





PHOROGRAPHICA MASTERIAL ANTON

HORIZONS INCORPORATED

DIVISION OF HORIZONS RESEARCH INCORPORATED

18800 MERCANTILE ROAD

CLEVELAND, OHIO 44122

OCTOBER 1976

COPY AVAILABLE TO DDG DOES NOT PERMIT FULLY LEGIBLE PRODUCTION

TECHNICAL REPORT AFAL-TR-78-163 FINAL REPORT FOR PERIOD 1 OCTOBER 1978 - 2 FEBRUARY 1978

Americal for public release; distribution nellected



AIR PORCE AVIONICS LABORATORY
AIR PORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND
WRIGHT-PACTERSON AIR PORCE BASE, ORIO 45488

CONTRACTOR OF THE PROPERTY OF

Met C. Lewis, 65-1 CT Core Project N CVL/AVE-1

ACCUPATE AND PROGRAMMS Broup.

DISTRIBUTION OF

YOR THE COMMANDER

James G. Relega Chica Dynamics & Environmental Evaluation branch Recommodization and Manyon Delivery Division Att Porce Aviousts Subaratory

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) READ INSTRUCTIONS REPORT DOCUMENTATION PAGE BEFCRE COMPLETING FORM 2. GOVT ACCESSION NO. 3. PECIPIENT'S CATALOG NUMBER AFAL TR-76-162 TITLE (and Subtitle) Final Technical Repair 1 Oct 73-2 Feb PHOTOGRAPHIC WASTE UTILIZATION 6. PERFORMING ORG. REPORT NUMBER CONTRACT OR GRANT NUMBER(s) AUTHOR(s) F33615-74-C-1 Sandra S. Donovan PERFORMING ORGANIZATION NAME AND ADDRESS Horizons Incorporated **USAF0050** Div. of Horizons Research Incorporated 23800 Mercantile Rd., Cleveland O., 44122 1. CONTROLLING OFFICE NAME AND ADDRESS United States Air Force Air Force Systems Command, HQ 49th Test Wing, Wright-Patterson AFB, Ohio 4. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 15. SECURITY CLASS. (of this report) Air Force Avionics Laboratory Air Force Wright Aeronautical Laboratories Unclassified

15c. DECLASSIFICATION/DOWNGRADING
3 SCHEDULE Air Force Systems Command Wright-Patterson Air Force Base, O., 45433 N/A 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Cold-setting ceramic foam Safe disposal Ultramarine pigments Insulating castable On-site ceramic foam preparation Insulating firebrick Photographic processing wastes Waste recycling 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) The objective of this program was to incorporate photographic processing wastes into a useful product, or to render the wastes

harmless for a Class 3 landfill. The wastes were incorporated into a cold-setting ceramic foam, a ceramic castable, and an ultramarine pigment. Technical and economic evaluations indicated the foams might possibly be used for insulating firebricks up to 2000 F, and sold at a profit; the castables could be used.

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

408 304

page

cont.

as an insulating castable up to 2000°F, but probably not sold at a profit; and the pigments could be made, but not profitably. From environmental exposure tests, for safe photowaste disposal in a Class 3 landfill, the 1000°F cured, clay-containing foam (preferred) or the room temperature cured, nonclay-containing foam, appear suitable as long as the landfill is not excessively alkaline. For excessively alkaline landfills, a 1000°F cured clay-containing castable appears suitable. The recommended level of photowaste incorporation is 10-20% by weight of green ceramic.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

# PREFACE

Photographic Waste Utilization was studied under Air Force Contract F33615-74-C-1053. The objective was to incorporate photographic processing wastes into a useful product, or to render the wastes harmless for a Class 3 landfill.

ALL HALL LAND IN THE REAL PROPERTY AND INC.

#### SUMMARY

The original contract had as its objective the elimination of pollution has ards associated with disposal of photographic processing wastes at a projected rate of 10 tons per week. To this end, work was done to incorporate photowaste into a ceramic foam, a ceramic castable, and to modify it to an ultramarine pigment. All three approaches showed technical feasibility and varying levels of technical success, but pigment fabrication was deemed economically unfeasible.

The amended contract had as its objective economic disposal of photowaste material either by its incorporation into a useful product or by its being rendered harmless and suitable for a class 3 landfill. Accordingly, two odorless products have been made and a means of safe disposal has been specified.

These two products are a ceramic foam capable of use as an insulating firebrick and a ceramic castable, capable of use as an insulating castable. Each green product contains about 10% by weight of photowaste. For the properties we tested, our products were about identical or somewhat better than comparable commercial products. From our approximate cost figures, the foam possibly might be sold at a profit, but not the castable. The manufacturing costs for the foam are estimated at 23.6 cents per pound, and for the castable at 25.5 cents per pound. Capital equipment and a functional plant layout for these products are given. Also detailed is a portable unit for on-site foam fabrication in a wide range of climates. However, this unit presumes a knowledge on the part of the user of how to substitute on-site materials as fillers.

From the environmental exposure tests, for safe photowaste disposal in a class 3 landfill, the 1000°F cured, clay-containing foam (preferred) or the room temperature cured, non-clay-containing foam appear suitable as long as the landfill is not excessively alkaline. For excessively alkaline landfills, a 1000°F cured castable appears suitable. The recommended level of photowaste incorporation is 10-20% by weight of the green ceramic.

# TABLE OF CONTENTS

| Section |                                                                                     | Page          |
|---------|-------------------------------------------------------------------------------------|---------------|
|         | DOD Form 1473                                                                       |               |
|         | Summary                                                                             |               |
|         | Table of Contents                                                                   |               |
|         | List of Illustrations                                                               |               |
|         | List of Tables                                                                      |               |
| I       | Introduction                                                                        | 1             |
| II      | Program Objective                                                                   | 1             |
| III     | Methodology                                                                         | 1             |
|         | <ol> <li>Original Contract (Oct. 1, 1973-<br/>Sept. 30, 1974)</li> </ol>            | 2             |
|         | a. Product Objectives                                                               | 2             |
|         | <ul><li>b. Synthetic Photowaste</li><li>c. General Fabrication Procedure</li></ul>  | 5<br>s 5      |
|         | 2. Amended Contract (Feb. 2, 1975-                                                  | 3             |
|         | Feb. 2, 1976)                                                                       | 7             |
|         | a. Disposal and Product Objective                                                   |               |
|         | <ul><li>b. Photowaste</li><li>c. General Fabrication Procedure</li></ul>            | 7<br>s 10     |
| IV      | Data and Results                                                                    | 10            |
|         | 1. Original Contract Data and Result                                                |               |
|         | a. Ceramic Foams                                                                    | 10            |
|         | b. Castables                                                                        | 21            |
|         | c. Ultramarine Pigments                                                             | 22            |
|         | 2. Amended Contract Data and Results                                                | 24            |
|         | <ul><li>a. Ceramic Foams</li><li>b. Ceramic Castables</li></ul>                     | 24<br>26      |
|         | <ul><li>b. Ceramic Castables</li><li>c. Environmental Exposure of Foa</li></ul>     |               |
|         | and Castables                                                                       | 28            |
|         | <ul> <li>d. Market Survey for Ceramic Pro-</li> <li>e. Capital Equipment</li> </ul> | duct 36<br>39 |
|         | f. Direct and Indirect Charges                                                      | 39            |
|         | g. Production Costs                                                                 | 47            |
| V       | Discussion and Conclusions                                                          | 49            |
|         | References                                                                          | 50            |

# LIST OF ILLUSTRATIONS

| Figure |                                                                                                         | Page |
|--------|---------------------------------------------------------------------------------------------------------|------|
| 1      | Foaming Apparatus                                                                                       | 6    |
| 2      | Compressive Strength and Density vs Total Feed Rate, Run 2182-24                                        | 13   |
| 3      | Compressive Strength and Density vs Solid/Liquid Ratio, Run 2182-24                                     | 14   |
| 4      | Compressive Strength and Density vs<br>Percent Photowaste, Run 2182-24                                  | 15   |
| 5      | Compressive Strength vs Density                                                                         | 16   |
| 6      | Compressive Strength and Density vs Solid/Liquid Ratio, Run 2182-32                                     | 17   |
| 7      | Compressive Strength and Density vs<br>Percent Photowaste, Run 2182-32                                  | 18   |
| 8      | Compressive Strength and Density vs<br>Total Feed Rate, Run 2182-32                                     | 19   |
| 9      | Comparison of Cold Crushing Strengths of Photowaste Containing Foams to Commercial Insulating Firebrick | 35   |
| 10     | Comparison of Cold Crushing Strengths of Photowaste Containing Castable to                              | 27   |
|        | Commercial Insulating Castables                                                                         | 37   |
| 11     | Dry Component                                                                                           | 41   |
| 12     | Liquid Component                                                                                        | 42   |
| 13     | Foam Fabrication                                                                                        | 43   |
| 14     | Conceptual Equipment Design for Portable Uni                                                            | t 45 |

# LIST OF TABLES

| Table |                                                                                                         | Page |
|-------|---------------------------------------------------------------------------------------------------------|------|
| 1     | Model Photowaste Developer                                                                              | 5    |
| 2     | Analysis of First Photowaste Batch                                                                      | 8    |
| 3     | Analysis of Second Photowaste Batch                                                                     | 9    |
| 4     | Comparison of Sulfur for First and Second Photowaste Batch                                              | 10   |
| 5a    | Composition of Solids Component                                                                         | 11   |
| 5b    | Composition of Liquid Component                                                                         | 11   |
| 6     | Influence of Feed Rate and Solid/Liquid Ratio on Foam Properties                                        | 12   |
| 7     | Properties of Heat Aged Foams Compared to Commercial Firebrick                                          | 21   |
| 8     | Castable Composition                                                                                    | 21   |
| 9     | Castable Firing                                                                                         | 22   |
| 10    | Ultramarine Pigments Tariff Schedule No. 4738400                                                        | 24   |
| 11    | Foam Formulations                                                                                       | 25   |
| 12    | Rapid Setting Foam Formualtions                                                                         | 26   |
| 13    | Castable Formulations                                                                                   | 27   |
| 14    | Exposure Tests for Ceramic Foams                                                                        | 29   |
| 15    | Exposure Tests for Ceramic Castables                                                                    | 31   |
| 16    | Contents of Selected Leach Solutions                                                                    | 33   |
| 17    | Summary of U. S. Producers' Shipments of Refractories, 1971 to 1975 (thousands of dollars)              | 38   |
| 18    | Quantity and Net Value of Insulating Fire-<br>brick Shipments for U. S. through Third Quar-<br>ter 1975 | 38   |
| 19    | Capital Equipment for Facility                                                                          | 40   |
| 20    | Equipment for Portable Unit                                                                             | 44   |
| 21    | Direct Labor Force                                                                                      | 46   |
| 22    | Products Costs                                                                                          | 47   |
| 23    | Comparison of Properties for Our Ceramic                                                                | 48   |

# SECTION I INTRODUCTION

The photographic waste derived from spent black and white photographic solutions consists of a wide variety of chemicals. The major constituents are sodium thiosulfate and sodium sulfite, with minor constituents of sulfate, carbon, carbonate, aluminum, boron, potassium, chloride, and various other metals. About 10 tons of this waste material - a combination of developer and fixer - was anticipated each week from the Air Force photographic processing facilities, and its safe disposal [Ref. 1, 2] was seen as a problem.

