BST 270: Final Project

Dominic DiSanto

Table of contents

Set-Up	1
Preface	1
"Why Some Tennis Matches Take Forever" (538) Table 1: Events	
"We Watched 906 Foul Balls To Find Out Where The Most Dangerous Ones Land" Figure 2	6
Summary	7
Appendix A: Session Information	8 8 9

Set-Up

Preface

Tables were generated using the kable and kableExtra packages and dat visualizations using ggplot2 from the Tidyverse. This document was generated using Quarto in RStudio. Additional details are available in the Appendix (e.g. package versions, R/RStudio versions, etc.)

"Why Some Tennis Matches Take Forever" (538)

From Carl Bialik's article "Why Some Tennis Matches Take Forever", we will recreate his two tables (included below).

Table 1: Events

We will first look at the original table from Bialik's article:

Fas	test tournaments			
	TOURNAMENT	SURFACE	YEARS RUNNING	TIME ADDE
1	Wimbledon	Grass	1991-2014	-2.98
2	London Olympics	Grass	2012	-2.62
3	Manchester	Grass	1991-94	-2.33
4	Eastbourne	Grass	2009-14	-1.78
5	Birmingham	Carpet	1991	-1.63
6	Queen's Club	Grass	1991-2014	-1.50
7	Lyon	Hard	2009	-1.35
8	Las Vegas	Hard	2006-08	-1.32
9	Stockholm Masters	Carpet	1991-94	-0.90
10	Nottingham	Grass	1995-2008	-0.82
Slov	west tournaments			
	TOURNAMENT	SURFACE	YEARS RUNNING	TIME ADDE
196	Birmingham	Clay	1994	+4.49
197	Oporto	Clay	1995-96	+4.69
198	Genova	Clay	1991-93	+4.71
199	Bologna	Clay	1991-98	+4.74
200	Merano	Clay	1999	+4.93
201	Viña del Mar	Clay	2009	+4.96
202	Florence	Clay	1991-94	+5.08
203	Costa do Sauipe	Clay	2004-11	+5.19
204	Maceio	Clay	1992	+5.28
205	Rio Open	Clay	2015	+5.38
Oth	er notable tournam	ients		
	TOURNAMENT	SURFACE	YEARS RUNNING	TIME ADDE
21	U.S. Open	Hard	1991-2014	-0.17
	Australian Open	Hard	1991-2015	-0.11
24				

The data used to recreate these tables is located in Bialik's provided events.csv file. The data was immediately available and well-formatted to corroborate these results and easily output tables that are similar to those in Bialik's original article.

	Fastest tournaments				
	TOURNAMENT	SURFACE	YEARS RUNNING	TIME ADDED	
1	Wimbledon	Grass	1991-2014	-2.98s	
2	London Olympics	Grass	2012	-2.62	
3	Manchester	Grass	1991-1994	-2.33	
4	Eastbourne	Grass	2009-2014	-1.78	
5	Birmingham	Carpet	1991	-1.63	
6	Queen's Club	Grass	1991-2014	-1.50	
7	Lyon	Hard	2009	-1.35	
8	Las Vegas	Hard	2006-2008	-1.32	
9	Stockholm Masters	Carpet	1991-1994	-0.90	
10	Nottingham	Grass	1995-2008	-0.82	

Slowest tournaments				
	TOURNAMENT	SURFACE	YEARS RUNNING	TIME ADDED
196	Birmingham	Clay	1994	4.49
197	Oporto	Clay	1995-1996	4.69
198	Genova	Clay	1991-1993	4.71
199	Bologna	Clay	1991-1998	4.74
200	Merano	Clay	1999	4.93
201	Viña del Mar	Clay	2009	4.96
202	Florence	Clay	1991-1994	5.08
203	Costa Do Sauipe	Clay	2004-2011	5.19
204	Maceio	Clay	1992	5.28
205	Rio Open	Clay	2015	5.38s

	Other notable tournaments				
	TOURNAMENT	SURFACE	YEARS RUNNING	TIME ADDED	
21	US Open	Hard	1991-2014	-0.17s	
24	Australian Open	Hard	1991-2015	-0.11	
54	Roland Garros	Clay	1991-2014	0.79	

Table 2: Players

Again, we first we can review the original table(s) presented in the article:

-as	Fastest players		Slowest players		
1	Dustin Brown	-6.37s	209	Michael Chang	+4.94s
2	Rohan Bopanna	-4.95	210	Joao Cunha Silva	+5.10
3	Chris Guccione	-4.63	211	Julian Knowle	+5.15
4	Benoit Paire	-4.56	212	John McEnroe	+5.22
5	Lukas Dlouhy	-4.35	213	Lucas Arnold Ker	+5.35
6	Brendan Evans	-4.25	214	T.J. Middleton	+5.60
7	Igor Sijsling	-4.19	215	Martin Stringari	+5.68
8	Lukas Rosol	-4.13	216	Rafael Nadal	+5.92
9	Alexander Kudryavtsev	-4.05	217	Nicolas Massu	+6.21
10	Sam Querrey	-3.99	218	Emanuel Couto	+6.35
Oth	Goran Ivanisevic	-3.15s			
36	Roger Federer	-2.43			
	Novak Djokovic	+2.21			
141	Andy Murray	+2.53			
191		+3.73			
	Ivan Lendl	+4.35			
202	Ivan Lendi				
	Jim Courier	+4.51			

Now we can begin attempting to recreate this table, doing our best to mirror the format of the 538 results shown above in structure/formatting.

We generate generate each of the three tables included in the image above, using the players_time.csv table. Player rank (the integer column) was generated as noted below, player name taken from the player column, and the added time from the seconds_added_per_point column:

	Fastest players	
1	Dustin Brown	-6.37s
2	Rohan Bopanna	-4.95
3	Chris Guccione	-4.63
4	Benoit Paire	-4.56
5	Lukas Dlouhy	-4.35
6	Brendan Evans	-4.25
7	Igor Sijsling	-4.19
8	Lukas Rosol	-4.13
9	Alexander Kudryavtsev	-4.05
10	Sam Querrey	-3.99

	Slowest players	
209	Michael Chang	4.94s
210	Joao Cunha Silva	5.10
211	Julian Knowle	5.15
212	John McEnroe	5.22
213	Lucas Arnold Ker	5.35
214	T.J. Middleton	5.60
215	Martin Stringari	5.68
216	Rafael Nadal	5.92
217	Nicolas Massu	6.21
218	Emanuel Couto	6.35

	Other notable playe	ers
22	Goran Ivanisevic	-3.15s
36	Roger Federer	-2.43
124	Novak Djokovic	2.21
141	Andy Murray	2.53
191	Pat Cash	3.73
202	Ivan Lendl	4.35
203	Jim Courier	4.51
207	Jimmy Connors	4.90

We see our results mirror those in Bialik's original article exactly, and we were able to easily identify and match the data to recreate these tables from the provided GitHub repository (even without any code given by the author).

"We Watched 906 Foul Balls To Find Out Where The Most Dangerous Ones Land"

Annette Choi's article

Figure 2

The hardest-hit fouls seem to land in unprotected areas

Foul balls by the stadium zone they landed in and their exit velocity, among 906 fouls hit this season in the most foul-heavy day at the 10 MLB stadiums that produced the most fouls as of June 5

Summary

Appendix

A: Session Information

```
R version 4.2.1 (2022-06-23 ucrt)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 22621)
Matrix products: default
locale:
[1] LC_COLLATE=English_United States.utf8
[2] LC_CTYPE=English_United States.utf8
[3] LC MONETARY=English United States.utf8
[4] LC_NUMERIC=C
[5] LC_TIME=English_United States.utf8
attached base packages:
[1] grid
              stats
                        graphics grDevices utils
                                                      datasets methods
[8] base
other attached packages:
                     gtExtras_0.4.5
[1] png_0.1-7
                                      gt_0.8.0
                                                        knitr_1.40
[5] kableExtra_1.3.4 stringr_1.4.1
                                      dplyr_1.0.10
                                                        ggplot2_3.4.0
[9] here_1.0.1
loaded via a namespace (and not attached):
 [1] tidyselect_1.2.0
                       xfun_0.33
                                         purrr_0.3.5
                                                            rematch2_2.1.2
 [5] ggthemes_4.2.4
                       paletteer_1.5.0
                                         V8_4.2.2
                                                            colorspace_2.0-3
 [9] vctrs_0.5.1
                       generics_0.1.3
                                                            viridisLite_0.4.1
                                         htmltools_0.5.3
[13] yaml_2.3.5
                       utf8 1.2.2
                                         rlang_1.0.6
                                                            pillar 1.8.1
[17] glue_1.6.2
                       juicyjuice_0.1.0 withr_2.5.0
                                                            DBI_1.1.3
[21] lifecycle_1.0.3
                       commonmark_1.8.1 munsell_0.5.0
                                                            gtable_0.3.1
[25] rvest_1.0.3
                       fontawesome_0.4.0 evaluate_0.17
                                                            fastmap_1.1.0
[29] curl_4.3.3
                       fansi_1.0.3
                                         Rcpp_1.0.9
                                                            scales_1.2.1
[33] webshot_0.5.4
                       jsonlite_1.8.2
                                         farver_2.1.1
                                                            systemfonts_1.0.4
[37] digest_0.6.29
                                         rprojroot_2.0.3
                                                            cli_3.4.1
                       stringi_1.7.8
[41] tools_4.2.1
                       magrittr_2.0.3
                                                            tibble_3.1.8
                                         sass_0.4.2
[45] pkgconfig_2.0.3
                       xml2_1.3.3
                                         assertthat_0.2.1
                                                            rmarkdown_2.17
[49] svglite_2.1.0
                       httr_1.4.4
                                         rstudioapi_0.14
                                                            R6_2.5.1
[53] compiler_4.2.1
```

