PMATH 465

Alex Rutar* University of Waterloo

Fall 2019[†]

^{*}arutar@uwaterloo.ca

[†]Last updated: September 16, 2019

Contents

Chapter	I Fundamentals of Manifolds	
1	Introduction to Topology	1

I. Fundamentals of Manifolds

1 Introduction to Topology

BASIC CONSTRUCTIONS

Definition. A **topology** on a set X is a set τ of subsets of X such that

- (i) $\emptyset \in \tau$ and $X \in \tau$
- (ii) If $U_{\alpha} \in \tau$ for all $\alpha \in A$, then $\bigcup_{\alpha \in A} U_{\alpha} \in \tau$.
- (iii) If $n \in \mathbb{N}$ and $U_i \in \tau$ for each $1 \le i \le n$, then $\bigcap_{i=1}^n U_i \in \tau$.

The sets $U \in \tau$ are called the **open sets** in X, and sets of the form $X \setminus U$ for some open set U are called the **closed sets** in X.

Definition. When X is a topological space and $A \subseteq X$, the **interior** of A (denoted A°) is the union of all open sets contained in A. Similarly, we define the **closure** of A (denoted \overline{A}) as the intersction of all closed sets containing A. Then the **boundary** of A, denoted by ∂A , is the set $\partial A = \overline{A} \setminus A^{\circ}$.

Example. Let *X* be any set. The **discrete topology** on *X* is the topology $\tau = \mathcal{P}(X)$, and the **trivial topology** on *X* is the topology $\tau = \{\emptyset, X\}$.

Definition. A basis for a topology on a set X is a set V of subsets of X

- (i) $\bigcup_{B \in \mathcal{B}} b = X$
- (ii) for all $a \in X$ and $U, V \in \mathcal{B}$ such that $a \in U \cap V$, then there exists $W \in \mathcal{B}$ with $a \in W \subseteq U \cap V$.

When \mathcal{B} is a basis for a topology on X, the topology on X **generated** by \mathcal{B} is the set τ of subsets of X such that for $W \subseteq X$, $W \in \tau$ if and only if for all $a \in W$, there exists $U \in \mathcal{B}$ such that $a \in U \subseteq W$.

Note that τ , as above, is a topology on X since

- (i) $\emptyset \in \tau$ vacuously and $X \in \tau$ obviously.
- (ii) If $A_k \in \tau$ for all $k \in K$ (where K is any set of indices), then given $a \in \bigcup_{x \in K} A_k$, we can choose $\ell \in K$ so that $a \in A_\ell$. Then since $A_\ell \in \tau$, we can choose $U_\ell \in \mathcal{B}$ so that $a \in U_\ell \subseteq A_\ell$. Thus $a \in U_\ell \subseteq A_\ell \subseteq \bigcup_{k \in K} A_k$.
- (iii) By induction, it suffices to prove that if $A, B \in \tau$, then $A \cap B \in \tau$. Suppose $A, B \in \tau$, and let $a \in A \cap B$. Since $A \in \tau$, we can choose $U \in \mathcal{B}$ so that $a \in U \subseteq A$. Since $B \in \tau$, we can choose $V \in \mathcal{B}$ so that $a \in V \subseteq B$. Then we have $a \in U \cap V$. Since \mathcal{B} is a basis, we can chose $W \in \mathcal{B}$ with $a \in W \subseteq U \cap V$, so $a \in W \subseteq U \cap V \subseteq A \cap B$.

Note that when τ is the topology on X generated by the basis \mathcal{B} , for $A \subseteq X$, $A \in \tau$ if and only if there exists some $S \subseteq \mathcal{B}$ such that $A = \bigcup_{s \in S} s$. In this sense, the topology τ on X generated by the basis \mathcal{B} is the coarsest topology which contains \mathcal{B} .

Definition. (Subspace Topology) When Y is a topological space and $X \subseteq Y$ is a subset of Y, we define the **subspace topology** on X to be the topology for which as set $U \subseteq X$ is open if and only if $U = X \cap V$ for some open set V.

If C is a basis for the topology on Y, then $B = \{X \cap V \mid V \in C\}$ is a basis for the subspace topology on X.

Definition. (Disjoint Union Topology) If X and Y are topological spaces with $X \cap Y = \emptyset$, then the **disjoint union topology** on $X \cup Y$ is the topology in which a subset $U \subseteq X \cup Y$ is open in $X \cup Y$ if and only if $U \cap X$ is open in X and $Y \cap Y$ is open in Y.

