Howell-Jolly Bodies in HIV: Insights into Bone Marrow Pathology and Hematopoiesis

*Emmanuel Ifeanyi Obeagu

Department of Medical Laboratory Science, Kampala International University, Uganda

*Corresponding authour: Emmanuel Ifeanyi Obeagu, <u>Department of Medical Laboratory Science</u>, <u>Kampala International University, Uganda, emmanuelobeagu@yahoo.com, ORCID:</u> 0000-0002-4538-0161

Abstract

Howell-Jolly bodies (HJBs) have emerged as intriguing morphological features in HIV-infected individuals, offering insights into bone marrow pathology and hematopoiesis. This review delves into the presence, significance, and implications of HJBs in HIV infection, synthesizing existing literature to elucidate their role as surrogate markers of bone marrow dysfunction and hematological abnormalities. By examining the association between HJBs and disease progression, as well as their utility in diagnosis and prognosis, this article aims to provide a comprehensive understanding of the clinical implications of HJBs in HIV-infected individuals. The presence of HJBs in peripheral blood smears serves as a morphological indicator of altered erythropoiesis and compromised splenic function in HIV-infected individuals. Beyond their traditional association with functional asplenia, the presence of HJBs suggests underlying abnormalities in bone marrow pathology and hematopoietic processes. Quantitative assessment of HJB abundance may offer valuable diagnostic insights, guiding risk stratification and prognostication for HIV-infected individuals with hematological abnormalities, thus facilitating targeted therapeutic interventions and improving clinical outcomes. Insights into bone marrow pathology provided by HJBs shed light on the dysregulation of erythropoiesis, impaired splenic function, and chronic inflammation in HIV-infected individuals. Their abundance correlates with disease progression, including increased viral loads, decreased CD4+ T-cell counts, and heightened susceptibility to opportunistic infections, underscoring their potential as prognostic markers.

Keywords: Howell-Jolly bodies, HIV, bone marrow, hematopoiesis, pathology, hematological abnormalities

Introduction

Howell-Jolly bodies (HJBs) are intriguing morphological entities observed within erythrocytes, typically regarded as remnants of nuclear material that should have been extruded during erythropoiesis in the bone marrow. While historically associated with functional asplenia or splenic dysfunction, the presence of HJBs in peripheral blood smears has garnered attention in the context of HIV infection for its potential insights into bone marrow pathology and hematopoiesis. HIV infection is characterized by a myriad of hematological abnormalities, including bone marrow dysfunction, which can impact disease progression and clinical outcomes. Understanding the significance of HJBs in HIV-infected individuals offers valuable insights into disease mechanisms, disease progression, and clinical management. The detection of HJBs on peripheral blood smears serves as a morphological indicator of altered erythropoiesis and compromised splenic function in HIV-infected individuals. Beyond their traditional association with splenic dysfunction, the presence of HJBs suggests underlying abnormalities in bone marrow pathology and hematopoietic processes. Quantitative assessment of HJB abundance may offer valuable diagnostic insights, guiding risk stratification and prognostication for HIV-infected individuals with hematological abnormalities, thus facilitating targeted therapeutic interventions and improving clinical outcomes.

Insights into bone marrow pathology provided by HJBs shed light on the dysregulation of erythropoiesis, impaired splenic function, and chronic inflammation in HIV-infected individuals. The pathophysiological mechanisms driving HJB formation in the context of HIV infection remain incompletely understood, but likely involve a complex interplay between viral replication, immune dysregulation, and hematopoietic disturbances. Elucidating these mechanisms is crucial for developing targeted therapeutic interventions aimed at mitigating bone marrow dysfunction and improving clinical outcomes in HIV-infected individuals. ¹⁻¹⁰

The abundance of HJBs may serve as prognostic markers for disease progression, guiding risk stratification and therapeutic interventions in affected individuals. Furthermore, HJBs may contribute to clinical manifestations such as anemia, fatigue, and increased healthcare utilization, underscoring their clinical significance in HIV-infected individuals. Despite their potential as biomarkers of bone marrow dysfunction in HIV-infected individuals, the diagnostic accuracy of HJBs in identifying specific hematological abnormalities remains uncertain. Therefore, a comprehensive understanding of the underlying mechanisms driving HJB formation and their implications for bone marrow pathology is essential for optimizing diagnostic strategies and guiding therapeutic interventions in HIV-infected individuals. By elucidating the clinical significance of HJBs in HIV, clinicians can improve disease management, enhance outcomes, and ultimately improve the quality of life for affected individuals. ¹¹⁻¹⁵

This review aims to provide a comprehensive overview of the presence, significance, and implications of Howell-Jolly bodies in HIV-infected individuals, synthesizing existing literature to elucidate their role as surrogate markers of bone marrow dysfunction and hematological abnormalities.

