

Aprendizaje de Máquina

ITAM

Menu

- Complejidad de una Red Neuronal
 - Parámetros y técnicas
- Redes Profundas
 - Problemas para entrenarlas
 - Algunas soluciones
 - Redes Convolucionales

- La complejidad de la red esta dada por
 - La cantidad de pesos (grados de libertad)
 - El número de capas intermedias
- El concepto de deep learning se refiere a entrenar redes con muchas capas y, consecuentemente, muchas neuronas

Problemas para entrenar una red profunda

- Problemas para entrenar redes profundas (más de 2 capas)
 - Existen muchos parámetros (pesos) a ajustar
 - Las capas aprenden a distintas velocidades
- Gradiente inestable
 - Diminishing gradient
 - Conforme propagamos el error la información acerca del mismo disminuye en cada capa
 - Del algoritmo de retro-propagación vemos que para cada capa multiplicamos por el error de la capa subsiguiente (que es normalmente menor a 1) (la derivada de la sigmoide tiene máximo en 0.25)
 - La sigmoide (y otras) se saturan
 - En casos donde las w's son muy grandes el efecto puede ser el contrario y los gradientes crecer (!!!). Pero es difícil si regularizamos. Además hacer muy grande w reduce la derivada de la signoide pero existen valores para los cuales explota

Soluciones

- No hay una solución total, pero la investigación indica:
 - Controlar la complejidad de la red (técnicas de regularización)
 - Escoger bien los pesos iniciales
 - Usar otras funciones de activación (ReLU)
 - Modificaciones del algoritmo de descenso en gradiente e.g.,uso de momento
 - El momento añade una fracción (otro parámetro!!) del cambio en el peso de la iteración i-1 al nuevo peso
 - Más ejemplos y más poder de cómputo (hace 5 años era totalmente impráctico)
 - Otras topologías de red

- Podemos controlar la complejidad de la red con:
 - Regularización
 - Lasso (L1)
 - Ridge (L2)
 - Elastic net (combinación lineal de ambas)

Drop out

- Durante el entrenamiento, para cada ejemplo, cada neurona es elegida con probabilidad p (usualmente 0.5 o usar validación) para ser ignorada
- Durante la prueba se usan todas las neuronas pero sus pesos se escalan usando p
- La idea es que esto aproxima el entrenar muchas redes diferentes para luego promediarlas. El efecto es reducir la varianza

- Early stopping
 - Dejar de entrenar la red cuando el error de validación de una iteración a otra comience a subir (preservar los pesos de la iteración previa)

Otras funciones de activación

- ReLu (Rectified linear unit)
 - Max(0,w^Tx)
 - Ayuda al problema de diminishing gradient, pues no se saturan (de un lado)
 - Aproximadamente la mitad desactivadas al inicio del entrenamiento (usando pesos aleatorios)

Cambio de Topología

- Redes Convolucionales
 - Particularmente buenas para imágenes
 - Toman en cuenta la estructura espacial de una imagen
 - Algo menos que aprender!
 - Tres conceptos importantes
 - Localización (Local receptive field)
 - Pesos compartidos (shared weights)
 - Aggregación (pooling)

Localización

- Solo conectamos algunas neuronas de de una capa con algunas neuronas de la siguiente
 - Hacemos grupos de neuronas relacionadas
 - Como se trata de imágenes vamos a organizarlas en 3 dimensiones: alto, ancho y color (canal)
 - La salida de estas neuronas son la entrada a una neurona de la capa siguiente

Localización (imágenes tomadas de

Michael Nielsen

http://neuralnetworksanddeeplearning.com/index.html)

input neurons

0000000000000000000000000000 00000000000000000000000000000 00000000000000000000000000000

La ventana de 5 x 5 de desliza a través de toda la entrada.

hidden neuron

input neurons

El tamaño del deslizamiento, el paso, se llama stride length

Localización

- Si tenemos n * n neuronas en la capa de entrada y una ventana de m*m con paso s
 - Cuántas neuronas hay en la siguiente capa?
 - k ventanas horizontales y k verticales
 - k= (1 + ceil((n-m)/stride)) x (1 + ceil((n-m)/stride))
 - Para 12 x 12, m=3, stride 2
 - 1+ ceil(9/2)= 6
 - Si te pasas rellenas
- Si queremos que el número de neuronas en esta capa sea igual que en la anterior. Rellenas con ceros

- Cada neurona de la capa intermedia se conecta con m x m neuronas de la capa anterior
 - Tiene m x m pesos más el sesgo (w₀)
- Todas las k x k neuronas de esta capa intermedia van a compartir los mismos pesos!
 - Todas las neuronas van a detectar el mismo patrón pero en diferentes ubicaciones (tiene sentido en imágenes)
 - A estos pesos compartidos se les conoce como kernel o filtro

Capas paralelas

- De esta forma una de estas capas intermedias, o filtro, detecta un rasgo
- Necesitamos incluir muchas de estas capas, todas conectadas a la capa de entrada

Agregación

- Esta capa se encuentra inmediatamente después de la capa de localización
 - De manera similar a la capa de localización toma un subconjunto (ventana) de neuronas y produce un resultado
 - Reduce el número de salidas
 - Si la ventana es de 2 x 2 con paso 2 reduce a la mitad
 - La reducción suele ser algo simple como tomar el máximo de las salidas de su ventana

- Capa de entrada
- Capas Convolucionales (varias)
 - Agregación y max pooling
- Capa de salida

- Al final se configura una capa de salida tradicional, conectando todas las salidas de la capa de agregación anterior a todas las neuronas de salida
- Al final esta red tiene una estructura feed forward y podemos usar, básicamente, el algoritmo de retropropagación que vimos en clase

Otras Arquitecturas

- Máquinas de Boltzman
- Deep belief networks
- LTSM