Autoliv India Pvt. Ltd

Internship Report on "TEARDOWN ANALYSIS ON AN EMERGENCY LOCKING RETRACTOR AND PRODUCT RESEARCH THROUGH SURVEY"

Submitted by

PATANJALI G. GOKHALE

1AY17AU029

Under the guidance of ABHIJEET ATWADKAR

ACHARYA INSTITUTE OF TECHNOLOGY SOLADEVANAHALLI, BENGALURU-560107 2020-21

ACKNOWLEDGEMENT

I wish to thank Autoliv India Pvt. Ltd for providing an opportunity to undergo an internship program, I would like to thank Mr. Vijay Shetty sir for providing me an excellent opportunity of being an intern at Autoliv. I would also like to thank my mentor Abhijeet Atwadkar who provided an excellent training and guided me throughout the internship and also in completing the internship successfully.

It gives a person an immense sense of achievement in learning a new task. Acquiring knowledge is a very important and constant task which one must endure. The mentors we meet along this journey of acquiring knowledge play an immensely important role in shaping the learning process. It is an honor to thank all those who have been helpful in completing this internship successfully.

ABSTRACT

Being a part of the automobile industry, we know how Seatbelt plays a crucial role in the entire
passive restraint system in the passenger vehicles. Automotive safety in this context is
primarily concerned with ensuring the overall safety of the passengers.

Here in the internship, a product research is conducted on the cars available in India regarding the type of retractor used in different vehicles and simultaneously a teardown is conducted on the emergency locking retractor.

CONTENTS

Sl.No	Content	Title	Page number
1	Acknowledgement		I
2	Abstract		II
3	Contents		III
4	Chapter 1	Need for Passive Restraint Systems	01
5	Chapter 2	Regulations	02
6	Chapter 3	Introduction	04
7	Chapter 4	Teardown	05
8	Chapter 5	Types of Seatbelt Technologies	16
9	Chapter 6	Product survey	18
10	Chapter 7	Conclusion	24

NEED FOR PASSIVE RESTRAINT SYSTEMS IN PASSENGER VEHICLES

1.1 Passive restraint safety systems :

These protect the occupant of the vehicle in a crash if not reduce impact of an accident or the level of injury. In other words, passive safety technology is all about mitigating the consequences of an accident during and after impact, as from the moment that first contact is made. Sometimes these measures are referred to as 'secondary' safety technology.

Today, a range of built-in mechanisms protect occupants of a car in case of a crash, such as:

• DEFORMATION ZONES:

Also known as crumple or crush zones, deformation zones take out the kinetic energy of a crash in a controlled way. This is done through specifically designed areas of the vehicle that deform and crumple during an accident to absorb the impact.

• SEATBELTS:

Seatbelts (or safety belts) are restraint systems that keep passengers correctly positioned during an accident or sudden stop, thereby reducing the impact of the vehicle interior on the body and preventing people from being ejected. Seatbelts have significantly evolved since they were first introduced. Today's seatbelts are pre-tensioned: they are tightened almost instantly upon impact in order to prevent passengers from being jerked forward excessively.

• AIRBAGS:

Airbags are cushions that are inflated extremely quickly upon impact (and subsequently deflated) to protect passengers during a collision. They provide a soft restraint between the occupants and the vehicle interior during the crash, which can reduce or even prevent injuries. Early airbags protected front-seat occupants from frontal collisions. Since the turn of the century, they are combined with more advanced side-impact airbags as well.

Over the past decades, passive safety systems have made a major contribution to road safety by reducing the consequences of accidents. As a result, most vehicles now score highly in crash tests and passive safety technology is reaching a level of maturity.

Passive measures will remain essential in the future and Will not disappear from vehicles. Technologies and design measures that limit the impact of a crash may be taken for granted today, but in the absence of the passive measures the death toll on roads would be far greater.

REGULATIONS

- The use of seatbelts in vehicles was made mandatory in India in 1994 for the front row seats and the use of seatbelt in the rear row was made mandatory in 2002. [1]
- The use of driver airbag was made mandatory in India in July 2019. [2]
- Vehicles manufactured on and after the 1st April 2021, in the case of new models, and 31st August 2021, in the case of existing models, shall be fitted with airbag for the person occupying the front seat, other than the driver. [3]

2.1 About NCAP(New Car Assessment Program):

Global NCAP's serves as a platform for co-operation among new car assessment programmes worldwide and promotes the universal adoption of the United nation's most important motor vehicle safety standards worldwide.

From Euro NCAP's assessment protocol – safety assist

It is well recognised that the correct wearing of seat belts is the most effective way of providing protection for vehicle occupants in a crash. Currently, wearing rates vary greatly across the European Union and research has shown that many of the non-wearers would use their seat belt with some encouragement. A small proportion of non-wearers will not be persuaded to use their belts.

