ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОСТ Р МЭК 60870-5-101— 2006

УСТРОЙСТВА И СИСТЕМЫ ТЕЛЕМЕХАНИКИ

Часть 5 Протоколы передачи

Раздел 101 Обобщающий стандарт по основным функциям телемеханики

IEC 60870-5-101: 2003
Telecontrol equipment and systems —
Part 5: Transmission protocol —
Section 101: Companion standard for basic telecontrol tasks
(IDT)

Издание официальное

Предисловие

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. № 184-ФЗ «О техническом регулировании», а правила применения национальных стандартов Российской Федерации — ГОСТ Р 1.0—2004 «Стандартизация в Российской Федерации. Основные положения»

Сведения о стандарте

- 1 ПОДГОТОВЛЕН ОАО «Научно-исследовательский институт электроэнергетики» (ОАО ВНИИЭ) на основе собственного аутентичного перевода стандарта, указанного в пункте 4
 - 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 396 «Автоматика и телемеханика»
- 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 28 марта 2006 г. № 46-ст
- 4 Настоящий стандарт идентичен международному стандарту МЭК 60870-5-101: 2003 «Устройства и системы телемеханики. Часть 5. Протоколы передачи. Раздел 101. Обобщающий стандарт по основным функциям телемеханики» (IEC 60870-5-101: 2003 «Telecontrol equipment and systems. Part 5. Transmission protocol. Section 101. Companion standard for basic telecontrol tasks»).

При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов соответствующие им национальные стандарты Российской Федерации, сведения о которых приведены в дополнительном приложении А

5 B3AMEH FOCT P M9K 870-5-101-2001

Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячно издаваемых информационных указателях «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агенства по техническому регулированию и метрологии в сети Интернет

© Стандартинформ, 2006

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

Содержание

1	Обл	асть п	рименения	1
2	Hop	мативі	ные ссылки	1
3	Tep	мины і	и определения	2
4	Och	овные	правила	2
			гура протокола	2
	4.2	Физич	еский уро вень	3
	4.3	Каналі	ьный уровень	3
	4.4	Прикла	адной уровень	4
	4.5	Прикла	адной процесс	4
5	Физ	вически	1Й VDOBEHЬ	4
	5.1	Выдер	эжки из стандартов ИСО и МСЭ- Т	4
		5.1.1	Несимметричные цепи обмена по рекомендациям МСЭ-Т V.24 и V.28	4
			Симметричные цепи обмена по рекомендациям МСЭ-Т Х.24 и Х.27	5
		5.1.3	Интерфейсы для коммутируемых сетей связи	6
		5.1.4	Другие совместимые интерфейсы	6
6	Кан		 й уровень	6
			енение требований МЭК 60870-5-1 «Форматы передаваемых кадров».	6
			енение требований МЭК 60870-5-2 «Процедуры в каналах передачи».	6
			Диаграммы переходов состояний	6
		6.2.2	Определение интервала ожидания для повторной передачи кадра	14
			Использование различных сбросов	
7	При	кладно	ой уровень и процесс пользователя	16
			нение требований МЭК 60870-5-3 «Общая структура данных пользователя»	16
			нение требований МЭК 60870-5-4 «Определение и кодирование элементов пользователь-	
			нформации»	18
		7.2.1	ИДЕНТИФИКАТОР ТИПА	18
		7.2.2	Классификатор переменной структуры	21
		7.2.3	Причина передачи	23
		7.2.4	ОБЩИЙ AДРЕС ASDU	27
		7.2.5	АДРЕС ОБЪЕКТА ИНФОРМАЦИИ	
		7.2.6	ЭЛЕМЕНТЫ ИНФОРМАЦИИ	29
	7.3		еление и представление ASDU	41
	-		ASDU для информации о процессе в направлении контроля	41
			ASDU для информации о процессе в направлении управления	83
			ASDU для информации о системе в направлении контроля	
		7.3.4	ASDU для информации о системе в направлении управления	
		7.3.5	ASDU для параметров в направлении управления	95
			ASDU для передачи файлов	
	7.4		енение требований МЭК 60870-5-5 «Основные прикладные функции»	
		7.4.1		106
		7.4.2		107
		7.4.3		107
		7.4.4		107
		7.4.5		107
		7.4.6	Выдержки из функции «Синхронизация часов»	
		7.4.7		110
		7.4.8	Выдержки из функции «Передача интегральных сумм (телесчет)»	
		7.4.9		112
			Выдержки из функции «Загрузка параметров»	
			Выдержки из функции «Тестовая процедура» Выдержки из функции «Пересылка файлов»	
			Выдержки из функции «Определение запаздывания передачи»	128
		7 / 1/	·	128
		7.4.14	процедура чтения	120

8	Bos	зможность взаимодейс	ствия	і (со	вме	СТИМ	иост	гь)														129
	8.1	Система или устройс	тво																			129
	8.2	Конфигурация сети																				129
	8.3	Физический уровень																				130
	8.4	Канальный уровень																				130
	8.5	Прикладной уровень																				131
	8.6	Основные прикладнь	іе фу	/нкц	ии																	135
П	рило	эжение А (справочное)	Свед	ения	100	ООТЕ	етс	твии	1 нац	цион	аль	ных	ста	нда	ртов	Pod	сий	ской	і Фе	дер	a-	
		ции ссылочн	ым м	ежд	уна	роді	ным	ста	нда	рта	М											139

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

УСТРОЙСТВА И СИСТЕМЫ ТЕЛЕМЕХАНИКИ Часть 5 Протоколы передачи Раздел 101 Обобщающий стандарт по основным функциям телемеханики

Telecontrol equipment and systems.

Part 5. Transmission protocol.

Section 101. Companion standard for basic telecontrol tasks

Дата введения — 2006—09—01

1 Область применения

Настоящий стандарт из серии стандартов МЭК 60870-5 распространяется на устройства и системы телемеханики с передачей данных последовательными двоичными кодами для контроля и управления территориально распределенными процессами. Раздел 101 является обобщающим стандартом по основным функциям телемеханики, что дает возможность взаимодействия различной совместимой аппаратуры телемеханики. Настоящий стандарт обобщает взаимоотношения между стандартами МЭК 60870-5-1 — МЭК 60870-5-5 и представляет правила построения функциональных профилей для основных телемеханических задач.

Настоящий стандарт определяет ASDU* с метками времени CP24Время2а, которые включают три байта времени в двоичном коде от миллисекунд до минут. Кроме того, в настоящем стандарте определены ASDU с метками времени CP56Время2а, которые включают семь байтов времени в двоичном коде от миллисекунд до лет (см. пункт 6.8 МЭК 60870-5-4 и 7.2.6.18 настоящего стандарта).

ASDU с метками времени CP56Bремя2а используются, если пункт управления (ПУ) не может добавить время от часов до лет однозначно к получаемым ASDU с метками от миллисекунд до минут. Это может случиться при использовании сетей с неопределенными задержками или когда возникает временный сбой в сети.

Несмотря на то, что настоящий стандарт определяет наиболее важные пользовательские функции, кроме актуальных функций связи, он не может гарантировать полную совместимость и возможность совместной работы аппаратуры различных изготовителей. Обычно требуется дополнительное взаимное соглашение между заинтересованными компаниями в отношении методов использования определенных функций связи, принимая во внимание работу всей аппаратуры телемеханики.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие международные стандарты и документы:

МЭК 60870-1-1 : 1988 Устройства и системы телемеханики. Часть 1. Основные положения. Раздел 1. Общие принципы

МЭК 60870-5-1 : 1990 Устройства и системы телемеханики. Часть 5. Протоколы передачи. Раздел 1. Форматы передаваемых кадров

МЭК 60870-5-2 : 1992 Устройства и системы телемеханики. Часть 5. Протоколы передачи. Раздел 2. Процедуры в каналах передачи

МЭК 60870-5-3 : 1992 Устройства и системы телемеханики. Часть 5. Протоколы передачи. Раздел 3. Общая структура данных пользователя

Издание официальное

^{*} ASDU — Блоки данных прикладного уровня.

МЭК 60870-5-4 : 1993 Устройства и системы телемеханики. Часть 5. Протоколы передачи. Раздел 4. Определение и кодирование элементов пользовательской информации

МЭК 60870-5-5 : 1995 Устройства и системы телемеханики. Часть 5. Протоколы передачи. Раздел 5. Основные прикладные функции

МЭК 60870-5-103: 1997 Устройства и системы телемеханики. Часть 5. Протоколы передачи. Раздел 103. Обобщенный стандарт по информационному интерфейсу для аппаратуры релейной защиты

ИСО/МЭК 8824-1 : 2000 Информационная технология. Абстрактная синтаксическая нотация версии один (АСН.1), Часть 1. Спецификация основной нотации

Рекомендация МСЭ-T V.24: 1993 Перечень определений линий стыка между оконечным оборудованием данных (ООД) (DTE) и аппаратурой окончания канала данных (АКД) (DCE)

Рекомендация МСЭ-Т V.28: 1993 Электрические характеристики несимметричных цепей стыка, работающих двухполюсным током

Рекомендация МСЭ-Т X.24: 1988 Перечень определений цепей стыка между ООД и АКД в сетях данных общего пользования

Рекомендация МСЭ-Т X.27: 1988 Электрические характеристики симметричных цепей стыка, работающих двухполюсным током, используемых в аппаратуре на интегральных схемах в области передачи данных

3 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями:

3.1 обобщающий стандарт (companion standard): Стандарт, добавляющий семантику к определениям базового стандарта или функционального профиля; это может выражаться определением конкретного использования объектов информации или определением дополнительных объектов информации, сервисных процедур и параметров базовых стандартов.

П р и м е ч а н и е — Обобщающий стандарт не меняет стандартов, к которым он относится, но проясняет взаимоотношения между ними при их совместном использовании в определенной области.

- 3.2 **группа (объектов информации)** [group (for information objects)]: Это выборка из ОБЩИХ АДРЕ-СОВ или АДРЕСОВ ИНФОРМАЦИИ, которая специально определяется для конкретных систем.
- 3.3 направление управления (control direction): Направление передачи от контролирующей станции к контролируемой станции.
- 3.4 направление контроля (monitor direction): Направление передачи от контролируемой станции к контролирующей станции.
- 3.5 параметр системы (system parameter): Параметр, действительный для всей системы телемеханики, использующей настоящий обобщающий стандарт; система телемеханики состоит из нескольких контролирующих и контролируемых станций, которые могут быть соединены сетями различной конфигурации.
- 3.6 **параметр, характерный для сети** (network-specific parameter): Параметр, определяющий сеть и действительный для всех станций, соединенных сетями определенной конфигурации.
- 3.7 **параметр, характерный для станции** (station-specific parameter): Параметр, определяющий станцию и действительный для определенных станций.
- 3.8 **параметр, характерный для объекта** (object-specific parameter): Параметр, определяющий объект и действительный для отдельного объекта информации или определенной группы информационных объектов.

4 Основные правила

Настоящий пункт представляет основные правила построения обобщающих стандартов для протоколов передачи систем телемеханики, использующих протоколы стандартов серии МЭК 60870-5. Эти правила приведены в нижеследующих подпунктах.

4.1 Структура протокола

Протоколы стандартов серии МЭК 60870-5 основаны на трехуровневой модели «Структура повышенной производительности» (ЕРА), определенной в пункте 4 МЭК 60870-5-3.

Физический уровень использует рекомендации МСЭ-Т, что соответствует модели двоичного симметричного канала без памяти в требуемой среде, чтобы сохранить высокий уровень достоверности данных при блочном кодировании на канальном уровне.

Канальный уровень содержит ряд процедур передачи по каналу, в явной форме использующих УПРАВЛЯЮЩУЮ ИНФОРМАЦИЮ КАНАЛЬНОГО ПРОТОКОЛА (LPCI), что дает возможность передавать БЛОКИ ДАННЫХ ПРИКЛАДНОГО УРОВНЯ (ASDU) как данные пользователя канала. Канальный уровень использует выбор форматов кадра, чтобы обеспечить требуемую достоверность, эффективность и удобство передачи.

Прикладной уровень содержит ряд «Прикладных функций», включающих передачу БЛОКОВ ДАН-НЫХ ПРИКЛАДНОГО УРОВНЯ между источником и получателем.

Прикладной уровень настоящего обобщающего стандарта не использует в явном виде УПРАВЛЯЮ-ЩУЮ ИНФОРМАЦИЮ ПРОТОКОЛА ПРИКЛАДНОГО УРОВНЯ (APCI). Эта информация содержится в составе поля ИДЕНТИФИКАТОРА БЛОКА ДАННЫХ ASDU и в типе используемого канального сервиса.

На рисунке 1 показана модель структуры повышенной производительности (EPA) и выбранные стандартные определения настоящего обобщающего стандарта.

Выбранные прикладные функции по МЭК 60870-5-5	Процесс пользователя		
Выбранные прикладные элементы информации по МЭК 60870-5-4	Прикладной (уровень 7)		
Выбранные блоки данных прикладного уровня по МЭК 60870-5-3			
Выбранные процедуры передачи по каналу по МЭК 60870-5-2	Канальный (уровень 2)		
Выбранные форматы кадра передачи по МЭК 60870-5-1	Канальный (уровень 2)		
Выбранные рекомендации МСЭ-Т	Физический (уровень 1)		

Рисунок 1 — Выбранные стандартные определения настоящего стандарта

4.2 Физический уровень

В настоящем стандарте приведены рекомендации МСЭ-Т, которые определяют интерфейсы между аппаратурой окончания канала данных (АКД) и оконечным оборудованием данных (ООД) на контролирующей (ПУ — Пункт управления) и контролируемой (КП — Контролируемый пункт) станциях (см. рисунок 2 настоящего стандарта и рисунок 2 МЭК 60870-1-1).

Рисунок 2 — Интерфейсы и соединения между ПУ и КП

Стандартным интерфейсом между ООД и АКД является асинхронный интерфейс по рекомендациям МСЭ-Т V.24 и МСЭ-Т V.28. Использование требуемых сигналов интерфейса зависит от режима работы используемого канала передачи. Настоящий стандарт определяет выбор цепей (сигналов) обмена, которые могут быть использованы, но не все из них являются необходимыми.

П р и м е ч а н и е — Следует избегать методов передачи данных, улучшающих использование полосы частот данного канала передачи, если не будет доказано, что используемый метод (обычно нарушающий требуемые принципы кодирования для канала без памяти) не уменьшает достоверность данных при методе кодирования блока данных выбранного формата кадра на канальном уровне.

4.3 Канальный уровень

МЭК 60870-5-2 предлагает выбор процедур передачи по каналу с использованием поля управления и необязательного поля адреса. Канал между станциями может работать в балансном или небалансном

режиме. Соответствующие функциональные коды для поля управления определяются для обоих режимов работы.

Если каналы от ПУ к нескольким КП используют общий физический канал, то эти каналы должны работать в небалансном режиме, чтобы исключить возможность попыток более чем одного КП передавать по каналу одновременно. Последовательность, с которой различным КП разрешен доступ к передаче по каналу, определяется процедурой прикладного уровня на ПУ (см. подпункт 6.2 «Сбор данных при помощи опроса» МЭК 60870-5-5).

Настоящий стандарт определяет, используется ли небалансный или балансный режим передачи; какие канальные процедуры (и соответствующие функциональные коды) должны применяться.

Настоящий стандарт определяет однозначный адрес (номер) для каждого соединения. Каждый адрес может быть единственным внутри данной системы или единственным внутри группы каналов, использующих общий канал. Последнее требует меньшего адресного поля, но ПУ должен устанавливать соответствие между адресами и номером канала.

Настоящий стандарт дает возможность определить один формат кадра, выбранный из нескольких форматов, предлагаемых стандартом МЭК 60870-5-1. Выбранный формат должен обеспечивать требуемую достоверность вместе с максимальной эффективностью, возможной при приемлемом уровне удобства выполнения. Кроме того, настоящий стандарт определяет выдержку тайм-аута (T_o) на первичной станции и максимально допустимое время реакции (T_p) на вторичной станции для всех каналов [см. МЭК 60870-5-2 (приложение A, пункт A.1 в части деталей выбора временных параметров канала)].

4.4 Прикладной уровень

Настоящий стандарт определяет соответствующие ASDU из общей структуры, заданной МЭК 60870-5-3. Эти ASDU построены с применением определений и кодовых обозначений для прикладных элементов информации, заданных МЭК 60870-5-4.

Настоящий стандарт определяет также один выбранный порядок передачи полей прикладных данных (см. МЭК 60870-5-4, подпункт 4.10). Чтобы обеспечить максимально общий подход к программированию на различных ЭВМ телемеханических станций, должен быть выбран порядок передачи многобайтовых полей (режим 1 или режим 2).

4.5 Прикладной процесс

МЭК 60870-5-5 представляет собой набор основных прикладных функций. Настоящий стандарт содержит один или несколько примеров таких функций, выбранных для обеспечения необходимого набора прикладных процедур ввода/вывода, соответствующего требованиям систем телемеханики.

5 Физический уровень

5.1 Выдержки из стандартов ИСО и МСЭ-Т

Имеются следующие фиксированные структуры сети:

- точка-точка;
- радиальная точка-точка;
- многоточечная радиальная;
- магистральная (цепочечная);
- многоточечная кольцевая.

Действительно подмножество, приведенное в рекомендациях МСЭ-Т V.24 и V.28, определенное в МЭК 60870-1-1.

В случае цифровой передачи, использующей дискретный мультиплексор, интерфейс по рекомендациям МСЭ-Т X.24 и X.27 может быть применен по специальной договоренности для каналов до 64 кбит/с (см. 5.1.2).

В настоящем стандарте «Цепь данных» рассматривается отдельно от телемеханических станций, т. к. она часто реализуется в виде отдельной аппаратуры. Настоящий стандарт включает полную спецификацию интерфейса ООД/АКД, но для соответствующей АКД дана только спецификация требований.

5.1.1 Несимметричные цепи обмена по рекомендациям МСЭ-Т V.24 и V.28

Настоящий стандарт определяет подмножество цепей по рекомендации МСЭ-T V.24 с использованием уровней сигналов, определенных в рекомендации МСЭ-T V.28.

Таблица 1 — Выдержки из рекомендаций МСЭ-Т V.24 и V.28

Номер цепи обмена	Іомер цепи обмена Назначение цепи обмена		КАКД
102	Сигнальное заземление или общий обратный провод		
103		+	
104	Принимаемые данные	+	
105* Запрос передачи			+
106**	106** Готовность к передаче		
107**	Приемник данных АКД готов	+	
108* ООД готово			+
109**	Детектор принимаемого линейного сигнала	+	

^{*} Может иметь постоянный потенциал.

Стандартные скорости передачи могут быть определены отдельно для направления передачи и направления приема. Установлены следующие скорости передачи.

Стандартные скорости передачи для интерфейса с частотной модуляцией по рекомендациям МСЭ-Т V.24 и V.28 должны быть:

- 100 бит/с

- 600 бит/с

- 200 бит/с

- 1,2 кбит/с.

- 300 бит/с

Стандартные скорости передачи для интерфейса МОДЕМ по рекомендациям МСЭ-T V.24 и V.28 должны быть:

- 300 бит/с

- 2.4 кбит/с*

- 600 бит/с

- 4.8 кбит/с*

- 1.2 кбит/с

- 9.6 кбит/с*.

Стандартные скорости передачи для мультиплексоров дискретных сигналов (используемых асинхронно) такие же, как для интерфейса МОДЕМ.

5.1.2 Симметричные цепи обмена по рекомендациям МСЭ-Т Х.24 и Х.27

В таблице 2 приведен перечень симметричных интерфейсных цепей по рекомендациям МСЭ-Т Х.24 и Х.27 (используемых при синхронном методе передачи) для мультиплексоров дискретных сигналов. Интерфейсы МСЭ-Т Х.24 и Х.27 работают с симметричными дифференциальными сигналами и предназначены для скорости 64 кбит/с.

Таблица 2 — Выдержки из рекомендаций МСЭ-Т Х.24 и Х.27 для интерфейсов с синхронными мультиплексорами дискретных сигналов

Цепь обмена	Назначение цепи обмена	От АКД	к акд
G	Сигнальное заземление или общий обратный провод		
Т	Передача		+
R	Прием	+	
C*	Управление		+
*	Индикация	+	
S	Синхронизация элементов сигнала	+	

^{*} Если ООД подсоединено к мультиплексору дискретных сигналов, то сигналы управления и индикации необязательны. Однако эти сигналы могут использоваться для целей контроля.

^{**} Цепь необязательна; может быть использована для контроля цепи передачи.

Примечание — Знак «+» означает направление передачи.

Примечание — Знак «+» означает направление передачи.

^{*} См. примечание к подпункту 4.2.

Стандартные скорости передачи могут быть определены отдельно для направления передачи и направления приема. Установлены следующие скорости передачи:

 - 2,4 кбит/с
 - 38,4 кбит/с

 - 4,8 кбит/с
 - 56 кбит/с

 - 9,6 кбит/с
 - 64 кбит/с

- 19.2 кбит/с

5.1.3 Интерфейсы для коммутируемых сетей связи

Настоящий стандарт не определяет применений, использующих коммутируемые сети связи.

5.1.4 Другие совместимые интерфейсы

Другие физические интерфейсы, кроме рекомендуемых в серии стандартов МЭК 60870-5, могут использоваться по согласованию между изготовителем и пользователем. Однако если используются другие интерфейсы, то изготовитель и пользователь должны удостовериться в их функциональности и совместимости.

6 Канальный уровень

В настоящем пункте используются следующие стандарты:

МЭК 60870-5-1 «Форматы передаваемых кадров»;

МЭК 60870-5-2 «Процедуры в каналах передачи».

6.1 Применение требований МЭК 60870-5-1 «Форматы передаваемых кадров»

Настоящий стандарт допускает исключительно формат кадра FT1.2, определенный в МЭК 60870-5-1 (подпункт 6.2.4.2). Допускается формат как с фиксированной, так и с переменной длиной блока, а также передача единичного управляющего символа 1. Если передаются ASDU, то должен использоваться формат с переменной длиной блока. Если ASDU не передаются, то должен использоваться формат с фиксированной длиной блока или единичный символ.

Примечания

- 1 Правила, определенные в МЭК 60870-5-1 (подпункт 6.2.4.2), должны быть полностью соблюдены.
- 2 Кадр FT1.2 основан на асинхронном методе передачи и состоит из 11 битовых символов. Каждый символ начинается стартовым битом «0» и заканчивается стоповым битом «1». Однако при использовании синхронного интерфейса, определенного выше в 5.1.2, элементы сигнала (биты) синхронизируются от АКД и передаются непрерывно. В этом случае кадр передается и принимается изохронно.

Правило передачи R3 (МЭК 60870-5-1, подпункт 6.2.4.2) определяет, что между символами кадра не разрешается иметь интервалы спокойного состояния линии. Этого невозможно достичь в ряде практических реализаций, особенно при высокой скорости передачи из-за неизбежного аппаратного или программного запаздывания.

Однако можно показать, что интервал спокойного состояния линии между символами, имеющий длительность не более чем длина одного передаваемого бита, не уменьшает достоверность кадра. Поэтому правило передачи R3 может быть ослаблено следующим: разрешен интервал между символами не более чем длительность одного передаваемого бита. Интервал между символами увеличивает время передачи информации, критичной ко времени (например, синхронизации часов), что уменьшает точность часов на контролируемой станции (КП).

Приемнику не требуется измерять интервал спокойного состояния линии между символами. Например, приемник может быть реализован с использованием микросхемы последовательного интерфейса (UART) без специального аппаратного или программного контроля длительности промежутков между символами в принимаемом кадре.

6.2 Применение требований МЭК 60870-5-2 «Процедуры в каналах передачи»

Максимальная длина кадров канального уровня устанавливается как фиксированный параметр системы (сети). При необходимости максимальная длина для каждого направления может быть различной.

Кадр фиксированной длины не содержит прикладных данных.

При необходимости применяются режимы передачи: ПОСЫЛКА/БЕЗ ОТВЕТА, ПОСЫЛКА/ПОДТВЕР-ЖДЕНИЕ и ЗАПРОС/ОТВЕТ. Интерфейс между канальным уровнем и пользователем услуг в настоящем стандарте не определяется.

6.2.1 Диаграммы переходов состояний

Настоящий подпункт детализирует базовые определения процедур в канале передачи, приведенные в МЭК 60870-5-2. Диаграммы переходов состояний применяются для более точного определения про-

цедур, с тем чтобы канальные уровни, выполненные различными изготовителями, могли быть полностью совместимыми. Диаграммы переходов состояний представляют состояния (в данном случае для канального уровня, определенного МЭК 60870-5-2) и переходы из одного состояния в другое. Включаются действия: посылки кадра Тх и прием кадра Rx. Кроме состояний в настоящем подпункте описаны важные внутренние процессы.

Диаграммы переходов состояний (см. рисунки 5, 6, 8, 9) представлены в формате, определенном Грэди Бучем (Grady Booch) и Харелом (Harel). Разъяснение отдельных элементов показано на рисунке 3.

Рисунок 3 — Диаграмма переходов состояний

Обозначение in указывает действие, которое проводится, когда происходит переход в данное состояние. Переход в следующее состояние может быть обусловлен окончанием текущего состояния в случае, если не определено событие, вызывающее переход. При перечислении нескольких условий в квадратных скобках запятая соответствует логической операции И. В круглых скобках могут даваться пояснения, в том числе операнды к выполняемым действиям.

Система обозначений в диаграммах переходов состояний (см. рисунки 5, 6, 8, 9) следующая:

от FC0 до FC15 — функциональные коды от 0 до 15 (см. таблицы 1—4 MЭК 60870-5-2);

FCB — бит счета кадров;

FCV — бит счета кадров учитывается;

DFC — контроль потока данных;

ACD — запрос данных (бит требования запроса данных);

PRM — первичное сообщение:

SC — одиночный символ.

6.2.1.1 Процедуры небалансной передачи

В небалансных системах передачи КП вторичен (slave), ПУ — первичен (master).

В иерархических системах любой промежуточный узел является первичным в направлении к КП и вторичным в направлении к ПУ.

RES-биты (резерв) в поле управления не используются и должны иметь значение 0.

Адресное поле А канала — один или два байта, как определено фиксированным параметром системы. Номер адреса для общей (широковещательной) команды (всегда для режима ПОСЫЛКА/БЕЗ ОТВЕТА) — 255 (при однобайтовом адресе) или 65535 (при двубайтовом адресе). Режим ПОСЫЛКА/БЕЗ ОТВЕТА применяется для посылки пользовательских данных ко всем станциям (циркулярный адрес).

Групповые адреса не определяются.

В системах с опросом основная процедура передачи использует для режима ЗАПРОС/ОТВЕТ функциональный код 11 (запрос прикладных данных класса 2). Данные класса 1 указываются с помощью бита АСD, как определено МЭК 60870-5-2. Присвоение причин передачи двум классам определено в 7.4.2 настоящего стандарта. Вторичная станция, не имеющая готовых данных класса 2, может отвечать на запрос данных класса 2 данными класса 1.

Таблица 3 показывает допустимые комбинации для небалансных процедур канального уровня.

Таблица 3 — Допустимые комбинации для небалансных процедур канального уровня

Функциональные коды и услуги в первичном направлении	Разрешенные функциональные коды и услуги во вторичном направлении
<0> Сброс удаленного канала	<0> ПОЛОЖИТЕЛЬНОЕ ПОДТВЕРЖДЕНИЕ или
	<1> ОТРИЦАТЕЛЬНОЕ ПОДТВЕРЖДЕНИЕ
<1> Сброс процесса пользователя	<0> ПОЛОЖИТЕЛЬНОЕ ПОДТВЕРЖДЕНИЕ или
	<1> ОТРИЦАТЕЛЬНОЕ ПОДТВЕРЖДЕНИЕ
<3> ПОСЫЛКА/ПОДТВЕРЖДЕНИЕ данных пользова-	<0> ПОЛОЖИТЕЛЬНОЕ ПОДТВЕРЖДЕНИЕ или
теля	<1> ОТРИЦАТЕЛЬНОЕ ПОДТВЕРЖДЕНИЕ

Окончание таблицы 3

Функциональные коды и услуги в первичном направлении	Разрешенные функциональные коды и услуги во вторичном направлении
<4> ПОСЫЛКА/БЕЗ ОТВЕТА данных пользователя	Нет ответа
<8> ЗАПРОС доступа по требованию	<11> ОТВЕТ: состояние канала
<9> ЗАПРОС/ОТВЕТ. Запрос состояния канала	<11> ОТВЕТ: состояние канала
<10> ЗАПРОС/ОТВЕТ. Запрос данных пользователя	<8> ОТВЕТ: данные пользователя или
класса 1	<9> ОТВЕТ: запрашиваемые данные недоступны
<11> ЗАПРОС/ОТВЕТ. Запрос данных пользователя	<8> ОТВЕТ: данные пользователя или
класса 2	<9> ОТВЕТ: запрашиваемые данные недоступны

Разрешены также ответы <14> «Услуги канала не работают» или <15> «Услуги канала не предусмотрены». Управляющий одиночный символ E5 может быть применен вместо ПОЛОЖИТЕЛЬНОГО ПОДТВЕРЖДЕНИЯ фиксированной длины (вторичный функциональный код <0>) или ОТРИЦАТЕЛЬНОГО ОТВЕТА фиксированной длины (вторичный функциональный код <9>), за исключением тех случаев, когда имеется запрос данных класса 1 (ACD = 1) или дальнейшие сообщения могут вызвать переполнение (DFC = 1). Это показано на рисунках 5 и 6. Одиночный символ A2 не должен использоваться.

Для небалансных процедур передачи первичная станция содержит только первичный канальный уровень, а вторичная станция содержит только вторичный канальный уровень (рисунок 4). Одна первичная станция может быть соединена более чем с одной вторичной станцией. Совместимая связь между первичной станцией и отдельной вторичной станцией относится только к этим двум станциям. Процедура опроса данных с нескольких вторичных станций — локальная внутренняя функция первичной станции — не показана на рисунках 4 — 6. Соответственно эти диаграммы показывают только первичную станцию и одну вторичную станцию. В случае более чем одной вторичной станции первичная станция должна запоминать текущее состояние каждой вторичной станции.

Рисунок 4 — Небалансные процедуры передачи, первичный и вторичный канальные уровни

Примечания к диаграммам переходов состояний:

- 1 Первичный канальный уровень относится к станции А, вторичный к станции-партнеру В.
- 2 Примитивы обмена с пользователями REQ, IND, RESP, CON определены в МЭК 60870-5-2 (пункт 4).

- 3 Одиночный символ может быть использован вторичной станцией вместо FC0 или FC9, кроме случаев, когда ACD = 1 или DFC = 1.
 - 4 Сервис FC1 в направлении от первичной станции не представлен.
- 5 T_o тайм-аут повторения передачи кадров первичной станцией. Тrp интервал времени, в течение которого разрешены повторения. Вместо интервала времени может быть задано допустимое число повторений.

Рисунок 5 показывает диаграмму переходов состояний для первичной станции, а рисунок 6 — то же, для вторичной станции.

Рисунок 5 — Диаграмма переходов состояний для небалансной передачи: первичный канальный уровень

Рисунок 6 — Диаграмма переходов состояний для небалансной передачи: вторичный канальный уровень

6.2.1.2 Процедуры балансной передачи

На посылку любого стандартизованного функционального кода в первичном направлении (коды от 0 до 4 и код 9) должен быть получен положительный или отрицательный ответ. В случае непредусмотренной услуги вторичная станция отвечает функциональным кодом 15.

В таблице 4 показаны допустимые комбинации для услуг балансного канального уровня.

+ - 6 - · · · · ·	4 Потистини и		EOUGHOTO	KAHALIPHOLO AD	ODUG
гаолица	4 — допустимые ко	омбинации для услуг	оаланспого	капальпого ур	JDNA

Функциональные коды и услуги в первичном направлении	Разрешенные функциональные коды и услуги во вторичном направлении
<0> Сброс удаленного канала	<0> ПОЛОЖИТЕЛЬНОЕ ПОДТВЕРЖДЕНИЕ или <1> ОТРИЦАТЕЛЬНОЕ ПОДТВЕРЖДЕНИЕ
<1> Сброс процесса пользователя	<0> ПОЛОЖИТЕЛЬНОЕ ПОДТВЕРЖДЕНИЕ или <1> ОТРИЦАТЕЛЬНОЕ ПОДТВЕРЖДЕНИЕ
<2> ПОСЫЛКА/ПОДТВЕРЖДЕНИЕ функции тестирования канала	<0> ПОЛОЖИТЕЛЬНОЕ ПОДТВЕРЖДЕНИЕ или <1> ОТРИЦАТЕЛЬНОЕ ПОДТВЕРЖДЕНИЕ
<3> ПОСЫЛКА/ПОДТВЕРЖДЕНИЕ данных пользователя	<0> ПОЛОЖИТЕЛЬНОЕ ПОДТВЕРЖДЕНИЕ или <1> ОТРИЦАТЕЛЬНОЕ ПОДТВЕРЖДЕНИЕ
<4> ПОСЫЛКА/БЕЗ ОТВЕТА данных пользователя <9> ЗАПРОС/ОТВЕТ. Запрос состояния канала	Нет ответа <11> ОТВЕТ: Состояние канала

Разрешены также ответы <14> — «Услуги канала не работают» или <15> — «Услуги канала не предусмотрены». Управляющий одиночный символ Е5 может быть применен вместо ПОЛОЖИТЕЛЬНОГО ПОДТВЕРЖДЕНИЯ фиксированной длины (вторичный функциональный код <0>), за исключением случая, когда дальнейшие сообщения могут вызвать переполнение (DFC = 1).

Адресное поле А необязательно. Если оно определено, то состоит из одного или двух байтов (системный параметр). В балансных системах широковещательные команды не применяются. Бит RES в поле управления не используется и устанавливается в ноль.

Канальные уровни для балансных процедур передачи состоят из двух несвязанных логических процессов — один логический процесс представляет станцию А как первичную станцию, а станцию В как вторичную станцию. Другой логический процесс представляет станцию В как первичную станцию, а станцию А как вторичную станцию (каждая станция является комбинированной станцией). Таким образом, на каждой станции существуют два независимых процесса для управления канальным уровнем в логическом первичном и вторичном направлениях. Рисунок 7 показывает типовую организацию канального уровня, использующего балансные процедуры передачи.

Рисунок 7 — Балансная процедура передачи, первичный и вторичный канальные уровни

П р и м е ч а н и е — Физическое направление передачи фиксировано и определено при помощи бита DIR. Логические процессы — первичный или вторичный — могут меняться от станции A к станции B и наоборот. Первичное сообщение определяется значением бита PRM = 1, вторичное сообщение — значением бита PRM = 0 [см. МЭК 60870-5-2 (подпункт 6.1.2)].

DIR определяет физическое направление передачи [см. МЭК 60870-5-2 (подпункт 6.1.2)]:

1 = от станции А (контролирующая) к станции В (контролируемая);

0 = от станции В (контролируемая) к станции А (контролирующая).

Все сообщения, посылаемые контролирующей станцией, имеют в поле управления канала данных бит DIR, установленный в 1. Все сообщения, посылаемые контролируемой станцией, должны иметь в поле управления канала бит DIR, установленный в 0.

Рисунок 8 — Диаграмма переходов состояний для балансной передачи: первичный канальный уровень

В случае двух эквивалентных станций (например два пункта управления) значение DIR устанавливается по договоренности.

Если в балансном режиме определено использование поля адреса, оно должно содержать адрес получателя как в первичном, так и во вторичном сообщениях.

Рисунки 8 и 9 не показывают реакции канального уровня в случае приема искаженных кадров. Эти кадры обычно отбрасываются при помощи определенного процесса, который в настоящем стандарте не рассматривается. Этот процесс также отвечает за управление интервалом времени ожидания. На рисунке 8 показана диаграмма переходов состояний первичного канального уровня для балансных процедур передачи. На рисунке 9 — то же, для вторичного канального уровня.

Рисунок 9 — Диаграмма переходов состояний для балансной передачи: вторичный канальный уровень

6.2.2 Определение интервала ожидания для повторной передачи кадра

Для расчета интервала ожидания (тайм-аута) при повторной передаче в МЭК 60870-5-2, приложение А, приведены формулы для двух случаев и различных конкретных параметров. Интервал ожидания, показанный на рисунке А.2 или А.4 приложения А (МЭК 60870-5-2) для случая 2, не используется. Используется интервал ожидания, показанный на рисунках А.2 и А.4 указанного стандарта для случая 1. Для каждой определенной комбинации скоростей передачи интервал ожидания То является константой.

Настоящий подпункт поясняет использование формул для расчета двух таблиц, которые дают примеры интервалов ожидания для ряда типовых условий как балансной, так и небалансной передачи.

Ссылки: МЭК 60870-5-2, приложение А — рисунок А2, случай 1 (небалансные процедуры передачи): МЭК 60870-5-2, приложение А — рисунок А4, случай 1 (балансные процедуры передачи).

Аббревиатуры, не определенные в МЭК 60870-5-2:

ВАВ — скорость передачи от станции А к станции В;

ВВА — скорость передачи от станции В к станции А;

LBAmax — число байтов в наиболее длинном кадре от В к А;

LADDR — длина поля адреса канала;

BAB, BBA, LBAmax, LADDR, t_R и t_{RB} — параметры конкретного проекта.

6.2.2.1 Небалансная передача

Следующие условия справедливы для интервала ожидания (тайм-аута) То, рассчитанного по форму-

ле:

$$T_o > t_{LD} + T_{LBA}$$
, (1)
 $t_{LD} = t_{DAB} + t_R + t_{DBA}$,
где $t_R = t_{DAB} + t_R + t_{DBA}$ (2)
 $t_{LD} = t_{DAB} + t_R + t_{DBA}$ (2)

= 0,5/ВАВ (см. примечание ниже); t_{DAB}

= 0,5/BBA (см. примечание ниже); = 11 LBAmax/BBA. t_{DBA}

 $\overset{\circ}{\Pi}$ римеры значений интервала ожидания T_{o} в зависимости от длины кадра, скорости передачи и других параметров приведены в таблице 5.

Определения: Станция В = Контролируемая станция.

Скорости передачи одинаковы в обоих направлениях.

Время реакции станции В $t_R = 50$ мс.

П р и м е ч а н и е — Запаздывание сигнала t_{DAB} и t_{DBA} (см. МЭК 60870-5-2, приложение А) предполагается равным половине времени передачи битов данных.

