Hospital Database

Prepared by

Moaz Maher Elsayed
Eslam Ashraf Negm
Fady Youssery Nageb
Yousef Mohamad Hamada
Amr Mohamad Ali
Abdallah Yahya Elsayed
Yahya Mahmoud Zakaria

GitHub

https://github.com/Moaz-Maher/Hospital-GUI

I. Business Requirements

A. Patient

- We have a set of patients each patient has unique id, first name, last name, gender, date of birth, address, unique email.
- Each patient is can be examined by multiple doctors and we store examine date and the diagnosis.
- Each patient can perform any number of operations.
- each patient can stay in a room and we store entry and leaving date.

B. Doctor

- Each doctor has unique id, first name, last name, degree which is one of the following (Bachelor – Master - Doctoral), graduation year, and specialization that he works in hospital.
- He can work only in one specialization.
- Doctor may manage one specialization (specialization match to his specialization).
- Doctor may supervise many nurses
- Doctor can perform any number of operations (operation is performed on one patient but can be performed with many doctors and nurses)
- Doctor also has a set of appointments marked with day (Sunday-Monday.. etc) and shift number from 1 to 6 and the clinic he will work at (must match his specialization) this shift. (doctor may work with other doctors at the same clinic at the same time)
- Doctor can examine any number of patients.

C. Specialization

- There are set of specialization in our hospital and it has unique name and the date that we launch this specialization in our hospital.
- Each specialization may have many clinics associated with it, but each clinic must belongs to one specialization.
- Specialization may be managed by one doctor (of the same specialization).
- Specialization may have many number of doctors work in it.

D. Clinic

- We have clinic unique id, name and floor number (0 to 10).
- Each clinic must be associated with one specialization.

E. Nurse

- We have set of nurses that has first name, last name, unique id.
- Each nurse may participate in operations many times.
- Each nurse may take care of many rooms.

F. Operations

- Operation can be performed by more than one doctor one and one patient only.
- We need to store operation description and date of the operation and clinic that the operation was done in.

II. ERD

III. Mapping ERD to Logical Schema

Constraints:

A. Primary Key Constraints

- Doctor: id is the primary key.
- Patient: id is the primary key.
- **Examine**: Composite primary key on doctor_id, patient_id, date.
- **Patient_Phone**: Composite primary key on patient_id, phone.
- **Specialization**: name is the primary key.
- **Appointment**: Composite primary key on doctor_id, day, shift_number.
- **Clinic**: id is the primary key.
- **Operation_details**: id is the primary key.
- Perform_operation: Composite primary key on doctor_id, operation_id, patient_id.
- Nurse: id is the primary key.
- **Operation_help**: Composite primary key on nurse_id, operation_id.
- **Room**: id is the primary key.
- Patient_stay: Composite primary key on patient_id, room_id, entry.
- **Take_care**: Composite primary key on nurse_id, room_id.
- Manage: doctor_id is primary key

B. Foreign Key Constraints

Doctor:

specialization references Specialization(name).

• Examine:

- doctor_id references Doctor(id).
- patient_id references Patient(id).

Patient_Phone:

o patient_id references Patient(id).

Specialization:

manager_id references Doctor(id).

Appointment:

- doctor_id references Doctor(id) with ON DELETE CASCADE.
- o clinic_id references Clinic(id).

Clinic:

 specialization references Specialization(name) with ON UPDATE CASCADE and ON DELETE CASCADE.

Operation_details:

clinic_id references Clinic(id).

Perform_operation:

- doctor_id references Doctor(id).
- operation_id references Operation_details(id).
- patient_id references Patient(id).

Nurse:

supervizor_id references Doctor(id).

• Operation_help:

- nurse_id references Nurse(id).
- o operation_id references Operation_details(id).

Patient_stay:

- patient_id references Patient(id).
- o room_id references Room(id).

Take_care:

- o nurse_id references Nurse(id) with ON DELETE CASCADE.
- room_id references Room(id) with ON DELETE CASCADE.

Manage:

Doctor_id references Doctor(id).

C. Check Constraints

1. Doctor:

degree which is one of the following (Bachelor – Master - Doctoral) grad_year between 1000 and 3000

Patient:

o gender must be either 'Male' or 'Female'.

• Appointment:

- shift_number must be between 1 and 6.
- day must be one of 'Sunday', 'Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', or 'Saturday'.

• Clinic:

floor must be between 0 and 10.

Room:

floor must be between 0 and 10.

D. Unique Constraints

Patient:

email is unique.

Manage:

o specialization is unique.

E. Triggers

trg_EnsureDoctorClinicSpecialization:

 Ensures that a doctor is assigned to a clinic that matches their specialization. This is an AFTER INSERT, UPDATE trigger on the Appointment table.

trg_CheckRoomCapacity:

 Ensures that no patient is assigned to a room that has reached its maximum capacity. This is an AFTER INSERT, UPDATE trigger on the Patient_stay table.

trg_EnsureDoctorSpecializationMatch:

 To enforce the business rule that a doctor can only manage a specialization matching their own specialization.

F. Identity Columns

Clinic:

o id is an identity column (auto-incremented).

• Operation_details:

o id is an identity column (auto-incremented).

Room:

id is an identity column (auto-incremented).

