집계구 표본설계 평가

지침버전: v 1.4

작성일자: 2017.04.24 수정내용: 1. 3.7절 추가

1. 개요

□ 집계구를 이용한 가구조사 표본설계의 효율성 연구

2. 집계구 파일

2.1 집계구 표본틀

□ 파일명

전국 집계구 정보.xlsx

□ 탭

<u>탭(TAB)</u> <u>내용</u>

 data
 집계구 정보

 변수설명
 변수정보

2.2 관심변수

□ 설계변수

변수명 값(비고)

sido 서울/부산/.../제주

division 수도권/충청권/호남권/대경권/동남권/강원권

urban 동부/읍면부

jgg 집계구번호 (=code)

jggapt 아파트 가구포함여부¹⁾ (=1 아파트,=0 아님) (집계구내)

pop총인구수 (집계구내)hh총가구수 (집계구내)du총거처수 (집계구내)es총사업체수 (집계구내)

□ 특성변수

변수명 값(비고)

in_xxx_xxx 인구관련변수 ga_xx_xxx 가구관련변수 ho_xx_xxx 주택관련변수 cp_xxx_xxx 사업체관련변수

¹⁾ 집계구내 한 채의 아파트가 있어도 아파트로 구분

- 3. 분석
- 3.1 개요
- □ Valliant *et al.*, (2015) 2장 참고
- 3.2 0-1 특성
- □ 특성지시자 (예, 1인 가구 여부)

$$y_k = 1$$
 (특성), $= 0$ (o.w.) (k =단위) A_i = 특성비율(proportion) (i =집계구)

□ 집계구 총합, 모총합, 집계구 분산

$$\begin{split} &t_i = N_i A_i \\ &t_U = \sum_{i \in U} t_i = \sum_{i \in U} N_i A_i, \\ &A_U = t_U / N \left(= \overset{-}{y}_U \right) \\ &S_{U2i}^2 = \frac{N_i}{N_i - 1} A_i \! \left(1 - A_i \right) \end{split}$$

□ 특성분산

$$S_U^2 = \frac{N}{N-1} A_U (1 - A_U)$$

- 3.3 Sampling Strategy I
- 3.3.1 표본설계 및 설계가중치
- □ 표본층: 해당무
- □ PWR/SRS 추출: 집락크기비례 및 집락당 동일크기 표본, 즉,

$$m=94$$
 (집계구), $p_i=N_i/N$, $n_i=\overline{n}$ (= 20 가구)

□ 표본(설계)가중치: 자체가중

$$w_{ik} = w_i w_{k|i} = \frac{1}{mp_i} \frac{N_i}{n_i} = \frac{N}{m\overline{n}}$$

3.3.2 설계요소평가

- □ 상대분산분해
- 분석변수목록

[인구특성]

in_age_10_19 (10-19세 인구수)

in_age_65_00 (65세 이상 인구수)

in_univ (대졸학력 이상 인구수)

[가구특성]

ga_own (자가 가구수)

ga_shh (1인 가구수)

- Valliant et al. (2015) 식 (9) 이용

변수	A_U	B_*^2	W_*^2	\tilde{V}	k_*	δ_*	RV	deff	keff

여기서

$$RV = rac{V(\hat{t}_{pur})}{t_U^2}$$
 $deff = 1 + \delta_*(\overline{n} - 1)$ $kdeff = k_* \times deff$

3.4 Sampling Strategy II

3.4.1 표본설계 및 설계가중치

- □ 표본층: 해당무
- □ SRS/SRS 추출: 단순임의집락추출 및 집락당 동일크기 단순임의추출, 즉,

$$m = 94$$
 (집계구), $n_i = \overline{n}$ (= 20 가구)

□ 표본(설계)가중치: 자체가중

$$w_{ik} = w_i w_{k|i} = \frac{M}{m} \frac{N_i}{n_i} = \frac{MN_i}{m\overline{n}}$$

3.4.2 설계요소평가

- □ 상대분산분해
- 분석변수목록 (3.3.2절 참조)
- Valliant et al. (2015) 식 (7) 이용

변수	A_U	B^2	W^2	\tilde{V}	$ ilde{k}$	$ ilde{\delta}$	RV	deff	keff

여기서

$$\begin{split} RV &= \frac{V\!\!\left(\hat{t}_{\pi}\right)}{t_{U}^{2}} \\ deff &= 1 + \tilde{\delta}\!\left(\overline{n} - 1\right) \\ kdeff &= \tilde{k} \times deff \end{split}$$

