AMENDMENTS TO THE SPECIFICATION:

Please amend the paragraph beginning at page 14, line 24, as follows:

An FER adsorbent has pores with a short axis of $\underline{0.42}$ nm and a long axis of $\underline{0.54}$ nm (i.e., a pore size of $\underline{0.42} \times \underline{0.54}$ nm), and a straight channel with a short axis of $\underline{0.35}$ nm and a long axis of $\underline{0.48}$ nm (i.e., a pore size of $\underline{0.35} \times \underline{0.48}$ nm), forming a two dimensional pore structure.

Please amend the paragraph beginning on page 15, line 3, as follows:

An MOR adsorbent has pores with a short axis of $\underline{0.26}$ nm and a long axis of $\underline{0.57}$ nm (i.e., a pore size of $\underline{0.26} \times \underline{0.57}$ nm), and a straight channel with a short axis of $\underline{0.65}$ nm and a long axis of $\underline{0.70}$ nm (i.e., a pore size of $\underline{0.65} \times \underline{0.70}$ nm), forming a two dimensional pore structure.

Please amend the paragraph beginning on page 15, line 7, as follows:

An MFI adsorbent has a straight channel with a short axis of $\underline{0.53}$ nm and a long axis of $\underline{0.56}$ nm (i.e., a pore size of $\underline{0.53} \times \underline{0.56}$ nm), and a zigzag channel with a short axis of $\underline{0.51}$ nm and a long axis of $\underline{0.55}$ nm (i.e., a pore size of $\underline{0.51} \times \underline{0.55}$ nm), and these channels intertwine to form a three dimensional pore structure.