- Seat Belt Reminder (SBR) systems are intended to encourage the first of these groups
 to use their seat belt, whilst at the same time not be so annoying that the second group
 would take undesirable action to disable the system. Such action could include,
 tampering with or cutting electrical connections which might have undesirable
 consequences.
- It is intended that habitual users who always put their seat belt on, before starting their Journey, would hardly notice the existence of the system and would not be annoyed by it.
- To avoid the danger that dedicated non-users would try to tamper with the system, Euro NCAP recommends that SBR systems are capable of being deactivated. Deactivation could be long term and/or short term for individual journeys.
- Although, simple seat belt reminder systems have been available for some time, the
 technology behind the more sophisticated systems is new. Euro NCAP has set some
 minimum requirements but wishes to allow the development of increasingly improved
 systems.
- Some recommendations are made for how improvements may occur and these may eventually become Euro NCAP requirements. The expectation is that the requirements will develop in the light of further knowledge.

2.2 NCAP in India:

The Bharat New Vehicle Safety Assessment Program (BNVSAP) is a proposed New Car Assessment Program for India nowadays it is called as BNCAP. Cars sold in the country will be assigned by star ratings based on their safety performance. It will be implemented in phases, according to the plans being drawn up by the National Automotive Testing and R&D Infrastructure Project. It is the 10th NCAP in the world and is being set up by the government of India

The program was expected to begin mid-2014, but postponed to start from 2017. (Because of delay in setting up labs and other facilities) Within two years of implementation, new cars sold in India will need to comply with voluntary star ratings based on crash safety performance tests. Critical safety features such as airbags, ABS, and seat belt reminders will become standard in cars sold in India resulting from rankings and mandatory crash testing. Offset front crash, side, and rear impact tests will be required by 2017. Cars will gradually have to meet more stringent norms such as pedestrian protection, whiplash injury and child restraint systems standards and requirements. [4]

It is proposed that this BNVSAP would start the official testing from October 2017 onwards. The car testing protocols is defined by ARAI as follows:

- Frontal offset testing (64 km/h proposed)
- Side impact testing
- Pedestrian protection testing
- Rear impact testing
- Child dummy dynamic crash testing.

INTRODUCTION

The internship began with understanding the basic knowledge of passive restraint systems and specifically understanding Primary restraint system that is the seatbelt as well as its components, their functions.

3.1 Seatbelt

The seatbelt is the part of passive restraint system which is used to restrain the occupant in the case of an accident or impact. They are further classified as Primary restraint system under the Passive restraint systems. In today's world the structural design has to be built in a very robust way so as to protect the occupant in the event of the crash , there is a necessity for the designers to make sure that there is a perfect harmony between the structural safety of the vehicle as well as the restraint system of the vehicle.

3.2 Purpose

The main purpose of a seat belt is to keep vehicle occupants safe in the event of a crash. The seat belt functions by keeping the occupant in a more static motion despite a sudden stop or change in momentum. A car moves with inertia, which is an object's tendency to move until something works against the motion of that object. When the vehicle hits something, or is hit by something, that inertia changes. Without the seat belt, occupants can be thrown into various parts of the interior of the car, or thrown completely out of the car. The seat belt usually stops this from happening.

3.3 Working

The Webbing itself is made of fabric generally made up of Polyester. The retractor mechanism sits in the retractor housing on the floor or on the interior wall of the vehicle, and contains the spool and spring that the belt is rolled onto. The seat belt unspools from the spiraling spring that allows the vehicle occupant to pull the seat belt out. When the seat belt is unhooked, that same spiraling spring will automatically re-spool due to the spring tension. Lastly is the lock itself. When the seat belt is unspooled and is across the person's body, the webbed fabric ends in a metal tab, called the tongue. The tongue is inserted into the buckle. While the seat belt is being fastened, the vehicle occupant should have the seat in an upright position, and be sitting in the seat with hips and back against the back of the seat. If worn correctly at all times, the seat belt is the best safety device on a vehicle today.

TEARDOWN

A product teardown, or simply teardown, is the act of disassembling a product, such that it helps to identify its component parts and system functionality, and component costing information. In this case, a standard emergency locking retractor was obtained and the process of teardown was followed.

Components:

1]THE BELT:

FIG 3.1 The Seatbelt

The typical seatbelt consists of the setup as shown in the figure above it consists of ANCHOR PLATE, RETRACTOR, TONGUE, PILLAR MOUNT, RETRACTOR HOUSING. These are the major components of the seat belts (Some seatbelts also are equipped with pretensioners or load limiters, the one considered here is an Emergency Locking Retractor).

2]RETRACTOR ASSEMBLY:

FIG 3. 2 The Retractor assembly

The retractor assembly houses the mechanism which is responsible for locking the belt and ensuring that the passenger is restrained during a crash or collision, this is an emergency locking type retractor. This is the essential component of the seatbelt.

2.01] **Retractor:**

FIG 3.3 The Retractor

The retractor is the mechanism that helps in locking and unlocking the webbing or restraining the occupant in case of an accident. The retractor mechanism is webbing sensitive and car sensitive, which means that the locking up and unlocking depends on the speed at which the webbing is being retracted out and the car sensitivity includes the deceleration of vehicle the tilt of the vehicle etc.

