Topology - Homework 05

Question 1.

$$\begin{split} &(\mathrm{i}) \\ &d^*(x,x) = \min\{d(x,x),1\} = \min\{0,1\} = 0 \\ &d^*(x,y) = \min\{d(x,y),1\} = \min\{d(y,x),1\} = d^*(y,x) \\ &d^*(x,y) + d^*(y,z) \\ &= \min\{d(x,y),1\} + \min\{d(y,z),1\} \\ &\geq \min\{d(x,y) + d(y,z), d(x,y) + 1, d(y,z) + 1, 2\} \\ &\geq \min\{d(x,z),1\} \\ &= d^*(x,z) \end{split}$$

Then we know that d^* is a metric on X.

(ii)

Consider arbitrary x in X, every basis element contains x include an ϵ -ball based on x.

So all ϵ -balls with $\epsilon < 1$ constitute a basis of a metric topology.

d and d^* have the same ϵ -balls with $\epsilon < 1$, therefore, they induce the same metric topology.

Then we know that \mathcal{T}^* is equal to \mathcal{T} .

Question 2.

For the box topology:

Let (x_n) be a point in R_f and suppose that there is a basic box open set $U = \prod U_n$ such that $(x_n) \in U \subset R_f$, with all U_n open in R and $x_n \in U_n$. This means that for each n there is an $r_n > 0$ such that $(x_n - r_n, x_n + r_n) \subset U_n$.

As (x_n) is eventually zero, there is an index N such that $x_n = 0$ for all n > N. Then the sequence (y_n) with $y_n = x_n$ for $n \le N$ and $y_n = \frac{r_n}{2}$ for n > N is not eventually zero but is in U, which is contradicted with $U \subset R_f$.

Then we know that no point of R_f is an interior point in the box topology, that is, the interior of R_f in the box topology is the empty set.

Every basic open set is of this form:

$$U = U_1 \times U_2 \times \cdots \times U_n \times U_{n+1} \times \cdots$$

Take arbitrary $x \in R^{\omega} - R_f$, and then $x_n \neq 0$ for infinitely many n. When

$$U_n = egin{cases} (x_n - rac{|x_n|}{2}, x + rac{|x_n|}{2}) & x_n
eq 0 \ (-1, 1) & x_n = 0 \end{cases}$$

if $U = \prod U_i$, then $x \in U$ and $U \bigcap R_f = \emptyset$.

Thus, $R^{\omega}-R_f$ is an open set in R^{ω} , that is, R_f is closed, and $\overline{R_f}=R_f$.

For the product topology:

The box topology is finer than the product topology. So there is also no point in R_f being an interior point in the product topology.

Then we know the interior of R_f in the product topology is also the empty set.

Every basic open set of R^{ω} is of this form:

$$U = U_1 \times U_2 \times \cdots \times U_n \times R \times R \times \cdots$$

Take arbitrary $x \in R^{\omega}$, and any basic open set U containing x.

Let
$$y = (x_1, x_2, \dots, x_n, 0, 0, \dots)$$
.

We have $y \in U$ since U only cares about the first n components.

Then we have $x\in \overline{R_f}$, that is $\overline{R_f}=R^\omega.$

Question 3.

 $(R^{\omega}, \mathcal{T}_p)$ is metrizable.

Consider the function $d^\omega((x_i),(y_i))=\sup\{rac{d^*(x_i,y_i)}{i}:i\in N\}$ where $d^*(x,y)=\min\{d(x,y),1\}.$

$$rac{d^*(x_i, z_i)}{i} \leq rac{d^*(x_i, y_i)}{i} + rac{d^*(y_i, z_i)}{i} \leq \ d^\omega((x_i), (y_i)) + d^\omega((y_i), (z_i))$$

$$d^\omega((x_i),(x_i))=\sup\{rac{d^*(x_i,x_i)}{i}:i\in N\}=0$$

$$d^{\omega}((x_i),(y_i)) = \sup\{rac{d^*(x_i,y_i)}{i}: i \in N\} = \sup\{rac{d^*(y_i,x_i)}{i}: i \in N\} = d^{\omega}((y_i),(x_i))$$

Then we know that d^{ω} is a metric on R^{ω} .

Let U be an open set of the metric topology induced from d^{ω} and $x \in U$.

Take an open set $V \in \mathcal{T}_p$ s.t. $x \in V \subset U$.

Take an ϵ -ball $B_D(x,\epsilon)$ from U. Choose enough great N with $\frac{1}{N}<\epsilon$.

Let V be the basis element of \mathcal{T}_p and $V=(x_1-\epsilon,x_1+\epsilon)\times\cdots\times(x_N-\epsilon,x_N+\epsilon)\times R\times R\times\cdots$

As for arbitrary $y \in R^{\epsilon}$ and $i \geq N$, there is $\frac{d^*(x_i, y_i)}{i} \leq \frac{1}{N}$.

Thus, we have $d^{\omega}(x,y) \leq \max\{\frac{d^*(x_1,y_1)}{1}, \frac{d^*(x_2,y_2)}{2}, \cdots, \frac{d^*(x_N,y_N)}{N}, \frac{1}{N}\}.$

If $y \in V$, then $d^{\omega}(x,y) < \epsilon$ and $V \subset B_D(x,\epsilon)$.

If $y \notin V$, then consider a basis element of \mathcal{T}_p $U = \prod U_i$ with U_i being a open set in R when $i = \alpha_1, \dots, \alpha_n$ and $U_i = R$ for other i.

Given $x \in U$, take an open set V from the metric topology s.t. $x \in V \subset U$.

Choose an interval $(x_i - \epsilon_i, x_i + \epsilon_i)$ with $i = \alpha_1, \dots, \alpha_n$.

Let $\epsilon \leq 1$ and define $\epsilon = \min\{\frac{\epsilon}{i} : i = \alpha_1, \dots, \alpha_n\}$.

Take arbitrary $y \in B_D(x,\epsilon)$, as for every i, we have $\frac{d^*(x_i,y_i)}{i} \leq d^\omega(x,y) < \epsilon$.

Since $i=lpha_1,\cdots,lpha_n$, we have $d^\omega(x_i,y_i)<\epsilon_i<\epsilon$, $|x_i-y_i|<\epsilon_i$ and $y\in\prod U_i$.

Then we have $x \in B_D(x, \epsilon) \subset U$.

Now we know d^{ω} is a metric that induces \mathcal{T}_p and $(R^{\omega}, \mathcal{T}_p)$ is metrizable.

 $(R^{\omega}, \mathcal{T}_b)$ is not metrizable.

Question 4.

X is disconnected. Since

 $\{(x,0):x\in R\}\bigcap\{(x,\frac{1}{x}):x\in R^+\}=\varnothing$ and each of the two set is open in R^2 .

Question 5.

Proof:

Consider arbitrary $a\in R^\omega$, and an open set $V=(a_1-1,a_1+1)\times (a_2-1,a_2+1)\times \cdots$.

If $a \in U$, then V consists of bounded sequences.

If $a \notin U$, then V consists of unbounded sequences.

Thus, U and $R^{\omega} - U$ form a separation of R^{ω} with respect to \mathcal{T}_b , that is, $(R^{\omega}, \mathcal{T}_b)$ is disconnected.