Контест для магистров СПБ, Академический Университет, 24 сентября 2014

Содержание

Ч	асть 1		2
1	Задача А.	Plus minus [0.5 секунд, 256 mb]	2
2	Задача В.	Поиск [1 секунда, 256 mb]	3
3	Задача С.	Быстрое прибавление [4 секунды, 256 mb]	4
4	Задача D.	Линейная сумма [3 секунды, 256 mb]	5
5	Задача Е.	Длинное выражение [2 секунды, 256 mb]	6
Ч	асть 2		7
6	Задача F.	Точки и отрезки [0.5 секунд, 256 mb]	7
7	Задача G .	Обмен [0.5 секунд, 256 mb]	8

Часть 1

1 Задача А. Plus minus [0.5 секунд, 256 mb]

В каждой клетке поля $M \times N$ стоит либо плюс, либо минус. За один ход разрешается поменять знаки на противоположные в любом квадрате 2×2 . Можно ли с помощью таких операций получить во всех клетках поля знаки плюс?

Формат входных данных

В первой строке числа M и N ($1 \leqslant N, M \leqslant 1000$). В следующих M строках содержится по N символов +, либо -.

Формат выходных данных

Ответ на вопрос задачи: слово Yes или No

plusminus.in	plusminus.out
3 3	No
+	
+	
++-	
3 3	Yes
+	
+++	
-+-	

2 Задача В. Поиск [1 секунда, 256 mb]

В этой задаче нужно уметь выяснять, содержится ли число в последовательности.

Формат входных данных

В первой строке входного файла заданы через пробел два целых числа n и k ($1 \le n \le 300\,000$, $1 \le k \le 300\,000$). Во второй строке задана последовательность из n отсортированных целых чисел a_1, a_2, \ldots, a_n , записанных через пробел ($1 \le a_i \le 10^9$). В третьей строке записаны запросы — k целых чисел b_1, b_2, \ldots, b_k записанных через пробел, в порядке возрастания ($1 \le b_i \le 10^9$).

Формат выходных данных

В выходной файл выведите k строк. В j-ой строке выведите "YES", если число b_j содержится в последовательности $\{a_i\}$, и "NO" в противном случае.

find2.in	find2.out
3 3	NO
2 3 5	YES
1 2 3	YES
3 4	YES
1 2 2	YES
1 2 4 5	NO
	NO

3 Задача С. Быстрое прибавление [4 секунды, 256 mb]

Есть массив целых чисел длины $n=2^{24}$, изначально заполненных нулями. Вам нужно сперва обработать m случайных запросов вида "прибавление на отрезке" по модулю 2^{32} . Затем обработать q случайных запросов вида "сумма на отрезке" по модулю 2^{32} .

Формат входных данных

На первой строке числа $m, q. (1 \le m, q \le 2^{24})$. На второй строке пара целых чисел a, b от 1 до 10^9 , используемая в генераторе случайных чисел.

```
1. unsigned int cur = 0; // беззнаковое 32-битное число
2. unsigned int nextRand() {
3.
       cur = cur * a + b; // вычисляется с переполнениями
4.
       return cur » 8; // число от 0 до 2^{24}-1.
5. }
  Каждый запрос первого вида генерируется следующим образом:
1. add = nextRand(); // число, которое нужно прибавить
2. l = nextRand();
3. r = nextRand();
4. if (1 > r) swap(1, r); // получили отрезок [1..r]
   Каждый запрос второго вида генерируется следующим образом:
1. l = nextRand();
2. r = nextRand();
3. if (1 > r) swap(1, r); // получили отрезок [1..r]
   Сперва генерируются запросы первого вида, затем второго.
```

Формат выходных данных

Выведите сумму ответов на все запросы по модулю 2^{32} .

fastadd.in	fastadd.out
5 5	811747796
13 239	

4 Задача D. Линейная сумма [3 секунды, 256 mb]

Есть n случайных точек на прямой с координатами от 0 до $2^{32}-1$. У каждой точки есть значение от 0 до $2^{32}-1$. Вам нужно обработать q случайных запросов вида "сумма значений точек, с координатами от l до r включительно".

