Rencana Pembelajaran Semester (RPS)

	UNIVERSITAS PENDIDIKAN GANESHA JURUSAN TEKNIK INFORMATIKA PROGRAM STUDI ILMU KOMPUTER RENCANA PEMBELAJARAN SEMESTER								
			RENCANA PEM	IBELA.	JARAN SEMESTE	ER			
MATA KULIAH (MF	ζ)		KODE	Rumpu	ın MK	вовот (sks)	SEMESTER	Tgl Penyusunan
Desain dan Analisis Algoritma			KOMS120403	Mata k	uliah inti keilmuan	T=3	P=0	4	20/012023
OTORISASI			Pengembang RPS		Koordinator RMK			Ketua PRODI	
			Ni Luh Dewi Sintiari, Ph.D. A.A. Gede Yudhi Param. M.Kom.		martha, S.Kom., A.A. Gede Yudhi S.Kom., M.Kom.				
Capaian	CPL-PRO	ODI yang o	dibebankan pada MK						
Pembelajaran (CP)	S1	_	a kepada Tuhan Yang Maha Esa						
	S2		ung tinggi nilai kemanusiaan dal			agama, moi	al, dan eti	ka;	
	S8		ernalisasi nilai, norma dan etika a						
	S9		ıkkan sikap bertanggung jawab			ya secara m	andiri		
	S10		ernalisasi semangat kemandirian						
	P1	Mampu i data.	memahami dan menguasai kons	ep dasar i	lmu komputer secara umi	um seperti i	natematika	a, algoritma, pemro	ograman, dan basis
	P2		memahami dan menguasai konse bangan, dan implementasi perang			mulai dari a	nalisis ket	outuhan, perancang	an,
KU1 Mampu menerapkan pemikiran logis, kritis, sistematis, dan inovatif dalam konteks pengembangan atau im dan teknologi yang memperhatikan dan menerapkan nilai humaniora yang sesuai dengan bidang ilmu kom							ilmu pengetahuan		
	KU2	Mampu ı	menunjukkan kinerja mandiri, be	rmutu, da	n terukur;				
	KK1		l dalam menganalisis kebutuhan,	merancan	ıg, dan mengimplementas	ikan rancan	gan, dan n	nenguji perangkat l	unak.
	Capaian	Pembelajaı	ran Mata Kuliah (CPMK)						

	СРМК	Mahasiswa mampu merumuskan desain algoritma untuk menyelesaikan masalah dalam Ilmu Komputer, dan memiliki keterampilan untuk mengimplementasikan algoritma tersebut ke dalam dahasa pemrograman, sehingga mampu menjelaskan metode penyelesaian masalah secara sistematis dalam bentuk verbal dan tulisan.
		an akhir tiap tahapan belajar (Sub-CPMK)
	Sub- CPMK1	Mahasiswa mampu menjelaskan tahapan desain dan analisis algoritma dengan baik
	Sub- CPMK2	Mahasiswa mampu menghitung kompleksitas waktu algoritma (worst-case, best-case, average-case), menggunakan notasi Big-O, Big-Omega, dan Big-Theta, dan mengklasifikasikan algoritma berdasarkan kompleksitas waktunya dengan benar
	Sub- CPMK3	Mahasiswa mampu menjelaskan tentang konsep strategi brute-force/exhaustive search dan teknik heuristik dengan baik, menganalisis kebenaran dan kompleksitas waktu algoritma brute-force, serta mengaplikasikan strategi tersebut dalam pemecahan masalah dengan baik dan benar
	Sub- CPMK4	Mahasiswa mampu menjelaskan konsep algoritma rekursif, menuliskan pseudocode, menganalisis kebenaran, memformulasikan bentuk rekursif dari fungsi kompleksitas waktunya dan menghitung rumus eksplisit fungsi tersebut, serta mengaplikasikan metode rekursif dalam pemecahan masalah dan mengimplementasikannya dalam program komputer dengan baik dan benar
	Sub- CPMK5	Mahasiswa mampu menjelaskan strategi Divide-and-Conquer, Decrease-and-Conquer, dan Transform-and-Conquer, menuliskan pseudocode, menganalisis kebenaran dan menghitung fungsi kompleksitas waktu algoritma, serta mengaplikasikan ketiga strategi tersebut dalam pemecahan masalah dengan baik dan benar
	Sub- CPMK6	Mahasiswa mampu menjelaskan konsep algoritma Greedy, membuktikan optimalitas atau menunjukkan ketak-optimalan algoritma Greedy, mengaplikasikan metode Greedy dalam pemecahan masalah dan mengimplementasikannya dalam program komputer dengan baik dan benar
	Sub- CPMK7	Mahasiswa mampu menjelaskan metode BFS dan DFS dengan baik, menganalisis kompleksitas waktu dan ruang melalui contoh riil, dan mengaplikasikan metode BFS dan DFS dalam pembentukan pohon ruang status pada algoritma graf dinamis dengan baik dan benar
	Sub- CPMK8	Mahasiswa mampu menjelaskan konsep algoritma Backtracking dan Branch-and-Bound, serta mengaplikasikannya dalam pemecahan masalah algoritmik dengan baik dan benar
	Sub- CPMK9	Mahasiswa mampu menjelaskan konsep pemrograman dinamis, melakukan analisis kompleksitas waktu, dan mengaplikasikan pemrograman dinamis dalam pemecahan masalah algortimik dengan baik dan benar
	Sub- CPMK10	Mahasiswa mampu menjelaskan jenis-jenis permasalahan algoritmik dalam Ilmu Komputer, mengklasifikasikan masalah dalam kelas kompleksitas (P, NP, NP-Complete, dan NP-Hard), serta menentukan strategi algoritma yang tepat dalam pemecahan masalah algoritmik dengan baik dan benar
Deskripsi Singkat MK		l h ini mempelajari tentang perancangan dan analisis algoritma, yang mencakup pembahasan mengenai jenis-jenis permasalahan algoritmik komputer, analisis efisiensi yaitu kompleksitas waktu dan ruang algoritma, strategi-strategi perancangan algoritma, dan keterbatasan

