class13

Xueran Zou

Differential Expression Analysis

library(DESeq2)

```
Loading required package: S4Vectors

Loading required package: stats4

Loading required package: BiocGenerics

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':
```

The following objects are masked from 'package:base':

anyDuplicated, aperm, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank, rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which.max, which.min

Attaching package: 'S4Vectors'

IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

expand.grid, I, unname

Loading required package: IRanges

Attaching package: 'IRanges'

The following object is masked from 'package:grDevices':

windows

Loading required package: GenomicRanges

Loading required package: GenomeInfoDb

Loading required package: SummarizedExperiment

Loading required package: MatrixGenerics

Loading required package: matrixStats

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse, colCounts, colCummaxs, colCummins, colCumprods, colCumsums, colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs, colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats, colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds, colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads, colWeightedMeans, colWeightedMedians, colWeightedSds, colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet, rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods, rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps, rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,

```
rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
    rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
    rowWeightedSds, rowWeightedVars
Loading required package: Biobase
Welcome to Bioconductor
    Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.
Attaching package: 'Biobase'
The following object is masked from 'package:MatrixGenerics':
    rowMedians
The following objects are masked from 'package:matrixStats':
    anyMissing, rowMedians
Load the data files.
  metaFile <- "GSE37704_metadata.csv"</pre>
  countFile <- "GSE37704_featurecounts.csv"</pre>
```

rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,

condition

head(colData)

colData = read.csv(metaFile, row.names = 1)

SRR493366 control_sirna SRR493367 control_sirna SRR493368 control_sirna

SRR493369 hoxa1_kd SRR493370 hoxa1 kd

SRR493370 hoxa1_kd SRR493371 hoxa1_kd

```
countData = read.csv(countFile, row.names = 1)
head(countData)
```

	langth	GBB/103366	SRR493367	GBB/103368	GBB/103360	GBB/103370
	Tengun	21114922000	2111432201	2111432200	2111432203	DIM 4 30010
ENSG00000186092	918	0	0	0	0	0
ENSG00000279928	718	0	0	0	0	0
ENSG00000279457	1982	23	28	29	29	28
ENSG00000278566	939	0	0	0	0	0
ENSG00000273547	939	0	0	0	0	0
ENSG00000187634	3214	124	123	205	207	212
	SRR4933	371				
ENSG00000186092		0				
ENSG00000279928		0				
ENSG00000279457		46				
ENSG00000278566		0				
ENSG00000273547		0				
ENSG00000187634	2	258				

Q1. Complete the code below to remove the troublesome first column from countData

```
countData <- as.matrix(countData[,-1])
head(countData)</pre>
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000186092	0	0	0	0	0	0
ENSG00000279928	0	0	0	0	0	0
ENSG00000279457	23	28	29	29	28	46
ENSG00000278566	0	0	0	0	0	0
ENSG00000273547	0	0	0	0	0	0
ENSG00000187634	124	123	205	207	212	258

Q2. Complete the code below to filter countData to exclude genes (i.e. rows) where we have 0 read count across all samples (i.e. columns).

```
to_remove <- rowSums(countData) == 0
countData <- countData[!to_remove,]</pre>
```

Running DESeq2

```
dds = DESeqDataSetFromMatrix(countData=countData,
                                colData=colData,
                                design=~condition)
Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in
design formula are characters, converting to factors
  dds = DESeq(dds)
estimating size factors
estimating dispersions
gene-wise dispersion estimates
mean-dispersion relationship
final dispersion estimates
fitting model and testing
  dds
class: DESeqDataSet
dim: 15975 6
metadata(1): version
assays(4): counts mu H cooks
rownames(15975): ENSG00000279457 ENSG00000187634 ... ENSG00000276345
  ENSG00000271254
rowData names(22): baseMean baseVar ... deviance maxCooks
colnames(6): SRR493366 SRR493367 ... SRR493370 SRR493371
colData names(2): condition sizeFactor
  res = results(dds, contrast=c("condition", "hoxa1_kd", "control_sirna"))
```

Q3. Call the summary() function on your results to get a sense of how many genes are up or down-regulated at the default 0.1 p-value cutoff.

summary(res)

```
out of 15975 with nonzero total read count
adjusted p-value < 0.1
LFC > 0 (up) : 4349, 27%
LFC < 0 (down) : 4396, 28%
outliers [1] : 0, 0%
low counts [2] : 1237, 7.7%
(mean count < 0)
[1] see 'cooksCutoff' argument of ?results
[2] see 'independentFiltering' argument of ?results
```

At the default 0.1 p-value cutoff,

Up-regulated genes: 4351 genes

Down-regulated genes: 4399 genes

Volcano plot

```
plot(res$log2FoldChange, -log(res$padj))
```


Q4. Improve this plot by completing the below code, which adds color and axis labels

```
# Make a color vector for all genes
mycols <- rep("gray", nrow(res) )

# Color red the genes with absolute fold change above 2
mycols[ abs(res$log2FoldChange) > 2 ] <- "red"

# Color blue those with adjusted p-value less than 0.01

# and absolute fold change more than 2
inds <- (res$padj < 0.01) & (abs(res$log2FoldChange) > 2 )
mycols[ inds ] <- "blue"

plot( res$log2FoldChange, -log(res$padj), col=mycols, xlab="Log2(FoldChange)", ylab="-Log(</pre>
```


Adding gene annotation

Q5. Use the **mapIDs()** function multiple times to add SYMBOL, ENTREZID and GENENAME annotation to our results by completing the code below.

```
library("AnnotationDbi")
library("org.Hs.eg.db")
```

```
columns(org.Hs.eg.db)
```

[1]	"ACCNUM"	"ALIAS"	"ENSEMBL"	"ENSEMBLPROT"	"ENSEMBLTRANS"
[6]	"ENTREZID"	"ENZYME"	"EVIDENCE"	"EVIDENCEALL"	"GENENAME"
[11]	"GENETYPE"	"GO"	"GOALL"	"IPI"	"MAP"
[16]	"OMIM"	"ONTOLOGY"	"ONTOLOGYALL"	"PATH"	"PFAM"
[21]	"PMID"	"PROSITE"	"REFSEQ"	"SYMBOL"	"UCSCKG"
[26]	"UNIPROT"				

```
res$symbol = mapIds(org.Hs.eg.db,
                      keys=row.names(res),
                      keytype="ENSEMBL",
                      column="SYMBOL",
                      multiVals="first")
'select()' returned 1:many mapping between keys and columns
  res$entrez = mapIds(org.Hs.eg.db,
                      keys=row.names(res),
                      keytype="ENSEMBL",
                      column="ENTREZID",
                      multiVals="first")
'select()' returned 1:many mapping between keys and columns
  res$name =
               mapIds(org.Hs.eg.db,
                      keys=row.names(res),
                      keytype="ENSEMBL",
                      column="GENENAME",
                      multiVals="first")
'select()' returned 1:many mapping between keys and columns
  head(res, 10)
log2 fold change (MLE): condition hoxa1_kd vs control_sirna
Wald test p-value: condition hoxa1 kd vs control sirna
DataFrame with 10 rows and 9 columns
                   baseMean log2FoldChange
                                               lfcSE
                                                                     pvalue
                                                           stat
                  <numeric>
                                 <numeric> <numeric> <numeric>
                                                                  <numeric>
                  29.913579
                                 0.1792571 0.3248216
                                                       0.551863 5.81042e-01
ENSG00000279457
ENSG00000187634 183.229650
                                 0.4264571 0.1402658
                                                       3.040350 2.36304e-03
ENSG00000188976 1651.188076
                              -0.6927205 0.0548465 -12.630158 1.43990e-36
```

0.7297556 0.1318599 5.534326 3.12428e-08

0.0405765 0.2718928 0.149237 8.81366e-01

0.5428105 0.5215598 1.040744 2.97994e-01

ENSG00000187961 209.637938

ENSG00000187583 47.255123

ENSG00000187642 11.979750

```
ENSG00000188290 108.922128
                                 2.0570638 0.1969053 10.446970 1.51282e-25
                                 0.2573837 0.1027266 2.505522 1.22271e-02
ENSG00000187608 350.716868
ENSG00000188157 9128.439422
                                 0.3899088 0.0467163
                                                      8.346304 7.04321e-17
ENSG00000237330
                                 0.7859552 4.0804729
                                                       0.192614 8.47261e-01
                   0.158192
                       padj
                                 symbol
                                             entrez
                                                                      name
                  <numeric> <character> <character>
                                                               <character>
ENSG00000279457 6.86555e-01
                                     NA
ENSG00000187634 5.15718e-03
                                 SAMD11
                                             148398 sterile alpha motif ...
ENSG00000188976 1.76549e-35
                                  NOC2L
                                              26155 NOC2 like nucleolar ..
ENSG00000187961 1.13413e-07
                                 KLHL17
                                             339451 kelch like family me..
ENSG00000187583 9.19031e-01
                                PLEKHN1
                                              84069 pleckstrin homology ...
ENSG00000187642 4.03379e-01
                                              84808 PPARGC1 and ESRR ind..
                                  PERM1
ENSG00000188290 1.30538e-24
                                   HES4
                                              57801 hes family bHLH tran..
                                               9636 ISG15 ubiquitin like..
ENSG00000187608 2.37452e-02
                                  ISG15
ENSG00000188157 4.21963e-16
                                   AGRN
                                             375790
                                                                      agrin
ENSG00000237330
                                             401934 ring finger protein ...
                                 RNF223
```

Q6. Finally for this section let's reorder these results by adjusted p-value and save them to a CSV file in your current project directory.

```
res = res[order(res$pvalue),]
write.csv(res, file = "deseq_results.csv")
```

Pathway Analysis

KEGG pathways

```
library(pathview)
```

Pathview is an open source software package distributed under GNU General Public License version 3 (GPLv3). Details of GPLv3 is available at http://www.gnu.org/licenses/gpl-3.0.html. Particullary, users are required to formally cite the original Pathview paper (not just mention it) in publications or products. For details, do citation("pathview") within R.

The pathview downloads and uses KEGG data. Non-academic uses may require a KEGG license agreement (details at http://www.kegg.jp/kegg/legal.html).

library(gage)

```
library(gageData)
  data(kegg.sets.hs)
  data(sigmet.idx.hs)
  # Focus on signaling and metabolic pathways only
  kegg.sets.hs = kegg.sets.hs[sigmet.idx.hs]
  head(kegg.sets.hs, 3)
$`hsa00232 Caffeine metabolism`
[1] "10"
           "1544" "1548" "1549" "1553" "7498" "9"
$`hsa00983 Drug metabolism - other enzymes`
 [1] "10"
              "1066"
                        "10720"
                                 "10941"
                                           "151531" "1548"
                                                              "1549"
                                                                        "1551"
 [9] "1553"
              "1576"
                        "1577"
                                 "1806"
                                           "1807"
                                                     "1890"
                                                              "221223" "2990"
[17] "3251"
              "3614"
                        "3615"
                                 "3704"
                                           "51733"
                                                     "54490"
                                                              "54575"
                                                                        "54576"
[25] "54577"
              "54578"
                        "54579"
                                 "54600"
                                           "54657"
                                                    "54658"
                                                              "54659"
                                                                        "54963"
[33] "574537" "64816"
                        "7083"
                                 "7084"
                                           "7172"
                                                     "7363"
                                                              "7364"
                                                                        "7365"
[41] "7366"
              "7367"
                        "7371"
                                 "7372"
                                           "7378"
                                                     "7498"
                                                              "79799"
                                                                        "83549"
[49] "8824"
                        "9"
                                 "978"
               "8833"
$`hsa00230 Purine metabolism`
  [1] "100"
                "10201"
                         "10606"
                                  "10621"
                                            "10622"
                                                      "10623"
                                                               "107"
                                                                         "10714"
                                   "111"
                                                               "112"
  [9] "108"
                "10846"
                         "109"
                                                                         "113"
                                            "11128"
                                                      "11164"
 [17] "114"
                "115"
                         "122481" "122622" "124583" "132"
                                                               "158"
                                                                         "159"
 [25] "1633"
                "171568" "1716"
                                   "196883" "203"
                                                      "204"
                                                               "205"
                                                                         "221823"
 [33] "2272"
                "22978"
                         "23649"
                                   "246721" "25885"
                                                      "2618"
                                                               "26289"
                                                                         "270"
 [41] "271"
                "27115"
                         "272"
                                   "2766"
                                            "2977"
                                                      "2982"
                                                               "2983"
                                                                         "2984"
 [49] "2986"
                "2987"
                         "29922"
                                   "3000"
                                            "30833"
                                                      "30834"
                                                               "318"
                                                                         "3251"
 [57] "353"
                                   "3704"
                                            "377841" "471"
                                                               "4830"
                "3614"
                         "3615"
                                                                         "4831"
 [65] "4832"
                "4833"
                         "4860"
                                   "4881"
                                            "4882"
                                                      "4907"
                                                               "50484"
                                                                         "50940"
                                                               "5139"
                                                                         "5140"
 [73] "51082"
                "51251"
                         "51292"
                                   "5136"
                                            "5137"
                                                      "5138"
 [81] "5141"
                "5142"
                         "5143"
                                   "5144"
                                            "5145"
                                                      "5146"
                                                               "5147"
                                                                         "5148"
                         "5151"
                                   "5152"
                                                      "5158"
 [89] "5149"
                "5150"
                                            "5153"
                                                               "5167"
                                                                         "5169"
```

```
[97] "51728" "5198"
                        "5236"
                                 "5313"
                                           "5315"
                                                    "53343"
                                                             "54107"
                                                                      "5422"
[105] "5424"
               "5425"
                        "5426"
                                 "5427"
                                           "5430"
                                                    "5431"
                                                             "5432"
                                                                      "5433"
[113] "5434"
               "5435"
                        "5436"
                                 "5437"
                                           "5438"
                                                    "5439"
                                                             "5440"
                                                                      "5441"
[121] "5471"
               "548644" "55276"
                                 "5557"
                                           "5558"
                                                    "55703"
                                                             "55811"
                                                                      "55821"
[129] "5631"
               "5634"
                                 "56953"
                                           "56985"
                                                    "57804"
                                                             "58497"
                                                                      "6240"
                        "56655"
[137] "6241"
               "64425"
                        "646625" "654364" "661"
                                                    "7498"
                                                             "8382"
                                                                      "84172"
[145] "84265"
               "84284"
                        "84618"
                                 "8622"
                                           "8654"
                                                    "87178"
                                                             "8833"
                                                                      "9060"
                        "953"
                                           "954"
                                                    "955"
                                                             "956"
                                                                      "957"
[153] "9061"
               "93034"
                                  "9533"
[161] "9583"
               "9615"
  foldchanges = res$log2FoldChange
  names(foldchanges) = res$entrez
  head(foldchanges)
     1266
              54855
                         1465
                                  51232
                                              2034
                                                        2317
-2.422719 3.201955 -2.313738 -2.059631 -1.888019 -1.649792
Run the gage pathway analysis
  keggres = gage(foldchanges, gsets=kegg.sets.hs)
  attributes(keggres)
$names
[1] "greater" "less"
                        "stats"
  # Look at the first few down (less) pathways
  head(keggres$less)
                                         p.geomean stat.mean
                                                                     p.val
hsa04110 Cell cycle
                                      8.995727e-06 -4.378644 8.995727e-06
                                      9.424076e-05 -3.951803 9.424076e-05
hsa03030 DNA replication
hsa03013 RNA transport
                                      1.375901e-03 -3.028500 1.375901e-03
hsa03440 Homologous recombination
                                      3.066756e-03 -2.852899 3.066756e-03
hsa04114 Oocyte meiosis
                                      3.784520e-03 -2.698128 3.784520e-03
hsa00010 Glycolysis / Gluconeogenesis 8.961413e-03 -2.405398 8.961413e-03
                                                                    exp1
                                            q.val set.size
hsa04110 Cell cycle
                                      0.001448312
                                                   121 8.995727e-06
```

