Algebraic Specification –

A Formalism to Specify

Sequential Programs

Markus Roggenbach

October 2002

Contents

1	Introduction		2
	1.1	Formal Methods in Software Design	2
	1.2	Elements of Formal Specifications	4
	1.3	Bibliographic Remarks	8
	1.4	Mathematical Preliminaries	8
2	Many-Sorted-Algebras		9
	2.1	Signatures	9
	2.2	Algebras	14
	2.3	Terms	20

1 Introduction

1.1 Formal Methods in Software Design

1.2 Elements of Formal Specifications

1.3 Bibliographic Remarks

1.4 Mathematical Preliminaries

Definition 1 (Functions)

A,B: sets

1. function: relation $f \subseteq A \times B$ with: for every $a \in A$ exists at most one $b \in B$ such that $(a,b) \in f$. notations:

- f(a) = b instead of $(a, b) \in f$
- f(a) undefined iff $\forall b \in B : \neg f(a) = b$.
- f(a): value of f for the argument a.
- 2. total function: $\forall a \in A : f(a)$ defined.
- 3. partial function: $\exists a \in A : f(a)$ undefined. notations:
 - total function $f: A \to B$
 - partial function $fA \rightarrow ?B$

2 Many-Sorted-Algebras

2.1 Signatures

Definition 2 (Signature)

A signature Σ is a pair $\Sigma = (S, \Omega)$ of sets,

S : set of <u>sorts</u>

 Ω : set of operations

Each operation $\omega \in \Omega$ consists of a tuple

```
\omega = n : s_1 \times \ldots \times s_k \to s ; k \ge 0, s_1, \ldots, s_k, s \in S.
```

n : operation name

 $s_1 \times \ldots \times s_k \to s$: profile

 s_1, \dots, s_k : argument sorts

s : target sort

```
Example 3 (Lists of Natural Numbers)  \bullet \ S = \{ \ List, \ Nat \ \}   \bullet \ \Omega = \{ \ nil \ : \rightarrow List, \\  : : : Nat \times List \rightarrow List, \\  + + : List \times List \rightarrow List, \\  ! : : List \times Nat \rightarrow Nat \ \}   M. Roggenbach: Algebraic Specification, October 2002
```

```
Example 4 (Editor)  \bullet \ S = \{ \ Text, \ Character, \ Position \ \}   \bullet \ \Omega = \{ \ insert: \ Character \times Position \times Text \rightarrow Text, \\ delete: \ Position \times Text \rightarrow Text, \\ move: \ Position \times Position \times Position \times Text \rightarrow Text \ \}
```

2.1 Signatures 11

Example 6 (Signatures)

Java-Compiler example (slide 37).

here a possible solution:

$$S = \{Java-source, Class-file, Errors, Compiler-options\}$$

$$\Omega = \{ \ javac : Java-source \times Compiler-options \rightarrow Errors \ javac : Java-source \times Compiler-options \rightarrow Class-file \}$$

Remark 1 (Signatures)

 $\omega = \omega' \Leftrightarrow \omega$ and ω' got the same name and the same profile.

Remark 2 (Signatures)

 $k = 0 : n \rightarrow s \text{ is a constant of sort } s.$

Remark 3 (Signatures)

S and Ω are arbitrary sets.

- \rightarrow $\Sigma = (\emptyset, \emptyset)$ is a signature.
- \rightarrow S, Ω can be infinitive, e.g.
 - (i) sorts representing functions of all arities

$$S_0$$
 constants
 S_1 : $S_0 \rightarrow S_0$
 S_2 : $S_0 \times S_0 \rightarrow S_0$
 \vdots

(ii) Fourier series:

$$\cos(kx), \sin(kx), k \in \mathbb{N}, k \geq 1$$

as elementary functions.


```
SIG-ITEMS ::= sort/sorts
SORT-ITEM ; ...; SORT-ITEM ;/
| op/ops
OP-ITEM ; ...; OP-ITEM ;/
| ...

SORT-ITEM ::= SORT , ..., SORT
```

Remark 4 (Signatures)

Operations

$$\omega = n : s_1 \times \ldots \times s_k \to t_1 \times \ldots \times t_l$$

can be simulated by

$$\omega_1 = n_1 : s_1 \times \ldots \times s_k \to t_1$$

$$\vdots$$

$$\omega_l = n_l : s_1 \times \ldots \times s_k \to t_l$$

2.1 Signatures 13

So it can also be written as $\omega = (\omega_1, \dots, \omega_l).$


```
Example 8 (Integer)  \bullet S = \{ \ Int \ \}   \bullet \Omega = \{ -: Int \rightarrow Int, \\ +: Int \times Int \rightarrow Int, \\ -: Int \times Int \rightarrow Int \}  spec INTEGER = sorts Int ops -...: Int \rightarrow Int; \\ -...+-... \\ -...: Int \times Int \rightarrow Int end
```


Remark 5 (CASL-Signatures)

S and Ω are finite in CASL-signatures.

