General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

Produced by the NASA Center for Aerospace Information (CASI)

Check

SDACC station SYSTEMS Study

program review

volume 2 program review report

(NASA-CR-161231) SPACE STATION SYSTEMS ANALYSIS STUDY. VOLUME 2: PROGRAM REVIEW REPORT Final Report (Grumman Aerospace Corp.) 105 p NC A06/MF A01 CSCL 22B

N84-31264

19-20 April 1977

GRUMMAN

G3/18 Unclas G3/18 00945

space station systems analysis study

Program review

OF POOR QUALITY

VOLUME 2 PROGRAM REVIEW REPORT 19-20 April 1977 Contract No. NAS8-31993

AGENDA SPACE STATION PROGRAM REVIEW MEETING 19 APRIL 1977

TRANSITION FROM TENDED TO MANNED

TRANSTTION GOVERNED BY LS

TRANSTTION GOVERNED LEVELS

ONSET OF MANNED GEO. OPS.

TENDED MODE

MAX CREW — (INCL ORB. SPECIALISTS)

MAX CREW

OF PULL PERM

"RENT" IF ORB. KEPT AT PLTFM > 7 DAYS/FLT \$0.38M/DAY

 $(365-4x7) \times 0.38 = $128M/YEAR$

10 AT 4 FLTS/YEAR 15 AT 6 FLTS/YEAR 20 AT 8 FLTS/YEAR

COST OF HABITATION FAC. ~ \$800 M.

SPACE STATION - MAJOR GROWTH OPTIONS

JG-404

*----

DISTINCTION BETWEEN INCREASED ORBITER AUGMENTATION & HABITATION

	TENDED	MANNED
 LIFE SUPPORT WASTE MGMT HYGIENE COOKING SLEEPING/STOWAGE ROOM RECREATION COMMUNICATIONS COMPUTER 	? OPTIONAL "INCREASED ORB. AUGMENTATION" CREW COMFORT CREW EFF ? ?	✓ MANDATORY "HABITATION" PROVIDES: REDUNDANCY ROUTINE MAINTAINABILITY ✓
		DRUMMAN.

MISSION CATEGORIES

- SOLAR POWER SATELLITE DEVELOPMENT
 - INCREMENTAL STEPS

- HIGHER PERFORMANCE MATERIALS
- EXTENDED APPLICATIONS

- GROUPING MULTIPLE FUNCTIONS FOR ECONOMY
- LARGE ANTENNAS
- BENEFICIAL SCIENTIFIC MISSIONS
 - SOLAR-TERRESTIAL OBSERVATIONS
 - -- LIFE SCIENCES
 - OTHERS

ORIGINAL PARTIES

K-406

SPS DEVEL PROGRAM/SPACE STATION RELATIONSHIP

SPACE STATION STUDY — CURRENT FULL SIZE SPS DEFINITION

1	CONCEPT POWER SOURCE R.F.GEN.		SIZE (PWR		ASSY SITE		SCHEDULE				
		C:R	AMPL.	KLYST.	S.S.	DELVD)	LEO	MIXED	GEOS	MAJ. GO- AHEAD DECIS.	IOC
PHO	TOVOLT.										
CdSt	JLPHIDE	1:1									
	Si	2:1				5 GW			5 5 5 5	'87	'95
	GaAs	7:1									
	RMAL- RAYTON	2000:1									

SPS DEV MICROWAVE ISSUES & DEV. ANTENNA OPTIONS

ANT ORBIT ANT SHAPE	 SQ	LEO LINEAR	CROSS	 SQ	GEO J LINEAR	CROSS	
TECHN. ISSUES					?		
PLASMA INTERACTION		- -					
 RF GEN DURATION 		<u></u>					
POWER DENSITY EFFECTS							
 MULTI RF GEN CASCADING ON ONE SUB-ARRAY 		п (А)					<u> </u>
● WAVEFRONT CONTREF BEAM			лA			J.	ORICINEL OF POOK
WAVEFRONT CONTCOMMAND BEAM	-						OK O
● HEATED IONOSPH. EFFECT ON REF/COMMND BEAM		- -	- -		77.877.	<u> </u>	· · · · · · · · · · · · · · · · · · ·
● END TO END DEMO-STEADY -FLASH		(A) TO GR	(A) OUND		? 	?	
• RFI EFFECTS					?	?	
IONOSPH HEATED BY M.W.					?	?	
LEGEND (A) TRANSMISSION T FLYER IN SAME (i I	1	SPDA SI SIGNIFI	ZE IS A CANT PROB	LEM	

SPS DEV MICROWAVE ISSUES & DEV. ANTENNA OPTIONS

600 Kw SPDA PROGRAM

ORIGINAL PALL 18

SPDA CAPABLE OF TRANSMITTING POWER TO GROUND FROM 400 Km. ALT. SIZING CONSIDERATIONS

JG-435

NEW SPACE STATION POWER SUPPLY APPROACH

PUBLIC SERVICE PLATFORM AN INTEGRATED PUBLIC SERVICE CONCEPT

PSP INITIAL ASSEMBLY

SPACE STATION REQUIREMENTS FOR SPACE MANUFACTURING MODULE

PROCESS	SEPARATION	TISSUE CULTURING	DIR. SOLID.	CRYSTAL GROWTH
PRODUCT (TYPICAL)	KIDNEY CELLS	UROKINASE	MAGNETS	SILICON RIBBON
RAW MAT REQD (KG/YR)	500	6 – 10	9100	2290
EXPEND. REQD (KG/YR)	1290	2300	300	610
OUTPUT (KG/YR) HDWRE MASS (KG)	6 – 10 600	900	9100 800	2290 707
CONT. ELEC POWER (KW AV)	5.1	0.2	4.6	4.2
MANPOWER REQD (HRS/DAY)	< 2	< 3	< 2+1 DAY/MO	1 DAY/MO

NOTE: EACH PROCESS REQUIRES A 4 x 4m MODULE, COOLING FROM EC/LSS & CONTROL COMPUTER WITH PROCESS FEEDBACK

ORIGINAL MARIE

SPACE STATION REQUIREMENTS FOR SOLAR TERRESTRIAL OBSERVATORY

MEAS AREA	EA	RTH	ATMOS	PHERE	MAGNETOSPHERE		SOLAR	
400 KM ORBIT INCL (DEG)	28.5	55	28.5	55	28.5	55	28.5	55
EQUIPMENT MASS (KG)		1500	300	800	_	8100	4850	4850
EQUIPMENT VOL (M ³)	_	5	3	4	_	4	9	9
POWER REQD (KW)	-	1.4	1	1.2	_	10	0.6	0.6
MANPOWER REQD TO								
 CONDUCT EXP 	_	0	< 1	< 1	_	< 1	< 1	< 1
 MAINTAIN EXP 	_	< 1	0	0	_	0	υ	6

TENDED MODE/MANNED MODE OPTION SPACE STATION SYSTEM PROGRAM

PROGRAMMATIC GROUND RULES

- INITIAL POWER MODULE ATP FY '79
- ATP DELTA STATION FY '80
- IOC INITIAL POWER MODULE FY '83
- **IOC CONSTRUCTION SYSTEM FY '84**
- MAJOR SPS DECISION END '87
- **® SCHEDULE THRU '87**

OPTION - TENDED MODE/MANNED MODE - SPACE STATION SYSTEM PROGRAM

G414(1/2)

OPTION — TENDED MODE/MANNED MODE — SPACE STATION SYSTEM PROGRAM (CONT'D)

OPTION—TENDED MODE/MANNED MODE—SPACE STATION SYSTEM PROGRAM SCHEDULE

OF POOR Quivile

SPACE STATION SYSTEM PROGRAM FLIGHT SEQUENCE

	CON	ISTR	STS PAYLOAD	SHUTTLE	
FLT	OHEW -			DAYS	
NO.	STS	S.S.	MAJOR ITEMS	ON ORBIT	
1	4		INITIAL POWER MOD SOLAR ARRAY S&C MODULE	1	
2&3	2-4 3-4		 EXT TANK FAB MODULE CHERRY PICKER 600 KW SPDA BLANKETS AMPLITRONS 	2-35 3-30	
4, 5 6 & 7	4-4 5-4 6-4 7-4		SP MFG EXPSTO EXPERIMENTSLIFE SCI EXP	4-50 5-30 6-30 7-50	
8, 9 10	8-4 9-4 10-4		● PSP STR MATL ■ PSP ELECTRONICS	8-30 9-30 10-30	G G
11, 12, 13, 14, 15, 16,	11-4 12-4 13-4 14-4	15-4 16-7 17-7	ADV PWR MODULE LABS 1 & 2 AIR LOCK & LOG MOD S/S & HAB MOD HAB MODS 2.2 MW SPDA MATL 2.2 MW SPDA EQUIP	11-2 12-2 13-2 14-2 15-2 16-2 17-2	FEW THE PROPERTY OF THE PROPER
18, 19 20		18-8 19-7 20-8	RESUPPLY-RCS, EXPEND RESUPPLY-RCS, EXPEND SP MFG BIO BRANCH MO	19-2	

SHUTTLE PAYLOAD DATA

FLT	WGT	VOL
NO.	Kg X 10 ³	M3
1	12	154
	2-26	2-235
2&3	3-13	3-237
	4-17	4-186
4, 5	5-21	5-186
6&7	S-16	6-184
	7-18	7-188
8, 9	8-14	9-235
10	9-15	9-237
	10-24	10-235
11,	11-13	11-234
12,	12-24	12-232
13,	13-24	13-232
14	14-24	14-232
15	15-26	14-232
16	16-11	16-177
17	17-11	17-177
18	18-4	18-2
19	19-4	19-2
20	20-7	20-2

SPACE TIME CONSTRAINTS DATA SPACE STATION SYSTEM PROGRAM FLEXIBILITY

PROGRAM ELEMENT	DEVELOPMENT PERIOD*-YRS
SPACE STATION	
POWER MODULE (INITIAL)	3
POWER MODULE (ADVANCED)	4
CONSTRUCTION SYSTEM	3½
SPACE STATION MODULES (NEW)	4½
SPACE STATION LABS.	2
TRANSPORTATION SYSTEM	
OTV-P/C	5
HLLV-CLASS 4	8
OTV-C	4
MISSION HARDWARE	
SOLAR POWER SPDA	3
SPACE MFG PROCESS	3
PSP (COMM. ANT.)	3½
STO (LESS INST.)	4

^{*}PHASE C/D GO-AHEAD TO SPACE DEPLOYMENT/FAB.

