Grundbegriffe der Theoretischen Informatik

Sommersemester 2018 - Thomas Schwentick

Teil D: Komplexitätstheorie

17: Polynomielle Zeit

Version von: 21. Juni 2018 (14:11)

Inhalt

> 17.1 Zwei algorithmische Probleme

- 17.2 Berechnungsaufwand und Komplexitätstheorie
- 17.3 Laufzeit und erweiterte Church-Turing-These
- 17.4 Effizient lösbare Entscheidungsprobleme
- 17.5 Optimierungs- vs. Entscheidungsprobleme

Sparsamer Brückenbau

Beispiel

- Einst lebten in einem fernen Inselreich die Algolaner
- Sie wohnten verstreut auf allen sieben Inseln
- Zwischen den sieben Inseln und dem Festland verkehrten mehrere Fähren, die gegenseitige Besuche und Ausflüge auf das Festland ermöglichten
- Die Fährverbindungen sind in der Karte gestrichelt eingezeichnet
- Die Zahlen geben die Länge der Fährverbindungen in Metern an

Beispiel (Forts.)

- Bei stürmischem Wetter kam es regelmäßig vor, dass eine Fähre kenterte
- Deshalb beschlossen die Algolaner, einige Fährverbindungen durch Brücken zu ersetzen
- Natürlich sollte der Bauaufwand dafür möglichst gering sein
- Das Beispiel führt uns zu dem Problem der Minimalen Spannbäume
- Das Beispiel stammt von Katharina Langkau und Martin Skutella (TU Berlin)
- Die Quelle zu diesem Beispiel und viel mehr über Algorithmen finden Sie unter "Algorithmus der Woche"

Minimale Spannbäume

Beispiel: ein Spannbaum

Gewicht: 46

Definition (MINSPANNINGTREEO)

Gegeben: Graph G = (V, E)

ungerichtet, zusammenhängend

Gewichtsfunktion $\ell: E o \mathbb{N}$

Gesucht: Aufspannender Baum $T\subseteq E$ von Gmit minimalem Gesamtgewicht $\sum \ell(e)$ $e \in T$

Minimale Spannbäume: Algorithmus

Algorithmus von Prim

Eingabe: Graph G = (V, E),

Gewichtsfunktion ℓ

Ausgabe: Spannbaum (V,T), $T\subseteq E$,

minimalen Gewichts

r := beliebiger Knoten aus V

$$R := \{r\}; Q := V - \{r\}$$

$$T := \emptyset$$

WHILE $Q \neq arnothing$ DO

 $(oldsymbol{u},oldsymbol{v}) :=$ Kante minimalen Gewichts

mit
$$u \in R, v \in Q$$

$$T := T \cup \{(u, v)\}$$

$$R := R \cup \{v\}$$

$$Q := Q - \{v\}$$

END

Ausgabe $oldsymbol{T}$

• Aufwand, bei geschickter Implementierung:

$$\mathcal{O}(|oldsymbol{V}|\log(|oldsymbol{V}|)+|oldsymbol{E}|)$$
 Schritte

Komfortabler Brückenbau

Beispiel

- Nach reiflicher Überlegung beschloss das Oberhaupt des Inselstaates, für den Brückenbau ein anderes Optimierungskriterium zu verwenden:
 - Die Brücken sollten so konstruiert werden, dass er auf seiner wöchentlichen Rundreise durch sein Reich einen möglichst kurzen Brückengesamtweg zurücklegen muss

Minimale Kreise

Beispiel

Gesamtstrecke: 41

Definition (MINCYCLEO)

Gegeben: Graph G = (V, E)

ungerichtet, zusammenhängend

Entfernungsfunktion $\ell: E o \mathbb{N}$

Gesucht: Kreis $K\subseteq E$ durch alle Knoten mit minimalem Gesamtgewicht $\sum_{e\in K}\ell(e)$ (oder \perp)

Minimale Kreise: Algorithmus

- Algorithmus für MINCYCLEO:
 - Zähle alle Folgen v_{i_1}, \ldots, v_{i_n} von Knoten von G auf, die jeden Knoten genau einmal enthalten
 - Teste jeweils, ob $(v_{i_1}, v_{i_2}) \ldots, (v_{i_n}, v_{i_1})$ ein Kreis ist
 - Wähle den Kreis mit minimalem Kantengewicht aus
- ullet Aufwand im schlimmsten Fall: mindestens $n! \sim (rac{n}{e})^n \sqrt{2\pi n}$
- Ein wesentlich besserer Algorithmus ist nicht bekannt

