Introdução à Computação

Sistemas de numeração: decimal, binária, hexadecimal

Objetivos

- Compreender a importância dos sistemas de numeração para o funcionamento dos computadores;
- Reconhecer os diferentes tipos de sistemas de numeração, bem como suas características e conversões.

Nesta unidade, vamos estudar os sistemas de numeração utilizados nos computadores: decimal, binário, octal e hexadecimal, bem como as conversões de um sistema para outro.

Representação eletrônica de dados: - sistemas de numeração

Os sistemas computacionais modernos baseiam-se no formato binário para armazenamento de dados. Nesse modelo, há apenas dois estados possíveis para representação de informação, zero ou um, correspondente a um bit. Naturalmente, um conjunto de bits possibilita a geração de alguma informação compreensível.

Partindo desse ponto, tudo que nos cerca baseia-se nesse princípio. Os dados trafegados pela Internet, arquivos em nosso disco rígido ou pendrive, músicas e filmes acessados pelo serviço de streaming, como o Netflix, enfim, tudo que pode ser visto e acessado por meio de um computador, smartphone, ou, de forma genérica, por meio de um aparelho eletrônico.

Outros formatos estão disponíveis para representação de informação, como o sistema hexadecimal e decimal, utilizado por nós, seres humanos. De acordo com a finalidade, utilizamos o sistema de numeração mais eficiente para a ocasião.

Para a representação de caracteres, sejam eles números, letras ou outros símbolos, existe uma série de códigos padrões que atribuem uma sequência de bits a cada caractere.

Para saber mais

Saiba mais sobre a representação de caractere a partir da leitura do subcapítulo 7.3 *Tipo de caractere*, do livro *Introdução à Organização dos Computadores*, de Monteiro (2010), disponível para acesso em nossa Biblioteca Virtual.

Essa representação é realizada por meio de sistemas desenvolvidos para esse fim, dentre os quais podemos citar:

Código BCD

O *Binary Coded Decimal* (notação decimal codificada em binário) é usado para representar **somente** dígitos de 0 a 9, de forma a codificar os símbolos usados na base decimal. Cada código decimal tem a sua representação, conforme a seguir:

Univates EAD (🗐

Introdução à Computação

Código BCD compactado

Usa um *nibble* (conjunto de quatro números binários) de um *byte* para cada dígito decimal. Não é um código otimizado, pois representa apenas 10 valores quando é possível representar até 16, ou 256 no BCD. Veja sua representação:

Código ASCII

O American Standard Code for Information Interchange (Código americano padrão para o intercâmbio de informações) possui, originalmente, sete bits de representação e um oitavo bit de paridade. Trata-se de um padrão projetado para uso internacional, a fim de garantir a compatibilidade entre sistemas.

A representação do código ASCII é realizada por meio de dígitos (0 a 9), letras ("A" a "Z" ou "a" a "z") e caracteres especiais (\$, %, @, > etc.).

Para saber mais

Conheça a tabela do ASCII acessando o *Apêndice A*, do livro <u>Ciência da computação: uma visão abrangente</u>, de Brookshear (2013), disponível para acesso em nossa Biblioteca Virtual.

Em sistemas digitais ou computacionais, frequentemente, são necessários diferentes sistemas de numeração para representar a informação digital. O mais

Unidade 2

utilizado é o sistema decimal, que tem base 10. A base, segundo Monteiro (2010, p. 54), define-se pela quantidade de algarismos do sistema e "serve para contarmos grandezas maiores, indicando a noção de grupamento".

Sistemas de numeração

A seguir, vamos conhecer quatro sistemas de numeração (decimal, binário, octal e hexadecimal) e as conversões que podem ser realizadas entre eles.

Sistema decimal

O sistema decimal é representado pelos algarismos 0, 1, 2, 3, 4, 5, 6, 7, 8 e 9, isto é, tem **base 10**, e serve para contar unidades, dezenas, centenas, milhares e outras grandezas. Acredita-se que essa organização esteja relacionada aos dedos das mãos, que teriam sido os primeiros instrumentos usados para calcular.

