определенный интеграл

§ 6. Определенный интеграл

СПРАВОЧНЫЕ СВЕДЕНИЯ

1. Интеграл Римана. Пусть задан отрезок [a;b]. Через

$$\tau = \{x_k\}_{k=0}^{k=k_{\tau}}$$

будем обозначать *разбиение отрезка* [a;b] такими точками $x_k,\ k=0,1,...,k_{ au},$ что

$$a = x_0 < x_1 < \dots < x_k < \dots < x_{k_{\tau}} = b.$$

Отрезки $[x_{i-1};x_i],\ i=1,2,...,k_{ au},$ называются *отрезками разбиения* au, а наибольшая из их длин — *мелкостью* | au| разбиения au:

$$|\tau| = \max_{i=1,2,\dots,k_{\tau}} |x_i - x_{i-1}|.$$

Разбиение τ' называют разбиением, вписанным в разбиение τ (а также разбиением, следующим за разбиением τ), и пишут $\tau' \succ \tau$ или $\tau \prec \tau'$, если каждый отрезок разбиения τ' содержится в некотором отрезке разбиения τ .

Пусть на отрезке [a;b] задана функция $f,\ \tau=\{x_k\}_{k=0}^{k=k_{\tau}}$ — некоторое разбиение этого отрезка, $|\tau|$ — его мелкость и $\Delta x_i=x_i-x_{i-1}$. Выберем произвольно по одной точке $\xi_i\in[x_{i-1};x_i]$ и составим сумму

$$\sigma_{\tau} = \sigma_{\tau}(f; \xi_1, \xi_2, ..., \xi_{k_{\tau}}) = \sum_{i=1}^{k_{\tau}} f(\xi_i) \Delta x_i.$$
 (1)

Суммы этого вида называются интегральными суммами (Римана) функции f.

Функция f называется *интегрируемой* (*no Риману*) на отрезке [a;b], если существует конечный предел $\lim_{|\tau|\to 0}\sigma_{\tau}$. Этот предел назы-

вается определенным интегралом (или, подробнее, определенным интегралом Римана) функции f на отрезке [a;b] и обозначается

$$\int_{a}^{b} f(x) dx.$$

Число a называется нижним, а b — верхним пределом интегрирования. Таким образом,

$$\int_{-\pi}^{b} f(x) dx = \lim_{|\tau| \to 0} \sigma_{\tau}.$$
 (2)

Определение предела (2) можно сформулировать в терминах пределов последовательностей или на "языке ε - δ ". Сделаем и то, и другое.

Определение 1. Число J называется npeделом интегральных сумм (1) npu $|\tau|\to 0$, если для любой последовательности $\tau_n=\{x_k^{(n)}\}_{k=0}^{k=k\tau_n}$ разбиений отрезка [a;b], у которой

$$\lim_{n\to\infty} |\tau_n| = 0,$$

и для любого набора точек

$$\xi_i^{(n)} \in [x_{i-1}^{(n)}; x_i^{(n)}], \quad i = 1, 2, ..., k_{\tau_n}, \quad n = 1, 2, ...,$$

существует предел последовательности интегральных сумм σ_{τ_n} , n=1,2,..., и он равен J:

$$\lim_{n \to \infty} \sigma_{\tau_n} = J. \tag{3}$$

Определение 2. Число J называется npedenom интегральных cymm (1) npu $|\tau| \to 0$, если для любого $\varepsilon > 0$ существует такое $\delta > 0$, что, каково бы ни было разбиение $\tau = \{x_k\}_{k=0}^{k=k_{\tau}}$ отрезка [a;b] мелкости, меньшей $\delta\colon |\tau| < \delta$, и каковы бы ни были точки $\xi_i\in [x_{i-1};x_i]$, верно неравенство $|\sigma_{\tau}-J|<\varepsilon.$

Определения 1 и 2 предела интегральных сумм (1) равносильны. По определению полагается

$$\int_{a}^{a} f(x) \, dx = 0, \quad \int_{a}^{a} f(x) \, dx = -\int_{a}^{b} f(x) \, dx, \quad a < b.$$

Tеорема 1. Eсли функция интегрируема на некотором отрезке, то она ограничена на этом отрезке.

Для каждого разбиения $\tau = \{x_k\}_{k=0}^{k=k_{\tau}}$ отрезка [a;b], на котором определена ограниченная функция f, положим

$$M_{i} = \sup_{x_{i-1} \leq x \leq x_{i}} f(x), \quad m_{i} = \inf_{x_{i-1} \leq x \leq x_{i}} f(x), \quad i = 1, 2, ..., k_{\tau},$$

$$S_{\tau} = S_{\tau}(f) = \sum_{i=1}^{k_{\tau}} M_{i} \Delta x_{i}, \quad s_{\tau} = s_{\tau}(f) = \sum_{i=1}^{k_{\tau}} m_{i} \Delta x_{i}.$$

Сумма S_{τ} называется верхней, а сумма s_{τ} — нижней суммой Дарбу функции f.

