#### Basics of Time-Series Analysis

Charalampos E. Tsourakakis ctsourak@bu.edu

CS365 Foundations of Data Science
April 2024

#### Time series – ubiquitous!

Time-series appear in any domain that involves temporal measurements.

#### Examples of such domains include:

- signal processing
- econometrics
- mathematical finance
- weather forecasting
- electroencephalography
- control engineering
- astronomy
- communications engineering
- . . .

# Time series – examples

#### Temperature time series across 4 Italian cities



## Time series – examples



• When we have a *single time-series* we wish to forecast using its past values, we call this *univariate* analysis.

# Time series – examples



#### EEG time series from different sections of the brain

• When we have a *target time-series* we wish to forecast using its past values and other co-evolving time-series, we call this *multivariate* analysis.

## Time series analysis

#### Why do we analyze time-series?

Interpretation

E.g., seasonal adjustment

2 Forecasting

E.g., predict stock prices

3 Control

E.g., how does increasing VAT will affect (un)employment?

#### Time series analysis

4 Hypothesis testing

E.g., should we be believers in global warming?



**6** Understanding catastrophic events

E.g., will an impactful earthquake take place tomorrow (here)?

## Today's focus – Forecasting



A trend is a trend is a trend. But the question is, will it bend? Will it alter its course through some unforeseen force and come to a premature end? (Alex Cairncross)

## Today's outline

#### Part I: Fundamentals

 Stochastic processes, strict vs weak stationarity, correlograms, partial correlograms, periodograms, autoregressive models (AR), moving average models (MA), transformations, compact time-series description.

#### 2 Part II: Forecasting methods

 Evaluation protocols, basic metrics, null models, spectral methods, ARMA, ARIMA, SARIMA, VAR, similarity search, deep learning (deep feedforward neural nets, recursive neural nets)

## Stochastic processes – informal description

**Definition.** A stochastic process is a *collection of random* variables indexed by time.

- (a) Discrete time stochastic processes (e.g.,  $X_0, X_1, X_2, ...$ )
- (b) Continuous time stochastic processes ( $\{X_t\}_{t\geq 0}$ )



#### Time-series – formal definition

- A **time series** is a stochastic process consisting of random variables indexed by time *t*.
- The stochastic behavior of the time series is determined by specifying the probability density/mass functions (pdf's)

$$p(x_{t_1}, x_{t_2}, \ldots, x_{t_m}),$$

for all finite collections of time indexes

$$\{(t_1,\ldots,t_m), m<+\infty\},\$$

i.e, all finite-dimensional distributions of  $\{X_t\}$ .

## Time-series – Stationarity

**Strictly stationary time-series.** A time series  $\{X_t\}$  is strictly stationary if  $\forall t, m, (t_1, \dots, t_m)$ 

$$p(t_1+\tau,\ldots,t_m+\tau)=p(t_1,\ldots,t_m).$$

- In other words, a time series is strictly stationary if the probability distribution is invariant under time translation.
   Examples
- (a) *iid* processes are strictly stationary.
- (b)  $X_t = Z_1 \cos(t) + Z_2 \sin(t)$  is strictly stationary if  $Z_1, Z_2$  are independent normal variables.
- (c) Random walks in certain types of graphs (stationary Markov chains)
  - Remark: Stationary time series are typically non-stationary.

## Time-series – Covariance stationarity

Covariance stationary time-series. A time series  $\{X_t\}$  is covariance stationary if

$$\mathbb{E}\left[X_{t}\right] = \mu$$

$$\mathbb{V}ar\left[X_{t}\right]=\sigma^{2}$$

$$\operatorname{Cov}[X_t, X_{t+h}] = \gamma(h)$$

Reminder:  $Cov[X_t, X_{t+h}] = \mathbb{E}[(X_t - \mu_t)(X_{t+h} - \mu_{t+h})]$ .

#### Basic exploration tools - auto-correlation function

**Auto-correlation function of**  $\{X_t\}$  is defined as

$$\rho_X(h) = \frac{\gamma_X(h)}{\gamma_X(0)} \\
= \frac{\text{Cov}(X_{t+h}, X_t)}{\text{Cov}(X_t, X_t)} \\
= \frac{\text{Cov}(X_{t+h}, X_t)}{\mathbb{Var}[X_t]} \\
= \text{Corr}(X_{t+h}, X_t)$$

#### Basic exploration tools - auto-correlation function

White noise:  $X_t \sim WN(0, \sigma^2)$ .

- $\mathbb{E}\left[X_{t}\right]=0$
- $Var[X_t] = 0$
- $\Pr[X_t \le x_t] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x_t} e^{-x^2/2} dx$ .



Question: What is the auto-correlation function of white noise? Is it stationary?

## Basic exploration tools - auto-correlation function

We have:

$$\gamma_X(t+h,t) = \begin{cases} \sigma^2 & h=0\\ 0 & h>0 \end{cases}$$

Thus,

- $\mu_t = 0$  for all t
- $\gamma_X(t+h, ht = \gamma_X(h, 0))$  for all  $t \ge 0$
- Thus  $\rho_X(h) = 1$  if h = 0, 0 otherwise.
- question: is  $X_t$  stationary?

