Data Mining

Chapter 5
Association Analysis: Basic Concepts

Introduction to Data Mining, 2nd Edition by
Tan, Steinbach, Karpatne, Kumar

Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction

Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Association Rules

```
{Diaper} → {Beer},
{Milk, Bread} → {Eggs,Coke},
{Beer, Bread} → {Milk},
```

Implication means co-occurrence, not causality!

Definition: Frequent Itemset

- ? **Itemset** unique set
 - A collection of zero or more items
 - Example: {Milk, Bread, Diaper} 每个transaction都含有一部分的Itemset(subset of itemset)
 - k-itemset
 - An itemset that contains k items
- **Support count (σ)** —组itemset的出现频率
 - Frequency of occurrence of an itemset
 - E.g. $\sigma(\{Milk, Bread, Diaper\}) = 2$
- Support ─组itemset出现的概率
 - Fraction of transactions that contain an itemset
 - E.g. $s(\{Milk, Bread, Diaper\}) = 2/5$
- ☑ Frequent Itemset 出现概率最高的itemset组合
 - An itemset whose support is greater than or equal to a minsup threshold

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Itemset: {I1,I2,I3...In}

Transaction:{t1,t2,t3...tn}

Definition: Association Rule

Association Rule

- An implication expression of the form
 X → Y, where X and Y are itemsets
- Example:{Milk, Diaper} → {Beer}

? R	ule	Eva	luation	Metrics
-----	-----	-----	---------	----------------

X-antecedent 前因 Y-consequent 后果

- Support (s)
 - Fraction of transactions that contain both X and Y
- Confidence (c) 在所有transaction中的出现概率
 - Measures how often items in Y appear in transactions that contain X

Y中的item在X中出现的概率

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example:

 $\{Milk, Diaper\} \Rightarrow \{Beer\}$

$$s = \frac{\sigma \text{ (Milk, Diaper, Beer)}}{|T|} = \frac{2}{5} = 0.4$$

$$c = \frac{\sigma(\text{Milk, Diaper, Beer})}{\sigma(\text{Milk, Diaper})} = \frac{2}{3} = 0.67$$

Association Rule Mining Task

- Given a set of transactions T, the goal of association rule mining is to find all rules having
 - support ≥ minsup threshold
 - confidence ≥ minconf threshold
- Prute-force approach:
 - List all possible association rules
 - Compute the support and confidence for each rule
 - Prune rules that fail the minsup and minconf thresholds
 - → Computationally prohibitive!

Computational Complexity

Given d unique items:

- Total number of itemsets = 2^d
- Total number of possible association rules:

$$R = \sum_{k=1}^{d-1} \left[\binom{d}{k} \times \sum_{j=1}^{d-k} \binom{d-k}{j} \right]$$
$$= 3^{d} - 2^{d+1} + 1$$

If d=6, R = 602 rules

Mining Association Rules

TID	Item s
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Rules:

```
{Milk, Diaper} \rightarrow {Beer} (s=0.4, c=0.67)

{Milk, Beer} \rightarrow {Diaper} (s=0.4, c=1.0)

{Diaper, Beer} \rightarrow {Milk} (s=0.4, c=0.67)

{Beer} \rightarrow {Milk, Diaper} (s=0.4, c=0.67)

{Diaper} \rightarrow {Milk, Beer} (s=0.4, c=0.5)

{Milk} \rightarrow {Diaper, Beer} (s=0.4, c=0.5)
```

Observations:

- All the above rules are binary partitions of the same itemset: {Milk, Diaper, Beer}
- Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple the support and confidence requirements

Mining Association Rules

- Two-step approach:
 - 1. Frequent Itemset Generation
 - Generate all itemsets whose support ≥ minsup
 - 2. Rule Generation
 - Generate high confidence rules from each frequent itemset,
 where each rule is a binary partitioning of a frequent itemset
- Prequent itemset generation is still computationally expensive

Frequent Itemset Generation

Frequent Itemset Generation

Brute-force approach:

- Each itemset in the lattice is a candidate frequent itemset
- Count the support of each candidate by scanning the database

- Match each transaction against every candidate
- Complexity ~ O(NMw) => Expensive since M = 2d !!!