Верхняя грань J_* нижних сумм Дарбу s_τ называется нижним интегралом функции f, а нижняя грань J^* верхних сумм Дарбу — ее верхним интегралом:

$$J_* = \sup_{\tau} s_{\tau}, \quad J^* = \inf_{\tau} S_{\tau}.$$

Предел нижних и верхних сумм Дарбу при $|\tau| \to 0$ определяется аналогично пределу интегральных сумм Римана. Сформулируем его, например, на "языке ε - δ " для нижних сумм Дарбу.

Определение 3. Число J называют пределом сумм Дарбу s_{τ} при $|\tau| \to 0$ и пишут

 $\lim_{|\tau| \to 0} s_{\tau} = J,$

если для любого $\varepsilon>0$ существует такое $\delta>0$, что для всех разбиений au мелкости $| au|<\delta$ выполняется неравенство

$$|s_{\tau} - J| < \varepsilon$$
.

Tеорема 2. Для того чтобы ограниченная функция f была интегрируема на отрезке [a;b], необходимо и достаточно, чтобы

$$\lim_{|\tau| \to 0} (S_{\tau} - s_{\tau}) = 0.$$

Следствие. Для того чтобы ограниченная функция f была интегрируема на отрезке [a;b], необходимо и достаточно, чтобы

$$\lim_{|\tau| \to 0} \sum_{i=1}^{k_{\tau}} \omega_i(f) \Delta x_i = 0,$$

 $r\partial e \ \omega_i(f)$ — колебание функции f на отрезке $[x_{i-1};x_i]$:

$$\omega_i(f) = \sup_{\substack{x' \in [x_{i-1}; x_i] \\ x'' \in [x_{i-1}; x_i]}} |f(x'') - f(x')|, \quad i = 1, 2, ..., k_\tau.$$

Tеорема 3. Для того чтобы ограниченная функция f была интегрируема на отрезке [a;b], необходимо и достаточно, чтобы

$$J_* = J^*.$$

Следствие. Для того чтобы ограниченная функция f была интегрируема на отрезке [a;b], необходимо и достаточно, чтобы для любого $\varepsilon > 0$ нашлось такое разбиение τ отрезка [a;b], что

$$S_{\tau} - s_{\tau} < \varepsilon$$
.

Заметим, что на практике интегралы от основных элементарных функций нецелесообразно находить с помощью предела интегральных сумм — для этого есть более простой способ (см. ниже формулу Ньютона—Лейбница). Наоборот, можно находить некоторые пределы сумм, если их удастся преобразовать к интегральным суммам функций, интеграл от которой известен (см. ниже пример 13).

Интеграл, рассматриваемый как предел интегральных сумм, иногда удобно использовать для его приближенного вычисления (см. § 10).

2. Свойства интеграла.

$$1. \int_{a}^{b} dx = b - a.$$

2. Если функция f интегрируема на отрезке [a;b], то она интегрируема на любом отрезке $[a^*;b^*]$, содержащемся в [a;b].

3. $A\partial\partial umuвность интеграла.$ Если функция f интегрируема на отрезках [a;c] и [c;b], то она интегрируема и на отрезке [a;b], причем

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx, \quad a \leqslant c \leqslant b.$$

4. Линейность интеграла. Если функции f_k интегрируемы на отрезке [a;b], то для любых чисел $\lambda_k,\ k=1,2,...,n,$ функция $\sum_{k=1}^n \lambda_k f_k$ также интегрируема на отрезке [a;b] и

$$\int_{a}^{b} \left(\sum_{k=1}^{n} \lambda_{k} f_{k}(x) \right) dx = \sum_{k=1}^{n} \lambda_{k} \int_{a}^{b} f_{k}(x) dx.$$

- 5. Произведение интегрируемых на отрезке функций интегрируемо на нем.
 - 6. Если функция f интегрируема на отрезке [a;b] и

$$\inf_{[a;b]} |f(x)| > 0,$$

то функция 1/f(x) также интегрируема на этом отрезке.

7. Интегрирование неравенств. Если функции f и g интегрируемы на отрезке [a;b] и для всех $x \in [a;b]$ верно неравенство $f(x) \geqslant g(x)$, то

 $\int_{a}^{b} f(x) dx \geqslant \int_{a}^{b} g(x) dx.$

В частности, если на отрезке [a;b] функция $f(x) \geqslant 0$, то

$$\int_{a}^{b} f(x) \, dx \geqslant 0.$$

8. Если неотрицательная функция интегрируема на отрезке [a;b] и существует такая точка $x_0 \in [a;b]$, что функция в ней непрерывна и принимает положительное значение, то

$$\int_{a}^{b} f(x) \, dx > 0.$$

Из свойств 4, 7 и 8 следует, что если на отрезке [a;b] для интегрируемых функций f и g выполняется неравенство $f(x) \leqslant g(x)$ и если существует точка $x_0 \in [a;b]$, в которой $f(x_0) < g(x_0)$, причем обе функции f и g непрерывны в этой точке, то имеет место строгое неравенство:

 $\int_{a}^{b} f(x) \, dx < \int_{a}^{b} g(x) \, dx.$

9. Если функция f интегрируема на отрезке [a;b], то и ее абсолютная величина |f| также интегрируема на этом отрезке и

$$\left| \int_{a}^{b} f(x) \, dx \right| \leqslant \int_{a}^{b} |f(x)| \, dx, \quad a \leqslant b.$$

10. Непрерывность интеграла. Если функция f интегрируема на отрезке [a;b], то функции

$$F(x) = \int_{a}^{x} f(t) dt \quad \text{if} \quad G(x) = \int_{x}^{b} f(t) dt$$

непрерывны на этом отрезке.

