NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA

Original contains color plates: All DTIC percoductions will be in black and white

THESIS

A CMOS, VLSI, IMPLEMENTATION OF A FFT FOR CYCLIC SPECTRAL ANALYSIS

by

Kevin L. Jackson

March 1995

Thesis Advisor: Co-Advisors:

Herschel H. Loomis, Jr. Raymond F. Bernstein, Jr. Douglas J. Fouts

Approved for public release; distribution is unlimited

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF COLOR PAGES WHICH DO NOT REPRODUCE LEGIBLY ON BLACK AND WHITE MICROFICHE.

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA. 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC. 20503

Davis Highway, Suite 1204, Arlington, VA 22202-		3. REPORT TYPE AND DATES	COVERED
1. AGENCY USE ONLY (Leave blank	March 1995	Master's Thesis	·]
4. TITLE AND SUBTITLE		5. FUND	ING NUMBERS
A CMOS, VLSI, Implement	ntation of a FFT		
for Cyclic Spectral	Analysis		
ior oyerro special			
6. AUTHOR(S)			1
Kevin L. Jackson			i
			1
7. PERFORMING ORGANIZATION NA	ME(S) AND ADDRESS(ES)	8. PERF	ORMING ORGANIZATION RT NUMBER
Naval Postgraduate S	chool .	1	
Monterey, CA 93943-	5000	1	
•			
		10 600	NSORING MONITORING
9. SPONSORING MONITORING AGE	NCY NAME(S) AND ADDRESS(ES)	AGE	NCY REPORT NUMBER
		1	_
11. SUPPLEMENTARY NOTES	in this thesis are tho	see of the author and	do not reflect the
The views expressed	in this thesis are the sition of the Departmen	ot of Defense or the I	. S. Government.
official policy or pos	ition of the Departmen	it of belefise of the c	
12a. DISTRIBUTION : AVAILABILITY	CTATEMENT	12b. DI	STRIBUTION CODE
12a. DISTRIBUTION AVAILABILITY	release; distribution	is unlimited.	
Approved for public	release, distribution	15 dillimited.	
		. [
13. ABSTRACT (Maximum 200 word	is)		
	lysis exploits the cycl	lostationary propertie	es of signals and
Cyclic Spectrum Ana.	e of this technology is	focused on its use i	n a near real time
systems. Military use	t. Such a system requi	ires high speed arithm	etic processing in
analytical environment	rier transforms quickly	This thesis review	s a previous
calculating large rout	en presents a new design	on using Verilog hardy	are description
implementation and the	n silicon compiler. Us	sing these modern com	outer aided design
tente the ACTC decim	a was simulated and lay	vout completed using a	one micron,
+ tol proces rul	a set The final layou	nt consists of 434,130	transistors on a
11 100 - 15 6/2 micros	n die Simulations ind	dicated that the chip	would be capable of
I amount in a st a 25 Mbg	clock rate while diss	inating .8 watts of po	ower. Embedded
himing analysis tools	displayed all critica	l timing paths which	illowed flie identi
fication of specific	design improvements.	If implemented, these	changes could double
the clock rate of the	processor.		
1			
·			15. NUMBER OF PAGES
14. SUBJECT TERMS		11 - 0	336
Digital Arithmetic;F	FT Butterfly Design; C	yclic Spectrum	16. PRICE CODE
Analysis; Verilog; H	ardware Description La	nguages; Epoch	
Silicon Compiler: ASI 17. SECURITY CLASSIFICATION	C Design: CMOS Design 18. SECURITY CLASSIFICATION	19. SECURITY CLASSIFICATION	20. LIMITATION OF ABSTRACT
OF REPORT	OF THIS PAGE	OF ABSTRACT	
Unclassified	Unclassified	Unclassified	UL

NSN 7540-01-280-5500

Unclassified

Standard Form 298 (Rev 2-89) Prescribed by ANSI Std 239-18

Unclassified

Approved for public release; distribution unlimited.

A CMOS, VLSI, Implementation of a FFT for Cyclic Spectral Analysis

by

Kevin L. Jackson Lieutenant Commander, United States Navy B.S., United States Naval Academy, 1979

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
March 1995

Author: Revin L Jackson
Approved by: Herschel H. Loomis, Jr., Thesis Advisor
Raymond F. Bernstein, K., Co-Advisor
Douglas S. Fout
Douglas J. Fouts, Co-Advisor
M. a. Marge
Michael A. Morgan, Chairman Department of Electrical and Computer Engineering
Department of Electrical and Compares Digmesting

ABSTRACT

Cyclic Spectrum Analysis exploits the cyclostationary properties of signals and systems. Military use of this technology is focused on its use in a near real time analytical environment. Such a system requires high speed arithmetic processing in calculating large Fourier transforms quickly. This thesis reviews a previous implementation and then presents a new design using the Verilog hardware description language and the Epoch silicon compiler. Using these modern computer aided design tools, the ASIC design was simulated and layout completed using a $1\mu m$, two-metal process rule set. The final layout consists of 434,138 transistors on a $11,190 \times 15,642 \mu m$ die. Simulations indicated that the chip would be capable of operating at a 25 Mhz clock rate while dissipating .8 watts of power. Embedded timing analysis tools displayed all critical timing paths which allowed the identification of specific design improvements. If implemented, these changes could double the clock rate of the processor.

Accesion For					
NTIS CRA&I N DTIC TAB Unannounced Justification					
By Distribution /					
Availability Codes					
Dist	Dist Avail and / or Special				
A-1					

TABLE OF CONTENTS

I. INTRODUCTION	1
A. CYCLIC SPECTRUM ANALYSIS	1
B. GENERAL BUTTERFLY MACHINE	1
C. THESIS OVERVIEW	2
II. CYCLIC SPECTRAL ANALYZER REQUIREMENTS	4
A. FUNCTIONAL REQUIREMENTS	4
B. ALGORITHM DESCRIPTIONS	5
C. FFT IMPLEMENTATION	9
C.111 IMI EDMENTATION	
III. CSA PROCESSOR DESIGN	10
A. TOP LEVEL PROCESSOR DESIGN	10
B. SINGLE PROCESSOR PROGRAMMING	10
C. FFT CHIP - ZIMMER DESIGN	12
D. FFT CHIP - NEW DESIGN	14
D. FFT CHIP - NEW DESIGN	14
	15
IV. CHIP DESIGN AND SIMULATION	15
A. VERILOG HDL	15
B. EPOCH SILICON COMPILER	16
C. VERILOG - EPOCH INTERFACE	
D. ASIC DESIGN PROCESS	
E. CHIP HDL DESIGN	18
F. CHIP SIMULATION	32
	2.4
V. CHIP FLOORPLANNING AND TIMING ANALYSIS	34
A. EPOCH FLOORPLANNING	34
B. TACTIC TIMING ANALYZER	35
C. FINAL CHIP DESIGN	37
D. CHIP TESTING	37
VI. CONCLUSIONS AND RECOMMENDATIONS	38
APPENDIX A SPECIFICATION SUMMARY	40
APPENDIX B VERILOG HDL CODE	48
APPENDIX C EPOCH VERILOG HDL COMPILATION	97
APPENDIX D EPOCH AUTOCOMPILATION	152
APPENDIX E FLOATING POINT ADDER TEST OUTPUT	248
ALLENDIA ELECTRICA COLVERNO	
APPENDIX F FLOATING POINT MULTIPLIER TEST OUTPUT	275
MITERIDIAT PEGATERO FORM MEDITERIM TEST COTT OF MINIMUM.	
APPENDIX G LAYOUT PLATES	300
ALLENDIY A LA I OO I I DA I EQ	
APPENDIX H PART SPECIFICATIONS (SELECTED)	306
APPENDIA II PAKI SPECIFICATIONS (SELECTED)	
I IST OF REFERENCES	325
I IN I I IN MEN NO	

INITIAL DISTRIBUTION LIST	326

LIST OF TABLES

TABLE 1 - VERILOG MODEL TYPES	1:
TABLE 2 - ROUNDING MODES	
TABLE 2 - ROOMENTO MODELS	

LIST OF FIGURES

Figure 1 - Estimating The Time Smoothed Cyclic Periodogram	5
Figure 2 - Time Smoothed Cyclic Cross Periodogram Implementation	6
Figure 3 - Time Algorithm With FFT Output	6
Figure 4 - FAM Tiling Of The Bifrequency Plane	7
Figure 5 - SSCA Tiling Of The Bifrequency Plane	7
Figure 6 - Cyclostationary Processing Dataflow	10
Figure 7 - General Butterfly Machine	11
Figure 8 - FFT Chip	12
Figure 9 - FFT Arithmetic Unit - Zimmer Chip Design	13
Figure 10 - Epoch Design Flow	17
Figure 11 - Design Hierarchy	19
Figure 12 - Floating Point Adder Stage 1	24
Figure 13 - Floating Point Adder Stage 2	25
Figure 14 - Floating Point Adder Stage 3	26
Figure 15 - Floating Point Adder Stage 4	26
Figure 16 - Floating Point Adder Stage 5	27
Figure 17 - Floating Point Adder Stage 6	
Figure 18 - Floating Point Multiplier Stage 1	29
Figure 19 - Floating Point Multiplier Stage 2-4	30
Figure 20 - Floating Point Multiplier Stage 5	31
Figure 21 - Floating Point Multiplier Stage 6	
Figure 22 - Floating Point Multiplier Stage 7	32
Figure 23 - Floorplanning	35
Figure 24 - TACTIC Timing Graphical Display	
Figure 25 - Single Timing Path Display	36
Figure 26 - Clock Buffer Tree	36

I. INTRODUCTION

A. CYCLIC SPECTRUM ANALYSIS

Cyclic Spectrum Analysis (CSA) evaluates the cyclostationary properties of signals and systems. This form of analysis addresses statistical variations of a signal or system that is rhythmic, seasonal, or otherwise cyclic in nature. Examples include meteorology time-series data, sinusoidal communications signals and periodic scanning radar emissions. For military applications, near real-time cyclostationary analysis could be used for obtaining operational and tactical intelligence. Although CSA is based on the well-known techniques of conventional spectrum analysis, computational speed requirements for near real time analysis are daunting. The number of computations associated with Fourier transformation, convolutions, and product modulations required in CSA far exceeds the capability of a general purpose computer to accomplish in real time. This fact makes the use of an application specific integrated circuit (ASIC) desirable. This thesis will focus on the design of an ASIC capable of performing complex number multiplication and four point FFT's in a near real time analysis environment.

B. GENERAL BUTTERFLY MACHINE

The central unit in the envisioned CSA processor is to be capable of performing a single operation on an input stream of sampled data. Ideally, this butterfly machine could selectively complete vector multiplies, vector additions, or four point FFT computations. To enabled fast processing, the processor is designed as a pipeline, allowing production of one data element each clock cycle after the time for latency had elapsed. The pipelined data consists of digitized signal samples represented by complex floating point values. To ensure accuracy and standardization, an IEEE 32-bit single floating point standard representation is desired.

Previous work resulted in a ASIC design based on the Genesil Silicon Compiler and Logic-Compiler. [Ref. 1] This effort, however, did not conform with IEEE standards for floating point calculations. Ordinarily, even with this shortcoming, previous work is an adequate basis for future designs. Unfortunately, the Genesil Silicon Compiler used is no longer available at NPS nor is it commercially supported. This fact forced a complete redesign of the ASIC. The original architecture however is preserved.

The redesigned integrated circuit will consist of a complex floating point multiplier and adder capable of performing 32-bit, IEEE standard, radix-4 fast Fourier transform butterfly calculations. Verilog hardware design language (HDL) was selected for use in this design because of its prevalence in the commercial ASIC market. Use of a HDL gives future efforts the ability to modify the existing design and port it to other design and analysis tools. The use of a HDL is typical of leading edge VLSI design. Epoch, a graphical design tool and silicon compiler developed by Cascade Automated Design, was used for layout placement, routing, and timing analysis. This tool was chosen because of its compatibility with the Verilog HDL, available pre-defined MSI logic modules, and the software's ability to recompile designs using different rule sets. This last capability allows the easy translation of designs to new CMOS processes. The goal of this thesis is the design of an ASIC capable of performing those operations necessary for conducting CSA. Additionally, data will be generated to allow design of a controller for the chip and fabrication of the design.

C. THESIS OVERVIEW

This thesis presents a top level layout for a Cyclic Spectral Analyzer, discusses a possible design for a General Butterfly Machine (GBM) and present the detailed design for the FFT butterfly unit. Chapter II will define CSA functional requirements and algorithm implementation. Chapter III will present the top level layout and GBM design. It will also detail previous work on the FFT unit and outline the new design. After familiarizing the reader with the Verilog and Epoch tools used, Chapter IV will present the

design details of the new chip. This will include a discussion of the simulations conducted. Chapter V will discuss floorplanning, timing analysis and power calculations. That chapter will also outline a strategy for testing the completed chip after fabrication. Conclusions and recommendations for future research are given in Chapter VI.

II. CYCLIC SPECTRAL ANALYZER REQUIREMENTS

A. FUNCTIONAL REQUIREMENTS

Cyclostationary waveforms have statistical parameters that vary periodically with time. The spectral correlation function (SCF) provides a second order, frequency-domain, statistical description of such a waveform. Solutions to the problem of detecting the presence of cyclostationary signals buried in noise and interference relies on an estimation of the SCF. By interpreting this estimate as a cross spectrum, spectral analysis principles can be applied [Ref. 2]. Factors such as time and frequency resolution and smoothing are critical to effective analysis.

In many military applications, information derived from cycle frequency analysis can lead to operational and tactical intelligence. Since the specific cycle frequencies of interest are not known beforehand, the SCF must be estimated for a range of cycle frequencies. Conventional cross spectral analysis methods provide a frequency resolution of $1/\Delta t$, where Δt is the length of the observation interval. Complete characterization of a spectral observation requires a discrete set of spectral frequencies $f_k = k\Delta f$, where Δf is the frequency resolution of the analyzer and cycle frequencies $\alpha_k = k\Delta \alpha$ over the frequency regions $0 \le f_k \le \frac{1}{2}$. The requirement for statistical reliability and cycle frequency spacing lead to $\frac{\Delta t}{4\Delta f}$ individual estimates being required for complete analysis. Since the computational cost of each estimate also increases linearly with Δt , the cost for complete analysis using conventional methods is proportional to Δt^2 . Two proposed algorithms, the FFT accumulation method (FAM) and the strip spectral correlation analyzer (SSCA), reduce this dependency to Δt log Δt , however, this is still higher than the capability of most general purpose analyzers [Ref 2].

B. ALGORITHM DESCRIPTIONS

Both FAM and SSCA are based on the time smoothed cyclic cross periodogram [Ref. 3]

$$S_{xy_{T}}^{\alpha}(n,f)_{\Delta t} = \frac{1}{T} \left\langle X_{T}(n,f+\alpha/2) Y_{T}^{*}(n,f-\alpha/2) \right\rangle_{\Delta t}$$
 (1)

Figure 1 - Estimating the time smoothed cyclic periodogram [Ref. 4]

The periodogram indicates the correlation of spectral components of x(n) with spectral components of y(n) over a time span of Δt seconds. The spectral components $X_T(n, f + \alpha/2)$ and $Y_T(n, f - \alpha/2)$ are the complex envelopes of narrowband, bandpass components of a signal [Ref. 4, p.40]. As Figure 1 illustrates, a data tapering window of length T seconds slides over the data for a time span of Δt seconds. The complex demodulates of the data within the window are computed and used to estimate the cyclic spectrum at the point (f_0, α_0) . An implementation of the time smoothed cyclic cross periodogram is shown in Figure 2. L represents the decimation parameter to be defined later. The data tapering window, g(n), has a width $\Delta t = NT_S$. The correlation operation is expressed as

$$S_{xy_{T}}^{\alpha_{0}}(n, f_{0})_{\Delta t} = \sum_{r} X_{T}(r, f_{1}) Y_{T}^{*}(r, f_{2}) g(n-r)$$
 (2)

Figure 2 - Time smoothed cyclic cross periodogram implementation[Ref 4, p. 40]

Figure 3 - Time algorithm with FFT output

This implementation [Ref. 4, pp 40-41] leads to definitions for the CSA cell within a bifrequency plane (Figure 2). Computational efficiency of the basic time smoothing algorithm can be improved by decimating the outputs. This can be done by shifting input data into the correlation multiplier and filters in blocks of L samples where L < N. This reduces the overall complexity of the algorithm by the factor L.

If the product sequence in Figure 2 is shifted by an amount ε from α_0 to $\alpha_0+\varepsilon$, the output sum can be evaluated with an N-point FFT (Figure 3) [Ref. 4, p 44].

FAM is a FFT based time smoothing algorithm. This method channelizes the data with an N'-point FFT that is hopped over the data in blocks of L samples. After the complex demodulates are computed, product sequences are formed and Fourier Transformed with a P-point FFT. The algorithm allows a highly paralleled implementation leading to a fast and efficient microprocessor design. The output can be expressed mathematically as

$$S_{xy_T}^{\alpha_i + q\Delta\alpha} \left(nL, f_j \right)_{\Delta t} = \sum_r X_T \left(rL, f_k \right) Y_T^* \left(rL, f_l \right) g_c (n - r) e^{-i2\pi rq/P} \tag{3}$$

and shown graphically in a tiling of the bifrequency plane (Figure 4). The SSCA directly multiplies the complex demodulates $X_T(n,f_k)$ by $y^*(n)$. This produces point estimates along a frequency-skewed family of lines $\alpha=2f_k-2f$ (Figure 5). This process is expressed mathematically by

Figure 4 - FAM tiling of the bifrequency plane

Figure 5 - SSCA tiling of the bifrequency plane

$$S_{xy_T}^{\alpha_i+q\Delta\alpha}\left(n,\frac{f_k}{2}-q\frac{\Delta\alpha}{2}\right)_{\Delta t}=\sum_r X_T(r,f_k)y^*(r)g(n-r)e^{-i2\pi rq/N} \tag{4}.$$

The FFT is central to both FAM and SSCA. This makes the design of a near real time FFT architecture vital to CSA development. An additional capability to form the complex vector product of long vectors is required, for the calculation of correlation products.

C. FFT IMPLEMENTATION

Digital implementation choices revolve around decimation in time (DIT) or frequency (DIF), the use of radix-2 or radix-4 butterfly machines, the implementation of the FAM or SSCA algorithm and integer versus floating point number representations. Although more intricate in nature, the use of radix-4 butterflies in a DIT algorithm provides increased performance in VLSI chips.[Ref. 1, p. 60] The efficient design and implementation of a radix-4 FFT is therefore undertaken. For digital implementation, data representing complex floating point numbers is pipelined and streamed through a processor chip [Ref. 5]. Higher radix FFTs can be computed by conducting multiple passes through a radix-4 processor. DIT and DIF computations differ in when the "twiddle factor" multiply is completed. Time decimation executes the multiplies before the butterfly, whereas in frequency decimation it is done subsequent to it. In this thesis, a decimation in time approach is assumed.

Analysis of the relative complexities of performing the FAM and SSCA algorithms has shown that the SSCA is quantitatively less complicated [Ref. 2, p. 719]. In this design, however, the choice of algorithm is immaterial because the butterfly unit is needed for each. We will now discuss specific processor design.

III. CSA PROCESSOR DESIGN

A. TOP LEVEL PROCESSOR DESIGN

In signal analysis applications, analog data is sampled and converted through an analog to digital converter. This data forms the input for the CSA processor (Figure 6). Within the processor, the butterfly machine buffers the data for processing by a three port FFT processor (Figures 7 and 8). The processor controller is programmed to conduct multiple passes through the FFT processor to conduct correlation multiplies and high order FFTs. Multiple butterfly machines, operating in parallel, would give the CSA processor the ability to process incoming data at the high rates required for real-time analysis. The bifrequency plane values produced could be presented to an analyst in a graphical display.

Figure 6 - Cyclostationary Processing Dataflow

B. SINGLE PROCESSOR PROGRAMMING

The FFT processor program consists of blocks and sub-blocks. A block contains input specifications, the output specification, and the list of required passes. The input specification identifies the two input buffers. For a correlation multiply, the inputs would be from the coefficient buffer and from a selected data buffer. For FFTs, the input is from the data buffers. The output specification either returns intermediate results to a buffer for further computations or releases the data to the output bus. Each pass

description identifies the input source, the output destination and an operation code for the FFT processor.

Within the source and destination descriptions are base addressing and address sequencing information

[Ref.5].

Figure 7 - General Butterfly Machine

Figure 8 - FFT Chip

C. FFT CHIP - ZIMMER DESIGN

In the Zimmer design, input is through a pipelined complex floating point multiplier. This complex multiplier scaled the inputs by the FFT external twiddle factors. The multiplier output loads four registers that transfer these scaled values into a latch for four clock cycles. The latch output feeds a multiplexer group that selects the appropriate input values for computation of the FFT. By implementing the FFT in

radix-4, internal twiddle factor "multiplication" becomes simple sign changes and output selections [Ref.1, p.85]. The FFT is completed by adding the four multiplexer outputs resulting in the final transform value. The final design used four floating point multipliers, eight floating point adders, two 4input multiplexers, three data registers, one latch and some assorted logic. Initial layout with the Genesil standard compiler proved infeasible due to size. The design was optimized using Autologic synthesis tools and Logic-Compiler alternative compiler. The final design used 1.0µm (two metal, one poly) technology and resulted in a 200,000 sq. mil chip (including pads). Specifications for the Zimmer chip design were as follows:

- 20 bit word size (1 sign, 6 exponent, 13 mantissa)
- Normalized numbers only IEEE infinity, denormalized numbers and NaNs not recognized.
- True zero recognized by all zeros in the exponent.
- Mantissa in signed magnitude.
- Exponent in excess 2⁵ code.
- Smallest magnitude number: $1.00000000000000_2 \times 2^{-31} / 4.65661287308_{10} \times 10^{-10}$ Largest magnitude number: $1.1111111111111_2 \times 2^{31} / 4.29470515201_{10} \times 10^9$

Figure 9 - FFT Arithmetic Unit - Zimmer Chip Design

D. FFT CHIP - NEW DESIGN

Initially, different approaches to the basic chip design were explored. This was done to give the new design the ability to perform a wider range of arithmetic operations. A design using multiplier-accumulators initially showed promise. This approach is similar to the TRW LSI Products Design implementation of the TMC2310.6 The TMC2310 uses multiplier-accumulators to perform forward and reverse DIT Cooley-Tukey FFTs on real or complex data. It uses a radix-2 decomposition on 16-bit data. Further analysis indicates that such an approach requires more hardware than the Zimmer design and leads to more latency in the pipeline. Time restriction prevented further analysis of this design. This resulted in the preservation of the approach demonstrated in the Zimmer chip. Future efforts should explore the use of accumulators in this application.

Specifications for the new chip were set as follows:

- 32 bit word size (1 sign, 8 exponent, 23 mantissa).
- · Normalized and denormalized numbers.
- IEEE infinity and signaling NaNs.
- Underflow and Overflow signals.
- IEEE Standard Single Format.
- Mantissa in signed magnitude.
- Exponent in excess +127 code.

Upon completion and successful simulation of this new design, fabrication is planned using the MOSIS facility. Compatibility with established procedures restricts process selection to a defined set. For this project .6 μm, .8μm and 1.2μm processes were considered. The Epoch compiler can be used to compile for any process for which the rule set is installed. For this design .7μm (3 metal, 2 poly) and 1.0μm (2 metal, 1 poly) were applicable. Remaining within these practical restraints resulted in a design decision to compile using 1μm (2 metal, 1 poly) technology. This will enable the design to be scaled up for a 1.2μm fabrication with minimal risk. Once a .8μm rule set is was made available, follow-on designs could recompile and fabricate using the .6 μm or .8μm MOSIS process. This is desirable since smaller feature sizes can lead to faster operating speeds. An operating clock speed of 45 Mhz was set as the design goal.

IV. CHIP DESIGN AND SIMULATION

A. VERILOG HDL

Verilog Hardware Description Language (HDL) [Ref. 7] was developed by Cadence Design Systems. It can be used to describe both the functions of a design and the components and connections to components within the design. A Verilog model can be developed in the four different levels of abstraction shown in Table 1.

algorithmic	a model that implements a design algorithm in a high-level		
	language construct		
RTL	Register Transfer Language a model that describes the flow of data		
	between registers and how a design processes that data		
gate-level	a model that describes the logic gates and the connections between		
	logic gates in the design		
switch-level	a model that describes the transistors and storage nodes in a device		
	and the connections between them		

Table 1 - Verilog Model Types

Modules are the basic building block in a Verilog design. These modules contain the physical or algorithmic description of the full design or a portion of the design. Modules can incorporate other modules to facilitate top-down and bottom up design. The behavioral language provides the following capabilities:

- structured procedures for sequential or concurrent execution.
- explicit control of the time of procedure activation specified by both delay expressions and by value changes called event expressions.
- explicitly named events to trigger the enabling and disabling of actions in other procedures.
- procedural constructs for conditional, if-else, case, and looping operations.
- procedures called tasks that can have parameters and non-zero time duration.
- procedures called functions that allow the definition of new operators.
- arithmetic, logical, bit-wise, and reduction operators for expressions.

The structural language (for gate- and switch- level models) provides the following capabilities:

- a complete set of combinational primitives.
- primitives for bi-directional pass and resistive devices.
- the ability to model dynamic MOS models with charge sharing and charge decay.

The ability to utilize a single language for all aspects of a design enhances Verilog's ease of use. The language is capable of conducting mixed-level modeling and simulation. Its interactive capabilities allow circuit patching and debugging within a simulation run. Graphical signal displays are also available for timing analysis.

B. EPOCH SILICON COMPILER

Epoch [Ref. 8] is a schematic- (or HDL-) driven physical design tool. By building integrated chip layout expertise into the software, physical design tasks have been reduced significantly. This gives the high-level designer complete control of the design from schematic to silicon fabrication. Typical designs begin with the implementation of a chip architecture using a collection of Epoch-resident cells and/or functional descriptions that are directly synthesizable into such cells. After design input via a schematic or HDL, the design is translated into an Epoch netlist. With functionally descriptions automatic synthesis is performed and implemented into standard cell gates. This netlist is used in design compilation. The steps involved in this process include:

- Creation of standard cell blocks and placement of all blocks and cells to optimize for density and route minimization and optionally for timing
- Performs global and detailed routing on the blocks using routing channels created during placement
- Sizes the buffers based on the capacitive loads of the cells and routes.
- Estimates power consumption at the different power nodes on the chip and assigns appropriate widths to the power rails
- Adjust microplacement of the blocks to accommodate blocks that have become large due the
 upsizing of buffers.
- Rerouting of the chip with correct power rail sizes.

Figure 10 - Epoch Design Flow

This tool features a process-independent silicon compilation. This allows the designer to defer final process selection and provides for design migration and reusability. An open system approach is used and performance driven physical designs are possible. The delay models used within Epoch have been shown to be within 5% of Spice models.

C. VERILOG - EPOCH INTERFACE

Epoch's design automation relies on the use of the Epoch resident parts library or the use of directly synthesizable HDL descriptions. As a result, Epoch Verilog is a subset of the standard Verilog language that supports most, but not all of the Verilog standard constructs. Epoch Verilog constructs include the following:

- Nets only wire, supply0 and supply1 are supported. Nets may be declared as busses.
- Ports Terminal nets must be declared as ports, either input, output, or inout.
- Text Substitution The `define, `undef and `include are supported.
- Compiler Directives are imbedded into the Verilog code using the "//epoch set_attribute" keyword.
- Regs are memoried for simulation purposes.
- Sequential assignment occur in the context of always statements and take the form of if, case and other types of statements.
- Functions are supported to provide a means for allowing subroutines.
- Input don't cares are implemented using CASEX or CASEZ statements.
- Non-memoried outputs must be assigned explicit default states.
- Addition, subtraction, multiplication and division are only legal in constant expressions.
- The forever, repeat, while, for, assign, disable, and wait statements are not allowed within an always block.

Constructs that are not directly support by Epoch Verilog can usually be expressed with alternative syntax that is supported.

D. ASIC DESIGN PROCESS

For this effort, chip design was initially completed using Verilog. Epoch resident parts were used when possible by invoking a command line option in Verilog. This gave the simulation visibility into the Epoch Verilog model subdirectory. After verifying correct operation, the HDL was used as the input to the netlist generation module of Epoch. This produces a "VerilogOUT" file that has backannotated timing information and RC interconnect delays. This new file can then be simulated for timing analysis and final design. Once this simulation output is verified, the design can be compiled and floorplanned. TACTIC, a timing analysis tool, is then used to analyze the effects of placement, routing and buffer sizing on timing. After completing any required manual floorplanning, a GDSII file can be generated form the design for silicon fabrication.

E. CHIP HDL DESIGN

Use of a HDL for this design led to a hierarchical, modular design strategy. The functions, such as a fixed point multiplier or barrel shifter, were chosen as the lowest level module in the overall design. The next level up in the hierarchy consists of the floating point multiplier and floating point adder. The 4-input complex floating point adder and complex floating point multiplier comprise the third level in this bottoms-up structure. The 4-input complex adder consists of six floating point adders, while the complex multiplier was is composed of four floating point multipliers and two floating point adders. Finally, the top layer was defined by one complex multiplier and one 4-input complex adder. At each upper level, additional logic structures were used as required to complete datapath requirements. Figure 11 outlines the HDL hierarchy.

The following sections describe each lower level module in detail. Their use can be seen in the floating point adder and floating point multiplier diagrams Figures 12 through 22. The Verilog HDL code for these modules is contained in Appendix B.

Figure 11 - Design Hierarchy

1. Bitshift - Pre-rounding bit shifter

Bitshift takes a 25-bit input and conducts a right shift if the most

significant bit (msb) is set. A one in the msb indicates that previous

computations produced a carry into the 2¹ valued bit. To maintain

normalized values a right shift and increase of the exponential value is

required. The exp_add output indicates this requirement. The least significant bit shifted out in this

event may create a non-exact result. This is indicated by the setting of the lost_bit output. The lost_bit is

later used in floating point adder logic to determine an inexact answer.

2. Encoder - Priority Encoder

The 48-bit input to the encoder is scanned for the most significant set bit. The location of this bit (the number of zeros to the left of the most significant one plus 1) is sent out for use in the multiplier's barrel shifter.

3. Inverter / Inverter2

The Inverter takes a signed-magnitude value and inverts the value bits in preparation for 1s' complement computations. Inverter2 takes a 26-bit 1s' complement number and inverts it is the resultant signed-magnitude value is negative.

4. Mansel - Mantissa Selector

In the floating-point multiplier, Mansel inputs bit indicating shift direction and the 48-bit product. Similar in function to bitshift, if a right shift is indicated, a zero is prepended to bits 47-1 of the product and the lost_bit output is set. Otherwise, the product is unaltered.

5. Mulclnup - The Cleanup Module

The 23-bit, post-rounded mantissa, 8-bit resultant exponent, and denormalized, underflow, and overflow flags are used in this module to ensure correct final output. If the denormalized flag is set, the final exponent output is set to zero. For an underflow, the exponent and mantissa values are set to zero. An overflow sets the exponent to "11111111" and sets an infinite-result flag.

6. Overshift

This module sets the mantissa to zero if a shift greater than 50 is indicated for the product.

7. Rounder

Rounder implements the four IEEE rounding modes through the use of a Motorola 68040 rounding algorithm [Ref. 9]. The denormalized flag and an indicator to increment the exponent is produced. Table 2 describes each rounding mode and required selection values.

Mode	Name	Result		
00	Round to Minus	The result is the value closest to and no greater than the infinitely precise intermediate result (possibly minus infinity)		
01	Round to Nearest	The representable value nearest to the infinitely precise intermediate value is the result. If the two nearest representable values are equally near (a tie), then the one with the least significant bit equal to zero (even) is the result. This is sometimes referred to as "round to even".		
10	Round to Plus	The result is the value closest to and no less than the infinitely precise intermediate result (possibly plus infinity)		
11	Chop Mode	The result is the value closest to, and no greater in magnitude than, the infinitely precise intermediate result. This effectively clears the bits to the right of the rounding point		

Table 2 - Rounding Modes

8. Shiftsel - Shift Value Selector

The multiplier presents four different shift possibilities:

- If the most significant bit is one, the mantissa must be shifted right one place and one added to the exponent
- If the third most significant bit is 1, the mantissa must be shifted left one place and one subtracted from the exponent.
- If the exponent value is greater than the value that indicates
 the location of the most significant set bit, the mantissa must
 be shifted left a value equal to the location minus two. The shifted value must also be subtracted from
 the exponent.
- If the exponent value is less than or equal to the value that indicates the location of the most significant set bit, the mantissa must be shifted left a value equal to the exponent value. The exponent must then be set to zero.

Examples of these options are presented in Table 3. Shiftsel takes all the values required to determine which possibility exists and outputs the correct shift direction, shift amount and exponent value.

Input Value	Encoder Output	Shift Direction	Exponent In	Shift Amount	Exponent Out	Output Value	Remarks
10.000	1	Right	5	1	6	01.000	
01.000	2	N/A	5	0	5	01.000	
00.100	3	Left	5	1	4	01.000	
00.010	4	Left	5	2	3	01.000	Encoder < Exponent
00.00001	7	Left	4	4	0	00.1000	Denormalized output; Encoder > Exponent

Table 3 - Floating Point Multiplier Shift Options

9. Vcheck - Initial data formatter

The vcheck module takes the incoming data and formats it for processing through its host unit. After first checking for an infinite or NaN input, data is characterized as normalized or denormalized.

Normalized values have a 1 bit prepended to the mantissa value, while denormalized numbers get a zero attached. The exponential value for denormalized numbers are also set to 1 in accordance with the excess 127 code.

Figure 12 - Floating Point Adder Stage 1

Figure 13- Floating Point Adder Stage 2

Figure 14 - Floating Point Adder Stage 3

Figure 15 - Floating Point Adder Stage 4

Figure 16 - Floating Point Adder Stage 5

Figure 17 - Floating Point Adder Stage 6

Figure 18 - Floating Point Multiplier Stage 1

Figure 19- Floating Point Multiplier Stage 2-4

Figure 20 - Floating Point Multiplier Stage 5

Figure 21 - Floating Point Multiplier Stage 6

Figure 22 - Floating Point Multiplier Stage7

F. CHIP SIMULATION

After the HDL code was written, initial debugging and testing was accomplished using Verilog interactively. Testbench programs, "mplertst" and "addertst" were used to verify operation. Verilog command files were written to automate tracking of register values during simulation. The "\$monitor" and "\$gr_waves" commands were used to record input/output transitions and to graphically display the waveforms of up to twenty nets. The test vectors used included normalized and denormalized numbers, zero, infinity, and NaNs. After these initial tests, the "fpadder" and "fpmplier" files were compiled

through Epoch using the "VerilogIN" procedures. This series of steps converts the Verilog structural description into an Epoch netlist. Synthesis on logic descriptions is also performed. The compilation process also checks for mismatched net widths and unconnected inputs or outputs. Timing information is also embedded into the design. The "VerilogOUT" procedure translates the Epoch netlist into a new Verilog HDL file. This file can be run using Verilog to verify operation and timing. An optional Testbench file can also be generated to aid in simulation. VerilogOUT files were generated for the floating point adder and multiplier. Success in the simulation using these files were accepted as a final check on the HDL description.

After compilation of the complex multiplier and 4-input complex adder cells, tests using the VerilogOUT files were tried. After numerous failures due to inadequate memory for the datastructure, Verilog code testing beyond the initial levels was abandoned. Error codes indicated a requirement for over 76 megabytes of memory and consultations with the system administrator failed to provide a practical solution. Epoch provides an option to produce top-level only VerilogOUT files. This may provide an alternative to this type of testing. Time constraints prevented further exploration of this option. Appendix G and H contains the floating point adder and floating point multiplier testbench programs used and examples of simulation results.

V. CHIP FLOORPLANNING AND TIMING ANALYSIS

A. EPOCH FLOORPLANNING

Following the creation of an Epoch netlist, the design was ready for the Epoch design compilation process. This is initiated by using the "Automatic Compile" command. This step completes the following actions:

- Divides standard cells into standard cell groups.
- · Generates datapath groups.
- Places all single leaf cells, groups and other blocks for optimal density and route minimization (and optionally for timing constraints). Placement is performed bottom up, from the lowest to the highest level composites.
- Places pads and creates the pad ring.
- Performs global and detailed routing and creates balanced clock trees.
- Sizes buffers based on capacitive loading (and optionally on timing constraints).
- Calculates power dissipation for power rail sizing.
- Regenerates cells with correct buffer sizes.
- Adjusts microplacement of blocks and repeats routing with correct power rail widths [Ref. 8].

The final output is a finished chip design consisting of a core and a surrounding pad ring. Figure 23 shows an example of a non-optimized chip layout (without pads) after automatic compile. In these examples the lower level modules have retained their identity. This is done by including a "FIXEDBLOCK" compiler directive in the Verilog code. If this is done for low level modules, gross floorplanning inefficiencies can occur. In a final design the "FIXEDBLOCK" attribute should be removed, allowing optimal placement of standard cells and cell blocks. After routing and placement, the design can again be simulated using the VerilogOUT process. The next design step is timing analysis.

Figure 23- Floorplanning

B. TACTIC TIMING ANALYZER

Timing analysis is done using the TACTIC tool. These algorithms use the placement and timing information to produce a graphical display of all timing paths and timing violations (Figure 24). By "zooming in" on the critical lines in this full display, node labels can be seen and the critical timing paths identified (Figure 25). These names relate directly to the Verilog HDL modules. The time values along the bottom of the display indicate the node transition within one clock period. This allows timing delays to be quickly pinpointed. At this point design iteration is used to improve timing through design code modifications.

Figure 24 - TACTIC timing graphical display

Figure 25- Single timing path display

The two most critical timing paths in this design are in stage four of the floating point multiplier and stage six of the floating point adder. Excessive delays occur in these paths due to the serial use of adders and incrementers. Simulation indicates a maximum clock speed of 25 Mhz. However, placing additional registers along these two paths will increase operating speed to 45 Mhz. Additional timing delays were caused by excessive fan-out of the clock signal. The clock routing algorithms embedded in Epoch do not balance skew between clock nets [Ref. 8]. Clock buffer trees as shown in Figure 26 are therefore required.

Figure 26 - Clock buffer tree

C. FINAL CHIP DESIGN

The final radix-4 complex floating point butterfly design contained over 434,000 transistors on a 271,000 square mil chip. Each floating point adder requires 10,000 sq. mils and 24,312 transitions. The floating point multipliers each cover 20,507 sq. mils and use over 55,000 transistors. Time restraints prevented simulations of the complete design, however the floating point adder and floating point multiplier portions were tested extensively. Appendix A contains the specifications for the major design components. Appendix C and D contain the Verilog HDL compilation and Epoch autocompilation reports. Appendix G contain color plates of the chip layout and floorplan. Appendix H contains Epoch generated specifications for a selected set of parts.

D. CHIP TESTING

Memory constraint prevented extensive testing of the Verilog HDL code for this design. Time limitations also contributed to an inability complete testing. Follow-on work should focus on either obtaining the memory resources required for VerilogOUT code testing or using the top-level only output option. Improvement efforts should focus on increasing the number of registers in the both the floating point adder and multiplier. The two most complicated modules, Rounder and Shiftsel, are also candidates for additional testing.

VI. CONCLUSIONS AND RECOMMENDATIONS

This project has resulted in the design and successful simulation of an IEEE standard, 32-bit, FFT Transformer. The final design uses 434,138 transistors in a 204 pin, 440 x 615 mil package. The 12-stage complex adder and 13-stage complex multiplier will operate at a 25 Mhz clock speed and dissipate .8 watts of power. This work has also shown the utility of the structured design environment afforded by the use of Verilog and Epoch. This software gives the individual complete control through all phases of a design. The fact that the bulk of this work was completed in 60 days attests to this software's capability.

Design improvement efforts should focus on increasing the number of registers in both the floating point adder and multiplier. Timing delays caused by the serial use of adders and incrementers has resulted in a clock speed slower than the 45 Mhz design goal. Dividing the Rounder function into two modules and including an additional pipeline stage will increase chip speed. Design changes aimed at avoiding the serial use of adders and incrementers in floating point multiplier stage five and floating point adder stage six should also be completed. A reduction in chip size will be realized once a .8 mµ rule set is made available for Epoch. A recompilation of the design with the Epoch "FIXEDBLOCK" attributes removed would result in a higher transistor density. This would result in further size reductions.

Although Verilog contains powerful constructs for the design engineer, its use is hampered by the lack of a graphical interface. Such interfaces have been developed by commercial vendors. A graphical interface would greatly improve efficiency when creating a large design.

APPENDIX A SPECIFICATION SUMMARY

GEOSTAT version 2.1.

Copyright 1992, 1993 Cascade Design Automation Corporation.

CASCADE base location: /local/epoch

Project: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2

Ruleset: CDA1u2m1p
Technology: cmos
Reading file fftchip ...
Print file root statistics.

Bounding Box: -559500, -782110, 559505, 782110.

11190.050 x 15642.200 microns, 175036999.240 square microns.

440.553 x 615.835 mils, 271307.906 square mils.

Number of Pins = 204.

Number of unique cells = 6.

Number of Blocks = 420 Number of Sub-Glues = 1 Total Number of Instances = 421

Total number of nets = 408.

Total metal1 layer route length = 1896987.84 microns.

Total metal2 layer route length = 397789.68 microns.

Total metal3 layer route length = 0.00 microns.

Total route length = 2294777.52 microns.

Total number of vias = 3918.

Total number of segments = 0.

Reading transistor view ...

Total number of 434138 transistors.

0.625 Square mils per Transistor.

1.600 Transistors per square mil.

Power Dissipation = 762555 micro-watts.

Copyright 1992, 1993 Cascade Design Automation Corporation.

CASCADE base location: /local/epoch

Project: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2

Ruleset: CDA1u2m1p Technology: cmos Reading file fft ...

Print file root statistics.

Bounding Box: -6520, -6750, 946430, 1427090.

9529.500 x 14338.400 microns, 136637786.522 square microns.

375.177 x 564.504 mils, 211789.000 square mils.

Number of Pins = 814.

Number of unique cells = 24.

Number of Standard cells = 684

Number of Sub-Glues = 2

Total Number of Instances = 686

Total number of nets = 958.

Total metal1 layer route length = 2019410.72 microns.

Total metal2 layer route length = 803834.56 microns.

Total metal3 layer route length = 0.00 microns.

Total route length =

= 2823245.28 microns.

Total number of vias = 25628.

Total number of segments = 0.

Reading transistor view ...

Total number of 433648 transistors.

0.488 Square mils per Transistor.

2.048 Transistors per square mil.

Power Dissipation = 708729 micro-watts.

Copyright 1992, 1993 Cascade Design Automation Corporation.

CASCADE base location: /local/epoch

Project: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2

Ruleset: CDA1u2m1p Technology: cmos

Reading file complex_adder_4_input ...

Print file root statistics.

Bounding Box: -1540, -10630, 577745, 721510.

5792.850 x 7321.400 microns, 42411772.139 square microns.

228.065 x 288.244 mils, 65738.375 square mils.

Number of Pins = 457.

Number of unique cells = 3.

Number of Standard cells = 10

Number of Sub-Glues = 6

Total Number of Instances = 16

Total number of nets = 494.

Total metal1 layer route length = 912923.76 microns.

Total metal2 layer route length = 218564.56 microns.

Total metal3 layer route length = 0.00 microns.

Total route length = 1131488.32 microns.

Total number of vias = 5936.

Total number of segments = 0.

Reading transistor view ...

Total number of 145962 transistors.

0.450 Square mils per Transistor.

2.220 Transistors per square mil.

Power Dissipation = 215625 micro-watts.

Copyright 1992, 1993 Cascade Design Automation Corporation.

CASCADE base location: /local/epoch

Project: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2

Ruleset: CDA1u2m1p Technology: cmos

Reading file complex_mplier ...

Print file root statistics.

Bounding Box: -600, 0, 792530, 946430.

7931.300 x 9464.300 microns, 75064199.192 square microns.

312.256 x 372.610 mils, 116349.742 square mils.

Number of Pins = 797.

Number of unique cells = 4.

Number of Standard cells = 10

Number of Sub-Glues = 6

Total Number of Instances = 16

Total number of nets = 366.

Total metal1 layer route length = 944627.12 microns.

Total metal2 layer route length = 470926.20 microns.

Total metal3 layer route length = 0.00 microns.

Total route length

= 1415553.32 microns.

Total number of vias = 7380.

Total number of segments = 0.

Reading transistor view ...

Total number of 269670 transistors.

0.431 Square mils per Transistor.

2.318 Transistors per square mil.

Power Dissipation = 434280 micro-watts.

Copyright 1992, 1993 Cascade Design Automation Corporation.

CASCADE base location: /local/epoch

Project: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2

Ruleset: CDA1u2m1p
Technology: cmos
Reading file fpadder ...
Print file root statistics.

Bounding Box: 0, 0, 230800, 279500.

2308.000 x 2795.000 microns, 6450860.000 square microns.

90.866 x 110.039 mils, 9998.853 square mils.

Number of Pins = 146.

Number of unique cells = 55.

Number of Standard cells = 1300

Number of Datapaths = 1

Total Number of Instances = 1301

Total number of nets = 1469.

Total metal 1 layer route length = 495568.28 microns.

Total metal2 layer route length = 334620.30 microns.

Total metal3 layer route length = 0.00 microns.

Total route length

= 830188.58 microns.

Total number of vias = 28375.

Total number of segments = 0.

Reading transistor view ...

Total number of 24312 transistors.

0.411 Square mils per Transistor.

2.431 Transistors per square mil.

Power Dissipation = 35636 micro-watts.

Copyright 1992, 1993 Cascade Design Automation Corporation.

CASCADE base location: /local/epoch

Project: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2

Ruleset: CDA1u2m1p Technology: cmos Reading file fpmplier ... Print file root statistics.

Bounding Box: -9240, -3040, 378445, 338725.

3876.850 x 3417.650 microns, 13249716.358 square microns.

152.632 x 134.553 mils, 20537.102 square mils.

Number of Pins = 262.

Number of unique cells = 66.

Number of Standard cells = 1077

Number of Datapaths = 2

Total Number of Instances = 1079

Total number of nets = 1272.

Total metal1 layer route length = 769149.68 microns.

Total metal2 layer route length = 368610.44 microns.

Total metal3 layer route length = 0.00 microns.

Total route length

= 1137760.12 microns.

Total number of vias = 29776.

Total number of segments = 0.

Reading transistor view ...

Total number of 55239 transistors.

0.372 Square mils per Transistor.

2.690 Transistors per square mil.

Power Dissipation = 91287 micro-watts.

Copyright 1992, 1993 Cascade Design Automation Corporation.

CASCADE base location: /local/epoch

Project: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2

Ruleset: CDA1u2m1p Technology: cmos Reading file rounder ... Print file root statistics.

Bounding Box: -1160, -490, 2560, 4165.

37.200 x 46.550 microns, 1731.660 square microns.

1.465 x 1.833 mils, 2.684 square mils.

Number of Pins = 57.

Number of unique cells = 8.

Number of Standard cells = 58

Total Number of Instances = 58

Total number of nets = 114.

Total metal1 layer route length = 0.00 microns.

Total metal2 layer route length = 0.00 microns.

Total metal3 layer route length = 0.00 microns.

Total route length =

= 0.00 microns.

Total number of vias = 0.

Total number of segments = 0.

Reading transistor view ...

Total number of 701 transistors.

0.004 Square mils per Transistor.

261.170 Transistors per square mil.

No power dissipation value found.

APPENDIX B VERILOG HDL CODE

```
module addertst;
// epoch set_attribute FIXEDBLOCK =1
                                                                                                                                                      //rounding mode
                                                                                                    rnd mode;
                         reg[1:0]
                                                                           Ain,Bin;
                         reg[31:0]
                                                                           clock,clear;
                         reg
'include "header.v"
                        integer i,j; parameter cycle=100;
                         fpadder INSTAN (clear,clock,Ain,Bin,rnd_mode,regout5);
                        initial clock=0;
                         always #(cycle/2) clock=~clock; //generator
                        initial begin
                                                 $\display("\n *********** 2x2=4
**************************\n");
                                                 #(cycle) Ain = 32'h40000000; Bin =32'h40000000; rnd_mode =0; clear =
1;
                                                 \sigma(n) = \Gamma(n) + r^* + r^
******** \n");
                                                 #(cycle) Ain = 32'h71800000; Bin =32'h40000000; rnd_mode =0; clear =
1;
                                                 #(cycle) Ain = 32'h73c00000; Bin =32'h40000000; rnd_mode =0; clear =
1;
                                                 $display("\n *********** Pos x Pos / neg +neg exp
******** \n");
```

```
#(cycle) Ain = 32'h03800000; Bin =32'h03800000; rnd_mode =0; clear =
1;
             $display("\n ************Positive (Norm) X Positive (Unnorm)
****** \n");
             \#(\text{cycle}) \text{ Ain} = 32\text{'h}00800000; \text{ Bin} = 32\text{'h}00400000; \text{ rnd mode} = 0; \text{ clear} =
1;
             $display("\n ************Positive X Positive (Unnorm)
************ \n"):
             #(cycle) Ain = 32'h00400000; Bin =32'h00400000; rnd_mode =0; clear =
1;
             $display("\n ********** Negative X Positive
****** \n"):
             #(cycle) Ain = 32'h81811100; Bin =32'h01800000; rnd_mode =0; clear =
1;
             $display("\n *********** Negative X Negative (underflow)
****** \n"):
            #(cycle) Ain = 32'h81800111; Bin =32'h81811100; rnd_mode =0; clear =
1;
             $display("\n ********** Negative x Positive
     ************ \n"):
            #(cycle) Ain = 32'h44001100; Bin =32'h83800000; rnd_mode =0; clear =
1;
            $\display(\'\n ********** 2x2=4
        ****** \n");
            #(cycle) Ain = 32'h44000000; Bin =32'hde000000; rnd_mode =0; clear =
1;
            $display("\n ********** Negative x Negative
****** \n");
            #(cycle) Ain = 32'hde000000; Bin =32'hde000000; rnd_mode =0; clear = 1;
```

```
$display("\n ************ Denor x Denorm
****** \n"):
             #(cycle) Ain = 32'h00100000; Bin =32'h00100000; rnd_mode =0; clear =
1;
             $display("\n ********** Inf x pos ********* \n");
             #(cycle) Ain = 32'h7f800010; Bin =32'h40000010; rnd_mode =0; clear = 1;
             #(cycle) Ain = 32'h7fc11111; Bin =32'h40011111; rnd_mode =0; clear = 1;
             #(cycle) Ain =32'h00000000; Bin = 32'h00000000; rnd_mode=0;
             #(4*cycle);
             #cycle $finish;
      end
initial begin
      $monitor ("%0d", $time,, "clock: %b \n\n A sign: %b \n A mantissa: %b \n A
exponent: %b", clock,Ain[31],Ain[22:0],Ain[30:23],
            "\n\n B sign: %b \n B mantissa: %b \n B exponent:
%b",Bin[31],Bin[22:0],Bin[30:23],
            "\n\n Res sign: %b \n Res mantissa: %b \n Res exponent:
%b",regout5[31],regout5[22:0],regout5[30:23],
          "\n\n Rounding Mode: %b Clear: %b ",rnd_mode,clear,
              "\n\n NAN: %b INF: %b OVFL: %b UNFL: %b INEXACT: %b
\n\n",regout5[35],regout5[36],regout5[33],regout5[32],regout5[34]);
```

endmodule

```
module bitshift (in,out,lost_bit,exp_add);
//epoch pre_compiled bitshift
                      //input operand
input [25:0]
              in;
output [25:0] out;
                      //result operand
               lost_bit,exp_add;
output
reg [25:0]
               out;
               lost_bit,exp_add;
reg
always @ (in) begin
       out=shift(in);
       if (in[25]==1) begin
               lost_bit=in[0];
               exp_add=1;
               end
       else begin
               lost_bit=0;
               exp_add=0;
               end
       end
// shift function
function [25:0] shift;
       input [25:0] in;
       if (in[25]==1)
               shift = \{1'b0, in[25:1]\};
        else
               shift=in;
endfunction
endmodule
```

// Parameter Declaration

'define CMUL 4'b0100 'define FFT4 4'b0101

```
parameter
             NUMBER SIZE = 32;
parameter
             CYCLE= 10;
             EXP_SIZE = 8;
parameter
             MANTISSA\_SIZE = 23;
parameter
             COMPLEX_NUMBER_SIZE=(2*NUMBER_SIZE);
parameter
             INSTRUCTION_SIZE=8;
parameter
parameter
             STATUS_REG_SIZE=8;
//Register declarations
reg
      [COMPLEX_NUMBER_SIZE-1:0] Reg_A, Reg_B,
                                       Pre_1, Pre_2, Pre_3,
                                       Latch 0,Latch_1,Latch_2,Latch_3,
                                       Result;
      [INSTRUCTION_SIZE-1:0]
                                       ir;
reg
                                       fpsr;
      [STATUS_REG_SIZE-1:0]
reg
                                       reset;
reg
//Instruction Fields
'define OPCODE
                   ir[3:0];
                                ir[4];
`define
             VALID
'define PROCESS
                   ir[5];
// Define opcodes for each instruction
'define NOP 4'b0000
'define STALL
                   4'b0001
                   4'b0010
'define FLUSH
'define CADD 4'b0011
```

```
rnd mode, Prod Real, Prod Imag, FPSR);
//epoch set_attribute FIXEDBLOCK=1
//epoch pre_compiled complex_mplier
parameter
             NUMBER_SIZE=32;
input clear, clock;
input [NUMBER_SIZE-1:0] A_Real,A_Imag,B_Real,B_Imag;
input [1:0]
                    rnd mode;
output [NUMBER_SIZE-1:0]
                                  Prod Real, Prod Imag;
                           FPSR:
output [4:0]
wire
       [36:0] FP1_out,FP2_out,FP3_out,FP4_out,Result_Imag,Result_Real;
wire
       M_ovf,M_unf,M_inexact,M_nan,M_inf,ovfl,unfl,inexact,nan,inf;
       [31:0] Prod Real, Prod Imag;
reg
       [4:0] FPSR;
reg
//epoch set_attribute FIXEDBLOCK=1
fpmplier FP_Multiplier1 (clear,clock,A_Real,B_Real,rnd_mode,FP1_out),
        FP_Multiplier2 (clear,clock,A_Real,B_Imag,rnd_mode,FP2_out),
        FP_Multiplier3 (clear,clock,A_Imag,B_Real,rnd_mode,FP3_out),
        FP_Multiplier4 (clear,clock,A_Imag,B_Imag,rnd_mode,FP4_out);
fpadder
              FP Adder1 (clear, clock,
FP2_out[31:0],FP3_out[31:0],rnd_mode,Result_Imag),
        FP_Adder2 (clear, clock, FP1_out[31:0], FP4_out[31:0],rnd_mode,Result_Real);
stdor4 or1(FP1_out[32],FP2_out[32],FP3_out[32],FP4_out[32],M_ovf),
       or2(FP1_out[33],FP2_out[33],FP3_out[33],FP4_out[33],M_unf),
       or3(FP1_out[34],FP2_out[34],FP3_out[34],FP4_out[34],M_inexact),
       or4(FP1_out[35],FP2_out[35],FP3_out[35],FP4_out[35],M_nan),
       or5(FP1_out[36],FP2_out[36],FP3_out[36],FP4_out[36],M_inf);
stdor3 or6(Result_Imag[32],Result_Real[32],M_ovf,ovfl),
```

module complex_mplier (clear,clock, A_Real,A_Imag, B_Real,B_Imag,

```
or7(Result_Imag[33],Result_Real[33],M_unf,unfl),
or8(Result_Imag[34],Result_Real[34],M_inexact,inexact),
or9(Result_Imag[35],Result_Real[35],M_nan,nan),
or10(Result_Imag[36],Result_Real[36],M_inf,inf);
```

```
always @ (Result_Imag or Result_Real) begin
Prod_Real=Result_Real[31:0];
Prod_Imag=Result_Imag[31:0];
FPSR={inf,nan,inexact,unfl,ovfl};
end
```

endmodule

```
module
complex_adder_4_input(clear,clock,rnd_mode,A_Real,A_Imag,B_Real,B_Imag,C_Real,C_
_Imag,D_Real,D_Imag,Result_Real,Result_Imag,FPSR);
//epoch set_attribute FIXEDBLOCK=1
// epoch pre_compiled complex_adder_4_input
`define
              Result1
                                   Result1[36:32]
`define
              Result2
                                   Result2[36:32]
`define
              Result3
                                   Result3[36:32]
`define
              Result4
                                   Result4[36:32]
`define
              Result5
                                   Result5[36:32]
`define
              Result6
                                   Result5[36:32]
parameter
              NUMBER SIZE=32;
input
       clear, clock;
input
       [NUMBER_SIZE-1:0] A_Real,A_Imag,B_Real,B_Imag,
                       C_Real,C_Imag,D_Real,D_Imag;
input [1:0]
                     rnd_mode;
output [NUMBER_SIZE-1:0]
                                   Result_Real,Result_Imag;
output [4:0]
                            FPSR:
       [NUMBER_SIZE-1:0]
                                   Result_Real,Result_Imag;
reg
wire
                            FPSR;
       [4:0]
wire
       [36:0] Result1, Result2, Result3, Result4, Result5, Result6;
wire
       [4:0] Partial_FPSR;
wire
      M ovf, M unf, M inexact, M nan, M inf, ovfl, unfl, inexact, nan, inf:
reg
       [31:0] Prod_Real,Prod_Imag;
always @ (clock) begin
       Result_Real= Result5[31:0];
       Result_Imag= Result6[31:0];
       end
```

