6) TEORIA DEL CONSUMATORE: ELASTICITA', EFFETTO REDDITO ED EFFETTO SOSTITUZIONE

- 6.1) L'elasticità della domanda fornisce una misura della variazione percentuale della quantità domandata in risposta a una variazione di un punto percentuale di una delle sue determinanti.
 - a) Il segno di $\varepsilon_{x,R}$ consente di individuare i beni normali ($\varepsilon_{x,R} > 0$) e i beni inferiori ($\varepsilon_{x,R} < 0$)
 - b) L'entità di $\varepsilon_{x,R}$ consente di individuare i beni di lusso $(\varepsilon_{x,R} > 1)$ e i beni di prima necessità $(0 < \varepsilon_{x,R} \le 1)$
 - c) Il segno di ε_{x,p_x} consente di individuare i beni ordinari o normali rispetto al prezzo (ε_{x,p_x} < 0) e i beni di Giffen (ε_{x,p_x} > 0)
 - d) Il segno di ε_{x,p_y} consente di individuare i beni sostituti $(\varepsilon_{x,p_y}>0)$ e i beni complementi $(\varepsilon_{x,p_y}<0)$
- 6.2) d)
- 6.3) c)
- 6.4) a) $\varepsilon_{x,p_x} = -2$ La domanda è elastica.
 - b) $\varepsilon_{x,p_y} = -0.27$ I due beni sono complementi.
 - c) No, non ha senso perché non vi è alcuna variazione del prezzo di x.
- 6.5) a) falsa
 - b) vera
 - c) falsa
 - d) falsa
- 6.6) a) falsa
 - b) vera
 - c) vera
 - d) falsa
- 6.7) b)
- 6.8) a) vera
 - b) vera
 - c) falsa
 - d) falsa
- 6.9) $\varepsilon_{Q,p} = -2$

Elastica perché l'elasticità, in valore assoluto, è maggiore di 1. Questo significa che la quantità domandata varia in maniera più che proporzionale rispetto alla variazione del prezzo.

- 6.10) a) Il governo dovrebbe aumentare il prezzo delle sigarette di 2 euro, cioè vendere ogni pacchetto a € 6.
 - b) Gli adolescenti hanno solitamente un reddito inferiore e di conseguenza la loro sensibilità ad aumenti del prezzo è maggiore; bisogna tener conto inoltre che generalmente sono meno dipendenti dal fumo in quanto fumano da minor tempo (sono cioè diverse le loro preferenze).

- 6.11) $\Delta \% Q = -3\%$. Quindi la domanda varia di 360 televisori.
- 6.12) a) $\varepsilon_{q,p} = \frac{\Delta \% q}{\Delta \% p} = \frac{-5\%}{+25\%} = -0,2 \quad \text{elasticità della domanda di chi viaggia per lavoro}$ $\varepsilon_{q,p} = \frac{\Delta \% q}{\Delta \% p} = \frac{-25\%}{+25\%} = -1 \quad \text{elasticità della domanda di chi viaggia per turismo}$
 - b) La domanda di biglietti aerei di chi viaggia per lavoro ha elasticità minore perché, per queste persone il viaggio in aereo è un bene necessario che, per ragioni di tempo, non ha sostituti, mentre chi viaggia per turismo può anche scegliere altri mezzi.
 - c) $Q_{LAV}(p) = 2400 2p$ $Q_{TUR}(p) = 1600 - 4p$
- 6.13) a) $\varepsilon_{Q,p} = -0.215$
 - b) La domanda di biglietti della metropolitana è abbastanza rigida, in quanto il valore dell'elasticità è, in valore assoluto, inferiore ad 1; di conseguenza, a fronte di aumenti del prezzo dei biglietti il fatturato (ricavo totale) della Atm aumenta anch'esso.
 - c) No. La stima si basa su una situazione di breve periodo: non è improbabile che, a fronte di aumenti del prezzo, nel lungo periodo i passeggeri si organizzino con altre forme di trasporto (o cambino altre condizioni, es. cambio casa) → Tendenzialmente la domanda di lungo periodo di un bene è più elastica rispetto a quella di breve periodo → Se la domanda diventa elastica i ricavi della Atm diminuiscono.
- 6.14) Mr. Flanagan ha ragione: l'elasticità della domanda di x è maggiore (in valore assoluto) dell'elasticità della domanda di y. In altre parole, in termini percentuali la risposta di x a variazioni di prezzo è maggiore della risposta di y.

 $\underline{\mathsf{Mr. Forrest}}$ ha torto perché non conoscendo la quantità consumata inizialmente del bene x, l'elasticità non ci consente di dire nulla sulla variazione assoluta.