#### Basic exploration tools – correlogram

 The correlogram plots the auto-correlation function versus the lag.



#### Basic exploration tools - correlogram

#### Python:



#### What is a random walk time series?



#### Random walk

**Random walk:**  $S_t = \sum_{i=1}^t X_i$  for  $X_i \sim WN(0, \sigma^2)$ .



question: is a random walk stationary or not?

## Random walk is not stationary

- $\mathbb{E}[S_t] = 0$
- However, the covariance function is a function of t:

$$egin{aligned} \gamma_{\mathcal{S}}(t+h,t) &= \mathsf{Cov}(S_{t+h},S_t) \ &= \mathsf{Cov}(S_t + \sum_{s=1}^h X_{t+s},S_t) \ &= \mathsf{Cov}(S_t,S_t) = \mathbb{V}\mathit{ar}\left[S_t\right] = t\sigma^2. \end{aligned}$$

Therefore,  $S_t$  is not stationary.

# Moving average process MA(1)

We define the moving average process of order 1 MA(1) as

$$X_t = Z_t + \theta Z_{t-1}, \{Z(t)\} \sim WN(0, \sigma^2).$$

• We have  $\mathbb{E}\left[X_{t}\right]=0$  and

$$\gamma_X(t+h,t) = \mathbb{E}\left[X_{t+h}X_t\right]$$
$$= \mathbb{E}\left[(Z_{t+h} + \theta Z_{t+h-1})(Z_t + \theta Z_{t-1})\right] \rightarrow$$

$$\gamma_X(t+h,t) = egin{cases} \sigma^2(1+ heta^2) & ext{if } h=0 \ \sigma^2 heta & ext{if } h=1 \ 0 & ext{otherwise} \end{cases}$$

# Moving average process MA(1)

- As we observe MA(1) is stationary.
  - $\mathbb{E}[X_t] = 0$
  - $\gamma_X(t+h,t) = \gamma_X(h,0)$  is
- How can we use it?
  - $\Delta$ lcecream<sub>t</sub> =  $\Delta$ temperature<sub>t</sub> 0.9 $\Delta$ temperature<sub>t-1</sub>,
- We assume that the changes in the temperature are iid normal random variables.
- **Important observation:** We model differences, not the actual time series values. This is a common time-series transformation that we use frequently in practice.

# Moving average process MA(1)

The correlogram of  $\rho_X$  of an MA(1) process:



• Moving average processes generalize to order q MA(q) processes

$$X_t = \mu + Z_t + \theta_1 Z_{t-1} + \ldots + \theta_q Z_{t-q}.$$

• The autocorrelation function of an MA(q) process is zero at lag q+1 and greater.

# Autoregressive process AR(1)

Mathematically an AR(1) process is defined as

$$X_t = \rho X_{t-1} + Z_t, Z_t \sim WN(0, \sigma^2).$$

• In general, the order *p* autoregressive process is defined similarly as:

$$X_t = c + \rho_1 X_{t-1} + \ldots + \rho_p X_{t-p} + Z_t, Z_t \sim WN(0, \sigma^2).$$

Exercise

2 
$$\gamma_X(t+h,t) = \frac{\sigma^2}{1-\phi^2}\phi^h$$
.

# Autoregressive process AR(1)



- In contrast to moving average processes, the ACF plot cannot tell us (at least by inspection) the order p (here, p=1).
- Still though, we will show another tool, the partial correlogram plot that allows us to get an idea of the order of the AR process.

## Basic exploration tools - partial correlogram

• To understand the necessity of another tool that is used jointly with the correlogram we will give an example.

$$x(t+2) = x(t+1) + \epsilon(t+1) = x(t) + \epsilon(t) + \epsilon(t+1).$$

- Thus x(t+2) and x(t) are only related because of x(t+1) in between.
- The idea of the partial correlogram is to measure the correlation of x(t+h) and x(t) after removing linear relationship due to values in between.

# Partial correlogram AR(1)



# Estimating the ACF

- In reality, we have only access to the data.
- Estimating the mean:

$$\bar{x} = \frac{1}{n} \sum_{t=1}^{n} x_t.$$

• Estimating autocovariance function:

$$\hat{\gamma}(h) = \frac{1}{n} \sum_{t=1}^{n-h} (x_{t+h} - \bar{x}) \cdot (x_t - \bar{x}).$$

Estimating autocorrelation function:

$$\hat{\rho}(h) = \frac{\hat{\gamma}(h)}{\hat{\gamma}(0)}.$$

#### Stationarity statistical tests

- Given the data, we can test whether the time series (or the differences, or other transformations) is stationary or not.
  - Dickey-Fuller test (unit root test)
  - Kwiatkowski-Phillips-Schmidt-Shin test
- The KPSS test can test trend-stationarity
- Dickey-Fuller and its variations are popular.
  - The Dickey–Fuller test:
  - formally, it tests the null hypothesis that a unit root is present in an autoregressive model.
  - Alternative hypothesis: time-series is stationary

