

Epreuve d'optique géométrique

Durée: 1h 30min

Questions de cours (sous forme d'exercice) 6 Points

On considère un miroir sphérique Σ de sommet S de centre C et de rayon de courbure $R = -\overline{SC}$,. Soit un rayon incident quelconque AI issu d'un point objet A, le rayon réfracté lui correspondant coupe l'axe optique en A' image du point A. On pose l'angle $ICA' = \omega$ et on note par i et r les angles

d'incidence et de réflexion au point I,

- 1- Quelle est la concavité de ce miroir, convexe ou concave ?
- 2- Ecrire au point d'incidence I, la relation de Snell Descartes ou de la 2^{ème} loi de la réflexion
- 3- En appliquant la relation des sinus aux angles des triangles *CAI et CA'I*, montrer que l'on peut avoir la relation suivante : $\frac{\overline{CA}}{\overline{IA}} = -\frac{\overline{CA'}}{\overline{IA'}}$.
- 4- Le miroir est éclairé maintenant dans les conditions de l'approximation de Gauss.
 - **a-** Qu'appelle-t-on les conditions de l'approximation de Gauss.
 - **b-** Ecrire la relation précédente dans ces conditions.
 - **c-** En déduire la formule de conjugaison du miroir sphérique origine au sommet *S*.
 - **d-** On désigne par F et F' les foyers objet et image de ce miroir sphérique Σ , déterminer alors en fonction de R ses distances focales objet $f = \overline{SF}$ et image $f' = \overline{SF}$ '. Conclusion
- **5-** On fait maintenant tendre le rayon de courbure R du miroir Σ vers l'infini.
 - **a-** Quel système optique simple passant par S, ainsi obtenu et que peut-t-on dire de son stigmatisme.
 - **b-** Quelles sont alors les nouvelles positions de ses foyers F et F'. Qu'appelle-t-on alors ce type de système optique.
 - **c-** Ecrire dans les conditions de l'approximation de Gauss la relation de conjugaison de ce nouveau système optique.

Problème 14 Points

Une baguette de verre d'indice n est limitée par deux calottes sphériques de centres C_1 et C_2 , de sommets S_1 et S_2 et de même rayon de courbure $R = \overline{S_1C_1} = -\overline{S_2C_2}$. Cette baguette est placée dans l'air d'indice 1. La longueur de la baguette est donnée par $e = \overline{S_1S_2}$. On note par F_1 et F'_1 les foyers objet et image du dioptre sphérique Σ_1 et par F_2 et F'_2 ceux du dioptre sphérique Σ_2 . On éclaire la baguette dans les conditions de l'approximation de Gauss.

A-1)-Quelle est la concavité de chacun des ces deux dioptres sphériques Σ_1 et Σ_2 . Justifiez votre réponse **2**)- Les deux dioptres sphériques Σ_1 et Σ_2 sont-ils convergents et/ou divergents. Justifiez votre réponse sans aucun calcul.

- 3)- Soit A un point objet sur l'axe optique et A' son image à travers la baguette dans les conditions de l'approximation de Gauss (*Figure 2*). En notant par A'_I l'image intermédiaire de l'objet entre les deux dioptres, et en prenant l'origine au sommet, écrire les formules de conjugaison de position de chacun des ces deux dioptres sphériques Σ_1 et Σ_2 .
- **4)-**En déduire en fonction de n et R les distances focales objet et image (f_1, f'_1) et (f_2, f'_2) respectivement pour les deux dioptres sphériques Σ_1 et Σ_2 .

B- Dans les conditions de l'approximation de Gauss, les deux dioptres sphériques Σ_1 et Σ_2 peuvent être assimilés à deux systèmes centrés Σ_1 et Σ_2 (Figure 3) respectivement de points principaux objet et image (H_1, H'_1) et (H_2, H'_2) et qui sont confondus avec leurs sommets S_1 et S_2 . Ainsi, on peut donc assimiler cette baguette à l'association de ces deux systèmes centrés Σ_1 et Σ_2 qui sera équivalent à un système centré Σ de foyers principaux objet et image F et F', de points principaux objet et image H et H', de points nodaux objet et image N et N' et de distances focales principales objet et image $f = \overline{HF}$ et $f' = \overline{H'F'}$. On supposera par la suite que n = 1,5 et on notera par e la distance qui sépare les deux systèmes centrés Σ_1 et Σ_2 telle que $e = \overline{H'_1 H_2} = \overline{S_1 S_2} = x.R$.

