Introducción al diseño en sistemas embebidos Lección 5

Nivel de Procesador

Prof.Ing. Jeferson González G.

CF-5303 Sistemas Embebidos Área de Ingeniería en Computadores Instituto Tecnológico de Costa Rica

Nivel de Procesador

- Introducción
- Niveles de abstracción
- Nivel de Procesador
- Mivel de Sistema

Contenido

El diseño moderno de sistemas embebidos tiene características particulares:

- Sistemas complejos.
- Se cuenta con herramientas para diseño asistido.
- Sigue metodología de co-diseño (Hw y Sw se diseñan simultáneamente).
- Se diseña en diferentes niveles de abstracción con diferentes modelos.

Actualmente, el diseño de sistemas embebidos se realiza en diferentes **niveles de abstracción**, cada uno con características, herramientas y metodologías diferentes.

Y-Chart

Se utiliza para explicar las relaciones en diferentes niveles de abstracción, herramientas y metodologías de diseño en sistemas embebidos.

- Cada diseño puede ser modelado de tres formas básicas:
 - Comportamiento: funcionalidad, especificación.
 - Estructura: netlist, diagrama de bloques.
 - Diseño físico: Layout, diseño de tarjeta
- Identifica 4 niveles de abstracción:
 - Sistema
 - Procesador
 - Lógica
 - Circuito

Y-Chart

Prof.Ing. Jeferson González G.

Nivel de Sistema

Y-Chart - Comportamiento

Diseño es descrito como caja negra.

- Las salidas se describen en función de las entradas en el tiempo.
- La especificación no indica cómo construir la caja negra

Y-Chart

Y-Chart - Estructura

Especifica el diseño como un conjunto de **componentes** y conexiones.

- El comportamiento de la caja negra viene dado por sus componentes y la interacción de los mismos.
- Los detalles de implementación de cada componente no se muestran en este nivel.

Y-Chart - Diseño Físico

El diseño físico agrega dimensionalidad a la estructura.

- Especifica el tamaño de cada componente, puerto, conexión, chip, PCB, etc.
- Muestra a mayor detalle la funcionalidad de los componentes.

Y-Chart - Niveles de abstracción

Cada nivel se nombra por el tipo de componente que se genera:

- Circuitos: Se generan celdas estándar, conformadas por transistores (NMOS/PMOS)
- Lógica: Se usan compuertas lógicas y flip flops para generar RTL (multiplicadores, registros, ALU's, FSMs)
- Procesador: Se generan procesadores estándar o a la medida así como hardware especializado (controladores de memoria, arbitros de bus, interfaces, NoC, etc)
- Sistema: Se generan sistemas embebidos con procesadores, memorias, buses, coprocesadores, etc.

Síntesis

Cada nivel de abstracción requiere componentes que serán usados en la estructura del diseño.

El proceso de pasar de comportamiento a estructura en cada nivel de abstracción se conoce como **síntesis**.

La síntesis permite pasar de un nivel de abstracción mayor a uno menor (p.e RTL -> circuitos)

 Cada componente puede tener un modelo diferente en cada eje del Y-Chart.

Nivel: Procesador

Diseño a nivel de procesador

Nivel de Procesador

Procesador: Diseño de modelo de comportamiento

Nivel de Procesador

En el nivel de procesador, cada elemento diseñado será un elemento de procesamiento (PE).

Un PE ejecuta funciones específicas (a la medida) o estándar (procesadores comunes) que ejecutan instrucciones en algún lenguaje de programación.

Pueden ser descritos de varias formas:

- Máquinas de estados finitos (FSM)
- Máquinas de estados finitos con datos (FSMD)
- Grafo de flujo de control y datos (CDFG)
- Flujo de set de instrucción (ISF)

Comportamiento: FSMD

Introducción

Estados representan operaciones aritméticas o expresiones de programación.

 No es adecuado para representar algoritmos expresados en lenguajes de programación estándar (C)

Contenido

Comportamiento: CDFG

Introducción

Compuesto por bloques básicos (BB) y condiciones.

- Natural para lenguajes de programación secuenciales.
- Muestra dependencias de control entre BB.
- Puede convertirse en FSMD con super-estados.

Leccion 5 Prof.Ing. Jeferson González G. 15/38

Comportamiento: IS flow

Contenido

Modelo estructural

La implementación de un elemento de procesamiento se realiza por medio de componentes RTL. La estructura interna consiste de:

- Datapath: registros, memoria, unidades funcionales, buses.
- Controlador (FSM, combinacional)

La tarea de selección de componentes y estructura de un PE y la definición de operaciones de RTL en cada ciclo de reloj corresponde a la síntesis.

Modelo estructural

Modelo estructural de un procesador

Síntesis a nivel de procesador

Proceso de generación de la estructura del procesador a partir de la descripción de comportamiento.

La síntesis a nivel de procesador toma como entrada el set de instrucciones (IS) del procesador.