OF POOR Gotter

LEAD TIME REQ'MTS SCHEDULE SPACE STATION SYSTEM PROGRAM — TENDED & MANNED MODES

EXTENDED ORBITER FLIGHT DURATION PENALTIES AND ON-ORBIT ALLEVIATION METHODS

			UNCH WT			ALLEVIATION METHOD
		30 DAYS		90 0	AYS	(TENDED PHASE)
		4 MEN	7 MEI	4 MEN	7 MEN	
VEHICLE CONSUMABLES	EPS (20 KW AVE CONT)	11,500	11,500	36,400	36,400	● POWER MODULE (INCL RADIATOR)
	RCS	1,570	1,570	5,660	5,660	GRAV.GRAD., CMG'S DOCK TO EXT TANK
		·	,			
	N ₂	612	612	2,000	2,000	
	LO ₂ – △ REQ′D	240	335	815	1,080	<i>[]</i>
CREW CONSUMABLES	– AVAIL FROM EPS	406	406	1,245	1,245	P RLSE
ļ	LiOH	147	310	531	982)
	FOOD	145	290	510	925	
	1401 11025 (843)				T	
	VOLUME (M3)	24	42	32	56	HAB MODULE
CREW	SEATS & RESTRAINTS		74	_	74	
1	CREW EQUIPMENT	_	44	_	44	
ACCOMMODATIONS	CREW		272	_	272	
	HYGIENE	25	56	90	170	
	RESCUE	_	79	_	79	

EXTENDED DURATION ORBITER EPS REQ'MTS ABOVE BASELINE (FUEL CELLS)

CRICOVEL

EXTENDED DURATION ORBITER RCS SYSTEM REQ'TS ABOVE BASELINE

JG-443

EXTENDED DURATION ORBITER CREW O₂ REQ'TS VS O₂ AVAILABLE FROM EPS

EXTENDED DURATION ORBITER LIOH REQ'TS ABOVE BASELINE

EXTENDED DURATION ORBITER FOOD REQ'TS ABOVE BASELINE

EXTENDED DURATION ORBITER CREW O₂ REQ'TS USING EPS O₂ TANKS FOR STORAGE

JG-447

EXTENDED DURATION ORBITER N₂ REQ'TS USING ADDITIONAL ORBITER N₂ TANKS FOR STORAGE

OF POOR QUALITY

FREE VOLUME – DURATION TOLERANCE FACTORS IN CONFINEMENT

INTEGRATED SPACE STATION SYSTEM REQUIREMENT DEVELOPMENT

SPACE STATION SYSTEM INTEGRATED REQUIREMENTS GROUNDRULES

- ONE SHUTTLE FLIGHT PER MONTH DURING SPACE STATION ASSY
- ONE SHUTTLE FLIGHT PER QUARTER DURING CONSTRUCTION AND MISSION OPERATIONS
- SHUTTLE PROVIDES MANNED AND LOGISTICS SUP-PORT DURING TENDED MODE
- SINGLE SHIFT CREW/10 HOUR MAX WORKDAY
- SIX HOUR EVA DAILY MAXIMUM/PERSON
- SPACE STATION PROVIDES S&C DURING TENDED OPERATIONS
- SPACE STATION PROVIDES 13KW CONT. POWER TO SHUTTLE DURING TENDED OPERATION
- SPACE MFG. OPERATIONS ARE INACTIVE DURING CONSTRUCTION TASKS

INTEGRATED SPACE STATION REQUIREMENTS IN ORBIT BY MONTH

GRUMMAN

AGENDA SPACE STATION PROGRAM REVIEW MEETING 19 APRIL 1977

CONSTRUCTION SYSTEM GENERIC ISSUES

- REQUIREMENT
 - DEFINITION OF LARGE SPACE STRUCTURES IN MID '80s
- CONCEPT
 - WRAPAROUND VS "HYBRID" VS "EXTRUSION"
 - DEGREE OF AUTOMATION
 - ORBIT(S)
- CONFIGURATION
 - WORK BENCH:
 - HOW BIG STRONG STIFF
 - **O PERMISSIBLE THERMAL DISTORTION**
 - O EXT. TANK VS ERECTOR SET VS AFM BEAM RAFT
 - CRANE/CHERRY PICKER:
 - FIXED BASE VS TRAVELLER (RAIL: RAIL ON BOOM: WALKER)
 - REACH STIFFNESS SPEED
 - AUTOMATED VS MANNED
 - HOW MANY

TWO CATEGORIES OF LARGE SPACE STRUCTURE (LSS)

LENS APERTURE STRUCTURE DESIGN **BLIND BOLTS** 12/INTERSECT (ORBIT ASSY) RIM CAP 12 SEGMENTS (ORBIT ASSY) 61 M В SPLICE PLATES (ORBIT ASSY) PANEL EDGE MEMBER & SPLICE (GROUND ASSY) RIM TRUSS (ORBIT **SECTION A-A DEPLOY HEX PANELS** & ASSY) (226)4.5M DIAMETER (STS CARGO BAY) .38M **DEPLOYED THICKNESS** SECT B-B **LENS RIM ASSY** GRUMMAN

LENS BOOTLACE ELEMENT DESIGN

PSP ANTENNA SHUTTLE PACKING CONCEPT

PSP ANTENNA CONFIGURATION DATA

	WEIGHT (KG)	WHERE FABRICATED	STS CAPACITY REQ'D
ANTENNA APERTURE	(17,218)		
LENS PANELS	15,568	GROUND	1.2
APERTURE RIM	1,650	GROUND	0.1
FEED SUPPORT STRUCTURE	1,500	GROUND	0.1
SUBSYSTEM MODULE	(2,643)	GROUND	0.4
• STRUCTURE	100		
● FEED/DIPLEXER ASSEMBLY	125		
 COMMUNICATIONS ELECTRONICS 	450		
• TT&C	30		
 FLIGHT CONTROL 	118		
PROPULSION	70		
• THERMAL CONTROL	50		
 ELECTRICAL POWER & INTEGRATION 	1,700		
SOLAR ARRAY	600	GROUND	0.2
DRY WT W/O CONTINGENCY	21,961		
25% CONTINGENCY	5,490		
DRY WT. WITH CONTINGENCY	27,451]]
PROPELLANT	280		
TOTAL	27,731		2.0

