```
DIALOG(R) File 351: Derwent WPI
(c) 2002 Thomson Derwent. All rts. reserv.
014089373
WPI Acc No: 2001-573587/ 200165
XRPX Acc No: N01-427618
  Electron emitting element for image display device, includes electron
  emission section formed by carbon nano tubes
Patent Assignee: RICOH KK (RICO )
Number of Countries: 001 Number of Patents: 001
Patent Family:
                            Applicat No
                                          Kind
                                                  Date
Patent No
             Kind
                   Date
JP 2001052598 A 20010223 JP 99220445
                                           A 19990803 200165 B
Priority Applications (No Type Date): JP 99220445 A 19990803
Patent Details:
Patent No Kind Lan Pg
                       Main IPC
                                    Filing Notes
JP 2001052598 A
                  10 H01J-001/316
Abstract (Basic): JP 2001052598 A
       NOVELTY - One part of electron emission section provided between
    pair of electrodes (21,22) is formed by carbon nano tubes (41,41').
        DETAILED DESCRIPTION - INDEPENDENT CLAIMS are also included for the
    following:
        (a) Manufacturing method of electron emitting element;
        (b) Image display device using electron emitting element
        USE - For image display device.
        ADVANTAGE - Secures highly efficient and reliable electron emitting
    element by simple production process.
        DESCRIPTION OF DRAWING(S) - The figure shows the electron emitting
    element.
        Electrodes (21,22)
        Carbon nano tubes (41,41')
        pp; 10 DwgNo 1/12
Title Terms: ELECTRON; EMIT; ELEMENT; IMAGE; DISPLAY; DEVICE; ELECTRON;
  EMIT; SECTION; FORMING; CARBON; NANO; TUBE
Derwent Class: V05
```

International Patent Class (Main): H01J-001/316

Manual Codes (EPI/S-X): V05-D01C5; V05-D05C5A

H01J-031/12 File Segment: EPI

International Patent Class (Additional): H01J-009/02; H01J-029/04;

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出職公開番号 特第2001 — 52598

(P2001-52598A)

(43)公攤日 平成13年2月23日(2001.2.23)

(51) Int.Cl. ¹		體別配号	ΡI			Ť-7	73}*(参考)	
H01J	1/316		H01J	1/30	1	E	5 C O 3 1	
	9/02			9/02]	E	5 C O 3 6	
	29/04			29/04				
31/12			31/12		(С		
			審定前	東京 未請求	請求項の数 9	or	. (全 10 頁)	
		······································	 -					

(21) 出職番号 特臘平11-220445

(22)出版日 平成11年8

平成11年8月3日(1999.8.3)

(71) 出軍人 000006747

株式会社リコー

東京都大田区中馬込1丁目3番6号

(72)発明者 権口 康之

東京都大田区中馬込1丁目3番6号 株式

会社リコー内

(72)発明者 井上 智博

東京都大田区中周込1丁目3番6号 株式

会社リコー内

(74)代理人 100094466

弁理士 友松 英蘭 (外1名)

最終頁に続く

(54) [発明の名称] 電子放出素子とその製造方法、および験電子放出素子を使用した国像形成装置

(57)【要約】

【課題】 高効率で、高い信頼性を有し、生産とその特性の制御が容易で、均一な電子放出特性を有する表面伝導型の電子放出素子の提供、上述のような特性を有する電子放出素子の製造法の提供および前記電子放出素子を用いることで、高効率で、高い信頼性を有し、高輝度で、生産と特性の制御が容易で画像の均一性が高い均一な画像形成装置の提供。

【解決手段】 一対の電極と該電極間に形成された電子 放出部を有する表面伝導型電子放出素子において、電子 放出部の少なくとも一部がカーボンナノチューブを含有 するする炭素質により形成されていることを特徴とする 電子放出案子とその製造方法、および該電子放出素子を 使用した画像形成装置。

【特許請求の範囲】

【請求項1】 一対の電極と該電極間に形成された電子 放出部を有する表面伝導型電子放出素子において、電子 放出部の少なくとも一部がカーボンナノチューブを含有 する炭素質により形成されていることを特徴とする電子 放出素子。

【請求項2】 カーボンナノチューブを含有する炭素質が少なくとも一方の電極表面に固着されている請求項1 記載の電子放出案子。

【請求項3】 カーボンナノチューブを含有する炭素質 が低電位電極のみに形成された請求項2記載の電子放出 案子。

【請求項4】 カーボンナノチューブ構造が電子伝導方向に配列された請求項1~3のいずれかに記載の電子放出象子。

【請求項5】 カーボンナノチューブを含有する炭素質が対向する電極端部に集中して形成されてなる請求項2~4のいずれかに記載の電子放出素子。

【請求項6】 電子放出部の少なくとも一部または電子 放出部の表面にカーボンナノチューブを気相から堆積、 成長させるための触媒を有し、該触媒上にカーボンナノ チューブを気相から堆積、成長させることを特徴とする 請求項1~5のいずれかに記載の電子放出素子の製造方 法。

【請求項7】 電子放出部の表面に、底部または頂部にカーボンナノチューブを気相から堆積、成長させるための触媒を有する凹凸構造を設け、該触媒上に選択的にカーボンナノチューブを気相から堆積、成長させることを特徴とする請求項6記載の電子放出素子の製造方法。

【請求項8】 電極または電極の一部または電極の表面 にカーボンナノチューブを含有する炭素質を電気化学的 手法を用いて堆積させることを特徴とする請求項6~7 のいずれかに記載の電子放出素子の製造方法。

【請求項9】 請求項1~5のいずれかに記載の電子放出素子を備えた画像形成装置。

【発明の詳細な説明】

[0001]

【技術分野】本発明の第一は、冷隆極電子放出素子、詳 しくは表面伝導型電子放出素子と該電子放出素子の製造 方法に関する。本発明の第二は、前記表面伝導型電子放 出素子を備えた画像形成装置に関する。

[0002]

【従来技術】従来、冷陰極電子放出素子には電界放出型、金属/絶縁層/金属型、表面伝導型が知られている。

【0003】電界放出型

そのうち、先鋭なエミッター形状を有する電界放出型は 100%近い放出効率が得られ、最も高効率であるが、 エミッターの形状を加工するのに複雑な成膜、パターン 形成を必要とし、加工精度や大面積化にも問題がある。

【0004】表面伝導型

一方、E. I. Elinson, Radion En g. Electron Phys., 10 (1965)な どに開示されている表面伝導型は高度の微細加工を必要 とせず、大面積化が容易であるという利点を有してい る. 図9は従来の表面伝導型の素子構成を示した上面図 である、また、図10は同素子の断面図である、ガラ ス、セラミックス、プラスチックス等の基板1上にSn O2 やAuなどの電極21、22が構成されている。3 2は電極間に構成された消または変質した高抵抗部であ る。電極21、22はフォトリソグラフィー等の方法に より別個の電極として形成することもでき、別の方法と しては、同一電極として形成した後レーザートリミング や通電フォーミング処理と呼ばれる方法によって高抵抗 部分32を形成する方法もとられる。このような構造に おいて電極の両端に電圧を印加し、膜面に平行に電流を 流すとトンネル効果によって高抵抗部分から電子が放出 される。

【0005】通電フォーミング法では電極形成に高度の 微細加工を必要としないが、電子がゲート22へ流れや すく、そのため電子放出効率が悪く、消費電流が増加す るとともに、エミッター21やゲートが破壊しやすいと いう問題があった。また、この方法で得られる高抵抗部 の幅は比較的広く、電子放出に高い電圧を必要とすると いう問題がある。また、通電フォーミング法では、高抵 抗部分形成の再現性が低く、放出素子をアレイ状に形成 した場合に、均一な放出特性を得ることが難しいという 問題があった。また、用いる電極材料の仕事関数が高い ため放出効率が低いという問題も有している。

【0006】一方、フォトリソグラフィー等でパターン 形成する場合には、狭い電極間の距離を均一に制御する ことが難しいという課題がある。また、用いる電極材料 の仕事関数が高いため放出効率が低いという問題も有し ている。また、いずれの方式おいても、電極上への不純 物の吸着によって特性が変化しやすいという問題も有し ている。

【0007】IDW96、Tech. Digest, p 523(1966)には電極21、22にPdOの超級粒子膜を用い、フォーミング処理によって電極間に微少な空隙を形成する方法が開示されている。エミッターとゲートの間に電圧を印加すると空隙からトンネルのより電子が放出される。この方法は、放出電圧は低いものの放出効率が極端に低くなるという問題を有している。また、フォーミング処理の効果が超微粒子膜の膜厚等の性状に依存するため、均一な放出特性が得られにくいという問題がある。また、用いる電極材料の仕事関数が高いため放出効率が低いという問題も有している。また、電極上への不純物の吸着によって特性が変化しやすいという問題も有している。

【0008】特開平7-235255には表面伝導型の

高抵抗部に真空中で通電することによりアモーファスカーボンやグラファイトを堆積することによって電子放出特性を安定化する技術が開示されている。しかしながらこの場合には、アモーファスカーボンやグラファイトの堆積が、系内の炭素元濃度、電極抵抗など多くの因子に依存するため堆積膜厚や堆積膜の電気的特性の再現性が乏しく、電子放出特性の均一化が得られにくい上、電子放出の効率、安定性も十分ではない。

[00009]

【発明が解決しようとする課題】本発明の第一の目的は、高効率で、高い信頼性を有し、生産とその特性の制御が容易で、均一な電子放出特性を有する表面伝導型の電子放出素子を提供することにある。本発明の第二の目的は、上述のような特性を有する電子放出素子の製造法を提供することにある。本発明の第三の目的は、前記電子放出素子を用いることで、高効率で、高い信頼性を有し、高輝度で、生産と特性の制御が容易で画像の均一性が高い均一な画像形成装置を提供することにある。【0010】

【課題を解決するための手段】本発明の特徴は、前記課題を解決するために、--対の電極と該電極間に形成された電子放出部を有する表面伝導型電子放出素子において、電子放出部の少なくとも一部がカーボンナノチューブを含有する炭素質により形成されていることを特徴とする電子放出素子を提供することにある。

【0011】上述のように電子放出部の少なくとも一部をカーボンナノチューブを含有する炭素質で形成することにより、電子放出部の電極距離がカーボンナノチューブが存在しないときに比べて実質的に狭められている電極間距離を高精度かつ簡便に形成、制御できるために、低電圧で動作でき、また均一な電子放出特性を得ることができる電子放出業子を提供できる。さらに、従来、電極間距離を短くすることができなかったフォトリソグラフィー等の方法においても、上述のように短い電極間距離を高精度かつ簡便に形成、制御できるために、低電圧で動作でき、また均一な電子放出特性を得ることができる。

【0012】本発明の電子放出素子において、カーボンナノチューブを含有する炭素質は、好ましくは電極表面に固着されてなり、さらに好ましくは、カーボンナノチューブを含有する炭素質は一方の電極のみ、より一層好ましくは、低電位電極のみに形成された電子放出素子である。上述のように、カーボンナノチューブを含有する炭素質を超極表面に固着することにより、電子放出部に低仕事関数で細いカーボンナノチューブを主成分とする炭素質を形成したため、高効率であり、かつ残存ガス等による特性変化を受けにくい電子放出素子が得られる。また、水発明の電子放出素子において、カーボンナノチューブを主成分とする炭素質を一方の電極のみに形成すると、加えて均一な電子放出特性が得られる。

【0013】また、本発明の電子放出素子においては、カーボンナノチューブ構造を電子伝導方向に配列した構成のものとすることにより、さらに高い電子放出効率を得ることができ、また、短い電極間距離をさらに高精度かつ簡便に形成、制御できるために、低電圧で動作でき、また均一な電子放出特性を得ることができる。また、上述のような構成を採用することによりフォトリソグラフィー等の方法においても、さらに短い電極間距離を高精度かつ簡便に形成、制御できるために、低電圧で動作でき、また均一な電子放出特性を得ることができる

【0014】さらに本発明の電子放出素子においては、カーボンナノチューブを含有する炭素質を対向する電極端部に集中して形成されてなるものがより好ましい。上述のように、カーボンナノチューブを含有する炭素質を対向する電極端部に集中して形成することにより、電界がカーボンナノチューブ先端に集中するため高い電子放出効率を得ることができる。また、短い電極間距離をさらに高精度かつ簡便に形成、制御できるために、低電圧で動作でき、また均一な電子放出特性を得ることができる。また、フォトリソグラフィー等の方法においても、上述のような構成を採用することによりさらに短い電極間距離を高精度かつ簡便に形成、制御できるために、低電圧で動作でき、また均一な電子放出特性を得ることができる。

【0015】電子放出部の少なくとも一部をカーボンナノチューブ含有炭素質により形成する方法としては 気子放出部、例えば電極の少なくとも一部または電極表面にカーボンナノチューブを気相から堆積、成長させるための触媒を有し、該触媒上に選択的にカーボンナノチューブを気相から堆積、成長させる方法においては、電子放出部の表面に、底部または頂部にカーボンナノチューブを気相から堆積、成長させるための触媒を有する凹凸構造を設け、該触媒上に選択的にカーボンナノチューブを気相から堆積、成長させるための触媒を有する凹凸構造を設け、該触媒上に選択的にカーボンナノチューブを気相から堆積、成長させることが好ましい。上述の方法によると、優れた特性を有する電子放出索子を再現性良く形成できる工業的な方法を提供することができた。また、表面伝導型の最も重要な課題である放出特性の均一化を容易に解決できた。

【0016】電子放出部の少なくとも一部をカーボンナノチューブ含有炭素質により形成する他の方法としては、電極または電極の一部または電極の表面にカーボンナノチューブを電気化学的手法を用いて堆積させる製造方法や電極または電極の一部または電極の表面にカーボンナノチューブを含有する炭素質を電極上での酸化還元反応を用いて堆積させる方法が挙げられる。これらの製造方法によっては、簡便な方法で本発明の放出素子を提供することができる。

【0017】また、本発明によれば、電子放出部の少なくとも一部にカーボンナノチューブを含有する炭素質を

形成した電子放出素子を備えた画像形成装置が提供される,該画像形成装置は上述の均一で高い放出特性を有し、高信頼性の電子放出素子を備えているため、発光効率が高く、低電圧で動作し、高信頼性の画像形成装置を提供することができる。また、電子放出素子が残存ガス等の影響を受けにくいため、超高真空にしなくても安定な発光が得られ、製造が容易である。

【0018】上述のように、本発明の特徴点は表面伝導 型の電子放出素子の電子放出部にカーボンナノチューブ を配している点にある。カーボンナノチューブは仕事関 数が小さく(4.6eV)、金属電極をエミッターに用 いた場合に比べて、低いしきい値電圧で電子放出を行わ せることができる。さらには、カーボンナノチューブは 金属電極に比べてガス等の残留成分があった場合でもこ れらの成分の吸着、堆積による仕事関数の変化が小さ く、比較的低真空化でも電子放出特性が変化しにくく、 **長期の使用によっても特性が変化しにくいという利点を** 有する。加えて、カーボンナノチューブは10 nm程度 の太さで長さは数μm程度まで作成可能であり、このよ うな高いアスペクト比を有し、かつ、良導体であるた め、電界を印加した場合には、電界が特に高抵抗部近傍 のカーボンナノチューブ先端に集中し、低電圧で効率よ く電子放出を行わせることができるという特徴を有す る。このような形状因子に起因する効果は従来のグラフ ァイトやアモーファスカーボンでは発現し得ない大きな 特徴である。

[0019]

