Notas de Álgebra Lineal

Ticiano Ian Morvan

Noviembre 2024

Índice

1.	Anillos y cuerpos	2
	1.1. Propiedades de cuerpos	2
2.	Espacios vectoriales	3
	2.1. Propiedades de espacios vectoriales	3
	2.2. Subespacios vectoriales	3
3.	Sistemas de ecuaciones lineales	3
4.	Matrices	4
	4.1. Operaciones elementales por fila	4
	4.2. Matrices invertibles	5
	1.2. Hunted invertibles	0
5.	Independencia lineal	6
6.	Bases y dimensión	7
7.	Suma de subespacios	9
	7.1. Suma directa de subespacios	10
8.	Transformaciones lineales	11
	8.1. Aplicación de una transformación lineal	14
	8.2. Representación matricial	14
	8.3. Matriz de f en la bases β_1 , β_2	14
	8.4. Cambio de base	16
	8.5. Rango de una matriz	17
9.	Formas multilineales y determinantes	18
10	.Autovalores y autovectores	21
-0	10.1. Espacio dual	23
11	.Espacios vectoriales con producto interno	24
	11.1. Ortogonalidad	25
	11.2. Complemento ortogonal	26

1. Anillos y cuerpos

Un **anillo** es un conjunto R junto con dos operaciones: $(+): R \times R \longrightarrow R$ y $(\cdot): R \times R \longrightarrow R$. R verifica las siguientes propiedades:

- I. La suma es asociativa: $x + (y + z) = (x + y) + z \quad \forall x, y, z \in R$
- II. Existe un neutro para la suma: $\exists 0 \in R : x + 0 = 0 + x = x \quad \forall x \in R$
- III. Existe el opuesto para la suma: $\forall x \in R, \exists (-x) \in R : (-x) + x = x + (-x) = 0$
- IV. La suma es conmutativa: $x + y = y + x \quad \forall x, y \in R$
- V. El producto es asociativo: $x \cdot (y \cdot z) = (x \cdot y) \cdot z \quad \forall x, y, z \in R$
- VI. Existe el neutro para el producto: $\exists 1 \in R : x \cdot 1 = 1 \cdot x = x \quad \forall x \in R$
- VII. Vale la distributividad: $x \cdot (y+z) = xy + xz$; $(y+z) \cdot x = yx + zx \quad \forall x, y, z \in R$

Diremos que un anillo es **conmutativo** si vale que su producto lo es: $x \cdot y = y \cdot x \quad \forall x, y \in R$. Un **cuerpo** es un anillo conmutativo R tal que $\forall x \in R, x \neq 0, \exists x^{-1} \in R : x \cdot x^{-1} = 1 = x^{-1} \cdot x$. Un **subcuerpo** de un cuerpo R es un subconjunto $S \subseteq R$ tal que es un cuerpo con las operaciones inducidas:

- $\longrightarrow 0, 1 \in S$
- $\longrightarrow S$ sea cerrado para la suma y el producto, es decir, $s, s' \in S \Longrightarrow s + s', s \cdot s' \in S$ y $s^{-1} \in S$

1.1. Propiedades de cuerpos

Sea F un cuerpo, se cumple que

- I. El 0 es único, si $\exists 0' \in F$ tal que $0' + x = x + 0' = x \quad \forall x \in F \Longrightarrow 0' = 0$
- II. El 1 es único, con la misma prueba que para I.
- III. El inverso de cada $x \in F \{0\}$ es único.
- IV. El opuesto de cada $x \in F$ es único.
- V. Dados $x, y \in F$ $xy = 0 \iff x = 0 \lor y = 0$

2. Espacios vectoriales

Definición 2.1. Sea F un cuerpo. Un F-espacio vectorial es un conjunto V junto con dos operaciones: $(+): V \times V \longrightarrow V$ $y(\cdot): F \times V \longrightarrow V$ que satisfacen las propiedades vistas en 1. En general, si F es un cuerpo, F es un F-espacio vectorial.

2.1. Propiedades de espacios vectoriales

Definición 2.2. Sea V un F-espacio vectorial, $v \in V$, $c \in F$, se cumple que

$$\begin{split} I. \ 0 \cdot v &= \bar{0}, \quad c \cdot \bar{0} = \bar{0} \\ II. \ c \cdot v &= \bar{0} \iff c = 0 \lor v = \bar{0} \\ III. \ -(c \cdot v) &= (-c) \cdot v = c \cdot (-v). \ \textit{En particular}, \ -v = (-1) \cdot v \end{split}$$

Donde $\bar{0}$ denota el cero vectorial.

2.2. Subespacios vectoriales

Definición 2.3. Sea V un F-espacio vectorial. Un subconjunto $W \subseteq V$ no vacío es un **subespacio** si $\forall w_1, w_2 \in W, c \in F$ se tiene que $w_1 + w_2 \in W, c \cdot w_1 \in Wy \ \bar{0} \in W$.

Teorema 2.4. Un subconjunto no vacío $W \subseteq V$ es un subespacio $\iff \forall v, w \in W \ y \ \forall \lambda \in F$ se tiene que $v + \lambda w \in W$.

Proposición 2.5. Sea V un F-espacio vectorial, W_1, W_2 subespacios de $V \Longrightarrow W_1 \cap W_2$ subespacio de V.

Observación. La unión de subespacios no es, en general, un subespacio.

3. Sistemas de ecuaciones lineales

Un sistema de m ecuaciones lineales con n incógnitas, con coeficientes a de un cuerpo F es un sistema del tipo:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_n \end{cases}$$

Donde $a_{ij} \in F$, $b_i \in F$. Cada n-upla $(x_1, \ldots, x_n) \in F^n$ que satisface las ecuaciones se denomina una solución del sistema. En particular, si $b_1 = b_2 = \cdots = b_n$, el sistema se dice **homogéneo**.

Lema 3.1. El conjunto de soluciones de un sistema de ecuaciones lineales homogéneo de n variables es un subespacio de F^n .

Demostración. Presentando solo la idea, teniendo $Z_j = \{(x_1, \ldots, x_n) \in F^n : a_{j1}x_1 + \cdots + a_{jn}x_n = 0\}$, el conjunto de soluciones del sistema es $Z_1 \cap Z_2 \cap \cdots \cap Z_m$. Luego, la intersección de subespacios es un subespacio y queda ver que cada Z_j sea un subespacio.

4. Matrices

Definición 4.1. Una matriz $m \times n \ (m, n \in \mathbb{N})$ sobre F es una función:

$$A = \{(i, j) : 1 \le i \le m, 1 \le j \le m\} \longrightarrow F$$

Donde el elemento a_{ij} es la **entrada** (i, j) de A.

Definición 4.2. Definimos la matriz identidad Id_n como una matriz $n \times n$ tal que

$$Id_n = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix}$$

4.1. Operaciones elementales por fila

Tenemos tres operaciones elementales por filas: **intercambiar** dos filas, **multiplicar** una fila por una constante no nula y **reemplazar** una fila r por ella más una c veces la fila s, con $c \in F$.

Teorema 4.3. Para cada operación elemental por fila $e: F^{m \times n} \longrightarrow F^{m \times n}$, existe $e': F^{m \times n} \longrightarrow F^{m \times n}$ tal que e(e'(A)) = e'(e(A)) $\forall A \in F^{m \times n}$

Diremos que A es equivalente por filas a B si A se obtiene a partir de B aplicando operaciones elementales por filas. Formalmente:

$$B \rightsquigarrow e_1(B) \rightsquigarrow e_2(e_1(B)) \rightsquigarrow \cdots \rightsquigarrow e_n(e_{n-1}(\ldots(e_1(B)))) = A$$
, donde $A \sim B$

Teorema 4.4. Sean $A, B \in F^{m \times n}$ tal que $A \sim B$. Entonces los sistemas homogéneos AX = 0 y BX = 0 tienen las mismas soluciones.

Definición 4.5. Una matriz $A \in F^{m \times n}$ se dice reducida por filas si verifica

- 1. Para cada fila no nula de A, el primer elemento no nulo es 1.
- 2. Cada columna que contiene un 1 que es el primer elemento no nulo de una fila, tiene todos los demás en 0.

Definición 4.6. Una matriz $A \in F^{m \times n}$ se dice escalonada reducida por filas (MERF) si

- 1. Es reducida por filas.
- 2. Las filas nulas se ubican al final, es decir, las filas no nulas son f_1 hasta f_r y en el primer lugar no nulo de la fila f_i es $k_i \to k_1, k_2, \ldots, k_r$.

Teorema 4.7. Toda matriz $A \in F^{m \times n}$ es equivalente por filas a una MERF.

Demostraci'on. Tendremos que verificar que toda matriz A es equivalente a una reducida por filas. Luego, reubicando las filas, podremos verificar que A es equivalente a una MERF.

Teorema 4.8. Si $A \in F^{m \times n}$ y $m \le n \Rightarrow el$ sistema homogéneo AX = 0 tiene soluciones no triviales.

Teorema 4.9. Sea $A \in F^{m \times n}$. Entonces el sistema homogéneo AX = 0 tiene una única solución si y solo si $A \sim Id_n$.

Teorema 4.10. Sea $A \in F^{m \times n}$. Entonces, son equivalentes:

- 1. $A \sim Id_n$
- 2. El sistema homogéneo AX = 0 tiene una única solución.
- 3. $\forall b \in F^{m \times 1}$, el sistema AX = b tiene una única solución.

Proposición 4.11. Tomemos $A \in F^{m \times n}$, $b \in F^{m \times 1}$ tales que el sistema AX = b tiene una solución $p = (p_1, \ldots, p_n) \in F^n$. Sea $S \subset F^n$ el subespacio de soluciones del sistema homogéneo asociado $AX = 0 \Rightarrow el$ conjunto de soluciones de AX = b es $p + S := \{p + s : s \in S\}$

Definición 4.12. Definimos la suma y el producto por escalar de matrices.

$$F^{m \times n} = \left\{ \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \dots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} : a_{ij} \in F \right\}$$

$$(+): F^{m \times n} \times F^{m \times n} \longrightarrow F^{m \times n} \quad A = (A_{ij}), \ B = (B_{ij}) \longrightarrow (A+B)_{ij} = A_{ij} + B_{ij}$$
$$(\cdot): F \times F^{m \times n} \longrightarrow F^{m \times n} \quad (C \cdot A)_{ij} = C \cdot A_{ij} \quad \forall i, j$$

Definición 4.13. La matriz canónica E_{ij} es aquella cuya entrada ij es 1 y las demás son 0.

Definición 4.14. Definimos el producto de matrices como una función que va de $F^{m \times n} \times F^{n \times p} \longrightarrow F^{m \times p}$ y, tomando matrices $A, B \in F^{m \times n}, F^{n \times p}$ respectivamente, denotamos $A\dot{B}$ o simplemente AB a la matriz con entradas:

$$(A \cdot B)_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

Para este producto verificamos las siguientes propiedades:

- I. Asociatividad $\forall A \in F^{m \times n}, B \in F^{n \times p}, C \in F^{p \times q} (A \cdot B) \cdot C = A \cdot (B \cdot C)$
- II. Identidad $\forall A \in F^{m \times n} \quad Id_m \cdot A = A \cdot Id_n = A$
- III. Distributividad $\forall A, A' \in F^{m \times n}, \ \forall B, B' \in F^{n \times r}$ $(A + A') \cdot B = AB + A'B, \ A \cdot (B + B') = AB + AB'$
- IV. Conmutación con los productos escalares $\forall A \in F^{m \times n}, \ B \in F^{n \times r}, \ \lambda \in F$ $\lambda \cdot (AB) = (\lambda A) \cdot B = A \cdot (\lambda B)$

Definición 4.15. Una matriz $n \times n$ se dice una matriz elemental si se obtiene de la matriz Id_n aplicando <u>una</u> operación elemental por fila.

Teorema 4.16. Sea $E \in F^{m \times m}$ la matriz elemental asociada a la operación elemental $e : F^{m \times n} \longrightarrow F^{m \times n}$. Entonces, e(A) = EA, $\forall A \in F^{m \times n}$

Corolario 4.17. Sean $A, B \in F^{m \times n}$, entonces $A \sim B$ si y solo si existe una matriz $P \in F^{m \times m}$ que es producto de matrices elementales tal que $A = P \cdot B$

4.2. Matrices invertibles

Definición 4.18. Una matriz $A \in F^{n \times n}$ se dice invertible si $\exists B \in F^{n \times n}$ tal que $AB = BA = Id_n$. Además, si existe inverso entonces es único y lo denotamos A^{-1} .