Definition. (**Product Topology**) If X and Y are topological spaces, the **product topology** on $X \times Y$ is the topology generted by the basis

$$\mathcal{B} = \{ U \times V \mid U \in \mathcal{C}, V \in \mathcal{D} \}$$

where \mathcal{C} and \mathcal{D} are bases for the topologies on X, Y respectively.

Definition. (Infinite Product Topology) We define the infinite product to be

$$\prod_{k \in K} \left\{ f : K \to \bigcup_{k \in K} X_k \mid f(k) \in X_k \text{ for all } k \in K \right\}$$

There are two standard topologies on X. The first is the **box topology**,

$$\mathcal{B} = \left\{ \prod_{k \in K} U_k \middle| U_k \text{ is open in } X_k \right\}$$

and the product topology

$$\mathcal{B} = \left\{ \prod_{k \in K} U_k \middle| \begin{array}{c} U_k \text{ is open in } X_k \\ U_k = X_k \text{ for all but finitely many indices } k \end{array} \right\}$$

Example. (*Metric Topology*) \mathbb{R}^n has a standard **inner product**, and for $u, v \in \mathbb{R}^n$, $uv = u \cdot v = V^T u = \sum_{i=1}^n u_i v_i$. This gives the standard norm on \mathbb{R}^n for $u \in \mathbb{R}^n$, $||u|| = \sqrt{uv}$. This gives the standard metric on \mathbb{R}^n : for $a \in \mathbb{R}^n$, d(a, b) = ||b - a||.

Given a metric on a set Y, we obtain (by restriction) an induced metric on any subset $X \subseteq Y$. Given a metric space X, we define the **metric topology** on X to be the topology which is generated by the set of open balls

$$B(a, r) = \{ x \in X \mid d(a, x) < r \}$$

where $x \in X$, r > 0.

Maps on Topological Spaces

Definition. When X and Y are topological spaces and $f: X \to Y$, we say that f is **continuous** when it has the property that $f^{-1}(V)$ is open in X for every open set V in Y. We say that $f: X \to Y$ is a **homeomorphism** when f is bijective and both f and f^{-1} are continuous. Then X, Y are **homeomorphic** if there exists a homeomorphism $f: X \to Y$.

- **1.1 Theorem.** (Glueing Lemma) Let X and Y be topological spaces, and let $f: X \to Y$ be a function. Suppose either
 - (i) $X = \bigcup_{k \in K} A_k$ where each A_k is open in X, or
- (ii) $X = \bigcup_{k=1}^{n} A_k$ where each A_k is closed in X and each restriction map $f_k : A_k \to Y$ is continuous, then f is continuous.

Proof Exercise.

Definition. A topological space X is **compact** when it has the property that for every set S of open subsets of X with $X = \bigcup_{U \in S} U$, there exists a finite subset $F \subseteq S$ such that $X = \bigcup_{F \in F} F$.

Note that when $X \subseteq Y$ is a subspace, X is compact if and only if X has the property that for every set T with $X \subseteq \bigcup_{T \in T} T$, there exists a finite subset $G \subseteq T$ uch that $X \subseteq \bigcup_{G \in G} G$.

Definition. A topological space X is **connected** when there do not exist non-empty disjoint open sets $U, V \in X$ such that $X = U \cup V$.

Note that if *Y* is a metric space and $X \subseteq Y$ is a subspsace, then *X* if connected if and only if there do not exist open sets $U, V \in Y$ such that

$$X \cap U \neq \emptyset, X \cap V \neq \emptyset, U \cap V = \emptyset$$
, and $X \subseteq U \cap V$

Definition. A topological space X is called **path connected** when it has the property that for all $a, b \in X$, there exists a continuous map $\alpha : [0,1] \to X$ with $\alpha(0) = a$ and $\alpha(1) = b$.

It is easy to see that if *X* is path connected, then *X* is connected.

Definition. Let X be a topological space. If we define a relation \sim on C by taking $a \sim b$ if and only if there exists a connected subspace $A \subseteq X$ with $a \in A$ and $b \in B$.

It is clear that this is an equivalence relation. Note that when X is a topological space, its connected components are connected, and each connected subspace of X is contained in one of its connected components.

