GUJARAT TECHNOLOGICAL UNIVERSITY

Diploma Engineering – SEMESTER – 2 (OLD) – EXAMINATION – Summer-2025

Subject Code: 4320001 Date: 18-06-2025

Subject Name: Applied Mathematics

Time: 10:30 AM TO 01:00 PM **Total Marks: 70**

Instructions:

- 1. Attempt all questions.
- 2. Make Suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Use of simple calculators and non-programmable scientific calculators are permitted.
- 5. English version is authentic.
 - Q.1 Fill in the blanks using appropriate choice from the given options (યોગ્ય વિકલ્પ પસંદ કરી ખાલીજગ્યા પૂરો)

1.
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} + \begin{bmatrix} 1 & -1 \\ 1 & 3 \end{bmatrix} =$$

(a) $\begin{bmatrix} 1 & 2 \\ 3 & 12 \end{bmatrix}$ (b) $\begin{bmatrix} 3 & 5 \\ 7 & 7 \end{bmatrix}$ (c) $\begin{bmatrix} 2 & -1 \\ 4 & 9 \end{bmatrix}$ (d) $\begin{bmatrix} 2 & 1 \\ 4 & 7 \end{bmatrix}$

$$9. \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} + \begin{bmatrix} 1 & -1 \\ 1 & 3 \end{bmatrix} = \underline{\hspace{1cm}}$$

$$(24)\begin{bmatrix}1&2\\3&12\end{bmatrix}(44)\begin{bmatrix}3&5\\7&7\end{bmatrix}(5)\begin{bmatrix}2&-1\\4&9\end{bmatrix} (5)\begin{bmatrix}2&1\\4&7\end{bmatrix}$$

2. Order of the Matrix
$$[0 - 4 \ 2]$$
 is ______

$$(a)2 \times 2$$
 (b) 1×1 (c) 1×3 (d) 3×1 ર. શ્રેણિક $[0 - 4 \ 2]$ ની કક્ષા _____ છે.

(
24
) 2 × 2 (44) 1 × 1 (5)1 × 3 (5)3 × 1

3.
$$\frac{1}{2}\begin{bmatrix} -2 & 4 & 12 \\ 8 & 7 & 9 \end{bmatrix} = \underline{\hspace{1cm}}$$

$$(a)\begin{bmatrix} -4 & 8 & 24 \\ 16 & {}_{14} & 18 \end{bmatrix}(b)\begin{bmatrix} -1 & 2 & 6 \\ 4 & \frac{7}{2} & \frac{9}{2} \end{bmatrix}(c)\begin{bmatrix} -4 & 16 & 24 \\ 4 & \frac{7}{2} & \frac{9}{2} \end{bmatrix}(d)$$
None of these

3.
$$\frac{1}{2}\begin{bmatrix} -2 & 4 & 12\\ 8 & 7 & 9 \end{bmatrix} = \underline{\hspace{1cm}}$$

(અ)
$$\begin{bmatrix} -4 & 8 & 24 \\ 16 & _{_{14}} & 18 \end{bmatrix}$$
 (બ) $\begin{bmatrix} -1 & 2 & 6 \\ 4 & \frac{7}{2} & \frac{9}{2} \end{bmatrix}$ (ક) $\begin{bmatrix} -4 & 16 & 24 \\ 4 & \frac{7}{2} & \frac{9}{2} \end{bmatrix}$ (S)આમાંથી એકેય નહીં

4. The Adjoint Matrix of Matrix $A = \begin{bmatrix} 1 & 2 \\ 3 & -1 \end{bmatrix}$ is _____

$$(a)\begin{bmatrix} -1 & 2 \\ 3 & 1 \end{bmatrix}(b)\begin{bmatrix} -1 & -3 \\ -2 & 1 \end{bmatrix}(c)\begin{bmatrix} 1 & 3 \\ 2 & -1 \end{bmatrix} \quad (d)\begin{bmatrix} -1 & -2 \\ -3 & 1 \end{bmatrix}$$
 ૪ . શ્રેણિક $A = \begin{bmatrix} 1 & 2 \\ 3 & -1 \end{bmatrix}$ નો સહવયજ શ્રેણિક _______છે.