- 1)- Calculer en fonction de R, $f_1 = \overline{H_1 F_1}$, $f_2 = \overline{H_2 F_2}$, $f'_1 = \overline{H'_1 F'_1}$ et $f'_2 = \overline{H'_2 F'_2}$
- 2)- Exprimer l'intervalle optique $\Delta = \overline{F_1' F_2}$ en fonction de f_1' , f_2 et e puis en fonction de x et R.
- 3)- On cherche la position de F par rapport à F_I , en appliquant la relation de Newton au système centré Σ_1 , exprimer $\overline{F_IF}$ en fonction de f_1 , f'_1 et Δ .
- 4)- On cherche la position de F' par rapport à F'_2 , en appliquant la relation de Newton au système centré Σ_2 , exprimer $\overline{F'_2 F'}$ en fonction de f_2 , f'_2 et Δ .
- 5)- On note respectivement par V_1 , V_2 et V_2 , les vergences des deux dioptres Σ_1 et Σ_2 et du système centré Σ_2 équivalent à la baguette.
- a- Ecrire la formule de Gullstrand dans ce cas.
- ${f b}$ -Donner la distance focale objet f du système centré \sum équivalent à la baguette en fonction de $f_1,\ f_2$ et Δ .
- **c-**Donner la distance focale image f'du système centré \sum équivalent à la baguette en fonction de f'_1 , f'_2 et Δ .
- 6)- On cherche la position du point principal objet H du système centré Σ équivalent à la baguette par rapport au sommet H_1 , exprimer alors $\overline{H_1H}$ en fonction de $\overline{H_1F_1}$, $\overline{F_1F}$ et \overline{FH} puis en fonction de f_1 , f'_1 , f_2 et Δ
- 7)- On cherche la position du point principal image H' du système centré \sum équivalent à la baguette par rapport au sommet H'_2 exprimer alors $\overline{H'_2H'}$ en fonction de $\overline{H'_2F'_2}$, $\overline{F'_2F'}$ et $\overline{F'H'}$ puis en fonction de f'_1 , f_2 , f'_2 et Δ ..
- 8)- On cherche les positions des points nodaux objet et image N et N' du système centré Σ équivalent à la baguette respectivement par rapport à ses points principaux H et H'.
 - **a-** Donner les deux expressions de la vergence V du système centré Σ équivalent à la baguette et en déduire une relation entre f et f'.
 - **b-** Exprimer \overline{HN} en fonction de f et f' et donner sa valeur. Conclusion.
 - **c-** Exprimer $\overline{H'N'}$ en fonction de f et f' et donner sa valeur. Conclusion.
- 9)- Donner la va leur de x pour que ce système centré Σ devienne afocal.

Corrigé de l'épreuve de l'optique géométrique

Exercice (5 points)

- 0,50 - le miroir sphérique est concave

3- En appliquant la relation des sinus aux deux triangles *CAI* et *CA'I*.
$$\frac{\overline{CA}}{\sin i} = \frac{\overline{IA}}{\sin(\pi - \omega)} = \frac{\overline{IA}}{\sin \omega} \quad \text{et} \quad \frac{\overline{CA'}}{\sin r} = \frac{\overline{IA'}}{\sin \omega} \quad \Rightarrow \frac{\overline{CA}}{\overline{IA} \sin i} = \frac{\overline{CA'}}{\overline{IA'} \sin r}$$

En tenant compte de $\sin r = -\sin i$ $\Rightarrow \frac{CA}{TA} = -\frac{CA'}{TA'}$

4-

a- 0,50 Rayons faiblement inclinées à l'axe optique ou rayons paraxiaux
b- 0,50 Les points d'incidence I sont très proches ou très vois

$$\Rightarrow I \equiv S \Rightarrow \frac{\overline{CA}}{\overline{SA}} = -\frac{\overline{CA'}}{\overline{SA'}}$$

$$\mathbf{c} \cdot \left[\mathbf{0.50} \right] \frac{\overline{CA}}{\overline{SA}} = -\frac{\overline{CA'}}{\overline{SA'}} \Rightarrow \frac{\overline{CS} + \overline{SA}}{\overline{SA}} = -\frac{\overline{CS} + \overline{SA'}}{\overline{SA'}} \text{ d'où} \qquad \left(1 + \frac{\overline{CS}}{\overline{SA}} \right) = -\left(1 + \frac{\overline{CS}}{\overline{SA'}} \right)$$

Ce qui implique $\frac{1}{SA} + \frac{1}{SA'} = \frac{2}{SC}$

d-
$$[0,75]$$
 $f = \overline{SF} = \frac{-R}{2}$ et $f' = \overline{SF'} = \frac{-R}{2} \Rightarrow F \equiv F'$

5-.