【発明の実施形態】次に、本発明の構成を図示して説明 する、図11は本発明の電子放出素子の一例の上面図で ある。基本的な構成は図9と類似であるが、電子放出部 である高抵抗部31近傍の構成が異なる。図1は本発明 の電子放出索子の一例の電子放出部近傍の断面図であ る。図1において、支持体(基板)1上に一対の電極2 1、22が形成されており、電極間には高抵抗部31が 形成されている。電極21、22上にはカーボンナノチ ューブ41、41′が配置され、電子放出部を形成して いる。電極21を低電位電極、電極22を高電位電極と して両電極間に電圧を印加すると、21から22に向け て電子放出を生ずる。放出された電子のうち一部また は、電極22での散乱電子、または2次電子は図上方に 配置され(図示せず)、高電位状態とされたアノードに 引き寄せられることにより、電子がアノードに向けて放 出される。

【0020】本発明では、電子放出部にカーボンナノチューブを配している。カーボンナノチューブは10nm程度の大きで長さは数μm程度まで作成可能であり、このような高いアスペクト比を有し、かつ、良導体であるため、本発明のように電界を印加した場合には、電界が特に高抵抗部近傍のカーボンナノチューブ先端に集中し、低電圧で効率よく電子放出を行わせることができる

という特徴を有する。また、カーボンナノチューブは仕事関数が小さく(4.6eV)、金属電極をエミッターに用いた場合に比べて、低いしきい値電圧で電子放出を行わせることができる。さらには、カーボンナノチューブは金属電極に比べてガス等の残留成分があった場合でもこれらの成分の吸着、堆積による仕事関数の変化が小さく、比較的低真空化でも電子放出特性が変化しにくく、長期の使用によっても特性が変化しにくいという利点を有する。

【0021】電極21、22としてはMo、Ta、W、 Cr、Ni、Pt、Ti、Al、Au、Cu、Pd等の 金属、または合金、およびPd、Ag、Au、Ru O2、Pd-Ag等の金属あるいは金属酸化物の微粒子 導体、シリコン、酸化インジウム、酸化錫等の半導体を 用いることができる。高抵抗部の形成は、従来公知のフ ォーミング法またはフォトリソグラフィーを用いた電極 のバターン形成を採用できる。高抵抗部(電極間)の幅 Lは数百オングストローム~数μmであることが好まし い。また、本図では高抵抗部を溝状しで図示したが、縞 状等で導電部材が残存していても良い。溝状しが小さい 場合にはゲート電流と呼ばれるエミッター電極21から ゲート電極への電流が多くなり、電子の放出効率が低下 し、消費電流が増加する。また高抵抗部(電極間)の幅 しが大きすぎる場合にはしきい値電圧が上昇し、駆動電 圧が上昇してしまう.

【0022】カーボンナノチューブ41、41′を電極上に形成するには、アーク放電等により別途合成した、一ボンナノチューブを電気化学的または物理的に付着、固着させる方法、同様にして塗布または印刷した後、所定パターンにパターン形成する方法、および気相から電極上に堆積、成長させる方法を例示できる。電気化学的方法としては、カーボンナノチューブを電気泳動法により電極上に堆積する方法が知られている。また、電極上での酸化還元反応を利用した堆積方法たとえばフェロセン誘導体等を界面活性剤として用いたミセル電解法も好ましく用いることができる。

【0023】気相成長法としてはCVD(化学的気相堆 積法)法を好適な例として例示することができる。これ はアセチレン、エチレン、ベンゼン、プロピレン、2ー アミノー4・6ージクロローsートリアジンなどの有機 物を炭素源とし気相中でこれらを分解し、基材上にカー ボンナノチューブを成長させるものである。この場合、 基材上に触媒をあらかじめ形成することにより、触媒上 に選択的にカーボンナノチューブを成長させることができ、このため、電極材料として触媒材料を用いれば電極 上に選択的にカーボンナノチューブを形成することができるため好ましい。また、特定の場所に触媒を形成した 場合には、所望の場所に選択的にカーボンナノチューブ を形成することができる。

【0024】触媒材料としてはSc、Ti、Cr、M

n、Fe、Co、Ni、Cu、Ge、Se、Zr、Nb、Mo、Ru、Rh、Pd、Ta、Pt、Au等が例示されるが、なかでも、Mn、Fe、Co、Ni、Mo、Ptが好ましい。図1では51、52が触媒層に相当する。前述のように触媒は図のように電極上に形成されていても良く、また電極そのものを触媒材料で形成することもできる。また、図1のように均一な膜ではなくパターンまたは島状に形成されていても良い。また、電極を微粒子で形成する場合には、微粒子中に存在していても良い。

【0025】図2は、本発明の電子放出素子の別の構成例を示したものである。この場合、カーボンナノチューブは低電位側の電極に形成されており、高電位電極側は金属または半導体等の膜で構成されている。この場合、ゲート電極が面で構成されるのでより均一な放出特性が得られる。このような構成を実現するためには、カーボンナノチューブを一方の電極のみに印刷で形成するか、電極21に選択的に電圧を印加することにより電気化学的に付着させる方法、図中41のように触媒を一方の電極のみに形成し気相成長させる方法、電極21を触媒で的に付着させる方法、図中41のように触媒を一方の転びし、電極22を非触媒性導電材料で形成し、気相成長法で形成する方法、あらかじめ形成したカーボンナノチューブ膜をフォトリソグラフィー等の方法でパターン形成する方法などを例示することができる。

