

Zuverlässige funkbasierte Bereichsortung im Tunnelbau

Masterarbeit von Marius Wodtke Marius Wodtke | 19. Oktober 2017

Gliederung

- Motivation
- @ Grundlagen & Analyse
- Reichweiten
- 4 Implementierungen
 - WiFi-LLS
 - Assoziations-Lokalisierung
 - Probe-Request-Lokalisierung
 - Bluetooth Low Energy
 - Lokalisierung mit LoRa
- Zusammenfassung
- Fazit

Reichweiten

Bisherige Situation

[4]

Zukünftige Situation

Reichweiten

Fazit

4/39

Aufgabe

Zielsetzung

- Funkbasiertes Ortungssystem
- Bereichsortung (250m Abschnitte)

Anforderungen

- Nichtintrusiv (Keine Tore, Schranken, ...)
- Zuverlässige Erkennung von Abschnittswechseln
- Wenig Interaktion mit mobiler Einheit erforderlich

19. Oktober 2017

Topologien

Direkte Selbstlokal.

Direkte Fernlokal.

Ohne Basisstation

Indirekte Selbstlokal.

Grundlagen & Analyse

Reichweiten

Implementierungen

Hybride Topologie Zusammenfassung

090 Fazit

Marius Wodtke - Funkbasierte Bereichsortung

Motivation

Fernlokalisierung

Reichweiten

Direkte Fernlokalisierung

Messgrößen

- Time of Arrival
- Time Difference of Arrival
- (Roundtrip) Time of Flight
- Received Signal Strength (Indicator)
- Heartbeat

Lokalisierungsprinzip

- Umgebungsprinzip
- Geometrische Bestimmung
- Szenenanalyse

Protokolle

- IEEE 802.11
- Bluetooth (Low Energy)
- Long Range

Hardware

Adafruit Feather HUZZAH ESP8266

Feather M0 RFM95 LoRa Radio

Feather nRF52 Bluefruit

Messstrecke - Viele Hindernisse

Protokoll	Strecke	Reichweite
BLE	Wenige Hindernisse	32 m
802.11b	Wenige Hindernisse	88 m
LoRa 5 dBm	Wenige Hindernisse	250 m
LoRa 23 dBm	Wenige Hindernisse	1250 m
BLE	Viele Hindernisse	14 m
802.11b	Viele Hindernisse	32 m
LoRa 5 dBm	Viele Hindernisse	100 m
LoRa 23 dBm	Viele Hindernisse	>350 m

Reichweiten

Protokoll	Strecke	Reichweite
BLE	Wenige Hindernisse	32 m
802.11b	Wenige Hindernisse	88 m
LoRa 5 dBm	Wenige Hindernisse	250 m
LoRa 23 dBm	Wenige Hindernisse	1250 m
BLE	Viele Hindernisse	14 m
802.11b	Viele Hindernisse	32 m
LoRa 5 dBm	Viele Hindernisse	100 m
LoRa 23 dBm	Viele Hindernisse	>350 m

Reichweiten

RADAR

RADAR

- Bahl et al. [1]
- Direkte Fernlokalisierung
- 6 Byte mit UDP
- RSSI an Basisstation messen
- Szenenanalyse

mobile Einheit

Access Point 1

Motivation Grundlagen & Analyse Reichweiten Fazit

Zusammenfassung

< □ > < □ > < Ē > < Ē > Motivation Grundlagen & Analyse Reichweiten Fazit Implementierungen Zusammenfassung

19. Oktober 2017

WiFi-LLS

WiFi-LLS

- Chen et al. [2]
- Indirekte Fernlokalisierung
- RSSI der Probe Responses
- An mobiler Einheit gemessen
- Geometrische Bestimmung

mobile Einheit

Access Point 1

Implementierungen

Reichweiten

Grundlagen & Analyse

Motivation

- (ロ) (部) (注) (注) 見) (の(C

Marius Wodtke - Funkbasierte Bereichsortung

Grundlagen & Analyse

Motivation

 Zusammenfassung

Fazit

Protokoll	Modul	Programm	Ø Verbrauch
			(normalisiert)
IEEE 802.11	ESP8266 Feather	RADAR	16,70 (8,60)
IEEE 802.11	ESP-12F	RADAR	10,10 (8,80)
IEEE 802.11	ESP8266 Feather	WiFi-LLS	42,20 (34,10)
IEEE 802.11	ESP-12F	WiFi-LLS	36,50 (35,20)

Assoziations-Lokalisierung

Assoziations-Lokalisierung

- Indirekte Fernlokalisierung
- Erfolgreiche (Re-)Assoziation, implizit RSSI der Probe Responses
- Umgebungsprinzip
- Für Bereichsortung geeignet

《□▷《뭔▷《돌▷《돌▷ 월달 》 (Q ⓒ Motivation Grundlagen & Analyse Reichweiten Implementierungen Zusammenfassung Fazit

Marius Wodtke - Funkbasierte Bereichsortung

Grundlagen & Analyse

Motivation

Protokoll	Modul	Programm	Ø Verbrauch
			(normalisiert)
IEEE 802.11	ESP8266 Feather	RADAR	16,70 (8,60)
IEEE 802.11	ESP-12F	RADAR	10,10 (8,80)
IEEE 802.11	ESP8266 Feather	WiFi-LLS	42,20 (34,10)
IEEE 802.11	ESP-12F	WiFi-LLS	36,50 (35,20)
IEEE 802.11	ESP-12F	Assoziations-	8,80 (7,50)
		Lokalisierung	
IEEE 802.11	ESP-12F	Assoziations-	17,10 (17,10)
		Lokalisierung (kein	
		Access Point)	