Формат входных данных

На первой строке числа n, q. $(1 \le n \le 2^{20}, 1 \le q \le 2^{23})$. На второй строке пара целых чисел a, b от 1 до 10^9 , используемая в генераторе случайных чисел.

```
1. unsigned int cur = 0; // беззнаковое 32-битное число
2. unsigned int nextRand24() {
3.
       cur = cur * a + b; // вычисляется с переполнениями
4.
       return cur » 8; // число от 0 до 2^{24}-1.
5. }
6. unsigned int nextRand32() {
       unsigned int a = nextRand24(), b = nextRand24();
       return (a « 8) \hat{} b; // число от 0 до 2^{32}-1.
8.
9. }
   Каждая точка генерируется следующим образом:
1. value = nextRand32(); // значение точки
2. x = nextRand32(); // координата точки
  Каждый запрос генерируется следующим образом:
1. l = nextRand32();
2. r = nextRand32();
3. if (1 > r) swap(1, r); // получили отрезок [1..r]
   Сперва генерируются точки, затем запросы.
```

Формат выходных данных

Выведите сумму ответов на все запросы по модулю 2^{32} .

Примеры

linesum.in	linesum.out
5 5	3950632748
13 239	

Замечание

```
p = {value, x}
p[0] = {13, 41645}
p[1] = {7695587, 1253435649}
p[2] = {749170640, 2683600557}
p[3] = {2444595881, 1270561959}
p[4] = {3436107648, 486388002}
```

5 Задача Е. Длинное выражение [2 секунды, 256 mb]

Выведите значение заданного арифметического выражения.

Формат входных данных

В первой строке входного файла задано выражение, состоящее из чисел, скобок и знаков бинарных операций. Каждое число в выражении это — целое неотрицательное число в промежутке от 0 до 10 000, включительно, записанное без ведущих нулей. Скобки бывают открывающие ('(') и закрывающие (')'). Операции задаются символами '+', '-', '*' и '/'; знак умножения не может быть опущен. Гарантируется, что заданное выражение математически корректно, и результаты всех промежуточных операций — целые числа, не превышающие по модулю 10⁹. Выражение не содержит каких-либо других символов, в частности, пробелов. Длина выражения не меньше 1 и не больше 1 000 000 символов.

Учтите, что операции с одинаковым приоритетом при отсутствии скобок выполняются слева направо. Например, выражение a+b+c вычисляется как (a+b)+c.

Формат выходных данных

В первой строке выходного файла выведите одно число — значение заданного выражения.

evalhard.in	evalhard.out
40-8/1*3	16
(5+50)/(2+3)	11

Часть 2

6 Задача F. Точки и отрезки [0.5 секунд, 256 mb]

Дано n отрезков на числовой прямой и m точек на этой же прямой. Для каждой из данных точек определите, скольким отрезкам она принадлежит. Точка x считается принадлежащей отрезку с концами a и b, если выполняется двойное неравенство $\min(a,b) \leq x \leq \max(a,b)$.

Формат входных данных

Первая строка содержит два целых числа n ($1 \le n \le 10^5$) — число отрезков и m ($1 \le m \le 10^5$) — число точек. В следующих n строках записаны по два целых числа a_i и b_i — координаты концов соответствующего отрезка. В последней строке записаны m целых чисел — координаты точек. Все числа во входном файле не превосходят по модулю 10^9 .

Формат выходных данных

В выходной файл выведите m чисел — для каждой точки выведите количество отрезков, в которых она содержится.

segments.in	segments.out
2 2	1 0
0 5	
7 10	
1 6	
1 3	0 0 1
-10 10	
-100 100 0	

7 Задача G. Обмен [0.5 секунд, 256 mb]

Пусть все натуральные числа исходно организованы в список в естественном порядке. Разрешается выполнить следующую операцию: swap(a,b). Эта операция возвращает в качестве результата расстояние в текущем списке между числами a и b и меняет их местами.

Задана последовательность операций swap. Требуется вывести в выходной файл результат всех этих операций.

Формат входных данных

Первая строка входного файла содержит число n ($1 \le n \le 200\,000$) — количество операций. Каждая из следующих n строк содержит по два числа в диапазоне от 1 до 10^9 — аргументы операций swap.

Формат выходных данных

Для каждой операции во входном файле выведите ее результат.

swap.in	swap.out
4	3
1 4	1
1 3	4
4 5	2
1 4	