Т а б л и ц а 5 — Интервал ожидания T_о при небаланс<mark>ной передаче в зависимости от длины кадра, скорости</mark> передачи и других параметров (пример)

LBAmax	Скорость передачи, бит/с	t _{LD} , мс	T _{LBA} , MC	T _o , MC
	100	60,0	2200,0	2260,0
	600	51,7	366,7	418,4
	1200	50,8	183,3	234,1
20	9600	50,1	22,9	73,0
	19200	50,0	11,4	61,4
	64000	50,0	3,4	53,4
	100	60,0	26400,0	26460,0
	600	51,7	4400,0	4451,7
240	1200	50,8	2200,0	2250,8
277	9600	50,1	275,0	325,1
	19200	50,0	137,5	187,5
	64000	50,0	41,3	91,3

6.2.2.2 Балансная передача

Следующие условия справедливы для интервала ожидания То, рассчитываемого по формуле

$$T_o > t_{LDA} + T_{LSPBA} + t_{GB} + T_{LPSBA},$$
 (2) где $t_{LDA} = t_{DAB} + t_{RB} + t_{DBA},$

где t_{RB} = время реакции станции В (характерное для каждого устройства);

 t_{DAB} = 0,5/BAB (см. примечание ниже), t_{DBA} = 0,5/BBA (см. примечание ниже);

 $t_{GB} = 33/BBA*;$

 $T_{LPSBA} = 11 \cdot LBAmax/BBA;$

 $T_{LSPBA} = 11 (LADDR + 4)/BBA.$

П р и м е ч а н и е — Запаздывание сигналов t_{DAB} и t_{DBA} [см. МЭК 60870-5-2, (приложение А)] предполагается равным половине времени передачи битов данных.

Примеры значений интервала ожидания T_{o} в зависимости от длины кадра, скорости передачи и других параметров приведены в таблице 6.

Определения: Станция В = Контролируемая станция,

Скорости передачи одинаковы в обоих направлениях.

Время реакции станции В $t_R = 50$ мс. Длина адресного поля LADDR = 1.

Т а б л и ц а 6 — Интервал ожидания T_{o} при балансной передаче в зависимости от длины кадра, скорости передачи и параметров, определяемых проектом (пример)

LBAmax	Скорость передачи, бит/с	t _{LDA} , MC	t _{GB} , мс	T _{LSPBA} , MC	T _{LPSBA} , MC	T _o ,
	100	60,0	330,0	550,0	2200,0	3140,0
	600	51,7	55,0	91,7	366,7	565,1
20	1200	50,8	27,5	45,8	183,3	307,4
20	9600	50,1	3,4	5,7	22,9	82,1
	19200	50,0	1,7	2,9	11,4	66,0
	64000	50,0	0,5	0,9	3,4	54,8
	100	60,0	330,0	550,0	26400,0	27340,0
	600	51,7	55,0	91,7	4400,0	4598,4
240	1200	50,8	27,5	45,8	2200,0	2324,1
	9600	50,1	3,4	5,7	275,0	334,2
	19200	50,0	1,7	2,9	137,5	192,1
	64000	50,0	0,5	0,9	41,3	92,7

6.2.3 Использование различных сбросов

МЭК 60870-5-2 определяет услуги: FC0 — сброс удаленного канала и FC1 — сброс процесса пользователя. Кроме этого настоящий стандарт и МЭК 60870-5-5 определяют удаленную процедуру инициализации, которая использует команду сброса процесса C_RP_NA_1 с идентификатором типа <105>.

Применение различных сбросов объясняется в таблице 7.

Таблица 7 — Действие различных сбросов

Контролирующая станция. Уровень 7 и пользователь	Первичный канал	Вторичный канал	Контролируемая станция. Уровень 7 и пользователь
_	Сброс удаленного канала (FC0)	Сброс вторичного канала	_
_	Сброс процесса пользователя (FC1)	Сброс	Сброс
Команда сброса процесса		_	Сброс

^{*} t_{GB} = 33 бит является критическим (предельным) случаем для определения Т_о

3-859

 $t_{\rm GB}^{--}$ это системный параметр, который может быть существенно менее 33 бит (например 0,5 бита).

Сброс удаленного канала

используется, когда вторичный канал сбрасывается независимо от уровней, расположенных выше канального. В этом случае бит счета кадров в поле управления всегда устанавливается в ноль. Ожидающие сообщения вторичного канального уровня стираются.

Сброс процесса пользователя

как функция канального уровня используется, если уровень канала продолжает работать, а функции процесса на контролируемой станции отсутствуют. В этом случае сброс процесса пользователя через сервис канального уровня может запустить процесс пользователя в работу. Такой сервис (услуга) может использоваться только в том случае, если уровень канала может сбросить процесс пользователя при помощи отдельного сигнала.

Использование команды сброса процесса подробно определено в МЭК 60870-5-5 (подпункты 6.1.4 и 6.1.7).

7 Прикладной уровень и процесс пользователя

В настоящем пункте используются следующие стандарты:

МЭК 60870-5-3 «Общая структура данных пользователя»;

МЭК 60870-5-4 «Определение и кодирование элементов пользовательской информации»;

МЭК 60870-5-5 «Основные прикладные функции».

7.1 Применение требований МЭК 60870-5-3 «Общая структура данных пользователя»

МЭК 60870-5-3 описывает Основные Прикладные Блоки данных в кадрах передачи систем телемеханики. Настоящий подпункт выбирает отдельные элементы поля из указанного стандарта и определяет БЛОКИ ДАННЫХ ПРИКЛАДНОГО УРОВНЯ (ASDU), используемые в настоящем стандарте.

БЛОК ДАННЫХ КАНАЛЬНОГО УРОВНЯ(LPDU) в настоящем стандарте содержит не более одного ASDU.

ASDU (см. рисунок 10) состоит из ИДЕНТИФИКАТОРА БЛОКА ДАННЫХ и одного или более ОБЪЕКТОВ ИНФОРМАЦИИ.

ИДЕНТИФИКАТОР БЛОКА ДАННЫХ (ИБД) имеет всегда одинаковую структуру для всех ASDU. Все ОБЪЕКТЫ ИНФОРМАЦИИ, входящие в один ASDU, всегда имеют одинаковую структуру и тип, которые определены в поле ИДЕНТИФИКАТОРА ТИПА.

Структура ИДЕНТИФИКАТОРА БЛОКА ДАННЫХ следующая:

- один байт - ИДЕНТИФИКАТОР ТИПА:

- один байт - КЛАССИФИКАТОР ПЕРЕМЕННОЙ СТРУКТУРЫ;

- один или два байта - ПРИЧИНА ПЕРЕДАЧИ;

- один или два байта - ОБЩИЙ АДРЕС ASDU.

Размер ОБЩЕГО АДРЕСА ASDU определяется фиксированным параметром системы, в данном случае один или два байта. ОБЩИЙ АДРЕС — это адрес станции, который может быть структурирован, чтобы иметь возможность адресации ко всей станции или только к отдельному сектору станции.

Поле данных ДЛИНА ASDU отсутствует. Каждый кадр содержит только один ASDU. Длина ASDU определяется как длина кадра (указанная в поле длины канального протокола) минус фиксированное целое, зависящее от параметра системы:

- 1 если нет адреса канального уровня;
- 2 если адрес канального уровня один байт;
- 3 если адрес канального уровня два байта.

МЕТКИ ВРЕМЕНИ (если присутствуют) всегда относятся к одиночному ОБЪЕКТУ ИНФОРМАЦИИ.

ОБЪЕКТ ИНФОРМАЦИИ состоит из ИДЕНТИФИКАТОРА ОБЪЕКТА ИНФОРМАЦИИ, НАБОРА ЭЛЕ-МЕНТОВ ИНФОРМАЦИИ и (если присутствует) МЕТКИ ВРЕМЕНИ ОБЪЕКТА ИНФОРМАЦИИ.

ИДЕНТИФИКАТОР ОБЪЕКТА ИНФОРМАЦИИ состоит только из АДРЕСА ОБЪЕКТА ИНФОРМАЦИИ. В большинстве случаев ОБЩИЙ АДРЕС ASDU вместе с АДРЕСОМ ОБЪЕКТА ИНФОРМАЦИИ характеризуют полный НАБОР ЭЛЕМЕНТОВ ИНФОРМАЦИИ внутри определенной системы. Комбинация обоих адресов должна быть однозначной для каждой системы. ИДЕНТИФИКАТОР ТИПА не является частью ОБЩЕГО АДРЕСА или АДРЕСА ОБЪЕКТА ИНФОРМАЦИИ.

НАБОР ЭЛЕМЕНТОВ ИНФОРМАЦИИ СОСТОИТ ИЗ ОДИНОЧНОГО ЭЛЕМЕНТА ИНФОРМАЦИИ (КОМ-БИНАЦИИ ЭЛЕМЕНТОВ ИНФОРМАЦИИ) ИЛИ ПОСЛЕДОВАТЕЛЬНОСТИ ОДИНОЧНЫХ ЭЛЕМЕНТОВ ИНФОРМАЦИИ (КОМБИНАЦИЙ ЭЛЕМЕНТОВ ИНФОРМАЦИИ).

 Π р и м е ч а н и е — ИДЕНТИФИКАТОР ТИПА определяет структуру, тип и формат ОБЪЕКТА ИНФОРМАЦИИ. Все ОБЪЕКТЫ ИНФОРМАЦИИ данного ASDU имеют одинаковую структуру, тип и формат.

Рисунок 10 — Структура ASDU

7.2 Применение требований МЭК 60870-5-4 «Определение и кодирование элементов пользовательской информации»

Размеры и содержание полей индивидуальной информации ASDU определяются в соответствии с правилами для элементов информации по MЭК 60870-5-4.

7.2.1 ИДЕНТИФИКАТОР ТИПА

Байт 1 ИДЕНТИФИКАТОРА БЛОКА ДАННЫХ — ИДЕНТИФИКАТОР ТИПА определяет структуру, тип и формат ОБЪЕКТА(ов) ИНФОРМАЦИИ данного блока ASDU.

ИДЕНТИФИКАТОР ТИПА определяется следующим образом:

ИДЕНТИФИКАТОР ТИПА:= UI8[1..8]<1..255>

Рисунок 11 — ИДЕНТИФИКАТОР ТИПА

ОБЪЕКТЫ ИНФОРМАЦИИ с МЕТКОЙ ВРЕМЕНИ или без нее отличаются различными значениями ИДЕНТИФИКАТОРА ТИПА.

Контролирующая станция игнорирует ASDU с не определенным для данной системы значением идентификатора типа.

7.2.1.1 Определение семантики значений поля ИДЕНТИФИКАТОРА ТИПА

Значение «0» не используется. В настоящем стандарте определяется диапазон значений от 1 до 127. Диапазон от 128 до 255 не определяется. Значения ИДЕНТИФИКАТОРА ТИПА от 136 до 255 могут быть определены независимо друг от друга пользователями настоящего стандарта. Однако полная совместимость может быть достигнута только при использовании ASDU со значениями ИДЕНТИФИКАТОРА ТИПА от 1 до 127.

Таблицы 8—13, приведенные ниже, показывают определение значений ИДЕНТИФИКАТОРА ТИПА для прикладной и системной информации как в направлении контроля, так и в направлении управления. При стандартных операциях существует вертикальный поток информации между станциями в сети. Команды посылаются вниз от центральной контролирующей станции к одной из нескольких контролируемых станций, а события и измеряемые величины посылаются вверх от контролируемой станции к центральной контролирующей станции.

В некоторых случаях может появиться дополнительная необходимость горизонтального потока информации между станциями равного уровня. Это можно выполнить, используя два режима, при этом как команды, так и события, а также измеряемые величины могут передаваться в обоих направлениях. Общий канальный уровень может обеспечивать операции как в стандартном направлении, так и в обратном (инверсном) направлении. Для индивидуальных прикладных функций и ASDU может быть выбрано использование стандартного направления, обратного направления или обоих направлений, если требуется.

Станция с двумя режимами может использовать как балансный, так и небалансный канальные уровни. Если используется небалансный канальный уровень для присоединения к станции с двумя режимами, то роль первичного канального уровня должна быть установлена при разработке системы и не должна меняться в процессе соединений. В случае небалансного канала ASDU, содержащие команды в инверсном направлении, запрашиваются небалансным канальным уровнем с помощью услуги ЗАПРОС/ОТВЕТ.

Общий адрес ASDU в каждом передаваемом сообщении при обмене между станциями с двумя режимами должен соответствовать станции, работающей в данный момент в качестве контролируемой станции. Принимающая станция может использовать общий адрес ASDU для определения того, как интерпретировать сообщение — как запрос или как ответ.

Идентификаторы типов 7, 8, 33 и 51 (строка из 32 бит в направления контроля или управления) должны использоваться только в том случае, если не определен другой подходящий тип данных. Эти типы не должны включать данные в виде одно- или двухэлементной информации (ни упакованные, ни неупакованные).

ИДЕНТИФИКАТОР ТИПА := UI8[1..8]<1..255>

<1>..<127> := для стандартных определений настоящего стандарта (совместимый диапазон)

<128>..<135> := резерв будущего расширения настоящего стандарта для реализации новых функций, например маршрутизации сообщений

<136>..<255> := для специальных применений (частный диапазон)*

^{*} Рекомендуется, чтобы поле идентификатора блока данных частных ASDU имело тот же формат, что и стандартных ASDU.

Таблица 8 — Семантика ИДЕНТИФИКАТОРА ТИПА

Информация о процессе в направлении контроля

ИДЕНТИФИКАТОР ТИПА := UI8[1..8]<0..44>

		TOTAL TOTAL CONTINUES OF THE	
<0>		не определяется	
<1>		одноэлементная информация	M_SP_NA_1
<2>		одноэлементная информация с меткой времени	M_SP_TA_1
<3>		двухэлементная информация	M_DP_NA_1
<4>		двухэлементная информация с меткой времени	M_DP_TA_1
<5>		информация о положении отпаек	M_ST_NA_1
<6>		информация о положении отпаек с меткой времени	M_ST_TA_1
<7>		строка из 32 бит	M_BO_NA_1
<8>		строка из 32 бит с меткой времени	M_BO_TA_1
<9>		значение измеряемой величины, нормализованное значение	M_ME_NA_1
<10>	:=	значение измеряемой величины, нормализованное значение	M_ME_TA_1
.44.		с меткой времени	
<11>		значение измеряемой величины, масштабированное значение	M_ME_NB_1
<12>	:=	значение измеряемой величины, масштабированное значение	M_ME_TB_1
.40.		с меткой времени	M ME NO 4
<13>		значение измеряемой величины, короткий формат с плавающей запятой	M_ME_NC_1
<14>	:=	значение измеряемой величины, короткий формат с плавающей запятой	M_ME_TC_1
		с меткой времени	
<15>		интегральная сумма	M_IT_NA_1
<16>		интегральная сумма с меткой времени	M_IT_TA_1
<17>		информация о работе релейной защиты с меткой времени	M_EP_TA_1
<18>	:=	упакованная информация о срабатывании пусковых органов	M_EP_TB_1
		защиты с меткой времени	
<19>	:=	упакованная информация о срабатывании выходных цепей	M_EP_TC_1
		защиты с меткой времени	
<20>	:=	упакованная одноэлементная информация с указателем	M_PS_NA_1
		изменения состояния	
<21>	:=	значение измеряемой величины, нормализованное значение	M_ME_ND_1
	_	без описателя качества	
		резерв для дальнейших совместимых определений	
<30>		одноэлементная информация с меткой времени СР56Время2а	M_SP_TB_1
<31>		двухэлементная информация с меткой времени СР56Время2а	M_DP_TB_1
<32>		информация о положении отпаек с меткой времени СР56Время2а	M_ST_TB_1
<33>		строка из 32 бит с меткой времени СР56Время2а	M_BO_TB_1
<34>	:=	значение измеряемой величины, нормализованное значение	M_ME_TD_1
		с меткой времени СР56Время2а	
<35>	:=	значение измеряемой величины, масштабированное значение	M_ME_TE_1
		с меткой времени СР56Время2а	
<36>	:=	значение измеряемой величины, короткий формат с плавающей	M_ME_TF_1
		запятой с меткой времени СР56Время2а	
<37>		интегральная сумма с меткой времени СР56Время2а	M_IT_TB_1
<38>		информация о работе релейной защиты с меткой времени СР56Время2а	M_EP_TD_1
<39>	:=	упакованная информация о срабатывании пусковых органов защиты	M_EP_TE_1
		с меткой времени СР56Время2а	
<40>	:=	упакованная информация о срабатывании выходных цепей защиты	M_EP_TF_1
	_	с меткой времени СР56Время2а	
<41><44	1> :=	резерв для дальнейших совместимых определений	
Таблиі	ца 9	— Семантика ИДЕНТИФИКАТОРА ТИПА	
		ация о процессе в направлении управления	
		ІФИКАТОР ТИПА := UI8[18]<4569>	
CON	<45	•••	C_SC_NA_1
CON	<46	> := двухпозиционная команда	C_DC_NA_1
			10

CON	<47>	:= команда пошагового регулирования	C_RC_NA_1
CON	<48>	:= команда уставки, нормализованное значение	C_SE_NA_1
CON	<49>	:= команда уставки, масштабированное значение	C_SE_NB_1
CON	<50>	:= команда уставки, короткий формат с плавающей запятой	C_SE_NC_1
CON	<51>	:= строка из 32 бит	C_BO_NA_1
	< 52><69>	:= резерв для дальнейших совместимых определений	

П р и м е ч а н и е — ASDU с меткой CON, передаваемые в направлении управления, подтверждаются прикладным уровнем и могут возвращаться в направлении контроля с различными причинами передачи. Эти отраженные ASDU используются для положительного/отрицательного квитирования (проверки). Причины передачи определены в 7.2.3.

Таблица 10 — Семантика ИДЕНТИФИКАТОРА ТИПА

Системная информация в направлении контроля

ИДЕНТИФИКАТОР ТИПА:= UI8[1..8]<70..99>

Таблица 11 — Семантика ИДЕНТИФИКАТОРА ТИПА

Системная информация в направлении управления

ИДЕНТИФИКАТОР ТИПА := UI8[1..8]<100..109>

CON	<100>	:= команда опроса	C_IC_NA_1
CON	<101>	:= команда опроса счетчиков	C_CI_NA_1
CON	<102>	:= команда чтения	C_RD_NA_1
CON	<103>	:= команда синхронизации часов	C_CS_NA_1
CON	<104>	:= команда тестирования	C_TS_NA_1
CON	<105>	:= команда сброса процесса в исходное состояние	C_RP_NA_1
CON	<106>	:= команда определения запаздывания	C_CD_NA_1
	<107><109>	:= резерв для дальнейших совместимых определений	

Таблица 12 — Семантика ИДЕНТИФИКАТОРА ТИПА

Параметры в направлении управления

ИДЕНТИФИКАТОР ТИПА := UI8[1..8]<110..119>

CON	<110>	:= параметр измеряемой величины, нормализованное значение	P_ME_NA_1
CON	<111>	:= параметр измеряемой величины, масштабированное значение	P_ME_NB_1
CON	<112>	:= параметр измеряемой величины, короткий формат	P_ME_NC_1
		с плавающей запятой	
CON	<113>	:= параметр активации	P_AC_NA_1
	<114><119>	:= резерв для дальнейших совместимых определений	

Таблица 13 — Семантика ИДЕНТИФИКАТОРА ТИПА

Передача файлов

ИДЕНТИФИКАТОР ТИПА := UI8[1..8]<120..127>

<120>	:= файл готов	F_FR_NA_1
<121>	:= секция готова	F_SR_NA_1
<122>	:= вызов директории, выбор файла, вызов файла, вызов секции	F_SC_NA_1
<123>	:= последняя секция, последний сегмент	F_LS_NA_1
<124>	:= подтверждение файла, подтверждение секции	F_AF_NA_1
<125>	:= сегмент	F_SG_NA_1
<126>	:= директория	F_DR_TA_1
<12 7>	:= резерв для дальнейших совместимых определений	

П р и м е ч а н и е — ASDU с меткой CON, передаваемые в направлении управления, подтверждаются прикладным уровнем и могут возвращаться в направлении контроля с различными причинами передачи. Эти отраженные ASDU используются для положительного/отрицательного квитирования (проверки). Причина передачи определена в 7.2.3.

7.2.2 Классификатор переменной структуры

Байт 2 в ИДЕНТИФИКАТОРЕ БЛОКА ДАННЫХ ASDU определяет КЛАССИФИКАТОР ПЕРЕМЕН-НОЙ СТРУКТУРЫ, показанный на рисунке 12:

Рисунок 12 — КЛАССИФИКАТОР ПЕРЕМЕННОЙ СТРУКТУРЫ

7.2.2.1 Определение семантики значений полей КЛАССИФИКАТОРА ПЕРЕМЕННОЙ СТРУК-ТУРЫ

КЛАССИФИКАТОР ПЕРЕМЕННОЙ СТРУКТУРЫ := CP8{число, SQ}

число=N := U17[1..7]<0..127>

<0> := ASDU не содержит ОБЪЕКТОВ ИНФОРМАЦИИ

<1>..<127> := число ОБЪЕКТОВ или ЭЛЕМЕНТОВ ИНФОРМАЦИИ (одиночные элементы или

одинаковые комбинации элементов)

SQ = Одиночный/

последовательность := BS1[8]<0..1>

<0> := адресация индивидуальных ОДИНОЧНЫХ ЭЛЕМЕНТОВ или КОМБИНАЦИЙ

ЭЛЕМЕНТОВ в наборе ОБЪЕКТОВ ИНФОРМАЦИИ одинакового типа

<1> := адресация ПОСЛЕДОВАТЕЛЬНОСТИ ОДИНОЧНЫХ ЭЛЕМЕНТОВ ИНФОРМАЦИИ

или одинаковых КОМБИНАЦИЙ ЭЛЕМЕНТОВ в единственном объекте ASDU.

SQ<0> и N<0..127> := число ОБЪЕКТОВ ИНФОРМАЦИИ і

SQ<1> и N<0..127> := число ОДИНОЧНЫХ ЭЛЕМЕНТОВ ИНФОРМАЦИИ или КОМБИНАЦИЙ ЭЛЕМЕН-

ТОВ ИНФОРМАЦИИ ј

Бит SQ определяет метод адресации ОБЪЕКТОВ или ЭЛЕМЕНТОВ ИНФОРМАЦИИ в блоке ASDU. SQ = 0: Каждый ОДИНОЧНЫЙ ЭЛЕМЕНТ ИНФОРМАЦИИ или КОМБИНАЦИЯ ЭЛЕМЕНТОВ ИНФОРМАЦИИ адресуется при помощи АДРЕСА ОБЪЕКТА ИНФОРМАЦИИ. ASDU может состоять из одного или более одинаковых ОБЪЕКТОВ ИНФОРМАЦИИ. Число N — это двоичный код, определяющий число ОБЪЕКТОВ ИНФОРМАЦИИ

SQ = 1: Последовательность ОДИНОЧНЫХ ЭЛЕМЕНТОВ ИНФОРМАЦИИ или однотипных КОМБИ-НАЦИЙ ЭЛЕМЕНТОВ ИНФОРМАЦИИ (например значений измеряемых величин одинакового формата) адресуется [МЭК 60870-5-3 (подпункт 5.1.5)] при помощи АДРЕСА ОБЪЕКТА ИНФОРМАЦИИ. АДРЕС ОБЪЕКТА ИНФОРМАЦИИ определяет адрес первого ОДИНОЧНОГО ЭЛЕМЕНТА ИНФОРМАЦИИ (КОМБИНАЦИИ ЭЛЕМЕНТОВ ИНФОРМАЦИИ) в последовательности. Последующие ОДИНОЧНЫЕ ЭЛЕМЕНТЫ ИНФОРМАЦИИ (КОМБИНАЦИИ ЭЛЕМЕНТОВ ИНФОРМАЦИИ) идентифицируются при помощи непрерывного ряда чисел, начинающегося от этого адреса. Число N— это двоичный код, определяющий число ОДИНОЧНЫХ ЭЛЕМЕНТОВ ИНФОРМАЦИИ ЭЛЕМЕНТОВ ИНФОРМАЦИИ). В случае последовательности ОДИНОЧНЫХ ЭЛЕМЕНТОВ ИНФОРМАЦИИ (КОМБИНАЦИЙ ЭЛЕМЕНТОВ ИНФОРМАЦИИ) в ASDU размещается только один ОБЪЕКТ ИНФОРМАЦИИ.

7.2.2.2 Требования к передаче объектов информации в хронологическом порядке

Для того, чтобы объекты информации были правильно переданы в хронологическом порядке при сохранении приоритетных классов, определяемых системой управления приоритетами на контролируемой станции, действуют следующие правила.

Объекты информации в направлении контроля могут передаваться со следующими причинами передачи:

- циклическая/периодическая;
- фоновое сканирование;
- спорадическая;
- по запросу;
- обратная информация, вызванная удаленной командой;
- обратная информация, вызванная местной командой;
- ответ на опрос станции и групповой опрос;
- ответ на общий и групповой опросы счетчиков.

Передача последовательных значений определенного объекта информации должна всегда проводиться в том же хронологическом порядке, в каком эти значения вводились.

П р и м е ч а н и е — Чтобы во всех случаях обеспечить передачу последовательных значений определенного объекта информации в правильном хронологическом порядке, может оказаться необходимым, чтобы все значения этого объекта информации использовали один приоритетный буфер или имелась бы координация между значениями объекта, которые могут располагаться в различных приоритетных буферах.

Для передачи объектов, запоминаемых в приоритетных буферах (памяти), правильными являются условия, показанные на рисунке 13.

Рисунок 13 — Представление типов объектов информации в приоритетных буферах

Для правильной передачи хронологических наборов объектов информации из приоритетного буфера необходимо выполнить следующую процедуру. На рисунке 13 объекты информации, имеющие идентификаторы типов А, В и С, показаны в приоритетном буфере 1 в произвольно зафиксированной последовательности. При передаче объектов информации из этого буфера первые два объекта с идентификатором типа А, а именно А1 и А2, пакуются в первый ASDU. Объекты В1 и В2 пакуются во второй ASDU, затем объекты А3 и А4 — в третий ASDU и т. д. В общем в приоритетном буфере проводится поиск объектов, имеющих один идентификатор типа и одну причину передачи и хранящихся в хронологически правильном порядке без промежуточных объектов, имеющих другой идентификатор типа. Только эти однородные группы объектов передаются вместе в одном ASDU. Если объект, имеющий другой идентификатор типа, встретится в буфере, то этот объект будет передаваться в следующем ASDU, который снова должен состоять из упакованных объектов с одинаковыми идентификатора типа. Объекты, передаваемые в одном ASDU, всегда имеют одинаковый класс приоритета передачи.

Максимальная длина передаваемого кадра является фиксированным параметром. Поскольку длины объектов с различными идентификаторами типа не всегда одинаковы, максимальное число объектов, посылаемых в одном ASDU, может меняться в зависимости от типа. ASDU автоматически заполняются объектами до определенной максимальной длины, если имеется достаточное число готовых, последовательно запомненных объектов с одинаковым идентификатором типа в приоритетном буфере.

Недопустимо задерживать передачу ASDU, пытаясь дождаться вновь поступающих в буфер объектов, которые могли бы использоваться для заполнения этого ASDU до максимально возможной длины.

Лучшей эффективности можно добиться, определяя объекты только с одним идентификатором типа в каждом приоритетном буфере. Нормально это реализуется при помощи настроечных параметров.

Настоящий подпункт относится к спорадической передаче событий и не устанавливает структуру последовательности элементов информации, используемых в ASDU с неструктурированными адресами объекта информации, такими как ответы на запрос станции. Однако должно соблюдаться требование, чтобы все значения, переданные для определенного объекта информации, находились в правильном хронологическом порядке.

При использовании приоритетных буферов и администратора управления приоритетами, определенных в настоящем подпункте, необходимо обеспечить, чтобы объект информации без метки времени не передавался на контролирующую станцию до тех пор, пока не будут переданы все версии этого объекта, сгенерированные ранее настоящей версии.

Необходимо учитывать следующие обстоятельства:

- а) Время, необходимое для генерации объекта при различных причинах передачи (например таких, как выборка из фонового сканирования или событие при спорадической передаче), может быть не точно одинаковым. При этом две версии одного объекта могут не попадать в приоритетные буферы в правильной хронологической последовательности, если времена их генерации очень близки.
- b) Потоки объектов в разных приоритетных буферах вряд ли пройдут через буферы с одинаковой скоростью. Это значит, что объекты, поступающие в буферы в правильной хронологической последовательности, все же могут быть не представлены администратору управления приоритетами в правильной последовательности.
- с) При небалансных канальных процедурах объекты, ожидающие в буфере передачи, могут не передаваться в той же последовательности, как поступили. Это происходит потому, что контролируемая станция не управляет порядком, в котором принимаются запросы на данные класса 1 и класса 2.

Метод, используемый для поддержания правильной хронологической последовательности в любом исполнении, является локальным вопросом (внутренним для отдельной контролируемой станции) и не определяется настоящим стандартом.

П р и м е ч а н и е — При использовании структурированных адресов информационных объектов ASDU, которые определены для последовательностей элементов информации в одном объекте информации, могут быть не укомплектованы до оптимальной длины из-за возможных пропусков в нумерации адресов. Обычно это уменьшает эффективность упаковки для процедуры общего опроса станции.

7.2.2.3 Переполнение буфера

Контролируемая станция может выделить специальный объект однопозиционной информации для передачи сообщения о переполнении буфера (состояние, равное <1>, — переполнение; состояние <0> — нет переполнения). Действия, которые должны быть выполнены контролирующей станцией при переполнении, специфичны для конкретной реализации.

7.2.3 Причина передачи

Байт 3 (и опционально байт 4) ИДЕНТИФИКАТОРА БЛОКА ДАННЫХ ASDU (см. рисунок 10) определяет поле ПРИЧИНЫ ПЕРЕДАЧИ (СОТ), показанное на рисунке 14.

Рисунок 14 — Поле ПРИЧИНЫ ПЕРЕДАЧИ

7.2.3.1 Определение семантики значений величин в поле ПРИЧИНЫ ПЕРЕДАЧИ

ПРИЧИНА П	ЕРЕДАЧИ		:= СР16{Причина, Р/N, Т, Адрес инициатора}
Причина		:=	Ul6[16]<063>
<0>		:=	не определено
<163>		:=	номер причины передачи
<147>		:=	для стандартных определений настоящего стандарта (совместимый
			диапазон), см. таблицу 14
<4863>		:=	для специального применения (частный диапазон)
P/N		:=	BS1[7]<01>
	<0>	:=	положительное подтверждение
	<1>	:=	отрицательное подтверждение
Т = тест		;=	B\$1[8]<01>
	<0>	:=	не тест
	<1>	:=	Tect
Адрес инициа	атора	:=	UI8[916]<0255>
<0>		:=	по умолчанию
<1255>		;=	число адресов инициатора

ASDU с неопределенным значением ПРИЧИНЫ ПЕРЕДАЧИ для данного ИДЕНТИФИКАТОРА ТИПА отбрасывается контролирующей станцией.

ПРИЧИНА ПЕРЕДАЧИ направляет ASDU определенной прикладной задаче (программе) для обработки.

Бит P/N показывает, какое (положительное или отрицательное) подтверждение активации требуется для первичной прикладной функции. В случае, когда бит P/N не используется, он равен нулю.

В дополнение к ПРИЧИНЕ ПЕРЕДАЧИ бит признака теста определяет ASDU, которые были созданы во время тестирования. Этот бит используется, например, для проверки тракта передачи и аппаратуры без управления процессом.

ASDU с меткой CON, передаваемые в направлении управления, подтверждаются прикладным уровнем и могут возвращаться в направлении контроля с различными ПРИЧИНАМИ ПЕРЕДАЧИ (см. таблицы 9, 11 и 12). Инициирующая станция направляет эти отраженные ASDU и запрошенные ASDU в направлении контроля (например, запрошенные общим опросом) к источнику, который активизировал всю процедуру.

Если инициирующие адреса не используются и в системе определен более чем один источник, ASDU в направлении контроля должны быть направлены ко всем соответствующим источникам в системе. В этом случае каждый из этих источников должен выбирать свои соответствующие ASDU.

Следующие определения справедливы, если используется инициирующий адрес:

<0> = по умолчанию;

<0> — используется для определения информации о процессе как возвратной информации, о событиях и т. п., которые запоминаются в сетевых образах (network images) и которые должны быть переданы во все части распределенной системы.

Диапазон <1..255> может использоваться для адресации отдельной части системы, к которой возвращается соответствующая информация в направлении контроля.

Внутри системы отдельные ее части могут быть источником информации, которая может инициировать общий опрос станции, запросы интегральных сумм, команд и т. п. Обратная информация важна только для источника, который инициирует запрос команд. В такой системе источник информации должен задать инициирующий адрес в ASDU в направлении управления, а контролируемая станция должна повторить этот инициирующий адрес в ответе в направлении контроля.

Пример 1

Опрос станции, инициированный конкретным источником (контролирующая станция А на рисунке 15), возвращает информацию опроса в направлении контроля, причем исключительно к данному источнику, а не к другим частям системы (например контролирующей станции В на рисунке 15). Блок ASDU, используемый для общего опроса станции В, маркирован адресом источника запроса (из диапазона <1..255>). Этот адрес служит для указания маршрута информации опроса в направлении контроля (например, через станцию-концентратор на рисунке 15) к инициирующему источнику.

Рисунок 15 — Запрос станции через станцию-концентратор с использованием адреса источника запроса

Пример 2

Команда, инициированная конкретным источником (причина передачи = активация, контролирующая станция А на рисунке 16), возвращает подтверждение (причина передачи = подтверждение активации, прекращение активации), которое важно только для источника, инициировавшего команду. Поэтому подтверждение активации и прекращение активации должны быть маршрутизированы (например, через станцию-концентратор на рисунке 16) с использованием адреса источника только к этой конкретной точке. Однако соответствующая обратная информация (причина передачи 11 или 12) представляет информацию о процессе, которая запоминается и управляется в различных сетевых образах (images) во всей системе (контролирующие станции А и В на рисунке 16) и которая должна передаваться с адресом источника = 0 для того, чтобы она распределялась по всем частям системы, где это необходимо.

Рисунок 16 — Передача команд через станцию-концентратор с использованием адреса источника запроса

Таблица 14 — Семантика ПРИЧИНЫ ПЕРЕДАЧИ

Причина	:= UI6[16]<063>	
<0>	:= не используется	
<1>	:= периодически, циклически	per/cyc
<2>	:= фоновое сканирование	back
<3>	:= спорадически	spont
<4>	:= сообщение об инициализации	init
<5>	:= запрос или запрашиваемы е данные	req
<6>	:= активация	act
<7>	:= подтверждение активации	actcon
<8>	:= деактивация	deact
<9>	:= подтверждение деактивации	deactcon
<10>	:= завершение активации	actterm
<11>	:= обратная информация, вызванная удаленной командой	retrem
<12>	:= обратная информация, вы званная местной кома ндой	retloc
<13>	:= передача файлов	file
<14><19>	:= резерв для дальнейших совместимых определений	
<20>	:= ответ на опрос станции	inrogen
<21>	:= ответ на опрос группы 1	inro1
<22>	:= ответ на опрос группы 2	inro2
<23>	:= ответ на опрос группы 3	inro3
<24>	:= ответ на опрос группы 4	inro4
<25>	:= ответ на опрос группы 5	inro5
<26>	:= ответ на опрос группы 6	inro6
<27>	:= ответ на опрос группы 7	inro7
<28>	:= ответ на опрос группы 8	inro8
<29>	:= ответ на опрос группы 9	inro9
<30>	:= ответ на опрос группы 10	inro10
<31>	:= ответ на опрос группы 11	inro11
<32>	:= ответ на опрос группы 12	inro12
<33>	:= ответ на опрос группы 13	inro13
<34>	:= ответ на опрос группы 14	inro14
<35>	:= ответ на опрос группы 15	inro15
<36>	:= ответ на опрос группы 16	inro16
<37>	:= ответ на общий запрос счетчиков	reqcogen
<38>	:= ответ на запрос группы счетчиков 1	reqco1
<39>	:= ответ на запрос группы счетчиков 2	regco2
<40>	:= ответ на запрос группы счетчиков 3	reqco3
<41>	:= ответ на запрос группы счетчиков 4	reqco4
<42><43>	:= резерв для дальнейших совместимых определений	
<44>	:= неизвестный идентификатор типа	
<45>	:= неизвестная причина передачи	
<46>	:= неизвестный общий адрес ASDU	
<47>	:= неизвестный адрес объекта информации	
<48><63>	:= для специальных применений (частный диапазон)	
.000·		

ASDU в направлении управления с неопределенными (не соответствующими конфигурационным данным) значениями в идентификаторе блока данных (кроме классификатора переменной структуры) или с неопределенным значением адреса объекта информации отражается контролируемой станцией с битом «P/N := <1> — отрицательное подтверждение» и следующими причинами передачи:

Неизвестны	Причина передач
идентификатор типа	44
причина передачи	45
общий адрес ASDU	46
адрес объекта информации	47

Контролирующая станция может контролировать и поддерживать список ошибок связи и регистрировать каждый раз время приема следующих ASDU:

- ASDU в направлении контроля с неопределенными значениями в идентификаторе блока данных (кроме классификатора переменной структуры);
- ASDU в направлении контроля с неопределенными значениями адресов объектов информации;
- Отраженные ASDU в направлении управления, содержащие неизвестные значения чисел (идентификаторы типов от 45 до 51).

Прием любого из этих ASDU не влияет на прохождение последующих сообщений.

7.2.4 ОБЩИЙ АДРЕС ASDU

Байт 4 (и опционально байт 5) либо байт 5 (и опционально байт 6) ИДЕНТИФИКАТОРА БЛОКА ДАН-HЫX ASDU определяет ОБЩИЙ АДРЕС ASDU, то есть адрес станции, как показано на рисунках 17 и 18. Длина ОБЩЕГО АДРЕСА (один или два байта) — это параметр, заданный для каждой системы.

Рисунок 17 — ОБЩИЙ АДРЕС ASDU (один байт)

ОБЩИЙ АДРЕС := UI8[1..8]<0..255> <0> := не используется <1>..<254> := адрес станции <255> := глобальный адрес

ОБЩИЙ АДРЕС ASDU (младший байт)

ОБЩИЙ АДРЕС ASDU (старший байт)

Рисунок 18 — ОБЩИЙ АДРЕС ASDU (два байта)

ОБЩИЙ АДРЕС := UI16[1..16]<0..65535>
<0> := не используется
<1..65534> := адрес станции
<65535> := глобальный адрес

ASDU с неопределенным значением ОБЩЕГО АДРЕСА отбрасывается контролирующей станцией. ОБЩИЙ АДРЕС связан со всеми объектами в данном ASDU [см. МЭК 60870-5-3 (таблица 1)]. Глобальный адрес — это широковещательный адрес, обращенный ко всем станциям данной системы. ASDU с широковещательным адресом, переданные в направлении управления, должны получить ответные ASDU в направлении контроля, содержащие определенный ОБЩИЙ АДРЕС (адрес станции).

Если используется общий адрес FF или FFFF (циркулярный адрес, запрос ко всем станциям), то ПОДТВЕРЖДЕНИЕ АКТИВАЦИИ, ПРЕКРАЩЕНИЕ АКТИВАЦИИ и запрошенные объекты информации (если имеются) передаются на контролирующую станцию с определенными общими адресами контролируемых станций, как если бы они были вызваны командами, направленными к определенным контролируемым станциям.

Использование общих адресов FF или FFFF ограничено следующими типами ASDU в направлении управления:

Идентификатор типа <100> := команда опроса	C_IC_NA_1
Идентификатор типа <101> := команда опроса счетчиков	C_CI_NA_1
Идентификатор типа <103> := команда синхронизации часов	C_CS_NA_1
Идентификатор типа <105> := команда установки процесса в исходное состояние	C_RP_NA_1

Общие адреса FF или FFFF могут использоваться, если одна и та же прикладная функция инициирована одновременно на всех станциях данной системы, например синхронизация местных часов при помощи команды синхронизации часов или фиксация интегральных сумм при помощи команды запроса счетчиков.