Presence and Significance of Howell-Jolly Bodies in HIV

The presence of Howell-Jolly bodies (HJBs) in HIV-infected individuals serves as a significant indicator of altered erythropoiesis and compromised splenic function. While traditionally associated with functional asplenia or splenic dysfunction, the detection of HJBs in peripheral blood smears suggests underlying abnormalities in bone marrow pathology and hematopoietic processes. This phenomenon underscores the intricate interplay between HIV infection and hematological disturbances, highlighting the multifaceted nature of the disease and its impact on various physiological systems. Quantitative assessment of HJB abundance provides valuable diagnostic insights, aiding in risk stratification and prognostication for HIV-infected individuals with hematological abnormalities. Higher levels of HJBs have been associated with more advanced stages of HIV disease, including increased viral loads, decreased CD4+ T-cell counts, and heightened susceptibility to opportunistic infections. As such, the presence of HJBs may serve as a prognostic marker for disease progression, guiding therapeutic interventions and informing clinical management strategies in affected individuals. Beyond their prognostic implications, HJBs may contribute to clinical manifestations such as anemia, fatigue, and increased healthcare utilization in HIV-infected individuals. The accumulation of HJBs reflects disturbances in erythropoiesis and splenic function, which can manifest as hematological abnormalities and compromise overall health and well-being. Therefore, the presence of HJBs warrants closer monitoring and may prompt further evaluation to assess bone marrow function and guide therapeutic interventions aimed at improving clinical outcomes in HIV-infected individuals. 16-25

Insights into Bone Marrow Pathology

Insights into bone marrow pathology provided by Howell-Jolly bodies (HJBs) shed light on the dysregulation of erythropoiesis and hematopoietic dysfunction in HIV-infected individuals. The formation of HJBs within erythrocytes suggests abnormalities in bone marrow function, including impaired erythrocyte maturation and nuclear expulsion processes. In the context of HIV infection, dysregulated hematopoiesis may result from direct viral effects on hematopoietic stem cells, cytokine-mediated suppression of erythropoiesis, or bone marrow infiltration by opportunistic pathogens or malignancies. Chronic inflammation and immune dysregulation associated with HIV infection further exacerbate bone marrow pathology, contributing to the accumulation of HJBs in circulating erythrocytes. The inflammatory milieu disrupts normal hematopoietic processes, leading to ineffective erythropoiesis and altered erythrocyte morphology. Additionally, HIVassociated co-infections, such as cytomegalovirus (CMV) or mycobacterial infections, can directly impact bone marrow function, further exacerbating hematopoietic dysfunction and contributing to the formation of HJBs. The presence of HJBs may also reflect underlying bone marrow suppression or hematological malignancies in HIV-infected individuals. Chronic exposure to HIV and antiretroviral therapy (ART) may result in bone marrow toxicity, leading to decreased hematopoietic activity and the development of cytopenias. Moreover, HIV-infected individuals are at increased risk of hematological malignancies, such as lymphoma or leukemia, which can disrupt normal bone marrow architecture and function, leading to the formation of HJBs. Therefore, the presence of HJBs provides valuable insights into bone marrow pathology in HIVinfected individuals, highlighting the complex interplay between viral infection, immune dysregulation, and hematopoietic disturbances. 26-40

Association with Disease Progression and Clinical Outcomes

The association between Howell-Jolly bodies (HJBs) and disease progression in HIV-infected individuals underscores their potential as prognostic markers for clinical outcomes. Several studies have reported a positive correlation between the presence of HJBs and advanced stages of HIV disease, including increased viral loads, decreased CD4+ T-cell counts, and heightened susceptibility to opportunistic infections. The abundance of HJBs may serve as a surrogate marker for disease severity, reflecting underlying hematological abnormalities and compromised immune function. The presence of HJBs may also predict clinical outcomes and disease complications in HIV-infected individuals. Higher levels of HJBs have been associated with increased mortality rates and a greater risk of developing AIDS-defining illnesses, indicating a poorer prognosis in affected individuals. Additionally, the presence of HJBs may contribute to clinical manifestations such as anemia, fatigue, and increased healthcare utilization, further underscoring their clinical significance and implications for patient care. Furthermore, the detection of HJBs may prompt closer monitoring and earlier intervention in HIV-infected individuals, facilitating timely management of disease complications and optimization of therapeutic strategies. By identifying individuals at higher risk of disease progression and adverse clinical outcomes, the presence of HJBs can inform clinical decision-making and guide therapeutic interventions aimed at improving patient outcomes and quality of life. Therefore, understanding the association between HJBs and disease progression in HIV-infected individuals is crucial for optimizing patient care and enhancing clinical outcomes in this population. 41-60

