

CONTROLO DIGITAL

Licenciatura em Engenharia Electrotécnica e de Computadores (LEEC)

Departamento de Engenharia Electrotécnica e de Computadores (DEEC)

CONTROLO 3º ano – 1º semestre – 2005/2006

Transparências de apoio às aulas teóricas

Cap. 8 - Controlo Digital

Eduardo Morgado

Abril 2002 Revisto em Outubro 2003

Todos os direitos reservados

Estas notas não podem ser usadas para fins distintos daqueles para que foram elaboradas (leccionação no Instituto Superior Técnico) sem autorização do autor

CONTROLO DIGITAL

- flexibilidade na realização do controlador (programa de cálculo)
- possibilidade de controlo dinâmico associado a decisão lógica
- multiplexagem no tempo (servindo diversas cadeias de controlo)

A/D: conversor analógico-digital

D/A: conversor digital-analógico

y(t): sinal em tempo contínuo

y(kT): sinal em tempo discreto

T: período de amostragem

- i) amostragem (operador variável no tempo)
- ii) *quantificação* (operador não-linear) ↔ resolução do conversor A/D
- iii) *equações às diferenças* (eq. algébricas adaptadas ao cálculo por computador)
- iv) processamento numérico com precisão de cálculo finita
- v) *tempo de conversão + tempo de cálculo* (no controlo analógico é praticamente instantâneo)

QUANTIFICAÇÃO

Erro de quantificação na conversão A/D ↔ resolução finita do conversor

Característica entrada-saída de um conversor A/D de 3 bits

M: tensão máxima representável

n : número de bits do conversor

Resolução (variação mínima detectável no sinal de entrada): $r = \frac{M}{2^n}$

erro de quantificação (supondo arredondamento): $q = \frac{1}{2} \left(\frac{M}{2^n} \right) = \frac{M}{2^{n+1}}$

operação não-linear → pode originar oscilações de ciclo limite

→ ruído de quantificação

resolução dos conversores actuais comuns : 12-14 bit

Consideraremos:

erro de quantificação (resolução do A/D) e erro de arredondamento (precisão finita)

Analisaremos os efeitos do período de amostragem T

AMOSTRAGEM - Amostrador ideal

Amostragem impulsiva ou modulação por impulsos

$$x^*(t) = x(t) \sum_{k=-\infty}^{+\infty} \delta(t - kT) = \sum_{k=-\infty}^{+\infty} x(kT) \delta(t - kT)$$

Seja:

$$TF\{x(t)\} = X(\omega)$$
 $TF\{x^*(t)\} = X^*(\omega)$

deduz-se que:

$$X^*(\boldsymbol{\omega}) = \frac{1}{T} \sum_{k=-\infty}^{+\infty} X(\boldsymbol{\omega} - k\boldsymbol{\omega}_s)$$

$$\omega_s = \frac{2\pi}{T}$$
: frequência de amostragem

o espectro do sinal $x^*(t)$ resultante da amostragem impulsiva de x(t), é a sobreposição de um conjunto infinito de réplicas do espectro de x(t) distanciadas na frequência de $\omega_S = 2\pi/T$.

Será possível recuperar o sinal x(t) a partir do sinal amostrado $x^*(t)$?

Sim ...:

- *i*) se x(t) for de banda limitada
- ii) se se utilizar um filtro passa-baixo ideal

TEOREMA DA AMOSTRAGEM

Um sinal x(t) de banda limitada é inteiramente definido pelas suas amostras x(nT), $n=0,\pm 1,\pm 2,...$, se a frequência de amostragem $\omega_s=\frac{2\pi}{T}$ for pelo menos duas vezes superior à frequência máxima do sinal ω_M :

$$\omega_{s} > 2\omega_{M}$$

O sinal x(t) poderá ser reconstruído a partir das amostras obtidas por amostragem impulsiva $x^*(t)$ utilizando um **filtro passa-baixo** *ideal* de ganho T e largura de banda ω_c :

$$\omega_M < \omega_c < (\omega_s - \omega_M)$$

X(ω)

