

=====

Sequence Listing was accepted.

If you need help call the Patent Electronic Business Center at (866)
217-9197 (toll free).

Reviewer: Anne Corrigan

Timestamp: Tue Nov 06 17:21:58 EST 2007

=====

Application No: 10049967 Version No: 6.0

Input Set:

Output Set:

Started: 2007-10-23 12:16:20.555
Finished: 2007-10-23 12:16:21.954
Elapsed: 0 hr(s) 0 min(s) 1 sec(s) 399 ms
Total Warnings: 32
Total Errors: 0
No. of SeqIDs Defined: 46
Actual SeqID Count: 46

Error code	Error Description
W 213	Artificial or Unknown found in <213> in SEQ ID (1)
W 213	Artificial or Unknown found in <213> in SEQ ID (2)
W 213	Artificial or Unknown found in <213> in SEQ ID (3)
W 213	Artificial or Unknown found in <213> in SEQ ID (4)
W 213	Artificial or Unknown found in <213> in SEQ ID (5)
W 213	Artificial or Unknown found in <213> in SEQ ID (6)
W 213	Artificial or Unknown found in <213> in SEQ ID (7)
W 213	Artificial or Unknown found in <213> in SEQ ID (8)
W 213	Artificial or Unknown found in <213> in SEQ ID (9)
W 213	Artificial or Unknown found in <213> in SEQ ID (10)
W 213	Artificial or Unknown found in <213> in SEQ ID (11)
W 213	Artificial or Unknown found in <213> in SEQ ID (12)
W 213	Artificial or Unknown found in <213> in SEQ ID (13)
W 213	Artificial or Unknown found in <213> in SEQ ID (14)
W 213	Artificial or Unknown found in <213> in SEQ ID (15)
W 213	Artificial or Unknown found in <213> in SEQ ID (16)
W 213	Artificial or Unknown found in <213> in SEQ ID (17)
W 213	Artificial or Unknown found in <213> in SEQ ID (18)
W 213	Artificial or Unknown found in <213> in SEQ ID (19)
W 213	Artificial or Unknown found in <213> in SEQ ID (20)

Input Set:

Output Set:

Started: 2007-10-23 12:16:20.555
Finished: 2007-10-23 12:16:21.954
Elapsed: 0 hr(s) 0 min(s) 1 sec(s) 399 ms
Total Warnings: 32
Total Errors: 0
No. of SeqIDs Defined: 46
Actual SeqID Count: 46

Error code	Error Description
	This error has occurred more than 20 times, will not be displayed

SEQUENCE LISTING

<110> Dolly, James Oliver
O'Sullivan, Gregory A.
Mohammed, Nadiem
Foran, Patrick G.

<120> Isoforms of SNARE Molecules and the Uses
Thereof in Modulation of Cellular Exocytosis Methods of
Treatment

<130> 17790 (BOT)

<140> 10049967
<141> 2004-02-23

<160> 46

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 1
agacggatac catggccgag gacgc 25

<210> 2
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 2
agcatgaatt ctcaacgttg gttggcttca 30

<210> 3
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 3
catctttgtt gcagctgcgt tggcttcat 29

<210> 4
<211> 30

<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 4
catcttgcgtt gcctttgcgt tggcttccat 30

<210> 5
<211> 32
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 5
agcatacttg ttgcccacca gttggcttca tc 32

<210> 6
<211> 35
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 6
gatgaaggcca accaaactgc aacaaagatg ctgggg 35

<210> 7
<211> 34
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 7
cccagcatct ttgttgcagt ttgggtggct tatac 34

<210> 8
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 8
gatgaaggcca acgcacgtgc aacaaag 27

<210> 9
<211> 35
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 9
cccagcatct ttgttgcacg tgcgttggct tcatc 35

<210> 10
<211> 35
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 10
gatgaagcca accaagctgc aacaaagatg ctggg 35

<210> 11
<211> 35
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 11
cccagcatct ttgttgcagc ttgggtggct tcatc 35

<210> 12
<211> 41
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 12
ccagaattga tgaagccaac aaacatgcaa caaagatgct g 41