STRUCTURAL DATA:

- LOAD IN FEED SUPPORT STRUCTURE LEG = 174000 N ULT. COMP. IUS LAUNCH TO GEOSTATIONARY ORBIT = 1.7 g's LIMIT ACCELERATION
- TEMPERATURE RANGE: 0°C TO -160°C

600 Mw SPDA CONFIGURATION

ORIGINAL THE NE

SPDA — STRUCTURAL JOINT TYPICAL FOR EACH BEAM INTERSECTION

ORIGINAL PAGE TO

600 Kw SPDA CONFIGURATION DATA

ITEM	WT (Kg)	WHERE FAB	STS CAPACITY REQD
SOLAR ARRAY STRUCTURE SOLAR BLANKET CONCENTRATORS BUSSES & SWITCHES CONTINGENCY (25%)	(3,392) 1,578 1,049 80 7 678	SPACE GRND GRND GRND	0.02
ANTENNA STRUCTURE W/GUIDE TUBES SUPPORT RAILS CONTOUR CONTROL PWR. DISTRIBUTION AMPLITRONS PHASE CONTROL ELECT. CONTINGENCY (25%)	(10,218) 296 5,317 347 435 43 236 1,500	SPACE GRND GRND GRND GRND GRND GRND	} 1.0 } 0.25
ROTARY JOINT (INCL 25% CONTIN) POWER STORAGE STRUCT/DOCKING AVIONICS RCS	165 410 300 92 340	GRND GRND GRND GRND GRND	0.23
TOTAL	14,917		1.5

STRUCTURAL DATA:

- MAX. LOAD IN STRUCTURAL BEAM = 48,720 N ULT COMP IUS LAUNCH TO GEO = 1.4g LIMIT ACCELERATION
- TEMPERATURE RANGE = 16°C TO 123°C LEO 5°C TO - 145°C GEO

WHAT SIZE CONSTRUCTION SYSTEM?'

CONSTRUCTION SYSTEMS FOR UPPER BOUND OF LSS (FULL SIZE SPS)

(MANY EXT. TANKS COMPRISING CONSTR. SYST. FRAMEWORK?)

CONSTRUCTION SYSTEM GENERIC CONCEPTS

"WRAP AROUND" CONST. SYS.

- MAX SIZE FACILITY
- ACCESS TO ALL ZONES

GRUMMAN

CONSTRUCTION SYSTEM - OPTIMUM DEGREE OF AUTOMATION

SPS FULL SIZE CONST SERIES PROD

SPACE STATION - MAJOR GROWTH OPTIONS

25 KW POWER MODULE

25 KW POWER MODULE WEIGHT SUMMARY

<u>ITEM</u>	WEIGHT Kg
STRUCTURE	2,720
INDUCED ENV PROTECT	170
PROPULSION-RCS	340
PRIME PWR - EPS	3,731
AVIONICS - STAB & CONTROL	469
COMM & TRACKING	59
DATA MGT	283
ENVIRON CONTROL	450
PERSONNEL PROVISIONS	30
DOCKING	422
CONTINGENCY (25%)	<u>2,169</u>
SUBTOTAL - DRY	10,843
PROPELLANT	1,208
TOTAL - LAUNCH & ON ORBIT	12,051

SPACE STATION TENDED MODE CONSTRUCTION OF 600 KW SPDA SOLAR ARRAY

SPACE STATION TENDED MODE WEIGHT SUMMARY MISSION EQUIPT. EXCLUDED

ITEM	WEIGHT Kg
EXTERNAL TANK MODS	2,631
AUTO. FAB MODULE & SUPPTS	3,691
CONSTRUCTION AIDS	5,288
CONTINGENCY (25%)	2,902
SUBTOTAL - DRY	14,512
PROPELLANT	1,208
TOTAL - LAUNCH TO AUGMENT PWR MODULE	15,720
EXTERNAL TANK	34,307
POWER MODULE	10,843
TOTAL - SPACE STATION ON ORBIT	60,870

SPACE STATION TENDED MODE CONSTRUCTION OF 600 KW SPDA HIGH PWR. DENSITY ANTENNA

SPACE STATION TENDED MODE CONSTRUCTION OF 600 KW SPDA LINEAR ANTENNA

RUMMAN

SPACE STATION MANNED MODE CONSTRUCTION OF 2.2Mw SPDA

SPACE STATION MANNED MODE WEIGHT SUMMARY MISSION EQUIPT. EXCLUDED

ITEM	WT(Kg)	
STRUCTURE	34,100	
INDUCED ENV. PROTECT.	1,373	
PRIME PWR — EPS	9,146	
AVIONICS – COMM & TRACKING	244	
– DATA MGT.	604	
ENVIRON. CONTROL	3,900	
PERSONNEL PROVISIONS	2,081	
AUTO. FAB. MODULES & SUPPTS	7,382	
CONSTRUCTION AIDS	478	
DOCKING	422	
SPARES	930	
CONTINGENCY (25%)	15,165	
SUBTOTAL - DRY		75,825
CREW & EXPENDABLES	5,144	
PROPELLANT	1,208	
TOTAL-LAUNCH TO AUGMENT TENDED SPACE STN		82,177
SPACE STATION TENDED MODE	59,662	
TOTAL-SPACE STATION ON ORBIT		141,839

ş.**.**

......