3.5 Sampling Strategy III

3.5.1 표본설계 및 설계가중치

- □ 표본층: 6대권역
- 2.2절 division 변수 사용

수도권: 서울, 인천, 경기

충청권: 대전, 충북, 충남

호남권: 광주, 전북, 전남, 제주

대경권: 대구, 경북

동남권: 부산, 울산, 경남

강원권: 강원

- □ 층별 PWR/SRS 추출: 집락크기비례 및 집락당 동일크기 표본, 즉,
- 전국기준 전체 표본집계구 m = 94를 층별로 다음과 같이 할당

수도권 29

충청권 12

호남권 16

대경권 14

동남권 15

강원권 8

- 층별 크기비례확률 및 집락당 표본크기

$$p_{hi}=N_{hi}/N_{h}$$
, $n_{hi}=\stackrel{-}{n}$ (= 20 가구)

여기서 N_{hi} 는 h층 i번째 집락내 가구수, $N_h=\Sigma_{i=1}^{M_h}N_{hi}$ 는 h층 (모집단내) 가구총수, M_h 는 h층 집락 총수

□ 표본(설계)가중치: 자체가중

$$w_{hik} = w_{hi}w_{k|hi} = rac{1}{m_{h}p_{hi}}rac{N_{hi}}{n_{hi}} = rac{N_{h}}{m_{b}\overline{n}}$$

3.5.2 설계요소평가

- □ 상대분산분해
- 분석변수목록 (3.3.2절 참조)
- **변수별**로 Valliant et al. (2015)의 식 (9)을 이용하여 층 및 전체에 적용

<u>추</u>	N_h	M_h	N_h/M_h	A_h	$B_{*_h}^2$	$W^2_{*_h}$	\widetilde{V}_h	k_{*_h}	δ_{st_h}	RV_h	$deff_h$	$kdeff_h$
수도권												
:												
강원권												
 전국					_	_		_	_		_	_
비교*												

단, * 비교는 3.3.2절의 값으로 채울 것

$$RV_h = \frac{\textit{V}(\hat{t}_{h,pwr})}{t_{U_h}^2};$$

$$deff_h = 1 + \delta_{*h} \left(\overline{n}_h - 1\right) = 1 + \delta_{*h} \left(\overline{n} - 1\right); \quad kdeff_h = k_{*h} \times deff_h$$

$$t_{U} = \sum_{\Im} N_{h} A_{h}; \quad A_{U} = \frac{t_{U}}{N} = \sum_{h \in \Im} \left(\frac{N_{h}}{N} \right) A_{h}$$

$$\tilde{\boldsymbol{V}}_{U}\!=\!\frac{S_{U}^{2}}{A_{U}^{2}}; \quad R\boldsymbol{V}_{U}\!=\!\frac{\sum\limits_{h=1}^{H}\boldsymbol{V}\!\!\left(\hat{\boldsymbol{t}}_{h,pwr}\right)}{t_{U}^{2}}$$

3.6 Sampling Strategy IV

3.6.1 표본설계 및 설계가중치

□ 표본층: 6대 권역 x 동/읍면

- 층화변수 1: 2.2절 division 변수 사용

수도권: 서울, 인천, 경기

충청권: 대전, 충북, 충남

호남권: 광주, 전북, 전남, 제주

대경권: 대구, 경북

동남권: 부산, 울산, 경남

강원권: 강원

- 층화변수 2: 2.2절 urban 변수 사용

동부 읍면부

- □ 층별 PWR/SRS 추출: 집락크기비례 및 집락당 동일크기 표본, 즉,
- 전국기준 전체 표본집계구 m = 94를 충별로 다음과 같이 할당

권역	동읍면	합계		
년리	동부	읍면부	[합계	
수도권	28	1	29	
충청권	8	4	12	
호남권	11	5	16	
 대경권	10	4	14	
동남권	12	3	15	
 강원권	5	3	8	
전국	74	20	94	

- 층별 크기비례확률 및 집락당 표본크기

$$p_{hi}=N_{hi}/N_{h}$$
, $n_{hi}=\overline{n}$ (= 20 가구)

여기서 N_{hi} 는 h층 i번째 집락내 가구수, $N_h=\Sigma_{i=1}^{M_h}N_{hi}$ 는 h층 (모집단내) 가구총수, M_h 는 h층 집락 총수

□ 표본(설계)가중치: 자체가중

$$w_{hik} = w_{hi}w_{k|hi} = rac{1}{m_h p_{hi}} rac{N_{hi}}{n_{hi}} = rac{N_h}{m_h \overline{n}}$$

3.6.2 설계요소평가

- □ 상대분산분해
- 분석변수목록 (3.3.2절 참조)
- **변수별**로 Valliant et al. (2015)의 식 (9)을 이용하여 층 및 전체에 적용

