Bap. 1 (7305)

- 1. Запишите матрицу линейного оператора L в базисе u, если известно: $L(u_1)=3u_1-u_2;\ L(u_2)=u_2+u_3;\ L(u_3)=u_2+u_3.$
- **2.** В стандартном базисе пространства \mathbb{R}^3 . найдите матрицу оператора L, если $L(v) = v \times (1,6,9)^T$ (здесь \times обозначает векторное произведение).
- **3.** Пусть V линейное пространство всех симметричных многочленов степени не выше двух над $\mathbb R$ от двух переменных x и y. Выберите базис в пространстве V и найдите матрицу оператора L в этом базисе, если $L(f)(x,y)=(-x-5y)\frac{\partial f}{\partial x}+(-5x-y)\frac{\partial f}{\partial y}.$

Bap. 3 (7305)

- **1.** Запишите матрицу линейного оператора L в базисе u, если известно: $L(u_1)=u_1-u_3;\ L(u_2)=-u_1+u_2+u_3;\ L(u_3)=-u_1-u_2+2u_3.$
- 2. Пусть L оператор осевой симметрии относительно прямой x=y. Найдите его матрицу в стандартном базисе
- 3. Пусть $V = \{p(t)\sin(5t) + q(t)\cos(5t) \mid p,q$ многочлены, степени не выше первой $\}$ линейное пространство над \mathbb{R} . Выберите базис в пространстве V и найдите матрицу оператора L в этом базисе, если L оператор дифференцирования по переменной t.

Bap. 5 (7305)

- 1. Запишите матрицу линейного оператора L в базисе u, если известно: $L(u_1)=3u_1+u_2;\ L(u_2)=u_2-u_3;\ L(u_3)=-u_2+3u_3.$
- **2.** В стандартном базисе пространства \mathbb{R}^3 . найдите матрицу оператора L, если $L(v) = (1, -4, 7)^T \times v$ (здесь \times обозначает векторное произведение).
- 3. Пусть $V=\mathbb{C}^2$ линейное пространство над \mathbb{R} . Выберите базис в пространстве V и найдите матрицу оператора L в этом базисе, если $L(x)=\left(\begin{array}{ccc} -3+i & -3-4i \\ -4-3i & 4-9i \end{array}\right)x.$

Bap. 7 (7305)

- 1. Запишите матрицу линейного оператора L в базисе u, если известно: $L(u_1)=3u_1-u_2;$ $L(u_2)=u_1+2u_2+u_3;$ $L(u_3)=-u_1-u_2+3u_3.$
- **2.** Пусть L оператор ортогонального проектирования на прямую x=y. Найдите его матрицу в стандартном базисе.
- 3. Пусть V линейное пространство всех вещественных матриц 2×2 . Выберите базис в пространстве V и найдите матрицу оператора L в этом базисе, если $L(A)=\begin{pmatrix} -2 & 3 \\ -4 & -2 \end{pmatrix}\cdot A.$

Bap. 2 (7305)

- 1. Запишите матрицу линейного оператора L в базисе u, если известно: $L(u_1)=3u_1-u_2-u_3;$ $L(u_2)=3u_2+u_3;$ $L(u_3)=3u_3.$
- **2.** В стандартном базисе пространства \mathbb{R}^3 . найдите матрицу оператора L, если $L(v) = v 2\frac{(a,v)}{(a,a)}a$, где $a = (4,-2,-1)^T$, а $(,)$ обозначает стандартное скалярное произведение.
- 3. Пусть V линейное пространство всех вещественных матриц 2×2 со следом 0. Выберите базис в пространстве V и найдите матрицу оператора L в этом базисе, если $L(A) = \begin{pmatrix} 1 & -3 \\ -4 & -4 \end{pmatrix} \cdot A A \cdot \begin{pmatrix} 1 & -3 \\ -4 & -4 \end{pmatrix}$.

Bap. 4 (7305)

- 1. Запишите матрицу линейного оператора L в базисе u, если известно: $L(u_1)=3u_1-u_2+u_3;$ $L(u_2)=u_1+3u_2;$ $L(u_3)=-u_1-u_2+2u_3.$
- **2.** В стандартном базисе пространства \mathbb{R}^3 . найдите матрицу оператора L, если L(v) = (a, v)b (b, v)a, где $a = (-2, 3, 4)^T$, $b = (4, -1, 3)^T$.
- 3. Пусть V линейное пространство всех вещественных симметричных матриц 2×2 . Выберите базис в пространстве V и найдите матрицу оператора L в этом базисе, если $L(A) = \begin{pmatrix} 4 & -3 \\ 4 & 1 \end{pmatrix} \cdot A \cdot \begin{pmatrix} 4 & 4 \\ -3 & 1 \end{pmatrix}$.

Bap. 6 (7305)

- 1. Запишите матрицу линейного оператора L в базисе u, если известно: $L(u_1)=3u_1+u_3;$ $L(u_2)=u_1+3u_2-u_3;$ $L(u_3)=-u_2+3u_3.$
- **2.** В стандартном базисе пространства \mathbb{R}^3 . найдите матрицу оператора L, если $L(v) = v 2\frac{(a,v)}{(a,a)}a$, где $a = (-2,-3,4)^T$, а $(,)$ обозначает стандартное скалярное произведение.
- 3. Пусть V линейное пространство всех вещественных симметричных матриц 2×2 . Выберите базис в пространстве V и найдите матрицу оператора L в этом базисе, если $L(A) = \begin{pmatrix} -4 & -1 \\ -1 & 2 \end{pmatrix} \cdot A + A \cdot \begin{pmatrix} -4 & -1 \\ -1 & 2 \end{pmatrix}$.

Bap. 8 (7305)

- 1. Запишите матрицу линейного оператора L в базисе u, если известно: $L(u_1)=u_1-u_2+u_3;\ L(u_2)=2u_2-u_3;\ L(u_3)=u_1+u_2+2u_3.$
- **2.** В стандартном базисе пространства \mathbb{R}^3 . найдите матрицу оператора L, если L(v) = (a,v)b (b,v)a, где $a = (3,1,-1)^T$, $b = (-3,-2,-2)^T$.
- **3.** Пусть V линейное пространство всех симметричных многочленов степени не выше двух над $\mathbb R$ от двух переменных x и y. Выберите базис в пространстве V и найдите матрицу оператора L в этом базисе, если $L(f)(x,y)=(-5x-4y)\frac{\partial f}{\partial x}+(-4x-5y)\frac{\partial f}{\partial y}.$

Bap. 9 (7305)

- 1. Запишите матрицу линейного оператора L в базисе u, если известно: $L(u_1)=2u_1-2u_2+u_3;$ $L(u_2)=-u_1+3u_2;$ $L(u_3)=-u_1+2u_3.$
- **2.** В стандартном базисе пространства \mathbb{R}^3 . найдите матрицу оператора L, если $L(v) = v \times (-7, 3, -3)^T$ (здесь \times обозначает векторное произведение).
- 3. Пусть V линейное пространство всех вещественных матриц 2×2 со следом 0. Выберите базис в пространстве V и найдите матрицу оператора L в этом базисе, если $L(A) = \begin{pmatrix} 0 & -3 \\ 4 & -2 \end{pmatrix} \cdot A A \cdot \begin{pmatrix} 0 & -3 \\ 4 & -2 \end{pmatrix}.$

Bap. 11 (7305)

- **1.** Запишите матрицу линейного оператора L в базисе u, если известно: $L(u_1)=u_1-u_2;\ L(u_2)=u_2-u_3;\ L(u_3)=u_1+3u_3.$
- **2.** Пусть L оператор осевой симметрии относительно оси OX. Найдите его матрицу в стандартном базисе.
- 3. Пусть V линейное пространство всех вещественных симметричных матриц 2×2 . Выберите базис в пространстве V и найдите матрицу оператора L в этом базисе, если $L(A) = \begin{pmatrix} -2 & -3 \\ -2 & -4 \end{pmatrix} \cdot A \cdot \begin{pmatrix} -2 & -2 \\ -3 & -4 \end{pmatrix}$.