2.02] **Retractor housing:**

FIG 3.4 The Retractor housing

The retractor housing as the name suggests houses the mechanism of the retractor which includes the Car sensor mechanism on one side and the torsional spring on the opposite side. It is made up of steel and manufactured using press tool operation.

2.03] Spindle shaft gear assembly:

FIG 3.5 Spindle shaft with gears

This is the shaft which is essential for establishing a connection between the webbing and the mechanism of the retractor. The spindle shaft-gear assembly is connected to the webbing an rotates when the webbing is spooled or unspooled this part also is webbing sensitive, and if the necessary parameters are met then the mechanism engages the gear locking plate which interferes with the spindle gear and stops the gear s thus, essentially stops the webbing from being pulled out. It is hollow and has space for the main shaft. It is made up of steel and manufactured using press tool operation.

2.04] **Retraction Spring:**

FIG 3.6 Retraction Spring

The retraction spring helps the webbing to retract whenever left free it is a very powerful component and proper care should be taken while dismantling it. It is made up of Steel using CNC spring machine.

2.05] **Shaft(mechanism):**

FIG 3.6 Shaft

This is part that connects the spindle gear assembly to the mechanisms. It has the main mechanism on one side and the retraction spring on the other side. It is made of Steel and by sheet metal press tool operation.

2.06] Steering Disc:

FIG 3.7 Steering Disc

This is the part of mechanism that is connected to the shaft and rotates along with it. It is used to lock up or the stop the rotation of the shaft whenever necessary. It is made up of Plastic using Plastic injection molding process.

2.07] Tread head:

FIG 3.8 Tread head

This part is coupled with the steering disc which works on the principle of centrifugal force it also has a return spring. the tread head is made up of aluminum and from Die casting process. The tread head also consists of a Webbing sensor which is sensitive to the speed with which the webbing is being extracted. It is attached to the tread head.

2.08] Internal gear disc:

FIG 3.9 Internal gear disc

This part has internal gears which interfere with the gear teeth of the steering disc to restrict the motion of belt. It is made up plastic and from Plastic injection molding process.

2.09] Car sensor housing:

FIG 3.10 Car sensor housing

This part houses the car sensor mechanism which has a mass which is machined out of Brass and a mass actuated Plastic lever which work together in activating the or allowing the internal gear to lock up with the steering disc. The housing itself is made up of plastic and from Plastic injection molding process. This is a Pendulum type car sensor. The car sensor is sensitive to the dynamics of the car (the motion of the car and the characteristics of the motion), which means that if the car is decelerating at certain rate then the car sensor is actuated. It is also actuated by Tilt sensitivity, the range of values where the car sensor gets actuated are given below:

- The value for deceleration sensitivity lies between 0.3g to 0.45g (g=9.81m/s).
- The value for tilt sensitivity lies in the range of 12° (degrees) to 27° (degrees).

2.10] Gear locking plate:

FIG 3.11 Gear locking plate

This plate is used to stop the retraction of webbing. It is actuated by the mechanism depending on the necessary parameters. Once it is actuated it interferes with the spindle gear wheel which stops the movement of the webbing. It is made of Steel and by sheet metal press tool operation.

2.11] Spring cover:

FIG 3.12 Spring cover

This is used to cover the torsional spring so that it does not get affected by external factors. It is made up plastic and from Plastic injection molding process.

2.12] Mechanism cover:

FIG 3.13 Mechanism cover

This is used to cover the mechanism so that external excitations, dust humidity and other factors do not hamper the functional ability of the mechanism as the seatbelt has to maintain its functionality throughout. It is made up plastic and from Plastic injection molding process.

2.13] **Spring:**

FIG 3.14 Spring

A Mechanical Spring is a device that can also be defined as an elastic or resilient member, whose main function is to deflect under the action of load and recovers it's original shape when the load is removed. It also used for storing energy. It is made up of Spring steel and manufactured using CNC spring machine.

2.14] **Circlip:**

FIG 3.15 Circlip

This is used to lock the keyed shaft along with the steering disk together so that the mechanism is together. It is made of Steel and by sheet metal press tool operation.

2.15] Locking cam:

FIG 3.16 Locking cam

The locking cam is used to connect the locking plate to the internal gear disc. It is made up plastic and from Plastic injection molding process.

2.16] Bushing (on retractor housing):

FIG 3.17 Bushing

Bushing is used to reduce the metal to metal contact which results in reducing the noise produced due to vibrations and also wear and tear. It is made up of Rubber and by the process of Elastomer injection molding.

3] WEBBING ASSEMBLY:

The webbing assembly consists of the webbing, the stitching and the label.

3.1] Webbing:

FIG 3.18 Webbing

Webbing is the part of the seat belt system that is pulled around the person and is tightened to support the person upon impact. It is made from polyester.

3.2] **Thread:**

FIG 3.19 Stitched thread

It is used to stitch the free end of the webbing to the belt after it is made to pass through the anchor plate.

