PATENT ABSTRACTS OF JAPAN

(11)Publication number:

10-140353

(43)Date of publication of application: 26.05.1998

(51)Int.CI.

C23C 16/30 B23P 15/28 C23C 14/08 C23C 16/56

(21)Application number: 08-302736

(71)Applicant:

MITSUBISHI MATERIALS CORP

(22)Date of filing:

14.11.1996

(72)Inventor:

OSADA AKIRA

(54) CUTTING, TOOL MADE OF SURFACE COATED CEMENTED CARBIDE IN WHICH HARD COATING LAYER HAS EXCELLENT WEAR RESISTANCE

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a cutting tool made of surface coated cemented carbide in which a hard coating layer has excellent wear resistance.

SOLUTION: This cutting tool made of cemented carbide is the one in which the surface of a WC base cemented carbide substrate is applied with a hard coating layer contg. an Al2O3 layer with a κ type crystal structure, e.g. composed of one or ≥two kinds of Ti compound layers among a TiC layer, a TiN layer, a TiCN layer, a TiCN layer, a TiCN layer and a TiCNO layer and an Al2O3 layer with a κ type crystal structure at 2 to 20μm average layer thickness by chemical vapor deposition and/or physical vapor deposition. In this case, the crystal structure in the cutting edge ridgeline part of the Al2O2 layer with κ type crystal structure composing the hard coating layer is regulated to an a type by laser irradiation heating transformation or electron beam irradiation heating transformation.

LEGAL STATUS

[Date of request for examination]

30.09.1999

[Date of sending the examiner's decision of rejection]

19.11.2002

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C): 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-140353

(43)公開日 平成10年(1998)5月26日

(51) Int.Cl. ⁶	譈牙	別記号	FΙ			
C 2 3 C	16/30		C 2 3 C	16/30		
B 2 3 P	15/28		B 2 3 P	15/28	A	
C 2 3 C	14/08		C 2 3 C	14/08	· A	
	16/56			16/56	•	

審査請求 未請求 請求項の数2 OL (全 5 頁)

(21) 出願番号 特願平8-302736

(22)出顧日 平成8年(1996)11月14日

(71)出願人 000006264

三菱マテリアル株式会社

東京都千代田区大手町1丁目5番1号

(72)発明者 長田 晃

茨城県結城郡石下町大字古間木1511番地

三菱マテリアル株式会社筑波製作所内

(74)代理人 弁理士 富田 和夫 (外1名)

(54) [発明の名称] 硬質被覆層がすぐれた耐摩耗性を有する表面被覆超硬合金製切削工具

(57)【要約】

【課題】 硬質被覆層がすぐれた耐摩耗性を有する表面 被覆超硬合金製切削工具を提供する。

【解決手段】 WC基超硬合金基体の表面に、結晶構造が κ 型のA1 $_2$ O_3 層を含む硬質被覆層、例えばTiC 層、TiN層、TiCN層、TiCO層、TiNO層、およびTiCNO層からなるTi化合物層のうちの1種または2種以上と、結晶構造が κ 型のA1 $_2$ O_3 層で構成した硬質被覆層を $2\sim2$ 0 μ mの平均層厚で化学蒸着および/または物理蒸着してなる表面被覆超硬合金製切削工具において、前記硬質被覆層を構成する結晶構造が κ 型のA1 $_2$ O_3 層の切刃稜線部の結晶構造を、レーザー照射加熱変態または電子ビーム照射加熱変態の α 型とする。

【特許請求の範囲】

【請求項1】 炭化タングステン基超硬合金基体の表面 に、結晶構造がカッパー型の酸化アルミニウム層を含む 硬質被覆層を2~20μmの平均層厚で化学蒸着および /または物理蒸着してなる表面被覆超硬合金製切削工具 において、

前記硬質被覆層を構成する結晶構造がカッパー型の酸化 アルミニウム層のうちの切刃のすくい面と逃げ面の交わ る切刃稜線部の結晶構造を、レーザー照射加熱変態また は電子ビーム照射加熱変態のアルファ型としたことを特 徴とする硬質被覆層がすぐれた耐摩耗性を有する表面被 覆超硬合金製切削工具。

【請求項2】 炭化タングステン基超硬合金基体の表面に、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、炭酸化物層、炭酸化物層のおよび炭窒酸化物層からなるTi化合物層のうちの1種または2種以上と、結晶構造がカッパー型の酸化アルミニウム層とで構成された硬質被覆層を2~20μmの平均層厚で化学蒸着および/または物理蒸着してなる表面被覆超硬合金製切削工具において、前記硬質被覆層を構成する結晶構造がカッパー型の酸化

前記硬質被覆層を構成する結晶構造がカッパー型の酸化アルミニウム層のうちの切刃のすくい面と逃げ面の交わる切刃稜線部の結晶構造を、レーザー照射加熱変態または電子ビーム照射加熱変態のアルファ型としたことを特徴とする硬質被覆層がすぐれた耐摩耗性を有する表面被覆超硬合金製切削工具。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、硬質被覆層がすぐれた耐磨耗性を有し、したがって例えば鋼や鋳鉄の高速切削にも長期に亘ってすぐれた切削性能を発揮する表面被覆超硬合金製切削工具(以下、被覆超硬工具と云う)に関するものである。

[0002]

【従来の技術】従来、一般に、例えば特公昭61-15149号公報や特開平6-316758号公報などに記載されるように、炭化タングステン基超硬合金基体(以下、超硬基体という)の表面に、酸化アルミニウム(以下、Al2O3で示す)層を含む硬質被覆層、例えばTiの炭化物(以下、TiCで示す)層、安全化物(以下、TiCNで示す)層、炭酸化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層がらなるTi化合物層のうちの1種または2種以上と、結晶構造がカッパー

 (κ) 型のA 1_2 O 3 層とで構成された硬質被覆層を 2 $\sim 20~\mu$ mの平均層厚で化学蒸着および/または物理蒸着してなる被覆超硬工具が知られており、またこの被覆超硬工具が鋼や鋳鉄などの連続切削や断続切削に用いられていることも知られている。

[0003]

【発明が解決しようとする課題】一方、近年の切削装置の高性能化はめざましく、かつ省力化に対する要求も強く、これに伴い、切削加工は高速化の傾向にあるが、上記の従来被覆超硬工具においては、これを構成する硬質被覆層のうち、特に結晶構造が κ型のA 1 2 O 3 層は耐摩耗性が不十分であるために、例えば鋼や鋳鉄の高速切削に用いた場合に摩耗進行が速く、比較的短時間で使用寿命に至るのが現状である。

[0004]

【課題を解決するための手段】そこで、本発明者等は、上述のような観点から、被覆超硬工具の硬質被覆層に着目し、これの耐摩耗性向上を図るべく研究を行った結果、上記の従来被覆超硬工具における切刃のすくい面と逃げ面の交わる切刃稜線部(以下、単に切刃稜線部と云う)に、レーザーまたは電子ピームを照射して加熱し、この部分の硬質被覆層を構成する Al_2O_3 層の結晶構造を κ 型からアルファ(α)型に変態させると、この結果の被覆超硬工具は、特に切刃稜線部が一段とすぐれた耐摩耗性を有するようになり、通常の条件での切削は勿論のこと、連続切削および断続切削を高速条件で行っても長期に亘ってすぐれた切削性能を発揮するようになるという研究結果を得たのである。

【0005】この発明は、上記の研究結果に基づいてなされたものであって、超硬基体の表面に、結晶構造が κ 型の Al_2O_3 層を含む硬質被覆層、例えばTiC層、TiN層、TiCO層、TiN0層、TiCO層、TiNO8 のE1 の E2 を E3 の E3 の E4 の E4 に E5 の E6 の E7 に E7 の E7 に E8 の E9 の

[0007]

【発明の実施の形態】つぎに、この発明の被覆超硬工具を実施例により具体的に説明する。原料粉末として、平均粒径:1.5 μ mの細粒WC粉末、同3 μ mの中粒WC粉末、同1.2 μ mの(Ti,W)CN(重量比で、以下同じ、TiC/TiN/WC=24/20/56)

