# Genome-wide Association Studies (GWAS) and disease

#### **GWAS SNP Discovery Timeline**



Visscher, Peter M., et al. "10 years of GWAS discovery: biology, function, and translation." The American Journal of Human Genetics 101.1 (2017): 5-22. https://doi.org/10.1016/j.ajhg.2017.06.005

#### **GWAS** discoveries and drugs



| Trait                         | Gene with GWAS hits | ZnT-8 antagonists/Glyburide<br>BB-Cl-amidine/Tocilizumab |  |
|-------------------------------|---------------------|----------------------------------------------------------|--|
| Type 2 Diabetes               | SLC30A8/KCNJ11      |                                                          |  |
| Rheumatoid Arthritis          | PADI4/IL6R          |                                                          |  |
| Ankylosing<br>Spondylitis(AS) | TNFR1/PTGER4/TYK2   | TNF-<br>inhibitors/NSAIDs/fostamatinib                   |  |
| Psoriasis(Ps)                 | IL23A               | Risankizumab                                             |  |
| Osteoporosis                  | RANKL/ESR1          | R1 Denosumab/Raloxifene and HRT                          |  |
| Schizophrenia                 | DRD2                | Anti-psychotics                                          |  |
| LDL cholesterol               | HMGCR               | HMGCR Pravastatin                                        |  |
| AS, Ps, Psoriatic Arthritis   | IL12B               | Ustekinumab                                              |  |

Visscher, Peter M., et al. "10 years of GWAS discovery: biology, function, and translation." The American Journal of Human Genetics 101.1 (2017): 5-22. https://doi.org/10.1016/j.ajhg.2017.06.005

#### a Genome-wide association



#### a Genome-wide association **b** Functional characterization Disease Trait Chromatin accessibility Population Controls Cases Unselected sample Histone modification Genotyping method DNA Meta-analysis SNP array and imputation methylation WGS Transcription factor binding Statistical association Chromosome Conservation Linkage disequilibrium eQTL Genomic region c Experimental validation d GWAS variants High Common variants Highly penetrant mutations with large effects Chromatin immunoprecipitation Effect size Chromosome conformation capture Intermediate frequency variants with moderate effects Common variants with small effects Rare variants with small effects Low Rare Common In vitro reporter assay In vivo models Allele frequency

#### Study population

a Genome-wide association



- could be cases and controls for a disease
- or a population sample of a trait

#### **Genotyping method**



- SNP array (cheap)
- whole exome sequencing (all exons i.e. coding)
- whole genome sequencing (expensive)

#### Statistical association



- e.g. logistic regression for binary (disease vs. healthy)
- e.g. linear regression for quantitative traits
- many other possible analyses

## Linkage disequilibrium (LD)

Linkage disequilibrium



- linkage equilibrium = random association of SNPs/alleles at different loci
- in reality many non-random associations, or linkage disequilibrium

#### **Crossing over**



- Crossing over (homologous recombination) occurs during meiosis
- · New allele combinations can occur in gametes

## Linkage disequilibrium (LD)

Decay of Linkage over successive generations



Linkage Disequilibrium Within A Population



Population moves from Linkage Disequilibrium to Linkage
Equilibrium over time

## Linkage disequilibrium (LD)

**Indirect Association** 



Indirect association – genotyped SNP in high LD with (un-genotyped) disease SNP

#### Missing heritability

| Table 1   Estimates of heritability and number of loci for several complex traits |                |                                      |                               |  |  |  |
|-----------------------------------------------------------------------------------|----------------|--------------------------------------|-------------------------------|--|--|--|
| Disease                                                                           | Number of loci | Proportion of heritability explained | Heritability measure          |  |  |  |
| Age-related macular degeneration <sup>72</sup>                                    | 5              | 50%                                  | Sibling recurrence risk       |  |  |  |
| Crohn's disease <sup>21</sup>                                                     | 32             | 20%                                  | Genetic risk (liability)      |  |  |  |
| Systemic lupus erythematosus <sup>73</sup>                                        | 6              | 15%                                  | Sibling recurrence risk       |  |  |  |
| Type 2 diabetes <sup>74</sup>                                                     | 18             | 6%                                   | Sibling recurrence risk       |  |  |  |
| HDL cholesterol <sup>75</sup>                                                     | 7              | 5.2%                                 | Residual* phenotypic variance |  |  |  |
| Height <sup>15</sup>                                                              | 40             | 5%                                   | Phenotypic variance           |  |  |  |
| Early onset myocardial infarction <sup>76</sup>                                   | 9              | 2.8%                                 | Phenotypic variance           |  |  |  |
| Fasting glucose <sup>77</sup>                                                     | 4              | 1.5%                                 | Phenotypic variance           |  |  |  |
| * Residual is after adjustment for age, gender, diabete                           | es.            |                                      |                               |  |  |  |

- · GWAS variants often have small effect
- May explain small proportion of heritability

#### Missing heritability



#### Missing heritability



 WGS can help capture additional heritability (in some cases)

#### Swedish Schizophrenia Study



#### Swedish Schizophrenia Study



- Ancestry matched population controls
- · Whole genome sequencing (WGS)

#### Swedish Schizophrenia Study



- · WGS enables detection of structural variants (SV)
- · Higher analytical burden

#### **GWAS** from biobanks



#### Population stratification



- · Closed circles are cases
- · Open circles are controls
- · Red ancestry overrepresented in cases
- · i.e. ancestry could drive association

#### Population stratification



PC 1: variance explained = 2.95 %

Gaspar, H.A., Breen, G. Probabilistic ancestry maps: a method to assess and visualize population substructures in genetics. BMC Bioinformatics 20, 116 (2019). https://doi.org/10.1186/s12859-019-2680-1

#### Population stratification

#### **PROGRESS**



Figure 1 | P-P plots for the visualization of stratification or other confounders. The figure shows simulated P-P plots under three scenarios for genome-wide scans with no causal markers. a | No stratification: p-values fit the expected distribution. b | Stratification without

unusually differentiated markers: p-values exhibit modest genome-wide inflation.  $\mathbf{c} \mid$  Stratification with unusually differentiated markers: p-values exhibit modest genome-wide inflation and severe inflation at a small number of markers.