Teorema 4.19. Toda matriz elemental es invertible.

Proposición 4.20. Sean $A, B \in F^{n \times n}$, vale que

- 1. Si A y B son invertibles $\Longrightarrow AB$ también es invertible. Más aún, $(AB)^{-1} = B^{-1}A^{-1}$
- 2. Id_n es invertible $(Id_n)^{-1} = Id_n$
- 3. Si A es invertible $\Longrightarrow A^{-1}$ también lo es, más aún $(A^{-1})^{-1} = A$

Teorema 4.21. Sea $A \in F^{n \times n}$. Son equivalentes

- 1. A es invertible
- 2. $A \sim Id_n$
- 3. A es producto de matrices elementales.

5. Independencia lineal

Definición 5.1. Sea V un F-espacio vectorial, $G \subseteq V$. Una combinación lineal de G es un elemento $v \in V$ tal que

$$v = \sum_{i=1}^{n} a_i v_i, \quad a_i \in F, \ v_i \in G$$

Definición 5.2. Dados $V, G \subseteq V$. El subespacio generado por G, denotado $\langle G \rangle$, es el conjunto de todas las combinaciones lineales de G. Además, $\langle G \rangle$ es un subespacio vectorial de V.

Definición 5.3. G es un conjunto de generadores de V si $\langle G \rangle = V$

Definición 5.4. Sea V un F-espacio vectorial, $S = \{v_i\}_{i \in I}$ un conjunto de vectores. Se dice que S es linealmente independiente si

$$\sum_{i=1}^{n} a_i v_i = 0 \quad a_i \in F, \ v_i \in S \Longrightarrow a_i = 0, \ \forall \ i = 1, \dots, n$$

Definición 5.5. S se dice linealmente dependiente $si \exists a_i \in F$ no todos nulos, $v_i \in S : \sum_{i=1}^n a_i v_i = 0$. Por ejemplo, $\{0\}$ es linealmente dependiente. Si tenemos elementos repetidos, el conjunto también será linealmente dependiente, puesto que podemos escribir $v_i + (-v_i)$, donde $v_i = v_i$.

Proposición 5.6. Sea V un F-espacio vectorial, $S \subseteq V$ un subespacio, $G \subseteq V$ un subconjunto, entonces

$$\langle G \rangle \subseteq S \iff G \subseteq S$$

Demostración. Si $\langle G \rangle \subseteq S$ entonces expresiones cada $v \in G$ como $v = 1 \cdot v \in \langle G \rangle \subseteq S$, por lo tanto $v \in S$, luego $G \subseteq S$.

Por otro lado, supongamos $G \subseteq S$. Cada combinación lineal en $v = \sum_{i=1}^{n} a_i v_i$, $a_i \in F$, $v_i \in G$. Como $v_i \in G$, entonces $v_i \in S$. Además, como S es subespacio vectorial de $V, a_i v_i \in S$ y $v = \sum_{i=1}^{n} a_i v_i \in S$. Finalmente, $\langle G \rangle \subseteq S$.

Corolario 5.7. Sea V un F-espacio vectorial, $\{v_1, \ldots, v_n\} \subseteq V$. Entonces $\langle v_1, \ldots, \hat{v_i}, \ldots, v_n \rangle = \langle v_1, \ldots, v_n \rangle \iff v_i \in \langle v_1, \ldots, \hat{v_i}, \ldots, v_n \rangle$. Donde $\{v_1, \ldots, \hat{v_i}, \ldots, v_n\} = \{v_1, \ldots, v_{i-1}, v_{i+1}, \ldots, v_n\}$.

Demostración. Verificamos primero que valga el resultado en ambas direcciones.

- 1. $v_i \in \langle v_1, \dots, v_n \rangle = \langle v_1, \dots, \hat{v_i}, \dots, v_n \rangle$
- 2. Supongamos $v_i \in \langle v_1, \dots, \hat{v_i}, \dots, v_n \rangle$, entonces $v_i = \sum_{j \neq i} a_j v_j$

Luego, queremos ver que $\langle v_1, \dots, \hat{v_i}, \dots, v_n \rangle = \langle v_1, \dots, v_n \rangle$

- 1. $\{v_1,\ldots,\hat{v_i},\ldots,v_n\}\subseteq \{v_1,\ldots,v_n\}\subseteq \langle v_1,\ldots,v_n\rangle$, por la proposición anterior, $\langle v_1,\ldots,\hat{v_i},\ldots,v_n\rangle\subseteq \langle v_1,\ldots,v_n\rangle$
- 2. Si $j \neq i$ entonces $v_j \in \langle v_1, \dots, \hat{v_i}, \dots, v_n \rangle$ y además, por hipótesis, $v_i \in \langle v_1, \dots, \hat{v_i}, \dots, v_n \rangle$. Luego $\{v_1, \dots, v_n\} \subseteq \{v_1, \dots, \hat{v_i}, \dots, v_n\}$. Entonces, por la proposición anterior tenemos que $\langle v_1, \dots, v_n \rangle \subseteq \langle v_1, \dots, \hat{v_i}, \dots, v_n \rangle$

6. Bases y dimensión

Definición 6.1. Sea V un F-espacio vectorial. Un subconjunto $S \subseteq V$ se dirá base de V si

- 1. $\langle S \rangle = V$
- 2. S es linealmente independiente.

Proposición 6.2. Sea V un F-espacio vectorial y $\{v_1, \ldots, v_r\}$ elementos de V tales que $\langle v_1, \ldots, v_r \rangle = V$. Si $\{w_1, \ldots, w_s\}$ es un conjunto linealmente independiente, entonces $s \leq r$.

Demostración. Como $w_i \in V = \langle v_1, \dots, v_r \rangle$ existen $a_{ij} \in F$ tales que $w_i = \sum_{j=1}^r a_{ji}v_j$. Por otro lado, tenemos el sistema homogéneo

$$\begin{cases} a_{11}x_1 + \dots + a_{1s}x_s = 0 \\ \vdots \\ a_{r1}x_1 + \dots + a_{rs}x_s = 0 \end{cases}$$

Si $(y_1, \dots, y_s) \in F^S$ es solución del sistema

$$\sum_{k=1}^{s} y_k w_k = \sum_{k=1}^{s} y_k \left(\sum_{j=1}^{r} a_{jk} v_j \right)$$
$$= \sum_{j=1}^{r} \left(\sum_{k=1}^{s} a_{jk} y_k \right) v_j$$
$$= \sum_{j=1}^{r} 0 \cdot v_j = 0$$

Como $\{w_1, \ldots, w_s\}$ es linealmente independiente, se tiene que $y_1 = y_2 = \cdots = y_s = 0$. Es decir, la única solución posible del sistema es la trivial.

Finalmente, $s \leq r$ (cantidad de ecuaciones \leq cantidad de variables)

Definición 6.3. Sea V un F-espacio vectorial. Decimos que V es de **dimensión finita** si tiene una base finita. La dimensión de V es $\mid B \mid := \dim_F V$.

Teorema 6.4. Sea V im F-espacio vectorial de dimensión finita, β_1 , β_2 dos bases de V. Entonces $|\beta_1| = |\beta_2|$

Demostración. Por la proposición anterior, $|\beta_1| \leq |\beta_2|$ y $|\beta_2| \leq |\beta_1|$.

Observación 6.5. Si $\dim_F V = n$ y $\{w_1, \dots, w_s\}$ es linealmente independiente entonces $s \le n$.

Proposición 6.6. Sean V un F-espacio vectorial, $\beta = \{v_1, \ldots, v_n\}$ un base finita de V. Entonces para cada $v \in V, \exists ! \ a_1, \ldots, a_n \in F$ tales que $\sum_{i=1}^n a_i v_i$.

Lema 6.7. Si $S \subseteq V$ es linealmente independiente $y \ w \in V - \langle S \rangle$ ($w \notin \langle S \rangle$), entonces $S \cup \{w\}$ es linealmente independiente.

Demostración. Supongamos que v_1, \ldots, v_n son elementos distintos de S y sean $\lambda_1, \ldots, \lambda_n$, $\lambda \in F$ tales que $\lambda_1 v_1 + \cdots + \lambda_n v_n + \lambda_w = 0$.

 $\rightarrow \lambda \neq 0$, entonces

$$w = (\frac{-\lambda_1}{\lambda})v_1 + \dots + (\frac{-\lambda_n}{\lambda})v_n$$
 $\therefore w \in \langle v_1, \dots, v_n \rangle$ Absurdo!

 $\lambda = 0$, luego $\lambda_1 v_1 + \cdots + \lambda_n v_n = 0$

Como S es linealmente independiente, se tiene que

 $\lambda_i = 0 \quad \forall \ i = 1, \dots, n \quad \therefore \ S \cup \{w\} \text{ es linealmente independiente.}$

Corolario 6.8. Sea V un F-espacio vectorial de dim n y $S \subseteq V$, |S| = n. Si S es linealmente independiente, entonces S es base de V.

Demostración. Supongamos $\langle S \rangle \subsetneq V \Longrightarrow \exists \ v \in V : v \in V - \langle S \rangle$ $\therefore \ S \cup \{v\} \text{ es linealmente independiente y } |S \cup \{v\}| = n+1 \text{ Absurdo!}$

Teorema 6.9. Sea V un F-espacio vectorial de dimensión finita n y S_0 un conjunto linealmente independiente de V. Entonces S_0 es finito y existen w_1, \ldots, w_n vectores en V tales que $S_0 \cup \{w_1, \ldots, w_n\}$ es base de V.

Proposición 6.10. Sea V un espacio vectorial de dimensión finita, $S = \{v_1, \ldots, v_n\}$ un conjunto de generadores. Entonces $\exists \beta \subseteq S$ base de V.

Corolario 6.11. Sea V un espacio vectorial de dimensión finita, $S \subseteq V$ subconjunto con n elementos.

- a) Si S es linealmente independiente \Longrightarrow S es base.
- b) Si S genera $V \Longrightarrow S$ es base.

Demostración. Se pueden demostrar de manera fácil tomando en cuenta

- a) Trivial por |S|
- b) El conjunto generado es igual a V.

Demostración. De 6.10.

Sea $G_1 = \{v_1\}, \ v_1 \neq 0$. Si $\langle G_1 \rangle = V \Longrightarrow G_1$ es base.

Si $\langle G_1 \rangle \subsetneq V$, $\exists v_{i_2} \in V - \langle G_1 \rangle \Longrightarrow G_2 = \{v_1, v_{i_2}\}$ es linealmente independiente.

Como la $\dim \langle G_1 \rangle = 1 < \dim \langle G_2 \rangle = 2$. Si $\langle G_2 \rangle = V$ tenemos $\beta = G_2$.

Si $\langle G_2 \rangle \neq V$, $\exists v_{i_3} \in V - \langle G_2 \rangle \Longrightarrow G_3 = G_2 \cup \{v_{i_3}\}$

Siguiendo, construimos conjuntos $G_1 \subsetneq G_2 \subsetneq \cdots \subsetneq G_k$ que son linealmente independientes.

Luego, como dim $V=n\Longrightarrow G_n=\beta$ pues G_k es linealmente independiente y tiene n elementos $\Longrightarrow \dim \langle G_k \rangle = n$

Supongamos que $\langle G_n \rangle \subsetneq V$, $\exists v_i \in S - \langle G_n \rangle \leadsto G_{n+1} = G_n \cup \{v_{n+1}\}$ es linealmente independiente. Pero $\langle G_{n+1} \rangle \subseteq V \Longrightarrow \dim V \geq n+1$ Absurdo!

$$\therefore \langle G_n \rangle = V \Longrightarrow G_n = \beta$$
 es base.

Teorema 6.12. $W \subseteq V$ subspacios $y \dim V = n$. Sea S_0 un conjunto linealmente independiente \Longrightarrow $S_0 = \{w_1, \ldots, w_r\}$ $y \exists w_{r+1}, \ldots, w_n : S_0 \cup \{w_{r+1}, \ldots, w_n\}$ es base de V.

Demostración. Sea $\beta = \{v_1, \dots, v_n\}$ una base de V. Supongamos que $|S| = \infty \leadsto \exists w_1, \dots, w_m \in S$, distintos donde m = n + 1 tales que

$$w_1 = a_{11}v_1 + \dots + a_{1n}v_n$$

$$\vdots$$

$$w_m = a_{m1}v_1 + \dots + a_{mn}v_n$$

Entonces el sistema homogéneo AX = 0 tiene una solución no trivial.

