

Exam 1

- 1a) Let p: "You have the flu virus", q: "You miss the first Exam", and r: "You fail Math 321". Express the $(p \land q) \rightarrow (\neg q \lor r)$ as an English sentence.
- 1b) Express "It is necessary for you to eat cheese for you to not have bad breath" using symbols and logical operators
- 5-i) Let S(u, v) mean that "u slapped v" and let M(r,t) mean that "r and y mash potatoes together". Where the domain for all variables is students in this class. Translate into English the following compound propositions.
 - a) $\forall x \exists y S(x, y)$
 - b) $\exists y \forall x S(x, y)$

2) Construct the	truth table eve	eryone should know.
	operatas;	$\neg, \lor, \land, \oplus, \neg$
tables	•	

3) Verify: $(p \to q) \land (p \to r) \not \Rightarrow p \to (q \land r)$ using a truth table.

 Show that the statement [¬p ∧ (p ∨ q)] → q is logically a tautology using logical equivalences. Bonus for 1 point ... What is the name of this Rule of Inference?

$$\frac{2}{p} = \frac{2}{p} = \frac{2}$$

p. 91 + 1de 2

6) Come up w	vith three valid con	clusions for the se	t of premises: "If I	take the day of	off, it either rains or
snows." "I too	k Tuesday off or I	took Thursday of	f." "It was sunny o	on Tuesday."	"It did not snow on
Thursday."	, ,	\cap			
OSe	rdes &	interne.			

What rules of inference are used in this famous argument? "All men are mortal. Socrates is a man. Therefore, Socrates is mortal."

Exam 2

- Use a Venn diagram, set builder notation, and a list to illustrate the set of odd integers from 3 to 9, the set of all integers divisible by 3 from -3 to 12, among the universe of discourse of all integers.
- 2) For $A = \{\, -2, 1, 3, 5, 6, 7\}, \ B = \{\, -1, 0, 3, 4, 5\}, \ \text{and} \ U = \{i \, | \, i \, \epsilon \, \mathbb{Z} \, \wedge \, 5 \leq i < 10\} \ \text{find} \ \dots$
 - a) $A \cup B$
 - b) $A \cap B$
 - c) A − B
 - d) \bar{A}

Frans

Donber Therete?

- 1) Show that if a, b, and c are integers with $c \neq 0$, such that $ac \mid bc$, then $a \mid b$.
- 2) For $a = (2, 0, 2)_3$ and $b = (1, 2)_3$. Calculate a + b and $a \cdot b$ using only base 4 notation.
- 3) State the three equivalent statements for $a \equiv b \pmod{m}$ and prove they are equivalent.

7 Huon

Jusible 60

Congruent?

Dase to?

Prove there are infinitely many primes.

(5) (7)

ged using

Euclid's Alg.

3) 1	ow many positive integers between 5 and 51 are divisible by 2 or 3?
	6 to 50 - 50 - 6+1 = 45
die	byz 45 - 22.5 >> 23
dis	by3
da	6x C 95 = 7.5 -> 8
(4) Stat	the generalized pigeonhole principle. Use it to find the minimum number of students whome to class to be sure that at least five have the same grade in an A, B, C, D, and F grade.
system.	ome to class to be sure that at least five have the same grade in an A, B, C, D, and F grade to the same grade in an A, B, C, D, and F grade to the same grade in an A, B, C, D, and F grade to the same grade in an A, B, C, D, and F grade to the same grade in an A, B, C, D, and F grade to the same grade in an A, B, C, D, and F grade to the same grade in an A, B, C, D, and F grade to the same grade in an A, B, C, D, and F grade to the same grade in an A, B, C, D, and F grade to the same grade in an A, B, C, D, and F grade to the same grade in an A, B, C, D, and F grade to the same grade in an A, B, C, D, and F grade to the same grade in an A, B, C, D, and F grade to the same grade in an A, B, C, D, and F grade to the same grade in an A, B, C, D, and F grade to the same grade in an A, B, C, D, and F grade to the same grade in an A, B, C, D, and F grade to the same grade in an A, B, C, D, and F grade to the same grade to
	In people on a baseball team show up for a game. $ \begin{array}{c} 16 \\ 4 \\ 7 \end{array} $
c) F	ow many ways are there to choose 9 players to take the field? $\begin{array}{c} & & \\ \\ \\ \\ \\ \\ \\ \end{array}$ ow many ways to assign the 9 positions? $\begin{array}{c} \\\\\\\\\\\\\\\\\end{array}$ $\begin{array}{c}\\\\\\\\\\\\\\\end{array}$ $\begin{array}{c}\\\\\\\\\\\\\\\\\end{array}$ $\begin{array}{c}\\\\\\\\\\\\\\\\\\\end{array}$ $\begin{array}{c}\\\\\\\\\\\\\\\\\\\end{array}$ $\begin{array}{c}\\\\\\\\\\\\\\\\\\\end{array}$ $\begin{array}{c}\\\\\\\\\\\\\\\\\\\end{array}$ $\begin{array}{c}\\\\\\\\\\\\\\\\\\\\\end{array}$ $\begin{array}{c}\\\\\\\\\\\\\\\\\\\\\end{array}$ $\begin{array}{c}\\\\\\\\\\\\\\\\\\\\\end{array}$ $\begin{array}{c}\\\\\\\\\\\\\\\\\\\\\end{array}$ $\begin{array}{c}\\\\\\\\\\\\\\\\\\\\\\\end{array}$ $\begin{array}{c}\\\\\\\\\\\\\\\\\\\\\\\\\end{array}$ $\begin{array}{c}\\\\\\\\\\\\\\\\\\\\\\\\\end{array}$ $\begin{array}{c}\\\\\\\\\\\\\\\\\\\\\\\\\\\\\end{array}$ $\begin{array}{c}\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\end{array}$ $\begin{array}{c}\\$
enese pia	all = (0-toush) + 1-toush + + 5 toush
	$\begin{pmatrix} 16 \\ 2 \end{pmatrix} - \begin{pmatrix} 11 \\ 2 \end{pmatrix}$

$$\binom{k}{v} = \binom{k-1}{v-1} + \binom{k}{v-1}$$

$$H_n = 2H_{n-1} + 1 \text{ given } n \ge 2,$$

$$H_1 = 2H_{n-1} + 1 \text{ given } n \ge 2,$$

$$\wedge$$

2-44-2+1

$$H_{n} = \frac{2^{n-1}(H) + 2^{n-2}}{12^{n-1}(H) + 2^{n-2} + 2^{n-2}}$$

8) Find a recurrence relation for the number of ways to give someone n dollars if you have 1 dollar coins, 1 dollar bills, and 5 dollar bills. What are the initial conditions?

