Numerikus módszerek C

1. előadás: Gépi számábrázolás

Krebsz Anna

ELTE IK

Tartalomjegyzék

1 "Furcsa" jelenségek...

2 Gépi számok: a lebegőpontos számok egy modellje

Tartalomjegyzék

1 "Furcsa" jelenségek...

2 Gépi számok: a lebegőpontos számok egy modellje

Mennyi $sin(\pi)$ értéke?

1.224646799147353e-016

Mennyi $\sum_{k=1}^{+\infty} \frac{1}{k}$ értéke?

Mennyi az *n*-edik részletösszeg, valamely nagy *n*-re? $\left(\sum_{k=1}^{n} \frac{1}{k}\right)$

Összegezhetünk oda vagy vissza ...

n = 100000000-re

18.997896413852555

18.997896413853447

Mennyi $\sqrt{2017} - \sqrt{2016}$ értéke? Más alakban is számolható:

$$\sqrt{2017} - \sqrt{2016} = (\sqrt{2017} - \sqrt{2016}) \cdot \frac{\sqrt{2017} + \sqrt{2016}}{\sqrt{2017} + \sqrt{2016}} =
= \frac{2017 - 2016}{\sqrt{2017} + \sqrt{2016}} = \frac{1}{\sqrt{2017} + \sqrt{2016}}.$$

Próbáljuk ki mindkét számolási módot!

0.011134504483941

4. furcsa jelenség Matlab-ban

A Matlab-ban

$$a = 1e - 20 (= 10^{-20}), b = 1.$$

Mennyi lesz a + b értéke?

1

Igaz-e az asszociativatás a Matlab-ban?

$$(a+b)-b, \ a+(b-b)=?$$

Próbáljuk ki!

1

1.00000000000000e-020

A Matlab-ban mennyi $\cosh(20) - \sinh(20)$ és $\exp(-20)$ értéke?

$$\cosh(20) - \sinh(20) = \frac{\exp(20) + \exp(-20)}{2} - \frac{\exp(20) - \exp(-20)}{2} = \exp(-20)$$

Próbáljuk ki a kétféle számítási módot!

Mennyi a

$$T_n := \int_0^1 f_n(x) = \int_0^1 \frac{x^n}{x+10} dx$$

határozott integrál értéke? Analitikusan nehéz megadni az értékét. (A geometriai szemléltetésből látszik, hogy mindig pozitív és nullához tart az integrál értéke.)

$$T_n := \int_0^1 \frac{x^n}{x+10} dx = \int_0^1 \frac{(x+10-10)x^{n-1}}{x+10} dx =$$

$$= \int_0^1 x^{n-1} dx - 10 \cdot \int_0^1 \frac{x^{n-1}}{x+10} dx = \frac{1}{n} - 10 \cdot T_{n-1}$$

$$\int_{0}^{1} \frac{1}{x+10} dx = [\ln(x+10)]_{0}^{1} = \ln(11) - \ln(10) = \ln(1.1)$$

$$T_n := \int_0^1 \frac{x^n}{x+10} dx = \int_0^1 \frac{(x+10-10)x^{n-1}}{x+10} dx =$$

$$= \int_0^1 x^{n-1} dx - 10 \cdot \int_0^1 \frac{x^{n-1}}{x+10} dx = \frac{1}{n} - 10 \cdot T_{n-1}$$

$$T_0 = \int_0^1 \frac{1}{x+10} \, dx = \left[\ln(x+10) \right]_0^1 = \ln(11) - \ln(10) = \ln(1.1)$$

Tehát a rekuzió:

$$T_0 := \ln(1.1), \quad T_n := \frac{1}{n} - 10 \cdot T_{n-1} \ (n = 1, 2...).$$

Számoljuk a kapott rekurzió alapján a T_{20} . tagot Matlab-bal!

Rendezzük át a rekurziót csökkenően:

$$10 T_{n-1} = \frac{1}{n} - T_n \quad \Leftrightarrow$$

$$T_{n-1} = \frac{1}{10} \cdot \left(\frac{1}{n} - T_n\right)$$

Indítsuk a rekurziót egy M >> n értékből,

$$T_M := 0, \quad T_{n-1} = \frac{1}{10} \cdot \left(\frac{1}{n} - T_n\right) \quad (n = M, \dots, m+1).$$

Számoljuk a második rekurzió alapján is a T_{20} . tagot! A két algoritmus közül melyik stabil?