//epoch set_attribute FIXEDBLOCK=1

```
fpadder
               FP Adder1 (clear, clock, A Real, B_Real, rnd_mode, Result1),
        FP_Adder2 (clear, clock, A_Imag, B_Imag,rnd_mode,Result2),
        FP Adder3 (clear, clock, C Real, D Real, rnd mode, Result3),
        FP_Adder4 (clear, clock, C_Imag, D_Imag, rnd_mode, Result4),
        FP Adder5 (clear, clock, Result1[31:0], Result3[31:0], rnd_mode, Result5),
        FP Adder6 (clear, clock, Result2[31:0], Result4[31:0], rnd_mode, Result6);
stdor4 or1(Result1[32],Result2[32],Result3[32],Result4[32],Partial_FPSR[0]),
       or2(Result1[33],Result2[33],Result3[33],Result4[33],Partial_FPSR[1]),
       or3(Result1[34],Result2[34],Result3[34],Result4[34],Partial_FPSR[2]),
       or4(Result1[35],Result2[35],Result3[35],Result4[35],Partial_FPSR[3]),
       or5(Result1[36],Result2[36],Result3[36],Result4[36],Partial_FPSR[4]);
stdor3 or6(Result5[32],Result6[32],Partial_FPSR[0],FPSR[0]),
       or7(Result5[33],Result6[33],Partial_FPSR[1],FPSR[1]),
       or8(Result5[34],Result6[34],Partial_FPSR[2],FPSR[2]),
       or9(Result5[35],Result6[35],Partial FPSR[3],FPSR[3]),
       or10(Result5[36],Result6[36],Partial_FPSR[4],FPSR[4]);
endmodule
```

```
module encoder (in,out);
//epoch pre_compiled encoder
input [47:0]
                  in;
output [4:0]
                  out;
         [4:0] out,a;
reg
         [47:0] h;
reg
always @(in or h or a) begin
        out=encode(in);
end
function [4:0] encode;
        input [47:0]
                          in;
        begin
                 h[47]=in[47];
                 h[46]=in[46] \& \sim in[47];
                 h[45]=in[45] \& \sim in[46] \& \sim in[47];
                 h[44]=in[44] \& \sim in[45] \& \sim in[46] \& \sim in[47];
                 h[43]=in[43] \& \sim in[44] \& \sim in[45] \& \sim in[46] \& \sim in[47];
                 h[42]=in[42] \& \sim in[43] \& \sim in[44] \& \sim in[45] \& \sim in[46] \& \sim in[47];
                 h[41]=in[41] \& \sim in[42] \& \sim in[43] \& \sim in[44] \& \sim in[45] \& \sim in[46]
                 & \sim in[47];
                 h[40]=in[40] \& \sim in[41] \& \sim in[42] \& \sim in[43]
                 & \sim in[44] & \sim in[45] & \sim in[46] & \sim in[47];
                 h[39]=in[39] \& \sim in[40] \& \sim in[41] \& \sim in[42] \& \sim in[43]
                 & \sim in[44] & \sim in[45] & \sim in[46] & \sim in[47];
                 h[38]=in[38] \& \sim in[39] \& \sim in[40] \& \sim in[41] \& \sim in[42] \& \sim in[43]
```

```
\& \sim in[44] \& \sim in[45] \& \sim in[46] \& \sim in[47];
h[37]=in[37]
\& \sim in[38] \& \sim in[39] \& \sim in[40] \& \sim in[41] \& \sim in[42] \& \sim in[43]
& \sim in[44] \& \sim in[45] \& \sim in[46] \& \sim in[47];
h[36]=in[36] \& \sim in[37] \& \sim in[38] \& \sim in[39] \& \sim in[40] \& \sim in[41]
& ~in[42] & ~in[43] & ~in[44] & ~in[45] & ~in[46] & ~in[47]
h[35]=in[35] \& \sim in[36] \& \sim in[37] \& \sim in[38] \& \sim in[39] \& \sim in[40]
& \sim in[41] & \sim in[42] & \sim in[43] & \sim in[44] & \sim in[45] & \sim in[46]
& \sim in[47]:
h[34]=in[34] \& \sim in[35] \& \sim in[36] \& \sim in[37] \& \sim in[38] \& \sim in[39]
\& \sim in[40] \& \sim in[41] \& \sim in[42] \& \sim in[43] \& \sim in[44] \& \sim in[45]
\& \sim in[46] \& \sim in[47];
h[33]=in[33] \& \sim in[34] \& \sim in[35] \& \sim in[36] \& \sim in[37] \& \sim in[38]
\& \sim in[39] \& \sim in[40] \& \sim in[41] \& \sim in[42] \& \sim in[43] \& \sim in[44]
\& \sim in[45] \& \sim in[46] \& \sim in[47];
h[32]=in[32] \& \sim in[33] \& \sim in[34] \& \sim in[35] \& \sim in[36] \& \sim in[37]
\& \sim in[38] \& \sim in[39] \& \sim in[40] \& \sim in[41] \& \sim in[42] \& \sim in[43]
& \sim in[44] \& \sim in[45] \& \sim in[46] \& \sim in[47];
h[31]=in[31] \& -in[32] \& -in[33] \& -in[34] \& -in[35] \& -in[36]
\& -in[37] \& -in[38] \& -in[39] \& -in[40] \& -in[41] \& -in[42]
\& \sim in[43] \& \sim in[44] \& \sim in[45] \& \sim in[46] \& \sim in[47];
h[30]=in[30] \& \sim in[31] \& \sim in[32] \& \sim in[33] \& \sim in[34] \& \sim in[35]
\& -in[36] \& -in[37] \& -in[38] \& -in[39] \& -in[40] \& -in[41]
\& \sim \inf[42] \& \sim \inf[43] \& \sim \inf[44] \& \sim \inf[45] \& \sim \inf[46] \& \sim \inf[47]
h[29]=in[29] \& \sim in[30] \& \sim in[31] \& \sim in[32] \& \sim in[33] \& \sim in[34]
\& \sim in[35] \& \sim in[36] \& \sim in[37] \& \sim in[38] \& \sim in[39] \& \sim in[40]
\& -in[41] \& -in[42] \& -in[43] \& -in[44] \& -in[45] \& -in[46]
& \sim in[47];
h[28]=in[28] \& \sim in[29] \& \sim in[30] \& \sim in[31] \& \sim in[32] \& \sim in[33]
\& \sim in[34] \& \sim in[35] \& \sim in[36] \& \sim in[37] \& \sim in[38] \& \sim in[39]
\& -in[40] \& -in[41] \& -in[42] \& -in[43] \& -in[44] \& -in[45]
& \sim in[46] & \sim in[47];
```

```
h[27]=in[27] \& \sim in[28] \& \sim in[29] \& \sim in[30] \& \sim in[31] \& \sim in[32]
& \sim in[33] & \sim in[34] & \sim in[35] & \sim in[36] & \sim in[37] & \sim in[38]
\& \sim in[39] \& \sim in[40] \& \sim in[41] \& \sim in[42] \& \sim in[43] \& \sim in[44]
\& \sim in[45] \& \sim in[46] \& \sim in[47];
h[26]=in[26] \& -in[27] \& -in[28] \& -in[29] \& -in[30] \& -in[31]
& \sim \inf[32] & \sim \inf[33] & \sim \inf[34] & \sim \inf[35] & \sim \inf[36] & \sim \inf[37]
& \sim in[38] & \sim in[39] & \sim in[40] & \sim in[41] & \sim in[42] & \sim in[43]
\& \sim \inf[44] \& \sim \inf[45] \& \sim \inf[46] \& \sim \inf[47]:
h[25]=in[25] \& \sim in[26] \& \sim in[27] \& \sim in[28] \& \sim in[29] \& \sim in[30]
& \sim \inf[31] & \sim \inf[32] & \sim \inf[33] & \sim \inf[34] & \sim \inf[35] & \sim \inf[36]
& \sim \inf[37] & \sim \inf[38] & \sim \inf[39] & \sim \inf[40] & \sim \inf[41] & \sim \inf[42]
& \sim \inf[43] & \sim \inf[44] & \sim \inf[45] & \sim \inf[46] & \sim \inf[47];
h[24]=in[24] \& \sim in[25] \& \sim in[26] \& \sim in[27] \& \sim in[28] \& \sim in[29]
\& \sim in[30] \& \sim in[31] \& \sim in[32] \& \sim in[33] \& \sim in[34] \& \sim in[35]
& \sim \inf[36] & \sim \inf[37] & \sim \inf[38] & \sim \inf[39] & \sim \inf[40] & \sim \inf[41]
\& \sim \inf[42] \& \sim \inf[43] \& \sim \inf[44] \& \sim \inf[45] \& \sim \inf[46] \& \sim \inf[47]
h[23]=in[23] \& \sim in[24] \& \sim in[25] \& \sim in[26] \& \sim in[27] \& \sim in[28]
& -in[29] & -in[30] & -in[31] & -in[32] & -in[33] & -in[34]
& \sim in[35] & \sim in[36] & \sim in[37] & \sim in[38] & \sim in[39] & \sim in[40]
& -in[41] & -in[42] & -in[43] & -in[44] & -in[45] & -in[46]
& \sim in[47];
h[22]=in[22] \& -in[23] \& -in[24] \& -in[25] \& -in[26] \& -in[27]
& \sim in[28] & \sim in[29] & \sim in[30] & \sim in[31] & \sim in[32] & \sim in[33]
\& \sim in[34] \& \sim in[35] \& \sim in[36] \& \sim in[37] \& \sim in[38] \& \sim in[39]
& \sim \inf[40] & \sim \inf[41] & \sim \inf[42] & \sim \inf[43] & \sim \inf[44] & \sim \inf[45]
& \sim in[46] & \sim in[47];
h[21]=in[21] \& \sim in[22] \& \sim in[23] \& \sim in[24] \& \sim in[25] \& \sim in[26]
& \sim in[27] & \sim in[28] & \sim in[29] & \sim in[30] & \sim in[31] & \sim in[32]
& \sim in[33] & \sim in[34] & \sim in[35] & \sim in[36] & \sim in[37] & \sim in[38]
& \sim in[39] & \sim in[40] & \sim in[41] & \sim in[42] & \sim in[43] & \sim in[44]
\& \sim in[45] \& \sim in[46] \& \sim in[47];
h[20]=in[20] \& \sim in[21] \& \sim in[22] \& \sim in[23] \& \sim in[24] \& \sim in[25]
\& \sim in[26] \& \sim in[27] \& \sim in[28] \& \sim in[29] \& \sim in[30] \& \sim in[31]
& \sim in[32] & \sim in[33] & \sim in[34] & \sim in[35] & \sim in[36] & \sim in[37]
& \sim in[38] & \sim in[39] & \sim in[40] & \sim in[41] & \sim in[42] & \sim in[43]
\& \sim \inf[44] \& \sim \inf[45] \& \sim \inf[46] \& \sim \inf[47];
```

```
h[19]=in[19] \& \sim in[20] \& \sim in[21] \& \sim in[22] \& \sim in[23] \& \sim in[24]
\& -in[25] \& -in[26] \& -in[27] \& -in[28] \& -in[29] \& -in[30]
\& -in[31] \& -in[32] \& -in[33] \& -in[34] \& -in[35] \& -in[36]
& \sim in[37] & \sim in[38] & \sim in[39] & \sim in[40] & \sim in[41] & \sim in[42]
\& \sim \inf[43] \& \sim \inf[44] \& \sim \inf[45] \& \sim \inf[46] \& \sim \inf[47];
h[18]=in[18] \& \sim in[19] \& \sim in[20] \& \sim in[21] \& \sim in[22] \& \sim in[23]
& \sim in[24] & \sim in[25] & \sim in[26] & \sim in[27] & \sim in[28] & \sim in[29]
\& -in[30] \& -in[31] \& -in[32] \& -in[33] \& -in[34] \& -in[35]
& \sim in[36] & \sim in[37] & \sim in[38] & \sim in[39] & \sim in[40] & \sim in[41]
& \sim \inf[42] & \sim \inf[43] & \sim \inf[44] & \sim \inf[45] & \sim \inf[46] & \sim \inf[47]
h[17]=in[17] \& \sim in[18] \& \sim in[19] \& \sim in[20] \& \sim in[21] \& \sim in[22]
\& \sim in[23] \& \sim in[24] \& \sim in[25] \& \sim in[26] \& \sim in[27] \& \sim in[28]
\& \sim in[29] \& \sim in[30] \& \sim in[31] \& \sim in[32] \& \sim in[33] \& \sim in[34]
& \sim \inf[35] & \sim \inf[36] & \sim \inf[37] & \sim \inf[38] & \sim \inf[39] & \sim \inf[40]
& ~in[41] & ~in[42] & ~in[43] & ~in[44] & ~in[45] & ~in[46]
\& \sim in[47];
h[16]=in[16] \& \sim in[17] \& \sim in[18] \& \sim in[19] \& \sim in[20] \& \sim in[21]
\& -in[22] \& -in[23] \& -in[24] \& -in[25] \& -in[26] \& -in[27]
& ~in[28] & ~in[29] & ~in[30] & ~in[31] & ~in[32] & ~in[33]
\& \sim in[34] \& \sim in[35] \& \sim in[36] \& \sim in[37] \& \sim in[38] \& \sim in[39]
\& -in[40] \& -in[41] \& -in[42] \& -in[43] \& -in[44] \& -in[45]
\& \sim in[46] \& \sim in[47];
h[15]=in[15] \& \sim in[16] \& \sim in[17] \& \sim in[18] \& \sim in[19] \& \sim in[20]
& \sim in[21] & \sim in[22] & \sim in[23] & \sim in[24] & \sim in[25] & \sim in[26]
\& -in[27] \& -in[28] \& -in[29] \& -in[30] \& -in[31] \& -in[32]
\& -in[33] \& -in[34] \& -in[35] \& -in[36] \& -in[37] \& -in[38]
& \sim in[39] & \sim in[40] & \sim in[41] & \sim in[42] & \sim in[43] & \sim in[44]
\& \sim in[45] \& \sim in[46] \& \sim in[47];
h[14]=in[14] \& \sim in[15] \& \sim in[16] \& \sim in[17] \& \sim in[18] \& \sim in[19]
& \sim in[20] & \sim in[21] & \sim in[22] & \sim in[23] & \sim in[24] & \sim in[25]
\& \sim in[26] \& \sim in[27] \& \sim in[28] \& \sim in[29] \& \sim in[30] \& \sim in[31]
& \sim in[32] & \sim in[33] & \sim in[34] & \sim in[35] & \sim in[36] & \sim in[37]
& \sim in[38] & \sim in[39] & \sim in[40] & \sim in[41] & \sim in[42] & \sim in[43]
\& \sim \inf[44] \& \sim \inf[45] \& \sim \inf[46] \& \sim \inf[47];
h[13]=in[13] \& \sim in[14] \& \sim in[15] \& \sim in[16] \& \sim in[17] \& \sim in[18]
& \sim in[19] & \sim in[20] & \sim in[21] & \sim in[22] & \sim in[23] & \sim in[24]
& ~in[25] & ~in[26] & ~in[27] & ~in[28] & ~in[29] & ~in[30]
\& \sim \inf[31] \& \sim \inf[32] \& \sim \inf[33] \& \sim \inf[34] \& \sim \inf[35] \& \sim \inf[36]
\& \sim in[37] \& \sim in[38] \& \sim in[39] \& \sim in[40] \& \sim in[41] \& \sim in[42]
```

```
\& \sim in[43] \& \sim in[44] \& \sim in[45] \& \sim in[46] \& \sim in[47];
 h[12]=in[12] \& \sim in[13] \& \sim in[14] \& \sim in[15] \& \sim in[16] \& \sim in[17]
 & \sim in[18] & \sim in[19] & \sim in[20] & \sim in[21] & \sim in[22] & \sim in[23]
 & \sim in[24] & \sim in[25] & \sim in[26] & \sim in[27] & \sim in[28] & \sim in[29]
 & \sim in[30] & \sim in[31] & \sim in[32] & \sim in[33] & \sim in[34] & \sim in[35]
 \& \sim in[36] \& \sim in[37] \& \sim in[38] \& \sim in[39] \& \sim in[40] \& \sim in[41]
 & ~in[42] & ~in[43] & ~in[44] & ~in[45] & ~in[46] & ~in[47]
h[11]=in[11] \& -in[12] \& -in[13] \& -in[14] \& -in[15] \& -in[16]
& \sim in[17] & \sim in[18] & \sim in[19] & \sim in[20] & \sim in[21] & \sim in[22]
& \sim in[23] & \sim in[24] & \sim in[25] & \sim in[26] & \sim in[27] & \sim in[28]
& \sim in[29] & \sim in[30] & \sim in[31] & \sim in[32] & \sim in[33] & \sim in[34]
& \sim in[35] & \sim in[36] & \sim in[37] & \sim in[38] & \sim in[39] & \sim in[40]
& \sim in[41] & \sim in[42] & \sim in[43] & \sim in[44] & \sim in[45] & \sim in[46]
& \sim in[47];
h[10]=in[10] \& \sim in[11] \& \sim in[12] \& \sim in[13] \& \sim in[14] \& \sim in[15]
\& \sim \inf[16] \& \sim \inf[17] \& \sim \inf[18] \& \sim \inf[19] \& \sim \inf[20] \& \sim \inf[21]
\& \sim in[22] \& \sim in[23] \& \sim in[24] \& \sim in[25] \& \sim in[26] \& \sim in[27]
\& \sim in[28] \& \sim in[29] \& \sim in[30] \& \sim in[31] \& \sim in[32] \& \sim in[33]
\& \sim in[34] \& \sim in[35] \& \sim in[36] \& \sim in[37] \& \sim in[38] \& \sim in[39]
& \sim in[40] & \sim in[41] & \sim in[42] & \sim in[43] & \sim in[44] & \sim in[45]
\& \sim in[46] \& \sim in[47];
h[9]=in[9] \& \sim in[10] \& \sim in[11] \& \sim in[12] \& \sim in[13] \& \sim in[14]
& \sim in[15] & \sim in[16] & \sim in[17] & \sim in[18] & \sim in[19] & \sim in[20]
& ~in[21] & ~in[22] & ~in[23] & ~in[24] & ~in[25] & ~in[26]
& \sim in[27] & \sim in[28] & \sim in[29] & \sim in[30] & \sim in[31] & \sim in[32]
& \sim in[33] & \sim in[34] & \sim in[35] & \sim in[36] & \sim in[37] & \sim in[38]
& \sim in[39] & \sim in[40] & \sim in[41] & \sim in[42] & \sim in[43] & \sim in[44]
\& \sim \inf[45] \& \sim \inf[46] \& \sim \inf[47]:
h[8]=in[8] \& \sim in[9] \& \sim in[10] \& \sim in[11] \& \sim in[12] \& \sim in[13]
\& -in[14] \& -in[15] \& -in[16] \& -in[17] \& -in[18] \& -in[19]
& \sim in[20] & \sim in[21] & \sim in[22] & \sim in[23] & \sim in[24] & \sim in[25]
& \sim in[26] & \sim in[27] & \sim in[28] & \sim in[29] & \sim in[30] & \sim in[31]
& ~in[32] & ~in[33] & ~in[34] & ~in[35] & ~in[36] & ~in[37]
& \sim in[38] & \sim in[39] & \sim in[40] & \sim in[41] & \sim in[42] & \sim in[43]
& \sim in[44] & \sim in[45] & \sim in[46] & \sim in[47];
h[7]=in[7] \& \sim in[8] \& \sim in[9] \& \sim in[10] \& \sim in[11] \& \sim in[12]
& \sim in[13] & \sim in[14] & \sim in[15] & \sim in[16] & \sim in[17] & \sim in[18]
& ~in[19] & ~in[20] & ~in[21] & ~in[22] & ~in[23] & ~in[24]
```

```
\& \sim in[25] \& \sim in[26] \& \sim in[27] \& \sim in[28] \& \sim in[29] \& \sim in[30]
 & \sim in[31] & \sim in[32] & \sim in[33] & \sim in[34] & \sim in[35] & \sim in[36]
 \& \sim in[37] \& \sim in[38] \& \sim in[39] \& \sim in[40] \& \sim in[41] \& \sim in[42]
 \& -in[43] \& -in[44] \& -in[45] \& -in[46] \& -in[47];
h[6]=in[6] \& \sim in[7] \& \sim in[8] \& \sim in[9] \& \sim in[10] \& \sim in[11] \& \sim in[12]
 \& \sim in[13] \& \sim in[14] \& \sim in[15] \& \sim in[16] \& \sim in[17] \& \sim in[18]
 & \sim \inf[19] & \sim \inf[20] & \sim \inf[21] & \sim \inf[22] & \sim \inf[23] & \sim \inf[24]
 & \sim in[25] & \sim in[26] & \sim in[27] & \sim in[28] & \sim in[29] & \sim in[30]
 & \sim in[31] & \sim in[32] & \sim in[33] & \sim in[34] & \sim in[35] & \sim in[36]
 \& -in[37] \& -in[38] \& -in[39] \& -in[40] \& -in[41] \& -in[42]
 \& -in[43] \& -in[44] \& -in[45] \& -in[46] \& -in[47];
h[5]=in[5] \& \sim in[6] \& \sim in[7] \& \sim in[8] \& \sim in[9] \& \sim in[10] \& \sim in[11]
& \sim \inf[12] & \sim \inf[13] & \sim \inf[14] & \sim \inf[15] & \sim \inf[16] & \sim \inf[17]
& \sim in[18] & \sim in[19] & \sim in[20] & \sim in[21] & \sim in[22] & \sim in[23]
& \sim in[24] & \sim in[25] & \sim in[26] & \sim in[27] & \sim in[28] & \sim in[29]
\& \sim in[30] \& \sim in[31] \& \sim in[32] \& \sim in[33] \& \sim in[34] \& \sim in[35]
& \sim in[36] & \sim in[37] & \sim in[38] & \sim in[39] & \sim in[40] & \sim in[41]
\& \sim in[42] \& \sim in[43] \& \sim in[44] \& \sim in[45] \& \sim in[46] \& \sim in[47]
h[4]=in[4] \& \sim in[5] \& \sim in[6] \& \sim in[7] \& \sim in[8] \& \sim in[9] \& \sim in[10]
& \sim \inf[11] & \sim \inf[12] & \sim \inf[13] & \sim \inf[14] & \sim \inf[15] & \sim \inf[16]
\& -in[17] \& -in[18] \& -in[19] \& -in[20] \& -in[21] \& -in[22]
& \sim in[23] & \sim in[24] & \sim in[25] & \sim in[26] & \sim in[27] & \sim in[28]
& -in[29] & -in[30] & -in[31] & -in[32] & -in[33] & -in[34]
\& \sim in[35] \& \sim in[36] \& \sim in[37] \& \sim in[38] \& \sim in[39] \& \sim in[40]
\& \sim in[41] \& \sim in[42] \& \sim in[43] \& \sim in[44] \& \sim in[45] \& \sim in[46]
& \sim in[47]:
h[3]=in[3] \& \sim in[4] \& \sim in[5] \& \sim in[6] \& \sim in[7] \& \sim in[8] \& \sim in[9]
\& \sim \inf[10] \& \sim \inf[11] \& \sim \inf[12] \& \sim \inf[13] \& \sim \inf[14] \& \sim \inf[15]
\& \sim in[16] \& \sim in[17] \& \sim in[18] \& \sim in[19] \& \sim in[20] \& \sim in[21]
& \sim in[22] & \sim in[23] & \sim in[24] & \sim in[25] & \sim in[26] & \sim in[27]
& \sim in[28] & \sim in[29] & \sim in[30] & \sim in[31] & \sim in[32] & \sim in[33]
& \sim \inf[34] & \sim \inf[35] & \sim \inf[36] & \sim \inf[37] & \sim \inf[38] & \sim \inf[39]
& \sim in[40] & \sim in[41] & \sim in[42] & \sim in[43] & \sim in[44] & \sim in[45]
\& \sim in[46] \& \sim in[47];
h[2]=in[2] \& \sim in[3] \& \sim in[4] \& \sim in[5] \& \sim in[6] \& \sim in[7] \&
\sim in[8] \& \sim in[9] \& \sim in[10] \& \sim in[11] \& \sim in[12] \& \sim in[13] \&
\sim \inf[14] \& \sim \inf[15] \& \sim \inf[16] \& \sim \inf[17] \& \sim \inf[18] \& \sim \inf[19] \&
\sim in[20] \& \sim in[21] \& \sim in[22] \& \sim in[23] \& \sim in[24] \& \sim in[25]
```

```
\& \sim in[26] \& \sim in[27] \& \sim in[28] \& \sim in[29] \& \sim in[30] \& \sim in[31] \&
           -in[32] \& -in[33] \& -in[34] \& -in[35] \& -in[36] \& -in[37]
                  & \sim \inf[38] & \sim \inf[39] & \sim \inf[40] & \sim \inf[41] & \sim \inf[42] & \sim \inf[43]
                  & \sim in[44] & \sim in[45] & \sim in[46] & \sim in[47];
                 h[1]=in[1] \& \sim in[2] \& \sim in[3] \& \sim in[4] \& \sim in[5] \& \sim in[6]
                 & \sim in[7] & \sim in[8] & \sim in[9] & \sim in[10] & \sim in[11] & \sim in[12]
                  & \sim in[13] & \sim in[14] & \sim in[15] & \sim in[16] & \sim in[17] & \sim in[18]
                  & -in[19] & -in[20] & -in[21] & -in[22] & -in[23] & -in[24]
                  & \sim in[25] & \sim in[26] & \sim in[27] & \sim in[28] & \sim in[29] & \sim in[30] & \sim in[31]
&
                                                              \sim in[32] \& \sim in[33] \& \sim in[34] \&
~in[35] & ~in[36] &
\sim in[37] \& \sim in[38] \& \sim in[39] \& \sim in[40] \& \sim in[41] \&
\sim in[42] \& \sim in[43] \& \sim in[44] \& \sim in[45] \& \sim in[46] \&
-in[47];
                 h[0]=in[0] \& -in[1] \& -in[2] \& -in[3] \& -in[4] \& -in[5] \&
                    \sim in[6] \& \sim in[7] \& \sim in[8] \& \sim in[9] \& \sim in[10] \& \sim in[11] \&
                    \sim in[12] \& \sim in[13] \& \sim in[14] \& \sim in[15] \& \sim in[16] \& \sim in[17] \&
                    \sim in[18] \& \sim in[19] \& \sim in[20] \& \sim in[21] \& \sim in[22] \& \sim in[23] \&
                    -in[24] \& -in[25] \& -in[26] \& -in[27] \& -in[28] \& -in[29] \&
                    -in[30] \& -in[31] \& -in[32] \& -in[33] \& -in[34] \& -in[35] \&
                    \sim in[36] \& \sim in[37] \& \sim in[38] \& \sim in[39] \& \sim in[40] \& \sim in[41] \&
                    \sim in[42] \& \sim in[43] \& \sim in[44] \& \sim in[45] \& \sim in[46] \& \sim in[47];
                 a[0]=h[1]lh[3]lh[5]lh[7]lh[9]lh[11]lh[13]lh[15]lh[17]lh[19]l
                 h[21]lh[23]lh[25]lh[27]lh[29]lh[31]lh[33]lh[35]lh[37]l
                 h[39]lh[41]lh[43]lh[45]lh[47];
                 a[1]=h[46]|h[45]|h[42]|h[41]|h[38]|h[37]|h[34]|h[33]|
                 h[30]lh[29]lh[26]lh[25]lh[22]lh[21]lh[18]lh[17]lh[14]
                 lh[13]lh[10]lh[9]lh[6]lh[5]lh[2]lh[1];
                 a[2]=h[44]lh[43]lh[42]lh[41]lh[36]lh[35]lh[34]lh[33]lh[28]lh[27]lh[26]l
                 h[25]lh[20]lh[19]lh[18]lh[16]lh[12]lh[11]lh[10]lh[9]lh[4]lh[3]lh[2]lh[1];
                 a[3]=h[40]lh[39]lh[38]lh[37]lh[36]lh[35]lh[33]lh[32]lh[23]lh[22]lh[21]l
                 h[20]lh[19]lh[18]lh[17]lh[16]lh[7]lh[6]lh[5]lh[4]lh[3]lh[2]lh[1]lh[0];
                 a[4]=h[32]h[31]h[30]h[29]h[28]h[27]h[26]h[25]h[24]h[23]h[22]
```

h[21]lh[20]lh[19]lh[18]lh[17];

encode=a;

end

endfunction

```
module fft (clear,clock_in,ready,load,rnd_mode,Ain,Bin,Cout,FPSR);
// epoch set_attribute FIXEDBLOCK =1
//epoch pre_compiled fft
parameter
              NUMBER SIZE=64:
input
                            clear, clock_in, ready, load;
input [1:0]
                            rnd_mode;
input
       [NUMBER_SIZE-1:0]
                                   Ain,Bin;
output [NUMBER SIZE-1:0]
                                   Cout:
output [4:0]
                            FPSR:
wire [NUMBER_SIZE-1:0] in,regout1,regout2,regout3,regout4,
                     A,B,C,D,negB,negC,negD,jB,jD,
                     negiB,negiD;
wire [NUMBER_SIZE-1:0] S2,S3,S4;
wire
                     strobe:
wire
       [1:0]
                     mux_sel;
       [127:0]
wire
                     latch_out_real,latch_out_imag;
wire
                     Mply_FPSR,Adder_FPSR,FPSR1,FPSR2,FPSR3,FPSR4,FPSR5;
       [4:0]
`define
              group "fft_top"
`define
              imptype
`define
              A_real latch_out_real[127:96]
`define
              A_imag
                            latch_out_imag [127:96]
              B_real latch_out_real [95:64]
`define
`define
              B_imag
                            latch out imag [95:64]
`define
              C_real latch_out_real [64:33]
`define
              C imag
                            latch_out_imag [64:33]
`define
              D_real latch_out_real [32:0]
`define
              D imag
                            latch_out_imag [32:0]
                     {latch_out_real[127:96],latch_out_imag [127:96]}
`define
              Α
`define
                     {latch_out_real [95:64],latch_out_imag [95:64]}
              В
`define
              C
                     {latch_out_real [64:33], latch_out_imag [64:33]}
`define
              D
                     {latch_out_real [32:0],latch_out_imag [32:0]}
// define
              negA
       {~latch_out_real[127],latch_out_real[126:97],~latch_out_imag[127],latch_out_im
ag[126:97]
```

```
`define
               negB
       {~latch_out_real[96],latch_out_real[95;65],~latch_out_imag[96],latch_out_imag[
95:651
`define
               negC
       {~latch_out_real[64],latch_out_real[63:33],~latch_out_imag[64],latch_out_imag[
63:331
`define
               negD
       {~latch_out_real[32],latch_out_real[31:0],~latch_out_imag[32],latch_out_imag[3
1:01
// define
              jΑ
       {~latch out imag[127],latch out imag[126:97],latch_out_real[127:96]}
`define
                      {~latch out imag[96],latch out imag[95:65],latch_out_real
              iB
[95:64]}
// define
              iC
                      {~latch_out_imag[64],latch_out_imag[63:33],latch_out_real
[64:33]}
`define
              iD
                      {~latch out imag[32],latch_out_imag[31:0],latch_out_real [32:0]}
              negiA {latch_out_imag
// define
[127:96],~latch out real[127],latch out_real[126:97]}
`define
              negiB {latch_out_imag
[95:64],~latch_out_real[96],latch_out_real[95;65]}
// define
              negjC {latch_out_imag
[64:33],~latch_out_real[64],latch_out_real[63:33]}
              nejjD {latch_out_imag [32:0],~latch_out_real[32],latch_out_real[31:0]}
`define
//epoch set attribute FIXEDBLOCK=1
complex_mplier
Complex_Multiplier(clear,clock,Ain[63:32],Ain[31:0],Bin[63:32],Bin[31:0],rnd_mode,in[
63:32],in[31:0],Mply_FPSR);
complex_adder_4_input
Complex_Adder_4_Input(clear,clock,rnd_mode,A[63:32],A[31:0],S2[63:32],S2[31:0],S3
[63:32],S3[31:0],S4[63:32],S4[31:0],Cout[63:32],Cout[31:0],Adder_FPSR);
              and1 (clock_in,ready,clock);
stdand2
dff c # (64, `imptype, `group)
       reg1 (clock, clear, in, regout1),
       reg2 (clock, clear, regout1, regout2),
       reg3 (clock, clear, regout2, regout3);
latch_c #(128, `imptype, `group)
       Latch1(clear, {in[63:32], regout1[63:32], regout2[63:32], regout3[63:32]}, strobe, lat
ch out real),
```

```
Latch2(clear, {in[31:0], regout1[31:0], regout2[31:0], regout3[31:0]}, strobe, latch_o
ut_imag);
scntrl #(2,`imptype,`group)
      Counter (clock, 2'b00,1'b1,clear,strobe,mux_sel);
mux4 # (64, imptype, group)
      Mux1 (B,negjB,negB,jB,mux_sel[0],mux_sel[1],S2),
      Mux2 (C,negC,C,negC,mux_sel[0],mux_sel[1],S3),
       Mux3 (D,jD,negD,negjD,mux_sel[0],mux_sel[1],S4);
dff_c # (5, `imptype, `group)
      FPSReg1 (clock,clear,Mply_FPSR,FPSR1),
      FPSReg2 (clock,clear,FPSR1,FPSR2),
      FPSReg3 (clock,clear,FPSR2,FPSR3),
      FPSReg4 (clock, clear, FPSR3, FPSR4),
      FPSReg5 (clock,clear,FPSR4,FPSR5);
stdor2 or1 (FPSR5[0],Adder_FPSR[0],FPSR[0]),
       or2 (FPSR5[1],Adder_FPSR[1],FPSR[1]),
       or3 (FPSR5[2],Adder_FPSR[2],FPSR[2]),
       or4 (FPSR5[3],Adder_FPSR[3],FPSR[3]),
       or5 (FPSR5[4],Adder_FPSR[4],FPSR[4]);
endmodule
```

```
/* FFT Chip structural description
** fftchip.v
*/
'define slim 0
'define pitch "4MA"
'define drive "4MA"
'define numbits 64
`define powertype "REGULAR"
module fftchip (gndpad, vddpad, clearpad, clockpad, readypad, loadpad, rnd_modepad,
Ainpad, Binpad, Coutpad, FPSRpad);
               clearpad, clockpad, readypad, loadpad;
input
input [1:0]
               rnd_modepad;
input [`numbits-1:0] Ainpad, Binpad;
output [`numbits-1:0] Coutpad;
output [4:0]
              FPSRpad;
       clear, clock, ready, load;
wire
wire [1:0] rnd_mode;
wire ['numbits-1:0] Ain, Bin, Cout;
wire [4:0] FPSR;
supply1
               Vdd;
supply0
              GND;
padin_unbuf #(1,64, `slim, `pitch)
       inpad0 (Ainpad, Ain);
padin_unbuf #(66, 129, `slim, `pitch)
       inpad1 (Binpad, Bin);
padin_unbuf #(130, 131, `slim, `pitch)
       inpad2 (rnd_modepad, rnd_mode);
padin_unbuf #(132,132, `slim, `pitch)
       inpad3 (loadpad, load);
padin_unbuf #(133, 133, `slim, `pitch)
       inpad4 (readypad, ready);
padin_unbuf #(134, 134, `slim, `pitch)
       inpad5 (clockpad, clock);
padin_unbuf #(135, 135, `slim, `pitch)
       inpad6 (clearpad, clear);
padout #(137, 200, `slim, `drive)
       outpad1 (Cout, Coutpad);
padout #(201, 205, `slim, `drive)
       outpad2 (FPSR, FPSRpad);
```

fft

chip(clear, clock, ready, load, rnd_mode, Ain, Bin, Cout, FPSR);

```
module fpadder (clear,clock,Ain,Bin,rnd_mode,regout5);
//epoch set_attribute FIXEDBLOCK =1
//epoch pre_compiled fpadder
//parameters
              NUMBER_SIZE=32;
parameter
              EXP SIZE=8;
parameter
parameter
              MANTISSA_SIZE=23;
`define
              group
                        "fpadder_group"
`define
              imptype
                                   0
input clear, clock;
input [NUMBER_SIZE-1:0] Ain,Bin;
input [1:0]
                     rnd_mode;
output [36:0] regout5;
wire
       sign, sign1, sign2;
wire
       sign_A, sign_B, nan_A,nan_B;
wire
       inf_A, inf_B,inf_fin;
       ovfl2,unfl1,unfl2,unfl3,rndadd,norout,exp_gr,exp_add,
wire
       sft_gr,equal,sft_dir,unfl,inf1,nan1,inexact,ovfl,A_man_gr,B_man_gr,
       A_exp_gr,B_exp_gr,inexact_sft,lo_shift,hi_shift,inexact_shift;
wire
       [71:0] regout1;
wire
       [70:0] regout2;
       [70:0] regout2i;
wire
       [88:0] regout3;
wire
       [44:0] regout4;
wire
wire
      [36:0] regout5;
wire [EXP_SIZE-1:0] exp_A, exp_B,exp_fin,exp_fin2,exp,
                    exp_out,gr_exp,ls_exp,neg_exp,shift;
                                  man_A,man_B,man_A2,man_B2,gr_man,ls_man;
wire [MANTISSA_SIZE+1:0]
wire [MANTISSA_SIZE-1:0]
                                  man_fin,man_fin2;
wire [25:0]
             man_out,man_out2,man_inv,man_out3,man_out_comp;
wire [49:0]
             ls_man_out,ls_man_out2;
```

```
wire nc; // not connected
wire [7:0]
              neg127=8'b10000001; //negative 127
supply1 vdd;
supply0 gnd;
vcheck Value_Test_A (Ain,nan_A,inf_A,exp_A,man_A,sign_A),
       Value_Test_B (Bin,nan_B,inf_B,exp_B,man_B,sign_B);
stdor2 or1 (inf_A, inf_B,inf1),
       or2 (nan_A, nan_B,nan1);
inverter man_invA (regout1[65:41],regout1[71],man_A2),
        man_invB (regout1[40:16],regout1[70],man B2);
mux2 # (8,`imptype, `group)
       Exp_mux1 (regout1[15:8],regout1[7:0],~man_sel,gr_exp),
       Exp_mux2 (regout1[15:8],regout1[7:0],man_sel,ls_exp);
mux2 # (25,`imptype, `group)
       Man_mux1 (man_A2,man_B2,~man_sel,gr_man),
       Man_mux2 (man_A2,man_B2,man_sel,ls_man);
mux2 # (1, `imptype, `group)
       Sign_mux (regout1[71],regout1[70],sign2,sign);
stdand2 and1 (A_exp_gr,~B_exp_gr,man_sel),
       and2 (~A_man_gr,~A_exp_gr,sign1),
       and4 (regout2i[4],regout2i[5],hi_shift),
       and5 (hi_shift,lo_shift,inexact_shift);
mcomp # (8, imptype, group)
      E_Comparator (regout1[15:8],regout1[7:0],A_exp_gr,B_exp_gr);
mcomp # (25, imptype, group)
      M_Comparator (regout1[66:42],regout1[41:17],A_man_gr,B_man_gr);
```

```
compl #(8,`imptype,`group)
        exp_compl (1'b0,ls_exp,nc,nc,neg_exp);
addhs # (8,1,`group)
        Adder1(regout2[7:0], regout2[15:8],gnd,nc,shift);
barrelright # (50,6,`imptype,`group)
        shifter ({regout2i[40:16],25'b0},regout2i[5:0], ls_man_out);
overshift overshift (ls_man_out,inexact_sft,ls_man_out2);
addhs # (26,1,`group)
       Adder2(regout3[82:57], regout3[57:32],gnd,end_arnd_add,man_out);
stdor2 //or12 (regout3[30],regout3[29],inex1),
       or11 (regout4[42],ovfl4,ovfl),
       or14 (sign1,B_exp_gr,sign2),
       or17 (regout4[40],inf_out,inf_fin);
stdor3 or15 (inexact_shift,regout2i[6],regout2i[7],inexact_sft),
       or9 (inexact1,lost_bit1,regout3[88],inexact2),
       or7 (regout3[8],inex2,inex3,inex7);
stdor4 or13 (regout3[28],regout3[27],regout3[26],regout3[25],inex2),
       or3 (regout3[24],regout3[23],regout3[22],regout3[21],inex3),
       or4 (regout3[20],regout3[19],regout3[18],regout3[17],inex4),
       or5 (regout3[16],regout3[15],regout3[14],regout3[13],inex5),
       or6 (regout3[12],regout3[11],regout3[10],regout3[9],inex6),
       or8 (inex4,inex5,inex6,inex7,inexact1),
       or16 (regout2i[0],regout2i[1],regout2i[2],regout2i[3],lo_shift);
inc # (26, imptype, group)
       Incrementer1(end_arnd_add,man_out,nc,nc,man_out2);
bitshift Bitshift1 (man_inv,man_out3,lost_bit1,exp_add);
inc # (8, imptype, group)
       Incrementer2(exp_add,regout3[7:0],ovfl2,nc,exp_out);
inverter2 man_out_inv (man_out2,regout3[87],man_inv);
```

```
rounder Rounder
({regout4[32:8],regout4[43:42]},man_fin,regout4[34:33],regout4[40],rndadd,denorm);
inc # (8, imptype, group)
       Incrementer3(rndadd,regout4[7:0],ovfl4,nc,exp_fin);
zero # (23, imptype, group)
       Zero_Dect1(man_fin,zero1);
zero # (8, `imptype, `group)
       Zero Dect2(exp_fin,zero2);
stdand3 and3(zero1,zero2,regout4[35],unfl);
dff_c # (72,`imptype,`group)
       reg1
(clock,clear, {sign_A,sign_B,inf1,nan1,rnd_mode,man_A,man_B,exp_A,exp_B},
              regout1);
dff_c # (71,`imptype,`group)
       reg2 (clock,clear,{sign,regout1[69:66],gr_man,ls_man,gr_exp,neg_exp},
              regout2),
       reg2i(clock, clear, {regout2[70:8],shift},regout2i);
dff_c # (89,`imptype,`group)
       reg3 (clock,clear,{inexact_sft,regout2i[70:41],ls_man_out2,regout2i[15:8]},
               regout3);
dff_c # (45,`imptype,`group)
(clock,clear,{lost_bit1,regout3[31],ovfl2,regout3[87:83],inexact2,regout3[67:66]
               ,man_out3,exp_out},regout4);
dff_c # (37,`imptype,`group)
       reg5 (clock,clear,{inf_fin,regout4[39],regout4[35],ovfl,unfl,regout4[41],
               exp_fin2,man_fin2},regout5);
mulclnup cleanup (man_fin,exp_fin,denorm,unfl,ovfl,man_fin2,exp_fin2,inf_out);
endmodule
```

```
module fpmplier (clear,clock,Ain,Bin,rnd_mode,regout5);
//epoch set_attribute FIXEDBLOCK=1
//epoch pre_compiled fpmplier
             NUMBER SIZE=32;
parameter
             EXP_SIZE=8;
parameter
             MANTISSA_SIZE=23;
parameter
input clear, clock;
input [NUMBER_SIZE-1:0] Ain,Bin;
                    rnd mode;
input [1:0]
output [36:0] regout5;
`define
             sign A Ain[NUMBER_SIZE-1]
             sign B Bin[NUMBER_SIZE-1]
`define
             exp_A Ain[NUMBER_SIZE-2:NUMBER_SIZE-2-EXP_SIZE]
`define
             exp_B Bin[NUMBER_SIZE-2:NUMBER_SIZE-2-EXP_SIZE]
`define
             man A Ain[NUMBER_SIZE-1-EXP_SIZE:0]
`define
             man_B Bin[NUMBER_SIZE-1-EXP_SIZE:0]
`define
//parameters
wire
      sign, sign1;
wire
      sign_A, sign_B, nan_A,nan_B;
      inf A, inf_B,inf_fin;
wire
      ovfl1,ovfl2,ovfl3,unfl1,unfl2,unfl3,rndadd,norout,exp_gr,
wire
      sft_gr,equal,sft_dir,unfl,inf1,nan1,inexact,ovfl,ovfl4,ovfl_fin;
      [70:0] regout1;
wire
      [14:0] regout2i;
wire
      [14:0] regout2;
wire
wire
      [72:0] regout3;
      [68:0] regout4i;
wire
      [64:0] regout4;
wire
      [36:0] regout5;
wire
wire [EXP_SIZE-1:0] exp_A, exp_B, exp_C, exp_D, exp_fin, exp,
```

alt_shift_sel,exp_out,exp_out2,exp_reduced; ZE+1:0] man_A,man_B;

wire [MANTISSA_SIZE+1:0]

```
wire [((MANTISSA_SIZE+3)*2)-1:0]
                                          prod;
wire [((MANTISSA_SIZE+1)*2)-1:0]
                                          man out, man fin;
wire [MANTISSA_SIZE-1:0]
                                   man rnd,man;
wire [4:0]
              shift,bs_sel,shift_neg,shift_m_2,shift_m_2_neg;
wire nc; // not connected
wire [7:0]
              neg127=8'b10000001; //negative 127
supply1 vdd;
supply0 gnd;
vcheck Value_Test_A (Ain,nan_A,inf_A,exp_A,man_A,sign_A),
       Value_Test_B (Bin,nan_B,inf_B,exp_B,man_B,sign_B);
hsmult2piped c #(MANTISSA SIZE+3,MANTISSA SIZE+3,52)
       Multiplier({1'b0,regout1[65:41]},{1'b0,regout1[40:16]},
                     clock,clear,prod);
addhs # (8,1,"mplier")
       Adder1(regout1[15:8], regout1[7:0], gnd, nc, exp_C),
       Adder2(regout2[9:2],neg127,gnd,nc,exp_D),
       Adder3({3'b111,regout3[72:68]}, regout3[9:2],gnd,nc,
              alt_shift_sel),
       Adder5({3'b111,shift_m_2_neg},regout3[9:2],gnd,nc,exp_reduced);
addrip # (5,0,"mplier")
       Adder4(regout3[14:10],5'b11110,gnd,nc,shift_m_2);
rounder Rounder (regout4[62:36],man_rnd,regout4[12:11],
              regout4[13],rndadd,denorm);
inc # (8,0, "mplier")
       Incrementer(regout4[10],regout4[9:2],ovfl3,nc,exp_out),
      Incrementer2(rndadd,exp_out,ovfl4,nc,exp_out2);
```

```
xor1 (sign_A,sign_B,sign1);
stdxor2
stdnand2 nand1 (regout2[0],regout2[1],ovfl1); //indicate overflow
               nor1 (ovfl1,exp_D[7],ovfl2);
stdnor2
               nor2 (regout2[0],regout2[1],unfl1); //indicate underflow
stdnor2
               and2 (unfl1,exp_D[7],unfl2);
stdand2
stdor2 or2 (ovfl3,regout4[1],ovfl),
       or4 (inf_A, inf_B,inf1),
       or5 (nan_A, nan_B,nan1);
stdor2 or13 (regout4[10],inf2,inf_fin),
       or14 (ovfl,ovfl4,ovfl_fin);
stdor4 or7 (regout4[33],regout4[32],regout4[31],regout4[30],inex2),
       or8 (regout4[29],regout4[28],regout4[27],regout4[26],inex3),
       or9 (regout4[25],regout4[24],regout4[23],regout4[22],inex4),
       or10 (regout4[21],regout4[20],regout4[19],regout4[18],inex5),
       or11 (regout4[17],regout4[16],inex1,inex2,inex6),
       or12 (inex3,inex4,inex5,inex6,inexact),
       or6 (regout4[64],regout4[36],regout4[35],regout4[34],inex1);
barrelleft # (48,6,0,"mplier")
       shifter (regout4i[62:15],{1'b0,regout4i[14:10]}, man_out);
encoder encoder (prod[47:0],shift);
dff_c # (71,0,"mplier")
       reg1 (clock,clear,{inf1,nan1,sign1,rnd_mode,man_A,man_B,exp_A
                      ,exp_B},regout1);
dff c # (15,0,"mplier")
       reg2i (clock, clear, {regout1[70:66],exp_C,regout1[15],regout1[7]}
                      ,regout2i),
       reg2 (clock, clear, regout2i, regout2);
```

```
dff_c # (73,0,"mplier")
       reg3 (clock, clear, {shift_neg,regout2[14:10],prod[47:0],shift,
               exp_D,ovfl2,unfl2},regout3);
dff_c # (69, 0, "mplier")
       reg4i (clock, clear, {sft_dir,regout3[67:15],bs_sel[4:0],exp_fin,
               regout3[1:0]},regout4i);
dff_c # (65,0, "mplier")
       reg4 (clock, clear, {lost_bit,man_fin,regout4i[66:62],regout4i[68],regout4i[9:0]},
regout4);
dff_c # (37, 0, "mplier")
       reg5 (clock, clear, {inf_fin,regout4[15],inexact,ovfl_fin,regout4[0]
               regout4[14],exp,man},regout5);
compl #(5,0,"mplier")
       Complementor (1'b0,shift,nc,nc,shift_neg),
       Complementor2 (1'b0,shift_m_2,nc,nc,shift_m_2_neg);
mcomp # (8,0,"mplier")
       Comparator ({3'b0,regout3[13:9]},regout3[8:1],sft_gr,exp_gr);
shiftsel shiftsel (regout3[14:10],alt_shift_sel,shift_m_2,sft_gr,exp_gr,
              regout3[9:2],exp_reduced,bs_sel,exp_fin,sft_dir);
mansel mansel (man_out,regout4i[68],man_fin,lost_bit);
mulclnup cleanup (man_rnd,exp_out2,denorm,regout4[0],ovfl,man,exp,inf2);
endmodule
```

```
module inverter2 (in,sign,out);

//epoch pre_compiled inverter2

input sign;
input [25:0] in;

output [25:0] out;
reg [25:0] out;
always @ (in or sign) begin
    if (sign == 1)
        out=~in;
    else
        out=in;
    end
endmodule
```

module mansel (manin,sft_dir,manout,lost_bit);

```
//epoch pre_compiled mansel
              manin;
input [47:0]
input
              sft_dir;
output [47:0] manout;
output
              lost_bit;
       [47:0] manout;
reg
              lost_bit;
reg
always @(manin or sft_dir)
       begin
              if (sft_dir == 0)begin
                      manout=manin;
                      lost_bit=0;
                      end
              else begin
                      manout=\{1'b0, manin[47:1]\};
                      lost_bit=1;
                      end
       end
endmodule
```

```
module mulclnup (man_rnd, exp,denorm,unfl,ovfl,man_out,exp_out,inf_out);
//epoch pre_compiled mulclnup
input [22:0]
              man_rnd;
                            //rounded mantissa
input [7:0]
                             //exponent input
              exp;
              unfl,ovfl,denorm;
                                   // underflow & overflow & denorm
input
output [7:0]
                            //output exponent
              exp_out;
output [22:0] man_out;
                            //output mantissa
              inf_out;
                                   //infinity flag
output
reg [7:0]
              exp_out;
reg [22:0]
              man_out;
              inf_out;
reg
always @ (man_rnd or ovfl or unfl or exp or denorm) begin
       man_out=man_check(man_rnd,ovfl,unfl);
       exp_out=exp_check(exp,ovfl,unfl);
       inf_out=inf_check(man_rnd,exp);
end
function [7:0] exp_check;
       input [7:0] exp;
       input
                 ovfl,unfl;
       begin
              if (unfl) begin
                     exp_check=8'b00000000;
                     end
              else if (ovfl) begin
                     exp_check=8'b11111111;
                     end
              else if (denorm) begin
                     exp_check=8'b00000000;
                     end
```

```
else
                     exp_check=exp;
       end
endfunction
function [22:0] man_check;
       input [22:0] man_rnd;
       input
                 ovfl,unfl;
       begin
              if (unfl)
                     man_check=23'b0;
              else if (ovfl)
                     man_check=23'b0;
              else
                     man_check=man_rnd;
       end
endfunction
function inf_check;
       input [22:0] man_rnd;
       input [7:0] exp;
       begin
              if (man_rnd==23'b0) begin
                     inf_check=0;
                     if (exp==8'b11111111)
                            inf_check=1;
                     end
       end
endfunction
endmodule
```

module mplertst; // epoch set_attribute FIXEDBLOCK =1 reg[1:0] //rounding mode rnd_mode; reg[31:0] Ain,Bin; clock,clear; reg `define group "mplier" `define imptype 1 `define sign_A Ain[NUMBER_SIZE-1] `define sign_B Bin[NUMBER_SIZE-1] `define exp_A Ain[NUMBER_SIZE-2:NUMBER_SIZE-2-EXP_SIZE] `define exp_B Bin[NUMBER_SIZE-2:NUMBER_SIZE-2-EXP_SIZE] `define man_A Ain[NUMBER_SIZE-1-EXP_SIZE:0] `define man B Bin[NUMBER SIZE-1-EXP SIZE:0] //parameters NUMBER SIZE=32; parameter parameter EXP_SIZE=8; MANTISSA_SIZE=23; parameter wire sign,sign1; sign_A, sign_B, nan_A,nan_B; wire wire inf_A, inf_B,inf_fin; wire ovfl1,ovfl2,ovfl3,unfl1,unfl2,unfl3,rndadd,norout,exp_gr,sft_gr,equal,sft_dir,unfl,in f1,nan1,inexact,ovfl; wire [70:0] regout1; [14:0] regout2; wire [72:0] regout3; wire wire [68:0] regout4; [36:0] regout5; wire

```
wire [EXP_SIZE-1:0] exp_A, exp_B, exp_C, exp_D,exp_fin,exp,alt_shift_sel,exp_out; wire [MANTISSA_SIZE+1:0] man_A,man_B; wire [((MANTISSA_SIZE+3)*2)-1:0] prod;
```

```
man_out,man_fin;
wire [((MANTISSA_SIZE+1)*2)-1:0]
wire [MANTISSA_SIZE-1:0]
                                 man_rnd,man;
             shift.bs sel,shift_neg,shift_m_2;
wire [4:0]
      integer i,j; parameter cycle=100;
      fpmplier INSTAN (clear,clock,Ain,Bin,rnd_mode,regout5);
      initial clock=0;
      always #(cycle/2) clock=~clock; //generator
       initial begin
             $display("\n **************** 2x2=4
             #(cycle) Ain = 32'h40000000; Bin =32'h40000000; rnd_mode =0; clear =
1;
             $display("\n ******* Positive X Positive (Normalized) /pos + pos exp
********* \n");
              #(cycle) Ain = 32'h71800000; Bin =32'h40000000; rnd_mode =0; clear =
1;
             #(cycle) Ain = 32'h73c00000; Bin =32'h40000000; rnd_mode =0; clear =
1;
              $display("\n *********** Pos x Pos / neg +neg exp
******** \n");
              #(cycle) Ain = 32'h03800000; Bin =32'h03800000; rnd_mode =0; clear =
1;
              $display("\n *************Positive (Norm) X Positive (Unnorm)
 ************** \n");
              #(cycle) Ain = 32'h40800000; Bin =32'h01400000; rnd_mode =0; clear =
1;
              $display("\n ************Positive X Positive (Unnorm)
 ****** \n");
```

```
#(cycle) Ain = 32'h01400000; Bin =32'h40400000; rnd_mode =0; clear =
1;
            $display("\n ********* Negative X Positive
      ********** \n"):
            #(cycle) Ain = 32'h81811100; Bin =32'h40800000; rnd_mode =0; clear =
1:
            $display("\n ************ Negative X Negative (underflow)
******* \n");
            #(cycle) Ain = 32'hA1800111; Bin =32'hA1811100; rnd_mode =0; clear =
1;
            $display("\n *********** Negative x Positive
****** \n");
            #(cycle) Ain = 32'h44001100; Bin =32'h83800000; rnd_mode =0; clear =
1;
            $display("\n ************* 2x2=4
******** \n");
            #(cycle) Ain = 32'h44000000; Bin =32'hde000000; rnd_mode =0; clear =
1;
            $display("\n *********** Negative x Negative
****** \n");
            #(cycle) Ain = 32'hde000000; Bin =32'hde000000; rnd_mode =0; clear = 1;
            $display("\n ********** Denor x Denorm
****** \n"):
             #(cycle) Ain = 32'h00100000; Bin =32'h44000000; rnd_mode =0; clear =
 1;
             $display("\n ************ Inf x pos ********** \n");
             #(cycle) Ain = 32'h7f800010; Bin =32'h40000010; rnd_mode =0; clear = 1;
             #(cycle) Ain = 32'h7ec11111; Bin =32'h40011111; rnd_mode =0; clear = 1;
```

```
#(cycle) Ain =32'h00000000; Bin = 32'h00000000; rnd_mode=0; #(4*cycle); #cycle $finish;
```

end

initial begin

\$monitor ("%0d", \$time,, "clock: %b \n\n A sign: %b \n A mantissa: %b \n A exponent: %b", clock,Ain[31],Ain[22:0],Ain[30:23],

