

Art of Problem Solving 2015 Iran Team Selection Test

Iran Team Selection Test 2015

Trail Team Selection Test 2015	
_	TST 1
Day 1	
1	Find all polynomials $P,Q\in\mathbb{Q}\left[x\right]$ such that
	$P(x)^3 + Q(x)^3 = x^{12} + 1.$
2	I_b is the <i>B</i> -excenter of the triangle ABC and ω is the circumcircle of this triangle. M is the middle of arc BC of ω which doesn't contain A . MI_b meets ω at $T \neq M$. Prove that $TB \cdot TC = TI_b^2.$
3	Let $b_1 < b_2 < b_3 < \dots$ be the sequence of all natural numbers which are sum of squares of two natural numbers. Prove that there exists infinite natural numbers like m which $b_{m+1} - b_m = 2015$.
Day 2	
4	n is a fixed natural number. Find the least k such that for every set A of k natural numbers, there exists a subset of A with an even number of elements which the sum of it's members is divisible by n .
5	Let A be a subset of the edges of an $n \times n$ table. Let $V(A)$ be the set of vertices from the table which are connected to at least on edge from A and $j(A)$ be the number of the connected components of graph G which it's vertices are the set $V(A)$ and it's edges are the set A . Prove that for every natural number l :
	$\frac{l}{2} \leq \min_{ A \geq l}(V(A) - j(A)) \leq \frac{l}{2} + \sqrt{\frac{l}{2}} + 1$

Art of Problem Solving 2015 Iran Team Selection Test

6	$ABCD$ is a circumscribed and inscribed quadrilateral. O is the circumcenter of the quadrilateral. E, F and S are the intersections of AB, CD , AD, BC and AC, BD respectively. E' and F' are points on AD and AB such that $A\hat{E}E' = E'\hat{E}D$ and $A\hat{F}F' = F'\hat{F}B$. X and Y are points on OE' and OF' such that $\frac{XA}{XD} = \frac{EA}{ED}$ and $\frac{YA}{YB} = \frac{FA}{FB}$. M is the midpoint of arc BD of $O(D)$ which contains $O(D)$. Prove that the circumcircles of triangles $O(D)$ and $O(D)$ are coaxal with the circle with diameter $O(D)$.
_	TST 2
Day 1	
1	a, b, c, d are positive numbers such that $\sum_{cyc} \frac{1}{ab} = 1$. Prove that : $abcd + 16 \ge 8\sqrt{(a+c)(\frac{1}{a}+\frac{1}{c})} + 8\sqrt{(b+d)(\frac{1}{b}+\frac{1}{d})}$
2	In triangle ABC (with incenter I) let the line parallel to BC from A intersect circumcircle of $\triangle ABC$ at A_1 let $AI \cap BC = D$ and E is tangency point of incircle with BC let $EA_1 \cap \bigcirc(\triangle ADE) = T$ prove that $AI = TI$.
Day 2	
4	Let $\triangle ABC$ be an acute triangle. Point Z is on A altitude and points X and Y are on the B and C altitudes out of the triangle respectively, such that: $\angle AYB = \angle BZC = \angle CXA = 90$ Prove that X,Y and Z are collinear, if and only if the length of the tangent drawn from A to the nine point circle of $\triangle ABC$ is equal with the sum of the lengths of the tangents drawn from B and C to the nine point circle of $\triangle ABC$.
5	We call a permutation (a_1, a_2, \dots, a_n) of the set $\{1, 2, \dots, n\}$ "good" if for any three natural numbers $i < j < k$, $n \nmid a_i + a_k - 2a_j$ find all natural numbers $n \geq 3$ such that there exist a "good" permutation of a set $\{1, 2, \dots, n\}$.
6	If a,b,c are positive real numbers such that $a+b+c=abc$ prove that $\frac{abc}{3\sqrt{2}}\left(\sum_{cyc}\frac{\sqrt{a^3+b^3}}{ab+1}\right)\geq \sum_{cyc}\frac{a}{a^2+1}$

Art of Problem Solving 2015 Iran Team Selection Test

_	TST 3
Day 1	
1	Point A is outside of a given circle ω . Let the tangents from A to ω meet ω at S,T points X,Y are midpoints of AT,AS let the tangent from X to ω meet ω at $R \neq T$. points P,Q are midpoints of XT,XR let $XY \cap PQ = K,SX \cap TK = L$ prove that quadrilateral $KRLQ$ is cyclic.
2	Assume that a_1, a_2, a_3 are three given positive integers consider the following sequence: $a_{n+1} = \text{lcm}[a_n, a_{n-1}] - \text{lcm}[a_{n-1}, a_{n-2}]$ for $n \geq 3$ Prove that there exist a positive integer k such that $k \leq a_3 + 4$ and $a_k \leq 0$. ($[a,b]$ means the least positive integer such that $a \mid [a,b], b \mid [a,b]$ also because $\text{lcm}[a,b]$ takes only nonzero integers this sequence is defined until we find a zero number in the sequence)
3	$a_1, a_2, \dots, a_n, b_1, b_2, \dots, b_n$ are $2n$ positive real numbers such that a_1, a_2, \dots, a_n aren't all equal. And assume that we can divide a_1, a_2, \dots, a_n into two subsets with equal sums.similarly b_1, b_2, \dots, b_n have these two conditions. Prove that there exist a simple $2n$ -gon with sides $a_1, a_2, \dots, a_n, b_1, b_2, \dots, b_n$ and parallel to coordinate axises Such that the lengths of horizontal sides are among a_1, a_2, \dots, a_n and the lengths of vertical sides are among b_1, b_2, \dots, b_n . (simple polygon is a polygon such that it doesn't intersect itself)
Day 2	
5	Prove that for each natural number d , There is a monic and unique polynomial of degree d like P such that $P(1)0$ and for each sequence like a_1, a_2, \ldots of real numbers that the recurrence relation below is true for them, there is a natural number k such that $0 = a_k = a_{k+1} = \ldots : P(n)a_1 + P(n-1)a_2 + \ldots + P(1)a_n = 0$ $n > 1$
6	AH is the altitude of triangle ABC and H' is the reflection of H trough the midpoint of BC . If the tangent lines to the circumcircle of ABC at B and C , intersect each other at X and the perpendicular line to XH' at H' , intersects AB and AC at Y and Z respectively, prove that $\angle ZXC = \angle YXB$.