

=16.1A

	9
ATGTGGAAATGGATACTGACACATTGTGCCTCAGCCTTTCCCCCAGCTGCCGGCTGCTGC	TACACCTTTACCTATGACTGTAACACGGAGTCGGAAAGGGGTGGACGGCCGACGACGACG

TGCTGCTGCTTTTTTGTTTGCTTCTTTT

,	120	
	ACGACGACGACAAAAAAAAAAAAAAAAAAAAAAAAAAA	TO THE TOTAL THE THE TOTAL TOT

9

J
Æ
O
U
터
>
ما
>
W
S
-1
딦
1
4
4
ال
\int
\ 7

		<u>8</u> .	
GGTCAGGACATGGTGACCAGAGGCCACCAACTCTTCTTCCTCCTCCTTCTCCTCCTCCTCTCTCTCTCTC		CLAGICCIGIACCACAGIGGICICCGGIGGITGAGAAGAAGAAGAAGAGAGAGAGAGAGAGAGA	
_	•		

. ۵۰
S
Ŋ
Œ,
Ŋ
S
S
Ŋ
Ŋ
Z
` € +
æ
· 😝
∂ Ω i
S
> .
Σ
Ω
O
O

		240	
TCCAGCGCGCAAGGCATGTGCGGAGCTACAACCCTTCAAGGAGATGTCCCTTCAAGGAGATGTCCCTTCAAGGAGATGTCCCTTCAAGGAGATGTCCTTCAAGGAGATGTCCTTCAAGGAGATGTCCTTCAAGGAGATGTCTCCTTCAAGGAGATGTTCACCTTCAAGGAAGATGTTCACCTTCAAGGAAGG		AGGTCGCGCCTTCCGTACAcGCCTCGAngmanches a Amagagas 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	そくそくしゅじしじひのひなごうごうりょうけい アン・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	~		

-	
α	•
3	:
œ	
>	
۵	
Ö	
Q	
u	
##	
Z	
>	щ
S	-
œ	FIG.
» H	田
123	WITH
œ	MATCH
Ċ	MAJ
&	
κi	

the state of the s

	300	i		360	١,		420	1		480	t	
AAGCTATTCTCTTTCACCAAGTACTTTCTCAAGATTGAGAAGAAGGAAG	TTCGATAAGAGAAAGTCGTTCATGAAAGAGTTCTAACTCTTCTTGCCCTTCCAGTCGCCC	KLFSFTKYFLKIEKNGKVSG	•	TGGTTCTTCCTCTTGACGGCATGTCGTAGGACCTCTATTGTAGTCATCTTTAGCCTCAA	TKKENCPYSILEITSVEIGV	GTTGCCGTCAAAGCCATTAACAGCAACTATTACTTAGCCATGAACAAGAAGGGGAAACTC	CAACGGCAGTTTCGGTAATTGTCGTTGATAATGAATCGGTACTTGTTTCTTCCCCTTTTGAG	V A V K A I N S N Y Y L A M N K K G K L	TATGGCTCAAAGAATTTAACAATGACTGTAAGCTGAAGGAGGAGATAGAAGAAAATGGA	ATACCGAGITITICITAAATIGITACIGACATICGACITICCICICCTAICTCCTTITACCT	Y G S K E F N N D C K L K E R I E E N G	MATCH WITH FIG. 1C

È

MATCH WITH FIG. 1B FIG. 1C

181	TACAATACCTATGCATCATTTAACTGGCAGCATAATGGGAGGCAAATGTATGT	ATA	Ç	TAT	ည	,TC2	Ę	PAA	ğ	SCA	SCA	TAA	ၓၟ	3AG	Š	ATG	TAT	CTC	Š		
5	ATGITATGGATACGTAGTAAATTGACCGTCGTATTACCCTCCGTTTACATACA	TAI	Ö	YTA Y	COL	AGI	A A	F	3ACC	S	1 65	ATT	CCC	130	5	TAC	ATA	CAC	CGT	2 + 2 2 + 3 2 + 4	54(
	Z Z	Z	€→	>+	×	S	ţr.	z	3	O	Ħ	Z	O	æ	. 01	×	>	>	YASFNWOHNGROMYVAL	្រ	
541	AATGGAAAAGGAGCTCCAAGGAGAGGACAGAAAACACGAAGGAAAAACACCTCTGCTCA	GAA	A A	GA	الق	S	8	AGA	25	CAC	SAA	S C	CGZ	200	· A	AAC		TCT			
	Tracentricercandericerciciterining in the contraction of the contractio	E C	117	ğ	Š	9	၌	TG.	ပ္ပ		E	5	S	+ t	Tit	TIC	+ 25	AGA	, a		900
	z z	C C	×		4	۵,	, e	œ	ပ	ø	×	€	œ	œ	×	Z	€⊣	S	GAPRGOKTRRNTSA	2 =	1
901	TTTCTTCCAATGGTGGTACACTCATAG	TIC	CAN	5	ğ	STA	CAC	TCA	TAG		•					-	١.	į	:		
	AAAGAAGGTTACCACCATGTGAGTATC	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	15	ž Ž	Z Z	- E	÷ 8 :	AGT	ATC	627	2		-								

F16.2A

	T'R. ANNTLLD PAATORNDIC	OT AND THE		NYFGVQDAVP	HIICLVGTIS	LLLFLVSSVP	IWLLTLSLLE	TLGOGHEDRP	, ,	100	LGIKRL	LVGIKRO	SPSGRRT	YKKP	FK. DP	LKGILRR	MEGGDIR	LQ. GDVR	L.GGAPR	EQSLVTDQLS
	KRLAPKGOPG					LLTHUASAFP HLPGCCCCCR	MGI			1700000000	-		•	N	Date Control	FAVIDLDH.	KHIRSYDY.	KHVRSYNH.	GRGGVYEH.	LPKVTQRHVR 1
	LILSAWAHGE						OACURSAACK	אייא אייא		AA ODKEAA	ET	AASTOCOCO	KFN 1.ppc	DGGSGAFDDG	OSEAGGLDDG	SUPERSON	COPPOSITE COPPOSITE	DE D	ALKKUAG	EGSKEORDSV
ALLPAVLLAL TLWALVFLGT	_	•	•		WILLIAM	MUMES	LLLHLLVLCL			VALSLARLPV	LSRSRAGLAG	MSSSSASSSP	EITTFTALTE	SITTLPALPE	SPVLLSDHLG	M. ATMVNC	VSPEATINGS			e infarante
MS. GPGTAAV MSRGAGRLOG	MSL	•		•	•		MGSPRSALSC		51	AELERRWESL	SRGWGTL	SSSROSSSSA	MAEG	MAAG	FGNVPVLPVD	LACNDMTPEO	VTCOALGODM	PGWPAAGPGA	צאני	
FGF4 FGF6	FGF5	FGF1 FGF2	FGF9	FGF7	KGF2	FGF3	FGF8						fGF1	FGF2	FGF9	FGF7	KGF2	FGF3	FGF8) !)

MATCH WITH FIG. 2B

L

MATCH WITH FIG.

