CS281A - Problem Set 2

Andrea Bajcsy

September 16, 2016

Problem 2.1.

(a) We can formulate the polynomial regression problem as a form of linear prediction by soliving the general linear model equation $X\alpha = y$ where:

$$X = \begin{bmatrix} 1 & t_1 & t_1^2 & \dots & t_1^D \\ 1 & t_2 & t_2^2 & \dots & t_2^D \\ 1 & t_3 & t_3^2 & \dots & t_3^D \\ \dots & & & & \\ 1 & t_n & t_n^2 & \dots & t_n^D \end{bmatrix} \alpha = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \dots \\ \alpha_D \end{bmatrix} y = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ \dots \\ y_n \end{bmatrix}$$

(b) Figure 1 shows a plot of the mean-squared error R(D) vs. Degree $D \in 1, 2, ...n - 1$ when using the data in y.dat and t.dat. See back for code that performs least-squares fit of a polynomial of degree D.

Figure 1: D vs. R(D)

(c) How does the MSE behave as a function of D and why? With the degree n-1 fit, we get (approximately) zero mean-squared error since the function fits exactly to every data point. What happens if you try to fit a polynomial of degree n? Why? To fit a polynomial of degree n, we will

be solving $X\alpha = y$, where $X^{n \times n}$.

$$\begin{bmatrix} 1 & t_1 & t_1^2 & \dots & t_1^n \\ 1 & t_2 & t_2^2 & \dots & t_2^n \\ 1 & t_3 & t_3^2 & \dots & t_3^n \\ \dots & & & & & \\ 1 & t_n & t_n^2 & \dots & t_n^n \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \dots \\ \alpha_n \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ \dots \\ y_n \end{bmatrix}$$

Using ordinary least-squares, we solve for $\alpha = (X^T X)^{-1} X^T y$.

(d) Figure 2 shows a plot of the degree $D \in 1, 2, ...n - 1$ versus the mean-squared error R(D) and \tilde{R} when using the data in y.dat, yfresh.dat, and t.dat. Why do you think that this plot is qualitatively different from the plot in part (b)? Even though we are fitting D = n-1 degree polynomial to the new yfresh.dat data, the model was trained on y.dat and will approximate yfresh.dat with greater error than the data it was trained on and cannot be a perfect estimator. Thus, the error appears to plateu for the same values of D with yfresh.dat or y.dat but at a higher error value when using yfresh.dat. What does this tell you how the fitted degree D should be chosen? Choose the minimal degree D after which the error doesn't change within some small ϵ bound.

Figure 2: D vs. R(D) and \tilde{R}

(e) Figure 3 shows a plot of the degree $D \in 2, ...9$ versus the mean-squared error \tilde{R} and F(D) when using the data in y.dat, yfresh.dat, and t.dat. How are the minimizing arguments of the two functions related? Why is this an interesting observation?

Problem 2.2.

(a) Prove that A is a convex function.

Proof. By definition,

$$A(\eta) = \log(\int_{\gamma} h(y) e^{\eta y} \, dy) \quad , \quad p_{\eta}(y) = h(y) e^{\eta y - A(\eta)}$$

Figure 3: D vs. \tilde{R} and F(D)

To prove convexity, we want to take the second derivative. Let:

$$B(\eta) = \int_{\gamma} h(y)e^{\eta y} \, dy$$

Then the first derivative we get:

$$\frac{\partial A(\eta)}{\partial \eta} = \left(\frac{1}{B(\eta)}\right) \left(\frac{\partial B(\eta)}{\partial \eta}\right) = \frac{\int_{\gamma} h(y)e^{\eta y}y\,dy}{\int_{\gamma} h(y)e^{\eta y}\,dy} = \frac{\int_{\gamma} h(y)e^{\eta y - A(\eta)}y\,dy}{\int_{\gamma} h(y)e^{\eta y - A(\eta)}\,dy} = E_{p_{\eta}}[y]$$

Taking the second derivative we have:

$$\frac{\partial}{\partial \eta} \frac{B'(\eta)}{B(\eta)} = \frac{\partial}{\partial \eta} \left(B'(\eta) \frac{1}{B(\eta)} \right) = \frac{B''(\eta)}{B(\eta)} - \frac{(B'(\eta))^2}{B(\eta)^2}
= \frac{\int_{\gamma} h(y) e^{\eta y} y^2 dy}{\int_{\gamma} h(y) e^{\eta y} dy} - (E_{p_{\eta}}[y])^2 = \frac{\int_{\gamma} h(y) e^{\eta y - A(\eta)} y dy}{\int_{\gamma} h(y) e^{\eta y - A(\eta)} dy} - (E_{p_{\eta}}[y])^2
= E_{p_{\eta}}[y^2] - (E_{p_{\eta}}[y])^2 = Var_{p_{\eta}}[y] \succeq 0$$

Since $Var_{p_{\eta}}$ is positive definite, we have shown that $A(\eta)$ is convex.

