BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BTECH

BRANCH: CSE/ECE/EEE

SEMESTER : IV/ADD

SESSION: SP/2025

SUBJECT: MA203 NUMERICAL METHODS

TIME: 3 Hours

FULL MARKS: 50

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 10 marks and total 50 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Before attempting the question paper, be sure that you have got the correct question paper.
- 5. Tables/Data handbook/Graph paper etc. to be supplied to the candidates in the examination hall.

deflection y of the top of a sailboat mast is $y = \frac{FL^4}{RR}$, where F = a uniform side loading	[5]	co 1	BL 2
m), L = height (m), E = the modulus of elasticity (N/m^2) , and I = the moment of inertia). Estimate the error in y given the following data:			
	[5]	1	3
the Gauss-Jordan method to solve the following system of equations: $3x_1 - 0.1x_2 - 0.2x_3 = 7.85$	[5]	2	2
$0.1x_1 + 7x_2 - 0.3x_3 = -19.3$ $0.3x_1 - 0.2x_2 + 10x_3 = 71.4$			
I the solution to the following system of equations using the Gauss-Seidel method. $12x_1 + 3x_2 - 5x_3 = 1$ $x_1 + 5x_2 + 3x_3 = 28$	[5]	Z	3
)	b. Estimate the error in y given the following data: $= 750 \pm 30, L = 9 \pm 0.03, E = 7.5 \times 10^9 \pm 5 \times 10^7, I = 0.0005 \pm 0.000005.$ the secant method to estimate the root of $f(x) = e^{-x} - x$ correct upto four ificant digit. Start with the initial estimate of $x_{-1} = 0$ and $x_0 = 1.0$. the Gauss-Jordan method to solve the following system of equations: $3x_1 - 0.1x_2 - 0.2x_3 = 7.85$ $0.1x_1 + 7x_2 - 0.3x_3 = -19.3$ $0.3x_1 - 0.2x_2 + 10x_3 = 71.4$ the solution to the following system of equations using the Gauss-Seidel method. $12x_1 + 3x_2 - 5x_3 = 1$	m), L = height (m), E = the modulus of elasticity (N/m²), and I = the moment of inertia x_1 . Estimate the error in y given the following data: $x_2 = 750 \pm 30$, $x_3 = 7.5 \times 10^9 \pm 5 \times 10^7$, $x_4 = 0.0005 \pm 0.000005$. The secant method to estimate the root of $x_4 = e^{-x} - x$ correct upto four [5] if if it is initial estimate of $x_4 = 0$ and $x_4 = 1.0$. The Gauss-Jordan method to solve the following system of equations: $x_4 = 0.1x_2 - 0.2x_3 = 7.85$ $x_4 = 0.1x_4 - 0.2x_2 + 10x_3 = 71.4$ The solution to the following system of equations using the Gauss-Seidel method. $x_4 = 0.1x_4 + 3x_2 - 5x_3 = 1$	deflection y of the top of a sailboat mast is $y = \frac{FL^4}{8EI}$, where F = a uniform side loading m), L = height (m), E = the modulus of elasticity (N/m²), and I = the moment of inertia in Estimate the error in y given the following data: = 750 ± 30, $L = 9 \pm 0.03$, $E = 7.5 \times 10^9 \pm 5 \times 10^7$, $I = 0.0005 \pm 0.000005$. The secant method to estimate the root of $f(x) = e^{-x} - x$ correct upto four if if it is initial estimate of $x_{-1} = 0$ and $x_0 = 1.0$. The Gauss-Jordan method to solve the following system of equations: $3x_1 - 0.1x_2 - 0.2x_3 = 7.85$ $0.1x_1 + 7x_2 - 0.3x_3 = -19.3$ $0.3x_1 - 0.2x_2 + 10x_3 = 71.4$ The solution to the following system of equations using the Gauss-Seidel method. [5]

 $3x_1 + 7x_2 + 13x_3 = 76$ Use $(x_1, x_2, x_3) = (1,0,1)$ as the initial guess and the absolute relative approximate error should be less than 5% for each unknown.

- Q.3(b) Using Newton's Divided difference formula, find the missing value of y from the table: [5] 3 3 $\frac{x}{y}$ 14 15 5 $\frac{6}{y}$
- Q.4(a) Compute $\int_0^1 \frac{\sin x}{x} dx$ by using the composite trapezoidal rule with six uniform points. [5] 4 2 Take the value $\frac{\sin x}{x} = 1$ at x = 0.
- Q.4(b) Use 4-segment Simpson's 1/3 rule to approximate the distance covered by a rocket in meters from t=8s to t=30s as given by $x = \int_{0}^{30} \left(2000 \ln \left[\frac{140000}{140000 2100t} \right] 9.8t \right) dt$
- Q.5(a) Using modified Euler's method, find an approximate value of y when x=0.2, solve $\frac{dy}{dx} = x + y \text{ and } y = 1 \text{ when } x = 0. \text{ Take h=0.1.}$
- Q.5(b) Using the Runge-Kutta method of fourth order, solve $\frac{dy}{dx} = \frac{y^2 x^2}{v^2 + x^2} \text{ with } y(0) = 1 \text{ at } x = 0.2, 0.4$ [5]