1.13 第十五周作业

习题 1.96 (第六章第 47 题)

设
$$A = \begin{pmatrix} 2 & -2 & 3 \\ 10 & -4 & 5 \\ 5 & -4 & 6 \end{pmatrix}$$
, 求方阵 T , 使 $T^{-1}AT$ 为 Jordan 标准形。

解 A 的特征多项式 $\varphi_A(\lambda) = (\lambda - 2)(\lambda - 1)^2$, 则 A 的特征值为 2,1,1.

对于 $\lambda = 1$, 有 rank(A - I) = rank(J - I) = 2, 故 $J = diag(2, J_2(1))$, 设 $T = (T_1, T_2, T_3)$ 满足 AT = TJ. 计算得 $T_1=(4t,15t,10t)^T$, $T_2=(s,5s,3s)^T$, 由 $(A-I)^2T_3=0$ 得 $T_3=(2p-q,q,p)^T$, 代入 $(A-I)T_3=T_2$

可得满足条件的方阵T的通解为 $T=\begin{pmatrix}4t&s&2p-q\\15t&5s&q\\10t&3s&p\end{pmatrix}$,其中5p-3q=s.

习题 1.97 (第六章第 48 题)

设方阵 A 满足 $A^2 = A$, 用矩阵的 Jordan 标准形证明: tr(A) = rank(A).

证明 任取 A 的一个特征值 λ , 以及一个对应的特征向量 x, 则有 $Ax = \lambda x = A^2 x = \lambda^2 x$, 而 $x \neq 0$, 故 $\lambda = 0$ 或 1, 即 A 的特征值只能为 0 或 1, 则可以设 A 的 J ordan 标准形为 $J = diag(J_{m_1}(1), \cdots, J_{m_n}(1), J_{k_1}(0), \cdots, J_{k_n}(0))$, 并且 $P^{-1}AP=J$,其中 P 是可逆方阵,由 $A^2=A$,则 $tr(A)=tr(J)=p, rank(A)=rank(A^2)=rank(J^2)$, 且 $J^2 = P^{-1}A^2P = P^{-1}AP = J$,而 $J^2 = diag(J^2_{m_1}(1), \cdots, J^2_{m_p}(1), J^2_{k_1}(0), \cdots, J^2_{k_q}(0)) = J$,那么只能 $k_1 = \cdots = k_q = 1$, 即特征值 0 对应的 Jordan 块都是 1 阶的, 也就是 0, 那么 rank(A) = rank(J) = p.

习题 1.98 (第七章第1题)

己知 $\alpha_1 = (1, 2, -1, 1), \alpha_2 = (2, 3, 1, -1), \alpha_3 = (-1, -1, -2, 2).$

- (1) 求 $\alpha_1, \alpha_2, \alpha_3$ 的长度及彼此之间的夹角。
- (2) 求与 $\alpha_1, \alpha_2, \alpha_3$ 都正交的向量。

解 (1) 计算得 $|\alpha_1| = \sqrt{7}, |\alpha_2| = \sqrt{15}, |\alpha_3| = \sqrt{10}, \ \$ 以及 $\alpha_1 \cdot \alpha_2 = 6, \alpha_1 \cdot \alpha_3 = 1, \alpha_2 \cdot \alpha_3 = -9.$ 从而有:

$$\theta_{12}=\arccos\left(\frac{6}{\sqrt{105}}\right),\;\theta_{13}=\arccos\left(\frac{1}{\sqrt{70}}\right),\;\theta_{23}=\arccos\left(-\frac{9}{5\sqrt{6}}\right).$$

 $\theta_{12} = \arccos\left(\frac{6}{\sqrt{105}}\right), \ \theta_{13} = \arccos\left(\frac{1}{\sqrt{70}}\right), \ \theta_{23} = \arccos\left(-\frac{9}{5\sqrt{6}}\right).$ (2) 这等价于求解方程组: $\begin{cases} x_1 + 2x_2 - x_3 + x_4 = 0\\ 2x_1 + 3x_2 + x_3 - x_4 = 0\\ -x_1 - x_2 - 2x_3 + 2x_4 = 0 \end{cases}$, 通解为: $(-5, 3, 1, 0)^T t + (5, -3, 0, 1)^T s$.

习题 1.99 (第七章第 3 题)

设x,y是欧氏空间 \mathbb{R}^n 的两个向量,它们之间的夹角为 θ ,证明:

- (1) (余弦定理) $|x y|^2 = |x|^2 + |y|^2 2|x||y|\cos\theta$.
- (2) (平行四边形定理) $|x+y|^2 + |x-y|^2 = 2(|x|^2 + |y|^2)$

(3) (菱形对角线定理) 若 |x| = |y|, 则 $(x+y) \perp (x-y)$.