<u>Mr. Fruitman ha torto</u>: dato che l'elasticità al prezzo è maggiore di uno (in valore assoluto), la spesa complessiva diminuisce all'aumentare del prezzo, dato che la quantità diminuisce più che proporzionalmente rispetto al prezzo.

- 6.15) d)
- 6.16) b)
- 6.17) spesa = $100 \cdot p p^2$ $p \cdot q = 100 \cdot p - p^2 \implies q = 100 - p$

$$\epsilon_{q,p} = \frac{\partial q}{\partial p} \cdot \frac{p}{q} \quad \boldsymbol{\rightarrow} \ \epsilon_{q,p} = -1 \cdot \frac{p}{100-p}$$

Trovo il livello di p in cui la domanda ha elasticità unitaria: $-1 = -1 \cdot \frac{p}{100-p} \rightarrow p = 50$

So che la domanda è lineare, quindi a sinistra di tale punto la domanda è elastica, mentre a destra è anelastica.

Infatti è elastica, cioè $\left|\epsilon_{q,p}\right| > 1$ o alternativamente $\epsilon_{q,p} < -1$, quando $-1 > -1 \cdot \frac{p}{100-p}$ $\rightarrow p > 50$ e anelastica, cioè $\left|\epsilon_{q,p}\right| < 1$ o alternativamente $-1 < \epsilon_{q,p} < 0$, quando $-1 < -1 \cdot \frac{p}{100-p} < 0$ $\rightarrow 0$

6.18 a) Reddito e prezzi dovrebbero variare tutti nella stessa proporzione, in modo da lasciare immutato il vincolo di bilancio.

- b) Il vincolo di bilancio si sposta parallelamente verso l'interno. Si riduce la capacità di acquisto del signor Lionetto, ma il rapporto tra i prezzi rimane invariato. Poiché i due beni sono due beni normali, la quantità domandata di entrambi si riduce.
- Si ridurrà maggiormente la quantità domandata di fragole. Se l'elasticità delle fragole al reddito c) è maggiore di quella dei limoni, allora una stessa riduzione percentuale del reddito provocherà una riduzione percentuale della domanda di fragole maggiore di quella dei limoni.
- 6.19) $\varepsilon_{x,R} = 1 \rightarrow \text{Il bene } x \text{ è un bene normale poiché il suo consumo aumenta all'aumentare del reddito.}$

 $\varepsilon_{y,R}=1$ \rightarrow Il bene y è un bene normale poiché il suo consumo aumenta all'aumentare del reddito.

 $\varepsilon_{x,p_x} = -1 \rightarrow \text{Il bene } x$ è un bene ordinario (o normale rispetto al prezzo), cioè soddisfa la legge della domanda: all'aumentare (diminuire) del prezzo, la quantità domandata diminuisce (aumenta). In particolare, le variazioni percentuali di prezzo e quantità sono proporzionali. La domanda è isoelastica, cioè l'elasticità assume lo stesso valore in ogni punto (caratteristica tipica delle funzioni di utilità Cobb-

 $\varepsilon_{y,p_y} = -1 \rightarrow$ (stessa interpretazione dell'elasticità della domanda di x)

6.20) a)
$$x = \frac{1}{2} e y = 9$$

b)
$$\varepsilon_{x,p_x} = -7$$

c)
$$\varepsilon_{x,p_y} = 2$$
 $\varepsilon_{y,p_x} = 0.67$

Sappiamo che sono noti un punto della curva, quindi (q_0, p_0) e l'elasticità in quel punto, cioè $\varepsilon_{q,p}(p_0,q_0) = \frac{\partial q}{\partial p} \cdot \frac{p_0}{q_0}$

L'equazione generica di una funzione di domanda lineare è $Q_D = a + bp$

Poiché $\frac{\partial q}{\partial p} = b$ (si noti che, escludendo il caso dei beni di Giffen, il coefficiente b è negativo), sostituendo nella formula dell'elasticità troviamo il valore di b: $\varepsilon_{q,p}(p_0,q_0)=b\cdot \frac{p_0}{q_0} \quad \Rightarrow \quad \varepsilon_{q,p}(p_0,q_0)\cdot \frac{q_0}{p_0}=b$

$$\varepsilon_{q,p}(p_0,q_0) = b \cdot \frac{p_0}{q_0} \quad \Rightarrow \quad \varepsilon_{q,p}(p_0,q_0) \cdot \frac{q_0}{p_0} = b$$

