Identification-robust inference for the LATE with high-dimensional covariates

Yukun Ma Vanderbilt University

September 24, 2023

Yukun Ma

Motivation

35

40

35

Figure: American Economic Review 2018-2022 • heterscadesticity

Yukun Ma 2/51

Abstract

- For the local average treatment effect (LATE) with high-dimensional covariates, I develop a novel inference method, high-dimensional quasi-likelihood ratio (QLR) test, irrespective of identification strength.
 - ▶ high-dimensional controls: number of controls > sample size.
 - weak identification: the share of compliers is small.
- The proposed method is robust to both weak identification and high dimensionality.
- The proposed test has uniformly correct asymptotic size.

Yukun Ma 3/51

Table of Contents

- Introduction
- 2 Overview
- 3 Theory
- 4 Simulation
- 6 Applications
- 6 Takeaways

Yukun Ma 4/51

LATE

- the effect of a treatment for subjects who comply with the experimental treatment assigned to their sample group (compliers).
- \bullet Assume we have N observations
 - $ightharpoonup Y_i$: outcome of interest for unit i.
 - $D_i \in \{0,1\}$: receipt of treatment.
 - $Z_i \in \{0,1\}$: offer of the treatment.
 - $igwedge X_i: p$ -dimensional controls (e.g. high-dimensional covariates $p\gg N$).
- Imbens and Angrist (1994) propose

$$\theta = \frac{\operatorname{E}_P[Y|Z=1] - \operatorname{E}_P[Y|Z=0]}{\operatorname{E}_P[D|Z=1] - \operatorname{E}_P[D|Z=0]} = \frac{ITT}{ITT_D} := \frac{\delta}{\pi}.$$

• Weak identification in LATE: $\pi \to 0$

Yukun Ma 5/51

Weak identification

• When instruments Z are weakly correlated with endogenous regressors D, conventional methods for IV estimation and inference become unreliable.

$$heta=rac{\delta}{\pi},$$

normal approximation of $\widehat{\theta}$ can be derived using delta method by linearized $\widehat{\theta}$ in $(\widehat{\delta}, \widehat{\pi})$. However, $\widehat{\theta}$ is highly nonlinear in $\widehat{\pi}$ when $\widehat{\pi}$ is close to zero.

Solution: test inversion.

Given $H_0: \theta = \theta_0$, we have $\delta - \theta_0 \pi = 0$. Then the AR statistic

$$AR(\theta) = (\delta - \theta \pi)' \Omega(\theta)^{-1} (\delta - \theta \pi)$$

follows a χ^2 distribution under H_0

- A large number of literature in econometrics has developed methods for making inference with weak instruments,
 - ▶ Stock and Wright (2000) \Rightarrow S test.
 - ▶ Kleibergen $(2005) \Rightarrow K \text{ test}$
 - \blacktriangleright Andrews and Mikusheva (2016) \Rightarrow conditional QLR test and pQLR test.

• None of them considers the model with high-dimensional covariates.

Weak identification

• When instruments Z are weakly correlated with endogenous regressors D, conventional methods for IV estimation and inference become unreliable.

$$heta=rac{\delta}{\pi},$$

normal approximation of $\widehat{\theta}$ can be derived using delta method by linearized $\widehat{\theta}$ in $(\widehat{\delta}, \widehat{\pi})$. However, $\widehat{\theta}$ is highly nonlinear in $\widehat{\pi}$ when $\widehat{\pi}$ is close to zero.

• Solution: test inversion.

Given $H_0: \theta = \theta_0$, we have $\delta - \theta_0 \pi = 0$. Then the AR statistic

$$AR(\theta) = (\delta - \theta \pi)' \Omega(\theta)^{-1} (\delta - \theta \pi)$$

follows a χ^2 distribution under H_0 .

- A large number of literature in econometrics has developed methods for making inference with weak instruments,
 - ▶ Stock and Wright $(2000) \Rightarrow S$ test.
 - ▶ Kleibergen $(2005) \Rightarrow K$ test.
 - ▶ Andrews and Mikusheva (2016) ⇒ conditional QLR test and pQLR test.

• None of them considers the model with high-dimensional covariates.

Yukun Ma 6/51

Relations to the Literature: Weak Identification

Given the moment restriction $E[\phi(X;\theta_0)] = 0$ and $g_N(\cdot) = \frac{1}{\sqrt{N}} \sum_{i=1}^N \phi(X_i;\cdot)$, researchers are interested in testing $H_0: \theta = \theta_0$.

- Stock and Wright (2000) pioneer the concepts of weakly identified GMM. They propose the S test, which is based on $S = g_N(\theta_0)'\widehat{\Sigma}(\theta_0)^{-1}g_N(\theta_0) \xrightarrow{H_0} \chi^2$.
- Kleibergen (2005) proposes the K test that depends on the data through $g_N(\theta_0)$ and $\frac{d}{d\theta}g_N(\theta_0)$.
 - ▶ They focus on the processes local to the point θ_0 ⇒ deficient power in weakly identified scenarios.
- Conditional test that based on the distribution of nonpivital statistics:
 - ▶ Moreira (2003) proposes the conditional likelihood ratio test for weakly identified linear IV models.
 - Andrews and Mikusheva (2016) develop conditional QLR test to test whether θ_0 satisfied the moment condition, without any assumption about point identification or identification strength.

