· Medire o comprimento da vara. (L) Posicionard as duas massas mile me a distâncias an e de repais de cemtro da vova (escolher majore distancia possível) Medir e register a distâmera do cembro das masas ao ponto contral da vareta - ponto do esxo de rotação e erro de simetria. · Alimbor o sistema pora a sua posição de equilibrio. · Prodor o sistema um ângulo inforior a 180° mo semido combrarão aos pointeiros do relógio (sentido disolo D) e registare o portodo To correspondente a uma oscilação direta completa Poder o sistema com o mesmo angulo mo semtido oposto - semtido dos pomteiros do relógio (sentido invorso I) e registar o tempo II estaspondente a uma oscilação impresa completa Papetier medições (polo menos à vezes) Escolhar movas distâmeras e repetir todo o procedimento, com a objetivo de calculare D organés de uma améloise griéfieu de I(te) · Elaboriur Virna tabela sermelhante à fabela 1 do protocolo experimental [2º Parte] -> eixo de simetria mão de rotação · Papatirz os obtimos passos da 1º Parte, mas com o evidado das alterações que foram efetuadas, em termos de distameras. (Ver fig. ma pagima seguinte) · Pragmetier Jabela 2.


```
my m2
  l_= (27,20±0,06)cm l_= (27,20±0,06)cm
Sentido Prineto
     7= 7,801 ms 7= 7,800 ms 73= 7,799 ms
 Sentido Invorso;
     Ty = 7,798 cms T2 = 7,800 cms T3 = 7,797 cms
        ly=lo=(29,00 +0,05)em
   S.D.( S. J.(
   T<sub>1</sub> = 6, 548 cms
T<sub>2</sub> = 6,551 cms
T<sub>3</sub> = 6,551 cms
T<sub>3</sub> = 6,550 cms
T<sub>3</sub> = 6,548 cms
          ly=l2=(17,20±0,05)em
      S.D.) [S.J.]
      Ty = 5,330 ms Ty = 5,322 ms
Ty = 5,330 ms Ty = 5,323 ms
Ty = 5,329 ms Ty = 5,323 ms
           0,= == (12,30 tops)em
      [S.D.( S.Z.)
      77=4,213 ms 7=4,206 ms

T2=4,211 ms 72=4,206 ms

T3=4,209 ms 173=4,207 ms
```


Os residuois refroentes ao gráfico I'(T2) estão dispossos alectoriamiente, o que indica que o ajuste livrour objido é acertável.

Tabela 1				
Distâncias(±0,05) (cm)	Distâncias(±0,0005) (m)	TD (±0,001) (s)	TI (±0,001) (s)	T(±0,0007) (s)
27,20	0,2720	7,800	7,798	7,7990
22,00	0,2200	6,550	6,547	6,5485
17,20	0,1720	5,330	5,323	5,3265
12,30	0,1230	4,211	4,206	4,2085
7,00	0,0700	3,293	3,292	3,2925
28,40	0,2840	8,115	8,122	8,1185
23,30	0,2330	6,869	6,876	6,8725
18,40	0,1840	5,647	5,645	5,6460
13,20	0,1320	4,480	4,476	4,4780
8,30	0,0830	3,492	3,488	3,4900
3,00	0,0300	2,827	2,825	2,8260
25,50	0,2550	7,519	7,517	7,5180
5,50	0,0550	3,089	3,087	3,0880
10,50	0,1050	3,894	3,891	3,8925
19,70	0,1970	6,055	6,055	6,0550

