Feuille d'exercices : applications linéaires et matrices

Applications linéaires

Exercice 1 (Applications linéaires ou non?) Dire si les applications suivantes sont des applications linéaires :

1.
$$f: \mathbb{R}^2 \to \mathbb{R}^3$$
, $(x, y) \mapsto (x + y, x - 2y, 0)$;

2.
$$f: \mathbb{R}^2 \to \mathbb{R}^3$$
, $(x,y) \mapsto (x+y, x-2y, 1)$;

3.
$$f: \mathbb{R}^2 \to \mathbb{R}, (x, y) \mapsto x^2 - y^2;$$

4.
$$f: \mathbb{R}[X] \to \mathbb{R}^2, \ P \mapsto (P(0), P'(1)).$$

Exercice 2 (Noyau et image) Soit $f: \mathbb{R}^2 \to \mathbb{R}^3$ l'application linéaire définie par

$$f(x,y) = (x + y, x - y, x + y).$$

Déterminer le noyau de f, son image. f est-elle injective? surjective?

Exercice 3 (Application linéaire donnée par l'image d'une base) Soit $E = \mathbb{R}^3$. On note $\mathcal{B} = \{e_1, e_2, e_3\}$ la base canonique de E et u l'endomorphisme de \mathbb{R}^3 défini par la donnée des images des vecteurs de la base :

$$u(e_1) = -2e_1 + 2e_3$$
, $u(e_2) = 3e_2$, $u(e_3) = -4e_1 + 4e_3$.

- 1. Déterminer une base de ker $\,u.\,u$ est-il injectif? peut-il être surjectif? Pourquoi?
- 2. Déterminer une base de $\operatorname{Im} u$. Quel est le rang de u?
- 3. Montrer que $E = \ker u \bigoplus \operatorname{Im} u$.

Exercice 4 (Définie par une base) On considère dans \mathbb{R}^2 les trois vecteurs u = (1, 1), v = (2, -1) et w = (1, 4).

- 1. Démontrer que (u, v) est une base de \mathbb{R}^2 .
- 2. Pour quelle(s) valeur(s) du réel a existe-t-il une application linéaire $f: \mathbb{R}^2 \to \mathbb{R}^2$ telle que f(u) = (2, 1), f(v) = (1, -1) et f(w) = (5, a)?

Exercice 5 (Noyau prescrit?) Soit $E = \mathbb{R}^4$ et $F = \mathbb{R}^2$. On considère $H = \{(x, y, z, t) \in \mathbb{R}^4; \ x = y = z = t\}$. Existe-t-il des applications linéaires de E dans F dont le noyau est H?

Exercice 6 (A noyau fixé) Soit E le sous-espace vectoriel de \mathbb{R}^3 engendré par les vecteurs u=(1,0,0) et v=(1,1,1). Trouver un endomorphisme f de \mathbb{R}^3 dont le noyau est E.

Exercice 7 (Application linéaire à contraintes) Montrer qu'il existe un unique endomorphisme f de \mathbb{R}^4 tel que, si (e_1, e_2, e_3, e_4) désigne la base canonique, alors on a

1.
$$f(e_1) = e_1 - e_2 + e_3$$
 et $f(2e_1 + 3e_4) = e_2$.

2.
$$\ker(f) = \{(x, y, z, t) \in \mathbb{R}^4, x + 2y + z = 0 \text{ et } x + 3y - t = 0\}.$$

Exercice 8 (Du local au global...) Soit E un espace vectoriel de dimension finie et $f \in \mathcal{L}(E)$. On suppose que, pour tout $x \in E$, il existe un entier $n_x \in \mathbb{N}$ tel que $f^{n_x}(x) = 0$. Montrer qu'il existe un entier n tel que $f^n = 0$.

