

OUTLINE OF CHAPTER 4

April, 2024

- Logic circuits for digital systems
 - Combinational
 - Sequential
- A combinational circuit
 - outputs at any time are determined from the present combination of inputs.
 - Performs operation specified by a set of Boolean functions.

April, 2024 LOGIC DESIGN

- Sequential circuits
 - Employ storage elements in addition to logic gates.
 - Their outputs are a function of inputs and state of the storage elements.
 - Not only present values of inputs, but also on past inputs.
 - Circuit behaviour must be specified by a time sequence of inputs and internal states.
 - Sequential circuits are the building blocks of digital systems.

April, 2024 LOGIC DESIGN

- Combinational circuit consist of
 - Input variables
 - Logic gates
 - Accept signals from the inputs
 - Generate signals to the output
 - Output variables

- For n input variable, there are 2ⁿ possible binary input combinations.
- For each possible input combination there is one possible input output value.

April, 2024 LOGIC DESIGN

Analysis

- Given a circuit, find out its function
- Function may be expressed as:
 - Boolean function
 - Truth table

Design

- Given a desired function, determine its circuit
- Function may be expressed as:
 - Boolean function
 - Truth table

- To obtain the output Boolean functions from a logic diagram:
 - 1. Label all gate outputs that are function of input variables
 - Determine the Boolean functions for each gate output
 - 2. Label the gates that are a function of input variables and previously labelled gates.
 - 1. Find the Boolean function for these gates.
 - 3. Repeat the process outlined in step2 until the outputs are obtained.
 - 4. Obtain the output Boolean functions in terms of input variables.

Boolean expression approach

April, 2024 LOGIC DESIGN

 Boolean expression approach

- T1 = A+B+C
- T2 = A.B.C
- F2 = A.B+A.C+B.C
- F2' = (A'+B')(A'+C')(B'+C') = (A'+B'C').(B'+C') post4b
- T3 = F2' . T1
- T3 = (A'+B'C').(B'+C').(A+B+C)
- T3 = (A'+B'C').(AB'+B'C+AC'+BC')
- T3 = (A',A.B'+A'.B',C+A',A.C'+A'.B.C'+
- A.B'.B'.C'+B'.B'.C'.C+A.B'.C'.C'+B'.B.C'.C')
- T3 = A'.B'.C + A'.B.C' + A.B'.C' + A.B'.C'
- T3 = A'.B'.C + A'.B.C' + A.B'C'
- F1= T3+T2
- F1 = A'.B'.C + A'.B.C' + A.B'C' + A.B.C

A B C F₁ F₂ 0 0 0 0 0

A	В	C	F ₁	F ₂
0	0	0	0	0
0	0	1	1	0

A	В	C	F ₁	F ₂
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0

A	В	С	F ₁	F ₂
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	0	0	1

A	В	C	F ₁	F ₂
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0

A	В	C	F ₁	F ₂
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1

A	В	C	F ₁	F ₂
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1

A	В	C	F ₁	F ₂
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

 F_2

ANALYSIS PROCEDURE

Truth table approach

F1 = A'B'C + A'BC' + AB'C' + ABC

F2 = BC + AC + AB

A B C

- For a given a problem statement:
 - Determine the number of inputs and outputs
 - Derive the truth table
 - Simplify the Boolean expression for each output
 - Produce the required circuit

- A truth table for a combinational circuit consist of:
 - Input columns
 - Obtained from 2^n binary numbers for the n input variables.
 - Output columns
 - Determined from the stated specifications.
 - Output functions specified in the truth table give exact definition of the combinational circuit.

- The output binary functions listed in the truth table are simplified by any method:
 - Algebraic manipulation
 - The map method
 - Computer based simplification program
- There is a variety of simplified expressions from which to choose.

- Practical design must consider such constraints:
 - The number of gates
 - Number of inputs to a gate
 - Propagation time of the signal through the gates
 - Number of interconnections
 - Limitations of the driving capability of each gate
 - Etc.

Code conversion example

- Code converter is a circuit that makes the two systems compatible even though each uses a different binary code.
- To convert from binary code A to binary code B;

Input: supply the bit combination of elements specified by code A

Output: generate the corresponding bit combination of code B.

Example:

• Design a circuit to convert a "BCD" code to "Excess 3" code.

April, 2024 LOGIC DESIGN

- Each code uses 4-bits to represent a decimal digit.
 - 4 input variables
 - A, B, C, D
 - 4 output variables
 - W, X, Y, Z
 - -2^4 = 16 bit combinations but only 10 have meaning in BCD.
 - Rest 6 bit combinations are don't-care combinations.

Input BCD	Output Excess-3
АВСД	w x y z
0 0 0 0	0 0 1 1
0 0 0 1	0 1 0 0
0 0 1 0	0 1 0 1
0 0 1 1	0 1 1 0
0 1 0 0	0 1 1 1
0 1 0 1	1 0 0 0
0 1 1 0	1 0 0 1
0 1 1 1	1 0 1 0
1 0 0 0	1 0 1 1
1 0 0 1	1 1 0 0
1 0 1 0	XXXX
1 0 1 1	xxxx
1 1 0 0	xxxx
1 1 0 1	xxxx
1 1 1 0	xxxx
1 1 1 1	xxxx

Input BCD	Output Excess-3
ABCD	wxyz
0 0 0 0	0 0 1 1
0 0 0 1	0 1 0 0
0 0 1 0	0 1 0 1
0 0 1 1	0 1 1 0
0 1 0 0	0 1 1 1
0 1 0 1	1000
0 1 1 0	1001
0 1 1 1	1010
1 0 0 0	1011
1 0 0 1	1 0 0
1 0 1 0	X X X X
1 0 1 1	(x)x x x
1 1 0 0	(x)x x x
1 1 0 1	(x)x x x
1 1 1 0	(x)x x x
1 1 1 1	x x x x

w's karnaugh map

W = A + BC + BD

Input BCD	Output Excess-3
ABCD	w x y z
0 0 0 0	0 0 1 1
0 0 0 1	0100
0 0 1 0	0 1 0 1
0 0 1 1	0110
0 1 0 0	0111
0 1 0 1	1 0 0 0
0 1 1 0	1 0 0 1
0 1 1 1	1 0 1 0
1 0 0 0	1 0 1 1
1 0 0 1	1(1)0 0
1 0 1 0	x x x
1 0 1 1	x x x
1 1 0 0	x(x)x x
1 1 0 1	x(x)x x
1 1 1 0	x x x x
1 1 1 1	x(x)x x

x's karnaugh map

x = B'C + B'D + BC'D'

Input BCD	Output Excess-3
ABCD	wxyz
0 0 0 0	0 0 1 1
0 0 0 1	0 1 0 0
0 0 1 0	0 1 0 1
0 0 1 1	0 1 1 0
0 1 0 0	0 1 1 1
0 1 0 1	1 0 0 0
0 1 1 0	1 0 0 1
0 1 1 1	1 0 1 0
1 0 0 0	1 0 1 1
1 0 0 1	1 1 0 0
1 0 1 0	x x x x
1 0 1 1	x x(x)x
1 1 0 0	x x(x)x
1 1 0 1	x x(x)x
1 1 1 0	x x(x)x
1 1 1 1	x x(x)x

y's karnaugh map

Input BCD	Output Excess-3
ABCD	wxyz
0 0 0 0	0 0 1(1)
0 0 0 1	0 1 0 0
0 0 1 0	0 1 0 1
0 0 1 1	0 1 1 0
0 1 0 0	0 1 1 1
0 1 0 1	1 0 0 0
0 1 1 0	1 0 0 1
0 1 1 1	1 0 1 0
1 0 0 0	1 0 1(1)
1 0 0 1	1 1 0 0
1 0 1 0	x x x x
1 0 1 1	x x x(x)
1 1 0 0	x x x(x)
1 1 0 1	x x x x
1 1 1 0	x x x(x)
1 1 1 1	x x x(x)

z's karnaugh map

- W = A + BC + BD = A + B(C + D)
- x = B'C + B'D + BC'D' = B'(C+D) + BC'D'

$$x = B'(C + D) + B(C+D)'$$

- y = CD + C'D' = CD + (C + D)'
- z = D'

7 segment decoder

- a, b, c, d, e, f, g are the outputs.
- Outputs are in segments.
- Each segment is turned on based on the input number.
- Ex:
- If BCD 5 is entered, then segments (outputs) a, f, g, c, d should be turned on.

April, 2024 LOGIC DESIGN

Input BCD		7	7 - s	egr	nen	t		
wxyz	а	b	С	d	е	f	g	
0 0 0 0	1	1	1	1	1	1	0	0
0 0 0 1	0	1	1	0	0	0	0	1
0 0 1 0	1	1	0	1	1	0	1	2
0 0 1 1	1	1	1	1	0	0	1	3
0 1 0 0	0	1	1	0	0	1	1	4
0 1 0 1	1	0	1	1	0	1	1	5
0 1 1 0	1	0	1	1	1	1	1	6
0 1 1 1	1	1	1	0	0	0	0	7
1 0 0 0	1	1	1	1	1	1	1	8
1 0 0 1	1	1	1	1	0	1	1	9
1 0 1 0	X	X	X	X	X	X	X	
1 0 1 1	X	X	X	X	X	X	X	
1 1 0 0	X	X	X	X	X	X	X	
1 1 0 1	X	X	X	X	X	X	X	
1 1 1 0	X	X	X	X	X	X	X	
1 1 1 1	X	X	X	X	X	X	X	

Input BCD		7	' - S	egn	nen	t	
wxyz	a l	b	С	d	е	f	g
0 0 0 0	1	1	1	1	1	1	0
0 0 0 1	0	1	1	0	0	0	0
0 0 1 0	1	1	0	1	1	0	1
0 0 1 1	1	1	1	1	0	0	1
0 1 0 0	0	1	1	0	0	1	1
0 1 0 1	1	0	1	1	0	1	1
0 1 1 0	1	0	1	1	1	1	1
0 1 1 1	1	1	1	0	0	0	0
1 0 0 0	1	1	1	1	1	1	1
1 0 0 1	1	1	1	1	0	1	1
1 0 1 0	(\mathbf{X})	X	X	X	X	X	X
1 0 1 1	(\mathbf{x})	X	X	X	X	X	X
1 1 0 0	(\mathbf{X})	X	X	X	X	X	X
1 1 0 1	\mathbf{x}	X	X	X	X	X	X
1 1 1 0	\mathbf{x}	X	X	X	X	X	X
1 1 1 1	\mathbf{x}	X	X	X	X	X	X

a's karnaugh map

a = w + y + xz + x'z'

Input BCD			7 - s	egn	nen		
wxyz	а	b	С	d	е	f	g
0 0 0 0	1	1) 1	1	1	1	0
0 0 0 1	0	1	1	0	0	0	0
0 0 1 0	1	1	0	1	1	0	1
0 0 1 1	1	1	1	1	0	0	1
0 1 0 0	0	1	1	0	0	1	1
0 1 0 1	1	0	1	1	0	1	1
0 1 1 0	1	0	1	1	1	1	1
0 1 1 1	1	1	1	0	0	0	0
1 0 0 0	1	1	1	1	1	1	1
1 0 0 1	1	1	1	1	0	1	1
1 0 1 0	X	X) X	X	X	X	X
1 0 1 1	X	X) X	X	X	X	X
1 1 0 0	X	X) X	X	X	X	X
1 1 0 1	X	X) X	X	X	X	X
1 1 1 0	X	X	X	X	X	X	X
1 1 1 1	X	X) X	X	X	X	X

b's karnaugh map

b = w + w'x' + yz + y'z'

Input BCD		7	7 - s	egn	nen	t	
wxyz	а	b	С	d	е	f	g
0 0 0 0	1	1	(1)	1	1	1	0
0 0 0 1	0	1	1	0	0	0	0
0 0 1 0	1	1	0	1	1	0	1
0 0 1 1	1	1	1	1	0	0	1
0 1 0 0	0	1	1	0	0	1	1
0 1 0 1	1	0	1	1	0	1	1
0 1 1 0	1	0	1	1	1	1	1
0 1 1 1	1	1	1	0	0	0	0
1 0 0 0	1	1	1	1	1	1	1
1 0 0 1	1	1	1	1	0	1	1
1 0 1 0	X	X	X	X	X	X	X
1 0 1 1	X	X	X	X	X	X	X
1 1 0 0	X	X	X	X	X	X	X
1 1 0 1	X	X	X	X	X	X	X
1 1 1 0	X	X	X	X	X	X	X
1 1 1 1	X	X	X	X	X	X	X

c's karnaugh map

$$c = w + xy + x'z + x'y'$$

Input BCD		7	7 - 5	egn	nen	t	
wxyz	а	b	С	d	е	f	g
0 0 0 0	1	1	1	(1)	1	1	0
0 0 0 1	0	1	1	0	0	0	0
0 0 1 0	1	1	0	1	1	0	1
0 0 1 1	1	1	1	1	0	0	1
0 1 0 0	0	1	1	0	0	1	1
0 1 0 1	1	0	1	1	0	1	1
0 1 1 0	1	0	1	1	1	1	1
0 1 1 1	1	1	1	0	0	0	0
1 0 0 0	1	1	1	1	1	1	1
1 0 0 1	1	1	1	1	0	1	1
1 0 1 0	X	X	X	X	X	X	X
1 0 1 1	X	X	X	X	X	X	X
1 1 0 0	X	X	X	X	X	X	X
1 1 0 1	X	X	X	X	X	X	X
1 1 1 0	X	X	X	X	X	X	X
1 1 1 1	X	X	X	X	X	X	X

d's karnaugh map

d = w + yz' + w'x'y + xy'z + x'z'

Input BCD		7	⁷ - S	egn	nent	
wxyz	а	b	С	d	e f	g
0 0 0 0	1	1	1	1	1 1	0
0 0 0 1	0	1	1	0	0 0	0
0 0 1 0	1	1	0	1	1 0	1
0 0 1 1	1	1	1	1	0 0	1
0 1 0 0	0	1	1	0	0 1	1
0 1 0 1	1	0	1	1	0 1	1
0 1 1 0	1	0	1	1	1 1	1
0 1 1 1	1	1	1	0	0 0	0
1 0 0 0	1	1	1	1	1 1	1
1 0 0 1	1	1	1	1	0 1	1
1 0 1 0	X	X	X	X	X X	X
1 0 1 1	X	X	X	X	(X) X	X
1 1 0 0	X	X	X	X	(X) X	X
1 1 0 1	X	X	X	X	(X) X	X
1 1 1 0	X	X	X	X	(X) X	X
1 1 1 1	X	X	X	X	XX	X

e's karnaugh map

e = yz' + x'z'

Input BCD		7	7 - s	egn	nent
wxyz	а	b	С	d	e f g
0 0 0 0	1	1	1	1	1 (1) 0
0 0 0 1	0	1	1	0	0 0 0
0 0 1 0	1	1	0	1	1 0 1
0 0 1 1	1	1	1	1	0 0 1
0 1 0 0	0	1	1	0	0 1 1
0 1 0 1	1	0	1	1	0 1 1
0 1 1 0	1	0	1	1	1 (1) 1
0 1 1 1	1	1	1	0	0 0 0
1 0 0 0	1	1	1	1	1 (1) 1
1 0 0 1	1	1	1	1	0 1 1
1 0 1 0	X	X	X	X	XXX
1 0 1 1	X	X	X	X	X (X) X
1 1 0 0	X	X	X	X	$X \times X$
1 1 0 1	X	X	X	X	XXX
1 1 1 0	X	X	X	X	XXX
1 1 1 1	X	X	X	X	x x x

f's karnaugh map

f = w + xy' + xz' + y'z'

Input BCD		7	7 - s	egn	nen	t	
wxyz	а	b	С	d	е	f	g
0 0 0 0	1	1	1	1	1	1	0
0 0 0 1	0	1	1	0	0	0	0
0 0 1 0	1	1	0	1	1	0	1
0 0 1 1	1	1	1	1	0	0	1
0 1 0 0	0	1	1	0	0	1	1
0 1 0 1	1	0	1	1	0	1	1
0 1 1 0	1	0	1	1	1	1	1
0 1 1 1	1	1	1	0	0	0	0
1 0 0 0	1	1	1	1	1	1	1
1 0 0 1	1	1	1	1	0	1	1
1 0 1 0	X	X	X	X	X	X	\overline{X}
1 0 1 1	X	X	X	X	X	X	X
1 1 0 0	X	X	X	X	X	X	$\overline{\mathbf{X}}$
1 1 0 1	X	X	X	X	X	X	$\overline{\mathbf{X}}$
1 1 1 0	X	X	X	X	X	X	$\overline{\mathbf{X}}$
1 1 1 1	X	X	X	X	X	X	X

g's karnaugh map

g = w + xy' + xz' + x'y

- The most basic arithmetic operation is the addition of two binary digits.
- Simple addition consists of 4 possible elementary operations:

$$- 0 + 0 = 0$$

$$- 0 + 1 = 1$$

$$-1+0=1$$

$$-1+1=10$$

- First 3 operations produce a sum of one digit.
- In the 4th operation, the binary sum consists of two digits.

- The higher significant bit is called a carry.
- A combinational circuit that performs the addition of two bits is called a half adder.
- One that performs the addition of three bits (two significant bits and a previous carry) is a full adder.
- Two half adders can be employed to implement a full adder.

April, 2024 LOGIC DESIGN

Half Adder

- Adds 2 bits
 - 2 inputs
 - 2 outputs
- Produces SUM and CARRY.

X	У	C	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$$S = x'y + xy'$$

$$C = xy$$

Half Adder

$$S = x'y + xy'$$

$$C = xy$$

(b)
$$S = x \oplus y$$
, $C = xy$

Full Adder

- Adds 3 bits
 - 3 inputs
 - 2 outputs
- Produces SUM and CARRY.

$$S = x'y'z + x'yz + xy'z' + xyz$$

 $C = x'yz + xy'z + xyz' + xyz$

X	У	Z	C	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$S = x'y'z + x'yz + xy'z' + xyz$$

 $S = x \oplus y \oplus z$

C	=	x'yz	+	xy'z	+	xyz'	+	хух

C = xy + xz + yz

Full adder implementation:

- S = x'y'z + x'yz + xy'z' + xyz
- $S = x \oplus y \oplus z$
- C = x'yz + xy'z + xyz' + xyz

Implementation of Full Adder with Two Half Adders and an OR gate

April, 2024 LOGIC DESIGN

Binary Adder:

- Digital circuit that produces the arithmetic sum of two binary numbers.
- It can be constructed with full adders connected in cascade.
- The output carry from each full adder connected to the input carry of the next full adder in the chain. $x_3x_2x_1x_0$ $y_3y_2y_1y_0$

C₃ C₂ C₁
+ X₃ X₂ X₁ X₀
+ Y₃ Y₂ Y₁ Y₀

Cy S₃ S₂ S₁ S₀

April, 2024 LOGIC DESIGN

Binary Adder: 4-bit Ripple Carry Adder

- The S outputs generate the required sum bits.
- An n-bit adder requires n full adders with each output carry connected to the input carry of the next higher-order full adder.
- Example: A = 1011 and B = 0011.

Subscript i:	3	2	1	0	
Input carry	0_	1 _K	1 _K	0	C _i
Augend	1	0	1	1	A_{i}
Addend	0	0	1	1	B _i
Sum	1	1	\ 1	0	S _i
Output Carry	0	0	1	1	C _{i+1}

Binary Adder: 4-bit Ripple Carry Adder

Carry propagation

- The addition of two binary numbers in parallel implies that all the bits of the augend and addend are available at the same time.
- Signals must propagate through the gates before the correct output sum is available in the output terminals.
- The total propagation time
 - propagation delay of a typical gate x the number of gate levels in the circuit.
- Longest propagation delay time in an adder is the time it takes the carry to propagate through the full adders.

Carry propagation

• Since each bit of the sum output depends on the value of the input carry, the value of S_i in any given stage in the adder will in its steady state final value only after the input carry to that stage has been propagated.

April, 2024 LOGIC DESIGN

Carry propagation

• The number of gate levels for the carry propagation can be found from the circuit of the full adder.

Carry propagation

- The signal from the input carry C_i to the output carry C_{i+1} , propagates through
 - an AND gate and an OR gate,
 - which constitute two gate levels.
- If there are 4 full adders in the adder, the output carry C₄ would have
 - $-2 \times 4 = 8$ gate levels from C_0 to C_4 .
- For an **n-bit** adder, there are **2n** gate levels for the carry to propagate from input to output.

- The carry propagation time is a limiting factor on the speed with which two numbers are added.
- Since all other arithmetic operations are implemented by successive additions, the time consumed during the addition process is very critical.
- Reduce the carry propagation delay
 - Employ faster gates
 - Look-ahead carry (more complex mechanism, yet faster)

- G_i is called carry generate
 - Produces a carry of 1 when both A_i and B_i are 1, regardless of the input carry.
- P_i. C_i is called a carry propagate
 - It is the term associated with the propagation of the carry from C_i to $C_i + 1$.

- Boolean functions for the carry outputs of each stage:
 - $-C_0 = input carry$

$$- C_1 = G_0 + P_0 \cdot C_0$$

$$- C_2 = G_1 + P_1. C_1 = G_1 + P_1 (G_0 + P_0. C_0)$$

$$= G_1 + P_1 \cdot G_0 + P_1 \cdot P_0 \cdot C_0$$

$$- C_3 = G_2 + P_2 \cdot C_2 = G_2 + P_2 (G_1 + P_1 \cdot G_0 + P_1 \cdot P_0 \cdot C_0)$$

$$= G_2 + P_2 \cdot G_1 + P_2 \cdot P_1 \cdot G_0 + P_2 \cdot P_1 \cdot P_0 \cdot C_0$$

Carry Lookahead Generator

- C₃ does not have to wait for C₂ and
 - C₁ to propagate.
- C₃ is propagated at the same time as
 C₁ and C₂.

4-Bit Adder with Carry Lookahead Generator

- Each sum output requires two XOR gates.
 - First XOR gate generates the P_i
 - AND gate generates the Gi variable.
 - Carries are propagated through CLA and applied as an input to the second XOR gate.
 - All output carries are generated after a delay though two levels of gates. S_1 through S_3 have equal propagating delay times.

Binary Subtactor

- The subtraction of unsigned binary numbers can be done most conveniently by means of complements.
- A B can be performed by taking 2's complement of B and adding it to A.
- 2's complement can be done by taking 1's complement and adding 1.
- 1's complement can be implemented with inverters.

Binary Subtactor

- Circuit of subtractor consist of:
 - An adder
 - Inverters
- The input carry $C_0 = 1$ when performing subtraction
- The operation performed becomes:
 - A + 1's complement of B + 1 = A + 2's complement of B.
 - -A-B=A+(-B)=A+B'+1.
- For unsigned numbers,
 - A − B if A ≥ B or 2's complement of (B − A) if A < B.

- XOR gate combines addition and subtraction into one circuit with common binary adder.
- Mode input **M** controls the operation.
 - M = 0 = Addition.
 - M = 1 = Subtraction.

XOR with output V is for detecting an overflow.

- When $\mathbf{M} = \mathbf{0}$ (Addition).
 - B \oplus 0 = B.
 - Full adders receive the value of B
 - $C_0 = 0.$
 - Circuit performs A + B.
- When **M** = **1** (Subtraction).
 - $B \oplus 0 = B'$.
 - $C_0 = 1.$
 - Circuit performs A + B' + 1

Overflow

- There is a need for an overflow detection.
- The detection of an overflow after addition of two binary numbers depends on whether the number is to be:
 - Signed
 - Unsigned

- Signed
 - Left most bit represents the sign bit.
 - Negative numbers are in 2's complement format.
 - Sign bit treated as part of the number and the end carry does not indicate an overflow.
- Unsigned

- Unsigned
 - When added, overflow is detected from the end carry out of the most significant position.
- Overflow cannot occur if positive and negative numbers are added.
- Overflow occurs if both numbers are positive or negative.

- Ex: +70 , +80 in 8-bit registers.
- 8-bit register = 2^7 = 256.

		0	1	0	0	0	0	0	0	
	+70		0	1	0	0	0	1	1	0
+	+80	_	0	1	0	1	0	0	0	0
	+150		1	0	0	1	0	1	1	0

- 8-bit result that should have been positive has a negative sign bit and vice versa.
- If carry out of sign bit is taken as the sign bit of the result then the 8-bit answer will be correct.
- Since it can not be accommodated within 8-bit register, then there is a overflow.

- Overflow can be detected by:
 - Observing the carry into the sign bit.
 - Observing the carry out of the sign bit.
 - If they are not equal, an overflow has occurred.
- If two carries are applied to an XOR gate overflow is detected.
 - When the output is 1.
 - 2's complement must be computed for this method to work correctly.
 - This take care of the condition when the maximum negative numbers is complemented.

- If two binary numbers are unsigned
 - the C bit detects
 - a carry after addition or
 - a borrow after subtraction.
- If the numbers are signed, then the V bit detects an overflow.
 - If V = 0, then no overflow.
 - The n-bit result is correct.
 - If V = 1, then result contains n+1 bits only the right most n-bits of the number.
 - Overflow has occurred. The (n+1)th bit is the actual sign and has been shifted out of position.

- BCD Adder
- Consider the arithmetic addition of two decimal digits in BCD and an input carry.
- In BCD each input digit does not exceed 9
- Output sum cannot be greater than 9 + 9 + 1 = 19.
 - 1 is an input carry.

- Suppose:
 - Two BCD digits applied to a 4-bit binary adder.

The output produces a result that ranges from 0 through 19.

```
X_3 X_2 X_1 X_0 Y_3 Y_2 Y_1 Y_0 Sum Cy S_3 S_2 S_1 S_0
0 + 0
        0 0 0 0
                               = 0
                                         0 0 0 0
0 + 1
        0 0 0 0
                               = 1
0 + 2
       0 0 0 0
                               = 2
                                        0 0 1 0
                   0 0
                        1 0
                                    0
                       0
0 + 9
       0 0 0 0
                               = 9
                                    0
                                           0 0 1
1 + 0
                               = 1
        0 0 0 1
                        0
                          0
                                    0
                                        0 0 0 1
1 + 1
       0 0 0 1
                               = 2
                                    0
                                         0 0 1 0
1 + 8
                               = 9
            0 1
                                                           Invalid Code
1 + 9
                              = A
        0 0 0 1
2 + 0
          0
                               = 2
                                                        -Wrong BCD Value
9 + 9
        1 0 0 1
                              = 12
                                        0 0 1 0
```

April, 2024 0001 1000 LOGIC DESIGN

X +Y	$\mathbf{X}_3 \mathbf{X}_2 \mathbf{X}_1 \mathbf{X}_0$	$y_3 y_2 y_1 y_0$	Sum	Су	$S_3 S_2 S_1 S_0$	Required BCD Output	Value
9 + 0	1 0 0 1	0 0 0 0	= 9	0	1 0 0 1	0 0 0 0 1 0 0 1	= 9
9 + 1	1 0 0 1	0 0 0 1	= 10	0	1 0 1 0	0 0 0 1 0 0 0 0	= 16 🗶
9 + 2	1 0 0 1	0 0 1 0	= 11	0	1 0 1 1	00010001	= 17 🗶
9 + 3	1 0 0 1	0 0 1 1	= 12	0	1 1 0 0	0 0 0 1 0 0 1 0	= 18 💢
9 + 4	1 0 0 1	0 1 0 0	= 13	0	1 1 0 1	00010011	= 19 🗶
9 + 5	1 0 0 1	0 1 0 1	= 14	0	1 1 1 0	0 0 0 1 0 1 0 0	= 20 🗶
9 + 6	1 0 0 1	0 1 1 0	= 15	0	1 1 1 1	0 0 0 1 0 1 0 1	= 21 🗶
9 + 7	1 0 0 1	0 1 1 1	= 16	1	0 0 0 0	0 0 0 1 0 1 1 0	= 22 🗶
9 + 8	1 0 0 1	1 0 0 0	= 17	1	0 0 0 1	0 0 0 1 0 1 1 1	= 23 🗶
9 + 9	1 0 0 1	1 0 0 1	= 18	1	0 0 1 0	0 0 0 1 1 0 0 0	= 24

+6

April, 2024

 The problem is to find a rule by which the binary sum is to be converted to the correct BCD digit representation of the number in the BCD sum.

	Bi	nary Sun	า		BCD Sum					Decimal
K	Z3	Z2	Z1	Z0	С	S3	S2	S1	S0	
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	0	2
0	0	0	1	1	0	0	0	1	1	3
0	0	1	0	0	0	0	1	0	0	4
0	0	1	0	1	0	0	1	0	1	5
0	0	1	1	0	0	0	1	1	0	6
0	0	1	1	1	0	0	1	1	1	7
0	1	0	0	0	0	1	0	0	0	8
0	1	0	0	1	0	1	0	0	1	9

	Bi	nary Sun	n			BCD Sum				
K	Z3	Z2	Z1	Z0	С	S3	S2	S1	S0	
0	1	0	1	0	1	0	0	0	0	10
0	1	0	1	1	1	0	0	0	1	11
0	1	1	0	0	1	0	0	1	0	12
0	1	1	0	1	1	0	0	1	1	13
0	1	1	1	0	1	0	1	0	0	14
0	1	1	1	1	1	0	1	0	1	15
1	0	0	0	0	1	0	1	1	0	16
1	0	0	0	1	1	0	1	1	1	17
1	0	0	1	0	1	1	0	0	0	18
1	0	0	1	1	1	1	0	0	1	19

- In examining the contents of the table;
 - When the binary SUM = 1001, the corresponding BCD number is identical.
 - When the binary SUM >1001, the BCD number is invalid.
 - The addition of 6 (0110) is required.
 - Correction is needed when K = 1.
 - Correction is needed from 1010 1111.
 - Z4 = 1,
 - Z3 and Z2 must = 1 to distinguish from 1000 and 1001

$Z_3 Z_2 Z_1 Z_0$	Err
0 0 0 0	0
1 0 0 0	0
1 0 0 1	0
1 0 1 0	1
1011	1
1 1 0 0	1
1 1 0 1	1
1 1 1 0	1
1111	1

Err =
$$Z_3Z_2 + Z_3Z_1$$

Output Carry = $K + Z_3Z_2 + Z_3Z_1$

- When Output carry = 0,
 - Nothing is added.
- When Output carry = 1,
 - add 0110 to the binary sum.
 - provide an output carry for the next stage.

BINARY MULTIPLIER

 Consider; 2-bit number B₀ Multiplicand B₁ bits Multiplier bits First partial product (AND gate) Second partial product + A_1B_1 A_1B_0 (AND gate) Product HA HA

BINARY MULTIPLIER

- For more bits;
 - A bit of multiplier is ANDed with each bit of multiplicand in as many levels as there are bits.
 - The binary output of AND gate in each level is added with the partial product of previous level.
 - For J multiplier bits and K multiplicand bits we need
 - J x K AND gates.

- Compare two numbers (A and B)
- 3 outputs <, =, >
 - A > B, A = B, A < B
- Consider compare 4-bit number to 4-bit number
 - $A = A_3 A_2 A_1 A_0$
 - $B = B_3 B_2 B_1 B_0$

• A = B if:

$$- A_3 = B_3 \text{ AND } A_2 = B_2 \text{ AND } A_1 = B_1 \text{ AND } A_0 = B_0$$

A _i	B _i	$x_{i}(A = B)$
0	0	1
0	1	0
1	0	0
1	1	1

$$X_3 = A_3' \cdot B_3' + A_3 \cdot B_3$$

$$x_2 = A_2' \cdot B_2' + A_2 \cdot B_2$$

$$X_1 = A_1' \cdot B_1' + A_1 \cdot B_1$$

$$X_0 = A_0' \cdot B_0' + A_0 \cdot B_0$$

$$X_i = A_i' \cdot B_i' + A_i \cdot B_i$$

$$X = X_3 . X_2 . X_1 . X_0 = (A = B)$$

A > B if

$$- A_i = 1 \text{ and } B_i = 0$$

A _i	B _i	y _{i (} A > B)
0	0	0
0	1	0
1	0	1
1	1	0

$$y_3 = A_3 . B_3'$$

 $y_2 = y3 . A_2 . B_2'$
 $y_1 = y3 . y2 . A_1 . B_1'$

 $y_0 = y3 . y2 . y1 . A_0 . B_0'$

$$y_i = A_i \cdot B_i'$$

 $y = y_3 + y_2 + y_1 + x_0 = (A > B)$

A < B if

$$- A_i = 0 \text{ and } B_i = 1$$

A _i	B _i	z _{i (} A < B)
0	0	0
0	1	1
1	0	0
1	1	0

$$z_3 = A_3' \cdot B_3$$

 $z_2 = y3 \cdot A_2' \cdot B_2$
 $z_1 = y3 \cdot y2 \cdot A_1' \cdot B_1$

 $z_0 = y3 \cdot y2 \cdot y1 \cdot A_0' \cdot B_0$

$$z_i = A_i'$$
. B_i
 $z = z_3 + z_2 + z_1 + z_0 = (A < B)$

- Discrete quantities of information are represented in digital systems by binary codes.
- A binary code of **n** bits is capable of representing up to **2**ⁿ distinct elements of coded information.
- A decoder is a combinational circuit that converts binary information from n input lines to a maximum of 2ⁿ unique output lines.

April, 2024

• 2-to-4 Line Decoder

Α	В	D_0	D_1	D_2	D_3
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

$$D_3 = A'B'$$

$$D_2 = A'B$$

$$D_1 = AB'$$

$$D_0 = AB$$

3-to-8 Line Decoder (Binary to Octal Conversion)

April, 2024

• 3-to-8 Line Decoder (Binary to Octal Conversion)

X	у	Z	D_0	D_1	D_2	D_3	D_4	D_5	D_6	D_7
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1			0							
1			0							
1			0							
1	1	1	0	0	0	0	0	0	0	1

$$D_1 = x' y' z$$

$$D_2 = x' y z'$$

$$D_3 = x' y z$$

$$D_4 = x y' z'$$

$$D_5 = x y' z$$

$$D_6 = x y z'$$

$$D_7 = x y z$$

• 3-to-8 Line Decoder (Binary to Octal Conversion)

- Some decoders are with NAND gates.
- NAND becomes more economical to generate the decoder minterms in their complemented form.
- Decoders include one or more ENABLE inputs to control the circuit operation.

• 2-to-4 Line Decoder with **ENABLE** input

- 2-to-4 line decoder with ENABLE input can function as a demultiplexer.
- A **demultiplexer** is a circuit that receives information from single line and directs it to one of 2ⁿ possible output lines.
- The selection of a specific output is controlled by the bit combination of n selected lines.

- The decoder can function as 1to-4 line demultiplexer.
 - E is taken as a data input line.
 - A and B are taken as the selection inputs.

E	Α	В	D_0	D_1	D_2	D_3
1/0	0	0	Е	0	0	0
1/0	0	1	0	Е	0	0
1/0	1	0	0	0	Е	0
1/0	1	1	0	0	0	Е

- Decoders with enable inputs can be connected together to form a larger decoder circuit.
- 3-to-8 line decoders with enable inputs can be connected to form a 4-to-16 line decoder.

- When w = 0, top decoder enabled and other disabled.
- The bottom decoder outputs all 0's.
- The top eight outputs generate minterms 0000 to 0111.
- When w = 1, bottom decoder enabled and other disabled.

April, 2024

- A decoder provides the 2n minterm of n input variables.
- Since any Boolean function can be expressed in sum of minterms
 - Use decoder to generate the mintersm
 - An external OR gate to form the logical sum.
- Any combinational circuit with n inputs and m outputs can be implemented with an n-to-2ⁿ- line decoder and m OR gates.

Example: Full Adder

$$S(x, y, z) = \sum (1, 2, 4, 7)$$

$$C(x, y, z) = \sum (3, 5, 6, 7)$$

- An encoder is a digital circuit that performs the inverse operation of a decoder.
- An encoder has 2n (or fewer) input lines and n output lines.
- The output lines generate the binary code corresponding to the input value.

• Example: 4-to-2 Binary Encoder

Only one switch should be activated at a time

X_3	X_2	X_1	y ₁	y ₀
0	0	0	0	0
0	0	1	0	1
0	1	0	1	0
1	0	0	1	1

April, 2024

Example: Octal-to-Binary Encoder

D ₇	D_6	D_5	D_4	D_3	D_2	D_1	D_0	$Y_2 Y_1 Y_0$
0	0	0	0	0	0	0	1	0 0 0
0	0	0	0	0	0	1	0	0 0 1
0	0	0	0	0	1	0	0	0 1 0
0	0	0	0	1	0	0	0	0 (1)(1)
0	0	0	1	0	0	0	0	1 0 0
0	0	1	0	0	0	0	0	1 0 1
0	1	0	0	0	0	0	0	1100
1	0	0	0	0	0	0	0	1111

$$Y_2 = D_7 + D_6 + D_5 + D_4$$

$$Y_1 = D_7 + D_6 + D_3 + D_2$$

$$Y_0 = D_7 + D_5 + D_3 + D_1$$

Example: Octal-to-Binary Encoder

$$Y_2 = D_7 + D_6 + D_5 + D_4$$

$$Y_1 = D_7 + D_6 + D_3 + D_2$$

$$Y_0 = D_7 + D_5 + D_3 + D_1$$

- Encoder circuit that includes the priority function.
- If two or more inputs are equal 1 at the same time,
 - The input having the highest priority will take precedence.

