

HW #01: Python CLI Application

Deadline: 27.11.2020, 08:00 (GMT+3)

1. Описание задания	2
2. Критерии оценивания	2
3. Задача: Inverted Index	3
4. Общие рекомендации	5
5. Сроки сдачи и правила оформления задания	5

1. Описание задания

В данном ДЗ нужно написать приложение на Python, которое предоставляет консольный интерфейс для:

- построения инвертированного индекса и эффективного сохранения его на диске с помощью модуля struct¹;
- поиска по инвертированному индексу в кодировках utf-8 и ср1251.

2. Критерии оценивания

Балл за задачу складывается из:

- 30% правильная реализация поиска
- 40% эффективность сжатия индекса, более точная формула:
 - 40% x min(1.5, 23² MiB / compression_size)
- 20% качество покрытия тестами, точная формула:
 - 20% x min([test_coverage / 0.8], 1.0)
- **10%** качество кода (pylint³), точная формула:
 - 10% x min([lint_quality / 8.0], 1.0)

Бонусы и штрафы:

- 100% за плагиат в решениях (всем участникам процесса)
- 100% за использование pickle, zlib и других библиотек вместо struct
- **30%** за посылку решения в течение недели после deadline (**-100%** спустя неделю)
- ◆ 5% за каждую повторную посылку⁴
- до 20% за эффективность сжатия⁵

-

¹ Да, это реальная жизнь, вам придется выйти немного за рамки того, что изучали. Все что нужно - выбрать правильную кодировку и пользоваться методами раск, unpack и calcsize.

² Приблизительный размер сжатого индекса для датасета Wikipedia (sample)

³ pylint версии 2.6.0

⁴ Поскольку задание первое, то в целях знакомства разрешаем сделать больше посылок без штрафа

⁵ Баллы свыше 100% можно использовать для повышения финальной оценки по курсу. Для этого необходимо написать в конце курса письмо о запросе их учета.

3. Задача: Inverted Index

Приложение (inverted index.py) должно предоставлять следующий CLI6:

1. Построение инвертированного индекса на основе датасета (см. формат ниже) и его эффективное сжатие для сохранения на диск:

```
$ python3 inverted_index.py build \
    --dataset /path/to/dataset \
    --output /path/to/inverted.index
```

2. Реализация поиска со следующим консольным интерфейсом:

```
$ python3 inverted_index.py query --index /path/to/inverted.index \
    --query-file-utf8 /path/to/quries.txt

$ cat /path/to/quries.txt | python3 inverted_index.py query \
    --index /path/to/inverted.index \
    --query-file-utf8 -

$ python3 inverted_index.py query --index /path/to/inverted.index \
    --query-file-cp1251 /path/to/quries.txt

$ cat /path/to/quries.txt | python3 inverted_index.py query \
    --index /path/to/inverted.index \
    --query-file-cp1251 -

$ python3 inverted_index.py query \
    --index /path/to/inverted.index \
    --query first query [--query the second query]<sup>7</sup>
```

⁶ Должны поддерживаться как абсолютные, так и относительные пути

⁷ Консоль будет работать в кодировке utf-8

Чтение сжатого инвертированного индекса с диска в память и "обстрел" запросами, которые предоставляются файлом в кодировке utf-8 или ср1251. В каждой строке находится ровно один запрос, состоящий из любого числа слов, разделенных пробельными символами. Выходной формат вывода см. ниже.

Одновременный вызов --query-file-cp1251 и --query-file-utf8 должен приводить к ошибке (return code приложения не должен быть равен 0).