Yukun Ma 7/51

Relations to the Literature: ML methods

- Belloni, Chernozhukov, and Kato (2015) advanced a Neyman orthogonal score for a Z-estimation framework in the presence of high-dimensional nuisance parameters.
- Chernozhukov et al. (2013,2016,2017) establish the CLT for high-dimensional models using the Gaussian approximation approach.
- Incorporating ML methods into the LATE framework:
 - ► Chernozhukov et al. (2018) introduce the double/debiased machine learning (DML) method, a combination of the Neyman orthogonality condition and cross-fitting method.
 - ▶ Belloni, Chernozhukov, Fernandez-Val, and Hansen (2017) present an efficient estimator and confidence bands for the LATE with nonparametric/high-dimensional components.

Yukun Ma 8 / 51

Contributions

- Weak identification in an IV context:
 - ▶ S statistic by Stock and Wright (2000), K statistic by Kleibergen (2005), Conditional test by Moreira (2003,2009), Andrews and Mikusheva (2016).
 - An important complement to existing literature on identification-robust: $p \gg N$.
- ML based econometric methods:
 - ▶ Belloni, Chernozhukov, and Kato (2015), Chernozhukov et al. (2013,2016,2017).
 - ► An important complement to existing ML literature: weak identification.

Yukun Ma 9/51

Table of Contents

- Introduction
- Overview
- 3 Theory
- 4 Simulation
- **6** Applications
- 6 Takeaways

Yukun Ma 10/51

Setup

• Model the random vector W = (Y, D, Z, X')' as follows,

$$egin{aligned} D &= m_0(Z,X) + v, & \operatorname{E}_P[v|Z,X] &= 0 & \textit{First stage} \ Y &= g_0(Z,X) + u, & \operatorname{E}_P[u|Z,X] &= 0 & \textit{Reduced form} \ Z &= p_0(X) + e, & \operatorname{E}_P[e|X] &= 0 & \textit{Propensity score} \end{aligned}$$

• The LATE framework proposed by Tan (2006) is given by

$$\theta_0 = \frac{\mathrm{E}_P[g(1,X) - g(0,X) + \frac{Z}{p(X)}(Y - g(1,X)) - \frac{1 - Z}{1 - p(X)}(Y - g(0,X))]}{\mathrm{E}_P[m(1,X) - m(0,X) + \frac{Z}{p(X)}(D - m(1,X)) - \frac{1 - Z}{1 - p(X)}(D - m(0,X))]} := \frac{\mathrm{E}_P[\mathbf{a}]}{\mathrm{E}_P[\mathbf{b}]}$$

Yukun Ma 11 / 51

Anderson-Rubin-type Score

• Consider a score for LATE

$$\psi(W;\theta,\eta) = \overbrace{g(1,X) - g(0,X) + \frac{Z(Y - g(1,X))}{p(X)} - \frac{(1 - Z)(Y - g(0,X))}{1 - p(X)}}^{a} - \frac{(1 - Z)(Y - g(0,X))}{1 - p(X)} - \frac{(1 - Z)(D - m(0,X))}{1 - p(X)},$$

with

- ▶ target parameter $\theta \in \Theta \subset \mathbb{R}$ is the LATE.
- nuisance parameter $\eta = (g, m, p) \in T$ for a convex¹ set T.

Yukun Ma 12/51

¹To ensure that $\psi(W; \theta_0, \eta_0 + r(\eta - \eta_0))$ is well defined for all $r \in [0, 1)$.

Nuisance Parameters

• Specify the nuisance parameters $\eta = (q, m, p)$ as follows,

$$g(Z,X) = \operatorname{E}_P[Y|Z,X] = Z\beta_{21} + X'\beta_{22}$$
 Reduced form $m(Z,X) = \operatorname{E}_P[D|Z,X] = \Lambda(Z\beta_{11} + X'\beta_{12})$ First stage $p(X) = \operatorname{E}_P[Z|X] = \Lambda(X'\gamma)$ Propensity score

▶ The logistic CDF $\Lambda(t) = \frac{\exp(t)}{1+\exp(t)}$ for all $t \in \mathbb{R}$

▶ The nuisance parameters $\eta = (\beta_{11}, \beta_{12}, \beta_{21}, \beta_{22}, \gamma)$.

Yukun Ma 13 / 51

Properties of the AR-type Score

• Moment condition:

$$\mathrm{E}_P[\underbrace{\psi(W_i; heta_0,\eta_0)}_{a- heta_0 imes b}]=0.$$

- Neyman orthogonality condition:
 - ▶ Path-wise (or Gateaux) derivative map D_r

$$D_r[\eta - \eta_0] := \partial_r \{ \mathbb{E}_P[\psi(W; \theta_0, \eta_0 + r(\eta - \eta_0))] \}$$
 for $\eta \in T$.

Notation of $D_r[\eta - \eta_0]$ evaluated at r = 0:

$$\partial_{\eta} \mathrm{E}_{P}[\psi(W; \theta_{0}, \eta_{0})][\eta - \eta_{0}] := D_{0}[\eta - \eta_{0}].$$

▶ The Neyman orthogonality condition holds at (θ_0, η_0) if

$$\partial_{\eta} \mathbf{E}_P \psi(W; \theta_0, \eta_0) [\eta - \eta_0] = 0$$

holds for all $\eta \in \mathcal{T}_N$ for a nuisance realization set $\mathcal{T}_N \subset T$.

