

Lesson 2: Functions

Introduction

METIS

Lecture Overview:

Goals of the lecture:

1. Understand functions and how to plot them

METIS

Definition:

Definition:

$$f(x) = y = 2x + 1$$

Definition:

$$f(x) = y = 2x + 1$$
 $f(x) = x^2$

Definition:

$$f(x) = y = 2x + 1$$
 $f(x) = x^2$

$$f(x) = \sin(x)$$

Definition:

$$f(x) = y = 2x + 1$$
 $f(x) = x^2$

$$f(x) = sin(x)$$
 $f(x_1, x_2) = 3x_1 + 2x_2$

Independent Variables

Definition:

A variable whose variation does not depend on that of another

$$f(x) = y = 2x + 1$$
 $f(x) = x^2$

$$f(x) = sin(x)$$
 $f(x_1, x_2) = 3x_1 + 2x_2$

Dependent Variables

Definition:

A variable whose variation depends on that of another

$$f(x) = y = 2x + 1$$
 $f(x) = x^2$

$$f(x) = sin(x)$$
 $f(x_1, x_2) = 3x_1 + 2x_2$

$$f(x) = x^2$$

$$f(x) = x^2$$

$$f(-4) = 16$$

 $f(-3) = 9$
 $f(-2) = 4$

. . .

$$f(x) = x^3 - x$$

$$f(x) = \frac{1}{\ln(x)}$$

$$f(x) = 5 - 10 \cdot e^{-x}$$

Problem 1:

Problem 1: Plot the following function.

$$f(x) = 2x^2 - 0.5x^3 - 2$$

Problem 1:

Problem 1: Plot the following function.

$$f(x) = 2x^{2} - 0.5x^{3} - 2$$

$$f(-1) = 0.5$$

$$f(0) = -2$$

$$f(1) = -0.5$$

$$f(2) = 2$$

QUESTIONS?