- 11. Let $X_1, X_2, ..., X_n$ be a random sample of size n from the exponential distribution whose pdf is $f(x;\theta) = (1/\theta)e^{-x/\theta}, 0 < x < \infty, 0 < \theta < \infty$.
 - (a) Show that X̄ is an unbiased estimator of θ.
 - (b) Show that the variance of \tilde{X} is θ^2/n .
 - (c) What is a good estimate of θ if a random sample of size 5 yielded the sample values 3.5, 8.1, 0.9, 4.4, and 0.5?

Solution ~ 11

We have:

We have:
$$f(x_i, \theta) = \begin{cases} \frac{1}{\theta} e^{-\frac{x_i}{\theta}}, & 0 < x_i < \infty \\ 0, & \text{Otherwise} \end{cases}$$

(a) Show that \bar{x} is an unbiased estimator of θ

$$E(\bar{x}) = \mu = E(x) = \theta$$
 because $X \sim \text{Exp}(\theta)$

Therefore, \bar{x} is an unbiased estimator of θ

(b) Show that the variance of \overline{x} is $\frac{\theta^2}{n}$

$$V(\bar{x}) = \frac{\sigma^2}{n} = \frac{V(x)}{n} = \frac{\theta^2}{n}$$
 because $X \sim \text{Exp}(\theta)$

Therefore, \bar{x} of variance is $\frac{\theta^2}{n}$

(c) Find a good estimator of θ

$$\hat{\theta} = \bar{x} = \frac{1}{5} \sum_{i=1}^{5} x_i$$

$$= \frac{3,5+8,1+0,9+4,4+0,5}{5}$$

Therefore, A good estimator of θ is $\hat{\theta} = 3.48$

The Exponential Distribution

Definition 10

A continuous rv X is said to have an **exponential distribution** with parameter $\lambda(\lambda > 0)$ if the pdf of X is

$$f(x) = \begin{cases} \frac{1}{\lambda} e^{-\frac{x}{\lambda}}, & x > 0, \\ 0, & \text{otherwise} \end{cases}$$

In this case, we write $X \sim \text{Exp}(\lambda)$.

Theorem 9

If $X \sim \text{Exp}(\lambda)$, then

$$F(x) = \begin{cases} 0, & x < 0, \\ 1 - e^{-\frac{x}{\lambda}}, & x \ge 0. \end{cases}$$

$$E(X) = \lambda, V(X) = \lambda^2, M(t) = \frac{1}{1-\lambda t}, t < \frac{1}{\lambda}.$$