Resposta impulsiva do filtro passa-baixo ideal:

$$(\text{com }\boldsymbol{\omega}_c = \boldsymbol{\omega}_s / 2 = \boldsymbol{\pi}/\boldsymbol{T})$$

$$h(t) = TF^{-1}\{H(\omega)\} = \frac{1}{\pi t/T} \operatorname{sen}\left(\frac{\pi t}{T}\right) \quad \Leftrightarrow \quad \text{não-causal } !$$

sinal à saída de $H(\omega)$:

$$x(t) = h(t) * x^*(t) = \sum_{k = -\infty}^{+\infty} x(kT) \operatorname{sinc} \frac{\pi(t - kT)}{T}$$

A função sinc faz a interpolação das amostras

RETENTOR DE ORDEM ZERO (ZOH – Zero Order Hold)

 $x_h(t)$ provém da retenção do valor das amostras durante o intervalo de amostragem T

Resposta ao impulso: h(t) = u(t) - u(t-T)

Função de transferência:
$$H(s) = TL\{h(t)\} = \frac{1 - e^{-Ts}}{s}$$

Não é filtro passa-baixo ideal

$$x_h(t) = \left\{h(t) * x^*(t)\right\} = \int_{-\infty}^{+\infty} \left[u(t-\tau) - u(t-\tau-T)\right] \sum_{k=-\infty}^{+\infty} x(\tau) \delta(\tau - kT) =$$

$$= \sum_{k=-\infty}^{+\infty} x(kT) \left[u(t-kT) - u(t-kT-T)\right]$$

Interpolação das amostras x(kT) por polinómio de ordem zero

Os conversores D/A mais utilizados funcionam no modo ZOH

TRANSFORMADA Z

Seja $x^*(t)$ o sinal resultante da aplicação do amostrador ideal ao sinal causal x(t)

$$x^*(t) = x(t) \sum_{k=0}^{+\infty} \delta(t - kT) = \sum_{k=0}^{+\infty} x(kT) \delta(t - kT)$$

e tome-se a respectiva transformada de Laplace $X^*(s)$:

$$X^{*}(s) = \int_{0}^{+\infty} x^{*}(t)e^{-st} dt = \sum_{k=0}^{+\infty} x(kT)e^{-skT}$$

definindo a variável z como: $z = e^{sT}$, vem:

$$X^*(s)\Big|_{z=e^{sT}} = X(z) = \sum_{k=0}^{+\infty} x(kT)z^{-k}$$

Na variável tempo discreto k, escreve-se:

$$X(z) = \sum_{k=0}^{+\infty} x[k]z^{-k}$$

que é a **Transformada-Z** unilateral da sequência x[k].

Algumas **Propriedades**:

- teorema do valor inicial:
$$x[0] = \lim_{z \to +\infty} X(z)$$

- teorema do valor final:
$$\lim_{k\to +\infty} x[k] = \lim_{z\to 1} (1-z^{-1})X(z)$$

$$\Rightarrow \text{ ganho estático: } G(z)\big|_{z=1}$$

- convolução:
$$Z\{x[k]*y[k]\} = X(z)Y(z)$$

- diferença:
$$Z\{x[k-n]\}=z^{-n}X(z)$$
 (condições iniciais nulas)

RELAÇÃO ENTRE OS POLOS DE X(s) E OS POLOS DE X(z)

Exemplo:

sinal analógico:
$$x(t) = e^{-at}u(t)$$
 \Leftrightarrow $X(s) = \frac{1}{s+a}$ $(ROC: \Re e(s) > -a)$

sinal amostrado: $x(kT) = e^{-akT}u(kT)$ \Leftrightarrow

$$\Leftrightarrow X(z) = \sum_{k=0}^{+\infty} e^{-akT} z^{-k} = \frac{1}{1 - e^{-aT} z^{-1}} = \frac{z}{z - e^{-aT}} \qquad (ROC: |z| > e^{-aT})$$

donde, entre o polo de X(s), s = -a, no **plano-s**, e o polo de X(z), $z = e^{-aT}$, no **plano-z**, observa-se a relação

$$z = e^{sT}$$

em que T é o período de amostragem

Esta relação, **entre os** *polos* da transformada de Laplace de um sinal em tempo contínuo e os *polos* da transformada-Z do sinal resultante da amostragem com período T, é **geral**.

