SISTEMAS DE COMUNICACIÓN

Clase 1: Introducción

Mecánica del curso

Horarios:

- martes 16:00 salón 301 teórico
- jueves 16:00 salón 301 teórico
- Viernes 16:00 salón 105 práctico

♯ Docentes del curso

- Alicia Fernández, Federico Lecumberry,
- Pablo Cancela, Germán Capdhourat, Mauricio Delbracio
- Juan Pechiar
- **■** Información de Contacto.
 - e-mail: siscom@iie.edu.uy

Web del Curso

- # http://www.iie.edu.uy/ense/asign/siscom
- **■** Material del curso
 - cronograma del curso
 - guía de clase
 - notas complementarias
 - hojas de ejercicios

Materiales del curso

- #Libros:
- **Ed.** MacGraw-Hill Book Company Nueva York 2002- ISBN 0-07-011127-8
- **♯ Communication System, A. B. Carlson** 3a. Ed. MacGraw-Hill Book Company Nueva York 1986- ISBN 0-07-100560-9
- **PC** Matlab

Prerequisitos

- **T**Conocimientos de Sistemas Lineales
- **♯** Procesamiento digital
- # Conocimientos básicos de Probabilidad

Evaluación del curso

- # Entrega de 3 ejercicios. OBLIGATORIO
- **■** 2 parciales
 - primer parcial 50% (1/5 al 11/5)
 - segundo parcial 50%
- mínimo para aprobar el curso 30% entre ambos parciales
- ≠ mínimo para exonerare 60% entre ambos parciales

Objetivos del curso

- # Introducir los sistemas de comunicación eléctricos:
 - analizar sus características
 - principios de funcionamiento
- ➡ Presentar la teoría básica para modelar y analizar sistemas de comunicaciones punto a punto.
- ♯ Dar herramientas: conceptos y métodos.

Comunicación

Comunicación

Transferencia de información de un lugar a otro lugar.

Debe ser:

- eficiente
- confiable
- segura

Sistema de Comunicación

Definición: Componentes o subsistemas que permiten la transferencia / intercambio de información.

Sistemas de Comunicación

Transductor de entrada

Convierte el mensaje a un formato adecuado para su trasmisión.

El: micrófono convierte las ondas sonoras en variaciones de voltaje.

Trasmisor (TX)

Adecua la señal eléctrica de entrada a las características del medio de trasmisión.

Modulación (AM, FM, PSK). Modifica parámetro de una portadora de acuerdo al mensaje. Ej: AM-Traslada el mensaje a la banda pasante del canal.

Codificación- se elimina redundancia presente en el mensaje (compresión) y se agrega redundancia (bits de paridad) para aumentar inmunidad frente al ruido. (JPEG)

Otras funciones: Amplificar, Filtrar

Canal

Medio que hace de nexo entre el trasmisor y el receptor.

El canal degrada la señal, introduce: -Ruido

-Atenuación

-Distorsión

-Interferencia

CANAL

Cable duro:

- par trenzado (cobre)
- coaxial
- guía de onda
- fibra óptica

Cable blando:

- aire
- vacio
- agua de mar

Características de los medios físicos

Frecuencia	Medio/ propagación	aplicación
10 ¹¹ Hz - 10 ¹⁵ Hz	Fibra óptica	Datos de banda ancha
1GHz- 10GHz	Guía de ondas/línea vista	Satélites, celular
1MHz-1GHz	Coaxil/radio	TV, FM
1KHz-1MHz	Par trenzado/onda terrestre	AM, Aeronáutica, telefonía, telegrafo

Características de los medios físicos

THE ELECTROMAGNETIC SPECTRUM

Características de los medios físicos

Receptor (RX)

Reconstruye la señal de entrada a partir de la señal recibida. Proceso inverso al realizado en el TX.

Demodular, Decodificar

Otras funciones: Amplificar, Filtrar

Transductor de salida

Convierte la señal eléctrica a su entrada en una forma de onda adecuada

Ej: auricular, altavoz

Comunicaciones Digitales vs. Analógicas

■ Sistemas Analógicos:

- señales continuas (voz, video)
- **maximizar SNR.** No es posible SNR infinita en canales con ruido restricciones:
 - ancho de banda de transmisión potencia trasmitida

♯ Sistemas Digitales:

- número finito de señales (texto, datos)
- **minimizar Pe.** Es posible trasmitir sin errores en canales con ruido restricciones:
 - ancho de banda de transmisión energía trasmitida

Comunicaciones Digitales crecen en importancia

▼ Ventajas de los sistemas digitales:

- Baratos: operaciones complejas se pueden implementar en forma económica en un único circuito integrado.
- Se dispone de muy buenas técnicas de procesamiento para señales digitales:encriptado, compresión de datos, corrección de error, ecualización de canal
- Multiplexado : fácil mezclar señales de diferentes fuentes
- Los receptores digitales se pueden hacer tolerantes al ruido (*Pe* pequeña, distinguen entre un número fijo de símbolos)

■ Desventajas:

- Necesidad de un mayor ancho de banda de transmisión
- Es necesario sincronización entre el transmisor y el receptor.

Características deseables de un Sistema de Comunicación

- **■** Buena fidelidad
- ➡ Potencia de señal baja
- Trasmitir una gran cantidad de información
- ➡ Ocupar un ancho de banda pequeño
- Bajo costo (complejidad)
 - las operaciones digitales complejas se han hecho mucho mas baratas
- Los ingenieros de comunicaciones tienen que obtener la mejor solución de compromiso de todos estos parámetros.

Ejemplos de soluciones de compromiso en el Diseño de Sistemas de Comunicación

II Comunicaciones Satelitales

Alto costo de generación de potencia en el espacio y enormes distancias de transmisión. Se requiere eficiencia en el uso de energía.

T Comunicaciones de microondas

Bajo costo en la potencia pero ancho de banda limitado por las regulaciones. Se requiere eficiencia en el uso del ancho de banda

♯ Telefonía celular

Aumento del costo con la potencia (impacto en el tamaño y la duración de las baterías) además esta limitado el ancho de banda. Se requiere a la vez eficiencia en la energía y en el ancho de banda.

Hitos en la Historia de las Comunicaciones

- **■** 1844 Telégrafo (Morse)
- **■** 1876 Teléfono (Bell)
- **≠** 1897 Telégrafo inalámbrico(Marconi)
- **■** 1918 Receptor de AM (Armstrong)
- **≠** 1928 Televisión (Farnsworth)
- **■** 1933 Radio FM (Armstrong)

- 1948 Teoría de la Información (Shannon)
- 1950 Líneas Telefónicas digitales de larga distancia(Bell Labs)
- 1963 Comunicación Satelital Telstar I (Bell Labs)
- 1979 Primer Teléfono Celular comercial (Motorola/ AT&T)
- **■** 2005 Convergencia/Movilidad/IP

Observaciones importantes

- La rapidez del progreso se ha acelerado tremendamente en los últimos 100 años
- ➡ Hincapié en las comunicaciones que usan ondas electromagnéticas
 - baratas para su generación y procesamiento
 - las ondas electromagnéticas se propagan muy bien sobre distancias largas
- ♯ En muchos casos la tecnología digital precede a la analógica aunque uno tienda a pensar lo contrario.

Referencia bibliográfica

- ➡ http://www.iie.edu.uy/ense/asign/siscom/
- # Capitulo 1- Introducción- Carlson