# **Session 11:**

# **Machine learning introduction**

Andreas Bjerre-Nielsen

### **Agenda**

- 1. Why machine learing
- 2. What is machine learning
- 3. Classification models
  - A. the perceptron
  - B. <u>beyond the perceptron</u>
  - C. maximum margin classification

### **Learning ML**

- During lectures copy code for see what it does listen to me
- After lecture > understand code details
- Learn with your group VERY IMPORTANT!

Why machine learning

### Value of modelling

Why are models useful?

Models are pursued with differens aims. Suppose we have a regression model,  $y=X\beta+\epsilon.$ 

- Social science:
  - They teach us something about the world.
  - We want to estimate  $\hat{\beta}$  and distribution
- Data science:
  - To make optimal future decisions and precise predictions, i.e.  $\hat{y}$ .

# Model fragility (1)

What is a polynomial regression?

- Fitting a curve with an *n-dimenstional polynomial*
- Can fit any "regular" curve ~ Taylor Series Approximation.

# Model fragility (2)

Suppose we build models of the size of the Danish population, how do polynomial fits perform?

• We use data from the years 1769-1975.

In [43]: f\_pop1

Out[43]:



# Model fragility (3)

Which model performs best when we extend the period to 1975?

In [44]: f\_pop2

Out[44]:



# Model fragility (4)

What happens if we extend the prediction period until 2050? See the fifth order.

In [45]: f\_pop3





# Model fragility (5)

What trade off do we face in modelling?

- Making a model that is to simple and does not capture enough of data (underfitting)
- Making a model with great fit on estimation data, but poor out-of-sample prediction (overfitting)

The goal of machine learning is to find models that minimize these two problems simultaneously.

Machine learning overview

# What is machine learning (1)

Can you define machine learning, i.e. ML?

- Supervised learning
  - Models designed to infer a relationship between input and labeled data.
  - Requirement: labels on data
- Unsupervised learning
  - Find patterns and relationships from **unlabeled** data.
    - This may involve clustering, dimensionality reduction and more.

# What is machine learning (2)

How might this be useful for social scientists?

- Supervised:
  - Improve estimation
    - Model validation (not only theory)
    - Other methods
  - We can generate new data
  - Better predictive models
- Unsupervised:
  - We can generate new data

# What is machine learning (3)

How can we categorize a supervised learning model?

Suppose we have model

$$y=w_0+w_1x_1+\ldots+w_kx_k$$

• We distinguish by type of the target variable y

# What is machine learning (4)

Which one is classification, which one is regression?

Х

In [46]: f\_identify\_question Out[46]: Draw a boundary that separate Draw a line that minimizes the the point clouds distance to the points 1.0 0.8 0.8 0.6 0.6  $\geq$ 0.4 0.4 0.2 0.2 0.0 0.0 0.2 0.2 0.8 0.8 0.0 0.4 0.6 1.0 0.0 0.4 0.6 1.0

Х

# What is machine learning (5)

In [47]: f\_identify\_answer

Out[47]:



# Regression models

What are examples of regressions models?

• Output is income, life expectancy, education length (years)

What is the underlying data of the target, y?

• target is continuous

#### Classications models

What are examples of classication models?

What is the underlying data of the target, y?

- target is categorical
  - sometimes known asfactor
  - can also be bool or int

### ML lingo and concepts

$$ullet$$
 net-input,  $z_i = \underbrace{oldsymbol{w}^Toldsymbol{x}_i}_{vector\;form} = \underbrace{1\cdot w_0 + w_1x_{i,1} + \ldots + w_kx_{i,k}}_{expanded\;form}$ 

- feature vector,  $\mathbf{x}_i$ , i.e a row of input variables
  - ~ explanatory variables in econometrics
- weight vector, **w**, i.e model parameters
  - lacktriangledown ~ coefficients in econometrics where denoted eta
- bias term,  $w_0$ , i.e. the model intercept
  - lacksquare ~ the constant variable in denoted  $eta_0$

The perceptron model

#### The articifial neuron (1)

We are interested in making a decision rule  $\phi: \mathbb{R}^p o \{-1,1\}$ .

$$\phi(z_i) = \left\{egin{array}{ll} 1, & z_i > 0 \ -1, & z_i \leq 0 \end{array}
ight.$$

ullet unit step function,  $\phi$ , checks if value exceeds threshold

# The articifial neuron (2)

Quiz: what are the input dimensions of the neuron, what is the output dimension?

- Input is the p-dimensional space,  $\mathbb{R}^p$ .
- Output is binary, either -1 or 1.

# The articifial neuron (3)

The unit step function (left) and the decision boundary (right)



# The articifial neuron (4)

When does the articial neuron work?

If the two target types are linearly separable:



# The perceptron learning rule (1)

How do we estimate the model parameters?

- 1. initialize the weight with small random number
- 2. for each training observation, i=1,..,n
  - A. compute predicted target,  $\hat{y}_i$
  - B. update weights  $\hat{w}$

# The perceptron learning rule (2)

How do we predict the target?

Single observation:

$$egin{aligned} \hat{y}_i = & \phi(z_i), \quad z_i = w_0 + w_1 x_{i,1} + \ldots + w_k x_{i,k}, & ext{expanded notation} \ \hat{y}_i = & \phi(z_i), \quad z_i = \hat{oldsymbol{w}}^T oldsymbol{x}_i, & ext{vector notation} \end{aligned}$$

Multiple observations

$$\hat{m{y}} = \phi(m{z}), \quad m{z} = m{X}\hat{m{w}}, \qquad ext{matrix notation}$$

# The perceptron learning rule (3)

How do we update weights?

Weights are updated as follows:

$$egin{aligned} \hat{w} &= \hat{w} + \Delta \hat{w} \ \Delta \hat{w} &= \eta \cdot (y_i - \phi(z_i)) \cdot \mathbf{x}_i \end{aligned}$$

where  $\eta$  is the learning rate, and the first order derivative is:

$$rac{\partial MSE}{\partial w} = \mathbf{X}^T\mathbf{e}$$

# The perceptron learning rule (4)

The computation process



# Implementation in Python (1)

How do we compute the net-input vectorized?

```
In [48]: X = np.random.normal(size=(3, 2)) # feature matrix
print('X:',X)

y = np.array([1, -1, 1]) # target vector
print('y:',y)

w = np.random.normal(size=(3)) # weight vector
print('w:',w)

# compute net-input
z = w[0] + X.dot(w[1:])
print('z:\n', z)
```

```
X: [[-0.80465974  2.47641856]
  [-0.24547838 -0.35616132]
  [-0.18317626  0.88008699]]
y: [ 1 -1  1]
w: [-0.19813352  0.01438546 -0.56355087]
z:
  [-1.60529675e+00 -9.49822148e-04 -6.96742379e-01]
```

# Implementation in Python (2)

How do we compute the errors vectorized?

```
In [49]: # compute errors
positive = z>0
y_hat = np.where(positive, 1, -1)
e = y - y_hat
SSE = e.T.dot(e)
```

# Implementation in Python (3)

How do we compute the updated weights?

```
In [50]: # Learning rate
  eta = 0.001

# first order derivative
  fod = X.T.dot(e) / 2

# update weights
  update_vars = eta*X.T.dot(e) # insert fod
  update_bias = eta*e.sum()/2
```

### Working with the perceptron (1)

We load the iris data.

```
In [51]: iris = sns.load_dataset('iris').iloc[:100] # drop virginica

X = iris.iloc[:, [0, 2]].values # keep petal_length and sepal_length
y = np.where(iris.species=='setosa', 1, -1) # convert to 1, -1

sns.scatterplot(iris.sepal_length, iris.petal_length, hue=iris.species)
# plt.scatter(iris.sepal_length, iris.petal_length)
```

Out[51]: <matplotlib.axes.\_subplots.AxesSubplot at 0x18584270a20>



# Working with the perceptron (2)

How do we fit the perceptron model? perceptron definition

```
In [52]: # initialize the perceptron
    clf = Perceptron(n_iter=10)

# fit the perceptron
    # runs 10 iterations of updating the model
    clf.fit(X, y)
```

Out[52]: <ch02.Perceptron at 0x18583b845c0>

# Working with the perceptron (3)

How can we evaluate the model??

```
In [53]: print('Number of errors: %i' % sum(clf.predict(X)!=y))
# we plot the decisions
plot_decision_regions(X,y,clf)
```

Number of errors: 0



### Working with the perceptron (4)

How does the model performance change??

```
In [54]: f,ax = plt.subplots(figsize=(12, 5.5))
    ax.plot(range(1, len(clf.errors_) + 1), clf.errors_, marker='o')
    ax.set_xlabel('Number of iterations')
    ax.set_ylabel('Number of errors')
```

Out[54]: Text(0,0.5,'Number of errors')



Beyond the perceptron

#### **Motivation**

What might we change about the perceptron?

