Iniziato	venerdì, 14 gennaio 2022, 09:38
Stato	Completato
Terminato	venerdì, 14 gennaio 2022, 09:57
Tempo impiegato	19 min. 36 secondi
	11.45.00 (\$\mathre{\pi}\$)

Valutazione 11,00 su un massimo di 15,00 (**73**%)

Domanda 1

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Se

$$A = egin{bmatrix} 2 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & -1 \end{bmatrix}$$

Allora:

Scegli un'alternativa:

- \circ a. $\lambda=2$ è l'autovalore associato all'autovettore $x=(0,1,0)^T$.

La risposta corretta è: $\lambda = -1$ è l'autovalore associato all'autovettore $x = (0,0,1)^T$.

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Se

$$A = \left[egin{array}{cccc} 2 & 2 & -1 \ 2 & 0 & 2 \ -1 & 2 & 3 \end{array}
ight]$$

Allora:

Scegli un'alternativa:

- lacksquare a. A è ortogonale.
- \bigcirc b. A è simmetrica e definita positiva.

La risposta corretta è: A è simmetrica ma non definita positiva.

Quante iterazioni del Metodo di Bisezione sono necessarie affinchè l'errore

$$|x_k - x^*| < 10^{-4}$$

dove $F(x) = x^2 - 4 \text{ con } a = 0 \text{ e } b = 3.5$?

Scegli un'alternativa:

- a. 16
- o b. 15
- oc. 20

La risposta corretta è: 16

Domanda 4

Risposta errata

Punteggio ottenuto 0,00 su 1,00

Il sistema Floating Point $\mathcal{F}(2,3,-2,1)$ contiene:

×

Scegli un'alternativa:

- a. 33 numeri.
- b. 17 numeri.
- oc. Nessuna delle precedenti.

La risposta corretta è: 33 numeri.

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Sia A matrice m imes n con (m>n) e rg(A)=k=n, allora la soluzione del problema lineare ai minimi quadrati $min||Ax-b||_2^2$:

Scegli un'alternativa:

- lacksquare a. è soluzione del sistema $A^TAx=Ab$.
- ullet b. è soluzione del sistema $AA^Tx=A^Tb$.
- $\$ c. è soluzione del sistema $A^TAx=A^Tb$.

La risposta corretta è: è soluzione del sistema $A^TAx = A^Tb$.

Domanda 6

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Sia A $n \times n$, il raggio spettrale è:

Scegli un'alternativa:

- lacksquare a. è il massimo autovalore in modulo di A^T .
- $\ igllet$ b. è il massimo autovalore in modulo di A.
- \circ c. è il massimo autovalore di A.

La risposta corretta è: è il massimo autovalore in modulo di A.

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Il metodo di Jacobi per risolvere il sistema lineare Ax=b, con A n imes n:

Scegli un'alternativa:

- ullet a. $\dot{
 m e}$ convergente se il raggio spettrale ho(J) < 1 dove J $\dot{
 m e}$ la matrice di iterazione.
- $\ \ \ \$ b. $\ \$ è convergente per ogni matrice A.
- igcup c. è convergente per ogni matrice A solo se x_0 è il vettore nullo.

La risposta corretta è: è convergente se il raggio spettrale ho(J) < 1 dove J è la matrice di iterazione.

Domanda 8

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Sia $f:\mathbb{R}^n o\mathbb{R}$ derivabile, se $abla f(x^*)=0$ allora x^* :

Scegli un'alternativa:

- a. è un punto stazionario.
- ob. è un punto di minimo locale.
- c. è un punto di minimo globale.

La risposta corretta è: è un punto stazionario.

Se A è una matrice $n \times n$ allora:

Scegli un'alternativa:

- o a. Nessuna delle precedenti.
- $\hspace{0.5cm} \bigcirc \hspace{0.1cm} \text{b.} \hspace{0.3cm} \left| \left| A \right| \right|_{2} = \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i,j}^{2}}.$
- $\quad \circ \text{ c.} \quad \left| |A| \right|_2 = \rho(A^TA).$

La risposta corretta è: $||A||_2 = \rho(A^TA)$.

Domanda 10

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Il costo computazionale per la risoluzione di un sistema triangolare è di:

Scegli un'alternativa:

- \bigcirc a. $O\left(\frac{n^3}{2}\right)$
- \odot b. $O\left(\frac{n^2}{2}\right)$
- \circ c. $O\left(\frac{n}{3}\right)$

La risposta corretta è: $O\left(\frac{n^2}{2}\right)$

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Usando la notazione scientifica normalizzata con base $\beta=10$, se x=282.94, allora:

Scegli un'alternativa:

- a. Nessuna delle precedenti.
- \circ b. La mantissa di x è 2.8294 e la parte esponenziale è 10^2 .
- $\$ c. La mantissa di x è 0.28294 e la parte esponenziale è 10^3 .

La risposta corretta è: La mantissa di x è 0.28294 e la parte esponenziale è 10^3 .

Domanda 12

Risposta errata

Punteggio ottenuto 0,00 su 1,00

Nel sistema Floating Point $\mathcal{F}(10,2,-2,2)$, se $x=\pi$, w=e, e z=fl(x)*fl(w), allora:

×

Scegli un'alternativa:

- \bullet a. $fl(z) = 0.0837 \times 10^2$.
- \circ b. $fl(z) = 0.837 \times 10^1$.
- \circ c. $fl(z) = 0.84 \times 10^{1}$.

La risposta corretta è: $fl(z) = 0.84 \times 10^{1}$.

Domanda 13					
Risposta corretta					
Punteggio ottenuto 1,00 su 1,00					
La decomposizione SVD di una matrice puo' essere utilizzata anche					
per:					
per.					
Scegli un'alternativa:					
a. Invertire la matrice.					
b. Comprimere la matrice.					
o c. Aumentare il rango della matrice.					
La risposta corretta è: Comprimere la matrice.					
Domanda 14					
Risposta errata					
Punteggio ottenuto 0,00 su 1,00					
Se $A=U\Sigma V^T$ è la decomposizione SVD di una matrice $A~m imes n$,					
allora:					
Scegli un'alternativa:					

- a. Nessuna delle precedenti.
- igcup b. Gli elementi della matrice diagonale Σ sono i valori singolari di A, in ordine decrescente.
- $\, ullet$ c. Gli elementi della matrice diagonale Σ sono i valori singolari di A, in ordine crescente.

La risposta corretta è: Gli elementi della matrice diagonale Σ sono i valori singolari di A, in ordine decrescente.

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Sia $f:\mathbb{R}^2 o\mathbb{R}$ definita come $f(x_1,x_2)=x_1e^{x_2}$, scelta come iterata iniziale del metodo del gradiente $x^{(0)}=(0,0)^T$ e lpha=1, allora:

Scegli un'alternativa:

$$\circ$$
 a. $x^{(1)} = (0,0)^T$.

$$lacksquare$$
 b. $x^{(1)} = (-1,0)^T$.

$$\circ$$
 c. $x^{(1)} = (1,0)^T$.

La risposta corretta è: $x^{(1)} = (-1,0)^T$.

Vai a...