૪ . શ્રેણિક
$$A = \begin{bmatrix} 1 & 2 \\ 3 & -1 \end{bmatrix}$$
 નો સહવયજ શ્રેણિક ______છે.

$$(\mathsf{W})\begin{bmatrix} -1 & 2 \\ 3 & 1 \end{bmatrix}(\mathsf{W})\begin{bmatrix} -1 & -3 \\ -2 & 1 \end{bmatrix}(\mathsf{S})\begin{bmatrix} 1 & 3 \\ 2 & -1 \end{bmatrix} \quad (\mathsf{S})\begin{bmatrix} -1 & -2 \\ -3 & 1 \end{bmatrix}$$

5.
$$f(x) = e^{4x}$$
 then $f'(0) =$
(a) 1 (b) 0 (c) 4 (d) e^4

$$4.8 f(x) = e^{4x} df'(0) =$$

$$(rak{W})$$
 1 $(rak{W})$ 0 $(\$)$ 4 $(\$)$ e^4

6.If
$$y=\log(4x+3)$$
 then $\frac{dy}{dx} =$
(a) $\frac{1}{4x+3}$ (b) $\frac{3}{4x+3}$ (c) $\frac{4}{4x+3}$ (d) 0

7. If
$$y=x^5$$
 then $\frac{d^5y}{dx^5} =$
(a) 120 (b) 120x (c) 0 (d) 1
9.% $y=x^5$ d $\frac{d^5y}{dx^5} =$
(24) 120 (4) 120x (5) 0 (5) 1

9.81
$$y=x^5 \text{ d} \frac{d^5y}{dx^5} =$$

$$9.81 \quad y=x^{3} \text{ of } \frac{1}{dx^{5}} = \frac{1}{(4.81 + 1.00)^{1/2}}$$

$$8. \int 5x^4 dx = \underline{\qquad} + c$$

$$(a)20x^3(b)4x^3(c)x^5$$
 (d) $\frac{x^5}{5}$

$$\mathcal{L}.\int 5x^4\,dx = \underline{\qquad} + c$$

(અ)20
$$x^3$$
(બ)4 x^3 (ક) x^5 (S) $\frac{x^5}{5}$

$$9.\int_1^e \frac{1}{x} dx = \underline{\qquad}$$

$$(a)\frac{-1}{x^2}(b) \ 1 \quad (c)0 \quad (d)\log x$$

$$\mathcal{E}\int_{1}^{e} \frac{1}{x} dx = \underline{\hspace{1cm}}$$

$$(\forall 1) \frac{-1}{x^2} (\forall 1) \quad (\$) \quad (\$) \log x$$

$$10. \int \sec^2 x \, dx = \underline{\qquad} + c$$

$$(a) cosec x \qquad (b) - cosec x \qquad (c) tanx \qquad (d) - tan x$$

(a)
$$cosec x$$
 (b) $-cosec x$ (c) $tanx$ (d) $-tan x$

90.
$$\int \sec^2 x \, dx = \underline{\qquad} + c$$
(4)
$$\cos \cot x \qquad \text{(4)} - \csc x \qquad \text{(5)} + \tan x$$

$$(4)$$
 cosec x (4) – cosec x (5) tan x (5) – tan

11. The order and degree of the differential equation:
$$\left(\frac{d^3y}{dx^3}\right)^3 + \left(\frac{d^2y}{dx^2}\right)^4 + x \cos y = 0$$
 is _____and

(a) 3,3 (b) 2,4 (c) 3,4 (d) 4,1
૧૧ વિકલ સમીકરણ
$$\left(\frac{d^3y}{dx^3}\right)^3 + \left(\frac{d^2y}{dx^2}\right)^4 + x\cos y = 0$$
 ની કક્ષા ____અને પરિમાણ ____છે.

$$(24)3,3$$
 $(4)2,4$ $(5)3,4$ $(5)4,1$

12. The integrating factor of the differential equation $\frac{dy}{dx} + y = 4x$ is ---

(a)
$$x$$
 (b) e^x (c) $\log x$ (d) $\frac{1}{x}$

૧૨.વિકલ સમીકરણ
$$\frac{dy}{dx} + y = 4x$$
નો સંકલયકારક અવયવ --- છે.