3.3] **Label:**

FIG 3.20 Label

This is used to specify the type of seatbelt, the manufacturer's name, date of manufacture. It is stitched to the belt usually made from polyester.

4]PILLAR LOOP ASSEMBLY:

The pillar loop assembly consists of the components that are used to fix the seatbelt to the pillar of the vehicle.

4.1] **Pillar loop:**

FIG 3.21 Pillar loop

The pillar loop is used to fix the seatbelt to the pillar of the vehicle. It is made up of Sheetmetal and Plastic and by Sheetmetal with Plastic injection over molding process.

4.2] Pillar Loop bolt:

FIG 3.22 Pillar Loop bolt

The pillar loop bolt is used to fix the pillar loop along with the seatbelt to the pillar. It is made up of Steel and by the process of Forging and Thread rolling.

4.3] Washers:

FIG 3.23 5mm washer

FIG 3.24 2mm washer

The primary purpose of most washers is to evenly distribute the load of the threaded fastener with which they are used. The various types of washers used here are the ones shown above along with transport washer and helical washer as shown below.

FIG 3.25 Transport washer

FIG 3.26 Helical washer

5] ANCHOR PLATE ASSEMBLY:

It consists of an anchor plate and a nut to ensure that the anchor plate stays in its place.

5.1] Anchor plate:

FIG 3.27 Anchor plate

Anchor plates are used to reduce the chance of the belt bolt tearing through the floor when the belt is under load. The angle is given so that the belt has clearance when the plate is attached to the support. It is made of Steel and by sheet metal press tool operation.

5.2] Anchor plate bolt:

FIG 3.28 Anchor plate bolt

The Anchor plate bolt is used to fix the Anchor plate along with the seatbelt to the pillar. It is made up of Steel and by the process of Forging and Thread rolling.

4.1 Bill of Materials for the seatbelt:

NUMBER	PART NAME	MATERIAL	MANUFACTURING PROCESS	QUANTITY
0	Seatbelt assembly	NA	NA NA	
1	Retractor assembly	NA	NA	1 No.
1.1	Retractor housing	Steel	Sheetmetal Press tool	1 No.
1.2	Spindle shaft gear assembly	Steel	Sheetmetal Press tool	1 No.
1.3	Torsional Spring	Brass	CNC spring machine	1 No.
1.4	Spring cover	Plastic	Plastic injection molding	1 No.
1.5	Shaft (mechanism)	Steel	Sheetmetal Press tool	1 No.
1.6	Steering Disc	Plastic	Plastic injection molding	1 No.
1.7	Tread head (mechanism)	Aluminium	Die casting	1 No.
1.8	Spring (with the plate)	Spring Steel	CNC spring machine	1 No.
1.9	Gear locking plate	Steel	Sheetmetal Press tool	1 No.
1.10	Circlip	Steel	Sheetmetal Press tool	1 No.
1.11	Pawl lock	Plastic	Plastic injection molding	1 No.
1.12	Locking cam	Plastic	Plastic injection molding	1 No.
1.13	Return spring	Spring Steel	CNC spring machine	1 No.
1.14	Screws	Steel	Forging and Thread rolling	2 Nos
1.15	Bushing (on retractor housing)	Rubber	Elastomer injection molding	2 Nos
1.16	Internal gear disc	Plastic	stic Plastic injection molding	
1.17	Mechanism cover	Plastic	Plastic injection molding	1 No.
1.18	Car sensor housing	Plastic	Plastic injection molding	1 No.
1.19	1.19 Car sensor mass Brass		Machining	1 No.
1.20	Car sensor lever	Plastic	Plastic injection molding	1 No.
2	Webbing assembly			
2.1	Webbing	Polyester	NA	3 meters
2.2	Stitching thread	Polyester	NA	
2.3	Label	Polyester	NA	1 No.
3	Pillar loop assembly			
3.1	Pillar Loop	Sheetmetal and Plastic	Sheetmetal with Plastic injection over molding	1 No.
3.2	Pillar Loop bolt	Steel	Forging and Thread rolling	1 No.
3.3	Transport washer	Cardboard	Dinking tool	1 No.
3.4	Washer (5) mm	Steel	Sheetmetal Press tool	1 No.
3.5	Washer (2mm)	Steel	Sheetmetal Press tool	1 No.
4 Tongue		Steel and Plastic	Sheetmetal with Plastic injection over molding	1 No.
5	Tongue stop male	Plastic	Plastic injection molding	1 No.
6	Tongue stop female	Plastic	Plastic injection molding	1 No.
7	Anchor plate assembly	Charl	Chtt- Du	1.01-
7.1	Anchor plate	Steel Steel	Sheetmetal Press tool	1 No.
7.2	Anchor plate bolt	Sieei	Forging and Thread rolling	1 No.

