Numerische Mathematik II: 2. Aufgabenblatt

Sommersemester 2019 Prof. Dr. Frank Haußer

Lineare Ausgleichsrechnung mit QR-Zerlegung

letzte Änderung: Ausgabe: 25. April 2019

1. Aufgabe: 1

Es sei $A \in \mathbb{R}^{m \times n}$. Zeigen Sie, dass die folgende Äquivalenz für alle $x^n \in \mathbb{R}$ gilt:

$$A^T A x = 0 \Leftrightarrow A x = 0.$$

(Tipp: Benutzen Sie die Identität $\langle y, A^T A x \rangle = \langle A y, A x \rangle$). Folgern Sie daraus, dass $A^T A$ genau dann invertierbar ist, wenn $\operatorname{Rang}(A) = n$ ist.

2. Aufgabe: Lineare Ausgleichsrechnung mit QR-Zerlegung

Es sei

$$A = \begin{pmatrix} -1 & 1 \\ 2 & 4 \\ -2 & -1 \end{pmatrix}, \qquad b = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}.$$

Lösen Sie das lineare Ausgleichsproblem $||Ax - b||_2 = \min$ mit Hilfe der QR-Zerlegung von A. Bestimmen Sie dazu die QR-Zerlegung von A mit Hilfe der MATLAB-Funktion (qr) (Setzen sie zuvor das Ausgabeformat auf format rat). Wie groß ist die minimale 2-Norm des Residuums?

Schreiben Sie eine MATLAB/Octave-Funktion zur Lösung von linearen Ausgleichsproblemen mit der QR-Zerlegung (Eingabe ist A und b und Ausgabe ist die Lösung x). Sie können dazu die QR-Zerlegung von MATLAB/Octave benutzen. Die Funktion soll mit einer Warnung abbrechen, falls keine eindeutige Lösung existiert. Beachten Sie, dass Sie bei der QR-Zerlegung einer Matrix $A \in \mathbb{R}^{m \times n}$ nur die ersten n Spalten der Matrix Q zur Lösung des linearen Ausgleichsproblems benötigen (Economy-Factorization, siehe Doku Matlab / Ocatve). Benutzen Sie diese Funktion zur Lösung des linearen Ausgleichsproblems aus Aufgabe 5 auf dem Übungsblatt 1.

3. Aufgabe: Lineare Ausgleichsrechnung mit QR-Zerlegung

Es sei $A \in \mathbb{R}^{m \times n}$ mit m > n und

$$Q^T A = \begin{pmatrix} R_1 \\ \underline{0} \end{pmatrix},$$

wobei $Q \in \mathbb{R}^{m \times m}$ eine orthogonale Matrix und $R_1 \in \mathbb{R}^{n \times n}$ eine obere Dreiecksmatrix ist. Zeigen Sie, dass R_1 genau dann regulär ist, wenn $\operatorname{Rang}(A) = n$ ist.