Default:

Room: capacity default is 0

IV. Normalization

Lets check functional dependencies for each table:

Doctor(id, first_name, last_name, degree, grad_year, specialization)

FDs:

id → first_name, last_name, degree, grad_year, specialization

1NF: Satisfies 1NF as all attributes are atomic.

2NF: Satisfies 2NF since id is the sole candidate key, and all non-prime attributes are fully dependent on id.

3NF: Satisfies 3NF since there are no transitive dependencies.

BCNF: Satisfies BCNF since id is the sole determinant for all attributes.

Patient(<u>id</u>, first_name, last_name, gender, date_of_birth, city, country, street_number, building_number, email)

FDs:

id → first_name, last_name, gender, date_of_birth, city, country, street_number, building_number, email

email \rightarrow id (email is unique)

1NF: Satisfies 1NF as all attributes are atomic.

2NF: Satisfies 2NF since id is the sole candidate key, and all non-prime attributes are fully dependent on id.

3NF: Satisfies 3NF since there are no transitive dependencies.

BCNF: Satisfies BCNF.

Examine(doctor_id, patient_id, date, diagnosis)

FDs:

(doctor id, patient id, date) → diagnosis

1NF: Satisfies 1NF as all attributes are atomic.

2NF: Satisfies 2NF since the composite key fully determines diagnosis.

3NF: Satisfies 3NF since there are no transitive dependencies.

BCNF: Satisfies BCNF.

Patient_Phone(patient_id, phone)

```
FDs:
```

(patient id, phone) → No additional FDs (Composite primary key)

1NF: Satisfies 1NF as all attributes are atomic.

2NF: Satisfies 2NF since there are no partial dependencies.

3NF: Satisfies 3NF since there are no transitive dependencies.

BCNF: Satisfies BCNF.

Specialization(name, start_date)

FDs:

name → start date

1NF: Satisfies 1NF as all attributes are atomic.

2NF: Satisfies 2NF since name is the sole candidate key.

3NF: Satisfies 3NF since there are no transitive dependencies.

BCNF: Satisfies BCNF.

Appointment(doctor_id, day, shift_number, clinic_id)

FDs:

(doctor id, day, shift number) → clinic id

1NF: Satisfies 1NF as all attributes are atomic.

2NF: Satisfies 2NF since the composite key fully determines clinic id.

3NF: Satisfies 3NF since there are no transitive dependencies.

BCNF: Satisfies BCNF.

Clinic(id, name, floor, specialization)

FDs:

id → name, floor, specialization

1NF: Satisfies 1NF as all attributes are atomic.

2NF: Satisfies 2NF since id is the sole candidate key.

3NF: Satisfies 3NF since there are no transitive dependencies.

BCNF: Satisfies BCNF.

Operation details(id, description, date, clinic id)

FDs:

```
id → description, date, clinic id
```

1NF: Satisfies 1NF as all attributes are atomic.

2NF: Satisfies 2NF since id is the sole candidate key.

3NF: Satisfies 3NF since there are no transitive dependencies.

BCNF: Satisfies BCNF.

Perform_operation(doctor_id, operation_id, patient_id)

FDs:

(doctor_id, operation_id, patient_id) → No additional FDs

1NF: Satisfies 1NF as all attributes are atomic.

2NF: Satisfies 2NF since there are no partial dependencies.

3NF: Satisfies 3NF since there are no transitive dependencies.

BCNF: Satisfies BCNF.

Nurse(id, first_name, last_name, supervizor_id)

FDs:

id → first name, last name, supervizor id

1NF: Satisfies 1NF as all attributes are atomic.

2NF: Satisfies 2NF since id is the sole candidate key.

3NF: Satisfies 3NF since there are no transitive dependencies.

BCNF: Satisfies BCNF.

Room(id, floor, capacity)

FDs:

 $id \rightarrow floor, capacity$

1NF: Satisfies 1NF as all attributes are atomic.

2NF: Satisfies 2NF since id is the sole candidate key.

3NF: Satisfies 3NF since there are no transitive dependencies.

BCNF: Satisfies BCNF.

Patient_stay(patient_id, room_id, entry, leave)

FDs:

(patient id, room id, entry) \rightarrow leave

1NF: Satisfies 1NF as all attributes are atomic.

2NF: Satisfies 2NF since the composite key fully determines leave.

3NF: Satisfies 3NF since there are no transitive dependencies.

BCNF: Satisfies BCNF.

Take_care(nurse_id, room_id)

FDs:

(nurse id, room id) \rightarrow No additional FDs

1NF: Satisfies 1NF as all attributes are atomic.

2NF: Satisfies 2NF since there are no partial dependencies.

3NF: Satisfies 3NF since there are no transitive dependencies.

BCNF: Satisfies BCNF.

We can see that database are normalized to BCNF.

Manage(doctor_id, specialization)

FDs:

Doctor_id \rightarrow specialization specialization \rightarrow doctor id

1NF: Satisfies 1NF as all attributes are atomic.

2NF: Satisfies 2NF since there are no partial dependencies.

3NF: Satisfies 3NF since there are no transitive dependencies.

BCNF: Satisfies BCNF.

We can see that database are normalized to BCNF.

GitHub

https://github.com/Moaz-Maher/Hospital-GUI

