Redes Neuronales

Notas de clase

Karla Fernanda Jiménez Gutiérrez

Verónica Esther Arriola Ríos

Índice general

ın	aice (general	
ı	An	tecedentes	2
1	Neu	rona biológica	3
	1.1	Neurociencias computacionales	3
	1.2	Sistema Nervioso	5
		1.2.1 Cerebro	8
		1.2.2 Zonas funcionales	10
	1.3	Neurona biológica	11
		1.3.1 La neurona	11
		1.3.2 Elementos de las neuronas y tipos	13
		1.3.3 Sinapsis	14
		1.3.4 Campos receptivos	17
		1.3.5 Señal eléctrica	19
2	Mod	delo de Hodgkin-Huxley	21
_	2.1	Introducción	21
	2.2	Membrana y canal	22
	2.3	Potenciales de Nerst o de reposo	24
	2.4	Modelo de la membrana como bicapa de lípidos	24
	2.5	Modelo de las compuertas iónicas controladas por voltaje	24
	2.6	Dinámica del voltaje durante un disparo	24
	2.7	Simulación usando el método de Euler	25
	2.8	Información condificada en las dendritas	25
3	Δnr	endizaje de máquina	26
J	3.1	Espacio de hipótesis	26
	3.2	Conjuntos de entrenaiento, validación y prueba	26
	3.3	Perceptrón	26
	3.4	Compuertas lógicas con neuronas	26
	3.5	Funciones de activación	26
	3.6	Funciones de error: diferencias al cuadrado y entropía cruzada	26
	3.7	Medidas de rendimiento:	26
	J.,		

	:	3.7.1 Matriz de confusión 3.7.2 Precisión 3.7.3 Recall 3.7.4 f score	26 26 26 26
П	Red	des dirigidas acíclicas	27
4	Perce	eptrón multicapa	28
		XOR	28
		Propagación hacia adelante manual	28 28
		Interpretación matemática del mapeo no lineal	28
		Propagación hacia adelante para el perceptrón multicapa	28
5		enamiento por retropropagación	29
		Función de error	29
		Gradiente de la función de error	29 29
		Otros algoritmos de optimización	29
6	Optir	mización del entrenamiento	30
		Problemas en redes profundas	30
		Gradiente desvaneciente (o que explota)	30
		Entrenamiento en línea vs en lotes	30 30
		Regularización	30
7	Caso	de análisis e interpretación	31
		Red Hinton árbol familiar con numpy (entrenamiento)	31
	7.2	Red Hinton árbol familiar con pytorch	31
8		enamiento con genéticos	32
		Algoritmos genéticos	32
		Neuroevolución	32 32
		8.2.2 Arquitectura para estimar la función de recompensa	32
		8.2.3 Entrenamiento	32
9		eos autoorganizados	33
		Aprendizaje no supervisado	33
		Mapeos autoo-organizados	33
		Kohonen	33
10	Rede	s Neuronales Convolucionales	34

	10.1 Convolución 10.2 Redes Convolucionales 10.3 Softmax 10.4 MNIST	34 34 34 34
Ш	Redes con ciclos	35
11	Redes Neuronales Recurrentes11.1 Derivadas ordenadas11.2 Retropropagación en el tiempo11.3 Sistemas dinámicos y despliegue del grafo11.4 Arquitectura recurrente universal11.5 Función de error11.6 Forzamiento del profesor	36 36 36 36 36 36
12	Atención	37
13	LSTM	38
14	GRU	39
15	Casos de análisis: etiquetado de palabras y conjugación de verbos	40
IV	Redes no dirigidas	41
16	Redes de hopfield 16.1 Entrenamiento	42 42
17	Máquinas de Boltzman17.1 Entrenamiento	43 43 43 43
18	Redes adversarias 18.1 GANs	44
Α	Ecuaciones diferenciales	45

Etc

A lo largo del texto se utilizará la siguiente notación para diversos elementos:

 $\begin{array}{ccc} \text{Conjuntos} & \text{C} \\ \text{Vectores} & \chi \\ \text{Matrices} & M \\ \text{Unidades} & \text{cm} \\ \end{array}$

Parte I Antecedentes

1 Neurona biológica

Neurociencias computacionales

Las redes neuronales surgieron completamente inspiradas en los sistemas biológicos. Lo que estamos haciendo los computólogos es tomar una idea a la naturaleza, una idea que ha probado ser sumamente efectiva para procesar información y que logra resolver problemas que nosotros aún no sabemos hacer con modelos diseñados explícitamente. Los más notorios:

- Problemas de visión por computadora
- Procesamiento del lenguaje natural

A lo largo del texto tendremos una somera idea de que hace el sistema nervioso de un ser humano, tomaremos también ejemplos de animales como, el calamar gigante, cangrejos. Ejemplos que han permitido estudiar biológicamente, cómo funcionan las neuronas y cómo funciona su sistema nervioso.

Entonces por un momento pensemos en el sistema nervioso como un todo, lo que realmente está pasando al computar, no es el calculo del proceso de una sola neurona sino de la colección de todas ellas. Lo que sucede con los sistemas biológicos es que son muchísimo más complicados que lo que vamos a ver nosotros como modelos computacionales, sin embargo muchísimas empresas están utilizando estas técnicas. El sistema nervioso como un todo es bastante más complejo, pero conforme han ido evolucionando las redes neuronales computacionales, ya con sus arquitecturas y organizaciones, se están volviendo también más complejas. Varias de las estructuras más exitosas tienen un análogo muy fuerte con un sistema nervioso natural.

Veamos un campo conocido como **neurociencias computacionales** el cual se dedica explícitamente al estudio/modelo de los sistemas biológicos pero ya conjuntando varios campos. Se interesan notablemente en: descripciones y modelos funcionales biológicamente realistas de neuronas y sistemas neuronales. Lo que veremos en redes neuronales computacionales no necesariamente tienen que ser realistas, lo que nos interesa es que resuelvan los problemas, si se desvían un poco de cómo funcionan los sistemas naturales en un principio no es problema.