Fonte: Univates (2018).

Nesse sistema, o valor de um algarismo é determinado pela sua posição. Desse modo, conforme Monteiro (2010, p. 54), "o valor total do número é a soma dos valores relativos de cada algarismo". Por exemplo, o número 1.324 é representado pelos algarismos 1, 3, 2 e 4, que, em cada uma das posições, assumem diferentes valores.

Antes de prosseguir com a leitura do material, acesse o Ambiente Virtual e assista ao vídeo Sistema decimal.

Conforme demonstrado no vídeo, a numeração relativa à posição do algarismo da base começa da direita para a esquerda, conforme a base utilizada. Como estamos falando sobre base decimal, a primeira posição à direita é 0, a segunda o 1, até chegar ao 9. Essa mesma lógica se aplica aos outros sistemas, como o binário.

Sistema binário

O binário (bit) é um sistema com **base 2** e sua representação se dá por meio dos símbolos 0 e 1. Os computadores digitais trabalham, internamente, com números binários, ou seja, **bits** (contração do termo *binary digit*). "Por exemplo, o

número binário 11011 possui cinco dígitos, ou algarismos binários. Diz-se que o referido número é constituído de 5 bits" (MONTEIRO, 2010, p. 56). O agrupamento de **8 bits** corresponde a **1 byte** (*binary term*). Veja sua representação:

Fonte: Univates (2018).

Em comparação com o sistema decimal, temos a mesma notação científica que determina o expoente de multiplicação. Da direita para a esquerda, começa em 0, porém com a base 2. Os bits ligados, iguais a 1, são computados e considerados, ao passo que bits 0 não agregam valor para a representação.

Para saber mais

Para conhecer mais sobre os números binários, leia o item *Representação de dados: ligado/desligado* (p. 100-102), do livro <u>Introdução à informática</u> de Capron e Johnson (2004), disponível para acesso em nossa Biblioteca Virtual

Sistema octal

Esse sistema de numeração tem como **base 8**, ou seja, possui oito símbolos, quais sejam: 0, 1, 2, 3, 4, 5, 6 e 7.

Posição	1°	2°	3°	4°	5°	6°	7°	8°
Notação científica	87	86	85	84	83	8 ²	81	80
Notação decimal	2.097.152	262.144	32.768	4.096	512	64	8	1

Fonte: Univates (2018).

Para saber mais

O sistema octal foi utilizado na linguagem de programação de baixo nível. Para saber mais sobre esse sistema de numeração, leia o subcapítulo 3.4.2 Aritmética Octal (em Base 8), do livro <u>Introdução à Organização dos Computadores</u>, de Monteiro (2010), disponível para acesso em nossa Biblioteca Virtual.

Sistema hexadecimal

O sistema hexadecimal representa os números em **base 16**. Logo, conforme Tanenbaum e Austin (2013, p. 527), são utilizados 16 símbolos e "por convenção, usamos as letras de A a F para os seis dígitos depois do 9", quais sejam: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E e F.

No formato hexadecimal, temos valores no seguinte formato: FFF2DC4.

Para saber mais

Para saber mais sobre o sistema hexadecimal, leia o subcapítulo 3.4.3 Aritmética Hexadecimal (em Base 16), do livro <u>Introdução à Organização dos Computadores</u>, de Monteiro (2010), disponível para acesso em nossa Biblioteca Virtual.

Conversões entre sistemas de numeração

Após tomarmos conhecimento sobre os principais tipos de representação de dados, vejamos como realizar conversões de um formato para outro.

Conversão de decimal para binário

Para realizar a conversão do número decimal para o número binário, precisamos dividir sucessivamente o número decimal por 2, conforme podemos ver no vídeo disponível no Ambiente Virtual. O número binário é formado pelo quociente da última divisão seguido dos restos de todas as outras divisões.

