RESUM DE FUNCIONS DE VARIABLE COMPLEXA

Ferran López

Barcelona, Juny 2019

Aquest document conté, resumides, les demostracions que s'han fet a classe. No hi ha tots els resultats, només els que s'han provat.

$\mathbf{\acute{I}ndex}$

1	Nombres complexos	2
	Teorema de Cauchy-Hadamard	2
2	Funcions de variable complexa	2
	Teorema Fonamental de l'Àlgebra (1)	2
	Principi de prolongació analítica (1)	3
3	Derivació. Funcions holomorfes	3
	Teorema de Cauchy-Riemann	4
4	Integració. Teorema de Cauchy	4
	Segon Teorema Fonamental del Càlcul (Regla de Barrow)	5
	Primer Teorema Fonamental del Càlcul	
	Teorema de Goursat	
	Teorema de Cauchy	
5	Fórmula integral de Cauchy i aplicacions	8
	Fórmula integral de Cauchy	8
	Teorema de Liouville	
	Teorema de Morera	
	$Holomorfa \Rightarrow Analítica \dots \dots$	
	Principi de prolongació analítica (2)	
	Principi del mòdul màxim i mínim	
	Derivació sota el signe integral	
6	Funcions meromorfes i residus	13
	Teorema de Riemann d'evitació de singularitats	13
	Teorema de Casorati-Weierstrass	
	Teorema del residu	
	Teorema de Rouché	

1 Nombres complexos

Proposició 1.1. Tot complex $z \neq 0$ té n arrels n-èssimes diferents. Si $z = r(\cos \alpha + i \sin \alpha)$,

$$\sqrt[n]{z} = \left\{ \sqrt[n]{r} \left(\cos \frac{\alpha + 2\pi t}{n} + i \sin \frac{\alpha + 2\pi t}{n} \right) \mid 0 \le t < n \right\}.$$

Demostració. Si $w = s(\cos \beta + i \sin \beta)$,

$$w^n = s^n (\cos n\beta + i \sin n\beta) = z \iff s = \sqrt[n]{z} \text{ i } n\beta \equiv \alpha \pmod{2\pi}$$

Teorema 1.2. Si dues sèries $\sum z_n$ i $\sum w_n$ són absolutament convergents, aleshores el seu producte (de Cauchy) també ho és i val $\sum p_n = (\sum z_n)(\sum w_n)$.

Demostració. Siguin s_n , t_n i μ_n les sumes parcials de z, w i p, i ν_n la de $(\sum |z_n|)$ $(\sum |w_n|)$.

• Abs. convergent: Fitem $\sum_{i=0}^{n} |z_i| \leq M_z$ i $\sum_{i=0}^{n} |w_i| \leq M_w$.

$$\nu_n \le \sum_{i=0}^n \sum_{r+s=i} |z_r| |w_s| \le \left(\sum_{i=0}^n |z_i|\right) \left(\sum_{i=0}^n |w_i|\right) \le M_z M_w$$

i per M de Weierstrass és abs. convergent.

• Valor:

$$|s_n t_n - \mu_n| = \left| \sum_{\substack{r,s \le n \\ r+s \ge n+1}} z_r w_s \right| \le \sum_{r+s=n+1}^{2n} |z_r| |w_s| = \nu_{2n} - \nu_n$$

 $\nu_n \text{ conv.} \implies \nu_n \text{ Cauchy } \implies |s_n t_n - \mu_n| \to 0.$

Teorema 1.3. Teorema de Cauchy-Hadamard.

 $\sum a_n(z-z_0)^n$. Si $|z-z_0| < R$ convergeix absolutament i si $|z-z_0| > R$ divergeix.

Demostració. Pel criteri de l'arrel, si r < R, lim sup $\sqrt[n]{a_n r^n} = rR^{-1} < 1$. Anàleg si r > R.

2 Funcions de variable complexa

Lema 2.1. Lema: p(x) té una arrel sii q(x) = ap(bx + c) en té, $a, b \in \mathbb{C}^*, c \in \mathbb{C}$.

Demostració.
$$p(z) = 0 \Leftrightarrow q(\frac{z-c}{b}) = 0.$$

Teorema 2.2. Teorema Fonamental de l'Àlgebra (1).

Tot polinomi no constant de $\mathbb{C}[x]$ té alguna arrel.

Demostració.

$$\lim_{|z| \to \infty} \frac{|f(z)^n|}{|z|^n} = |a_n| \implies \lim_{|z| \to \infty} |f(z)| = \infty \implies \exists r \text{ t. q. } |z| > r \Rightarrow |f(z)| > |a_0|$$

|f(z)| pren mínim a $z_0 \in \bar{\mathcal{D}}(0,r)$ comp. Canviant z per $z-z_0, |f(0)|=|a_0|$ és mínim. Suposem $a_0 \neq 0$, si no 0 ja és arrel. Canviant p per $\frac{1}{a_0}p$ el mínim és 1.

Sigui $\omega = \sqrt[h]{-a_h}$. Canviem p(z) per $p(\frac{z}{\omega})$ i serà $p(z) = 1 - z^h + z^h g(z)$, amb g(0) = 0. Sigui $t \in [0,1] \subset \mathbb{R}$ tal que $g(z) < \frac{1}{2}$. $|f(t)| < 1 - t^h + \frac{1}{2}t^h < 1$, però el mínim és 1, contradicció. Necessàriament a_0 havia de ser 0.

Proposició 2.3. $f(z) = \sum a_n(z-z_0)^n$ és unif. conv. sobre compactes a $D = \mathcal{D}(z_0, R)$, $R = \rho(f)$.

Demostració. Sigui $p_n(z) = \sum_{k=0}^n a_k(z-z_0)^k$. $K \subset D$, $r = \max\{|z-z_0|, z \in K\} < R$.

$$|f(z) - p_n(z)| \le \sum_{k > n} |a_k| r^k < \epsilon$$

on el darrer pas emprem que $\sum a_n(z-z_0)^n$ convergeix (r < R). Per M de Weierstrass, f(z)convergeix.

Proposició 2.4. f és contínua a D.

Demostració.

- Per conv. unif. sobre $\bar{\mathcal{D}}(z_0, r)$ comp., $\exists N \text{ t. q. } |f(z) p_n(z)| < \frac{\epsilon}{2} \forall n > N \forall z \in \bar{\mathcal{D}}(z_0, r)$.
- Sigui $n \geq N$ fixat, p_n és un polinomi, per tant és continu i $\exists \delta$ t.q. $|z-w| < \delta \Rightarrow$

 $\begin{aligned} &|p_n(z)-p_n(w)|<\frac{\epsilon}{3}.\\ &\text{Per tot }\epsilon,\text{ si }\delta'=\min\left\{\delta,r-|w-z_0|\right\}\text{ i }n\text{ el fixat adés, }|z-w|<\delta'\implies \left|f(z)-f(w)\right|\leq\\ &|f(z)-p_n(z)|+\left|p_n(z)-p_n(w)\right|+\left|f(w)-p_n(w)\right|<\frac{\epsilon}{3}+\frac{\epsilon}{3}+\frac{\epsilon}{3}=\epsilon.\end{aligned}$

Proposició 2.5. $e^{z+w} = e^z e^w$

Demostració. $e^{z+w} = \sum_{n\geq 0} \frac{(z+w)^n}{n!} = \sum_{n\geq 0} \sum_{k\leq n} \frac{1}{k!(n-k)!} z^k w^{n-k} = \sum_{n\geq 0} \sum_{k\leq n} \frac{z^k}{k!} \frac{w^{n-k}}{(n-k)!} = e^z e^w$, on en l'últim pas hem fet servir el producte de Cauchy (les sèries són abs. convergents). \square

Proposició 2.6. Fórmula d'Euler. $e^{it} = \cos t + i \sin t$

Demostració. Desenvolupem e^{it} com a sèrie de potències i la separem en termes parells i senars.

Teorema 2.7. Principi de prolongació analítica (1).

Sigui Ω obert connex, $S \subseteq \Omega$ subconjunt amb un punt d'acumulació. Aleshores,

- (i) Si $f: \Omega \to \mathbb{C}$ és analítica i $f(z) = 0 \forall z \in S$, llavors $f \equiv 0$ a Ω
- (ii) Si $U \subseteq \Omega$ obert i $f: U \to \mathbb{C}$ analítica a U, llavors existeix com a molt una prolongació analítica $f: \Omega \to \mathbb{C}$ tal que $f|_U = f$.

Demostració. Sigui z_0 el punt d'acumulació. Per continuïtat, $f(z_0) = 0$ (hi ha una successió a S que hi tendeix). $f(z) = \sum a_n(z-z_0)^n$ a $\mathcal{D}(z_0,R) \cap \Omega$, veurem que $\forall n, a_n = 0$.

Suposem el contrari, $m=\min\{a_n\neq 0\}$. $f(z)=a_m(z-z_0)^m(1+\frac{a_{m+1}}{a_m}(z-z_0)+\cdots)=a_m(z-z_0)^mg(z)$. g és contínua. $g(z_0)=1$ i per continuïtat hi ha un entorn de z_0 on no és nul·la, i $(z-z_0)^m$ només s'anul·la en z_0 , per tant z_0 és un punt aïllat de S i arribem a contradicció, f és nul·la a $\mathcal{D}(z_0, R) \cap \Omega$.

Sigui U l'interior del conjunt de punts de Ω on f val 0. U és obert per definició, U és tancat perquè si $w \in U' \Rightarrow w \in U$ i U no és buit, per tant $U = \Omega$.

$$\tilde{f}_1$$
 i \tilde{f}_2 compleixen $\tilde{f}_1 - \tilde{f}_2 = 0$ a U , prenem $S = U$ i per (i) tenim $\tilde{f}_1 - \tilde{f}_2$ a Ω .

3 Derivació. Funcions holomorfes

Proposició 3.1. Analítica \Rightarrow Holomorfa. Si $f(z) = \sum_{n\geq 0} a_n(z-z_0)^n$ a $\mathcal{D}(z_0,R)$, aleshores és holomorfa a tot \mathcal{D} i $f'(z) = \sum_{n>1} na_n(z-z_0)^{n-1}$.

Demostració. Les dos sèries tenen el mateix radi de convergència ($\sqrt[n]{n} \to 1$) i són abs. i unif. convergents sobre compactes de D. Siguin p_n i p'_n les sumes parcials de f i f', i $r_n = f - p_n$.

- $\exists N_2 \text{ tal que } |p'_n(z_0) f'(z_0)| < \frac{\epsilon}{3} \text{ per } n \ge N_1$
- $\exists N_1 \text{ tal que } |z_0| < r < R \implies \left| a_k \frac{z^k z_0^k}{z z_0} \right| \le |a_k| \left(|z|^{k-1} + |z|^{k-2} |z_0| + \dots + |z_0|^{k-1} \right) \le k|a_k| r^{k-1} \implies \left| \frac{r_n(z) r_n(z_0)}{z z_0} \right| = \left| \sum_{k > n} a_k \frac{z^k z_0^k}{z z_0} \le \sum_{k > n} k|a_k| r^{k-1} \right| < \frac{\epsilon}{3} \text{ per } n \ge N_2$
- $\forall n \text{ i en particular per } N = \max\{N_1, N_2\}, \exists \delta > 0 \text{ t. q. } |z z_0| < \delta \Rightarrow \left|\frac{p_n(z) p_n(z_0)}{z z_0} p_n'(z_0)\right|$

Per tant
$$\left| \frac{f(z) - f(z_0)}{z - z_0} - f'(z_0) \right| \le \left| \frac{p_N(z) - p_N(z_0)}{z - z_0} - p'_N(z_0) \right| + \left| p'_N(z_0) - f'(z_0) \right| + \left| \frac{r_N(z) - r_N(z_0)}{z - z_0} \right| < 3\frac{\epsilon}{3} \implies f'(z_0)$$
 és la derivada de f a z_0 .

Teorema 3.2. Teorema de Cauchy-Riemann.

 $f: U \to \mathbb{C}$ és derivable (complexa) a $z_0 \in U$ sii f és dierenciable (real) a z_0 , $\frac{\partial u}{\partial x}(z_0) = \frac{\partial v}{\partial y}(z_0)$ i $\frac{\partial u}{\partial y}(z_0) = -\frac{\partial v}{\partial x}(z_0)$. En aquest cas la derivada és $f'(z_0) = \frac{\partial f}{\partial x}(z_0) = -i\frac{\partial f}{\partial y}(z_0)$.

Demostraci'o. $\Longrightarrow f'(z_0) = \lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h}$, fem tendir $h \to 0$ per la recta real i la imaginària

i igualem les parts real i imaginària. A més $\lim_{h\to 0} \frac{\|f(z_0+h)-f(z_0)-Df(z_0)h\|}{\|h\|}$ amb $Df(z_0)=\begin{pmatrix} \alpha & -\beta \\ \beta & \alpha \end{pmatrix}$ on $f'(z_0)=\alpha+i\beta$

4 Integració. Teorema de Cauchy

Proposició 4.1. Designaltat triangular. $\left| \int_a^b \phi(t) dt \right| \leq \int_a^b |\phi(t)| dt$

Demostració. Suposem $\neq 0,$ si no és trivial. Si $\int_a^b \phi(t) \, \mathrm{d}t = r e^{it}, \, r \in \mathbb{R}.$

$$\left| \int_a^b \phi(t) \, \mathrm{d}t \right| = r = e^{-ia} \int_a^b \phi(t) \, \mathrm{d}t = \int_a^b \Re(e^{-ia} \phi(t)) \, \mathrm{d}t \le \int_a^b \left| e^{-ia} \phi(t) \right| \, \mathrm{d}t$$

Lema 4.2. Dos punts d'un obert connex es poden unir a través d'un contorn poligonal (esglaonat) contingut dins l'obert.

Demostració. Sigui U connex (\Leftrightarrow arc-connex a \mathbb{C}), $\gamma: [a,b] \to U$ corba entre z_1 i z_2 , $I = \{t \text{ tals que } z_1 \text{ es pot unir amb } \gamma(t) \text{ amb un contorn poligonal (esglaonat) a } U\} \subseteq [a,b]$ i $\beta = \sup I$. Suposem que $\beta < b$.

Per continuïtat de γ , $\gamma((\beta - \delta, \beta + \delta)) \subset \mathcal{D}(\gamma(\beta), \epsilon) \subset U$. Per ser β suprem, $\forall \delta \exists t \in (\beta - \gamma, \beta]$. Es pot unir $\gamma(t)$ amb $\gamma(\beta + \frac{\delta}{2})$ i z_1 amb $\gamma(t)$, els dos amb contorns poligonals (esglaonats), per tant $\beta + \frac{\delta}{2} \in I$, contradicció. Per tant $\beta = b$.

Proposició 4.3. L'índex d'un contorn tancat és enter.

Demostració.

$$\int_{\gamma} \frac{\mathrm{d}z}{z - z_0} = \int_a^b \frac{\gamma'(t)}{\gamma(t) - z_0} \, \mathrm{d}t = F(b) = F(a)$$

On F(t) és primitiva de la funció que s'integra. Pel TFC real, $F(t) = \int_a^t \frac{\gamma'(s)}{\gamma(s)-z_0} \, \mathrm{d}s$. F(a) = 0, per tant la integral val F(b). Considerem $\phi(t) = \frac{\gamma(t)-z_0}{e^{F(t)}}$, derivant es veu que $\phi'(t) = 0$, ϕ és constant i $\phi(t) = \phi(a) \forall t \implies e^{F(t)} = \frac{\gamma(t)-z_0}{\gamma(a)-z_0} e^{F(a)} \implies e^F(b) = 1$ i per tant F(b) és múltiple enter de $2\pi i$.

Proposició 4.4. Propietats de la integral de contorn.

- (i) $\left| \int_{\gamma} f(z) \, dz \right| \le M l(\gamma) \operatorname{si} |f(z)| < M \forall z \in \gamma^*$
- (ii) Si $f_n \to f$ uniformement cobre comapctes, $\int_{\gamma} f(z) dz = \lim \int_{\gamma} f_n(z) dz$. Anàlogament, si $s = \sum f_n$, $\int_{\gamma} s(z) dz = \sum \int_{\gamma} f_n(z) dz$

Demostració.

- (i) $\left| \int_a^b f(\gamma(t)) \gamma'(t) \, dt \right| \le \int_a^b \left| f(\gamma(t)) \right| \left| \gamma'(t) \right| dt \le M \int_a^b \left| \gamma'(t) \right| dt$
- (ii) $\left| \int_{\gamma} f_n(z) \int_{\gamma} f(z) \right| \leq \int_{\gamma} \left| f_n(z) f(z) \right| dz < \frac{\epsilon}{l(\gamma)} l(\gamma)$, perquè $\left| f_n(z) f(z) \right| < \frac{\epsilon}{l(\gamma)}$, per n prou gran.

Teorema 4.5. Segon Teorema Fonamental del Càlcul (Regla de Barrow). $f: U \to \mathbb{C}$ contínua que té una primitiva F a U. Per tot contorn γ ,

$$\int_{\gamma} f(z) dz = F(\gamma(b)) - F(\gamma(a))$$

Demostració. Sigui f = u + iv, F = U + iV i $\gamma = x + iy$. Considerem $F \circ \gamma$:

$$\frac{\mathrm{d}(U\circ\gamma)}{\mathrm{d}t}(t) = \frac{\partial(U\circ\gamma)}{\partial x}(x(t),y(t))x'(t) + \frac{\partial(U\circ\gamma)}{\partial y}(x(t),y(t))y'(t)$$

F'=f,per Cauchy-Riemann $u=\frac{\partial U}{\partial x}=\frac{\partial V}{\partial y}$ i $v=\frac{\partial V}{\partial x}=\frac{-\partial U}{\partial y}$ i obtenim:

$$\frac{\mathrm{d}(U \circ \gamma)}{\mathrm{d}t}(t) = u(x(t), y(t))x'(t) + v(x(t), y(t))y'(t) = \Re(f(\gamma(t))\gamma'(t))$$

i per la regla de Barrow a $\mathbb R$ la part real de la integral és $U(x(b),y(b))-U(x(a),y(a))=U(\gamma(b))-U(\gamma(a))$. Anàlogament per la part imaginària.

Corol·lari 4.6. Si $f: U \to \mathbb{C}$ és holomorfa amb derivada f' = 0, aleshores f és constant.

Demostració. Siguin $z, w \in U$ i γ contorn entre z i w, $f(z) - f(w) = \int_{\gamma} f'(z) dz = \int_{\gamma} 0 = 0$

Teorema 4.7. Primer Teorema Fonamental del Càlcul.