		•								
150	LSPVERGV. V	ISTVERGV. V	IFAVSQGI.V	LSAESVGE.V	LQAEERGV.V	FISIAVGL.V	IRTVAVGI : V	ITSVEIGV. V	ITAVEVGI.V	
	ADT. RDSLLE	EEN. PYSLLE	EAN. MLSVLE	DRSDQHIQLQ	EKSDPHIKLO	KDHSRFGILE	EMKNINZNIME	KENCPYSILE	ENSAYSILE	EDGDPFAKLI
٦ ت	LPDGRIGGAH	LPDGRISGTH	YPDGKVNGSH	LPDGTVDGTR	HPDGRVDGVR	FPNGTIQGTR	DKRGKVKGTQ	EKNGKVSGTK	HPSGRVNGSL	LANKRINAMA
		NVGIGFHLQV	RVGIGFHLQI	SNG. GHFLRI	KNG. GFFLRI	R.T.GFHLEI	CRT. OWYLRI	SFT. KYFLKI	CAT. KYHLQL	SRTSGKHVQV
101	. YC	. YC	VRR LF	WRKLF	RRKLY	RRLIRTYQLY				
									FGF3	

YNAYESYKY YNAYESDL YNTYAS YNTYI YNTY TEXBILLPNN KLKERIBENG KFRETLL PNN KFRERFQENS LFLERLEENH FFFERLESM VFREQFEENW **EFVERTHELG** NFKELILENH VETRIVLEN G. SKEFNNDC G. SPFFTDEC A. TPSRQEEC G. SEKLTQEC A. KKECNEDC A. SEHYSAEC G. SQTPNEEC A. SKCVTDEC AKSNGKGKDC A. SAKFTDDC LAMNKKGKLY VAMNSKGRLY LAMNKEGKLY LAMDTDGLLY LCMNEKGELY LAMNKRGRLY LAMSKKGKLH LAMKEDGRIL ICMNKKGKLI VAMSSKGKLY AVKAINSNYY SIRGVDSGLY AIKGVESEFY AIRGLFSGRY SLFGVRSALF YIKSTETGOY SIKGVCANRY **SIRGVFSNKF** SIFGVASRFF KGF2 FGF3 FGF4 FGF6 FGF2 FGF9 FGF5 FGF1 FGF7

MATCH WITH FIG. 2C

	G. NRVSPTM KVTHFLPRL. G. SKVSPIM TVTHFLPRL. GCSPRVKPQH ISTHFLPRI. G. PRTHYGQ KAILFLPRPY G. SKTGPGQ KAILFLPRPY G. SKTKRHQ KFTHFLPRPY G. CKTRKKQ KTAHFLPRAI G. CKTRRKN TSAHFLPMAI G. SKTRRYQ KSSLFLPRVV G. SKTRRYQ KSSLFLPRVV	APRKNTNSVK YRLKFRFG. KQSPDNLEPS HVQASRLGSQ
F16.20		
<u>T</u>		SPIKSKIPLS KGVQPRRRRQ TRSLRGSQRT
FIG. 2B	GMFI GTYI TEKTGREWYVAEKNWFVT.SWYVDTGRRYYV THNGGEM.FV OHNGROM.YV OPSAERLWYV OPSAERLWYV	LSFT VTVPEKKNPP SELYK DILSQS. WVRQ LQSGLPRPPG KEQSL RFEFLNYPPF T
MATCH WITH FIG.	HV. AKW TVSSTPGARR	QSEQPELSFT SSD. KS. DPDKVPELYK T. HS. DHRDHEMVRQ RGHHTTEQSL
	FGF4 FGF6 FGF1 FGF7 FGF7 FGF3 FGF3	FGF4 FGF5 FGF1 FGF7 FGF7 FGF3 FGF8

F16.2D

MATCH WITH FIG. 2C

	•	•	•	•	•	•	•	•	AH	
	:	•	•	. •	•	•	•	•	ហ	•
0	•	•	•	•	:	•	•	•	Ë	•
M	•	•	•	•	. •	•	•	•	Н	
		•	•-		F	FGF9		ш.	114	

Figure 3A

GGAI	ATTC	CGG	GAAGI	AGAG	GG A	AGAA	AACA	A CG	GCGA	CTGG	GCA	GCTG	CCT	CCAC	TTCTG	IA 60
CAA	CTCC	AAA	GGĢA:	TATA	CT T	GTAG	AAGT	G GC	TCGC	AGGC	TGG	GGCT	CCG	CAGA	GAGAG	<u>A</u> 120
CCA	BAAG	etg	CCAA	CCGCI	AG A	GGGG'	rgca(G AT	ATCT	cccc	CTA	TTCC	CCA	cccc	ACCTO	C 180
CTT	egt.	TTT	GTTC	ACCG:	rg C	TGTC:	ATCT	G TT	TTTC	agac	CTT	TTTG	GCA	TCTA	ACATG	G 240
TGA	AGAAI	AGG	agtai	AAGAI	AG A	3AAC	AAAG:	r aa	CTCC	IGGG	GGA	GCGA:	AGA	GCGC	TGGTG	A 300
			•										-		CATTT	
					•								_		AGCCG	
14 .2															CAGAG	
: * : *														•	ACCCT	T 540
CCAC	TATO	FTT	CCTT	TGAT	IG A	BACAI	ATTT	C CAC	GTGC(CGAG	AGT	FTCA	GTA :		I G et	59 5
TGG	aaa Lys	TGG	ATA Ile	CTG Leu	ACA Thr	CAT	TGT	GCC	TCA	GCC	TTT	CCC	CAC	CTG	CCC	643
																·
Gly	Сув	Cys	TGC Cys	TGC Cys	TGC Cys	Phe	Leu	TTG Leu	CTG Leu	TTC Phe	TTG Leu	GTG Val	TCT Ser	TCC Ser	GTC Val	691
CCT	GTC	ACC	TGC	CAA	GCC	CTT	GGT	CAG	GAC	ATG	GTG	TCA	CCA	GAG	GCC	739
Pro	Val	Thr	CAB	Gln	Ala	Leu	Gly	Gln	Asp	Met	Val	Ser	Pro	Glu	Ala	
ACC	AAC	TCT	TCT	TCC	TCC	TCC	TTC	TCC	TCT	CCT	TCC	AGC	GCG	GGA	AGG	787
Thr	Asn	ser	Ser	Ser	Ser	Ser	Phe	Ser	Ser	Pro	Ser	Ser	Ala	Gly	Arg	
CAT	GTG	CGG	AGC	TAC	AAT	CAC	CTT	CAA	GGA	GAT	GTC	CGC	TGG	AGA	AAG	835
HIB	Val	Arg	Ser	Tyr	Asn	His	Leu	Gln	Gly	Asp	Val	Arg	Trp	Arg	Lys	
CTA	TTC	TCT	TTC	ACC	AAG	TAC	TTT	CTC	AAG	ATT	GAG	AAG	AAC	GGG	AAG	883
Leu	Phe	Ser	Phe	Thr	Lys	Tyr	Phe	Leu	Lys	Ile	Glu	Lys	Asn	Gly	Lys	
GTC	ÀGC	GGG	ACC	AAG	AAG	GAG	AAC	TGC	CCG	TAC	AGC	ATC	CAKE	GAG	מידמ	931
Val	Ser	Gly	Thr	Lys	Lys	Glu	Asn	Сув	Pro	Tyr	Ser	Ile	Leu	Glu	Ile	731
ACA	TCA	GTA	GAA	ATC	GGA	GTT	GTT	GCC	GTC	a a'a	GCC	ATT	ממ	ngc.	220	979
Thr	Ser	Val	Glu	Ile	Gly	Val	Val	Ala	Val	Lys	Ala	Ile	Asn	Ser	Asn	373
Tyr	Tyr	Leu	GCC Ala	Met	AAC	AAG Lvs	AAG Lva	GGG G] v	AAA	CIC	TAT	GGC	TCA	AAA	GAA	1027
												•				
TTT	AAC	AAT	GAC	TGT	AAG	CTG	AAG	GAG	AGG	ATA	GAG	GAA	AAT	GGA	TAC	1075
Phe	Asn	Asn	qaA ı	Cys	Lys	Leu	Lys	Glu	Arg	Ile	Glu	Glu	Asn	Glv	Tvr	