	T^2 (s^2)	u(T^2)	I (kg m^2)	u(I)	I' (kg m^2)	u(l')
	60,82	0,01	0,0350	0,0003	0,0354	0,0001
	42,883	0,009	0,0247	0,0002	0,02457	0,00009
-	28,372	0,007	0,0163	0,0001	0,01661	0,00007
	17,711	0,006	0,01018	0,00009	0,01049	0,00005
	10,841	0,005	0,00623	0,00005	0,00616	0,00003
	65,91	0,01	0,0379	0,0003	0,0382	0,0001
	47,23	0,01	0,0272	0,0002	0,0271	0,0001
	31,877	0,008	0,0183	0,0002	0,01842	0,00008
	20,052	0,006	0,0115	0,0001	0,01146	0,00006
	12,180	0,005	0,00700	0,00006	0,00700	0,00004
	7,986	0,004	0,00459	0,00004	0,00447	0,00001
	56,52	0,01	0,0325	0,0003	0,0316	0,0001
-	9,536	0,004	0,00548	0,00005	0,00537	0,00002
	15,152	0,005	0,00871	0,00008	0,00875	0,00004
	36,663	0,008	0,0211	0,0002	0,02051	0,00008

I teórico em função do quadrado do período

1 - 11/1	()
0,012028	1,202763563
0,003492	0,349150806
0,017741	1,774102691
0,029208	2,920826339
0,011694	1,169413207
0,008511	0,851133739
0,003463	0,346263826
0,004719	0,471911693
0,005964	0,596376241
6,86E-05	0,006861831
0,027698	2,769847535
0,028193	2,819255536
0,021488	2,148831762
0,004732	0,473159852
0,02772	2,771985448

	g	kg	incerteza (kg)
m1	210,81	0,21081	0,00001
m2	212,42	0,21242	0,00001
mv	132,25	0,13225	0,00001
	cm	m	incerteza (m)
L	60,90	0,6090	0,0005
m	0,000575	-2,25E-05	b
u(m)	0,000005	1,74E-04	u(b)
r^2	0,9991	0,0004	u(y)

		er				
Tabela 2						
d (±0,05) cm	d (±0,0005) m	d1' (±0,0005) m	d2' (±0,0005) m	TD (±0,001) (s)	TI (±0,001) (s)	T(±0,0007) (s)
5,00	0,0500	0,2445	0,3445	8,589	8,579	8,584
9,80	0,0980	0,1965	0,3925	9,515	9,462	9,4885
15,30	0,1530	0,1415	0,4475	10,812	10,732	10,772
20,20	0,2020	0,0925	0,4965	12,331	12,150	12,2405
7,50	0,0750	0,2195	0,3695	8,168	8,944	8,556
2,50	0,0250	0,2695	0,3195	8,391	8,315	8,353
8,70	0,0870	0,2075	0,3815	8,956	9,024	8,99
4,80	0,0480	0,2465	0,3425	7,955	8,015	7,985
10,00	0,1000	0,1945	0,3945	8,006	8,032	8,019
15,40	0,1540	0,1405	0,4485	8,115	8,114	8,1145
17,50	0,1750	0,1195	0,4695	8,506	8,447	8,4765
12,70	0,1270	0,1675	0,4215	8,141	8,218	8,1795

T^2 (s^2)	I (kg m^2)	loo'	Izz' (teó.)	M*d^2	Izz' (exp.)
73,685056	0,042369	0,0408	0,042369	0,0014	0,0422
90,03163225	0,051768	0,0408	0,051768	0,0053	0,0461
116,035984	0,06672	0,0408	0,06672	0,0130	0,0538
149,8298403	0,086152	0,0408	0,086152	0,0227	0,0635
73,205136	0,042093	0,0408	0,042093	0,0031	0,0439
69,772609	0,040119	0,0408	0,040119	0,0003	0,0411
80,8201	0,046471	0,0408	0,046471	0,0042	0,0450
63,760225	0,036662	0,0408	0,036662	0,0013	0,0421
64,304361	0,036975	0,0408	0,036975	0,0056	0,0463
65,84511025	0,037861	0,0408	0,037861	0,0132	0,0540
71,85105225	0,041314	0,0408	0,041314	0,0170	0,0578
66,90422025	0,03847	0,0408	0,03847	0,0090	0,0498

Izz'(exp.)-loo'	Erro(%) (Izz')
0,0014	0,438477989
0,0053	10,89262392
0,0130	19,36878103
0,0227	26,33925762
0,0031	4,338155013
0,0003	2,548276833
0,0042	3,169012214
0,0013	14,76216759
0,0056	25,35290308
0,0132	42,54332203
0,0170	39,91762871
0,0090	29,3316629

g	kg	incerteza (kg)
210,81	0,21081	0,00001
212,42	0,21242	0,00001
132,25	0,13225	0,00001
cm	m	incerteza (m)
60,90	0,6090	0,0005
	210,81 212,42 132,25 cm	210,81 0,21081 212,42 0,21242 132,25 0,13225