	5	N_h	M_h	N_h/M_h	A_h	$B^2_{*_h}$	$W_{*_{h}}^{2}$	\widetilde{V}_h	k_{*_h}	δ_{*_h}	RV_h	$deff_h$	kdeff
수도권	동부												
수도권	읍부												
:													
강원권	동부												
	읍부												
전국						_	_		_	_		_	_
비교*													

단, * 비교는 3.3.2절의 값으로 채울 것

$$\begin{split} RV_h &= \frac{V\!\!\left(\hat{t}_{h,pwr}\right)}{t_{U_h}^2}; \\ deff_h &= 1 + \delta_{*h}\!\!\left(\overline{n}_h - 1\right) \!\!= 1 + \delta_{*h}\!\!\left(\overline{n} - 1\right); \quad kdeff_h = k_{*h} \times deff_h \\ t_U &= \sum_{\Im} N_h A_h; \quad A_U = \frac{t_U}{N} \!\!= \sum_{h \in \Im} \left(\frac{N_h}{N}\right) \!\!A_h \\ \tilde{V}_U &= \frac{S_U^2}{A_U^2}; \quad RV_U = \frac{\sum_{h=1}^H V\!\!\left(\hat{t}_{h,pwr}\right)}{t_U^2} \end{split}$$

3.7 Sampling Strategy V

3.7.1 표본설계 및 설계가중치

□ 표본층: 16개 특별시, 광역시, 도 x 동/읍면

층화변수 1: 2.2절 sido 변수 사용 층화변수 2: 2.2절 urban 변수 사용

동부 읍면부

□ 층별 PWR/SRS 추출: 집락크기비례 및 집락당 동일크기 표본, 즉,

- 전국기준 전체 표본집계구 m = 94를 층별로 다음과 같이 할당

,1 -	동읍면	구분	하게
시도	동부	읍면부	합계
서울 <u>부산</u> 인천	12	0	12
부산	5	2	7
인천	4	0	4
대구	6	0	6
광주	4	0	4
대전 울산	4	0	4
울산	1	1	2
경기	10	2	12
강원 - 충북 - 충남 - 전북	6	2	8
충북	3	1	4
충남	3	3	6
전북	3	2	5
전남	2	2	4
경북	4	3	7
경남	5	2	7
제주	1	1	2
전국	73	21	94

- 층별 크기비례확률 및 집락당 표본크기

$$p_{hi}=N_{hi}/N_{h}$$
, $n_{hi}=\overline{n}$ (= 20 가구)

여기서 N_{hi} 는 h층 i번째 집락내 가구수, $N_h=\Sigma_{i=1}^{M_h}N_{hi}$ 는 h층 (모집단내) 가구총수, M_h 는 h층 집락 총수

□ 표본(설계)가중치: 자체가중

$$w_{hik} = w_{hi}w_{k|hi} = \frac{1}{m_h p_{hi}} \frac{N_{hi}}{n_{hi}} = \frac{N_h}{m_h \overline{n}}$$

3.7.2 설계요소평가

- □ 상대분산분해
- 분석변수목록 (3.3.2절 참조)
- **변수별**로 Valliant et al. (2015)의 식 (9)을 이용하여 층 및 전체에 적용

<u> </u>	<u>\$</u>	N_h	M_h	N_h/M_h	A_h	$B_{*_h}^2$	$W_{*_h}^2$	$ ilde{V}_h$	k_{*_h}	δ_{st_h}	RV_h	$deff_h$	kdeff
서울	동부												
부산	동부												
:													
강원	동부												
	읍부												
전국						_	_		_			_	_
비교*													

단, * 비교는 3.3.2절의 값으로 채울 것

$$\begin{split} RV_h &= \frac{V\!\!\left(\hat{\boldsymbol{t}}_{h,pwr}\right)}{t_{U_h}^2}; \\ deff_h &= 1 + \delta_{*h}\!\!\left(\!\!\stackrel{\frown}{\boldsymbol{n}}_h - 1\!\right) \!\!= 1 + \delta_{*h}\!\!\left(\!\!\stackrel{\frown}{\boldsymbol{n}} - 1\!\right); \quad kdeff_h = k_{*h} \times deff_h \\ t_U &= \sum_{\Im} N_h A_h; \quad A_U = \frac{t_U}{N} \!\!= \sum_{h \in \Im} \left(\!\!\frac{N_h}{N}\!\right) \!\!A_h \\ \tilde{\boldsymbol{V}}_U &= \frac{S_U^2}{A_U^2}; \quad RV_U = \frac{\sum_{h=1}^H V\!\!\left(\hat{\boldsymbol{t}}_{h,pwr}\right)}{t_U^2} \end{split}$$