Mahmoud Kahack Home Work 3

2

a.

$$s(\{e\}) = \frac{8}{10} = 0.8$$

 $s(\{b,d\}) = \frac{2}{10} = 0.2$
 $s(\{b,d,e\}) = 0.2$

b.

c({b,d} -> {e}) =
$$\frac{s(b,d,e)}{s(b,d)}$$
 = $\frac{0.2}{0.2}$ = 1
c({e} -> {b,d}) = $\frac{0.2}{0.8}$ = 0.25
confidence is clearly not a symmetric metric

C.

$$s(\{e\}) = \frac{4}{5} = 0.8$$

 $s(\{b,d\}) = \frac{5}{5} = 1$
 $s(\{b,d,e\}) = \frac{4}{5} = 0.8$

d.

$$c(\{b,d\} \rightarrow \{e\}) = 0.8$$

 $c(\{e\} \rightarrow \{b,d\}) = 1$

e.

In [3]:

import numpy as np
import pandas as pd

from mlxtend.frequent_patterns import apriori
from mlxtend.frequent_patterns import association_
rules

%matplotlib inline

Problem 1

Load the *Online Retaildataset* (**Online Retail.xlsx**) from the **UCI Machine Learning Repository** into Python using a Pandas dataframe. Using the apriori module from the **MLxtend** library, generate Frequent Itemsets for all trans-actions for the country of France. What itemset has the largest support? Set the minimum support threshold to 5% and extract frequent itemsets, and use them as input to the association rules module. Use each of the confidence and lift metrics to extract the association rules with the highest values, respectively. What are the antecedents and consequents of each rule? Is the rule with the highest confidence the same as the rule with the highest lift? Why or why not?

Answer:-

The itemset with the largest support is {'RABBIT NIGHT LIGHT'}.

The rule with the highest confidence is {'SET/20 RED RETROSPOT PAPER NAPKINS','SET/6 RED SPOTTY PAPER PLATES'} -> {'SET/6 RED SPOTTY PAPER CUPS'}.

The rule with the highest lift is {'PACK OF 6 SKULL PAPER CUPS'} -> {'PACK OF 6 SKULL PAPER PLATES'}.

The rule with the highest confidence and the rule with the highest lift are different. This because the lift takes into account the joint support of the rule and both the support of the antecedents and consequents support. Confidence only takes into account joint support of the rule and the antecedent's support. In [92]:

df = pd.read_excel('http://archive.ics.uci.edu/ml/
machine-learning-databases/00352/Online%20Retail.x
lsx')

df.head()

Out[92]:

	InvoiceNo	StockCode	Description	Quantity	Inv
0	536365	85123A	WHITE HANGING HEART T-LIGHT HOLDER	6	201 08:
1	536365	71053	WHITE METAL LANTERN	6	201 08:
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	201 08:
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	201 08:
4	536365	84029E	RED WOOLLY HOTTIE WHITE	6	201 08:

In [93]:

df.describe()

Out[93]:

	Quantity	UnitPrice	Custome
count	541909.000000	541909.000000	406829.0000
mean	9.552250	4.611114	15287.69057
std	218.081158	96.759853	1713.600303
min	-80995.000000	-11062.060000	12346.00000
25%	1.000000	1.250000	13953.00000
50%	3.000000	2.080000	15152.00000
75%	10.000000	4.130000	16791.00000
max	80995.000000	38970.000000	18287.00000

```
In [94]:
```

```
df['Description'] = df['Description'].str.strip()
df.dropna(axis = 0, subset=['InvoiceNo'], inplace
= True)
df['InvoiceNo'] = df['InvoiceNo'].astype('str')
df = df[~df['InvoiceNo'].str.contains('C')]
```

In [95]:

df.describe()

Out[95]:

	Quantity	UnitPrice	Custome
count	532621.000000	532621.000000	397924.0000
mean	10.239972	3.847621	15294.31517
std	159.593551	41.758023	1713.169877
min	-9600.000000	-11062.060000	12346.00000
25%	1.000000	1.250000	13969.00000
50%	3.000000	2.080000	15159.00000
75%	10.000000	4.130000	16795.00000
max	80995.000000	13541.330000	18287.00000

Out[96]:

	Quantity	UnitPrice	CustomerID
count	8408.000000	8408.000000	8342.000000
mean	13.333016	4.399713	12678.377128
std	21.069963	65.505260	277.279060
min	1.000000	0.000000	12413.000000
25%	6.000000	1.250000	12571.000000
50%	10.000000	1.790000	12678.000000
75%	12.000000	3.750000	12689.000000
max	912.000000	4161.060000	14277.000000

