Jaypee University of Engineering And Technology, Guna

Visionary Surveillance (Project No: AKS2)

by:

Anshika Soni (201B052)
Dishita Jain(201B099)
Divyansh Asthana(201B103)
Ishita Jain(201B126)

Under the Supervision of: Dr. Amit Kumar Srivastava

Asst. Professor (SG)

Department of Computer & Engineering

TABLE OF CONTENTS

- MOTIVATION
- INTRODUCTION
- BLOCK DIAGRAM
- USE CASE DIAGRAM
- FLOW CHART
- MODEL DESCRIPTION
- MODEL SUMMARY
- WORK DONE
- EXPECTED OUTCOME
- REFERENCES

MOTIVATION

Increase Security

• Decrease the risk of crime while keeping the bystanders safe with a system that can detect potential threats.

Real-time Alert

• Get real-time alerts while making it easier to respond to potential incidents and prevent public safety issues.

Efficiency Improvement

• Reduce the workloads on security personnel and improve surveillance efficiency with an automated system.

INTRODUTION

- An advanced technology that leverages AI and cutting-edge sensors to monitor.
- It analyze activities in real-time, ensuring enhanced security and operational efficiency.
- Key Features of the system are:
 - Real-time monitoring.
 - Automatic threat detection
 - Behavior analysis
 - Integration with existing systems

BLOCK DIAGRAM

USE CASE DIAGRAM

FLOW CHART

MODEL DESCRIPTION

1. Convolutional Layer (Conv2D):

- Filters: 32
- Kernel Size: (3, 3)
- Activation Function: ReLU
- Input Shape: (32, 32, 3) This is the shape of each input frame (assuming it's a color image with three channels).

2. MaxPooling Layer (MaxPooling2D):

• Pool Size: (2, 2) - This operation reduces the input volume's spatial dimensions (width and height).

3. Convolutional Layer (Conv2D):

- Filters: 64
- Kernel Size: (3, 3)
- Activation Function: ReLU

MODEL DESCRIPTION

4. MaxPooling Layer (MaxPooling2D):

• Pool Size: (2, 2)

5. Flatten Layer:

• This layer flattens the input, transforming it into a 1D array, which is necessary before passing it to the Dense layers.

6.Dense Layer (Fully Connected Layer):

- Neurons: 64
- Activation Function: ReLU

7.Dense Layer (Output Layer):

- Neurons: NUM_CLASSES (2 in your case, since you have abnormal and normal classes)
- Activation Function: Sigmoid This is appropriate for binary classification problems.

MODEL SUMMARY

Model: "sequential"		
Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 30, 30, 32)	896
<pre>max_pooling2d (MaxPooling2 D)</pre>	(None, 15, 15, 32)	0
conv2d_1 (Conv2D)	(None, 13, 13, 64)	18496
<pre>max_pooling2d_1 (MaxPoolin g2D)</pre>	(None, 6, 6, 64)	0
flatten (Flatten)	(None, 2304)	0
dense (Dense)	(None, 64)	147520
dense_1 (Dense)	(None, 2)	130
Total params: 167042 (652.51 KB) Trainable params: 167042 (652.51 KB) Non-trainable params: 0 (0.00 Byte)		

WORK DONE

- Abnormal and Normal Actions Combined Example 1
- Abnormal and Normal Actions Combined Example 2
- Abnormal and Normal Actions Combined with alarm sound

1 Improved situational awareness

EXPECTED OUTCOME

12 Effective incident management

Object recognition and behavior analysis

REFERENCES

- Object Detection in Video Surveillance (Ghani et al. 2019).
- Real-Time Surveillance System at a Metro station (Parthiban et al. 2021).
- Surveillance Systems Based on Deep Learning and IoT Paradigm (Cao et al. 2021).

Thank You