Mas *não há* uma relação geral entre os zeros das transformadas!

ESTABILIDADE

Polos no Semiplano Complexo Esquerdo:

$$s = \boldsymbol{\sigma} \pm j\boldsymbol{\omega}$$
 com $\boldsymbol{\sigma} < 0$

Correspondentes no plano-z:

$$z = e^{sT} = e^{\sigma T} e^{\pm j\omega T} \qquad (T > 0)$$

Donde: $\sigma < 0 \Leftrightarrow e^{\sigma T} = |z| < 1$

Condição de **estabilidade** (**assimptótica**) para sistemas causais em tempo discreto descritos por funções de transferência racionais **em z**:

⇔ todos os polos no interior do círculo unitário no plano-z

Conhecemos a relação:

localização de polos no plano-s ←→ resposta transitória em tempo contínuo

através da aplicação $z = e^{sT}$ inferimos a relação:

localização de polos no plano-z ←→ resposta transitória em tempo discreto

LOCALIZAÇÃO DE POLOS NO Plano-z e RESPOSTA TRANSITÓRIA

polos no *plano-s* \leftrightarrow características da resposta transitória (S%, t_s, ξ , t_p, ...) $\uparrow \downarrow \quad z = e^{sT}$

polos no *plano-z* ↔ características da resposta transitória

$$s_{1,2} = \boldsymbol{\sigma} \pm j\boldsymbol{\omega} \qquad \leftrightarrow \qquad z_{1,2} = e^{(\boldsymbol{\sigma} \pm j\boldsymbol{\omega})T} = e^{\boldsymbol{\sigma}T}e^{\pm j\boldsymbol{\omega}T} = re^{\pm j\boldsymbol{\theta}}$$

- lugar geométrico $\sigma = cte$. no <u>plano-s</u> (t. estabelecimento, ou $\xi \omega_n$, constante) \leftrightarrow

$$|z| = cte$$
. (circunferência de raio $r = e^{\sigma T}$ no plano-z)

- lugar geométrico $\omega = cte$. no <u>plano-s</u> (t. de pico, ou ω_d , constante) \leftrightarrow arg(z) = cte. (radial formando ângulo $\theta = \omega T$ no <u>plano-z</u>)
- lugar geométrico amortecimento ξ = cte. espiral logarítmica no plano-z
- o limiar de estabilidade é a circunferência de raio unitário no plano-z
- a vizinhança do ponto z = +1 corresponde à vizinhança do ponto s = 0
- o eixo real negativo no plano-z representa a frequência $\frac{\pi}{T} = \frac{\omega_s}{2}$ (frequência de Nyquist); $\omega > \omega_s/2 \Rightarrow aliasing!$

FUNÇÃO DE TRANSFERÊNCIA DISCRETA (ou pulsada)

Objectivo: deduzir a função de transferência G(z) que relaciona a sequência numérica u(kT) fornecida pelo computador ao conversor D/A (*no modo ZOH*), com a sequência numérica y(kT) à saída do conversor A/D

Por definição: G(z) é a Transformada-Z da resposta y[kT] ao impulso $\delta[k]$

Tendo em conta a interpolação realizada pelo ZOH:

$$u[kT] = \delta[kT] \quad \Rightarrow \quad u(t) = \mu(t) - \mu(t-T) \quad \Rightarrow \quad U(s) = \frac{1}{s} - \frac{e^{-sT}}{s}$$