Implications for Diagnosis and Prognosis

The presence of Howell-Jolly bodies (HJBs) in HIV-infected individuals holds significant implications for diagnosis and prognosis, offering valuable insights into disease severity, progression, and clinical outcomes. As morphological indicators of altered erythropoiesis and compromised splenic function, the detection of HJBs on peripheral blood smears aids in the diagnosis of hematological abnormalities and splenic dysfunction in HIV-infected individuals. Quantitative assessment of HJB abundance provides additional diagnostic information, guiding risk stratification and prognostication for affected individuals. HJBs serve as surrogate markers for disease severity and progression in HIV-infected individuals, reflecting underlying hematological disturbances and compromised immune function. Higher levels of HJBs have been associated with advanced stages of HIV disease, including increased viral loads, decreased CD4+ T-cell counts, and heightened susceptibility to opportunistic infections. Therefore, the presence of HJBs may serve as a prognostic indicator for disease progression and clinical outcomes, informing clinical decision-making and guiding therapeutic interventions. Furthermore, the presence of HJBs may prompt additional diagnostic evaluations and closer monitoring in HIV-infected individuals, facilitating early detection of disease complications and timely intervention. Integrating the assessment of HJBs into routine clinical practice enables clinicians to identify individuals at higher risk of adverse clinical outcomes and tailor therapeutic strategies to optimize patient care. By recognizing the diagnostic and prognostic implications of HJBs in HIV-infected individuals, clinicians can improve disease management, enhance outcomes, and ultimately improve the quality of life for affected individuals. 61-72

Conclusion

Howell-Jolly bodies (HJBs) represent valuable morphological indicators of bone marrow pathology and hematopoietic dysfunction in HIV-infected individuals. Their presence and abundance offer insights into disease severity, progression, and clinical outcomes, serving as surrogate markers for hematological abnormalities and compromised immune function. The association between HJBs and disease progression underscores their potential as prognostic indicators, guiding risk stratification and informing clinical decision-making in affected individuals. The detection of HJBs holds diagnostic and prognostic implications for HIV-infected individuals, facilitating early identification of disease complications and timely intervention. By integrating the assessment of HJBs into routine clinical practice, clinicians can optimize patient care, improve disease management, and enhance outcomes for affected individuals. Furthermore, ongoing research into the underlying mechanisms driving HJB formation and their implications for disease progression will continue to refine our understanding of their clinical significance in HIV-infected individuals.

References

- 1. Meyer-Myklestad MH, Medhus AW, Lorvik KB, Seljeflot I, Hansen SH, Holm K, Stiksrud B, Trøseid M, Hov JR, Kvale D, Dyrhol-Riise AM. Human immunodeficiency virus—infected immunological nonresponders have colon-restricted gut mucosal immune dysfunction. The Journal of infectious diseases. 2022;225(4):661-674.
- 2. Henderson DK, Dembry L, Fishman NO, Grady C, Lundstrom T, Palmore TN, Sepkowitz KA, Weber DJ, Society for Healthcare Epidemiology of America. SHEA guideline for management of healthcare workers who are infected with hepatitis B virus, hepatitis C virus, and/or human immunodeficiency virus. Infection Control & Hospital Epidemiology. 2010;31(3):203-232.
- 3. d'Arminio Monforte A, Cozzi-Lepri A, Castagna A, Antinori A, De Luca A, Mussini C, Lo Caputo S, Arlotti M, Magnani G, Pellizzer G, Maggiolo F. Risk of developing specific AIDS-defining illnesses in patients coinfected with HIV and hepatitis C virus with or without liver cirrhosis. Clinical Infectious Diseases. 2009;49(4):612-622.
- 4. Obeagu EI, Obeagu GU, Paul-Chima UO. Stigma Associated With HIV. AIDS: A Review. Newport International Journal of Public Health and Pharmacy (Nijpp). 2023;3(2):64-7.
- 5. Viola N, Kimono E, Nuruh N, Obeagu EI. Factors Hindering Elimination of Mother to Child Transmission of HIV Service Uptake among HIV Positive Women at Comboni Hospital Kyamuhunga Bushenyi District. Asian J Dental Health Sci [Internet]. 2023 Jun. 15 [cited 2024 May 4];3(2):7-14. Available from: http://ajdhs.com/index.php/journal/article/view/39
- 6. Obeagu EI, Obeagu GU. Hematological Changes Following Blood Transfusion in Young Children with Severe Malaria and HIV: A Critical Review. Elite Journal of Laboratory Medicine, 2024; 2(1): 33-45
- 7. Obeagu EI, Obeagu GU. The Role of Blood Transfusion Strategies in HIV Management: Current Insights and Future Directions. Elite Journal of Medicine, 2024; 2(1):10-22

