# LinAlgDM II. 28-30. gyakorlat: Gráfok III: Folyamok, síkgráfok, színezések

2023. május 17-18.

# 1 Elméleti összefoglaló

#### Definition 1. Hálózati folyamok

G=(V,E),ahol Va csomópontok (csúcsok) halmaza és Eaz élek halmaza,

 $s \in V$  a forrás (source) csomópont,

 $t \in V$  a nyelő (sink) csomópont,

 $c: E \to \mathbb{R}^+$  az élek kapacitása,

 $f:E\to\mathbb{R}^+$ az élekben áramló folyam mennyisége.

A hálózati folyam matematikai kritériumai a következők:

1. Kapacitáskorlát: Az élekben áramló folyam mennyisége nem haladhatja meg az élek kapacitását:

$$0 \le f(e) \le c(e) \quad \forall e \in E$$

2. Forráskorlát: A forrásból kiinduló összes folyam mennyiségének egyenlőnek kell lennie a nyelőbe érkező összes folyam mennyiségével:

$$\sum_{e \in \delta^+(s)} f(e) = \sum_{e \in \delta^-(t)} f(e)$$

Ahol  $\delta^+(s)$  az élek halmaza, amelyek kiindulnak a forrásból ( s ), és  $\delta^-(t)$  az élek halmaza, amelyek befutnak a nyelőbe ( t ).

A hálózati folyam probléma a fenti kritériumok mellett általában a maximális folyam vagy a minimális vágás meghatározására irányul, ami optimalizálási vagy gráfelméleti feladatokban jelentős szerepet játszik.

### Definition 2. Homeomorf gráfok

Ekvivalencia relációt határoz meg két gráf között. Két gráf homeomorf, ha másodfokú csúcsok törlésével, vagy hozzáadásával egymásba alakíthatóak.

#### Definition 3. Kromatikus szám

A kromatikus szám, jelölve  $\chi(G)$ , a minimális szükséges színek számát jelenti, amelyekkel a gráf csomópontjait be lehet színezni úgy, hogy a szomszédos csomópontok különböző színnel legyenek jelölve.

A kromatikus szám felső becslés: a gráfban található maximális fokszám plusz 1, jelölve  $\Delta(G) + 1$ .

Az alsó becslése a legnagyobb klikkszám: legnagyobb teljes részgráf csúcsszáma. Jele:  $\omega(G)$ 

A pontos kromatikus szám meghatározása nehéz, de felső és alsó becslések léteznek, amelyek korlátozzák az  $\chi(G)$  értékét.

## 2 Feladatok

Feladat 1. Határozd meg az alábbi irányított, súlyozott hálózatok maximális folyamát, minimális vágását.



**Megoldás.** Az első folyamot lehet érzésre is inicializálni, de akkor figyelni kell, hogy ne legyen szivárgás. Most biztosra megyünk és egyből a segédgráfot használjuk.

Segédgráf lépései: Behúzom az oda éleket (zöld) súlynak megadom, hogy mennyivel lehet még növelni az adott élen (kapacitás-folyam). Ezután behúzom a visszaéleket (visszafelé néz) is (piros) és súlynak megadom, hogy mennyivel lehet csökkenteni az adott élen (folyam).

Javítóutat keresek. Javítóút színfüggetlen útvonal a segédgráfon a Sourceból a Targetbe. Tehát csak az élek iránya számít.

Kiválasztom a szűk keresztmetszetet az útvonalon (legkisebb súlyú él, színfüggetlenül). Ez az érték lesz az, amivel majd módosítjuk a folyamot: zöld élen hozzáadok, piros élen kivonok.





Megismátlem a fenti eljárást, addig amíg létezik javítóút. (Fontos a visszaéleket érdemes mindig berajzolni, hogy ne felejtsd el, hiszen a javítóút átmehet piros élen is!).

Most a szűk keresztmetszet a sárgával jelölt útvonalon a 2. Minden él zöld, ezért minden élhez hozzá kell adni 2-t.





Megismátlem a fenti eljárást, addig amíg létezik javítóút. (Fontos a visszaéleket érdemes mindig berajzolni, hogy ne felejtsd el, hiszen a javítóút átmehet piros élen is!).

Most a szűk keresztmetszet a sárgával jelölt útvonalon az 1. Minden él zöld, ezért minden élhez hozzá kell adni 1-t.





Megismátlem a fenti eljárást, addig amíg létezik javítóút. (Fontos a visszaéleket érdemes mindig berajzolni, hogy ne felejtsd el, hiszen a javítóút átmehet piros élen is!).

Azt vesszük észre, hogy nincsen több útvonal a Sourceból a Targetbe se zöld, se piros éleken áthaladva sem. Végeztünk.



Nézzük meg a minimális vágást: azon csúcsok halmaza az S-t is beleértve, ahova még eljutunk a legutolsó segédgráfon. Értéke a belőle kifolyó élek folyamának összege:6.

Maximális folyam a Targetbe beérkező élek folyamának összege (az algoritmus végén): 6. Vedd észre, a két érték megegyezik!





## Megoldás.









Noha zöld tiszta zöld javítóút már nem létezik, ne felejtsd el, hogy a javítóút színfüggetlen - tehát még létezik javítóút. A kijelölt javítóúton a szűk keresztmetszet a 2-es. Zöld éleken hozzáadunk, piros éleken levonunk 2-t.



Nincs több javítóút. Tehát végeztünk. A minimális vágás az {S,A} értéke 17. A maximális folyam is 17.

Az első gráf egy 6 csúcsból álló súlyozott, irányított gráf. A Source csúcsból (S) indul ki a folyam, amely a Target csúcsba (T) kell, hogy érjen. Az élek súlyai a nyilak mellett vannak feltüntetve, ahol az első hiányzó szám

a folyam értéke, a második szám pedig az él kapacitása.







Megoldás.













 ${\bf Megold\'as.}\ \ Term\'eszetesen\ t\"obb\ j\'o\ megold\'as\ is\ lehets\'eges,\ mindazon\'altal\ a\ maximum\ folyam\ \'ert\'eke\ adott.$ 







Feladat 2. Homeomorfak-e az alábbi gráfok egymással?





**Feladat 3.** Döntsd el, hogy síkbarajzolhatóak-e az alábbi gráfok. Ha igen, rajlzold is le, ha nem, keresd meg, hogy tartalmaz-e K3,3-al, vagy K5-el homeomorf részgráfot.





















Feladat 4. Becsüld meg az alábbi gráfok kromatikus számát. Ha tudod, színezd is ki a lehető legkevesebbel.



Feladat 5. Az alábbi térképet színezd ki a lehető legkevesebb színnel:

