Tarea 0

Ejercicio 1.

• Determine la constante de normalización N_{1s}^{GTO} para el siguiente función GTO de el átomo de hidrógeno:

$$\Psi_{1s} = N_{1s}^{GTO} exp(-\alpha r^2)$$

- Obtenga una expresión para la energía electrónica del estado fundamental del hidrógeno, utilizando la función GTO.
- Encuentre el mejor valor para el exponente α para obtener la energía electrónica más baja y determine la energía. Como se compara su resultado con el experimental?

Ejercicio 2.

Análisis de geometría molecular

Escriba un programa en Python para calcular, distancias de enlace, ángulos de enlace, ángulos diedros y ángulos fuera del plano para la molécula de acetaldehido. También calcule los momentos de inercia y las constantes rotacionales de la misma molécula. Vea el documento tarea0_ref.pdf para instrucciones detalladas. Utilice el modulo Python de psi4 para verificar sus resultados.