

INSTITUTO DE INGENIERÍA MATEMÁTICA Y COMPUTACIONAL

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

IMT3410: Métodos para ecuaciones diferenciales

Clase 18

Manuel A. Sánchez 2024.10.16

Elementos Finitos

Elemento Finito

Definición

Sea $d \ge 1$, un entero n_{sh} y un conjunto $\mathcal{N} = \{1 : n_{sh}\}$. Un **elemento finito** consists en una tripleta $\{K, P, \Sigma\}$ donde:

- (i) K es un poliedro en \mathbb{R}^d , o la image de un poliedro en \mathbb{R}^d por algún difeomorfismo suave. Mas general, K puede ser un la clausura de un dominion Lipschitz en \mathbb{R}^d . K se asume no trivial, es decir int $(K) \neq \emptyset$.
- (ii) P es un espacio vectorial de dimensión finita de funciones $p:K\longrightarrow \mathbb{R}^q$, para algún entero positivo q (q=1 o q=d usualmente). P es no trivial, es decir, $P\neq \{0\}$. Los miembros de P son polinomios, posiblemente compuestas con algún difeomorfismo suave
- (iii) Σ es un conjunto de n_{sh} formas lineales de P a \mathbb{R} , esto es $\Sigma = \{\sigma_i\}$, $i \in \mathcal{N}$, tal que la transformación lineal $\Phi_{\Sigma}: P \to \mathbb{R}^{n_{sh}}$ definida por $\Phi_{\Sigma}(p) = (\sigma_i(p))_{i \in \mathcal{N}}$ es un isomorfismo. Las formas lineales σ_i son llamadas **grados de liberad** (locales), **dofs**, y la biyectividad de Φ_{Σ} se conoce como **unisolvencia**.

Observaciones

□ Para probar la unisolvencia, es suficiente mostrar que dim $P \ge n_{sh} = \text{card}\Sigma$, y que Φ_{Σ} es inyectivo, es decir

$$(\sigma_i(p) = 0, \forall i \in \mathcal{N}) \implies (p = 0), \forall p \in P$$

 \square Σ es una base del espacio de formas lineales sobre P, es decir, $\mathcal{L}(P;\mathbb{R})$. En efecto, $\dim(\mathcal{L}(P;\mathbb{R})) = \dim(P) = n_{sh}$. Además, si el vector $X = (X_i)_{i \in \mathcal{N}} \in \mathbb{R}^{n_{sh}}$ es tal que

$$\sum_{i\in\mathcal{N}}X_i\sigma_i(p)=0,\quad \forall p\in P$$

tomando $p = \Phi_{\Sigma}^{-1}(X)$, no da $\sum_{i \in \mathcal{N}} X_i^2 = 0$. Así $X_i = 0$, para todo $i \in \mathcal{N}$.

Elemento Finito

Lema (Funciones de forma)

Existe una base $\{\theta_1, \dots, \theta_{n_{sh}}\}$ de P tal que

$$\sigma_i(\theta_j) = \delta_{ij}, \quad \textit{para } i, j \in \mathcal{N}.$$

Las funciones $\{\theta_1,\ldots,\theta_{n_{sh}}$ son llamadas **funciones de forma** locales, local shape functions. Sea $\{\phi_i\}$, $i\in\mathcal{N}$, una base de P.Entonces, definiendo, la matriz de Vandermonde generalizada $\mathcal{V}\in\mathbb{R}^{n_{sh}\times n_{sh}}$, con entradas $\mathcal{V}_{ij}=\sigma_j(\phi_i)$, para todo $i,j\in\mathcal{N}$, las funciones de forma están dadas por

$$\theta_i = \sum_{j \in \mathcal{N}} (\mathcal{V})_{ij}^{-1} \phi_j, \quad \forall i \in \mathcal{N}.$$

Elementos Finitos - Interpolación

Usaremos el término **interpolación** en un sentido amplio, observe que los grados de libertad no son necesariamente evaluaciones de puntos.

Definición

Sea (K, P, Σ) un elemento finito. Asuma que existe un espacio de Banach $V(K) \subset L^1(K; \mathbb{R}^q)$, tal que

- \square $P \subset V(K)$
- □ Las formas lineales $\{\sigma_i\}$, $i \in \mathcal{N}$ pueden extenderse a $\mathcal{L}(V(K), \mathbb{R})$, es decir, existen $\{\tilde{\sigma}_i\}$, $i \in \mathcal{N}$ tales que $\tilde{\sigma}_i(p) = \sigma_i(p)$ para todo $p \in P$, y $|\tilde{\sigma}_i(v)| \leq c_{\Sigma} ||v||_{V(K)}$ para todo $v \in V(K)$ y todo $i \in \mathcal{N}$. Así, abusando de notación usamos el símbolo σ_i en lugar de $\tilde{\sigma}_i$.

