Exercice 1.

- 1. Z = X + Y désigne la somme des variables aléatoires X et Y soit la durée totale des tâches en semaines.
- 2. E(X+Y)=E(X)+E(Y) d'après la linéarité de l'espérance. Donc E(Z)=22+25=47. On a $\sigma(X+Y)=\sqrt{V(X+Y)}=\sqrt{V(X)+V(Y)}$ car les variables X et Y sont indépendantes. Or $\sigma(X)=\sqrt{V(X)}$ donc $V(X)=\sigma^2(X)$ ainsi $\sigma(X+Y)=\sqrt{\sigma^2(X)+\sigma^2(Y)}$ soit $\sigma(X+Y)=\sqrt{3^2+4^2}=5$.

Attention: l'écart-type n'est pas linéaire!!!

Exercice 2.

- 1. X_i la variable aléatoire prenant la valeur 1 si le i ème mitigeur est défectueux et 0 sinon, X_i suit ainsi la loi de Bernoulli de paramètre p = 0,05.
- 2. (a) X est la somme de 304 variables indépendantes suivant la même loi de Bernoulli de paramètre $p=0,05,\,X$ suit donc la loi binomiale de paramètres n=304 et p=0,05.
 - (b) $E(X) = np \text{ donc } E(X) = 304 \times 0,05 = 15,2.$
- 3. (a) Au seuil de 95%, on a $\alpha = 0,05$ donc à la calculatrice on trouve a = 8 et b = 23. L'intervalle de fluctuation centré au seuil de 95 % est donc $\left[\frac{8}{304}; \frac{23}{304}\right]$ soit $I \simeq [0,026 \ 0,076]$.
 - (b) Sur les 304 pièces, on constate qu'il y a 18 défauts, on a donc $f = \frac{18}{304} \approx 0,059$ donc $f \in I$: au seuil de 95%, l'échantillon est représentatif de la réalité.

Exercice 3.

- 1. $V(N) = \sigma(N)^2 = 0, 1^2 = 0, 01.$
- 2. On a $p(|N-0,9| \ge 0,2) = p(|N-\mu| \ge 0,2)$.

On applique donc l'inégalité de Bienaymé-Tchebychev avec $\mu = 0,9$ et $\delta = 0,2$.

On a donc
$$p(|N-0,9| \ge 0,2) \le \frac{V(N)}{\delta^2}$$
 soit $p(|N-0,9| \ge 0,2) \le \frac{0,01}{0,2^2}$.

Ainsi $p(|N-0,9| \ge 0,2) \le 0,25$ donc il y a au plus un quart des patients qui souffre de diabète.

3. On a directement $p(|N-0,9| \le 0,2) \ge 1 - \frac{0,01}{0,2^2}$ soit $p(|N-0,9| \le 0,2) \ge 0,75$: la probabilité que le dossier prélevé soit celui d'une personne ayant une glycémie normale est supérieure à 0,75.

Exercice 4.

On applique l'inégalité de Bienaymé-Tchebychev avec $\delta = \lambda \sigma > 0$, il vient : $p(|X - \mu| \le \lambda \sigma) \ge 1 - \frac{V}{\delta^2}$ et $V = \sigma^2$.

On a alors : $p(|X - \mu| \leqslant \lambda \sigma) \geqslant 1 - \frac{\sigma^2}{\lambda^2 \sigma^2}$ soit $p(|X - \mu| \leqslant \lambda \sigma) \geqslant 1 - \frac{1}{\lambda^2}$ ou enfin $p(|X - \mu| \leqslant \lambda \sigma) \geqslant \frac{\lambda^2 - 1}{\lambda^2}$