Bahan	Kajian:	Conquer, kompleksit	Decrease-and-Conquer, Trans as algoritma (Teori P, NP, da rancangan algoritma, serta man	form-and-Conquer, in NP-Complete). Se	Greedy, Backtra telah mengikuti r teknik perancang	has mencakup strategi Brute lacking, Branch and Bound, I mata kuliah ini, mahasiswa dih gan algoritma untuk menyelesail teri Pembelajaran:	Dynamic Programming, arapkan memahami berba	serta kelas agai macam	
	i Pembelajaran	Pengenalar	n macam-macam strategi algori algoritma dan analisis komplel		tian Mod	dul ajar			
Pustal	ка	Utama:	Utama: Introduction to the Design & Analysis of Algorithms, Anany Levitin, Pearson Education, Inc.						
		Pendukun	 Pendukung: Slide Kuliah Strategi Algoritma, oleh Rinaldi Munir, Institut Teknologi Bandung Slide Analysis of Algorithms, Robert Sedgewick 						
Dosen	Pengampu	Ni Luh De	Ni Luh Dewi Sintiari, Ph.D.						
Matak	uliah syarat	Struktur Da	ata dan Algoritma						
Mg Ke-	Kemampuan tahapan b	elajar	Penilaia	1	Bantuk Pembelajaran, Metode Pembelajaran, Penugasan Mahasiswa, [Estimasi Waktu]		Materi Pembelajaran [Pustaka]	Bobot Penilaian	
	(Sub-CPMK)		Indikator	Kriteria & Bentuk	Luring (offlin	ne) Daring (online)		(%)	
(1)	(2)		(3)	(4)	(5)	(6)	(7)	(8)	
1	Mahasiswa man menjelaskan tah desain dan anali algoritma denga	iapan isis	 Ketepatan dalam menuliskan algoritma sederhana dengan benar Ketepatan dalam menjelaskan tahapan proses perancangan 	Bentuk Penilaian: Non-tes, tanya-jawab lisan	Bentuk Pembelajaran: Kegiatan Prose Belajar [3x50'] Metode	es id	 Kontrak kuliah Pengantar desain dan analisis algoritma Jenis-jenis algoritma 	5%	

		algoritma 3. Ketepatan dalam menjelaskan tahapan analisis algoritma 4. Ketepatan dalam menjelaskan permasalahan- permasalahan algoritmik penting dalam Ilmu Komputer 5. Ketepatan dalam menyebutkan macam- macam strategi perancangan algoritma 6. Ketepatan dalam menjelaskan definisi kebenaran algoritma beserta teknik untuk membuktikan kebenaran suatu algoritma		Pembelajaran: Diskusi, tanya- jawab, penugasan Tugas 1: Penulisan makalah ilmiah aplikasi strategi algoritma (Waktu pengerjaan 12 minggu)		Contoh permasalahan dalam Ilmu Komputer	
2	Mahasiswa mampu menghitung kompleksitas waktu algoritma (worst- case, best-case, average- case), menggunakan notasi Big-O, Big-Omega, dan Big-Theta, dan mengklasifikasikan algoritma berdasarkan kompleksitas waktunya dengan benar	1. Ketepatan dalam menjelaskan konsep dan urgensi dari penghitungan kompleksitas waktu algoritma 2. Ketepatan dalam menghitung fungsi kompleksitas waktu algoritma. 3. Ketepatan dalam menghitung kompleksitas waktu kompleksitas waktu algoritma.	Bentuk Penilaian: Tanya-jawab lisan Quiz Tugas	Bentuk Pembelajaran: Kegiatan Proses Belajar [3x50'] Metode Pembelajaran: Diskusi, tanya- jawab, presentasi, penugasan Tugas 2: Penghitungan	Media: elearning.undiksha.ac. id	 Penghitungan kompleksitas waktu worst-case, best-case, dan average-case algoritma Notasi asimptotik (big-O, big-Theta, dan big-Omega) beserta operasinya Kelas algoritma berdasarkan fungsi kompleksitas 	7%