# SECTION II PROGRAM OBJECTIVE

The research program which began October 1, 1973 had as its original objective safe disposal of photographic wastes by incorporation into a useful product. The principal products to be considered were cold-setting ceramic foams. For the amended contract which began February 3, 1975, the objective was to economically dispose of the waste material either by its incorporation into a useful product or by its being rendered harmless and suitable for a class 3 landfill.

# SECTION III METHODOLOGY

The methodology and results for the original and for the amended contract will be discussed separately.

<sup>1.</sup> R. E. Lotz, Chemical Wastes Generated by Air Force Photographic Operations, Air Force Weapons Lab., Kirtland AFB, New Mexico, September 1972, AD 750 552.

E. E. Lefebure and R. A. Callahan, Toxic Effects of Color Photographic Processing Wastes on Biological Systems, Environmental Health Lab., Kelly AFB, Texas, August 1970, AD 753 663.

# 1. Original Contract (October 1, 1973 - September 30, 1974) Methodology

## a. Product Objectives

The major thrust of the program was to seek methods and means which would permit encapsulation of the material into a monolithic matrix bonded by aluminum phosphate hydrate in a low cost, laboratory scale process, capable of large quantity scale-up and throughput. Horizons has experience in the preparation of cold-setting foams [Ref. 3, 4, 5, 6]. The foamed structures have wide application possibilities because of their simplicity of formation, and range of available densities and properties. The principle of foam fabrication is quite simple. A liquid acid phosphate component is combined with a powdered basic component such that the neutralization reaction completes the formation of glassy phosphate binder material. The heat liberated by the neutralization reaction aids the gas-forming agent to generate gas which is trapped within the mixture and causes it to foam. The ratio of the liquid to solid component controls the pore size and cure rate. Cure rates as low as a few minutes are easily obtained.

The foam can be made by using numerous different components and fillers. The acid component can be an aqueous solution of an aluminum, calcium, or zirconium phosphate, with an excess of phosphoric acid present. The acid component can be made by combining the oxides, hydroxides, carbonates, acetates, or silicates of aluminum (preferred), zirconium, or calcium with  $P_2O_5$  and water within the following proportions:

1 mole  $Al_2O_3$ : Between 2 to 5 moles  $P_2O_5$ 1 mole  $ZrO_2$ : From 1 to 3 moles  $P_2O_5$ 1 mole CaO: Between 0.6 and 3 moles  $P_2O_5$ 1 mole  $P_2O_5$ : Between 5 and 15 moles  $P_2O_5$ 

- What's Happening with Foamed Ceramics, Ceramic Age, November 1969.
- 4. J. Magder, Foamed Ceramics, U. S. Patent 3,330,675, July 1967.

And the second s

- 5. R. W. Sicka, Foamed Ceramics, U. S. Patent 3,625,723, December 1971.
- M. S. Vukasovich and H. L. Johns, U. S. Patent 3,148,996, September 1964.

to obtain an acid component solution with a viscosity of 800 to 6000 centipoises at 72°F.

The basic component can be selected from the oxide, hydroxide, silicate, or carbonate of calcium, magnesium, zirconium, strontium, barium, aluminum, lithium, iron, and zinc. The photowaste is mixed with this basic component. The amount of powdered basic component added to the acid component must neutralize its excess acid.

The gas-forming agent can be a carbonate of calcium, magnesium, strontium, barium, lithium, ammonium, or iron; metals such as aluminum, magnesium, zinc, or iron, each of which liberates hydrogen when treated with phosphoric acid; compressed or liquified gases such as compressed air, nitrogen, carbon dioxide, trichloromonofluoromethane, dichlorodifluoromethane; or readily decomposable compounds such as hydrogen peroxide, or ammonium nitrite. Certain of the above gasforming agents also can serve to neutralize the excess phosphoric acid.

The preferred acid component contained phosphoric acid, aluminum oxide, and magnesium oxide. The preferred basic component contained calcium, silicate, aluminum, magnesium, and iron oxides plus a magnesium carbonate foaming agent. The rationale will be discussed in detail later. The aluminum phosphate binders have been the subject of extensive study and application [Ref. 5, 6, 7, 8, 9]. The background of phosphate reactions with metal oxide materials is covered in the excellent reviews of Kingery [Ref. 10, 11, 12, 13]. Thermal treatment of

- 7. H. H. Greger, Phosphate Cements, U. S. Patent 2,450,952.
- 8. H. H. Greger, Solid Aluminum Hydrogen Phosphates, U. S. Patent 2,538,867.
- 9. H. H. Greger, Method of Preparing a Mineral Binder, U. S. Patent 2,455,758.
- 10. W. D. Kingery, Fundamental Study of Phosphate Bonding in Refractories: I. Literature Review, J. of Amer. Ceramic Soc. 33, 239-241 (1950).
- 11. ibid. II. Cold-Setting Properties, loc. cit. 242-247 (1950).
- 12. ibid. III. Phosphate Adsorption by Clay and Bond Migration, loc. cit. 247-250 (1950).
- 13. ibid. IV. Motors Bonded with Monoaluminum and Monomagnesium Phosphate, J. Amer. Ceramic Soc. 35, 61-63 (1952).

South to make the state of the sales of the

aluminum phosphate bonded materials causes complex solid state crystallographic transformations to occur over the thermal range required for service [Ref. 14, 15, 16, 17, 18, 19]. For this reason, firing of the foam is suggested for all high temperature applications.

Two minor efforts were to (1) incorporate the wastes into a ceramic castable, and (2) produce ultramarine pigments.

To fabricate the castable, a liquid sodium silicate solution is combined with powdered mineral oxides like aluminum, calcium and magnesium oxide plus the photowaste, and cured at whatever temperature is desired up to about 2000°F. Generally the higher the temperature the stronger the castable. The N-type sodium silicate solutions can range from about 25 to 50% by weight of the total mix, with the powder being about 25% by weight of the mix.

<sup>14.</sup> I. L. Rashkovan, L. N. Kuzminskaya and V. A. Kopiekan, Thermal Transformations in the Aluminum Phosphate Binding Agent, Izvestiya Akademii Nauk SSR, Neorg. Materialy 2, pg. 541-549 (1966).

<sup>15.</sup> V. M. Mcdvedava, A. A. Medvedev, and I. V. Tananaev, Investigation of the Thermal Transforamtions in An Alumina-phosphate Binder by the Methods of Infrared and X-Ray Diffraction Study, Isvestiya Akademii Nauk SSR, Neorg. Materialy 1, pg. 211-217 (1965).

<sup>16.</sup> Ya. V. Khyucharev and L. I. Skoblo, Composition of the Products Formed by the Hardening of Aluminum Phosphate Binder in Refractory Corundum Compositions, Zhurnal Prikladnoi Khimii 38, pg. 520-526 (1965).

<sup>17.</sup> M. F. D'Yvoire, Sur des phosphates d'aluminum du groupe  $P_2O_5/Al_2O_3=2$ , Compt. rend.  $\underline{247}$ , 297-300 (1958). M. F. D'Yvoire, Evolution thermique de phosphate d'aluminum du groupe  $P_2O_5/Al_2O_3=3$ , Compt. rend.  $\underline{245}$ , 531-534 (1957). M. F. D'Yvoire, Bull. Soc. Chim. France  $\underline{145}$ , 2277, 2283 (1960).

<sup>18.</sup> W. R. Beck, Crystallographic Inversions of the Aluminum Orthophosphate Polymorphs and Their Relation to Silica, J. Amer. Cer. Soc. 32, pg. 147 (1949).

<sup>19.</sup> K. Wen-min, N. Tchang-ti- and H. Wenter, Phase Transformation of Aluminum Phosphate Adhesive at 105-500°C, Guisuanyan Xuebao, pg. 65 (1964) CA 61:15808.

To make the ultramarine pigment, the photowaste plus clay is combined with sodium silicate.

### b. Synthetic Photowaste

Since the actual photowastes were not available, three different model photowastes were used in the preparation of the foams, castables, and pigments. The first two which were used for the foam preparation were pure sodium thiosulfate, and the residue recovered from distilling a used black and white fixer solution obtained from the sponsor. The third model waste used for the castable and pigment studies was a synthetic developer mixture.

The model waste recovered from distilling the used black and white fixer was obtained by distilling 15 gallons of waste to approximately 1 gallon. This 1 gallon was discharged hot and allowed to solidify and dry. The dry residue was found to contain 46.4 weight percent sulfate and 4.3 weight percent sulfite. The remainder is believed to be acetate and water.

The model developer waste was synthesized by combining the chemicals which would be found in a developer solution. This combination is listed in Table 1 in the order in which the chemicals were combined.

