UCS2612 Machine Learning Laboratory

k-Nearest Neighbor algorithm

Name: Mega V

Reg No: 3122 21 5001 051

Develop a python program to predict the Online Shoppers Purchasing Intention using K-Nearest Neighbour algorithm. Visualize the features from the dataset and interpret the results obtained by the model using Matplotlib library

Code:

```
import pandas as pd
import os
import math
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from collections import Counter
from sklearn.model_selection import train_test_split
import sklearn.metrics as metrics
from sklearn.ensemble import IsolationForest
from sklearn.preprocessing import StandardScaler, MinMaxScaler
from sklearn.linear_model import Lasso
from sklearn.linear_model import Ridge
import statsmodels.api as sm
from sklearn.neighbors import KNeighborsClassifier
```

```
df = pd.read_csv("online_shoppers_intention.csv")
df
```

	Administrative	Administrative_Duration	Informational	Informational_Duration	ProductRelated	ProductRelated_Duration	BounceRates	ExitRates	PageValues	SpecialDay	Month 0
0		0.0				0.000000	0.200000	0.200000	0.000000		Feb
1		0.0		0.0		64.000000	0.000000	0.100000	0.000000	0.0	Feb
2						0.000000	0.200000	0.200000	0.000000		Feb
3		0.0		0.0		2.666667	0.050000	0.140000	0.000000	0.0	Feb
4						627.500000	0.020000	0.050000	0.000000		Feb
12325		145.0				1783.791667	0.007143	0.029031	12.241717		Dec
12326		0.0		0.0		465.750000	0.000000	0.021333	0.000000	0.0	Nov
12327						184.250000	0.083333	0.086667	0.000000		Nov
12328		75.0		0.0		346.000000	0.000000	0.021053	0.000000	0.0	Nov
12329						21.250000	0.000000	0.066667	0.000000		Nov
12330 rows x 18 columns											

```
print(df.isnull().sum())
 Administrative
 Administrative Duration
                            0
 Informational
                            0
 Informational Duration
                            0
 ProductRelated
                            0
 ProductRelated Duration
                            0
 BounceRates
                            0
 ExitRates
                            0
 PageValues
                            0
 SpecialDay
                            0
Month
                            0
 OperatingSystems
                            0
 Browser
                            0
 Region
                            0
 TrafficType
                            0
 VisitorType
                            0
Weekend
                            0
Revenue
                            0
 dtype: int64
```

```
df['Month'] = df['Month'].map({'Feb':0, 'Mar':1, 'May':2, 'Oct':3,
    'June':4, 'Jul':5, 'Aug':6, 'Nov':7, 'Sep':8, 'Dec':9})
df['VisitorType'] = df['VisitorType'].map({'Returning_Visitor':0,
    'New_Visitor':1, 'Other':2})
df['Weekend'] = df['Weekend'].map({False:0, True:1})
df['Revenue'] = df['Revenue'].map({False:0, True:1})
```

```
numeric_cols = ['Administrative',
   'Administrative_Duration', 'Informational', 'Informational_Duration',
   'ProductRelated', 'ProductRelated_Duration', 'BounceRates',
   'ExitRates', 'PageValues', 'SpecialDay']
scaler_minmax = MinMaxScaler()
df[numeric_cols] = scaler_minmax.fit_transform(df[numeric_cols])
```

```
scaler_standard = StandardScaler()
df[numeric_cols] = scaler_standard.fit_transform(df[numeric_cols])
df
```

	Administrative	Administrative_Duration	Informational	Informational_Duration	ProductRelated	ProductRelated_Duration	BounceRates	ExitRates	PageValues	SpecialDay	Month Op
0	-0.696993	-0.457191	-0.396478	-0.244931	-0.691003	-0.624348	3.667189	3.229316		-0.308821	
1	-0.696993	-0.457191	-0.396478	-0.244931	-0.668518	-0.590903	-0.457683	1.171473	-0.317178	-0.308821	
2	-0.696993	-0.457191	-0.396478	-0.244931	-0.691003	-0.624348	3.667189	3.229316		-0.308821	
3	-0.696993		-0.396478	-0.244931	-0.668518	-0.622954		1.994610		-0.308821	
4	-0.696993	-0.457191	-0.396478	-0.244931	-0.488636	-0.296430	-0.045196	0.142551		-0.308821	