Bap. 13 (7305)

- 1. Запишите матрицу линейного оператора L в базисе u, если известно: $L(u_1)=2u_1-u_2+u_3;\ L(u_2)=u_2+u_3;\ L(u_3)=u_1+u_2+2u_3.$
- **2.** В стандартном базисе пространства \mathbb{R}^3 . найдите матрицу оператора L, если $L(v) = v \times (-3, 9, 2)^T$ (здесь \times обозначает векторное произведение).
- 3. Пусть V линейное пространство всех вещественных симметричных матриц 2×2 . Выберите базис в пространстве V и найдите матрицу оператора L в этом базисе, если $L(A) = \begin{pmatrix} -3 & 3 \\ 3 & -2 \end{pmatrix} \cdot A + A \cdot \begin{pmatrix} -3 & 3 \\ 3 & -2 \end{pmatrix}$.

Bap. 15 (7305)

- 1. Запишите матрицу линейного оператора L в базисе u, если известно: $L(u_1)=3u_1+u_2-u_3;\ L(u_2)=u_2-u_3;\ L(u_3)=-u_1+3u_3.$
- **2.** Пусть L оператор осевой симметрии относительно прямой x=-y. Найдите его матрицу в стандартном базисе.
- **3.** Пусть V линейное пространство всех симметричных многочленов степени не выше двух над $\mathbb R$ от двух переменных x и y. Выберите базис в пространстве V и найдите матрицу оператора L в этом базисе, если $L(f)(x,y)=(-x+5y)\frac{\partial f}{\partial x}+(5x-y)\frac{\partial f}{\partial y}.$

Bap. 10 (7305)

- 1. Запишите матрицу линейного оператора L в базисе u, если известно: $L(u_1)=2u_1;\ L(u_2)=u_1+u_2+u_3;\ L(u_3)=u_1+u_2+u_3.$
- **2.** В стандартном базисе пространства \mathbb{R}^3 . найдите матрицу оператора L, если $L(v)=v-2\frac{(a,v)}{(a,a)}a$, где $a=(3,4,-5)^T$, а $(,)$ обозначает стандартное скалярное произведение.
- 3. Пусть $V = \{e^{5t}p(t)\,|\, p$ многочлен, $\deg p \leqslant 3\}$ линейное пространство над \mathbb{R} . Выберите базис в пространстве V и найдите матрицу оператора L в этом базисе, если L оператор дифференцирования по переменной t.

Bap. 12 (7305)

- 1. Запишите матрицу линейного оператора L в базисе u, если известно: $L(u_1)=u_1+u_3;$ $L(u_2)=-u_1+3u_2-u_3;$ $L(u_3)=u_1-u_2+3u_3.$
- **2.** В стандартном базисе пространства \mathbb{R}^3 . найдите матрицу оператора L, если L(v) = (a,v)b (b,v)a, где $a = (4,-1,4)^T$, $b = (2,-3,-2)^T$.
- $a=(4,-1,4)^T,\,b=(2,-3,-2)^T.$ 3. Пусть $V=\mathbb{C}^2$ линейное пространство над \mathbb{R} . Выберите базис в пространстве V и найдите матрицу оператора L в этом базисе, если $L(x)=\begin{pmatrix} 8-4i & 6-9i \\ 3+6i & 7+4i \end{pmatrix}x.$

Bap. 14 (7305)

- 1. Запишите матрицу линейного оператора L в базисе u, если известно: $L(u_1)=2u_1-u_2-u_3;\ L(u_2)=u_2-u_3;\ L(u_3)=u_1+u_3.$
- **2.** В стандартном базисе пространства \mathbb{R}^3 . найдите матрицу оператора L, если $L(v) = v 2\frac{(a,v)}{(a,a)}a$, где $a = (-5,-4,5)^T$, а $(,)$ обозначает стандартное скалярное произведение.
- 3. Пусть V линейное пространство всех вещественных матриц 2×2 . Выберите базис в пространстве V и найдите матрицу оператора L в этом базисе, если $L(A) = \begin{pmatrix} 4 & -4 \\ -4 & -4 \end{pmatrix} \cdot A$.