【0026】図3はミュニ別の電子放出素子の別の構成 例を示したものであり、カーボンナノチューブ41を電 極間に配置させることにより電極21と22の間の実質 的な放電距離がしからし、に狭められている。放電距離 は放出のしきい値電圧を決定する重要な因子であり、厳 密に制御する必要がある。この間隔が素子によって変化 すると放出特性が変化し、たとえばフィールドエミッシ ョンディスプレイの電子放出源として用いた場合には、 輝度むらを引き起こし好ましくない。電極21、22に 金属または半導体電極を用い、フォーミング処理を行っ た際の高抵抗部分の幅Lはμmオーダーと比較的大き く、このままでは放出電圧が高くなってしまう。この構 成において、図3に図示した方法を適用することによ り、CNTの成長を制御することによって、より小さい し」を得ることができ、低電圧化を達成することができ る。また、電極21、22をフォトリソグラフィー等の 公知の方法でパターン形成した場合には、フォトリソグ ラフィーの限界によりLをO.5m以下で精度よく制 御することが難しい。この場合について、本発明を適用 した場合には、例えば1µm程度のしであっても、カー ボンナノチューブの成長制御によって短いし、を再現性 良く得ることができ、低電圧での電子放出を安定して実 現することができる。このように、カーボンナノチュー プの長さを厳密に制御することが可能なため、放出特性 に大きな影響を与える電極間距離し、をさらに厳密、し かも簡便な方法で制御することができる。また、電子放 出源が先端が細いカーボンナノチューブであるので、電 界集中によって従来の面状の放出電極に比べて高い放出 効率を得ることができる。カーボンナノチューブの長さ の制御は、電気化学的に付着させる方法では通電時間ま たは電圧または原料となるカーボンナノチューブの長さ を選択することによって実現できる。また、気相成長で は原料炭化水素の供給量、分解温度、成長時間などの基 本的成長条件を制御することにより行われる。

【0027】図4は、本発明の別の電子放出素子の構成 例を示したものであり、電子放出部の少なくとも一部に カーボンナノチューブを主成分とする炭素質が、電子伝 導方向に配列した構造を図示したものである。本図にお いて電子放出部31においてカーボンナノチューブ41 は電極21から電極22の方向すなわち電子伝導の方向 に配列している。このような構成により、電極間距離し 、をより精密に制御できるとともに、電界の方向にカー ボンナノチューブが配列しているため、カーボンナノチ ューブ先端からの電子の放出がより効率よく行わせるこ とができる。さらに、カーボンナノチューブの長さを厳 密に制御することが可能なため、放出特性に大きな影響 を与える電極間距離し、をさらに厳密、しかも簡便な方 法で制御することができる。このような構造を実現する ためには、図5に模式的に示したように、電極または電 極上に微細な凹構造または凸構造を設け、凹凸に対応さ せて触媒51を配し、これに気相成長法によってカーボ ンナノチューブを形成する方法を好ましく例示すること ができる。なお、図5では電極22は省略して記述して ある.

【0028】四凸構造としては、フォトレジスト等を用いてフォトリソグラフィーによりレジストパターンの凹凸を形成する方法、またはフォトリソグラフィー等の方法で金属等の表面に凹凸を形成する方法、多孔質膜シリカや多孔質アルミナ膜を形成し、この孔部を利用する方法などを好ましく例示することができる。特に多孔質アルミナはアルミの陽極酸化によって形成可能であり、カーボンナノチューブの成長に適した微細な多孔質構造がえられるため、工業的および配向の制御の点で最も好ましい方法である。孔径または突起の径としては5 n m~1 μmが好ましく、より好ましくは10 n m~500 n mの範囲である。

【0029】図7は本発明の電子放出素子の別の実施例を示したものであり、図5においてカーボンナノチューブを電極21の断面にのみ設けた例である。この場合、さらに電界が電極間のカーボンナノチューブに集中するため、さらに高い効率の電子放出が得られる。

【0030】図6は、本発明の電子放出素子の別の実施例を示したものであり、図7においてカーボンナノチューブを電子伝導方向に配列させた例である。この場合、さらに電界が電極間のカーボンナノチューブに更に集中するため、さらに高い効率の電子放出が得られるととも

c、 L_1 を容易にかつ精度良く制御することが可能となる

【0031】本発明において電極の形状はエミッター電 極とゲート電極の配線設計、電極の抵抗、電子放出特 性、用途など多くの因子で決定される。典型的にはWo は 1μ m~ 100μ mであり、 W_4 や21、22の大きさは、1μmから1mmの範囲である。電極21、22 の厚さは10nmから数10μmの範囲である。用いる ことのできるカーボンナノチューブとしては、単層ナノ チューブおよび多層ナノチューブを用いることができ る。ナノチューブの直径は単層の場合、1 nm~3 nm であり、多層の場合10mm~100mmの範囲が好ま しい。また、単層ナノチューブが寄り集まってロープと 呼ばれる東上の集合体を形成していても良い。これらの うち、電子放出特性の点から多層型のカーボンナノチュ ーブを特に好ましく用いる。これらの構造は、カーボン ナノチューブを形成する際の成長条件や触媒、成長方法 によって制御可能である。また、カーボンナノチューブ を含む炭素質にはナノパーティクルと呼ばれる炭素多面 体徴粒子が含まれていても良い。これは、カーボンナノ チューブ生成の際の副生成物として含まれるものであ る。炭素質にしめるカーボンナノチューブの割合は20 %以上であることが好ましく、40%以上であることが 好ましい。この割合が低いこ電子放出効率が低下する。 また、カーボンナノチューブの先端のキャップ部を取り 去ることもできる。この場合、形状効果によってさらに 高効率の放出特性が得られるので好ましい。キャップを 取り去るには、酸化等の方法でカーボンナノチューブを 部分的に分解することにより行うことができる。以上の 図ではカーボンナノチューブは理想的に電極上に形成さ れるとして説明したが、電極外の高抵抗部にも形成され ていても良い。ただし、この密度が高いと電極21、2 2が短絡するため、少なくとも短絡しない密度に抑制す る必要がある。また、特に説明のない限り、カーボンナ ノチューブからなる炭素質材料は電極22にも形成され ていても良いことは明らかである。さらに、高抵抗部位 は溝状に電極が完全に欠損しているように説明したが、 電極部材等が断続的に形成されていても良く、また、高 抵抗部材が存在することもできる。