- MINCYCLEO ist eine Variante des Problems des Handlungsreisenden ("Traveling Salesperson"):
 - Ein Handlungsreisender soll eine gegebene Menge von Städten auf einer möglichst kurzen Rundreise besuchen
 - Viele Anwendungen:
 - * Transport- und Logistikprobleme (Paketdienst, Schulbus, Versand,...)
 - * Maschinensteuerung

Effizient lösbare algorithmische Probleme: Vorbemerkungen

- In Teil C der Vorlesung ging es um die Frage, welche algorithmischen Probleme überhaupt mit Computern gelöst werden können
 - Dabei haben wir uns dann vor allem mit Problemen beschäftigt, die nicht lösbar sind
- Wenn ein Problem wirklich mit Computern gelöst werden soll, genügt es aber nicht, dass es prinzipiell lösbar ist
- Es sollte auch einigermaßen "effizient" lösbar sein
 - Wenn das Ergebnis einer Berechnung erst nach einigen Menschengenerationen vorliegt, könnte es sein, dass die Frage schon in Vergessenheit geraten ist: 42
- In Teil D der Vorlesung geht es um die Grenze zwischen algorithmischen Problemen, die effizient mit Computern gelöst werden können, und solchen, die (scheinbar) nicht effizient lösbar sind

- In diesem Kapitel beschäftigen wir uns mit folgenden Fragen
- Wie wird der Berechnungsaufwand eines Algorithmus bzw. eines algorithmischen Problems definiert?
 - Welche Rolle spielt dabei die Kodierung der Eingabe?
 - Welche Rolle spielt das zugrunde gelegte Berechnungsmodell?
- Welche Arten von Ressourcenbeschränkungen von Berechnungen werden (üblicherweise) betrachtet?
- Wann wird ein algorithmisches Problem als effizient lösbar betrachtet?

Inhalt

- 17.1 Zwei algorithmische Probleme
- > 17.2 Berechnungsaufwand und Komplexitätstheorie
 - 17.3 Laufzeit und erweiterte Church-Turing-These
 - 17.4 Effizient lösbare Entscheidungsprobleme
 - 17.5 Optimierungs- vs. Entscheidungsprobleme

Ressourcen

- Der Aufwand einer Berechnung lässt sich hinsichtlich verschiedener Ressourcen messen:
 - Laufzeit
 - Benötigter Speicherplatz
 - Energieverbrauch
 - Anzahl Prozessoren
 - **–** ...
- Die mit Abstand am meisten betrachteten Ressourcen sind dabei Laufzeit und Speicherplatz
- Speicherplatz kann eine wesentlich kritischere Ressource sein als Laufzeit, da er nicht alleine durch Geduld vergrößert werden kann
- In dieser Vorlesung werden wir uns aber fast ausschließlich mit Laufzeit beschäftigen

Laufzeit: asymptotischer Worst-Case-Aufwand

- Wie schon aus DAP 2 bekannt ist, wird meist das asymptotische Laufzeitverhalten von Algorithmen betrachtet:
 - Der Aufwand wird als Funktion in der Größe der Eingabe für wachsende Eingabegrößen untersucht
- Zumeist wird der Worst-Case-Aufwand betrachtet:
 - Wenn ein Algorithmus eine Worst-Case-Laufzeit $\mathcal{O}(n^2)$ hat, so gibt es Konstanten c und n_0 , so dass der Algorithmus für jede Eingabe der Größe $n>n_0$ maximal cn^2 Schritte benötigt
- Worst-Case Aufwand bietet eine Garantie, dass der Algorithmus in jedem Fall nach einer bestimmten Schrittzahl zum Ende kommt

abhängig von der Eingabegröße

- Eine Alternative wäre beispielsweise die Betrachtung der durchschnittlichen Laufzeit
 - Sie führt jedoch zu einer Reihe von Schwierigkeiten siehe später in diesem Kapitel

Komplexitätstheorie: Vorbemerkungen (1/2)

- Die Komplexitätstheorie will nicht nur die Laufzeit einzelner Algorithmen untersuchen
- Sie interessiert sich vielmehr für die prinzipielle algorithmische Schwierigkeit von algorithmischen Problemen
 - Gibt es für ein bestimmtes Problem überhaupt einen Algorithmus mit einem bestimmten Worst-Case Aufwand?
- Das Ziel sind dabei nicht möglichst präzise Schranken, wie z.B. $\mathcal{O}(n \log n)$ vs. $\mathcal{O}(n^2)$
- Angestrebt wird stattdessen eine grobe Kategorisierung der Probleme nach ihrer prinzipiellen algorithmischen Schwierigkeit
 - z.B.: "effizient lösbar" vs. "nicht effizient lösbar"