证明 (1) $RHS = |x|^2 + |y|^2 - 2x \cdot y = x \cdot (x - y) + (y - x) \cdot y = |x - y|^2 = LHS$.

- (2) $LHS = |x|^2 + |y|^2 + 2x \cdot y + |x|^2 + |y|^2 2x \cdot y = 2(|x|^2 + |y|^2) = RHS.$
- (3) $(x + y) \cdot (x y) = |x|^2 |y|^2 = 0$, $x \in (x + y) \perp (x y)$.

习题 1.100 (第七章第 5 题)

用 Schmidt 正交化方法构造标准正交向量组:

- (1) (0,0,1), (0,1,1), (1,1,1);
- (2) (1,1,1,2), (1,1,-5,3), (3,2,8,-7).

解 以下均设三个向量为 $\alpha_1, \alpha_2, \alpha_3$.

(1)
$$|\alpha_1| = 1$$
, $\mathbb{N} \mathbb{N} e_1 = \alpha_1$, $\mathcal{P} \beta_2 = \alpha_2 - (\alpha_2, e_1)e_1 = (0, 1, 0), |\beta_2| = 1$, $\mathbb{N} \mathbb{N} e_2 = \beta_2$. $\mathcal{P} \beta_3 = \alpha_3 - (\alpha_3, e_1)e_1 - (\alpha_3, e_2)e_2 = (1, 0, 0), |\beta_3| = 1$, $\mathbb{N} \mathbb{N} e_3 = \beta_3$.

$$\begin{aligned} &(2) \ |\alpha_1| = \sqrt{7}, \quad \text{則取} \ e_1 = \frac{1}{\sqrt{7}}\alpha_1 = \frac{1}{\sqrt{7}}(1,1,1,2), \quad \diamondsuit \ \beta_2 = \alpha_2 - (\alpha_2,e_1)e_1 = (\frac{4}{7},\frac{4}{7},-\frac{38}{7},\frac{15}{7}), \\ &|\beta_2| = \frac{9\sqrt{21}}{7}, \quad \text{則} \ e_2 = \frac{1}{9\sqrt{21}}(4,4,-38,15), \quad \diamondsuit \ \beta_3 = \alpha_3 - (\alpha_3,e_1)e_1 - (\alpha_3,e_2)e_2 = \alpha_3 + \frac{1}{7}\alpha_1 + \frac{389\times7}{1701}\beta_2, \quad \mbox{将} \ \beta_3 \ \mbox{单位化,得} \\ &|\beta| \ e_3 = \frac{1}{\sqrt{13449}}(\frac{493\sqrt{2}}{9},\frac{743\sqrt{2}}{18},-\frac{133\sqrt{2}}{18},-\frac{133\sqrt{2}}{3}). \end{aligned}$$

习题 1.101 (补充题)

设 $(V,(\cdot,\cdot))$ 为内积空间, $\mathbb{B}_1=(\alpha_1,\cdots,\alpha_n),\mathbb{B}_2=(\beta_1,\cdots,\beta_n)$ 为两组基, $(\beta_1,\cdots,\beta_n)=(\alpha_1,\cdots,\alpha_n)P$,设 (\cdot,\cdot) 在 $\mathbb{B}_1,\mathbb{B}_2$ 下的度量矩阵分别为 G_1,G_2 ,证明: $G_2=P^TG_1P$.

证明 设
$$P = (p_{ij})_{n \times n}$$
,则 $\beta_k = p_{1k}\alpha_1 + \dots + p_{nk}\alpha_n, k = 1, \dots, n$,记 $(G_1)_{ij} = (\alpha_i, \alpha_j) = g_{ij}$,则 $(G_2)_{ij} = (\beta_i, \beta_j) = (p_{1i}\alpha_1 + \dots + p_{ni}\alpha_n, p_{1j}\alpha_1 + \dots + p_{nj}\alpha_n) = \sum_{m=1}^n \sum_{k=1}^n p_{mi}g_{mk}p_{kj} = (P^TG_1P)_{ij}$,故 $G_2 = P^TG_1P$.

