Theory of Computation Slides based on Michael Sipser's Textbook

Moses A. Boudourides¹

Visiting Associate Professor of Computer Science Haverford College

Moses.Boudourides@cs.haverford.edu

Section 2.3

More on Context-Free Grammars and Pushdown Automata

Regular Grammars, I

Definition: Right-, Left-, Regular and Linear Grammars

Let $G = (V, \Sigma, S, P)$ a CFG.

► G is called **right-linear** if all productions are of one of the two forms

$$A \to xB$$
, $A \to x$.

where $A, B \in V$ and $x \in \Sigma^*$.

► G is called **left-linear** if all productions are of one of the two forms

$$A \to Bx$$
, $A \to x$.

- ► G is called **regular grammar** if it is either right-linear or left-linear.
- ► G is called **linear grammar** if at most one variable can ocur on the right side of any production, independently of its position.

Regular Grammars, II

Example

Consider the following CFGs:

$$G_1 = (\{S\}, \{a, b\}, S, \{S \to abS \mid a\}),$$

$$G_2 = (\{S, S_1, S_2\}, \{a, b\}, S, \{S \to S_1 ab, S_1 \to S_1 ab \mid S_2, S_2 \to a\}),$$

$$G_3 = (\{S,A,B\}, \{a,b\}, S, \{S \rightarrow A, A \rightarrow aB \mid \varepsilon, B \rightarrow Ab\}).$$

Then G_1 is right-linear, G_2 is left-linear, and G_3 is linear. Notice that G_1 generates the regular language $(ab)^*a$, G_2 generates the regular language $aab(ab)^*$, and G_3 generates the nonregular language $\{a^nb^n \mid n \geq 0\}$.

Theorem

If G is a right–linear (or left–linear) CFG, then L(G) is a regular language.

Theorem

If L is a regular language over Σ , then there exists a right–linear (or left–linear) CFG $G = (V, \Sigma, S, P)$ such that L = L(G).

Regular Grammars, III

Correspondence of Regular Grammar to Finite Automaton

Assume that G is a right-linear CFG with variables $V = \{V_0, V_1, \ldots\}, S = V_0$, and productions of the form $V_0 \to v_i V_i, V_i \to v_2 V_i, \ldots$ or $V_n \to v_k$.

- ightharpoonup Each variable in V is considered to be a state with the start state being the start variable.
- ▶ Each production $V_i \to \sigma V_j$ (where $\sigma \in \Sigma$) creates the transition $\delta(V_i, \sigma) = V_j$.
- Each production $V_i \to \sigma_1 \sigma_2 \cdots \sigma_m V_j$, where $\sigma_1 \sigma_2 \cdots \sigma_m \in \Sigma^*, m \geq 2$, creates the additional states $P_1, P_2, \ldots, P_{m-1}$ (other than states V_i and V_j) and the transitions $\delta(V_i, \sigma_1) = P_1, \delta(P_1, \sigma_2) = P_2, \ldots, \delta(P_{m-1}, \sigma_m) = V_j$.
- ▶ Each production $V_i \to \sigma$ (where $\sigma \in \Sigma$) creates a final state F and the transition $\delta(V_i, \sigma) = F$.
- Each production $V_i \to \tau_1 \tau_2 \cdots \tau_m$, where $\tau_1 \tau_2 \cdots \tau_m \in \Sigma^*, |\tau_1 \tau_2 \cdots \tau_m| > 0$ (necessarily m > 1), creates the additional states Q_1, Q_2, \dots, Q_{m-1} (other than the state V_i), a final state F, and the transitions $\delta(V_i, \tau_1) = Q_1, \delta(Q_1, \tau_2) = Q_2, \dots, \delta(Q_{m-1}, \tau_m) = F$.
- ▶ Each production $V_i \to \varepsilon$ creates a final state F and a transition $\delta(V_i, \varepsilon) = F$.

Regular Grammars, IV

Example

Construct a finite automaton that accepts the regular language generated by the right–linear CFG ($\{S,V\},\{a,b\},S,\{S\to aV,V\to abS\mid b\}$).