- Die Komplexitätstheorie fasst Probleme mit ähnlichem Ressourcenverbrauch in Komplexitätsklassen zusammen
- Komplexitätsklassen werden üblicherweise durch drei Komponenten beschrieben:
 - Modus der Berechnung:
 - * z.B., deterministisch, nicht-deterministisch, probabilistisch, parallel
 - Art der betrachteten Ressource:
 - * z.B.: Laufzeit, Speicherbedarf, Anzahl Zufallsbits, Prozessorenzahl
 - Wachstumsverhalten bzgl. der betrachteten Ressource:
 - * z.B.: logarithmisch, polynomiell, exponentiell
- Bekannteste offene Frage: Ist P + NP?
 - D.h.: können in polynomieller Zeit mehr Probleme nichtdeterministisch (NP) als deterministisch (P) gelöst werden?
- → Hauptthema in diesem Teil der Vorlesung

Komplexitätstheorie: Vorbemerkungen (2/2)

- Verhältnis zwischen verschiedenen Teilgebieten der Algorithmentheorie:
 - Berechenbarkeitstheorie: Klassifikation von Problemen nach entscheidbar und (verschiedenen Graden von) unentscheidbar
 - Komplexitätstheorie: Klassifikation von Problemen nach algorithmischer Schwierigkeit
 - Effiziente Algorithmen: Konstruktion möglichst effizienter Algorithmen

Inhalt

- 17.1 Zwei algorithmische Probleme
- 17.2 Berechnungsaufwand und Komplexitätstheorie
- > 17.3 Laufzeit und erweiterte Church-Turing-These
 - 17.4 Effizient lösbare Entscheidungsprobleme
 - 17.5 Optimierungs- vs. Entscheidungsprobleme

Laufzeit: Vorbemerkungen

- Wir beschäftigen uns jetzt mit der Laufzeit von Algorithmen und insbesondere mit den schon genannten Fragen
- Welche Rolle spielt die Kodierung der Eingabe?
- Welche Rolle spielt das zugrunde gelegte Berechnungsmodell?

Laufzeit: Definitionen (1/2)

- Wir definieren jetzt formal die Laufzeit von Algorithmen
- Es stellt sich die Frage, inwieweit die Laufzeit eines Algorithmus vom zugrunde liegenden Berechnungsmodell abhängt
- Wir betrachten zunächst die Laufzeit von Turingmaschinen und GOTO-Programmen
- Wir müssen uns jeweils überlegen, was wir als einzelnen Schritt einer Berechnung zählen wollen
- Bei der formalen Definition der Laufzeit gehen wir davon aus, dass die Eingabe kodiert als String (bei TMs) oder Zahl (bei GOTO-Programmen) vorliegt

Definition (Laufzeit)

• Turingmaschinen:

- Ist $K_0(x) \vdash_M K_1 \vdash_M K_2 \vdash \cdots \vdash_M K_m$ eine Berechnung einer TM M bei Eingabe x und ist K_m Halte-Konfiguration, so definieren wir
- Falls keine solche Folge existiert:

$$*~oldsymbol{t_M}(oldsymbol{x}) \stackrel{ ext{def}}{=} oldsymbol{\perp}$$

• GOTO-Programme:

- Analog wie bei TMs definieren wir für GOTO-Programme ${m P}$:
 - $* \underbrace{t_P(n)} \stackrel{ ext{def}}{=} m-1$ Falls $(M_1,X_1) \vdash_P \cdots \vdash_P (M_m,X_m)$ mit Haltekonfiguration (M_m,X_m) und $X_1 \stackrel{ ext{def}}{=} X_{ ext{Init}}^n$
- $riangleright ext{$\triangleright$}_{P}$ bezeichnet die Nachfolgekonfigurationsrelation
- Bei LOOP-/WHILE-Programmen verzichten wir auf die (etwas kompliziertere) formale Definition des Aufwandes
 - Intuitiv: je Zuweisung oder Schleifen-Test 1 Schritt

Laufzeit: Definitionen (2/2)

- Die genaue Schrittzahl einzelner Berechnungen ist für unsere zukünftigen Untersuchungen meistens nicht interessant
- Stattdessen interessieren uns asymptotische obere Schranken des Aufwandes bei größer werdenden Eingaben
- Deshalb definieren wir zunächst die Größe einer Eingabe