		worst-case, best-case, dan average-case suatu algoritma		kompleksitas waktu algoritma dan pembuktian		waktunya	
		4. Ketepatan dalam		sifat-sifat dengan			
		menuliskan		notasi asimptotik			
		kompleksitas waktu		P.S.S.			
		dengan notasi asimptotik					
		(Big-O, Big-Sigma, Big-					
		Omega)					
		5. Ketepatan dalam					
		menghitung operasi					
		aritmetik dengan notasi					
		asimptotis 6. Ketepatan dalam					
		membuktikan secara					
		matematis sifat-sifat					
		sederhana dari operasi					
		aritmetik dengan notasi					
		asimptotis					
		7. Ketepatan dalam					
		mengelompokkan					
		algoritma menjadi kelas					
		algoritma berdasarkan kompleksitas waktunya					
		(linier, polinomial,					
		logaritmik,					
		eksponensial, dsb.)					
3	Mahasiswa mampu		Bentuk Penilaian:	<u>Bentuk</u>	Media:	1. Pengenalan strategi	5%
	menjelaskan tentang	1. Ketepatan dalam	• Tanya-jawab	<u>Pembelajaran:</u>	elearning.undiksha.ac.	brute-force	
	konsep strategi brute-	menjelaskan prinsip	lisan	Kegiatan Proses	id	2. Pembuktian	
	force/exhaustive search	dasar dan karakteristik	Presentasi	Belajar [3x50']		kebenaran dan	
	dan teknik heuristik	algoritma brute-force	materi	Matada		penghitungan	
	dengan baik, menganalisis	2. Ketepatan dalam	• Tugas	<u>Metode</u>		kompleksitas waktu	

,,,,,,	1	2.11.	
kebenaran dan	merancang algoritma	<u>Pembelajaran:</u>	algoritma brute-
kompleksitas waktu	brute-force untuk	Diskusi, tanya-	force
algoritma brute-force, serta	menyelesaikan	jawab, presentasi,	3. Strategi exhaustive
mengaplikasikan strategi	permasalahan	penugasan	search untuk
tersebut dalam pemecahan	algoritmik sederhana,		permasalahan
masalah dengan baik dan	seperti: mencari nilai	Tugas 3:	kombinatorial
benar	maksimum/minimum	Mendesain	
	pada array, sequential	algoritma brute-	
	search, menghitung	force untuk	
	perpangkatan bilangan,	menyelesaikan	
	menghitung nilai	permasalahan	
	faktorial, perkalian	algoritmik	
	matriks persegi,	sederhana, dan	
	pengecekan bilangan	menganalisis	
	prima, interpolasi	kebenaran dan	
	polinom, mencari	kompleksitas	
	pasangan titik terdekat,	waktunya	
	dan pattern matching,		
	dll.		
	3. Ketepatan dalam		
	menghitung		
	kompleksitas waktu		
	algoritma Brute-force		
	4. Ketepatan dalam		
	memodifikasi algoritma		
	Brute-force untuk		
	meningkatkan		
	efisiensinya		
	5. Ketepatan dalam		
	merancang algoritma		
	exhaustive search untuk		
	menyelesaikan		
	, ,		
	permasalahan		

4	kombinatorial, seperti: Traveling Salesman Problem dan 1/0 Knapsack problem	Bentuk Penilaian:	Bentuk	Media:	Teknik heuristik	4%
-	1. Ketepatan dalam menjelaskan implementasi teknik heuristik pada algoritm untuk meningkatkan efisiensi strategi Bruteforce, seperti pada permasalahan anagram dan magic square 2. Ketepatan dalam menyebutkan kelebiha dan kekurangan dari metode brute force 3. Ketepatan dalam menjelaskan tahapan algoritma pengurutan berbasis Brute-Force, seperti Selection sort, Bubble sort, dan Insertion sort 4. Ketepatan dalam membuktikan kebenaran algoritma Selection sort, Bubble sort, dan Insertion sort dengan menggunakan loop-invariant	 Tanya-jawab lisan Presentasi materi Tugas 	Pembelajaran: Kegiatan Proses Belajar [3x50'] Metode Pembelajaran: Diskusi, tanya- jawab, presentasi, penugasan Tugas 4: Implementasi algoritma sorting pada Bahasa pemrograman	elearning.undiksha.ac. id	untuk peningkatan efisiensi algoritma brute-force 2. Algoritma sorting berbasis brute-force (Selection Sort, Bubble Sort, dan Insertion Sort) 3. Pembuktian dengan metode loop- invariant 4. Program komputer untuk implementasi algoritma brute- force	470

		 5. Ketepatan dalam mengaplikasikan algoritma Selection Sort, Bubble Sort, dan Insertion sort dalam pemecahan masalah 6. Ketepatan dalam membuat program implementasi algoritma sorting pada pemecahan masalah 					
5	Mahasiswa mampu menjelaskan konsep algoritma rekursif, menuliskan pseudocode, menganalisis kebenaran, memformulasikan bentuk rekursif dari fungsi kompleksitas waktunya dan menghitung rumus eksplisit fungsi tersebut, serta mengaplikasikan metode rekursif dalam pemecahan masalah dan mengimplementasikannya dalam program komputer dengan baik dan benar	1. Ketepatan dalam menjelaskan prinsip strategi rekursif, karakteristik algoritma rekursif, serta perbedaannya dengan algoritma brute-force 2. Ketepatan dalam merancang algoritma rekursif untuk menyelesaikan permasalahan algoritmik sederhana, seperti menghitung faktorial, mencari nilai maksimum pada array, dan menghitung jumlah elemen pada array 3. Ketepatan dalam menjelaskan tahapan	Bentuk Penilaian: Tanya-jawab lisan Presentasi materi Tugas	Bentuk Pembelajaran: Kegiatan Proses Belajar [3x50'] Metode Pembelajaran: Diskusi, tanya- jawab, presentasi, penugasan Tugas 5: Penyelesaian masalah algoritmik sederhana dengan metode rekursif, dan implementasinya dalam Bahasa pemrograman	Media: elearning,undiksha.ac. id	 Pengenalan strategi rekursif Penyelesaian masalah Menara Hanoi Binary search Pembuktian kebenaran algoritma rekursif dengan induksi matematika Analisis efisiensi waktu algoritma rekursif Implementasi algoritma rekursif dalam bentuk program komputer 	8%