<210> 13
<211> 41
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR Primer

<400> 13
cagcatcttt gttgcatttt tgggtggcttc atcaattctg g 41

<210> 14
<211> 42
<212> DNA
<213> Artificial Sequence

<220>

<223> PCR Primer

<400> 14

gatgaagcca accaaactgc ataaaagatg ctgggaagtg gt 42

<210> 15

<211> 42

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR Primer

<400> 15

accacttccc agcatctttt atgcagtttg gttggcttca tc 42

<210> 16

<211> 42

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR Primer

<400> 16

gatgaagcca accaaactgc aacatagatg ctgggaagtg gt 42

<210> 17

<211> 42

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR Primer

<400> 17

accacttccc agcatctatg ttgcagtttg gttggcttca tc 42

<210> 18

<211> 36

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR Primer

<400> 18

gccaaccaac gtgcaacaaa gatgtaggaa agtggt 36

<210> 19

<211> 36

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR Primer

<400> 19
accacttccc tacatcttg ttgcacgttg gttggc

36

<210> 20
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Peptide

<400> 20
Gln Arg Ala Thr Lys Met Leu Gly Ser Gly
1 5 10

<210> 21
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Peptide

<400> 21
Gln Thr Ala Thr Lys Met Leu Gly Ser Gly
1 5 10

<210> 22
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Peptide

<400> 22
Gln Arg Ala Thr Lys Met Leu
1 5

<210> 23
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Peptide

<400> 23
Gln Thr Ala Thr Lys Met Leu
1 5

<210> 24
<211> 6

<212> PRT
<213> Artificial Sequence

<220>
<223> Peptide

<400> 24
Gln Arg Ala Thr Lys Met
1 5

<210> 25
<211> 6
<212> PRT
<213> Artificial Sequence

<220>
<223> Peptide

<400> 25
Gln Thr Ala Thr Lys Met
1 5

<210> 26
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> Peptide

<400> 26
Gln Arg Ala Thr Lys
1 5

<210> 27
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> Peptide

<400> 27
Gln Thr Ala Thr Lys
1 5

<210> 28
<211> 4
<212> PRT
<213> Artificial Sequence

<220>
<223> Peptide

<400> 28
Gln Thr Gln Thr
1

<210> 29
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Peptide

<400> 29
Gln Arg Ala Thr Lys Ala Leu Gly Ser Gly
1 5 10

<210> 30
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Peptide

<400> 30
Gln Thr Ala Thr Lys Ala Leu Gly Ser Gly
1 5 10

<210> 31
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Peptide

<400> 31
Gln Arg Ala Thr Lys Met Ala Gly Ser Gly
1 5 10

<210> 32
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Peptide

<400> 32
Gln Thr Ala Thr Lys Met Ala Gly Ser Gly
1 5 10

<210> 33
<211> 354
<212> DNA
<213> Homo sapiens

<400> 33
atgtctgctc cagctcagcc acctgctgaa gggacagaag ggactgcccc aggtgggggt 60
ccccctggcc ctccctctaa catgaccagt aacagacgc tacagcaaac ccaggcacaa 120
gtggaggagg tggtgacat catacggtg aacgtggaca aggtcctgga gagggaccag 180
aagctgtcaag agctggatga ccgagctgt gccttgcagg caggagcatc acaattttag 240
agcagtgcgtg caaaactaaa gaggaaatgt tggtggaaaa actgcaagat gatgatcatg 300
ctgggaacca tctgtgccat catcggtta gttattgtaa tctactttt tact 354

<210> 34
<211> 118
<212> PRT
<213> Homo sapiens

<400> 34
Met Ser Ala Pro Ala Gln Pro Pro Ala Glu Gly Thr Glu Gly Thr Ala
1 5 10 15
Pro Gly Gly Gly Pro Pro Gly Pro Pro Pro Asn Met Thr Ser Asn Arg
20 25 30
Arg Leu Gln Gln Thr Gln Ala Gln Val Glu Glu Val Val Asp Ile Ile
35 40 45
Arg Val Asn Val Asp Lys Val Leu Glu Arg Asp Gln Lys Leu Ser Glu
50 55 60
Leu Asp Asp Arg Ala Asp Ala Leu Gln Ala Gly Ala Ser Gln Phe Glu
65 70 75 80
Ser Ser Ala Ala Lys Leu Lys Arg Lys Tyr Trp Trp Lys Asn Cys Lys
85 90 95
Met Met Ile Met Leu Gly Thr Ile Cys Ala Ile Ile Val Val Val Ile
100 105 110
Val Ile Tyr Phe Phe Thr
115

