Does counter-diabatic driving implement adiabaticity by opening energy gap of bare Hamiltonian?

Mohit

January 22, 2018

1 Introduction

Counter-diabatic Hamiltonian is given as:

$$H_{CD} = H_0 + \dot{\lambda} A_{\lambda} \tag{1}$$

When $\dot{\lambda} \gg 1$, then $H_{CD} \approx \dot{\lambda} A_{\lambda}$

2 Two level system

$$H_{LZ} = \Delta \sigma_z + \lambda(t)\sigma_x \tag{2}$$

where $\lambda(t) = 2(t-1)/\tau$. Hence, $\dot{\lambda} = 2/\tau$. We are going to start off ground-state of Hamiltonian with $\lambda = -2$ at time $t_i = 1 - \tau$ and end our protocol with $\lambda = 2$ at $t_f = 1 + \tau$. Hence, duration of our protocol is 2τ .

Figure 1: Avoided level crossing as a function of effective magnetic field with $\Delta = 1$

In this case, we know that gauge potential is

$$A_{\lambda} = \frac{\hbar}{2} \frac{\Delta}{\Delta^2 + \lambda(t)^2} \sigma^y \tag{3}$$

Hence, counter-diabatic Hamiltonian is $(\hbar = 1)$:

$$H_{CD} = \Delta \sigma_z + \lambda(t)\sigma_x + \frac{\dot{\lambda}}{2} \frac{\Delta}{\Delta^2 + \lambda(t)^2} \sigma^y$$
(4)

It seems that energy gap opens up!

Figure 2: a) Energy E_{CD} of H_{CD} b) Energy E_{λ} of $H=\dot{\lambda}A_{\lambda}$

3 Three level system

3.1 Spin 1 LZ model

$$H_{LZ} = \Delta S_z + \lambda S_x \tag{5}$$

$$A_{\lambda} = \frac{\hbar}{2} \frac{\Delta}{\Delta^2 + \lambda(t)^2} S^y \tag{6}$$

3.2 NV model

$$H_{NV} = \Delta S_z^2 + \lambda S_x$$