Matrices

Exercice 9 (Des calculs de produits) Calculer lorsqu'ils sont définis les produits AB et BA dans chacun des cas suivants :

1.
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

2.
$$A = \begin{pmatrix} 0 & 2 & 1 \\ 1 & 1 & 0 \\ -1 & -2 & -1 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 0 & 1 \\ -1 & 1 & 2 \end{pmatrix}$$

3.
$$A = \begin{pmatrix} 1 & 2 \\ 1 & 1 \\ 0 & 3 \end{pmatrix}$$
, $B = \begin{pmatrix} -1 & 1 & 0 & 1 \\ 2 & 1 & 0 & 0 \end{pmatrix}$

Exercice 10 (Commutant) Soient a et b des réels non nuls, et $A = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix}$. Trouver toutes les matrices $B \in \mathcal{M}_2(\mathbb{R})$ qui commutent avec A, c'est-à-dire telles que AB = BA.

Exercice 11 (Annulateur) On considère les matrices

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 3 & 1 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \text{ et } C =$$

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & -1 & -1 \end{pmatrix}$$
. Calculer AB , AC . Que constate-t-

on? La matrice A peut-elle être inversible? Trouver toutes les matrices $F \in \mathcal{M}_3(\mathbb{R})$ telles que AF = 0 (où 0 désigne la matrice nulle).

Exercice 12 (Produit non commutatif) Déterminer deux éléments A et B de $\mathcal{M}_2(\mathbb{R})$ tels que : AB = 0 et $BA \neq 0$.

Exercice 13 (Matrices stochastiques en petite taille)

On dit qu'une matrice $A \in \mathcal{M}_n(\mathbb{R})$ est une matrice stochastique si la somme des coefficients sur chaque colonne de A est égale à 1. Démontrer que le produit de deux matrices stochastiques est une matrice stochastique si n=2. Reprendre la question si n=3.

Exercice 14 (Puissance *n*-ième, par récurrence) Calculer la puissance *n*-ième des matrices suivantes :

$$A = \left(\begin{array}{cc} 1 & -1 \\ -1 & 1 \end{array}\right), \ B = \left(\begin{array}{cc} 1 & 1 \\ 0 & 2 \end{array}\right).$$

Exercice 15 (Puissance n-ième - avec la formule du binôme) Soit

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \quad I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \text{ et } B = A - I.$$

Calculer B^n pour tout $n \in \mathbb{N}$. En déduire A^n .

Exercice 16 (Puissance *n*-ième - avec un polynôme annulateur)

- 1. Pour $n \ge 2$, déterminer le reste de la division euclidienne de X^n par $X^2 3X + 2$.
- 2. Soit $A = \begin{pmatrix} 0 & 1 & -1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}$. Déduire de la question précédente la valeur de A^n , pour $n \ge 2$.

Exercice 17 (Inverser une matrice sans calculs!)

- 1. Soit $A=\begin{pmatrix} -1&1&1\\1&-1&1\\1&1&-1 \end{pmatrix}$. Montrer que $A^2=2I_3-A$, en déduire que A est inversible et calculer A^{-1}
- 2. Soit $A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & 1 \\ 1 & -2 & 0 \end{pmatrix}$. Calculer $A^3 A$. En déduire que A est inversible puis déterminer A^{-1} .
- 3. Soit $A = \begin{pmatrix} 0 & 1 & -1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}$. Calculer $A^2 3A + 2I_3$. En déduire que A est inversible, et calculer A^{-1} .

Exercice 18 (Inverse avec calculs!) Dire si les matrices suivantes sont inversibles et, le cas échéant, calculer leur inverse :

$$A = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 1 \\ 2 & 1 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 1 & 2 \\ 0 & 2 & 3 \end{pmatrix}.$$

Exercice 19 (Matrice nilpotente) Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice nilpotente, c'est-à-dire qu'il existe $p \geqslant 1$ tel que $A^p = 0$. Démontrer que la matrice $I_n - A$ est inversible, et déterminer son inverse.

