Prob/Stats Cheatsheet

Steve Young

ABSTRACT: Everything I know about prob/stats/maybe information theory too..

Contents

1 Conventions			1
Distributions		1	
2.1 Gaussians		1	
	2.1.1	Basics	1
	2.1.2	Differentiation moment trick	2
	2.1.3	Gaussian with Linear Term	2
	2.1.4	Multivariate Gaussians	3
2.2	Berno	pulli	3
2.3	Expon	nential Family	3
Prol	Prob and stats		4
3.1	The R	Rules of Probability	4
3.2	Bayes	s' Rule	4
3.3	B Expectation and Variance		4
3.4	Centra	al Limit Theorem	4
3.5	(Weak	k) Law of Large Numbers	5
4 Information Theory			5
5 Bayesian			5
Optimal Stopping Theory			5
	2.2 2.3 Prol 3.1 3.2 3.3 3.4 3.5 Info	Distribution 2.1 Gauss 2.1.1 2.1.2 2.1.3 2.1.4 2.2 Bernon 2.3 Expon Prob and s 3.1 The R 3.2 Bayes 3.3 Expect 3.4 Centr 3.5 (Weal Information Bayesian	Distributions 2.1 Gaussians 2.1.1 Basics 2.1.2 Differentiation moment trick 2.1.3 Gaussian with Linear Term 2.1.4 Multivariate Gaussians 2.2 Bernoulli 2.3 Exponential Family Prob and stats 3.1 The Rules of Probability 3.2 Bayes' Rule 3.3 Expectation and Variance 3.4 Central Limit Theorem 3.5 (Weak) Law of Large Numbers Information Theory Bayesian

1 Conventions

Math Notation

2 Distributions

2.1 Gaussians

2.1.1 Basics

1. To start with, *memorize* that

$$\int_{-\infty}^{\infty} dx \, e^{-x^2} = \pi^{1/2}$$
 (2.1)

2. Next, anything multiplying the x^2 in the integrand is present in inverse under the square root.

$$\int_{-\infty}^{\infty} dx \, e^{-\text{stuff} \, x^2} = \left(\frac{\pi}{\text{stuff}}\right)^{1/2} \tag{2.2}$$

so, for example:

$$\int_{-\infty}^{\infty} dx \, e^{-\frac{1}{2}ax^2} = \left(\frac{2\pi}{a}\right)^{1/2} \tag{2.3}$$

3. The traditional Gaussian pdf has $a = 1/\sigma^2$, and is easily seen to be

$$\mathcal{N}(x|0,\sigma^2) = \frac{1}{(2\pi\sigma^2)^{1/2}} e^{-\frac{1}{2\sigma^2}x^2}$$
 (2.4)

2.1.2 Differentiation moment trick

By differentiating Eq. 2.3 wrt a, we obtain an expression for integrals of the form $\int_{-\infty}^{\infty} dx \, x^{2n} e^{-\frac{1}{2}ax^2}$, with $n \in \mathbb{Z}^+$.

e.g. for n = 1:

$$-2\frac{d}{da}\int_{-\infty}^{\infty}dx\,e^{-\frac{1}{2}ax^2} = \int_{-\infty}^{\infty}dx\,x^2e^{-\frac{1}{2}ax^2} = -2\frac{d}{da}\left(\frac{2\pi}{a}\right)^{1/2} = \left(\frac{2\pi}{a}\right)^{1/2}\frac{1}{a} \tag{2.5}$$

For n = 2:

$$\left(-2\frac{d}{da}\right)^2 \int_{-\infty}^{\infty} dx \, e^{-\frac{1}{2}ax^2} = \int_{-\infty}^{\infty} dx \, x^4 e^{-\frac{1}{2}ax^2} = \left(-2\frac{d}{da}\right)^2 \left(\frac{2\pi}{a}\right)^{1/2} = \left(\frac{2\pi}{a}\right)^{1/2} \frac{1}{a} \frac{3}{a} \tag{2.6}$$

Generally:

$$\int_{-\infty}^{\infty} dx \, x^{2n} e^{-\frac{1}{2}ax^2} = \left(\frac{2\pi}{a}\right)^{1/2} \frac{1}{a^n} (2n-1)(2n-3) \cdots 5 \cdot 3 \cdot 1 \tag{2.7}$$

We thus obtain an expression for the expectation value of x^{2n} under the Gaussian distribution:

$$\langle x^{2n} \rangle = \frac{\int_{-\infty}^{\infty} dx \, x^{2n} e^{-\frac{1}{2}ax^2}}{\int_{-\infty}^{\infty} dx \, e^{-\frac{1}{2}ax^2}} = \frac{1}{a^n} (2n - 1)(2n - 3) \cdots 5 \cdot 3 \cdot 1 \tag{2.8}$$

2.1.3 Gaussian with Linear Term

To evaluate integrals of the form

$$\int_{-\infty}^{\infty} dx \, e^{-\frac{1}{2}ax^2 + Jx},\tag{2.9}$$

first complete the square in the exponent

$$-\frac{a}{2}x^2 + Jx = -\frac{a}{2}\left(x^2 - \frac{2Jx}{a}\right) = -\frac{a}{2}\left(x - \frac{J}{a}\right)^2 + \frac{J^2}{2a}$$
 (2.10)

which gives

$$\int_{-\infty}^{\infty} dx \, e^{-\frac{1}{2}ax^2 + Jx} = \int_{-\infty}^{\infty} dx \, e^{-\frac{1}{2}a(x - J/a)} e^{J^2/2a} = \left(\frac{2\pi}{a}\right)^{1/2} e^{J^2/2a} \tag{2.11}$$

where the integral is done by shifting $x \to x + Ja$ (or noting that the infinite integral of a Gaussian is independent of its mean.)

