Recurrent Neural Networks II

Suleyman Demirel University

CSS634: Deep Learning

PhD Abay Nussipbekov

Word Representation

V = [a, aaron, ..., zulu, <UNK>]

1-hot representation

Man (5391)	Woman (9853)	King (4914)	Queen (7157)		Orange (6257)
$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \\ 0 \end{bmatrix}$	0 0 0 0 0 0 : 1 : 0	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \\ 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix}$

I want a glass of orange _____.

I want a glass of apple_____.

Word Representation

	Man (5391)	Woman (9853)	King (4914)	Queen (7157)	Apple (456)	Orange (6257)
Gender	-1	1	-0.95	0.97	0.00	0.01
Royal	0.01	0.02	0.93	0.95	-0.01	0.00
Age	0.03	0.02	0.7	0.69	0.03	-0.02
Food	0.04	0.01	0.02	0.01	0.95	0.97
Size						<u> </u>
Cost					similar	rvectors
Verb						
				I want a glass of orange		
				I want a glass of apple		

Abay Nussipbekov Deep Learning

Word Representation

t-SNE

Named Entity Recognition Example

Named Entity Recognition Example

Word embeddings can examine huge very large text corpuses (eg. 100 billion words) – self supervised learning

TRANSFER LEARNING!

haven't seen in training set but learned in word embedding -> will be able to generalize and understand that it is also a person

Transfer Learning and Word Embeddings

- 1. Learn word embeddings from large text corpus. (1-100B words)
 - (Or download pre-trained embedding online.)
- 2. Transfer embedding to new task with smaller training set. (say, 100k words)
- 3. Optional: Continue to finetune the word embeddings with new data.

Relation to Face Encoding (embedding)

The only difference is that in face recognition we can take a face which we haven't seen before while in word embeddings we have a fixed vocabulary

Analogies

	Man (5391)	Woman (9853)	King (4914)	Queen (7157)	Apple (456)	Orange (6257)
Gender	-1	1	-0.95	0.97	0.00	0.01
Royal	0.01	0.02	0.93	0.95	-0.01	0.00
Age	0.03	0.02	0.70	0.69	0.03	-0.02
Food	0.09	0.01	0.02	0.01	0.95	0.97
e_{391} e_{man} Man \longrightarrow Woman as King \longrightarrow ?		e _{woman}	$e_{man} - e_{wo}$	$man \approx \begin{bmatrix} -2\\0\\0\\0 \end{bmatrix}$		
			$e_{king} - e_{c}$	queen $\approx \begin{bmatrix} -2\\0\\0\\0 \end{bmatrix}$		

Analogies Using Word Vectors

$$e_{man} - e_{woman} \approx e_{king} - e_?$$

300 D

Find word w:
$$\underset{w}{\operatorname{arg max}} sim(e_w, e_{king} - e_{man} + e_{woman})$$

Cosine similarity

$$sim(e_w, e_{king} - e_{man} + e_{woman})$$

$$sim(u, v) = \frac{u^T v}{\|u\|_2 \|v\|_2}$$

Man:Woman as Boy:Girl

Ottawa:Canada as Nairobi:Kenya

Big:Bigger as Tall:Taller

Yen:Japan as Ruble:Russia

Embedding Matrix

In practice, use specialized function to look up an embedding.

Neural Language Model

It's turns out that by learning a language model (predicting next word given a sequence) will help us to learn word embeddings

Neural Language Model

Neural Language Model

Other Context/Target Pairs

I want a glass of orange juice to go along with my cereal.

Context: Last 4 words.

4 words on left & right

a glass of orange _____?___ to go along with

Last 1 word

orange _____?____

Nearby 1 word

glass _____ orange

Skip-grams

I want a glass of orange juice to go along with my cereal.

Context	Target

orange juice orange glass orange my

Choosing +/- 10 random words as target

Goal: learn good word embeddings, not do good at this particular supervised learning problem

[Mikolov et. al., 2013. Efficient estimation of word representations in vector space.]

Model

Vocab size = 10,000k

Context c ("orange") Target t ("juice")

$$O_c \to E \to e_c \to \bigcirc \to \hat{y}$$
softmax

Softmax:
$$p(t|c) = \frac{e^{\theta_t^T e_c}}{\sum_{j=1}^{10.000} e^{\theta_t^T e_c}}$$
 θ_t = parameter associated with output t

$$\mathcal{L}(\hat{y}, y) = -\sum_{i=1}^{10.000} y_i \log \hat{y}_i$$

$$y = \begin{bmatrix} 0 \\ \dots \\ 1 \\ \dots \\ 0 \end{bmatrix}$$
 4834

Problems With Softmax Classification

$$p(t|c) = \frac{e^{\theta_t^T e_c}}{\sum_{j=1}^{10,000} e^{\theta_j^T e_c}}$$

Computational cost. Solutions:

- Hierarchical softmax classifier
 - Not using perfectly balanced tree (frequent words on top)

How to sample the context c?

Frequently occurring words: the, of, a, and, to, ...

Non frequently occurring words: orange, apple, durian, ...

p(c): in practice is not entirely uniformly random but distributed according to some heuristic

Defining a New Learning Problem

I want a glass of orange juice to go along with my cereal.

	Context	Word	Target
	orange	juice	1
	orange	king	0
	orange	took	0
k -	orange	the	0
	orange	of	0

k = 5-20 for smaller datasets

k = 2-5 for larger datasets

[Mikolov et. al., 2013. Distributed representation of words and phrases and their compositionality]

Model (Negative Sampling)

Softmax:
$$p(t|c) = \frac{e^{\theta_t^T e_c}}{\sum_{j=1}^{10,000} e^{\theta_j^T e_c}}$$

$$P(y = 1 \mid c, t) = \sigma(\theta_t^T e_c)$$

Orange (6257):

$$O_{6257} \rightarrow E \rightarrow e_{6257}$$
 juice juice 10.000 king

Instead of training 10.000 sofmax we have 10.000 binary classifications and on every iteration we train only k+1 of them

Sentiment Classification Problem

 χ

y

The dessert is excellent.

 $\star\star\star\star$

Service was quite slow.

 \star

Good for a quick meal, but nothing special.

Completely lacking in good taste, good service, and good ambience.

Even with small datasets we can give good performance because of word embeddings

Simple Sentiment Classification Model

[&]quot;Completely lacking in good taste, good service, and good ambience."

The Problem of Bias in Word Embeddings

Man:Woman as King:Queen

Man:Computer_Programmer as Woman:Homemaker

Father:Doctor as Mother: Nurse

Word embeddings can reflect gender, ethnicity, age, sexual orientation, and other biases of the text used to train the model.

Addressing Bias in Word Embeddings

1. Identify bias direction.

- 2. Neutralize: For every word that is not definitional, project to get rid of bias.
- 3. Equalize pairs.

Grandmother – grandfather Girl - boy

Train a classifier to define which words are gender specific and which are not

Resources Used

Deeplearning.ai by Andrew Ng