(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Burcau

(43) International Publication Date 21 March 2002 (21.03.2002)

PCT

(10) International Publication Number WO 02/22809 A2

(51) International Patent Classification⁷: C12N 15/00

(21) International Application Number: PCT/US01/29229

(22) International Filing Date:

17 September 2001 (17.09.2001)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/233,035	15 September 2000 (15.09.2000)	US
60/263,657	23 January 2001 (23.01.2001)	US
60/291,726	17 May 2001 (17.05.2001)	US
60/300,210	. 22 June 2001 (22.06.2001)	US

(71) Applicant (for all designated States except US): COLEY PHARMACEUTICAL GMBH [DE/DE]; Elisabeth-Selbert-Strasse 9, 40764 Langenfeld (DE).

(72) Inventors; and

(75) Inventors/Applicants (for US only): BAUER, Stefan [DE/DE]; Waisenhausstrasse 13, 80637 Munchen (DE). LIPFORD, Grayson [US/US]; Innere Wiener Strasse 7A, 81667 Munchen (DE). WAGNER, Hermann [DE/DE]; Kaagangerstrasse 36, 82279 Eching (DE).

(74) Agent: STEELE, Alan, W.; Wolf, Greenfield & Sacks, P.C., 600 Atlantic Avenue, Boston, MA 02210 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: PROCESS FOR HIGH THROUGHPUT SCREENING OF CpG-BASED IMMUNO-AGONIST/ANTAGONIST

(57) Abstract: The invention pertains to murine TLR9 and related TLR9s which include murine-specific amino acids, as well as nucleic acids which encode those polypeptides. The present invention also includes fragments and biologically functional variants of the murine TLR9. The invention further relates to methods of using such murine and non-murine TLR9 nucleic acids and polypeptides, especially in methods for screening for agonists and antagonists of immunostimulatory CpG nucleic acids. Also included are murine TLR9 inhibitors which inhibit murine TLR9 activity by inhibiting the expression or function of murine TLR9. In a further aspect the present invention pertains to murine TLR7 and murine TLR8, as well as related TLR7 and TLR8 molecules which include murine-specific amino acids, as well as nucleic acids which encode those polypeptides. The present invention also includes fragments and biologically functional variants of the murine TLR7 and TLR8. Methods are included for screening for ligands of TLR7 and TLR8, as well as for inhibitors and agonists and antagonists of signaling mediated by TLR7 and TLR8.

-1-

PROCESS FOR HIGH THROUGHPUT SCREENING OF CpG-BASED **IMMUNO-AGONIST/ANTAGONIST**

Related Applications

This invention claims benefit of U.S. Provisional Application 60/233,035, filed September 15, 2000; U.S. Provisional Application 60/263,657, filed January 23, 2001; U.S. Provisional Application 60/291,726, filed May 17, 2001; and U.S. Provisional Application 60/300,210, filed June 22, 2001.

5

10

15

20

25

30

Field of the Invention

The invention pertains to signal transduction by immunostimulatory nucleic acids.

Background of the Invention

Bacterial DNA is a potent immunomodulatory substance. Yamamoto S et al., Microbiol Immunol 36:983-997 (1992). It has been hypothesized to be a pathogen-derived ligand recognized by an unidentified pathogen recognition receptor that initiates a host of innate and adaptive immune responses. Wagner H, Adv Immunol 73:329-368 (1999). CpG motif-containing oligodeoxynucleotides (CpG ODN) can mimic the biology of bacterial DNA. Krieg AM et al., Nature 374:546-549 (1995). CpG ODN and DNA vectors have recently been shown to be of clinical value due to immunostimulatory, hematopoietic and adjuvant qualities.

The adaptive immune system appeared approximately 450 million years ago when a transposon that carried the forerunners of the recombinase activating genes, RAG-1 and RAG-2, was inserted into the germ line of early jawed vertebrates. Agarwal A. et al., Nature 394:744 (1998). The ability to mount an adaptive immune response allowed organisms to remember the pathogens that they had already encountered, and natural selection made the adaptive immune response a virtually universal characteristic of vertebrates. However, this did not lead to discarding the previous form of host defense, the innate immune system. Indeed, this earlier form of host defense has been coopted to serve a second function, stimulating and orienting the primary adaptive immune response by controlling the expression of costimulatory molecules.

WO 02/22809

H

10

15

20

25

30

-2-

PCT/US01/29229

It had been surmised for a decade that cells of the innate immune system bear receptors for conserved molecular patterns associated with microbial pathogens. According to this model, when the protein antigens derived from pathogens are processed and presented as peptides that serve as the stimulus for specific T cell receptors, pattern recognition receptors (PRRs) on the antigen-presenting cells also induce the synthesis of costimulatory molecules, cytokines, and chemokines. These activated antigen-presenting cells serve to attract and activate the antigen-specific T cells that are essential to all adaptive immune responses. Janeway CAJ, *Cold Spring Harbor Symp Quant Biol* 54:1 (1989); Fearon DT et al., *Science* 272:50 (1996); and Medzhitov R et al., *Cell* 91:295 (1997). It was known that the substances that can induce costimulation include bacterial lipopolysaccharide (LPS), synthetic double-stranded RNA, glycans, and mannans. Furthermore, experimental evidence indicated that the processed antigen ligand for the T cell had to be on the same cell as the costimulatory molecule. This is obviously of crucial importance for maintaining self-tolerance; bystander presentation of costimulatory molecules would mean that tolerance would be lost whenever an infection occurred.

To validate this model, it was necessary to identify receptors for microbial patterns that, upon binding pathogen ligands, initiate signaling cascades leading to the production of costimulatory molecules and cytokines. Molecules such as mannose binding protein (MBP) do not qualify for this role, because they activate proteolytic cascades or promote phagocytosis but are not known to induce costimulation. The break-through came with the identification of a human homologue of *Drosophila* Toll initially cloned as a cDNA and later named hTLR4 (for human Toll-like receptor). Medzhitov R et al., *Nature* 388:394 (1997); Rock FL et al., *Proc Natl Acad Sci USA* 95:588 (1998); Chaudhary PM et al., *Blood* 91:4020-4027 (1998).

Toll-like receptors (TLRs) are a family of germline-encoded transmembrane proteins that facilitate pathogen recognition and activation of the innate immune system. Hoffmann JA et al., *Science* 284, 1313-1318 (1999); Rock FL et al., *Proc Natl Acad Sci USA* 95:588-593 (1998). TLRs engage conserved pathogen-derived ligands and subsequently activate the TLR/IL-1R signal transduction pathway to induce a variety of effector genes. Medzhitov R et al., *Mol Cell* 2:253-258 (1998); Muzio M et al., *J Exp Med* 187:2097-2101 (1998).

So far, ten different mammalian TLRs have been described. Rock FL et al., Proc Natl

Acad Sci USA 95:588-593 (1998); Chaudhary PM et al., Blood 91:4020-4027 (1998); Takeuchi O et al., Gene 231:59-65 (1999); Aderem A. et al., Nature 406:782-7 (2000). So far, genetic data suggest that the TLRs have unique functions and are not redundant. Ligands for and the function of most of these TLRs, aside from TLR2 and TLR4, remain to be elucidated.

5

10

15

20

25

30

It turns out that an LPS-binding and signaling receptor complex is assembled when hTLR4 interacts with LPS bound to CD14, a peripheral membrane protein held to the cell surface by a glycosyl-phosphoinositol tail. The presence of LPS binding protein (LBP) further increases signaling. The hTLR4 protein has a leucine-rich repeat sequence in its extracellular domain that interacts with CD14 complexed with LPS. TLR4 then transduces the LPS signal across the membrane because destructive mutation of this gene lead to an LPS-unresponsive state in mice, which are also deficient in the clearance of Gram-negative bacteria. Poltorak A et al., *Science* 282:2085 (1998); Qureshi ST et al., *J Exp Med* 189:615-625 (1999); Eden CS et al., *J Immunol* 140:180 (1988). It has since become apparent that humans, like flies, have numerous Toll-like receptors (TLRs).

TLR4 and other TLRs have a cytoplasmic Toll/IL-1 receptor (TIR) homology domain. This domain communicates with a similar domain on an adapter protein (MyD88) that interacts with TLR4 by means of a like:like interaction of TIR domains. The next interaction is between the adapter and a kinase, through their respective "death domains." The kinase in turn interacts with tumor necrosis factor (TNF) receptor-associated factor-6 (TRAF6). Medzhitov R et al., *Mol Cell* 2:253 (1998); Kopp EB et al., *Curr Opin Immunol* 11:15 (1999). After TRAF6, two sequential kinase activation steps lead to phosphorylation of the inhibitory protein IκB and its dissociation from NF-κB. The first kinase is a mitogen-activated kinase kinase (MAPKKK) known as NIK, for NF-κB-inducing kinase. The target of this kinase is another kinase made up of two chains, called IκB kinase α (IKKα) and IκB kinase β (IKKβ), that together form a heterodimer of IKKα:IKKβ, which phosphorylates IκB. NF-κB translocates to the nucleus to activate genes with κB binding sites in their promoters and enhancers such as the genes encoding interleukin-1β (IL-1β), IL-6, IL-8, the p40 protein of IL-12, and the costimulatory molecules CD80 and CD86.

The types of cells that respond to CpG DNA - B cells, dendritic cells (DCs) and macrophages - are also stimulated by other pathogen-derived pattern-recognition factors, such

3

10

15

20

25

30

- 4 -

as LPS. In general, the PRRs of the innate immune system are situated on the cell surface, where they are probably best able to detect microbes. Although cell-surface proteins that bind DNA are well described, and have been proposed to mediate immune activation by CpG motif (Liang H et al., J Clin Invest 98:1119-1129 (1998)), this binding is sequenceindependent and does not bring about cell activation. Krieg AM et al., Nature 374:546-549 (1995); Yamamoto T et al., Microbiol Immunol 38:831-836 (1994); Häcker H et al., EMBO J 17:6230-6240 (1998). Because CpG ODNs that have been immobilized to prevent cell uptake are nonstimulatory (Krieg AM et al., Nature 374:546-549 (1995); Manzel L et al., Antisense Nucleic Acid Drug Dev 9:459-464 (1999)), it appears that CpG ODN probably work by binding to an intracellular receptor. In support of this hypothesis, drugs such as chloroquine, which interfere with the endosomal acidification/processing of ODNs, specifically block the immune stimulatory effects of CpG DNA. Häcker H et al., EMBO J 17:6230-6240 (1998); Macfarlane DE et al., *J Immunol* 160:1122-1131 (1998); Yi AK et al., J Immunol 160:4755-4761 (1998). It has been proposed that an endosomal step is required for the CpG-induced signal transduction pathways. Häcker H et al., EMBO J 17:6230-6240 (1998); Yi AK et al., *J Immunol* 160:4755-4761 (1998). How the information contained in unmethylated CpG-motifs of bacterial DNA trigger changes in gene expression has not previously been discovered.

Since the receptor for bacterial DNA has been unknown, development of screening for optimal CpG motifs through direct binding analysis has been limited. An additional complication appears to be species-specific selectivity for CpG sequence, i.e., an optimal sequence for one species may not be optimal for another.

Summary of the Invention

Nucleic acids encoding three Toll-like receptors, Toll-like receptor 7 (TLR7), TLR8, and TLR9 of the mouse have now been identified, isolated, cloned and sequenced by the inventors. The invention in general provides isolated nucleic acid molecules encoding TLRs and isolated fragments of those nucleic acid molecules; isolated TLR polypeptides and isolated fragments of those polypeptides; expression vectors containing the foregoing nucleic acid molecules; host cells having the foregoing expression vectors; fusion proteins including the TLR polypeptides and fragments thereof; and screening methods useful for identifying,

•...

WO 02/22809

5

10

15

20

25

30

- 5 -

PCT/US01/29229

comparing, and optimizing agents which interact with these TLRs, particularly agents that alter the expression of and signaling associated with these TLR molecules. In preferred embodiments the screening methods are high throughput screening methods.

The invention in some aspects arises from the surprising discovery that TLR9 is involved in immunostimulatory nucleic acid (ISNA)-induced immunostimulation. The invention also stems in part from the surprising discovery that TLR9 transduces immune activating signals in response to ISNA in a manner that is both sequence-specific and species-specific.

In a first aspect the invention provides isolated nucleic acid molecules which encode full-length murine TLR9. According to this aspect of the invention, isolated nucleic acid molecules are provided which are selected from the group consisting of (a) nucleic acid molecules which hybridize under stringent conditions to a nucleic acid molecule having a nucleotide sequence set forth as SEQ ID NO:1, and which code for a murine TLR9 having an amino acid sequence set forth as SEQ ID NO:3; (b) nucleic acid molecules that differ from the nucleic acid molecules of (a) in codon sequence due to degeneracy of the genetic code; and (c) complements of (a) or (b). In a certain embodiment, the isolated nucleic acid molecule codes for SEQ ID NO:3, where SEQ ID NO:3 represents the deduced amino acid sequence of full-length murine TLR9. In some embodiments the isolated nucleic acid molecule comprises the nucleotide sequence of SEQ ID NO:1 or SEQ ID NO:2, where these correspond to full-length cDNA and the open reading frame for murine TLR9, respectively.

The term "stringent conditions" as used herein refers to combined conditions based on parameters including salt, temperature, organic solvents, and optionally other factors with which the paractioner skilled in the art is familiar. Nucleic acid hybridization parameters may be found in references which compile such methods, e.g., *Molecular Cloning: A Laboratory Manual*, J. Sambrook, et al., eds., Second Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1989, or *Current Protocols in Molecular Biology*, F.M. Ausubel, et al., eds., John Wiley & Sons, Inc., New York. More specifically, stringent conditions, as used herein, refers, for example, to hybridization at 65°C in hybridization buffer (3.5 x SSC, 0.02% Ficoll, 0.02% polyvinyl pyrrolidone, 0.02% bovine serum albumin, 2.5mM NaH₂PO₄ (pH7), 0.5% SDS, 2mM EDTA). SSC is 0.15M sodium chloride/0.15M sodium citrate, pH7; SDS is sodium dodecyl sulfate; and EDTA is ethylenediaminetetraacetic

- 6 -

acid. After hybridization, the membrane upon which the DNA is transferred is washed with 2 x SSC at room temperature and then with 0.1 - 0.5 x SSC/0.1 x SDS at temperatures up to 68°C. There are other conditions, reagents, and so forth which can be used, which result in a similar degree of stringency. The skilled artisan will be familiar with such conditions, and thus they are not given here. It will be understood, however, that the skilled artisan will be able to manipulate the conditions in a manner to permit the clear identification of alleles of murine TLR nucleic acids of the invention. The skilled artisan also is familiar with the methodology for screening cells and libraries for expression of such molecules which then are routinely isolated, followed by isolation of the pertinent nucleic acid molecule and sequencing.

10

15

20

25

30

The invention in a second aspect provides isolated TLR9 polypeptides or fragments thereof. The isolated TLR9 polypeptides or fragments thereof include at least one amino acid of a murine TLR9 selected from the group consisting of amino acids 2, 3, 4, 6, 7, 18, 19, 22, 38, 44, 55, 58, 61, 62, 63, 65, 67, 71, 80, 84, 87, 88, 91, 101, 106, 109, 117, 122, 123, 134, 136, 140, 143, 146, 147, 157, 160, 161, 167, 168, 171, 185, 186, 188, 189, 191, 199, 213, 217, 220, 227, 231, 236, 245, 266, 269, 270, 271, 272, 273, 274, 278, 281, 285, 297, 298, 301, 305, 308, 311, 322, 323, 325, 326, 328, 332, 335, 346, 348, 353, 355, 358, 361, 362, 365, 367, 370, 372, 380, 381, 382, 386, 389, 392, 394, 397, 409, 412, 413, 415, 416, 419, 430, 432, 434, 435, 438, 439, 443, 444, 446, 447, 448, 450, 451, 452, 454, 455, 459, 460, 463, 465, 466, 468, 469, 470, 472, 473, 474, 475, 478, 488, 489, 494, 495, 498, 503, 508, 510, 523, 531, 539, 540, 543, 547, 549, 561, 563, 565, 576, 577, 579, 580, 587, 590, 591, 594, 595, 597, 599, 601, 603, 610, 611, 613, 616, 619, 632, 633, 640, 643, 645, 648, 650, 657, 658, 660, 667, 670, 672, 675, 679, 689, 697, 700, 703, 705, 706, 711, 715, 716, 718, 720, 723, 724, 726, 729, 731, 735, 737, 743, 749, 750, 751, 752, 754, 755, 759, 760, 772, 774, 780, 781, 786, 787, 788, 800, 814, 821, 829, 831, 832, 835, 844, 857, 858, 859, 862, 864, 865, 866, 879, 893, 894, 898, 902, 910, 917, and 927 of SEQ ID NO:3, wherein the TLR9 polypeptide or fragment thereof has an amino acid sequence which is identical to a human TLR9 polypeptide or fragment thereof except for the at least one amino acid of murine TLR9. The TLR9 polypeptide or fragment thereof in certain embodiments according to this aspect of the invention further includes at least one amino acid of murine TLR9 selected from the group consisting of amino acids 949, 972, 975, 976, 994, 997, 1000, 1003, 1004, 1010,

-7-

1011, 1018, 1023, and 1027 of SEQ ID NO:3. Thus specifically excluded from this aspect of the invention are TLR9 fragments restricted to the C-terminal 95 amino acids and fragments thereof.

5

10

15

20

25

30

In certain embodiments the TLR9 polypeptide and fragments thereof according to this aspect of the invention exclude those TLR9 polypeptides and fragments thereof which differ from human TLR9 and fragments thereof only by one or more conservative amino acid substitutions at particular sites noted above. As is well known in the art, a "conservative amino acid substitution" refers to an amino acid substitution which generally does not alter the relative charge or size characteristics of the polypeptide in which the amino acid substitution is made. Conservative substitutions of amino acids typically include substitutions made amongst amino acids within the following groups: methionine (M), isoleucine (I), leucine (L), valine (V); phenylalanine (F), tyrosine (Y), tryptophan (W); lysine (K), arginine (R), histidine (H); alanine (A), glycine (G); serine (S), threonine (T); glutamine (Q), asparagine (N); and glutamic acid (E), aspartic acid (D).

According to this and other aspects of the invention, with reference to TLR "polypeptides and fragments thereof," "fragments thereof" refers to polypeptide fragments having stretches of contiguous amino acid residues that are at least about 8 amino acids long. Generally the fragments are at least about 10 amino acids long; more generally at least 12 amino acids long; often at least about 14 amino acids long; more often at least about 16 amino acids long; typically at least 18 amino acids long; more typically at least 20 amino acids long; usually at least 22 amino acids long; and more usually at least 24 amino acids long. Certain preferred embodiments include larger fragments that are, for example, at least about 30 amino acids long, at least about 40 amino acids long, at least about 50 amino acids long, at least about 100 amino acids long, at least about 200 amino acids long, and so on, up to and including fragments that are a single amino acid shorter than full-length TLR polypeptide.

In certain embodiments, the human TLR9 has an amino acid sequence set forth as SEQ ID NO:6.

In preferred embodiments, the isolated TLR9 polypeptides or fragments thereof include an amino acid sequence selected from the group consisting of SEQ ID NO:3 and fragments of SEQ ID NO:3. In some embodiments according to this aspect of the invention,

-8-

the isolated TLR9 polypeptides or fragments thereof include combinations of the foregoing human and murine TLR9 polypeptides.

5

10

15

20

25

30

In certain preferred embodiments the isolated TLR9 polypeptide or fragment thereof is an extracytoplasmic domain (also referred to herein as extracellular domain) of TLR9, or a portion thereof. As described in greater detail further herein, TLR7, TLR8, and TLR9 have certain structural and functional domains. Structural domains of these TLRs include but are not limited to an extracytoplasmic domain, a transmembrane domain, and a cytoplasmic domain. The extracytoplasmic domain extends into the lumen of endosomal/lysosomal vesicles. The cytoplasmic domain includes a Toll/interleukin-1 receptor-like domain (also referred to as Toll/IL-1R domain, TIR homology domain, or TIR domain). In murine TLR9 the extracytoplasmic, transmembrane, and cytoplasmic domains correspond to amino acids 1 to about 819, about 820 to about 837, and about 838 to about 1032, respectively.

As mentioned above, it has been discovered according to the invention that TLR9 is involved in immune activation induced by certain nucleic acid molecules referred to in the art as immunostimulatory nucleic acids (ISNAs), including CpG nucleic acids. It is believed by the inventors that binding of ISNA to TLR9 leads to signal transduction involving the TIR domain of TLR9. Thus in certain embodiments according to this aspect of the invention, the isolated TLR9 polypeptide or fragment thereof selectively binds to an ISNA, including an ISNA that is a CpG nucleic acid.

Also included according to this aspect of the invention are isolated TLR9 polypeptides or fragments thereof which are portions of the extracytoplasmic domain believed by the inventors to interact with immunostimulatory nucleic acids such as CpG nucleic acids. In certain embodiments such portions include an MBD motif set forth as any one of SEQ ID NOs: 126, 127, 210, and 211. In certain embodiments portions of the extracytoplasmic domain believed by the inventors to interact with immunostimulatory nucleic acids include a CXXC motif set forth as any one of SEQ ID NOs: 196, 197, and 198.

According to a third aspect of the invention, isolated nucleic acid molecules are provided which encode the foregoing isolated TLR9 polypeptides or fragments thereof. The isolated nucleic acid molecules according to this aspect of the invention specifically exclude certain expressed sequence tags (ESTs) identified by the following GenBank accession numbers: AA162495, AA197442, AA273731, AA794083, AA915125, AA968074,

AI428529, AI451215, AI463056, AI893951, AV142833, AV326033, AV353853, AW048117, AW048548, AW215685, AW549817, BB179985, BB215203, BB283380, BB285606, BB312895, BB497196, BB622397, BF016670, BF150116, BF161011, BF300296, BF385702, BF539367, BF784415, BG863184, BG922959, BG967012, BG974917, BI105291, BI153921, BI651868, BI653892, and W76964.

In a fouth aspect the invention provides isolated nucleic acid molecules which encode full-length murine TLR7. According to this aspect of the invention, isolated nucleic acid molecules are provided which are selected from the group consisting of (a) nucleic acid molecules which hybridize under stringent conditions to a nucleic acid molecule having a nucleotide sequence set forth as SEQ ID NO:173, and which code for a murine TLR7 having an amino acid sequence set forth as SEQ ID NO:175; (b) nucleic acid molecules that differ from the nucleic acid molecules of (a) in codon sequence due to degeneracy of the genetic code; and (c) complements of (a) or (b). In a certain embodiment, the isolated nucleic acid molecule codes for SEQ ID NO:175, where SEQ ID NO:175 represents the deduced amino acid sequence of full-length murine TLR7. In some embodiments the isolated nucleic acid molecule comprises the nucleotide sequence of SEQ ID NO:173 or SEQ ID NO:174, where these correspond to full-length cDNA and the open reading frame for murine TLR7, respectively.

10

15

The invention in a fifth aspect provides isolated TLR7 polypeptides or fragments thereof. The isolated TLR7 polypeptides or fragments thereof include at least one amino acid 20 of a murine TLR7 selected from the group consisting of amino acids 4, 8, 15, 16, 18, 21, 23, 24, 25, 27, 37, 39, 40, 41, 42, 44, 45, 61, 79, 83, 86, 89, 92, 96, 103, 109, 111, 113, 119, 121, 127, 128, 131, 145, 148, 151, 164, 172, 176, 190, 202, 203, 204, 205, 222, 225, 226, 228, 236, 238, 243, 250, 253, 266, 268, 271, 274, 282, 283, 287, 288, 308, 313, 314, 315, 325, 328, 331, 332, 341, 343, 344, 347, 351, 357, 360, 361, 362, 363, 364, 365, 366, 370, 371, 25 377, 378, 387, 388, 389, 392, 397, 398, 413, 415, 416, 419, 421, 422, 425, 437, 438, 440, 446, 449, 453, 454, 455, 456, 462, 470, 482, 486, 487, 488, 490, 491, 493, 494, 503, 505, 509, 511, 529, 531, 539, 540, 543, 559, 567, 568, 574, 583, 595, 597, 598, 600, 611, 613, 620, 624, 638, 645, 646, 651, 652, 655, 660, 664, 665, 668, 669, 672, 692, 694, 695, 698, 701, 704, 714, 720, 724, 727, 728, 733, 738, 745, 748, 755, 762, 777, 780, 789, 803, 846, 30 850, 851, 860, 864, 868, 873, 875, 884, 886, 888, 889, 890, 902, 903, 911, 960, 967, 970,

- 10 -

980, 996, 1010, 1018, 1035, and 1045 of SEQ ID NO:175, wherein the TLR7 polypeptide or fragment thereof has an amino acid sequence which is identical to a human TLR7 polypeptide or fragment thereof except for the at least one amino acid of murine TLR7.

In certain embodiments the TLR7 polypeptide and fragments thereof according to this aspect of the invention exclude those TLR7 polypeptides and fragments thereof which differ from human TLR7 and fragments thereof only by one or more conservative amino acid substitutions at particular sites noted above.

5

10

15

20

25

30

In certain embodiments, the human TLR7 has an amino acid sequence set forth as SEQ ID NO:170.

In preferred embodiments, the isolated TLR7 polypeptides or fragments thereof include an amino acid sequence selected from the group consisting of SEQ ID NO:175 and fragments of SEQ ID NO:175. In some embodiments according to this aspect of the invention, the isolated TLR7 polypeptides or fragments thereof include combinations of the foregoing human and murine TLR7 polypeptides.

In certain preferred embodiments the isolated TLR7 polypeptide or fragment thereof is an extracytoplasmic domain of TLR7, or a portion thereof. In certain embodiments according to this aspect of the invention, the isolated TLR7 polypeptide or fragment thereof selectively binds to an ISNA, including an ISNA that is a CpG nucleic acid. Also included according to this aspect of the invention are isolated TLR7 polypeptides or fragments thereof which are portions of the extracytoplasmic domain believed by the inventors to interact with immunostimulatory nucleic acids such as CpG nucleic acids. In certain embodiments such portions include an MBD motif set forth as any one of SEQ ID NOs: 203, 204, 212, and 213. In certain embodiments portions of the extracytoplasmic domain believed by the inventors to interact with immunostimulatory nucleic acids include a CXXC motif set forth as any one of SEQ ID NOs: 196, 199, and 200.

According to a sixth aspect of the invention, isolated nucleic acid molecules are provided which encode the foregoing isolated TLR7 polypeptides or fragments thereof. The isolated nucleic acid molecules according to this aspect of the invention specifically exclude certain ESTs identified by the following GenBank accession numbers: AA176010, AA210352, AA241310, AA266000, AA266744, AA276879, AA288480, AA871870, AI119722, AI449297, AI466859, AI604175, AV322307, BB033376, BB116163, BB210788,

- 11 -

BB464985, BB466708, BB636153, BF101884, BF124798, BF143871, BG067922, BG080980, BG082140, BG871070, BG964747, BG976560, BI150306, BI411471, and C87987.

5

10

15

In a seventh aspect the invention provides isolated nucleic acid molecules which encode full-length murine TLR8. According to this aspect of the invention, isolated nucleic acid molecules are provided which are selected from the group consisting of (a) nucleic acid molecules which hybridize under stringent conditions to a nucleic acid molecule having a nucleotide sequence set forth as SEQ ID NO:190, and which code for a murine TLR8 having an amino acid sequence set forth as SEQ ID NO:192; (b) nucleic acid molecules that differ from the nucleic acid molecules of (a) in codon sequence due to degeneracy of the genetic code; and (c) complements of (a) or (b). In a certain embodiment, the isolated nucleic acid molecule codes for SEQ ID NO:192, where SEQ ID NO:192 represents the deduced amino acid sequence of full-length murine TLR8. In some embodiments the isolated nucleic acid molecule comprises the nucleotide sequence of SEQ ID NO:190 or SEQ ID NO:191, where these correspond to full-length cDNA and the open reading frame for murine TLR8, respectively.

The invention in an eighth aspect provides isolated TLR8 polypeptides or fragments thereof. The isolated TLR8 polypeptides or fragments thereof include at least one amino acid of a murine TLR8 selected from the group consisting of amino acids 5, 6, 9, 10, 14, 15, 18, 21, 22, 23, 24, 25, 26, 27, 28, 30, 39, 40, 41, 43, 44, 50, 51, 53, 55, 61, 67, 68, 74, 80, 85, 93, 20 98, 99, 100, 104, 105, 106, 107, 110, 114, 117, 119, 121, 124, 125, 134, 135, 138, 145, 155, 156, 157, 160, 161, 162, 163, 164, 166, 169, 170, 174, 180, 182, 183, 186, 187, 191, 193, 194, 196, 197, 199, 200, 207, 209, 210, 227, 228, 230, 231, 233, 234, 241, 256, 263, 266, 267, 268, 269, 272, 274, 275, 276, 280, 285, 296, 298, 299, 300, 303, 305, 306, 307, 310, 312, 320, 330, 333, 335, 343, 344, 345, 346, 347, 349, 351, 356, 362, 365, 366, 375, 378, 25 379, 380, 381, 383, 384, 386, 387, 392, 402, 403, 408, 414, 416, 417, 422, 426, 427, 428, 429, 430, 431, 433, 437, 438, 439, 440, 441, 444, 445, 449, 456, 461, 463, 471, 483, 486, 489, 490, 494, 495, 496, 505, 507, 509, 512, 513, 519, 520, 523, 537, 538, 539, 541, 542, 543, 545, 554, 556, 560, 567, 569, 574, 575, 578, 586, 592, 593, 594, 595, 597, 599, 602, 613, 617, 618, 620, 621, 623, 628, 630, 633, 639, 641, 643, 644, 648, 655, 658, 661, 663, 30 664, 666, 668, 677, 680, 682, 687, 688, 690, 692, 695, 696, 697, 700, 702, 703, 706, 714,

- 12 -

715, 726, 727, 728, 730, 736, 738, 739, 741, 746, 748, 751, 752, 754, 757, 764, 766, 772, 776, 778, 781, 784, 785, 788, 791, 795, 796, 801, 802, 806, 809, 817, 820, 821, 825, 828, 829, 831, 839, 852, 853, 855, 858, 863, 864, 900, 903, 911, 918, 934, 977, 997, 1003, 1008, 1010, 1022, 1023, 1024, 1026, and 1030 of SEQ ID NO:192, wherein the TLR8 polypeptide or fragment thereof has an amino acid sequence which is identical to a human TLR8 polypeptide or fragment thereof except for the at least one amino acid of murine TLR8.

5

10

20

25

30

In certain embodiments the TLR8 polypeptide and fragments thereof according to this aspect of the invention exclude those TLR8 polypeptides and fragments thereof which differ from human TLR8 and fragments thereof only by one or more conservative amino acid substitutions at particular sites noted above.

In certain embodiments, the human TLR8 has an amino acid sequence set forth as SEQ ID NO:184.

In preferred embodiments, the isolated TLR8 polypeptides or fragments thereof include an amino acid sequence selected from the group consisting of SEQ ID NO:192 and fragments of SEQ ID NO:192. In some embodiments according to this aspect of the invention, the isolated TLR8 polypeptides or fragments thereof include combinations of the foregoing human and murine TLR8 polypeptides.

In certain preferred embodiments the isolated TLR8 polypeptide or fragment thereof is an extracytoplasmic domain of TLR8, or a portion thereof. In certain embodiments according to this aspect of the invention, the isolated TLR8 polypeptide or fragment thereof selectively binds to an ISNA, including an ISNA that is a CpG nucleic acid. Also included according to this aspect of the invention are isolated TLR8 polypeptides or fragments thereof which are portions of the extracytoplasmic domain believed by the inventors to interact with immunostimulatory nucleic acids such as CpG nucleic acids. In certain embodiments such portions include an MBD motif set forth as any one of SEQ ID NOs: 205, 206, 214, and 215. In certain embodiments portions of the extracytoplasmic domain believed by the inventors to interact with immunostimulatory nucleic acids include a CXXC motif set forth as any one of SEQ ID NOs: 196, 201, and 202.

According to a ninth aspect of the invention, isolated nucleic acid molecules are provided which encode the foregoing isolated TLR8 polypeptides or fragments thereof. The isolated nucleic acid molecules according to this aspect of the invention specifically exclude

- 13 -

certain ESTs identified by the following GenBank accession numbers: AA116795, AA268605, AA920337, AI529457, AI849892, AV097766, AV117427, AV164719, AV169968, AW551677, BB143750, BB214171, BB243478, BB244318, BB254686, BB256660, BB258368, BB278984, BB291470, BB292008, BB364655, BB373674, BB428800, BB439876, BB444812, BB445724, BB465766, BB470182, BB535086, BB573907, BB573981, BB607650, BF135656, BF722808, BG299237, BG918020, BG919592, and W39977.

5

10

15

20

25

30

In a further aspect, the invention provides TLR expression vectors comprising the foregoing isolated nucleic acid molecules operably linked to a promoter. Thus in certain embodiments pertaining to TLR9, the expression vector includes an isolated nucleic acid molecule according to the first aspect or the third aspect of the invention, operably linked to a promoter. In other embodiments, relating to TLR7, the expression vector includes an isolated nucleic acid molecule according to the fourth aspect or the sixth aspect of the invention, operably linked to a promoter. In yet other embodiments, relating to TLR8, the expression vector includes an isolated nucleic acid molecule according to the seventh aspect or the ninth aspect of the invention, operably linked to a promoter.

The expression vectors according to this aspect of the invention are designed and constructed so that when they are introduced into a cell, under proper conditions they direct expression of the gene product encoded by the incorporated isolated nucleic acid molecule. For example, the promoter can be constitutively active or it can be inducible or repressible upon interaction with a suitable inducer or repressor compound.

According to another aspect, host cells are provided that include a TLR expression vector of the invention. While any suitable method can be used, an expression vector typically is introduced into a cell by transfection or transformation. The host cells transformed or transfected with the TLR expression vectors are in some embodiments cotransformed or co-transfected with another expression vector useful for the expression of another polypeptide. Alternatively, a host cell can be transformed or transfected with an expression vector capable of directing expression of a TLR polypeptide or fragment thereof of the invention and (i) at least one additional TLR polypeptide or fragment thereof, or (ii) at least one non-TLR polypeptide or fragment thereof. In certain preferred embodiments, the host cell includes separate expression vectors for any combination of TLR7, TLR8, and

- 14 -

TLR9. In some embodiments, a co-transformed or co-transfected expression vector may be useful for detection or regulation of TLR expression or TLR-related signaling. Specifically, in certain preferred embodiments the host cell includes an expression vector providing a reporter construct capable of interacting with a TIR domain.

5

10

15

20

25

30

In another aspect, the invention provides agents which selectively bind the isolated TLR polypeptides and fragments thereof of the invention. In certain embodiments the agent does not bind a human TLR polypeptide or fragment thereof, wherein the human TLR is selected from human TLR7, TLR8, and TLR9. In certain embodiments the agent is a polypeptide, preferably one selected from the group consisting of monoclonal antibodies, polyclonal antibodies, Fab antibody fragments, F(ab')₂ antibody fragments, Fv antibody fragments, antibody fragments including a CDR3 region, and fusion proteins and other polypeptides including any such antibodies or antibody fragments.

Also provided are agents which selectively bind the foregoing isolated nucleic acid molecules, preferably antisense nucleic acid molecules which selectively bind to any of the foregoing isolated nucleic acid molecules encoding a TLR polypeptide or fragment thereof. In some embodiments the agent is an isolated nucleic acid molecule which hybridizes under stringent conditions to an isolated nucleic acid molecule provided according to any of the first, third, fourth, fifth, sixth, and eighth aspects of the invention. In certain preferred embodiments the agent is an isolated nucleic acid molecule having a nucleotide sequence which is complementary to an isolated nucleic acid molecule provided according to any of the first, third, fourth, fifth, sixth, and eighth aspects of the invention.

In still other aspects of the invention, methods for inhibiting TLR expression and TLR signaling in a cell are provided. The methods include contacting the cell with an amount of an agent effective to inhibit TLR expression and TLR signaling in the cell, wherein the TLR is selected from the group consisting of TLR7, TLR8, and TLR9. In some embodiments the agent brought into contact with the cell is selected from the group consisting of monoclonal antibodies, polyclonal antibodies, Fab antibody fragments, F(ab')₂ antibody fragments, Fv antibody fragments, antibody fragments including a CDR3 region, and fusion proteins and other polypeptides that include any such antibodies or antibody fragments. In some embodiments the cell is contacted with an antisense nucleic acid specific for the TLR, in an amount effective to inhibit TLR expression in the cell. In some embodiments the cell is

- 15 -

contacted with an agent such as a cytokine or small molecule, in an amount effective to inhibit TLR expression in the cell.

In yet another aspect the invention provides a method for identifying nucleic acid molecules which interact with a TLR polypeptide or a fragment thereof. The method involves contacting a TLR polypeptide selected from the group consisting of TLR7, TLR8, TLR9, and nucleic acid-binding fragments thereof with a test nucleic acid molecule; and measuring an interaction of the test nucleic acid molecule with the TLR polypeptide or fragment thereof. Nucleic acid-binding fragments of TLRs preferably include the extracytoplasmic domain or subportions thereof, such as those which include at least an MBD motif, a CXXC motif, or both an MBD motif and a CXXC motif.

10

15

20

25

30

In this and other aspects of the invention involving methods of use of TLR polypeptides and fragments thereof, in some embodiments the TLR polypeptide or fragment thereof is TLR7. Likewise in this and other aspects of the invention involving methods of use of TLR polypeptides and fragments thereof, in some embodiments the TLR polypeptide or fragment thereof is TLR8. Also in this and other aspects of the invention involving methods of use of TLR polypeptides and fragments thereof, in some embodiments the TLR polypeptide or fragment thereof is TLR9.

In this and other aspects of the invention involving methods of use of TLR polypeptides and fragments thereof, in some embodiments the TLR polypeptide or fragment thereof is expressed in a cell. The cell expressing the TLR polypeptide or fragment thereof may naturally express the TLR polypeptide or fragment thereof, or it may be a host cell as provided by other aspects of the instant invention.

In this and other aspects of the invention involving methods of use of TLR polypeptides and fragments thereof, in some embodiments the TLR polypeptide or fragment thereof is an isolated TLR polypeptide or fragment thereof. In certain preferred embodiments the isolated TLR polypeptide or fragment thereof is immobilized on a solid support, for example a multiwell plate, a slide, a BIAcore chip, a bead, a column, and the like. The immobilization can be accomplished by any chemical or physical method suitable for the purpose of the assay to be performed according to the method of the invention.

In certain embodiments the TLR polypeptide or fragment thereof is fused with an Fc fragment of an antibody. The Fc fragment portion of such a fusion molecule may be useful,

- 16 -

for example, for attaching the TLR polypeptide or fragment thereof to a substrate, or for providing a target for detecting the presence of the TLR polypeptide or fragment thereof. The Fc fragment can be selected from any suitable vertebrate species and will typically, but not necessarily, be derived from an antibody belonging to the IgG class of antibodies. For example, the Fc can be a human or a murine Fcy. In certain embodiments the TLR polypeptide or fragment thereof is fused with an Fc fragment of an antibody with a specific cleavage site at or near the junction between the TLR polypeptide or fragment thereof and the Fc fragment. In one preferred embodiment the cleavage site is a thrombin protease recognition site. In a preferred embodiment the TLR polypeptide or fragment thereof fused with the Fc fragment includes a TLR extracytoplasmic domain.

5

10

15

20

25

30

In certain embodiments the interaction involving the TLR polyeptide or fragment thereof and the test nucleic acid molecule is binding between the TLR polypeptide or fragment thereof and the test nucleic acid molecule.

In certain embodiments according to this aspect of the invention, the measuring is accomplished by a method selected from the group consisting of enzyme-linked immunosorbent assay (ELISA), biomolecular interaction assay (BIA), electromobility shift assay (EMSA), radioimmunoassay (RIA), polyacrylamide gel electrophoresis (PAGE), and Western blotting.

In certain embodiments the measuring is accomplished by a method comprising measuring a response mediated by a TLR signal transduction pathway. For example, the response mediated by a TLR signal transduction pathway can be selected from the group consisting of induction of a gene under control of NF-κB promoter and secretion of a cytokine. In certain preferred embodiments the gene under control of NF-κB promoter is selected from the group consisting of IL-8, IL-12 p40, NF-κB-luc, IL-12 p40-luc, and TNF-luc. In certain preferred embodiments the secreted cytokine is selected from the group consisting of IL-8, TNF-α, and IL-12 p40.

In another embodiment the method according to this aspect of the invention can be used to determine if the test nucleic acid molecule is an immunostimulatory nucleic acid. The method involves the additional steps of comparing (a) the response mediated by a TLR signal transduction pathway as measured in the presence of the test nucleic acid molecule with (b) a response mediated by a TLR signal transduction pathway as measured in the absence of the

- 17 -

test nucleic acid molecule; and determining the test nucleic acid molecule is an immunostimulatory nucleic acid when (a) exceeds (b).

5

10

15

20

25

30

In yet another embodiment the method according to this aspect of the invention can be used to determine if the response to the test nucleic acid molecule is stronger or weaker than a response to a reference nucleic acid molecule. The method involves the additional steps of comparing the response to a reference response when the TLR polypeptide is independently contacted with a reference nucleic acid molecule; and determining if the response is stronger or weaker than the reference response. In this embodiment the test nucleic acid molecule and the reference nucleic acid molecule are not able to compete or interact. For example, the reference response can be a parallel control or a historical control.

In another embodiment the method involves the additional steps of comparing the response to a reference response when the TLR polypeptide is concurrently contacted with a reference nucleic acid molecule; and determining if the response is stronger or weaker than the reference response. In this embodiment the test nucleic acid molecule and the reference nucleic acid molecule are potentially able to compete or interact since they are both present, for example, in a single reaction.

In another aspect the invention provides a screening method for identifying an immunostimulatory nucleic acid. The method according to this aspect involves contacting a functional TLR selected from the group consisting of TLR7, TLR8, and TLR9 with a test nucleic acid molecule; detecting presence or absence of a response mediated by a TLR signal transduction pathway in the presence of the test nucleic acid molecule arising as a result of an interaction between the functional TLR and the test nucleic acid molecule; and determining the test nucleic acid molecule is an ISNA when the presence of a response mediated by the TLR signal transduction pathway is detected. A functional TLR refers to a TLR polypeptide or fragment thereof that can bind with a ligand and as a consequence of the binding engage at least one step or additional polypeptide in a TLR signal transduction pathway.

In one embodiment the method according to this aspect of the invention includes the further step of comparing (a) the response mediated by the TLR signal transduction pathway arising as a result of an interaction between the functional TLR and the test nucleic acid molecule with (b) a response arising as a result of an interaction between the functional TLR and a reference ISNA. In this and other screening assays of the instant invention, in preferred

- 18 -

embodiments the screening method is performed on a plurality of test nucleic acids. In certain preferred embodiments the response mediated by the TLR signal transduction pathway is measured quantitatively, and the response mediated by the TLR signal transduction pathway associated with each of the plurality of test nucleic acid molecules is compared with a response arising as a result of an interaction between the functional TLR and a reference ISNA.

5

10

15

20

25

30

In certain preferred embodiments a subset of the plurality of test nucleic acid molecules is selected based on the ability of the subset to produce a specific response mediated by the TLR signal transduction pathway. For example, the specific response can be induction of a specific cytokine or panel of cytokines, e.g., Th1 cytokines, or, alternatively, inhibition of a specific cytokine or panel of cytokines, e.g., Th2 cytokines. The specific response can be induction, or, alternatively, inhibition of a specific class or subclass of antibody or panel of classes or subclasses of antibodies, e.g., Th1-associated antibodies or Th2-associated antibodies. The specific response in some embodiments can be activation or inhibition of certain types of immune cells, e.g., B cells, dendritic cells (DCs), and natural killer (NK) cells. In some embodiments the specific response can be induction or inhibition of proliferation of certain types of immune cells, e.g., B cells, T cells, NK cells, dendritic cells, monocytes/macrophages. The subset of the plurality of test nucleic acids is therefore selected on the basis of the common association between the test nucleic acids of the subset and the particular type of response mediated by the TLR signal transduction pathway. The particular type of response mediated by the TLR signal transduction pathway is typically, but not necessarily, an immune cell response.

In certain embodiments the response mediated by a TLR signal transduction pathway is selected from the group consisting of induction of a gene under control of NF-κB promoter and secretion of a cytokine. In certain preferred embodiments the gene under control of NF-κB promoter is selected from the group consisting of IL-8, IL-12 p40, NF-κB-luc, IL-12 p40-luc, and TNF-luc. In certain preferred embodiments the cytokine is selected from the group consisting of IL-8, TNF-α, and IL-12 p40.

In certain preferred embodiments the reference ISNA is a CpG nucleic acid.

In certain preferred embodiments the test nucleic acid molecule is a CpG nucleic acid.

According to this and other aspects of the invention involving functional TLR in a

screening assay, in some embodiments the functional TLR is expressed in a cell. In some embodiments the functional TLR is naturally expressed by the cell. In certain preferred embodiments the cell is an isolated mammalian cell that naturally expresses the functional TLR. Whether the cell expresses the TLR naturally or the cell expresses the TLR because an expression vector having an isolated nucleic acid molecule encoding the TLR operatively linked to a promoter has been introduced into the cell, in some embodiments the cell further includes an expression vector comprising an isolated nucleic acid which encodes a reporter construct selected from the group consisting of IL-8, IL-12 p40, NF-κB-luc, IL-12 p40-luc, and TNF-luc, operatively linked to a promoter.

5

10

15

20

25

30

Also according to this and other aspects of the invention involving functional TLR in a screening assay, in certain embodiments the functional TLR is part of a cell-free system.

Also according to this and other aspects of the invention involving functional TLR in a screening assay, in certain embodiments the functional TLR is part of a complex with another TLR. In certain preferred embodiments the complex is a complex of TLR9 and TLR7. In certain preferred embodiments the complex is a complex of TLR9 and TLR8.

Also according to this and other aspects of the invention involving functional TLR in a screening assay, in certain embodiments the functional TLR is part of a complex with a non-TLR protein selected from the group consisting of MyD88, IRAK, TRAF6, IkB, NF-kB, and functional homologues and derivatives thereof.

Further according to this and and other aspects of the invention involving functional TLR in a screening assay, in certain embodiments the response mediated by a TLR signal transduction pathway is selected from the group consisting of induction of a gene under control of NF-kB promoter and secretion of a cytokine.

Also according to this and and other aspects of the invention involving functional TLR in a screening assay, in certain embodiments the gene under control of NF-kB promoter is selected from the group consisting of IL-8, IL-12 p40, NF-kB-luc, IL-12 p40-luc, and TNF-luc.

Also according to this and and other aspects of the invention involving functional TLR in a screening assay, in certain embodiments wherein the cytokine is selected from the group consisting of IL-8, TNF-α, and IL-12 p40.

In a further aspect, the invention provides a screening method for comparing TLR

- 20 -

signaling activity of a test compound with an ISNA. The method entails contacting a functional TLR selected from the group consisting of TLR7, TLR8, and TLR9 with a reference ISNA and detecting a reference response mediated by a TLR signal transduction pathway; contacting a functional TLR selected from the group consisting of TLR7, TLR8, and TLR9 with a test compound and detecting a test response mediated by a TLR signal transduction pathway; and comparing the test response with the reference response to compare the TLR signaling activity of the test compound with the ISNA.

In certain embodiments according to this aspect of the invention, the reference ISNA is a CpG nucleic acid.

10

20

25

30

In certain embodiments according to this aspect of the invention, the test compound is a polypeptide. In certain embodiments the test compound is part of a combinatorial library of compounds.

In certain embodiments the functional TLR is contacted with the reference ISNA and the test compound independently. Accordingly, in certain embodiments the screening method is a method for identifying an ISNA mimic, and the test compound is determined to be an ISNA mimic when the test response is similar to the reference response obtained with the reference ISNA. A test response is similar to the reference response when the test and reference responses are qualitatively alike, even if not quantitatively alike. Thus, for example, the test and reference responses are considered alike when both responses include induction of a Th1-like immune response. The test response can be quantitatively less than, about the same as, or greater than the reference response.

In certain other embodiments the functional TLR is contacted with the reference ISNA and the test compound concurrently to produce a test-reference response mediated by a TLR signal transduction pathway, wherein the test-reference response may be compared to the reference response. In certain preferred embodiments the screening method is a method for identifying an ISNA agonist, wherein the test compound is an ISNA agonist when the test-reference response is greater than the reference response. In certain preferred embodiments the screening method is a method for identifying an ISNA antagonist, wherein the test compound is an ISNA antagonist when the test-reference response is less than the reference response.

In a further aspect the invention provides a screening method for identifying species

- 21 -

specificity of an ISNA. The method according to this aspect of the invention involves contacting a functional TLR selected from the group consisting of TLR7, TLR8, and TLR9 of a first species with a test ISNA; contacting a functional TLR selected from the group consisting of TLR7, TLR8, and TLR9 of a second species with the test ISNA; measuring a response mediated by a TLR signal transduction pathway associated with the contacting the functional TLR of the first species with the test ISNA; measuring a response mediated by the TLR signal transduction pathway associated with the contacting the functional TLR of the second species with the test ISNA; and comparing (a) the response mediated by a TLR signal transduction pathway associated with the contacting the functional TLR of the first species with the test ISNA with (b) the response mediated by the TLR signal transduction pathway associated with the contacting the functional TLR of the second species with the test ISNA. In preferred embodiments the TLR of the first species corresponds to the TLR of the second species, e.g., the TLR of the first species is human TLR9 and the TLR of the second species is murine TLR9. In certain embodiments the functional TLR may be expressed in a cell, part of cell-free system, or part of a complex with another TLR or with a non-TLR protein, as previously described.

5

10

15

20

25

30

In yet another aspect the invention provides a method for identifying lead compounds for a pharmacological agent useful in the treatment of disease associated with TLR9 signaling activity. The method according to this aspect of the invention involves providing a cell comprising a TLR9 polypeptide or fragment thereof as provided in the second aspect of the invention; contacting the cell with a candidate pharmacological agent under conditions which, in the absence of the candidate pharmacological agent, cause a first amount of TLR9 signaling activity; and determining a second amount of TLR9 signaling activity as a measure of the effect of the pharmacological agent on the TLR9 signaling activity, wherein a second amount of TLR9 signaling activity which is less than the first amount indicates that the candidate pharmacological agent is a lead compound for a pharmacological agent which reduces TLR9 signaling activity and wherein a second amount of TLR9 signaling activity which is greater than the first amount indicates that the candidate pharmacological agent is a lead compound for a pharmacological agent which increases TLR9 signaling activity.

These and other aspects of the invention are described in greater detail below.

WO 02/22809

5

10

15

20

25

30

PCT/US01/29229

- 22 -

Brief Description of the Figures

FIG. 1 is two paired bar graphs showing (A) the induction of NF-kB and (B) the amount of IL-8 produced by 293 fibroblast cells transfected with human TLR9 in response to exposure to various stimuli, including CpG-ODN, GpC-ODN, LPS, and medium.

FIG. 2 is a bar graph showing the induction of NF-kB produced by 293 fibroblast cells transfected with murine TLR9 in response to exposure to various stimuli, including CpG-ODN, methylated CpG-ODN (Me-CpG-ODN), GpC-ODN, LPS, and medium.

FIG.3 is a series of gel images depicting the results of reverse transcriptase-polymerase chain reaction (RT-PCR) assays for murine TLR9 (mTLR9), human TLR9 (hTLR9), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in untransfected control 293 cells, 293 cells transfected with mTLR9 (293-mTLR9), and 293 cells transfected with hTLR9 (293-hTLR9).

FIG. 4 is a graph showing the degree of induction of NF-κB-luc by various stimuli in stably transfected 293-hTLR9 cells.

FIG. 5 is a graph showing the degree of induction of NF-κB-luc by various stimuli in stably transfected 293-mTLR9 cells.

FIG. 6 is an image of a Coomassie-stained polyacrylamide gel depicting the presence of soluble hTLR9 in the supernatants of yeast cells transfected with hTLR9, either induced (lane 1) or not induced (lane 2).

FIG. 7 is a graph showing proliferation of human B cells in response to various stimuli, including *Escherichia coli* (*E. coli*) DNA, DNase-digested *E. coli* DNA, CpG-ODN, GpC-ODN, and LPS.

FIG. 8 is two paired bar graphs showing induction of (top) IL-8 and (bottom) TNF in plasmacytoid dendritic cells (CD123+ DC) and monocyte-derived dendritic cells (MDDC) in response to various stimuli, including *E. coli* DNA, DNase-digested *E. coli* DNA, CpG-ODN, GpC-ODN, and LPS.

FIG. 9 is a series of images of stained gels showing results of semi-quantitative RT-PCR comparing relative levels of human TLR9, TLR2, and TLR4 mRNA expression in human peripheral blood cells: MDDC (lane 1), purified CD14+ monocytes (lane 2), B cells (lane 3), CD123+ DC (lane 4), CD4+ T cells (lane 5), and CD8+ T cells (lane 6). GAPDH is a control for equalizing amounts of cDNA.

WO 02/22809

5

10

15

20

25

30

FIG. 10 is a pair of graphs showing amounts of IL-12 induced in (A) human peripheral blood mononuclear cells (PBMC) and (B) murine splenocytes in response to shown concentrations of various ODN, including ODN 2006 (filled circles), 2006-GC (open circles), 1668 (filled triangles), and 1668-GC (open triangles).

FIG. 11 is a quartet of graphs depicting responsiveness of 293 cells transfected with hTLR9 (left panels) or mTLR9 (right panels) upon stimulation with shown concentrations of various ODN, including ODN 2006 (filled circles), 2006-GC (open circles), 1668 (filled triangles), and 1668-GC (open triangles). Responses are shown in terms of induction of NF- kB-luc (upper panels) and IL-8 (lower panels).

FIG. 12 is a bar graph depicting the dose-response of 293-hTLR9 cells to *E. coli* DNA (black bars) and to DNase-digested *E. coli* DNA (gray bars).

FIG. 13 is a pair of graphs showing the responsiveness of (A) 293-hTLR9 and (B) 293-mTLR9 cells to shown concentrations of phosphodiester versions of ODN 2006 (filled circles), 2006-GC (open circles), 1668 (filled triangles), and 1668-GC (open triangles).

Fig. 14 is a pair of graphs showing the responsiveness of 293-hTLR9 and 293-mTLR9 cells to shown concentrations of ODN 5002 (filled circles) and ODN 5007 (open circles).

FIG. 15 is a bar graph showing the response of 293 cells transfected with mTLR9 to CpG-ODN 1668 is inhibited in a dose-dependent manner by co-exposure to non-CpG-ODN PZ2.

FIG. 16 is a bar graph showing the response of 293-hTLR9 cells to CpG-ODN (black bars) or to TNF (gray bars) in the presence of shown amounts of blocking non-CpG-ODN.

FIG. 17 is a bar graph showing blockade of response of 293-hTLR9 cells to CpG-ODN, but not to IL-1 or TNF, in the presence of Bafilomycin A (gray bars). Control treatment with dimethyl sulfoxide (DMSO) is shown in black bars.

FIG. 18 is a graph showing the effect of varying concentrations of dominant negative human MyD88 on the induction of NF-κB in 293-hTLR9 cells stimulated with CpG-ODN (open circles), TNF-α (filled circles), or control (filled triangles).

FIG. 19 is a series of three Western blot images showing the response of various polyclonal antibodies to purified hTLR9-FLAG and mTLR9-FLAG: upper panel, anti-human and anti-mouse intracellular; middle, anti-mouse extracellular; and lower, anti-human extracellular. Arrows indicate position of TLR9 in each blot.

- 24 -

FIG. 20 is a bar graph depicting the responsiveness of native form hTLR9 and hTLR9 variant form hTLR9-CXXCm to various stimuli at different concentrations.