Definition (Eingabegröße)

Turingmaschinen: Die Eingabegröße ist die Länge des Eingabestrings

LOOP-/WHILE-/GOTO-Programme:

Die Eingabegröße ist die Länge der Kodierung der Eingabezahl, also $|{\sf N2Str}(m{n})| = \lfloor {f log}(m{n}+m{1}) \rfloor$ bei Eingabe $m{n}$

Definition (Zeitschranke)

Turingmaschinen: Eine Funktion

 $T:\mathbb{N} o\mathbb{R}$ heißt <u>Zeitschranke</u> für eine TM M, falls es ein $n_0\in\mathbb{N}$ gibt, so dass für alle $x\in\Sigma^*$ mit $|x|>n_0$ gilt: $t_M(x)\leqslant T(|x|)$

LOOP-/WHILE-/GOTO-Programme: Eine Funktion $T:\mathbb{N} \to \mathbb{R}$ heißt Zeitschranke für ein LOOP-, WHILE- oder GOTO-Programm P, falls es ein $n_0 \in \mathbb{N}$ gibt, so dass für alle $n \in \mathbb{N}$ mit $n > n_0$ gilt: $t_P(n) \leqslant T(\lfloor \log(n+1) \rfloor)$

- Wir gehen hier davon aus, dass GOTOund WHILE-Programme Anweisungen der Art $x_i := x_j + x_k$ verwenden dürfen
 - Die "Zeitschranken-Eigenschaft" muss nur für genügend große Eingaben gelten
- Wir betrachten hier nur TMs und Programme, die immer terminieren

Erweiterte Church-Turing-These (1/2)

Lemma 17.1

- ullet Seien $f:\Sigma^* o\Sigma^*,g:\mathbb{N} o\mathbb{N}$ und sei $T:\mathbb{N} o\mathbb{N}$, wobei für alle $n\in\mathbb{N}$ gilt: $T(n)\geqslant n$
- Dann gelten die folgenden Aussagen:
 - (a) Ist $m{P}$ ein GOTO-Programm, das $m{g}$ mit Zeitschranke $m{T}$ berechnet, so gibt es ein WHILE-Programm $m{P}'$, das $m{g}$ mit Zeitschranke $m{\mathcal{O}}(m{T})$ berechnet
 - (b) Ist P ein WHILE-Programm, das g mit Zeitschranke T berechnet, so gibt es eine k-String-TM M, die g im Sinne von Satz 13.4 mit Zeitschranke $\mathcal{O}(T^2)$ berechnet
 - (c) Ist M eine k-String-TM, die f mit Zeitschranke T berechnet, so gibt es eine 1-String-TM M', die f mit Zeitschranke $\mathcal{O}(T^2)$ berechnet
 - (d) Ist M eine 1-String-TM, die f mit Zeitschranke T berechnet, so gibt es ein GOTO-Programm P, das g im Sinne von Satz 13.5 mit Zeitschranke $\mathcal{O}(T^3)$ berechnet
- Also: alle hier genannten Berechnungsmodelle sind bezüglich des Zeitaufwandes "polynomiell äquivalent"
- Beweis durch genaue Analyse der jeweiligen Simulationen

Erweiterte Church-Turing-These (2/2)

- Die Äquivalenz aus Lemma 17.1 lässt sich auf alle in Kapitel 13 genannten Berechnungsmodelle ausdehnen
- Die **erweiterte Church-Turing-These** besagt, dass sie sich auf alle "vernünftigen" Berechnungsmodelle erweitern lässt:
 - Also: "vernünftige" Berechnungsmodelle unterscheiden sich hinsichtlich ihrer Laufzeit nur um poynomielle Faktoren

Zwei Sichtweisen: Formal vs. informell

 Bei der Analyse der Komplexität algorithmischer Probleme werden wir, je nach Kontext, eine formale oder eine informelle Sichtweise einnehmen:

Formale Sichtweise:

- Algorithmische Probleme sind Sprachen oder Funktionen über Binärstrings
- Algorithmen sind Turingmaschinen
- Diese Sichtweise ist geeignet um Aussagen zu beweisen
 - * insbesondere für untere Schranken
- Wir werden sie nur anwenden, wenn nötig

Informelle Sichtweise:

- Algorithmische Probleme haben komplexe
 Eingaben
 z.B.: Graphen, Automaten
- Algorithmen werden in Pseudocode oder noch informeller beschrieben
- Aufwandanalyse ist grob und "handwaving"
- Wir werden diese Sichtweise einnehmen, wann immer es möglich ist
 - * insbesondere für obere Schranken