习题 1.102 (第七章第 6 题)

设在 \mathbb{R}^3 中,基 a_1, a_2, a_3 的度量矩阵是

$$\begin{pmatrix}
1 & 0 & -1 \\
0 & 2 & 0 \\
-1 & 0 & 2
\end{pmatrix}$$

试求 \mathbb{R}^3 中由 a_1, a_2, a_3 表示的一组标准正交基。

解 可以看出 $|\mathbf{a}_1|=1, |\mathbf{a}_2|=\sqrt{2}$, 且 $\mathbf{a}_1, \mathbf{a}_2$ 正交, 故取 $e_1=\mathbf{a_1}, e_2=\frac{1}{\sqrt{2}}\mathbf{a_2}$, 令 $\beta_3=\mathbf{a}_3-(\mathbf{a}_3,e_1)e_1-(\mathbf{a}_3,e_2)e_2=\mathbf{a}_3+\mathbf{a}_1$, 则 $|\beta_3|^2=|\mathbf{a}_3|^2+|\mathbf{a}_1|^2+2\mathbf{a}_1\cdot\mathbf{a}_3=1$, 则可取 $e_3=\beta_3=\mathbf{a}_1+\mathbf{a}_3$. e_1,e_2,e_3 即为一组标准正交基。

习题 1.103 (第七章第 10 题)

设
$$e_1, e_2.e_3$$
 是 \mathbb{R}^3 的一组标准正交基,令 $a_1 = \frac{1}{3}(2e_1 + 2e_2 - e_3), a_2 = \frac{1}{3}(2e_1 - e_2 + 2e_3),$

$$m{a}_3 = rac{1}{3}(m{e}_1 - 2m{e}_2 - 2m{e}_3)$$
 证明: $m{a}_1, m{a}_2, m{a}_3$ 也是 \mathbb{R}^3 的一组标准正交基。

证明 由 $e_1, e_2.e_3$ 是标准正交基,则 $|a_1|^2 = \frac{1}{9}(4|e_1|^2 + 4|e_2|^2 + |e_3|^2) = 1$,故 $|a_1| = 1$,类似有 $|a_2| = |a_3| = 1$. 并且 $a_1 \cdot a_2 = \frac{4}{9} - \frac{2}{9} - \frac{2}{9} = 0$,类似有 $a_1 \cdot a_3 = a_2 \cdot a_3 = 0$,故 a_1, a_2, a_3 也是 \mathbb{R}^3 的一组标准正交基。

习题 1.104 (第七章第 12 题)

设 a_1, a_2, \cdots, a_n 是 \mathbb{R}^n 的标准正交基,证明:

- (1) 对任意 $a, b \in \mathbb{R}^n$, $(a, b) = \sum_{i=1}^n (a, a_i)(b, a_i)$.
- (2) 对任意 $\boldsymbol{a} \in \mathbb{R}^n, |\boldsymbol{a}|^2 = \sum_{i=1}^n (\boldsymbol{a}, \boldsymbol{a}_i)^2.$

证明 (1) 由于 a_1, a_2, \dots, a_n 是标准正交基,可设 $a = \lambda_1 a_1 + \dots + \lambda_n a_n, b = \mu_1 a_1 + \dots + \mu_n a_n$,则 $(a, a_i) = \lambda_i, (b, a_i) = \mu_i$,则 $(a, b) = (\lambda_1 a_1 + \dots + \lambda_n a_n, \mu_1 a_1 + \dots + \mu_n a_n) = \sum_{i=1}^n \lambda_i \mu_i = \sum_{i=1}^n (a, a_i)(b, a_i)$.

(2) 在 (1) 中令 b = a 即得。

习题 1.105 (第七章第 14 题)

写出所有3阶正交矩阵,它的元素是0或1.

解 由于正交矩阵每行每列均为单位向量,则每行每列均有且只有一个 1,故满足要求的正交矩阵只能是标准单位向量 $e_1.e_2,e_3$ 的排列,共以下 6 个:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}.$$

习题 1.106 (第七章第 16 题)

若 a 是 \mathbb{R}^n 单位向量,证明: $Q=I_n-2aa^T$ 是一个正交阵。当 $a=\frac{1}{\sqrt{3}}(1,1,1)^T$ 时,具体求出 Q.

证明 由于 a 为单位向量,故 $a^Ta=1$,且容易看出 $Q=Q^T$,故:

 $QQ^T=Q^TQ=(I_n-2\boldsymbol{a}\boldsymbol{a}^T)(I_n-2\boldsymbol{a}\boldsymbol{a}^T)^T=I_n-4\boldsymbol{a}\boldsymbol{a}^T+4\boldsymbol{a}\boldsymbol{a}^T\boldsymbol{a}\boldsymbol{a}^T=I_n-4\boldsymbol{a}\boldsymbol{a}^T+4\boldsymbol{a}\boldsymbol{a}^T=I_n.$ 从而 Q 是一个正交矩阵。

解 代入计算得到
$$Q = I_3 - \frac{2}{3} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{3} & -\frac{2}{3} & -\frac{2}{3} \\ -\frac{2}{3} & \frac{1}{3} & -\frac{2}{3} \\ -\frac{2}{3} & -\frac{2}{3} & \frac{1}{3} \end{pmatrix}.$$