<210> 35
<211> 498
<212> DNA
<213> Homo sapiens

<220>
<221> allele
<222> (485)...(5)
<223> n is any nucleotide

<400> 35
gagccgcccgc cgccatcaact gcccgtgcca agtcctccac ccgtgtcccc cgccatgtct 60
gctaccgctg ccacggcccc ccctgctgcc ccggctgggg agggtggtcc ccctgcaccc 120
cctccaaacc tcaccagtaa caggagactg cagcagaccc aggcccaggt ggatgaggtg 180
gtggacatca tgaggggtgaa cgtggacaag gtccctggagc gagaccagaa gctgtcgag 240
ctggacgacc gtgcagatgc actccaggcg gggccctccc agttgaaac aagcgcagcc 300
aagctcaagc gcaaatactg gtggaaaaac ctcaagatga tgatcatctt gggagtgatt 360
tgcgcccattca tcctcatcat catcatagtt tacttcagca cttaaatccc cgaggagtct 420
ccccctgccta gagaaggggcc tctcccccaa ccctcagccg ttccctccacc tctcagccat 480

atctntcagc cccccctc

498

<210> 36

<211> 384

<212> DNA

<213> Homo sapiens

<400> 36

ctctggttct tccagtcccc ggttagccagc gccagtcgga gccagcgca gcccggccg 60
ccgcggctgc cgtcaactgcc tctgccaagt ccactgcccc ctaccccccgc catgtcggtct 120
accgctgcca ccgtccggcc tgccggcccc gcccggcagg gtggccccc tgcacccct 180
ccaaacctta ctagtaacag gagactgcag cagaccagg cccaggtgga tgaggtgagt 240
gtgtgtgtgt gtctgtgtct gtgtctatgt ctatgtatgt caaaagatgca agatgatggg 300
ctggcaaata ggtgtggag cccatcttgg gttgaaggta aagacagctt atgcttgtgg 360
gttttggtgc gagacctgccc tcat 384

<210> 37

<211> 638

<212> DNA

<213> Homo sapiens

<400> 37

ctctaaacgc ccgcagctgc caaaatgtct acaggtccaa ctgctgccac tggcagtaat 60
cgaagacttc agcagacaca aaatcaagta gatgaggtgg tggacataat gcgagttAAC 120
gtggacaagg ttctgaaaag agaccagaag ctctctgagt tagacgaccg tgcagacgca 180
ctgcaggcag gcgcctctca atttgaaaccc agcgcagcca agttgaagag gaaatattgg 240
tggagaatt gcaagatgtg ggcaatcggg attactgttcc tggttatctt catcatcatc 300
atcatcggt gtgtgtctc ttcatgaaga accagcggaa ctcaaaaactg ctgttcaaga 360
aaccttctca agactttga cttagaacact gctatattat caagcttacc tactgttacc 420
tctaaaattt ttttgggttt aatgtaaagt tgaatttcta ggaaacgtgc ctttgggg 480
taatatgcac tccaaattttag aaggccggcc ccgtccacat tttcacagt gcctttacag 540
atttacgtat gggctgatga agaggccttc ttaagttcca gagtgtata atcttagatgt 600
aatgttgtca ctaattaattt gcccattactc cccttttag 638

<210> 38

<211> 100

<212> PRT

<213> Homo sapiens

<400> 38

Met	Ser	Thr	Gly	Pro	Thr	Ala	Ala	Thr	Gly	Ser	Asn	Arg	Arg	Leu	Gln
1															15
Gln	Thr	Gln	Asn	Gln	Val	Asp	Glu	Val	Val	Asp	Ile	Met	Arg	Val	Asn
					20										30
Val	Asp	Lys	Val	Leu	Glu	Arg	Asp	Gln	Lys	Leu	Ser	Glu	Leu	Asp	Asp
						35									45
Arg	Ala	Asp	Ala	Leu	Gln	Ala	Gly	Ala	Ser	Gln	Phe	Glu	Thr	Ser	Ala
						50									60
Ala	Lys	Leu	Lys	Arg	Lys	Tyr	Trp	Trp	Lys	Asn	Cys	Lys	Met	Trp	Ala
						65									80
Ile	Gly	Ile	Thr	Val	Leu	Val	Ile	Phe	Ile	Ile	Ile	Ile	Ile	Val	Trp
							85								95
Val	Val	Ser	Ser												
															100