			1
(અ) x	(બ) e ^x	(§) log x	$(5)^{\frac{1}{3}}$

13. The Mean of First Five even natural numbers is

14. For n observations x_1, x_2, x_3, x_n and Mean \overline{x} standard deviation is _____

(a)
$$\frac{\sum (x_i - \bar{x})^2}{n}$$

$$(b)\sqrt{\frac{\sum(x_i-\bar{x})^2}{n}}$$

$$(c) \sqrt{\frac{\sum |x_i - \bar{x}|}{n}}$$

(d) none of these

૧૪. n અવલોકનો x_1, x_2, x_3, x_n અને મધ્યક \overline{x} માટે પ્રમાણિત વિચલન ____થશે. (અ) $\frac{\sum (x_i - \overline{x})^2}{n}$

(આ)
$$\frac{\sum (x_i - \bar{x})^2}{n}$$

$$(4) \quad \sqrt{\frac{\sum (x_i - \bar{x})^2}{n}}$$

$$(\mathfrak{z})\sqrt{\frac{\sum |x_i-\bar{x}|}{n}}$$

(ડ)આમાંથી એકેય નહીં

(A) Attempt any two. (કોઈપણબેનાજવાબ આપો):

06

(A) Attempt any two. (\$1848[44] 4411):

1. For
$$A = \begin{bmatrix} 1 & 3 & 5 \\ -1 & 0 & 2 \\ 4 & 3 & 6 \end{bmatrix}$$
 and $B = \begin{bmatrix} 3 & 4 & 5 \\ 5 & 4 & 3 \\ 3 & 5 & 4 \end{bmatrix}$ Find $B + 4A$

