STOR 590: ADVANCED LINEAR MODELS Instructor: Richard L. Smith

Class Notes:

September 21, 2020

CLASS ANNOUNCEMENTS

- HW4: New deadline is Monday September 21 (late deadline Wednesday)
- From next week, we will revert to regular office hours, but look out for announced changes
- Take-home Midterm: Posted September 26, 6pm, to be returned by September 28, 6pm
- Spring 2020 midterm and final exams have been posted
- Final exam still planning take-home exam, will update plans after the Midterm

Use of Offset in R

"dicentric" example

rmod=glm(ca~offset(log(cells))+log(doserate)*dosef,
family=poisson,dicentric)

Negative Binomial Model

- Number of Bernoulli trials needed to get k'th success
- $\Pr\{Z=z\} = {z-1 \choose k-1} p^k (1-p)^{z-k}$.
- Alternative: Y = Z k, $p = \frac{1}{1 + \alpha}$ so $\Pr\{Y = y\} = {y + k 1 \choose k 1} \frac{\alpha^y}{(1 + \alpha)^{y + k}}$.
- $E(Y) = \mu = k\alpha$ and $Var(Y) = k\alpha + k\alpha^2 = \mu + \frac{\mu^2}{k}$.
- Log likelihood is

$$\ell = \sum_{i=1}^{n} \left(y_i \log \frac{\alpha}{1+\alpha} - k \log(1+\alpha) + \sum_{j=0}^{y_i-1} \log(j+k) - \log(y_i!) \right).$$

•
$$\eta = \sum_{j=0}^{p} x_{ij}\beta_j = \log \frac{\alpha}{1+\alpha} = \log \frac{\mu}{\mu+k}$$

Fitting in R

Venables-Ripley method with k fixed:

library(MASS) modn=glm(skips~.,negative.binomial(k),solder)

Alternative: determine k by maximum likelihood

 $modn=glm.nb(skips\sim.,solder)$

The next slide shows histograms of the original data and fitted values under both versions of the negative binomial model. The fit is still not too great.

Second Poisson Fit

Zero-inflated counts models

- First load package "pscl"
- Hurdle model:

$$P(Y = 0) = f_1(0),$$

 $P(Y = j) = \frac{1 - f_1(0)}{1 - f_2(0)} f_2(j), j > 0,$

where (by default) f_2 is Poisson. Fit in R: hurdle(y \sim .,data=dataframe)

ZIP model:

$$P(Y = 0) = \phi + (1 - \phi)f(0),$$

 $P(Y = j) = (1 - \phi)f(j), j > 0.$

Fit in R: zeroinfl($y \sim ., data = ...$)

• Possibility of using different covariates for the two components, e.g. zerolinf($y\sim x1+x2+x3|x4+x5$, data=...)

bioChemists\$art

Zero-inflated Poisson Model for Biochem Data