B: Code

```
events <- read.csv(here("Data", "tennis-time", "events_time.csv"), header=T) %>%
  mutate(Rank=row_number())
players <- read.csv(here("Data", "tennis-time", "players_time.csv")) %>%
  mutate(Rank=row_number()) # adding the "Rank" variable (the integers in each table above
###############
### Table 1 ###
###############
knitr::include_graphics(here("Images", "tennis-time", "bialik-tennis-time-table21.png"))
events_10f <- events %>%
  arrange(seconds_added_per_point) %>%
 head(10) %>%
  mutate(seconds = # reformatting as string to include the "s" for the first observation,
           case_when(row_number()==1 ~ paste0(sprintf("%0.2f", seconds_added_per_point)
                                               , "s")
                     , T ~ sprintf("%0.2f", seconds_added_per_point)
         ) %>%
  select(Rank, tournament, surface, years, seconds)
events_10s <- events %>%
  mutate(Rank=row_number()) %>%
  arrange(desc(seconds_added_per_point)) %>%
  head(10) %>%
  mutate(seconds = # reformatting as string to include the "s" for the first observation,
           case_when(row_number()==1 ~ paste0(sprintf("%0.2f", seconds_added_per_point)
                     , T ~ sprintf("%0.2f", seconds_added_per_point)
         ) %>%
  arrange(seconds_added_per_point) %>%
  select(Rank, tournament, surface, years, seconds)
events_ntbl <- events %>%
  filter(str_detect(tournament, "US Op|Australian Open|Roland Garr")) %>%
  mutate(seconds = # reformatting as string to include the "s" for the first observation,
           case_when(row_number()==1 ~ paste0(sprintf("%0.2f", seconds_added_per_point)
```

```
, "s")
                     , T ~ sprintf("%0.2f", seconds_added_per_point)
         ) %>%
  select(Rank, tournament, surface, years, seconds)
event cols <- c("", "TOURNAMENT", "SURFACE", "YEARS RUNNING", "TIME ADDED")
events_10f %>%
 kable(col.names=event_cols, booktabs=T) %>%
 kable_styling(latex_options = c("striped", "HOLD_position")) %>%
  add_header_above(c("Fastest tournaments"=5)) %>%
  row_spec(0, align="l")
events_10s %>%
  kable(col.names=event_cols, booktabs=T) %>%
  kable_styling(latex_options = c("striped", "HOLD_position")) %>%
  add_header_above(c("Slowest tournaments"=5)) %>%
  row_spec(0, align="l")
events_ntbl %>%
  kable(col.names=event_cols, booktabs=T) %>%
  kable_styling(latex_options = c("striped", "HOLD_position")) %>%
  add_header_above(c("Other notable tournaments"=5)) %>%
  row_spec(0, align="1")
##############
### Table 2 ###
##############
knitr::include_graphics(here("Images", "tennis-time", "bialik-tennis-time-table1.png"))
# Top 10 Fastest Players (lower [or more negative] seconds_added_per_point is faster pace
t10_f <- players %>%
  arrange(seconds_added_per_point) %>% # sort by ascending order (lower seconds added = fa
  head(10) %>% # top 10
  mutate(seconds = # reformatting as string to include the "s" for the first observation,
           case_when(row_number()==1 ~ paste0(sprintf("%0.2f", seconds_added_per_point)
                                               , "s")
                     , T ~ sprintf("%0.2f", seconds_added_per_point)
         ) %>%
  select(Rank, player, seconds)
```

```
# "Top" 10 slowest players (largest values)
t10_s <- players %>%
  arrange(desc(seconds_added_per_point)) %>%
 head(10) %>%
  arrange(seconds_added_per_point) %>%
  mutate(seconds =
           case_when(row_number()==1 ~ paste0(sprintf("%0.2f", seconds_added_per_point)
                     , T ~ sprintf("%0.2f", seconds_added_per_point)
         ) %>%
  select(Rank, player, seconds)
# Specific players ("notable") taken from the full data set
tbl_pls <- players %>%