- 8. Obeagu EI, Obeagu GU (2024). Transfusion-Related Complications in Children Under 5 with Coexisting HIV and Severe Malaria: A Review. Int. J. Curr. Res. Chem. Pharm. Sci. 2024; 11(2): 9-19.
- 9. Obeagu EI, Okwuanaso CB, Edoho SH, Obeagu GU. Under-nutrition among HIV-exposed Uninfected Children: A Review of African Perspective. Madonna University journal of Medicine and Health Sciences. 2022;2(3):120-127.
- 10. Obeagu EI. A Review of Challenges and Coping Strategies Faced by HIV/AIDS Discordant Couples. Madonna University journal of Medicine and Health Sciences. 2023;3(1):7-12. https://madonnauniversity.edu.ng/journals/index.php/medicine/article/view/91.
- 11. Obeagu EI, Obeagu GU. An update on premalignant cervical lesions and cervical cancer screening services among HIV positive women. J Pub Health Nutri. 2023; 6 (2). 2023; 141:1-2. links/63e538ed64252375639dd0df/An-update-on-premalignant-cervical-lesions-and-cervical-cancer-screening-services-among-HIV-positive-women.pdf.
- 12. Ezeoru VC, Enweani IB, Ochiabuto O, Nwachukwu AC, Ogbonna US, Obeagu EI. Prevalence of Malaria with Anaemia and HIV status in women of reproductive age in Onitsha, Nigeria. Journal of Pharmaceutical Research International. 2021;33(4):10-19.
- 13. Omo-Emmanuel UK, Chinedum OK, Obeagu EI. Evaluation of laboratory logistics management information system in HIV/AIDS comprehensive health facilities in Bayelsa State, Nigeria. Int J Curr Res Med Sci. 2017;3(1): 21-38.DOI: 10.22192/ijcrms.2017.03.01.004
- 14. Obeagu EI, Obeagu GU. An update on survival of people living with HIV in Nigeria. J Pub Health Nutri. 2022; 5 (6). 2022;129. links/645b4bfcf3512f1cc5885784/An-update-on-survival-of-people-living-with-HIV-in-Nigeria.pdf.
- 15. Offie DC, Obeagu EI, Akueshi C, Njab JE, Ekanem EE, Dike PN, Oguh DN. Facilitators and barriers to retention in HIV care among HIV infected MSM attending Community Health Center Yaba, Lagos Nigeria. Journal of Pharmaceutical Research International. 2021;33(52B):10-19.
- 16. Obeagu EI, Ogbonna US, Nwachukwu AC, Ochiabuto O, Enweani IB, Ezeoru VC. Prevalence of Malaria with Anaemia and HIV status in women of reproductive age in Onitsha, Nigeria. Journal of Pharmaceutical Research International. 2021;33(4):10-19.
- 17. Odo M, Ochei KC, Obeagu EI, Barinaadaa A, Eteng UE, Ikpeme M, Bassey JO, Paul AO. TB Infection Control in TB/HIV Settings in Cross River State, Nigeria: Policy Vs Practice. Journal of Pharmaceutical Research International. 2020;32(22):101-119.
- 18. Obeagu EI, Eze VU, Alaeboh EA, Ochei KC. Determination of haematocrit level and iron profile study among persons living with HIV in Umuahia, Abia State, Nigeria. J BioInnovation. 2016; 5:464-471. links/592bb4990f7e9b9979a975cf/DETERMINATION-OF-HAEMATOCRIT-LEVEL-AND-IRON-PROFILE-STUDY-AMONG-PERSONS-LIVING-WITH-HIV-IN-UMUAHIA-ABIA-STATE-NIGERIA.pdf.
- 19. Ifeanyi OE, Obeagu GU. The values of prothrombin time among HIV positive patients in FMC owerri. International Journal of Current Microbiology and Applied Sciences. 2015;4(4):911-916.
 - https://www.academia.edu/download/38320140/Obeagu Emmanuel Ifeanyi and Obeagu Getrude Uzoma2.EMMA1.pdf.

- 20. Izuchukwu IF, Ozims SJ, Agu GC, Obeagu EI, Onu I, Amah H, Nwosu DC, Nwanjo HU, Edward A, Arunsi MO. Knowledge of preventive measures and management of HIV/AIDS victims among parents in Umuna Orlu community of Imo state Nigeria. Int. J. Adv. Res. Biol. Sci. 2016;3(10): 55-65.DOI; 10.22192/ijarbs.2016.03.10.009
- 21. Chinedu K, Takim AE, Obeagu EI, Chinazor UD, Eloghosa O, Ojong OE, Odunze U. HIV and TB co-infection among patients who used Directly Observed Treatment Short-course centres in Yenagoa, Nigeria. IOSR J Pharm Biol Sci. 2017;12(4):70-75. links/5988ab6d0f7e9b6c8539f73d/HIV-and-TB-co-infection-among-patients-who-used-Directly-Observed-Treatment-Short-course-centres-in-Yenagoa-Nigeria.pdf
- 22. Oloro OH, Oke TO, Obeagu EI. Evaluation of Coagulation Profile Patients with Pulmonary Tuberculosis and Human Immunodeficiency Virus in Owo, Ondo State, Nigeria. Madonna University journal of Medicine and Health Sciences. 2022;2(3):110-119.
- 23. Nwosu DC, Obeagu EI, Nkwocha BC, Nwanna CA, Nwanjo HU, Amadike JN, Elendu HN, Ofoedeme CN, Ozims SJ, Nwankpa P. Change in Lipid Peroxidation Marker (MDA) and Non enzymatic Antioxidants (VIT C & E) in HIV Seropositive Children in an Urban Community Innov. of Abia State. Nigeria. J. Bio. 2016;5(1):24-30. links/5ae735e9a6fdcc5b33eb8d6a/CHANGE-IN-LIPID-PEROXIDATION-MARKER-MDAAND-NON-ENZYMATIC-ANTIOXIDANTS-VIT-C-E-IN-HIV-SEROPOSITIVE-CHILDREN-IN-AN-URBAN-COMMUNITY-OF-ABIA-STATE-NIGERIA.pdf.
- 24. Mehta AB, Hoffbrand AV. Haematology at a Glance. John Wiley & Sons; 2009.
- 25. Sadelov IO, Bobrynina V, Krasilnikova M, Smetanina N. 1Federal scientific clinical center of pediatric hematology, oncology and immunology named after Dmitriy Rogachev, Moscow, Russian Federation Background: Hemoglobinopathies are heterogeneous group of diseases caused by qualitative (abnormal Hb) or quantitative (thalassemia) failure in. In18TH CONGRESS OF THE EUROPEAN HEMATOLOGY ASSOCIATION STOCKHOLM, SWEDEN JUNE 13-16, 2013 2008; 93(s1):699.
- 26. Ifeanyi OE, Obeagu GU, Ijeoma FO, Chioma UI. The values of activated partial thromboplastin time (APTT) among HIV positive patients in FMC Owerri. Int J Curr Res Aca Rev. 2015; 3:139-144. https://www.academia.edu/download/38320159/Obeagu_Emmanuel_Ifeanyi3_et_al.IJC RAR.pdf.
- 27. Obiomah CF, Obeagu EI, Ochei KC, Swem CA, Amachukwu BO. Hematological indices o HIV seropositive subjects in Nnamdi Azikiwe University teaching hospital (NAUTH), Nnewi. Ann Clin Lab Res. 2018;6(1):1-4. links/5aa2bb17a6fdccd544b7526e/Haematological-Indices-of-HIV-Seropositive-Subjects-at-Nnamdi-Azikiwe.pdf
- 28. Omo-Emmanuel UK, Ochei KC, Osuala EO, Obeagu EI, Onwuasoanya UF. Impact of prevention of mother to child transmission (PMTCT) of HIV on positivity rate in Kafanchan, Nigeria. Int. J. Curr. Res. Med. Sci. 2017;3(2): 28-34.DOI: 10.22192/ijcrms.2017.03.02.005
- 29. Aizaz M, Abbas FA, Abbas A, Tabassum S, Obeagu EI. Alarming rise in HIV cases in Pakistan: Challenges and future recommendations at hand. Health Science Reports. 2023;6(8):e1450.