- Bei der informellen Sichtweise stellt sich die Frage, wie die Größe der Eingabe "gemessen" wird
- Hier werden wir recht flexibel sein
 - Bei Graphen mit n Knoten wäre die Länge der Kodierung als String beispielsweise n^2 , wir werden aber als Eingabegröße die Anzahl der Knoten (also: n) nehmen
- Wichtig ist nur, dass
 - die "formale Eingabegröße"
 höchstens polynomiell größer
 ist als die "informelle Eingabegröße" (im Beispiel: quadratisch)
 - und umgekehrt (in der Regel ist die "informelle Eingabegröße" aber sowieso kleiner als die "formale Eingabegröße")

Inhalt

- 17.1 Zwei algorithmische Probleme
- 17.2 Berechnungsaufwand und Komplexitätstheorie
- 17.3 Laufzeit und erweiterte Church-Turing-These
- > 17.4 Effizient lösbare Entscheidungsprobleme
 - 17.5 Optimierungs- vs. Entscheidungsprobleme

Effizient lösbare Probleme

- Nach diesen Vorbereitungen k\u00f6nnen wir uns nun endlich der Frage zuwenden, wann wir ein algorithmisches Problem als effizient l\u00f6sbar ansehen wollen
- Wir werfen dazu nochmals einen Blick auf das Laufzeitverhalten der beiden Algorithmen aus der Einleitung
- Dabei nehmen wir an, dass die genaue Laufzeit der Implementierungen wie folgt ist:
 - Für Prim: $\frac{1}{10.000} n^2$ Sekunden
 - Für MINCYCLEO: $\frac{1}{1.000.000.000}$ n! Sekunden

Eingabegröße	Prims Algorithmus	MINCYCLEO-Alg.
10	0,01 Sekunden	0,03 Sekunden
15	0,02 Sekunden	20 Minuten
20	0,04 Sekunden	>1000 Jahre
30	0,09 Sekunden	
40	0,16 Sekunden	
100	1 Sekunden	
1000	1,6 Minuten	

Polynomielle vs. exponentielle Laufzeit

- ullet Der Prim-Algorithmus hat $\emph{polynomielle Laufzeit}$, da er ein Polynom (\emph{cn}^2) als Laufzeitschranke hat
- Der naive Algorithmus für MINCYCLEO hat hingegen exponentielle Laufzeit

- Der prinzipielle Unterschied zwischen polynomieller und exponentieller Laufzeit lässt sich wie folgt beschreiben
- ullet Wenn Eingaben der Größe n bisher in Zeit t bearbeitet werden können,
- dann können mit einem doppelt so schnellen Rechner in der selben Zeit bearbeitet werden:
 - bei polynomiellem Aufwand:

Eingaben der Größe cn, für ein c>1

- bei exponentiellem Aufwand:

Eingaben der Größe n+d, für ein d>0

- ullet Bei Laufzeit n^2 : Eingaben der Größe $\sqrt{2}n$
- ullet Bei Laufzeit 2^n : Eingaben der Größe n+1
- Die obigen Aussagen beziehen sich auf die Laufzeit von Algorithmen, nicht auf die allgemeine Komplexität der betrachteten Probleme

Zeitbasierte Komplexitätsklassen

- Es besteht ein weitgehender Konsens darüber, dass ein Problem nur dann als effizient lösbar bezeichnet werden kann, wenn es in polynomieller Zeit lösbar ist
 - Die Frage, ob die Umkehrung auch gilt, diskutieren wir gleich
- Die erweiterte Church-Turing-These rechtfertigt nun die folgende Definition der Komplexitätsklasse P
 - Denn es ist egal, ob wir für die Definition von P Turingmaschinen oder ein anderes Berechnungsmodell zugrunde legen

Definition (TIME $(oldsymbol{T})$, P)

(a) Für $T:\mathbb{N} o \mathbb{R}$ sei $\overline{\mathsf{TIME}(T)}$ die Menge aller Sprachen L, für die es eine k-String TM M mit Zeitschranke T gibt, so dass L = L(M)

(b)
$$\mathbf{P} \stackrel{\mathsf{def}}{=} \bigcup_{m{p} \; \mathsf{Polynom}} \mathsf{TIME}(m{p})$$

Die Komplexitätsklasse P wurde übrigens erst in den 60er Jahren definiert — lange Zeit nach den ersten Untersuchungen der entscheidbaren Sprachen...