Out[97]:

Description	SPACEBOY	12 COLOURED PARTY BALLOONS	HOUSE	E1
InvoiceNo				
580986	0.0	0.0	0.0	0.0
581001	0.0	0.0	0.0	0.0
581171	0.0	0.0	0.0	0.0
581279	0.0	0.0	0.0	0.0
581587	0.0	0.0	0.0	0.0

5 rows × 1563 columns

```
In [99]: def sum_to_boolean(x):
    if x<=0:
        return 0
    else:
        return 1

    french_basket_sg = french_basket.applymap(sum_to_b oolean)</pre>
```

Out[100]:

Description	10 COLOUR SPACEBOY PEN	12 COLOURED PARTY BALLOONS	12 EGG HOUSE PAINTED WOOD
count	392.000000	392.000000	392.000000
mean	0.030612	0.015306	0.002551
std	0.172485	0.122924	0.050508
min	0.000000	0.000000	0.000000
25%	0.000000	0.000000	0.000000
50%	0.000000	0.000000	0.000000
75%	0.000000	0.000000	0.000000
max	1.000000	1.000000	1.000000

8 rows × 1562 columns

In [101]:

frequent_itemsets = apriori(french_basket_sg, min_
support = 0.05, use_colnames = True)

frequent_itemsets.sort_values('support', ascending
= False).head()

Out[101]:

	support	itemsets
46	0.188776	(RABBIT NIGHT LIGHT)
52	0.181122	(RED TOADSTOOL LED NIGHT LIGHT)
44	0.170918	(PLASTERS IN TIN WOODLAND ANIMALS)
40	0.168367	(PLASTERS IN TIN CIRCUS PARADE)
59	0.158163	(ROUND SNACK BOXES SET OF4 WOODLAND)

In [102]:

frequent_itemsets.sort_values('support', ascending
= False).tail()

Out[102]:

	support	itemsets
6	0.05102	(BLUE HARMONICA IN BOX)
32	0.05102	(MINI LIGHTS WOODLAND MUSHROOMS)
34	0.05102	(PACK OF 20 NAPKINS RED APPLES)
70	0.05102	(SPACEBOY CHILDRENS BOWL)
79	0.05102	(ALARM CLOCK BAKELIKE RED, ROUND SNACK BOXES S

In [112]:

con_rules = association_rules(frequent_itemsets, m
etric = "confidence", min_threshold = 0.7)
con_rules.sort_values('confidence',ascending = Fal
se)

Out[112]:

	antecedents	consequents	antecedent support	
25	(SET/6 RED SPOTTY PAPER PLATES, SET/20 RED RET	(SET/6 RED SPOTTY PAPER CUPS)	0.102041	0.137
24	(SET/6 RED SPOTTY PAPER CUPS, SET/20 RED RETRO	(SET/6 RED SPOTTY PAPER PLATES)	0.102041	0.127
18	(SET/6 RED SPOTTY PAPER PLATES)	(SET/6 RED SPOTTY PAPER CUPS)	0.127551	0.137
7	(CHILDRENS CUTLERY SPACEBOY)	(CHILDRENS CUTLERY DOLLY GIRL)	0.068878	0.071
10	(PACK OF 6 SKULL PAPER	(PACK OF 6 SKULL PAPER	0.056122	0.063

In [111]:

lift_rules = association_rules(frequent_itemsets,
metric = "lift", min_threshold = 1)
lift_rules.sort_values('lift',ascending = False).h
ead()

Out[111]:

	antecedents	consequents	antecedent support	
38	(PACK OF 6 SKULL PAPER CUPS)	(PACK OF 6 SKULL PAPER PLATES)	0.063776	0.05612
39	(PACK OF 6 SKULL PAPER PLATES)	(PACK OF 6 SKULL PAPER CUPS)	0.056122	0.06377
8	(CHILDRENS CUTLERY DOLLY GIRL)	(CHILDRENS CUTLERY SPACEBOY)	0.071429	0.06887
9	(CHILDRENS CUTLERY SPACEBOY)	(CHILDRENS CUTLERY DOLLY GIRL)	0.068878	0.07142
69	(ALARM CLOCK BAKELIKE GREEN, ALARM	(ALARM CLOCK BAKELIKE RED)	0.073980	0.0943{

Problem 2

Load the *Extended Bakery* dataset (**75000-out2-binary.csv**) into Python using a Pandas dataframe. Calculate the binary correlation coefficient Φ for the *Chocolate Coffee* and *Chocolate Cake* items. Are these two items symmetric binary variables? Provide supporting calculations. Would the association rules {Chocolate Coffee} \Rightarrow {Chocolate Cake} have the same value for Φ as {Chocolate Cake} \Rightarrow {Chocolate Coffee}?