FIG. 21 is a bar graph depicting the responsiveness of native form mTLR9 and mTLR9 variant form mTLR9-CXXCm to various stimuli at different concentrations.

5

10

15

20

25

30

- FIG. 22 is a bar graph showing the responsiveness of native form mTLR9, mTLR9 variant form mTLR9-Phmut, and mTLR9 variant form mTLR9-MBDmut to various stimuli at different concentrations.
- FIG. 23 is a bar graph showing the responsiveness of native form hTLR9, hTLR9 variant form hTLR9-PHmut, and hTLR9 variant form hTLR9-MBDmut to various stimuli at different concentrations.
- FIG. 24 is a bar graph showing the responsiveness of native form mTLR9 and mTLR9 variant form mTLR9-TIRh to various stimuli at different concentrations.
- FIG. 25 is a bar graph showing the responsiveness of native form hTLR9 and hTLR9 variant form hTLR9-TIRm to various stimuli at different concentrations.
- FIG. 26 is a series of linear maps representing various features of human TLR7, TLR8, and TLR9 polypeptides.
- FIG. 27 is an image of a silver stained polyacrylamide gel and schematic representation of a fusion protein in which the extracellular domain of human TLR9 (hTLR9) is fused to a human IgG1 Fc domain (hIgG-Fc) with a thrombin protease recognition site interposed. From left to right, the gel was loaded with (1) supernatant of transfectants; (2) lysates of transfectants, treated with thrombin; (3) untreated lysates of transfectants; (4) molecular weight markers; (5) supernatant of mock transfectants; (6) lysates of mock transfectants, treated with thrombin; and (7) untreated lysates of mock transfectants. Soluble hTLR9 and Fc are the products released from intact hTLR9-IgG-Fc following thrombin treatment. Molecular weights are indicated along the right side of the silver stain gel image.

Brief Description of Selected Sequences

SEQ ID NO:1 is the nucleotide sequence encoding a cDNA for murine TLR9.

SEQ ID NO:2 is the nucleotide sequence encoding the coding region of murine TLR9.

SEQ ID NO:3 is the amino acid sequence of a murine TLR9 encoded by SEQ ID

NO:1.

- 25 -

SEQ ID NO:173 is the nucleotide sequence encoding a cDNA for murine TLR7. SEQ ID NO:174 is the nucleotide sequence encoding the coding region of murine TLR7.

SEQ ID NO:175 is the amino acid sequence of a murine TLR7 encoded by SEQ ID NO:173.

5

15

20

25

30

SEQ ID NO:190 is the nucleotide sequence encoding a cDNA for murine TLR8.

SEQ ID NO:191 is the nucleotide sequence encoding the coding region of murine TLR8.

SEQ ID NO:192 is the amino acid sequence of a murine TLR8 encoded by SEQ ID NO:190.

Detailed Description of the Invention

The present invention in one aspect involves the identification of cDNAs encoding mouse TLR9, referred to herein as murine TLR9 and, equivalently, mTLR9. The nucleotide sequence of the cDNA for murine TLR9 is presented as SEQ ID NO:1, the coding region of the cDNA for murine TLR9 is presented as SEQ ID NO:2, and the amino acid sequence of the murine TLR9 is presented as SEQ ID NO:3. The closely related human TLR9 (equivalently, hTLR9) was deposited in GenBank under accession numbers AF245704 and NM_017742.

The nucleotide sequence of the cDNA for murine TLR9 presented as SEQ ID NO:1 is 3200 nucleotides long and includes the open reading frame (ORF, bases 40-3135) presented as SEQ ID NO:2 which spans 3096 nucleotides (excluding the stop codon). The amino acid sequence of the murine TLR9 presented as SEQ ID NO:3 is 1032 amino acids (aa) long, and it is believed to include an extracellular domain (aa 1-819), a transmembrane domain (aa 820-837), and an intracellular domain (aa 838-1032).

The amino acid sequence of human TLR9 (SEQ ID NO:6) and the amino acid sequence of the murine TLR9 (SEQ ID NO:3) are thus both 1032 amino acids long. Comparison of the aligned amino acid sequences for the murine and the human TLR9 molecules reveals a single base insertion at aa 435 of the murine TLR9 and a single base deletion at aa 860 of the human TLR9. (See Table 4 below.)

Whereas much of the polypeptide presented herein is identical to human TLR9,

- 26 -

murine TLR9 has several single amino acid differences. These differences in amino acids are specifically amino acids 2, 3, 4, 6, 7, 18, 19, 22, 38, 44, 55, 58, 61, 62, 63, 65, 67, 71, 80, 84, 87, 88, 91, 101, 106, 109, 117, 122, 123, 134, 136, 140, 143, 146, 147, 157, 160, 161, 167, 168, 171, 185, 186, 188, 189, 191, 199, 213, 217, 220, 227, 231, 236, 245, 266, 269, 270, 271, 272, 273, 274, 278, 281, 285, 297, 298, 301, 305, 308, 311, 322, 323, 325, 326, 328, 332, 335, 346, 348, 353, 355, 358, 361, 362, 365, 367, 370, 372, 380, 381, 382, 386, 389, 392, 394, 397, 409, 412, 413, 415, 416, 419, 430, 432, 434, 435, 438, 439, 443, 444, 446, 447, 448, 450, 451, 452, 454, 455, 459, 460, 463, 465, 466, 468, 469, 470, 472, 473, 474, 475, 478, 488, 489, 494, 495, 498, 503, 508, 510, 523, 531, 539, 540, 543, 547, 549, 561, 563, 565, 576, 577, 579, 580, 587, 590, 591, 594, 595, 597, 599, 601, 603, 610, 611, 613, 616, 619, 632, 633, 640, 643, 645, 648, 650, 657, 658, 660, 667, 670, 672, 675, 679, 689, 697, 700, 703, 705, 706, 711, 715, 716, 718, 720, 723, 724, 726, 729, 731, 735, 737, 743, 749, 750, 751, 752, 754, 755, 759, 760, 772, 774, 780, 781, 786, 787, 788, 800, 814, 821, 829, 831, 832, 835, 844, 857, 858, 859, 862, 864, 865, 866, 879, 893, 894, 898, 902, 910, 917, 927, 949, 972, 975, 976, 994, 997, 1000, 1003, 1004, 1010, 1011, 1018, 1023, and 1027 of SEQ ID NO:3

10

15

20

25

30

In some forms the mouse protein mTLR9 contains a signal sequence at the N-terminus (amino acids 1-26) which allows transport to the endoplasmic reticulum and subsequently to the cell surface or intracellular compartments. A transmembrane region (amino acids 820-837) anchors the protein to the cell membrane. The cytoplasmic tail contains a Toll/IL-1 receptor (TIR) homology domain which is believed to function in signaling upon ligand binding. Leucine-rich-repeats (LRR) can be found in the extracellular region (a common feature of TLRs) and may be involved in ligand binding or dimerization of the molecule.

Both mouse and human TLR9 have an N-terminal extension of approximately 180 amino acids compared to other TLRs. An insertion also occurs at amino acids 253-268, which is not found in TLRs 1-6 but is present in human TLR7 and human TLR8. (See Figure 26.) This insert has two CXXC motifs which participate in forming a CXXC domain. The CXXC domain resembles a zinc finger motif and is found in DNA-binding proteins and in certain specific CpG binding proteins, e.g., methyl-CpG binding protein-1 (MBD-1). Fujita N et al., *Mol Cell Biol* 20:5107-5118 (2000). Both human and mouse TLR9 CXXC domains occur at aa 253-268:

- 27 -

SEQ ID NO:196 CXXC motif: GNCXXCXXXXXXCXXC Human TLR9: **SEQ ID NO:197 GNCRRCDHAPNPCMEC** Murine TLR9: **SEQ ID NO:198** GNCRRCDHAPNPCMIC

5

An additional motif involved in CpG binding is the MBD motif, also found in MBD-1, listed below as SEQ ID NO:125. Fujita, N et al., Mol Cell Biol 20:5107-18 (2000); Ohki I et al., EMBO J 18:6653-6661 (1999). Amino acids 524-554 of hTLR9 and aa 525-555 of mTLR9 correspond to the MBD motif of MBD-1 as shown:

PCT/US01/29229

10

15

20

25

30

MBD motif:

WO 02/22809

MBD-1	R-XXXXXXX-R-X-D-X-Y-XXXXXXXXXX-R-S-XXXXXXX-Y	SEQ ID NO:125
hTLR9	Q-XXXXXX-K-X-D-X-Y-XXXXXXXXX-R-L-XXXXXX-Y	SEQ ID NO:126
mTLR9	Q-XXXXXX-K-X-D-X-Y-XXXXXXXXX-Q-L-XXXXXX-Y	SEQ ID NO:127
hTLR9	Q-VLDLSRN-K-L-D-L-Y-HEHSFTELP-R-L-EALDLS-Y	SEQ ID NO:210
mTLR9	Q-VLDLSHN-K-L-D-L-Y-HWKSFSELP-Q-L-QALDLS-Y	SEQ ID NO:211

Although the signaling functions of MBD-1 and TLR9 are quite different, the core D-X-Y is involved in CpG binding and is conserved. The C-terminal octamer S-XXXXXXY-Y of the MBD motif may not be involved in binding and the S is not conserved by TLR9. The other mismatches are highly conserved or moderately conserved; example R to K or R to Q. These changes could explain MBD-1 as a methyl-CpG binder and TLR9 as a non-methyl-CpG binder. The differences between mouse and human TLR9 may explain inter-species differences in CpG-motif sequence selectivity. See Figure 14 for inter-species sequence selectivity.

As discussed in Example 11 below and shown in Figures 22 and 23, the D-X-Y core of this MBD motif occurs as D-L-Y in both mTLR9 (aa 535-537) and hTLR9 (aa 534-536). Substitution of A for D and A for Y in the D-X-Y core, resulting in A-L-A in place of D-L-Y, destroys receptor activity for mTLR9 and hTLR9 alike.

The invention involves in one aspect murine TLR9 nucleic acids and polypeptides, as

well as therapeutics relating thereto. The invention also embraces isolated functionally equivalent variants, useful analogs and fragments of the foregoing nucleic acids and polypeptides; complements of the foregoing nucleic acids; and molecules which selectively bind the foregoing nucleic acids and polypeptides.

5

10

15

20

25

30

The murine TLR9 nucleic acids and polypeptides of the invention are isolated. As used herein with respect to nucleic acids, the term "isolated" means: (i) amplified *in vitro* by, for example, polymerase chain reaction (PCR); (ii) recombinantly produced by cloning; (iii) purified, as by cleavage and gel separation; or (iv) synthesized by, for example, chemical synthesis. An isolated nucleic acid is one which is readily manipulable by recombinant DNA techniques well known in the art. Thus, a nucleotide sequence contained in a vector in which 5' and 3' restriction sites are known or for which PCR primer sequences have been disclosed is considered isolated, but a nucleic acid sequence existing in its native state in its natural host is not. An isolated nucleic acid may be substantially purified, but need not be. For example, a nucleic acid that is isolated within a cloning or expression vector is not pure in that it may comprise only a tiny percentage of the material in the cell in which it resides. Such a nucleic acid is isolated, however, as the term is used herein because it is readily manipulable by standard techniques known to those of ordinary skill in the art. An isolated nucleic acid as used herein is not a naturally occurring chromosome.

As used herein with respect to polypeptides, "isolated" means separated from its native environment and present in sufficient quantity to permit its identification or use. Isolated, when referring to a protein or polypeptide, means, for example: (i) selectively produced by expression cloning or (ii) purified as by chromatography or electrophoresis. Isolated proteins or polypeptides may be, but need not be, substantially pure. The term "substantially pure" means that the proteins or polypeptides are essentially free of other substances with which they may be found in nature or *in vivo* systems to an extent practical and appropriate for their intended use. Substantially pure polypeptides may be produced by techniques well known in the art. Because an isolated protein may be admixed with a pharmaceutically acceptable carrier in a pharmaceutical preparation, the protein may comprise only a small percentage by weight of the preparation. The protein is nonetheless isolated in that it has been separated from the substances with which it may be associated in living systems, i.e., isolated from other proteins.

As used herein a murine TLR9 nucleic acid refers to an isolated nucleic acid molecule which codes for a murine TLR9 polypeptide. Such nucleic acid molecules code for murine TLR9 polypeptides which include the sequence of SEQ ID NO:3 and fragments thereof. The nucleic acid molecules include the nucleotide sequences of SEQ ID NO:1, SEQ ID NO:2, and nucleotide sequences which differ from the sequences of SEQ ID NO:1 and SEQ ID NO:2 in codon sequence due to the degeneracy of the genetic code. The murine TLR9 nucleic acids of the invention also include alleles of the foregoing nucleic acids, as well as fragments of the foregoing nucleic acids. Such fragments can be used, for example, as probes in hybridization assays and as primers in a polymerase chain reaction. Preferred murine TLR9 nucleic acids include the nucleic acid sequence of SEQ ID NO:1 and SEQ ID NO:2. Complements of the foregoing nucleic acids also are embraced by the invention.

5

10

15

20

25

30

As used herein a murine TLR9 nucleic acid or murine TLR9 polypeptide also embraces homologues and alleles of murine TLR9. In general homologues and alleles typically will share at least 40% nucleotide identity and/or at least 50% amino acid identity to the sequences of specified nucleic acids and polypeptides, respectively. Thus homologues and alleles of murine TLR9 typically will share at least 40% nucleotide identity and/or at least 50% amino acid identity to the sequences of murine TLR9 nucleic acids and TLR9 polypeptides, respectively. In some instances homologues and alleles will share at least 50% nucleotide identity and/or at least 65% amino acid identity and in still other instances will share at least 60% nucleotide identity and/or at least 75% amino acid identity. Preferably the homologues and alleles will share at least 80% nucleotide identity and/or at least 90% amino acid identity, and more preferably will share at least 90% nucleotide identity and/or at least 95% amino acid identity. Most preferably the homologues and alleles will share at least 95% nucleotide identity and/or at least 99% amino acid identity. The homology can be calculated using various publicly available software tools developed by the National Center for Biotechnology Information (NCBI, Bethesda, Maryland) that can be obtained through the internet (ftp:/ncbi.nlm.nih.gov/pub/). Exemplary tools include the BLAST system available from the NCBI at http://www.ncbi.nlm.nih.gov, used with default settings. Pairwise and ClustalW alignments (BLOSUM30 matrix setting) as well as Kyte-Doolittle hydropathic analysis can be obtained, for example, using the MacVector sequence analysis software (Oxford Molecular Group). Watson-Crick complements of the foregoing nucleic acids also

- 30 -

are embraced by the invention.

5

10

15

20

25

30

Alleles of the murine TLR9 nucleic acids of the invention can be identified by conventional techniques. For example, alleles of murine TLR9 can be isolated by hybridizing a probe which includes at least a fragment of SEQ ID NO:1 or SEQ ID NO:2 under stringent conditions with a cDNA library and selecting positive clones. Thus, an aspect of the invention is those nucleic acid sequences which code for murine TLR9 polypeptides and which hybridize to a nucleic acid molecule consisting of SEQ ID NO:1 or SEQ ID NO:2 under stringent conditions.

In screening for murine TLR nucleic acids, a Southern blot may be performed using the foregoing stringent conditions, together with a radioactive probe. After washing the membrane to which the DNA is finally transferred, the membrane can be placed against X-ray film to detect the radioactive signal. Corresponding non-radioactive methods are also well known in the art and can be used to similar effect.

The murine TLR nucleic acids of the invention also include degenerate nucleic acids which include alternative codons to those present in the native materials. For example, serine residues are encoded by the codons AGC, AGT, and TCA, TCC, TCG and TCT. Each of the six codons is equivalent for the purposes of encoding a serine residue. Thus, it will be apparent to one of ordinary skill in the art that any of the serine-encoding nucleotide triplets may be employed to direct the protein synthesis apparatus, in vitro or in vivo, to incorporate a serine residue into an elongating murine TLR polypeptide. Similarly, nucleotide sequence triplets which encode other amino acid residues include, but are not limited to: CCA, CCC, CCG and CCT (proline codons); CGA, CGC, CGG, CGT, AGA and AGG (arginine codons); ACA, ACC, ACG and ACT (threonine codons); AAC and AAT (asparagine codons); and ATA, ATC and ATT (isoleucine codons). As is well known by those of ordinary skill in the art, other specific amino acid residues may be encoded similarly by multiple nucleotide sequences. Thus, the invention embraces degenerate nucleic acids that differ from the biologically isolated nucleic acids in codon sequence due to the degeneracy of the genetic code. The above-noted codon degeneracy notwithstanding, it is well appreciated by those skilled in the art that there are certain codon usage preferences in specific host organisms, such that in practice it may be preferred to select or to avoid certain degenerate codons in a particular host.

- 31 -

The invention also provides modified nucleic acid molecules which include additions, substitutions and deletions of one or more nucleotides. The modified nucleic acid molecules according to this aspect of the invention exclude fully native human TLR9 nucleic acid molecules (GenBank Accession No. AF245704 (SEQ ID NO:4) or GenBank Accession No. NM_017442 (SEQ ID NO:5)). In preferred embodiments, these modified nucleic acid molecules and/or the polypeptides they encode retain at least one activity or function of the unmodified nucleic acid molecule and/or the polypeptides, such as signaling activity, etc. In certain embodiments, the modified nucleic acid molecules encode modified polypeptides, preferably polypeptides having conservative amino acid substitutions as are described elsewhere herein. The modified nucleic acid molecules are structurally related to the unmodified nucleic acid molecules so that the modified and unmodified nucleic acid molecules hybridize under stringent conditions known to one of skill in the art.

5

10

15

20

25

30

For example, modified nucleic acid molecules which encode polypeptides having single amino acid changes can be prepared. Each of these nucleic acid molecules can have one, two or three nucleotide substitutions exclusive of nucleotide changes corresponding to the degeneracy of the genetic code as described herein. Likewise, modified nucleic acid molecules which encode polypeptides having two amino acid changes can be prepared which have, e.g., 2-6 nucleotide changes. Numerous modified nucleic acid molecules like these will be readily envisioned by one of skill in the art, including for example, substitutions of nucleotides in codons encoding amino acids 2 and 3, 2 and 4, 2 and 5, 2 and 6, and so on. In the foregoing example, each combination of two amino acids is included in the set of modified nucleic acid molecules, as well as all nucleotide substitutions which code for the amino acid substitutions. Additional nucleic acid molecules that encode polypeptides having additional substitutions (i.e., 3 or more), additions or deletions (e.g., by introduction of a stop codon or a splice site(s)) also can be prepared and are embraced by the invention as readily envisioned by one of ordinary skill in the art. Any of the foregoing nucleic acids or polypeptides can be tested by routine experimentation for retention of structural relation or activity to the nucleic acids and/or polypeptides disclosed herein.

The invention also provides isolated fragments of SEQ ID NO:1 and SEQ ID NO:2.

The fragments can be used as probes in Southern blot assays to identify such nucleic acids, or

- 32 -

they can be used in amplification assays such as those employing PCR. Smaller fragments are those comprising 12, 13, 14, 15, 16, 17, 18, 20, 22, 25, 30, 40, 50, or 75 nucleotides, and every integer therebetween, and are useful, e.g., as primers for nucleic acid amplification procedures. As known to those skilled in the art, larger probes such as 200, 250, 300, 400 or more nucleotides are preferred for certain uses such as Southern blots, while smaller fragments will be preferred for uses such as PCR. Fragments also can be used to produce fusion proteins for generating antibodies or determining binding of the polypeptide fragments. Likewise, fragments can be employed to produce non-fused fragments of the murine TLR9 polypeptides, useful, for example, in the preparation of antibodies, in immunoassays, and the like. The foregoing nucleic acid fragments further can be used as antisense molecules to inhibit the expression of murine TLR9 nucleic acids and polypeptides, particularly for therapeutic purposes as described in greater detail below.

10

15

20

25

30

The invention also includes functionally equivalent variants of the murine TLR9, which include variant nucleic acids and polypeptides which retain one or more of the functional properties of the murine TLR9. Preferably such variants include the murinespecific N-terminal domain (e.g., amino acids 1-819 or amino acids 1-837 of SEQ ID NO:3). For example, variants include a fusion protein which includes the extracellular and transmembrane domains of the murine TLR9 (i.e., amino acids 1-837) which retains the ability to interact with extracellular molecules in a manner similar to intact murine TLR9. Alternative variants include, for example, a fusion protein which includes the cytoplasmic domain of murine TLR9 (i.e., amino acids 838-1032) which retains the ability to interact with intracellular molecules in a manner similar to intact murine TLR9. Still other functionally equivalent variants include truncations, deletions, point mutations, or additions of amino acids to the sequence of SEQ ID NO:3 which retain functions of SEQ ID NO:3. For example, the FLAG peptide sequence (DYKDDDDK) can be added at the N-terminal end, or green fluorescent protein (GFP) can be added at the C-terminal end. All such addition variant polypeptides are preferably made by translation of modified nucleic acids based on SEQ ID NO:1 or SEQ ID NO:2 with corresponding appropriate coding nucleic acid sequence appended thereto with maintenance of the proper reading frame.

Functionally equivalent variants also include a murine TLR9 which has had a portion (e.g., of the N-terminus) removed or replaced by a similar domain from another TLR (e.g., a

- 33 -

"domain-swapping" variant). Examples of such domain-swapping variants include at least two types: those involving swapping a TLR9 domain from one species with a TLR9 domain from another species, and those involving swapping a TLR domain from TLR9 with a TLR domain from another TLR. In certain preferred embodiments the swapping involves corresponding domains between the different TLR molecules. It is believed that certain such domain-swapping variants are not functionally equivalent in a literal sense, insofar as they can function in a manner superior to either or both intact parent TLR molecules from which a particular domain-swapping variant derives. For example, the TLR/IL-1R signaling mediated by human TLR9 could be limited, not by the capacity of its extracellular domain to interact with CpG ODN, but rather by the capacity of its cytoplasmic domain to engage the TLR/IL-1R signaling pathway. In such a circumstance, it could be advantageous to substitute a more potent cytoplasmic domain from a TLR9 from another species. Such a domain-swapping variant, e.g., chimeric hTLR9/mTLR9, could be used in screening assays for CpG immunoagonist/antagonists to increase the sensitivity of the assay, without changing the species specificity.

10

15

20

25

30

Other functionally equivalent variants will be known to one of ordinary skill in the art, as will be methods for preparing such variants. The activity of a functionally equivalent variant can be determined using the methods provided herein, and in references that have described assays using other TLRs and TLRs of other species. Such variants are useful, *inter alia*, for evaluating bioavailability of drugs, in assays for identification of compounds which bind to and/or regulate the signaling function of the murine TLR9, and for determining the portions of the murine TLR9 which are required for signaling activity.

Variants which are non-functional also can be prepared as described above. Such variants are useful, for example, as negative controls in experiments testing TLR9 signaling activity. Examples of non-functional variants include those incorporating a mutation of proline at aa 915 to histidine (P915H) which renders both mTLR9 and hTLR9 nonfunctional with respect to signaling. Futher examples of non-functional variants include those incorporating a mutation of the D-X-Y core of the MBD motif to A-L-A, as discussed above, to render both mTLR9 and hTLR9 nonfunctional with respect to CpG DNA binding.

A murine TLR9 nucleic acid, in one embodiment, is operably linked to a gene expression sequence which can direct the expression of the murine TLR9 nucleic acid within

- 34 -

a eukaryotic or prokaryotic cell. A "gene expression sequence" is any regulatory nucleotide sequence, such as a promoter sequence or promoter-enhancer combination, which facilitates the efficient transcription and translation of the nucleic acid to which it is operably linked. With respect to murine TLR9 nucleic acid, the "gene expression sequence" is any regulatory nucleotide sequence, such as a promoter sequence or promoter-enhancer combination, which facilitates the efficient transcription and translation of the murine TLR9 nucleic acid to which it is operably linked. The gene expression sequence may, for example, be a mammalian or yiral promoter, such as a constitutive or inducible promoter. Constitutive mammalian promoters include, but are not limited to, the promoters for the following genes: hypoxanthine phosphoribosyl transferase (HPRT), adenosine deaminase, pyruvate kinase, β-actin promoter, and other constitutive promoters. Exemplary viral promoters which function constitutively in eukaryotic cells include, for example, promoters from the simian virus (e.g., SV40), papilloma virus, adenovirus, human immunodeficiency virus (HIV), Rous sarcoma virus (RSV), cytomegalovirus (CMV), the long terminal repeats (LTR) of Moloney murine leukemia virus and other retroviruses, and the thymidine kinase (TK) promoter of herpes simplex virus. Other constitutive promoters are known to those of ordinary skill in the art. The promoters useful as gene expression sequences of the invention also include inducible promoters. Inducible promoters are expressed in the presence of an inducing agent. For example, the metallothionein (MT) promoter is induced to promote transcription and translation in the presence of certain metal ions. Other inducible promoters are known to those of ordinary skill in the art.

10

15

20

25

30

In general, the gene expression sequence shall include, as necessary, 5' non-transcribing and 5' non-translating sequences involved with the initiation of transcription and translation, respectively, such as a TATA box, capping sequence, CAAT sequence, and the like. Especially, such 5' non-transcribing sequences will include a promoter region which includes a promoter sequence for transcriptional control of the operably joined murine TLR9 nucleic acid. The gene expression sequences optionally include enhancer sequences or upstream activator sequences as desired.

Generally a nucleic acid coding sequence and a gene expression sequence are said to be "operably linked" when they are covalently linked in such a way as to place the transcription and/or translation of the nucleic acid coding sequence under the influence or

- 35 -

control of the gene expression sequence. Thus the murine TLR9 nucleic acid sequence and the gene expression sequence are said to be "operably linked" when they are covalently linked in such a way as to place the transcription and/or translation of the murine TLR9 coding sequence under the influence or control of the gene expression sequence. If it is desired that the murine TLR9 sequence be translated into a functional protein, two DNA sequences are said to be operably linked if induction of a promoter in the 5' gene expression sequence results in the transcription of the murine TLR9 sequence and if the nature of the linkage between the two DNA sequences does not (1) result in the introduction of a frame-shift mutation, (2) interfere with the ability of the promoter region to direct the transcription of the murine TLR9 sequence, or (3) interfere with the ability of the corresponding RNA transcript to be translated into a protein. Thus, a gene expression sequence would be operably linked to a murine TLR9 nucleic acid sequence if the gene expression sequence were capable of effecting transcription of that murine TLR9 nucleic acid sequence such that the resulting transcript might be translated into the desired protein or polypeptide.

10

15

20

25

30

The murine TLR9 nucleic acid molecules and the murine TLR9 polypeptides (including the murine TLR9 inhibitors described below) of the invention can be delivered to the eukaryotic or prokaryotic cell alone or in association with a vector. In its broadest sense, a "vector" is any vehicle capable of facilitating: (1) delivery of a nucleic acid or polypeptide to a target cell, (2) uptake of a nucleic acid or polypeptide by a target cell, or (3) expression of a nucleic acid molecule or polypeptide in a target cell. In this particular setting, a "vector" is any vehicle capable of facilitating: (1) delivery of a murine TLR9 nucleic acid or polypeptide to a target cell, (2) uptake of a murine TLR9 nucleic acid or polypeptide by a target cell, or (3) expression of a murine TLR9 nucleic acid molecule or polypeptide in a target cell. Preferably, the vectors transport the murine TLR9 nucleic acid or polypeptide into the target cell with reduced degradation relative to the extent of degradation that would result in the absence of the vector. Optionally, a "targeting ligand" can be attached to the vector to selectively deliver the vector to a cell which expresses on its surface the cognate receptor (e.g., a receptor, an antigen recognized by an antibody) for the targeting ligand. In this manner, the vector (containing a murine TLR9 nucleic acid or a murine TLR9 polypeptide) can be selectively delivered to a specific cell. In general, the vectors useful in the invention are divided into two classes: biological vectors and chemical/physical vectors. Biological

- 36 -

vectors are more useful for delivery/uptake of murine TLR9 nucleic acids to/by a target cell. Chemical/physical vectors are more useful for delivery/uptake of murine TLR9 nucleic acids or murine TLR9 proteins to/by a target cell.

5

10

15

20

25

30

Biological vectors include, but are not limited to, plasmids, phagemids, viruses, other vehicles derived from viral or bacterial sources that have been manipulated by the insertion or incorporation of the nucleic acid sequences of the invention, and free nucleic acid fragments which can be linked to the nucleic acid sequences of the invention. Viral vectors are a preferred type of biological vector and include, but are not limited to, nucleic acid sequences from the following viruses: retroviruses, such as Moloney murine leukemia virus; Harvey murine sarcoma virus; murine mammary tumor virus; Rous sarcoma virus; adenovirus; adenovirus; SV40-type viruses; polyoma viruses; poxviruses; Epstein-Barr viruses; papilloma viruses; herpes virus; vaccinia virus; and polio virus. One can readily employ other vectors not named but known in the art.

Preferred viral vectors are based on non-cytopathic eukaryotic viruses in which non-essential genes have been replaced with the gene of interest. Non-cytopathic viruses include retroviruses, the life cycle of which involves reverse transcription of genomic viral RNA into DNA with subsequent proviral integration into host cellular DNA. In general, the retroviruses are replication-deficient (i.e., capable of directing synthesis of the desired proteins, but incapable of manufacturing an infectious particle). Such genetically altered retroviral expression vectors have general utility for the high-efficiency transduction of genes in vivo. Standard protocols for producing replication-deficient retroviruses (including the steps of incorporation of exogenous genetic material into a plasmid, transfection of a packaging cell line with plasmid, production of recombinant retroviruses by the packaging cell line, collection of viral particles from tissue culture media, and infection of the target cells with viral particles) are provided in Kriegler, M., "Gene Transfer and Expression, A Laboratory Manual," W.H. Freeman Co., New York (1990) and Murray, E.J., ed., "Methods in Molecular Biology," vol. 7, Humana Press, Inc., Clifton, New Jersey (1991):

Another preferred virus for certain applications is the adeno-associated virus (AAV), a double-stranded DNA virus. The AAV can be engineered to be replication-deficient and is capable of infecting a wide range of cell types and species. It further has advantages, such as heat and lipid solvent stability; high transduction frequencies in cells of diverse lineages; and

- 37 -

lack of superinfection inhibition thus allowing multiple series of transductions. Reportedly, the AAV can integrate into human cellular DNA in a site-specific manner, thereby minimizing the possibility of insertional mutagenesis and variability of inserted gene expression. In addition, wild-type AAV infections have been followed in tissue culture for greater than 100 passages in the absence of selective pressure, implying that the AAV genomic integration is a relatively stable event. The AAV can also function in an extrachromosomal fashion.

Expression vectors containing all the necessary elements for expression are commercially available and known to those skilled in the art. See, e.g., *Molecular Cloning: A Laboratory Manual*, J. Sambrook, et al., eds., Second Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1989. Cells are genetically engineered by the introduction into the cells of heterologous DNA (RNA) encoding a murine TLR9 polypeptide or fragment or variant thereof. That heterologous DNA (RNA) is placed under operable control of transcriptional elements to permit the expression of the heterologous DNA in the host cell.

10

15

20

25

30

Preferred systems for mRNA expression in mammalian cells are those such as pRc/CMV (available from Invitrogen, Carlsbad, CA) that contain a selectable marker such as a gene that confers G418 resistance (which facilitates the selection of stably transfected cell lines) and the human CMV enhancer-promoter sequences. Additionally, suitable for expression in primate or canine cell lines is the pCEP4 vector (Invitrogen), which contains an Epstein Barr virus (EBV) origin of replication, facilitating the maintenance of plasmid as a multicopy extrachromosomal element. Another expression vector is the pEF-BOS plasmid containing the promoter of polypeptide Elongation Factor 1α, which stimulates efficiently transcription *in vitro*. The plasmid is described by Mishizuma and Nagata (*Nucleic Acids Res* 18:5322 (1990)), and its use in transfection experiments is disclosed by, for example, Demoulin (*Mol Cell Biol* 16:4710-4716 (1996)). Still another preferred expression vector is an adenovirus, described by Stratford-Perricaudet, which is defective for E1 and E3 proteins (*J Clin Invest* 90:626-630 (1992)).

In addition to the biological vectors, chemical/physical vectors may be used to deliver a nucleic acid or polypeptide to a target cell and facilitate uptake thereby. As used herein, a "chemical/physical vector" refers to a natural or synthetic molecule, other than those derived

- 38 -

from bacteriological or viral sources, capable of delivering an isolated nucleic acid or polypeptide to a cell. As used herein with respect to a murine TLR9 nucleic acid or polypeptide, a "chemical/physical vector" refers to a natural or synthetic molecule, other than those derived from bacteriological or viral sources, capable of delivering the isolated murine TLR9 nucleic acid or polypeptide to a cell.

5

10

15

20

25

30

A preferred chemical/physical vector of the invention is a colloidal dispersion system. Colloidal dispersion systems include lipid-based systems including oil-in-water emulsions, micelles, mixed micelles, and liposomes. A preferred colloidal system of the invention is a liposome. Liposomes are artificial membrane vesicles which are useful as a delivery vector *in vivo* or *in vitro*. It has been shown that large unilamellar vesicles (LUV), which range in size from 0.2 - 4.0 µm can encapsulate large macromolecules. RNA, DNA, and intact virions can be encapsulated within the aqueous interior and be delivered to cells in a biologically active form (Fraley et al., *Trends Biochem Sci* 6:77 (1981)). In order for a liposome to be an efficient nucleic acid transfer vector, one or more of the following characteristics should be present: (1) encapsulation of the nucleic acid of interest at high efficiency with retention of biological activity; (2) preferential and substantial binding to a target cell in comparison to non-target cells; (3) delivery of the aqueous contents of the vesicle to the target cell cytoplasm at high efficiency; and (4) accurate and effective expression of genetic information.

Liposomes may be targeted to a particular tissue by coupling the liposome to a specific ligand such as a monoclonal antibody, sugar, glycolipid, or protein. Ligands which may be useful for targeting a liposome to a particular cell will depend on the particular cell or tissue type. Additionally when the vector encapsulates a nucleic acid, the vector may be coupled to a nuclear targeting peptide, which will direct the murine TLR9 nucleic acid to the nucleus of the host cell.

Liposomes are commercially available from Gibco BRL, for example, as LIPOFECTINTM and LIPOFECTACETM, which are formed of cationic lipids such as N-[1-(2, 3 dioleyloxy)-propyl]-N, N, N-trimethylammonium chloride (DOTMA) and dimethyl dioctadecylammonium bromide (DDAB). Methods for making liposomes are well known in the art and have been described in many publications.

Other exemplary compositions that can be used to facilitate uptake by a target cell of nucleic acids in general, and nucleic acids encoding the murine TLR9 in particular, include

- 39 -

calcium phosphate and other chemical mediators of intracellular transport, microinjection compositions, electroporation and homologous recombination compositions (e.g., for integrating a murine TLR9 nucleic acid into a preselected location within a target cell chromosome).

5

10

15

20

25

30

The invention also embraces so-called expression kits, which allow the artisan to prepare a desired expression vector or vectors. Such expression kits include at least separate portions of the previously discussed coding sequences. Other components may be added, as desired, as long as the previously mentioned sequences, which are required, are included.

It will also be recognized that the invention embraces the use of the murine TLR9 cDNA sequences in expression vectors to transfect host cells and cell lines, be these prokaryotic (e.g., *E. coli*), or eukaryotic (e.g., 293 fibroblast cells (ATCC, CRL-1573), MonoMac-6, THP-1, U927, CHO cells, COS cells, yeast expression systems and recombinant baculovirus expression in insect cells). Especially useful are mammalian cells such as human, pig, goat, primate, rodent, guinea pig, etc. They may be of a wide variety of tissue types, and include primary cells and cell lines. The expression vectors require that the pertinent sequence, i.e., those nucleic acids described *supra*, be operably linked to a promoter.

The invention also provides isolated murine TLR9 polypeptides which include the amino acid sequences of SEQ ID NO:3 and fragments thereof, encoded by the murine TLR9 nucleic acids described above. Murine TLR9 polypeptides also embrace alleles, functionally equivalent variants and analogs (those non-allelic polypeptides which vary in amino acid sequence from the disclosed murine TLR9 polypeptides by 1, 2, 3, 4, 5, or more amino acids) provided that such polypeptides retain TLR9 activity. Non-functional variants also are embraced by the invention; these are useful as antagonists of TLR9 signaling function, as negative controls in assays, and the like. Such alleles, variants, analogs and fragments are useful, for example, alone or as fusion proteins for a variety of purposes including as a component of assays.

Fragments of a polypeptide preferably are those fragments which retain a distinct functional capability of the intact polypeptide, in particular as a receptor of various molecules. Accordingly, fragments of a TLR9 polypeptide preferably are those fragments which retain a distinct functional capability of the TLR9 polypeptide, in particular as a receptor of various molecules. Of particular interest are fragments that bind to ISNAs, including, for example,

- 40 -

fragments that bind CpG nucleic acids. Other functional capabilities which can be retained in a fragment of a polypeptide include signal transduction (e.g., TLR/IL-1R signaling by murine TLR9), interaction with antibodies and interaction with other polypeptides (such as would be found in a protein complex). Those skilled in the art are well versed in methods that can be applied for selecting fragments which retain a functional capability of the murine TLR9. Confirmation of the functional capability of the fragment can be carried out by synthesis of the fragment and testing of the capability according to standard methods. For example, to test the signaling activity of a murine TLR9 fragment, one inserts or expresses the fragment in a cell in which signaling can be measured. Such methods, which are standard in the art, are described further herein.

5

10

15

20

25

30

The invention embraces variants of the murine TLR9 polypeptides described above. As used herein, a "variant" of a polypeptide is a polypeptide which contains one or more modifications to the primary amino acid sequence of a polypeptide. Accordingly, a "variant" of a murine TLR9 polypeptide is a polypeptide which contains one or more modifications to the primary amino acid sequence of a murine TLR9 polypeptide. Modifications which create a murine TLR9 variant can be made to a murine TLR9 polypeptide for a variety of reasons, including 1) to reduce or eliminate an activity of a murine TLR9 polypeptide, such as signaling; 2) to enhance a property of a murine TLR9 polypeptide, such as signaling, binding affinity for nucleic acid ligand or other ligand molecule, protein stability in an expression system, or the stability of protein-protein binding; 3) to provide a novel activity or property to a murine TLR9 polypeptide, such as addition of an antigenic epitope or addition of a detectable moiety, e.g., luciferase, FLAG peptide, GFP; 4) to establish that an amino acid substitution does or does not affect molecular signaling activity; or 5) reduce immunogenicity of a murine TLR9 polypeptide. Modifications to a murine TLR9 polypeptide are typically made to the nucleic acid which encodes the murine TLR9 polypeptide, and can include deletions, point mutations, truncations, amino acid substitutions and additions of amino acids or non-amino acid moieties. Alternatively, modifications can be made directly to the polypeptide, such as by cleavage, addition of a linker molecule, addition of a detectable moiety (for example, biotin, fluorophore, radioisotope, enzyme, or peptide), addition of a fatty acid, and the like.

Modifications also embrace fusion proteins comprising all or part of the murine TLR9

- 41 -

amino acid sequence. One of skill in the art will be familiar with methods for predicting the effect on protein conformation of a change in protein sequence, and can thus "design" a variant murine TLR9 according to known methods. One example of such a method is described by Dahiyat and Mayo in *Science* 278:82-87 (1997), whereby proteins can be designed *de novo*. The method can be applied to a known protein to vary a only a portion of the polypeptide sequence. By applying the computational methods of Dahiyat and Mayo, specific variants of a murine TLR9 polypeptide can be proposed and tested to determine whether the variant retains a desired conformation.

5

10

15

20

25

30

Variants include murine TLR9 polypeptides which are modified specifically to alter a feature of the polypeptide unrelated to its physiological activity. For example, cysteine residues can be substituted or deleted to prevent unwanted disulfide linkages. Similarly, certain amino acids can be changed to enhance expression of a murine TLR9 polypeptide by eliminating proteolysis by proteases in an expression system (e.g., dibasic amino acid residues in yeast expression systems in which KEX2 protease activity is present).

Mutations of a nucleic acid which encode a murine TLR9 polypeptide preferably preserve the amino acid reading frame of the coding sequence, and preferably do not create regions in the nucleic acid which are likely to hybridize to form secondary structures, such as hairpins or loops, which can be deleterious to expression of the variant polypeptide.

Mutations can be made by selecting an amino acid substitution, or by random mutagenesis of a selected site in a nucleic acid which encodes the polypeptide. Variant polypeptides are then expressed and tested for one or more activities to determine which mutation provides a variant polypeptide with a desired property. Further mutations can be made to variants (or to non-variant murine TLR9 polypeptides) which are silent as to the amino acid sequence of the polypeptide, but which provide preferred codons for translation in a particular host. The preferred codons for translation of a nucleic acid in, e.g., *E. coli*, are well known to those of ordinary skill in the art. Still other mutations can be made to the noncoding sequences of a murine TLR9 gene or cDNA clone to enhance expression of the polypeptide.

The activity of variants of murine TLR9 polypeptides can be tested by cloning the gene encoding the variant murine TLR9 polypeptide into a prokaryotic or eukaryotic (e.g., mammalian) expression vector, introducing the vector into an appropriate host cell,

- 42 -

expressing the variant murine TLR9 polypeptide, and testing for a functional capability of the murine TLR9 polypeptides as disclosed herein. For example, the variant murine TLR9 polypeptide can be tested for ability to provide signaling, as set forth below in the examples. Preparation of other variant polypeptides may favor testing of other activities, as will be known to one of ordinary skill in the art.

5

10

15

20

25

30

The skilled artisan will also realize that conservative amino acid substitutions may be made in murine TLR9 polypeptides to provide functionally equivalent variants of the foregoing polypeptides, i.e., variants which retain the functional capabilities of the murine TLR9 polypeptides. As used herein, a "conservative amino acid substitution" refers to an amino acid substitution which does not alter the relative charge or size characteristics of the polypeptide in which the amino acid substitution is made. Variants can be prepared according to methods for altering polypeptide sequence known to one of ordinary skill in the art such as are found in references which compile such methods, e.g., *Molecular Cloning: A Laboratory Manual*, J. Sambrook, et al., eds., Second Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1989, or *Current Protocols in Molecular Biology*, F.M. Ausubel, et al., eds., John Wiley & Sons, Inc., New York. Exemplary functionally equivalent variants of the murine TLR9 polypeptides include conservative amino acid substitutions of SEQ ID NO:3. Conservative substitutions of amino acids include substitutions made amongst amino acids within the following groups: (a) M, I, L, V; (b) F, Y, W; (c) K, R, H; (d) A, G; (e) S, T; (f) Q, N; and (g) E, D.

Conservative amino acid substitutions in the amino acid sequence of murine TLR9 polypeptide to produce functionally equivalent variants of murine TLR9 typically are made by alteration of the nucleic acid sequence encoding murine TLR9 polypeptides (e.g., SEQ ID NO:1 and SEQ ID NO:2). Such substitutions can be made by a variety of methods known to one of ordinary skill in the art. For example, amino acid substitutions may be made by PCR-directed mutation, site-directed mutagenesis according to the method of Kunkel (Kunkel, *Proc Natl Acad Sci USA* 82:488-492 (1985)), or by chemical synthesis of a gene encoding a murine TLR9 polypeptide. The activity of functionally equivalent fragments of murine TLR9 polypeptide into a bacterial or mammalian expression vector, introducing the vector into an appropriate host cell, expressing the altered murine TLR9 polypeptide, and testing for the ability of the

- 43 -

murine TLR9 polypeptide to mediate a signaling event. Peptides which are chemically synthesized can be tested directly for function.

5

10

15

20

25

30

A variety of methodologies well known to the skilled practitioner can be utilized to obtain isolated murine TLR9 polypeptide molecules. The polypeptide may be purified from cells which naturally produce the polypeptide by chromatographic means or immunological recognition. Alternatively, an expression vector may be introduced into cells to cause production of the polypeptide. In another method, mRNA transcripts may be microinjected or otherwise introduced into cells to cause production of the encoded polypeptide. Translation of mRNA in cell-free extracts such as the reticulocyte lysate system also may be used to produce polypeptide. Those skilled in the art also can readily follow known methods for isolating murine TLR9 polypeptides. These include, but are not limited to, immunochromatography, HPLC, size-exclusion chromatography, ion-exchange chromatography and immune-affinity chromatography.

The invention as described herein has a number of uses, some of which are described elsewhere herein. For example, the invention permits isolation of the murine TLR9 polypeptide molecules by, e.g., expression of a recombinant nucleic acid to produce large quantities of polypeptide which may be isolated using standard protocols. As another example, the isolation of the murine TLR9 gene makes it possible for murine TLR9 to be used in methods for assaying molecular interactions involving TLR9.

As discussed further in the Examples below, it has been discovered according to one aspect of the invention that responsiveness to ISNA can be reconstituted in ISNA-unresponsive cells by introducing into ISNA-unresponsive cells an expression vector that directs the expression of murine TLR9 (and certain homologues and variants thereof). Cells so reconstituted also exhibit responses to substances other than phosphorothioate ISNA, e.g., *E. coli* DNA, phosphodiester CpG-ODN, and even methylated CpG-ODN.

Also as discussed further in the Examples below, it has been discovered according to certain aspects of the instant invention that TLR9 not only confers upon cells the ability to signal in response to binding ISNA, but also confers both sequence specificity and species specificity to such signaling responses. Thus murine TLR9 signaling in response to CpG-ODN 1668, reportedly an optimal murine ISNA, was found to be significantly stronger than the corresponding murine TLR9 signaling response to CpG-ODN 2006, reportedly an optimal

- 44 -

human ISNA. The converse was also found to be true, i.e., human TLR9 signaling in response to CpG-ODN 2006 was found to be significantly stronger than the corresponding human TLR9 signaling response to CpG-ODN 1668. Furthermore, it has been discovered according to the instant invention that certain types of cells preferentially express TLR9. For example, TLR9 is strongly expressed in B cells and plasmacytoid dendritic cells (CD123+DC), but only weakly by T cells, monocyte-derived dendritic cells (MDDC), and CD14+monocytes. In contrast, TLR2 and TLR4 are strongly expressed by MDDC and CD14+monocytes, but relatively weakly by B cells, CD123+DC, and T cells.

The invention also embraces agents which bind selectively to the murine TLR9 nucleic acid molecules or polypeptides as well as agents which bind to variants and fragments of the polypeptides and nucleic acids as described herein. The agents include polypeptides which bind to murine TLR9, and antisense nucleic acids, both of which are described in greater detail below. The agents can inhibit or increase murine TLR9-mediated signaling activity (antagonists and agonists, respectively).

10

15

20

25

30

Some of the agents are inhibitors. A murine TLR9 inhibitor is an agent that inhibits murine TLR9-mediated signaling across a cell membrane.

As used herein "TLR9 signaling" refers to an ability of a TLR9 polypeptide to activate the TLR/IL-1R (TIR) signaling pathway, also referred to herein as the TLR signal transduction pathway. Without meaning to be held to any particular theory, it is believed that the TLR/IL-1R signaling pathway involves signaling via the molecules myeloid differentiation marker 88 (MyD88) and tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6), leading to activation of kinases of the IκB kinase complex and the c-jun NH₂-terminal kinases (e.g., JNK 1/2). Häcker H et al., *J Exp Med* 192:595-600 (2000). A molecule which inhibits TLR9 activity (an antagonist) is one which inhibits TLR9-mediated activation of the TLR/IL-1R signaling pathway, and a molecule which increases TLR9 signaling (an agonist) is one which increases TLR9-mediated activation of the TLR/IL-1R signaling pathway. Changes in TLR9 activity can be measured by assays such as those disclosed herein, including expression of genes under control of κB-sensitive promoters and enhancers. Such naturally occurring genes include the genes encoding IL-1β, IL-6, IL-8, the p40 subunit of interleukin 12 (IL-12p40), and the costimulatory molecules CD80 and CD86. Other genes can be placed under the control of such regulatory elements (see below) and thus

- 45 -

serve to report the level of TLR9 signaling. Additional nucleotide sequence can be added to SEQ ID NO:1 or SEQ ID NO:2, preferably to the 5' or the 3' end of SEQ ID NO:2, to yield a nucleotide sequence encoding a chimeric polypeptide that includes a detectable or reporter moiety, e.g., FLAG, luciferase (luc), green fluorescent protein (GFP) and others known by those skilled in the art. These are discussed in greater detail in the Examples below.

5

10

15.

20

25

30

In one embodiment the murine TLR9 inhibitor is an antisense oligonucleotide that selectively binds to a murine TLR9 nucleic acid molecule, to reduce the expression of murine TLR9 (or TLR9 of another species) in a cell. This is desirable in virtually any medical condition wherein a reduction of TLR9 signaling activity is desirable.

As used herein, the term "antisense oligonucleotide" or "antisense" describes an oligonucleotide that is an oligoribonucleotide, oligodeoxyribonucleotide, modified oligoribonucleotide, or modified oligodeoxyribonucleotide which hybridizes under physiological conditions to DNA comprising a particular gene or to an mRNA transcript of that gene and, thereby, inhibits the transcription of that gene and/or the translation of that mRNA. The antisense molecules are designed so as to interfere with transcription or translation of a target gene upon hybridization with the target gene or transcript. Those skilled in the art will recognize that the exact length of the antisense oligonucleotide and its degree of complementarity with its target will depend upon the specific target selected, including the sequence of the target and the particular bases which comprise that sequence. It is preferred that the antisense oligonucleotide be constructed and arranged so as to bind selectively with the target under physiological conditions, i.e., to hybridize substantially more to the target sequence than to any other sequence in the target cell under physiological conditions.

Based upon SEQ ID NO:1 and SEQ ID NO:2, or upon allelic or homologous genomic and/or cDNA sequences, one of skill in the art can easily choose and synthesize any of a number of appropriate antisense molecules for use in accordance with the present invention. In order to be sufficiently selective and potent for inhibition, such antisense oligonucleotides should comprise at least 10 and, more preferably, at least 15 consecutive bases which are complementary to the target, although in certain cases modified oligonucleotides as short as 7 bases in length have been used successfully as antisense oligonucleotides. Wagner RW et al., *Nat Biotechnol* 14:840-844 (1996). Most preferably, the antisense oligonucleotides comprise

- 46 -

a complementary sequence of 20-30 bases. Although oligonucleotides may be chosen which are antisense to any region of the gene or mRNA transcripts, in preferred embodiments the antisense oligonucleotides correspond to N-terminal or 5' upstream sites such as translation initiation, transcription initiation or promoter sites. In addition, 3'-untranslated regions may be targeted. Targeting to mRNA splicing sites has also been used in the art but may be less preferred if alternative mRNA splicing occurs. In addition, the antisense is targeted, preferably, to sites in which mRNA secondary structure is not expected (see, e.g., Sainio et al., *Cell Mol Neurobiol* 14(5):439-457 (1994)) and at which polypeptides are not expected to bind. Thus, the present invention also provides for antisense oligonucleotides which are complementary to allelic or homologous cDNAs and genomic DNAs corresponding to murine TLR9 nucleic acid containing SEQ ID NO:1 or SEQ ID NO:2.

10

15

20

25

30

In one set of embodiments, the antisense oligonucleotides of the invention may be composed of "natural" deoxyribonucleotides, ribonucleotides, or any combination thereof. That is, the 5' end of one native nucleotide and the 3' end of another native nucleotide may be covalently linked, as in natural systems, via a phosphodiester internucleoside linkage. These oligonucleotides may be prepared by art-recognized methods which may be carried out manually or by an automated synthesizer. They also may be produced recombinantly by vectors.

In preferred embodiments, however, the antisense oligonucleotides of the invention also may include "modified" oligonucleotides. That is, the oligonucleotides may be modified in a number of ways which do not prevent them from hybridizing to their target but which enhance their stability or targeting or which otherwise enhance their therapeutic effectiveness.

The term "modified oligonucleotide" as used herein describes an oligonucleotide in which (1) at least two of its nucleotides are covalently linked via a synthetic internucleoside linkage (i.e., a linkage other than a phosphodiester linkage between the 5' end of one nucleotide and the 3' end of another nucleotide) and/or (2) a chemical group not normally associated with nucleic acids has been covalently attached to the oligonucleotide. Preferred synthetic internucleoside linkages are phosphorothioates, alkylphosphonates, phosphorodithioates, phosphate esters, alkylphosphonothioates, phosphoramidates, carbonates, phosphate triesters, acetamidates, carboxymethyl esters and peptides.

The term "modified oligonucleotide" also encompasses oligonucleotides with a

- 47 -

covalently modified base and/or sugar. For example, modified oligonucleotides include oligonucleotides having backbone sugars which are covalently attached to low molecular weight organic groups other than a hydroxyl group at the 3' position and other than a phosphate group at the 5' position. Thus modified oligonucleotides may include a 2'-O-alkylated ribose group. In addition, modified oligonucleotides may include sugars such as arabinose instead of ribose. The present invention, thus, contemplates pharmaceutical preparations containing modified antisense molecules that are complementary to and hybridizable with, under physiological conditions, nucleic acids encoding murine TLR9 polypeptides, together with pharmaceutically acceptable carriers.

5

10

15

20

25

30

Agents which bind murine TLR9 also include binding peptides and other molecules which bind to the murine TLR9 polypeptide and complexes containing the murine TLR9 polypeptide. When the binding molecules are inhibitors, the molecules bind to and inhibit the activity of murine TLR9. When the binding molecules are activators, the molecules bind to and increase the activity of murine TLR9. To determine whether a murine TLR9 binding agent binds to murine TLR9 any known binding assay may be employed. For example, the binding agent may be immobilized on a surface and then contacted with a labeled murine TLR9 polypeptide. The amount of murine TLR9 which interacts with the murine TLR9 binding agent may then be quantitated to determine whether the murine TLR9 binding agent binds to murine TLR9.

The murine TLR9 binding agents include molecules of numerous size and type that bind selectively or preferentially to murine TLR9 polypeptides, and complexes of both murine TLR9 polypeptides and their binding partners. These molecules may be derived from a variety of sources. For example, murine TLR9 binding agents can be provided by screening degenerate peptide libraries which can be readily prepared in solution, in immobilized form or as phage display libraries. Combinatorial libraries also can be synthesized of peptides containing one or more amino acids. Libraries further can be synthesized of peptoids and non-peptide synthetic moieties.

Phage display can be particularly effective in identifying binding peptides useful according to the invention. Briefly, one prepares a phage library (using, e.g., m13, fd, or lambda phage), displaying inserts from 4 to about 80 amino acid residues using conventional procedures. The inserts may represent, for example, a completely degenerate or biased array.

- 48 -

One then can select phage-bearing inserts which bind to the murine TLR9 polypeptide. This process can be repeated through several cycles of reselection of phage that bind to the murine TLR9 polypeptide. Repeated rounds lead to enrichment of phage bearing particular sequences. DNA sequence analysis can be conducted to identify the sequences of the expressed polypeptides. The minimal linear portion of the sequence that binds to the murine TLR9 polypeptide can be determined. One can repeat the procedure using a biased library containing inserts containing part or all of the minimal linear portion plus one or more additional degenerate residues upstream or downstream thereof. Yeast two-hybrid screening methods also may be used to identify polypeptides that bind to the murine TLR9 polypeptides. Thus, the murine TLR9 polypeptides of the invention, or a fragment thereof, can be used to screen peptide libraries, including phage display libraries, to identify and select peptide binding partners of the murine TLR9 polypeptides of the invention. Such molecules can be used, as described, for screening assays, for purification protocols, for interfering directly with the functioning of murine TLR9 and for other purposes that will be apparent to those of ordinary skill in the art.

5

10

15

20

25

30

The invention also embraces agents which bind selectively to certain regulatory sequences associated with the murine TLR9 nucleic acid molecules described herein. The agents include polypeptides which bind to transcription and translation regulatory sequences of murine TLR9, and antisense nucleic acids, both of which are described in greater detail below. The agents can inhibit or increase murine TLR9 expression, as well as signaling activity (antagonists and agonists, respectively). Agents which bind selectively to regulatory sequences associated with the murine TLR9 nucleic acid molecules can be identified using methods familiar to those of skill in the art. For example, a promoter region including at least 100, 200, 300, 400, 500, or more nucleotides upstream (5') of the coding region of murine TLR9 can be identified by isolating, from appropriate genomic DNA, such nucleotide sequences using the sequences of SEQ ID NO:1 or SEQ ID NO:2 as primers or as probes, and then inserting the promoter region DNA into an appropriate expression vector so as to control the expression of TLR9 or some other reporter gene, introducing the TLR9 promoter vector into an appropriate host cell, and screening for TLR9 or reporter expression by those cells following their incubation in the presence and absence of various test agents. A reporter gene other than TLR9 can include, for example, an enzyme, a cytokine, a cell surface antigen,

- 49 -

luciferase, chloramphenicol acetyl transferase (CAT), etc. An agent that inhibits expression of TLR9 or the reporter under the control of the TLR9 promoter is classified as a TLR9 expression inhibitor. Conversely, an agent that augments expression of TLR9 or reporter under the control of the TLR9 promoter is classified as a TLR9 expression enhancer. It was discovered according to the instant invention, for example, that the cytokine IL-4 inhibits the expression of TLR9. In this manner it is possible to identify agents that can be administered in conjunction with ISNA, for example by local administration, to enhance response to the ISNA. Such an enhancing effect might be desirable, for example, in the setting of immunization or vaccination. Conversely, it it is possible to identify agents that can be administered in conjunction with a ISNA, for example by local administration, to inhibit response to the ISNA. Such an inhibiting response might be desirable, for example, in the setting of gene replacement therapy.

5

10

15

20

25

30

Therefore the invention generally provides efficient methods of identifying pharmacological agents or lead compounds for agents useful in the treatment of conditions associated with TLR9 activity and the compounds and agents so identified. Generally, the screening methods involve assaying for compounds which inhibit or enhance signaling through murine TLR9. Such methods are adaptable to automated, high throughput screening of compounds. Examples of such high throughput screening methods are described in U.S. patents 6,103,479; 6,051,380; 6,051,373; 5,998,152; 5,876,946; 5,708,158; 5,443,791; 5,429,921; and 5,143,854.

A variety of assays for pharmacological agents are provided, including labeled *in vitro* protein binding assays, signaling assays using detectable molecules, etc. For example, protein binding screens are used to rapidly examine the binding of candidate pharmacological agents to a murine TLR9. The candidate pharmacological agents can be derived from, for example, combinatorial peptide or nucleic acid libraries. Convenient reagents for such assays are known in the art. An exemplary cell-based assay of signaling involves contacting a cell having a murine TLR9 with a candidate pharmacological agent under conditions whereby the induction of a detectable molecule can occur. Specific conditions are well known in the art and are described, for example, in Häcker H et al., *J Exp Med* 192:595-600 (2000), and references cited therein. A reduced degree of induction of the detectable molecule in the presence of the candidate pharmacological agent indicates that the candidate pharmacological

- 50 -

agent reduces the signaling activity of murine TLR9. An increased degree of induction of the detectable molecule in the presence of the candidate pharmacological agent indicates that the candidate pharmacological agent increases the signaling activity of murine TLR9.

5

10

15

20

25

30

Murine TLR9 used in the methods of the invention can be added to an assay mixture as an isolated polypeptide (where binding of a candidate pharmaceutical agent is to be measured) or as a cell or other membrane-encapsulated space which includes a murine TLR9 polypeptide. In the latter assay configuration, the cell or other membrane-encapsulated space can contain the murine TLR9 as a polypeptide or as a nucleic acid (e.g., a cell transfected with an expression vector containing a murine TLR9). In the assays described herein, the murine TLR9 polypeptide can be produced recombinantly, isolated from biological extracts, or synthesized *in vitro*. Murine TLR9 polypeptides encompass chimeric proteins comprising a fusion of a murine TLR9 polypeptide with another polypeptide, e.g., a polypeptide capable of providing or enhancing protein-protein binding, enhancing signaling capability, facilitating detection, or enhancing stability of the murine TLR9 polypeptide under assay conditions. A polypeptide fused to a murine TLR9 polypeptide or fragment thereof may also provide means of readily detecting the fusion protein, e.g., by immunological recognition or by fluorescent labeling.

The assay mixture also comprises a candidate pharmacological agent. Typically, a plurality of assay mixtures are run in parallel with different agent concentrations to obtain a different response to the various concentrations. Typically, one of these concentrations serves as a negative control, i.e., at zero concentration of agent or at a concentration of agent below the limits of assay detection. Candidate pharmaceutical agents encompass numerous chemical classes, although typically they are organic compounds. Preferably, the candidate pharmacological agents are small organic compounds, i.e., those having a molecular weight of more than 50 yet less than about 2500. Polymeric candidate agents can have higher molecular weights, e.g., oligonucleotides in the range of about 2500 to about 12,500. Candidate agents comprise functional chemical groups necessary for structural interactions with polypeptides, and may include at least an amine, carbonyl, hydroxyl or carboxyl group, preferably at least two of the functional chemical groups and more preferably at least three of the functional chemical groups. The candidate agents can comprise cyclic carbon or heterocyclic structure and/or aromatic or polyaromatic structures substituted with one or more

- 51 -

of the above-identified functional groups. Candidate agents also can be biomolecules such as nucleic acids, peptides, saccharides, fatty acids, sterols, isoprenoids, purines, pyrimidines, derivatives or structural analogs of the above, or combinations thereof and the like. Where the agent is a nucleic acid, the agent typically is a DNA or RNA molecule, although modified nucleic acids having non-natural bonds or subunits are also contemplated.

5

10

15

20

25

30

Candidate agents are obtained from a wide variety of sources, including libraries of natural, synthetic, or semisynthetic compounds, or any combination thereof. For example, numerous means are available for random and directed synthesis of a wide variety of organic compounds and biomolecules, including expression of randomized oligonucleotides, synthetic organic combinatorial libraries, phage display libraries of random peptides, and the like. Alternatively, libraries of natural compounds in the form of bacterial, fungal, plant and animal extracts are available or readily produced. Additionally, natural and synthetically produced libraries and compounds can be readily modified through conventional chemical, physical, and biochemical means. Further, known pharmacological agents may be subjected to directed or random chemical modifications such as acylation, alkylation, esterification, amidification, etc., to produce structural analogs of the agents.

Therefore, a source of candidate agents are libraries of molecules based on known TLR9 ligands, e.g., CpG oligonucleotides shown herein to interact with TLR9, in which the structure of the ligand is changed at one or more positions of the molecule to contain more or fewer chemical moieties or different chemical moieties. The structural changes made to the molecules in creating the libraries of analog inhibitors can be directed, random, or a combination of both directed and random substitutions and/or additions. One of ordinary skill in the art in the preparation of combinatorial libraries can readily prepare such libraries based on existing TLR9 ligands.

A variety of other reagents also can be included in the mixture. These include reagents such as salts, buffers, neutral proteins (e.g., albumin), detergents, etc. which may be used to facilitate optimal protein-protein and/or protein-nucleic acid binding. Such a reagent may also reduce non-specific or background interactions of the reaction components. Other reagents that improve the efficiency of the assay such as protease inhibitors, nuclease inhibitors, antimicrobial agents, and the like may also be used.

The mixture of the foregoing assay materials is incubated under conditions whereby,

- 52 -

but for the presence of the candidate pharmacological agent, the murine TLR9 mediates TLR/IL-1R signaling. For determining the binding of a candidate pharmaceutical agent to a murine TLR9, the mixture is incubated under conditions which permit binding. The order of addition of components, incubation temperature, time of incubation, and other parameters of the assay may be readily determined. Such experimentation merely involves optimization of the assay parameters, not the fundamental composition of the assay. Incubation temperatures typically are between 4°C and 40°C. Incubation times preferably are minimized to facilitate rapid, high throughput screening, and typically are between 1 minute and 10 hours.

5

10

15

20

25

30

After incubation, the level of signaling or the level of specific binding between the murine TLR9 polypeptide and the candidate pharmaceutical agent is detected by any convenient method available to the user. For cell-free binding type assays, a separation step is often used to separate bound from unbound components. The separation step may be accomplished in a variety of ways. For example, separation can be accomplished in solution, or, conveniently, at least one of the components is immobilized on a solid substrate, from which the unbound components may be easily separated. The solid substrate can be made of a wide variety of materials and in a wide variety of shapes, e.g., microtiter plate, microbead, dipstick, resin particle, etc. The substrate preferably is chosen to maximize signal-to-noise ratios, primarily to minimize background binding, as well as for ease of separation and cost.

Separation may be effected for example, by removing a bead or dipstick from a reservoir, emptying or diluting a reservoir such as a microtiter plate well, rinsing a bead, particle, chromatographic column or filter with a wash solution or solvent. The separation step preferably includes multiple rinses or washes. For example, when the solid substrate is a microtiter plate, the wells may be washed several times with a washing solution, which typically includes those components of the incubation mixture that do not participate in specific bindings such as salts, buffer, detergent, non-specific protein, etc. Where the solid substrate is a magnetic bead, the beads may be washed one or more times with a washing solution and isolated using a magnet.

Detection may be effected in any convenient way for cell-based assays such as measurement of an induced polypeptide within, on the surface of, or secreted by the cell. Examples of detection methods useful in such cell-based assays include fluorescenceactivated cell sorting (FACS) analysis, bioluminescence, fluorescence, enzyme-linked

- 53 -

immunosorbent assay (ELISA), reverse transcriptase-polymerase chain reaction (RT-PCR), and the like.

A variety of methods may be used to detect the label, depending on the nature of the label and other assay components. For example, the label may be detected while bound to the solid substrate or subsequent to separation from the solid substrate. Labels may be directly detected through optical or electron density, radioactive emissions, nonradiative energy transfers, etc., or indirectly detected with antibody conjugates, streptavidin-biotin conjugates, etc. Methods for detecting the labels are well known in the art.

5

10

15

20

25

30

The murine TLR9 binding agent may also be an antibody or a functionally active antibody fragment. Antibodies are well known to those of ordinary skill in the science of immunology. As used herein, the term "antibody" means not only intact antibody molecules but also fragments of antibody molecules retaining specific target binding ability. Such fragments are also well known in the art and are regularly employed both *in vitro* and *in vivo*. In particular, as used herein, the term "antibody" means not only intact immunoglobulin molecules but also the well-known active fragments F(ab')₂ and Fab. F(ab')₂ and Fab fragments which lack the Fc fragment of intact antibody clear more rapidly from the circulation and may have less non-specific tissue binding than an intact antibody (Wahl RL et al., *J Nucl Med* 24:316-325 (1983)).

Monoclonal antibodies may be made by any of the methods known in the art utilizing murine TLR9, or a fragment thereof, as an immunogen. Alternatively the antibody may be a polyclonal antibody specific for murine TLR9 which inhibits murine TLR9 activity. The preparation and use of polyclonal antibodies are also known to one of ordinary skill in the art.

Significantly, as is well known in the art, only a small portion of an antibody molecule, the paratope, is involved in the binding of the antibody to its epitope (see, in general, Clark, W.R. (1986) *The Experimental Foundations of Modern Immunology*, Wiley & Sons, Inc., New York; Roitt, I. (1991) *Essential Immunology*, 7th Ed., Blackwell Scientific Publications, Oxford). The pFc' and Fc regions, for example, are effectors of the complement cascade but are not involved in antigen binding. An antibody from which the pFc' region has been enzymatically cleaved, or which has been produced without the pFc' region, designated an F(ab')₂ fragment, retains both of the antigen binding sites of an intact antibody. Similarly, an antibody from which the Fc region has been enzymatically cleaved, or which has been

- 54 -

produced without the Fc region, designated an Fab fragment, retains one of the antigen binding sites of an intact antibody molecule. Proceeding further, Fab fragments consist of a covalently bound antibody light chain and a portion of the antibody heavy chain denoted Fd. The Fd fragments are the major determinant of antibody specificity (a single Fd fragment may be associated with up to ten different light chains without altering antibody specificity) and Fd fragments retain epitope-binding ability in isolation.

5

10

15

20

25

30

Within the antigen-binding portion of an antibody, as is well-known in the art, there are complementarity determining regions (CDRs), which directly interact with the epitope of the antigen, and framework regions (FRs), which maintain the tertiary structure of the paratope (see, in general, Clark, 1986; Roitt, 1991). In both the heavy chain Fd fragment and the light chain of IgG immunoglobulins, there are four framework regions (FR1 through FR4) separated respectively by three complementarity determining regions (CDR1 through CDR3). The CDRs, and in particular the CDR3 regions, and more particularly the heavy chain CDR3, are largely responsible for antibody specificity.

The sequences of the antigen-binding Fab' portion of the anti-murine TLR9 monoclonal antibodies identified as being useful according to the invention in the assays provided above, as well as the relevant FR and CDR regions, can be determined using amino acid sequencing methods that are routine in the art. It is well established that non-CDR regions of a mammalian antibody may be replaced with corresponding regions of non-specific or hetero-specific antibodies while retaining the epitope specificity of the original antibody. This technique is useful for the development and use of "humanized" antibodies in which non-human CDRs are covalently joined to human FR and/or Fc/pFc' regions to produce a functional antibody. Techniques to humanize antibodies are particularly useful when non-human animal (e.g., murine) antibodies which inhibit murine TLR9 activity are identified. These non-human animal antibodies can be humanized for use in the treatment of a human subject in the methods according to the invention. Examples of methods for humanizing a murine antibody are provided in U.S. patents 4,816,567, 5,225,539, 5,585,089, 5,693,762 and 5,859,205. Other antibodies, including fragments of intact antibodies with antigen-binding ability, are often referred to as "chimeric" antibodies.

Thus, as will be apparent to one of ordinary skill in the art, the present invention also provides for F(ab')₂ and Fab fragments of an anti-murine TLR9 monoclonal antibody;

chimeric antibodies in which the Fc and/or FR and/or CDR1 and/or CDR2 and/or light chain CDR3 regions of an anti-murine TLR9 antibody have been replaced by homologous human or non-human sequences; chimeric F(ab')₂ fragment antibodies in which the FR and/or CDR1 and/or CDR2 and/or light chain CDR3 regions of an anti-murine TLR9 antibody have been replaced by homologous human or non-human sequences; and chimeric Fab fragment antibodies in which the FR and/or CDR1 and/or CDR2 and/or light chain CDR3 regions have been replaced by homologous human or non-human sequences.

5

10

15

20

25

30

According to the invention murine TLR9 inhibitors also include "dominant negative" polypeptides derived from SEQ ID NO:3. A dominant negative polypeptide is an inactive variant of a polypeptide, which, by interacting with the cellular machinery, displaces an active polypeptide from its interaction with the cellular machinery or competes with the active polypeptide, thereby reducing the effect of the active polypeptide. For example, a dominant negative receptor which binds a ligand but does not transmit a signal in response to binding of the ligand can reduce the biological effect of expression of the receptor. As shown in the Examples below, TLR9 polypeptides which incorporate the substitution of histidine for proline at aa 915 (P915H mutation) are functionally inactive and are dominant negative with respect to the native TLR9 polypeptide.

The end result of the expression of a dominant negative murine TLR9 polypeptide of the invention in a cell is a reduction in TLR9 activity such as signaling through the TIR pathway. One of ordinary skill in the art can assess the potential for a dominant negative variant of a murine TLR9 polypeptide and, using standard mutagenesis techniques, create one or more dominant negative variant polypeptides. For example, given the teachings contained herein of a murine TLR9 polypeptide, one of ordinary skill in the art can modify the sequence of the murine TLR9 polypeptide by site-specific mutagenesis, scanning mutagenesis, partial gene deletion or truncation, and the like. See, e.g., U.S. Patent No. 5,580,723 and *Molecular Cloning: A Laboratory Manual*, J. Sambrook, et al., eds., Second Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1989. The skilled artisan then can test the population of mutagenized polypeptides for diminution in murine TLR9 activity and/or for retention of such an activity. Other similar methods for creating and testing dominant negative variants of a murine TLR9 polypeptide will be apparent to one of ordinary skill in the art.

- 56 -

Each of the compositions according to this aspect of the invention is useful for a variety of therapeutic and non-therapeutic purposes. For example, the murine TLR9 nucleic acids of the invention are useful as oligonucleotide probes. Such oligonucleotide probes can be used herein to identify genomic or cDNA library clones possessing an identical or substantially similar nucleic acid sequence. A suitable oligonucleotide or set of oligonucleotides, which is capable of hybridizing under stringent hybridization conditions to the desired sequence, a variant or fragment thereof, or an anti-sense complement of such an oligonucleotide or set of oligonucleotides, can be synthesized by means well known in the art (see, for example, *Synthesis and Application of DNA and RNA*, S.A. Narang, ed., 1987, Academic Press, San Diego, CA) and employed as a probe to identify and isolate the desired sequence, variant or fragment thereof by techniques known in the art. Techniques of nucleic acid hybridization and clone identification are disclosed by Sambrook, et al., *Molecular Cloning: A Laboratory Manual*, J. Sambrook, et al., eds., Second Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1989.

5

10

15

20

25

30

To facilitate the detection of a desired nucleic acid sequence, or variant or fragment thereof, whether for cloning purposes or for the mere detection of the presence of the sequence, the above-described probes may be labeled with a detectable group. Such a detectable group may be any material having a detectable physical or chemical property. Such materials have been well developed in the field of nucleic acid hybridization and, in general, many labels useful in such methods can be applied to the present invention. Particularly useful are radioactive labels. Any radioactive label may be employed which provides for an adequate signal and has a sufficient half-life. If single stranded, the oligonucleotide may be radioactively labeled using kinase reactions. Alternatively, oligonucleotides are also useful as nucleic acid hybridization probes when labeled with a non-radioactive marker such as biotin, an enzyme or a fluorescent group. See, for example, Leary JJ et al., *Proc Natl Acad Sci USA* 80:4045 (1983); Renz M et al., *Nucleic Acids Res* 12:3435 (1984); and Renz M, *EMBO J* 6:817 (1983).

Additionally, complements of the murine TLR9 nucleic acids can be useful as antisense oligonucleotides, e.g., by delivering the antisense oligonucleotide to an animal to induce a murine TLR9 "knockout" phenotype. The administration of antisense RNA probes to block gene expression is discussed in Lichtenstein C, *Nature* 333:801-802 (1988).

- 57 -

Alternatively, the murine TLR9 nucleic acid of the invention can be used to prepare a non-human transgenic animal. A "transgenic animal" is an animal having cells that contain DNA which has been artificially inserted into a cell, which DNA becomes part of the genome of the animal which develops from that cell. Preferred transgenic animals are primates, mice, rats, cows, pigs, horses, goats, sheep, dogs and cats. Animals suitable for transgenic experiments can be obtained from standard commercial sources such as Charles River (Wilmington, MA), Taconic (Germantown, NY), Harlan (Indianapolis, IN), etc. Transgenic animals having a particular property associated with a particular disease can be used to study the effects of a variety of drugs and treatment methods on the disease, and thus serve as genetic models for the study of a number of human diseases. The invention, therefore, contemplates the use of murine TLR9 knockout and transgenic animals as models for the study of disorders involving TLR9-mediated signaling. A variety of methods known to one of ordinary skill in the art are available for the production of transgenic animals associated with this invention.

10

15

20

25

30

Inactivation or replacement of the endogenous TLR9 gene can be achieved by a homologous recombination system using embryonic stem cells. The resultant transgenic non-human mammals having a TLR9^{-/-} knockout phenotype may be made transgenic for the murine TLR9 and used as a model for screening compounds as modulators (agonists or antagonists/inhibitors) of the murine TLR9. In this manner, such therapeutic drugs can be identified.

Additionally, a normal or mutant version of murine TLR9 can be inserted into the germ line to produce transgenic animals which constitutively or inducibly express the normal or mutant form of murine TLR9. These animals are useful in studies to define the role and function of murine TLR9 in cells.

Generally, doses of active compounds would be from about 0.01 mg/kg per day to 1000 mg/kg per day. It is expected that doses ranging from 50-500 mg/kg will be suitable and in one or several administrations per day. Lower doses will result from other forms of administration, such as intravenous administration. In the event that a response in a subject is insufficient at the initial doses applied, higher doses (or effectively higher doses by a different, more localized delivery route) may be employed to the extent that patient tolerance permits. Multiple doses per day are contemplated to achieve appropriate systemic levels of

compound, although fewer doses typically will be given when compounds are prepared as slow release or sustained release medications.

5

10

15

20

25

30

The antagonists, agonists, nucleic acids, and polypeptides of murine TLR9 useful according to the invention may be combined, optionally, with a pharmaceutically acceptable carrier. Thus the invention also provides pharmaceutical compositions and a method for preparing the pharmaceutical compositions which contain compositions of this aspect of the invention. The pharmaceutical compositions include any one or combination of the antagonists, agonists, nucleic acids and polypeptides of murine TLR9 useful according to the invention and, optionally, a pharmaceutically acceptable carrier. Each pharmaceutical composition is prepared by selecting an antagonist, agonist, nucleic acid or polypeptide of murine TLR9 useful according to the invention, as well as any combination thereof, and, optionally, combining it with a pharmaceutically acceptable carrier.

The term "pharmaceutically acceptable carrier" as used herein means one or more compatible solid or liquid fillers, diluents or encapsulating substances which are suitable for administration into a human. The term "carrier" denotes an organic or inorganic ingredient, natural or synthetic, with which the active ingredient is combined to facilitate the application. The components of the pharmaceutical compositions also are capable of being co-mingled with the molecules of the present invention, and with each other, in a manner such that there is no interaction which would substantially impair the desired pharmaceutical efficacy.

The pharmaceutical compositions may contain suitable buffering agents, including, without limitation: acetic acid in a salt; citric acid in a salt; and phosphoric acid in a salt.

The pharmaceutical compositions also may contain, optionally, suitable preservatives, such as benzalkonium chloride, chlorobutanol, parabens, and thimerosal.

When administered, the pharmaceutical preparations of the invention are applied in pharmaceutically acceptable amounts and in pharmaceutically acceptable compositions. Such preparations may routinely contain salts, buffering agents, preservatives, compatible carriers, and optionally other therapeutic agents. When used in medicine, the salts should be pharmaceutically acceptable, but non-pharmaceutically acceptable salts may conveniently be used to prepare pharmaceutically acceptable salts thereof and are not excluded from the scope of the invention. Such pharmacologically and pharmaceutically acceptable salts include, but are not limited to, those prepared from the following acids: hydrochloric, hydrobromic,

- 59 -

sulfuric, nitric, phosphoric, maleic, acetic, salicylic, citric, formic, malonic, succinic, and the like. Also, pharmaceutically acceptable salts can be prepared as alkaline metal or alkaline earth salts, such as sodium, potassium or calcium salts.

5

10

15

20

25

30

A variety of administration routes are available. The particular mode selected will depend, of course, upon the particular compound selected, the severity of the condition being treated, and the dosage required for therapeutic efficacy. The methods of the invention, generally speaking, may be practiced using any mode of administration that is medically acceptable, meaning any mode that produces effective levels of the active compounds without causing clinically unacceptable adverse effects. Such modes of administration include oral, rectal, topical, nasal, intradermal, or parenteral routes. The term "parenteral" includes, without limitation, subcutaneous, transdermal, intravenous, intra-arterial, intrathecal, intramuscular, intraperitoneal, mucosal (apart from gastrointestinal mucosa), pulmonary, intralesional, and infusion.

The pharmaceutical compositions may conveniently be presented in unit dosage form and may be prepared by any of the methods well-known in the art of pharmacy. All methods include the step of bringing the active agent into association with a carrier which constitutes one or more accessory ingredients. In general, the compositions are prepared by uniformly and intimately bringing the active compound into association with a liquid carrier, a finely divided solid carrier, or both, and then, if necessary, shaping the product.

Compositions suitable for oral administration may be presented as discrete units, such as capsules, tablets, lozenges, each containing a predetermined amount of the active compound. Other compositions include suspensions in aqueous liquids or non-aqueous liquids such as a syrup, elixir or an emulsion.

Compositions suitable for parenteral administration conveniently comprise a sterile aqueous preparation of the antagonists, agonists, nucleic acids, or polypeptides of murine TLR9, which is preferably isotonic with the blood of the recipient. This aqueous preparation may be formulated according to known methods using suitable dispersing or wetting agents and suspending agents. The sterile injectable preparation also may be a sterile injectable solution or suspension in a non-toxic parenterally acceptable diluent or solvent, for example, as a solution in 1,3-butane diol. Among the acceptable vehicles and solvents that may be employed are water, Ringer's solution, and isotonic sodium chloride solution. In addition,

- 60 -

sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose any bland fixed oil may be employed including synthetic mono- or di-glycerides. In addition, fatty acids such as oleic acid may be used in the preparation of injectables. Carrier formulation suitable for oral, subcutaneous, intravenous, intrathecal, intramuscular, etc. administrations can be found in Remington's Pharmaceutical Sciences, Mack Publishing Co., Easton, PA.

5

10

15

20

25

30

Other delivery systems can include time-release, delayed release or sustained release delivery systems such as the biological/chemical vectors is discussed above. Such systems can avoid repeated administrations of the active compound, increasing convenience to the subject and the physician. Many types of release delivery systems are available and known to those of ordinary skill in the art. Use of a long-term sustained release implant may be desirable. Long-term release, are used herein, means that the implant is constructed and arranged to delivery therapeutic levels of the active ingredient for at least 30 days, and preferably 60 days. Long-term sustained release implants are well-known to those of ordinary skill in the art and include some of the release systems described above.

In another aspect the invention involves the identification of cDNAs encoding mouse TLR7 and mouse TLR8, referred to herein as murine TLR7 and murine TLR8 and, equivalently, mTLR7 and mTLR8, respectively. The nucleotide sequence of the cDNA for murine TLR7 is presented as SEQ ID NO:173, the coding region of the cDNA for murine TLR7 is presented as SEQ ID NO:174, and the amino acid sequence of the murine TLR7 is presented as SEQ ID NO:175. The closely related human TLR7 (equivalently, hTLR7) was previously deposited in GenBank under accession numbers AF245702 and AF240467. The nucleotide sequence of the cDNA for murine TLR7 presented as SEQ ID NO:173 is 3357 nucleotides long and includes the ORF spanning bases 117-3266, presented as SEQ ID NO:174, which spans 3150 nucleotides (excluding the stop codon). The amino acid sequence of the murine TLR7 presented as SEQ ID NO:175 is 1050 amino acids long.

The nucleotide sequence of the cDNA for murine TLR8 is presented as SEQ ID NO:190, the coding region of the cDNA for murine TLR8 is presented as SEQ ID NO:191, and the amino acid sequence of the murine TLR8 is presented as SEQ ID NO:192. The closely related human TLR8 (equivalently, hTLR8) was previously deposited in GenBank under accession numbers AF245703 and AF246971.

- 61 -

Like both human and murine TLR9, human TLR7 and human TLR8 each contains one CXXC motif and one MBD motif. The hTLR7 CXXC motif contains amino acids 258-273, and the hTLR8 CXXC motif contains amino acids 255-270.

5
J

	CXXC motif:	GNCXXCXXXXXCXXC	SEQ ID NO:196
	hTLR9:	GNCRRCDHAPNPCMEC	SEQ ID NO:197
	mTLR9:	GNCRRCDHAPNPCMIC	SEQ ID NO:198
	hTLR7:	GNCPRCYNAPFPCAPC	SEQ ID NO:199
10	mTLR7:	GNCPRCYNVPYPCTPC	SEQ ID NO:200
	hTLR8:	GNCPRCFNAPFPCVPC	SEQ ID NO:201
	mTLR8:	GNCPRCYNAPFPCTPC	SEQ ID NO:202

Also like human and murine TLR9, human TLR7 and TLR8 also have a single MBD motif. The the hTLR7 MBD motif spans amino acids 545-575, and the hTLR8 MBD motif amino acids spans 533-563.

MBD motif

	MBD-1	R-XXXXXXX-R-X-D-X-Y-XXXXXXXXXX-R-S-XXXXXX-Y	SEQ ID NO:125
20	hTLR9	Q-XXXXXXX-K-X-D-X-Y-XXXXXXXXXX-R-L-XXXXXXX-Y	SEQ ID NO:126
	mTLR9	Q-XXXXXXX-K-X-D-X-Y-XXXXXXXXXX-Q-L-XXXXXXX-Y	SEQ ID NO:127
	hTLR7	R-XXXXXXX-R-X-D-X-L-XXXXXXXXXX-K-L-XXXXXXX-S	SEQ ID NO:203
	mTLR7	R-XXXXXXX-R-X-D-X-L-XXXXXXXXXX-S-L-XXXXXXX-S	SEQ ID NO:204
	hTLR8	K-XXXXXXX-R-X-D-X-D-XXXXXXXXXXD-L-XXXXXXX-Y	SEQ ID NO:205
25	mTLR8	K-XXXXXXX-R-X-D-X-D-XXXXXXXXXXD-L-XXXXXXX-H	SEQ ID NO:206
	hTLR7	R-YLDFSNN-R-L-D-L-L-HSTAFEELH-K-L-EVLDIS-S	SEQ'ID NO:212
	mTLR7	R-YLDFSNN-R-L-D-L-L-YSTAFEELQ-S-L-EVLDLS-S	SEQ ID NO:213
30	hTLR8	K-YLDLTNN-R-L-D-F-D-NASALTELS-D-L-EVLDLS-Y	SEQ ID NO:214
	mTLR8	K-YLDLTNN-R-L-D-F-D-DNNAFSDLH-D-L-EVLDLS-H	SEQ ID NO:215

- 62 -

The core D-X-Y in the MBD motif is involved in CpG binding of the MBD-1 protein and is conserved in TLR9 but only partially conserved in TLR8 and TLR7 (Y to D or L). The other mismatches are highly or moderately conserved; example R to K, Q, or D. These changes could explain MBD-1 as a methyl-CpG binder and TLR9 as a binder for CpG-DNA. The modification in the core sequence (D-X-Y) in hTLR7 (D-X-L) and TLR8 (D-X-D) is likely a structural basis for the recognition of different nucleic acid motifs. Combined with the presence of a CXXC domain TLR7 and TLR8 appear certainly to be nucleic acid binding receptors relevant to the innate immune system and thus clinical value.

5

10

15

20

25

30

The invention involves in one aspect murine TLR7 and murine TLR8 nucleic acids and polypeptides, as well as therapeutics relating thereto. The invention also embraces isolated functionally equivalent variants, useful analogs and fragments of the foregoing murine TLR7 and murine TLR8 nucleic acids and polypeptides; complements of the foregoing murine TLR7 and murine TLR8 nucleic acids; and molecules which selectively bind the foregoing murine TLR7 and murine TLR8 nucleic acids and polypeptides.

The murine TLR7 and murine TLR8 nucleic acids and polypeptides of the invention are isolated. The term "isolated," with respect to murine TLR7 and murine TLR8 nucleic acids and polypepetides, has the same meaning as used elsewhere herein.

As used herein a murine TLR7 nucleic acid refers to an isolated nucleic acid molecule which codes for a murine TLR7 polypeptide. Such nucleic acid molecules code for murine TLR7 polypeptides which include the sequence of SEQ ID NO:175 and fragments thereof. The nucleic acid molecules include the nucleotide sequences of SEQ ID NO:173, SEQ ID NO:174, and nucleotide sequences which differ from the sequences of SEQ ID NO:173 and SEQ ID NO:174 in codon sequence due to the degeneracy of the genetic code.

Also as used herein a murine TLR8 nucleic acid refers to an isolated nucleic acid molecule which codes for a murine TLR8 polypeptide. Such nucleic acid molecules code for murine TLR8 polypeptides which include the sequences of SEQ ID NO:193, and fragments thereof. The nucleic acid molecules include the nucleotide sequences of SEQ ID NO:190, SEQ ID NO:191, and nucleotide sequences which differ from the sequences of SEQ ID NO:190 and SEQ ID NO:191 in codon sequence due to the degeneracy of the genetic code.

The murine TLR7 and murine TLR8 nucleic acids of the invention also include alleles

- 63 -

as well as fragments of the foregoing nucleic acids. Such fragments can be used, for example, as probes in hybridization assays and as primers in a polymerase chain reaction. Preferred murine TLR7 nucleic acids include the nucleic acid sequence of SEQ ID NO:173 and SEQ ID NO:174. Preferred murine TLR8 nucleic acids include the nucleic acid sequence of SEQ ID NO:190 and SEQ ID NO:191. Complements of the foregoing nucleic acids also are embraced by the invention.

5

10

15

20

25

30

As used herein a murine TLR7 nucleic acid or murine TLR7 polypeptide also embraces homologues and alleles of murine TLR7. Likewise, as used herein a murine TLR8 nucleic acid or murine TLR8 polypeptide also embraces homologues and alleles of murine TLR8. Homologues and alleles of murine TLR7 and murine TLR8 comply with the degrees of nucleotide and amino acid identity as previously set forth herein in reference to homologues and alleles of murine TLR9.

Alleles of the murine TLR7 and murine TLR8 nucleic acids of the invention can be identified by conventional techniques. For example, alleles of murine TLR7 can be isolated by hybridizing a probe which includes at least a fragment of SEQ ID NO:173 or SEQ ID NO:174 under stringent conditions with a cDNA library and selecting positive clones. Thus, an aspect of the invention is those nucleic acid sequences which code for murine TLR7 polypeptides and which hybridize to a nucleic acid molecule consisting of SEQ ID NO:173 or SEQ ID NO:174 under stringent conditions. Likewise, an aspect of the invention is those nucleic acid sequences which code for murine TLR8 polypeptides and which hybridize to a nucleic acid molecule consisting of SEQ ID NO:190 or SEQ ID NO:191 under stringent conditions. Stringent conditions in this context has the same meaning as described elsewhere herein, including the use of a suitable hybridization buffer and a temperature of about 65°C.

In screening for murine TLR7 or murine TLR8 nucleic acids, a Southern blot may be performed using the stringent conditions previously described herein, together with a radioactive probe. After washing the membrane to which the DNA is finally transferred, the membrane can be placed against X-ray film to detect the radioactive signal. Corresponding non-radioactive methods are also well known in the art and can be used to similar effect.

The murine TLR7 and murine TLR8 nucleic acids of the invention also include degenerate nucleic acids which include alternative codons to those present in the native materials, as previously described herein.

- 64 -

The invention also provides modified nucleic acid molecules which include additions, substitutions and deletions of one or more nucleotides. The modified nucleic acid molecules according to this aspect of the invention exclude fully native human TLR7 (SEQ ID NO:168, SEQ ID NO:169, GenBank Accession No. AF245702, and GenBank Accession No. AF240467) and fully native human TLR8 nucleic acid molecules (SEQ ID NO:182, SEQ ID NO:183, GenBank Accession No. AF245703, and GenBank Accession No. AF246971). In preferred embodiments, these modified nucleic acid molecules and/or the polypeptides they encode retain at least one activity or function of the unmodified nucleic acid molecule and/or the polypeptides, such as signaling activity, etc. In certain embodiments, the modified nucleic acid molecules encode modified polypeptides, preferably polypeptides having conservative amino acid substitutions as are described elsewhere herein. The modified nucleic acid molecules are structurally related to the unmodified nucleic acid molecules and in preferred embodiments are sufficiently structurally related to the unmodified nucleic acid molecules so that the modified and unmodified nucleic acid molecules hybridize under stringent conditions known to one of skill in the art.

5

10

15

20

25

30

The invention also provides isolated fragments of nucleotide sequences for murine TLR7 (SEQ ID NO:173 and SEQ ID NO:174) and for murine TLR8 (SEQ ID NO:190 and SEQ ID NO:191). The fragments can be used as probes in Southern blot assays to identify such nucleic acids, or can be used in amplification assays such as those employing PCR. Smaller fragments are those comprising 12, 13, 14, 15, 16, 17, 18, 20, 22, 25, 30, 40, 50, or 75 nucleotides, and every integer therebetween, and are useful, e.g., as primers for nucleic acid amplification procedures. As known to those skilled in the art, larger probes such as 200, 250, 300, 400 or more nucleotides are preferred for certain uses such as Southern blots, while smaller fragments will be preferred for uses such as PCR. Fragments also can be used to produce fusion proteins for generating antibodies or determining binding of the polypeptide fragments. Likewise, fragments can be employed to produce non-fused fragments of the murine TLR7 and murine TLR8 polypeptides, useful, for example, in the preparation of antibodies, in immunoassays, and the like. The foregoing nucleic acid fragments further can be used as antisense molecules to inhibit the expression of murine TLR7 and murine TLR8 nucleic acids and polypeptides.

- 65 -

The invention also includes functionally equivalent variants of the murine TLR7 and murine TLR8, which include variant nucleic acids and polypeptides which retain one or more of the functional properties of the murine TLR7 and murine TLR8. Preferably such variants include the murine-specific N-terminal domain.

Functionally equivalent variants also include a murine TLR7 or murine TLR8 which has had a portion (e.g., of the N-terminus) removed or replaced by a similar domain from another TLR (e.g., a "domain-swapping" variant). Examples of such domain-swapping variants include those involving swapping a TLR7 domain from another species and swapping a TLR domain from another TLR.

5

10

15

20

25

30

Other functionally equivalent variants will be known to one of ordinary skill in the art, as will be methods for preparing such variants. The activity of a functionally equivalent variant can be determined using the methods provided herein, and in references that have described assays using other TLRs and TLRs of other species. Such variants are useful, *inter alia*, for evaluating bioavailability of drugs, in assays for identification of compounds which bind to and/or regulate the signaling function of the murine TLR7 and murine TLR8, and for determining the portions of the murine TLR7 and murine TLR8 which are required for signaling activity.

Variants which are non-functional also can be prepared as described above. Such variants are useful, for example, as negative controls in experiments testing TLR7 and TLR8 signaling activity. Examples of non-functional variants include those incorporating a truncation or mutation of amino acids deemed critical to ligand binding or signaling activity.

In certain embodiments a murine TLR7 or murine TLR8 nucleic acid is operably linked to a gene expression sequence which can direct the expression of the murine TLR7 or murine TLR8 nucleic acid within a eukaryotic or prokaryotic cell. The terms "gene expression sequence" and "operably linked" are as previously described herein.

The murine TLR7 and murine TLR8 nucleic acid molecules and the murine TLR7 and murine TLR8 polypeptides of the invention can be delivered to a eukaryotic or prokaryotic cell alone or in association with a vector. As applied to murine TLR7 and murine TLR8 nucleic acid molecules, a "vector" is any vehicle capable of facilitating: (1) delivery of a murine TLR7 or murine TLR8 nucleic acid or polypeptide to a target cell, (2) uptake of a murine TLR7 or murine TLR8 nucleic acid or polypeptide by a target cell, or (3) expression

- 66 -

of a murine TLR7 or murine TLR8 nucleic acid molecule or polypeptide in a target cell.

In addition to the biological vectors, chemical/physical vectors may be used to deliver a murine TLR7 or murine TLR8 nucleic acid or polypeptide to a target cell and facilitate uptake thereby. As used herein with respect to a murine TLR7 or murine TLR8 nucleic acid or polypeptide, a "chemical/physical vector" refers to a natural or synthetic molecule, other than those derived from bacteriological or viral sources, capable of delivering the isolated murine TLR7 or murine TLR8 nucleic acid or polypeptide to a cell.

5

15

20

25

30

Other exemplary compositions that can be used to facilitate uptake by a target cell of the murine TLR7 or murine TLR8 nucleic acids include calcium phosphate and other chemical mediators of intracellular transport, microinjection compositions, electroporation and homologous recombination compositions (e.g., for integrating a murine TLR7 or murine TLR8 nucleic acid into a preselected location within a target cell chromosome).

It will also be recognized that the invention embraces the use of the murine TLR7 and murine TLR8 cDNA sequences in expression vectors to transfect host cells and cell lines, be these prokaryotic (e.g., *E. coli*), or eukaryotic (e.g., 293 fibroblast cells (ATCC, CRL-1573), MonoMac-6, THP-1, U927, CHO cells, COS cells, yeast expression systems and recombinant baculovirus expression in insect cells). Especially useful are mammalian cells such as human, pig, goat, primate, rodent, guinea pig, etc. They may be of a wide variety of tissue types, and include primary cells and cell lines. The expression vectors require that the pertinent sequence, i.e., those nucleic acids described *supra*, be operably linked to a promoter.

The invention also provides isolated murine TLR7 and isolated murine TLR8 polypeptides which include the amino acid sequences of SEQ ID NO:175, SEQ ID NO:192, and fragments thereof, encoded by the murine TLR7 and murine TLR8 nucleic acids described above. Murine TLR7 and murine TLR8 polypeptides also embrace alleles, functionally equivalent variants and analogs (those non-allelic polypeptides which vary in amino acid sequence from the disclosed murine TLR7 and murine TLR8 polypeptides by 1, 2, 3, 4, 5, or more amino acids) provided that such polypeptides retain murine TLR7 or murine TLR8 activity. Non-functional variants also are embraced by the invention; these are useful as antagonists of TLR7 and TLR8 signaling function, as negative controls in assays, and the like. Such alleles, variants, analogs and fragments are useful, for example, alone or as fusion proteins for a variety of purposes including as a component of assays.

- 67 -

The invention also embraces variants of the murine TLR7 and murine TLR8 polypeptides described above. Modifications which create a murine TLR7 variant or murine TLR8 variant can be made to a murine TLR7 or murine TLR8 polypeptide for a variety of reasons, including 1) to reduce or eliminate an activity of a murine TLR7 or murine TLR8 polypeptide, such as signaling; 2) to enhance a property of a murine TLR7 or murine TLR8 polypeptide, such as signaling, binding affinity for nucleic acid ligand or other ligand molecule, protein stability in an expression system, or the stability of protein-protein binding; 3) to provide a novel activity or property to a murine TLR7 or murine TLR8 polypeptide, such as addition of an antigenic epitope or addition of a detectable moiety, e.g., luciferase, FLAG peptide, GFP; 4) to establish that an amino acid substitution does or does not affect molecular signaling activity; or 5) reduce immunogenicity. Modifications to a murine TLR7 or murine TLR8 polypeptide are typically made to the nucleic acid which encodes the murine TLR7 or murine TLR8 polypeptide, and can include deletions, point mutations, truncations, amino acid substitutions and additions of amino acids or non-amino acid moieties. Alternatively, modifications can be made directly to the polypeptide, such as by cleavage, addition of a linker molecule, addition of a detectable moiety (for example, biotin,

5

10

15

20

25

30

Modifications also embrace fusion proteins comprising all or part of the murine TLR7 or murine TLR8 amino acid sequence.

fluorophore, radioisotope, enzyme, or peptide), addition of a fatty acid, and the like.

Variants include murine TLR7 and murine TLR8 polypeptides which are modified specifically to alter a feature of each polypeptide unrelated to its physiological activity. For example, cysteine residues can be substituted or deleted to prevent unwanted disulfide linkages. Similarly, certain amino acids can be changed to enhance expression of a murine TLR7 or murine TLR8 polypeptide by eliminating proteolysis by proteases in an expression system (e.g., dibasic amino acid residues in yeast expression systems in which KEX2 protease activity is present).

Mutations of a nucleic acid which encode a murine TLR7 or murine TLR8 polypeptide preferably preserve the amino acid reading frame of the coding sequence, and preferably do not create regions in the nucleic acid which are likely to hybridize to form secondary structures, such as hairpins or loops, which can be deleterious to expression of the variant polypeptide. Methods of making mutations of murine TLR7 or murine TLR8 are as

- 68 -

described elsewhere herein with reference to making mutations of murine TLR9.

The activity of variants of murine TLR7 and murine TLR8 polypeptides can be tested by cloning the gene encoding the variant murine TLR7 or murine TLR8 polypeptide into a prokaryotic or eukaryotic (e.g., mammalian) expression vector, introducing the vector into an appropriate host cell, expressing the variant murine TLR7 or murine TLR8 polypeptide, and testing for a functional capability of the murine TLR7 or murine TLR8 polypeptides as disclosed herein.

The skilled artisan will also realize that conservative amino acid substitutions may be made in murine TLR7 and murine TLR8 polypeptides to provide functionally equivalent variants of the foregoing polypeptides, i.e., variants which retain the functional capabilities of the murine TLR7 and murine TLR8 polypeptides.

10

15

20

25

30

A variety of methodologies well known to the skilled practitioner can be utilized to obtain isolated murine TLR7 and murine TLR8 polypeptide molecules, as previously described in reference to murine TLR9 polypeptides.

The invention as described herein has a number of uses, some of which are described elsewhere herein. For example, the invention permits isolation of the murine TLR7 and the murine TLR8 polypeptide molecules by, e.g., expression of a recombinant nucleic acid to produce large quantities of polypeptide which may be isolated using standard protocols. As another example, the isolation of the murine TLR7 gene makes it possible for murine TLR7 to be used in methods for assaying molecular interactions involving TLR7.

The invention also embraces agents which bind selectively to the murine TLR7 or murine TLR8 nucleic acid molecules or polypeptides as well as agents which bind to variants and fragments of the polypeptides and nucleic acids as described herein. The agents include polypeptides which bind to murine TLR7 or murine TLR8, and antisense nucleic acids, both of which are described in greater detail below. Some agents can inhibit or increase murine TLR7-mediated signaling activity (antagonists and agonists, respectively), and some can inhibit or increase murine TLR8-mediated signaling activity.

In one embodiment the murine TLR7 inhibitor is an antisense oligonucleotide that selectively binds to a murine TLR7 nucleic acid molecule, to reduce the expression of murine TLR7 (or TLR7 of another species) in a cell. This is desirable in virtually any medical condition wherein a reduction of TLR7 signaling activity is desirable. Based upon SEQ ID

- 69 -

NO:173 and SEQ ID NO:174, or upon allelic or homologous genomic and/or cDNA sequences, one of skill in the art can easily choose and synthesize any of a number of appropriate antisense molecules for use in accordance with the present invention.

5

10

15

20

25

30

In one embodiment the murine TLR8 inhibitor is an antisense oligonucleotide that selectively binds to a murine TLR8 nucleic acid molecule, to reduce the expression of murine TLR8 (or TLR8 of another species) in a cell. This is desirable in virtually any medical condition wherein a reduction of TLR8 signaling activity is desirable. Based upon SEQ ID NO:190 and SEQ ID NO:191, or upon allelic or homologous genomic and/or cDNA sequences, one of skill in the art can easily choose and synthesize any of a number of appropriate antisense molecules for use in accordance with the present invention.

Antisense oligonucleotides for murine TLR7 or murine TLR8 can include "natural" and "modified" oligonucleotides as previously described herein.

Agents which bind murine TLR7 or murine TLR8 also include binding peptides and other molecules which bind to the murine TLR7 or murine TLR8 polypeptide and complexes containing the murine TLR7 or murine TLR8 polypeptide, respectively. When the binding molecules are inhibitors, the molecules bind to and inhibit the activity of murine TLR7 or murine TLR8. When the binding molecules are activators, the molecules bind to and increase the activity of murine TLR7 or murine TLR8. To determine whether a murine TLR7 or murine TLR8 binding agent binds to murine TLR7 or murine TLR8, any known binding assay may be employed. For example, the binding agent may be immobilized on a surface and then contacted with a labeled murine TLR7 or murine TLR8 polypeptide. The amount of murine TLR7 or murine TLR8 which interacts with the murine TLR7 or murine TLR8 binding agent, or the amount which does not bind to the murine TLR7 or murine TLR8 binding agent binds to murine TLR7 or murine TLR8 binding agent binds to murine TLR7 or murine TLR8.

The murine TLR7 or murine TLR8 binding agents include molecules of numerous size and type that bind selectively or preferentially to murine TLR7 or murine TLR8 polypeptides, and to complexes involving murine TLR7 or murine TLR8 polypeptides and their binding partners. These molecules may be derived from a variety of sources. For example, murine TLR7 or murine TLR8 binding agents can be provided by screening degenerate peptide libraries which can be readily prepared in solution, in immobilized form or

- 7**0** -

as phage display libraries. Combinatorial libraries also can be synthesized of peptides containing one or more amino acids. Libraries further can be synthesized of peptoids and non-peptide synthetic moieties.

Exemplary methods useful for identifying murine TLR7 and murine TLR8 binding peptides are analogous to those described herein with reference to methods for identifying murine TLR9 binding peptides murine, and thus are not repeated here.

5

10

15

20

25

30

Therefore the invention generally provides efficient methods of identifying pharmacological agents or lead compounds for agents useful in the treatment of conditions associated with TLR7 and TLR8 activity, and the compounds and agents so identified. Generally, the screening methods involve assaying for compounds which inhibit or enhance the expression of or signaling through murine TLR7 or murine TLR8. Such methods are adaptable to automated, high throughput screening of compounds.

A variety of assays for pharmacological agents are provided, including labeled *in vitro* protein binding assays, signaling assays using detectable molecules, etc. For example, protein binding screens are used to rapidly examine the binding of candidate pharmacological agents to a murine TLR7 or murine TLR8. The candidate pharmacological agents can be derived from, for example, combinatorial peptide or nucleic acid libraries. Convenient reagents for such assays are known in the art. An exemplary cell-based assay of signaling involves contacting a cell having a murine TLR7 or murine TLR8 with a candidate pharmacological agent under conditions whereby the induction of a detectable molecule can occur. A reduced degree of induction of the detectable molecule in the presence of the candidate pharmacological agent indicates that the candidate pharmacological agent reduces the signaling activity of murine TLR7 or murine TLR8. An increased degree of induction of the detectable molecule in the presence of the candidate pharmacological agent indicates that the

Murine TLR7 and murine TLR8 used in the methods of the invention can be added to an assay mixture as an isolated polypeptide (where binding of a candidate pharmaceutical agent is to be measured) or as a cell or other membrane-encapsulated space which includes a murine TLR7 or murine TLR8 polypeptide. In the latter assay configuration, the cell or other membrane-encapsulated space can contain the murine TLR7 or murine TLR8 as a

- 71 -

polypeptide or as a nucleic acid (e.g., a cell transfected with an expression vector containing a nucleic acid molecule encoding murine TLR7). In the assays described herein, the murine TLR7 or murine TLR8 polypeptide can be produced recombinantly, isolated from biological extracts, or synthesized *in vitro*. Murine TLR7 or murine TLR8 polypeptides encompass chimeric proteins comprising a fusion of a murine TLR7 or murine TLR8 polypeptide with another polypeptide, e.g., a polypeptide capable of providing or enhancing protein-protein binding, enhancing signaling capability, facilitating detection, or enhancing stability of the murine TLR7 or murine TLR8 polypeptide under assay conditions. A polypeptide fused to a murine TLR7 or murine TLR8 polypeptide or fragment thereof may also provide means of readily detecting the fusion protein, e.g., by immunological recognition or by fluorescent labeling.

5

10

15

20

25

30

The assay mixture also comprises a candidate pharmacological agent, as previously described in reference to murine TLR9. Candidate pharmacologic agents are obtained from a wide variety of sources, including libraries of natural, synthetic, or semisynthetic compounds, or any combination thereof. Presently, natural ligands of murine TLR7 and murine TLR8 are unknown, but they appear not to include CpG-ODN.

A variety of other reagents also can be included in the assay mixture. These include reagents such as salts, buffers, neutral proteins (e.g., albumin), detergents, etc. which may be used to facilitate optimal protein-protein and/or protein-nucleic acid binding. Such a reagent may also reduce non-specific or background interactions of the reaction components. Other reagents that improve the efficiency of the assay such as protease inhibitors, nuclease inhibitors, antimicrobial agents, and the like may also be used.

The mixture of the foregoing assay materials is incubated under conditions whereby, but for the presence of the candidate pharmacological agent, the murine TLR7 or murine TLR8 mediates TLR7-mediated or TLR8-mediated signaling, preferably TLR/IL-1R signaling. For determining the binding of a candidate pharmaceutical agent to a murine TLR7 or murine TLR8, the mixture is incubated under conditions which permit binding. The order of addition of components, incubation temperature, time of incubation, and other parameters of the assay may be readily determined. Such experimentation merely involves optimization of the assay parameters, not the fundamental composition of the assay. Incubation temperatures typically are between 4°C and 40°C. Incubation times preferably are minimized

- 72 -

to facilitate rapid, high throughput screening, and typically are between 1 minute and 10 hours.

After incubation, the level of signaling or the level of specific binding between the murine TLR7 or murine TLR8 polypeptide and the candidate pharmaceutical agent is detected by any convenient method available to the user, as described elsewhere herein.

5

10

15

20

25

30

The murine TLR7 or murine TLR8 binding agent may also be an antibody or a functionally active antibody fragment. Antibodies, including monoclonal antibodies and antibody fragments, are well known to those of ordinary skill in the science of immunology and are as described elsewhere herein. Monoclonal antibodies may be made by any of the methods known in the art utilizing murine TLR7 or murine TLR8, or a fragment thereof, as an immunogen. Alternatively the antibody may be a polyclonal antibody specific for murine TLR7 or murine TLR8 which inhibits murine TLR7 or murine TLR8 activity. The preparation and use of polyclonal antibodies are also known to one of ordinary skill in the art.

The sequences of the antigen-binding Fab' portion of the anti-murine TLR7 or antimurine TLR8 monoclonal antibodies identified as being useful according to the invention in the assays provided above, as well as the relevant FR and CDR regions, can be determined using amino acid sequencing methods that are routine in the art. Such sequence information can be used to generate humanized and chimeric antibodies, as well as various fusion proteins and binding fragments, as described elsewhere herein.

Thus, as will be apparent to one of ordinary skill in the art, the present invention also provides for F(ab')₂ and Fab fragments of an anti-murine TLR7 or anti-murine TLR8 monoclonal antibody; chimeric antibodies in which the Fc and/or FR and/or CDR1 and/or CDR2 and/or light chain CDR3 regions of an anti-murine TLR7 or anti-murine TLR8 antibody have been replaced by homologous human or non-human sequences; chimeric F(ab')₂ fragment antibodies in which the FR and/or CDR1 and/or CDR2 and/or light chain CDR3 regions of an anti-murine TLR7 or anti-murine TLR8 antibody have been replaced by homologous human or non-human sequences; and chimeric Fab fragment antibodies in which the FR and/or CDR1 and/or CDR2 and/or light chain CDR3 regions have been replaced by homologous human or non-human sequences.

According to the invention murine TLR7 and murine TLR8 inhibitors also include "dominant negative" polypeptides derived from SEQ ID NO:175 or SEQ ID NO:192,

- 73 -

respectively. The end result of the expression of a dominant negative murine TLR7 or dominant negative murine TLR8 polypeptide of the invention in a cell is a reduction in TLR7 or murine TLR8 activity such as signaling through the TIR pathway. One of ordinary skill in the art can assess the potential for a dominant negative variant of a murine TLR7 or dominant negative murine TLR8 polypeptide and, using standard mutagenesis techniques, create one or more dominant negative variant polypeptides.

5

10

15

20

25

30

Each of the compositions according to this aspect of the invention is useful for a variety of therapeutic and non-therapeutic purposes. For example, the murine TLR7 and murine TLR8 nucleic acids of the invention are useful as oligonucleotide probes. Such oligonucleotide probes can be used herein to identify genomic or cDNA library clones possessing an identical or substantially similar nucleic acid sequence. Methods of hybridization, synthesis of probes, and detection are generally as described elsewhere herein.

Additionally, complements of the murine TLR7 and murine TLR8 nucleic acids can be useful as antisense oligonucleotides, e.g., by delivering the antisense oligonucleotide to an animal to induce a murine TLR7 or murine TLR8 "knockout" phenotype.

