Analízis II. Előadás jegyzet

A jegyzetet UMANN Kristóf készítette Dr. Szili László előadásán. (2016. október 3.) Külön köszönet jár CSONKA Szilviának a képek elkészítésért.

Tantárgyi honlap: http://numanal.inf.elte.hu/~szili/Oktatas/An2_BSc_2016/index_An2_2016.htm

1. Folytatás.

1.0.1. Emlékeztető. A derivált motivációja.

1.1. A derivált fogalma

- 1.1.1. Megjegyzés. A deriváltat az értelmezési tartomány belső pontjaiban értelmezzük.
- 1.1.2. Definíció. $0 \neq A \subset \mathbb{R}$ halmaz belső pontja $a \in A$, ha

$$\exists K(a): K(a) \subset A.$$

Jele: $int A := \{a \in A \mid a \text{ belső pontja } A\text{-nak } \}$

- **1.1.3. Példa.** A := [0,1], int A = (0,1)
- **1.1.4. Példa.** A := (0,1], int A = (0,1)
- **1.1.5. Példa.** $A := \{1,4,e\}, \text{ int } A = \emptyset$
- 1.1.6. Definíció. $f \in \mathbb{R} \to \mathbb{R}$, $a \in \text{int} \mathcal{D}_f$. f differenciálható, vagy deriválható az a pontban, ha

$$\exists \quad \text{\'es v\'eges} \quad \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} =: f'(a) \quad \text{hat\'ar\'ert\'ek}.$$

f'(a): f deriváltja, vagy differenciálhányadosa. Jelöljük így is: $f \in D\{a\}$.

1.1.7. Megjegyzés. a + h = x

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

- 1.1.8. Megjegyzés. $\Delta_a f(x) := \frac{f(x) f(a)}{x a}$: az f függvény a-hoz tart. Különbségihányados-fv, vagy differenciahányados függvény.
- **1.1.9.** Megjegyzés. Ez a határérték mindig $\frac{0}{0}$ típusú kritikus határérték.
- 1.1.10. Megjegyzés. A differenciálhatóság "erősebb" megkötés a folytonosságnak.
- 1.1.11. Tétel. (A folytonosság és a deriválás kapcsolata)

Tegyük fel, hogy $f \in \mathbb{R} \to \mathbb{R}$, $a \in \text{int} \mathcal{D}_f$.

- 1. $f \in D\{a\} \Rightarrow f \in C\{a\}$.
- $2. \ f \in D\{a\} \quad \not= \quad f \in C\{a\}.$

 $Bizonyítás: \Rightarrow$

$$f \in D\{a\} \quad \Rightarrow \quad \lim_{x \to a} (f(x) - f(a)) = \lim_{x \to a} \left(\frac{f(x) - f(a)}{x - a} \cdot (x - a) \right) = f'(a). \quad 0 = 0 \quad \blacksquare$$

 $\not\equiv$ abs $\not\in D\{a\}$:

$$\frac{|x|-|0|}{x} = \begin{cases} 1, & x > 0 \\ -1, & x < 0 \end{cases} \Rightarrow \nexists \lim_{x \to 0} \frac{|x|-|0|}{x} \Rightarrow \text{abs } \notin D\{0\}. \blacksquare$$

1

1.2. Egyoldali deriváltak

1.2.1. Definíció. $f \in \mathbb{R} \to \mathbb{R}$, $a \in \mathcal{D}_f$, és tegyük fel, hogy $\exists \delta > 0 : [a, a + \delta) \subset \mathcal{D}_f$. Ha \exists és véges a $\lim_{x \to a+0} \frac{f(x) - f(a)}{x - a}$ hátérérték, akkor az f függvény jobbról deriválható az a-ban.

$$\lim_{x \to a+0} \frac{f(x) - f(a)}{x - a} =: f'_{+}(a) \quad \text{az } f \text{ jobb oldali deriváltja az } a\text{-ban.}$$

- **1.2.2.** Megjegyzés. A bal oldali derivált hasonló. Jele: $f'_{-}(a)$.
- **1.2.3.** Megjegyzés. f deriválható az a-ban $\Leftrightarrow \exists f'_+(a), \exists f'_-(a), \text{ és } f'_+(a) = f'_-(a).$ Jele: f'(a).

1.3. Deriváltfüggvény.

1.3.1. Definíció. Ha $f \in \mathbb{R} \to \mathbb{R}$, és

$${a \in \operatorname{int}\mathcal{D}_f \mid f \in D\{a\}} \neq \emptyset,$$

akkor

$$f': \{a \in \operatorname{int} \mathcal{D}_f \mid f \in D\{a\}\} \to \mathbb{R}, \quad x \to f'(x)$$

az f deriváltfüggvénye, vagy differenciálhányados-függvénye.