Sigui $f: U \to \mathbb{C}$ contínua, U connex. Si la integral sobre tot contorn tancat és 0 i la integral sobre un contorn qualsevol només depén dels punts inicial i final, f té una primitiva a U.

Demostració. Fixat un $z_0 \in U$, definim $F(z) = \int_{\gamma} f(z) dz$ on γ és un contorn que va de z_0 a z. Veurem F'(z) = f(z).

 $F(z+h) - F(z) = \int_{\gamma} f(\omega) d\omega, \ \gamma = \gamma_{z \to z+h} \text{ segment. } f(\omega) = f(z) + \psi(\omega) \text{ on } \lim_{\omega \to z} \psi(\omega) = 0.$ $F(z+h) - F(z) = \int_{\gamma} f(z) d\omega + \int_{\gamma} \psi(\omega) d\omega = f(z)h + \int_{\gamma} \psi(\omega) d\omega \le f(z)h + M_h|h|, \text{ on } M_h \text{ és una fita de } \psi(\omega) \text{ a } \gamma.$

$$\left| \frac{F(z+h) - F(z)}{h} - f(z) \right| = \left| \frac{f(z)h}{h} - \frac{\int_{\gamma} \psi(\omega) d\omega}{h} - f(z) \right| \le \frac{M_h |h|}{|h|} \to 0 \text{ quan } h \to 0.$$

Lema 4.8. Determinacions contínues de l'argument.

- (i) No existeix cap determinació contínua de $\arg(z) = \{\alpha + 2\pi k \colon k \in \mathbb{Z}\}\$ a \mathbb{C}^* .
- (ii) Dues determinacions contínues a un obert connex difereixen en una constant de la forma $2\pi n, n \in \mathbb{Z}$.

- (iii) Existeixen determinacions contínues als semiplans $x>0,\ x>0,\ y>0$ i y<0, i per tant en tot disc $\mathcal{D}\in\mathbb{C}^*$
- (iv) Si Arg: $U \to \mathbb{R}$ és una determinació contínua de arg, aleshores $\frac{\partial \text{Arg}}{\partial x} = \frac{-y}{x^2 + y^2}$ i $\frac{\partial \text{Arg}}{\partial y} = \frac{x}{x^2 + y^2}$.
- (v) Tota determinació contínua de $\log(z)$ és holomorfa amb derivada $\frac{1}{z}$.
- Demostració. (i) Suposem Arg: $\mathbb{C}^* \to \mathbb{R}$ contínua. Sigui $\phi \colon \mathbb{R} \to \mathbb{C}^*$, $\phi(\alpha) = e^{i\alpha}$, contínua i 2π -periòdica. $\Phi = \text{Arg} \circ \phi \colon \mathbb{R} \to \mathbb{R}$ és contínua i $\Phi(\alpha) \in \{\alpha + 2\pi k, k \in \mathbb{Z}\}$. $\Psi(\alpha) = \Phi(\alpha) \alpha$ contínua i pren valors a $2\pi\mathbb{Z}$. Està definida a tot \mathbb{R} (connex) i per tant és constant. $\Phi(\alpha) = \alpha + C \implies \Phi(\alpha) = \Phi(\alpha + 2\pi) \implies 2\pi = 0$ contradicció.
 - (ii) Inmediat: $Arg_1 Arg_2$ contínua
 - (iii) Es defineixen amb determinacions Arcsin i Arccos, per exemple a x > 0 és $Arg(z) = Arcsin(\frac{y}{|z|})$.

- (iv) $\operatorname{Arg}(x,y) = \operatorname{Arcsin}\left(\frac{y}{\sqrt{x^2+y^2}}\right) + 2\pi k, k \in \mathbb{Z}$, derivem respecte a x i y.
- (v) Corol·lari de les anteriors

Teorema 4.9. Integral sobre corbes rectificables.

Si γ és rectificable i f és contínua, aleshores $\int_{\gamma} f(z) dz$ existeix.

Demostraci'o. Veurem que si tenim dues particions amb diàmetre menor que δ , aleshores la diferència entre les dues sumes de Riemann és menor que ϵ . És suficient amb veure-ho en el cas que una és refinament de l'altra.

Sigui $\mathcal{P}_1 = \{t_i\}$ i $\{t_{i,k}\}_{i=0 \div n, k=0 \div j_i}$ un refinament on $t_{i-1} = t_{i,0} < t_{i,1} < \cdots < t_{i,j_i} = t_i$. La diferència entre les dues sumes de Riemann és

$$\left| \sum_{i=1}^{n} f(\gamma(t_{i}^{*}))(\gamma(t_{i}) - \gamma(t_{i-1})) - \sum_{i=1}^{n} \sum_{j=i}^{j_{i}} f(\gamma(t_{i,j}^{*}))(\gamma(t_{i,j}) - \gamma(t_{i,j-1})) \right|$$

$$\leq \sum_{i=1}^{n} \sum_{j=i}^{j_{i}} \left| f(\gamma(t_{i}^{*}) - \gamma(t_{i,j}^{*})) \right| \left| \gamma(t_{i,j}) - \gamma(t_{i,j-1}) \right|$$

 $f \circ \gamma$ és contínua i per tant unif contínua a [a, b] compacte

$$\forall \epsilon \exists \delta \text{ t. q. } \left| t - t' \right| < \delta \Rightarrow \left| f(\gamma(t)) - f(\gamma(t')) \right| < \frac{\epsilon}{l(\gamma)} \implies \sum_{i=1}^{n} \sum_{j=i}^{j_i} \left| f(\gamma(t_i^*) - \gamma(t_{i,j}^*)) \right| \left| \gamma(t_{i,j}) - \gamma(t_{i,j-1}) \right| < \frac{\epsilon}{l(\gamma)} \sum_{i=1}^{n} \sum_{j=i}^{j_i} \left| \gamma(t_{i,j}) - \gamma(t_{i,j-1}) \right| < \epsilon$$

Teorema 4.10. Teorema de Goursat.

Si $f \colon U \to \mathbb{C}$ holomorfa, aleshores per a tot triangle sòlid $\mathcal{T} \subseteq U$ es té $\int_T f(z) \, \mathrm{d}z$, on $T = \partial \mathcal{T}$

Demostració. Dividim el triangle $\mathcal{T}^{(0)} = \mathcal{T}$ en 4 triangles amb diàmetre i perímetre la meitat de l'original. Sigui $\mathcal{T}^{(1)}$ el triangle dels quatre pel qual $\left| \int_{\mathcal{T}}^{(1)} f(z) \, \mathrm{d}z \right|$ és més gran, tenim

6

 $\left| \int_{\mathcal{T}^{(0)}} f(z) \, \mathrm{d}z \right| \le 4 \left| \int_{\mathcal{T}^{(1)}} f(z) \, \mathrm{d}z \right| \le 4^n \left| \int_{\mathcal{T}^{(n)}} f(z) \, \mathrm{d}z \right|$. Sigui $z_0 = \bigcap_{n \ge 0} \mathcal{T}^{(n)}$, que és un punt (és una successió estrictament decreixent de compactes i el diàmetre tendeix a 0).

Per la definició d'holomorfa, es pot escriure $f(z) = f(z_0) + f'(z_0)(z - z_0) + \psi(z)(z - z_0)$, $\lim_{z \to z_0} \psi(z) = 0 \implies \int_{T^{(n)}} f(z) \, \mathrm{d}z = \int_{T^{(n)}} \psi(z)(z - z_0) \, \mathrm{d}z$, perquè $\int_{T^{(n)}} f(z_0) + f'(z_0)(z - z_0) = 0$ perquè la funció te primitiva a tot \mathbb{C} (és polinòmica) i la corba és tancada.

 $\psi(z) \to 0 \implies \forall \epsilon \exists \delta \text{ t. q. } |z - z_0| < \delta \Rightarrow |phi(z)| < \frac{\epsilon}{2}. \text{ Amb } n \text{ prou gran el diàmetre del triangle és menor que } \delta. \text{ Es té per } z \in \mathcal{T}^{(n)}, |z - z_0| < d_n < \delta \text{ i per tant } |\psi(z)| \epsilon_n \leq \frac{\epsilon}{2} < \epsilon \implies f(z)(z - z_0) \leq \epsilon_n d_n \implies \left| \int_{T^{(n)}} \psi(z)(z - z_0) \, \mathrm{d}z \right| \leq \epsilon_n d_n p_n \implies \left| \int_T \psi(z)(z - z_0) \, \mathrm{d}z \right| \leq \epsilon_n d_n p_n \leq \epsilon_n 2^n d_n 2^n p_n = \epsilon_n d_0 p_0 \to 0.$

Teorema 4.11. Teorema de Goursat amb singularitats.

Si $f: U \to \mathbb{C}$ holomorfa excepte en un punt on és contínua o està fitada, aleshores per a tot triangle sòlid $\mathcal{T} \subseteq U$ es té $\int_T f(z) dz$, on $T = \partial \mathcal{T}$. També val si hi ha un nombre finit de punts d'aquesta mena.

Demostraci'o. Spdg suposem que el punt z_0 és un vèrtex del triangle (si està a fora no afecta i si està a dins o a una aresta podem dividir el triangle de manera que el punt sigui un vèrtex).

Dividim $\partial \mathcal{T}^{(i)}$ en 4 triangles i agafem el $\partial \mathcal{T}^{(i+1)}$ que té z_0 com a vèrtex. La resta tenen integral 0 per Goursat. $\forall n \left| \int_T \right| = \left| \int_{T^{(n)}} \right|$, i si $M = \sup_{z \in \mathcal{T}} |f(z)|$, $\left| \int_{T^{(n)}} f \right| \leq Ml(T^{(n)}) \to 0$

Teorema 4.12. Teorema de Cauchy en un convex.