algorima rekursif untuk menyelesaikan masalah Menara Hanoi 4. Ketepatan dalam menjelaskan tahapan algoritma rekursif pada Binary Search 5. Ketepatan dalam menjelaskan tahapan algoritma rekursif untuk menghitung perpangkatan 6. Ketepatan dalam membuktikan kebenaran dari algoritma rekursif dengan menggunakan induksi matematika 7. Ketepatan dalam menyatakan fungsi kompleksitas waktu dalam formula rekursif dan menghitungs bentuk fungsi ekplisitnya Ketepatan dalam menyatakan redundansi algoritma rekursif dan menghitung bentuk fungsi ekplisitnya Ketepatan dalam menjelaskan redundansi algoritma rekursif pada algoritma rekursif pada algoritma konstruksi barisan Fibonacci			 	
menyelesaikan masalah Menara Hanoi 4. Ketepatan dalam menjelaskan tahapan algoritma rekursif pada Binary Search 5. Ketepatan dalam menjelaskan tahapan algoritma rekursif untuk menghitung perpangkatan 6. Ketepatan dalam membuktikan membuktikan kebenaran dari algoritma rekursif dengan menggunakan induksi matematika 7. Ketepatan dalam menyatakan fungsi kompleksitas waktu dalam formula rekursif dan menghitunge horuk fungsi ekplisitnya Ketepatan dalam menyatakan fungsi kompleksitas waktu dalam formula rekursif dan menghitung bentuk fungsi ekplisitnya Ketepatan dalam menjelaskan redundansi algoritma rekursif pada algoritma rekursif pada algoritma rekursit pada algoritma rekursit pada	algoritma rekursif untuk			
Menara Hanoi 4. Ketepatan dalam menjelaskan tahapan algoritma rekursif pada Binary Search 5. Ketepatan dalam menjelaskan tahapan algoritma rekursif untuk menghitung perpangkatan 6. Ketepatan dalam membuktikan kebenaran dari algoritma rekursif dengan menggunakan induksi matematika 7. Ketepatan dalam menyatakan fungsi kompleksitas waktu dalam formula rekursif dan menghitung bentuk fungsi ekplisitnya Ketepatan dalam menjelaskan redundansi algoritma rekursif pada algoritma konstruksi barisan Fibonacci				
menjelaskan tahapan algoritma rekursif pada Binary Search 5. Ketepatan dalam menjelaskan tahapan algoritma rekursif untuk menghitung perpangkatan 6. Ketepatan dalam membuktikan kebenaran dari algoritma rekursif dengan menggunakan induksi matematika 7. Ketepatan dalam menyatakan fungsi kompleksitas waktu dalam formula rekursif dan menghitung bentuk fungsi ekplisitnya Ketepatan dalam menjelaskan redundansi algoritma rekursif pada algoritma rekursif pada algoritma konstruksi barisan Fibonacci				
menjelaskan tahapan algoritma rekursif pada Binary Search 5. Ketepatan dalam menjelaskan tahapan algoritma rekursif untuk menghitung perpangkatan 6. Ketepatan dalam membuktikan kebenaran dari algoritma rekursif dengan menggunakan induksi matematika 7. Ketepatan dalam menyatakan fungsi kompleksitas waktu dalam formula rekursif dan menghitung bentuk fungsi ekplisitnya Ketepatan dalam menjelaskan redundansi algoritma rekursif pada algoritma rekursif pada algoritma konstruksi barisan Fibonacci	4. Ketepatan dalam			
algoritma rekursif pada Binary Search 5. Ketepatan dalam menjelaskan tahapan algoritma rekursif untuk menghitung perpangkatan 6. Ketepatan dalam membuktikan membuktikan kebenaran dari algoritma rekursif dengan menggunakan induksi matematika 7. Ketepatan dalam menyatakan fungsi kompleksitas waktu dalam formula rekursif dan menghitung bentuk fungsi ekplisitnya Ketepatan dalam menjelaskan redundansi algoritma rekursif pada algoritma konstruksi barisan Fibonacci				
Binary Search 5. Ketepatan dalam menjelaskan tahapan algoritma rekursif untuk menghitung perpangkatan 6. Ketepatan dalam membuktikan kebenaran dari algoritma rekursif dengan menggunakan induksi matematika 7. Ketepatan dalam menyatakan fungsi kompleksitas waktu dalam formula rekursif dan menghitung bentuk fungsi ekplisitnya Ketepatan dalam menjelaskan redundansi algoritma rekursif pada algoritma konstruksi barisan Fibonacci				
5. Ketepatan dalam menjelaskan tahapan algoritma rekursif untuk menghitung perpangkatan 6. Ketepatan dalam membuktikan kebenaran dari algoritma rekursif dengan menggunakan induksi matematika 7. Ketepatan dalam menyatakan fungsi kompleksitas waktu dalam formula rekursif dan mengfitung bentuk fungsi ekplisitnya Ketepatan dalam menjelaskan redundansi algoritma rekursif pada				
menjelaskan tahapan algoritma rekursif untuk menghitung perpangkatan 6. Ketepatan dalam membuktikan kebenaran dari algoritma rekursif dengan menggunakan induksi matematika 7. Ketepatan dalam menyatakan fungsi kompleksitas waktu dalam formula rekursif dan menghitung bentuk fungsi ekplisitnya Ketepatan dalam menjelaskan redundansi algoritma rekursif pada algoritma konstruksi barisan Fibonacci				
algoritma rekursif untuk menghitung perpangkatan 6. Ketepatan dalam membuktikan kebenaran dari algoritma rekursif dengan menggunakan induksi matematika 7. Ketepatan dalam menyatakan fungsi kompleksitas waktu dalam formula rekursif dan menghitung bentuk fungsi ekplisitnya Ketepatan dalam menjelaskan redundansi algoritma rekursif pada algoritma konstruksi barisan Fibonacci				
menghitung perpangkatan 6. Ketepatan dalam membuktikan kebenaran dari algoritma rekursif dengan menggunakan induksi matematika 7. Ketepatan dalam menyatakan fungsi kompleksitas waktu dalam formula rekursif dan menghitung bentuk fungsi ekplisitnya Ketepatan dalam menjelaskan redundansi algoritma konstruksi barisan Fibonacci				
perpangkatan 6. Ketepatan dalam membuktikan kebenaran dari algoritma rekursif dengan menggunakan induksi matematika 7. Ketepatan dalam menyatakan fungsi kompleksitas waktu dalam formula rekursif dan menghitung bentuk fungsi ekplisitnya Ketepatan dalam menjelaskan redundansi algoritma rekursif pada algoritma konstruksi barisan Fibonacci				
6. Ketepatan dalam membuktikan kebenaran dari algoritma rekursif dengan menggunakan induksi matematika 7. Ketepatan dalam menyatakan fungsi kompleksitas waktu dalam formula rekursif dan menghitung bentuk fungsi ekplisitnya Ketepatan dalam menjelaskan redundansi algoritma rekursif pada algoritma konstruksi barisan Fibonacci	porpanakatan			
membuktikan kebenaran dari algoritma rekursif dengan menggunakan induksi matematika 7. Ketepatan dalam menyatakan fungsi kompleksitas waktu dalam formula rekursif dan menghitung bentuk fungsi ekplisitnya Ketepatan dalam menjelaskan redundansi algoritma rekursif pada algoritma konstruksi barisan Fibonacci				
kebenaran dari algoritma rekursif dengan menggunakan induksi matematika 7. Ketepatan dalam menyatakan fungsi kompleksitas waktu dalam formula rekursif dan menghitung bentuk fungsi ekplisitnya Ketepatan dalam menjelaskan redundansi algoritma rekursif pada algoritma konstruksi barisan Fibonacci				
algoritma rekursif dengan menggunakan induksi matematika 7. Ketepatan dalam menyatakan fungsi kompleksitas waktu dalam formula rekursif dan menghitung bentuk fungsi ekplisitnya Ketepatan dalam menjelaskan redundansi algoritma rekursif pada algoritma konstruksi barisan Fibonacci				
dengan menggunakan induksi matematika 7. Ketepatan dalam menyatakan fungsi kompleksitas waktu dalam formula rekursif dan menghitung bentuk fungsi ekplisitnya Ketepatan dalam menjelaskan redundansi algoritma rekursif pada algoritma konstruksi barisan Fibonacci				
induksi matematika 7. Ketepatan dalam menyatakan fungsi kompleksitas waktu dalam formula rekursif dan menghitung bentuk fungsi ekplisitnya Ketepatan dalam menjelaskan redundansi algoritma rekursif pada algoritma konstruksi barisan Fibonacci				
7. Ketepatan dalam menyatakan fungsi kompleksitas waktu dalam formula rekursif dan menghitung bentuk fungsi ekplisitnya Ketepatan dalam menjelaskan redundansi algoritma rekursif pada algoritma konstruksi barisan Fibonacci				
menyatakan fungsi kompleksitas waktu dalam formula rekursif dan menghitung bentuk fungsi ekplisitnya Ketepatan dalam menjelaskan redundansi algoritma rekursif pada algoritma konstruksi barisan Fibonacci				
kompleksitas waktu dalam formula rekursif dan menghitung bentuk fungsi ekplisitnya Ketepatan dalam menjelaskan redundansi algoritma rekursif pada algoritma konstruksi barisan Fibonacci				
dalam formula rekursif dan menghitung bentuk fungsi ekplisitnya Ketepatan dalam menjelaskan redundansi algoritma rekursif pada algoritma konstruksi barisan Fibonacci				
dan menghitung bentuk fungsi ekplisitnya Ketepatan dalam menjelaskan redundansi algoritma rekursif pada algoritma konstruksi barisan Fibonacci				
fungsi ekplisitnya Ketepatan dalam menjelaskan redundansi algoritma rekursif pada algoritma konstruksi barisan Fibonacci				
Ketepatan dalam menjelaskan redundansi algoritma rekursif pada algoritma konstruksi barisan Fibonacci				
menjelaskan redundansi algoritma rekursif pada algoritma konstruksi barisan Fibonacci				
algoritma rekursif pada algoritma konstruksi barisan Fibonacci				
algoritma konstruksi barisan Fibonacci				
barisan Fibonacci				
8. Ketepatan dalam				
menuliskan pseudocode				
algoritma rekursif untuk				
mengatasi tumpang	mengatasi tumpang			