Exercice 20 (Explicite...) Calculer le rang des matrices suivantes :

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{pmatrix} \quad B = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{pmatrix}$$
$$C = \begin{pmatrix} 1 & 2 & 3 & 2 \\ 2 & 3 & 4 & 2 \\ 3 & 4 & 5 & 2 \end{pmatrix}$$

Exercice 21 (Avec un paramètre) Déterminer, suivant la valeur du réel a, le rang de la matrice suivante :

$$A = \begin{pmatrix} 1 & a & a^2 & a^3 \\ a & a^2 & a^3 & 1 \\ a^2 & a^3 & 1 & a \\ a^3 & 1 & a & a^2 \end{pmatrix}.$$

Exercice 22 (Matrices et suites) Soient (a_n) , (b_n) et (c_n) trois suites réelles telles que $a_0 = 1$, $b_0 = 2$, $c_0 = 7$, et vérifiant les relations de récurrence :

$$\begin{cases} a_{n+1} = 3a_n + b_n \\ b_{n+1} = 3b_n + c_n \\ c_{n+1} = 3c_n \end{cases}$$

On souhaite exprimer a_n , b_n , et c_n uniquement en fonction de n.

- 1. On considère le vecteur colonne $X_n=\begin{pmatrix} a_n\\b_n\\c_n\end{pmatrix}$. Trouver une matrice A telle que $X_{n+1}=AX_n$. En déduire que $X_n=A^nX_0$.
- 2. Soit $N = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$. Calculer N^2 , N^3 , puis N^p pour $p \ge 3$.
- 3. Montrer que:

$$A^{n} = 3^{n}I + 3^{n-1}nN + 3^{n-2}\frac{n(n-1)}{2}N^{2}.$$

4. En déduire a_n , b_n et c_n en fonction de n.

Exercice 23 (Donnée par une matrice) On considère 2. Soit E un \mathbb{R} -espace vectoriel et $f \in \mathcal{L}(E)$ tel que l'endomorphisme f de \mathbb{R}^3 dont la matrice dans la base canonique est:

$$A = \left(\begin{array}{rrr} 1 & 1 & 1 \\ -1 & 2 & -2 \\ 0 & 3 & -1 \end{array}\right).$$

Donner une base de $\ker(f)$ et de $\operatorname{Im}(f)$.

Exercice 24 (Réduction) On considère l'endomorphisme f de \mathbb{R}^3 dont la matrice dans la base canonique

$$M = \left(\begin{array}{rrr} 1 & 1 & -1 \\ -3 & -3 & 3 \\ -2 & -2 & 2 \end{array}\right).$$

Donner une base de ker(f) et de Im(f). En déduire que $M^n = 0$ pour tout $n \geqslant 2$.

Exercice 25 (Changement de base) Soit u l'application linéaire de \mathbb{R}^3 dans \mathbb{R}^2 dont la matrice dans leur base canonique respective est

$$A = \left(\begin{array}{ccc} 2 & -1 & 1 \\ 3 & 2 & -3 \end{array}\right).$$

On appelle (e_1, e_2, e_3) la base canonique de \mathbb{R}^3 et (f_1, f_2) celle de \mathbb{R}^2 . On pose

$$e'_1 = e_2 + e_3, \ e'_2 = e_3 + e_1, \ e'_3 = e_1 + e_2$$

$$f'_1 = \frac{1}{2}(f_1 + f_2), \ f'_2 = \frac{1}{2}(f_1 - f_2).$$

- 1. Montrer que (e_1',e_2',e_3') est une base de \mathbb{R}^3 puis que (f_1', f_2') est une base de \mathbb{R}^2 .
- 2. Quelle est la matrice de u dans ces nouvelles bases?

Exercice 26 (Application linéaire définie sur les ma**trices)** Soient $A = \begin{pmatrix} -1 & 2 \\ 1 & 0 \end{pmatrix}$ et f l'application de 2. En déduire la valeur de Δ_n pour tout $n \geqslant 1$. $M_2(\mathbb{R})$ dans $M_2(\mathbb{R})$ définie par f(M) = AM.

- 1. Montrer que f est linéaire.
- 2. Déterminer sa matrice dans la base canonique de $M_2(\mathbb{R}).$

Déterminants

Exercice 27 (Pour s'échauffer...)