```
hsa03030 DNA replication
                                      0.007586381
                                                       36 9.424076e-05
hsa03013 RNA transport
                                      0.073840037
                                                      144 1.375901e-03
hsa03440 Homologous recombination
                                      0.121861535
                                                       28 3.066756e-03
hsa04114 Oocyte meiosis
                                                       102 3.784520e-03
                                      0.121861535
hsa00010 Glycolysis / Gluconeogenesis 0.212222694
                                                       53 8.961413e-03
Make a pathway plot with the RNA-Seq expression results
  pathview(gene.data = foldchanges, pathway.id = "hsa04110")
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory D:/R_bioinfo/class13
Info: Writing image file hsa04110.pathview.png
  pathview(gene.data = foldchanges, pathway.id = "hsa04110", kegg.native = FALSE)
'select()' returned 1:1 mapping between keys and columns
Warning: reconcile groups sharing member nodes!
     [,1] [,2]
[1.] "9" "300"
[2,] "9" "306"
Info: Working in directory D:/R_bioinfo/class13
Info: Writing image file hsa04110.pathview.pdf
  ## Focus on top 5 upregulated pathways here for demo purposes only
  keggrespathways <- rownames(keggres$greater)[1:5]</pre>
  # Extract the 8 character long IDs part of each string
  keggresids = substr(keggrespathways, start=1, stop=8)
  keggresids
[1] "hsa04640" "hsa04630" "hsa00140" "hsa04142" "hsa04330"
```

Draw plots for all the top 5 pathways

```
pathview(gene.data = foldchanges, pathway.id = keggresids, species = "hsa")
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory D:/R_bioinfo/class13
Info: Writing image file hsa04640.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory D:/R_bioinfo/class13
Info: Writing image file hsa04630.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory D:/R_bioinfo/class13
Info: Writing image file hsa00140.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory D:/R_bioinfo/class13
Info: Writing image file hsa04142.pathview.png
Info: some node width is different from others, and hence adjusted!
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory D:/R_bioinfo/class13
Info: Writing image file hsa04330.pathview.png
```

Q7. Can you do the same procedure as above to plot the pathview figures for the top 5 down-reguled pathways?

```
keggrespathways_down <- rownames(keggres$less)[1:5]</pre>
  keggresids_down = substr(keggrespathways_down, start=1, stop=8)
  keggresids_down
[1] "hsa04110" "hsa03030" "hsa03013" "hsa03440" "hsa04114"
  pathview(gene.data = foldchanges, pathway.id = keggresids_down, species = "hsa")
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory D:/R_bioinfo/class13
Info: Writing image file hsa04110.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory D:/R_bioinfo/class13
Info: Writing image file hsa03030.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory D:/R_bioinfo/class13
Info: Writing image file hsa03013.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory D:/R_bioinfo/class13
Info: Writing image file hsa03440.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory D:/R_bioinfo/class13
Info: Writing image file hsa04114.pathview.png
```

Gene Ontology (GO)

```
data(go.sets.hs)
data(go.subs.hs)
# Focus on Biological Process subset of GO
gobpsets = go.sets.hs[go.subs.hs$BP]
gobpres = gage(foldchanges, gsets=gobpsets, same.dir=TRUE)
lapply(gobpres, head)
```