7. Suma de subespacios

Definición 7.1. Sean S, T subespacios de un espacio vectorial V. La **suma** de S y T es el conjunto $S + T = \{v + w : v \in S, w \in T\}$.

Proposición 7.2. I. S + T es un subespacio de V que contiene a S y a T.

- II. S+T es el menor subespacio que contiene a S y a T. Si $W \subseteq V$ es un subespacio de V tal que $S \subseteq W$ y $T \subseteq W \Longrightarrow S+T \subseteq W$.
- III. Si $\{v_i\}$ es un conjunto de generadores de S y $\{v_j\}$ un conjunto de generadores de $T \Longrightarrow \{v_i\} \cup \{v_j\}$ es un conjunto de generadores de S + T.

Demostración. Probaremos punto por punto de la proposición.

I. $0_S \in S$, $0_T \in T \longrightarrow 0 = 0_S + 0_T \in S + T$. Tomamos $x, y \in S + T$, $\lambda \in F$. Quiero ver que $x + \lambda y \in S + T$. Si lo hacemos, entonces S + T es un subespacio.

Por definición, $\exists v_1, v_2 \in S, \ w_1, w_2 \in T : x = v_1 + w_1, \ y = v_2 + w_2.$

$$x + \lambda y = v_1 + w_1 + \lambda(v_2 + w_2) = v_1 + w_1 + \lambda v_2 + \lambda w_2$$

= $v_1 + \lambda v_2 + w_1 + \lambda w_2 \in S + T$

Pues $v_1 + \lambda v_2 \in S$ y $w_1 + \lambda w_2 \in T$.

Dado $v \in S$, $w = v + 0 \in S + T \Longrightarrow S \subseteq S + T$. Análogamente, $T \subseteq S + T$.

II. Sea W un subespacio que contiene a S y T puedo ver que $S + T \subseteq W$.

Dado que $x \in S + T$, $\exists v \in S$, $w \in T : x = v + w$.

Notar que $v \in S$ para $S \subseteq W$ y $w \in T$ para $T \subseteq W \Longrightarrow x = v + w \in W$.

III. Sean $x \in S + T$. Por definición existen $v \in S$, $w \in T$ tal que x = v + w.

Como $\{v_i\}$ genera $S \longrightarrow v = a_1 v_{i_1} + \cdots + a_n v_{i_n}$

Como $\{w_i\}$ genera $T \longrightarrow w = b_n w_{i_1} + \cdots + b_n w_{i_n}$

Luego $x = a_1 v_{i_1} + \dots + a_n v_{i_n} + b_1 w_{i_1} + \dots + b_n w_{i_n} \leadsto x \in \langle \{v_i\} \cup \{w_i\} \rangle$

Teorema 7.3. Sea V un espacio vectorial, $S, T \subseteq V$ subespacio de dimensión finita $\Longrightarrow S + T$ también de dimensión finita $y \dim(S + T) = \dim S + \dim T - \dim(S \cap T)$

Demostración. Sean β_1, β_2 bases de S y T respectivamente $\Longrightarrow |\beta_1|, |\beta_2| < \infty$ y por la parte III. de la proposición anterior, S + T está generada por $\beta_1 \cup \beta_2$.

Como $|\beta_1 \cup \beta_2| < \infty \Longrightarrow \dim(S+T) < \infty$.

Sean $n = \dim S$, $m = \dim T$, $r = \dim(S \cap T)$ $S \cap T \subseteq S$, $T \longrightarrow r \le n$, $m = \dim T$

Sea $\beta_0 = \{v_1, \dots, v_r\}$ una base de $S \cap T$.

- I. $\beta_0 \subseteq S$ y es linealmente independiente $\Longrightarrow \exists w_{r+1}, \ldots, w_n \in S$ tal que $\{v_1, \ldots, v_r, w_{r+1}, \ldots, w_n\}$ es base de S.
- II. $\beta_0 \subseteq T$ y es linealmente independiente $\Longrightarrow \exists u_{r+1}, \ldots, u_m \in T$ tal que $\{v_1, \ldots, v_r, u_{r+1}, \ldots, u_m\}$ es base de T.

Vemos que, $\beta = \{v_1, ..., v_r, w_{r+1}, ..., w_n, u_{r+1}, ..., u_m\}$ es base de S + T.

Luego, $\dim(S+T) = |\beta| = r + n - r + m - r = \dim S + \dim T - \dim(S \cap T)$.

Por un lado $\beta = \beta_S \cup \beta_T \Longrightarrow \beta$ genera a S + T. Vemos que es linealmente independiente. Tomamos $a_i, b_j, c_k \in F$ tal que

$$a_1v_1 + \dots + a_rv_r + b_{r+1}w_{r+1} + \dots + b_nw_n + c_{r+1}u_{r+1} + \dots + c_mu_m = 0$$

$$a_1v_1 + \dots + a_rv_r + b_{r+1}w_{r+1} + \dots + b_nw_n = -c_{r+1}u_{r+1} - \dots - c_mu_m \in S \cap T$$

Es decir, $-c_{r+1}u_{r+1}-\cdots-c_mu_m\in S\cap T$, con lo cual $\exists d_1,\ldots,d_r\in F$ tal que $-c_{r+1}u_{r+1}-\cdots-c_mu_m=d_1v_1+\cdots+d_rv_r$ (porque $\beta_0=\{v_1,\ldots,v_r\}$ es base $S\cap T$).

$$\Rightarrow 0 = d_1 v_1 + \dots + d_r v_r + c_{r+1} u_{r+1} + \dots + c_m u_m \Longrightarrow d_i = \dots = d_r = c_{r+1} = \dots = c_m$$
Así, $a_1 v_1 + \dots + a_r v_r + b_{r+1} w_{r+1} + \dots + b_n w_n = 0 \Longrightarrow a_i = \dots = a_r = b_{r+1} = \dots = b_n = 0$

7.1. Suma directa de subespacios

Definición 7.4. Sean S y T dos subespacios de un espacio vectorial V. Decimos que V es la suma directa de S y T si S + T = V. Denotamos $S \oplus T$.

Proposición 7.5. Si $V = S \oplus T$, entonces para cada $v \in V$, $\exists ! \ x \in S, \ y \in T : v = x + y$.

Demostración. Como $V = S \oplus T$, existen $x \in S$, $y \in T$ tales que v = x + y. Sean $x' \in S$, $y' \in T$ tales que $v = x' + y' : x + y = x' + y' \Longrightarrow x - x' = y' - y \in S \cap T = \{0\}.$

Luego, x = x' y y = y' de donde se deduce la unicidad.

Proposición 7.6. Sean S, T subespacios de V, con bases β_S , β_T . Son equivalentes

 $I. V = S \oplus T$

II. $\beta_S \cup \beta_T$ es una base de V $(\beta_S \cap \beta_T = \emptyset)$

■ $I \Longrightarrow II$) Asumimos que $V = S \oplus T$. Entonces $S \cap T = 0$, con lo cual $\beta_S \cap \beta_T = \emptyset$ (pues 0 no forma parte de ninguna base). Por otro lado, β_S genera a S y β_T genera a $T \Longrightarrow \beta_S \cup \beta_T$ genera S + T = V.

Supongamos que $\beta_S \cup \beta_T$ no es linealmente independiente. $\exists v_1, \ldots, v_n \in \beta_S, w_1, \ldots, w_m \in T$ (todos distintos) y $a_1, \ldots, a_n \in S$, $b_1, \ldots, b_m \in T$ tales que $a_1v_1 + \cdots + a_nv_n + b_1w_1 + \cdots + b_mw_m = 0$.

$$\implies a_1v_1 + \dots + a_nv_n = -b_1w_1 - \dots - b_mw_m \in S \cap T$$

 $\implies a_1v_1 + \cdots + a_nv_n = 0$

 $\therefore a_1 = \cdots = 0$ porque $v_1, \ldots, v_n \in \beta_S$ y β_S es linealmente independiente, análogamente con $b_1 = \cdots = b_m = 0$ y así tenemos un <u>Absurdo!</u>

De lo anterior, $\beta_S \cup \beta_T$ genera a V y es linealmente independiente \Longrightarrow es una base de V.

■ $II \Longrightarrow I$) Asumimos que $\beta_S \cup \beta_T$ es base de $V, \beta_S \cap \beta_T = \emptyset$.

Si $x \in S \cap T$.

$$\longrightarrow \exists a_1, \ldots, a_n \in F, v_1, \ldots, v_n \in \beta_S : x = a_1v_1 + \cdots + a_nv_n$$

$$\longrightarrow \exists b_1, \ldots, b_m \in F, w_1, \ldots, w_m \in \beta_T : x = b_1 w_1 + \cdots + b_m w_m$$

$$\implies a_1v_1 + \dots + a_nv_n - b_1w_1 - \dots - b_mw_m = 0$$

Como $\beta_S \cup \beta_T$ es linealmente independiente $\Longrightarrow a_1 = \cdots = a_n = 0 = b_1 = \cdots = b_m \Longrightarrow x = 0$

Por otro lado, $y \in V$ (como $\beta_S \cup \beta_T$ genera a V), $\exists v_1, \ldots, v_n \in \beta_S, w_1, \ldots, w_m \in \beta_T$ y evaluar $a_i, b_i \in F: x = a_1v_1 + \dots + a_nv_n + b_1w_1 + \dots + b_mw_m$

De lo anterior, $V = S \oplus T$.

Definición 7.7. Sea S un subespacio de V. Un complemento de S en V y un subespacio T de V tal que $V = S \otimes T$.

8. Transformaciones lineales

Definición 8.1. Sean V, W dos F-espacios vectoriales. Una transformación lineal es una función $f: V \to W$ tal que

- $f(v+v') = f(v) + f(v'), \quad \forall \ v, v' \in V$
- $f(cv) = c \cdot f(v) \quad \forall \ v \in V, \ c \in F$

Mencionamos además, diversas propiedades de las transformaciones lineales.

Observación 8.2. Si $f: V \to W$ es una transformación lineal entonces f(0) = 0, f(-v) = -f(v).

Definición 8.3. Sea $f: V \to W$ una transformación lineal

- *El núcleo* de f es $Nu(f) = \{v \in V : f(v) = 0\}$
- La imágen de f es $Im(f) = \{w \in W : \exists v \in V / f(v) = w\}$

Lema 8.4. El núcleo de f es un subespacio de V. La imágen de f es un subespacio de W.

Proposición 8.5. Sea V un espacio vectorial, $\beta = v_1, \ldots, v_n$ una base ordenada

- a) Para cada $v \in V$, $\exists ! a_1, \ldots, a_n \in F$ tales que $v = a_1v_1 + \cdots + a_nv_n$ $\leadsto T_\beta : V \to F^n$, $T(v) = (a_1, \ldots, a_n)$ coordenadas de v en la base β , usualmente denotamos $[v]_\beta$
- b) $[-]_{\beta}$ es una transformación lineal.

Demostración. a) Fijemos $v \in V$, como β genera V, $\exists a_1, \ldots, a_n \in F$ tales que $v = a_1v_1 + \cdots + a_nv_n$ Sean $b_1, \ldots, b_n \in F$ tales que $b_1v_1 + \cdots + b_nv_n \Longrightarrow 0 = (a_1 - b_1)v_1 + \cdots + (a_n - b_n)v_n$. Como $\beta = \{v_1, \ldots, v_n\}$ es linealmente independiente, entonces $a_1 - b_1 = \cdots = a_n - b_n = 0 \Longrightarrow a_i = b_i \quad \forall i = 1, \ldots, n$

b) Sean $v, w \in V$ y $\lambda \in F$: $T_{\beta}(v) = (a_1, \dots, a_n)$, $T_{\beta}(w) = (b_1, \dots, b_n)$ para $a_i, b_i \in F$ tales que $v = a_1v_1 + \dots + a_nv_n$, $v = b_1v_1 + \dots + b_nv_n$

Queremos ver cuanto vale $T_{\beta}(v+w)$.

$$v + w = a_1v_1 + \dots + a_nv_n + b_1v_n + \dots + b_nv_n$$

= $(a_1 + b_1)v_1 + \dots + (a_n + b_n)v_n$

Por la unicidad de las coordenadas tenemos

$$T_{\beta}(v+w) = (a_1 + b_1, \dots, a_n + b_n)$$

= $(a_1, \dots, a_n) + (b_1, \dots, b_n)$
= $T_{\beta}(v) + T_{\beta}(w)$

Por otro lado

$$\lambda v = \lambda (a_1 v_1 + \dots + a_n v_n) = \lambda a_1 v_1 + \dots + \lambda a_n v_n$$

$$\Longrightarrow T_{\beta}(\lambda v) = (\lambda a_1, \dots, \lambda a_n) = \lambda (a_1, \dots, a_n) = \lambda T_{\beta}(v)$$

Teorema 8.6. Sean V, W dos F-espacios vectoriales, $\beta = \{v_1, \ldots, v_n\}$ una base de $V, w_1, \ldots, w_n \in W$ arbitrarios. $\exists !$ transformación lineal $f: V \to W: f(v_i) = w_i \quad \forall i = 1, \ldots, n$

Demostración. Se puede demostrar tomando $f(v) = a_1 w_1 + \cdots + a_n w_n$, con $v \in V \leadsto [v]_\beta = (a_1, \dots, a_n)$ y $v = a_1 v_1 + \cdots + a_n v_n$. Comprobamos que f es la transformación lineal que buscamos y, tomando otra transformación g tal que cumple la misma condición, coincidimos que f = g.