Figure 3B

AAT ACC TAT GCA TCA TTT AAC TGG CAG CAT AAT GGG AGG CAA ATG TAT - Asn Thr Tyr Ala Ser Phe Asn Trp Gln His Asn Gly Arg Gln Met Tyr	1123
GTG GCA TTG AAT GGA AAA GGA GCT CCA AGG AGA GGA CAG AAA ACA CGA Val Ala Leu Asn Gly Lys Gly Ala Pro Arg Arg Gly Gln Lys Thr Arg	1171
AGG AAA AAC ACC TCT GCT CAC TTT CTT CCA ATG GTG GTA CAC TCA Arg Lys Asn Thr Ser Ala His Phe Leu Pro Met Val Val His Ser	1216
TAGAGGAAGG CAACGTTTGT GGATGCAGTA AAACCAATGG CTCTTTTGCC AAGAATAGTG	1276
GATATTCTTC ATGAAGACAG TAGATTGAAA GGCAAAGACA CGTTGCAGAT GTCTGCTTGC	1336
TTAAAAGAAA GCCAGCCTTT GAAGGTTTTT GTATTCACTG CTGACATATG ATGTTCTTTT	1396
AATTAGTTCT GTGTCATGTC TTATAATCAA GATATAGGCA GATCGAATGG GATAGAAGTT	1456
ATTCCCAAGT GAAAAACATT GTGGCTGGGT TTTTTGTTGT TGTTGTCAAG TTTTTGTTTT	1516
TARACCTCTG AGATAGAACT TARAGGACAT AGAACAATCT GTTGAAAGAA CGATCTTCGG	15.76
GAAAGTTATT TATGGAATAC GAACTCATAT CAAAGACTTC ATTGCTCATT CAAGCCTAAT	1636
GAATCAATGA ACAGTAATAC GTGCAAGCAT TTACTGGAAA GCACTTGGGT CATATCATAT	1696
GCACAACCAA AGGAGTTCTG GATGTGGTCT CATGGAATAA TTGAATAGAA TTTAAAAATA	1756
TAAACATGTT AGTGTGAAAC TGTTCTAACA ATACAAATAG TATGGTATGC TTGTGCATTC	1816
TGCCTTCATC CCTTTCTATT TCTTTCTAAG TTATTTATTT AATAGGATGT TAAATATCTT	1876
TTGGGGTTTT AAAGAGTATC TCAGCAGCTG TCTTCTGATT TATCTTTTCT TTTTATTCAG	1936
CACACCACAT GCATGTTCAC GACAAAGTGT TTTTAAAACT TGGCGAACAC TTCAAAAATA	1,996
GGAGTTGGGA TTAGGGAAGC AGTATGAGTG CCCGTGTGCT ATCAGTTGAC TTAATTTGCA	2056
CTTCTGCAGT AATAACCATC AACAATAAAT ATGGCAATGC TGTGCCATGG CTTGAGTGAG	2116
AGATGTCTGC TATCATTTGA AAACATATAT TACTCTCGAG GCTTCCTGTC TCAAGAAATA	2176
GACCAGAAGG CCAAATTCTT CTCTTTCAAT ACATCAGTTT GCCTCCAAGA ATATACTAAA	2236
AAAAGGAAAA TTAATTGCTA AATACATTTA AATAGCCTAG CCTCATTATT TACTCATGAT	2296
TTCTTGCCAA ATGTCATGGC GGTAAAGAGG CTGTCCACAT CTCTAAAAAC CCTCTGTAAA	2356
TTCCACATAA TGCATCTTTC CCAAAGGAAC TATAAAGAAT TTGGTATGAA GCGCAACTCT	2416

Figure 3C

CCCAGGGGCT	TAAACTGAGC	AAATÇAAATA	TATACTGGTA	TATGTGTAAC	CATATACAAA	247
AACCTGTTCT	AGCTGTATGA	TCTAGTCTTT	ACAAAACCAA	ATAAAACTTG	TTTTCTGTAA	253
ATTTAAAGAG	CTTTACAAGG	TTCCATAATG	TAACCATATC	AAAATTCATT	TTGTTAGAGC	259
ACGTATAGAA	AAGAGTACAT	AAGAGTTTAC	CAATCATCAT	CACATTGTAT	TCCACTAAAT	265
AAATACATAA	GCCTTATTTG	CAGTGTCTGT	AGTGATTTTA	Aaaatgtaga	AAAATACTAT	271
TTGTTCTAAA	TACTTTTAAG	CAATAACTAT	AATAGTATAT	TGATGCTGCA	GTTTTATCTT	277
CATATTTCTT	GTTTTGAAAA	AGCATTTTAT	TGTTTGGACA	CAGTATTTTG	GTACAAAAA	2836
AAAGACTCAC	TAAATGTGTC	TTACTAAAGT	TTAACCTTTG	GAAATGCTGG	CGTTCTGTGA	2896
TTCTCCAACA	AACTTATTTG	TGTCAATACT	TAACCAGCAC	TTCCAGTTAA	TCTGTTATTT	2956
TTAAAAATTG	CTTTATTAAG	AAATTTTTTG	TATAATCCCA	TAAAAGGTCA	TATTTTTCCC	3016
ATTCTTCAAA	AAAACTGTAT	TTCAGAAGAA	ACACATTTGA	GGCACTGTCT	TTTGGCTTAT	3076
AGTTTAAATT	GCATTTCATC	ATACTTTGCT	TCCAACTTGC	TTTTTGGCAA	ATGAGATTAT	3136
AAAAATGTTT	AATTTTTGTG	GTTGGAATCT	GGATGTTAAA	ATTTAATTGG	TAACTCAGTC	3196
::₹	AATGTAATGC					3256
,	GGCACCTGAC					3316
•	TACACATTGG			•		3376
. ••	AGACATTTAG				•	3436
	ACTAAAACAG				•	3496
	TCCCCTGTCT					3556
	TCACACCTGT					3616
	CTAGACAGGC				·	3676
	AATGTAGCCA					3736
					CTATAATCTT	3796
	•				AGAAAAGAGA	3,856
				•	AAGGAAGGAA	3916
					GAGAAAGAAA	3976
GATTGTTTGG	TAAGGAGTAA	TGACATTCTC	TTGCATTTAA	AAGTGGCATA	ፐ ፐፕርር ጥጥር ል ል	4036

Figure 3D

ATGGAAATAG	AATTCTGGTC	CCTTTTGCAA	CTACTGAAGA	AAAAAAAAAG	CAGTTTCAGC	4096
CCTGAATGTT	GTAGATTTGA	АААААААА	AAAAAAACTC	GAGGGGGGC	CCGTACCCAA	4156
TTCGCCCTAT	AGTGAGTCGT	A .	•		-	4177

70

Figure 4A

Figure 4C

Figure 4B

SPEATNSSSS FSSPSSAGRHVRSYNHLQGDVRWRKLFS FTKY FL

Figure 4D

Figure 4E

.NGKGAPRRGQKTRRKNTSAHFLPMVVHS

- ■Alpha, Regions Garnier-Robson
- ■Alpha, Regions Chou-Fasman
- Beta, Regions Garnier-Robson
- ■Beta, Regions Chou-Fasman
- ■Tum, Regions Garnier-Robson
- ■Tum, Regions Chou-Fasman
- Coil, Regions Gamler-Robson
- Hydrophilicity Plot Kyte-Doolittle
- ☐ Hydrophobicity Plot Hopp-Woods
- ■Alpha, Amphipathic Regions Elsenberg
- Beta, Amphipathic Regions Eisenberg
- Z Antigenic Index Jameson-Wolf
- Surface Probability Plot Emini

And the state of t

Figure 6

Figure 7

1-3 Minimal cell accumulation, no granulation 4-6 Immature granulation, inflammatory cells, capillaries 10-12 Fibroblasts, collagen, epithelium

Figure 10

1-3 Minimal cell accumulation, no granulation
4-6 Immature granulation, inflammatory cells, capillaries
7-9 Granulation tissue, cells, fibroblasts, new epithelium
10-12 Fibroblasts, collagen, epithelium

Anti-cytokeratin immunostaining
0 - No closure
5 - Slight to moderate closure
10 - Complete closure