<210> 39

<211> 800
<212> DNA
<213> Homo sapiens

<400> 39

ctcgaggcca cgaaggccgc caggtccggt gttggggtgt ccgagttgcc gccggagagg 60
agtggcctcg cccgctttag ttttattca tcataatcaa tctgtcatca gaagaaattc 120
aacagagagc tcaccagatt actgatgagt ctctggaaag tacgaggaga atcctgggtt 180
tagccattga gtctcaggat gcaggaatca agaccatcac tatgctggat gaacaaaagg 240
aacaactaaa ccgcataaaaaa gaaggcttgg accaaataaa taaggacatg agagagacag 300
agaagactt aacagaactc aacaaatgct gtggcccttg tgtctgccc tgtaatagaa 360
caaagaacct tgagtcggc aaggcttata agacaacatg gggagatggt ggagaaaact 420
caccttgcaa tggatatct aaacagccag gcccgggtgac aaatggtcag cttcagcaac 480
caacaacagg agcagtcaatg ggtggataca ttaaacgcata aactaatgat gccagagaag 540
atgaaatgga agagaacctg actcaagtgg gcagtatctt gggaaatcta aaagacatgg 600
ccctgaacat aggcaatgag attgatgctc aaaatccaca aataaaacga atcacagaca 660
aggctgacac caacagagat cgtattgata ttgccaatgc cagagcaaag aaactcattg 720
acagctaaag ctactgctgt ttttcttat catttattca cttccgtagc tcctcattga 780
aagttattac ctttcagag 800

<210> 40

<211> 211
<212> PRT
<213> Homo sapiens

<400> 40

Met Asp Asn Leu Ser Ser Glu Glu Ile Gln Gln Arg Ala His Gln Ile
1 5 10 15
Thr Asp Glu Ser Leu Glu Ser Thr Arg Arg Ile Leu Gly Leu Ala Ile
20 25 30
Glu Ser Gln Asp Ala Gly Ile Lys Thr Ile Thr Met Leu Asp Glu Gln
35 40 45
Lys Glu Gln Leu Asn Arg Ile Glu Glu Gly Leu Asp Gln Ile Asn Lys
50 55 60
Asp Met Arg Glu Thr Glu Lys Thr Leu Thr Glu Leu Asn Lys Cys Cys
65 70 75 80
Gly Leu Cys Val Cys Pro Cys Asn Arg Thr Lys Asn Phe Glu Ser Gly
85 90 95
Lys Ala Tyr Lys Thr Thr Trp Gly Asp Gly Glu Asn Ser Pro Cys
100 105 110
Asn Val Val Ser Lys Gln Pro Gly Pro Val Thr Asn Gly Gln Leu Gln
115 120 125
Gln Pro Thr Thr Gly Ala Val Ser Gly Gly Tyr Ile Lys Arg Ile Thr
130 135 140
Asn Asp Ala Arg Glu Asp Glu Met Glu Glu Asn Leu Thr Gln Val Gly
145 150 155 160
Ser Ile Leu Gly Asn Leu Lys Asp Met Ala Leu Asn Ile Gly Asn Glu
165 170 175
Ile Asp Ala Gln Asn Pro Gln Ile Lys Arg Ile Thr Asp Lys Ala Asp
180 185 190
Thr Asn Arg Asp Arg Ile Asp Ile Ala Asn Ala Arg Ala Lys Lys Leu
195 200 205
Ile Asp Ser
210

<210> 41

<211> 923
<212> DNA
<213> Homo sapiens

<400> 41

aacacaaccc tcccgagaag cccaggtcca gagccaaacc cgtcaactgac cccccagccc 60
aggcgcccaag ccactccccca ccgcctaccat ggccgaagac gcagacatgc gcaatgagct 120
ggaggagatg cagcgaaggg ctgaccagt ggctgtatgag tcgctggaaa gcacccgtcg 180
tatgctgcaa ctggtaaaga agagtaaaga tgctgttac aggacttgg ttatgttgg 240
tgaacaagga gaacaactcg atcgtgtcga agaaggcatg aaccatatca accaagacat 300
gaaggaggct gagaaaaatt taaaagatt agggaaatgc tgtggcctt tcataatgtcc 360
ttgttaacaag cttaaatcaa gtgtatgtt caaaaaagcc tggggcaata atcaggatgg 420
agtggtggcc agccagcctg ctcgtgttagt ggacgaacgg gaggcagatgg ccatcagtgg 480
cggcttcatc cgccaggtaa caaatgtatgc ccggagaaaaat gaaatggatg aaaacctaga 540
gcaggtgagc ggcattatcg ggaacctccg tcacatggcc ctggatatgg gcaatgagat 600
cgatacacag aatcgccaga tcgacaggat catggagaag gctgattcca aaaaaaccag 660
aattgtatgag gccaaccaac gtgcaacaaa gatgctggaa agtggttaag tgtgcccacc 720
cgtgtctcc tccaaatgct gtcggcaag atagctccct catgctttc tcataatggatt 780
atcttagtagg tctgcacaca taacacacat cagtcaccc ccattgtgaa tggatcttc 840
tgtcatctgt cagctccca acaataacttt gtgtcttttgc ttctcttcgt gtctctttct 900
ttccaaaggt tgtacatagt ggt 923