- 30. Obeagu EI, Amekpor F, Scott GY. An update of human immunodeficiency virus infection: Bleeding disorders. J Pub Health Nutri. 2023; 6 (1). 2023;139. links/645b4a6c2edb8e5f094d9bd9/An-update-of-human-immunodeficiency-virus-infection-Bleeding.pdf.
- 31. Obeagu EI, Scott GY, Amekpor F, Ofodile AC, Edoho SH, Ahamefula C. Prevention of New Cases of Human Immunodeficiency Virus: Pragmatic Approaches of Saving Life in Developing Countries. Madonna University journal of Medicine and Health Sciences. 2022;2(3):128-134. https://madonnauniversity.edu.ng/journals/index.php/medicine/article/view/86.
- 32. Walter O, Anaebo QB, Obeagu EI, Okoroiwu IL. Evaluation of Activated Partial Thromboplastin Time and Prothrombin Time in HIV and TB Patients in Owerri Metropolis. Journal of Pharmaceutical Research International. 2022:29-34.
- 33. Odo M, Ochei KC, Obeagu EI, Barinaadaa A, Eteng EU, Ikpeme M, Bassey JO, Paul AO. Cascade variabilities in TB case finding among people living with HIV and the use of IPT: assessment in three levels of care in cross River State, Nigeria. Journal of Pharmaceutical Research International. 2020;32(24):9-18.
- 34. Jakheng SP, Obeagu EI. Seroprevalence of human immunodeficiency virus based on demographic and risk factors among pregnant women attending clinics in Zaria Metropolis, Nigeria. J Pub Health Nutri. 2022; 5 (8). 2022;137. links/6317a6b1acd814437f0ad268/Seroprevalence-of-human-immunodeficiency-virus-based-on-demographic-and-risk-factors-among-pregnant-women-attending-clinics-in-Zaria-Metropolis-Nigeria.pdf.
- 35. Obeagu EI, Obeagu GU. A Review of knowledge, attitudes and socio-demographic factors associated with non-adherence to antiretroviral therapy among people living with HIV/AIDS. Int. J. Adv. Res. Biol. Sci. 2023;10(9):135-142.DOI: 10.22192/ijarbs.2023.10.09.015 links/6516faa61e2386049de5e828/A-Review-of-knowledge-attitudes-and-socio-demographic-factors-associated-with-non-adherence-to-antiretroviral-therapy-among-people-living-with-HIV-AIDS.pdf
- 36. Lutgendorf SK. Cognitive-behavioral stress management in a symptomatic HIV-1 seropositive population: Effects on mood, coping, immune and neuroendocrine factors. University of Miami; 1994.
- 37. Obeagu EI, Onuoha EC. Tuberculosis among HIV Patients: A review of Prevalence and Associated Factors. Int. J. Adv. Res. Biol. Sci. 2023;10(9):128-134.DOI: 10.22192/ijarbs.2023.10.09.014 links/6516f938b0df2f20a2f8b0e0/Tuberculosis-among-HIV-Patients-A-review-of-Prevalence-and-Associated-Factors.pdf.
- 38. Obeagu EI, Ibeh NC, Nwobodo HA, Ochei KC, Iwegbulam CP. Haematological indices of malaria patients coinfected with HIV in Umuahia. Int. J. Curr. Res. Med. Sci. 2017;3(5):100-104.DOI: 10.22192/ijcrms.2017.03.05.014 https://www.academia.edu/download/54317126/Haematological indices of malaria patients_coinfected_with_HIV.pdf
- 39. Jakheng SP, Obeagu EI, Abdullahi IO, Jakheng EW, Chukwueze CM, Eze GC, Essien UC, Madekwe CC, Madekwe CC, Vidya S, Kumar S. Distribution Rate of Chlamydial Infection According to Demographic Factors among Pregnant Women Attending Clinics in Zaria