• The score function ψ is an AR-type Neyman orthogonal score.

Yukun Ma 14/51

High-dimensional QLR Test

- Step 1: Randomly split the sample $\{1, \dots, N\}$ into K folds $\{I_1, \dots, I_K\}$.
- Step 2: For each $k \in \{1, \dots, K\}$, obtain $\widehat{\eta}_k$ by using only the subsample of those observations with indices $i \in \{1, \dots, N\} \setminus I_k$: Penalty parameter
- (2.1) run ML (e.g., lasso) OLS regression to estimate $(\widehat{\beta}_{21}, \widehat{\beta}_{22})$,

$$(\widehat{eta}_{21,k},\widehat{eta}_{22,k}) \in rg\min_{eta_{21},eta_{22}} \mathbb{E}_{I_k^c}[(Y_i - Z_ieta_{21} - X_i'eta_{22})^2] + rac{\lambda_3}{|I_k^c|} \|(eta_{21},eta_{22})\|_1.$$

- (2.2) run ML (e.g., lasso) logistic regression to estimate $(\hat{\beta}_{11,k}, \hat{\beta}_{12,k})$, $(\hat{\beta}_{11,k}, \hat{\beta}_{12,k}) \in \arg\min_{\beta_{11},\beta_{12}} \mathbb{E}_{I_k^c}[L_1(W_i; \beta_{11}, \beta_{12})] + \frac{\lambda_1}{|I_c^c|} \|(\beta_{11}, \beta_{12})\|_1$,
- (2.3) run ML (e.g., lasso) logistic regression to estimate $\hat{\gamma}_k$,

$$\widehat{\gamma}_k \in rg \min_{\gamma} \mathbb{E}_{I_k^c}[L_2(W_i;\gamma)] + rac{\lambda_2}{|I_k^c|} \|\gamma\|_1,$$

- $L_1(W_i; \beta_{11}, \beta_{12}) = D_i(Z_i\beta_{11} + X_i'\beta_{12}) \log(1 + \exp(Z_i\beta_{11} + X_i'\beta_{12})),$
- $L_2(W_i; \gamma) = Z_i X_i' \gamma \log(1 + \exp(X_i' \gamma)).$

Yukun Ma 15 / 51

High-dimensional QLR Test, Continued

Step 3: Compute $\widehat{q}_N(\theta)$ and $\widehat{\Omega}(\theta_1, \theta_2)$ for later use,

$$\begin{split} \widehat{q}_N(\theta) &= \frac{1}{\sqrt{N}} \sum_{k=1}^K \sum_{i \in I_k} \psi(W_i; \theta, \widehat{\eta}_k), \\ \widehat{\Omega}(\theta_1, \theta_2) &= \frac{1}{N} \sum_{k=1}^K \sum_{i \in I_k} \psi(W_i; \theta_1, \widehat{\eta}_k) \psi(W_i; \theta_2, \widehat{\eta}_k) \\ &- \frac{1}{N^2} \sum_{k=1}^K \sum_{k'=1}^K \sum_{i \in I_k, i' \in I_{k'}} \psi(W_i; \theta_1, \widehat{\eta}_k) \psi(W_{i'}; \theta_2, \widehat{\eta}_{k'}). \end{split}$$

An illustration of K=2-fold cross-fitting.

 I_1 Score I_2 Nuisance

 I_1 Nuisance I_2 Score

$$\sum_{i\in I_1} \psi(W_i; \theta, \widehat{\eta}_1)$$

 $\sum_{i \in I_2} \psi(W_i; \theta, \widehat{\eta}_2)$

Yukun Ma 16 / 51

High-dimensional QLR Test, Continued

Step 4: Take independent draws $\xi \sim N(0, \widehat{\Omega}(\theta_0, \theta_0))$ and calculate $R = R(\xi, h_N, \widehat{\Omega})$, where rull hypothesis H_0

$$R(\xi, h_N, \widehat{\Omega}) = \xi^2 \widehat{\Omega}(\theta_0, \theta_0)^{-1} - \inf_{\theta} (V(\theta)\xi + h_N)^2 \widehat{\Omega}(\theta, \theta)^{-1},$$

- $V(\theta) = \widehat{\Omega}(\theta, \theta_0) \widehat{\Omega}(\theta_0, \theta_0)^{-1}$
- $h_N(\theta) = \widehat{q}_N(\theta) \widehat{\Omega}(\theta, \theta_0) \widehat{\Omega}(\theta_0, \theta_0)^{-1} \widehat{q}_N(\theta_0).$

Step 5: Calculate the conditional critical value $c_{\alpha}(\tilde{h})$ as

$$c_{\alpha}(\tilde{h}) = \min\{c : P(R(\xi, h_N, \hat{\Omega}) > c) < \alpha\}.$$

Step 6: Reject the null hypothesis $H_0: S_N \in \mathcal{S}_0$ when $R(\xi, h_N, \widehat{\Omega})$ exceeds the $(1-\alpha)$ quantiles $c_{\alpha}(h_N)$ and report the $(1-\alpha)$ confidence interval $CI_{\alpha} = \{\theta: R(\xi, h_N, \widehat{\Omega}) < c_{\alpha}(h_N)\}.$