Si $f: U \to \mathbb{C}$ és holomorfa i U convex, aleshores $\int_{\gamma} f = 0$ per tot γ contorn tancat.

Demostració. Per Goursat la integral és 0 sobre tot triangle. La prova del primer TFC es pot fer igual només suposant que la integral val 0 per tot triangle. Pel primer TFC, f té primitiva en U, i pel segon, la integral val 0 per tot γ .

Observació 4.13. En particular, és cert si U és un disc

Proposició 4.14. Integral sobre camins homòtops. Si $f: U \to \mathbb{C}$ és holomorfa, $\int_{\gamma_1} f = \int_{\gamma_2} f$ per tot parell de camins homòtops.

Demostraci'o. Sigui $\phi: [0,1] \times [a,b] \to U$ l'homotopia, que és unif. contínua, per ser la imatge del domini K un compacte. Sigui $r = d(K,U^c) > 0$, i δ t. q. $|s-s'| < \delta, |r-r'| < \delta \Rightarrow |\phi(s,t) - \phi(s',t')| < \epsilon$.

Siguin $0 = s_0 < \cdots < s_n = 1, a = t_0 < \cdots < t_m = b$ amb $|s_i - s_{i-1}|, |t_i - t_{i-1}| < \delta$, i $Q_{ij} = [s_{i-1}, t_{j-1}] \times [s_i, t_j].$ $Q_{ij} \subset \mathcal{D}(\phi(s_i, t_j); r).$ Per Cauchy sobre un disc, $\int_{\partial Q_{ij}} f = 0$. $\int_{\gamma_{\phi(1,a)}, \cdots, \phi(1,b)} f - \int_{\gamma_{\phi(0,a)}, \cdots, \phi(0,b)} f = \sum_i \sum_j \int_{\partial Q_{ij}} f = 0$, perquè les interiors s'anul·len i les integrals sobre $\gamma_{\phi(0,a)}, \cdots, \phi(1,a)$ i $\gamma_{\phi(0,b)}, \cdots, \phi(1,b)$ són 0 per ser els punts inicial i final constants (es recomana fer-ne un dibuix).

 γ_1 és la concatenació dels $\gamma_{1,j} = \gamma_i \mid_{[t_{j-1},t_j]}$. A més $\int_{\gamma_{1,j}} f = \int_{\gamma_{\phi(0,j-1)\to\phi(0,j)}} f$, perquè ambdós camins estan continguts a $\mathcal{D}(\phi(0,j);r)$ (Cauchy sobre disc). Per tant $\int_{\gamma_1} f = \int_{\gamma_{\phi(0,a)\to\cdots\to\phi(0,b)}} f$, i anàlogament per $\int_{\gamma_2} f$. Com s'ha vist adés, les dues coincideixen.

Teorema 4.15. Teorema de Cauchy.

Si $f: U \to \mathbb{C}$ és holomorfa i U simplement connex, aleshores $\int_{\gamma} f = 0$ per tot γ contorn tancat.

Demostraci'o. Pel teorema anterior, el contorn tancat és homòtop al cam´ı tancat trivial (o a un triangle), la integral del qual és 0.

Corol·lari 4.16. Existència de les determinacions. Sigui $U \subseteq \mathbb{C}^*$ un obert simplement connex.

(i) Existeix una determinació del logaritme a U holomorfa amb derivada $\frac{1}{z}$. Dues determinacions difereixen en $2\pi i k, k \in \mathbb{Z}$.

- (ii) Existeix una determinació contínua de Arg(z), i dues d'aquestes difereixen en $2\pi k, k \in \mathbb{Z}$.
- (iii) Existeix una determinació de l'arrel n-èssima $\sqrt[n]{z}$ holomorfa amb derivada $\frac{\sqrt[n]{z}}{nz}$, i dues difereixen en una constant multiplicativa $e^{2\pi i k/n}$, $k \in \mathbb{Z}$.
- (iv) Existeix una determinació holomorfa de la potència ω -èssima $e^{\omega \log(z)} = z^{\omega}$, amb derivada $\omega z^{\omega-1}$, i dues difereixen en $e^{2\pi i k \omega}$, $k \in \mathbb{Z}$.

Demostraci'o.

5 Fórmula integral de Cauchy i aplicacions

Teorema 5.1. Fórmula integral de Cauchy en un disc.

Sigui $f: U \to \mathbb{C}$ holomorfa a $U, \bar{D} = \bar{\mathcal{D}}(z_0, r) \subset U$, i $C = \partial D$. Aleshores, per tot $z \in D$,

$$f(z) = \frac{1}{2\pi i} \int_C \frac{f(\zeta)}{\zeta - z} \,\mathrm{d}\zeta$$

 $\begin{array}{l} Demostraci\'o. \text{ Per Cauchy la integral sobre cada semicorona \'es} \\ 0 \text{ i es t\'e } 0 = \int_C - \int_{C_\epsilon} + \int_{\gamma_1} + \int_{-\gamma_1} + \int_{\gamma_2} + \int_{-\gamma_2} = \int_C - \int_{C_\epsilon} \forall \epsilon. \\ \text{Definim } F(\zeta) = \frac{f(\zeta) - f(z)}{\zeta - z} \text{ si } \zeta \neq z \text{ i } f'(z) \text{ a } z. \text{ } F \text{ \'es contínua i per tant fitada a } \bar{D} \subset U, |f(z)| \leq M \text{ a } \bar{D}. \end{array}$

$$\int_{C} \frac{f(\zeta)}{\zeta - z} d\zeta = \int_{C_{\epsilon}} \frac{f(\zeta)}{\zeta - z} d\zeta = \int_{C_{\epsilon}} \frac{f(\zeta) - f(z)}{\zeta - z} + \frac{f(z)}{\zeta - z} d\zeta \le$$

$$M \int_{C_{\epsilon}} d\zeta + f(z) \int_{C_{\epsilon}} \frac{1}{\zeta - z} d\zeta = M2\pi\epsilon + 2\pi i f(z) \to 2\pi i f(z)$$

Corol·lari 5.2. Teorema del valor mitjà. Sigui $f: U \to \mathbb{C}$ holomorfa, $\bar{\mathcal{D}}(z_0; r) \subseteq U$. Aleshores

$$f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{it}) dt$$

Demostració. Parametritzant $\zeta = z + re^{it}$ a la fórmula de Cauchy en el disc.

Teorema 5.3. Fórmula integral de Cauchy.

Sigui $f: U \to \mathbb{C}$ holomorfa amb U simplement connex, i γ contorn tancat. Aleshores, per tot $z \notin \gamma^*$,

$$f(z) = \frac{1}{2\pi i I_{\gamma}(z)} \int_{\partial D} \frac{f(\zeta)}{\zeta - z} d\zeta$$

Demostració. Semblant a la fórmula en el disc, però ara $\int_{\gamma} \frac{f(z)}{\zeta - z} d\zeta = f(z) 2\pi i I_{\gamma}(z)$.

Teorema 5.4. Fórmula integral de Cauchy per les derivades.

Sigui $f: U \to \mathbb{C}$ holomorfa a U, aleshores és infinitament derivable en U. A més, si $\bar{D} = \bar{\mathcal{D}}(z_0, r) \subset U$, i $C = \partial D$, es té per tot $z \in D$,

$$f^{(n)}(z) = \frac{n!}{2\pi i} \int_C \frac{f(\zeta)}{(\zeta - z)^{n+1}} d\zeta$$

Demostració. Per inducció sobre n. El cas base és la fórmula integral de Cauchy. Suposem cert per n-1. Sigui h prou petit perquè $z+h\in D$,

$$\frac{f^{(n-1)}(z+h) - f^{(n-1)}(z)}{h} = \frac{(n-1)!}{2\pi i} \int_C \frac{f(\zeta)}{h} \left(\frac{1}{(\zeta - z - h)^n} - \frac{1}{(\zeta - z)^n} \right) d\zeta$$
$$= \frac{(n-1)!}{2\pi i} \sum_{k=1}^n \int_C \frac{f(\zeta)}{(\zeta - z - h)^k (\zeta - z)^{n+1-k}} d\zeta$$

On hem fet servir l'expressió $(a^n - b^n) = (a - b)(a^{n-1} + a^{n-2}b + \cdots + b^{n-1})$ per desenvolupar la diferència de dins del parèntesi. Per demostrar el teorema només falta provar que per tot k

$$\lim_{h\to 0} \int_C \frac{f(\zeta)}{(\zeta-z-h)^k(\zeta-z)^{n+1-k}} = \int_C \frac{f(\zeta)}{(\zeta-z)^{n+1}} d\zeta$$

La diferència entre les dues integrals és, usant de nou l'expressió per $a^k - b^k$,

$$\int_{C} f(\zeta) \left(\frac{(\zeta - z)^{k} - (\zeta - z - h)^{k}}{(\zeta - z - h)^{k}(\zeta - z)^{n+1}} \right) = \int_{C} f(\zeta) h \frac{P_{z}(\zeta, h)}{(\zeta - z - h)^{k}(\zeta - z)^{n+1}}$$

on P_z és un polinomi que està fitat per $\zeta \in C$ i h fitat i el denominador està fitat inferiorment per h prou petit: si $|h| < \frac{d}{2} = \frac{d(z,C)}{2}$, es té $|\zeta - z - h| \ge |\zeta - z| - |h| \ge d - \frac{d}{2}$. Si M_1 i M_2 són fites de $|f(\zeta)|$ i $|P_z(\zeta,h)|$, la diferència entre les integrals és $\le \frac{M_1M_2|h|}{(d/2)^kd^{n+1}}l(C)$, que tendeix a zero quan $h \to 0$.