- Metropolis, Kaduna State, Nigeria. South Asian Journal of Research in Microbiology. 2022;13(2):26-31.
- 40. Okorie HM, Obeagu Emmanuel I, Okpoli Henry CH, Chukwu Stella N. Comparative study of enzyme linked immunosorbent assay (Elisa) and rapid test screening methods on HIV, Hbsag, Hcv and Syphilis among voluntary donors in. Owerri, Nigeria. J Clin Commun Med. 2020;2(3):180-183.DOI: DOI: 10.32474/JCCM.2020.02.000137 links/5f344530458515b7291bd95f/Comparative-Study-of-Enzyme-Linked-Immunosorbent-Assay-EIISA-and-Rapid-Test-Screening-Methods-on-HIV-HBsAg-HCV-and-Syphilis-among-Voluntary-Donors-in-Owerri-Nigeria.pdf.
- 41. Nikolouzakis TK, Falzone L, Lasithiotakis K, Krüger-Krasagakis S, Kalogeraki A, Sifaki M, Spandidos DA, Chrysos E, Tsatsakis A, Tsiaoussis J. Current and future trends in molecular biomarkers for diagnostic, prognostic, and predictive purposes in non-melanoma skin cancer. Journal of Clinical Medicine. 2020;9(9):2868.
- 42. Ezugwu UM, Onyenekwe CC, Ukibe NR, Ahaneku JE, Onah CE, Obeagu EI, Emeje PI, Awalu JC, Igbokwe GE. Use of ATP, GTP, ADP and AMP as an Index of Energy Utilization and Storage in HIV Infected Individuals at NAUTH, Nigeria: A Longitudinal, Prospective, Case-Controlled Study. Journal of Pharmaceutical Research International. 2021;33(47A):78-84.
- 43. Emannuel G, Martin O, Peter OS, Obeagu EI, Daniel K. Factors Influencing Early Neonatal Adverse Outcomes among Women with HIV with Post Dated Pregnancies Delivering at Kampala International University Teaching Hospital, Uganda. Asian Journal of Pregnancy and Childbirth. 2023 Jul 29;6(1):203-211. http://research.sdpublishers.net/id/eprint/2819/.
- 44. Vincent CC, Obeagu EI, Agu IS, Ukeagu NC, Onyekachi-Chigbu AC. Adherence to Antiretroviral Therapy among HIV/AIDS in Federal Medical Centre, Owerri. Journal of Pharmaceutical Research International. 2021;33(57A):360-368.
- 45. Madekwe CC, Madekwe CC, Obeagu EI. Inequality of monitoring in Human Immunodeficiency Virus, Tuberculosis and Malaria: A Review. Madonna University journal of Medicine and Health Sciences. 2022;2(3):6-15. https://madonnauniversity.edu.ng/journals/index.php/medicine/article/view/69
- 46. Echendu GE, Vincent CC, Ibebuike J, Asodike M, Naze N, Chinedu EP, Ohale B, Obeagu EI. WEIGHTS OF INFANTS BORN TO HIV INFECTED MOTHERS: A PROSPECTIVE COHORT STUDY IN FEDERAL MEDICAL CENTRE, OWERRI, IMO STATE. European Journal of Pharmaceutical and Medical Research, 2023; 10(8): 564-568
- 47. Nwosu DC, Nwanjo HU, Okolie NJ, Ikeh K, Ajero CM, Dike J, Ojiegbe GC, Oze GO, Obeagu EI, Nnatunanya I, Azuonwu O. BIOCHEMICAL ALTERATIONS IN ADULT HIV PATIENTS ON ANTIRETRQVIRAL THERAPY. World Journal of Pharmacy and Pharmaceutical Sciences, 2015; 4(3): 153-160. links/5a4fd0500f7e9bbc10526b38/BIOCHEMICAL-ALTERATIONS-IN-ADULT-HIV-PATIENTS-ON-ANTIRETRQVIRAL-THERAPY.pdf.
- 48. Obeagu EI, Obeagu GU. Effect of CD4 Counts on Coagulation Parameters among HIV Positive Patients in Federal Medical Centre, Owerri, Nigeria. Int. J. Curr. Res. Biosci. Plant Biol. 2015;2(4):45-49.