1. Reflect $A = \begin{bmatrix} 1 & 3 & 5 \\ -1 & 0 & 2 \\ 4 & 3 & 6 \end{bmatrix}$ and $A = \begin{bmatrix} 3 & 4 & 5 \\ 5 & 4 & 3 \\ 3 & 5 & 4 \end{bmatrix}$ and $A = \begin{bmatrix} 1 & 3 & 5 \\ -1 & 0 & 2 \\ 4 & 3 & 6 \end{bmatrix}$ and $A = \begin{bmatrix} 3 & 4 & 5 \\ 5 & 4 & 3 \\ 3 & 5 & 4 \end{bmatrix}$ and $A = \begin{bmatrix} 1 & 2 \\ 4 & 3 & 6 \end{bmatrix}$ and $A = \begin{bmatrix} 3 & 4 & 5 \\ 5 & 4 & 3 \\ 3 & 5 & 4 \end{bmatrix}$ and $A = \begin{bmatrix} 1 & 2 \\ 4 & 3 & 6 \end{bmatrix}$ and $A = \begin{bmatrix} 3 & 4 & 5 \\ 5 & 4 & 3 \\ 3 & 5 & 4 \end{bmatrix}$ and $A = \begin{bmatrix} 3 & 4 & 5 \\ 5 & 4 & 3 \\ 3 & 5 & 4 \end{bmatrix}$ and $A = \begin{bmatrix} 3 & 4 & 5 \\ 5 & 4 & 3 \\ 3 & 5 & 4 \end{bmatrix}$ and $A = \begin{bmatrix} 3 & 4 & 5 \\ 5 & 4 & 3 \\ 3 & 5 & 4 \end{bmatrix}$ and $A = \begin{bmatrix} 3 & 4 & 5 \\ 5 & 4 & 3 \\ 3 & 5 & 4 \end{bmatrix}$ and $A = \begin{bmatrix} 3 & 4 & 5 \\ 5 & 4 & 3 \\ 3 & 5 & 4 \end{bmatrix}$ and $A = \begin{bmatrix} 3 & 4 & 5 \\ 5 & 4 & 3 \\ 3 & 5 & 4 \end{bmatrix}$ and $A = \begin{bmatrix} 3 & 4 & 5 \\ 5 & 4 & 3 \\ 3 & 5 & 4 \end{bmatrix}$ and $A = \begin{bmatrix} 3 & 4 & 5 \\ 5 & 4 & 3 \\ 3 & 5 & 4 \end{bmatrix}$ and $A = \begin{bmatrix} 3 & 4 & 5 \\ 5 & 4 & 3 \\ 3 & 5 & 4 \end{bmatrix}$ and $A = \begin{bmatrix} 3 & 4 & 5 \\ 5 & 4 & 3 \\ 3 & 5 & 4 \end{bmatrix}$ and $A = \begin{bmatrix} 3 & 4 & 5 \\ 5 & 4 & 3 \\ 3 & 5 & 4 \end{bmatrix}$ and $A = \begin{bmatrix} 3 & 4 & 5 \\ 5 & 4 & 3 \\ 3 & 5 & 4 \end{bmatrix}$ and $A = \begin{bmatrix} 3 & 4 & 5 \\ 5 & 4 & 3 \\ 3 & 5 & 4 \end{bmatrix}$ and $A = \begin{bmatrix} 3 & 4 & 5 \\ 5 & 4 & 3 \\ 3 & 5 & 4 \end{bmatrix}$ and $A = \begin{bmatrix} 3 & 4 & 5 \\ 5 & 4 & 3 \\ 3 & 5 & 4 \end{bmatrix}$ and $A = \begin{bmatrix} 3 & 4 & 5 \\ 5 & 4 & 3 \\ 3 & 5 & 4 \end{bmatrix}$ and $A = \begin{bmatrix} 3 & 4 & 5 \\ 5 & 4 & 3 \\ 3 & 5 & 4 \end{bmatrix}$ and $A = \begin{bmatrix} 3 & 4 & 5 \\ 5 & 4 & 3 \\ 3 & 5 & 4 \end{bmatrix}$ and $A = \begin{bmatrix} 3 & 4 & 5 \\ 5 & 4 & 3 \\ 3 & 5 & 4 \end{bmatrix}$ and $A = \begin{bmatrix} 3 & 4 & 5 \\ 5 & 4 & 3 \\ 3 & 5 & 4 \end{bmatrix}$ and $A = \begin{bmatrix} 3 & 4 & 5 \\ 5 & 4 & 3 \\ 3 & 5 & 4 \end{bmatrix}$ and $A = \begin{bmatrix} 3 & 4 & 5 \\ 5 & 4 & 3 \\ 3 & 5 & 4 \end{bmatrix}$ and $A = \begin{bmatrix} 3 & 4 & 5 \\ 5 & 4 & 3 \\ 3 & 5 & 4 \end{bmatrix}$ and $A = \begin{bmatrix} 3 & 4 & 5 \\ 5 & 4 & 3 \\ 3 & 5 & 4 \end{bmatrix}$ and $A = \begin{bmatrix} 3 & 4 & 5 \\ 5 & 4 & 3 \\ 3 & 5 & 4 \end{bmatrix}$ and $A = \begin{bmatrix} 3 & 4 & 5 \\ 5 & 4 & 3 \\ 3 & 5 & 4 \end{bmatrix}$ and $A = \begin{bmatrix} 3 & 4 & 5 \\ 5 & 4 & 3 \\ 3 & 5 & 4 \end{bmatrix}$ and $A = \begin{bmatrix} 3 & 4 & 5 \\ 5 & 4 & 3 \\ 3 & 5 & 4 \end{bmatrix}$ and $A = \begin{bmatrix} 3 & 4 & 5 \\ 5 & 4 & 3 \\ 3 & 5 & 4 \end{bmatrix}$ and $A = \begin{bmatrix} 3 & 4 & 5 \\ 5 & 4 & 3 \\ 3 & 5 & 4 \end{bmatrix}$ and $A = \begin{bmatrix} 3 & 4 & 5 \\ 5 & 4 & 3 \\ 3 & 5 & 4 \end{bmatrix}$ and $A = \begin{bmatrix} 3 & 4 & 5 \\ 5 & 4 & 3 \\ 3 & 5$

