전기이론

문 1. 전압이 E[V], 내부저항이 $r[\Omega]$ 인 전지의 단자 전압을 내부저항 $25[\Omega]$ 의 전압계로 측정하니 50[V]이고, $75[\Omega]$ 의 전압계로 측정하니 75[V]이다. 전지의 전압 E[V]와 내부저항 $r[\Omega]$ 은?

	E[V]	$r[\Omega]$
1	100	25
2	100	50
3	200	25
(4)	200	50

- 문 2. 등전위면(equipotential surface)의 특징에 대한 설명으로 옳은 것만을 모두 고르면?
 - ㄱ. 등전위면과 전기력선은 수평으로 접한다.
 - ㄴ. 전위의 기울기가 없는 부분으로 평면을 이룬다.
 - 다. 다른 전위의 등전위면은 서로 교차하지 않는다.
 - ㄹ. 전하의 밀도가 높은 등전위면은 전기장의 세기가 약하다.
 - ① 7, 2
 - ② ∟, ⊏
 - ③ 7, 4, 5
 - ④ ㄴ, ㄷ, ㄹ
- 문 3. 코일에 직류 전압 200 [V]를 인가했더니 평균전력 1,000 [W]가 소비되었고, 교류 전압 300 [V]를 인가했더니 평균전력 1,440 [W]가 소비되었다. 코일의 저항 [Ω]과 리액틴스 [Ω]는?

	저항[Ω]	리액턴스 $[\Omega]$
1	30	30
2	30	40
3	40	30
4	40	40

문 4. 다음 회로에서 스위치 S가 단자 a에서 충분히 오랫동안 머물러 있다가 t=0에서 단자 a에서 단자 b로 이동하였다. t>0일 때의 전압 $v_c(t)$ [V]는?

- ① $5e^{-\frac{t}{3\times10^{-2}}}$
- ② $5e^{-\frac{t}{3\times10^{-3}}}$
- $3 10e^{-\frac{t}{3\times10^{-2}}}$
- $4 10e^{-\frac{t}{3\times 10^{-3}}}$

문 5. 독립전원과 종속전압원이 포함된 다음의 회로에서 저항 $20[\Omega]$ 의 전압 $V_a[V]$ 는?

- \bigcirc 20
- ③ 20
- 40
- 문 6. 다음 자기회로에 대한 설명으로 옳지 않은 것은? (단, 손실이 없는 이상적인 회로이다)

- ① b_1 과 a_2 를 연결한 합성 인덕턴스는 b_1 과 b_2 를 연결한 합성 인덕턴스보다 크다.
- ② 한 코일의 유도기전력은 상호 인덕턴스와 다른 코일의 전류 변화량에 비례한다.
- ③ 권선비가 $N_1: N_2 = 2:1$ 일 때, 자기 인덕턴스 L_1 은 자기 인덕턴스 L_2 의 2배이다.
- ④ 교류 전압을 변성할 수 있고, 변압기 등에 응용될 수 있다.
- 문 7. 전류 $i(t) = t^2 + 2t[A]$ 가 1[H] 인덕터에 흐르고 있다. t = 1일 때, 인덕터의 순시전력 [W]은?
 - ① 12
 - 2 16
 - 3 20
 - ④ 24
- 문 8. 다음 회로에서 $40[\mu F]$ 커패시터 양단의 전압 $V_{3}[V]$ 는?

- 1) 2
- 2 4
- 3 6
- 4 8

전기이론

Ů책형

2 쪽

문 9. 그림과 같은 주기적인 전압 파형에 포함되지 않은 고조파의 주파수[Hz]는?

