Data Models

Learning Objectives

In this chapter, you will learn:

- About data modeling
- Why data models are important

Data Modeling and Data Models

 Data modeling: Iterative and progressive process of creating a specific data model for a determined problem domain

Data models: Simple representations of complex real-world data structures

File System: Weakness

- Weakness
- "Islands of data" in scattered file systems.
- Problems
 - Duplication
 - same data may be stored in multiple files
 - Inconsistency
 - same data may be stored by different names in different format
 - Rigidity
 - requires customized programming to implement any changes
 - cannot do ad-hoc queries
- Implications
- Waste of space
- Data inaccuracies
- High overhead of data manipulation and maintenance

File System: Example

Database Systems: Design, Implementation, & Management: Rob & Coronel

Database System vs. File System

Database Systems: Design, Implementation, & Management: Rob & Coronel

Implementation Database Models

Hierarchical Model: data model based on trees.

Network Model: data model based on graphs with records as nodes and relationships between records as edges.

Relational Model: data model based on tables

E-R Model : data model based on entiities and their relationship

Hierarchical Model

- Manage large amounts of data for complex manufacturing projects
- Logically represented by an upside down tree
 - Each parent can have many children
 - Each child has only one parent
- The hierarchical structure contains levels
- This model depicts a set of one to many (1:M) relationship.

Hierarchical Model

Advantages

- Promotes data sharing
- Parent/child relationship promotes conceptual simplicity and data integrity
- Database security is provided and enforced by DBMS
- Efficient with 1:M relationships

Disadvantages

- Requires knowledge of physical data storage characteristics
- Navigational system requires knowledge of hierarchical path
- Changes in structure require changes in all application programs
- Implementation limitations
- No data definition
- Lack of standards

Hierarchical Model: Example

Database Systems: Design, Implementation, & Management: Rob & Coronel

Network Database Model

- Each record can have multiple parents
 - Composed of sets
 - Each set has owner record and member record
 - Member may have several owners
- Was created to represent complex data relationship more effectively than the hierarchical model, to improve database performance, and to impose a database standards.
- This model is generally not used today.

Network Model

Advantages

- Conceptual simplicity
- Handles more relationship types
- Data access is flexible
- Data owner/member relationship promotes data integrity
- Conformance to standards
- Includes data definition language (DDL) and data manipulation language (DML)

Disadvantages

- System complexity limits efficiency
- Navigational system yields complex implementation, application development, and management
- Structural changes require changes in all application programs

Standard Database Concepts

Schema

 Conceptual organization of the entire database as viewed by the database administrator

Subschema

 Portion of the database seen by the application programs that produce the desired information from the data within the database

Standard Database Concepts

Data manipulation language (DML)

 Environment in which data can be managed and is used to work with the data in the database

Schema data definition language (DDL)

 Enables the database administrator to define the schema components

Hierarchical and Network Models

Hierarchical Models

- Manage large amounts of data for complex manufacturing projects
- Represented by an upsidedown tree which contains segments
 - Segments: Equivalent of a file system's record type
- Depicts a set of one-to-many (1:M) relationships

Network Models

- Represent complex data relationships
- Improve database performance and impose a database standard
- Depicts both one-to-many (1:M) and many-to-many (M:N) relationships

The Relational Model

- Produced an automatic transmission database that replaced standard transmission databases
- Based on a relation
 - Relation or table: Matrix composed of intersecting tuple and attribute
 - **Tuple**: Rows
 - Attribute: Columns
- Describes a precise set of data manipulation constructs

Relational Model

Advantages

- Structural independence is promoted using independent tables
- Tabular view improves conceptual simplicity
- Ad hoc query capability is based on SQL
- Isolates the end user from physical-level details
- Improves implementation and management simplicity

Disadvantages

- Requires substantial hardware and system software overhead
- Conceptual simplicity gives untrained people the tools to use a good system poorly
- May promote information problems

Relational Database Management System(RDBMS)

- Performs basic functions provided by the hierarchical and network DBMS systems
- Makes the relational data model easier to understand and implement
- Hides the complexities of the relational model from the user

Figure 2.2 - A Relational Diagram

Cengage Learning © 2015

RE 2.4 LINKING RELATIONAL TABLES

Database name: Ch02_InsureCo Table name: AGENT (first six attributes)

	AGENT_CODE	AGENT_LNAME	AGENT_FNAME	AGENT_INITIAL	AGENT_AREACODE	AGENT_PHONE
•	501	Alby	Alex	В	713	228-1249
	502	Hahn	Leah	F	615	882-1244
	503	Okon	John	T	615	123-5589

Link through AGENT_CODE

Table name: CUSTOMER

	CUS_CODE	CUS_LNAME	CUS_FNAME	CUS_INITIAL	CUS_AREACODE	CUS_PHONE	CUS_RENEW_DATE	AGENT_CODE
•	10010	Ramas	Alfred	A	615	844-2573	05-Apr-2004	502
	10011	Dunne	Leona	K	713	894-1238	16-Jun-2004	501
	10012	Smith	Kathy	W	615	894-2285	29-Jan-2005	502
	10013	Olowski	Paul	F	615	894-2180	14-Oct-2004	502
	10014	Orlando	Myron		615	222-1672	28-Dec-2004	501
	10015	O'Brian	Amy	8	713	442-3381	22-Sep-2004	503
	10016	Brown	James	G	615	297-1228	25-Mar-2004	502
	10017	Williams	George		615	290-2556	17-Jul-2004	503
	10018	Farriss	Anne	G	713	382-7185	03-Dec-2004	501
	10019	Smith	Olette	K	615	297-3809	14-Mar-2004	503

The Entity Relationship Model

- Graphical representation of entities and their relationships in a database structure
- Entity relationship diagram (ERD)
 - Uses graphic representations to model database components
- Entity instance or entity occurrence
 - Rows in the relational table
- Connectivity: Term used to label the relationship types

Entity Relationship Model

Advantages

- Visual modeling yields conceptual simplicity
- Visual representation makes it an effective communication tool
- Is integrated with the dominant relational model

Disadvantages

- Limited constraint representation
- Limited relationship representation
- No data manipulation language
- Loss of information content occurs when attributes are removed from entities to avoid crowded displays

Figure 2.3 - The ER Model Notations

