VECTEURS ET TRANSLATION

1. Les vecteurs

1.1. Vocabulaire

Définition

Un vecteur \overrightarrow{AB} est caractérisé par trois composantes :

- ▶ la direction : la direction de la droite (AB)
- ▷ le sens : de A vers B.
- ▶ la longueur : la distance AB.

Remarque

Tout point A définit un vecteur nul note $\overrightarrow{0}$, on écrit : $\overrightarrow{AA} = \overrightarrow{0}$.

1.2. Égalité de deux vecteurs

Propriété 1

$$\overrightarrow{\textit{AB}} = \overrightarrow{\textit{CD}} \;\; \text{signifie que} :$$

 \overrightarrow{AB} et \overrightarrow{CD} ont la même direction \overrightarrow{AB} et \overrightarrow{CD} ont le même sens \overrightarrow{AB} et \overrightarrow{CD} ont la même longueur

Remarque

 $\overrightarrow{AB} = \overrightarrow{CD}$ signifie que ABCD est un parallélogramme.

Exercice 1

Soit ABC un triangle

- Construire le point E tel que $\overrightarrow{AE} = \overrightarrow{BC}$

1.3. Vecteur opposé

Définition

Le vecteur opposé d'un vecteur \overrightarrow{AB} est le vecteur \overrightarrow{BA} et on écrit : $\overrightarrow{AB} = -\overrightarrow{BA}$

Remarque

Deux vecteurs opposés ont la même direction et même longueur mais ils ont des sens opposés.

1.4. Somme de deux vecteurs

Définition

La somme de deux vecteurs \overrightarrow{AB} et \overrightarrow{AD} est le vecteur AC tel que ABCD soit un parallélogramme. On écrit : $\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{AB}$

Exercice 2

Soit ABC un triangle

- Onstruire le point E tel que $\overrightarrow{AC} = \overrightarrow{AE} + \overrightarrow{AB}$
- Construire les points M et N les symétriques respectifs de A et C par rapport à B
- 3 Montrer que : $\overrightarrow{NC} = \overrightarrow{NA} + \overrightarrow{NM}$

A, B et C sont des points. La relation $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$ est appelée relation de Chasles.

Exemples

Simplifions ce qui suit :

$$\overrightarrow{MN} + \overrightarrow{NO} = \overrightarrow{MO}$$

$$\overrightarrow{EF} + \overrightarrow{FG} + \overrightarrow{GE} = \overrightarrow{EG} + \overrightarrow{GE} = \overrightarrow{EE} = \overrightarrow{0}$$

$$\overrightarrow{AB} - \overrightarrow{CB} + \overrightarrow{CD} = \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} = \overrightarrow{AC} + \overrightarrow{CD} = \overrightarrow{AD}$$

1.5. Produit d'un vecteur par un nombre réel

Définition

Soit k un nombre réel et \overrightarrow{AB} un vecteur non nul.

Le vecteur \overrightarrow{AC} est le produit du vecteur \overrightarrow{AB} par le nombre k si $C \in \overrightarrow{AB}$ tel que $\overrightarrow{AC} = k\overrightarrow{AB}$

- ▷ Si k > 0 alors $AC = k \times AB$ et \overrightarrow{AB} et \overrightarrow{AC} ont le même sens.
- ightharpoonup Si k < 0 alors $AC = -k \times AB$ et \overrightarrow{AB} et \overrightarrow{AC} ont le sens contraires.

Exemples

▷ On construit le point M tel que : $\overrightarrow{AM} = 3\overrightarrow{AB}$

▷ On construit le point *N* tel que : $\overrightarrow{AN} = -3\overrightarrow{AB}$

▷ On construit le point *O* tel que : $\overrightarrow{AO} = \frac{3}{5}\overrightarrow{AB}$

Propriété 3

Si $\overrightarrow{AC} = k\overrightarrow{AB}$ alors A, B et C sont des points alignés.

Exercice 3

Copier la figure dans ta feuille et construire le point D tel que : $\overrightarrow{AD} = \overrightarrow{AB} + \overrightarrow{AC}$

- Construire le point E tel que : $\overrightarrow{AE} = \frac{1}{3}\overrightarrow{AB}$
- ② Construire le point E tel que : $\overrightarrow{AF} = -2\overrightarrow{AB}$

Exercice 4

Soit *ABC* un triangle.

Onstruire les deux points E et F tel que :

$$\overrightarrow{AE} = -\frac{3}{2}\overrightarrow{AC}$$
 et $\overrightarrow{EF} = \frac{3}{2}\overrightarrow{BC}$

- Montrer que : $\overrightarrow{AF} = \frac{3}{2}\overrightarrow{BA}$
- 3 Déduire que les points A, B et F sont alignés.

Exercice 5

Soit ABCD est un parallélogramme.

- Construire les deux points M et N tel que : $\overrightarrow{DM} = \frac{1}{3}\overrightarrow{DC}$ et $\overrightarrow{BN} = 3\overrightarrow{BC}$
- Montrer que : $\overrightarrow{AM} = \overrightarrow{BC} + \overrightarrow{DM}$ et $\overrightarrow{AN} = 3\overrightarrow{BC} + 3\overrightarrow{DM}$
- 3 En déduire que les points A, M et N sont alignés.

VECTEURS ET TRANSLATION

1.6. Vecteur et milieu d'un segment

Propriété 4

A, M et B sont des points. M est le milieu de [AB] signifie que :

$$\star \overrightarrow{AM} = \overrightarrow{MB} = \frac{1}{2}\overrightarrow{AB}$$

$$\star$$
 $\overrightarrow{MA} = \overrightarrow{-MB}$

$$\star \overrightarrow{MA} + \overrightarrow{MB} = \overrightarrow{0}$$

2. La translation

2.1. Image d'un point par une translation

Définition

A et B sont deux points distincts.

M' est l'image de M par la translation qui transforme A en B signifie que : ABM'M est un parallélogramme

Autrement dit

M' est l'image de M par la translation de vecteur \overrightarrow{AB} signifie que : $\overrightarrow{MM'} = \overrightarrow{AB}$

13/20

Remarque

Si $M \in (AB)$ alors M' est l'image de M par la translation de vecteur \overrightarrow{AB} appartient à la droite (AB).

Propriété 5

Soient M et N deux points du plan. Si M' et N' sont les images respectives des points M et N par une translation du vecteur \overrightarrow{U} , alors $\overrightarrow{M'}$ $\overrightarrow{N'}$ = \overrightarrow{MN}

2.2. Propriétés des translations

Propriété 6

On considère la translation du vecteur \overrightarrow{u} .

L'image du segment [MN] par la translation du vecteur u est le segment [M'N'], et on a :

M'N' = MN

On dit que la translation conserve les longueurs.

On considère la translation du vecteur \overrightarrow{u} .

L'image de la droite (MN) par la translation du vecteur \overrightarrow{u} est la droite (M'N'), et on a : $(M'N') \parallel (MN)$

Si M', N' et P sont trois points alignés, alors leurs images par une translation sont des points alignés.

On dit que la translation conserve l'alignement.

On considère la translation du vecteur \overrightarrow{u} .

L'image de la demi-droite [MN) par la translation du vecteur \overrightarrow{u} est la demi-droite [M'N').

On considère la translation du vecteur \overrightarrow{u} .

L'image de l'angle \widehat{AOB} par la translation du vecteur \overrightarrow{u} est l'angle $\widehat{A'O'B'}$, et on a : $\widehat{AOB} = \widehat{A'O'B'}$

On dit que la translation conserve la mesure des angles.

On considère la translation du vecteur \overrightarrow{u} .

L'image du cercle (C) de centre O et de rayon r par la translation du vecteur \overrightarrow{u} est le cercle (C') de centre O' et de même rayon r.