- 1. Change from updating errors that are binary to continuous
- 2. Use more than one observation a time for updating

#### The activation function (1)

What else might we use to update errors?

- The most simple is **no transformation** of the net-input, i.e.  $\phi(z_i)=z_i$ .
- When we change this from perceptron we call it Adaptive Linear Neuron (Adaline).

# The activation function (2)

How is this different from the Perceptron?



Adaptive Linear Neuron (Adaline)

### The activation function (3)

Which activation functions can be used?

- Linear
- Logistic (Sigmoid)
- Unit step, sign

See page 450 in Python for Machine Learning.

# The activation function (4)

How do Adaline and Logistic regression differ?





#### A new objective (1)

The update rule in perceptron seems ad hoc, is there a more general way?

• Yes, we minimize the sum of squared errors (SSE). The SSE for Adaline is:

$$SSE = oldsymbol{e}^Toldsymbol{e} = e_1^2 + \ldots + e_n^2 \ oldsymbol{e} = \mathbf{y} - \mathbf{X}\mathbf{w}$$

Doesn't the above look strangely familiar?

- Yes, it is the same objective as OLS.
- But no, we will not solve like OLS.

### A new objective (2)

So how the hell do we solve the model?

- We approximate the solution. Two options:
  - We approximate the first order derivative ~ gradient descent (GD)
  - We approximate both first and second order derivative ~ quasi Newton
- We take gradient descent much simpler (sometimes faster)

### A new objective (3)

What is the first order derivative of SSE in Adaline?

$$rac{\partial SSE}{\partial \hat{w}} = \mathbf{X}^T \mathbf{e},$$

How do we update with GD in Adaline?

- Idea: take small steps to approximate the solution.
- $\bullet \ \ \Delta \hat{w} = \eta \mathbf{X}^T \mathbf{e} = \eta \cdot \mathbf{X}^T (\mathbf{y} \hat{\mathbf{y}})$

#### A new objective (4)

The gradient descent algorithm we just learned uses the whole data.

• Often known as batch gradient descent.

What might be a smart way of changing (batch) gradient descent?

- we only use a subset of the data
- this called stochastic gradient descent (SGD)

## Working with the logistic regression (1)

We load the titanic data and split into test and training sample

```
In [55]: cols = ['survived','class', 'sex', 'sibsp', 'age', 'alone']
    titanic = sns.load_dataset('titanic')
    titanic_sub = pd.get_dummies(titanic[cols].dropna(), drop_first=True).astype(np.int64)

print(titanic_sub.head(2))

X = titanic_sub.drop('survived', axis=1)
y = titanic_sub.survived

survived sibsp age alone class_Second class_Third sex_male
```

### Working with the logistic regression (2)

```
In [56]: from sklearn.model_selection import train_test_split
    from sklearn.linear_model import LogisticRegression

# we split data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.5, random_state=0)

# estimate model on train data, evaluate on test data
clf = LogisticRegression()
clf.fit(X_train, y_train) # model training
accuracy = (clf.predict(X_test)==y_test).mean() # model testing
print('Model accuracy is:', np.round(accuracy,3))
```

Model accuracy is: 0.79

Maximum margin classification

#### **Motivation**

Do the previous models care for how linear separation is done?

• No, as long as it classifies correctly then it is indifferent

Why is this a problem?

• We could optimize further on the boundary.

#### Maximum margin classification

How might we improve the sepearation?

We use a Support Vector Machine (SVM) we get a solution.

SVM finds a decision boundary which maximize distance to nearest points:



#### Support vector machines

How might we improve SVM?

• We can use soft-margin classification. This extends the distance to boundary by ignoring a number of miss-classifications, likely outliers.



• SVM can also handle non-linearities using kernel methods.

# The end

Return to agenda