De manera general, tenemos

$$U\subset V\leadsto f(U)=\{f(u):u\in U\}\quad\text{La imágen}\text{ de U}$$

$$Z\subset W\leadsto f^{-1}(Z)=\{v\in V:f(v)\in Z\}\quad\text{La pre-imágen}\text{ de Z}$$

Proposición 8.7. • $U \subseteq V$ subespacio $\Longrightarrow f(u)$ es subespacio de W

 $\blacksquare Z \subseteq W \ subespacio \Longrightarrow f^{-1}(z) \ es \ subespacio \ de \ V$

Demostración. Fijamos $U \subseteq V$ subespacio, si $w_1, w_2 \in f(u), \ \lambda \in F$. Queremos ver que $w_1 + w_2, \ \lambda w \in f(u)$.

Por definición, $\exists u_1, u_2 \in U / w_i = f(u_i)$.

• $w_1 + w_2 = f(u_1) + f(u_2) = f(u_1 + u_2)$. Como U es subespacio, $u_1 + u_2 \in U \Longrightarrow w_1 + w_2 = f(u_1 + u_2) \in f(u)$.

• $\lambda w = \lambda f(u) = f(\lambda u)$. Como U es subespacio, $\lambda u \in U \Longrightarrow \lambda w = f(\lambda u) \in f(u)$.

Así f(u) es subespacio de V. La otra es análoga.

Proposición 8.8. $f: V \to W$ es una transformación lineal, $\{v_i\}$ un conjunto de generadores de $V \Longrightarrow \{f(v_i)\}$ es un conjunto de generadores de Im(f).

Corolario 8.9. $f: V \to W$ una transformación lineal, $\dim V < \infty \Longrightarrow \dim Im(f) < \infty$

Demostración. Tomemos $w \in Im(f)$. Por definición, w = f(v) para algún $v \in V$. Como $\{v_i\}$ genera a V

$$v=a_1v_1+\cdots+a_nv_n$$
 para algunos $v\in V,\ a\in F$
$$w=f(v)=a_1f(v_1)+\cdots+a_nf(v_n)\in \langle f(v)\rangle$$

Definición 8.10. Sea $f: V \to W$ una transformación lineal, decimos que

- lacktriangledown f es monomorfismo si f es inyectiva.
- f es epimorfismo si f es suryectiva.
- f es isomorfismo si f es biyectiva.

Además, si $V=W,\ f$ es un **endorfismo**. Si f es un endorfismo que además es isomorfismo, es un **automorfismo**.

Proposición 8.11. Sea $f: V \to W$ una transformación lineal, f es un monorfismo $\iff Nu(f) = \{0\}.$

Demostración. Recordemos que $f(0) = 0_V \Rightarrow 0_V \in Nu(f)$

- (\Rightarrow) Si f es un monomorfismo \Rightarrow es inyectiva, y como f(0) = 0, para cada $v \neq 0$ se tiene que $f(v) \neq f(0) = 0_W$. Así, todo $v \neq 0$ no pertenece al $Nu(f) \Rightarrow Nu(f) = \{0\}$.
- (\Leftarrow) Asumimos que $Nu(f) = \{0\}$. Sean $v, v' \in V$ tales que f(v) = f(v') entonces $0 = f(v) f(v') = f(v v') \Rightarrow v v' \in Nu(f) = \{0\}$

Así, v - v' = 0, de donde v = v'. Luego, f es inyectiva.

Teorema 8.12 (Teorema de la dimensión). Sean V, W dos F-espacios vectoriales, dim $V < \infty$. Sea $f: V \Rightarrow W$ una transformación lineal, entonces

$$\dim V = \dim Nu(f) + \dim Im(f)$$

Demostración. Sean $n = \dim V$, $k = \dim Nu(f) \le n$.

Sean v_1, \ldots, v_k una base de Nu(f). Como $\{v_1, \ldots, v_k\}$ es linealmente independiente, lo podemos completar a una base de V, tal que $\{v_1, \ldots, v_k, v_{k+1}, \ldots, v_n\}$. Queremos ver que dim Im(f) = n - k.

Probaremos que $\beta = \{f(v_{k+1}), \dots, f(v_n)\}$ es una base de Im(f), la cual termina la prueba.

En primer lugar, $\{v_1, \ldots, v_n\}$ genera a $V \to \{f(v_1), \ldots, f(v_k), f(v_{k+1}), \ldots, f(v_n)\}$ genera a Im(f), pues los primeros k resultados son 0 y $f(v_i) = w_i \quad \forall i = k+1, \ldots, n$.

 β genera a Im(f).

Veamos ahora que β es linealmente independiente.

Sean $a_{k+1}, \ldots, a_n \in F$ tales que $0 = a_{k+1}f(v_{k+1}) + \cdots + a_nf(v_n)$

$$f(a_{k+1}v_{k+1} + \dots + a_nv_n) \stackrel{\mathrm{TL}}{=} a_{k+1}f(v_{k+1}) + \dots + a_nf(v_n) = 0$$

$$\Rightarrow a_{k+1}v_{k+1} + \dots + a_nv_n \in Nu(f)$$
De donde $\exists a_1, \dots, a_k$ tales que $a_{k+1}v_{k+1} + \dots + a_nv_n = a_1v_1 + \dots + a_kv_k$

$$\rightsquigarrow (-a_1)v_1 + \dots + (-a_n)v_n + a_{k+1}v_{k+1} + \dots + a_nv_n = 0.$$
Como $\{v_1, \dots, v_n\}$ es una base de V (en particular, es linealmente independiente)
$$\rightsquigarrow a_1 = \dots = a_k = a_{k+1} = \dots = a_n = 0$$

$$\therefore \beta \text{ es linealmente independiente.}$$

Corolario 8.13. Sean V, W dos F-espacios vectoriales, tal que $\dim V = \dim W < \infty$, $f: V \to W$ una transformación lineal, son equivalentes

- a) f es un isomorfismo
- b) f es un monomorfismo
- c) f es un epimorfismo

Demostración. Aclararemos que el corolario **no vale** para dim $V=\dim W=\infty$

- $(a \Rightarrow b)$ Directo.
- $(b\Rightarrow c)$ Asumimos que f es monomorfismo. Luego, $Nu(f)=\{0\}$.

 Del teorema anterior, $\dim Im(f)=\dim V-\dim(Nu(f))\stackrel{\text{hip.}}{=}\dim W$, pues $\dim Nu(f)=0$.

 Es decir, Im(f) es un subespacio de W con $\dim V=W\Rightarrow Im(f)=W$. O sea, f es epimorfismo.
- $(c \Rightarrow a)$ Asumimos que f es epimorfismo. Para probar que es isomorfismo, nos falta ver que sea monomorfismo (que por el resultado anterior, equivale a $Nu(f) = \{0\}$).

$$Im(f)=W.$$
 Del teorema, dim $Nu(f)=\dim V-\dim Im(f)=\dim V-\dim W=0$ $\Rightarrow Nu(f)=0.$

Proposición 8.14. $f: V \to W, \ g: W \to Z$ transformaciones lineales $\Rightarrow g \circ f: V \to Z$. Además, $g \circ f(v) = g(f(v))$ es transformación lineal.

П

Definición 8.15. Sean $v, v' \in V$, $\lambda \in F$.

$$g \circ f(v + v') = g(f(v + v')) = g(f(v) + f(v'))$$

= $g(f(v)) + g(f(v'))$
= $g \circ f(v) + g \circ f(v')$

De la misma forma se comprueba que $g \circ f(\lambda v) = \lambda g \circ f(v)$

Proposición 8.16. Sea $f: V \to W$ un isomorfismo $\Rightarrow f^{-1}: W \to V$ es transformación lineal, tal que $f^{-1}(w) = v \iff f(v) = w$.

Demostración. Sean $w, w' \in W, \lambda \in F$.

Como
$$f$$
 es biyectiva, $\exists !\ v, v' \in V$ tales que $f(v) = w,\ f(v') = w' \leadsto f^{-1}(w) = v,\ f^{-1}(w') = v'$ $w + w' = f(v) + f(v') = f(v + v') \Rightarrow f^{-1}(w + w') = v + v' = f^{-1}(w) + f^{-1}(w')$

De la misma forma se comprueba que $f^{-1}(\lambda w) = \lambda f^{-1}(w)$.

Proposición 8.17. Sea V un F-espacio vectorial de dim $n \Rightarrow \exists f : V \to F^n$ donde f es un isomorfismo.

Demostración. dim $V = n \leadsto \exists \beta = \{v_1, \dots, v_n\}$ donde β es base. Tomemos $f: V \to F^n$, $f(v) = [v]_{\beta}$ Vimos que f es transformación lineal y sabemos que dim $V = n = \dim F^n$. Por el corolario, basta probar que f es monomorfismo para concluir que f es isomorfismo.

Para ver que f es monomorfismo, tenemos que ver $Nu(f) = \{0\}$. Tomemos $v \in Nu(f) : [v]_{\beta} = (0, ..., 0) \rightsquigarrow v = 0v_1 + \cdots + 0v_n = 0$

$$\therefore Nu(f) = 0$$

Proposición 8.18. Sea V un F-espacio vectorial de dimensión n, $\exists T: V \to F^n$ tal que T es un isomorfismo.

Demostración. Fijamos $\beta = \{v_1, \dots, v_n\}$ una base de V.

Sea $T: V \to F^n$, $T(v) = [v]_{\beta}$ que ya vimos que es lineal. Como dim $F^n = \dim V$, basta ver que T es monomorfismo (por el corolario anterior). Y para ver que T es monomorfismo basta ver que $Nu(T) = \{0\}$.

Sea
$$v \in Nu(T): T(v) = (0, ..., 0)$$
. Recordar que $[w]_{\beta} = (a_1, ..., a_n) \iff w = a_1v_1 + \cdots + a_nv_n$
 $\Rightarrow v = 0v_1 + \cdots + 0v_n = 0$

Observación 8.19. Sea $f: V \Rightarrow W$ un isomorfismo.

- $U \subseteq V$ subespacio está generado por $v_1, \ldots, v_n \iff f(u)$ está generado por $\{f(v_1), \ldots, f(v_n)\}$
- \bullet $\{v_1,\ldots,v_n\}$ es base de $V\iff \{f(v_1),\ldots,f(v_n)\}$ es base de W

8.1. Aplicación de una transformación lineal

Lema 8.20. U, V, W tree F-espacios vectoriales $f: U \to W, g: V \to W$ transformaciones lineales, se cumple que $Im(f) \cap Nu(g) = f(Nu(g \circ f))$.

Demostración. Probaremos la inclusión mutua.