2.2 Algebras

Definition 3 (Σ -Algebra)

 $\Sigma = (S, \Omega)$ signature. A Σ -Algebra assigns

- \rightarrow a set A(s) to each sort $s \in S$ ('carrier set').
- $ightarrow a total function \ A(n:s_1 imes \ldots imes s_k o s): A(s_1) imes \ldots imes A(s_k) o A(s) \ to each operation <math>(n:s_1 imes \ldots imes s_k o s) \in \Omega$, $k \geq 0$.

Note:
$$k = 0 \Rightarrow A(n : \rightarrow s) \in A(s)$$

 $Alg(\Sigma)$: class of all Σ -algebras.

Remark 6 (Class)

The mathematical concept of classes is subject of the tutorial.

2.2 Algebras 15

```
MRoggenbach: Algebraic Specification, October 2002
```

```
A_1(Nat) = N

A_1(0) = 0

A_1(suc)(n) = n+1 \ \forall n \in N
```

$$A_2(Nat) = Z$$

 $A_2(0) = 0$
 $A_2(suc)(z) = -z - 1 ; z > 0$
 $-z + 1 ; z \le 0$

$$A_3(Nat) = \{42\}$$

 $A_3(0) = 42$
 $A_3(suc)(42) = 42$

Semantics of Java-programms are Σ -algebras for the signature.

```
Algebra: 48

Example 12 (\Sigma-Algebra: Integer)

spec Integer = sorts Int
ops -_.: Int \rightarrow Int;
--+--,
----: Int \times Int \rightarrow Int
end
```

$$\begin{array}{lll} A_1(Int) & = Z \\ A_1(-)(z) & = -z \; ; \; z \in Z \\ A_1(+)(z_1,z_2) & = z_1+z_2 \; z_1,z_2 \in Z \\ A_1(-)(z_1,z_2) & = z_1-z_2 \; z_1,z_2 \in Z \\ \\ A_2(Int) & = \{z \in Z | -2^n+1 \leq z \leq 2^n-1\} =: int \; ; \; n \in N \\ A_2(-)(z) & = -z \; ; \; z \in int \\ A_2(+)(z_1,z_2) & = (z_1+z_2) \; rem \; 2^n \\ \\ A_2(-)(z_1,z_2) & = (z_1-z_2) \; rem \; 2^n \end{array}$$

Note:

- \rightarrow $|x \ quot \ y| = |x| \ quot \ |y|$
- \rightarrow $x = (x \ quot \ y) * y + (x \ rem \ y)$
- $\rightarrow |x \ rem \ y| = |x| \ rem \ |y|$

Take your favorite editor (emacs, vi, ...).

Remark 7 (Algebras in CASL)

CASL semantics:

carrier sets are non-empty.

2.2 Algebras 17

[| CASL-Spec with Sort- and Op-Items |] = $Alg'(\Sigma)$

$$\Sigma = (S, \Omega)$$

S: set of all declared sorts

 Ω : set of all declared operations

$$Alg'(\Sigma) = \{ A \in Alg(\Sigma) | \forall s \in S . A(s) \neq \emptyset \}$$

Definition 4 (Σ -Homomorphism)

Let $\Sigma = (S, \Omega)$ be a signature and

let A, B be Σ -algebras.

A Σ -homomorphism is a family

$$h = (h_s)_{s \in S}$$

with

$$h_s: A(s) \to B(s)$$

and

$$A(s_1) \times \ldots \times A(s_k) \xrightarrow{A(\omega)} A(s)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$h_{s_1} \qquad h_{s_k} \qquad // \qquad h_s$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$B(s_1) \times \ldots \times B(s_k) \xrightarrow{B(\omega)} B(s)$$

for all $\omega \in \Omega$.

note:
$$k = 0 \Rightarrow h_s(A(\omega)) = B(\omega)$$

Definition 5 (Isomorphism)

- (i) A bijective homomorphism is called isomorphism.
- (ii) Let Σ be a signature.

 Σ -algebras A, B are called isomorphic

if there exists a Σ -isomorphism from A to B.