3. Формула Ньютона-Лейбница.

Теорема 4. Если функция f интегрируема на отрезке [a;b] и непрерывна в точке $x_0 \in [a;b]$, то функция

$$F(x) = \int_{a}^{x} f(t) dt \tag{5}$$

дифференцируема в точке x_0 и $F'(x_0) = f(x_0)$.

Следствие. При выполнении условий теоремы функция

$$G(x) = \int_{x}^{b} f(t) dt$$

дифференцируема в точке x_0 и $G'(x_0) = -f(x_0)$.

Tеорема 5. Если функция f непрерывна на отрезке [a;b], то она имеет на этом отрезке первообразную, причем одной из ее первообразных является интеграл c переменным верхним пределом (5), m. e.

$$\int f(x) dx = \int_{a}^{x} f(t) dt + C.$$

T е о р е м а 6. Если функция f непрерывна на отрезке [a;b], то для любой ее первообразной F имеет место формула

$$\int_{a}^{b} f(x) dx = F(b) - F(a). \tag{6}$$

Эта формула называется формулой Ньютона—Лейбница. Ее записывают также в виде

 $\int_{a}^{b} f(x) \, dx = F(x) \Big|_{a}^{b}.$

Если функция F непрерывна на отрезке [a;b] и во всех его внутренних точках выполняется равенство F'(x)=f(x) (а в концевых точках равенства $F'_+(a)=f(a)$ и $F'_-(b)=f(b)$, где F'_+ и F'_- — соответственно правая и левая производные, могут не выполняться), то формула (6) остается верной. Заметим, что если функция f также

непрерывна в точке a (соответственно в точке b), то из непрерывности функции F в точке a (соответственно в точке b) и условия $F'(x) = f(x), \ a < x < b,$ следует существование односторонней производной $F'_{+}(a) = f(a)$ (соответственно $F'_{-}(b) = f(b)$).

4. Формула замены переменного. Пусть функция f(x) непрерывна на интервале (a;b), функция $\varphi(t)$ определена и непрерывна вместе со своей производной $\varphi'(t)$ на интервале $(\alpha;\beta)$, причем для всех $t \in (\alpha;\beta)$ выполняется неравенство $a < \varphi(t) < b$ и, следовательно, имеет смысл композиция $f \circ \varphi$ функций φ и f.

Если

$$\alpha_0 \in (\alpha; \beta), \quad \beta_0 \in (\alpha; \beta), \quad a_0 = \varphi(\alpha_0), \quad b_0 = \varphi(\beta_0),$$

то имеет место формула

$$\int_{a_0}^{b_0} f(x) dx = \int_{\alpha_0}^{\beta_0} f(\varphi(t)) \varphi'(t) dt.$$
 (9)

Эта формула называется формулой замены переменного в определенном интеграле.

Отметим специальный случай этой формулы: если функция f непрерывна на отрезке [a;b], а функция φ непрерывно дифференцируема и возрастает на отрезке $[\alpha;\beta],\ \varphi(\alpha)=a,\ \varphi(\beta)=b,$ то

$$\int_{a}^{b} f(x) dx = \int_{\alpha}^{\beta} f(\varphi(t))\varphi'(t) dt.$$
 (10)

5. Интегрирование по частям. Если функции u=u(x) и v=v(x) непрерывны вместе со своими производными на отрезке [a;b], то

$$\int_{a}^{b} u \, dv = uv \Big|_{a}^{b} - \int_{a}^{b} v \, du. \tag{15}$$

Эта формула называется формулой интегрирования по частям. Она остается справедливой и в случае, если вместо непрерывности производных u' и v' потребовать лишь их интегрируемость.

ПРИМЕРЫ С РЕШЕНИЯМИ

 Π р и м е р $\,1.$ Доказать, что всякая непрерывная на отрезке функция интегрируема на нем.

▲ Если функция f непрерывна на отрезке [a;b], то она и равномерно непрерывна на нем, т. е. для любого $\varepsilon>0$ существует такое $\delta>0$, что для любых двух точек $x'\in [a;b]$ и $x''\in [a;b]$, удовлетворяющих условию $|x'-x''|<\delta$, верно неравенство $|f(x')-f(x'')|<\varepsilon$, и, следовательно, если разбиение $\tau=\{x_k\}_{k=0}^{k=k_\tau}$ отрезка [a;b] имеет мелкость $|\tau|<\delta$, то

$$\omega_i(f) = \sup_{\substack{x' \in [a;b] \\ x'' \in [a;b]}} |f(x') - f(x'')| \leqslant \varepsilon, \quad i = 1, 2, ..., k_\tau,$$