Sólidos

3º Poode \ Solidos
Medições Cilimbro oco:
$D_{imt} = (9.00 \pm 0.02) \text{ cm}^{-1} D_{ext} = (9.1000 \pm 9.0002) \text{ m}^{-1} = (9.1823 \pm 0.00002) \text{ m}^{-1} = (9.37004 \pm 0.00001) \text{ m}$
$T_{(1507700)} = \frac{1}{2} M(\pi_{100}t^2 + \pi_{201}t^2) =$ $= \frac{1}{2} \times 0.37004 \times (0.0900)^2 + (0.0000)^2 =$ $= 0.00002372 kg m^2$
I (teomico) = (0,000 837 = 0,000003) kg m²
O volore exportimental pora o estimolio cec é I (exp) = (0,000 80.9 ± 0,000007) kg m²
Erro (1,) = 19,000 2374 - 9,000 2021 × 400 = 4,2%.
· O estro (1) é pequemo temdo em comta a ordem. do grandeza das medições o que indica que foi feita uma boa aproximações do valor teórico do momento de intériera.

Tabela 3						
Sólido	TD (±0,0001) (s)	TI (±0,0001) (s)	T (±0,00007) (s)	T^2 (±0,0002) (s)	I (kg m^2)	u(I)
Cilindro oco	1,1817	1,1806	1,18115	1,3951	0,000802	0,000007
Cilindro esferovite	0,7912	0,7937	0,79245	0,6280	0,000361	0,000003
Esfera	1,9556	1,9481	1,95185	3,8097	0,00219	0,00002

Medições eilindro macigo! M = (0,37487 + 0,00001) Kg Dext = (0,1000 + 0,0002) km [(teorge) = 1 My = 1 x 0,37487 x p,1000) == = 0,0004686 kgm² Ideorna = (0,000469 + 0,00000,2) Kg m2 Exerc (1) = 10,000 464 - 0,0003611 ×100 2 23%. 0,000469 · O voco (/) mão é de todo paquemo temdo em conta a ordem de grandeza das medições. Vom fator que poderter brado a esta desempêne sorá a ocorremera de erros aleatórios agrando das renedições das caracteristicas do objeto Aimda forama medidos exposimental mente os tempos de oscillações completas mo semtido direto e inverso da esfora maciga. Comtudo, devido a falta tempo, Ficou por medior a massa da mesma e o seu rearo, semdo impossivol deterenmente o valore tróxico. O volore exposimental emcomparse rogistado ma tabela 3 de Excel. Atemétro: a mormento de invérera de suporite foi Dirmichado, de marneira a mão agetor os resultados!

Comelusões' Pode-se comeduire que ma 1º Parte a obtemção dos momentos de invercia foi bastante efreaz, senda os wires porcentiais associades muito baixos · Na 1º Partie constate-se que guanto major a distance ao eixo de simetria /rotação maior sorá o mormento de imércia, o que faz todo o sentido perante a equação usada para o calculo experimental (I - D T2 · Na 2º Pointe, as percentagems de ouro obtidas vonama mento, enegambo a par em earsa a validade do Tearema 6 che Steiner, Contudo, tais descrepâmeras foram atingidas dende a escres de medição de comprimentos (enos abatitos) · Também ma 2º Parte constata-se que o momento de imércia é tamto major quanto major sor a distâmera contude, desta a voz a distâmera falada mão é embre o CM das massas e a eixo de simetra, mas sime embre o ejec de simetria e o eixo perallo crotação que diforem moste cuso. · Na obtemção dos momentos de imércia dos solidos (3º Parte) a deseraçamera emtre o valore teórico e experimental poi baixa para o eilimoro Oeo (vous de 4,2%) e alta para o eilimbre mación (vous de 23%)