Problem 9

(b) We can partition \mathbb{Z} into two distinct pieces based on the position of x. Namely,

$$X = \{ n \in \mathbb{Z} : n < x \} \text{ and } Y = \{ n \in \mathbb{Z} : n > x \}$$

Noting that $X, Y \subset \mathbb{Z}$ means that we can apply the Well-Ordering Principle to that X has a largest element and Y a smallest element. If we set n to be the largest element in X then n < x < n+1. Furthermore, this n is unique due to the Well-Ordering Principle.

(d) For x, y rational and y < x we can write y = p/q and x = m/n. So y < x implies that np < mq. We then create the new rational

$$z = \frac{np + mq}{2nq} = \frac{1}{2}(\frac{p}{q} + \frac{m}{n})$$

This shows that y < z < x.

Problem 10

(a) Let $x > \text{and } 0 \le h \le 1$. Then we can see that

$$(x+h)^2 = x^2 + 2hx + h^2$$

 $\leq x^2 + 2hx + h$
 $= x^2 + h(2x+1)$

Where the inequality holds because $h^2 < h$ for h in [0,1). Similarly,

$$(x-h)^2 = x^2 - 2hx + h^2$$
$$\ge x^2 - h(2x)$$

because $h^2 > 0$.

(b) Now let x > 0 and fix $a \in \mathbb{R}$. If $x^2 < a$ then we can choose $h < \frac{a-x^2}{2x+1}$ so that

$$(x+h)^2 \le x^2 + h(2x+1) < a$$

Analogously, if $x^2 > a$ then we can choose $h > \frac{a-x^2}{2x}$ so that

$$(x-h)^2 \ge x^2 - h(2x) > a$$

(c) Fix a real number a and suppose that the set

$$B = \{ x \in \mathbb{R} : 0 < x^2 < a \}$$

is unbounded. Then there exists some integer n such that n < a < n+1 and for each $m \in Z$ we can find an $x \in B$ such that m < x < m+1 because B is unbounded. But then for large enough m

$$a < (n+1) < m^2 < x^2$$

and then $x \notin B$. This contradiction implies that B must be bounded. Furthermore, we can see that $B \neq \emptyset$ by considering the two cases a < 1 and $a \ge 1$. We see that in the first case $x^2 < a$ means that x < 1 and so $x^2 < x$. We then consider some 0 < h < 1 to see that

$$x^{2} < (x+h)^{2} < x(1+2h) + h$$

if we choose h < a then $x = \frac{a-h}{1+2h}$ will satisfy $x \in B$ so B is not empty. If a > 1 then we can choose k < 1

$$(1+k)^2 = 1 + 2k + k^2 < 1 + 3k$$

Then because $a \ge 1$, a-1>0 and we can take $k<\frac{a-1}{3}$ to see that $(1+k) \in B$. Finally, for a=1 we can choose any $x \in (0,1)$ and $x \in B$. So we are done. Now let $b=\sup B$. We will see that $b^2=a$. It is clear that $b^2 \le a$, so it suffices to prove the reverse inequality. Fix any $\epsilon>0$ and observe that we can choose a sequence $h_k\to 0$ such that for each k

$$b^2 \ge (b - h_k)^2 \ge b^2 - h_k(2b)$$

Then we have that $a - b^2 < \epsilon - h_k(2b)$. Letting $k \to \infty$ gives the desired result.

(d) Let b and c be positive integers with $b^2 = c^2$. Suppose that $b \neq c$ and without loss of generality that b < c. Then by assumption

$$\frac{b}{c} = \frac{c}{b}$$

but the left side is less than 1 and the right side is greater than 1 which is impossible. Therefore b=c.

Problem 11

- (a) Suppose that m is an odd integer. Then we know that $m/2 \notin \mathbb{Z}$ and so we can pick n such that n < m/2 < n+1. We multiply this inequality by 2 to see that 2n < m < 2n+2. Using the fact that $m \in \mathbb{Z}$ we can see that m = 2n+1.
- (b) Suppose that p and q are add integers. Then we can write p=2n+1 and q=2m+1. So

$$pq = (2n+1)(2m+1) = 4mn + 2(m+n) + 1 = 2k+1$$

where k = mn + m + n. Hence, pq is also odd. Further, we can see p^n is odd by induction on n.

(c) Suppose that a > 0 is rational. Consider the set

$$N = \{ x \in \mathbb{Z}^+ : ax \in \mathbb{Z}^+ \}$$

Then we set $n = \min_{x \in N} x$. We see that an = m for some integer m. If n, m are both even, then they must share a factor of 2 so $a = \frac{m'}{n'}$, where n' = n/2

and m' = m/2. This contradicts the minimality of n and therefore n, m cannot both be even.

(d)

Theorem. The $\sqrt{2}$ is irrational.

Proof. Suppose that $\sqrt{2}$ were rational. Then we would have $\sqrt{2} = m/n$ with n, m not both even. If we square both sides we see that $2n^2 = m^2$. Hence, we have that m^2 is even by part (b). However, then m = 2k and $m^2 = 4k^2$. We divide by 2 to see that $n^2 = 2k^2$ which means that n must also be even. But this contradicts the fact that n, m are not both even. Hence, a cannot be written as m/n and is therefore irrational.

Problem 4

(d) Consider the map

$$f: X^n \times X^\omega \longrightarrow X^\omega$$
$$((x_1, \dots, x_n), (y_1, y_2, \dots)) \mapsto (x_1, \dots, x_n, y_1, y_2, \dots)$$

We need to show that f is bijective. The fact that f is injective is obvious from the definition. To see that f is also surjective take any element $z = (z_1, z_2, \ldots) \in X^{\omega}$. Then we can see that $f^{-1}(z) = ((z_1, \ldots, z_n), (z_{n+1}, \ldots))$. And furthermore, this inverse is unique because if any other element k had f(k) = z then $k_i = f^{-1}(z)_i$ for all i.

Problem 5

- (a) Yes. Write $\mathbf{x} \in \mathbb{Z}^{\omega}$.
- (b) Yes. Take $A_i = \{x \in \mathbb{R} : x \ge i\}$ and then write $\mathbf{x} \in \prod_{i=1}^{\infty} A_i$.
- (c) Yes. Take

$$A_i = \begin{cases} \mathbb{R} & if i < 100\\ \mathbb{Z} & otherwise \end{cases}$$

Then write $\mathbf{x} \in \prod_{i=1}^{\infty} A_i$.

(d) No. However, this set is isomorphic to a Cartesian product of subsets of \mathbb{R} via a canonical projection.