7.2.5 АДРЕС ОБЪЕКТА ИНФОРМАЦИИ

Первый байт, опционально второй и третий байты ОБЪЕКТА ИНФОРМАЦИИ (АДРЕС) определены, как показано на рисунках 19, 20 и 21. ДЛИНА АДРЕСА ОБЪЕКТА ИНФОРМАЦИИ (один, два или три байта) — это параметр, заданный для каждой системы.

АДРЕС ОБЪЕКТА ИНФОРМАЦИИ используется как адрес получателя в направлении управления и как адрес источника в направлении контроля.

Рисунок 19 — АДРЕС ОБЪЕКТА ИНФОРМАЦИИ (один байт)

АДРЕС ОБЪЕКТА ИНФОРМАЦИИ := UI8[1..8]<0..255>

<0> := АДРЕС ОБЪЕКТА ИНФОРМАЦИИ безразличен

<1..255> := АДРЕС ОБЪЕКТА ИНФОРМАЦИИ

Рисунок 20 — АДРЕС ОБЪЕКТА ИНФОРМАЦИИ (два байта)

АДРЕС ОБЪЕКТА ИНФОРМАЦИИ := UI16[1..16]<0..65535>

<0> := АДРЕС ОБЪЕКТА ИНФОРМАЦИИ безразличен

<1..65535> := АДРЕС ОБЪЕКТА ИНФОРМАЦИИ

Рисунок 21 — АДРЕС ОБЪЕКТА ИНФОРМАЦИИ (три байта)

АДРЕС ОБЪЕКТА ИНФОРМАЦИИ := UI24[1..24]<0..16777215> <0> := АДРЕС ОБЪЕКТА ИНФОРМАЦИИ безразличен

<1..16777215> := АДРЕС ОБЪЕКТА ИНФОРМАЦИИ

ASDU с неопределенным значением АДРЕСА ОБЪЕКТА ИНФОРМАЦИИ отбрасывается контролирующей станцией.

Третий байт используется только в случае структурирования АДРЕСА ОБЪЕКТА ИНФОРМАЦИИ для определения однозначных адресов внутри определенной системы. Во всех случаях максимальное число различных АДРЕСОВ ОБЪЕКТОВ ИНФОРМАЦИИ ограничено числом 65535 (как при двух байтах). Если АДРЕС ОБЪЕКТА ИНФОРМАЦИИ не используется в каких-то ASDU, то он устанавливается в ноль.

Объект информации является хорошо определенной частью информации, для определения или описания которой требуется имя (адрес объекта информации), чтобы идентифицировать ее применение при передаче [ИСО/МЭК 8824-1 (подпункт 3.31) и МЭК 60870-5-3 (подпункт 3.3)]. Согласно определению объекты информации содержат элементы информации, которые идентифицируют отдельные точки информации, однозначно адресуемые при помощи адресов объектов информации. Например: адрес объекта информации, который передает обратную информацию (о состоянии объекта телеуправления), должен отличаться от адреса объекта информации, передающего соответствующую команду.

Команда чтения С RD NA 1 является особой командой, поскольку ее адрес как объекта информации служит для адресации имеющихся объектов информации, которые возвращаются в направлении контроля.

Адрес объекта информации может быть указан независимо от ASDU (идентификатора типа), который передает определенный объект информации. Объекты информации могут передаваться с одинаковыми адресами с использованием различных ASDU, например однопозиционная информация с меткой времени или без нее. Строки таблицы 15 указывают соответствующие комбинации типов ASDU

адресами							
Идентификатор типа с меткой времени	Идентификатор типа альтерна- тивного формата	Идентификатор типа	Идентификатор типа с меткой времени	Идентификатор типа альтерна- тивного формата			
2 или 30	20	9	10 или 34	21			
4 или 31	17 или 38	11	12 или 35				
6 или 32		13	14 или 36				
	типа с меткой времени 2 или 30 4 или 31	типа с меткой времени типа альтернативного формата 2 или 30 20 4 или 31 17 или 38	типа с меткой времени типа альтернативного формата типа 2 или 30 20 9 4 или 31 17 или 38 11	типа с меткой времени типа альтернативного формата типа типа с меткой времени 2 или 30 20 9 10 или 34 4 или 31 17 или 38 11 12 или 35			

Т а б л и ц а 15 — ASDU в направлении контроля, которые могут передавать объекты информации с одинаковыми

Не существует других комбинаций ASDU для определенного общего адреса, которые могут содержать одинаковые адреса объектов информации в направлении контроля или (и) управления. В частности команды (ASDU типов от 45 до 69) и параметры (ASDU типов от 110 до 119) не могут использовать те же значения адресов объекта информации, которые используют известительные данные (ASDU типов от 1 до 44).

15

16 или 37

В случае одиночного изменения состояния точки информации тот же самый объект информации с тем же самым адресом объекта информации может быть передан дважды — с меткой времени и без нее. Объект информации без метки времени обычно передается с более высоким приоритетом, чтобы быть по возможности быстрее доступным на контролирующей станции для целей управления процессом. Объект информации с меткой времени может передаваться с более низким приоритетом, так как используется, например, для последующей проверки серии событий. Все объекты информации, которые могут передаваться с причиной передачи 3 (спорадически), разрешается передавать дважды. Этот режим называется «дублированная передача» и должен быть определен с помощью фиксированного параметра, характерного для станции.

Для всех типов ASDU, которые обозначены не как поддерживающие дублированную передачу, одиночное изменение состояния вызовет передачу только одного объекта информации.

7.2.6 ЭЛЕМЕНТЫ ИНФОРМАЦИИ

8 или 33

7

В ASDU, определенных в настоящем стандарте, используются нижеследующие ЭЛЕМЕНТЫ ИН-ФОРМАЦИИ. Они структурированы в соответствии с определениями МЭК 60870-5-4.

7.2.6.1 Одноэлементная информация с описателем качества

SIQ	:=	CP8{SPI, RES, BL, SB, NT, IV}	
SPI	:=	BS1[1]<01>	(Тип 6)
<0>	:=	ВЫКЛЮЧЕНО	
<1>	:=	ВКЛЮЧЕНО	
RES=PE3EPB	:=	BS3[24]<0>	(Тип 6)
BL	:=	BS1[5]<01>	(Тип 6)
<0>	:=	нет блокировки	
<1>	:=	блокировка	
SB	:=	BS1[6]<01>	(Тип 6)

```
<0>
              := нет замещения
      <1>
              := проведено замещение
NT
                                                                   (Тип 6)
              := BS1[7]<0..1>
      < 0>
              := актуальное значение
              := неактуальное значение
      <1>
IV
                                                                   (Tun 6)
              := BS1[8]<0..1>
      <0>
              := действительное значение
      <1>
              := недействительное значение
     Определение описателя качества (BL, SB, NT, IV) — по 7.2.6.3 (описатель качества QDS).
     7.2.6.2 Двухэлементная информация с описателем качества
              := CP8{DPI, RES, BL, SB, NT, IV}
DIQ
DPI
                                                                   (Тип 1.1)
              := UI2[1..2]<0..3>
      <0>
              := неопределенное или промежуточное состояние
      <1>
              := определенное состояние ВЫКЛЮЧЕНО
      <2>
              := определенное состояние ВКЛЮЧЕНО
              := неопределенное состояние
      <3>
RES=PE3EPB := BS2[3..4]<0>
                                                                   (Tun 6)
BL
              := BS1[5]<0..1>
                                                                   (Tun 6)
      <0>
              := нет блокировки
      <1>
              := блокировка
SB
              := BS1[6]<0..1>
                                                                   (Tun 6)
      <0>
              := нет замещения
      <1>
              := проведено замещение
NT
              := BS1[7]<0..1>
                                                                   (Тип 6)
      <0>
              := актуальное значение
      <1>
              := неактуальное значение
IV
              := BS1[8]<0..1>
                                                                   (Tun 6)
      <0>
              := действительное значение
      <1>
              := недействительное значение
     Определение описателя качества (BL, SB, NT, IV) — по 7.2.6.3 (описатель качества QDS).
```

7.2.6.3 Описатель качества (отдельный байт)

Описатель качества состоит из пяти определенных битов (флагов) качества, которые могут устанавливаться независимо друг от друга. Описатель качества обеспечивает контролирующую станцию дополнительной информацией о качестве объекта информации. = CP8(OV RES BL SB NT IV) ODS

an2		:=	CP6(UV, RES, BL, SB, N1, IV)	
OV		:=	BS1[1]<01>	(Тип 6)
	<0>	:=	нет переполнения	
	<1>	:=	переполнение	
RES=	PE3EPB	:=	BS3[24]<0>	(Тип 6)
BL		:=	BS1[5]<01>	(Тип 6)
	<0>	:=	нет блокировки	
	<1>	:=	блокировка	
SB		:=	BS1[6]<01>	(Тип 6)
	<0>	:=	нет замещения	
	<1>	:=	проведено замещение	
NT		:=	BS1[7]<01>	(Тип 6)
	<0>	:=	актуальное значение	
	<1>	:=	неактуальное значение	
IV		:=	BS1[8]<01>	(Тип 6)
	<0>	:=	действительное значение	, ,
	<1>	:=	недействительное значение	
	0 1/			

OV = переполнение/нет переполнения

Значение ОБЪЕКТА ИНФОРМАЦИИ находится вне заранее определенного диапазона значений (в основном применимо к аналоговым величинам).

BL = блокировка/нет блокировки

Значение ОБЪЕКТА ИНФОРМАЦИИ блокировано для передачи, оно остается в состоянии, в котором было до блокировки. Блокировка и деблокировка могут инициироваться местным блокирующим устройством или автоматически на основании местной причины.

SB = проведено замещение/нет замещения

Значение ОБЪЕКТА ИНФОРМАЦИИ поступает на вход или от оператора (диспетчера) или от автоматического источника.

NT = неактуальное/актуальное значение

Значение актуально, если большинство опросов было успешным. Значение неактуально, если оно не обновлялось в течение заданного промежутка времени или было недоступно.

IV = недействительное/ действительное значение

Значение действительно, если правильно получено. После того, как функция опроса обнаруживает неправильные условия в источнике информации (поврежденные или неработающие устройства опроса), значение величины маркируется как недействительное. При этих условиях значение ОБЪЕКТА ИНФОР-МАЦИИ не определено. Бит «недействительно» используется для указания получателю, что значение величины может быть неправильным и им нельзя пользоваться.

Промежуточные устройства могут преобразовывать биты BL, SB, NT и IV следующим образом:

BL: Если промежуточное устройство блокирует передачу объекта информации, то оно должно установить бит BL описателя качества. В противном случае оно должно использовать бит качества BL, переданный от устройства нижнего уровня.

SB: Если промежуточное устройство замещает значение объекта информации, то оно должно установить бит SB описателя качества. В противном случае оно должно использовать описатель качества SB, переданный от устройства нижнего уровня.

NT: Если промежуточное устройство не может получить значение объекта информации, то оно должно установить бит NT описателя качества. В противном случае оно должно использовать описатель качества NT, переданный от устройства нижнего уровня.

IV: Если промежуточное устройство устанавливает, что объект информации недействителен, то оно должно установить бит IV описателя качества. В противном случае оно должно использовать описатель качества IV, переданный от устройства нижнего уровня.

Пример 1

Предположим, что контролируемое состояние выключателя блокировано, так как соответствующее устройство связи с объектом (УСО) находится в режиме тестирования. В этом случае описатель качества (BL = 1 «блокирован») должен проходить без изменений через все уровни системы от УСО до контролирующей станции.

Пример 2

Измеряемой величине может быть автоматически или вручную присвоено замещающее значение, например, когда сбор данных нарушен. Это замещающее значение измеряемой величины передается на контролирующую станцию с битом качества SB = 1 «подстановка».

Если значение объекта информации автоматически отмечается новым описателем качества из-за особых условий. описатель качества может быть сброшен вручную или автоматически, когда изменяются условия.

Если значение данного объекта информации нормально передается только спорадически, каждое изменение описателя качества инициирует спорадическую передачу этого объекта информации. Объект информации с меткой времени передается с указанием времени, когда произошло изменение описателя качества.

Процедура опроса станции запрашивает все объекты информации, которые определены для данной группы запроса, независимо от содержания описателя качества. В этом случае описатель качества содержит самое последнее состояние на момент опроса объектов информации.

7.2.6.4 Описатель качества для сообщения о работе релейной защиты (отдельный байт)

QDP	:=	CP8{RES, EI, BL, SB, NT, IV}	
RES=PE3EPB	:=	BS3[13]<0>	(Тип 6)
EI	:=	BS1[4]<01>	(Тип 6)
<0>	:=	значение интервала времени действительно	
<1>	:=	значение интервала времени недействительно	
BL	:=	BS1[5]<01>	(Тип 6)
<0>	:=	нет блокировки	
<1>	:=	блокировка	
SB	:=	BS1[6]<01>	(Тип 6)
<0>	:=	нет замещения	

FOCT P M9K 60870-5-101-2006

<1> := проведено замещение NT BS1[7]<0..1> (Тип 6) <0> := актуальное значение <1> := неактуальное значение IV := BS1[8]<0..1> (Тип 6) < 0> := действительное значение := недействительное значение <1>

Интервал времени действителен, если правильно получен. Если функция опроса обнаруживает неправильные условия, интервал времени маркируется как недействительный. При этих условиях интервал времени ОБЪЕКТА ИНФОРМАЦИИ не определен. Метка «недействительно» используется для указания получателю, что интервал времени может быть неправильным и им нельзя пользоваться.

Определение описателя качества (BL, SB, NT, IV) — по 7.2.6.3 (описатель качества QDS),

7.2.6.5 Значение величины с указанием переходного состояния

(Может использоваться для информации о положении отпаек трансформаторов или других аппаратов с пошаговым изменением позиции).

 VTI
 := CP8 {значение величины, переходное состояние}

 Значение величины
 := I7[1..7]<-64..+63>
 (Тип 2.1)

 Переходное состояние
 := BS1[8]<0..1>
 (Тип 6)

 <0>
 := аппаратура не в переходном состоянии
 (Тип 6)

<1> := аппаратура в переходном состоянии

7.2.6.6 Нормализованная величина

EI = интервал времени недействителен

NVA := $F16[1..16] < -1..+1 - 2^{-15} >$ (Tun 4.1)

Разрешающая способность измеряемых величин не определяется. Если разрешающая способность измеряемой величины грубее чем единица младшего бита, то младшие биты устанавливаются в ноль.

7.2.6.7 Масштабированное значение величины

SVA := $116[1..16] < -2^{15}..+2^{15}-..+2^{15}$ (Tun 2.1)

Разрешающая способность измеряемых величин не определяется. Если разрешающая способность измеряемой величины грубее чем единица младшего бита, то младшие биты устанавливаются в ноль. Этот ЭЛЕМЕНТ ИНФОРМАЦИИ определяется для передачи технологических величин, таких как ток, напряжение, мощность в их физических единицах (например A, кB, МВт). Диапазон и положение десятичной запятой являются фиксированными параметрами.

Примеры:

Ток: 103 А; передаваемое значение 103.

Напряжение: 10.3 кB; передаваемое значение 103, десятичная запятая 10^{-1} .

7.2.6.8 Короткий формат с плавающей запятой

R32-IEEE STD 754 := R32.23(Мантисса, Порядок, Знак) (Тип 5)

Разрешающая способность измеряемых величин не определяется. Если разрешающая способность измеряемой величины грубее чем единица младшего бита, то младшие биты устанавливаются в ноль.

7.2.6.9 Двоичные показания счетчика

BCR		СР40{Двоичные показания счетчика, Последовательная запись	}
Показания счетчика	:=	32[132]<-2 ³¹ +2 ³¹ —1>	(Тип 2.1)
Последовательная			
запись	:=	CP8{SQ, CY, CA, IV}	
SQ	:=	UI5[3337]<031>	(Тип 1.1)
CY	:=	BS1[38]<01>	(Тип 6)
<0>	:=	за соответствующий период интегрирования	
		не было переполнения счетчика	
<1>	:=	за соответствующий период интегрирования	
		произошло переполнение счетчика	
CA	:=	BS1[39]<01>	(Тип 6)
<0>	:=	после последнего считывания счетчик не был установлен	
<1>	:=	после последнего считывания счетчик был установлен	
IV	:=	BS1[40]<01>	(Тип 6)
<0>	:=	показания счетчика действительны	
<1>	:=	показания счетчика недействительны	

SQ = порядковый номер

СҮ = переполнение

(Переполнение счетчика появляется, когда значение переходит от плюс 2^{31} —1 к нулю или от минус 2^{31} к нулю).

СА = счетчик был установлен

(Счетчик считается установленным, если он инициализирован каким-либо значением, например установлен в нулевое или другое начальное значение).

IV = недействительно

Заметим, что CY, CA и IV изменяются только в случае, если значение определено. Это может быть в ответ на команду опроса счетчика или на автоматическую внутреннюю функцию, которая выполняет команду фиксации счетчика или команду фиксации со сбросом.

7.2.6.10 Одиночное событие релейной защиты

SEP		:= CPS{ES, RES, EI, BL, SB, NT, IV}	
ES = co	остояние события	:= Ul2[12]<03>	(Тип 1.1)
	<0>	:= не используется	
	<1>	:= ВЫКЛ	
	<2>	:= ВКЛ	
	<3>	:= не использу ется	
RES=F	E3EPB	:= BS1[3]<0>	(Тип 6)
El		:= BS1[4]<01>	
	<0>	:= время работы действительно	
	<1>	:= время работы недействительно	
BL		:= BS1[5]<01>	(Тип 6)
	<0>	:= нет блокировки	
	<1>	:= блокировка	
SB		:= BS1[6]<01>	(Тип 6)
	<0>	:= нет замещения	
	<1>	:= проведено замещение	
NT		:= BS1[7]<01>	(Тип 6)
	<0>	:= актуальное значение	
	<1>	:= неактуальное значение	
IV		:= BS1[8]<01>	(Тип 6)
	<0>	:= действительное значение	
	<1>	:= недействительное значение	
	TO THE TOURS OF MES	TORRESONOCERO (EL RI SR NE IV) - FO 7 () 6 4 (0 mison

Определение описателя качества (EI, BL, SB, NT, IV) — по 7.2.6.4 (описатель качества для сообщения о работе релейной защиты QDP).

7.2.6.11 Срабатывание пусковых органов устройства релейной защиты

SPE	:=	BS8{GS, SL1, SL2, SL3, SIE, SRD, RES}	
GS = общее начало работы	:=	BS1[1]<01>	(Тип 6)
<0>	:=	общее начало работы не произошло	,
<1>		общее н ачало работы	
SL1 = начало работы фазы А	:=	BS1[2]<01>	(Тип 6)
<0>	:=	начало работы фазы А не произошло	
<1>	:=	начало работы фазы А	
SL2 = начало работы фазы В	:=	BS1[3]<01>	(Тип 6)
<0>	:=	начало работы фазы В не произошло	
<1>		начало работы фазы B	
SL3 = начало работы фазы С	:=	BS1[4]<01>	(Тип 6)
<0>		начало работы фазы С не произошло	
<1>	:=	начало работы фазы С	
SIE = начало работы IE (ток	:=	BS1[5]<01>	(Тип 6)
на землю)			
<0>	:=	начало работы IE не произошло	
<1>	:=	начало работы IE	
SRD = начало работы органа обратной последовательности		BS1[6]<01>	(Тип 6)

5* 33

ГОСТ Р МЭК 60870-5-101-2006

<0> := начало работы органа обратной последовательности

не произошло

<1> := начало работы органа обратной последовательности

RES = PE3EPB := BS2[7..8] < 0 > (Тип 6)

Определения:

Сигналы срабатывания пусковых органов формируются устройством релейной защиты при обнаружении повреждения в силовой сети. Сигналы срабатывания являются кратковременно действующими.

Команда на выходные цепи формируется устройством релейной защиты, когда защита решает отключить выключатель. Команды на выходные цепи поступают в виде кратковременно действующих сигналов.

Время между началом и концом работы — это продолжительность работы защиты. Время между началом работы и командой на выходную цепь — это время срабатывания защиты.

7.2.6.12 Информация о выходных цепях устройства релейной защиты := BS8{GC, CL1, CL2, CL3, RES} GC = общая команда на выходную := BS1[1]<0..1> (Тип 6) цепь <0> := нет общей команды на выходную цепь <1> := общая команда на выходную цепь CL1 = команда на выходную := BS1[2]<0..1> (Тип 6) цепь фазы А <0> := нет команды на выходную цепь фазы А <1> := команда на выходную цепь фазы А CL2 = команда на выходную := BS1[3]<0..1> (Тип 6) цепь фазы В <0> := нет команды на выходную цепь фазы В <1> := команда на выходную цепь фазы В CL3 = команда на выходную := BS1[4]<0..1> (Тип 6) цепь фазы С <0> := нет команды на выходную цепь фазы С <1> := команда на выходную цепь фазы С RES = PE3EPB := BS4[5..8]<0> (Тип 6) 7.2.6.13 Двухпозиционная информация — 32 бита **BSI** := 32BS1[1..32]<0..1> (Тип 6) 7.2.6.14 Фиксированная тестовая комбинация — два байта **FBP** := UI16[1..16]<55AAH> (Тип 1.1) 7.2.6.15 Однопозиционная команда SCO := CP8{SCS, BS1, QOC} SCS = однопозиционная команда := BS1[1]<0..1> (Тип 6) <0> := ВЫКЛЮЧИТЬ <1> := ВКЛЮЧИТЬ RES = PE3EPB := BS1[2]<0> (Тип 6) QOC := CP6[3..8] {QU, S/E} см. 7.2.6.26 (QOC) 7.2.6.16 Двухпозиционная команда DCO := CP8{DCS, QOC} DCS = двухпозиционная команда := UI2[1..2]<0..3> (Тип 1.1) <0> := Не разрешено <1> := ВЫКЛЮЧИТЬ

```
<2>
                                 := ВКЛЮЧИТЬ
              <3>
                                 := Не разрешено
COC
                                 := CP6[3..8] {QU, S/E}
                                                                        см. 7.2.6.26 (QOC)
     7.2.6.17 Команда пошагового регулирования
RCO
                                 := CP8{RCS, QOC}
                                 := UI2[1..2]<0..3>
                                                                                    (Тип 1.1)
RCS = команда пошагового
      регулирования
                                 := не разрешено
              <0>
              <1>
                                 := следующий шаг ВНИЗ
              <2>
                                 := следующий шаг ВВЕРХ
              <3>
                                 := не разрешено
QOC
                                 := CP6[3..8] {QU, S/E}
                                                                        см. 7.2.6.26 (QOC)
```

7.2.6.18 Время в двоичном коде (семь байтов)

СР56Время2а := СР56 $\{$ миллисекунды [1..16], минуты [17..22], рез1 [23], IV (недействительно) [24], часы [25..29], рез2 [30..31], SU (летнее время) [32], день месяца [33..37], день недели [38..40], месяцы [41..45], рез3 [46..48], годы [49..55], рез4 [56] $\}$

Этот двоичный формат времени определяется в МЭК 60870-5-4, подпункт 6.8.

```
День недели := <0> — день недели не используется
```

День недели := <1..7> — день недели используется (опционально)

Понедельник := <1> Вторник := <2> Среда := <3> Четверг := <4> Пятница := <5> Суббота := <6> Воскресенье := <7>

Бит летнего времени SU опционально используется как дополнительная информация для указания, какое время (стандартное или летнее) действует в настоящий момент. Это может быть полезно для присвоения правильного времени объектам информации, генерируемым в течение первого часа после переключения со стандартного на летнее время.

Для систем, которые перекрывают границы часовых поясов, рекомендуется принимать UTC* для всех меток времени.

Бит RES 1 может использоваться в направлении контроля для указания, добавлена ли метка времени к объекту информации, когда он получен от RTU (истинное время), или метка времени установлена промежуточным оборудованием, таким как станция-концентратор, или самой контролирующей станцией (измененное время).

```
RES 1 := GEN (истинное время)
<0> := истинное время
<1> := измененное время
7.2.6.19 Время в двоичном коде (три байта)
```

СР24Время 2а := СР24{миллисекунды, минуты, рез1, недействительно}

Это время в двоичном коде определяется в МЭК-60870-5-4, подпункт 6.8. Оно используется для метки времени ОБЪЕКТА ИНФОРМАЦИИ. Байты от 4-го до 7-го отбрасываются.

Бит RES 1 может использоваться в направлении контроля для указания, добавлена ли метка времени к объекту информации, когда он получен от RTU (истинное время), или метка времени установлена промежуточным оборудованием, таким как станция-концентратор, или самой контролирующей станцией (измененное время).

^{*} Universal Time Coordinated — Универсальное координированное время или Greenwich Mean Time (GMT) — Время по Гринвичу.

ГОСТ Р МЭК 60870-5-101-2006

Этот формат используется для временных интервалов, таких как «Время срабатывания защиты» или «Продолжительность работы защиты».

```
7.2.6.21 Причины инициализации
COL
                                                                                     (Тип 1.1)
               := CP8{UI7[1..7], BS1[8]}
UI7[1..7]<0..127>
      <0>
               := местное включение питания
      <1>
               := местный ручной возврат в исходное состояние
      <2>
               := удаленный возврат в исходное состояние
    <3>..<31> := резерв для стандартных определений настоящего стандарта
                  (совместимый диапазон)
    <32>..<127> := резерв для специального применения (частный диапазон)
                                                                                     (Tun 6)
RES = PE3EPB := BS1[8]<0..1>
      <0>
               := инициализация при неизменных местных параметрах
      <1>
               := инициализация после изменения местных параметров
     7.2.6.22 Указатель опроса
QOI
                                                                                     (Тип 1.1)
               := UI8[1..8]<0..255>
      <0>
               := не используется
    <1>...<19> := резерв для стандартных определений настоящего стандарта
                  (совместимый диапазон)
      <20>
               := опрос станции (общий)
      <21>
               := опрос группы 1
      <22>
               := опрос группы 2
      <23>
               := опроструппы 3
      <24>
               := опрос группы 4
      <25>
               := опрос группы 5
      <26>
               := опрос группы 6
      <27>
               := опрос группы 7
      <28>
               := опрос группы 8
      <29>
               := опрос группы 9
      <30>
               := опроструппы 10
      <31>
               := опрос группы 11
      <32>
               := опроструппы 12
      <33>
               := опроструппы 13
      <34>
               := опроструппы 14
      <35>
               := опроструппы 15
      <36>
               := опроструппы 16
   <37>..<63> := резерв для стандартных определений настоящего стандарта
                  (совместимый диапазон)
   <64>..<255> := резерв для специального применения (частный диапазон)
     7.2.6.23 Указатель команд опроса счетчика
QCC
               := CP8{RQT, FRZ}
RQT = запрос
               := UI6[1..6]<0..63>
                                                                                     (Тип 1.1)
      <0>
               := не запрашивается ни один счетчик (не используется)
      <1>
               := запрос счетчика группы 1
      <2>
               := запрос счетчика группы 2
               := запрос счетчика группы 3
      <3>
      <4>
               := запрос счетчика группы 4
      <5>
               := общий запрос счетчиков
    <6>...<31> := резерв для стандартных определений настоящего стандарта
                  (совместимый диапазон)
    <32>..<63> := резерв для специального применения (частный диапазон)
FRZ = останов := U12[7..8] < 0..3 >
                                                                                     (Тип 1.1)
      <0>
               := считывание (ни фиксации, ни сброса)
      <1>
               := фиксация счетчика без сброса (зафиксированная величина
                  представляет интегральную сумму)
```

<2> := фиксация счетчика со сбросом (зафиксированная величина

представляет информацию приращения)

<3> := сброс счетчика

Действие, определенное кодом FRZ, относится только к группе, определенной кодом RQT.

7.2.6.24 Указатель параметров измеряемых величин

QPM	:= CP8{KPA, LPC, POP}	
КРА = вид параметра	:= UI6[16]<063>	(Тип 1.1)
<0>	:= не используется	
<1>	:= пороговая величина	
<2>	:= сглаживающий коэффициент (постоянная времени фильтра)	
<3>	:= нижний предел для передачи значений измеряемых величин	
<4>	:= верхний предел для передачи значений измеряемых величин	
<5><31>	:= резерв для стандартных определений настоящего стандарта (совместимый диапазон)	
<32> <63>	:= резерв для специального применения (частный диапазон)	
LPC = местное изме-	:= BS1[7]<01>	(Тип 6)
нение параметр	a	
<0>	:= нетизменений	
<1>	:= изменение	
POP = действие	:= BS1[8]<01>	(Тип 6)
параметра		
<0>	:= в работе	
<1>	:= не в работе	
100 000	^	

LPC и POP не используются в настоящем стандарте и устанавливаются в 0.

П р и м е ч а н и е — LPC и POP определены для возможного расширения загрузки параметров от одного до более чем одного параметра, как это определено в МЭК 60870-5-5, подпункт 6.10. Настоящий стандарт определяет загрузку только одиночных параметров (см. 7.4.9 настоящего стандарта).

Местные параметры, которые по умолчанию определены фиксированными значениями на контролируемой станции, нормально передаются на контролирующую станцию с помощью процедуры опроса станции. Если параметры должны передаваться отдельно от общего опроса станции <20>, может использоваться одна из групп от 1 до 16 причины передачи от <21> до <36>.

Пороговая величина — минимальное изменение значения величины, вызывающее новую передачу значения измеряемой величины.

Предел для передачи — граничное значение, при переходе через которое происходит передача значения измеряемой величины.

Каждый вид параметра должен быть определен однозначным АДРЕСОМ **ОБЪЕКТА ИНФОРМАЦИИ** в системе.

7.2.6.25 Указатель активации параметра

7.2.0.23	ука	затель активации параметра	
QPA	:=	UI8[18]<0255>	(Тип 1.1)
<0>	:=	не используется	
<1>	:=	активация/деактивация предварительно загруженных	
		параметров (адрес объекта информации = 0)*	
<2>	:=	активация/деактивация параметра адре сованного объекта *	
<3>	:=	активация/деактивация постоянной циклической или периодической	
		передачи адресованного объекта	
<4> <127>	:=	резерв для стандартных определений настоящего стандарта	
		(совместимый диапазон)	
<128><255>	:=	резерв для специального применения (частный диапазон)	
Активац	ия/д	еактивация определены в ПРИЧИНЕ ПЕРЕДАЧИ.	

^{*} В настоящем стандарте не используется (является резервом для расширения функций загрузки параметра).

7.2.6.26 Указатель команд QOC := CP6{QU, S/E} := UI5[3..7]<0..31> (Тип 1.1) QU <0> := нет дополнительного определения* <1> := короткий импульс, длительность определяется системным параметром на КП <2> := длинный импульс, длительность определяется системным параметром на КП <3> := постоянный выход <4>..<8> := резерв для стандартных определений настоящего стандарта (совместимый диапазон) <9>..<15> := резерв для выбора других заранее определенных функций** <16>..<31> := резерв для специального применения (частный диапазон) := BS1[8]<0..1> (Тип 6) S/E <0> := исполнение <1> := предварительный выбор 7.2.6.27 Указатель команды установки (сброса) процесса в исходное состояние ORP := UI8[1..8]<0..255> (Тип 1.1) <0> := не используется <1> := общая установка процесса в исходное состояние <2> := удаление из буфера событий данных с меткой времени. относящихся к зависшим задачам <3>..<127> := резерв для стандартных определений настоящего стандарта (совместимый диапазон) <128>..<255> := резерв для специального применения (частный диапазон) 7.2.6.28 Указатель готовности файла := CP8{UI7[1..7], BS1[8]} UI7[1..7]<0..127> (Тип 1.1) <0> := по умолчанию <1>..<63> := резерв для стандартных определений настоящего стандарта (совместимый диапазон) <64>..<127> := резерв для специального применения (частный диапазон) BS1[8]<0..1> (Тип 6) < 0> := положительное подтверждение выбора, запроса, деактивации или удаления <1> := отрицательное подтверждение выбора, запроса, деактивации или удаления 7.2.6.29 Указатель готовности секции SRQ := CP8{UI7[1..7], BS1[8]} UI7[1..7]<0..127> (Тип 1.1) <0> := по умолчанию <1>..<63> := резерв для стандартных определений настоящего стандарта (совместимый диапазон) <64>..<127> := резерв для специального применения (частный диапазон) BS1[8]<0..1> (Tun 6) <0> := секция готова к загрузке <1> := секция не готова к загрузке 7.2.6.30 Указатель выбора и вызова SCO := CP8{UI4[1..4], UI4[5..8]} UI4[1..4]<0..15> (Тип 1.1) <0> := по умолчанию <1> := выбор файла

^{*} Может быть использовано, если свойства адресованной функции управления (например длительность импульса и т. п.) фиксированы (заранее определены) на КП и не выбираются на ПУ.

^{**} Может быть использовано для функций управления с фиксированными свойствами, заранее определенными на КП.

```
<2>
                 := запрос файла
                 := деактивация файла
       <3>
       <4>
                 := удаление файла
       <5>
                 := выбор секции
                 := запрос секции
       <6>
       <7>
                 := деактивация секции
    <8>..<10>
                 := резерв для стандартных определений настоящего стандарта
                  (совместимый диапазон)
    <11>..<15>
                 := резерв для специального применения (частный диапазон)
UI4[5..8]<0..15>
                                                                                     (Тип 1.1)
       <0>
                 := по умолчанию
                 := запрошенная область памяти недоступна
       <1>
       <2>
                 := ошибка контрольной суммы
                 := непредусмотренная услуга связи
       <3>
       <4>
                 := несуществующее имя файла
       <5>
                 := несуществующее имя секции
     <6>..<10>
                 := резерв для стандартных определений настоящего стандарта
                  (совместимый диапазон)
    <11>...<15> := резерв для специального применения (частный диапазон)
     7.2.6.31 Указатель последней секции или сегмента
LSQ
             := UI8[1..8]<0..255>
                                                                                     (Тип 1.1)
    <0>
             := не используется
   <1>
             := передача файла без деактивации
    <2>
             := передача файла с деактивацией
    <3>
             := передача секции без деактивации
    <4>
             := передача секции с деактивацией
 <5>..<127> := резерв для стандартных определений настоящего стандарта
                (совместимый диапазон)
<128>..<255> := резерв для специального применения (частный диапазон)
     7.2.6.32 Указатель квитирования файла или секции
AFQ
                 := CP8{UI4[1..4], UI4[5..8]}
UI4[1..4]<0..15>
                                                                                     (Тип 1.1)
       <0>
                 := по умолчанию
       <1>
                 := положительное квитирование передачи файла
       <2>
                 := отрицательное квитирование передачи файла
       <3>
                 := положительное квитирование передачи секции
       <4>
                 := отрицательное квитирование передачи секции
     <5>..<10>
                 := резерв для стандартных определений настоящего стандарта
                  (совместимый диапазон)
    <11>..<15>
                 := резерв для специального применения (частный диапазон)
UI4[5..8]<0..15>
                                                                                     (Тип 1.1)
       <0>
                 := не используется
       <1>
                 := запрошенная область памяти недоступна
       <2>
                 := ошибка контрольной суммы
       <3>
                 := непредусмотренная услуга связи
       <4>
                := несуществующее имя файла
       <5>
                 := несуществующее имя секции
     <6>..<10>
                 := резерв для стандартных определений настоящего стандарта
                  (совместимый диапазон)
    <11>...<15> := резерв для специального применения (частный диапазон)
     7.2.6.33 Имя файла
NOF
              := UI6[1..16]<0..65535>
                                                                                     (Тип 1.1)
     <0>
              := по умолчанию
 <1>..<65535> := имя файла
6-859
```

39

```
7.2.6.34 Имя секции
NOS
               := UI8[1..8]<0..255>
                                                                                    (Тип 1.1)
     <0>
               := по умолчанию
 <1>..<255>
             := имя секции
     7.2.6.35 Длина файла или секции
LOF
              := UI24[1..24]<0..16777215>
                                                                                    (Тип 1.1)
     < 0>
               := не используется
<1>..<16777215>:= число байтов в полном файле или секции
     7.2.6.36 Длина сегмента
              := UI8[1..8]<0..255>
                                                                                    (Тип 1.1)
LOS
     <0>
               := не используется
 <1..n>
               := число байтов в сегменте
     Максимальное число n лежит между 234 (максимальная длина поля адреса канального уровня,
ИДЕНТИФИКАТОРА БЛОКА ДАННЫХ и АДРЕСА ОБЪЕКТА ИНФОРМАЦИИ) и 240 байтами (мини-
мальная длина поля адреса канального уровня, ИДЕНТИФИКАТОРА БЛОКА ДАННЫХ и АДРЕСА
ОБЪЕКТА ИНФОРМАЦИИ).
     7.2.6.37 Контрольная сумма
CHS
               := UI8[1..8]<0..255>
                                                                                   (Тип 1.1)
     <0..255>
              := арифметическая сумма без учета переполнений (сумма по
                  модулю 256) по всем байтам секции
                  (если используется в последнем сегменте PDU) или полного файла
                  (если используется в последней секции PDU)
     7.2.6.38 Состояние файла
SOF
               CP8{STATUS, LFD, FOR, FA}
STATUS
                  U15[1..5]<0..32>
                                                                                    (Тип 1.1)
     <0>
               := не используется
   <1>..<15>
               := резерв для стандартных определений настоящего стандарта
                  (совместимый диапазон)
   <16>..<32>
                  резерв для специального применения (частный диапазон)
               := BS1[6]<0..1>
LFD
                                                                                    (Тип 6)
     <0>
               := последует еще файл той же директории
     <1>
               := последний файл директории
FOR
               := BS1[7]<0..1>
                                                                                    (Tun 6)
     <0>
               := имя определяет файл
     <1>
               := имя определяет субдиректорию
FA
               := BS1[8]<0..1>
                                                                                    (Tun 6)
     <0>
               := файл ожидает передачи
     <1>
               := передача данного файла активна
     7.2.6.39 Указатель команды уставки
QOS
               := CP8{QL, S/E}
QL
               := UI7[1..7]<0..127>
                                                                                    (Тип 1.1)
     <0>
               := по умолчанию
   <1>..<63>
               := резерв для стандартных определений настоящего стандарта
                  (совместимый диапазон)
   <64>..<127> :=
                 резерв для специального применения (частный диапазон)
S/E
               := BS1[8]<0..1>
                                                                                    (Tun 6)
     <0>
               := исполнение
     <1>
               := предварительный выбор
     7.2.6.40 Состояние и указатель изменения состояния
SCD
           := CP32{ST, CD}
           := BS16[1..16]
ST
                                                                                    (Тип 6)
           := STn = бит состояния в позиции n
BS16[n]
  STn<0> := BЫКЛЮЧЕНО
  STn<1> := ВКЛЮЧЕНО
^{\circ}
           := BS16[17..32]
                                                                                    (Тип 6)
           := CDn = бит определения изменения состояния в позиции n + 16
BS16[n]
  CDn<0> := не обнаружено изменения состояния после последней передачи
  CDn<1> := по крайней мере одно изменение состояния обнаружено после
             последней передачи
```

Обнаружение изменения происходит, если контролируемая точка состояния завершает по крайней мере один цикл перехода после последней передачи этой информации. Циклом перехода называется последовательность 0—1—0 или 1—0—1.