TYPES OF SEATBELT TECHNOLOGIES

1]Automatic locking retractor:

An Automatic Locking Retractor (ALR) locks when the continuous motion of spooling the belt out is stopped. Once the occupant has pulled the lap belt into place and the seat belt tongue is inserted into the buckle, the ALR allows the extra seat belt webbing to retract into the retractor until the webbing is tight around the occupant's hips and all slack in the belt is removed. At this point a bar locks into a spool with gears, and prevents any further webbing from being released. The limitation of an ALR is that once the webbing is locked in place, it can become uncomfortable and tight for the occupant if they try to move, because more webbing cannot be withdrawn from the retractor. This function is also called child restraint mode, as the ALR function can be used for securing child seats. ALRs are an older design, though still popular today.

2] Emergency locking retractors (ELR):

The Emergency locking retractors are the An Emergency Locking Retractor (ELR) is a seat belt retractor that locks only in response to the rapid deceleration of a vehicle or rapid spooling out of the seat belt webbing from the retractor, this type of seatbelt generally consist of retractor that responds to the input from sensors namely the Webbing sensor as well as the car sensor which if the criteria is met allow the belt to be locked. The disadvantage of this type of belts is that the load acting on the occupant remains constant which results in huge amount of load acting on the chest and rib cage of the occupant.

3] ELR with load-limiter:

This system uses load limiters to minimize belt-inflicted injuries. The basic idea of a load limiter is to ensure controlled release of webbing when a great deal of force is applied to the belt. The simplest load limiter is a fold sewn into the belt webbing. The stitches holding the fold in place are designed to break when a certain amount of force is applied to the belt. When the stitches come apart, the webbing unfolds, allowing the belt to extend a little bit more.

More advanced load limiters rely on a torsion bar in the retractor mechanism. A torsion bar is just a length of metal material that will twist when enough force is applied to it. In a load limiter, the torsion bar is secured to the locking mechanism on one end and the rotating spool on the other. In a less severe accident, the torsion bar will hold its shape, and the spool will lock along with the locking mechanism. But when a great deal of force is applied to the webbing (and therefore the spool), the torsion bar will twist slightly. This allows the webbing to extend a little bit farther.

4] Seatbelts having pretensioners with load limiter

FIG 5.1 Pretensioner and Load limiter

A pretensioner is designed to retract and remove slack of a seatbelt the instant a collision occurs, tightening the seatbelt to restrain occupants quickly and reducing the amount they are thrown forward in a moderate or severe frontal crash. Load limiters help protect occupants from seatbelt-inflicted injury. In the event of a crash, the pretensioner restrains the occupant until certain amount of force is applied. At this point the load limiter releases the webbing gradually so as not to exert too much force on the chest of the occupant.

5] Motorized seatbelt:

Motorized Seat Belt (MSB) technology can supply fast and strong reversible retraction of the seatbelt during critical driving situations. The MSB responds to input from the vehicle allowing pre- and in-crash phase occupant protection. In addition to improving pre-crash restraint performance, our MSB creates a more ergonomic feeling for the occupant by lowering the chest pressure of the seatbelt. MSB design is capable of providing vibro-tactile seatbelt warnings in critical takeover situations. This feature improves effectiveness of visual and acoustic vehicle signals alone.

MARKET SURVEY

A market survey was conducted on a list of vehicles regarding the type of seatbelt technology being used in the vehicle. A variety of cars of different categories were taken into account.

6.1] Purpose of the survey:

The main purpose of the survey was to gather information related to the type of seatbelt that are being used to identify the level of safety that is being provided in the vehicle.

6.2] Data collected:

6.2.1] Front row:

OEM	TYPE	CAR	TYPE OF RETRACTOR	MANUFACTURER
				DBI INDIA
			ELR(EMERGENCY	AUTOTECH PVT.
GENERAL MOTORS	HATCHBACK	BEAT	LOCKING RETRACTOR)	LTD.
GENERAL MOTORS	HATCHBACK	CRUZE	PRETENSIONER	GENERAL MOTORS
MAHINDRA AND	SUBCOMPACT			AUTOLIV INDIA
MAHINDRA	CROSSOVER SUV	TUV 300	PRETENSIONER	PVT. LTD.
MAHINDRA AND				AUTOLIV INDIA
MAHINDRA	SUV	SCORPIO	PRETENSIONER	PVT. LTD.
MAHINDRA AND	SUBCOMPACT			RANE TRW
MAHINDRA	CROSSOVER SUV	XUV300	PRETENSIONER	SYSTEMS
MAHINDRA AND			ELR(EMERGENCY	AUTOLIV INDIA
MAHINDRA	SUV	BOLERO	LOCKING RETRACTOR)	PVT. LTD.
MAHINDRA AND				RANE TRW
MAHINDRA	SUV	XUV 500	PRETENSIONER	SYSTEMS
			ELR(EMERGENCY	AUTOLIV INDIA
TATA MOTORS	HATCHBACK	NANO	LOCKING RETRACTOR)	PVT. LTD.
			ELR(EMERGENCY	AUTOLIV INDIA
TATA MOTORS	HATCHBACK	NANO	LOCKING RETRACTOR)	PVT. LTD.
			ELR(EMERGENCY	AUTOLIV INDIA
TATA MOTORS	НАТСНВАСК	NANO	LOCKING RETRACTOR)	PVT. LTD.
			ELR(EMERGENCY	AUTOLIV INDIA
TATA MOTORS	HATCHBACK	NANO	LOCKING RETRACTOR)	PVT. LTD.
NISSAN MOTOR			ELR(EMERGENCY	RANE TRW
CORPORATION	SUV	TERRANO	LOCKING RETRACTOR)	SYSTEMS
NISSAN MOTOR			ELR(EMERGENCY	TAKATA INDIA PVT.
CORPORATION	HATCHBACK	MICRA	LOCKING RETRACTOR)	LTD.
TOYOTA MOTOR				AUTOLIV INDIA
CORPORATION	MPV	INNOVA	PRETENSIONER	PVT. LTD.
HONDA MOTOR				TAKATA INDIA PVT.
COMPANY	SEDAN	CITY	PRETENSIONER	LTD.
HONDA MOTOR			ELR(EMERGENCY	TAKATA INDIA PVT.
COMPANY	HATCHBACK	JAZZ	LOCKING RETRACTOR)	LTD.
HONDA MOTOR	SUBCOMPACT	14/51/	ELR(EMERGENCY	TAKATA INDIA PVT.
COMPANY	CROSSOVER SUV	WRV	LOCKING RETRACTOR)	LTD.

