Reinforcement learning Lecture 1: Introduction

Hado van Hasselt hado@google.com

Advanced deep learning and reinforcement learning, UCL January 18, 2018

Admin

- ▶ RL lectures: mostly Thursday 9-11am, some exceptions
- Check Moodle for updates
- Use Moodle for questions
- ► Grading: assignments
- ► Background material: Reinforcement Learning: An Introduction, Sutton & Barto 2018 http://incompleteideas.net/book/the-book-2nd.html Background for this lecture: chapters 1 and 3

Outline

What is reinforcement learning?

Core concepts

Agent components

Challenges in reinforcement learning

What is reinforcement learning?

Motivation

- First, automation of repeated physical solutions
 - ▶ Industrial revolution (1750 1850) and Machine Age (1870 1940)
- ▶ Second, automation of repeated mental solutions
 - ▶ Digital revolution (1960 now) and Information Age
- ▶ Next step: allow machines to find solutions themselves
 - ► Al revolution (now ????)
- ▶ This requires learning autonomously how to make decisions

What is Reinforcement Learning?

- ▶ We, and other intelligent beings, learn by interacting with our environment
- This differs from certain other types of learning
 - ▶ It is active rather than passive
 - ▶ Interactions are often sequential future interactions can depend on earlier ones
- ► We are goal-directed
- We can learn without examples of optimal behaviour

The Interaction Loop

What is Reinforcement Learning?

There are (at least) two distinct reasons to learn:

- Find previously unknown solutions
 E.g., a program that can play Go better than any human, ever
- Find solutions online, for unforeseen circumstances
 E.g., a robot that can navigate terrains that differ greatly from any expected terrain
- ▶ Reinforcement learning seeks to provide algorithms for both cases
- ▶ Note that the second point is not (just) about generalization it is about learning efficiently online, during operation

What is Reinforcement Learning?

- ► Science of learning to make decisions from interaction
- ► This requires us to think about
 - ...time
 - ...(long-term) consequences of actions
 - ...actively gathering experience
 - ...predicting the future
 - ...dealing with uncertainty
- Huge potential scope

RL = AI?

Related Disciplines

Branches of Machine Learning

Characteristics of Reinforcement Learning

How does reinforcement learning differ from other machine learning paradigms?

- ► No supervision, only a reward signal
- ▶ Feedback can be delayed, not instantaneous
- ► Time matters
- ► Earlier decisions affect later interactions

Examples of decision problems

- Examples:
 - ► Fly a helicopter
 - Manage an investment portfolio
 - Control a power station
 - ► Make a robot walk
 - Play video or board games
- ► These are all reinforcement learning problems (no matter which solution method you use)

Video

Atari

Core concepts

Core concepts of a reinforcement learning system are:

- ► Environment
- Reward signal
- ► Agent, containing:
 - Agent state
 - Policy
 - Value function (probably)
 - ► Model (optionally)

Agent and Environment

- ► At each step *t* the agent:
 - ▶ Receives observation O_t (and reward R_t)
 - Executes action A_t
- ► The environment:
 - ightharpoonup Receives action A_t
 - ▶ Emits observation O_{t+1} (and reward R_{t+1})

Rewards

- ightharpoonup A reward R_t is a scalar feedback signal
- ▶ Indicates how well agent is doing at step *t* defines the goal
- ▶ The agent's job is to maximize cumulative reward

$$G_t = R_{t+1} + R_{t+2} + R_{t+3} + \dots$$

▶ We call this the return

Reinforcement learning is based on the reward hypothesis

Definition (Reward Hypothesis)

Any goal can be formalized as the outcome of maximizing a cumulative reward Do you agree?

Values

▶ We call the expected cumulative reward, from a state s, the value

$$v(s) = \mathbb{E}[G_t \mid S_t = s]$$

= $\mathbb{E}[R_{t+1} + R_{t+2} + R_{t+3} + ... \mid S_t = s]$

- Goal is then to maximize value, by picking suitable actions
- Rewards and values define desirability of a state or action (no supervised feedback)
- Note that returns and values can be defined recursively

$$G_t = R_{t+1} + G_{t+1}$$

Actions in sequential problems

- ► Goal: select actions to maximise value
- Actions may have long term consequences
- Reward may be delayed
- ▶ It may be better to sacrifice immediate reward to gain more long-term reward
- Examples:
 - A financial investment (may take months to mature)
 - Refueling a helicopter (might prevent a crash in several hours)
 - ▶ Blocking opponent moves (might help winning chances many moves from now)
- ► A mapping from states to actions is called a policy