## Dickey-Fuller test in Python

```
1 from statsmodels.tsa.stattools import adfuller
2
3
 def Dickey_Fuller_test(timeseries):
      , , ,
5
      Test stationarity
6
      , , ,
7
      #Perform Dickey-Fuller test:
8
      print( 'Results of Dickey-Fuller Test:')
9
      dftest = sm.tsa.stattools.adfuller(
10
     timeseries)
      dfoutput = pd.Series(dftest[0:4], index=['
11
     Test Statistic', 'p-value', '#Lags Used', '
     Number of Observations Used'])
      for key, value in dftest[4].items():
12
          dfoutput['Critical Value (%s)'%key] =
13
     value
      print(dfoutput)
14
```

#### How to interpret the Dickey-Fuller test?

- Null Hypothesis: time series has a unit root, meaning it is non-stationary.
- Alternative Hypothesis : time-series is stationary
- Code returns:

```
Results of Dickey-Fuller Test:

Test Statistic -1.102293e+01

p-value 5.925157e-20

Number of Observations Used 9.900000e+01

Critical Value (5%) -2.891208e+00

Critical Value (1%) -3.498198e+00

Critical Value (10%) -2.582596e+00
```

- Check the value of the statistic and compare it the critical values.
- If it is less than the critical value, then we can reject the null hypothesis with that level of confidence.
- Also *p*-values are informative: Rule of thumb:
  - If p-value> 0.05, then time-series is non-stationary.

## Kwiatkowski-Phillips-Schmidt-Shin test in Python

```
def kpss_test(timeseries):
    print ('Results of KPSS Test:')
    kpsstest = tsa.stattools.kpss(timeseries)
    kpss_output = pd.Series(kpsstest[0:2], index
    =['Test Statistic', 'p-value')
    for key,value in kpsstest[2].items():
        kpss_output['Critical Value (%s)'%key] =
    value
    print (kpss_output)
```

# Cointegration – Stationarity in multivariate time series

- When we have multiple co-evolving time-series, there is the notion of cointegration.
- For example:
  - $D_t$ : position of a dog at time t
  - $P_t$ : position of the person who takes the dog for a walk at time t
- While  $D_t$ ,  $P_t$  may look individually random, their difference is not.
- Question: does there exist a constant c such that  $P_t cD_t$  is stationary?

# Cointegration – Stationarity in multivariate time series



```
from statsmodels.tsa.stattools import coint
coint(P,Q)
```

## Fourier analysis - basics



Joseph Fourier showed how to represent a periodic function as a sum of trigonometric functions (oscillations).



#### Fourier analysis - basics

$$x(t) - x(t) = \sum_{k=1}^{n} \gamma_k \left( a_k \cos(2\pi t \omega_k) + b_k \sin(2\pi t \omega_k) \right).$$

where  $\omega_k = \frac{k}{n}$ . If we define:

- $\bullet \ \ C_k = \sqrt{a_k^2 + b_k^2}$
- $\phi_k = \arctan \frac{b_k}{a_k}$

then we can also write the formula also as (trigonometric identity):

$$x(t) - x(t) = \sum_{k} \gamma_k C_k \cos(2\pi t \omega_k - \phi_k).$$

# Fourier analysis - sinusoidal decomposition

- We prefer to express things in *complex numbers*.
- Trigonometric identities are trivial. E.g.,

$$\sin(x)\cos(x) = \frac{1}{2i}(e^{ix} - e^{-ix})\frac{1}{2}(e^{ix} + e^{-ix}) =$$

$$= \frac{1}{4i}(e^{i2x} - 1 + 1 - e^{-2ix})$$

$$= \frac{1}{2i}(e^{i2x} - e^{-2ix}) = \frac{1}{2}\sin(2x).$$

#### Periodogram

- A plot of  $nC_k^2$  versus the frequency  $\omega_k$  for  $k=1,2,\ldots$  is called the periodogram of the dataset.
- The periodogram is a very useful tool.
- Random-signals that lack structure have all sinusoids with equal importance.
- If a time series has a strong sinusoidal signal for some frequency, then there will be a peak in the periodogram at that frequency.
- If a large  $C_k$  value appears at  $\omega_k$  and other large values  $C_{\ell k}$  appear at multiples  $\ell \omega_k$  where  $\ell = 2, ...$  it suggests that there is a non-sinuisodal signal with that specific frequency.

#### Periodogram – example



```
sig = np.sin(2 * np.pi * f1*time_vec) + 2* np
.sin(2 * np.pi * f2*time_vec)

f, Pxx_den = signal.periodogram(sig)

plt.semilogy(f, Pxx_den)

plt.show()
```

#### Periodogram



Python plots

$$\hat{f}(\omega) = \frac{1}{n} |\sum_{t=1}^{n} x(t)e^{2\pi it\omega}|, \omega \in [0, 0.5].$$

• Symmetry  $\hat{f}(\omega) = \hat{f}(1 - \omega)$ 

# Spectrogram

- Which frequencies appear across time?
- Spectrogram!



#### Spectrogram – Python snippet

```
from scipy import signal
freqs, times, spectrogram = signal.spectrogram(
    sig)

plt.figure(figsize=(5, 4))
plt.imshow(spectrogram, aspect='auto', cmap='
    hot_r', origin='lower')
plt.title('Spectrogram')
plt.ylabel('Frequency band')
plt.xlabel('Time window')
plt.tight_layout()
```

#### Time-series transformations

- Earlier we saw that a random walk time series is not stationary. Nonetheless, the increments form a stationary time series (white noise).
- Therefore, transforming the time-series can give a different structured signal
- Goal: Transform the signal so that hopefully it is easier to model mathematically (and hence better forecasts).