Sostituendo nell'equazione della domanda
$$-b$$
, q_0 e p_0 , troviamo il valore di a : $q_0 = a + \left(\varepsilon_{q,p}(p_0,q_0)\cdot\frac{q_0}{p_0}\right)p_0$ $\Rightarrow q_0 - \left[\left(\varepsilon_{q,p}(p_0,q_0)\cdot\frac{q_0}{p_0}\right)p_0\right] = a$

La curva di domanda è l'inverso della funzione di domanda, quindi scriviamo $p = \frac{Q-a}{r}$

6.23)
$$Q(p) = 600 - 40p$$

6.24)
$$p(Q) = 17.5 - 0.42Q$$

6.25) a)
$$RT = 30\,000$$

b)
$$\varepsilon_{q,p} = -5$$

c) Diminuire il prezzo. 6.26) c)

Le funzioni di domanda sono
$$x(p_x,p_y,R)=\frac{R\cdot p_y}{p_x^2+p_xp_y}$$
 e $y(p_x,p_y,R)=\frac{R\cdot p_x}{p_y^2+p_xp_y}$

Le elasticità incrociate sono
$$\varepsilon_{x,p_y} = \frac{p_x}{p_x + p_y}$$
 e $\varepsilon_{y,p_x} = \frac{p_y}{p_x + p_y}$

Poiché i prezzi sono positivi, entrambe le elasticità incrociate sono positive. I beni sono quindi sostituti.

6.27)
$$\varepsilon_{x,R} = \frac{R}{R + p_y - p_x}$$
 ; $\varepsilon_{x,p_x} = \frac{-(R + p_y)}{R + p_y - p_x}$
 $\varepsilon_{y,R} = \frac{R}{R + p_x - p_y}$; $\varepsilon_{y,p_y} = \frac{-(R + p_x)}{R + p_x - p_y}$

6.28) a) Le funzioni di domanda sono
$$x(p_x, R = 250) = \frac{156,25}{p_x}$$
 e $y(p_y, R = 250) = \frac{93,75}{p_y}$

b)
$$\varepsilon_{x,p_y} = 0$$
 e $\varepsilon_{y,p_x} = 0$

Quindi i due beni non sono né complementi né sostituti (lo si può notare anche guardando le funzioni di domanda: la domanda di ciascuno dei due beni non dipende dal prezzo dell'altro bene).

6.29) a) Funzioni di domanda di Lillo:

$$x(p_x, p_y, R = 150) = \frac{150}{p_x(1 + \frac{p_x}{p_y})} \quad \text{e} \quad y(p_x, p_y, R = 150) = \frac{150}{p_y(1 + \frac{p_y}{p_x})}$$

La funzione di utilità di Greg è una trasformazione monotòna di quella di Lillo: le loro preferenze sono identiche. Avendo anche un reddito uguale, le loro funzioni di domanda sono le medesime.

b) Le elasticità incrociate sono positive. Quindi per Lillo i due beni sono sostituti (lo si può notare anche guardando le funzioni di domanda: all'aumentare di p_y aumenta x e all'aumentare di p_x aumenta y). E ovviamente anche per Greg, visto che hanno le medesime preferenze.

6.30) a)
$$x(p_x, p_y, R) = \frac{R}{p_x \left(1 + \frac{p_x}{p_y}\right)} e y(p_x, p_y, R) = \frac{R}{p_y \left(1 + \frac{p_y}{p_x}\right)}$$

b)
$$(x^*, y^*) = (1500, 1500)$$

c)
$$(x^*, y^*) = (500, 2000)$$

d)
$$\varepsilon_{x,p_x} = -\frac{(2p_x + p_y)}{(p_x + p_y)}$$

Il bene x è un bene ordinario (o normale rispetto al prezzo), cioè soddisfa la legge della domanda: la quantità domandata varia in senso opposto rispetto alla variazione del prezzo. Poiché $(2p_x+p_y)>p_x+p_y$, questa elasticità in valore assoluto è maggiore di 1. Questo significa che una variazione % di p_x provoca una variazione % più che proporzionale della quantità domandata di x.

Nel caso del livello di prezzi $p_x = \text{ } \text{ } 1$ e $p_y = \text{ } \text{ } 1$, l'elasticità è pari a $\varepsilon_{x,p_x} = -1,5$ mentre nel caso del livello dei prezzi $p_x = \text{ } 2$ e $p_y = \text{ } 1$ l'elasticità è pari a $\varepsilon_{x,p_x} = -1,67$.

