Square Root

นักคณิตศาสตร์ได้ค้นหาวิธีการคำนวณรากที่สองของสองในรูปแบบต่างๆ กันเพื่อเขียนค่าประมาณใกล้เคียงของรากที่ สองของสองออกมาในรูปของอัตราส่วนของจำนวนเต็มหรือ<mark>เลขทศนิยม</mark> หนึ่งในวิธีการที่ถือว่าเป็นเบื้องต้นที่สุดคือขั้นตอนวิธี ของบาบิโลเนียเพื่อคำนวณรากที่สองของสอง^[5] ซึ่งถือเป็นพื้นฐานการคำนวณของคอมพิวเตอร์และเครื่องคิดเลข ขั้นตอนวิธี เพื่อหารากที่สอง (อาจใช้เพื่อหารากที่สองของจำนวนใดๆ ไม่เฉพาะของสอง) ดังกล่าวสามารถทำได้ดังนี้

- เลือก *a₀* >0 ค่า a₀ ที่เลือกนี้จะมีผลกระทบต่อความเร็วในการลู่เข้าสู่ค่าของ √2 ในระดับความแม่นยำหนึ่งเท่านั้น
- ใช้ฟังก์ชันเรียกตัวเองเพื่อคำนวณ a₁, a₂, a₃, ..., a_n

$$a_{n+1} = rac{a_n + rac{2}{a_n}}{2} = rac{a_n}{2} + rac{1}{a_n}.$$

• ตัวอย่างการคำนวณโดยเลือก a₀=1 ได้ผลดังนี้

$$a_0$$
 = 1
 $a_1 = 3/2$ = **1.**5
 $a_2 = 17/12$ = **1.416...**
 $a_3 = 577/408$ = **1.414215...**
 $a_4 = 665857/470832$ = **1.41421356237**46...

คำสั่ง

จงเขียนโปรแกรมและ Recursive Function เพื่อคำนวณรากที่สองของจำนวนที่ต้องการ

ข้อมูลนำเข้า

0 ≤ n เป็นจำนวนเต็ม

ข้อมูลส่งออก

รากที่สองของ n เป็นเลขทศนิยม 6 ตำแหน่ง

ตัวอย่าง

ข้อมูลนำเข้า	ข้อมูลส่งออก
441	21.000000
2401	49.000000
6889	83.000000