基于项目式学习的初中物联网课程设计

张敬云 江苏省镇江市实验高级中学 刘正云 南通大学附属中学

学习物联网技术,感知世界、 控制万物,已经成为当下信息技 术课程的主要内容之一。因此,如 何设计出符合时代要求的初中物 联网课程,成为时下需要重点思 考的问题。

● 初中物联网课程设计现状

要让学生掌握物联网技术,不 仅要分析物联网的工作原理,了解 物联网的生活应用,还应提供相关 的硬件和平台让学生尝试开发简 单的物联网应用,这是衡量一个 物联网课程设计成功与否的关键 要素。然而纵观多本旧版初中物联 网教材,大多以扫盲为主向学生介 绍物联网基本常识、物联网常用的 数据采集传感器、RFID设备等, 学生很少有机会真正接触并使 用这些设备。即便完成了整个初 中物联网课程的学习,学生也远 不能达到自主搭建一个物联网系 统、完成一个具体物联网应;用的 水平。分析其原因,有如下两点:其 一,缺少硬件与平台的支持,其二, 缺少与现有硬件和平台相匹配的物 联网课程。

● 基于项目式学习的初中物 联网课程设计

20世纪末,比尔·盖茨在西雅 图建了一座名为"未来之屋"的别墅, 它展示了人类未来智能生活的各种 场景。房屋内配置的所有家电、健康 系统、安防系统等都通过网络由计 算机进行智能控制。随着物联网技 术的日益成熟,这样的"智能生活" 已走进千家万户。因此,初中的物联 网课程可以与智能生活相结合,笔者 所在学校开展的"物联网与智能生 活"校本课程参考目录如表1所示。

该课程采用项目式学习的方式 展开,分为"物联网入门"与"走进 智能生活"两个单元。在每个单元 的最前面,都会给出一个带有具体 情境的项目案例,以期引导、启发学 生,并鼓励他们尝试自己设计一个 与本单元内容有关的项目,第一单 元的项目是"搭建一个简单的物联 网应用模型",实现物与物之间的互 联通信,在整个项目活动过程中,学 生将习得物联网技术及开源硬件的 相关知识;第二单元的项目是"开发 智能生活作品",是物联网应用的一 个方向,在整个项目活动过程中,学 生将对物联网在生活中的应用有更 深的认识。每个单元的每节内容都 是项目顺利完成需要的知识储备, 包含了很多的课堂活动,有助于新 知的理解与掌握。

● 基于项目式学习开展物联 网项目设计范例

下面,笔者以初中"物联网与智 能生活"课程第一单元"物联网入门" 为例,依据项目式学习的四要素,谈谈 如何基于项目式学习开展课程设计。

1.内容

"物联网入门"单元需要了解

表1	初中物联网课程目录设计
777	

第一单元 物联网入门	第二单元 走进智能生活
第一节 从互联网到物联网	
第二节 物联网的终端设备	第一节 认识智能生活
第三节 物联网的通信	第二节 探秘智能家居
第四节 物联网的感知	第三节 体验智能助手
第五节 物联网的控制	第四节 智能作品的开发体验
第六节 物联网系统的搭建	

物联网的概念,学习智能终端、传感 器和执行器等物联网设备,并了解 物联网的运行原理和协议,能够搭 建一个简易的物联网系统,实现远 程互联。

2.情境

物联网的应用在生活中已经随 处可见,如做个手势灯光亮起、说句 话大门打开、快递柜远程控制等。 小清想深入了解物联网技术及其 相关知识,并且搭建一个简单的物 联网应用模型,给其他同学进行演 示。他遇到了如下几个问题:①物联 网使用什么样的终端设备?②物联网 设备是如何进行通信的?③物联网是 如何感知外部世界的各种信息,又是 如何控制这些设备的? ④搭建一个 物联网应用,有哪些可以快速入门的 服务平台可以选择?你想不想像小清 一样,搭建一个简单的物联网应用模 型?带着这样的目标去学习,相信你 和小清一样会学有所获。

3.活动

遇到的每一个问题,都是一个 新的知识点,在课程设计中,笔者 将每个知识点都具体到了章节之 中,并设置了相关的课堂活动来帮 助学生掌握新知,如表2所示。

对于从未动手制作过物联网 作品的学生而言,可能一开始并不 确定要做一个怎样的物联网应用项 目,但随着课程内容的深入学习,以 及小组之间的交流讨论,项目方案 也会逐渐完善(如表3),参考程序 如下页图所示。