- IS es ingresado manualmente -> alto desempeño.
- Diferentes etapas:
 - Selección (Allocation)
 - Calendarización (Scheduling)
 - Asignación (Binding)
 - Síntesis
 - Refinamiento

Allocation

Corresponde a la selección de componentes de un biblioteca RTL.

- Seleccionar al menos un componente por operación del modelo de comportamiento.
- Biblioteca debe incluir características de componentes y métricas.

Scheduling

Se debe calendarizar las operaciones del modo del comportamiento en ciclos.

- Lectura de operandos de almacenamiento (BR) CC1
- Ejecutar operación CC2
- Escritura de operandos CC5

Cada bloque básico debe calendarizarse en varios ciclos de reloj y algunas operaciones podrán calendarizarse en el mismo ciclo de reloj.

Binding

Asignación de variables, operaciones y transferencias.

- Cada variable se asigna a una unidad de almacenamiento.
 Múltiples variables pueden ser asignadas a la misma unidad de almacenamiento si no se traslapan en el tiempo.
- Las operaciones deben ser asignadas a unidades funcionales capaces de ejecutarlas.
- Debe existir conexión entre unidades funcionales y elementos de almacenamiento.

Síntesis de controlador

Generación del controlador por compuestas lógicas o controles de funciones, a partir de pasos anteriores.

• El controlador puede tener memoria de programa estática o programable.

Refinamiento

Cada procesador puede generarse con diferentes estilos de asignación de variables, operaciones y transferencias.

- (1) without any binding: a = b + c;
- (2) with storage binding of a to RF(1), b to RF(3), and c to RF(4): RF(1) = RF(3) + RF(4);
- (3) with storage and functional unit binding with + bound to ALU1: RF(1) = ALU1(+,RF(3),RF(4));
- (4) or with storage, functional unit, and connectivity binding:
 Bus1 = RF(3); Bus2 = RF(4); Bus3 = ALU1
 (+,Bus1,Bus2); RF(1) = Bus3;

Síntesis en nivel de procesador

Prof.Ing. Jeferson González G

Diseño a nivel de sistema

Nivel de Procesador

Introducción

Contenido

Sistema: Diseño de modelo de comportamiento

Los modelos de comportamiento, como CDFG, funcionan bien para un procesador pero no para un sistema completo.

Un modelo de sistema debe contemplar:

- Múltiples procesos (en uno o varios PE)
- Interacción SW y HW
- Contempla concurrencia y segmentación
- Sincronización y canales
- Modelo Común: Máquina de estados de procesos (PSM)

Introducción

Máquina de estados de procesos - PSM

Máguina de estados que relaciona procesos secuenciales y paralelos por señales y canales de comunicación.

Nivel de Procesador

Nivel de Procesador

Contenido

Modelo estructural

Introducción

Es un diagrama de bloques de los componentes del sistema, generado a partir de la descripción de comportamiento.

- Elementos de procesamiento (PE)
- Componentes de almacenamiento (M)
- Elementos de comunicación (CE)
- Interfaces (IF)
- Bloques de propiedad intelectual (IP cores)

Diagrama de bloques de sistema

Nivel de Procesador

Síntesis

Síntesis

Proceso de generación de diagrama de bloques (estructura) del sistema a partir de la especificación (modelo de comportamiento).

Realiza las tareas:

- Perfilado y estimación
- Selección de componentes y conexiones (allocation)
- Asignación de procesos y canales (binding)
- Calendarización de procesos
- Inserción de interfaces
- Refinamiento del modelo

Perfilado y estimación

Perfilado de código.

- Tipo y frecuencia de operaciones
- Transferencias de bus
- Llamadas a funciones
- Accesos a memoria

Estimación de métricas:

- Desempeño
- Costo
- Consumo de potencia
- Ancho de banda
- Tolerancia a fallos

Allocation

Selección de componentes de bibliotecas de: procesadores estándar, memorias, IP, buses, interfaces, etc.

- Creación de plataforma
- Selección en plataforma definida.

Binding

- Asignación de procesos a elementos de procesamiento : P > PE
- Asignación de canales a buses o NoC: C -> B
- Asignación de variables a elementos de memoria: v -> M

Scheduling

Procesos paralelos corriendo en el mismo PE deben ser calendarizados (estática o dinámicamente).

• Requiere la generación de un sistema operativo de tiempo real para calendarización dinámica.

Inserción de interfaz

Los módulos de interfaz (hardware) deben seleccionarse de la biblioteca. Puede que requieran agregarse algunos módulos de interfaz de software (firmware) como:

- Drivers de dispositivos
- Tablas de routing
- Rutinas de interrupción
- Mensajes (IPC)

En hardware:

- Controladores de interrupción
- Controladores de memoria.

Refinamiento

Síntesis suele ser una tarea iterativa.

Luego de la síntesis deben medirse variables (simulación) y refinar en los diferentes pasos para lograr los resultados esperados.

Síntesis en nivel de sistena

Gajski, D.D., Abdi, S., Gerstlauer, A., Schirner, G (2009) Embedded System Design - Modeling, Synthesis and Verification