7.3 Определение и представление ASDU

Ниже специфицированы все ASDU, упомянутые в настоящем стандарте. Другие ASDU с ИДЕНТИФИ-КАТОРАМИ ТИПА (ИТ) в диапазоне от 1 до 127 могут быть определены в дальнейшем в дополнительном стандарте. ASDU с ИДЕНТИФИКАТОРАМИ ТИПА с номерами от 128 до 255 предоставляются для частного применения пользователями настоящего стандарта (см. 7.2.1.1). Они требуют соглашения между пользователем и изготовителем. Использование стандартизованного диапазона <1..127> или частного диапазона <128..255> может быть определено фиксированными параметрами системы. Если определен только стандартизованный диапазон, то ASDU с ИДЕНТИФИКАТОРАМИ ТИПА с номерами более 127 отбрасываются контролирующими станциями (направление контроля) или отражаются контролируемыми станциями (направление управления) с ПРИЧИНОЙ ПЕРЕДАЧИ, равной 44.

Определенные приложения могут выбирать или набор ASDU с меткой времени CP24Bремя2a, или набор ASDU с меткой времени CP56Bремя2a, за исключением использования ИДЕНТИФИКАТОРА ТИПА 103 C_CS_NA_1 и ИДЕНТИФИКАТОРА ТИПА 126 F_DR_TA_1. Наборы ASDU, содержащие как ASDU с меткой времени CP24Bремя2a, так и ASDU с меткой времени CP56Bремя2a, не определяются.

LPDU в канале определены MЭК 60870-5-2. Эти определения в настоящем стандарте не рассматриваются.

Поскольку ASDU с ИДЕНТИФИКАТОРАМИ ТИПОВ 2, 4, 6, 8, 10, 12, 14, 16, 17, а также от 30 до 38 имеют индивидуальную метку времени, эти типы ASDU не существуют в формате последовательности элементов информации (SQ = 1).

Посполовательность объектов информации (SO=0)

7.3.1 ASDU для информации о процессе в направлении контроля

7.3.1.1 ИДЕНТИФИКАТОР ТИПА 1: M SP NA 1

Одноэлементная информация без метки времени

				ПОСЛ	едова	тель	ность	ооъектов информации (SQ=0)	
0	0	0	0	0	0	0	1	ИДЕНТИФИКАТОР ТИПА	
0		Число	объек	стов і				КЛАССИФИКАТОР ПЕРЕМЕННОЙ СТРУКТУРЫ	ИДЕНТИФИКАТОР БЛОКА ДАННЫХ,
Определено в 7.2.3								ПРИЧИНА ПЕРЕДАЧИ	определенный в 7.1
Определено в 7.2.4								ОБЩИЙ АДРЕС ASDU	
	Оп	редел	ено в 7	7.2.5				АДРЕС ОБЪЕКТА ИНФОРМАЦИИ	
IV	NT	SB	BL	0	0	0	SPI	SIQ = Одноэлементная информа с описателем качества, определенная в 7.2.6.1	ОБЪЕКТ ^{ЦИЯ} ИНФОРМАЦИИ 1
	Оп	редел	ено в 7	7.2.5				АДРЕС ОБЪЕКТА ИНФОРМАЦИИ	
IV	NT	SB	BL	0	0	0	SPI	SIQ = Одноэлементная информа с описателем качества, определенная в 7.2.6.1	ОБЪЕКТ ^{ЦИЯ} ИНФОРМАЦИИ i

Рисунок 22 — ASDU: M_SP_NA_1 Одноэлементная информация без метки времени

M_SP_NA_1 := CP {ИБД, і (адрес объекта информации, SIQ} і := число объектов, определенное в классификаторе переменной структуры

ГОСТ Р МЭК 60870-5-101-2006

Последовательность элементов информации в одиночном объекте (SQ=1)

	
0 0 0 0 0 0 0 1	ИДЕНТИФИКАТОР ТИПА
1 Число элементов ј	КЛАССИФИКАТОР ИДЕНТИФИКАТОР ПЕРЕМЕННОЙ СТРУКТУРЫ БЛОКА ДАННЫХ,
Определено в 7.2.3	ПРИЧИНА ПЕРЕДАЧИ определенный в 7.1
Определено в 7.2.4	ОБЩИЙ АДРЕС ASDU
Определено в 7.2.5	АДРЕС ОБЪЕКТА ИНФОРМАЦИИ А
IV NT SB BL 0 0 0 SF	SIQ = Одноэлементная информация с описателем качества, определенная в 7.2.6.1. Относится к адресу А
	ИНФОРМАЦИИ
IV NT SB BL 0 0 0 SF	SIQ = Одноэлементная информация с описателем качества, определенная в 7.2.6.1. Относится к адресу A+j-1

Рисунок 23 — ASDU: M_SP_NA_1 Последовательность одноэлементной информации без метки времени

 $M_SP_NA_1 := CP \{ИБД, адрес объекта информации, j(SIQ)\}$

ј := число элементов, определенное в классификаторе переменной структуры

ПРИЧИНЫ ПЕРЕДАЧИ, используемые с ИТ 1 := M_SP_NA_1

<2> := фоновое сканирование

<3> := спорадическая

<5> := по запросу

<11> := информация, вызванная удаленной командой

<12> := информация, вызванная местной командой

<20> := ответ на запрос станции
<21>..<36> := ответ на запрос групп 1..16

7.3.1.2 ИДЕНТИФИКАТОР ТИПА 2: M_SP_TA_1

Одноэлементная информация с меткой времени

Последовательность объектов информации (SQ=0)

_		_		_		_		
0	0	0	0	0	0	1	0	ИДЕНТИФИКАТОР ТИПА
0	ι	Нисло	объек	стов і				КЛАССИФИКАТОР ИДЕНТИФИКАТОР ПЕРЕМЕННОЙ СТРУКТУРЫ БЛОКА ДАННЫХ,
	Опр	ределе	ено в	7.2.3				ПРИЧИНА ПЕРЕДАЧИ определенный в 7.1
	Опр	ределе	эно в	7.2.4				ОБЩИЙ AДРЕС ASDU
	Опр	ределе	эно в	7.2.5				АДРЕС ОБЪЕКТА ИНФОРМАЦИИ
IV	NT	SB	BL	0	0	0	SPI	SIQ = Одноэлементная информация с описателем качества, ОБЪЕКТ определенная в 7.2.6.1 ИНФОРМАЦИИ 1
				ремя2 ю в 7.2				Три байта времени в двоичном коде
<u> </u>								
	Опр	оеделе	эно в	7.2 .5				АДРЕС ОБЪЕКТА ИНФОРМАЦИИ
IV	NT	SB	BL	0	0	0	SPI	SIQ = Одноэлементная информация с описателем качества, ОБЪЕКТ определенная в 7.2.6.1 ИНФОРМАЦИИ i
				ремя2 ю в 7.				Три байта времени в двоичном коде

Рисунок 24 — ASDU: M_SP_TA_1 Одноэлементная информация с меткой времени

М_SP_TA_1 := CP {ИБД, i (адрес объекта информации, SIQ, CP24Время2a)} i := число объектов, определенное в классификаторе переменной структуры ПРИЧИНЫ ПЕРЕДАЧИ, используемые с ИТ 2 := M_SP_TA_1

<3> := спорадическая <5> := по запросу

<11> := информация, вызванная удаленной командой <12> := информация, вызванная местной командой

7.3.1.3 ИДЕНТИФИКАТОР ТИПА 3: M_DP_NA_1

Двухэлементная информация без метки времени

Последовательность объектов информации (SQ=0)

0		0 Нисло			0	1	1	ИДЕНТИФИКАТОР ТИПА КЛАССИФИКАТОР ПЕРЕМЕННОЙ СТРУКТУРЫ БЛОКА ДАННЫХ,
		оеделе оеделе						ПРИЧИНА ПЕРЕДАЧИ определенный в 7.1 ОБЩИЙ АДРЕС ASDU
	Опр	ределе	ено в 7	7.2.5				АДРЕС ОБЪЕКТА ИНФОРМАЦИИ
IV	NT	SB	BL	0	0		I DPI	ОБЪЕКТ DIQ = Двухэлементная информация инфОРМАЦИИ с описателем качества, определенная в 7.2.6.2
	Опр	оеделе	ено в	7.2.5				АДРЕС ОБЪЕКТА ИНФОРМАЦИИ
IV	NT	SB	BL	0	0	1	I DPI	ОБЪЕКТ ИНФОРМАЦИИ с описателем качества, определенная в 7.2.6.2

Рисунок 25 — ASDU: M_DP_NA_1 Двухэлементная информация без метки времени

 $M_DP_NA_1 := CP \{ ИБД, i (адрес объекта информации, DIQ) \}$ i := число объектов, определенное в классификаторе переменной структуры

Последовательность элементов информации в одиночном объекте (SQ=1)

1	0		0 исло э	_	0 -тов ј	1	1	Г	ИДЕНТИФИКАТОР ТИПА КЛАССИФИКАТОР ПЕРЕМЕННОЙ СТРУКТУРЫ ПРИЧИНА ПЕРЕДАЧИ	ИДЕНТИФИКАТОР БЛОКА ДАННЫХ, определенный в 7.1
Определено в 7.2.4									ОБЩИЙ АДРЕС ASDU	
	Оп	ределе	ено в 7	7.2.5					информации а	
IV	NT	SB	BL	0	0		i Pl	1	DIQ = Двухалементная информа с описателем качества, определенная в 7.2.6.2. Относится к адресу А	объект
										ИНФОРМАЦИИ
IV	NT	SB	BL	0	0		T DPI	j	DIQ = Двухэлементная информа с описателем качества, определенная в 7.2.6.2. Относится к адресу А+j-1	ация

Рисунок 26 — ASDU: M_DP_NA_1 Последовательность двухэлементной информации без метки времени

 $M_DP_NA_1 := CP \{ ИБД, адрес объекта информации, <math>j(DIQ) \}$ ј := число элементов, определенное в классификаторе переменной структуры ПРИЧИНЫ ПЕРЕДАЧИ, используемые с ИТ 3 := M_DP_NA_1 <2> фоновое сканирование := <3> := спорадическая <5> := по запросу <11> := информация, вызванная удаленной командой <12> := информация, вызванная местной командой <20> := ответ на запрос станции <21>..<36> := ответ на запрос групп 1..16

7.3.1.4 ИДЕНТИФИКАТОР ТИПА 4: М_DP_TA_1

Двухэлементная информация с меткой времени

Последовательность объектов информации (SQ=0)

	
0 0 0 0 0 1 0 0	ИДЕНТИФИКАТОР ТИПА
0 Число объектов i	КЛАССИФИКАТОР ИДЕНТИФИКАТОР ПЕРЕМЕННОЙ СТРУКТУРЫ БЛОКА ДАННЫХ,
Определено в 7.2.3	ПРИЧИНА ПЕРЕДАЧИ определенный в 7.1
Определено в 7.2.4	ОБЩИЙ AДРЕС ASDU
Определено в 7.2.5	АДРЕС ОБЪЕКТА ИНФОРМАЦИИ
IV NT SB BL 0 0 DPI	DIQ = Двухэлементная информация с описателем качества, ОБЪЕКТ определенная в 7.2.6.2 ИНФОРМАЦИИ 1
СР24Время2а Определено в 7.2.6.19	Три байта времени в двоичном коде
Определено в 7.2.5	АДРЕС ОБЪЕКТА ИНФОРМАЦИИ
IV NT SB BL 0 0 DPI	DIQ = Двухэлементная информация с описателем качества, ОБЪЕКТ определенная в 7.2.6.2 ИНФОРМАЦИИ i
СР24Время2а Определено в 7.2.6.19	Три байта времени в двоичном коде

Рисунок 27 — ASDU: M_DP_TA_1 Двухэлементная информация с меткой времени

M_DP_TA_1 := CP {ИБД, і (адрес объекта информации, DIQ, CP24Время2а)} і := число объектов, определенное в классификаторе переменной структуры ПРИЧИНЫ ПЕРЕДАЧИ, используемые с ИТ 4 := M_DP_TA_1

<3> := спорадическая <5> := по запросу

<11> := информация, вызванная удаленной командой <12> := информация, вызванная местной командой

7.3.1.5 ИДЕНТИФИКАТОР ТИПА 5: M_ST_NA_1

Информация о положении отпаек

Последовательность	объектов информации (SQ=0)	
0 0 0 0 0 1 0 1	ИДЕНТИФИКАТОР ТИПА	
0 Число объектов i	КЛАССИФИКАТОР ПЕРЕМЕННОЙ СТРУКТУРЫ	ИДЕНТИФИКАТОР БЛОКА ДАННЫХ,
Определено в 7.2.3	ПРИЧИНА ПЕРЕДАЧИ	определенный в 7.1
Определено в 7.2.4	ОБЩИЙ АДРЕС ASDU	
Определено в 7.2.5	АДРЕС ОБЪЕКТА ИНФОРМАЦИИ	
T Значени е ве личины	VTI = Значение величины с индика- цией переходного состояния, определенное в 7.2.6.5	ОБЪЕКТ ИНФОРМАЦИИ 1
IV NT SB BL 0 0 0 OV	QDS = Описатель качества, определенный в 7.2.6.3	
Определено в 7.2.5	АДРЕС ОБЪЕКТА ИНФОРМАЦИИ	
Т Значение величины	VTI = Значение величины с индика- цией переходного состояния, определенное в 7.2.6.5	
IV NT SB BL 0 0 0 OV	QDS = Описатель качества, определенный в 7.2.6.3	

Рисунок 28 — ASDU: M_ST_NA_1 Информация о положении отпаек

M_ST_NA_1 := CP {ИБД, і (адрес объекта информации VTI, QDS)} і := число объектов, определенное в классификаторе переменной структуры

47

Последовательность элементов информации в одиночном объекте (SQ=1) ИДЕНТИФИКАТОР ТИПА 0 0 O 0 0 1 0 1 ИДЕНТИФИКАТОР КЛАССИФИКАТОР Число элементов ј 1 ПЕРЕМЕННОЙ СТРУКТУРЫ БЛОКА ДАННЫХ, определенный Определено в 7.2.3 ПРИЧИНА ПЕРЕДАЧИ в 7.1 Определено в 7.2.4 ОБЩИЙ AДPEC ASDU АДРЕС ОБЪЕКТА Определено в 7.2.5 ИНФОРМАЦИИ А Т VTI = Значение величины с индика-Значение величины цией переходного состояния, 1 определенное в 7.2.6.5. Относится к адресу А ΟV QDS = Описатель качества, NT SB BL 0 0 0 определенный в 7.2.6.3 ОБЪЕКТ ИНФОРМАЦИИ Т VTI = Значение величины с индика-Значение величины цией переходного состояния, j определенное в 7.2.6.5. Относится к адресу А+j-1 NT SB BL 0 ΟV QDS = Описатель качества. определенный в 7.2.6.3

Рисунок 29 — ASDU: M_ST_NA_1 Последовательность информации о положении отпаек

 $M_ST_NA_1 := CP \{ИБД, адрес объекта информации, j(VTI, QDS)\}$ ј := число элементов, определенное в классификаторе переменной структуры ПРИЧИНЫ ПЕРЕДАЧИ, используемые с ИТ 5 := М ST NA 1 <2> := фоновое сканирование <3> := спорадическая <5> := по запросу <11> информация, вызванная удаленной командой := <12> := информация, вызванная местной командой <20> ответ на запрос станции :=

ответ на запрос групп 1..16

<21>..<36>

:=

7.3.1.6 ИДЕНТИФИКАТОР ТИПА 6: M_ST_TA_1

Информация о положении отпаек с меткой времени

Рисунок 30 — ASDU: M_ST_TA_1 Информация о положении отпаек с меткой времени

M_ST_TA_1 := CP {ИБД, i (адрес объекта информации, VTI, QDS, CP24Время2а)} i := число объектов, определенное в классификаторе переменной структуры ПРИЧИНЫ ПЕРЕДАЧИ, используемые с ИТ 6 := M_ST_TA_1

<3> := спорадическая <5> := по запросу

7*

<11> := информация, вызванная удаленной командой <12> := информация, вызванная местной командой

49

7.3.1.7 ИДЕНТИФИКАТОР ТИПА 7: М_ВО_NA_1

Строка из 32 бит

Последовательность объектов информации (SQ=0)

0 0 0 0 0 1 1 1	ИДЕНТИФИКАТОР ТИПА
0 Число объектов i	КЛАССИФИКАТОР ИДЕНТИФИКАТОР ПЕРЕМЕННОЙ СТРУКТУРЫ БЛОКА ДАННЫХ,
Определено в 7.2.3	ПРИЧИНА ПЕРЕДАЧИ определенный в 7.1
Определено в 7.2.4	ОБЩИЙ AДPEC ASDU
Определено в 7.2.5	АДРЕС ОБЪЕКТА ИНФОРМАЦИИ
Строка битов	
Строка битов	BSI = Двухпозиционная ОБЪЕКТ
Строка битов	информация, 32 бит, ИНФОРМАЦИИ определенная в 7.2.6.13 1
Строка битов	
IV NT SB BL 0 0 0 OV	QDS = Описатель качества, определенный в 7.2.6.3
Определено в 7.2.5	АДРЕС ОБЪЕКТА ИНФОРМАЦИИ
Строка битов	
Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т	- BSI = Двухпозиционная ОБЪЕКТ
Строка битов	информация, 32 бит, ИНФОРМАЦИИ определенная в 7.2.6.13 і
т т т т т т т т т т т т т т т т т т т	1
IV NT SB BL 0 0 0 OV	QDS = Описатель качества, определенный в 7.2.6.3

Рисунок 31 — ASDU: M_BO_NA_1 Строка из 32 бит

M_BO_NA_1 := CP {ИБД, i (адрес объекта информации, BSI, QDS)}

і := число объектов, определенное в классификаторе переменной структуры ПРИЧИНЫ ПЕРЕДАЧИ, используемые с ИТ 7 := M_BO_NA_1

<2> := фоновое сканирование

<3> := спорадическая

;= <5>

:= по запросу := ответ на запрос станции := ответ на запрос групп 1..16 <20> <21>..<36>

50

Последовательность элементов информации в одиночном объекте (SQ=1)

0	0	0	0	0	1	1	1	L L	 ИДЕНТИФИКАТОР ТИПА	·
1	ı	Нисло	элеме	ентов ј				П	КЛАССИФИКАТОР ЕРЕМЕННОЙ СТРУКТУРЫ	ИДЕНТИФИКАТОІ БЛОКА ДАННЫХ
	Оп	редел	ено в 7	7.2.3					ПРИЧИНА ПЕРЕДАЧИ	определенный в 7.1
	Оп	редел	ено в 7	7.2.4					ОБЩИЙ АДРЕС ASDU	
	Оп	редел	ено в 7	7.2.5					АДРЕС ОБЪЕКТА ИНФОРМАЦИИ А	
		1	і Строка	і битоі	3		I			
	I	l (і Строка	і битоі	3	ı			DCI = Inverse	
	ı	1 (т Строка	і битоі	3	T	Ī	1	BSI = Двухпозиционная информация, 32 бит, определенная в 7.2.6. Относится к адресу об	
		,	і Строка	і битоі	3	ı			информации А	
IV	NT	SB	BL	0	0	0	OV		QDS = Описатель качества, определенный в 7.2.6	3.3 ОБЪЕКТ ИНФОРМАЦИІ
										информаци
	ı	•	і Строка	а битоі	3	I	1			
	I	,	т Строка	а бито	3	ı	I		BSI = Двухпозиционная	
	1	,	т Строка	битоі	3	1	1	j	информация, 32 бит, определенная в 7.2.6. Относится к адресу об	
	ı	·	Строка	а бито	3	1			информации А+j-1	
IV	NT	SB	BL	0	0	0	OV		QDS = Описатель качества, определенный в 7.2.6	3.2

Рисунок 32 — ASDU: M_BO_NA_1 Последовательность строк из 32 бит

 $M_BO_NA_1 := CP \{ИБД, адрес объекта информации, j(BSI, QDS)\}$ ј := число элементов, определенное в классификаторе переменной структуры ПРИЧИНЫ ПЕРЕДАЧИ, используемые с ИТ 7 := M_BO_NA_1

<2> := фоновое сканирование
<3> := спорадическая
<5> := по запросу
<20> := ответ на запрос станции
<21>...<36> := ответ на запрос групп 1..16

7.3.1.8 ИДЕНТИФИКАТОР ТИПА 8:

M_BO_TA_1

Строка из 32 бит с меткой времени

Последовательность объектов информации (SQ=0)

Рисунок 33 — ASDU: M_BO_TA_1 Строка из 32 бит с меткой времени

М_ВО_ТА_1 := CP {ИБД, I(адрес объекта информации, BSI, QDS, CP24Время2а)} і := число объектов, определенное в классификаторе переменной структуры ПРИЧИНЫ ПЕРЕДАЧИ, используемые с ИТ 8 := M_BO_TA_1

<3> := спорадическая <5> := по запросу

7.3.1.9 ИДЕНТИФИКАТОР ТИПА 9: M_ME_NA_1 Значение измеряемой величины, нормализованное значение

Последовательность объектов информации (SQ=0)

			-	-	-			
0	0	0	0	1	0	0	1	ИДЕНТИФИКАТОР ТИПА
0	,	Нисло	объек	стов і				КЛАССИФИКАТОР ИДЕНТИФИКАТОР ПЕРЕМЕННОЙ СТРУКТУРЫ БЛОКА ДАННЫХ,
	Опр	ределе	ено в	7.2.3				ПРИЧИНА ПЕРЕДАЧИ определенный в 7.1
	Опр	ределе	ено в	7.2.4				ОБЩИЙ АДРЕС ASDU
	Опр	ределе	ено в	7.2.5				АДРЕС ОБЪЕКТА ИНФОРМАЦИИ
		Зна	чение	велич	ины			 NVA = Нормализованное значение ОБЪЕКТ величины, определенное ИНФОРМАЦИИ
s		Зна	чение	велич	и нины 		1	в 7.2.6.6
IV	NT	SB	BL	0	0	0	ov	QDS = Описатель качества, определенный в 7.2.6.3
					_			
	Опр	редел	ено в	7.2.5				АДРЕС ОБЪЕКТА ИНФОРМАЦИИ
	•	Зна	и чение	велич	INHPI		T	
s		Зна	чение	велич	INHPI			величины, определенное ИНФОРМАЦИИ в 7.2.6.6 i
IV	NT	SB	BL	0	0	0	ov	QDS = Описатель качества, определенный в 7.2.6.3

Рисунок 34 — ASDU: M_ME_NA_1 Значение измеряемой величины, нормализованное значение

M_ME_NA_1 := CP {ИБД, і (адрес объекта информации, NVA, QDS)} і := число объектов, определенное в классификаторе переменной структуры

Последовательность элементов информации в одиночном объекте (SQ=1)

0	0	0	0	1	0	0	1	ИДЕНТИФИКАТОР ТИПА
1		Нисло	элеме	энтов ,	j			КЛАССИФИКАТОР ИДЕНТИФИКАТОР ПЕРЕМЕННОЙ СТРУКТУРЫ БЛОКА ДАННЫХ,
	Оп	ределе	ено в	7.2.3				ПРИЧИНА ПЕРЕДАЧИ в 7.1
	Оп	ределе	эно в	7.2.4				ОБЩИЙ AДPEC ASDU
	Оп	ределе	эно в	7.2.5				АДРЕС ОБЪЕКТА ИНФОРМАЦИИ А
		3на [.]	і чение	в елич	-INHPI		T	NVA = Нормализованное значение 1 величины, определенное
s	1	Зна	чение	велич	чины	•	•	в 7.2.6.6. Относится к адресу А
IV	NT	SB	BL	0	0	0	OV	QDS = Описатель качества, определенный в 7.2.6.3
								ОБЪЕКТ ИНФОРМАЦИИ
	T	Т Зна	т чение	велич	нины Т	г	1	NVA = Нормализованное значение величины, определенное
s	ı	Зна	І чение	велич Велич	І	1	1	ј в 7.2.6.6. Относится к адресу А+j-1
IV	NT	SB	BL	0	0	0	ov	QDS = Описатель качества, определенный в 7.2.6.3

Рисунок 35 — ASDU: M ME NA 1 Последовательность значений измеряемых величин, нормализованные значения

 $M_ME_NA_1 := CP \{ИБД, адрес объекта информации, j(NVA, QDS)\}$

ј := число элементов, определенное в классификаторе переменной структуры

ПРИЧИНЫ ПЕРЕДАЧИ, используемые с ИТ 9 := М МЕ NA 1

<1> := периодическая/циклическая
<2> := фоновое сканирование
<3> := спорадическая
<5> := по запросу
<20> := ответ на запрос групп 1..16

7.3.1.10 ИДЕНТИФИКАТОР ТИПА 10: M_ME_TA_1

Значение измеряемой величины, нормализованное значение с меткой времени

Последовательность объектов информации (SQ=0)

0	0	0	0	1	0	1	0	ИДЕНТИФИКАТОР ТИПА	
0	,	Число	объек	тов і				КЛАССИФИКАТОР ПЕРЕМЕННОЙ СТРУКТУРЫ	ИДЕНТИФИКАТОР БЛОКА ДАННЫХ,
	Оп	ределе	ено в 7	7.2.3				ПРИЧИНА ПЕРЕДАЧИ	определенный в 7.1
	Оп	ределе	эно в 7	7.2.4				ОБЩИЙ АДРЕС ASDU	
	Оп	ределе	ено в 7	7.2.5				АДРЕС ОБЪЕКТА ИНФОРМАЦИИ	
s			иение чение чение			1	_	NVA = Нормализованное значение величины, определенное в 7.2.6.6	051 515
IV	NT	SB	BL	0	0	0	ov	QDS = Описатель качества, определенный в 7.2.6.3	ОБЪЕКТ ИНФОРМАЦИИ 1
			Р24 В де лен					Три байта времени в двоичном коде	-
	Оп	ределе	ено в 7	7.2.5				АДРЕС ОБЪЕКТА ИНФОРМАЦИИ	
		З на	I чение	велич	ины			NVA = Нормализованное значение величины, определенное	
s		Зна	чение	велич	ины -		'	в 7.2.6.6	ОБЪЕКТ ИНФОРМАЦИИ
IV	NT	SB	BL	0	0	0	ov	QDS = Описатель качества, определенный в 7.2.6.3	i
			ЭР24В уделен					Три байта времени в двоичном коде	r

Рисунок 36 — ASDU: M_ME_TA_1 Значение измеряемой величины, нормализованное значение с меткой времени

М_ME_TA_1 := CP {ИБД, i(адрес объекта информации, NVA, QDS, CP24Время2а)} i := число объектов, определенное в классификаторе переменной структуры ПРИЧИНЫ ПЕРЕДАЧИ, используемые с ИТ 10 := M_ME_TA_1

<3> := спорадическая <5> := по запросу

7.3.1.11 ИДЕНТИФИКАТОР ТИПА 11: M_ME_NB_1

Значение измеряемой величины, масштабированное значение

Последовательность объектов информации (SQ=0)

0 0 0 0 1 0 1 1	ИДЕНТИФИКАТОР ТИПА	
0 Число объектов і	КЛАССИФИКАТОР ПЕРЕМЕННОЙ СТРУКТУРЫ	ИДЕНТИФИКАТОР БЛОКА ДАННЫХ,
Определено в 7.2.3	ПРИЧИНА ПЕРЕДАЧИ	определенный в 7.1
Определено в 7.2.4	ОБЩИЙ AДPEC ASDU	
Определено в 7.2.5	АДРЕС ОБЪЕКТА ИНФОРМАЦИИ	
Значение величины S Значение величины	SVA = Масштабированное значение величины, определенное в 7.2.6.7	ОБЪЕКТ ИНФОРМАЦИИ 1
IV NT SB BL 0 0 0 OV	QDS = Описатель качества, определенный в 7.2.6.3	
Определено в 7.2.5	АДРЕС ОБЪЕКТА ИНФОРМАЦИИ	
Значение величины	SVA = Масштабированное значение	0E3 E1G
S Значение величины	величины, определенное в 7.2.6.7	ОБЪЕКТ ИНФОРМАЦИИ і
IV NT SB BL 0 0 0 OV	QDS = Описатель качества, определенный в 7.2.6.3	

Рисунок 37 — ASDU: M_ME_NB_1 Значение измеряемой величины, масштабированное значение

 $M_ME_NB_1 := CP \{ИБД, i (адрес объекта информации, SVA, QDS)\}$ i := число объектов, определенное в классификаторе переменной структуры

Последовательность элементов информации в одиночном объекте (SQ=1)

0	0	0	0	1	0	1	1	ИДЕНТИФИКАТОР ТИПА ————————————————————————————————————	ЕНТИФИКАТОР
1	Опр	чис ределе	ло эле эно в 7		овј				ОКА ДАННЫХ, пределенный в 7.1
	Опр	ределе	ено в 7	7.2.4				ОБЩИЙ AДPEC ASDU	
	Опр	оеделе	ено в 7	7.2.5				АДРЕС ОБЪЕКТА ИНФОРМАЦИИ А	
S			чение				1	SVA = Масштабированное значение величины, определенное в 7.2.6.7. Относится к адресу А	
IV	NT	SB	BL	0	0	0	OV	QDS = Описатель качества, определенный в 7.2.6.3	ОБЪЕКТ ИНФОРМАЦИИ
s	I		чение			·		SVA = Масштабированное значение величины, определенное в 7.2.6.7. Относится к адресу A+j-1	-
IV	NT	SB	BL	0	0	0	ov	—— QDS = Описатель качества, определенный в 7.2.6.3	

Рисунок 38 — ASDU: M_ME_NB_1 Последовательность значений измеряемых величин, масштабированные значения

 $M_ME_NB_1 := CP \{ИБД, адрес объекта информации, j(SVA, QDS)\}$

ј := число элементов, определенное в классификаторе переменной структуры

ПРИЧИНЫ ПЕРЕДАЧИ, используемые с ИТ 11 := M_ME_NB_1

<1> := периодическая/циклическая

<2> := фоновое сканирование

<3> := спорадическая <5> := по запросу

<20> := ответ на запрос станции
<21>..<36> := ответ на запрос групп 1..16

7.3.1.12 ИДЕНТИФИКАТОР ТИПА 12: М_МЕ_ТВ_1

Значение измеряемой величины, масштабированное значение с меткой времени

Последовательность объектов информации (SQ=0)

0	0	0	0	1	1	0	0	ИДЕНТИФИКАТОР ТИПА	-
0	ı	Число	объек	тов і				КЛАССИФИКАТОР ПЕРЕМЕННОЙ СТРУКТУРЫ	ИДЕНТИФИКАТОР БЛОКА ДАННЫХ,
	Оп	ределе	ено в 7	7.2.3	_			ПРИЧИНА ПЕРЕДАЧИ	определенный в 7.1
	Оп	ределе	ено в 7	7.2.4				ОБЩИЙ AДРЕС ASDU	
	Оп	ределе	ено в 7	7.2.5				АДРЕС ОБЪЕКТА ИНФОРМАЦИИ	
s			чение			I	_	SVA = Масштабированное значение величины, определенное в 7.2.6.7	ОБЪЕКТ
IV	NT	SB	BL	0	0	0	OV	QDS = Описатель качества, определенный в 7.2.6.3	ИНФОРМАЦИИ 1
		С Опре	:Р24В делен	ремя2 о в 7.	e 2.6.19			Три байта времени в двоичном коде	
	Оп	ределе	эно в 7	7.2.5				АДРЕС ОБЪЕКТА ИНФОРМАЦИИ	
s			чение чение	_		· ·	-	SVA = Масштабированное значение величины, определенное в 7.2.6.7	ОБЪЕКТ
IV	NT	SB	BL	0	0	0	ov	QDS = Описатель качества, определенный в 7.2.6.3	информации і
			:P24B делен					Три байта времени в двоичном коде	

Рисунок 39 — ASDU: M_ME_TB_1 Значение измеряемой величины, масштабированное значение с меткой времени

М_МЕ_ТВ_1 := CP {ИБД, i(адрес объекта информации, SVA, QDS, CP24Время2а)} i := число объектов, определенное в классификаторе переменной структуры ПРИЧИНЫ ПЕРЕДАЧИ, используемые с ИТ 12 := M_ME_TB_1

<3> := спорадическая <5> := по запросу

7.3.1.13 ИДЕНТИФИКАТОР ТИПА 13: M_ME_NC_1 Значение измеряемой величины, короткий формат с плавающей запятой

Последовательность объектов информации (SQ=0)

Рисунок 40 — ASDU: M ME NC 1 Значение измеряемой величины, короткий формат с плавающей запятой

M_ME_NC_1 := CP {ИБД, і (адрес объекта информации IEEE STD 754, QDS)} і := число объектов, определенное в классификаторе переменной структуры

Последовательность элементов информации в одиночном объекте(SQ=1)

0	0	0	0	1	1	0	1	ИДЕНТИФИКАТОР ТИПА	
1		Нисло	элеме	ентов ј			Ī	КЛАССИФИКАТОР ПЕРЕМЕННОЙ СТРУКТУРЫ	ИДЕНТИФИКАТОР БЛОКА ДАННЫХ,
	Опр	ределе	ено в	7.2.3		·		ПРИЧИНА ПЕРЕДАЧИ	определенный в 7.1
	Опј	ределе	ено в 7	7.2.4				ОБЩИЙ AДРЕС ASDU	
	Опј	ределе						АДРЕС ОБЪЕКТА ИНФОРМАЦИИ А	
	•		-	гисса					
	I		•	гисса		1		IEEE STD 754 = Короткий формат с плавающей запятой,	
E	1		Мант	гисса		•		определенный в 7.2.6.8. Относится к адресу А	
s	I		Пор	г ядок		ı			
IV	NT	SB	BL	0	0	0	OV	QDS = Описатель качества, определенный в 7.2.6.3	
									— ОБЪЕКТ ИНФОРМАЦИИ
	1		Мант	гисса		1			
	I		Мант	гисса		1	I	IEEE STD 754 = Короткий формат с плавающей запятой,	
E	1		Ман	гисса			I	j определенный в 7.2.6.8. Относится к адресу А+j-1	
s	1		Пор	І ядок		1			
IV	NT	SB	BL	0	0	0	ov	QDS = Описатель качества, определенный в 7.2.6.3	

Рисунок 41 — ASDU: M_ME_NC_1 Последовательность значений измеряемой величины, короткий формат с плавающей запятой

M_ME_NC_1 := CP {ИБД, адрес объекта информации, j(IEEE STD 754, QDS)} ј := число элементов, определенное в классификаторе переменной структуры ПРИЧИНЫ ПЕРЕДАЧИ, используемые с ИТ 13 := M_ME_NC_1

<1> := периодическая/циклическая <2>

:= фоновое сканирование := спорадическая <3> := спорадическая
<5> := по запросу
<20> := ответ на запрос станции

<21>..<36> := ответ на запрос групп 1..16

7.3.1.14 ИДЕНТИФИКАТОР ТИПА 14: M_ME_TC_1

Значение измеряемой величины, короткий формат с плавающей запятой с меткой времени

Последовательность объектов информации (SQ=0) 0 0 ИДЕНТИФИКАТОР ТИПА ИДЕНТИФИКАТОР КЛАССИФИКАТОР 0 Число объектов і ПЕРЕМЕННОЙ СТРУКТУРЫ БЛОКА ДАННЫХ, определенный ПРИЧИНА ПЕРЕДАЧИ Определено в 7.2.3 в 7.1 Определено в 7.2.4 ОБЩИЙ AДPEC ASDU АДРЕС ОБЪЕКТА Определено в 7.2.5 ИНФОРМАЦИИ Мантисса Мантисса IEEE STD 754 = Короткий формат с плавающей запятой, определенный в 7.2.6.8 Ε Мантисса ОБЪЕКТ ИНФОРМАЦИИ s Порядок SB BL 0 QDS = Описатель качества. определенный в 7.2.6.3 СР24Время2а Три байта времени в двоичном коде Определено в 7.2.6.19 АДРЕС ОБЪЕКТА Определено в 7.2.5 ИНФОРМАЦИИ Мантисса Мантисса IEEE STD 754 = Короткий формат с плавающей запятой, определенный в 7.2.6.8 Ε Мантисса ОБЪЕКТ ИНФОРМАЦИИ s Порядок NT SB BL 0 ov QDS = Описатель качества. определенный в 7.2.6.3 СР24Время2а Три байта времени в двоичном коде Определено в 7.2.6.19

Рисунок 42 — ASDU: M_ME_TC_1 Значение измеряемой величины, короткий формат с плавающей запятой с меткой времени

М_ME_TC_1 := CP {ИБД, i(адрес объекта информации, IEEE STD 754, QDS, CP24Время2а)} і := число объектов, определенное в классификаторе переменной структуры ПРИЧИНЫ ПЕРЕДАЧИ, используемые с ИТ 14 := M_ME_TC_1

<3> := спорадическая <5> := по запросу

7.3.1.15 ИДЕНТИФИКАТОР ТИПА 15:

M_IT_NA_1

Интегральные суммы

Последовательность объектов информации (SQ=0)

Рисунок 43 — ASDU: M_IT_NA_1 Интегральные суммы

M_IT_NA_1 := CP {ИБД, і (адрес объекта информации, BCR)} і := число объектов, определенное в классификаторе переменной структуры

63

Последовательность элементов информации в одиночном объекте (SQ=1)

0 0 0 0 1 1 1 ИДЕНТИФИКАТОР ТИПА 1 Число элементов ј КЛАССИФИКАТОР ПЕРЕМЕННОЙ СТРУКТУРЫ Определено в 7.2.3 ПРИЧИНА ПЕРЕДАЧИ Определено в 7.2.4 ОБЩИЙ АДРЕС ASDU Определено в 7.2.5 АДРЕС ОБЪЕКТА ИНФОРМАЦИИ	ИДЕНТИФИКАТОР БЛОКА ДАННЫХ, определенный
Определено в 7.2.3 ПЕРЕМЕННОЙ СТРУКТУРЫ ПРИЧИНА ПЕРЕДАЧИ Определено в 7.2.4 ОБЩИЙ АДРЕС АSDU АДРЕС ОБЪЕКТА	БЛОКА ДАННЫХ, определенный
Определено в 7.2.4 ОБЩИЙ АДРЕС ASDU АДРЕС ОБЪЕКТА	•
АДРЕС ОБЪЕКТА	в 7.1
Определено в 7.2.5	
ипформации	
Значение величины	
Значение величины	
1 BCR = Показания счетчика в двоичном коде, опреде в 7.2.6.9.	эленные
S Значение величины Относится к адресу А	
IV CA CY Порядковый номер	
	——— ОБЪЕКТ ИНФОРМАЦИИ
Значение величины	
Значение величины	
ј BCR = Показания счетчика в Значение величины двоичном коде, опреде в 7.2.6.9.	
Относится к адресу A+j - S Значение величины	1
IV CA CY Порядковый номер	