Antes de prosseguir com a leitura do material, acesse o Ambiente Virtual e assista ao vídeo <u>Convertendo o sistema decimal para o binário</u>.

O vídeo apresenta todo o processo de divisão por 2 até chegarmos no resultado, obtendo todos os restos que formam o binário correspondente. Conforme podemos observar na figura a seguir, o número convertido pode ser obtido efetuando a leitura ao contrário, de baixo para cima. Vejamos:

Fonte: Univates (2018).

O número completo, com 8 bits, seria: 00111101, adicionando dois zeros à esquerda.

Lembre-se

O número binário é formado pelo resultado da última divisão seguido do resto de todas as outras divisões em ordem crescente, ou seja, o resto da primeira operação, que no nosso exemplo é a divisão do número 61, é o 8º bit.

Conversão de binário para decimal

Para converter o número binário para o decimal, multiplica-se o bit pela base do sistema (ou seja, 2) elevada à posição que ele ocupa. Após, somam-se todas as multiplicações. Esse cálculo segue a mesma regra e exemplificação do sistema decimal.

Antes de prosseguir com a leitura do material, acesse o Ambiente Virtual e assista ao vídeo <u>Convertendo o sistema binário para o decimal</u>.

Conforme o exemplo, o número convertido foi 1010, ou se fizermos a representação completa de um byte (8 bits) 00001010, preenchendo com zeros à esquerda. Vejamos que os zeros adicionais não prejudicam o cálculo e que a lógica segue a mesma.

expoente	7	6	5	4	3	2	1	0
binário	0	0	0	0	1	0	1	0

Conforme mencionado, a base é 2, assim sendo, da direita para a esquerda, temos:

binário	0	0	0	0	1	0	1	0
base + expoente	2 ⁷	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2 º
resultado	0	0	0	0	8	0	2	0

Apenas os bits na posição de expoente 1 e 3 estão ligados, por esse motivo, somente eles fazem produzem resultado: $2^3 + 2^1 = 8 + 2 = 10$.

Conversão do sistema octal

Para realizarmos a conversão do sistema octal, vamos utilizar como base a seguinte tabela:

Decimal	Binário	Octal
0	000	0
1	001	1
2	010	2
3	011	3
4	100	4
5	101	5
6	110	6
7	111	7

A primeira conversão que faremos será do sistema octal para o sistema binário. Repare, no vídeo a seguir, que inicialmente precisamos separar o número octal em grupos de 3 dígitos (separamos em grupo de 3 dígitos porque $2^3 = 8$). Após a separação, devemos juntá-los, transformando, assim, o número octal em binário. Já a conversão do número binário para o octal é similar à operação que

Unidade 2

fizemos anteriormente, porém, agora é preciso separar o número binário, no sentido da direita para a esquerda, em grupos de três bits e, com a ajuda da tabela, identificar o número octal correspondente.

Antes de prosseguir com a leitura do material, acesse o Ambiente Virtual e assista ao vídeo <u>Convertendo o sistema octal</u>.

Lembre-se •

Quando for realizada a conversão do número binário para o número octal, você deverá separar o número binário em um conjunto de 3 bits, sempre da direita para a esquerda, e o resultado da conversão, isto é, o número octal, deverá ser escrito da esquerda para a direita, sendo o último conjunto de bits o primeiro número octal.

Conversão do sistema hexadecimal

Para realizarmos a conversão do sistema hexadecimal, vamos utilizar como base a seguinte tabela:

Decimal	Binário	Octal
0	000	0
1	001	1
2	010	2
3	011	3
4	100	4
5	101	5
6	110	6
7	111	7
8	1000	8
9	1001	9
10	1001	А
11	1011	В
12	1100	С
13	1101	D
14	1110	Е
15	1111	F

Conforme podemos ver no vídeo a seguir, a primeira conversão que faremos do sistema hexadecimal será para o sistema decimal. Para realizar essa conversão, precisamos, primeiro, escrever o número hexadecimal e depois multiplicar o algarismo pela base do sistema (ou seja, 16) elevada à posição que ele ocupa. Após, somam-se todas as multiplicações. Já para convertermos o número decimal para o hexadecimal, precisamos realizar a divisão do número pela base do sistema.