Alternatively, the murine TLR7 and murine TLR8 nucleic acids of the invention can be used to prepare a non-human transgenic animal. The invention, therefore, contemplates the use of murine TLR7 and murine TLR8 knockout and transgenic animals as models for the study of disorders involving TLR7- and murine TLR8-mediated signaling. A variety of methods known to one of ordinary skill in the art are available for the production of transgenic animals associated with this invention.

Inactivation or replacement of the endogenous TLR7 or TLR8 gene can be achieved by a homologous recombination system using embryonic stem cells. The resultant transgenic non-human mammals having a TLR7^{-/-} or TLR8^{-/-} knockout phenotype may be made transgenic for the murine TLR7 or murine TLR8 and used as a model for screening compounds as modulators (agonists or antagonists/inhibitors) of the murine TLR7 or murine TLR8. In this manner, such therapeutic drugs can be identified.

Additionally, a normal or mutant version of murine TLR7 or murine TLR8 can be inserted into the germ line to produce transgenic animals which constitutively or inducibly express the normal or mutant form of murine TLR7 or murine TLR8. These animals are useful in studies to define the role and function of murine TLR7 or murine TLR8 in cells.

- 74 -

The antagonists, agonists, nucleic acids, and polypeptides of murine TLR7 and murine TLR8 useful according to the invention may be combined, optionally, with a pharmaceutically acceptable carrier. Thus the invention also provides pharmaceutical compositions and a method for preparing the pharmaceutical compositions which contain compositions of this aspect of the invention. The pharmaceutical compositions include one or any combination of the antagonists, agonists, nucleic acids and polypeptides of murine TLR7 and murine TLR8 useful according to the invention and, optionally, a pharmaceutically acceptable carrier. Each pharmaceutical composition is prepared by selecting an antagonist, agonist, nucleic acid or polypeptide of murine TLR7 and murine TLR8 useful according to the invention, as well as any combination thereof, and, optionally, combining it with a pharmaceutically acceptable carrier.

A variety of administration routes are available, as described previously herein. The particular mode selected will depend, of course, upon the particular compound selected, the severity of the condition being treated, and the dosage required for therapeutic efficacy.

Likewise, a variety of formulations are contemplated, including, by analogy those discussed above in reference to murine TLR9, unit dose solids, liquids, extended release formulations, etc.

Screening Assays

20

5

15

25

30

In another aspect the invention provides methods for screening candidate compounds that act as ISNA mimics, agonists or antagonists in ISNA-induced immunomodulation via TLR7, TLR8, and TLR9. Preferably the screening method can be adapted to accommodate high throughput screening assays, as can be achieved, for example, through the use of multiwell arrays of samples in conjunction with robotic or automated array handling devices.

Immunostimulatory nucleic acids include but are not limited to CpG nucleic acids.

A "CpG nucleic acid" or a "CpG immunostimulatory nucleic acid" as used herein is a nucleic acid containing at least one unmethylated CpG dinucleotide (cytosine-guanine dinucleotide sequence, i.e. "CpG DNA" or DNA containing a 5' cytosine followed by 3' guanine and linked by a phosphate bond) and activates a component of the immune system. The entire CpG nucleic acid can be unmethylated or portions may be unmethylated but at least the C of the 5' CG 3' must be unmethylated.

- 75 -

In one embodiment a CpG nucleic acid is represented by at least the formula: 5'-N₁X₁CGX₂N₂-3'

wherein X_1 and X_2 are nucleotides, N is any nucleotide, and N_1 and N_2 are nucleic acid sequences composed of from about 0-25 N's each. In some embodiments X_1 is adenine, guanine, or thymine and/or X_2 is cytosine, adenine, or thymine. In other embodiments X_1 is cytosine and/or X_2 is guanine.

In other embodiments the CpG nucleic acid is represented by at least the formula: 5'-N₁X₁X₂CGX₃X₄N₂-3'

wherein X_1 , X_2 , X_3 , and X_4 are nucleotides; N is any nucleotide; and N_1 and N_2 are nucleic acid sequences composed of from about 0-25 N's each. In some embodiments, X_1X_2 are nucleotides selected from the group consisting of: GpT, GpG, GpA, ApA, ApT, ApG, CpT, CpA, CpG, TpA, TpT, and TpG; and X_3X_4 are nucleotides selected from the group consisting of: TpT, CpT, ApT, TpG, ApG, CpG, TpC, ApC, CpC, TpA, ApA, and CpA. In some embodiments, X_1X_2 are GpA or GpT and X_3X_4 are TpT. In other embodiments X_1 or X_2 or both are purines and X_3 or X_4 or both are pyrimidines.

In another embodiment the CpG nucleic acid is represented by at least the formula: 5'-TCN₁TX₁X₂CGX₃X₄-3'

wherein X_1 , X_2 , X_3 , and X_4 are nucleotides; N is any nucleotide; and N_1 and N_2 are nucleic acid sequences composed of from about 0-25 N's each. In some embodiments, X_1X_2 are nucleotides selected from the group consisting of: GpT, GpG, GpA, ApA, ApT, ApG, CpT, CpA, CpG, TpA, TpT, and TpG; and X_3X_4 are nucleotides selected from the group consisting of: TpT, CpT, ApT, TpG, ApG, CpG, TpC, ApC, CpC, TpA, ApA, and CpA. In some embodiments, X_1X_2 are GpA or GpT and X_3X_4 are TpT. In other embodiments X_1 or X_2 or both are purines and X_3 or X_4 or both are pyrimidines.

Examples of CpG nucleic acids according to the invention include but are not limited to those listed in Table 1, such as SEQ ID NOs:21-29, 31-42, 44, 46-50, 52-62, 64-75, 77-88, 90-117, 119-124.

5

10

15

20

25

•

WO 02/22809 PCT/US01/29229

- 76 -

Table 1. Exemplary CpG nucleic acids

•	AACGTTCT	SEQ	ID NO:21
	AAGCGAAAATGAAATTGACT	SEQ	ID NO:22
	ACCATGGACGAACTGTTTCCCCTC	SEQ	ID NO:23
5			
3	ACCATGGACGACCTGTTTCCCCTC	SEQ	ID NO:24
	ACCATGGACGAGCTGTTTCCCCTC	SEQ	ID NO:25
	ACCATGGACGATCTGTTTCCCCTC	SEQ	ID NO:26
	ACCATGGACGGTCTGTTTCCCCTC	SEQ	ID NO:27
	ACCATGGACGTACTGTTTCCCCTC	SEQ	ID NO:28
10			
10	ACCATGGACGTTCTGTTTCCCCTC	SEQ	ID NO:29
	AGATTTCTAGGAATTCAATC	SEQ	ID NO:30
	AGCGGGGCGAGCGGGGCG	SEQ	ID NO:31
	AGCTATGACGTTCCAAGG	SEQ	ID NO:32
	ATCGACTCTCGAGCGTTCTC	SEQ	ID NO:33
15	ATGACGTTCCTGACGTT	SEQ	ID NO:34
15			
	ATGGAAGGTCCAA <u>CG</u> TTCTC	SEQ	ID NO:35
	ATGGAAGGTCCAG <u>CG</u> TTCTC	SEQ	ID NO:36
	ATGGACTCTCCAGCGTTCTC	SEQ	ID NO:37
	ATGGAGGCTCCATCGTTCTC	SEQ	ID NO:38
20	CAACGTT	SEQ	ID NO:39
20			_
	CACGTTGAGGGGCAT	SEQ	ID NO:40
	CAGGCATAACGGTTCCGTAG	SEQ	ID NO:41
	CCAACGTT	SEQ	ID NO:42
	CTCCTAGTGGGGGTGTCCTAT	SEQ	ID NO:43
25	CTGATTTCCCCGAAATGATG	SEQ	ID NO:44
22	CTGCTGAGACTGGAG	SEO	ID NO:45
		_	
	GAGAACGATGGACCTTCCAT	SEQ	ID NO:46
	GAGAACGCTCCAGCACTGAT	SEQ	ID NO:47
	GAGAACGCŢCGACCTTCCAT	SEQ	ID NO:48
30	GAGAACGCTCGACCTTCGAT	SEQ	ID NO:49
	GAGAACGCTGGACCTTCCAT	SEO	ID NO:50
	GAGCAAGCTGGACCTTCCAT	SEQ	ID NO:51
	•		
	GATTGCCTGACGTCAGAGAG	SEQ	ID NO:52
_ 4	GCATGA <u>CG</u> TTGAGCT	SEQ	ID NO:53
35	GCGGCGGCGCGCCCC	SEQ	ID NO:54
	GCGTGCGTTGTCGTT	SEQ	ID NO:55
	GCTAGACGTTAGCGT	SEQ	ID NO:56
	GCTAGACGTTAGTGT	SEQ	ID NO:57
	<u> </u>		
40	GCTAGATGTTAGCGT	SEQ	ID NO:58
40	GCTTGATGACTCAGC <u>CG</u> GAA	SEQ	ID NO:59
	GGAATGA <u>CG</u> TTCCCTGTG	SEQ	ID NO:60
	GGGGTCAACGTTGACGGGG	SEQ	ID NO:61
	GGGGTCAGTCTTGACGGGG	SEQ	ID NO:62
	GTATTTCCCAGAAAAGGAAC	SEQ	ID NO:63
45		-	
40	GTCCATTTCCCCGTAAATCTT	SEQ	ID NO:64
	GTCGCT	SEQ	ID NO:65
	GTCGTT	SEQ	ID NO:66
•	TACCGCGTGCGACCCTCT	SEQ	ID NO:67
	TATGCATATTCCTGTAAGTG	SEQ	ID NO:68
50	TCAACGTC	SEQ	ID NO:69
J 0			
	TCAACGTT	SEQ	ID NO:70
	TCAAGCTT	SEQ	ID NO:71
	TCAGCGCT	SEQ	ID NO:72
	TCAGCGTGCGCC	SEQ	ID NO:73
55	TCATCGAT	SEQ	ID NO:74
33		-	
•	TCCACGACGTTTTCGACGTT	SEQ	ID NO:75
	TCCAGGACTTCTCTCAGGTT	SEQ	ID NO:76
	TCCATAA <u>CG</u> TTCCTGATGCT	SEQ	ID NO:77
	TCCATAGCGTTCCTAGCGTT	SEQ	ID NO:78
60	TCCATCACGTGCCTGATGCT	SEQ	ID NO:79
	TCCATGACGGTCCTGATGCT	- •	
		SEQ	ID NO:80
	TCCATGA <u>CG</u> TCCCTGATGCT	SEQ	ID NO:81

PCT/US01/29229

		- 77 -

WO 02/22809

45

50

	TCCATGACGTGCCTGATGCT	SEQ	ID	NO:82
	TCCATGACGTTCCTGACGTT	SEQ	ID	NO:83
	TCCATGACGTTCCTGATGCT	SEQ	ID	NO:84
	TCCATGAGCTTCCTGATGCT	SEQ	ID	NO:85
5	TCCATGCCGGTCCTGATGCT	SEQ	ID	NO:86
	TCCATGCGTGCGTTTT	SEQ	ID	NO:87
	TCCATGCGTTGCGTT	SEQ	ID	NO:88
	TCCATGCTGGTCCTGATGCT	SEQ	ID	NO:89
	TCCATGGCGGTCCTGATGCT	SEQ	ID	NO:90
10	TCCATGTCGATCCTGATGCT	SEQ	ID	NO:91
	TCCATGTCGCTCCTGATGCT	SEQ	ID	NO:92
	TCCATGTCGGTCCTGATGCT	SEQ	ID	NO:93
	TCCATGTCGGTCCTGCTGAT	SEQ	ID	NO:94
	TCCATGTCGTCCCTGATGCT	SEQ	ID	NO:95
15	TCCATGT <u>CG</u> TTCCTGATGCT	SEQ	ID	NO:96
	TCCATGTCGTTCCTGTCGTT	SEQ	ID	NO:97
	TCCATGTCGTTTTTGTCGTT	SEQ	ID	NO:98
	TCCTGACGTTCCTGACGTT	SEQ	ID	NO:99
	TCCTGTCGTTCGTT	SEQ	ID	NO:100
20	TCCTGTCGTTCCTTGTCGTT	SEQ	ID	NO:101
	TCCTGTCGTTTTTTGTCGTT	SEQ	ID	NO:102
	TCCTTGT <u>CG</u> TTCCTGT <u>CG</u> TT	SEQ	ID	NO:103
	TCGATCGGGGCGGGCGAGC	SEQ		NO:104
~ -	TCGTCGCTGTCTCCGCTTCTT	SEQ		NO:105
25	TCGTCGCTGTCTCCGCTTCTTCTTGCC	SEQ		NO:106
	TCGTCGCTGTCTGCCCTTCTT	SEQ	ID	NO:107
•	TCGTCGCTGTTGTCGTTTCTT	SEQ		NO:108
	TCGTCGTCGTT	SEQ	ID	NO:109
20	TCGTCGTTGTCGTTGT	SEQ		NO:110
30	TCGTCGTTGTCGTTTTGTCGTT	SEQ		NO:111
	TCGTCGTTTTGTCGTTTTGTCGTT	SEQ	ID	NO:112
	TCTCCCAGCGCGCGCCAT	SEQ		NO:113
	TCTCCCAGCGGGCGCAT	SEQ	ID	NO:114
25	TCTCCCAG <u>CG</u> TG <u>CG</u> CCAT	SEQ		NO:115
35	TCTTCGAA	SEQ		NO:116
	TGCAGATTGCGCAATCTGCA	SEQ	ID	NO:117
	TGCTGCTTTTGTGCTTTTGTGCTT	SEQ	ID	NO:118
	TGTCGCT TGTCGTT	SEQ	ID	NO:119
40	TGTCGTTGTCGTT	SEQ SEQ	ID ID	NO:120 NO:121
70	TGTCGTTGTCGTT	SEQ	ID	NO:121 NO:122
	TGTCGTTGTCGTTGTCGTT	SEQ	ID	NO:122
	TGTCGTTGTCGTTTGTCGTT	SEQ		NO:123
	101 <u>CG111G1CG111G1CG11</u>	2 EQ	1 <i>1</i>	140.TZ-4

Other ISNAs include but are not limited to T-rich nucleic acids, poly G nucleic acids, and nucleic acids having phosphate modified backbones, such as phosphorothioate backbones.

A "T rich nucleic acid" or "T rich immunostimulatory nucleic acid" is a nucleic acid which includes at least one poly T sequence and/or which has a nucleotide composition of greater than 25% T nucleotide residues and which activates a component of the immune system. A nucleic acid having a poly-T sequence includes at least four Ts in a row, such as 5'TTTT3'. Preferably the T rich nucleic acid includes more than one poly T sequence. In preferred embodiments the T rich nucleic acid may have 2, 3, 4, etc poly T sequences. One of

- 78 -

the most highly immunostimulatory T rich oligonucleotides discovered according to the invention is a nucleic acid composed entirely of T nucleotide residues. Other T rich nucleic acids have a nucleotide composition of greater than 25% T nucleotide residues, but do not necessarily include a poly T sequence. In these T rich nucleic acids the T nucleotide resides may be separated from one another by other types of nucleotide residues, i.e., G, C, and A. In some embodiments the T rich nucleic acids have a nucleotide composition of greater than 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 99%, T nucleotide residues and every integer % in between. Preferably the T rich nucleic acids have at least one poly T sequence and a nucleotide composition of greater than 25% T nucleotide residues.

In one embodiment the T rich nucleic acid is represented by at least the formula: $5' X_1 X_2 TTTTX_3 X_4 3'$

wherein X₁, X₂, X₃, and X₄ are nucleotides. In one embodiment X₁X₂ is TT and/or X₃X₄ is TT. In another embodiment X₁X₂ are any one of the following nucleotides TA, TG, TC, AT, AA, AG, AC, CT, CC, CA, CG, GT, GG, GA, and GC; and X₃X₄ are any one of the following nucleotides TA, TG, TC, AT, AA, AG, AC, CT, CC, CA, CG, GT, GG, GA, and GC.

In some embodiments it is preferred that the T-rich nucleic acid does not contain poly C (CCCC), poly A (AAAA), poly G (GGGG), CpG motifs, or multiple GGs. In other embodiments the T-rich nucleic acid includes these motifs. Thus in some embodiments of the invention the T rich nucleic acids include CpG dinucleotides and in other embodiments the T rich nucleic acids are free of CpG dinucleotides. The CpG dinucleotides may be methylated or unmethylated.

Poly G containing nucleic acids are also immunostimulatory. A variety of references, including Pisetsky and Reich, 1993 *Mol. Biol. Reports*, 18:217-221; Krieger and Herz, 1994, *Ann. Rev. Biochem.*, 63:601-637; Macaya et al., 1993, *PNAS*, 90:3745-3749; Wyatt et al., 1994, *PNAS*, 91:1356-1360; Rando and Hogan, 1998, In Applied Antisense Oligonucleotide Technology, ed. Krieg and Stein, p. 335-352; and Kimura et al., 1994, *J. Biochem.* 116, 991-994 also describe the immunostimulatory properties of poly G nucleic acids.

Poly G nucleic acids preferably are nucleic acids having the following formulas:

10

15

20

25

- 79 -

wherein X_1 , X_2 , X_3 , and X_4 are nucleotides. In preferred embodiments at least one of X_3 and X_4 are a G. In other embodiments both of X_3 and X_4 are a G. In yet other embodiments the preferred formula is 5' GGGNGGG 3', or 5' GGGNGGGNGGG 3' wherein N represents between 0 and 20 nucleotides. In other embodiments the Poly G nucleic acid is free of unmethylated CG dinucleotides. In other embodiments the poly G nucleic acid includes at least one unmethylated CG dinucleotide.

5

10

15

20

25

30

Nucleic acids having modified backbones, such as phosphorothioate backbones, also fall within the class of immunostimulatory nucleic acids. U.S. Patents Nos. 5,723,335 and 5,663,153 issued to Hutcherson, et al. and related PCT publication WO95/26204 describe immune stimulation using phosphorothioate oligonucleotide analogues. These patents describe the ability of the phosphorothioate backbone to stimulate an immune response in a non-sequence specific manner.

The ISNAs may be double-stranded or single-stranded. Generally, double-stranded molecules may be more stable in vivo, while single-stranded molecules may have increased activity. The terms "nucleic acid" and "oligonucleotide" refer to multiple nucleotides (i.e. molecules comprising a sugar (e.g. ribose or deoxyribose) linked to a phosphate group and to an exchangeable organic base, which is either a substituted pyrimidine (e.g. cytosine (C), thymine (T) or uracil (U)) or a substituted purine (e.g., adenine (A) or guanine (G)) or a modified base. As used herein, the terms refer to oligoribonucleotides as well as oligodeoxyribonucleotides. The terms shall also include polynucleosides (i.e., a polynucleotide minus the phosphate) and any other organic base-containing polymer. The terms "nucleic acid" and "oligonucleotide" also encompass nucleic acids or oligonucleotides with a covalently modified base and/or sugar. For example, they include nucleic acids having backbone sugars which are covalently attached to low molecular weight organic groups other than a hydroxyl group at the 3' position and other than a phosphate group at the 5' position. Thus modified nucleic acids may include a 2'-O-alkylated ribose group. In addition, modified nucleic acids may include sugars such as arabinose instead of ribose. Thus the nucleic acids may be heterogeneous in backbone composition thereby containing any possible combination of polymer units linked together such as peptide-nucleic acids (which have amino acid backbone with nucleic acid bases). In some embodiments the nucleic acids are homogeneous in backbone composition.

- 80 -

The substituted purines and pyrimidines of the ISNAs include standard purines and pyrimidines such as cytosine as well as base analogs such as C-5 propyne substituted bases. Wagner RW et al., *Nat Biotechnol* 14:840-844 (1996). Purines and pyrimidines include but are not limited to adenine, cytosine, guanine, thymine, 5-methylcytosine, 2-aminopurine, 2-amino-6-chloropurine, 2,6-diaminopurine, hypoxanthine, and other naturally and non-naturally occurring nucleobases, substituted and unsubstituted aromatic moieties.

The ISNA is a linked polymer of bases or nucleotides. As used herein with respect to linked units of a nucleic acid, "linked" or "linkage" means two entities are bound to one another by any physicochemical means. Any linkage known to those of ordinary skill in the art, covalent or non-covalent, is embraced. Such linkages are well known to those of ordinary skill in the art. Natural linkages, which are those ordinarily found in nature connecting the individual units of a nucleic acid, are most common. The individual units of a nucleic acid may be linked, however, by synthetic or modified linkages.

10

15

20

25

30

Whenever a nucleic acid is represented by a sequence of letters it will be understood that the nucleotides are in 5' to 3' order from left to right and that "A" denotes adenine, "C" denotes cytosine, "G" denotes guanine, "T" denotes thymidine, and "U" denotes uracil unless otherwise noted.

Immunostimulatory nucleic acid molecules useful according to the invention can be obtained from natural nucleic acid sources (e.g., genomic nuclear or mitochondrial DNA or cDNA), or are synthetic (e.g., produced by oligonucleotide synthesis). Nucleic acids isolated from existing nucleic acid sources are referred to herein as native, natural, or isolated nucleic acids. The nucleic acids useful according to the invention may be isolated from any source, including eukaryotic sources, prokaryotic sources, nuclear DNA, mitochondrial DNA, etc. Thus, the term nucleic acid encompasses both synthetic and isolated nucleic acids.

The term "isolated" as used herein with reference to an ISNA means substantially free of or separated from components which it is normally associated with in nature, e.g., nucleic acids, proteins, lipids, carbohydrates or *in vivo* systems to an extent practical and appropriate for its intended use. In particular, the nucleic acids are sufficiently pure and are sufficiently free from other biological constituents of host cells so as to be useful in, for example, producing pharmaceutical preparations. Because an isolated nucleic acid of the invention may be admixed with a pharmaceutically-acceptable carrier in a pharmaceutical preparation,

- 81 -

the nucleic acid may comprise only a small percentage by weight of the preparation. The nucleic acid is nonetheless substantially pure in that it has been substantially separated from the substances with which it may be associated in living systems.

The ISNAs can be produced on a large scale in plasmids, (see *Molecular Cloning: A Laboratory Manual*, J. Sambrook, et al., eds., Second Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1989) and separated into smaller pieces or administered whole. After being administered to a subject the plasmid can be degraded into oligonucleotides. One skilled in the art can purify viral, bacterial, eukaryotic, etc. nucleic acids using standard techniques, such as those employing restriction enzymes, exonucleases or endonucleases.

5

10

15

20

25

30

For use in the instant invention, the ISNAs can be synthesized *de novo* using any of a number of procedures well known in the art. For example, the β-cyanoethyl phosphoramidite method (Beaucage SL and Caruthers MH, *Tetrahedron Let* 22:1859 (1981)); nucleoside H-phosphonate method (Garegg et al., *Tetrahedron Let* 27:4051-4054 (1986); Froehler et al., *Nucl Acid Res* 14:5399-5407 (1986); Garegg et al., *Tetrahedron Let* 27:4055-4058 (1986); Gaffney et al., *Tetrahedron Let* 29:2619-2622 (1988)). These chemistries can be performed by a variety of automated oligonucleotide synthesizers available in the market.

ISNAs having modified backbones, such as phosphorothioate backbones, also fall within the class of immunostimulatory nucleic acids. U.S. Patents Nos. 5,723,335 and 5,663,153 issued to Hutcherson, et al. and related PCT publication WO95/26204 describe immune stimulation using phosphorothioate oligonucleotide analogues. These patents describe the ability of the phosphorothioate backbone to stimulate an immune response in a non-sequence specific manner.

The ISNA may be any size of at least 6 nucleotides but in some embodiments are in the range of between 6 and 100 or in some embodiments between 8 and 35 nucleotides in size. Immunostimulatory nucleic acids can be produced on a large scale in plasmids. These may be administered in plasmid form or alternatively they can be degraded into oligonucleotides before administration.

"Palindromic sequence" shall mean an inverted repeat (i.e., a sequence such as ABCDEE'D'C'B'A' in which A and A', B and B', etc., are bases capable of forming the usual Watson-Crick base pairs and which includes at least 6 nucleotides in the palindrome. *In vivo*,

- 82 -

such sequences may form double-stranded structures. In one embodiment the nucleic acid contains a palindromic sequence. In some embodiments when the nucleic acid is a CpG nucleic acid, a palindromic sequence used in this context refers to a palindrome in which the CpG is part of the palindrome, and optionally is the center of the palindrome. In another embodiment the nucleic acid is free of a palindrome. A nucleic acid that is free of a palindrome does not have any regions of 6 nucleotides or greater in length which are palindromic. A nucleic acid that is free of a palindrome can include a region of less than 6 nucleotides which are palindromic.

5

10

15

20

25

30

A "stabilized ISNA" shall mean a nucleic acid molecule that is relatively resistant to in vivo degradation (e.g. via an exo- or endo-nuclease). Stabilization can be a function of length or secondary structure. Nucleic acids that are tens to hundreds of kbs long are relatively resistant to in vivo degradation. For shorter nucleic acids, secondary structure can stabilize and increase their effect. For example, if the 3' end of an oligonucleotide has self-complementarity to an upstream region, so that it can fold back and form a sort of stem loop structure, then the oligonucleotide becomes stabilized and therefore exhibits more activity.

Some stabilized ISNAs of the instant invention have a modified backbone. It has been demonstrated that modification of the oligonucleotide backbone provides enhanced activity of the ISNAs when administered *in vivo*. Nucleic acids, including at least two phosphorothioate linkages at the 5' end of the oligonucleotide and multiple phosphorothioate linkages at the 3' end, preferably 5, may provide maximal activity and protect the oligonucleotide from degradation by intracellular exo- and endo-nucleases. Other modified oligonucleotides include phosphodiester modified oligonucleotide, combinations of phosphodiester and phosphorothioate oligonucleotide, methylphosphonate, methylphosphorothioate, phosphorodithioate, and combinations thereof. Each of these combinations and their particular effects on immune cells is discussed in more detail in U.S. Patent Nos. 6,194,388 and 6,207,646, the entire contents of which is hereby incorporated by reference. It is believed that these modified oligonucleotides may show more stimulatory activity due to enhanced nuclease resistance, increased cellular uptake, increased protein binding, and/or altered intracellular localization. Both phosphorothioate and phosphodiester nucleic acids are active in immune cells.

Other stabilized ISNAs include: nonionic DNA analogs, such as alkyl- and aryl-

- 83 -

phosphates (in which the charged phosphonate oxygen is replaced by an alkyl or aryl group), phosphodiester and alkylphosphotriesters, in which the charged oxygen moiety is alkylated. Oligonucleotides which contain diol, such as tetraethyleneglycol or hexaethyleneglycol, at either or both termini have also been shown to be substantially resistant to nuclease degradation.

5

10

15

20

25

30

For use *in vivo*, ISNAs are preferably relatively resistant to degradation (e.g., via endo- and exo-nucleases). Secondary structures, such as stem loops, can stabilize nucleic acids against degradation. Alternatively, nucleic acid stabilization can be accomplished via phosphate backbone modifications. One type of stabilized nucleic acid has at least a partial phosphorothioate modified backbone. Phosphorothioates may be synthesized using automated techniques employing either phosphoramidate or H-phosphonate chemistries. Aryl- and alkyl-phosphonates can be made, e.g., as described in U.S. Patent No. 4,469,863; and alkylphosphotriesters (in which the charged oxygen moiety is alkylated as described in U.S. Patent No. 5,023,243 and European Patent No. 092,574) can be prepared by automated solid phase synthesis using commercially available reagents. Methods for making other DNA backbone modifications and substitutions have been described. Uhlmann E and Peyman A, *Chem Rev* 90:544 (1990); Goodchild J, *Bioconjugate Chem* 1:165 (1990).

Other sources of immunostimulatory nucleic acids useful according to the invention include standard viral and bacterial vectors, many of which are commercially available. In its broadest sense, a "vector" is any nucleic acid material which is ordinarily used to deliver and facilitate the transfer of nucleic acids to cells. The vector as used herein may be an empty vector or a vector carrying a gene which can be expressed. In the case when the vector is carrying a gene the vector generally transports the gene to the target cells with reduced degradation relative to the extent of degradation that would result in the absence of the vector. In this case the vector optionally includes gene expression sequences to enhance expression of the gene in target cells such as immune cells, but it is not required that the gene be expressed in the cell.

A basis for certain of the screening assays is the presence of a functional TLR 7, TLR 8, or TLR9 in a cell. The functional TLR in some instances is naturally expressed by the cell. In other instances, expression of the functional TLR can involve introduction or reconstitution of a species-specific TLR9 into a cell or cell line that otherwise lacks the TLR

- 84 -

or lacks responsiveness to ISNA, resulting in a cell or cell line capable of activating the TLR/IL-1R signaling pathway in response to contact with an ISNA. Examples of cell lines lacking TLR9 or ISNA responsiveness include, but are not limited to, 293 fibroblasts (ATCC CRL-1573), MonoMac-6, THP-1, U937, CHO, and any TLR9 knock-out. The introduction of the species-specific TLR into the cell or cell line is preferably accomplished by transient or stable transfection of the cell or cell line with a TLR-encoding nucleic acid sequence operatively linked to a gene expression sequence (as described above).

The species-specific TLR, including TLR7, TLR8, and TLR9, is not limited to a murine TLR, but rather can include a TLR derived from murine or non-murine sources. Examples of non-murine sources include, but are not limited to, human, bovine, canine, feline, ovine, porcine, and equine. Other species include chicken and fish, e.g., aquaculture species.

10

15

20

25

30

The species-specific TLR, including TLR7, TLR8, and TLR9, also is not limited to native TLR polypeptides. In certain embodiments the TLR can be, e.g., a chimeric TLR in which the extracellular domain and the cytoplasmic domains are derived from TLR polypeptides from different species. Such chimeric TLR polypeptides, as described above, can include, for example, a human TLR extracellular domain and a murine TLR cytoplasmic domain, each domain derived from the corresponding TLR7, TLR8, or TLR9 of each species. In alternative embodiments, such chimeric TLR polypeptides can include chimeras created. with different TLR splice variants or allotypes. Other chimeric TLR polypeptides useful for the purposes of screening ISNA mimics, agonists and antagonists can include chimeric polypeptides created with a TLR of a first type, e.g., TLR9, and another TLR, e.g., TLR7 or TLR8, of the same or another species as the TLR of the first type. Also contemplated are chimeric polypeptides which incorporate sequences derived from more than two polypeptides, e.g., an extracellular domain, a transmembrane domain, and a cytoplasmic domain all derived from different polypeptide sources, provided at least one such domain derives from a TLR7, TLR8, or TLR9 polypeptide. As a further example, also contemplated are constructs such as include an extracellular domain of one TLR9, an intracellular domain of another TLR9, and a non-TLR reporter such as luciferase, GFP, etc. Those of skill in the art will recognize how to design and generate DNA sequences coding for such chimeric TLR polypeptides.

The screening assays can have any of a number of possible readout systems based

upon either TLR/IL-1R signaling pathway or other assays useful for assaying response to ISNAs. It has been reported that immune cell activation by CpG immunostimulatory sequences is dependent in some way on endosomal processing. It is not yet known whether TLR9 is directly involved in this endosomal pathway, or if there is some intermediary between TLR9 and the endosome.

5

10

15

20

25

30

In preferred embodiments, the readout for the screening assay is based on the use of native genes or, alternatively, cotransfected or otherwise co-introduced reporter gene constructs which are responsive to the TLR/IL-1R signal transduction pathway involving MyD88, TRAF6, p38, and/or ERK. Häcker H et al., EMBO J 18:6973-6982 (1999). These pathways activate kinases including kB kinase complex and c-Jun N-terminal kinases. Thus reporter genes and reporter gene constructs particularly useful for the assays can include a reporter gene operatively linked to a promoter sensitive to NF-κB. Examples of such promoters include, without limitation, those for NF-κB, IL-1β, IL-6, IL-8, IL-12 p40, CD80, CD86, and TNF-α. The reporter gene operatively linked to the TLR7-, TLR8-, or TLR9sensitive promoter can include, without limitation, an enzyme (e.g., luciferase, alkaline phosphatase, β-galactosidase, chloramphenicol acetyltransferase (CAT), etc.), a bioluminescence marker (e.g., green-fluorescent protein (GFP, U.S. patent 5,491,084), etc.), a surface-expressed molecule (e.g., CD25), and a secreted molecule (e.g., IL-8, IL-12 p40, TNF- α). In preferred embodiments the reporter is selected from IL-8, TNF- α , NF- κ Bluciferase (NF-κB-luc; Häcker H et al., EMBO J 18:6973-6982 (1999)), IL-12 p40-luc (Murphy TL et al., Mol Cell Biol 15:5258-5267 (1995)), and TNF-luc (Häcker H et al., EMBO J 18:6973-6982 (1999)). In assays relying on enzyme activity readout, substrate can be supplied as part of the assay, and detection can involve measurement of chemiluminescence, fluorescence, color development, incorporation of radioactive label, drug resistance, or other marker of enzyme activity. For assays relying on surface expression of a molecule, detection can be accomplished using FACS analysis or functional assays. Secreted molecules can be assayed using enzyme-linked immunosorbent assay (ELISA) or bioassays. Many such readout systems are well known in the art and are commercially available.

In another aspect the invention provides a screening method for identifying an immunostimulatory nucleic acid molecule (ISNA). The method entails contacting a functional TLR selected from the group consisting of TLR7, TLR8, and TLR9 with a test

- 86 -

nucleic acid molecule; detecting the presence or absence of a response mediated by a TLR signal transduction pathway in the presence of the test nucleic acid molecule arising as a result of an interaction between the functional TLR and the test nucleic acid molecule; and determining the test nucleic acid molecule is an ISNA when the presence of a response mediated by the TLR signal transduction pathway is detected. "Functional TLR" and a "cell expressing functional TLR" are as described elsewhere herein. A response mediated by a TLR signal transduction pathway includes induction of a gene under control of a promoter responsive to the TLR/IL-1R signaling pathway, including but not limited to promoters responsive to NF-κB. The biological response thus can include, e.g., secretion of IL-8 and luciferase activity in a cell transfected with NF-κB-luc, IL-12 p40-luc, or TNF-luc. A test nucleic acid molecule can include a DNA, RNA, or modified nucleic acid molecule as described herein. In some embodiments the test nucleic acid molecule is a CpG nucleic acid.

5

10

15

20

25

30

Preferably, the test nucleic acid molecule is a sequence variant of a reference ISNA, containing at least one alternative base, at least one alternative internucleotide backbone linkage, or at least one alternative sugar moiety as compared to the particular reference ISNA. In a preferred embodiment the test nucleic acid molecule is a member of a library of such test nucleic acid molecules.

According to one embodiment of this method, comparison can be made to a reference ISNA. The reference ISNA may be any ISNA, including a CpG nucleic acid. In preferred embodiments the screening method is performed using a plurality of test nucleic acids. Preferably comparison of test and reference responses is based on comparison of quantitative measurements of responses in each instance.

The method can be used to select a subset of test nucleic acid molecules based on their ability to induce a similar specific response mediated by the TLR signal transduction pathway. For instance, the method can be used to classify test CpG nucleic acids as predominantly B-cell activating CpG nucleic acids, or as predominantly IFN- α inducing CpG nucleic acids. Other new classes of ISNAs may be identified and characterized using the method.

Application of this method permits the identification of ISNAs, delineation of sequence specificity of a given TLR, and also optimization of ISNA sequences. Identification of ISNAs involves screening candidate ISNAs as above and selecting any ISNA that induces

- 87 -

a response as defined. Delineation of sequence specificity involves screening candidate ISNAs as above with reference to a particular TLR9, selecting any ISNAs that induce a response as defined, and categorizing ISNAs that do and do not induce a response on the basis of their sequence. Optimization of ISNA sequences involves an iterative application of the method as described, further including the steps of selecting the best sequence at any given stage or round in the screening and substituting it as a benchmark or reference in a subsequent round of screening. This latter process can further include selection of parameters to modify in choosing and generating candidate ISNAs to screen.

10

15

20

25

30

In another aspect the invention provides screening method for identifying species specificity of an ISNA. The method involves contacting a functional TLR selected from the group consisting of TLR7, TLR8, and TLR9 of a first species with a test ISNA; contacting a functional TLR selected from the group consisting of TLR7, TLR8, and TLR9 of a second species with the test ISNA; measuring a response mediated by a TLR signal transduction pathway associated with the contacting the functional TLR of the first species with the test ISNA; measuring a response mediated by the TLR signal transduction pathway associated with the contacting the functional TLR of the second species with the test ISNA; and comparing (a) the response mediated by a TLR signal transduction pathway associated with the contacting the functional TLR of the first species with the test ISNA with (b) the response mediated by the TLR signal transduction pathway associated with the contacting the functional TLR of the second species with the test ISNA. The functional TLR may be expressed by a cell or it may be part of a cell-free system. The functional TLR may be part of a complex, with either another TLR or with another protein, e.g., MyD88, IRAK, TRAF6, IκB, NF-κB, or functional homologues and derivatives thereof. Thus for example a given ODN can be tested against a panel of 293 fibroblast cells transfected with TLR7, TLR8, or TLR9 from various species and optionally cotransfected with a reporter construct (e.g., NFκB-luc) sensitive to TLR/IL-1R activation pathways. Thus in another aspect, the invention provides a method for screening species selectivity with respect to a given nucleic acid sequence.

As mentioned above, the invention in one aspect provides a screening method for comparing TLR signaling activity or a test compound against corresponding TLR signaling activity of a reference ISNA. The methods generally involve contacting a functional TLR

selected from the group consisting of TLR7, TLR8, and TLR9 with a reference ISNA and detecting a reference response mediated by a TLR signal transduction pathway; contacting a functional TLR selected from the group consisting of TLR7, TLR8, and TLR9 with a test compound and detecting a test response mediated by a TLR signal transduction pathway; and comparing the test response with the reference response to compare the TLR signaling activity of the test compound with the ISNA. Assays in which the test compound and the reference ISNA contact the TLR independently may be used to identify test compounds that are ISNA mimics. Assays in which the test compound and the reference ISNA contact the TLR concurrently may be used to identify test compounds that are ISNA agonists and ISNA antagonists.

10

15

20

25

30

An ISNA mimic as used herein is a compound which causes a response mediated by a TLR signal transduction pathway. As used herein the term "response mediated by a TLR signal transduction pathway" refers to a response which is characteristic of an ISNA-TLR interaction. As demonstrated herein responses which are characteristic of ISNA-TLR interactions include the induction of a gene under control of an ISNA-specific promoter such as a NF-κB promoter, increases in Th1 cytokine levels, etc. The gene under the control of the NF-κB promoter may be a gene which naturally includes an NF-κB promoter or it may be a gene in a construct in which an NF-kB promoter has been inserted. Genes which naturally include the NF-κB promoter include but are not limited to IL-8, IL-12 p40, NF-κB-luc, IL-12 p40-luc, and TNF-luc. Increases in Th1 cytokine levels is another measure characteristic of an ISNA-TLR interaction. Increases in Th1 cytokine levels may result from increased production or increased stability or increased secretion of the Th1 cytokines in response to the ISNA-TLR interaction. Th1 cytokines include but are not limited to IL-2, IFN-γ, and IL-12. Other responses which are characteristic of an ISNA-TLR interaction include but are not limited to a reduction in Th2 cytokine levels. Th2 cytokines include but are not limited to IL-4, IL-5, and IL-10.

The response which is characteristic of an ISNA-TLR interaction may be a direct response or an indirect response. A direct response is a response that arises directly as a result of the ISNA-TLR interaction. An indirect response is a response which involves the modulation of other parameters prior to its occurrence.

An ISNA agonist as used herein is a compound which causes an enhanced response to

an ISNA mediated by a TLR signal transduction pathway. Thus an ISNA agonist as used herein is a compound which causes an increase in at least one aspect of an immune response that is ordinarily induced by the reference ISNA. For example, an immune response that is ordinarily induced by an ISNA can specifically include TLR7-, TLR8-, or TLR9-mediated signal transduction in response to immunostimulatory CpG nucleic acid. An ISNA agonist will in some embodiments compete with ISNA for binding to TLR7, TLR8, or TLR9. In other embodiments an ISNA agonist will bind to a site on TLR7, TLR8, or TLR9 that is distinct from the site for binding ISNA. In yet other embodiments an ISNA agonist will act via another molecule or pathway distinct from TLR7, TLR8, or TLR9.

5

10

15

20

25

30

An ISNA antagonist as used herein is a compound which causes a decreased response to an ISNA mediated by a TLR signal transduction pathway. Thus an ISNA antagonist as used herein is a compound which causes a decrease in at least one aspect of an immune response that is ordinarily induced by the reference ISNA. For example, an immune response that is ordinarily induced by an ISNA can specifically include TLR7-, TLR8-, or TLR9-mediated signal transduction in response to immunostimulatory CpG nucleic acid. An ISNA antagonist will in some embodiments compete with ISNA for binding to TLR7, TLR8, or TLR9. In other embodiments an ISNA antagonist will bind to a site on TLR7, TLR8, or TLR9 that is distinct from the site for binding ISNA. In yet other embodiments an ISNA antagonist will act via another molecule or pathway distinct from TLR7, TLR8, or TLR9.

The screening methods for comparing TLR signaling activity of a test compound with signaling activity of an ISNA involve contacting at least one test compound with a functional TLR selected from TLR7, TLR8, and TLR9 under conditions which, in the absence of a test compound, permit a reference ISNA to induce at least one aspect of an immune response. The functional TLR may be expressed by a cell or it may be part of a cell-free system. A cell expressing a functional TLR is a cell that either naturally expresses the TLR, or is a cell into which has been introduced a TLR expression vector, or is a cell manipulated to express TLR in a manner that allows the TLR to be expressed by the cell and to transduce a signal under conditions which normally permit signal transduction by the signal transducing portion of the TLR. The TLR can be a native TLR or it can be a fragment or variant thereof, as described above. According to these methods, the test compound is contacted with a functional TLR or TLR-expressing cell before, after, or simultaneously with contacting a reference ISNA with

- 90 -

the functional TLR or TLR-expressing cell. A response of the functional TLR or TLR-expressing cell is measured and compared with the corresponding response that results or would result under the same conditions in the absence of the test compound. Where it is appropriate, the response in the absence of the test compound can be determined as a concurrent or historical control. Examples of such responses include, without limitation, a response mediated through the TLR signal transduction pathway, secretion of a cytokine, cell proliferation, and cell activation. In a preferred embodiment, the measurement of a response involves the detection of IL-8 secretion (e.g., by ELISA). In another preferred embodiment, the measurement of the response involves the detection of luciferase activity (e.g., NF-κB-luc, IL-12 p40-luc, or TNF-luc).

5

10

15

20

25

30

Examples of reference ISNAs include, without limitation, those listed in Table 1 (above). In some preferred embodiments the reference ISNA is a CpG nucleic acid.

Test compounds can include but are not limited to peptide nucleic acids (PNAs), antibodies, polypeptides, carbohydrates, lipids, hormones, and small molecules. Test compounds can further include variants of a reference ISNA incorporating any one or combination of the substitutions described above. Test compounds can be generated as members of a combinatorial library of compounds.

In preferred embodiments, the methods for screening test compounds, test nucleic acid molecules, test ISNAs, and candidate pharmacological agents can be performed on a large scale and with high throughput by incorporating, e.g., an array-based assay system and at least one automated or semi-automated step. For example, the assays can be set up using multiple-well plates in which cells are dispensed in individual wells and reagents are added in a systematic manner using a multiwell delivery device suited to the geometry of the multiwell plate. Manual and robotic multiwell delivery devices suitable for use in a high throughput screening assay are well known by those skilled in the art. Each well or array element can be mapped in a one-to-one manner to a particular test condition, such as the test compound. Readouts can also be performed in this multiwell array, preferably using a multiwell plate reader device or the like. Examples of such devices are well known in the art and are available through commercial sources. Sample and reagent handling can be automated to further enhance the throughput capacity of the screening assay, such that dozens, hundreds, thousands, or even millions of parallel assays can be performed in a day or in a week. Fully

- 91 -

robotic systems are known in the art for applications such as generation and analysis of combinatorial libraries of synthetic compounds. See, for example, U.S. patents 5,443,791 and 5,708,158.

The invention will be more fully understood by reference to the following examples.

These examples, however, are merely intended to illustrate the embodiments of the invention and are not to be construed to limit the scope of the invention.

Examples

10 Example 1. Method of cloning the mouse TLR9

5

15

20

25

Alignment of human TLR9 protein sequence with mouse EST database using tfasta yielded 7 hits with mouse EST sequences aa197442, ai451215, aa162495, aw048117, ai463056, aw048548, and aa273731. Two primers were designed that bind to aa197442 EST sequence for use in a RACE-PCR to amplify 5' and 3' ends of the mouse TLR9 cDNA. The library used for the RACE PCR was a mouse spleen marathon-ready cDNA commercially available from Clonetech. A 5' fragment with a length of 1800 bp obtained by this method was cloned into Promega pGEM-T Easy vector. After sequencing of the 5' end, additional primers were designed for amplification of the complete mouse TLR9 cDNA. The primer for the 5' end was obtained from the sequence of the 5' RACE product whereas the primer for the 3' end was selected from the mouse EST sequence aa273731.

Three independent PCR reactions were set up using a murine macrophage RAW264.7 (ATCC TIB-71) cDNA as a template, and the resulting amplification products were cloned into the pGEM-T Easy vector. The inserts were fully sequenced, translated into protein and aligned to the human protein sequence. One out of three clones was error-free based on alignment comparison (clone mtlr932e.pep). The cDNA sequence for mTLR9 is SEQ ID NO:1, is presented in Table 2. The ATG start codon occurs at base 40, and a TAG termination codon occurs at base 3136. SEQ ID NO:2 (Table 3), corresponding to bases 40-3135 of SEQ ID NO:1, is the coding region for the polypeptide of SEQ ID NO:3.

Table 2. cDNA Sequence for Murine TLR9 (5' to 3'; SEQ ID NO:1)

tgtcagaggg agcctcggga gaatcctcca tctcccaaca tggttctccg tcgaaggact 60 ctgcacccct tgtccctcct ggtacaggct gcagtgctgg ctgagactct ggccctgggt 120

- 92 -

		ccttcctacc					180
		agtctgtacc					240
	ctctccttga	tctccaaccg	tatccaccac	ctgcacaact	ccgacttcgt	ccacctgtcc	300
	aacctgcggc	agctgaacct	caagtggaac	tgtccaccca	ctggccttag	cccctgcac	360
5	ttctcttgcc	acatgaccat	tgagcccaga	accttcctgg	ctatgcgtac	actggaggag	420
	ctgaacctga	gctataatgg	tatcaccact	gtgccccgac	tgcccagctc	cctggtgaat	480
	ctgagcctga	gccacaccaa	catcctggtt	ctagatgcta	acagcctcgc	cggcctatac	540
	agcctgcgcg	ttctcttcat	ggacgggaac	tgctactaca	agaacccctg	cacaggagcg	600
	gtgaaggtga	ccccaggcgc	cctcctgggc	ctgagcaatc	tcacccatct	gtctctgaag	660
10	tataacaacc	tcacaaaggt	gccccgccaa	ctgccccca	gcctggagta	cctcctggtg	720
	tcctataacc	tcattgtcaa	gctggggcct	gaagacctgg	ccaatctgac	ctcccttcga	780
	gtacttgatg	tgggtgggaa	ttgccgtcgc	tgcgaccatg	ccccaatcc	ctgtatagaa	840
	tgtggccaaa	agtccctcca	cctgcaccct	gagaccttcc	atcacctgag	ccatctggaa	900
	ggcctggtgc	tgaaggacag	ctctctccat	acactgaact	cttcctggtt	ccaaggtctg	960
15	gtcaacctct	cggtgctgga	cctaagcgag	aactttctct	atgaaagcat	caaccacacc	1020
	aatgcctttc	agaacctaac	ccgcctgcgc	aagctcaacc	tgtccttcaa	ttaccgcaag	1080
	aaggtatcct	ttgcccgcct	ccacctggca	agttccttca	agaacctggt	gtcactgcag	1140
	gagctgaaca	tgaacggcat	cttcttccgc	tcgctcaaca	agtacacgct	cagatggctg	1200
	gccgatctgc	ccaaactcca	cactctgcat	cttcaaatga	acttcatcaa	ccaggcacag	1260
20	ctcagcatct	ttggtacctt	ccgagccctt	cgctttgtgg	acttgtcaga	caatcgcatc	1320
	agtgggcctt	caacgctgtc	agaagccacc	cctgaagagg	cagatgatgc	agagcaggag	1380
	gagctgttgt	ctgcggatcc	tcacccagct	ccactgagca	cccctgcttc	taagaacttc	1440
	atggacaggt	gtaagaactt	caagttcacc	atggacctgt	ctcggaacaa	cctggtgact	1500
	atcaagccag	agatgtttgt	caatctctca	cgcctccagt	gtcttagcct	gagccacaac	1560
25	tccattgcac	aggctgtcaa	tggctctcag	ttcctgccgc	tgactaatct	gcaggtgctg	1620
	gacctgtccc	ataacaaact	ggacttgtac	cactggaaat	cgttcagtga	gctaccacag	1680
	ttgcaggccc	tggacctgag	ctacaacagc	cagcccttta	gcatgaaggg	tataggccac	1740
	aatttcagtt	ttgtggccca	tctgtccatg	ctacacagcc	ttagcctggc	acacaatgac	1800
	attcataccc	gtgtgtcctc	acatctcaac	agcaactcag	tgaggtttct	tgacttcagc	1860
30	ggcaacggta	tgggccgcat	gtgggatgag	gggggccttt	atctccattt	cttccaaggc	1920
	ctgagtggcc	tgctgaagct	ggacctgtct	caaaataacc	tgcatatcct	ccggccccag	1980
	aaccttgaca	acctccccaa	gagcctgaag	ctgctgagcc	tccgagacaa	ctacctatct	2040
	ttctttaact	ggaccagtct	gtccttcctg	cccaacctgg	aagtcctaga	cctggcaggc	2100
	aaccagctaa	aggccctgac	caatggcacc	ctgcctaatg	gcaccctcct	ccagaaactg	2160
35		gcaacagtat					2220
		tcaacctcag					2280
		tgaacctgac	•				2340
		tcgtagactt					2400
		gtggcagccc					2460
		tggatgaggt					2520
		tggtggtgcc					2580
		gcctggcatg					2640
			_ 3	ر - در	J J==50m3	J J	

- 93 -

	ctcccctatg	atgccttcgt	ggtgttcgat	aaggcacaga	gcgcagttgc	ggactgggtg	2700
	tataacgagc	tgcgggtgcg	gctggaggag	cggcgcggtc	gccgagccct	acgcttgtgt	2760
	ctggaggacc	gagattggct	gcctggccag	acgctcttcg	agaacctctg	ggcttccatc	2820
	tatgggagcc	gcaagactct	atttgtgctg	gcccacacgg	accgcgtcag	tggcctcctg	2880
5	cgcaccagct	tcctgctggc	tcagcagcgc	ctgttggaag	accgcaagga	cgtggtggtg	2940
	ttggtgatcc	tgcgtccgga	tgcccaccgc	tcccgctatg	tgcgactgcg	ccagcgtctc	3000
	tgccgccaga	gtgtgctctt	ctggccccag	cagcccaacg	ggcagggggg	cttctgggcc	3060
	cagctgagta	cagccctgac	tagggacaac	cgccacttct	ataaccagaa	cttctgccgg	3120
	ggacctacag	cagaatagct	cagagcaaca	gctggaaaca	gctgcatctt	catgcctggt	3180
10	tcccgagttg	ctctgcctgc					3200

Table 3. Coding region for murine TLR9 (SEQ ID NO:2)

	atggttctcc	gtcgaaggac	tctgcacccc	ttgtccctcc	tggtacaggc	tgcagtgctg	60
	gctgagactc	tggccctggg	taccctgcct	gccttcctac	cctgtgagct	gaagcctcat	120
15	ggcctggtgg	actgcaattg	gctgttcctg	aagtctgtac	cccgtttctc	tgcggcagca	180
	tcctgctcca	acatcacccg	cctctccttg	atctccaacc	gtatccacca	cctgcacaac	240
	tccgacttcg	tccacctgtc	caacctgcgg	cagctgaacc	tcaagtggaa	ctgtccaccc	300
	actggcctta	gcccctgca	cttctcttgc	cacatgacca	ttgagcccag	aaccttcctg	360
	gctatgcgta	cactggagga	gctgaacctg	agctataatg	gtatcaccac	tgtgcccga	420
20	ctgcccagct	ccctggtgaa	tctgagcctg	agccacacca	acatcctggt	tctagatgct	480
	aacagcctcg	ccggcctata	cagcctgcgc	gttctcttca	tggacgggaa	ctgctactac	540
	aagaacccct	gcacaggagc	ggtgaaggtg	accccaggcg	ccctcctggg	cctgagcaat	600
	ctcacccatc	tgtctctgaa	gtataacaac	ctcacaaagg	tgcccgcca	actgccccc	660
	agcctggagt	acctcctggt	gtcctataac	ctcattgtca	agctggggcc	tgaagacctg	720
25	gccaatctga	cctcccttcg	agtacttgat	gtgggtggga	attgccgtcg	ctgcgaccat	780
	gcccccaatc	cctgtataga	atgtggccaa	aagtccctcc	acctgcaccc	tgagaccttc	840
	catcacctga	gccatctgga	aggcctggtg	ctgaaggaca	gctctctcca	tacactgaac	900
	tcttcctggt	tccaaggtct	ggtcaacctc	tcggtgctgg	acctaagcga	gaactttctc	960
	tatgaaagca	tcaaccacac	caatgccttt	cagaacctaa	cccgcctgcg	caagctcaac	1020
30	ctgtccttca	attaccgcaa	gaaggtatcc	tttgcccgcc	tccacctggc	aagttccttc	1080
	aagaacctgg	tgtcactgca	ggagctgaac	atgaacggca	tcttcttccg	ctcgctcaac	1140
	aagtacacgc	tcagatggct	ggccgatctg	cccaaactcc	acactctgca	tcttcaaatg	1200
	aacttcatca	accaggcaca	gctcagcatc	tttggtacct	tccgagccct	tcgctttgtg	1260
	gacttgtcag	acaatcgcat	cagtgggcct	tcaacgctgt	cagaagccac	ccctgaagag	1320
35	gcagatgatg	cagagcagga	ggagctgttg	tctgcggatc	ctcacccagc	tccactgagc	1380
	acccctgctt	ctaagaactt	catggacagg	tgtaagaact	tcaagttcac	catggacctg	1440
	tctcggaaca	acctggtgac	tatcaagcca	gagatgtttg	tcaatctctc	acgcctccag	1500
	tgtcttagcc	tgagccacaa	ctccattgca	caggctgtca	atggctctca	gttcctgccg	156 0
	ctgactaatc	tgcaggtgct	ggacctgtcc	cataacaaac	tggacttgta	ccactggaaa	1620
40	tcgttcagtg	agctaccaca	gttgcaggcc	ctggacctga	gctacaacag	ccagcccttt	1680
	agcatgaagg	gtataggcca	caatttcagt	tttgtggccc	atctgtccat	gctacacagc	1740
			-				

- 94 -

	cttagcctgg	cacacaatga	cattcatacc	cgtgtgtcct	cacatctcaa	cagcaactca	1800
	gtgaggtttc	ttgacttcag	cggcaacggt	atgggccgca	tgtgggatga	ggggggcctt	1860
	tatctccatt	tcttccaagg	cctgagtggc	ctgctgaagc	tggacctgtc	tcaaaataac	1920
	ctgcatatcc	tccggcccca	gaaccttgac	aacctcccca	agagcctgaa	gctgctgagc	1980
5	ctccgagaca	actacctatc	tttctttaac	tggaccagtc	tgtccttcct	gcccaacctg	2040
	gaagtcctag	acctggcagg	caaccagcta	aaggccctga	ccaatggcac	cctgcctaat	2100
	ggcaccctcc	tccagaaact	ggatgtcagc	agcaacagta	tcgtctctgt	ggtçccagcc	2160
	ttcttcgctc	tggcggtcga	gctgaaagag	gtcaacctca	gccacaacat	tctcaagacg	2220
	gtggatcgct	cctggtttgg	gcccattgtg	atgaacctga	cagttctaga	cgtgagaagc	2280
10	aaccctctgc	actgtgcctg	tggggcagcc	ttcgtagact	tactgttgga	ggtgcagacc	2340
	aaggtgcctg	gcctggctaa	tggtgtgaag	tgtggcagcc	ccggccagct	gcagggccgt	2400
	agcatcttcg	cacaggacct	gcggctgtgc	ctggatgagg	tcctctcttg	ggactgcttt	2460
	ggcctttcac	tcttggctgt	ggccgtgggc	atggtggtgc	ctatactgca	ccatctctgc	2520
	ggctgggacg	tctggtactg	ttttcatctg	tgcctggcat	ggctaccttt	gctggcccgc	2580
15	agccgacgca	gcgcccaagc	tctcccctat	gatgccttcg	tggtgttcga	taaggcacag	2640
	agcgcagttg	cggactgggt	gtataacgag	ctgcgggtgc	ggctggagga	gcggcgcggt	2700
	cgccgagccc	tacgcttgtg	tctggaggac	cgagattggc	tgcctggcca	gacgctcttc	2760
	gagaacctct	gggcttccat	ctatgggagc	cgcaagactc	tatttgtgct	ggcccacacg	2820
	gaccgcgtca	gtggcctcct	gcgcaccagc	tteetgetgg	ctcagcagcg	cctgttggaa	2880
20	gaccgcaagg	acgtggtggt	gttggtgatc	ctgcgtccgg	atgcccaccg	ctcccgctat	2940
	gtgcgactgc	gccagcgtct	ctgccgccag	agtgtgctct	tctggcccca	gcagcccaac	3000
	gggcaggggg	gcttctgggc	ccagctgagt	acagccctga	ctagggacaa	ccgccacttc	3060
	tataaccaga	acttctgccg	gggacctaca	gcagaa		•	3096

The deduced amino acid sequence for murine TLR9 (SEQ ID NO:3), comprising 1032 amino acid residues, is shown in Table 4 below in the aligned sequence comparison as mtlr932e.pep. The deduced amino acid sequence for human TLR9 (SEQ ID NO:6), comprising 1032 amino acid residues, is shown in Table 4 below in the aligned sequence comparison as htlr9.pro.