Bap. 16 (7305)

- 1. Запишите матрицу линейного оператора L в базисе u, если известно: $L(u_1)=3u_1+u_3;\ L(u_2)=u_1+u_2+u_3;\ L(u_3)=-u_1-u_2+2u_3.$
- **2.** В стандартном базисе пространства \mathbb{R}^3 . найдите матрицу оператора L, если L(v) = (a,v)b (b,v)a, где $a = (-1,1,-2)^T$, $b = (3,5,5)^T$.
- 3. Пусть V линейное пространство всех вещественных матриц 2×2 со следом 0. Выберите базис в пространстве V и найдите матрицу оператора L в этом базисе, если $L(A) = \begin{pmatrix} 0 & 1 \\ -4 & 3 \end{pmatrix} \cdot A A \cdot \begin{pmatrix} 0 & 1 \\ -4 & 3 \end{pmatrix}.$

Bap. 17 (7305)

- 1. Запишите матрицу линейного оператора L в базисе u, если известно: $L(u_1)=2u_1-u_3;\ L(u_2)=u_1+u_2-u_3;\ L(u_3)=u_1+2u_3.$
- **2.** В стандартном базисе пространства \mathbb{R}^3 найдите матрицу оператора L, если $L(v) = v \times (-1, -3, -10)^T$ (здесь \times обозначает векторное произведение).
- 3. Пусть $V=\{e^{5t}p(t)\,|\, p$ многочлен, $\deg p\leqslant 3\}$ линейное пространство над $\mathbb R$. Выберите базис в пространстве V и найдите матрицу оператора L в этом базисе, если L оператор дифференцирования по переменной t.

Bap. 19 (7305)

- **1.** Запишите матрицу линейного оператора L в базисе u, если известно: $L(u_1) = u_1 + u_3$; $L(u_2) = u_1 + u_2$; $L(u_3) = u_2 + u_3$.
- **2.** Пусть L оператор осевой симметрии относительно прямой x=y. Найдите его матрицу в стандартном базисо
- 3. Пусть $V=\mathbb{C}^2$ линейное пространство над \mathbb{R} . Выберите базис в пространстве V и найдите матрицу оператора L в этом базисе, если $L(x)=\left(\begin{array}{ccc} -3-i & 7+4i \\ -2-i & 5+4i \end{array} \right)x.$

Bap. 21 (7305)

- 1. Запишите матрицу линейного оператора L в базисе u, если известно: $L(u_1)=2u_1-2u_2;$ $L(u_2)=-u_1+2u_2+u_3;$ $L(u_3)=u_3.$
- **2.** В стандартном базисе пространства \mathbb{R}^3 . найдите матрицу оператора L, если $L(v) = v \times (-4, 8, -5)^T$ (здесь \times обозначает векторное произведение).
- 3. Пусть V линейное пространство всех вещественных матриц 2×2 . Выберите базис в пространстве V и найдите матрицу оператора L в этом базисе, если $L(A)=\begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix}\cdot A$.

Bap. 23 (7305)

- 1. Запишите матрицу линейного оператора L в базисе u, если известно: $L(u_1) = u_1 2u_2$; $L(u_2) = -u_1 + u_2 u_3$; $L(u_3) = u_1 + u_2 + u_3$.
- **2.** Пусть L оператор осевой симметрии относительно оси OX. Найдите его матрицу в стандартном базисе.
- 3. Пусть V линейное пространство всех вещественных матриц 2×2 со следом 0. Выберите базис в пространстве V и найдите матрицу оператора L в этом базисе, если $L(A) = \begin{pmatrix} 0 & 1 \\ -4 & -4 \end{pmatrix} \cdot A A \cdot \begin{pmatrix} 0 & 1 \\ -4 & -4 \end{pmatrix}$.

Bap. 18 (7305)

- 1. Запишите матрицу линейного оператора L в базисе u, если известно: $L(u_1)=2u_1-u_2+u_3;\ L(u_2)=u_2-u_3;\ L(u_3)=-u_1+u_2+2u_3.$
- **2.** В стандартном базисе пространства \mathbb{R}^3 . найдите матрицу оператора L, если $L(v) = v 2\frac{(a,v)}{(a,a)}a$, где $a = (-1,5,-5)^T$, а $(,)$ обозначает стандартное скалярное произведение.
- 3. Пусть V линейное пространство всех вещественных симметричных матриц 2×2 . Выберите базис в пространстве V и найдите матрицу оператора L в этом базисе, если $L(A) = \begin{pmatrix} 4 & -1 \\ 2 & 2 \end{pmatrix} \cdot A \cdot \begin{pmatrix} 4 & 2 \\ -1 & 2 \end{pmatrix}$.