($\mu(t)$: escalão unitário)

$$Y(s) = U(s)G(s) = \frac{(1 - e^{-sT})}{s}G(s)$$

A sequência de saída pode então ser expressa por:

$$y[kT] = y(t)|_{t=kT} = L^{-1}Y(s)|_{t=kT} = L^{-1}\left(\frac{(1-e^{-sT})}{s}G(s)\right)|_{t=kT}$$

 e^{-sT} é um atraso correspondente a um período de amostragem T:

$$G(z) = Z\{y[kT]\} = Z\left\{L^{-1}\left(\frac{(1 - e^{-sT})}{s}G(s)\right)\Big|_{t=kT}\right\} = \left(1 - z^{-1}\right)Z\left\{L^{-1}\left(\frac{G(s)}{s}\right)\Big|_{t=kT}\right\}$$

Em notação abreviada:

$$G(z) = (1 - z^{-1}) Z\left\{\frac{G(s)}{s}\right\}$$

Equivalente discreto de "G(s) precedido de ZOH"

EXEMPLO:

Controlo Analógico

$$G(s) = \frac{a}{s+a}$$
 lei de controlo: $u(t) = Ke(t) = K[r(t) - y(t)]$

Controlo Digital

i) - Cálculo do equivalente discreto de G(s) precedido do ZOH — modelo do sistema "visto" pelo computador nos instantes de amostragem

$$G(z) = \left(1 - z^{-1}\right) Z\left\{\frac{G(s)}{s}\right\} \qquad G(s) = \frac{a}{s + a}$$

$$\frac{G(s)}{s} = \frac{a}{s(s+a)} = \frac{1}{s} - \frac{1}{s+a}$$

$$L^{-1}\left\{\frac{G(s)}{s}\right\} = \mu(t) - e^{-at}\mu(t)$$

 $\mu(t)$: escalão unitário (para não confundir com o sinal de comando u(t))

O correspondente sinal amostrado é: $\mu(kT) - e^{-akT} \mu(kT)$

Então:

$$G(z) = (1 - z^{-1}) Z \{ \mu(kT) - e^{-akT} \mu(kT) \} =$$

$$= (1 - z^{-1}) \left[\frac{1}{1 - z^{-1}} - \frac{1}{1 - e^{-aT} z^{-1}} \right] = \frac{z^{-1} - e^{-aT} z^{-1}}{1 - e^{-aT} z^{-1}} = \frac{1 - e^{-aT}}{z - e^{-aT}}$$

ii)- Lei de controlo proporcional: u(kT) = Ke(kT) = K[r(kT) - y(kT)]

Notar que:

- as regras de construção do root-locus no *plano-z* são idênticas às utilizadas no *plano-s*; a interpretação é que é diferente
- o valor do polo de G(z) depende do período de amostragem
- o sistema de 1ª ordem em tempo discreto não é estável para todo o K>0, ao contrário do seu análogo em tempo contínuo

Detalhes do Root-Locus

$$\frac{Y(z)}{R(z)} = \frac{KG(z)}{1 + KG(z)} =$$

$$= \frac{k \frac{(1 - e^{-aT})}{(z - e^{-aT})}}{1 + k \frac{(1 - e^{-aT})}{(z - e^{-aT})}}$$

$$= \frac{k(1 - e^{-aT})}{z - e^{-aT} + k(1 - e^{-aT})}$$

Análise do polo em malha fechada

$$z - e^{-aT} + k(1 - e^{-aT}) = 0$$
$$\Rightarrow z = e^{-aT} + k(e^{-aT} - 1)$$

 $para \ k > k_{critico},$ $z < -1 \Rightarrow \ sistema \ \'e \ inst\'avel$ $em \ malha \ fechada \qquad -$

PROJECTO DO CONTROLADOR DIGITAL (Algoritmo)

<u>Problema:</u> Determinar a equação às diferenças (ou a correspondente função de transferência C(z)) a programar no computador para obter o comportamento desejado do sistema em malha fechada

Duas vias:

I - Obter o modelo discreto da "plant" G(s) → G(z) e projectar o controlador no plano-z
 → PROJECTO DIRECTO (projecto no plano-z precedido da discretização do sistema)

