

FUNDAMENTOS Y ESTRUCTURA DE COMPUTADORES 1º Graduado en Ingeniería Informática

PRÁCTICA S2. Simulación

ASOCIATIVIDAD DE LAS PUERTAS LÓGICAS

1. Objetivos

- Comprender la metodología de diseño y simulación de sistemas digitales combinacionales mediante OrCAD 16.6 Lite.
- Asimilar los conceptos básicos de la herramienta de captura de esquemáticos, CAPTURE.
- Comprender el proceso de simulación de los sistemas digitales mediante la herramienta PSPICE 16.6 Lite.
- Asimilar la forma de describir los estímulos con buses para poder realizar la simulación.
- Mostrar el proceso para crear las trazas que visualizan el resultado de la simulación.
- Estudiar la asociatividad de las puertas lógicas.

2. Desarrollo de la práctica

En esta práctica vamos a realizar los siguientes diseños utilizando la herramienta de simulación **OrCAD Capture CIS Lite 16.6**.

- Diseñar una puerta AND de tres entradas a partir de puertas AND de dos entradas.
- Diseñar una puerta OR de tres entradas a partir de puertas OR de dos entradas.
- Diseñar una puerta NAND de tres entradas a partir de puertas NAND de dos entradas.
- Diseñar una puerta NOR de tres entradas a partir de puertas NOR de dos entradas.

2.1. Entradas/Salidas

El esquemático a realizar tendrá las siguientes entradas y salidas:

- (Entrada) A: Variable A.
- (Entrada) B: Variable B.
- (Entrada) C: Variable C.

Curso 2021–2022 Página 1 de 2

• (Salida) AND: Resultado de la función $A \cdot B \cdot C$.

• (Salida) OR: Resultado de la función A + B + C.

• (Salida) NAND: Resultado de la función $\overline{A \cdot B \cdot C}$.

• (Salida) NOR: Resultado de la función $\overline{A + B + C}$.

2.2. Estímulos

Para analizar el comportamiento del diseño realizado, se establecerán los siguientes estímulos en las variables de entrada.

Tiempo	Valores de las señales		
110pc	U	В	A
0 ns	0	0	0
100 ns	0	0	1
200 ns	0	1	0
300 ns	0	1	1
400 ns	1	0	0
500 ns	1	0	1
600 ns	1	1	0
700 ns	1	1	1

2.3. Componentes

Para el desarrollo de los circuitos, se podrán utilizar los siguientes componentes:

Circuito integrado	Descripción
74LS08	4 Puertas AND de 2 entradas
74LS32	4 Puertas OR de 2 entradas
74LS00	4 Puertas NAND de 2 entradas
74LS02	4 Puertas NOR de 2 entradas

Curso 2021–2022 Página 2 de 2