Answer:-

The binary correlation is 0.4856. These items are assymmetric binary variables.

```
s({Chocolate Cake}) = 0.0835
s({Chocolate Coffee}) = 0.08314
s({Chocolate Cake},{Chocolate Coffee}) = 0.4404
```

The correlation coefficient is the same for both rules {Chocolate Coffee} -> {Chocolate Cake} and {Chocolate Cake} -> {Chocolate Coffee} because the correlation coefficient is invariant.

Out[4]:

	Transaction Number	Chocolate Cake	Lemon Cake
count	75000.000000	75000.000000	75000.000000
mean	37500.500000	0.083533	0.083613
std	21650.779432	0.276689	0.276809
min	1.000000	0.000000	0.000000
25%	18750.750000	0.000000	0.000000
50%	37500.500000	0.000000	0.000000
75%	56250.250000	0.000000	0.000000
max	75000.000000	1.000000	1.000000

8 rows × 51 columns

Out[90]: 2962

Out[8]:

	support	itemsets
7	0.109240	(Coffee Eclair)
45	0.102667	(Hot Coffee)
28	0.100747	(Tuile Cookie)
18	0.093160	(Cherry Tart)
4	0.092640	(Strawberry Cake)
35	0.092573	(Apricot Danish)
42	0.091613	(Orange Juice)
22	0.090440	(Gongolais Cookie)
27	0.089773	(Marzipan Cookie)
14	0.084827	(Berry Tart)
32	0.083987	(Apricot Croissant)
1	0.083613	(Lemon Cake)
0	0.083533	(Chocolate Cake)
46	0.083147	(Chocolate Coffee)
16	0.082947	(Blueberry Tart)
9	0.082747	(Napoleon Cake)
5	0.082240	(Truffle Cake)
22	n nonn10	(Chases Craissant)

```
In [9]:
          ccake support = bake f[bake f["itemsets"] == {'Cho
          colate Cake'}]["support"].values[0]
          print(ccake support)
         0.08353333333333333
In [10]:
          ccoffee_support = bake_f[bake_f["itemsets"] == {'C
          hocolate Coffee'}]["support"].values[0]
          print(ccoffee support)
         0.0831466666666666
In [11]:
          pair_support = bake_f[bake_f["itemsets"] == {'Choc
          olate Coffee','Chocolate Cake'}]["support"].values
          [0]
          print(pair support)
         0.04404
In [12]:
          all_n = intial_bakery_df["Transaction Number"].cou
          nt()
          all n
Out[12]:
          75000
In [20]:
          fp1 = np.ceil(all_n*ccoffee_support)
          fp1
```

Out[20]:

6236.0

In [21]: f1p = np.ceil(all_n*ccake_support)
f1p

Out[21]: 6265.0

In [22]: f11 = np.ceil(all_n*pair_support)
f11

Out[22]: 3303.0

In [23]: f01 = fp1 - f11 f01

Out[23]: 2933.0

In [24]: f10 = f1p - f11 f10

Out[24]: 2962.0

In [25]: f0p = all_n - f1p f0p

Out[25]: 68735.0

In [26]: fp0 = all_n - fp1
fp0

Out[26]: 68764.0

In [27]: f00 = fp0 - f10 f00

Out[27]: 65802.0

In [33]: f0p - f01 == f00

Out[33]: True

In [34]: f00 + f01 == f0p

Out[34]: True

In [35]: f00 + f10 == fp0

Out[35]: True

In [36]: f11 + f10 == f1p

Out[36]: True

In [37]: f11 + f01 == fp1

Out[37]: True

```
In [82]:
          print("\t","Coco","\t\t","!Coco","\t")
          print()
          print("Cake", "\t",f11,"\t",f10,"\t",f1p)
          print()
          print("!Cake","\t",f01,"\t",f00,"\t",f0p)
          print()
          print("\t", fp1, "\t", fp0, "\t", all n)
                   Coco
                                   !Coco
         Cake
                   3303.0
                                   2962.0
                                                    6265.0
          !Cake
                   2933.0
                                   65802.0
                                                    68735.0
                   6236.0
                                   68764.0
                                                    75000
In [86]:
          corr = (f11*f00 - f10*f01)/np.sqrt(fp1*f1p*fp0*f0p)
          )
          corr
```

Out[86]: 0.4855664925278768