II - Projectar o controlador no plano-s, C(s), e determinar um "equivalente" no plano-z: $C(s) \rightarrow C(z) \rightarrow PROJECTO POR EMULAÇÃO$ (projecto no plano-s seguido da discretização do controlador)

EXEMPLO:

$$G(s) = \frac{a}{s+a} \qquad \text{com } a = 0.5$$

especificações da resposta ao escalão:

- erro em regime permanente nulo
- Sobreelevação ≈ 16 %
- Tempo de estabelecimento $(5 \%) \approx 10 \text{ seg}$

Objectivo: Dimensionar um controlador digital $C(z) = K \frac{(z-\alpha)}{(z-\beta)}$ por forma a cumprir aquelas especificações

PROJECTO DIRECTO

 \underline{Dados} : G(s) e especificações da resposta temporal em tempo contínuo

Etapas do projecto:

i)
$$G(s) \rightarrow G(z) = \left(1 - z^{-1}\right) Z \left\{ \frac{G(s)}{s} \right\}$$

(para conversor D/A no modo ZOH)

- iii) **especificações** →
- \rightarrow polos desejados no plano-s $\xrightarrow{z=e^{sT}}$ polos desejados no plano-z
- iii) escolha e dimensionamento do controlador C(z)
- iv) simulação e ajuste de parâmetros

via adequada a: sistema "rápido" – processador "lento" (frequência de amostragem limitada pelo processador)

PROJECTO DIRECTO

(projecto no plano-z, precedido da discretização do sistema)

é dado o período de amostragem: T = 1 seg

i)
$$G(z) = (1 - z^{-1}) Z \left\{ \frac{G(s)}{s} \right\} = \dots = \frac{1 - e^{-aT}}{z - e^{-aT}} = \frac{0,393}{z - 0,607}$$

(determinado anteriormente)

ii)
$$S=16~\%~~\Rightarrow~~\xi=0{,}504$$

$$t_s~(5\%)=~10~seg~=3/~\xi~\omega_n~~\Rightarrow~~\xi~\omega_n=~0{,}3$$

$$\omega_d=0{,}51$$

polos desejados no plano-s (supostos dominantes): $s_{1,2} = -0.3 \pm j \ 0.51$

polos desejados no plano-z:

$$\mathbf{z} = \mathbf{e}^{\mathbf{sT}} = \mathbf{e}^{-0.30\text{T}} \, \mathbf{e}^{\pm \, \mathrm{j} \, 0.51\text{T}} = \mathbf{e}^{-0.30\text{T}} \, \left[\cos (0.51 \, \mathrm{T}) \pm \mathrm{j} \, \sin (0.51 \, \mathrm{T}) \right] =$$

$$= \mathbf{0.647} \pm \mathbf{j} \, \mathbf{0.362}$$

iii) erro em regime permanente nulo para entrada escalão $\Rightarrow \beta = 1$ Controlador Proporcional Integral (PI) discreto

$$C(z) = K \frac{(z - \alpha)}{(z - 1)}$$

(mostre que o denominador (z -1) anula o erro estático ao escalão)

iv) dimensionamento do controlador

$$\frac{Y(z)}{R(z)} = \frac{C(z)G(z)}{1 + C(z)G(z)}$$

equação característica:
$$1 + K \frac{(z - \alpha)}{(z - 1)} \cdot \frac{0.393}{(z - 0.607)} = 0$$

$$(z-1)(z-0.607) + K(z-\alpha)0.393 = 0$$

polinómio característico desejado:

$$z = 0.647 \pm j \ 0.362$$
 \Rightarrow $z^2 - 1.294 \ z + 0.550$

por identificação dos polinómios característicos, calcula-se:

$$\Rightarrow \qquad \qquad \mathbf{K} = \mathbf{0.796} \qquad \qquad \alpha = \mathbf{0.182}$$

$$C(z) = 0.796 \frac{(z - 0.182)}{(z - 1)}$$

equação às diferenças a implementar no computador:

$$\frac{U(z)}{E(z)} = 0.796 \frac{(z - 0.182)}{(z - 1)}$$

$$zU(z) - U(z) = 0.796zE(z) - 0.145E(z)$$

donde:

$$u(n+1) - u(n) = 0.796e(n+1) - 0.145e(n)$$

ou:

$$u(n) = u(n-1) + 0.796e(n) - 0.145e(n-1)$$

resposta ao escalão y(kT):
$$\frac{Y(z)}{R(z)} = \frac{0.313z - 0.0569}{z^2 - 1.294z + 0.550}$$