Elementos Finitos - Interpolación

Definimos el operador de interpolación $\mathcal{I}_K : V(K) \to P$ por

$$\mathcal{I}_{\mathcal{K}}(v)(\mathbf{x}) := \sum_{i \in \mathcal{N}} \sigma_i(v) \theta_i(\mathbf{x}), \quad \forall \mathbf{x} \in \mathcal{K},$$

para todo $v \in V(K)$. V(K) es el dominio de \mathcal{I}_K y P es su codominio.

Elementos Finitos - Interpolación

Propiedades

- \square El operador \mathcal{I}_K es acotado, es decir pertenece a $\mathcal{L}(V(K); P)$.
- El operador \mathcal{I}_K es P-invariante, es decir $\mathcal{I}_K(p) = p$, para todo $p \in P$. Entonces, \mathcal{I}_K es una proyección, $\mathcal{I}_K \circ \mathcal{I}_K = \mathcal{I}_K$.

Elementos Finitos - ejemplos

Definición (Elemento finito de Lagrange o nodal)

Sea $\{K, P, \Sigma\}$ un elemento finito escalar (q = 1). Si hay un conjunto de puntos $\{a_i\}$, $i \in \mathcal{N}$ en K tales que,

$$\sigma_i(p) = p(a_i), \quad \forall p \in P$$

entonces $\{K, P, \Sigma\}$ es llamado un **elemento finito de Lagrange**. Los puntos $\{a_i\}$, $i \in \mathcal{N}$ son llamados nodos del elemento finito y las funciones de forma locales $\{\theta_i\}$, $i \in \mathcal{N}$ son tales que

$$\theta_i(\mathbf{a}_i) = \delta_{ii}, \quad \forall i, j \in \mathcal{N}$$

son llamadas la base nodal de P asociadas a los nodos $\{a_i\}$, $i \in \mathcal{N}$.

Definición

Sea $d \geq 1$. Sea $\{z_0, \ldots, z_d\}$ un conjunto de puntos de \mathbb{R}^d tales que los vectores $\{z_1 - z_0, \ldots, z_d - z_0\}$ son linealmente independientes. El **convex hull**, envoltura convexa, de estos puntos es llamado un **simplex** en \mathbb{R}^d , $K = \text{conv}(\{z_0, \ldots, z_d\})$ (cerrado) y los puntos $\{z_0, \ldots, z_d\}$ son llamados vértices del simplex. El vector normal unitario que apunta hacia afuera de K en ∂K se denota por \mathbf{n}_K

El simplex unitario de \mathbb{R}^d es el conjunto

$$\hat{K} = \left\{ x \in \mathbb{R}^d; x_i \ge 0, \ 1 \le i \le d, \ \sum_{i=1}^d x_i \le 1 \right\}$$

$$d = 1$$

$$(0,1)$$

$$(0,0)$$

$$(1,0)$$

$$(0,0,1)$$

Definición

La envoltura convexa del conjunto de puntos $\{z_0,...,z_d\}\setminus\{z_i\}$ es denotado por F_i , para todo $0 \le i \le d$ y es llamado **cara** de K, opuesta al vértice z_i . Para todo $0 \le l \le d-1$, una l-cara de K es la envoltura convexa de un subconjunto de puntos $\{z\}, 0 \le i \le d$, de cardinalidad (l+1). Por definición las l-caras son conjuntos cerrados y subconjuntos de un subespacio afín de \mathbb{R}^d de codimensión d-l.

El número de *l*-caras en un simplex de \mathbb{R}^d es $\binom{d+1}{l+1}$.

Definición

Sea K un simplex en \mathbb{R}^d con vértices $\{z_i\}$, $0 \le i \le d$. Para todo $\mathbf{x} \in \mathbb{R}^d$ y todo índice $1 \le i \le d$, denotamos por $\lambda_i(\mathbf{x})$ las componentes del vector $\mathbf{x} - z_0$ en la base $\{z_1 - z_0, ..., z_d - z_0\}$, es decir

$$\mathbf{x}-z_0=\sum_{i=1}^d \lambda_i(\mathbf{x})(z_i-z_0)$$

Además introducimos la función

$$\lambda_0(\mathbf{x}) := 1 - \sum_{i=1}^d \lambda_i(\mathbf{x})$$

Propiedades:

□ La coordenada baricéntrica λ_i es una función afín que es 1 en z_i , 0 en F_i y en el baricentro de K es $\frac{1}{d+1}$, y

$$\lambda_i(x) := 1 - rac{(x-z_i) \cdot n_i}{(z_j-z_i) \cdot n_i} \in \mathbb{R}$$

donde n_i es el vector normal unitario, que apunta hacia afuera de K, sobre F_i .

