Pose Guided RGBD Feature Learning for 3D Object Pose Estimation

Vassileios Balntas Imperial College London

http://www.robots.ox.ac.uk/~balntas/

RGBD pose descriptors

$$I \in \mathbb{R}^{N \times N \times 4} \to f(I) \in \mathbb{R}^D$$

Learning 3D pose descriptors

Learning 3D pose descriptors

RGBD pose descriptors

set of templates

 p_1

 p_2

.

 p_N

RGBD pose descriptors

 p_1

 p_2

 \boldsymbol{p}_{N}

RGBD pose descriptors

Learning 3D pose descriptors

$$\mathcal{L} = \mathcal{L}_{ ext{triplets}} + \mathcal{L}_{ ext{pairs}} + \lambda ||w'||_2^2$$
 $\mathcal{L}_{ ext{triplets}} = \sum_{(s_i, s_j, s_k) \in \mathcal{T}} c(s_i, s_j, s_k)$
 $\mathcal{L}_{ ext{pairs}} = \sum_{(s_i, s_j) \in \mathcal{P}} ||f_w(x_i) - f_w(x_j)||_2^2$

$$c(s_i, s_j, s_k) = \max \left(0, 1 - \frac{||f_w(x_i) - f_w(x_k)||_2}{||f_w(x_i) - f_w(x_i)||_2 + m} \right)$$

$$\mathcal{L} = \mathcal{L}_{ ext{triplets}} + \mathcal{L}_{ ext{pairs}} + \lambda ||w'||_2^2$$

Pose guided feature learning - motivation

- pose is used only as an indicator to form triplets and pairs
- optimiser only learns relationships of limited form by the <, > indicators
- no implicit relation between difference in the feature space and pose similarity

Pose guided feature learning - motivation

$$\mathcal{L} = \mathcal{L}_{\mathsf{triplets}} + \mathcal{L}_{\mathsf{pairs}} + \lambda ||w'||_2^2$$

Wohlhart and Lepetit

Ours

NN retrieval performance

Method	5°	10°	15
Ours	63.43%	82.81%	90.58%
Wohlhart & Lepetit	40.32%	65.13%	80.95%

% of correctly retrieved 1st nearest neighbour for different sensitivity thresholds

Vassileios Balntas

Proposed method / Correct Retrieval Examples

Vassileios Balntas

Imperial College London

Wohlhart and Lepetit

Proposed method / Incorrect retrieval examples

Vassileios Balntas

Wohlhart and Lepetit

Conclusions

- A method to optimise RGBD descriptors based on directly relating the difference in the feature space with the pose similarity
- Our method outperforms the previous state of the art in RGBD descriptors by a large margin
- Significant improvement can be seen in high accuracy area (t=5°)