$P \equiv \text{effizient l\"osbare Probleme?} (1/3)$

- Wir gehen in den folgenden Kapiteln davon aus, dass die Komplexitätsklasse P eine vernünftige Formalisierung des informellen Begriffes der "effizient lösbaren Probleme" ist
- Diese Sichtweise ist sehr weit verbreitet, aber durchaus nicht unumstritten
- Einige Einwände und mögliche Erwiderungen darauf betrachten wir auf den nächsten beiden Folien

$P \equiv \text{effizient l\"osbare Probleme?} (2/3)$

• **Einwand**: Polynome mit großen Exponenten haben mit "effizient" nichts zu tun

 \mathbb{R} z.B.: n^{1000}

Aber:

 Wenn für ein "natürliches" Problem überhaupt ein polynomieller Algorithmus gefunden wird, gibt es (für relevante algorithmische Probleme) meistens auch einen mit kleinem Exponenten

□ z.B.: 2 oder 3

- Außerdem ist es vorteilhaft, dass die Klasse der Polynome unter Komposition abgeschlossen ist
 - → Programme und Unterprogramme

 Einwand: Worst-Case-Komplexität ist ungeeignet, der Durchschnittsfall wäre interessanter

• Aber:

- In vielen Fällen ist eine Laufzeit-Garantie wichtig
- Durchschnittskomplexität ist viel komplizierter zu handhaben:
 - Es müsste zum Beispiel die Frage beantwortet werden, wie die Wahrscheinlichkeitsverteilung der Eingaben ist
 - * Es ist viel schwieriger die Durchschnittskomplexität eines Problems zu analysieren

$P \equiv \text{effizient l\"osbare Probleme? (3/3)}$

• **Einwand**: Entscheidungsprobleme (Sprachen) sind zu eingeschränkt

Aber:

 Im nächsten Abschnitt werden wir sehen, dass sich die Frage nach der effizienten Lösbarkeit von Optimierungsproblemen auf die Frage nach der effizienten Lösbarkeit von Entscheidungsproblemen zurückführen lässt • **Einwand**: Die Definition von **P** hängt von der Wahl des Berechnungsmodells ab

implier: TMs

• Aber:

 Die erweiterte Church-Turing-These sagt, dass alle "vernünftigen" Modelle sich nur polynomiell bzgl. Zeitaufwand unterscheiden

Nicht in polynomieller Zeit lösbare Probleme

Definition (**EXPTIME**)

- ullet EXPTIME $\stackrel{\mathsf{def}}{=} \bigcup_{m{p} \; \mathsf{Polynom}} \mathsf{TIME}(\mathbf{2}^{m{p}})$
- Die Klasse EXPTIME ist eine echte Oberklasse von P, d.h., sie umfasst P, enthält aber auch Probleme, die sich nicht in polynomieller Zeit lösen lassen
 - Und das lässt sich auch beweisen
- ullet Beispiel: Das Problem zu entscheiden, ob beim Brettspiel GO auf einem n imes n-Brett der erste Spieler eine Gewinnstrategie hat, ist in **EXPTIME** aber nicht in **P**
 - Dies gilt für die Ko-Regel, die Stellungswiederholungen verbietet

Polynomielle Zeitschranken: n^k

- Wir nutzen die folgende Beobachtung, um uns den Umgang mit komplizierten Polynomen als Zeitschranken zu ersparen
- ullet Wenn eine Turingmaschine M eine polynomielle Zeitschranke hat, dann hat sie auch eine Zeitschranke der Form n^k , für ein geeignetes k

- Denn:
 - Sei $oldsymbol{p}(oldsymbol{n}) \ = \ \sum_{oldsymbol{i}=oldsymbol{0}}^{\ell} oldsymbol{c_i} oldsymbol{n^i}$ ein Polynom,

das Zeitschranke für $oldsymbol{M}$ ist

- * Es gibt also ein n_0 , so dass für alle Strings x mit $|x|>n_0$ gilt: $t_M(x)\leqslant p(|x|)$
- Wir wählen

$$st n_0' \stackrel{ ext{ iny def}}{=} \max\{n_0, c_0, \ldots, c_\ell\}$$
 und $st k \stackrel{ ext{ iny def}}{=} \ell + 2$

- Dann gilt für alle $n>n_0'$: $p(n)\leqslant n_0'\sum_{i=0}^\ell n^i\leqslant n_0'n^{\ell+1}\leqslant n^{\ell+2}$
- ightharpoonup Wir werden also bei Problemen aus ightharpoonup zukünftig davon ausgehen, dass sie eine Zeitschranke der Form n^k haben

