Cryptography - Homework 4

冯诗伟 161220039

1

Assume that the adversary A can break 1% of \mathbb{Z}_N^* (a specific subset) with probability of 1 and break the other 99% with probability of 0.

We can construct A' as follows:

- 1. Given $y = x^e \mod N$.
- 2. Uniformly choose $r \in \mathbb{Z}_N^*$ and r^{-1} such that $r \cdot r^{-1} = 1 \bmod N$.
- 3. Feed $y \cdot r^e$ to \mathcal{A} and get $z = \mathcal{A}(y \cdot r^e \mod N)$.
- 4. Compute $y' = z \cdot r^{-1} \mod N$.
- 5. Repeat step 1 to 4 for XXX times. Denote the y' in the i-th round as y'_i . If any two outputs $(y'_i$ and $y'_j)$ in these XXX rounds are the same, output y'_i . Otherwise output 0.

Let me explain it in detail.

Step1 and Step2 is trival. In Step3, $z=y^{1/e}$

2

Additional