【0032】本発明の電子放出素子は、電子放出を必要とする多くのデバイスに適用可能である。なかでも、低電圧で高効率、均一性という特長を生かして、一般にフィールドエミッションディスプレイまたは真空マイクロディスプレイと呼ばれる画像形成装置に特に好適に用いられる。

【0033】図8は、図3の構成例の電子放出素子を用いた真空マイクロディスプレイの構成例である。なお、本図の構成のものは本発明の画像形成装置の一例であり、本図の構成のものに限定されるものではない。図中、1~51は前述の図と同じ意味を有する。71は絶

縁膜、81はエミッター配線電板である。ゲート配線は 紙面に直交する方向になされ、ゲート電極とマトリクス 構造を形成している。91はアノード電極であり、選択 画素にはエミッター<ゲート<アノードとなるような電 位が印加される。ゲート電圧によってエミッターから引 き出された電子は、電位勾配に従って加速されアノード に衝突する。101は蛍光体であり、アノードを突き抜 けた電子は蛍光体に衝突し、蛍光体の発光を促す。12 は対向基板でありガラス等の透光性部材が用いられる。 **基板間の空間はフリットガラス等の外周シール111**に よって密閉され、内部は10⁻⁵ Torr~10⁻⁸ T orrの真空が維持される。空隙の厚さdは数十μmか ら数mmの範囲である。本発明になる真空マイクロディ スプレイは上述のように、高効率で均一な電子放出特性 を有し、高信頼性の電子放出素子を備えているため、発 光効率が高く、低電圧で動作し、高信頼性の画像形成装 置を提供することができる。また、電子放出素子が残存 ガス等の影響を受けにくいため、高真空にしなくても1 0-6 Torr程度の真空度で安定な発光が得られ、製 造が容易である。

[0034]

【実施例】以下に実施例によって本発明をさらに詳細に 説明する。実施例においては電極は $W_2 = 100 \mu m$ 、 $W_4 = 50 \mu m$ とし、基板にはガラスを使用した。

【0035】実施例1

ガラス基板の上にSi〇₂からなる下引き層を500Aの厚さで形成後、フォトリソグラフィー法を用いて、図1に示す電極構造を形成した。L=2μmとした。ついで、アセチレンを炭素源とし、アンモニアを希釈ガスとして650℃の分解温度でカーボンナノチューブを生成させた。カーボンナノチューブはNi表面をほぼ覆うように形成され、図1に示す電子放出素子を形成できた。この素子の特性を10⁻7Torrの真空中、アノード電圧1KVにて測定したところ、安定した電子放出が確認され、放出効率(放出電流/ゲート電流)は2%であった。また、連続した放電においても放出特性はほとんど変化しなかった。

【0036】比較例1

実施例1において、カーボンナノチューブを形成せずに 放出特性を測定したところ、放出効率は約1%であり、 しさい値電圧は実施例の2倍であった。また、連続した 通電で、徐々に放出特性が低下することが確認された。 【0037】実施例2

実施例1において電極21(低電位電極)上にのみカーボンナノチューブを形成した。この素子の電子放出特性を同様にして測定したところ、効率、しきい値電圧は実施例1とほぼ同等であったが、放出特性はさらに安定していた。また、実施例1と同様に、放出特性の経時変化は見られなかった。

【0038】実施例3

ガラスの上にSi〇2からなる下引き層を500Aの厚 さで形成後、スパッタリング法により、50nmの厚さ でNi膜を形成した。フォトリソグラフィー法を用い て、図1に示す電極構造を形成した。L=2μmとし た。さらに、アセチレンを炭素源とし、アンモニアを希 釈ガスとして650℃の分解温度でカーボンナノチュー ブを生成させた。カーボンナノチューブはNi表面と断 面を覆うように形成され、図3示す電子放出素子を形成 できた。カーボンナノチューブは電極21から電極22 の方向に向けても成長し、これにより実際の電極間距離 は100nmに制御することができた。この素子の特性 を10⁻⁷Torrの真空中、アノード電圧1KVにて 測定したところ、安定した電子放出が確認され、放出効 率(放出電流/ゲート電流)は0.5%であった。ま た、連続した放電においても放出特性はほとんど変化し なかった。