7.483468021084803e+003 0.004347035818028

Algoritmus stabilitása

Definíció:

A numerikus algoritmus aritmetikai és logikai műveletek véges sorozata.

Definíció:

A numerikus algoritmus stabil, ha létezik olyan C>0 konstans, hogy a kétféle B_1,B_2 bemenő adatból kapott K_1,K_2 kimenő adatokra

$$||K_1 - K_2|| \le C \cdot ||B_1 - B_2||.$$

Példa

A Fibonacci sorozat rekurziója instabil. Lásd gyakorlaton.

Tartalomjegyzék

1 "Furcsa" jelenségek...

2 Gépi számok: a lebegőpontos számok egy modellje

Motiváció

- Gyakorlati és tudományos számításokban sokszor szükségünk van valós számok kezelésére.
- A számítógépeken csak egy véges halmaz elemei közül választhatunk.
- Ráadásul ezek több nagyságrenddel eltérhetnek.

Lebegőpontos számok egy modellje

Lebegőpontos számok, normalizált alak: 324 \rightarrow +0.324 \cdot 10³. Kettes számrendszerben: 101000100 \rightarrow +0.101000100 \cdot 2⁹. Általában: $\pm 0.\underbrace{1 - \dots }_{t \text{ jegy}} \cdot 2^k$ $(k^- \le k \le k^+).$

Definíció: Normalizált lebegőpontos szám

Legyen
$$m = \sum_{i=1}^t \dots 2^{-i}$$
, ahol $t \in \mathbb{N}, m_1 \longrightarrow m_i \in \{0, 1\}$.

Ekkor az $a=\pm m\cdot 2^k$ $(k\in\mathbb{Z})$ alakú számot normalizált lebegőpontos számnak nevezzük.

$$m$$
: a szám m antisszája, hossza $t = k$: a szám k arakterisztikája, $k^- \le \kappa \le k^+$

Lebegőpontos számok egy modellje

Jelölés:
$$a = \pm [m_1 \dots m_t | k] = \pm 0.m_1 \dots m_t \cdot 2^k$$
.

Jelölés: $M=M(t,k^-,k^+)$ a gépi számok halmaza, adott $k^-,k^+\in\mathbb{Z}$ és $t\in\mathbb{N}$ esetén. (Általában $k^-<0$ és $k^+>0$.)

Definíció: Gépi számok halmaza

$$M(t, k^{-}, k^{+}) =$$

$$= \left\{ a = \pm 2^{k} \cdot \sum_{i=1}^{t} m_{i} \cdot 2^{-i} : k^{-} \leq k \leq k^{+}, \atop m_{i} \in \{0, 1\}, m_{1} = 1 \right\}$$

Gyakorlatban még hozzávesszük: $\infty, -\infty$, NaN,...

Gépi számok tulajdonságai, nevezetes értékei

- 1 $\frac{1}{2} \le m < 1$
- 2 M szimmetrikus a 0-ra.
- 3 *M* legkisebb pozitív eleme:

$$\varepsilon_0 = [100...0|k^-] = \frac{1}{2} \cdot 2^{k^-} = 2^{k^- - 1}$$

4 M-ben az 1 után következő gépi szám és 1 különbsége:

$$\varepsilon_1 = [100...01|1] - [100...00|1] = 2^{-t} \cdot 2^1 = 2^{1-t}$$

6 M legnagyobb eleme:

$$M_{\infty} = [111...11|k^{+}] = 1.00...00 \cdot 2^{k^{+}} - 0.00...01 \cdot 2^{k^{+}} = (1 - 2^{-t}) \cdot 2^{k^{+}}$$

6 M elemeinek száma (számossága):

$$|M| = 2 \cdot 2^{t-1} \cdot (k^+ - k^- + 1) + 1$$

Példa

$$M(3,-1,2)$$
 gépi számainak alakja: ± 0.1 __ $\cdot 2^k$, $(-1 \le k \le 2)$

Elemei k=0 esetén: 0.100,0.101,0.110,0.111, azaz $\frac{1}{2},\frac{5}{8},\frac{6}{8},\frac{7}{8}$.