Inhalt

- 17.1 Zwei algorithmische Probleme
- 17.2 Berechnungsaufwand und Komplexitätstheorie
- 17.3 Laufzeit und erweiterte Church-Turing-These
- 17.4 Effizient lösbare Entscheidungsprobleme
- > 17.5 Optimierungs- vs. Entscheidungsprobleme

Optimierungsprobleme vs. Entscheidungsprobleme (1/6)

 Einige algorithmische Probleme haben "ja" oder "nein" als Antwort, Entscheidungsprobleme andere suchen eine optimale Lösung

Optimierungsprobleme

- Eine dritte Variante ist die Berechnung des Wertes einer optimalen Lösung
- Wir werden sehen: hinsichtlich polynomieller Lösbarkeit können wir uns auf Entscheidungsprobleme beschränken
- Wir betrachten die drei Varianten am Beispiel des Traveling-Salesperson-Problems

Optimierungsprobleme vs. Entscheidungsprobleme (2/6)

- Das TSP-Problem (*Traveling Salesperson*) sucht nach der kürzesten Rundreise durch eine gegebene Menge von Städten, die jede Stadt genau einmal besucht
- ullet Formal besteht die Eingabe zum TSP-Problem aus einer Folge s_1,\ldots,s_n von Städten und einer Entfernungsfunktion d
 - $oldsymbol{d}(s_{oldsymbol{i}},s_{oldsymbol{j}})$ ist die Entfernung von $oldsymbol{s_i}$ nach $oldsymbol{s_j}$
- ullet Wir betrachten hier nur den symmetrischen Fall: für alle $oldsymbol{i},oldsymbol{j}$ ist $oldsymbol{d}(s_{oldsymbol{i}},s_{oldsymbol{j}})=oldsymbol{d}(s_{oldsymbol{j}},s_{oldsymbol{i}})$
- - f(i) ist die i-te besuchte Stadt
- ullet Die **Gesamtstrecke** $oldsymbol{d}(f)$ einer solchen TSP-Reise $oldsymbol{f}$ ist $oldsymbol{d}(f) \stackrel{ ext{def}}{=} oldsymbol{d}(f(n), f(1)) +$

$$egin{aligned} d(oldsymbol{f}(oldsymbol{f}) &\stackrel{ ext{def}}{=} d(oldsymbol{f}(oldsymbol{n}), oldsymbol{f}(oldsymbol{1})) + \ &\sum_{oldsymbol{i}=oldsymbol{1}} d(oldsymbol{f}(oldsymbol{i}), oldsymbol{f}(oldsymbol{i}+oldsymbol{1})) \end{aligned}$$

Definition (TSP)

Gegeben: Entfernungsfunktion d, Zielwert $k \in \mathbb{N}$

Frage: Gibt es eine TSP-Reise f zu d mit $d(f) \leqslant k$?

Definition (TSPO)

Gegeben: Entfernungsfunktion d

Gesucht: TSP-Reise f zu d mit minimaler Gesamtstrecke

Definition (TSPV)

Gegeben: Entfernungsfunktion d

Gesucht: Minimale Gesamtstrecke $oldsymbol{d}(oldsymbol{f})$

einer TSP-Reise zu $oldsymbol{d}$

igotimes Da die Entfernungsfunktion d implizit auch die Städte repräsentiert, geben wir sie nicht explizit als Eingabe der drei obigen Probleme an

Optimierungsprobleme vs. Entscheidungsprobleme (3/6)

Lemma 17.2

- (a) Falls TSP in polynomieller Zeit lösbar ist, dann auch TSPV
- (b) Falls TSPV in polynomieller Zeit lösbar ist, dann auch TSPO

Beweisskizze für (a)

- Idee: Binäre Suche
- Annahme: A ist ein Algorithmus für TSP mit polynomieller Laufzeit
- Sei d eine Entfernungsfunktion für TSPV mit n Städten
- ullet Sei m der maximale in d vorkommende Funktionswert
 - Die optimale Lösung hat höchstens den Wert $N\stackrel{ ext{ iny def}}{=} nm$
- Zu beachten: die Kodierung von d als Eingabestring benötigt nur $\mathcal{O}(n^2 \log m)$ Bits

Beweisskizze (Forts.)