This is the finite automaton with states $Q = \{S, V, P, F\}$ and transitions converted by productions as follows:

Productions	States	Transitions
$S \to aV$	S, V	$\delta(S, a) = V$
$V \to abS$	S, P, V	$\delta(V, a) = P$ $\delta(P, b) = S$
$V \rightarrow b$	V, F	$\delta(V,b) = F$

Apparently, the regular language is $(aab)^*ab$.

Correspondence of Finite Automaton to Regular Grammar

Assume that M is finite automaton over Σ with set of states Q, start state q_0 and (set of) final states F, and transitions given by function δ .

- ▶ Each state in *Q* other than final states is considered to be a variable with the start variable being the start state.
- ▶ Each transition $\delta(p, \sigma) = q$ creates the production $p \to \sigma q$.
- ▶ Each final state $q_f \in F$ creates the production $q_f \to \varepsilon$.

Regular Grammars, V

Example

Find the right–linear CFG corresponding to the language accepted by the following finite automaton:

The corresponding CFG has variables (q_0,q_1,q_f) (with q_0 the start variable) and productions converted by transitions as follows:

Transitions	States	Productions
$\delta(q_0, a) = q_1$	q_0, q_1	$q_0 o aq_1$
$\delta(q_0, b) = q_0$	q_0	$q_0 \rightarrow bq_0$
$\delta(q_1, a) = q_f$	q_1, q_f	$q_1 o aq_f$
$\delta(q_1, b) = q_0$	q_1, q_0	$q_1 \rightarrow bq_0$
$\delta(q_f, a) = q_f$	q_f	$q_f o aq_f$
$\delta(q_f, b) = q_0$	q_f, q_0	$q_f \rightarrow bq_0$
Final state	q_f	$q_f o \varepsilon$

Apparently, the regular language is $(a + b)^*aa$, i.e., strings ending in aa.

Simplification of Context–Free Grammars: Removing ε –Productions, I

Definition: ε -Productions and Nullable Variables

In a CFG, any production of the form

$$A \to \varepsilon$$

is called ε -production and any variable A, for which the derivation $A \implies^* \varepsilon$

is possible, is called **nullable**.

Theorem

Let $G = (V, \Sigma, S, P)$ a CFG containing ε -productions. Removing in P all ε -productions and adding new productions obtained by substituting ε for an ε -production wherever else the latter occurs in P, a CFG \hat{G} is created such that $L(\hat{G}) = L(G) \setminus \{\varepsilon\}$.

Modifying ε -Productions

- ▶ If B is ε -production and $A \to BB$, then the latter production is modified as $A \to B$.
- ▶ If B, C are ε -productions and $A \to aBbCa$, then the latter production is modified as $A \to abCa \mid aBba$.

Removing ε -Productions, II

Example

Let G the CFG with ε -productions at the left column of the following table. The productions of the corresponding ε -productions–free CFG \hat{G} are converted at the right column of the table:

Productions of G	Productions of \hat{G}
$S \to XY$	$S \to XY$
X o Zb	$X \to Zb \mid b$
Y o bW	$Y \rightarrow bW \mid b$
Z o AB	$Z \rightarrow AB \mid A \mid B$
W o Z	W o Z
$A \to aA$	$A \to aA \mid a$
A o bA	$A \rightarrow bA \mid b$
$A \to \varepsilon$	_
B o Ba	$B \to Ba \mid a$
B o Bb	$B o Bb \mid b$
$B o \varepsilon$	_
ε -productions: $A \to \varepsilon$ and $B \to \varepsilon$	
Nullable variables = $\{A, B, Z, W\}$	

Simplification of Context–Free Grammars: Removing Unit–Productions, I

Definition: Unit-Productions

Any production of a CFG $G = (V, \Sigma, S, P)$ of the form $A \to B$.

where $A, B \in V$, is called a **unit-production**. Moreover, for any variable $C \in V$, we define the **unit set** of C as

 $\operatorname{Unit}(C) = \{D \in V \mid C \Longrightarrow^* D \text{ only through unit-productions}\}.$ Notice that, by default, $C \in \operatorname{Unit}(C)$.

