

Точные решения > Обыкновенные дифференциальные уравнения > Обыкновенные дифференциальные уравнения первого порядка

1. Обыкновенные дифференциальные уравнения первого порядка

- 1. $y_x' = f(y)$. Автономное уравнение первого порядка.
- $y_x' = f(x)g(y)$. Уравнение с разделяющимися переменными.
- 3. $g(x)y'_x = f_1(x)y + f_0(x)$. Линейное уравнение.
- 4. $g(x)y_x'=f_1(x)y+f_n(x)y^n$. Уравнение Бернулли.
- 5. $y'_x = f(y/x)$. Однородное уравнение.
- 6. $y'_x = ay^2 + bx^n$. Специальное уравнение Риккати.
- 7. $y'_x = y^2 + f(x)y a^2 af(x)$.
- 8. $y'_x = f(x)y^2 + ay ab b^2 f(x)$.
- 9. $y'_x = y^2 + xf(x)y + f(x)$.
- 10. $y'_x = f(x)y^2 ax^n f(x)y + anx^{n-1}$.
- 11. $y'_x = f(x)y^2 + anx^{n-1} a^2x^{2n}f(x)$.
- 12. $y'_x = -(n+1)x^ny^2 + x^{n+1}f(x)y f(x)$.
- 13. $xy'_x = f(x)y^2 + ny + ax^{2n}f(x)$.
- 14. $xy'_n = x^{2n}f(x)y^2 + [ax^nf(x) n]y + bf(x)$.
- 15. $y'_x = f(x)y^2 + g(x)y a^2f(x) ag(x)$.
- 16. $y'_x = f(x)y^2 + g(x)y + anx^{n-1} a^2x^{2n}f(x) ax^ng(x)$.
- 17. $y'_x = ae^{\lambda x}y^2 + ae^{\lambda x}f(x)y + \lambda f(x)$.
- 18. $y'_x = f(x)y^2 ae^{\lambda x}f(x)y + a\lambda e^{\lambda x}$.
- 19. $y'_x = f(x)y^2 + a\lambda e^{\lambda x} a^2 e^{2\lambda x} f(x).$
- 20. $y'_x = f(x)y^2 + \lambda y + ae^{2\lambda x}f(x)$.
- 21. $y'_x = y^2 f^2(x) + f'_x(x)$.
- 22. $y'_x = f(x)y^2 f(x)g(x)y + g'_x(x)$.
- 23. $y'_x = f(x)y^2 + g(x)y + h(x)$. Общее уравнение Риккати.
- **24.** $yy_x' = y + f(x)$. Уравнение Абеля второго рода в канонической форме.

25.
$$yy'_x = f(x)y + g(x)$$
. Уравнение Абеля второго рода.

26.
$$yy_x' = f(x)y^2 + g(x)y + h(x)$$
. Уравнение Абеля второго рода.

27.
$$y'_x = f(ax + by + c)$$
.

28.
$$y'_x = f(y + ax^n + b) - anx^{n-1}$$
.

29.
$$y'_x = \frac{y}{x} f(x^n y^m)$$
. Обобщенно-однородное уравнение.

30.
$$y'_x = -\frac{n}{m} \frac{y}{x} + y^k f(x) g(x^n y^m)$$
.

31.
$$y'_x = f\left(\frac{ax + by + c}{\alpha x + \beta y + \gamma}\right)$$
.

32.
$$y'_x = x^{n-1}y^{1-m}f(ax^n + by^m)$$
.

33.
$$[x^n f(y) + xg(y)]y'_x = h(y)$$
.

34.
$$x[f(x^ny^m) + mx^kg(x^ny^m)]y'_x = y[h(x^ny^m) - nx^kg(x^ny^m)].$$

35.
$$x[f(x^ny^m) + my^kg(x^ny^m)]y'_x = y[h(x^ny^m) - ny^kg(x^ny^m)].$$

36.
$$x[sf(x^ny^m) - mg(x^ky^s)]y'_x = y[ng(x^ky^s) - kf(x^ny^m)].$$

37.
$$[f(y) + amx^ny^{m-1}]y'_x + g(x) + anx^{n-1}y^m = 0.$$

38.
$$y'_x = e^{-\lambda x} f(e^{\lambda x} y)$$

39.
$$y'_x = e^{\lambda y} f(e^{\lambda y} x)$$
.

40.
$$y'_x = yf(e^{\alpha x}y^m)$$
.

41.
$$y'_x = \frac{1}{x} f(x^n e^{\alpha y})$$
.

42.
$$y'_x = f(x)e^{\lambda y} + g(x)$$
.

43.
$$y'_x = -\frac{n}{x} + f(x)g(x^n e^y)$$
.

44.
$$y_x' = -\frac{\alpha}{m}y + y^k f(x)g(e^{\alpha x}y^m).$$

45.
$$y'_x = e^{\alpha x - \beta y} f(ae^{\alpha x} + be^{\beta y}).$$

46.
$$[e^{\alpha x}f(y) + a\beta]y'_x + e^{\beta y}g(x) + a\alpha = 0.$$

47.
$$x[f(x^ne^{\alpha y}) + \alpha yg(x^ne^{\alpha y})]y'_x = h(x^ne^{\alpha y}) - nyg(x^ne^{\alpha y}).$$

48.
$$[f(e^{\alpha x}y^m) + mxg(e^{\alpha x}y^m)]y'_x = y[h(e^{\alpha x}y^m) - \alpha xg(e^{\alpha x}y^m)].$$

Веб-сайт EqWorld содержит обширную информацию о решениях различных классов обыкновенных дифференциальных уравнений, дифференциальных уравнений в частных производных, интегральных уравнений, функциональных уравнений и других математических уравнений.

© 2004–2005 А. Д. Полянин