Detyra e dytë në lëndën Arkitekturë e Kompjuterëve, Grupi 9

Detyra 1

Të tregohet forma e normalizuar binare si dhe vlera decimale që paraqesin numrat vijues të cilët janë paraqitur në formatin IEEE754 32-bitësh.

- c) 1 10010111 0100011000000000000000000 $_{(2)}$

Detyra 2

Të shkruhet programi në gjuhë të ulët programuese i cili kryen punët në vijim.

a) Vendos vlerat e regjistrave me vlerat si në vijim.

$$BX = 2E7C_{(16)}, \quad CX = 5CAC_{(16)}, \quad DX = 9C35_{(16)}$$

b) Deklaron variablat dy-bajtëshe të pa-inicializuara (pas kodit kryesor).

$$VAR1 = ?$$
, $VAR2 = ?$, $VAR3 = ?$

c) Llogarit vlerat e variablave sipas formulave në vijim (duke pasur kujdes në rendtitje të operacioneve).

$$\begin{array}{lll} \mathtt{VAR1} &=& ((62-24) \wedge (\mathtt{DX} - \mathtt{CX})) + \mathtt{BX} \\ \mathtt{VAR2} &=& \mathtt{BX} \wedge (73 - \mathtt{DX}) \\ \mathtt{VAR3} &=& (\mathtt{BX} \vee (\mathtt{DX} - \mathtt{CX})) \wedge 73 \end{array}$$

d) Pas llogaritjes, të tregohet cila variabël është më e vogla duke e ruajtur indeksin e saj në regjistrin CX. Psh. nëse është variabla VAR2 atëherë në regjistrin CX të ruhet vlera 2.

Detyra 3

Të shkruhet programi në gjuhë të ulët programuese i cili i numëron numrat tek ndërmjet numrit 16 dhe numrit 63 (përfshirë kufirin e poshtëm dhe të lartëm). Rezultati të ruhet në regjistrin BX. Programi duhet të realizohet përmes kërcimeve.

Detyra 4

Të tregohen statuset (flags) e ALU (CF, OF, ZF, PF) që fitohen pas llogaritjes së secilës nga shprehjet në vijim.

- a) $7D_{(16)} + 36_{(16)}$
- b) $8E_{(16)} \wedge 83_{(16)}$
- c) $49_{(16)} + BB_{(16)}$
- d) $F1_{(16)} \vee E5_{(16)}$
- e) $26_{(16)} + 9E_{(16)}$

Detyra 5

Procesori ka qasje në hapësirë memorike 32-bitëshe e cila është e adresueshme në nivel të bajtit. Memoria është e organizuar në blloqe 256 bajtëshe. Cache memoria L1 ka kapacitet prej 2048KB.

- a) Të skicohet ndarja e memories kryesore nëse për L1 cache përdorim teknikat në vijim.
 - 1. Mapim direkt.
 - 2. Mapim asociativ.
 - 3. Mapim set-asociativ 2-linjësh.
- b) Nëse kemi adresat memorike në vijim:

$$8C5F5027_{(16)}$$
, $52BABCE4_{(16)}$, $A6C0D7C6_{(16)}$

Atëherë për secilën nga këto adresa të tregohen informatat vijuese në formë heksadecimale.

- 1. Tagu, linja, dhe wordi për mapimin direkt.
- 2. Tagu dhe wordi për mapimin asociativ.
- 3. Tagu, seti, dhe wordi për mapimin set-asociativ 2-linjësh.

Detyra 6

Në tabelën 1 është paraqitur memoria kryesore (RAM) e madhësisë 128B e cila është e organizuar në 16 blloqe. Në tabelën 2 është paraqitur një cache memorie me 4 linja e cila e pasqyron memorien kryesore me metodën direkte. Në fillim cache memoria është e zbrazët. Procesori kërkon sekuencën e këtyre adresave heksadecimale nga memoria:

Të skicohet gjendja e cache memories pas leximit të adresave dhe të tregohet sa herë është qëlluar cache (cache hit).

Table 1: RAM Memoria.

Blloku w_0 w_1 w_2 w_3 w_4 w_5 w_6 w_7

B_0	88	1B	A2	A7	4C	AB	3E	92
B_1	BC	9C	EE	F6	03	82	DD	1D
B_2	60	FD	BA	61	CO	88	7E	8C
B_3	6C	7E	8C	91	81	24	39	49
B_4	B0	C8	B4	4B	60	C5	A9	3B
B_5	21	0E	EO	A6	9D	C1	1D	DF
B_6	C3	09	95	41	28	OA	C6	78
B_7	37	58	5F	77	83	98	7D	DO
B_8	В8	F6	94	E8	82	91	CB	D8
B_9	97	81	68	D9	EE	8F	D6	9A
B_A	DE	03	46	CC	55	DC	03	D7
B_B	12	4A	BA	03	49	BF	49	62
B_C	3B	EF	3C	OD	C6	30	3E	20
B_D	FO	63	27	E2	77	28	33	04
B_E	51	CB	89	98	04	D8	B1	B1
B_F	6E	24	4C	7F	83	71	CA	9F

Table 2: Cache Memoria.

Linja	w_0	w_1	w_2	w_3	w_4	w_5	w_6	$\overline{w_7}$
$\overline{L_0}$?	?	?	?	?	?	?	?
L_1	?	?	?	?	?	?	?	?
L_2	?	?	?	?	?	?	?	?
L_3	?	?	?	?	?	?	?	?