 $(\subseteq) \ v \in Im(f) \cap Nu(g).$

Como $v \in Im(f), \exists u \in U \text{ tal que } v = f(u).$

Como $v \in Nu(g), \ 0 = g(v) = g(f(u)) = g \circ f(u)$

 $\Rightarrow u \in Nu(g \circ f)$

 $v \in f(Nu(g \circ f))$

 $(\supseteq) \ v \in f(Nu(g \circ f)).$

Por definición, $\exists u \in Nu(g \circ f)$ tal que $v = f(u) \leadsto v \in Im(f)$

$$g(v) = g(f(u)) = g \circ f(u) = 0$$

 $\Rightarrow v \in Nu(q)$

 $v \in Nu(g) \cap Im(f)$

8.2. Representación matricial

Definición 8.21. Sea $f: V \to W$ una transformación lineal, $\beta_1 = \{v_1, \dots, v_n\}$ una base de V, $\beta_2 = \{w_1, \dots, w_m\}$ una base de W.

$$f(v_j) = \sum_{i=1}^m a_{ij} w_i \quad a_{ij} \in F \leadsto [f]_{\beta_1 \beta_2} = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nm} \end{pmatrix}$$

8.3. Matriz de f en la bases β_1 , β_2

Proposición 8.22. Sean V, W dos F-espacios vectoriales de dimensión finita, $f: V \to W$ una transformación lineal g β_1 , β_2 bases de V g W.

$$[f(v)]_{\beta_2} = [f]_{\beta_1\beta_2}[v]_{\beta_1} \quad donde \ [f]_{\beta_1\beta_2} = \begin{pmatrix} \vdots & & \vdots \\ [f(v_1)]_{\beta_2} & \cdots & [f(v_n)]_{\beta_2} \\ \vdots & & \vdots \end{pmatrix}$$

Demostración. Sean $\beta = \{v_1, \dots, v_n\}, \ \delta = \{w_1, \dots, w_m\}, \ v \in V : v = \beta_1 v_1 + \dots + \beta_n v_n$

$$[v]_{\beta} = \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_n \end{pmatrix}$$

$$f(v_j) = \sum_{i=1}^{m} a_{ij} w_i \to f(v) = f(\beta_1 v_1 + \dots + \beta_n v_n)$$

$$= \sum_{j=1}^{n} \beta_j f(v_j) = \sum_{j=1}^{n} \left(\sum_{i=1}^{m} a_{ij} w_i \right)$$

$$= \sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{ij} \beta_j \right) w_i$$

$$[f(v)]_{\delta} = \begin{pmatrix} \sum_{j=1}^{n} a_{1j} \beta_{j} \\ \vdots \\ \sum_{j=1}^{n} a_{mj} \beta_{j} \end{pmatrix} = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} \beta_{1} \\ \vdots \\ \beta_{n} \end{pmatrix} = [f]_{\beta\delta}[v]_{\beta}$$

Proposición 8.23. Sea $f: V \to W, \ g: W \to U$ transformaciones lineales. β_1 base de $V, \ \beta_2$ base de W $y \ \beta_3$ base de U.

$$[g]_{\beta_2\beta_3}[f]_{\beta_1\beta_2} = [g \circ f]_{\beta_1\beta_3}$$

Demostración. Sean $\beta_1 = \{v_1, \dots, v_n\}, \ \beta_2 = \{w_1, \dots, w_m\}, \ \beta_3 = \{u_1, \dots, u_p\}.$ Tenemos que:

$$[f]_{\beta_1\beta_2} = (a_{ij}) \in F^{m \times n} \leadsto f(v_j) = \sum_{i=1}^m a_{ij} w_i$$
$$[g]_{\beta_2\beta_3} = (b_{ki}) \in F^{p \times m} \leadsto g(w_i) = \sum_{k=1}^p b_{ki} u_k$$
$$[g \circ f]_{\beta_1\beta_3} = (c_{kj}) \in F^{p \times n} \leadsto g \circ f(v_j) = \sum_{k=1}^p c_{kj} v_j$$

Vemos que la última ecuación es igual a:

$$g(f(v_j)) = g(\sum_{i=1}^{m} a_{ij} w_i)$$

$$= \sum_{i=1}^{m} a_{ij} g(w_i)$$

$$= \sum_{i=1}^{m} a_{ij} \sum_{k=1}^{p} b_{ki} u_k$$

$$= \sum_{k=1}^{p} (\sum_{i=1}^{m} b_{ki} a_{ij}) u_k$$

$$\Rightarrow c_{kj} = \sum_{i=1}^{m} b_{ki} a_{ij}$$

Matricialmente, tenemos $[g \circ f]_{\beta_1\beta_3} = [g]_{\beta_2\beta_3}[f]_{\beta_1\beta_2}$, que era lo que buscábamos.

Corolario 8.24. Sea $f: V \to W$ isomorfismo, de $\dim V = \dim W < \infty$, β_1 , β_2 bases de V y W. $\exists f^{-1}: W \to V$ transformaciones lineal $\Rightarrow [f]_{\beta_1\beta_2}$ es invertible $y[f]_{\beta_1\beta_2}^{-1} = [f^{-1}]_{\beta_2\beta_1}$

Demostración. $f^{-1} \circ f = Id_V$, $f \circ f^{-1} = Id_W$, $n = \dim V = \dim W$. $[f^{-1}]_{\beta_2\beta_1}[f]_{\beta_1\beta_2} = [f^{-1} \circ f]_{\beta_1} = [Id_v]_{\beta_1} = Id_n$

Y análogamente,
$$[f]_{\beta_1\beta_2}[f^{-1}]_{\beta_2\beta_1} = [f \circ f^{-1}]_{\beta_2} = [Id_w]_{\beta_2} = Id_n$$

8.4. Cambio de base

Definición 8.25. Sea V un F-espacio vectorial de dimensión finita n, $\beta_1 = \{v_1, \ldots, v_n\}$, $\beta_2 = \{w_1, \ldots, w_n\}$ bases de V tal que $v = \sum_{i=1}^n \alpha_i v_i$ y $v = \sum_{i=1}^n \beta_i v_i$. Luego, $v_j = \sum_{i=1}^n C_{ij} w_i$ $j = 1, \ldots, n$. Decimos que $C(\beta_1, \beta_2)$ es la matriz de cambio de base de β_1 en β_2 tal que:

$$C(\beta_1, \beta_2) := C_{ij} = \begin{pmatrix} \vdots & & \vdots \\ [v_1]_{\beta_2} & \cdots & [v_n]_{\beta_2} \\ \vdots & & \vdots \end{pmatrix}$$

Proposición 8.26. Sean β_1 , β_2 dos bases de $V: \forall v \in V$, $[v]_{\beta_2} = C(\beta_1, \beta_2)[v]_{\beta_1}$

Proposición 8.27. Sean β_1 , β_2 , dos bases de V, $C(\beta_1, \beta_2) = C(\beta_2, \beta_1)^{-1}$

Proposición 8.28. Sean β_1 , β_2 , β_3 tres bases de V, $C(\beta_1, \beta_3) = C(\beta_2, \beta_3)C(\beta_1, \beta_2)$

Se presenta la siguiente ayuda para sus demostraciones $[Id_V]_{\beta_1\beta_2}[v]_{\beta_1}=[Id(v)]_{\beta_2}=[v]_{\beta_2}$

Proposición 8.29. Sea $f: V \to W$ una transformación lineal, donde V y W son subespacios vectoriales de dimensión finita, β_1 , $\hat{\beta}_1$ bases de V y β_2 , $\hat{\beta}_2$ bases de W

$$\Rightarrow [f]_{\beta_1\beta_2} = C(\hat{\beta}_2, \beta_2)[f]_{\hat{\beta}_1\hat{\beta}_2}C(\beta_1, \hat{\beta}_1)$$

Demostración. Vemos que

$$\begin{split} C(\hat{\beta_2},\beta_2)[f]_{\hat{\beta_1},\hat{\beta_2}}C(\beta_1,\hat{\beta_1}) &= [Id_W]_{\hat{\beta_2},\beta_2}([f]_{\hat{\beta_1},\hat{\beta_2}}[Id_V]_{\beta_1,\hat{\beta_1}}) \\ &= [Id_W]_{\hat{\beta_2},\beta_2}[f\circ Id_V]_{\beta_1,\hat{\beta_2}} \\ &= [Id_V\circ f]_{\beta_1,\beta_2} \end{split}$$

Proposición 8.30. Sea $A \in F^{n \times n}$ una matriz invertible. V un F-espacio vectorial de dimensión finita n. β una base de $V \Rightarrow \exists \beta_1, \beta_2$ bases de V tales que $A = C(\beta, \beta_1), A = C(\beta_2, \beta)$

Demostración. Como $\beta = \{v_1, \dots, v_n\}, \ \beta_1 = \{w_1, \dots, w_n\}, \ A = (a_{ij})$

Sea $w_j = \sum_{i=1}^n a_{ij} v_i$ j = 1, ..., n. Vemos que β_2 es una base de V. Para ello, basta probar que sus elementos son linealmente independientes. Sean $x_1, ..., x_n \in F$. Vemos que

$$0 = x_1 w_1 + \dots + x_n w_n = x_1 \left(\sum_{i=1}^n a_{i1} v_i \right) + \dots + x_n \left(\sum_{i=1}^n a_{in} v_i \right) = \sum_{i=1}^n \left(a_{i1} x_1 + \dots + a_{in} x_n \right) v_i$$

Así β_2 es base y

$$C(\beta_2, \beta) = \begin{pmatrix} \vdots & & \vdots \\ [w_1]_{\beta} & \cdots & [w_n]_{\beta} \\ \vdots & & \vdots \end{pmatrix} = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}$$

Como A^{-1} también es invertible, $\exists \beta_1$ base tal que $C(\beta_1, \beta) = A^{-1}$

$$\Rightarrow C(\beta_1, \beta) = C(\beta_1, \beta)^{-1} = (A^{-1})^{-1} = A$$

Proposición 8.31. Sean V, W dos espacios de dimensión finita $n, f: V \to W$ una transformación lineal. Entonces

$$f$$
 es isomorfismo $\iff \exists \beta_1, \beta_2 \text{ bases de } V, W : [f]_{\beta_1, \beta_2} \text{ es invertible}$
 $\iff \forall \beta_1, \beta_2 \text{ bases de } V, W : [f]_{\beta_1, \beta_2} \text{ es invertible}$

8.5. Rango de una matriz

Definición 8.32. Sea $A \in F^{m \times n}$ tal que

$$A = \begin{pmatrix} F_1 \\ \vdots \\ F_m \end{pmatrix} \Rightarrow rg_F(A) = \dim \langle F_1, \dots, F_m \rangle \subseteq F^m \text{ el rango fila de } A$$

$$A = \begin{pmatrix} \vdots & & \vdots \\ C_1 & \cdots & C_n \\ \vdots & & \vdots \end{pmatrix} \Rightarrow rg_C(A) = \dim \langle C_1, \dots, C_n \rangle \subseteq F^n \text{ el rango columna de } A$$

Observación 8.33. $A \rightsquigarrow B \Rightarrow rg_F(A) = rg_F(B)$

Teorema 8.34. $rg_F(A) = rg_C(A), \forall A \in F^{m \times n}$

Definición 8.35. Definimos el rango de la matriz A como $rg(A) = rg_F(A) = rg_C(A)$

Teorema 8.36. $A \rightsquigarrow B \Rightarrow sus \ espacios \ filas \ coinciden$ $\therefore \ rg_F(A) = rg_F(B)$

Lema 8.37. $A \in F^{m \times n}, S = \{x \in F^n : Ax = 0\} \Rightarrow \dim S = n - rg_C(A)$

Demostración. $f_A: R^n \to R^m$, $f_A(x) = Ax \Rightarrow S = Nu(f_A)$ $C_i = A \cdot e_i \in Im(f)$ Más aún, $\{e_1, \dots, e_n\}$ es una base de $F^n \stackrel{\text{Prop.}}{\Rightarrow} \{f(e_1), \dots, f(e_n)\}$ genera a $Im(F_A)$

$$\Rightarrow rg_C(A) = \dim \langle C_1, \dots, C_n \rangle = \dim Im(f_A) \stackrel{\text{Teo.}}{=} \dim F^n - \dim Nu(f_A) = n - \dim S \qquad \Box$$

Demostración del teorema anterior. Sea R la MERF tal que $A \leadsto R \Rightarrow e_F A = e_F R$

$$R = \begin{pmatrix} F_1' \\ \vdots \\ F_r' \\ 0 \\ \vdots \\ 0 \end{pmatrix} \Rightarrow r = rg_F(R) = rg_F(A)$$

$$S = \{X \in F^n : AX = 0\} = \{x \in F^n : RX = 0\}$$

$$\Rightarrow \dim S = n - r = n - rg_F(A)$$

Vemos por el lema anterior dim $S = n - rg_C(A)$, entonces

$$n - rg_C(A) = n - rg_F(A) \Rightarrow rg_C(A) = rg_F(A)$$

9. Formas multilineales y determinantes

Definición 9.1. Sea $F: V \times \cdots \times V \to W$, una función que va de r veces V a W, donde V, W son F-espacios vectoriales, es una **forma r-lineal**.

Si es lineal en cada entrada y se cumplen

$$F(v_1, ..., v_i + v'_i, ..., v_r) = F(v_1, ..., v_i, ..., v_r) + F(v_1, ..., v'_i, ..., v_r)$$

$$F(v_1, ..., \lambda v_i, ..., v_r) = \lambda F(v_1, ..., v_i, ..., v_r)$$

Definición 9.2. Sea $\varphi: V \times \cdots \times V \to W$ una forma r-lineal, se dice **alternada** si φ se anula en toda r-upla que tenga dos entradas iquales.