30

25

Table 4. Amino Acid Sequence of Murine and Human TLR9

		•	:		•	:	•	:	•	:	•	:	•	:	60
	htlr9.pro	MGFCR	SALHF	ĻSLL	VQAI	TMAJM	LALGT	ĻPAFL	PCELQ	PHGLV	NCNWL	FLKSV	PHFSM	IAA	60
	mtlr932e.pep	MVLRRI	RTLHE	LSLL	VQAA	VLAET	LALGT	LPAFL	PCELK	PHGLV	DCNWL	FLKSV	PRFSA	AA	60
35															
		•	:			:	•	:	•	:	•	:	•	•	120
	htlr9.pro	PRGNV	rslsl	SSNR	IHHL	HDSDF.	AHLPS	LRHLN	LKWNC	PPVGL	SPMHF	PCHMT	IEPST	FL	120
	mtlr932e.pep	SCSNI	TRLSL	ISNR	THHL	HNSDF	VHLSN	LRQLN	LKWNC	PPTGL	SPLHF	SCHMT	IEPRT	FL	120
							•								
40		•	:		•	:	•	:	-	:	•	:	•	:	180

	htlr9.pro	AVPTLEELNLSYNNIMTVPALPKSLISLSLSHTNILMLDSASLAGLHALRFLFMDGNCYY	18
	mtlr932e.pep	AMRTLEELNLSYNGITTVPRLPSSLVNLSLSHTNILVLDANSLAGLYSLRVLFMDGNCYY	18
			24
5	htlr9.pro	KNPCRQALEVAPGALLGLGNLTHLSLKYNNLTVVPRNLPSSLEYLLLSYNRIVKLAPEDL	24
	mtlr932e.pep	KNPCTGAVKVTPGALLGLSNLTHLSLKYNNLTKVPRQLPPSLEYLLVSYNLIVKLGPEDL	24
		•	
			30
	htlr9.pro	ANLTALRVLDVGGNCRRCDHAPNPCMECPRHFPQLHPDTFSHLSRLEGLVLKDSSLSWLN	30
10	mtlr932e.pep	ANLTSLRVLDVGGNCRRCDHAPNPCIECGQKŞLHLHPETFHHLSHLEGLVLKDSSLHTLN	30
			3
	aa197442.pep	LNLSFNYRKKVSFARLHLASSF	•
	htlr9.pro	ASWFRGLGNLRVLDLSENFLYKCITKTKAFQGLTQLRKLNLSFNYQKRVSFAHLSLAPSF	3
15	mtlr932e.pep	SSWFQGLVNLSVLDLSENFLYESINHTNAFQNLTRLRKLNLSFNYRKKVSFARLHLASSF	30
•			4
	mousepep1	C	
•	aa197442.pep		
20	htlr9.pro	GSLVALKELDMHGIFFRSLDETTLRPLARLPMLQTLRLQMNFINQAQLGIFRAFPGLRYV	4
	mtlr932e.pep	KNLVSLQELNMNGIFFRSLNKYTLRWLADLPKLHTLHLQMNFINQAQLSIFGTFRALRFV	4
		· : · : · : · : · : · : · : · : · : · :	4
25	mousepep1	DLSDNRISGPSTLSEA	
25	humanpep1	PAPVDTPSSEDFRPNC	
	aa197442.pep		1
	htlr9.pro	DLSDNRISGASELT-ATMGEADGGEKVWLQPGDLAPAPVDTPSSEDFRPNCSTLNFTLDL	4
	mtlr932e.pep	DLSDNRISGPSTLSEATPEEADDAEQEELLSADPHPAPLSTPASKNFMDRCKNFKFTMDL	4
30			_
50	aa197442.pep	SRNNLVTITAEMFVNLSRLQCLSLSHNSIAQAVNGS	5 1
	htlr9.pro	SRNNLVTVQPEMFAQLSHLQCLRLSHNCISQAVNGSQFLPLTGLQVLDLSRNKLDLYHEH	
	mtlr932e.pep		5 5
	merrosee.pep	O'GULDALLIGE D'IL AUDOUDGEDOUMETANAMAN ANGOGL DE DITUIT DE DITUITAN	5
35	•		6
	aa162495.pep	YNSQPFSMKGIGHNFSFVTHLSMLQSLSLAHNDIHTRVSSHLNSNS	
	htlr9.pro	SFTELPRLEALDLSYNSQPFGMQGVGHNFSFVAHLRTLRHLSLAHNNIHSQVSQQLCSTS	5
	_	SFSELPQLQALDLSYNSQPFSMKGIGHNFSFVAHLSMLHSLSLAHNDIHTRVSSHLNSNS	6
			J
40			6
	aa162495.pep	VRFLDFSGNGMGRMWDEGGLYLHFFQGLSGVLKLDLSQNNLHILRPQNLDNLPKSLKLLS	1
	htlr9.pro	LRALDFSGNALGHMWAEGDLYLHFFQGLSGLIWLDLSQNRLHTLLPQTLRNLPKSLQVLR	6
	-	VRFLDFSGNGMGRMWDEGGLYLHFFQGLSGLLKLDLSQNNLHILRPQNLDNLPKSLKLLS	6
			0
45			7:
	aa162495 nen	LRDNYLSFFNWTSLSFLPNLEVLDLAGNQLKALTNGTLPNGTLLQKLDVSSNSIVS	1
	~~-^bch		<u>_i</u>

- 96 -

	htlr9.pro	LRDNYLAFFKWWSLHFLPKLEVLDLAGNRLKALTNGSLPAGTRLRRLDVSCNSISFVAPG	719
	mtlr932e.pep	LRDNYLSFFNWTSLSFLPNLEVLDLAGNQLKALTNGTLPNGTLLQKLDVSSNSIVSVVPA	720
			•
		. : . : . : . : . :	780
5	ai451215.pep	PIVMNLTVLDVRSNPLHCACGAAFVDLLLEVQT	33
	htlr9.pro	FFSKAKELRELNLSANALKTVDHSWFGPLASALQILDVSANPLHCACGAAFMDFLLEVQA	779
	mtlr932e.pep	FFALAVELKEVNLSHNILKTVDRSWFGPIVMNLTVLDVRSNPLHCACGAAFVDLLLEVQT	780
		. : . : . : . : . :	840
10	ai451215.pep	KVPGLANGVKCGSPGQLQGRSIFAQDLRLCLDEVLSWDCFGLSLLAVAVGMVVPILHHLC	93
	htlr9.pro	AVPGLPSRVKCGSPGQLQGLSIFAQDLRLCLDEALSWDCFALSLLAVALGLGVPMLHHLC	839
	mtlr932e.pep	KVPGLANGVKCGSPGQLQGRSIFAQDLRLCLDEVLSWDCFGLSLLAVAVGMVVPILHHLC	840
			_
		. : . : . : . : . :	900
15	ai451215.pep	GWDVWYCFHLCLAWLPLLAR-SRRSAQTLPYDAFVVFDKAQSAVADWVYNELRVRLEERR	152
	htlr9.pro	GWDLWYCFHLCLAWLPWRGRQSGRDEDALPYDAFVVFDKTQSAVADWVYNELRGQLEECR	899
	mtlr932e.pep	GWDVWYCFHLCLAWLPLLAR-SRRSAQALPYDAFVVFDKAQSAVADWVYNELRVRLEERR	899
		. : . : . : . : . :	960
20	aa273731.pep	AHTDRVSGLLRTSFLLAQQRLL	22
	ai463056.pep	EDRDWLPGQTLFENLWASIYGSRKTLFVLAHTDRVSGLLRTSFLLAQQRLL	51
	ai451215.pep	GR	154
	htlr9.pro	GRWALRLCLEERDWLPGKTLFENLWASVYGSRKTLFVLAHTDRVSGLLRASFLLAQQRLL	959
	mtlr932e.pep	GRRALRLCLEDRDWLPGQTLFENLWASIYGSRKTLFVLAHTDRVSGLLRTSFLLAQQRLL	959
25			
			1020
	humanpep2	н	1
	mousepep2	H	1
	aa273731.pep	EDRKDVVVLVILRPDAXPSRYVRLRQRLCRQSVLFWPQRPNGQGGFWAQLSTALTRDNRH	82
30	ai463056.pep	EDRKDVVVLVILRPDAHRSRYVRLRQRLCRQSVLFWPQQPNGQGGFWAQLSTALTRDNRH	111
	htlr9.pro	EDRKDVVVLVILSPDGRRSRYVRLRQRLCRQSVLLWPHQPSGQRSFWAQLGMALTRDNHH	1019
	mtlr932e.pep	EDRKDVVVLVILRPDAHRSRYVRLRQRLCRQSVLFWPQQPNGQGGFWAQLSTALTRDNRH	1019
		. : . : . : . : . :	1080
35	humanpep2	FYNRNFCQGPTÄE	14
	mousepep2	FYNQNFCRGPTAE	14
	aa273731.pep	FYNONFCRGPTAE	95
	ai463056.pep	FYNQNFCRGPTA	123
	htlr9.pro	FYNRNFCQGPTAE	1032
40	mtlr932e.pep	FYNQNFCRGPTAE	1032

The following SEQ ID NOs correspond to the sequences as shown in Table 4: https://proc. SEQ ID NO:6; mtlr932e.pep: SEQ ID NO:3; aa197442.pep: SEQ ID NO:8; mousepep1: SEQ ID NO:17; humanpep1: SEQ ID NO:19; aa162495.pep: SEQ ID NO:14;

- 97 -

ai451215.pep: SEQ ID NO:16; aa273731.pep: SEQ ID NO:10; ai463056.pep: SEQ ID NO:12; humanpep2: SEQ ID NO:20; and mousepep2: SEQ ID NO:18.

Example 2. Reconstitution of TLR9 signaling in 293 fibroblasts

5

10

15

20

25

30

The cloned mouse TLR9 cDNA (see above) and human TLR9 cDNA (gift from B. Beutler, Howard Hughes Medical Institute, Dallas, TX) in pT-Adv vector (from Clonetech) were cloned into the expression vector pcDNA3.1(-) from Invitrogen using the EcoRI site. Utilizing a "gain of function" assay it was possible to reconstitute human TLR9 (hTLR9) and murine TLR9 (mTLR9) signaling in CpG DNA non-responsive human 293 fibroblasts (ATCC, CRL-1573). The expression vectors mentioned above were transfected into 293 fibroblast cells using the calcium phosphate method.

Since NF-κB activation is central to the IL-1/TLR signal transduction pathway (Medzhitov R et al., *Mol Cell* 2:253-258 (1998); Muzio M et al., *J Exp Med* 187:2097-2101 (1998)), cells were transfected with hTLR9 or co-transfected with hTLR9 and a NF-κB-driven luciferase reporter construct. Human fibroblast 293 cells were transiently transfected with (**Figure 1A**) hTLR9 and a six-times NF-κB-luciferase reporter plasmid (NF-κB-luc, kindly provided by Patrick Baeuerle, Munich, Germany) or (**Figure 1B**) with hTLR9 alone. After stimulus with CpG-ODN (2006, 2μM, TCGTCGTTTTGTCGTTTTGTCGTT, SEQ ID NO:112), GpC-ODN (2006-GC, 2μM, TGCTGCTTTTGTGCTTTTGTGCTT, SEQ ID NO:118), LPS (100 ng/ml) or media, NF-κB activation by luciferase readout (8h, **Figure 1A**) or IL-8 production by ELISA (48h, **Figure 1B**) were monitored. Results are representative of three independent experiments. **Figure 1** shows that cells expressing hTLR9 responded to CpG-DNA but not to LPS.

Figure 2 demonstrates the same principle for the transfection of mTLR9. Human fibroblast 293 cells were transiently transfected with mTLR9 and the NF-kB-luc construct (Figure 2). Similar data was obtained for IL-8 production (not shown). Thus expression of TLR9 (human or mouse) in 293 cells results in a gain of function for CpG-DNA stimulation similar to hTLR4 reconstitution of LPS responses.

To generate stable clones expressing human TLR9, murine TLR9, or either TLR9 with the NF-κB-luc reporter plasmid, 293 cells were transfected in 10 cm plates (2x10⁶ cells/plate) with 16 μg of DNA and selected with 0.7 mg/ml G418 (PAA Laboratories GmbH,

- 98 -

Cölbe, Germany). Clones were tested for TLR9 expression by RT-PCR, for example as shown in Figure 3. The clones were also screened for IL-8 production or NF-kB-luciferase activity after stimulation with ODN. Four different types of clones were generated.

293-hTLR9-luc: expressing human TLR9 and 6-fold NF-κB-luciferase reporter

293-mTLR9-luc: expressing murine TLR9 and 6-fold NF-κB-luciferase reporter

293-hTLR9: expressing human TLR9

293-mTLR9: expressing murine TLR9

Figure 4 demonstrates the responsiveness of a stable 293-hTLR9-luc clone after 10 stimulation with CpG-ODN (2006, 2µM), GpC-ODN (2006-GC, 2µM), Me-CpG-ODN (2006 methylated, $2\mu M$; TZGTZGTTTTGTZGTTTTGTZGTT, Z = 5-methylcytidine, SEQ ID NO:128), LPS (100 ng/ml) or media, as measured by monitoring NF-κB activation. Similar results were obtained utilizing IL-8 production with the stable clone 293-hTLR9. 293-mTLR9-luc were also stimulated with CpG-ODN (1668, 2µM; 15 TCCATGACGTTCCTGATGCT, SEQ ID NO:84), GpC-ODN (1668-GC, 2µM; TCCATGAGCTTCCTGATGCT, SEQ ID NO:85), Me-CpG-ODN (1668 methylated, 2µM; TCCATGAZGTTCCTGATGCT, Z = 5-methylcytidine, SEQ ID NO:207), LPS (100 ng/ml) or media, as measured by monitoring NF-kB activation (Figure 5). Similar results were obtained utilizing IL-8 production with the stable clone 293-mTLR9. Results are 20 representative of at least two independent experiments. These results demonstrate that CpG-DNA non-responsive cell lines can be stably genetically complemented with TLR9 to become responsive to CpG DNA in a motif-specific manner. These cells can be used for screening of optimal ligands for innate immune responses driven by TLR9 in multiple species.

25

30

5

Example 3. Expression of soluble recombinant human TLR9 in yeast cells (*Pichia pastoris*)

Human TLR9 cDNA coding for amino acids 1 to 811 was amplified by PCR using the primers 5'-ATAGAATTCAATAATGGGTTTCTGCCGCAGCGCCCT-3' (SEQ ID NO:194) and 5'-ATATCTAGATCCAGGCAGGCGCAGGGCGCAGGTC-3' (SEQ ID NO:195), digested with EcoRI and XbaI, cloned into the yeast expression vector pPICZB (Invitrogen, Groningen,

- 99 -

Netherlands) and transfected into yeast cells (*Pichia pastoris*). Clones were selected with the antibiotic zeozin and protein production of soluble human TLR9 was induced with methanol (see Figure 6: SDS-PAGE, Coomassie stained, arrow marks hTLR9; lane 1: supernatant of culture induced with methanol; lane 2: supernatant of culture not induced). Thus TLR9 protein can be isolated from transfectants and further utilized for protein studies and vaccination purposes.

Example 4. hTLR9 expression correlates with CpG-DNA responsiveness.

5

10

15

20

25

30

Bacterial DNA has been described as a mitogen for both murine and human B cells. Although LPS is also mitogenic for murine B cells, it is generally accepted that LPS is not a mitogen for human B cells. Figure 7 demonstrates that human B cells proliferate after stimulation with *E. coli* DNA or a CpG-ODN but not Dnase-digested *E. coli* DNA or a control GpC-ODN. Purified human B cells were stimulated with 50μg/ml *E. coli* DNA, a comparable amount of DNase I-digested *E. coli* DNA, 2μM CpG-ODN (2006), 2μM GpC-ODN (2006-GC) or 100 ng/ml LPS. B cell proliferation was monitored at day two by ³H-thymidine uptake. These data demonstrate that it was DNA within the *E. coli* DNA preparation that was mitogenic and that a CpG-motif within the ODN was required.

Human dendritic cells (DC) have been claimed to be responsive to CpG-DNA. While analyzing human dendritic cell responses to CpG-DNA, we noted that plasmacytoid DC (CD123+DC) produced IFN-α, TNF, GM-CSF, and IL-8 upon exposure to CpG-DNA but not to LPS (Figure 8 and unpublished data). The converse was true for stimulation of monocytederived dendritic cells (MDDC) (Figure 8 and unpublished data). Purified CD123+DC or MDDC were stimulated with 50μg/ml *E. coli* DNA, a comparable amount of DNase Idigested *E. coli* DNA, 2μM CpG-ODN (2006), 2μM GpC-ODN (2006-GC) or 100 ng/ml LPS (Figure 8). IL-8 and TNF concentration was determined by enzyme-linked immunosorbent assay (ELISA). The CD123+DC response was DNA- and CpG-motif restricted. Monocyte-derived dendritic cells (MDDC) however demonstrated the converse response pattern, a response to LPS but not CpG-DNA. Due to this segregated response we analyzed TLR expression.

We have shown that CpG-DNA utilizes the Toll/IL-1R (TIR) signal transduction pathway implying the need for a TIR domain in the CpG-DNA signaling receptor. Häcker H

et al., J Exp Med 192:595-600 (2000). It was further demonstrated that TLR9-deficient mice are non-responsive to CpG-ODN. Hemmi H et al., Nature 408:740-5. By semi-quantitative RT-PCR both B cells and CD123+ DC yielded positive signals for hTLR9 while MDDC, monocytes and T cells were weak to negative (Figure 9). The cDNAs were prepared from monocyte-derived dendritic cells (MDDC), lane 1; purified CD14+ monocytes, lane 2; B cells, lane 3; CD123+DC, lane 4; CD4+T cells, lane 5; and CD8+T cells, lane 6. cDNA amounts were normalized based on GAPDH amount determined by TAG-MAN PCR (Perkin-Elmer). RT-PCR was performed for 30 cycles on normalized cDNA diluted 1:5 for human TLR2, 4 and 9, while GAPDH was diluted 1:125. We also tested for hTLR2 and hTLR4 expression. MDDC and monocytes were positive while B cells, T cells and CD123+DC were weak to negative (Figure 9). Weak signals delivered by PCR could be explained by contaminating cells, however a strong positive signal implies expression. These data demonstrated a clear correlation between hTLR9 mRNA expression and B cell or CD123+DC responsiveness to CpG-DNA (Figures 7 and 8). A correlation could also be shown for hTLR2 and hTLR4 expression and MDDC responsiveness to LPS (Figure 8). This data demonstrates that hTLR9 is a relevant receptor for CpG-DNA responses and that its expression determines responsiveness. If TLR9 expression could be modulated, agonism or antagonism of CpG-DNA responses could be achieved.

20 Example 5. Species specificity of TLR9 signaling

5

10

15

25

30

By iterative examination of the flanking sequences surrounding CG dinucleotides, CpG-motifs have been identified. Paradoxically, or by twist of nature, the human optimal CpG-motif, GTCGTT (SEQ ID NO:66), is different from the murine motif, GACGTT (SEQ ID NO:129). Human peripheral blood mononuclear cells (PBMC) (Figure 10A) and murine splenocytes (Figure 10B) were stimulated with ODN 2006 (filled circle, TCGTCGTTTTGTCGTT, SEQ ID NO:112), ODN 2006-GC (open circle), ODN 1668 (filled triangle, TCCATGACGTTCCTGATGCT, SEQ ID NO:84) or ODN 1668-GC (open triangle, TCCATGAGCTTCCTGATGCT, SEQ ID NO:85) at indicated concentrations and IL-12 production was monitored after 8 hours. Figure 10A shows that titration of the optimal human ODN, 2006, on PBMC induces IL-12 production. The optimal murine sequence, 1668, however was much less effective in eliciting IL-12 from PBMC. The two

control GpC-ODNs were essentially negative. The converse was true for murine splenocytes (Figure 10B), in that the murine sequence induced optimal IL-12 while the human sequence was much less effective. It should also be noted that the K_{ac} (concentration of half-maximal activation) of murine splenocytes for 1668 was greater than human PBMC for 2006 (compare Fig. 10A to Fig. 10B).

5

10

15

20

25

30

Because stable TLR9 transfectants mirrored primary cell responsiveness to CpG-DNA (Figures 4 and 5), it was hypothesized that stable transfectants could potentially discern species-specific CpG-motifs through TLR9 receptors. Therefore 293-hTLR9-luc (expressing human TLR9 and 6-fold NF-κB-luc reporter), 293-mTLR9-luc (expressing murine TLR9 and 6-fold NF-κB-luc reporter), 293-hTLR9 (expressing human TLR9) and 293-mTLR9 (expressing murine TLR9) clones were tested for CpG-DNA motif responsiveness. Figure 11 shows titration curves for 2006 or 1668 and their controls versus either hTLR9 or mTLR9 cells. Depicted are both NF-kB-driven luciferase and IL-8 production as readout. In both 293 hTLR9-luc and 293-mTLR9-luc cells stimulation with CpG-DNA resulted in NF-kB activation, as determined by measurement of the induced expression of firefly luciferase under the control of a minimal promotor containing six tandem NF-kB-binding sites. After lysis of the cells luciferase can be detected photometrically based on an enzymatic reaction by luciferase which creates photons. IL-8 production was monitored using enzyme-linked immunosorbent assay (ELISA). Figure 11 depicts clones stimulated with ODN 2006 (filled circle), ODN 2006-GC (open circle), ODN 1668 (filled triangle) or ODN 1668-GC (open triangle) at indicated concentrations and NF-kB activation or IL-8 production were measured after 10 and 48 hours, respectively. Results shown in Figure 11 are representative of three independent experiments. Strikingly, CpG-motif sequence specificity was conferred in a species-specific manner by TLR9. Additionally, the half-maximal concentration for either 2006 or 1668 appears nearly the same as those determined on primary cells (compare Figure 10 and Figure 11). These data demonstrate that TLR9 is the CpG-DNA receptor and that exquisite specificity to CpG-DNA sequence is conferred by TLR9.

Example 6. Use of stable TLR9 clones to test responsiveness to substances other than phosphorothioate ODN

As described in the foregoing Examples, the stable TLR9 clones were initially

- 102 -

screened for fidelity of phosphorothioate CpG-ODN reactivity. The 293-hTLR9 cells demonstrated reactivity to CpG-DNA and not LPS in a CpG-motif dependent manner (Figures 4 and 5). In the present example the stable TLR9 transfectants were tested for responsiveness to additional DNAs. NF-κB activation was monitored after stimulation with *E. coli* DNA (black bars) or *E.coli* DNA digested with DNAse I (gray bars) in 293-hTLR9-luc cells. Figure 12 demonstrates an *E. coli* DNA dose-dependent induction of NF-κB-driven luciferase expression to a level comparable to phosphorothioate CpG-ODN (Figure 11). Activity was destroyed by DNase I digestion, indicating specificity of response to DNA and not contaminant bacterial products. The stable TLR9 transfectants can be used to screen the activity of DNAs from various species or vector DNAs intended for immune system stimulation. In particular, TLR9 transfectants can be used to screen and compare the immunostimulatory activity of DNAs from various species of pathogens, DNA constructs, DNAs intended for use as vaccines, gene replacement therapeutics, and nucleic acid vectors.

293-hTLR9-luc cells also were stimulated with the phosphodiester variants of ODN 2006 (filled circle), ODN 2006-GC (open circle), ODN 1668 (filled triangle) or ODN 1668-GC (open triangle) at indicated concentrations, and NF-κB activation was monitored after 12 hours (Figure 13A). Likewise, 293-mTLR9-luc cells were stimulated with the phosphodiester variants of ODN 2006 (filled circle), ODN 2006-GC (open circle), ODN 1668 (filled triangle) or ODN 1668-GC (open triangle) at indicated concentrations, and NF-κB activation was monitored after 12 hours (Figure 13B). These assays show that the stable TLR9 transfectants responded to DNAs other than phosphorothioate-modified ODN. These data demonstrate the utility of stable TLR transfectants for screening for agonists of the TLR9 receptor.

25 Example 7. TLR9 determines CpG-ODN activity

10

15

20

30

Although 2006 and 1668 are discussed in terms of CpG-motif differences, they are very different in several aspects (see Table 5 for comparison). The lengths are different, 24 versus 20 nucleotides, and 2006 has four CG dinucleotides compared to one in 1668. Additional differences are the CG position relative to the 5' and 3' ends and also 5' sequence differences. In order to determine if motif specificity is a quality of the motif and not the global sequence environment, for this experiment several sequences were produced holding

- 103 -

these variables constant. As a starting point, the 1668 sequence was modified by converting the central C to T and the distal TG to CG, thereby creating a second CG in the resulting sequence 5000 (SEQ ID NO:130, Table 5). Then point nucleotide changes were made, progressing toward a 2006-like sequence, 5007 (SEQ ID NO:98). The ODN 5002 (SEQ ID NO:132) is most like 1668 with the exception that C's at positions 12 and 19 have been converted to T's. The last 16 nucleotides of ODN 5007 are the same as the last15 nucleotides of 2006 with the exception of an additional T. The ODN concentration of half-maximal activation (K_{ac}) was determined by producing ODN titration curves using either 293-hTLR9-luc or 293-mTLR9-luc cells and NF-κB-driven luciferase expression as a readout. Example curves are given in Figure 14. Stable transfectants 293-hTLR9-luc and 293-mTLR9-luc were stimulated with ODN 5002 (filled circle) or ODN 5007 (open circle) at indicated concentrations and NF-κB activation was monitored after 12 hours. Results shown in Figure 14 are representative of three independent experiments. Values for K_{ac} for multiple ODN are given in Table 5. Similar results were obtained for those ODN tested with 293-hTLR9 and 293-mTLR9 cells utilizing IL-8 as readout.

10

15

Table 5. CpG-DNA sequence specificity of human and murine TLR9 signaling activity

CpG-DNA	Sequence	293-hTLR9	293-mTLR9	SEQ ID NO:
		K _{ac} (nM)	K _{ac} (nM)	
1668	TCCATGACGTTCCTGATGCT	>10,000	70	84
1668-GC	TCCATGAGCTTCCTGATGCT	>10,000	>10,000	85
2006	TCGTCGTTTTGTCGTTTTGTCGTT	400	>10,000	112
2006-GC	TGCTGCTTTTGTGCTTTTGTGCTT	>10,000	>10,000	118
5000	TCCAT <u>GACGTT</u> CTTGACGCT	10,000	82	130
5001	TCCATGACGTTCTTGACGTT	7,000	55	131
5002	TCCATGACGTTCTTGATGTT	7,000	30	132
5003	TCCATGACGTTTTTGATGTT	10,000	30	133
5004	TCCATGTCGTTCTTGATGTT	5,000	400	134
5005	TCCATGTCGTTTTTGATGTT	3,000	2,000	135
5006	TCCATGTCGTTTTTTGTTGTT	3,000	650	136
5007	TCCATGTCGTTTTTGTCGTT	700	1,000	98
5002	TCCAT <u>GACGTT</u> CTTGATGTT	ND	30	132
5008	TCCATGACGTTATTGATGTT	ND	40	137
5009	TCCATGACGTCCTTGATGTT	ND	>10,000	138
5010	TCCATGACGTCATTGATGTT	ND	>10,000	139

- 104 -

In previous unpublished work by the inventors, it had been noted that a CA substitution converting the mouse CpG-motif from GACGT<u>TC</u> to GACGT<u>CA</u> was deleterious. To extend our examination of the motif, three more ODN were created to dissect this effect (5008-5010, SEQ ID NOs:137-139, Table 5).

The activity displayed by the 293-hTLR9-luc clone increased with progressive nucleotide substitutions converting the mouse sequence toward the human sequence (Table 5, sequences 5000-5007). The converse was true for the 293-mTLR9-luc clone, which showed highest activity for the mouse sequences. The originally hypothesized CpG-motif was purine-purine-CG-pyrimidine-pyrimidine. Most notable to motif definition as determined by TLR9 genetic complementation was the non-conservative pyrimidine for purine change A to T immediately 5' of the CG (Table 5). These changes improved 293-hTLR9-luc responsiveness but diminished 293-mTLR9-luc responsiveness. These results support the notion that the preferred mouse motif contains ACG while the preferred human sequence contains TCG. The conservative pyrimidine for pyrimidine change T to C in the mouse motif, ACGTT versus ACGTC (5002 versus 5009), completely destroyed 293-mTLR9 responsiveness. Although not a complete iterative analysis of the CpG-motif, the data refine our understanding of the motif. More importantly these data strongly support direct CpG-motif engagement by TLR9.

20 Example 8. Antagonist definition

5

10

15

25

30

It has been demonstrated that DNA uptake and endosomal maturation are required for signal initiation by CpG-DNA. It has been hypothesized that in order for DNA to enter the endosomal/lysosomal compartment a non-CpG dependent uptake receptor may be required. 293 cells were transiently transfected with mTLR9 treated with either medium only or 1.0 μM CpG-ODN 1668 (Figure 15). Additionally the 1668-treated TLR9 transfectants were simultaneously exposed to various doses of a non-CpG ODN (PZ2; 5'-CTCCTAGTGGGGGTGTCCTAT-3', SEQ ID NO:43). IL-8 production was monitored after 48h by ELISA. Figure 15 shows that PZ2, in a dose-dependent manner, was able to antagonize the activation of TLR9-transfected cells stimulated with a CpG ODN.

Figure 16 demonstrates that the stable TLR9 transfectants, 293-hTLR9-luc cells, are sensitive to non-CpG-ODN blockade. 293-hTLR9-luc cells were incubated with CpG-ODN

- 105 -

Bafilomycin A poisons the proton pump needed for H⁺ transport into endosomes, which is required for endosomal maturation. Figure 17 shows that blockade of endosomal maturation in 293-hTLR9-luc cells fully blocks CpG-ODN induction of NF-κB. 293-hTLR9-luc cells were preincubated with 10 nM Bafilomycin A (gray bars) or dimethylsulfoxide (DMSO) control (black bars) for 30 min and stimulated with CpG-ODN (2006, 0.5 μM), IL-1 (10 ng/ml) or TNF-α (10 ng/ml) as indicated. NF-κB activation was monitored after 12 hours and is presented as percent yields. The blockade was specific to CpG-DNA generated signal because both IL-1 and TNF induction of NF-κB was unaffected. These data demonstrate that 293 cells stably complemented with hTLR9 behave in a manner similar to primary CpG-DNA responsive cells, in that cellular uptake and endosomal maturation are required for induction of signal by CpG-DNA. Thus the stable transfectants can be used as indicator for TLR9 drug antagonist.

10

15

20

25

30

CpG-DNA signaling appears to occur via a Toll/IL-1R-like pathway. It was shown in the mouse that CpG-DNA signaling is dependent on MyD88, IRAK and TRAF6. Häcker H et al., *J Exp Med* 192:595-600 (2000). Hemmi et al. demonstrated that mTLR9-deficient mice lack activation of IRAK upon CpG-ODN stimulation. Hemmi H et al., *Nature* 408:740-5 (2000). Figure 18 shows that CpG-DNA signaling via human TLR9 was MyD88 dependent. hTLR9 (293-hTLR9) was co-transfected with a six-times NF-κB luciferase reporter plasmid and increasing concentrations of the dominant negative human MyD88 expression vector. Cells were not stimulated (filled circles), stimulated with CpG-ODN (2006, 2μM) (open circles) or TNF-α (10 ng/ml) (filled triangles) and NF-κB activation was monitored after 12 hours. Results are representative of at least two independent experiments. Figure 18 demonstrates that dominant negative MyD88 blocks NF-κB induction in 293-hTLR9 cells following CpG-DNA stimulation. The blockade of MyD88 did not affect NF-

- 106 -

κB induction via TNF induced signal transduction. In general these data confirm the central role of MyD88 to TLR signaling and specifically the role of MyD88 in CpG-DNA initiation of signal. Thus human cells transfected with TLR9 can be used as indicators to find molecules to antagonize CpG-DNA via genetic mechanisms.

5

10

15

Example 9. Antibody production

Peptides for human and mouse TLR9 were designed for coupling to a carrier protein and injected into rabbits to obtain anti-peptide polyclonal antisera. Mouse peptide 1 (mousepep1, see Table 4) can be found in EST aa197442 and peptide 2 (mousepep2, see Table 4) in EST aa273731 and ai463056. Human peptide 1 (humanpep1, see Table 4) and peptide 2 (humanpep2, see Table 4) were taken from the published human sequence.

Three rabbit antisera were generated by this method: anti-mousepep1, specific for the extracellular domain of murine TLR9; anti-humanpep1, specific for the extracellular domain of hTLR9; and antisera against a combination of mousepep2 and humanpep2, specific for the cytoplasmic domain of both murine and human TLR9. Immunoprecipitates with anti-FLAG antibody were electrophoresed by PAGE and, using standard Western blotting techniques, transferred to membrane and probed with the various antisera. Figure 19 shows the response to hTLR9-FLAG and mTLR9-FLAG. The TLR9 in these blots are indicated with arrows, while the lower molecular weight bands represent anti-FLAG antibody.

20

25

30

Example 10. Mutation adjacent to the CXXC-domain (hTLR9-CXXCm, mTLR9-CXXCh)

The CXXC motif resembles a zinc finger motif and is found in DNA-binding proteins and in certain specific CpG binding proteins, e.g. methyl-CpG binding protein-1 (MBD-1). Fujita N et al., *Mol Cell Biol* 20:5107-5118 (2000). Human and murine TLR9 contain two CXXC motifs. The CXXC domain is highly conserved between human and murine TLR9 but followed by 6 amino acids (aa) which differ quite substantially in polarity and size. By the use of a site-specific mutagenesis kit (Stratagene, La Jolla, CA, USA) these six amino acid residues (human: PRHFPQ 269-274); mouse: GQKSLH 269-274) were interchanged between human and murine TLR9. These mutations were generated by the use of the primers 5'-CTGCATGGAGTGCGGCCAAAAGTCCCTCCACCTACATCCCGATAC-3' (SEQ ID

- 107 -

NO:141) and

5'-GTATCGGGATGTAGGTGGAGGGACTTTTGGCCGCACTCCATGCAG-3' (SEQ ID NO:142) for human TLR9 and the primers

5'-CTGTATAGAATGTCCTCGTCACTTCCCCCAGCTGCACCCTGAGAC-3' (SEQ ID

5 NO:143) and

5'-GTCTCAGGGTGCAGCTGGGGGAAGTGACGAGGACATTCTATACAG-3' (SEQ ID NO:144) for murine TLR9 according to the manufacturer's protocol.

•	CXXC motif:	CXXCXXXXXCXXC		SEQ ID NO:145
10	Wildtype hTLR9:	CRRCDHAPNPCMECPRHFPQ	aa 255-274	SEQ ID NO:146
	hTLR9-CXXCm:	CRRCDHAPNPCMECGQKSLH	aa 255-274	SEQ ID NO:147
	Wildtype mTLR9:	CRRCDHAPNPCMICGQKSLH.	aa 255-274	SEQ ID NO:148
	mTLR9-CXXCh:	CRRCDHAPNPCMICPRHFPQ	aa 255-274	SEQ ID NO:149

15 For the stimulation of the hTLR9 variant hTLR9-CXXCm, 293 cells were transiently transfected with hTLR9 or hTLR9-CXXCm and stimulated after 16 hours with ODN 2006 and ODN 1668 at concentrations indicated (Figure 20). 48 hours after stimulation supernatant was harvested and IL-8 production was measured by ELISA. The data show that hTLR9 can be improved by converting the human CXXC domain to the murine CXXC domain. For the stimulation of the mTLR9 variant mTLR9-CXXCh, 293 cells were transiently transfected with mTLR9 or mTLR9-CXXCh and stimulated after 16 hours with ODN 2006 and ODN 1668 at concentrations indicated (Figure 21). 48 hours after stimulation supernatant was harvested and IL-8 production was measured by ELISA. It appears that the human CXXC domain may diminish mTLR9-CXXCh activity relative to the wild type mTLR9.

Example 11. Mutation in the MBD motif (hTLR9-MBDmut, mTLR9-MBDmut)

The MBD motif is a domain recently described for CpG binding in the protein MBD
1. Fujita N et al., Mol Cell Biol 20:5107-5118 (2000); Ohki I et al., EMBO J 18:6653-6661

(1999). Human and murine TLR9 contain this motif at position 524-554 and 525-555, respectively.

- 108 -

MBD-1	R-XXXXXXX-R-X-D-X-Y-XXXXXXXXXX-R-S-XXXXXXX-Y	SEQ ID NO:125
hTLR9	Q-XXXXXX-K-X-D-X-Y-XXXXXXXXX-R-L-XXXXXXX-Y	SEQ ID NO:126
mTLR9	Q-XXXXXXX-K-X-D-X-Y-XXXXXXXXX-Q-L-XXXXXXX-Y	SEO ID NO:127

5

10

15

20

25

30

The core of this domain consists of D-L-Y in human TLR9 (aa 534-536) and mouse TLR9 (aa 535-537). Through site-specific mutagenesis D534 and Y536 in human TLR9, and D535 and Y537 in murine TLR9, were mutated to alanines creating the sequence A-L-A for human (aa 534-536) and murine TLR9 (aa 535-537). These mutations were generated by the use of the primers 5'-CACAATAAGCTGGCCCTCGCCCACGAGCACTC-3' (SEQ ID NO:150) and 5'-GAGTGCTCGTGGGCGAGGGCCAGCTTATTGTG-3' (SEQ ID NO:151) for human TLR9 and the primers 5'-CATAACAAACTGGCCTTGGCCCACTGGAAATC-3' (SEQ ID NO:152) and 5'-GATTTCCAGTGGGCCAAGGCCAGTTTGTTATG-3' (SEQ ID NO:153) for murine TLR9 according to the manufacturer's protocol.

For the stimulation of mTLR9 variant, mTLR9-MBDmut, 293 cells were transiently transfected with mTLR9 or mTLR9-MBD-mut and stimulated after 16 hours with ODN 2006 and ODN 1668 at concentrations indicated (Figure 22). 48 hours after stimulation supernatant was harvested and IL-8 production was measured by ELISA. For the stimulation of hTLR9 variant, hTLR9-MBDmut, 293 cells were transiently transfected with hTLR9 or hTLR9-MBD-mut and stimulated after 16 hours with ODN 2006 and ODN 1668 at concentrations indicated (Figure 23). 48 hours after stimulation supernatant was harvested and IL-8 production was measured by ELISA. The disruption of the putative CpG binding domain DXY in TLR9 destroyed receptor activity. These data demonstrate that the MBD motif is most likely involved in CpG-DNA binding and can be thus be manipulated to better understand CpG-DNA binding and efficacy.

Example 12. Proline to Histidine mutation in the TIR-domain (hTLR9-PHmut, mTLR9-PHmut)

Toll-like receptors have a cytoplasmic Toll/IL-1 receptor (TIR) homology domain which initiates signaling after binding of the adapter molecule MyD88. Medzhitov R et al., *Mol Cell* 2:253-8 (1998); Kopp EB et al., *Curr Opin Immunol* 11:15-8 (1999). Reports by

- 109 -

others have shown that a single-point mutation in the signaling TIR-domain in murine TLR4 (Pro712 to His) or human TLR2 (Pro681 to His) abolishes host immune response to lipopolysaccharide or gram-positive bacteria, respectively. Poltorak A et al., *Science* 282:2085-8 (1998); Underhill DM et al., *Nature* 401:811-5 (1999). Through site-specific mutagenesis the equivalent Proline at position 915 of human and murine TLR9 were mutated to Histidine (Pro915 to His). These mutations were generated by the use of the primers 5'-GCGACTGGCTGCATGGCAAAACCCTCTTTG-3' (SEQ ID NO:154) and 5'-CAAAGAGGGTTTTGCCATGCAGCCAGTCGC-3' (SEQ ID NO:155) for human TLR9 and the primers 5'-CGAGATTGGCTGCATGGCCAGCCAGTCTTC-3' (SEQ ID NO:156) and 5'-GAAGAGCGTCTTGGCCATGCAGCCAATCTCG-3' (SEQ ID NO:157) for murine TLR9 according to the manufacturer's protocol.

10

15

20

25

30

For the stimulation of mTLR9 variant, mTLR9-PHmut, 293 cells were transiently transfected with mTLR9 or mTLR9-PHmut and stimulated after 16 hours with ODN 2006 and ODN 1668 at concentrations indicated (Figure 22). 48 hours after stimulation supernatant was harvested and IL-8 production was measured by ELISA. For the stimulation of hTLR9 variant, hTLR9-PHmut, 293 cells were transiently transfected with hTLR9 or hTLR9-PHmut and stimulated after 16 hours with ODN 2006 and ODN 1668 at concentrations indicated (Figure 23). 48 hours after stimulation supernatant was harvested and IL-8 production was measured by ELISA. These data demonstrate that TLR9 activity can be destroyed by the Pro to His mutation. This mutation has the potential to be used as a dominant negative to block TLR9 activity thus a genetic variant could compete for ligand or signaling partners and disrupt signaling.

Example 13. Exchange of the TIR-domain between murine and human TLR9 (hTLR9-TIRm, mTLR9-TIRh)

Toll-like receptors have a cytoplasmic Toll/IL-1 receptor (TIR) homology domain that initiates signaling after binding of the adapter molecule MyD88. Medzhitov R et al., *Mol Cell* 2:253-8 (1998); Kopp EB et al., *Curr Opin Immunol* 11:15-8 (1999). This is also true for TLR9. To generate molecules consisting of human extracellular TLR9 and murine TIR domain (hTLR9-TIRm) or murine extracellular TLR9 and human TIR domain (mTLR9-TIRh), the following approach was chosen. Through site-specific mutagenesis a ClaI

- 110 -

restriction site was introduced in human and murine TLR9. For human TLR9 the DNA sequence 5'-GGCCTCAGCATCTTT-3' (3026-3040, SEQ ID NO:158) was mutated to 5'-GGCCTATCGATTTTT-3' (SEQ ID NO:159), introducing a ClaI site (underlined in the sequence) but leaving the amino acid sequence (GLSIF, aa 798-802) unchanged. For murine TLR9 the DNA sequence 5'-GGCCGTAGCATCTTC-3' (2434-2447, SEQ ID NO:160) was mutated to 5'-GGCCTATCGATTTTT-3' (SEQ ID NO:161), introducing a ClaI site and creating the amino acid sequence (GLSIF, aa 799-803) which differs in one position (aa 800) from the wildtype murine TLR9 sequence (GRSIF, aa 799-803) but is identical to the human sequence.

5

10

15

20

25

30

hTLR9-TIRm. The primers used for human TLR9 were 5'CAGCTCCAGGGCCTATCGATTTTTGCACAGGACC-3' (SEQ ID NO:162) and 5'GGTCCTGTGCAAAAATCGATAGGCCCTGGAGCTG-3' (SEQ ID NO:163). For creating an expression vector containing the extracellular portion of human TLR9 connected to the murine TIR domain, the human expression vector was cut with ClaI and limiting amounts of EcoRI and the fragment coding for the murine TIR domain generated by a ClaI and EcoRI digestion of murine TLR9 expression vector was ligated in the vector fragment containing the extracellular portion of hTLR9. Transfection into *E.coli* yielded the expression vector hTLR9-TIRm (human extracellular TLR9-murine TIR-domain).

mTLR9-TIRh. The primers used for murine TLR9 were 5'-

CAGCTGCAGGGCCTATCGATTTTCGCACAGGACC-3' (SEQ ID NO:164) and 5'-GGTCCTGTGCGAAAATCGATAGGCCCTGCAGCTG-3' (SEQ ID NO:165). For creating an expression vector containing the extracellular portion of murine TLR9 connected to the human TIR domain, the murine expression vector was cut with ClaI and limiting amounts of EcoRI and the fragment coding for the human TIR domain generated by a ClaI and EcoRI digestion of human TLR9 expression vector was ligated in the vector fragment containing the extracellular portion of mTLR9. Transfection into *E.coli* yielded the expression vector mTLR9-TIRh (murine extracellular TLR9-human TIR-domain).

For the stimulation of the mTLR9 variant, mTLR9-TIRh, 293 cells were transiently transfected with mTLR9 or mTLR9-TIRh and stimulated after 16 hours with ODN 2006 and ODN 1668 at concentrations indicated (Figure 24). 48 hours after stimulation supernatant was harvested and IL-8 production was measured by ELISA. For the stimulation of the

- 111 -

hTLR9 variant, hTLR9-TIRm, 293 cells were transiently transfected with hTLR9 or hTLR9-TIRm and stimulated after 16 hours with ODN 2006 and ODN 1668 at concentrations indicated (Figure 25). 48 hours after stimulation supernatant was harvested and IL-8 production was measured by ELISA. Replacement of the murine TLR9-TIR domain with human does not significantly affect mTLR9 activity. Replacement of the human TLR9-TIR with murine however appears to have a negative effect on hTLR9. These data demonstrate that manipulations could be made to influence TLR9 activities.

Example 14. TLR9-fusion protein with green-fluorescent-protein (hTLR9-GFP, mTLR9-GFP)

Human and murine TLR9 were individually cloned into the vector pEGFP-N1 (Clontech, Palo Alto, CA, USA) to create expression vectors encoding human and murine fusion proteins consisting of an N-terminal TLR9 protein fused to C-terminal green-fluorescent protein (GFP). These constructs can be used to trace TLR9 localization and expression. Such detections can be used for staining in FACS analysis, confocal microscopy and Western blot, or for purification of polypeptides and subsequent antibody production.

Example 15. TLR9-fusion protein with FLAG-peptide (hTLR9-FLAG, mTLR9-FLAG)

Human and murine TLR9 were individually cloned into the vector pFLAG-CMV-1 (Sigma, St. Louis, MO, USA) to create expression vectors encoding human and murine fusion proteins consisting of an N-terminal leader peptide (preprotrypsin, which is cleaved intracellularly during processing of the protein), FLAG-peptide (DYKDDDDK) and TLR9 protein which does not contain its own signal peptide. These constructs can be used to trace TLR9 localization and expression, e.g., using anti-FLAG antibodies. Such detections can be used for staining in FACS analysis, confocal microscopy and Western blot, or for purification of polypeptides and subsequent antibody production.

Example 16. Method of cloning human TLR7

10

15

20

25

30

Two accession numbers in the GenBank database, AF245702 and AF240467, describe the DNA sequence for human TLR7. To create an expression vector for human TLR7, human TLR7 cDNA was amplified from a cDNA made from human peripheral mononuclear

blood cells (PBMC) using the primers 5'-CACCTCTCATGCTCTGCTCTCTC-3' (SEQ ID NO:166) and 5'-GCTAGACCGTTTCCTTGAACACCTG-3' (SEQ ID NO:167). The fragment was cloned into pGEM-T Easy vector (Promega), cut with the restriction enzyme NotI and ligated into a NotI-digested pCDNA3.1 expression vector (Invitrogen). The insert was fully sequenced and translated into protein. The cDNA sequence for hTLR7 is SEQ ID NO:168, is presented in Table 6. The open reading frame starts at base 124, ends at base 3273, and codes for a protein of 1049 amino acids. SEQ ID NO:169 (Table 7), corresponding to bases 124-3273 of SEQ ID NO:168 (Table 6), is the coding region for the polypeptide of SEQ ID NO:170 (Table 8).

The protein sequence of the cloned hTLR7 cDNA matches the sequence described under the GenBank accession number AF240467. The sequence deposited under GenBank accession number AF245702 contains two amino acid changes at position 725 (L to H) and 738 (L to P).

