Introducción a los Sistemas Distribuidos (75.43 / 75.33 / 95.40)

Evaluación Parcial 2C 2024 – Primera oportunidad

TEMA 1

Padrón	
Apellido	
Nombre	
email	

Criterio de aprobación:

El alumno debe demostrar conocimiento de todos los puntos que componen el parcial.

Responder las preguntas críticas (marcadas en gris) es una condición necesaria para aprobar el examen.

Teórico 1	Teórico 2	ТСР	Fragmentación	Routing	Subnetting

1. Indicar cuál es la afirmación correcta sobre subnetting:

Α	La única máscara de subred de clase C es 255.255.255.0.
В	Las máscaras de subred no son aplicables en redes IPv6.
С	La máscara de subred define qué parte de la dirección IP corresponde a la red y qué parte al host.
D	Subnetting ayuda a rutear el tráfico de anycast en la red.

2. El Round Trip Time (RTT) es una medida importante en redes. ¿Cuál de las siguientes afirmaciones sobre RTT es correcta?

Α	RTT solo se mide en conexiones TCP.
В	RTT incluye el tiempo que tarda un paquete en viajar desde el origen hasta el destino y volver.
С	Un RTT más bajo siempre indica un ancho de banda mayor.
D	RTT no tiene relación con la latencia en redes.

3. El host A está subiendo una imagen al host B utilizando TCP/IP, con el protocolo de red sin opciones.

No.	Source	Destination	Protocol	Length ip_packet_size	tcp_payload_size	ack	bytes_in_flight
	6617 192.168.0.2	192.168.0.59	TCP	1006 992	940	1	16920
	6618 192.168.0.2	192.168.0.59	TCP	1006 992	940	1	17860
	6619 192.168.0.2	192.168.0.59	TCP	1006 992	940	1	18800
	6620 192.168.0.2	192.168.0.59	TCP	1006 992	940	1	19740
	6621 192.168.0.2	192.168.0.59	TCP	1006 992	940	1	20680
	6622 192.168.0.2	192.168.0.59	TCP	1006 992	940	1	21620
	6623 192.168.0.2	5 192.168.0.59	TCP	1006 992	940	1	22560
	6624 192.168.0.2	192.168.0.59	TCP	1006 992	940	1	23500
	6625 192.168.0.2	192.168.0.59	TCP	1006 992	940	1	24440
	6626 192.168.0.2	192.168.0.59	TCP	1006 992	940	1	25380
	6627 192.168.0.2	192.168.0.59	TCP	1006 992	940	1	26320
	6628 192.168.0.2	192.168.0.59	TCP	1006 992	940	1	27260
	6629 192.168.0.2	192.168.0.59	TCP	1006 992	940	1	28200
	6630 192.168.0.2	192.168.0.59	TCP	1006 992	940	1	29140
	6631 192.168.0.2	192.168.0.59	TCP	1006 992	940	1	30080
	6632 192.168.0.2	5 192.168.0.59	TCP	1006 992	940	1	31020
	6633 192.168.0.2	192.168.0.59	TCP	1006 992	940	1	31960
	6634 192.168.0.2	192.168.0.59	TCP	1006 992	940	1	32900
	6635 192.168.0.2	192.168.0.59	TCP	1006 992	940	1	33840
	6636 192.168.0.2	192.168.0.59	TCP	1006 992	940	1	34780
	6637 192.168.0.2	192.168.0.59	TCP	1006 992	940	1	35720
	6638 192.168.0.2	192.168.0.59	TCP	1006 992	940	1	36660
	6639 192.168.0.2	5 192.168.0.59	TCP	1006 992	940	1	37600
	6640 192.168.0.5	9 192.168.0.25	TCP	66 52	0	30081	
	6641 192.168.0.5	9 192.168.0.25	TCP	66 52	Θ	31961	
	6642 192.168.0.5	9 192.168.0.25	TCP	66 52	0	33841	
	6643 192.168.0.5	9 192.168.0.25	TCP	66 52	0	35721	
	6644 192.168.0.5	9 192.168.0.25	TCP	66 52	0	45121	
	6645 192.168.0.5	9 192.168.0.25	TCP	66 52	0	58281	
	6646 192.168.0.5	9 192.168.0.25	TCP	66 52	0	60161	
	6647 192.168.0.5	9 192.168.0.25	TCP	66 52	0	65801	

De acuerdo a la captura anterior, elija la opción correcta:

A	El tamaño de ventana de la última ráfaga es 40 MSS.			
В	El tamaño del header del protocolo de transporte es 20 Bytes.			
С	El MTU es 940 Bytes.			
D	El host A tiene información que llegaron correctamente 65801 Bytes de la imagen.			

4. Si el host A envía un paquete de 1024 bytes al host B, con la siguiente configuración de MTUs, indicar cuál de las respuestas es correcta en cuanto a los fragmentos que llegan al host B, siendo el header de 20b:

	Nro de frag	Fragment offset	Total length	Payload length	More fragments
	F1_1_2	0	396	376	0
٨	F1_1_2	47	396	376	0
Α	F1_1_3	94	244	224	0
	F2_1_1	122	68	48	1
	F1_1_2	0	396	376	1
В	F1_1_2	47	396	376	1
D	F1_1_3	94	244	224	1
	F2_1_1	122	68	48	0
	F1_1_2	0	396	376	1
C	F1_1_2	47	396	376	1
C	F1_1_3	94	268	248	1
	F2_1_1	122	44	24	0
	F1_1_2	0	396	376	0
D	F1_1_2	47	396	376	0
ט	F1_1_3	94	268	248	0
	F2_1_1	122	44	24	1

5. Routing - Considere la siguiente tabla de ruteo

Network destination	Netmask	Interface	Next Hop
157.92.232.0	255.255.248.0	if1	10.57.192.85
157.92.224.0	255.255.224.0	if1	10.57.192.85
157.92.216.0	255.255.248.0	if2	10.64.128.1
157.92.208.0	255.255.248.0	if2	10.64.128.1
157.92.192.0	255.255.240.0	if2	10.64.128.1
157.92.236.0	255.255.248.0	if3	10.204.35.200

- 1. Se solicita agregar un default gateway que salga por la interfaz if3.
- 2. Una vez configurado el default gateway, se solicita optimizar la tabla de ruteo eliminando las entradas redundantes. Ordenar la misma por interfaz de salida.

6. Subnetting - Dada la topología:

A. Completar la siguiente tabla dado los espacios de direcciones 200.200.48.0/22, priorizando el orden alfabético a la hora de subnetear bloques del mismo tamaño

Subnet	#Hosts	Tamaño de bloque	Subnet
А	256		
В	100		
С	30		
D	20		
Е	10		
P1	-		
P2	-		

- B. Asignar una dirección IP posible para:
 - i. El router de la subnet C
 - ii. Un host perteneciente a la subnet C
 - iii. Un router de la subnet P1