" $\n B sign: \%b \n B mantissa: \%b \n B exponent:$

%b",Bin[31],Bin[22:0],Bin[30:23],

"\n\n Res sign: %b \n Res mantissa: %b \n Res exponent: %b",regout5[31],regout5[22:0],regout5[30:23],

end

```
parameter //epoch enum stat
        RM=2'd0,
                      // round to minus
        RN=2'd1,
                      //round to nearest
        RP=2'd2
                      //round to plus
                      //chop mode
        RZ=2'd3;
//
input [26:0]
               in;
                              // mantissa in
                              // rounding mode
input [1:0]
               mode;
input
               sign;
                              // resultant sign
output [22:0] out;
                              // rounded mantissa
output
               denorm,rndadd;
                      rndadd,denorm,sel,addlsb;
reg
       [1:0] /* epoch enum stat */ state;
reg
wire
               nc; // not connected
wire
       [22:0]
                      out;
wire
       [24:0]
                      iout;
`define lsb_bit
                      in[3]
`define guard_bit
                      in[2]
'define round bit
                      in[1]
'define sticky_bit
                      in[0]
`define zero
               1'b0
`define one
               1'b1
`define imptype
                      1
supply0
                      gnd;
inc # (25,1,"rnder")
       Incrementer(addlsb, {1'b0,in[26:3]},nc,nc,iout);
```

mux2 # (23,1,"rnder")

module rounder (in,out,mode,sign,rndadd,denorm);

```
always @(mode or state) begin
               state=RZ;
       if (mode==2'd0)
               state=RM;
       else if (mode==2'd1)
               state=RN;
       else if (mode==2'd2)
               state=RP;
       else if (mode==2'd3)
               state=RZ;
end
always @ (in[3:0] or sign or state)
   begin
       addlsb=1'b0;
              if (!(`guard_bit==1 & `round_bit ==0 & `sticky_bit==0))
                      addlsb=0;
              else if(`guard_bit==1 & `round_bit ==0 & `sticky_bit==0)
              begin
              addlsb=1'b0;
              case(state)
                      RM: begin
                             if (sign)
                                     addlsb = 1'b1;
                             else addlsb=1'b0;
                         end
                     RP: begin
                             if(!sign)
                                     addlsb=1'b1;
                             else addlsb=1'b0;
                         end
                     RN: begin
                             if (`guard_bit==1'b1 & `round_bit ==1'b0 &
\dot sticky_bit==1'b0
```

MUX (iout[22:0], iout[23:1], sel, out);

```
begin
                                       if (lsb_bit==1'b1)
                                            addlsb=1'b1;
                                       else addlsb=1'b0;
                                    end
                             else if (`guard_bit==1)
                                            addlsb=1'b1;
                             else addlsb=1'b0;
                         end
                      RZ: begin
                             addlsb=1'b0;
                         end
                     default:addlsb=1'b0;
              endcase
          end
       end
always @(iout[24:23]) begin
              if(iout[24]==1) begin
                             sel=1'b1;
                             rndadd=1;
                             denorm=0;
                     end
              else if(iout[23]==0) begin
                             denorm=1;
                             rndadd=0;
                             sel=1'b0;
                     end
              else begin
                            sel=1'b0;
                            rndadd=0;
                             denorm=0;
              end
end
```

```
module shiftsel
(sft_amt,alt_shift_sel,shift_m_2,sft_gr,exp_gr,exp,exp_reduced,sft_sel,exp_fin,sft_dir);
// epoch pre compiled shiftsel
input [4:0]
              sft_amt,shift_m_2;
input sft_gr,exp_gr;
input [7:0]
              exp,alt_shift_sel,exp_reduced;
output [4:0] sft_sel;
output [7:0] exp_fin;
output
              sft_dir;
reg [6:0]
               car;
reg [7:0]
              exp_fin,tin,in;
reg [4:0]
              sft_sel;
               sft_dir;
reg
always @(sft_amt or exp or exp_reduced or sft_gr or exp_gr or alt_shift_sel or sft_sel or
sft dir or exp fin or tin or car or shift m 2) begin
              if (sft_amt == 5'b00010) begin
                      exp_fin=exp;
                      sft sel=5'b00000;
                      sft_dir=0;
                      end
              else if (sft_amt == 5'b00001) begin
                      exp fin=inc(exp);
                      sft_sel=5'b00000;
                      sft_dir=1;
                      end
              else begin
                      if (\exp_g r == 1) begin
                              exp_fin=exp_reduced;
                              sft_sel=shift_m_2;
                              sft_dir=0;
                      end
                      else if (sft_gr == 1) begin
                              exp_fin=8'b00000000;
```

 $sft_sel=exp[4:0];$

sft_dir=0;

```
end
                       else begin
                              exp_fin=inc(alt_shift_sel);
                              sft_sel=shift_m_2;
                              sft_dir=0;
                       end
               end
end
function [7:0] inc;
       input [7:0] in;
begin
               tin[0]=\sim in[0];
               car[0]=in[0];
               tin[1]=in[1]^car[0];
               car[1]=in[1]&car[0];
               tin[2]=in[2]^car[1];
               car[2]=in[2]&car[1];
               tin[3]=in[3]^car[2];
               car[3]=in[3]&car[2];
               tin[4]=in[4]^car[3];
               car[4]=in[4]&car[3];
               tin[5]=in[5]^car[4];
               car[5]=in[5]&car[4];
               tin[6]=in[6]^car[5];
               car[6]=in[6]&car[5];
               tin[7]=in[7]^car[6];
               inc=tin;
               end
endfunction
```

```
module vcheck (in, nan, inf, exp,man,sign);
parameter
              NUMBER_SIZE=32;
parameter
              EXP_SIZE=8;
              MANTISSA_SIZE=23;
parameter
// epoch pre_compiled vcheck
input [NUMBER_SIZE-1:0] in;
              nan, inf, sign;
output
output [EXP_SIZE-1:0]
                                   exp;
output [MANTISSA_SIZE+1:0]
                                   man;
              nan, inf, sign;
reg
       [1:0]
reg
                            state;
       [EXP_SIZE-1:0]
reg
                                   exp;
reg
       [MANTISSA_SIZE+1:0]
                                   man;
`define
              exp_in in[30:23]
`define
              man_in in[22:0]
`define
              zero
                     1'b0
`define
                     1'b1
              one
always @(in)
       begin
              if ('exp_in==8'b11111111)
                     state=2'b00;
              else if(\exp_in==8'b0)
                     state=2'b10;
             else
                     state=2'b01;
       end
always @ (in or state)
begin
      /*state machine*/
```

```
case(state)
       2'b00:begin
              if(\text{man\_in} == 23'b0) // Infinity
                begin
                      \exp = 255;
                      man = {\`zero,\`one,\`man_in};
                      nan = 0;
                      inf=1;
                      sign=in[31];
                end
              else //NaN
                begin
                      \exp = 255;
                      man = {`zero,`one,`man_in};
                      nan = 1;
                      inf = 0;
                      sign=in[31];
                end
        end
       2'b01:begin
                      exp=`exp_in;
                      man={`zero,`one,`man_in};
                      nan=0;
                      inf=0;
                      sign=in[31];
        end
       2'b10:begin
                      exp = 8'b1;
                      man={`zero,`zero,`man_in};
                      nan = 0;
                      inf=0;
```

/* default - Normalized number*/

end

sign=in[31];

```
default:begin
    exp=`exp_in;
    man={`zero,`one,`man_in};
    nan=0;
    inf=0;
    sign=in[31];
end
```

endcase end endmodule

APPENDIX C EPOCH VERILOG HDL COMPILATION

/local/epoch/bin/verilogcomp -p /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2 -r CDA1u2m1p +msgclear -msgfile +ewpstfEW /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/chip_logs/verilogcomp.log -top fftchip /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/verilog/fftchip.v -y /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/verilog +libext+.v+ -phase -testability +checkwidth +checkinputs +checkoutputs +subremake -syngate Copyright 1992, 1993 Cascade Design Automation Corporation. CASCADE base location: /local/epoch Project: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2 Ruleset: CDA1u2m1p Technology: cmos
Starting Synthesis of logic block: [rounder, p1]
Copyright 1992, 1993 Cascade Design Automation Corporation. CASCADE base location: /local/epoch Project: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2 Ruleset: CDA1u2m1p Technology: cmos /local/epoch/bin/cpp /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/rounder/p1.fin /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/rounder/f#p1.mac
Starting Parsing Parsing Runtime: 0.1 sec
Starting Language Synthesis Language Synthesis Runtime: 0.0 sec
Starting Symbolic Minimization Symbolic Minimization Runtime: 0.0 sec
Starting Symbolic Encoding Symbolic Encoding Runtime: 0.0 sec
Starting Boolean Minimization Boolean Minimization Runtime: 0.0 sec

Starting Structure Optimization	
Starting Boolean Minimization for Multi-level Logic Boolean Minimization for Multi-level Logic Runtime: 0.	.0 sec
Structure Optimization Runtime: 0.0 sec	
Starting Structure Composition	
Starting Weak Division	
Input logic statistics: Primary Inputs : 7 Primary Outputs : 1 Intermediate Vars : 0 Literals : 18 Maximum Levels : 1 Maximum Fanout : 1	
Output logic statistics: Primary Inputs : 7 Primary Outputs : 1 Intermediate Vars : 2 Literals : 13 Maximum Levels : 3 Maximum Fanout : 1 Weak Division Runtime: 0.1 sec	
Starting Technology Mapping	
GATE TYPE GATE COST TIMES USED TOTAL C stdnor3 54 1 54 stdnand2 39 1 39 stdmux2 50 2 100 stdnor2 39 1 39 stdinv 22 1 22	OST

TOTAL GATE COST: 254 TOTAL GATE COUNT: 6

MAXIMUM FANOUT : 1 MAXIMUM INT_FAN : 1 MAXIMUM INBAR FAN: 1
MAXIMUM LEVEL : 5
Technology Mapping Runtime: 0.2 sec
Structure Composition Runtime: 0.3 sec
Starting Netlist Generation Writing net file /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/rounder/p1.net Netlist Generation Runtime: 0.0 sec
No errors. No warnings.
Beginning to translate netlist file: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/rounder/p1.net
Finished the translation of netlist file: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/rounder/p1.net Synthesis of logic block: [rounder, p1] Runtime: 0.7 sec
Starting Synthesis of logic block: [rounder, p2]
Copyright 1992, 1993 Cascade Design Automation Corporation. CASCADE base location: /local/epoch
Project: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2 Ruleset: CDA1u2m1p
Technology: cmos
/local/epoch/bin/cpp /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/rounder/p2.fin /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/rounder/f#p2.mac
Starting Parsing Parsing Runtime: 0.0 sec
Starting Language Synthesis
Language Synthesis Runtime: 0.0 sec
Starting Boolean Minimization Boolean Minimization Runtime: 0.0 sec

Starting Structure Optimization
Starting Boolean Minimization for Multi-level Logic Boolean Minimization for Multi-level Logic Runtime: 0.0 sec
Structure Optimization Runtime: 0.0 sec
Starting Structure Composition
Starting Weak Division
Input logic statistics: Primary Inputs : 2 Primary Outputs : 1 Intermediate Vars : 0 Literals : 2 Maximum Levels : 1 Maximum Fanout : 1
Output logic statistics: Primary Inputs : 2 Primary Outputs : 1 Intermediate Vars : 0 Literals : 2 Maximum Levels : 1 Maximum Fanout : 1
Weak Division Runtime: 0.0 sec
Starting Technology Mapping GATE TYPE GATE COST TIMES USED TOTAL COST
stdnor2 39 1 39
TOTAL GATE COST: 39 TOTAL GATE COUNT: 1 MAXIMUM FANOUT: 1 MAXIMUM INT_FAN: 1 MAXIMUM INBAR_FAN: 0 MAXIMUM LEVEL: 1
Technology Mapping Runtime: 0.1 sec

Structure Composition Runtime: 0.2 sec
Starting Netlist Generation Writing net file /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/rounder/p2.net Netlist Generation Runtime: 0.0 sec
No errors. No warnings.
Beginning to translate netlist file: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/rounder/p2.net
Finished the translation of netlist file: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/rounder/p2.net Synthesis of logic block: [rounder, p2] Runtime: 0.4 sec
Starting Synthesis of logic block: [rounder, p0]
Copyright 1992, 1993 Cascade Design Automation Corporation. CASCADE base location: /local/epoch Project: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2 Ruleset: CDA1u2m1p Technology: cmos /local/epoch/bin/cpp /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/rounder/p0.fin /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/rounder/f#p0.mac
Starting Parsing Parsing Runtime: 0.0 sec
Starting Language Synthesis Language Synthesis Runtime: 0.0 sec
Starting Boolean Minimization Boolean Minimization Runtime: 0.0 sec
Starting Structure Optimization
Starting Boolean Minimization for Multi-level Logic Boolean Minimization for Multi-level Logic Runtime: 0.0 sec

Structure Optimization Runtime: 0.0 sec
Starting Structure Composition
Starting Weak Division
Input logic statistics: Primary Inputs : 2 Primary Outputs : 2 Intermediate Vars : 0 Literals : 2 Maximum Levels : 1 Maximum Fanout : 1
Output logic statistics: Primary Inputs : 2 Primary Outputs : 2 Intermediate Vars : 0 Literals : 2 Maximum Levels : 1 Maximum Fanout : 1 Weak Division Runtime: 0.0 sec
Starting Technology Manning
Starting Technology Mapping
GATE TYPE GATE COST TIMES USED TOTAL COST stdinv 22 2 44
TOTAL GATE COST: 44 TOTAL GATE COUNT: 2 MAXIMUM FANOUT: 1 MAXIMUM INT_FAN: 0 MAXIMUM INBAR_FAN: 1 MAXIMUM LEVEL: 1 Technology Mapping Runtime: 0.1 sec
Structure Composition Runtime: 0.2 sec
Starting Netlist Generation

Writing net file /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/rounder/p0.net Netlist Generation Runtime: 0.0 sec
No errors. No warnings.
Beginning to translate netlist file: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/rounder/p0.net
Finished the translation of netlist file: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/rounder/p0.net Synthesis of logic block: [rounder, p0] Runtime: 0.4 sec
Starting flattening module rounder
Flattening through instance: p1 of cell: p1
Flattening through instance: p2 of cell: p2
Flattening through instance: p0 of cell: p0
The design has been flattened.
flattening module rounder Runtime: 0.0 sec
Starting Synthesis of logic block: [overshift, p3]
Copyright 1992, 1993 Cascade Design Automation Corporation. CASCADE base location: /local/epoch Project: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2 Ruleset: CDA1u2m1p Technology: cmos /local/epoch/bin/cpp /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/overshift/p3.fin /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/overshift/f#p3.mac
Starting Parsing Parsing Runtime: 0.1 sec
Starting Language Synthesis Language Synthesis Runtime: 0.0 sec

Starting Boolean Minimization Boolean Minimization Runtime: 0.1 sec
Starting Structure Optimization
Starting Boolean Minimization for Multi-level Logic Boolean Minimization for Multi-level Logic Runtime: 0.0 sec
Structure Optimization Runtime: 0.1 sec
Starting Structure Composition
Starting Weak Division
Input logic statistics: Primary Inputs : 51 Primary Outputs : 50 Intermediate Vars : 0 Literals : 100 Maximum Levels : 1 Maximum Fanout : 1
Output logic statistics: Primary Inputs : 51 Primary Outputs : 50 Intermediate Vars : 0 Literals : 100 Maximum Levels : 1 Maximum Fanout : 1 Weak Division Runtime: 0.1 sec
Starting Technology Mapping
GATE TYPE GATE COST TIMES USED TOTAL COST stdnor2 39 50 1950 stdinv 22 50 1100

TOTAL GATE COST: 3050

TOTAL GATE COUNT: 100 MAXIMUM FANOUT: 1 MAXIMUM INT_FAN: 1 MAXIMUM INBAR_FAN: 1 MAXIMUM LEVEL: 2 Technology Mapping Runtime: 0.6 sec
Structure Composition Runtime: 0.8 sec
Starting Netlist Generation Writing net file /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/overshift/p3.net Netlist Generation Runtime: 0.0 sec
No errors. No warnings.
Beginning to translate netlist file: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/overshift/p3.net
Finished the translation of netlist file: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/overshift/p3.net Synthesis of logic block: [overshift, p3] Runtime: 1.7 sec
Starting flattening module overshift
Flattening through instance: p3 of cell: p3
The design has been flattened.
flattening module overshift Runtime: 0.1 sec
Starting Synthesis of logic block: [inverter2, p4]
Copyright 1992, 1993 Cascade Design Automation Corporation. CASCADE base location: /local/epoch Project: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2 Ruleset: CDA1u2m1p Technology: cmos
/local/epoch/bin/cpp /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/inverter2/p4.fin /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/inverter2/f#p4.mac

Starting Parsing Parsing Runtime: 0.1 sec	
Starting Language Synthesis Language Synthesis Runtime: 0.0 sec	
Starting Boolean Minimization Boolean Minimization Runtime: 0.1 sec	
Starting Structure Optimization	
Starting Boolean Minimization for Multi-level Logic Boolean Minimization for Multi-level Logic Runtime: 0.0 s	ec
Structure Optimization Runtime: 0.1 sec	
Starting Structure Composition	
Starting Weak Division	
Input logic statistics: Primary Inputs : 27 Primary Outputs : 26 Intermediate Vars : 0 Literals : 104 Maximum Levels : 1 Maximum Fanout : 1	
Output logic statistics: Primary Inputs : 27 Primary Outputs : 26 Intermediate Vars : 0 Literals : 104 Maximum Levels : 1 Maximum Fanout : 1	
Weak Division Runtime: 0.1 sec	

Starting Technology Mapping GATE TYPE GATE COST TIMES USED TOTAL COST stdxnor2 50 26 1300 22 3 stdiny 66 **TOTAL GATE COST: 1366 TOTAL GATE COUNT: 29** MAXIMUM FANOUT: 9 MAXIMUM INT FAN: 1 **MAXIMUM INBAR FAN: 9** MAXIMUM LEVEL : 2 Technology Mapping Runtime: 0.8 sec _____ Structure Composition Runtime: 1.0 sec _____ **Starting Netlist Generation** Writing net file /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/inverter2/p4.net Netlist Generation Runtime: 0.0 sec ______ No errors. No warnings. Beginning to translate netlist file: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/inverter2/p4.net Finished the translation of netlist file: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/inverter2/p4.net Synthesis of logic block: [inverter2, p4] Runtime: 1.6 sec Starting flattening module inverter2 Flattening through instance: p4 of cell: p4

Flattening through instance: p4 of cell: p4

The design has been flattened.

flattening module inverter2
Runtime: 0.1 sec

Starting Synthesis of logic block: [vcheck, p6]

Copyright 1992, 1993 Cascade Design Automation Corporation. CASCADE base location: /local/epoch Project: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2 Ruleset: CDA1u2m1p Technology: cmos /local/epoch/bin/cpp /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/vcheck/p6.fin /tmp mnt/h/kepler u2/kljackso/projects/thesis2/vcheck/f#p6.mac Starting Parsing Parsing Runtime: 0.2 sec ______ Starting Language Synthesis Language Synthesis Runtime: 0.2 sec Starting Boolean Minimization Boolean Minimization Runtime: 1.1 sec Starting Structure Optimization Starting Boolean Minimization for Multi-level Logic Boolean Minimization for Multi-level Logic Runtime: 0.0 sec ______ Structure Optimization Runtime: 0.1 sec _____ Starting Structure Composition Starting Weak Division Input logic statistics: Primary Inputs : 33 Primary Outputs: 11 Intermediate Vars: 0 Literals : 126 Maximum Levels : 1 Maximum Fanout : 1 Output logic statistics: Primary Inputs : 33 Primary Outputs: 11

Intermediate Vars: 2

Literals : 54 Maximum Levels : 2 Maximum Fanout: 9 Weak Division Runtime: 0.2 sec ------Starting Technology Mapping GATE TYPE GATE COST TIMES USED TOTAL COST stdnor2 39 2 **- 78** stdand2 44 1 44 stdand3 59 59 1 stdiny 22 2 44 stdnand2 39 1 39 stdao21 63 7 441 stdor2 43 1 43 stdand4 69 69 1 stdnor4 69 5 345 stdnor3 54 1 54 TOTAL GATE COST: 1216 **TOTAL GATE COUNT: 22** MAXIMUM FANOUT: 9 MAXIMUM INT FAN: 9 MAXIMUM INBAR_FAN: 2 MAXIMUM LEVEL : 4 Technology Mapping Runtime: 0.5 sec Structure Composition Runtime: 0.7 sec Starting Netlist Generation Writing net file /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/vcheck/p6.net NOTE: OUTPUT zman_24__ IS GND. Netlist Generation Runtime: 0.0 sec No errors. No warnings.

Beginning to translate netlist file:

/tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/vcheck/p6.net

Finished the translation of netlist file:

/tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/vcheck/p6.net

Synthesis of logic block: [vcheck, p6]

Runtime: 3.2 sec
Starting Synthesis of logic block: [vcheck, p5]
Copyright 1992, 1993 Cascade Design Automation Corporation. CASCADE base location: /local/epoch
Project: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2 Ruleset: CDA1u2m1p
Technology: cmos /local/epoch/bin/cpp /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/vcheck/p5.fin /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/vcheck/f#p5.mac
Starting Parsing Parsing Runtime: 0.0 sec
Starting Language Synthesis Language Synthesis Runtime: 0.0 sec
Starting Boolean Minimization Boolean Minimization Runtime: 0.3 sec
Starting Structure Optimization
Starting Boolean Minimization for Multi-level Logic Boolean Minimization for Multi-level Logic Runtime: 0.0 sec
Structure Optimization Runtime: 0.0 sec
Starting Structure Composition
Starting Weak Division
Input logic statistics: Primary Inputs: 8 Primary Outputs: 2 Intermediate Vars: 0 Literals: 24 Maximum Levels: 1
Maximum Fanout : 1

Output logic statistics:
Primary Inputs: 8
Primary Outputs: 2
Intermediate Vars: 0
Literals: 24
Maximum Levels: 1
Maximum Fanout: 1

Weak Division Runtime: 0.0 sec

Starting Technology Mapping

GATE TYPE GATE COST TIMES USED TOTAL COST

stdor4	74	1	74
stdmux2	50	4	200
stdand2	44	1	44
stdinv	22	4	88
stdnor4	69	2	138

TOTAL GATE COST: 544
TOTAL GATE COUNT: 12
MAXIMUM FANOUT: 1
MAXIMUM INT_FAN: 1
MAXIMUM INBAR_FAN: 1
MAXIMUM LEVEL: 3

Technology Mapping Runtime: 0.4 sec

Structure Composition Runtime: 0.4 sec

Starting Netlist Generation

Writing net file /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/vcheck/p5.net

Netlist Generation Runtime: 0.0 sec

No errors. No warnings.

Beginning to translate netlist file:

/tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/vcheck/p5.net

Finished the translation of netlist file:

/tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/vcheck/p5.net

Synthesis of logic block: [vcheck, p5]

Runtime: 1.0 sec

Starting flattening module vcheck
Flattening through instance: p6 of cell: p6
Flattening through instance: p5 of cell: p5
The design has been flattened.
flattening module vcheck Runtime: 0.1 sec
Starting Synthesis of logic block: [inverter, p7]
Copyright 1992, 1993 Cascade Design Automation Corporation. CASCADE base location: /local/epoch Project: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2 Ruleset: CDA1u2m1p Technology: cmos /local/epoch/bin/cpp /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/inverter/p7.fin /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/inverter/f#p7.mac
Starting Parsing Parsing Runtime: 0.1 sec
Starting Language Synthesis Language Synthesis Runtime: 0.0 sec
Starting Boolean Minimization Boolean Minimization Runtime: 0.0 sec
Starting Structure Optimization
Starting Boolean Minimization for Multi-level Logic Boolean Minimization for Multi-level Logic Runtime: 0.0 sec
Structure Optimization Runtime: 0.1 sec

Starting Structure Composition
Starting Weak Division
Input logic statistics: Primary Inputs : 26 Primary Outputs : 25 Intermediate Vars : 0 Literals : 100 Maximum Levels : 1 Maximum Fanout : 1
Output logic statistics: Primary Inputs : 26 Primary Outputs : 25 Intermediate Vars : 0 Literals : 100 Maximum Levels : 1 Maximum Fanout : 1 Weak Division Runtime: 0.1 sec
Starting Technology Mapping
GATE TYPE GATE COST TIMES USED TOTAL COST stdxnor2 50 25 1250 stdinv 22 3 66
TOTAL GATE COST: 1316 TOTAL GATE COUNT: 28 MAXIMUM FANOUT: 9 MAXIMUM INT_FAN: 1 MAXIMUM INBAR_FAN: 9 MAXIMUM LEVEL: 2 Technology Mapping Runtime: 0.8 sec
Structure Composition Runtime: 0.9 sec
Starting Netlist Generation Writing net file /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/inverter/p7.net Netlist Generation Runtime: 0.0 sec

No errors. No warnings.
Beginning to translate netlist file: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/inverter/p7.net
Finished the translation of netlist file: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/inverter/p7.net Synthesis of logic block: [inverter, p7] Runtime: 1.5 sec
Starting flattening module inverter
Flattening through instance: p7 of cell: p7
The design has been flattened.
flattening module inverter Runtime: 0.0 sec
Starting Synthesis of logic block: [bitshift, p8]
Copyright 1992, 1993 Cascade Design Automation Corporation. CASCADE base location: /local/epoch Project: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2 Ruleset: CDA1u2m1p Technology: cmos /local/epoch/bin/cpp /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/bitshift/p8.fin /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/bitshift/f#p8.mac
Starting Parsing Parsing Runtime: 0.2 sec
Starting Language Synthesis Language Synthesis Runtime: 0.1 sec
Starting Boolean Minimization Boolean Minimization Runtime: 0.1 sec
Starting Structure Optimization

Starting Boolean Minimization for Multi-level Logic Boolean Minimization for Multi-level Logic Runtime: 0.0 sec ______ Structure Optimization Runtime: 0.1 sec Starting Structure Composition _____ Starting Weak Division Input logic statistics: Primary Inputs: 26 Primary Outputs: 26 Intermediate Vars: 0 Literals : 100 Maximum Levels : 1 Maximum Fanout : 1 Output logic statistics: Primary Inputs : 26 Primary Outputs: 26 Intermediate Vars: 0 Literals : 100 Maximum Levels : 1 Maximum Fanout : 1 Weak Division Runtime: 0.1 sec Starting Technology Mapping GATE TYPE GATE COST TIMES USED TOTAL COST stdmux2 50 24 1200 1 43 stdor2 43 22 3 66 stdiny 44 stdand2 44 1

TOTAL GATE COST: 1353
TOTAL GATE COUNT: 29
MAXIMUM FANOUT: 9
MAXIMUM INT_FAN: 1
MAXIMUM INBAR_FAN: 9
MAXIMUM LEVEL: 2

Technology Mapping Runtime: 0.8 sec
Structure Composition Runtime: 0.9 sec
Starting Netlist Generation Writing net file /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/bitshift/p8.net NOTE: OUTPUT zout_25 IS GND. Netlist Generation Runtime: 0.0 sec
No errors. No warnings.
Beginning to translate netlist file: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/bitshift/p8.net
Finished the translation of netlist file: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/bitshift/p8.net Synthesis of logic block: [bitshift, p8] Runtime: 1.7 sec
Starting flattening module bitshift
Flattening through instance: p8 of cell: p8
The design has been flattened.
flattening module bitshift Runtime: 0.0 sec
Starting Synthesis of logic block: [mulclnup, p9]
Copyright 1992, 1993 Cascade Design Automation Corporation. CASCADE base location: /local/epoch Project: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2 Ruleset: CDA1u2m1p Technology: cmos /local/epoch/bin/cpp /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/mulclnup/p9.fin /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/mulclnup/f#p9.mac
Starting Parsing Parsing Runtime: 0.3 sec

Starting Language Synthesis Language Synthesis Runtime: 0.1 sec
Starting Boolean Minimization Boolean Minimization Runtime: 0.1 sec
Starting Structure Optimization
Starting Boolean Minimization for Multi-level Logic Boolean Minimization for Multi-level Logic Runtime: 0.0 sec
Structure Optimization Runtime: 0.1 sec
Starting Structure Composition
Starting Weak Division
Input logic statistics: Primary Inputs : 34 Primary Outputs : 32 Intermediate Vars : 0 Literals : 140 Maximum Levels : 1 Maximum Fanout : 1
Output logic statistics: Primary Inputs : 34 Primary Outputs : 32 Intermediate Vars : 5 Literals : 111 Maximum Levels : 2 Maximum Fanout : 10
Weak Division Runtime: 0.2 sec
Starting Technology Mapping
GATE TYPE GATE COST TIMES USED TOTAL COST stdand4 69 1 69

stdnor4	69	4	276	
	54	8	432	
stdnor2			897	
stdor2	43	5	215	
stdnand4	69	5	345	
stdinv	22	32	704	
TOTAL GA				
TOTAL GA				
MAXIMUI				
MAXIMUI	_		•	
MAXIMUI			2	
MAXIMUI			0.0	
Technology		•	ne: 0.9 sec	
			ime: 1.1 sec	
Starting Ne	tlist Gen	eration		
Writing net	file /tmp	_mnt/h/l	kepler_u2/kljackso/projects/thesis2/mulclnup/p9.ne	et
Netlist Gen	_		-	
No errors.	No warn	ings.		
Beginning t				
/tmp_mnt/h	/kepler_i	u2/kljack	sso/projects/thesis2/mulclnup/p9.net	
			32 4 671	
Finished the				
-			sso/projects/thesis2/mulclnup/p9.net	
Synthesis of	_	ock: [mu	licinup, p9]	
Runtime: 2	4 sec			
Starting flat	tening m	odule mi	ulclnun	
Starting man				
Flattening th	hrough ir	nstance: 1	p9 of cell: p9	
The design	has beer	n flattene	d.	
Classes in a second	adul	ulalm		
flattening m		uicinup		
Runtime: 0				
Starting Syr	nthesis of	f logic bl	ock: [fpadder, s0]	
Starting Dyr			f-L aggest o.1	

Copyright 1992, 1993 Cascade Design Automation Corporation. CASCADE base location: /local/epoch Project: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2 Ruleset: CDA1u2m1p Technology: cmos /local/epoch/bin/cpp /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/fpadder/s0.fin /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/fpadder/f#s0.mac **Starting Parsing** Parsing Runtime: 0.0 sec Starting Language Synthesis Language Synthesis Runtime: 0.0 sec Starting Boolean Minimization Boolean Minimization Runtime: 0.0 sec -----Starting Structure Optimization ------Starting Boolean Minimization for Multi-level Logic Boolean Minimization for Multi-level Logic Runtime: 0.0 sec Structure Optimization Runtime: 0.0 sec ----------Starting Structure Composition Starting Weak Division Input logic statistics: Primary Inputs: 4 Primary Outputs: 4 Intermediate Vars: 0 Literals Maximum Levels : 1 Maximum Fanout : 1

119

Output logic statistics: Primary Inputs : 4 Primary Outputs: 4

Intermediate Vars: 0 Literals: 4 Maximum Levels: 1 Maximum Fanout: 1
Weak Division Runtime: 0.0 sec
Starting Technology Mapping
GATE TYPE GATE COST TIMES USED TOTAL COST stdinv 22 4 88
TOTAL GATE COST: 88
TOTAL GATE COUNT: 4
MAXIMUM FANOUT : 1
MAXIMUM INT_FAN : 0
MAXIMUM INBAR_FAN: 1
MAXIMUM LEVEL : 1 Tackmala and Manning Pointings 0.1 and
Technology Mapping Runtime: 0.1 sec
Structure Composition Runtime: 0.2 sec
Starting Netlist Generation Writing net file /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/fpadder/s0.net Netlist Generation Runtime: 0.0 sec
No errors. No warnings.
Beginning to translate netlist file: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/fpadder/s0.net
Finished the translation of netlist file:
/tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/fpadder/s0.net
Synthesis of logic block: [fpadder, s0]
Runtime: 0.4 sec
Starting flattening module fpadder
Flattening through instance: s0 of cell: s0
The design has been flattened.

flattening module fpadder
Runtime: 0.2 sec
Starting Synthesis of logic block: [encoder, p10]
Copyright 1992, 1993 Cascade Design Automation Corporation. CASCADE base location: /local/epoch Project: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2 Ruleset: CDA1u2m1p Technology: cmos /local/epoch/bin/cpp /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/encoder/p10.fin /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/encoder/f#p10.mac
Starting Parsing Parsing Runtime: 1.1 sec
Starting Language Synthesis Language Synthesis Runtime: 0.3 sec
Starting Boolean Minimization Boolean Minimization Runtime: 0.4 sec
Starting Structure Optimization
Starting Boolean Minimization for Multi-level Logic Boolean Minimization for Multi-level Logic Runtime: 0.2 sec
Structure Optimization Runtime: 0.3 sec
Starting Structure Composition
Starting Weak Division
Input logic statistics: Primary Inputs : 48 Primary Outputs : 6 Intermediate Vars : 0

Maximum Levels : 1

Maximum Fanout : 1

Output logic statistics:
Primary Inputs: 48
Primary Outputs: 6
Intermediate Vars: 62
Literals: 247

Maximum Levels : 18 Maximum Fanout : 4

Weak Division Runtime: 8.3 sec

Starting Technology Mapping

GATE TYPE GATE COST TIMES USED TOTAL COST

stdnor2	39	11	429
stdnor3	54	18	972
stdao211	79	1	79
stdaoi21	54	13	702
stdoai32	85	1	85
stdoai21	54	11	594
stdnor4	69	12	828
stdoai31	70	2	140
stdnand2	39	6	234
stdinv	22	28	616
stdor4	74	8	592
stdor3	59	2	118
stdor2	43	3	129

TOTAL GATE COST: 5518
TOTAL GATE COUNT: 116
MAXIMUM FANOUT: 4
MAXIMUM INT_FAN: 4
MAXIMUM INBAR_FAN: 2
MAXIMUM LEVEL: 22

Technology Mapping Runtime: 2.2 sec

Structure Composition Runtime: 10.6 sec

Starting Netlist Generation

Writing net file /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/encoder/p10.net

Netlist Generation Runtime: 0.0 sec

No errors. No warnings.
Beginning to translate netlist file: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/encoder/p10.net
Finished the translation of netlist file: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/encoder/p10.net Synthesis of logic block: [encoder, p10] Runtime: 14.2 sec
Starting flattening module encoder
Flattening through instance: p10 of cell: p10
The design has been flattened.
flattening module encoder Runtime: 0.1 sec
Starting Synthesis of logic block: [shiftsel, p11]
Copyright 1992, 1993 Cascade Design Automation Corporation. CASCADE base location: /local/epoch Project: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2 Ruleset: CDA1u2m1p
Technology: cmos /local/epoch/bin/cpp /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/shiftsel/p11.fin /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/shiftsel/f#p11.mac
Starting Parsing Parsing Runtime: 0.2 sec
Starting Language Synthesis Language Synthesis Runtime: 0.4 sec
Starting Boolean Minimization Boolean Minimization Runtime: 4.8 sec

Starting Structure Optimization Starting Boolean Minimization for Multi-level Logic Boolean Minimization for Multi-level Logic Runtime: 1.0 sec Structure Optimization Runtime: 2.0 sec Starting Structure Composition Starting Weak Division Input logic statistics: Primary Inputs: 36 Primary Outputs: 14 Intermediate Vars: 0 : 1813 Literals Maximum Levels : 1 Maximum Fanout: 1 Output logic statistics: Primary Inputs : 36 Primary Outputs: 14 Intermediate Vars: 46 Literals : 218 Maximum Levels : 9 Maximum Fanout: 10 Weak Division Runtime: 2.8 sec Starting Technology Mapping GATE TYPE GATE COST TIMES USED TOTAL COST stdoai222 100 8 800 stdxnor2 50 7 350 stdaoi22 69 8 552 12 stdand2 44 528 49 stdxor2 7 343 39 8 stdnor2 312 stdiny 22 18 396 50 5 250 stdmux2 3 stdnor3 54 162

79

stdao211

79

1

TOTAL GATE COST: 3890 **TOTAL GATE COUNT: 79** MAXIMUM FANOUT: 10 MAXIMUM INT_FAN: 10 **MAXIMUM INBAR FAN: 3** MAXIMUM LEVEL : 9 Technology Mapping Runtime: 1.7 sec Structure Composition Runtime: 4.5 sec Starting Netlist Generation Writing net file /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/shiftsel/p11.net Netlist Generation Runtime: 0.0 sec No errors. No warnings. Beginning to translate netlist file: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/shiftsel/p11.net Finished the translation of netlist file: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/shiftsel/p11.net Synthesis of logic block: [shiftsel, p11] Runtime: 13.1 sec Starting flattening module shiftsel Flattening through instance: p11 of cell: p11 The design has been flattened. flattening module shiftsel Runtime: 0.1 sec Starting Synthesis of logic block: [mansel, p12] Copyright 1992, 1993 Cascade Design Automation Corporation. CASCADE base location: /local/epoch Project: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2

stdor3

Ruleset: CDA1u2m1p

59 2

118

/local/epoch/bin/cpp /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/mansel/p12.fin/tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/mansel/f#p12.mac
Starting Parsing Parsing Runtime: 0.2 sec
Starting Language Synthesis Language Synthesis Runtime: 0.1 sec
Starting Boolean Minimization Boolean Minimization Runtime: 0.3 sec
Starting Structure Optimization
Starting Boolean Minimization for Multi-level Logic Boolean Minimization for Multi-level Logic Runtime: 0.1 sec
Structure Optimization Runtime: 0.3 sec
Starting Structure Composition
Starting Weak Division
Input logic statistics: Primary Inputs : 49 Primary Outputs : 48 Intermediate Vars : 0 Literals : 190 Maximum Levels : 1 Maximum Fanout : 1
Output logic statistics: Primary Inputs : 49 Primary Outputs : 48 Intermediate Vars : 0 Literals : 190

Maximum Levels : 1 Maximum Fanout : 1

Weak Division Runtime: 0.3 sec		
Starting Technology Mapping		
GATE TYPE GATE COST TIMES USED TOTAL COST		
stdoai22 68 46 3128		
stdand2 44 1 44		
stdmux2 50 1 50		
stdinv 22 53 1166		
TOTAL GATE COST: 4388		
TOTAL GATE COUNT: 101		
MAXIMUM FANOUT : 10		
MAXIMUM INT_FAN: 1		
MAXIMUM INBAR_FAN: 10		
MAXIMUM LEVEL : 2		
Technology Mapping Runtime: 1.5 sec		
Structure Composition Runtime: 1.9 sec		
Starting Netlist Generation		
Writing net file /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/mansel/p12.net		
Netlist Generation Runtime: 0.0 sec		
No errors. No warnings.		
Beginning to translate netlist file:		
/tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/mansel/p12.net		
Finished the translation of netlist file:		
/tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/mansel/p12.net		
Synthesis of logic block: [mansel, p12]		
Runtime: 3.5 sec		
Starting flattening module mansel		
Flattening through instance: p12 of cell: p12		
The design has been flattened.		
flattening module mansel		

Runtime: 0.1 sec
Starting Synthesis of logic block: [fft, s1]
Copyright 1992, 1993 Cascade Design Automation Corporation.
CASCADE base location: /local/epoch
Project: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2
Ruleset: CDA1u2m1p
Technology: cmos
/local/epoch/bin/cpp /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/fft/s1.fin /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/fft/f#s1.mac
Starting Parsing
Parsing Runtime: 0.0 sec
Starting Language Synthesis
Language Synthesis Runtime: 0.0 sec
Starting Boolean Minimization Boolean Minimization Runtime: 0.0 sec
Starting Structure Optimization
Starting Boolean Minimization for Multi-level Logic
Boolean Minimization for Multi-level Logic Runtime: 0.0 sec
Structure Optimization Runtime: 0.0 sec
Starting Structure Composition
Starting Weak Division
Input logic statistics:
Primary Inputs : 6
Primary Outputs : 6
Intermediate Vars: 0
Literals : 6 Maximum Levels : 1
Maximum Levels : 1 Maximum Fanout : 1
ITIM/MILIMILI A MILVAL I I

Output logic statistics: Primary Inputs: 6 Primary Outputs: 6 Intermediate Vars: 0 Literals: 6 Maximum Levels: 1 Maximum Fanout: 1
Weak Division Runtime: 0.0 sec
Starting Technology Mapping
GATE TYPE GATE COST TIMES USED TOTAL COST stdinv 22 6 132
TOTAL GATE COST: 132 TOTAL GATE COUNT: 6 MAXIMUM FANOUT: 1 MAXIMUM INT_FAN: 0 MAXIMUM INBAR_FAN: 1 MAXIMUM LEVEL: 1 Technology Mapping Runtime: 0.1 sec
Structure Composition Runtime: 0.2 sec
Starting Netlist Generation Writing net file /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/fft/s1.net Netlist Generation Runtime: 0.0 sec
No errors. No warnings.
Beginning to translate netlist file: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/fft/s1.net
Finished the translation of netlist file: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/fft/s1.net Synthesis of logic block: [fft, s1] Runtime: 0.4 sec
Starting flattening module fft

Flattening through instance: s1 of cell: s1 The design has been flattened. flattening module fft Runtime: 1.6 sec Writing /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/fftchip/fftchip.net Writing circuit bitshift. Writing circuit rounder. Writing circuit vcheck. Writing circuit mulclnup. Writing circuit inverter. Writing circuit inverter2. Writing circuit overshift. Writing circuit fpadder. Writing circuit complex_adder_4_input. Writing circuit encoder. Writing circuit mansel. Writing circuit shiftsel. Writing circuit fpmplier. Writing circuit complex_mplier. Writing circuit fft. Writing circuit fftchip. File /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/fftchip/fftchip.def is up to date Writing /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/fftchip/fftchip.vcmd Writing /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/fftchip/fftchip.ref /local/epoch/bin/netinput -p /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2 -r CDA1u2m1p +msgclear -msgfile +ewpstfEW /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/chip_logs/netinput.log fftchip Copyright 1992, 1993 Cascade Design Automation Corporation. CASCADE base location: /local/epoch Project: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2 Ruleset: CDA1u2m1p Technology: cmos ----- NET2NP3 -----Beginning to translate netlist file: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/fftchip/fftchip.net net2np3(WARNING) (line: 266)can not find net: in_F_1(0) on cell: bitshift net2np3(WARNING) (line: 1445)can not find net: exp_F_3(0) on cell: mulclnup net2np3(WARNING) (line: 1446)can not find net: exp_F_4(0) on cell: mulclnup

```
net2np3(WARNING) (line: 1505 )can not find net: man_rnd__F_2(0) on cell: mulclnup
net2np3(WARNING) (line: 1506) can not find net: man_rnd__F_4(0) on cell: mulclnup
net2np3(WARNING) (line: 6949 )can not find net: a(0) on cell: encoder
net2np3(WARNING) (line: 6950 )can not find net: h(0) on cell: encoder
net2np3(WARNING) (line: 7001 )can not find net: in_F_5(0) on cell: encoder
net2np3(WARNING) (line: 8293 )can not find net: car(0) on cell: shiftsel
net2np3(WARNING) (line: 8322 )can not find net: in(0) on cell: shiftsel
net2np3(WARNING) (line: 8323 )can not find net: in_F_6(0) on cell: shiftsel
net2np3(WARNING) (line: 8324 )can not find net: in_F_7(0) on cell: shiftsel
net2np3(WARNING) (line: 8345 )can not find net: tin(0) on cell: shiftsel
Finished the translation of netlist file:
/tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/fftchip/fftchip.net
   ------ BUILD LEAF CELL ------
Reading geometry cell addhs#00 ...
Reading geometry cell dpfadder_bit#o3 ...
Reading geometry cell dpfadder_bit#o6 ...
Reading geometry cell dpfadder_bit#09 ...
Reading geometry cell dpfadder_bit#o5 ...
Reading geometry cell dpfadder_bit#o11 ...
Reading geometry cell dpfadder_bit#o7 ...
Reading geometry cell dpfadder_bit#o12 ...
Reading geometry cell addhs#01 ...
Reading geometry cell dpfadder_bit#08 ...
Reading geometry cell dpfadder_bit#o10 ...
Reading geometry cell dpfadder_bit#o4 ...
Reading geometry cell stdinv#00 ...
Reading geometry cell stdand2#00 ...
Reading geometry cell stdmux2#00 ...
Reading geometry cell stdor2#00 ...
Reading geometry cell mcomp#00 ...
Reading geometry cell gtgate#o2 ...
Reading geometry cell gtgate#00 ...
Reading geometry cell gtgate#o3 ...
Reading geometry cell gtgate#o1 ...
Reading geometry cell mux2#o1 ...
Reading geometry cell gtmux#00 ...
Reading geometry cell inc#o1 ...
Reading geometry cell gtadd#o0 ...
Reading geometry cell inc#o2 ...
```

Reading geometry cell mcomp#01 ... Reading geometry cell mux2#02 ... Reading geometry cell inc#03 ...

Reading geometry cell mux2#o4 ... Reading geometry cell stdnand2#o0 ... Reading geometry cell stdnor2#00 ... Reading geometry cell stdnor3#00 ... Reading geometry cell mux2#o3 ... Reading geometry cell stdnor4#00 ... Reading geometry cell stdor4#00 ... Reading geometry cell stdand4#00 ... Reading geometry cell stdand3#00 ... Reading geometry cell stdao21#o0 ... Reading geometry cell zero#00 ... Reading geometry cell gtgate#04 ... Reading geometry cell gtgate#06 ... Reading geometry cell gtgate#05 ... Reading geometry cell zero#o1 ... Reading geometry cell stdnand4#00 ... Reading geometry cell stdoai21#00 ... Reading geometry cell compl#00 ... Reading geometry cell dpcompl#00 ... Reading geometry cell dpcompl#o1 ... Reading geometry cell stdxnor2#00 ... Reading geometry cell stdor3#00 ... Reading geometry cell dff_c#o0 ... Reading geometry cell gtdff#o0 ... Reading geometry cell dff_c#o1 ... Reading geometry cell dff_c#o2 ... Reading geometry cell dff_c#o3 ... Reading geometry cell dff_c#o4 ... Reading geometry cell barrelright#00 ... Reading geometry cell gtmux#o1 ...

Flattening through instance: Adder1 of cell: addhs#00

Flattening through instance: Adder2 of cell: addhs#o1

Flattening through instance: Bitshift1 of cell: bitshift

Flattening through instance: E_Comparator of cell: mcomp#00

Flattening through instance: Exp_mux1 of cell: mux2#o1

Flattening through instance: Exp_mux2 of cell: mux2#o1

Flattening through instance: Incrementer1 of cell: inc#o1

Flattening through instance: Incrementer2 of cell: inc#o2

Flattening through instance: Incrementer3 of cell: inc#o2

Flattening through instance: M_Comparator of cell: mcomp#01

Flattening through instance: Man_mux1 of cell: mux2#o2

Flattening through instance: Man_mux2 of cell: mux2#02

Flattening through instance: Incrementer of cell: inc#o3

Flattening through instance: MUX of cell: mux2#04

Flattening through instance: Rounder of cell: rounder

Flattening through instance: Sign_mux of cell: mux2#03

Flattening through instance: Value_Test_A of cell: vcheck

Flattening through instance: Value_Test_B of cell: vcheck

Flattening through instance: Zero_Dect1 of cell: zero#00

Flattening through instance: Zero_Dect2 of cell: zero#o1

Flattening through instance: cleanup of cell: mulclnup

Flattening through instance: exp_compl of cell: compl#00

Flattening through instance: man_invA of cell: inverter

Flattening through instance: man_invB of cell: inverter

Flattening through instance: man_out_inv of cell: inverter2

Flattening through instance: overshift of cell: overshift

Flattening through instance: reg1 of cell: dff_c#o0

Flattening through instance: reg2 of cell: dff_c#o1

Flattening through instance: reg2i of cell: dff_c#o1
Flattening through instance: reg3 of cell: dff_c#o2
Flattening through instance: reg4 of cell: dff_c#o3
Flattening through instance: reg5 of cell: dff_c#o4
Flattening through instance: shifter of cell: barrelright#00
The design has been flattened.
NETCHECK
Deleted single terminal net: regout3(29) on cell: fpadder. Deleted single terminal net: regout3(30) on cell: fpadder. Deleted single terminal net: regout4(36) on cell: fpadder. Deleted single terminal net: regout4(37) on cell: fpadder. Deleted single terminal net: regout4(38) on cell: fpadder. Deleted single terminal net: regout4(44) on cell: fpadder. Deleted single terminal net: regout4(44) on cell: fpadder. Deleted single terminal net: regout4(44) on cell: fpadder. netcheck(WARNING) The cell gtdff#00, instance reg3:reg29 is an unnecessary cell, none of its outputs are being used. netcheck(WARNING) The cell gtdff#00, instance reg4:reg36 is an unnecessary cell, none of its outputs are being used. netcheck(WARNING) The cell gtdff#00, instance reg4:reg37 is an unnecessary cell, none of its outputs are being used. netcheck(WARNING) The cell gtdff#00, instance reg4:reg38 is an unnecessary cell, none of its outputs are being used. netcheck(WARNING) The cell gtdff#00, instance reg4:reg38 is an unnecessary cell, none of its outputs are being used. netcheck(WARNING) The cell gtdff#00, instance reg4:reg44 is an unnecessary cell, none of its outputs are being used. netcheck(ERROR) net: Rounder:nc on cell: fpadder has Multiple Output nodes connected together. (To turn off this error mesage use net attribute: IGNORE_MULT_DRIVER) netcheck(ERROR) net: nc on cell: fpadder has Multiple Output nodes connected together. (To turn off this error mesage use net attribute: IGNORE_MULT_DRIVER) Finished netcheck process. Please check for error messages.
SEPARATOR

New cell: fpadder_group is created.
Finished separator process. Please check for error messages.
WRITING CELL TO DISK
Writing cell fpadder_group to disk Dump circuit fpadder_group. Writing cell fpadder to disk Dump circuit fpadder.
WRITING CELL FILE
Dump cell fpadder_group. Dump cell fpadder.
BUILD LEAF CELL
Reading geometry cell fpadder
NPFLATTEN
cell: complex_adder_4_input has no hierarchy, nothing to flatten
NETCHECK
Finished netcheck process. Please check for error messages.
SEPARATOR
Nothing to be separated.
Finished separator process. Please check for error messages.
WRITING CELL TO DISK
Writing cell complex_adder_4_input to disk Dump circuit complex_adder_4_input.
WDITING CELL EILE

Dump cell complex_adder_4_input. ----- BUILD LEAF CELL -----Reading geometry cell addrip#o0 ... Reading geometry cell gtadd#o1 ... Reading geometry cell compl#o1 ... Reading geometry cell hsmult2piped_c_0#o0 ... Reading geometry cell stdoai32#o0 ... Reading geometry cell stdoai31#o0 ... Reading geometry cell stdaoi21#00 ... Reading geometry cell stdao211#00 ... Reading geometry cell stdoai22#00 ... Reading geometry cell dff_c#o5 ... Reading geometry cell dff_c#o6 ... Reading geometry cell dff_c#o7 ... Reading geometry cell dff_c#08 ... Reading geometry cell barrelleft#00 ... Reading geometry cell stdxor2#o0 ... Reading geometry cell stdaoi22#o0 ... Reading geometry cell stdoai222#o0 ... Flattening through instance: Adder1 of cell: addhs#00 Flattening through instance: Adder2 of cell: addhs#00 Flattening through instance: Adder3 of cell: addhs#00 Flattening through instance: Adder4 of cell: addrip#00 Flattening through instance: Adder5 of cell: addhs#00 Flattening through instance: Comparator of cell: mcomp#00 Flattening through instance: Complementor of cell: compl#o1 Flattening through instance: Complementor2 of cell: compl#o1 Flattening through instance: Incrementer of cell: inc#o2 Flattening through instance: Incrementer2 of cell: inc#o2

Flattening through instance: Incrementer of cell: inc#o3

Flattening through instance: MUX of cell: mux2#04

Flattening through instance: Rounder of cell: rounder

Flattening through instance: Value_Test_A of cell: vcheck

Flattening through instance: Value_Test_B of cell: vcheck

Flattening through instance: cleanup of cell: mulclnup

Flattening through instance: encoder of cell: encoder

Flattening through instance: mansel of cell: mansel

Flattening through instance: reg1 of cell: dff_c#o1

Flattening through instance: reg2 of cell: dff_c#o5

Flattening through instance: reg2i of cell: dff_c#o5

Flattening through instance: reg3 of cell: dff_c#o6

Flattening through instance: reg4 of cell: dff_c#o7

Flattening through instance: reg4i of cell: dff_c#o8

Flattening through instance: reg5 of cell: dff_c#o4

Flattening through instance: shifter of cell: barrelleft#00

Flattening through instance: shiftsel of cell: shiftsel

The design has been flattened.

----- NETCHECK -----

Deleted single terminal net: prod(48) on cell: fpmplier.

Deleted single terminal net: prod(49) on cell: fpmplier.

Deleted single terminal net: prod(50) on cell: fpmplier.

Deleted single terminal net: prod(51) on cell: fpmplier.

Deleted single terminal net: regout4(63) on cell: fpmplier.

Deleted single terminal net: regout4i(67) on cell: fpmplier.

netcheck(WARNING) The cell stdnor4#00, instance encoder:p10_Izh_8 is an
unnecessary cell, none of its outputs are being used.
netcheck(WARNING) The cell gtdff#00, instance reg4:reg63 is an unnecessary cell, none
of its outputs are being used. netcheck(WARNING) The cell gtdff#00, instance reg4i:reg67 is an unnecessary cell,
none of its outputs are being used.
netcheck(ERROR) net: Rounder:nc on cell: fpmplier has Multiple Output nodes
connected together. (To turn off this error mesage use net attribute:
IGNORE_MULT_DRIVER)
netcheck(ERROR) net: nc on cell: fpmplier has Multiple Output nodes connected
together. (To turn off this error mesage use net attribute: IGNORE_MULT_DRIVER)
Finished netcheck process. Please check for error messages.
Thisned netericek process. Trease eneck for error messages.
SEPARATOR
New cell: mplier is created.
Finished separator process. Please check for error messages.
WRITING CELL TO DISK
Writing cell mplier to disk
Dump circuit mplier.
Writing cell fpmplier to disk
Dump circuit fpmplier.
WRITING CELL FILE
Dump cell hsmult2piped_c_0#o0.
Dump cell mplier.
Dump cell fpmplier.
BUILD LEAF CELL
Reading geometry cell fpmplier
NPFLATTEN
AVI A DI LA ADA V
cell: complex_mplier has no hierarchy, nothing to flatten
NAME OF THE OWN

Finished netcheck process. Please check for error messages.
SEPARATOR
Nothing to be separated.
Finished separator process. Please check for error messages.
WRITING CELL TO DISK
Writing cell complex_mplier to disk Dump circuit complex_mplier.
WRITING CELL FILE
Dump cell complex_mplier.
BUILD LEAF CELL
Reading geometry cell complex_adder_4_input Reading geometry cell scntrl#o0 Reading geometry cell inc_0#o0 Reading geometry cell gtdff#o1 Reading geometry cell dff_c#o9 Reading geometry cell latch_c#o0 Reading geometry cell gtlatch#o0 Reading geometry cell dff_c#o1 Reading geometry cell dff_c#o1 Reading geometry cell dff_c#o1 Reading geometry cell mux4#o0 Reading geometry cell dff_c#o10
Flattening through instance: inc0 of cell: inc_0#o0
Flattening through instance: Counter of cell: scntrl#o0
Flattening through instance: FPSReg1 of cell: dff_c#o9
Flattening through instance: FPSReg2 of cell: dff_c#o9

Flattening through instance: FPSReg3 of cell: dff_c#o9
Flattening through instance: FPSReg4 of cell: dff_c#o9
Flattening through instance: FPSReg5 of cell: dff_c#o9
Flattening through instance: Latch1 of cell: latch_c#o0
Flattening through instance: Latch2 of cell: latch_c#o0
Flattening through instance: Mux1 of cell: mux4#00
Flattening through instance: Mux2 of cell: mux4#00
Flattening through instance: Mux3 of cell: mux4#00
Flattening through instance: reg1 of cell: dff_c#o10
Flattening through instance: reg2 of cell: dff_c#o10
Flattening through instance: reg3 of cell: dff_c#o10
The design has been flattened.
NETCHECK
netcheck(WARNING) The cell gtgate#00, instance Counter:inc0:tc_inv is an unnecessary cell, none of its outputs are being used.
Finished netcheck process. Please check for error messages.
SEPARATOR
Nothing to be separated.
Finished separator process. Please check for error messages.
WRITING CELL TO DISK
Writing cell fft to disk Dump circuit fft.

WRITING CELL FILE
Dump cell fft.
BUILD LEAF CELL

Writing specification cell padin unbuf#o7, compiler padinput Writing specification cell padin_unbuf#08, compiler padinput Writing specification cell padin unbuf#09, compiler padinput Writing specification cell padin unbuf#o10, compiler padinput Writing specification cell padin_unbuf#o11, compiler padinput Writing specification cell padin unbuf#o12, compiler padinput Writing specification cell padout#02, compiler padoutput Writing specification cell padout#03, compiler padoutput Writing specification cell padgnd#o1, compiler padgndvdd Writing specification cell padvdd#o1, compiler padgndvdd Writing specification cell padgnd#o2, compiler padgndvdd Writing specification cell padvdd#o2, compiler padgndvdd Writing specification cell padgnd#03, compiler padgndvdd Writing specification cell padvdd#o3, compiler padgndvdd Writing specification cell padvdd#o4, compiler padgndvdd Writing specification cell padgnd#04, compiler padgndvdd The following cells will be generated:

padin_unbuf#o7
padin_unbuf#o8
padin_unbuf#o9
padin_unbuf#o10
padin_unbuf#o11
padin_unbuf#o12
padout#o2
padout#o3
padgnd#o1
padydd#o1
padgnd#o2
padvdd#o2
padydd#o3
padydd#o3
padydd#o3
padydd#o3

padvdd#o4 padgnd#o4

/local/epoch/bin/padcells -p /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2 -r CDA1u2m1p +msgclear -msgfile +ewpstfEW

/tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/chip_logs/padcells.log +geo +sym +sim +trans padin_unbuf#o7 padin_unbuf#o8 padin_unbuf#o9 padin_unbuf#o10 padin_unbuf#o11 padin_unbuf#o12 padout#o2 padout#o3 padgnd#o1 padvdd#o1 padgnd#o2 padvdd#o2 padgnd#o3 padvdd#o4 padgnd#o4

Copyright 1992, 1993 Cascade Design Automation Corporation
CASCADE base location: /local/epoch
Project: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2
Ruleset: CDA1u2m1p
Technology: cmos
Calling compiler for cell padin_unbuf#o7
====> Generating Layout.
=====> End Layout.
=====> Generating Simulation Model.
====> End Simulation Model.
=====> Generating Transistor Model.
=====> End Transistor Model.
=====> Generating Layout.
=====> End Layout.
====> Generating Simulation Model.
====> End Simulation Model.
====> Generating Transistor Model.
=====> End Transistor Model.
=====> Generating Layout.
=====> End Layout.
====> Generating Simulation Model.
=====> End Simulation Model.
====> Generating Netlist.
Writing cell padin_unbuf#g7 to disk
=====> End Netlist.
Calling compiler for cell padin_unbuf#08
====> Generating Layout.
=====> End Layout.
====> Generating Simulation Model.
====> End Simulation Model.
=====> Generating Transistor Model.
=====> End Transistor Model.
=====> Generating Layout.
=====> End Layout.
=====> Generating Simulation Model.
====> End Simulation Model.
=====> Generating Transistor Model.
====> End Transistor Model.
====> Generating Layout.
=====> End Layout.
=====> Generating Simulation Model.
====> End Simulation Model.
=====> Generating Netlist.
Writing cell padin_unbuf#g8 to disk
=====> End Netlist.

Calling compiler for cell padin_unbuf#09
=====> Generating Layout.
=====> End Layout.
=====> Generating Simulation Model.
====> End Simulation Model.
====> Generating Transistor Model.
=====> End Transistor Model.
====> Generating Layout.
====> End Layout.
=====> Generating Simulation Model.
=====> End Simulation Model.
====> Generating Transistor Model.
=====> End Transistor Model.
=====> Generating Layout.
=====> End Layout.
=====> Generating Simulation Model.
====> End Simulation Model.
=====> Generating Netlist.
Writing cell padin_unbuf#g9 to disk
=====> End Netlist.
Calling compiler for cell padin_unbuf#o10
====> Generating Layout.
=====> End Layout.
====> Generating Simulation Model.
====> End Simulation Model.
====> Generating Transistor Model.
====> End Transistor Model.
====> Generating Layout.
====> End Layout.
====> Generating Simulation Model.
====> End Simulation Model.
====> Generating Transistor Model.
=====> End Transistor Model.
=====> Generating Layout.
====> End Layout.
====> Generating Simulation Model.
====> End Simulation Model.
====> Generating Netlist.
Writing cell padin_unbuf#g10 to disk
=====> End Netlist.
Calling compiler for cell padin_unbuf#o11
====> Generating Layout.
=====> End Layout.
====> Generating Simulation Model.
End Simulation Model

=====> Generating Transistor Model.
=====> End Transistor Model.
=====> Generating Layout.
=====> End Layout.
=====> Generating Simulation Model.
====> End Simulation Model.
=====> Generating Transistor Model.
=====> End Transistor Model.
=====> Generating Layout.
=====> End Layout.
====> Generating Simulation Model.
=====> End Simulation Model.
====> Generating Netlist.
Writing cell padin_unbuf#g11 to disk
=====> End Netlist.
Calling compiler for cell padin_unbuf#o12
====> Generating Layout.
=====> End Layout.
====> Generating Simulation Model.
====> End Simulation Model.
=====> Generating Transistor Model.
=====> End Transistor Model.
====> Generating Layout.
=====> End Layout.
=====> Generating Simulation Model.
=====> End Simulation Model.
=====> Generating Transistor Model.
=====> End Transistor Model.
=====> Generating Layout.
====> End Layout.
====> Generating Simulation Model.
=====> End Simulation Model.
====> Generating Netlist.
Writing cell padin_unbuf#g12 to disk
=====> End Netlist.
Calling compiler for cell padout#o2
=====> Generating Layout.
====> End Layout.
====> Generating Simulation Model.
====> End Simulation Model.
====> Generating Transistor Model.
====> End Transistor Model.
====> Generating Layout.
====> End Layout.
====> Generating Simulation Model.

=====> End Simulation Model.
====> Generating Transistor Model.
====> End Transistor Model.
====> Generating Layout.
=====> End Layout.
====> Generating Simulation Model.
=====> End Simulation Model.
=====> Generating Netlist.
Writing cell padout#g2 to disk
=====> End Netlist.
Calling compiler for cell padout#o3
=====> Generating Layout.
=====> End Layout.
====> Generating Simulation Model.
=====> End Simulation Model.
====> Generating Transistor Model.
====> End Transistor Model.
=====> Generating Layout.
=====> End Layout.
=====> Generating Simulation Model.
=====> End Simulation Model.
====> Generating Transistor Model.
=====> End Transistor Model.
=====> Generating Layout.
=====> End Layout.
=====> Generating Simulation Model.
====> End Simulation Model.
=====> Generating Netlist.
Writing cell padout#g3 to disk
=====> End Netlist.
Calling compiler for cell padgnd#o1
====> Generating Layout.
=====> End Layout.
====> Generating Simulation Model.
====> End Simulation Model.
=====> Generating Transistor Model.
====> End Transistor Model.
=====> Generating Layout.
====> End Layout.
====> Generating Simulation Model.
====> End Simulation Model.
=====> Generating Transistor Model.
=====> End Transistor Model.
=====> Generating Netlist.
Writing cell padgnd#g1 to disk

=====> End Netlist.
Calling compiler for cell padvdd#o1
====> Generating Layout.
=====> End Layout.
=====> Generating Simulation Model.
=====> End Simulation Model.
====> Generating Transistor Model.
====> End Transistor Model.
====> Generating Layout.
====> End Layout.
=====> Generating Simulation Model.
=====> End Simulation Model.
====> Generating Transistor Model.
=====> End Transistor Model.
=====> Generating Netlist.
Writing cell padvdd#g1 to disk
=====> End Netlist.
Calling compiler for cell padgnd#o2
=====> Generating Layout.
====> End Layout.
=====> Generating Simulation Model.
====> End Simulation Model.
=====> Generating Transistor Model.
====> End Transistor Model.
=====> Generating Layout.
====> End Layout.
====> Generating Simulation Model.
=====> End Simulation Model.
=====> Generating Transistor Model.
=====> End Transistor Model.
=====> Generating Netlist.
Writing cell padgnd#g2 to disk
=====> End Netlist.
Calling compiler for cell padvdd#o2
====> Generating Layout.
====> End Layout.
====> Generating Simulation Model.
=====> End Simulation Model.
=====> Generating Transistor Model.
====> End Transistor Model.
====> Generating Layout.
====> End Layout.
====> Generating Simulation Model.
====> End Simulation Model.
=====> Generating Transistor Model.

====> End Transistor Model.
=====> Generating Netlist.
Writing cell padvdd#g2 to disk
====> End Netlist.
Calling compiler for cell padgnd#o3
=====> Generating Layout.
=====> End Layout.
=====> Generating Simulation Model.
=====> End Simulation Model.
=====> Generating Transistor Model.
=====> End Transistor Model.
=====> Generating Layout.
=====> End Layout.
=====> Generating Simulation Model.
=====> End Simulation Model.
=====> Generating Transistor Model.
=====> End Transistor Model.
=====> Generating Netlist.
Writing cell padgnd#g3 to disk
=====> End Netlist.
Calling compiler for cell padvdd#o3
====> Generating Layout.
=====> End Layout.
====> Generating Simulation Model.
=====> End Simulation Model.
=====> Generating Transistor Model.
====> End Transistor Model.
=====> Generating Layout.
=====> End Layout.
====> Generating Simulation Model.
====> End Simulation Model.
====> Generating Transistor Model.
====> End Transistor Model.
====> Generating Netlist.
Writing cell padvdd#g3 to disk
=====> End Netlist.
Calling compiler for cell padvdd#o4
=====> Generating Layout.
=====> End Layout.
====> Generating Simulation Model.
====> End Simulation Model.
=====> Generating Transistor Model.
=====> End Transistor Model.
=====> Generating Layout.
> End I avout

====> Generating Simulation Model.
====> End Simulation Model.
=====> Generating Transistor Model.
====> End Transistor Model.
====> Generating Netlist.
Writing cell padvdd#g4 to disk
====> End Netlist.
Calling compiler for cell padgnd#o4
====> Generating Layout.
====> End Layout.
====> Generating Simulation Model.
====> End Simulation Model.
====> Generating Transistor Model.
=====> End Transistor Model.
=====> Generating Layout.
====> End Layout.
====> Generating Simulation Model.
=====> End Simulation Model.
====> Generating Transistor Model.
=====> End Transistor Model.
=====> Generating Netlist.
Writing cell padgnd#g4 to disk
====> End Netlist.
No errors. No warnings.
Reading geometry cell fft
Reading geometry cell padin_unbuf#o7
Reading geometry cell pdinput#o0
Reading geometry cell padin_unbuf#08
Reading geometry cell padin_unbuf#09
Reading geometry cell padin_unbuf#o10
Reading geometry cell padin_unbuf#o11
Reading geometry cell padin_unbuf#o12
Reading geometry cell padout#o2
Reading geometry cell pad_driver#o1
Reading geometry cell pdoutput#o0
Reading geometry cell padout#o3
Reading geometry cell padgnd#o1
Reading geometry cell pdgndvdd#o0
Reading geometry cell padvdd#o1
Reading geometry cell pdgndvdd#o1
Reading geometry cell padgnd#o2
Reading geometry cell padvdd#o2
Reading geometry cell padgnd#o3
Reading geometry cell padvdd#o3
Reading geometry cell padvdd#o4

Reading geometry cell padgnd#o4
NPFLATTEN
Flattening through instance: inpad0 of cell: padin_unbuf#o7
Flattening through instance: inpad1 of cell: padin_unbuf#08
Flattening through instance: inpad2 of cell: padin_unbuf#o9
Flattening through instance: inpad4 of cell: padin_unbuf#o10
Flattening through instance: inpad5 of cell: padin_unbuf#o11
Flattening through instance: inpad6 of cell: padin_unbuf#o12
Flattening through instance: outpad1 of cell: padout#o2
Flattening through instance: outpad2 of cell: padout#o3
Flattening through instance: pwrpad1 of cell: padgnd#o1
Flattening through instance: pwrpad2 of cell: padvdd#o1
Flattening through instance: pwrpad3 of cell: padgnd#o2
Flattening through instance: pwrpad4 of cell: padvdd#o2
Flattening through instance: pwrpad5 of cell: padgnd#o3
Flattening through instance: pwrpad6 of cell: padvdd#o3
Flattening through instance: pwrpad7 of cell: padvdd#o4
Flattening through instance: pwrpad8 of cell: padgnd#o4
The design has been flattened.
NETCHECK
netcheck(WARNING) net: gndpad has multi pad connections. netcheck(WARNING) net: vddpad has multi pad connections.

Finished netcheck process. Please check for error messages.
SEPARATOR
New cell: fftchip_core is created.
Finished separator process. Please check for error messages.
CHECKPLOP
(WARNING) CHECKPLOP: No package has been selected, pin number without PINNUM, SIDE and PADIND will be ignored, auto pad positioning the unassigned pads PACKAGER: Proceeding with automatic pad order assignment.
Finished with package information check.
Current Limitation Check
No package has been selected. Using the automatic pad assignment. (NOTE) There is no Regular or CoreOnly Vdd pad on the East side of the chip. (NOTE) There is no Regular or CoreOnly GND pad on the East side of the chip. (NOTE) There is no Regular or CoreOnly GND pad on the South side of the chip. (NOTE) There is no Regular or CoreOnly Vdd pad on the West side of the chip. POWERCHECK(WARNING) Vdd and GND pads are not on every side of the design.
The design "fftchip" is OK to proceed further.
Finished with Current Limitation Check.
WRITING CELL TO DISK
Writing cell fftchip_core to disk Dump circuit fftchip_core.
Writing cell fftchip to disk
Dump circuit fftchip.
WRITING CELL FILE
Dump cell fftchip_core. Dump cell fftchip.
Dump con memp.

APPENDIX D EPOCH AUTOCOMPILATION

/local/epoch/bin/autocompile -p /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2 -r

CDA1u2m1p +msgclear -msgfile +ewpstfEW

/tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/chip_logs/autocompile.log -Placement -

Route -BufferSize fftchip

Copyright 1992, 1993 Cascade Design Automation Corporation.

CASCADE base location: /local/epoch

Project: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2

Ruleset: CDA1u2m1p Technology: cmos

Reading cell file: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/fftchip/fftchip.cell

Reading cell file:

/tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/layout_parts/fftchip_core/fftchip_core.cell

Reading cell file: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/fft/fft.cell

Reading cell file:

/tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/layout_parts/complex_mplier.cell

Reading cell file:

/tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/layout_parts/fpmplier/fpmplier.cell

Reading cell file:

/tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/layout_parts/mplier/mplier.cell

Reading cell file:

/tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/layout_parts/hsmult2piped_c_0#o0/hsmult2piped_c_0#o0.cell

Reading cell file: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/fpadder/fpadder.cell

Reading cell file:

/tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/layout_parts/fpadder_group/fpadder_group.cell

Reading cell file:

/tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/complex_adder_4_input/complex_adder_ 4_input.cell

/local/epoch/bin/dpath5 -p /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2 -r CDA1u2m1p +msgclear -msgfile +ewpstfEW

/tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/chip_logs/dpath5.log fpadder_group

Copyright 1992, 1993 Cascade Design Automation Corporation.

CASCADE base location: /local/epoch

Project: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2

Ruleset: CDA1u2m1p Technology: cmos

DATAPATH: Reading datapath geometry.

DATAPATH: Reading footprints. DATAPATH: Placing columns.

DATAPATH: Initial bit cells placement.

DATAPATH: Routing datapath.

DATAPATH 3.0

size: 26 X 3

Horizontal channels

Contour Router V1.1

channel #26

channel #25

channel #24

channel #23

channel #22

channel #21

channel #20

channel #19

channel #18

channel #17

channel #16

channel #15

channel #14

channel #13

channel #12

channel #11

channel #10

channel #9

channel #8

channel #7

channel #6

channel #5

channel #4

channel #3

channel #2

channel #1

channel #0

Vertical channels

channel #3

channel #2

channel #1

channel #0

DATAPATH: Creating geometry.

Writing cell fpadder_group to disk

/local/epoch/bin/geo2glue -p /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2 -r

CDA1u2m1p +msgclear -msgfile +ewpstfEW

/tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/chip_logs/geo2glue.log -geoout -tries 30

fpadder

Copyright 1992, 1993 Cascade Design Automation Corporation.

CASCADE base location: /local/epoch

Project: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2

Ruleset: CDA1u2m1p Technology: cmos

Reading geometry "fpadder"

No. user defined groups: 1

Grouping standard cells

Grouping nets into buses

374 bussed nets eliminated.

Placement data:

1301 instances (1 blocks, 1300 standard cells in 9 groups)

52 nets (local 1041, bussed 32)

107 pins

Running block placement

Block Placement: 10.26 percent done

Block Placement: 20.51 percent done

Block Placement: 30.77 percent done

Block Placement: 41.03 percent done

Block Placement: 51.28 percent done

Block Placement: 61.54 percent done

Block Placement: 73.08 percent done

Block Placement: 83.33 percent done

Block Placement: 93.59 percent done

Block Placement: 100.00 percent done.

Merging groups of 126 and 119 standard cells into 6 rows

Merging groups of 212 and 245 standard cells into 12 rows

Merging groups of 212 and 457 standard cells into 12 rows

Merging groups of 78 and 123 standard cells into 3 rows

Running standard cell placement

Optimizing 5 vertical rows of 49 cells

Optimizing 3 vertical rows of 201 cells

Optimizing 8 vertical rows of 212 cells

Optimizing 12 rows of 669 cells

Optimizing 10 rows of 169 cells

Writing geometry "fpadder"

Writing cell fpadder to disk

Geo2glue completed on "fpadder": Real time: 00:10:02, CPU time: 558.71 seconds.

/local/epoch/bin/gluenp -p /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2 -r CDA1u2m1p

+msgclear -msgfile +ewpstfEW

/tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/chip_logs/gluenp.log fpadder

GLUE ROUTER version 6.1.

Copyright 1992, 1993 Cascade Design Automation Corporation.

CASCADE base location: /local/epoch

Project: /tmp mnt/h/kepler u2/kljackso/projects/thesis2

Ruleset: CDA1u2m1p Technology: cmos

Glue: reading in geometry file fpadder

Initialize power connections. Read in placement expression.

Position export pins.

Adding north port for GND

Adding east port for GND

Adding west port for GND

Adding south port for VDD

Adding east port for VDD

Adding west port for VDD

Route power nets. (minimum_size_rails)

-- GND

-- VDD

Read in footprint information.

Over the cell routing gates.

Over the cell routing blocks.

Overcell Router V2.0

Generating global router input.

Mixed-Mode Global Router V1.1

Routing group [0]

Routing group [1]

Routing group [2]

Routing group [3]

Routing group [4]

Assemble Standard cell groups

Assemble Group std_group_0

Contour Router V1.1

Channel no. 1

Assemble Group std_group_1

Channel no. 2

Channel no. 3

Channel no. 4

Channel no. 5

Channel no. 6

Channel no. 7

Channel no. 8

Assemble Group rnder

Channel no. 9

Channel no. 10

Channel no. 11

Channel no. 12

Assemble Group std_group_3

Channel no. 13

Channel no. 14

Channel no. 15

Channel no. 16

Channel no. 17

Channel no. 18

Channel no. 19

Channel no. 20

Channel no. 21

Assemble Group std_group_2

Channel no. 22

Channel no. 23

Channel no. 24

Channel no. 25

Channel no. 26

Channel no. 27

Channel no. 28

Channel no. 29

Channel no. 30

Channel no. 31

Channel no. 32

Assemble Blocks

Channel no. 33

Channel no. 34

Channel no. 35

Channel no. 36

Channel no. 37

Route perimeter channels.

Ripping External Channels

Channel no. 39

Channel no. 40

Channel no. 41

Generating Geometry.

Writing cell fpadder to disk

Glue: fpadder completed, Real time: 00:05:45, CPU time: 290.25 seconds.

/local/epoch/bin/geo2glue -p /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2 -r

CDA1u2m1p +msgclear -msgfile +ewpstfEW

/tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/chip_logs/geo2glue.log -geoout -tries 30

complex_adder_4_input

Copyright 1992, 1993 Cascade Design Automation Corporation.

CASCADE base location: /local/epoch

Project: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2

Ruleset: CDA1u2m1p Technology: cmos

Reading geometry "complex_adder_4_input"

No. user defined groups: 0 Grouping standard cells Grouping nets into buses

380 bussed nets eliminated.

Placement data:

16 instances (6 blocks, 10 standard cells in 1 groups)

107 nets (local 5, bussed 79)

331 pins

Running block placement

Block Placement: 9.30 percent done

Block Placement: 18.60 percent done

Block Placement: 27.91 percent done Block Placement: 37.21 percent done

Block Placement: 37.21 percent done

Block Placement: 46.51 percent done Block Placement: 55.81 percent done

Block Placement: 65.12 percent done

Block Placement: 74.42 percent done

Block Placement: 83.72 percent done

Block Placement: 94.19 percent done

Block Placement: 100.00 percent done.

Running standard cell placement

Optimizing 1 vertical row of 10 cells Writing geometry "complex_adder_4_input"

Writing cell complex_adder_4_input to disk

 $Geo2glue\ completed\ on\ "complex_adder_4_input":\ Real\ time:\ 00:00:23,\ CPU\ time:$

16.92 seconds.

/local/epoch/bin/gluenp -p /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2 -r CDA1u2m1p

+msgclear -msgfile +ewpstfEW

/tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/chip_logs/gluenp.log

complex_adder_4_input

GLUE ROUTER version 6.1.

Copyright 1992, 1993 Cascade Design Automation Corporation.

CASCADE base location: /local/epoch

Project: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2

Ruleset: CDA1u2m1p Technology: cmos

Glue: reading in geometry file complex_adder_4_input

Initialize power connections. Read in placement expression.

Position export pins.

Adding north port for GND

Adding east port for GND

Adding west port for GND

Adding south port for VDD

Adding east port for VDD

Adding west port for VDD

Route power nets. (minimum_size_rails)

-- GND

-- VDD

Read in footprint information.

Over the cell routing gates.

Over the cell routing blocks.

Overcell Router V2.0

OCR: All standard cell design.

Generating global router input.

Mixed-Mode Global Router V1.1

Routing group [0]

Assemble Standard cell groups

Assemble Group std_group_0

Assemble Blocks

Contour Router V1.1

Channel no. 0

Channel no. 1

Channel no. 2

Channel no. 3

Channel no. 4

Channel no. 5

Route perimeter channels.

Ripping External Channels

Channel no. 6

Channel no. 7

Channel no. 9

Generating Geometry.

Writing cell complex_adder_4_input to disk

Glue: complex_adder_4_input completed, Real time: 00:03:35, CPU time: 196.62

seconds.

Cell: hsmult2piped_c_0#o0 has already been placed and routed.

/local/epoch/bin/dpath5 -p /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2 -r CDA1u2m1p

+msgclear -msgfile +ewpstfEW

/tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/chip_logs/dpath5.log mplier

Copyright 1992, 1993 Cascade Design Automation Corporation.

CASCADE base location: /local/epoch

Project: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2

Ruleset: CDA1u2m1p Technology: cmos

DATAPATH: Reading datapath geometry.

DATAPATH: Reading footprints. DATAPATH: Placing columns.

DATAPATH: Initial bit cells placement.

DATAPATH: Routing datapath.

DATAPATH 3.0

size: 8 X 6

Horizontal channels

Contour Router V1.1

channel #8

channel #7

channel #6

channel #5

channel #4

channel #3

channel #2

channel #1

channel #0

Vertical channels

channel #6

channel #5

channel #4

channel #3

channel #2

channel #1

channel #0

DATAPATH: Creating geometry.

Writing cell mplier to disk

/local/epoch/bin/geo2glue -p /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2 -r

CDA1u2m1p +msgclear -msgfile +ewpstfEW

/tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/chip_logs/geo2glue.log -geoout -tries 30

fpmplier

Copyright 1992, 1993 Cascade Design Automation Corporation.

CASCADE base location: /local/epoch

Project: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2

Ruleset: CDA1u2m1p Technology: cmos

Reading geometry "fpmplier"

No. user defined groups: 1

Grouping standard cells

Grouping nets into buses

403 bussed nets eliminated.

Placement data:

1079 instances (2 blocks, 1077 standard cells in 8 groups)

47 nets (local 820, bussed 28)

107 pins

Running block placement

Block Placement: 9.76 percent done

Block Placement: 19.51 percent done

Block Placement: 29.27 percent done

Block Placement: 39.02 percent done Block Placement: 48.78 percent done

Block Placement: 58.54 percent done

Block Placement: 68.29 percent done

Block Placement: 78.05 percent done

Block Placement: 89.02 percent done

Block Placement: 98.78 percent done Block Placement: 100.00 percent done.

Merging groups of 162 and 194 standard cells into 9 rows

Merging groups of 76 and 207 standard cells into 10 rows

Merging groups of 283 and 119 standard cells into 12 rows

Running standard cell placement

Optimizing 2 rows of 49 cells

Optimizing 9 vertical rows of 356 cells

Optimizing 1 row of 91 cells

Optimizing 6 vertical rows of 179 cells

Optimizing 12 rows of 402 cells

Writing geometry "fpmplier"

Writing cell fpmplier to disk

Geo2glue completed on "fpmplier": Real time: 00:06:53, CPU time: 377.57 seconds.

/local/epoch/bin/gluenp -p /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2 -r CDA1u2m1p

+msgclear -msgfile +ewpstfEW

/tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/chip_logs/gluenp.log fpmplier

GLUE ROUTER version 6.1.

Copyright 1992, 1993 Cascade Design Automation Corporation.

CASCADE base location: /local/epoch

Project: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2

Ruleset: CDA1u2m1p Technology: cmos

Glue: reading in geometry file fpmplier

Initialize power connections. Read in placement expression.

Position export pins.

Adding north port for GND

Adding east port for GND

Adding west port for GND

Adding south port for VDD

Adding east port for VDD

Adding west port for VDD

Route power nets. (minimum_size_rails)

-- GND

-- VDD

Read in footprint information.

Over the cell routing gates.

Over the cell routing blocks.

Overcell Router V2.0

Generating global router input.

Mixed-Mode Global Router V1.1

Routing group [0]

Routing group [1]

Routing group [2]

Routing group [3]

Routing group [4]

Assemble Standard cell groups

Assemble Group std_group_1

Merging multiple external standard cell connections for net clear

Merging multiple external standard cell connections for net clock

Merging multiple external standard cell connections for net lost_bit

Assemble Group std group_3

Contour Router V1.1

Channel no. 0

Channel no. 1

Channel no. 3

Channel no. 4

Channel no. 5

Channel no. 6

Channel no. 7

Channel no. 8

Channel no. 9

Channel no. 10

Assemble Group rnder

Channel no. 11

Assemble Group std_group_2

Channel no. 12

Channel no. 13

Channel no. 14

Channel no. 15

Channel no. 16

Assemble Group std_group_0

Channel no. 17

Channel no. 18

Channel no. 19

Channel no. 20

Channel no. 21

Channel no. 22

Channel no. 23

Channel no. 24

Assemble Blocks

Channel no. 25

Channel no. 26

Channel no. 27

Channel no. 28

Channel no. 29

Channel no. 30

Route perimeter channels.

Ripping External Channels

Channel no. 31

Channel no. 32

Channel no. 33

Channel no. 34

Generating Geometry.

Writing cell fpmplier to disk

Glue: fpmplier completed, Real time: 00:08:26, CPU time: 446.35 seconds.

/local/epoch/bin/geo2glue -p /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2 -r CDA1u2m1p +msgclear -msgfile +ewpstfEW

/tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/chip_logs/geo2glue.log -geoout -tries 30

complex_mplier

Copyright 1992, 1993 Cascade Design Automation Corporation.

CASCADE base location: /local/epoch

Project: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2

Ruleset: CDA1u2m1p Technology: cmos

Reading geometry "complex_mplier"

No. user defined groups: 0 Grouping standard cells Grouping nets into buses 237 bussed nets eliminated.

Placement data:

16 instances (6 blocks, 10 standard cells in 1 groups)

122 nets (local 5, bussed 106)

203 pins

Running block placement

Block Placement: 8.70 percent done
Block Placement: 17.39 percent done
Block Placement: 26.09 percent done
Block Placement: 34.78 percent done
Block Placement: 43.48 percent done
Block Placement: 52.17 percent done
Block Placement: 60.87 percent done

Block Placement: 78.26 percent done Block Placement: 86.96 percent done Block Placement: 95.65 percent done Block Placement: 100.00 percent done.

Block Placement: 69.57 percent done

Running standard cell placement Optimizing 1 row of 10 cells

Writing geometry "complex_mplier" Writing cell complex_mplier to disk

Geo2glue completed on "complex_mplier": Real time: 00:00:24, CPU time: 18.56

seconds.

/local/epoch/bin/gluenp -p /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2 -r CDA1u2m1p +msgclear -msgfile +ewpstfEW

/tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/chip_logs/gluenp.log complex_mplier GLUE ROUTER version 6.1.

Copyright 1992, 1993 Cascade Design Automation Corporation.

CASCADE base location: /local/epoch

Project: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2

Ruleset: CDA1u2m1p Technology: cmos Glue: reading in geometry file complex_mplier

Initialize power connections.

Read in placement expression.

Position export pins.

Adding north port for GND

Adding east port for GND

Adding west port for GND

Adding south port for VDD

Adding east port for VDD

Adding west port for VDD

Route power nets. (minimum_size_rails)

-- GND

-- VDD

Read in footprint information.

Over the cell routing gates.

Over the cell routing blocks.

Overcell Router V2.0

OCR: All standard cell design.

Generating global router input.

Mixed-Mode Global Router V1.1

Routing group [0]

Assemble Standard cell groups

Assemble Group std_group_0

Assemble Blocks

Contour Router V1.1

Channel no. 0

Channel no. 1

Channel no. 2

Channel no. 3

Channel no. 4

Channel no. 5

Route perimeter channels.

Ripping External Channels

Channel no. 6

Channel no. 7

Channel no. 8

Channel no. 9

Generating Geometry.

Writing cell complex_mplier to disk

Glue: complex_mplier completed, Real time: 00:02:59, CPU time: 157.31 seconds.

/local/epoch/bin/geo2glue -p /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2 -r

CDA1u2m1p +msgclear -msgfile +ewpstfEW

/tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/chip_logs/geo2glue.log -geoout -tries 30 fft

Copyright 1992, 1993 Cascade Design Automation Corporation.

CASCADE base location: /local/epoch

Project: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2

Ruleset: CDA1u2m1p
Technology: cmos
Reading geometry "fft"
No. user defined groups: 1
Grouping standard cells
Grouping nets into buses

526 bussed nets eliminated.

Placement data:

686 instances (2 blocks, 684 standard cells in 2 groups)

24 nets (local 406, bussed 17)

204 pins

Running block placement

Block Placement: 8.79 percent done
Block Placement: 17.58 percent done
Block Placement: 26.37 percent done
Block Placement: 35.16 percent done
Block Placement: 43.96 percent done
Block Placement: 52.75 percent done
Block Placement: 61.54 percent done
Block Placement: 70.33 percent done
Block Placement: 79.12 percent done
Block Placement: 87.91 percent done

Block Placement: 100.00 percent done.

Running standard cell placement Optimizing 14 vertical rows of 672 cells Optimizing 1 vertical row of 12 cells

Block Placement: 96.70 percent done

Writing geometry "fft" Writing cell fft to disk

Geo2glue completed on "fft": Real time: 00:02:27, CPU time: 133.76 seconds.

/local/epoch/bin/gluenp -p /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2 -r CDA1u2m1p +msgclear -msgfile +ewpstfEW

/tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/chip_logs/gluenp.log fft

GLUE ROUTER version 6.1.

Copyright 1992, 1993 Cascade Design Automation Corporation.

CASCADE base location: /local/epoch

Project: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2

Ruleset: CDA1u2m1p Technology: cmos

Glue: reading in geometry file fft

Initialize power connections.

Read in placement expression.

Position export pins.

Adding north port for GND

Adding east port for GND

Adding west port for GND

Adding south port for VDD

Adding east port for VDD

Adding west port for VDD

Route power nets. (minimum_size_rails)

-- GND

-- VDD

Read in footprint information.

Over the cell routing gates.

Over the cell routing blocks.

Overcell Router V2.0

OCR: All standard cell design.

Generating global router input.

Mixed-Mode Global Router V1.1

Routing group [0]

Routing group [1]

Assemble Standard cell groups

Assemble Group fft_top

Contour Router V1.1

Channel no. 0

Channel no. 1

Channel no. 2

Channel no. 3

Channel no. 4

Channel no. 5

Channel no. 6

Channel no. 7

Channel no. 8

Channel no. 9

Channel no. 10

Channel no. 11

Channel no. 12

Assemble Group std_group_0

Assemble Blocks

Channel no. 13

Channel no. 14

Channel no. 15

Route perimeter channels.

Ripping External Channels

Channel no. 16

Channel no. 17

Channel no. 19

Generating Geometry.

Writing cell fft to disk

Glue: fft completed, Real time: 00:12:11, CPU time: 672.89 seconds.

/local/epoch/bin/geo2glue -p /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2 -r

CDA1u2m1p +msgclear -msgfile +ewpstfEW

/tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/chip_logs/geo2glue.log -geoout -tries 30

fftchip_core

Copyright 1992, 1993 Cascade Design Automation Corporation.

CASCADE base location: /local/epoch

Project: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2

Ruleset: CDA1u2m1p Technology: cmos

Reading geometry "fftchip_core"

No. user defined groups: 0

Grouping standard cells

Grouping nets into buses

249 bussed nets eliminated.

Placement data:

70 instances (1 blocks, 69 standard cells in 2 groups)

22 nets (local 0, bussed 19)

204 pins

Running block placement

Block Placement: 9.09 percent done

Block Placement: 18.18 percent done

Block Placement: 27.27 percent done

Block Placement: 36.36 percent done

Block Placement: 45.45 percent done

Block Placement: 54.55 percent done

Block Placement: 63.64 percent done

Block Placement: 72.73 percent done

Block Placement: 100.00 percent done.

Merging groups of 36 and 33 standard cells into 1 rows

Running standard cell placement

Optimizing 1 vertical row of 69 cells

Writing geometry "fftchip_core"

Writing cell fftchip_core to disk

Geo2glue completed on "fftchip_core": Real time: 00:00:11, CPU time: 8.95 seconds.

/local/epoch/bin/gluenp -p /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2 -r CDA1u2m1p +msgclear -msgfile +ewpstfEW

/tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/chip_logs/gluenp.log fftchip_core GLUE ROUTER version 6.1.

Copyright 1992, 1993 Cascade Design Automation Corporation.

CASCADE base location: /local/epoch

Project: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2

Ruleset: CDA1u2m1p Technology: cmos

Glue: reading in geometry file fftchip_core

Initialize power connections. Read in placement expression.

Position export pins.

Route power nets. (minimum_size_rails)

-- GND -- VDD

Read in footprint information.

Over the cell routing gates.

Over the cell routing blocks.

Overcell Router V2.0

OCR: All standard cell design. Generating global router input.

Mixed-Mode Global Router V1.1

Routing group [0]

Assemble Standard cell groups

Assemble Group std_group_0

Assemble Blocks

Contour Router V1.1

Channel no. 0

Route perimeter channels.

Ripping External Channels

Channel no. 1

Channel no. 2

Channel no. 3

Channel no. 4

Generating Geometry.

Writing cell fftchip_core to disk

Glue: fftchip_core completed, Real time: 00:03:32, CPU time: 197.70 seconds.

/local/epoch/bin/plop5 -p /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2 -r CDA1u2m1p

+msgclear -msgfile +ewpstfEW

/tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/chip_logs/plop5.log fftchip

Copyright 1992, 1993 Cascade Design Automation Corporation.

CASCADE base location: /local/epoch

Project: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2

Ruleset: CDA1u2m1p Technology: cmos

PACKAGER: Reading top level chip data.

PACKAGER: No package has been specified, automatically selecting package.

```
-----> packcell->name = "cda100p433".
----> packcell->name = "cda100p540".
-----> packcell->name = "cda120p433".
----> packcell->name = "cda124p335".
-----> packcell->name = "cda132p400".
----> packcell->name = "cda132p410".
----> packcell->name = "cda132p540".
----> packcell->name = "cda16p120".
----> packcell->name = "cda16p315".
----> packcell->name = "cda180p480".
----> packcell->name = "cda20p160".
-----> packcell->name = "cda22p140".
----> packcell->name = "cda24p350".
----> packcell->name = "cda28p250".
----> packcell->name = "cda28p310".
----> packcell->name = "cda40p250".
----> packcell->name = "cda40p300".
----> packcell->name = "cda48p250".
----> packcell->name = "cda48p310".
----> packcell->name = "cda48p350".
-----> packcell->name = "cda64p400".
----> packcell->name = "cda68p400".
-----> packcell->name = "cda72p340".
-----> packcell->name = "cda84p400".
-----> packcell->name = "cda84p450".
----> packcell->name = "cda84p470".
```

---->Can't find any appropriate package, place pads without package.

PACKAGER: Placing pads.

MOAT ROUTER: Routing East channel.

Contour Router V1.1

MOAT ROUTER: Routing West channel. MOAT ROUTER: Routing North channel. MOAT ROUTER: Routing South channel.

MOAT ROUTER: Done. Writing cell fftchip to disk

Die size: 409 x 576 (mils) Scribe spacing: 0 (mils) Die size: 10391 x 14625 (um) Scribe spacing: 1 (um)

Module size: 375 x 543 (mils) NONE

Module size: 9520 x 13795 (um)

Number of nets: 408

Max. routing space: 6 (mils) Min. routing space: 4 (mils) Max. routing space: 165 (um) Min. routing space: 99 (um)

Number of pads: 210

Max. pad height: 6 (mils)

Min. pad height: 6 (mils)

Max. pad height: 139 (um)

Min. pad height: 139 (um)

/local/epoch/bin/pdabs -p /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2 -r CDA1u2m1p +msgclear -msgfile +ewpstfEW

/tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/chip_logs/pdabs.log -B -A fftchip

Copyright 1992, 1993 Cascade Design Automation Corporation.

CASCADE base location: /local/epoch

Project: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2

Ruleset: CDA1u2m1p Technology: cmos

PDABS:

*** Power Dissipation and Buffer Sizing ***

Buffer Size Method: Automatic

PDABS: Clock Frequency is 10 MHz.

Default Duty Cycle is 50 %. Supply Voltage is 5 Volts. Temperature is 25 degrees C PDABS: Reading database ... PDABS: Calculating loads.

PDABS: Checking buffers and rails.

PDABS:(WARNING) Parent instance path: fftchip/fftchip_core/chip An external 38X buffer is recommended for instance Counter:reg1

Output with maximum load is Q. The maximum size (7X) will be used.

PDABS:(WARNING) Parent instance path: fftchip/fftchip_core/chip An external 40X buffer is recommended for instance Counter:reg0 Output with maximum load is Q. The maximum size (7X) will be used.

PDABS:(WARNING) Parent instance path: fftchip/fftchip_core/chip An external 7X buffer is recommended for instance Latch1:reg98 Output with maximum load is Q. The maximum size (6X) will be used.

PDABS:(WARNING) Parent instance path: fftchip/fftchip_core/chip An external 141X buffer is recommended for instance and 1 Output with maximum load is Y.

The maximum size (6X) will be used.

PDABS:(WARNING) Parent instance path: fftchip/fftchip_core/chip An external 7X buffer is recommended for instance Mux2:mux34 Output with maximum load is Y.

The maximum size (6X) will be used.

PDABS:(WARNING) Parent instance path: fftchip/fftchip_core/chip An external 7X buffer is recommended for instance Mux1:mux62 Output with maximum load is Y.

The maximum size (6X) will be used.

PDABS:(WARNING) Parent instance path: fftchip/fftchip_core/chip An external 7X buffer is recommended for instance Mux1:mux37 Output with maximum load is Y.

The maximum size (6X) will be used.

PDABS:(WARNING) Parent instance path: fftchip/fftchip_core/chip An external 7X buffer is recommended for instance Mux1:mux36 Output with maximum load is Y.

The maximum size (6X) will be used.

PDABS:(WARNING) Parent instance path: fftchip/fftchip_core/chip An external 7X buffer is recommended for instance Mux1:mux35 Output with maximum load is Y.

The maximum size (6X) will be used.

PDABS:(WARNING) Parent instance path: fftchip/fftchip_core/chip An external 7X buffer is recommended for instance Mux1:mux34 Output with maximum load is Y.

The maximum size (6X) will be used.

PDABS:(WARNING) Parent instance path: fftchip/fftchip_core/chip An external 11X buffer is recommended for instance or 5 Output with maximum load is Y. The maximum size (6X) will be used. PDABS:(WARNING) Parent instance path: fftchip/fftchip_core/chip An external 12X buffer is recommended for instance or4 Output with maximum load is Y.

The maximum size (6X) will be used.

PDABS:(WARNING) Parent instance path: fftchip/fftchip_core/chip An external 12X buffer is recommended for instance or3 Output with maximum load is Y.

The maximum size (6X) will be used.

PDABS:(WARNING) Parent instance path: fftchip/fftchip_core/chip An external 12X buffer is recommended for instance or2 Output with maximum load is Y.

The maximum size (6X) will be used.

PDABS:(WARNING) Parent instance path: fftchip/fftchip_core/chip An external 12X buffer is recommended for instance or 1 Output with maximum load is Y.

The maximum size (6X) will be used.

PDABS:(WARNING) Parent instance path: fftchip/fftchip_core/chip An external 28X buffer is recommended for instance Counter:inc0:incdec1 Output is COUT.

The maximum size (6X) will be used.

PDABS:(WARNING) Parent instance path: fftchip/fftchip_core/chip/Complex_Multiplier/FP_Adder2 An external 21X buffer is recommended for instance reg2i:reg5 Output with maximum load is Q. The maximum size (9X) will be used.

PDABS:(WARNING) Parent instance path: fftchip/fftchip_core/chip/Complex_Multiplier/FP_Adder2 An external 20X buffer is recommended for instance reg2i:reg4 Output with maximum load is Q. The maximum size (9X) will be used.

PDABS:(WARNING) Parent instance path: fftchip/fftchip_core/chip/Complex_Multiplier/FP_Adder2 An external 20X buffer is recommended for instance reg2i:reg3 Output with maximum load is Q. The maximum size (9X) will be used.

PDABS:(WARNING) Parent instance path: fftchip/fftchip_core/chip/Complex_Multiplier/FP_Adder2

An external 20X buffer is recommended for instance reg2i:reg2 Output with maximum load is Q.
The maximum size (9X) will be used.

PDABS:(WARNING) Parent instance path:
fftchip/fftchip_core/chip/Complex_Multiplier/FP_Adder2
An external 20X buffer is recommended for instance reg2i:reg1
Output with maximum load is Q.
The maximum size (9X) will be used.

PDABS:(WARNING) Parent instance path:
fftchip/fftchip_core/chip/Complex_Multiplier/FP_Adder2
An external 20X buffer is recommended for instance reg2i:reg0
Output with maximum load is Q.
The maximum size (9X) will be used.

PDABS:(WARNING) Parent instance path: fftchip/fftchip_core/chip/Complex_Multiplier/FP_Adder2 An external 7X buffer is recommended for instance and1 Output with maximum load is Y. The maximum size (6X) will be used.

PDABS:(WARNING) Parent instance path: fftchip/fftchip_core/chip/Complex_Multiplier/FP_Adder2 An external 10X buffer is recommended for instance or15 Output with maximum load is Y. The maximum size (6X) will be used.

PDABS:(WARNING) Parent instance path:

fftchip/fftchip_core/chip/Complex_Multiplier/FP_Adder1

An external 21X buffer is recommended for instance reg2i:reg5

Output with maximum load is Q.

The maximum size (9X) will be used.

PDABS:(WARNING) Parent instance path:
fftchip/fftchip_core/chip/Complex_Multiplier/FP_Adder1
An external 20X buffer is recommended for instance reg2i:reg4
Output with maximum load is Q.
The maximum size (9X) will be used.

PDABS:(WARNING) Parent instance path: fftchip/fftchip_core/chip/Complex_Multiplier/FP_Adder1 An external 20X buffer is recommended for instance reg2i:reg3 Output with maximum load is Q. The maximum size (9X) will be used.

PDABS:(WARNING) Parent instance path: fftchip/fftchip_core/chip/Complex_Multiplier/FP_Adder1 An external 20X buffer is recommended for instance reg2i:reg2 Output with maximum load is Q. The maximum size (9X) will be used.

PDABS:(WARNING) Parent instance path: fftchip/fftchip_core/chip/Complex_Multiplier/FP_Adder1 An external 20X buffer is recommended for instance reg2i:reg1 Output with maximum load is Q. The maximum size (9X) will be used.

PDABS:(WARNING) Parent instance path: fftchip/fftchip_core/chip/Complex_Multiplier/FP_Adder1 An external 20X buffer is recommended for instance reg2i:reg0 Output with maximum load is Q. The maximum size (9X) will be used.

PDABS:(WARNING) Parent instance path: fftchip/fftchip_core/chip/Complex_Multiplier/FP_Adder1 An external 7X buffer is recommended for instance and1 Output with maximum load is Y. The maximum size (6X) will be used.

PDABS:(WARNING) Parent instance path: fftchip/fftchip_core/chip/Complex_Multiplier/FP_Adder1 An external 10X buffer is recommended for instance or15 Output with maximum load is Y. The maximum size (6X) will be used.

PDABS:(WARNING) Parent instance path: fftchip/fftchip_core/chip/Complex_Multiplier/FP_Multiplier4 An external 19X buffer is recommended for instance reg4i:reg14 Output with maximum load is Q. The maximum size (9X) will be used.

PDABS:(WARNING) Parent instance path: fftchip/fftchip_core/chip/Complex_Multiplier/FP_Multiplier4 An external 20X buffer is recommended for instance reg4i:reg13 Output with maximum load is Q. The maximum size (9X) will be used.

PDABS:(WARNING) Parent instance path: fftchip/fftchip_core/chip/Complex_Multiplier/FP_Multiplier4

An external 19X buffer is recommended for instance reg4i:reg12 Output with maximum load is Q.
The maximum size (9X) will be used.

PDABS:(WARNING) Parent instance path:

fftchip/fftchip_core/chip/Complex_Multiplier/FP_Multiplier4
An external 20X buffer is recommended for instance reg4i:reg11
Output with maximum load is Q.

The maximum size (9X) will be used.

PDABS:(WARNING) Parent instance path:

fftchip/fftchip_core/chip/Complex_Multiplier/FP_Multiplier4
An external 19X buffer is recommended for instance reg4i:reg10
Output with maximum load is Q.
The maximum size (9X) will be used.

PDABS:(WARNING) Parent instance path:

fftchip/fftchip_core/chip/Complex_Multiplier/FP_Multiplier4
An external 14X buffer is recommended for instance reg4i:reg68
Output with maximum load is Q.
The maximum size (9X) will be used.

PDABS:(WARNING) Parent instance path:

fftchip/fftchip_core/chip/Complex_Multiplier/FP_Multiplier3
An external 19X buffer is recommended for instance reg4i:reg14
Output with maximum load is Q.
The maximum size (9X) will be used.

PDABS:(WARNING) Parent instance path:

fftchip/fftchip_core/chip/Complex_Multiplier/FP_Multiplier3
An external 20X buffer is recommended for instance reg4i:reg13
Output with maximum load is Q.
The maximum size (9X) will be used.

PDABS:(WARNING) Parent instance path:

fftchip/fftchip_core/chip/Complex_Multiplier/FP_Multiplier3
An external 19X buffer is recommended for instance reg4i:reg12
Output with maximum load is Q.
The maximum size (9X) will be used.

PDABS:(WARNING) Parent instance path:

fftchip/fftchip_core/chip/Complex_Multiplier/FP_Multiplier3
An external 20X buffer is recommended for instance reg4i:reg11
Output with maximum load is Q.
The maximum size (9X) will be used.

fftchip/fftchip_core/chip/Complex_Multiplier/FP_Multiplier3 An external 19X buffer is recommended for instance reg4i:reg10 Output with maximum load is Q.

The maximum size (9X) will be used.

PDABS:(WARNING) Parent instance path:

fftchip/fftchip_core/chip/Complex_Multiplier/FP_Multiplier3
An external 14X buffer is recommended for instance reg4i:reg68
Output with maximum load is Q.

The maximum size (9X) will be used.

PDABS:(WARNING) Parent instance path:

fftchip/fftchip_core/chip/Complex_Multiplier/FP_Multiplier2
An external 19X buffer is recommended for instance reg4i:reg14
Output with maximum load is Q.
The maximum size (9X) will be used.

PDABS:(WARNING) Parent instance path:

fftchip/fftchip_core/chip/Complex_Multiplier/FP_Multiplier2
An external 20X buffer is recommended for instance reg4i:reg13
Output with maximum load is Q.
The maximum size (9X) will be used.

PDABS:(WARNING) Parent instance path:

fftchip/fftchip_core/chip/Complex_Multiplier/FP_Multiplier2
An external 19X buffer is recommended for instance reg4i:reg12
Output with maximum load is Q.
The maximum size (9X) will be used.

PDABS:(WARNING) Parent instance path:

fftchip/fftchip_core/chip/Complex_Multiplier/FP_Multiplier2
An external 20X buffer is recommended for instance reg4i:reg11
Output with maximum load is Q.
The maximum size (9X) will be used.

PDABS:(WARNING) Parent instance path:

fftchip/fftchip_core/chip/Complex_Multiplier/FP_Multiplier2
An external 19X buffer is recommended for instance reg4i:reg10
Output with maximum load is Q.
The maximum size (9X) will be used.

PDABS:(WARNING) Parent instance path: fftchip/fftchip_core/chip/Complex_Multiplier/FP_Multiplier2

An external 14X buffer is recommended for instance reg4i:reg68 Output with maximum load is Q. The maximum size (9X) will be used.

PDABS:(WARNING) Parent instance path:

fftchip/fftchip_core/chip/Complex_Multiplier/FP_Multiplier1
An external 19X buffer is recommended for instance reg4i:reg14
Output with maximum load is Q.
The maximum size (9X) will be used.

PDABS:(WARNING) Parent instance path:

fftchip/fftchip_core/chip/Complex_Multiplier/FP_Multiplier1
An external 20X buffer is recommended for instance reg4i:reg13
Output with maximum load is Q.
The maximum size (9X) will be used.

PDABS:(WARNING) Parent instance path:

fftchip/fftchip_core/chip/Complex_Multiplier/FP_Multiplier1 An external 19X buffer is recommended for instance reg4i:reg12 Output with maximum load is Q. The maximum size (9X) will be used.

PDABS:(WARNING) Parent instance path:

fftchip/fftchip_core/chip/Complex_Multiplier/FP_Multiplier1
An external 20X buffer is recommended for instance reg4i:reg11
Output with maximum load is Q.
The maximum size (9X) will be used.

PDABS:(WARNING) Parent instance path:

fftchip/fftchip_core/chip/Complex_Multiplier/FP_Multiplier1 An external 19X buffer is recommended for instance reg4i:reg10 Output with maximum load is Q. The maximum size (9X) will be used.

PDABS:(WARNING) Parent instance path:

fftchip/fftchip_core/chip/Complex_Multiplier/FP_Multiplier1
An external 14X buffer is recommended for instance reg4i:reg68
Output with maximum load is Q.
The maximum size (9X) will be used.

PDABS:(WARNING) Parent instance path:

fftchip/fftchip_core/chip/Complex_Adder_4_Input/FP_Adder6 An external 21X buffer is recommended for instance reg2i:reg5 Output with maximum load is Q. The maximum size (9X) will be used.

fftchip/fftchip_core/chip/Complex_Adder_4_Input/FP_Adder6 An external 20X buffer is recommended for instance reg2i:reg4 Output with maximum load is Q.

The maximum size (9X) will be used.

PDABS:(WARNING) Parent instance path:

fftchip/fftchip_core/chip/Complex_Adder_4_Input/FP_Adder6 An external 20X buffer is recommended for instance reg2i:reg3 Output with maximum load is Q.

The maximum size (9X) will be used.

PDABS:(WARNING) Parent instance path:

fftchip/fftchip_core/chip/Complex_Adder_4_Input/FP_Adder6 An external 20X buffer is recommended for instance reg2i:reg2 Output with maximum load is Q.

The maximum size (9X) will be used.

PDABS:(WARNING) Parent instance path:

fftchip/fftchip_core/chip/Complex_Adder_4_Input/FP_Adder6 An external 20X buffer is recommended for instance reg2i:reg1 Output with maximum load is Q.

The maximum size (9X) will be used.

PDABS:(WARNING) Parent instance path:

fftchip/fftchip_core/chip/Complex_Adder_4_Input/FP_Adder6 An external 20X buffer is recommended for instance reg2i:reg0 Output with maximum load is Q.

The maximum size (9X) will be used.

PDABS:(WARNING) Parent instance path:

fftchip/fftchip_core/chip/Complex_Adder_4_Input/FP_Adder6 An external 7X buffer is recommended for instance and1 Output with maximum load is Y.

The maximum size (6X) will be used.

PDABS:(WARNING) Parent instance path:

fftchip/fftchip_core/chip/Complex_Adder_4_Input/FP_Adder6 An external 10X buffer is recommended for instance or15 Output with maximum load is Y.
The maximum size (6X) will be used.

PDABS:(WARNING) Parent instance path:

fftchip/fftchip_core/chip/Complex_Adder_4_Input/FP_Adder5

An external 21X buffer is recommended for instance reg2i:reg5 Output with maximum load is Q. The maximum size (9X) will be used.

PDABS:(WARNING) Parent instance path:

fftchip/fftchip_core/chip/Complex_Adder_4_Input/FP_Adder5 An external 20X buffer is recommended for instance reg2i:reg4 Output with maximum load is Q. The maximum size (9X) will be used.

PDABS:(WARNING) Parent instance path:

fftchip/fftchip_core/chip/Complex_Adder_4_Input/FP_Adder5 An external 20X buffer is recommended for instance reg2i:reg3 Output with maximum load is Q. The maximum size (9X) will be used.

PDABS:(WARNING) Parent instance path:

fftchip/fftchip_core/chip/Complex_Adder_4_Input/FP_Adder5 An external 20X buffer is recommended for instance reg2i:reg2 Output with maximum load is Q. The maximum size (9X) will be used.

PDABS:(WARNING) Parent instance path:

fftchip/fftchip_core/chip/Complex_Adder_4_Input/FP_Adder5 An external 20X buffer is recommended for instance reg2i:reg1 Output with maximum load is Q. The maximum size (9X) will be used.

PDABS:(WARNING) Parent instance path:

fftchip/fftchip_core/chip/Complex_Adder_4_Input/FP_Adder5 An external 20X buffer is recommended for instance reg2i:reg0 Output with maximum load is Q. The maximum size (9X) will be used.

PDABS:(WARNING) Parent instance path:

fftchip/fftchip_core/chip/Complex_Adder_4_Input/FP_Adder5 An external 7X buffer is recommended for instance and1 Output with maximum load is Y. The maximum size (6X) will be used.

PDABS:(WARNING) Parent instance path:

fftchip/fftchip_core/chip/Complex_Adder_4_Input/FP_Adder5 An external 10X buffer is recommended for instance or15 Output with maximum load is Y. The maximum size (6X) will be used.

fftchip/fftchip_core/chip/Complex_Adder_4_Input/FP_Adder4 An external 21X buffer is recommended for instance reg2i:reg5 Output with maximum load is Q.

The maximum size (9X) will be used.

PDABS:(WARNING) Parent instance path:

fftchip/fftchip_core/chip/Complex_Adder_4_Input/FP_Adder4 An external 20X buffer is recommended for instance reg2i:reg4 Output with maximum load is Q.

The maximum size (9X) will be used.

PDABS:(WARNING) Parent instance path:

fftchip/fftchip_core/chip/Complex_Adder_4_Input/FP_Adder4 An external 20X buffer is recommended for instance reg2i:reg3 Output with maximum load is Q.

The maximum size (9X) will be used.

PDABS:(WARNING) Parent instance path:

fftchip/fftchip_core/chip/Complex_Adder_4_Input/FP_Adder4 An external 20X buffer is recommended for instance reg2i:reg2 Output with maximum load is Q.

The maximum size (9X) will be used.

PDABS:(WARNING) Parent instance path:

fftchip/fftchip_core/chip/Complex_Adder_4_Input/FP_Adder4 An external 20X buffer is recommended for instance reg2i:reg1 Output with maximum load is Q.

The maximum size (9X) will be used.

