FINAL EXAMINATION CALCULUS I

MI1016. Term 20201. Time duration: 90 mins

All materials are forbidden. Problem sheet must be submitted with your answer sheets.

Question 1. Find the domain and the range of the function

$$f(x) = \arcsin(2^x)$$
.

Question 2. Find the volume of the solid of revolution obtained by rotating the region $x^2 + 4y^2 \le 4$, $x \ge 0$, about the Ox axis.

Question 3. Find an equation of the tangent plane to the surface $z(x,y) = \frac{x^3}{3} + 2xy + y^2 - 3x$ at A(3;2).

Question 4. Compare the following pair of infinitesimals

$$\alpha(x) = \ln(1 + 2x \arctan x), \quad \beta(x) = \sin(x^3 - 2x^5) \text{ as } x \to 0.$$

Question 5. Find the third degree Taylor polynomial of the function $f(x) = \frac{1}{\sqrt{x}}$ centered at x = 1. Using this polynomial, approximate the value f(1,2).

Question 6. Express the following limit as a definite integral, then evaluate it

$$\lim_{n\to\infty}\frac{1}{n^2}\left(\sin\frac{\pi}{n}+2\sin\frac{2\pi}{n}+\ldots+(n-1)\sin\frac{(n-1)\pi}{n}\right).$$

Question 7. a) Compute the partial derivative $f'_y(x,y)$ of the func-

tion
$$f(x,y) = \begin{cases} \frac{2x^3 - 3y^3}{4x^2 + y^2}, & \text{if } (x,y) \neq (0,0), \\ 0, & \text{if } (x,y) = (0,0). \end{cases}$$

b) Is the partial derivative $f'_{\nu}(x,y)$ continuous at (0,0)? Explain.

Question 8. Test for convergence
$$\int_0^\infty \frac{\arctan(2\sqrt{x})}{\ln(1+3x) + x^2} dx.$$

FINAL EXAMINATION CALCULUS I MI1016. Term 20201. Time duration: 90 mins

All materials are forbidden. Problem sheet must be submitted with your answer sheets.

Question 1. Find the domain and the range of the function

SET 2

$$f(x) = \arccos(2^x)$$
.

Question 2. Find the volume of the solid of revolution obtained by rotating the region $x^2 + 4y^2 \le 4$, $y \ge 0$, about the *Oy* axis.

Question 3. Find an equation of the tangent plane to the surface $z(x,y) = x^2 - 6xy - 8x + 2y^3$ at A(1; -2).

Question 4. Compare the following pair of infinitesimals

$$\alpha(x) = e^{x \sin(2x)} - 1$$
, $\beta(x) = \arctan(2x + 3x^2)$ as $x \to 0$.

Question 5. Find the third degree Taylor polynomial of the function $f(x) = \frac{1}{\sqrt{x}}$ centered at x = 1. Using this polynomial, approximate the value f(0,8).

Question 6. Express the following limit as a definite integral, then evaluate it

$$\lim_{n\to\infty}\frac{1}{n^2}\left(\cos\frac{\pi}{n}+2\cos\frac{2\pi}{n}+\ldots+(n-1)\cos\frac{(n-1)\pi}{n}\right).$$

Question 7. a) Compute the partial derivative $f'_x(x,y)$ of the func-

tion
$$f(x,y) = \begin{cases} \frac{2x^3 - 3y^3}{4x^2 + y^2}, & \text{if } (x,y) \neq (0,0), \\ 0, & \text{if } (x,y) = (0,0). \end{cases}$$

b) Is the partial derivative $f'_x(x,y)$ continuous at (0,0)? Explain.

Question 8. Test for convergence
$$\int_0^\infty \frac{\arctan(2\sqrt{x})}{\sin^2(\sqrt{3x}) + 2x^2} dx.$$
—-END—-