#### Time-series transformations - Box-Cox

- A Box-Cox transformation is a way to stabilize the variance of a time series with non-negative values.
- If negative values are present, we use the Yeo-Johnson power transform.
- Box-Cox function is is invertible.
- Working with the Box-Cox transformation of financial time series frequently helps (even slightly).
- There is a parameter  $\lambda$  that defines the Box-Cox transformation of a measurement y as follows:

$$f(y,\lambda) = \begin{cases} \frac{y^{\lambda}-1}{\lambda} & \text{if } \lambda \neq 0\\ \log y & \text{if } \lambda = 0 \end{cases}$$

#### Remark

 An example of how much a transformation can help the prediction on the gas prices in Italy.

```
Box-Cox transformation
-------
Absolute error:12.727407888799966
------
No preprocessing
-------
Absolute error:23.151990039645284
```

#### Time-series transformations - Box-Cox

```
def box_cox(y):
      if not isinstance(y, pd.Series):
2
           y = pd.Series(y)
3
           y.astype(float)
4
      y_boxcox, lmbda = stats.boxcox(y)
5
      return y_boxcox, lmbda
6
7
8
  def invboxcox(y, lmbda):
      if not isinstance(y, pd.Series):
10
           y = pd.Series(y)
11
           y.astype(float)
12
13
      if lmbda == 0:
14
           return(np.exp(y))
15
      else:
16
           return(np.exp(np.log(lmbda*y+1)/lmbda))
17
```

#### Time-series transformations - Differencing

• First order differencing: convert time series  $x(1), x(2), \ldots, x(n)$  to  $x(2) - x(1), \ldots, x(n) - x(n-1)$ .

```
def first_order_diff(y):
      if not isinstance(y, pd.Series):
2
          y = pd.Series(y)
3
          y.astype(float)
4
      z = y.diff(1).dropna()
5
      return z
6
7
8
9
  def first_order_diff_numpy(data):
    return [data[i] - data[i - 1] for i in range
11
     (1, len(data))]
```

# Time-series transformations - Differencing (variations)

• First order differencing: sometimes when we assume increments have seasonality we may do the following: E.g., weekly seasonality on daily data, then we convert time series  $x(1), x(2), \ldots, x(n)$  to  $x(7) - x(1), x(8) - x(2), \ldots, x(n) - x(n-7)$ 

 Another variation: second order differencing, i.e., differences on the differences (third order etc.)

## Time-series transformations - Logarithm

- The log-transformation of a time-series under certain mathematical modeling assumptions provably improves the accuracy of predictors.
- In practice, where the distribution that generates the time-series is not known, we use it, and evaluate it empirically.

```
def log_(y):
    ''' The logarithm of the time series (always apply on non-negative values!)'''
    if not isinstance(y, pd.Series):
        y = pd.Series(y)
        y.astype(float)
    log_y = np.log(y)
    return log_y
```

## Time-series transformations - Log-returns

- Differences on the log results in what is known as log-returns.
- Transforms series  $(x_1, ..., x_n)$  to  $\log(x_2/x_1), ..., \log(x_n/x_{n-1})$

```
def log_returns(y):
    if not isinstance(y, pd.Series):
        y = pd.Series(y)
        y.astype(float)
    log_returns = np.log(y/y.shift(1)).dropna()
    return log_returns
7
```

#### Time-series transformations - Standarization

- Standarization is especially important when we have multiple time series, with different types of measurements.
- There exist two popular standarization methods:

$$x_i' = \frac{x_i - \min_{1 \leq j \leq n}(x_j)}{\max_{1 \leq j \leq n}(x) - \min_{1 \leq j \leq n}(x)},$$

and

$$x_i' = \frac{x_i - \bar{x}}{\sigma(x)},$$

# Time-series transformations - Rolling mean



$$X(t) = trend(t) + seasonal(t) + residual(t)$$

• Example: Suppose we have the following time-series:



• In terms of equations, (roughly) we perform two types of regression, and obtain residuals

$$X(t) = \text{polynomial}(t) + \sum_{i} (\beta_{i} \cos(\lambda_{i} t) + \gamma_{i} \sin(\lambda_{i} t)) + R_{t})$$

• First, we perform regression:  $X(t) = \alpha_0 + \alpha_i t + E(t)$ :



 In terms of equations, (roughly) we perform two types of regression, and obtain residuals

$$X(t) = \text{polynomial}(t) + \sum_{i} (\beta_{i} \cos(\lambda_{i} t) + \gamma_{i} \sin(\lambda_{i} t)) + R_{t})$$

Second regression

$$X(t) - (\alpha_0 + \alpha_i t) = \sum_i (\beta_i \cos(\lambda_i t) + \gamma_i \sin(\lambda_i t)) + E(t)$$
:



Left with the residuals:

$$R(t) = X(t) - (\alpha_0 + \alpha_i t) - \sum_i (\beta_i \cos(\lambda_i t) + \gamma_i \sin(\lambda_i t))$$



Not done yet! Study the residuals. E.g., can we forecast them?