AGENDA SPACE STATION PROGRAM REVIEW MEETING 19 APRIL 1977

BRUMMAN

SPACE STATION ECLS & POWER - POTENTIAL SUBSYSTEM CHANGES IN THE TENDED PHASE

SPACE STATION REQUIREMENTS

GENERAL	EARLY TENDED	MATURE TENDED	PERMANENTLY MANNED
POWER REQD, KW	22	22	55
CREW SIZE	(4)	(4-7)	10
NUMBER OF MODULES ● SHORT SPACELAB • LONG SPACELAB	1	2 2	6 6
MISSIONS SCIENTIFIC CONSTRUCTION	√	√	√
SMALL INTERMEDIATEMED INTERMEDIATELARGE INTERMEDIATE	√	V	√
SPACE MANUFACTUREPROTOTYPEPRODUCTION		√	√

SPACE STATION SUBSYSTEM REQUIREMENTS

SUBSYSTEM	REQUIREMENTS	EARLY TENDED	MATURE TENDED	PERMANENTLY MANNED
STRUCTURE	 PROVIDE VOLUME FOR: EXPERIMENTATION SUBSYSTEMS SPACE MANUFACTURE HABITATION 	√ √	> >>	* * * * * * * * * *
	 PROVIDE EXTERNAL AREA FOR: EXPERIMENTATION CONSTRUCTION STOWAGE ORB!TAL DEPOT 	> > >	✓ ✓	> >> > > > > > > > > > > > > > > > > >
FLIGHT CONTROL RCS STABILIZ-	 ORBITAL MAINTENANCE STATIONKEEPING ORBITAL MAINTENANCE STATIONKEEPING 	✓ ✓	> > /	√ √ √
ATION & CONTROL	 FINE POINTING STABLE PLATFORM 	V	V	QRUMMAN.

SPACE STATION SUBSYSTEM REQUIREMENTS (CONT'D)

SUBSYSTEM	REQUIREMENTS	EARLY TENDED	MATURE TENDED	PERMANENTLY MANNED
EPS	 SUPPLEMENT SHUTTLE SUPPORT MISSION REQMTS SUPPORT INDEPENDENT SPACE PLATFORM 	√ √	√ √	ý
AVIONICS COMM & TRACKING	 PROVIDE RF COMM (TELEMETRY, RANGING, COMMAND WITH NASA STDN, TDRSS & SHUTTLE PROVIDE HARDLINE COMM WITH DOCKED ORBITER PROVIDE DUPLEX VOICE COMM CHERRY PICKER/ORBITER PROVIDE AUDIO/VOICE AMONG CREW STATIONS CLOSED CIRCUIT TV WITH GROUND LINK PROVIDE RF LINKS TO SUPPORT EVA 	√ √ √	√ √ √	✓ <p< td=""></p<>
● DATA MGMT	 TELEMETRY FOR SYSTEM & MISSION STATUS RECEIVE, STORE & TRANSFER COMMANDS FROM GROUND AND/OR SHUTTLE ONBOARD PROCESSING TO SUPPORT FLT/MISSION FUNCTIONS MONITORING OF SYSTEMS & CONFIG CONTFUNCTIONS DISPLAYS & CONTROLS FOR SYSTEM, CONFIG & MISSION EXPERIMENTS 	√ √	√ √	√ √ √ √

SPACE STATION SUBSYSTEM REQUIREMENTS (CONT'D)

SUBSYSTEM	REQUIREMENTS	EARLY TENDED	MATURE TENDED	PERMANENTLY MANNED
ECLS				
● ATMOSPHERE REVITALIZ- ATION	 SUPPLEMENT SHUTTLE REMOVAL OF METABOLIC CO2 RECLAMATION OF O2 GENERATION OF O2 REMOVAL OF TRACE CONTAMINANTS ATMOS PRESSURE & COMPOSITION CONTROL 	✓ ✓	√	√ √ √
WATER MGMTWASTE	 URINE COLLECTION & RECLAMATION STERILIZATION & MONITORING WASH WATER COLLECTION & RECLAMATION VACUUM DRY FECAL WASTE 	V	v	√ √ √
MGMT	- VAGOON BITT E.SAE WASTE			V
• THERMAL CONT	 PROVIDE ACTIVE WASTE HEAT REJECTION PROVIDE ACTIVE THERMAL CONTROL FOR: ATMOSPHERE COLD PLATE COOLED ELECTRONICS MISSION EQUIPMENT 	✓ ✓ ✓	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	✓ ✓ ✓ ✓

SPACE STATION SUBSYSTEM REQUIREMENTS (CONT'D)

SUBSYSTEM	REQUIREMENTS	EARLY TENDED	MATURE TENDED	PERMANENTLY MANNED
PERSONNEL PROVISIONS	 MOBILITY AIDS; HAND RAILS, TOEHOLDS ETC 	√	✓	\checkmark
	• COMMAND/CONTROL CENTER	·	l 🚶	ĺ
	WORK STATIONS			
	● INDIVIDUAL CREW QUARTERS			
	GALLEY/WARDROOM/RECREATION EXERCISE AREAS			\checkmark
	PERSONAL HYGIENE AND LAUNDRY FACILITIES			· ✓
	HOUSEKEEPING PROVISIONS			, V
	● EMU'S/MMU'S			V
	• AIRLOCK			\checkmark
CONSTRUCTION AIDS				
• SPINE	● CONSTRUCTION PLATFORM	\checkmark	\checkmark	\checkmark
CHERRY PICKER	 LONG REACH; STABLE WORK STATION 	· ✓	V	\ /
• AFM	PRODUCE 1M BEAMS	√ (1)	√	√ (3)