TABLE 1. Model Photowaste Developer

| Sodium sulfite    | 437.5 g |
|-------------------|---------|
| Metol             | 151.5   |
| Sodium sulfite    | 1125.0  |
| Sodium bisulfite  | 15.6    |
| Hydroquinone      | 81.3    |
| Kodalk            | 927.5   |
| Potassium bromide | 15.6    |
|                   |         |

#### c. General Fabrication Procedures

The foams were prepared first by hand mixing to establish approximate compositions, then by mechanical mixing to optimize properties. For the hand mixing, roughly 80 grams of liquid component were added with stirring to roughly 100 grams of solid powdered component (containing the micropulverized waste) in a 16 ounch cardboard container. After the approximate foam composition and the solid-to-liquid ratio had been established, the mechanical foaming apparatus shown in Figure 1 was used. This apparatus consists of a gravity fed vibratory bin, capable of holding about 100 pounds of the

FIGURE 1. Foaming Apparatus



solid powdered component, a screw feeder delivering the powder to a high shear mixing head driven by an air motor, a liquid storage reservoir, and a metering pump delivering the liquid to the high shear mixing head. Two different mixing heads were used. They are each composed of a center shaft holding 6 to 9 nests of high shear blades within a cylinder. The liquid and solid components are fed into the cylinder, with the solid component being fed in first. The approximate specifications of the two mechanical mixing heads are as follows:

|              | Length (in) | O. D. (in) |      | Feed Rate (lbs/hr) |
|--------------|-------------|------------|------|--------------------|
| Larger head  | 22          | 4          | 1300 | 172                |
| Smaller head | 16          | 2-1/2      | 200  | 26                 |

The castables were hand mixed in quantities up to 5 pounds, by again adding liquid component to solid component.

The ultramarine pigments were prepared on a laboratory scale of batches less than one pound.

# 2. Amended Contract (February 2, 1975 - February 2, 1976)

## a. Disposal and Product Objectives

The objective was the successful incorporation of the photowaste into a ceramic foam or ceramic castable for either sale into the building or refractories markets or for class 3 landfill disposal. Success was to be judged by the wastes being rendered harmless to humans, the ecology and the environment in an economically feasible manner consistent with accepted processing technology. Thus, the scope of the work included testing the waste containing ceramic for commercial properties and pollution hazards; conducting a market study for determining the ceramics most promising applications; and completion of first approximation of the products manufacturing costs.

#### b. Photowaste

Two different batches of real photowaste were obtained and analyzed. Table 2 gives the analysis of the first photographic waste batch which was a mixture of developer and

fixer. Note that sodium thiosulfate  $(Na_2S_2O_3)$  was the primary constituent with small amounts of sulfite  $(SO_3^-)$  and sulfate  $(SO_4^-)$  and no free sulfur (S), bisulfite  $(HSO_3^-)$ , or pyrosulfate  $(S_2O_5^-)$ . Table 3 gives the analysis of the second waste batch, which was primarily fixer.

TABLE 2. Analysis of First Photowaste Batch

| Component                                                                         | Weight % Measured | Calculated<br>Weight % Sulfur |
|-----------------------------------------------------------------------------------|-------------------|-------------------------------|
| S <sub>2</sub> O <sub>3</sub> =                                                   | 35.91             | 20.54                         |
| SO <sub>3</sub> =                                                                 | 4.92              | 1.97                          |
| SO <sub>4</sub> =                                                                 | 0.34              | 0.11                          |
| HSO <sub>3</sub>                                                                  | not detected      | South Code ( Red)             |
| S205=                                                                             | not detected      | <u>-</u>                      |
| Total S                                                                           | 22.61             | 22.62 (sum of above)          |
| Na                                                                                | 16.26             |                               |
| C                                                                                 | 2.07              |                               |
| NH4                                                                               | < 0.01            |                               |
| Total Halogen as Cl                                                               | 0.15              |                               |
| К, В                                                                              | 0.05 - 0.5        |                               |
| Ag, Mg, Si, Fe, Ca, N<br>Al, Cu, Cr                                               | i, < 0.01         |                               |
| Sb, Ta, As, Mn, Hf, P. W, Ge, Bi, Be, In, Mo Sn, V, Cd, Ti, Zr, Zn Co, Sr, Li, Ba |                   |                               |

The semiquantitative spectrographic analysis indicates the second batch has more impurities than the first. The second batch has a higher percentage of sodium (Na), aluminum (Al), silicon (Si), silver (Ag), lead (Pb), and lithium (Li) than did the first. Quantitative analysis for the second batch shows a lower percentage of thiosulfate  $(S_2O_3^{-})$ , a higher percentage of sulfite  $(SO_3^{-})$  and about the same amount of total sulfur as did the first batch.

TABLE 3. Analysis of Second Photowaste Batch

# Semi-Quantitative Analysis

| Range of Concentration | Elements                                                                     |  |  |  |
|------------------------|------------------------------------------------------------------------------|--|--|--|
| > 10%                  | Na                                                                           |  |  |  |
| 0.1 - 1%               | Al                                                                           |  |  |  |
| 0.05 - 0.5%            | В, К                                                                         |  |  |  |
| 0.01 - 0.1%            | Si, Ag                                                                       |  |  |  |
| < 0.01%                | Pb, Fe, Li, Cu, Cr, Ca,<br>Mg                                                |  |  |  |
| not detected           | Sb, As, Mn, W, Ge, In, Ni, Bi, Nb, Be, Mo, Sn, V, Cd, Zn, Ti, Zr, Co, Sr, Ba |  |  |  |

## Quantitative Analysis

| Substance                                    | Percentage |
|----------------------------------------------|------------|
| Thiosulfate, S <sub>2</sub> O <sub>3</sub> = | 15.83      |
| Sulfite, SO <sub>3</sub> =                   | 10.13      |
| Total sulfur                                 | 23.0       |
| Na <sub>2</sub> CO <sub>3</sub>              | 1.44       |

Table 4 shows a comparison of the sulfur for the first and second batches. The amount of total sulfur measures (22.61%) for the first batch agrees well with the sum of the calculated weight percentages of sulfur (22.62%) from each component. However, for the second batch, the amount of sulfur measured (23.0%) is greater than the sum of the calculated weight percentages of sulfur (13.10%) from each component. The analyst felt this missing sulfur was in the form of free sulfur.

TABLE 4. Comparison of Sulfur for First and Second Photowaste Batch

| Component                                  | Wt. %<br>Measured | Wt. %<br>Sulfur         | Wt. %<br>Measured | Wt. %<br>Sulfur |
|--------------------------------------------|-------------------|-------------------------|-------------------|-----------------|
| Thiosulfate, S <sub>2</sub> O <sub>3</sub> | 35.91             | 20.54                   | 15.83             | 9.05            |
| Sulfite, SO <sub>3</sub> =                 | 4.92              | 1.97                    | 10.13             | 4.05            |
| Sulfate, SO <sub>4</sub> =                 | 0.32              | 0.11 ,                  | not<br>analyzed   | 10.70 <u>-</u>  |
| Total sulfur                               | 22.61             | 22.62<br>(sum of above) | 23.0              | 13.10           |

## c. General Fabrication Procedures

The general fabrication procedures for the foams and castables were the same as described in Section III.2.c.

### SECTION IV

#### DATA AND RESULTS

The data and results obtained for the original and for the amended contract will be discussed separately.

#### 1. Original Contract Data and Results

The ceramic foams, ceramic castables, and the ultramarine pigments will each be discussed in turn.

### a. Ceramic Foams

Two different synthetic photowastes were used for the production of the foams since the real photowaste was unavailable at the time. These two synthetic wastes were sodium thiosulfate,  $Na_2S_2O_3$ , or the residue recovered from the distillation of spent black and white fixer solutions. In either case, the micropulverized synthetic waste was incorporated by dry

blending into the solid powdered component. The composition of the solid component is given in Table 5a.

## TABLE 5a. Composition of Solids Component

| Wollastonite C-1                                   | CaSiO <sub>3</sub> | 60.8%  |
|----------------------------------------------------|--------------------|--------|
| Hydral 710                                         | A1203 · 3H20       | 3.3    |
| Magnesium oxide, light Photowaste (fixed solids/or | MgO                | 2.2    |
| $Na_2S_2O_3$ )                                     |                    | 33.7   |
|                                                    |                    | 100.0% |

The liquid component was prepared by slowly adding hydrated alumina C-31 to an approximately 90°C solution of phosphoric acid and water. The composition of the liquid component is given in Table 5b.

# TABLE 5b. Composition of Liquid Component

| (75% N.F | .) Phosp | horic | acid  |            | 76.5%  |
|----------|----------|-------|-------|------------|--------|
| Hydrated | alumina  | C-31  | Alcoa | A1203.3H20 | 13.7   |
| Water    |          |       |       |            | 9.8    |
|          |          |       |       |            | 100.0% |

The solid and liquid components were fed to the mixing head at variable rates permitting modification of the formulation of the foam. Changes in the solid-to-liquid ratio at given overall feed rates influence the properties of the end products, primarily density, cold crushing strength, and thermal conductivity.

Table 6 summarizes the foaming runs which used both the residue from the distilled black and white fixer solution and pure sodium thiosulfate as the synthetic photowastes.

The data in Table 6 were displayed graphically (Figures 2 to 8) to learn if any regular relationship exists between the variables. These graphs show that for sodium thiosulfate as the photowaste, the compressive strength of the foam seems to follow the feed rate (Figure 2), the solid/liquid ratio (Figure 3), and the percent photowaste (Figure 4) in a regular manner. Figure 2 shows that below a total feed rate of 1250 g/min. the compressive strength appears to remain constant. Between feed rates of 1250-1650 g/min. the compressive strength increases

with increased feed rate, and reaches a second constant value for speed rates above 1650 g/min. Similar patterns are evident for the relationship between compressive strength and solid/liquid ratio, and compressive strength and percent photowaste. Figure 3 shows that below a solid/liquid ratio of 1.3, the compressive strength appears constant. Between solid/liquid ratios of 1.3-2.0, the compressive strength increases with an increase in the ratio. Above a ratio of 2.0, the compressive strength remains constant. Figure 4 shows that below a percent photowaste of 19%, the compressive strength appears constant. Between photowaste percentages of 19-22.5%, the compressive strength increases with photowaste content. Above 22.5% the compressive strength remains constant.