Observació 5.5. Tota funció holomorfa és \mathscr{C}^{∞} , en particular és \mathscr{C}^1

Corol·lari 5.6. Teorema de la funció inversa. Si f és holomorfa a un entorn de z_0 amb $f'(z_0) \neq 0$, aleshores existeixen entorns oberts $U \ni z_0$, $V \ni f(z_0)$, tals que $f|_U : U \to V$ és bijectiva i la inversa $f^{-1} : V \to U$ també és holomorfa amb derivada $(f^{-1})(f(z)) = f'(z)^{-1}$

Demostració. f és \mathscr{C}^1 per ser holomorfa. $f(z_0) \neq 0 \implies (Df)(z_0) \neq 0$, $Df(z_0)$ és l'aplicació lineal de multiplicar per $f'(z_0)$. Apliquem el TFI de Càlcul Diferencial, existeixen U, V com els de l'enunciat, f i f^{-1} bijectives i \mathscr{C}^1 i $D(f^{-1})(f(z)) = Df(z)^{-1}$. L'aplicació inversa és lineal i correspon a la multiplicaició per $f'(z_0)^{-1}$, que també correspon a la inversa f^{-1} en f(z). Les parcials satisfan Cauchy-Rieann, de manera que f^{-1} és derivable amb eixa derivada.

Corol·lari 5.7. Designaltats de Cauchy. Si $f(\zeta) \leq M$, $\forall \zeta \in C(z_0, R)$, aleshores

$$\left| f^{(n)}(z_0) \right| \le \frac{n!}{R^n} M$$

 $Demostraci\acute{o}. \left| f^{(n)}(z_0) \right| = \left| \frac{n!}{2\pi i} \int_C \frac{f(\zeta)}{(\zeta - z)^{n+1}} \, \mathrm{d}\zeta \right| \le \frac{n!}{2\pi} \frac{M}{R^{n-1}} l(C)$

Teorema 5.8. Teorema de Liouville.

Tota funció entera i fitada és constant.

Demostració. Donat $z_0 \in \mathbb{C}$, apliquem la designaltat de Cauchy a $C(z_0, R) \quad \forall R: |f'(z_0)| \leq \frac{M}{R} \quad \forall R \Longrightarrow |f'(z_0)| = 0$. Això és cert $\forall z_0$, per tant f és constant.

Observació 5.9. Si f entera i $|f(z)| \le |P(z)|$ per |z| > M, f és un polinomi. Es prova anàlogament a l'anterior.

Corol·lari 5.10. Teorema fonamental de l'Àlgebra (2). Tot polinomi de $\mathbb{C}[x]$ no constant té alguna arrel complexa.

Demostració. Suposem que f no té arrels, aleshores $g(z) = \frac{1}{f(z)}$ és entera no constant. $\lim_{z \to \infty} |f(z)|$ = $\infty \implies \forall M \exists r \text{ t. q. } |z| \ge r \implies |f(z)| \ge M \implies |g(z)|$ està fitada per max $\left\{\frac{1}{M_1}, \frac{1}{M_2}\right\}$, on M_2 és el mínim de f(z) a $\mathcal{D}(0;r)$. |g| és fitada i entera, per tant constant, contradicció.

Teorema 5.11. Teorema de Morera.

Invers del teorema de Cauchy: Si $f: U \to \mathbb{C}$ és contínua i $\int_{\gamma} f(z) dz = 0$ per tot contorn tancat γ a U, aleshores f és holomorfa.

Demostració. Amb les hipòtesis, pel TFC té una primitiva F a U, i f = F' és holomorfa. \square

Teorema 5.12. Convergència uniforme i holomorfia.

Siguin $(f_n)_n$, $f_n: U \to \mathbb{C}$ holomorfes. Si $(f_n) \to f$ uniformement sobre compactes de U, aleshores f és holomorfa i $(f'_n) \to f'$ uniformement sobre compactes de U.

Demostració. f és contínua per ser límit uniforme sobre compactes de f_n contínues. Sigui γ contorn tancat, $\int_{\gamma} f = \lim_{\gamma} \int_{\gamma} f_n = 0$ per Cauchy, i per Morera f és holomorfa.

Per la FI de Cauchy es té per tot z,

$$f'(z) = \frac{1}{2\pi i} \int_C \frac{f(\zeta)}{(\zeta - z)^2} = \lim \frac{1}{2\pi i} \int_C \frac{f_n(\zeta)}{(\zeta - z)^2} = \lim f'_n(z)$$

on emprem que $\frac{f_n(\zeta)}{(\zeta-z)^2} \to \frac{f(\zeta)}{(\zeta-z)^2}$ uniformement, perquè $\left| \frac{f_n(\zeta)}{(\zeta-z)^2} - \frac{f(\zeta)}{(\zeta-z)^2} \right| = \frac{f_n(\zeta) - f(\zeta)}{r^2} < \epsilon$ [1].

Falta vore que la convergència és unif sobre compactes. Siguin $K \subset U$, $R = \frac{d(K,U^c)}{2}$ i $K_1 = \{z \in U : d(z,K) < R\}$ compacte. Per tot z es té $\bar{\mathcal{D}}(z,R) \subseteq U$. Aplicant una desigualtat anàloga a [1] a K_1 per tot $\zeta \in C(z,R) \subset K_1$ tenim que $f'_n \to f$ uniformement sobre compactes dins U.

Teorema 5.13. $Holomorfa \Rightarrow Analítica$.

Sigui $f: U \to \mathbb{C}$ holomorfa i $\bar{D}(z_0; R) \subset U$. Aleshores existeix una sèrie de potències tal que

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n \quad \forall z \in \mathcal{D}$$

i el radi de convergència de la sèrie és $\geq R$. A més,

$$a_n = \frac{1}{2\pi i} \int_{C(z_0, R)} \frac{f(\zeta)}{(\zeta - z)^{n-1}} d\zeta$$

Demostració. Per la fórmula de Cauchy $f(z) = \frac{1}{2\pi i} \int_C \frac{f(\zeta)}{\zeta - z} d\zeta$.

$$\frac{1}{\zeta - z} = \frac{1}{(\zeta - z_0)(1 - \frac{z - z_0}{\zeta - z_0})} = \sum_{n=0}^{\infty} \frac{(z - z_0)^n}{(\zeta - z_0)^{n+1}}$$

on $\left|\frac{z-z_0}{\zeta-z_0}\right| < 1$, car $z \in \mathcal{D}$. Així $f(z) = \frac{1}{2\pi i} \int_C \left[\frac{f(\zeta)(z-z_0)^n}{(\zeta-z_0)^{n+1}}\right] \mathrm{d}\zeta$. f és contínua i C compacte, per tant f és fitada sobre C per M. Sigui $r = |z-z_0| < R$, $\left|\frac{f(\zeta)(z-z_0)^n}{(\zeta-z_0)^{n+1}}\right| = |f(\zeta)| \frac{r^n}{R^{n+1}} \le \frac{M}{R} \left(\frac{r}{R}\right)^n$ i $\sum \frac{M}{R} \left(\frac{r}{R}\right)^n < \infty$, la sèrie és unif convergent a C i per tant podem intercanviar sumatori i integral:

$$f(z) = \sum_{n=0}^{\infty} \left(\frac{1}{2\pi i} \int_{c} \frac{f(\zeta)}{\zeta - z_0}^{n+1} d\zeta \right) (z - z_0)^n = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

Observació 5.14. Com a corolari tenim una altra demostració de f holomorfa \implies infinitament derivable.

Corol·lari 5.15. Fórmula integral de Cauchy per les derivades (demostració alternativa).

Demostració. Sigui $\bar{D}(z_0, R) \subset U$, $C = \partial D$, $z \in D$, $r = \frac{1}{2}d(z, C)$. Apliquem el teorema anterior sobre $\mathcal{D}(z, r) \subset U$: $f(\omega) = \sum a_n(\omega - z)^n$ amb $a_n = \frac{1}{2\pi i} \int_{C(z, r)} \frac{f(\zeta)}{z - \zeta} \,\mathrm{d}\zeta = \frac{f^{(n)}(z)}{n!}$ per $\omega \in D(z, r)$, i per Cauchy $\int_{C(z, r)} \frac{f(\zeta)}{z - \zeta} \,\mathrm{d}\zeta = \int_{C(z, R)} \frac{f(\zeta)}{z - \zeta} \,\mathrm{d}\zeta$.

Teorema 5.16. Principi de prolongació analítica (2).

f,g holomorfes a un obert connex Ω . Si f(z)=g(z) per $z\in S\subset\Omega$ tal que S té un punt d'acumulació a Ω , aleshores f=g a Ω .

Alternativament, f
 holomorfa a Ω connex i hi ha un subconjunt de Ω amb un punt d'acumulació a Ω on f s'anula. Ale
shores f=0 a tot Ω .

