ZakharovPK 29112024-140741

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Ко входу гетеродина двойного балансного смесителя подключён генератор синусоидального колебания частотой 1989 М Γ ц с внутренним сопротивлением 50 Ом и доступной мощностью плюс 4 д $\rm Bm$.

Колебание ПЧ формируется с помощью генератора меандра частотой 461 МГц с внутренним сопротивлением 50 Ом и доступной мощностью первой гармоники минус 2 дБм. Между выходом генератора и входом ПЧ включён фильтр нижних частот, имеющий прямоугольную частотную характеристику с частотой среза 6530 МГц. РЧ выход смесителя подключён в анализатору спектра с входным сопротивлением 50 Ом. Диапазон частот анализа от 1529 МГц до 1631 МГц.

Какова будет мощность наибольшей побочной составляющей, наблюдаемой на экране анализатора спектра? Варианты ОТВЕТА:

1) -60 дБм 2) -63 дБм 3) -66 дБм 4) -69 дБм 5) -72 дБм 6) -75 дБм 7) -78 дБм 8) -81 дБм 9) -84 дБм

Для полного подавления **верхней** боковой составляющей при преобразовании вверх используются квадратурный смеситель и согласованный по всем плечам делитель мощности. Плечи 2 и 3 делителя развязаны. Известно, что: $s_{21} = s_{31}$.

Плечо 2 подключено непосредственно к синфазному входу ПЧ. Между плечом 3 и квадратурным входом ПЧ включён фазовращатель. В качестве фазовращателя используется симметричный реактивный П-образный четырёхполюсник, выполненный с помощью сосредоточенных компонентов. Известно, что между синфазным и квадратурным колебаниями гетеродина внутри смесителя существует ошибка квадратуры равная плюс 31 градусов.

Чему равна ёмкость компонента фазовращателя, если частота ПЧ равна 65 МГц?

Варианты ОТВЕТА:

1) $27.7 \text{ } \pi\Phi$ 2) $86.6 \text{ } \pi\Phi$ 3) $58.6 \text{ } \pi\Phi$ 4) $42 \text{ } \pi\Phi$

Ко входам ПЧ квадратурного смесителя подключён согласованный по всем плечам делитель мощности. Развязанные плечи 2 и 3 делителя подключены соответственно к синфазному и квадратурному входам ПЧ. Известно, что:

$$s_{21} = 0.46321 - 0.33853i, s_{31} = 0.34124 + 0.46691i.$$

Внутри смесителя квадратура выдержана идеально точно.

Какой относительный уровень мощности будет иметь верхняя боковая составляющая при преобразовании частоты вверх?

- 1) -46 дБн 2) -48 дБн 3) -50 дБн 4) -52 дБн 5) -54 дБн 6) -56 дБн 7) -58 дБн
- 8) -60 дБн 9) 0 дБн

На рисунке 1 изображён двойной балансный смеситель. Диоды в этом смесителе представляют собой разрыв при подаче отрицательного напряжения и сопротивление r_i - при положительном смещении. Известно, что $r_1 = r_3$ и что сопротивления двух других диодов также равны. Колебание гетеродина переключает диоды из открытого в закрытое состояние и обратно меновению.

Рисунок 1 – Двойной балансный смеситель

Частота гетеродина 409 МГц, частота ПЧ 35 МГц.

Колебание какой частоты отсутствует на выходе РЧ?

- 1) 1262 MΓ_{II}
- 2) 2045 MΓ_{II}
- 3) 444 МГц
- 4) 818 МГц.

Ко входу РЧ двойного балансного смесителя подключён генератор с внутренним сопротивлением 50 Ом и доступной мощностью минус 0.8 дБм.

В смесителе использованы диоды с сопротивлением в открытом состоянии 23 Ом. На выходе смесителя путём преобразования на первой гармонике гетеродина получено колебание промежуточной частоты. Мощность колебания промежуточной частоты измерена с помощью анализатора спектра с входным сопротивлением 50 Ом, и получено значение минус 15.3 дБм.

Какова величина потерь в трансформаторе? (Это потери при передаче мощности от генератора с внутренним сопротивлением 50 Ом, подключённого в первичной обмотке, в нагрузку 50 Ом, подключённую к одной из половин вторичной обмотке при условии, что цепь второй половины вторичной обмотки разомкнута. Схема дана на рисунке 2.)

Рисунок 2 – Схема измерения потерь в трансформаторе

- 1) 9.1 дБ 2) 9.7 дБ 3) 10.3 дБ 4) 10.9 дБ 5) 11.5 дБ 6) 12.1 дБ 7) 12.7 дБ 8) 13.3 дБ
- 9) 13.9 дБ

При преобразовании частоты вверх с использованием двойного балансного смесителя, получен спектр на выходе РЧ, изображённый на рисунке 3. Как известно, в общем случае он содержит комбинационные составляющие вида $|nf_{\scriptscriptstyle \Gamma}+mf_{\Pi \Psi}|$ Какой комбинацией $\{n; m\}$ нельзя было бы объяснить наличие в спектре составляющей, отмеченной маркером 4?

(Значения частот, считываемые с экрана анализатора, округлять до единиц МГц.)

Рисунок 3 – Экран анализатора спектра

1)
$$\{4; -4\}$$
 2) $\{8; -24\}$ 3) $\{4; -4\}$ 4) $\{5; -9\}$ 5) $\{7; -19\}$ 6) $\{5; -9\}$ 7) $\{6; -14\}$ 8) $\{4; -4\}$ 9) $\{7; -34\}$