粉末、同1.3μmの(Ta, Nb) C(TaC/Nb C=90/10)粉末、同1μmのCr粉末、および同1.2μmのCo 粉末を用意し、これら原料粉末を表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、 $ISO\cdot CNMG120408$ に定める形状の圧粉体にプレス成形し、この圧粉体を同じく表1に示される条件で真空焼結することにより超極基体A~Eをそれぞれ製造した。なお、表1には、スケール)をそれぞれ示した。ついで、これらの超硬基体A~Eの表面に、ホーニングを施した状態で、通常の化学を発量を用い、表2に示される条件にて、表3に示される表面に示される表面に示されている。

[0008] さらに、上記従来被覆超硬工具1~12の それぞれの切刃稜線部に、以下の条件、すなわち、

種別: CO, レーザー、

出力: 20W、

送り速度: 0. 24m/min、

スポット径: 0. 3 mm、

照射熊様:すくい面および逃げ面の延長線上に配置した

2本の銃による照射、

の条件でのレーザー照射加熱、または、

加速電圧: 40kV、 電流:100mA、 照射時間:1sec、

照射態様:切刃稜線に沿うビームパターンをすくい面側 および逃げ面側の2方向から高速偏向で照射、

の条件での電子ビーム照射加熱を行い、切刃稜線部のA 1_2 O_3 層の結晶構造を κ 型から α 型へ変態(X線回析で確認)させることにより本発明被覆超硬工具 $1\sim12$ をそれぞれ製造した。

【0009】つぎに、上記本発明被覆超硬工具 $1\sim12$ および従来被覆超硬工具 $1\sim12$ について、

被削材:FC300(硬さ:HB180)の丸棒、

切削速度: 450m/min. 、

切込み: 1. 5 mm、

送り: 0. 45mm/rev、

の条件での鋳鉄の乾式連続高速高送り切削試験、並びに

被削材: JIS・SCM440 (硬さ: HB 220) の

丸棒、

切削速度: 400m/min. 、

切込み:1.5mm.、

送り: 0. 4mm/re.v、

の条件での合金鋼の乾式連続高速高送り切削試験を行い、いずれの切削試験でも切刃の逃げ面摩耗幅が0.3 mmに至るまでの切削時間を測定した。これらの測定結果を表4に示した。

[0010]

【表1】

養別						£	全 包 成 (重量%)			真室	内部硬さ
		%]	Co	(Ti,W)CN	(Ta, Nb) C	Cr	₩C	真空度 (torr)	温度(で)	保持時間(hr)	(HRA)
		A	6	-	2	_	接 (細粒)	0. 05	1 4 5 0	1	91.5
	超	В	6	-	-	0. 5	受 (細位)	0. 05	1450	1	92.0
	便基	С	5	6	3	-	英 (中粒)	o. 1	1400	1	91.0
	体	D	6	5 .	4	_	(中粒)	0. 05	1400	1.5	90, 5
		E	8	5	3	0.5	· 残 (中粒)	0. 1	1400	1. 5	90.0

硬質被暴宿 種 別	硬質被覆層形成条	#	
	反応 ガス 組 成 (容量%)	反応雰囲気	
(E. 17)	以 以 力 和 成 (会 是 力)	圧力 (torr)	温度 (℃)
×型A € 2 0 3	A & C & 3 : 4%, C O 2 : 1 0%, H ₂ S : 0. 2%, H C & : 2%, H ₂ : 班	5 0	980
TiC	TiC14:2%, CH4:5%, H2:致	100	1020
TiN	TiC14:2%, N2:30%, H2:底	200	900
TiCN	TiC14:2%, N2:10%, CH3CN:0.8%, H2:該	5 0	900
TiCO	TiC14:3%, C0:2%, CH4:2%, H2:弦	100	1020
Tino	TiC&4:3%, CO:1%, N ₂ :15%, H ₂ :独	100	1020
TiCNO	TiC# ₄ :3%, CO:2%, CH ₄ :2%, N ₂ :15%, H ₂ :独	100	1020

[0012]