Ahora, ¿Qué les interesa modelar? Se fijan en la fisiología y en la dinámica de estos sistemas, combinan varias ciencias tales como:

- Biofísica
- Neurociencias tradicionales con modelos matemáticos.
- Ciencias de la computación tanto en la parte del modelado como en la parte de la implementación de estos modelos y la generación de simulaciones computacionales.
- Ingeniería eléctrica se está diseñando hardware especializado para ejecutar modelos de manera eficiente, algunos de los modelos matemáticos están basados en circuitos eléctricos.
- Ciencias cognitivas tratan de ver que se está codificando dentro de un sistema nervioso y cómo podemos interpretar esa información que está ahí guardada.

De entre todo esto vamos a ver cómo está influyendo todo esto, en lo que va a hacer las ciencias de la computación pero con su propio modelo de redes neuronales (Existe una conexión muy fuerte entre estos dos campos).

Las neurociencias computacionales como se mencionó anteriormente estudia modelos del sistema nervioso y clasifica estos modelos en tres tipos:

- 1. **Modelos descriptivos**, nos limitamos a decir que está haciendo un sistema y en particular aquí son muy famosos los experimentos con ratones se está tratando de ver qué puede hacer, que no puede hacer, que puede aprender, que no, pero no se puede explicar "¿Cómo?", simplemente se dice que es lo que está sucediendo.
- 2. **Modelos mexicanistas**, donde ahora sí nos interesa saber, ¿Cómo es que están haciendo las cosas? Aquí vamos a ver como los modelos matemáticos, precisamente nos están tratando de describir cómo puede ser que se están conectando estas neuronas, cómo pueden estar funcionando las redes de neuronas, cómo podría estarse almacenando la información y transfiriendo de un lado a otro.
- 3. **Modelos interpretativos**, nos dan una idea del por qué o para qué lo hacen. Se tiene que buscar intencionalidad, razonamiento de más alto nivel.

Cuando trabajemos con en redes de computadoras vamos a notar que sí necesitamos trabajar un poco con los tipos 2 y 3. Para romper ese mito de nuestras redes neuronales, donde sabemos que aprendieron y no estamos ni siquiera seguros de que aprendieron o porque lo aprendieron así. Vamos a tener que utilizar herramientas matemáticas para tratar de descubrir qué es lo que realmente está haciendo la red entrenada.

Ahora los **objetivos del modelado**:

(Empezando desde lo más granular que es cada una de las neuronas)

- Las **corrientes**, que están pasando a través de las membranas de las neuronas, la influencia que tiene en el paso de la información.
- Las proteínas buenas van a jugar un papel importante en la conducción de elementos iónicos no transmisores (acoplamientos químicos).

(El siguiente nivel ya no solamente de una neurona)

- Las **oscilaciones de las redes** completas, que pasa con estas señales, pulsos eléctricos, que se están transfiriendo de unas regiones a otras y que empiezan a producir oscilaciones con ciertos períodos, regiones de actividad, que se apagan.
- Arquitectura topográfica y de columnas cómo están organizadas estas neuronas, quienes están conectadas con quiénes, cómo reaccionan dentro de ciertas
 regiones identificadas, cómo interactúan con otras regiones. Se puede identificar
 una arquitectura desde el punto de vista fisiológico como de vista funcional. Un
 caso particular de estas estructuras es la formación de columnas de neuronas que
 están altamente conectadas y trabajan como una unidad.
- El aprendizaje es decir estamos procesando información, estamos guardando información, recuperando y eso permite que los seres que cuentan con un sistema nervioso tengan características especiales cuyo comportamiento se puede modificar conforme aprenden.
- La **memoria** que significa que necesitamos almacenar información, recuperarla procesarla.

Sistema Nervioso

¿Qué es un nervio? Un nervio es una gran colección de axones que están viajando todos juntos en una especie de cable (fibra), pasan vasos sanguíneos por en medio de los nervios. Esto es de lo que está formando el sistema nervioso, se orginan desde la médula espinal (31 pares de nervios raquídeos)o encéfalo (12 pares de nervios craneales).

Los nervios son estructuras conductoras de impulsos nerviosos situados fuera del sistema nervioso central, es decir, estamos hablando de todos estos axones que salen desde del cráneo, la médula espinal y están descubriendo el resto del cuerpo. Están formados por un conjunto de axones agrupados cada uno de los cuales procede de una neurona. Pueden ser clasificados como:

- Motores salidas, ejecución/acción
- Sensitivos entradas

• Mixtos son mayoría, tienen tanto fibras sensitivas como motoras

Tenemos dos grandes partes del sistema nervioso, el **sistema nervioso periférico** y el **sistema nervioso central**, como se puede ver en la imagen 1.1.

Figura 1.1 Overview of Nervous System esp, OpenStax, 20 December 2018, WIKI-MEDIA COMMONS, https://upload.wikimedia.org/wikipedia/commons/0/07/1201_Overview_of_Nervous_System_esp.jpg, CC BY-SA 4.0

En del sistema nervioso periférico tenemos al:

- **Sistema somático** se controla de forma voluntaria, se conforma de nervios conectados a músculos voluntarios esqueléticos y receptores sensoriales, de los cuales unos son:
 - * de entrada, aferentes
 - ⋆ de salida, eferentes
- **Sistema autónomo** funciona de forma involuntaria, se conforma de nervios que se conectan con el corazón, los vasos sanguíneos, los pulmones, el estómago, los intestinos, glándulas

Figura 1.2 Diagrama explicativo del recorrido eferente y el aferente, Pearson Scott Foresman, 26 August 2010, WIKIMEDIA COMMONS, https://upload.wikimedia.org/wikipedia/commons/3/3e/Afferent_%28PSF%29.es.png, CC0

Ahora respecto al sistema nervioso central lo integra:

- La médula espinal
 - ★ Dentro de esta hay una organización, la presencia de ciclos de retroalimentación local, es decir, nuestro sistema va a estar en diferentes etapas son nervios que no necesitan pasar por todo el procesamiento cerebral, las señales simplemente entran llegan a una fase local e inmediatamente reaccionan, ver el ejemplo de la imagen 1.3. Ocurren en un ciclo local y esto también puede convertirse en algo muy importante a la hora de hacer cómputos, no siempre es necesario pasar todo por todas las capas de procesamiento.
 - * Señales de control motor descendientes del cerebro hacia las neuronas motoras, estas son señales que provienen de un campo en una capa mucho más alta de procesamiento y provocan movimientos.
 - * Axones sensoriales ascendentes donde el cuerpo de la neurona está afuera y la información va a viajar hacia arriba, desde los músculos, piel y estas señales viajan hasta el cerebro.
- El encéfalo

Cada colección de nervios que sale de la base del cerebro se asocian con funciones muy específicas (en su mayoría).