• In Python things have been made easy for us.

```
def _decom(dataset):
    decomposition = statsmodels.tsa.seasonal.
    seasonal_decompose(dataset)
    plt.plot(decomposition.trend, label='Trend',
        color = 'b')
    plt.plot(decomposition.seasonal, label='
        Seasonality', color = 'b')
    plt.plot(decomposition.resid, label='
        Residuals', color = 'b')
```

# Today's outline

- Part I: Fundamentals
  - Stochastic processes, strict vs weak stationarity, correlograms, partial correlograms, periodograms, autoregressive models (AR), moving average models (MA), transformations, compact time-series description.
- Part II: Forecasting methods
  - Evaluation protocols, basic metrics, null models, spectral methods, ARMA, ARIMA, SARIMA, VAR, similarity search, deep learning (DNNs, RNNs)

## Train and test – Respect order!

```
split_time = 1000
x_train = series[:split_time]
x_test = series[split_time:]
```

# Train and test – Respect order!



#### Dataset



Training set

Test set

#### **Evaluation protocols**

There exist **two main evaluation protocols** for a forecasting method.

- k-fold cross validation
  - Remarks
  - Cannot just randomly partition the time-series into folds as in other ML tasks (respect the order!)
- Walk forward evaluation protocol
- Both protocols can be easily explained visually.

#### k-fold cross validation



- Test set size remains same, but training size increases.
- from sklearn.model\_selection import
  TimeSeriesSplit

#### k-fold cross validation – sklearn

```
1 X = np.array([[1, 2], [3, 4], [1, 2], [3, 4],
     [1, 2], [3, 4]])
y = np.array([1, 2, 3, 4, 5, 6])
3 tscv = TimeSeriesSplit(max_train_size=None,
     n_splits=5)
4 for train_index, test_index in tscv.split(X):
print("TRAIN:", train_index, "TEST:",
    test_index)
6 ... X_train, X_test = X[train_index], X[
   test_index]
y_train, y_test = y[train_index], y[
     test_index]
8 >> TRAIN: [0] TEST: [1]
9 >> TRAIN: [0] TEST: [1]
10 >> TRAIN: [0 1] TEST: [2]
>> TRAIN: [0 1 2] TEST: [3]
12 >> TRAIN: [0 1 2 3] TEST: [4]
>> TRAIN: [0 1 2 3 4] TEST: [5]
```

#### Walk-forward evaluation protocol



- Sliding window of same size.
- Straight-forward implementation.
- In reality, when training is expensive we may sample as many as possible such windows, with a bias towards more recent windows.

#### Basic metrics -g groundtruth, f forecast

```
import numpy as np
errors = forecast - truth
```

• Mean squared error (mse):

$$mse(f,g) = \frac{100\%}{n} \sum_{t=1}^{n} (f_t - g_t)^2.$$

```
mse = np.square(errors).mean()
```

• Root mean squared error (rmse):

$$rmse(f,g) = \sqrt{mse(f,g)}$$
.

```
rmse = np.sqrt(mse)
```

#### Basic metrics

Mean absolute error (mae):

$$mae(f,g) = \frac{100\%}{n} \sum_{t=1}^{n} |(f_t - g_t)|.$$

```
mae = np.abs(errors).mean()
2
```

Mean absolute percentage error (mape):

$$mape(f,g) = \frac{100\%}{n} \sum_{t=1}^{n} |\frac{f_t - g_t}{g_t}|.$$

```
mape = np.abs(errors/x_test).mean()
```

#### Train, validate and test



- Alternatively, we can split the data into
  - Training set
  - 2 Validation set in order to evaluate hyperparameters, useful for minimizing overfitting
  - 3 Test set

```
x_train = series[:split1]
x_validate= series[split1:split2]
x_test = series[split2:]
```

# Naive forecasting

- Suppose we wish to predict x(t+1) given past values (and possibly other time-series).
- Naive forecasting:

$$x(t+1) \leftarrow x(t)$$
.

 Example: Suppose we wish to predict Torino's temperature next hour.

Prediction: The temperature in the next hour is going to be the same as now.

Competitive baseline!

#### More null models

- Constant values, e.g., global average or a frequently occurring value in the dataset.
- Average/median of past most recent w values where w can be small or spanning the whole dataset

$$x(t+1) \leftarrow \frac{\sum_{j=1}^{w} x(t-j)}{w}$$
.

- Remark: w = 1, i.e., naive forecasting, tends to be the most competitive baseline.
- Exponential smoothing (more importance to most recent measurements)
- Regression and extrapolation

•

# Spectral forecasting

- 1 We pretend the training dataset is periodic.
- We perform a spectral decomposition of the signal in sinusoidal functions.
- We retain the frequencies that hold most but not all of the energy
- 4 Rule of thumb: keeping 80% of the energy is a good choice, but more values should be tried out.
- **6** Extrapolate the periodic signal to the test set.