Resposta ao escalão em tempo discreto

Root-locus - f.t.malha aberta:
$$\frac{0.796(z - 0.182)0.393}{(z - 1)(z - 0.607)} = K \frac{z - 0.182}{z^2 - 1.607z + 0.607}$$

Root-locus – notar a circunferência unitária, os polos e zero da malha aberta e os polos projectados da malha fechada

Voltando à <u>equação às diferenças</u> resultante do projecto:

$$u(n) = u(n-1) + 0.796e(n) - 0.145e(n-1)$$

... a saída *u* depende da entrada *e* no mesmo instante de amostragem ...

Impossível de realizar, porque existe *um tempo finito de latência* para o cálculo de u(n)!

dois procedimentos possíveis:

- a) Conversores A/D e D/A não sincronizados O conversor D/A *espera* pelo resultado do cálculo. Se o tempo de cálculo ("tempo de latência") << T (~1/20) aquela equação às diferenças é uma boa aproximação do processo real.
- b) Conversores A/D e D/A sincronizados Introduz-se um atraso unitário z⁻¹ correspondente a um período de amostragem (ou seja, "ataca-se" directamente o facto de haver um período de latência), → polo adicional do controlador em z = 0.

Adoptando este último procedimento (atraso unitário):

$$C_1(z) = \frac{U(z)}{E(z)} = K \frac{(z - \alpha)}{(z - 1)} \cdot z^{-1}$$

haverá, então, que refazer o dimensionamento:

equação característica: $1 + K \frac{(z-\alpha)}{z(z-1)} \cdot \frac{0.393}{(z-0.607)} = 0$

$$z(z-1)(z-0.607) + K(z-\alpha)0.393 = 0$$

polinómio característico desejado:

$$z = 0.647 \pm i \ 0.362$$
 \Rightarrow $(z^2 - 1.294 \ z + 0.550)(z - x)$

notar que o polinómio característico é de 3º grau \rightarrow além dos polos projectados (desejados) existe um terceiro polo z = x.

se $n - m \ge 2$ \Rightarrow \sum polos da malha aberta = \sum polos da malha fechada

temos: n-m=2

$$0+1+0,607 = 0,647 + j 0,362 + 0,647 - j 0,362 + x$$
 $\Rightarrow x = 0,313$
 $(z^2 - 1,294 z + 0,550)(z - 0,313)$

por <u>identificação dos polinómios</u> característicos, calcula-se:

$$\Rightarrow$$
 K = 0,885 α = 0,495

$$C(z) = 0.885 \frac{(z - 0.495)}{z(z - 1)}$$

equação às diferenças a implementar no computador:

$$\frac{U(z)}{E(z)} = 0,885 \frac{(z - 0,495)}{z(z - 1)}$$

$$z^{2}U(z) - zU(z) = 0.885zE(z) - 0.128E(z)$$

donde:

$$u(n+2) - u(n+1) = 0.885e(n+1) - 0.128e(n)$$

ou:
$$u(n) = u(n-1) + 0.885e(n-1) - 0.128e(n-2)$$

assim, a saída do *filtro digital* no instante de amostragem n resulta de dados de entrada referentes a instantes de amostragem anteriores.

resposta ao escalão y(kT):
$$\frac{Y(z)}{R(z)} = \frac{0,3478z - 0,172}{z^3 - 1,607z^2 + 0,955z - 0,172}$$

Root-locus - f. t. malha aberta:
$$\frac{0.885(z - 0.495)0.393}{z(z - 1)(z - 0.607)} = K \frac{z - 0.495}{z^3 - 1.607z^2 + 0.607z}$$