		tindih (<i>overlap</i>) komputasi 9. Ketepatan dalam membuat program/implementasi algoritma rekursif dan melakukan analisis efisiensi berdasarkan eksperimen					
6	Mahasiswa mampu menjelaskan strategi Divide-and-Conquer, Decrease-and-Conquer, dan Transform-and- Conquer, menuliskan pseudocode, menganalisis kebenaran dan menghitung fungsi kompleksitas waktu algoritma, serta mengaplikasikan ketiga strategi tersebut dalam pemecahan masalah dengan baik dan benar	 Ketepatan dalam menjelaskan prinsip algoritma divide-and-conquer, dan mengaplikasikannya untuk menyelesaikan permasalahan algoritmik Ketepatan dalam menghitung kompleksitas waktu algoritma divide-and-conquer Ketepatan dalam menjelaskan algoritma pengurutan data berbasis divide-and-conquer, yaitu: merge sort dan quick sort Ketepatan dalam menggunakan Teorema Master untuk 	Bentuk Penilaian: Tanya-jawab lisan Presentasi materi Tugas teori	Bentuk Pembelajaran: - Kegiatan Proses Belajar [3x50'] - Tugas mandiri [3x50'] Metode Pembelajaran: Diskusi, tanya- jawab, presentasi, penugasan Tugas 6: Implementasi algoritma divide- conquer pada permasalahan perkalian dua polinomial	Media: elearning.undiksha.ac .id	 Pengenalan strategi divide-and-conquer Analisis kompleksitas waktu algoritma divide-and-conquer Merge Sort dan Quick Sort Teorema Master Metode Strassen untuk perkalian matriks Metode Karatsuba untuk perkalian bilangan besar 	7%

