Matière: Physique-Chimie Professeur: Zakaria HAOUZAN Unité: La Mécanique Établissement: Lycée SKHOR qualifiant

Niveau: TCS Heure: 4H

Leçon $N^{\circ}6$: Equilibre d'un corps solide soumis à 3 forces

Situation problème: Ι

Le schéma ci-contre représente un alpiniste qui est en équilibre sous l'action de 3forces : son poids \vec{P} , la réaction \vec{R} , et la tension de la corde \vec{T}

- Quelles sont les conditions d'équilibre d'un corps solide soumis à 3 forces ?
- Comment utiliser ses conditions pour déterminer les intensités de quelques forces, et aussi les valeurs d'autres grandeurs?

Conditions d'équilibre d'un corps solide sous TT l'action de trois forces non parallèles :

II.1 Etude de l'équilibre d'un solide soumis à trois forces non parallèles

II.1.1 Activité expérimentale N°1

On réalise l'équilibre d'une plaque très légère avec trois dynamomètres, comme l'indique le schéma ci-contre :

- 1 Faire l'inventaire des forces appliquées sur la plaque, puis déterminer la force qu'on peut négliger son intensité devant l'intensité des autres
- 2 Tracer les lignes d'action des forces appliquées sur la plaque. Que constatez-vous sur ses lignes d'action?
- 3 Copier le schéma ci-contre sur votre cahier, et tracer les forces appliquées sur la plaque en choisissant une échelle
- 4 Tracer la ligne polygone des forces appliquées sur la plaque. Que peut-on dire sur la somme vectorielle des forces appliquées sur la plaque?
- 5 Conclure les conditions d'équilibre nécessaires d'un corps solide soumis à trois forces non parallèles.

II.1.2 **Exploitation:**

1. Le système étudié est la plaque S, Le bilan des forces exercées sur la plaque

 F_1 la force exercée par le dynamomètre D1

 F_2 la force exercée par le dynamomètre D2

 F_3 la force exercée par le dynamomètre D3

P le poids de la plaque : Puisque la masse de la plaque est néglieable alors son poids est néglieable devant les intensités des autres forces F1 = 2N et F2=2N et F3=1N Donc on peut dire que la plaque S est en équilibe sous l'action de trois forces (F1, F2, F3)non parallèles

Les caracté

éristiques des forces :					
	force	Point d'application	Droite d'action	Sens	intensité
	F_1	A_1	La droite confondue avec le fil du dynamomètre D1	De A1 vers D	F1 = 2 N
	F_2	A_2	La droite confondue avec le fil du dynamomètre D2	De A2 vers D	F1 = 2 N
	F_3	A_3	La droite confondue avec	De A3 vers D	F1 = 1 N

le fil du dynamomètre D3

2 . On remarque les trois lignes d'action se coupent en un même point : on dit que les droites d'action des trois forces $\vec{F_1}, \vec{F_2}$ et $\vec{F_3}$ sont concourantes

Après avoir réalisé l'équilibre de la plaque, l'expérience montre que les trois forces $\vec{F_1}, \vec{F_2}$ et $\vec{F_3}$ non parallèle sont situées dans un même plan, on dit que les trois forces $\vec{F_1}, \vec{F_2}$ et $\vec{F_3}$ sont coplanaires.

- 3. On utilise l'échelle suivante : 1 cm = 1 N
- 4 . Méthode graphique (ligne polygonale) : On représente la somme vectorielle de trois forces $\vec{F_1}, \vec{F_2}$ et $\vec{F_3}$ on obtient une ligne polygonale fermée. Donc on constate que la somme vectorielle de ces trois forces $\vec{F_1}, \vec{F_2}$ et $\vec{F_3}$ est égale au vecteur nul :

$$\vec{F_1} + \vec{F_2} + \vec{F_3} = \vec{0}$$

- 5 . les conditions d'équilibre : Pour qu'un solide soit en équilibre sous l'action de trois forces non parallèles, il faut que :
 - -Les droites d'action des trois forces soient coplanaires et concourantes.
 - -la somme vectorielle des forces soit égale au vecteur nul

II.2 Conclusion:

Lorsqu'un solide soumis à trois forces $\vec{F_1}$, $\vec{F_2}$ et $\vec{F_3}$ non parallèles est en équilibre , alors : Pour qu'un solide soit en équilibre sous l'action de trois forces non parallèles, il faut que : la somme vectorielle des trois forces est égale au vecteur nul $\vec{F_1} + \vec{F_2} + \vec{F_3} = \vec{0}$ u la ligne polygonale des trois forces est fermée . cette condition est nécessaire pour que le centre d'inertie G du corps soit au repos

les droites d'action des trois forces sont coplanaires et concourantes. cette condition est nécessaire pour l'absence de rotation du corps autour de lui-même, sil la première condition est vérifiée.