Yukun Ma

Table of Contents

- 1 Introduction
- 2 Overview
- 3 Theory
- 4 Simulation
- 6 Applications
- 6 Takeaways

Yukun Ma 18/51

Notations

- \blacktriangleright Let c>0, $c_0>0$, $c_1>0$, $C_1>0$ be finite constants, and $a_N = p \vee N$.
- \blacktriangleright Let $\{\Delta_N\}_{N\geq 1}$, $\{\delta_N\}_{N\geq 1}$ (estimation errors) be sequences of positive constants that converges to zero such that $\delta_N > N^{-1/2}$.
- We use $a \lesssim b$ to denote $a \leq cb$ for some c > 0 that does not depends on N.
- ▶ Let $\|\delta\|_0$ represent the number of non-zero components of δ .
- ▶ Let \mathcal{P}_N be the probability law of $\{W_i\}_{i=1}^N$.
- \triangleright Let \mathcal{P}_0 be family of distribution consistent with the null.
- ▶ The sequence $\{M_N\}_{N>1}$ be a set of positive constants such that $M_N > (\mathbb{E}_P[(Z_i \vee ||X_i||_{\infty})^{2q}])^{1/2q}.$

Yukun Ma 19/51

Assumption: Regularity Conditions for the LATE

For $P \in \mathcal{P}_N$, the following conditions hold.

(i) The following equations are satisfied with a binary D and Z.

$$D=m_0(Z,X)+v, \quad \mathrm{E}_P[v|Z,X]=0 \ Y=g_0(Z,X)+u, \quad \mathrm{E}_P[u|Z,X]=0 \
ightarrow (Y,D)|X\perp\!\!\!\perp Z$$

- $Z = p_0(X) + e$, $\mathbf{E}_P[e|X] = 0$ \rightarrow Exclusion Restriction.
- (ii) For some $\varepsilon > 0$, $\varepsilon \le P(Z = 1|X) \le 1 \varepsilon$ almost surely.
- (iii) Θ is compact.
- (iv) $\mathbf{E}_P[D|Z=1] > \mathbf{E}_P[D|Z=0]$. Assumption Comparison
- (v) $||u||_{P,2} > c_0$, and $||\mathbf{E}_P[u^2|X]||_{P,\infty} < c_1$.

Yukun Ma 20 / 51

Assumption: Nuisance Parameter Estimators

• Sparse eigenvalue conditions: with probability 1 - o(1), for some $l_N \to \infty$ slow enough, we have

$$1\lesssim \phi_{\min}(l_N s_N) \leq \phi_{\max}(l_N s_N) \lesssim 1.$$

- Sparsity: $\|\beta_{12}^0\|_0 + \|\beta_{22}^0\|_0 + \|\gamma^0\|_0 < s_N$.
- Parameters: $\|\beta_{12}^0\| + \|\beta_{22}^0\| + \|\gamma^0\| < C_1$.
- Covariates: for q > 4,
 - $ightharpoonup \inf_{\|\xi\|=1} \operatorname{E}_P[((Z_i, X_i')\xi)^2] \geq c.$
 - $ightharpoonup \sup_{\|\xi\|=1} \operatorname{E}_P[((Z_i, X_i')\xi)^2] \leq C_1.$
 - $N^{-1/2+2/q}M_N^2s_N\log^2a_N < \Delta_N.$

Yukun Ma 21 / 51

Main result

The empirical process

$$\mathbb{G}_N(\cdot) = \underbrace{\frac{1}{\sqrt{N}} \sum_{i=1}^N \left(\psi(W_i; \cdot, \eta_0) - \mathbb{E}_P[\psi(W; \cdot, \eta_0)] \right)}_{q_N(\theta)}.$$

Propose an estimator of $\mathbb{G}_N(\cdot)$ as

$$\widehat{\mathbb{G}}_{N}(heta) = \underbrace{\sqrt{N}\Big(rac{1}{N}\sum_{k=1}^{K}\sum_{i\in I_{k}}\psi(W_{i}; heta,\widehat{\eta}_{k}) - \operatorname{E}_{P}\left[\psi(W_{i}; heta,\widehat{\eta}_{k})
ight]\Big)}_{\widehat{q}_{N}(heta)}.$$

Theorem

Suppose that the above assumptions are satisfied. Under the null, we have

$$\widehat{\mathbb{G}}_N(\theta) = \mathbb{G}_N(\theta) + O_P(N^{-1}).$$

The process $\widehat{\mathbb{G}}_N(\cdot)$ weakly converges to a centered Gaussian process $\mathbb{G}(\cdot)$ over $P \in \mathcal{P}_0$ as $N \to \infty$ with covariance function $\Omega(\theta_1, \theta_2) = \mathbb{E}_P[\psi(W; \theta_1, \eta_0) - \mathbb{E}_P[\psi(W; \theta_1, \eta_0)]) (\psi(W; \theta_2, \eta_0) - \mathbb{E}_P[\psi(W; \theta_2, \eta_0)])].$

Yukun Ma 22 / 51

Theorem: Variance Estimation

Under the same set of assumptions as above, the variance $\Omega(\theta_1, \theta_2)$ can be consistently estimated uniformly over $P \in \mathcal{P}_0$ by

$$\widehat{\Omega}(\theta_1, \theta_2) = \frac{1}{N} \sum_{k=1}^{K} \sum_{i \in I_k} \psi(W_i; \theta_1, \widehat{\eta}_k) \psi(W_i; \theta_2, \widehat{\eta}_k)$$

$$- \frac{1}{N^2} \sum_{k,k'=1}^{K} \sum_{i \in I_k, i' \in I_{k'}} \psi(W_i; \theta_1, \widehat{\eta}_k) \psi(W_{i'}; \theta_2, \widehat{\eta}_{k'})$$

and
$$\widehat{\Omega}(\theta_1, \theta_2) = \Omega(\theta_1, \theta_2) + O_P(\rho_N)$$
 with $\rho_N \lesssim \delta_N$.