Definition. Let X be a topological space. Define a relation \approx on X by $a \approx b$ if and only if there exists a continuous map $\alpha : [0,1] \to X$ with $\alpha(0) = a$ and $\alpha(1) = b$. Such a map α is called a **continuous path**.

One can show that if X is **locally path connected** (which means that X has a basis for its topology which consists of path connected sets), then the path components of X are equal to the connected components of X, and that these components are open.

QUOTIENT TOPOLOGY

Definition. (**Quotient Topology**) Let X be a topological space and let \sim be an equivalence relation on X. The set of equivalence classes is denoted X/\sim , and X/\sim is called the **quotient** of X by \sim . The map $\pi: X \to X/\sim$ given by $\pi(a) = [a]$ is called the natural **projection map** or **quotient map**. We define the **quotient topology** on X/\sim by stipulating that for $W \subseteq X/\sim$, W is open in X/\sim if and only if $\pi^{-1}(W)$ is open in X.

When a group G acts on a topological space X, we define an equivalence relation \sim on X by $a \sim b$ if and only if $b = g \cdot a$ for some $g \in G$. The equivalence classes are orbits. In this context, we also write X/\sim as X/G.

When X, Y are any toplogical spaces and $\pi: X \to Y$ is surjective, we can define an equivalence relation X by $a \sim b$ if and only if $\pi(a) = \pi(b)$. We then have a natural bijection from Y to X/\sim in which $y \in Y$ corresponds to the fibre $\pi^{-1}(y) \in X/\sim$.

If *Y* has the topology such that for $W \subseteq Y$, *W* is open in *Y* if and only if $q^{-1}(W)$ is open in *X*. In this case, we also use the terminology "quotient map" for π .

Remark. Let *X* be a topological space and let \sim be an equivalence relation on *X*. Let *Y* be any set. If $f: X \to Y$ is constant on the equivalence classes, then f induces a well-defined map $\overline{f}: X/\sim \to Y$ given by define $\overline{f}([a]) = f(a)$.

Example. Define an equivalence class on $[0,1] \subseteq \mathbb{R}$ by $s \sim t$ if and only if s = t or $\{s,t\} = \{0,1\}$. Then $[0,1]/\sim \cong SS^1$. Define $f:[0,1]\to \S^1$ by $f(t)=e^{i2\pi t}$. Note that f(0)=f(1), so f induces a continuous map $\overline{f}:[0,1]/\sim \to SS^1$. The inverse map can be constructed as follows. We define $g:SS^1\to [0,1]/\sim$ by

$$g(x,y) = \begin{cases} \left[\frac{1}{2\pi} \cos^{-1} x \right] & : y \ge 0\\ 1 - \frac{1}{2\pi} \cos^{-1} x \right] & : y \le 0 \end{cases}$$

Then *g* is continuous by the Glueing lemma.

In particular, the same proof shows that \mathbb{R}/\mathbb{Z} is homeomorphic to SS^1 .

Example. The projective space $\mathbb{P}^n = \mathbb{P}^n(\mathbb{R})$ can be defined in several ways. \mathbb{P}^n is the set of all 1-dimensional vector subspaces of \mathbb{R}^{n+1} , or $\mathbb{P}^n = \mathbb{R}^{n+1} \setminus \{0\} / \mathbb{R}^{\times}$, or $\mathbb{P}^n = SS^n / \pm 1$ where $SS^n = \{u \in \mathbb{R}^{n+1} : |u| = 1\}$.

Let us show that $\mathbb{R}^{n+1}\setminus\{0\}/\mathbb{R}^{\times}$ is homeomorphic to $SS^n/\pm 1$. Define $f:\mathbb{R}^{n+1}\setminus\{0\}\to SS^n$ by f(x)=x/|x|, and $g=\pi\circ f$. Then g is given by $g(x)=\{\pm x/|x|\}$. Note that for $t\in\mathbb{R}^{\times}$,

$$g(tx) = \left[\frac{t}{|t|} \cdot \frac{x}{|x|}\right] = \left[\frac{x}{|x|}\right]$$

since $t/|t| = \pm 1$. Thus g induces a continuous map \overline{g} on the quotient. We construct the inverse map in a similar way.