SUBSYSTEM CHANGES EARLY TENDED TO PERMANENTLY MANNED

SUBSYSTEM	CHANGES			
	EARLY TENDED MATURE TENDED PERMANENTLY MANN			
STRUCTURE	GROWS WI	GROWS WITH CONFIGURATION & MISSION REQMTS		
FLIGHT CONTROL		SOFTWARE CHAN	IGES	
EPS	ADDITIO	ONAL POWER GENER	ATION & STORAGE	
AVIONICS	STEP GROWTH WHEN MANNED			
ENVIRONMENTAL CONTROL	STEPPED GROWTH AS F.EQ'TS INCREASE			
PERSONNEL PROVISIONS	GROWS WITH HABITABLE VOLUME			
CONSTRUCTION AIDS	AS REQ'D TO SATISFY MISSIONS			
		•	'	
		ī	I	
		1	1	

ECLS GROWTH THRU TENDED TO MANNED MODE

JG457

SPACELAB TYPE ECS

ENVIRONMENTAL CONTROL AIR STORAGE AND CONTROL

ENVIRONMENTAL CONTROL ATMOSPHERE REVITALIZATION

ENVIRONMENTAL CONTROL THERMAL CONTROL

ENVIRONMENTAL CONTROL WATER RECLAMATION

EARLY TENDED	MATURE TENDED	PERMANENTLY MANNED
		TO O2 POTABLE WATER STORAGE URINE & COMPRESSION DISTILLATION FLUSH WATER STOR
		SHOWER RESIDUAL HEATED STORAGE TANK HYPER- FILTRATION UNIT AIR RETURN WASH WATER RECYCLING

ENVIRONMENTAL CONTROL TRACE CONTAMINANT CONTROL

 EARLY TENDED	MATURE TENDED	PERMANENTLY MANNED
		CABIN DEBRIS TRAP SORBANTS
		RETURN CAT OXIDIZER

RUMMAN

AVIONICS SUBSYSTEMS

(History and

AVIONICS SUBSYSTEMS GROUND RULES

- CONSIDER ONLY COMMUNICATIONS/TRACKING, & DATA MANAGEMENT (\$ & C TREATED UNDER FLIGHT CONTROL)
- CONSIDER REQMTS FOR TENDED MODE SPACE STATION EVOLVING INTO THE MANNED MODE SPACE STATION
- UTILIZE EXISTING HARDWARE, WHERE POSSIBLE

MISSION DRIVERS ON SPACE STATION AVIONICS

SPACE STATION

	TENDED MODE	MANNED MODE
 SPDA CONSTRUCTION 	✓	\checkmark
● PSP CONSTRUCTION	\checkmark	
 SPACE MANUFACTURING 	✓ *	\checkmark
• SPACE SCIENCE	✓ *	\checkmark
• LIFE SCIENCES	_	\checkmark

^{*}LIMITED CAPABILITY

G-403 76

AVIONICS SUBSYSTEM FUNCTIONAL REQUIREMENTS COMMUNICATIONS & TRACKING

SPACE STATION-TENDED MODE

- PROVIDE RF COMMUNICATIONS (TELEMETRY, RANGING, COMMAND) WITH NASA STDN, TDRSS, & ORBITER
- PROVIDE HARDLINE COMMUNICATIONS WITH DOCKED ORBITER
- PROVIDE CHERRYPICKER CAPSULE CREWMAN WITH DUPLEX VOICE COMMUNICATIONS (RF & HARDLINE) WITH ORBITER

SPACE STATION-MANNED MODE (ALL ABOVE PLUS)

- PROVIDE AUDIO/VOICE COMMUNICATIONS AMONG CREW STATIONS WITHIN & BETWEEN SPACE STATION MODULES
- GENERATE, TRANSMIT & DISTRIBUTE CLOSED CIRCUIT TELEVISION
 & INTERCONNECT WITH THE GROUND VIA THE RF LINK
- PROVIDE RF LINKS TO SUPPORT EVA
- PROVIDE HIGH DATA RATE LINK TO GND VIA TDRS

AVIONICS SUBSYSTEM FUNCTIONAL REQUIREMENTS (CONT'D) DATA MANAGEMENT

SPACE STATION-TENDED MODE

- PROVIDE REAL TIME & STORED TELEMETRY FOR DETERMINING SYSTEM & MISSION STATUS INFORMATION (ON BOARD CHECKOUT)
- PROVIDE CAPABILITY TO RECEIVE, STORE & TRANSFER COMMANDS FROM GROUND OR ORBITER TO MISSION HARDWARE OR ON-BOARD SPACE STATION SYSTEMS (e.g. S&C)

SPACE STATION-MANNED MODE (ALL ABOVE PLUS)

- PROVIDE ONBOARD PROCESSING* TO SUPPORT FLIGHT & MISSION FUNCTIONS (e.g. DISPLAYS, MISSION EXPERIMENT PROCESSING)
- PROVIDE DISPLAYS & CONTROLS FOR EVALUATING & SPACE STATION SYSTEMS & MISSION EXPERIMENTS

*INCLUDES COMPUTING, STORING, ROUTING & ACQUISITION FUNCTIONS

POTENTIAL HARDWARE INVENTORY

COMMUNICATIONS & TRACKING

EQUIPMENT	QUANTITY	UNIT WT(LB)	POWER (W)	HARDWARE SOURCE
SPACE STATION-TENDED MODE TRANSPONDER ANTENNAS POWER AMPLIFIER	2 5 1	23 2 30	15 N/A 25	ORBITER ORBITER ORBITER
 ANTENNA SWITCH ASSEMBLY SIGNAL PROCESSOR TV CAMERA 	1 2 1	8 18 2	- 12 20	ORBITER ORBITER ORBITER
SPACE STATION-MANNED MODE • WIDEBAND TRANSMITTER • FM TRANSMITTER	1	142	300	ORBITER(MOD)
TDRS ANTENNATDRS ANTENNA MAST	2 2	25 150	N/A N/A	ORBITER (MOD)
SIGNAL PROCESSORAUDIO INTERCOM	1	18	8	ORBITER(MOD)
 AUDIO CONTROL UNIT AUDIO TERMINAL UNIT CLOSED CIRCUIT TV 	1 6	4 4	2 2	ORBITER ORBITER
TV CAMERASVIDEO SWITCHING UNITVIDEO MONITOR	4 1 1	2 6 35	20 N/A 60	ORBITER ORBITER ORBITER