PROJECTO POR EMULAÇÃO

(projecto no plano-s, seguido da discretização do controlador)

<u>Dados</u>: G(s) e especificações da resposta temporal em tempo contínuo

Etapas do projecto:

- iv) Especificações \rightarrow polos desejados no plano-s \rightarrow escolha e dimensionamento do controlador C(s)
- v) escolha do período de amostragem *T*
- vi) controlador digital "equivalente" C(z)
- iv) simulação e ajuste de parâmetros

No EXEMPLO presente, recordando:

sistema (*plant*):
$$G(s) = \frac{0.5}{s + 0.5}$$

especificações da resposta ao escalão:

- erro em regime permanente nulo
- Sobreelevação ≈ 16 %
- Tempo de estabelecimento $(5 \%) \approx 10 \text{ seg}$

i) projecto do controlador C(s) no plano-s

polos desejados no plano-s (supostos dominantes) : $s_{1,2} = -0.3 \pm j 0.51$ (atrás deduzidos)

erro em regime permanente nulo, para a entrada escalão ⇒ controlador PI

$$C(s) = K \frac{s+a}{s}$$

$$\frac{Y(s)}{R(s)} = \frac{C(s)G(s)}{1 + C(s)G(s)}$$

equação característica: $1 + K \frac{(s+a)}{s} \cdot \frac{0.5}{(s+0.5)} = 0$

$$s(s+0.5) + K(s+a)0.5 = 0$$

polinómio característico desejado:

$$s_{1,2} = -0.3 \pm j \ 0.51$$
 \Rightarrow $s^2 + 0.60 \ s + 0.35$

por identificação dos polinómios característicos, calcula-se:

$$\Rightarrow$$
 $K = 0.20$ $a = 3.5$

$$C(s) = 0.20 \frac{(s+3.5)}{s}$$

resposta ao escalão:
$$\frac{Y(s)}{R(s)} = \frac{0.1(s+3.5)}{s^2+0.6s+0.35}$$

Root-locus – f. t. da malha aberta: $\frac{0,20(s+3,5)0,5}{s(s+0,5)} = K \frac{s+3,5}{s(s+0,5)}$

Problema 1: Dado C(s) qual o controlador equivalente C(z) ? (i.e., como obter o equivalente discreto de um filtro contínuo ?)

Não há uma solução exacta ! porque C(z) tem acesso apenas às amostras do sinal de entrada nos instantes de amostragem, enquanto C(s) processa continuamente no tempo.

Referimos dois métodos (entre outros ...) necessariamente aproximados

I - Mapeamento dos polos e dos zeros

- os polos de C(z) e de C(s) relacionam-se como $z = e^{sT}$.
- os zeros de C(z) e de C(s) relacionam-se como $z = e^{sT}$.
- ganhos estáticos iguais: $C(s)_{s=0} = C(z)_{z=1}$

é atraente pela simplicidade

II - Método de Tustin ou da transformação bilinear

baseia-se numa aproximação numérica da integração:

seja o integrador:
$$\frac{U(s)}{E(s)} = C(s) = \frac{1}{s} \qquad u(t) = \int_0^t e(\tau) d\tau$$

ou
$$u(kT) = u(kT - T) + \int_{kT - T}^{kT} e(t)dt$$

aproximando aquele integral no intervalo T pela área de um trapézio (integração trapezoidal) :

$$u(kT) = u(kT - T) + \frac{T}{2} \left[e(kT - T) + e(kT) \right]$$

aproximando aquele integral no intervalo T pela área de um trapézio (integração trapezoidal):

$$u(kT) = u(kT - T) + \frac{T}{2} \left[e(kT - T) + e(kT) \right]$$

na transformada-Z:

$$\frac{U(z)}{E(z)} = \frac{T}{2} \left(\frac{1+z^{-1}}{1-z^{-1}} \right) = C(z) \qquad \iff \qquad \frac{U(s)}{E(s)} = C(s) = \frac{1}{s}$$

donde, aquela aproximação numérica corresponde à relação:

$$s = \frac{2}{T} \left(\frac{1 - z^{-1}}{1 + z^{-1}} \right) = \frac{2}{T} \left(\frac{z - 1}{z + 1} \right)$$
 (transformação bilinear)

