Lecture 28, Nov. 1

28.1 Theorem (Unique Prime Factorization). Every integer $n \ge 2$ can be expressed uniquely in the form

$$n = \prod_{i=1}^{l} p_i = p_1 p_2 \cdots p_l$$

for some $l \in \mathbb{Z}^+$ and some primes p_1, p_2, \dots, p_l with $p_1 \leq p_2 \leq \dots \leq p_l$.

Proof. First we show existence. Let $n \ge 2$. Suppose, inductively, that every integer k with $2 \le k < n$ can be written (uniquely) in the required form. If n is prime then $n = p_1$ with $p_1 = n$.

Suppose n is composite, say n = ab with 1 < a < n and 1 < b < n. Since $2 \le a < n$ and $2 \le n < n$ we can write

$$a=\prod_{i=1}^l p_i$$

and

$$b = \prod_{i=1}^{m} q_i$$

with $l, m \in \mathbb{Z}$ and the q_i, p_i are primes.

Thus

$$n = ab$$

$$= p_1 p_2 \cdots p_l q_1 q_2 \cdots q_m$$

$$= r_1 r_2 \cdots r_{l+m}$$

where the (l+m)-tuple $(r_1, r_2, \dots, r_{l+m})$ is obtained by rearranging the entries of the

$$(l+m)$$
-tuple $(p_1, p_2, \dots, p_l, q_1, q_2, \dots, q_m)$

into non-decreasing order.

Next we prove uniqueness. We need to show that if $n=p_1p_2\cdots p_l$ and $n=q_1q_2\cdots q_m$ where $l,m\in\mathbb{Z}^+$ and the p_i and q_i are primes with $p_1\leq p_2\leq\cdots\leq p_l$ and $q_1\leq q_2\leq\cdots q_m$, then l=m and $p_i=q_i$ for all i.

Suppose $n=p_1p_2\cdots p_l=q_1q_2\cdots q_m$ as above. Since $n=p_1p_2\cdots p_l$ we have $p_1\mid n$. Since $n=q_1q_2\cdots q_m$ we have $p_1\mid q_1q_2\cdots q_m$. It follows that $p_1\mid q_k$ for some k with $1\leq k\leq m$. Say $p_1\mid q_k$. Since q_k is prime, its only positive divisors are 1 and q_k . Since $p_1\neq 1$, so $p_1=q_k$. Similarly, $q_1=p_j$ for some j with $1\leq j\leq l$. Since $p_1=q_k\geq q_1=p_j\geq p_1$, so we must have $p_1=p_j=q_1$.

Since $p_1p_2\cdots p_l=q_1q_2\cdots q_m$ and $q_1=p_1\neq 0$, we have $p_2p_3\cdots p_l=q_2q_3\cdots q_m$. A similar argument shows that $p_2=q_2$.

Suppose for a contradiction, that $l \neq m$, say l < m. By repeating the above argument, we eventually obtain

$$p_I = q_I \cdots q_m$$

then $p_l=q_l$ then $1=q_{l+1}\cdots q_m$. But each $q_j\geq 2$ so $q_{l+1}\cdots q_m\geq 2$, so we have a desired contradiction, hence m=l.

Thus repeating the above argument gives

$$p_1 = q_1, p_2 = q_2, \cdots, p_l = q_l = q_m.$$

- **28.2 Definition** (Diophantine Equation). A Diophantine Equation is a polynomial equation where the variables represent integers.
- 28.3 Example. Solve

$$x^2 + y^2 = 25$$

28.4 Example. Solve

$$x^2 + y^2 = n$$

in $\mathbb{Z}[i]$ where $i^2 = -1$

28.5 Example. A Linear Diophantine Equation is an equation of the form

$$ax + by = c$$

where $a, b, c \in \mathbb{Z}$ with $(a, b) \neq 0$

28.6 Example (Pell's Equation). Solve

$$x^2 - dy^2 = \pm 1$$

28.7 Example (Pythagorean Triples). Solve

$$x^2 + y^2 = z^2$$

$$x^2 + y^2 + z^2 = w^2$$

Stereographic Projection

