

Лекция 3 Алгоритмы кластеризации II

Николай Анохин

12 октября 2015 г.

Краткое содержание предыдущих лекций

Дано. Признаковые описания N объектов $\mathbf{x}=(x_1,\ldots,x_m)\in\mathcal{X}$, образующие тренировочный набор данных X

Найти. Модель из семейства параметрических функций

$$H = \{h(\mathbf{x}, \theta) : \mathcal{X} \times \Theta \rightarrow \mathcal{Y} \mid \mathcal{Y} = \{1, \dots, K\}\},\$$

ставящую в соответствие произвольному $\mathbf{x} \in \mathcal{X}$ один из K кластеров так, чтобы объекты внутри одного кластера были похожи, а объекты из разных кластеров различались

Краткое содержание предыдущих лекций

Рассмотрели классические алгоритмы кластеризации

- 1. Смесь гауссовских распределений и k-means++
- 2. Hierarchical Clustering
- 3. DBSCAN

И как их использовать

- 1. Выбор количества кластеров
- 2. Оценка качества

Кластеризация больших данных 1

¹Big Data Clustering: Algorithms and Challenges

Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH)²

Идея метода: построить иерархию кластеров, которая позволит хранить ограниченное количество данных в виде агрегатов.

- ▶ локальность: каждая точка "кластеризуется" без сканирования всех других точек или имеющихся кластеров
- ▶ выбросы: точки в "густонаселенных" регионах принадлежат кластерам, а в "малонаселенных" – к выбросам
- ightharpoonup экономность: используется вся доступная память, при этом минимизируется I/O
- ► *масштабируемость:* при определенных условиях обучается "онлайн" и требует единственного прохода по данным

²BIRCH: An efficient data clustering method for very large datasets

Меры компактности кластера

Центроид

$$\mathbf{x}_0 = \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_i$$

Радиус

$$R = \frac{1}{N} \sum_{i=1}^{N} d(\mathbf{x}_i, \mathbf{x}_0)$$

Диаметр

$$D = \frac{1}{N(N-1)} \sum_{i=1}^{N} \sum_{i=1}^{N} d(\mathbf{x}_{i}, \mathbf{x}_{j})$$

Clustering Feature

Clustering feature – это объект, содержащий сжатую информацию о кластере.

Определение 1

Пусть кластер C содержит N d-мерных объектов \mathbf{x}_i . Clustering feature (CF) для C определяется как тройка CF = (N, LS, SS), где

$$LS = \sum_{i=1}^{N} \mathbf{x}_i, \quad SS = \sum_{i=1}^{N} \mathbf{x}_i^2$$

Утверждение 1

Пусть $CF_1=(N_1,LS_1,SS_1)$ и $CF_2=(N_2,LS_2,SS_2)$ — СF для кластеров C_1 и C_2 . Тогда CF для кластера, полученного слиянием C_1 и C_2 , определяется как

$$CF = (N_1 + N_2, LS_1 + LS_2, SS_1 + SS_2)$$

CF Tree

- В максимальное количество детей у внутреннего узла
- L максимальное количество детей у листа
- T Максимальная компактность (R или D) ребенка листа

При разделении узла выбираем две наиболее удаленные CF и лепим к ним ближайшие

BIRCH

Пример

Сравнение скорости

Birch without global clustering as the final step took 4.19 seconds

n_clusters : 158

Birch with global clustering as the final step took $4.61\ \text{seconds}$

n_clusters : 100

Time taken to run MiniBatchKMeans 5.61 seconds

Итоги

- + Алгоритм работает за O(N)
- + Можно контролировать количество используемой памяти
- + В некоторых случаях поддерживается онлайн кластеризация
- Тяжелый подбор параметров
- Только эллиптические кластеры

Другие алгоритмы³⁴⁵

Cls. Algorithms	Size of Data	Cls. Quality	Scalability	Stability
EM	Large	High	Low	Suffer from
FCM	Large	High	Low	Suffer from
DENCLUE	Huge	Partially	High	Suffer from
OptiGrid	Huge	Partially	High	Suffer from
BIRCH	Huge	Partially	High	Suffer from

³DENCLUE

 $^{^4}$ OptiGrid

⁵Fuzzy c-means

Multidimensional Scaling

Идея метода

Перейти в пространство меньшей размерности так, чтобы расстояния между объектами в новом пространстве были подобны расстояниям в исходном пространстве.

t-Stochastic Neighbour Embedding (t-SNE)⁶

Схожесть между объектами в исходном пространстве

$$p(i,j) = \frac{p(i|j) + p(j|i)}{2n}, \quad p(j|i) = \frac{\exp(-\|\mathbf{x}_j - \mathbf{x}_i\|^2 / 2\sigma_i^2)}{\sum_{k \neq i} \exp(-\|\mathbf{x}_k - \mathbf{x}_i\|^2 / 2\sigma_i^2)}$$

Схожесть между объектами в целевом пространстве

$$q(i,j) = \frac{(1 + \|\mathbf{y}_i - \mathbf{y}_j\|^2)^{-1}}{\sum_{k \neq l} (1 + \|\mathbf{y}_k - \mathbf{y}_l\|^2)^{-1}}$$

Критерий

$$J_{t-\mathsf{SNE}} = \mathsf{KL}(P\|Q) = \sum_{i} \sum_{j} p(i,j) \log \frac{p(i,j)}{q(i,j)} o \mathsf{min}$$

⁶http://lvdmaaten.github.io/tsne/

t-распределение

$$au(\mu,\sigma^2,
u) \propto \left[1 + rac{1}{
u} \left(rac{x-\mu}{\sigma}
ight)^2
ight]^{-rac{
u+1}{2}}$$

Уильям Госсет 1908 (Student)

Дивергенция Кульбака-Лейблера

Насколько распределение P отличается от распределения Q?

$$KL(P||Q) = \sum_{z} P(z) \log \frac{P(z)}{Q(z)}$$

Digits Dataset

около 1800 картинок 8х8 с рукописными цифрами

t-SNE

MNIST Dataset

70000 картинок 20x20 с рукописными цифрами

t-SNE

Еще примеры

CalTech

S&P 500

Words

Еще алгоритмы

Вопросы

