Университет ИТМО Физико-технический мегафакультет Физический факультет

ГруппаР3207		К работе допущен	К работе допущен			
Студент Путинцев Д.Д		Работа выполнена	14.02.2025			
Преподаватель	Терещенко Г. В	Отчет принят				

Рабочий протокол и отчет по лабораторной работе №3.08

Эффект Холла в примесных полупроводниках

Цель работы

Изучить эффект Холла в примесных полупроводниках. Ознакомиться с методом измерения концентрации и подвижности основных носителей тока в примесных полупроводниках с помощью эффекта Холла.

Задачи, решаемые при выполнении работы

- 1. Изучение эффекта Холла в примесных полупроводниках.
- 2. Измерение продольного напряжения при различных температурах и вычисление электропроводности и её логарифма
- 3. Исследование зависимости ЭДС Холла от величины магнитного поля при постоянной силе тока и температуре
- 4. Исследование зависимости ЭДС Холла от величины тока при постоянной величине магнитного поля и температуре
- 5. Исследование зависимости ЭДС Холла от температуры при постоянной величине магнитного поля и тока
- 6. Оценка постоянной Холла, концентрации свободных электронов и подвижности носителей тока для различных температур
- 7. Определение типа полупроводника по знаку ЭДС Холла

Рабочие формулы и исходные данные

$$U_{x} = \frac{U_{34}^{'} - U_{34}^{''}}{2}$$

$$\sigma = \frac{IL_{12}}{U_{12}bd}$$

$$L_{12} = 10^{-6}M$$

$$bd = 4 * 10^{-6}M^{2}R_{x} = \frac{U_{x}b}{IB}$$

$$R_{x} = \frac{U_{x}b}{IB}$$

Схема установки

Результаты прямых измерений и их обработки

Таблица 1: I = 1 мА

T, K	305	315	325	335	345	355	360
U _{12,} B	1.97	2.15	2.23	2.36	2.5	2.66	2.73
1/T 1/K	0.003279	0.003175	0.003077	0.002985	0.002898	0.002817	0.002778
σ	0.000127	0.000116	0.000112	0.000106	0.0001	0.000094	0.000092
сименс							
ln σ	-8.971	-9.062	-9.097	-9.152	-9.21	-9.272	-9.294

Таблица 2: T = 308K, I = 1мкА

В, мТл	2	4	6	8	10
$U_{34}^{'}$, B	0.046	0.069	0.087	0.107	0.126
U ₃₄ , B	0.009	-0.008	-0.025	-0.044	-0.063
U _x , B	0.0185	0.385	0.056	0.0755	0.0945

Таблица 3: T = 306K, B = 10 мТл

І, мкА	400	600	800	1000
U ₃₄ , B	0.053	0.074	0.101	0.126
U ₃₄ , B	-0.024	-0.035	-0.05	-0.062
U _{x,} B	0.0385	0.0545	0.0755	0.094

Таблица 4: I = 1 мкA, B = 10 мТл

T, K	306	316	326	336	346	356	360
$U_{34}^{'},B$	0.127	0.098	0.083	0.081	0.075	0.068	0.075
U ₃₄ , B	0.063	-0.096	-0.098	-0.108	-0.106	-0.107	-0.113
U _x , B	0.032	0.097	0.0905	0.0945	0.0905	0.0875	0.094

T, K	U _x	R_{x}	n	μ
306	0.032	6.4	1.88 * 1018	0.00441
316	0.097	19.4	6.22 * 10 ¹⁷	0.00116
326	0.0905	18.1	6.66 * 10 ¹⁷	0.00105
336	0.0945	18.9	6.38 * 10 ¹⁷	0.00104
346	0.0905	18.1	6.66 * 10 ¹⁷	0.00094
356	0.0875	17.5	6.89 * 10 ¹⁷	0.00085
360	0.094	18.8	6.42 * 1017	0.0009

Графики

Выводы и анализ результатов работы

В ходе лабораторной работы был изучен эффект Холла в примесных проводниках, определен тип проводникак и изучен метод измерения концентрации и подвижности основных носителей тока в примесных полупроводникак с помощью этого эффекта.