Esercizi per il corso di Probabilità e Statistica

Foglio 5: Trasformazioni di variabili aleatorie

- 1. Se il 65% della popolazione di una vasta comunità è a favore di una proposta di aumento delle tasse scolastiche, approssimare la probabilità che un campione casuale di 100 persone contenga
- (a) almeno 50 persone favorevoli alla proposta;
- (b) tra 60 e 70 persone favorevoli alla proposta;
- (c) meno di 75 persone favorevoli alla proposta.
- 2. Sia X una variabile casuale normale con funzione generatrice dei momenti $M_X(t) = e^{2t(1+t)}$. Determinare P(0 < X < 4).
- 3. Se X è uniformemente distribuita in (-1,1), si determini:
- (a) $P(|X| > \frac{1}{2})$;
- (b) la densità della variabile |X|.
- 4. Sia X una variabile casuale esponenziale di parametro λ . Si determini la distribuzione di $Y = F_X(X)$.
- 5. La variabile casuale X ha funzione di densità

$$f_X(x) = \frac{x^2}{9},$$
 $0 < x < 3.$

Trovare la densità della variabile casuale $Y = X^3$.

- 6. Sia X una variabile casuale con funzione di densità $f_X(x;\lambda) = \lambda e^{-\lambda x}$, per x > 0. Trovare le funzioni di densità di $Y = \ln X$ e Z = X/(X+1).
- 7. Sia X una variabile casuale con distribuzione uniforme sull'intervallo (0, 20). Trovare la funzione di densità della variabile casuale Y = (X+3)/2. Determinare anche la media e la varianza di Y.
- 8. I mancini formano il 12% della popolazione. Approssimare la probabilità che vi siano almeno 20 studenti mancini in una scuola di 200 studenti. Precisare le ipotesi utilizzate.
- 9. Si consideri una variabile casuale X con funzione generatrice dei momenti $M_X(t) = 9/(3-t)^2$. Trovare la media e la varianza della variabile casuale X.
- 10. Sia X una variabile casuale distribuita secondo una legge esponenziale di parametro λ . Trovare la distribuzione della variabile casuale $Y = X^2$.
- 11. Sia X una variabile aleatoria esponenziale di parametro λ e c > 0, provare che cX è esponenziale di parametro λ/c .
- 12. Se X è uniformemente distribuita in (0,1), determinare la densità di $Y=e^X$.

- 13. Sia X una v.a. con distribuzione normale di media $\mu=5$ e varianza $\sigma^2=4$. Si calcoli il valore atteso della v.a. $Y=(X-5)^2$. [4]
- 14. Sia X una v.a. geometrica di parametro p. Si calcoli il valore atteso e la funzione di probabilità di Y=2X-1. [(2-3p)/p]