12325	0.206173	0.363075	-0.396478	-0.244931	0.478227	0.307822	-0.310366	-0.288966	0.342125	-0.308821	
12326	-0.696993	-0.457191	-0.396478	-0.244931	-0.601062	-0.380957	-0.457683	-0.447364	-0.317178	-0.308821	
12327	-0.696993	-0.457191	-0.396478	-0.244931	-0.578577	-0.528063		0.897093		-0.308821	
12328	0.507228	-0.032916	-0.396478	-0.244931	-0.376210	-0.443536	-0.457683	-0.453140		-0.308821	
12329	-0.696993	-0.457191	-0.396478	-0.244931	-0.646033	-0.613243	-0.457683	0.485525		-0.308821	

```
outlier_detector = IsolationForest(contamination=0.5)
```

```
df['Outlier'] = outlier_detector.fit_predict(df[numeric_cols])
plt.scatter(df['BounceRates'], df['ExitRates'], c=df['Outlier'],
cmap='viridis')
plt.colorbar()
plt.show()

df = df[df['Outlier'] == 1].drop('Outlier', axis=1)
```



```
X = df.drop("Revenue", axis = 1)
Y = df["Revenue"]

X_train, X_test, y_train, y_test = train_test_split(X, Y,
test_size=0.2, random_state=42)
```

```
def kNNModelEuclidean(k, x_train, x_test, y_train, y_test):
    neigh = KNeighborsClassifier(n_neighbors=k, metric='euclidean')
    neigh.fit(x_train, y_train)
    y_pred = neigh.predict(x_test)
    accuracy = metrics.accuracy_score(y_test, y_pred)
    return accuracy

def kNNModelManhattan(k, x_train, x_test, y_train, y_test):
    neigh = KNeighborsClassifier(n_neighbors=k, metric='manhattan')
    neigh.fit(x_train, y_train)
```

```
y_pred = neigh.predict(x_test)
accuracy = metrics.accuracy_score(y_test, y_pred)
return accuracy

def kNNModelMinkowski(k, x_train, x_test, y_train, y_test):
    neigh = KNeighborsClassifier(n_neighbors=k, metric='minkowski', p = 3)
    neigh.fit(x_train, y_train)
    y_pred = neigh.predict(x_test)
    accuracy = metrics.accuracy_score(y_test, y_pred)
    return accuracy
```

```
print("Without Feature Engineering : \n")
euc_acc = []
man_acc = []
min_acc = []
for k in range(2,20):
    euc_acc.append((k,round(kNNModelEuclidean(k, X_train, X_test,
    y_train, y_test),3)))
    man_acc.append((k,round(kNNModelManhattan(k, X_train, X_test,
    y_train, y_test),3)))
    min_acc.append((k,round(kNNModelMinkowski(k, X_train, X_test,
    y_train, y_test),3)))

print("Euclidean - k = ",max(euc_acc)[0], "Accuracy : ", max(euc_acc))
print("Manhattan - k = ",max(man_acc)[0], "Accuracy : ", max(man_acc))
print("Minkowski - k = ",max(min_acc)[0], "Accuracy : ", max(min_acc))
```

```
Without Feature Engineering:

Euclidean - k = 19 Accuracy: (19, 0.899)

Manhattan - k = 19 Accuracy: (19, 0.897)

Minkowski - k = 19 Accuracy: (19, 0.902)
```

```
alpha = 0.01
lasso_model = Lasso(alpha=alpha)
lasso_model.fit(X_train, y_train)
feature_importance = lasso_model.coef_
selected_features = np.where(feature_importance != 0)[0]
X_train_selected_lasso = X_train.iloc[:, selected_features]
X_test_selected_lasso = X_test.iloc[:, selected_features]
```

```
print("After Lasso Feature Reduction Technique :\n")
euc_acc = []
```

```
man_acc = []
min_acc = []
for k in range(2,20):
    euc_acc.append((k,round(kNNModelEuclidean(k,
    X_train_selected_lasso, X_test_selected_lasso, y_train, y_test),3)))
    man_acc.append((k,round(kNNModelManhattan(k,
    X_train_selected_lasso, X_test_selected_lasso, y_train, y_test),3)))
    min_acc.append((k,round(kNNModelMinkowski(k,
    X_train_selected_lasso, X_test_selected_lasso, y_train, y_test),3)))

print("Euclidean - k = ",max(euc_acc)[0], "Accuracy: ",
    max(euc_acc)[1])
print("Manhattan - k = ",max(man_acc)[0], "Accuracy: ",
    max(man_acc)[1])
print("Minkowski - k = ",max(min_acc)[0], "Accuracy: ",
    max(min_acc)[1])
```

```
After Lasso Feature Reduction Technique :

Euclidean - k = 19 Accuracy : 0.924

Manhattan - k = 19 Accuracy : 0.924

Minkowski - k = 19 Accuracy : 0.924
```

```
# Ridge Feature Reduction Technique :
alpha = 1.0
ridge_model = Ridge(alpha=alpha)
ridge_model.fit(X_train, y_train)
feature_importance = ridge_model.coef_
selected_features = feature_importance != 0
X_train_selected_ridge = X_train.loc[:, selected_features]
X_test_selected_ridge = X_test.loc[:, selected_features]
```

```
print("After Ridge Feature Reduction Technique :\n")

euc_acc = []
man_acc = []
min_acc = []
for k in range(2,20):
    euc_acc.append((k,round(kNNModelEuclidean(k,
X_train_selected_ridge, X_test_selected_ridge, y_train, y_test),3)))
    man_acc.append((k,round(kNNModelManhattan(k,
X_train_selected_ridge, X_test_selected_ridge, y_train, y_test),3)))
    min_acc.append((k,round(kNNModelMinkowski(k,
X_train_selected_ridge, X_test_selected_ridge, y_train, y_test),3)))
```

```
print("Euclidean - k = ",max(euc_acc)[0], "Accuracy : ",
max(euc_acc)[1])
print("Manhattan - k = ",max(man_acc)[0], "Accuracy : ",
max(man_acc)[1])
print("Minkowski - k = ",max(min_acc)[0], "Accuracy : ",
max(min_acc)[1])
```

```
After Ridge Feature Reduction Technique :

Euclidean - k = 19 Accuracy : 0.899

Manhattan - k = 19 Accuracy : 0.897

Minkowski - k = 19 Accuracy : 0.902
```

```
# Backward Feature Elimination :

def backward_elimination(X, y, significance_level=0.05):
    features = X.columns.tolist()
    num_features = len(features)

for i in range(num_features, 0, -1):
        X_with_constant = sm.add_constant(X)
        model = sm.OLS(y, X_with_constant).fit()
        max_p_value = max(model.pvalues[1:])

        if max_p_value > significance_level:
            removed_feature = model.pvalues.idxmax()[:]
            print(f"Removing feature: {removed_feature} (p-value: {max_p_value:.4f})")
            X = X.drop(removed_feature, axis=1)
        else:
            break

    return X

X_train_backward = backward_elimination(X_train, y_train)
X_test_backward = X_test[X_train_backward.columns]
```

```
Removing feature: TrafficType (p-value: 0.8939)
Removing feature: SpecialDay (p-value: 0.7614)
Removing feature: Browser (p-value: 0.5067)
Removing feature: Region (p-value: 0.5265)
Removing feature: ExitRates (p-value: 0.5175)
Removing feature: ProductRelated_Duration (p-value: 0.4116)
Removing feature: Administrative (p-value: 0.1013)
Removing feature: Administrative_Duration (p-value: 0.3635)
Removing feature: Informational_Duration (p-value: 0.0652)
```

```
print("After Backward Feature Elimination :\n")

euc_acc = []
man_acc = []
min_acc = []
for k in range(2,20):
    euc_acc.append((k,round(kNNModelEuclidean(k, X_train_backward,
    X_test_backward, y_train, y_test),3)))
    man_acc.append((k,round(kNNModelManhattan(k, X_train_backward,
    X_test_backward, y_train, y_test),3)))
    min_acc.append((k,round(kNNModelMinkowski(k, X_train_backward,
    X_test_backward, y_train, y_test),3)))

print("Euclidean - k = ",max(euc_acc)[0], "Accuracy : ",
    max(euc_acc)[1])
print("Manhattan - k = ",max(man_acc)[0], "Accuracy : ",
    max(man_acc)[1])
print("Minkowski - k = ",max(min_acc)[0], "Accuracy : ",
    max(min_acc)[1])
```

```
After Backward Feature Elimination :

Euclidean - k = 19 Accuracy : 0.908
Manhattan - k = 19 Accuracy : 0.905
Minkowski - k = 19 Accuracy : 0.908
```

Learning Outcome:

- The Categorical values are converted to numerical values
- The numerical values are normalized and Standarized
- For a different feature selection algorithms the accuracy may differ
- The accuracy mainly depends on the K value