编译原理与技术 H3-1

PB18111697 王章瀚

3.2

考虑文法 $S \rightarrow aSbS|bSaS|\epsilon$

- (a) 为句子*abab*构造两个不同的最左推导,以此说明该文法是二义的. 构造如下:
 - 1. $S \Rightarrow_{lm} aSbS \Rightarrow_{lm} abS \Rightarrow_{lm} abaSbS \Rightarrow_{lm} ababS \Rightarrow_{lm} abab$
 - 2. $S \Rightarrow_{lm} aSbS \Rightarrow_{lm} abSaSbS \Rightarrow_{lm} abaSbS \Rightarrow_{lm} ababS \Rightarrow_{lm} abab$
- (b) 为abab构造对应的最右推导.

构造如下:

- 1. $S \Rightarrow_{rm} aSbS \Rightarrow_{rm} aSb \Rightarrow_{rm} abSaSb \Rightarrow_{rm} abSab \Rightarrow_{rm} abab$
- 2. $S \Rightarrow_{rm} aSbS \Rightarrow_{rm} aSbaSbS \Rightarrow_{rm} aSbaSb \Rightarrow_{rm} aSbab \Rightarrow_{rm} abab$
- (c) 为*abab*构造对应的分析树. 以(a)中1为例:

以(a)中2为例:

(d) 这个文法产生的语言是什么?

产生的语言是: 由同样数目的a和b的串的集合.

3.6

为字母表 $\Sigma = \{a,b\}$ 上的下列每个语言设计一个文法, 其中哪些语言是正规的?

(a) 每个a后面至少有一个b跟随的所有串.

设计的文法对应四元组为($\{a,b\}$, $\{S,B\}$, S,P). 接以a或b开头,可以得到其中产生式的集合P如下(其中B表示一个及以上的b构成的串):

$$S \to aBS|BS|\epsilon$$

$$B \to bB|b$$

这个语言**是正规的**.按定义说, 其产生式满足或隐含满足形式为 $A \to aB$ 或 $A \to a$. 另一方面, 这个语言可以用($abb^*|b^*$)*表示, 从这个角度也可以说明**是正规的**.

(c) a和b的个数不相等的所有串.

首先考虑a和b个数相等的串, 其产生式如下(B表示b比a多一个的串, A类似):

$$S \to aB|bA|\epsilon$$

$$A \rightarrow bAA|aS$$

$$B \to aBB|bS$$

然后考虑A'为a个数多余b个数的串, B'类似.

$$A' \to AA'|A$$

$$B' \to BB'|B$$

最终我们可以写出来, 能够表示a和b个数不相等的所有串(S'表示)的文法如下:

$$S' \to A' | B'$$

$$S o aB|bA|\epsilon$$

$$A \rightarrow bAA|aS$$

这个文法**不是正规的**. 因为它显然不满足且不隐满足(即也不能通过化简满足)任何产生式都为 $A \to aB$ 或 $A \to a$, $A, B \in V_N, a \in V_T$ 的格式.

3.8

(a) 消除习题3.1文法 $(S \to (L)|a \quad L \to L, S|S)$ 的左递归.

也就是消除下式的左递归:

$$S \to (L)|a$$

$$L \to L, S|S$$

因此可以改写为:

$$L'\to,aS|\epsilon$$

3.11

构造下面文法的LL(1)分析表.

$$S \to aBS|bAS|\epsilon$$

$$A \rightarrow bAA|a$$

$$B \rightarrow aBB|b$$

构造如下(表2):

	开始符号	后继符号
S	a,b,ϵ	\$
A	a, b	a, b, \$
B	a, b	a,b,\$

表 1: 开始符号和后继符号的表

非终结符	输入符号		
	a	b	\$
S	$S \to aBS$	$S \to bAS$	$S \to \epsilon$
A	$A \rightarrow a$	$A \rightarrow bAA$	
В	$B \rightarrow aBB$	B o b	

表 2: 预测分析表

3.12

下面的文法是否为LL(1)文法? 说明理由.

 $S \to AB|PQx$

 $A \to xy$

 $B \to bc$

 $P \to dP | \epsilon$

 $Q \to aQ|\epsilon$

构造下表(表3)

	开始符号
S	x, d, ϵ
A	x
В	b
P	d,ϵ
Q	a, ϵ

表 3: 开始符号表

从而有

 $FIRST(AB) = \{x\}FIRST(PQx) = \{a,d,x\}FIRST(AB) \cap FIRST(PQx) \supset \{x\}$

因此该文法**不是**LL(1)文法.