1 Zanke v Hassejevem diagramu

Pokazali bomo, kako se fundamentalna grupa končnega T_0 prostora izraža preko prirejenega Hassejevega diagrama. Hassejev diagram končnega T_0 prostora X označimo z $\mathcal{H}(X)$, z $E(\mathcal{H}(X))$ pa označimo množico njegovih robov.

Definicija 1. Naj bo (X, x_0) končen pointed T_0 prostor. Urejen par e = (x, y) imenujemo \mathcal{H} -rob od X, če $(x, y) \in E(\mathcal{H}(X))$, ali $(y, x) \in E(\mathcal{H}(X))$. Točki x rečemo začetek x in označimo $x = \mathfrak{o}(e)$, točki y pa konec od e, označimo $\mathfrak{e}(e) = y$. $Inverz \mathcal{H}$ -roba e = (x, y) je \mathcal{H} -rob $e^{-1} = (y, x)$

 \mathcal{H} -pot v (X, x_0) je zaporedje (lahko tudi prazno), \mathcal{H} -robov $\xi = e_1 e_2 \cdots e_n$, za katero velja, da je $\mathfrak{e}(e_i) = \mathfrak{o}(e_i + 1)$, za vsak $0 \le i \le n - 1$. Začetek \mathcal{H} -poti ξ je $\mathfrak{o}(\xi) = \mathfrak{e}_1$, konec pa $\mathfrak{e}(\xi) = \mathfrak{e}_n$, začetek in konec prazne poti je $\mathfrak{o}(\emptyset) = \mathfrak{e}(\emptyset) = x_0$ Če je $\xi = e_1, e_2 \cdots e_n$ \mathcal{H} -pot, definiramo $\overline{\xi} = e_n^{-1}, \cdots e_2^{-1} e_n^{-1}$. Če sta ξ in ξ' \mathcal{H} -poti in velja $\mathfrak{e}(\xi) = \mathfrak{e}(\xi')$, lahko definiramo produktno \mathcal{H} -pot $\xi \xi'$, kot zaporednje \mathcal{H} -robov v ξ , ki mu sledi zaporednje \mathcal{H} -robov v ξ' .

Za \mathcal{H} -pot $\xi = e_1 e_2, \dots e_n$ pravimo, da je monotona, če je $e_i \in E(\mathcal{H}(X))$ za vsak $1 \leq i \leq n$ ali pa je $e_i^{-1} \in E(\mathcal{H}(X))$ za vsak $1 \leq i \leq n$. Zanka iz x_0 je \mathcal{H} -pot , ki se začne in konča v x_0 . Za zanki ξ in ξ' rečemo, da sta blizu, če obstajajo monotone \mathcal{H} -poti $\xi_1, \xi_2, \xi_3, \xi_4$, take, da sta množici $\{\xi, \xi'\}$ in $\{\xi_1\xi_2\xi_3\xi_4, \xi_1\xi_4\}$ enaki.

Rečemo, da sta zanki ξ in ξ' \mathcal{H} -ekvivalentni, če obstaja končno zaporednje zank $\xi = \xi_1, \xi_2, ..., \xi_n = \xi'$, tako da sta vsaki zaporedni zanki \mathcal{H} -ekvivalentni. Z $[\xi]$ označimo \mathcal{H} - ekvivalenčni razred zanke ξ in z $\mathscr{H}(X, x_0)$ množico teh razredov.

Slika 1: Primer poti ki sta blizu

Izrek 1. Naj bo (X, x_0) končen pointed T_0 prostor. Potem je množenje $[\xi][\xi'] = [\xi \xi']$ dobro definirano in inducira grupno strukturo na $\mathcal{H}(X, x_0)$

Dokaz. Dobra definiranost in asociativnost sta očitni, enota je $[\emptyset]$. Naj bosta ξ in ξ' poti, e \mathcal{H} -rob in $\mathfrak{e}(\xi) = \mathfrak{o}(\xi') = \mathfrak{o}(e)$. potem sta poti $[\xi \xi']$ in $[\xi e e^{-1} \xi']$, saj je e monotona pot. Iz tega takoj sledi, da Da je inverz od $[e_1 e_2 ... e_n]$ enak $[e_n^{-1} ... e_2^{-1} e_1^{-1}]$.

Izrek 2. Naj bo (X, x_0) končen pointed T_0 prostor. Potem je grupa sklenjenih lomljenk $E(\mathcal{K}(X), x_0)$ izomorfna $\mathscr{H}(X, x_0)$.