Notas:

• Este sistema está hecho en diferentes niveles locales, entradas y salidas

Figura 1.3 Esquema explicativo del arco reflejo, Marta Aguayo, 18 December 2014, WIKIMEDIA COMMONS, https://upload.wikimedia.org/wikipedia/commons/c/cb/Imgnotraçat_arc_refelx_esp.svg, CC BY-SA 3.0.

- El procesamiento que esté ocurriendo en el encéfalo puede tener diferentes capas y eso se verá reflejado cuando nosotros definamos arquitecturas para las redes neuronales.
- Las redes neuronales actuales, que han tenido más éxito, se componen de diferentes subunidades o diferentes redes que hacen cosas locales. Es decir esta estructura global que estamos viendo, se está empezando a reproducir/imitar ya con las neuronas computacionales.

Cerebro

En esta parte vamos a preocuparnos sobre todo por la parte funcional. Haciendo una breve analogía, vamos a hacer una visión general del "hardware", para ver qué efectos va a tener en el "software". En general la arquitectura de cada cerebro es completamente diferente al cerebro de otras personas. Se ha intentado averiguar qué está haciendo cada región con diferentes estudios por ejemplo, ver cuánta sangre se está bombeando en diferentes regiones del cerebro dependiendo de los estímulos que se le presentan a una persona, o si alguna persona tiene un padecimiento se tratan de tomar escaneos para ver qué regiones del cerebro están funcionando y cuáles presentan lesiones. A partir de las lesiones, lo que hacen es que una vez que está identificada la actividad que ya no se puede realizar de forma normal, averiguan qué región era responsable de esa actividad, que ahora está dañada.

Gracias a esos estudios, se ha logrado identificar más o menos en forma general, a qué se dedica cada una de las regiones del cerebro. En ocasiones no se puede decir exactamente qué tan vinculadas están (las regiones) o por qué se están activando otras regiones.

Hay partes funcionales que se comparten entre las diferentes regiones y no están ubicadas en un solo lugar. Otras parte importante a mencionar es, el cerebelo que se considera prácticamente vital, cumple con funciones tales como el equilibrio, la coordinación, el control fino de los músculos, de hecho tiene más neuronas que el cerebro y aún así hay niños que nacen y viven sin cerebelo.

A continuación se mencionan algunas de las diferentes funciones de las regiones, que se han identificado en la imagen 1.4:

Figura 1.4 Diagrama básico de las regiones del cerebro.

Lóbulo frontal se le puede asociar con la parte del raciocinio, la parte de inteligencia, la conducta, la memoria, la personalidad, la capacidad para realizar planes complejos a largo plazo y también es responsable de algunas actividades de movimiento. Dentro de este destaca el área de broca, su principal función es el movimiento del habla, mover los labios. la boca.

Lóbulo temporal aquí está otra parte del habla, que tiene que ver más con el uso de símbolos para el lenguaje, la conducta, memoria, aquí se procesa el oído, un poco de visión y emociones. Dentro de este está (compartida entre el lóbulo parietal) el área de Wernicke, trabaja con la parte lingüística, y de cognición. También dentro de este está el hipocampo trabaja con recuerdos, aprendizaje y navegación espacial, cómo sabemos cómo llegar de un lado hacia otro.

Lóbulo parietal trabaja con la inteligencia, razonamiento, distinguir entre izquierda y derecha, lenguaje, sensación, lectura y sabor.

Lóbulo occipital se dedica prácticamente solamente a visión, es una región un tanto amplia. En particular en el área de robótica cuando están programando un robot o móvil, los robots tienen dos laptops y una de ellas se dedica prácticamente solo a procesar la visión.

Cerebelo se encarga del equilibrio, la coordinación fina de los músculos.

Tronco encefálico se encarga de la respiración, presión arterial, latidos cardíacos, de ilusión, conciencia.

Zonas funcionales

Para visualizar mejor la parte de la arquitectura, que tiene el cerebro para realizar todo lo que se le conoce como, la ruta desde la sensación hasta la cognición, veremos un diagrama de la parte funcional del cerebro.

Figura 1.5 Diagrama de la arquitectura del cerebro a nivel funcional.

Explicando el diagrama 1.5, en la primera parte (espacio extrapersonal) vamos a pensar en la entrada sensorial, que se enfoca muchísimo en la parte de visión y audio (en general todos los sentidos), notamos qué de las neuronas que están en la parte sensorial, su primera conexión es hacia una capa que se le llama unimodal superior, aquí se procesa la información de cada sentido de manera individual, es decir, las neuronas o solamente están procesando visión o solamente audio, todavía no se mezclan, por ejemplo de visión, se separan colores e intensidad lumínica, se empieza a detectar algunas esquinas, alguna inclinación, la dirección de las luces y las sombras. Notemos que desde aquí hay una rápida conexión a la sección premotora y luego hacia la parte motora, recordando la mención de los circuitos locales y de reflejos, aquí prácticamente lo podemos ver (en este pequeño camino).

Pasando de este primer procesamiento básico entramos al siguiente que es el unimodal inferior, (aquí aún se está trabajando con procesamiento de una sola modalidad) visión sigue siendo visión, audio sigue siendo audio, pero ya son procesamientos un poco más complejos, por ejemplo, reconocimiento de rostros, de objetos. En esta parte tenemos un rápido ciclo de regreso a la parte premotora, por ejemplo la acción de ver a mi mamá y saludarla (aquí aún no se tiene que razonar demasiado).

