學號: B04902089 系級: 資工三 姓名: 林政豪

- 1. (1%) 請說明你實作的 RNN model,其模型架構、訓練過程和準確率為何?
- 2. (1%) 請說明你實作的 BOW model, 其模型架構、訓練過程和準確率為何?

	R	RNN(acc)		BOW(acc)		
Epoch	Training	Validation	Training	Validation		
1	0.7720	0.8056	0.7672	0.7871		
2	0.8179	0.8153	0.8199	0.7952		
3	0.8379	0.8202	0.8639	0.7915		
4	0.8539	0.8174	0.9096	0.7867		
5	0.8709	0.8167	0.9390	0.7869		

RNN dropout($0.4 \cdot 0.4 \cdot 0.5$)

BOW dropout $(0.5 \cdot 0.5 \cdot 0.5)$

模型 把 label、no label、testing 丢進 gensim 把 label、no label、testing 丢進 keras 的 Tokenizer 文字的處理是 encode 成 ascii 去掉無關字, 文字處理使用 Tokenizer. texts_to_matrix 且沒有去掉標點符號。

Optimizer 都是使用預設參數的 adam, loss function 都是 binary_crossentropy。 兩者都是先用 sklearn shuffle 過,拿十六萬筆作 Training,四萬筆作 Validation。

3. (1%) 請比較 bag of word 與 RNN 兩種不同 model 對於"today is a good day, but it is hot"與 "today is hot, but it is a good day"這兩句的情緒分數,並討論造成差異的原因。

	RNN	BOW
First sentence	0.73681247	0.58970451
Second sentence	0.36352733	0.58970451

RNN 會考慮字在句子中的順序,而基本的 BOW 則沒有考慮,故在交錯語序時 RNN 結果會不一樣,而不影響 BOW 的結果。

4. (1%) 請比較"有無"包含標點符號兩種不同 tokenize 的方式,並討論兩者對準確率的影響。 原本的 RNN 是將讀入字串 encode 成 ascii 藉此去掉無關符號,並留下標點。 而去掉標點的版本使用 gensim.utils.tokenize 去掉標點。

	RNN 有標點(acc)		RNN 無標點(acc)		
Epoch	Training	Validation	Training	Validation	
1	0.7720	0.8076	0.7747	0.8070	
2	0.8179	0.8183	0.8147	0.8155	
3	0.8379	0.8232	0.8304	0.8198	
4	0.8539	0.8194	0.8465	0.8228	
5	0.8709	0.8177	0.8604	0.8185	
Kaggle(紅色)	0.82442		0.82066		

起初我認為,標點符號(如驚嘆號、問號等等),會使得附近的字對情緒表達會相對重要,去掉標點會影響 model 判斷,所以沒有去掉,由上表的可以觀察出我的推論正確,有標點符號的 RNN 不管在 Training、Validation、Kaggle 上都表現得比沒標點的好。

5. (1%) 請描述在你的 semi-supervised 方法是如何標記 label,並比較有無 semi-surpervised training 對準確率的影響。

我的 semi-supervised 是使用 train 好的 model 進行標記,如果輸出 >0.96 或<0.04 時才會標記加進 pseudo_label.txt,並於下一次訓練時加入 Training data,否則就保持原樣輸出到 left.txt,第二輪開始就從 left.txt 裡面讀取、標記。

所有 Trainging 之前先 shuffle 過一次,每次固定以同樣的四萬筆 train_label 中的資料作 validation,其餘都作為 Training data。

	單位	initial	Semi-1	Semi-2	Semi-3	Semi-4	Semi-5
Training data	筆資料	160,000	532,623	834,199	969,260	1,060,761	1,142,138
Epoch = 1	Val acc	0.80870	0.82250	0.82717	0.83225	0.83680	0.83910
Epoch = 2	Val acc	0.81527	0.83017	0.82825	0.84018	0.84288	0.84550
Epoch = 3	Val acc	0.81660	0.83178	0.83593	0.84075	0.84547	0.84847
Epoch = 4	Val acc	0.82040	0.82893	0.83445	0.84205	0.84465	0.84877
Epoch = 5	Val acc	0.81745	0.82747	0.83510	0.84186	0.84439	0.84800
Kaggle(紅色)	acc	0.82042	0.82292	0.82275	0.82395	0.82423	0.82438

由表可以看出,semi-supervise 經過越多輪,training data 就越多,且因為是之前 model 信心較高的結果,所以幾乎都是對的,會使得訓練結果變好,表中 Val acc 會越來越高,且每一輪的 Validation 為同一組,所以可以看出經過 semi-supervise 之後準確率會變高。