15 Table 6. cDNA Sequence for Human TLR7 (5' to 3'; SEQ ID NO:168)

10

agctggctag cgtttaaacg ggccctctag actcgagcgg ccgcgaattc actagtgatt 60 cacctctcat gctctgctct cttcaaccag acctctacat tccattttgg aagaagacta 120 aaaatggtgt ttccaatgtg gacactgaag agacaaattc ttatcctttt taacataatc 180 ctaatttcca aactccttgg ggctagatgg tttcctaaaa ctctgccctg tgatgtcact 20 ctggatgttc caaagaacca tgtgatcgtg gactgcacag acaagcattt gacagaaatt 300 cctggaggta ttcccacgaa caccacgaac ctcaccctca ccattaacca cataccagac 360 atctccccag cgtcctttca cagactggac catctggtag agatcgattt cagatgcaac 420 480 tgtgtaccta ttccactggg gtcaaaaaac aacatgtgca tcaagaggct gcagattaaa cccagaagct ttagtggact cacttattta aaatcccttt acctggatgg aaaccagcta 540 25 600 ctagagatac cgcagggcct cccgcctagc ttacagcttc tcagccttga ggccaacaac atcttttcca tcagaaaaga gaatctaaca gaactggcca acatagaaat actctacctg 660 720 ggccaaaact gttattatcg aaatccttgt tatgtttcat attcaataga gaaagatgcc 780 ttcctaaact tgacaaagtt aaaagtgctc tccctgaaag ataacaatgt cacagccgtc cctactgttt tgccatctac tttaacagaa ctatatctct acaacaacat gattgcaaaa 840 30 900 atccaagaag atgattttaa taacctcaac caattacaaa ttcttgacct aagtggaaat tgccctcgtt gttataatgc cccatttcct tgtgcgccgt gtaaaaataa ttctccccta 960 cagatecetg taaatgettt tgatgegetg acagaattaa aagttttaeg tetacaeagt 1020 1080 aactctcttc agcatgtgcc cccaagatgg tttaagaaca tcaacaaact ccaggaactg gatctgtccc aaaacttctt ggccaaagaa attggggatg ctaaatttct gcattttctc 1140 35 cccagcctca tccaattgga tctgtctttc aattttgaac ttcaggtcta tcgtgcatct 1200 atgaatctat cacaagcatt ttcttcactg aaaagcctga aaattctgcg gatcagagga 1260 tatgtcttta aagagttgaa aagctttaac ctctcgccat tacataatct tcaaaatctt 1320

- 113 -

				•	•		
	gaagttcttg	atcttggcac	taactttata	aaaattgcta	acctcagcat	gtttaaacaa	1380
	tttaaaagac	tgaaagtcat	agatctttca	gtgaataaaa	tatcaccttc	aggagattca	1440
	agtgaagttg	gcttctgctc	aaatgccaga	acttctgtag	aaagttatga	accccaggtc	1500
	ctggaacaat	tacattattt	cagatatgat	aagtatgcaa	ggagttgcag	attcaaaaac	1560
5	aaagaggctt	ctttcatgtc	tgttaatgaa	agctgctaca	agtatgggca	gaccttggat	1620
	ctaagtaaaa	atagtatatt	ttttgtcaag	tcctctgatt	ttcagcatct	ttctttcctc	1680
	aaatgcctga	atctgtcagg	aaatctcatt	agccaaactc	ttaatggcag	tgaattccaa	1740
	cctttagcag	agctgagata	tttggacttc	tccaacaacc	ggcttgattt	actccattca	1800
	acagcatttg	aagagcttca	caaactggaa	gttctggata	taagcagtaa	tagccattat	1860
10	tttcaatcag	aaggaattac	tcatatgcta	aactttacca	agaacctaaa	ggttctgcag	1920
	aaactgatga	tgaacgacaa	tgacatctct	tcctccacca	gcaggaccat	ggagagtgag	1980
	tctcttagaa	ctctggaatt	cagaggaaat	cacttagatg	ttttatggag	agaaggtgat	2040
	aacagatact	tacaattatt	caagaatctg	ctaaaattag	aggaattaga	catctctaaa	2100
	aattccctaa	gtttcttgcc	ttctggagtt	tttgatggta	tgcctccaaa	tctaaagaat	2160
15	ctctctttgg	ccaaaaatgg	gctcaaatct	ttcagttgga	agaaactcca	gtgtctaaag	2220
	aacctggaaa	ctttggacct	cagccacaac	caactgacca	ctgtccctga	gagattatcc	2280
	aactgttcca	gaagcctcaa	gaatctgatt	cttaagaata	atcaaatcag	gagtctgacg	2340
	aagtattttc	tacaagatgc	cttccagttg	cgatatctgg	atctcagctc	aaataaaatc	2400
	cagatgatcc	aaaagaccag	cttcccagaa	aatgtcctca	acaatctgaa	gatgttgctt	2460
20	ttgcatcata	atcggtttct	gtgcacctgt	gatgctgtgt	ggtttgtctg	gtgggttaac	2520
	catacggagg	tgactattcc	ttacctggcc	acagatgtga	cttgtgtggg	gccaggagca	2580
	cacaagggcc	aaagtgtgat	ctccctggat	.ctgtacacct	gtgagttaga	tctgactaac	2640
	ctgattctgt	tctcactttc	catatctgta	tctctcttc	tcatggtgat	gatgacagca	2700
	agtcacctct	atttctggga	tgtgtggtat	atttaccatt	tctgtaaggc	caagataaag	2760
25	gggtatcagc	gtctaatatc	accagactgt	tgctatgatg	cttttattgt	gtatgacact	2820
		ctgtgaccga					2880
	agagagaaac	attttaattt	atgtctcgag	gaaagggact	ggttaccagg	gcagccagtt	2940
	ctggaaaacc	tttcccagag	catacagett	agcaaaaaga	cagtgtttgt	gatgacagac	3000
		agactgaaaa					3060
30	gatgaaaaag	ttgatgtgat	tatcttgata	tttcttgaga	agccttttca	gaagtccaag	3120
		tccggaaaag		•			3180
	caagctcacc	catacttctg	gcagtgtcta	aagaacgccc	tggccacaga	caatcatgtg	3240
		aggtgttcaa					3300
25		gcagaattcc	accacactgg	actagtggat	ccgagctcgg	taccaagett	3360
35	aagtttaaac	cgc					3373
	-		•		-		
,	Table 7. Codir	g Region for	Human TI I	27 (5' to 3'• S'	EO ID NO-14	59)	
		-00		-, (5 00 0 9 0.	~~~~~	,	

atggtgtttc	caatgtggac	actgaagaga	caaattctta	tcctttttaa	cataatccta	60
atttccaaac	tccttggggc	tagatggttt	cctaaaactc	tgccctgtga	tgtcactctg	120
gatgttccaa	agaaccatgt	gatcgtggac	tgcacagaca	agcatttgac	agaaattcct	180
ggaggtattc	ccacgaacac	cacqaacctc	acceteacea	ttaaccacat	accadacato	240

40

WO 02/22809

- 114 -

	tccccagcgt	cctttcacag	actggaccat	ctggtagaga	tcgatttcag	atgcaactgt	300
	gtacctattc	cactggggtc	aaaaaacaac	atgtgcatca	agaggctgca	gattaaaccc	360
•	agaagcttta	gtggactcac	ttatttaaaa	tccctttacc	tggatggaaa	ccagctacta	420
	gagataccgc	agggcctccc	gcctagctta	cagcttctca	gccttgaggc	caacaacatc	480
5	ttttccatca	gaaaagagaa	tctaacagaa	ctggccaaca	tagaaatact	ctacctgggc	540
	caaaactgtt	attatcgaaa	tccttgttat	gtttcatatt	caatagagaa	agatgccttc	600
	ctaaacttga	caaagttaaa	agtgctctcc	ctgaaagata	acaatgtcac	agccgtccct	660
	actgttttgc	catctacttt	aacagaacta	tatctctaca	acaacatgat	tgcaaaaatc	720
	caagaagatg	attttaataa	cctcaaccaa	ttacaaattc	ttgacctaag	tggaaattgc	780
10	cctcgttgtt	ataatgcccc	atttccttgt	gcgccgtgta	aaaataattc	tcccctacag	840
	atccctgtaa	atgcttttga	tgcgctgaca	gaattaaaag	ttttacgtct	acacagtaac	900
	tctcttcagc	atgtgccccc	aagatggttt	aagaacatca	acaaactcca	ggaactggat	960
	ctgtcccaaa	acttcttggc	caaagaaatt	ggggatgcta	aatttctgca	tttctcccc	1020
	agcctcatcc	aattggatct	gtctttcaat	tttgaacttc	aggtctatcg	tgcatctatg	1080
15	aatctatcac	aagcattttc	ttcactgaaa	agcctgaaaa	ttctgcggat	cagaggatat	1140
	gtctttaaag	agttgaaaag	ctttaacctc	tcgccattac	ataatcttca	aaatcttgaa	1200
	gttcttgatc	ttggcactaa	ctttataaaa	attgctaacc	tcagcatgtt	taaacaattt	1260
	aaaagactga	aagtcataga	tctttcagtg	aataaaatat	caccttcagg	agattcaagt	1320
	gaagttggct	tctgctcaaa	tgccagaact	tctgtagaaa	gttatgaacc	ccaggtcctg	1380
20	gaacaattac	attatttcag	atatgataag	tatgcaagga	gttgcagatt	caaaaacaaa	1440
	gaggcttctt	tcatgtctgt	taatgaaagc	tgctacaagt	atgggcagac	cttggatcta	1500
	agtaaaaata	gtatatttt	tgtcaagtcc	tctgattttc	agcatctttc	tttcctcaaa	1560
	tgcctgaatc	tgtcaggaaa	tctcattagc	caaactctta	atggcagtga	attccaacct	1620
	ttagcagagc	tgagatattt	ggacttctcc	aacaaccggc	ttgatttact	ccattcaaca	1680
25	gcatttgaag	agcttcacaa	actggaagtt	ctggatataa	gcagtaatag	ccattatttt	1720
	caatcagaag	gaattactca	tatgctaaac	tttaccaaga	acctaaaggt	tctgcagaaa	1800
	ctgatgatga	acgacaatga	catctcttcc	tccaccagca	ggaccatgga	gagtgagtct	1860
	cttagaactc	tggaattcag	aggaaatcac	ttagatgttt	tatggagaga	aggtgataac	1920
	agatacttac	aattattcaa	gaatctgcta	aaattagagg	aattagacat	ctctaaaaat	1980
30	tccctaagtt	tcttgccttc	tggagttttt	gatggtatgc	ctccaaatct	aaagaatctc	2040
	tctttggcca	aaaatgggct	caaatctttc	agttggaaga	aactccagtg	tctaaagaac	2100
	ctggaaactt	tggacctcag	ccacaaccaa	ctgaccactg	tccctgagag	attatccaac	2160
	tgttccagaa	gcctcaagaa	tctgattctt	aagaataatc	aaatcaggag	tctgacgaag	2220
	tattttctac	aagatgcctt	ccagttgcga	tatctggatc	tcagctcaaa	taaaatccag	2280
35	atgatccaaa	agaccagctt	cccagaaaat	gtcctcaaca	atctgaagat	gttgcttttg	2340
	catcataatc	ggtttctgtg	cacctgtgat	gctgtgtggt	ttgtctggtg	ggttaaccat	2400
	acggaggtga	ctattcctta	cctggccaca	gatgtgactt	gtgtggggcc	aggagcacac	2460
	aagggccaaa	gtgtgatctc	cctggatctg	tacacctgtg	agttagatct	gactaacctg	2520
	attctgttct	cactttccat	atctgtatct	ctctttctca	tggtgatgat	gacagcaagt	2580
40	cacctctatt	tctgggatgt	gtggtatatt	taccatttct	gtaaggccaa	gataaagggg	2640
	tatcagcgtc	taatatcacc	agactgttgc	tatgatgctt	ttattgtgta	tgacactaaa	2700
	gacccagctg	tgaccgagtg	ggttttggct	gagctggtgg	ccaaactgga	agacccaaga	2760

PCT/US01/29229

- 115 -

	gagaaacact	ttaatttatg	tetegaggaa	agggaetggt	Laccagggca	gecagetetg	202
	gaaaaccttt	cccagagcat	acagcttagc	aaaaagacag	tgtttgtgat	gacagacaag	288
	tatgcaaaga	ctgaaaattt	taagatagca	ttttacttgt	cccatcagag	gctcatggat	294
	gaaaaagttg	atgtgattat	cttgatattt	cttgagaagc	cttttcagaa	gtccaagttc	300
5	ctccagctcc	ggaaaaggct	ctgtgggagt	tctgtccttg	agtggccaac	aaacccgcaa	306
	gctcacccat	acttctggca	gtgtctaaag	aacgccctgg	ccacagacaa	tcatgtggcc	312
		tgttcaagga			_		314
	3 22	3 33		•	•		
	Table 8. Amin	o Acid Seque	ence of Huma	n TLR7			
10		. :	. : .	: .	: :	. :	60
	AF240467.pep M	IVFPMWTLKRQIL	ILFNIILISKLL	GARWFPKTLPCDV	TLDVPKNHVIVI	CTDKHLTEIP	60
	hTLR7.pep M	NFPMWTLKRQIL:	ILFNIILISKLL	GARWFPKTLPCDV	TLDVPKNHVIVI	CTDKHLTEIP	60
	AF245702.pep M	IVFPMWTLKRQIL	ILFNIILISKLL	GARWFPKTLPCDV	TLDVPKNHVIVI	CTDKHLTEIP	60
15		. :	. : .	: .	: . :	. :	120
	AF240467.pep G	GIPTNTTNLTLT	INHIPDISPASF	HRLDHLVEIDFRO	CNCVPIPLGSKNN	MCIKRLQIKP	120
	hTLR7.pep G	GIPTNTTNLTLT	INHIPDISPASF	HRLDHLVEIDFRO	CNCVPIPLGSKNN	MCIKRLQIKP	120
	AF245702.pep G	GIPTNTTNLTLT	INHIPDISPASF	HRLDHLVEIDFRO	CNCVPIPLGSKNN	MCIKRLQIKP	120
20			. : .	:	: . :	. :	180
	AF240467.pep R						180
		RSFSGLTYLKSLY.					180
	AF245702.pep R	SFSGLTYLKSLY.	LDGNQLLEIPQG	LPPSLQLLSLEAN -	INIFSIRKENLTE	LANIEILYLG	180
15							
25	35040465	. :		: .			240
	AF240467.pep C						240
	hTLR7.pep Q AF245702.pep Q)NCYYRNPCYVSY:					240 240
	Ar245/02.pep Q	MCIIRNPCIVSI	SIEKDAFBNUIK	PKAR2DVDMA15	WEINDESIDIEI	HIMMIAKI	240
30		<u>.</u>		: .		. •	300
	AF240467.pep Q		•				300
		EDDFNNLNQLQI					300
	AF245702.pep Q						300
35		. :	. : .	: .	: . :	. :	360
	AF240467.pep S						360
	hTLR7.pep S	SLQHVPPRWFKNI	NKLQELDLSQNF	LAKEIGDAKFLHI	LPSLIQLDLSFN	FELQVYRASM	360
	AF245702.pep S	LQHVPPRWFKNI	NKLQELDLSQNF:	LAKEIGDAKFLHI	PLPSLIQLDLSFN	FELQVYRASM	360
			•				
10		. :	. : .	: .	: . :	. :	420
	AF240467.pep N	ILSQAFSSLKSLK	ILRIRGYVFKEL	KSFNLSPLHNLQN	ILEVLDLGTNFIK	CIANLSMFKQF	420
	hTLR7.pep N	NLSQAFSSLKSLK	ILRIRGYVFKEL	KSFNLSPLHNLQN	<i>I</i> LEVLDLGTNFIK	CIANLSMFKQF	420
	AF245702.pep N	ILSQAFSSLKSLK	ILRIRGYVFKEL	KSFNLSPLHNLQN	ILEVLDLGTNFIK	IANLSMFKQF	420
• -							
15		. :	. :	•	: . :	. :	480

- 116 -

	AF240467.pep	KRLKVIDLSVNKISPSGDSSEVGFCSNARTSVESYEPQVLEQLHYFRYDKYARSCRFKNK	480
	hTLR7.pep	KRLKVIDLSVNKISPSGDSSEVGFCSNARTSVESYEPQVLEQLHYFRYDKYARSCRFKNK	480
	AF245702.pep	KRLKVIDLSVNKISPSGDSSEVGFCSNARTSVESYEPQVLEQLHYFRYDKYARSCRFKNK	480
5		. : . : . : . : . :	540
J	AF240467.pep		540
	hTLR7.pep	EASFMSVNESCYKYGQTLDLSKNSIFFVKSSDFQHLSFLKCLNLSGNLISQTLNGSEFQP	540
	AF245702.pep		540
			310
10		. : . : . : . : . :	600
	AF240467.pep	LAELRYLDFSNNRLDLLHSTAFEELHKLEVLDISSNSHYFQSEGITHMLNFTKNLKVLQK	600
	hTLR7.pep	LAELRYLDFSNNRLDLLHSTAFEELHKLEVLDISSNSHYFQSEGITHMLNFTKNLKVLQK	600
	AF245702.pep	LAELRYLDFSNNRLDLLHSTAFEELHKLEVLDISSNSHYFQSEGITHMLNFTKNLKVLQK	600
1.5			
15	37040467		660
		LMMNDNDISSSTSRTMESESLRTLEFRGNHLDVLWREGDNRYLQLFKNLLKLEELDISKN	660
	hTLR7.pep	LMMNDNDISSSTSRTMESESLRTLEFRGNHLDVLWREGDNRYLQLFKNLLKLEELDISKN	660
	AF245702.pep	LMMNDNDISSSTSRTMESESLRTLEFRGNHLDVLWREGDNRYLQLFKNLLKLEELDISKN	660
20		, . : . : . : . : . :	720
	AF240467.pep	SLSFLPSGVFDGMPPNLKNLSLAKNGLKSFSWKKLQCLKNLETLDLSHNQLTTVPERLSN	720
	hTLR7.pep	SLSFLPSGVFDGMPPNLKNLSLAKNGLKSFSWKKLQCLKNLETLDLSHNQLTTVPERLSN	720
	AF245702.pep		720
	,* *		-
25		. : . : . : . :	780
	AF240467.pep	CSRSLKNLILKNNQIRSLTKYFLQDAFQLRYLDLSSNKIQMIQKTSFPENVLNNLKMLLL	780
	hTLR7.pep	CSRSLKNLILKNNQIRSLTKYFLQDAFQLRYLDLSSNKIQMIQKTSFPENVLNNLKMLLL	780
	AF245702.pep	CSRSHKNLILKNNQIRSPTKYFLQDAFQLRYLDLSSNKIQMIQKTSFPENVLNNLKMLLL	780
20			
30		. : . : . : . : . :	840
		HHNRFLCTCDAVWFVWWVNHTEVTIPYLATDVTCVGPGAHKGQSVISLDLYTCELDLTNL	840
	hTLR7.pep	HHNRFLCTCDAVWFVWWVNHTEVTIPYLATDVTCVGPGAHKGQSVISLDLYTCELDLTNL	840
	AF245702.pep	HHNRFLCTCDAVWFVWWVNHTEVTIPYLATDVTCVGPGAHKGQSVISLDLYTCELDLTNL	840
35		. : . : . : . : . :	900
	AF240467.pep	ILFSLSISVSLFLMVMMTASHLYFWDVWYIYHFCKAKIKGYQRLISPDCCYDAFIVYDTK	900
	hTLR7.pep	ILFSLSISVSLFLMVMMTASHLYFWDVWYIYHFCKAKIKGYQRLISPDCCYDAFIVYDTK	900
		ILFSLSISVSLFLMVMMTASHLYFWDVWYIYHFCKAKIKGYQRLISPDCCYDAFIVYDTK	900
40		. : . : . : . :	960
		DPAVTEWVLAELVAKLEDPREKHFNLCLEERDWLPGQPVLENLSQSIQLSKKTVFVMTDK	960
	hTLR7.pep	DPAVTEWVLAELVAKLEDPREKHFNLCLEERDWLPGQPVLENLSQSIQLSKKTVFVMTDK	960
	AF245702.pep	DPAVTEWVLAELVAKLEDPREKHFNLCLEERDWLPGQPVLENLSQSIQLSKKTVFVMTDK	960
45		• • • • • • • • • • • • • • • • • • •	1020
	AF240467 nen	YAKTENFKIAFYLSHQRLMDEKVDVIILIFLEKPFQKSKFLQLRKRLCGSSVLEWPTNPQ	1020
	Presento, beb	· ************************************	T020

- 117 -

	hTLR7.pep	YAKTE	1FK	IAFYI	SHQR	LMDEK	NDVII	LIFLE	KPFQK	SKFLQ	LRKRI	CGSSV	LEWPI	'NPQ	1020
	AF245702.pep	YAKTE	IFK	IAFYI	LSHQR	LMDEK	VDVII	LIFLE	KPFQK	SKFLQ	LRKRL	CGSSV	LEWPI	NPQ.	1020
				:	٠	:	•	:	•	:	•	;	•	:	1080
5	AF240467.pep	AHPYF	VQC	LKNAI	LATDN	HVAYS	QVFKE	TV							1049
	hTLR7.pep	AHPYF	VQC	LKNAI	LATDN	HVAYS	QVFKE	TV							1049
	AF245702.pep	AHPYF	VQC	LKNAI	ATDN	HVAYS	QVFKE	TV							1049

In Table 8 the sequences are assigned as follows: hTLR7.pep, SEQ ID NO:170;

AF240467.pep, SEQ ID NO:171; AF245702.pep, SEQ ID NO:172.

Example 17. Method of cloning the murine TLR7

15

20

Alignment of human TLR7 protein sequence with mouse EST database using tfasta yielded 4 hits with mouse EST sequences bb116163, aa266744, bb210780 and aa276879. Two primers were designed that bind to aa266744 sequence for use in a RACE-PCR to amplify 5' and 3' ends of the murine TLR7 cDNA. The library used for the RACE PCR was a mouse spleen marathon-ready cDNA commercially available from Clontech. A 5' fragment with a length of 3000 bp obtained by this method was cloned into Promega pGEM-T Easy vector. After sequencing of the 5' end, additional primers were designed for amplification of the complete murine TLR7 cDNA. The primer for the 5' end was obtained from the sequence of the 5' RACE product whereas the primer for the 3' end was selected from the mouse EST sequence aa266744.

Three independent PCR reactions were set up using a murine macrophage RAW264.7 (ATCC TIB-71) cDNA as a template with the primers 5'-

CTCCTCCACCAGACCTCTTGATTCC-3' (SEQ ID NO:208) and 5'-CAAGGCATGTCCTAGGTGGTGACATTC-3' (SEQ ID NO:209). The resulting amplification products were cloned into pGEM-T Easy vector and fully sequenced (SEQ ID NO:173; Table 9). The open reading frame of mTLR7 (SEQ ID NO:174; Table 10) starts at base 49, ends at base 3201 and codes for a protein of 1050 amino acids (SEQ ID NO:175;
Table11). To create an expression vector for murine TLR7 cDNA, pGEM-T Easy vector plus mTLR7 insert was cut with NotI, the fragment isolated and ligated into a NotI digested pCDNA3.1 expression vector (Invitrogen).

Table 9. cDNA Sequence for Murine TLR7 (5' to 3'; SEQ ID NO:173)

- 118 -

	ATTCTCCTCC	ACCAGACCTC	TTGATTCCAT	TTTGAAAGAA	AACTGAAAAT	GGTGTTTTCG	60
	ATGTGGACAC	GGAAGAGACA	AATTTTGATC	TTTTTAAATA	TGCTCTTAGT	TTCTAGAGTC	120
	TTTGGGTTTC	GATGGTTTCC	TAAAACTCTA	CCTTGTGAAG	TTAAAGTAAA	TATCCCAGAG	180
	GCCCATGTGA	TCGTGGACTG	CACAGACAAG	CATTTGACAG	AAATCCCTGA	GGGCATTCCC	240
5	ACTAACACCA	CCAATCTTAC	CCTTACCATC	AACCACATAC	CAAGCATCTC	TCCAGATTCC	300
	TTCCGTAGGC	TGAACCATCT	GGAAGAAATC	GATTTAAGAT	GCAATTGTGT	ACCTGTTCTA	360
	CTGGGGTCCA	AAGCCAATGT	GTGTACCAAG	AGGCTGCAGA	TTAGACCTGG	AAGCTTTAGT	420
	GGACTCTCTG	ACTTAAAAGC	CCTTTACCTG	GATGGAAACC	AACTTCTGGA	GATACCACAG	480
	GATCTGCCAT	CCAGCTTACA	TCTTCTGAGC	CTTGAGGCTA	ACAACATCTT	CTCCATCACG	540
10	AAGGAGAATC	TAACAGAACT	GGTCAACATT	GAAACACTCT	ACCTGGGTCA	AAACTGTTAT	600
	TATCGAAATC	CTTGCAATGT	TTCCTATTCT	ATTGAAAAAG	ATGCTTTCCT	AGTTATGAGA	660
	AATTTGAAGG	TTCTCTCACT	AAAAGATAAC	AATGTCACAG	CTGTCCCCAC	CACTTTGCCA	720
	CCTAATTTAC	TAGAGCTCTA	TCTTTATAAC	AATATCATTA	AGAAAATCCA	AGAAAATGAT	780
	TTTAATAACC	TCAATGAGTT	GCAAGTTCTT	GACCTAAGTG	GAAATTGCCC	TCGATGTTAT	840
15	AATGTCCCAT	ATCCGTGTAC	ACCGTGTGAA	AATAATTCCC	CCTTACAGAT	CCATGACAAT	900
	GCTTTCAATT	CATTGACAGA	ATTAAAAGTT	TTACGTTTAC	ACAGTAATTC	TCTTCAGCAT	960
	GTGCCCCAA	CATGGTTTAA	AAACATGAGA	AACCTCCAGG	AACTAGACCT	CTCCCAAAAC	. 1020
	TACTTGGCCA	GAGAAATTGA	GGAGGCCAAA	TTTTTGCATT	TTCTTCCCAA	CCTTGTTGAG	1080
	TTGGATTTTT	CTTTCAATTA	TGAGCTGCAG	GTCTACCATG	CATCTATAAC	TTTACCACAT	1140
20	TCACTCTCTT	CATTGGAAAA	CTTGAAAATT	CTGCGTGTCA	AGGGGTATGT	CTTTAAAGAG	1200
	CTGAAAAACT	CCAGTCTTTC	TGTATTGCAC	AAGCTTCCCA	GGCTGGAAGT	TCTTGACCTT	1260
	GGCACTAACT	TCATAAAAAT	TGCTGACCTC	AACATATTCA	AACATTTTGA	AAACCTCAAA	1320
	CTCATAGACC	TTTCAGTGAA	TAAGATATCT	CCTTCAGAAG	AGTCAAGAGA	AGTTGGCTTT	1380
	TGTCCTAATG	CTCAAACTTC	TGTAGACCGT	CATGGGCCCC	AGGTCCTTGA	GGCCTTACAC	1440
25	TATTTCCGAT	ACGATGAATA	TGCACGGAGC	TGCAGGTTCA	AAAACAAAGA	GCCACCTTCT	1500
	TTCTTGCCTT	TGAATGCAGA	CTGCCACATA	TATGGGCAGA	CCTTAGACTT	AAGTAGAAAT	1560
	AACATATTTT	TTATTAAACC	TTCTGATTTT	CAGCATCTTT	CATTCCTCAA	ATGCCTCAAC	1620
	TTATCAGGAA	ACACCATTGG	CCAAACTCTT	AATGGCAGTG	AACTCTGGCC	GTTGAGAGAG	1680
	TTGCGGTACT	TAGACTTCTC	CAACAACCGG	CTTGATTTAC	TCTACTCAAC	AGCCTTTGAA	1740
30	GAGCTCCAGA	GTCTTGAAGT	TCTGGATCTA	AGTAGTAACA	GCCACTATTT	TCAAGCAGAA	1800
	GGAATTACTC	ACATGCTAAA	CTTTACCAAG	AAATTACGGC	TTCTGGACAA	ACTCATGATG	1860
	AATGATAATG	ACATCTCTAC	TTCGGCCAGC	AGGACCATGG	AAAGTGACTC	TCTTCGAATT	1920
	CTGGAGTTCA	GAGGCAACCA	TTTAGATGTT	CTATGGAGAG	CCGGTGATAA	CAGATACTTG	1980
	GACTTCTTCA	AGAATTTGTT	CAATTTAGAG	GTATTAGATA	TCTCCAGAAA	TTCCCTGAAT	2040
35	TCCTTGCCTC	CTGAGGTTTT	TGAGGGTATG	CCGCCAAATC	TAAAGAATCT	CTCCTTGGCC	2100
	AAAAATGGGC	TCAAATCTTT	CTTTTGGGAC	AGACTCCAGT	TACTGAAGCA	TTTGGAAATT	2160
	TTGGACCTCA	GCCATAACCA	GCTGACAAAA	GTACCTGAGA	GATTGGCCAA	CTGTTCCAAA	2220
	AGTCTCACAA	CACTGATTCT	TAAGCATAAT	CAAATCAGGC	AATTGACAAA	ATATTTTCTA	2280
	GAAGATGCTT	TGCAATTGCG	CTATCTAGAC	ATCAGTTCAA	ATAAAATCCA	GGTCATTCAG	2340
40	AAGACTAGCT	TCCCAGAAAA	TGTCCTCAAC	AATCTGGAGA	TGTTGGTTTT	ACATCACAAT	2400
	CGCTTTCTTT	GCAACTGTGA	TGCTGTGTGG	TTTGTCTGGT	GGGTTAACCA	TACAGATGTT	2460
	ACTATTCCAT	ACCTGGCCAC	TGATGTGACT	TGTGTAGGTC	CAGGAGCACA	CAAAGGTCAA	2520
						_	

PCT/US01/29229 WO 02/22809

- 119 -

						•	
	AGTGTCATAT	CCCTTGATCT	GTATACGTGT	GAGTTAGATC	TCACAAACCT	GATTCTGTTC	2580
	TCAGTTTCCA	TATCATCAGT	CCTCTTTCTT	ATGGTAGTTA	TGACAACAAG	TCACCTCTTT	2640
	TTCTGGGATA	TGTGGTACAT	TTATTATTTT	TGGAAAGCAA	AGATAAAGGG	GTATCAGCAT	2700
	CTGCAATCCA	TGGAGTCTTG	TTATGATGCT	TTTATTGTGT	ATGAÇACTAA	AAACTCAGCT	2760
5	GTGACAGAAT	GGGTTTTGCA	GGAGCTGGTG	GCAAAATTGG	AAGATCCAAG	AGAAAAACAC	2820
	TTCAATTTGT	GTCTAGAAGA	AAGAGACTGG	CTACCAGGAC	AGCCAGTTCT	AGAAAACCTT	2880
	TCCCAGAGCA	TACAGCTCAG	CAAAAAGACA	GTGTTTGTGA	TGACACAGAA	ATATGCTAAG	2940
	ACTGAGAGTT	TTAAGATGGC	ATTTTATTTG	TCTCATCAGA	GGCTCCTGGA	TGAAAAAGTG	3000
	GATGTGATTA	TCTTGATATT	CTTGGAAAAG	CCTCTTCAGA	AGTCTAAGTT	TCTTCAGCTC	3060
10	AGGAAGAGAC	TCTGCAGGAG	CTCTGTCCTT	GAGTGGCCTG	CAAATCCACA	GGCTCACCCA	3120
	TACTTCTGGC	AGTGCCTGAA	AAATGCCCTG	ACCACAGACA	ATCATGTGGC	TTATAGTCAA	3180
	ATGTTCAAGG	AAACAGTCTA	GCTCTCTGAA	GAATGTCACC	ACCTAGGACA	TGCCTTGAAT	3240
	CGA					,	3243
		•					
15 T	able 10. Cod	ing Region fo	or Murine TL	.R7 (5' to 3';	SEQ ID NO:	174)	

	ATGGTGTTTT	CGATGTGGAC	ACGGAAGAGA	CAAATTTTGA	TCTTTTTAAA	TATGCTCTTA	60
	GTTTCTAGAG	TCTTTGGGTT	TCGATGGTTT	CCTAAAACTC	TACCTTGTGA	AGTTAAAGTA ·	120
	AATATCCCAG	AGGCCCATGT	GATCGTGGAC	TGCACAGACA	AGCATTTGAC	AGAAATCCCT	180
	GAGGGCATTC	CCACTAACAC	CACCAATCTT	ACCCTTACCA	TCAACCACAT	ACCAAGCATC	240
20	TCTCCAGATT	CCTTCCGTAG	GCTGAACCAT	CTGGAAGAAA	TCGATTTAAG	ATGCAATTGT	300
	GTACCTGTTC	TACTGGGGTC	CAAAGCCAAT	GTGTGTACCA	AGAGGCTGCA	GATTAGACCT	360
	GGAAGCTTTA	GTGGACTCTC	TGACTTAAAA	GCCCTTTACC	TGGATGGAAA	CCAACTTCTG	420
	GAGATACCAC	AGGATCTGCC	ATCCAGCTTA	CATCTTCTGA	GCCTTGAGĠC	TAACAACATC	480
	TTCTCCATCA	CGAAGGAGAA	TCTAACAGAA	CTGGTCAACA	TTGAAACACT	CTACCTGGGT	540
25	CAAAACTGTT	ATTATCGAAA	TCCTTGCAAT	GTTTCCTATT	CTATTGAAAA	AGATGCTTTC	600
	CTAGTTATGA	GAAATTTGAA	GGTTCTCTCA	CTAAAAGATA	ACAATGTCAC	AGCTGTCCCC	660
	ACCACTTTGC	CACCTAATTT	ACTAGAGCTC	TATCTTTATA	ACAATATCAT	TAAGAAAATC	720
	CAAGAAAATG	ATTTTAATAA	CCTCAATGAG	TTGCAAGTTC	TTGACCTAAG	TGGAAATTGC	. 7,80
	CCTCGATGTT	ATAATGTCCC	ATATCCGTGT	ACACCGTGTG	AAAATAATTC	CCCCTTACAG	840
30	ATCCATGACA	ATGCTTTCAA	TTCATTGACA	GAATTAAAAG	TTTTACGTTT	ACACAGTAAT	900
	TCTCTTCAGC	ATGTGCCCCC	AACATGGTTT	AAAAACATGA	GAAACCTCCA	GGAACTAGAC	960
	CTCTCCCAAA	ACTACTTGGC	CAGAGAAATT	GAGGAGGCCA	AATTTTTGCA	TTTTCTTCCC	1020
	AACCTTGTTG	AGTTGGATTT	TTCTTTCAAT	TATGAGCTGC	AGGTCTACCA	TGCATCTATA	1080
	ACTTTACCAC	ATTCACTCTC	TTCATTGGAA	AACTTGAAAA	TTCTGCGTGT	CAAGGGGTAT	1140
35	GTCTTTAAAG	AGCTGAAAAA	CTCCAGTCTT	TCTGTATTGC	ACAAGCTTCC	CAGGCTGGAA	1200
	GTTCTTGACC	TTGGCACTAA	CTTCATAAAA	ATTGCTGACC	TCAACATATT	CAAACATTTT	1260
	GAAAACCTCA	AACTCATAGA	CCTTTCAGTG	AATAAGATAT	CTCCTTCAGA	AGAGTCAAGA	1320
	GAAGTTGGCT	TTTGTCCTAA	TGCTCAAACT	TCTGTAGACC	GTCATGGGCC	CCAGGTCCTT	1380
	GAGGCCTTAC	ACTATTTCCG	ATACGATGAA	TATGCACGGA	GCTGCAGGTT	CAAAAACAAA	1440
40	GAGCCACCTT	CTTTCTTGCC	TTTGAATGCA	GACTGCCACA	TATATGGGCA	GACCTTAGAC	1500
	TTAAGTAGAA	ATAACATATT	TTTTATTAAA	CCTTCTGATT	TTCAGCATCT	TTCATTCCTC	1560

- 120 -

	AAATGCCTCA	ACTTATCAGG	AAACACCATT	GGCCAAACTC	TTAATGGCAG	TGAACTCTGG	162
	CCGTTGAGAG	AGTTGCGGTA	CTTAGACTTC	TCCAACAACC	GGCTTGATTT	ACTCTACTCA	168
	ACAGCCTTTG	AAGAGCTCCA	GAGTCTTGAA	GTTCTGGATC	TAAGTAGTAA	CAGCCACTAT	174
	TTTCAAGCAG	AAGGAATTAC	TCACATGCTA	AACTTTACCA	AGAAATTACG	GCTTCTGGAC	180
5	AAACTCATGA	TGAATGATAA	TGACATCTCT	ACTTCGGCCA	GCAGGACCAT	GGAAAGTGAC	186
	TCTCTTCGAA	TTCTGGAGTT	CAGAGGCAAC	CATTTAGATG	TTCTATGGAG	AGCCGGTGAT	192
	AACAGATACT	TGGACTTCTT	CAAGAATTTG	TTCAATTTAG	AGGTATTAGA	TATCTCCAGA	198
	AATTCCCTGA	ATTCCTTGCC	TCCTGAGGTT	TTTGAGGGTA	TGCCGCCAAA	TCTAAAGAAT	204
	CTCTCCTTGG	CCAAAAATGG	GCTCAAATCT	TTCTTTTGGG	ACAGACTCCA	GTTACTGAAG	210
10	CATTTGGAAA	TTTTGGACCT	CAGCCATAAC	CAGCTGACAA	AAGTACCTGA	GAGATTGGCC	216
	AACTGTTCCA	AAAGTCTCAC	AACACTGATT	CTTAAGCATA	ATCAAATCAG	GCAATTGACA	222
	AAATATTTTC	TAGAAGATGC	TTTGCAATTG	CGCTATCTAG	ACATCAGTTC	АААТААААТС	228
	CAGGTCATTC	AGAAGACTAG	CTTCCCAGAA	AATGTCCTCA	ACAATCTGGA	GATGTTGGTT	234
	TTACATCACA	ATCGCTTTCT	TTGCAACTGT	GATGCTGTGT	GGTTTGTCTG	GTGGGTTAAC	240
15	CATACAGATG	TTACTATTCC	ATACCTGGCC	ACTGATGTGA	CTTGTGTAGG	TCCAGGAGCA	246
	CACAAAGGTC	AAAGTGTCAT	ATCCCTTGAT	CTGTATACGT	GTGAGTTAGA	TCTCACAAAC	252
	CTGATTCTGT	TCTCAGTTTC	CATATCATCA	GTCCTCTTTC	TTATGGTAGT	TATGACAACA	258
	AGTCACCTCT	TTTTCTGGGA	TATGTGGTAC	ATTTATTATT	TTTGGAAAGC	AAAGATAAAG	264
	GGGTATCAGC	ATCTGCAATC	CATGGAGTCT	TGTTATGATG	CTTTTATTGT	GTATGACACT	270
20	AAAAACTCAG	CTGTGACAGA	ATGGGTTTTG	CAGGAGCTGG	TGGCAAAATT	GGAAGATCCA	276
	AGAGAAAAAC	ACTTCAATTT	GTGTCTAGAA	GAAAGAGACT	GGCTACCAGG	ACAGCCAGTT	282
	CTAGAAAACC	TTTCCCAGAG	CATACAGCTC	AGCAAAAAGA	CAGTGTTTGT	GATGACACAG	288
	AAATATGCTA	AGACTGAGAG	TTTTAAGATG	GCATTTTATT	TGTCTCATCA	GAGGCTCCTG	294
	GATGAAAAAG	TGGATGTGAT	TATCTTGATA	TTCTTGGAAA	AGCCTCTTCA	GAAGTCTAAG	300
25	TTTCTTCAGC	TCAGGAAGAG	ACTCTGCAGG	AGCTCTGTCC	TTGAGTGGCC	TGCAAATCCA	306
	CAGGCTCACC	CATACTTCTG	GCAGTGCCTG	AAAAATGCCC	TGACCACAGA	CAATCATGTG	312
	GCTTATAGTC	AAATGTTCAA	GGAAACAGTC				315
	Table 11. Am	ina Acid Secu	iances of Mun	rina TI D7 an	d Uuman TI	D7	
20	Table 11. Am	mo Acia Sequ	iences of ividi		u Human 11		
30	hTLR7.pep N	· : WFPMWTLKRQIL	. : TI.ENTTI.T CV I.I.	: .		י יייייייייייייייייייייייייייייייייייי	60 60
	T T	VFSMWTRKRQIL		-			60
		. :	. : .	:	: . :	. :	120
35	hTLR7.pep (GIPTNTTNLTLT:	INHIPDISPASFI	HRLDHLVEIDFRO	NCVPIPLGSKNN	MCIKRLQIKP	120
	mTLR7.pep	EGI PTNTTNLTLT:	INHIPSISPDSFI	RRLNHLEEIDLRC	ncvpvllgskan	VCTKRLQIRP	120
		. :	. : .	: .	: . :	. :	180
45	-	RSFSGLTYLKSLY	-				180
40	mTLR7.pep (SSFSGLSDLKALY.	LDGNQLLEIPQD1	LPSSLHLLSLEAN	NIFSITKENLTE	LVNIETLYLG	180
		_	_			_	240
	hTLR7.pep (· : ONCYYRNPCYVSY:	· : : . SIEKDAFINI.TET	: . KVISLKDNNVTA	: . : . : : : : : : : : : : : : : : : :	. : .VI.VNNMTAKI	240
	المتالات المستمدد			THE TRANSPORT OF THE PROPERTY		A A RESTRICTION OF THE PROPERTY OF THE PROPERT	ا

- 121 -

	mTLR7.pep	QNCYYRNPCNVSYSIEKDAFLVMRNLKVLSLKDNNVTAVPTTLPPNLLELYLYNNIIKKI
•		. : . : . : . : . :
	hTLR7.pep	QEDDFNNLNQLQILDLSGNCPRCYNAPFPCAPCKNNSPLQIPVNAFDALTELKVLRLHSN
5	mTLR7.pep	QENDFNNLNELQVLDLSGNCPRCYNVPYPCTPCENNSPLQIHDNAFNSLTELKVLRLHSN
		. : . : . : . : . :
	hTLR7.pep	SLQHVPPRWFKNINKLQELDLSQNFLAKEIGDAKFLHFLPSLIQLDLSFNFELQVYRASM
	mTLR7.pep	SLQHVPPTWFKNMRNLQELDLSQNYLAREIEEAKFLHFLPNLVELDFSFNYELQVYHASI
10		
		. : . : . : . : . :
	hTLR7.pep	NLSQAFSSLKSLKILRIRGYVFKELKSFNLSPLHNLQNLEVLDLGTNFIKIANLSMFKQF
	mTLR7.pep	TLPHSLSSLENLKILRVKGYVFKELKNSSLSVLHKLPRLEVLDLGTNFIKIADLNIFKHF
15		. : . : . : . : . :
	hTLR7.pep	KRLKVIDLSVNKISPSGDSSEVGFCSNARTSVESYEPQVLEQLHYFRYDKYARSCRFKNK
	mTLR7.pep	ENLKLIDLSVNKISPSEESREVGFCPNAQTSVDRHGPQVLEALHYFRYDEYARSCRFKNK
		. : . : . : . : . :
20	hTLR7.pep	EA-SFMSVNESCYKYGQTLDLSKNSIFFVKSSDFQHLSFLKCLNLSGNLISQTLNGSEFQ
	mTLR7.pep	EPPSFLPLNADCHIYGQTLDLSRNNIFFIKPSDFQHLSFLKCLNLSGNTIGQTLNGSELW
	·	
		. : . : . : . : . :
	hTLR7.pep	PLAELRYLDFSNNRLDLLHSTAFEELHKLEVLDISSNSHYFQSEGITHMLNFTKNLKVLQ
25	mTLR7.pep	PLRELRYLDFSNNRLDLLYSTAFEELQSLEVLDLSSNSHYFQAEGITHMLNFTKKLRLLD
		. : . : . : . : . :
	hTLR7.pep	KLMMNDNDISSSTSRTMESESLRTLEFRGNHLDVLWREGDNRYLQLFKNLLKLEELDISK
	mTLR7.pep	KLMMNDNDISTSASRTMESDSLRILEFRGNHLDVLWRAGDNRYLDFFKNLFNLEVLDISR
30		
		. : . : . : . : . :
	hTLR7.pep	NSLSFLPSGVFDGMPPNLKNLSLAKNGLKSFSWKKLQCLKNLETLDLSHNQLTTVPERLS
	mTLR7.pep	NSLNSLPPEVFEGMPPNLKNLSLAKNGLKSFFWDRLQLLKHLEILDLSHNQLTKVPERLA
25		
35	la MT D. G. and and	
	hTLR7.pep	NCSRSLKNLILKNNQIRSLTKYFLQDAFQLRYLDLSSNKIQMIQKTSFPENVLNNLKMLL
	mTLR7.pep	NCSKSLTTLILKHNQIRQLTKYFLEDALQLRYLDISSNKIQVIQKTSFPENVLNNLEMLV
40	harna	
+0	hTLR7.pep	LHHNRFLCTCDAVWFVWWVNHTEVTIPYLATDVTCVGPGAHKGQSVISLDLYTCELDLTN
	mTLR7.pep	LHHNRFLCNCDAVWFVWWVNHTDVTIPYLATDVTCVGPGAHKGQSVISLDLYTCELDLTN
	hmr ng	TERROTORIOUS EL MUMMER CHI VENDUNUTURE CUR VETVOUODI TODDOGUDA ETIVOTE
A E	hTLR7.pep	LILFSLSISVSLFLMVMMTASHLYFWDVWYIYHFCKAKIKGYQRLISPDCCYDAFIVYDT
45	mTLR7.pep	LILFSVSISSVLFLMVVMTTSHLFFWDMWYIYYFWKAKIKGYQHLQSMESCYDAFIVYDT

- 122 -

		•	:	•	:	•	:	•	:	•	:	•	:	960
	hTLR7.pep	KDPAVT	EWVLAE	LVAKI	EDPRE	EKHFNI	CLEE	RDWLP	GQPVI	ENLSQ	SIQLSE	KTVF	MTD	959
	mTLR7.pep	KNSAVT	EWVLQE	LVAKI	LEDPRE	EKHFNI	CLEE	RDWLP	GQPVI	ENLSQ	SIQLS	KTVF	MTQ	960
5		•	:	•	:	•	:	•	:	•	:	•	:	1020
	bb210788.pep					VDVI	ILIF	LVKPF	'QKFNF	L*LRKI	RISRSS	SVLECE	PNP	37
	aa276879.pep								QKSKF	'LQLRKI	RLCRSS	SVLEWE	PANP	24
	aa266744.pep						1	LGKPL	QKSKF	LQLRKI	RLCRSS	SVLEME	PANP	29
	bb116163.pep	IE	TFQMPS	FLSIC	QRLLDI)KVDV1	ILIF	LE*PL	*KSKF	'LQLRKI	RFCRSS	SVLEWE	PANP	56
10	hTLR7.pep	KYAKTE	NFKIAF	YLSHÇ	QRLMDE	EKVDVI	ILIF	LEKPF	QKSKF	LQLRKI	RLCGSS	SVLEWE	PTNP	1019
	mTLR7.pep	KYAKTE	SFKMAF	YLSHÇ	QRLLDE	EKVDVI	ILIF	LEKPL	QKSKF	'LQLRKI	RLCRSS	SVLEWE	PANP	1020
		•	:		:	•	:	•	:	•	:	•	:	1080
	bb210788.pep	QAHPYF	CQCLKN	ALTTE	ONHVAY	'SQMF'E	ŒTV							67
15	aa276879.pep	QAHPYF	WQCLKN	ALTTI	ONHVAY	SQMFF	ŒTV							54
	aa266744.pep	QAHPYF	MQCLKN	ALTTI	ONHVAY	CSQMF	ŒTV							59
	bb116163.pep	QAHPYF	WQCLKN	ALTTI	YAVHNO	/SQMF1	ŒTV			•				86
	hTLR7.pep	QAHPYF	MOCTKM	ALATI	YAVHMO	SQVF	ŒTV							1049
	mTLR7.pep	QAHPYF	WQCLKN	ALTTI	YAVHMO	SQMFF	ŒTV							1050
20											•			

In Table 11 the sequences are assigned as follows: mTLR7.pep, SEQ ID NO:175; hTLR7.pep, SEQ ID NO:170; bb210788.pep, SEQ ID NO:176; aa276879.pep, SEQ ID NO:177; aa266744.pep, SEQ ID NO:178; and bb116163.pep, SEQ ID NO:179.

25 Example 18. Method of cloning human TLR8

30

35

Two accession numbers in the GenBank database, AF245703 and AF246971, describe the DNA sequence for human TLR8. To create an expression vector for human TLR8, human TLR8 cDNA was amplified from a cDNA made from human peripheral mononuclear blood cells (PBMC) using the primers 5'-CTGCGCTGCTGCAAGTTACGGAATG-3' (SEQ ID NO:180) and 5'-GCGCGAAATCATGACTTAACGTCAG-3 (SEQ ID NO:181). The fragment was cloned into pGEM-T Easy vector (Promega), cut with the restriction enzyme NotI and ligated into a NotI-digested pCDNA3.1 expression vector (Invitrogen). The insert was fully sequenced and translated into protein. The cDNA sequence for hTLR8 is SEQ ID NO:182, is presented in Table 12. The open reading frame starts at base 83, ends at base 3208, and codes for a protein of 1041 amino acids. SEQ ID NO:183 (Table 13), corresponding to bases 83-3205 of SEQ ID NO:182 (Table 12), is the coding region for the polypeptide of SEQ ID NO:184 (Table 14).

The protein sequence of the cloned hTLR8 cDNA matches the sequence described

- 123 -

under the GenBank accession number AF245703. The sequence deposited under GenBank accession number AF246971 contains an insertion at the N-terminus of 15 amino acids (MKESSLQNSSCSLGKETKK; SEQ ID NO:185) and three single amino acid changes at positions 217 (P to S), 266 (L to P) and 867 (V to I).

5

Table 12. cDNA Sequence for Human TLR8 (5' to 3'; SEQ ID NO:182)

				•			
	geteeeggee	gccatggcgg	ccgcgggaat	tcgattctgc	gctgctgcaa	gttacggaat	60
	gaaaaattag	aacaacagaa	acatggaaaa	catgttcctt	cagtcgtcaa	tgctgacctg	120
	cattttcctg	ctaatatctg	gttcctgtga	gttatgcgcc	gaagaaaatt	tttctagaag	180
10	ctatccttgt	gatgagaaaa	agcaaaatga	ctcagttatt	gcagagtgca	gcaatcgtcg	240
	actacaggaa	gttccccaaa	cggtgggcaa	atatgtgaca	gaactagacc	tgtctgataa	300
	tttcatcaca	cacataacga	atgaatcatt	tcaagggctg	caaaatctca	ctaaaataaa	360
	tctaaaccac	aaccccaatg	tacagcacca	gaacggaaat	cccggtatac	aatcaaatgg	420
	cttgaatatc	acagacgggg	cattcctcaa	cctaaaaaac	ctaagggagt	tactgcttga	480
15	agacaaccag	ttaccccaaa	taccctctgg	tttgccagag	tctttgacag	aacttagtct	540
	aattcaaaac	aatatataca	acataactaa	agagggcatt	tcaagactta	taaacttgaa	600
	aaatctctat	ttggcctgga	actgctattt	taacaaagtt	tgcgagaaaa	ctaacataga	660
	agatggagta	tttgaaacgc	tgacaaattt	ggagttgcta	tcactatctt	tcaattctct	720
	ttcacacgtg	ccacccaaac	tgccaagctc	cctacgcaaa	ctttttctga	gcaacaccca	780
20	gatcaaatac	attagtgaag	aagatttcaa	gggattgata	aatttaacat	tactagattt	840
	aagcgggaac	tgtccgaggt	gcttcaatgc	cccatttcca	tgcgtgcctt	gtgatggtgg	900
	tgcttcaatt	aatatagatc	gttttgcttt	tcaaaacttg	acccaacttc	gatacctaaa	960
	cctctctagc	acttccctca	ggaagattaa	tgctgcctgg	tttaaaaata	tgcctcatct	1020
	gaaggtgctg	gatcttgaat	tcaactattt	agtgggagaa	atagcctctg	gggcatttt	1080
25	aacgatgctg	ccccgcttag	aaatacttga	cttgtctttt	aactatataa	aggggagtta	1140
	tccacagcat	attaatattt	ccagaaactt	ctctaaactt	ttgtctctac	gggcattgca	1200
	tttaagaggt	tatgtgttcc	aggaactcag	agaagatgat	ttccagcccc	tgatgcagct	1260
	tccaaactta	tcgactatca	acttgggtat	taattttatt	aagcaaatcg	atttcaaact	1320
	tttccaaaat	ttctccaatc	tggaaattat	ttacttgtca	gaaaacagaa	tatcaccgtt	1380
30	ggtaaaagat	acccggcaga	gttatgcaaa	tagttcctct	tttcaacgtc	atatccggaa	1440
	acgacgctca	acagattttg	agtttgaccc	acattcgaac	ttttatcatt	tcacccgtcc	1500
	tttaataaag	ccacaatgtg	ctgcttatgg	aaaagcctta	gatttaagcc	tcaacagtat	1560
	tttcttcatt	gggccaaacc	aatttgaaaa	tcttcctgac	attgcctgtt	taaatctgtc	1620
•	tgcaaatagc	aatgctcaag	tgttaagtgg	aactgaattt	tcagccattc	ctcatgtcaa	1680
35	atatttggat	ttgacaaaca	atagactaga	ctttgataat	gctagtgctc	ttactgaatt	1740
	gtccgacttg	gaagttctag	atctcagcta	taattcacac	tatttcagaa	tagcaggcgt	1800
•	aacacatcat	ctagaattta	ttcaaaattt	cacaaatcta	aaagttttaa	acttgagcca	1860
	caacaacatt	tatactttaa	cagataagta	taacctggaa	agcaagtccc	tggtagaatt	1920
	agttttcagt	ggcaatcgcc	ttgacatttt	gtggaatgat	gatgacaaca	ggtatatctc	1980
40	cattttcaaa	ggtctcaaga	atctgacacg	tctggattta	tcccttaata	ggctgaagca	2040

- 124 -

	catcccaaat	gaagcattcc	ttaatttgcc	agcgagtctc	actgaactac	atataaatga	2100
	taatatgtta	aagttttta	actggacatt	actccagcag	tttcctcgtc	tcgagttgct	2160
	tgacttacgt	ggaaacaaac	tactcttttt	aactgatagc	ctatctgact	ttacatcttc	2220
	ccttcggaca	ctgctgctga	gtcataacag	gatttcccac	ctaccctctg	gctttcttc	2280
5	tgaagtcagt	agtctgaagc	acctcgattt	aagttccaat	ctgctaaaaa	caatcaacaa	2340
	atccgcactt	gaaactaaga	ccaccaccaa	attatctatg	ttggaactac	acggaaaccc	2400
	ctttgaatgc	acctgtgaca	ttggagattt	ccgaagatgg	atggatgaac	atctgaatgt	2460
	caaaattccc	agactggtag	atgtcatttg	tgccagtcct	ggggatcaaa	gagggaagag	2520
	tattgtgagt	ctggagctaa	caacttgtgt	ttcagatgtc	actgcagtga	tattatttt	2580
10	cttcacgttc	tttatcacca	ccatggttat	gttggctgcc	ctggctcacc	atttgtttta	2640
	ctgggatgtt	tggtttatat	ataatgtgtg	tttagctaag	gtaaaaggct	acaggtctct	2700
	ttccacatcc	caaactttct	atgatgctta	catttcttat	gacaccaaag	acgcctctgt	2760
	tactgactgg	gtgataaatg	agctgcgcta	ccaccttgaa	gagagccgag	acaaaaacgt	2820
	tctcctttgt	ctagaggaga	gggattggga	cccgggattg	gccatcatcg	acaacctcat	2880
15	gcagagcatc	aaccaaagca	agaaaacagt	atttgtttta	accaaaaaat	atgcaaaaag	2940
	ctggaacttt	aaaacagctt	tttacttggc	tttgcagagg	ctaatggatg	agaacatgga	3000
	tgtgattata	tttatcctgc	tggagccagt	gttacagcat	tctcagtatt	tgaggctacg .	3060
	gcagcggatc	tgtaagagct	ccatcctcca	gtggcctgac	aacccgaagg	cagaaggctt	3120
	gttttggcaa	actctgagaa	atgtggtctt	gactgaaaat	gattcacggt	ataacaatat	3180
20	gtatgtcgat	tccattaagc	aatactaact	gacgttaagt	catgatttcg	cgcaatcact	3240
	agtgaattcg	cggccgcctg	caggtcgacc	atatgggaga	gctcccaacg	cgttggatgc	3300
	atagcttgag						3310

Table 13. Coding Region for Human TLR8 (5' to 3'; SEQ ID NO:183)

25	atggaaaaca	tgttccttca	gtcgtcaatg	ctgacctgca	ttttcctgct	aatatctggt	60
	tcctgtgagt	tatgcgccga	agaaaatttt	tctagaagct	atccttgtga	tgagaaaaag	120
	caaaatgact	cagttattgc	agagtgcagc	aatcgtcgac	tacaggaagt	tccccaaacg	180
	gtgggcaaat	atgtgacaga	actagacctg	tctgataatt	tcatcacaca	cataacgaat	240
	gaatcatttc	aagggctgca	aaatctcact	aaaataaatc	taaaccacaa	ccccaatgta	300
30	cagcaccaga	acggaaatcc	cggtatacaa	tcaaatggct	tgaatatcac	agacggggca	360
	ttcctcaacc	taaaaaacct	aagggagtta	ctgcttgaag	acaaccagtt	accccaaata	420
	ccctctggtt	tgccagagtc	tttgacagaa	cttagtctaa	ttcaaaacaa	tatatacaac	480
	ataactaaag	agggcatttc	aagacttata	aacttgaaaa	atctctattt	ggcctggaac	540
	tgctatttta	acaaagtttg	cgagaaaact	aacatagaag	atggagtatt	tgaaacgctg	600
35	acaaatttgg	agttgctatc	actatcttc	aattctcttt	cacacgtgcc	acccaaactg	660
	ccaagctccc	tacgcaaact	ttttctgagc	aacacccaga	tcaaatacat	tagtgaagaa	720
	gatttcaagg	gattgataaa	tttaacatta	ctagatttaa	gcgggaactg	tccgaggtgc	780
	ttcaatgccc	catttccatg	cgtgccttgt	gatggtggtg	cttcaattaa	tatagatcgt	840
	tttgcttttc	aaaacttgac	ccaacttcga	tacctaaacc	tctctagcac	ttccctcagg	900
40	aagattaatg	ctgcctggtt	taaaaatatg	cctcatctga	aggtgctgga	tcttgaattc	960
	aactatttag	tgggagaaat	agcctctggg	gcatttttaa	cgatgctgcc	ccgcttagaa	1020

- 125 -

40	AF245703.pep		MENMFLQ		SCELCAEENFSR		42
	Table 14. Ami	no Acid Sequ	ence of Hum	an TLR8	: . :	. :	60
	tac						3123
35	gtggtcttga	ctgaaaatga	ttcącggtat	aacaatatgt	atgtcgattc	cattaagcaa	3120
	atcctccagt	ggcctgacaa	cccgaaggca	gaaggcttgt	tttggcaaac	tctgagaaat	3060
	gagccagtgt	tacagcattc	tcagtatttg	aggctacggc	agcggatctg	taagagctcc	3000
	tacttggctt	tgcagaggct	aatggatgag	aacatggatg	tgattatatt	tatcctgctg	2940
	aaaacagtat	ttgttttaac	caaaaaatat	gcaaaaagct	ggaactttaa	aacagctttt	2880
30	gattgggacc	cgggattggc	catcatcgac	aacctcatgc	agagcatcaa	ccaaagcaag	2820
	ctgcgctacc	accttgaaga	gagccgagac	aaaaacgttc	tcctttgtct	agaggagagg	2760
	gatgcttaca	tttcttatga	caccaaagac	gcctctgtta	ctgactgggt	gataaatgag	2700
					ccacatccca		2640
					gggatgtttg		2580
25	acttgtgttt	cagatgtcac	tgcagtgata	ttatttttct	tcacgttctt	tatcaccacc	2520
					ttgtgagtct		2460
	ggagatttcc	gaagatggat	ggatgaacat	ctgaatgtca	aaattcccag	actggtagat	2400
	accaccaaat	tatctatgtt	ggaactacac	ggaaacccct	ttgaatgcac	ctgtgacatt	2340
					ccgcacttga		2280
20	cataacagga	tttcccacct	accctctggc	tttctttctg	aagtcagtag	tctgaagcac	2220
	ctctttttaa	ctgatagcct	atctgacttt	acatcttccc	ttcggacact	gctgctgagt	2160
	tggacattac	tccagcagtt	tectegtete	gagttgcttg	acttacgtgg	aaacaaacta	2100
					atatgttaaa		2040
	ctgacacgtc	tggatttatc	ccttaatagg	ctgaagcaca	tcccaaatga	agcattcctt	1980
15	gacattttgt	ggaatgatga	tgacaacagg	tatatctcca	ttttcaaagg	tctcaagaat	1920
	gataagtata	acctggaaag	caagtccctg	gtagaattag	ttttcagtgg	caatcgcctt	1860
	caaaatttca	caaatctaaa	agttttaaac	ttgagccaca	acaacattta	tactttaaca	1800
	ctcagctata	attcacacta	tttcagaata	gcaggcgtaa	cacatcatct	agaatttatt	1740
	agactagact	ttgataatgc	tagtgctctt	actgaattgt	ccgacttgga	agttctagat	1680
10	ttaagtggaa	ctgaattttc	agccattcct	catgtcaaat	atttggattt	gacaaacaat	1620
	tttgaaaatc	ttcctgacat	tgcctgttta	aatctgtctg	caaatagcaa	tgctcaagtg	1560
	gcttatggaa	aagccttaga	tttaagcctc	aacagtattt	tcttcattgg	gccaaaccaa	1500
	tttgacccac	attcgaactt	ttatcatttc	acccgtcctt	taataaagcc	acaatgtgct	1440
	tatgcaaata	gttcctcttt	tcaacgtcat	atccggaaac	gacgctcaac	agattttgag	1380
5	gaaattattt	acttgtcaga	aaacagaata	tcaccgttgg	taaaagatac	ccggcagagt	1320
	ttgggtatta	attttattaa	gcaaatcgat	ttcaaacttt	tccaaaattt	ctccaatctg	1260
	gaactcagag	aagatgattt	ccagcccctg	atgeagette	caaacttatc	gactatcaac	1200
					taagaggtta		1140
	atacttgact	tgtcttttaa	ctatataaag	gggagttatc	cacagcatat	taatatttcc	1080