Рисунок 44 — ASDU: M_IT_NA_1 Последовательность интегральных сумм

 $M_IT_NA_1 := CP \{ИБД, адрес объекта информации, j(BCR)\}$

ј := число элементов, определенное в классификаторе переменной структуры

ПРИЧИНЫ ПЕРЕДАЧИ, используемые с ИТ 15 := M_IT_NA_1

<3> := спорадическая <37> := общий запрос счетчиков <38>..<41> := запрос счетчиков групп 1..4

9-859

7.3.1.16 ИДЕНТИФИКАТОР ТИПА 16:

M_IT_TA_1

Интегральные суммы с меткой времени

Последовательность объектов информации (SQ=0)

Рисунок 45 — ASDU: M_IT_TA_1 Интегральные суммы с меткой времени

М_IT_NA_1 := CP {ИБД, і (адрес объекта информации, BCR, CP24Время2а)} і := число объектов, определенное в классификаторе переменной структуры ПРИЧИНЫ ПЕРЕДАЧИ, используемые с ИТ 16 := M_IT_TA_1

<3> := спорадическая

<37> := общий запрос счетчиков <38>..<41> := запрос счетчиков групп 1..4

7.3.1.17 ИДЕНТИФИКАТОР ТИПА 17:

M_EP_TA_1

Работа устройств защиты с меткой времени

Последовательность объектов информации (SQ=0)

		
0 0 0 1 0 0 0 1	ИДЕНТИФИКАТОР ТИПА	
0 Число объектов і	КЛАССИФИКАТОР ПЕРЕМЕННОЙ СТРУКТУРЫ	ИДЕНТИФИКАТОР БЛОКА ДАННЫХ,
Определено в 7.2.3	ПРИЧИНА ПЕРЕДАЧИ	определенный в 7.1
Определено в 7.2.4	ОБЩИЙ АДРЕС ASDU	
Определено в 7.2.5	АДРЕС ОБЪЕКТА ИНФОРМАЦИИ	
IV NT SB BL EI 0 ES	SEP = Одиночное событие устройства защиты, определенное в 7.2.6.10	ОБЪЕКТ ИНФОРМАЦИИ
СР16Время2а Определено в 7.2.6.20	Два байта времени в двоичном коде. Временной интервал	информации 1
СР24Время2а Определено в 7.2.6.19	Три байта времени в двоичном коде	
Определено в 7.2.5	АДРЕС ОБЪЕКТА	
Определено в 7.2.3	ИНФОРМАЦИИ	
IV NT SB BL EI 0 ES	SEP = Одиночное событие устройства защиты, определенное в 7.2.6.10	ОБЪЕКТ
СР16Время2а Определено в 7.2.6.20	Два байта времени в двоичном коде. Временной интервал	ИНФОРМАЦИИ i
СР24Время2а Определено в 7.2.6.19	Три байта времени в двоичном коде	

Рисунок 46 — ASDU: M_EP_TA_1 Работа устройств защиты с меткой времени

М_EP_TA_1 := CP {ИБД, i (адрес объекта информации, SEP, CP16Время2а, CP24Время2а)} i := число объектов, определенное в классификаторе переменной структуры ПРИЧИНЫ ПЕРЕДАЧИ, используемые с ИТ 17 := M_EP_TA_1 <3> := спорадическая

7.3.1.18 ИДЕНТИФИКАТОР ТИПА 18: M_EP_TB_1

Упакованная информация о срабатывании пусковых органов устройств защиты с меткой времени

Одиночный объект информации (SQ=0)

0	0	0	1	0	0	1	0	ИДЕНТИФИКАТОР ТИПА	_
0	0	0	0	0	0	0	1	КЛАССИФИКАТОР ПЕРЕМЕННОЙ СТРУКТУРЫ	ИДЕНТИФИКАТОР БЛОКА ДАННЫХ,
	Оп	редел	ено в 7	7.2.3				ПРИЧИНА ПЕРЕДАЧИ	определенный в 7.1
	Оп	редел	ено в 7	7.2.4			_	ОБЩИЙ AДPEC ASDU	
	Оп	редел	ено в 7	7.2.5				АДРЕС ОБЪЕКТА ИНФОРМАЦИИ	
0	0	SRD	SIE	SL3	SL2	SL1	GS	SPE = Начало работы устройства защиты, определенное в 7.2.6.11	
IV	NT	SB	BL	EI	0	0	0	QDP = Описатель качества защиты, определенный в 7.2.6.4	ОБЪЕКТ ИНФОРМАЦИИ
		16Вре ределе		7.2.6.2	: 0			Два байта времени в двоичном коде Продолжительность работы защиты	
		24Вре ределе		7.2.6.1	9			Три байта времени в двоичном коде	

Рисунок 47 — ASDU: M_EP_TB_1 Упакованная информация о срабатывании пусковых органов устройств защиты с меткой времени

М_EP_TB_1 := CP {ИБД, адрес объекта информации, SPE, QDP, CP16Время2а, CP24Время2а} ПРИЧИНЫ ПЕРЕДАЧИ, используемые с ИТ 18 := M_EP_TB_1 <3> := спорадическая

7.3.1.19 ИДЕНТИФИКАТОР ТИПА 19:

M_EP_TC_1

Упакованная информация о срабатывании выходных цепей устройства защиты с меткой времени

Одиночный объект информации (SQ=0)

0	0	0	1	0	0	1	1	ИДЕНТИФИКАТОР ТИПА	_
0	0	0	0	0	0	0	1	КЛАССИФИКАТОР ПЕРЕМЕННОЙ СТРУКТУРЫ	ИДЕНТИФИКАТОР БЛОКА ДАННЫХ,
	Опр	ределе	ено в 7	7.2.3				ПРИЧИНА ПЕРЕДАЧИ	определенный в 7.1
	Опр	оеделе	ено в	7.2.4				ОБЩИЙ АДРЕС ASDU	
	Опр	ределе	ено в 7	7.2.5				АДРЕС ОБЪЕКТА ИНФОРМАЦИИ	
0	0	0	0	CL3	CL2	CL1	GC	OCI = Команда на выходную цепь защиты, определенная в 7.2.6.12	
IV	NT	SB	BL	EI	0	0	0	QDP = Описатель качества защиты, определенный в 7.2.6.4	ОБЪЕКТ ИНФОРМАЦИИ
		16Вре ределе		7.2.6.2	0			Два байта времени в двоичном коде. Время срабатывания защиты	
		24Врег ределе		7.2.6.1	9			Три байта времени в двоичном коде	

Рисунок 48 — ASDU: M_EP_TC_1 Упакованная информация о срабатывании выходных цепей устройства защиты с меткой времени

М_EP_TC_1 := CP {ИБД, адрес объекта информации, OCI, QDP, CP16Время2а, CP24Время2а} ПРИЧИНЫ ПЕРЕДАЧИ, используемые с ИТ 19 := M_EP_TC_1 <3> := спорадическая

7.3.1.20 ИДЕНТИФИКАТОР ТИПА 20:

M PS NA 1

Упакованная одноэлементная информация с указателем изменения состояния

Последовательность объектов информации (SQ=0)

Рисунок 49 — ASDU: M_PS_NA_1 Упакованная одноэлементная информация с указателем изменения состояния

M_PS_NA_1 := CP {ИБД, i (адрес объекта информации, SCD, QDS)}

I := число объектов, определенное в классификаторе переменной структуры

Адрес объекта информации соответствует младшему биту (LSB) первого байта состояния. Последующие биты идентифицируются номерами, увеличивающимися непрерывно на +1 от этого смещения.

Последовательность элементов информации в одиночном объекте (SQ=1)

Рисунок 50 — ASDU: M_PS_NA_1 Последовательность упакованной одноэлементной информации с указателем изменения состояния

M_PS_NA_1 := CP {ИБД, адрес объекта информации, j(SCD, QDS)}

ј := число элементов, определенное в классификаторе переменной структуры

ПРИЧИНЫ ПЕРЕДАЧИ, используемые с ИТ 20 := M_PS_NA_1

<2> := фоновое сканирование

<3> := спорадическая

<5> := по запросу

<11> := обратная информация, вызванная удаленной командой <12> := обратная информация, вызванная местной командой

<20> := ответ на запрос станции
<21>..<36> := ответ на запрос групп 1..16

7.3.1.21 ИДЕНТИФИКАТОР ТИПА 21: M_ME_ND_1

Значение измеряемой величины, нормализованное значение без описателя качества

Последовательность объектов информации (SQ=0)

0 0 0 1 0 1 0 1	ИДЕНТИФИКАТОР ТИПА		
0 Число объектов і	КЛАССИФИКАТОР ПЕРЕМЕННОЙ СТРУКТУРЫ	ИДЕНТИФИКАТОР БЛОКА ДАННЫХ,	
Определено в 7.2.3	ПРИЧИНА ПЕРЕДАЧИ	определенный в 7.1	
Определено в 7.2.4	ОБЩИЙ АДРЕС ASDU		
Определено в 7.2.5	АДРЕС ОБЪЕКТА ИНФОРМАЦИИ		
Значение величины	NVA = Нормализованное значение	ОБЪЕКТ ИНФОРМАЦИИ 1	
S Значение величины	величины, определенное в 7.2.6.6		
Определено в 7.2.5	АДРЕС ОБЪЕКТА ИНФОРМАЦИИ		
Значение величины	NVA = Нормализованное значение	ОБЪЕКТ ИНФОРМАЦИИ і	
S Значение величины	величины, определенное в 7.2.6.6	-	

Рисунок 51 — ASDU: M_ME_ND_1 Значение измеряемой величины, нормализованное значение без описателя качества

 $M_ME_ND_1 := CP \{ ИБД, i (адрес объекта информации, NVA) \}$ i := число объектов, определенное в классификаторе переменной структуры

Последовательность элементов информации в одиночном объекте (SQ=1)

0 0 0 1 0 1 0 1 Число элементов ј Определено в 7.2.3	1	ИДЕНТИФИКАТОР ТИПА КЛАССИФИКАТОР ПЕРЕМЕННОЙ СТРУКТУРЫ ПРИЧИНА ПЕРЕДАЧИ	ИДЕНТИФИКАТОР БЛОКА ДАННЫХ, определенный в 7.1		
Определено в 7.2.4		ОБЩИЙ АДРЕС ASDU			
Определено в 7.2.5		АДРЕС ОБЪЕКТА ИНФОРМАЦИИ А			
Значение величины S Значение величины		NVA = Нормализованное значение величины, определенное в 7.2.6.6. Относится к адресу А			
			ОБЪЕКТ ИНФОРМАЦИИ		
Значение величины S Значение величины		NVA = Нормализованное значение величины, определенное в 7.2.6.6. Относится к адресу А+j-1			

Рисунок 52 — ASDU: M_ME_ND_1 Последовательность значений измеряемых величин, нормализованных величин без описателя качества

 $M_ME_ND_1 := CP \{ИБД, адрес объекта информации, j(NVA)\}$

ј := число элементов, определенное в классификаторе переменной структуры

ПРИЧИНЫ ПЕРЕДАЧИ, используемые с ИТ 21 := M_ME_ND_1

<1> := периодическая/циклическая

<2> := фоновое сканирование
<3> := спорадическая
<5> := по запросу
<20> := ответ на запрос станции
<21>..<36> := ответ на запрос групп 1..16

7.3.1.22 ИДЕНТИФИКАТОР ТИПА 30: M_SP_TB_1

Одноэлементная информация с меткой времени СР56Время2а

Последовательность объектов информации (SQ=0)

0 0 0 1 1 1 1 0 0 Число объектов і Определено в 7.2.3	ИДЕНТИФИКАТОР ТИПА КЛАССИФИКАТОР ПЕРЕМЕННОЙ СТРУКТУРЫ ПРИЧИНА ПЕРЕДАЧИ	ИДЕНТИФИКАТОР БЛОКА ДАННЫХ, определенный в 7.1
Определено в 7.2.4	ОБЩИЙ АДРЕС ASDU	
Определено в 7.2.5	АДРЕС ОБЪЕКТА ИНФОРМАЦИИ	
IV NT SB BL 0 0 0 SPI	SIQ = Одноэлементная информация с описателем качества, определенная в 7.2.6.1	ОБЪЕКТ ИНФОРМАЦИИ 1
СР56Время2а Определено в 7.2.6.18	Семь байтов времени в двоичном коде	
i 		
Определено в 7.2.5	АДРЕС ОБЪЕКТА ИНФОРМАЦИИ	
IV NT SB BL 0 0 0 SPI	SIQ = Одноэлементная информация с описателем качества, определенная в 7.2.6.1	ОБЪЕКТ ИНФОРМАЦИИ і
СР56Время2а Определено в 7.2.6.18	Семь байтов времени в двоичном коде	

Рисунок 53 — ASDU: M_SP_TB_1 Одноэлементная информация с меткой времени CP56Bpeмя2a

M_SP_TB_1 := CP {ИБД, і (адрес объекта информации, SIQ, CP56Время2а)} і := число объектов, определенное в классификаторе переменной структуры ПРИЧИНЫ ПЕРЕДАЧИ, используемые с ИТ 30 := M_SP_TB_1

<3> := спорадическая <5> := по запросу

<11> := информация, вызванная удаленной командой <12> := информация, вызванная местной командой

7.3.1.23 ИДЕНТИФИКАТОР ТИПА 31: M_DP_TB_1 Двухэлементная информация с меткой времени CP56Bремя2а

Последовательность объектов информации (SQ=0)

0 0 0 1 1 1 1 1 1 0 Число объектов і Определено в 7.2.3 Определено в 7.2.4	ИДЕНТИФИКАТОР ТИПА КЛАССИФИКАТОР ПЕРЕМЕННОЙ СТРУКТУРЫ ПРИЧИНА ПЕРЕДАЧИ ОБЩИЙ АДРЕС ASDU	ИДЕНТИФИКАТОР БЛОКА ДАННЫХ, определенный в 7.1
Определено в 7.2.5	АДРЕС ОБЪЕКТА ИНФОРМАЦИИ	
IV NT SB BL 0 0 DPI	DIQ = Двухэлементная информация с описателем качества, определенная в 7.2.6.2	ОБЪЕКТ ИНФОРМАЦИИ 1
СР56Время2а Определено в 7.2.6.18	Семь байтов времени в двоичном коде	
Определено в 7.2.5	АДРЕС ОБЪЕКТА ИНФОРМАЦИИ	
IV NT SB BL 0 0 DPI	DIQ = Двухэлементная информация с описателем качества, определенная в 7.2.6.2	ОБЪЕКТ ИНФОРМАЦИИ і
СР56Время2а Определено в 7.2.6.18	Семь байтов времени в двоичном коде	<u>.</u>

Рисунок 54 — ASDU: M_DP_ТВ_1 Двухэлементная информация с меткой времени CP56Время2а

M_DP_TB_1 := CP {ИБД, i (адрес объекта информации, DIQ, CP56Bремя2a)} i := число объектов, определенное в классификаторе переменной структуры ПРИЧИНЫ ПЕРЕДАЧИ, используемые с ИТ 31 := M_DP_TB_1

<3> := спорадическая <5> := по запросу

<11> := информация, вызванная удаленной командой <12> := информация, вызванная местной командой

7.3.1.24 ИДЕНТИФИКАТОР ТИПА 32: M_ST_TB_1 Информация о положении отпаек с меткой времени CP56Bpeмя2a

Последовательность объектов информации (SQ=0)

Последовательность	ооъектов информации (SQ=0)			
0 0 1 0 0 0 0 0	ИДЕНТИФИКАТОР ТИПА			
0 Число объектов і	КЛАССИФИКАТОР ПЕРЕМЕННОЙ СТРУКТУРЫ	ИДЕНТИФИКАТОР БЛОКА ДАННЫХ,		
Определено в 7.2.3	ПРИЧИНА ПЕРЕДАЧИ	определенный в 7.1		
Определено в 7.2.4	ОБЩИЙ АДРЕС ASDU			
Определено в 7.2.5	АДРЕС ОБЪЕКТА ИНФОРМАЦИИ			
Т Значение вепичины	VTI = Значение величины с индика- цией переходного состояния, определенное в 7.2.6.5			
IV NT SB BL 0 0 0 OV	QDS = Описатель качества, определенный в 7.2.6.3	ОБЪЕКТ ИНФОРМАЦИИ 1		
СР56Время2а Определено в 7.2.6.18	Семь байтов времени в двоичном коде			
Определено в 7.2.5	АДРЕС ОБЪЕКТА ИНФОРМАЦИИ			
Т Значение величины	VTI = Значение величины с индика- цией переходного состояния, определенное в 7.2.6.5	ОБЪЕКТ		
IV NT SB BL 0 0 0 OV	QDS = Описатель качества, определенный в 7.2.6.3	овбект информации і		
СР56Время2а Определено в 7.2.6.18	Семь байтов времени в двоичном коде	•		

Рисунок 55 — ASDU: M_ST_TB_1 Информация о положении отпаек с меткой времени CP56Bpeмя2a

M_ST_TB_1 := CP {ИБД, I (адрес объекта информации, VTI, QDS, CP56Время2а)} і := число объектов, определенное в классификаторе переменной структуры ПРИЧИНЫ ПЕРЕДАЧИ, используемые с ИТ 32 := M_ST_TB_1

<3> := спорадическая <5> := по запросу

<11> := информация, вызванная удаленной командой <12> := информация, вызванная местной командой

7.3.1.25 ИДЕНТИФИКАТОР ТИПА 33:

M_BO_TB_1

Строка из 32 бит с меткой времени СР56Время2а

Последовательность объектов информации (SQ=0)

				IOWIG	щове	III	HOCIB	ооъектов информации (SQ=0)	
0	0	1	0	0	0	0	1	ИДЕНТИФИКАТОР ТИПА	
0		Число	объек	тов і				КЛАССИФИКАТОР ПЕРЕМЕННОЙ СТРУКТУРЫ	ИДЕНТИФИКАТОР БЛОКА ДАННЫХ,
	Оп	ределе	ено в 7	.2.3				ПРИЧИНА ПЕРЕДАЧИ	определенный в 7.1
	Оп	ределе	ено в 7	.2.4				ОБЩИЙ AДРЕС ASDU	
	Оп	ределе	ено в 7					АДРЕС ОБЪЕКТА ИНФОРМАЦИИ	
	ı	(т і Строка	бито					
	I	(Строка	_				BSI = Двухпозиционная информация, 32 бит, определенная в 7.2.6.13	
	ı	(т І Строка		3			5. 	ОБЪЕКТ ИНФОРМАЦИИ
	ı	(Строка		3				информации 1
IV	NT	SB	BL	0	0	0	ov	QDS = Описатель качества, определенный в 7.2.6.3	
			СР56Вр делен					Семь байтов времени в двоичном код	
<u></u>									
	Оп	ределе	ено в 7	.2.5				АДРЕС ОБЪЕКТА ИНФОРМАЦИИ	
	1	' (Строка			•	•		
	•	' (т І Строка	битов	3	ı	•	BSI = Двухпозиционная информация, 32 бит, определенная в 7.2.6.13	
	1	' (Строка	битов	3	ı			ОБЪЕКТ ИНФОРМАЦИИ
		(т т Строка	-			1		i
IV	NT	SB	BL	0	0	0	ov	QDS = Описатель качества, определенный в 7.2.6.3	
			СР56Вр уделен					Семь байтов времени в двоичном код	е

Рисунок 56 — ASDU: M_BO_TB_1 Строка из 32 бит с меткой времени CP56Время2а

М_ВО_ТВ_1 := CP {ИБД, i (адрес объекта информации, BSI, QDS, CP56Время2а)} i := число объектов, определенное в классификаторе переменной структуры ПРИЧИНЫ ПЕРЕДАЧИ, используемые с ИТ 33 := M_BO_ТВ_1

7.3.1.26 ИДЕНТИФИКАТОР ТИПА 34:

M_ME_TD_1

Значение измеряемой величины, нормализованное значение с меткой времени СР56Время2а

Последовательность объектов информации (SQ=0)

0	0	1	0	0	0	1	0	ИДЕНТИФИКАТОР ТИПА				
0	,	Нисло	объек	тов і				КЛАССИФИКАТОР ПЕРЕМЕННОЙ СТРУКТУРЫ	ИДЕНТИФИКАТОР БЛОКА ДАННЫХ,			
	Оп	ределе	ено в 7	7.2.3				ПРИЧИНА ПЕРЕДАЧИ	определенный в 7.1			
	Оп	ределе	ено в 7	7.2.4			_	ОБЩИЙ AДPEC ASDU				
	Оп	ределе						АДРЕС ОБЪЕКТА ИНФОРМАЦИИ				
	Значение величины							NVA = Нормализованное значение величины, определенное				
s		Знач	чение	велич	ины			в 7.2.6.6	ОБЪЕКТ ИНФОРМАЦИИ			
IV	NT	SB	BL	0	0	0	ov	QDS = Описатель качества, определенный в 7.2.6.3	информации 1			
			:P56B делен					Семь байтов времени в двоичном коде				
 	Ωπ	ределе	PHO B 7	725				АДРЕС ОБЪЕКТА				
	<u> </u>	Г		r.2.5	1	_	_	ЙНФОРМАЦИИ				
		Знач	чение	велич	ины			NVA = Нормализованное значение величины, определенное				
s		Знач	чение	велич	ИНЫ		_	в 7.2.6.6	ОБЪЕКТ			
IV	NT	SB	BL	0	0	0	ov	QDS = Описатель качества, определенный в 7.2.6.3	ИНФОРМАЦИИ i			
			:P56B делен					Семь байтов времени в двоичном код	Ð			

Рисунок 57 — ASDU: M_ME_TD_1 Значение измеряемой величины, нормализованное значение с меткой времени СР56Время2а

М_ME_TD_1 := CP {ИБД, і (адрес объекта информации, NVA, QDS, CP56Время2а)} і := число объектов, определенное в классификаторе переменной структуры ПРИЧИНЫ ПЕРЕДАЧИ, используемые с ИТ 34 := M_ME_TD_1

7.3.1.27 ИДЕНТИФИКАТОР ТИПА 35:

M_ME_TE_1

Значение измеряемой величины, масштабированное значение с меткой времени СР56Время2а

Последовательность объектов информации (SQ=0)

0 0 1 0 0 0 1 1	ИДЕНТИФИКАТОР ТИПА				
0 Число объектов і	КЛАССИФИКАТОР ПЕРЕМЕННОЙ СТРУКТУРЫ	ИДЕНТИФИКАТОР БЛОКА ДАННЫХ,			
Определено в 7.2.3	ПРИЧИНА ПЕРЕДАЧИ	определенный в 7.1			
Определено в 7.2.4	ОБЩИЙ АДРЕС ASDU				
Определено в 7.2.5	АДРЕС ОБЪЕКТА ИНФОРМАЦИИ				
Значение величины S Значение величины	SVA = Масштабированное значение величины, определенное в 7.2.6.7	ОБЪЕКТ			
IV NT SB BL 0 0 0 OV	QDS = Описатель качества, определенный в 7.2.6.3	ИНФОРМАЦИИ 1			
СР56Время2а Определено в 7.2.6.18	Семь байтов времени в двоичном коде	•			
Определено в 7.2.5	АДРЕС ОБЪЕКТА ИНФОРМАЦИИ				
Значение величины S Значение величины	SVA = Масштабированное значение величины, определенное в 7.2.6.7	ОБЪЕКТ			
IV NT SB BL 0 0 0 OV	QDS = Описатель качества, определенный в 7.2.6.3	ОБЪЕКТ ИНФОРМАЦИИ i			
СР56Время2а Определено в 7.2.6.18	Семь байтов времени в двоичном коде				

Рисунок 58 — ASDU: M_ME_TE_1 Значение измеряемой величины, масштабированное значение с меткой времени СР56Время2а

М_МЕ_ТЕ_1 := CP {ИБД, і (адрес объекта информации, SVA, QDS, CP56Bремя2a)} і := число объектов, определенное в классификаторе переменной структуры ПРИЧИНЫ ПЕРЕДАЧИ, используемые с ИТ 35 := $M_ME_TE_1$

7.3.1.28 ИДЕНТИФИКАТОР ТИПА 36: M ME TF 1

Значение измеряемой величины, короткий формат с плавающей запятой с меткой времени СР56Время2а

Последовательность объектов информации (SQ=0) 0 0 0 0 0 0 ИДЕНТИФИКАТОР ТИПА 1 ИДЕНТИФИКАТОР КЛАССИФИКАТОР 0 Число объектов і ПЕРЕМЕННОЙ СТРУКТУРЫ БЛОКА ДАННЫХ, определенный ПРИЧИНА ПЕРЕДАЧИ Определено в 7.2.3 в 7.1 Определено в 7.2.4 ОБЩИЙ AДPEC ASDU АДРЕС ОБЪЕКТА ИНФОРМАЦИИ Определено в 7.2.5 Мантисса Мантисса IEEE STD 754 = Короткий формат с плавающей запятой, определенный в 7.2.6.8 F Мантисса ОБЪЕКТ ИНФОРМАЦИИ s Порядок SB ВL 0 QDS = Описатель качества, определенный в 7.2.6.3 СР56Время2а Семь байтов времени в двоичном коде Определено в 7.2.6.18 АДРЕС ОБЪЕКТА Определено в 7.2.5 ИНФОРМАЦИИ Мантисса Мантисса IEEE STD 754 = Короткий формат с плавающей запятой, определенный в 7.2.6.8 Ε Мантисса ОБЪЕКТ ИНФОРМАЦИИ s Порядок BL ΟV QDS = Описатель качества определенный в 7.2.6.3 СР56Время2а Семь байтов времени в двоичном коде Определено в 7.2.6.18

Рисунок 59 — ASDU: M_ME_TF_1 Значение измеряемой величины, короткий формат с плавающей запятой с меткой времени CP56Bpeмя2a

М_ME_TF_1 := CP {ИБД, і (адрес объекта информации, IEEE STD 754, QDS, CP56Время2а)} і := число объектов, определенное в классификаторе переменной структуры ПРИЧИНЫ ПЕРЕДАЧИ, используемые с ИТ 36 := М МЕ ТF 1

7.3.1.29 ИДЕНТИФИКАТОР ТИПА 37:

M_IT_TB_1

Интегральные суммы с меткой времени СР56Время2а

Последовательность объектов информации (SQ=0)

Рисунок 60 — ASDU: M_IT_TB_1 Интегральные суммы с меткой времени CP56Bремя2a

M_IT_TB_1 := CP {ИБД, і (адрес объекта информации, BCR, CP56Время2а)} і := число объектов, определенное в классификаторе переменной структуры

ПРИЧИНЫ ПЕРЕДАЧИ, используемые с ИТ 37 := M_IT_TB_1

<3> := спорадическая

<37> := общий запрос счетчиков <38>..<41> := запрос счетчиков групп 1..4

7.3.1.30 ИДЕНТИФИКАТОР ТИПА 38:

M_EP_TD_1

Работа устройств защиты с меткой времени СР56Время2а

Последовательность объектов информации (SQ=0)

	T	
0 0 1 0 0 1 1 0	ИДЕНТИФИКАТОР ТИПА	
0 Число объектов і	КЛАССИФИКАТОР ПЕРЕМЕННОЙ СТРУКТУРЫ	ИДЕНТИФИКАТОР БЛОКА ДАННЫХ,
Определено в 7.2.3	ПРИЧИНА ПЕРЕДАЧИ	определенный в 7.1
Определено в 7.2.4	ОБЩИЙ АДРЕС ASDU	
Определено в 7.2.5	АДРЕС ОБЪЕКТА ИНФОРМАЦИИ	-
IV NT SB BL EI 0 ES	SEP = Одиночное событие устройства защиты, определенное в 7.2.6.10	ОБЪЕКТ ИНФОРМАЦИИ
СР16Время2а Определено в 7.2.6.20	Два байта времени в двоичном коде. Временной интервал	информации 1
СР56Время2а Определено в 7.2.6.18	Семь байтов времени в двоичном коде	•
Определено в 7.2.5	АДРЕС ОБЪЕКТА	
- Thomas ions a fizie	ИНФОРМАЦИИ	
IV NT SB BL EI 0 ES	SEP = Одиночное событие устройства защиты, определенное в 7.2.6.10	ОБЪЕКТ
СР16Время2а Определено в 7.2.6.20	Два байта времени в двоичном коде. Временной интервал	ИНФОРМАЦИИ i
СР56Время2а Определено в 7.2.6.18	Семь байтов времени в двоичном коде	•

Рисунок 61 — ASDU: M_EP_TD_1 Работа устройств защиты с меткой времени CP56Время2а

М_EP_TD_1 := CP {ИБД, I (адрес объекта информации, SEP, CP16Время2а, CP56Время2а)} I := число объектов, определенное в классификаторе переменной структуры ПРИЧИНЫ ПЕРЕДАЧИ, используемые с ИТ $38 := M_EP_TD_1$ <3> := спорадическая

7.3.1.31 ИДЕНТИФИКАТОР ТИПА 39:

M_EP_TE_1

Упакованное сообщение о срабатывании пусковых органов устройств защиты с меткой времени СР56Время2а Одиночный объект информации (SQ=0)

0	0	1	0	0	1	1	1	ИДЕНТИФИКАТОР ТИПА
0	0	0	0	0	0	0	1	КЛАССИФИКАТОР ИДЕНТИФИКАТОР ПЕРЕМЕННОЙ СТРУКТУРЫ БЛОКА ДАННЫХ,
	Оп	ределе	ено в 7	7.2.3				ПРИЧИНА ПЕРЕДАЧИ определенный в 7.1
	Оп	ределе	ено в 7	7.2.4				ОБЩИЙ AДPEC ASDU
	Оп	ределе	ено в 7	7.2.5				АДРЕС ОБЪЕКТА ИНФОРМАЦИИ
0	0	SRD	SIE	SL3	SL2	SL1	GS	SPE = Начало работы устройства защиты, определенное в 7.2.6.11
IV	NT	SB	BL	EI	0	0	0	QDP = Описатель качества защиты, ОБЪЕКТ определенный в 7.2.6.4 ИНФОРМАЦИИ
СР16Время2а Определено в 7.2.6.20								Два байта времени в двоичном коде. Продолжительность работы защиты
		56Вре ределе		7.2.6.1	8			Семь байтов времени в двоичном коде

Рисунок 62 — ASDU: M_EP_TE_1 Упакованное сообщение о срабатывании пусковых органов устройств защиты с меткой времени СР56Время2а

М_EP_TE_1 := CP {ИБД, адрес объекта информации, SPE, QDP, CP16Время2а, CP56Время2а} ПРИЧИНЫ ПЕРЕДАЧИ, используемые с ИТ $39 := M_EP_TE_1$ <3> := спорадическая

11*

7.3.1.32 ИДЕНТИФИКАТОР ТИПА 40: M_EP_TF_1

Упакованная информация о срабатывании в выходных цепях устройства защиты с меткой времени СР56Время2а

Одиночный объект информации (SQ=0)

0	0	1	0	1	0	0	0	ИДЕНТИФИКАТОР ТИПА	
0	0	0	0	0	0	0	1	КЛАССИФИКАТОР ПЕРЕМЕННОЙ СТРУКТУРЫ	ИДЕНТИФИКАТОР БЛОКА ДАННЫХ,
	Опр	еделе	ено в 7	7.2.3				ПРИЧИНА ПЕРЕДАЧИ	определенный в 7.1
	Опр	еделе	ено в 7	7.2.4				ОБЩИЙ AДPEC ASDU	
	Опр	еделе	ено в 7	7.2.5				АДРЕС ОБЪЕКТА ИНФОРМАЦИИ	
0	0	0	0	CL3	CL2	CL1	GC	ОСІ = Команда на выходную цепь защиты, определенная в 7.2.6.12	
IV	NT	SB	BL	EI	0	0	0	QDP = Описатель качества защиты, определенный в 7.2.6.4	ОБЪЕКТ ИНФОРМАЦИИ
		16Вре ределе	мя2а эно в 7	7.2.6.2	20			Два байта времени в двоичном коде. Время срабатывания защиты	
		56Вре ределе	мя2а ено в 7	7.2.6.1	8			Семь байтов времени в двоичном код	e

Рисунок 63 — ASDU: M_EP_TF_1 Упакованная информация о срабатывании выходных цепей устройства защиты с меткой времени CP56Bpeмя2a

М_EP_TF_1 := CP {ИБД, адрес объекта информации, OCI, QDP, CP16Время2а, CP56Время2а} ПРИЧИНЫ ПЕРЕДАЧИ, используемые с ИТ $40 := M_EP_TF_1$ <3> := спорадическая

7.3.2 ASDU для информации о процессе в направлении управления 7.3.2.1 ИДЕНТИФИКАТОР ТИПА 45: C_SC_NA_1

Однопозиционная команда

Одиночный объект информации (SQ=0)

0	0	1	0	1	1	0	1	ИДЕНТИФИКАТОР ТИПА	
0	0	0	0	0	0	0	1	КЛАССИФИКАТОР ПЕРЕМЕННОЙ СТРУКТУРЫ	ИДЕНТИФИКАТОР БЛОКА ДАННЫХ,
	Определено в 7.2.3 ПРИЧИНА ПЕРЕДАЧИ опред								определенный в 7.1
	Оп	редел	ено в	7.2.4				ОБЩИЙ АДРЕС ASDU	
	Оп	редел	ено в ∶	7.2.5				АДРЕС ОБЪЕКТА ИНФОРМАЦИИ	ОБЪЕКТ
S/E		•	QU	•	1	0	scs	SCO = Однопозиционная команда, определенная в 7.2.6.15	ИНФОРМАЦИИ ИНФОРМАЦИИ

Рисунок 64 — ASDU: C SC NA 1 Однопозиционная команда

C_SC_NA_1 := CP {ИБД, адрес объекта информации, SCO} ПРИЧИНЫ ПЕРЕДАЧИ, используемые с ИТ 45 := C_SC_NA_1

в направлении управления:

<6> := активация <8> := деактивация

в направлении контроля:

<7> := подтверждение активации <9> := подтверждение деактивации <10> := завершение активации

<44> := неизвестный идентификатор типа <45> := неизвестная причина передачи <46> := неизвестный общий адрес ASDU

7.3.2.2 ИДЕНТИФИКАТОР ТИПА 46: C_I

Двухпозиционная команда

C_DC_NA_1

					Один	ючны	ій объ	ьект информации (SQ=0)	
0	0	1	0	1	1	1	0	ИДЕНТИФИКАТОР ТИПА	
0	0	0	0	0	0	0	1	DEDEMENTION OF DATE OF	ДЕНТИФИКАТОР БЛОКА ДАННЫХ,
	Оп	ределе	ено в 7	7.2.3				ПРИЧИНА ПЕРЕДАЧИ	определенный в 7.1
	Оп	ределе	ено в 7	7.2.4				ОБЩИЙ АДРЕС ASDU	
	Оп	ределе	ено в 7	7.2.5				АДРЕС ОБЪЕКТА ИНФОРМАЦИИ	ОБЪЕКТ
S/E			QU			Dŧ	CS	DCO = Двухпозиционная команда, определенная в 7.2.6.16	ИНФОРМАНИИ

Рисунок 65 — ASDU: C_DC_NA_1 Двухпозиционная команда

С_DC_NA_1 := CP {ИБД, адрес объекта информации, DCO} ПРИЧИНЫ ПЕРЕДАЧИ, используемые с ИТ 46 := C_DC_NA_1

в направлении управления:

<6> := активация <8> := деактивация

в направлении контроля:

<7> := подтверждение активации <9> := подтверждение деактивации

<10> := завершение активации

<44> := неизвестный идентификатор типа <45> := неизвестная причина передачи <46> := неизвестный общий адрес ASDU

7.3.2.3 ИДЕНТИФИКАТОР ТИПА 47:

C RC NA 1

Команда пошагового регулирования

Рисунок 66 — ASDU: С RC NA 1 Команда пошагового регулирования

С_RC_NA_1 := CP {ИБД, адрес объекта информации, RCO} ПРИЧИНЫ ПЕРЕДАЧИ, используемые с ИТ 47 := C_RC_NA_1

в направлении управления:

<6> := активация <8> := деактивация

в направлении контроля:

<7> := подтверждение активации <9> := подтверждение деактивации <10> := завершение активации

<44> := неизвестный идентификатор типа <45> := неизвестная причина передачи <46> := неизвестный общий адрес ASDU

7.3.2.4 ИДЕНТИФИКАТОР ТИПА 48: C_SE_NA_1

Команда уставки, нормализованное значение

Одиночный объект информации (SQ=0)

Рисунок 67 — ASDU: C_SE_NA_1 Команда уставки, нормализованное значение

C_SE_NA_1 := CP {ИБД, адрес объекта информации, NVA, QOS} ПРИЧИНЫ ПЕРЕДАЧИ, используемые с ИТ 48 := C_SE_NA_1 в направлении управления:

в направлении управления.