Frequent Itemset Generation Strategies

Reduce the number of candidates (M)

- Complete search: M=2^d
- Use pruning techniques to reduce M

? Reduce the number of transactions (N)

- Reduce size of N as the size of itemset increases
- Used by DHP and vertical-based mining algorithms

? Reduce the number of comparisons (NM)

- Use efficient data structures to store the candidates or transactions
- No need to match every candidate against every transaction

Reducing Number of Candidates

ACE: frequent

A,C,E,AC,AE,CE,ACE都是frequent

- ? Apriori principle: 如果一个itemset是frequent,那么所有子集都是frequent
 - If an itemset is frequent, then all of its subsets must also be frequent

itemset frequent—subset frequent itemset infrequent—superset infrequent 因此这里可以剪枝

②Apriori principle holds due to the following property of the support measure:

$$\forall X, Y : (X \subseteq Y) \Rightarrow s(X) \ge s(Y)$$

- Support of an itemset never exceeds the support of its
 subsets
 support值—子集的support永远会比本身大
- This is known as the anti-monotone property of support

TID	Items
1	Bread, Milk
2	Beer, Bread, Diaper, Eggs
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Bread, Coke, Diaper, Milk

Items (1-itemsets)

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Faas	1
-99 5	_

必须得要3个item

Minimum Support Count = 3

If every subset is considered, ${}^{6}C_{1} + {}^{6}C_{2} + {}^{6}C_{3}$ 6 + 15 + 20 = 41

With support-based pruning,

$${}^{6}C_{1} + {}^{4}C_{2} + 1$$

6 + 6 + 1 = 13

如果brute froce-要41种 如果剪枝:

可以删除比min support count小的item,表中也就是coke/egg

TID	Items
1	Bread, Milk
2	Beer, Bread, Diaper, Eggs
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Bread, Coke, Diaper, Milk

Items (1-itemsets)

Item	Count	
Bread	4	1
Coke	2	7
Milk	4	
Beer	3	
Diaper	4	
Eggs	1	

Minimum Support Count = 3

If every subset is considered, ${}^6C_1 + {}^6C_2 + {}^6C_3$ 6 + 15 + 20 = 41With support-based pruning, ${}^6C_1 + {}^4C_2 + 1$ 6 + 6 + 1 = 13

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Items (1-itemsets)

重新组合,把剩下的bread, milk, beer, diaper重新组合再进行count

Itemset
{Bread,Milk}
{Bread, Beer }
{Bread,Diaper}
{Beer, Milk}
{Diaper, Milk}
{Beer,Diaper}

Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

Minimum Support Count = 3

If every subset is considered,

$${}^{6}C_{1} + {}^{6}C_{2} + {}^{6}C_{3}$$

 $6 + 15 + 20 = 41$
With support-based pruning,
 ${}^{6}C_{1} + {}^{4}C_{2} + 1$
 $6 + 6 + 1 = 13$

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Items (1-itemsets)

Itemset	Count
{Bread,Milk}	3
{Beer, Bread}	2
{Bread,Diaper}	3
{Beer,Milk}	2
{Diaper,Milk}	3
{Beer,Diaper}	3

Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

Minimum Support Count = 3

If every subset is considered, ${}^{6}C_{1} + {}^{6}C_{2} + {}^{6}C_{3}$ 6 + 15 + 20 = 41With support-based pruning, ${}^{6}C_{1} + {}^{4}C_{2} + 1$ 6 + 6 + 1 = 13 这两个依然<3,所以删除

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Items (1-itemsets)

Itemset	Count
{Bread,Milk}	3
{Beer, Bread}	2
{Bread,Diaper}	3
{Beer,Milk}	2
{Diaper,Milk}	3
{Beer,Diaper}	根据上面的pi

Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

{beer,bread},{beer,milk}是infrequent,所以它的superset都是infrequent

Triplets (3-itemsets)

Minimum Support Count = 3

If every subset is considered,

$${}^{6}C_{1} + {}^{6}C_{2} + {}^{6}C_{3}$$

6 + 15 + 20 = 41

With support-based prunkkeinfrequent的问题,只剩下最后一个

$${}^{6}C_{1} + {}^{4}C_{2} + 1$$

 $6 + 6 + 1 = 13$

上面的组合可以组成 bread,milk,diaper bread, milk,beer,diaper bread,diaper,beer diaper,milk,beer

(No need to generate candidates with infrequent subsets)

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Items (1-itemsets)

Itemset	Count
{Bread,Milk}	3
{Beer, Bread}	2
{Bread,Diaper}	3
{Beer,Milk}	2
{Diaper,Milk}	3
{Beer,Diaper}	3

Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

Minimum Support Count = 3

Triplets (3-itemsets)

Itemset	Count
{Bread, Diaper, Milk}	2

(No need to generate candidates with infrequent subsets)