En la siguiente fase (medio interno), se conecta hacia tres áreas, la **heromodal**, ya se integran diferentes modalidades (audio y visión) ejemplo, oigo que me hablan y volteo a ver, aquí se está juntando ambas cosas, el **límbico** y el **paralímbico** que trabajan con la parte de las emociones y conceptos abstractos.

Finalmente llegamos al **hipotálamo** que es donde están todas las emociones, en las conexiones entre estas regiones, estarían los procesamientos de alto nivel.

Ahora estas diferentes regiones se replican de cierta manera cuando estamos haciendo los diseños de las arquitecturas modernas para redes neuronales. En algunas ocasiones se comienza con algunas capas de neuronas, haciendo procesamientos con una sola modalidad, extrayendo datos básicos, después se van componiendo en figuras más complejas y después hasta podemos combinar bloques de neuronas, para poder resolver problemas que tomen en cuenta diferentes modelos.

Neurona biológica

La neurona

La neurona es un tipo de célula perteneciente al sistema nervioso central, que se comunica tanto por señales eléctricas como por señales químicas. Cada neurona tiene:

- Un cuerpo celular (**soma**) que contiene un núcleo y otros componentes celulares.
- Una zona de recepción denominada dendritas.
- Una zona de emisión conocida como axón, compuesto de:
 - * Cono axonico.
 - * Membrana plasmática axonica y citoplasma.
 - * Recubrimientos de mielina, interrumpidos con intervalos regulares de nódulos (anillos) de Ranvier.
 - * Terminales del axón donde se encuentan los botones sinapticos.

Pensemos en la neurona como toda una compuerta, por un lado esta el cuerpo de una neurona típica, en las dendritas tenemos una mezcla de neurotransmisores y iones que

Figura 1.6 Neurona, Acracia, 14 January 2007, Wikimedia Commons, https://commons.wikimedia.org/wiki/File:Neurona.svg, Creative Commons Attribution-ShareAlike 2.5 Generic

pueden moverse a través de la membrana. La forma en que intercambia información es mediante sustancias químicas y iones que se están intercambiando, entre la parte de afuera y de adentro de la neurona. Particularmente en las dendritas, se tienen terminaciones que se pueden conectar con otras neuronas y de esta manera permitir el paso de información.

- Neurona presinaptica, transmite una señal.
- Neurona postsinaptica, recibe una señal.

En el interior de la neurona hay una cierta carga eléctrica, en el exterior (el líquido de afuera) hay otra carga eléctrica, es decir, hay una **diferencia de potencial** entre el interior y el exterior de la neurona, por eso se dice que la membrana axónica en sí misma tiene una carga eléctrica. Dado que es porosa, esta membrana va a estar intercambiando partículas con el exterior, esto va a hacer que la polarización de esta membrana vaya cambiando, si en algún momento la diferencia de potencial neta rebasa un cierto umbral.

Transmisón de señales y alacenamiento de información:

- 1. La neurona desde sus dendritas recibe señales de otras neuronas vecinas.
- 2. Cada señal se va acumulando en su cuerpo hasta el cono axónico, donde se van a estar sumando la contribucion de todos los efectos de cambios de potencial.
- 3. En el momento que se rebase un cierto valor umbral, la diferencia de potencial se propaga hasta los botones terminales.
- 4. La neurona entra en un período refractario, donde empieza a cambiar el potencial entre el cono axónico y el axón de la neurona.
- 5. Se va a transmitir un disparo eléctrico en seguida,
- 6. La neurona se va quedar totalmente quieta, durante un breve momento para que la señal pueda viajar hacia el axón.

7. Se va a notar un cambio muy violento en el voltaje, que se va recorriendo a lo largo de todo el axón.

La neurona tipica tiene unas células de mielina, que forman nodos que van cubriendo al axón para evitar que se pierda la señal, estos nodos recargan otra vez la señal y permite que avance, al siguiente nodo, donde se recarga nuevamente y avance, hasta que logre llegar al final de axón.

Este trayecto puede ser de una neurona a unas pocas neuronas vecinas, hasta unos cuantos metros (ej. esta podría estar en la médula espinal y el axón llegar hasta el dedo), Cuando la señal llega a la colita de la axón, hay varias terminales que van a reaccionar ante el cambio de electricidad, mediante la liberación de unas vesículas, que contienen neurotransmisores.

Elementos de las neuronas y tipos

Elementos durante la transmisión de señales:

- Neurotransmisores: son los mensajeros químicos que se comunican entre neuronas adyacentes; La liberación de neurotransmisores de una neurona ayudará a
 despolarizar o hiperpolarizar (aumentar la magnitud de la carga) la neurona adyacente, lo que hará que sea más o menos probable que ocurra un potencial de
 acción en la siguiente neurona.
- Impulsos eléctricos: potenciales de acción que son, cambios de voltaje que van a ir ocurriendo a lo largo del axón. Sucede una vez que se acumularon demasiadas señales a través de las dendritas, entonces la neurona puede disparar un impulso eléctrico, a través del axón, que va a provocar que su terminal libere más químicos, estos químicos son los que hacen los efectos pequeños en cada uno de los cuerpos de las neuronas postsinapticas.
- Plasticidad: modificación a largo plazo de las conexiones entre neuronas. En el cerebro las neuronas pueden cambiar de manera permanente, perder canales (que permiten el intercambio de nuevos transmisores sin impulsos eléctricos), formar más canales o incluso pueden crear protuberancias. Por ejemplo, cuando un cerebro aprende está transformando su arquitectura, es decir, los aprendizajes de largo plazo, modifican el cerebro y en consecuencia va a pensar y reaccionar distinto, que antes del aprendizaje.