AF246971.pep MKESSLQNSSCSLGKETKKENMFLQSSMLTCIFLLISGSCELCAEENFSRSYPCDEKKQN

MENMFLQSSMLTCIFLLISGSCELCAEENFSRSYPCDEKKQN

42

60

hTLR8.pep

- 126 -

		. : . : . : . : . :
	AF245703.pep	DSVIAECSNRRLQEVPQTVGKYVTELDLSDNFITHITNESFQGLQNLTKINLNHNPNVQH
	hTLR8.pep	DSVIAECSNRRLQEVPQTVGKYVTELDLSDNFITHITNESFQGLQNLTKINLNHNPNVQH
5	AF246971.pep	DSVIAECSNRRLQEVPQTVGKYVTELDLSDNFITHITNESFQGLQNLTKINLNHNPNVQH
		. : . : . : . :
	AF245703.pep	QNGNPGIQSNGLNITDGAFLNLKNLRELLLEDNQLPQIPSGLPESLTELSLIQNNIYNIT
	hTLR8.pep	QNGNPGIQSNGLNITDGAFLNLKNLRELLLEDNQLPQIPSGLPESLTELSLIQNNIYNIT
10		QNGNPGIQSNGLNITDGAFLNLKNLRELLLEDNQLPQIPSGLPESLTELSLIQNNIYNIT
	, *	
		. : . : . : . :
	AF245703.pep	KEGISRLINLKNLYLAWNCYFNKVCEKTNIEDGVFETLTNLELLSLSFNSLSHVPPKLPS
	hTLR8.pep	KEGISRLINLKNLYLAWNCYFNKVCEKTNIEDGVFETLTNLELLSLSFNSLSHVPPKLPS
15	AF246971.pep	KEGISRLINLKNLYLAWNCYFNKVCEKTNIEDGVFETLTNLELLSLSFNSLSHVSPKLPS
	AF245703.pep	SLRKLFLSNTQIKYISEEDFKGLINLTLLDLSGNCPRCFNAPFPCVPCDGGASINIDRFA
	hTLR8.pep	SLRKLFLSNTQIKYISEEDFKGLINLTLLDLSGNCPRCFNAPFPCVPCDGGASINIDRFA
20	AF246971.pep	
		. : . : . : . :
	AF245703.pep	FQNLTQLRYLNLSSTSLRKINAAWFKNMPHLKVLDLEFNYLVGEIASGAFLTMLPRLEIL
	hTLR8.pep	FQNLTQLRYLNLSSTSLRKINAAWFKNMPHLKVLDLEFNYLVGEIASGAFLTMLPRLEIL
25	AF246971.pep	FQNLTQLRYLNLSSTSLRKINAAWFKNMPHLKVLDLEFNYLVGEIASGAFLTMLPRLEIL
		. : . : . : . :
	AF245703.pep	DLSFNYIKGSYPQHINISRNFSKLLSLRALHLRGYVFQELREDDFQPLMQLPNLSTINLG
	hTLR8.pep	DLSFNYIKGSYPQHINISRNFSKLLSLRALHLRGYVFQELREDDFQPLMQLPNLSTINLG
30	AF246971.pep	
	-	. : . : . : . :
	AF245703.pep	INFIKQIDFKLFQNFSNLEIIYLSENRISPLVKDTRQSYANSSSFQRHIRKRRSTDFEFD
	hTLR8.pep	INFIKQIDFKLFQNFSNLEIIYLSENRISPLVKDTRQSYANSSSFQRHIRKRRSTDFEFD
35	AF246971.pep	INFIKQIDFKLFQNFSNLEIIYLSENRISPLVKDTRQSYANSSSFQRHIRKRRSTDFEFD
	AF245703.pep	PHSNFYHFTRPLIKPQCAAYGKALDLSLNSIFFIGPNQFENLPDIACLNLSANSNAQVLS
	hTLR8.pep	PHSNFYHFTRPLIKPQCAAYGKALDLSLNSIFFIGPNQFENLPDIACLNLSANSNAQVLS
40		PHSNFYHFTRPLIKPQCAAYGKALDLSLNSIFFIGPNQFENLPDIACLNLSANSNAQVLS
-		
		. : . : . : . :
	AF245703.pep	GTEFSAIPHVKYLDLTNNRLDFDNASALTELSDLEVLDLSYNSHYFRIAGVTHHLEFIQN
	hTLR8.pep	GTEFSAIPHVKYLDLTNNRLDFDNASALTELSDLEVLDLSYNSHYFRIAGVTHHLEFIQN
45	AF246971.pep	GTEFSAIPHVKYLDLTNNRLDFDNASALTELSDLEVLDLSYNSHYFRIAGVTHHLEFIQN

- 127 -

	•		66
	AF245703.pep	FTNLKVLNLSHNNIYTLTDKYNLESKSLVELVFSGNRLDILWNDDDNRYISIFKGLKNLT	64
	hTLR8.pep	FTNLKVLNLSHNNIYTLTDKYNLESKSLVELVFSGNRLDILWNDDDNRYISIFKGLKNLT	643
	AF246971.pep	FTNLKVLNLSHNNIYTLTDKYNLESKSLVELVFSGNRLDILWNDDDNRYISIFKGLKNLT	660
5			
			720
	AF245703.pep	RLDLSLNRLKHIPNEAFLNLPASLTELHINDNMLKFFNWTLLQQFPRLELLDLRGNKLLF	702
	hTLR8.pep	RLDLSLNRLKHIPNEAFLNLPASLTELHINDNMLKFFNWTLLQQFPRLELLDLRGNKLLF	702
	AF246971.pep	RLDLSLNRLKHIPNEAFLNLPASLTELHINDNMLKFFNWTLLQQFPRLELLDLRGNKLLF	720
10			
		. : . : . : . :	780
	AF245703.pep	LTDSLSDFTSSLRTLLLSHNRISHLPSGFLSEVSSLKHLDLSSNLLKTINKSALETKTTT	762
	hTLR8.pep	LTDSLSDFTSSLRTLLLSHNRISHLPSGFLSEVSSLKHLDLSSNLLKTINKSALETKTTT	762
	AF246971.pep	LTDSLSDFTSSLRTLLLSHNRISHLPSGFLSEVSSLKHLDLSSNLLKTINKSALETKTTT	780
15		•	
		· : · : · : · : · :	840
	AF245703.pep	KLSMLELHGNPFECTCDIGDFRRWMDEHLNVKIPRLVDVICASPGDQRGKSIVSLELTTC	822
	hTLR8.pep	KLSMLELHGNPFECTCDIGDFRRWMDEHLNVKIPRLVDVICASPGDQRGKSIVSLELTTC	822
	AF246971.pep	KLSMLELHGNPFECTCDIGDFRRWMDEHLNVKIPRLVDVICASPGDQRGKSIVSLELTTC	840
20			
			900
		VSDVTAVILFFFTFFITTMVMLAALAHHLFYWDVWFIYNVCLAKVKGYRSLSTSQTFYDA	882
	hTLR8.pep	VSDVTAVILFFFTFFITTMVMLAALAHHLFYWDVWFIYNVCLAKVKGYRSLSTSQTFYDA	882
	AF246971.pep	VSDVTAVILFFFTFFITTMVMLAALAHHLFYWDVWFIYNVCLAK <u>I</u> KGYRSLSTSQTFYDA	900
25			
			960
	AF245703.pep	YISYDTKDASVTDWVINELRYHLEESRDKNVLLCLEERDWDPGLAIIDNLMQSINQSKKT	942
	hTLR8.pep	YISYDTKDASVTDWVINELRYHLEESRDKNVLLCLEERDWDPGLAIIDNLMQSINQSKKT	942
2.0	AF246971.pep	YISYDTKDASVTDWVINELRYHLEESRDKNVLLCLEERDWDPGLAIIDNLMQSINQSKKT	960
30			
		· : · : · : · : · :	1020
		VFVLTKKYAKSWNFKTAFYLALQRLMDENMDVIIFILLEPVLQHSQYLRLRQRICKSSIL	1002
	hTLR8.pep	VFVLTKKYAKSWNFKTAFYLALQRLMDENMDVIIFILLEPVLQHSQYLRLRQRICKSSIL	1002
	AF246971.pep	VFVLTKKYAKSWNFKTAFYLALQRLMDENMDVIIFILLEPVLQHSQYLRLRQRICKSSIL	1020
35		•	
			1080
	AF245703.pep	QWPDNPKAEGLFWQTLRNVVLTENDSRYNNMYVDSIKQY	1041
	hTLR8.pep	QWPDNPKAEGLFWQTLRNVVLTENDSRYNNMYVDSIKQY	1041
•	AF246971.pep	QWPDNPKAEGLFWQTLRNVVLTENDSRYNNMYVDSIKQY	1055
40			

In Table 14 the sequences are assigned as follows: hTLR8.pep, SEQ ID NO:184; AF245703.pep, SEQ ID NO:186; and AF246971.pep, SEQ ID NO:187.

Example 19. Method of cloning the murine TLR8

- 128 -

Alignment of human TLR8 protein sequence with mouse EST database using tfasta yielded 1 hit with mouse EST sequence bf135656. Two primers were designed that bind to bf135656 sequence for use in a RACE-PCR to amplify 5' and 3' ends of the murine TLR8 cDNA. The library used for the RACE PCR was a mouse spleen marathon-ready cDNA commercially available from Clontech. A 5' fragment with a length of 2900 bp and a 3' fragment with a length of 2900 bp obtained by this method were cloned into Promega pGEM-T Easy vector. After sequencing of the 5' end and 3' end of each fragment, partial sequences of mTLR8 were obtained and allowed the design of primers for amplification of the complete murine TLR8 cDNA.

Three independent PCR reactions were set up using a spleen murine cDNA from Clontech as a template with the primers 5'-GAGAGAAACAAACGTTTTACCTTC-3' (SEQ ID NO:188) and 5'-GATGGCAGAGTCGTGACTTCCC-3' (SEQ ID NO:189). The resulting amplification products were cloned into pGEM-T Easy vector, fully sequenced, translated into protein, and aligned to the human TLR8 protein sequence (GenBank accession number AF245703). The cDNA sequence for mTLR8 is SEQ ID NO:190, presented in Table 15. The open reading frame of mTLR8 starts at base 59, ends at base 3157, and codes for a protein of 1032 amino acids. SEQ ID NO:191 (Table 16), corresponding to bases 59-3154 of SEQ ID NO:190 (Table 15), is the coding region for the polypeptide of SEQ ID NO:192 (Table 17). To create an expression vector for murine TLR8, cDNA pGEM-T Easy vector with the mTLR8 insert was cut with NotI, the fragment isolated, and ligated into a NotI-digested pCDNA3.1 expression vector (Invitrogen).

Table 15. cDNA Sequence for Murine TLR8 (5' to 3'; SEQ ID NO:190)

10

15

attcagagtt ggatgttaag agagaaacaa acgttttacc ttcctttgtc tatagaacat 60 25 ggaaaacatg cccctcagt catggattct gacgtgcttt tgtctgctgt cctctggaac 120 cagtgccatc ttccataaag cgaactattc cagaagctat ccttgtgacg agataaggca 180 caactccctt gtgattgcag aatgcaacca tcgtcaactg catgaagttc cccaaactat 240 aggcaagtat gtgacaaaca tagacttgtc agacaatgcc attacacata taacgaaaga 300 gtcctttcaa aagctgcaaa acctcactaa aatcgatctg aaccacaatg ccaaacaaca 360 30 420 gcacccaaat gaaaataaaa atggtatgaa tattacagaa ggggcacttc tcagcctaag aaatctaaca gttttactgc tggaagacaa ccagttatat actatacctg ctgggttgcc 480 540 tgagtctttg aaagaactta gcctaattca aaacaatata tttcaggtaa ctaaaaacaa cacttttggg cttaggaact tggaaagact ctatttgggc tggaactgct attttaaatg 600 taatcaaacc tttaaggtag aagatggggc atttaaaaat cttatacact tgaaggtact 660 - 129 -

ctcattatct ttcaataacc ttttctatgt gccccccaaa ctaccaagtt ctctaaggaa 720 actttttctg agtaatgcca aaatcatgaa catcactcag gaagacttca aaggactgga 780 aaatttaaca ttactagatc tgagtggaaa ctgtccaagg tgttacaatg ctccatttcc 840 900 ttgcacacct tgcaaggaaa actcatccat ccacatacat cctctggctt ttcaaaqtct 5 cacccaactt ctctatctaa acctttccag cacttccctc aggacgattc cttctacctg 960 gtttgaaaat ctgtcaaatc tgaaggaact ccatcttgaa ttcaactatt tagttcaaga 1020 aattgcctcg ggggcatttt taacaaaact acccagttta caaatccttg atttgtcctt 1080 caactttcaa tataaggaat atttacaatt tattaatatt tcctcaaatt tctctaagct 1140 tcgttctctc aagaagttgc acttaagagg ctatgtgttc cgagaactta aaaagaagca 1200 10 tttcgagcat ctccagagtc ttccaaactt ggcaaccatc aacttgggca ttaactttat 1260 tgagaaaatt gatttcaaag ctttccagaa tttttccaaa ctcgacgtta tctatttatc 1320 aggaaatcgc atagcatctg tattagatgg tacagattat teetettgge gaaatcgtet 1380 toggaaacct ctctcaacag acgatgatga gtttgatcca cacgtgaatt tttaccatag 1440 caccaaacct ttaataaagc cacagtgtac tgcttatggc aaggccttgg atttaagttt 1500 15 gaacaatatt ttcattattg ggaaaagcca atttgaaggt tttcaggata tcgcctgctt 1560 aaatctgtcc ttcaatgcca atactcaagt gtttaatggc acagaattct cctccatgcc 1620 ccacattaaa tatttggatt taaccaacaa cagactagac tttgatgata acaatgcttt 1680 cagtgatctt cacgatctag aagtgctgga cctgagccac aatgcacact atttcagtat 1740 agcaggggta acgcaccgtc taggatttat ccagaactta ataaacctca gggtgttaaa 1800 20 cctgagccac aatggcattt acaccctcac agaggaaagt gagctgaaaa gcatctcact 1860 gaaagaattg gttttcagtg gaaatcgtct tgaccatttg tggaatgcaa atgatggcaa 1920 atactggtcc atttttaaaa gtctccagaa tttgatacgc ctggacttat catacaataa 1980 ccttcaacaa atcccaaatg gagcattcct caatttgcct cagagcctcc aagagttact 2040 tatcagtggt aacaaattac gtttctttaa ttggacatta ctccagtatt ttcctcacct 2100 25 tcacttgctg gatttatcga gaaatgagct gtattttcta cccaattgcc tatctaagtt 2160 tgcacattcc ctggagacac tgctactgag ccataatcat ttctctcacc taccctctqq 2220 cttcctctcc gaagccagga atctggtgca cctggatcta agtttcaaca caataaagat 2280 gatcaataaa tcctccctgc aaaccaagat gaaaacgaac ttgtctattc tggagctaca 2340 tgggaactat tttgactgca cgtgtgacat aagtgatttt cgaagctggc tagatgaaaa 2400 30 tctgaatatc acaattccta aattggtaaa tgttatatgt tccaatcctg gggatcaaaa 2460 atcaaagagt atcatgagcc tagatctcac gacttgtgta tcggatacca ctgcagctgt `2520 cctgtttttc ctcacattcc ttaccacctc catggttatg ttggctgctc tggttcacca 2580 cctgttttac tgggatgttt ggtttatcta tcacatgtgc tctgctaagt taaaaggcta 2640 caggacttca tccacatccc aaactttcta tgatgcttat atttcttatg acaccaaaga 2700 35 tgcatctgtt actgactggg taatcaatga actgcgctac caccttgaag agagtgaaga 2760 caaaagtgtc ctcctttgtt tagaggagag ggattgggat ccaggattac ccatcattga 2820 taacctcatg cagagcataa accagagcaa gaaaacaatc tttgttttaa ccaagaaata 2880 tgccaagagc tggaacttta aaacagcttt ctacttggcc ttgcagaggc taatggatga 2940 gaacatggat gtgattattt tcatcctcct ggaaccagtg ttacagtact cacagtacct 3000 40 gaggettegg cagaggatet gtaagagete cateeteeag tggeecaaca ateecaaage 3060 agaaaacttg ttttggcaaa gtctgaaaaa tgtggtcttg actgaaaatg attcacggta 3120 tgacgatttg tacattgatt ccattaggca atactagtga tgggaagtca cgactctgcc 3180

- 130 -

atcataaaaa cacacagctt ctccttacaa tgaaccgaat 3220

Table 16. Coding Region for Murine TLR8 (5' to 3'; SEQ ID NO:191)

	atggaaaaca	tgccccctca	gtcatggatt	ctgacgtgct	tttgtctgct	gtcctctgga	60
5	accagtgcca	tcttccataa	agcgaactat	tccagaagct	atccttgtga	cgagataagg	120
	cacaactccc	ttgtgattgc	agaatgcaac	catcgtcaac	tgcatgaagt	tccccaaact	180
	ataggcaagt	atgtgacaaa	catagacttg	tcagacaatg	ccattacaca	tataacgaaa	240
	gagtcctttc	aaaagctgca	aaacctcact	aaaatcgatc	tgaaccacaa	tgccaaacaa	300
	cagcacccaa	atgaaaataa	aaatggtatg	aatattacag	aaggggcact	tctcagccta	360
10	agaaatctaa	cagttttact	gctggaagac	aaccagttat	atactatacc	tgctgggttg	420
	cctgagtctt	tgaaagaact	tagcctaatt	caaaacaata	tatttcaggt	aactaaaaac	480
	aacacttttg	ggcttaggaa	cttggaaaga	ctctatttgg	gctggaactg	ctattttaaa	540
	tgtaatcaaa	cctttaaggt	agaagatggg	gcatttaaaa	atcttataca	cttgaaggta	600
	ctctcattat	ctttcaataa	ccttttctat	gtgccccca	aactaccaag	ttctctaagg	660
15	aaacttttc	tgagtaatgc	caaaatcatg	aacatcactc	aggaagactt	caaaggactg	720
	gaaaatttaa	cattactaga	tctgagtgga	aactgtccaa	ggtgttacaa	tgctccattt	780
	ccttgcacac	cttgcaagga	aaactcatcc	atccacatac	atcctctggc	ttttcaaagt	840
	ctcacccaac	ttctctatct	aaacctttcc	agcacttccc	tcaggacgat	tccttctacc	900
	tggtttgaaa	atctgtcaaa	tctgaaggaa	ctccatcttg	aattcaacta	tttagttcaa	960
20	gaaattgcct	cgggggcatt	tttaacaaaa	ctacccagtt	tacaaatcct	tgatttgtcc ·	1020
	ttcaactttc	aatataagga	atatttacaa	tttattaata	tttcctcaaa	tttctctaag	1080
	cttcgttctc	tcaagaagtt	gcacttaaga	ggctatgtgt	tccgagaact	taaaaagaag	1140
	catttcgagc	atctccagag	tcttccaaac	ttggcaacca	tcaacttggg	cattaacttt	1200
	attgagaaaa	ttgatttcaa	agctttccag	aatttttcca	aactcgacgt	tatctattta	1260
25	tcaggaaatc	gcatagcatc	tgtattagat	ggtacagatt	attcctcttg	gcgaaatcgt	1320
	cttcggaaac	ctctctcaac	agacgatgat	gagtttgatc	cacacgtgaa	tttttaccat	1380
	agcaccaaac	ctttaataaa	gccacagtgt	actgcttatg	gcaaggcctt	ggatttaagt	1440
	ttgaacaata	ttttcattat	tgggaaaagc	caatttgaag	gttttcagga	tatcgcctgc	1500
	ttaaatctgt	ccttcaatgc	caatactcaa	gtgtttaatg	gcacagaatt	ctcctccatg	1560
30	ccccacatta	aatatttgga	tttaaccaac	aacagactag	actttgatga	taacaatgct	1620
	ttcagtgatc	ttcacgatcț	agaagtgctg	gacctgagcc	acaatgcaca	ctatttcagt	1680
	atagcagggg	taacgcaccg	tctaggattt	atccagaact	taataaacct	cagggtgtta	1740
	aacctgagcc	acaatggcat	ttacaccctc	acagaggaaa	gtgagctgaa	aagcatctca	1800
	ctgaaagaat	tggttttcag	tggaaatcgt	cttgaccatt	tgtggaatgc	aaatgatggc	1860
35	aaatactggt	ccatttttaa	aagtctccag	aatttgatac	gcctggactt	atcatacaat	1920
	aaccttcaac	aaatcccaaa	tggagcattc	ctcaatttgc	ctcagagcct	ccaagagtta	1980
	cttatcagtg	gtaacaaatt	acgtttcttt	aattggacat	tactccagta	ttttcctcac	2040
	cttcacttgc	tggatttatc	gagaaatgag	ctgtattttc	tacccaattg	cctatctaag	2100
	tttgcacatt	ccctggagac	actgctactg	agccataatc	atttctctca	cctaccctct	2160
40	ggcttcctct	ccgaagccag	gaatctggtg	cacctggatc	taagtttcaa	cacaataaag	2220
	atgatcaata	aatcctccct	gcaaaccaag	atgaaaacga	acttgtctat	tctggagcta	2280

- 131 -

	catgggaact	attttgactg	cacgtgtgac	ataagtgatt	ttcgaagctg	gctagatgaa	234
	aatctgaata	tcacaattcc	taaattggta	aatgttatat	gttccaatcc	tggggatcaa	240
	aaatcaaaga	gtatcatgag	cctagatctc	acgacttgtg	tatcggatac	cactgcagct	246
	gtcctgtttt	tcctcacatt	ccttaccacc	tccatggtta	tgttggctgc	tctggttcac	252
5	cacctgtttt	actgggatgt	ttggtttatc	tatcacatgt	gctctgctaa	gttaaaaggc	258
	tacaggactt	catccacatc	ccaaactttc	tatgatgctt	atatttctta	tgacaccaaa	264
	gatgcatctg	ttactgactg	ggtaatcaat	gaactgcgct	accaccttga	agagagtgaa	270
	gacaaaagtg	tcctcctttg	tttagaggag	agggattggg	atccaggatt	acccatcatt	276
	gataacctca	tgcagagcat	aaaccagagc	aagaaaacaa	tctttgtttt	aaccaagaaa	282
10	tatgccaaga	gctggaactt	taaaacagct	ttctacttgg	ccttgcagag	gctaatggat	288
	gagaacatgg	atgtgattat	tttcatcctc	ctggaaccag	tgttacagta	ctcacagtac	294
	ctgaggcttc	ggcagaggat	ctgtaagagc	tccatcctcc	agtggcccaa	caatcccaaa	300
	gcagaaaact	tgttttggca	aagtctgaaa	aatgtggtct	tgactgaaaa	tgattcacgg	306
	tatgacgatt	tgtacattga	ttccattagg	caatac			309
15							
	Table 17. Am	ina Acid Saan	ances of Mu	cine TY DQ on	d Human TI	DQ	
	Table 17. Alli	ino Acia Sequ	ences of Mui	•	u Human II	ZKO	_
	mmi no non	MENIMODOGUTI M		. : .			6
	mTLR8.pep hTLR8.pep	MENMPPQSWILTO MENMFLQSSMLTO					6: 6:
20	Hibko.pep	MEMARIC DOSSIBLE	Trinibeschie	CABBITORSTFCI	EMQND3VIAEC	- TOANGOMING	0
		. :		. : .		: . :	12
	mTLR8.pep	IGKYVTNIDLSDN	JAITHITKESFQI	KLQNLTKIDLNHN	IAKQQHPNE	NKNGMNITEGA	11
	hTLR8.pep	VGKYVTELDLSD	velthitnesequ	SLQNLTKINLNH	IPNVQHQNGNPG1	QSNGLNITDGA	12
25		•		. : .	: .	: :	18
	mTLR8.pep	LLSLRNLTVLLLE					17
	hTLR8.pep	FLNLKNLRELLLE	EDNQLPQI PSGLI	PESLTELSLIQNN	IIYNITKEGISRL	INLKNLYLAWN	18
			_				24
30	mTLR8.pep	CYFKCNOTFKY	ZEDGAFKNIJTHIJ	. : . KVI SI SENNI FYL	· PPKLPSSLRKLF	· · · · · · · · · · · · · · · · · · ·	23
	hTLR8.pep	CYFNKVCEKT-NI					23
	* *					-	
		. :		. : .	: .	: . :	30
	mTLR8.pep	EDFKGLENLTLLI	DLSGNCPRCYNAI	PFPCTPCKENSSI	HIHPLAFQSLTQ	LLYLNLSSTSL	29
35	hTLR8.pep	EDFKGLINLTLLI	DLSGNCPRCFNAI	PFPCVPCDGGASI	NIDRFAFQNLTQ	LRYLNLSSTSL	29
	÷ .	•	•	• • • • • • • • •	: .	: - :	-36
	mTLR8.pep	RTIPSTWFENLS			_		35
10	hTLR8.pep	RKINAAWFKNMPH	ITKATDTE LNAT /	/GEIASGAFLTMI	PRLEILDLSFNY	IKGSYPQHINI	35
rV		_	•	_			42
	mTLR8.pep	SSNFSKLRSLKKI	HLRGYVFRET.KT	ККНЕЕНТ ОСТ. РИТ	ATINLGINFIER		41
	hTLR8.pep	SRNFSKLLSLRAI		_			41

- 132 -

		· · · · · · · · · · · · · · · · · · ·	480
	mTLR8.pep	LDVIYLSGNRIASVLDGT~-DYSSWRNRLRKPLSTDDDEFDPHVNFYHSTKPLIKPQ	469
	hTLR8.pep	LEIIYLSENRISPLVKDTRQSYANSSSFQRHIRKRRSTDF-EFDPHSNFYHFTRPLIKPQ	478
5		· · · · · · · · · · · · · · · · · · ·	540
	mTLR8.pep	CTAYGKALDLSLNNIFIIGKSQFEGFQDIACLNLSFNANTQVFNGTEFSSMPHIKYLDLT	529
	hTLR8.pep	CAAYGKALDLSLNSIFFIGPNQFENLPDIACLNLSANSNAQVLSGTEFSAIPHVKYLDLT	538
10			600
ı	mTLR8.pep	NNRLDFDDNNAFSDLHDLEVLDLSHNAHYFSIAGVTHRLGFIQNLINLRVLNLSHNGIYT	589
	hTLR8.pep	NNRLDFDNASALTELSDLEVLDLSYNSHYFRIAGVTHHLEFIQNFTNLKVLNLSHNNIYT	598
		. : . : . : . :	660
	mTLR8.pep	LTEESELKSISLKELVFSGNRLDHLWNANDGKYWSIFKSLQNLIRLDLSYNNLQQIPNGA	649
15	hTLR8.pep	LTDKYNLESKSLVELVFSGNRLDILWNDDDNRYISIFKGLKNLTRLDLSLNRLKHIPNEA	658
		· · · · · · · · · · · · · · · · · · ·	720
	mTLR8.pep	FLNLPQSLQELLISGNKLRFFNWTLLQYFPHLHLLDLSRNELYFLPNCLSKFAHSLETLL	709
	hTLR8.pep	FLNLPASLTELHINDNMLKFFNWTLLQQFPRLELLDLRGNKLLFLTDSLSDFTSSLRTLL	718
20			
		. : . : . : . : . :	780
	bf135656.pep	NHFSHLPSGFLSEARNLVHLDLSFNTIKMINKSSLQTKMKTNLSILELHGNYFDCTC	57
	mTLR8.pep	LSHNHFSHLPSGFLSEARNLVHLDLSFNTIKMINKSSLQTKMKTNLSILELHGNYFDCTC	769
	hTLR8.pep	LSHNRISHLPSGFLSEVSSLKHLDLSSNLLKTINKSALETKTTTKLSMLELHGNPFECTC	. 778
25			
			840
	bf135656.pep	DISDFRSWLDENLNITIPKLVNVICSNPGDQKSKSIMSLDLTTCVSDTTAAVLFFLTFLT	117
	mTLR8.pep	DISDFRSWLDENLNITIPKLVNVICSNPGDQKSKSIMSLDLTTCVSDTTAAVLFFLTFLT	829
	hTLR8.pep	DIGDFRRWMDEHLNVKIPRLVDVICASPGDQRGKSIVSLELTTCVSDVTAVILFFFTFFI	838
30			
	1.54.75.65.6	· : · : · : · : · : · : · : · : · : · :	900
	bf135656.pep	TSMVMLAALVHHLFYWDVWFIYHMCSAKLKGYRTSSTSQTFYDAYISYDTKDASVTDWVI	177
	mTLR8.pep	TSMVMLAALVHHLFYWDVWFIYHMCSAKLKGYRTSSTSQTFYDAYISYDTKDASVTDWVI	889
35	hTLR8.pep	TTMVMLAALAHHLFYWDVWFIYNVCLAKVKGYRSLSTSQTFYDAYISYDTKDASVTDWVI	898
))			0.50
	h5125656 man		960
	bf135656.pep	NELRYHLE	185
	mTLR8.pep	NELRYHLEESEDKSVLLCLEERDWDPGLPIIDNLMQSINQSKKTIFVLTKKYAKSWNFKT	949
10	hTLR8.pep	NELRYHLEESRDKNVLLCLEERDWDPGLAIIDNLMQSINQSKKTVFVLTKKYAKSWNFKT	958
10		·	
			1020
	mTLR8.pep	AFYLALQRLMDENMDVIIFILLEPVLQYSQYLRLRQRICKSSILQWPNNPKAENLFWQSL	1009
	hTLR8.pep	AFYLALQRLMDENMDVIIFILLEPVLQHSQYLRLRQRICKSSILQWPDNPKAEGLFWQTL	1018
15		· : · : · : · : · :	1080
	mTLR8.pep	KNVVLTENDSRYDDLYIDSIRQY	1032

- 133 -

hTLR8.pep RNVVLTENDSRYNNMYVDSIKQY

1041

In Table 17 the sequences are assigned as follows: mTLR8.pep, SEQ ID NO:192; hTLR8.pep, SEQ ID NO:184; and bf135656.pep, SEQ ID NO:193.

5

10

15

20

25

30

Example 20. Transient transfectants expressing TLR8 and TLR7

The cloned human TLR7 and human TLR8 cDNA (our result) were cloned into the expression vector pCDNA3.1(-) from Invitrogen using the NotI site. Utilizing a "gain of function" assay, hTLR7 and hTLR8 expression vectors were transiently expressed in human 293 fibroblasts (ATCC, CRL-1573) using the calcium phosphate method. Activation was monitored by IL-8 production after stimulus with CpG-ODN (2006 or 1668, 2μM) or LPS (100 ng/ml). None of the stimuli used activated 293 cells transfected with either hTLR7 or hTLR8.

Example 21. Screening for TLR9, 8 and 7 modulators

Human TLR receptors 9, 8 and 7 are expressed differentially among tissues which may be due to differences in promoter structure. Du X et al., Eur Cytokine Netw 11:362-71 (2000); Chuang TH et al., Eur Cytokine Netw 11:372-8 (2000). For the human Toll-like receptors 9, 8 and 7 the genomic locus has been defined and sequenced. TLR9 is located on chromosome 3 (GenBank accession numbers NT_005985, AC006252), TLR7 on chromosome X (GenBank accession numbers NT 011774, AC005859, AC003046) and TLR8 close to TLR7 also on chromosome X (GenBank accession numbers NT_011774, AC005859). To verify differences in the promoter regions the putative promoter region of each gene are cloned in reporter vectors like pGL2-Basic (Promega, Madison, WI, USA) which contains the luciferase gene (luc) adjacent to a multiple cloning site. After transient transfection of these constructs in various cell lines, different stimuli can be tested for the activation of the inserted promoter region which is detected by luciferase activity. The promoter regions defined by the cloning of mTLR9, mTLR8 and mTLR7 can be utilized in the same manner. Definition of compounds that agonize or antagonize TLR9, 8, or 7 expression can be used to enhance or dampen responses to nucleic acid ligands or to any TLR9, 8 or 7 ligand defined by screening. These constructs can be adapted to high throughput screening after stable transfection similar to the use of TLR9 stable transfectants.

- 134 -

Each of the foregoing patents, patent applications and references is hereby incorporated by reference. While the invention has been described with respect to certain embodiments, it should be appreciated that many modifications and changes may be made by those of ordinary skill in the art without departing from the spirit of the invention. It is intended that such modification, changes and equivalents fall within the scope of the following claims.

5

10

15

20

25

30

Example 22. Method cloning the murine and human extracellular TLR9 domain fused to human IgG1 Fc

Human IgG1 Fc was amplified from human B cell cDNA using the sense and antisense primers 5' TATGGATCCTCTTGTGACAAAACTCACACATGC (SEQ ID NO:216) and 5' ATA AAGCTTTCATTTACCCGGAGACAGGGAGAG (SEQ ID NO:217) and ligated into pCDNA3.1(-) (Invitrogen) after digestion with the restriction endonucleases BamHI and HindIII creating the vector pcDNA-IgGFc. The extracellular domain of human TLR9 (amino acids 1 to 815) was amplified with the sense and antisense primers 5' TATGAATTCCCACCATGGGTTTCTGCCGCAG (SEQ ID NO:218) and 5' ATAGGATCCCCGGGGCACCAGGCCGCCGCCGCGGCCGCCGGAGAGGGCCTCAT CCAGGC (SEQ ID NO:219). The primers amplify the extracellular domain of human TLR9 and create adjacent to amino acid 815 an additional NotI restriction site, a glycine linker and thrombin protease recognition site. The translated sequence of this region starting at amino acid 812 is DEALSGGRGGGLVPRGS (SEQ ID NO:220). The fragment was cut with EcoRI and BamHI and cloned into pcDNA-IgGFc, creating the vector coding for the fusion protein of the extracellular domain of human TLR9 fused to the Fc part of human IgG1 (pcDNAhTLR9IgGFc). Expressed extracellular TLR9 protein can be separated from the IgG1 Fc fragment by digestion with Thrombin (see figure).

The extracellular part of murine TLR9 (amino acids 1 to 816) was amplified with the sense and antisense primers 5' TATATGCGGCCGCCCACCATGGTTCTCCGTCGAAG (SEQ ID NO:221) and 5' TATATGCGGCCGCCAGAGAGGACCTCATCCAGGC (SEQ ID NO:222) and cloned into pcDNAhTLR9IgGFc after NotI digestion of PCR fragment and vector. This procedure exchanged the human extracellular part of TLR9 with the murine counterpart.

- 135 -

Example 23. Method of expression and purification of the extracellular domain of TLR9 fused to human IgG1 Fc

5

10

15

20

Vector DNA coding for the human or murine TLR9 human IgGFc fusion protein was transfected by Ca₂PO₄ method into 293 fibroblast cells. Transfected cells were selected with 0.7 mg/ml G418 and cloned. Expression of fusion protein was monitored by enzyme-linked immunosorbent assay (ELISA). Cells were lysed in lysis buffer (PBS, 1% Triton X-100) and supernatant was applied to ELISA plates coated with polyclonal antibody against human IgGFc. Bound fusion protein was detected by incubation with biotinylated polyclonal antibodies against human IgG-Fc and streptavidin-horseradish peroxidase conjugate.

For purification of the fusion protein cell lysates from 10⁹ cells were produced and incubated with Protein A sepharose which binds tightly to human IgG-Fc. Incubation with the protease thrombin releases the soluble extracellular domain of human TLR9. Figure 27 shows an example of the TLR9 fusion protein visualized by a silver stained SDS-gel. Figure 27 demonstrates that lysates of transfected cells included a strong band travelling between 100 and 150 kD which was not present either in lysates of mock-transfected cells or in supernatants transfected or mock-transfected cells. The apparent molecular weight of the band decreased following thrombin treatment, consistent with cleavage at the thrombin protease recognition site interposed between the extracellular TLR9 domain and the Fc fragment.

Example 24. Method of cloning the murine and human extracellular TLR7 and TLR8 domain fused to human IgG1 Fc and its expression in 293 cells

The extracellular domains of murine TLR7 (amino acids 1 to 837), human TLR7

(amino acids 1 to 836), murine TLR8 (amino acids 1 to 816) and human TLR8 (amino acids 1 to 825) were amplified with the primer pairs

5' TATATGCGGCCGCCCACCATGGTGTTTTCGATGTGGACACG (SEQ ID NO:223) and 5' TATATGCGGCCGCCATCTAACTCACACGTATACAGATC (SEQ ID NO:224);

5' TATATGCGGCCGCCCACCATGGTGTTTCCAATGTGGACACTG (SEQ ID NO:225)

and 5' TATATGCGGCCGCCATCTAACTCACAGGTGTACAGATC (SEQ ID NO:226);

5' TATATGCGGCCGCCCACCATGGAAAACATGCCCCCTCAG (SEQ ID NO:227) and

- 136 -

5' TATATGCGGCCGCCATCCGATACACAAGTCGTGAGATC (SEQ ID NO:228); and 5' TATATGCGGCCGCCCACCATGGAAAACATGTTCCTTCAGTC (SEQ ID NO:229) and 5' TATATGCGGCCGCCATCTGAAACACAAGTTGTTAGCTC (SEQ ID NO:230), respectively. Fragments were cloned into pcDNA-IgGFc after NotI digestion.

5

10

15

20

25

30

Vector DNA coding for the extracellular domain of human or murine TLR7 or TLR8 fused to human IgGFc fusion protein was transfected by Ca₂PO₄ method into 293 fibroblast cells. Transfected cells were selected with 0.7 mg/ml G418 and cloned. Expression of fusion protein was monitored by ELISA. Cells were lysed in lysis buffer (PBS, 1% Triton X-100) and supernatant was applied to ELISA plates coated with polyclonal antibody against human IgG-Fc. Bound fusion protein was detected by incubation with biotinylated polyclonal antibodies against human IgG-Fc and Streptavidin-horseradish peroxidase conjugate.

Example 25. Method of antibody production against murine and human TLR9 and characterization of activity

C57/B6 mice were immunized three times by intraperitoneal administration of 20 µg of the extracellular domain of human TLR9 mixed with 10 nmol of the CpG-ODN 1668. B cells taken from immunized mice were fused with a non antibody producing B-cell hybridoma P3XAG8 using standard protocols. Hybridoma supernatants were screened for reactivity in ELISA using murine and human TLR9 fusion proteins. For identification of positive hybridomas ELISA plates were coated with polyclonal antibody against human IgG-Fc and incubated with lysate containing murine or human TLR9 IgG-Fc fusion protein. Plates were then incubated with individual hybridoma supernatants, and bound TLR9-specific antibodies were detected by incubation with biotinylated polyclonal antibodies against murine IgG and Streptavidin-horseradish peroxidase conjugate.

Ten antibodies have been isolated which are of IgG1, IgG2a and IgG2b isotype. They have been tested for reactivity against human and murine TLR9 and their performance in western blotting or intracellular staining. Table 18 shows the names (ID), isotypes, reactivity and performance in western blotting and intracellular staining.

All isolated antibodies were readily purified using standard protein A affinity chromatography.

- 137 -

Table 18. Monclonal Antibodies Raised Against Murine and Human TLR9

#	ID	lachma	Reactivity	in ELISA	Western	Intracellular
#	טו	Isotype	mTLR9	hTLR9	Blotting	Staining
1	1-3 <u>A</u> 11	G1	YES	YES	YES	NO
2	1-1B1	G1	YES	YES	YES	NO
_ 3	1-2A9	G2a	NO	YES	YES	YES
4	1-3F2	G1	YES	YES	YES	NO
5	2-1E2	G2a	NO	YES	YES	YES
6	1-5G5	G2a	YES	YES	YES	YES
7	1-2F1	G1	YES	YES	YES	NO
8	1-5F12	G2b	NO	YES	NO	NO
9	1-3C9	G2a	NO	YES	YES	YES
10	1-3F5	G2b	NO	YES	NO	NO

Example 26. Method for Intracellular Staining

5

10

15

20

Mock transfected 293 cells and human TLR9 transfected 293 cells were seeded on cover slips and cultured overnight. The following day cells were washed in PBS and fixed with 2% formalin for 10 minutes at room temperature. Cells were permeabilized with 0.2% saponin in PBS and incubated with 2μg/ml anti human TLR9-specific antibody 2-1E2 for 1h. After two wash steps cells were incubated with Alexis488-conjugated goat anti-mouse IgG antibody and TLR9 was visualized utilizing confocal microscopy on a Zeiss LSM510 microscope. Results indicated that cytoplasms of human TLR9 transfected 293 cells, but not mock transfected 293 cells, stained positive for human TLR9.

Example 27. Method for Western Blotting

Lysates of 293 cells transfected with murine TLR9, human TLR9 or murine TLR2 IgG1-Fc fusion protein were separated by SDS-PAGE. Proteins were transferred to a nylon membrane utilizing a BioRad semi dry blotter according to the manufacturer's protocol. The membrane was incubated with 2µg/ml of the human TLR9-specific antibody 2-1E2, and human TLR9 was detected by polyclonal goat anti-mouse peroxidase conjugate. Peroxidase activity was monitored with ECL reagent (Amersham) and incubation of the membrane on film (see Figure 29).

What is claimed is:

- 138 -

Claims

- 1. An isolated nucleic acid molecule selected from the group consisting of
 - (a) nucleic acid molecules which hybridize under stringent conditions to a nucleic acid molecule having a nucleotide sequence set forth as SEQ ID NO:1, and which code for a murine TLR9 having an amino acid sequence set forth as SEQ ID NO:3,
 - (b) nucleic acid molecules that differ from the nucleic acid molecules of (a) in codon sequence due to degeneracy of the genetic code, and
 - (c) complements of (a) or (b).
- 2. The isolated nucleic acid molecule of claim 1, wherein the isolated nucleic acid molecule codes for SEQ ID NO:3.
- 3. The isolated nucleic acid molecule of claim 1, wherein the isolated nucleic acid molecule comprises the nucleotide sequence set forth as SEQ ID NO:1.
- 4. The isolated nucleic acid molecule of claim 1, wherein the isolated nucleic acid molecule comprises a nucleotide sequence set forth as SEQ ID NO:2.
 - 5. An isolated TLR9 polypeptide or fragment thereof comprising at least one amino acid of murine TLR9 selected from the group consisting of amino acids 2, 3, 4, 6, 7, 18, 19, 22, 38, 44, 55, 58, 61, 62, 63, 65, 67, 71, 80, 84, 87, 88, 91, 101, 106, 109, 117, 122, 123, 134, 136, 140, 143, 146, 147, 157, 160, 161, 167, 168, 171, 185, 186, 188, 189, 191, 199, 213, 217, 220, 227, 231, 236, 245, 266, 269, 270, 271, 272, 273, 274, 278, 281, 285, 297, 298, 301, 305, 308, 311, 322, 323, 325, 326, 328, 332, 335, 346, 348, 353, 355, 358, 361, 362, 365, 367, 370, 372, 380, 381, 382, 386, 389, 392, 394, 397, 409, 412, 413, 415, 416, 419, 430, 432, 434, 435, 438, 439, 443, 444, 446, 447, 448, 450, 451, 452, 454, 455, 459, 460, 463, 465, 466, 468, 469, 470, 472, 473, 474, 475, 478, 488, 489, 494, 495, 498, 503, 508, 510, 523, 531, 539, 540, 543, 547, 549, 561, 563, 565, 576, 577, 579, 580, 587, 590, 591, 594, 595, 597, 599, 601, 603, 610, 611, 613, 616, 619, 632, 633, 640, 643, 645, 648, 650, 657, 658, 660, 667, 670, 672, 675, 679, 689, 697, 700, 703, 705, 706, 711, 715, 716, 718, 720, 723, 724, 726, 729, 731, 735, 737, 743, 749, 750, 751, 752, 754, 755, 759, 760,

WO 02/22809

PCT/US01/29229

772, 774, 780, 781, 786, 787, 788, 800, 814, 821, 829, 831, 832, 835, 844, 857, 858, 859, 862, 864, 865, 866, 879, 893, 894, 898, 902, 910, 917, and 927 of SEQ ID NO:3, wherein the TLR9 polypeptide or fragment thereof has an amino acid sequence which is identical to a human TLR9 polypeptide or fragment thereof except for the at least one amino acid of murine TLR9.

- 6. The isolated TLR9 polypeptide or fragment thereof of claim 5, further comprising at least one amino acid of murine TLR9 selected from the group consisting of amino acids 949, 972, 975, 976, 994, 997, 1000, 1003, 1004, 1010, 1011, 1018, 1023, and 1027 of SEQ ID NO:3.
- 7. The isolated TLR9 polypeptide or fragment thereof of claim 5, wherein the human TLR9 has an amino acid sequence set forth as SEQ ID NO:6.
- 8. The isolated TLR9 polypeptide or fragment thereof of claim 5, wherein the isolated TLR9 polypeptide or fragment thereof has an amino acid sequence selected from the group consisting of SEQ ID NO:3 and fragments of SEQ ID NO:3.
- 9. The isolated TLR9 polypeptide or fragment thereof of claim 5, wherein the isolated TLR9 polypeptide or fragment thereof is an extracytoplasmic domain of TLR9.
- 10. The isolated TLR9 polypeptide or fragment thereof of claim 5, wherein the isolated TLR9 polypeptide or fragment thereof comprises an MBD motif as set forth as SEQ ID NO:126 or SEQ ID NO:127.
- 11. The isolated TLR9 polypeptide or fragment thereof of claim 5, wherein the isolated TLR9 polypeptide or fragment thereof selectively binds to an immunostimulatory nucleic acid (ISNA).
- 12. The isolated TLR9 polypeptide or fragment thereof of claim 5, wherein the isolated TLR9 polypeptide or fragment thereof selectively binds to a CpG nucleic acid.

•

WO 02/22809

- 140 -

PCT/US01/29229

- 13. An isolated nucleic acid molecule which encodes the isolated TLR9 polypeptide or fragment thereof of claim 5.
- 14. An expression vector comprising the isolated nucleic acid molecule of claim 1 operably linked to a promoter.
- 15. A host cell comprising the expression vector of claim 14.
- 16. The host cell of claim 15, further comprising at least one expression vector selected from the group consisting of:
 - (a) an expression vector comprising a nucleic acid molecule which encodes an isolated TLR7 polypeptide operably linked to a promoter, and
 - (b) an expression vector comprising a nucleic acid molecule which encodes an isolated TLR8 polypeptide operably linked to a promoter.
- 17. The host cell of claim 15, further comprising a reporter construct capable of interacting with a TIR domain.
- 18. An expression vector comprising the isolated nucleic acid molecule of claim 13 operably linked to a promoter.
- 19. A host cell comprising the expression vector of claim 18.
- 20. The host cell of claim 19, further comprising at least one expression vector selected from the group consisting of:
 - (a) an expression vector comprising a nucleic acid molecule which encodes an isolated TLR7 polypeptide operably linked to a promoter, and
 - (b) an expression vector comprising a nucleic acid molecule which encodes an isolated TLR8 polypeptide operably linked to a promoter.

- 141 -

- 21. The host cell of claim 19, further comprising a reporter construct capable of interacting with a TIR domain.
- 22. An isolated nucleic acid molecule selected from the group consisting of
 - (a) nucleic acid molecules which hybridize under stringent conditions to a nucleic acid molecule having a nucleotide sequence set forth as SEQ ID NO:173, and which code for a murine TLR7 having an amino acid sequence set forth as SEQ ID NO:175,
 - (b) nucleic acid molecules that differ from the nucleic acid molecules of (a) in codon sequence due to degeneracy of the genetic code, and
 - (c) complements of (a) or (b).
- 23. The isolated nucleic acid molecule of claim 22, wherein the isolated nucleic acid molecule codes for SEQ ID NO:175.
- 24. The isolated nucleic acid molecule of claim 22, wherein the isolated nucleic acid molecule comprises the nucleotide sequence set forth as SEQ ID NO:173.
- 25. The isolated nucleic acid molecule of claim 22, wherein the isolated nucleic acid molecule comprises a nucleotide sequence set forth as SEQ ID NO:174.
- 26. An isolated TLR7 polypeptide or fragment thereof comprising at least one amino acid of murine TLR7 selected from the group consisting of amino acids 4, 8, 15, 16, 18, 21, 23, 24, 25, 27, 37, 39, 40, 41, 42, 44, 45, 61, 79, 83, 86, 89, 92, 96, 103, 109, 111, 113, 119, 121, 127, 128, 131, 145, 148, 151, 164, 172, 176, 190, 202, 203, 204, 205, 222, 225, 226, 228, 236, 238, 243, 250, 253, 266, 268, 271, 274, 282, 283, 287, 288, 308, 313, 314, 315, 325, 328, 331, 332, 341, 343, 344, 347, 351, 357, 360, 361, 362, 363, 364, 365, 366, 370, 371, 377, 378, 387, 388, 389, 392, 397, 398, 413, 415, 416, 419, 421, 422, 425, 437, 438, 440, 446, 449, 453, 454, 455, 456, 462, 470, 482, 486, 487, 488, 490, 491, 493, 494, 503, 505, 509, 511, 529, 531, 539, 540, 543, 559, 567, 568, 574, 583, 595, 597, 598, 600, 611, 613, 620, 624, 638, 645, 646, 651, 652, 655, 660, 664, 665, 668, 669, 672, 692, 694, 695, 698, 701, 704, 714, 720, 724, 727, 728, 733, 738, 745, 748, 755, 762, 777, 780, 789,

803, 846, 850, 851, 860, 864, 868, 873, 875, 884, 886, 888, 889, 890, 902, 903, 911, 960, 967, 970, 980, 996, 1010, 1018, 1035, and 1045 of SEQ ID NO:175, wherein the TLR7 polypeptide or fragment thereof has an amino acid sequence which is identical to a human TLR7 polypeptide or fragment thereof except for the at least one amino acid of murine TLR7.

- 27. The isolated TLR7 polypeptide or fragment thereof of claim 26, wherein the human TLR7 has an amino acid sequence set forth as SEQ ID NO:170.
- 28. The isolated TLR7 polypeptide or fragment thereof of claim 26, wherein the isolated TLR7 polypeptide or fragment thereof has an amino acid sequence selected from the group consisting of SEQ ID NO:175 and fragments of SEQ ID NO:175.
- 29. The isolated TLR7 polypeptide or fragment thereof of claim 26, wherein the isolated TLR7 polypeptide or fragment thereof is an extracytoplasmic domain of TLR7.
- 30. The isolated TLR7 polypeptide or fragment thereof of claim 26, wherein the isolated TLR7 polypeptide or fragment thereof comprises an MBD motif as set forth as any one of SEQ ID NOs: 203, 204, 212, and 213.
- 31. The isolated TLR7 polypeptide or fragment thereof of claim 26, wherein the isolated TLR7 polypeptide or fragment thereof selectively binds to an ISNA.
- 32. The isolated TLR7 polypeptide or fragment thereof of claim 26, wherein the isolated TLR7 polypeptide or fragment thereof selectively binds to a CpG nucleic acid.
- 33. An isolated nucleic acid molecule which encodes the isolated TLR7 polypeptide or fragment thereof of claim 26.
- 34. An expression vector comprising the isolated nucleic acid molecule of claim 22 operably linked to a promoter.

- 35. A host cell comprising the expression vector of claim 34.
- 36. The host cell of claim 35, further comprising a reporter construct capable of interacting with a TIR domain.
- 37. An expression vector comprising the isolated nucleic acid molecule of claim 33 operably linked to a promoter.
- 38. A host cell comprising the expression vector of claim 37.
- 39. The host cell of claim 38, further comprising a reporter construct capable of interacting with a TIR domain.
- 40. An isolated nucleic acid molecule selected from the group consisting of
 - (a) nucleic acid molecules which hybridize under stringent conditions to a nucleic acid molecule having a nucleotide sequence set forth as SEQ ID NO:190, and which code for a murine TLR8 having an amino acid sequence set forth as SEQ ID NO:192,
 - (b) nucleic acid molecules that differ from the nucleic acid molecules of (a) in codon sequence due to degeneracy of the genetic code, and
 - (c) complements of (a) or (b).
- 41. The isolated nucleic acid molecule of claim 40, wherein the isolated nucleic acid molecule codes for SEQ ID NO:192.
- 42. The isolated nucleic acid molecule of claim 40, wherein the isolated nucleic acid molecule comprises the nucleotide sequence set forth as SEQ ID NO:190.
- 43. The isolated nucleic acid molecule of claim 40, wherein the isolated nucleic acid molecule comprises a nucleotide sequence set forth as SEQ ID NO:191.

- 144 -

- 44. An isolated TLR8 polypeptide or fragment thereof comprising at least one amino acid of murine TLR8 selected from the group consisting of amino acids 5, 6, 9, 10, 14, 15, 18, 21, 22, 23, 24, 25, 26, 27, 28, 30, 39, 40, 41, 43, 44, 50, 51, 53, 55, 61, 67, 68, 74, 80, 85, 93, 98, 99, 100, 104, 105, 106, 107, 110, 114, 117, 119, 121, 124, 125, 134, 135, 138, 145, 155, 156, 157, 160, 161, 162, 163, 164, 166, 169, 170, 174, 180, 182, 183, 186, 187, 191, 193, 194, 196, 197, 199, 200, 207, 209, 210, 227, 228, 230, 231, 233, 234, 241, 256, 263, 266, 267, 268, 269, 272, 274, 275, 276, 280, 285, 296, 298, 299, 300, 303, 305, 306, 307, 310, 312, 320, 330, 333, 335, 343, 344, 345, 346, 347, 349, 351, 356, 362, 365, 366, 375, 378, 379, 380, 381, 383, 384, 386, 387, 392, 402, 403, 408, 414, 416, 417, 422, 426, 427, 428, 429, 430, 431, 433, 437, 438, 439, 440, 441, 444, 445, 449, 456, 461, 463, 471, 483, 486, 489, 490, 494, 495, 496, 505, 507, 509, 512, 513, 519, 520, 523, 537, 538, 539, 541, 542, 543, 545, 554, 556, 560, 567, 569, 574, 575, 578, 586, 592, 593, 594, 595, 597, 599, 602, 613, 617, 618, 620, 621, 623, 628, 630, 633, 639, 641, 643, 644, 648, 655, 658, 661, 663, 664, 666, 668, 677, 680, 682, 687, 688, 690, 692, 695, 696, 697, 700, 702, 703, 706, 714, 715, 726, 727, 728, 730, 736, 738, 739, 741, 746, 748, 751, 752, 754, 757, 764, 766, 772, 776, 778, 781, 784, 785, 788, 791, 795, 796, 801, 802, 806, 809, 817, 820, 821, 825, 828, 829, 831, 839, 852, 853, 855, 858, 863, 864, 900, 903, 911, 918, 934, 977, 997, 1003, 1008, 1010, 1022, 1023, 1024, 1026, and 1030 of SEQ ID NO:192, wherein the TLR8 polypeptide or fragment thereof has an amino acid sequence which is identical to a human TLR8 polypeptide or fragment thereof except for the at least one amino acid of murine TLR8.
- 45. The isolated TLR8 polypeptide or fragment thereof of claim 44, wherein the human TLR8 has an amino acid sequence set forth as SEQ ID NO:184.
- The isolated TLR8 polypeptide or fragment thereof of claim 44, wherein the isolated TLR8 polypeptide or fragment thereof has an amino acid sequence selected from the group consisting of SEQ ID NO:192 and fragments of SEQ ID NO:192.
- 47. The isolated TLR8 polypeptide or fragment thereof of claim 44, wherein the isolated TLR8 polypeptide or fragment thereof is an extracytoplasmic domain of TLR8.