Apriori Algorithm

- F_k: frequent k-itemsets
- L_k: candidate k-itemsets

?Algorithm

- Let k=1
- Generate F₁ = {frequent 1-itemsets}
- Repeat until F_k is empty
 - Candidate Generation: Generate L_{k+1} from F_k
 - Candidate Pruning: Prune candidate itemsets in L_{k+1} containing subsets of length k that are infrequent
 - Support Counting: Count the support of each candidate in L_{k+1} by scanning the transaction database
 - Candidate Elimination: Eliminate candidates in L_{k+1} that are infrequent, leaving only those that are frequent => F_{k+1}

Candidate Generation Requirements

- Candidate itemsets must include all frequent itemsets
- Algorithm should not produce an itemset more than once
 - Example: {a,b,c,d} can be obtained by merging {a,b,c} with {d}, {a,b,d} with {c}, {a,b,c} with {b,c,d}, and so on
 - To avoid duplicates, keep all items in an itemset sorted in lexicographic order
 按字母排序
 - Satisfies order: {a,b,c,d}, {a,b,c}, {a,b,d}, ...
 - Violates order: {a,c,b,d}, {a,c,b}, {d,a,b}, ...
 - Merge two itemsets P and Q only if items in Q are not lexicographically smaller than items in P
 - Merge {a,b,c} with {d}, {a,b,c} with {a,b,d}, ...
 - Do not merge {a,b,d} with {c}, {a,c,d} with {b,c,d}

Q必须大于P!!是里面的所有item都必须比P大

Candidate Generation: Brute-force method

Candidate Generation: Fk-1 X F1 Method

Candidate Generation: Fk-1 x Fk-1 Method

Candidate Pruning

- Plet F₃ = {ABC,ABD,ABE,ACD,BCD,BDE,CDE} be the set of frequent 3-itemsets
- L₄ = {ABCD,ABCE,ABDE} is the set of candidate 4 itemsets generated
- Candidate pruning
 - Prune a k-itemset if any of its (k-1)-size subsets is infrequent
 - Prune ABCE because ACE and BCE are infrequent
 - Prune ABDE because ADE is infrequent
- ? After candidate pruning: $L_4 = \{ABCD\}$

Support Counting of Candidate Itemsets

- 2 Scan the database of transactions to determine the support of each candidate itemset
 - Must match every candidate itemset against every transaction, which is an expensive operation

2 Number of comparisons can be reduced by storing the candidates in a data structure such as a hash tree (see book for details)

TID	Items
1	Bread, Milk
2	Beer, Bread, Diaper, Eggs
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Bread, Coke, Diaper, Milk

Rule Generation

y=L-x 互斥

- ☑Given a frequent itemset L, find all non-empty subsets f ⊂ L such that f → L – f satisfies the minimum confidence requirement
 - If {A,B,C,D} is a frequent itemset, candidate rules:

ABC
$$\rightarrow$$
D, ABD \rightarrow C, ACD \rightarrow B, BCD \rightarrow A, A \rightarrow BCD, B \rightarrow ACD, C \rightarrow ABD, D \rightarrow ABC AB \rightarrow CD, AC \rightarrow BD, AD \rightarrow BC, BC \rightarrow AD, BD \rightarrow AC, CD \rightarrow AB,

If |L| = k, then there are $2^k - 2$ candidate association rules (ignoring $L \rightarrow \emptyset$ and $\emptyset \rightarrow L$)

Rule Generation

In general, confidence does not have an antimonotone property

 $c(ABC \rightarrow D)$ can be larger or smaller than $c(AB \rightarrow D)$

- But confidence of rules generated from the same itemset has an anti-monotone property
 - E.g., Suppose {A,B,C,D} is a frequent 4-itemset:

$$c(ABC \rightarrow D) \ge c(AB \rightarrow CD) \ge c(A \rightarrow BCD)$$

 Confidence is anti-monotonic w.r.t. number of items on the RHS (consequent) of the rule

Rule Generation for Apriori Algorithm

Factors Affecting Complexity of Apriori

? Choice of minimum support threshold min越低,需要分析的越多

- lowering support threshold results in more frequent itemsets
- this may increase number of candidates and max length of frequent itemsets

Dimensionality (number of items) of the data set

- more space is needed to store support count of each item
- if number of frequent items also increases, both computation and I/O costs may also increase

Number of transactions

 since Apriori makes multiple passes, run time of algorithm may increase with number of transactions

Average transaction width

- transaction width increases with denser data sets
- This may increase max length of frequent itemsets (number of subsets supported by a transaction increases with its width)