Année : 2020-2021 Pr. N.ABOUTABIT

TD N°2

Traitement d'image et vision par ordinateur

Exercice 1:

La matrice ci-dessous représente une image en niveaux de gris.

• Calculer les images résultantes de la convolution de cette image avec les masques (a) à (f) représentés ci-dessous.

$ \begin{array}{ccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccc} 0 & -1 & -1 \\ 1 & 0 & -1 \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
0 1 1 (a)	1 1 0 (b)	-1 -1 -1 (c)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
(d)	(e)	(f)

Exercice 2:

L'image I de la figure 4 est une image en niveaux de gris de taille 8*8 pixels et dont les valeurs des niveaux de gris sont codées sur 4 bits. Cette image représente une forme rectangulaire sur un fond.

	0	1	2	3	4	5	6	7
0	13	13	12	12	12	11	11	11
1	13	12	12	12	11	11	11	10
2	12	12	8	7	6	5	10	10
3	12	12	7	6	5	4	10	10
4	12	11	6	5	4	3	10	9
5	11	11	5	4	3	2	9	9
6	11	11	10	10	10	9	9	9
7	11	10	10	10	9	9	9	8

Figure 4 : A gauche est représentée l'image I et à droite sont représentées les valeurs des niveaux de gris des pixels et leurs coordonnées

Année : 2020-2021 Pr. N.ABOUTABIT

- a) Représenter l'histogramme de cette image.
- b) Donner la LUT correspondante à un étirement d'histogramme appliqué aux différentes valeurs de niveaux de gris.
- c) Soit H1 et H2 les filtres de convolution définis respectivement par les noyaux suivants :

$H_1 =$	-1	-1	0
$H_1 =$	-1	0	1
	0	1	1

A quel type de filtres correspondent H1 et H2 ? Lequel de ces deux filtres faut-il utiliser pour réaliser une détection de contour sur l'image I ? Appliquer-le sur les pixels de coordonnées : (1,1), (2,2), (3,3), (4,4), (5,5), (6,6), (2,5), (5,2). Que constatez-vous ? Quel filtre faudrait-il associer à H1 pour améliorer le résultat ?

Exercice 3:

Soit l'image *I* suivante :

0	0	0	2	10	18	20	20
62	122	79	95	0	122	79	20
88	255	12	35	200	255	12	27
50	94	100	56	155	94	100	37
50	99	150	11	37	99	150	28
50	122	79	95	0	122	79	30
38	255	12	35	200	255	12	58
17	54	100	60	80	140	108	56

- 1. Préciser les caractéristiques d'un filtre médian. Donner un cas d'utilisation de ce filtre.
- 2. Déterminer l'image améliorée *Im* en appliquant le filtre Médian sur le voisinage suivant :

$$V = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

3. On considère le filtre L défini par le noyau de convolution suivant correspondant à l'opérateur Laplacien :

0	-1	0
-1	4	-1

Année : 2020-2021 Pr. N.ABOUTABIT

- i) Préciser s'il s'agit d'un filtre passe-haut ou passe-bas.
- ii) Appliquer ce filtre sur l'image améliorée Im.
- iii) Soit Id, l'opérateur de convolution identité (i.e qui transforme l'image en elle-même). Donner une expression de Id sous forme de noyau de convolution 3×3 .
- iv) On considère le filtre F = Id + L
 - (1) Donner l'expression du filtre F.
 - (2) Décrire l'effet du filtre F.

Exercice 4:

Soient les 3 masques de convolution suivants :

$$H1 = \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} H2 = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 0 & -1 \\ 1 & 0 & -1 \end{bmatrix} H3 = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{bmatrix}$$

Sur papier, calculez la convolution de la matrice E avec chacun de ces filtres :

$$E = \begin{bmatrix} 0 & 2 & 3 & 4 & 1 \\ 1 & 8 & 9 & 7 & 2 \\ 2 & 10 & 7 & 8 & 0 \\ 2 & 9 & 7 & 9 & 3 \\ 1 & 2 & 0 & 2 & 3 \end{bmatrix}$$

Quelles conditions aux limites peut-on utiliser? A votre avis, quels sont les impacts de ces filtres?

Exercice 5:

Soit l'image suivante :

0	140	51	191	140	51
0	51	191	140	140	51
51	140	20	20	140	0
51	140	20	20	20	140
0	140	191	0	20	51
0	10	51	10	140	51

Esquissez l'histogramme de cette image.

Convoluez cette image avec les filtres suivants :

$$\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$

Que font ces filtres?