Tipos:

Neuronas sin axones, nunca dispara pero si tiene intercambios de neurotransmisores en las dendritas

- Neuronas bipolares, tienen dos axones.
- Neurona unipolar, solamente hay una conexión entre el cuerpo y el axón pero el axón tiene dos ramas, cuando dispare va a disparar hacia los dos lados, haciendo llegar su señal a diferentes regiones.
- **Neurona multipolar**, la más conocida, empieza con un cuerpo con dendritas y luego un largo axón que va a terminar con varias terminaciones axónicas.

Cuando modelamos redes neuronales lo típico es modelar, una neurona con dendritas, su disparo y su axón, que se conecta con las siguientes dendritas, pero aquí ya estamos viendo que la naturaleza nos dice que hay que pensar más y plantear cómo hacer la representaciones de estas conexiones que nos presenta la naturaleza, un poco diferente pero tal vez con resultados más satisfactorios.

Sinapsis

Aquí veremos más a detalle cómo una neurona recibe o transmite información a otras neuronas, donde para un solo disparo están participando un montón de elementos.

El momento en que dos neuronas transmiten información se llama **sinapsis** y es mediante conexiones que se dan en las terminales del axón (vesiculas sinápticas) de la neurona presináptica hacia la postsináptica. Es importante notar que estas neuronas no tienen contacto anátomico, sino que están separadas por un espacio muy pequeño, **la brecha sináptica**. Lo que sucede en estas conexiones es un intercambio electroquímico que produce cambios de polaridad a lo largo la membrana.

Figura 1.7 Part of neurons in Spanish, Dana Scarinci Zabaleta, 24 February 2019, Wikimedia Commons, https://commons.wikimedia.org/wiki/File:Part_of_neurons_in_Spanish.svg, OpenStax, CCO

Clasificación de sinapsis, las terminales del axón de la neurona presináptica puede hacer contacto con la neurona postsináptica en:

- 1. su dendritas, axodendrítica.
- 2. su cuerpo (soma), axosomática.
- 3. su axón. axoaxónica.

Distingamos entre dos tipos de sinapsis:

Sinapsis eléctrica: las membranas de las células pre y postsináticas se unen en la brecha sinaptica por una union tipo gap, o unión comunicante, que son pequeños canales que permitien el paso de iones.

- 1. Posee una transmisión bidireccional de los potenciales de acción.
- 2. Sincronización en la actividad neuronal, lo cual hace posible una acción coordinada.
- 3. Los potenciales de acción pasan a través del canal proteico directamente sin necesidad de la liberación de los neurotransmisores, por tanto es más rápida.

Sinapsis química: la neurona libera moléculas neurotransmisoras a otra neurona adyacente en un pequeño espacio (la brecha sináptica). Se puede dividir etapas:

- 1. Un potencial de acción llega al boton terminal proviniente desde cono axónico.
- 2. Los neurotransmisores contenidos en las vesículas que están el los botones terminales, son liberados en la brecha sináptica y se dispersan.
- 3. Cada neurotransmisor se une a su receptor ubicado en la membrana de la neurona postsináptica.
- 4. El exceso de neurotransmisores que queda en el espacio sináptico es degradado o recaptado.

La neurona postsináptica está recibiendo un montón de señales por la liberación de neurotransmisores tanto de sus vecinos, como lo que ella misma va intercambiando, una vez que están generando el efecto completo de cambiar la polarización de la membrana, van a provocar que la neurona haga un disparo eléctrico. En el cuerpo están llegando estos intercambios de iones que se suman en el cono axónico, empiezan a viajar a través del axón, en las vainas de mielina (donde se refuerza la señal). Aquí hacemos mención por primera vez de los iones positivos: sodio y potasio, estos iones lo que hacen es, que la membrana tenga una cierta carga la mayor parte del tiempo. Cuando salen tres sodios entran dos potasios, entonces siempre hay más positivos afuera que en el interior de la neurona, es decir, por lo general tiene una carga más negativa que su entorno. Cuando ocurre un disparo de la neurona y se da el cambio de polarización en la membrana, se abren sus poros/ canales. El hecho que los canales abran o cierren depende de varios cambios

que puedan estar ocurriendo alrededor de la neurona, en particular los que transmiten el disparo eléctrico, reaccionan ante el cambio de potencial que ocurrió en la membrana de la neurona.

La señal va pasando por los nodos de Rainvier, se refuerza y pasa por los canales ionicos ya abiertos, hasta finalmente llegar a la sinapsis a esto le llaman la **conducción a saltos**. Ahora lo que ocurre al final del recorrido es que, el cambio de electricidad otra vez provoca que unas vesículas, que están en el interior de la neurona, que contienen neurotransmisores, se peguen a la membrana axónica y se liberen esos neurotransmisores nuevamente a otra neurona.

Entonces la información le va a llegar a la neurona vecina, en la forma de neurotransmisores que fueron liberados (en lo que sea que lo haya recibido, típicamente son dendritas, pero podría ser su cuerpo o su axón), eso es lo que va a percibir la otra neurona y otra vez esta otra neurona va a empezar a sumar los efectos de estos neurotransmisores, para que en algún momento decida a lo mejor disparar y otra vez provocar que se liberen neurotransmisores a su final e influir con otras neuronas.

Neurotransmisón

Cuando la neurona no está mandando señales eléctricas, tiene un potencial de reposo, su diferencia de potencial entre el interior y el exterior de la neurona, es más negativo en el interior y más positivo (o menos negativo) en el exterior. En el caso de las sinapsis químicas, llega un disparo y se altera el potencial de la membrana, entraran las células de calcio y entra la participación de las vesículas para liberar neurotransmisores. Los neurotranmisores estan flotando en la brecha sináptica, viajan hasta adherise a los receptores de la neurona postsinaptica, en ese momento están alterando el intercambio normal que existe entre iones en el interior y en el exterior de la célula y van a cambiar las cargas netas que hay adentro y afuera. Este es un cambio local que está ocurriendo en una puntita de una dendrita,

este cambio en sí es una especie de transferencia de información pero muy local, entonces podemos distiguir entre dos efectos en la membrana:

- El efecto excitatorio, despolariza la membrana postsináptica es decir ahora va a ser más propensa a disparar porque ya le cambió la diferencia de potencial que tenía.
- El efecto inhibitorio, hiperpolariza la membrana postsináptica, es decir, va a incrementar la diferencia de potencial entre el exterior e interior pero de tal manera que ahora ya no va a querer disparar esta neurona.