Figure 14

PCNA Scoring
0-2 Slight proliferation
3-5 Moderate proliferation
6-8 Intense proliferation

Figure 15

MRGSHHHHHHGSCQALGQDMVSPEATNSSSSSFSSPSSAGRHVRSYNHLQGD VRWRKLFSFTKYFLKIEKNGKVSGTKKENCPYSILEITSVEIGVVAVKAINSN YYLAMNKKGKLYGSKEFNNDCKLKERIEENGYNTYASFNWQHNGRQMYVA LNGKGAPRRGQKTRRKNTSAHFLPMVVHS

kgf-2 synthetic cys37 Bam HI
AAAGGATOCIGOCAGGCTCIGGGICAGGACATG

Figure 18

ger eine Hans ger general in der eine gereichen der eine Gereichen der eine Gereichen der gereichen der gesein Stade Kraaf eine Gereichen Gesein eine Vereichen Gereichen dem eine Gereichen der Gereichen Gereichen Gereich

Figure 19B

Day 10 Postwounding

conc. (ng/ml)

Figure 21B

conc. (ng/ml)

Figure 21C

conc. (ng/ml)

Figure 22B

	ATGTGGAAATGGATACTGACCCACTGCGCTTCTGCTTTCCCGCACCTGCCGGGTTGCTGC Met Trp Lys Trp IIe Leu Thr His Cys Ala Ser Ala Phe Pro His Leu Pro Gly Cys Cys	C 60
	TGCTGCTGCTGCTGCTGTTCCTGGTTTCTGTTCCGGTTACCTGCCAGGCTCTCCCys Cys Cys Phe Leu Leu Phe Leu Val Ser Ser Val Pro Val Thr Cys Gln Ala Leu	12 112
£::	GGTCAGGACATGGTTTCTCCGGAAGCTACCAACTCTTCCTCTTCCTCTCTTCCCCGGIy Gin Asp Met Val Ser Pro Glu Ala Thr Asn Ser Ser Ser Ser Phe Ser Ser Pro	18
	ACTTCCGCTGGTCGTCACGTTCGTTCTTACAACCACCTGCAGGGTGACGTTCGTT	- 240
	AAACTGTTCTCTTTCACCAAATACTTCCTGAAAAATCGAAAAAAACGGTAAAGTTTCTGGG Lys Leu Phe Ser Phe Thr Lys Tyr Phe Leu Lys Ile Glu Lys Asn Gly Lys Val Ser Gly	300
	ACCAAGAAGGAGAACTGCCCGTACAGCATCCTGGAGATAACATCAGTAGAAATCGGAGTT Thr Lys Lys Glu Asn Cys Pro Tyr Ser Ile Leu Glu Ile Thr Ser Val Glu Ile Gly Val	360
	GTTGCCGTCAAAGCCATTAACAGCAACTATTACTTAGCCATGAACAAGAAGGGGAAACTC Val Ala Val Lys Ala IIe Asn Ser Asn Tyr Tyr Leu Ala Met Asn Lys Lys Gly Lys Leu	420
-	TATGGCTCAAAAGAATTTAACAATGACTGTAAGCTGAAGGAGGAGAGGATAGAGGAAAATGGA Tyr Gly Ser Lys Glu Phe Asn Asn Asp Cys Lys Leu Lys Glu Arg Ile Glu Glu Asn Gly	480
1	TACAATACCTATGCATCATTTAACTGGCAGCATAATGGGAGGCAAATGTATGT	54(
1	AATGGAAAAGGAGCTCCAAGGAGAGGACAGAAAACACGAAGGAAAAACACCTCTGCTCAC Asn Gly Lys Gly Ala Pro Arg Arg Gly Gln Lys Thr Arg Arg Lys Asn Thr Ser Ala His	6Ö(
1	TTTCTTCCAATGGTGGTACACTCATAG 627 .	

Phe Leu Pro Met Val Val His Ser •

Figure 24A

	ATGACCTGCCAGGCTCTGGGTCAGGACATGGTTTCTCCGGAAGCTACCAACTCTTCCTCT Met Thr Cys Gln Ala Leu Gly Gln Asp Met Val Ser Pro Glu Ala Thr Asn Ser Ser Ser	60
	TCCTCTTTCTCCCCGTCTTCCGCTGGTCGTCACGTTCGTT	120
[::	GGTGACGTTCGTTGGCGTAAACTGTTCTCTTTCACCAAATACTTCCTGAAAATCGAAAAA Gly Asp Val Arg Trp Arg Lys Leu Phe Ser Phe Thr Lys Tyr Phe Leu Lys Ile Glu Lys	180
	AACGGTAAAGTTTCTGGGACCAAGAAGGAGAACTGCCCGTACAGCATCCTGGAGATAACA Asn Gly Lys Val Ser Gly Thr Lys Lys Glu Asn Cys Pro Tyr Ser Ile Leu Glu Ile Thr	240
ì.,	TCAGTAGAAATCGGAGTTGTTGCCGTCAAAGCCATTAACAGCAACTATTACTTAGCCATG Ser Val Glu IIe Gly Val Val Ala Val Lys Ala IIe Asn Ser Asn Tyr Tyr Leu Ala Met	
	AACAAGAAGGGGAAACTCTATGGCTCAAAAGAATTTAACAATGACTGTAAGCTGAAGGAG Asn Lys Lys Gly Lys Leu Tyr Gly Ser Lys Glu Phe Asn Asn Asp Cys Lys Leu Lys Glu	36(
	AGGATAGAGGAAAATGGATACAATACCTATGCATCATTTAACTGGCAGCATAATGGGAGG Arg Ile Glu Glu Asn Gly Tyr Asn Thr Tyr Ala Ser Phe Asn Trp Gln His Asn Gly Arg	42(
el,	CAAATGTATGTGGCATTGAATGGAAAAGGAGCTCCAAGGAGAGAGA	48(
	AAAAACACCTCTGCTCACTTTCTTCCAATGGTGGTACACTCATAG 525 Lys Asn Thr Ser Ala His Phe Leu Pro Met Val Val His Ser •	

Figure 24B

TACTGAACGGCACTGGGTCAAGACATGGTTTCCCCGGAAGCTACCAACAGCTCCAGCTCTAGCTTCA TACTGAACGGTCCGGGACCCAGTTCTGTACCAAAGGGGCCTTCGATGGTTGTCGAGGTCGAGATCGAAGT H T C Q A L G Q D H V S P E A T N S S S S F GCAGCCCATCTACGCCAGGTCGTCACGTTCGCTCTTACAACCACTTACAAGGTGATGTTCGTTGGCGCAA CGTCGGGTAGATCGCCAGGTCGACGTTCGCTCTTACAACCACTTACAAGGTAATGTCCCACTACAAGCAACCGCGTT S P S S A G R H V R S Y N H L Q G D V R W R K ACTGTTCAGCTTTACCAAGTACTTCCTGAAAATCGAAAAAAAA	ATG	AC	TT	GC	ÇA	GG	CA	CT	GG	GT	CA	AG.	AC.	ΑT	ĢG	TT	TC	CC	CGQ	AA	\GC	TA	CC	AA	CA	GC	тс	CA	.GC	тс	:TA	ιĞC	TTO	:A	
GCAGCCCATCTAGCGCAGGTCGTCACGTTCGCTCTTACAACCACTTACAGGGTGATGTTCGTTGGCGCAAACGCCGCGTTTGGGGGTAGATCGCGCGCG	TAC	TG	AA	CG	GTO	cco	GT(GA	CC	CA	GT:	ГC	TG	TA	СC	AA.	AG	GG	SCC	TI	CG	AT	GG	TT	GT	CG	AG	GT	CG	ìAG	AT	CG	AAC	∓ ìT	7
GCAGCCCATCTAGCGCAGGTCGTCACGTTCGCTCTTACAACCACTTACAGGGTGATGTTCGTTGGCGCAACGGCGTAGATCGCGTCCAGCAGTGCAAGCGAGAATGTTGGTGAAATGTCCCACTACAAGCAACCGCGTT S S P S S A G R H V R S Y N H L Q G D V R W R K ACTGTTCAGCTTTACCAAGTACTTCCTGAAAATCGAAAAAACGGTAAAGTTTCTGGGACCAAGAAGGAG TGACAAGTCGAAATGGTTCATGAAGGACTTTTAGCTTTTTTTGCCATTTCAAAGACCCTGGTTCTTCCTC L F S F T OK Y F L K I E K N G K V S G T K K E AACTGCCCGTACAGCATCCTGGAGAATACATCAGTAGAAATCGGAGTTGTTGCCGTCAAAGCCATTAACA TTGACGGGCATGTCGTAGGACCTCTATTGTAGTCATCTTTAGCCTCAACAACGGCAGTTTCGGTAATTGT N C P Y S I L E I T S V E I G V V A V K A I N GCAACTATTACTTAGCCATGAACAAGAAGGGGAAACTCTATGGCTCAAAAGAATTTAACAATGACTGTAA CGTTGATAATGAATCGGTACTTGTTCTTCCCCTTTGAGATACCGAGTTTTCTTAAATTGTTACTGACATT S N Y Y L A H N K K G K L Y G S K E F N N D C K GCTGAAGGAGGGAAGAATGGATACAATACCTATGCATCATTTAACTGGCAGCATAATGGGAGG CGACTTCCTCTCCTATCTCCTTTTACCTATGTTATGGATACGTAGAAATTGACCGTCGTATTACCCTCC L K E R I E E N G Y N T Y A S F N W Q H N G R CAAATGTATGTGGCCATTGAATGGAAAAGGAGCTCCAAGGAGAAAACACGGAAGAAAACACCCT GTTTACATACACCGTAACTTACCTTTTCCTCGAGGTTCCTCTCTCT	M	T		C	Q	:	٠	L	,	G .	a		כ	M	. 1	٧	s	F	•	E	A		T	N		s	s	; ,	s	s		s	·F		
CGTCGGGTAGATCGCGTCCAGCAGTGCAAGCGAGAATGTTGGTGAATGTCCCACTACAAGCAACCGCGTT S S P S S A G R H V R S Y N H L Q G D V R W R K ACTGTTCAGGTTTACCAAGTACTTCCTGAAAATCGAAAAAAACGGTAAAGTTTCTGGGACCAAGAAGGAG TGACAAGTCGAAATGGTTCATGAAGGACTTTTAGCTTTTTTTGCCATTTCAAAGACCCTGGTTCTTCCTC L F S F T °K Y F L K I E K N G K V S G T K K E AACTGCCCGTACAGCATCCTGGAGATAACATCAGTAGAAATCGGAGTTGTTGCCGTCAAAGCCATTAACA TTGACGGGCATGTCGTAGGACCTCTATTGTAGTCATCTTTAGCCTCAACAACGGCAGTTTCGGTAATTGT N C P Y S I L E I T S V E I G V V A V K A I N GCAACTATTACTTAGCCATGAACAAGAAGGGGGAAACTCTATGGCTCAAAAGAATTTAACAATGACTGTAA CGTTGATAATGAATCGGTACTTGTTCTTCCCCTTTGAGATACCGAGTTTTCTTAAATTGTTACTGACATT S N Y Y L A M N K K G K L Y G S K E F N N D C K CCTGAAGGAGGAGGATAGAGGAAAATGGATACCTATGGATACTTTAACTGGCAGCATAATGGGAAG CGACTTCCTCTCCTATCTCCTTTTACCTATGTTATGGATACCTATGACATTTAACTGGCAGCATAATGGGAAG CGACTTCCTCTCCTATCTCCTTTTACCTATGTTATGGATACCTATGTAAATTGACCGTCGTATTACCCTCC L K E R I E E N G Y N T Y A S F N W Q H N G R AAAATGTATGTGGCATTGAATGGAAAAGGAGCTCCAAGGAGGAAAAACACACCT TTTTACATACACCGTAACTTACCTTTTCCTCGAGGTTCCTCTCTCT	GCA	GC	CC	AT	CTA	\GC	:G(CAC	3G	TC	310	:A(:G1	ΓT	CG	CTO	CTI	FAC	:AA	CC	AC	TT	AC	AG	GG	TG	ΔΤ	GT	TC	GT	TC		<u> </u>	4	
ACTGTTCAGCTTTACCAAGTACTTCCTGAAAATCGAAAAAAACGGTAAAGTTTCTGGGACCAAGAAGAGGAG TGACAAGTCGAAAATGGTTCATGAAGGACTTTTAGCTTTTTTTGCCATTTCAAAGACCCTGGTTCTTCCTC L F S F T °K Y F L K I E K N G K V S G T K K E AACTGCCCGTACAGCATCCTGGAGATAACATCAGTAGAAATCGGAGTTGTTGCCGTCAAAGCCATTAACA TTGACGGGCATGTCGTAGGACCTCTATTGTAGTCATCTTTAGCCTCAACAACGGCAGTTTCGGTAATTGT N C P Y S I L E I T S V E I G V V A V K A I N GCAACTATTACTTAGCCATGAACAAGAAGGGGAAACTCTATGGCTCAAAAGAATTTAACAATGACTGTAA CGTTGATAATGAATCGGTACTTGTTCTTCCCCTTTGAGATACCGAGGTTTTCTTAAATTGTTACTGACATT S N Y Y L A M N K K G K L Y G S K E F N N D C K GCTGAAGGAGAGGATAGAGGAAAATGGATACAATACCTATGCATCATTTAACTGGCAGCATAATGGGAGG GGACTTCCTCTCCTATCTCCTTTTACCTATGTTATGGATACGTAGTAAATTGACCGTCGTATTACCCTCC L K E R I E E N G Y N T Y A S F N W Q H N G R GAAATGTATGTGGCATTGAATGGAAAAGGAGCTCCAAGGGAGGACAGAAAACACCCT TTTACATACACCGTAACTTGAATGGAAAAGGAGCTCCCAAGGGAGGACAGAAAACACCCT TTTACATACACCCGTAACTTACCTTTTCCTCGGAGGTTCCTCTCCTGTCTTTTTGTGGA O M Y V A L N G K G A P R R G Q K T R R K N T TGGTCACTTTCTTCCAATGGTGGTACACTCATAG																																			1
ACTETTCAGCTTTACCAAGTACTTCCTGAAAATCGAAAAAAACGGTAAAGTTTCTGGGACCAAGAAGGAG TGACAAGTCGAAATGGTTCATGAAGGACTTTTAGCTTTTTTTT	S	s	Ρ		3	S		١	G	F	₹	H	٧	,	R		3	Y	N		н	L	(Q	G		D	٧	ſ	R	W	1	R	K	