	menghitung kompleksitas waktu algoritma divide-and- conquer 5. Ketepatan dalam menjelaskan algoritma Divide-and-Conquer untuk perkalian matriks persegi, serta modifikasi algoritma untuk meningkatkan efisiensi, melalui algoritma perkalian matriks Strassen 6. Ketepatan dalam menjelaskan algoritma Divide-and-Conquer untuk perkalian bilangan besar, serta modifikasi algoritma untuk meningkatkan efisiensi, melalui perkalian Karatsuba					
7	1. Ketepatan dalam menjelaskan prinsip strategi Decrease-and-Conquer, serta perbedaanya dengan strategi Divide-and-Conquer 2. Ketepatan dalam menjelaskan pendekatan	Bentuk Penilaian: Tanya-jawab lisan Presentasi materi Quiz Tugas	Bentuk Pembelajaran: Kegiatan Proses Belajar [3x50'] Metode Pembelajaran: Diskusi, tanya- jawab, presentasi,	Media: elearning.undiksha.ac. id	 Pengenalan strategi decrease-and- conquer serta jenis- jenis pendekatannya Pengenalan strategi transform-and- conquer serta jenis- jenis 	6%

		'decrease by a		penugasan		pendekatannya	
		constant', 'decrease by					
		constant factor', dan		<u>Tugas 7</u> :			
		'decrease by variable		Implementasi			
		size', serta		algoritma			
		mengaplikasikannya		decrease-conquer			
		dalam pemecahan		dan transform-			
		masalah.		conquer pada			
		3. Ketepatan dalam		permasalahan			
		menjelaskan prinsip		algoritmik			
		Transform-and-Conquer					
		dan perbedaannya					
		dengan Divide-and					
		Conquer dan Decrease-					
		and-Conquer					
		4. Ketepatan dalam					
		menjelaskan pendekatan					
		'instance					
		'representation change',					
		dan 'problem					
		reduction', serta					
		mengaplikasikannya					
		dalam pemecahan					
		masalah					
8	Evaluasi Tengah Semester				T =		10%
9	Mahasiswa mampu	1. Ketepatan dalam	Bentuk Penilaian:	Bentuk Bentuk	Media:	1. Pengenalan strategi	5%
	menjelaskan konsep	menjelaskan prinsip	• Tanya-jawab	<u>Pembelajaran:</u>	elearning.undiksha.ac.	Greedy	
	algoritma Greedy,	dasar algoritma Greedy	lisan	Kegiatan Proses	id	2. Implementasi	
	membuktikan optimalitas	2. Ketepatan dalam	• Presentasi	Belajar [3x50']		strategi Greedy	
	atau menunjukkan ketak-	menjelaskan dan	materi	36 . 1		dalam pemecahan	
	optimalan algoritma	mengidentifikasi	• Tugas	<u>Metode</u>		masalah	
	Greedy, mengaplikasikan	komponen algoritma		Pembelajaran:		3. Analisis optimalitas	
	metode Greedy dalam	Greedy melalui contoh		Diskusi, tanya-		algoritma Greedy	