PDABS:(WARNING) Parent instance path:

fftchip/fftchip_core/chip/Complex_Adder_4_Input/FP_Adder4 An external 20X buffer is recommended for instance reg2i:reg0 Output with maximum load is Q.

The maximum size (9X) will be used.

PDABS:(WARNING) Parent instance path:

fftchip/fftchip_core/chip/Complex_Adder_4_Input/FP_Adder4 An external 7X buffer is recommended for instance and 1 Output with maximum load is Y. The maximum size (6X) will be used.

PDABS:(WARNING) Parent instance path:

fftchip/fftchip_core/chip/Complex_Adder_4_Input/FP_Adder4

An external 10X buffer is recommended for instance or 15 Output with maximum load is Y.

The maximum size (6X) will be used.

PDABS:(WARNING) Parent instance path:

fftchip/fftchip core/chip/Complex Adder 4_Input/FP_Adder3 An external 21X buffer is recommended for instance reg2i:reg5 Output with maximum load is Q.

The maximum size (9X) will be used.

PDABS:(WARNING) Parent instance path:

fftchip/fftchip core/chip/Complex Adder_4_Input/FP_Adder3 An external 20X buffer is recommended for instance reg2i:reg4 Output with maximum load is Q. The maximum size (9X) will be used.

PDABS:(WARNING) Parent instance path:

fftchip/fftchip_core/chip/Complex_Adder_4_Input/FP_Adder3 An external 20X buffer is recommended for instance reg2i:reg3 Output with maximum load is Q. The maximum size (9X) will be used.

PDABS:(WARNING) Parent instance path:

fftchip/fftchip_core/chip/Complex_Adder_4_Input/FP_Adder3 An external 20X buffer is recommended for instance reg2i:reg2 Output with maximum load is Q.

The maximum size (9X) will be used.

PDABS:(WARNING) Parent instance path:

fftchip/fftchip core/chip/Complex_Adder_4_Input/FP_Adder3 An external 20X buffer is recommended for instance reg2i:reg1 Output with maximum load is Q. The maximum size (9X) will be used.

PDABS:(WARNING) Parent instance path:

fftchip/fftchip_core/chip/Complex_Adder_4_Input/FP_Adder3 An external 20X buffer is recommended for instance reg2i:reg0 Output with maximum load is Q.

The maximum size (9X) will be used.

PDABS:(WARNING) Parent instance path:

fftchip/fftchip_core/chip/Complex_Adder_4_Input/FP_Adder3 An external 7X buffer is recommended for instance and1 Output with maximum load is Y. The maximum size (6X) will be used.

fftchip/fftchip_core/chip/Complex_Adder_4_Input/FP_Adder3 An external 10X buffer is recommended for instance or15 Output with maximum load is Y.

The maximum size (6X) will be used.

PDABS:(WARNING) Parent instance path:

fftchip/fftchip_core/chip/Complex_Adder_4_Input/FP_Adder2 An external 21X buffer is recommended for instance reg2i:reg5 Output with maximum load is Q.

The maximum size (9X) will be used.

PDABS:(WARNING) Parent instance path:

fftchip/fftchip_core/chip/Complex_Adder_4_Input/FP_Adder2 An external 20X buffer is recommended for instance reg2i:reg4 Output with maximum load is Q.

The maximum size (9X) will be used.

PDABS:(WARNING) Parent instance path:

fftchip/fftchip_core/chip/Complex_Adder_4_Input/FP_Adder2 An external 20X buffer is recommended for instance reg2i:reg3 Output with maximum load is Q.

The maximum size (9X) will be used.

PDABS:(WARNING) Parent instance path:

fftchip/fftchip_core/chip/Complex_Adder_4_Input/FP_Adder2 An external 20X buffer is recommended for instance reg2i:reg2 Output with maximum load is Q.

The maximum size (9X) will be used.

PDABS:(WARNING) Parent instance path:

fftchip/fftchip_core/chip/Complex_Adder_4_Input/FP_Adder2 An external 20X buffer is recommended for instance reg2i:reg1 Output with maximum load is Q.

The maximum size (9X) will be used.

PDABS:(WARNING) Parent instance path:

fftchip/fftchip_core/chip/Complex_Adder_4_Input/FP_Adder2 An external 20X buffer is recommended for instance reg2i:reg0 Output with maximum load is Q. The maximum size (9X) will be used.

The maximum base (>1x) will be dead.

PDABS:(WARNING) Parent instance path:

fftchip/fftchip_core/chip/Complex_Adder_4_Input/FP_Adder2

An external 7X buffer is recommended for instance and 1 Output with maximum load is Y.

The maximum size (6X) will be used.

PDABS:(WARNING) Parent instance path:

fftchip/fftchip_core/chip/Complex_Adder_4_Input/FP_Adder2 An external 10X buffer is recommended for instance or15 Output with maximum load is Y.
The maximum size (6X) will be used.

PDABS:(WARNING) Parent instance path:

fftchip/fftchip_core/chip/Complex_Adder_4_Input/FP_Adder1 An external 21X buffer is recommended for instance reg2i:reg5 Output with maximum load is Q. The maximum size (9X) will be used.

PDABS:(WARNING) Parent instance path:

fftchip/fftchip_core/chip/Complex_Adder_4_Input/FP_Adder1 An external 20X buffer is recommended for instance reg2i:reg4 Output with maximum load is Q. The maximum size (9X) will be used.

PDABS:(WARNING) Parent instance path:

fftchip/fftchip_core/chip/Complex_Adder_4_Input/FP_Adder1 An external 20X buffer is recommended for instance reg2i:reg3 Output with maximum load is Q. The maximum size (9X) will be used.

PDABS:(WARNING) Parent instance path:

fftchip/fftchip_core/chip/Complex_Adder_4_Input/FP_Adder1 An external 20X buffer is recommended for instance reg2i:reg2 Output with maximum load is Q. The maximum size (9X) will be used.

PDABS:(WARNING) Parent instance path:

fftchip/fftchip_core/chip/Complex_Adder_4_Input/FP_Adder1 An external 20X buffer is recommended for instance reg2i:reg1 Output with maximum load is Q. The maximum size (9X) will be used.

PDABS:(WARNING) Parent instance path: fftchip/fftchip_core/chip/Complex_Adder_4_Input/FP_Adder1 An external 20X buffer is recommended for instance reg2i:reg0 Output with maximum load is Q. The maximum size (9X) will be used.

fftchip/fftchip_core/chip/Complex_Adder_4_Input/FP_Adder1 An external 7X buffer is recommended for instance and1

Output with maximum load is Y.

The maximum size (6X) will be used.

PDABS:(WARNING) Parent instance path:

fftchip/fftchip_core/chip/Complex_Adder_4_Input/FP_Adder1

An external 10X buffer is recommended for instance or15

Output with maximum load is Y.

The maximum size (6X) will be used.

```
Creating new modules for composite cell: fftchip_core
```

Instance: outpad2:iocntr210 (BUFFER_SIZE = 5)

Writing specification cell pad_driver#o2, compiler pad_driver

Instance: outpad2:iocntr209 (BUFFER_SIZE = 5)

Instance: outpad2:iocntr208 (BUFFER_SIZE = 5)

Instance: outpad2:iocntr207 (BUFFER_SIZE = 5)

Instance: outpad2:iocntr206 (BUFFER_SIZE = 5)

Instance: outpad1:iocntr205 (BUFFER_SIZE = 5)

Instance: outpad1:iocntr204 (BUFFER_SIZE = 5) Instance: outpad1:iocntr197 (BUFFER_SIZE = 3)

Writing specification cell pad_driver#o3, compiler pad_driver

Instance: outpad1:iocntr195 (BUFFER_SIZE = 3)

Instance: outpad1:iocntr194 (BUFFER_SIZE = 3)

Instance: outpad1:iocntr193 (BUFFER_SIZE = 3)

Instance: outpad1:iocntr192 (BUFFER_SIZE = 3)

Instance: outpad1:iocntr191 (BUFFER_SIZE = 3)

Instance: outpad1:iocntr190 (BUFFER_SIZE = 3)
Instance: outpad1:iocntr189 (BUFFER_SIZE = 2)

Instance: outpad1:iocntr189 (BUFFER_SIZE = 2)
Writing specification cell pad_driver#04, compiler pad_driver

Instance: outpad1:iocntr188 (BUFFER_SIZE = 2)

Instance: outpad1:iocntr187 (BUFFER_SIZE = 2)

Instance: outpad1:iocntr186 (BUFFER_SIZE = 2)

Instance: outpad1:iocntr185 (BUFFER_SIZE = 2)

Instance: outpad1:iocntr184 (BUFFER_SIZE = 2)

Instance: outpad1:iocntr183 (BUFFER_SIZE = 2)

Instance: outpad1:iocntr182 (BUFFER_SIZE = 3)

Instance: outpad1:iocntr181 (BUFFER_SIZE = 3)

Instance: outpad1:iocntr180 (BUFFER_SIZE = 3)
Instance: outpad1:iocntr179 (BUFFER_SIZE = 3)

Instance: outpad1:iocntr179 (BUFFER_SIZE = 3)

Instance: outpad1:iocntr178 (BUFFER_SIZE = 3)
Instance: outpad1:iocntr177 (BUFFER_SIZE = 3)

Instance: outpad1:iocntr177 (BUFFER_SIZE = 3)
Instance: outpad1:iocntr168 (BUFFER_SIZE = 5)

```
Instance: outpad1:iocntr165
                               (BUFFER\_SIZE = 5)
Instance: outpad1:iocntr164
                               (BUFFER SIZE = 5)
Instance: outpad1:iocntr163
                               (BUFFER SIZE = 5)
                               (BUFFER\_SIZE = 5)
Instance: outpad1:iocntr162
                               (BUFFER\_SIZE = 5)
Instance: outpad1:iocntr161
                               (BUFFER SIZE = 10)
Instance: outpad1:iocntr160
Writing specification cell pad_driver#o5, compiler pad_driver
Instance: outpad1:iocntr159
                               (BUFFER SIZE = 10)
                               (BUFFER SIZE = 10)
Instance: outpad1:iocntr158
                               (BUFFER_SIZE = 10)
Instance: outpad1:iocntr157
                               (BUFFER\_SIZE = 10)
Instance: outpad1:iocntr156
                               (BUFFER\_SIZE = 9)
Instance: outpad1:iocntr155
Writing specification cell pad_driver#o6, compiler pad_driver
Instance: outpad1:iocntr154
                               (BUFFER\_SIZE = 9)
                               (BUFFER_SIZE = 9)
Instance: outpad1:iocntr153
Instance: outpad1:iocntr152
                               (BUFFER\_SIZE = 9)
                               (BUFFER SIZE = 9)
Instance: outpad1:iocntr151
                               (BUFFER_SIZE = 9)
Instance: outpad1:iocntr150
Instance: outpad1:iocntr149
                               (BUFFER SIZE = 9)
                               (BUFFER\_SIZE = 9)
Instance: outpad1:iocntr148
Instance: outpad1:iocntr147
                               (BUFFER SIZE = 9)
                               (BUFFER\_SIZE = 9)
Instance: outpad1:iocntr146
                               (BUFFER\_SIZE = 8)
Instance: outpad1:iocntr145
Writing specification cell pad_driver#07, compiler pad_driver
Instance: outpad1:iocntr144
                               (BUFFER\_SIZE = 8)
Instance: outpad1:iocntr143
                               (BUFFER\_SIZE = 8)
                               (BUFFER\_SIZE = 8)
Instance: outpad1:iocntr142
Creating new modules for composite cell: fft
Instance: reg2:reg61
                        (BUFFER\_SIZE = 2)
Writing specification cell gtdff#o2, compiler gtdff
                       (BUFFER SIZE = 2)
Instance: reg2:reg1
                        (BUFFER SIZE = 2)
Instance: reg1:reg61
                        (BUFFER SIZE = 2)
Instance: reg1:reg50
Instance: reg1:reg42
                        (BUFFER\_SIZE = 2)
                        (BUFFER SIZE = 2)
Instance: reg1:reg29
                        (BUFFER\_SIZE = 2)
Instance: reg1:reg28
                        (BUFFER_SIZE = 2)
Instance: reg1:reg26
Instance: reg1:reg24
                        (BUFFER\_SIZE = 2)
                        (BUFFER\_SIZE = 2)
Instance: reg1:reg20
                        (BUFFER\_SIZE = 2)
Instance: reg1:reg19
                        (BUFFER\_SIZE = 2)
Instance: reg1:reg11
Instance: reg1:reg9
                       (BUFFER SIZE = 2)
Instance: s1_Izneg_sign_D_real
                                   (BUFFER\_SIZE = 2)
Writing specification cell stdinv#o1, compiler gtgate
Instance: s1_Izneg_sign_D_imag
                                    (BUFFER\_SIZE = 2)
```

```
(BUFFER SIZE = 2)
Instance: s1 Izneg_sign_C_real
                                   (BUFFER\_SIZE = 2)
Instance: s1_Izneg_sign_C_imag
                                  (BUFFER_SIZE = 2)
Instance: s1_Izneg_sign_B_real
                                   (BUFFER\_SIZE = 2)
Instance: s1 Izneg sign_B_imag
                          (BUFFER_SIZE = 7)
Instance: Counter:reg1
Writing specification cell gtdff#o3, compiler gtdff
                          (BUFFER\_SIZE = 7)
Instance: Counter:reg0
Instance: Latch1:reg127
                           (BUFFER SIZE = 6)
Writing specification cell gtlatch#o1, compiler gtlatch
                           (BUFFER_SIZE = 6)
Instance: Latch1:reg126
                           (BUFFER_SIZE = 6)
Instance: Latch1:reg125
                           (BUFFER SIZE = 5)
Instance: Latch1:reg124
Writing specification cell gtlatch#02, compiler gtlatch
Instance: Latch1:reg123
                           (BUFFER\_SIZE = 6)
                           (BUFFER SIZE = 5)
Instance: Latch1:reg122
                           (BUFFER_SIZE = 6)
Instance: Latch1:reg121
                           (BUFFER_SIZE = 6)
Instance: Latch1:reg120
                           (BUFFER\_SIZE = 6)
Instance: Latch1:reg119
Instance: Latch1:reg118
                           (BUFFER\_SIZE = 6)
                           (BUFFER SIZE = 5)
Instance: Latch1:reg117
                           (BUFFER\_SIZE = 5)
Instance: Latch1:reg116
                           (BUFFER\_SIZE = 5)
Instance: Latch1:reg115
                           (BUFFER\_SIZE = 6)
Instance: Latch1:reg114
                            (BUFFER\_SIZE = 5)
Instance: Latch1:reg113
                            (BUFFER\_SIZE = 5)
Instance: Latch1:reg112
                            (BUFFER\_SIZE = 6)
Instance: Latch1:reg111
                            (BUFFER\_SIZE = 5)
Instance: Latch1:reg110
Instance: Latch1:reg109
                            (BUFFER\_SIZE = 5)
                            (BUFFER SIZE = 5)
Instance: Latch1:reg108
Instance: Latch1:reg107
                            (BUFFER\_SIZE = 5)
                            (BUFFER_SIZE = 5)
Instance: Latch1:reg106
                            (BUFFER\_SIZE = 5)
Instance: Latch1:reg105
                            (BUFFER\_SIZE = 5)
Instance: Latch1:reg104
                            (BUFFER\_SIZE = 5)
Instance: Latch1:reg103
                            (BUFFER\_SIZE = 6)
Instance: Latch1:reg102
                            (BUFFER_SIZE = 6)
Instance: Latch1:reg101
                            (BUFFER\_SIZE = 6)
Instance: Latch1:reg100
                           (BUFFER\_SIZE = 6)
Instance: Latch1:reg99
                           (BUFFER SIZE = 6)
Instance: Latch1:reg98
                          (BUFFER\_SIZE = 5)
Instance: Latch1:reg97
                           (BUFFER_SIZE = 5)
Instance: Latch1:reg96
                           (BUFFER\_SIZE = 2)
Instance: Latch1:reg95
Writing specification cell gtlatch#03, compiler gtlatch
Instance: Latch1:reg94
                           (BUFFER\_SIZE = 2)
                           (BUFFER\_SIZE = 2)
Instance: Latch1:reg93
```

```
(BUFFER_SIZE = 2)
Instance: Latch1:reg92
Instance: Latch1:reg91
                          (BUFFER SIZE = 2)
Instance: Latch1:reg90
                          (BUFFER SIZE = 2)
Instance: Latch1:reg89
                          (BUFFER_SIZE = 2)
                          (BUFFER\_SIZE = 2)
Instance: Latch1:reg88
Instance: Latch1:reg87
                          (BUFFER\_SIZE = 2)
Instance: Latch1:reg86
                          (BUFFER\_SIZE = 2)
Instance: Latch1:reg85
                          (BUFFER_SIZE = 2)
Instance: Latch1:reg84
                          (BUFFER_SIZE = 2)
Instance: Latch1:reg83
                          (BUFFER\_SIZE = 2)
                          (BUFFER\_SIZE = 2)
Instance: Latch1:reg82
Instance: Latch1:reg81
                          (BUFFER SIZE = 2)
                          (BUFFER\_SIZE = 2)
Instance: Latch1:reg80
Instance: Latch1:reg79
                          (BUFFER\_SIZE = 2)
Instance: Latch1:reg78
                          (BUFFER SIZE = 2)
Instance: Latch1:reg77
                          (BUFFER\_SIZE = 2)
                          (BUFFER_SIZE = 2)
Instance: Latch1:reg76
Instance: Latch1:reg75
                          (BUFFER\_SIZE = 2)
Instance: Latch1:reg74
                          (BUFFER\_SIZE = 2)
Instance: Latch1:reg73
                          (BUFFER\_SIZE = 2)
Instance: Latch1:reg72
                          (BUFFER SIZE = 2)
                          (BUFFER\_SIZE = 2)
Instance: Latch1:reg71
Instance: Latch1:reg70
                          (BUFFER\_SIZE = 2)
Instance: Latch1:reg69
                          (BUFFER SIZE = 2)
Instance: Latch1:reg68
                          (BUFFER\_SIZE = 2)
Instance: Latch1:reg67
                          (BUFFER\_SIZE = 2)
Instance: Latch1:reg66
                          (BUFFER\_SIZE = 2)
                          (BUFFER\_SIZE = 2)
Instance: Latch1:reg65
Instance: Latch1:reg64
                          (BUFFER\_SIZE = 2)
Instance: Latch1:reg63
                          (BUFFER SIZE = 2)
                          (BUFFER\_SIZE = 2)
Instance: Latch1:reg31
Instance: Latch1:reg30
                          (BUFFER\_SIZE = 2)
Instance: Latch1:reg29
                          (BUFFER SIZE = 2)
                          (BUFFER\_SIZE = 2)
Instance: Latch1:reg28
Instance: Latch1:reg27
                          (BUFFER SIZE = 2)
Instance: Latch1:reg26
                          (BUFFER SIZE = 2)
Instance: Latch1:reg25
                          (BUFFER\_SIZE = 2)
Instance: Latch1:reg24
                          (BUFFER\_SIZE = 2)
                          (BUFFER\_SIZE = 2)
Instance: Latch1:reg23
                          (BUFFER\_SIZE = 2)
Instance: Latch1:reg22
                          (BUFFER\_SIZE = 2)
Instance: Latch1:reg21
                          (BUFFER_SIZE = 2)
Instance: Latch1:reg20
                          (BUFFER\_SIZE = 2)
Instance: Latch1:reg19
                          (BUFFER SIZE = 2)
Instance: Latch1:reg18
Instance: Latch1:reg17
                          (BUFFER\_SIZE = 2)
```

```
(BUFFER SIZE = 2)
Instance: Latch1:reg16
                          (BUFFER\_SIZE = 2)
Instance: Latch1:reg15
                          (BUFFER\_SIZE = 2)
Instance: Latch1:reg14
                          (BUFFER SIZE = 2)
Instance: Latch1:reg13
                          (BUFFER\_SIZE = 2)
Instance: Latch1:reg12
                          (BUFFER\_SIZE = 2)
Instance: Latch1:reg11
                          (BUFFER SIZE = 2)
Instance: Latch1:reg10
                         (BUFFER\_SIZE = 2)
Instance: Latch1:reg9
                         (BUFFER SIZE = 2)
Instance: Latch1:reg8
                         (BUFFER\_SIZE = 2)
Instance: Latch1:reg7
                         (BUFFER SIZE = 2)
Instance: Latch1:reg6
Instance: Latch1:reg5
                         (BUFFER\_SIZE = 2)
                         (BUFFER\_SIZE = 2)
Instance: Latch1:reg4
                         (BUFFER\_SIZE = 2)
Instance: Latch1:reg3
                         (BUFFER\_SIZE = 2)
Instance: Latch1:reg2
Instance: Latch1:reg1
                         (BUFFER SIZE = 2)
                         (BUFFER\_SIZE = 2)
Instance: Latch1:reg0
                           (BUFFER_SIZE = 2)
Instance: Latch2:reg127
Instance: Latch2:reg126
                           (BUFFER\_SIZE = 2)
                           (BUFFER\_SIZE = 2)
Instance: Latch2:reg125
Instance: Latch2:reg124
                           (BUFFER\_SIZE = 2)
                           (BUFFER_SIZE = 2)
Instance: Latch2:reg123
                           (BUFFER_SIZE = 2)
Instance: Latch2:reg122
                           (BUFFER\_SIZE = 2)
Instance: Latch2:reg121
                           (BUFFER SIZE = 2)
Instance: Latch2:reg120
                           (BUFFER\_SIZE = 2)
Instance: Latch2:reg119
                           (BUFFER SIZE = 2)
Instance: Latch2:reg118
                           (BUFFER_SIZE = 2)
Instance: Latch2:reg116
                           (BUFFER\_SIZE = 2)
Instance: Latch2:reg113
Instance: Latch2:reg112
                           (BUFFER\_SIZE = 2)
                           (BUFFER\_SIZE = 2)
Instance: Latch2:reg111
                           (BUFFER_SIZE = 2)
Instance: Latch2:reg110
                           (BUFFER SIZE = 2)
Instance: Latch2:reg106
                           (BUFFER_SIZE = 2)
Instance: Latch2:reg105
Instance: Latch2:reg104
                           (BUFFER\_SIZE = 2)
                           (BUFFER SIZE = 2)
Instance: Latch2:reg103
                           (BUFFER\_SIZE = 2)
Instance: Latch2:reg102
                           (BUFFER SIZE = 3)
Instance: Latch2:reg101
Writing specification cell gtlatch#04, compiler gtlatch
                           (BUFFER\_SIZE = 3)
Instance: Latch2:reg100
                          (BUFFER\_SIZE = 3)
Instance: Latch2:reg99
                          (BUFFER\_SIZE = 4)
Instance: Latch2:reg98
Writing specification cell gtlatch#05, compiler gtlatch
                          (BUFFER\_SIZE = 2)
Instance: Latch2:reg97
                          (BUFFER SIZE = 2)
Instance: Latch2:reg96
```

```
(BUFFER\_SIZE = 2)
Instance: Latch2:reg95
                          (BUFFER\_SIZE = 2)
Instance: Latch2:reg94
Instance: Latch2:reg93
                          (BUFFER\_SIZE = 2)
                          (BUFFER\_SIZE = 2)
Instance: Latch2:reg92
                          (BUFFER\_SIZE = 2)
Instance: Latch2:reg91
Instance: Latch2:reg90
                          (BUFFER\_SIZE = 2)
                          (BUFFER SIZE = 2)
Instance: Latch2:reg89
                          (BUFFER\_SIZE = 2)
Instance: Latch2:reg88
Instance: Latch2:reg87
                          (BUFFER\_SIZE = 2)
                          (BUFFER SIZE = 2)
Instance: Latch2:reg86
Instance: Latch2:reg85
                          (BUFFER\_SIZE = 2)
                          (BUFFER SIZE = 2)
Instance: Latch2:reg84
                          (BUFFER\_SIZE = 2)
Instance: Latch2:reg83
Instance: Latch2:reg82
                          (BUFFER SIZE = 2)
                          (BUFFER SIZE = 2)
Instance: Latch2:reg81
                          (BUFFER\_SIZE = 2)
Instance: Latch2:reg80
                          (BUFFER\_SIZE = 2)
Instance: Latch2:reg79
                          (BUFFER\_SIZE = 2)
Instance: Latch2:reg78
                          (BUFFER\_SIZE = 2)
Instance: Latch2:reg77
Instance: Latch2:reg76
                          (BUFFER\_SIZE = 2)
                          (BUFFER SIZE = 2)
Instance: Latch2:reg75
                          (BUFFER\_SIZE = 2)
Instance: Latch2:reg74
Instance: Latch2:reg73
                          (BUFFER SIZE = 2)
                          (BUFFER SIZE = 2)
Instance: Latch2:reg72
                          (BUFFER_SIZE = 2)
Instance: Latch2:reg71
Instance: Latch2:reg70
                          (BUFFER\_SIZE = 2)
                          (BUFFER SIZE = 2)
Instance: Latch2:reg69
                          (BUFFER\_SIZE = 2)
Instance: Latch2:reg68
                          (BUFFER_SIZE = 2)
Instance: Latch2:reg67
                          (BUFFER\_SIZE = 2)
Instance: Latch2:reg66
                          (BUFFER\_SIZE = 2)
Instance: Latch2:reg65
Instance: Latch2:reg64
                          (BUFFER\_SIZE = 2)
Instance: Latch2:reg63
                          (BUFFER\_SIZE = 2)
                          (BUFFER_SIZE = 2)
Instance: Latch2:reg59
                          (BUFFER\_SIZE = 2)
Instance: Latch2:reg42
                          (BUFFER\_SIZE = 2)
Instance: Latch2:reg31
                           (BUFFER\_SIZE = 2)
Instance: Latch2:reg30
Instance: Latch2:reg29
                           (BUFFER\_SIZE = 2)
Instance: Latch2:reg28
                           (BUFFER\_SIZE = 2)
                           (BUFFER\_SIZE = 2)
 Instance: Latch2:reg27
                           (BUFFER\_SIZE = 2)
Instance: Latch2:reg26
                           (BUFFER\_SIZE = 2)
 Instance: Latch2:reg25
 Instance: Latch2:reg24
                           (BUFFER\_SIZE = 2)
 Instance: Latch2:reg23
                           (BUFFER\_SIZE = 2)
                           (BUFFER SIZE = 2)
 Instance: Latch2:reg22
```

```
(BUFFER SIZE = 2)
Instance: Latch2:reg21
                         (BUFFER\_SIZE = 2)
Instance: Latch2:reg20
                         (BUFFER SIZE = 2)
Instance: Latch2:reg19
                         (BUFFER\_SIZE = 2)
Instance: Latch2:reg18
                         (BUFFER SIZE = 2)
Instance: Latch2:reg17
                         (BUFFER_SIZE = 2)
Instance: Latch2:reg16
                         (BUFFER_SIZE = 2)
Instance: Latch2:reg15
                         (BUFFER SIZE = 2)
Instance: Latch2:reg14
                         (BUFFER\_SIZE = 2)
Instance: Latch2:reg13
                         (BUFFER\_SIZE = 2)
Instance: Latch2:reg12
                          (BUFFER\_SIZE = 2)
Instance: Latch2:reg11
Instance: Latch2:reg10
                          (BUFFER\_SIZE = 2)
                         (BUFFER SIZE = 2)
Instance: Latch2:reg9
Instance: Latch2:reg8
                        (BUFFER\_SIZE = 2)
                         (BUFFER SIZE = 2)
Instance: Latch2:reg7
                        (BUFFER\_SIZE = 2)
Instance: Latch2:reg6
                        (BUFFER\_SIZE = 2)
Instance: Latch2:reg5
                         (BUFFER\_SIZE = 2)
Instance: Latch2:reg4
                         (BUFFER\_SIZE = 2)
Instance: Latch2:reg3
                         (BUFFER SIZE = 2)
Instance: Latch2:reg2
                         (BUFFER\_SIZE = 2)
Instance: Latch2:reg1
                         (BUFFER\_SIZE = 2)
Instance: Latch2:reg0
                  (BUFFER\_SIZE = 6)
Instance: and1
Writing specification cell stdand2#o1, compiler gtgate
                          (BUFFER SIZE = 5)
Instance: Mux3:mux63
Writing specification cell gtmux#02, compiler gtmux
                          (BUFFER\_SIZE = 5)
Instance: Mux3:mux62
                          (BUFFER\_SIZE = 5)
Instance: Mux3:mux61
                          (BUFFER\_SIZE = 4)
Instance: Mux3:mux60
Writing specification cell gtmux#03, compiler gtmux
                          (BUFFER\_SIZE = 5)
Instance: Mux3:mux59
                          (BUFFER\_SIZE = 4)
Instance: Mux3:mux58
                          (BUFFER\_SIZE = 5)
Instance: Mux3:mux57
                          (BUFFER\_SIZE = 5)
Instance: Mux3:mux56
                          (BUFFER\_SIZE = 4)
Instance: Mux3:mux55
                          (BUFFER\_SIZE = 5)
Instance: Mux3:mux54
                          (BUFFER_SIZE = 5)
Instance: Mux3:mux53
                          (BUFFER\_SIZE = 4)
Instance: Mux3:mux52
                          (BUFFER\_SIZE = 4)
Instance: Mux3:mux51
                          (BUFFER SIZE = 5)
Instance: Mux3:mux50
                          (BUFFER_SIZE = 4)
Instance: Mux3:mux49
                          (BUFFER_SIZE = 5)
Instance: Mux3:mux48
                          (BUFFER\_SIZE = 4)
Instance: Mux3:mux47
                          (BUFFER\_SIZE = 4)
Instance: Mux3:mux46
                          (BUFFER\_SIZE = 4)
Instance: Mux3:mux45
```

```
(BUFFER SIZE = 4)
Instance: Mux3:mux44
Instance: Mux3:mux43
                         (BUFFER\_SIZE = 4)
                         (BUFFER_SIZE = 4)
Instance: Mux3:mux42
                         (BUFFER SIZE = 5)
Instance: Mux3:mux41
                         (BUFFER_SIZE = 4)
Instance: Mux3:mux40
                         (BUFFER SIZE = 4)
Instance: Mux3:mux39
                         (BUFFER SIZE = 5)
Instance: Mux3:mux38
                         (BUFFER SIZE = 6)
Instance: Mux3:mux37
Writing specification cell gtmux#04, compiler gtmux
Instance: Mux3:mux36
                         (BUFFER SIZE = 6)
                         (BUFFER_SIZE = 6)
Instance: Mux3:mux35
                         (BUFFER_SIZE = 6)
Instance: Mux3:mux34
                         (BUFFER\_SIZE = 5)
Instance: Mux3:mux33
                         (BUFFER SIZE = 5)
Instance: Mux3:mux32
                         (BUFFER SIZE = 2)
Instance: Mux3:mux31
Writing specification cell gtmux#05, compiler gtmux
                         (BUFFER SIZE = 3)
Instance: Mux3:mux30
Writing specification cell gtmux#06, compiler gtmux
                         (BUFFER SIZE = 2)
Instance: Mux3:mux29
                         (BUFFER_SIZE = 2)
Instance: Mux3:mux28
                         (BUFFER\_SIZE = 3)
Instance: Mux3:mux27
                         (BUFFER\_SIZE = 2)
Instance: Mux3:mux26
                         (BUFFER SIZE = 3)
Instance: Mux3:mux25
                         (BUFFER\_SIZE = 3)
Instance: Mux3:mux24
                         (BUFFER\_SIZE = 2)
Instance: Mux3:mux23
                         (BUFFER_SIZE = 3)
Instance: Mux3:mux22
                         (BUFFER\_SIZE = 2)
Instance: Mux3:mux21
                         (BUFFER SIZE = 2)
Instance: Mux3:mux20
                         (BUFFER SIZE = 2)
Instance: Mux3:mux19
                         (BUFFER_SIZE = 3)
Instance: Mux3:mux18
Instance: Mux3:mux17
                         (BUFFER\_SIZE = 3)
                         (BUFFER SIZE = 3)
Instance: Mux3:mux16
                         (BUFFER\_SIZE = 3)
Instance: Mux3:mux15
                         (BUFFER SIZE = 3)
Instance: Mux3:mux14
                         (BUFFER_SIZE = 2)
Instance: Mux3:mux13
                         (BUFFER\_SIZE = 2)
Instance: Mux3:mux12
                         (BUFFER\_SIZE = 2)
Instance: Mux3:mux11
                         (BUFFER SIZE = 2)
Instance: Mux3:mux10
                        (BUFFER\_SIZE = 3)
Instance: Mux3:mux9
                        (BUFFER\_SIZE = 3)
Instance: Mux3:mux8
                        (BUFFER\_SIZE = 3)
Instance: Mux3:mux7
                        (BUFFER\_SIZE = 3)
Instance: Mux3:mux6
                        (BUFFER\_SIZE = 4)
Instance: Mux3:mux5
                        (BUFFER\_SIZE = 4)
Instance: Mux3:mux4
                        (BUFFER\_SIZE = 4)
Instance: Mux3:mux3
```

Y	(DIJEEED SIZE - 5)
Instance: Mux3:mux2	(BUFFER_SIZE = 5)
Instance: Mux3:mux1	$(BUFFER_SIZE = 3)$
Instance: Mux3:mux0	(BUFFER_SIZE = 3)
Instance: Mux2:mux63	(BUFFER_SIZE = 5)
Instance: Mux2:mux62	(BUFFER_SIZE = 5)
Instance: Mux2:mux61	$(BUFFER_SIZE = 5)$
Instance: Mux2:mux60	$(BUFFER_SIZE = 4)$
Instance: Mux2:mux59	$(BUFFER_SIZE = 5)$
Instance: Mux2:mux58	$(BUFFER_SIZE = 5)$
Instance: Mux2:mux57	$(BUFFER_SIZE = 5)$
Instance: Mux2:mux56	$(BUFFER_SIZE = 5)$
Instance: Mux2:mux55	$(BUFFER_SIZE = 5)$
Instance: Mux2:mux54	$(BUFFER_SIZE = 5)$
Instance: Mux2:mux53	$(BUFFER_SIZE = 5)$
Instance: Mux2:mux52	$(BUFFER_SIZE = 4)$
Instance: Mux2:mux51	$(BUFFER_SIZE = 4)$
Instance: Mux2:mux50	$(BUFFER_SIZE = 5)$
Instance: Mux2:mux49	$(BUFFER_SIZE = 5)$
Instance: Mux2:mux48	$(BUFFER_SIZE = 5)$
Instance: Mux2:mux47	$(BUFFER_SIZE = 5)$
Instance: Mux2:mux46	$(BUFFER_SIZE = 5)$
Instance: Mux2:mux45	$(BUFFER_SIZE = 4)$
Instance: Mux2:mux44	$(BUFFER_SIZE = 4)$
Instance: Mux2:mux43	$(BUFFER_SIZE = 4)$
Instance: Mux2:mux42	$(BUFFER_SIZE = 4)$
Instance: Mux2:mux41	$(BUFFER_SIZE = 4)$
Instance: Mux2:mux40	$(BUFFER_SIZE = 5)$
Instance: Mux2:mux39	$(BUFFER_SIZE = 4)$
Instance: Mux2:mux38	$(BUFFER_SIZE = 5)$
Instance: Mux2:mux37	$(BUFFER_SIZE = 6)$
Instance: Mux2:mux36	$(BUFFER_SIZE = 6)$
Instance: Mux2:mux35	$(BUFFER_SIZE = 6)$
Instance: Mux2:mux34	$(BUFFER_SIZE = 6)$
Instance: Mux2:mux33	$(BUFFER_SIZE = 5)$
Instance: Mux2:mux32	$(BUFFER_SIZE = 4)$
Instance: Mux2:mux31	$(BUFFER_SIZE = 4)$
Instance: Mux2:mux30	$(BUFFER_SIZE = 3)$
Instance: Mux2:mux29	$(BUFFER_SIZE = 3)$
Instance: Mux2:mux28	$(BUFFER_SIZE = 2)$
Instance: Mux2:mux27	$(BUFFER_SIZE = 3)$
Instance: Mux2:mux26	$(BUFFER_SIZE = 2)$
Instance: Mux2:mux25	$(BUFFER_SIZE = 4)$
Instance: Mux2:mux24	$(BUFFER_SIZE = 3)$
Instance: Mux2:mux23	$(BUFFER_SIZE = 4)$
Instance: Mux2:mux22	$(BUFFER_SIZE = 4)$

```
Instance: Mux2:mux21
                        (BUFFER_SIZE = 3)
                        (BUFFER SIZE = 3)
Instance: Mux2:mux20
Instance: Mux2:mux19
                        (BUFFER SIZE = 2)
                        (BUFFER SIZE = 3)
Instance: Mux2:mux18
                        (BUFFER SIZE = 3)
Instance: Mux2:mux17
                        (BUFFER SIZE = 3)
Instance: Mux2:mux16
                        (BUFFER SIZE = 4)
Instance: Mux2:mux15
                        (BUFFER_SIZE = 3)
Instance: Mux2:mux14
                        (BUFFER SIZE = 3)
Instance: Mux2:mux13
Instance: Mux2:mux12
                        (BUFFER\_SIZE = 2)
                        (BUFFER SIZE = 2)
Instance: Mux2:mux11
                        (BUFFER\_SIZE = 3)
Instance: Mux2:mux10
                        (BUFFER SIZE = 3)
Instance: Mux2:mux9
                       (BUFFER SIZE = 3)
Instance: Mux2:mux8
Instance: Mux2:mux7
                       (BUFFER\_SIZE = 3)
                       (BUFFER\_SIZE = 3)
Instance: Mux2:mux6
                       (BUFFER\_SIZE = 4)
Instance: Mux2:mux5
                       (BUFFER_SIZE = 4)
Instance: Mux2:mux4
Instance: Mux2:mux3
                        (BUFFER_SIZE = 4)
                        (BUFFER SIZE = 5)
Instance: Mux2:mux2
                        (BUFFER\_SIZE = 3)
Instance: Mux2:mux1
                        (BUFFER\_SIZE = 3)
Instance: Mux2:mux0
                         (BUFFER\_SIZE = 6)
Instance: Mux1:mux63
                         (BUFFER\_SIZE = 6)
Instance: Mux1:mux62
                         (BUFFER\_SIZE = 6)
Instance: Mux1:mux61
                         (BUFFER_SIZE = 5)
Instance: Mux1:mux60
                         (BUFFER\_SIZE = 6)
Instance: Mux1:mux59
                         (BUFFER_SIZE = 6)
Instance: Mux1:mux58
                         (BUFFER_SIZE = 6)
Instance: Mux1:mux57
                         (BUFFER SIZE = 6)
Instance: Mux1:mux56
                         (BUFFER SIZE = 6)
Instance: Mux1:mux55
                         (BUFFER\_SIZE = 6)
Instance: Mux1:mux54
                         (BUFFER SIZE = 6)
Instance: Mux1:mux53
Instance: Mux1:mux52
                         (BUFFER\_SIZE = 6)
                         (BUFFER\_SIZE = 5)
Instance: Mux1:mux51
                         (BUFFER\_SIZE = 6)
Instance: Mux1:mux50
                         (BUFFER\_SIZE = 5)
Instance: Mux1:mux49
                         (BUFFER\_SIZE = 6)
Instance: Mux1:mux48
                         (BUFFER SIZE = 6)
Instance: Mux1:mux47
                         (BUFFER\_SIZE = 6)
Instance: Mux1:mux46
                         (BUFFER_SIZE = 6)
Instance: Mux1:mux45
                         (BUFFER\_SIZE = 5)
Instance: Mux1:mux44
Instance: Mux1:mux43
                         (BUFFER_SIZE = 6)
                         (BUFFER SIZE = 6)
Instance: Mux1:mux42
                         (BUFFER_SIZE = 6)
Instance: Mux1:mux41
```

```
Instance: Mux1:mux40
                        (BUFFER SIZE = 6)
                        (BUFFER SIZE = 6)
Instance: Mux1:mux39
Instance: Mux1:mux38
                         (BUFFER_SIZE = 6)
Instance: Mux1:mux37
                        (BUFFER\_SIZE = 6)
                        (BUFFER SIZE = 6)
Instance: Mux1:mux36
                         (BUFFER\_SIZE = 6)
Instance: Mux1:mux35
                        (BUFFER SIZE = 6)
Instance: Mux1:mux34
Instance: Mux1:mux33
                        (BUFFER SIZE = 6)
                         (BUFFER SIZE = 6)
Instance: Mux1:mux32
                        (BUFFER SIZE = 2)
Instance: Mux1:mux30
                        (BUFFER SIZE = 2)
Instance: Mux1:mux29
                         (BUFFER SIZE = 2)
Instance: Mux1:mux28
                        (BUFFER_SIZE = 2)
Instance: Mux1:mux27
                        (BUFFER\_SIZE = 3)
Instance: Mux1:mux26
                         (BUFFER\_SIZE = 2)
Instance: Mux1:mux25
                         (BUFFER\_SIZE = 2)
Instance: Mux1:mux24
                        (BUFFER SIZE = 2)
Instance: Mux1:mux23
                        (BUFFER SIZE = 2)
Instance: Mux1:mux22
Instance: Mux1:mux21
                        (BUFFER SIZE = 2)
                         (BUFFER SIZE = 2)
Instance: Mux1:mux20
                         (BUFFER SIZE = 2)
Instance: Mux1:mux19
                        (BUFFER\_SIZE = 2)
Instance: Mux1:mux18
                         (BUFFER SIZE = 2)
Instance: Mux1:mux17
Instance: Mux1:mux16
                        (BUFFER SIZE = 2)
                        (BUFFER SIZE = 2)
Instance: Mux1:mux15
                         (BUFFER\_SIZE = 2)
Instance: Mux1:mux14
                        (BUFFER\_SIZE = 2)
Instance: Mux1:mux13
                         (BUFFER SIZE = 2)
Instance: Mux1:mux12
                         (BUFFER\_SIZE = 2)
Instance: Mux1:mux11
                         (BUFFER SIZE = 2)
Instance: Mux1:mux10
                       (BUFFER SIZE = 2)
Instance: Mux1:mux9
                       (BUFFER SIZE = 2)
Instance: Mux1:mux8
                       (BUFFER\_SIZE = 2)
Instance: Mux1:mux7
                       (BUFFER\_SIZE = 2)
Instance: Mux1:mux6
                       (BUFFER\_SIZE = 3)
Instance: Mux1:mux5
                       (BUFFER\_SIZE = 3)
Instance: Mux1:mux4
                       (BUFFER_SIZE = 3)
Instance: Mux1:mux3
                       (BUFFER\_SIZE = 3)
Instance: Mux1:mux2
                       (BUFFER_SIZE = 3)
Instance: Mux1:mux1
                       (BUFFER\_SIZE = 2)
Instance: Mux1:mux0
                         (BUFFER_SIZE = 2)
Instance: FPSReg5:reg3
                         (BUFFER\_SIZE = 2)
Instance: FPSReg5:reg2
                         (BUFFER\_SIZE = 2)
Instance: FPSReg5:reg1
                (BUFFER\_SIZE = 6)
Instance: or5
Writing specification cell stdor2#o1, compiler gtgate
```

```
(BUFFER SIZE = 6)
Instance: or4
Instance: or3
                 (BUFFER SIZE = 6)
                 (BUFFER SIZE = 6)
Instance: or2
                 (BUFFER SIZE = 6)
Instance: or1
                                  (BUFFER\_SIZE\_COUT = 6)
Instance: Counter:inc0:incdec1
Writing specification cell gtadd#o2, compiler gtadd
Creating new modules for composite cell: complex_mplier
                 (BUFFER SIZE = 3)
Instance: or7
Writing specification cell stdor3#01, compiler gtgate
                 (BUFFER SIZE = 3)
Instance: or6
                 (BUFFER_SIZE = 3)
Instance: or9
                  (BUFFER\_SIZE = 3)
Instance: or10
                 (BUFFER SIZE = 3)
Instance: or8
                 (BUFFER\_SIZE = 2)
Instance: or2
Writing specification cell stdor4#o1, compiler gtgate
                 (BUFFER_SIZE = 2)
Instance: or1
                 (BUFFER SIZE = 2)
Instance: or4
                 (BUFFER SIZE = 2)
Instance: or5
                 (BUFFER\_SIZE = 2)
Instance: or3
Creating new modules for composite cell: fpadder
                   (BUFFER\_SIZE = 2)
Instance: and3
Writing specification cell stdand3#01, compiler gtgate
Instance: shifter:bs_mux491
                               (BUFFER\_SIZE = 2)
Instance: shifter:bs_mux481
                                (BUFFER SIZE = 2)
                                (BUFFER SIZE = 2)
Instance: shifter:bs_mux471
                                (BUFFER SIZE = 2)
Instance: shifter:bs mux461
                                (BUFFER\_SIZE = 2)
Instance: shifter:bs_mux451
                                (BUFFER SIZE = 2)
Instance: shifter:bs_mux441
                                (BUFFER\_SIZE = 2)
Instance: shifter:bs_mux431
                                (BUFFER_SIZE = 2)
Instance: shifter:bs_mux421
                                (BUFFER\_SIZE = 2)
Instance: shifter:bs_mux401
                                (BUFFER\_SIZE = 2)
Instance: shifter:bs_mux391
                                (BUFFER\_SIZE = 2)
Instance: shifter:bs_mux381
                                (BUFFER SIZE = 2)
Instance: shifter:bs_mux371
                                (BUFFER_SIZE = 2)
Instance: shifter:bs_mux351
                                (BUFFER\_SIZE = 2)
Instance: shifter:bs_mux341
                                (BUFFER\_SIZE = 2)
Instance: shifter:bs_mux321
                                (BUFFER\_SIZE = 2)
Instance: shifter:bs_mux311
                                (BUFFER\_SIZE = 2)
Instance: shifter:bs_mux231
                                (BUFFER\_SIZE = 2)
Instance: shifter:bs_mux490
                                (BUFFER\_SIZE = 2)
Instance: shifter:bs_mux480
                                (BUFFER\_SIZE = 2)
Instance: shifter:bs_mux470
                                (BUFFER\_SIZE = 2)
Instance: shifter:bs_mux460
                                (BUFFER SIZE = 2)
Instance: shifter:bs_mux450
                                (BUFFER SIZE = 2)
Instance: shifter:bs_mux440
```

```
(BUFFER SIZE = 2)
Instance: shifter:bs mux430
                               (BUFFER\_SIZE = 2)
Instance: shifter:bs mux420
                               (BUFFER\_SIZE = 2)
Instance: shifter:bs_mux410
                               (BUFFER\_SIZE = 2)
Instance: shifter:bs mux400
                               (BUFFER_SIZE = 2)
Instance: shifter:bs mux390
Instance: shifter:bs mux380
                               (BUFFER SIZE = 2)
Instance: shifter:bs mux370
                               (BUFFER SIZE = 2)
Instance: shifter:bs_mux360
                               (BUFFER\_SIZE = 2)
                               (BUFFER SIZE = 2)
Instance: shifter:bs mux350
                               (BUFFER SIZE = 2)
Instance: shifter:bs_mux340
Instance: shifter:bs mux330
                               (BUFFER SIZE = 2)
                               (BUFFER SIZE = 2)
Instance: shifter:bs_mux320
                               (BUFFER SIZE = 2)
Instance: shifter:bs_mux310
                               (BUFFER\_SIZE = 2)
Instance: shifter:bs mux300
                               (BUFFER\_SIZE = 2)
Instance: shifter:bs_mux290
                               (BUFFER SIZE = 2)
Instance: shifter:bs mux280
Instance: shifter:bs_mux270
                               (BUFFER\_SIZE = 2)
Instance: shifter:bs_mux260
                               (BUFFER\_SIZE = 2)
                               (BUFFER SIZE = 2)
Instance: shifter:bs mux250
                               (BUFFER SIZE = 2)
Instance: shifter:bs mux240
Instance: shifter:bs mux230
                               (BUFFER SIZE = 2)
                               (BUFFER\_SIZE = 2)
Instance: shifter:bs_mux220
                               (BUFFER SIZE = 2)
Instance: shifter:bs mux210
Instance: shifter:bs_mux200
                               (BUFFER\_SIZE = 2)
                               (BUFFER\_SIZE = 2)
Instance: shifter:bs_mux190
Instance: shifter:bs_mux180
                               (BUFFER\_SIZE = 2)
                               (BUFFER_SIZE = 2)
Instance: shifter:bs mux170
Instance: shifter:bs_mux160
                               (BUFFER\_SIZE = 2)
                               (BUFFER\_SIZE = 2)
Instance: shifter:bs_mux150
Instance: shifter:bs_mux140
                               (BUFFER\_SIZE = 2)
                               (BUFFER\_SIZE = 2)
Instance: shifter:bs_mux130
                               (BUFFER SIZE = 2)
Instance: shifter:bs mux120
                        (BUFFER SIZE = 5)
Instance: reg5:reg36
Writing specification cell gtdff#o4, compiler gtdff
Instance: reg5:reg35
                        (BUFFER SIZE = 4)
Writing specification cell gtdff#o5, compiler gtdff
Instance: reg5:reg34
                        (BUFFER\_SIZE = 5)
Instance: reg5:reg33
                        (BUFFER\_SIZE = 5)
Instance: reg5:reg32
                        (BUFFER SIZE = 5)
                        (BUFFER\_SIZE = 2)
Instance: reg5:reg31
Instance: reg5:reg30
                        (BUFFER\_SIZE = 4)
                        (BUFFER\_SIZE = 4)
Instance: reg5:reg29
Instance: reg5:reg28
                        (BUFFER\_SIZE = 4)
Instance: reg5:reg27
                        (BUFFER\_SIZE = 4)
                        (BUFFER SIZE = 4)
Instance: reg5:reg26
```

```
(BUFFER SIZE = 4)
Instance: reg5:reg25
                        (BUFFER\_SIZE = 4)
Instance: reg5:reg24
                        (BUFFER_SIZE = 4)
Instance: reg5:reg23
                        (BUFFER_SIZE = 4)
Instance: reg5:reg22
Instance: reg5:reg21
                        (BUFFER\_SIZE = 4)
                        (BUFFER\_SIZE = 4)
Instance: reg5:reg20
                        (BUFFER SIZE = 4)
Instance: reg5:reg19
                        (BUFFER\_SIZE = 4)
Instance: reg5:reg18
                        (BUFFER SIZE = 4)
Instance: reg5:reg17
                        (BUFFER SIZE = 4)
Instance: reg5:reg16
                        (BUFFER\_SIZE = 4)
Instance: reg5:reg15
                        (BUFFER SIZE = 4)
Instance: reg5:reg14
                        (BUFFER SIZE = 3)
Instance: reg5:reg13
Writing specification cell gtdff#06, compiler gtdff
                        (BUFFER\_SIZE = 3)
Instance: reg5:reg12
                        (BUFFER\_SIZE = 3)
Instance: reg5:reg11
Instance: reg5:reg10
                        (BUFFER SIZE = 4)
                       (BUFFER\_SIZE = 4)
Instance: reg5:reg9
Instance: reg5:reg8
                       (BUFFER_SIZE = 4)
                       (BUFFER_SIZE = 4)
Instance: reg5:reg7
                       (BUFFER SIZE = 4)
Instance: reg5:reg6
Instance: reg5:reg5
                       (BUFFER\_SIZE = 5)
Instance: reg5:reg4
                       (BUFFER SIZE = 4)
                       (BUFFER\_SIZE = 5)
Instance: reg5:reg3
                       (BUFFER\_SIZE = 5)
Instance: reg5:reg2
                       (BUFFER\_SIZE = 4)
Instance: reg5:reg1
                       (BUFFER SIZE = 4)
Instance: reg5:reg0
                        (BUFFER\_SIZE = 2)
Instance: reg4:reg42
                        (BUFFER\_SIZE = 2)
Instance: reg4:reg40
                        (BUFFER SIZE = 2)
Instance: reg4:reg26
                       (BUFFER\_SIZE = 2)
Instance: reg4:reg9
                       (BUFFER SIZE = 2)
Instance: reg4:reg0
                        (BUFFER\_SIZE = 2)
Instance: reg3:reg87
                        (BUFFER\_SIZE = 2)
Instance: reg3:reg81
Instance: reg3:reg80
                        (BUFFER\_SIZE = 2)
                        (BUFFER SIZE = 2)
Instance: reg3:reg79
                        (BUFFER\_SIZE = 2)
Instance: reg3:reg77
Instance: reg3:reg76
                        (BUFFER\_SIZE = 2)
                         (BUFFER\_SIZE = 2)
Instance: reg3:reg75
Instance: reg3:reg74
                         (BUFFER\_SIZE = 2)
Instance: reg3:reg73
                         (BUFFER SIZE = 2)
                         (BUFFER\_SIZE = 2)
Instance: reg3:reg72
                         (BUFFER\_SIZE = 2)
Instance: reg3:reg70
Instance: reg3:reg67
                         (BUFFER_SIZE = 2)
                         (BUFFER\_SIZE = 2)
 Instance: reg3:reg66
```