Theorem

Let $G=(V,\Sigma,S,P)$ a CFG without ε -productions. Removing in P all unit-productions and adding new productions obtained from the unit set of the latter, a CFG \hat{G} is created such that \hat{G} does not have any ε -productions nor unit-productions and $L(\hat{G}) = L(G) \setminus \{\varepsilon\}$.

Modifying Unait-Productions

For each $B \in \text{Unit}(A)$, $B \neq A$, such that $B \to w$, for some $x \in \Sigma^*$ (non-unit-production of G), we are adding in \hat{G} the production $A \to x$.

Removing Unit-Productions, II

Example

Let the CFG G, which includes the productions:

$$S \rightarrow A \mid Aa, A \rightarrow B, B \rightarrow C \mid b, C \rightarrow D \mid ab, D \rightarrow b.$$

Clearly,

$$\mathrm{Unit}(S) = \{S, A, B, C, D\}.$$

The productions of the corresponding unit–productions–free CFG \hat{G} are converted in the table:

Productions of G	Productions of \hat{G}
$S \to Aa$	$S \to Aa$
$B \to b$	B o b
C o ab	C o ab
D o b	D o b
$Unit(S) = \{S, A, B, C, D\}$	$S \rightarrow b \mid ab$
$\operatorname{Unit}(A) = \{A, B, C, D\}$	$A \rightarrow b \mid ab$
$\mathrm{Unit}(B) = \{B, C, D\}$	$B \rightarrow b \mid ab$
$\mathrm{Unit}(C) = \{C, D\}$	$C \to b$

Chomsky Normal Form, I

Definition: Chomsky Normal Form

A CFG $G = (V, \Sigma, S, P)$ is in **Chomsky normal form** if all productions are of the form

$$A \to BC$$
,

or

$$A \to a$$
,

where $A, B, C \in V$ and $a \in \Sigma$. (Notice that $a \neq \varepsilon$.)

Theorem

Let $G = (V, \Sigma, S, P)$ a ε -productions-free CFG. Modifying G's productions, an equivalent CFG \hat{G} in Chomsky normal form can be created.

Chomsky Normal Form Conversion

- ▶ G-productions of the form $A \to BC$ or $A \to a$ are preserved in \hat{G} .
- ▶ G-productions of the form $A \to B_1B_2 \cdots B_m$, for $m \ge 2, B_1, \dots, B_m \in V \cup \Sigma$, preserve the (old) variables A, B_1, B_{m-1}, B_m and create the (new) \hat{G} -variables D_1, \dots, D_{m-1} into the (new) \hat{G} -productions $A \to B_1D_1, D_1 \to B_2D_2, \dots$, $D_{m-3} \to B_{m-2}D_{m-2}, D_{m-2} \to B_{m-1}B_m$.

Chomsky Normal Form, II

Example

Let the CFG G, which includes the productions:

$$S \rightarrow bA \mid aB, A \rightarrow bAA \mid aS \mid a, B \rightarrow aBB \mid bS \mid b.$$

The productions of the corresponding Chomsky normal form CFG \hat{G} are converted in the table:

Productions of G	Productions of \hat{G}
$S \rightarrow bA \mid aB$	$S \to C_b A \mid C_a B$ $C_a \to a, C_b \to b$
	$ \begin{array}{ccc} - & - & - & - & - & - & - & - & - & - &$
$$ $B \rightarrow aBB$	$ B \xrightarrow{D_1} \overline{C_a} D_2$
$-\overline{D} b$	$\stackrel{D_2}{-}\stackrel{BB}{-}\stackrel{B}{\overline{D}}\stackrel{-}{\rightarrow}\stackrel{\overline{b}}{\overline{b}}$
$A \rightarrow aS$	$A \to C_a S$
$B \to bS \\ A \to a$	$B \to C_b S$ $A \to a$
$B \to b$	$B \to b$

Pushdown Automata from Context-Free Grammars, I

Theorem

For every CFG G, there is a PDA M such that L(M) = L(G).