【0039】比較例2

実施例3において、ガラスの上に SiO_2 からなる下引き層を500Aの厚さで形成後、スパッタリング法により、50nmの厚さでNi膜を形成した。フォトリソグラフィー法を用いて、L=100nmである電極構造の形成を試みたが、パターンの再現性が無く、カーボンナノチューブを設けずに測定した放出特性も再現性が得られなかった。これに対して、実施例3では、上述のように $L=2\mu m$ であるが、CNTを設けることによって、実質的に放出部の幅を100nmにし、安定した放出が得られた。

【0040】実施例4

電極として超微粒子Pd膜を形成し、フォーミング処理によって100nmの電裂を形成した。ついでアセチレンを炭素源とし、アンモニアを希釈ガスとして650℃の分解温度でカーボンナノチューブを生成させた。カーボンナノチューブは電極21から電極22の方向に向けても成長し、これにより実際の電極間距離は10nmに制御することができた。この素子の特性を10-7Torrの真空中、アノード電圧1KVにて測定したところ、安定した電子放出が確認され、放出効率(放出電流/ゲート電流)は0.3%であった。また、連続した放電においても放出特性はほとんど変化しなかった。

【0041】比較例3

電極として超敞粒子Pd膜を形成し、フォーミング処理によって10nmの亀裂を形成した。この素子の特性を10-7Torrの真空中、アノード電圧1KVにて測定したところ、電子放出が確認されたが安定性に乏しく、放出効率(放出電流/ゲート電流)は0.1%であった。また、連続した放電において、放出効率の低下が観察された。

【0042】比較例4

実施例4において、カーボンナノチューブを形成せずに 電極21に通電することによりアモーファスカーボンを 電極21に推積させた。この素子の効率は0.2%であ り、実施例4の方が優れていた。また、再現性において も実施例4が優れていた。

【0043】実施例5

ガラスの上にSiOっからなる下引き層を500Aの厚 さで形成後、スパッタリング法により、50 nmの厚さ でNi膜を形成した。その上にさらにA1を50nmの 厚さで形成した。ついで陽極酸化法によりAIをポーラ スアルミナとした。このときアルミナに形成された孔は Niに到達するよう反応性イオンエッチング処理を行っ た。このようにして、図5に示す電極構造を形成した。 Lは2μmとした。アルミナの細孔は直径約40nmで あった。さらに、アセチレンを炭素源とし、アンモニア を希釈ガスとして650℃の分解温度でカーボンナノチ ューブを生成させた。カーボンナノチューブはアルミナ の細孔中に垂直に立って形成され、図5に示す電子放出 素子を形成できた。カーボンナノチューブは電極21か ら電極22の方向に向けても基板に平行に成長し、これ により実際の電極間距離は100 nmに制御することが できた。この業子の特性を10~7Torrの真空中、 アノード電圧1KVにて測定したところ、安定した電子 放出が確認され、放出効率(放出電流/ゲート電流)は 0.6%であった。また、連続した放電においても放出 特性は変化しなかった。

【0044】実施例6

実施例5においてポーラスアルミナを電極21の端部の みに形成した。このようにして、図6に示す電極構造を 形成した(ただし、図6は右方にある電極22は図示さ れていない。). Lは2µmとした。アルミナの細孔は 直径約40mmであった。さらに、アセチレンを炭素源 とし、アンモニアを希釈ガスとして650℃の分解温度 でカーボンナノチューブを生成させた。カーボンナノチ ューブはアルミナの細孔中に垂直に立って形成され、図 6に示す電子放出素子を形成できた。カーボンナノチュ ーブは電優21から電極22の方向に向けて基板に平行 に成長し、これにより実際の電極間距離は100nmに 制御することができた。この素子の特性を10-7 To rrの真空中、アノード電圧1KVにて測定したとこ ろ、安定した電子放出が確認され、放出効率(放出電流 /ゲート電流)は0.6%であった。また、連続した放 電においても放出特性は変化しなかった。

【0045】実施例7

ガラスの上に SiO_2 からなる下引き層を500Aの厚さで形成後、スパッタリング法により、50nmの厚さで SnO_2 / In_2O_3 膜を形成した。フォトリソグラフィー法を用いて、図1に示す電極構造を形成した。レニ1 μ mとした。アーク放電法で別途作成したカーボンナノチューブ(長さ 0.8μ m、径10nm)をフェロ

セン誘導体の界面活性剤FPEG(同人化学製)を用い、FPEGの5倍量支持塩(LiBr)を併用することでカーボンナノチューブをミセル化した。電極21を陽極、白金を陰極として0.5Vの定電位電界を行い、電極にカーボンナノチューブを堆積させた。カーボンナノチューブは $$i0_2$ 表面と断面を覆うように形成され、図3に示す電子放出素子を形成できた。カーボンナノチューブは電極21から電極200 nmに制御することができた。この素子の特性を 10^-7 Torrの真空中、アノード電圧1K Vにて測定したところ、安定した電子放出が確認され、放出効率(放出電流/ゲート電流)は0.4%であった。また、連続した放電においても放出特性はほとんど変化しなかった。

【0046】実施例8

実施例 3の電子放出素子を 16×16 のアレイ状に形成し図 8に示す真空マイクロディスプレイを構成した。71の絶縁膜には81028 年 110 年 12 を用い、13 年 13 電極には14 年 14 年 15 年 17 年 17 年 18 年 19 日 19 日

[0047]

【効果】1. 請求項1

一対の電極と該電極間に形成された電子放出部を有する 表面伝導型電子放出素子において、電子放出部に低仕事 関数で細いカーボンナノチューブを主成分とする炭素質 を形成したため高効率であり、かつ残存ガス等による特 性変化を受けにくい電子放出素子が提供された。