Yukun Ma 23 / 51

How It Works

- The equivalence between bounded Lipschitz convergence and weak convergence of stochastic processes. See Section 1.12 in van der Vaart and Wellner (1996).
- Weak convergence:
- Step 1 the convergence of the finite dimensional distribution of $\widehat{\mathbb{G}}_N(\theta)$ for $\theta \in \Theta_I$.
- Step 2 the asymptotic equicontinuity of $\widehat{\mathbb{G}}_N(\theta)$ over $P \in \mathcal{P}_0$,

$$\lim_{N\to\infty}\lim_{|\theta_1-\theta_2|\to 0}P\left(|\widehat{\mathbb{G}}_N(\theta_1)-\widehat{\mathbb{G}}_N(\theta_2)|>\epsilon_1\right)=0$$

for any $\varepsilon_1 > 0$.

Step 3 the boundedness of Θ_I .

Yukun Ma 24 / 51

Theorem: Size Control

Under the same set of assumptions above, the test that rejects the null hypothesis $H_0: S_N \in \mathcal{S}_0$ when $R(q_N(\theta_0), h_N, \Omega)$ exceeds the $(1-\alpha)$ quantile $c_{\alpha}(h_N)$ of its conditional distribution given $h_N(\cdot)$ has uniformly correct asymptotic size. Under the null, we have

$$\lim_{N o \infty} \sup_{P \in \mathcal{P}_0} P(R(\widehat{q}_N(heta_0), h_N, \widehat{\Omega}) > c_{lpha}(h_N)) = lpha.$$

25 / 51

Table of Contents

- Introduction
- 2 Overview
- 3 Theory
- 4 Simulation
- 6 Applications
- 6 Takeaways

Yukun Ma 26 / 51

Simulation Setup

• Primitive random vector X_i' is constructed by

$$X_i \sim N \left(0, \left(egin{array}{ccccc} U^0 & U^1 & \ldots & U^{\dim(X)-2} & U^{\dim(X)-1} \ U^1 & U^0 & \ldots & U^{\dim(X)-3} & U^{\dim(X)-2} \ dots & dots & dots & dots & dots \ U^{\dim(X)-2} & U^{\dim(X)-3} & \ldots & U^0 & U^1 \ U^{\dim(X)-1} & U^{\dim(X)-2} & \ldots & U^1 & U^0 \end{array}
ight)
ight)$$

with U = 0.5.

• Consider
$$N = 500$$
, $\dim(X) = 5$, $100,300$, and 500 .

- Define the compliance class $Q_i := \begin{cases} 0 & \text{never-taker} \\ 1 & \text{always-taker} \end{cases}$
- The compliance score denoted as $\delta(x)$ is constructed as $\delta(x) = P[Q_i = 2|X = x] = \frac{\exp(\beta_0 + \beta_1 x)}{1 + \exp(\beta_0 + \beta_1 x)}$

Yukun Ma 27 / 51

Simulation Setup, Continued

- The probability of being a never-taker or always-taker is $(1 \delta(x))/2$.
- The parameter values (β_0, β_1) are set such that

$$P(Q_i=2) = egin{cases} 0.1 & ext{weakly identified case} \ 0.5 & ext{strongly identified case} \end{cases}$$

• Generate random variables (Z_i, D_i, Y_i) as follows

$$D_i = Z_i * \mathbb{1}\{Q_i = 2\} + Q_i * \mathbb{1}\{Q_i \neq 2\}.$$

$$Y_i = D_i \theta_0 + X_i + \varepsilon_i \implies \theta_0 = 1.0.$$

• v_i, ε_i are independently generated according to $v_i, \varepsilon_i \sim N(0, 1)$.

Yukun Ma 28 / 51

Results

I compare the proposed method HD-QLR (this paper) with

- the conditional QLR test $(AM16)^2$: robust against weak identification but not against high dimensionality.
- ML methods (CCDDHNR18³ and BCFH17⁴): robust against high dimensionality but not against weak identification.

⁴Belloni, Chernozhukov, Fernandez, and Hansen (2017)

Yukun Ma 29 / 51

²Andrews and Mikusheva (2016).

³Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey, and Robins (2018).

Comparisons: strong identification Power Curve

• Power curve of nominal 5%: AM16 with HD-QLR (this paper)

Yukun Ma 30 / 51

Comparisons: weak identification

• Power curve of nominal 5%: AM16 with HD-QLR (this paper)

31 / 51

Results

I compare the proposed method HD-QLR (this paper) with

- the conditional QLR test $(AM16)^2$: robust against weak identification but not against high dimensionality.
- ML methods (CCDDHNR18³ and BCFH17⁴): robust against high dimensionality but not against weak identification.