<6> := активация <8> := деактивация

в направлении контроля:

<7> := подтверждение активации <9> := подтверждение деактивации

<10> := завершение активации (опционально) <44> := неизвестный идентификатор типа <45> := неизвестная причина передачи <46> := неизвестный общий адрес ASDU

7.3.2.5 ИДЕНТИФИКАТОР ТИПА 49: C_SE_NB_1

Команда уставки, масштабированное значение

Одиночный объект информации (SQ=0)

0	0	1	1	0	0	0	1	ИДЕНТИФИКАТОР ТИПА
0	0	0	0	0	0	0	1	КЛАССИФИКАТОР ИДЕНТИФИКАТОР ПЕРЕМЕННОЙ СТРУКТУРЫ БЛОКА ДАННЫХ,
	Опр	ределе	ено в	7.2.3				определенный ПРИЧИНА ПЕРЕДАЧИ в 7.1
	Опр	ределе	ено в	7.2.4				ОБЩИЙ АДРЕС ASDU
	Опр	ределе	ено в	7.2.5				АДРЕС ОБЪЕКТА ИНФОРМАЦИИ
		Знач	чение	велич	ины І	ı	1	SVA = Масштабированное ОБЪЕКТ
s		Знач	чение	велич	ины І		1	значение величины, ОББЕКТ определенное в 7.2.6.7 ИНФОРМАЦИИ
S/E				QL	I		ı	QOS = Описатель команды уставки, определенный в 7.2.6.39

Рисунок 68 — ASDU: C_SE_NB_1 Команда уставки, масштабированное значение

C_SE_NB_1 := CP {ИБД, адрес объекта информации, SVA, QOS} ПРИЧИНЫ ПЕРЕДАЧИ, используемые с ИТ 49 := C_SE_NB_1

в направлении управления:

<6> := активация <8> := деактивация

в направлении контроля:

<7> := подтверждение активации <9> := подтверждение деактивации

<10> := завершение активации (опционально) <44> := неизвестный идентификатор типа <45> := неизвестная причина передачи <46> := неизвестный общий адрес ASDU

7.3.2.6 ИДЕНТИФИКАТОР ТИПА 50: C_SE_NC_1 Команда уставки, короткий формат с плавающей запятой

Рисунок 69 — ASDU: C_SE_NC_1 Команда уставки, короткий формат с плавающей запятой

C_SE_NC_1 := CP {ИБД, адрес объекта информации, IEEE STD 754, QOS} ПРИЧИНЫ ПЕРЕДАЧИ, используемые с ИТ $50 := C_SE_NC_1$

в направлении управления:

<6> := активация <8> := деактивация

в направлении контроля:

<7> := подтверждение активации <9> := подтверждение деактивации <10> := завершение активации (опционально)

<44> := неизвестный идентификатор типа <45> := неизвестная причина передачи <46> := неизвестный общий адрес ASDU

7.3.2.7 ИДЕНТИФИКАТОР ТИПА 51: C_BO_NA_1

Строка из 32 бит

Одиночный объект информации (SQ=0)

Рисунок 70 — ASDU: C_BO_NA_1 Строка из 32 бит

C_BO_NA_1 := CP {ИБД, адрес объекта информации, BSI} ПРИЧИНЫ ПЕРЕДАЧИ, используемые с ИТ 51 := C_BO_NA_1 в направлении управления:

<6> := активация <8> := деактивация

в направлении контроля:

<7> := подтверждение активации <9> := подтверждение деактивации <10> завершение активации (опционально) := неизвестный идентификатор типа <44> := <45> := неизвестная причина передачи <46> := неизвестный общий адрес ASDU <47> неизвестный адрес объекта информации •=

12*

7.3.3 ASDU для информации о системе в направлении контроля 7.3.3.1 ИДЕНТИФИКАТОР ТИПА 70:

Окончание инициализации

M_EI_NA_1

Одиночный объект информации (SQ=0)

0	1	0	0	0	1	1	0	ИДЕНТИФИКАТОР ТИПА	
0	0	0	0	0	0	0	1	КЛАССИФИКАТОР ПЕРЕМЕННОЙ СТРУКТУРЫ	ИДЕНТИФИКАТОР БЛОКА ДАННЫХ,
	Опр	ределе	ено в 7	7.2.3				ПРИЧИНА ПЕРЕДАЧИ	определенный в 7.1
	Опј	ределе	ено в 7	7.2.4				ОБЩИЙ AДPEC ASDU	
	Опј	редело	эно в 7	7.2.5				АДРЕС ОБЪЕКТА ИНФОРМАЦИИ = 0	ОБЪЕКТ
			Cl	P8		ı		COI = Причина инициализации, определенная в 7.2.6.21	ИНФОРМАЦИИ ИНФОРМАЦИИ

Рисунок 71 — ASDU: M_EI_NA_1 Окончание инициализации

M_EI_NA_1 := CP {ИБД, адрес объекта информации, COI} ПРИЧИНЫ ПЕРЕДАЧИ, используемые с ИТ 70 := M_EI_NA_1 <4> инициализация :=

7.3.4 ASDU для информации о системе в направлении управления **7.3.4.1 ИДЕНТИФИКАТОР ТИПА 100:** C IC NA 1

Команда опроса

Одиночный объект информации (SQ=0)

О	1	1	0	0	1	0	0	ИДЕНТИФИКАТОР ТИПА	
0	0	0	0	0	0	0	1	КЛАССИФИКАТОР ПЕРЕМЕННОЙ СТРУКТУРЫ	ИДЕНТИФИКАТОР БЛОКА ДАННЫХ,
	Оп	ределе	эно в 7	7.2.3				ПРИЧИНА ПЕРЕДАЧИ	определенный в 7.1
	Оп	ределе	ено в 7	7.2.4				ОБЩИЙ AДPEC ASDU	
	Оп	ределе	эно в 7	7.2.5				АДРЕС ОБЪЕКТА ИНФОРМАЦИИ = 0	
	1	ī	U	18	T -	I	T	QOI = Описатель запроса, определенный в 7.2.6.22	ОБЪЕКТ ИНФОРМАЦИИ

Рисунок 72 — ASDU: C_IC_NA_1 Команда опроса

С IC NA 1 := CP {ИБД, адрес объекта информации, QOI} ПРИЧИНЫ ПЕРЕДАЧИ, используемые с ИТ 100 := С IC NA 1

в направлении управления:

<6> := активация <8> := деактивация

в направлении контроля:

:= подтверждение активации <9> := подтверждение деактивации := <10> завершение активации

<44> := неизвестный идентификатор типа <45> := неизвестная причина передачи <46> := неизвестный общий адрес ASDU

<47> := неизвестный адрес объекта информации

7.3.4.2 ИДЕНТИФИКАТОР ТИПА 101:

C CI NA 1

Команда опроса счетчиков

Одиночный объект информации (SQ=0)

0	1	1	0	0	1	0	1	ИДЕНТИФИКАТОР ТИПА	
0	0	0	0	0	0	0	1	NIACCHIPIKATOF	ДЕНТИФИКАТОР БЛОКА ДАННЫХ,
	Оп	ределе	эно в 7	7.2.3				ПРИЧИНА ПЕРЕДАЧИ	определенный в 7.1
	Оп	ределе	ено в	7.2.4				ОБЩИЙ АДРЕС ASDU	
	Оп	редел	ено в	7.2.5				АДРЕС ОБЪЕКТА ИНФОРМАЦИИ = 0	OE) EKT
	ı	ı	CI	P8		1	ı	QCC = Описатель опроса счетчиков, определенный в 7.2.6.23	ОБЪЕКТ ИНФОРМАЦИИ

Рисунок 73 — ASDU: С CI NA 1 Команда опроса счетчиков

C_CI_NA_1 := CP {ИБД, адрес объекта информации, QCC} ПРИЧИНЫ ПЕРЕДАЧИ, используемые с ИТ 101 := С CI NA 1

в направлении управления:

<6> := активация <8> := деактивация

в направлении контроля:

<7> := подтверждение активации <9> := подтверждение деактивации <10> := завершение активации

<44> неизвестный идентификатор типа <45> := неизвестная причина передачи <46> := неизвестный общий адрес ASDU

7.3.4.3 ИДЕНТИФИКАТОР ТИПА 102:

C RD NA 1

Команда чтения

Одиночный объект информации (SQ=0)

0	1	1	0	0	1	1	0	ИДЕНТИФИКАТОР ТИПА	
0	0	0	0	0	0	0	1	КЛАССИФИКАТОР ПЕРЕМЕННОЙ СТРУКТУРЫ	ИДЕНТИФИКАТОР БЛОКА ДАННЫХ,
	Оп	ределе	эно в	7.2.3				ПРИЧИНА ПЕРЕДАЧИ	определенный в 7.1
	Оп	ределе	ено в	7.2.4				ОБЩИЙ AДPEC ASDU	
	Оп	ределе	енов 7	7.2.5				АДРЕС ОБЪЕКТА ИНФОРМАЦИИ	ОБЪЕКТ ИНФОРМАЦИИ

Рисунок 74 — ASDU: C_RD_NA_1 Команда чтения

C_RD_NA_1 := CP {ИБД, адрес объекта информации}

ПРИЧИНЫ ПЕРЕДАЧИ, используемые с ИТ 102 := C_RD_NA_1

в направлении управления:

<5> := запрос в направлении контроля:

<44> := неизвестный идентификатор типа <45> := неизвестная причина передачи <46> := неизвестный общий адрес ASDU

<47> := неизвестный адрес объекта информации

7.3.4.4 ИДЕНТИФИКАТОР ТИПА 103:

C_CS_NA_1

Команда синхронизации часов

Одиночный объект информации (SQ=0)

0	1	1	0	0	1	1	1	ИДЕНТИФИКАТОР ТИПА
0	0	0	0	0	0	0	1	КЛАССИФИКАТОР ИДЕНТИФИКАТОР ПЕРЕМЕННОЙ СТРУКТУРЫ БЛОКА ДАННЫХ,
	Оп	редел	ено в	7.2.3	_			ПРИЧИНА ПЕРЕДАЧИ определенный в 7.1
	Оп	редел	ено в	7.2.4				ОБЩИЙ АДРЕС ASDU
	Оп	редел	ено в	7.2.5				АДРЕС ОБЪЕКТА ИНФОРМАЦИИ = 0
		СР56В эделен						Семь байтов времени в двоичном ОБЪЕКТ ИНФОРМАЦИИ (от миллисекунд до лет)

Рисунок 75 — ASDU: C_CS_NA_1 Команда синхронизации часов

C_CS_NA_1 := CP {ИБД, адрес объекта информации, CP56Bpeмя2a} ПРИЧИНЫ ПЕРЕДАЧИ, используемые с ИТ 103 := C_CS_NA_1

в направлении управления:

<6> := активация в направлении контроля:

<3> := спорадическая

<7> := подтверждение активации

<44> := неизвестный идентификатор типа <45> := неизвестная причина передачи <46> := неизвестный общий адрес ASDU

<47> := неизвестный адрес объекта информации

Кроме процедуры синхронизации часов, описанной в 6.7 ГОСТ Р МЭК 870-5-5, формат C_CS_NA_1 может быть использован в направлении контроля для спорадической передачи значения времени. Это необходимо, например, чтобы показать смену (границу) часа на КП, что даст возможность однозначно идентифицировать события, зафиксированные на КП за интервал более чем один час с 3-байтовыми метками времени.

7.3.4.5 ИДЕНТИФИКАТОР ТИПА 104:

C_TS_NA_1

Тестовая команда

Одиночный объект информации (SQ=0)

Рисунок 76 — ASDU: C_TS_NA_1 Тестовая команда

C_TS_NA_1 := CP {ИБД, адрес объекта информации, FBP} ПРИЧИНЫ ПЕРЕДАЧИ, используемые с ИТ 104 := C_TS_NA_1

в направлении управления:

<6> := активация в направлении контроля:

<7> := подтверждение активации

<44> := неизвестный идентификатор типа <45> := неизвестная причина передачи <46> := неизвестный общий адрес ASDU

7.3.4.6 ИДЕНТИФИКАТОР ТИПА 105:

C RP NA 1

Команда установки процесса в исходное состояние

Одиночный объект информации (SQ=0)

0	1	1	0	1	0	0	1	ИДЕНТИФИКАТОР ТИПА	
0	0	0	0	0	0	0	1	КЛАССИФИКАТОР ПЕРЕМЕННОЙ СТРУКТУРЫ	ИДЕНТИФИКАТОР БЛОКА ДАННЫХ,
	Оп	редел	эно в	7.2.3				ПРИЧИНА ПЕРЕДАЧИ	определенный в 7.1
	Оп	редел	ено в	7.2.4				ОБЩИЙ AДPEC ASDU	
	Оп	редел	ено в	7.2.5				АДРЕС ОБЪЕКТА ИНФОРМАЦИИ = 0	
	•	1	U	18	T	1		QRP = Описатель команды сброса процесса, определенный в 7.2.6.27	ОБЪЕКТ ИНФОРМАЦИИ

Рисунок 77 — ASDU: C_RP_NA_1 Команда установки процесса в исходное состояние

 $C_{RP}NA_1 := CP \{$ ИБД, адрес объекта информации, QRP $\}$ ПРИЧИНЫ ПЕРЕДАЧИ, используемые с ИТ 105 := $C_{RP}NA_1$

в направлении управления:

<6> := активация в направлении контроля:

<7> := подтверждение активации

<44> := неизвестный идентификатор типа <45> := неизвестная причина передачи <46> := неизвестный общий адрес ASDU

<47> := неизвестный адрес объекта информации

7.3.4.7 ИДЕНТИФИКАТОР ТИПА 106:

C_CD_NA_1

Команда определения запаздывания

Одиночный объект информации (SQ=0)

0	1	1	0	1	0	1	0	ИДЕНТИФИКАТОР ТИПА
0	0	0	0	0	0	0	1	КЛАССИФИКАТОР ИДЕНТИФИКАТОР ПЕРЕМЕННОЙ СТРУКТУРЫ БЛОКА ДАННЫХ,
	Or	ределе	ено в 7	7.2.3				ПРИЧИНА ПЕРЕДАЧИ определенный в 7.1
	Or	ределе	ено в 7	7.2.4				ОБЩИЙ АДРЕС ASDU
	Or	ределе	ено в 7	7.2.5				АДРЕС ОБЪЕКТА ИНФОРМАЦИИ = 0 ОБЪЕКТ
		916Вре предели		7.2.6.2	20			Два байта времени в двоичном коде (от миллисекунд до секунд)

Рисунок 78 — ASDU: C_CD_NA_1 Команда определения запаздывания

C_CD_NA_1 := CP {ИБД, адрес объекта информации, CP16Время2а} ПРИЧИНЫ ПЕРЕДАЧИ, используемые с ИТ 106 := C_CD_NA_1

в направлении управления:

<3> := спорадическая <6> := активация в направлении контроля:

<7> := подтверждение активации <44> := неизвестный идентификатор типа <45> := неизвестная причина передачи <46> := неизвестный общий адрес ASDU

<47> := неизвестный адрес объекта информации

7.3.5 ASDU для параметров в направлении управления 7.3.5.1 ИДЕНТИФИКАТОР ТИПА 110: P ME NA 1

Параметры измеряемых величин, нормализованное значение

Одиночный объект информации (SQ=0)

Рисунок 79 — ASDU: P_ME_NA_1 Параметры измеряемых величин, нормализованное значение

P_ME_NA_1 := CP {ИБД, адрес объекта информации, NVA, QPM} ПРИЧИНЫ ПЕРЕДАЧИ, используемые с ИТ 110 := P_ME_NA_1 в направлении управления:

в направлении управления. <6> := активация

в направлении контроля:

<7> := подтверждение активации <20> ответ на запрос станции <21>..<36> := ответ на запрос групп 1..16 неизвестный идентификатор типа <44> := <45> := неизвестная причина передачи <46> := неизвестный общий адрес ASDU

7.3.5.2 ИДЕНТИФИКАТОР ТИПА 111:

P ME NB 1

Параметры измеряемых величин, масштабированное значение

Одиночный объект информации (SQ=0)

Рисунок 80 — ASDU: P_ME_NB_1 Параметры измеряемых величин, масштабированное значение

P_ME_NB_1 := CP {ИБД, адрес объекта информации, SVA, QPM} ПРИЧИНЫ ПЕРЕДАЧИ, используемые с ИТ 111 := P_ME_NB_1

в направлении управления:

<6> := активация

в направлении контроля:

<7> := подтверждение активации <20> := ответ на запрос станции := <21>..<36> ответ на запрос групп 1..16 <44> неизвестный идентификатор типа := <45> := неизвестная причина передачи <46> неизвестный общий адрес ASDU := <47> := неизвестный адрес объекта информации

7.3.5.3 ИДЕНТИФИКАТОР ТИПА 112: P_ME_NC_1

Параметры измеряемых величин, короткий формат с плавающей запятой

Одиночный объект информации (SQ=0)

Рисунок 81 — ASDU: P ME NC 1 Параметры измеряемых величин, короткий формат с плавающей запятой

P_ME_NC_1 := CP {ИБД, адрес объекта информации, IEEE STD 754, QPM} ПРИЧИНЫ ПЕРЕДАЧИ, используемые с ИТ 112 := P_ME_NC_1

в направлении управления:

<6> := активация

в направлении контроля:

<7> := подтверждение активации <20> := ответ на запрос станции <21>..<36> := ответ на запрос групп 1..16 <44> := неизвестный идентификатор типа <45> := неизвестная причина передачи <46> •= неизвестный общий адрес ASDU <47> неизвестный адрес объекта информации :=

13* 97

7.3.5.4 ИДЕНТИФИКАТОР ТИПА 113:

P AC NA 1

Активация параметра

Одиночный объект информации (SQ=0)

Рисунок 82 — ASDU: P_AC_NA_1 Активация параметра

P_AC_NA_1 := CP {ИБД, адрес объекта информации, QPA} ПРИЧИНЫ ПЕРЕДАЧИ, используемые с ИТ 113 := P_AC_NA_1 в направлении управления:

<6> := активация</br>

<8> := деактивация

в направлении контроля:

<7> подтверждение активации := <9> := подтверждение деактивации := <44> неизвестный идентификатор типа <45> := неизвестная причина передачи := <46> неизвестный общий адрес ASDU <47> := неизвестный адрес объекта информации

7.3.6 ASDU для передачи файлов 7.3.6.1 ИДЕНТИФИКАТОР ТИПА 120:

F_FR_NA_1

Готовность файла

Одиночный объект информации (SQ=0)

Рисунок 83 — ASDU: F FR NA 1 Готовность файла

F_FR_NA_1 := CP {ИБД, адрес объекта информации, имя файла, длина файла, FRQ} ПРИЧИНЫ ПЕРЕДАЧИ, используемые с ИТ 120 := F_FR_NA_1

<13> := пересылка файла

<44> := неизвестный идентификатор типа <45> := неизвестная причина передачи <46> := неизвестный общий адрес ASDU

7.3.6.2 ИДЕНТИФИКАТОР ТИПА 121:

F SR NA 1

Готовность секции

Одиночный объект информации (SQ=0)

0	1	1	1	1	0	0	1	ИДЕНТИФИКАТОР ТИПА
0	0	0	0	0	0	0	1	КЛАССИФИКАТОР ИДЕНТИФИКАТОР ПЕРЕМЕННОЙ СТРУКТУРЫ БЛОКА ДАННЫХ,
	Опр	ределе	эно в	7.2.3				ПРИЧИНА ПЕРЕДАЧИ определенный в 7.1
	Опр	оеделе	эно в	7.2.4				ОБЩИЙ АДРЕС ASDU
	Опр	оеделе	эно в	7.2.5				АДРЕС ОБЪЕКТА ИНФОРМАЦИИ
	Опр	оеделе	ено в	7.2.6.3	3			Имя файла
	Опр	ределе	ено в	7.2.6.3	14			Имя секции ОБЪЕКТ ИНФОРМАЦИИ
	Опр	ределе	ено в	7.2.6.3	15			Длина секции
			C	P8	1		I	SRQ = Описатель готовности секции, определенный в 7.2.6.29

Рисунок 84 — ASDU: F_SR_NA_1 Готовность секции

F_SR_NA_1 := CP {ИБД, адрес объекта информации, имя файла, имя секции, длина секции, SRQ} ПРИЧИНЫ ПЕРЕДАЧИ, используемые с ИТ 121 := F_SR_NA_1

<13> := пересылка файла

<44> := неизвестный идентификатор типа
 <45> := неизвестная причина передачи
 <46> := неизвестный общий адрес ASDU

7.3.6.3 ИДЕНТИФИКАТОР ТИПА 122: F SC NA 1 Вызов директории, выбор файла, вызов файла, вызов секции

Одиночный объект информации (SQ=0)

0	1	1	1	1	0	1	0	идентификатор типа
0	0	0	0	0	0	0	1	КЛАССИФИКАТОР ИДЕНТИФИКАТОР ПЕРЕМЕННОЙ СТРУКТУРЫ БЛОКА ДАННЫХ,
	Опр	ределе	эно в	7.2.3				ПРИЧИНА ПЕРЕДАЧИ определенный в 7.1
	Опр	ределе	ено в	7.2.4				ОБЩИЙ AДPEC ASDU
	Опр	еделе	ено в	7.2.5				АДРЕС ОБЪЕКТА ИНФОРМАЦИИ
	Опр	е деле	ено в	7.2.6.3	13			Имя файла ОБЪЕКТ
	Опр	еделе	ено в	7.2.6.3	34			ИНФОРМАЦИИ Имя секции
			Cl	I P8	ı		ı	SCQ = Указатель выбора и вызова, определенный в 7.2.6.30

Рисунок 85 — ASDU: F_SC_NA_1 Вызов директории, выбор файла, вызов файла, вызов секции

F_SC_NA_1 := CP {ИБД, адрес объекта информации, имя файла, имя секции, SCQ}

ПРИЧИНЫ ПЕРЕДАЧИ, используемые с ИТ 122 := F SC NA 1 <5> запрос (только для вызова директории)

<13> := пересылка файла (за исключением вызова директории)

<44> := неизвестный идентификатор типа <45> := неизвестная причина передачи <46> := неизвестный общий адрес ASDU

:=

7.3.6.4 ИДЕНТИФИКАТОР ТИПА 123:

F LS NA 1

Последняя секция, последний сегмент

Одиночный объект информации (SQ=0)

					1		1		
0	1	1	1	1	0	1	1	ИДЕНТИФИКАТОР ТИПА	
0	0	0	0	0	0	0	1	КЛАССИФИКАТОР ПЕРЕМЕННОЙ СТРУКТУРЫ	ИДЕНТИФИКАТОР БЛОКА ДАННЫХ,
	Оп	ределе	эно в 7	7.2.3				ПРИЧИНА ПЕРЕДАЧИ	определенный в 7.1
	Оп	ределе	ено в 7	7.2.4				ОБЩИЙ АДРЕС ASDU	
	Оп	ределе	эно в 7	7.2.5				АДРЕС ОБЪЕКТА ИНФОРМАЦИИ	
	Оп	ределе	ено в 7	7.2.6.3	33			Имя файла	
	Оп	оеделе	эно в 7	7.2.6.3	34			Имя секции	ОБЪЕКТ ИНФОРМАЦИИ
			U	18				LSQ = Описатель последней секции или сегмента, определенный в 7.2.6.31	
			U	18	•	1	I	CHS = Контрольная сумма, определенная в 7.2.6.37	

Рисунок 86 — ASDU: F_LS_NA_1 Последняя секция, последний сегмент

F_LS_NA_1 := CP {ИБД, адрес объекта информации, имя файла, имя секции, LSQ, контрольная сумма}

ПРИЧИНЫ ПЕРЕДАЧИ, используемые с ИТ 123 := F_LS_NA_1

<13> := пересылка файла
<44> := неизвестный идентификатор типа
<45> := неизвестный общий адрес ASDU
<46> := неизвестный адрес объекта инфор

7.3.6.5 ИДЕНТИФИКАТОР ТИПА 124:

F AF NA 1

Подтверждение приема файла, подтверждение приема секции

Одиночный объект информации (SQ=0)

Рисунок 87 — ASDU: F_AF_NA_1 Подтверждение приема файла, подтверждение приема секции

F_AF_NA_1 := CP {ИБД, адрес объекта информации, имя файла, имя секции, AFQ} ПРИЧИНЫ ПЕРЕДАЧИ, используемые с ИТ 124 := F_AF_NA_1

<13> := пересылка файла

<44> := неизвестный идентификатор типа <45> := неизвестная причина передачи <46> := неизвестный общий адрес ASDU

7.3.6.6 ИДЕНТИФИКАТОР ТИПА 125:

F SG NA 1

Сегмент

Одиночный объект информации (SQ=0)

0 1 1 1 1 0 1 ИДЕНТИФИКАТОР ТИПА ИДЕНТИФИКАТОР ПЕРЕМЕННОЙ СТРУКТУРЫ ИДЕНТИФИКАТОР БЛОКА ДАННЫХ, ОПРЕМЕННОЙ СТРУКТУРЫ БЛОКА ДАННЫХ, ОПРЕДЕЛЕННЫЙ В 7.1 Определено в 7.2.4 ОБЩИЙ АДРЕС АSDU ОБЩИЙ АДРЕС АSDU В 7.1 Определено в 7.2.5 АДРЕС ОБЪЕКТА ИНФОРМАЦИИ ИМЯ файла ОПРЕДЕЛЕННЫЯ В 7.2.6.33 ИМЯ СЕКЦИИ ОБЪЕКТ ИНФОРМАЦИИ ОПРЕДЕЛЕНО В 7.2.6.34 Длина сегмента, определенная в 7.2.6.36 ОБЪЕКТ ИНФОРМАЦИИ ОБЪЕКТ ИНФОРМАЦИИ Байт 1 Сегмент Сегмент Сегмент											
0 0 0 0 0 0 1 ПЕРЕМЕННОЙ СТРУКТУРЫ БЛОКА ДАННЫХ, определенный в 7.1 Определено в 7.2.3 ПРИЧИНА ПЕРЕДАЧИ в 7.1 Определено в 7.2.4 ОБЩИЙ АДРЕС ASDU Определено в 7.2.5 АДРЕС ОБЪЕКТА ИНФОРМАЦИИ Определено в 7.2.6.33 Имя файла Определено в 7.2.6.34 Имя секции ОБЪЕКТ ИНФОРМАЦИИ ОБЪЕКТ ИНФОРМАЦИИ Байт 1 Сегмент	0	1	1	1	1	1	0	1	ИДЕНТИФИКАТОР ТИПА		
Определено в 7.2.3 Определено в 7.2.4 Определено в 7.2.5 Определено в 7.2.6.33 Определено в 7.2.6.33 Определено в 7.2.6.34 Объект Информации Объект Информации Объект Объект Информации Объект Объект Объект Информации Объект	0	0	0	0	0	0	0	1		• •	
Определено в 7.2.5 Определено в 7.2.6.33 Определено в 7.2.6.34 Объект информации Объект информации Объект информации Сегмент Сегмент	Определено в 7.2.3								ПРИЧИНА ПЕРЕДАЧИ		
Определено в 7.2.6.33 Определено в 7.2.6.34 Определено в 7.2.6.34 Имя файла Определено в 7.2.6.34 Имя секции ОБЪЕКТ ИНФОРМАЦИИ UI8 Длина сегмента, определенная в 7.2.6.36 Байт 1 Сегмент		Оп	ределе	ено в 7	7.2.4				ОБЩИЙ AДРЕС ASDU		
Определено в 7.2.6.34 Имя секции ОБЪЕКТ ИНФОРМАЦИИ UI8 Длина сегмента, определенная в 7.2.6.36 Байт 1 Сегмент	Определено в 7.2.5										
ОБЪЕКТ ИНФОРМАЦИИ UI8 Длина сегмента, определенная в 7.2.6.36 Байт 1 Сегмент	Определено в 7.2.6.33								Имя файла		
UI8 Длина сегмента, определенная в 7.2.6.36 Байт 1 Сегмент	Определено в 7.2.6.34								Имя секции	ОБЪЕКТ ИНФОРМАЦИИ	
Сегмент	UI8										
	Байт 1										
Байт п									Сегмент		
	Байт п										

Рисунок 88 — ASDU: F_SG_NA_1 Сегмент

F_SG_NA_1 := CP {ИБД, адрес объекта информации, имя файла, имя секции, длина сегмента, сегмент}

ПРИЧИНЫ ПЕРЕДАЧИ, используемые с ИТ 125 := F_SG_NA_1

<13> := пересылка файла

<44> := неизвестный идентификатор типа
<45> := неизвестная причина передачи <46> := неизвестный общий адрес ASDU

7.3.6.7 ИДЕНТИФИКАТОР ТИПА 126: Директория

F_DR_TA_1

Последовательность элементов информации в одиночном объекте (SQ=1)

					_					
0	1	1 1	1 '	1	1	1	0	ИДЕНТИФИКАТОР ТИПА	_	
1	Чи	спо эле	емент	ов ј				КЛАССИФИКАТОР ПЕРЕМЕННОЙ СТРУКТУРЫ		ДЕНТИФИКАТОГ БЛОКА ДАННЫХ,
	Опред	делено	в 7.2.	.3				ПРИЧИНА ПЕРЕДАЧИ		определенный в 7.1
	Опред	делено	в 7.2.	.4				ОБЩИЙ AДPEC ASDU		
	Опред	делено	в 7.2.	.5				АДРЕС ОБЪЕКТА ИНФОРМАЦИИ		
	Опред	делено	в 7.2.	.6.33	}			Имя файла или субдиректории		
	Опред	делено	в 7.2.	.6.35	i			Длина файла		
	Опред	делено	в 7.2.	.6.38	}			SOF = Состояние файла	Файл 1 Адрес А I	
		Время2 делено		.6.18	,			Семь байтов времени в двоичном коде (от миллисекунд до лет). Время создания файла		
							•			ОБЪЕКТ ИНФОРМАЦИИ
	Опред	делено	в 7.2.	.6.33	1			Имя файла или субдиректории		
	Опред	делено	в 7.2.	.6.35	i			Длина файла		
	Опред	делено	в 7.2.	.6.38				SOF = Состояние файла	Файл ј Адрес А+ ј	-1
		Время2 делено		.6.18	,			Семь байтов времени в двоичном коде (от миллисекунд до лет). Время создания файла		

Рисунок 89 — ASDU: F_DR_TA_1 Директория

 $F_DR_TA_1 := CP \{ИБД, адрес объекта информации,$ **ј** $(имя файла, длина файла, состояние файла, CP56Bpeмя2a)}$

ј := число наборов элементов, определенное в описателе переменной структуры

ПРИЧИНЫ ПЕРЕДАЧИ, используемые с ИТ 126 := F_DR_TA_1

<3> := спорадическая <5> := по запросу

7.4 Применение требований МЭК 60870-5-5 «Основные прикладные функции»

Используются следующие основные функции, определенные МЭК 60870-5-5:

Инициализация работы станций (МЭК 60870-5-5, подпункт 6.1).

Сбор данных при помощи опроса (МЭК 60870-5-5, подпункт 6.2).

Циклическая передача данных (МЭК 60870-5-5, подпункт 6.3).

Сбор данных о событиях (МЭК 60870-5-5, подпункт 6.4).

Общий опрос. Опрос КП (МЭК 60870-5-5, подпункт 6.6).

Синхронизация часов (МЭК 60870-5-5, подпункт 6.7).

Передача команд (МЭК 60870-5-5, подпункт 6.8).

Передача интегральных сумм (телесчет) (МЭК 60870-5-5, подпункт 6.9).

Загрузка параметров (МЭК 60870-5-5, подпункт 6.10).

Тестовая процедура (МЭК 60870-5-5, подпункт 6.11).

Пересылка файлов (МЭК 60870-5-5, подпункт 6.12).

Определение запаздывания передачи (МЭК 60870-5-5, подпункт 6.13).

После успешной инициализации станции все пользовательские функции должны быть готовы запускаться (выполняться) одновременно.

Если контролируемая станция имеет два или более блоков данных ASDU, готовых к передаче одновременно, она должна посылать их в соответствии с приоритетами, указанными в таблице 16, независимо от того, какие данные появились первыми. В таблице 16 не определен порядок, в котором контролирующая станция должна запрашивать данные, и не установлено, чтобы контролируемая станция не передавала данные до тех пор, пока другие типы данных не станут доступны. ASDU с идентификаторами типа внутри одной клетки таблицы (с любым числом строк) могут передаваться в любом порядке. Действительны требования хронологии сообщений, определенные в 7.2.2.2.

Таблица 16 — Приоритеты ответов на контролируемой станции

Запрос ASDU	Описание	Комментарии
70	Конец инициализации	В направлении контроля
От 45 до 69	Передача команд	Отраженные ASDU
От 1 до 44 103 106	Сообщение о событии Синхронизация часов Команда определения задержки	С ПРИЧИНОЙ ПЕРЕДАЧИ = 3 по МЭК 60870-5-5, подпункт 6.7
102, 104, 105 От 110 до 113	Команда чтения, процедура тестирования, сброс процесса Загрузка параметра	
100 101	Опрос станции Передача интегральных сумм	
9, 11, 13, 21 От 120 до 127	Циклическая передача данных (с ПРИЧИНОЙ ПЕРЕДАЧИ = 1) Передача файлов	

7.4.1 Выдержки из функции «Инициализация работы станций»

Опции в соответствии с МЭК 60870-5-5, подпункт 6.1:

С ЕІ (Конец инициализации) не используется в направлении управления.

М_АА (Прикладной уровень готов) не используется в направлении контроля.

Настоящий стандарт определяет адресацию всей станции или отдельных секторов станции при помощи общего адреса ASDU. Сектора станции могут существовать как отдельные физические части оборудования (например RTU от 1 до 4 совпадают с LRU от 1 до 4 на рисунке 90) либо как логические элементы внутри физического устройства (например LRU от 5 до 5+п внутри RTU 5 на рисунке 90). В дальнейшем оба типа секторов определены как логические удаленные пункты LRU (см. рисунок 90).

Конец инициализации (ENDINIT) передается по отдельности каждым LRU после инициализации, когда данные этих LRU становятся доступными (см. МЭК 60870-5-5, подпункт 6.1). Это требуется также при выполнении процедуры общей инициализации для нескольких LRU в составе одного физического устройства. В обоих случаях каждый LRU передает сообщение о конце инициализации, содержащее его конкретный ОБЩИЙ АДРЕС ASDU.

7.4.2 Выдержки из функции «Сбор данных при помощи опроса»

Используется полная функция, определенная в МЭК 60870-5-5, подпункт 6.2.

Процедура опроса обеспечивается на канальном уровне, который запрашивает пользовательские данные классов 1 и 2. Обычно ASDU, содержащие причину передачи «периодическая/циклическая», предназначены для передачи данных класса 2, а все ASDU, передаваемые с метками времени или спорадически, предназначены для передачи данных класса 1. ASDU, содержащие другие причины передачи с более низким приоритетом, таким как фоновое сканирование, также соответствуют данным класса 2 и должны быть указаны в документе о совместимости.

В этом случае можно считать, что запрос канального уровня данных класса 1 возникает в другие моменты времени относительно запроса канального уровня данных класса 2, что может влиять на правильную последовательность ASDU, получаемых прикладным уровнем контролирующей станции.

При ответе на запрос данных класса 2 контролируемая станция может ответить данными класса 1, если нет доступных данных класса 2.

С помощью команды чтения могут быть запрошены требуемые объекты информации путем опроса соответствующих адресов объектов информации. Запрошенные объекты информации возвращаются с причиной передачи <5> — «запрошено». Обычно эти запрошенные объекты не содержат метку времени (см. 7.4.14).

7.4.3 Выдержки из функции «Циклическая передача данных»

Используется полная функция, определенная в МЭК 60870-5-5, подпункт 6.3.

7.4.4 Выдержки из функции «Сбор данных о событиях»

Используется полная функция, определенная в МЭК 60870-5-5, подпункт 6.4.

7.4.5 Выдержки из функции «Общий опрос. Опрос КП»

Опции в соответствии с МЭК 60870-5-5, подпункт 6.6:

C_IC ACTCON и C_IC ACTTERM в направлении контроля используются.

Команда опроса C_IC ACT запрашивает полный объем или заданный определенный поднабор опрашиваемой информации на КП. Поднабор (группа) выбирается с помощью описателя опроса QOI.

Команда опроса станции требует от контролируемых станций передать актуальное состояние их информации, обычно передаваемой спорадически (причина передачи = 3), на контролирующую станцию с причинами передачи от <20> до <36>. Опрос станции используется для синхронизации информации о процессе на контролирующей станции и контролируемых станциях. Он также используется для обновления информации на контролирующей станции после процедуры инициализации или после того, как контролирующая станция обнаружит потерю канала (безуспешное повторение запроса канального уровня) и последующее восстановление его. Ответ на опрос станции должен включать объекты информации о процессе, которые запомнены на контролируемой станции. В ответ на опрос станции эти объекты информации передаются с идентификаторами типов <1>, <3>, <5>, <7>, <9>, <11>, <13>, <20> или <21> и могут также передаваться в других ASDU с идентификаторами типов от <1> до <14>, <20>, <21>, от <30> до <36> и с причинами передачи <1> — периодически/циклически, <2> — фоновое сканирование или <3> — спорадически.

Контролируемой станции нет необходимости посылать информацию, которая не запоминается на контролирующей станции (см. МЭК 60870-5-5, подпункт 6.6), то есть не запомненный на контролируемой станции объект не возвращается в ответ на опрос станции, он должен быть передан только с причиной передачи <1> — периодически/циклически. Это может быть достигнуто при конфигурировании информации, посылаемой контролируемой станцией в ответ на запрос опроса станции, но такой режим не обязателен для контролируемой станции.

В таблице 17 показаны ASDU, которые могут быть переданы в ответ на процедуру опроса станции, включая идентификаторы типа, причины передачи и описатели опроса для команды опроса станции.

Таблица 17 — ASDU, участвующие в процедуре опроса станции

Направление: С = управление, М = контроль	Идентификатор типа (ASDU)	Причина передачи	Описатель опроса
С	<100> C_IC_NA_1	<6> активация	От <20> до <36>
М	<100> C_IC_NA_1	<7> подтверждение активации	От <20> до <36>
М	<1> M_SP_NA_1 <3> M_DP_NA_1 <5> M_ST_NA_1	<20> inrogen от <21> до <36> inro 1 до inro 16	

Окончание таблицы 17

Направление: C = управление, М = контроль	Идентификатор типа (ASDU)	Причина передачи	Описатель опроса
М	<7> M_BO_NA_1 <9> M_ME_NA_1 <11> M_ME_NB_1 <13> M_ME_NC_1 <20> M_PS_NA_1 <21> M_ME_ND_1	<20> inrogen от <21> до <36> inro 1 до inro 16	
M	<100> C_IC_NA_1	<10> завершение активации	От <20> до <36>

Удаленный телемеханический пункт (RTU) может состоять из нескольких (логических) секторов. Каждый LRU (LRU — логический удаленный пункт) определен специфичным для системы общим адресом. Подстанция, содержащая только один LRU, на опрос станции (или опрос счетчиков), который направлен данному LRU, посылает ASDU, содержащий общий адрес, определенный для этого LRU. Если подстанция состоит из нескольких RTU, то все LRU (в примере, показанном на рисунке 90, от LRU 1 до LRU 4) могут быть опрошены одновременно при помощи команды опроса станции (или команды опроса счетчиков) с общим адресом ASDU FF или FFFF (см. рисунок 91 для этой процедуры). В этом примере LRU 1 (рисунок 90) ответственен за инициализацию процедуры опроса станции тех LRU (от LRU 2 до LRU 4), которые присоединены к LRU 1.

Если один LRU (LRU 5+n+m+1 на рисунке 90) распределен между более чем одной физической контролируемой станцией (RTU 7 и 8 на рисунке 90), причем каждая подсоединяется через отдельный физический канал, то команда опроса станции (или команда опроса счетчиков) должна посылаться к каждой физической контролируемой станции (RTU 7 и 8), что может выполняться с использованием циркулярного адреса канального уровня.

Инициализация идентичного общего опроса того же источника до окончания предыдущего опроса обычно блокируется контролирующей станцией.

Рисунок 90 — Иерархическое представление распределения общих адресов ASDU по LRU (пример)

Запрос опроса станции выдается в направлении контролируемой станции:

- если с контролируемой станции получен «КОНЕЦ ИНИЦИАЛИЗАЦИИ» или
- если центральная станция обнаруживает потерю канала (безуспешное повторение запроса канального уровня) и последующее восстановление его. Команда опроса станции C_IC ACT получает отрицательное подтверждение при помощи C_IC ACTCON, если контролируемая станция не готова ответить запрошенной информацией. В этом случае команда опроса станции может быть повторена.

Кроме того, опрос станции может быть выдан контролируемой станции в ответ на другую (в соответствии с конфигурацией) причину, например ручную инициализацию.

Если команда опроса станции выдается контролируемой станции с использованием общего адреса FF или FFFF (запрос всех), то ПОДТВЕРЖДЕНИЕ АКТИВАЦИИ, ПРЕКРАЩЕНИЕ АКТИВАЦИИ и запро-

шенные объекты информации передаются на контролирующую станцию с определенными общими адресами LRU точно таким же способом, как если бы они инициировались командой опроса станции, направленной к определенному LRU.

Команды опроса определенных LRU контролируемых станций могут передаваться параллельно, например ответная последовательность от подтверждения активации до прекращения активации, соответствующая ранее переданной команде опроса, может быть не окончена до выдачи команды опроса другому LRU. Контролируемая станция может ответить отрицательным подтверждением активации на одновременные запросы одного и того же типа ко многим адресам.