Входные данные

Wikipedia (sample):

- доступен по ссылке для скачивания здесь;
- предполагается, что файл доступен в режиме read-only в локальной директории проекта под названием wikipedia sample.txt;
- формат: текст в кодировке utf-8
- в каждой строке:

```
article ID(int) <tab> article name <spaces> article content
```

В качестве уникальных термов (слов) для поиска для однозначности проверки решения используем конструкцию:

```
content = article_name + " " + article_content
words = content.split()
```

Пример:

12 Anarchism Anarchism is often defined as a …

Выходной формат "обстрела"

По результатам "обстрела" stdout должен содержать **только** ответы на запросы (всю остальную вспомогательную информацию пишите в stderr или в логи). Ответ на запрос - список идентификаторов документов (статей Википедии), разделенных запятыми. Пример:

- запрос в файле: "long query", состоит из двух слов "long" и "query"
- допустим в датасете только 3 документа 151, 13, 3998 содержат **одновременно оба** этих слова, тогда ваш ответ: "151,13,3998". Порядок предоставленных документов в ответе не важен (может быть любым). Но

проверяется, что Вы нашли абсолютно все нужные документы и ничего лишнего.

4. Общие рекомендации

При решении задач старайтесь следовать следующим рекомендациям:

- держите уровень покрытия кода тестами на уровне 80+%, следуйте TDD (сначала тесты, потом реализация);
- отделяйте фазу рефакторинга от фазы добавления новой функциональности, т.е.
 - фиксируем функциональность, все тесты зеленые;
 - о проводим рефакторинг;
 - о по окончании фазы рефакторинга снова все тесты зеленые;
- следите за скоростью выполнения unit-test'ов, несколько секунд это хорошо, в противном случае нужно уменьшать размер тестируемых датасетов или разделять тесты на фазы (см. видео про mark.slow);
- следите за качеством кода и проверяйте "глупые" ошибки с помощью pylint, следите за поддерживаемостью и читаемостью кода;

5. Сроки сдачи и правила оформления задания

Оформление задания:

- Выполненное ДЗ запакуйте в архив **MADEPY20Q4_<Surname>_<Name>_HW1.zip**, например, для Алексея Драля -- MADEPY20Q4_Dral_Alexey_HW1.zip. Если ваше решение лежит в папке my_solution_folder, то для создания архива hw.zip на Linux и Mac OS выполните команду:
 - o zip -r hw.zip my_solution_folder/*
- На Windows 7/8/10: необходимо выделить необходимое для сдачи содержимое директории my_solution_folder/ нажать правую кнопку мыши на одном из выделенных объектов, выбрать в открывшемся меню "Отправить >", затем "Сжатая ZIP-папка". Теперь можно переименовать архив.
- Перед проверкой убедитесь, что дерево вашего архива выглядит так (в том числе не должно быть лишних файлов и директорий):
 - o | MADEPY20Q4_<Surname>_<Name>_HW1.zip

- o | ---- task_<Surname>_<Name>_inverted_index.py
- o | ---- test_<Surname>_<Name>_inverted_index.py⁸
- При несовпадении дерева вашего архива с представленным деревом ваше решение не будет возможным автоматически проверить, а значит, и оценить его.
- Для того, чтобы сдать задание необходимо:
 - Зарегистрироваться и залогиниться в сервисе Everest
 - Перейти на страницу приложения <u>"BigData Team | MADE Python</u> Grader"
 - Выбрать вкладку Submit Job (если отображается иная).
 - Выбрать в качестве "Task" значение: "HW1: Inverted index"
 - Загрузить в качестве "Task solution" архив с решением
 - В качестве Sender ID указать свой индивидуальный іd слушателя (если после объявления о том, что всем іd разосланы, вы свой не получили, свяжитесь с нами).

Любые вопросы / комментарии / предложения:

- по работе тестирующей системы просьба писать на почту grader@bigdatateam.org;
- по заданиям и в целом по курсу в <u>Discord-канал</u> курса (#python). <u>Приглашение на сервер</u>, если еще не успели присоединиться.

_

 $^{^8}$ Тесты вашего приложения, которые можно запустить с помощью "PYTHONPATH=. pytest test $_\dots$ py".

⁹ Сервисный ID: python.inverted_index