 $\varphi(v_1,\ldots,v_i,\ldots,v_i,\ldots,v_n)=0$ donde ambas v_i están en posiciones diferentes.

Teorema 9.3. Fijemos $\lambda \in F$. $\exists ! \ \varphi : F^{n \times n} \to F$ n-lineal alternada tal que $\varphi(Id_n) = \lambda$

Definición 9.4. La función $\det : F^{n \times n}$ es la única F-lineal tal que $F(Id_n) = 1$

A continuación, definimos las propiedades del determinante.

Observación 9.5. Sea $\varphi: F^{n \times n} \to F$ una forma r-lineal alternada.

I.
$$\varphi(C_1, \dots, 0, \dots, 0) = 0$$

II.
$$\varphi(v_1,\ldots,v_i,\ldots,v_i,\ldots,v_n) = -\varphi(v_1,\ldots,v_i,\ldots,v_i,\ldots,v_n)$$

III.
$$\varphi(v_1,\ldots,v_i,\ldots,v_j+\alpha v_i,\ldots,v_n)=\varphi(v_1,\ldots,v_i,\ldots,v_i,\ldots,v_n)$$
 $i\neq j$

IV. Si
$$v_n = \sum_{i=1}^{n-1} a_i v_i \Rightarrow \varphi(v_1, \dots, v_{n-1}, v_n) = 0$$

Demostración. Probaremos II) y IV), quedando las demás como ejercicio.

II. Por ser alternada y multilineal, tenemos

$$\varphi(v_1, \dots, v_i + v_j, \dots, v_i + v_j, \dots, v_n) = \overline{\varphi(v_1, \dots, v_i, \dots, v_i, \dots, v_n)} + \underline{\varphi(v_1, \dots, v_i, \dots, v_i, \dots, v_n)} + \underline{\varphi(v_1, \dots, v_j, \dots, v_i, \dots, v_n)} + \underline{\varphi(v_1, \dots, v_j, \dots, v_i, \dots, v_n)} = 0$$

$$\Rightarrow \varphi(v_1, \dots, v_i, \dots, v_j, \dots, v_n) = -\varphi(v_1, \dots, v_j, \dots, v_i, \dots, v_n)$$

IV.
$$\varphi(v_1, \dots, v_{n-1}, v_n) = \varphi(v_1, \dots, v_{n-1}, \sum_{i=1}^{n-1} \alpha_i v_i) = \sum_{i=1}^n \alpha_i(v_1, \dots, v_{n-1}, v_i) \stackrel{\text{alt.}}{=} 0$$

Pues v_i ya estaba en el vector, y como φ es alternada, obtenemos el resultado.

Definición 9.6. Sea $A \in F^{n \times n}$, $i, j \in \{1, ..., n\}$. Decimos que $A(i \mid j)$ es la matriz sin la fila i y la columna j.

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \rightarrow A(i \mid j) = \begin{pmatrix} a_{11} & \cdots & a_{1,j-1} & a_{1,j+1} & \cdots & a_{1n} \\ \vdots & & \vdots & & \vdots & & \vdots \\ a_{i-1,1} & \cdots & a_{i-1,j-1} & a_{i-1,j+1} & \cdots & a_{i-1,n} \\ a_{i+1,1} & \cdots & a_{i+1,j-1} & a_{i+1,j+1} & \cdots & a_{i+1,n} \\ \vdots & & \vdots & & \vdots & & \vdots \\ a_{m1} & \cdots & a_{m,j-1} & a_{m,j+1} & \cdots & a_{mn} \end{pmatrix}$$

Proposición 9.7. Sea $A \in F^{n \times n}$, podemos desarrollar el determinante de las siguientes formas.

$$det(A) = \sum_{k=1}^{n} (-1)^{i+k} a_{ik} \det A(i \mid k) \quad (desarrollo \ por \ k\text{-}\'esima \ columna)$$
$$= \sum_{k=1}^{n} (-1)^{k+j} a_{kj} \det A(k \mid j) \quad (desarrollo \ por \ k\text{-}\'esima \ fila)$$

Proposición 9.8. Sea $A \in F^{n \times n}$: $det(A) = det(A^t)$

Demostración. Desarrollamos el determinante de A^t por la primera fila.

$$\det(A^t) = \sum_{k=1}^n (-1)^{1+k} (A^t)_{1k} \det(A^t(1 \mid k))$$
$$= \sum_{k=1}^n (-1)^{1+k} A_{k1} \det(A(k \mid 1)^t)$$

Si hacemos inducción en n, vemos que para $n=1, A=A^t\Rightarrow \det(A)=\det(A^t)$. Asumimos que vale para n y probaremos que valga para n+1. Luego, para cada $A \in F^{n \times n}$

$$\det(A^t) = \sum_{k=1}^{n+1} (-1)^{1+k} A_{k1} \det(A(k \mid 1)^t) \quad \text{(Tomando } n \times n, \text{ aplico H.I)}$$

$$= \sum_{k=1}^{n+1} (-1)^{1+k} A_{k1} \det(A(k \mid 1))$$

$$= \det(A) \quad \text{(desarrollo por la primera columna)}$$

Proposición 9.9. Sea $A \in F^{n \times n}$ una matriz triangular superior, entonces $det(A) = a_{11} \dots a_{nn}$.

Demostración. Recordemos que A es una matriz triangular superior si $(A)_{ij} = \begin{cases} a_{ij} & \text{si } i \leq j \\ 0 & \text{si } i > j \end{cases}$

Por inducción para n = 1 tenemos $\begin{pmatrix} a & b \\ 0 & d \end{pmatrix} = ad$

Asumimos que vale para n. Luego, para n=n+1 tenemos $A=\begin{pmatrix} a_{11} & \cdots & a_{1,n+1} \\ \vdots & \ddots & \vdots \\ 0 & \cdots & a_{n-1} \end{pmatrix}$ Hacemos desarrollo por la fila menta A

Hacemos desarrollo por la fila n+1 tal que

$$\det(A) = (-1)^{n+1+1} a_{n+1,1} \det(A(n+1 \mid 1)) + \dots + (-1)^{n+1+n} a_{n+1,n} \det(A(n+1 \mid n)) + (-1)^{n+1+n+1} a_{n+1,n+1} \det(A(n+1 \mid n+1))$$

$$= (-1)^{2n+2} a_{n+1,n+1} \det\begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ 0 & \dots & a_{nn} \end{pmatrix} \stackrel{\text{H.I}}{=} a_{n+1,n+1} a_{11} \dots a_{nn}$$

Teorema 9.10. Sean $A, B \in F^{n \times n}, \det(AB) = \det(A) \det(B)$

Demostración. Fijemos $A \in F^{n \times n}$. Tomamos $\varphi : F^{n \times n} \to F : \varphi(X) = \det(AX)$ Veamos que es multilineal alternada por columnas, $AX = A(C_1, \dots, C_n) = (AC_1, \dots, AC_n)$

- Alternada: $X = (C_1, \dots, C_i, \dots, C_i, \dots, C_n) \stackrel{?}{\Rightarrow} \varphi(X) = 0$ $\varphi(X) = \det(AC_1, \dots, AC_i, \dots, AC_i, \dots, AC_n) = 0$
- Multilineal:

$$\varphi(C_1, \dots, C_i + C'_i, \dots, C_n) = \det(A(C_1, \dots, C_i + C'_i, \dots, C_n))$$

$$= \det(AC_1, \dots, A(C_i + C'_i), \dots, AC_n)$$

$$= \det(AC_1, \dots, AC_i, \dots, AC_n) + \det(AC_1, \dots, AC'_i, \dots, AC_n)$$

$$= \varphi(C_1, \dots, C_i, \dots, C_n) + \varphi(C_1, \dots, C'_i, \dots, C_n)$$

De modo similar, $\varphi(C_1, \dots, \lambda C_i, \dots, C_n) = \lambda \varphi(C_1, \dots, C_i, \dots, C_n)$ Luego $\varphi(Id_n) = \det(AId_n) = \det(A) \leadsto \varphi(X) = \det(A) \det(X) \Rightarrow \det(AX) = \det(A) \det(X)$

Teorema 9.11. Sea $A \in F^{n \times n}$. Entonces A es invertible $\iff \det(A) \neq 0$

Demostración. Probamos la doble implicación

- (\Rightarrow) Asumimos que A es invertible. $\exists A^{-1} : AA^{-1} = Id_n = A^{-1}A$ $1 = \det(Id_n) = \det(AA^{-1}) \stackrel{\text{teo.}}{=} \det(A) \det(A^{-1}) \Rightarrow \det(A)^{-1} \neq 0$
 - Corolario 9.12. Si A es invertible $\Rightarrow \det(A^{-1}) = \det(A)^{-1}$
- (\Leftarrow) Asumimos que A **no** es invertible.

Sea R la MERF asociada a A. R tiene al menos una fila nula $\Rightarrow \det(R) = 0$ Además, A = PR, con P una matriz invertible.

$$\therefore \det(A) = \det(PR) \stackrel{\text{teo.}}{=} \det(P) \underbrace{\det(R)}_{0} = 0$$

Definición 9.13. Sea $A, B \in F^{n \times n}$. Definimos que B es la matriz adjunta de A si

$$adj(A) = B = (b_{ij}) : b_{ij} = (-1)^{i+j} \det(A(j \mid i))$$

Proposición 9.14. $\forall A \in F^{n \times n}, A \cdot adj(A) = \det(A)Id_n$

Demostración. $B = adj(A), \ b_{ij} = (-1)^{i+j} det(A(i \mid j))$

$$(AB)_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj} = \sum_{k=1}^{n} (-1)^{k+j} a_{ik} \det(A(j \mid k))$$

Si i = j, vemos que $(AB)_{ii} = \det(A)$.

Si $i \neq j$, desarrollando por fila j tenemos dos filas iguales y por eso es cero.

Corolario 9.15. Si A es $invertible \Rightarrow A^{-1} = \frac{1}{det(A)} \ adj(A)$

10. Autovalores y autovectores

Definición 10.1. Sea V un F-espacio vectorial, $f: V \to w$ una transformación lineal.

I. $\lambda \in F$ es un **autovalor** de f si $\exists v \in V - \{0\} : f(v) = \lambda v$

II. Sea λ un autovalor de f. El autoespacio asociado a λ es $V_{\lambda} = \{v \in V : f(v) = \lambda v\}$. Cada $v \in V_{\lambda}$ es un **autovector** del autovalor λ .

Observación 10.2. Si λ es un autovalor de $f \Rightarrow V_{\lambda}$ es un subespacio.

Teorema 10.3. Sea $f: v \to W$ una transformación lineal, donde $\dim V = n < \infty$. Son equivalentes \tilde{N}

I. λ es autovalor de f.

II. $\det(\lambda Id_n - [f]_{\beta}) = 0$, para β base de V.

Demostración. Probaremos la doble implicación para ver la equivalencia.

 (\Rightarrow) Sea λ un autovalor, $\exists v \neq 0 : f(v) = \lambda v$. Sea β una base de V.

$$[v]_{\beta} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \neq 0 \quad [\lambda v]_{\beta} = \begin{pmatrix} \lambda x_1 \\ \vdots \\ \lambda x_n \end{pmatrix} = [f(v)]_{\beta} = [f]_{\beta} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\Rightarrow 0 = \lambda Id_n \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} - [f]_\beta \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = (\lambda Id_n - [f]_\beta) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

Ahora, $\lambda Id_n - [f]_{\beta}$ es una matriz cuyo autoespacio asociado tiene una columna distinta de 0

 $\iff \lambda Id_n - [f]_{\beta}$ no es invertible

$$\iff \det(\lambda Id_n - [f]_\beta) = 0$$

$$(\Leftarrow)$$
 Asumimos que $\det(\lambda Id_n - [f]_\beta) = 0 \Rightarrow \exists \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \neq 0 \text{ tal que } (\lambda Id_n - [f]_\beta) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = 0$

Si
$$\beta = \{v_1, \dots, v_n\}$$
 $v = x_1v_1 + \dots + x_nv_n \neq 0$ $[v]_{\beta} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$

$$[\lambda v]_{\beta} = \begin{pmatrix} \lambda x_1 \\ \vdots \\ \lambda x_n \end{pmatrix} = \lambda I d_n \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = [f]_{\beta} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = [f]_{\beta} [v]_{\beta} = [f(v)]_{\beta}$$

 $\Rightarrow f(v) = \lambda v$: λ es autovalor.