ASDU с причиной передачи от 20 до 36 передаются без меток времени.

Последовательность, показанная на рисунке 91, — это пример. Ответные сообщения от одного LRU могут быть переданы компактно одно за другим (C_IC_ACT, C_IC ACTCONpos, M, M...C_IC ACTTERM) или могут чередоваться с ответами от других LRU.

Рисунок 91 — Последовательная процедура опроса станции для всех LRU на определенной контролируемой станции (пример)

7.4.6 Выдержки из функции «Синхронизация часов»

Применяется полная функция, определенная в МЭК 60870-5-5, подпункт 6.7.

Информация о времени корректируется (на величину времени передачи по каналу) исключительно контролируемой станцией.

Эталон (исходный источник) для команды синхронизации часов является параметром, зависящим от системы. Может быть задано местное время или, если система покрывает несколько временных зон, в качестве базы может использоваться UTC или время диспетчерского центра. Бит летнего времени игнорируется на обеих, контролирующей и контролируемой, станциях и должен быть установлен в ноль.

Недействительное значение бита IV относится к элементу информации CP56Bремя2а и говорит о точности передаваемого времени. Бит IV устанавливается в 1, если часы не синхронизировались в течение определенного промежутка времени.

7.4.7 Выдержки из функции «Передача команд»

Опции в соответствии с МЭК 60870-5-5, подпункт 6.8:

Процедура выбора используется только в случае функции «выбор и исполнение». DEACT и DEACTCON также используются только в случае функции «выбор и исполнение».

C_SC, C_DC, C_RC: используются ACT, ACTCON и ACTTERM.

C_SE ACT и ACTCON используются с прямой передачей команды или с процедурами выбора и исполнения. C_SE ACTTERM может использоваться опционально.

Для сигнализации начала операций управления RETURN_INF не используется.

Для сигнализации завершения операции управления RETURN_INF используется (если этот сигнал доступен).

S/E — описатель команды QOC безразличен в ASDU с причиной передачи DEACT и DEACTCON.

П р и м е ч а н и е — Однопозиционная команда (идентификатор типа 45) используется для управления объектом, контролируемым как одноэлементный (идентификаторы типов 1, 2 и 30); двухпозиционная команда (идентификатор типа 46) используется для управления объектом, контролируемым как двухэлементный (идентификаторы типов 3, 4 или 31), а команда пошагового регулирования (идентификатор типа 47) используется для управления объектом, который контролируется информацией о положении отпаек (идентификаторы типов 5, 6 и 32).

7.4.8 Выдержки из функции «Передача интегральных сумм (телесчет)»

Опции в соответствии с МЭК 60870-5-5, подпункт 6.9:

Используются С CI. ACT. ACTCON. ACTTERM.

Используются обе опции MEMORIZE COUNTER и MEMORIZE INCREMENT. Интегральные суммы передаются с ПРИЧИНОЙ ПЕРЕДАЧИ = СПОРАДИЧЕСКАЯ после запоминания. ЗАПОМИНАНИЕ может исполняться на месте (по сигналу от местных часов). В этом случае опции MEMORIZE COUNTER и MEMORIZE INCREMENT не используются.

Используется $3A\Pi^{\prime}POC$ ИНТЕГРАЛЬНЫХ СУММ. В этом случае интегральные суммы передаются с ПРИЧИНОЙ ПЕРЕДАЧИ = $3A\Pi^{\prime}POC$ СЧЕТЧИКА.

С_CI DEACT и DEACTCON не используются. Общая модель счетчика показана на рисунке 92. Интегральные суммы — это значения, проинтегрированные за определенный период времени (см. МЭК 60870-5-5, подпункт 6.9).

Рисунок 92 — Общая модель счетчика

Реальные значения нормально интегрируются счетчиком. Реальные значения могут быть запомнены (скопированы) периодически в виде зафиксированного значения по команде фиксации, получаемой от контролирующей станции или инициированной локально внутри устройства. После фиксации реальное значение устанавливается в ноль (сбор информации о приращении) или продолжает свою работу без установления в ноль (сбор интегральных сумм нарастающим итогом).

Адреса объектов информации интегральных сумм могут определяться по группам. Эти группы могут фиксироваться, сбрасываться или передаваться по отдельности. Команда опроса счетчика включает поле описателя (QCC), которое определяет проводимое действие (FRZ) и группу счетчиков (RQT), с которыми это действие проводится (см. 7.2.6.23).

Имеются четыре режима сбора интегральных сумм или информации о приращении.

Режим А: Местная фиксация со спорадической передачей (рисунок 93)

Местные часы на контролируемой станции инициируют фиксацию или фиксацию со сбросом. Интегральные суммы (зафиксированные значения) передаются спорадически в ASDU M_IT после выполнения операции фиксации или фиксации со сбросом. Контролирующая станция не выдает команд опроса счетчика (C CI).

Если используется ASDU интегральных сумм с меткой времени (M_IT_TA_1), ретроспектива зафиксированных значений может быть воспроизведена в этом режиме даже, когда связь была повреждена на какое-то время и затем восстановлена.

Рисунок 93 — Последовательная процедура спорадически передаваемых интегральных сумм (Режим А)

Режим В: Местная фиксация с опросом счетчика (рисунок 94)

Местные часы на контролируемой станции инициируют фиксацию или фиксацию со сбросом. Интегральные суммы (зафиксированные значения) запрашиваются командами опроса счетчиков (C_CI). В этом случае операции фиксации или фиксации со сбросом не должны использоваться в команде опроса счетчика (т. е. описатель должен содержать FRZ = 0). Может использоваться общий запрос интегральных сумм или запрос по группам от 1 до 4. Присвоение адресов объектов информации определенным группам интегральных сумм проводится на контролируемой станции. Запрошенные интегральные суммы передаются с причинами передачи от 37 до 41.

Прикладная	функция на	Усл	уги свя	3И		Прикладная	
контролирую	щей станции		СОТ	FRZ	RQT	контролируе	мой станции
Запрос инте- гральных сумм	A_REQINTO.	C_CI ACT	6	0	15	A_REQINTO.	Запрос инте- гральных сумм
Подтверждение запроса	A_REQINTO.	C_CI ACTCON	7	0	15	A_REQINTO. res	Подтверждение запроса
Интегральные суммы А	A_INTO.ind	M_IT REQCO	3741			A_INTO.req	Интегральные суммы А
Интегральные суммы В	A_INTO.ind	M_IT REQCO	3741			A_INTO.req	Интегральные суммы В
Интегральные суммы п	A_INTO.ind	M_IT REQCO	3741			A_INTO.req	Интегральные суммы п
Завершение опроса счетчиков	A_ITERM.ind	C_CI ACTTERM	10	0	15	A_ITERM.req ◄	Завершение опроса счетчиков

Рисунок 94 — Последовательная процедура опроса интегральных сумм (Режим В)

Режим С: (рисунки 95, 96)

Команды опроса счетчиков, получаемые от контролирующей станции, инициируют команды фиксации со сбросом или без сброса. Последующая команда опроса счетчиков выдается контролирующей станцией для сбора зафиксированных значений с контролируемой станции.

Команда опроса счетчиков периодически выдается контролирующей станцией для управления фиксацией и/или сбросом.

Команда опроса счетчиков с фиксацией и/или сбросом может быть задана для всех счетчиков (общий запрос счетчиков RQT = <5>) или определенных групп счетчиков (RQT = <1>...<4>). Опция «нет счетчиков» (RQT = <0>) не используется. Команда также определяет выполнение операций: фиксация (FRZ = <1>, см. рисунок 95), фиксация со сбросом (FRZ = <2>, см. рисунок 96) или сброс (FRZ = <3>). Операции, определенные элементом FRZ, применяются только к счетчикам, определенным RQT. Все другие счетчики не участвуют. Эта команда не вызывает передачи показаний счетчика.

После того, как операция управления фиксацией и/или сбросом закончится, контролирующей станцией выдается команда опроса счетчиков для сбора зафиксированных значений. Формат аналогичен описанному в режиме В для сбора интегральных сумм.

Прикладная функция на		Услуги связи				Прикладная функция на	
контролирую	ещей станции		СОТ	FRZ	RQT	контролируе	мой станции ————————
Команда фик- сации счетчика	A_MEMCNT.	C_CI ACT	6	1	15	A_MEMCNT.	Команда фик- сации счетчика
Показание за- фиксировано	A_MEMCNT.	С_СІ АСТСОN Далее про фиксиров как і		значен		A_MEMCNT. res	Показание зафиксировано

Рисунок 95 — Последовательная процедура запоминания интегральных сумм без сброса (Режим С)

Прикладная функция на		Усл	уги свя	зи		Прикладная функция на	
контролируюц	цей станции		COT	FRZ	RQT	контролируемой станции	
Команда фик- сации приращения	A_MEMINCR.	C_CI ACT	6	2	15	A_MEMINCR. Команда фик- ind сации приращения	
Приращение за- фиксировано	A_MEMINCR.	C_CI ACTCON	7	2	15	A_MEMINCR. Приращение за- res фиксировано	
		Далее прог фиксиров как в		значен			

Рисунок 96 — Последовательная процедура запоминания интегральных сумм со сбросом (Режим С)

Режим D: Команда опроса счетчиков с контролирующей станции инициирует операцию фиксации, и фиксированные значения выдаются спорадически.

Этот режим является комбинацией команд опроса счетчиков от контролирующей станции в соответствии с режимом С и спорадических сообщений об интегральных суммах в соответствии с режимом А.

7.4.9 Выдержки из функции «Загрузка параметров»

Опции из МЭК 60870-5-5, подпункт 6.10:

P_AC ACT/ACTCON и DEACT/DEACTCON используются только в комбинации с QPA :=<3>=активация/деактивация постоянной циклической или периодической передачи адресуемого объекта.

P_ME SPONT для местного изменения параметра не используется.

P_ME ACT и ACTCON используются для загрузки одиночных параметров, которые активизируются сразу после того, как проверены на выполнимость (пригодность) и приняты как имеющие правильное значение. В любом случае (принято или отвергнуто) значение параметра, возвращаемое в составе ASDU P_ME ACTCON, представляет собой значение (новое или старое) параметра, находящегося в данный момент в работе.

7.4.10 Выдержки из функции «Тестовая процедура»

Используется полная процедура, определенная в МЭК 60870-5-5, подпункт 6.11.

7.4.11 Выдержки из функции «Пересылка файлов»

Опции из МЭК 60870-5-5, подпункт 6.12:

F_SC_NA_1 (Вызов директории) — используется в направлении управления.

F_DR_TA_1 (Директория) — используется в направлении контроля.

7.4.11.1 Общая адресная структура для пересылки файлов

7.4.11.1.1 Введение

Обычно файлы создаются, управляются и запоминаются в той части системы, в которой они создаются, например файлы защиты создаются в устройствах релейной защиты, файлы (регистрация) последовательности событий создаются в системах автоматизации подстанций, файлы конфигурации конфигурационных данных создаются на контролирующей станции и т. п. Файлы могут выбираться и запрашиваться партнером связи. Чтобы избежать двукратной реализации громоздкой системы управления файлами на обеих, контролирующей и контролируемой, станциях контролирующей станцией может быть запрошена директория, которая определяет файлы, доступные на контролируемых станциях. Каждый файл (директория или субдиректория) однозначно определяется комбинацией общего адреса ASDU и адреса объекта информации; при этом имя файла включается как дополнительная информация. В соответствии с настоящим стандартом файл рассматривается как объект информации. Директория или непосредственно определяет адрес объекта информации файла, или ссылается на субдиректорию, которая затем определяет реальные адреса объектов информации и имена файлов. Элемент информации SOF (состояние файла в

Рисунок 97 — Адресация файлов (пример)

директории) содержит флаг FOR, причем значение FOR = 0 указывает на имя, определяющее файл, а FOR = 1 указывает на имя, определяющее субдиректорию. На рисунке 97 приведен пример возможной директории. Файлы устройства защиты, определенные в МЭК 60870-5-103, должны адресоваться с именем файла в дополнение к адресу объекта информации.

Метка времени в директории с FOR = 1 определяет момент времени наиболее свежих изменений субдиректории.

Определены следующие имена файлов:

Имя файла

<1> := прозрачный файл

<2> := данные о повреждениях от устройств защиты

<3> := последовательность событий

<4> := последовательность записи аналоговых величин <5>..<127> := резерв для дальнейших совместимых определений <128>..<255> := резерв для специального применения (частный диапазон)

7.4.11.1.2 Спецификация директорий и субдиректорий

Директории и субдиректории упорядочены в системах автоматизации подстанций (включая RTU). Они могут быть запрошены контролирующей станцией или передаваться спорадически в случае изменений. Не ставится требование, чтобы несколько файлов были доступны одновременно в системе автоматизации подстанции. Они могут быть запомнены в аппаратуре защиты и получены по запросу. Однако система автоматизации подстанции должна зарезервировать память по крайней мере для одного полного файла. Стирание файлов в системах автоматизации подстанции является функцией пользователя и не определяется настоящим стандартом.

7.4.11.2 Передача данных о повреждениях

Этот подпункт определяет, каким образом данные о повреждениях (в работе первичного оборудования), полученные от аппаратуры защиты на подстанции, должны быть преобразованы для механизма передачи файла по настоящему стандарту, когда требуется дальнейшая передача на контролирующую станцию. Формат используемых файлов о повреждениях определен МЭК 60870-5-103 «Обобщенный стандарт по информационному интерфейсу для аппаратуры релейной защиты».

Различие в блоках данных и процедурах между МЭК 60870-5-103 и настоящим стандартом требует дополнительных определений, чтобы обеспечить возможность передачи контролирующей системе данных о повреждениях, полученных и запомненных в системах автоматизации подстанций. Дополнительные определения приведены в 7.4.11.2.1 — 7.4.11.2.7.

7.4.11.2.1 Определения запроса от аппаратуры защиты

Нижеследующие определения могут применяться как для передачи данных о повреждениях, полученных непосредственно от аппаратуры защиты, так и от других частей системы автоматизации подстанции. В обоих случаях необходимо разделение файлов данных о повреждениях на определенные секции (см. рисунок 100). С точки зрения контролирующей станции в обоих случаях управление передачей проводят одинаковым образом, за исключением разных условий определения тайм-аутов.

7.4.11.2.2 Запрос центральной станцией файлов от аппаратуры защиты

Если выбранный файл находится в буфере аппаратуры защиты в момент, когда он выбран контролирующей станцией, то процедура передачи данных о повреждениях, определенная в МЭК 60870-5-103, начинается с ASDU 24 (порядок передачи данных о повреждениях). Процедура начинается с посылки ASDU F_SC_NA_1 SCQ := <1> (выбор файла) контролирующей станцией (см. рисунок 98, шаг 1). После этого проводится передача выбранного файла от аппаратуры защиты к системе автоматизации подстанции (см. рисунок 98, шаг 2). После успешного окончания этой процедуры обмена с аппаратурой защиты (ASDU 31 — Окончание передачи, ТОО := <32> — Нормальное окончание передачи данных о повреждениях) на контролирующую станцию передается ASDU F_FR_NA_1 с FRQ BS1 [8] := <0> (положительное подтверждение выбора). Во всех других случаях на контролирующую станцию передается F_FR_NA_1 с FRQ BS1 [8] := <1> (отрицательное подтверждение выбора). Затем может последовать запрос файла данных о повреждениях от системы автоматизации подстанции, за которым следует передача файла к контролирующей станции (см. рисунок 98, шаг 3).

Должно учитываться время передачи выбранного файла от аппаратуры защиты к системе автоматизации подстанции (например не должно быть преждевременного тайм-аута Центральной системы управления обработкой файлов контролирующей станции).

Рисунок 98 — Запрос от аппаратуры защиты

7.4.11.2.3 Запрос центральной станцией файлов от системы автоматизации подстанции

В случае, когда файлы доступны в системе автоматизации подстанции, файл выбирают с помощью ASDU F_SC_NA_1 SCQ:=<1> (выбор файла), который подтверждается положительно непосредственно F_FR_NA_1 FRQ BS1 [8]:=<0> (положительное подтверждение выбора, см. рисунок 99, шаг 1). Во всех остальных случаях на контролирующую станцию передается F_FR_NA_1 с FRQ BS1 [8]:=<1> (отрицательное подтверждение выбора). За этим следует запрос и передача файла, содержащего данные о повреждениях от системы автоматизации подстанции (см. рисунок 99, шаг 2). Передача к Центральной системе управления обработкой файлов на контролирующей станции проводится непосредственно от системы автоматизации подстанции без какого-либо запроса файла от аппаратуры защиты. В этом случае передачи разделены во времени и нет прямого соответствия процессуальных услуг между настоящим стандартом и МЭК 60870-5-103.

Число файлов от 1 до k, запомненных в системе автоматизации подстанции для каждой аппаратуры защиты, может быть больше, чем число файлов от 1 до i, запомненных в самой аппаратуре защиты.

Рисунок 99 — Запрос от системы автоматизации подстанции

7.4.11.2.4 Структура файлов с данными о повреждениях

ASDU и процедуры, определенные MЭК 60870-5-103, структурированы в соответствии с повреждениями, метками времени и каналами получения данных о повреждениях. Передача файлов в соответствии с настоящим стандартом поддерживает эту структуру при передаче данных о повреждениях. Данные о повреждениях, генерируемые аппаратурой защиты, запоминаются в файлах данных о повреждениях. Кроме того, каждая аппаратура защиты создает список зарегистрированных повреждений (директорию). Этот список зарегистрированных повреждений преобразуется в субдиректорию F_DR_TA_1 (см. 7.4.11.2.5).

Передача на контролирующую станцию проводится отдельно для каждого файла.

На рисунке 100 показана структура данных о повреждениях, зарегистрированных защитой. Каждый запомненный файл данных о повреждениях разбивается на секции от 1 до n, которые соответствуют секциям, определенным МЭК 60870-5-5. Параметры, метки времени и данные о повреждениях в МЭК 60870-5-103 распределяются по этим секциям следующим образом:

```
секция 1 — параметры повреждения от 1 до k; секция 2 — метки повреждения от 1 до k; секция 3 — параметры повреждения от 1 до k для канала 1; секция 4 — данные о повреждениях от 1 до k для канала 1; секция 5 — параметры повреждения от 1 до k для канала 2; секция 6 — данные о повреждениях от 1 до k для канала 2 и т. д.
```


Рисунок 100 — Структура данных о повреждениях от аппаратуры защиты

Параметры повреждений, метки повреждений, параметры каналов защиты и данные о повреждениях по каналам определены МЭК 60870-5-103 (см. рисунок 101 настоящего стандарта). Эти параметры и данные первоначально присоединяются к секциям субдиректории аппаратуры защиты и передаются в байтах от 1 до n сегмента ASDU F SG NA 1.

Рисунок 101 — Распределение типов данных (ASDU) по секциям файлов данных о повреждениях (взято из МЭК 60870-5-103)

7.4.11.2.5 Преобразование списка зарегистрированных повреждений в директорию

Список зарегистрированных повреждений, определенный МЭК 60870-5-103, преобразуется в субдиректорию F_DR_TA_1, определенную настоящим стандартом. На рисунке 102 показано преобразование ASDU, установленных МЭК 60870-5-103, в ASDU установленных настоящим стандартом. Информационные поля идентификатора типа, адреса объекта информации и состояния файла не только копируются из типа 126 настоящего стандарта в тип 23 МЭК 60870-5-103 и наоборот, но и преобразуются с использовани-

ем списков преобразований (см. таблицу 18). Взаимное копирование информационных полей имени файла (номер повреждения) и двоичных меток времени проводится без изменений (см. рисунок 102).

Рисунок 102 — Преобразование блока данных типа 23 в директорию F_DR_TA_1

Т а б л и ц а 18 — Соответствие идентификаторов типа (по настоящему стандарту и по МЭК 60870-5-103)

Настоящий стандарт	МЭК 60870-5-103
Идентификатор типа	Идентификатор типа
<126>	<23>

Описатель переменной структуры и причина передачи используются независимо друг от друга. Общий адрес F_DR_TA_1 используется в соответствии с определениями настоящего стандарта. Адрес объекта информации F_DR_TA_1 интерфейса между контролирующей и контролируемой станциями определяется на основе общего адреса и типа функции интерфейса к аппаратуре защиты (иденти-

фикатор типа 23) с помощью специальной таблицы в системе автоматизации подстанции. Последовательность номеров повреждений (имен) может быть прервана промежутками из-за удаления файлов повреждений и рестартов аппаратуры защиты. Как следствие, имя может даже появляться несколько раз. Таким образом, файлы с данными о повреждениях должны однозначно адресоваться адресом объекта информации В и именем, то есть номером повреждения (см. таблицу 19). В то время, как адреса объектов информации являются фиксированными, имена (номера повреждений) могут меняться, например, когда они генерируются или удаляются. В этом случае актуальные директории передаются спорадически на контролирующую станцию.

Директории или последние переданные файлы не должны изменяться (обновляться) в системе автоматизации подстанции до тех пор, пока не будет выполнена передача файлов. В случае совпадения изменения директории в системе автоматизации подстанции с запросом с контролирующей станции до того, как актуальная директория будет передана на контролирующую станцию, адрес объекта и имя файла могут измениться и будут неправильными. В этом случае запрос будет отвергнут и должен быть повторен.

Т а б л и ц а 19 — Пример определения адресов объектов информации (директория или субдиректория)

Адрес объекта А	Адрес объекта А+1	Адрес объекта А+2	Адрес объекта A+n
1000	1001	1002	1000+n
FOR = 0	FOR = 1	FOR = 0	FOR = 0
имя = 1	ИМЯ = 2	ИМЯ = 1	имя = 1

Преобразование А+1 = 1001 в В = 2000

Адрес объекта В	Адрес объекта В+1	Адрес объекта В+2	Адрес объекта B+n
2000	2001	2002	2000+n
FOR = 0	FOR = 0	FOR = 0	FOR = 0
ИМЯ = номер повреждения = 10000	ИМЯ = номер поврежде- ния = 10001	ИМЯ = номер поврежде- ния = x	ИМЯ = номер повреждения = у

Если файл запрошен контролирующей станцией от аппаратуры защиты, то длина файла неизвестна в системе автоматизации подстанции во время передачи директории или субдиректории. В этом случае длина файла определяется как <0>.

Сопоставление имени файла номеру повреждения в случае, когда FOR=0:

имя файла совпадает с номером повреждения в случае, когда FOR=0.

В таблице 20 показано соответствие SOF-состояние файла и SOF-состояние повреждения для настоящего стандарта и МЭК 60870-5-103.

Т а б л и ц а 20 — Соответствие SOF состояния файла и SOF состояния повреждения (настоящий стандарт и МЭК 60870-5-103)

Настоящий стандарт	МЭК 60870-5-103
U15[15]<031>	
<0> = не определено	
<1>	TP:=BS1[1]:=<0>; TEST:=BS1[3]:=<0>; OTEV:=BS1[4]:=<0>
<2>	TP:=BS1[1]:=<1>; TEST:=BS1[3]:=<0>; OTEV:=BS1[4]:=<0>
<3>	TP:=BS1[1]:=<0>; TEST:=BS1[3]:=<1>; OTEV:=BS1[4]:=<0>
<4>	TP:=BS1[1]:=<1>; TEST:=BS1[3]:=<1>; OTEV:=BS1[4]:=<0>

Окончание таблицы 20

Настоящий стандарт	MЭK 60870-5-103
пастоящии стандарт	WISK 00070-3-103
<5>	TP:=BS1[1]:=<0>; TEST:=BS1[3]:=<0> OTEV:=BS1[4]:=<1>
<6>	TP:=BS1[1]:=<1>; TEST:=BS1[3]:=<0> OTEV:=BS1[4]:=<1>
<7>	TP:=BS1[1]:=<0>; TEST:=BS1[3]:=<1> OTEV:=BS1[4]:=<1>
<8>	TP:=BS1[1]:=<1>; TEST:=BS1[3]:=<1>; OTEV:=BS1[4]:=<1>
<915> = резерв для дальнейших совместимых определений	
<1631> = для специального применения (частный диапазон)	
LFD:= BS1[6]<01>	Отсутствует
<0>:= Следует дополнительный файл	
<1>:= Последний файл директории	
FOR:= BS1[7]<01>	Отсутствует
<0>:= Имя определяет файл	
<1>:= Имя определяет директорию	
FA:= BS1[8]<01>	Отсутствует
<0>:= Файл ждет пересылки	
<1>:= Файл в состоянии передачи	

Время CP56Время2а добавляют в момент, когда файл с данными о повреждениях генерируется в аппаратуре защиты. Время копируется в ASDU F_DR_TA_1.

7.4.11.2.6 Процедуры

На рисунках 103 и 104 приведены процедуры передачи директорий и данных о повреждениях в соответствии с определениями, приведенными в 7.4.11.2.4 и 7.4.11.2.5. Определения соответствуют процедурам, определенным в МЭК 60870-5-5, подпункт 6.12. Для того, чтобы передавать объемные директории

Контролирующая станция	Услуги связи	Контролируемая станция	Действие
А_ВЫЗОВ_ДИ- РЕКТОРИИ.req	F_SC_NA_1 req	A_BЫЗОВ_ДИ- PEKTOPИИ.ind	Вызов директории
А_ДИРЕКТОРИЯ.ind	F_DR_TA_1 req	А_ДИРЕКТОРИЯ.req	Запрошенная директория 1, дополнительная директория последует.
А_ДИРЕКТОРИЯ.ind	F_DR_TA_1 req	А_ДИРЕКТОРИЯ.req ■	Запрошенная директория 2, дополнительная директория последует
А_ДИРЕКТОРИЯ.ind	F_DR_TA_1 req	А_ДИРЕКТОРИЯ.req ▼	Запрошенная директория п, директория содержит последний файл
А_ДИРЕКТОРИЯ.ind ◀	F_DR_TA_1 spont	А_ДИРЕКТОРИЯ.req ▼	Спорадическая передача директории (возможны несколько ASDU при каждом изменении)

Рисунок 103 — Последовательная процедура передачи директории

с более чем одним ASDU, бит LFD в байте состояния файла F_DR_TA_1 должен определяться следующим образом:

LFD = Последний файл директории:

<0> = следует дополнительный файл директории;

<1> = последний файл директории.

Директория может также передаваться спорадически при любых изменениях (см. рисунок 103). Если список зарегистрированных повреждений аппаратуры защиты изменится, например из-за сброса, то актуальный список зарегистрированных повреждений передается после повторной инициализации в систему автоматизации подстанции при любом опросе станции. Это ведет к изменению директорий и спорадической передаче актуальных директорий от системы автоматизации подстанции к контролирующей станции. Если канал к контролирующей станции поврежден, директория должна быть запрошена вновь после восстановления канала.

Контролирующая станция	Услуги связи	Контроли руемая станция	Действие
А_ВЫБОР_ ФАЙЛА.req	F_SC_NA_1	A_BЫБОР_ ФАЙЛА.ind	Выбор повреждения, которое должно быть передано (автоматически или оператором)
А_ФАЙЛ_ ГОТОВ.ind	F_FR_NA_1	А_ФАЙЛ_ ГОТОВ.req ◀	Выбранное повреждение готово к передаче (положительно/отрица- тельно)
А_ВЫЗОВ_ ФАЙЛА.req	F_SC_NA_1	А_ВЫЗОВ_ ФАЙЛА.ind	Вызов повреждения, котрое долж- но быть передано (автоматически или оператором)
A_СЕКЦИЯ 1_ ГОТОВА.ind	F_SR_NA_1	A_СЕКЦИЯ 1_ ГОТОВА.req	Секция 1 (параметры повреждения) готова к передаче (положительно/ отрицательно)
A_BЫЗОВ_ CEKЦИИ.req	F_SC_NA_1	А_ВЫЗОВ_ СЕКЦИИ 1.ind	Вызов секции 1
A_CEΓMEHT.ind	F_SG_NA_1	A_CEΓΜΕΗΤ.req	Секция 1 (параметры повреждения) передается
А_ПОСЛЕДНИЙ_ СЕГМЕНТ.ind	F_LS_NA_1	А_ПОСЛЕДНИЙ_ СЕГМЕНТ.req ◀	Последний сегмент секции 1 передан (положительно/отрицательно)
A_ACK_ CEKUNN 1.req	F_AF_NA_1	А_АСК_ СЕКЦИИ 1.ind	Подтверждение передачи секции 1 (положительно/отрицательно)
A_СЕКЦИЯ 2_ ГОТОВА.ind	F_SR_NA_1	А_СЕКЦИЯ 2_ ГОТОВА.req	Секция 2 (метки повреждения) гото- ва к передаче (положительно/отри- цательно)
A_ВЫЗОВ_ CEKЦИИ 2.req	F_SC_NA_1	А_ВЫЗОВ_ CEKЦИИ 2.ind	Вызов секции 2
A_CEΓMEHT.ind	F_SG_NA_1	A_CEΓMEHT.req	Секция 2 (метки повреждения) пе- редается
A_CEΓMEHT.ind	F_SG_NA_1	A_CEΓMEHT.req	Секция 2 (метки повреждения) пе- редается
А_ПОСЛЕДНИЙ_ СЕГМЕНТ.ind	F_LS_NA_1	А_ПОСЛЕДНИЙ_ СЕГМЕНТ.req ◀	Последний сегмент секции 2 передан (положительно/отрицательно)
A_ACK_ CEKŪNN 2.req	F_AF_NA_1	A_ACK_ CEKŲMU 2.ind	Подтверждение передачи секции 2 (положительно/отрицательно)

Рисунок 104 — Последовательная процедура передачи файлов о повреждениях, лист 1

Контролирующая станция	Услуги связи	Контролируемая станция	Действие
А_СЕКЦИЯ 3_ ГОТОВА.ind	F_SR_NA_1	А_СЕКЦИЯ 3_ ГОТОВА.req	Секция 3 (параметры канала 1) готова к передаче (положительно/отрицательно)
А_ВЫЗОВ_ СЕКЦИИ 3.req	F_SC_NA_1	A_ВЫЗОВ_ СЕКЦИИ 3.ind	Вызов секции 3
A_CEΓMEHT.ind	F_SG_NA_1	A_CEΓMEHT.req	Секция 3 (параметры канала 1) пе- редается
А_ПОСЛЕДНИЙ_ СЕГМЕНТ.ind	F_LS_NA_1	А_ПОСЛЕДНИЙ_ СЕГМЕНТ.req	Последний сегмент секции 3 передан (положительно/отрицательно)
A_ACK_ CEKLINN 3.req	F_AF_NA_1	А_АСК_ СЕКЦИИ 3.ind	Подтверждение передачи секции 3 (положительно/отрицательно)
А_СЕКЦИЯ 4_ ГОТОВА.ind —	F_SR_NA_1	А_СЕКЦИЯ 4_ ГОТОВА.req ◀	Секция 4 (данные о повреждениях канала 1) готова к передаче (поло- жительно/отрицательно)
А_ВЫЗОВ_ СЕКЦИИ 4.req	F_SC_NA_1	А_ВЫЗОВ_ СЕКЦИИ 4.ind	Вызов секции 4
A_CEΓMEHT.ind	F_SG_NA_1	A_CEΓMEHT.req	Секция 4 (данные о повреждениях канала 1) передается
	• • •		капала тупородаетом
A_CEΓMEHT.ind	F_SG_NA_1	A_CEΓMEHT.req	Секция 4 (данные о повреждениях канала 1) передается
А_ПОСЛЕДНИЙ_ СЕГМЕНТ.ind	F_LS_NA_1	А_ПОСЛЕДНИЙ_ СЕГМЕНТ.req	Поспедний сегмент секции 4 передан (положительно/отрицательно)
A_ACK_ CEКЦИИ 4.req	F_AF_NA_1	A_ACK_ CEKЦИИ 4.ind	Подтверждение передачи секции 4 (положительно/отрицательно)
	•••		
A_CEKLUM m_ FOTOBA.ind	F_SR_NA_1	А_СЕКЦИЯ m_ ГОТОВА.req	Секция m (параметры канала n) го- това к передаче (положительно/от- рицательно)
А_ВЫЗОВ_ СЕКЦИИ m.req	F_SC_NA_1	A_BЫЗOB_ CEKLINN m.ind	Вызов секции т
A_CEΓMEHT.ind	F_SG_NA_1	A_CEΓMEHT.req	Секция m (параметры канала n) пере- дается
А_ПОСЛЕДНИЙ_ СЕГМЕНТ.ind	F_LS_NA_1	А_ПОСЛЕДНИЙ_ СЕГМЕНТ.req	Последний сегмент секции m передан (положительно/отрицательно)
A_ACK_ CEKŲNN m.req	F_AF_NA_1	A_ACK_ CEКЦИИ m.ind	Подтверждение передачи секции m (положительно/отрицательно)

Рисунок 104, лист 2

Контролирующая станция	Услуги связи	Контролируемая станция	Действие
А_СЕКЦИЯ m+1_ ГОТОВА.ind	F_SR_NA_1	А_СЕКЦИЯ m+1_ ГОТОВА.req	Секция m+1 (данные о повреждениях канала n) готова к передаче (по- ложительно/отрицательно)
А_ВЫЗОВ_ CEKЦИИ m+1.req	F_SC_NA_1	А_ВЫЗОВ_ CEKЦИИ m+1.ind	Вызов секции m+1
A_CEΓMEHT.ind	F_SG_NA_1	A_CEΓMEHT.req ■	Секция m+1 (данные о повреждени- ях канала n) передается
A_CEΓMEHT.ind	F_SG_NA_1 ◀	A_CEΓMEHT.req ■	Секция m+1 (данные о повреждени- ях канала n) передается
А_ПОСЛЕДНИЙ_ СЕГМЕНТ.ind	F_LS_NA_1	А_ПОСЛЕДНИЙ_ СЕГМЕНТ.req	Последний сегмент секции m+1 пе- редан (положительно/ отрицательно)
А_АСК_ СЕКЦИИ m+1.req	F_AF_NA_1	A_ACK_ CEKUUM m+1.ind	Подтверждение передачи секции m+1 (положительно/отрицательно)
А_ПОСЛЕДНЯЯ_ СЕКЦИЯ.ind	F_LS_NA_1 ◀	А_ПОСЛЕДНЯЯ_ СЕКЦИЯ.req	Последняя секция передана (поло- жительно/отрицательно)
A_ACK_ ФАЙЛ.req	F_AF_NA_1	А_ACK_ ФАЙЛ.ind	Подтверждение передачи повреждения (положительно/отрицательно)
	_		
A_ДИРЕК- TOPИЯ.ind	F_DR_NA_1 ◄	А_ДИРЕК- ТОРИЯ.req	Список повреждений (актуальный) может быть передан, чтобы обно- вить директорию

Рисунок 104, лист 3

7.4.11.2.7 Условия в случае прерывания передачи данных о повреждениях

Подпункты 7.2.6 и 7.3.6 предусматривают обеспечение правильной пересылки файлов, которое включает тест на полноту и корректность файлов данных. В случае обнаружения нестандартных ситуаций на контролирующей станции она может повторить запрос на передачу секции или всего файла.

Эффективность такого контроля предполагает правильную передачу ASDU с идентификаторами следующих типов, которые используются для управления пересылкой файлов:

- 120 файл готов;
- 121 секция готова;
- 122 вызов директории, выбор файла, вызов файла, вызов секции;
- 123 последняя секция, последний сегмент;
- 124 подтверждение (АСК) файла, подтверждение (АСК) секции.

В случае неправильной передачи или потери одного из вышеперечисленных ASDU пересылка файла прерывается и не может быть продолжена без повторения. Станция, обнаружившая эту неправильную передачу, должна прервать передачу пересылки файла после определенного времени ожидания (таймаута). После опознания нарушения контролирующей станцией она передает услугу F_SC_NA_1 c SCQ = 3 (деактивировать файл). Если нарушение обнаружится контролируемой станцией, она передает услугу F_LS_NA_1 c LSQ = 2 (передача файла с деактивацией).

В случае полной потери услуг связи на канальном уровне пересылка файла деактивируется без специальной индикации ошибки. Пересылка файлов должна вновь инициироваться, когда канальный уровень снова будет доступен.

7.4.11.3 Передача последовательности событий (спорадическая дискретная информация)

Настоящий подпункт определяет передачу последовательности событий (спорадическая дискретная информация), которые собираются и регистрируются как объекты информации на подстанции. Объекты информации преобразуются для механизма пересылки файлов по настоящему стандарту, когда требуется дальнейшая передача в направлении к контролирующей станции.

7.4.11.3.1 Структура записи последовательности событий в секции файла

На рисунке 105 показана структура записи последовательности событий (спорадическая дискретная информация). Каждое событие передается как блок ASDU, определенный в подпункте 7.3. Файл с зарегистрированной спорадической дискретной информацией состоит из единственной секции, соответствующей секции, определенной МЭК 60870-5-5.

Рисунок 105 — Запись последовательности событий в секции файла данных

ASDU со следующими идентификаторами типа могут передаваться как спорадическая дискретная информация:

мация.	
<30> := Одноэлементная информация с меткой времени СР56Время2а	M_SP_TB_1
<31> := Двухэлементная информация с меткой времени СР56Время2а	M_DP_TB_1
<32> := Информация о положении отпаек с меткой времени СР56Время2а	M_ST_TB_1
<33> := Строка из 32 бит с меткой времени СР56Время2а	M_BO_TB_1
<34> := Значение измеряемой величины, нормализованное значение с меткой времени СР56Время2а	M_ME_TD_1
<35> := Значение измеряемой величины, масштабированное значение с меткой времени СР56Время2а	M_ME_TE_1
<36> := Значение измеряемой величины, короткий формат с плавающей запятой с меткой времени СР56Время2а	M_ME_TF_1
<37> := Интегральные суммы с меткой времени СР56Время2а	M_IT_TB_1
<38> := Работа устройств защиты с меткой времени СР56Время2а	M_EP_TD_1
<39> := Упакованное сообщение о срабатывании пусковых органов устройств защиты с меткой времени СР56Время2а	M_EP_TE_1
<40> := Упакованное сообщение о срабатывании в выходных цепях устройств защиты с меткой времени СР56Время2а	M_EP_TF_1

Описатель переменной структуры устанавливается в 1, поскольку в каждом ASDU передается только один объект информации.

7.4.11.3.2 Процедуры

Процедуры передачи директории определены на рисунке 103.

Процедуры передачи последовательности событий, описанные в 7.4.11.3.1, определены на рисунке 106. Определения соответствуют процедурам, определенным в МЭК 60870-5-5, подпункт 6.12.

ASDU от <30> до <40>, передаваемые на контролирующую станцию как пересылка файлов, запоминаются на контролируемой станции, включая момент времени их получения. Если будет превышено заранее определенное число (значение параметра) запомненных ASDU (файл, готовый к передаче), то контролируемая станция посылает спорадически на контролирующую станцию директорию F_DR_TA_1. Передача файла последовательности событий, который готов к передаче, может активироваться посылкой ASDU F_SC_NA_1 (имя файла равно 3 и FOR = 0):

- оператором на контролирующей станции;
- автоматически контролирующей станцией после получения спорадически переданной директории;
- автоматически один раз в сутки, если файлы доступны для передачи, что указано в директории;

- после рестарта контролирующей или контролируемой станции, если файлы доступны для передачи, что указано в директории;
 - если канальный уровень доступен вновь после прерывания связи.