HONDA MOTOR			ELR(EMERGENCY	AUTOLIV INDIA
COMPANY	SEDAN	AMAZE	LOCKING RETRACTOR)	PVT. LTD.
HYUNDAI MOTOR			ELR(EMERGENCY	SS
COMPANY	HATCHBACK	I 20	LOCKING RETRACTOR)	MANUFACTURING
HYUNDAI MOTOR			ELR(EMERGENCY	AUTOLIV INDIA
COMPANY	HATCHBACK	I 10	LOCKING RETRACTOR)	PVT. LTD.
HYUNDAI MOTOR			ELR(EMERGENCY	SS
COMPANY	SEDAN	XCENT	LOCKING RETRACTOR)	MANUFACTURING
HYUNDAI MOTOR				SS
COMPANY	SEDAN	VERNA	PRETENSIONER	MANUFACTURING
HYUNDAI MOTOR			ELR(EMERGENCY	SS
COMPANY	HATCHBACK	EON	LOCKING RETRACTOR)	MANUFACTURING
HYUNDAI MOTOR	SUBCOMPACT			SS
COMPANY	CROSSOVER SUV	VENUE	PRETENSIONER	MANUFACTURING
MARUTI SUZUKI INDIA				RANE TRW
LTD	MPV	ERTIGA	PRETENSIONER	SYSTEMS
MARUTI SUZUKI INDIA			ELR(EMERGENCY	AUTOLIV INDIA
LTD	HATCHBACK	ALTO	LOCKING RETRACTOR)	PVT. LTD.
MARUTI SUZUKI INDIA				TAKATA INDIA PVT.
LTD	HATCHBACK	BALENO	PRETENSIONER	LTD.
MARUTI SUZUKI INDIA				AUTOLIV INDIA
LTD	SEDAN	DZIRE	PRETENSIONER	PVT. LTD.
MARUTI SUZUKI INDIA		CELERIO-	ELR(EMERGENCY	AUTOLIV INDIA
LTD	HATCHBACK	Χ	LOCKING RETRACTOR)	PVT. LTD.
MARUTI SUZUKI INDIA		WAGON-	ELR(EMERGENCY	
LTD	HATCHBACK	R	LOCKING RETRACTOR)	KSS ABHISHEK
MARUTI SUZUKI INDIA				ASHIMORI INDIA
LTD	SEDAN	CIAZ	PRETENSIONER	PVT LTD
FORD MOTOR	SUBCOMPACT	ECO-		RANE TRW
COMPANY	CROSSOVER SUV	SPORT	PRETENSIONER	SYSTEMS
FORD MOTOR		FIGO-	ELR(EMERGENCY	RANE TRW
COMPANY	SEDAN	ASPIRE	LOCKING RETRACTOR)	SYSTEMS
VOLKSWAGEN			ELR(EMERGENCY	
GROUP(SKODA)	SEDAN	RAPID	LOCKING RETRACTOR)	KSS ABHISHEK
			ELR(EMERGENCY	
VOLKSWAGEN GROUP	SEDAN	VENTO	LOCKING RETRACTOR)	KSS ABHISHEK
FIAT CHRYSLER			ELR(EMERGENCY	RANE TRW
AUTOMOBILES	HATCHBACK	PUNTO	LOCKING RETRACTOR)	SYSTEMS
MITSUBISHI MOTORS			ELR(EMERGENCY	TAKATA INDIA PVT.
CORPORATION	SUV	PAJERO	LOCKING RETRACTOR)	LTD.
			ELR(EMERGENCY	SS
GROUPE RENAULT	HATCHBACK	KWID	LOCKING RETRACTOR)	MANUFACTURING
			·	