TGACAAGTCGAAATGGTTCATGAAGGACTTTTAGCTTTTTTTGCCATTTCAAAGACCCTGGTTCTTCCTC L F S F T °K Y F L K I E K N G K V S G T K K E AACTGCCCGTACAGCATCCTGGAGATAACATCAGTAGAAATCGGAGTTGTTGCCGTCAAAGCCATTAACA TGACGGGCATGTCGTAGGACCTCTATTGTAGTCATCTTTAGCCTCAACAACGGCAGTTTCGGTAATTGT N C P Y S I L E I T S V E I G V V A V K A I N GCAACTATTACTTAGCCATGAACAAGAAGGGGAAACTCTATGGCTCAAAAGAATTTAACAATGACTGTAA CGTTGATAAATGAATCGGTACTTGTTCTTCCCCTTTGAGATACCGAGTTTTCTTAAATTGTTACTGACATT S N Y Y L A M N K K G K L Y G S K E F N N D C K GCTGAAGGAGAGGAAAATGGATACAATACCTATGCATCATTTAACTGGCAGCATAATGGGAGG GACTTCCTCTCCTATCTCCTTTTACCTATGTTATGGATACGTAGTAAATTGACCGTCGTATTACCCTCC L K E R I E E N G Y N T Y A S F N W Q H N G R AAAATGTATGTGGCATTGAATGGAAAAGGAGCTCCAAGGAGAAAACACGAAGAAAAACACCT TTTACATACACCGTAACTTACCTTTTCCTCGAGGTTCCTCTCTCT	ACT	GT	TC	AG	ŤΤ	TA	ĆC	:AA	(G	ΓAC	TT	CC	TG	A/	\A/	ATC	GA	AA	AA	AA	CG	GT	AA	AG	TT	TC	TG	GG	AC	CA.	A C	<u>.</u> Α.Ι		ï	
L F S F T °K Y F L K I E K N G K V S G T K K E AACTGCCCGTACAGCATCCTGGAGATAACATCAGTAGAAATCGGAGTTGTTGCCGTCAAAGCCATTAACA TTGACGGGCATGTCGTAGGACCTCTATTGTAGTCATCTTTAGCCTCAACAACGGCAGTTTCGGTAATTGT N C P Y S I L E I T S V E I G V V A V K A I N GCAACTATTACTTAGCCATGAACAAGAAGGGGAAACTCTATGGCTCAAAAGAATTTAACAATGACTGTAA CGTTGATAATGAATCGGTACTTGTTCTTCCCCTTTGAGATACCGAGTTTTCTTAAATTGTTACTGACATT S N Y Y L A M N K K G K L Y G S K E F N N D C K GCTGAAGGAGGAGGATAGAGGAAAATGGATACAATACCTATGCATCATTTAACTGGCAGCATAATGGGAGG GACCTTCCTCTCCTATCTCCTTTTACCTATGTTATGGATACGTAGTAAATTGACCGTCGTATTACCCTCC L K E R I E E N G Y N T Y A S F N W Q H N G R AAAATGTATGTGGCATTGAATGGAAAAGGAGCTCCAAGGAGGACAGAAAACACGAAGGAAAAACACCT TTTACATACACCGTAACTTACCTTTTCCTCGAGGTTCCTCTCCTGTCTTTTTGTGCTTCCTTTTTTGTGGA Q M Y V A L N G K G A P R R G Q K T R R K N T TGCTCACTTTCTCCAATGGTGGTACACTCATAG					•		•							j	ļ	_	_	$\overline{}$			_			_	_	_									2
AACTGCCCGTACAGCATCCTGGAGATAACATCAGTAGAAATCGGAGTTGTTGCCGTCAAAGCCATTAACA TTGACGGGCATGTCGTAGGACCTCTATTGTAGTCATCTTTAGCCTCAACAACGGCAGTTTCGGTAATTGT N C P Y S I L E I T S V E I G V V A V K A I N GCAACTATTACTTAGCCATGAACAAGAAGGGGAAACTCTATGGCTCAAAAGAATTTAACAATGACTGTAA CGTTGATAATGAATCGGTACTTGTTCTTCCCCTTTGAGATACCGAGTTTTCTTAAATTGTTACTGACATT S N Y Y L A M N K K G K L Y G S K E F N N D C K GCTGAAGGAGAGGATAGAGGAAAATGGATACAATACCTATGCATCATTTAACTGGCAGCATAATGGGAGG CGACTTCCTCTCCTATCTCCTTTTACCTATGTTATGGATACGTAGTAAATTGACCGTCGTTATTACCCTCC L K E R I E E N G Y N T Y A S F N W Q H N G R CAAATGTATGTGGCATTGAATGGAAAAGGAGCTCCCAAGGAGGACAAAACACCCT TTTACATACACCGTAACTTACCTTTTCCTCGAGGTTCCTCTCTTTTTGTGGA Q M Y V A L N G K G A P R R G Q K T R R K N T TGCTCACTTTCTCCCAATGGTGGTACACTCATAG																						•••	• •			n G	~ C		ı		10		-C [L	
TIGACGGCATGTCGTAGGACCTCTATTGTAGTCATCTTTAGCCTCAACAACGGCAGTTTCGGTAATTGT N C P Y S I L E I T S V E I G V V A V K A I N GCAACTATTACTTAGCCATGAACAAGAAGGGGAAACTCTATGGCTCAAAAGAATTTAACAATGACTGTAA CGTTGATAATGAATCGGTACTTGTTCTTCCCCTTTGAGATACCGAGTTTTCTTAAATTGTTACTGACATT S N Y Y L A M N K K G K L Y G S K E F N N D C K GCTGAAGGAGGAGGATAGAGGAAAATGGATACAATACCTATGCATCATTTAACTGGCAGCATAATGGGAGG CGACTTCCTCTCCTATCTCCTTTTACCTATGTTATGGATACGTAGTAAATTGACCGTCGTATTACCCTCC L K E R I E E N G Y N T Y A S F N W Q H N G R CAAATGTATGTGGCATTGAATGGAAAAGGAGCTCCAAGGAGAGGACAGAAAACACGCAAGGAAAAACACCT STITACATACACCGTAACTTACCTTTTCCTCGAGGTTCCTCTCTCT		٠.		_			٠.	_		<u> </u>												_		1			• . `	_	:	•	-		_		
N C P Y S I L E I T S V E I G V V A V K A I N CCAACTATTACTTAGCCATGAACAAGAAGGGGAAACTCTATGGCTCAAAAGAATTTAACAATGACTGTAA CGTTGATAATGAATCGGTACTTGTTCTTCCCCTTTGAGATACCGAGTTTTCTTAAATTGTTACTGACATT S N Y Y L A M N K K G K L Y G S K E F N N D C K CCTGAAGGAGAGGATAGAGGAAAATGGATACAATACCTATGCATCATTTAACTGGCAGCATAATGGGAGG CGACTTCCTCCTATCTCCTTTTACCTATGTTATGGATACGTAGTAAATTGACCGTCGTATTACCCTCC L K E R I E E N G Y N T Y A S F N W Q H N G R AAATGTATGTGGCATTGAATGGAAAAGGAGCTCCAAGGAGGAGAAAAACACGCT TITACATACACCGTAACTTACCTTTTCCTCGAGGTTCCTCTCCTGTCTTTTGTGGCTCCTTTTTGTGGA Q M Y V A L N G K G A P R R G Q K T R R K N T TGCTCACTTTCTCCAATGGTGGTACACTCATAG																																			_
CCAACTATTACTTAGCCATGAACAAGAAGGGGAAACTCTATGGCTCAAAAGAATTTAACAATGACTGTAA CGTTGATAATGAATCGGTACTTGTTCTTCCCCTTTGAGATACCGAGTTTTCTTAAATTGTTACTGACATT S N Y Y L A M N K K G K L Y G S K E F N N D C K CCTGAAGGAGGATAGAGGAAAATGGATACAATACCTATGCATCATTTAACTGGCAGCATAATGGGAGG GACTTCCTCTCCTATCTCCTTTTACCTATGTTATGGATACGTAGTAAATTGACCGTCGTATTACCCTCC L K E R I E E N G Y N T Y A S F N W Q H N G R AAATGTATGTGGCATTGAATGGAAAAGGAGCTCCAAGGAGGACAGAAAACACCCT TTTACATACACCGTAACTTACCTTTTCCTCGAGGTTCCTCTCTTTTTGTGGA Q M Y V A L N G K G A P R R G Q K T R R K N T TGCTCACTTTCTCCAATGGTGGTACACTCATAG	ΓTG/	ACG	GG	GC A	TG	TC	GΤ	AG	G/	CC	TC	TA	TT	GT	ΆG	TC	ΑT	CT	ΤŤ	AG	CC.	TC/	AA(À	\C(3G(CAC	3T 1	Ť	CGC	T/	۱A٦	TG:	[- T	28