<210> 42

<211> 206

<212> PRT

<213> Homo sapiens

<400> 42

Met Ala Glu Asp Ala Asp Met Arg Asn Glu Leu Glu Glu Met Gln Arg
1 5 10 15
Arg Ala Asp Gln Leu Ala Asp Glu Ser Leu Glu Ser Thr Arg Arg Met
20 25 30
Leu Gln Leu Val Glu Glu Ser Lys Asp Ala Gly Ile Arg Thr Leu Val
35 40 45
Met Leu Asp Glu Gln Gly Glu Gln Leu Asp Arg Val Glu Glu Gly Met
50 55 60
Asn His Ile Asn Gln Asp Met Lys Glu Ala Glu Lys Asn Leu Lys Asp
65 70 75 80
Leu Gly Lys Cys Cys Gly Leu Phe Ile Cys Pro Cys Asn Lys Leu Lys
85 90 95
Ser Ser Asp Ala Tyr Lys Ala Trp Gly Asn Asn Gln Asp Gly Val
100 105 110
Val Ala Ser Gln Pro Ala Arg Val Val Asp Glu Arg Glu Gln Met Ala
115 120 125
Ile Ser Gly Gly Phe Ile Arg Arg Val Thr Asn Asp Ala Arg Glu Asn
130 135 140
Glu Met Asp Glu Asn Leu Glu Gln Val Ser Gly Ile Ile Gly Asn Leu
145 150 155 160
Arg His Met Ala Leu Asp Met Gly Asn Glu Ile Asp Thr Gln Asn Arg
165 170 175
Gln Ile Asp Arg Ile Met Glu Lys Ala Asp Ser Asn Lys Thr Arg Ile
180 185 190
Asp Glu Ala Asn Gln Arg Ala Thr Lys Met Leu Gly Ser Gly
195 200 205

<210> 43

<211> 923
<212> DNA
<213> Homo sapiens

<400> 43
aacacaaccc tcccgagaag cccaggtcca gagccaaacc cgtcactgac cccccagccc 60
aggcgcccaag ccactccccca ccgcgtaccat ggccgaagac gcagacatgc gcaatgagct 120
ggaggagatg cagcgaaggg ctgaccagt ggctgatgag tcgctggaaa gcacccgtcg 180
tatgctgcaa ctggtaaaga agagtaaaga tgctggatc aggacttgg ttatgttgg 240
tgaacaagga gaacaactgg aacgcattga ggaaggatg gaccaaatac ataaggacat 300
gaaagaagca gaaaagaatt tgacggaccc agggaaattc tgcgggctt gtgtgtgtcc 360
ctgtacaacaag cttaaatcaa gtgatgctta caaaaaagcc tggggcaata atcaggacgg 420
agtggtgcc agccagcctg ctcgtgttgt ggacgaacgg gacgatgg ccatcagtgg 480
cggcttcatc cgccggtaa caaatgatgc ccggaaaat gaaatggatg aaaacctaga 540
gcaggtgagc ggcacatcg ggaacctccg tcacatggcc ctggatatgg gcaatgagat 600
cgatacacag aatcgccaga tcgacaggat catggagaag gctgattcca acaaaaccag 660
aattgtatgag gccaaccaac gtgcaacaaa gatgctggaa agtggtaag tgtgcccacc 720
cgtgttctcc tccaaatgct gtcgggcaag atagctccctt catgctttc tcatggatt 780
atcttagtagg tctgcacaca taacacacat cagtcaccc ccattgtgaa tggatcttg 840
tgtcatctgt cagctccca acaatacttt gtgtctttt ttctctcttg gtctctttct 900
ttccaaagggt tgtacatagt ggt 923

<210> 44
<211> 206
<212> PRT
<213> Homo sapiens

<400> 44
Met Ala Glu Asp Ala Asp Met Arg Asn Glu Leu Glu Glu Met Gln Arg
1 5 10 15
Arg Ala Asp Gln Leu Ala Asp Glu Ser Leu Glu Ser Thr Arg Arg Met
20 25 30
Leu Gln Leu Val Glu Glu Ser Lys Asp Ala Gly Ile Arg Thr Leu Val
35 40 45