POTENTIAL HARDWARE INVENTORY (CONT'D) DATA MANAGEMENT

	1		POWER	HARDWARE
EQUIPMENT	QUANTITY	UNIT WT(LB)	(W)	SOURCE
SPACE STATION-TENDED MODE				
PROCESSOR	2	59	300	ORBITER(MOD)
• PCM UNIT	2	30	30	ORBITER
 SIGNAL CONDITIONING 	TBD	30	40	ORBITER(MOD)
MDM	TBD	30	30	ORBITER
 MASTER TIMING UNIT 	1	26	30	ORBITER
TRANDUCERS	TBD	TBD	TBD	OFF THE SHELF
RECORDER	1	30	45	ORBITER
SPACE STATION - MANNED MODE				
 GENERAL PURPOSE COMPUTER 	2	59	337	ORBITER
DISPLAY ELECTRONICS	1	60	84	ORBITER
CRT/KEYBOARD	1	50	120	ORBITER
CAUTION & WARNING	1	22	30	ORBITER
UNIT				
 C&W ANNUNCIATOR UNIT 	1	6	15	ORBITER
MASTER ALARM UNIT	1	10	15	ORBITER
 REMOTE CONTROL & 	TBD	60	120	NEW
DISPLAY		_		
• TELETYPE	1	15	15	ORBITER

original page is of poor quality

AVIONICS FUNCTIONAL BLOCK DIAGRAM

FOLLOW-ON TASKS

- REFINE AVIONICS SUBSYSTEMS REQUIREMENTS
- UPDATE AVIONICS FUNCTIONAL CONFIGURATION

SPACE STATION FLIGHT CONTROL SUBSYSTEM

GROWTH CAPABILITY OF SPACE STATION FLIGHT CONTROL SUBSYSTEM (FCS)

- ◆ FCS HARDWARE PROVIDES SYSTEM FLEXIBILITY TO PERFORM ALL FLT CONTROL FUNCTIONS FOR WIDE RANGE OF STATION CONFIGURATIONS
- DIGITAL CONTROL ALGORITHM IN COMPUTER INCLUDES "GAIN SCHEDULING" FOR LARGE INERTIA CHANGES
- FLEX GTRUCTURE STAB ATTAINED BY BENDING/
 TORSION MODE MEASUREMENT INPUT TO KALMAN
 LANG CONTROL IN COMPUTER
- SELECTED COMPUTER POSSESSES CONSIDERABLE
 MARGIN FOR GROWTH OVER SKYLAB FCS COMPUTER

PARAMETER	SKYLAB	SPACE STATION
MEM CAPACITY (WORDS)	16K	32K
BITS/WORD (DATA)	16	16
OPER SPEED (KOPS)	67	450

SPACE STATION SUBSYSTEM DEVELOPMENT DATA

	%		
SPACE STATION	DDT&E	%	PROGRAM
SUBSYSTEM	COST	OFF-THE-SHELF	SOURCE
STRUCTURE (MODULES)	44.9	11	SPACELAB
STRUCTURE (OTHER)	13.6	3	STS
ENV. PROTECTION	5.5	0	_
EPS	7.0	35	SEPS
FLIGHT CONTROLS			
S & C	0.5	80	STS/FLEET
			SAT. ETC.
RCS	0.2	56	MARINER
AVIONICS			
COMM/TRACKING	2.8	56	STS
DATA MGMT.	12.7	60	STS
ECLS	7.0	30	RLSE
CREW ACCOMMODATIONS	5.8	38	STS/SKYLAB

SPACE STATION/SHUTTLE INTERFACE IDENTIFICATION BY MODE

SPACE STA SUBSYS	TENDED	MANNED	INTERFACE TO SHUTTLE	E	F	М
STRUCTURE	√,	√,	STA DOCK/ORB DOCKING ADAPTER			$ \checkmark $
FLIGHT CONTROL	√	√	STA COMP/ORB COMPUTER POWER BUS CONNECTION	$ \checkmark $	İ	
AVIONICS – COMM	V	\	VOICE/VIDEO SIGNALS	\\ \		
AVIONICS - DATA MGT	V	V	DATA SIGNALS	$ \dot{\downarrow} $		
ENVIRON. CONTROL			NONE		١,	
THERMAL CONTROL CAUTION & WARNING	√ √	\ \\ \\ \\	FLUID TRANSFER SUBSYSTEM STATUS	1,/	√	
	V	V		1 V		L

AGENDA SPACE STATION PROGRAM REVIEW MEETING 19 APRIL 1977

MAJOR SPACE STATION ISSUES/TRADES

WHAT LEVEL OF CONST |
ACTIVITY JUSTIFIES A |
CONS. SYS?

IF EXT. TANK -HOW MANY? EXT. TANK VS NON EXT. TANK WHICH CONCEPT?

WHICH PRESSURE MODULE FOR EVOLUTION?

WHICH POWER SOURCE FOR MANNED SPA STA?