	pemecahan masalah dan	3. Ketepatan dalam		jawab, presentasi,			
	mengimplementasikannya	menuliskan pseudocode					
	dalam program komputer	skema algoritma Greedy		penugasan			
				Tugo 0.			
	dengan baik dan benar	4. Ketepatan dalam		Tugas 8:			
		mengaplikasikan		Implementasi			
		strategi Greedy untuk		algoritma Greedy			
		menyelesaikan		untuk			
		permasalahan optimasi		menyelesaikan			
		sederhana, seperti: Coin		masalah optimisasi			
		exchange problem,		sederhana			
		Activity selection					
		problem, Time					
		minimization in the					
		system.					
		5. Ketepatan dalam					
		membuktikan					
		keoptimalan atau					
		menujukkan ketak-					
		optimalan algoritma					
		Greedy yang dirancang					
		secara formal					
10		1. Ketepatan dalam	Bentuk Penilaian:	Bentuk	Media:	1. Penyelesaian	5%
		menjelaskan strategi	Tanya-jawab	Pembelajaran:	elearning.undiksha.ac.	masalah 1/0	
		Greedy untuk	lisan	Kegiatan Proses	id	Knapsack dengan	
		penyelesaian masalah	Presentasi	Belajar [3x50']		strategi Greedy	
		1/0 Knapsack, dengan	materi	, , , , , , , , , , , , , , , , , , ,		2. Penyelesaian	
		pendekatan <i>Greedy by</i>	Tugas tertulis	Metode		masalah Fractional	
		profit, Greedy by	9	Pembelajaran:		Knapsack dengan	
		weight, dan Greedy by		Diskusi, tanya-		strategi Greedy	
		density.		jawab, presentasi,		3. Konstruksi kode	
		2. Ketepatan dalam		penugasan		Huffman dengan	
		menjelaskan strategi		Penagasan		strategi Greedy	
		Greedy untuk Fractional		Tugas 9:		4. Analisis optimalitas	
		Greedy untuk Practional		<u>rugas 5</u> .		Miansis optimalitas	

	Knapsack Problem, dengan pendekatan Greedy by profit, Greedy by weight, dan Greedy by density. 3. Ketepatan dalam membuktikan bahwa ketiga pendekatan Greedy pada masalah 1/0 Knapsack tidak selalu memberikan solusi optimal. 4. Ketepatan dalam menjelaskan tahapan konstruksi kode Huffman dengan strategi Greedy 5. Ketepatan dalam menerapkan algoritma Huffman untuk masalah		Membuktikan keoptimalan/ketak -optimalan algoritma Greedy dalam pemecahan masalah		dari algoritma yang dirancang untuk ketiga permasalahan tersebut	
11	encoding sederhana 1. Ketepatan dalam menjelaskan tahapan penyelesaian masalah Minimum Spanning Tree dengan algoritma Prim 2. Ketepatan dalam menjelaskan tahapan penyelesaian masalah Minimum Spanning	Bentuk Penilaian: Tanya-jawab lisan Presentasi materi Tugas membuat video	Bentuk Pembelajaran: Kegiatan Proses Belajar [3x50'] Metode Pembelajaran: Diskusi, tanya- jawab, presentasi, penugasan	Media: elearning.undiksha.ac. id	 Algoritma Prim untuk Minimum Spanning Tree Algoritma Kruskal untuk Minimum Spanning Tree Algoritma Dijkstra untuk Shortest Path 	5%
	Tree dengan algoritma Kruskal		Tugas 10:			

		3. Ketepatan dalam menjelaskan mengapa algoritma Prim dan Kruskal memberikan hasil optimal untuk masalah Minimum Spanning Tree 4. Ketepatan dalam menjelaskan tahapan algoritma Dijkstra untuk menyelesaikan masalah Shortest Path 5. Ketepatan dalam menjelaskan mengapa algoritma Dijkstra memberikan hasil optimal untuk masalah Shortest Path 6. Ketepatan dalam mengapikasikan algoritma Prim, Kruskal, dan Dijkstra untuk menyelesaikan masalah terkait pada graf sederhana		Membuat video penjelasan contoh algoritma untuk MST dan Shortest Path			
12	Mahasiswa mampu menjelaskan metode BFS dan DFS dengan baik, menganalisis kompleksitas waktu dan ruang melalui contoh riil, dan mengaplikasikan metode BFS dan DFS dalam	1. Ketepatan dalam menjelaskan tahapan algoritma BFS pada struktur <i>tree dan</i> struktur graf yang bukan <i>tree</i> 2. Ketepatan dalam menjelaskan tahapan	Bentuk Penilaian: Tanya-jawab lisan Presentasi materi Tugas	Bentuk Pembelajaran: Kegiatan Proses Belajar [3x50'] Metode Pembelajaran: Diskusi, tanya-	Media: elearning.undiksha.ac .id	 Strategi BFS dan DFS, serta analisis efisiensinya Pembangunan pohon ruang status pada graf dinamis dengan metode BFS dan DFS 	5%

	pembentukan pohon ruang status pada algoritma graf dinamis dengan baik dan benar	algoritma DFS pada struktur <i>tree</i> dan struktur graf yang bukan <i>tree</i> 3. Ketepatan dalam menjelaskan definisi dan komponen pohon		jawab, presentasi, penugasan Tugas 11: Pembangunan pohon ruang status untuk		3. Penyelesaian permainan 8-puzzle	
		ruang status pada graf dinamis 4. Ketepatan dalam menjelaskan prosedur pembangunan pohon ruang status dengan strategi BFS dan DFS 5. Ketepatan dalam menyelesaikan masalah		menyelesaikan masalah algoritmik dengan struktur graf dinamis			
		 8-puzzle game melalui pembangunan pohon ruang status. 6. Ketepatan dalam menjelaskan perbandingan efisiensi dari strategi BFS dan DFS 					
13	Mahasiswa mampu menjelaskan konsep algoritma Backtracking dan Branch-and-Bound, serta mengaplikasikannya dalam pemecahan masalah algoritmik dengan baik dan benar	1. Ketepatan dalam menjelaskan prinsip dasar strategi backtracking serta keterkaitannya dengan strategi DFS 2. Ketepatan dalam menjelaskan langkahlangkah penyelesaian	Bentuk Penilaian: Tanya-jawab lisan Presentasi materi Tugas	Bentuk Pembelajaran: Kegiatan Proses Belajar [3x50'] Metode Pembelajaran: Diskusi, tanya- jawab, presentasi,	Media: elearning.undiksha.ac .id	 Pengenalan strategi backtracking Penyelesaian masalah n-ratu dengan strategi backtracking Pencarian sirkuit Hamilton dengan strategi 	6%