0,50 miroir plan qui est rigoureusement stigmatique

b- 0,50 les foyers sont rejetés à l'infini, le système optique ainsi obtenu (miroir plan) est

c-
$$[0,50]$$
 $\frac{1}{\overline{SA}} + \frac{1}{\overline{SA'}} = 0$

Problème

0,50 - Le Dioptre
$$\Sigma_1$$
 est **convexe** car $\overline{S_1C_1} > 0$

0,50 - Le Dioptre
$$\Sigma_2$$
 est concave car $\overline{S_2C_2} < 0$

0,50 Le Dioptre Σ_1 est **convergent** car son centre est placé dans le milieu le plus réfringent ou S_1C_1 et (n-1) sont de mêmes signes

0,50 Le Dioptre Σ_2 est **convergent** car son centre est placé dans le milieu le plus réfringent ou S_2C_2 et (1-n) sont de mêmes signes

$$\boxed{\mathbf{0,50}} \frac{1}{\overline{S_1 A}} - \frac{n}{\overline{S_1 A_1}} = \frac{1-n}{\overline{S_1 C_1}} \text{ ou } \frac{1}{\overline{S_1 A}} - \frac{n}{\overline{S_1 A_1}} = \frac{1-n}{R}$$

$$\frac{n}{\overline{S_2 A_1}} - \frac{1}{\overline{S_2 A'}} = \frac{n-1}{\overline{S_2 C_2}} \quad \text{ou} \quad \frac{n}{\overline{S_2 A_1}} - \frac{1}{\overline{S_2 A'}} = \frac{n-1}{-R}$$

4- Pour le dioptre sphérique
$$\Sigma_1$$
, $f_1 = \overline{S_1 F_1} = \frac{-R}{n-1} \boxed{\mathbf{0,50}}$ et $f_1' = \overline{S_1 F'_1} = \frac{nR}{n-1} \boxed{\mathbf{0,50}}$ -

-Pour le dioptre sphérique
$$\Sigma_2$$
 $f_2 = \overline{S_2 F_2} = \frac{-nR}{n-1}$ **0,50** et $f'_2 = \overline{S_2 F'_2} = \frac{R}{n-1}$ **0,50**

B-1)-
$$f_1 = \overline{S_1 F_1} = -2R \boxed{\mathbf{0,25}}$$
 et $f_1' = \overline{S_1 F'_1} = 3R \boxed{\mathbf{0,25}}$
 $f_2 = \overline{S_2 F_2} = -3R \boxed{\mathbf{0,25}}$ et $f_{2} = \overline{S_2 F'_2} = 2R \boxed{\mathbf{0,25}}$

2)-
$$\Delta = -f'_1 + e + f_2$$
 \bigcirc \bigcirc $\triangle = (x - 6)R$ \bigcirc \bigcirc

3)- Soi le schéma synoptique suivant :

$$F \xrightarrow{\Sigma_1} F_2 \xrightarrow{\Sigma_2} \infty$$

$$\overline{F_1F} \times \overline{F'_1F_2} = f_1f'_1 \qquad \Rightarrow \overline{F_1F} = \frac{f_1 \times f'_1}{\overline{\Delta}} \boxed{\mathbf{0.75}}$$

4)- Soi le schéma synoptique suivant :

5)-

a-
$$V = V_1 + V_2 - \frac{e}{n}V_1.V_2$$
 0,50

b-
$$f = \overline{HF} = \frac{f_1 \times f_2}{\Delta}$$
 0,50

c-
$$f' = \overline{H'F'} = -\frac{f'_1 \times f'_2}{\Delta}$$
 0,50

6)-
$$\overline{H_1H} = \overline{H_1F_1} + \overline{F_1F} + \overline{FH} \implies \overline{H_1H} = f_1 + \frac{f_1f_1'}{\Lambda} - \frac{f_1f_2}{\Lambda} = \frac{f_1}{\Lambda}(f_1' - f_2) + f_1 \boxed{0,75}$$

7)-
$$\overline{H'_2 H'} = \overline{H'_2 F'_2} + \overline{F'_2 F'} + \overline{F' H'}$$
 $\Rightarrow \overline{H'_2 H'} = f'_2 - \frac{f_2 f'_2}{\Lambda} + \frac{f'_1 f'_2}{\Lambda} = \frac{f'_2}{\Lambda} (f'_1 - f_2) + f'_2 \boxed{\textbf{0,75}}$

8)- a-
$$V = \frac{1}{f'} = \frac{-1}{f} \Rightarrow f' = -f$$
 0,50
b- $\Rightarrow \overline{HN} = \overline{HF} + \overline{FN} = f + f' = 0$ 0,50 $\Rightarrow N = H$ 0,25
 $\Rightarrow \overline{H'N'} = \overline{H'F'} + \overline{F'N'} = f' + f = 0$ 0,50 $\Rightarrow N' = H'$ 0,25

9)- Pour que ce système soit afocal il faut que ses foyers F et F' soient rejetés à l'infini \bigcirc \bigcirc \triangle = 0

$$\Rightarrow$$
 $x = 6$ **0,25**