(notation: $A \simeq B$)

Example 14 (Homomorphism)

$$A(Nat) = N$$
 $B(Nat) = N$
 $A(0) = 0$ $B(0) = 1$
 $A(suc)(n) = n+1$ $B(suc)(n) = n+1$

(i)
$$g: A \to B$$

$$n \mapsto n+1 \qquad \text{is homomorphism.}$$

$$\rightarrow$$
 $g(A(0)) = g(0) = 1 = B(0)$

$$\rightarrow g(A(suc)(n)) = g(n+1) = n+2$$

$$B(suc)(g(n)) = B(suc)(n+1) = n+2$$

(ii) is there a homomorphism $h: B \to A$?

$$h(B(suc)(0)) = h(1) = 0$$

 $A(suc)(h(0)) = h(0) + 1$

$$h(B(0)) = h(1) = A(0) = 0$$

 $but \ n+1=0 \ has \ no \ solution \ in \ N$

$$(iii) C(Nat) = \{42\}$$

$$C(0) = 42$$

$$C(suc)(42) = 42$$

$$h:A\to C$$

h(n) = 42 is a homomorphism.

$$\rightarrow \quad h(A(0)) = h(42) = C(0)$$

$$\rightarrow h(A(suc)(n)) = h(n+1) = 42$$

$$C(suc)(h(n)) = C(suc)(42) = 42$$

Theorem 1 (Homomorphism)

The composition of Σ -homs yields a Σ -hom. proof: exercise

Theorem 2 (Homomorphism)

$$\begin{split} \Sigma &= (S,\Omega) & signature \\ h &: A \to B & a \; \Sigma\text{-}isomorphism. \\ \Rightarrow h^{-1} &= (h_s^{-1})_{s \in S} \; is \; a \; \Sigma\text{-}isomorphism. \end{split}$$

2.2 Algebras 19

proof: let $s \in S$.

a) h_s bijective $\Rightarrow h_s^{-1}$ bijective

b) hom.-condition:

let
$$\omega \in \Omega$$
, i.e. $\omega = (n : s_1 \times \ldots \times s_k \to s)$

$$h_s^{-1}(B(\omega)(b_1,\ldots,b_k)) \stackrel{!}{=} A(\omega)(h_s^{-1}(b_1),\ldots,h_s^{-1}(b_k))$$

h is hom.

$$\Rightarrow h_s(A(\omega)(h_{s_1}^{-1}(b_1), \dots, h_{s_k}^{-1}(b_k)))$$

$$= B(\omega)(h_{s_1} \circ h_{s_1}^{-1}(b_1), \dots, h_{s_k} \circ h_{s_k}^{-1}(b_k))$$

$$= B(\omega)(b_1, \dots, b_k)$$

$$h_s^{-1}(B(\omega)(b_1,\ldots,b_k))$$

$$= \underbrace{h_s^{-1}(h_s(A(\omega)(h_{s_1}^{-1}(b_1),\ldots,h_{s_k}^{-1}(b_k))))}_{A(\omega)((h_{s_1}^{-1}(b_1),\ldots,h_{s_k}^{-1}(b_k)))}$$

Remark 8 (Homomorphism)

Relation of isom. is an equivalence relation.

- (r) identity is an isomorphism.
- (s) theorem 2
- (t) theorem 1

Definition 7 (Abstract Datatype)

An abstract datatype for a signature Σ is a class C of Σ -algebras closed under isomorphism, i.e.:

$$A \in C \land B \simeq A \Rightarrow B \in C$$

Example 15 (Abstract Datatype)

$$\Sigma = (\{Nat\}, \{0: Nat, suc: Nat \rightarrow Nat\})$$

- (i) $Alg(\Sigma)$ is ADT.
- (ii) $\{A \in Alg(\Sigma) | |A(Nat)| = 1\}$ is ADT.
- (iii) $\{D \in Alg(\Sigma) | D \simeq A \vee D \simeq B\}$ where A and B are the algebras of Example 2.2.

2.3 Terms

Remark 9 (Variables)

V : "Universe" of variables

 $X \subseteq V$: the variables one is "working with".

2.3 Terms 21

Example 16 (Terms in Nat)

$$\begin{aligned} Nat &= & (\{Nat\}, \{0: \rightarrow Nat, \\ &suc: Nat \rightarrow Nat\}) \end{aligned}$$

$$\begin{array}{lcl} X & = & (X_s)_{s \in \{Nat\}} = (X_{Nat}) \\ X_{Nat} & = & \{x\} \end{array}$$

(i)
$$\{x\} \subseteq T_{\Sigma(X),Nat}$$

(ii)
$$0 \in T_{\Sigma(X),Nat}$$

(iii)
$$suc(t) \in T_{\Sigma(X),Nat}$$
 if $t \in T_{\Sigma(X),Nat}$

$$\Rightarrow T_{\Sigma(X),Nat} = \{x\} \cup \{0\} \cup \{suc^n(t) \mid n \ge 1, t = 0 \lor t = x\}$$

$$T_{\Sigma,Nat} = \{0\} \cup \{suc^n(0) \mid \ n \geq 1\}$$

Notations

$$\begin{split} Var(t): \text{set of all variables occuring in term } t.\\ t \text{ is called } ground\ term\ if}\ Var(t) = \emptyset.\\ T_{\Sigma,s}: \text{set of all ground terms of sort } s.\\ T_{\Sigma} = (T_{\Sigma,s})_{s \in S}: \text{family of all ground terms.} \end{split}$$

