1 Центральная предельная теорема

Теорема 1.1 (Линдеберга). Пусть $\{\xi_k\}_{k\geq 1}$ — независивые случайные величины, $\mathsf{E}\xi_k^2<+\infty\ \forall k$, обозначим $m_k=\mathsf{E}\xi_k,\ \delta_k^2=\mathsf{D}\xi_k>0: S_n=\sum_{i=0}^n\xi_i;\ \mathsf{D}_n^2=\sum_{k=1}^n\delta_k^2\ u\ F_k(x)$ — функция распределения ξ_k . Пусть выполнено условие Линдеберга, то есть

$$\forall \mathcal{E} > 0 \frac{1}{\mathsf{D}_n^2} \sum_{k=1}^n \int_{\{x: |x-m_k| > \mathcal{E}\mathsf{D}_n\}} (x - m_k)^2 \, dx \xrightarrow[n \to \infty]{} 0.$$

Torda $\frac{S_n - ES_n}{\sqrt{DS_n}} \xrightarrow{d} \mathcal{N}(0,1), n \to \infty.$

2 Гауссовские случайные векторы

Определение 1. Случайный вектор $\vec{\xi}$ — гауссовский, если его характеристическая функция $\varphi_{\vec{\xi}}(\vec{t}) = \exp\left(i(\vec{m},\vec{t}) - \frac{1}{2}(\Sigma \vec{t},\vec{t})\right), \vec{m} \in \mathbb{R}^n, \Sigma$ — симметрическая неотрицательно определенная матрица.

Определение 2. Случайный вектор $\vec{\xi}$ — гауссовский, если он представляется в следующем виде: $\vec{\xi} = A\vec{\eta} + \vec{b}$, где $\vec{b} \in \mathbb{R}^n$, $A \in \mathrm{Mat}(n \times m)$ и $\vec{\eta} = (\eta_1, \ldots, \eta_m)$ — независимые и $\mathcal{N}(0,1)$.

Определение 3. Случайный вектор $\vec{\xi}$ — гауссовский, если $\forall \lambda \in \mathbb{R}^n$ случайная величина $(\vec{\lambda}, \vec{\xi})$ имеет нормальное распределение.

Теорема 2.1 (об эквивалентности определений гауссовских векторов). *Предыдущие три определения эквивалентны.*

3 Задачи по астрономии

1. Dark Matters

В некотором скоплении галактик содержится 70 спиральных и 30 эллиптических галактик. Известно, что абсолютная звездная величина эллиптических галактик равна -20, соотношение масса—светимость составляет $15\mathfrak{M}_{\odot}/L_{\odot}$. У спиральных галактик в данном скоплении максимальная скорость вращения составляет $210~\mathrm{km/c}$, соотношение масса—светимость $-5\mathfrak{M}_{\odot}/L_{\odot}$.

Оцените долю темной материи внутри скопления, если масса меж-галактического газа на порядок превышает массу галактик, а типичные

скорости галактик в скоплении составляют 1000 км/с. Размер скопления составляет 7 Мпк. Абсолютная звёздная величина Млечного Пути — -20.9.

2. Бейрут

В какой момент по истинному солнечному времени 1 сентября Регул ($\alpha_1=10^{\rm h}\,9^{\rm m},\delta_1=11^{\circ}\,53'$) и Шератан ($\alpha_2=11^{\rm h}\,15^{\rm m},\delta_2=15^{\circ}\,20'$) находятся на одном альмукантарате в Бейруте ($\varphi=33^{\circ}\,53'$).

3. H II

Предположим, что за пределами солнечного круга кривая вращения галактики плоская, параметр плато $v=240~{\rm km/c}$. Пусть известно, что диск нейтрального водорода на галактической долготе $l=140^{\circ}$. Оцените минимально возможное значение лучевой скорости этого облака.

4. Обратный комптон-эффект

Обратным эффектом Комптона (ОЭК) называют явление рассеяния фотона на ультрарелятивистском свободном электроне, при котором происходит перенос энергии от электрона к фотону. Рассмотрите ОЭК для фотонов реликтового излучения. При какой энергии электронов в направленном пучке рессеянное излучение можно будет зарегистрировать на фотоприёмнике?

4 Отзыв

- 💠 Курс интересный и полезный
- ♦ Хотелось бы побольше примеров использования новых команд