Definición 10.4. Sea $A \in F^{n \times n} \leadsto$ autovalores y autovectores $\in F^n$ de autovalor λ $\lambda \in F, \exists v \in F^n - \{0\} : Av = \lambda v$

Definición 10.5. Una transformación lineal $f: V \to V$ se dice **diagonalizable** si $\exists \beta : [f]_{\beta}$ es diagonalizable, donde β es una base.

Proposición 10.6. f es diagonalizable $\iff \exists$ base $\beta = \{v_1, \dots, v_n\}$ tal que cada v es autovector de f.

Definición 10.7. Sea $A \in F^{n \times n}$ es diagonalizable si $A \sim D$ diagonal $\iff \exists$ base de autovectores.

Observación 10.8. No toda matriz es diagonalizable.

Definición 10.9. Sea $A \in F^{n \times n}$, el polinomio característico de A

$$P_A(t) = \det(tId_n - A) \in F[t] \quad A = (a_{ij}) \leadsto \det \begin{pmatrix} t - a_{11} & -a_{12} \\ -a_{21} & t - a_{22} \end{pmatrix}$$

Definición 10.10. Sean S_1, \ldots, S_j subespacios de V. Decimos que W es la **suma directa** de V si

$$I. \ V = S_1 + \dots + S_j$$

II.
$$S_k \cap (S_1 + \dots + S_{k-1} + S_{k+1} + \dots + S_j) = 0 \quad \forall \ k = 1, \dots, j$$

 $Y \ denotamos \ V = S_1 \oplus \cdots \oplus S_i$

Proposición 10.11. $V = S_1 \oplus \cdots \oplus S_j$

 $\iff \forall \ v \in V, \ \exists! \ w_i \in S_i \ tales \ que \ v = w_1 + \dots + w_j \quad i = 1, \dots, j$ $\iff Si \ \beta_1, \dots, \beta_j \ son \ bases \ de \ S_1, \dots, S_j \ espacios \ entonces \ B_1 \cup \dots \cup B_j \ es \ base \ de \ V.$

Lema 10.12. Sea $f: v \to V$ una transformación lineal. $\lambda_1, \ldots, \lambda_r$ autovalores distintos de f V_1, \ldots, V_r son subservations, $W = V_1 + \cdots + V_r$. Entonces $W = V_1 \oplus \cdots \oplus V_r$

Demostración. Tenemos que probar que $V_j \cap (V_1 + \cdots + V_{j-1} + V_{j+1} + \cdots + V_r) = 0 \quad \forall j = 1, \dots, r$ Por inducción en $r \geq 2$:

Si $r=2 \leadsto V_1 \cap V_2 \stackrel{?}{=} 0$. Si $v \in V_1 \cap V_2$ entonces

$$\lambda_1 v \underset{v \in V_1}{=} f(v) \underset{v \in V_2}{=} \lambda_2 v \Rightarrow \underbrace{(\lambda_1 - \lambda_2)}_{\neq 0} v = 0 \Rightarrow v = 0$$

Hipótesis inductiva: Si tenemos r autoespacios de valores distintos de f tal que están en suma directa. Cada elemento de la suma de los autoespacios se escribe de forma única como suma de un término en cada autoespacio.

Tomando $v \in V_j \cap (V_1 + \dots + V_{i-1} + V_{i+1} + \dots + V_{r+1}).$

$$v = v_1 + \dots + v_{j-1} + v_{j+1} + \dots + v_{r+1} \quad v_i \in V_i$$

$$f(v) = f(v_1 + \dots + v_{j-1} + v_{j+1} + \dots + v_{r+1})$$

$$\lambda_j v = f(v_1) + \dots + f(v_{j-1}) + f(v_{j+1}) + \dots + f(v_{r+1})$$

Luego
$$\sum_{k \in \{1,...,r+1\}, k \neq j} \lambda_j v_k = \sum_{k \in \{1,...,r+1\}, k \neq j} \lambda_k v_k \Rightarrow \sum_{k \in \{1,...,r+1\}, k \neq j} (\lambda_j - \lambda_k) v_k = 0$$

Por hipótesis inductiva,
$$V_1, \dots, V_{j-1}, V_{j+1}, \dots, V_{r+1}$$
 están en suma directa
$$\Rightarrow \underbrace{(\lambda_j - \lambda_k)}_{\neq 0} v_k = 0 \quad \forall \ k \neq j \Rightarrow v_k = 0, \ \forall \ k \neq j \quad \therefore \ v = 0$$

Teorema 10.13. Sea $f: V \to W$ una transformación lineal, $\lambda_1, \ldots, \lambda_r$ los autovalores de f y denotando $V_i = V_{\lambda_i} d_i = \dim v_i$. Son equivalentes

I. f es diagonalizable

II.
$$P_f = (x - \lambda_i)^{d_i} \dots (x - \lambda_r)^{d_r}$$

III.
$$\dim V = \dim V_i + \cdots + \dim V_r$$

$$IV. V = V_i \oplus \cdots \oplus V_r$$

Demostración. Demostraremos la equivalencia transitivamente.

$$P_f = \det(Id_n - [f]_\beta)$$

$$= \det\begin{pmatrix} t - \lambda_1 & \cdots & \cdots & 0 \\ 0 & \ddots & & \vdots \\ \vdots & t - \lambda_1 & & \vdots \\ \vdots & & t - \lambda_2 & \vdots \\ 0 & \cdots & \cdots & t - \lambda_n \end{pmatrix}$$

• $(II \Rightarrow III)$ Asumimos que $P_f = (x - \lambda_i)^{d_i} \dots (x - \lambda_r)^{d_r}, \ d_i = \dim V_i$

$$\dim V \stackrel{!}{=} g(P_f) = d_i + \dots + d_r = \dim V_i + \dots + \dim V_r$$

• $(III \Rightarrow IV)$ Asumimos $\dim V = \dim V_1 + \cdots + \dim V_r$

Como en el lema anterior, $W = V_1 + \cdots + V_r \subseteq V$

Por el lema, $W = V_1 \oplus \cdots \oplus V_r$. Así,

$$\dim W = \dim V_1 + \dots + \dim V_r \stackrel{hip.}{=} \dim(v) \Rightarrow w = v$$

- $V = V_1 \oplus \cdots \oplus V_r$
- Asumimos que $V = V_1 \oplus \cdots \oplus V_r$. Sea β_i una base de V_i . Como V es suma directa, $\beta = \beta_1 \cup \cdots \cup \beta_r$

Lema 10.14. Sea $f: V \to V$ una transformación lineal, λ un autovalor

$$\rightsquigarrow P_f = (x - \lambda)^d g(\lambda) \Rightarrow \dim V_{\lambda} \le d \quad g(\lambda) \ne 0$$

10.1. Espacio dual

Definición 10.15. Sea V un F-espacio vectorial $\leadsto \hom_f(V, F) =: V^*$ espacio dual. Cada elemento de V^* se dice un funcional dual.

Definición 10.16. Sea V un F-espacio vectorial, $\beta = \{v_1, \ldots, v_n\}$ una base de V.

Para cada
$$i = 1, ..., n, \exists ! \ f_i : V \to F \ functional \ dual \ f_i(v_j) = \begin{cases} 1 & j = i \\ 0 & j \neq i \end{cases}$$
 $\{f_1, ..., f_n\} = \beta^* \ se \ denomina \ la \ base \ dual \ de \ \beta.$

Proposición 10.17. β^* es base de V^*

Demostración. Como dim $V^* = n$, basta probar que $\{f_1, \ldots, f_n\}$ es linealmente independiente. Son $a_i \in F / a_i f_i + \cdots + a_n f_n = 0 \quad \forall i = 1, \ldots, n$

$$0 = (a_1 f_1 + \dots + a_n f_n)(v_i) = a_1 f_1(v_i) + \dots + a_i f_i(v_i) + \dots + a_n f_n(v_i) = a_i$$

Lema 10.18. Sea $\beta = \{v_1, \dots, v_n\}$ una base de V, $\beta^* = \{f_1, \dots, f_n\}$ una base dual.

$$\forall v \in V, \quad v = \sum_{i=1}^{n} f_i(v)v_i \leadsto [v]_{\beta} = (f_1(v), \dots, f_n(v))$$
$$\forall f \in V, \quad f = \sum_{i=1}^{n} f(v)f_i \leadsto [f]_{\beta} = (f(v_i), \dots, f(v_n))$$

Proposición 10.19. Sea $\hat{\beta} = \{f_1, \dots, f_n\}$ base de $V^* \Rightarrow \exists! \ \beta^* = \{v_1, \dots, v_n\}$ tal que $\beta^* = \hat{\beta}$

Demostración. Sea $C = \{w_1, \dots, w_n\}$ una base de $V \leadsto a_{ij} = f_i(w_j)$ $1 \le i, j \le n$

$$\rightsquigarrow A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix} \text{ invertible}$$

Proposición 10.20. Sea β base de V, $\hat{\beta}$ base de $W \leadsto \beta^*, \hat{\beta^*}$ son bases duales. $\varphi: V \leadsto W$ una transformación lineal $\leadsto \varphi^*: W^* \to V^*$ una transformación lineal.

$$[\varphi^*]_{\hat{\beta}^*,\beta^*} = [\varphi]_{\beta,\hat{\beta}}$$

11. Espacios vectoriales con producto interno

Definición 11.1. Con $F = \mathbb{R}$ ó \mathbb{C} . Sea V un F-espacio vectorial. Un **producto interno** sobre V es una función $\langle \cdot, \cdot \rangle : V \times V \to F$ tal que:

I.
$$\langle v + w, u \rangle = \langle v, w \rangle + \langle w, u \rangle$$

II.
$$\langle cv, u \rangle = c \langle v, u \rangle$$

III.
$$\langle v, w \rangle = \overline{\langle w, v \rangle}$$
 En particular, $\langle v, v \rangle = \overline{\langle v, v \rangle} \Rightarrow \langle v, v \rangle \in \mathbb{R}$

IV.
$$\langle v, v \rangle > 0$$
 si $v \neq 0$

Observación 11.2. Decimos que el producto será sesquilineal (o lineal para $F = \mathbb{R}$) si:

$$\begin{split} \langle v, u + cu' \rangle &\stackrel{c)}{=} \overline{\langle u + cu', v \rangle} \stackrel{a),b)}{=} \overline{\langle u, v \rangle + c \langle u', v \rangle} \\ &= \overline{\langle u, v \rangle} + \overline{c} \overline{\langle u', v \rangle} \\ &= \langle v, u \rangle + \overline{c} \langle v, u' \rangle \end{split}$$

Definición 11.3. Sea $(V, \langle \cdot, \cdot \rangle)$ un espacio vectorial con producto interno. Definimos la **norma** de un vector de V como la función $\|\cdot\|: V \to \mathbb{R}_{\geq 0}$

$$||v|| = \sqrt{\langle v, v \rangle}$$
 $v = 0 \leadsto ||v|| = 0$

Proposición 11.4. Sea $(V, \langle \cdot, \cdot \rangle)$ un espacio vectorial con producto interno, valen las siguientes propiedades

$$I. \|v\| = 0 \iff v = 0$$

II.
$$||c \cdot v|| = |c|||v||$$
 $c \in F, v \in V$

III. Desigualdad de Cauchy-Schwartz

$$\begin{aligned} |\langle v, w \rangle| &\leq \|v\| \|w\| \to -1 \leq \frac{\langle v, w \rangle}{\|v\| \|w\|} \leq 1 \\ &= \arccos\left(\frac{\langle v, w \rangle}{\|v\| \|w\|}\right) \end{aligned}$$

IV. Designaldad triangular

$$||v + w|| \le ||v|| + ||w||, \quad \forall \ v, w \in V$$

Demostración. (De III y IV)

III. Con w = 0 termina la prueba.

Asumimos $w \neq 0$.