2.If
$$A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 3 \\ -2 & 3 \end{bmatrix}$ then verify that $(A + B)^T = A^T + B^T$
 ર .જો $A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$ અને $B = \begin{bmatrix} 2 & 3 \\ -2 & 3 \end{bmatrix}$ હોય તો $(A + B)^T = A^T + B^T$ યકાસો

૨.જો
$$A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$
 અને $B = \begin{bmatrix} 2 & 3 \\ -2 & 3 \end{bmatrix}$ હોય તો $(A + B)^T = A^T + B^T$ યકાસો

3. solve: xdy + ydx = xydy

3.ઉકેલો :
$$xdy + ydx = xydy$$

(B) Attempt any two. (કોઇપણબેનાજવાબ આપો):

08

1. For
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 2 & 3 \\ 1 & 1 & 2 \end{bmatrix}$$
 find A^{-1} .
૧. $A = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 2 & 3 \\ 1 & 1 & 2 \end{bmatrix}$ માટે A^{-1} શોધો.

2.If
$$A = \begin{bmatrix} 2 & 1 & 2 \\ 1 & 3 & 0 \\ 4 & 1 & 2 \end{bmatrix}$$
 then find A^2 .
2.8) $A = \begin{bmatrix} 2 & 1 & 2 \\ 1 & 3 & 0 \\ 4 & 1 & 2 \end{bmatrix}$ dl A^2 शोधो.

ર.જો A =
$$\begin{bmatrix} 2 & 1 & \bar{2} \\ 1 & 3 & 0 \\ 4 & 1 & 2 \end{bmatrix}$$
 તો A² શોધો

3. Solve 3x+y = 9 and 2x-3y = -5 using matrices.

3. શ્રેણિકની મદદથી સમીકરણ સંહતિ 3x+y=9 અને 2x-3y=-5 ઉકેલો.

(A) Attempt any two. (કોઈપણબેનાજવાબ આપો):

1. With the definition find derivative of $y=e^x$.

૧. વ્યાખ્યાની મદદથી વિધેય $y=e^x$ નું વિકલન શોધો.

2. Find
$$\frac{dy}{dx}$$
 for $y = \log(x^2 + 2x + 4)$

ર. વિધેય
$$y = \log(x^2 + 2x + 4)$$
માટે $\frac{dy}{dx}$ શોધો.

3. *Integrate*:
$$\int_{2}^{4} (x^2 + 3x - 1) dx$$

3 સંકલન કરો. :
$$\int_{2}^{4} (x^2 + 3x - 1) dx$$

Q.3 (B) Attempt any two. (કોઇપણબેનાજવાબ આપો)

1. If
$$y=3e^{2x} + 4e^{-2x}$$
 prove that $\frac{d^2y}{dx^2} = 4y$

ર . જો
$$y=3e^{2x}+4e^{-2x}$$
 હોય તો સાબિત કારોકે $\frac{d^2y}{dx^2}=4y$

2. If the equation of motion of a particle is $s = t^3 + 3t$ (t >0) then Find the velocity and acceleration at t=3

૨. પદાર્થનીગતિનુસમીકરણ
$$s = t^3 + 3t$$
 ($t > 0$) હોયતો, $t = 3$ આગળવેગ અને પ્રવેગ શોધો.