```
$greater
                                             p.geomean stat.mean
                                                                        p.val
GO:0007156 homophilic cell adhesion
                                         8.519724e-05 3.824205 8.519724e-05
GO:0002009 morphogenesis of an epithelium 1.396681e-04 3.653886 1.396681e-04
GO:0048729 tissue morphogenesis
                                          1.432451e-04 3.643242 1.432451e-04
GD:0007610 behavior
                                          2.195494e-04 3.530241 2.195494e-04
GO:0060562 epithelial tube morphogenesis 5.932837e-04 3.261376 5.932837e-04
GO:0035295 tube development
                                          5.953254e-04 3.253665 5.953254e-04
                                             q.val set.size
                                                                     exp1
GO:0007156 homophilic cell adhesion
                                          0.1951953
                                                        113 8.519724e-05
GO:0002009 morphogenesis of an epithelium 0.1951953
                                                         339 1.396681e-04
GO:0048729 tissue morphogenesis
                                          0.1951953
                                                         424 1.432451e-04
GO:0007610 behavior
                                                         427 2.195494e-04
                                          0.2243795
GO:0060562 epithelial tube morphogenesis 0.3711390
                                                         257 5.932837e-04
                                                         391 5.953254e-04
GO:0035295 tube development
                                          0.3711390
$less
                                                                       p.val
                                           p.geomean stat.mean
GO:0048285 organelle fission
                                        1.536227e-15 -8.063910 1.536227e-15
GO:0000280 nuclear division
                                        4.286961e-15 -7.939217 4.286961e-15
GO:0007067 mitosis
                                        4.286961e-15 -7.939217 4.286961e-15
GO:0000087 M phase of mitotic cell cycle 1.169934e-14 -7.797496 1.169934e-14
```

GO:0007059 chromosome segregation 2.028624e-11 -6.878340 2.028624e-11 GO:0000236 mitotic prometaphase 1.729553e-10 -6.695966 1.729553e-10 q.val set.size exp1 GO:0048285 organelle fission 5.841698e-12 376 1.536227e-15 GO:0000280 nuclear division 5.841698e-12 352 4.286961e-15 GD:0007067 mitosis 5.841698e-12 352 4.286961e-15 GO:0000087 M phase of mitotic cell cycle 1.195672e-11 362 1.169934e-14

```
GO:0007059 chromosome segregation 1.658603e-08 142 2.028624e-11 GO:0000236 mitotic prometaphase 1.178402e-07 84 1.729553e-10
```

\$stats

		stat.mean	exp1
GO:0007156	homophilic cell adhesion	3.824205	3.824205
GD:0002009	${\tt morphogenesis} \ {\tt of} \ {\tt an} \ {\tt epithelium}$	3.653886	3.653886
GO:0048729	tissue morphogenesis	3.643242	3.643242
GO:0007610	behavior	3.530241	3.530241
GD:0060562	epithelial tube morphogenesis	3.261376	3.261376
GO:0035295	tube development	3.253665	3.253665

Reactome Analysis

```
sig_genes <- res[res$padj <= 0.05 & !is.na(res$padj), "symbol"]
print(paste("Total number of significant genes:", length(sig_genes)))
[1] "Total number of significant genes: 8147"
write.table(sig_genes, file="significant_gene.txt", row.names = FALSE)</pre>
```

Q8: What pathway has the most significant "Entities p-value"? Do the most significant pathways listed match your previous KEGG results? What factors could cause differences between the two methods?

According to Reactome, transport of small molecules has the most significant "Entities p-value", which doesn't match the KEGG results. GO is a dataset of genes without defining correlations between genes while KEGG defines the relationship between genes and metabolites.

GO online (OPTIONAL)

Q9: What pathway has the most significant "Entities p-value"? Do the most significant pathways listed match your previous KEGG results? What factors could cause differences between the two methods?

According to Reactome, transport of small molecules has the most significant "Entities p-value", which doesn't match the KEGG results. GO is a dataset of genes without defining correlations between genes while KEGG defines the relationship between genes and metabolites.