National Institute of Technology, Kurukshetra

B.Tech (3rd Sem.) Information Technology

Database Management System (ITPC-25)

Mid Sem. Exam- I

Duration: 50 min. Max.Marks:15

Note: - There is internal choice in Question 3

Q1. Solve the following:

(3)

	ld	Name	Age	Gender	OccupationId	CityId
	1	John	25	Male	1	3
:	2	Sara	20	Female	3	4
:	S	Victor	31	Male	2	5
	4	Jane	27	Female	1	3

Occupation

OccupationId	OccupationName
1	Software Engineer
2	Accountant
3	Pharmacist
4	Library Assistant

City

CityId	CityName
1	Halifax
2	Calgary
3	Boston
4	New York
5	Toronto

- 1. Solve the following relational expressions for above relations.
 - a. P_{Name}(R_{Age>25}(User))
 - b. R_{Id>2vAge!=31}(User)
 - $\textbf{c.} \;\; R_{User.OccupationId=Occupation.OccupationId} (User \; X \;\; Occupation)$
 - d. User ⋈ Occupation ⋈ City
 - e. P_{Name,Gender}(R_{CityName="Boston"}(User ⋈ City))
- 2. Write SQL statements for relational expressions in question 1.

Q2. Explain the following:

(2*4=8)

- i. How does DBMS provide data abstraction? Explain the concept of data independence.
- **ii.** What is DBA? Mention the functionalities of DBA.
- **iii.** Explain the importance of Null value in Relational Model.
- iv. Which of the following is not outer join and why?
 - (a) Left outer join
 - (b) Right outer join
 - (c) Full outer join
 - (d) All of the mentioned

Q3. (a) Consider the following ER diagram:

(1*4=4)

The minimum number of tables needed to represent M, N, P, R1, R2 is: (a) 2 (b) 3 (c) 4 (d) 5 also make these tables.

Q3. (b) Let R and S be two relations with the following schema R ($\underline{P},\underline{Q},R1,R2,R3$) S ($\underline{P},\underline{Q},S1,S2$) Where $\{P,Q\}$ is the key for both schemas. Which of the following queries are equivalent?

$$\begin{split} & \text{I.} & \Pi_{\text{P}}\left(\text{R} \bigotimes \text{S}\right) \\ & \text{II.} & \Pi_{\text{P}}\left(\text{R}\right) \bigotimes \Pi_{\text{P}}\left(\text{S}\right) \\ & \text{III.} & \Pi_{\text{P}}\left(\Pi_{\text{P,Q}}\left(\text{R}\right) \cap \Pi_{\text{P,Q}}\left(\text{S}\right)\right) \\ & \text{IV.} & \Pi_{\text{P}}\left(\Pi_{\text{P,Q}}\left(\text{R}\right) - \left(\Pi_{\text{P,Q}}\left(\text{R}\right) - \Pi_{\text{P,Q}}\left(\text{S}\right)\right)\right) \end{split}$$

- (i) Only I and II
- (ii) Only I and III
- (iii) Only I, II and III
- (iv) Only I, III and IV

Q3. (c) Suppose (\underline{A},B) and (\underline{C},D) are two relation schemas. Let r1 and r2 be the corresponding relation instances. B is a foreign key that refers to C in r2. If data in r1 and r2 satisfy referential integrity constraints, which of the following is ALWAYS TRUE?

(A)
$$\Pi_{B}(r_{1}) - \Pi_{C}(r_{2}) = \emptyset$$

(B) $\Pi_{C}(r_{2}) - \Pi_{B}(r_{1}) = \emptyset$
(C) $\Pi_{B}(r_{1}) = \Pi_{C}(r_{2})$
(D) $\Pi_{B}(r_{1}) - \Pi_{C}(r_{2}) \neq \emptyset$
(i) A (ii) B (iii) C (iv) D

- Q3. (d) Consider a relational table with a single record for each registered student with the following attributes.
- 1. Registration _Number: Unique registration number of each registered student
- 2. UID: Unique Identity number, unique at the national level for each citizen
- **3.** Bank Account _Number: Unique account number at the bank. A student can have multiple accounts or joint accounts. This attributes stores the primary account number
- 4. Name: Name of the Student
- **5**. Hostel_ Room: Room number of the hostel which of the following options is INCORRECT?
- (a) Bank Account _Number is a candidate key
- (b) Registration _Number can be a primary key
- (c) UID is a candidate key if all students are from the same country
- (d) If S is a superkey such that $S \cap UID$ is NULL then S U UID is also a superkey

OR

- **Q3.** (a) Consider a relation scheme R = (A, B, C, D, E, H) on which the following functional dependencies hold: $\{A->B, BC->D, E->C, D->A\}$. What are the candidate keys of R? (A) AE, BE
- **(B)** AE,BE,DE
- (C) AEH, BEH, BCH
- (D) AEH, BEH, DEH

Q3. (b) The following functional dependencies are given:

Which one of the following options is false?

$$(a)CF^{+} = \{ACDEFG\}$$

$$(b)BG^+ = \{ABCDG\}$$

$$(c)AF^+ = \{ACDEFG\}$$

$$(d)AB^+ = \{ABCDFG\}$$

Q3. (c) Consider the relation X(P, Q, R, S, T, U) with the following set of functional dependencies

$$F = \{$$

$$\{P, R\} \rightarrow \{S, T\}$$

$$\{P, S, U\} \rightarrow \{Q, R\}$$

$$\}$$

Which of the following is the trivial functional dependency in F+ is closure of F?

- (a) $\{P, R\} \to \{S, T\}$
- **(b)** $\{P, R\} \to \{R, T\}$
- (c) $\{P, S\} \rightarrow \{S\}$
- (d) $\{P, S, U\} \rightarrow \{Q\}$

Q3. (d) Consider the following functional dependencies in a database.

Date_of_Birth->Age

Age->Eligibility

Name->Roll_number

Roll_number->Name

Course_number->Course_name Course_number->Instructor

(Roll_number, Course_number)->Grade

The relation (Roll_number, Name, Date_of_birth, Age) is

- (a) in second normal form but not in third normal form
- (b) in third normal form but not in BCNF
- (c) in BCNF
- (d) in none of the above

(1*4=4)