#### Definir un VSM

https://www.ambit-bst.com/blog/c%C3%B3mo-hacer-un-value-stream-mapping-vsm

Enlace al VSM: <a href="https://lucid.app/lucidchart/29fc657c-5aaf-401a-909a-d1afa0e8c00a/edit?beaconFlowId=052A2A62952A1217&invitationId=inv\_d1f49742-7ef3-40ff-8cc6-78739ce2eeba&page=0\_0#">https://lucid.app/lucidchart/29fc657c-5aaf-401a-909a-d1afa0e8c00a/edit?beaconFlowId=052A2A62952A1217&invitationId=inv\_d1f49742-7ef3-40ff-8cc6-78739ce2eeba&page=0\_0#</a>

- 1. Definir la demanda de los clientes
- 2. Procesos
- 3. Inventarios
- 4. Clientes, proveedores y frecuencias de entrega
- 5. Flujo de información
- 6. Flujo de material
- 7. Línea de tiempo

### Parámetros de Gestión de Producción

Parámetros de rendimiento a tener en cuenta:

- KPI: Indicador del porcentaje de acercamiento al objetivo fijado
- WIP

$$WIP = \sum_{i=1}^{n-1} W_i + \sum_{i=1}^{n} WE_i$$

WIP: contempla el material que se encuentra entre estaciones y está en espera de ser procesado ( $W_i$ ) o que esta siendo procesado en las estaciones ( $WE_i$ )

| Productos/Procesos | Co | orte | Tala | drado | Rebo | rdeado | Sel | lado |    | orte<br>tálico | ,  | ado<br>tálico | Empacado |     | Paletizado |     | WIP<br>Total |
|--------------------|----|------|------|-------|------|--------|-----|------|----|----------------|----|---------------|----------|-----|------------|-----|--------------|
|                    | Wi | WEi  | Wi   | WEi   | Wi   | WEi    | Wi  | WEi  | Wi | WEi            | Wi | WEi           | Wi       | WEi | Wi         | WEi | iotai        |
| Porta platos       | 2  | 1    | 0    | 0     | 2    | 1      | 2   | 1    | 0  | 0              | 0  | 0             | 2        | 1   | 0          | 1   | 13           |
| Repisa             | 4  | 1    | 1    | 1     | 4    | 1      | 4   | 1    | 1  | 1              | 1  | 1             | 5        | 1   | 0          | 1   | 28           |
| Organizador        | 2  | 1    | 0    | 1     | 2    | 1      | 2   | 1    | 0  | 0              | 0  | 0             | 2        | 1   | 0          | 1   | 14           |

Takt Time

Se define Takt Time como la cadencia con cual un producto debe ser fabricado para satisfacer la demanda. En otras palabras, se refiere al ritmo al cual un producto debe ser fabricado.

$$T = \frac{T_D}{D}$$

: Takt, tiempo de trabajo entre dos unidades consecutivas

(ritmo de producción)
Tiempo neto de trabajo disponible por periodo : Demanda (Unidades requeridas por periodo)

El tiempo de trabajo disponible es de: 7:30h = 450 min = 3150 min semanales para todos los productos.

| Producto     | Td (min) | D                         | T (min)     | T (horas y<br>minutos) |
|--------------|----------|---------------------------|-------------|------------------------|
| Porta platos | 3150     | <mark>480– 124.51</mark>  | 5.63 - 25.3 |                        |
| Repisa       | 3150     | <mark>425 – 131.25</mark> | 7.41 - 24   |                        |
| Organizador  | 3150     | 530 <del>-</del> 101.94   | 4.92 - 30.9 |                        |

### Tiempo de Ciclo

o Tiempo asociado a cada estación para completar su tarea

o Tiempo de procesamiento en una estación

$$T_C = T_O + T_h + T_{th}$$

 $egin{aligned} T_c & : \mbox{Tiempo de ciclo o tiempo de flujo} \ T_o & : \mbox{Tiempo de operación} \end{aligned}$ 

 $T_h$ : Tiempo de manipulación de la parte  $T_{th}$ : Tiempo manipulación de la herramienta

