Math 335, Midterm 2

November 6, 2019

Name:

Problem	Points Scored	Total Points Possible
1		8
2		8
3		8
4		8
5		8
Total		40

Problem 1:

(a) Carefully define what it means for a group G to be **cyclic**.

(b) Let

$$U_4 = \{1, -1, i, -i\} \subseteq \mathbb{C}^*,$$

which is a group under multiplication of complex numbers. Explain how you know that U_4 is cyclic.

(c) Let

$$\mathbb{Z}_5 = \{0, 1, 2, 3, 4\},\$$

which is a group under addition modulo 5. In this group, what is $\langle 3 \rangle$? List all of its elements.

Problem '	2.	You (do not	need	tο	show	vour	work	α r	give	justifications	on	this	problem
TIODICIL '	⊿.	10u v	uo not	necu	ω	SHOW	your	W OI IV	$O_{\rm I}$	give	Justiffications	om	OIIIO	propiem.

(a) Let

$$G = \langle a \rangle = \{1, a, a^2, a^3, \dots, a^{19}\},\$$

a group under multiplication in which a has order 20. List all the subgroups of G, being sure to list each one only once.

(b) Let G be the same group as in part (a). For which element $b \in G$ does $\langle b \rangle$ have exactly two elements?

(c) Give an example of a group G with no proper, nontrivial subgroups.

Problem 3: In each of the following cases, is the group G isomorphic to the group H? If so, write down an isomorphism $\phi: G \to H$. (You do **not** need to prove that it is an isomorphism.) If not, briefly explain how you know.

(a) $G = D_4$ (under composition) and $H = \mathbb{Z}_8$ (under addition modulo 8).

(b) $G = \mathbb{Z}_3$ (under addition modulo 3) and $H = \{0, 2, 4\} \subseteq \mathbb{Z}_6$ (under addition modulo 6).

Problem 4 : Let $G = S_3$ (under the operation of composition), and let $H \subseteq G$ be the subgroup generated by the element $(1, 2, 3)$.
(a) What is H ? Write down all of its elements.
(b) What is the left coset $(1,2)H$? Write down all of its elements.
(c) Apply Lagrange's Theorem to determine the number of left cosets of H in G .
(d) List all of the left cosets of H in G , being sure to list each one only once.

Problem 5:

(a) Let S be a set with an equivalence relation \sim , and let T be any set. Carefully define what it means to say that a function $f: S \to T$ is well-defined under \sim .

(b) Consider the equivalence relation on the nonzero real numbers \mathbb{R}^* defined by

$$a \sim b \quad \Leftrightarrow \quad ab > 0.$$

What is [1]?

(c) Let \sim be the same equivalence relation as in part (b). Give an example to show that

$$f: \left\{ \begin{array}{c} \text{equivalence classes} \\ \text{under} \\ \sim \end{array} \right\} \to \mathbb{R}$$

$$f([a]) = a + 1$$

is **not** well-defined.