- 49. Obeagu EI, Nwosu DC. Adverse drug reactions in HIV/AIDS patients on highly active antiretro viral therapy: a review of prevalence. Int. J. Curr. Res. Chem. Pharm. Sci. 2019;6(12):45-8.DOI: 10.22192/ijcrcps.2019.06.12.004 https://links/650aba1582f01628f0335795/Adverse-drug-reactions-in-HIV-AIDS-patients-on-highly-active-antiretro-viral-therapy-a-review-of-prevalence.pdf.
- 50. Obeagu EI, Scott GY, Amekpor F, Obeagu GU. Implications of CD4/CD8 ratios in Human Immunodeficiency Virus infections. Int. J. Curr. Res. Med. Sci. 2023;9(2):6-13.DOI: 10.22192/ijcrms.2023.09.02.002 links/645a4a462edb8e5f094ad37c/Implications-of-CD4-CD8-ratios-in-Human-Immunodeficiency-Virus-infections.pdf.
- 51. Obeagu EI, Ochei KC, Okeke EI, Anode AC. Assessment of the level of haemoglobin and erythropoietin in persons living with HIV in Umuahia. Int. J. Curr. Res. Med. Sci. 2016;2(4):29-33. links/5711c47508aeebe07c02496b/Assessment-of-the-level-of-haemoglobin-and-erythropoietin-in-persons-living-with-HIV-in-Umuahia.pdf.
- 52. Obeagu EI. Erythropoietin in HIV: Bridging the Gap Between Hematology and Virology. Elite Journal of HIV. 2024;2(3):42-54.
- 53. Obeagu EI, Obeagu GU, Ukibe NR, Oyebadejo SA. Anemia, iron, and HIV: decoding the interconnected pathways: A review. Medicine. 2024 Jan 12;103(2):e36937.
- 54. Obeagu EI, Obeagu GU. GATA-1 Regulation of Erythroid Progenitor Cell Differentiation in HIV/AIDS: Molecular Insights and Therapeutic Implications. Elite Journal of Haematology, 2024; 2 (4):141-59.
- 55. Reddy R. *Study of Hematological Profile in HIV Infected Patients* (Doctoral dissertation, Rajiv Gandhi University of Health Sciences (India)). 2018.
- 56. Canny SP, Orozco SL, Thulin NK, Hamerman JA. Immune Mechanisms in Inflammatory Anemia. Annual review of immunology. 2023; 41:405-429.
- 57. Checconi P, De Angelis M, Marcocci ME, Fraternale A, Magnani M, Palamara AT, Nencioni L. Redox-modulating agents in the treatment of viral infections. International Journal of Molecular Sciences. 2020;21(11):4084.
- 58. Lanser L, Fuchs D, Kurz K, Weiss G. Physiology and inflammation driven pathophysiology of iron homeostasis—mechanistic insights into anemia of inflammation and its treatment. Nutrients. 2021;13(11):3732.
- 59. Chin-Hong PV, Palefsky JM. Natural history and clinical management of anal human papillomavirus disease in men and women infected with human immunodeficiency virus. Clinical Infectious Diseases. 2002;35(9):1127-1134.
- 60. Obeagu EI, Obeagu GU. Understanding ART and Platelet Functionality: Implications for HIV Patients. Elite Journal of HIV. 2024;2(2):60-73.
- 61. Obeagu EI, Obeagu GU. Utilization of immunological ratios in HIV: Implications for monitoring and therapeutic strategies. Medicine. 2024;103(9):e37354.
- 62. Obeagu EI, Obeagu GU. Counting Cells, Shaping Fates: CD4/CD8 Ratios in HIV. Elite Journal of Scientific Research and Review. 2024;2(1):37-50.
- 63. Obeagu EI, Anyiam AF, Obeagu GU. Managing Anemia in HIV through Blood Transfusions: Clinical Considerations and Innovations. Elite Journal of HIV. 2024;2(1):16-30.
- 64. Obeagu EI, Obeagu GU, Okwuanaso CB. Optimizing Immune Health in HIV Patients through Nutrition: A Review. Elite Journal of Immunology. 2024;2(1):14-33.

- 65. Obeagu EI, Obeagu GU. P-Selectin and Platelet Activation in HIV: Implications for Antiviral Therapy. Elite Journal of Scientific Research and Review. 2024;2(1):17-41.
- 66. Esté JA, Cihlar T. Current status and challenges of antiretroviral research and therapy. Antiviral research. 2010 Jan 1;85(1):25-33.
- 67. Channaveerappanavar PB. Study of Immunological Recovery in Human Immunodeficiency Virus/Acquired Immunodeficiency Syndrome Patients on Second Line Anti Retroviral Drugs-A Prospective Study (Doctoral dissertation, Rajiv Gandhi University of Health Sciences (India)). 2017.
- 68. Obeagu EI, Obeagu GU. GATA-1 and Hematopoietic Stem Cell Quiescence in HIV: Implications for Therapy. Elite Journal of Medicine. 2024;2(4):19-36.
- 69. Obeagu EI. Howell-Jolly Bodies in HIV: Unveiling Morphological Insights into Disease Progression. *Elite Journal of Haematology*, 2024; 2(5): 126-137
- 70. Obeagu. Howell-Jolly Bodies in Pediatric HIV: Clinical Considerations and Management Strategies. Elite Journal of Nursing and Health Science, 2024; 2(5):1-11
- 71. Obeagu EI. The Impact of Howell-Jolly Bodies on Quality of Life in HIV Patients: A Review. Elite Journal of Public Health, 2024; 2 (5): 32-42
- 72. Obeagu EI. Diagnostic Accuracy of Howell-Jolly Bodies in HIV-Associated Splenic Dysfunction: A Review. Elite Journal of Laboratory Medicine, 2024; 2(5): 13-23