TABLE 6. Influence of Feed Rate and Solid/Liquid Ratio on Foam Properties

| Sample No.                                                 | Solid<br>g/min                                                  | Liquid<br>g/min                                      | S/L<br>Ratio                                                        | %<br>Photo-<br>waste                                                 | Foam<br>Density<br>pcf                                               |                                                                | Compressive<br>Strength<br>psi         |
|------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------|
|                                                            |                                                                 | Sodium T                                             | hiosulf                                                             | ate                                                                  |                                                                      |                                                                |                                        |
| 2182-24-2<br>-3<br>-4<br>-5<br>-6<br>-7<br>-8<br>-9<br>-10 | 450<br>580<br>710<br>840<br>1350<br>960<br>1100<br>1230<br>1230 | 260<br>540<br>540<br>540<br>540<br>540<br>540<br>540 | 1.73<br>1.07<br>1.31<br>1.55<br>2.5<br>1.77<br>2.03<br>2.27<br>2.27 | 21.3<br>17.4<br>19.1<br>20.5<br>24.0<br>21.5<br>22.5<br>23.4<br>23.4 | 50.5<br>45.6<br>38.2<br>33.8<br>46.7<br>35.1<br>35.9<br>41.0<br>52.5 | 3.0-4.0<br>0.2-0.5<br>1.0-2.0<br>0.5-1.0<br>0.5-2.5            | 105<br>182<br>339<br>279<br>337<br>334 |
|                                                            | Fi                                                              | xer Solu                                             | tion So                                                             | lids                                                                 |                                                                      |                                                                |                                        |
| 2182-32-1<br>-2<br>-3<br>-4<br>-5<br>-6<br>-7              | 840<br>840<br>840<br>840<br>770<br>860<br>860                   | 540<br>590<br>590<br>590<br>590<br>590<br>590        | 1.56<br>1.42<br>1.42<br>1.42<br>1.30<br>1.46                        | 20.5<br>19.7<br>19.7<br>19.7<br>19.0<br>20.0                         | 51.7<br>51.3<br>33.5<br>30.3<br>29.6<br>30.0<br>32.2                 | 0.2-0.5<br>0.2-0.5<br>0.5-1.0<br>0.5-1.0<br>0.5-1.0<br>0.2-0.5 | 218<br>217<br>258<br>190<br>218        |











FIGURE 5. Compressive Strength vs Density







Figures 2 to 4 also show that there is no simple correlation between these same fabrication variables and the density of the resultant foam. In fact, there is no simple correlation between compressive strength and density, as shown in Figure 5. An interesting trend that can be seen from Table 6 is that, in general, as the fabrication variables increase, the pore size range decreases.

For the fixer residue used as the photographic waste in making the foam, only the middle feed rate range was studied, as shown in Table 6. This range showed dependency of compressive strength on these variables for the sodium thiosulfate foam. Figure 5 shows an increase of compressive strength with an increase in the solid/liquid ratio and Figure 7 shows an increase of compressive strength with an increase in the percent photowaste. However, no simple relationship existed between compressive strength and feed rate, as shown in Figure 8.

Again, as with the sodium thiosulfate foam, Figures 6 to 8 show that no simple correlation is apparent between these same fabrication variables and the density for the foams made from the fixer residue.

A further test was to subject the foam to a heat cycle, measure its thermal conductivity and compressive strength, and compare these values to those for the unheated foam. This was done to learn if heating would produce a better insulator. The heat cycle was 20 hours at 302°F (150°C) followed by 24 hours at 1200°F (649°C).

Table 7 shows the compressive strengths at 3% deformation, for our unheated and heated foams are better than those for commercial firebrick. After heat aging, our foam had a crushing strength of 167 psi compared to 145 psi for Firebrick K-23 and 110 psi for Firebrick K-20. That is a 15 to 50% improvement. At 482°F, our heat aged foam had a comparable thermal conductivity to that of Firebrick K-23 and K-20 at 500°F. Heating did not improve the foam's insulating properties.

TABLE 7. Properties of Heat Aged Foams
Compared to Commercial Firebrick

| (9-10) (2-48) (90)<br>(4)               | 2182-32-3        | 2162-41<br>aged 20 hrs/302°F<br>(+ 24 hrs/1200°F)   | Firebrick<br>K-20 | Firebrick<br>K-23 |  |
|-----------------------------------------|------------------|-----------------------------------------------------|-------------------|-------------------|--|
| Crushing Strength (psi)                 |                  |                                                     |                   |                   |  |
| at failure                              | 323              | 174                                                 | -                 | -                 |  |
| at 3% deformation                       | 116              | 167                                                 | 110               | 145               |  |
| Density (pcf)                           | 33               | 28                                                  | 29                | 31                |  |
| Thermal Conductivity (Btu/hr/°F/ft /in) |                  |                                                     |                   |                   |  |
| 212°F                                   | 0.83             | 0.90                                                |                   | - 15              |  |
| 482°F                                   | 1.18             | 1.25                                                |                   |                   |  |
| 500°F                                   |                  | - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1             | 0.9               | 1.1               |  |
| 1292°F                                  | C T. Delicato 43 | sani cera I sol la Jaka a<br>A paden le Jos Cermi s | 1.5               | 1.5               |  |

#### b. Castables

As an examination of an alternate product form, a mix of developer chemical was incorporated with a silicate binder solution and a block material was obtained. Such material could find construction applications similar to cement blocks. The material was pressed to remove excess binder and oven dried at 260°F. The oven dried material was further thermally treated to 1800°F with attendant observation of density change and weight loss. The material had good mechanical properties. Table 8 presents the composition of the castable.

# TABLE 8. Castable Composition

| Model Photowaste Developer (see Table 1) |       | 21.8%  |
|------------------------------------------|-------|--------|
| Wollastonite                             | 93.5% |        |
| Hydral 710                               | 5.6%  |        |
| MgCO <sub>3</sub>                        | 0.9%  | 65.4%  |
| 30% Sodium Silicate Solution             |       | 12.8%  |
|                                          |       | 100.0% |

Table 9 presents the response of the composition to thermal treatment.

TABLE 9. Castable Firing

| Firing Temperature | Time (min) | % Weight Loss | Density (pcf)          |
|--------------------|------------|---------------|------------------------|
| 500°F              | 30         | 2.3           | 94                     |
| 1000°F             | 30         | 4.6           | 87                     |
| 1800°F             | 30         | 5.1           | 94<br>(some shrinkage) |

### c. Ultramarine Pigments

Ultramarine pigments are derived [Ref. 20, 21, 22, 23, 24, 25] by heating mixtures of sulfur, clay, alkali, and a reducing agent at high temperatures. Ultramarine blues are complex sodium alumino sulfosilicates which find application as artist colors, roofing granules, coloring soap powders, and tinting aids in white paint. They are used where color permanence, brilliance and alkaline resistance are of importance. Ultramarine is also used as a catalyst in the dehydration of isopropyl alcohol, the oxidation of sulfur in petroleum products, and hydrocracking and sulfur removal from thiophenes.

and the state of t

G. Yamaguchi and Y. Kubo, Ultramarine Synthesized Under Controlled Vapor Pressures, Bull. Chem. Soc. of Japan, 41 2645 (1968).

<sup>21.</sup> R. Van Order and R. H. Hill, Manufacture of Ultramarine Blue, U. S. Patent 2,806,802.

<sup>22.</sup> W. J. Kruppa, et al., Manufacture of Ultramarine, U. S. Patent 2,700,618.

<sup>23.</sup> E. W. Large, Ultramarine Blue, Am. Perfumes Cosmet. 77 (91 42-44 (1962)).

<sup>24.</sup> F. Moser, Ultramarine Pigments, pg. 409, Pigment Handbook Vol. I, ed. T. C. Patton, J. Wiley & Sons, Inc. (1973).

<sup>25.</sup> J. T. Morrison, Ultramarine Pigments, Paint and Varnish Prod., 61 pg. 59-64 (August 1971).

A typical composition of ultramarine blue [Ref. 26]

is:

| SiO <sub>2</sub>               | 37 | to | 50% |
|--------------------------------|----|----|-----|
| Al <sub>2</sub> O <sub>3</sub> | 23 | to | 29% |
| Na <sub>2</sub> O              | 19 | to | 23% |
| S                              | 8  | to | 14% |

The nature of the manufacturing methods of ultramarine blue [Ref. 20, 21, 23, 24, 25] indicates that photowaste derived from developer, and hence containing sulfur compounds and organic residues, would be useful as a source of the sulfur and reducing agent needed to generate the  $S_2^-$ , and  $S_5^-$  color centers in an alumino silicate matrix.

To that end a brief investigation in the preparation of ultramarine blue was attempted. The procedure involved the dry blending of photowaste developer with a clay and some sodium silicate solution.

64.8% Model Photowaste Developer (see Table 1)

27.8% H. H. Pulverized Clay

7.4% Starso Sodium Silicate Solution

The above mixture was placed in fireclay crucibles and fired to 1500°F for 30 minutes. The charge was highly colored in a gradation indicating slight differences of reducing environment. Regrinding and refiring produced a less marked change in coloration. Microscopic examination showed a wide distribution of coloration with some particles intensely colored blue while others showed some brownish red character. On grinding the material dry in a ball mill, a fine powder was produced. Both ultramarine blue and green were obtained, though in an impure state.

An investigation of the literature was initiated to gauge the market and the potential of processes to prepare the ultramarine pigments from photowaste materials.

We determined that all the ultramarine blue was being imported into the country from Europe and Japan. This amounted to about 9 million pounds per year, then at an import value of about \$3,000,000. This may represent a retail value of about \$10,000,000 since the price range was \$0.42 per pound to \$1.75 per pound, depending on grade of material.

<sup>26.</sup> Ultramarine Blue, ASTM D262-47.

The quantity of ultramarine pigments which was imported annually is presented in Table 10.

TABLE 10. Ultramarine Pigments Tariff Schedule No. 4738400\*

| Year | Net Quantity (lbs)           | Dollar Value      | Price/Pound           |
|------|------------------------------|-------------------|-----------------------|
| 1970 | 3,568,522                    | \$ 775,898        | \$0.2174              |
| 1971 | 3,844,586                    | 1,003,656         | 0.2608                |
| 1972 | 6,672,192                    | 2,321,631         | 0.3408                |
| 1973 | 9,063,195                    | ANNALLY SLOKEL    | and the same          |
| 1974 | 3,548,790 (first six months) | lains of the laid | ng<br>nga sampa sampa |

[Chemical Marketing Reporter; International Commerce Dept. of U. S. Dept. of Commerce.]

An apparently anamolous increase in import of pigment occurred in 1972; this may be attributed to a number of domestic manufacturers stopping production for probably reasons of antiquated equipment and pollution control problems.

The reasons for discontinued production of ultramarine in this country are tied to the enactment of rigid air pollution controls and the extremely lengthy process for production. Some newer techniques of production involve closed atmosphere ovens and continuous production rotary kilns. The domestic market of about \$10,000,000 did not appear to warrant the investment needed for a several million pound production facility with several different grades and colors of ultramarine blue.

### Amended Contract Data and Results

Most of the research effort was devoted to the ceramic foams, with the castables receiving a minor effort. Each will be discussed in turn.

#### a. Ceramic Foams

With arrival of the real photowastes plus interest in using accepted processing techniques, some compositional changes in the foam formulation were needed. These changes were aimed at minimizing sulfur release during foam fabrication, and eliminating it from the cured product. In order to minimize sulfur release during foam fabrication, the amount of acidity encountered by the thiosulfate is minimized. Thus the photowaste is combined with the dry powder basic oxides component, and the rat between the powder component and the liquid phosphoric cid component is such as to prevent the final mix from becing too acidic. The foams were found to be capable of containing up to 12% by weight of photowaste. Also, to prevent the foams from setting up too quickly after the acidic component was combined with the photowaste containing basic oxide component, weakly basic oxides like iron oxide were substituted for part of the strongly basic oxide magnesium oxide in the powder component, and some magnesium oxide was added to the phosphoric acid liquid component.

Table 11 gives specific successful formulations for the foams. These foams cured at room temperature were odorless, had densities of 16 to 23 pcf, and cold crushing strengths of 36 to 102 psi. These same foams fired to 1000°F had negligible density changes, and cold crushing strengths of 65 to 200 psi.

TABLE 11. Foam Formulations

| Dry Component                                                                                       |                                            | Dry Component |                                                                                                                        |                                    |
|-----------------------------------------------------------------------------------------------------|--------------------------------------------|---------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| Material                                                                                            | Wt. %                                      |               | Material                                                                                                               | Wt. %                              |
| Wollastonite<br>Hydral 710<br>MgCO <sub>3</sub><br>Photowaste<br>Red Fe <sub>2</sub> O <sub>3</sub> | 48.8<br>4.0<br>4.0<br>34.1<br>9.1<br>100.0 | or            | Wollastonite Hydral 710 MgCO <sub>3</sub> Photowaste Fe <sub>2</sub> O <sub>3</sub> (red) Carbon black (Sterling N.S.) | 43.0<br>3.5<br>3.5<br>30.0<br>10.0 |

#### Liquid Component

| Material     | Wt. % |
|--------------|-------|
| 75% H3PO4    | 58.3  |
| C-31 Alumina | 10.5  |
| MgO          | 3.2   |
| Water        | 28.0  |
|              | 100.0 |

# TABLE 11 (continued)

The approximate ratio of dry component to liquid was 1.6:1. Thus, for the non-carbon black containing foam, the overall composition was:

| Component           | Wt. % |
|---------------------|-------|
| Wollastonite        | 30.0  |
| Hydral 710          | 2.5   |
| Magnesium carbonate | 2.5   |
| Iron oxide          | 5.6   |
| Photowaste          | 21.0  |
| 75% Phosphoric acid | 22.4  |
| Alumina C-31        | 4.0   |
| Magnesium oxide     | 1.2   |
| Water               | 10.8  |
|                     | 100.0 |

If the mixing machinery and application can tolerate a very rapid set-up time, then the formulations given in Table 12 are acceptable.

TABLE 12. Rapid Setting Foam Formulations

| Component           |      |              |      |
|---------------------|------|--------------|------|
| Photowaste          | 10.8 | 5.4          | 10.8 |
| Wollastonite C-1    | 27.2 | 44.6         | 39.6 |
| Alumina 710         | 1.6  | 2.6          | 2.3  |
| Alumina C-31        | 4.8  | 4.8          | 4.8  |
| Magnesium carbonate | 0.6  | 1.0          | 0.9  |
| Magnesium oxide     | 1.8  | 1.9          | 1.9  |
| Clay                | 13.5 | - The second | _    |
| 75% phosphoric acid | 26.8 | 26.8         | 26.8 |
| Water               | 12.9 | 12.9         | 12.9 |

The densities of the odorless foams given in Table 12 range from 27 to 36 pcf with cold crushing strengths of 200-325 psi.

### b. Ceramic Castables

For combining the primarily sodium thiosulfate into the castable, the photowaste was combined with the powder component. The castable was capable of incorporating up to 22% by

weight of photowaste. Table 13 gives typical castable formulations. These castables cured at room temperature, were odorless, had densities of 77 to 104 pcf, and cold crushing strengths of 450 to 2600 psi. These same castables cured at 1000°F were odorless, had densities of 75 to 93 pcf, and cold crushing strengths of 300 to 2300 psi.

TABLE 13. Castable Formulations

| TABL                                                   | E 13. Castable                        | Formulations         |       |
|--------------------------------------------------------|---------------------------------------|----------------------|-------|
| Dry Component                                          |                                       | Liquid Component     |       |
| Material                                               | Wt. %                                 | Material             | Wt. % |
| Wollastonite C01<br>MgO<br>Clay (Kaolin)<br>Photowaste | 25.0<br>30.0<br>25.0<br>20.0<br>100.0 | N-38 Sodium silicate | 100.0 |
|                                                        | Dry/Liquid                            | - 1/1                |       |
| Dry Component                                          |                                       | Liquid Component     |       |

| Dry Component                                          |                                       | Liquid Component              |              |
|--------------------------------------------------------|---------------------------------------|-------------------------------|--------------|
| Material                                               | Wt. %                                 | Material                      | Wt. %        |
| Wollastonite C01<br>MgO<br>Clay (Kaolin)<br>Photowaste | 25.0<br>30.0<br>25.0<br>20.0<br>100.0 | N-38 Sodium silicate<br>Water | 50.0<br>50.0 |
|                                                        | Dry/Liquid                            | = 1/1                         |              |

| Dry Component    |       | Liquid Component     |       |
|------------------|-------|----------------------|-------|
| Material         | Wt. % | Material             | Wt. % |
| Wollastonite C-1 | 25.0  | N-38 Sodium silicate | 50.0  |
| Alumina 710      | 25.0  | Water                | 50.0  |
| MgO              | 30.0  |                      |       |
| Photowaste       | 20.0  |                      |       |

100.0

Dry/Liquid = 1/1

100.0

# c. Environmental Exposure of Foams and Castables

Several different foam and castable compositions incorporating the photowastes were given 20 days exposure to three different leaching solutions: hard tap water, 10% sodium hydroxide (pH = 14), and 0.01% (pH = 2) hydrochloric acid. Tables 14, 15, and 16 summarize the results. Table 14 reports the ceramic foams, Table 15 the ceramic castables, and Table 16 the semiquantitative analysis of the leach solutions for selected foam and castable samples. Only those samples which survived leaching solution exposure virtually unchanged were tested for crushing strength, and of these only some of the better ones had their final leaching solutions tested for sulfur, metals and alkali metals content.

The following observations were made:

- Foams: (1) Those receiving water and acid exposure survived better than those receiving alkaline exposure.
  - (2) For the room temperature cured foams, those not containing clay were stronger.
  - (3) For the 1000°F cured foams, those containing clay were stronger.
  - (4) The majority of the foams did not emit an odor in any of the solutions; and only a very slight initial sulfur odor was emitted from the others.
  - (5) For the room temperature cured foams, the order of sulfur leaching was base>water>acid. The maximum sulfur concentration in the leach solution was 4200 ppm or 0.42%.
  - (6) The foams cured at 1000°F had at most 550 ppm or 0.055% sulfur leaching.
  - (7) The semiquantitative analysis showed that sodium, calcium, and magnesium were leached out to levels not exceeding 5000 ppm; potassium, silicon, and boron to levels between 5 and 50 ppm; and aluminum, copper, nickel, and lead to levels between 0.5 and 5 ppm. The only metal of any concern is the lead, which was probably contained in the clay which was used in some of the samples. The suggested safe maximum lead ingestion per day for adults is 0.6 mg. If the leach solution contains the maximum of 5 ppm, then an adult could safely ingest 120 ml or about 4 ounces of the leach solution per day.

with the said of the said of the said of the

TABLE 14. Exposure Tests for Ceramic Foams

|                                                                           | Roor                  | Room Temperature Cure                                            | ure                    |                                               | 1000°F Cure                                                                              |                                                                  |
|---------------------------------------------------------------------------|-----------------------|------------------------------------------------------------------|------------------------|-----------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------|
|                                                                           | 2429-27-1             | 2429-27-2                                                        | 2429-27-3              | 2429-27-1                                     | 2429-27-2                                                                                | 2429-27-3                                                        |
| Uncured Formulation (%):                                                  |                       |                                                                  |                        |                                               |                                                                                          |                                                                  |
| Photowaste                                                                | 10.8                  | 5.4                                                              | 10.8                   | 10.8                                          | 5.4                                                                                      | 10.8                                                             |
| Wollastonite C-1                                                          | 27.2                  | 44.6                                                             | 39.6                   | 27.2                                          | 44.6                                                                                     | 39.6                                                             |
| Alumina 710                                                               | 1.6                   | 2.6                                                              | 2.3                    | 1.6                                           | 2.6                                                                                      | 2.3                                                              |
| Alumina C-31                                                              | 8.4                   | 4.8                                                              | 4.8                    | 4.8                                           | 4.8                                                                                      | 4.8                                                              |
| Magnesium carbonate                                                       | 9.0                   | 1.0                                                              | 6.0                    | 9.0                                           | 1.0                                                                                      | 6.0                                                              |
| Macnesium oxide                                                           | 1.8                   | 1.9                                                              | 1.9                    | 1.8                                           | 1.9                                                                                      | 1.9                                                              |
| Clay                                                                      | 13.5                  | 1                                                                |                        | 13.5                                          | 1                                                                                        | 1                                                                |
| 75% Phosphoric acid                                                       | 26.8                  | 26.8                                                             | 26.8                   | 26.8                                          | 26.8                                                                                     | 26.8                                                             |
| Water                                                                     | 12.9                  | 12.9                                                             | 12.9                   | 12.9                                          | 12.9                                                                                     | 12.9                                                             |
| Est. P. W. & when Cured                                                   | 12                    | 6.9                                                              | 11.7                   | 12.5                                          | 7.3                                                                                      | 14.6                                                             |
| Exposed 20 days in<br>Hard Tap Water                                      | Initially very 5 to 7 | slight odor<br>change from<br>5 to 6.5                           | and small pH<br>5 to 7 | No odor. No pH chang<br>No appearance change. | No pH change.<br>ance change.                                                            | No odor or<br>pH change.<br>Very slight<br>appearance<br>change. |
| 10% Sodium hydroxide                                                      | No<br>Sample genera   | No odor or pH change. generally soft and surrounded by crystals. | nge.<br>urrounded by   | No<br>Slight change                           | No odor or pH change.<br>Slight change in appearance with powder<br>on bottom of beaker. | ange.<br>e with powder<br>ker.                                   |
| 0.1% Hydrochloric acid                                                    | NON                   | No odor or pH change.<br>No appearance change.                   | nge.<br>ge.            | No appearance change.                         | No odor or pH change.<br>nce change. Ver<br>app                                          | ange.<br>Very slight<br>appearance<br>change.                    |
| Thermal Conductivity<br>BTU.in./ft <sup>2</sup> .hr.°F @ 212°F<br>@ 500°F | £1, £1,               |                                                                  | 0.90                   |                                               |                                                                                          |                                                                  |

TABLE 14. (continued)

|                                                                                         | Roo       | Room Temperature Cure | ure                  |                                         | 1000°F Cure                 |           |
|-----------------------------------------------------------------------------------------|-----------|-----------------------|----------------------|-----------------------------------------|-----------------------------|-----------|
|                                                                                         | 2429-27-1 | 2429-27-2             | 2429-27-3            | 2429-27-1                               | 2429-27-2                   | 2429-27-3 |
| Density (pcf)                                                                           | 35.8      | 27                    | 32.7                 | 34.5                                    | 24.7                        | 32.5      |
| Crushing Strength (psi):                                                                |           |                       |                      |                                         |                             |           |
| Unexposed controls                                                                      | 210       | 204                   | 328                  | 176                                     | 44                          | 214       |
| (2 samples each)                                                                        | 103       | 164                   | 296                  | 153                                     | 109                         | 136       |
| Water exposed                                                                           | 181       | 338                   | 298                  | 334                                     | 65                          | 126       |
| 10% NaOH exposed                                                                        | •         | 41                    | 68                   | 269                                     | 41                          | 76        |
| 0.01% HCl exposed                                                                       | 136       | 236                   | 146                  | 150                                     | 111                         | 168       |
| Sulfur in Leach Solution (mg/l or ppm) Water exposed 10% NaOH exposed 0.01% HCl exposed | 1525      | 111                   | 2544<br>4209<br>1860 | 8 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 12<br>413<br>00<br>10<br>10 | 111       |

TABLE 15. Exposure Tests for Ceramic Castables

|                                      |                                     | Room Tapperature Cure                      | ure Cure                            |                         |                            | 1000°F Cure          | Cure                                |                                            |
|--------------------------------------|-------------------------------------|--------------------------------------------|-------------------------------------|-------------------------|----------------------------|----------------------|-------------------------------------|--------------------------------------------|
|                                      | 2429-15                             | 2429-13-1                                  | 2429-17                             | 2429-21                 | 2429-15                    | 2429-15-1            | 2429-17                             | 2429-21                                    |
| Uncured Formulation (%):             |                                     |                                            |                                     |                         |                            |                      |                                     |                                            |
| Photowaste                           | 10.0                                | 10.3                                       | 10.0                                | 20.0                    | 10.0                       | 10.0                 | 10.0                                | 20.0                                       |
| Wollastonite C-1                     | 12.5                                | 12.3                                       | 12.5                                | 12.5                    | 12.5                       | 12.5                 | 12.5                                | 12.5                                       |
| MgO                                  | 15.0                                | 15.0                                       | 15.0                                | 7.5                     | 15.0                       | 15.0                 | 15.0                                | 7.5                                        |
| Clay                                 | 12.5                                | 12.5                                       | 1                                   | 10.0                    | 12.5                       | 12.5                 |                                     | 10.0                                       |
| N-38 Sodium silicate                 | 50.0                                | 25.0                                       | 25.0                                | 50.0                    | 50.0                       | 25.0                 | 25.0                                | 50.0                                       |
| Water                                |                                     | 25.3                                       | 25.0                                | 1                       | 1                          | 25.0                 | 25.0                                | ,                                          |
| Alumina 710                          | 1                                   | 1                                          | 12.5                                | ,                       | 1                          | 1                    | 12.5                                | ,                                          |
| Est. P. W. % when Cured              | 11                                  | 13                                         | 12                                  | 22                      | 13.2                       | 15.6                 | 14.1                                | 26.4                                       |
| Exposed 20 Days in<br>Hard Tap Water | Fell apart<br>into large<br>pieces. | Very slight<br>change. Some<br>powder ppt. | Fell apart<br>into large<br>pieces. | Totally disinte-grated. | Unchanged.                 | Unchanged.           | Unchanged.                          | Very slight<br>change. Some<br>powder ppt. |
|                                      | No odor                             | No oder                                    | No odor                             | No odor                 | SO2 odor.                  | SO2 odor.            | No odor                             | SO <sub>2</sub> odor.                      |
| 10% Sodium hydroxide                 | Fell apart<br>into large<br>pieces. | Cotally                                    | Disintegrated                       | ted                     | Unchanged.                 | Unchanged.           | Fell apart<br>into large<br>pieces. | Very slight<br>change. Some<br>powder ppt. |
|                                      | No odor                             | No oder                                    | No odor                             | No odor                 | No odor                    | No odor              | No odor                             | No odor                                    |
| 0.01% Hydrochloric acid              | Very                                | Slight Change powder spt. out.             | ge<br>ut.                           | Totally disinte-grated. | Very slight<br>Some powder | change.<br>ppt. out. | Unchanged.                          | Very slight<br>change. Some<br>powder ppt. |
|                                      | No odor                             | No odor                                    | No odor                             | No odor                 | SO2 odor                   | No odor              | No odor                             | SO <sub>2</sub> odor                       |

TABLE 15. (continued)

|                          |         | Room Temperature Cure | ature Cure |         |         | 1000°F Cure | Cure    |         |
|--------------------------|---------|-----------------------|------------|---------|---------|-------------|---------|---------|
|                          | 2429-15 | 2429-15-1             | 2429-17    | 2429-21 | 2429-15 | 2429-15-1   | 2429-17 | 2429-21 |
| Density (pcf)            | 104     | 77                    | 77         | 66      | 93      | 75          | 81      | 84      |
| Crushing Strength (psi): |         |                       |            |         |         |             |         |         |
| Unexposed controls       | 2600    | 613                   | 438        | 2026    | 2300    | 723         | 311     | 1700    |
| Water exposed            | •       | 313                   | •          | ,       | > 1000  | 1           |         | ,       |
| 10% NaOH exposed         | •       |                       | 321        | 1       | > 1000  | 1050        |         | 715     |
| 0.1% HCl exposed         | 1       | 1                     | 1          | ı       | 1800    | 1961        | 1       | 740     |
| Sulfur in Leach          |         |                       |            |         |         |             |         |         |
| Solution (mg/l or ppm):  |         |                       |            |         | 0       | ,           |         | ,       |
| Water exposed            |         | ı                     |            |         | 8000    |             |         |         |
| 10% NaOH exposed         |         | 1                     |            | 1       | 9919    |             |         | ,       |
| O 01% HC PAROSed         | 1       | 1                     | 1          | 1       | 9122    | 1           | 1       | ,       |

TABLE 16. Contents of Selected Leach Solutions

| Castable Sample 2429-15 | te 1000°C Cure<br>0.1% 10% HaOH<br>Exp. Exposure | Na<br>Na | Na Si  | - A1  | . К, В | К, Мд | B, Si Fa, Mg, Ca | Ca Ni, Mo | - V, Ag        | Li, Al, Cu, Cr<br>Cu, Fe | Ba, Sb, Li, Ba, Sb, Mn, As, Mn, As, Pb, W, Ge, Pb, W, Ge, In, Bi, Ti, Cb, Cr, Cb, Be, Sn, Cd, Zr, Bi, Co, Ni, Zn, Co, Sr In, Be, Mo, Sn, V, Ti, Zr, Cd, Ag, Zr, Sr, Sr, Sr, Sr, Sr, Sr, Sr, Sr, Sr, S |
|-------------------------|--------------------------------------------------|----------|--------|-------|--------|-------|------------------|-----------|----------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Castable S              | 13% Photowaste<br>0.<br>Water Exposure Ex        | •        | Na     | •     | 1      | K, Mg | Ni, Ca, B, Si    | F)        | Al             | Ag, Li, Cu               | Ba, Sb, Mn, Pb, As, W, Ge, In, Bi, Cb, Be, Mo, Sn, V, Cd, Zn, Zr, Co, Ti, Cr, Sr                                                                                                                      |
|                         | -1 (12% P.W.) R.T. Cure Clay Water Exposure      | •        | 1      | ı     | Mg, Ca | Na    | B, Si            | ,         | Al             | Ag, Li, K, Fe,<br>Cu     | Ba, Sb, Mn, Pb, As, W, Ge, In, Ni, Bi, Cb, Be, Mo, Sn, V, Cd, Zn, Zr, Co, Ti, Cr, Sr                                                                                                                  |
| Foam Sample 2429-27     | -1 (12% P.W.) R.T. Cure Clay Water Exposure      | ,        | ,      | Na    | Mg, Ca | Si    | К, В             | 1         | Ni, Al, Cu, Pb | Li, Fe, Ag               | Ba, Sb, Mn, As, W, Ge, In, Bi, Cb, Be, Mo, Sn, V, Cd, Zn, Zr, Co, Ti, Cr, Sr                                                                                                                          |
| FOS                     | -3 (12% P.W.)<br>R.T. Cure<br>Water Exposure     | ,        | •      | Na    | Ca     | Мд    | K, B, Si         | ,         | Al, Cu         | Li, Fe, Ag               | Ba, Sb, Mn, Pb, As, W, Ge, In, Ni, Bi, Cb, Be, Mo, Sn, V, Cd, Zr, Zr, Co, Ti, Cr, Sr                                                                                                                  |
|                         | Hard Water<br>Control                            |          |        |       |        | Na    |                  | Si        | K, Ca          | Fe, Al,<br>Cu, Mg        | Ba, Li, As, Mn, Cr, Co, Cr, Co, Sr, Cb, Be, Li, Cb, Be, Li, V, Cd, Ti, V, Cd, Ti, Sb                                                                                                                  |
|                         | Concentration<br>(ppm)                           | 50,000-  | 5,000- | 5,000 | 500    | 100   | 50               | 100       | 5.0            | 1.0                      | not detected B, Pb, Ge, Ge, Bi, Ti, Ag, Ag, Zn,                                                                                                                                                       |

Using data from Table 14 for the photowaste-containing foams, Figure 9 shows that the photowaste-containing foams, either unexposed or water exposed, are stronger or about the same as commercial insulating firebrick. The data also show that the 1000°F cured (preferable) or the room temperature cured foams would be suitable for Class 3 landfill photowaste disposal if the landfill is not excessively alkaline.