Demostració. En demostrarem la segona forma. Sigui z_0 el punt d'acumulació, $f(z_0)=0$ per continuïtat. Vorem que f=0 en un entorn de z_0 , suposem el contrari. A $\mathcal{D}(z_0,r)$ es té $f(z)=\sum a_n(z-z_0)^n$. Sigui m el primer terme no nul (si són tots nuls ja ho tindríem), $f(z)=(z-z_0)^m(a_m+a_{m+1}(z-z_0)+\cdots)=(z-z_0)^mg(z)$, g contínua. $g(z_0)=a_m$, g no s'anula en un entorn de z_0 i $(z-z_0)^m$ només s'anula en z_0 , per tant z_0 és un zero aïllat de f, contradicció. Per tant f=0 en un entorn U de z_0 .

U és un obert. Tota successió de punts de U convergent té límit a U, perquè conté tot punt d'acumulació del conjunt de zeros, per tant U és tancat. U és obert i tancat, i no és el buit $(z_0 \in U)$, per tant és el total $U = \Omega$.

Observació 5.17. Si f és holomorfa a U i $U \subset \Omega$ obert connex, existeix com a màxim una \tilde{f} holomorfa a Ω tal que $\tilde{f}|_{U} = f$.

Proposició 5.18. Existència del logaritme i l'arrel. Si $f: \Omega \to \mathbb{C}$ holomorfa, Ω obert simplement connex, $f(z) \neq 0 \quad \forall z \in \Omega$, aleshores existeixen funcions:

- (1) Log $f: \Omega \to \mathbb{C}$ holomorfa tal que $e^{\text{Log } f(z)} = f(z) \quad \forall z \in \Omega$, que té derivada $\frac{f(z)}{f'(z)}$.
- (2) $f^{1/n} \colon \Omega \to \mathbb{C}$ holomorfa tal que $\left(f^{1/n}(z)\right)^n = f(z) \quad \forall z \in \Omega$, que té derivada $\frac{f^{1/n}(z)f'(z)}{nf(z)}$.

Demostració. $\frac{f(z)}{f'(z)}$ està ben definida i és holomorfa a Ω , per tant té una primitiva F, única llevat de constant. Amb constant adeqüada $f(z_0) = e^{F(z_0)}$ en algun punt z_0 de Ω . La funció $f(z)e^{-F(z)}$ és holomorfa amb derivada $f'(z)e^{-F(z)} + f(z)e^{-F(z)} - \frac{f'(z)}{f(z)} = 0$, per tant és constant. La constant és 1 perquè pren aquest valor a z_0 . Per tant $e^{F(z)} = f(z)$. Per (2), agafem $f^{1/n}(z) = e^{\frac{1}{n} \log f(z)}$.

Teorema 5.19. Principi del mòdul màxim i mínim.

Si f és holomorfa i no constant a un obert connex Ω , el valor absolut |f| no té màxims locals a Ω . A més, si té mínims locals són els punts on f(z) = 0.

Demostració. Sigui z_0 un màxim local i $D = \mathcal{D}(z_0; R)$ on $|f(z_0)| \ge |f(z)| \quad \forall z \in D$. Provarem que $f(z) = f(z_0)$ a D i per prolongació analítica f constant a D.

Pel teorema del valor mitjà i la desigualtat triangular $\forall r < R$ tenim

$$|f(z_0)| \le \frac{1}{2\pi} \int_0^{2\pi} |f(z_0 + re^{it})| dt \le \frac{1}{2\pi} \int_0^{2\pi} |f(z_0)| = |f(z_0)|$$

Per tant les designaltats són ignaltats i $\left|f(z_0 + re^{it})\right| = |f(z_0)|$. La segona part es dedueix aplicant la primera a $\frac{1}{|f|}$

Teorema 5.20. Teorema de l'aplicació oberta.

Si f és holomorfa no constant a un obert connex Ω , aleshores f(U) és obert per tot $U \subseteq \Omega$ obert.

Demostració. Hem de veure que $\forall z \in U$ existeix ϵ tal que $\mathcal{D}(f(z_0); \epsilon) \subset f(U)$. Suposarem spdg que $f(z_0) = 0$.

 $U \ni z_0$ obert, $\exists r$ t.q. $\bar{\mathcal{D}}(z_0, r) \subset U$. f és no constant i holomorfa, pel T^a de prolongació analítica f no s'anula a cap punt $\neq z_0$ de U. Sigui $\epsilon = \frac{1}{2} \min \{ |f(z)| : z \in C > 0 \}$, $C = C(z_0; r)$.

Considerem per cada $w \in \mathcal{D}(0;\epsilon)$ la funció $f_w(z) := f(z) - w$. Tenim per $\zeta \in C(z_0,r)$, $|f_w(\zeta)| \ge |f(\zeta)| - |w| > 2\epsilon - \epsilon$, i per altra banda $|f_w(z_0)| = |w| < \epsilon$. Per tant f_w és contínua en un compacte, pren un calor mínim a $\mathcal{D}(z_0;r)$ i pel principi del mòdul mínim eixe mínim val 0. Això vol dir que, per tot w, f(z) = w per a cert $z \in \mathcal{D}(z_0,r)$, és a dir, w pertany a la imatge f(U). Per tant $\mathcal{D}(0;\epsilon) \subset f(\mathcal{D}(z_0,r) \subset f(U)$.

Lema 5.21. Siguin $\gamma \colon [a,b] \to \mathbb{C}$ i $\eta \colon [c,d] \to \mathbb{C}$ contorns, $\Phi \colon \gamma^* \times \eta^* \to \mathbb{C}$ contínua. Aleshores

$$\int_{\gamma} \left(\int_{\eta} \Phi(z,\zeta) \, \mathrm{d}\zeta \right) \mathrm{d}z = \int_{\eta} \left(\int_{\gamma} \Phi(z,\zeta) \, \mathrm{d}z \right) \mathrm{d}\zeta$$

Demostraci'o.

$$\int_{\gamma} \left(\int_{\eta} \Phi(z,\zeta) \, d\zeta \right) dz = \int_{c}^{d} \left(\int_{a}^{b} \Phi(z,\zeta) \eta'(s) \, ds \right) \gamma'(t) \, dt$$

$$= \int_{c}^{d} \left(\int_{a}^{b} \Phi(z,\zeta) \eta'(s) \gamma'(t) \, ds \right) dt = \int_{a}^{b} \left(\int_{c}^{d} \Phi(z,\zeta) \eta'(s) \gamma'(t) \, dt \right) ds$$

$$= \dots = \int_{e} ta \left(\int_{\gamma} \Phi(z,\zeta) \, dz \right) d\zeta$$

On hem aplicat el teorema de Fubini (Càlcul Integral) a les components real i imaginària de la funció Φ , que són contínues.

Teorema 5.22. Derivació sota el signe integral.

Sigui $\gamma \colon [a,b] \to \mathbb{C}$ contorn, $\Phi \colon U \times \gamma^* \to \mathbb{C}$ amb U obert tals que:

- (1) Φ és contínua a $U \times \gamma^*$
- (2) $z \mapsto \Phi(z,\zeta)$ és holomorfa a U $\forall \zeta \in \gamma^*$
- (3) $\frac{\partial \Phi}{\partial z}(z,\zeta)$ és contínua a $U \times \gamma^*$

aleshores $f(z) = \int_{\gamma} \Phi(z,\zeta) d\zeta$ és holomorfa a U i $f'(z) = \int_{\gamma} \frac{\partial \Phi}{\partial z}(z,\zeta) d\zeta$.

Demostraci'o. La propietat és local i es pot reduir la demostraci\'o al cas que U és un disc. f (que és contínua) és holomorfa pel teorema de Morera. Sigui η un entorn tancat,

$$\int_{\eta} f = \int_{\eta} \int_{\gamma} \Phi(z, \zeta) \, d\zeta \, dz \stackrel{\text{lema}}{=} \int_{\gamma} \int_{\eta} \Phi \stackrel{\text{Cauchy}}{=} \int_{\gamma} 0 = 0$$

Per la FI de Cauchy aplicada a f,

$$f'(w) = \frac{1}{2\pi i} \int_C \left(\int_{\gamma} \frac{\Phi(z,\zeta)}{(z-w)^2} \, \mathrm{d}\zeta \right) \mathrm{d}z \stackrel{\text{lema}}{=} \int_{\gamma} \left(\frac{1}{2\pi i} \int_C \frac{\Phi(z,\zeta)}{(z-w)^2} \, \mathrm{d}z \right) \mathrm{d}\zeta = \int_{\gamma} \frac{\partial \Phi}{\partial z}(z,\zeta) \, \mathrm{d}\zeta$$

6 Funcions meromorfes i residus

Teorema 6.1. Teorema de Riemann d'evitació de singularitats.

Tota funció holomorfa i fitada a l'entorn d'una singularitat z_0 es pot estendre a z_0 de manera holomorfa (la singularitat és evitable).

En donem dues demostracions:

Demostració. Si f és holomorfa i fitada a $\mathcal{D}'(z_0; r)$, per Goursat per tot triange $T \subset \mathcal{D}'$ es té $\int_T f = 0$, pel TFC f té una primitiva F a \mathcal{D}' que està definida a \mathcal{D} . Aleshores definim $f(z_0) = F'(z_0)$ i obtenim una extensió holomorfa (F és holomorfa a z_0 : ho és on f contínua i és contínua a z_0 , on també és holomorfa si $\Phi = \int F$ i fem $f(z_0) = \Phi''(z_0)$).