### Todos los tiempos están dados en segundos.

| Producto /   |     | Corte |     |     |    | Taladrado Rebordeado |     |     | Sellado |    |     |     |     |    |     |     |
|--------------|-----|-------|-----|-----|----|----------------------|-----|-----|---------|----|-----|-----|-----|----|-----|-----|
| Proceso      | To  | Th    | Tth | Tc  | То | Th                   | Tth | Tc  | То      | Th | Tth | Tc  | То  | Th | Tth | Tc  |
| Porta platos | 285 | 255   | 10  | 550 | 0  | 0                    | 0   | 0   | 250     | 50 | 0   | 300 | 300 | 30 | 0   | 330 |
| Repisa       | 60  | 230   | 10  | 300 | 60 | 30                   | 0   | 90  | 330     | 30 | 0   | 360 | 240 | 30 | 0   | 270 |
| Organizador  | 285 | 480   | 10  | 775 | 40 | 70                   | 0   | 110 | 250     | 50 | 0   | 300 | 300 | 30 | 0   | 330 |

| Producto /   | Co | orte N | ∕letáli | со | Lij | Lijado Metálico |     |    |     | Emp | acado |     | Paletizado |    |     |     | Total | Total   |
|--------------|----|--------|---------|----|-----|-----------------|-----|----|-----|-----|-------|-----|------------|----|-----|-----|-------|---------|
| Proceso      | То | Th     | Tth     | Tc | То  | Th              | Tth | Tc | То  | Th  | Tth   | Tc  | То         | Th | Tth | Tc  |       | Minutos |
| Porta platos | 0  | 0      | 0       | 0  | 0   | 0               | 0   | 0  | 120 | 30  | 10    | 160 | 120        | 60 | 0   | 180 | 1520  | 25.3    |
| Repisa       | 30 | 30     | 0       | 60 | 30  | 20              | 0   | 50 | 90  | 30  | 10    | 130 | 120        | 60 | 0   | 180 | 1440  | 24      |
| Organizador  | 0  | 0      | 0       | 0  | 0   | 0               | 0   | 0  | 120 | 30  | 10    | 160 | 120        | 60 | 0   | 180 | 1855  | 30.9    |

### Tasa de Producción

# Tasa de producción Rp

Número de partes producidas por hora

$$T_b = T_{su} + QT_C \qquad T_p = \frac{T_b}{Q} \qquad R_P = \frac{60}{T_p}$$

T<sub>b</sub> : Tiempo de producción de un lote (min)

T<sub>su</sub>: Tiempo de alistamiento (min)
 T<sub>c</sub>: Tiempo de ciclo (min)
 T<sub>p</sub>: Tiempo de producción por unidad (min)
 Q: Tamaño del lote (unidades)

 $R_p$ : Tasa de producción (unidades por hora)

| Producto / Proceso |     | Corte |   |       |       |       |  |  |  |  |  |  |
|--------------------|-----|-------|---|-------|-------|-------|--|--|--|--|--|--|
| Producto / Proceso | Tsu | Tc    | Q | Tb    | Тр    | Rp    |  |  |  |  |  |  |
| Porta platos       | 2   | 9.17  | 3 | 29.51 | 9.84  | 6.1   |  |  |  |  |  |  |
| Repisa             | 2   | 5     | 5 | 27    | 5.4   | 11.11 |  |  |  |  |  |  |
| Organizador        | 2   | 12.9  | 3 | 40.7  | 13.57 | 4.42  |  |  |  |  |  |  |

| Producto / Proceso |     | Taladrado |   |      |      |       |  |  |  |  |  |  |
|--------------------|-----|-----------|---|------|------|-------|--|--|--|--|--|--|
| Producto / Proceso | Tsu | Tc        | Q | Tb   | Тр   | Rp    |  |  |  |  |  |  |
| Porta platos       | 2   | 0         | 3 | 2    | 0.67 | 89.55 |  |  |  |  |  |  |
| Repisa             | 2   | 1.5       | 5 | 9.5  | 1.9  | 31.58 |  |  |  |  |  |  |
| Organizador        | 2   | 1.83      | 3 | 7.49 | 2.5  | 24    |  |  |  |  |  |  |