【表3】

<u> </u>		基体	8 E	質 被	夏 扇	(括張内は平均層厚	: µm)
種	3 1	记号	第1層	第 2 階	第 3 層	第 4 章	第5層
	1	A	TiCN (4, 2)	ĸ型A 1 2 O3 (8, 0)	TIN (0. 3)	_	_
	2	Α	TIN (0. 5)	TICN (6. 5)	TiCO (0. 3)	ĸ型A # 2 ^O 3 (5.8)	-
世	3	Α	TiC (0. 9)	T i CN (6, 8)	TiC (2. 0)	(5. 8) E型A # 2 ^D 3 (2, 5)	T i N (0. 3)
来	4	В	TiC (0. 4)	TiN (0. 8)	TiCN (7. 5)	TiCNO (0. 3)	K型A # 2 0 3 (3. 2)
被	5	В	TiN (1, 2)	TICN (4. 0)	×⊠A / 2 0 3 (6. B)	TiN (0. 2)	-
覆	6	С	TiN (0. 6)	TiCN (8. 2)	TiCNO (0. 4)	**** 2 U3,	T i N (0. 3)
艦	7	С	TiC (0. 5)	TiCN (5. 7)	TiCO (0. 2)	K型A#2 03/6 EN	TiN (0. 2)
硬	8	ם	TIN (0. 4)	TiCN (8. 9)	ĸ型A#2 ^O 3 (3. 2)	-	-
ェ	9	D	TiN (0, 5)	TiCN (4. 6)	TiN (1.8)	1 * SEA # 2 U3/5 2\	TiN (0. 3)
臭	10	D	TICN (8. 3)	T i NO (0, 5)	ĸ型A ≠ 2 O 3 (3. 9)	TIC (0. 2)	TiN (0. 3)
	11	E	TiC (1. 0)	TiCN (6. 5)	TIN (0. 8)	1 EMA 2 03(2 6)	TiN (0. 2)
	12	E	TiN (1. 2)	T i CN (4, 4)	TiC (3. 0)	ĸ型A # 2 O3 (2. 2)	TIN (0.4)

【表4】

種別		切削時間(分)		切刃稜線部		8,1	切削時間(分)		
		銷鉄	合金鋼	の照射加熱 手段	種	231)	鋳鉄	合金鋼.	
	1	47. 9	1 3. 7	レーザー		1	3. 3	2. 8	
	2	20. 1	16.7	レーザー		2	0. 5	1. 4	
本	3	19. 7	15. 4	電子ビーム	從	3	1. 2	1. 8	
発	4	16. 6	13.0	レーザー	来	4	4. 8	3. 0	
明	5	20. 6	16.9	電子ビーム	被	5	0. 9	2. 2	
被	6	19. 3	18. 6	レーザー	a	6	1. 5	0. 8	
種	7	17. 0	16. 1	電子ピーム	超	7	4. 1	3. 2	
超	8.	18. 4	18. 0	レーザー	梗	8	2. 7	1. 0	
便	9	18.9	19. 2	電子ピーム	I	9	2. 0	0. 5	
ᄑ	10	15. 1	14. 3	電子ピーム	具	10	4. 5	4. 2	
具	11	17. 8	17. 5	レーザー		11	1. 9	2. 6	
	1 2	1.4. 5	14. 8	電子ピーム		1 2	3. 6	3. 5	

[0014]

【発明の効果】表4に示される結果から、硬質被覆層におけるA12 O3 層の切刃稜線部の結晶構造をκ型からα型へ部分変態させてなる本発明被覆超硬工具1~12は、A12 O3 層の全体がκ型結晶構造を有する従来被覆超硬工具1~12に比して、苛酷な切削条件となる鋳鉄および鋼の高速高送り切削ですぐれた耐摩耗性を示し、長期に亘ってすぐれた切削性能を発揮することが明

らかである。上述のように、この発明の被覆超硬工具は、これを構成する硬質被覆層がすぐれた耐摩耗性を示すので、鋼や鋳鉄などの通常の条件での連続切削や断続切削は勿論のこと、高速切削などの苛酷な条件での切削に用いた場合にも、長期に亘ってすぐれた切削性能を発揮するものであり、したがって切削装置の高性能化に十分に対応でき、かつ省力化にも寄与するものである。