#### Spectral forecasting – Training

```
def spectral_prediction(timeseries, n_predict,
     perc = 0.8):
      n = timeseries.size
2
      x_freqdom = fft(timeseries)
3
      f = np.fft.fftfreq(n)
4
      indexes = list(range(n))
5
      harm_squares = np.square(np.abs(x_freqdom))
6
      sum_squares = harm_squares.sum()
7
      sortd = np.argsort(-harm_squares)
8
      cum_sum = 0
9
      i = 0
10
      n_harm = 0 # number of harmonics in model,
11
     keep perc% of energy
      while cum_sum < sum_squares*perc:</pre>
12
           cum_sum += harm_squares[sortd[i]]
13
          i += 1
14
          n_harm += 1
15
```

## Spectral forecasting – Training

```
my_signal = np.zeros(t.size)
1
      for i in indexes:
2
          # This is the amplitude of the
3
     extrapolated frequency
          ampli = np.absolute(x_freqdom[i]) / n
4
          # This is the phase of the extrapolated
5
     frequency
          phase = np.angle(x_freqdom[i])
6
          # we add this component to the
7
     extrapolated signal
          my_signal += ampli * np.cos(2 * np.pi *
8
     f[i] * t + phase)
9
    return my_signal
10
```

#### **ARMA**

• An ARMA(p, q) process  $\{X_t\}$  is a stationary process that satisfies

$$X_{t} - \phi_{1}X_{t-1} - \ldots - \phi_{p}X_{t-p} = W_{t} + \theta_{1}W_{t-1} + \ldots + W_{t-q},$$

where  $W_t \sim WN(0, \sigma^2)$ .

- Observations
  - **1** ARMA(p, 0) is same as AR(p).
  - 2 ARMA(0, q) is same as MA(q).

#### **ARMA**

 ARMA process are very important because of the following (informally) stated theorem:

#### Theorem (Informal statement)

For any stationary process  $\{Y_t\}$  with autocovariance  $\gamma$ , and any k > 0 there is an ARMA process  $\{X_t\}$  that fits  $\{Y_t\}$  well.

- This is one **big** reason why we try to transform a time-series into a stationary process.
- Many null models are special cases of this model.
- Interpretable.
- For certain types of data it is performing well but for volatile, non-stationary time-series it is not.
- Always fundamental, non-trivial baseline.

#### ARMA - Lowest terms

Consider a process  $\{X_t\}$  such that  $X_t = W_t$  where  $W_t \sim WN(0, \sigma^2)$ .

$$X_t - 3X_{t-1} + 4X_{t-2} = W_t - 3W_{t-1} + 4W_{t-2}$$

- This looks like an ARMA(2,2) process! But in reality it is not, since it is not.
- Something called *characteristic polynomials* are not in lowest terms, they share common factors. Actually, here both the LHS and the RHS have the same characteristic polynomial  $\phi(B) = 1 3B + 4B^2$ .
- Lowest terms means that the following fraction cannot be not be simplified further

$$\frac{\phi_{RHS}(B)}{\phi_{LHS}(B)}$$
.

#### **ARIMA**

- ARIMA stands for "Auto Regressive Integrated Moving Average"
- In addition to parameters p, q we have another parameter
- *d* is the number of differencing required to make the time series stationary

E.g., when d = 0 we have a standard ARMA model.

**Remark**: differencing does not always succeed, and overdifferencing may produce "bad" time-series.

#### **ARIMA**



- ARIMA extends to SARIMA by including a seasonal component.
- This involves also p, d, q parameters but also the seasonality parameter s.

#### SARIMA - Parameter search

ACF, PACF plots but also exhaustive search

```
1 def parameter_search():
      p = range(1, 11), q = range(1, 11)
2
      d=range(1,3)
3
      Ps = [1,2,3], D = range(1,3), Qs = [1,2,3]
4
      s = 7
5
      parameters = product(p,d,q, Ps, D, Qs)
6
      parameters_list = list(parameters)
7
      results = []
8
      best_aic = float("inf")
9
      for param in tqdm(parameters_list):
10
               model=SARIMAX(data, order=(param[0],
11
      param[1], param[2]), seasonal_order=(param
     [3], param [4], param [5], s)).fit(disp=-1)
          aic = model.aic
12
          if aic < best_aic:</pre>
13
              print('Best model so far :', param)
14
```

# SARIMA(X) – Summary

#### Summary

- Very important family of forecasting methods
- Well developed packages in Python and R
- 3 Lots of theory behind them
- Under stationarity, they come with lots of nice properties (e.g., confidence intervals)
- **5** However stationarity is not always there...
- **6** Therefore, it is always a baseline.

#### VAR

- For multivariate series, these concepts have natural generalizations.
- For example, the next equation defines a vector autoregressive process of order 1.

$$\begin{bmatrix} y_{1,t} \\ y_{2,t} \end{bmatrix} = \begin{bmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{bmatrix} \cdot \begin{bmatrix} y_{1,t-1} \\ y_{2,t-1} \end{bmatrix} + \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$$
(1)

Python statsmodels package has VAR ready for us.

```
from statsmodels.tsa.vector_ar.var_model import
    VAR

model = VAR(endog=train)
myfit = model.fit()
prediction = myfit.forecast(y=data[-1,:],steps
    =1)
```

