	F-24
	EXPERIMENT: No. O3 Date
	din: Verification of superposition theorem for
	din: Verification of superposition theorem for electric circuit.
•	dynaratus: DC power supply, Ammeter (0-1A), Voltmeter (0-150V), Rheostat, Multimeter.
	Vounte (0-130V), Rittosia, Mattires C.
•	Theory: If network contains two or more than
	two sources, then principle of superposition
	theorem is used to simplify network calculations.
	It may be stated as follows -
	"In a bilateral network it two or more than
	two energy sources are present, then the correct flow at any pt is the algebraic sum
	of all currents which would got flow at
	that nt. if each source was considered
	sociately and all other sources replaced at
	the time by impedance equal to their internal
	impedances
	If, Iz = current through Rz when both sources
	are connected.
	I's = covert flowing through Rz when only
	Vaa is connected.
	Vaa is connected. $I_3'' = \text{connected}$. Vac is connected. $I_3 = I_3' + I_3''$
	Vac is connected.
	·· +3 = +3 + +3
(Sundaram)	Teacher's Sign. :

Calculations -

For Fig 1

Apply KVL:

155-1451,-14513=0

=> 155-2901,-14572=0

155 - 145I, +300I₂ -155 = 0 29I, = 60Z₂

$$I_1 = 0.43 A$$
 $I_2 = 0.21A$
 $I_3 = 0.64 A$

For Frg 2

Req =
$$\frac{145 \times 300}{445}$$

Req = $\frac{145 \times 300}{445}$
 $\therefore F_i = \frac{155}{242.75} = 0.64 \triangle$
 $\therefore F_2 = \frac{0.21 \triangle}{2430}$
 $\therefore F_3 = 0.43 \triangle$

I, = 0.64 A

For Fig 3

Req =
$$\frac{145}{2} + 300$$
 $I_2'' = \frac{155}{372.5} = 0.42A$
 $I_3'' = 0.21A$
 $I_3'' = 0.42A$
 $I_3'' = 0.42A$

	EXPERIMENT: No. Page No. q
•	Procedure:
1.	Set up circuit as shown in Fig.1
2.	Apply: 155 V as der Vdc, & 155 V as det. & Vdc.
3.	Measure the current auruent I, I, I, I, using
	in table.
4.	Now, start circuit the terminal where Vdc is
5.	connected as shown in Fig.2. Measure the current J_1' , J_2' , J_3' using and connected in the circuit and note it in
	table.
	Now short circuit the terminal where Vdc, is
	connected and apply 155V at Vdc, territal
	as shown in Fig3.
7.	Measure the current I,", I,", I," using ammeters
0	connected in the circuit and note it in table.
9.	Verify if I3 = I3' + I3", which will be tome.
0	Questions:
1.	what are the limitations of super position
	theorem?
A·1.	It cannot be used to measure power. It is valid only for linear & bilateral
	It is valid only for linear & bilateral network.
	It can only be used for circuits having two
	It can only be used for circuits having two or more than two energy sources.
	00
Sundaram	Teacher's Sign. :

Observations:

EXPERIMENTAL

Current through Resistors

	Vdc, = 155V	Vdc, = 155V	Vdc, = OV	
	Vdc2 = 155V	Vdc2 = OV	Vdez = 155V	
,	158 8 28 der.	3 3N 45 6	min 185 V as	
	I, = 0.5A	J' = 0-7A	J, "=0.2A	- 20.
	droute &	edad in the	anators con	,
	$I_2 = 0.23A$	$I_2' = 0.23A$	I2 = 0.45A	
	I = 0.7A	Z3 = 0.5 A 300		
	3	haven in Fig	I3"=0.2A	-
	I_{2}^{\prime} , I_{2}^{\prime} and	current I'		

10 th 24851 CALCULATIONS

ic Vde, is

marchers in talle.

inimate.

Current through Resistors

			10
Vdc, = 155 V	Vdc, = 155 V	Valerasion and	
Vdc2= 155V	1 Vdc 2 = 0, V	Vdc. 3/55 V	
	Fig 3.	of shown in	
Z, = 0.43 A		Jr = 0:21 An M	.\
Z2=0.21.AU	12/02/02/21 AN	72" = 0.42A	
Z3=0.64 A	Z3 = 0.43 A	73 = 10.21 A	1.8
		Querieres:	

Using Superposition Contraction

$$I_2 = I_2'' - I_2'$$

$$Z_3 = I_3' + Z_3''$$

CALCULATED TOWN

LHS =
$$0.43A$$

RHS = $0.64-0.21 = 0.43A$
LHS = $0.21A$
RHS = $0.42-0.21 = 0.21A$
LHS = $0.64A$

	EXPERIMENT: No. Page No. 10 Date
	This theorem is not applicable to unbalanced circults
	Results:
	For Fig I The current through resistor R, $I_1 = 0.5 A$ The current through resistor R, $I_2 = 0.23A$ The current through resistor R ₃ , $I_3 = 0.7 A$
_	For Fig 2 The current through resistor R_1 , $Z_1' = 0.7A$ The current through resistor R_2 , $Z_2' = 0.23A$ The current through resistor R_3 , $Z_3' = 0.5A$
_	For Fig.3 The current through resistor R_1 , $I_1'' = 0.2A$ The current through resistor R_2 , $I_2'' = 0.45A$ The current through resistor R_3 , $I_3'' = 0.5A$
	Conclusion: In this experiment we are able to verify super position Troorem.
	We also see some limitations of surveyosition theorem.