| Producto / Proceso | Rebordeado |    |   |    |      |       |  |  |  |  |
|--------------------|------------|----|---|----|------|-------|--|--|--|--|
|                    | Tsu        | Tc | Q | Tb | Тр   | Rp    |  |  |  |  |
| Porta platos       | 2          | 5  | 3 | 17 | 5.67 | 10.58 |  |  |  |  |
| Repisa             | 2          | 6  | 5 | 32 | 6.4  | 9.38  |  |  |  |  |
| Organizador        | 2          | 5  | 3 | 17 | 5.67 | 10.58 |  |  |  |  |

| Producto / Proceso |     |     | Sell | ado  |      |       |
|--------------------|-----|-----|------|------|------|-------|
|                    | Tsu | Tc  | Q    | Tb   | Тр   | Rp    |
| Porta platos       | 2   | 5.5 | 3    | 18.5 | 6.17 | 9.72  |
| Repisa             | 2   | 4.5 | 5    | 24.5 | 4.9  | 12.25 |
| Organizador        | 2   | 5.5 | 3    | 18.5 | 6.17 | 9.72  |

| Producto / Proceso |     | Corte Metálico |   |    |      |       |  |  |  |  |  |  |
|--------------------|-----|----------------|---|----|------|-------|--|--|--|--|--|--|
| Floudcto / Floceso | Tsu | Tc             | Q | Tb | Тр   | Rp    |  |  |  |  |  |  |
| Porta platos       | 2   | 0              | 3 | 2  | 0.67 | 89.55 |  |  |  |  |  |  |
| Repisa             | 2   | 1              | 5 | 7  | 1.4  | 42.86 |  |  |  |  |  |  |
| Organizador        | 2   | 0              | 3 | 2  | 0.67 | 83.55 |  |  |  |  |  |  |

| Producto / Proceso | Lijado metálico |      |   |      |      |       |  |  |  |  |  |
|--------------------|-----------------|------|---|------|------|-------|--|--|--|--|--|
| Producto / Proceso | Tsu             | Tc   | Q | Tb   | Тр   | Rp    |  |  |  |  |  |
| Porta platos       | 2               | 0    | 3 | 2    | 0.67 | 89.55 |  |  |  |  |  |
| Repisa             | 2               | 0.83 | 5 | 6.15 | 1.23 | 48.78 |  |  |  |  |  |
| Organizador        | 2               | 0    | 3 | 2    | 0.67 | 89.55 |  |  |  |  |  |

| Producto / Proceso |     | Empacado |   |       |      |       |  |  |  |  |  |  |
|--------------------|-----|----------|---|-------|------|-------|--|--|--|--|--|--|
| Producto / Proceso | Tsu | Tc       | Q | Tb    | Тр   | Rp    |  |  |  |  |  |  |
| Porta platos       | 2   | 2.67     | 3 | 10.01 | 3.34 | 17.96 |  |  |  |  |  |  |
| Repisa             | 2   | 2.17     | 5 | 12.85 | 2.57 | 23.35 |  |  |  |  |  |  |
| Organizador        | 2   | 2.67     | 3 | 10.01 | 3.34 | 17.96 |  |  |  |  |  |  |

| Producto / Proceso |     | Paletizado |   |    |      |       |  |  |  |  |  |  |
|--------------------|-----|------------|---|----|------|-------|--|--|--|--|--|--|
|                    | Tsu | Tc         | Q | Tb | Тр   | Rp    |  |  |  |  |  |  |
| Porta platos       | 2   | 3          | 3 | 11 | 3.67 | 16.35 |  |  |  |  |  |  |
| Repisa             | 2   | 3          | 5 | 17 | 3.4  | 17.65 |  |  |  |  |  |  |
| Organizador        | 2   | 3          | 3 | 11 | 3.67 | 16.35 |  |  |  |  |  |  |

| Producto / Proceso |     |      | То  | tal   |      |      |
|--------------------|-----|------|-----|-------|------|------|
| Producto / Proceso | Tsu | Tc   | Q   | Tb    | Тр   | Rp   |
| Porta platos       | 2   | 25.3 | 560 | 14170 | 25.3 | 2.37 |
| Repisa             | 2   | 24   | 425 | 10202 | 24   | 2.5  |
| Organizador        | 2   | 30.9 | 640 | 19778 | 30.9 | 1.94 |

## - Capacidad de Producción

 Máxima tasa de salida que una fábrica es capaz de producir asumiendo determinadas condiciones de operación.

$$PC = n \cdot S \cdot H \cdot R_P$$

PC : Capacidad de producción (Unidades/semana)

n : Número de estaciones

S : Número de turnos por periodo (Turnos/ semana)

H: Número de horas por turno (hora/turno).