Valamint k=-1 esetén ezek fele, k=1 esetén ezek kétszerese, k=2 esetén ezek négyszerese. (Továbbá negatív előjellel...)

$$\varepsilon_0 = [100|-1] = 0.100 \cdot 2^{-1} = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4} = 0.25$$

$$\varepsilon_1 = [101|1] - 1 = 0.101 \cdot 2^1 - 1 = \frac{1}{8} \cdot 2 = \frac{1}{4} = 0.25$$

$$M_{\infty} = [111|2] = 0.111 \cdot 2^2 = \frac{7}{8} \cdot 4 = \frac{7}{2} = 3.5$$

$$|M| = 2 \cdot 2^2 \cdot 4 + 1 = 33$$

Példa gépi számhalmazra

float
$$\sim M(23, -128, 127)$$
, double $\sim M(52, -1024, 1023)$ bitek, nevezetes értékek?

Valós számok ábrázolása

Hogyan feleltetünk meg egy \mathbb{R} -beli számnak egy gépi számot? Jelöljük \mathbb{R}_M -mel az ábrázolható számok tartományát, azaz $\mathbb{R}_M:=\{x\in\mathbb{R}:\ |x|\leq M_\infty\}.$

Definíció: Input függvény

Az $fl: \mathbb{R}_M \to M$ függvényt input függvénynek nevezzük, ha

$$fl(x) = \begin{cases} 0 & \text{ha } |x| < \varepsilon_0, \\ \tilde{\mathbf{x}} & \text{ha } \varepsilon_0 \le |x| \le M_{\infty}, \end{cases}$$

ahol \tilde{x} az x-hez legközelebbi gépi szám (a kerekítés szabályai szerint).

Valós számok ábrázolása

Tehát már az is egyfajta hibát okoz számításkor, hogy valós számokat számítógépre viszünk...de mekkorát?

Tétel: Input hiba

Minden $x \in \mathbb{R}_M$ esetén

Következmény: Input hiba

Ha $\varepsilon_0 \leq |x| \leq M_{\infty}$, akkor

$$\frac{|x-fl(x)|}{|x|} \leq \frac{1}{2} \cdot \varepsilon_1 = 2^{-t}.$$

A hiba tehát lényegében ε_1 -től, azaz t-től függ.

Mennyi a hiba, ha $|x| > M_{\infty}$?

Bizonyítás:

- **1** Ha $|x| < \varepsilon_0$, akkor f(x) = 0, így $|x f(x)| = |x| < \varepsilon_0$.
- **2** Ha $|x| \ge \varepsilon_0$ és $x \in M$, akkor f(x) = x, így |x f(x)| = 0.
- **3** A meggondolandó eset, amikor $|x| \ge \varepsilon_0$ és $x \notin M$.

Elegendő csak pozitív x-ekkel foglalkoznunk a 0-ra való szimmetria miatt. Keressük meg azt a két szomszédos gépi számot:

x' < x < x'' és $x', x'' \in M$, amelyek közrefogják x-et. Legyen $x' = [1_ ... _|k]$ alakú. Mennyi x' és x'' távolsága?

Ha x-ben az utolsó helyiértékhez 1-et adunk, akkor x''-t kapjuk.

Tehát $x'' - x' = 2^{-t} \cdot 2^k = 2^{k-t}$.

Valós számok ábrázolása

Ha x az intervallum első felében van, akkor fl(x)=x', ha a második felében, akkor fl(x)=x''. Ezért x és fl(x) eltérése legfeljebb az intervallum fele, azaz $\frac{1}{2} \cdot 2^k \cdot 2^{-t}$. Vagyis

$$|x-f|(x)|\leq \frac{1}{2}\cdot 2^k\cdot 2^{-t}.$$

Viszont x abszolút értékére, fenti alakját figyelembe véve $0.1 \cdot 2^k = \frac{1}{2} \cdot 2^k \le |x|$ is teljesül, ezért a becslést így folytathatjuk:

$$|x-f(x)| \leq |x| \cdot 2^{-t} = \frac{1}{2} \cdot |x| \cdot 2^{1-t} = \frac{1}{2} \cdot |x| \cdot \varepsilon_1.$$

Példák Matlab-ban

1 Az említett "furcsa" jelenségek kipróbálása...