		masalah penempa		penugasan		backtracking	
		ratu pada papan odengan algoritma backtracking 3. Ketepatan dalam menjelaskan Langlangkah penyeles masalah sirkuit Hamilton dengan algoritma backtra 4. Ketepatan dalam menjelaskan prindasar strategi braand-bound dan perbedaannya der strategi backtrack 5. Ketepatan dalam menjelaskan taha penyelesaian masa 1/0 Knapsack der	gkah- paian cking sip nch- ngan ing	Tugas 12: Membuat program computer secara berkelompok dengan materi algoritma backtracking dan branch-and-bound untuk penyelesaian masalah optimisasi		4. Pengenalan strategi branch-and-bound 5. Penyelesaian masalah 1/0 Knapsack dengan strategi branch-and-bound	
		algoritma branch	and-				
14	Mahasiswa mampu menjelaskan konsep pemrograman dinamis, melakukan analisis kompleksitas waktu, dan mengaplikasikan pemrograman dinamis dalam pemecahan masalah algortimik dengan baik dan benar	bound 1. Ketepatan dalam menjelaskan prin dasar strategi pemrograman dir (dynamic programa) 2. Ketepatan dalam menjelaskan menjelaskan "Pri Optimalitas" pada pemrograman dir 3. Ketepatan dalam	lisan Presentasi materi Tugas	Bentuk Pembelajaran: Kegiatan Proses Belajar [3x50'] Metode Pembelajaran: Diskusi, tanya- jawab, presentasi, penugasan	Media: elearning.undiksha.ac .id	 Pengenalan konsep dan tahapan pemrograman dinamis Penggunaan program dinamis untuk pemecahan masalah algoritmik sederhana. Penyelesaian 1/0 Knapsack dengan 	7%

		menjelaskan tahapan pemrograman dinamis untuk menyelesaikan beberapa masalah sederhana, seperti: "Coin-row problem, Change-making problem, dan Coin collecting problem" 4. Ketepatan dalam menjelaskan tahapan pemrograman dinamis untuk menyelesaikan masalah Knapsack 5. Ketepatan dalam menjelaskan konsep "Memory functions" untuk meningkatkan efisiensi pemrograman dinamis pada Knapsack problem, dan masalah algoritmik lainnya		Tugas 13: Implementasi pemrograman dinamis pada masalah algoritmik sederhana		pemrograman dinamis, dan konsep "Memory functions" untuk peningkatan efisiensi	
15	Mahasiswa mampu menjelaskan jenis-jenis permasalahan algoritmik dalam Ilmu Komputer, mengklasifikasikan masalah dalam kelas kompleksitas (P, NP, NP- Complete, dan NP-Hard), serta menentukan strategi algoritma yang tepat dalam	1. Ketepatan dalam menjelaskan perbedaan algoritma deterministik dan non-deterministik 2. Ketepatan dalam menjelaskan perbedaan decision problem dan searching problems, decidable dan	Bentuk Penilaian: Tanya-jawab lisan Presentasi materi	Bentuk Pembelajaran: Kegiatan Proses Belajar [3x50'] Metode Pembelajaran: Diskusi, tanya- jawab, presentasi, penugasan	Media: elearning.undiksha.ac .id	 Jenis-jenis permasalahan algoritmik dalam Ilmu Komputer Kelas P, NP, NP- complete, dan NP- Hard Analisis kebutuhan dan batasan antara kecepatan dan 	5%

pemecahan masalah algoritmik dengan baik dan benar	intractable problems 3. Ketepatan dalam menjelaskan perbedaan kelas P, NP, NP-complete, dan NP-Hard 4. Ketepatan dalam memberikan sebuah contoh permasalahan yang diklasifikasan sebagai P, NP, NP-complete, atau NP-Hard dan menjelaskan mengapa masalah tersebut diklasifikan ke dalam kelas terkait 5. Ketepatan dalam menentukan pilihan algoritma untuk penyelesaian masalah berdasarkan urgensi kebutuhan dan batasan, antara kecepatan dan	Tugas 14: Presentasi makalah ilmiah penerapan strategi algoritma dalam pemecahan masalah	efisiensi pemakaian ruang memori untuk menentukan strategi algoritma
	kebutuhan dan batasan,		
16 Evaluasi Akhir Semester /	Ujian Akhir Semester		10%

Rujukan:

- 1. Introduction to The Design & Analysis of Algorithms, Anany Levitin, Pearson Education, Inc.
- 2. Slide Kuliah Strategi Algoritma, oleh Rinaldi Munir, Institut Teknologi Bandung.
- 3. Slide Analysis of Algorithms, Robert Sedgewick.
- 4. Modul Kuliah DAA, Made Windu Antara Kesiman, Universitas Pendidikan Ganesha.