Problema 2: como escolher o período de amostragem T?

$$\omega_s = \frac{2\pi}{T} \ge 20 \times \text{Largura de Banda (-3dB)}$$
 da malha fechada

[G.F.Franklin,J.D.Powell,M.L.Workman,DigitalControl of Dynamic Systems, Addison-Wesley]

(note-se que, adoptando a via do Projecto Directo no plano-z podem utilizar-se frequências de amostragem ω_s menores com resultados aceitáveis)

Retomando o **EXEMPLO** de projecto por emulação:

vii) escolha do período de amostragem T

L.B. (-3dB) da malha fechada:

$$\left| \frac{Y(j\omega)}{R(j\omega)} \right| = \left| \frac{0.1(j\omega + 3.5)}{(j\omega)^2 + 0.6j\omega + 0.35} \right| = \frac{1}{\sqrt{2}} \cdot \frac{Y(0)}{R(0)} \implies \omega_{LB} \approx 0.75 \text{ rad/s}$$

$$\omega_{\rm S} \ge 20 \times 0.75 = 15 \text{ rad/s}$$
 \Rightarrow $T \approx 0.4 \text{ seg}$

iii) controlador digital "equivalente" C(z)

<u>utilizando o método de Tustin</u> (ou da transformação bilinear):

$$C(s) = 0.20 \frac{(s+3.5)}{s}$$
 (resultante do projecto no plano-s)

$$s = \frac{2}{T} \left(\frac{1 - z^{-1}}{1 + z^{-1}} \right) = \frac{2}{T} \left(\frac{z - 1}{z + 1} \right)$$
 T = 0,4 seg

obtem-se:
$$C(z) = \frac{0.340(z - 0.176)}{z - 1}$$

viii) simulação

para simular teremos de achar o modelo discreto do sistema, G(z), para T=0,4 seg :

$$G(z) = (1 - z^{-1}) Z \left\{ \frac{G(s)}{s} \right\} = \dots = \frac{1 - e^{-aT}}{z - e^{-aT}} = \frac{0.181}{z - 0.819}$$

resposta ao escalão: $\frac{Y(z)}{R(z)} = \frac{0,0615z - 0,0109}{z^2 - 1,758z + 0,808}$

O que acontecerá se na escolha do período de amostragem nos desviarmos do critério $\omega_s = \frac{2\pi}{T} \ge 20 \times \text{Largura}$ de Banda (-3dB) da malha fechada ? Seja $\mathbf{T} = \mathbf{1seg}$:

$$\frac{Y(z)}{R(z)} = \frac{0,216z + 0,059}{z^2 - 1,391z + 0,666}$$

$$G(z) = \frac{0,393}{z - 0,607}$$

$$C(z) = \frac{0.550(z + 0.273)}{z - 1}$$

Com T = 1 seg. observa-se uma degradação da resposta dinâmica face à escolha de T = 0,4 seg, com afastamento significativo das especificações (recorde-se contudo que na via Projecto Directo fez-se T = 1 seg com bons resultados !)

As modificações na resposta temporal estão associadas à dependência da localização dos polos no plano-z com o valor do período de amostragem. (calcule os polos da malha fechada para os dois casos anteriores, T = 0.4 e T = 1, e justifique as alterações observadas na resposta ao escalão)

Nas respostas temporais obtidas, verificou-se sempre que as especificaçõe dinâmicas nunca eram rigorosamente satisfeitas; tal deve-se ou às aproximações inerentes à conversão plano-s/plano-z ou aos polos projectados (de 2ª ordem) não serem suficientemente dominantes

→ o passo seguinte do projecto seria o ajuste dos parâmetros do controlador em simulação na vizinhança dos valores calculados.