Probe-Request-Lokalisierung

Probe-Request-Lokalisierung

- Direkte Fernlokalisierung
- RSSI der Probe Requests
- An Access Point gemessen
- Umgebungsprinzip

mobile Einheit

Access Point 1

ペロトペロド・ペミト・ミド・ミニューションに Motivation Grundlagen & Analyse Reichweiten Implementierungen Zusammenfassung Fazit

Motivation Grundlagen & Analyse Reichweiten Implementierungen Zusammenfassung Fazit

Protokoll	Modul	Programm	Ø Verbrauch
			(normalisiert)
IEEE 802.11	ESP-12F	Assoziations-	8,80 (7,50)
		Lokalisierung	
IEEE 802.11	ESP-12F	Assoziations-	17,10 (17,10)
		Lokalisierung (kein	
		Access Point)	
IEEE 802.11	ESP8266 Feather	Probe-Request-	9,70 (2,70)
		Lokalisierung	
IEEE 802.11	ESP-12F	Probe-Request-	1,80 (1,80)
		Lokalisierung	

Bluetooth Low Energy

BLE-Advertising

- Jianyong et al. [3]
- Direkte Fernlokalisierung
- RSSI von Advertising Paketen
- An Basisstation gemessen
- Umgebungsprinzip

Implementierungen

Motivation Grundlagen & Analyse Reichweiten Zusammenfassung Fazit Implementierungen

19. Oktober 2017

Protokoll	Modul	Programm	Ø Verbrauch (normalisiert)
IEEE 802.11	ESP8266 Feather	Probe-Request-	9,70 (2,70)
		Lokalisierung	
IEEE 802.11	ESP-12F	Probe-Request-	1,80 (1,80)
		Lokalisierung	
BLE	nRF52 Feather	Ortung mit BLE-	7,37 (0,04)
		Advertising	

29/39

Lokalisierung mit LoRa

Lokalisierung mit LoRa

- Direkte Fernlokalisierung
- RSSI an Basisstation gemessen
- Geometrische Bestimmung

Implementierungen

Motivation Grundlagen & Analyse Reichweiten Implementierungen Zusammenfassung Fazit

Image: Second content of the cont

Marius Wodtke - Funkbasierte Bereichsortung

Grundlagen & Analyse

Motivation

Implementierungen

19. Oktober 2017

Fazit 32/39

Protokoll	Modul	Programm	Ø Verbrauch
			(normalisiert)
IEEE 802.11	ESP-12F	Probe-Request-	1,80 (1,80)
		Lokalisierung	
BLE	nRF52 Feather	Ortung mit BLE-	7,37 (0,04)
		Advertising	
LoRa	RFM95 Feather 5	Ortung mit LoRa	1,20 (0,30)
	dBM	RSSI	
LoRa	RFM95 Feather 23	Ortung mit LoRa	1,47 (0,57)
	dBM	RSSI	

Motivation

<ロ > < 回 > < 回 > < 巨 > < 巨 > 至 | 三 り Q ()

Motivation Grundlagen & Analyse Reichweiten Implementierungen Zusammenfassung

000000000000000000

19. Oktober 2017 34/39

19. Oktober 2017

Motivation Grundlagen & Analyse Reichweiten Impleme

Implementierungen 0000000000000000000 Zusammenfassung

19. Oktober 2017

Motivation Grundlagen & Analyse Reichweiten Implementierungen

ementierungen Zusammenfassung

Fazit

19. Oktober 2017

Motivation Grundlagen & Analyse Reichweiten Implementierungen

	= 0		33,33 (33,23)
IEEE 802.11	ESP-12F	Assoziations-	8,80 (7,50)
		Lokalisierung	
IEEE 802.11	ESP-12F	Assoziations-	17,10 (17,10)
		Lokalisierung (kein	
		Access Point)	
IEEE 802.11	ESP-12F	Probe-Request-	1,80 (1,80)
		Lokalisierung	
BLE	nRF52 Feather	Ortung mit BLE-	7,37 (0,04)
		Advertising	
LoRa	RFM95 Feather 5	Ortung mit LoRa	1,20 (0,30)
	dBM	RSSI	
LoRa	RFM95 Feather 23	Ortung mit LoRa	1,47 (0,57)
	dBM	RSSI	
		<□ > < □ > <	□ → □ → □ □ □ ● ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
Motivation Grundlagen		mplementierungen Zus	sammenfassung Fazit
Marius Wodtke - Funkbasierte Bereichsortung 19. Oktober 2017 38/39			

Programm

RADAR

WiFi-LLS

Ø Verbrauch (normalisiert)

10,10 (8,80)

36,50 (35,20)

Modul

ESP-12F

ESP-12F

Protokoll

IEEE 802.11

IEEE 802.11

Fazit

Motivation

- LoRa > 802.11
- LoRa ohne Erfassungslücken => Hohe Zuverlässigkeit

Reichweiten

BLE hat niedrigen Stromverbrauch => Wenig Interaktion notwendig

Grundlagen & Analyse

References I

- [1] Paramvir Bahl und Venkata N Padmanabhan. "RADAR: An in-building RF-based user location and tracking system". In: INFOCOM 2000. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE. Bd. 2. leee. 2000, S. 775–784.
- [2] Yibo Chen und Rong Luo. "Design and implementation of a wifi-based local locating system". In: Portable Information Devices, 2007. PORTABLE07. IEEE International Conference on. IEEE. 2007, S. 1–5.
- [3] Zhu Jianyong u. a. "RSSI based Bluetooth low energy indoor positioning". In: *Indoor Positioning and Indoor Navigation (IPIN)*, 2014 International Conference on. IEEE. 2014, S. 526–533.

References II

[4] Devorie Maurer. *Unterstützung der Sicherheitstechnik im Tunnelbau durch eine Applikation*. Karlsruher Institut für Technologie, 2016.