► Approaches Comparison

⁴Belloni, Chernozhukov, Fernandez, and Hansen (2017).

Yukun Ma 32 / 51

²Andrews and Mikusheva (2016).

 $^{^3{\}rm Chernozhukov},$ Chetverikov, Demirer, Duflo, Hansen, Newey, and Robins (2018).

Comparisons: strong identification

• Power curve: CCDDHNR18, BCFH17 with HD-QLR (this paper)

Yukun Ma 33 / 51

Comparisons: weak identification

• Power curve: CCDDHNR18, BCFH17 with HD-QLR (this paper)

34 / 51

Table of Contents

- Introduction
- 2 Overview
- 3 Theory
- 4 Simulation
- **5** Applications
- 6 Takeaways

Yukun Ma 35 / 51

Example One: Hornung (2015) "Railroads and growth in Prussia"

Data: highly detailed city-level data from the historical German state of Prussia.

- Y_{it} : urban population growth rate during time period t.
- D_i : whether the city i was connected to the railroad in 1848.
- Z_i : whether the city i was located within a straight-line corridor between two important cities.
- X_i : whether the city had street access, whether the city had waterway access, military population, age composition, school enrollment rate, etc.

Yukun Ma 36 / 51

Y_{it} : population				periods			
growth rate	49-52	52-55	55-58	58-61	61-64	64-67	67-71
	Panel A: AM16						
LATE	0.010	0.020	0.063	0.030	0.037	0.056	0.044
CI	[-0.017,	[0.004,	[0.030,	[0.011,	[0.019,	[0.012,	[0.018,
	[0.05]	[0.039]	0.063	0.050	[0.050]	0.420	0.155]
length of CI	0.067	0.035	0.033	0.039	0.031	0.408	0.137
		Panel I	3: CCDDI	HNR18			
LATE	0.012	0.011	0.007	0.000	0.020	0.012	0.011
CI	[-0.019,	[-0.014,	[-0.009,	[-0.016,	[-0.019,	[-0.014,	[-0.016,
	0.039	0.035	0.044	0.030	0.052	0.039	0.036
length of CI	0.058	0.048	0.053	0.046	0.070	0.052	0.052
Panel C: BCFH17							
LATE	0.009	0.009	0.012	0.006	0.015	0.012	0.013
CI	[-0.009,	[-0.006,	[-0.007,	[-0.008,	[-0.009,	[-0.018,	[-0.008,
	0.026	0.023	0.031	0.020	0.040]	0.041	0.034
length of CI	0.035	0.029	0.038	0.028	0.049	0.059	0.042
Panel D: HD-QLR (this paper)							
LATE	0.010	0.011	0.014	0.004	0.018	0.014	0.011
CI	[0.000,	[0.002,	[0.003,	[-0.001,	[0.003,	[-0.004,	[-0.002,
	0.021]	0.018]	0.027	0.016	0.029	[0.032]	0.023
length of CI	0.021	0.016	0.024	0.017	0.026	0.033	0.024
Size N	929	924	914	926	924	919	919
$\dim(X)$	212	212	212	212	212	212	212

Yukun Ma 37 / 51

Y_{it} : population				periods			
growth rate	49-52	52-55	55-58	58-61	61-64	64-67	67-71
		Par	nel A: AM	16			
LATE	0.010	0.020	0.063	0.030	0.037	0.056	0.044
CI	[-0.017,	[0.004,	[0.030,	[0.011,	[0.019,	[0.012,	[0.018,
	[0.05]	[0.039]	0.063	0.050	0.050	0.420	0.155
length of CI	0.067	0.035	0.033	0.039	0.031	0.408	0.137
		Panel I	B: CCDDI	HNR18			
LATE	0.012	0.011	0.007	0.000	0.020	0.012	0.011
CI	[-0.019,	[-0.014,	[-0.009,	[-0.016,	[-0.019,	[-0.014,	[-0.016,
	0.039	0.035]	0.044	0.030]	0.052	0.039	0.036
length of CI	0.058	0.048	0.053	0.046	0.070	0.052	0.052
		Pane	el C: BCF	H17			
LATE	0.009	0.009	0.012	0.006	0.015	0.012	0.013
CI	[-0.009,	[-0.006,	[-0.007,	[-0.008,	[-0.009,	[-0.018,	[-0.008,
	0.026]	0.023]	0.031]	0.020]	0.040]	0.041]	0.034]
length of CI	0.035	0.029	0.038	0.028	0.049	0.059	0.042
	F	anel D: H	D-QLR (t	his paper)		
LATE	0.010	0.011	0.014	0.004	0.018	0.014	0.011
CI	[0.000,	[0.002,	[0.003,	[-0.001,	[0.003,	[-0.004,	[-0.002,
	0.021]	0.018]	0.027]	0.016]	0.029	0.032]	0.023
length of CI	0.021	0.016	0.024	0.017	0.026	0.033	0.024
Size N	929	924	914	926	924	919	919
$\dim(X)$	212	212	212	212	212	212	212

