ | $g_2$    | $g_3$ | $g_4$ | $g_6$ | <i>g</i> 6 | 97   | $g_8$ | $g_9$    | $g_{10}$ |
|-------|-------|----------|-------|-------|-------|------------|------|-------|----------|----------|
| $g_1$ | 0.0   | 8.1      | 9.2   | 7.7   | 9.3   | 2.3        | 5.1  | 10.2  | 6.1      | 7.0      |
| $g_2$ | 8.1   | 0.0      | 12.0  | 0.9   | 12.0  | 9.5        | 10.1 | 12.8  | $^{2.0}$ | 1.0      |
| $g_3$ | 9.2   | 12.0     | 0.0   | 11.2  | 0.7   | 11.1       | 8.1  | 1.1   | 10.5     | 11.5     |
| 94    | 7.7   | 0.9      | 11.2  | 0.0   | 11.2  | 9.2        | 9.5  | 12.0  | 1.6      | 1.1      |
| $g_5$ | 9.3   | 12.0     | 0.7   | 11.2  | 0.0   | 11.2       | 8.5  | 1.0   | 10.6     | 11.6     |
| 96    | 2.3   | 9.5      | 11.1  | 9.2   | 11.2  | 0.0        | 5.6  | 12.1  | 7.7      | 8.5      |
| 97    | 5.1   | 10.1     | 8.1   | 9.5   | 8.5   | 5.6        | 0.0  | 9.1   | 8.3      | 9.3      |
| $g_8$ | 10.2  | 12.8     | 1.1   | 12.0  | 1.0   | 12.1       | 9.1  | 0.0   | 11.4     | 12.4     |
| 99    | 6.1   | $^{2.0}$ | 10.5  | 1.6   | 10.6  | 7.7        | 8.3  | 11.4  | 0.0      | 1.1      |
| g10   | 7.0   | 1.0      | 11.5  | 1.1   | 11.6  | 8.5        | 9.3  | 12.4  | 1.1      | 0.0      |

(a) Distance matrix, d (distances shorter than 7 are shown in bold). After transforming the distance graph into the clique graph, the dataset is partitioned into three clusters



Figure 10.6 The distance graph (b) for  $\theta = 7$  is not quite a clique graph. However, it can be transformed into a clique graph (c) by removing edges  $(g_1, g_{10})$  and  $(g_1, g_2)$ .

### Corrupted Clique Problem

- Corrupted Cliques problem is NP-Hard, some heuristics exist to approximately solve it:
- Two approximate methods:
  - 1. Parallel Classification with Cores (PCC).
    - (Amir Ben-Dor et. al (1999))
  - 2. Cluster Affinity Search Technique (CAST)



## Parallel Classification with cores (PCC)

- Suppose S' is a subset of S.
- Let,  $\{C_1, C_2, ..., C_k\}$  be a clustering on S'.
- How do you extend the clustering to S?
- Let  $j \in S$ -S' and  $N(j,C_i)$  be no. of edges from j to  $C_i$ .
- Affinity  $(j, C_i) = N(j, C_i)/|C_i|$
- Assign j to the cluster which has maximum affinity.

### Algorithm for PCC

### Algorithm PCC(S,G,k)

- S: Set of n elements (say, feature vectors forming vertices of G).
- G: Distance graph , k: No. of clusters
- 1. Randomly select *S*', a subset from *S*, and *S*'', a subset from *S*-*S*',

s.t. 
$$|S'| = log(log(n))$$
 and  $|S''| = log(n)$ .

- 2. For all k partitions in S
  - 2.1 Obtain extended partition in S through two stages of extensions i.e.  $S' \rightarrow S'' \rightarrow (S-(S'US''))$
  - $^{2.2}$  Choose the one which has minimum score , i.e. the no. of edges reqd. to add or remove from G to get a Clique graph as per the partition.



### Example of computing score



Edges to be added in G: {(1,5),(2,4),(3,7),(4,7)}

Edges to be deleted in G: {(1,2),(1,7),(6,7),(4,5),(2,6)

Let a partition P with k=2: ,(3,5)} {1,5,6}, {2,3,7,4}.





Score: 10



### PCC: Time complexity

No. of partitions in  $S'=k^{|S'|}$   $=k^{\log(\log(n))}$   $=(\log(n))^{\log_2(k)}$ 

- In each iteration  $O(n^2)$  operations for extension and score computation.
- Total time complexity:  $O(n^2 (log(n))^{log_2(k)})$

### CAST

- CAST (Cluster Affinity Search Technique): a practical and fast algorithm:
  - CAST is based on the notion of features close to cluster C or distant from cluster C.
  - Distance between feature *i* and cluster *C*:
     d(i,C) = average distance between feature *i* and all other features in *C*

Gene *i* is *close* to cluster C, if  $d(i,C) < \theta$  and *distant* otherwise.

### CAST Algorithm

```
CAST(S, G, \theta)
                     S - set of elements, G - distance graph,
                           θ – distance threshold
 P \leftarrow \emptyset
 while S \neq \emptyset
    V \leftarrow vertex of maximal degree in the distance graph G.
   C \leftarrow \{v\}
   while a close feature i not in C or distant feature i in C exists
      Find the nearest close feature i not in C and add it to C.
      Remove the farthest distant feature i in C.
   Add cluster C to partition P.
   S \leftarrow S \setminus C
   Remove vertices of cluster C from the distance graph G.
 return P
```



Density-based spatial clustering of applications with noise (DBSCAN) (Ester, Kriegel, Sander and Xu'96)

No explicit computation of distance graph.



Core point: number of point within  $\varepsilon$  more than a threshold k.

Forms clusters of arbitrary shape.

Use of R-tree for efficient search.

Grow regions of connected core points from a seed.

A neighbor but not a core point called a border point.

### Summary

- Clustering techniques
  - Semi-parametric approaches.
    - K-means algorithm
      - No explicit parameter estimation
    - Expectation Maximization
      - Mixture of Gaussian
  - Hierarchical clustering method
    - Builds a tree hierarchy following a bottom-up approach.
    - Uses distance matrix instead of explicit feature representation.

### Summary

- Graph based approaches.
  - A clique: A graph with every vertex connected to every other vertex.
  - A clique graph: Each component is a clique.
  - Distance graphs: Feature Vectors represented as vertices and edges if distance less than a threshold.
    - Corrupted clique problem
      - Smallest number of additions and removals of edges to transform a graph into a clique graph.
      - PCC and CAST
  - Without explicit computation of distance graph
    - DBSCAN



