MATEMATICA AVANZADA / CALCULO AVANZADO

GUIA DE EJERCICIOS 2

INTEGRALES DE LINEA E INTEGRALES DE SUPERFICIE

- 1. Determine ecuaciones paramétricas que modelen las siguientes funciones:
 - a) La curva de intersección entre x-y-z=0 y x-2y+3z-1=0.
 - b) De los siguientes tres segmentos rectilíneos, graficando cada uno de ellos:
 - i) De (0,0,0) hasta (0,2,0)
 - ii) De (0,2,0) hasta (1,2,0)
 - iii) De (1,2,0) hasta (1,2,1)
- 2. Evalué: $\int_c xy \ dx + x^2 \ dy$, donde C es la curva $y = x^3 \ para 1 \le x \le 2$
- 3. Encuentre $\int_c xe^{yz} ds$, sí C es el segmento rectilíneo entre (0,0,0) y (1,2,3)
- 4. Calcule $\int_c \ ysen(z) \ ds$, sí C es la hélice circular con ecuaciones paramétricas dadas por: $x = \cos(t)$, $y = \sin(t)$, z = t para $0 \le t \le 2\pi$
- 5. Determine $\int_{C} y^{2} dx + x dy$, donde:
 - a) C=C1 es un segmento de recta que une de (-5,-3) hasta (0,2)
 - b) C=C2 es el arco parabólico x=4-y2 desde (-5,-3) hasta (0,2)
 - ¿Depende el resultado de la integral de línea de la trayectoria tomada?, ¿Siempre será así?
- 6. Determinar: $\int_{C} x^{2}y \, dx + 2y \, dy + x \, dz$ para la curva C, formada por:

$$C1 = \begin{cases} x^2 + y^2 + z^2 = 1 \\ x = 0 \\ y \ge 0, \quad z \ge 0 \end{cases} \qquad C2 = \begin{cases} 2x + z = 1 \\ y = 0 \\ x \ge 0, \quad z \ge 0 \end{cases} \qquad C3 = \begin{cases} 4x^2 + y^2 = 1 \\ z = 0 \\ x \ge 0, \quad y \ge 0 \end{cases}$$

- 7. Sea $\vec{F}(x,y) = y \hat{\imath} + x^2 \hat{\jmath}$, evaluar: $\int_c \vec{F} d\vec{r}$ bajo las siguientes curvas:

 - a) $\vec{r}_1(t) = (4-t)\hat{\imath} + (4t-t^2)\hat{\jmath}$ $0 \le t \le 3$ b) $\vec{r}_2(t) = t\hat{\imath} + (4t-t^2)\hat{\jmath}$ $1 \le t \le 4$

- 8. Si $\vec{F}(x,y) = x^3y \,\hat{\imath} + (x-y)\hat{\jmath}$ se encarga de mover una partícula desde (-2,4) hasta (1,1) a lo largo de $y = x^2$. ¿Cuál es el trabajo desarrollado para dicho movimiento?
- 9. Para el campo de fuerzas dado por: $\vec{F}(x,y,z) = e^x \cos(y) \,\hat{\imath} e^x \sin(y) \,\hat{\jmath} + 2\hat{k}$. Mostrar que $\int_c \vec{F} \cdot d\vec{r}$ es independiente de la trayectoria y calcule el trabajo realizada por \vec{F} sobre un objeto que se mueve a lo largo de la curva C desde (0, π /2, 1) hasta (1, π , 3)
- 10. Utilice el Teorema de Green para calcular:
 - a) $\int_{c} x^{2}y \, dx + xy^{2} \, dy$, donde C esta descrito por: $0 \le x \le 1$, $0 \le y \le x$
 - b) $\int_c x^2 y \, dx x^2 \, dy$, donde C es la mitad izquierda de una circunferencia centrada en el origen de radio 5.
- 11. Utilizando integrales de línea encuentre el área de la región limitada por la curva dada por la función vectorial: $\vec{r}(t) = \cos^3(t)\,\hat{\imath} + sen^3(t)\hat{\jmath}$ en $0 \le t \le 2\pi$
- 12. Utilizando integrales de línea calcule el área de la región limitada por la intersección entre y=2x+1 \land $y=4-x^2$
- 13. El campo de velocidades de un fluido esta definido por: $\vec{F}(x,y) = (5x-y)\hat{\imath} + (x^2-3y)\hat{\jmath}$. Calcule la intensidad de fluencia del fluido cuando sale de una región limitada por una curva C cerrada, simple y suave cuya área es de 150 u²
- 14. Utilice la primera forma vectorial del T.G. para obtener $\oint_c \vec{F} \cdot d\vec{r}$ si $\vec{F}(x,y) = \langle xy^2, y + x \rangle$ y C es la curva limitada en el primer cuadrante por $y = x^2 \wedge y = x$. Además, compruébelo mediante integrales de línea.
- 15. Evalué la integral de superficie $\iint_{S} G(x, y, z) dS$ bajo las siguientes condiciones:
- a) $G(x,y,z) = \sqrt{x^2 + y^2 + z^2}$ y S: es la porción del cono: $x^2 + y^2 = z^2$ entre el plano "xy" y el plano z=2.
- b) $G(x,y) = \sqrt{x^2 + y^2}$ y donde S: es la lámina dada por: $z = 4 2\sqrt{x^2 + y^2}$ y $0 \le z \le 4$.
- 16. Determinar $\iint_S (x+2y-z) \, dS$, donde S es la porción del plano x+y+z=2 en el primer octante.
- a) Utilizando la proyección de S sobre el plano xy.
- b) Utilizando la proyección de S sobre el plano xz.