表2

知识学习概况

衣乙	知识学习 做 优		
目录	知识学习	课堂活动	
1.1 从互联网到物联网	1. 物联网的定义与起源 2. 物联网背后的技术分析 3. 物联网的应用	【体验活动】通过掌控板远程采集环境信息 【讨论交流】当电冰箱接人物联网后,我们除了可以了解电冰箱的温度状态外,还希望能够实现怎样的功能?	
1.2 物联网的终端设备	1.智能终端和开源硬件 2.智能终端的编程 (1)智能终端的编程工具 (2)用Python程序控制智能终端 1.智能终端的I/O控制 (1)引脚信号的输出 (2)引脚信号的输入 (3)pinpong库的I/O控制基本语法	【讨论交流】查找自己感兴趣的创客作品,并从开源硬件、物联网应用等方面交流讨论 【体验活动】给开源硬件编写"点亮板载灯"程序 【实验活动】数字输入实验	
1.3 物联网的通信	1.常见的物联网通信技术 (1)有线传输 (2)近距离无线传输 (3)传统网络传输 (4)长距离无线传输 2.常见的物联网通信协议	【实践活动】开源硬件串口通信测试 【体验活动】开源硬件的联网	
1.4 物联网的感知	1.物联网感知技术概述 2.传感器技术 (1)认识传感器 (2)传感器和智能终端的连接 (3)传感器信息的获取 3.条码和射频识别技术	【讨论交流】你了解过哪些有趣的与感知技术相关的应用案例? 使用了哪种传感技术?采集了哪些数据? 【讨论交流】请同学们上网搜一搜形形色色的传感器,了解这些传感器的功能和用途 【实验活动】模拟输入实验 【实践活动】工维码生成 【讨论交流】在生活中射频识别的应用随处可见,请结合自己的生活经历,说说你在哪些场景中见到过射频识别的应用应用	
1.5 物联网的控制	1.执行器及其分类 2.常见执行器的控制	【讨论交流】你在生活、学习中见过其他线性执行器装置吗?这些线性执行器 都使用了什么机械装置结构?达到了怎么样的效果? 【实践活动】舵机的控制	
1.6 物联网的系统搭建	1.物联网系统搭建流程 2.物联网开发平台 3.MQTT服务器搭建 4.MQTT客户端编程	【实验活动】使用客户端调试工具测试服务器 【体验活动】开源硬件的消息发送 【实践活动】使用计算机订阅 MQTT消息	

表3

项日方案

	火口/3米
项目名称	搭建一个 LED 远程控制的物联网应用
项目分工	小清:项目整体规划设计、统筹、协调、监督、文档撰写等 甲: 搭建物联网平台并进行测试 乙:实现项目各模块功能,设计算法并编写代码
知识学习	1.智能终端及其编程 2.传感器 3.执行器 4.物联网的运行原理和协议 5.服务器平台
器材清单	Arduino Uno、扩展板、LED 灯模块、SIoT
实施步骤	1.将Arduino Uno与扩展板连接起来,再将LED灯连接到扩展板的D8引脚上 2.运行服务器程序,访问Web管理端 3.编写程序,参考程序如下 4.运行程序,从物联网平台发送消息"on"或"off",观察LED的变化

```
import time
from pinpong.board import Board,Pin #导入pinpong库
import siot
Board("uno").begin()
led = Pin(Pin.D8, Pin.OUT) #引脚初始化
SERVER = "192.168.101.29"
                              #MQTT服务器IP
CLIENT_ID = ""
                         #在SIoT上, CLIENT_ID留空
IOT_pubTopic = 'indoor/ledCtr' # "topic" 为 "项目名称/设备名称"
IOT_UserName = 'siot'
                        #用户名
IOT_PassWord = 'dfrobot' #密码
#定义收到消息时的提示信息
def sub_cb(client, userdata, msg):#定义收到消息时的提示信息
   print("Topic:" + str(msg.topic) + " Message:" + str(msg.payload))
   global iot_msg
   iot_msg = msg.payload.decode()
#连接SIoT物联网平台,接收消息。
siot.init(CLIENT_ID, SERVER, user=IOT_UserName, password=IOT_PassWord)
siot.subscribe(IOT_pubTopic, sub_cb)
siot.loop()
siot.publish(IOT_pubTopic, "Beginning")
#主程序根据接收的消息,控制LED灯
while True:
   time.sleep(1)
   if iot_msg == 'on':
       led.write_digital(1)
   if iot_msg == 'off':
       led.write_digital(0)
```

4.结果

项目完成后,会有交流分享 的环节。每个小组制作项目介绍的 PPT,在课堂内展示并推广本小组 的学习成果,教师与其他小组成员 进行量化评价,并记录他们提出的 意见。

虽然本范例是以搭建一个 LED远程控制的物联网应用为例, 但不同的小组可根据本小组想法 设计不同的物联网应用项目。可不 论哪个项目,都是从情境引出问题,

并以解决问题为导向,让学生进行 一系列的新知学习活动。学生在历 经了整个项目从开始到完成的过程 后,不但能够掌握物联网的基本知 识和技能,形成对物联网的系统认 识,还能提升其解决问题、实践操 作及合作探究的能力。

● 结语

随着信息技术的高速发展,初 中物联网课程迎来了良好的契机。 但如何设计课程、组织课程实施方 式,使初中生在物联网知识与技能 的学习过程中有成就感、有体验感、 有解决实际问题能力的获得,是课 程设计者需要重点关注的内容。很 显然,项目式学习是该类课程设计 需要关注的重点,也期望有越来越 多的教师带着优秀的物联网项目加 入到物联网课程之中,让学生能够 真正了解并驾驭物联网技术。 @