Demostració. Definim $g(z) = (z - z_0)^2 f(z)$ a $z \neq 0$ i $g(z_0) = 0$. És holomorfa a $\mathcal{D}'(z_0, r)$. A z_0 també: $\lim_{z \to z_0} \frac{g(z) - g(z_0)}{z - z_0} = \lim_{z \to z_0} \frac{(z - z_0)^2) f(z)}{z - z_0} = 0$ perquè f és fitada. g és holomorfa i per tant analítica a $\mathcal{D}(z_0, r)$, $g(z) = \sum_{z \to z_0} a_n (z - z_0)^n = (z - z_0)^2 \sum_{z \to z_0} a_{n+2} (z - z_0)^n$ i aquesta segona sèrie és una extensió holomorfa de f a z_0 .

Observació 6.2. El recíproc és trivialment cert.

Corol·lari 6.3. f holomorfa a U obert, $z_0 \in U$. $f(z_0) = 0$ sii $f(z) = (z - z_0)g(z)$ amb g(z) holomorfa.

 $Demostraci\'o. \ \text{La implicaci\'o inversa\'es certa per definici\'o. Definim } g(z) = \begin{cases} \frac{f(z) - f(z_0)}{z - z_0} & \text{si } z \neq z_0 \\ f'(z_0) & \text{si } z = z_0 \end{cases}.$

g és holomorfa a $U \setminus \{z_0\}$ i contínua a $z_0 \implies g$ fitada en un entorn de $z_0 \stackrel{\text{teor}}{\Longrightarrow}$ Es pot definir g perquè sigui holomorfa a z_0 i satisfarà $g(z_0) = f'(z_0)$, doncs g és holomorfa $\Longrightarrow g$ contínua $\Longrightarrow \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = \lim_{z \to z_0} g(z) \implies g$ és holomorfa a U.

Corol·lari 6.4. Ordre d'un zero. Si f és holomorfa a U, $z_0 \in U$, $f(z_0) = 0$ i f no és localment zero a z_0 , aleshores existeix un únic $m \in \mathbb{N}$ tal que $f(z) = (z - z_0)^m g(z)$ amb g(z) holomorfa a z_0 i $g(z_0) \neq 0$.

Demostració. Aplicant reiteradament el resultat anterior podem escriure f amb aquesta forma, vegem que és única. Suposem que $f(z) = (z - z_0)^m g(z) = (z - z_0)^{m'} h(z)$ amb $m \ge m'$. Llavors $(z - z_0)^{m-m'} g(z) = h(z)$, i $h(z_0) \ne 0$, per tant m = m'. A més g = h a $U \setminus \{z_0\}$ i per continuïtat $g(z_0) = h(z_0)$.

Teorema 6.5. Sigui $f: U \to \mathbb{C}$ holomorfa, $z_0 \in U$, f no localment constant a z_00 . Sigui $w_0 = f(z_0)$ i $m: = \operatorname{ord}_{z_0}(f(z) - w_0) \ge 1$ (és a dir, s'anula a z_0 . Aleshores existeix un entorn $U \ni z_0$ tal que:

- (i) $f(z) = w_0 + h(z)^m$ amb h holomorfa a $U, h(z_0) = 0, h'(z_0) \neq 0$.
- (ii) Tot punt $w \in f(U) \setminus \{w_0\}$ té exavtament m antiimatges diferents per f.
- (iii) w_0 té una única antiimatge a U (que és z_0).

Demostració.

(i) $f(z) - w_0 = (z - z_0)^m g(z)$ amb g holomorfa i $g(z_0) \neq 0$. Per continuïtat de g, existeix R tal que g no s'anula a $\mathcal{D}(z_0, R)$, i aleshores existeix $z \mapsto g(z)^{1/m}$ holomorfa en \mathcal{D} (que és simplement connex). Sigui $h(z) = (z - z_0)g(z)^{1/m}$, holomorfa a \mathcal{D} amb $h(z_0) = 0$. $h'(z_0) = g(z_0)^{1/m} \neq 0$ (comproveu-ho) i $f(z_0) = w_0 + f(z_0) - w_0 = w_0 + (z - z_0)^m g(z) = w_0 + h(z)^m$.

- (iii) En aquest obert, $h(z) = (z z_0)h(z)^{1/m}$ només s'anulla en $z = z_0$ en el disc, per ser $g(z) \neq 0$ en tots els punts del disc. Per tant $f(z) \neq w_0$ per tot $z \neq z_0$ de $\mathcal{D}(z_0, R)$.
- (ii) Pel teorema de la funció inversa aplicat a h, existeixen entorns $U \subseteq \mathcal{D}(z_0, R)$ de z_0 i V de $h(z_0) = 0$ tals que $h: U \to V$ és un difeomorfisme. Prenent $\mathcal{D}(0, r) \subseteq V$ podem suposar que V és un disc i $U = h^{-1}(V)$. Sigui $w = f(z) \in f(U) \setminus \{w_0\}$. $h(z) \neq 0 \implies e^{2\pi i k/m} h(z) \in \mathcal{D}(0; r)$ per $k = 0, \ldots, m-1$ i són tots diferents. Les seues antiimatges per h, z_k' , són diferents per la bijectivitat de h, i $f(z_k') = w_0 + h(z_k')^m = w_0 + \left(e^{2\pi i k/m} h(z)\right)^m = w_0 + h(z)^m = f(z) = w$, i per tant són m antiimatges diferents de w. Per veure que no n'hi ha més, sigui $z' \in U$ tal que f(z') = f(z). Aleshores $w_0 + h(z')^m = w_0 + h(z)^m \implies \left(\frac{h(z')}{h(z)}\right)^m = 1 \implies h(z') = e^{2\pi i k/m} h(z)$

Corol·lari 6.6. Si f és holomorfa i injectiva en un obert U, aleshores $f'(z) \neq 0 \quad \forall z \in U$ i $f: U \to f(U)$ és un difeomorfisme.

Demostració. Si $f'(z_0) = 0$ per a cert $z_0 \in U$, aleshores $m = \operatorname{ord}_{z_0}(f(z) - f(z_0) \ge 2$ i per (ii) f no és injectiva, contradicció.

Proposició 6.7. Ordre d'un pol. Una singularitat z_0 és un pol sii f es pot escriure a l'entorn del punt, de manera única, com $f(z) = \frac{g(z)}{(z-z_0)^m}$ amb $m \in \mathbb{N}^+$, g(z) holomorfa i $g(z_0) \neq 0$.

Demostraci'o. $\rightleftharpoons \lim_{z \to z_0} f(z) = \lim_{z \to z_0} \frac{g(z)}{(z-z_0)^m} = \infty$ per ser g fitada a un entorn de z_0 \Longrightarrow Sigui $\mathcal{D}'(z_0; R)$ on f no s'anula i $f_1(z) = \frac{1}{f(z)}$ holomorfa en aquest disc amb $\lim_{z \to z_0} f_1(z) = 0$. Pel teorema de Riemann d'evitaci\'o, f_1 és fitada en un entorn de z_0 i la podem estendre holomorfament a $\mathcal{D}(z_0; R)$ amb $f_1(z_0) = 0$, i serà $f_1(z) = (z-z_0)^m g_1(z)$, g holomorfa amb $g_1(z_0) \neq 0$. Definim $g(z) = (z-z_0)^m f(z)$ a $z \neq z_0$, que satisfà la fórmula, i l'estenem holomorfament a \mathcal{D} fent $g(z_0) = \frac{1}{g_1(z_0)}$. g és única, es demostra anàlogament a quan z_0 és un zero (6.4). \square

Teorema 6.8. Teorema de Casorati-Weierstrass.

Una singularitat z_0 d'una funció holomorfa és essencial si
i la imatge de tot entorn seu és densa a $\mathbb C$

Demostració. \subseteq Si és evitable la imatge d'un entorn prou petit és fitada i per tant no és densa a \mathbb{C} . Anàlogament, si és un pol la imatge d'un entorn prou petit és fitada inferiorment.

Sigui $\mathcal{D}'(z_0;R)$ un entorn on la imatge no és densa a \mathbb{C} , existeix $w \in \mathbb{C}, r > 0$ tal que $f(\mathcal{D}'(z_0;R)) \cap \mathcal{D}(w,r) \neq \emptyset$. Definim $g(z) = \frac{1}{f(z)-w}$ a $\mathcal{D}'(z_0;R)$, que està ben definida, és holomorfa i està fitada $(|f(z)-w| \geq r)$. Pel teorema de Riemann d'evitació, podem definir $g(z_0)$ de manera que g és holomorfa a $\mathcal{D}(z_0;R)$. $\lim_{z\to z_0} f(z) = \lim_{z\to z_0} \frac{1}{g(z)} + w$. Si $g(z_0) \neq 0$ el límit és un nombre complex i la singularitat és evitable, i si és 0 el límit és ∞ i és un pol, la singularitat no és essencial.

Proposició 6.9. El conjunt $\mathcal{M}(\Omega)$ de les funcions meromorfes en un obert connex Ω és un cos.

Demostració. Sigui $z_0 \in \Omega$ i $f, g \in \mathcal{M}(\Omega)$.

- Suma: Si f és localment zero a z_0 , és zero a Ω i $f+g=g\in\mathcal{M}(\Omega)$. Si no, $f(z)=(z-z_0)^m\phi(z)$ i $g(z)=(z-z_0)^n\psi(z),\ \phi,\psi\neq 0$. Spdg, $m\geq n$ i $(f+g)(z)=(z-z_0)^n(\psi(z)+(z-z_0)^{n-m}\phi(z))=(z-z_0)^nh(z)$. Si $h\equiv 0,\ f+g\equiv 0$ holomorfa. Si no, $h(z)=(z-z_0)^p\chi(z)\Longrightarrow (f+g)=(z-z_0)^{n+p}\chi(z)$ meromorfa.
- Producte: $(fg)(z) = (z-z_0)^{m+n}\phi(z)\psi(z)$, que és holomorfa si $m+m \geq 0$ i un pol si m+n < 0.

