A8(d)

Let λ be an eigenvalue of C, and let v be the corresponding eigenvector. By definition of eigenvalues and eigenvectors, we have:

$$Cv = \lambda v$$
.

Taking the quadratic form $v^{\top}Cv$, we substitute $Cv = \lambda v$:

$$v^{\top}Cv = v^{\top}(\lambda v).$$

Since λ is a scalar, we can factor it out:

$$v^{\top}Cv = \lambda(v^{\top}v).$$

Since C is PSD, it satisfies:

$$v^{\top}Cv \ge 0$$
 for all vectors v .

Substituting $v^{\top}Cv = \lambda(v^{\top}v)$, we get:

$$\lambda(v^{\top}v) \ge 0.$$

The term $v^{\top}v$ is the squared norm of v, which is strictly positive since $v \neq 0$ (by definition of an eigenvector). Thus:

$$\lambda > 0$$

Thus, all eigenvalues of C are non-negative.