(b) Express KL divergance in terms of $A(\eta)$ and $A'(\eta)$.

$$D(p_{\eta}||p_{\eta}) = E_{\eta} \left(log(\frac{h(y)e^{\eta y - A(\eta)}}{h(y)e^{\tilde{\eta}y - A(\tilde{\eta})}}) \right)$$

$$= \int_{y} log\left(e^{(\eta - \tilde{n})y - (A(\eta) - A(\tilde{\eta}))} p_{\eta}(y) \right) dy$$

$$= \int_{y} \left((\eta - \tilde{n})y - (A(\eta) - A(\tilde{\eta})) h(y)e^{\eta y - A(\eta)} dy \right)$$

$$= (\eta - \tilde{n}) \int_{y} h(y)e^{\eta y - A(\eta)} y \, dy - (A(\eta) - A(\tilde{\eta})) \int_{y} h(y)e^{\eta y - A(\eta)} \, dy$$
$$= (\eta - \tilde{n})A' - A(\eta) + A(\tilde{\eta})$$

Since $A = \int_y h(y)e^{\eta y - A(\eta)}y$ and $\int_y p_{\eta}(y)dy = 1$ by definition.

(i) Bernoulli random variable:

$$p_{\eta}(y) = \eta^{y} (1 - \eta)^{1 - y}, y \in 0, 1, n \in (0, 1)$$
$$= e^{y \log(\eta) + (1 - y) \log(1 - \eta)} = e^{y \log(\frac{\eta}{1 - \eta}) - \log(1 + e^{\frac{\eta}{1 - \eta}})}$$

Thus, we have $A(\eta) = log(1 + e^{\eta})$ and $A^*(t) = sup_{\eta \in R} \{ \eta t - log(1 + e^{\eta}) \}$. We now take the gradient of A^* with respect to η , set this to 0 in order to solve the optimization problem, and then solve for η in terms of t.

$$\nabla_{\eta} A^*(t) = t - \frac{e^{\eta}}{1 + e^{\eta}}$$

$$0 = t - \frac{e^{\eta}}{1 + e^{\eta}} \implies t = \frac{e^{\eta}}{1 + e^{\eta}}$$

$$\frac{1}{t} = \frac{1 + e^{\eta}}{e^{\eta}} = \frac{1}{e^{\eta}} + 1 \implies \frac{1}{t} - 1 = \frac{1}{e^{\eta}}$$

$$e^{\eta} = \frac{1}{\frac{1}{t} - 1} \implies \eta = \log(\frac{1}{\frac{1}{t} - 1})$$

$$\eta = -\log(\frac{1}{t} - 1)$$

Substituting this back into our equation, we get:

$$A^*(t) = -t\log(\frac{1}{t} - 1) - \log(1 + e^{-\log(\frac{1}{t} - 1)}) = -t\log(\frac{1}{t} - 1) + \log(1 - t)$$
$$= t\log(t) - t\log(1 - t) + \log(1 - t) = t\log(t) + (1 - t)\log(1 - t)$$

(ii) Gaussian random variable:

$$p_{\eta}(y) = \frac{e^{\frac{-y^2}{2}}}{\sqrt{2\pi}}e^{yn-\frac{\eta^2}{2}}$$

Thus, we have $A(\eta) = \frac{\eta^2}{2}$ and $A^*(t) = \sup_{\eta \in R} \left\{ \eta t - \frac{\eta^2}{2} \right\}$.

$$\nabla_{\eta} A^*(t) = t - n$$
$$0 = t - n \implies t = n$$

Substituting this back into our equation, we get:

$$A^*(t) = t^2 - \frac{t^2}{2} = \frac{t^2}{2}$$

(iii) Poisson random variable:

$$p_{\eta}(y) = \frac{1}{y!} e^{y\eta - e^{\eta}}$$

Thus, we have $A(\eta)=e^{\eta}$ and $A^*(t)=\sup_{\eta\in R}~\{\eta t-e^{\eta}\}.$

$$\nabla_{\eta} A^*(t) = t - e^{\eta}$$
$$0 = t - e^{\eta} \implies \log(t) = n$$

Substituting this back into our equation, we get:

$$A^*(t) = tlog(t)e^{log(t)} = tlog(t) - t = t(log(t) - 1)$$

(d) Prove that conjugate dual is always a convex function

Proof.

Problem 2.3.