 $R_P$ : Tasa de producción en cada estación (Unidades/hora).

| Producto / Proceso |   |   | Total |      | PC     | PC con S = 7  |
|--------------------|---|---|-------|------|--------|---------------|
| Producto / Proceso | n | S | Н     | Rp   | Ρ.     | PC COII 3 = 7 |
| Porta platos       | 5 | 2 | 7.5   | 2.37 | 177.75 | 622.13        |
| Repisa             | 8 | 2 | 7.5   | 2.5  | 300    | 1050          |
| Organizador        | 6 | 3 | 7.5   | 1.94 | 261.9  | 611.1         |

### - Utilización

 Fraccción en la que se está usando la planta de producción con relación a la capacidad PC

$$U = \frac{Q}{PC} \times 100\%$$

U :es la utilización de la fábrica en %

Q :es la cantidad realmente producida por la fábrica en un periodo

de tiempo (Unidades/semana)

PC :es la capacidad previamente definida (Unidades/semana)

| Producto / Proceso |     | Tot    | tal          | U       | U (PS con S = 7)  |
|--------------------|-----|--------|--------------|---------|-------------------|
| Producto / Proceso | Q   | PC     | PC con S = 7 | U       | 0 (P3 COII 3 = 7) |
| Porta platos       | 560 | 177.75 | 622.13       | 315.05  | 90.01             |
| Repisa             | 425 | 300    | 1050         | 141.67  | 40.48             |
| Organizador        | 640 | 261.9  | 611.1        | 244.368 | 104.73            |

Manufacturing Lead Time

## Manufacturing Lead Time MLT

 Tiempo que transcurre desde que se inicia la ejecución de la orden de fabricación hasta que se concluye la fabricación del lote.

$$MLT = n\left(T_{su} + QT_c + T_{no}\right)$$

MLT : Tiempo de entrega de fabricación (manufacturing lead time)

n: Número de estaciones  $T_{su}$ : Tiempo de alistamiento

Q: Tamaño de lote  $T_c$ : Tiempo de ciclo

T<sub>no</sub>: Tiempo de no operación

Nota: Para simplificar y generalizar el modelo, se asume que los tiempos de alistamiento  $T_{su}$ , de ciclo  $T_c$  y de no operación  $T_{no}$  son iguales para las n estaciones (máquinas).



A : Colocación de orden por el cliente

B : Orden de materia prima
 C : Inicio de fabricación
 D : Finalización de fabricación
 E : Envió de producto terminado

F : Recepción por parte del cliente o consumidor

Tiempos dados en minutos

| Producto / Proceso |   |     | MLT |      |     |        |
|--------------------|---|-----|-----|------|-----|--------|
| Producto / Proceso | n | Tsu | Q   | Tc   | Tno | IVILI  |
| Porta platos       | 5 | 2   | 560 | 25.3 | 5   | 70875  |
| Repisa             | 8 | 2   | 425 | 24   | 5   | 81656  |
| Organizador        | 6 | 2   | 640 | 30.9 | 5   | 118698 |

### Por otra parte:

- OEE: Indicador de desempeño en el que influye la disponibilidad del equipo(A), eficiencia de desempeño en producción (PE) y calidad generada (Q).

$$OEE = A \times PE \times Q$$

Con:

$$A$$
 = Tiempo de ejecución real Tiempo de ejecución planeado

Ι

Tiempo de ejecución real. : Tiempo de ejecución planeado –

Tiempos de inactividad no planeados

Tiempo de ejecución planeado : Tiempo total de la planta - Tiempos de

inactividad planeados

$$PE = RE \times SE$$

RE: Tasa de eficiencia ( $\it rate efficiency$ )