Instance: reg3:reg65	$(BUFFER_SIZE = 2)$
Instance: reg3:reg64	$(BUFFER_SIZE = 2)$
Instance: reg3:reg63	$(BUFFER_SIZE = 2)$
Instance: reg3:reg62	$(BUFFER_SIZE = 2)$
Instance: reg3:reg61	$(BUFFER_SIZE = 2)$
Instance: reg3:reg60	$(BUFFER_SIZE = 2)$
Instance: reg3:reg59	$(BUFFER_SIZE = 2)$
Instance: reg3:reg58	$(BUFFER_SIZE = 2)$
Instance: reg3:reg57	$(BUFFER_SIZE = 2)$
Instance: reg3:reg56	$(BUFFER_SIZE = 2)$
Instance: reg3:reg54	$(BUFFER_SIZE = 2)$
Instance: reg3:reg53	$(BUFFER_SIZE = 2)$
Instance: reg3:reg51	$(BUFFER_SIZE = 2)$
Instance: reg3:reg50	$(BUFFER_SIZE = 2)$
Instance: reg3:reg49	$(BUFFER_SIZE = 2)$
Instance: reg3:reg48	$(BUFFER_SIZE = 2)$
Instance: reg3:reg47	$(BUFFER_SIZE = 2)$
Instance: reg3:reg45	$(BUFFER_SIZE = 2)$
Instance: reg3:reg42	$(BUFFER_SIZE = 2)$
Instance: reg3:reg41	$(BUFFER_SIZE = 2)$
Instance: reg3:reg40	$(BUFFER_SIZE = 2)$
Instance: reg3:reg39	$(BUFFER_SIZE = 2)$
Instance: reg3:reg38	$(BUFFER_SIZE = 2)$
Instance: reg3:reg35	$(BUFFER_SIZE = 2)$
Instance: reg3:reg34	$(BUFFER_SIZE = 2)$
Instance: reg3:reg33	$(BUFFER_SIZE = 2)$
Instance: reg3:reg32	$(BUFFER_SIZE = 2)$
Instance: reg2i:reg70	$(BUFFER_SIZE = 2)$
Instance: reg2i:reg69	$(BUFFER_SIZE = 2)$
Instance: reg2i:reg50	$(BUFFER_SIZE = 2)$
Instance: reg2i:reg40	$(BUFFER_SIZE = 2)$
Instance: reg2i:reg39	$(BUFFER_SIZE = 2)$
Instance: reg2i:reg38	$(BUFFER_SIZE = 2)$
Instance: reg2i:reg37	$(BUFFER_SIZE = 2)$
Instance: reg2i:reg36	$(BUFFER_SIZE = 2)$
Instance: reg2i:reg35	$(BUFFER_SIZE = 2)$
Instance: reg2i:reg34	$(BUFFER_SIZE = 2)$
Instance: reg2i:reg33	$(BUFFER_SIZE = 2)$
Instance: reg2i:reg32	(BUFFER_SIZE = 2)
Instance: reg2i:reg31	$(BUFFER_SIZE = 2)$
Instance: reg2i:reg30	(BUFFER_SIZE = 2)
Instance: reg2i:reg29	(BUFFER_SIZE = 2)
Instance: reg2i:reg28	$(BUFFER_SIZE = 2)$
Instance: reg2i:reg27	(BUFFER_SIZE = 2)
Instance: reg2i:reg26	$(BUFFER_SIZE = 2)$

```
(BUFFER\_SIZE = 2)
Instance: reg2i:reg25
Instance: reg2i:reg24
                         (BUFFER SIZE = 2)
Instance: reg2i:reg23
                        (BUFFER SIZE = 2)
Instance: reg2i:reg22
                         (BUFFER SIZE = 2)
Instance: reg2i:reg21
                         (BUFFER SIZE = 2)
Instance: reg2i:reg20
                        (BUFFER\_SIZE = 2)
Instance: reg2i:reg19
                        (BUFFER_SIZE = 2)
Instance: reg2i:reg18
                         (BUFFER\_SIZE = 2)
Instance: reg2i:reg17
                        (BUFFER SIZE = 2)
                         (BUFFER SIZE = 2)
Instance: reg2i:reg16
Instance: reg2i:reg5
                       (BUFFER SIZE = 9)
Writing specification cell gtdff#o7, compiler gtdff
Instance: reg2i:reg4
                       (BUFFER\_SIZE = 9)
Instance: reg2i:reg3
                       (BUFFER SIZE = 9)
Instance: reg2i:reg2
                       (BUFFER\_SIZE = 9)
                       (BUFFER\_SIZE = 9)
Instance: reg2i:reg1
Instance: reg2i:reg0
                       (BUFFER\_SIZE = 9)
Instance: reg2:reg64
                        (BUFFER\_SIZE = 2)
Instance: reg2:reg62
                        (BUFFER\_SIZE = 2)
                        (BUFFER\_SIZE = 2)
Instance: reg2:reg59
                        (BUFFER\_SIZE = 2)
Instance: reg2:reg57
Instance: reg2:reg51
                        (BUFFER\_SIZE = 2)
Instance: reg2:reg46
                        (BUFFER\_SIZE = 2)
                        (BUFFER\_SIZE = 2)
Instance: reg2:reg15
                        (BUFFER\_SIZE = 2)
Instance: reg2:reg14
                        (BUFFER\_SIZE = 2)
Instance: reg2:reg13
Instance: reg2:reg12
                        (BUFFER\_SIZE = 2)
                        (BUFFER\_SIZE = 2)
Instance: reg2:reg11
Instance: reg2:reg10
                        (BUFFER_SIZE = 2)
Instance: reg2:reg9
                       (BUFFER\_SIZE = 2)
Instance: reg2:reg8
                       (BUFFER\_SIZE = 2)
                       (BUFFER\_SIZE = 2)
Instance: reg2:reg7
                       (BUFFER\_SIZE = 2)
Instance: reg2:reg6
Instance: reg2:reg5
                       (BUFFER\_SIZE = 2)
                       (BUFFER\_SIZE = 2)
Instance: reg2:reg4
                       (BUFFER_SIZE = 2)
Instance: reg2:reg3
                       (BUFFER\_SIZE = 2)
Instance: reg2:reg2
                       (BUFFER\_SIZE = 2)
Instance: reg2:reg1
Instance: reg2:reg0
                       (BUFFER\_SIZE = 2)
Instance: reg1:reg71
                        (BUFFER_SIZE = 2)
Instance: reg1:reg70
                        (BUFFER\_SIZE = 2)
Instance: reg1:reg59
                        (BUFFER\_SIZE = 2)
                        (BUFFER\_SIZE = 2)
Instance: reg1:reg58
Instance: reg1:reg57
                        (BUFFER\_SIZE = 2)
Instance: reg1:reg56
                        (BUFFER\_SIZE = 2)
```

```
(BUFFER_SIZE = 2)
Instance: reg1:reg55
Instance: reg1:reg50
                        (BUFFER\_SIZE = 2)
                        (BUFFER\_SIZE = 2)
Instance: reg1:reg48
                        (BUFFER\_SIZE = 2)
Instance: reg1:reg47
Instance: reg1:reg42
                        (BUFFER SIZE = 2)
                        (BUFFER_SIZE = 2)
Instance: reg1:reg41
                        (BUFFER SIZE = 2)
Instance: reg1:reg39
Instance: reg1:reg38
                        (BUFFER\_SIZE = 2)
                        (BUFFER\_SIZE = 2)
Instance: reg1:reg37
                        (BUFFER\_SIZE = 2)
Instance: reg1:reg36
                        (BUFFER\_SIZE = 2)
Instance: reg1:reg35
                        (BUFFER\_SIZE = 2)
Instance: reg1:reg34
Instance: reg1:reg32
                        (BUFFER\_SIZE = 2)
                        (BUFFER\_SIZE = 2)
Instance: reg1:reg31
                        (BUFFER SIZE = 2)
Instance: reg1:reg30
Instance: reg1:reg22
                        (BUFFER\_SIZE = 2)
                        (BUFFER\_SIZE = 2)
Instance: reg1:reg20
                        (BUFFER\_SIZE = 2)
Instance: reg1:reg17
                        (BUFFER\_SIZE = 2)
Instance: reg1:reg15
                        (BUFFER\_SIZE = 2)
Instance: reg1:reg14
                        (BUFFER\_SIZE = 2)
Instance: reg1:reg13
                        (BUFFER\_SIZE = 2)
Instance: reg1:reg10
Instance: reg1:reg6
                       (BUFFER\_SIZE = 2)
                       (BUFFER SIZE = 2)
Instance: reg1:reg5
                       (BUFFER\_SIZE = 2)
Instance: reg1:reg4
                       (BUFFER SIZE = 2)
Instance: reg1:reg2
                       (BUFFER\_SIZE = 2)
Instance: reg1:reg1
                       (BUFFER_SIZE = 2)
Instance: reg1:reg0
                  (BUFFER\_SIZE = 2)
Instance: or11
Writing specification cell stdor2#o2, compiler gtgate
                                        (BUFFER\_SIZE = 2)
Instance: overshift:p3_Izin_37__#bar
                                        (BUFFER\_SIZE = 2)
Instance: overshift:p3_Izin_27__#bar
                                   (BUFFER\_SIZE = 4)
Instance: M_Comparator:invbga
Writing specification cell gtgate#08, compiler gtgate
                                 (BUFFER SIZE = 4)
Instance: Incrementer1:tc_inv
                                 (BUFFER\_SIZE = 4)
Instance: Incrementer3:tc_inv
                                 (BUFFER\_SIZE = 4)
Instance: Incrementer2:tc_inv
                   (BUFFER\_SIZE = 6)
Instance: and1
                                        (BUFFER\_SIZE = 3)
Instance: man_out_inv:p4_Izsignii52
Writing specification cell stdinv#o2, compiler gtgate
Instance: man_out_inv:p4_Izsignii42
                                       (BUFFER\_SIZE = 3)
Instance: man_out_inv:p4_Izsignii33
                                       (BUFFER SIZE = 2)
                                   (BUFFER\_SIZE\_COUT = 4)
Instance: Incrementer1:incdec25
Writing specification cell gtadd#o3, compiler gtadd
                                     (BUFFER\_SIZE = 3)
Instance: man_invB:p7_Izsignii50
```

```
Instance: man_invB:p7_Izsignii40
                                   (BUFFER\_SIZE = 3)
Instance: man_invB:p7_Izsignii31
                                   (BUFFER\_SIZE = 2)
Instance: man_invA:p7_Izsignii50
                                   (BUFFER\_SIZE = 3)
                                    (BUFFER SIZE = 3)
Instance: man_invA:p7_Izsignii40
                                    (BUFFER\_SIZE = 2)
Instance: man_invA:p7_Izsignii31
                                      (BUFFER SIZE = 2)
Instance: man_out_inv:p4_Izout_2
Writing specification cell stdxnor2#01, compiler gtgate
                                      (BUFFER\_SIZE = 2)
Instance: man_out_inv:p4_Izout_1__
                                      (BUFFER SIZE = 2)
Instance: man out inv:p4 Izout 0
Instance: Rounder: MUX: mux22
                                  (BUFFER\_SIZE = 2)
Writing specification cell gtmux#07, compiler gtmux
                                 (BUFFER\_SIZE = 2)
Instance: Rounder: MUX: mux5
Instance: Rounder: MUX: mux4
                                 (BUFFER\_SIZE = 2)
                                 (BUFFER\_SIZE = 2)
Instance: Rounder: MUX: mux1
Instance: Rounder: MUX: mux0
                                 (BUFFER\_SIZE = 2)
Instance: overshift:p3 Izout 49
                                    (BUFFER SIZE = 2)
Writing specification cell stdnor2#o1, compiler gtgate
Instance: overshift:p3_Izout_31__
                                    (BUFFER SIZE = 2)
Instance: shifter:bs_mux472
                              (BUFFER\_SIZE = 2)
Instance: shifter:bs mux412
                              (BUFFER SIZE = 2)
Instance: shifter:bs_mux352
                              (BUFFER\_SIZE = 2)
                              (BUFFER\_SIZE = 2)
Instance: shifter:bs mux272
Instance: shifter:bs_mux252
                              (BUFFER\_SIZE = 2)
                             (BUFFER\_SIZE = 2)
Instance: Exp_mux2:mux7
                             (BUFFER\_SIZE = 2)
Instance: Exp_mux2:mux4
Instance: Exp_mux2:mux3
                             (BUFFER SIZE = 2)
Instance: Exp_mux2:mux1
                             (BUFFER\_SIZE = 2)
                             (BUFFER\_SIZE = 2)
Instance: Exp_mux2:mux0
                                 (BUFFER\_SIZE = 2)
Instance: cleanup:p9_Izinf_out
Writing specification cell stdand4#01, compiler gtgate
Instance: or15
                  (BUFFER_SIZE = 6)
Writing specification cell stdor3#o2, compiler gtgate
                 (BUFFER SIZE = 2)
Instance: or8
                               (BUFFER\_SIZE = 2)
Instance: Man_mux1:mux24
Instance: Man mux1:mux22
                               (BUFFER\_SIZE = 2)
                               (BUFFER\_SIZE = 2)
Instance: Man_mux1:mux20
                               (BUFFER\_SIZE = 2)
Instance: Man_mux1:mux19
                               (BUFFER\_SIZE = 2)
Instance: Man mux1:mux17
                               (BUFFER\_SIZE = 2)
Instance: Man mux1:mux15
                               (BUFFER SIZE = 2)
Instance: Man_mux1:mux13
Instance: Man_mux1:mux12
                               (BUFFER\_SIZE = 2)
                              (BUFFER SIZE = 2)
Instance: Man mux1:mux8
                                        (BUFFER\_SIZE = 3)
Instance: man_out_inv:p4_Izout_25__
Writing specification cell stdxnor2#02, compiler gtgate
                                       (BUFFER\_SIZE = 2)
Instance: cleanup:p9_Ic#p9#W#3#bar
```

```
Instance: cleanup:p9_Ic#p9#W#2#bar
                                        (BUFFER_SIZE = 2)
                                    (BUFFER SIZE = 2)
Instance: cleanup:p9_Ic#p9#W#1
                                        (BUFFER SIZE = 2)
Instance: cleanup:p9_Ic#p9#W#0#bar
Instance: Value_Test_B:p5_Izstate_0
                                          (BUFFER\_SIZE = 2)
                                          (BUFFER SIZE = 2)
Instance: Value_Test_B:p6_Ic#p6#W#1
                                           (BUFFER SIZE = 2)
Instance: Value Test B:p6 Ic#p6#T#32
Writing specification cell stdnor4#01, compiler gtgate
                                          (BUFFER\_SIZE = 2)
Instance: Value Test A:p5_Izstate_0__
Instance: Value_Test_A:p6_Ic#p6#W#1
                                          (BUFFER\_SIZE = 2)
                                           (BUFFER SIZE = 2)
Instance: Value_Test_A:p6_Ic#p6#T#32
                                           (BUFFER\_SIZE\_SUM = 5)
Instance: Rounder:Incrementer:incdec24
Writing specification cell gtadd#04, compiler gtadd
                                  (BUFFER_SIZE = 2)
Instance: Rounder:p1_Izaddlsb
Writing specification cell stdnor3#01, compiler gtgate
                                   (BUFFER SIZE = 2)
Instance: M Comparator:ygate5
Writing specification cell gtgate#09, compiler gtgate
                                   (BUFFER SIZE = 2)
Instance: M_Comparator:xgate5
                                  (BUFFER\_SIZE\_COUT = 2)
Instance: Incrementer2:incdec0
Writing specification cell gtadd#o5, compiler gtadd
                                 (BUFFER\_SIZE = 7)
Instance: s0 IzExp_mux1_S0
Writing specification cell stdinv#o3, compiler gtgate
                                       (BUFFER_SIZE = 3)
Instance: Bitshift1:p8_Izin_25__ii98
Instance: Bitshift1:p8_Izin_25__ii89
                                       (BUFFER\_SIZE = 2)
Instance: Bitshift1:p8_Izin_25__ii80
                                       (BUFFER\_SIZE = 2)
                                   (BUFFER\_SIZE = 2)
Instance: M_Comparator:invagb
Writing specification cell gtgate#o10, compiler gtgate
Creating new modules for composite cell: fpadder_group
                              (BUFFER\_SIZE = 4)
Instance: Adder1:fadder#7
Writing specification cell dpfadder_bit#o26, compiler dpfadder_bit
                                (BUFFER\_SIZE = 4)
Instance: exp_compl:compl7
Writing specification cell dpcompl#o2, compiler dpcompl
Creating new modules for composite cell: fpmplier
                   (BUFFER_SIZE = 2)
Instance: and2
Writing specification cell stdand2#o2, compiler gtgate
Instance: shiftsel:p11_Izsft_dirii28
                                     (BUFFER\_SIZE = 3)
Instance: shiftsel:p11_Ic#p11#W#7
                                      (BUFFER\_SIZE = 2)
                                      (BUFFER SIZE = 2)
Instance: shiftsel:p11_Ic#p11#W#3
                                           (BUFFER\_SIZE = 2)
Instance: shiftsel:p11_Ic#p11#W#17#bar
                                           (BUFFER\_SIZE = 3)
Instance: shiftsel:p11_Ic#p11#W#16#bar
Instance: shiftsel:p11_Ic#p11#W#0
                                      (BUFFER_SIZE = 3)
Writing specification cell stdnor3#o2, compiler gtgate
                               (BUFFER SIZE = 2)
Instance: shifter:bs_mux151
                               (BUFFER\_SIZE = 2)
Instance: shifter:bs_mux141
                               (BUFFER\_SIZE = 2)
Instance: shifter:bs_mux131
                               (BUFFER\_SIZE = 2)
Instance: shifter:bs_mux121
```

```
(BUFFER\_SIZE = 2)
Instance: shifter:bs_mux111
Instance: shifter:bs_mux101
                              (BUFFER SIZE = 2)
                              (BUFFER\_SIZE = 2)
Instance: shifter:bs_mux91
                             (BUFFER\_SIZE = 2)
Instance: shifter:bs mux81
                              (BUFFER SIZE = 2)
Instance: shifter:bs mux71
                              (BUFFER SIZE = 2)
Instance: shifter:bs_mux61
Instance: shifter:bs_mux51
                              (BUFFER SIZE = 2)
                              (BUFFER_SIZE = 2)
Instance: shifter:bs_mux41
Instance: shifter:bs_mux31
                              (BUFFER SIZE = 2)
                              (BUFFER_SIZE = 2)
Instance: shifter:bs mux21
Instance: shifter:bs_mux11
                              (BUFFER\_SIZE = 2)
Instance: shifter:bs_mux360
                               (BUFFER\_SIZE = 2)
                               (BUFFER\_SIZE = 2)
Instance: shifter:bs mux350
                               (BUFFER\_SIZE = 2)
Instance: shifter:bs_mux340
                               (BUFFER SIZE = 2)
Instance: shifter:bs mux330
Instance: shifter:bs mux320
                               (BUFFER SIZE = 2)
                               (BUFFER\_SIZE = 2)
Instance: shifter:bs mux310
Instance: shifter:bs mux300
                               (BUFFER_SIZE = 2)
Instance: shifter:bs_mux290
                               (BUFFER SIZE = 2)
Instance: shifter:bs_mux280
                               (BUFFER_SIZE = 2)
                               (BUFFER SIZE = 2)
Instance: shifter:bs mux270
                               (BUFFER_SIZE = 2)
Instance: shifter:bs_mux260
                               (BUFFER\_SIZE = 2)
Instance: shifter:bs_mux250
Instance: shifter:bs mux240
                               (BUFFER SIZE = 2)
Instance: shifter:bs_mux230
                               (BUFFER\_SIZE = 2)
                               (BUFFER SIZE = 2)
Instance: shifter:bs mux220
                               (BUFFER\_SIZE = 2)
Instance: shifter:bs_mux210
Instance: shifter:bs mux200
                               (BUFFER\_SIZE = 2)
Instance: shifter:bs_mux190
                               (BUFFER\_SIZE = 2)
                               (BUFFER\_SIZE = 2)
Instance: shifter:bs mux180
                               (BUFFER\_SIZE = 2)
Instance: shifter:bs_mux170
                               (BUFFER SIZE = 2)
Instance: shifter:bs_mux160
Instance: shifter:bs_mux150
                               (BUFFER\_SIZE = 2)
                               (BUFFER\_SIZE = 2)
Instance: shifter:bs_mux140
Instance: shifter:bs_mux130
                               (BUFFER\_SIZE = 2)
Instance: shifter:bs_mux120
                               (BUFFER SIZE = 2)
                               (BUFFER\_SIZE = 2)
Instance: shifter:bs mux110
                               (BUFFER_SIZE = 2)
Instance: shifter:bs mux100
                              (BUFFER_SIZE = 2)
Instance: shifter:bs_mux90
Instance: shifter:bs_mux80
                              (BUFFER\_SIZE = 2)
                              (BUFFER SIZE = 2)
Instance: shifter:bs_mux70
                              (BUFFER\_SIZE = 2)
Instance: shifter:bs_mux60
                              (BUFFER SIZE = 2)
Instance: shifter:bs mux50
Instance: shifter:bs_mux40
                              (BUFFER SIZE = 2)
Instance: shifter:bs_mux30
                              (BUFFER SIZE = 2)
```

```
Instance: shifter:bs mux20
                             (BUFFER\_SIZE = 2)
                             (BUFFER SIZE = 2)
Instance: shifter:bs mux10
Instance: shifter:bs_mux00
                             (BUFFER\_SIZE = 2)
                                   (BUFFER SIZE = 2)
Instance: encoder:p10_Izout_4__
                                   (BUFFER\_SIZE = 2)
Instance: encoder:p10 Izout_3__
Instance: encoder:p10_Izout_2__
                                   (BUFFER\_SIZE = 2)
                                   (BUFFER\_SIZE = 2)
Instance: encoder:p10 Izout 1_
Instance: encoder:p10 Izout 0
                                   (BUFFER\_SIZE = 2)
Writing specification cell stdao211#o1, compiler gtgate
                        (BUFFER\_SIZE = 2)
Instance: reg5:reg36
Instance: reg5:reg35
                        (BUFFER_SIZE = 2)
Instance: reg5:reg34
                        (BUFFER_SIZE = 4)
                        (BUFFER SIZE = 2)
Instance: reg5:reg33
Instance: reg5:reg32
                        (BUFFER\_SIZE = 3)
                        (BUFFER SIZE = 4)
Instance: reg5:reg31
                        (BUFFER\_SIZE = 4)
Instance: reg5:reg30
                        (BUFFER\_SIZE = 4)
Instance: reg5:reg29
Instance: reg5:reg28
                        (BUFFER\_SIZE = 4)
Instance: reg5:reg27
                        (BUFFER\_SIZE = 4)
                        (BUFFER\_SIZE = 4)
Instance: reg5:reg26
Instance: reg5:reg25
                        (BUFFER\_SIZE = 4)
                        (BUFFER SIZE = 4)
Instance: reg5:reg24
                        (BUFFER\_SIZE = 5)
Instance: reg5:reg23
Instance: reg5:reg22
                        (BUFFER\_SIZE = 4)
Instance: reg5:reg21
                        (BUFFER_SIZE = 4)
                        (BUFFER\_SIZE = 4)
Instance: reg5:reg20
                        (BUFFER\_SIZE = 4)
Instance: reg5:reg19
                        (BUFFER\_SIZE = 3)
Instance: reg5:reg18
                        (BUFFER\_SIZE = 4)
Instance: reg5:reg17
Instance: reg5:reg16
                        (BUFFER\_SIZE = 4)
                        (BUFFER_SIZE = 4)
Instance: reg5:reg15
                        (BUFFER\_SIZE = 4)
Instance: reg5:reg14
                        (BUFFER_SIZE = 4)
Instance: reg5:reg13
                        (BUFFER SIZE = 4)
Instance: reg5:reg12
                        (BUFFER\_SIZE = 4)
Instance: reg5:reg11
Instance: reg5:reg10
                        (BUFFER SIZE = 4)
                       (BUFFER\_SIZE = 4)
Instance: reg5:reg9
                       (BUFFER\_SIZE = 4)
Instance: reg5:reg8
                       (BUFFER\_SIZE = 4)
Instance: reg5:reg7
Instance: reg5:reg6
                       (BUFFER_SIZE = 4)
                       (BUFFER\_SIZE = 4)
Instance: reg5:reg5
                       (BUFFER\_SIZE = 4)
Instance: reg5:reg4
                       (BUFFER\_SIZE = 4)
Instance: reg5:reg3
                       (BUFFER\_SIZE = 4)
Instance: reg5:reg2
                       (BUFFER\_SIZE = 4)
Instance: reg5:reg1
```

Instance: reg5:reg0	$(BUFFER_SIZE = 4)$
Instance: reg4i:reg62	$(BUFFER_SIZE = 2)$
Instance: reg4i:reg60	$(BUFFER_SIZE = 2)$
Instance: reg4i:reg59	$(BUFFER_SIZE = 2)$ $(BUFFER_SIZE = 2)$
Instance: reg4i:reg58	$(BUFFER_SIZE = 2)$ $(BUFFER_SIZE = 2)$
Instance: reg4i:reg57	$(BUFFER_SIZE = 2)$ $(BUFFER_SIZE = 2)$
• •	$(BUFFER_SIZE = 2)$ $(BUFFER_SIZE = 2)$
Instance: reg4i:reg56	$(BUFFER_SIZE = 2)$ $(BUFFER_SIZE = 3)$
Instance: reg4i:reg55	
Instance: reg4i:reg54	(BUFFER_SIZE = 2)
Instance: reg4i:reg53	$(BUFFER_SIZE = 2)$
Instance: reg4i:reg52	$(BUFFER_SIZE = 2)$
Instance: reg4i:reg51	(BUFFER_SIZE = 2)
Instance: reg4i:reg50	(BUFFER_SIZE = 3)
Instance: reg4i:reg49	(BUFFER_SIZE = 2)
Instance: reg4i:reg48	(BUFFER_SIZE = 2)
Instance: reg4i:reg47	(BUFFER_SIZE = 3)
Instance: reg4i:reg46	$(BUFFER_SIZE = 3)$
Instance: reg4i:reg45	$(BUFFER_SIZE = 3)$
Instance: reg4i:reg44	(BUFFER_SIZE = 3)
Instance: reg4i:reg43	$(BUFFER_SIZE = 3)$
Instance: reg4i:reg42	$(BUFFER_SIZE = 2)$
Instance: reg4i:reg41	$(BUFFER_SIZE = 2)$
Instance: reg4i:reg40	$(BUFFER_SIZE = 2)$
Instance: reg4i:reg39	$(BUFFER_SIZE = 2)$
Instance: reg4i:reg38	$(BUFFER_SIZE = 2)$
Instance: reg4i:reg37	$(BUFFER_SIZE = 2)$
Instance: reg4i:reg36	$(BUFFER_SIZE = 3)$
Instance: reg4i:reg35	$(BUFFER_SIZE = 2)$
Instance: reg4i:reg34	$(BUFFER_SIZE = 2)$
Instance: reg4i:reg33	$(BUFFER_SIZE = 2)$
Instance: reg4i:reg32	$(BUFFER_SIZE = 3)$
Instance: reg4i:reg31	$(BUFFER_SIZE = 2)$
Instance: reg4i:reg30	$(BUFFER_SIZE = 2)$
Instance: reg4i:reg29	$(BUFFER_SIZE = 2)$
Instance: reg4i:reg28	$(BUFFER_SIZE = 2)$
Instance: reg4i:reg27	$(BUFFER_SIZE = 2)$
Instance: reg4i:reg26	$(BUFFER_SIZE = 2)$
Instance: reg4i:reg25	$(BUFFER_SIZE = 2)$
Instance: reg4i:reg24	$(BUFFER_SIZE = 2)$
Instance: reg4i:reg23	$(BUFFER_SIZE = 2)$
Instance: reg4i:reg22	$(BUFFER_SIZE = 2)$
Instance: reg4i:reg21	$(BUFFER_SIZE = 2)$
Instance: reg4i:reg20	$(BUFFER_SIZE = 2)$
Instance: reg4i:reg19	$(BUFFER_SIZE = 2)$
Instance: reg4i:reg18	$(BUFFER_SIZE = 2)$

```
(BUFFER_SIZE = 2)
Instance: reg4i:reg17
                        (BUFFER_SIZE = 2)
Instance: reg4i:reg16
Instance: reg4i:reg15
                        (BUFFER SIZE = 2)
                        (BUFFER\_SIZE = 9)
Instance: reg4i:reg14
Instance: reg4i:reg13
                        (BUFFER SIZE = 9)
                        (BUFFER\_SIZE = 9)
Instance: reg4i:reg12
Instance: reg4i:reg11
                        (BUFFER SIZE = 9)
                        (BUFFER\_SIZE = 9)
Instance: reg4i:reg10
                       (BUFFER SIZE = 2)
Instance: reg4i:reg8
                       (BUFFER SIZE = 2)
Instance: reg4i:reg6
                       (BUFFER\_SIZE = 2)
Instance: reg4i:reg1
                        (BUFFER SIZE = 2)
Instance: reg4:reg62
                        (BUFFER\_SIZE = 2)
Instance: reg4:reg59
Instance: reg4:reg58
                        (BUFFER\_SIZE = 2)
                        (BUFFER\_SIZE = 2)
Instance: reg4:reg50
                        (BUFFER\_SIZE = 2)
Instance: reg4:reg49
                        (BUFFER SIZE = 2)
Instance: reg4:reg48
                        (BUFFER\_SIZE = 2)
Instance: reg4:reg46
                        (BUFFER_SIZE = 2)
Instance: reg4:reg45
Instance: reg4:reg44
                        (BUFFER\_SIZE = 2)
Instance: reg4:reg43
                        (BUFFER SIZE = 2)
                        (BUFFER\_SIZE = 2)
Instance: reg4:reg41
                        (BUFFER\_SIZE = 2)
Instance: reg4:reg39
                       (BUFFER SIZE = 2)
Instance: reg4:reg9
Instance: reg4:reg3
                       (BUFFER\_SIZE = 2)
                       (BUFFER\_SIZE = 3)
Instance: reg4:reg0
                        (BUFFER\_SIZE = 2)
Instance: reg3:reg72
                        (BUFFER SIZE = 2)
Instance: reg3:reg71
                        (BUFFER\_SIZE = 2)
Instance: reg3:reg70
                        (BUFFER\_SIZE = 2)
Instance: reg3:reg69
                        (BUFFER\_SIZE = 2)
Instance: reg3:reg68
                        (BUFFER\_SIZE = 2)
Instance: reg3:reg58
                        (BUFFER\_SIZE = 2)
Instance: reg3:reg57
                        (BUFFER\_SIZE = 2)
Instance: reg3:reg49
                        (BUFFER_SIZE = 2)
Instance: reg3:reg41
Instance: reg3:reg40
                        (BUFFER SIZE = 2)
                        (BUFFER\_SIZE = 2)
Instance: reg3:reg38
                        (BUFFER\_SIZE = 2)
Instance: reg3:reg37
                        (BUFFER_SIZE = 3)
Instance: reg3:reg14
                        (BUFFER_SIZE = 3)
Instance: reg3:reg13
                        (BUFFER\_SIZE = 3)
Instance: reg3:reg12
                        (BUFFER\_SIZE = 2)
Instance: reg3:reg11
                        (BUFFER\_SIZE = 2)
Instance: reg3:reg10
                       (BUFFER\_SIZE = 3)
Instance: reg3:reg9
                       (BUFFER\_SIZE = 3)
Instance: reg3:reg8
```

```
(BUFFER\_SIZE = 2)
Instance: reg3:reg7
Instance: reg3:reg6
                       (BUFFER\_SIZE = 3)
Instance: reg3:reg5
                       (BUFFER\_SIZE = 3)
                       (BUFFER SIZE = 3)
Instance: reg3:reg4
Instance: reg3:reg3
                       (BUFFER\_SIZE = 3)
Instance: reg3:reg2
                       (BUFFER\_SIZE = 3)
                       (BUFFER SIZE = 2)
Instance: reg2:reg8
                       (BUFFER\_SIZE = 2)
Instance: reg2:reg5
Instance: reg2:reg4
                       (BUFFER_SIZE = 2)
                       (BUFFER_SIZE = 2)
Instance: reg2:reg3
                       (BUFFER\_SIZE = 2)
Instance: reg2:reg2
Instance: reg1:reg65
                        (BUFFER\_SIZE = 6)
Writing specification cell gtdff#08, compiler gtdff
                        (BUFFER\_SIZE = 5)
Instance: reg1:reg64
                        (BUFFER SIZE = 5)
Instance: reg1:reg63
                        (BUFFER_SIZE = 5)
Instance: reg1:reg62
                        (BUFFER SIZE = 5)
Instance: reg1:reg61
Instance: reg1:reg60
                        (BUFFER\_SIZE = 5)
                        (BUFFER_SIZE = 6)
Instance: reg1:reg59
                        (BUFFER\_SIZE = 5)
Instance: reg1:reg58
                        (BUFFER\_SIZE = 6)
Instance: reg1:reg57
                        (BUFFER SIZE = 6)
Instance: reg1:reg56
Instance: reg1:reg55
                        (BUFFER\_SIZE = 5)
                        (BUFFER\_SIZE = 6)
Instance: reg1:reg54
                        (BUFFER_SIZE = 6)
Instance: reg1:reg53
                        (BUFFER\_SIZE = 6)
Instance: reg1:reg52
                        (BUFFER\_SIZE = 6)
Instance: reg1:reg51
Instance: reg1:reg50
                        (BUFFER\_SIZE = 6)
                        (BUFFER\_SIZE = 6)
Instance: reg1:reg49
                        (BUFFER\_SIZE = 6)
Instance: reg1:reg48
                         (BUFFER\_SIZE = 6)
Instance: reg1:reg47
                         (BUFFER\_SIZE = 6)
Instance: reg1:reg46
                         (BUFFER\_SIZE = 6)
Instance: reg1:reg45
                        (BUFFER\_SIZE = 6)
Instance: reg1:reg44
                         (BUFFER_SIZE = 6)
Instance: reg1:reg43
                         (BUFFER\_SIZE = 6)
Instance: reg1:reg42
                        (BUFFER\_SIZE = 6)
Instance: reg1:reg41
                         (BUFFER\_SIZE = 2)
Instance: reg1:reg40
                         (BUFFER\_SIZE = 3)
Instance: reg1:reg39
                         (BUFFER\_SIZE = 2)
Instance: reg1:reg38
                         (BUFFER SIZE = 2)
Instance: reg1:reg37
                         (BUFFER\_SIZE = 2)
Instance: reg1:reg36
                         (BUFFER\_SIZE = 3)
Instance: reg1:reg35
                         (BUFFER\_SIZE = 2)
Instance: reg1:reg34
                         (BUFFER\_SIZE = 2)
 Instance: reg1:reg33
```

```
(BUFFER SIZE = 2)
Instance: reg1:reg32
                        (BUFFER_SIZE = 2)
Instance: reg1:reg31
Instance: reg1:reg30
                        (BUFFER SIZE = 2)
                        (BUFFER SIZE = 2)
Instance: reg1:reg29
                        (BUFFER SIZE = 2)
Instance: reg1:reg28
                        (BUFFER_SIZE = 2)
Instance: reg1:reg27
                        (BUFFER SIZE = 2)
Instance: reg1:reg26
                        (BUFFER SIZE = 2)
Instance: reg1:reg25
Instance: reg1:reg24
                        (BUFFER SIZE = 2)
                        (BUFFER_SIZE = 2)
Instance: reg1:reg23
                        (BUFFER\_SIZE = 2)
Instance: reg1:reg22
                        (BUFFER\_SIZE = 2)
Instance: reg1:reg21
                        (BUFFER\_SIZE = 2)
Instance: reg1:reg20
Instance: reg1:reg19
                        (BUFFER\_SIZE = 2)
                        (BUFFER_SIZE = 2)
Instance: reg1:reg18
                        (BUFFER\_SIZE = 2)
Instance: reg1:reg17
                        (BUFFER\_SIZE = 2)
Instance: reg1:reg16
                        (BUFFER\_SIZE = 2)
Instance: reg1:reg15
                        (BUFFER SIZE = 2)
Instance: reg1:reg14
                        (BUFFER\_SIZE = 2)
Instance: reg1:reg11
                        (BUFFER\_SIZE = 2)
Instance: reg1:reg10
                       (BUFFER SIZE = 2)
Instance: reg1:reg9
                       (BUFFER\_SIZE = 2)
Instance: reg1:reg8
                       (BUFFER\_SIZE = 2)
Instance: reg1:reg7
                       (BUFFER\_SIZE = 2)
Instance: reg1:reg6
                       (BUFFER SIZE = 2)
Instance: reg1:reg5
Instance: reg1:reg3
                       (BUFFER\_SIZE = 2)
                       (BUFFER\_SIZE = 2)
Instance: reg1:reg2
                       (BUFFER\_SIZE = 2)
Instance: reg1:reg1
Instance: reg1:reg0
                       (BUFFER\_SIZE = 2)
                 (BUFFER_SIZE = 2)
Instance: or2
                             (BUFFER\_SIZE\_COUT = 4)
Instance: Adder4:bit4col0
     (BUFFER\_SIZE\_SUM = 2)
Writing specification cell gtadd#06, compiler gtadd
                               (BUFFER\_SIZE = 4)
Instance: Incrementer:tc_inv
                                (BUFFER\_SIZE = 4)
Instance: Incrementer2:tc_inv
Instance: mansel:p12_Izsft_dirii189#3#
                                         (BUFFER\_SIZE = 2)
Instance: mansel:p12_Izsft_dirii189#2#
                                         (BUFFER\_SIZE = 3)
                                         (BUFFER\_SIZE = 3)
Instance: mansel:p12_Izsft_dirii189#1#
Instance: mansel:p12_Izsft_dirii189#0#
                                         (BUFFER\_SIZE = 3)
                                      (BUFFER SIZE = 3)
Instance: mansel:p12_Izsft_dirii189
Instance: mansel:p12_Izmanin_9__#bar
                                          (BUFFER\_SIZE = 2)
Instance: mansel:p12_Izmanin_32__#bar
                                           (BUFFER\_SIZE = 2)
Instance: mansel:p12_Izmanin_28__#bar
                                           (BUFFER\_SIZE = 2)
Instance: mansel:p12_Izmanin_25__#bar
                                           (BUFFER\_SIZE = 2)
```

```
Instance: Rounder: MUX: mux22
                                  (BUFFER SIZE = 2)
Instance: Rounder: MUX: mux20
                                  (BUFFER SIZE = 2)
Instance: Rounder: MUX: mux19
                                  (BUFFER SIZE = 2)
Instance: Rounder: MUX: mux18
                                  (BUFFER SIZE = 2)
                                  (BUFFER SIZE = 2)
Instance: Rounder: MUX: mux13
Instance: Rounder: MUX: mux9
                                 (BUFFER_SIZE = 2)
Instance: Rounder: MUX: mux5
                                 (BUFFER_SIZE = 2)
                                 (BUFFER\_SIZE = 2)
Instance: Rounder: MUX: mux4
                                 (BUFFER\_SIZE = 2)
Instance: Rounder: MUX: mux3
                                 (BUFFER SIZE = 2)
Instance: Rounder: MUX: mux2
                                 (BUFFER\_SIZE = 2)
Instance: Rounder: MUX: mux1
Instance: Rounder: MUX: mux0
                                 (BUFFER SIZE = 2)
                              (BUFFER SIZE = 2)
Instance: shifter:bs mux312
                              (BUFFER\_SIZE = 2)
Instance: shifter:bs_mux302
Instance: shifter:bs mux292
                              (BUFFER SIZE = 2)
Instance: mansel:p12_Izmanout_31__
                                       (BUFFER SIZE = 2)
Writing specification cell stdoai22#o1, compiler gtgate
Instance: mansel:p12_Izmanout_23
                                       (BUFFER\_SIZE = 2)
                        (BUFFER SIZE = 9)
Instance: reg4i:reg68
Instance: Comparator:invbga
                               (BUFFER\_SIZE = 2)
Instance: shiftsel:pl1_Izexp_fin_5_
                                      (BUFFER\_SIZE = 2)
Writing specification cell stdoai222#o1, compiler gtgate
Instance: shiftsel:pl1 Izexp fin 3
                                      (BUFFER\_SIZE = 2)
Instance: shiftsel:p11 Izexp_fin_2_
                                      (BUFFER_SIZE = 2)
Instance: shiftsel:p11_Izexp_fin_0__
                                      (BUFFER\_SIZE = 2)
Instance: Value_Test_B:p6_Izexp_6_
                                        (BUFFER\_SIZE = 2)
Writing specification cell stdao21#o1, compiler gtgate
                                        (BUFFER\_SIZE = 2)
Instance: Value Test B:p6_Izexp_4__
Instance: Value_Test_B:p6_Izexp_1_
                                        (BUFFER\_SIZE = 2)
Instance: encoder:p10_Ic#p10#W#58#bar
                                           (BUFFER\_SIZE = 2)
                                       (BUFFER\_SIZE = 2)
Instance: encoder:p10_Ic#p10#W#31
Writing specification cell stdaoi21#o1, compiler gtgate
Instance: encoder:p10_Ic#p10#W#19
                                       (BUFFER SIZE = 2)
                                      (BUFFER\_SIZE = 2)
Instance: encoder:p10_Ic#p10#W#0
                                      (BUFFER SIZE = 2)
Instance: encoder:p10_Ic#p10#T#83
                                       (BUFFER_SIZE = 2)
Instance: encoder:p10_Ic#p10#T#66i
Writing specification cell stdnand2#o1, compiler gtgate
Instance: encoder:p10_Ic#p10#T#110
                                       (BUFFER\_SIZE = 2)
                                       (BUFFER_SIZE = 2)
Instance: cleanup:p9_Ic#p9#W#3#bar
                                       (BUFFER\_SIZE = 2)
Instance: cleanup:p9_Ic#p9#W#2#bar
Instance: cleanup:p9_Ic#p9#W#1
                                   (BUFFER\_SIZE = 2)
                                       (BUFFER\_SIZE = 2)
Instance: cleanup:p9_Ic#p9#W#0#bar
                                         (BUFFER SIZE = 3)
Instance: Value_Test_B:p5_Izstate_0__
Writing specification cell stdor4#02, compiler gtgate
                                          (BUFFER SIZE = 3)
Instance: Value_Test_B:p6_Ic#p6#W#1
```

```
Writing specification cell stdnor2#o2, compiler gtgate
                                          (BUFFER\_SIZE = 3)
Instance: Value_Test_A:p5_Izstate_0__
                                          (BUFFER\_SIZE = 3)
Instance: Value_Test_A:p6_Ic#p6#W#1
                                     (BUFFER\_SIZE = 2)
Instance: Rounder:p1_Ic#p1#W#1i
Writing specification cell stdmux2#o1, compiler gtmux
Instance: Rounder:Incrementer:incdec24
                                          (BUFFER SIZE_SUM = 6)
Writing specification cell gtadd#07, compiler gtadd
Instance: Rounder:Incrementer:incdec23
                                          (BUFFER\_SIZE\_SUM = 2)
Writing specification cell gtadd#08, compiler gtadd
                             (BUFFER\_SIZE\_SUM = 2)
Instance: Adder4:bit3col0
Writing specification cell gtadd#09, compiler gtadd
Instance: Adder4:bit2col0
                             (BUFFER\_SIZE\_SUM = 2)
                             (BUFFER\_SIZE\_SUM = 2)
Instance: Adder4:bit1col0
                             (BUFFER\_SIZE\_SUM = 2)
Instance: Adder4:bit0col0
Creating new modules for composite cell: hsmult2piped_c_0#o0
                             (BUFFER\_SIZE = 2)
Instance: dpadder#o0_965
Writing specification cell dpadder#o1, compiler dpadder
Instance: dpadder#o0_957
                             (BUFFER\_SIZE = 2)
                             (BUFFER\_SIZE = 2)
Instance: dpadder#00_955
Instance: dpadder#o0_954
                             (BUFFER\_SIZE = 2)
                             (BUFFER_SIZE = 2)
Instance: dpadder#o0_946
Instance: dpadder#00_945
                             (BUFFER\_SIZE = 2)
                             (BUFFER\_SIZE = 2)
Instance: dpadder#o0_944
                             (BUFFER\_SIZE = 2)
Instance: dpadder#o0_943
                             (BUFFER SIZE = 2)
Instance: dpadder#o0_935
                             (BUFFER\_SIZE = 2)
Instance: dpadder#o0_839
                             (BUFFER SIZE = 2)
Instance: dpadder#o0_934
                             (BUFFER\_SIZE = 2)
Instance: dpadder#o0_933
                           (BUFFER\_SIZE = 2)
Instance: dpdff#o0_819
Writing specification cell dpdff#o1, compiler dpdff
                              (BUFFER\_SIZE = 2)
Instance: dpadder#o0_925
                           (BUFFER\_SIZE = 2)
Instance: dpdff#o0_811
                           (BUFFER\_SIZE = 2)
Instance: dpdff#00_804
                              (BUFFER\_SIZE = 2)
Instance: dpadder#o0_924
                           (BUFFER\_SIZE = 2)
Instance: dpdff#00_797
Instance: dpdff#o0_795
                           (BUFFER SIZE = 2)
                           (BUFFER\_SIZE = 2)
Instance: dpdff#o0_794
                           (BUFFER SIZE = 2)
Instance: dpdff#o0_793
                              (BUFFER\_SIZE = 2)
Instance: dpadder#o0_923
Instance: dpdff#o0_774
                           (BUFFER\_SIZE = 2)
                           (BUFFER_SIZE = 2)
Instance: dpdff#o0_773
                           (BUFFER\_SIZE = 2)
Instance: dpdff#o0_770
                           (BUFFER\_SIZE = 2)
Instance: dpdff#o0_764
                           (BUFFER\_SIZE = 2)
Instance: dpdff#00_756
                              (BUFFER\_SIZE = 2)
Instance: dpadder#o0_915
```

Instance: dpadder#o0_1102	$(BUFFER_SIZE = 2)$
Instance: dpadder#o0_914	$(BUFFER_SIZE = 2)$
Instance: dpadder#o0_907	$(BUFFER_SIZE = 2)$
Instance: dpadder#00_906	$(BUFFER_SIZE = 2)$
Instance: dpadder#o0_1108	$(BUFFER_SIZE = 2)$
Instance: dpadder#o0_1053	$(BUFFER_SIZE = 2)$
Instance: dpadder#o0_1022	$(BUFFER_SIZE = 2)$
Instance: dpadder#o0_999	$(BUFFER_SIZE = 2)$
Instance: dpadder#o0_975	$(BUFFER_SIZE = 2)$
Instance: dpadder#o0_963	$(BUFFER_SIZE = 2)$
Instance: dpadder#o0_952	$(BUFFER_SIZE = 2)$
Instance: dpadder#o0_941	$(BUFFER_SIZE = 2)$
Instance: dpadder#o0_931	$(BUFFER_SIZE = 2)$
Instance: dpadder#o0_921	$(BUFFER_SIZE = 2)$
Instance: dpadder#o0_1113	$(BUFFER_SIZE = 2)$
Instance: dpadder#o0_1107	$(BUFFER_SIZE = 2)$
Instance: dpadder#o0_1087	$(BUFFER_SIZE = 2)$
Instance: dpadder#o0_1079	$(BUFFER_SIZE = 2)$
Instance: dpadder#o0_1061	$(BUFFER_SIZE = 2)$
Instance: dpadder#o0_1042	$(BUFFER_SIZE = 2)$
Instance: dpadder#o0_897	$(BUFFER_SIZE = 2)$
Instance: dpadder#o0_1021	$(BUFFER_SIZE = 2)$
Instance: dpadder#o0_962	$(BUFFER_SIZE = 2)$
Instance: dpadder#o0_912	$(BUFFER_SIZE = 2)$
Instance: dpadder#o0_903	$(BUFFER_SIZE = 2)$
Instance: dpadder#o0_895	$(BUFFER_SIZE = 2)$
Instance: dpadder#o0_887	$(BUFFER_SIZE = 2)$
Instance: dpadder#o0_837	$(BUFFER_SIZE = 2)$
Instance: dpadder#o0_1131	$(BUFFER_SIZE = 2)$
Instance: dpadder#o0_1123	$(BUFFER_SIZE = 2)$
Instance: dpadder#o0_1118	$(BUFFER_SIZE = 2)$
Instance: dpadder#00_1069	$(BUFFER_SIZE = 2)$
Instance: dpadder#o0_1020	$(BUFFER_SIZE = 2)$
Instance: dpadder#o0_883	$(BUFFER_SIZE = 2)$
Instance: dpadder#o0_1009	$(BUFFER_SIZE = 2)$
Instance: dpadder#o0_985	$(BUFFER_SIZE = 2)$
Instance: dpadder#o0_973	$(BUFFER_SIZE = 2)$
Instance: dpadder#o0_961	$(BUFFER_SIZE = 2)$
Instance: dpadder#o0_882	$(BUFFER_SIZE = 2)$
Instance: dpadder#o0_833	$(BUFFER_SIZE = 2)$
Instance: dpadder#o0_877	$(BUFFER_SIZE = 2)$
Instance: dpadder#o0_879	$(BUFFER_SIZE = 2)$
Instance: dpadder#o0_872	$(BUFFER_SIZE = 2)$
Instance: dpadder#o0_867	$(BUFFER_SIZE = 2)$
Instance: dpadder#o0_861	$(BUFFER_SIZE = 2)$

```
Instance: dpadder#o0_856
                            (BUFFER\_SIZE = 2)
                            (BUFFER\_SIZE = 2)
Instance: dpadder#00_851
                            (BUFFER\_SIZE = 2)
Instance: dpadder#o0_834
Instance: dpadder#o0_1137
                             (BUFFER\_SIZE = 2)
                             (BUFFER\_SIZE = 2)
Instance: dpadder#o0_1134
Instance: dpadder#o0_1130
                             (BUFFER SIZE = 2)
                             (BUFFER_SIZE = 2)
Instance: dpadder#o0_1117
                             (BUFFER_SIZE = 2)
Instance: dpadder#o0_1085
                             (BUFFER\_SIZE = 2)
Instance: dpadder#o0_1077
                             (BUFFER_SIZE = 2)
Instance: dpadder#o0_1049
Instance: dpadder#o0_870
                            (BUFFER_SIZE = 2)
Instance: dpadder#o0_1040
                             (BUFFER\_SIZE = 2)
                             (BUFFER_SIZE = 2)
Instance: dpadder#o0_1028
                             (BUFFER\_SIZE = 2)
Instance: dpadder#o0_1017
                             (BUFFER\_SIZE = 2)
Instance: dpadder#o0_1007
                             (BUFFER\_SIZE = 2)
Instance: dpadder#o0_1006
Instance: dpadder#o0_869
                            (BUFFER_SIZE = 2)
Instance: dpadder#o0_995
                            (BUFFER\_SIZE = 2)
                            (BUFFER\_SIZE = 2)
Instance: dpadder#o0_994
                            (BUFFER\_SIZE = 2)
Instance: dpadder#00_982
Instance: dpadder#o0_981
                            (BUFFER\_SIZE = 2)
Instance: dpadder#o0_971
                            (BUFFER\_SIZE = 2)
                            (BUFFER\_SIZE = 2)
Instance: dpadder#00_958
                            (BUFFER\_SIZE = 2)
Instance: dpadder#o0_948
Instance: dpadder#00_928
                            (BUFFER\_SIZE = 2)
Instance: dpadder#o0_918
                            (BUFFER SIZE = 2)
                            (BUFFER_SIZE = 2)
Instance: dpadder#00_863
                            (BUFFER\_SIZE = 2)
Instance: dpadder#00_917
                            (BUFFER SIZE = 2)
Instance: dpadder#o0_909
                            (BUFFER\_SIZE = 2)
Instance: dpadder#o0_901
                            (BUFFER\_SIZE = 2)
Instance: dpadder#o0_900
Instance: dpadder#o0_893
                            (BUFFER\_SIZE = 2)
Instance: dpadder#o0_885
                            (BUFFER\_SIZE = 2)
                            (BUFFER\_SIZE = 2)
Instance: dpadder#00_884
                            (BUFFER SIZE = 2)
Instance: dpadder#o0_878
                            (BUFFER\_SIZE = 2)
Instance: dpadder#00_859
                            (BUFFER\_SIZE = 2)
Instance: dpadder#o0_871
                            (BUFFER\_SIZE = 2)
Instance: dpadder#o0_866
                            (BUFFER\_SIZE = 2)
Instance: dpadder#00_860
                            (BUFFER SIZE = 2)
Instance: dpadder#o0_855
                            (BUFFER\_SIZE = 2)
Instance: dpadder#o0_850
                            (BUFFER\_SIZE = 2)
Instance: dpadder#00_847
                            (BUFFER\_SIZE = 2)
Instance: dpadder#o0_843
                            (BUFFER\_SIZE = 2)
Instance: dpadder#o0_831
                            (BUFFER\_SIZE = 2)
Instance: dpadder#o0_858
```

```
Instance: dpadder#o0_1141
                              (BUFFER\_SIZE = 2)
Instance: dpadder#o0_1125
                              (BUFFER\_SIZE = 2)
Instance: dpadder#o0 829
                             (BUFFER SIZE = 2)
Instance: dpadder#o0_1115
                              (BUFFER\_SIZE = 2)
Instance: dpadder#o0_1109
                              (BUFFER\_SIZE = 2)
                              (BUFFER\_SIZE = 2)
Instance: dpadder#00 1103
Instance: dpadder#00_1096
                              (BUFFER\_SIZE = 2)
Instance: dpadder#o0 1089
                              (BUFFER SIZE = 2)
Instance: dpadder#o0_1083
                              (BUFFER\_SIZE = 2)
Instance: dpadder#00 1082
                              (BUFFER SIZE = 2)
Instance: dpadder#o0_1074
                              (BUFFER\_SIZE = 2)
Instance: dpadder#o0_1073
                              (BUFFER\_SIZE = 2)
Instance: dpadder#00 1066
                              (BUFFER SIZE = 2)
Instance: dpadder#o0_1065
                              (BUFFER\_SIZE = 2)
Instance: dpadder#00 1064
                              (BUFFER_SIZE = 2)
Instance: dpadder#o0_1056
                              (BUFFER\_SIZE = 2)
Instance: dpadder#00 849
                             (BUFFER\_SIZE = 2)
Instance: dpadder#o0_1055
                              (BUFFER\_SIZE = 2)
Instance: dpadder#o0 1045
                              (BUFFER SIZE = 2)
Instance: dpadder#o0_1035
                              (BUFFER\_SIZE = 2)
Instance: dpadder#o0 846
                             (BUFFER SIZE = 2)
                              (BUFFER_SIZE = 2)
Instance: dpadder#o0 1024
Instance: dpadder#o0_1015
                              (BUFFER\_SIZE = 2)
Instance: dpadder#o0 1014
                              (BUFFER SIZE = 2)
Instance: dpadder#o0_1013
                              (BUFFER SIZE = 2)
Instance: dpadder#00 1004
                              (BUFFER_SIZE = 2)
Instance: dpadder#00 992
                             (BUFFER\_SIZE = 2)
Instance: dpadder#o0_990
                             (BUFFER SIZE = 2)
Instance: dpadder#o0_989
                             (BUFFER\_SIZE = 2)
Instance: dpadder#o0 978
                             (BUFFER\_SIZE = 2)
Instance: dpadder#o0_977
                             (BUFFER\_SIZE = 2)
Instance: dpadder#00_968
                             (BUFFER\_SIZE = 2)
Instance: dpadder#o0_967
                             (BUFFER\_SIZE = 2)
                             (BUFFER SIZE = 2)
Instance: dpadder#00 966
Instance: dpadder#o0 842
                             (BUFFER_SIZE = 2)
Instance: dpdff#o0_733
                          (BUFFER\_SIZE = 2)
                          (BUFFER SIZE = 3)
Instance: dpdff#o0_732
Writing specification cell dpdff#o2, compiler dpdff
Instance: dpdff#00_731
                          (BUFFER\_SIZE = 3)
Instance: dpdff#o0_730
                          (BUFFER\_SIZE = 3)
Instance: dpdff#00_729
                          (BUFFER\_SIZE = 4)
Writing specification cell dpdff#03, compiler dpdff
Instance: dpdff#o0_728
                          (BUFFER\_SIZE = 3)
Instance: dpadder#o0_832
                             (BUFFER\_SIZE = 2)
Instance: dpadder#o0_828
                             (BUFFER\_SIZE = 2)
```

```
Instance: dpdff#00_641
                          (BUFFER\_SIZE = 2)
                          (BUFFER\_SIZE = 2)
Instance: dpdff#00_640
                          (BUFFER\_SIZE = 2)
Instance: dpdff#o0_639
                          (BUFFER\_SIZE = 2)
Instance: dpdff#00_636
                          (BUFFER SIZE = 2)
Instance: dpdff#00_635
Instance: dpdff#o0_634
                          (BUFFER SIZE = 2)
                          (BUFFER\_SIZE = 2)
Instance: dpdff#00_630
                          (BUFFER SIZE = 2)
Instance: dpdff#00_629
Instance: dpdff#o0_628
                          (BUFFER SIZE = 2)
                          (BUFFER SIZE = 2)
Instance: dpdff#00_627
                          (BUFFER\_SIZE = 2)
Instance: dpdff#o0_624
Instance: dpdff#o0_623
                          (BUFFER SIZE = 2)
                          (BUFFER\_SIZE = 2)
Instance: dpdff#00_618
                          (BUFFER\_SIZE = 2)
Instance: dpdff#00_616
                          (BUFFER\_SIZE = 2)
Instance: dpdff#00_614
                          (BUFFER\_SIZE = 2)
Instance: dpdff#00_613
                          (BUFFER SIZE = 2)
Instance: dpdff#00_612
                          (BUFFER\_SIZE = 2)
Instance: dpdff#00_611
                          (BUFFER\_SIZE = 2)
Instance: dpdff#00_610
                          (BUFFER\_SIZE = 2)
Instance: dpdff#00 608
                          (BUFFER\_SIZE = 2)
Instance: dpdff#00_607
Instance: dpdff#00_606
                          (BUFFER\_SIZE = 2)
                          (BUFFER SIZE = 2)
Instance: dpdff#00_605
Instance: dpdff#o0_603
                          (BUFFER SIZE = 2)
                          (BUFFER SIZE = 2)
Instance: dpdff#o0_602
                          (BUFFER\_SIZE = 2)
Instance: dpdff#00_601
Instance: dpdff#o0_600
                          (BUFFER\_SIZE = 2)
                          (BUFFER\_SIZE = 2)
Instance: dpdff#00_599
                          (BUFFER\_SIZE = 2)
Instance: dpdff#00 595
                          (BUFFER\_SIZE = 2)
Instance: dpdff#o0_592
                          (BUFFER SIZE = 2)
Instance: dpdff#o0_591
Instance: dpdff#o0_590
                          (BUFFER\_SIZE = 2)
                          (BUFFER\_SIZE = 2)
Instance: dpdff#o0_583
                          (BUFFER_SIZE = 2)
Instance: dpdff#00_580
                          (BUFFER\_SIZE = 2)
Instance: dpdff#o0_579
                          (BUFFER\_SIZE = 2)
Instance: dpdff#o0_576
                          (BUFFER SIZE = 2)
Instance: dpdff#00_569
                          (BUFFER\_SIZE = 2)
Instance: dpdff#00_567
                          (BUFFER\_SIZE = 2)
Instance: dpdff#00_563
                          (BUFFER\_SIZE = 2)
Instance: dpdff#00_562
                          (BUFFER\_SIZE = 2)
Instance: dpdff#00_560
                          (BUFFER\_SIZE = 2)
Instance: dpdff#o0_555
                          (BUFFER\_SIZE = 2)
Instance: dpdff#00_549
Instance: dpdff#00_543
                          (BUFFER\_SIZE = 2)
                          (BUFFER\_SIZE = 2)
Instance: dpdff#o0_540
```

```
(BUFFER\_SIZE = 2)
Instance: dpdff#00_539
                          (BUFFER\_SIZE = 2)
Instance: dpdff#o0_538
                          (BUFFER\_SIZE = 2)
Instance: dpdff#00 533
                          (BUFFER\_SIZE = 2)
Instance: dpdff#o0_532
                          (BUFFER\_SIZE = 2)
Instance: dpdff#00_530
                          (BUFFER SIZE = 2)
Instance: dpdff#00_529
Instance: dpdff#00_527
                          (BUFFER\_SIZE = 2)
                          (BUFFER SIZE = 2)
Instance: dpdff#00_524
Instance: dpdff#o0_523
                          (BUFFER_SIZE = 2)
                          (BUFFER_SIZE = 2)
Instance: dpdff#00_522
Instance: dpdff#o0_521
                          (BUFFER\_SIZE = 2)
Instance: dpdff#o0_519
                          (BUFFER\_SIZE = 2)
                          (BUFFER\_SIZE = 2)
Instance: dpdff#00_510
                          (BUFFER\_SIZE = 2)
Instance: dpdff#o0_506
Instance: dpdff#o0_504
                          (BUFFER SIZE = 2)
Instance: dpdff#00_502
                          (BUFFER SIZE = 2)
                          (BUFFER SIZE = 2)
Instance: dpdff#o0_501
                          (BUFFER\_SIZE = 2)
Instance: dpdff#00_500
Instance: dpdff#00_499
                          (BUFFER\_SIZE = 2)
                          (BUFFER\_SIZE = 2)
Instance: dpdff#00_498
Instance: dpdff#00_497
                          (BUFFER\_SIZE = 2)
                          (BUFFER\_SIZE = 2)
Instance: dpdff#00_496
                          (BUFFER\_SIZE = 2)
Instance: dpdff#00_495
                          (BUFFER\_SIZE = 2)
Instance: dpdff#00_494
                          (BUFFER\_SIZE = 2)
Instance: dpdff#00_493
                          (BUFFER\_SIZE = 2)
Instance: dpdff#00_492
                          (BUFFER\_SIZE = 2)
Instance: dpdff#00_491
                           (BUFFER\_SIZE = 2)
Instance: dpdff#00_490
                           (BUFFER\_SIZE = 2)
Instance: dpdff#00_489
                           (BUFFER\_SIZE = 2)
Instance: dpdff#00_488
                           (BUFFER\_SIZE = 2)
Instance: dpdff#00_487
                           (BUFFER\_SIZE = 2)
Instance: dpdff#00_486
                           (BUFFER\_SIZE = 2)
Instance: dpdff#00 485
                           (BUFFER\_SIZE = 2)
Instance: dpdff#00_484
                           (BUFFER\_SIZE = 2)
Instance: dpdff#00_483
                           (BUFFER\_SIZE = 2)
Instance: dpdff#00_482
                           (BUFFER\_SIZE = 2)
Instance: dpdff#o0_481
Instance: dpdff#o0_480
                           (BUFFER\_SIZE = 2)
                           (BUFFER\_SIZE = 2)
Instance: dpdff#00_479
Instance: dpdff#o0_478
                           (BUFFER\_SIZE = 2)
                           (BUFFER\_SIZE = 2)
Instance: dpdff#o0_477
                           (BUFFER\_SIZE = 2)
Instance: dpdff#00_473
                           (BUFFER\_SIZE = 2)
Instance: dpdff#o0_472
                           (BUFFER\_SIZE = 2)
Instance: dpdff#00_471
                           (BUFFER\_SIZE = 2)
Instance: dpdff#o0_470
```