TABLE 6.1 Front row

6.2.2] Rear row:

HYUNDAI MOTOR	HATCHBA		ELR(EMERGENCY LOCKING	SS
COMPANY	CK	120	RETRACTOR)	MANUFACTURING
			ELR(EMERGENCY LOCKING	AUTOLIV INDIA
MARUTI SUZUKI INDIA LTD	MPV	ERTIGA	RETRACTOR)	PVT. LTD.
MAHINDRA AND			ELR(EMERGENCY LOCKING	RANE TRW
MAHINDRA	SUV	XUV 500	RETRACTOR)	SYSTEMS
HYUNDAI MOTOR			ELR(EMERGENCY LOCKING	SS
COMPANY	SEDAN	XCENT	RETRACTOR)	MANUFACTURING
VOLKSWAGEN			ELR(EMERGENCY LOCKING	
GROUP(SKODA)	SEDAN	RAPID	RETRACTOR)	KSS ABHISHEK
		FIGO	ELR(EMERGENCY LOCKING	RANE TRW
FORD MOTOR COMPANY	SEDAN	ASPIRE	RETRACTOR)	SYSTEMS
TATA 140TODS	НАТСНВА		ELR(EMERGENCY LOCKING	AUTOLIV INDIA
TATA MOTORS	CK	BOLT	RETRACTOR)	PVT. LTD.
CDCUPE DENIALUE	НАТСНВА		ELR(EMERGENCY LOCKING	SS
GROUPE RENAULT	CK	KWID	RETRACTOR)	MANUFACTURING
HONDA MOTOR	НАТСНВА		ELR(EMERGENCY LOCKING	TAKATA INDIA
COMPANY	CK	JAZZ	RETRACTOR)	PVT. LTD.
MITSUBISHI MOTORS			ELR(EMERGENCY LOCKING	TAKATA INDIA
CORPORATION	SUV	PAJERO	RETRACTOR)	PVT. LTD.
	НАТСНВА		ELR(EMERGENCY LOCKING	
MARUTI SUZUKI INDIA LTD	CK	BALENO	RETRACTOR)	KSS ABHISHEK
FIAT CHRYSLER	НАТСНВА		ELR(EMERGENCY LOCKING	AUTOLIV INDIA
AUTOMOBILES	CK	PUNTO	RETRACTOR)	PVT. LTD.
VOLUCIAL CENTODOTIE			ELR(EMERGENCY LOCKING	
VOLKSWAGEN GROUP	SEDAN	VENTO	RETRACTOR)	KSS ABHISHEK
			ELR(EMERGENCY LOCKING	
MARUTI SUZUKI INDIA LTD	SEDAN	DZIRE	RETRACTOR)	KSS ABHISHEK
AAA DUTU CUTUUU INIDIA LTD	НАТСНВА	CELERIO-	ELR(EMERGENCY LOCKING	TAKATA INDIA
MARUTI SUZUKI INDIA LTD	CK	Χ	RETRACTOR)	PVT. LTD.
TATA MACTORS			ELR(EMERGENCY LOCKING	AUTOLIV INDIA
TATA MOTORS	SUV	HEXA	RETRACTOR)	PVT. LTD.
MAHINDRA AND	COMPACT		ELR(EMERGENCY LOCKING	RANE TRW
MAHINDRA	SUV	XUV 300	RETRACTOR)	SYSTEMS
MAHINDRA AND			ELR(EMERGENCY LOCKING	AUTOLIV INDIA
MAHINDRA	SUV	SCORPIO	RETRACTOR)	PVT. LTD.
A A A BUITL CUTI W. INDIA : TO			ELR(EMERGENCY LOCKING	
MARUTI SUZUKI INDIA LTD	SEDAN	CIAZ	RETRACTOR)	KSS ABHISHEK
HYUNDAI MOTOR	НАТСНВА		ELR(EMERGENCY LOCKING	SS
COMPANY	CK	EON	RETRACTOR)	MANUFACTURING
MAHINDRA AND			ELR(EMERGENCY LOCKING	AUTOLIV INDIA
MAHINDRA	SUV	TUV 300	RETRACTOR)	PVT. LTD.
FORD MACTOR COMARANY	COMPACT	ECO-	ELR(EMERGENCY LOCKING	RANE TRW
FORD MOTOR COMPANY	SUV	SPORT	RETRACTOR)	SYSTEMS

TABLE 6.2 Rear row

6.2.3] Count of car by type:

TYPE	Count of CAR
НАТСНВАСК	15
MPV	2
SEDAN	9
SUBCOMPACT CROSSOVER SUV	5
suv	7

TABLE 6.3 Cars and type

FIG 6.1 Cars and type

6.2.4] Manufacturer of front row belt:

MANUFACTURER	*	Count of CAR
ASHIMORI INDIA PVT LTD		1
AUTOLIV INDIA PVT. LTD.		13
DBI INDIA AUTOTECH PVT. LTD	Ο.	1
GENERAL MOTORS		1
KSS ABHISHEK		3
RANE TRW SYSTEMS		7
SS MANUFACTURING		6
TAKATA INDIA PVT. LTD.		6