III Application: méthode géométrique, méthode analytique

III.1 Equilibre d'un solide sur un plan incliné: cas d'un contact sans frottement

III.1.1 Activité expérimentale N°2 :étude de l'équilibre d'un solide sur un plan incliné

Un solide S de masse m = 360 g maintenu en équilibre, sur un plan incliné (π) d'un angle α =25°, grâce à un dynamomètre. Tel que T = 1,5 N.

- 1. Déterminer le système étudié
- 2. Faire l'inventaire des forces appliquées sur le solide (S)
- 3. Déterminer par deux méthodes différentes : géométrique et arithmétique (analytique), la réaction \vec{R} du plan sur le corps solide S (les caractéristiques de \vec{R}). Conclure

III.1.2 Interprétation:

Le système étudié est le corps (S)

Le bilan des forces exercées sur la masse marquée:

 \vec{P} : Le poids du corps (S)

 \vec{T} : La force exercée par le dynamomètre

 \vec{R} : La réaction du plan incliné (la force exercée par le plan incliné sur le corps (S))

Déterminons R La réaction du plan incliné par deux méthodes : géométrique et analytique

III.1.3 Méthode géométrique / méthode graphique :

Le corps est en équilibre sous l'action de trois forces \vec{P} , \vec{T} et \vec{R} donc $\vec{P} + \vec{R} + \vec{T} = \vec{0}$, alors la ligne polygonale est fermée (la dynamique des forces est un triangle fermé).

La connaissance des caractéristiques de \vec{P} , \vec{T} et \vec{R} permet de tracer la ligne polygonale fermée et par conséquent, on peut déterminer les caractéristiques de \vec{R}

Donc pour tracer la somme des forces , on commence par \vec{T} qui a une droite d'action incliné d'un angle $\alpha=25^{\circ}$ puis \vec{P} le poids qui est perpendiculaire au plan et dirigé vers le bas , alors pour déterminer \vec{R} (les caractéristiques de \vec{R}), on ferme le triangle (Voir le schéma)

Pour représenter les forces on utilise l'échelle suivante : 1.5 N = 2 cm

Pour T: on a T=1.5N \rightarrow 2cm

Pour \vec{P} : P = mg = 3.6N \rightarrow 4.8cm

Remarque : On remarque que la direction de \vec{R} est perpendiculaire au plan incliné, cela signifie que le contact entre le solide et le plan se fait sans frottement.

Les caractéristiques de \hat{R} :

Le point d'application : le point A

La droite d'action : droite perpendiculaire au plan incliné et passant par le point A

Le sens : vers le haut

L'intensité : on peut déterminer R L'intensité de R par deux méthodes

1. Méthode 1 : L'échelle : On a R = 4.36cm donc R=3.27N

2. théorème de Pythagore : D'après le théorème de Pythagore on a

$$R^2 + T^2 = P^2$$

donc

$$R = \sqrt{R^2 + T^2}$$

Méthode Arithmétique ou Analytique : (projection des forces sur les axes d'un repère)

Cette méthode consiste sur la projection de la relation $\sum \vec{F}_{ext}$ sur les axes d'un repère $R(O, \vec{i}, \vec{j}, \vec{k})$ considérons un repère orthonormé $R(O, \vec{i}, \vec{j}, \vec{k})$ tel que son origine O est confondu avec le centre d'inertie G du solide (S) (voir le schéma ci-contre)