Instance: dpdff#00_469	$(BUFFER_SIZE = 2)$
Instance: dpdff#00_467	$(BUFFER_SIZE = 2)$
Instance: dpdff#00_464	$(BUFFER_SIZE = 2)$
Instance: dpdff#00_463	$(BUFFER_SIZE = 2)$
Instance: dpdff#00_460	$(BUFFER_SIZE = 2)$
Instance: dpdff#o0_459	$(BUFFER_SIZE = 2)$
Instance: dpdff#o0_458	$(BUFFER_SIZE = 2)$
Instance: dpdff#00_457	$(BUFFER_SIZE = 2)$
Instance: dpdff#00_456	$(BUFFER_SIZE = 2)$
Instance: dpdff#00_455	$(BUFFER_SIZE = 2)$
Instance: dpdff#00_454	$(BUFFER_SIZE = 2)$
Instance: dpdff#o0_453	$(BUFFER_SIZE = 2)$
Instance: dpdff#00_452	$(BUFFER_SIZE = 2)$
Instance: dpdff#00_451	$(BUFFER_SIZE = 2)$
Instance: dpdff#00_449	$(BUFFER_SIZE = 2)$
Instance: dpdff#00_448	$(BUFFER_SIZE = 2)$
Instance: dpdff#00_446	$(BUFFER_SIZE = 2)$
Instance: dpdff#00_445	$(BUFFER_SIZE = 2)$
Instance: dpdff#o0_444	$(BUFFER_SIZE = 2)$
Instance: dpdff#o0_443	$(BUFFER_SIZE = 2)$
Instance: dpdff#o0_440	$(BUFFER_SIZE = 2)$
Instance: dpdff#o0_439	$(BUFFER_SIZE = 2)$
Instance: dpdff#o0_438	$(BUFFER_SIZE = 2)$
Instance: dpdff#o0_437	$(BUFFER_SIZE = 2)$
Instance: dpdff#o0_436	$(BUFFER_SIZE = 2)$
Instance: dpdff#o0_434	$(BUFFER_SIZE = 2)$
Instance: dpdff#o0_432	$(BUFFER_SIZE = 2)$
Instance: dpdff#o0_430	$(BUFFER_SIZE = 2)$
Instance: dpdff#o0_429	$(BUFFER_SIZE = 2)$
Instance: dpdff#00_426	$(BUFFER_SIZE = 2)$
Instance: dpdff#00_423	$(BUFFER_SIZE = 2)$
Instance: dpdff#00_422	$(BUFFER_SIZE = 2)$
Instance: dpdff#00_420	$(BUFFER_SIZE = 2)$
Instance: dpdff#o0_723	$(BUFFER_SIZE = 2)$
Instance: dpdff#o0_721	$(BUFFER_SIZE = 2)$
Instance: dpdff#00_720	$(BUFFER_SIZE = 2)$
Instance: dpdff#o0_712	$(BUFFER_SIZE = 2)$
Instance: dpdff#00_708	$(BUFFER_SIZE = 2)$
Instance: dpdff#00_704	$(BUFFER_SIZE = 2)$
Instance: dpdff#00_702	$(BUFFER_SIZE = 2)$
Instance: dpdff#00_700	$(BUFFER_SIZE = 2)$
Instance: dpdff#00_690	(BUFFER_SIZE = 2)
Instance: dpdff#00_689	(BUFFER_SIZE = 2)
Instance: dpdff#00_688	(BUFFER_SIZE = 2)
Instance: dpdff#00_687	$(BUFFER_SIZE = 2)$

```
Instance: dpdff#00_686
                          (BUFFER SIZE = 2)
                          (BUFFER\_SIZE = 2)
Instance: dpdff#00_685
Instance: dpdff#00 684
                          (BUFFER SIZE = 2)
Instance: dpdff#00_683
                          (BUFFER SIZE = 2)
Instance: dpdff#00_682
                          (BUFFER SIZE = 2)
                          (BUFFER_SIZE = 2)
Instance: dpdff#00 681
Instance: dpdff#00_680
                          (BUFFER\_SIZE = 2)
                          (BUFFER SIZE = 2)
Instance: dpdff#00 679
                          (BUFFER SIZE = 2)
Instance: dpdff#00_678
Instance: dpdff#00_677
                          (BUFFER SIZE = 2)
Instance: dpdff#00_672
                          (BUFFER SIZE = 2)
                          (BUFFER\_SIZE = 2)
Instance: dpdff#00_670
Instance: dpdff#00_668
                          (BUFFER\_SIZE = 2)
Instance: dpdff#00_667
                          (BUFFER SIZE = 2)
Instance: dpdff#00 652
                          (BUFFER\_SIZE = 2)
Instance: dpdff#00_650
                          (BUFFER\_SIZE = 2)
Instance: dpdff#00_418
                          (BUFFER SIZE = 2)
                          (BUFFER\_SIZE = 2)
Instance: dpdff#00_417
Instance: dpdff#00_416
                          (BUFFER\_SIZE = 2)
Instance: dpdff#o0_415
                          (BUFFER\_SIZE = 2)
                          (BUFFER SIZE = 2)
Instance: dpdff#00_414
Instance: dpdff#o0_412
                          (BUFFER\_SIZE = 2)
Instance: dpdff#00_411
                          (BUFFER SIZE = 2)
Instance: dpdff#o0_410
                          (BUFFER\_SIZE = 2)
Instance: dpdff#00_409
                          (BUFFER\_SIZE = 2)
Instance: dpdff#00 408
                          (BUFFER\_SIZE = 2)
Instance: dpdff#00_407
                          (BUFFER SIZE = 2)
Instance: dpdff#00 406
                          (BUFFER\_SIZE = 2)
Instance: dpdff#00_405
                          (BUFFER\_SIZE = 2)
Instance: dpdff#00_404
                          (BUFFER SIZE = 2)
Instance: dpdff#o0_403
                          (BUFFER\_SIZE = 2)
                          (BUFFER SIZE = 2)
Instance: dpdff#00_402
                          (BUFFER\_SIZE = 2)
Instance: dpdff#00_400
Instance: dpdff#00_399
                          (BUFFER\_SIZE = 2)
Instance: dpdff#o0_398
                          (BUFFER\_SIZE = 2)
                          (BUFFER_SIZE = 2)
Instance: dpdff#00_397
                          (BUFFER\_SIZE = 2)
Instance: dpdff#00_396
                          (BUFFER\_SIZE = 2)
Instance: dpdff#00_395
Instance: dpdff#00_394
                          (BUFFER\_SIZE = 2)
                          (BUFFER\_SIZE = 2)
Instance: dpdff#00_393
Instance: dpdff#o0_392
                          (BUFFER\_SIZE = 2)
                          (BUFFER\_SIZE = 2)
Instance: dpdff#00_390
Instance: dpdff#00_389
                          (BUFFER\_SIZE = 2)
Instance: dpdff#00_388
                          (BUFFER\_SIZE = 2)
                          (BUFFER\_SIZE = 2)
Instance: dpdff#00_387
```

```
(BUFFER\_SIZE = 2)
Instance: dpdff#o0_386
                          (BUFFER\_SIZE = 2)
Instance: dpdff#00_385
Instance: dpdff#o0_384
                          (BUFFER\_SIZE = 2)
                          (BUFFER_SIZE = 2)
Instance: dpdff#00_383
                          (BUFFER SIZE = 2)
Instance: dpdff#00_382
Instance: dpdff#o0_381
                          (BUFFER SIZE = 2)
                          (BUFFER SIZE = 2)
Instance: dpdff#o0_380
                          (BUFFER SIZE = 2)
Instance: dpdff#00_379
Instance: dpdff#o0_378
                          (BUFFER SIZE = 2)
                          (BUFFER SIZE = 2)
Instance: dpdff#o0_377
Instance: dpdff#00_376
                           (BUFFER\_SIZE = 2)
                           (BUFFER\_SIZE = 2)
Instance: dpdff#00_375
                           (BUFFER_SIZE = 2)
Instance: dpdff#o0_374
                           (BUFFER\_SIZE = 2)
Instance: dpdff#00_373
                           (BUFFER\_SIZE = 2)
Instance: dpdff#o0_372
                           (BUFFER SIZE = 2)
Instance: dpdff#o0_371
Instance: dpdff#o0_370
                           (BUFFER\_SIZE = 2)
Instance: dpdff#o0_369
                           (BUFFER SIZE = 2)
                           (BUFFER\_SIZE = 2)
Instance: dpdff#00_368
                           (BUFFER\_SIZE = 2)
Instance: dpdff#00_367
                           (BUFFER\_SIZE = 2)
Instance: dpdff#00_366
                           (BUFFER SIZE = 2)
Instance: dpdff#00_365
                           (BUFFER\_SIZE = 2)
Instance: dpdff#o0_364
                           (BUFFER\_SIZE = 2)
Instance: dpdff#00_643
                           (BUFFER\_SIZE = 2)
Instance: dpdff#o0_587
                           (BUFFER_SIZE = 2)
Instance: dpdff#00_559
                           (BUFFER\_SIZE = 2)
Instance: dpdff#00_531
                           (BUFFER\_SIZE = 2)
Instance: dpdff#00_391
Creating new modules for composite cell: mplier
                                    (BUFFER\_SIZE = 4)
Instance: Complementor2:compl4
                                   (BUFFER\_SIZE = 4)
Instance: Complementor:compl4
                             (BUFFER\_SIZE = 4)
Instance: Adder5:fadder#7
                             (BUFFER\_SIZE = 4)
Instance: Adder2:fadder#7
                             (BUFFER\_SIZE = 4)
Instance: Adder1:fadder#7
                             (BUFFER SIZE = 4)
Instance: Adder3:fadder#7
Creating new modules for composite cell: complex_adder_4_input
                  (BUFFER\_SIZE = 5)
Instance: or10
Writing specification cell stdor3#03, compiler gtgate
                 (BUFFER\_SIZE = 5)
Instance: or9
                 (BUFFER_SIZE = 5)
Instance: or8
                 (BUFFER\_SIZE = 5)
Instance: or7
                 (BUFFER\_SIZE = 5)
Instance: or6
/local/epoch/bin/msicells -p /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2 -r
CDA1u2m1p +msgclear -msgfile +ewpstfEW
```

```
/tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/chip_logs/msicells.log +geo -sym +sim
+trans dpdff#o1 dpdff#o2 dpdff#o3
Copyright 1992, 1993 Cascade Design Automation Corporation.
CASCADE base location: /local/epoch
Project: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2
Ruleset: CDA1u2m1p
Technology: cmos
Calling compiler for cell dpdff#01...
=====> Generating Layout.
Writing cell dpdff#g1 to disk
=====> End Layout.
====> Generating Simulation Model.
Writing dpdff#t1 -- (t74s1)
Writing dpdff#s1 -- (s74s1)
=====> End Simulation Model.
Calling compiler for cell dpdff#o2...
=====> Generating Layout.
Writing cell dpdff#g2 to disk
====> End Layout.
====> Generating Simulation Model.
Writing sprim_inv#s13 -- (s107s13)
Writing sprim_inv#t13 -- (t107s13)
Writing dpdff#t2 -- (t74s2)
Writing dpdff#s2 -- (s74s2)
=====> End Simulation Model.
Calling compiler for cell dpdff#o3...
=====> Generating Layout.
Writing cell dpdff#g3 to disk
=====> End Layout.
====> Generating Simulation Model.
Writing dpdff#t3 -- (t74s3)
Writing dpdff#s3 -- (s74s3)
=====> End Simulation Model.
No errors. No warnings.
/local/epoch/bin/msicells -p /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2 -r
CDA1u2m1p +msgclear -msgfile +ewpstfEW
/tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/chip_logs/msicells.log +geo -sym +sim
+trans dpadder#o1
Copyright 1992, 1993 Cascade Design Automation Corporation.
CASCADE base location: /local/epoch
Project: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2
Ruleset: CDA1u2m1p
Technology: cmos
Calling compiler for cell dpadder#o1...
====> Generating Layout.
```

```
Writing cell dpadder#g1 to disk
=====> End Layout.
=====> Generating Simulation Model.
Writing dpadder#s1 -- (s119s1)
=====> End Simulation Model.
No errors. No warnings.
/local/epoch/bin/msicells -p /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2 -r
CDA1u2m1p +msgclear -msgfile +ewpstfEW
/tmp mnt/h/kepler_u2/kljackso/projects/thesis2/chip_logs/msicells.log +geo -sym +sim
+trans dpcompl#o2
Copyright 1992, 1993 Cascade Design Automation Corporation.
CASCADE base location: /local/epoch
Project: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2
Ruleset: CDA1u2m1p
Technology: cmos
Calling compiler for cell dpcompl#o2...
=====> Generating Layout.
Writing cell dpcompl#g2 to disk
=====> End Layout.
====> Generating Simulation Model.
Writing sprim inv#s14 -- (s107s14)
Writing sprim_inv#t14 -- (t107s14)
Writing dpcompl#s2 -- (s212s2)
=====> End Simulation Model.
No errors. No warnings.
/local/epoch/bin/msicells -p /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2 -r
CDA1u2m1p +msgclear -msgfile +ewpstfEW
/tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/chip_logs/msicells.log +geo -sym +sim
+trans dpfadder_bit#o26
Copyright 1992, 1993 Cascade Design Automation Corporation.
CASCADE base location: /local/epoch
Project: /tmp mnt/h/kepler_u2/kljackso/projects/thesis2
Ruleset: CDA1u2m1p
Technology: cmos
Calling compiler for cell dpfadder_bit#o26...
=====> Generating Layout.
Writing cell d_dpadder_carryend#g2 to disk
Writing cell d_dpadder_sumtyp#g3 to disk
Writing cell dpfadder_bit#g26 to disk
=====> End Layout.
====> Generating Simulation Model.
Writing d_dpadder_carryend#s2 -- (s96s2)
Writing d_dpadder_sumtyp#s3 -- (s26s3)
Writing dpfadder_bit#s26 -- (s123s26)
```

=====> End Simulation Model.

No errors. No warnings. /local/epoch/bin/msicells -p /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2 -r CDA1u2m1p +msgclear -msgfile +ewpstfEW /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/chip_logs/msicells.log +geo -sym +sim +trans gtadd#o2 gtadd#o3 gtadd#o4 gtadd#o5 gtadd#o6 gtadd#o7 gtadd#o8 gtadd#o9 Copyright 1992, 1993 Cascade Design Automation Corporation. CASCADE base location: /local/epoch Project: /tmp mnt/h/kepler_u2/kljackso/projects/thesis2 Ruleset: CDA1u2m1p Technology: cmos Calling compiler for cell gtadd#o2... =====> Generating Layout. Writing cell gtadd#g2 to disk ====> End Layout. ====> Generating Simulation Model. Writing sprim inv#s15 -- (s107s15) Writing sprim_inv#t15 -- (t107s15) Writing gtadd#s2 -- (s186s2) Writing gtadd#t1 -- (t186s1) =====> End Simulation Model. Calling compiler for cell gtadd#o3... =====> Generating Layout. Writing cell gtadd#g3 to disk =====> End Layout. ====> Generating Simulation Model. Writing gtadd#s3 -- (s186s3) Writing gtadd#t2 -- (t186s2) =====> End Simulation Model. Calling compiler for cell gtadd#o4... ====> Generating Layout. Writing cell gtadd#g4 to disk =====> End Layout. ====> Generating Simulation Model. Writing sprim_inv#s16 -- (s107s16) Writing sprim inv#t16 -- (t107s16) Writing gtadd#s4 -- (s186s4) Writing gtadd#t3 -- (t186s3) =====> End Simulation Model. Calling compiler for cell gtadd#o5... =====> Generating Layout. Writing cell gtadd#g5 to disk =====> End Layout.

====> Generating Simulation Model.

Writing gtadd#s5 -- (s186s5) Writing gtadd#t4 -- (t186s4)

```
=====> End Simulation Model.
Calling compiler for cell gtadd#o6...
=====> Generating Layout.
Writing cell gtadd#g6 to disk
====> End Layout.
====> Generating Simulation Model.
Writing gtadd#s6 -- (s186s6)
====> End Simulation Model.
Calling compiler for cell gtadd#o7...
=====> Generating Layout.
Writing cell gtadd#g7 to disk
=====> End Layout.
=====> Generating Simulation Model.
Writing gtadd#s7 -- (s186s7)
Writing gtadd#t5 -- (t186s5)
=====> End Simulation Model.
Calling compiler for cell gtadd#08...
====> Generating Layout.
Writing cell gtadd#g8 to disk
====> End Layout.
=====> Generating Simulation Model.
Writing gtadd#s8 -- (s186s8)
Writing gtadd#t6 -- (t186s6)
=====> End Simulation Model.
Calling compiler for cell gtadd#09...
=====> Generating Layout.
Writing cell gtadd#g9 to disk
=====> End Layout.
=====> Generating Simulation Model.
Writing gtadd#s9 -- (s186s9)
=====> End Simulation Model.
No errors. No warnings.
/local/epoch/bin/msicells -p /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2 -r
CDA1u2m1p +msgclear -msgfile +ewpstfEW
/tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/chip_logs/msicells.log +geo -sym +sim
+trans gtmux#o2 gtmux#o3 gtmux#o4 gtmux#o5 gtmux#o6 gtmux#o7 stdmux2#o1
Copyright 1992, 1993 Cascade Design Automation Corporation.
CASCADE base location: /local/epoch
Project: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2
Ruleset: CDA1u2m1p
Technology: cmos
Calling compiler for cell gtmux#o2...
====> Generating Layout.
Writing cell gtmux#g2 to disk
====> End Layout.
```

====> Generating Simulation Model.		
Writing gtmux#s2 (s67s2)		
=====> End Simulation Model.		
Calling compiler for cell gtmux#o3		
=====> Generating Layout.		
Writing cell gtmux#g3 to disk		
=====> End Layout.		
====> Generating Simulation Model.		
Writing gtmux#s3 (s67s3)		
====> End Simulation Model.		
Calling compiler for cell gtmux#o4		
=====> Generating Layout.		
Writing cell gtmux#g4 to disk		
=====> End Layout.		
====> Generating Simulation Model.		
Writing sprim_inv#s17 (s107s17)		
Writing sprim_inv#t17 (t107s17)		
Writing gtmux#s4 (s67s4)		
=====> End Simulation Model.		
Calling compiler for cell gtmux#o5		
=====> Generating Layout.		
Writing cell gtmux#g5 to disk		
=====> End Layout.		
=====> Generating Simulation Model.		
Writing gtmux#s5 (s67s5)		
=====> End Simulation Model.		
Calling compiler for cell gtmux#06		
====> Generating Layout.		
Writing cell gtmux#g6 to disk		
=====> End Layout.		
•		
====> Generating Simulation Model.		
Writing gtmux#s6 (s67s6)		
====> End Simulation Model.		
Calling compiler for cell gtmux#o7		
=====> Generating Layout.		
Writing cell gtmux#g7 to disk		
====> End Layout.		
====> Generating Simulation Model.		
Writing gtmux#s7 (s67s7)		
=====> End Simulation Model.		
Calling compiler for cell stdmux2#o1		
====> Generating Layout.		
Writing cell stdmux2#g1 to disk		
=====> End Layout.		
=====> Generating Simulation Model.		

```
Writing stdmux2#s1 -- (s63s1)
=====> End Simulation Model.
No errors. No warnings.
/local/epoch/bin/msicells -p /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2 -r
CDA1u2m1p +msgclear -msgfile +ewpstfEW
/tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/chip_logs/msicells.log +geo -sym +sim
+trans gtlatch#o1 gtlatch#o2 gtlatch#o3 gtlatch#o4 gtlatch#o5
Copyright 1992, 1993 Cascade Design Automation Corporation.
CASCADE base location: /local/epoch
Project: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2
Ruleset: CDA1u2m1p
Technology: cmos
Calling compiler for cell gtlatch#o1...
====> Generating Layout.
Writing cell gtlatch#g1 to disk
====> End Layout.
====> Generating Simulation Model.
Writing sprim_inv#s18 -- (s107s18)
Writing sprim_inv#t18 -- (t107s18)
Writing d_latch_latch#s1 -- (s172s1)
Writing gtlatch#s1 -- (s194s1)
=====> End Simulation Model.
Calling compiler for cell gtlatch#o2...
=====> Generating Layout.
Writing cell gtlatch#g2 to disk
=====> End Layout.
====> Generating Simulation Model.
Writing d_latch_latch#s2 -- (s172s2)
Writing gtlatch#s2 -- (s194s2)
=====> End Simulation Model.
Calling compiler for cell gtlatch#o3...
=====> Generating Layout.
Writing cell gtlatch#g3 to disk
=====> End Layout.
=====> Generating Simulation Model.
Writing d latch_latch#s3 -- (s172s3)
Writing gtlatch#s3 -- (s194s3)
=====> End Simulation Model.
Calling compiler for cell gtlatch#o4...
=====> Generating Layout.
Writing cell gtlatch#g4 to disk
=====> End Layout.
====> Generating Simulation Model.
Writing d_latch_latch#s4 -- (s172s4)
Writing gtlatch#s4 -- (s194s4)
```

```
=====> End Simulation Model.
Calling compiler for cell gtlatch#o5...
=====> Generating Layout.
Writing cell gtlatch#g5 to disk
=====> End Layout.
====> Generating Simulation Model.
Writing d latch latch#s5 -- (s172s5)
Writing gtlatch#s5 -- (s194s5)
=====> End Simulation Model.
No errors. No warnings.
/local/epoch/bin/msicells -p /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2 -r
CDA1u2m1p +msgclear -msgfile +ewpstfEW
/tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/chip_logs/msicells.log +geo -sym +sim
+trans stdinv#o1 stdand2#o1 stdor2#o1 stdor3#o1 stdor4#o1 stdand3#o1 stdor2#o2
gtgate#08 stdinv#02 stdxnor2#01
Copyright 1992, 1993 Cascade Design Automation Corporation.
CASCADE base location: /local/epoch
Project: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2
Ruleset: CDA1u2m1p
Technology: cmos
Calling compiler for cell stdinv#o1...
=====> Generating Layout.
Writing cell stdinv#g1 to disk
====> End Layout.
====> Generating Simulation Model.
Writing stdinv#s1 -- (s187s1)
=====> End Simulation Model.
Calling compiler for cell stdand2#o1...
=====> Generating Layout.
Writing cell stdand2#g1 to disk
====> End Layout.
=====> Generating Simulation Model.
Writing stdand2#s1 -- (s191s1)
=====> End Simulation Model.
Calling compiler for cell stdor2#01...
=====> Generating Layout.
Writing cell stdor2#g1 to disk
====> End Layout.
=====> Generating Simulation Model.
Writing stdor2#s1 -- (s95s1)
=====> End Simulation Model.
Calling compiler for cell stdor3#01...
====> Generating Layout.
Writing cell stdor3#g1 to disk
====> End Layout.
```

====> Generating Simulation Model. Writing sprim_inv#s19 -- (s107s19) Writing sprim_inv#t19 -- (t107s19) Writing stdor3#s1 -- (s99s1) ====> End Simulation Model. Calling compiler for cell stdor4#01... =====> Generating Layout. Writing cell stdor4#g1 to disk =====> End Layout. ====> Generating Simulation Model. Writing stdor4#s1 -- (s102s1) =====> End Simulation Model. Calling compiler for cell stdand3#01... =====> Generating Layout. Writing cell stdand3#g1 to disk =====> End Layout. ====> Generating Simulation Model. Writing stdand3#s1 -- (s195s1) ====> End Simulation Model. Calling compiler for cell stdor2#o2... =====> Generating Layout. Writing cell stdor2#g2 to disk ====> End Layout. ====> Generating Simulation Model. Writing stdor2#s2 -- (s95s2) ====> End Simulation Model. Calling compiler for cell gtgate#08... =====> Generating Layout. Writing cell gtgate#g8 to disk ====> End Layout. ====> Generating Simulation Model. Writing gtgate#s8 -- (s131s8) =====> End Simulation Model. Calling compiler for cell stdinv#o2... =====> Generating Layout. Writing cell stdinv#g2 to disk =====> End Layout. ====> Generating Simulation Model. Writing stdinv#s2 -- (s187s2) =====> End Simulation Model. Calling compiler for cell stdxnor2#01... =====> Generating Layout. Writing cell stdxnor2#g1 to disk =====> End Layout. ====> Generating Simulation Model.

```
Writing d gate_xnor#s0 -- (s7s0)
Writing stdxnor2#s1 -- (s106s1)
=====> End Simulation Model.
No errors. No warnings.
/local/epoch/bin/msicells -p /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2 -r
CDA1u2m1p +msgclear -msgfile +ewpstfEW
/tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/chip_logs/msicells.log +geo -sym +sim
+trans stdnor2#o1 stdand4#o1 stdor3#o2 stdxnor2#o2 stdnor4#o1 stdnor3#o1 gtgate#o9
stdinv#o3 gtgate#o10 stdand2#o2 stdnor3#o2 stdao211#o1 stdoai222#o1 stdoai222#o1
stdao21#o1 stdaoi21#o1 stdnand2#o1 stdor4#o2 stdnor2#o2 stdor3#o3
Copyright 1992, 1993 Cascade Design Automation Corporation.
CASCADE base location: /local/epoch
Project: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2
Ruleset: CDA1u2m1p
Technology: cmos
Calling compiler for cell stdnor2#o1...
=====> Generating Layout.
Writing cell stdnor2#g1 to disk
=====> End Layout.
====> Generating Simulation Model.
Writing sprim_nor2#s4 -- (s167s4)
Writing sprim_nor2#t4 -- (t167s4)
Writing stdnor2#s1 -- (s171s1)
=====> End Simulation Model.
Calling compiler for cell stdand4#01...
====> Generating Layout.
Writing cell stdand4#g1 to disk
=====> End Layout.
====> Generating Simulation Model.
Writing stdand4#s1 -- (s199s1)
=====> End Simulation Model.
Calling compiler for cell stdor3#o2...
=====> Generating Layout.
Writing cell stdor3#g2 to disk
=====> End Layout.
====> Generating Simulation Model.
Writing stdor3#s2 -- (s99s2)
====> End Simulation Model.
Calling compiler for cell stdxnor2#o2...
=====> Generating Layout.
Writing cell stdxnor2#g2 to disk
=====> End Layout.
====> Generating Simulation Model.
Writing d gate xnor#s1 -- (s7s1)
Writing stdxnor2#s2 -- (s106s2)
```

=====> End Simulation Model. Calling compiler for cell stdnor4#01... =====> Generating Layout. Writing cell stdnor4#g1 to disk ====> End Layout. ====> Generating Simulation Model. Writing sprim_nor4#s1 -- (s173s1) Writing sprim_nor4#t1 -- (t173s1) Writing stdnor4#s1 -- (s178s1) Writing stdnor4#t0 -- (t178s0) =====> End Simulation Model. Calling compiler for cell stdnor3#01... =====> Generating Layout. Writing cell stdnor3#g1 to disk ====> End Layout. ====> Generating Simulation Model. Writing sprim_nor3#s1 -- (s170s1) Writing sprim_nor3#t1 -- (t170s1) Writing stdnor3#s1 -- (s175s1) Writing stdnor3#t0 -- (t175s0) =====> End Simulation Model. Calling compiler for cell gtgate#09... =====> Generating Layout. Writing cell gtgate#g9 to disk =====> End Layout. ====> Generating Simulation Model. Writing gtgate#s9 -- (s131s9) ====> End Simulation Model. Calling compiler for cell stdinv#o3... =====> Generating Layout. Writing cell stdinv#g3 to disk ====> End Layout. ====> Generating Simulation Model. Writing sprim_inv#s20 -- (s107s20) Writing sprim inv#t20 -- (t107s20) Writing sprim_inv#s21 -- (s107s21) Writing sprim_inv#t21 -- (t107s21) Writing sprim_inv#s22 -- (s107s22) Writing sprim_inv#t22 -- (t107s22) Writing d_buffer_extra#s0 -- (s109s0) Writing stdinv#s3 -- (s187s3) =====> End Simulation Model. Calling compiler for cell gtgate#o10... =====> Generating Layout. Writing cell gtgate#g10 to disk

====> End Layout.
====> Generating Simulation Model.
Writing gtgate#s10 (s131s10)
====> End Simulation Model.
Calling compiler for cell stdand2#o2
====> Generating Layout.
Writing cell stdand2#g2 to disk
=====> End Layout.
====> Generating Simulation Model.
Writing stdand2#s2 (s191s2)
====> End Simulation Model.
Calling compiler for cell stdnor3#o2
====> Generating Layout.
Writing cell d_stdcell_gatebuffer#g1 to disk
Writing cell stdnor3#g2 to disk
=====> End Layout.
====> Generating Simulation Model.
Writing d_gate_nor3#s0 (s224s0)
Writing stdnor3#s2 (s175s2)
====> End Simulation Model.
Calling compiler for cell stdao211#o1
====> Generating Layout.
Writing cell d_stdcell_gatebuffer#g2 to disk
Writing cell stdao211#g1 to disk
=====> End Layout.
=====> Generating Simulation Model.
Writing stdao211#s1 (s35s1)
====> End Simulation Model.
Calling compiler for cell stdoai22#o1
====> Generating Layout.
Writing cell d_stdcell_gatebuf#g0 to disk
Writing cell stdoai22#g1 to disk
=====> End Layout.
=====> Generating Simulation Model.
Writing stdoai22#s1 (s220s1)
=====> End Simulation Model.
Calling compiler for cell stdoai222#01
=====> Generating Layout.
Writing cell stdoai222#g1 to disk
=====> End Layout.
=====> Generating Simulation Model.
Writing stdoai222#s1 (s121s1)
=====> End Simulation Model.
Calling compiler for cell stdao21#o1
====> Generating Layout.

Writing cell stdao21#g1 to disk
=====> End Layout.
•
=====> Generating Simulation Model.
Writing stdao21#s1 (s114s1)
====> End Simulation Model.
Calling compiler for cell stdaoi21#o1
=====> Generating Layout.
Writing cell stdaoi21#g1 to disk
=====> End Layout.
=====> Generating Simulation Model.
Writing stdaoi21#s1 (s154s1)
=====> End Simulation Model.
Calling compiler for cell stdnand2#o1
=====> Generating Layout.
Writing cell stdnand2#g1 to disk
=====> End Layout.
====> Generating Simulation Model.
Writing sprim_nand2#s3 (s130s3)
Writing sprim_nand2#t3 (t130s3)
Writing stdnand2#s1 (\$163s1)
====> End Simulation Model.
Calling compiler for cell stdor4#o2
=====> Generating Layout.
Writing cell stdor4#g2 to disk
====> End Layout.
=====> Generating Simulation Model.
Writing stdor4#s2 (s102s2)
=====> End Simulation Model.
Calling compiler for cell stdnor2#o2
=====> Generating Layout.
Writing cell stdnor2#g2 to disk
====> End Layout.
=====> Generating Simulation Model.
Writing sprim_nor2#s5 (s167s5)
Writing sprim_nor2#t5 (t167s5)
Writing stdnor2#s2 (s171s2)
Writing stdnor2#t0 (t171s0)
=====> End Simulation Model.
Calling compiler for cell stdor3#o3
=====> Generating Layout.
Writing cell stdor3#g3 to disk
=====> End Layout.
====> Generating Simulation Model.
Writing stdor3#s3 (s99s3)
====> End Simulation Model.

No errors. No warnings. /local/epoch/bin/msicells -p /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2 -r CDA1u2m1p +msgclear -msgfile +ewpstfEW /tmp mnt/h/kepler u2/kljackso/projects/thesis2/chip_logs/msicells.log +geo -sym +sim +trans gtdff#o2 gtdff#o3 gtdff#o4 gtdff#o5 gtdff#o6 gtdff#o7 gtdff#o8 Copyright 1992, 1993 Cascade Design Automation Corporation. CASCADE base location: /local/epoch Project: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2 Ruleset: CDA1u2m1p Technology: cmos Calling compiler for cell gtdff#o2... =====> Generating Layout. Writing cell gtdff#g2 to disk ====> End Layout. =====> Generating Simulation Model. Writing gtdff#t2 -- (t216s2) Writing gtdff#s2 -- (s216s2) =====> End Simulation Model. Calling compiler for cell gtdff#o3... =====> Generating Layout. Writing cell gtdff#g3 to disk =====> End Layout. =====> Generating Simulation Model. Writing gtdff#t3 -- (t216s3) Writing sprim_inv#s23 -- (s107s23) Writing sprim_inv#t23 -- (t107s23) Writing gtdff#s3 -- (s216s3) ====> End Simulation Model. Calling compiler for cell gtdff#o4... =====> Generating Layout. Writing cell gtdff#g4 to disk =====> End Layout. ====> Generating Simulation Model. Writing gtdff#t4 -- (t216s4) Writing gtdff#s4 -- (s216s4) =====> End Simulation Model. Calling compiler for cell gtdff#o5... =====> Generating Layout. Writing cell gtdff#g5 to disk =====> End Layout. ====> Generating Simulation Model. Writing gtdff#t5 -- (t216s5) Writing gtdff#s5 -- (s216s5) ====> End Simulation Model. Calling compiler for cell gtdff#06...

```
=====> Generating Layout.
Writing cell gtdff#g6 to disk
====> End Layout.
====> Generating Simulation Model.
Writing gtdff#t6 -- (t216s6)
Writing gtdff#s6 -- (s216s6)
====> End Simulation Model.
Calling compiler for cell gtdff#o7...
=====> Generating Layout.
Writing cell gtdff#g7 to disk
====> End Layout.
=====> Generating Simulation Model.
Writing sprim_inv#s24 -- (s107s24)
Writing sprim_inv#t24 -- (t107s24)
Writing gtdff#t7 -- (t216s7)
Writing gtdff#s7 -- (s216s7)
=====> End Simulation Model.
Calling compiler for cell gtdff#08...
====> Generating Layout.
Writing cell gtdff#g8 to disk
====> End Layout.
====> Generating Simulation Model.
Writing sprim_inv#s25 -- (s107s25)
Writing sprim inv#t25 -- (t107s25)
Writing gtdff#t8 -- (t216s8)
Writing gtdff#s8 -- (s216s8)
=====> End Simulation Model.
No errors. No warnings.
/local/epoch/bin/padcells -p /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2 -r
CDA1u2m1p +msgclear -msgfile +ewpstfEW
/tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/chip_logs/padcells.log +geo -sym +sim
+trans pad_driver#o2 pad_driver#o3 pad_driver#o4 pad_driver#o5 pad_driver#o6
pad driver#o7
Copyright 1992, 1993 Cascade Design Automation Corporation.
CASCADE base location: /local/epoch
Project: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2
Ruleset: CDA1u2m1p
Technology: cmos
Calling compiler for cell pad_driver#o2...
=====> Generating Layout.
Writing cell d_pad_ctrl_buffer#g2 to disk
Writing cell pad_driver#g2 to disk
====> End Layout.
=====> Generating Simulation Model.
Writing d_pad_ctrl_buffer#s2 -- (s206s2)
```

Writing pad_driver#s2 -- (s215s2) =====> End Simulation Model. Calling compiler for cell pad_driver#o3... =====> Generating Layout. Writing cell d_pad_ctrl_buffer#g3 to disk Writing cell pad driver#g3 to disk ====> End Layout. ====> Generating Simulation Model. Writing d pad ctrl buffer#s3 -- (s206s3) Writing pad driver#s3 -- (s215s3) =====> End Simulation Model. Calling compiler for cell pad_driver#o4... =====> Generating Layout. Writing cell d_pad_ctrl_buffer#g4 to disk Writing cell pad_driver#g4 to disk =====> End Layout. =====> Generating Simulation Model. Writing d_pad_ctrl_buffer#s4 -- (s206s4) Writing pad_driver#s4 -- (s215s4) =====> End Simulation Model. Calling compiler for cell pad_driver#o5... =====> Generating Layout. Writing cell d_pad_ctrl_buffer#g5 to disk Writing cell pad_driver#g5 to disk =====> End Layout. ====> Generating Simulation Model. Writing d_buffer_extra#s1 -- (s109s1) Writing d pad ctrl buffer#s5 -- (s206s5) Writing pad_driver#s5 -- (s215s5) =====> End Simulation Model. Calling compiler for cell pad_driver#o6... ====> Generating Layout. Writing cell d_pad_ctrl_buffer#g6 to disk Writing cell pad_driver#g6 to disk ====> End Layout. =====> Generating Simulation Model. Writing d buffer extra#s2 -- (s109s2) Writing d_pad_ctrl_buffer#s6 -- (s206s6) Writing pad driver#s6 -- (s215s6) =====> End Simulation Model. Calling compiler for cell pad_driver#o7... =====> Generating Layout. Writing cell d pad ctrl_buffer#g7 to disk Writing cell pad_driver#g7 to disk =====> End Layout.

====> Generating Simulation Model.

Writing d_buffer_extra#s3 -- (s109s3)

Writing d_pad_ctrl_buffer#s7 -- (s206s7)

Writing pad_driver#s7 -- (s215s7)

====> End Simulation Model.

No errors. No warnings.

PDABS: Estimated Static Power: 0 microWatts

PDABS: Estimated Total Power: 762555 microWatts

Writing cell fpadder_group to disk

Writing cell fpadder to disk

Writing cell hsmult2piped_c_0#g0 to disk

Writing cell mplier to disk

Writing cell fpmplier to disk

Writing cell complex_mplier to disk

Writing cell complex_adder_4_input to disk

Writing cell fft to disk

Writing cell fftchip_core to disk

Writing cell fftchip to disk

PDABS: No errors. 104 warnings.

PDABS: Done.

/local/epoch/bin/dpath5 -p /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2 -r CDA1u2m1p

+msgclear -msgfile +ewpstfEW

/tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/chip_logs/dpath5.log -nplace

fpadder_group

Copyright 1992, 1993 Cascade Design Automation Corporation.

CASCADE base location: /local/epoch

Project: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2

Ruleset: CDA1u2m1p Technology: cmos

DATAPATH: Reading datapath geometry.

DATAPATH: Reading footprints.

DATAPATH: Initial bit cells placement.

DATAPATH: Routing datapath.

DATAPATH 3.0

size: 26 X 3

Horizontal channels

Contour Router V1.1

channel #26

channel #25

channel #24

channel #23

channel #22

channel #21

channel #20

channel #19

channel #18

Chambel #10

channel #17

channel #16

channel #15

channel #14

channel #13

channel #12

channel #11

channel #10

channel #9

channel #8

channel #7

channel #6

channel #5

channel #4

channel #3

channel #2

channel #1

channel #0

Vertical channels

channel #3

channel #2

channel #1

channel #0

DATAPATH: Creating geometry.

Writing cell fpadder_group to disk

/local/epoch/bin/gluenp -p /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2 -r CDA1u2m1p +msgclear -msgfile +ewpstfEW

/tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/chip_logs/gluenp.log fpadder

GLUE ROUTER version 6.1.

Copyright 1992, 1993 Cascade Design Automation Corporation.

CASCADE base location: /local/epoch

Project: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2

Ruleset: CDA1u2m1p Technology: cmos

Glue: reading in geometry file fpadder

Initialize power connections. Read in placement expression.

Position export pins.

Route power nets. (auto_size_rails) -- GND -- VDD Read in footprint information. Over the cell routing gates. Over the cell routing blocks. Overcell Router V2.0 Generating global router input. Mixed-Mode Global Router V1.1 Routing group [0] Routing group [1] Routing group [2] Routing group [3] Routing group [4] Assemble Standard cell groups Assemble Group std_group_0 Contour Router V1.1 Channel no. 0 Channel no. 1 Assemble Group std_group_1 Channel no. 2 Channel no. 3 Channel no. 4 Channel no. 5 Channel no. 6 Channel no. 7 Channel no. 8 Assemble Group rnder Channel no. 9 Channel no. 10 Channel no. 11 Channel no. 12 Assemble Group std_group_3 Channel no. 13 Channel no. 14 Channel no. 15 Channel no. 16 Channel no. 17 Channel no. 18 Channel no. 19 Channel no. 20 Channel no. 21 Assemble Group std_group_2 Channel no. 22 Channel no. 23

Channel no. 24

Channel no. 25

Channel no. 26

Channel no. 27

Channel no. 28

Channel no. 29

Channel no. 30

Channel no. 31

Channel no. 32

Assemble Blocks

Channel no. 33

Channel no. 34

Channel no. 35

Channel no. 36

Channel no. 37

Route perimeter channels.

Ripping External Channels

Channel no. 38

Channel no. 39

Channel no. 40

Channel no. 41

Generating Geometry.

Writing cell fpadder to disk

Glue: fpadder completed, Real time: 00:06:24, CPU time: 291.08 seconds.

/local/epoch/bin/gluenp -p /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2 -r CDA1u2m1p

+msgclear -msgfile +ewpstfEW

/tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/chip_logs/gluenp.log

complex_adder_4_input

GLUE ROUTER version 6.1.

Copyright 1992, 1993 Cascade Design Automation Corporation.

CASCADE base location: /local/epoch

Project: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2

Ruleset: CDA1u2m1p

Technology: cmos

Glue: reading in geometry file complex_adder_4_input

Initialize power connections.

Read in placement expression.

Position export pins.

Route power nets. (auto_size_rails)

-- GND

-- VDD

Read in footprint information.

Over the cell routing gates.

Over the cell routing blocks.

Overcell Router V2.0

OCR: All standard cell design.

Generating global router input.

Mixed-Mode Global Router V1.1

Routing group [0]

Assemble Standard cell groups

Assemble Group std_group_0

Assemble Blocks

Contour Router V1.1

Channel no. 0

Channel no. 1

Channel no. 2

Channel no. 3

Channel no. 4

Channel no. 5

Route perimeter channels.

Ripping External Channels

Channel no. 6

Channel no. 7

Channel no. 8

Channel no. 9

Generating Geometry.

Writing cell complex_adder_4_input to disk

Glue: complex_adder_4_input completed, Real time: 00:03:40, CPU time: 205.30

seconds.

/local/epoch/bin/dpath5 -p /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2 -r CDA1u2m1p +msgclear -msgfile +ewpstfEW

/tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/chip_logs/dpath5.log -nplace

hsmult2piped_c_0#o0

Copyright 1992, 1993 Cascade Design Automation Corporation.

CASCADE base location: /local/epoch

Project: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2

Ruleset: CDA1u2m1p Technology: cmos

DATAPATH: Reading datapath geometry.

DATAPATH: Reading footprints.

DATAPATH: Initial bit cells placement.

DATAPATH: Routing datapath.

DATAPATH 3.0

size: 28 X 44

Horizontal channels

Contour Router V1.1

channel #28

channel #27

channel #26

channel #25

channel #24

channel #23

channel #22

channel #21

channel #20

channel #19

channel #18

channel #17

channel #16

channel #15

channel #14

channel #13

channel #12

channel #11

channel #10

Chainlet #1

channel #9

channel #8

channel #7

channel #6

channel #5

channel #4

channel #3

channel #2

channel #1

channel #0

Vertical channels

channel #44

channel #43

channel #42

channel #41

channel #40

channel #39

channel #38

channel #37

channel #36

channel #35

channel #34

channel #33

channel #32

channel #31

channel #30

channel #29

channel #28

channel #27

channel #26

channel #25

channel #24

channel #23

channel #22

channel #21

channel #20

channel #19

channel #18

channel #17

channel #16

channel #15

channel #14

channel #13

channel #12

channel #11

channel #10

channel #9

channel #8

channel #7

channel #6 channel #5

channel #4

channel #3

channel #2

channel #1

channel #0

DATAPATH: Creating geometry.

Writing cell hsmult2piped_c_0#g0 to disk

/local/epoch/bin/dpath5 -p /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2 -r CDA1u2m1p +msgclear -msgfile +ewpstfEW

/tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/chip_logs/dpath5.log -nplace mplier

Copyright 1992, 1993 Cascade Design Automation Corporation.

CASCADE base location: /local/epoch

Project: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2

Ruleset: CDA1u2m1p Technology: cmos

DATAPATH: Reading datapath geometry.

DATAPATH: Reading footprints.

DATAPATH: Initial bit cells placement.

DATAPATH: Routing datapath.

DATAPATH 3.0

size: 8 X 6

Horizontal channels

Contour Router V1.1

channel #8

channel #7

channel #6

channel #5

channel #4

channel #3

channel #2

channel #1

channel #0

Vertical channels

channel #6

channel #5

channel #4

channel #3

channel #2

channel #1

channel #0

DATAPATH: Creating geometry.

Writing cell mplier to disk

/local/epoch/bin/gluenp -p /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2 -r CDA1u2m1p

+msgclear -msgfile +ewpstfEW

/tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/chip_logs/gluenp.log fpmplier

GLUE ROUTER version 6.1.

Copyright 1992, 1993 Cascade Design Automation Corporation.

CASCADE base location: /local/epoch

Project: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2

Ruleset: CDA1u2m1p Technology: cmos

Glue: reading in geometry file fpmplier

Initialize power connections.

Read in placement expression.

Position export pins.

Route power nets. (auto_size_rails)

-- GND

-- VDD

Read in footprint information.

Over the cell routing gates.

Over the cell routing blocks.

Overcell Router V2.0

Generating global router input.

Mixed-Mode Global Router V1.1

Routing group [0]

Routing group [1]

Routing group [2]

Routing group [3]

Routing group [4]

Assemble Standard cell groups

Assemble Group std_group_1

Merging multiple external standard cell connections for net clear

Merging multiple external standard cell connections for net clock

Merging multiple external standard cell connections for net lost_bit

Assemble Group std_group_3

Contour Router V1.1

Channel no. 0

Channel no. 1

Channel no. 2

Channel no. 3

Channel no. 4

Channel no. 5

Channel no. 6

Channel no. 7

Channel no. 8

Channel no. 9

Channel no. 10

Assemble Group rnder

Channel no. 11

Assemble Group std_group_2

Channel no. 12

Channel no. 13

Channel no. 14

Channel no. 15

Channel no. 16

Assemble Group std_group_0

Channel no. 17

Channel no. 18

Channel no. 19

Channel no. 20

Channel no. 21

Channel no. 22

Channel no. 23

Channel no. 24

Assemble Blocks

Channel no. 25

Channel no. 26

Channel no. 27

Channel no. 28

Channel no. 29

Channel no. 30

Route perimeter channels.

Ripping External Channels

Channel no. 31

Channel no. 32

Channel no. 33

Channel no. 34

Generating Geometry.

Writing cell fpmplier to disk

Glue: fpmplier completed, Real time: 00:09:06, CPU time: 469.83 seconds.

/local/epoch/bin/gluenp -p /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2 -r CDA1u2m1p +msgclear -msgfile +ewpstfEW

/tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/chip_logs/gluenp.log complex_mplier

GLUE ROUTER version 6.1.

Copyright 1992, 1993 Cascade Design Automation Corporation.

CASCADE base location: /local/epoch

Project: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2

Ruleset: CDA1u2m1p Technology: cmos

Glue: reading in geometry file complex_mplier

Initialize power connections.

Read in placement expression.

Position export pins.

Route power nets. (auto_size_rails)

-- GND

-- VDD

Read in footprint information.

Over the cell routing gates.

Over the cell routing blocks.

Overcell Router V2.0

OCR: All standard cell design.

Generating global router input.

Mixed-Mode Global Router V1.1

Routing group [0]

Assemble Standard cell groups

Assemble Group std_group_0

Assemble Blocks

Contour Router V1.1

Channel no. 0

Channel no. 1

Channel no. 2

Channel no. 3

Channel no. 4

Channel no. 5

Route perimeter channels.

Ripping External Channels

Channel no. 6

Channel no. 7

Channel no. 8

Channel no. 9

Generating Geometry.

Writing cell complex_mplier to disk

Glue: complex_mplier completed, Real time: 00:03:34, CPU time: 192.91 seconds.

/local/epoch/bin/gluenp -p /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2 -r CDA1u2m1p

+msgclear -msgfile +ewpstfEW

/tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/chip_logs/gluenp.log fft

GLUE ROUTER version 6.1.

Copyright 1992, 1993 Cascade Design Automation Corporation.

CASCADE base location: /local/epoch

Project: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2

Ruleset: CDA1u2m1p Technology: cmos

Glue: reading in geometry file fft

Initialize power connections.

Read in placement expression.

Position export pins.

Route power nets. (auto_size_rails)

-- GND

-- VDD

Read in footprint information.

Over the cell routing gates.

Over the cell routing blocks.

Overcell Router V2.0

OCR: All standard cell design.

Generating global router input.

Mixed-Mode Global Router V1.1

Routing group [0]

Routing group [1]

Assemble Standard cell groups

Assemble Group fft_top

Contour Router V1.1 Channel no. 0 Channel no. 1 Channel no. 2 Channel no. 3 Channel no. 4 Channel no. 5 Channel no. 6 Channel no. 7 Channel no. 8 Channel no. 9 Channel no. 10 Channel no. 11 Channel no. 12 Assemble Group std_group_0 Assemble Blocks Channel no. 13 Channel no. 14 Channel no. 15 Route perimeter channels. Ripping External Channels Channel no. 16 Channel no. 17 Channel no. 18 Channel no. 19 Generating Geometry. Writing cell fft to disk Glue: fft completed, Real time: 00:13:37, CPU time: 722.35 seconds. /local/epoch/bin/gluenp -p /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2 -r CDA1u2m1p +msgclear -msgfile +ewpstfEW /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/chip_logs/gluenp.log fftchip_core GLUE ROUTER version 6.1. Copyright 1992, 1993 Cascade Design Automation Corporation. CASCADE base location: /local/epoch Project: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2 Ruleset: CDA1u2m1p Technology: cmos Glue: reading in geometry file fftchip_core Initialize power connections. Read in placement expression. Position export pins.

Route power nets. (auto_size_rails)

-- GND -- VDD

Read in footprint information. Over the cell routing gates. Over the cell routing blocks. Overcell Router V2.0 OCR: All standard cell design. Generating global router input. Mixed-Mode Global Router V1.1 Routing group [0] Assemble Standard cell groups Assemble Group std_group_0 Assemble Blocks Contour Router V1.1 Channel no. 0 Route perimeter channels. Ripping External Channels Channel no. 1 Channel no. 2 Channel no. 3 Channel no. 4 Generating Geometry. Writing cell fftchip_core to disk Glue: fftchip_core completed, Real time: 00:04:16, CPU time: 230.83 seconds. /local/epoch/bin/plop5 -p /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2 -r CDA1u2m1p +msgclear -msgfile +ewpstfEW /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2/chip_logs/plop5.log fftchip Copyright 1992, 1993 Cascade Design Automation Corporation. CASCADE base location: /local/epoch Project: /tmp_mnt/h/kepler_u2/kljackso/projects/thesis2 Ruleset: CDA1u2m1p Technology: cmos PACKAGER: Reading top level chip data. PACKAGER: No package has been specified, automatically selecting package. -----> packcell->name = "cda100p433". ----> packcell->name = "cda100p540". ----> packcell->name = "cda120p433". ----> packcell->name = "cda124p335". ----> packcell->name = "cda132p400". ----> packcell->name = "cda132p410". ----> packcell->name = "cda132p540". ----> packcell->name = "cda16p120". ----> packcell->name = "cda16p315". ----> packcell->name = "cda180p480". ----> packcell->name = "cda20p160". ----> packcell->name = "cda22p140".

```
-----> packcell->name = "cda24p350".
-----> packcell->name = "cda28p250".
----> packcell->name = "cda28p310".
----> packcell->name = "cda40p250".
-----> packcell->name = "cda40p300".
-----> packcell->name = "cda48p250".
-----> packcell->name = "cda48p310".
-----> packcell->name = "cda48p350".
-----> packcell->name = "cda64p400".
-----> packcell->name = "cda68p400".
-----> packcell->name = "cda84p400".
-----> packcell->name = "cda84p400".
-----> packcell->name = "cda84p450".
-----> packcell->name = "cda84p450".
```

---->Can't find any appropriate package, place pads without package.

PACKAGER: Placing pads.

MOAT ROUTER: Routing East channel.

Contour Router V1.1

MOAT ROUTER: Routing West channel. MOAT ROUTER: Routing North channel. MOAT ROUTER: Routing South channel.