Bap. 20 (7305)

- 1. Запишите матрицу линейного оператора L в базисе u, если известно: $L(u_1)=3u_1+u_2;$ $L(u_2)=-u_1+3u_2+u_3;$ $L(u_3)=-u_2+3u_3.$
- **2.** В стандартном базисе пространства \mathbb{R}^3 . найдите матрицу оператора L, если L(v) = (a,v)b (b,v)a, где $a = (4,5,-4)^T$, $b = (-5,-4,5)^T$.
- 3. Пусть V линейное пространство всех вещественных симметричных матриц 2×2 . Выберите базис в пространстве V и найдите матрицу оператора L в этом базисе, если $L(A) = \begin{pmatrix} -3 & -2 \\ -2 & 3 \end{pmatrix} \cdot A + A \cdot \begin{pmatrix} -3 & -2 \\ -2 & 3 \end{pmatrix}$.

Bap. 22 (7305)

- 1. Запишите матрицу линейного оператора L в базисе u, если известно: $L(u_1)=3u_1+u_2-u_3;$ $L(u_2)=2u_2+u_3;$ $L(u_3)=-u_2+2u_3.$
- **2.** В стандартном базисе пространства \mathbb{R}^3 . найдите матрицу оператора L, если $L(v) = v 2\frac{(a,v)}{(a,a)}a$, где $a = (2,5,2)^T$, а $(,)$ обозначает стандартное скалярное произведение.
- **3.** Пусть V линейное пространство всех симметричных многочленов степени не выше двух над $\mathbb R$ от двух переменных x и y. Выберите базис в пространстве V и найдите матрицу оператора L в этом базисе, если $L(f)(x,y)=(-3x+2y)\frac{\partial f}{\partial x}+(2x-3y)\frac{\partial f}{\partial y}.$

Bap. 24 (7305)

- 1. Запишите матрицу линейного оператора L в базисе u, если известно: $L(u_1)=2u_1+u_2;$ $L(u_2)=-u_1+2u_2-u_3;$ $L(u_3)=-u_1+2u_3.$
- **2.** В стандартном базисе пространства \mathbb{R}^3 . найдите матрицу оператора L, если L(v)=(a,v)b-(b,v)a, где $a=(-5,-1,2)^T,\ b=(-2,-5,-2)^T.$ **3.** Пусть $V=\left\{e^{5t}p(t)\,|\,p\right.$ многочлен, $\deg p\leqslant 3\right\}$ —
- 3. Пусть $V = \{e^{5t}p(t)\,|\, p$ многочлен, $\deg p \leqslant 3\}$ линейное пространство над \mathbb{R} . Выберите базис в пространстве V и найдите матрицу оператора L в этом базисе, если L оператор дифференцирования по переменной t.

Bap. 25 (7305)

- 1. Запишите матрицу линейного оператора L в базисе u, если известно: $L(u_1)=u_1+u_2;\ L(u_2)=3u_2+u_3;\ L(u_3)=-u_1+u_2+u_3.$
- **2.** В стандартном базисе пространства \mathbb{R}^3 . найдите матрицу оператора L, если $L(v) = v \times (10, -6, -5)^T$ (здесь \times обозначает векторное произведение).
- 3. Пусть V линейное пространство всех вещественных симметричных матриц 2×2 . Выберите базис в пространстве V и найдите матрицу оператора L в этом базисе, если $L(A) = \begin{pmatrix} 3 & 1 \\ -2 & -2 \end{pmatrix} \cdot A \cdot \begin{pmatrix} 3 & -2 \\ 1 & -2 \end{pmatrix}$.