1. Calculer le déterminant suivant :

$$\left|\begin{array}{ccccc} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1 \end{array}\right|.$$

 $f^2 = -Id_E$. Que dire de la dimension de E?

Exercice 28 (Divisible sans calculs!) Montrer, sans le calculer, que le déterminant suivant est divisible par 13 :

$$\left|\begin{array}{ccc} 5 & 2 & 1 \\ 4 & 7 & 6 \\ 6 & 3 & 9 \end{array}\right|.$$

Exercice 29 (Calcul sans développer) Montrer que

$$D = \begin{vmatrix} 1+a & a & a \\ b & 1+b & b \\ c & c & 1+c \end{vmatrix} = 1+a+b+c \text{ sans le}$$
développer

Exercice 30 (Sous forme factorisée) Calculer en mettant en évidence la factorisation le déterminant suivant :

$$D = \begin{vmatrix} 1 & \cos a & \cos 2a \\ 1 & \cos b & \cos 2b \\ 1 & \cos c & \cos 2c \end{vmatrix}.$$

Exercice 31 (Tridiagonal) Soit Δ_n le déterminant de taille n suivant :

$$\Delta_n = \begin{vmatrix} 3 & 1 & 0 & \dots & 0 \\ 2 & 3 & 1 & \ddots & \vdots \\ 0 & 2 & 3 & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & 1 \\ 0 & \dots & 0 & 2 & 3 \end{vmatrix}.$$

- 1. Démontrer que, pour tout $n \geqslant 1$, on a $\Delta_{n+2} =$ $3\Delta_{n+1}-2\Delta_n$.

Exercice 32 (Calcul à l'aide d'une fonction affine) Soit $A = (a_{i,j}) \in M_n(\mathbb{R})$. On note A(x) la matrice dont le terme général est $a_{i,j} + x$.

- 1. Montrer que la fonction $x \mapsto \det(A(x))$ est une fonction polynômiale de degré inférieur ou égal à 1.
- 2. Pour a et b deux réels distincts et $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$, en déduire la valeur du déterminant suivant

$$\begin{vmatrix} \alpha_1 & a & \dots & a \\ b & \alpha_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & a \\ b & \dots & b & \alpha_n \end{vmatrix}.$$

Exercice 33 (Imbriqué...) Soient $s_1, \ldots, s_n \in \mathbb{R}$. Calculer le déterminant suivant :

$$\begin{vmatrix} s_1 & \dots & s_1 \\ \vdots & s_2 & \dots & s_2 \\ \vdots & \vdots & \ddots & \vdots \\ s_1 & s_2 & \dots & s_n \end{vmatrix}.$$

Exercice 34 (Tridiagonal) Soient a, b, c des réels et Δ_n le déterminant de la matrice $n \times n$ suivant :

$$\Delta_n = \begin{vmatrix} a & b & 0 & \dots & 0 \\ c & a & b & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & b \\ 0 & \dots & 0 & c & a \end{vmatrix}.$$

- 1. Démontrer que, pour tout $n \geqslant 1$, on a $\Delta_{n+2} = a\Delta_{n+1} bc\Delta_n$.
- 2. On suppose que $a^2=4bc$. Démontrer que, pour tout $n\geqslant 1,$ on a $\Delta_n=\frac{(n+1)a^n}{2^n}.$

Exercice 35 (Pleins de -1!) Soit $A = (a_{i,j})_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{K})$ et soit $B = (b_{i,j})_{1 \leq i,j \leq n}$ définie par $b_{i,j} = (-1)^{i+j}a_{i,j}$. Calculer $\det(B)$ en fonction $\det(A)$.

Exercice 36 (Matrice compagnon) Soient a_0, \ldots, a_{n-1} n nombres complexes et soit

$$A = \begin{pmatrix} 0 & \dots & 0 & a_0 \\ 1 & \ddots & \vdots & a_1 \\ 0 & \ddots & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & \vdots \\ 0 & \dots & 0 & 1 & a_{n-1} \end{pmatrix}.$$

Calculer $\det(A - xI_n)$.