### Castables:

- (1) The 1000°F cured castables were superior in strength to the room temperature cured castables.
- (2) For both the room temperature and 1000°F cured samples, the ones exposed to the acid leach solution survived the best.
- (3) None of the room temperature cured samples emitted a sulfur odor in any of the leach solutions.
- (4) Of the 1000°F cured samples, the ones exposed to base leach solutions did not give off a sulfur odor, but those exposed to water solution did.
- (5) Of the 1000°F cured samples which did not give off a sulfur odor, those samples exposed to a base leach put 9919 ppm of sulfur into the solution while those exposed to an acid leach put 9122 ppm sulfur into the solution.
- (6) More sulfur was leached from the castables than from the foams.
- (7) The castables put more sodium into the leach water than did the foams. The sodium level was between 5000 and 50,000 ppm.
- (8) Species like potassium, magnesium, silicon, aluminum, calcium, and boron were present in slightly larger concentrations for the castable leach solutions than for the foam leach solutions. The only species which may be of some conern is chromium, but it was present at a concentration of < 1 ppm.</p>



Using data from Table 15 on the photowaste-containing castables, Figure 10 shows that certain of the photowaste-containing castables are superior in strength to commercial insulating castables. The superior samples generally contain clay. The data also show the 100°F cured clay containing samples to be better than the room temperature cured clay containing samples for excessively alkaline Class 3 lamdfills.

## d. Market Survey for Ceramic Product

A market survey was made of the refractories industry with special attention paid to those products which were similar to our waste incorporated ceramics. This information was used to help shape the direction of our R & D effort. The refractories industry has shown good growth over the last few years. However, the industry appears to be headed for a loss in 1975. This fact is not surprising considering the slump of the economy in general and of the construction sector in particular. Table 17 summarizes figures from the U. S. Department of Commerce and U. S. Department of Labor. As can be seen, the proportion of clay to non-clay refractories has held relatively constant over this recent time period. The two products which appear capable of incorporating the photowastes are similar to insulating firebrick and insulating castables. The firebrick is sold in brick form. The castable is sold as a granular or powder and formed in-place by the customer.

Insulating firebrick is divided into four broad categories, dependent upon use temperature: 1600-2000°F, 2000-2300°F, 2300-2800°F, >2800°F. The highest volume category is the 2300-2800°F brick, as can be seen in Table 18. The photowaste incorporating insulating firebrick would have a service temperature to about 2000°F. For the 1600-2000°F brick, the average price of a 9" brick, fob Augusta, is \$0.40. The average weight of this brick is 1.7 pounds, making its price per pound \$0.235. The approximate cost per pound of our green insulating firebrick incorporating the photowaste is \$0.08, thus leaving \$0.15 per pound for processing cost, capital costs, overhead, and profit. If half the annual volume of brick sold in the 1600-2300°F group were in the 1600-2000°F range, about 7 million 9" bricks or about 12 million pounds would be required. If the 10 tons per week of photowaste available were incorporated into an insulating firebrick at a weight percentage of 10, 10.4 million pounds of insulating firebrick could be made. Thus, almost the entire market of 1600-2000°F brick would have to become photowaste incorporating in order to accomodate the anticipated photowaste volume.



TABLE 17

Summary of U.S. Producers' Shipments of Refractories, 1971 to 1975 (thousands of dollars)

| Between (%)<br>Inflation<br>Adjustment                                    |         | 10.2    | 15.0    | 14.3    | -11.7                       |
|---------------------------------------------------------------------------|---------|---------|---------|---------|-----------------------------|
| Increase Between<br>Years (%)<br>No Inflation Inflat<br>Adjustment Adjust |         | 13.1    | 22.5    | 25.3    | 7.4.7                       |
| Total<br>Refractories<br>(\$)                                             | 563,621 | 637,155 | 780,299 | 977,772 | 699,162                     |
| Non Clay Refractories (\$) (% of total)                                   | 57.6    | 57.0    | 48.1    | 58.1    | 55.6                        |
| Non Clay<br>(\$)                                                          | 324,838 | 363,148 | 453,034 | 567,619 | 387,707                     |
| Clay Refractories (\$) (% of total)                                       | 42.4    | 43.0    | 41.9    | 41.9    | 44.4                        |
| Clay F                                                                    | 238,783 | 274,007 | 327,265 | 410,153 | 310,455                     |
| Year                                                                      | 1971    | 1972    | 1973    | 1974    | First 3<br>quarters<br>1975 |

TABLE 18

Quantity and Net Value of Insulating Firebrick Shipments for U.S. through Third Quarter 1975

| Value/Brick (\$)               | 0.359                  | 0.445     | 0.740 |
|--------------------------------|------------------------|-----------|-------|
| Value<br>(\$1000)              | 3,829                  | 11,576    | 4,911 |
| Quantity (1000 9" equivalents) | 10,671                 | 25,988    | 6,639 |
| Temperature Range (°F)         | 1600-2000<br>2000-2300 | 2300-2800 | >2800 |

Insulating castables had a net value of shipments for U.S. productions through the third quarter of 1975 of \$8,424,000 for 36,064 S ton or \$0.12 per pound. The cost per pound for insulating castables most similar to ours is about \$0.18, fob Georgia, Missouri and Pennsylvania. The approximate cost per pound of our insulating castable is about \$0.095, thus leaving \$0.09 per pound for processing and capital costs (which are minimal for castables), overhead and profit. The annual production of insulating castables is about 96 million pounds. Assuming, again, a 10% by weight photowaste incorporation, the anticipated 10 tons per week of photowaste would require about one-ninth of the insulating castables market.

# e. Capital Equipment

Table 19 lists the capital equipment needed for processing ten tons per week of photowaste into insulating firebrick. If all of the photowaste is processed into insulating castables, then items 12 through 24 are not necessary. Figures 11, 12 and 13 show the conceptualized work flow for making insulating firebrick, insulating firebrick raw materials to be sold as such, and insulating castables.

Table 20 lists the equipment needed for making a portable unit for producing 20 pounds per minute of cold setting foam incorporating the photowaste. Figure 14 is a conceptualized diagram of the portable unit capable of operation in climates in temperatures from -30° to 120°F. Such a unit would enable the use of available on-site fillers.

The equipment costs and layout are only to be considered a first rough approximation.

## f. Direct and Indirect Charges

As stated earlier, the materials cost per pound is \$0.08 for the brick and \$0.095 for the castable. Assuming the plant converts half of its photowaste into brick and half into castable, the yearly materials cost would be \$910,000 for a 10.4 million pound output. If the plant produces all brick, the materials cost is \$832,000; if the plant produces all castables, the materials cost is \$988,000.

If the plant runs three 8-hour shifts a day, about 8 to 10 men per shift will be needed depending upon product distribution as shown in Table 21.

TABLE 19
Capital Equipment for Facility

|     | 얼마 가게 되었다.                     |                       |           |
|-----|--------------------------------|-----------------------|-----------|
| 1.  | Solid Storage Bins             | \$ 5,000              |           |
| 2.  | Dry Blender                    | 8,500                 |           |
| 3.  | Grinder                        | 2,500                 |           |
| 4.  | Pulverizer                     | 5,300                 |           |
| 5.  | Vibratory Hopper               | 2,500                 |           |
| 6.  | Air Conveyors                  | 40,000                |           |
| 7.  | Materials Handling Equipment   | 15,000                |           |
| 8.  | Air Compressors                | 15,000                |           |
| 9.  | Bagging Equipment              | 14,000                |           |
| 10. | Weighing Scales                | 1,000                 |           |
| 11. | Q. C. Lab                      | 40,000                |           |
|     |                                | Assess and Annual (4) | \$148,800 |
|     |                                |                       |           |
| 12. | Liquid Storage S.S. Tanks      | \$ 1,500              |           |
| 13. | Metering Pumps                 | 11,000                |           |
| 14. | Foam Heads                     | 5,000                 |           |
| 15. | Molds                          | 5,000                 |           |
| 16. | Conveyor Belt                  | 10,000                |           |
| 17. | Drying Oven                    | 50,000                |           |
| 18. | Firing Kiln                    | 200,000               |           |
| 19. | Pumps (air operated)           | 2,000                 |           |
| 20. | High Speed Mixers              | 600                   |           |
| 21. | Valves 2" S.S.                 | 2,000                 |           |
| 22. | Valves 2" S. S. (air operated) | 4,400                 |           |
| 23. | Pipe 2" S.S.                   | 10,000                |           |
| 24. | Temperature Controls           | 1,800                 |           |
| 24. | remperature contrors           |                       | \$303,300 |
|     |                                |                       |           |
|     |                                |                       | \$452,100 |
|     |                                |                       |           |



Figure 11. Dry Component



Figure 12. Liquid Component



A decision with the second

Figure 13. Foam Fabrication

TABLE 20
Equipment for Portable Unit

# Equipment (and freight and miscellaneous)

| 1           | Liquid Storage 150 gals. S.S.                         | \$ 775.00    |
|-------------|-------------------------------------------------------|--------------|
| 1           | Liquid Mixing 30 gals. S.S.                           | 450.00       |
| 1           | H <sub>2</sub> O Storage 50 gals. S.S.                | 550.00       |
| 1           | H <sub>3</sub> PO <sub>4</sub> Storage 100 gals. S.S. | 650.00       |
| 1           | Solid Storage 60 ft. steel                            | 500.00       |
| 1           | Blender 12 ft. S.S.                                   | 6,600.00     |
| 2           | Air Conveyors                                         | 10,000.00    |
| 2           | Air Compressors 20 H.P. Air Compressor 20 H.P.        | 15,000.00    |
| 4           | Pumps (air operated)                                  | 1,200.00     |
| 1           | Grinder-chopper                                       | 2,000.00     |
| 1           | Dryer Rotary Kiln                                     | 400.00       |
| 1           | Electric Generator 150 KW                             | 25,000.00    |
| 1           | High Speed Mixer                                      | 300.00       |
| 4           | Valves 2" S.S.                                        | 1,000.00     |
| 1           | Heater 50 KW                                          | 2,500.00     |
| 11          | Valves 2" S.S.                                        | 2,200.00     |
|             | Pipes and Hoses                                       | 4,000.00     |
|             | Temperature Controllers                               | 1,000.00     |
|             | Weighing Scales                                       | 400.00       |
|             |                                                       | \$ 74,525.00 |
| Pilot Model |                                                       | 20,000.00    |
| Mi          | scellaneous Equipment and Freight                     | 10,000.00    |
|             | Total Additional Equipment                            | \$104,525.00 |