Action values

▶ It is possible to condition the value on actions:

$$q(s, a) = \mathbb{E} [G_t \mid S_t = s, A_t = a]$$

= $\mathbb{E} [R_{t+1} + R_{t+2} + R_{t+3} + ... \mid S_t = s, A_t = a]$

We will talk in depth about state and action values later

Agent components

Agent components

- Agent state
- Policy
- ► Value function
- Model

State

- Actions depend on the state of the agent
- Both agent and environment may have an internal state
- ▶ In the simplest case, there is only one state (next lecture)
- Often, there are many different states sometimes infinitely many
- ▶ The state of the agent generally differs from the state of the environment
- ▶ The agent may not even know the full state of the environment

Environment State

- ► The environment state is the environment's internal state
- ▶ It is not usually visible to the agent
- Even if it is visible, it may contain lots of irrelevant information

► A history is a sequence of observations, actions, rewards

$$\mathcal{H}_t = O_0, A_0, R_1, O_1, ..., O_{t-1}, A_{t-1}, R_t, O_t$$

- ▶ For instance, the sensorimotor stream of a robot
- \triangleright This history can be used to construct an agent state S_t
- Actions depend on this state

Fully Observable Environments

Full observability:

Suppose the agent sees the full environment state

- ▶ observation = environment state
- ▶ The agent state could just be this observation:

$$S_t = O_t =$$
environment state

► Then the agent is in a Markov decision process

Markov decision processes

Markov decision processes (MDPs) provide a useful mathematical framework

Definition

A decision process is Markov if

$$p(r,s \mid S_t, A_t) = p(r,s \mid \mathcal{H}_t, A_t)$$

"The future is independent of the past given the present"

$$\mathcal{H}_t o \mathcal{S}_t o \mathcal{H}_{t+1}$$

- Once the state is known, the history may be thrown away
- ▶ The environment state is typically Markov
- ▶ The history \mathcal{H}_t is Markov

Partially Observable Environments

- ▶ Partial observability: The agent gets partial information
 - ▶ A robot with camera vision isn't told its absolute location
 - ► A poker playing agent only observes public cards
- Now the observation is not Markov
- ► Formally this is a partially observable Markov decision process (POMDP)
- ▶ The environment state can still be Markov, but the agent does not know it

- ▶ The agent state is a function of the history
- ▶ The agent's action depends on its state
- ▶ For instance, $S_t = O_t$
- ► More generally:

$$S_{t+1} = f(S_t, A_t, R_{t+1}, O_{t+1})$$

where f is a 'state update function'

► The agent state is typically much smaller than the environment state

The full environment state of a maze

A potential observation

An observation in a different location

The two observations are indistinguishable

These two states are not Markov

How could you construct a Markov agent state in this maze (for any reward signal)?

Partially Observable Environments

- To deal with partial observability, agent can construct suitable state representations
- Examples of agent states:
 - ▶ Last observation: $S_t = O_t$ (might not be enough)
 - ▶ Complete history: $S_t = \mathcal{H}_t$ (might be too large)
 - Some incrementally updated state: $S_t = f(S_{t-1}, O_t)$ (E.g., implemented with a recurrent neural network.) (Sometimes called 'memory'.)
- ► Constructing a Markov agent state may not be feasible; this is common!
- More importantly, the should state be contain enough informative for good policies, and/or good value predictions

Agent components

Agent components

- Agent state
- Policy
- ► Value function
- Model

Policy

- A policy defines the agent's behaviour
- ▶ It is a map from agent state to action
- ▶ Deterministic policy: $A = \pi(S)$
- Stochastic policy: $\pi(A|S) = p(A|S)$

Agent components

Agent components

- Agent state
- Policy
- ► Value function
- Model

Value Function

▶ The actual value function is the expected return

$$v_{\pi}(s) = \mathbb{E} [G_t \mid S_t = s, \pi]$$

= $\mathbb{E} [R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + ... \mid S_t = s, \pi]$

- ▶ We introduced a discount factor $\gamma \in [0, 1]$
 - Trades off importance of immediate vs long-term rewards
- The value depends on a policy
- Can be used to evaluate the desirability of states
- Can be used to select between actions

Value Functions

- ▶ The return has a recursive form $G_t = R_{t+1} + \gamma G_{t+1}$
- ► Therefore, the value has as well

$$egin{aligned} v_{\pi}(s) &= \mathbb{E}\left[R_{t+1} + \gamma G_{t+1} \mid S_t = s, A_t \sim \pi(s)
ight] \ &= \mathbb{E}\left[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_t = s, A_t \sim \pi(s)
ight] \end{aligned}$$

Here $a \sim \pi(s)$ means a is chosen by policy π in state s (even if π is deterministic)

- ► This is known as a Bellman equation (Bellman 1957)
- ▶ A similar equation holds for the optimal (=highest possible) value:

$$v_*(s) = \max_{a} \mathbb{E}\left[R_{t+1} + \gamma v_*(S_{t+1}) \mid S_t = s, A_t = a\right]$$