Exercice 37 (Sur des polynômes) Soit $u \in \mathcal{L}(\mathbb{R}_n[X])$. Calculer $\det(u)$ dans chacun des cas suivants :

- 1. u(P) = P + P';
- 2. u(P) = P(X+1) P(X);
- 3. u(P) = XP' + P(1).

Exercice 38 (Inversibilité) Pour $\alpha \in \mathbb{R}$, on considère

$$M_{\alpha} = \left(\begin{array}{ccc} 1 & 3 & \alpha \\ 2 & -1 & 1 \\ -1 & 1 & 0 \end{array} \right).$$

Déterminer les valeurs de α pour lesquelles l'application linéaire associée à M_{α} est bijective.

Exercice 39 (Inversibilité d'une matrice à paramètres)

Étudier, suivant la valeur du paramètre $a \in \mathbb{R}$ ou $m \in \mathbb{R}$, l'inversibilité des matrices suivantes :

$$A = \begin{pmatrix} a & -1 & 0 & -1 \\ -1 & a & -1 & 0 \\ 0 & -1 & a & -1 \\ -1 & 0 & -1 & a \end{pmatrix} \text{ et } B = \begin{pmatrix} 0 & m & m & 0 \\ 1 & m-1 & 2m-1 & 0 \\ 0 & m & m & 0 \\ 1 & m & 3m-1 & 0 \end{pmatrix}$$

0.0.1 Symétrie et projection

Exercice 40 () On considère $s \mid \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ $(x,y) \longmapsto (x+2y,-y)$.

- 1. Montrer que s est une symétrie. Préciser ses éléments caractéristiques.
- 2. Démontrer $p = \frac{\text{Id} + s}{2}$ est une projection.

Exercice 41 () On considère les espaces $F = \{(x, y, z) \in \mathbb{R}^3 | x + 2y + z = 0 \text{ et } 2x + y - z = 0\}$ et $G = \{(x, y, z) \in \mathbb{R}^3 | x + y + 2z = 0\}.$

- 1. Déterminer une base de F, puis démontrer que F et G sont supplémentaires dans \mathbb{R}^3 .
- 2. Soit p la projection sur F parallèlement à G et $(x,y,z) \in \mathbb{R}^3$. Déterminer les coordonnées de p(x,y,z). Même question avec q la projection sur G parallèlement à F.

Exercice 42 () Soit E un espace vectoriel et p, q deux projecteurs de E tels que $p \neq 0$, $q \neq 0$ et $p \neq q$. Démontrer que (p, q) est une famille libre de $\mathcal{L}(E)$.

Exercice 43 Soient E_1, \ldots, E_n des sous-espaces vectoriels de E. On suppose que $E_1 \oplus \cdots \oplus E_n = E$. On note p_i le projecteur sur E_i parallèlement à $\bigoplus_{j \neq i} E_j$. Montrer que $p_i \circ p_j = 0$ si $i \neq j$ et $p_1 + \cdots + p_n = \mathrm{Id}_E$.

0.0.2 Forme linéaire

Exercice 44 (Une forme linéaire) Déterminer la forme linéaire f définie sur \mathbb{R}^3 telle que

$$f(1,1,1) = 0$$
, $f(2,0,1) = 1$ et $f(1,2,3) = 4$.

Donner une base du noyau de f.

Exercice 45 (Une base en dimension 2) Soient f_1, f_2 les deux éléments de $\mathcal{L}(\mathbb{R}^2, \mathbb{R})$ définis par

$$f_1(x,y) = x + y$$
 et $f_2(x,y) = x - y$.

- 1. Montrer que (f_1, f_2) forme une base de $(\mathbb{R}^2)^*$.
- 2. Exprimer les formes linéaires suivantes dans la base (f_1, f_2) :

$$q(x,y) = x$$
, $h(x,y) = 2x - 6y$.