SPACE STATION CONSTRUCTION FACILITY

- DOUBLE EXT. TANK SPINE

SPACE STATION CONSTRUCTION FACILITY — SINGLE EXT. TANK SPINE

SPACE STATION SINGLE VS TWO EXT. TANKS CONSTRUCTION SPINE

TRADE CRITERIA	SINGLE EXT. TANK	TWO EXT. TANKS	REMARKS
GRAV. GRAD. & DRAG TORQUES	LOWER FREQUENCY	STIFFER	SEE CHART .
HYDRAZINE PROP. TO NULL DRAG ('84 TO '88)	15,420 Kg	23,130 Kg	
 P.L. PENALTY FOR TAKING EXT. TANK TO ORBIT 	2463 Kg	4926 Kg	
MATING TWO TANKS	✓		
CONSTRUCTION ACTIVITY		MARGINALLY EASIER	SEE CHART
• GROWTH PRESS, MODULES POWER COOLING	√ ✓	√ √ √	GROW TO MANNED SCB RELOCATE FROM PWR. MOD. MORE AREA AVAILABLE
EXTERNAL STOWAGE AREA		√	MORE AREA AVAILABLLE

SPACE STATION CONSTRUCTION FACILITY CONSTRUCTION WITH SINGLE EXT. TANK SPINE

600 KW SPDA SOLAR ARRAY CONSTRUCTION

2.2 Mw SPDA CONSTRUCTION

SLOPE OF GRAVITY GRADIENT TORQUE VERSUS ANGULAR MOTION AS FUNCTION OF MOMENT OF INERTIA DIFFERENCE

ORIGINAL PAGE A

SPACE STATION STABILIZATION TORQUES FOR 396 KM/28.5° ORBIT

	ONE	TANK CON	FIG	TW	O TANK CONFIC	3
	Z		×	Z Y		×
AXIS DIRECTION	T _X GEOCEN	T _y POP	T _Z FLIGHT	T _X GEOCFN	T _y POP	T _Z FLIGHT
GRAV GRAD TORQUE NEWTON METERS/DEG	0	-1.8	-1.6	0	-8.2	-8.0
AERO DRAG TORQUE — NEWTON METERS	0	-2.5	_	0	-4.4	_

GRAVITY GRADIENT AS A STABILIZING TORQUE FOR SINGLE TANK SPACE STATION

PRESSURIZED VOLUMES TRADEOFF

D ALITYTO BOOM JO MDA & A/L SHORT SPACELAB LONG SPACELAB **NEW MODULE** 10.62 4.27 6.96 15.75 3.04/1.68 4.06 4.06 4.06 50 38 75 167 AVAIL, EQUIP, VOL, m³ AVAIL, HABIT, VOL 13 M³ 18 36 70 0 0 AVAIL, PASSAGE VOL, m3 17 18 55 OPERATING PRESS., psi 5 14.7 14.7 14.7 NO. BRANCHES AVAIL. 1 2 4.5 YES (APOLLO NO DOCKING CAPABILITY NO YES (INTERNATIONAL TYPE) DKG) NONE MIN-DKG & MED-DKG & MED-DKG & EQUIP. **DKG LOADS** DKG LOADS, EXTENSIVE-BRANCHES **14.7 PRESS**

GRUMMAN

L, m

D, m

INT VOLUME, m³

MODS REQD

SKYLAB MDA/AL BUILD-UP CONFIGURATION

JG-407

SPACELAB BUILD-UP CONFIGURATION

SPACELAB BUILD-UP CONFIGURATION (USING LOX TANK FOR INTERMODULAR CIRCULATION)

BRUMMAN

15.75 m MODULE BUILD-UP

JG-425

15.75 m MODULE BUILD-UP CONFIGURATION (USING LOX TANK FOR INTERMODULAR CIRCULATION)

COST TRADE — LONG SPACELAB (7M) VS. NEWLEY DEVELOPED MODULE (15.7511)

(COSTS IN MILLION DOLLARS)

TYPE		NO.		PRODU	CTION COSTS	FLIG	HTS	TOT	ALS
OF MODULE	ORBIT	OF MODULES	DDT&E	PURCHASE	SUBSYSTEMS	STS	оту	FOR ORBIT	FOR SYSTEM
NEWLY DEVELOPED	LEO	4	170.5(3)		349.0	80	(1)	599.5	
MODULE (15.75M)	GEO	2	5.0(3)		177.5	40	(1)	222.5	822.0
LONG SPACELAB	LEO	7	31.5(4)	77.0(2)	282.4(5)	70	(1)	460.9	
MODULE (7M)	GEO	4	18.0(4)	44.0(2)	139.5(5)	40	(1)	241.5	702.4

NOTES

- (1) MASS TRANSPORTED TO GEO IS SAME FOR 15.75M & 7M MODULES & THEREFORE NOT A TRADE ISSUE
- (2) PURCHASE PRICE OF STRUCTURAL/THERMAL SPACELAB MODULE ESTIMATED @ 11M EACH
- (3) DDT&E COSTS FOR STRUCTURE, THERMAL PROTECTION SYSTEM & TOOLING & MAJOR TEST ARTICLES ONLY OTHER SUBSYSTEMS COSTS EQUAL.
- (4) COSTS FOR MODIFYING SPACELAB STRUCTURE & TPS TO ACCOMMODATE DOCKING, DOCKING LOADS, BRANCHES & WINDOWS
- (5) INCREASE 25% OVER 15.75M VALUES TO ACCOUNT FOR INCREASED NO OF MODULES OUTFITTED

CANDIDATE PRESSURE VOLUME CONFIGURATION — SHORT & LONG SPACELAB MODULES