Der Algorithmus arbeitet wie folgt:

1:
$$i := 0$$
; $j := N$

2: repeat

3:
$$k:=\left\lfloorrac{i+j}{2}
ight
floor$$

4: **if** A sagt, dass Lösung $\leq k$ existiert **then**

$$j:=k$$

6: **else**

7:
$$i := k+1$$

8: until
$$i=j$$

9: Ausgabe
$$j$$
 oder \perp , wenn $j=N+1$

- Korrektheit: Durch Induktion nach der Anzahl der Schleifendurchläufe ist leicht zu zeigen, dass der optimale Wert immer in [i,j] liegt
- Laufzeit:
 - In jedem Durchlauf wird $m{j}-m{i}$ ungefähr halbiert
 - $ightharpoonup \mathcal{O}(\log N)$ Schleifendurchläufe
 - Jeder Durchlauf benötigt nur polynomielle Zeit
- Insgesamt polynomielle Laufzeit D: 17. Polynomielle Zeit

Optimierungsprobleme vs. Entscheidungsprobleme (4/6)

Beweisskizze für (b)

- ullet Sei d eine TSPO-Eingabe mit n Städten und sei m wieder der maximal vorkommende Funktionswert von d
- ullet Für zwei Indizes k,ℓ bezeichne $d_{(k,\ell)}$ die Entfernungsfunktion definiert durch:

$$egin{aligned} d_{(m{k},m{\ell})}(m{s_i},m{s_j}) &\stackrel{ ext{def}}{=} \ &iggl\{m{m}+m{1} & ext{falls } m{i}=m{k} ext{ und } m{j}=m{\ell} ext{ (oder umgekehrt)} \ d(m{s_i},m{s_j}) & ext{sonst} \end{aligned}$$

- ullet Die beiden folgenden Aussagen sind für jedes Paar k,ℓ mit $k \neq \ell$ äquivalent:
 - die minimale Gesamtstrecke zu $d_{(m{k},\ell)}$ ist gleich der minimalen Gesamtstrecke zu d
 - es gibt zu d eine minimale TSP-Reise f, die *nicht* direkt von s_k nach s_ℓ (oder umgekehrt) geht

Optimierungsprobleme vs. Entscheidungsprobleme (5/6)

Beweisskizze (Forts.)

• Algorithmus:

1: m := maximaler Funktionswert von d

2: d' := d

3: **for** jedes Index-Paar $k \neq \ell$ **do**

4: **if** optimaler Wert für $d'_{(oldsymbol{k},oldsymbol{\ell})} =$

optimaler Wert für d then

5: $d' := d'_{(k,\ell)}$

- ullet Behauptung: nach Ende der Berechnung induzieren die Paare s_i, s_j mit $d'(s_i, s_j) \leqslant m$ eine TSP-Reise zu d mit minimaler Gesamtentfernung
- Dazu lässt sich durch Induktion nach der Anzahl der Schleifendurchläufe zeigen
 - Der Wert der optimalen Lösung für d^\prime ändert sich nicht
- Und: am Ende ist nur noch eine TSP-Reise übrig

Optimierungsprobleme vs. Entscheidungsprobleme (6/6)

- Das TSP-Optimierungsproblem kann also (in polynomieller Zeit) auf das TSP-Entscheidungsproblem zurückgeführt (reduziert) werden
- Eine Lemma 17.2 entsprechende Aussage gilt für die meisten uns interessierenden Optimierungsprobleme:
 - (a) funktioniert immer wie bei TSP
 - Wenn es nur polynomiell viele Lösungswerte gibt, ist binäre Suche nicht nötig
 - Für (b) muss jeweils ein individueller Ansatz gefunden werden
 - Das ist in der Regel ähnlich wie bei TSPO möglich
- → Wir beschränken uns im Folgenden deshalb der Einfachheit halber auf Entscheidungsprobleme
 - Notation: Optimierungsprobleme haben am Ende Ihres Namens ein O, die zugehörigen Entscheidungsprobleme nicht

Zusammenfassung

- Wir konzentrieren uns bei der Betrachtung effizient lösbarer algorithmischer Probleme auf die asymptotische Laufzeit im worst case
- Die in Teil C betrachteten Berechnungsmodelle ergeben eine robuste Definition der Klasse der in polynomieller Zeit lösbaren Entscheidungsprobleme
 - Formal basieren unsere Definitionen auf Berechnungen von Turingmaschinen
- Wir betrachten die Begriffe "effizient lösbar" und "in polynomieller Zeit lösbar" im Folgenden als gleichbedeutend
- Es gibt auch Probleme, die sich nicht in polynomieller sondern nur in (mindestens) exponentieller Zeit lösen lassen