Construction of a PDA from a CFG

Let L=L(G), where $G=(V,\Sigma,S,P)$ is a CFG. We are constructing a PDA $M=(Q,\Sigma,\Gamma,q_0,Z_0,F,\delta)$, which accepts language L, as follows:

$$\begin{split} Q &= \{q_0,q_1,q_f\}, \text{ three (arbitrary) states,} \\ q_0 &= \text{the start state,} \\ F &= \{q_f\}, \\ \Gamma &= V \cup \Sigma \cup \{Z_0\}, \end{split}$$

$$Z_0 =$$
the start stack symbol,

$$\begin{split} &\delta(q_0,\varepsilon,Z_0)=(q_1,SZ_0),\\ &\delta(q_1,\varepsilon,A)\ni(q_1,w), \text{ whenever } A\to w \text{ is a G--production},\\ &\delta(q_1,a,a)\ni(q_1,\varepsilon), \text{ whenever } a\in\Sigma, \end{split}$$

$$\delta(q_1, \varepsilon, Z_0) = (q_f, \varepsilon).$$

Pushdown Automata from Context-Free Grammars, II

Example

The PDA corresponding to the CFG $G=(\{S\},\{a,b\},S,\{S\rightarrow aSb\mid \varepsilon\})$, i.e., generating the language $L=\{a^ib^i\mid i\geq 0 \text{ integer}\}$, with three states $\{q_0,q_1,q_f\}$, input alphabet $\{a,b\}$, and stack alphabet $\{S,a,b,Z_0\}$:

Context-Free Grammars from Pushdown Automata, I

Theorem

For every PDA M, there is a CFG G such that L(G) = L(M).

Construction of a CFG from a PDA

Let the PDA $M=(Q,\Sigma,\Gamma,q_0,Z_0,F,\delta)$ such that, for any $p,q\in Q,\sigma\in\Sigma,$ $\gamma,\delta\in\Gamma,$

- $F = \{q_f\}$ (and M terminates only with empty stack),
- every transition is of one the two forms

$$\delta(q,\sigma,\gamma)\ni (p,\varepsilon) \text{ or } \delta(p,\sigma,\gamma)\ni (p,\delta\gamma),$$

which means that every transition either decreases or increases the stack content by a single symbol.

We are constructing a CFG $G=(V,\Sigma,S,P)$, which generates the language L(G), as follows:

$$\begin{split} V &= \{ [q\gamma p] \, | \, p,q \in Q, \gamma \in \Gamma \}, \\ S &= [q_0 Z_0 q_f], \\ P &= \{ [q\gamma p] \to \sigma, \text{ whenever } \delta(q,\sigma,\gamma) \ni (p,\varepsilon) \}. \end{split}$$

Context-Free Grammars from Pushdown Automata, II

Example

Let the PDA $M=(\{q_0,q_1,q_f\},\{a,b\},\{X,Z_0\},q_0,Z_0,\{q_f\},\delta)$ possess the following transitions:

$$\begin{split} &\delta(q_0,a,Z_0)=(q_0,XZ_0),\\ &\delta(q_0,a,X)=(q_0,XX),\\ &\delta(q_0,b,X)=(q_1,\varepsilon),\\ &\delta(q_1,b,X)=(q_1,\varepsilon),\\ &\delta(q_1,\varepsilon,X)=(q_1,\varepsilon),\\ &\delta(q_1,\varepsilon,Z_0)=(q_f,\varepsilon). \end{split}$$

We are constructing the corresponding CFG $G=(V,\Sigma,S,P)$ with the following variables:

$$\begin{split} V &= \{[q_0Xq_0], [q_0Xq_1], [q_0Xq_f], [q_0Z_0q_0], [q_0Z_0q_1], [q_0Z_0q_f] \equiv S, \\ & [q_1Xq_0], [q_1Xq_1], [q_1Xq_f], [q_1Z_0q_0], [q_1Z_0q_1], [q_1Z_0q_f], \\ & [q_fXq_0], [q_fXq_1], [q_fXq_f], [q_fZ_0q_0], [q_fZ_0q_1], [q_fZ_0q_f]. \end{split}$$

Context-Free Grammars from Pushdown Automata, III

Example (cont.)