  filter(str_detect(player, "Goran|Roger Fed|Novak Djok|Andy Murray|Pat Cash|Ivan Lend|Jim
  arrange(seconds_added_per_point) %>%
  mutate(seconds =
           case_when(row_number()==1 ~ paste0(sprintf("%0.2f", seconds_added_per_point)
                     , T ~ sprintf("\%0.2f", seconds_added_per_point)
         ) %>%
  select(Rank, player, seconds)
t10_f %>%
  kable(col.names=NULL, booktabs=T) %>%
  kable_styling(latex_options = c("striped", "HOLD_position")) %>%
  add_header_above(c("Fastest players"=3)) %>%
  row_spec(0, align="l")
t10_s %>%
  kable(col.names=NULL, booktabs=T) %>%
  kable_styling(latex_options = c("striped", "HOLD_position")) %>%
  add_header_above(c("Slowest players"=3)) %>%
  row_spec(0, align="l")
tbl_pls %>%
  kable(col.names=NULL, booktabs=T) %>%
  kable_styling(latex_options = c("striped", "HOLD_position")) %>%
  add_header_above(c("Other notable players"=3)) %>%
```

```
row_spec(0, align="l")
# Initially used the gt package to create prettier HTML tables
# The assignment prompt asks for a PDF, so keeping this code for reference
# but not including it in the final, knitted document
library(gt)
library(gtExtras)
gt_fast <- t10_f %>%
  gt() %>%
  gt::tab_header("Fastest players") %>%
  gt::tab_options(column_labels.hidden = T) %>%
  gt_theme_538() %>%
  gt::as_raw_html()
gt_slow <- t10_s %>%
  gt() %>%
  gt::tab_header("Slowest players") %>%
  gt::tab_options(column_labels.hidden = T) %>%
  gt_theme_538() %>%
  gt::as_raw_html()
gt_ntbl <- tbl_pls %>%
 gt() %>%
  gt::tab_header("Other notable players") %>%
  gt::tab_options(column_labels.hidden = T) %>%
  gt_theme_538() %>%
  gt::as_raw_html()
rbind(data.frame(t1=gt_fast, t2=gt_slow)
      , data.frame(t1=gt_ntbl, t2="")) %>%
# data.frame(gtf=c(gt_fast, gt_ntbl), gts=c(gt_slow, '')) %>%
  gt() %>%
  gt::tab_header(title = "Player Speeds"
                 , subtitle="Average time added per point in men's tennis"
                 ) %>%
  opt_align_table_header(align = "left") %>%
  fmt_markdown(columns=everything()) %>%
  gt::tab_options(column_labels.hidden=T) %>%
  gtExtras::gt_theme_538() %>%
```

```
gt::tab_style(style = list(cell_text(weight="bold"))
                , location=cells_body(columns=1) )
knitr::include_graphics(here("Images", "foul-balls", "choi-foul-0625-2-1.png"))
foul_balls <- read.csv(here("Data", "foul-balls", "foul-balls.csv"))</pre>
library(png); library(grid)
img <- readPNG(here("Images", "foul-balls", "stadium zones.png"))</pre>
g <- rasterGrob(img, interpolate=TRUE)</pre>
foul_balls %>%
  mutate(Velocity_Cat =
           case_when(exit_velocity<90 ~ 1</pre>
                      , exit_velocity>=90 \sim 2
                      , TRUE ~ 3)) %>%
  mutate(fvc = factor(Velocity_Cat, levels=c(3, 2, 1))) %>%
  ggplot(aes(x=reorder(as.factor(used_zone), -used_zone), fill=fvc)) +
  geom_bar() +
  scale_y_continuous(breaks=seq(0, 250, 50)
                      , position="right") +
  scale_fill manual(values=c("snow3", "steelblue2", "palegreen3")) +
  coord_flip() +
  ggthemes::theme_fivethirtyeight() +
  ggtitle(label="The hardest hit foul-balls seem to land in unprotected areas"
          , subtitle = "Foul balls by the stadium zone they landed in and their exit velocity
  theme(legend.position="none", plot.title = element_text(size=16)) +
  annotation_custom(g, xmin=1, xmax=3, ymin=210, ymax=320) +
  annotate("text", x = 7, y = 75, label="< 90 mph", col="white", size=5) +
  annotate("text", x = 7, y = 215, label="Unknown exit velocity", col="white", size=5) +
  annotate("text", x = 4.8, y = 140, label=("''>= 90 ~ 'mph'"), col="steelblue2", size=5,
sessionInfo()
```