$$\begin{split} 0 & \leq \left\langle v - \frac{\langle v, w \rangle w}{\|w\|^2}, v - \frac{\langle v, w \rangle w}{\|w\|^2} \right\rangle \\ & = \left\langle v - \frac{\langle v, w \rangle w}{\|w\|^2}, v \right\rangle - \left(\frac{\overline{\langle v, w \rangle} w}{\|w\|^2} \right) \left\langle v - \frac{\langle v, w \rangle w}{\|w\|^2}, w \right\rangle \\ & = \langle v, v \rangle - \frac{\langle v, w \rangle w}{\|w\|^2} \langle w, v \rangle - \frac{\overline{\langle v, w \rangle}}{\|w\|^2} \left(\langle v, w \rangle - \frac{\langle v, w \rangle}{\|w\|^2} \cdot \langle w, w \rangle \right) \\ & = \|v\|^2 - 2 \frac{\langle v, w \rangle \cdot \overline{\langle v, w \rangle}}{\|w\|^2} + \frac{\langle v, w \rangle \cdot \overline{\langle v, w \rangle}}{\|w\|^2} \cdot \|w\|^2 \\ & = \|v\|^2 - \frac{\langle v, w \rangle \cdot \overline{\langle v, w \rangle}}{\|w\|^2} \Rightarrow \|v\|^2 \geq \frac{\langle v, w \rangle \cdot \overline{\langle v, w \rangle}}{\|w\|^2} \\ & \therefore (\|v\| \|w\|)^2 \geq |\langle v, w \rangle|^2 \Rightarrow \|v\| \|w\| \geq \|\langle v, w \rangle\| \end{split}$$

IV.

$$||v + w||^{2} = \langle v + w, v + w \rangle$$

$$= \langle v, v \rangle + \langle v, w \rangle + \langle w, v \rangle + \langle w, w \rangle$$

$$= ||v||^{2} + 2\Re\langle v, w \rangle + ||w||^{2} \quad (\text{con } \Re(\alpha) \le |\Re(\alpha)| \le |\alpha|)$$

$$\le ||v||^{2} + 2|\langle v, w \rangle| + ||w||^{2}$$

$$\le ||v||^{2} + 2||v|| ||w|| + ||w||^{2}$$

$$= (||v|| + ||w||)^{2} \Rightarrow ||v + w|| \le ||v|| + ||w||$$

11.1. Ortogonalidad

Definición 11.5. Sea $(V, \langle \cdot, \cdot \rangle)$ un espacio vectorial con producto interno.

I. v, w son ortogonales si $\langle v, w \rangle = 0$

II. Un subespacio $S \subseteq V$ es ortogonal si $\langle v, w \rangle = 0 \quad \forall v, w \in S \leadsto bases ortogonales.$

III. S es **ortonormal** si es ortogonal $y ||v|| = 1, \forall v \in S$

Observación 11.6. Si $\{v_1,\ldots,v_n\}$ ortogonal $\to S' = \{\frac{v_1}{\|v_1\|},\ldots,\frac{v_n}{\|v_n\|}\}$ es ortonormal.

Proposición 11.7. Sea $S = \{v_1, \dots, v_n\}$ ortogonal $\stackrel{v_j \neq 0}{\Rightarrow} S$ es linealmente independiente.

Demostración. $a_i \in R$: $\sum_{i=1}^n a_i v_i = 0 \quad \forall j = 1, \dots, n$

$$\begin{split} 0 &= \langle 0, v_j \rangle = \langle \sum_{i=1}^n a_i v_i, v_j \rangle \\ &= \sum_{i=1}^n a_i \langle v_i, v_j \rangle = a_j \|v_j\|^2 \\ &\stackrel{\|v\| \neq 0}{\Rightarrow} a_j = 0 \end{split}$$

Proposición 11.8. Sea $(V, \langle \cdot, \cdot \rangle)$ un espacio vectorial con producto interno, $\beta = \{v_1, \dots, v_n\}$ una base ortogonal. Entonces, $\forall v \in V$

$$v = \sum_{i=1}^{n} \frac{\langle v, v_i \rangle}{\|v_i\|^2} v_i$$

Teorema 11.9 (Método de ortogonalización de Gram-Schmidt). Sea $(V, \langle \cdot, \cdot \rangle)$ un espacio euclídeo y $\beta = \{v_1, \dots, v_n\}$ una base de V.

Entonces existe una base ortonormal $\hat{\beta} = \{w_1, \dots, w_k\}$ tal que $\langle v_1, \dots, v_k \rangle = \langle w_1, \dots, w_k \rangle$ $\forall k = 1, \dots, m \in \mathbb{N}$ $1,\ldots,n$

Recursivamente, $w_k = \frac{w_k'}{\|w_k'\|}$ donde $w_k' = v_k - \sum_{j=1}^{k-1} \frac{\langle v_k, w_j' \rangle}{\|w_j'\|}$ w_j

Demostración. Construiremos los vectores w'_k como en el enunciado de modo recursivo y probaremos que $\langle v_1,\ldots,v_k\rangle=\langle w_1,\ldots,w_k\rangle$. Como el conjunto será ortonormal, en particular es linealmente independiente

Paso 1:
$$w'_1 = v_1, w_1 = \frac{w'_1}{\|w'_1\|} \Rightarrow \langle w_1 \rangle = \langle v_1 \rangle$$

y por lo tanto
$$\hat{\beta} = \{w_1, \dots, w_k\}$$
 será una base de V.

$$\frac{\text{Paso 1:}}{\|w_1'\|} : w_1' = v_1, w_1 = \frac{w_1'}{\|w_1'\|} \Rightarrow \langle w_1 \rangle = \langle v_1 \rangle$$

$$\frac{\text{Paso recursivo:}}{\|w_1'\|} : \text{Asumimos que } \langle v_1, \dots, v_k \rangle = \langle w_1, \dots, w_k \rangle$$

$$\text{con } w_{k+1}' = v_{k+1} - \sum_{j=1}^k \frac{\langle v_{k+1}, w_j' \rangle}{\|w_j'\|^2} w_j' = v_{k+1} - \sum_{j=1}^k \langle v_{k+1}, w_j \rangle w_j$$

$$\begin{split} \langle w_{k+1}', w_l \rangle &= \langle v_{k+1} - \sum_{j=1}^k \langle v_{k+1}, w_j \rangle w_l \rangle \\ &= \langle v_{k+1}, w_l \rangle - \sum_{j=1}^k \langle v_{k+1}, w_j \rangle \langle w_j, w_l \rangle \\ &= \langle v_{k+1}, w_l \rangle - \langle v_{k+1}, w_l \rangle = 0 \end{split}$$

Por lo tanto, $\{w_1, \dots, w_k, w'_{k+1}\}$ es ortogonal $\Rightarrow \{w_1, \dots, w_k, w_{k+1}\}$ también lo es. Más aún, es ortonormal.

Queemos ver que $\langle v_1,\ldots,v_{k+1}\rangle=\langle w_1,\ldots,w_{k+1}\rangle$ y sabemos que $\langle v_1,\ldots,v_k\rangle=\langle w_1,\ldots,w_k\rangle$ y $\langle w_1,\ldots,w_k,w_{k+1}\rangle=\langle w_1,\ldots,w'_{k+1}\rangle$ Como $v_{k+1}=w'_{k+1}+\sum_{j=1}^k\langle v_{k+1},w_j\rangle w_j\in \langle w_1,\ldots,w_k,w_{k+1}\rangle$ Y para $i=1,\ldots,k$ $v_i\in \langle v_1,\ldots,v_k\rangle=\langle w_1,\ldots,w_k\rangle=\langle w_1,\ldots,w_{k+1}\rangle$ Luego $\langle v_1,\ldots,v_{k+1}\rangle\subseteq \langle w_1,\ldots,w_k,w'_{k+1}\rangle=\langle w_1,\ldots,w_k,w_{k+1}\rangle$ Veamos que $w'_{k+1}\in \langle v_1,\ldots,v_{k+1}\rangle$

$$w'_{k+1} = v_{k+1} - \sum_{j=1}^{k} \langle v_{k+1}, w_j \rangle \ w_j$$
$$= \langle v_{k+1} \rangle + \langle w_1, \dots, w_k \rangle$$
$$= \langle v_{k+1} \rangle + \langle v_1, \dots, v_k \rangle$$
$$= \langle v_1, \dots, v_{k+1} \rangle$$

11.2. Complemento ortogonal

Definición 11.10. Sea $(V, \langle \cdot, \cdot \rangle)$ un espacio euclídeo, $S \subseteq V$ un subespacio. El **complemento ortogonal** de S es el conjunto

$$S^{\perp} = \{ v \in V \mid \langle v, s \rangle = 0 : \forall \ s \in S \}$$

Observación 11.11. S^{\perp} es un subespacio vectorial de V. En efecto, si $v, w \in S^{\perp}$ y $\lambda \in \mathbb{R}$, entonces para $s \in S$

$$\langle v + \lambda w.s \rangle = \langle v,s \rangle + \lambda \langle w,s \rangle \underset{v,w \in S^{\perp}}{=} 0 + \lambda \cdot 0 = 0 \Rightarrow v + \lambda w \in S^{\perp}$$

Proposición 11.12. Sea $(V, \langle \cdot, \cdot \rangle)$ un espacio euclídeo de dimensión finita, $S \subseteq v$ un subespacio. Entonces $V = S \oplus S^{\perp}$

Demostración. Sea $v \in S \cap S^{\perp}$. Como $v \in S^{\perp}$, entonces $\langle v, s \rangle = 0 \ \forall \ s \in S$.

En particular, como $v \in S, \langle v, v \rangle = 0 \Rightarrow v = 0$. Luego, $S \cap S^{\perp} = \{0\}$

Sea $\{v_1, \ldots, v_r\}$ una base de S, la completamos a una base de V tal que $\{v_1, \ldots, v_r, v_{r+1}, \ldots, v_n\}$. Aplicando Gram-Schmidt obtenemos una base ortonormal $\{w_1, \ldots, w_n\}$ de V tal que $\langle w_1, \ldots, w_k \rangle = \langle v_1, \ldots, v_k \rangle$ $\forall k = 1, \ldots, n$.

En particular, para $k = r, \langle w_1, \dots, w_r \rangle = \langle v_1, \dots, v_r \rangle = S$. Con lo cual, $\{w_1, \dots, w_r\}$ es una base ortonormal de S.

Sea j > r. Si $s \in S$ entonces $s = a_1 w_1 + \cdots + a_r w_r$ $a_i \in F$

$$\langle w_j, s \rangle = \langle w_j, a_1 w_1 + \dots + a_r w_r \rangle$$
$$= a_1 \langle w_j, w_1 \rangle + \dots + a_r \langle w_j, w_r \rangle$$

Es decir, $w_j \in S^{\perp}$, $\forall j > r$

Luego, como $\{w_{r+1},\ldots,w_n\}$ es linealmente independiente y está contenido en S^{\perp} se tiene que $n-r \leq \dim S^{\perp}$, así

$$n = (n-r) + r \le \dim S^{\perp} + \dim S = \dim(S+S^{\perp}) + \dim(S \cap S^{\perp})$$
$$= \dim(S+S^{\perp}) \le \dim V = n$$

$$\Rightarrow \dim(S + S^{\perp}) = n \Rightarrow S + S^{\perp} = V$$

Proposición 11.13. Sean $(V, \langle \cdot, \cdot \rangle)$ un espacio euclídeo de dimensión finita, $S \subseteq V$ un subespacio. Entonces $(S^{\perp})^{\perp} = S$

Definición 11.14 (Proyección ortogonal). Sea $(V, \langle \cdot, \cdot \rangle)$ un espacio euclídeo de dimensión finita, $S \subseteq V$ un subespacio. La **proyección ortogonal** sobre S es la transformación lineal $P_S: V \to V$ tal que

I.
$$P_S(s) = s$$
, $\forall s \in S$

II.
$$P_S(u) = 0, \quad \forall \ u \in S^{\perp}$$

Observación 11.15. Sea $\gamma = \{v_1, \dots, v_r, v_{r+1}, \dots, v_n\}$ base ortogonal de V tal que $\{v_1, \dots, v_r\}$ es base de S y $\{v_{r+1}, \dots, v_n\}$ es base de S^{\perp} . Se tiene que

$$P_S(v) = \sum_{i=1}^r \langle v, v_i \rangle \ v_i$$

En efecto, como γ es base ortogonal, $v = \sum_{i=1}^{n} \langle v, v_i \rangle \ v_i \ y \ P_S(v_i) = \begin{cases} v_i & \text{si } i \leq r \\ 0 & \text{si } i > r \end{cases}$

Observación 11.16.
$$P_S + P_S^{\perp} = Id$$
, en efecto $P_S^{\perp}(v_i) = \begin{cases} 0 & \text{si } i \leq r \\ v_i & \text{si } i > r \end{cases}$

Por lo tanto, $(P_S + P_S^{\perp})(v_i) = P_S(v_i) + P_S^{\perp}(v_i) = v_i \quad \forall \ v_i$