Yukun Ma 38/51

			1				
Y_{it} : population				periods			
growth rate	49-52	52-55	55-58	58-61	61-64	64-67	67-71
Panel A: AM16							
LATE	0.010	0.020	0.063	0.030	0.037	0.056	0.044
CI	[-0.017,	[0.004,	[0.030,	[0.011,	[0.019,	[0.012,	[0.018,
	0.05]	0.039]	0.063	0.050]	0.050]	0.420]	0.155]
length of CI	0.067	0.035	0.033	0.039	0.031	0.408	0.137
		Panel I	3: CCDDI	HNR18			
LATE	0.012	0.011	0.007	0.000	0.020	0.012	0.011
CI	[-0.019,	[-0.014,	[-0.009,	[-0.016,	[-0.019,	[-0.014,	[-0.016,
	0.039	0.035]	0.044]	0.030]	0.052]	0.039	0.036]
length of CI	0.058	0.048	0.053	0.046	0.070	0.052	0.052
Panel C: BCFH17							
LATE	0.009	0.009	0.012	0.006	0.015	0.012	0.013
CI	[-0.009,	[-0.006,	[-0.007,	[-0.008,	[-0.009,	[-0.018,	[-0.008,
	0.026]	0.023]	0.031]	0.020]	0.040]	0.041]	0.034]
length of CI	0.035	0.029	0.038	0.028	0.049	0.059	0.042
Panel D: HD-QLR (this paper)							
LATE	0.010	0.011	0.014	0.004	0.018	0.014	0.011
CI	[0.000,	[0.002,	[0.003,	[-0.001,	[0.003,	[-0.004,	[-0.002,
	0.021]	0.018]	0.027]	0.016]	0.029]	0.032]	0.023]
length of CI	0.021	0.016	0.024	0.017	0.026	0.033	0.024
Size N	929	924	914	926	924	919	919
$\dim(X)$	212	212	212	212	212	212	212

Yukun Ma 39 / 51

Example Two: Ambrus, Field, and Gonzalez (2020) "The Impact on Housing Prices of A Cholera Epidemic"

"In August 1854, St. James experienced a sudden outbreak of cholera when one of the 13 shallow wells that serviced the parish, the Broad Street pump, became contaminated with cholera bacteria."

- Y_i : the log rental price of house i in 1864.
- D_i : whether house i had at least one cholera death.
- Z_i : whether house i fell inside the contaminated areas.
- X_i : distance to the closest pump, distance to the fire station, distance to the urinal, sewer access, among a total of 23 variables.

Yukun Ma 40 / 51

	AM16	CCDDHNR18	BCFH17	HD-QLR (this paper)
LATE	-1.205	-0.413	-0.357	-0.421
CI	[-2.230,	[-3.565,	[-1.291,	[-1.080,
	-0.650]	[2.670]	[0.576]	0.035
length of CI	1.580	6.235	1.866	1.115

Table: Displayed are LATE estimates, CIs and the length of CI for the coefficient of the cholera-related deaths using four different approaches: AM16, CCDDHNR18, BCFH17, and the proposed HD-QLR. Estimation and inference results in CCDDHNR18 and HD-QLR are based on 10 iterations of resampled cross fitting with K=4 folds for cross fitting. The number of observations N=467.

Yukun Ma 41/51

Table of Contents

- Introduction
- Overview
- 3 Theory
- 4 Simulation
- **6** Applications
- 6 Takeaways

Yukun Ma 42 / 51

Takeaways

• I develop a test statistic to make inference for the high-dimensional LATE, independent of the strength of identification.

	Low-dimensional Model	High-dimensional Model
Strong Identification	t-test	CCDDHNR18, BCFH17
Weak Identification	AR, S, K, AM16	HD-QLR (my paper)

- The test has uniformly correct asymptotic size.
- Simulation results indicate that the proposed test is robust against weak identification and high-dimensional settings, outperforming other conventional tests.
- Empirical illustrations show that conventional tests exhibit a positive bias in the length of confidence intervals and lose significance when high-dimensional covariates are taken into account

Yukun Ma 43 / 51

Takeaways

• I develop a test statistic to make inference for the high-dimensional LATE, independent of the strength of identification.

	Low-dimensional Model	High-dimensional Model
Strong Identification	t-test	CCDDHNR18, BCFH17
Weak Identification	AR, S, K, AM16	HD-QLR (my paper)

- The test has uniformly correct asymptotic size.
- Simulation results indicate that the proposed test is robust against weak identification and high-dimensional settings, outperforming other conventional tests.
- Empirical illustrations show that conventional tests exhibit a positive bias in the length of confidence intervals and lose significance when high-dimensional covariates are taken into account.

43 / 51

Thank you!

feel free to email me any comments yukun.ma@vanderbilt.edu

Yukun Ma 44/51

Motivation: Lee et al. (2022)

Figure: American Economic Review 2013-2019

Yukun Ma 45/51

Tuning Parameters

Lemma (Convergence rate for Lasso with logistic model)

Suppose some regularity assumptions hold. In addition, suppose that the penalty choice $\lambda_1 = K_1 \sqrt{N \log(pN)}$ and $\lambda_2 = K_2 \sqrt{N \log(pN)}$ for $K_1, K_2 > 0$. Then with probability 1 - o(1),

$$\|(\widehat{\beta}_{11},\widehat{\beta}_{12})-(\beta_{11}^0,\beta_{12}^0)\|\vee\|\widehat{\gamma}-\gamma^0\|\lesssim \sqrt{\frac{s_N\log(pN)}{N}}.$$