MOAT ROUTER: Done. Writing cell fftchip to disk

Die size: 441 x 616 (mils) Scribe spacing: 0 (mils)
Die size: 11190 x 15642 (um) Scribe spacing: 1 (um)

Module size: 391 x 567 (mils) NONE

Module size: 9943 x 14414 (um)

Number of nets: 408

Max. routing space: 15 (mils) Min. routing space: 10 (mils) Max. routing space: 391 (um) Min. routing space: 248 (um)

Number of pads: 210

Max. pad height: 6 (mils)

Min. pad height: 6 (mils)

Max. pad height: 139 (um)

Min. pad height: 139 (um)

APPENDIX E FLOATING POINT ADDER TEST OUTPUT

```
Host command: verilog
Command arguments:
  -f adder.vc
    -y /tmp_mnt/local/epoch/models/cmos/verilog
     +libext+.v+
     -S
     addertst.v
     bitshift.v
     overshift.v
     inverter.v
     inverter2.v
     rounder.v
     mulclnup.v
     vcheck.v
     fpadder.v
VERILOG-XL 1.8 log file created Sep 18, 1994 01:47:30
VERILOG-XL 1.8 Sep 18, 1994 01:47:30
 * Copyright Cadence Design Systems, Inc. 1985, 1988.
     All Rights Reserved.
                             Licensed Software.
 * Confidential and proprietary information which is the *
      property of Cadence Design Systems, Inc.
 * For technical assistance please contact the Cadence *
 * Response Center at 1-800-CADENC2 or send email to
 * crc_customers@cadence.com
 * For more information on Cadence's Verilog-XL product *
 * line send email to talkverilog@cadence.com
Compiling source file "addertst.v"
Compiling included source file "header.v"
Continuing compilation of source file "addertst.v"
Compiling source file "bitshift.v"
Compiling source file "overshift.v"
Compiling source file "inverter.v"
Compiling source file "inverter2.v"
Compiling source file "rounder.v"
Warning! Text macro (lsb_bit) redefined - replaced with
                                          [Verilog-TMREN]
      new definition
```

```
Warning! Text macro (guard bit) redefined - replaced with
     new definition
                                   [Verilog-TMREN]
     "rounder.v", 28:
Warning! Text macro (round_bit) redefined - replaced with
     new definition
                                   [Verilog-TMREN]
     "rounder.v", 29:
Warning! Text macro (sticky_bit) redefined - replaced
                                    [Verilog-TMREN]
     with new definition
     "rounder.v", 30:
Compiling source file "mulclnup.v"
Compiling source file "vcheck.v"
Compiling source file "fpadder.v"
Warning! Text macro (group) redefined - replaced with new
                                 [Verilog-TMREN]
     definition
     "fpadder.v", 11:
Warning! Text macro (imptype) redefined - replaced with
     new definition
                                   [Verilog-TMREN]
     "fpadder.v", 12:
Scanning library directory "/tmp_mnt/local/epoch/models/cmos/verilog"
Highest level modules:
addertst
Type? for help
C1 > .
0 clock: 0
A sign: x
A exponent: xxxxxxxx
B sign: x
B exponent: xxxxxxxx
Res sign: x
```

"rounder.v", 27:

Res exponent: xxxxxxxx

Rounding Mode: xx Clear: x

NAN: x INF: x OVFL: x UNFL: x INEXACT: x

50 clock: 1

A sign: x

A exponent: xxxxxxxx

B sign: x

B exponent: xxxxxxxx

Res sign: x

Res exponent: xxxxxxxx

Rounding Mode: xx Clear: x

NAN: x INF: x OVFL: x UNFL: x INEXACT: x

***** Positive X Positive (Normalized) /pos + pos exp ********

100 clock: 0

A sign: 0

A exponent: 10000000

B sign: 0

B exponent: 10000000

Res sign: x

Res exponent: xxxxxxxx

Rounding Mode: 00 Clear: 1

NAN: x INF: x OVFL: x UNFL: x INEXACT: x

150 clock: 1

A sign: 0

A exponent: 10000000

B sign: 0

B exponent: 10000000

Res sign: x

Res exponent: xxxxxxxx

Rounding Mode: 00 Clear: 1

NAN: x INF: x OVFL: x UNFL: x INEXACT: x

200 clock: 0

A sign: 0

A exponent: 11100011

B sign: 0

B exponent: 10000000

Res sign: x

Res mantissa: xxxxxxxxxxxxxxxxxxxxxxxx

Res exponent: xxxxxxxx

Rounding Mode: 00 Clear: 1

NAN: x INF: x OVFL: x UNFL: x INEXACT: x

250 clock: 1

A sign: 0

A exponent: 11100011

B sign: 0

B exponent: 10000000

Res sign: x

Res mantissa: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Res exponent: xxxxxxxx

Rounding Mode: 00 Clear: 1

NAN: x INF: x OVFL: x UNFL: x INEXACT: x

********* Pos x Pos / neg +neg exp ********

300 clock: 0

A sign: 0

A exponent: 11100111

B sign: 0

B exponent: 10000000

Res sign: x

Res exponent: xxxxxxxx

Rounding Mode: 00 Clear: 1

NAN: x INF: x OVFL: x UNFL: x INEXACT: x

350 clock: 1

A sign: 0

A exponent: 11100111

B sign: 0

B exponent: 10000000

Res sign: x

Res exponent: xxxxxxxx

Rounding Mode: 00 Clear: 1

NAN: x INF: x OVFL: x UNFL: x INEXACT: x

*********Positive (Norm) X Positive (Unnorm) **********

400 clock: 0

A sign: 0

A exponent: 00000111

B sign: 0

B exponent: 00000111

Res sign: x

Res exponent: xxxxxxxx

Rounding Mode: 00 Clear: 1

NAN: x INF: x OVFL: x UNFL: x INEXACT: x

450 clock: 1

A sign: 0

A exponent: 00000111

B sign: 0

B exponent: 00000111

Res sign: x

Res exponent: xxxxxxxx

Rounding Mode: 00 Clear: 1

NAN: x INF: x OVFL: x UNFL: x INEXACT: x

*************Positive X Positive (Unnorm) **********

500 clock: 0

A sign: 0

A exponent: 0000001

B sign: 0

B exponent: 00000000

Res sign: x

Res exponent: xxxxxxxx

Rounding Mode: 00 Clear: 1

NAN: x INF: x OVFL: x UNFL: x INEXACT: x

550 clock: 1

A sign: 0

A exponent: 00000001

B sign: 0

B exponent: 00000000

Res sign: x

Res exponent: xxxxxxxx

Rounding Mode: 00 Clear: 1

NAN: x INF: x OVFL: x UNFL: x INEXACT: x

600 clock: 0

A sign: 0

A exponent: 00000000

B sign: 0

B exponent: 00000000

Res sign: x

Res mantissa: xxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Res exponent: xxxxxxxx

Rounding Mode: 00 Clear: 1

NAN: x INF: x OVFL: x UNFL: x INEXACT: x

650 clock: 1

A sign: 0

A exponent: 00000000

B sign: 0

B exponent: 00000000

Res sign: x

Res exponent: xxxxxxxx

Rounding Mode: 00 Clear: 1

NAN: x INF: x OVFL: x UNFL: x INEXACT: x

652 clock: 1

A sign: 0

A exponent: 00000000

B sign: 0

B exponent: 00000000

Res sign: 0

Res exponent: 10000001

Rounding Mode: 00 Clear: 1

NAN: 0 INF: 0 OVFL: 0 UNFL: 0 INEXACT: 0

700 clock: 0

A sign: 1

A mantissa: 00000010001000100000000

A exponent: 00000011

B sign: 0

B exponent: 00000011

Res sign: 0

Res exponent: 10000001

Rounding Mode: 00 Clear: 1

NAN: 0 INF: 0 OVFL: 0 UNFL: 0 INEXACT: 0

750 clock: 1

A sign: 1

A mantissa: 00000010001000100000000

A exponent: 00000011

B sign: 0

B exponent: 00000011

Res sign: 0

Res exponent: 10000001

Rounding Mode: 00 Clear: 1

NAN: 0 INF: 0 OVFL: 0 UNFL: 0 INEXACT: 0

752 clock: 1

A sign: 1

A mantissa: 00000010001000100000000

A exponent: 00000011

B sign: 0

B exponent: 00000011

Res sign: 0

Res exponent: 11100011

Rounding Mode: 00 Clear: 1

NAN: 0 INF: 0 OVFL: 0 UNFL: 0 INEXACT: 0

************* Negative x Positive *************

800 clock: 0

A sign: 1

A mantissa: 0000000000000100010001

A exponent: 00000011

B sign: 1

B mantissa: 00000010001000100000000

B exponent: 00000011

Res sign: 0

Res exponent: 11100011

Rounding Mode: 00 Clear: 1

NAN: 0 INF: 0 OVFL: 0 UNFL: 0 INEXACT: 0

850 clock: 1

A sign: 1

A mantissa: 000000000000100010001

A exponent: 00000011

B sign: 1

B mantissa: 00000010001000100000000

B exponent: 00000011

Res sign: 0

Res exponent: 11100011

Rounding Mode: 00 Clear: 1

NAN: 0 INF: 0 OVFL: 0 UNFL: 0 INEXACT: 0

852 clock: 1

A sign: 1

A mantissa: 0000000000000100010001

A exponent: 00000011

B sign: 1

B mantissa: 00000010001000100000000

B exponent: 00000011

Res sign: 0

Res exponent: 11100111

Rounding Mode: 00 Clear: 1

NAN: 0 INF: 0 OVFL: 0 UNFL: 0 INEXACT: 0

900 clock: 0

A sign: 0

A mantissa: 0000000001000100000000

A exponent: 10001000

B sign: 1

B exponent: 00000111

Res sign: 0

Res exponent: 11100111

Rounding Mode: 00 Clear: 1

NAN: 0 INF: 0 OVFL: 0 UNFL: 0 INEXACT: 0

950 clock: 1

A sign: 0

A mantissa: 0000000001000100000000

A exponent: 10001000

B sign: 1

B exponent: 00000111

Res sign: 0

Res exponent: 11100111

Rounding Mode: 00 Clear: 1

NAN: 0 INF: 0 OVFL: 0 UNFL: 0 INEXACT: 0

952 clock: 1

A sign: 0

A mantissa: 0000000001000100000000

A exponent: 10001000

B sign: 1

B exponent: 00000111

Res sign: 0

Res exponent: 00001000

Rounding Mode: 00 Clear: 1

NAN: 0 INF: 0 OVFL: 0 UNFL: 0 INEXACT: 0

************* Negative x Negative ************

1000 clock: 0

A sign: 0

A exponent: 10001000

B sign: 1

B exponent: 10111100

Res sign: 0

Res exponent: 00001000

Rounding Mode: 00 Clear: 1

NAN: 0 INF: 0 OVFL: 0 UNFL: 0 INEXACT: 0

1050 clock: 1

A sign: 0

A exponent: 10001000

B sign: 1

B exponent: 10111100

Res sign: 0

Res exponent: 00001000

Rounding Mode: 00 Clear: 1

NAN: 0 INF: 0 OVFL: 0 UNFL: 0 INEXACT: 0

1052 clock: 1

A sign: 0

A exponent: 10001000

B sign: 1

B exponent: 10111100

Res sign: 0

Res exponent: 00000001

Rounding Mode: 00 Clear: 1

NAN: 0 INF: 0 OVFL: 0 UNFL: 0 INEXACT: 0

1100 clock: 0

A sign: 1

A exponent: 10111100

B sign: 1

B exponent: 10111100

Res sign: 0

Res exponent: 00000001

Rounding Mode: 00 Clear: 1

NAN: 0 INF: 0 OVFL: 0 UNFL: 0 INEXACT: 0

1150 clock: 1

A sign: 1

A exponent: 10111100

B sign: 1

B exponent: 10111100

Res sign: 0

Res exponent: 00000001

Rounding Mode: 00 Clear: 1

NAN: 0 INF: 0 OVFL: 0 UNFL: 0 INEXACT: 0

1152 clock: 1

A sign: 1

A exponent: 10111100

B sign: 1

B exponent: 10111100

Res sign: 0

Res exponent: 00000001

Rounding Mode: 00 Clear: 1

NAN: 0 INF: 0 OVFL: 0 UNFL: 0 INEXACT: 0

1200 clock: 0

A sign: 0

A exponent: 00000000

B sign: 0

B exponent: 00000000

Res sign: 0

Res exponent: 00000001

Rounding Mode: 00 Clear: 1

NAN: 0 INF: 0 OVFL: 0 UNFL: 0 INEXACT: 0

1250 clock: 1

A sign: 0

A exponent: 00000000

B sign: 0

B exponent: 00000000

Res sign: 0

Res exponent: 00000001

Rounding Mode: 00 Clear: 1

NAN: 0 INF: 0 OVFL: 0 UNFL: 0 INEXACT: 0

1252 clock: 1

A sign: 0

A exponent: 00000000

B sign: 0

B exponent: 00000000

Res sign: 1

Res mantissa: 00000010001000100000000

Res exponent: 00000000

Rounding Mode: 00 Clear: 1

NAN: 0 INF: 0 OVFL: 0 UNFL: 0 INEXACT: 0

1300 clock: 0

A sign: 0

A mantissa: 00000000000000000010000

A exponent: 11111111

B sign: 0

B mantissa: 0000000000000000010000

B exponent: 10000000

Res sign: 1

Res mantissa: 00000010001000100000000

Res exponent: 00000000

Rounding Mode: 00 Clear: 1

NAN: 0 INF: 0 OVFL: 0 UNFL: 0 INEXACT: 0

1350 clock: 1

A sign: 0

A mantissa: 00000000000000000010000

A exponent: 11111111

B sign: 0

B mantissa: 0000000000000000010000

B exponent: 10000000

Res sign: 1

Res mantissa: 00000010001000100000000

Res exponent: 00000000

Rounding Mode: 00 Clear: 1

NAN: 0 INF: 0 OVFL: 0 UNFL: 0 INEXACT: 0

1352 clock: 1

A sign: 0

A mantissa: 0000000000000000010000

A exponent: 11111111

B sign: 0

B mantissa: 0000000000000000010000

B exponent: 10000000

Res sign: 1

Res mantissa: 00000001000100100001000

Res exponent: 00000100

Rounding Mode: 00 Clear: 1

NAN: 0 INF: 0 OVFL: 0 UNFL: 0 INEXACT: 1

1400 clock: 0

A sign: 0

A mantissa: 10000010001000100010001

A exponent: 11111111

B sign: 0

B mantissa: 0000001000100010001

B exponent: 10000000

Res sign: 1

Res mantissa: 00000001000100100001000

Res exponent: 00000100

Rounding Mode: 00 Clear: 1

NAN: 0 INF: 0 OVFL: 0 UNFL: 0 INEXACT: 1

1450 clock: 1

A sign: 0

A mantissa: 10000010001000100010001

A exponent: 11111111

B sign: 0

B mantissa: 0000001000100010001

B exponent: 10000000

Res sign: 1

Res mantissa: 00000001000100100001000

Res exponent: 00000100

Rounding Mode: 00 Clear: 1

NAN: 0 INF: 0 OVFL: 0 UNFL: 0 INEXACT: 1

1452 clock: 1

A sign: 0

A mantissa: 1000001000100010001

A exponent: 11111111

B sign: 0

B mantissa: 0000001000100010001

B exponent: 10000000

Res sign: 0

Res mantissa: 0000000001000100000000

Res exponent: 10001000

Rounding Mode: 00 Clear: 1

NAN: 0 INF: 0 OVFL: 0 UNFL: 0 INEXACT: 0

1500 clock: 0

A sign: 0

A exponent: 00000000

B sign: 0

B exponent: 00000000

Res sign: 0

Res mantissa: 00000000010001000000000

Res exponent: 10001000

Rounding Mode: 00 Clear: 1

NAN: 0 INF: 0 OVFL: 0 UNFL: 0 INEXACT: 0

1550 clock: 1

A sign: 0

A exponent: 00000000

B sign: 0

B exponent: 00000000

Res sign: 0

Res mantissa: 00000000010001000000000

Res exponent: 10001000

Rounding Mode: 00 Clear: 1

NAN: 0 INF: 0 OVFL: 0 UNFL: 0 INEXACT: 0

1552 clock: 1

A sign: 0

A exponent: 00000000

B sign: 0

B exponent: 00000000

Res sign: 1

Res exponent: 10111100

Rounding Mode: 00 Clear: 1

NAN: 0 INF: 0 OVFL: 0 UNFL: 0 INEXACT: 1

1600 clock: 0

A sign: 0

A exponent: 00000000

B sign: 0

B exponent: 00000000

Res sign: 1

Res exponent: 10111100

Rounding Mode: 00 Clear: 1

NAN: 0 INF: 0 OVFL: 0 UNFL: 0 INEXACT: 1

1650 clock: 1

A sign: 0

A exponent: 00000000

B sign: 0

B exponent: 00000000

Res sign: 1

Res exponent: 10111100

Rounding Mode: 00 Clear: 1

NAN: 0 INF: 0 OVFL: 0 UNFL: 0 INEXACT: 1

1652 clock: 1

A sign: 0

A exponent: 00000000

B sign: 0

B exponent: 00000000

Res sign: 1

Res exponent: 10111101

Rounding Mode: 00 Clear: 1

NAN: 0 INF: 0 OVFL: 0 UNFL: 0 INEXACT: 1

1700 clock: 0

A sign: 0

A exponent: 00000000

B sign: 0

B exponent: 00000000

Res sign: 1

Res exponent: 10111101

Rounding Mode: 00 Clear: 1

NAN: 0 INF: 0 OVFL: 0 UNFL: 0 INEXACT: 1

1750 clock: 1

A sign: 0

A exponent: 00000000

B sign: 0

B exponent: 00000000

Res sign: 1

Res exponent: 10111101

Rounding Mode: 00 Clear: 1

NAN: 0 INF: 0 OVFL: 0 UNFL: 0 INEXACT: 1

1752 clock: 1

A sign: 0

A exponent: 00000000

B sign: 0

B exponent: 00000000

Res sign: 0

Res exponent: 00000000

Rounding Mode: 00 Clear: 1

NAN: 0 INF: 0 OVFL: 0 UNFL: 0 INEXACT: 0

1800 clock: 0

A sign: 0

A exponent: 00000000

B sign: 0

B exponent: 00000000

Res sign: 0

Res exponent: 00000000

Rounding Mode: 00 Clear: 1

NAN: 0 INF: 0 OVFL: 0 UNFL: 0 INEXACT: 0

1850 clock: 1

A sign: 0

A exponent: 00000000

B sign: 0

B exponent: 00000000

Res sign: 0

Res exponent: 00000000

Rounding Mode: 00 Clear: 1

NAN: 0 INF: 0 OVFL: 0 UNFL: 0 INEXACT: 0

1852 clock: 1

A sign: 0

A exponent: 00000000

B sign: 0

B exponent: 00000000

Res sign: 0

Res mantissa: 0000000000000000010000

Res exponent: 11111111

Rounding Mode: 00 Clear: 1

NAN: 1 INF: 0 OVFL: 0 UNFL: 0 INEXACT: 0

1900 clock: 0

A sign: 0

A exponent: 00000000

B sign: 0

B exponent: 00000000

Res sign: 0

Res exponent: 111111111

Rounding Mode: 00 Clear: 1

NAN: 1 INF: 0 OVFL: 0 UNFL: 0 INEXACT: 0

1950 clock: 1

A sign: 0

A exponent: 00000000

B sign: 0

B exponent: 00000000

Res sign: 0

Res mantissa: 00000000000000000010000

Res exponent: 11111111

Rounding Mode: 00 Clear: 1

NAN: 1 INF: 0 OVFL: 0 UNFL: 0 INEXACT: 0

1952 clock: 1

A sign: 0

A exponent: 00000000

B sign: 0

B exponent: 00000000

Res sign: 0

Res mantissa: 10000010001000100010001

Res exponent: 11111111

Rounding Mode: 00 Clear: 1

NAN: 1 INF: 0 OVFL: 0 UNFL: 0 INEXACT: 0

L79 "addertst.v": \$finish at simulation time 2000

6 warnings

13294 simulation events + 2478 accelerated events + 4918 timing check events

CPU time: 0.6 secs to compile + 1.1 secs to link + 1.5 secs in simulation

End of VERILOG-XL 1.8 Sep 18, 1994 01:47:37

APPENDIX F FLOATING POINT MULTIPLIER TEST OUTPUT

```
Host command: verilog
Command arguments:
  -f mplier.vc
    -y /tmp_mnt/local/epoch/models/cmos/verilog
    +libext+.v+
    mplertst.v
    shiftsel.v
     encoder.v
    rounder.v
     vcheck.v
    mansel.v
    mulclnup.v
    fpmplier.v
  -S
VERILOG-XL 1.8 log file created Sep 18, 1994 01:43:49
VERILOG-XL 1.8 Sep 18, 1994 01:43:49
 * Copyright Cadence Design Systems, Inc. 1985, 1988.
     All Rights Reserved.
                             Licensed Software.
 * Confidential and proprietary information which is the *
      property of Cadence Design Systems, Inc.
 * For technical assistance please contact the Cadence
 * Response Center at 1-800-CADENC2 or send email to
 * crc_customers@cadence.com
 * For more information on Cadence's Verilog-XL product *
 * line send email to talkverilog@cadence.com
Compiling source file "mplertst.v"
Compiling source file "shiftsel.v"
Compiling source file "encoder.v"
Compiling source file "rounder.v"
Compiling source file "vcheck.v"
Compiling source file "mansel.v"
Compiling source file "mulclnup.v"
Compiling source file "fpmplier.v"
Scanning library directory "/tmp_mnt/local/epoch/models/cmos/verilog"
Highest level modules:
mplertst
Type? for help
```

C1 > .

0 clock: 0

A sign: x

A exponent: xxxxxxxx

B sign: x

B exponent: xxxxxxxx

Res sign: x

Res exponent: xxxxxxxx

Rounding Mode: xx Clear: x

NAN: x INF: x OVFL: x UNFL: x INEXACT: x

50 clock: 1

A sign: x

A exponent: xxxxxxxx

B sign: x

B exponent: xxxxxxxx

Res sign: x

Res exponent: xxxxxxxx

Rounding Mode: xx Clear: x

NAN: x INF: x OVFL: x UNFL: x INEXACT: x

***** Positive X Positive (Normalized) /pos + pos exp ********

100 clock: 0

A sign: 0

A exponent: 10000000

B sign: 0

B exponent: 10000000

Res sign: x

Res mantissa: xxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Res exponent: xxxxxxxx

Rounding Mode: 00 Clear: 1

NAN: x INF: x OVFL: x UNFL: x INEXACT: x

150 clock: 1

A sign: 0

A exponent: 10000000

B sign: 0

B exponent: 10000000

Res sign: x

Res exponent: xxxxxxxx

Rounding Mode: 00 Clear: 1

NAN: x INF: x OVFL: x UNFL: x INEXACT: x

200 clock: 0

A sign: 0

A exponent: 11100011

B sign: 0

B exponent: 10000000

Res sign: x

Res exponent: xxxxxxxx

Rounding Mode: 00 Clear: 1

NAN: x INF: x OVFL: x UNFL: x INEXACT: x

250 clock: 1

A sign: 0

A exponent: 11100011

B sign: 0

B exponent: 10000000

Res sign: x

Res mantissa: xxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Res exponent: xxxxxxxx

Rounding Mode: 00 Clear: 1

NAN: x INF: x OVFL: x UNFL: x INEXACT: x

********** Pos x Pos / neg +neg exp ********

300 clock: 0

A sign: 0

A exponent: 11100111

B sign: 0

B exponent: 10000000

Res sign: x

Res exponent: xxxxxxxx

Rounding Mode: 00 Clear: 1

NAN: x INF: x OVFL: x UNFL: x INEXACT: x

350 clock: 1

A sign: 0

A exponent: 11100111

B sign: 0

B exponent: 10000000

Res sign: x

Res exponent: xxxxxxxx

Rounding Mode: 00 Clear: 1

NAN: x INF: x OVFL: x UNFL: x INEXACT: x

************Positive (Norm) X Positive (Unnorm) ***********

400 clock: 0

A sign: 0

A exponent: 00000111

B sign: 0

B exponent: 00000111

Res sign: x

Res exponent: xxxxxxxx

Rounding Mode: 00 Clear: 1

NAN: x INF: x OVFL: x UNFL: x INEXACT: x

450 clock: 1

A sign: 0

A exponent: 00000111

B sign: 0

B exponent: 00000111

Res sign: x

Res mantissa: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Res exponent: xxxxxxxx

Rounding Mode: 00 Clear: 1

NAN: x INF: x OVFL: x UNFL: x INEXACT: x

*************Positive X Positive (Unnorm) **********

500 clock: 0

A sign: 0

A exponent: 10000001

B sign: 0

B exponent: 00000010

Res sign: x

Res exponent: xxxxxxxx

Rounding Mode: 00 Clear: 1

NAN: x INF: x OVFL: x UNFL: x INEXACT: x

550 clock: 1

A sign: 0

A exponent: 10000001

B sign: 0

B exponent: 00000010

Res sign: x

Res exponent: xxxxxxxx

Rounding Mode: 00 Clear: 1

NAN: x INF: x OVFL: x UNFL: x INEXACT: x

600 clock: 0

A sign: 0

A exponent: 00000010

B sign: 0

B exponent: 10000000

Res sign: x

Res exponent: xxxxxxxx

Rounding Mode: 00 Clear: 1

NAN: x INF: x OVFL: x UNFL: x INEXACT: x

650 clock: 1

A sign: 0

A exponent: 00000010

B sign: 0

B exponent: 10000000

Res sign: x

Res mantissa: xxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Res exponent: xxxxxxxx

Rounding Mode: 00 Clear: 1

NAN: x INF: x OVFL: x UNFL: x INEXACT: x

********* Negative X Negative (underflow) *******************

700 clock: 0

A sign: 1

A mantissa: 00000010001000100000000

A exponent: 00000011

B sign: 0

B exponent: 10000001

Res sign: x

Res exponent: xxxxxxxx

Rounding Mode: 00 Clear: 1

NAN: x INF: x OVFL: x UNFL: x INEXACT: x

750 clock: 1

A sign: 1

A mantissa: 00000010001000100000000

A exponent: 00000011

B sign: 0

B exponent: 10000001

Res sign: x

Res exponent: xxxxxxxx

Rounding Mode: 00 Clear: 1

NAN: x INF: x OVFL: x UNFL: x INEXACT: x

752 clock: 1

A sign: 1

A mantissa: 00000010001000100000000

A exponent: 00000011

B sign: 0

B exponent: 10000001

Res sign: 0

Res exponent: 10000001

Rounding Mode: 00 Clear: 1

NAN: 0 INF: 0 OVFL: 0 UNFL: 0 INEXACT: 0

************* Negative x Positive ************

800 clock: 0

A sign: 1

A mantissa: 0000000000000100010001

A exponent: 01000011

B sign: 1

B mantissa: 00000010001000100000000

B exponent: 01000011

Res sign: 0

Res exponent: 10000001

Rounding Mode: 00 Clear: 1

NAN: 0 INF: 0 OVFL: 0 UNFL: 0 INEXACT: 0

850 clock: 1

A sign: 1

A mantissa: 0000000000000100010001

A exponent: 01000011

B sign: 1

B mantissa: 00000010001000100000000

B exponent: 01000011

Res sign: 0

Res exponent: 10000001

Rounding Mode: 00 Clear: 1

NAN: 0 INF: 0 OVFL: 0 UNFL: 0 INEXACT: 0

852 clock: 1

A sign: 1

A mantissa: 0000000000000100010001

A exponent: 01000011

B sign: 1

B mantissa: 00000010001000100000000

B exponent: 01000011

Res sign: 0

Res exponent: 11100100

Rounding Mode: 00 Clear: 1

NAN: 0 INF: 0 OVFL: 0 UNFL: 0 INEXACT: 0

900 clock: 0

A sign: 0

A mantissa: 00000000010001000000000

A exponent: 10001000

B sign: 1

B exponent: 00000111

Res sign: 0

Res exponent: 11100100

Rounding Mode: 00 Clear: 1

NAN: 0 INF: 0 OVFL: 0 UNFL: 0 INEXACT: 0

950 clock: 1

A sign: 0

A mantissa: 0000000001000100000000

A exponent: 10001000

B sign: 1

B exponent: 00000111

Res sign: 0

Res exponent: 11100100

Rounding Mode: 00 Clear: 1

NAN: 0 INF: 0 OVFL: 0 UNFL: 0 INEXACT: 0

952 clock: 1

A sign: 0

A mantissa: 0000000001000100000000

A exponent: 10001000

B sign: 1

B exponent: 00000111

Res sign: 0

Res exponent: 11101000

Rounding Mode: 00 Clear: 1

NAN: 0 INF: 0 OVFL: 0 UNFL: 0 INEXACT: 0

************** Negative x Negative ************

1000 clock: 0

A sign: 0

A exponent: 10001000

B sign: 1

B exponent: 10111100

Res sign: 0

Res exponent: 11101000

Rounding Mode: 00 Clear: 1

NAN: 0 INF: 0 OVFL: 0 UNFL: 0 INEXACT: 0

1050 clock: 1

A sign: 0

A exponent: 10001000

B sign: 1

B exponent: 10111100

Res sign: 0

Res exponent: 11101000

Rounding Mode: 00 Clear: 1

NAN: 0 INF: 0 OVFL: 0 UNFL: 0 INEXACT: 0

1052 clock: 1

A sign: 0

A exponent: 10001000

B sign: 1

B exponent: 10111100

Res sign: 0

Res exponent: 00000000

Rounding Mode: 00 Clear: 1

NAN: 0 INF: 0 OVFL: 0 UNFL: 1 INEXACT: 0

****************** Denor x Denorm *************

1100 clock: 0

A sign: 1

A exponent: 10111100

B sign: 1

B exponent: 10111100

Res sign: 0

Res exponent: 00000000

Rounding Mode: 00 Clear: 1

NAN: 0 INF: 0 OVFL: 0 UNFL: 1 INEXACT: 0

1150 clock: 1

A sign: 1

A exponent: 10111100

B sign: 1

B exponent: 10111100

Res sign: 0

Res exponent: 00000000

Rounding Mode: 00 Clear: 1

NAN: 0 INF: 0 OVFL: 0 UNFL: 1 INEXACT: 0

1152 clock: 1

A sign: 1

A exponent: 10111100

B sign: 1

B exponent: 10111100

Res sign: 0

Res exponent: 00000100

Rounding Mode: 00 Clear: 1

NAN: 0 INF: 0 OVFL: 0 UNFL: 0 INEXACT: 0

************** Inf x pos ***********

1200 clock: 0

A sign: 0

A exponent: 00000000

B sign: 0

B exponent: 10001000

Res sign: 0

Res exponent: 00000100

Rounding Mode: 00 Clear: 1

NAN: 0 INF: 0 OVFL: 0 UNFL: 0 INEXACT: 0

1250 clock: 1

A sign: 0

A exponent: 00000000

B sign: 0

B exponent: 10001000

Res sign: 0

Res exponent: 00000100

Rounding Mode: 00 Clear: 1

NAN: 0 INF: 0 OVFL: 0 UNFL: 0 INEXACT: 0

1252 clock: 1

A sign: 0

A exponent: 00000000

B sign: 0

B exponent: 10001000

Res sign: 0

Res exponent: 00000101

Rounding Mode: 00 Clear: 1

NAN: 0 INF: 1 OVFL: 0 UNFL: 0 INEXACT: 1

1300 clock: 0

A sign: 0

A mantissa: 00000000000000000010000

A exponent: 11111111

B sign: 0

B mantissa: 0000000000000000010000

B exponent: 10000000

Res sign: 0

Res exponent: 00000101

Rounding Mode: 00 Clear: 1

NAN: 0 INF: 1 OVFL: 0 UNFL: 0 INEXACT: 1

1350 clock: 1

A sign: 0

A mantissa: 0000000000000000010000

A exponent: 11111111

B sign: 0

B mantissa: 0000000000000000010000

B exponent: 10000000

Res sign: 0

Res exponent: 00000101

Rounding Mode: 00 Clear: 1

NAN: 0 INF: 1 OVFL: 0 UNFL: 0 INEXACT: 1

1352 clock: 1

A sign: 0

A mantissa: 0000000000000000010000

A exponent: 111111111

B sign: 0

B mantissa: 0000000000000000010000

B exponent: 10000000

Res sign: 1

Res mantissa: 00000010001000100000000

Res exponent: 00000101

Rounding Mode: 00 Clear: 1

NAN: 0 INF: 0 OVFL: 0 UNFL: 0 INEXACT: 0

1400 clock: 0

A sign: 0

A mantissa: 10000010001000100010001

A exponent: 11111101

B sign: 0

B mantissa: 0000001000100010001

B exponent: 10000000

Res sign: 1

Res mantissa: 00000010001000100000000

Res exponent: 00000101

Rounding Mode: 00 Clear: 1

NAN: 0 INF: 0 OVFL: 0 UNFL: 0 INEXACT: 0

1450 clock: 1

A sign: 0

A mantissa: 10000010001000100010001

A exponent: 11111101

B sign: 0

B mantissa: 0000001000100010001

B exponent: 10000000

Res sign: 1

Res mantissa: 00000010001000100000000

Res exponent: 00000101

Rounding Mode: 00 Clear: 1

NAN: 0 INF: 0 OVFL: 0 UNFL: 0 INEXACT: 0

1452 clock: 1

A sign: 0

A mantissa: 10000010001000100010001

A exponent: 11111101

B sign: 0

B mantissa: 0000001000100010001

B exponent: 10000000

Res sign: 0

Res mantissa: 00000010001001000010011

Res exponent: 00000111

Rounding Mode: 00 Clear: 1

NAN: 0 INF: 0 OVFL: 0 UNFL: 0 INEXACT: 1

1500 clock: 0

A sign: 0

A exponent: 00000000

B sign: 0

B exponent: 00000000

Res sign: 0

Res mantissa: 00000010001001000010011

Res exponent: 00000111

Rounding Mode: 00 Clear: 1

NAN: 0 INF: 0 OVFL: 0 UNFL: 0 INEXACT: 1

1550 clock: 1

A sign: 0

A exponent: 00000000

B sign: 0

B exponent: 00000000

Res sign: 0

Res mantissa: 00000010001001000010011

Res exponent: 00000111

Rounding Mode: 00 Clear: 1

NAN: 0 INF: 0 OVFL: 0 UNFL: 0 INEXACT: 1

1552 clock: 1

A sign: 0

A exponent: 00000000

B sign: 0

B exponent: 00000000

Res sign: 1

Res mantissa: 0000000001000100000000

Res exponent: 00010000

Rounding Mode: 00 Clear: 1

NAN: 0 INF: 0 OVFL: 0 UNFL: 0 INEXACT: 0

1600 clock: 0

A sign: 0

A exponent: 00000000

B sign: 0

B exponent: 00000000

Res sign: 1

Res mantissa: 00000000010001000000000

Res exponent: 00010000

Rounding Mode: 00 Clear: 1

NAN: 0 INF: 0 OVFL: 0 UNFL: 0 INEXACT: 0

1650 clock: 1

A sign: 0

A exponent: 00000000

B sign: 0

B exponent: 00000000

Res sign: 1

Res mantissa: 0000000001000100000000

Res exponent: 00010000

Rounding Mode: 00 Clear: 1

NAN: 0 INF: 0 OVFL: 0 UNFL: 0 INEXACT: 0

1652 clock: 1

A sign: 0

A exponent: 00000000

B sign: 0

B exponent: 00000000

Res sign: 1

Res exponent: 11000101

Rounding Mode: 00 Clear: 1

NAN: 0 INF: 0 OVFL: 0 UNFL: 0 INEXACT: 0

1700 clock: 0

A sign: 0

A exponent: 00000000

B sign: 0

B exponent: 00000000

Res sign: 1

Res exponent: 11000101

Rounding Mode: 00 Clear: 1

NAN: 0 INF: 0 OVFL: 0 UNFL: 0 INEXACT: 0

1750 clock: 1

A sign: 0

A exponent: 00000000

B sign: 0

B exponent: 00000000

Res sign: 1

Res exponent: 11000101

Rounding Mode: 00 Clear: 1

NAN: 0 INF: 0 OVFL: 0 UNFL: 0 INEXACT: 0

1752 clock: 1

A sign: 0

A exponent: 00000000

B sign: 0

B exponent: 00000000

Res sign: 0

Res exponent: 11111001

Rounding Mode: 00 Clear: 1

NAN: 0 INF: 0 OVFL: 0 UNFL: 0 INEXACT: 0

1800 clock: 0

A sign: 0

A exponent: 00000000

B sign: 0

B exponent: 00000000

Res sign: 0

Res exponent: 11111001

Rounding Mode: 00 Clear: 1

NAN: 0 INF: 0 OVFL: 0 UNFL: 0 INEXACT: 0

1850 clock: 1

A sign: 0

A exponent: 00000000

B sign: 0

B exponent: 00000000

Res sign: 0

Res exponent: 11111001

Rounding Mode: 00 Clear: 1

NAN: 0 INF: 0 OVFL: 0 UNFL: 0 INEXACT: 0

1852 clock: 1

A sign: 0

A exponent: 00000000

B sign: 0

B exponent: 00000000

Res sign: 0

Res exponent: 00000111

Rounding Mode: 00 Clear: 1

NAN: 0 INF: 0 OVFL: 0 UNFL: 0 INEXACT: 0

1900 clock: 0

A sign: 0

A exponent: 00000000

B sign: 0

B exponent: 00000000

Res sign: 0

Res exponent: 00000111

Rounding Mode: 00 Clear: 1

NAN: 0 INF: 0 OVFL: 0 UNFL: 0 INEXACT: 0

1950 clock: 1

A sign: 0

A exponent: 00000000

B sign: 0

B exponent: 00000000

Res sign: 0

Res exponent: 00000111

Rounding Mode: 00 Clear: 1

NAN: 0 INF: 0 OVFL: 0 UNFL: 0 INEXACT: 0

1952 clock: 1

A sign: 0

A exponent: 00000000

B sign: 0

B exponent: 00000000

Res sign: 0

Res exponent: 11111111

Rounding Mode: 00 Clear: 1

NAN: 1 INF: 0 OVFL: 1 UNFL: 0 INEXACT: 1

L114 "mplertst.v": \$finish at simulation time 2000

13027 simulation events + 2387 accelerated events + 4822 timing check events

CPU time: 0.8 secs to compile + 1.8 secs to link + 1.2 secs in simulation

End of VERILOG-XL 1.8 Sep 18, 1994 01:43:57

APPENDIX G LAYOUT PLATES

Cascade Design Automation

Project Manager View Select Placement Package Route Miscellaneous

Project: /tmp_mmt/h/kepler_u2/kljackso/projects/thesis2 (CDR1u2m1p) Cell: fftchip (440.553 x 615.835) = 2.71e+05 sq mils

Cascade Design Automation Miscellaneous Placement Route Channel **View** Select Project Manager Complex_Adder_4_input (complex_adder_4_input) 1 Complex_Multiplier (complex_mplier)

Project: /tmp_wnt/h/kepler_u2/kljackso/projects/thesis2 (CDR1u2m1p) Cell: fft (372,61 x 548,665) = 2,04e+05 sq mils

edit-cell

FP_BAker1 (fpublic) FF m25cr5 (fpublic) IP_Bitters (fpublic) IP_Bitters (fpublic) IP_Bitters (fpublic) IP_Bitters (fpublic) IP_Bitters (fpublic)		The second secon		
House School (Ipadder) House Man Strader)		₹ 3		
1 Philippedder v Heinklein Spadder 2				
1 Philippedder v Heinklein Spadder 2		. 4		
	FP_ride	ler1 (fpudder)	FF Hilder 5 (fipudder)	
	s			
	* 1	11	\$	
	1 IV 044			
P_Hdder4 (Ipadden) IP_Mdden: Sipadden)	Service Service	- Arpader &	FP_Hidder I. Dipadder 2	
P_Hidden4 (I padden) P_Hidden: St padden)				
H_mideral (Ipadder) H_midder: (Ipadder)				
HE-Hilder 4 (Apadden x TPE) Miller 21 (Apadden x)	* X			
Photoer4 (Ipadder) Photoeri (Ipadder)				
Highdens (Fpadder) Highdens (Fpadder)				
P_mider4 (Ipadder) P_mider3 (Ipadder)				
TI _PROPER ST pander s	ti'_edder	4 (Ipadder)	TP off street to	
			11_maters 37 paider 7	
	er grift.	The second section of the		
ecc: /rmp_mnt/h/kepler_u2/kljackso/projects/theais? (CORLU2mip) Call: complex_scaler=c_input (287,486 x 283,744) = 6.45e+04 sq	SECURITION OF THE SECURITION OF THE SECURITION			

Cascade Design Automation

The time of the control of the contr View Network Edit Select - View Help Project *Setup winday CTIC > Congress 1992, 1993 Cascada Dazign Automation Corporation.

APPENDIX H PART SPECIFICATIONS (SELECTED)

DATA TABLE for part mux4

BUFFER_SIZE = 2

bits = 64

 $dpath_flag = 0$

Ruleset: CDA1u2m1p Ruleset Version: 3.00 Process Version: 3.00

Process Variation: nominal Derating Factor: 1.000

Voltage: 5.0 V Temp: 25 C

Switching Factor: 50%

Power consumption: 984.400uW at 10 MHz: Duty cycle 100% Height: 655.500u Width: 502.800u Area: 329585.400u 2

Delay parameters calculated for loads from 0.216 to 0.541 pF

Load range is determined by module buffer-size of 2

Delay Equation: Output delay = intrinsic + ((ns/pF) * output load)

Inputs

Pin Name	Input Capacitance (fF)
INO	52
IN1	55
IN2	56
IN3	57
S0	8176
S1	7 553

Outputs

Pin Name	Output Capacitance (fF)	Zpu (ohms)	Zpd (ohms)
Υ .	44	1398	1539

Propagation Delays

	Output Rising		Outpu	ut Falling	Output delay for 0.000 pf load	
	intrinsic delay (ns)	load depen- dent delay (ns/pF)	intrinsic delay (ns)	load depen- dent delay (ns/pF)	Rising (ns)	Falling (ns)
IN0-Y	1.444	1.508	1.174	1.668	1.444	1.174
IN1-Y	1.424	1.508	1.186	1.668	1.424	1.186
IN2-Y	1.418	1.508	1.191	1.668	1.418	1.191
IN3-Y	1.410	1.508	1.192	1.668	1.410	1.192
S0-Y	1.852	1.508	1.559	1.668	1.852	1.559
S1-Y	1.933	1.508	1.273	1.668	1.933	1.273

Attributes

Name	Type	Value	Description	
Ivaille	туре	Value		

```
Verilog information

mux4

#(N, DPFLAG, GROUP)

(IN0, IN1, IN2, IN3, S0, S1, Y);

N:integer

DPFLAG: integer

GROUP: string

wire IN0[N-1:0];

wire IN1[N-1:0];

wire IN2[N-1:0];

wire S0;

wire S0;

wire S1;

wire Y[N-1:0];
```

VHDL information

mux4

GENERIC MAP (N, DPFLAG, GROUP) PORT MAP (IN0, IN1, IN2, IN3, S0, S1, Y); N: integer

DPFLAG: integer GROUP: string

IN0: std_logic_vector(N-1 downto 0); IN1: std_logic_vector(N-1 downto 0); IN2: std_logic_vector(N-1 downto 0); IN3: std_logic_vector(N-1 downto 0);

S0: std_logic; S1: std_logic;

Y: std_logic_vector(N-1 downto 0);

DATA TABLE for part inc

BUFFER_SIZE = 2

bits = 28

 $dpath_flag = 0$

Ruleset: CDA1u2m1p Ruleset Version: 3.00 Process Version: 3.00 Process Variation: nominal Derating Factor: 1.000

Voltage: 5.0 V Temp: 25 C

Switching Factor: 50%

Power consumption: 2220.175uW at 10 MHz: Duty cycle 100%

Height: 758.200u Width: 768.600u Area: 582752.520u²

Delay parameters calculated for loads from 0.216 to 0.541 pF

Load range is determined by module buffer-size of 2

Delay Equation: Output delay = intrinsic + ((ns/pF) * output load)

Inputs

Pin Name	Input Capacitance (fF)	
INO	208	

Outputs

Pin Name	Output Capacitance (fF)	Zpu (ohms)	Zpd (ohms)
Υ	50	698	770

Propagation Delays

	Outp	Output Rising		ut Falling	Output c	•
	intrinsic delay (ns)	load depen- dent delay (ns/pF)	intrinsic delay (ns)	load depen- dent delay (ns/pF)	Rising (ns)	Falling (ns)
IN0-Y	5.773	0.985	5.204	1.055	5.773	5.204

Attributes

Name	Type	Value	Description
1141110	1 .,,,,		

```
Verilog information
inc
   #(N, DPFLAG, GROUP)
   (EN, INO, TC, TCBAR, Y);
   N: integer
   DPFLAG: integer
   GROUP: string
   wire EN;
   wire IN0[N-1:0];
   wire TC;
   wire TCBAR;
   wire Y[N-1:0];
VHDL information
inc
   GENERIC MAP (N, DPFLAG, GROUP)
   PORT MAP (EN, INO, TC, TCBAR, Y);
   N: integer
   DPFLAG: integer
   GROUP: string
   EN: std_logic;
   IN0: std_logic_vector(N-1 downto 0);
   TC: std_logic;
    TCBAR: std_logic;
   Y: std_logic_vector(N-1 downto 0);
```

DATA TABLE for part barrelleft

BUFFER_SIZE = 4

bits = 48

 $dpath_flag = 0$

sels = 6

Ruleset: CDA1u2m1p Ruleset Version: 3.00 Process Version: 3.00 Process Variation: nominal Derating Factor: 1.000

Voltage: 5.0 V Temp: 25 C

Switching Factor: 50%

Power consumption: 2220.300uW at 10 MHz: Duty cycle 100%

Height: 760.300u Width: 764.600u Area: 581325.380u ²

Delay parameters calculated for loads from 0.811 to 1.081 pF

Load range is determined by module buffer-size of 4

Delay Equation: Output delay = intrinsic + ((ns/pF) * output load)

Inputs

Pin Name Input Capacitance (fF)			
INO	206		
S	5531		

Outputs

Pin Name	Output Capacitance (fF)	Zpu (ohms)	Zpd (ohms)
Y	31	698	770

Propagation Delays

	Output Rising		Outpo	ut Falling	Output o	
	intrinsic delay (ns)	load depen- dent delay (ns/pF)	intrinsic delay (ns)	load depen- dent delay (ns/pF)	Rising (ns)	Falling (ns)
IN0-Y	5.831	0.781	5.368	0.848	5.831	5.368
S-Y	6.384	0.781	5.474	0.848	6.384	5.474

Attributes

Mar	Name	Туре	Value	Description	
	, , , , , , ,	. 71.			

```
Verilog information
barrelleft
   #(N, M, DPFLAG, GROUP)
   (IN0, S, Y);
   N: integer
   M: integer
   DPFLAG: integer
   GROUP: string
   wire IN0[N-1:0];
   wire S[M-1:0];
   wire Y[N-1:0];
VHDL information
barrelleft
   GENERIC MAP (N, M, DPFLAG, GROUP)
   PORT MAP (IN0, S, Y);
   N: integer
   M: integer
   DPFLAG: integer
   GROUP: string
   IN0: std_logic_vector(N-1 downto 0);
   S: std_logic_vector(M-1 downto 0);
   Y: std_logic_vector(N-1 downto 0);
```

DATA TABLE for part addhs

 $BUFFER_SIZE = 2$

bits = 8

 $dpath_flag = 1$

Ruleset: CDA1u2m1p Ruleset Version: 3.00 Process Version: 3.00

Process Variation: nominal Derating Factor: 1.000

Voltage: 5.0 V Temp: 25 C

Switching Factor: 50%

Power consumption: 816.931uW at 10 MHz: Duty cycle 100%

Height: 324.200u Width: 191.650u Area: 62132.930u ²

Delay parameters calculated for loads from 0.216 to 0.541 pF

Load range is determined by module buffer-size of 2

Delay Equation: Output delay = intrinsic + ((ns/pF) * output load)

Inputs

Pin Name	Input Capacitance (fF)		
Α	112		
В	128		
CIN	36		

Outputs

Pin Name	Output Capacitance (fF)	Zpu (ohms)	Zpd (ohms)	
COUT	40	1398	1539	
SUM	34	1398	1539	

Propagation Delays

	Output Rising		Output Falling		Output delay for 0.000 pf load	
	intrinsic delay (ns)	load depen- dent delay (ns/pF)	intrinsic delay (ns)	load depen- dent delay (ns/pF)	Rising (ns)	Falling (ns)
A-COUT	2.328	1.305	2.961	1.514	2.328	2.961
B-COUT	2.372	1.305	3.005	1.514	2.372	3.005
CIN-COUT	2.474	1.305	3.107	1.514	2.474	3.107
A-SUM	3.329	1.311	3.332	1.517	3.329	3.332
B-SUM	3.373	1.311	3.376	1.517	3.373	3.376
CIN-SUM	3.475	1.311	3.478	1.517	3.475	3.478

Attributes

Name	Type	Value	Description
Name	Туре	value	Description

Verilog information

addhs

#(N, DPFLAG, GROUP) (A, B, CIN, COUT, SUM);

(A, B, CIN, COUT N: integer

DPFLAG: integer

GROUP: string

wire A[N-1:0];

 $\mathbf{wire}\;B[N\text{-}1:0];$

wire CIN; wire COUT;

wire SUM[N-1:0];

VHDL information

addhs

GENERIC MAP (N, DPFLAG, GROUP) PORT MAP (A, B, CIN, COUT, SUM);

N: integer

DPFLAG: integer

GROUP: string

A: std_logic_vector(N-1 downto 0);
B: std_logic_vector(N-1 downto 0);
CIN: std_logic;
COUT: std_logic;
SUM: std_logic_vector(N-1 downto 0);

DATA TABLE for part inc

BUFFER_SIZE = 4 bits = 8 dpath_flag = 0

Ruleset: CDA1u2m1p Ruleset Version: 3.00 Process Version: 3.00 Process Variation: nominal

Derating Factor: 1.000

Voltage: 5.0 V Temp: 25 C

Switching Factor: 50%

Power consumption: 207.062uW at 10 MHz: Duty cycle 100%

Height: 149.350u Width: 172.800u Area: 25807.680u ²

Delay parameters calculated for loads from 0.811 to 1.081 pF

Load range is determined by module buffer-size of 4

Delay Equation: Output delay = intrinsic + ((ns/pF) * output load)

Inputs

Pin Name	Input Capacitance (fF)
EN	56
INO	49

Outputs

Pin Name	ame Output Capacitance (fF) Zpu (ohms		Zpd (ohms)
TC	59	698	770
TCBAR	18	2795	3077
Y	33	6 98	770

Propagation Delays

	Output Rising		Output Falling		Output delay for 0.000 pf load	
	intrinsic delay (ns)	load depen- dent delay (ns/pF)	intrinsic d elay (ns)	load depen- dent delay (ns/pF)	Rising (ns)	Falling (ns)
EN-TC	5.382	0.652	5.212	0.752	5.382	5.212
INO-TC	5.367	0.652	5.241	0.752	5.367	5.241
INO-TCBAR	6.142	2.670	6.187	3.044	6.142	6.187
EN-TCBAR	6.113	2.670	6.202	3.044	6.113	6.202
EN-Y	5.660	0.656	5.818	0.752	5.660	5.818
IN0-Y	5.689	0.656	5.803	0.752	5.689	5.803

Attributes

	Name	Туре	Value	Description
- 1		• .		

Verilog information

inc

#(N, DPFLAG, GROUP)

(EN, INO, TC, TCBAR, Y);

N: integer

DPFLAG: integer GROUP: string

wire EN;

wire IN0[N-1:0];

wire TC;

wire TCBAR;

wire Y[N-1:0];

VHDL information

inc

GENERIC MAP (N, DPFLAG, GROUP) PORT MAP (EN, IN0, TC, TCBAR, Y);

N: integer

DPFLAG: integer

GROUP: string

EN: std_logic;
IN0: std_logic_vector(N-1 downto 0);
TC: std_logic;
TCBAR: std_logic;
Y: std_logic_vector(N-1 downto 0);

DATA TABLE for part hsmult2piped_c

A_operand_width = 26 BUFFER_SIZE = 6

 $B_{operand_width} = 26$

 $C_{operand_width} = 0$

PROD_operand_width = 52

Ruleset: CDA1u2m1p Ruleset Version: 3.00 Process Version: 3.00

Process Variation: nominal Derating Factor: 1.000

Voltage: 5.0 V Temp: 25 C

Switching Factor: 50%

Power consumption: 38323.449uW at 10 MHz: Duty cycle 100% Height: 1618.700u Width: 3631.350u Area: 5878066.245u 2

Delay parameters calculated for loads from 1.351 to 1.621 pF

Load range is determined by module buffer-size of 6

Delay Equation: Output delay = intrinsic + ((ns/pF) * output load)

Inputs

Pin Name	Input Capacitance (fF)
Α	1152
В	68
CLK	19996
CLR	27866

Outputs

Pin Name	Output Capacitance (fF)	Zpu (ohms)	Zpd (ohms)
PROD	376	559	616

Propagation Delays

	Output Rising		Output Falling		Output delay for 0.000 pf load	
	intrinsic delay (ns)	load depen- dent delay (ns/pF)	intrinsic delay (ns)	load depen- dent delay (ns/pF)	Rising (ns)	Falling (ns)
CLK-PROD	10.893	0.522	10.900	0.604	10.893	10.900

Attributes

Name	Туре	Value	Description
hold	int	0.108 ns	data hold time for CLK-D
mpwh	int	0.676 ns	minimum pulse width high for CLK-D
mpwl	int	0.676 ns	minimum pulse width low for CLR-VDD
setup	int	0.676 ns	data setup time for CLK-D

```
Verilog information
hsmult2piped_c
#(AA, BB, P)
(A, B, CLK, CLR, PROD);
AA: integer
BB: integer
P: integer
wire A[AA-1:0];
wire B[BB-1:0];
wire CLK;
wire CLR;
wire PROD[P-1:0];
```

VHDL information hsmult2piped_c GENERIC MAP (AA, BB, P) PORT MAP (A, B, CLK, CLR, PROD);

AA: integer BB: integer P: integer

A: std_logic_vector(AA-1 downto 0);
B: std_logic_vector(BB-1 downto 0);

CLK: std_logic; CLR: std_logic; PROD: std_logic_vector(P-1 downto 0);

DATA TABLE for part barrelright

BUFFER_SIZE = 4

bits = 50

 $dpath_flag = 0$

sels = 6

Ruleset: CDA1u2m1p Ruleset Version: 3.00 Process Version: 3.00

Process Variation: nominal Derating Factor: 1.000

Voltage: 5.0 V Temp: 25 C

Switching Factor: 50%

Power consumption: 2312.812uW at 10 MHz: Duty cycle 100%

Height: 816.950u Width: 748.600u Area: 611568.770u ²

Delay parameters calculated for loads from 0.811 to 1.081 pF

Load range is determined by module buffer-size of 4

Delay Equation: Output delay = intrinsic + ((ns/pF) * output load)

Inputs

Pin Name	Input Capacitance (fF)
INO	58
s	5841

Outputs

Pin Name	Output Capacitance (fF)	Zpu (ohms)	Zpd (ohms)
Y	74	698	770

Propagation Delays

	Output Rising		Outpo	ut Falling	Output o	
	intrinsic delay (ns)	load depen- dent delay (ns/pF)	intrinsic delay (ns)	load depen- dent delay (ns/pF)	Rising (ns)	Falling (ns)
INO-Y	6.066	0.789	5.602	0.856	6.066	5.602
S-Y	6.583	0.789	5.686	0.856	6.583	5.686

Attributes

Name	Туре	Value	Description

```
Verilog information
barrelright
   #(N, M, DPFLAG, GROUP)
   (IN0, S, Y);
   N: integer
   M: integer
   DPFLAG: integer
   GROUP: string
   wire IN0[N-1:0];
   wire S[M-1:0];
   wire Y[N-1:0];
VHDL information
barrelright
   GENERIC MAP (N, M, DPFLAG, GROUP)
   PORT MAP (IN0, S, Y);
   N: integer
   M: integer
   DPFLAG: integer
   GROUP: string
   IN0: std_logic_vector(N-1 downto 0);
   S: std_logic_vector(M-1 downto 0);
   Y: std_logic_vector(N-1 downto 0);
```

LIST OF REFERENCES

- [1]Michael Lee Zimmer, "A Design of a Radix-4 Floating Point FFT Butterfly," Master's Dissertation. Naval Postgraduate School 1991.
- [2] William A. Brown. and Herschel H. Loomis, Jr., "Digital Implementation of Spectral Correlation Analyzers," *IEEE Transactions on Signal Processing.*, Vol 41, No. 2 February, 1993, p.703.
- [3] W. A. Gardner, <u>Statistical Spectral Analysis: A Nonprobalilistic Theory</u>, Englewood Cliffs, NJ: Prentice-Hall, 1987.
- [4] Randy S. Roberts, William A. Brown, and Herschel H. Loomis, Jr., "Computationally Efficient Algorithms for Cyclic Spectral Analysis," *IEEE SP Magazine*, April 1991.
- [5] Raymond F. Bernstein, Jr. and Herschel H. Loomis, Jr., "Cyclostationary Processing Using Butterfly Machines," 28th Conference on Information Sciences and Systems, Princeton University, March 18, 1994.
- [6] John A. Eldon, "Fourier on a Chip," <u>VLSI Signal Processing</u>, <u>III</u>, Robert W. Brodersen and Howard S. Moscovitz, editors. IEEE Press: New York, NY 1988, p. 15.
- [7] Verilog-XL Reference Manual, Volume 1, Version 1.6, Cadence Design Systems Inc., March 1991.
- [8] Epoch User's Manual, Cascade Design Automation, Bellevue, WA, January 10, 1994.
- [9] MC68881/MC68882 User's Manual, Motorola, Inc, Prentis-Hall:Englewood Cliffs, NJ.

INITIAL DISTRIBUTION LIST

1.	Defense Technical Information Center Cameron Station Alexandria, VA 22304-6145	2
2.	Library, Code 52 Naval Postgraduate School Monterey, CA 93943	2
3.	Chairman, Code EC Department of Electrical and Computer Engineering Naval Postgraduate School Monterey, CS 93943-5121	1
4.	Professor H. H. Loomis Jr., Code EC/Lm Department of Electrical and Computer Engineering Naval Postgraduate School Monterey, CA 93943-5121	2
5.	Professor Ray Bernstein, Code EC/Be Department of Electrical and Computer Engineering Naval Postgraduate School Monterey, CS 93943-5121	1
6.	Professor Douglas J. Fouts, Code EC/Fs Department of Electrical and Computer Engineering Naval Postgraduate School Monterey, CS 93943-5121	1
7.	Curricular Office, Code 3A Naval Postgraduate School Monterey, CA 93943-5000	1
8.	Capt. R. Fisher Naval Research Laboratory Code 9110 4555 Overlook Ave. SW Washington, DC 20375	1
9.	Director, Navy Space Systems Division Space and Electronic Warfare Directorate ATTN: Code N63C Chief of Naval Operations (N63) 2000 Navy Pentagon Room 4C671 Washington, DC 20350-2000	1

10.	Hiram Cooke	1
	Computer Center, Code 051	
	Naval Postgraduate School	
	Monterey, CA 93943-2000	
11.	Kevin L. Jackson	2
	9838 Arrowood Dr.	
	Manassas, VA 22111	