SE: Eficiencia en velocidad (speed efficiency)

$$RE = \frac{ ext{Volumen real de producción } x ext{ Tiempo de ciclo real} }{ ext{Tiempo de ejecución real} }$$

$$SE = \frac{\text{Tiempo de ciclo diseñado}}{\text{Tiempo de ciclo real}}$$

$$Q = \frac{ \text{Volumen real de producción - Salida de defectuosos} }{ \text{Volumen real de producción} }$$

| Producto     | Tiempo | Tiempo | Tiempo    | Α    | RE    | SE   | PE    | Volumen | Defectuosos | Q    | OEE   |
|--------------|--------|--------|-----------|------|-------|------|-------|---------|-------------|------|-------|
|              | ciclo  | real   | planteado |      |       |      |       | real    |             |      |       |
| Porta platos | 0.42   | 7.25   | 7.5       | 0.97 | 32.44 | 1.03 | 33.41 | 560     | 28          | 0.95 | 30.79 |
| Repisa       | 0.4    | 7.25   | 7.5       | 0.97 | 23.45 | 1.03 | 24.15 | 425     | 21          | 0.72 | 16.87 |
| Organizador  | 0.52   | 7.25   | 7.5       | 0.97 | 45.9  | 1.03 | 47.28 | 640     | 32          | 1.09 | 49.99 |

 Tiempos entre fallas o TBF: se define como 1 para actividad (UT) o 0 para inactividad (DT), también se tiene el tiempo en mantenimiento o TTM, tiempo de espera WT y tiempo hasta la restauración TTR.



Disponibilidad (A): Es el tiempo promedio de actividad UT (MTBF) entre la suma de promedios activos (MTBF) e inactivos (MTTM).

$$A = \frac{MTBF}{MTBF + MTTM}$$

Tiempos en minutos

|              | - 1   |       | _     |
|--------------|-------|-------|-------|
| Producto     | MTBF  | MTTM  | Α     |
| Porta platos | 17.92 | 7.42  | 0.701 |
| Repisa       | 16    | 8     | 0.67  |
| Organizador  | 18.58 | 12.33 | 0.6   |

- Linea de espera: Tiene en cuenta la tasa de arribo promedio ( $\lambda$ ), servicio promedio ( $\mu$ ) y la longitud de la línea de espera (Lq).
- Longitud de línea de espera: Influye el tiempo de arribo (ta), tiempo de estación de fabricación (te) y el inventario en proceso luego de la estación (WIPq).

$$t_a = 1/\lambda$$

$$t_e = 1/\mu$$

$$WIP_q = L_q$$

Por lo tanto,  $\sigma$  es la desviación estándar del tiempo de servicio y se define Lq de la siguiente manera:

$$L_{q} = \frac{(\lambda \sigma)^{2} + (\lambda/\mu)^{2}}{2(1 - \lambda/\mu)} \quad \mu > \lambda$$

|  | Tiem | pos | en | mi | nu | tos |
|--|------|-----|----|----|----|-----|
|--|------|-----|----|----|----|-----|

| Producto | λ | μ   | σ | ta | te | Lq | tq | ts | L | ĺ |
|----------|---|-----|---|----|----|----|----|----|---|---|
|          | - | 1 - | _ |    |    | -  |    |    | ı | i |

| Porta platos | 17 | 25 | 0.01 | 0.06 | 0.04 | 0.77 |  |  |
|--------------|----|----|------|------|------|------|--|--|
| Repisa       | 14 | 24 | 0.01 | 0.07 | 0.04 |      |  |  |
| Organizador  | 18 | 31 | 0.01 | 0.05 | 0.03 |      |  |  |

- Tiempos e inventarios en proceso: tiempo en el sistema(ts), espera (tq), en la estación (1/  $\mu$ ), total de elementos en el sistema (L), tasa de arribo promedio ( $\lambda$ ), servicio promedio ( $\mu$ ), la longitud de la línea de espera (Lq)

$$t_s = t_q + t_e = \frac{L}{\lambda}$$
  $t_q = \frac{L_q}{\lambda}$ 

- Elementos en el sistema: Compuesto por el total de elementos en el sistema (L), tasa de arribo promedio ( $\lambda$ ), servicio promedio ( $\mu$ ), la longitud de la línea de espera (Lq) y el factor de utilización media de servicio ( $\rho$ ).

$$L = L_q + \rho \qquad \rho = \frac{\lambda}{\mu}$$

-