M.Roggenbach: Algebraic Specification, October 2002

ground terms

$$T_{\Sigma} = (T_{\Sigma,Nat}, T_{\Sigma,List})$$

$$T_{\Sigma,Nat} = \emptyset$$

$$T_{\Sigma,List} = L(G)$$

$$\mathcal{G}$$
: $z := nil \mid (z + +z)$

NatList2 has ground terms of sort Nat:

$$T_{\Sigma,Nat} \ = \ \{0\} \cup \{suc^n(0) \mid \ n \ge 1\}$$

 $T_{\Sigma,List}$ = really complicated

some examples:

$$\rightarrow \ nil$$

$$\rightarrow \ suc^7(0):: suc(0):: nil + + nil + + suc^{42}(0)$$

$$\rightarrow suc^{111}(0)! nil$$

Remark 10 (Semantic of terms)

Semantic of terms:

Terms 23

$$\begin{array}{lll} t & \in & T_{\Sigma(X),s} & & Signature \ \Sigma = (S,\Omega) \\ \downarrow & & \\ a & \in & A(s) & & \Sigma \text{-algebra } A. \end{array}$$

Assignment $\Sigma = (S,\Omega)$: signature $X=\left(X_{s}
ight) :$ family of variables $A: \Sigma\text{-algebra}.$ An assignment of X for A is a family of total functions $\alpha_s: X_s \to A(s)$. ullet no assignment from X to A if $X_s \neq \emptyset$ and $A(s) = \emptyset$. $\bullet \ \ \text{in CASL holds} \colon \ A(s) \neq \emptyset.$

Semantics of Terms

The value $A(\alpha)(t)$ of a term $t \in T_{\Sigma(X),s}$ for an assignment α is defined by induction on the term structure:

(i)
$$A(\alpha)(t) = \alpha_s(x)$$
, if $t = x$, $x \in X_s$.

(i)
$$A(\alpha)(t) = \alpha_s(x)$$
, if $t = x, x \in X_s$.
(ii) $A(\alpha)(t) = A(\omega)$, if $t = n, \omega = (n \rightarrow s) \in \Omega$.

$$\begin{split} \text{(iii)} \quad & A(\alpha)(t) = A(\omega) \left(A(\alpha)(t_1), \dots, A(\alpha)(t_k) \right), \text{ if } \\ & \omega = (n: s_1 \times \dots \times s_k \to s) \in \Omega, \, k \geq 1, \\ & t_i \in T_{\Sigma(X), s_i}, 1 \leq i \leq k. \end{split}$$

Example 19 (Semantic of terms)

$$Nat = (\{Nat\}, \{0 : \rightarrow Nat, \\ suc : Nat \rightarrow Nat\})$$

$$X_{Nat} = \{x\}$$
 $\alpha = (\alpha_{Nat})$

$$A(Nat)$$
 = N $\alpha_{Nat}(x) = 42$
 $A(0)$ = 0
 $A(suc)(n)$ = $n+1$

(i)
$$A(\alpha)(x) = \alpha(x) = 42$$

(ii)
$$A(\alpha)(0) = A(0) = 0$$

(iii)
$$A(\alpha)(suc(x)) = A(suc)(A(\alpha)(x))$$

= $A(suc)(42)$
= $42 + 1 = 43$

Theorem 3 (Semantic of terms)

$$\begin{array}{lll} let & & \alpha,\beta \,:\, X \to A & \mbox{ be assignments} \\ & & t \in T_{\Sigma(X)} & \mbox{ be a term.} \end{array}$$

if
$$\alpha(x) = \beta(x)$$
 for all $x \in Var(t)$
then $A(\alpha)(t) = A(\beta)(t)$

proof: exercise.

Corollary 1 (Semantic of terms)

The value of a ground term does not depend on the assignment.

Theorem 4 (Semantic of terms)

 $\Sigma = (S, \Omega)$ signature.

 $A, B \ \Sigma\text{-}algebras.$

 $h: A \to B \Sigma$ -hom.

$$\Rightarrow h(A(\alpha)(t)) = B(h \circ \alpha)(t)$$

for each term $t \in T_{\Sigma(X)}$ and assignment $\alpha : X \to A$

proof: exercise!