Definition. Let *X* be a topological space. Then

- X is T1 when for all $a, b \in X$ there exists an open set U in X with $a \in U$ and $b \notin U$
- *X* is **T2** or **Hausdorff** when for all $a, b \in X$, there exist disjoint open sets $U, V \subseteq X$ with $a \in U$ and $v \in B$
- *X* is **T3** or **regular** when *X* is T1 and for every $a \in X$ and every closed set $B \subseteq X$ with $a \notin B$, there exist open sets $U, V \subseteq X$ with $a \in U, B \subseteq V$.
- *X* is **T4** or **normal** when *X* is T1 and for all disjoint closed sets $A, B \subseteq X$ there exist disjoint open sets $U, V \subseteq X$ with $A \subseteq U$ and $B \subseteq V$.

Definition. Let *X* be a topological space.

- *X* is **first countable** when for every $a \in X$, there exists a countable set B_a of open sets in *X* which contain *a* such that for every open set *W* in *X* with $a \in W$, there exists $U \in \mathcal{B}_a$ with $a \in U \subseteq W$.
- *X* is **second countable** when there exists a countable basis for the topology on *X*.

Example. (i) X is T1 if and only if every 1-point subset of X is closed in X

- (ii) Every compact Hausdorff space is regular.
- (iii) Every second countable regular space is normal.
- (iv) Every metric space is normal.
- (v) If *X* is second countable, then every open cover admits a countable subcover.
- (vi) Every secound countable space *X* contains a countable dense subset.
 - **1.2 Lemma.** (Urysohn) If X is normal and $A, B \subseteq X$ are disjoint and closed, then there is a countinuous function $f: X \to [0,1]$ such that $f(A) = \{0\}$ and $f(B) = \{1\}$.
 - **1.3 Theorem.** (Tietze Extension) If X is normal and $f: A \to \mathbb{R}$ is continuous for some $A \subseteq X$ closed, then there exists a continuous map $F: X \to \mathbb{R}$ such that $F|_A = f$ and $\sup_{a \in A} |f(a)| = \sup_{x \in X} |F(x)|$.

1.4 Theorem. (Urysohn's Metrization) If X is second countable and regular, then X is metrizable.

Definition. An **n-dimensional topological manifold** is a Hausdorff, second countable topological space M which is **locally homeomorphic** to \mathbb{R}^n , meaning for every $p \in M$, there exists an open set $U \subseteq M$ with $p \in U$ and an open set $V \subseteq \mathbb{R}^n$ and a homeomorphism $\phi: U \subseteq M \to V \subseteq \mathbb{R}^n$. Such a homomorphism ϕ is called a **(local) coordinate chart** or **chart** on M at p. The domain U of a chart $\phi: U \subseteq M \to \phi(U) \subseteq \mathbb{R}^n$ is called a (local) **coordinate neighbourhood** at p. Note that we can choose a set of charts

$$\mathcal{A} = \{ \phi_k : U_k \subseteq M \to \phi_k(U_k) : k \in K \}$$

where K is any non-empty set such that $M = \bigcup_{k \in K} U_k$. Such a set of charts is called an **atlas** for M.

Definition. Two charts are called $\phi: U \to \phi(U)$ and $\psi: V \to \psi(V)$ are called **(smoothly) compatible** when either $U \cap V = \emptyset$ or $\phi^{-1} \circ \psi$ and $\psi \circ \phi^{-1}$ are smooth (meaning partial derivatives of all orders exist). We say that an atlas is **smooth** if every pair of charts is compatible.

Note that a smooth atlas \mathcal{A} on M can be extend to a unique maximal smooth atlas \mathcal{M} on M by adding to \mathcal{A} every possible homeomorphism $\psi:U\subseteq M\to \phi(U)\subseteq \mathbb{R}^n$ which is compatible with all of the existing charts (since if ψ and χ are both compatible with every chart $\psi\in\mathcal{A}$, then ψ and χ will be compatible with each other). A maximal smooth atlas \mathcal{M} on M is called a **smooth structure** on M.

Definition. An n-dimensional smooth (or C^{∞}) manifold is an n-dimensional topological manifold with a smooth structure.

Note that the maximal atlas \mathcal{M} is determined from any subset \mathcal{AM} such that the domains of the charts in \mathcal{A} cover \mathcal{M} .

Definition. Let M be an m-dimensional smooth manifold and N be an n-dimensional smooth manifold and let $f: M \to \mathbb{N}$ be a function. Then we say f is smooth **smooth** at p when for some (hence for any) chart at ϕ on M at p and for s0me (hence any) chart ψ on N at f(p), the map $\phi^{-1} \circ f \circ \psi$ is smooth at $x = \phi(p)$.