CCAACTATTACTTAGCCATGAACAAGAAGGGGAAACTCTATGGCTCAAAAGAATTTAACAATGACTGTAA CGTTGATAATGAATCGGTACTTGTTCTTCCCCTTTGAGATACCGAGTTTTCTTAAATTGTTACTGACATT N Y Y L A M N K K G K L Y G S K E F N N D C K CCTGAAGGAGGATAGAGGAAAATGGATACAATACCTATGCATCATTTAACTGGCAGCATAATGGGAGG GACTTCCTCTCCTATCTCCTTTTACCTATGTTATGGATACGTAGTAAATTGACCGTCGTATTACCCTCC L K E R I E E N G Y N T Y A S F N W Q H N G R AAATGTATGTGGCATTGAATGGAAAAGGAGCTCCAAGGAGGACAGAAAACACCCT TTTACATACACCGTAACTTACCTTTTCCTCGAGGTTCCTCTCTTTTTGTGGA O M Y V A L N G K G A P R R G Q K T R R K N T TGCTCACTTTCTTCCAATGGTGGTACACTCATAG	N	C	F	•	Y	s		I	Ļ		E	I		T	S	;	٧	Ε		ı	G	١	,	٧	f		V	K		A	1	į.	Ņ		
COTTGATAATGAATCGGTACTTGTTCTTCCCCTTTGAGATACCGAGTTTTCTTAAATTGTTACTGACATT N Y Y L A M N K K G K L Y G S K E F N N D C K CTGAAGGAGGATAGAGGAAAATGGATACAATACCTATGCATCATTTAACTGGCAGCATAATGGGAGG GACTTCCTCTCCTATCTCCTTTTACCTATGTTATGGATACGTAGTAAATTGACCGTCGTATTACCCTCC L K E R I E E N G Y N T Y A S F N W Q H N G R AAATGTATGTGGCATTGAATGGAAAAGGAGGTCCCAAGGAGGAAAAACACCT TTTACATACACCGTAACTTACCTTTTCCTCGAGGTTCCTCTCTCT	CAA	ACT	ΑΊ	TĄ	CT	TA	GC	CA	TĢ	AA	CA	AG	AA	GG	GG	AA	AC	TC.	LV.	rg(3C1	ΓC/	\AA	AC	AA	 \T1				•	نت	<u> </u>	<u> </u>	L	
CTGAAGGAGAGAAAATGGATACAATACCTATGCATCATTTAACTGGCAGCATAATGGGAGG GACTTCCTCTCCTATCTCCTTTTACCTATGTTATGGATACGTAGTAAATTGACCGTCGTATTACCCTCC L K E R I E E N G Y N T Y A S F N W Q H N G R AAATGTATGTGGCATTGAATGGAAAAGGAGCTCCAAGGAGGACAGAAAACACCCT TTTACATACACCGTAACTTACCTTTTCCTCGAGGTTCCTCTCCTGTCTTTTGTGGA Q M Y V A L N G K G A P R R G Q K T R R K N T TGCTCACTTTCTCCAATGGTGGTACACTCATAG																																			35
CTGAAGGAGAGATAGAGGAAAATGGATACAATACCTATGCATCATTTAACTGGCAGCATAATGGGAGG GACTTCCTCTCCTATCTCCTTTTACCTATGTTATGGATACGTAGTAAATTGACCGTCGTATTACCCTCC L K E R I E E N G Y N T Y A S F N W Q H N G R AAATGTATGTGGCATTGAATGGAAAAGGAGCTCCAAGGAGGACAGAAAACACCT TITACATACACCGTAACTTACCTTTTCCTCGAGGTTCCTCTCCTGTCTTTTTGTGGA Q M Y V A L N G K G A P R R G Q K T R R K N T TGCTCACTTTCTCCAATGGTGGTACACTCATAG		_													٠								•	•				10	•	AU		IAC	AII	1	
CACTTCCTCTCCTATCTCCTTTTACCTATGTTATGGATACGTAGTAAATTGACCGTCGTATTACCCTCC L K E R I E E N G Y N T Y A S F N W Q H N G R AAATGTATGTGGCATTGAATGGAAAAGGAGCTCCAAGGAGGACAGAAAACACCT TITACATACACCGTAACTTACCTTTTCCTCGAGGTTCCTCTCCTGTCTTTTTGTGGA Q M Y V A L N G K G A P R R G Q K T R R K N T TGCTCACTTTCTTCCAATGGTGGTACACTCATAG	<u> </u>			<u>.</u>			٠.		. 1			_	-:-		_										_	٠.		• •	- "	-	_	_	•	-	
L K E R I E E N G Y N T Y A S F N W Q H N G R AAATGTATGTGGCATTGAATGGAAAAGGAGCTCCAAGGAGGACAGAAAACACCT TITACATACACCGTAACTTACCTTTTCCTCGAGGTTCCTCTCTTTTTGTGGA Q M Y V A L N G K G A P R R G Q K T R R K N T TGCTCACTTTCTTCCAATGGTGGTACACTCATAG																																			
AAATGTATGTGGCATTGAATGGAAAAGGAGCTCCAAGGAGGAGAGAAAACACCT TTTACATACACCGTAACTTACCTTTTCCTCGAGGTTCCTCTCCTGTCTTTTTGTGCTTCCTTTTTGTGGA Q M Y V A L N G K G A P R R G Q K T R R K N T TGCTCACTTTCTTCCAATGGTGGTACACTCATAG	GAC	:TT	CC	TC	TC	CTA	AT	CT	CC	TT	TT	AC	CT	ΑŤ	GT	TA	TG	GAI	ΓÀC	GT	ΑG	TA	AA	ŤΤ	GA	CC	GT	CG	TΑ	TT	AC	CC	TCC		42
AAATGTATGTGGCATTGAATGGAAAAGGAGCTCCAAGGAGGAGGACAGAAAACACGAAGGAAAAACACCT TTTACATACACCGTAACTTACCTTTTCCTCGAGGTTCCTCTCTCT	L	Ķ		E .	R	1	I.	ε		E	N	(G	Y		N	T	١	ſ	A	S	;	F	N	ı	w	0		н	N		C	D		
TITACATACACCGTAACTTACCTTTTCCTCGAGGTTCCTCTCCTGTCTTTTGTGGA O M Y V A L N G K G A P R R G O K T R R K N T TGCTCACTTTCTTCCAATGGTGGTACACTCATAG	AAA	TG	TA	TG	TGO	GC/	٩T	TG	AA	TG	GA/	۱۸,	AGO	GAI	GC	TC	CA	466	···	· A G	:CA	CA	C A	4 A		<u></u>			•					-	
Q M Y V A L N G K G A P R R G Q K T R R K N T TGCTCACTTTCTTCCAATGGTGGTACACTCATAG	TTT	AC	AT	AC.	ACC	:G1	ΓA	AC.	• T.	AC	CTI	ΓT	FCC		CG.	A G (2 T 1	ree	TC	TC	~	CT	OT.		70 TO	~	CT	70	4+ +-	AA.	4A 	LA			19
TGCTCACTTTCTTCCAATGGTGGTACACTCATAG	_								•			•		•••	.		3,				C I	GI	CI	" "	16	16	LI	IC	C I	11	ŧΤ	GT	GGA	•	
		<u> </u>							ij,	`								R	R	:	G	Q		K	T		R	. R		K	N	•	τ		
ACGAGTGAAAGAAGGTTACCACCATGTGAGTATC 525	TGÇ	TC.	AC	TT	TCI	TC	C/	AA1	ΓG	GTO	3G1	ΓA	CAC					-05																•	
·	ACG	AG	TG	AĀ	AGA	AAG	G	ГТ	١Ċ٥	CAC	cc	λTO	TC	A(GT/	4T(;	25	•																
AHFLPMVVHS	Α	1	н	F	1		P		4	\/	1.	,	£.4	,																					