- 48. The isolated TLR8 polypeptide or fragment thereof of claim 44, wherein the isolated TLR8 polypeptide or fragment thereof comprises an MBD motif as set forth as any one of SEQ ID NOs: 205, 206, 214, and 215.
- 49. The isolated TLR8 polypeptide or fragment thereof of claim 44, wherein the isolated TLR8 polypeptide or fragment thereof selectively binds to an ISNA.
- TLR8 polypeptide or fragment thereof of claim 44, wherein the isolated TLR8 polypeptide or fragment thereof selectively binds to a CpG nucleic acid.
- 51. An isolated nucleic acid molecule which encodes the isolated TLR8 polypeptide or fragment thereof of claim 44.
- 52. An expression vector comprising the isolated nucleic acid molecule of claim 40 operably linked to a promoter.
- 53. A host cell comprising the expression vector of claim 52.
- 54. The host cell of claim 53, further comprising a reporter construct capable of interacting with a TIR domain.
- 55. An expression vector comprising the isolated nucleic acid molecule of claim 51 operably linked to a promoter.
- 56. A host cell comprising the expression vector of claim 55.
- 57. The host cell of claim 56, further comprising a reporter construct capable of interacting with a TIR domain.
- 58. An isolated nucleic acid molecule which hybridizes under stringent conditions to the

- 146 -

isolated nucleic acid molecule of claim 1 or claim 13.

- 59. A method for inhibiting TLR9 signaling activity in a cell, comprising: contacting the cell with an isolated nucleic acid molecule of claim 58 in an amount effective to inhibit expression of TLR9 polypeptide in the cell.
- 60. An isolated nucleic acid molecule comprising a nucleotide sequence which is complementary to the nucleotide sequence of the isolated nucleic acid molecule of claim 1 or claim 13.
- 61. A method for inhibiting TLR9 signaling activity in a cell, comprising: contacting the cell with an isolated nucleic acid molecule of claim 60 in an amount effective to inhibit expression of TLR9 polypeptide in the cell.
- 62. A method for identifying nucleic acid molecules which interact with a TLR polypeptide or a fragment thereof, comprising: contacting a TLR polypeptide selected from the group consisting of TLR7, TLR8, TLR9, and nucleic acid-binding fragments thereof with a test nucleic acid molecule; and measuring an interaction of the test nucleic acid molecule with the TLR polypeptide or fragment thereof.
- 63. The method of claim 62, wherein the TLR polypeptide or fragment thereof is expressed in a cell.
- 64. The method of claim 62, wherein the TLR polypeptide or fragment thereof is an isolated TLR polypeptide or fragment thereof.
- 65. The method of claim 64, wherein the isolated TLR polypeptide or fragment thereof is immobilized on a solid support.
- 66. The method of claim 62, wherein the TLR polypeptide or fragment thereof is fused

- 147 -

with an Fc fragment of an antibody.

- 67. The method of claim 66, wherein the TLR polypeptide or fragment thereof comprises a TLR extracytoplasmic domain.
- 68. The method of claim 62, wherein the interaction is binding.
- 69. The method of claim 68, wherein the measuring is accomplished by a method selected from the group consisting of enzyme-linked imunosorbent assay (ELISA), biomolecular interaction assay (BIA), electromobility shift assay (EMSA), radioimmunoassay (RIA), polyacrylamide gel electrophoresis (PAGE), and Western blotting.
- 70. The method of claim 63, wherein the measuring is accomplished by a method comprising measuring a response mediated by a TLR signal transduction pathway.
- 71. The method of claim 70, wherein the response mediated by a TLR signal transduction pathway is selected from the group consisting of induction of a gene under control of NF-kB promoter and secretion of a cytokine.
- 72. The method of claim 71, wherein the gene under control of NF-κB promoter is selected from the group consisting of IL-8, IL-12 p40, NF-κB-luc, IL-12 p40-luc, and TNF-luc.
- 73. The method of claim 71, wherein the cytokine is selected from the group consisting of IL-8, TNF-α, and IL-12 p40.
- 74. The method of claim 70, further comprising:

 comparing (a) the response mediated by a TLR signal transduction pathway as

 measured in presence of the test nucleic acid molecule with (b) a response mediated by a

 TLR signal transduction pathway as measured in absence of the test nucleic acid

 molecule; and

- 148 -

determining the test nucleic acid molecule is an ISNA when (a) exceeds (b).

- 75. The method of claim 70, further comprising:

 comparing the response to a reference response when the TLR polypeptide is
 independently contacted with a reference nucleic acid molecule; and
 determining if the response is stronger or weaker than the reference response.
- 76. The method of claim 70, further comprising:

 comparing the response to a reference response when the TLR polypeptide is

 concurrently contacted with a reference nucleic acid molecule; and

 determining if the response is stronger or weaker than the reference response.
- 77. The method of claim 62, wherein the TLR polypeptide or fragment thereof is TLR7.
- 78. The method of claim 62, wherein the TLR polypeptide or fragment thereof is TLR8.
- 79. The method of claim 62, wherein the TLR polypeptide or fragment thereof is TLR9.
- 80. A screening method for identifying an ISNA, comprising:

 contacting a functional TLR selected from the group consisting of TLR7, TLR8, and

 TLR9 with a test nucleic acid molecule;

detecting presence or absence of a response mediated by a TLR signal transduction pathway in the presence of the test nucleic acid molecule arising as a result of an interaction between the functional TLR and the test nucleic acid molecule; and determining the test nucleic acid molecule is an ISNA when the presence of a response mediated by the TLR signal transduction pathway is detected.

81. The method of claim 80, further comprising comparing the response mediated by the TLR signal transduction pathway arising as a result of an interaction between the functional TLR and the test nucleic acid molecule with a response arising as a result of an interaction between the functional TLR and a reference ISNA.

- 149 -

WO 02/22809

82. The method of claim 81, wherein the screening method is performed on a plurality of test nucleic acid molecules.

PCT/US01/29229

- 83. The method of claim 82, wherein the response mediated by the TLR signal transduction pathway is measured quantitatively and wherein the response mediated by the TLR signal transduction pathway associated with each of the plurality of test nucleic acid molecules is compared with a response arising as a result of an interaction between the functional TLR and a reference ISNA.
- 84. The method of claim 83, wherein a subset of the plurality of test nucleic acid molecules is selected based on ability of the subset to produce a specific response mediated by the TLR signal transduction pathway.
- 85. The method of claim 80, wherein the functional TLR is expressed in a cell.
- 86. The method of claim 85, wherein the cell is an isolated mammalian cell that naturally expresses the functional TLR.
- 87. The method of claim 86, wherein the cell comprises an expression vector comprising an isolated nucleic acid which encodes a reporter construct selected from the group consisting of IL-8, IL-12 p40, NF-κB-luc, IL-12 p40-luc, and TNF-luc.
- 88. The method of claim 80, wherein the functional TLR is part of a cell-free system.
- 89. The method of claim 80, wherein the functional TLR is part of a complex with another TLR.
- 90. The method of claim 89, wherein the complex is a complex of TLR9 and TLR7.
- 91. The method of claim 89, wherein the complex is a complex of TLR9 and TLR8.

- 92. The method of claim 80, wherein the functional TLR is part of a complex with a non-TLR protein selected from the group consisting of MyD88, IRAK, TRAF6, IκB, NF-κB, and functional homologues and derivatives thereof.
- 93. The method of claim 80, wherein the reference ISNA is a CpG nucleic acid.
- 94. The method of claim 80, wherein the test nucleic acid molecule is a CpG nucleic acid.
- 95. The method of claim 80, wherein the response mediated by a TLR signal transduction pathway is selected from the group consisting of induction of a gene under control of NF-κB promoter and secretion of a cytokine.
- 96. The method of claim 95, wherein the gene under control of NF-κB promoter is selected from the group consisting of IL-8, IL-12 p40, NF-κB-luc, IL-12 p40-luc, and TNF-luc.
- 97. The method of claim 95, wherein the cytokine is selected from the group consisting of IL-8, TNF-α, and IL-12 p40.
- 98. A screening method for comparing TLR signaling activity of a test compound with an ISNA, comprising:

contacting a functional TLR selected from the group consisting of TLR7, TLR8, and TLR9 with a reference ISNA and detecting a reference response mediated by a TLR signal transduction pathway;

contacting a functional TLR selected from the group consisting of TLR7, TLR8, and TLR9 with a test compound and detecting a test response mediated by a TLR signal transduction pathway; and

comparing the test response with the reference response to compare the TLR signaling activity of the test compound with the ISNA.

- 151 -

ISNA and the test compound independently.

WO 02/22809

99. The method of claim 98, wherein the functional TLR is contacted with the reference

PCT/US01/29229

- 100. The method of claim 99, wherein the screening method is a method for identifying an ISNA mimic, and wherein when the test response is similar to the reference response the test compound is an ISNA mimic.
- 101. The method of claim 98, wherein the functional TLR is contacted with the reference ISNA and the test compound concurrently to produce a test-reference response mediated by a TLR signal transduction pathway and wherein the test-reference response may be compared to the reference response.
- 102. The method of claim 101, wherein the screening method is a method for identifying an ISNA agonist, and wherein when the test-reference response is greater than the reference response the test compound is an ISNA agonist.
- 103. The method of claim 101, wherein the screening method is a method for identifying an ISNA antagonist, and wherein when the test-reference response is less than the reference response the test compound is an ISNA antagonist.
- 104. The method of claim 98, wherein the functional TLR is expressed in a cell.
- 105. The method of claim 104, wherein the cell is an isolated mammalian cell that naturally expresses the functional TLR9.
- 106. The method of claim 105, wherein the cell comprises an expression vector comprising an isolated nucleic acid which encodes a reporter construct selected from the group consisting of IL-8, IL-12 p40, NF-κB-luc, IL-12 p40-luc, and TNF-luc.
- 107. The method of claim 98, wherein the functional TLR is part of a cell-free system.

- 152 -

- 108. The method of claim 98, wherein the functional TLR is part of a complex with another TLR.
- 109. The method of claim 98, wherein the functional TLR is part of a complex with a non-TLR protein selected from the group consisting of MyD88, IRAK, TRAF6, IκB, NF-κB, and functional homologues and derivatives thereof.
- 110. The method of claim 98, wherein the reference ISNA is a CpG nucleic acid.
- 111. The method of claim 98, wherein the test compound is not a nucleic acid molecule.
- 112. The method of claim 98, wherein the test compound is a polypeptide.
- 113. The method of claim 98, wherein the test compound is a part of a combinatorial library of compounds.
- 114. A screening method for identifying species specificity of an ISNA, comprising: contacting a functional TLR selected from the group consisting of TLR7, TLR8, and TLR9 of a first species with a test ISNA;

contacting a functional TLR selected from the group consisting of TLR7, TLR8, and TLR9 of a second species with the test ISNA;

measuring a response mediated by a TLR signal transduction pathway associated with the contacting the functional TLR of the first species with the test ISNA;

measuring a response mediated by the TLR signal transduction pathway associated with the contacting the functional TLR of the second species with the test ISNA; and comparing (a) the response mediated by a TLR signal transduction pathway associated with the contacting the functional TLR of the first species with the test ISNA with (b) the response mediated by the TLR signal transduction pathway associated with the contacting

115. The method of claim 114, wherein the functional TLR is expressed in a cell.

the functional TLR of the second species with the test ISNA.

- 153 -

- 116. The method of claim 115, wherein the cell is an isolated mammalian cell that naturally expresses the functional TLR.
- 117. The method of claim 114, wherein the functional TLR is part of a cell-free system.
- 118. The method of claim 114, wherein the functional TLR is part of a complex with another TLR.
- 119. The method of claim 114, wherein the functional TLR is part of a complex with a non-TLR protein selected from the group consisting of MyD88, IRAK, TRAF6, IκB, NF-κB, and functional homologues and derivatives thereof.
- 120. A method for identifying lead compounds for a pharmacological agent useful in treatment of disease associated with TLR9 signaling activity, comprising providing a cell comprising a TLR9 as provided in claim 5; contacting the cell with a candidate pharmacological agent under conditions which, in the absence of the candidate pharmacological agent, cause a first amount of TLR9 signaling activity; and

determining a second amount of TLR9 signaling activity as a measure of the effect of the pharmacological agent on the TLR9 signaling activity, wherein a second amount of TLR9 signaling activity which is less than the first amount indicates that the candidate pharmacological agent is a lead compound for a pharmacological agent which reduces TLR9 signaling activity and wherein a second amount of TLR9 signaling activity which is greater than the first amount indicates that the candidate pharmacological agent is a lead compound for a pharmacological agent which increases TLR9 signaling activity.

NFkB (fold induction)

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

WO 02/22809

Figure 9

PCT/US01/29229

Figure 10

Figure 11

Figure 12

A

B

Figure 13

Figure 14

murine TLR9

Figure 15

Figure 16

Figure 17

Figure 18

Figure 19

Figure 20

Figure 21

Figure 22

Figure 23

Figure 24

Figure 25

Figure 26

Figure 27

SEQUENCE LISTING

<110> Coley Pharmaceutical GmbH <120> PROCESS FOR HIGH THROUGHPUT SCREENING OF CpG-BASED IMMUNO-AGONIST/ANTAGONIST <130> Cl041/7016WO (AWS) <150> US 60/233,035 <151> 2000-09-15 <150> US 60/263,657 <151> 2001-01-23 <150> US 60/291,726 <151> 2001-05-17 <150> US 60/300,210 <151> 2001-06-22 <160> 16 <170> FastSEO for Windows Version 3.0 <210> 1 <211> 3200 <212> DNA <213> unknown <400> 1 tgtcagaggg agcctcggga gaatcctcca tctcccaaca tggttctccg tcgaaggact 60 ctgcacccct tgtccctcct ggtacaggct gcagtgctgg ctgagactct ggccctgggt 120 accetgeetg cettectace etgtgagetg aageeteatg geetggtgga etgeaattgg 180 ctgttcctga agtctgtacc ccgtttctct gcggcagcat cctgctccaa catcacccgc 240 ctctccttga tctccaaccg tatccaccac ctgcacaact ccgacttcgt ccacctgtcc 300 360 aacctgcggc agctgaacct caagtggaac tgtccaccca ctggccttag cccctgcac 420 ttctcttgcc acatgaccat tgagcccaga accttcctgg ctatgcgtac actggaggag 480 ctgaacctga gctataatgg tatcaccact gtgccccgac tgcccagctc cctggtgaat 540 ctgagcctga gccacaccaa catcctggtt ctagatgcta acagcctcgc cggcctatac 600 agectgegeg ttetetteat ggaegggaae tgetactaea agaacecetg cacaggageg gtgaaggtga ccccaggcgc cctcctgggc ctgagcaatc tcacccatct gtctctgaag 660 720 tataacaacc tcacaaaggt gccccgccaa ctgcccccca gcctggagta cctcctggtg 780 tectataace teattgteaa getggggeet gaagacetgg ecaatetgae etecettega 840 gtacttgatg tgggtgggaa ttgccgtcgc tgcgaccatg cccccaatcc ctgtatagaa 900 tgtggccaaa agtccctcca cctgcaccct gagaccttcc atcacctgag ccatctggaa 960 ggcctggtgc tgaaggacag ctctctccat acactgaact cttcctggtt ccaaggtctg 1020 gtcaacctct cggtgctgga cctaagcgag aactttctct atgaaagcat caaccacac 1080 aatgeettte agaacetaae eegeetgege aageteaace tgteetteaa ttacegeaag 1140 aaggtateet ttgeeegeet eeacetggea agtteettea agaacetggt gteactgeag 1200 gagetgaaca tgaacggcat ettetteege tegeteaaca agtacaeget cagatggetg 1260 geegatetge ecaaacteca caetetgeat etteaaatga aetteateaa ecaggeacag 1320 ctcagcatct ttggtacctt ccgagccctt cgctttgtgg acttgtcaga caatcgcatc 1380 agtgggcctt caacgctgtc agaagccacc cctgaagagg cagatgatgc agagcaggag 1440 gagetgttgt etgeggatee teacceaget ceactgagea eccetgette taagaactte atggacaggt gtaagaactt caagttcacc atggacctgt ctcggaacaa cctggtgact 1500 atcaagccag agatgtttgt caatctctca cgcctccagt gtcttagcct gagccacaac 1560

	tccattgcac	aggctgtcaa	tggctctcag	ttcctgccgc	tgactaatct	gcaggtgctg	1620
	gacctgtccc	ataacaaact	ggacttgtac	cactggaaat	cgttcagtga	gctaccacag	1680
	ttgcaggccc	tggacctgag	ctacaacagc	cagcccttta	gcatgaaggg	tataggccac	1740
	aatttcagtt	ttgtggccca	tctgtccatg	ctacacagcc	ttagcctggc	acacaatgac	1800
	attcataccc	gtgtgtcctc	acatctcaac	agcaactcag	tgaggtttct	tgacttcagc	1860
	ggcaacggta	tgggccgcat	gtgggatgag	gggggccttt	atctccattt	cttccaaggc	1920
	ctgagtggcc	tgctgaagct	ggacctgtct	caaaataacc	tgcatatcct	ccggccccag	1980
	aaccttgaca	acctccccaa	gagcctgaag	ctgctgagcc	tccgagacaa	ctacctatct	2040
	ttctttaact	ggaccagtct	gtccttcctg	cccaacctgg	aagtcctaga	cctggcaggc	2100
	aaccagctaa	aggccctgac	caatggcacc	ctgcctaatg	gcaccctcct	ccagaaactg	2160
	gatgtcagca	gcaacagtat	cgtctctgtg	gtcccagcct	tcttcgctct	ggcggtcgag	2220
	ctgaaagagg	tcaacctcag	ccacaacatt	ctcaagacgg	tggatcgctc	ctggtttggg	2280
	cccattgtga	tgaacctgac	agttctagac	gtgagaagca	accctctgca	ctgtgcctgt	2340
	ggggcagcct	tcgtagactt	actgttggag	gtgcagacca	aggtgcctgg	cctggctaat	2400
	ggtgtgaagt	gtggcagccc	cggccagctg	cagggccgta	gcatcttcgc	acaggacctg	2460
	cggctgtgcc	tggatgaggt	cctctcttgg	gactgctttg	gcctttcact	cttggctgtg	2520
	gccgtgggca	tggtggtgcc	tatactgcac	catctctgcg	gctgggacgt	ctggtactgt	2580
	tttcatctgt	gcctggcatg	gctacctttg	ctggcccgca	gccgacgcag	cgcccaagct	2640
	ctcccctatg	atgccttcgt	ggtgttcgat	aaggcacaga	gcgcagttgc	ggactgggtg	2700
	tataacgagc	tgcgggtgcg	gctggaggag	cggcgcggtc	gccgagccct	acgcttgtgt	2760
	ctggaggacc	gagattggct	gcctggccag	acgctcttcg	agaacctctg	ggcttccatc	2820
	tatgggagcc	gcaagactct	atttgtgctg	gcccacacgg	accgcgtcag	tggcctcctg	2880
	cgcaccagct	tcctgctggc	tcagcagcgc	ctgttggaag	accgcaagga	cgtggtggtg	2940
	ttggtgatcc	tgcgtccgga	tgcccaccgc	tcccgctatg	tgcgactgcg	ccagcgtctc	3000
	tgccgccaga	gtgtgctctt	ctggccccag	cagcccaacg	ggcagggggg	cttctgggcc	3060
	cagctgagta	cagccctgac	tagggacaac	cgccacttct	ataaccagaa	cttctgccgg	3120
	ggacctacag	cagaatagct	cagagcaaca	gctggaaaca	gctgcatctt	catgcctggt	3180
	tcccgagttg	ctctgcctgc					3200
	0.00	•					
	<210>					·	
.<211> 3096							
<212> DNA				٠			
<213> unknown							
	<400>	> 2					
		gtcgaaggac	tctqcacccc	ttatccctcc	taatacaaac	tacaatacta	60
		tggccctggg					120
		actgcaattg					180
		acatcacccg					240
		tccacctgtc					300
		gcccctgca					360
		cactggagga					420
		ccctggtgaa					480
		ccggcctata					540
		gcacaggagc					600
		tgtctctgaa				—	660
	_	acctcctggt					720
		cctcccttcg					780
		cctgtataga					840
		gccatctgga					900
		tccaaggtct					960
		tcaaccacac					1020
		attaccgcaa					1080
		tgtcactgca					1140
		tcagatggct					1200

1260

1320

1380

1440

aacttcatca accaggcaca gctcagcatc tttggtacct tccgagccct tcgctttgtg

gacttgtcag acaatcgcat cagtgggcct tcaacgctgt cagaagccac ccctgaagag

gcagatgatg cagagcagga ggagctgttg tctgcggatc ctcacccagc tccactgagc

acccctgctt ctaagaactt catggacagg tgtaagaact tcaagttcac catggacctg

```
1500
tctcggaaca acctggtgac tatcaagcca gagatgtttg tcaatctctc acgcctccag
                                                                      1560
tgtcttagcc tgagccacaa ctccattgca caggctgtca atggctctca gttcctgccg
                                                                      1620
ctgactaatc tgcaggtgct ggacctgtcc cataacaaac tggacttgta ccactggaaa
                                                                      1680
togttcagtg agctaccaca gttgcaggcc ctggacctga gctacaacag ccagcccttt
                                                                      1740
agcatgaagg gtataggcca caatttcagt tttgtggccc atctgtccat gctacacagc
                                                                      1800
cttagcctgg cacacaatga cattcatacc cgtgtgtcct cacatctcaa cagcaactca
                                                                      1860
gtgaggtttc ttgacttcag cggcaacggt atgggccgca tgtgggatga ggggggcctt
                                                                      1920
tatetecatt tettecaagg cetgagtgge etgetgaage tggacetgte teaaaataae
                                                                      1980
ctgcatatcc tccggcccca gaaccttgac aacctcccca agagcctgaa gctgctgagc
                                                                      2040
ctccgagaca actacctatc tttctttaac tggaccagtc tgtccttcct gcccaacctg
                                                                      2100
gaagteetag acctggeagg caaccageta aaggeeetga eeaatggeae eetgeetaat
                                                                      2160
ggcaccctcc tccagaaact ggatgtcagc agcaacagta tcgtctctgt ggtcccagcc
                                                                      2220
ttcttcgctc tggcggtcga gctgaaagag gtcaacctca gccacaacat tctcaagacg
                                                                      2280
gtggatcgct cctggtttgg gcccattgtg atgaacctga cagttctaga cgtgagaagc
                                                                      2340
aaccetetge actgtgcetg tggggcagee ttegtagaet tactgttgga ggtgcagaee
                                                                      2400
aaggtgcctg gcctggctaa tggtgtgaag tgtggcagcc ccggccagct gcagggccgt
                                                                      2460
ageatetteg cacaggacet geggetgtge etggatgagg teetetettg ggaetgettt
                                                                      2520
ggcctttcac tcttggctgt ggccgtgggc atggtggtgc ctatactgca ccatctctgc
                                                                      2580
ggctgggacg tctggtactg ttttcatctg tgcctggcat ggctaccttt gctggcccgc
                                                                      2640
agecgaegea gegeeeaage teteceetat gatgeetteg tggtgttega taaggeaeag
                                                                      2700
agcgcagttg cggactgggt gtataacgag ctgcgggtgc ggctggagga gcggcgcggt
                                                                      2760
cgccgagccc tacgcttgtg tctggaggac cgagattggc tgcctggcca gacgctcttc
                                                                      2820
gagaacctct gggcttccat ctatgggagc cgcaagactc tatttgtgct ggcccacacg
                                                                      2880
gaccgcgtca gtggcctcct gcgcaccagc ttcctgctgg ctcagcagcg cctgttggaa
                                                                      2940
gaccgcaagg acgtggtggt gttggtgatc ctgcgtccgg atgcccaccg ctcccgctat
                                                                      3000
gtgcgactgc gccagcgtct ctgccgccag agtgtgctct tctggcccca gcagcccaac
                                                                      3060
gggcaggggg gcttctgggc ccagctgagt acagccctga ctagggacaa ccgccacttc
                                                                      3096
tataaccaga acttctgccg gggacctaca gcagaa
      <210> 3
      <211> 3352
      <212> DNA
      <213> unknown
      <400> 3
aggetggtat aaaaatetta etteetetat tetetgagee getgetgeee etgtgggaag
ggacctcgag tgtgaagcat ccttccctgt agctgctgtc cagtctgccc gccagaccct
                                                                       120
ctggagaage ccctgcccc cagcatgggt ttctgccgca gcgccctgca cccgctgtct
                                                                       180
                                                                       240
ctcctggtgc aggccatcat gctggccatg accctggccc tgggtacctt gcctgccttc
                                                                       300
ctaccetgtg agetecagee ecaeggeetg gtgaactgea actggetgtt cetgaagtet
                                                                       360
gtgccccact tctccatggc agcaccccgt ggcaatgtca ccagcctttc cttgtcctcc
                                                                       420
aaccgcatcc accacctcca tgattctgac tttgcccacc tgcccagcct gcggcatctc
aacctcaagt ggaactgccc gccggttggc ctcagcccca tgcacttccc ctgccacatg
                                                                       480
accatcgage ecageacett ettggetgtg eccaceetgg aagagetaaa eetgagetae
                                                                       540
                                                                       600
```

aacaacatca tgactgtgcc tgcgctgccc aaatccctca tatccctgtc cctcagccat 660 accaacatcc tgatgctaga ctctgccagc ctcgccggcc tgcatgccct gcgcttccta 720 ttcatggacg gcaactgtta ttacaagaac ccctgcaggc aggcactgga ggtggcccg 780 ggtgccctcc ttggcctggg caacctcacc cacctgtcac tcaagtacaa caacctcact 840 gtggtgcccc gcaacctgcc ttccagcctg gagtatctgc tgttgtccta caaccgcatc 900 gtcaaactgg cgcctgagga cctggccaat ctgaccgccc tgcgtgtgct cgatgtggc 960 ggaaattgcc gccgctgcga ccacgctccc aacccctgca tggagtgccc tcgtcacttc 1020 ccccagctac atcccgatac cttcagccac ctgagccgtc ttgaaggcct ggtgttgaag gacagttctc tctcctggct gaatgccagt tggttccgtg ggctgggaaa cctccgagtg 1080 ctggacctga gtgagaactt cctctacaaa tgcatcacta aaaccaaggc cttccagggc 1140 1200 ctaacacagc tgcgcaagct taacctgtcc ttcaattacc aaaagagggt gtcctttgcc 1260 cacctgtctc tggccccttc cttcgggagc ctggtcgccc tgaaggagct ggacatgcac 1320 ggcatcttct teegeteact egatgagace aegeteegge eactggeeeg eetgeecatg 1380 ctccagactc tgcgtctgca gatgaacttc atcaaccagg cccagctcgg catcttcagg gccttccctg gcctgcgcta cgtggacctg tcggacaacc gcatcagcgg agcttcggag 1440

ctgacagcca ccat	ggggga	ggcagatgga	ggggagaagg	tctggctgca	gcctggggac	1500
cttgctccgg cccc						1560
ctcaacttca cctt						1620
gcccagctct cgca						1680
aatggctccc agtt						1740
ctggacctct acca						1800
agctacaaca gcca						1860
cacctgcgca ccct						1920
						•
cagcagetet geag						1980
atgtgggccg aggg						2040
ctggacttgt ccca						2100
aagagcctac aggt						2160
ctccacttcc tgcc						2220
accaatggca gcct						2280
atcagcttcg tggc						2340
agcgccaacg ccct						2400
caaatactag atgt						2460
ttcctgctgg aggt						2520
ccgggccagc tcca	gggcct	cagcatcttt	gcacaggacc	tgcgcctctg	cctggatgag	2580
gccctctcct ggga	ctgttt	cgccctctcg	ctgctggctg	tggctctggg	cctgggtgtg	2640
cccatgctgc atca	cctctg	tggctgggac	ctctggtact	gcttccacct	gtgcctggcc	2700
tggcttccct ggcg	ggggcg	gcaaagtggg	cgagatgagg	atgccctgcc	ctacgatgcc	2760
ttcgtggtct tcga	caaaac	gcagagcgca	gtggcagact	gggtgtacaa	cgagcttcgg	2820
gggcagctgg agga						2880
tggctgcctg gcaa						2940
acgctgtttg tgct						3000
ctggcccagc agcg						3060
cctgacggcc gccg						3120
ctcctctggc ccca						3180
ctgaccaggg acaa						3240
tagccgtgag ccgc						3300
tggtctgacc ctcc						3352
<210> 4						
<211> 386	8					
<212> DNA						
<213> unk	nown					
<400> 4				•		
ggaggtcttg tttc	_			?		60
cctgctcaag ctac				<u> </u>		120
gcctacaagg gcag						180
gcaggagcca agac						240
gtacccgcta ctgg	tgctat	ccagaattcc	catctctccc	tgctctctgc	ctgagctctg	300
ggccttagct cctc	cctggg	cttggtagag	gacaggtgtg	aggccctcat	gggatgtagg	360
ctgtctgaga gggg	agtgga	aagaggaagg	ggtgaaggag	ctgtctgcca	tttgactatg	420
caaatggcct ttga	ctcatg	ggaccctgtc	ctcctcactg	ggggcagggt	ggagtggagg	480
gggagctact aggc	tggtat	aaaaatctta	cttcctctat	tctctgagcc	gctgctgccc	540
ctgtgggaag ggac	ctcgag	tgtgaagcat	ccttccctgt	agctgctgtc	cagtctgccc	600
gccagaccct ctgg				-	-	660
cccgctgtct ctcc					·	720
gcctgccttc ctac						780
cctgaagtct gtgc						840
cttgtcctcc aacc						900
gcggcatctc aacc						960
ctgccacatg acca						1020
cctgagctac aaca						1080
-				ctcaccaacc		1140

1140

1200

cctcagccat accaacatcc tgatgctaga ctctgccagc ctcgccggcc tgcatgccct

gcgcttccta ttcatggacg gcaactgtta ttacaagaac ccctgcaggc aggcactgga

ggtggccccg ggtgccctcc	-				1260
caacctcact gtggtgccc					1320
caaccgcatc gtcaaactgg					1380
cgatgtgggc ggaaattgcc		-			1440
tcgtcacttc ccccagctac					1500
ggtgttgaag gacagttctc				-	1560
cctccgagtg ctggacctga					1620
cttccagggc ctaacacagc					1680
gtcctttgcc cacctgtctc					1740
ggacatgcac ggcatcttct					1800
cctgcccatg ctccagactc					1860
catcttcagg gccttccctg					1920
agcttcggag ctgacagcca		· -			1980
gcctggggac cttgctccgg					2040
ctgcagcacc ctcaacttca					2100
ggagatgttt gcccagctct	-				2160
gcaggcagtc aatggctccc	_	-			2220
ccacaataag ctggacctct					2280
cctggacctc agctacaaca	-			_	2340
cttcgtggct cacctgcgca					2400
ccaagtgtcc cagcagctct					2460
actgggccat atgtgggccg					2520
tttgatctgg ctggacttgt					2580
caacctcccc aagagcctac					2640
gtggtggagc ctccacttcc		— -		=	2700
gaaggccctg accaatggca					2760
ctgcaacagc atcagcttcg					2820
gctcaacctt agcgccaacg	_	- '' '			2880
gagtgccctg caaatactag	=				2940
ctttatggac ttcctgctgg					3000
gtgtggcagt ccgggccagc					3060 3120
cctggatgag gccctctcct					3180
cctgggtgtg cccatgctgc					3240
gtgcctggcc tggcttccct	· - · - ·	-			3300
ctacgatgcc ttcgtggtct cgagcttcgg gggcagctgg					3360
ggaacgcgac tggctgcctg					3420
cagccgcaag acgctgtttc					3480
cagetteetg etggeceage					3540
gatectgage cetgacgged					3600
ccagagtgtc ctcctctggc					3660
gggcatggcc ctgaccaggg					3720
cacggccgaa tagccgtgag			_		3780
tetgeetgee tggtetgaee					3840
caggcactca ataaatgcta		cgccccccc	·	cgacacagag	3868
caggeactea acadatgeta	cegaagge				3000
<210> 5					
<211> 557					
<212> DNA					
<213> unknown					
(213) Ullillowii					
<400> 5					
ggctttcaac ctaaccgctc	gcactcaacc	tatecticas	ttaccocaao	aaggtatoot	60
ttgcccgcct ccacctggca					120
tgaacggcat cttcttccgc					180
ccaaactcca cactctgcat					240
ttggtacctt ccgagccctt				-	300
caacgctgtc agaagccacc					360
ctgcggatcc tcacccagct				•	420
		1101030000			

gtaagaactt caagttcaac atggacctgt ctcggaacaagatgtttgt aaatctctca cgcctccagt gtcttagcaaggctgtcaa tggctct		
<210> 6 <211> 497 <212> DNA <213> unknown		
<400> 6		•
gtgggtttgg tgtctatctt cactctcctg aaagatgca	at gggaagaaa ctacccttta 60	
cagccaacct ttgctccgtg ggcctggtgg cttggtage		
tagcggtgta gtaagacaga gcaaggcagg cagagcaad		
gcagctgttt ccagctgttg ctctgagcta ttctgctgt		
gttatagaag tggcggttgt ccctagtcag ggctgtact ctgcccgttg ggtcgctggg gccagaagag cacactctg		
tcgcacatag cgggacggtn gggcatccgg acgcaggat		
gcggtcttcc aacaggcgct gctgagccag caggaagct		
gcggtccgtg tgggcca	497	
<210> 7 <211> 373 <212> DNA <213> unknown		
<400> 7		
tggaggaccg agattggctg cctggccaga cgctcttcg	ga gaacctctgg gcttccatct 60	
atgggagccg caagactcta tttgtgctgg cccacacgg		
gcaccagctt cctgctggct cagcagcgcc tgttggaag	Ja ccgcaaggac gtggtggtgt 180	
tggtgatcct gcgtccggat gcccaccgct cccgctatg		
gccgccagag tgtgctcttc tggccccagc agcccaacg		
agctgagtac agccctgact agggacaacc gccacttct gacctacagc aga	ta taaccagaac ttctgccggg 360 373	
<210> 8		
<211> 489		
<212> DNA		
<213> unknown		
<400> 8	•	
gctacaacag ccagcccttt agcatgaagg gtataggco	a caatttcagt tttgtgaccc 60	
atctgtccat gctacagagc cttagcctgg cacacaatg		
cacatctcaa cagcaactca gtgaggtttc ttgacttca		
tgtgggatga ggggggcctt tatctccatt tcttccaag	g cctgagtggc gtgctgaagc 240	
tggacctgtc tcaaaataac ctgcatatcc tccggcccc		
agagectgaa getgetgage eteegagaea actacetat		
tgtccttcct acccaacctg gaagtcctag acctggcag		
ccaatggcac cctgcctaat ggcaccctcc tccagaaac tcgtctctg	t cgatgtcagt agcaacagta 480 489	
	402	
<210> 9		
<211> 462		
<212> DNA		
<213> unknown		
<400> 9		
geggeegege egeteeteea geegeaceeg cagetegtt	a tacacccagt cggcaactgc 60	
gctctgtgcc ttatcgaaca ccacgaaggc atcataagg		
gctgcgggct agcaaaggta gccatgccag gcacagatg		
	•	
- 6 -	·	

gccgcagaga tggtgcagta taggcaccac catgcccacg gccacagcca agagtgaaag 240 gccaaagcag tcccaagaga ggacctcatc caggcacagc cgcaggtcct gcgcgaagat 300 gctacggccc tgcagctggc cggggctgcc acacttcaca ccattagcca ggccaggcac 360 cttggtctgc acctccaaca gtaagtctac gaaggctgcc ccacaggcac agtgcagagg 420 gttgcttctc acgtctagaa ctgtcaggtt catcacaatg gg 462

<210> 10 <211> 1032

<212> PRT

<213> unknown

<400> 10 Met Val Leu Arg Arg Arg Thr Leu His Pro Leu Ser Leu Leu Val Gln Ala Ala Val Leu Ala Glu Thr Leu Ala Leu Gly Thr Leu Pro Ala Phe · Leu Pro Cys Glu Leu Lys Pro His Gly Leu Val Asp Cys Asn Trp Leu Phe Leu Lys Ser Val Pro Arg Phe Ser Ala Ala Ala Ser Cys Ser Asn Ile Thr Arg Leu Ser Leu Ile Ser Asn Arg Ile His His Leu His Asn Ser Asp Phe Val His Leu Ser Asn Leu Arg Gln Leu Asn Leu Lys Trp Asn Cys Pro Pro Thr Gly Leu Ser Pro Leu His Phe Ser Cys His Met Thr Ile Glu Pro Arg Thr Phe Leu Ala Met Arg Thr Leu Glu Glu Leu Asn Leu Ser Tyr Asn Gly Ile Thr Thr Val Pro Arg Leu Pro Ser Ser Leu Val Asn Leu Ser Leu Ser His Thr Asn Ile Leu Val Leu Asp Ala Asn Ser Leu Ala Gly Leu Tyr Ser Leu Arg Val Leu Phe Met Asp Gly Asn Cys Tyr Tyr Lys Asn Pro Cys Thr Gly Ala Val Lys Val Thr Pro 180 185 190 Gly Ala Leu Leu Gly Leu Ser Asn Leu Thr His Leu Ser Leu Lys Tyr Asn Asn Leu Thr Lys Val Pro Arg Gln Leu Pro Pro Ser Leu Glu Tyr Leu Leu Val Ser Tyr Asn Leu Ile Val Lys Leu Gly Pro Glu Asp Leu Ala Asn Leu Thr Ser Leu Arg Val Leu Asp Val Gly Gly Asn Cys Arg Arg Cys Asp His Ala Pro Asn Pro Cys Ile Glu Cys Gly Gln Lys Ser Leu His Leu His Pro Glu Thr Phe His His Leu Ser His Leu Glu Gly Leu Val Leu Lys Asp Ser Ser Leu His Thr Leu Asn Ser Ser Trp Phe Gln Gly Leu Val Asn Leu Ser Val Leu Asp Leu Ser Glu Asn Phe Leu Tyr Glu Ser Ile Asn His Thr Asn Ala Phe Gln Asn Leu Thr Arg Leu Arg Lys Leu Asn Leu Ser Phe Asn Tyr Arg Lys Lys Val Ser Phe Ala Arg Leu His Leu Ala Ser Ser Phe Lys Asn Leu Val Ser Leu Gln Glu Leu Asn Met Asn Gly Ile Phe Phe Arg Ser Leu Asn Lys Tyr Thr Leu

Arg Trp Leu Ala Asp Leu Pro Lys Leu His Thr Leu His Leu Gln Met Asn Phe Ile Asn Gln Ala Gln Leu Ser Ile Phe Gly Thr Phe Arg Ala Leu Arg Phe Val Asp Leu Ser Asp Asn Arg Ile Ser Gly Pro Ser Thr Leu Ser Glu Ala Thr Pro Glu Glu Ala Asp Asp Ala Glu Glu Glu Leu Leu Ser Ala Asp Pro His Pro Ala Pro Leu Ser Thr Pro Ala Ser Lys Asn Phe Met Asp Arg Cys Lys Asn Phe Lys Phe Thr Met Asp Leu Ser Arg Asn Asn Leu Val Thr Ile Lys Pro Glu Met Phe Val Asn Leu Ser Arg Leu Gln Cys Leu Ser Leu Ser His Asn Ser Ile Ala Gln Ala Val Asn Gly Ser Gln Phe Leu Pro Leu Thr Asn Leu Gln Val Leu Asp Leu Ser His Asn Lys Leu Asp Leu Tyr His Trp Lys Ser Phe Ser Glu Leu Pro Gln Leu Gln Ala Leu Asp Leu Ser Tyr Asn Ser Gln Pro Phe Ser Met Lys Gly Ile Gly His Asn Phe Ser Phe Val Ala His Leu Ser Met Leu His Ser Leu Ser Leu Ala His Asn Asp Ile His Thr Arg Val Ser Ser His Leu Asn Ser Asn Ser Val Arg Phe Leu Asp Phe Ser Gly Asn Gly Met Gly Arg Met Trp Asp Glu Gly Gly Leu Tyr Leu His Phe Phe Gln Gly Leu Ser Gly Leu Leu Lys Leu Asp Leu Ser Gln Asn Asn Leu His Ile Leu Arg Pro Gln Asn Leu Asp Asn Leu Pro Lys Ser Leu Lys Leu Leu Ser Leu Arg Asp Asn Tyr Leu Ser Phe Phe Asn Trp Thr Ser Leu Ser Phe Leu Pro Asn Leu Glu Val Leu Asp Leu Ala Gly Asn Gln Leu Lys Ala Leu Thr Asn Gly Thr Leu Pro Asn Gly Thr Leu Leu Gln Lys Leu Asp Val Ser Ser Asn Ser Ile Val Ser Val Val Pro Ala Phe Phe Ala Leu Ala Val Glu Leu Lys Glu Val Asn Leu Ser His Asn Ile Leu Lys Thr Val Asp Arg Ser Trp Phe Gly Pro Ile Val Met Asn Leu Thr Val Leu Asp Val Arg Ser Asn Pro Leu His Cys Ala Cys Gly Ala Ala Phe Val Asp Leu Leu Leu Glu Val Gln Thr Lys Val Pro Gly Leu Ala Asn Gly Val Lys Cys Gly Ser Pro Gly Gln Leu Gln Gly Arg. Ser Ile Phe Ala Gln Asp Leu Arg Leu Cys Leu Asp Glu Val Leu Ser Trp Asp Cys Phe Gly Leu Ser Leu Leu Ala Val Ala Val Gly Met Val Val Pro Ile Leu His His Leu Cys Gly Trp Asp Val Trp Tyr Cys Phe

His Leu Cys Leu Ala Trp Leu Pro Leu Leu Ala Arg Ser Arg Arg Ser Ala Gln Ala Leu Pro Tyr Asp Ala Phe Val Val Phe Asp Lys Ala Gln Ser Ala Val Ala Asp Trp Val Tyr Asn Glu Leu Arg Val Arg Leu Glu Glu Arg Arg Gly Arg Arg Ala Leu Arg Leu Cys Leu Glu Asp Arg Asp Trp Leu Pro Gly Gln Thr Leu Phe Glu Asn Leu Trp Ala Ser Ile Tyr Gly Ser Arg Lys Thr Leu Phe Val Leu Ala His Thr Asp Arg Val Ser Gly Leu Leu Arg Thr Ser Phe Leu Leu Ala Gln Gln Arg Leu Leu Glu Asp Arg Lys Asp Val Val Val Leu Val Ile Leu Arg Pro Asp Ala His Arg Ser Arg Tyr Val Arg Leu Arg Gln Arg Leu Cys Arg Gln Ser Val Leu Phe Trp Pro Gln Gln Pro Asn Gly Gln Gly Gly Phe Trp Ala Gln ⁽1005 Leu Ser Thr Ala Leu Thr Arg Asp Asn Arg His Phe Tyr Asn Gln Asn Phe Cys Arg Gly Pro Thr Ala Glu

<210> 11

<211> 1032

<212> PRT

<213> unknown

<400> 11

Met Gly Phe Cys Arg Ser Ala Leu His Pro Leu Ser Leu Leu Val Gln Ala Ile Met Leu Ala Met Thr Leu Ala Leu Gly Thr Leu Pro Ala Phe Leu Pro Cys Glu Leu Gln Pro His Gly Leu Val Asn Cys Asn Trp Leu Phe Leu Lys Ser Val Pro His Phe Ser Met Ala Ala Pro Arg Gly Asn Val Thr Ser Leu Ser Leu Ser Ser Asn Arg Ile His His Leu His Asp Ser Asp Phe Ala His Leu Pro Ser Leu Arg His Leu Asn Leu Lys Trp Asn Cys Pro Pro Val Gly Leu Ser Pro Met His Phe Pro Cys His Met Thr Ile Glu Pro Ser Thr Phe Leu Ala Val Pro Thr Leu Glu Glu Leu Asn Leu Ser Tyr Asn Asn Ile Met Thr Val Pro Ala Leu Pro Lys Ser Leu Ile Ser Leu Ser Leu Ser His Thr Asn Ile Leu Met Leu Asp Ser Ala Ser Leu Ala Gly Leu His Ala Leu Arg Phe Leu Phe Met Asp Gly Asn Cys Tyr Tyr Lys Asn Pro Cys Arg Gln Ala Leu Glu Val Ala Pro Gly Ala Leu Leu Gly Leu Gly Asn Leu Thr His Leu Ser Leu Lys Tyr Asn Asn Leu Thr Val Val Pro Arg Asn Leu Pro Ser Ser Leu Glu Tyr

Leu Leu Ser Tyr Asn Arg Ile Val Lys Leu Ala Pro Glu Asp Leu Ala Asn Leu Thr Ala Leu Arg Val Leu Asp Val Gly Asn Cys Arg Arg Cys Asp His Ala Pro Asn Pro Cys Met Glu Cys Pro Arg His Phe Pro Gln Leu His Pro Asp Thr Phe Ser His Leu Ser Arg Leu Glu Gly Leu Val Leu Lys Asp Ser Ser Leu Ser Trp Leu Asn Ala Ser Trp Phe Arg Gly Leu Gly Asn Leu Arg Val Leu Asp Leu Ser Glu Asn Phe Leu Tyr Lys Cys Ile Thr Lys Thr Lys Ala Phe Gln Gly Leu Thr Gln Leu Arg Lys Leu Asn Leu Ser Phe Asn Tyr Gln Lys Arg Val Ser Phe Ala His Leu Ser Leu Ala Pro Ser Phe Gly Ser Leu Val Ala Leu Lys Glu Leu Asp Met His Gly Ile Phe Phe Arg Ser Leu Asp Glu Thr Thr Leu Arg Pro Leu Ala Arg Leu Pro Met Leu Gln Thr Leu Arg Leu Gln Met Asn Phe Ile Asn Gln Ala Gln Leu Gly Ile Phe Arg Ala Phe Pro Gly Leu Arg Tyr Val Asp Leu Ser Asp Asn Arg Ile Ser Gly Ala Ser Glu Leu Thr Ala Thr Met Gly Glu Ala Asp Gly Glu Lys Val Trp Leu Gln Pro Gly Asp Leu Ala Pro Ala Pro Val Asp Thr Pro Ser Ser Glu Asp Phe Arg Pro Asn Cys Ser Thr Leu Asn Phe Thr Leu Asp Leu Ser Arg Asn Asn Leu Val Thr Val Gln Pro Glu Met Phe Ala Gln Leu Ser His Leu Gln Cys Leu Arg Leu Ser His Asn Cys Ile Ser Gln Ala Val Asn Gly Ser Gln Phe Leu Pro Leu Thr Gly Leu Gln Val Leu Asp Leu Ser Arg Asn Lys Leu Asp Leu Tyr His Glu His Ser Phe Thr Glu Leu Pro Arg Leu Glu Ala Leu Asp Leu Ser Tyr Asn Ser Gln Pro Phe Gly Met Gln Gly Val Gly His Asn Phe Ser Phe Val Ala His Leu Arg Thr Leu Arg His Leu Ser Leu Ala His Asn Asn Ile His Ser Gln Val Ser Gln Gln Leu Cys Ser Thr Ser Leu Arg Ala Leu Asp Phe Ser Gly Asn Ala Leu Gly His Met Trp Ala Glu Gly Asp Leu Tyr Leu His Phe Phe Gln Gly Leu Ser Gly Leu Ile Trp Leu Asp Leu Ser Gln Asn Arg Leu His Thr Leu Leu Pro Gln Thr Leu Arg Asn Leu Pro Lys Ser Leu Gln 645. Val Leu Arg Leu Arg Asp Asn Tyr Leu Ala Phe Phe Lys Trp Trp Ser Leu His Phe Leu Pro Lys Leu Glu Val Leu Asp Leu Ala Gly Asn Arg Leu Lys Ala Leu Thr Asn Gly Ser Leu Pro Ala Gly Thr Arg Leu Arg

Y

```
700
                         695
    690
Arg Leu Asp Val Ser Cys Asn Ser Ile Ser Phe Val Ala Pro Gly Phe
                                         715
705
                     710
Phe Ser Lys Ala Lys Glu Leu Arg Glu Leu Asn Leu Ser Ala Asn Ala
                                                          735
                                     730
                725
Leu Lys Thr Val Asp His Ser Trp Phe Gly Pro Leu Ala Ser Ala Leu
                                                      750
            740
                                 745
Gln Ile Leu Asp Val Ser Ala Asn Pro Leu His Cys Ala Cys Gly Ala
                             760
                                                  765
        755
Ala Phe Met Asp Phe Leu Leu Glu Val Gln Ala Ala Val Pro Gly Leu
                         775
                                             780
Pro Ser Arg Val Lys Cys Gly Ser Pro Gly Gln Leu Gln Gly Leu Ser
                                                              800
785
                     790
                                         795
Ile Phe Ala Gln Asp Leu Arg Leu Cys Leu Asp Glu Ala Leu Ser Trp
                                                          815
                805
                                     810
Asp Cys Phe Ala Leu Ser Leu Leu Ala Val Ala Leu Gly Leu Gly Val
                                                      830
            820
                                 825
Pro Met Leu His His Leu Cys Gly Trp Asp Leu Trp Tyr Cys Phe His
                             840
Leu Cys Leu Ala Trp Leu Pro Trp Arg Gly Arg Gln Ser Gly Arg Asp
                                              860
    850
                         855
Glu Asp Ala Leu Pro Tyr Asp Ala Phe Val Val Phe Asp Lys Thr Gln
                                                              880
                     870
                                         875
865
Ser Ala Val Ala Asp Trp Val Tyr Asn Glu Leu Arg Gly Gln Leu Glu
                                     890
                 885
Glu Cys Arg Gly Arg Trp Ala Leu Arg Leu Cys Leu Glu Glu Arg Asp
                                                      910
                                 905
Trp Leu Pro Gly Lys Thr Leu Phe Glu Asn Leu Trp Ala Ser Val Tyr
                                                  925
        915
                             920
Gly Ser Arg Lys Thr Leu Phe Val Leu Ala His Thr Asp Arg Val Ser
                         935
                                              940
    930
Gly Leu Leu Arg Ala Ser Phe Leu Leu Ala Gln Gln Arg Leu Leu Glu
                                         955
945
                     950
Asp Arg Lys Asp Val Val Val Leu Val Ile Leu Ser Pro Asp Gly Arg
                 965
                                     970
Arg Ser Arg Tyr Val Arg Leu Arg Gln Arg Leu Cys Arg Gln Ser Val
            980
                                 985
Leu Leu Trp Pro His Gln Pro Ser Gly Gln Arg Ser Phe Trp Ala Gln
                                                  1005
                             1000
        995
Leu Gly Met Ala Leu Thr Arg Asp Asn His His Phe Tyr Asn Arg Asn
    1010
                         1015
                                              1020
Phe Cys Gln Gly Pro Thr Ala Glu
                     1030
1025
```

<210> 12

<211> 178

<212> PRT

<213> unknown

<400> 12

65 70 75 80 Phe Val Asp Leu Ser Asp Asn Arg Ile Ser Gly Pro Ser Thr Leu Ser Glu Ala Thr Pro Glu Glu Ala Asp Asp Ala Glu Glu Glu Leu Leu 100 105 110 Ser Ala Asp Pro His Pro Ala Pro Leu Ser Thr Pro Ala Ser Lys Asn 120 Phe Met Asp Arg Cys Lys Asn Phe Lys Phe Asn Met Asp Leu Ser Arg 130 135 Asn Asn Leu Val Thr Ile Thr Ala Glu Met Phe Val Asn Leu Ser Arg 145 150 155 160 Leu Gln Cys Leu Ser Leu Ser His Asn Ser Ile Ala Gln Ala Val Asn 165 170 175 Gly Ser

<210> 13

<211> 95

<212> PRT

<213> unknown

<400> 13

 Ala His Thr
 Asp Asp Arg Val Ser Gly Leu Leu Arg Thr Ser Phe Leu Leu 1
 5
 5
 10
 5
 15
 15

 Ala Gln Gln Arg Leu Leu Clu 20
 Leu Clu Asp Arg Leu 25
 25
 10
 Val Val Val Leu Val 30
 16
 Val Leu Val 30

 Ile Leu Arg Pro Asp Ala Xaa Pro 35
 Ser Arg Tyr Val Arg Leu Arg Leu Arg Cln 45
 16
 40
 17
 17
 18
 18
 18
 18
 18
 18
 19
 19
 19
 19
 19
 19
 19
 19
 19
 19
 19
 19
 19
 19
 19
 19
 19
 19
 19
 19
 19
 19
 19
 19
 19
 19
 19
 19
 19
 19
 19
 19
 19
 19
 19
 19
 19
 19
 19
 19
 19
 19
 19
 19
 19
 19
 19
 19
 19
 19
 19
 19
 19
 19
 19
 19
 19
 19
 19
 19
 19
 19
 19
 19
 19
 19
 19
 19
 19
 19
 19

90

95

<210> 14

<211> 123

<212> PRT

<213> unknown

85

<400> 14

Glu Asp Arg Asp Trp Leu Pro Gly Gln Thr Leu Phe Glu Asn Leu Trp Ala Ser Ile Tyr Gly Ser Arg Lys Thr Leu Phe Val Leu Ala His Thr 25 30 Asp Arg Val Ser Gly Leu Leu Arg Thr Ser Phe Leu Leu Ala Gln Gln Arg Leu Leu Glu Asp Arg Lys Asp Val Val Leu Val Ile Leu Arg 50 55 Pro Asp Ala His Arg Ser Arg Tyr Val Arg Leu Arg Gln Arg Leu Cys 65 70 Arg Gln Ser Val Leu Phe Trp Pro Gln Gln Pro Asn Gly Gln Gly 85 90 95 Phe Trp Ala Gln Leu Ser Thr Ala Leu Thr Arg Asp Asn Arg His Phe 100 105 110 Tyr Asn Gln Asn Phe Cys Arg Gly Pro Thr Ala

120

<210> 15

<211> 162 <212> PRT

<213> unknown

<400> 15

Tyr Asn Ser Gln Pro Phe Ser Met Lys Gly Ile Gly His Asn Phe Ser Phe Val Thr His Leu Ser Met Leu Gln Ser Leu Ser Leu Ala His Asn 20 25 30 Asp Ile His Thr Arg Val Ser Ser His Leu Asn Ser Asn Ser Val Arg Phe Leu Asp Phe Ser Gly Asn Gly Met Gly Arg Met Trp Asp Glu Gly Gly Leu Tyr Leu His Phe Phe Gln Gly Leu Ser Gly Val Leu Lys Leu 65 80 Asp Leu Ser Gln Asn Asn Leu His Ile Leu Arg Pro Gln Asn Leu Asp 85 90 95 Asn Leu Pro Lys Ser Leu Lys Leu Leu Ser Leu Arg Asp Asn Tyr Leu 105 110 Ser Phe Phe Asn Trp Thr Ser Leu Ser Phe Leu Pro Asn Leu Glu Val 120 Leu Asp Leu Ala Gly Asn Gln Leu Lys Ala Leu Thr Asn'Gly Thr Leu 130 140 Pro Asn Gly Thr Leu Leu Gln Lys Leu Asp Val Ser Ser Asn Ser Ile 145 150 155 160 Val Ser

<210> 16

<400> 16