

- **▼** Capable of 2.5V Gate Drive
- ▼ Small Size & Ultra_Low R_{DS(ON)}
- **▼** RoHS Compliant & Halogen-Free

BV _{DSS}	20V
R _{DS(ON)}	4.8m Ω
I_D^3	60A

Description

AP2055K series are from Advanced Power innovated design and silicon process technology to achieve the lowest possible on-resistance and fast switching performance. It provides the designer with an extreme efficient device for use in a wide range of power applications.

Absolute Maximum Ratings@T_j=25°C(unless otherwise specified)

Symbol	Parameter	Rating	Units
V_{DS}	Drain-Source Voltage	20	٧
V_{GS}	Gate-Source Voltage	<u>+</u> 12	٧
I _D @T _A =25°C	Drain Current, V _{GS} @ 4.5V ³	60	А
I _D @T _A =70°C	Drain Current, V _{GS} @ 4.5V ³	40	А
I _{DM}	Pulsed Drain Current ¹	180	Α
EAS	Single pulse avalanche energy	190	mJ
P _D @T _A =25°℃	Total Power Dissipation	3.13	W
T _{STG}	Storage Temperature Range	-55 to 150	$^{\circ}\!\mathbb{C}$
T_J	Operating Junction Temperature Range	-55 to 150	$^{\circ}\!\mathbb{C}$

Thermal Data

Symbol	Parameter	Value	Unit
Rthj-c	Maximum Thermal Resistance, Junction-case	5	°C/W
Rthj-a	Maximum Thermal Resistance, Junction-ambient ³	40	°C/W

Electrical Characteristics@T_j=25°C(unless otherwise specified)

	<u> </u>	<u> </u>				
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V, I _D =250uA	20	-	-	V
R _{DS(ON)}	Static Drain-Source On-Resistance ²	V _{GS} =4.5V, I _D =20A	-	4.8	5.5	$\mathbf{m}\Omega$
		V _{GS} =2.5V, I _D =12A	-	-	7	$\mathbf{m}\Omega$
$V_{GS(th)}$	Gate Threshold Voltage	V _{DS} =V _{GS} , I _D =1mA	0.5	-	0.9	V
g _{fs}	Forward Transconductance	V_{DS} =5V, I_D =20A	-	30	-	S
I _{DSS}	Drain-Source Leakage Current	V _{DS} =16V, V _{GS} =0V	-	-	10	uA
I _{GSS}	Gate-Source Leakage	V _{GS} = <u>+</u> 12V, V _{DS} =0V	-	-	<u>+</u> 100	nA
Q_g	Total Gate Charge	I _D =20A	-	32	59.2	nC
Q_{gs}	Gate-Source Charge	V _{DS} =10V	-	6	-	nC
Q_{gd}	Gate-Drain ("Miller") Charge	V _{GS} =4.5V	_	6.5	-	nC
$t_{d(on)}$	Turn-on Delay Time	V _{DS} =10V	-	10	-	ns
t _r	Rise Time	I _D =1A	-	18	-	ns
$t_{d(off)}$	Turn-off Delay Time	$R_G=3.3\Omega$	_	30	-	ns
t _f	Fall Time	V _{GS} =5V	_	18	_	ns
C _{iss}	Input Capacitance	V _{GS} =0V	-	2200	4400	pF
C _{oss}	Output Capacitance	V _{DS} =10V	-	500	-	pF
C _{rss}	Reverse Transfer Capacitance	f=1.0MHz	-	200	-	pF
R_g	Gate Resistance	f=1.0MHz	-	1.4	2.8	Ω

Source-Drain Diode

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
V_{SD}	Forward On Voltage ²	I _S =2.5A, V _{GS} =0V	1	ı	1.2	٧
t _{rr}	Reverse Recovery Time	I _S =20A, V _{GS} =0V,	-	30	-	ns
Q _{rr}	Reverse Recovery Charge	dl/dt=100A/µs	-	26	-	nC

Notes:

- 1. Pulse width limited by Max. junction temperature.
- 2.Pulse test
- 3.Surface mounted on 1 in² 2oz copper pad of FR4 board, t ≤10sec; 135°C/W when mounted on min. copper pad.
- 4. Maximum current limited by package.

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 4 Rdson-JunctionTemperature

Figure 2 Transfer Characteristics

Figure 5 Gate Charge

Figure 3 Rdson-Drain Current

Figure 6 Source- Drain Diode Forward

60 50 40 40 30 20 0 25 50 75 100 125 150 T_J-Junction Temperature (°C)

Figure 7 Capacitance vs Vds

Figure 9 Power De-rating

Figure 8 Safe Operation Area

Figure 10 V_{GS(th)} vs Junction Temperature

Figure 11 Normalized Maximum Transient Thermal Impedance

Date Code (YWWSSS)
Y: Last Digit Of The Year

WW: Week SSS: Sequence

TO-252 Package Information

Symbol	Dimensions In Millimeters		Dimensions In Inches		
	Min.	Max.	Min.	Max.	
Α	2.200	2.400	0.087	0.094	
A1	0.000	0.127	0.000	0.005	
b	0.660	0.860	0.026	0.034	
С	0.460	0.580	0.018	0.023	
D	6.500	6.700	0.256	0.264	
D1	5.100	5.460	0.201	0.215	
D2	4.830 TYP.		4.830 TYP. 0.190 TYP		
E	6.000	6.200	0.236	0.244	
е	2.186	2.386	0.086	0.094	
L	9.800	10.400	0.386	0.409	
L1	2.90	0 TYP.	0.114	TYP.	
L2	1.400	1.700	0.055	0.067	
L3	1.60	1.600 TYP.		TYP.	
L4	0.600	1.000	0.024	0.039	
Ф	1.100	1.300	0.043	0.051	
θ	0°	8°	0°	8°	
h	0.000	0.300	0.000	0.012	
V	5.35	0 TYP.	0.211 TYP.		