Lemma (Convergence rate for Lasso with OLS)

Suppose some regularity assumptions hold. Moreover, suppose that the penalty choice $\lambda_3 = K_3 \sqrt{N \log(pN)}$ for $K_3 > 0$. Then with probability 1 - o(1).

$$\|(\widehat{eta}_{21},\widehat{eta}_{22})-(eta_{21}^0,eta_{22}^0)\|\lesssim \sqrt{rac{s_N\log(pN)}{N}}.$$

Yukun Ma 46 / 51

Null Hypothesis

• Define $S_N(\cdot) = \mathbb{E}_P[N^{-1/2} \sum_{i=1}^N \psi(W_i; \cdot, \eta_0)].$

• $H_0: \theta = \theta_0$ or $\theta_0 \in \Theta_I$ with the identified set $\Theta_I \subset \Theta$.

$$\stackrel{\updownarrow}{S_N(heta_0)} = 0.$$

• Let \mathcal{S}_0 be the collection of function $S_N(\cdot)$ satisfying $S_N(\theta_0) = 0$.

$$\updownarrow \ H_0: S_N(\cdot) \in \mathcal{S}_0$$

Yukun Ma 47 / 51

Spare eigenvalue

For any $T \subset [p+1], \, \delta = (\delta_1, \cdots, \delta_{p+1})' \in \mathbb{R}^{p+1}$ with $\delta_{T,j} = \delta_j$ if $j \in T$ and $\delta_{T,j} = 0$ if $j \notin T$. Define the minimum and maximum sparse eigenvalue by

$$\phi_{\min}(m) = \inf_{\|\delta\|_0 \le m} rac{\|(Z_i, X_i')\delta\|_{2,N}}{\|\delta_T\|_1} \ \phi_{\max}(m) = \sup_{\|\delta\|_0 < m} rac{\|(Z_i, X_i')\delta\|_{2,N}}{\|\delta_T\|_1}.$$

Yukun Ma 48 / 51

Identification Assumptions

• Assumption in my paper:

$$Ep[D|Z=1] \geq E_P[D|Z=0].$$

• Assumption in weak identification literature:

$$Ep[D|Z=1]-\mathrm{E}_P[D|Z=0]=rac{C_1}{\sqrt{N}} \ \ ext{with } C_1>0.$$

• Assumption in ML literature:

$$Ep[D|Z=1] - E_P[D|Z=0] \ge C_2$$
 with $C_2 > 0$.

Yukun Ma 49 / 51

Comparison Across Four Approaches

- AM16
 - Neyman orthogonal score ψ .
 - test statistics R.
 - use traditional methods to handle X_i .
- Drawbacks
 - overfitting bias;
 - o capturing noise;
 - multicollinearity;

- CCDDHNR18 BCFH17
 - Neyman orthogonal score ψ .
 - ▶ normal t-test.
 - use ML to handle X_i .

- cannot perform well under weakly identified scenarios.
- The proposed HD-QLR takes advantages from both methods:
 - Neyman orthogonal score ψ .
 - ightharpoonup test statistics R.
 - use ML (Lasso) to handle the high-dimensional X_i .

▶ back

Yukun Ma 50 / 51

Power Curve

Yukun Ma 51/51

- Ambrus, A., E. Field, and R. Gonzalez (2020): "Loss in the time of cholera: Long-run impact of a disease epidemic on the urban landscape," *American Economic Review*, 110, 475–525.
- ANDREWS, I. AND A. MIKUSHEVA (2016): "Conditional inference with a functional nuisance parameter," Econometrica, 84, 1571–1612.
- Belloni, A., V. Chernozhukov, I. Fernandez-Val, and C. Hansen (2017): "Program evaluation and causal inference with high-dimensional data," *Econometrica*, 85, 233–298.
- Bellon, A., V. Chernozhukov, and K. Kato (2015): "Uniform post-selection inference for least absolute deviation regression and other Z-estimation problems," *Biometrika*, 102, 77–94.
- BLANDHOL, C., J. BONNEY, M. MOGSTAD, AND A. TORGOVITSKY (2022): "When is TSLS actually late?" Tech. rep., National Bureau of Economic Research.
- CHERNOZHUKOV, V., D. CHETVERIKOV, AND K. KATO (2013): "Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors," The Annals of Statistics, 41, 2786–2819.
- ———— (2017): "Central limit theorems and bootstrap in high dimensions," The Annals of Probability, 45, 2309–2352.
- HORNUNG, E. (2015): "Railroads and growth in Prussia," Journal of the European Economic Association, 13, 699-736.
- KLEIBERGEN, F. (2005): "Testing parameters in GMM without assuming that they are identified," Econometrica, 73, 1103-1123.
- Moreira, M. J. (2003): "A conditional likelihood ratio test for structural models," *Econometrica*, 71, 1027–1048.
- STOCK, J. H. AND J. H. WRIGHT (2000): "GMM with weak identification," Econometrica, 68, 1055-1096.
- Tan, Z. (2006): "Regression and weighting methods for causal inference using instrumental variables," Journal of the American Statistical Association, 101, 1607-1618.
- VAN DER VAART, A. AND J. A. WELLNER (1996): "WEAK CONVERGENCE AND EMPIRICAL PROCESSES," .

Yukun Ma 51 / 51