Figure 14. Conceptual Equipment Design for Portable Unit

TABLE 21

Direct Labor Force

| 50-50 | Brick/Castable Product<br>Yearly<br>Number Cost | per Shift (\$) | 1 44,000    | 3-1/2 94,500 | 1 33,000                 | 1/2 13,500      | 1 27,000  | 1 27,000  | 1 27,000                | 9 266,000 |
|-------|-------------------------------------------------|----------------|-------------|--------------|--------------------------|-----------------|-----------|-----------|-------------------------|-----------|
|       |                                                 | -              | 42,000      | 67,500       | 33,000                   | 13,500          | 27,000    | 27,000    | 27,000                  | 237,000   |
|       | All Castable Product Yearly Number Cost         | per Shift      | 1           | 2-1/2        | 7                        | 1/2             | 1         | 1         | ۱ ٦                     | 000       |
|       | Product<br>Vearly<br>Cost                       | (\$)           | 45,000      | 121,500      | 33,000                   | 13,500          | 27,000    | 27,000    | 27,000                  | 294.000   |
|       | All Brick Product Yearl Number Cost             | per Shift      | 1           | 4-1/2        | 1                        | 01 1/2          | 1         | 1         | 1                       | 10        |
|       |                                                 | Function       | Supervision | Process Work | Equipment<br>Maintenance | Quality Control | Receiving | Packaging | Storage and<br>Shipping | Totals    |

Power requirements are difficult to estimate without a finalization of equipment and plant design. Consequently, an arbitrary figure of \$100,000/year will be used.

Indirect charges include such items as capital equipment depreciation, occupancy, secretarial, accounting, building and property maintenance, shipping and postage, insurances, executive salaries, advertising, etc., and are estimated at 100% of direct.

## g. Production Costs

For a plant producing 0.4 million pounds per year of insulating firebrick and insulating castables, the estimated costs are given in Table 22.

TABLE 22

|                             | Pro                   | duction Costs         |                          |  |  |
|-----------------------------|-----------------------|-----------------------|--------------------------|--|--|
|                             | All Brick             | All Castables         | 50/50<br>Brick/Castables |  |  |
| Labor<br>Materials<br>Power | \$ 294,000<br>832,000 | \$ 237,000<br>988,000 | \$ 266,000<br>910,000    |  |  |
| (Arbitrary)                 | 100,000               | 100,000               | 100,000                  |  |  |
| Direct Charge<br>Total      | \$1,226,000           | \$1,325,000           | \$1,276,000              |  |  |
| Indirect (100%)             | 1,226,000             | 1,325,000             | 1,276,000                |  |  |
| Total Costs                 | \$2,452,000           | \$2,650,000           | \$2,552,000              |  |  |
| Cost/lb.                    | \$0.236               | \$0.255               | \$0.245                  |  |  |
| Commercial<br>Cost/lb       | \$0.235               | \$0.18                |                          |  |  |

Note the arbitrary power costs due to not having a refined plant layout and equipment specifications. Assuming the numbers used are valid, it appears possible for the insulating firebrick to be made at a profit after a little belt tightning, but not the castables.

TABLE 23

Comparison of Properties for our Ceramic Foam and Castable to Commercial Froducts

| table               | 2200 HS      | 2200                     | 7.4              | 1600                            | 1.9                                                 |
|---------------------|--------------|--------------------------|------------------|---------------------------------|-----------------------------------------------------|
| Insulating Castable | 2200 LI      | 2200                     | 99               | 200                             | 1.6                                                 |
| Insu                | 2200         | 2200                     | 28               | 700                             | 1.6                                                 |
|                     | Our Castable | 2200                     | 75 - 100         | 600 - 2600                      | 1 1                                                 |
| ing                 | B&W<br>K-20  | 2000                     | 29               | 110                             | 1.0                                                 |
| Insulating          | K1620        | 1600                     | 27               | 06                              | 6.0                                                 |
|                     | Our Foam     | to 2000                  | 27 - 35          | 200 - 300                       | F) 0.9                                              |
|                     |              | Service Temperature (*F) | Density<br>(pcf) | Cold Crushing<br>Strength (psi) | Thermal Conductivity BrU·in/ft ·hr (°F) 212°F 500°F |

#### SECTION V

### DISCUSSION AND CONCLUSIONS

The objective for the amended contract was to economically dispose of the waste material either by its incorporation into a useful product or by its being rendered harmless and suitable for a class 3 landfill. To this end two odorless products have been identified as well as a means of safe disposal.

These two products are a ceramic foam capable of being used as an insulating firebrick and a ceramic castable, capable of being used as an insulating castable. Each green product contains about 10% by weight of the photowaste. Table 23 pares the properties of our ceramic foam and castable with commercial products by Babcock & Wilcox. For the properties we tested, our products were about identical or somewhat better, particularly the cold crushing strength. As shown in Section 4.2, apparently the photowaste incorporating foam might be sold at profit as an insulating firebrick, but not the castable, unless our rough cost figures are overly high. The manufacturing costs for the foam are estimated at 23.6 cents per pound, and for the castable at 25.5 cents per pound. Comparable commercial products sell at 23.5 and 18 cents per pound, respectively. Obviously, some belt tightning is needed for the foam to turn a profit.

From the environmental exposure tests, for safe photowaste disposal in a class 3 landfill, the 1000°F cured, clay-containing foam (preferred) or the room temperature cured, non-clay-containing foam appear suitable as long as the landfill is not excessively alkaline. For excessively alkaline landfills, a 1000°F cured castable appears suitable. The recommended level of photowaste incorporation is 10-20% by weight of the green ceramic.

### REFERENCES

- R. E. Lotz, Chemical Wastes Generated by Air Force Photographic Operations, Air Force Weapons Lab., Kirtland AFB, New Mexico, September 1972, AD 750 552.
- E. E. Lefebure and R. A. Callahan, Toxic Effects of Color Photographic Processing Wastes on Biological Systems, Environmental Health Lab., Kelly AFB, Texas, August 1970, AD 753 663.
- What's Happening with Foamed Ceramics, Ceramic Age, November 1969.
- J. Magder, Foamed Ceramics, U. S. Patent 3,330,675, July 1967.
- R. W. Sicka, Foamed Ceramics, U. S. Patent 3,625,723, December 1971.
- M. S. Vukasovich and H. L. Johns, U. S. Patent 3,148,996, September 1964.
- 7. H. H. Greger, Phosphate Cements, U. S. Patent 2,450,952.
- 8. H. H. Greger, Solid Aluminum Hydrogen Phosphates, U. S. Patent 2,538,867.
- H. H. Greger, Method of Preparing a Mineral Binder, U. S. Patent 2,455,758.
- W. D. Kingery, Fundamental Study of Phosphate Bonding in Refractories: I. Literature Review, J. of Amer. Ceramic Soc. 33, 239-241 (1950).
- 11. ibid. II. Cold-Setting Properties, loc. cit. 242-247 (1950).
- 12. ibid. III. Phosphate Adsorption by Clay and Bond Migration, loc. cit. 247-250 (1950).
- 13. ibid. IV. Motors Bonded with Monoaluminum and Monomagnesium Phosphate, J. Amer. Ceramic Soc. 35, 61-63 (1952).
- 14. I. L. Rashkovan, L. N. Kuzminskaya and V. A. Kopiekan, Thermal Transformations in the Aluminum Phosphate Binding Agent, Izvestiya Akademii Nauk SSR, Noerg. Materialy 2, pg. 541-549 (1966).
- 15. V. M. Mcdvedava, A. A. Medvedev, and I. V. Tananaev, Investigation of the Thermal Transformations in An Alumina-phosphate Binder by the Methods of Infrared and X-Ray Diffraction Study, Isvestiya Akademii Nauk SSR, Neorg. Materialy 1, pg. 211-217 (1965).

# References (continued)

- 16. Ya. V. Khyacharev and L. I. Skoblo, Composition of the Products Formed by the Hardening of Aluminum Phosphate Binder in Refractory Corundum Compositions, Zhurnal Prikladnoi Khimii 38, pg. 520-526 (1965).
- 17. M. F. D'Yvoire, Sur des phosphates d'aluminum du groupe  $P_2O_5/Al_2O_3=2$ , Compt. rend. 247, 297-300 (1958).
  - M. F. D'Yvoire, Evolution thermique de phosphate d'aluminum du groupe  $P_2O_5/Al_2O_3 = 3$ , Compt. rend. 245, 531-534 (1957).
  - M. F. D'Yvoire, Bull. Soc. Chim. France 145, 2277, 2283 (1960).
- 18. W. R. Beck, Crystallographic Inversions of the Aluminum Orthophosphate Polymorphs and Their Relation to Silica, J. Amer. Cer. Soc. 32, pg. 147 (1949).
- K. Wen-min, N. Tchang-ti- and H. Wenter, Phase Transformation of Aluminum Phosphate Adhesive at 105-500°C, Guisuanyan Xuebao, pg. 65 (1964) CA 61:15808.
- G. Yamaguichi and Y. Kubo, Ultramarine Synthesized Under Controlled Vapor Pressures, Bull. Chem. Soc. of Japan, 41, 2645 (1968).
- 21. R. Van Order and R. H. Hill, Manufacture of Ultramarine Blue, U. S. Patent 2,806,802.
- 22. W. J. Kruppa, et al., Manufacture of Ultramarine, U. S. Patent 2,700,618.
- 23. E. W. Large, Ultramarine Blue, Am. Perfumes Cosmet. 77 (91 422-44 (1962)).
- 24. F. Moser, Ultramarine Pigments, pg. 409, Pigment Handbook Vol. I, ed. T. C. Patton, J. Wiley & Sons, Inc. (1973).
- 25. J. T. Morrison, Ultramarine Pigments, Paint and Varnish Prod., 61 pg. 59-64 (August 1971).
- 26. Ultramarine Blue, ASTM D262-47.

Michael Committee Committe