Total Pages: 01	Total Time: 120 Minutes	
Premier University		
Department of Computer Science & Engineering		
3 rd Semester Special Retake Final Exam, Spring 2020 (Total 50 Marks)		
Course Code: MAT 201	Course Title: Engineering Mathematics-III	

Instructions: Answer any five questions. Each question carries equal marks.

1		10
1	Find $z^{1/n}$; for n=4, $z = 1$ -i in C (, the Argand Plane).	10
2	Evaluate $\int_{c}(1-z)dz$, where $c = z(t) = t - it^2$, $0 \le t \le 1$ in C .	10
3	Let $f(z) = 1/z$, (z is in C) and c is the unit circle about the origin oriented	10
	counterclockwise. Can we apply Cauchy Integral Theorem to evaluate $\oint_c f(z)dz$? Evaluate	
	$\oint_{c} f(z) dz$, if possible.	
4	Find the direction cosines and direction angles of the vector $\vec{F} = \hat{i} + 2\hat{j} - 2\hat{k}$.	10
4	Find the direction cosines and direction angles of the vector $F = 1 + 2J - 2K$.	10
5	Find the length of the curve c given by: $x = 2Cost$, $y = 2Sint$, $z = t$; $0 \le t \le 2$.	10
	I me the length of the curve o given by. A 200st, y 20mt, Z t, 0_t_2.	10
6	$\vec{F}(x,y) = y\hat{i} + 2xy\hat{j}$. Let C be the regular closed curve consisting of line segments from (0,	10
	$(0, y) = y_1 + 2xy_1$. Let C be the regular closed curve consisting of the segments from $(0, 0)$ to $(1, 0)$, $(1, 0)$ to $(1, 1)$, and $(1, 1)$ to $(0, 0)$. Verify the Green's Theorem by showing	
	that $\int_{c} (F_1 dx + F_2 dy) = \iint_{D} [(\partial F_2 / \partial x) - (\partial F_1 / \partial y)] dxdy$.	
	that $J_c(\Gamma_1 \mathbf{u} \mathbf{x} + \Gamma_2 \mathbf{u} \mathbf{y}) = JJ_D[(\partial \Gamma_2 \partial \mathbf{x}) - (\partial \Gamma_1 \partial \mathbf{y})]\mathbf{u} \mathbf{x} \mathbf{u} \mathbf{y}.$	
7	Let S be the sphere of radius r about the origin, given in spherical coordinates by: x =	10
	rSinφCosθ, y = rSinφSinθ, and z = rCosφ, $0 \le \theta \le 2\pi$, and $0 \le \phi \le \pi$. Let $\vec{F} = 4yz\hat{j}$, and \vec{F} and	
	$\operatorname{div} \overrightarrow{F}$ are continuous over S, and the region V is enclosed by S. Compute both sides of	
	Gauss's formula (as given in the class) and show that they are equal.	
8	The measure of skewness (S_kP_1) of a distribution is 0.3. The mode and median are 50 and	10
	55 respectively. Find the mean, standard deviation, and S_kP_2 of the distribution.	
9	Find the probability of getting exactly two heads in six tosses of a fair coin.	10
10		1.0
10	Suppose that X has a normal probability distribution with mean 5 and standard deviation	10
	2. Determine the value of $P(1 \le x \le 8)$, for x in X (; you do not need to give values from the	
	table).	

(Page 1 of 1) 1