Speech Analysis and Linguistics Applications: Automatic Speech Recognition & Mispronunciation Detection and Diagnosis (MDD)

Instructor: Chiranjeevi Yarra

Speech lab, LTRC

Outline

- Phoneme Recognizer
- 2 Word Recognizer
- 3 Mispronunciation Detection and Diagnosis

Phoneme Recognizer

2 Word Recognizer

3 Mispronunciation Detection and Diagnosis

What is to be model in ASR?

What is to be model in ASR?

Errors in the estimation

Building blocks

Building blocks

1 How to model p(P) and p(O|P)?

Decoding

Decoding illustration

V		0		0		0.008		0.0072		0.00672		0.00403		0.00188		0.00161		0.000667		0.000493	
AY		0		0.04		0.048		0.0448		0.0269		0.0125		0.00538		0.00167		0.000428		8.78e-05	
F	0	0.8		0.32		0.112		0.0224		0.00448		0.000896		0.000179		4.48e-05		1.12e-05		2.8e-06	
Time		1		2		3		4		5		6		7		8		9		10	
	f	0.8	f	0.8	f	0.7	f	0.4	f	0.4	f	0.4	f	0.4	f	0.5	f	0.5	f	0.5	
	ay	0.1	ay	0.1	ay	0.3	ay	0.8	ay	0.8	ay	0.8	ay	0.8	ay	0.6	ay	0.5	ay	0.4	
В	v	0.6	ν	0.6	v	0.4	ν	0.3	ν	0.3	ν	0.3	v	0.3	v	0.6	v	0.8	ν	0.9	
	p	0.4	p	0.4	p	0.2	p	0.1	p	0.1	p	0.1	p	0.1	p	0.1	p	0.3	p	0.3	
	iy	0.1	iy	0.1	iy	0.3	iy	0.6	iy	0.6	iy	0.6	iy	0.6	iy	0.5	iy	0.5	iy	0.4	

1 Phoneme Recognizer

2 Word Recognizer

3 Mispronunciation Detection and Diagnosis

ASR equation

$$\hat{W} = \operatorname{argmax} \{ p\left(W|O\right) \}$$

ASR equation

$$\begin{split} \hat{W} &= \operatorname{argmax} \{ p\left(W|O\right) \} \\ &= \operatorname{argmax} \{ p(W) p\left(O|W\right) \} \end{split}$$

ASR equation

$$\begin{split} \hat{W} &= \operatorname{argmax} \{ p\left(W|O\right) \} \\ &= \operatorname{argmax} \{ p(W) p\left(O|W\right) \} \end{split}$$

 \blacksquare What data is needed for modelling p(W) and p(O|W)?

ASR building blocks

ASR building blocks

1 Why modelling p(O|P) is efficient?

Word and phoneme sequence mapping: Lexicon?

An exemplary Lexicon

```
BRANER
       B R FY1 N FR0
BRANFORD
         B R AE1 N F ERØ D
BRANHAM B R AE1 N HH AH0 M
BRANT B R AF1 N TYO
BRANTEE
        B R AF1 N THO F
BRANTEE'S B R AF1 N THO E S
BRANIGAN B R AE1 N IHO G AHO N
BRANILLO B R AHO N IH1 L OWO
BRANTN B R AF1 N THO N
BRANTSI OV
          B R AF1 N THO S I AA2 V
BRANTT7KY
          B R AHO N TH1 T S K TY1
BRANK B R AE1 NG K
BRANK'S B R AE1 NG K S
BRANKI B R AE1 NG K IY0
BRANKO B R AF1 NG K OWA
BRANKS B R AF1 NG K S
BRANN B R AF1 N
BRANNA B R AE1 N AHO
BRANNAM B R AE1 N AH0 M
```

Word and phoneme sequence mapping: Lexicon?

An exemplary Lexicon

BRANER B R FY1 N FR0 B R AE1 N F ER0 D BRANFORD BRANHAM B R AE1 N HH AH0 M BRANT B R AF1 N TYP BRANTEE B R AF1 N THO F BRANTEE'S B R AF1 N THO E S BRANIGAN B R AE1 N IHO G AHO N BRANILLO B R AHO N IH1 L OWO BRANTN B R AF1 N THO N B R AF1 N THO S I AA2 V BRANTSLOV BRANTT7KY B R AHO N TH1 T S K TY1 BRANK B R AE1 NG K BRANK'S B R AE1 NG K S BRANKI B R AE1 NG K IY0 BRANKO B R AF1 NG K OWA BRANKS B R AF1 NG K S BRANN B R AF1 N BRANNA B R AE1 N AHO BRANNAM B R AE1 N AH0 M

 $\begin{tabular}{ll} {\bf I} & {\bf Knowing} \ p(O|P) \ {\bf sufficient} \ {\bf for} \\ & {\bf computing} \ p(O|W)? \end{tabular}$

Word and phoneme sequence mapping: Lexicon?

An exemplary Lexicon

BRANER B R FY1 N FR0 BRANFORD B R AE1 N F ERØ D BRANHAM B R AE1 N HH AH0 M BRANT B R AF1 N TYP BRANTEE B R AF1 N THO F BRANTEE'S B R AF1 N THO E S BRANIGAN B R AE1 N IHO G AHO N BRANILLO B R AHO N IH1 L OWO BRANTN B R AF1 N THO N B R AF1 N THO S I AA2 V BRANTSLOV B R AHO N TH1 T S K TY1 BRANTT7KY BRANK B R AE1 NG K BRANK'S B R AE1 NG K S BRANKT B R AE1 NG K IY0 BRANKO B R AF1 NG K OWA BRANKS B R AF1 NG K S BRANN B R AF1 N BRANNA B R AE1 N AHO BRANNAM B R AE1 N AH0 M

- $\begin{tabular}{ll} {\bf I} & {\bf Knowing} \ p(O|P) \ {\bf sufficient} \ {\bf for} \\ & {\bf computing} \ p(O|W)? \end{tabular}$
- **2** Knowing W sufficient for obtaining P?

An example

Language model for Digit Recognition

Viterbi decoding

Forced-alignment process

1 Phoneme Recognizer

2 Word Recognizer

3 Mispronunciation Detection and Diagnosis

Mispronunciation Detection and Diagnosis (MDD)

Thank you