De estos efectos también va a darse el efecto de la **plasticidad**, que es cuando dos neuronas tienden a excitarse juntas, después de esta conexión se va a tender fortalecer,

Figura 1.8 Esquema detallado de una neurotransmisión.

sí más bien tienden a inhibirse lo que va a suceder después es que estos canales empiezan a encoger, haciendo que se reduzcan y ya no dispare.

Ejemplos de neurotransmisores: serotonina, dopamina, oxitocina, endorfinas, adrenalina.

Campos receptivos

Aquí lo que nos interesa es, en qué región puede ser afectada una neurona. Se define un campo receptivo, como la región en la periferia sensorial dentro de la cual los estímulos pueden, influir la actividad de las células sensoriales (ver 1.9). Hay diferentes niveles donde pueden aparecer los campos receptivos tanto cerca de la piel, cerca del gusto, el olfato, donde las neuronas van a estar asociadas con otras células que les pueden ayudar, que son sensitivas a los cambios correspondientes, a veces la misma neurona va a tener alguna protuberancia especializada. También podemos encontrarlos más hacia adentro del nivel de procesamiento, no necesariamente todos van a estar pegados a la parte sensorial física.

Comprende a los receptores sensoriales que alimentan a las neuronas sensoriales, pueden ser:

- receptores específicos en una neurona como protuberancias especializadas.
- conjuntos de receptores capaces de activar una neurona mediante conexiones sinápticas.
- describen la ubicación donde debe estar presente un estímulo sensorial para licitar una respuesta desde una célula sensorial.

Figura 1.9 Campo receptivo. Se muestra una región que está bajo cierto estímulo, las terminales de la neurona está recibiendo está información y transmitiendola.

Ejemplos:

• En la piel tenemos células que nos están protegiendo en la epidermis, una de las células auxiliares **la célula de merkel** que es sensible a la presión. Esta puede estar muy cerca a una neurona, sus terminales se activan de acuerdo a las acciones de la célula de Merkel y va a pasar la información (ver 1.10).

Figura 1.10 Capas de la epidermis y en azul la célula de Merkel.

 El ojo, para procesamiento visual, actualmente se utiliza una de las redes neuronales más famosas que son las redes convolucionales, que están inspiradas en el ojo, nosotros tenemos campos receptores donde hay unos fotorreceptores en los conos y los bastones que son sensibles a luces de diferentes colores a cambios de intensidad de la luz y que pueden detectar, por ejemplo, en una cierta región física si está llegando luz o por ejemplo, si llega en la periferia entonces va a inhibir el disparo de estos elementos, por otro lado tenemos también su complemento que permite ser estimulado por las señales que llegan, como que en la parte de afuera de un círculo y más bien se inhiben con un estímulo en la parte de afuera (ver 1.11). Esta especie de celdas que tienen una posición física y geométrica relevante van a determinar cuando disparan o no las neuronas. Los siguientes niveles del cerebro se van a encargar de interpretar mejor el cambio de sombras, como a una persona que pasó corriendo, un auto que se está moviendo cerca o reconocer algún tipo de alimento.

Figura 1.11 Capas de la epidermis y en azul la célula de Merkel.

Señal eléctrica

Veamos que pasa en los canales de iones y el paso de la señal eléctrica primero diferenciemos los tipos de compuertas iónicas:

- Canal por fuga: Estos se abren y cierran aleatoriamente, todo el tiempo están activos en la neurona, intercambiando por ejemplo: sodio y potasio.
- Canal regulado por ligado: Aquí se hace presente un neurotransmisor que es el que va a provocar que se abran o al revés impedir que se abran.

- Canal por estímulo mecánico: Permiten que pasen más iones o menos iones dependiendo, si se ejerció una presión, por ejemplo, con las neuronas cerca de la piel, las células de merkel.
- Canales regulados por el voltaje: Tienen el rol protagónico en la transmisión del pulso eléctrico (que se ha estado mencionando) describiendo uno de ellos, este canal tiene una pequeña compuerta abajo, que la puede cerrar independientemente del hecho de que el canal se abre o se cierre. Existen varias variantes de este tipo de canales regulados por el voltaje, la forma en que se están activando y desactivando sus compuertas, es lo que permite el paso del pulso.

Existen realmente una buena cantidad de iones presentes en el cerebro pero los más protagónicos son precisamente el **potasio**, el **sodio**, el **cloro** y son los que vamos a utilizar para un modelo matemático de las neuronas.

Por utilimo veamos brevemente **la neuroplasticidad**, es lo que nos permite el aprendizaje a largo plazo en el cerebro, es un mecanismo de aprendizaje del cerebro en el cual:

Cuando las neuronas se activan simultáneamente con frecuencia la conexión entre ellas se fortalece.

Este mecanismo constituye la principal inspiración para el diseño de las redes neuronales artificiales, concretamente en esto se inspiran los algoritmos de entrenamiento. Lo que se hace es calcular, qué conexiones debemos reforzar y cuáles debemos de debilitar para que nuestras redes neuronales calculen las funciones que a nosotros nos interesan.

2 | Modelo de Hodgkin-Huxley

Introducción

Esta sección se enfocará a la parte de transmisión de información y que tipo de operaciones lógicas matemáticas ocurren para que un cerebro pueda realizar cómputos, específicamente se detallará la mecánica de los disparos de las neuronas, siendo estos una de las características más relevantes a la hora de modelar las redes neuronales artificiales. Si en algún momento de su vida han visto temas relacionados con compuertas digitales, arquitectura de computadoras, diseño electrónico digital, les será más fácil abstraer el concepto, pues nosotros vamos a ver los procesos de paso de información a través de compuertas pero en un sistema biológico (de la naturaleza).