MTCQALGQDMVSPEATNSSSSSFSSPSSAGRHVRSYNHLQGDVRWRKLFSFTKYFLKIE KNGKVSGTKKENCPYSILEITSVEIGVVAVKAINSNYYLAMNKKGKLYGSKEFNNDCKL KERIEENGYNTYASFNWQHNGRQMYVALNGKGAPRRGQKTRRKNTSAHFLPMVVHS.

MAGRHVRSYNHLQGDVRWRKLFSFTKYFLKIEKNGKVSGTKKENCPYSILEITSVEIGV VAVKAINSNYYLAMNKKGKLYGSKEFNNDCKLKERIEENGYNTYASFNWQHNGRQMY VALNGKGAPRRGQKTRKNTSAHFLPMVVHS.

ATGGTTCGTTGGCGTAAACTGTTCTCTTTCACCAAATACTTCCTGAAAATCGAAAAA AACGGTAAAGTTTCTGGGACCAAGAAGGAGAACTGCCCGTACAGCATCCTGGAGAT AACATCAGTAGAAATCGGAGTTGTTGCCGTCAAAAGCCATTAACAGCAACTATTACTT AGCCATGAACAAGAAGAACTCTATGGCTCAAAAGAATTTAACAATGACTGTA AGCTGAAGGAGAGAAAATGGAAAAATGAATACCTATGCATCATTTAACTGG CAGCATAATGGGAGGCAAAATGTATGTGGCATTGAATGGAAAAAGGAGCTCCAAGGAG AGGACAGAAAACACGAAGGAAAAAACACCTCTGCTCACTTTCTTCCAATGGTGGTAC ACTCATAG

MVRWRKLFSFTKYFLKIEKNGKVSGTKKENCPYSILEITSVEIGVVAVKAINSNYYLAM NKKGKLYGSKEFNNDCKLKERIEENGYNTYASFNWQHNGRQMYVALNGKGAPRRGQ KTRRKNTSAHFLPMVVHS.

ŲĴ

ATGGAAAAAACGGTAAAGTTTCTGGGACCAAGAAGGAGAACTGCCCGTACAGCAT CCTGGAGATAACATCAGTAGAAATCGGAGTTGTTGCCGTCAAAGCCATTAACAGCA ACTATTACTTAGCCATGAACAAGAAGGGGAAACTCTATGGCTCAAAAGAATTTAAC AATGACTGTAAGCTGAAGGAGGATAGAGGAAAATGGATACAATACCTATGCATC ATTTAACTGGCAGCATAATGGGAGGCAAATGTATGTGGCATTGAATGGAAAAGGAG CTCCAAGGAGAGGACAGAAAACACGAAGGAAAAACACCTCTGCTCACTTTCTTCCA ATGGTGGTACACTCATAG

MEKNGKVSGTKKENCPYSILEITSVEIGVVAVKAINSNYYLAMNKKGKLYGSKEFNNDC KLKERIEENGYNTYASFNWQHNGRQMYVALNGKGAPRRGQKTRRKNTSAHFLPMVVH

ATGGAGAACTGCCCGTACAGCAT CCTGGAGATAACATCAGTAGAAATCGGAGTTGT
TGCCGTCAAAGCCATTAACAGCAACTATTACTTAGCCATGAACAAGAAGGGGAAAC
TCTATGGCTCAAAAGAATTTAACAATGACTGTAAGCTGAAGGAGAGGATAGAGGAA
AATGGATACAATACCTATGCATC ATTTAACTGGCAGCATAATGGGAGGCAAATGTA
TGTGGCATTGAATGGAAAAGGAGCTCCAAGGAGGACAGAAAACACGAAGGAAA
AACACCTCTGCTCACTTTCTTCCAATGGTGGTACACTCATAG

MENCPYSILEITSVEIGVVAVKAINSNYYLAMNKKGKLYGSKEFNNDCKLKERIEENGY NTYASFNWQHNGRQMYVALNGKGAPRRGQKTRRKNTSAHFLPMVVHS.

ATGGTCAAAGCCATTAACAGCAACTATTACTTAGCCATGAACAAGAAGGGGAAACT CTATGGCTCAAAAGAATTTAACAATGACTGTAAGCTGAAGGAGGAGGAAAAATGGATACCTATGCATCATTTAACTGGCAGCATAATGGGAGGCAAATGTATG TGGCATTGAATGGAAAAGGAGCTCCAAGGAGAGGACAGAAAACACGAAGGAAAAA CACCTCTGCTCACTTTCTTCCAATGGTGGTACACTCATAG

MVKAINSNYYLAMNKKGKLYGSKEFNNDCKLKERIEENGYNTYASFNWQHNGRQMY VALNGKGAPRRGQKTRRKNTSAHFLPMVVHS.

 ${\tt MGKLYGSKBFNNDCKLKERIBENGYNTYASFNWQHNGRQMYVALNGKGAPRRGQKTRKNTSAHFLPMVVHS.}$

The state of the s

MTCQALGQDMVSPEATNSSSSSFSSPSSAGRHVRSYNHLQGDVRWRKLFSFTKYFLKIE KNGKVSGTKKENCPYSILEITSVEIGVVAVKAINSNYYLAMNKKGKLYGSKEFNNDCKL

ŧij.

MAGRHVRSYNHLQGDVRWRKLFSFTKYFLKIEKNGKVSGTKKENCPYSILEITSVEIGV VAVKAINSNYYLAMNKKGKLYGSKEFNNDCKLK

¥#

: C-37 To Ser

: C-106 To Ser

Wound Area (sq. mm)

Treatment Groups	Wound Size (mm)	%Wound Closure	Histological Score	Re-epith. (μm)	BrdU Score
No Treatment	25.9 ± 2.5	58.8 ± 3.7	6.8 ± 0.2	1142 ± 141	3.8 ± 0.4
Buffer	. 25.1 ± 1.7	60.2 ± 2.6	6.4 ± 0.2	923 ± 61	5.0 ± 0.4
KGF-2/Δ33 (0.1μg)	22.0 ± 0.9	65 ± 1.4	6.8 ± 0.2	1275 ± 148	4.6 ± 0.7
KGF-2/Δ33 (0.4 μg)	21.1 ± 1.4	68.4 ± 2.4	8.0 ± 0.5 p=0.0445*	1310 ± 182	4.2 ± 0.7
KGF-2/Δ33 (1.0μg)	19.9 ± 1.5	66.2 ± 2.1	8.4 ± 0.4 p=0.0159* p=0.0053†	1389 ± 115 p=0.0074†	3.3 ± 0.25 p=0.0217†
KGF-2/Δ33 (4.0μg)	18.1 ± 1.6 p=0.0398* p=0.0200†	71.2 ± 2.6 p=0.0367* p=0.0217†	8.5 ± 0.3 p=0.0047* p=0.0445†	1220 ± 89 p=0.0254†	5.3 ± 0.9

Effect of KGF-2 \triangle 33 on PAF-induced paw edema in Lewis rats

Figure 43

Figure 44

Figure 45

¥||‡

Figure 46

Figure 47

Figure 48

Figure 49

FIGURE 50

FIGURE 51

35

Operator 1

1 AAGCTT AAAAACTGCAAAAAAATAGTETGACT®

-10

Operator 2

TTCACACATTAA

A A G A TIGTA CCCA (CARRESCA REPORTED TO THE PROPERTY OF THE P

S/D

94 AGAGGAGAAATTA CATATG

FIGURE 52

FIGURE 53

FIGURE 54

FIGURE 55

FIGURE 56

Proliferation of hepatocytes following systemic administration of KGF-2

FIGURE 57

١

FIGURE 58

Proliferation of renal epithelia after systemic administration of KGF-2

FIGURE 59

FIGURE 60