(a) By definition, we have likelihood of η as:

$$l(\eta; y_1, ...y_n) = log(p(y_1, ..., y_n | \eta)) = log(h(y_1, ...y_n)) + \eta^T \sum_{i=1}^n y_i - nA(\eta)$$

We differentiate and solve for $\hat{\eta}$ (assuming the inverse function exists under suitable regularity conditions):

$$\frac{\partial}{\partial \eta} l(\eta; y_1, ... y_n) = \sum_{i=1}^n y_i - n \frac{\partial}{\partial \eta} A(\eta)$$
$$\frac{\partial}{\partial \eta} A(\eta) = \frac{\sum_{i=1}^n y_i}{\eta} \implies \hat{\eta} = (A'^{-1}) \left(\frac{\sum_{i=1}^n y_i}{\eta}\right)$$

(b) Closed-form estimates for MLE in Poisson, Bernoulli, Gaussian models:

Poisson

$$\frac{\partial}{\partial \eta} A(\eta) = e^{\eta} = \frac{\sum_{i=1}^{n} y_i}{n}$$
$$\hat{\eta} = \log(\frac{\sum_{i=1}^{n} y_i}{n})$$

Bernoulli (where $\frac{\sum_{i=1}^{n} y_i}{n} \neq 1$)

$$\frac{\partial}{\partial \eta} A(\eta) = \frac{e^{\eta}}{1 + e^{\eta}} = \frac{\sum_{i=1}^{n} y_i}{n}$$

$$\hat{\eta} = log(\frac{\frac{\sum_{i=1}^{n} y_i}{n}}{1 - \frac{\sum_{i=1}^{n} y_i}{n}})$$

Gaussian

$$\frac{\partial}{\partial \eta} A(\eta) = \eta = \frac{\sum_{i=1}^{n} y_i}{n}$$
$$\hat{\eta} = \frac{\sum_{i=1}^{n} y_i}{n}$$

(c)

We know that $E(\bar{y}) = A'(\eta^*)$ and by definition of MLE, we have:

$$max_{\eta} \left\{ \eta \sum_{i=1}^{n} y_{i} - nA(\eta) \right\} = max_{\eta} \left\{ \eta \bar{y} - A(\eta) \right\} = min_{\eta} \left\{ -\eta \bar{y} + A(\eta) \right\}$$

Thus, we know that as $n \to \infty$, then $\bar{y} \to A'(\eta^*)$. Additionally, we can add or subtract any terms to this equation that do not depend on η , since they are just constants. We can substitute this into the above equation to get:

$$\hat{\eta} = min_{\eta} \left\{ -\eta A'(\eta^*) + A(\eta) \right\} = min_{\eta} \left\{ -\eta A'(\eta^*) + A(\eta) + \eta^* A'(\eta^*) - A(\eta^*) \right\}$$

After some rearranging of terms, we get the final equation:

$$\hat{\eta} = \min_{\eta} \left\{ A(\eta) - A(\eta^*) - A'(\eta^*)(\eta - \eta^*) \right\}$$

(d) Assume A is strictly convex.

Problem 2.4.

(a) Based on the definition of MLE in GLM as well as stochastic gradient, we can redefine the function $L(\theta)$, the gradient $\triangle^t L(\theta)$, and the $\tilde{\theta}^{t+1}$ update step as:

$$L(\theta) = -y_I x_I^T \theta^t + A(x_I^T \theta^t)$$
$$\triangle^t L(\theta) = -y_I x_I^T + x_I^T A'(x_I^T \theta^t)$$
$$\tilde{\theta}^{t+1} = \hat{\theta}^t - \gamma^t \triangle^t L(I)$$

(b) Explicit updates for Possion and Logistic cases:

Poisson

$$A(t) = e^t \implies \tilde{\theta}^{t+1} = \hat{\theta}^t - \gamma^t x_I^T e^{x_I^T \theta^t}$$

Logistic

$$A(t) = log(1 + e^t) \implies \tilde{\theta}^{t+1} = \hat{\theta}^t - \gamma^t x_I^T \left(\frac{e^{x_I^T \theta^t}}{1 + e^{x_I^T \theta^t}}\right)$$

- (c) Figure ?? shows a histogram plot of the probabilities $P[y_i|x_i;\hat{\theta}]$ based on fitted vector $\hat{\theta}$ and files Xone.dat and yone.dat.
- (d) Figure ?? shows a histogram plot of the probabilities $P[y_i|x_i;\hat{\theta}]$ based on fitted vector $\hat{\theta}$ and files Xtwo.dat and ytwo.dat. The differences in Figure ?? and ?? are [] and suggest about the accuracy of the fits.

(e) (f)

Figure 4: Histogram of probabilities using Xone.dat and yone.dat

Figure 5: Histogram of probabilities using Xtwo.dat and ytwo.dat