Moreover, the productions of G are created as follows:

$$\begin{array}{lll} \text{Transversal Transitions of } M & \text{Productions of } G \\ \hline \delta(q_0,b,X) = (q_1,\varepsilon) & [q_0Xq_1] \to b \\ \delta(q_1,b,X) = (q_1,\varepsilon) & [q_1Xq_1] \to b \\ \delta(q_1,\varepsilon,X) = (q_1,\varepsilon) & [q_1Xq_1] \to \varepsilon \\ \delta(q_1,\varepsilon,Z_0) = (q_f,\varepsilon) & [q_1Z_0q_f] \to \varepsilon \\ \hline \end{array}$$

Productions of G created by transition $\delta(q_0, a, Z_0) = (q_0, XZ_0)$

$$\begin{array}{l} [q_0Z_0q_0] \rightarrow a[q_0Xq_0][q_0Z_0q_0] \mid a[q_0Xq_1][q_1Z_0q_0] \mid a[q_0Xq_f][q_fZ_0q_0] \\ [q_0Z_0q_1] \rightarrow a[q_0Xq_0][q_0Z_0q_1] \mid a[q_0Xq_1][q_1Z_0q_1] \mid a[q_0Xq_f][q_fZ_0q_1] \\ [q_0Z_0q_f] \rightarrow a[q_0Xq_0][q_0Z_0q_f] \mid a[q_0Xq_1][q_1Z_0q_f] \mid a[q_0Xq_f][q_fZ_0q_f] \end{array}$$

Productions of G created by transition $\delta(q_0, a, X) = (q_0, XX)$

$$\begin{array}{l} [q_0Z_0q_0] \rightarrow a[q_0Xq_0][q_0Xq_0] \ | \ a[q_0Xq_1][q_1Xq_0] \ | \ a[q_0Xq_f][q_fXq_0] \\ [q_0Z_0q_1] \rightarrow a[q_0Xq_0][q_0Xq_1] \ | \ a[q_0Xq_1][q_1Xq_1] \ | \ a[q_0Xq_f][q_fXq_1] \\ [q_0Z_0q_f] \rightarrow a[q_0Xq_0][q_0Xq_f] \ | \ a[q_0Xq_1][q_1Xq_f] \ | \ a[q_0Xq_f][q_fXq_f] \end{array}$$

Notice that the only variables which are used in the previous productions are:

$$V = \{ [q_0 Z_0 q_f] \equiv S, [q_0 X q_0], [q_0 X q_1], [q_0 X q_f], [q_0 Z_0 q_0], [q_0 Z_0 q_1], [q_1 Z_0 q_f], [q_1 X q_1] \},$$

while all the other variables may be dropped from the corresponding productions.

The Pumping Lemma for Context–Free Languages

Theorem: The Pumping Lemma for Context–Free Languages

If L is a context–free language (**CFL**) over alphabet Σ , then there is a positive integer n so that, for every $x \in L$ with $|x| \geq n$, x can be written as x = uvwxy, for some strings $u, v, w, x, y \in \Sigma^*$ satisfying:

- $ightharpoonup |vwx| \le n,$
- $|vx| \ge 1$, i.e., $v \ne \varepsilon$ or $x \ne \varepsilon$,
- for every integer $m \ge 0$, $uv^m wx^m y \in L$.

Corollary

Let L be a CFL and n the positive integer of the Pumping Lemma. Then:

- ▶ $L \neq \emptyset$ if and only if there exists a $w \in L$ with |w| < n, and
- ▶ L is infinite if and only if there exists a $z \in L$ such that n < |z| < 2n.

Ogden's Lemma

Theorem: Ogden's Lemma

If L is a context–free language (**CFL**) over alphabet Σ , then there is a positive integer n so that, for every $x \in L$ with $|x| \geq n$, if we mark at least n symbols of x (i.e., if we choose n or more "distinguished" positions in the string x), x can be written as x = uvwxy, for some strings $u, v, w, x, y \in \Sigma^*$ satisfying:

- ightharpoonup the string vwx contains at most n marked symbols,
- ightharpoonup the string vx contains at least one marked symbol, and
- for every integer $m \ge 0$, $uv^m wx^m y \in L$.

Closure Properties of Context–Free Languages

Theorem 1

The class of CFLs is closed under union, concatenation, and Kline star.

Theorem 2

The class of CFLs is not closed under intersection and complementation.

Theorem 3

The intersection of a CFL with a regular language is a CFL.