Notemos primeramente un impulso nervioso, recordemos que esté es una onda que avanza desde el cono axónico de la neurona hasta la neurona postsináptica. Esta onda electroquímica ocurre dada la diferencia de potencial entre la parte interna y externa de neurona, está diferencia se da a consecuencia de las distintas concentraciones de iones en ambos lados de la membrana plasmática. Los estados en la membrana plasmática (del axón) se pueden diferenciar en, potenciales neuronales:

- **Potencial de reposo:** Es la diferencia de cargas en la membrana y está polarizada a -70mV. Es positiva por fuera (Na+) y negativa por dentro por Cl- y proteínas-y no transmite señal.
- Potencial de acción o membrana: Un estímulo umbral de 55mV, despolariza la membrana y abre los canales del Na+ y K+ y avanza la señal nerviosa, es un cambio muy rápido en la polaridad de la membrana de negativo a positivo y vuelta a negativo.

Retomando la sinapsis eléctrica, donde participan los canales iónicos y las entradas de la neuronas (dendritas) están siendo alteradas poco a poco, hasta que ocurre la suficiente carga (diferencia de potencial) en sus dendritas y en el cuerpo de la neurona, para que desde el cono axónico se de un disparo o potencial de acción (spike), transmitiendo la información gracias a la apertura y cierre de ciertos canales de iones cargados. Este

cambio brusco de la diferencia de potencial , se nota en forma de un pulso eléctrico (ver imagen), para saber más a detalle qué está ocurriendo en está rápida elevación en la diferencia de potencial, se contará de dónde salió este modelo y por qué toma la forma que tiene.

Los primeros científicos que estudiaron el potencial de acción y dieron un modelo (de la unión sináptica eléctrica) fueron Alan Lloyd Hodgkin y Andrew Fielding Huxley, obteniendo un modelo matemático, que intenta explicar qué es lo que estaba pasando en las neuronas. Ellos trabajaron con un calamar gigante (que puede medir hasta 4 metros de largo) dado su gran tamaño, tiene un axón también bastante gigantesco, que recorre casi la mitad del cuerpo del calamar y su grosor es de medio milímetro, considerando el tamaño estándar de una axón de una neurona (1-20 um). El axón del calamar gigante es tan grande que les permitió introducir dispositivos para medir el voltaje, es decir, la diferencia de potencial entre, el interior de la neurona y la parte de afuera, el ambiente externo de la neurona. Con estás mediciones experimentales que lograron obtener (1939), se pudo determinar qué pasaba con las cargas eléctricas tanto en el interior como en el exterior y así estudiar cómo se lograba la transferencia de electricidad cuando disparaba este pulso. Se dan cuenta que podían modelar este comportamiento como un circuito eléctrico donde están corriendo estas corrientes, si bien aún no sabían todavía cuál era exactamente el mecanismo biológico por detrás, si observaron que había dos elementos protagónicos que serían el sodio y el potasio. Notaron que estos existen en diferentes concentraciones, en la parte de afuera y en la parte de adentro de las neuronas. Con esto nosotros podemos aprender también el por qué es importante consumir algo de sal y nunca estar bajos de potasio, pues estos dos elementos son indispensables para que las neuronas puedan transmitir sus señales.

Membrana y canal

Se dedicaron a estudiar qué pasaba con las concentraciones de estos iones (sodio y potasio) en la parte de afuera o en la parte de adentro cuando empezaban a fluir las corrientes. El sistema parecía una especie de circuito eléctrico, se lo imaginaron como una especie de membrana porosa (lo cual es bastante cercano a lo que después se descubrió con la microscopía) y la forma en que lo vieron fue como un circuito eléctrico donde la membrana está funcionando como un capacitor que almacena ligeramente las cargas cuando están tratando de pasar de un lado hacia el otro y además con la cualidad que tenía veces que dejar pasar más iones y a veces no (semipermeable), modelan esto como una especie de resistencias variables, bajo ciertas condiciones de voltaje de la diferencia de potencial entre la parte de afuera y la parte de adentro, estos canales permiten pasar más de estos iones (ya sean sodio, potasio o calcio) o por el contrario impiden su paso.

El comportamiento de estas resistencias viene acompañado con un voltaje de reposo, en estos voltajes particulares el tipo de ion (de la resistencia modelada) se estabiliza y ya no va a cambiar esta resistencia. Lo que observan es que el ion de sodio y su resistencia

va a variar dependiendo del voltaje, a esto se le llama un canal transitorio porque en ciertos voltajes si puede pasar, si es muy bajo, no puede pasar y si rebasa un cierto umbral entonces se vuelve a tapar y ya no puede pasar. Lo que sucede con el potasio es que, puede salir si el voltaje está más allá de un cierto valor, si no, no pasan y va variando un poquito que tanto puede pasar. Por estas características de que el potasio es un intervalo dentro de la recta y el sodio es a partir de cierto valor, por tanto se les modelan de maneras ligeramente diferentes. Más adelante se descubrió porque tenían este comportamiento, básicamente el canal de potasio es una puerta hecha de cuatro subpuertas por donde los elementos pasan o no pasan, el canal de sodio es como una compuerta que está hecha de tres subpuertas que se pueden abrir y tiene aparte un tapón extra, que hace que aunque estas tres están abiertas bloquee toda la compuerta. las neuronas están trabajando con muchos más iones aparte de estos dos uno que destaca bastante es el caso del cloro que tiene carga negativa y bueno también se agregó este otro

elemento que es un canal que está abriendo y cerrando aleatoriamente y está dejando pasar algunos otros iones y eso también va a afectar a la dinámica de la neurona.