	Inp	uts	Outputs			
D_3	D_2	D_1	D_0	Χ	Υ	V
0	0	0	0	Χ	Χ	0
0	0	0	1	0	0	1
0	0	1	X	0	1	1
0	1	X	X	1	0	1
1	X	X	X	1	1	1

	Inn	uts		()utpu	ts	
D_3	D_2	D_1	D_0	X	Y	V	► Valid ouput = 1, when one or more inputs =
0	0	0	0	Χ	Χ	0	
0	0	0	1	0	0	1	
0	0	1	X	0	1	1	
0	1	X	X	1	0	1	
1	Χ	Χ	Χ	1	1	1	

- X's in the output represent don't care conditions.
- X's in the input are useful fir representing a truth table in condensed form.

	Inp	uts		Outputs		
D_3	D_2	D_1	D_0	Χ	Υ	V
0	0	0	0	Χ	Χ	0
0	0	0	1	0	0	1
0	0	1	X	0	1	1
0	1	X	X	1	0	1
1	Χ	Χ	Χ	1	1	1

- X's in the input are useful for representing a truth table in condensed form.
- Truth table uses an X to represent either 1 or 0.
- Example: X100 represents two minterms 0100 and 1100.

4-Input Priority Encoder

	Inp	uts	Outputs			
D_3	D_2	D_1	D_0	Χ	Υ	V
0	0	0	0	Χ	Χ	0
0	0	0	1	0	0	1
0	0	1	X	0	1	1
0	1	X	X	1	0	1
1	Χ	Χ	Χ	1	1	1

According to the table:

- Higher the subscript number,
- The higher the priority of the input.
- Input D₃ has the highest priority.
- When $D_3 = 1$, the xy is 111, regardless of the values of the other inputs.

- When each X in a row is replaced first by 0 and then by 1
 - We obtain all 16 possible input combinations.
- 001X = 0010 and 0011
- 01XX = 0100 and 0101 and 0110 and 0111
- 1XXXX = 1000 and 1001 and 1010 and 1011 and 1100 and 1101 and 1110 and 1111

4-Input Priority Encoder

	Inp	uts	Outputs			
D_3	D_2	D_1	D_0	Χ	Υ	V
0	0	0	0	Χ	Χ	0
0	0	0	1	0	0	1
0	0	1	X	0	1	1
0	1	X	X	1	0	1
1	Χ	X	X	1	1	1

X's K-MAP

 $X = D_2 + D_3$

4-Input Priority Encoder

	Inp	uts	Outputs			
D_3	D_2	D_1	D_0	Χ	Υ	V
0	0	0	0	Χ	Χ	0
0	0	0	1	0	0	1
0	0	1	X	0	1	1
0	1	X	X	1	0	1
1	X	X	X	1	1	1

Y's K-MAP

$$Y = D_3 + D_1 D_2'$$

	Inp	uts	Outputs			
D_3	D_2	D_1	D_0	Χ	Υ	V
0	0	0	0	Χ	Χ	0
0	0	0	1	0	0	1
0	0	1	X	0	1	1
0	1	X	X	1	0	1
1	Χ	Χ	Χ	1	1	(1)

$$V = D_0 + D_1 + D_2 + D_3$$

•
$$X = D_2 + D_3$$

•
$$Y = D_3 + D_1 D_2'$$

•
$$V = D_0 + D_1 + D_2 + D_3$$

- A multiplexer (MUX) is a combinational circuit that selects binary information from one of many input lines and directs it to a single output line.
- The selection of a particular input line is controlled by a set of selection lines.
- There are 2ⁿ input lines and n selected lines.

Consider 2-to-1 MUX

S_0	A	В	Q
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Consider 2-to-1 MUX

$$Q = S_0' A + S_0 B$$

• 4-to-1 Multiplexer

S ₀	S ₁	Q
0	0	Α
0	1	В
1	0	C
1	1	D

• 4-to-1 Multiplexer

• Example: $F(x, y) = \sum (0, 1, 3)$

- Boolean function implementation
 - Decoder can be used to implement Boolean functions by employing external OR gates. (see slide 114- <u>DECODERS</u>).
 - Multiplexer is essentially a decoder that includes the OR gate within the unit.
 - The minterms of a function are generated in multiplexer by the circuit associated with the selection inputs.

- Boolean function implementation
 - This provides a method of implementing a Boolean function of n
 variables with a multiplexer that has n 1 selection inputs.
 - The first n 1 variables of the function are connected to the selection inputs of the multiplexer.
 - The remaining single variable of the function is used for the data inputs.

• Example: $F(x, y, z) = \sum (1, 2, 6, 7)$

X	У	Z	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

• Example: $F(x, y, z) = \sum (1, 2, 6, 7)$

• Example: F(A, B, C, D) = $\sum (1,3,4,11,12,13,14,15)$

ABCD	F
0 0 0 0	${0 \atop 1}$ F = D
0 0 0 1	157-0
0 0 1 0	${0 \atop 1}$ F = D
0 0 1 1	157-0
0 1 0 0	$\binom{1}{0}$ F = D'
0 1 0 1	0 2 L - D
0 1 1 0	$\binom{0}{0}$ F = 0
0 1 1 1	0 2 5 - 0
$\begin{bmatrix} 1 & 0 & 0 \end{bmatrix} 0$	${}_{0}^{0}$ F = 0
1 0 0 1	0 - 1 - 0
$\begin{bmatrix} 1 & 0 & 1 \end{bmatrix} 0$	$\binom{0}{1}$ F = D
1 0 1 1	151-0
$\begin{bmatrix} 1 & 1 & 0 \end{bmatrix} 0$	1}F=1
1 1 0 1	15'-'
[1 1 1]0	1 L F = 1
1 1 1 1	<u> 1</u> J'

8-to-1 MUX using Dual 4-to-1 MUX

DEMULTIPLEXER

