CSCI 341 Problem Set 6

Stack Automata

Due Friday, October 17

Don't forget to check the webspace for hints and additional context for each problem!

Problem 1 (Pop-Push). By induction on the length of the program, prove that every valid stack program is equivalent to either skip or a program of the following form:

pop
$$\sigma_1$$
.pop σ_2 ...pop σ_n .push τ_1 .push τ_2 ...push τ_m (*)

for some $n, m \in \mathbb{N}$.

Solution. \Box

Problem 2 (2 is better than 1). Consider the language

$$L = \{ w \mid w = w^{\mathsf{op}} \}$$

in the alphabet $A = \{a, b, c\}$. Design a stack automaton $S = (Q, A, \Sigma, \delta, F)$ with a state $x \in Q$ such that $L = \mathcal{L}(S, x)$.

Solution.

Problem 3 (Algorithmic Balancing). Let L be the set of balanced strings of brackets, where the bracket symbols are $A = \{(,),[,],\{,\}\}$, from Balancing Act. In that problem, you designed a grammar with a variable that derives L.

- (1) Use the Grammar-to-Automaton construction to design a stack automaton with a state that accepts L.
- (2) Can you think of a smaller stack automaton with a state that accepts L?

Solution.

Problem 4 (Basic Stack Programs Unite). Fix a set of stack symbols Σ . Let $p_1, p_2, \ldots, p_n \in \{\text{push } \sigma, \text{pop } \sigma \mid \sigma \in \Sigma\}$, i.e., let them be basic stack programs. Assume that $p_1 \ldots p_i = \text{skip}$ if and only if i = 0 or i = n. Now prove that

- (1) $p_1p_n = \text{skip}$
- (2) $p_2 \dots p_{n-1} = \text{skip}$

Solution. \Box

Problem 5 (Intersection-product Construction). Let $A = \{c, a, t, d, o, g\}$. Design a counter automaton with a state x that accepts the language L_{cat} of all words $w \in A^*$ such that the string "cat" appears in w more times than "dog" appears in w.

Solution. \Box

Problem 6 (Comes in 3s). Consider the language

$$L = \{a^nb^n \mid n \in \mathbb{N} \text{ and } n = 3k+1 \text{ for some } k \in \mathbb{N}\}$$

- (1) Use the Intersection-Product conctruction to design a stack automaton $\mathcal{S}=(Q,A,\Sigma,\delta,F)$ with a state $x\in Q$ such that $L=\mathcal{L}(\mathcal{S},x)$.
- (2) Design a grammar $\mathcal{G} = (X, A, R)$ with a variable that derives L.

Solution. \Box