TABLE 6.4 Manufacturer of front row belt

FIG 6.2 Manufacturer of front row belt

6.2.5] Count of car by type of retractor on the front row:

TYPE OF RETRACTOR	¥	OEM	¥	Count of CAR
■ ELR(EMERGENCY LOCKING RETRACTOR))	FIAT CHRYSLER AUTOMOBILES		1
ELR(EMERGENCY LOCKING RETRACTOR)	FORD MOTOR COMPANY		1
ELR(EMERGENCY LOCKING RETRACTOR))	GENERAL MOTORS		1
ELR(EMERGENCY LOCKING RETRACTOR))	GROUPE RENAULT		1
ELR(EMERGENCY LOCKING RETRACTOR)	HONDA MOTOR COMPANY		3
ELR(EMERGENCY LOCKING RETRACTOR)	HYUNDAI MOTOR COMPANY		4
ELR(EMERGENCY LOCKING RETRACTOR)	MAHINDRA AND MAHINDRA		1
ELR(EMERGENCY LOCKING RETRACTOR)	MARUTI SUZUKI INDIA LTD		3
ELR(EMERGENCY LOCKING RETRACTOR)	MITSUBISHI MOTORS CORPORATION	ı	1
ELR(EMERGENCY LOCKING RETRACTOR)	NISSAN MOTOR CORPORATION		2
ELR(EMERGENCY LOCKING RETRACTOR))	TATA MOTORS		3
ELR(EMERGENCY LOCKING RETRACTOR)	VOLKSWAGEN GROUP		1
ELR(EMERGENCY LOCKING RETRACTOR)	VOLKSWAGEN GROUP(SKODA)		1
■ PRETENSIONER		FORD MOTOR COMPANY		1
PRETENSIONER		GENERAL MOTORS		1
PRETENSIONER		HONDA MOTOR COMPANY		1
PRETENSIONER		HYUNDAI MOTOR COMPANY		2
PRETENSIONER		MAHINDRA AND MAHINDRA		4
PRETENSIONER		MARUTI SUZUKI INDIA LTD		4
PRETENSIONER		TATA MOTORS		1
PRETENSIONER		TOYOTA MOTOR CORPORATION		1

TABLE 6.5 Count of car by type of retractor on the front row

FIG 6.3 Count of car by type of retractor on the front row

6.2.6] Manufacturer of rear row belt:

MANUFACTURER -	Count of CAR
AUTOLIV INDIA PVT. LTD.	6
KSS ABHISHEK	5
RANE TRW SYSTEMS	4
SS MANUFACTURING	4
TAKATA INDIA PVT. LTD.	3

TABLE 6.6 Manufacturer of rear row belt

FIG 6.4 Manufacturer of rear row belt

6.2.7]Type of retractor in the rear:

TYPE	¥	TYPE OF RETRACTOR	¥	Count of CAR
■ COMPACT SUV		ELR(EMERGENCY LOCKING RETRACTOR	₹)	2
■ HATCHBACK ELR(E		ELR(EMERGENCY LOCKING RETRACTOR	₹)	8
■ MPV		ELR(EMERGENCY LOCKING RETRACTOR	₹)	1
■ SEDAN	■ SEDAN ELR(EMERGENCY LOCKING RETRACTOR)		₹)	6
■ SUV		ELR(EMERGENCY LOCKING RETRACTOR	₹)	5

TABLE 6.6 Type of retractor in the rear along with type of car

FIG 6.5 Type of retractor in the rear along with type of car

CONCLUSION

- From the survey conducted from table 6.5 we can see that 60.5% (23 out of 38) of the cars considered for the front row have **ELR** (**Emergency Locking Retractor**) in them and 39.5% (15 out of 38) cars have **Pretensioner** in them. Thus, it is advisable for Original Equipment Manufacturers to use **Pretensioners** so as to reduce the slack and tighten the belt before the occurrence of crash or collision. Also **Load limiters** can also be used in the front row for all vehicles as it reduces the load acting on the rib cage of the passenger. This also would prove beneficial to old people who are prone to injuries more easily. Thus, Original Equipment Manufacturers should emphasize on providing **Pretensioners** along with **Load-limiters** in the front row.
- From table 6.6 and figure 6.5 it can be seen that all the type of vehicles use an **Emergency Locking Retractor** in the rear and the **Pretensioner** is not found in any of the vehicle. Here, as we know that the rear passengers are also not provided with Airbags at the rear they are prone to more injuries. Thus, adding a **Pretensioner** helps in reducing the slack and increase the safety of the passenger also, using a **Load limiter** might reduce the injury inflicted on the occupant. This system would be a boon to the elderly people who usually tend to accommodate the rear row of the vehicle, as they are more prone to injuries the lack of **Pretensioner** and **Load limiter** could lead to the fracture of rib cage of the occupant. Thus, Original Equipment Manufacturers should try to provide **Pretensioners** along with **Load-limiters** in the rear row as well.