entonces con lo que ellos me dieron establecieron me dieron experimentalmente cómo se estaban comportando estas resistencias dependiendo del voltaje del voltaje o la diferencia de potencial que había entre ambos lados de la membrana y a partir de ahí pudieron describir matemáticamente y simular los disparos que se conocen como potenciales de acción vamos a mencionar entonces rápidamente cuáles fueron estos conceptos de electricidad que se están utilizando para el modelo tenemos este concepto de

potenciales eléctricos lo vamos a representar con las letras v dependiendo favorita vamos a ver de lo que más nos convenga y resulten de la separación de cargas opuestas es decir aquí usualmente lo que está sucediendo es que hay mucho sodio acá afuera tres bolitas de sodio que son cargas positiva por dos bolitas de potasio que hay en la parte de adentro entonces hay muchas más cargas positivas en la parte de afuera que las que hay en la parte de adentro y eso es lo que provoca precisamente la diferencia de cargas que es lo que estamos viendo como un este potencial eléctrico estos se van a medir en mil volts el otro elemento son las corrientes movimiento de cargas y se miden en micro amd pers ahora aquí hay una historia es bastante simpática la forma en que hicieron el experimento con el calamar es que literalmente le estaban dando toques al axón entonces lo que hacían ellos era inyectar una corriente eléctrica y gracias a eso lograban ir midiendo que era lo que estaba pasando con las concentraciones de cargas afuera y adentro en el caso de las neuronas reales lo que va a provocar esas cargas esos toques que les daban al ojo quien hizo clic es cuando entran en juego los neurotransmisores y provocan que haya cambios precisamente en estas corrientes entonces digamos que hodgkin y huxley jugaron el rol que tendrían que jugar usualmente los neurotransmisores para abrir otras compuertas . nosotros en la manera en la que lo vamos a simular es precisamente con estas corrientes que son las que se están poniendo en el experimento y vamos a ver cómo reacciona el acciona

el otro concepto bueno ya lo estuvimos mencionando la resistencia que es la medida de la oposición en el movimiento de las partículas cargadas

su inverso matemático es la conductancia es 1 entre r y lo vamos a interpretar como la facilidad de transmisión de las partículas cargadas

el otro concepto es la capacidad o capacidad eléctrica o capacitancia sé que es la que estamos utilizando aquí para modelar precisamente la membrana estos son lípidos es una grasa es una capita de grasa y esa es la cantidad de energía eléctrica almacenada en un capacitor para una diferencia de potencial eléctrico dada y éste tiene un comportamiento bastante interesante porque las cargas quedan almacenadas un ratito pero se van liberando poco a poco y se va descargando ese capacitor

Potenciales de Nerst o de reposo

bueno aquí vemos precisamente porque estamos utilizando la ub y la en la ub generalmente la vamos a utilizar para referirnos a la diferencia de potencial entre la parte de afuera de la célula y la parte de adentro -las es las vamos a utilizar para representar a aquellos voltajes donde cada una de las compuertas encontraría su equilibrio . y como les acababa de mencionar esos voltajes son distintos para cada una de las compuertas esto va a provocar precisamente la dinámica de la de la neurona por ejemplo

1. aquí vemos que el sodio va a andar cerca de los 50 mil volts ahí estaría su equilibrio es un valor positivo 2. el calcio que es el que va a jugar un rol ahí aunque se activen los mejores transmisores y se transmita el disparo etcétera etcétera va a estar por ahí de los 150 mil volts o sea que observamos que el voltaje tendría que ser bastante positivo 3. el potasio que es el que usualmente está trabajando intercambiándose casi todo el tiempo en la neurona va andar por ahí de los menos 80 milvolts de hecho veremos que el punto de equilibrio usual de la neurona anda por el de los menos 76 y 4. el del cloro está en menos 60 mil volts pues ahí nos podemos pensar que cada uno de estos canales pues está tratando de jalar la dinámica hacia su potencial de equilibrio y bueno no hay precisamente acuerdo entre ellos y eso es precisamente lo que hace que las neuronas cobren vida

Modelo de la membrana como bicapa de lípidos

Modelo de las compuertas iónicas controladas por voltaje

Dinámica del voltaje durante un disparo

Simulación usando el método de Euler

Información condificada en las dendritas

3 | Aprendizaje de máquina

	•			• /	
ESI	nacı	n de	וח פ	ınn	tesis
	Paci	-		. P \circ	

Conjuntos de entrenaiento, validación y prueba

Perceptrón

Compuertas lógicas con neuronas

Funciones de activación

Funciones de error: diferencias al cuadrado y entropía cruzada

Medidas de rendimiento:

Matriz de confusión

Precisión

Recall

f score

Parte II Redes dirigidas acíclicas

4 Perceptrón multicapa

XOR

Propagación hacia adelante manual

Propagación hacia adelante vectorizada (con matrices)

Interpretación matemática del mapeo no lineal

Propagación hacia adelante para el perceptrón multicapa

5 | Entrenamiento por retropropagación

Función de error

Gradiente de la función de error

Descenso por el gradiente

Otros algoritmos de optimización

6 Optimización del entrenamiento

Problemas en redes profundas

Gradiente desvaneciente (o que explota)

Entrenamiento en línea vs en lotes

Normalización y normalización por lotes

Regularización

7 Caso de análisis e interpretación

Red Hinton árbol familiar con numpy (entrenamiento)

Red Hinton árbol familiar con pytorch

8 | Entrenamiento con genéticos

Algoritmos genéticos

Neuroevolución

Antecedentes: Aprendizaje por refuerzo en videojuegos

Arquitectura para estimar la función de recompensa

Entrenamiento

9 | Mapeos autoorganizados

Aprendizaje no supervisado

Mapeos autoo-organizados

Kohonen

10 | Redes Neuronales Convolucionales

Convolución

Redes Convolucionales

Softmax

MNIST

Parte III Redes con ciclos

11 | Redes Neuronales Recurrentes

Derivadas ordenadas

Retropropagación en el tiempo

Sistemas dinámicos y despliegue del grafo

Arquitectura recurrente universal

Función de error

Forzamiento del profesor

12 | Atención

13 | LSTM

14 | GRU

15 | Casos de análisis: etiquetado de palabras y conjugación de verbos

Parte IV Redes no dirigidas

16 | Redes de hopfield

Entrenamiento

17 | Máquinas de Boltzman

Entrenamiento

Partículas y partículas de fantasía

Máquinas de Boltzman Restringidas

18 | Redes adversarias

GANs

A | Ecuaciones diferenciales