Bap. 27 (7305)

- **1.** Запишите матрицу линейного оператора L в базисе u, если известно: $L(u_1) = u_1 + u_3$; $L(u_2) = u_1 + 2u_2$; $L(u_3) = u_1 + u_2 + 2u_3$.
- **2.** Пусть L оператор ортогонального проектирования на прямую x=-y. Найдите его матрицу в стандартном базисе.
- 3. Пусть V линейное пространство всех вещественных симметричных матриц 2×2 . Выберите базис в пространстве V и найдите матрицу оператора L в этом базисе, если $L(A) = \begin{pmatrix} -4 & -4 \\ -4 & 2 \end{pmatrix} \cdot A + A \cdot \begin{pmatrix} -4 & -4 \\ -4 & 2 \end{pmatrix}$.

Bap. 29 (7305)

- 1. Запишите матрицу линейного оператора L в базисе u, если известно: $L(u_1)=3u_1-2u_2+u_3;$ $L(u_2)=-u_1+2u_2-u_3;$ $L(u_3)=u_1+3u_3.$
- **2.** В стандартном базисе пространства \mathbb{R}^3 . найдите матрицу оператора L, если $L(v) = v \times (3, -3, 8)^T$ (здесь \times обозначает векторное произведение).
- **3.** Пусть V линейное пространство всех симметричных многочленов степени не выше двух над $\mathbb R$ от двух переменных x и y. Выберите базис в пространстве V и найдите матрицу оператора L в этом базисе, если $L(f)(x,y)=(-3x-2y)\frac{\partial f}{\partial x}+(-2x-3y)\frac{\partial f}{\partial y}$.

Bap. 26 (7305)

- 1. Запишите матрицу линейного оператора L в базисе u, если известно: $L(u_1)=3u_1-u_3;$ $L(u_2)=-u_1+u_2+u_3;$ $L(u_3)=u_1+3u_3.$
- **2.** В стандартном базисе пространства \mathbb{R}^3 . найдите матрицу оператора L, если $L(v) = v 2\frac{(a,v)}{(a,a)}a$, где $a = (-4,5,-1)^T$, а $(,)$ обозначает стандартное скалярное произведение.
- 3. Пусть $V=\mathbb{C}^2$ линейное пространство над \mathbb{R} . Выберите базис в пространстве V и найдите матрицу оператора L в этом базисе, если $L(x)=\left(\begin{array}{ccc} -4-4i & 2-6i \\ 2+4i & -4+4i \end{array} \right)x.$

Bap. 28 (7305)

- 1. Запишите матрицу линейного оператора L в базисе u, если известно: $L(u_1)=3u_1-2u_2+u_3;$ $L(u_2)=-u_1+2u_2+u_3;$ $L(u_3)=-u_1-u_2+2u_3.$
- **2.** В стандартном базисе пространства \mathbb{R}^3 . найдите матрицу оператора L, если L(v) = (a,v)b (b,v)a, где $a = (-4,4,-3)^T$, $b = (-5,-3,3)^T$.
- 3. Пусть V линейное пространство всех вещественных матриц 2×2 . Выберите базис в пространстве V и найдите матрицу оператора L в этом базисе, если $L(A) = A \cdot \begin{pmatrix} 3 & 3 \\ 1 & -4 \end{pmatrix}$.

Bap. 30 (7305)

- 1. Запишите матрицу линейного оператора L в базисе u, если известно: $L(u_1) = u_1 + u_3$; $L(u_2) = u_1 + 3u_2 u_3$; $L(u_3) = u_2 + u_3$.
- **2.** В стандартном базисе пространства \mathbb{R}^3 . найдите матрицу оператора L, если $L(v)=v-2\frac{(a,v)}{(a,a)}a$, где $a=(-2,-3,2)^T$, а $(,)$ обозначает стандартное скалярное произведение.
- 3. Пусть V линейное пространство всех вещественных матриц 2×2 со следом 0. Выберите базис в пространстве V и найдите матрицу оператора L в этом базисе, если $L(A) = \begin{pmatrix} 0 & 3 \\ 3 & 1 \end{pmatrix} \cdot A A \cdot \begin{pmatrix} 0 & 3 \\ 3 & 1 \end{pmatrix}$.