Antes de prosseguir com a leitura do material, acesse o Ambiente Virtual e assista ao vídeo *Convertendo o sistema hexadecimal*.

Utilizando o exemplo do vídeo, podemos dizer que:

$$508_{10} = 0001111111100_2 = 774_8 = 1FC_{16}$$

Sendo assim, foi realizada a conversão do número decimal 508 para binário, octal e hexadecimal. A esse respeito, a conversão de um número decimal para base hexadecimal segue a mesma regra do cálculo binário, modificando o dividendo de 2 para 16. Além disso, para melhor representação, convencionou-se que os valores obtidos acima de 9 seriam representados por letras, portanto: A=10, B=11, C=12, D=13, E=14 e F=15, por exemplo, o número 270 em decimal para Hexadecimal ficaria da seguinte forma.

(270) ₁₀	270/16	16/16	1/16
resultado	14 (E)	0	1

A leitura deve ser feita no sentido da direita para esquerda.

Número 270 na base 10 = **10E** na base 16

O sistema é muito utilizado para representação de dados, desde códigos de mais baixo nível de programação, aos mais compreensíveis pelo usuário não técnico, como por exemplo, para representar cores, fazendo de 3 bytes, ou seja, 6 algarismos em formato hexadecimal. A exemplo, vejamos um verde, de código **99ff33**.

Fonte: W3schools.com (2020).

Unidade 2

Para saber mais

Acesse o capítulo *A.3 Conversão de uma base para outra* (p. 548-549), do livro <u>Organização estruturada de computadores</u>, de Tanenbaum e Austin (2013) para estudar mais sobre como converter um sistema numérico para outro. A obra está inteiramente disponível em nossa Biblioteca Virtual. Além disso, agora que vimos como funcionam alguns dos sistemas numéricos, experimente acessar a calculadora do seu Sistema Operacional: Linux ou Windows. Altere nas opções para o modo Programador ou Programável e exercite algumas conversões por essa ferramenta. De forma on-line, você também pode testar as conversões no site <u>Tool4noobs</u>.

Nesta unidade, você conheceu os sistemas de numeração e sua importância para o funcionamento dos computadores, bem como a forma de realizar a conversão entre cada um deles. Na próxima unidade, por sua vez, iremos abordar a lógica e seus princípios, identificando diferentes proposições conectivas e sentenças lógicas.

Atividade

Agora que você já sabe mais sobre os sistemas de numeração, realize as atividades propostas. Para tanto, acesse o Ambiente Virtual.

Univates EAD (🗐

Referências

MONTEIRO, Mario A. **Introdução à organização de computadores**. 5. ed. Rio de Janeiro: LTC, 2010. Disponível em: https://www.univates.br/biblioteca/e-books-minha-biblioteca?isbn=978-85-216-1973-4. Acesso em: 26 out. 2020.

SOUZA, Beatriz F. M. **Introdução à computação**: sistemas de numeração. Vitória: UFES, 2018.

TANENBAUM, Andrew S.; AUSTIN, Todd. **Organização estruturada de computadores**. Tradução de Daniel Vieira. São Paulo: Pearson Prentice Hall, 2013. Disponível em: https://www.univates.br/biblioteca/biblioteca-virtual-universitaria?isbn=9788581435398. Acesso em: 26 out. 2020.

W3SCHOOLS.COM. HTML Color Picker. **w3schools.com**, 2020. Disponível em: https://www.w3schools.com/colors/colors_picker.asp. Acesso em 26 out. 2020.