Machine Learning 기초이론부터 Azure ML Studio 사용실전기 3. AZUre ML을 이용한 모델제작실습

Hello, Azure ML

기초로다뤄보는AzureML 2016

5 steps of Machine Learning

(2) 피처 정의

모델 테스트 (1) 새로운 데이터로 예측 실행

모델을 만드는 다양한 기법 소개

- (1) 데이터 전처리
- (2) 피처 정의

Machine Learning 학습 실험 제작

모델을 만드는 다양한 기법 소개

- (1) 데이터 전처리
- (2) 피처 정의

How to prepare Data?

Azure를 사용한 데이터 시각화

rows

columns

205 26

	symboling	normalized- losses	make	fuel- type	aspiration	num- of- doors	body-style
view as	allu	du.	liiiiiiii	L	I.	lı.	li
	3		alfa- romero	gas	std	two	convertibl
	3		alfa- romero	gas	std	two	convertibl
	1		alfa- romero	gas	std	two	hatchback
	2	164	audi	gas	std	four	sedan
	2	164	audi	gas	std	four	sedan
	2		audi	gas	std	two	sedan
	1	158	audi	gas	std	four	sedan
	1		audi	gas	std	four	wagon
	1	158	audi	gas	turbo	four	sedan
	0		audi	gas	turbo	two	hatchback

peak-rpm

BoxPlot

Azure를 사용한 데이터 분석

*누락된 값 처리

- (1) 누락된 값들을 지정한 값으로 치환
- (2) 누락된 값을 계산된 값으로 치환 (평균, 중앙값 등)
- (3) 누락된 값이 있는 행 또는 열 제거

Clean Missing Data Module (Demo)

중복된 데이터 제거

Remove Duplicate Rows Module

*경계를 넘어가는 값 처리

- (1) ClipPea: 상위 경계를 넘어서는 값을 찾아 깎아내거나 대치
- (2) ClipSubpeaks
- (3) ClipPeaksAndSubpeaks

Clip Values Module (Demo)

*피처 정규화

- ✓ 누락된 값 대치, 아웃라이어와 중복 레코드 제거 작업 완료?
- ✔ 데이터가 일관된 형태를 가질 수 있게끔 정규화

Normalize Data Module (Demo)

*클래스의 불균형 처리: SMOTE

*클래스의 불균형 처리: SMOTE

SMOTE Module (Demo)

가장 의미있는 정보를 피처로 선택

⁽²⁾ 피처 선택

*필터링 (Filtering)

✔ 중복되었거나 정보를 제공하지 못하는 피처를 제거

*랩퍼 (Wrapper)

✓ 피처 선택을 위해 분류 모델을 이용 (의사결정 트리)

*필터링 (Filtering)

✓ 피어슨 상관 계수 (Pearson Correlation)

$$-1 \le \rho_{XY} = \frac{\sigma_{XY}}{\sigma_X \sigma_Y} \le 1$$

Filter Based Feature Selection Module (Demo)

(3) 피처 엔지니어링

기존에 존재하는 **피처 셋**을 이용하여, 새로운 정보를 제공하는 피처 추가

(3) 피처 엔지니어링

출발지-도착지의 위도와경도, 육상 혹은 항공

➡ 출발지와 도착지 사이의 거리

스타벅스 기프티권

(3) 피처 엔지니어링

- ✔ 데이터를 통에 넣기 (데이터 양자화)
- ✔ 차원을 줄이기

휴식시간 (10분)

Hello, Machine Learning (Mission)

기초로다뤄보는AzureML 2016

5 steps of Machine Learning

(2) 피처 정의

모델 테스트 (1) 새로운 데이터로 예측 실행

Automobile Price Data

같이 따라해봅시다!

(2) 데이터 전처리

누락된 값이 너무 많은 행, Normalized-losses 칼럼 제거

(2) 데이터 전처리

누락된 값 치환

(2) 데이터 전처리

■ Select Columns in Dataset

Select columns

Selected columns:

All columns

Exclude column names: normalized-

losses

Launch column selector

(3) 피처 정의

가격을 예측할 때 주요하게 여겨지는 것들

(3) 피처 정의

make, body-style, wheel-base, engine-size, horsepower, peak-rpm, highway-mpg, price

(4) 러닝 알고리즘의 결정과 적용

*분류

✔ 주어진 데이터 한 줄이 여러 분류 중 어디에 속하는지 분류

*회귀

✔ 자동차의 가격, 내일의 온도와 같은 연속된 출력 값을 예측

(4) 러닝 알고리즘의 결정과 적용

Linear Regression Module

(4) 러닝 알고리즘의 결정과 적용

Score Model Module 사용 (Visualize를 선택하여 기존 값과 비교)

Evaluate Model Module 사용 (정확하게 예측했는지 통계 값 확인)

Evaluate Model Module 사용 (서로 다른 두 모델을 비교)

(6) 예측 실험 만들기를 통해 배포

스타벅스 기프티권

