時間	平成	科目名	一番 ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※
. 09	平成 28 年 月 日 時限	材料量子力学	※いずれかを〇で囲んでください 解答用紙 解答用紙 (直接記入) 1枚もの (2枚もの
连 海 夏	短一	牧晚	ください 2枚もの
1.雑記用 2.下記の 【	Ü	2TM	機 詳報 詳 課 関
1.年記用具以外持込不可 2.下記のみ参照・長込到 ()	担当	学 第 第 第 第 第 第 第 第 第 第	一門 題 一
的一個別	田村		必ず○で囲んでください 問題用紙 計算両面 ホチキス 印刷 使用 ・不要 要・不要 要・不要
	田村 隆治		
	学年	字 專 文 攻 及 本 本 本	D注意事項 (例え) 問は、90 分の時 の際は万年筆又 切り貼りは、ほお 複数枚ある場合 行で要」に ない場合は「不要」に
	氏名		イ、試験表施上の注意事項 (例えばノート使用可否等) をご記入下さい 口試験の実施時間は、90 分の時間内で各担当教員のご判断により設定してください。 ハ、問題をご記入の際は万年筆又はボールベン (黒) でご記入下さい ※ 細かい切り貼りは、はが礼務ちる可能性があるのでおやめ下さい ニ. 四脳川紙が複数枚ある場合、両面印刷、ホチキス止めを希望する場合は「要」にC 希望しない場合は「不要」にOをしてください。 ※ 記入がない場合は「不要」と判断しますので、ご容赦ください。
		学 路 路 号	等)をご記入下さい 関のご判断により設定し]でご記入下さい があるのでおやめ下さい キス止めを希望する場合 *。 *ので、ご容板ください。
			武教表施上の注意事項 (例えばノート使用可否等) をご記入下さい (教の実施時間は、90分の時間内で各担当教員のご判断により設定してください。 問題をご記入の際は万年筆又はボールペン (馬) でご記入下さい (細かい切り貼りは、はが1落ちる可能性があるのでおやめ下さい 四週川紙が複数枚ある場合、両面印刷、ホチキス止めを希望する場合は「要」に〇を、 5望しない場合は「不要」に〇をしてください。 (記入がない場合は「不要」と判断しますので、ご容赦ください。
		料	印刷枚数

10:00 - 45:06

以下の問いに答えなさい。必要なら、次の数値、公式、関係式を用いよ。 $h=2\pi\hbar=6.626 imes10^{34}\,\mathrm{Js},$ $E_n = (n+1/2)\hbar\omega, \ E_l = l(l+1)\hbar^2/2I, \\ \int_{-\infty}^{\infty} e^{-\alpha x^2} dx = \sqrt{\pi/\alpha} \ , \\ \lambda_m T = 2.90 \times 10^{-3} \text{m \cdot K}$ $c = 3.00 \times 10^8 \text{ m/s},$ m_e =9.11×10⁻³¹ kg, k_B =1.38×10⁻²³ J/K, N_A =6.02×10²³ /mol, P/~

<u>.</u>

カンだ

1] 以下の各問いに答えよ。

(1)室温(300K)における N₂分子の平均の運動エネルギーは何 J か。

(2)室温(300K)における N_2 分子のド・ブローイ波長は何 nm か。ただし、N 原子の原子量を 14 とする。 (3)太陽放射スペクトルは 500nm 付近にピークを有する。太陽の温度(K)を推定せよ。

(4)中心力ポテンシャルのもとでの 1 電子状態は $|nlm\rangle$ と表される。この状態が満足する 3 つの固有方程式を 書け。ただし、エネルギー固有値は E_{nl} とせよ。用いた記号の定義を述べること。 Course Prim

Ø エルミート演算子に関する以下の問いに答えよ。ただし、エルミート演算子Pは任意の関数Ψ、Φに対して、 次の関係を満たす演算子として定義される。 $\langle\Psi|\hat{P}|\Phi\rangle^*=\langle\Phi|\hat{P}|\Psi\rangle$ Eimx = eim (xizz)

.(1) エルミート演算子の固有値が実数となることを示しなさい。

6, Emz = 1

- (2) エルミート演算子の期待値が実数となることを示しなさい。
- (3) 固有値の異なる固有関数が直交することを示しなさい。
- (4) $\langle lm|l'm'
 angle$ の値はいくらか。ただし、|lm
 angleは球面調和関数 Y_{lm} を表し、また、規格化されているものとする。

 ω 長さ Lの一次元の箱に閉じ込められた質量mの自由粒子に関して以下の問いに答えなさい。ただし、ポテ ンシャルエネルギーは $V(x)=0\;(0\leq x\leq L),+\infty\;(x<0,x>L)$ で与えられるものとする。

- (1) 規格化定数を Cとしてエネルギー固有関数を求めよ。
- (2) エネルギー固有値を求めよ。
- F = Ceikz
- (3) 規格化定数 Cを求めよ。
- (4) 箱の中の自由粒子の任意の状態Ψはどのように表されるか。

-次元調和振動子のシュレディンガー方程式は次の式で与えられる。以下の問いに答えなさい。

 $\frac{\hbar^2}{2m}\frac{d^2}{dx^2} + \frac{1}{2}kx^2 \Psi = E\Psi$

m:粒子の質量、k:力の定数

Property.

3 Ψ₀のエネルギー固有値を求めなさい。k,mを用いて表せ。

|5| 1H35C1 分子の振動と回転に関する以下の問いに答えよ。力の定数を 516N/m、 結合距離を 127pm とする。

- 換算質量(kg)を求めよ。
- 室温(300K)で振動の基底状態にある HCl 分子の数を N_0 、振動の第一励起状態にある HCl 分子の数を N_1 と したとき、 N_1/N_0 はいくらか
- HCI分子が振動により吸収する光の波長を求めなさい。
- 室温(300K)で回転の基底状態にある HCl 分子の数を N_0 、回転の第一励起状態にある HCl 分子の数を N_1 と したとき、N₁/N₀はいくらか。