Puisque le corps est en équilibre sous l'action de trois forces \vec{P} , \vec{T} et \vec{R} alors $\vec{P} + \vec{R} + \vec{T} = \vec{0}$ On projette cette relation sur les axes (Ox) et (Oy), et On obtient:

$$\begin{cases} P_x + T_x + R_x = 0 \\ P_y + T_y + R_y = 0 \end{cases}$$

D'après le schéma On a :

après le schéma On a :
$$\begin{cases} P_x = -Psin\alpha \\ P_y = -Pcos\alpha \end{cases} \text{ et } \begin{cases} T_x = T \\ T_y = 0 \end{cases} \text{ donc } \begin{cases} -Psin\alpha + T + R_x = 0 \\ -Pcos\alpha + 0 + R_y = 0 \end{cases} \text{ alors } \begin{cases} R_x = Psin\alpha - T \\ R_y = Pcos\alpha \end{cases}$$

$$A.N \begin{cases} R_x = 0N \\ R_y = 3.26N \end{cases} \text{ Or } R = \sqrt{R_x^2 + R_y^2} \text{ d'où } R = 3.26N$$

D'autre part, On sait que $\vec{R} = \vec{R_x} + \vec{R_y}$ donc $\vec{R} = \vec{R_y}$ puisque $\vec{R_x} = \vec{0}$, alors la réaction \vec{R} est perpendiculaire au plan incliné, cela signifie que le contact entre le solide et le plan se fait sans frottement. (même résultat que celui obtenu dans la méthode précédente)

III.2 Equilibre d'un solide sur un plan incliné: Cas d'un contact avec frottement

III.2.1 Activité expérimentale N°3: Force de frottement, Angle de frottement, coefficient de

Un solide (s), de masse m = 5 Kg, est en équilibre avec frottement sur un plan incliné d'un angle α = 60° par rapport à la verticale i

- 1. Faire le bilan des forces extérieures agissant sur le solide et les dessiner sur le schéma de la figure
- 2. En appliquant la condition d'équilibre, déterminer :
- a. L'intensité R de la réaction du plan incliné sur le solide
- b. La composante normale RN de la réaction R
- c. La composante tangentielle RT de la réaction \vec{R} (a valeur de la force de frottement)
- 3. Calculer K le coefficient de frottement
- 4. Déduire ϕ l'angle de frottement

III.2.2 Interprétation:

1. Le bilan des forces extérieurs exercées sur le solide (S) : \vec{P} - \vec{c} Le poids du solide et \vec{R} :La Réaction du plan incliné avec $\vec{R} = \vec{R_N} + \vec{R_T}$

 $\vec{R_N}$: La composante normale $\vec{R_T}$: La composante tangentielle ou La force de frottement $\vec{f}(\vec{R_T} = \vec{f})$

- $\bullet \ \vec{R} = \vec{R_N} + \vec{R_T}$
- φ : l'angle de frottement
- $K = tg\varphi = \frac{R_T}{R_N}$ Coefficient de frottement

Représentation des forces $\vec{P}et\vec{R}$ le corps (S) est en équilibre sous l'action de deux forces $\vec{P}et\vec{R}$ alors $\vec{P}+\vec{R}=\vec{0}$ cela signifie que les deux forces ont la même droite d'action, des sens opposés et la même intensité R = P =mg =50N

On prend 10 N = 1 cm comme l'échelle pour représenter ces deux forces

- 2. Etude de l'équilibre du solide (S) sur le plan incliné sous l'action de deux forces :
- a Le corps (S) est en équilibre sous l'action de deux forces $\vec{P}et\vec{R}$ alors R = P = 50N
- b Pour déterminer RN La composante normale de la réaction \vec{R} , on projette la relation $\vec{P} + \vec{R} = \vec{0}$ sur (Ox) et (Oy):

$$\begin{cases} P_x + R_x = 0 \\ P_y + R_y = 0 \end{cases}$$

D'après le schéma On a :

pres le schema On a :
$$\begin{cases} P_x = Psin\alpha \\ P_y = -Pcos\alpha \end{cases} \text{ et } \begin{cases} R_x = -R_T \\ R_y = R_N \end{cases} \text{ ce qui donne } \begin{cases} R_T = -P_x = m.g.sin\alpha = 25N \\ R_N = -P_y = -m.g.cos\alpha = 43.3N \end{cases}$$

On constate que $R = \sqrt{R_N^2 + R_N^2}$

Calculons K le coefficient de frottement : K = $tg\varphi = fracR_TR_N = 0.58$

Déterminons φ l'angle de frottement :

D'après la question précédente , on a $\varphi=tg^{-1}(0.58)$ donc $\varphi=30^\circ$