# Similarity search

- When are two time series x(t), y(t), t = 1, ..., n similar? How do we quantify their similarity?
- There exist **two** major families of distances:
  - 1 Euclidean and  $\ell_p$  norms
    - Euclidean distance  $\sum_{t=1}^{n} (x(t) y(t))^2 (\ell_2 \text{ distance})$
    - Manhattan distance  $\sum_{t=1}^{n} |x(t) y(t)|$  ( $\ell_1$  distance)
    - Dot product  $\langle x, y \rangle$
    - •
  - 2 Time warping (DTW) and variations



Dynamic Time Warping Matching

#### Similarity search

In Python, again things are pretty straight-forward.

```
def euclid(points):
    return np.linalg.norm(points[0]-points[1])

def l1_distance(points):
    return np.linalg.norm(points[0]-points[1],
    ord=1)

from dtw import dtw
d, cost_matrix, acc_cost_matrix, path = dtw(x, y, dist=l1_distance)
```

## Similarity search - Toy dataset

```
def demo1():
     x = np.linspace(-np.pi, np.pi, 2001)
2
     s1 = np.sin(2*x+np.pi/8)
3
     s2 = np.cos(10*x+np.pi/8)
4
     target = 12*s1+10*s2+np.random.normal(loc
5
    =0.0, scale=1, size=len(x))
     dataset = pd.DataFrame({'f1': s1, 'f2': s2,
6
     'target':target})
     df = dataset
7
     data = df.values.T
8
     return data
9
```



### Similarity search - Windowing around timestamp



- We simultaneously predict all time series, not just the target time series
- We look into the w previous values and create a vector with dims × w coordinates.
- We search for the  $k \ge 1$  most similar such vector in the training dataset (k small).
- We output the mean/median of the top-k nearest neighbors.

# Similarity search

- Sometimes, we don't have the immediate w past values available.
- Then, we just use the w most recent past values that we have available for each time-series.



#### Similarity search – Prediction results



- In this toy example the prediction results are good overall.
- Similarity search is a useful framework that is able to either provide decent predictions or show why other methods fail to product good outputs

i.e., lots of variance among similar windowed patterns.

- Finding the "right" notion of distance is an important component, as well as the right window length.
- For high-dimensional search, LSH can be used.

# Neurons and perceptrons



A human brain neuron and a perceptron

### Tensorflow – Open source for deep learning



- Tensorflow is an end-to-end open source machine learning platform...
- but is also a symbolic math library that can be used even to run a favorite optimization algorithm on your problem.

```
import tensorflow as tf

x = tf.constant("Hello world")

sess = tf.Session()

print(sess.run(x)
```

#### Deep learning

- We have a bunch of inputs associated with an output.
- Can we see the right output for a new input, i.e., an input we have not seen?
- Deep learning is a leading approach to data science, that uses multiple layers to automatically extract high-quality, higher-level features from the raw inputs.
  - deep neural networks, recurrent neural networks, convolutional neural networks etc.
- Why does it work? Increasing amount of research to understand why does it work, even when neurons use simple activation functions (piecewise flat.)

# Deep feedforward neural networks (DNNs)

Deep feedforward networks feedforward, also often called neural networks, or multilayer perceptrons (MLPs), are the quintessential deep learning models.

• The goal of a feedforward network is to approximate some function  $f^*$  by composing layers, e.g.,

$$\tilde{f}(x) = f^{(3)}(f^{(2)}(f^{(1)}(x))).$$



# Deep feedforward neural networks (DNNs) – Example

• Classic example: DNNs can learn the XOR function.



#### DNNs for time-series – Step 1

- 1. Prepare time series data for DNN by creating a windowed dataset:
  - For each timestamp, let x(t) be the value/label.
  - The previous w values could be seen as the input features.
- Lots of space for feature engineering (Fourier coeffs, wavelet coeffs, min/max/median etc.)

#### DNNs for time-series – Step 1

```
[0]
         3]
      2
             [4]
    1
     3 4]
             [5]
    2
   3
         5]
             [6]
     4
         6]
             [7]
[3
   4
      5
         7]
             [8]
   5
      6
     7
             [9]
[5
    6
         8]
             [10]
      8 9]
      8
             10]
          9
                  [11]
      9
         10
             11]
                   [12]
                  [13]
     10
             12]
         11
                  [14]
[10
         12
             13]
     11
                  [15]
Γ11
     12
         13
             14]
                  [16]
Γ12
     13
         14
             15]
                   [17]
[13
     14
         15
             16]
                   [18]
[14]
     15
         16
             17]
                   [19]
[15
     16
         17
             18]
```

# DNNs for time-series – Step 1b (batching)

```
dataset = dataset.shuffle()
2 dataset = dataset.batch(2).prefetch(1)
x = [[5 6 7 8] [1 2 3 4]]
y = [[9] [5]]
5 x = [[ 9 10 11 12] [12 13 14 15]]
6 y = [[13] [16]]
_{7} x = [[11 12 13 14] [13 14 15 16]]
y = [[15] [17]]
9 x = [[10 11 12 13] [4 5 6 7]]
y = [[14] [8]]
x = [[7 8 9 10] [14 15 16 17]]
y = [[11] [18]]
x = [[3 \ 4 \ 5 \ 6] \ [0 \ 1 \ 2 \ 3]]
y = [[7] [4]]
x = [[15 \ 16 \ 17 \ 18] \ [6 \ 7 \ 8 \ 9]]
y = [[19] [10]]
x = [[8 \ 9 \ 10 \ 11] [2 \ 3 \ 4 \ 5]]
y = [[12] [6]]
19
```