- 17. Evalué la integral de superficie $\iint_S x^2 z^2 dS$ en donde S es la porción del cono $x^2 + y^2 = z^2$ entre los planos z=1 y z=2.
- 18. Calcule el flujo si el campo vectorial F y la superficie S están dados por:
- a) $\vec{F}(x, y, z) = x \hat{i} + y \hat{j} + z \hat{k}$ $S: z = 9 x^2 y^2, z \ge 0$
- b) $\vec{F}(x, y, z) = x \hat{i} + y \hat{j} + z \hat{k}$ $S: x^2 + y^2 + z^2 = 36$, en el primer octante
- 19. Calcule: $\iint_S \vec{F} \cdot \vec{n} \, dS$ dado por: $\vec{F}(x, y, z) = 4xy \, \hat{\imath} + z^2 \, \hat{\jmath} + yz \, \hat{k}$ y donde S es un cubo unitario acotado por: x=0, x=1, y=0, y=1, z=0 y z=1.
- 20. La Ley de Gauss establece que la carga Q encerrada en la superficie S viene dada por:

$$Q = \epsilon_0 \iint_S \vec{E} \cdot \hat{n} \, dS$$

Donde \vec{E} es el campo eléctrico, ϵ_0 es una constante de permeabilidad del espacio libre y \hat{n} es un vector saliendo de la superficie. Determine utilizando integrales de superficie la carga contenida en un cubo con vértices $(\pm 1, \pm 1, \pm 1)$ y el campo eléctrico viene dado por: $\vec{E}(x,y,z) = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$.

- 21. Encontrar el área de:
- a) La porción del paraboloide: $z = x^2 + y^2$ comprendido entre los planos z=0 y z=1.
- b) La porción del plano 2x + 3y + 4z = 12 en el primer octante.
- 22. Verifique el Teorema de Stokes si \vec{F} y S está definido por:

$$\vec{F}(x, y, z) = \langle z, x, y \rangle$$

Donde S es la porción del plano 2x + y + 2z = 6 en el primer octante.

23. Verifique el Teorema de la divergencia de Gauss si $\vec{F}(x,y,z) = xy\hat{\imath} + z\hat{\jmath} + (x+y)\hat{k}$ y donde S es la superficie limitada por: y = 4, z = 4 - x y los planos coordenados.

Respuestas a algunos ejercicios:

- 2) 132/5
- 3) √14/12 (e⁶-1)
- *4*) √2 π
- 8) 3 u.W.
- 9) 4-e u.W.
- 10.a) -1/6
- 13) $300 u^2 / tiempo$
- 14) 1/12
- 15.a) 32π/3
- 15.b) 16√5 π/3
- 16.a) y 16.b) debe dar el mismo resultado
- $17)21\sqrt{2\pi/2}$
- 18.a)243π/2 υ³
- 18.b)108π υ³

- 19) 5/2
- 20) $24\epsilon_0$
- 21.a) $\pi/6$ (5 $\sqrt{5}$ -1) U^2
- 21.b)3√29 u²

- 22) 45/2
- 23) 64