1.4. Elemi függvények deriváltja.

- 1.4.1. Megjegyzés. Lásd: honlapon táblázat.
 - 1. Konstansfüggvény: $c \in \mathbb{R}$ rögzített, f(x) = c. $(x \in \mathbb{R})$

$$\forall x \in \mathbb{R}: f \in D\{x\} \text{ és } f'(x) = 0, \boxed{(c)'=0}$$

2. Hatványfüggvények: $n \in \mathbb{N}$, $f(x) := x^n \quad (x \in \mathbb{R})$.

$$\forall x \in \mathbb{R}, \quad f \in D\{x\}, \quad \text{és} \quad (x^n)' = n \cdot x^{n-1} \quad (x \in \mathbb{R})$$

Bizonyítás:

$$\frac{f(x+h)-f(x)}{h} = \frac{(x+h)^n-x^n}{h} \quad \stackrel{0}{=} \quad \frac{h\cdot[(x+h)^{n-1}+\ldots+x^{n-1}]}{h} \quad \underset{h\to 0}{\longrightarrow} \quad n\cdot x^{n-1} \quad \blacksquare$$

3. Reciprok függvény: $f(x) := \frac{1}{x} \quad (x \in \mathbb{R} \setminus \{0\})$

$$\forall x \in \mathbb{R} \setminus \{0\} \quad \Rightarrow \quad f \in D\{x\} \quad \text{\'es} \quad \left(\frac{1}{x}\right)' = -\frac{1}{x^2} \quad (x \in \mathbb{R} \setminus \{0\})$$

- 4. $abs \notin D\{0\}$.
- 5. Négyzetgyökfüggvény. $f(x) := \sqrt{x}$ $(x \in [0, +\infty[)$

$$\forall x > 0 \text{-ra}: \quad f \in D\{x\}: \quad (\sqrt{x})' = \frac{1}{2\sqrt{x}} \quad (x \in (0, +\infty))$$

 $6. \sin$

$$\sin' x = \cos x \quad (x \in \mathbb{R})$$

(biz nélkül.)

7. cos

$$\cos' x = -\sin \quad (x \in \mathbb{R})$$

(biz nélkül.)

1.5. Ekvivalens átfogalmazás (lineáris közelítés). Érintő.

1.5.1. Tétel. (Lineáris közelítés)

Tegyük fel, hogy $f \in \mathbb{R} \to \mathbb{R}$, $a \in \text{int} \mathcal{D}_f$

$$f \in D\{a\} \quad \Leftrightarrow \quad \begin{cases} \exists A \in \mathbb{R} & \text{\'es} \quad \exists \varepsilon : \quad \mathcal{D}_f \to \mathbb{R}, \quad \lim_a \varepsilon = 0 \\ f(x) - f(a) = A(x - a) + \varepsilon(x)(x - a) \quad (x \in \mathcal{D}_f) \end{cases}$$

A = F'(a).

Bizonyítás:

 \Rightarrow

$$f \in D\{a\}$$
 $\Rightarrow \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'(a)$ $\Rightarrow \lim_{x \to a} \underbrace{\left(\frac{f(x) - f(a)}{x - a} - f'(a)\right)}_{=:\varepsilon(x)} = 0$

Így: $\lim_{a} \varepsilon = 0$, és

$$f(x) - f(a) = f'(a)(x - a) + \varepsilon(x)(x - a) \quad (x \in \mathcal{D}_f) \checkmark$$

$$f(x) - f(a) = A(x - a) + \varepsilon(x)(x - a) \qquad \stackrel{x \neq a}{\Rightarrow} \qquad \underbrace{\frac{f(x) - f(a)}{x - a}}_{\stackrel{x \to a}{\Rightarrow} f'(a)} = \underbrace{A + \varepsilon(x)}_{\stackrel{x \to a}{\Rightarrow} A}$$

$$\Rightarrow f'(a) = A \quad \blacksquare$$

1.5.2. Megjegyzés. Szemléletes jelentése. $f \in D\{a\}$.

1. ábra.

$$f(x) - f(a) = \underbrace{A(x-a)}_{\mathbf{F \ddot{o}r\acute{e}sz}} + \underbrace{\varepsilon(x)(x-a)}_{\mathrm{sokkal\ kisebb.\ Marad\acute{e}k}}$$

ha
$$x \sim a$$
 $\Longrightarrow_{\lim_{a \in >0} f \in D\{a\}} \Rightarrow f(x) - f(a) \sim A(x - a)$.

- **1.5.3.** Megjegyzés. f'(a) definíció általánosítsa \to nem mindig. lin. köz általánosítása \to gyakran problémamentes. \blacksquare
- **1.5.4. Emlékeztető.** Érintő: $f \in D\{a\}$

2. ábra.

1.5.5. Definíció. $f: \mathbb{R} \to \mathbb{R}$ függvény grafikonjának van érintője, az (a, f(a)) pontban, ha $f \in D\{a\}$. A grafikon (a, f(a))-béli **érintője** az

$$x = f'(a)(x - a) + f(a)$$

egyenletű egyenes.

1.5.6. Megjegyzés. HF: Kör, parabola érintője a fenti definícióból; ez ekvivalens a középiskolai definícióval.