3. Find the maxima and minima at the function
$$f(x)=x^3-4x^2+5x+7$$

3. વિધેય
$$f(x)=x^3-4x^2+5x+7$$
માટે મહત્તમ અને ન્યુનત્તમ શોધો.

Q.4 (A) Attempt any two. (કોઇપણબેનાજવાબ આપો):

1.Integrate:
$$\int \left(\sqrt{x} + \frac{1}{\sqrt{x}}\right)^2 dx$$

૧.સંકલન કરો :
$$\int \left(\sqrt{x} + \frac{1}{\sqrt{x}}\right)^2 dx$$

2.Integrate:
$$\int \frac{\sin x \cos x}{1 + \sin^2 x} dx$$

ર.સંકલન કરો:
$$\int \frac{\sin x \cos x}{1+\sin^2 x} dx$$

3.Find Mean for the following data.

x_i	17	20	23	26	29	32	35	
f_i	6	8	15	17	10	7	4	
૩. નીચે આપેલી માહિતી માટે મધ્યક શોધો.								
χ_i	17	20	23	26	29	32	35	

10

Q.4 (B) Attempt any two. (કોઈપણબેનાજવાબ આપો)

1.Integrate:
$$\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\cot x}}{\sqrt{\tan x} + \sqrt{\cot x}} dx$$
9.સંકલન કરો :
$$\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\cot x}}{\sqrt{\tan x} + \sqrt{\cot x}} dx$$

૧.સંકલન કરો :
$$\int_0^{\frac{\pi}{2}} \frac{\sqrt{\cot x}}{\sqrt{\tan x} + \sqrt{\cot x}} dx$$

2.Integrate:
$$\int x \cdot \cos x \, dx$$

- 3. Find Mean deviation about mean for the following data. 30,35,39,41,36,37,43,40,32
- 3. નીયે આપેલી માહિતી માટે મધ્યકથી શરેરાશ વિયલન શોધો. 30,35,39,41,36,37,43,40,32

Q.5 (A) Attempt any two. (કોઇપણબેનાજવાબ આપો):

1. Find the mean for the following group data

Class	30-40	40-50	50-60	60-70	70-80	80-90	90-100
Frequency	3	7	12	15	8	3	2

06

08

08

2. Find the standard deviation for the following data

x_i	4	8	11	17	29	23	30
f_i	2	5	8	4	3	2	1

ર .નીયે આપેલી માહિતી માટે પ્રમાણિત વિયલન શોધો.

x_i	4	8	11	17	29	23	30
f_i	2	5	8	4	3	2	1

.3.Calculate the mean deviation of the data:

Class	0-10	10-20	20-30	30-40	40-50
Frequency	5	8	15	16	6

3. આપેલ માહિતી માટે શરેરાશ વિયલન ગણો

Class	0-10	10-20	20-30	30-40	40-50		
Frequency	5	8	15	16	6		

Q.5 (B) Attempt any two. (કોઇપણબેનાજવાબ આપો)

1. solve the Differential Equation:
$$\frac{dy}{dx} = 1 + x + y + xy.$$

૧. વિકલ સમીકરણ ઉકેલો:
$$\frac{dy}{dx} = 1 + x + y + xy.$$

2. solve the Differential Equation :
$$x\frac{dy}{dx}-y=x^2$$
 ર. વિકલ સમીકરણ ઉકેલો : $x\frac{dy}{dx}-y=x^2$

ર. વિકલ સમીકરણ ઉકેલો :
$$x \frac{dy}{dx} - y = x^2$$

3. solve the Differential Equation :
$$\frac{dy}{dx}-\frac{2xy}{1+x^2}=1+x^2$$
 3. વિકલ સમીકરણ ઉકેલો :
$$\frac{dy}{dx}-\frac{2xy}{1+x^2}=1+x^2$$

3. વિકલ સમીકરણ ઉકેલો :
$$\frac{dy}{dx} - \frac{2xy}{1+x^2} = 1 + x^2$$