#### DNNs for time-series – Step 2

2. Split the data into training and test sets.

```
time = np.arange(3 * 365, dtype="float32")
split_time = 2*365+31+28+30

time_train = time[:split_time]

x_train = series[:split_time]

time_test = time[split_time:]

x_test = series[split_time:]
```

#### DNNs for time-series – Steps 3, 4

- 3. Setup a DNN architecture (here single layer)
- 4. Train it
- 4b Inspect the layer weights

#### DNNs for time-series – Steps 3, 4

```
1 Layer weights [array([[-0.03136637],
    [-0.04519343],
       [0.05885418], [0.05017925],
2
       [-0.01355846], [-0.07844295],
3
       [ 0.04997651], [ 0.03857101],
4
   [-0.01163514], [0.02050608],
5
   [-0.01307715], [-0.05444159],
6
       [0.01337368], [0.05073489],
7
        [0.01348611], [-0.02583448],
8
        [0.08094374], [0.23290157],
        [0.20300445], [0.46333405]],
10
    dtype=float32), array([0.01811779], dtype=
    float32)]
11
```

• These weights are what we need to forecast a value given a new input of 20 values.

#### DNNs for time-series – Step 5

#### 5. Forecast

```
forecast = []
for time in range(len(series) - window_size):
   forecast.append(model.predict(series[time:time + window_size][np.newaxis]))

forecast = forecast[split_time-window_size:]

plt.plot(time_test, forecasts)

plt.plot(time_test, x_test)

tf.keras.metrics.mean_absolute_error(x_valid, results).numpy()
```



#### Quick comment - Activation function ReLU



 ReLU is an important activation function, especially because it is simple, yet sparse-friendly.

#### DNNs for time-series – Adding layers

 Our example uses one layer. We can easily add layers as follows.



### DNNs for time-series – Did the extra layers help?

 In addition to the visualization, Keras provides an easy way to compute the various metrics.

- It is worth outlining that this is not always the case.
- The number of layers is one of the hyperparameters to be optimized.

#### Remarks on DNNs

- For multivariate time series, we change the input shape from a vector to a matrix (batch size × number of time-series/dimensions)
- Lots of other parameters need to be fine-tuned, including the weight initializer, use or not of batch normalization, dropout rates, learning rates of SGD etc.
- Feature selection earlier is also useful for DNNs.
- Not suited for sequential data, but for supervised framework.

Next: Deep RNNs

#### Last important remark about DNNs

- The approach we described for analyzing time-series can be extended in two different directions.
- ① Create more features from the window. For instance add dimensions for the maximum value observed.
  - 1 from tsfresh import extract\_features
    - tsfresh is a library that allows for fast extraction of hundreds of features from each window.
- We can use any other supervised ML method including SVM regressors, regression random forests, Gaussian processes etc.

#### Deep recursive neural networks (RNNs)

• RNNs are neural networks for sequential data.



Source: Deep Learning book

$$h_t = f_W(h_{t-1}, x_t).$$

• Same function and same set of parameters W are used at each time step.

# Deep recursive neural networks (RNNs)

- They have a distributed hidden state that allows them to store a information about the past.
- RNNs offer a lot of flexibility that makes them valuable in diverse applications



Source: Andrej Karpathy

 An RNN can be thought of as multiple copies of the same network, each passing a message to a successor.

# Deep recursive neural networks (RNNs) – TensorFlow

In constrast to DNNs, the input shape is

[batch size, #timesteps, #dimensions]

```
1 model = tf.keras.models.Sequential([
    tf.keras.layers.SimpleRNN(40, return_sequences
     =True),
    tf.keras.layers.SimpleRNN(40),
3
    tf.keras.layers.Dense(1)
5])
6
 optimizer = tf.keras.optimizers.SGD(lr=5e-5,
     momentum=0.9)
8 model.compile(loss=tf.keras.losses.Huber(),
                 optimizer = optimizer,
9
                metrics = ["mae"])
10
 model.fit(dataset,epochs=100)
```

# Deep recursive neural networks (RNNs) – Tensorflow

 Prediction is done in the same way, and evaluation too, e.g., using

• The key method is MODEL.PREDICT again:

```
forecast=[]
for time in range(len(series) - window_size):
  forecast.append(model.predict(series[time:time + window_size][np.newaxis]))

forecast = forecast[split_time-window_size:]
```

#### Remark: LSTMs and dilated convolutions

- RNNs are supposed to remember from past, but in practice they forget easily.
- LSTMs are units that are able to capture better long term dependencies.
- State-of-the-art time-series prediction methods combine convolutions, typically used in image processing, with recurrent neural networks.



Dilated convolutions

Source: original paper, Temporal convolutional networks

by Bai et al. Arxiv:1803.01271



#### Tip of iceberg – Lots more to talk about!

- Today I have scratched the tip of the iceberg.
- E.g., in multivariate analysis how do we select the most relevant time-series to the target series we wish to forecast?



#### Thank you! Questions?

web page: http://tsourakakis.com

email: ctsourak@bu.edu