2. 請求項2および3

カーボンナノチューブを主成分とする炭素質が一方の電 極のみに形成された本発明になる電子放出素子は、請求 項1の効果に加えて均一な電子放出特性が得られる。

3. 請求項4

請求項1~3の効果に加え、さらに高い電子放出効率を得ることができる。また、短い電極間距離をさらに高精度かつ簡便に形成、制御できるために、低電圧で動作でき、また均一な電子放出特性を得ることができる。また、フォトリソグラフィー等の方法においても、本請求項の構成を採用することによりさらに短い電極間距離を高精度かつ簡便に形成、制御できるために、低電圧で動作でき、また均一な電子放出特性を得ることができる。4.請求項5

電界がカーボンナノチューブ先端に集中するため高い電子放出効率を得ることができる。また、短い電極間距離をさらに高精度かつ簡便に形成、制御できるために、低電圧で動作でき、また均一な電子放出特性を得ることができる。また、フォトリソグラフィー等の方法において

も、本請求項の構成を採用することによりさらに短い電 極間距離を高精度かつ簡便に形成、制御できるために、 低電圧で動作でき、また均一な電子放出特性を得ること ができる。

【0048】5、請求項6および7

上述の優れた特性を有する電子放出素子を再現性良く形成できる工業的な方法を提供することができた。また、本方法によれば、表面伝導型の最も重要な課題である放出特性の均一化を容易に解決できた。

6. 請求項8

簡便な方法で本発明の放出素子を提供することができる。

7. 請求項9

均一で高い放出特性を有し、高信頼性の電子放出素子を 備えているため、発光効率が高く、低電圧で動作し、高 信頼性の画像形成装置を提供することができる。また、 電子放出素子が残存ガス等の影響を受けにくいため、超 高真空にしなくても安定な発光が得られ、製造が容易で ある。

【図面の簡単な説明】

【図1】本発明の電子放出素子の一構成例(電極上には カーボンナノチューブ41、41′が配置され、電子放 出部を形成)の電子放出部近傍の断面図である。

【図2】本発明の電子放出素子の別の構成例(CNTは 低電位側の電極に形成されており、高電位電極側は金属 または半導体等の膜で構成)の電子放出部近傍の断面図 である。

【図3】本発明の電子放出素子の別の構成例(CNTを電極間に配置)の電子放出都近傍の断面図である。

【図4】本発明の電子放出素子の別の構成例(CNTを 主成分とする炭素質が、電子伝導方向に配列した構造) の電子放出部近傍の断面図である。

【図5】本発明の電子放出素子の別の構成例(電極または電極上に微細な凹構造または凸構造を設けた構成)の電子放出部近傍の断面図である。

【図6】本発明の電子放出素子の別の構成例(図7においてCNTを電子伝導方向に配列させた構成)の電子放出部近傍の断面図である。

【図7】本発明の電子放出素子の別の構成例(図5においてCNTを電極21の断面にのみ設けたた構成)の電子放出部近傍の断面図である。

【図8】図3の構成例の電子放出素子を用いた真空マイクロディスプレイの断面図である。

【図9】従来の表面伝導型の素子構成を示した上面図である。

【図10】従来の表面伝導型の素子構成を示した断面図である。

【図11】本発明の電子放出素子の一例の上面図である。

【図12】図1の電子放出部の拡大説明図である。

(9)開2001-52598(P2001-52514 【符号の説明】 111 外周シール 1 基板 d 空隙の厚さ 12 対向基板 L 高抵抗部(電極間)の幅または電極間に構成された 21 電極 溝 22 電極 L₁ 高抵抗部(電極間)の辐または電極間に構成され た溝 31 電極間に構成された高抵抗部 32 電極間に構成された溝または変質した高抵抗部 W_1 カソード電極とゲート電極の合計の長さ($1 \mu m$ 41 カーボンナノチューブ $\sim 1 \text{ mm}$) 41' カーボンナノチューブ W₂ 電子放出部をフォーミング処理により形成するた 51 触媒層 めの高抵抗部位の幅(1µm~100µm)。ただしW 52 触媒層 $_{2} < W_{1}$ 61 微細な凹構造 W_3 カソード電極とゲート電極の幅($1 \mu m \sim 1 m$ 71 絶縁膜 m) 81 エミッター配線電極 W₄ 電子放出部をフォーミング処理により形成するた 91 アノード電極 めの高抵抗部位の長さ($1 \mu m \sim 1 m m$)。ただし W_4 101 蛍光体 $< w_3$ 【図1】 【図2】 【図3】 [34] 【図5】 【図6】

【图10】

(10) #2001-52598 (P2001-5254

【図9】

【図11】

フロントページの続き

(72)発明者 桂川 忠雄

東京都大田区中馬込1丁目3番6号 株式

会社リコー内

(72)発明者 木村 與利

東京都大田区中馬込1丁目3番6号 株式

会社リコー内

(72)発明者 村井 俊晴

東京都大田区中馬込1丁目3番6号 株式

会社リコー内

(72)発明者 高橋 裕幸

東京都大田区中馬込1丁目3番6号 株式

会社リコー内

Fターム(参考) 50031 DD09

5C036 EE01 EE02 EE14 EF01 EF06

EGO2 EG12 EH11