• Inversa: $(\frac{1}{f})(z) = (z - z_0)^{-m} \frac{1}{\psi(z)}$ meromorfa.

Corol·lari 6.10.

• $\operatorname{ord}_{z_0}(f+g) \ge \min \left\{ \operatorname{ord}_{z_0}(f), \operatorname{ord}_{z_0}(g) \right\}$

- $\operatorname{ord}_{z_0}(fg) = \operatorname{ord}_{z_0}(f) + \operatorname{ord}_{z_0}(g)$
- $\operatorname{ord}_{z_0}(\frac{1}{f}) = -\operatorname{ord}_{z_0}(f)$

Proposició 6.11. Tota sèria de Laurent $f(z) = \sum_{n=-\infty}^{+\infty} a_n (z-z_0)^n$ és absolutament convergent a la corona circular $\mathcal{D}(z_0; r, R)$ on $r = \limsup_{n \to \infty} \sqrt[n]{|a_{-n}|}$ i $R^{-1} = \limsup_{n \to \infty} \sqrt[n]{|a_n|}$ i és divergent a l'exterior de la corona.

A més és uniformement convergent sobre compactes en aquesta corona i per tant defineix una funció holomorfa.

Demostració. La part ordinària és abs conv en $|z-z_0| < R$ i divergent en $|z-z_0| > R$. La part principal $\sum_{n \ge 1} a_{-n} (\frac{1}{z-z_0})^n$ és abs conv si $\frac{1}{|z-z_0|} \le \frac{1}{r}$ i divergent si $|z-z_0| < r$. Per tant cal que $R > |z-z_0| < r$.

Sigui $K \in \mathcal{D}(z_0; r, R)$ compacte, $m = \min_k |z - z_0|$ i $M = \max_k |z - z_0|$. Aplicarem el criteri M de Weierstrass. $|a_n(z - z_0)^n| \le |a_n| M^n$ i $\sum |a_n| M^n$ convergent perquè M < R, i anàlogament per m i $|a_{-n}|$.

Lema 6.12. Sigui $f(z) = \sum_{n=-\infty}^{+\infty} a_n (z-z_0)^n$ a $\mathcal{D}(z_0; r, R)$ i $r < \rho R$, $C = C(z_0; \rho)$. Aleshores $\int_C f = 2\pi i a_{-1}$

Demostració.

$$\int_C f(z) dz = \int_C \sum_{n = -\infty}^{+\infty} a_n (z - z_0)^n dz = \sum_{n \in \mathbb{Z} \setminus \{-1\}} \left[a_n \int_C (z - z_0)^n dz \right] + a_{-1} \int_C \frac{dz}{z - z_0} = 0 + 2\pi i$$

Les integrals del sumatori valen 0 perquè $(z-z_0)^n$ té primitiva sempre que $n \neq -1$.

Lema 6.13. Teorema de Cauchy a una corona. Si $f: U \to \mathbb{C}$ holomorfa, $\bar{\mathcal{D}}(z_0; r, R) \subset U$, aleshores $\int_{C_R} f - \int_{C_r} f = 0$.

Demostraci'o. $\int_{C_R} * \int_{C_r} = \int_{\gamma_1} + \int_{\gamma_2} = 0 + 0$ per Cauchy.

Proposició 6.14. Fórmula integral de Cauchy a una corona. Sigui $f: U \to \mathbb{C}$ holomorfa, $\bar{\mathcal{D}}(z_0; r, R) \subset U$. Aleshores $\forall z \in \mathcal{D}(z_0; r, R)$,

$$f(z) = \frac{1}{2\pi i} \int_{C_R} \frac{f(\zeta)}{\zeta - z} d\zeta - \frac{1}{2\pi i} \int_{C_r} \frac{f(\zeta)}{\zeta - z} d\zeta$$

Demostració.

Proposició 6.15. Sigui $f: U \to \mathbb{C}$ holomorfa, $\bar{\mathcal{D}}(z_0; r, R) \subset U$. Aleshores existeix una única descomposició $f = f_1 + f_2$ tal que f_1 és holomorfa a $\mathcal{D}(z_0; R) \cup U$ i f_2 és holomorfa a $\mathcal{D}(z_0; r)^C \cup U$ amb $\lim_{z \to \infty} f_2(z) = 0$

 \square

Teorema 6.16. Si f és holomorfa a una corona $\mathcal{D}(z_0; r, R)$ aleshores ve donada per una única sèrie de Laurent $\forall z \in \mathcal{D}(z_0; r, R)$ de coeficients $a_n = \frac{1}{2\pi i} \int_C \frac{f(\zeta)}{(\zeta - z)^{n+1}} \,\mathrm{d}\zeta$ per tot $n \in \mathbb{Z}$, on $C = C(z_0, \rho)$ amb $r < \rho < R$.

Demostracio.

Corol·lari 6.17. Si z_0 és una singularitat d'una funció holomorfa en algun entorn perforar seu, té un desenvolupament de Laurent en l'entorn i la singularitat és:

- Evitable si $a_{-n} = 0 \quad \forall n \ge 1$.
- Pol si $a_{-n} = 0 \quad \forall n \ge m$ per algun m > 1 tal que $a_{-m} \ne 0$.
- Essencial si $a_{-n} \neq 0$ per infinits $n \geq 1$.

Demostració. Si és evitable es pot expressar com a sèrie només amb part principal, si és un pol $f(z) = \frac{g(z)}{(z-z_0)^m} \implies f(z) = \frac{1}{(z-z_0)^m} \sum_{n \geq 0} a_n (z-z_0)^m = \sum_{n \geq -m} a_{n+m} (z-z_0)^n$, i altrament és essencial.

Lema 6.18. Si z_0 és un pol simple, $\operatorname{Res}(f, z_0) = \lim_{z \to z_0} (z - z_0) f(z)$, i en general si és un pol de multiplicitat m, $\operatorname{Res}(f, z_0) = \frac{1}{(m-1)!} \lim_{z \to z_0} \frac{d^{m-1}}{dz^{m-1}} \underbrace{((z - z_0)^m f(z))}_{g(z)}$

Demostració.
$$f(z) = \sum_{n \geq -m} a_n (z - z_0)^n$$
 i per tant $g(z) = \sum_{n \geq 0} a_{n-m} (z - z_0)^n$ i el coeficient a_{-1} s'obté amb $n = m-1$, que és $\frac{1}{(m-1)!} \lim_{z \to z_0} g^{(m-1)}(z)$

Teorema 6.19. Teorema del residu.

Sigui $f: U \setminus S \to \mathbb{C}$ holomorfa i $S \subset U$ un conjunt de singularitats aïllades de f. Si $\bar{\mathcal{D}} \subset U$ és un disc tancat i $C = \partial D$ no passa per cap singularitat,

$$\int_C f(z) dz = 2\pi i \sum_{z_i \in D \cap S} \text{Res}(f, z_i)$$

Demostraci'o.

Teorema 6.20. Principi de l'argument.

Sigui f és meromorfa a un obert U i $S = f^{-1}(\{0,\inf\})$ els seus zeros i pols. Si $\bar{\mathcal{D}} \subset U$ és un disc tancat i $C = \partial D$ no passa per cap zero ni pol,

$$\frac{1}{2\pi i} \int_C \frac{f'(z)}{f(z)} dz = \sum_{z_i \in D \cap S} \operatorname{ord}_{z_i}(f) \in \mathbb{Z}$$

Demostració. f'/f és holomorfa als punts que no són zeros ni pols de f. Si f té un zero o un pol a z_i , $f(z) = (z - z_i)^m g(z)$ amb $m \in \mathbb{Z} \setminus \{0\}$ i g holomorfa a un entorn de z_i , $g(z_i) \neq 0$. $f'(z) = m(z-z_i)^{-1}g(z) + (z-z_i)^n g'(z) \Longrightarrow \frac{f'(z)}{f(z)} = \frac{m}{z-z_i} + \frac{g'(z)}{g(z)} = \frac{m}{z-z_i} + \sum_{n\geq 0} a_n(z-z_i)^n \Longrightarrow \operatorname{Res}(\frac{f'}{f}, z_i) = m$, on hem emprat que g'/g és holomorfa en un entorn de z_i . Pel teorema del residu, $\frac{1}{2\pi i} \int_C \frac{f'(z)}{f(z)} dz = \frac{1}{2\pi i} 2\pi i \sum_{z_i \in D \cap S} \operatorname{Res}(\frac{f'}{f}, z_i) = \sum_{z_i \in D \cap S} \operatorname{ord}_{z_i}(f)$. \square

Teorema 6.21. Teorema de Rouché.

Si f i g són holomorfes a U, $D \subset U$ disc de vora C i $|f(z)| > |g(z)| \quad \forall z \in C$. Aleshores f i f+g tenen el mateix nombre de zeros a D, comptant multiplicitats.

$$Demostració$$
.

Observació 6.22. El TFA és pot demostrar a partir del teorema de Rouché, agafant $f(z) = a_0 + a_1 z \cdots + a_n z^n$ i $g(z) = -a_0 - a_1 z - \cdots - a_{n-1} z^{n-1}$.