Bab 10: Introduction to Artificial Neural Networks with Keras

Tujuan Bab

Memahami dasar-dasar jaringan saraf tiruan (*artificial neural networks / ANN*), serta membangun dan melatih model ANN sederhana menggunakan Keras (API tingkat tinggi untuk TensorFlow).

Konsep Utama

1. Artificial Neuron

Model matematis terinspirasi dari neuron biologis. Sebuah neuron:

- Menerima input x1,x2, xn
- Mengalikan tiap input dengan bobot wi
- Menjumlahkan hasilnya, ditambah bias
- Melewatkan nilai akhir ke fungsi aktivasi

Contoh aktivasi:

- ReLU: umum digunakan karena mengurangi masalah vanishing gradient ReLU(x)=max (0, x)
- Sigmoid: cocok untuk output probabilistik (biner)
- Tanh: mengoutputkan antara -1 dan 1

2. Architecture: Layers

Sebuah jaringan saraf terdiri dari:

- Input layer
- Hidden layers (bisa banyak)
- · Output layer

Setiap layer berisi banyak neuron. Jika semua neuron dari satu layer terhubung ke semua neuron layer berikutnya → disebut fully connected / dense layer.

3. Building a Model with Keras

Contoh membuat model untuk klasifikasi:

```
from tensorflow import keras

model = keras.models.Sequential([

keras.layers.Dense(30, activation="relu", input_shape=[8]),

keras.layers.Dense(1, activation="sigmoid")

])
```

Model di atas terdiri dari:

- 1 hidden layer dengan 30 unit dan ReLU
- 1 output layer dengan 1 unit dan sigmoid (cocok untuk klasifikasi biner)

4. Kompilasi dan Pelatihan

Sebelum dilatih, model perlu dikompilasi:

```
model.compile(loss="binary_crossentropy", optimizer="sgd", metrics=["accuracy"])

Kemudian dilatih:

history = model.fit(X_train, y_train, epochs=20, validation_data=(X_valid, y_valid))
```

5. Evaluasi dan Prediksi

Model dapat dievaluasi dan digunakan untuk prediksi seperti berikut:

```
model.evaluate(X_test, y_test)
model.predict(X_new)
```

6. Saving and Loading Models

Model dapat disimpan dan dimuat kembali:

```
model.save("my_model.h5")

model = keras.models.load_model("my_model.h5")
```

7. Callbacks

Keras mendukung callback seperti:

- ModelCheckpoint: menyimpan model terbaik selama pelatihan
- EarlyStopping: menghentikan pelatihan jika validasi tidak membaik

```
early_stopping_cb = keras.callbacks.EarlyStopping(patience=5,
restore_best_weights=True)
history = model.fit(..., callbacks=[early_stopping_cb])
```

Proyek / Notebook Praktik

Dataset

Menggunakan California Housing dataset untuk regresi.

Langkah Praktik:

- 1. Normalisasi data input
- 2. Membangun model Keras menggunakan Sequential
- 3. Melatih model dengan optimasi MSE dan menggunakan SGD
- 4. Menyimpan dan memuat model
- 5. Menambahkan callback EarlyStopping untuk menghindari overfitting

Inti Pelajaran

Konsep	Penjelasan

Neuron	Fungsi matematis yang memetakan input menjadi output nonlinier
Layer	Kumpulan neuron, dapat di-stack untuk membuat jaringan dalam
Keras Sequential	API sederhana untuk membuat model feedforward
Optimizer	Digunakan untuk menyesuaikan bobot (misalnya: SGD, Adam)
Loss Function	Mengukur seberapa jauh prediksi dari target (MSE, binary crossentropy)
Callback	Mekanisme otomatis selama pelatihan untuk efisiensi dan kestabilan

Keunggulan Keras

- Mudah digunakan
- Terintegrasi penuh dengan TensorFlow
- Dukungan penuh untuk GPU, checkpoint, dan callbacks
- Cocok untuk prototyping cepat maupun produksi