Контролирующая станция	Услуги связи	Контролируемая станция	Действие
А_ВЫБОР_ ФАЙЛА.req	F_SC_NA_1	A_BЫБОР_ ФАЙЛА.ind	Выбор данных о событиях, которые должны быть переданы (автомати- чески или оператором)
А_ФАЙЛ_ ГОТОВ.ind	F_FR_NA_1 ◆	А_ФАЙЛ_ ГОТОВ.req	Выбранные данные о событии гото- вы к передаче (положительно/ отрицательно)
А_ВЫЗОВ_ ФАЙЛА.req	F_SC_NA_1	A_BЫ3OB_ ФАЙЛА.ind	Запрос передачи данных о событии (автоматически или оператором)
A_CEKUAA_ FOTOBA.ind	F_SR_NA_1 ◆	A_CEKЦИЯ_ ГОТОВА.req	Секция (данные) готова к передаче (положительно/отрицательно)
A_BЫ3OB_ CEКЦИИ.req	F_SC_NA_1	A_BЫ3OB_ CEKЦИИ.ind	Вызов секции
A_CEΓMEHT.ind	F_SG_NA_1	A_CEΓMEHT.req	Секция (данные) передается
A_CEΓMEHT.ind	F_SG_NA_1	A_CEΓMEHT.req	Секция (данные) передается
А_ПОСЛЕДНИЙ_ СЕГМЕНТ.ind	F_LS_NA_1	А_ПОСЛЕДНИЙ_ СЕГМЕНТ 1.req	Последний сегмент секции передан
A_ACK_ CEKLUNI.req	F_AF_NA_1	A_ACK_ CEKЦИИ.ind	Подтверждение передачи секции (положительно/ отрицательно)
А_ПОСЛЕДНЯЯ_ СЕКЦИЯ.ind	F_LS_NA_1	А_ПОСЛЕДНЯЯ_ СЕКЦИЯ.req	Последняя секция передана (положительно/отрицательно)
A_ACK_ ФАЙЛ.req	F_AF_NA_1	A_ACK_ ФАЙЛ.ind —	Подтверждение передачи данных (положительно/ отрицательно)

Рисунок 106 — Последовательная процедура передачи последовательности событий

Максимальная длина сегмента — 240 байт.

Максимальная длина секции — 64000 байт.

7.4.11.3.3 Условия в случае прерывания передачи последовательностей событий — аналогично **7.4.11.2.7**

7.4.11.4 Передача последовательностей регистрируемых аналоговых величин

Настоящий подпункт определяет передачу последовательностей регистрируемых аналоговых величин (например измеряемых величин, интегральных сумм), собираемых на контролируемой станции. Регистрируемые аналоговые величины передаются посредством системы пересылки файлов, определенных МЭК 60870-5-5 и настоящим стандартом, если требуется дальнейшая передача на контролирующую станцию. Сжатые записи не определяются настоящим стандартом, но могут передаваться как прозрачные файлы данных.

7.4.11.4.1 Структура файлов данных, содержащих последовательности регистрируемых аналоговых величин

Каждый файл состоит из одной или более секций, которые соответствуют секциям, определенным МЭК 60870-5-5. Структура секций идентична. Каждая секция содержит элементы информации определенной последовательности зарегистрированных аналоговых величин (двоичные показания счетчика или измеряемые величины), которые определяются идентификатором записи:

Секция 1 — последовательность регистрируемых аналоговых величин секции 1.

Секция 2 — последовательность регистрируемых аналоговых величин секции 2.

Секция 3 — последовательность регистрируемых аналоговых величин секции 3 и т. д.

На рисунке 107 показана структура последовательностей регистрируемых аналоговых величин, которые передаются в байтах от 1 до n ASDU F_SG_NA_1.

СР56Время2а	Начальное время записи Тѕ	<u> </u>
Временной интервал	Определение временного интервала	
UI16	Идентификатор записи	
UI16	Число элементов информации	
ЭЛЕМЕНТ ИНФОРМАЦИИ	Значение величины (Ts + 0 × временной интервал)	Передача в байтах от 1 до n ASDU F SG_NA_1
ЭЛЕМЕНТ ИНФОРМАЦИИ	Значение величины (Ts + 1 × временной интервал)	A3D01_3G_NA_1
ЭЛЕМЕНТ ИНФОРМАЦИИ	Значение величины (Ts + m × временной интервал)	

Рисунок 107 — Секция файла данных, содержащая последовательности регистрируемых аналоговых величин

Следующие элементы информации могут быть переданы как последовательности регистрируемых аналоговых величин:

- двоичные показания счетчиков по 7.2.6.9;
- нормализованная величина по 7.2.6.6;
- нормализованная величина по 7.2.6.6 с описателем качества QDS по 7.2.6.3.

Временной интервал (интервал между элементами информации) — это произведение временной базы на коэффициент.

Определение временного интервала:

Временной интервал := СР16(Коэффициент, Временная база)

Коэффициент := UI8[1..8]<0..255>

<0> := не используется

<1..255> := коэффициент

Временная база := UI8[9..16]<0..255>

<0> := не используется

<1> := 1 MC

<2> := 10 мс

<3> := 100 MC

<4> := 1000 мс

<5> := 1 мин <6> := 1 ч

<7..15> := для стандартных определений настоящего стандарта (совместимый диапазон)

<16..255> := для специального применения (частный диапазон)

Определение идентификатора регистрации:

Идентификатор регистрации := СР16{Адрес регистрации, Квалификатор регистрации}

Адрес регистрации := UI14[1..14]<0..16383>.

Квалификатор регистрации := Ul2[15..16]<0..3>

<0> := не используется

- <1> := Последовательности регистрируемых нормализованных величин в соответствии с 7.2.6.6
- <2> := Последовательности регистрируемых двоичных показаний счетчиков в соответствии с 7.2.6.9
- <3> := для специального применения (частный диапазон)

Идентификатор регистрации определяет набор элементов информации (нормализованных величин или показаний счетчика) и адрес полной последовательности регистрируемых аналоговых величин. Адрес регистрации не относится к конкретному адресу элемента информации.

7.4.11.4.2 Процедуры

Процедуры для передачи директории определены на рисунке 103. Процедуры передачи последовательностей регистрируемых аналоговых величин, определенные в 7.4.11.4.1, показаны на рисунке 108. Определения соответствуют процедурам, определенным в МЭК 60870-5-5, подпункт 6.12. Передача последовательности файлов зарегистрированных аналоговых величин, готовых к передаче, может быть активирована посылкой ASDU F SC NA 1 (имя файла = 4 и FOR = 0):

- оператором контролирующей станции;
- автоматически с контролирующей станции после получения спорадически передаваемой директории:

- автоматически один раз в сутки, если файлы доступны для передачи, что указывается директорией;
- после рестарта контролируемой или контролирующей станции, если файлы доступны для передачи, что указывается директорией;
 - если канальный уровень вновь доступен после прерывания связи.

Контролирующая станция	Услуги связи	Контролируемая станция	Действие
А_ВЫБОР_ФАЙЛА.req	F_SC_NA_1	А_ВЫБОР_ФАЙЛА.ind	Выбор файла с данными, подлежащими передаче (ав- томатически или оператором)
А_ФАЙЛ_ГОТОВ.ind ◀	F_FR_NA_1	А_ФАЙЛ_ГОТОВ.req ▼	Выбранный файл с данными готов к передаче (положи- тельно/отрицательно)
A_ <u>BЫ3ОВ_</u> ФАЙЛА.req	F_SC_NA_1	A_BЫЗОВ_ФАЙЛА.ind ►	Вызов файла с данными, под- лежащими передаче (автома- тически или оператором)
A_CEKЦИЯ 1_ FOTOBA.ind	F_SR_NA_1	A_CEKŲNЯ 1_ FOTOBA.req	Секция 1 (данные) готова к передаче (положительно/ отрицательно)
A_ВЫЗОВ_СЕКЦИИ 1.req	F_SC_NA_1	A_BЫ3OB_СЕКЦИИ 1.ind	Вызов секции 1
A_CEΓMEHT.ind	F_SG_NA_1	A_CEΓMEHT.req	Секция 1 (данные) передается
A_CEFMEHT.ind	F_SG_NA_1	A_CEFMEHT.req	Секция 1 (данные)
А_ПОСЛЕДНИЙ_ СЕГМЕНТ.ind	F_LS_NA_1	А_ПОСЛЕДНИЙ_ СЕГМЕНТ.req	передается Последний сегмент секции 1 передан
A_ACK_CEКЦИЯ 1.req	F_AF_NA_1	A_ACK_CEKЦИИ 1.ind	Подтверждение передачи секции 1 (положительно/ отрицательно)
A_СЕКЦИЯ 2_ ГОТОВА.ind	F_SR_NA_1	А_СЕКЦИЯ 2_ ГОТОВА.req	Секция 2 (данные) готова к передаче (положительно/
А_ВЫЗОВ_СЕКЦИИ 2.req	F_SC_NA_1	А_ВЫЗОВ_СЕКЦИИ 2.ind	отрицательно) Вызов секции 2
A_CEFMEHT.ind	F_SG_NA_1	A_CEFMEHT.req	Секция 2 (данные) передается
A CEFMEHT.ind	F SG NA 1	A CEFMEHT.req	• • • Секция 2 (данные)
А_ПОСЛЕДНИЙ_ CEГMEHT.ind	F_LS_NA_1	А_ПОСЛЕДНИЙ_ СЕГМЕНТ.req	передается Последний сегмент секции 2 передан
А_АСК_СЕКЦИЯ 2.req	F_AF_NA_1	A_ACK_CEKLUR 2.ind	Подтверждение передачи секции 2 (положительно/ отрицательно)
A_CEKUNR n_ FOTOBA.ind	F_SR_NA_1	A_CEKLINЯ n_ FOTOBA.req	Секция n (данные) готова к передаче (положительно/ отрицательно)
А_ВЫЗОВ_СЕКЦИИ n.req	F_SC_NA_1	A_BЫ3OB_CEKUUM n.ind	Вызов секции n
A_CEΓMEHT.ind	F_SG_NA_1	A_CEΓMEHT.req	Секция n (данные) передается
A CEFMEHT.ind	F_SG_NA_1	··· A CEΓMEHT.req	••• Секция n (данные)
▼	🕌		передается
A_ПОСЛЕДНИИ_ CEГMEHT.ind	F_LS_NA_1	А_ПОСЛЕДНИИ_ CEГМЕНТ.req	Последний сегмент секции п передан
А_АСК_СЕКЦИЯ n.req	F_AF_NA_1	A_ACK_СЕКЦИИ n.ind	Подтверждение передачи секции n (положительно/
А_ПОСЛЕДНЯЯ_ СЕКЦИЯ.ind	F_LS_NA_1	А_ПОСЛЕДНЯЯ_ СЕКЦИЯ.req	отрицательно) Последняя секция передана (положительно/отрица-
А_АСК_ФАЙЛА.req	F_AF_NA_1	A_ACK_ФАЙЛА.ind	(положительноотрица- тельно) Подтверждение передачи данных

Рисунок 108 — Процедура передачи последовательностей регистрируемых аналоговых величин

7.4.11.4.3 Условия в случае прерывания передачи последовательностей регистрируемых аналоговых величин — аналогично 7.4.11.2.7

7.4.12 Выдержки из функции «Определение запаздывания передачи»

Опции из МЭК 60870-5-5, подпункт 6.13:

С_CD_NA_1 СПОРАДИЧЕСКИ (установка запаздывания) в направлении управления используется. Когда получена команда синхронизации часов, информация о времени должна быть скорректирована контролируемой станцией на значение, полученное в команде установления значения запаздывания.

П р и м е ч а н и е — A_SDT.ind фиксирует время в тот момент, когда первый бит кадра C_CD получен контролируемой станцией, а A_SDT + tR.ind фиксирует время в тот момент, когда первый бит кадра C_CD ACTCON получен контролирующей станцией (см. MЭК 60870-5-5, рисунок 23).

7.4.13 Фоновое сканирование

Фоновое сканирование (таблица 21) используется для обновления информации о процессе, передаваемой с контролируемой станции на контролирующую станцию, как дополнительная гарантия процедур опроса станции и спорадических передач. ASDU с одними и теми же номерами идентификаторов типа, как определено для процедуры опроса станции, может передаваться с причиной передачи <2> — фоновое сканирование на низкоприоритетной базе. Фоновое сканирование инициируется контролируемой станцией и поэтому не зависит от команд опроса станции. Цикл передачи строится при помощи фиксированных параметров на контролируемой станции. Измеряемые величины, сообщаемые при периодической или циклической передаче (COT = 1), обычно не сообщаются при фоновом сканировании (COT = 2), при спорадической передаче (COT = 3) или опросе станции (COT = от 20 до 36).

Таблица	21 — Иденти	рикаторы типа д	ля фонового	сканирования
---------	-------------	-----------------	-------------	--------------

Направление (С = управление, М = контроль)	Идентификатор типа	Причина передачи
M		
	<3> M_DP_NA_1	<2> — фоновое сканирование
	<5> M_ST_NA_1	
	<7> M_BO_NA_1	
	<9> M_ME_NA_1	
	<11> M_ME_NB_1	
	<13> M_ME_NC_1	
	<20> M_PS_NA_1	
	<21> M_ME_ND_1	

7.4.14 Процедура чтения

Контролирующая станция	Услуги связи	Контролируемая станция	Действие
A_RD_DATA.req	C_RD_NA_1 <5> REQ	A_RD_DATA.ind	Чтение объекта информации, определенного Адресом Объекта информации
A_M_DATA.ind ◀	M_ <5> REQ	A_M_DATA.req ◀	Ответ – объект информации, который был запрошен

Рисунок 109 — Последовательная процедура — процедура чтения

Прикладной процесс на контролирующей станции (рисунок 109) посылает команду чтения A_RD_DATA.req к услугам связи, услуги связи передают блок данных C_RD_NA_1 REQ, содержащий адрес объекта информации, который определяет запрошенный объект информации.

Прикладной процесс на контролируемой станции возвращает запрошенный объект информации как A_M_DATA.req услугам связи. Услуги связи на контролируемой станции формируют ASDU, содержащий запрошенный объект информации, и передают его в направлении контроля с причиной передачи <5> REQ.

```
В направлении контроля могут возвращаться следующие ASDU M_REQ: <1> M SP NA_1 REQ
```

- <2> M_SP_TA_1 REQ или <30> M_SP_TB_1 REQ
- <3> M DP NA 1 REQ
- <4> M DP TA 1 REQ или <31> M DP TB 1 REQ
- <5> M ST NA 1 REQ
- <6> M ST TA 1REQ или <32> M ST TB 1REQ
- <7> M_BO_NA_1 REQ
- <8> М ВО ТА 1 REQ или <33> М ВО ТВ 1 REQ
- <9> M_ME_NA_1 REQ
- <10> M_ME_TA_1 REQ или <34> M_ME_TD_1 REQ
- <11> M_ME_NB_1 REQ
- <12> M_ME_TB_1 REQ или <35> M_ME_TE_1 REQ
- <13> M_ME_NC_1 REQ
- <14> M_ME_TC_1 REQ или <36> M_ME_TF_1 REQ
- <20> M PS NA 1 REQ
- <21> M_ME_ND_1 REQ
- <126> F DR TA 1 REQ

Если на контролируемой станции неизвестны (не определены) значения в идентификаторе блока данных (за исключением указателя переменной структуры) или адрес объекта информации команд чтения, то возвращается отраженный блок C_RD_NA_1 с причиной передачи <44>..<47> (см. подпункт 7.2.3.1).

8 Возможность взаимодействия (совместимость)

В настоящем стандарте приведены наборы параметров и вариантов, из которых могут быть выбраны поднаборы для реализации конкретной системы телемеханики. Значения некоторых параметров, таких как число байтов в ОБЩЕМ АДРЕСЕ ASDU, представляют собой взаимоисключающие альтернативы. Это означает, что только одно значение выбранных параметров допускается для каждой системы. Другие параметры, такие как перечисленные ниже в виде наборов различной информации о процессе в направлении управления и контроля, позволяют определить полный набор или поднаборы, подходящие для данного использования. Настоящий пункт обобщает параметры, приведенные в ранее описанных пунктах, с целью оказания помощи в их правильном выборе для отдельных применений. Если система составлена из устройств, изготовленных разными изготовителями, то необходимо, чтобы все партнеры согласились с выбранными параметрами.

ранн	ными параметрами.
	Выбранные параметры обозначаются в белых прямоугольниках следующим образом:
<u> </u>	– Функция или ASDU не используется.
X -	– Функция или ASDU используется, как указано в настоящем стандарте (по умолчанию).
R-	– Функция или ASDU используется в обратном режиме (направлении).
B-	– Функция или ASDU используется в стандартном и обратном режимах.
	Возможный выбор (пустой, X, R или B) определяется для каждого пункта или параметра.
	Примечани и е — Кроме того, полная спецификация системы может потребовать индивидуального пра отдельных параметров для некоторых частей системы, например индивидуальный выбор коэффициен- масштабирования для индивидуально адресуемых значений измеряемых величин.
одиі	8.1 Система или устройство (Параметр, характерный для системы; указывает на определение системы или устройства, маркируя н из нижеследующих прямоугольников знаком X)
<u> </u>	- Определение системы
<u> </u>	– Определение контролирующей станции (первичный Master)
	– Определение контролируемой станции (вторичный Slave)
	8.2 Конфигурация сети
	(Параметр, характерный для сети; все используемые структуры должны маркироваться знаком X).

17*

— Точка-точка	— Магистральная	
— Радиальная точка-точка	— Многоточечная радиаль	ьная
8.3 Физический уровень		
	ети; все используемые интерф	ейсы и скорости передачи данных мар-
кируются знаком X)	,	
Скорости передачи (направлен	ие управления)	
Несимметричные цепи обмена V.24/V.28	Несимметричные цепи обмена V.24/V.28,	Симметричные цепи обмена X.24/X.27
стандартные	рекомендуемые при скорос более 1200 бит/с	СТИ
— 300 бит/с		— 9600 бит/с
— 1200 бит/c		— 38400 бит/c
Скорости передачи (направлен	ие контроля)	_
Несимметричные цепи обмена V.24/V.28	Несимметричные цепи обмена V.24/V.28,	Симметричные цепи обмена X.24/X.27
стандартные	рекомендуемые при скорос	сти
	более 1200 бит/с	
— 100 бит/c	— 2400 бит/c	— 2400 бит/c — 56000 бит/c
8.4 Канальный уровень		
(Параметр, характерный для с	ети; все используемые опции м	иаркируются знаком X)
		естандартное назначение для сообще-
		РИКАТОРЫ ТИПОВ и ПРИЧИНЫ ПЕРЕ-
ДАЧИ всех сообщений, приписанны		FT 1.2, управляющий символ 1 и фикси-
рованный интервал времени ожидан		1 1.2, yripasi iziottivi cinvisori i vi quincui
Передача по каналу		Адресное поле канального уровня
— Балансная передача		- Отсутствует
		(только при балансной передаче)
— Небалансная передача		– Один байт
		-Два байта
Д лина кадра		-Структурированное
— Максимальная длина		- Неструктурированное
(в направлении управле	ния)	
— Максимальная длина	L	
(в направлении контроля	٦)	
		рения (Тгр), либо число повторений
		ощие типы ASDU возвращаются при со-
общениях класса 2 (низкий приорите		чи:
— Стандартное назначение ASDU		
используется следующим обр	разом:	

Идентификатор типа	Причина передачи	
9, 11, 13, 21	<1>	
— Специальное назначение ASDU к с используется следующим образо		
Идентификатор типа	Причина передачи	
		-
Примечание — При ответе на оп данные класса 1, если нет доступных данны	рос данных класса 2 контролируемая станцых класса 2.	ия может посылать в отве
8.5 Прикладной уровень		
Режим передачи прикладных да	ннгіх	
делено в МЭК 60870-5-4, подпункт 4.10.	тся только режим 1 (младший байт перед	дается первым), как опре
Общий адрес ASDU		
(Параметр, характерный для систе Один байт Два байта	мы; все используемые варианты маркир	руются знаком X)
Адрес объекта информации		
(Параметр, характерный для систе	мы; все используемые варианты маркир	уются знаком X)
— Один байт — Структури	рованный	•
	рированный	
Три байта		
Причина передачи		
(Параметр, характерный для систе	мы; все используемые варианты маркир	уются знаком X)
— Один байт Два байта	(с адресом источника).	,
=	с источника не используется,	
·	навливается в 0.	
Выбор стандартных ASDU		
Информация о процессе в напра	авлении контроля	
(Параметр, характерный для станці ется только в стандартном направлении знаком В — если используется в обоих н		
<1> := Одноэлементная информация	·	M_SP_NA_1
<2> := Одноэлементная информация	я с меткой вре ме ни	M_SP_TA_1
<3> := Двухэлементная информация		M_DP_NA_1
<4> := Двухэлементная информация	с меткой времени	 M_DP_TA_1
<5> := Информация о положении отп	аек	M_ST_NA_1
<6> := Информация о положении отп	аек с меткой времени	M_ST_TA_1
		M RO NA 1

<8> := Строка из 32 бит с меткой времени	M_BO_TA_1
= Значение измеряемой величины, нормализованное значение	M_ME_NA_1
< 37 ста тетие измеряемой величины, нормализованное значение < < 10> := Значение измеряемой величины, нормализованное значение	M_ME_TA_1
с меткой времени	
<11>:= Значение измеряемой величины, масштабированное значение	M_ME_NB_1
	$M_ME_TB_1$
с меткой времени	
<13>:= Значение измеряемой величины, короткий формат с плавающей запятой	M_ME_NC_1
<14>:= Значение измеряемой величины, короткий формат с плавающей запятой	M_ME_TC_1
с меткой времени	. IT NIA 1
<15>:= Интегральные суммы	M_IT_NA_1
<16>:= Интегральные суммы с меткой времени	M_IT_TA_1
<17>:= Действие устройств защиты с меткой времени	M_EP_TA_1
<18>:= Упакованная информация о срабатывании пусковых органов защиты	M_EP_TB_1
с меткой времени	. ED TO 1
<19>:= Упакованная информация о срабатывании выходных цепей устройства	M_EP_TC_1
защиты с меткой времени	M_PS_NA_1
<20>:= Упакованная одноэлементная информация с определением	M_1 0
изменения состояния	M_ME_ND_1
<21>:= Значение измеряемой величины, нормализованное значение без описателя качества	100
<30>:= Одноэлементная информация с меткой времени CP56Время2а	M_SP_TB_1
	M_DP_TB_1
<32>:= Информация о положении отпаек с меткой времени CP56Bpeмя2а	M_ST_TB_1
33>:= Строка из 32 битов с меткой времени CP56Время2а	M_BO_TB_1
	M_ME_TD_1
<34>:= Значение измеряемой величины, нормализованное значение с меткой времени СР56Время2а	10.5
<35>:= Значение измеряемой величины, масштабированное значение	$M_ME_TE_1$
с меткой времени СР56Время2а	
<36> = Значение измеряемой величины, короткий формат с плавающей запятой	M_ME_TF_1
с меткой времени СР56Время2а	- TD 4
<37>:= Интегральные суммы с меткой времени СР56Время2а	M_IT_TB_1
<38>:= Действие устройств защиты с меткой времени СР56Время2а	M_EP_TD_1
<39>:= Упакованная информация о срабатывании пусковых органов защиты	M_EP_TE_1
с меткой времени СР56Время2а	. en TE 1
<40>:= Упакованная информация о срабатывании выходных цепей устройства защиты	M_EP_TF_1
с меткой времени СР56Время2а Используются ASDU из наборов <2>, <4>, <6>, <8>, <10>, <12>, <14>, <16>, <17>,	_{~18>.} <19> или
используются Абро из наобров <2>, <4>, <6>, <6>, <10>, <12>, <14>, <16>, <17>, из наборов от <30> до <40>.	~10 ,
Информация о процессе в направлении управления	
(Параметр, характерный для станции; каждый тип информации маркируется знаком Х	, если использу-
ется только в стандартном направлении, знаком R — если используется только в обратно	
знаком В — если используется в обоих направлениях)	0.00.111.4
<45>:= Однопозиционная команда	C_SC_NA_1
<46>:= Двухпозиционная команда	C_DC_NA_1

<47>:= Команда пошагового регулирования	C_RC_NA_1
<48>:= Команда уставки, нормализованное значение	C_SE_NA_1
<49>:= Команда уставки, масштабированное значение	C_SE_NB_1
<50> := Команда уставки, короткий формат с плавающей запятой	C_SE_NC_1
<51>:= Строка из 32 бит	C_BO_NA_1
Информация о системе в направлении контроля	
(Параметр, характерный для станции; каждый тип информации маркируется знаком х ется только в стандартном направлении, знаком R — если используется только в обратно знаком В — если используется в обоих направлениях)	
<70>:= Окончание инициализации	M_EI_NA_1
Информация о системе в направлении управления	
(Параметр, характерный для станции; каждый тип информации маркируется знаком х ется только в стандартном направлении, знаком R — если используется только в обратно знаком В — если используется в обоих направлениях)	
<100>:= Команда опроса	C_IC_NA_1
<101> := Команда опроса счетчиков	C_CI_NA_1
<102> := Команда чтения	C_RD_NA_1
<103> := Команда синхронизации времени	C_CS_NA_1
<104> := Команда тестирования	C_TS_NA_1
<105> := Команда сброса процесса	C_RP_NA_1
<106> := Команда определения запаздывания	C_CD_NA_1
Передача параметра в направлении управления	
(Параметр, характерный для станции; каждый тип информации маркируется знаком х ется только в стандартном направлении, знаком R — если используется только в обратно знаком В — если используется в обоих направлениях)	
<110>:= Параметр измеряемой величины, нормализованное значение	P_ME_NA_1
<111>:= Параметр измеряемой величины, масштабированное значение	P_ME_NB_1
<112> := Параметр измеряемой величины, короткий формат с плавающей запятой	P_ME_NC_1
<113> := Активация параметра	P_AC_NA_1
Пересылка файла	
(Параметр, характерный для станции; каждый тип информации маркируется знаком) ется только в стандартном направлении, знаком R — если используется только в обратно знаком В — если используется в обоих направлениях)	•
	F_FR_NA_1
☐ <121> := Секция готова	F_SR_NA_1
<122> := Вызов директории, выбор файла, вызов файла, вызов секции	F_SC_NA_1
<123> := Последняя секция, последний сегмент	F_LS NA 1
<124> := Подтверждение приема файла, подтверждение приема секции	 F_AF_NA_1
<125>:= Сегмент	F_SG_NA_1
□ <126> := Директория {пропуск или X: только в направлении контроля (стандартном)}	F DR TA 1

Назначение идентификатора типа и причины передачи

(Параметр, характерный для станции)

		Причина передачи														
	ИДЕНТИФИКАТОР ТИПА			3	4	5	6	7	8	9	10	11	12	13	37- 41	
<1>	M_SP_NA_1															
<2>	M_SP_TA_1															
<3>	M_DP_NA_1															
<4>	M_DP_TA_1															
<5>	M_ST_NA_1															
<6>	M_ST_TA_1															
<7>	M_BO_NA_1															
<8>	M_BO_TA_1															1
<9>	M_ME_NA_1															
<10>	M_ME_TA_1															
<11>	M_ME_NB_1															
<12>	M_ME_TB_1															
<13>	M_ME_NC_1															
<14>	M_ME_TC_1															
<15>	M_IT_NA_1															
<16>	M_IT_TA_1															
<17>	M_EP_TA_1			1												
<18>	M_EP_TB_1															
<19>	M_EP_TC_1															
<20>	M_PS_NA_1															
<21>	M_ME_ND_1															
<30>	M_SP_TB_1															
<31>	M_DP_TB_1															
<32>	M_ST_TB_1															
<33>	M_BO_TB_1															
<34>	M_ME_TD_1															
<35>	M_ME_TE_1			1.1												
<36>	M_ME_TF_1															
<37>	M_IT_TB_1															
<38>	M_EP_TD_1															
<39>	M_EP_TE_1															
<40>	M_EP_TF_1															

IARELITIA MINATOR		Причина передачи															
	ИДЕНТИФИКАТОР ТИПА		2	3	4	5	6	7	8	9	10	11	12	13	20- 36	37- 41	44- 47
<45>	C_SC_NA_1																
<46>	C_DC_NA_1																
<47>	C_RC_NA_1										200						
<48>	C_SE_NA_1																
<49>	C_SE_NB_1																
<50>	C_SE_NC_1																
<51>	C_BO_NA_1																
<70>	M_EI_NA_1																
<100>	C_IC_NA_1																
<101>	C_CI_NA_1																
<102>	C_RD_NA_1																
<103>	C_CS_NA_1																
<104>	C_TS_NA_1																
<105>	C_RP_NA_1																
<106>	C_CD_NA_1																
<110>	P_ME_NA_1																
<111>	P_ME_NB_1																
<112>	P_ME_NC_1																
<113>	P_AC_NA_1																
<120>	F_FR_NA_1																
<121>	F_SR_NA_1																
<122>	F_SC_NA_1																
<123>	F_LS_NA_1																
<124>	F_AF_NA_1																
<125>	F_CG_NA_1																
<126>	F_DR_TA_1																

Обозначения:

серые прямоугольники — данное сочетание настоящим стандартом не допускается; пустой прямоугольник — сочетание в данной реализации не используется.

Маркировка используемых сочетаний Идентификатора типа и Причины передачи:

Х — сочетание используется в направлении, как указано в настоящем стандарте;

R — сочетание используется в обратном направлении;

В — сочетание используется в стандартном и обратном направлениях

8.6 Основные прикладные функции

Инициализация станции

(Параметр, характерный для станции; если функция используется, то прямоугольник маркируе знаком X)	тся
— Удаленная инициализация вторичной станции	
Циклическая передача данных	
(Параметр, характерный для станции; маркируется знаком X, если функция используется толь стандартном направлении, знаком R— если используется только в обратном направлении, знаком I	

если используется в обоих направлениях)

— Циклическая передача данных

18—859

Процедура чтения

(Параметр, характерный для станции; маркируется знаком X, если функция используется только в стандартном направлении, знаком R — если используется только в обратном направлении, знаком В — если используется в обоих направлениях)
— Процедура чтения
Спорадическая передача
(Параметр, характерный для станции; маркируется знаком X, если функция используется только в
стандартном направлении, знаком R — если используется только в обратном направлении, знаком В —
если используется в обоих направлениях)
Спорадическая передача
Дублированная передача объектов информации при спорадической причине передачи (Параметр, характерный для станции; каждый тип информации маркируется знаком X, если оба типа
— тип без метки времени и соответствующий тип с меткой времени — выдаются в ответ на одиночное
спорадическое изменение в контролируемом объекте).
Следующие идентификаторы типов, вызванные одиночным изменением состояния объекта инфор-
мации, могут передаваться последовательно. Индивидуальные адреса объектов информации, для кото-
рых возможна дублированная передача, определяются в проектной документации.
— Одноэлементная информация M_SP_NA_1, M_SP_TA_1, M_SP_TB_1, M_PS_NA_1
— Информация о положении отпаек M_ST_NA_1, M_ST_TA_1, M_ST_TB_1
— Строка из 32 бит M_BO_NA_1, M_BO_TA_1, M_BO_TB_1 (если определено для конкретного проекта, см. 7.2.1.1)
— Измеряемое значение, нормализованное M_ME_NA_1, M_ME_TA_1, M_ME_ND_1, M_ME_TD_1
— Измеряемое значение, масштабированное M_ME_NB_1, M_ME_TB_1, M_ME_TE_1
— Измеряемое значение, короткий формат с плавающей запятой M_ME_NC_1, M_ME_TC_1, M_ME_TF_1
Опрос станции
(Параметр, характерный для станции; маркируется знаком X, если функция используется только в
стандартном направлении, знаком R — если и спользуется только в обратном направлении, знаком В —
если используется в обоих направлениях)
Х — Общий
Группа 1 Группа 7 Группа 13
— Группа 5 — Группа 11 — Адреса объектов информации, принадлежащих каждой груп-
— Группа 6 — Группа 12 пе, должны быть приведены в отдельной таблице
Синхронизация времени
(Параметр, характерный для станции; маркируется знаком X, если функция используется только в
стандартном направлении, знаком R — если используется только в обратном направлении, знаком В — если используется в обоих направлениях)
— Синхронизация времени
— Использование дней недели
— Использование RES1, GEN (замена метки времени есть/замены метки времени нет)
— Использование флага SU (летнее время)
136

Передача команд

(Параметр, характерный для объекта; маркируется знаком X, если функция используется только и	
стандартном направлении, знаком R — если используется только в обратном направлении, знаком В —	-
если используется в обоих направлениях)	
— Прямая передача команд	
— Прямая передача команд уставки	
— Передача команд с предварительным выбором	
— Передача команд уставки с предварительным выбором	
— Использование C_SE_ACTTERM	
— Нет дополнительного определения длительности выходного импульса	
— Короткий импульс (длительность определяется системным параметром на КП)	
— Длинный импульс (длительность определяется системным параметром на КП)	
— Постоянный выход	
Передача интегральных сумм	
· · · · · · · · · · · · · · · · · · ·	
(Параметр, характерный для станции или объекта; маркируется знаком X, если функция использует ся только в стандартном направлении, знаком R — если используется только в обратном направлении	
знаком В — если используется в обоих направлениях)	,
— Режим А: Местная фиксация со спорадической передачей	
— Режим В: Местная фиксация с опросом счетчика	
— Режим С: Фиксация и передача при помощи команд опроса счетчика	
— Режим D: Фиксация командой опроса счетчика, фиксированные значения сообщаются спорадическі	1
— Считывание счетчика	
— Фиксация счетчика без сброса	
— Фиксация счетчика со сбросом	
— Сброс счетчика	
— Общий запрос счетчиков	
— Запрос счетчиков группы 1 Адреса объектов информации, принадлежащих	
— Запрос счетчиков группы 2 каждой группе, должны быть показаны	
— Запрос счетчиков группы 3 в отдельной таблице	
— Запрос счетчиков группы 4	
Загрузка параметра	
(Параметр, характерный для объекта; маркируется знаком X, если функция используется только и	3
стандартном направлении, знаком R — если используется только в обратном направлении, знаком В —	-
если используется в обоих направлениях)	
— Пороговое значение величины	
— Коэффициент сглаживания	
— Нижний предел для передачи значений измеряемой величины	
— Верхний предел для передачи значений измеряемой величины	

137

Активация параметра

станда если ис	Параметр, характерный для объекта; маркируется знаком X, если функция используется только в артном направлении, знаком R— если используется только в обратном направлении, знаком В— спользуется в обоих направлениях) Активация/деактивация постоянной циклической или периодической передачи адресованных объектов
П	Іроцедура тестирования
станда если ис	Параметр, характерный для станции; маркируется знаком X, если функция используется только в артном направлении, знаком R— если используется только в обратном направлении, знаком В— спользуется в обоих направлениях) Процедура тестирования
П	lересылк а файлов
(Г	Параметр, характерный для станции; маркируется знаком Х, если функция используется)
П	lересы <mark>лка файлов в направлении кон</mark> троля
	Прозрачный файл Передача данных о повреждениях от аппаратуры защиты Передача последовательности событий Передача последовательности регистрируемых аналоговых величин
П	lересылка файлов в направлении управления
<u> </u>	Т розрачный файл
Ф	роновое сканирование
станда если ис	Параметр, характерный для станции; маркируется знаком X, если функция используется только в артном направлении, знаком R— если используется только в обратном направлении, знаком В— спользуется в обоих направлениях) Фоновое сканирование
П	Іолучение задержки передачи
станда если ис	Параметр, характерный для станции; маркируется знаком X, если функция используется только в артном направлении, знаком R— если используется только в обратном направлении, знаком В— спользуется в обоих направлениях)
Ш —ı	Толучение задержки передачи

Приложение A (справочное)

Сведения о соответствии национальных стандартов Российской Федерации ссылочным международным стандартам

Таблица А

Обозначение ссылочного международного стандарта	Обозначение и наименование соответствующего национального стандарта
МЭК 60870-1-1 :1988	ГОСТ Р МЭК 870-1-1 — 93 Устройства и системы телемеханики. Часть 1. Основные положения. Раздел 1. Общие принципы
МЭК 60870-5-1 :1990	ГОСТ Р МЭК 870-5-1 — 95 Устройства и системы телемеханики. Часть 5. Протоколы передачи — Раздел 1. Форматы передаваемых кадров
МЭК 60870-5-2 :1995	ГОСТ Р МЭК 870-5-2 — 95 Устройства и системы телемеханики. Часть 5. Протоколы передачи — Раздел 2. Процедуры в каналах передачи
MЭК 60870-5-3 :1992	ГОСТ Р МЭК 870-5-3 — 95 Устройства и системы телемеханики. Часть 5. Протоколы передачи — Раздел 3. Общая структура данных пользователя
МЭК 60870-5-4 :1993	ГОСТ Р МЭК 870-5-4 — 96 Устройства и системы телемеханики. Часть 5. Протоколы передачи. Раздел 4. Определение и кодирование элементов пользовательской информации
МЭК 60870-5-5 :1995	ГОСТ Р МЭК 870-5-5 — 96 Устройства и системы телемеханики. Часть 5. Протоколы передачи. Раздел 5. Основные прикладные функции
МЭК 60870-5-103 :1997	*
ИСО/МЭК 8824-1 :2000	ГОСТ Р ИСО/МЭК 8824-1 — 2001 Информационная технология. Абстрактная синтаксическая нотация версии один (АСН.1). Часть 1. Спецификация основной нотации
MCЭ-T V.24: 1993	**
MCЭ-T V.28: 1993	ГОСТ 23675 — 79 Цепи стыка С2-ИС системы передачи данных. Электрические параметры
MCЭ-T X.24: 1988	**
MCЭ-T X.27: 1988	**

^{*} Соответствующий национальный стандарт отсутствует. До его утверждения рекомендуется использовать перевод на русский язык данного международного стандарта. Перевод данного международного стандарта находится в ОАО ВНИИЭ.

^{**} Русские версии МСЭ-Т — во ФГУП «Стандартинформ».

УДК 621.398.606.394:006.354

OKC 33.200

П77

ОКП 42 3200

Ключевые слова: устройства телемеханики, системы телемеханики, протоколы передачи, обобщающий стандарт, основные функции, передача данных, двоичные коды, процессы контроля, процессы управления, аппаратура совместимая, профили функциональные

Редактор В. Н. Копысов Технический редактор Н. С. Гришанова Корректор Н. И. Гаврищук Компьютерная верстка З. И. Мартыновой

Сдано в набор 04.04.2006. Подписано в печать 17.07.2006. Формат $60\cdot84^{1}/_{8}$. Бумага офсетная. Гарнитура Ариал. Печать офсетная. Усл. печ. л.16,74. Уч.-изд. л. 15,90. Тираж 186 экз. Зак. 859. С 3016.

ФГУП «Стандартинформ», 123995 Москва, Гранатный пер., 4. www.gostinfo.ru info@gostinfo.ru Hабрано и отпечатано в Калужской типографии стандартов, 248021 Калуга, ул. Московская, 256.