Dokaz. Definirajmo

$$\varphi: \mathcal{H}(X, x_0) \to E(\mathcal{K}(X), x_0)$$
$$\langle e_1 e_2 ... e_n \rangle \mapsto [e_1 e_2 ... e_n]$$
$$\emptyset \mapsto [(x_0, x_0)]$$

_

Najprej pokažimo, da je φ dobro definiran, torej da iz $\langle e_1e_2...e_n\rangle=\langle f_1f_2...f_n\rangle$ sledi $[e_1e_2...e_n]=[f_1f_2...f_n]$. Naj bosta zanki $\xi_1\xi_2\xi_3\xi_4$ in $\xi_1\xi_4$ blizu in naj bosta $\xi_2=e_1e_2...e_n$ in $\xi_3=e_1'e_2'...e_m'$ monotoni \mathcal{H} -poti. Potem velja

$$\begin{split} [\xi_1 \xi_2 \xi_3 \xi_4] &= [\xi_1 e_1 e_2 ... e_{n-1} \mathfrak{o}(e_n) \mathfrak{e}(e_n) \xi_3 \xi_4] \\ &= [\xi_1 e_1 e_2 ... e_{n-2} \mathfrak{o}(e_{n-1}) \mathfrak{e}(e_n) \xi_3 \xi_4] = \dots = [\xi_1 \mathfrak{e}(\xi_1) \mathfrak{e}(e_n) \xi_3 \xi_4] \end{split}$$

in analogno

$$[\xi_1 \mathfrak{e}(\xi_1) \mathfrak{e}(e_n) \xi_3 \xi_4] = [\xi_1 \mathfrak{e}(\xi_1) \mathfrak{e}(e_n) \mathfrak{o}(e_1') \mathfrak{o}(\xi_4) \xi_4]$$

in zato

$$\begin{split} [\xi_1 \xi_2 \xi_3 \xi_4] &= [\xi_1 \mathfrak{e}(\xi_1) \mathfrak{e}(e_n) \mathfrak{o}(e'_n) \mathfrak{o}(\xi_4) \xi_4] \\ &= [\xi_1 (\mathfrak{e}(\xi_1) \mathfrak{e}(e_n)) (\mathfrak{e}(e_n) \mathfrak{e}(\xi_1)) \xi_4] = [\xi_1 (\mathfrak{e}(\xi_1) \mathfrak{e}(\xi_1)) \xi_4] = [\xi_1 \xi_4]. \end{split}$$

Obratno, če je $\xi = (x_0, x_1)(x_1, x_2)...(x_{n-1}, x_n)$ lomljenka v $\mathcal{K}(X)$ z $x_0 = x_n$, potem sta x_i in x_{i-1} primerljiva za vsak $1 \leq i \leq n$, zato lahko najdemo monotone \mathcal{H} -poti $\xi_1, \xi_2, ... \xi_n$, take da $\mathfrak{o}(\xi_{i-1}) = \mathfrak{e}(\xi_i)$ za $1 \leq i \leq n$. Definirajmo

$$\psi: E(\mathcal{K}(X), x_0) \to \mathcal{H}(X, x_0),$$
$$[\xi] \mapsto \langle \xi_1, \xi_2, ... \xi_n \rangle.$$

Definicija je neodvisna od izbire \mathcal{H} -poti ξ_i , saj če se izbiri razlikujeta za kak i=k, potem sta $\xi_1...\xi_k...\xi_n$ in $\xi_1...\xi'_k...\xi_n$ \mathcal{H} -ekvivalentni, saj sta obe blizu $\xi_1...\xi_k^{-1}\xi_k...\xi_n$, torej $\langle \xi_1...\xi_k...\xi_n \rangle = \langle \xi_1...\xi'_k...\xi_n \rangle$

Definicija je neodvisna od izbire predstavnika. Recimo da sta $\xi(x,y)(y,x)\xi'$ in $\xi(x,z)\xi'$ ekvivalentni lomljenki v $\mathcal{K}(X)$, ki se začneta in končata v x_0 , pri čemer sta ξ in ξ' lomljenki, x,y in z pa so primerljivi. Če y leži med x in z, lahko najdemo monotono \mathcal{H} —pot od x do z, ki vsebuje y in nadomesti \mathcal{H} —pot od x do y in od y do z in zato je ψ ekvivalentno definirana na $\xi(x,y)(y,x)\xi'$ in $\xi(x,z)\xi'$. Če je $z \leq x \leq y$ lahko poiščemo monotone \mathcal{H} —poti α od x do y in β od z do x, potem bo $\overline{\alpha}\overline{\beta}$ nadomestila pot (y,z) in $\overline{\beta}$ bo nadomestila pot (x,z). Dokazati moramo le še, da velja $\langle \gamma \alpha \overline{\alpha} \overline{\beta} \gamma' \rangle = \langle \gamma \overline{\beta} \gamma \rangle$, za \mathcal{H} —poti γ in γ' , kar je pa trivialno. Preostale kombinacije x,y in z dokažemo analogno.

Očitno sta φ in ψ drug drugemu inverzna in zato sta izomorfizma. \square

Ker sta grupi $E(\mathcal{K}(X), x_0)$ in $\pi_1(|\mathcal{K}(X)|, x_0)$ izomorfni, takoj sledi naslednji rezultat.

Posledica 1. Naj bo (X, x_0) končen pointed T_0 prostor, potem $\pi_1(X, x_0) = \mathcal{H}(X, x_0)$.