- ① 60
- ② 100
- ③ 120
- ④ 140

문 10. 다음 Y-Y 결선 평형 3상 회로에서 부하 한 상에 공급되는 평균전력[W]은? (단, 극좌표의 크기는 실횻값이다)

- ① 110
- ② 220
- ③ 330
- 440

문 11. R-L-C 직렬회로에 100 [V]의 교류 전원을 인가할 경우, 이 회로에 가장 큰 전류가 흐를 때의 교류 전원 주파수 f[Hz]와 전류 I[A]는? (단, R=50 [Ω], L=100 [mH], C=1,000 [μF]이다)

	<u>f[Hz]</u>	<u>I[A]</u>
1	$\frac{50}{\pi}$	2
2	$\frac{50}{\pi}$	4
3	$\frac{100}{\pi}$	2

문 12. 1대의 용량이 100 [kVA]인 단상 변압기 3대를 평형 3상 △결선으로 운전 중 변압기 1대에 장애가 발생하여 2대의 변압기를 *V*결선으로 이용할 때, 전체 출력용량 [kVA]은?

4

4

- $3 \frac{220}{\sqrt{3}}$
- $4 \frac{300}{\sqrt{3}}$

문 13. 자속밀도 $4[Wb/m^2]$ 의 평등자장 안에서 자속과 30° 기울어진 길이 0.5[m]의 도체에 전류 2[A]를 흘릴 때, 도체에 작용하는 힘 F[N]는?

- 1
- ② 2
- 3 3
- 4

문 14. 다음 R-L 직렬회로에서 t=0에서 스위치 S를 닫았다. t=3에서 전류의 크기가 $i(3)=4(1-e^{-1})$ [A]일 때, 전압 E[V]와 인덕턴스 L[H]은?

1	8	6
2	8	12
(3)	16	6

L[H]

12

E[V]

16

(4)

문 15. 다음 회로의 역률이 0.8일 때, 전압 $V_s[V]$ 와 임피던스 $X[\Omega]$ 는? (단, 전체 부하는 유도성 부하이다)

	$V_s[V]$	$X[\Omega]$
1	70	2
2	70	4
3	80	2
(4)	80	Δ

3 쪽

- 문 16. R-L 직렬회로에 직류 전압 100 [V]를 인가하면 정상상태 전류는 10 [A]이고, R-C 직렬회로에 직류 전압 100 [V]를 인가하면 초기전류는 10 [A]이다. 이 두 회로의 설명으로 옳지 않은 것은? (단, C=100 [µF], L=1 [mH]이고, 각 회로에 직류 전압을 인가하기 전 초깃값은 0이다)
 - ① R-L 직렬회로의 시정수는 L이 10배 증가하면 10배 증가한다.
 - ② R-L 직렬회로의 시정수가 R-C 직렬회로의 시정수보다 10배 크다.
 - ③ R-C 직렬회로의 시정수는 C가 10배 증가하면 10배 증가한다.
 - ④ *R-L* 직렬회로의 시정수는 0.1 [msec]다.
- 문 17. 다음 회로에서 전원 $V_s[V]$ 가 R-L-C로 구성된 부하에 인가되었을 때, 전체 부하의 합성 임피던스 $Z[\Omega]$ 및 전압 V_s 와 전류 I의 위상차 θ [이는?

문 18. 다음 직류회로에서 4[Ω] 저항의 소비전력[W]은?

- ① 4
- ② 8
- 3 12
- 4 16
- 문 19. 다음 직·병렬 회로에서 전류 I[A]의 위상이 전압 $V_s[V]$ 의 위상과 같을 때, 저항 $R[\Omega]$ 은?

- ① 100
- 2 200
- 3 300
- 400

문 20. 그림과 같이 저항 $R_1=R_2=10\,[\Omega]$, 자기 인덕턴스 $L_1=10\,[\mathrm{H}]$, $L_2=100\,[\mathrm{H}]$, 상호 인덕턴스 $M=10\,[\mathrm{H}]$ 로 구성된 회로의 임피던스 $Z_{ab}\,[\Omega]$ 는? (단, 전원 V_s 의 각속도는 $\omega=1\,[\mathrm{rad/s}]$ 이고 $Z_L=10-j100\,[\Omega]$ 이다)

- ① 10 j15
- ② 10 + j15
- ③ 15 j10
- 4) 15 + j10