ЛАБОРАТОРНАЯ РАБОТА 35

ОПРЕДЕЛЕНИЕ ПОКАЗАТЕЛЯ ПРЕЛОМЛЕНИЯ ПРОЗРАЧНОЙ СРЕДЫ С ПОМОЩЬЮ ИНТЕРФЕРОМЕТРА МАЙКЕЛЬСОНА

Выполнил студент гр	Ф.И.О	
Подпись преподавателя	дата	
(обязательна после окончания эксперимента)		

<u>Цель работы</u>: ознакомиться с работой интерферометра Майкельсона, интерференционным методом измерить показатель преломления прозрачной диэлектрической среды.

Описание установки

Схема лабораторной установки изображена на рисунке. Поворотные призмы А и Б направляют луч лазера на светоделительный кубик, который делит падающий луч на два луча 1 и 2. Луч 1, отражённый светоделительной поверхностью кубика, уходит вверх и отражается от зеркала 1. Отражённый луч 1' проходит через кубик и попадает на экран (поверхность стола) внизу. Луч 2, прошедший

через кубик, отражается от зеркала 2, превращаясь в луч 2', который возвращается к кубику, отражается от его светоделительной поверхности и уходит вниз, к экрану, где интерферирует с лучом 1'.

Порядок выполнения работы

- 1. Включить лазер.
- 2. Юстировочными винтами В слегка повернуть плоскости зеркал, чтобы пятна от лучей 1' и 2' на экране совпали, а сами лучи сходились к экрану под очень малым углом, не равным 0. В таком случае на экране, в том месте, где совпали пятна от лучей 1' и 2', будет видна интерференционная картина в виде параллельных полос, как изображено на рисунке.
- 3. На пути лучей 2 и 2' в держатель-кассету поворотного столика поместить эталонную прозрачную пластинку. При этом луч 2 будет отражаться не только от зеркала, но и от пластинки. Возь-

мите тонкий лист бумаги и поднесите его край к падающему на пластинку лучу 2 и отражённому лучу, как показано на рисунке справа. На краю бумаги будут видны две точки S и S' от падающего и отраженного от пластинки луча. Поверните столик с пластинкой так, чтобы точка S' совпала с точкой S. При этом плоскость пластинки будет перпендикулярна лучу 2, а указатель Y покажет величину α'_0 угла (значения углов поворота α' нанесены по кругу на поворотном столике). Этот угол будет соответствовать углу падения $\alpha = 0$ луча 2 на пластинку.

- 4. Медленно поворачивать столик вместе с пластинкой. При этом полосы интерференционной картины на экране начнут смещаться (ползти). Необходимо сосчитать число полос N, на которое сместится интерференционная картина после того как указатель Y угла на поворотном столике покажет величину α '. Пластинка будет повернута относительно падающего луча на угол $\alpha = \alpha' \alpha'_0$.
- 5. Снова вернуть столик в положение, когда указатель У покажет значение α'_0 , и повторить действия пункта 4 для другого числа смещенных полос. Проделать не менее трех таких измерений с разными углами поворота, для которых число смещенных полос лежит в интервале $20 \le N \le 100$. Результаты измерений занести в таблицу 1.
- 6. Заменить эталонную пластинку на другую, исследуемую пластинку из стекла или пластика (по указанию преподавателя). Сделать для неё не менее трёх измерений, описанных в пункте 4 (с разным числом N смещенных полос). Результаты измерений занести в таблицу 2.
 - 7. Выключить лазер.
 - 8. Микрометром измерить толщину d_0 эталонной и толщину d исследуемой пластинки.
 - 9. По формуле $\lambda = \frac{2d_0}{N} \left(\sqrt{n_0^2 \sin^2 \alpha} \cos \alpha + 1 n_0 \right)$ определить длину волны λ лазерного

Таблица 1

%

излучения для трех проведенных опытов (показатель преломления n_0 эталонной пластинки указан на установке).

10. Вычислить среднее значение $\langle \lambda \rangle$, величины (модули) отклонения от среднего значения $\Delta \lambda = \left| \lambda - \langle \lambda \rangle \right|$, среднюю величину такого отклонения $\langle \Delta \lambda \rangle$, а также относительную

погрешность
$$E = \frac{\left<\Delta\lambda\right>}{\left<\lambda\right>} \cdot 100\%$$
 .

Результаты занести в таблицу 1.

11. По формуле
$$n = \frac{\gamma^2 + \sin^2 \alpha}{2\gamma}$$
,

где $\gamma = 1 - \cos \alpha - \frac{N \langle \lambda \rangle}{2d}$, определить величину показателя преломления n исследуемой пластинки для трех проведенных

опытов.

Эталонная	пластинка. α'_0 =	град;	d_0 =	MM;	n_0 =	
N						
α', град						
$\alpha = \alpha' - \alpha'_0$						
, град						
λ, нм						
Λλ τινι						

нм;

E =

				Таблица 2			
Исследуема	ия пластинка.	α_0 '=	град;	$d = \dots MM;$			
λ =HM							
N							
α', град							
$\alpha = \alpha' - \alpha'_0$, град							
, град							
γ							
n							
Δn							
$n = \langle n \rangle \pm \langle \Delta n \rangle$	$n \rangle = \pm$	нм;	E =	%			

12. Вычислить среднее зна-

чение $\langle n \rangle$. Рассчитать величины (модули) отклонения от среднего значения $\Delta n = \left| n - \langle n \rangle \right|$, а также среднюю величину такого отклонения $\langle \Delta n \rangle$ и относительную погрешность $E = \frac{\langle \Delta n \rangle}{\langle n \rangle} \cdot 100\%$. Результаты занести в таблицу 2

 $\overline{\lambda = \langle \lambda \rangle} \pm \langle \Delta \lambda \rangle =$

Контрольные вопросы к лабораторной работе № 35

- 1. Почему для образования интерференционной картины надо использовать когерентные источники света? Какие источники света называются когерентными?
- 2. Что такое оптическая длина пути и оптическая разность хода?
- 3. Каковы условия появления максимумов и минимумов освещенности при интерференции когерентных световых волн?
- 4. Как образуется интерференционная картина в интерферометре Майкельсона? Нарисовав ход лучей в нём, описать принцип работы такого интерферометра.
- 5. Что должно происходить с полосами интерференционной картины при размещении на пути одного из лучей стеклянной пластинки? При повороте этой пластики? При смещении одного из зеркал интерферометра?
- 6. Лазерный луч, используемый в интерферометре, имеет длину волны λ . На какое число полос сместится интерференционная картина на экране, если: а) зеркало 2 отодвинуть от светоделительной пластинки на расстояние a? б) поместить на пути одного из лучей 1 или 2 перпендикулярную прозрачную пластинку толщиной d с показателем преломления n?
- 7. Вывести и объяснить используемые в работе расчетные формулы для определения λ и n.
- 8. Объяснить метод определения показателя преломления неизвестного прозрачного материала в данной работе.

Изучаемый в работе материал можно найти в следующих учебных пособиях:

- 1. Савельев И.В. Курс общей физики в 3-х тт.: Т. 2: Электричество. Колебания и волны. Волновая оптика СПб., М., Краснодар: Лань, 2008. §§85-87.
- 2. Колмаков Ю.Н., Пекар Ю.А., Лежнева Л.С. Электромагнетизм и оптика, изд. ТулГУ. 2010, гл.7 §§3, 6.