$$\varepsilon_{y,p_y} = -\frac{(2p_y + p_x)}{(p_y + p_x)}$$

Il bene y è un bene ordinario (o normale rispetto al prezzo), cioè soddisfa la legge della domanda: la quantità domandata varia in senso opposto rispetto alla variazione del prezzo. Poiché $2p_y+p_x>p_y+p_x$, questa elasticità in valore assoluto è maggiore di 1. Questo significa che una variazione % di p_y provoca una variazione % più che proporzionale della quantità domandata di y. Nel caso del livello di prezzi $p_x=$ \in 1 e $p_y=$ \in 1 l'elasticità è pari

a $arepsilon_{y,p_y}=-1$,5 , mentre nel caso del livello dei $\ {
m prezzi}\ p_x=$ \in 2 e $p_y=$ \in 1 $\ {
m l'elasticità}\ {
m e}\ {
m pari}\ {
m a}$ $\varepsilon_{y,p_v} = -1.33$.

e)
$$\varepsilon_{x,p_y} = \frac{p_x}{p_x + p_y}$$

 $arepsilon_{x,p_y}=rac{p_x}{p_x+p_y}$ Con il livello di prezzi (1, 1) l'elasticità incrociata è pari a $arepsilon_{x,p_y}=0$,5 , mentre con il livello di prezzi (2, 1) l'elasticità incrociata è pari a $\varepsilon_{x,p_y} = 0.67$.

$$\varepsilon_{y,p_x} = \frac{p_y}{p_x + p_y}$$

Con il livello di prezzi (1, 1) l'elasticità incrociata è pari a $\varepsilon_{y,p_x}=$ 0,5 , mentre con il livello di prezzi (2, 1) l'elasticità incrociata è pari a $\varepsilon_{y,p_x} = 0.33$.

Le elasticità incrociate sono positive: per il consumatore in questione i due beni x e y sono beni sostituti.

- L'affermazione è falsa, in quanto non è necessariamente vera. Se è vero che a parità di potere d'acquisto l'aumento del prezzo degli altri beni rende più conveniente Gamma, e dunque porterebbe ad una maggiore domanda (effetto sostituzione), è anche vero che l'aumento del prezzo degli altri beni riduce il potere d'acquisto del consumatore e di conseguenza, se Gamma è un bene normale, anche la quantità domandata di Gamma (effetto di reddito). Se |ER| > |ES|, è possibile che un consumatore decida di domandare una quantità minore del bene Gamma.
- 6.32) L'affermazione è vera. Se il consumatore acquista una maggiore quantità di un bene all'aumentare del suo prezzo, sappiamo con certezza che quel bene è un bene di Giffen. Tutti i beni di Giffen sono inferiori, cioè un aumento del reddito fa diminuire il consumo del bene.
- 6.33) b)
- 6.34) a), b), c)
- 6.35) a) $(x_a, y_a) = (400, 200)$
 - $(x_b, y_b) = (150, 150)$ b)
 - Metodo di Hicks: ES = -133; ER = -117c) Metodo di Slutsky: ES = -100 ; ER = -150
- Funzione di domanda del bene x: $x(p_x,R) = \frac{2R}{3p_x}$ Funzione di domanda del bene y: $y(p_y,R) = \frac{R}{3p_y}$ 6.36) a)
 - b) Prima della variazione di p_y , il paniere ottimo è $(x^*, y^*) = (30, 10)$. In seguito alla variazione di p_y , il paniere ottimo è $(x^*, y^*) = (30, 6)$. La variazione della domanda del bene y in seguito all'aumento del suo prezzo è di -4 unità.

Questa variazione è così scomposta: metodo di Hicks: ES = -2,89; ER = -1,11

metodo di Slutsky: ES = -2,67; ER = -1,33

- 6.37) d)
- 6.38) c)
- 6.39)a) $(x^*, y^*) = (10, 20)$
 - $(x^*, y^*) = (5, 12.5)$ b)

Relazione tra i due beni: quando il prezzo di y aumenta, la domanda di x diminuisce. Possiamo dunque dire che il bene x è complementare al bene y, ma non viceversa (se aumenta il prezzo di x, la quantità domandata di y rimane invariata).

c) Per il bene y

Metodo di Hicks: ES = -2,93 ; ER = -4,57Metodo di Slutsky: ES = -2,5 ; ER = -5

Per il bene x

Metodo di Hicks: ES=+4,14 ; ER=-9,14 Metodo di Slutsky: ES=+5 ; ER=-10

- 6.40) $(x^*, y^*) = (30, 20)$ a)
 - b)
 - $(x^*, y^*) = (22, 44)$ La riduzione di 8 camicie hawaiane in seguito all'aumento del loro prezzo è così scomposta: c) metodo di Hicks: ES = -4.31; ER = -3.69metodo di Slutsky: ES = -4; ER = -4
 - No, le camicie hawaiane non sono un bene inferiore poiché all'aumentare del loro prezzo d) l'ER è negativo.