Wine Quality Classification

Nirajan Bekoju Bishal Adhikari Rijan Pokhrel Manoj Khatri

Topics of discussion

- Problem Statement
- Feature Engineering and EDA
- Model development and Evaluation
- Demo

Problem Statement

- The dataset describes the amount of various chemicals present in wine and their effect on it's quality.
- The datasets can be viewed as classification or regression tasks.
- The classes are ordered and not balanced (e.g. there are much more normal wines than excellent or poor ones)
- The complexity arises due to the fact that the dataset has fewer samples, & is highly imbalanced

Feature Engineering and EDA

Dataset

Out[3]:		fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality	ld
	0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5	0
	1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8	5	1
	2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8	5	2
	3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8	6	3
	4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5	4

In [4]: # Dimension of dataset
df.shape

Out[4]: (1143, 13)

```
Data columns (total 13 columns):
    Column
                         Non-Null Count
                                         Dtype
0
    fixed acidity
                         1143 non-null
                                         float64
    volatile acidity 1143 non-null
                                         float64
    citric acid
                       1143 non-null float64
     residual sugar
                         1143 non-null
                                         float64
                    1143 non-null
    chlorides
                                         float64
    free sulfur dioxide 1143 non-null
                                         float64
    total sulfur dioxide
                         1143 non-null
                                         float64
    density
                          1143 non-null
                                         float64
 8
    pH
                          1143 non-null
                                         float64
    sulphates
                          1143 non-null
                                         float64
 10
    alcohol
                          1143 non-null
                                         float64
 11
    quality
                          1143 non-null
                                         int64
 12
    Id
                          1143 non-null
                                         int64
dtypes: float64(11), int64(2)
memory usage: 116.2 KB
```

The count plot of the whole dataset on the basis of the quality of wine is shown aside.

- label 3 and label 4 => label 0
- label 5 => label 1
- label 6 => label 2
- label 7 and label 8 => label 3

			He	atmap	of co	rrelatio	ns be	tween	featur	es			- 1.0
fixed acidity -	1	-0.25	0.67	0.17	0.11	-0.16	-0.11	0.68	-0.69	0.17	-0.075	0.12	1.0
volatile acidity -	-0.25	1	-0.54	-0.0058	0.056	-0.002	0.078	0.017	0.22	-0.28	-0.2	-0.41	- 0.8
citric acid -	0.67	-0.54	1	0.18	0.25	-0.058	0.037	0.38	-0.55	0.33	0.11	0.24	- 0.6
residual sugar -	0.17	-0.0058	0.18	1	0.071	0.17	0.19	0.38	-0.12	0.017	0.058	0.022	
chlorides -	0.11	0.056	0.25	0.071	1	0.015	0.048	0.21	-0.28	0.37	-0.23	-0.12	- 0.4
free sulfur dioxide -	-0.16	-0.002	-0.058	0.17	0.015	1	0.66	-0.054	0.073	0.034	-0.047	-0.063	- 0.2
total sulfur dioxide -	-0.11	0.078	0.037	0.19	0.048	0.66	1	0.05	-0.059	0.027	-0.19	-0.18	
density -	0.68	0.017	0.38	0.38	0.21	-0.054	0.05	1	-0.35	0.14	-0.49	-0.18	- 0.0
pH -	-0.69	0.22	-0.55	-0.12	-0.28	0.073	-0.059	-0.35	1	-0.19	0.23	-0.052	0.2
sulphates -	0.17	-0.28	0.33	0.017	0.37	0.034	0.027	0.14	-0.19	1	0.094	0.26	
alcohol -	-0.075	-0.2	0.11	0.058	-0.23	-0.047	-0.19	-0.49	0.23	0.094	1	0.48	0.4
quality -	0.12	-0.41	0.24	0.022	-0.12	-0.063	-0.18	-0.18	-0.052	0.26	0.48	1	0.6
	fixed acidity -	volatile acidity -	citric acid -	residual sugar -	chlorides -	free sulfur dioxide -	total sulfur dioxide -	density -	- Hd	sulphates -	alcohol -	quality -	_

Data Distribution

Data Distribution after min max scaling and log transformation

Box plot of features

Box plot after min max scaling and log transformation

Model Development and Evaluation

multi_class	solver	micro avg	macro avg	weighted avg
ovr	newton-cg	0.64	0.49	0.62
multinomial	newton-cg	0.66	0.53	0.65

Table 5.1: Logistic regression hyperparameter and evaluation

id	learning_rate	max_depth	n_estimators	subsample	micro	macro	weighted
xgb_v1	0.0824	16	113	0.5394	0.64	0.49	0.65
xgb_v2	0.0903	19	127	0.6520	0.63	0.48	0.63

Table 5.2: XGBClassifier hyperparameter and evaluation metrics

model	micro	macro	weighted
AdaBoost	0.51	0.46	0.55
Gradient Boosting	0.61	0.50	0.61
xgb_v1	0.64	0.49	0.65

Table 5.3: Boosting algorithms evaluation metrics

id	C	kernel	micro	macro	weighted
1	1	ovr	0.67	0.46	0.65
2	1	linear	0.62	0.44	0.61

Table 5.5: SVM hyperparameters and evaluation metrics

id	n_estimators	max_depth	min_samples_split	min_samples_leaf	micro	macro	weighted
1	100	None	None	1	0.73	0.54	0.72
2	200	20	2	1	0.69	0.51	0.68

Table 5.4: Random Forest hyperparameters and evaluation metrics

Wine Quality Prediction

Thank You