By differentiating this expression wrt J repeatedly, and finally setting J=0, we obtain another way of deriving the moments of the Gaussian, Eq. (2.8). This motivates the introduction of the **moment** generating function: given a pdf p(x), the moment generating function is

$$\psi_{x}(J) = \mathbb{E}_{x} \left[e^{Jx} \right] = \int_{-\infty}^{\infty} dx \, e^{Jx} p(x) \tag{2.12}$$

which satisfies

$$\langle x^n \rangle = \frac{d^n \psi_x(J)}{dJ^n} \bigg|_{J=0} \tag{2.13}$$

TODO: Finish. Figure out clear way to include normalization factor of pdf in exposition

2.1.4 Multivariate Gaussians

Promoting a to a real $N \times N$ symmetric matrix **A**, and x and J to a N-dim vectors \vec{x} and \vec{J} with components x_i and J_i , we have the multivariate Gaussian integral

$$\prod_{i=1}^{N} \left(\int_{-\infty}^{\infty} dx_i \right) e^{-\frac{1}{2}\vec{x}^T \mathbf{A} \vec{x} + \vec{J}^T \vec{x}} = \left(\frac{(2\pi)^{N/2}}{|\mathbf{A}|^{1/2}} \right) e^{\frac{1}{2}\vec{J}^T \mathbf{A}^{-1} \vec{J}}$$
(2.14)

TODO: finish —

A detailed workthrough of multivariate Gaussian integrals is in viXra:1404.0026.

2.2 Bernoulli

For $x \in \{0, 1\}$, Bernoulli dist parameterized by μ , with

$$p(x; \mu) = \mu^{x} (1 - \mu)^{1 - x}$$
(2.15)

2.3 Exponential Family

These are pdfs of the form

$$p(x;\theta) = h(x) \exp\left[\theta^T T(x) - A(\theta)\right]$$
 (2.16)

where

- θ is the *natural* or *canonical parameter*
- T(x) is the *sufficient statistic*
- $A(\theta)$ is the *log partition function*
- h(x) determines the distribution at $\theta = 0$

TODO: more detail about the above terms. e.g. the θ are the sources or external fields.

3 Prob and stats

3.1 The Rules of Probability

• **Product Rule**: p(x, y) = p(x|y)p(y) = p(y|x)p(x)

• Sum Rule:
$$p(x) = \sum_{y} p(x, y) = \sum_{y} p(x|y)p(y)$$

3.2 Bayes' Rule

Using p(y|x)p(x) = p(x, y) = p(x|y)p(y), we have

$$p(y|x) = \frac{p(x|y)p(y)}{p(x)} = \frac{p(x|y)p(y)}{\sum_{y} p(x|y)p(y)}$$
 (3.1)

3.3 Expectation and Variance

• Expectations of sum of variables add:

If X_1, \dots, X_n are random variables, and a_1, \dots, a_n are constants, then

$$\mathbb{E}\left(\sum_{i=1}^{n} a_i X_i\right) = \sum_{i=1}^{n} a_i \,\mathbb{E}(X_i) \tag{3.2}$$

• Variances of sum of independent variables add:

If X_1, \ldots, X_n are *independent* random variables, and a_1, \ldots, a_n are constants, then

$$\operatorname{Var}\left(\sum_{i=1}^{n} a_i X_i\right) = \sum_{i=1}^{n} a_i^2 \operatorname{Var}(X_i)$$
(3.3)

• Variances of sum of (dependent) variables:

If X and Y are random variables, then

$$Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)$$

$$Var(X - Y) = Var(X) + Var(Y) - 2Cov(X, Y)$$
(3.4)

3.4 Central Limit Theorem

Let $S_N = \sum_{i=1}^N X_i$, where each X_i is **iid** with mean μ and variance σ^2 . Then, as $N \to \infty$, the pdf of S_N approaches a normal distribution:

$$p(S_N = s) = \frac{1}{(2\pi N\sigma^2)^{1/2}} \exp\left[-\frac{(s - N\mu)^2}{2N\sigma^2}\right]$$
(3.5)

NB the factors of N in the pdf, which make the pdf mean/variance equal to N times the original mean/variance (*i.e.* means and variances of independent variables add; see section 3.3.)

3.5 (Weak) Law of Large Numbers

Let X_1, \ldots, X_n be **iid**, and $\mu = \mathbb{E}(X_1)^1$. Defining the *sample mean* as $\overline{X}_n = n^{-1} \sum_{i=1}^n X_i$, the WLLN states that \overline{X}_n converges in probability to μ .

4 Information Theory

KL divergence:

$$KL[p(x)||q(x)] = \sum_{x_i} p(x_i) \log \left(\frac{p(x_i)}{q(x_i)}\right) = -\sum_{x_i} p(x_i) \log \left(\frac{q(x_i)}{p(x_i)}\right)$$

$$= -\sum_{x_i} p(x_i) \log q(x_i) + \sum_{x_i} p(x_i) \log p(x_i)$$

$$= H(p, q) - H(p)$$

$$(4.1)$$

where H(p, q) is the cross entropy, and H(p) is the entropy.

5 Bayesian

6 Optimal Stopping Theory

 $^{^{1}\}mu = \mathbb{E}(X_{1}) = \mathbb{E}(X_{i})$ for any $1 \le i \le n$