This does not depend on a policy

▶ We heavily exploit such equalities, and use them to create algorithms

Value Function approximations

- Agents often approximate value functions
- ▶ We will discuss algorithms to learn these efficiently
- ▶ With an accurate value function, we can behave optimally
- ▶ With suitable approximations, we can behave well, even in intractably big domains

Agent components

Agent components

- Agent state
- Policy
- ▶ Value function
- Model

Model

- ▶ A model predicts what the environment will do next
- ightharpoonup E.g., \mathcal{P} predicts the next state

$$\mathcal{P}(s, a, s') \approx p\left(S_{t+1} = s' \mid S_t = s, A_t = a\right)$$

 \triangleright E.g., \mathcal{R} predicts the next (immediate) reward

$$\mathcal{R}(s, a) pprox \mathbb{E}\left[R_{t+1} \mid S_t = s, A_t = a\right]$$

- ▶ A model does not immediately give us a good policy we would still need to plan
- ▶ We could also consider stochastic (generative) models

Maze Example

- ► Rewards: -1 per time-step
- Actions: N, E, S, W
- ► States: Agent's location

Maze Example: Policy

• Arrows represent policy $\pi(s)$ for each state s

Maze Example: Value Function

lacktriangle Numbers represent value $v_\pi(s)$ of each state s

Maze Example: Model

- Grid layout represents partial transition model $\mathcal{P}_{ss'}^a$
- Numbers represent immediate reward $\mathcal{R}^a_{ss'}$ from each state s (same for all a and s' in this case)

Categorizing agents

- ► Value Based
 - ► No Policy (Implicit)
 - Value Function
- Policy Based
 - Policy
 - ► No Value Function
- Actor Critic
 - Policy
 - Value Function

Categorizing agents

- Model Free
 - ► Policy and/or Value Function
 - ► No Model
- Model Based
 - Optionally Policy and/or Value Function
 - Model

Agent Taxonomy

Challenges in reinforcement learning

Learning and Planning

Two fundamental problems in reinforcement learning

- ► Learning:
 - ► The environment is initially unknown
 - ▶ The agent interacts with the environment
- ► Planning:
 - A model of the environment is given
 - ► The agent plans in this model (without external interaction)
 - ▶ a.k.a. reasoning, pondering, thought, search, planning

Prediction and Control

- Prediction: evaluate the future (for a given policy)
- Control: optimize the future (find the best policy)
- ► These are strongly related:

$$\pi_*(s) = \operatorname*{argmax}_{\pi} v_{\pi}(s)$$

▶ If we could predict everything do we need anything else?

Learning the components of an agent

- All components are functions
 - Policies map states to actions
 - Value functions map states to values
 - Models map states to states and/or rewards
 - State updates map states and observations to new states
- ▶ We could represent these functions as neural networks, then use deep learning methods to optimize these
- ▶ Take care: we often violate assumptions from supervised learning (iid, stationarity)
- Deep reinforcement learning is a rich and active research field
- ► (Current) neural networks are not always the best tool (but they often work well)

Atari Example: Reinforcement Learning

- Rules of the game are unknown
- ► Learn directly from interactive game-play
- Pick actions on joystick, see pixels and scores

Atari Example: Planning

- ▶ Rules of the game are known
- ► Can query emulator: perfect model
- ▶ If I take action a from state s:
 - what would the next state be?
 - what would the score be?
- ▶ Plan ahead to find optimal policy
- ► Later versions add noise, to break algorithms that rely on determinism

Exploration and Exploitation

- ▶ We learn by trial and error
- ► The agent should discover a good policy
- ...from new experiences
- ...without sacrifycing too much reward along the way

Exploration and Exploitation

- ► Exploration finds more information
- Exploitation exploits known information to maximise reward
- ▶ It is important to explore as well as exploit
- ▶ This is a fundamental problem that does not occur in supervised learning

Examples

- Restaurant Selection
 Exploitation Go to your favourite restaurant
 Exploration Try a new restaurant
- Oil Drilling
 Exploitation Drill at the best known location
 Exploration Drill at a new location
- Game Playing
 Exploitation Play the move you currently believe is best
 Exploration Try a new strategy

Gridworld Example: Prediction

What is the value function for the uniform random policy?

Gridworld Example: Control

a) gridworld

b) V^*

c)**π***

What is the optimal value function over all possible policies? What is the optimal policy?

Course

- ▶ In this course, we discuss how to learn by interaction
- ▶ The focus is on understanding core principles and learning algorithms

Topics include

- Exploration, in bandits and in sequential problems
- Markov decision processes, and planning by dynamic programming
- ► Model-free prediction and control (e.g., Q-learning)
- Policy-gradient methods
- Challenges in deep reinforcement learning
- Integrating learning and planning
- Guest lectures by Vlad Mnih and David Silver

Video

Locomotion