- □ Para todo $x \in K : 0 \leq \lambda_i(x) \leq 1$.
- lacksquare Para todo $x \in \mathbb{R}^d$: $\sum_{i=0}^d \lambda_i(x) = 1$, $\sum_{i=0}^d \lambda_i(x)(x-z_i) = 0$

Elementos Finitos

Definición

El espacio de polinomios de grado k en las variables $x=(x_1,\ldots,x_d)$ y de coeficientes reales es

$$\mathbb{P}_{k,d} = \operatorname{span}\left\{x_1^{\alpha_1}...x_d^{\alpha_d},\ 0 \leq \alpha_1,...,\alpha_d \leq k,\ \alpha_1+...+\alpha_d \leq k\right\}$$

$$dim(\mathbb{P}_{k,d}) = \binom{d+k}{d}$$

Ejemplos: Elementos finitos

Elemento Finito de Lagrange. Sean K un simplex en \mathbb{R}^d con vértices $\{z_i\}, 0 \le i \le d$, y k = 1. Sea $P = \mathbb{P}_{1,d}$. Sea $\Sigma = \{\sigma_i\}, 0 \le i \le d$ las formas lineales sobre P tales que

$$\sigma_i(p) = p(z_i), \quad \forall 0 \leq i \leq d.$$

Entonces (K, P, Σ) es un elemento finito de Lagrange y las funciones de forma son $\theta_i = \lambda_i$. **Demostración**. Sea $p \in P$. Entonces

$$p(\mathbf{x}) = p(z_0) + Dp(\mathbf{x} - z_0) = p(z_0) + \sum_{i=1}^{d} \lambda_i(\mathbf{x}) Dp(z_i - z_0)$$
$$= \sum_{i=0}^{d} (\lambda_i(\mathbf{x}) p(z_0) + Dp(z_i - z_0)) = \sum_{i=0}^{d} \lambda_i(\mathbf{x}) p(z_i)$$

Esto muestra que todo polinomio en p=0 en K si $p(z_i)=0$, $0 \le i \le d$. Además, $\dim(P)=d+1=\operatorname{card}\Sigma$. Así (K,P,Σ) es un elemento finito.

Ejemplos: Elementos finitos

Elemento Finito de Lagrange. Sean K un simplex en \mathbb{R}^d , $k \geqslant 1$, $P = \mathbb{P}_{k,d}$, y $\mathcal{A}_{k,d} := \{\alpha \in \mathbb{N}^d : |a| \leq k\}$. Sea $n_{sh} = \binom{k+d}{d}$ y considere el conjunto de nodos $\{\mathbf{a}_{\alpha}\}$, $\alpha \in \mathcal{A}_{k,d}$ tales que

$$\mathbf{a}_{\alpha}-z_0:=\sum_{i=1}^d\frac{\alpha_i}{k}(z_i-z_0)$$

Sea $\Sigma := \{\sigma_{\alpha}\}$, $\alpha \in \mathcal{A}_{k,d}$ las formas lineales sobre P tales que $\sigma_{\alpha}(p) := p(\mathbf{a}_{\alpha})$ para todo $\alpha \in \mathcal{A}_{k,d}$. Entonces (K, P, Σ) es un elemento finito de Lagrange.

Elemento Finito de Lagrange

Ejemplos: Elementos finitos

Elemento finito de Crouzeix-Raviart. Sea K un simplex de \mathbb{R}^d y $P = \mathcal{P}^1$. Sea $\Sigma = \{\sigma_0, \dots, \sigma_d\}$ los grados de libertad sobre P

$$\sigma_i^{\sf CR}(p) := rac{1}{|F_i|} \int_{F_i} p ds, \quad 0 \leq i \leq d.$$

Entonces, (K, P, Σ) es un elemento finito.

Demostración. Como card $\Sigma = \dim P = d+1$, es suficiente verificar que dado $p \in P$ con $\sigma_i^{CR}(p) = 0$, para todo $0 \le i \le d$, entonces p = 0. Tenemos como $p \in \mathbb{P}_{1,d}$

$$p = \sum_{i=0}^{d} \lambda_i p(z_i)$$

Se sique que

$$\sigma_i^{\sf CR}(p) = \sum_{i=0}^d p(z_j) \sigma_i^{\sf CR}(\lambda_j) = rac{1}{d} \sum_{i
eq i} p(z_j)$$

Así, $p(z_i) = p(z_{i'})$ para 0 < i, i' < d, y por lo tanto p es constante igual a cero.

Manuel A. Sánchez 20/23

Ejemplos: Elementos finitos

Además, las funciones de forma locales son

$$\theta_i^{\sf CR}(x) = d\left(\frac{1}{d} - \lambda_i(x)\right), 0 \le i \le d.$$

Por último, el operador de interpolación de Crouzeix -Raviart se define por

$$\mathcal{I}_{K}^{\mathsf{CR}}(v)(\mathbf{x}) := \sum_{i=0}^{d} \sigma_{K,i}^{\mathsf{CR}}(v) \theta_{K,i}^{\mathsf{CR}}(\mathbf{x}) = \sum_{i=0}^{d} \left(\frac{1}{|F_{i}|} \int_{F_{i}} v ds \right) \theta_{i}^{\mathsf{CR}}(\mathbf{x}), \quad \mathbf{x} \in K.$$

Una opción posible para V(K) el dominio de \mathcal{I}_K^{CR} es $W^{1,1}(K)$ ya que necesitamos que sus trazas estén en $L^2(\partial K)$.

Mallas de elementos finitos

INSTITUTO DE INGENIERÍA Matemática y computacional

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE