## Out[1]:

|     | Unnamed:<br>0 | Category_num | Category         | Age | Sex | ALB       | ALP       | ALT       | AST       | BIL       | CHE       | CHOL      |
|-----|---------------|--------------|------------------|-----|-----|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| 0   | 1             | 0            | 0=Blood<br>Donor | 32  | m   | -0.542701 | -0.603230 | -0.905494 | -0.355457 | -0.202289 | -0.581777 | -1.916091 |
| 1   | 2             | 0            | 0=Blood<br>Donor | 32  | m   | -0.542701 | 0.084054  | -0.411380 | -0.276283 | -0.409283 | 1.354993  | -0.524241 |
| 2   | 3             | 0            | 0=Blood<br>Donor | 32  | m   | 0.916417  | 0.253944  | 0.461714  | 0.573318  | -0.282787 | 0.290683  | -0.169629 |
| 3   | 4             | 0            | 0=Blood<br>Donor | 32  | m   | 0.273710  | -0.622536 | 0.193070  | -0.340231 | 0.453193  | -0.399063 | -0.577433 |
| 4   | 5             | 0            | 0=Blood<br>Donor | 32  | m   | -0.421108 | 0.230777  | 0.289014  | -0.273238 | -0.081542 | 0.432286  | -0.949775 |
|     |               |              |                  |     |     |           |           |           | •••       | •••       |           |           |
| 608 | 609           | 3            | 3=Cirrhosis      | 58  | f   | -1.324372 | -0.838760 | -0.555297 | 3.539307  | -0.173540 | -0.887823 | -1.251194 |
| 609 | 610           | 3            | 3=Cirrhosis      | 59  | f   | -0.455849 | -0.649564 | -0.334624 | 7.674639  | 1.666409  | -1.111648 | -0.781334 |
| 610 | 611           | 3            | 3=Cirrhosis      | 62  | f   | -1.671781 | 13.455196 | -0.991844 | 2.330377  | 2.241393  | -1.203005 | 0.805552  |
| 611 | 612           | 3            | 3=Cirrhosis      | 64  | f   | -3.061418 | 1.338926  | -1.135760 | 0.323615  | 0.516441  | -3.043850 | -2.102261 |
| 612 | 613           | 3            | 3=Cirrhosis      | 64  | f   | -2.192895 | 0.740448  | -1.106977 | 1.986274  | 2.126396  | -2.989036 | -1.561479 |

589 rows × 15 columns

```
In [30]: import matplotlib.pyplot as plt
plt.hist(df.loc[:,'Category_num'])
```

Out[30]: (array([533., 0., 0., 20., 0., 0., 12., 0., 0., 24.]), array([0., 0.3, 0.6, 0.9, 1.2, 1.5, 1.8, 2.1, 2.4, 2.7, 3.]), <BarContainer object of 10 artists>)



```
In [29]: from scipy.stats import chi2 contingency
         cont table=pd.crosstab(df.Category,df.Sex)
         stat,p,dof,expected=chi2 contingency(cont table)
         print('The expected frequency table:',expected)
         print('The p-value for chi2 test:',p)
         if p>0.05:
             print('''The p value is more than 0.05 therefore we accept the null hypothesis''')
             print('No relation betweeen variables')
         elif p<=0.05:
             print('''The p value is less than 0.05 therefore we reject the null hypothesis''')
             print('Variables are related')
         The expected frequency table: [[201.82682513 324.17317487]
          [ 2.68590832 4.31409168]
          [ 7.67402377 12.32597623]
          [ 4.60441426 7.39558574]
          [ 9.20882852 14.79117148]]
         The p-value for chi2 test: 0.2512997391345069
         The p value is more than 0.05
             therefore we accept the null hypothesis
         No relation betweeen variables
 In [4]: | df.columns
 Out[4]: Index(['Unnamed: 0', 'Category num', 'Category', 'Age', 'Sex', 'ALB', 'ALP',
                 'ALT', 'AST', 'BIL', 'CHE', 'CHOL', 'CREA', 'GGT', 'PROT'],
               dtvpe='object')
 In [5]: from sklearn.model selection import train test split
         Y=df.Category num
         X=df.loc[:,['ALB', 'ALP','ALT', 'AST','BIL', 'CHE', 'CHOL', 'CREA', 'GGT', 'PROT']]
         x train,x test,y train,y test=train test split(X,Y,test size=0.2)
         Y.unique()
Out[5]: array([0, 1, 2, 3], dtype=int64)
In [10]: from sklearn.linear model import LogisticRegression
         logreg=LogisticRegression(multi class='multinomial',random state=0)
```

```
In [17]: #doing feature selection using recursive feature elimantion RFE
         from sklearn.feature selection import RFE
         rfe=RFE(logreg, n features to select=6)
         rfe.fit(x train,y train)
         bo=rfe.support
         x train2=x train.loc[:,bo]
         x test2=x test.loc[:,bo]
In [19]: #fitting the Logistic regrssion model
         logregf=logreg.fit(x train2,y train)
         #fitting the predicted y values based on testing set of x
         v pred=logregf.predict(x test2)
In [23]: #printing the coefficients of the model
         logregf.coef
Out[23]: array([[ 1.33615388, 2.00953005, -1.63228573, -0.79185824, -0.00327701,
                 -1.10374112],
                [-1.1723826, -0.07398408, 0.480232, 0.4120778, 0.90836252,
                  0.814904061,
                [-0.95735938, -0.26004419, 0.53478011, 0.14819144, 0.33499215,
                  0.26915206],
                [0.7935881, -1.67550179, 0.61727362, 0.23158899, -1.24007765,
                  0.0196850111)
In [24]: #printing intercepts of the model
         logregf.intercept
Out[24]: array([ 4.55175685, -1.41029173, -1.33684463, -1.80462049])
In [22]: #calculating accuracy of fitted model based on difference
         #between actual y values and predicted y values from our model
         print('The accuracy of our fitted model is:',logregf.score(x test2,y test))
```

The accuracy of our fitted model is: 0.940677966101695

```
In [40]: #printing confusion matrix to visually see accuracy of model
from sklearn import metrics
import seaborn as sns
cm=metrics.confusion_matrix(y_test,y_pred)
plt.figure(figsize=(10,7))
sns.heatmap(cm,annot=True,cmap='Blues_r')
plt.ylabel('Actual label');
plt.xlabel('Predicted label')
```

## Out[40]: Text(0.5, 42.0, 'Predicted label')



In [ ]: